10. Ortogonalt komplement og projektion

- Def. + bemærkninger
- Direkte sum
- Sætning 5.3.1

Definition: Yer et underrum af \mathbb{R}^n . Mængden af alle vektorer i \mathbb{R}^n som er ortogonale på enhver vektor i Ynoteres Y^{\perp} . Dvs.

$$Y^{\perp} = \{x \in \mathbb{R}^n | x^T y = 0 \text{ for alle } y \in Y\}$$

Denne mængde kaldes for ortogonalkomplementet af Y.

Der er nogle forskellige egenskaber ved ortogonalkomplementer:

- 1. $X \cap Y = \{0\}$ hvis X og U begge er ortogonale underrum til \mathbb{R}^n Hvis $x \in X \cap Y$ og $X \perp Y$ så er $x^T x = 0$ og dermed er x = 0
- 2. Hvis Yer et underrum til \mathbb{R}^n så er Y^\perp også et underrum til \mathbb{R}^n Tjekke lukkethedsegenskaber for underrum.
- 3. $(S^{\perp})^{\perp} = S$
- 4. $\dim S + \dim S^{\perp} = n$

Definition: Hvis U og V er underrum af et vektorrum W og alle $w \in W$ kan skrives **unikt** som en sum u + v, hvor $u \in U$ og $v \in V$ så er W en **direkte sum** af U og V og vi skriver: $W = U \oplus V$

Lemma 5.2.2: Hvis $\{x_1, ..., x_r\}$ er basis for S og $\{x_{r+1}, ..., x_n\}$ er basis for S^{\perp} , så er $\{x_1, ..., x_r, x_{r+1}, ..., x_n\}$ basis for \mathbb{R}^n

Sætning 5.2.3: Hvis Ser et underrum af \mathbb{R}^n , så kan vi skrive: $\mathbb{R}^n = S \oplus S^{\perp}$

Bevis: Hvis $S = \{0\}$ eller $S = \mathbb{R}^n$ er resultatet trivielt.

Vi siger $\{x_1, ..., x_r\}$ er en basis for S og $\{x_{r+1}, ..., x_n\}$ er en basis for S^{\perp} . Så kan vi skrive $x \in \mathbb{R}^n$:

$$x = c_1 x_1 + \dots + c_r x_r + c_{r+1} x_{r+1} + \dots + c_n x_n$$

Så skriver vi $u=c_1x_1+\cdots+c_rx_r$ og så $u\in S$ og vi skriver $v=c_{r+1}x_{r+1}+\cdots+c_nx_n$ og så $v\in S^\perp$. Dermed har vi, at x=u+v. Vi skal vise, at dette gælder entydigt, antager vi:

$$x = u' + v'$$
 , $u' \in S$, $v' \in S^{\perp}$

Så har vi tydeligt, at

$$u + v = u' + v' \Rightarrow u - u' = v' - v$$

Så er $u - u' \in S$ og $v' - v \in S^{\perp}$. Dvs.:

$$u - u' = v' - v \in S \cap S^{\perp} = \{0\}$$

Dermed er u - u' = v' - v = 0 og u = u' og v = v'.

Sætning 5.3.1: Lad S være et underrum af \mathbb{R}^m og $b \in \mathbb{R}^m$. Da er projektionen p af b på S det nærmeste punkt til b i S:

$$||b-y|| > ||b-p||$$
, $\forall y \neq p \in S$

p er unikt. Ydermere gælder det, at p kun vil være tættest på b, hvis og kun hvis $b-p\in S^\perp$

Bevis: \Rightarrow : Vi ved $\mathbb{R}^m = S \oplus S^{\perp}$, så vi kan skrive b = p + z, hvor $z \in S^{\perp}$. Vi kan så skrive:

$$||b-y||^2 = ||(b-p) + (p-y)||^2$$

Da $b - y \in S$ og $b - p = z \in S^{\perp}$ så kan vi bruge Pythagoras:

$$||b - y||^2 = ||b - p||^2 + ||p - y||^2$$

Da $y \neq p$ har vi heraf, at

||b-y|| > ||b-p||

 \Leftarrow : Så, hvis vi vælger et $q \in S$ og $b-q \notin S^{\perp}$, så da $q \neq p$ har vi at q=y. Da y er alle elementer i S, som ikke er p, har vi igen: $\|b-q\| > \|b-p\|$