Teoretická informatika (TIN) – 2021/2022 Úkol 2

(max. zisk 5 bodů – 10 bodů níže odpovídá 1 bodu v hodnocení předmětu)

1. Doplňte 3 přechody do následujícího přechodového diagramu tak, aby výsledný Turingův stroj přijímal jazyk $L = \{w \in \{a,b\}^* \mid \#_a(w) < \#_b(w)\}$, kde $\#_x(w)$ značí počet výskytů symbolu x v řetězci w. (Na přechodu můžete mít i množinu čtených symbolů, vizte třeba přechod $(3,\{a,X\},R,3)$ s očekávanou sémantikou.)

Demonstrujte běh výsledného TS na slově *abaabbbba* (není potřeba vypisovat všechny konfigurace, stačí jen ty, kde se změnil stav TS nebo obsah pásky).

10 bodů

2. Operátor *vepsání* (tzv. *wedge*) \lhd : $\Sigma^* \times \Sigma^* \to 2^{\Sigma^*}$ je definován pro slova $u = u_1 u_2 \dots u_n$ a w tak, že $u \lhd w = \{u_1 \dots u_i w u_{i+1} \dots u_n \mid 0 \le i \le n\}.$

Operátor je rozšířen na jazyky následujícím způsobem: $L_1 \triangleleft L_2 = \bigcup \{w_1 \triangleleft w_2 \mid w_1 \in L_1, w_2 \in L_2\}$. Například $\{aa\} \triangleleft \{bb\} = \{bbaa, abba, aabb\}$. Dokažte, že množina rekurzivně vyčíslitelných jazyků je uzavřena na \triangleleft .

10 bodů

- 3. Je dána abeceda Σ a jazyky $S,L\subseteq \Sigma^*$. Turingův stroj M nad abecedou Σ rozhoduje jazyk L modulo S, pokud pro všechna slova $w\in \Sigma^*\setminus S$ (i) zastaví a (ii) přijímá w právě tehdy, když $w\in L$ (tj. chování na slovech z S nás nezajímá). Dokažte nebo vyvraťte následující tvrzení:
 - (a) Existuje nekonečný jazyk S takový, že halting problem (HP) je rozhodnutelný modulo S.
 - (b) Pro všechny jazyky S je HP rozhodnutelný modulo S.
 - (c) Existuje konečný jazyk S takový, že HP je rozhodnutelný modulo S.

Nápověda: pro některý z důkazů je vhodné upravit důkaz nerozhodnutelnosti HP z přednášek.

15 bodů

- 4. Uvažujte jazyk $L_{prime} = \{\langle M \rangle \mid L(M) = \{a^p \mid p \text{ je prvočíslo}\} \}$, kde $\langle M \rangle$ značí binární řetězec kódující TS M. Dokažte pomocí redukce, že jazyk L_{prime} není ani částečně rozhodnutelný. Pro redukci lze použít libovolný z následujících problémů (žádný z nich není ani částečně rozhodnutelný):
 - co-HP,
 - problém univerzality jazyka TS M ("platí, že $L(M) = \Sigma^*$?").

Stačí slovně popsat princip redukce, není potřeba konstruovat TS.