Entropy and Graphons

Andrew Hah Spring 2025

Abstract

This paper began with my curiosity about how ideas from information theory and analysis can be used to understand the behavior of large combinatorial structures. In particular, I explored two tools in depth: entropy, which captures uncertainty and structure, and graphons, which describe the limiting behavior of dense graphs. This paper surveys what I've learned so far. Beginning with entropy in finite combinatorics, I then introduce the theory of graph limits and graphons, and finally explore how entropy extends to this setting and informs recent results.

Contents

1	Extremal Graph Theory	1
	1.1 Classical Results	1
	1.2 Homomorphism Densities	1
2	Entropy in Combinatorics	2
3	Motivating Graph Limits	2
4	Graphons	2
5	Entropy of Graphons	2
6	Flag Algebras	2
7	Open Questions	2

1 Extremal Graph Theory

1.1 Classical Results

1.2 Homomorphism Densities

Let G be a finite simple graph with vertex set V(G) and edge set E(G). An important question in many areas of graph theory is: how often does a fixed small graph H appear inside G?

To quantify this, we define the homomorphism density of a graph H in a graph G, denoted t(H,G), as the probability that a uniformly random map $\phi:V(H)\to V(G)$ is a graph homomorphism; that is, for every edge $\{u,v\}\in E(H)$, the image $\{\phi(u),\phi(v)\}\in E(G)$. Formally,

$$t(H,G) := \frac{|\text{Hom}(H,G)|}{|V(G)|^{|V(H)|}},$$

where Hom(H,G) is the set of all homomorphisms from H to G.

This quantity reflects the "density" of H in G. For example, if H is the triangle K_3 , then $t(K_3, G)$ captures how likely it is for three randomly chosen vertices in G to form a triangle, when accounting for all mappings.

The homomorphism density is closely related to induced subgraph counts and plays a fundamental role in extremal graph theory. Many classical results — such as Turán's Theorem — can be rephrased in terms of maximizing or minimizing t(H,G) under certain constraints.

In what follows, we will use homomorphism densities as a lens for understanding graph sequences, graph parameters, and the eventual need for limiting objects such as graphons.

- 2 Entropy in Combinatorics
- 3 Motivating Graph Limits
- 4 Graphons
- 5 Entropy of Graphons
- 6 Flag Algebras
- 7 Open Questions

Acknowledgments

References