Key concepts on Deep Neural Networks

Quiz, 10 questions

~	Congratulations! You passed!	Next Item
~	1 / 1 point	
1. What is	s the "cache" used for in our implementation of forward propagation and bac	kward propagation?
	We use it to pass variables computed during backward propagation to the corporagation step. It contains useful values for forward propagation to comp	
	It is used to cache the intermediate values of the cost function during training	ng.
	It is used to keep track of the hyperparameters that we are searching over, t	o speed up computation.
0	We use it to pass variables computed during forward propagation to the corpropagation step. It contains useful values for backward propagation to comprehensive steps.	
	ect rect, the "cache" records values from the forward propagation units and sends reagation units because it is needed to compute the chain rule derivatives.	s it to the backward
2.	1 / 1 point	
	g the following, which ones are "hyperparameters"? (Check all that apply.)	
Corre	number of iterations ect	
	learning rate $lpha$	

Correct

Key concepts on Deep Neural Networks

Quiz, 10 quest	i gh $_{ m S}$ of the hidden layers $n^{[l]}$
Correct	
b	ias vectors $oldsymbol{b}^{[l]}$
Un-sele	ected is correct
n	number of layers L in the neural network
Correct	
w	veight matrices $W^{[l]}$
Un-sele	ected is correct
а	ctivation values $a^{[l]}$
Un-sele	ected is correct
~	1 / 1 point
3.	
Which of	the following statements is true?
	he deeper layers of a neural network are typically computing more complex features of the input than he earlier layers.
Correct	
	he earlier layers of a neural network are typically computing more complex features of the input than he deeper layers.
~	1 / 1 point
4.	

Vectorization allows you to compute forward propagation in an L-layer neural network without an explicit for-**Keys Consider Different Neural Networks**=1, 2, ...,L. True/False?

Quiz, 10 question	ıS
() Tru	e

Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines ($a^{[2]}=g^{[2]}(z^{[2]})$, $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}$, ...) in a deeper network, we cannot avoid a for loop iterating over the layers: ($a^{[l]}=g^{[l]}(z^{[l]})$, $z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}$, ...).

1/1 point

5.

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following for-loops will allow you to initialize the parameters for the model?

```
1 for(i in range(1, len(layer_dims)/2)):
2  parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
1 for(i in range(1, len(layer_dims)/2)):
2  parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i-1], 1) * 0.01
```

```
1 for(i in range(1, len(layer_dims))):
2  parameter['W' + str(i)] = np.random.randn(layers[i-1], layers[i])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
1 for(i in range(1, len(layer_dims))):
2  parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

Correct

Key concepts on Deep Neural Networks

Quiz, 10 questions

6.

Consider the following neural network.

How many layers does this network have?

The number of layers L is 4. The number of hidden layers is 3.

Correct

Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.

- /	The number of layers L is 3. The number of hidden layers is 3.
1	 The number of layers L is 3. The number of mudeli layers is 3.

T	he number	of layers	L is 4.	The number	of hidden	layers is 4.
---	-----------	-----------	---------	------------	-----------	--------------

1/1 point

7.

During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l, since the gradient depends on it. True/False?

True

Correct

Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.

False

Key concepts on Deep Neural Networks

Quiz, 10 questions

1/1 point

8.

There are certain functions with the following properties:

(i) To compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?

True

Correct

1/1 point

9.

Consider the following 2 hidden layer neural network:

Key concepts on Deep Neural Networks

Which of the following statements are True? (Check all that apply).

Key conficency on Deep Neural Networks Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]},n^{[l-1]})$. Quiz, 10 questions
$b^{[2]}$ will have shape (1, 1)
Un-selected is correct
$W^{[2]}$ will have shape (3, 1)
Un-selected is correct
$b^{[2]}$ will have shape (3, 1)
Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.
$W^{[3]}$ will have shape (3, 1)
Un-selected is correct
$b^{[3]}$ will have shape (1, 1)
Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.
$W^{[3]}$ will have shape (1, 3)
Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.
$b^{[3]}$ will have shape (3, 1)
Un-selected is correct

/

1/1 point

10.

Whereas the previous question used a specific network, in the general case what is the dimension of W^{[l]}, the Keyeigoneepts out Doep Newral Networks

Quiz, 10 questions $W^{[l]}$ has shape $(n^{[l]}, n^{[l+1]})$

 $igcup W^{[l]}$ has shape $(n^{[l-1]},n^{[l]})$

 $igcolon W^{[l]}$ has shape $(n^{[l+1]},n^{[l]})$

 $igcup W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$

Correct

True

