

ECE 68000: MODERN AUTOMATIC CONTROL

Professor Stan Żak

Linear system overview

Outline

- Some remarks on signals and systems
- Solving the state equation
- Solution of the controlled system
- Reachability and controllability
- Observability
- State-feedback controller design problem
- Pole placement

Some Remarks on Signals and Systems

- Signals are functions of time, which can be scalar-valued or vector-valued
- A system is any part of the real world surrounded by a well defined boundary
- The system is influenced by its environment via input signal, u(t) and acts on its environment via output signal y(t)

State of the System

- The state of the system contains all past information of the system up to the initial time t₀
- If we wish to compute the system output for $t > t_0$, we only need $\boldsymbol{u}(t)$ for $t > t_0$ and the initial state $\boldsymbol{x}(t_0)$

Solving Uncontrolled State Equation

• Time-invariant linear model

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t)$$

subject to an initial condition

$$\boldsymbol{x}(0) = \boldsymbol{x}_0$$

Solution,

$$|\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}_0|$$

Solving Uncontrolled State Equation—More General Case

0

$$\mathbf{x}(t) = e^{\mathbf{A}(t-t_0)}\mathbf{x}(t_0)$$

• $e^{A(t-t_0)} = \Phi(t, t_0)$ State transition matrix—it relates the state at any instant of time t_0 to the state at any other time t

State Equation Solution of the Controlled System

• Linear Time-Invariant (LTI) controlled dynamical system

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t)$$

• Premultiply by e^{-At}

$$e^{-\mathbf{A}t}\dot{\mathbf{x}}(t) = e^{-\mathbf{A}t}\mathbf{A}\mathbf{x}(t) + e^{-\mathbf{A}t}\mathbf{B}\mathbf{u}(t)$$

Solution of the Controlled System

• Re-arrange

$$e^{-\mathbf{A}t}\dot{\mathbf{x}}(t) - e^{-\mathbf{A}t}\mathbf{A}\mathbf{x}(t) = e^{-\mathbf{A}t}\mathbf{B}\mathbf{u}(t)$$

Note that

$$\frac{d}{dt}\left(e^{-\mathbf{A}t}\mathbf{x}(t)\right) = -\mathbf{A}e^{-\mathbf{A}t}\mathbf{x}(t) + e^{-\mathbf{A}t}\dot{\mathbf{x}}(t)$$

• Hence, $\frac{d}{dt}\left(e^{-\mathbf{A}t}\mathbf{x}(t)\right) = e^{-\mathbf{A}t}\mathbf{B}\mathbf{u}(t)$

Controlled System Model Solution

Integrate

$$e^{-\boldsymbol{A}t}\boldsymbol{x}(t)-\boldsymbol{x}(0)=\int_0^t e^{-\boldsymbol{A} au}\boldsymbol{B}\boldsymbol{u}(au)d au$$

Manipulate to obtain

$$\mathbf{x}(t) = e^{\mathbf{A}t}\mathbf{x}(0) + \int_0^t e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau$$

Controlled System—General Case

Important Solution Formula

$$\mathbf{x}(t) = e^{\mathbf{A}(t-t_0)}\mathbf{x}(t_0) + \int_t^t e^{\mathbf{A}(t-\tau)}\mathbf{B}\mathbf{u}(\tau)d\tau$$

Reachability Definition

We say that the system $\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t)$ is reachable if for any \boldsymbol{x}_f there is $t_1 > 0$ and a control law, $\boldsymbol{u}(t)$, that transfers $\boldsymbol{x}(t_0) = \boldsymbol{0}$ to $\boldsymbol{x}(t_1) = \boldsymbol{x}_f$

Controllability Definition

We say that the system $\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t)$ is controllable if there is a control law $\boldsymbol{u}(t)$ that transfers any initial state $\boldsymbol{x}(t_0) = \boldsymbol{x}_0$ to the origin at some time $t_1 > t_0$

 For continuous LTI systems controllability and reachability are equivalent

Some Controllability Tests

The following are equivalent:

- The system $\dot{\boldsymbol{x}}(t) = \boldsymbol{A}\boldsymbol{x}(t) + \boldsymbol{B}\boldsymbol{u}(t)$ is reachable
- rank $[\boldsymbol{B} \ \boldsymbol{A} \boldsymbol{B} \ \cdots \ \boldsymbol{A}^{n-1} \boldsymbol{B}] = n$
- The matrix

$$\boldsymbol{W}(t_0, t_1) = \int_{t_0}^{t_1} e^{-\boldsymbol{A}t} \boldsymbol{B} \boldsymbol{B}^{\top} e^{-\boldsymbol{A}^{\top}t} dt$$

is nonsingular for all $t_1 > t_0$

Observability

- Suppose the system state is not directly accessible
- Instead, we have the output of the system

$$y = Cx + Du$$

 We still wish to know the behavior of the entire state

Observability Definition

The system

$$\begin{array}{ccc} \dot{x} & = & Ax + Bu \\ y & = & Cx + Du \end{array}$$

or equivalently the pair (A, C), is observable if there is a finite $t_1 > t_0$ such that for arbitrary $\boldsymbol{u}(t)$ and resulting $\boldsymbol{y}(t)$ over $[t_0, t_1]$, we can determine $\boldsymbol{x}(t_0)$ from complete knowledge of the system input \boldsymbol{u} and output \boldsymbol{y}

Remark on Observability

Note that once $\mathbf{x}(t_0)$ is known, we can determine $\mathbf{x}(t)$ from knowledge of $\mathbf{u}(t)$ and $\mathbf{y}(t)$ over any finite time interval $[t_0, t_1]$

Observability Test

The following are equivalent:

- The pair (A, C) is observable
- The observability matrix

$$\left[egin{array}{c} C \ CA \ dots \ CA^{n-1} \end{array}
ight] \in \mathbb{R}^{pn imes n}$$

is of full rank n

State-Feedback Controller

• Plant (System to be controlled)

$$\dot{x} = Ax + Bu$$
$$y = Cx$$

Controller—linear state-feedback

$$u = -Kx + v$$

Closed-Loop System

$$\dot{x} = (A - BK) x + Bv$$