PyTorch 中模型的使用

+ 关注他

163 人赞同了该文章

神经网络训练后我们需要将模型进行保存,要用的时候将保存的模型进行加载,PyTorch 中保存和加载模型主要分为两类:保存加载整个模型和只保存加载模型参数。

知 乎 | ^{首发于} PyTorch 的那些事

- 一、保存加载模型基本用法
- 二、保存加载自定义模型
- 三、跨设备保存加载模型
- 四、CUDA 的用法

一、保存加载模型基本用法

1、保存加载整个模型

保存整个网络模型(网络结构+权重参数)。

```
torch.save(model, 'net.pkl')
```

直接加载整个网络模型(可能比较耗时)。

```
model = torch.load('net.pkl')
```

2、只保存加载模型参数

只保存模型的权重参数(速度快, 占内存少)。

```
torch.save(model.state_dict(), 'net_params.pkl')
```

因为我们只保存了模型的参数,所以需要先定义一个网络对象,然后再加载模型参数。

```
# 构建一个网络结构
model = ClassNet()
# 将模型参数加载到新模型中
state_dict = torch.load('net_params.pkl')
model.load_state_dict(state_dict)
```

保存模型进行推理测试时,只需保存训练好的模型的权重参数,即推荐第二种方法。

主要用法就是上面这些,接下来讲一下PyTorch中保存加载模型内部的一些原理,以及我们可能会遇到的一些特殊的需求。

二、保存加载自定义模型

上面保存加载的 net.pkl 其实一个字典, 通常包含如下内容:

- 1. 网络结构:输入尺寸、输出尺寸以及隐藏层信息,以便能够在加载时重建模型。
- 2. **模型的权重参数**:包含各网络层训练后的可学习参数,可以在模型实例上调用 state_dict()方法来获取,比如前面介绍只保存模型权重参数时用到的 model.state dict()。
- 3. **优化器参数**:有时保存模型的参数需要稍后接着训练,那么就必须保存优化器的状态和所其使用的超参数,也是在优化器实例上调用 state_dict() 方法来获取这些参数。
- 4. 其他信息:有时我们需要保存一些其他的信息,比如 epoch, batch_size 等超参数。

知道了这些, 那么我们就可以自定义需要保存的内容, 比如:

上面的 checkpoint 是个字典,里面有4个键值对,分别表示网络模型的不同信息。

然后我们要加载上面保存的自定义的模型:

```
def load_checkpoint(filepath):
    checkpoint = torch.load(filepath)
    model = checkpoint['model'] # 提取网络结构
    model.load_state_dict(checkpoint['model_state_dict']) # 加载网络权重参数
```

```
optimizer = TheOptimizerClass()
optimizer.load_state_dict(checkpoint['optimizer_state_dict']) # 加载优化器参数

for parameter in model.parameters():
    parameter.requires_grad = False
    model.eval()

return model

model = load_checkpoint('checkpoint.pkl')
```

如果加载模型只是为了进行推理测试,则将每一层的 requires_grad 置为 False, 即固定这些权重参数;还需要调用 model.eval() 将模型置为测试模式,主要是将 dropout 和 batch normalization 层进行固定,否则模型的预测结果每次都会不同。

如果希望继续训练,则调用 model.train(),以确保网络模型处于训练模式。

state_dict() 也是一个Python字典对象, model.state_dict() 将每一层的可学习参数映射为参数矩阵,其中只包含具有可学习参数的层(卷积层、全连接层等)。

比如下面这个例子:

```
# Define model
class TheModelClass(nn.Module):
    def init (self):
        super(TheModelClass, self).__init__()
        self.conv1 = nn.Conv2d(3, 8, 5)
        self.bn = nn.BatchNorm2d(8)
        self.conv2 = nn.Conv2d(8, 16, 5)
        self.pool = nn.MaxPool2d(2, 2)
        self.fc1 = nn.Linear(16 * 5 * 5, 120)
        self.fc2 = nn.Linear(120, 10)
    def forward(self, x):
       x = self.pool(F.relu(self.conv1(x)))
       x = self.bn(x)
       x = self.pool(F.relu(self.conv2(x)))
       x = x.view(-1, 16 * 5 * 5)
        x = F.relu(self.fc1(x))
       x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
    # Initialize model
    model = TheModelClass()
    # Initialize optimizer
    optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
```

```
print("Model's state_dict:")
for param_tensor in model.state_dict():
    print(param_tensor, "\t", model.state_dict()[param_tensor].size())

print("Optimizer's state_dict:")
for var_name in optimizer.state_dict():
    print(var_name, "\t", optimizer.state_dict()[var_name])
```

输出为:

```
Model's state_dict:
conv1.weight
                        torch.Size([8, 3, 5, 5])
conv1.bias
                        torch.Size([8])
bn.weight
                        torch.Size([8])
bn.bias
                        torch.Size([8])
bn.running_mean
                        torch.Size([8])
bn.running var
                        torch.Size([8])
bn.num_batches_tracked torch.Size([])
conv2.weight
                        torch.Size([16, 8, 5, 5])
conv2.bias
                        torch.Size([16])
fc1.weight
                        torch.Size([120, 400])
fc1.bias
                        torch.Size([120])
fc2.weight
                        torch.Size([10, 120])
fc2.bias
                        torch.Size([10])
Optimizer's state_dict:
state
                 {}
                 [{'lr': 0.001, 'momentum': 0.9, 'dampening': 0, 'weight_decay':
param groups
```

可以看到 model.state_dict() 保存了卷积层, BatchNorm层和最大池化层的信息; 而 optimizer.state_dict() 则保存的优化器的状态和相关的超参数。

三、跨设备保存加载模型

1、在 CPU 上加载在 GPU 上训练并保存的模型(Save on GPU, Load on CPU):

```
device = torch.device('cpu')
model = TheModelClass()
# Load all tensors onto the CPU device
model.load_state_dict(torch.load('net_params.pkl', map_location=device))
```

map_location : a function, torch.device, string or a dict specifying how to remap storage locations

令 torch.load() 函数的 map_location 参数等于 torch.device('cpu') 即可。这里令 map_location 参数等于 'cpu' 也同样可以。

2、在 GPU 上加载在 GPU 上训练并保存的模型(Save on GPU, Load on GPU):

```
device = torch.device("cuda")
model = TheModelClass()
model.load_state_dict(torch.load('net_params.pkl'))
model.to(device)
```

在这里使用 map_location 参数不起作用,要使用 model.to(torch.device("cuda")) 将模型转换为CUDA优化的模型。

还需要对将要输入模型的数据调用 data = data.to(device) ,即将数据从CPU转移到GPU。请注意,调用 my_tensor.to(device) 会返回一个 my_tensor 在 GPU 上的副本,它不会覆盖 my_tensor 。因此需要手动覆盖张量: my_tensor = my_tensor.to(device) 。

3、在 GPU 上加载在 GPU 上训练并保存的模型(Save on CPU, Load on GPU)

```
device = torch.device("cuda")
model = TheModelClass()
model.load_state_dict(torch.load('net_params.pkl', map_location="cuda:0"))
model.to(device)
```

当加载包含GPU tensors的模型时,这些tensors 会被默认加载到GPU上,不过是同一个GPU设备。

当有多个GPU设备时,可以通过将 map_location 设定为 cuda:device_id 来指定使用哪一个 GPU设备,上面例子是指定编号为0的GPU设备。

其实也可以将 torch.device("cuda") 改为 torch.device("cuda:0") 来指定编号为0的GPU设备。

最后调用 model.to(torch.device('cuda')) 来将模型的tensors转换为 CUDA tensors。

下面是PyTorch官方文档上的用法,可以进行参考:

```
>>> torch.load('tensors.pt')
# Load all tensors onto the CPU
>>> torch.load('tensors.pt', map_location=torch.device('cpu'))
# Load all tensors onto the CPU, using a function
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage)
# Load all tensors onto GPU 1
>>> torch.load('tensors.pt', map_location=lambda storage, loc: storage.cuda(1))
# Map tensors from GPU 1 to GPU 0
>>> torch.load('tensors.pt', map_location={'cuda:1':'cuda:0'})
```

四、CUDA 的用法

在PyTorch中和GPU相关的几个函数:

```
import torch

# 判断cuda是否可用;
print(torch.cuda.is_available())

# 获取gpu数量;
print(torch.cuda.device_count())

# 获取gpu名字;
print(torch.cuda.get_device_name(0))

# 返回当前gpu设备索引,默认从0开始;
print(torch.cuda.current_device())

# 查看tensor或者model在哪块GPU上
print(torch.tensor([0]).get_device())
```

我的电脑输出为:

```
True
1
GeForce RTX 2080 Ti
0
```

有时我们需要把数据和模型从cpu移到gpu中,有以下两种方法:

```
use_cuda = torch.cuda.is_available()

# 方法一:
    if use_cuda:
        data = data.cuda()
        model.cuda()

# 方法二:
device = torch.device("cuda" if use_cuda else "cpu")
data = data.to(device)
model.to(device)
```

个人比较习惯第二种方法,可以少一个 if 语句。而且该方法还可以通过设备号指定使用哪个GPU

设备,比如使用0号设备:

device = torch.device("cuda:0" if use_cuda else "cpu")

参考

pytorch.org/tutorials/b...

Saving and loading a model in Pytorch?

如果觉得有用,点个赞吧(% -_4)%。

编辑于 2019-12-23

PyTorch 深度学习 (Deep Learning)

CUDA

文章被以下专栏收录

PyTorch 的那些事

关注专栏

推荐阅读

PyTorch 使用 Horovod 进行分 布式训练

一、什么是分布式1、模型并行把复 杂的神经网络进行拆分, 分布在 GPU里面进行训练,让每个GPU同 步进行计算。这个方法通常用在模 型比较复杂的情况下, 但效率会有 折扣。 2、数据并行即让每个机...

Towar...

发表于pytor...

Pytorch 训练优化

在单机多卡下,使用数据并行,可 以通过调整GPU的参与数量,合理 设置 batch size。单机多卡训练它 会把整个模型加载到每张卡上,每 张卡上都是完整的模型,然后把 batch数据分到不同卡上,比如4...

落木潇潇

Pytorch的那些坑

birdl

ſΡ GF

张!

▲ **赞同 163** ▼ ● 2 条评论 ▼ 分享 ● 喜欢 ★ 收藏 🕒 申请转载 …