EE219 Large Scale Data Mining Models and Algorithms

Winter 2018_Project5

Team member:

Dui Lin (504759948)

Xinyi Jiang (904818856)

Zhenli Jiang (304878235)

Content

1. Introduction	3
2. Problem Statement and Results	3
2.1 Popularity Prediction	3
2.1.1	3
2.1.2	7
2.1.3	11
2.1.4	21
2.1.5	23
2.2 Fan Base Prediction	24
2.3 Game Result Prediction with Semantic Mining and Analyses	27

1. Introduction

A useful practice in social network analysis is to predict future popularity of a subject or event. Twitter, with its public discussion model, is a good platform to perform such analysis. With Twitter's topic structure in mind, the problem can be stated as: knowing current (and previous) tweet activity for a hashtag, can we predict its tweet activity in the future? More specifically, can we predict if it will become more popular and if so by how much? In this project, we will try to formulate and solve an instance of such problems.

In this project, we try to predict the popularity of a topic on Twitter. More formally, knowing the previous and current tweet activity for a hashtag, we try to predict its tweet activity in the future and aim to determine whether it gets more or less popular and by how much. For this, we use Regression Models.

2. Problem Statement and Results

2.1 Popularity Prediction

2.1.1

In problem 1.1, our goal is to do some basic statistics calculation of the training tweet data for each hashtag. And also, we show histograms with 1-hour bins that show the number the tweets in hour over time for two hashtag groups, #SuperBowl and #NFL.

1. GoHawks

2. GoPatriots

3

Info of #GoPatriots

Average number of tweets per hour: 45.6945105735620

Average number of followers per user: 1294.46936646 26748

Average number of followers per tweet: 1401.8955093 016164

Average number of retweets per tweet: 1.40008386703 26319

3. NFL

*

Info of #NFL

Average number of tweets per hour: 441.323431137395

Average number of followers per user: 4221.07698786 5717

Average number of followers per tweet: 4653.2522855 02502

Average number of retweets per tweet: 1.53853310890 11056

*

4. Patriots

	Average	number	of	tweets p	er ho	our:	834	. 5555	091	64
6										
	Average	number	of	follower	rs per	use	r:	1695	271	06
7722	24									
	Average	number	of	follower	rs per	twe	et:	3309	.97	88
1582	27									
	Average	number	of	retweets	s per	twee	t:	1.782	815	649
5940	02									
***	*****	*****	***	*****	*****	****	***	****	***	**
*										

5. SB49

6. SuperBowl

Info of #SuperBowl

Average number of tweets per hour: 2302.50040188332

Average number of followers per user: 3798.67911708 5927

Average number of followers per tweet: 8858.9746627 84603

Average number of retweets per tweet: 2.38827239990 30224

2.1.2

Problem 1.2 asked us to predict the number of tweets in the nest hour by fitting a Linear Regression model for each hashtag. The p-value for each parameter tests the null hypothesis that the coefficient is equal to zero (no effect). A low p-value (< 0.05) indicates that we can reject the null hypothesis. In other words, a predictor that has a low p-value is likely to be a meaningful addition to the model because changes in the predictor's value are related to changes in the response variable. Conversely, a larger (insignificant) p-value suggests that changes in the predictor are not associated with changes in the response. On the other hand, the t-statistic is useful for making inferences about the regression coefficients. The hypothesis test on coefficient i tests the null hypothesis that it is equal to zero (meaning the corresponding term is not significant) versus the alternate hypothesis that the coefficient is different from zero. There we would want to consider features with high t-test values.

The features we use are:

- X1: Maximum number of followers of the users posting the hashtag
- X2: Time of the day (which could take 24 values that represent hours of the day with respect to a given time zone)
- X3 : Sum of the number of followers of the users posting the hashtag
- X4 : Total number of retweets (hashtag of interest)
- X5 : Number of tweets (hashtag of interest)

1. GoHawks

		<i>4############</i>		ets_#gohawks.tx ########## Results		!###
========						
Dep. Variab	le:			quared:		0.490
Model:			OLS Adj	. R-squared:		0.488
Method:		Least Squa	res F-s	tatistic:		186.0
Date:	Mo	on, 19 Mar 2	018 Pro	b (F-statistic)	:	8.81e-139
Time:		01:08	:32 Log	-Likelihood:		-7817.0
No. Observat	tions:		973 AIC	:		1.565e+04
Df Residuals	S:		967 BIC	:		1.568e+04
Df Model:			5			
Covariance 5	Type:	nonrob	ust			
					=======	
	coef	std err	t	P> t	[95.0% 0	conf. Int.]
const	39.0200	35.144	1.110	0.267	-29.947	107.987
x1	0.5719	0.121	4.716	0.000	0.334	0.810
x2	-0.1692	0.043	-3.909	0.000	-0.254	-0.084
x3	6.2179	3.122	1.992	0.047	0.091	12.345
x4	0.0004	8.15e-05	4.586	0.000	0.000	0.001
x5	-0.0007	0.000	-4.915	0.000	-0.001	-0.000
========						
Omnibus:		1848.	594 Dur	bin-Watson:		2.336
Prob(Omnibus	s):	0.	000 Jar	que-Bera (JB):	4	377767.947
Skew:		13.	277 Pro	b(JB):		0.00
Kurtosis:		330.	531 Cor	d. No.		2.39e+06
			=======			

Best features found based on p and t-values are: **number of followers** and **number of tweets**. However, the R-squared value is relatively low (only 0.490), which means the model did not fit very well.

2. GoPatriots

========			======			
Dep. Variab	le:	У	R-sq	uared:		0.664
Model:		OLS	Adj.	R-squared:		0.662
Method:		Least Squares	F-sta	atistic:		268.4
Date:	M	on, 19 Mar 2018	Prob	(F-statistic):	4	.60e-158
Time:		01:08:34	Log-	Likelihood:		-4453.3
No. Observa	tions:	684	-			8919.
Df Residual		678				8946.
Df Model:		5	210.			03101
Covariance	Type:	nonrobust				
COVALIANCE	Type.	HOHIODUSC				
	coef			DS L		
	coei	std err	τ	P> t	[95.0% CON:	r. Int.
and the same and a	4 0000					01 540
const	4.2832	8.891				
x1	-0.5687			0.018		
x2	0.3815	0.262				
x 3	0.7502	0.827	0.908	0.364	-0.873	2.373
x4	0.0011	0.000	5.432	0.000	0.001	0.002
x5	-0.0012	0.000	-6.359	0.000	-0.002	-0.001
			=====			
Omnibus:		796.993	Durb:	in-Watson:		2.103
Prob(Omnibu	s):	0.000	Jarqu	ue-Bera (JB):	452	2112.690
Skew:		4.844	Prob	(JB):		0.00
Kurtosis:		128.578	Cond	. No.		4.69e+05

Best features found based on p and t-values are: **number of followers** and **number of retweets**. The R-squared value is 0.664, which means the model fit fairly well.

3. NFL

Dep. Varia	ble:		y R-s	quared:		0.605		
Model:		(-	. R-squared:		0.602		
Method:		Least Squar	-	•		281.7		
Date:	Mo			b (F-statistic):			
Time:				-Likelihood:	,	-6999.4		
No. Observations: 927 AIC:					1.401e+04			
Df Residua	ls:		921 BIC	:		1.404e+04		
Df Model:			5					
Covariance	Type:	nonrob	ıst					
	coef	std err	t	P> t	[95.0% C	onf. Int.]		
const	33.7633	21.497	1.571	0.117	-8.425	75.952		
x1	1.3297	0.110	12.078	0.000	1.114	1.546		
x2	-0.1779	0.065	-2.722	0.007	-0.306	-0.050		
x 3	2.1759	2.036	1.069	0.286	-1.821	6.172		
x4	-0.0001	2.5e-05	-5.600	0.000	-0.000	-9.11e-05		
x 5	0.0002	3.4e-05	5.622	0.000	0.000	0.000		
Omnibus:	========	1053.	====== 806 Dur	======== bin-Watson:	=======	2.146		
Prob(Omnib	us):			que-Bera (JB):	1	256393.880		
Skew:	•		531 Pro	_ , ,		0.00		
Kurtosis:		183.		d. No.		3.91e+06		

Best features found based on p and t-values are: **maximum number of followers** and **number of tweets**. The R-squared value is 0.605, which means the model fit decently.

4. Patriots

Details for Linear Regression Model for tweets_#patriots.txt OLS Regression Results Dep. Variable: Model: Mothod: Date: Mon, 19 Mar 2018 Time: Mon. Observations: Df Residuals: Df Model: Mondel: _______ 0.716 0.715 492.1 1.06e-263 1.753e+04 1.756e+04 Covariance Type: nonrobust -------coef std err t P>|t| [95.0% Conf. Int.] const 72.1464 83.417 0.865 0.387 -91.550 235.843 x1 1.7894 0.079 22.523 0.000 1.634 1.945 x2 -0.9539 0.073 -13.071 0.000 -1.097 -0.811 x3 6.7396 7.839 0.860 0.390 -8.644 22.123 x4 0.0003 4.28e-05 7.792 0.000 0.000 -0.000 -7.94e-05 x5 -0.0003 9.01e-05 -2.844 0.005 -0.000 -7.94e-05 ______ 1877.207 Durbin-Watson: 0.000 Jarque-Bera (JB): 407 13.560 Prob(JB): Omnibus: Prob(Omnibus): Skew: Kurtosis: 4075004.536 0.00 317.577 Cond. No. 7.10e+06 Kurtosis:

Best features found based on p and t-values are: **number of followers** and **number of tweets**. The R-squared value is 0.716, which means the model fit well.

5. SB49

		###########		eets_#sb49.txt ######### Results	###########
========					
Dep. Varia	ble:			squared:	0.821
Model:				j. R-squared:	0.819
Method:		Least Squ		statistic:	528.7
Date:	Mo	on, 19 Mar	2018 Pr	ob (F-statistic): 1.01e-212
Time:		01:1	0:35 Lo	g-Likelihood:	-5702.2
No. Observ	ations:		583 AI	C:	1.142e+04
Df Residua	ls:		577 BI	C:	1.144e+04
Df Model:			5		
Covariance	Type:	nonro	bust		
	coef	std err		t P> t	[95.0% Conf. Int.]
const	138.7825	323.784	0.42	9 0.668	-497.156 774.721
x1		0.052		9 0.000	1.039 1.243
x2		0.043			
x3			-0.61		-64.582 33.653
x4			7.42		0.000 0.000
x5	-0.0002	6.92e-05	-4.08		-0.000 -0.000
	-0.0005		-4.00	0.000	-0.000 -0.000
Omnibus:		1163	.174 Du	rbin-Watson:	1.726
Prob(Omnib	ous):	0	.000 Ja	rque-Bera (JB):	2251333.588
Skew:	*	14	.042 Pr	ob(JB):	0.00
Kurtosis:		306	.134 Co	nd. No.	5.73e+07

Best features found based on p and t-values are: **number of followers** and **number of tweets**. However, the R-squared value is 0.821, which means the model fit very well.

6. SuperBowl

Dep. Vari	able:		У	R-squ	ared:		0.742
Model:	ubic.		OLS		R-squared:		0.74
Method:		Least Squa			tistic:		552.3
Date:		on, 19 Mar 2			(F-statistic):		3.39e-27
Time:		01:12			ikelihood:		-9919.
No. Obser	vations:		964	AIC:			1.985e+0
Df Residu	als:		958	BIC:			1.988e+0
Df Model:			5				
Covariance	e Type:	nonrok	oust				
=======							
	coef	std err		t	P> t	[95.0% Co	nf. Int.
const	136.6962	318.892	0	.429	0.668	-489.112	762.50
x1	1.6751	0.258	6	.487	0.000	1.168	2.18
x2	0.0245	0.126	0	.195	0.846	-0.222	0.27
x 3	0.1737	31.361	0	.006	0.996	-61.370	61.71
x4	-0.0004	2.58e-05	-13	.814	0.000	-0.000	-0.00
x5	0.0013	0.000	9	.530		0.001	
Omnibus:		 1889.	238	Durbi	n-Watson:		1.69
Prob(Omni	bus):	0.	000	Jarqu	e-Bera (JB):	57	89800.589
Skew:	•	14.	125	Prob(JB):		0.0
Kurtosis:		381.	611	Cond.	NO		6.34e+0

Best features found based on p and t-values are: **maximum number of followers** and **number of tweets**. The R-squared value is 0.742, which means the model fit well.

According to the results above, it can be concluded that top 3 important features are **Maximum number of followers, Number of retweets and Number of tweets.**

2.1.3

In this part we aim to train the model using features of our own. We selected the following features in addition to the ones mentioned in the previous part:

X1: 'totalTweets'

X2: 'retweets'

X3: 'time'

X4: 'followers'

X5: 'favorite_count'

X6: 'ranking_score'

X7: 'urls'

X8: 'user_count' X9: 'impressions'

Here are the different top-3 features for each group from observation of t-test and p-values:

1. GoHawks

OLS Regression Results

Dep. Variable:		y R-s	quared:	0.639
Model:		OLS Adj	. R-squared:	0.636
Method:	Least Squ	ares F-s	tatistic:	189.7
Date:	Mon, 19 Mar	2018 Pro	b (F-statistic)	: 2.34e-206
Time:	18:5	8:41 Log	-Likelihood:	-7648.6
No. Observations:		973 AIC	:	1.532e+04
Df Residuals:		963 BIC	:	1.537e+04
Df Model:		9		
Covariance Type:	nonro	bust		
	========= f std err		========= +	[95.0% Conf. Int.]
	. stu eii		51 51	[95.0% CONT. INC.]
const 1.266			0.965	-54.964 57.498
x1 -38.395	2.963	-12.959	0.000	-44.210 -32.582
x2 -0.201	0.055	-3.676	0.000	-0.308 -0.094
x3 2.9099	2.563	1.135	0.257	-2.120 7.940
x4 -0.0003	4.98e-05	-6.967	0.000	-0.000 -0.000
x5 0.088	0.021	4.222	0.000	0.047 0.129
x6 7.732	0.587	13.172	0.000	6.580 8.884
x7 9.158	0.775	11.824	0.000	7.638 10.678
x8 4.5863	0.737	6.223	0.000	3.140 6.032
x9 -4.603e-10	1.95e-10	-2.364	0.018	-8.42e-10 -7.82e-11
Omnibus:	 1962	 2.042 Dur	======== bin-Watson:	2.216
Prob(Omnibus):			que-Bera (JB):	5530322.805
Skew:			b(JB):	0.00
Kurtosis:			d. No.	4.05e+11

The top-3 are: totalTweets, followers, urls; And here are scatter plots:

2. GoPatriots

OLS Regression Results

=======	========			=====		=======	
Dep. Varia	ble:		У	R-squ	uared:		0.792
Model:			OLS	Adj.	R-squared:		0.789
Method:		Least Squ	ares	F-sta	atistic:		284.8
Date:		Mon, 19 Mar	2018	Prob	(F-statistic)	:	5.83e-223
Time:		18:5	8:43	Log-1	Likelihood:		-4290.0
No. Observ	ations:		684	AIC:			8600.
Df Residua	ls:		674	BIC:			8645.
Df Model:			9				
Covariance	Type:	nonro	bust				
	coef	std err			P> t	[95.0% (Conf. Int.]
const	1.7719	6.733	0		0.792	-11.44	7 14.991
x1	-1.0377				0.601		
x2	-0.6442				0.006		
x 3	0.8724		1			-0.35	
x4	-1.419e-05	4.42e-05	-0	.321	0.749	-0.000	7.27e-05
x 5	-7.1164	1.765	-4	.031	0.000	-10.583	3 -3.650
x 6	0.9229	0.359	2	.572	0.010	0.21	1.628
x 7	10.1974	0.795	12	.835	0.000	8.63	7 11.757
x 8	-2.9745	0.665	-4	.472	0.000	-4.28	-1.669
x 9	-2.664e-09	4.15e-09	-0	.642	0.521	-1.08e-08	8 5.49e-09
Omnibus:		7.6			======== in-Watson:	======	1.944
Prob(Omnib			0.000		n-watson: ne-Bera (JB):		316337.494
Skew:	us;		1.641	Prob			0.00
Kurtosis:			7.945	Cond			1.06e+10
MULTOSIS:		10		=====	. NO.		1.006710

The top-3 are: followers, favourite_count, urls; And here are scatter plots:

3. NFL

		OLS	Regre	ssion R	esults 		
Dep. Varia	ble:		у	R-sq	 uared:		0.720
Model:			OLS		R-squared:		0.717
Method:		Least S	quares		atistic:		261.5
Date:		Mon, 19 Ma	r 2018	Prob	(F-statistic	:):	3.55e-246
Time:		50 take 1954	:59:06		Likelihood:	•	-6840.1
No. Observ	ations:		927	AIC:			1.370e+04
Df Residua	ls:		917	BIC:			1.375e+04
Df Model:			9				
Covariance	Type:	non	robust				
========							
	coe	f std er	r	t	P> t	[95.0%	Conf. Int.]
const	30.681	6 18.20	 7	1.685	0.092	-5.05	1 66.414
x1	1.938			1.511	0.131	-0.57	
x2	0.118			1.990	0.047	0.00	
x3	1.029			0.561	0.575	-2.57	
x4	1.572e-0		5	1.431	0.153	-5.84e-0	
x 5	-2.378	5 0.16	2 -:	14.654	0.000	-2.69	
x 6	-0.216	0 0.26	6 -	-0.812	0.417	-0.73	0.306
x 7	-0.053	9 0.14	0 -	-0.384	0.701	-0.33	0.222
x 8	-0.470	2 0.32	5 .	-1.448	0.148	-1.10	0.167
x 9	1.877e-1	0 7.82e-1	1	2.402	0.016	3.44e-1	1 3.41e-10
========							
Omnibus:		16	03.652	Durb	in-Watson:		2.219
Prob(Omnib	ous):		0.000	Jarq	ue-Bera (JB):		1404624.689
Skew:			11.155	Prob	(JB):		0.00
Kurtosis:		1	92.388	Cond	. No.		8.79e+11
=======			=====				

The top-3 are: retweets, time, ranking_score; And here are scatter plots:

4. Patriots

OLS Regression Results

============		=======	=====		=========		
Dep. Variable:			У	R-squ	ared:		0.77
Model:			OLS	Adj.	R-squared:		0.77
Method:	L	east Squa	res	F-sta	tistic:		377.
Date:	Mon,	19 Mar 2	018	Prob	(F-statistic):		1.03e-30
Time:		18:59	:46	Log-L	ikelihood:		-8641.
No. Observations:			981	AIC:			1.730e+0
Df Residuals:			971	BIC:			1.735e+0
Df Model:			9				
Covariance Type:		nonrob	ust				
	coef	======= std err	=====	+	======== P> t	 195 0%	Conf Int
const -65.2	2812	71.623	-0.	911	0.362	-205.83	36 75.27
x1 -49.8	3016	4.203	-11.	848	0.000	-58.05	0 -41.55
x2 -0.4	1334	0.118	-3.	672	0.000	-0.66	55 -0.20
x3 -10.3	3892	6.750	-1.	.539	0.124	-23.63	36 2.85
x4 7.794e	e-05	3.6e-05	2.	.167	0.031	7.35e-0	0.00
x5 -0.1	L429	0.180	-0.	795	0.427	-0.49	0.21
x6 10.4	1596	0.825	12.	672	0.000	8.84	12.07
x7 5.7	7093	0.376	15.	203	0.000	4.97	6.44
x8 2.4	1032	0.797	3.	.017	0.003	0.84	3.96
x9 5.705e	e-10 9	.82e-11	5.	807	0.000	3.78e-1	.0 7.63e-1
Omnibus:		1989.	===== 577	Durbi	======== n-Watson:	======	1.63
Prob(Omnibus):					e-Bera (JB):		5662268.14
Skew:				Prob(0.0
Kurtosis:		373.		Cond.			5.19e+1
		=======		=====			

The top-3 are: followers, ranking_score, urls; And here are scatter plots:

5. Sb49

OLS Regression Results

Dep. Variable:	У	R-squared:	0.863
Model:	OLS	Adj. R-squared:	0.861
Method:	Least Squares	F-statistic:	402.7
Date:	Mon, 19 Mar 2018	Prob (F-statistic):	3.69e-241
Time:	19:00:55	Log-Likelihood:	-5623.0
No. Observations:	583	AIC:	1.127e+04
Df Residuals:	573	BIC:	1.131e+04
Df Model:	9		
Covariance Type:	nonrobust		

	coef	std err	t	P> t	[95.0% Co	nf. Int.]
const	-95.6047	281.680	-0.339	0.734	-648.856	457.647
x1	16.5686	8.743	1.895	0.059	-0.603	33.740
x2	0.3104	0.108	2.872	0.004	0.098	0.523
x 3	-22.4972	21.573	-1.043	0.297	-64.870	19.876
x4	0.0001	2.33e-05	5.891	0.000	9.13e-05	0.000
x 5	-0.2443	0.089	-2.755	0.006	-0.419	-0.070
x 6	-3.2295	1.811	-1.783	0.075	-6.787	0.328
x 7	-2.4354	1.030	-2.365	0.018	-4.458	-0.413
x 8	0.3526	0.828	0.426	0.670	-1.273	1.978
x 9	-4.415e-10	4.2e-11	-10.503	0.000	-5.24e-10	-3.59e-10
Omnibus:		1208.	619 Durbi	======== n-Watson:		1.906
<pre>Prob(Omnibus):</pre>		0.	000 Jarqu	e-Bera (JB):	24	67337.890
Skew:		15.	347 Prob(JB):		0.00
Kurtosis	:	320.	221 Cond.	No.		7.13e+13
=======					=======	=======

The top-3 are: retweets, time, impressions; And here are scatter plots:

6. Superbowl

OLS Regression Results

========			=====	======			
Dep. Varia	able:		У	R-squ	ared:		0.891
Model:			OLS	Adj.	R-squared:		0.890
Method:		Least Squ	ares	F-sta	tistic:		863.1
Date:		Mon, 19 Mar	2018	Prob	(F-statistic)	:	0.00
Time:		19:0	02:48	Log-I	ikelihood:		-9506.3
No. Observ	vations:		964	AIC:			1.903e+04
Df Residua	als:		954	BIC:			1.908e+04
Df Model:			9				
Covariance	e Type:	nonro	bust				
	========						
	coef	std err		t	P> t	[95.0% C	onf. Int.]
const	-140.0569	199.910		 0.701	0.484	-532.370	252.257
x1	17.3253	5.427		3.192	0.001	6.675	27.976
x 2	1.6410		10	6.356	0.000	1.444	1.838
x 3	-12.3165	19.397	-(0.635	0.526		25.750
x4	-0.0001	3.46e-05	_ 4	4.178	0.000	-0.000	-7.66e-05
x 5	-2.1247	0.187	-13	1.384			-1.758
x 6	-3.9607	1.102	-:	3.594	0.000		-1.798
x 7	5.9035	0.955		6.184	0.000	4.030	7.777
x 8	-1.3614	0.543	-2	2.505	0.012	-2.428	-0.295
x 9	-1.558e-10	1.35e-11	-13	1.501	0.000	-1.82e-10	-1.29e-10
Omnibus:		1823	3.521	Durbi	.n-Watson:		2.067
Prob(Omnil	bus):	(0.000	Jarqu	e-Bera (JB):	4	710972.664
Skew:		13	3.084	Prob(JB):		0.00
Kurtosis:		344	1.469	Cond.	No.		1.28e+14
========				======			

The top-3 are: followers, time, impressions; And here are scatter plots:

2.1.4

Q1. We ignore the feature "the number of tweets in the last hour" since we have found that it doesn't show good properties when doing the prediction of the number of tweets in the next hour. The results of average |NPredicted-NTrue| using 10 cross validation are shown in the table below:

Before Feb. 1, 8:00 a.m:

SB49	150.5588870716524
GoHawks	282.5089304764196
NFL	210.14342695041668
SuperBowl	500.87892420934674
Patriots	309.9998655781271
GoPatriots	21.253749166950666

Average Error	245
---------------	-----

Between Feb. 1 8:00 a.m and Feb.1 9 p.m.:

SB49	74829.18785219172		
GoHawks	4897.045409810998		
NFL	4705.738936971248		
SuperBowl	217697.46646345916		
Patriots	21968.50682678939		
GoPatriots	2136.5506403565964		
Average Error	54372		

After Feb. 1. 9 p.m.:

SB49	449.473083640796		
GoHawks	63.47644405764414		
NFL	261.22056644489044		
SuperBowl	654.7042266053791		
Patriots	205.32316167691945		
GoPatriots	19.56016215061979		
Average Error	275		

We can see from the tables that the errors between 8:00 am and 9:00 pm are extraordinarily high. Since we only have 13 data points to train the model, and the number of tweets during this period is very high, our result is reasonable.

Q2. We combined the data from all tags together. We tried three different methods to predict the number of tweets in the next hour: Linear Regression, KNN and Random forest.

Linear Regression:

279.0621562710869 34627.90262937886 388.199220305292

Random forest:

297.8232232741618 28394.08926388889 359.83636493370955

KNN:

316.5681262327416 30281.84722222223 369.557225433526

Compared with the average errors of models trained using different tags, we can see that the errors using the combined model before 8am and after 9pm are higher. It shows that the number of tweets with different tags will have different trends.

On the other hand, the prediction error between 8am and 9pm is lower using the combined model. The combined model from all tags will include more data points and the model is less likely to be over-fitted. Therefore, the combined model between 8am and 9pm has better performance.

2.1.5

The results of 1.4 shows that the Random Forest Regression will have the best performance. Therefore, we choose the random forest as our model.

The features here are: (1) number of re-tweets; (2) number of followers; (3) largest number of followers; (4) citation date.

We trained the model using the twitter items from the last 6 hours except the last one hour and did the prediction of number of tweets in the last one hour for each time period.

Text file	Predicted number	$ \mathbf{N}_{Predicted} ext{-}\mathbf{N}_{True} $
sample1_period1	112.519	64.481
sample2_period2	1478.161	18318.839
sample3_period3	256.378	361.622
sample4_period1	992.762	574.762
sample5_period1	237.811	103.189

sample6_period2	353.48	207.48
sample7_period3	235.23	133.237
sample8_period1	66.38	55.38
sample9_period2	338.257	1516.743
sample10 period3	66.33	5.33

2.2 Fan Base Prediction

In this section, we trained three kinds of classification algorithms to predict the location of the author of a tweet. In order to make the problem more specific, let us consider all the tweets posted by the users whose specified location is either in the state of Washington or Massachusetts. As a preprocessing step, we converted the tweet's text into numerical features by applying a TF-IDF based vectorizer.

Here are the location classes:

WA: 'Seattle, Washington', 'Washington', 'WA', 'Seattle, WA', 'Kirkland, Washington'

MA: 'massachusetts', 'ma', 'mass', 'boston, massachusetts', 'boston, ma'

1. Basic logistic regression model


```
Confusion matrix, without normalization
[[ 1 127]
  [ 0 580]]
Normalized confusion matrix
[[ 0.01 0.99]
  [ 0. 1. ]]
```


Classification report:

Accuracy = 0.821, Precision = 0.820, Recall = 1.000

2. SVM classifier

Confusion matrix, without normalization

[[4 124]

[3 577]]

Normalized confusion matrix

[[0.03 0.97]

[0.01 0.99]]

Classification report:

Accuracy = 0.821, Precision = 0.823, Recall = 0.995

3. KNN Classifier

Confusion matrix, without normalization

[[9 119]

[22 558]]

Normalized confusion matrix

[[0.07 0.93]

[0.04 0.96]]

Classification report:

Accuracy = 0.801, Precision = 0.824, Recall = 0.962

2.3 Game Result Prediction with Semantic Mining and Analyses

We extract the tweets from Feb.1st 8:00 a.m. to Feb.1st 8:00 p.m. And split them into 12 groups according to their citation_date.

Then we extracted the content of the tweet, the citation date of the tweet and the location of the user. We applied the tf-idf matrix to format the content of each tweet.

The steps of our analysis:

- (1) Did the NMF transformation for the tf-idf matrix in each time period. We set the number of potential factors to be 2
- (2) For each line of the U matrix after NMF transformation, which represents an item of twitter, we checked the location of the user of this tweet and the type for this tweet. Then we generated a matrix(confusion matrix for location)
- (3) For each column of the V matrix after NMF transformation, which represents an specific word, we sorted it according to the value.

We are able to have the insight into the trend during the hour according to the top words.

Our Results:

(For confusion matrix, the col1 means tweets come from MA, the col2 means tweets come from WA)

2015-02-01 08:00:00-08:00

68 22

76 136

superbowl http sunday happy ready nfl today game football day sb49 seahawks patriots super bowl gohawks nfl superbowlxlix today http

2015-02-01 09:00:00-08:00

59 295

143 73

sb49 seahawks patriots gohawks game http day superbowlxlix today win superbowl http sunday nfl super bowl happy today ready football

2015-02-01 10:00:00-08:00

80 637

505 434

seahawkswin seahawks winning ve got nfl sb49 http superbowlxlix superbowl patriotswin patriots winning ve got nfl sb49 http superbowl superbowlxlix

2015-02-01 11:00:00-08:00

1462 514

111 1038

patriotswin patriots ve winning got nfl sb49 http superbowlxlix superbowl seahawkswin seahawks ve winning got nfl sb49 http gohawks superbowl

2015-02-01 12:00:00-08:00

1315 542

80 1146

patriotswin patriots ve winning got nfl sb49 http superbowlxlix superbowl seahawkswin seahawks ve winning got nfl sb49 http superbowlxlix superbowl

2015-02-01 13:00:00-08:00

79 907

911 591

seahawkswin seahawks winning ve got nfl sb49 http superbowlxlix superbowl patriotswin patriots winning ve got nfl sb49 http superbowlxlix superbowl

2015-02-01 14:00:00-08:00

123 920

895 794

seahawkswin seahawks winning ve got nfl sb49 http superbowlxlix superbowl patriotswin patriots winning ve got nfl sb49 http superbowlxlix superbowl

2015-02-01 15:00:00-08:00

1046 105

1647 3318

patriotswin patriots winning ve got nfl http sb49 superbowl superbowlxlix seahawkswin seahawks winning ve got nfl http sb49 superbowl superbowlxlix

2015-02-01 16:00:00-08:00

253 181

3084 2976

winning ve got nfl http patriotswin sb49 patriots seahawkswin seahawks touchdown superbowlxlix superbowl patriots seahawks sb49 http gohawks gronk commercial

2015-02-01 17:00:00-08:00

698 1250

2219 2746

winning got ve nfl http sb49 patriots patriotswin seahawks seahawkswin superbowl superbowlxlix halftime katyperry katy perry http missy sb49 halftimeshow

2015-02-01 18:00:00-08:00

37 37

2227 2530

topspot2015 voted likeagirl year http sb49 dodgewisdom jeepplays dodge katyperry superbowl patriots superbowlxlix http sb49 seahawks touchdown game nfl catch

2015-02-01 19:00:00-08:00

2187 336

1071 1019

patriots superbowlxlix win congrats champions sb49 game http super bowl superbowl http patriotswin game sb49 seahawks nfl play wow fight

Conclusions:

From the words after 7pm, people were talking about Patriots and champions. We can see that Patriots has won the game.

Around 5pm, one key word with great weight in the second type is Katy Perry. It seems that Katy Perry gave a show at that time.

From 10a.m. to 3p.m., the top words in the V matrix reveals that the most significant potential factor should be the name of two teams. The people talking about super bowl at that time are mainly the supporters for each team.

One interesting fact: it seems that Patriots has more supporters. Even many people in WA support Patriots. However, few people in MA support SeaHawks.