ECON 124: Midterm #2

Due on Jul 9, 2025

Dr. Deniz Baglan

Alejandro Ouslan

Problem 1

Use the data in ${\bf FERTIL2.XLSX}$ to answer this question.

(a) Estimate the model

$$children = \beta_0 + \beta_1 age + \beta_2 age^2 \beta_3 educ + \beta_4 electricity + \beta_5 urban + \epsilon$$

And report the usual and heteroskedasticity-robust standard errors. Are the robust standard errors always bigger than the non robust ones?

Answer: It seems that the robust standard errors are generally larger than the non robust ones, but not necessarily always the case.

Table 1: OLS Regression Results: Children ~Age, Age², Education, Electricity, Urban

Variable	Coef.	Std. Err.	t	P > t	[0.025]	0.975]
const	-4.2225	0.240	-17.580	0.000	-4.693	-3.752
age	0.3409	0.017	20.652	0.000	0.309	0.373
$ m age^2$	-0.0027	0.000	-10.086	0.000	-0.003	-0.002
education	-0.0752	0.006	-11.948	0.000	-0.088	-0.063
electricity	-0.3100	0.069	-4.493	0.000	-0.445	-0.175
urban	-0.2000	0.047	-4.301	0.000	-0.291	-0.109
Model state	istics:					
R-squared		0.573				
Adj. R-squ	ared	0.573				
F-statistic		1170	(Prob F	-statistic	= 0.000	
No. Observ	vations	4358				
Df Residua	ls	4352				
Df Model		5				
Log-Likelih	ood	-7806.3				
AIC		1.562e + 04				
BIC		1.566e + 04				
Durbin-Wa	tson: 1.88	3				
Omnibus:	203.155, P	rob(Omnibus	s): 0.000			

Jarque-Bera (JB): 715.135, Prob(JB): 5.13×10^{-156}

Skew: 0.014, Kurtosis: 4.984

Cond. No.: 1.07e+04

Table 2: OLS Regression Results: Children ~Age, Age², Education, Electricity, Urban

Variable	Coef.	Std. Err.	\mathbf{z}	P > z	[0.025]	0.975]	
const	-4.2225	0.244	-17.316	0.000	-4.700	-3.745	
age	0.3409	0.019	17.780	0.000	0.303	0.379	
age^2	-0.0027	0.000	-7.821	0.000	-0.003	-0.002	
education	-0.0752	0.006	-11.927	0.000	-0.088	-0.063	
electricity	-0.3100	0.064	-4.848	0.000	-0.435	-0.185	
urban	-0.2000	0.045	-4.399	0.000	-0.289	-0.111	
Model state	stics:						
R-squared		0.573					
Adj. R-squ	ared	0.573					
F-statistic		1161	(Prob F	-statistic	= 0.000		
No. Observ	ations	4358					
Df Residua	ls	4352					
Df Model		5					
Log-Likelih	ood	-7806.3					
AIC		1.562e + 04					
BIC		1.566e + 04					
Durbin-Wa	tson: 1.88	33					
		Prob(Omnibus					
Jarque-Ber	a (JB): 71	5.135, Prob(.	JB): 5.13 >	$\times 10^{-156}$			
Skew: 0.014, Kurtosis: 4.984							
Cond. No.:	1.07e + 04	1					

```
import polars as pl
import statsmodels.formula.api as smf
# Question
# 1a
df = pl.read_excel("data/fertil2.xlsx")
df = df.select(
   pl.col(
        [
            "children",
            "age",
            "educ",
            "electric",
            "urban",
            "spirit",
            "protest",
            "catholic",
        ]
    )
df = df.with_columns(age2=pl.col("age") ** 2)
df = df.to_pandas()
```

(b) Add the three religious dummy variables and test whether they are jointly significant. What are the p-values for the nonrobust and robust tests?

Answer: The p-values for the non-robust test is 0.0864, while the p-value for the robust test is 0.0911. It seems that robust tests are less likely to report something is significant, especially assuming standard errors are greater than non-robust ones.

Table 3: OLS Regression Results: Children \sim Age, Age², Education, Electricity, Urban, Spirit, Protest, Catholic

** • 11	- C	C. I. E.		D : 141	[0.00#	0.0==1
Variable	Coef.	Std. Err.	t	$\mathbf{P} > t $	[0.025]	0.975]
Intercept	-4.3147	0.243	-17.731	0.000	-4.792	-3.838
age	0.3419	0.017	20.696	0.000	0.309	0.374
age^2	-0.0028	0.000	-10.139	0.000	-0.003	-0.002
education	-0.0762	0.006	-11.796	0.000	-0.089	-0.064
electricity	-0.3057	0.069	-4.429	0.000	-0.441	-0.170
urban	-0.2034	0.047	-4.366	0.000	-0.295	-0.112
spirit	0.1405	0.056	2.517	0.012	0.031	0.250
protest	0.0754	0.065	1.156	0.248	-0.052	0.203
catholic	0.1174	0.083	1.407	0.160	-0.046	0.281
Model stati	stics:					
R-squared		0.574				
Adj. R-squ	ared	0.573				
F-statistic		732.6	(Prob F	-statistic	= 0.000	
No. Observ	ations	4358				
Df Residua	ls	4349				
Df Model		8				
Log-Likelih	ood.	-7803.0				
AIC		1.562e + 04				
BIC		1.568e + 04				
Durbin-Wa	tson: 1.88	7				
Omnibus: 2	202.228, P	rob(Omnibus	s): 0.000			
Jarque-Ber	a (JB): 70	9.030, Prob(.	JB): 1.09 >	$< 10^{-154}$		
Skew: 0.010			•			
Cond. No.:	1.09e + 04					

Table 4: F-test Results

Statistic	Value	Notes
F-statistic	2.196	-
p-value	0.0864	-
Degrees of Freedom (denominator)	4350	-
Degrees of Freedom (numerator)	3	-

Table 5: OLS Regression Results: Children \sim Age, Age², Education, Electricity, Urban, Spirit, Protest, Catholic (Robust Standard Errors)

Variable	Coef.	Std. Err.	\mathbf{z}	P > z	[0.025]	0.975]
Intercept	-4.3147	0.248	-17.389	0.000	-4.801	-3.828
age	0.3419	0.019	17.807	0.000	0.304	0.379
age^2	-0.0028	0.000	-7.861	0.000	-0.003	-0.002
education	-0.0762	0.006	-11.860	0.000	-0.089	-0.064
electricity	-0.3057	0.064	-4.772	0.000	-0.431	-0.180
urban	-0.2034	0.046	-4.456	0.000	-0.293	-0.114
spirit	0.1405	0.056	2.487	0.013	0.030	0.251
protest	0.0754	0.066	1.140	0.254	-0.054	0.205
catholic	0.1174	0.079	1.483	0.138	-0.038	0.272
Model state	istics:					
R-squared		0.574				
Adj. R-squ	ared	0.573				
F-statistic		727.9	(Prob F	-statistic	= 0.000	
No. Observ	vations	4358				
Df Residua	ls	4349				
Df Model		8				
Log-Likelih	ood	-7803.0				
AIC		1.562e + 04				
BIC		1.568e + 04				
Durbin-Wa	tson: 1.88	37				
Omnibus:	202.228, P	rob(Omnibus	s): 0.000			

Omnibus: 202.228, Prob(Omnibus): 0.000

Jarque-Bera (JB): 709.030, $\operatorname{Prob}(\operatorname{JB}) \colon 1.09 \times 10^{-154}$

Skew: 0.016, Kurtosis: 4.976

Cond. No.: 1.09e+04

Table 6: F-test ResultsStatisticValueNotesF-statistic2.156-p-value0.0911-Degrees of Freedom (denominator)4350-Degrees of Freedom (numerator)3-

```
# assumes that the code in 1a ran
model = smf.ols(
    "children ~ age + age2 + educ + electric + urban + spirit + protest + catholic"
    data=df,
).fit()
print(model.summary())
print(model.f_test("spirit = protest = catholic = 0"))

model = smf.ols(
    "children ~ age + age2 + educ + electric + urban + spirit + protest + catholic"
    data=df,
).fit(cov_type="HC1")
print(model.summary())
print(model.f_test("spirit = protest = catholic = 0"))
```

(c) From the regression in part (b), obtain the fitted values \hat{y} and the residuals, $\hat{\epsilon}$. Regress $\hat{\epsilon}^2 \sim \hat{y}$, and $\hat{\epsilon}^2 \sim \hat{y}^2$ and test the joint significance of the two regressors.

Table 7: OLS Regression Results: $\hat{u}^2 \sim \hat{y} + \hat{y}^2$

Variable	Coef.	Std. Err.	\mathbf{t}	$\mathbf{P} > t $	[0.025	$\boldsymbol{0.975}]$
Intercept	0.3126	0.111	2.807	0.005	0.094	0.531
\hat{y}	-0.1489	0.102	-1.462	0.144	-0.348	0.051
\hat{y}^2	0.2668	0.020	13.607	0.000	0.228	0.305
Model state	istics:					
R-squared		0.250				
Adj. R-squ	ared	0.250				
F-statistic		726.1	$(Prob\ F$	7-statistic	= 7.19e	273)
No. Observations		4358				
Df Residua	ls	4355				
Df Model		2				
Log-Likelih	ood	-11803				
AIC		2.361e + 04				
BIC		2.363e + 04				
Durbin-Wa	tson: 1.94	17				
Omnibus: 3446.975, Prob(Omnibus): 0.000						
Jarque-Ber	a (JB): 11	19444.435, Pro	ob(JB): 0	.000		

Skew: 3.503, Kurtosis: 27.672

Cond. No.: 31.4

Table 8: F-test Results

Statistic	Value	Notes
F-statistic	726.11	-
p-value	7.19×10^{-273}	-
Degrees of Freedom (denominator)	4358	-
Degrees of Freedom (numerator)	2	

assums that the code in problem 1 a ran df["yhat"] = model.fittedvalues df["u_hat"] = model.resid df["u_hat2"] = df["u_hat"] ** 2 df["yhat2"] = df["yhat"] ** 2

model = smf.ols("u_hat2 ~ yhat + yhat2", data=df).fit()

print(model.f_test("yhat = yhat2 = 0"))

Problem 2

Use the data set Movies

print(model.summary())

Does viewing a violent movie lead to violent behavior? If so, the incidence of violent crimes, such as assaults, should rise following the release of a violent movie that attracts many viewers. Alternatively, movie viewing may substitute for other activities (such as alcohol consumption) that lead to violent behavior, so that assaults should fall when more viewers are attracted to the cinema. The dataset includes weekend U.S. attendance for strongly violent movies (such as Hannibal), mildly violent movies (such as Spider-Man), and nonviolent movies (such as Finding Nemo). The dataset also includes a count of the number of assaults for the same weekend in a subset of counties in the United States. Finally, the dataset includes indicators for year, month, whether the weekend is a holiday, and various measures of the weather.

(a) (i) Regress the logarithm of the number of assaults [ln_(assaults)] = ln(assaults)] on the year and month indicators. Is there evidence of seasonality in assaults? That is, do there tend to be more assaults in some months than others? Explain.

Answer: In comparison to January there seems to be more assaults during late spring and early fall, especially in the summer. (May to Sepetember) So there do seem to be some seasonality as assaults are lower during winter months.

Table 9: OLS Regression Results: ln(assaults)

Variable	Coef.	Std. Err.	t	$\mathbf{P} > t $	[0.025]	0.975]
Intercept	6.7276	0.012	561.447	0.000	6.704	6.751
year2	0.6949	0.012	60.043	0.000	0.672	0.718
year3	1.0084	0.012	87.090	0.000	0.986	1.031
year4	1.2454	0.012	107.557	0.000	1.223	1.268
year5	1.4145	0.012	122.757	0.000	1.392	1.437
year6	1.6953	0.012	146.577	0.000	1.673	1.718
year7	1.8509	0.012	159.962	0.000	1.828	1.874
year8	1.9013	0.012	164.285	0.000	1.879	1.924
year9	1.9437	0.012	167.868	0.000	1.921	1.966
year10	2.0702	0.012	175.002	0.000	2.047	2.093
month2	0.0169	0.013	1.297	0.195	-0.009	0.042
month3	0.0799	0.013	6.379	0.000	0.055	0.105
month4	0.1297	0.013	10.245	0.000	0.105	0.155
month5	0.1802	0.012	14.480	0.000	0.156	0.205
month6	0.1663	0.013	13.200	0.000	0.142	0.191
month7	0.1739	0.013	13.815	0.000	0.149	0.199
month8	0.1768	0.012	14.200	0.000	0.152	0.201
month9	0.1977	0.013	15.599	0.000	0.173	0.223
month 10	0.1417	0.012	11.390	0.000	0.117	0.166
month11	0.0248	0.013	1.971	0.049	0.00007	0.050
month12	-0.0054	0.013	-0.429	0.668	-0.030	0.019

Model statistics: R-squared 0.992Adj. R-squared 0.991F-statistic 2948(Prob F-statistic = 0.000) No. Observations 516Df Residuals 495 Df Model 20 $\operatorname{Log-Likelihood}$ 741.74AIC -1441 BIC -1352

Durbin-Watson: 1.997

Omnibus: 147.335, Prob(Omnibus): 0.000 Jarque-Bera (JB): 1613.470, Prob(JB): 0.000

Skew: 0.907, Kurtosis: 11.471

Cond. No.: 13.5

```
import polars as pl
import numpy as np
import statsmodels.formula.api as smf
from linearmodels.iv import IV2SLS
df = pl.read_excel("data/Movies.xlsx")
df = df.select(
    pl.all().exclude("month1", "year1"),
    ln_assaults=pl.col("assaults").log(),
    attendance=pl.col("attend_v") + pl.col("attend_m") + pl.col("attend_n"),
data = df.to_pandas()
variables = df.select(
    pl.all().exclude(
        "assaults", "ln_assaults", "^atten.*$", "^h_.*$", "^pr_.*$", "^w.*$"
).columns
formula = "ln_assaults ~ " + " + ".join(variables)
model = smf.ols(formula=formula, data=df).fit()
print(model.summary())
```

(ii) Regress total movie attendance (attend = attend_v + attend_m + attend_n) on the year and month indicators. Is there evidence of seasonality in movie attendance? Explain.

Answer: In comparison to january there seems to be more movie attendance during the summer, especially in June, July, and oddly November. One could argue the re is seasonality, but November has an odd peak in movie attendance, which makes me think maybe attendance goes along with another variable like relea se date for movies.

Table 10: OLS Regression Results: attendance

Variable	Coef.	Std. Err.	t	P > t	[0.025]	0.975]
Intercept	16.0396	0.737	21.770	0.000	14.592	17.487
year2	0.8972	0.712	1.261	0.208	-0.501	2.295
year3	2.0311	0.712	2.853	0.005	0.632	3.430
year4	3.3991	0.712	4.774	0.000	2.000	4.798
year5	2.9515	0.709	4.166	0.000	1.559	4.344
year6	2.5120	0.711	3.532	0.000	1.115	3.909
year7	3.1224	0.711	4.389	0.000	1.725	4.520
year8	5.0412	0.712	7.084	0.000	3.643	6.439
year9	4.4057	0.712	6.188	0.000	3.007	5.805
year10	3.7276	0.727	5.125	0.000	2.298	5.157
month2	-0.6613	0.800	-0.827	0.409	-2.233	0.911
month3	-2.1685	0.771	-2.814	0.005	-3.683	-0.654
month4	-3.4033	0.779	-4.371	0.000	-4.933	-1.873
month5	0.9224	0.765	1.205	0.229	-0.581	2.426
month6	2.9167	0.775	3.765	0.000	1.395	4.439
month7	5.3937	0.774	6.969	0.000	3.873	6.914
month8	1.2123	0.766	1.584	0.114	-0.292	2.716
month9	-5.4252	0.779	-6.962	0.000	-6.956	-3.894
month 10	-3.3259	0.765	-4.347	0.000	-4.829	-1.823
month11	3.8795	0.774	5.009	0.000	2.358	5.401
month 12	0.6774	0.779	0.869	0.385	-0.854	2.209
Model stat	istics:					

(Prob F-statistic = 7.85e-58)

R-squared	0.480
Adj. R-squared	0.459
F-statistic	22.86
No. Observations	516
Df Residuals	495
Df Model	20
Log-Likelihood	-1383.6
AIC	2809
BIC	2898

Durbin-Watson: 1.439

Omnibus: 69.939, Prob(Omnibus): 0.000 Jarque-Bera (JB): 126.992, Prob(JB): 2.65e-28

Skew: 0.808, Kurtosis: 4.816

Cond. No.: 13.5

```
import polars as pl
import numpy as np
import statsmodels.formula.api as smf
from linearmodels.iv import IV2SLS
df = pl.read_excel("data/Movies.xlsx")
df = df.select(
    pl.all().exclude("month1", "year1"),
    ln_assaults=pl.col("assaults").log(),
    attendance=pl.col("attend_v") + pl.col("attend_m") + pl.col("attend_n"),
data = df.to_pandas()
variables = df.select(
    pl.all().exclude(
        "assaults", "ln_assaults", "^atten.*$", "^h_.*$", "^pr_.*$", "^w.*$"
).columns
formula = "ln_assaults ~ " + " + ".join(variables)
model = smf.ols(formula=formula, data=df).fit()
print(model.summary())
```

- (b) Regress ln_assaults on attend_v, attend_m, attend_n, the year and month indicators, and the weather and holiday control variables available in the data set
 - (i) Based on the regression, does viewing a strongly violent movie increase or decrease assaults? By how much? Is the estimated effect statistically significant?

Answer: When taking into account all the controls, it seems that viewing a strongly violent movie decreases assaults by 0.3 percent, which is significant since it's associated p-value is below 0.01.

Table 11: OLS Regression Results: ln_assaults

Variable	Coef.	Std. Err.	t	$\mathbf{P} > t $	[0.025]	0.975]
Intercept	6.9143	0.017	403.245	0.000	6.881	6.948
$attend_v$	-0.0032	0.001	-3.171	0.002	-0.005	-0.001
$attend_m$	-0.0031	0.001	-4.742	0.000	-0.004	-0.002
$attend_n$	-0.0021	0.001	-3.194	0.001	-0.003	-0.001
h_chris	-0.0879	0.023	-3.744	0.000	-0.134	-0.042
h_newyr	0.2453	0.023	10.700	0.000	0.200	0.290
h_{easter}	-0.0369	0.015	-2.537	0.012	-0.066	-0.008
h_july4	0.0352	0.020	1.736	0.083	-0.005	0.075
h_mem	0.0059	0.015	0.397	0.691	-0.023	0.035
h_labor	0.0241	0.014	1.697	0.090	-0.004	0.052
w_{maxa}	0.1099	0.013	8.155	0.000	0.083	0.136
w_{maxb}	0.1107	0.019	5.971	0.000	0.074	0.147
w_{maxc}	0.0423	0.070	0.607	0.544	-0.095	0.179
$w_{\rm mina}$	-0.3405	0.040	-8.599	0.000	-0.418	-0.263
$w_{\rm minb}$	-0.1725	0.027	-6.394	0.000	-0.226	-0.120
w_minc	-0.1196	0.017	-7.126	0.000	-0.153	-0.087
w_rain	-0.0323	0.013	-2.518	0.012	-0.057	-0.007
w_snow	-0.0612	0.030	-2.057	0.040	-0.120	-0.003

```
# aasums the code in 2 A i ran
variables = df.select(
    pl.all().exclude("assaults", "ln_assaults", "wkd_ind", "^pr_.*$", "^atten.*$")
).columns
formula = "ln_assaults ~ " + "attend_v + attend_m + attend_n + " + " + ".join(variables)

model = smf.ols(formula=formula, data=df).fit()
print(model.summary())
```

Variable	Coef.	Std. Err.	t	P > t	[0.025]	0.975]
year2	0.7008	0.009	81.931	0.000	0.684	0.718
year3	1.0171	0.009	116.936	0.000	1.000	1.034
year4	1.2267	0.009	138.859	0.000	1.209	1.244
year5	1.3891	0.009	159.693	0.000	1.372	1.406
year6	1.6883	0.009	196.902	0.000	1.671	1.705
year7	1.8395	0.009	207.295	0.000	1.822	1.857
year8	1.8984	0.009	206.170	0.000	1.880	1.916
year9	1.9501	0.009	221.146	0.000	1.933	1.967
year10	2.0721	0.009	229.747	0.000	2.054	2.090
month2	-0.0073	0.010	-0.759	0.448	-0.026	0.012

1.241

0.150

0.546

-1.852

0.215

0.881

0.585

0.065

-0.007

-0.023

-0.021

-0.060

0.032

0.026

0.037

0.002

Table 12: OLS Regression Results: ln_assaults

month7	-0.0343	0.018	-1.929	0.054	-0.069	0.001	
month8	-0.0385	0.017	-2.280	0.023	-0.072	-0.005	
month9	-0.0129	0.015	-0.846	0.398	-0.043	0.017	
month 10	-0.0025	0.013	-0.197	0.844	-0.027	0.022	
month11	-0.0432	0.011	-4.006	0.000	-0.064	-0.022	
month 12	-0.0305	0.010	-3.084	0.002	-0.050	-0.011	
Model statistics:							

R-squared 0.996Adj. R-squared 0.996F-statistic 3139.0 (Prob F-statistic = 0.00)No. Observations 516 Df Residuals 478Df Model 37 Log-Likelihood 924.66AIC -1773.0BIC -1612.0

0.010

0.012

0.015

0.016

Durbin-Watson: 1.917

Omnibus: 126.823, Prob(Omnibus): 0.000 Jarque-Bera (JB): 1910.561, Prob(JB): 0.00

Skew: -0.612, Kurtosis: 12.347

Cond. No.: 474

month3

month4

month 5

month6

0.0126

0.0019

0.0079

-0.0290

(ii) Does attendance at strongly violent movies affect assaults differently than attendance at moderately violent movies? Differently than attendance at nonviolent movies?

Answer: after doing the test we get a p value of 0.000 thus we reject the null hypothesis of that no of the moves have an impact on assault and thus conclude there is significant evidence to conclude that there is an association between the movies and assaults.

Table 13: F-test Results

Statistic	Value	Notes
F-statistic	8.12	-
p-value	2.77×10^{-5}	-
Degrees of Freedom (denominator)	478	-
Degrees of Freedom (numerator)	3	-

Python Code

```
# aasums the code in 2 B i ran
print(model.f_test("attend_v = attend_m = attend_n = 0"))
```

(iii) A strongly violent blockbuster movie is released, and the weekend's attendance at strongly violent movies increases by 6 million; meanwhile, attendance falls by 2 million for moderately violent movies and by 1 million for nonviolent movies. What is the predicted effect on assaults? Construct a 95% confidence interval for the change in assaults.

Table 14: Predicted Percentage Change in Assaults

Statistic	Value
Predicted % change in assaults	-1.06%
95% Confidence Interval (CI)	[-2.09%, -0.01%]

```
coeffs = model.params[["attend_v", "attend_m", "attend_n"]].values
cov = (
    model.cov_params()
    .loc[["attend_v", "attend_m", "attend_n"], ["attend_v", "attend_m", "attend_n"]]
    .values
)

delta_x = np.array([6, -2, -1])

delta_ln_assaults = np.dot(delta_x, coeffs)

std_error = np.sqrt(np.dot(delta_x, np.dot(cov, delta_x)))

lower = delta_ln_assaults - 1.96 * std_error
upper = delta_ln_assaults + 1.96 * std_error

percent_change = 100 * (np.exp(delta_ln_assaults) - 1)
ci_lower = 100 * (np.exp(lower) - 1)
```

```
ci_upper = 100 * (np.exp(upper) - 1)
print(f"Predicted % change in assaults: {percent_change:.2f}%")
print(f"95% CI: [{ci_lower:.2f}%, {ci_upper:.2f}%]")
```

- (c) It is difficult to control for all the variables that affect assaults and that might be correlated with movie attendance. For example, the effect of the weather on assaults and movie attendance is only crudely approximated by the weather variables in the data set. However, the data set does include a set of instruments, pr_attend_v, pr_attend_m, and pr_attend_n, that are correlated with attendance but are (arguably) uncorrelated with weekend-specific factors (such as the weather) that affect both assaults and movie attendance. These instruments use historical attendance patterns, not information on a particular weekend, to predict a film's attendance in a given weekend. For example, if a film's attendance is high in the second week of its release, then this can be used to predict that its attendance was also high in the first week of its release. (The details of the construction of these instruments are available in the Dahl and DellaVigna's paper on Canvas) Run the regression from part (b) (including year, month, holiday, and weather controls) but now using pr_attend_v, pr_attend_m, and pr_attend_n as instruments for attend_v, attend_m, and attend_n. Use this regression to answer (b)(i)-(b)(iii).
 - (i) **Answer:** When taking into account all the controls, it seems that viewing a strongly violent movie decreases assaults by 9.6 percent, which is significant since it's associated p-value is below 0.00.

Variable Coef. Std. Err. t-stat P-value [0.025 0.975 attend_m 0.0958 0.0144 6.6340 0.0000 0.0675 0.12461 attend_m 0.1246 0.0132 9.4294 0.0000 0.0987 0.1505 h_chris -1.0922 0.5642 -1.9359 0.0529 -2.1979 0.0136 h_mewyr -0.9118 0.5940 -1.5350 0.1248 -2.0761 0.2525 h_aster -0.0891 0.1748 -0.5096 0.6103 -0.4316 0.2535 h_july4 -0.1047 0.2475 -0.4229 0.6724 -0.5898 0.3805 h_mem -1.0002 0.2005 -4.9889 0.0000 -1.3932 -0.673 maxa 0.4634 0.1841 3.4941 0.0005 0.2825 1.0043 w_maxb 0.3844 0.2536 1.5160 0.1295 -0.1126 0.8814 w_maxa -1.237 0.8390 3.2980 0.0010 1.122	Table 15: IV-2SLS Estimation Results: ln_assaults							
attend_n 0.1246 0.0132 9.4294 0.0000 0.0987 0.1505 h_chris -1.0922 0.5642 -1.9359 0.0529 -2.1979 0.0136 h_mewyr -0.9118 0.5940 -1.5350 0.1248 -2.0761 0.2525 h_acaster -0.0891 0.1748 -0.5096 0.6103 -0.4316 0.2535 h_mem -1.0002 0.2005 -4.9889 0.0000 -1.3932 -0.6073 h_labor -0.0863 0.1583 -0.5454 0.5855 -0.3965 0.2239 w_max 0.6434 0.1841 3.4941 0.0005 0.2825 1.0043 w_maxb 0.3844 0.2536 1.5160 0.1295 -0.1126 0.8814 w_maxc -1.2307 0.9379 -1.3121 0.1895 -3.0690 0.6076 w_mina 3.0501 0.3225 9.4574 0.0000 2.5238 4.6810 w_minc 3.0501 0.3225 9.4574 0.0000 2.4180	Variable	Coef.	Std. Err.	t-stat	P-value	[0.025]	0.975]	
h_chris -1.0922 0.5642 -1.9359 0.0529 -2.1979 0.0136 h_newyr -0.9118 0.5940 -1.5350 0.1248 -2.0761 0.2525 h_easter -0.0891 0.1748 -0.5096 0.6103 -0.4316 0.2535 h_mem -1.0002 0.2005 -4.9889 0.0000 -1.3932 -0.6073 h_mem -1.0002 0.2005 -4.9889 0.0000 -1.3932 -0.6073 h_mem -1.0002 0.2005 -4.9889 0.0000 -1.3932 -0.6073 w_max 0.6434 0.1841 3.4941 0.0005 0.2825 1.0043 w_max 0.3844 0.2536 1.5160 0.1295 -0.1126 0.8814 w_minb 3.6024 0.5503 6.5462 0.0000 2.5238 4.6810 w_minc 3.0501 0.3225 9.4574 0.0000 2.2967 2.4862 w_snow 1.4631 0.6946 2.1063 0.0352 0.1016	attend_m	0.0958	0.0144	6.6340	0.0000	0.0675	0.1241	
h_newyr -0.9118 0.5940 -1.5350 0.1248 -2.0761 0.2525 h_easter -0.0891 0.1748 -0.5096 0.6103 -0.4316 0.2535 h_july4 -0.1007 0.2475 -0.4229 0.6724 -0.5898 0.3805 h_mem -1.0002 0.2005 -4.9889 0.0000 -1.3932 -0.6073 h_labor -0.0863 0.1583 -0.5454 0.5855 -0.3965 0.2239 w_max 0.6434 0.1841 3.4941 0.0005 0.2825 1.0043 w_maxb 0.3844 0.2536 1.5160 0.1295 -0.1126 0.8814 w_maxc -1.2307 0.9379 -1.3121 0.1895 -0.0126 0.8814 w_mina 3.6024 0.5503 6.5462 0.0000 2.5238 4.6810 w_minc 3.0501 0.3225 9.4574 0.0000 2.2967 2.1862 w_rain 1.7415 0.2269 7.6745 0.0000 1.2967 <td>$attend_n$</td> <td>0.1246</td> <td>0.0132</td> <td>9.4294</td> <td>0.0000</td> <td>0.0987</td> <td>0.1505</td>	$attend_n$	0.1246	0.0132	9.4294	0.0000	0.0987	0.1505	
h_easter -0.0891 0.1748 -0.5096 0.6103 -0.4316 0.2535 h_july4 -0.1047 0.2475 -0.4229 0.6724 -0.5898 0.3805 h_mem -1.0002 0.2005 -4.9889 0.0000 -1.3932 -0.6073 h_labor -0.0863 0.1583 -0.5454 0.5855 -0.3965 0.2239 w_maxa 0.6434 0.1841 3.4941 0.0005 0.2825 1.0043 w_maxb 0.3844 0.2536 1.5160 0.1295 -0.1126 0.8814 w_maxc -1.2307 0.9379 -1.3121 0.1895 -3.0690 0.6076 w_mina 2.7672 0.8390 3.2980 0.0010 1.1227 4.4116 w_minb 3.6024 0.5503 6.5462 0.0000 2.5238 4.6810 w_minc 3.0501 0.3225 9.4574 0.0000 1.2967 2.1862 w_snow 1.4631 0.6946 2.1063 0.0352 0.1016	h_chris	-1.0922	0.5642	-1.9359	0.0529	-2.1979	0.0136	
h_july4 -0.1047 0.2475 -0.4229 0.6724 -0.5898 0.3805 h_mem -1.0002 0.2005 -4.9889 0.0000 -1.3932 -0.6073 h_labor -0.0863 0.1583 -0.5454 0.5855 -0.3965 0.2239 w_maxa 0.6434 0.1841 3.4941 0.0005 0.2825 1.0043 w_maxb 0.3844 0.2536 1.5160 0.1295 -0.1126 0.8814 w_maxc -1.2307 0.9379 -1.3121 0.1895 -3.0690 0.6076 w_mina 2.7672 0.8390 3.2980 0.0010 1.1227 4.4116 w_minb 3.6024 0.5503 6.5462 0.0000 2.5238 4.6810 w_minc 3.0501 0.3225 9.4574 0.0000 2.2486 3.6822 w_rain 1.7415 0.2269 7.6745 0.0000 1.2967 2.1862 year2 1.5297 0.1526 10.022 0.0000 1.2367	h_newyr	-0.9118	0.5940	-1.5350	0.1248	-2.0761	0.2525	
h_mem -1.0002 0.2005 -4.9889 0.0000 -1.3932 -0.673 h_labor -0.0863 0.1583 -0.5454 0.5855 -0.3965 0.2239 w_maxa 0.6434 0.1841 3.4941 0.0005 0.2825 1.0043 w_maxb 0.3844 0.2536 1.5160 0.1295 -0.1126 0.8814 w_maxc -1.2307 0.9379 -1.3121 0.1895 -3.0690 0.6076 w_mina 2.7672 0.8390 3.2980 0.0010 1.1227 4.4116 w_minb 3.6024 0.5503 6.5462 0.0000 2.5238 4.6810 w_minc 3.0501 0.3225 9.4574 0.0000 2.4180 3.6822 w_rain 1.7415 0.2269 7.6745 0.0000 1.2967 2.1862 w_sonw 1.4631 0.6946 2.1063 0.0352 0.1101 2.2967 year2 1.5297 0.1526 10.022 0.0000 1.2367 <th< td=""><td>h_easter</td><td>-0.0891</td><td>0.1748</td><td>-0.5096</td><td>0.6103</td><td>-0.4316</td><td>0.2535</td></th<>	h_easter	-0.0891	0.1748	-0.5096	0.6103	-0.4316	0.2535	
Labor -0.0863 0.1583 -0.5454 0.5855 -0.3965 0.2239 w_maxa 0.6434 0.1841 3.4941 0.0005 0.2825 1.0043 w_maxb 0.3844 0.2536 1.5160 0.1295 -0.1126 0.8814 w_maxc -1.2307 0.9379 -1.3121 0.1895 -3.0690 0.6076 w_mina 2.7672 0.8390 3.2980 0.0010 1.1227 4.4116 w_minb 3.6024 0.5503 6.5462 0.0000 2.538 4.6810 w_minc 3.0501 0.3225 9.4574 0.0000 2.4180 3.6822 w_rain 1.7415 0.2269 7.6745 0.0000 1.2967 2.1862 w_snow 1.4631 0.6946 2.1063 0.0352 0.1016 2.8245 year2 1.5297 0.1526 10.022 0.0000 1.4565 2.1139 year3 1.7852 0.1677 10.646 0.0000 1.9273 2.604	h _july4	-0.1047	0.2475	-0.4229	0.6724	-0.5898	0.3805	
w_maxa 0.6434 0.1841 3.4941 0.0005 0.2825 1.0043 w_maxb 0.3844 0.2536 1.5160 0.1295 -0.1126 0.8814 w_maxc -1.2307 0.9379 -1.3121 0.1895 -3.0690 0.6076 w_minb 3.6024 0.5503 6.5462 0.0000 2.5238 4.6810 w_minc 3.0501 0.3225 9.4574 0.0000 2.4180 3.6822 w_rain 1.7415 0.2269 7.6745 0.0000 1.2967 2.1862 w_snow 1.4631 0.6946 2.1063 0.0352 0.1016 2.8245 year2 1.5297 0.1526 10.022 0.0000 1.2366 1.8289 year3 1.7852 0.1677 10.646 0.0000 1.9273 2.6045 year4 2.2659 0.1728 13.117 0.0000 2.0577 2.7751 year5 2.4164 0.1830 13.203 0.0000 2.0577 2.7751 </td <td>h_mem</td> <td>-1.0002</td> <td>0.2005</td> <td>-4.9889</td> <td>0.0000</td> <td>-1.3932</td> <td>-0.6073</td>	h_mem	-1.0002	0.2005	-4.9889	0.0000	-1.3932	-0.6073	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	h_labor	-0.0863	0.1583	-0.5454	0.5855	-0.3965	0.2239	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	w_maxa	0.6434	0.1841	3.4941	0.0005	0.2825	1.0043	
$\begin{array}{c} \mathbf{w} - \mathbf{mina} & 2.7672 & 0.8390 & 3.2980 & 0.0010 & 1.1227 & 4.4116 \\ \mathbf{w} - \mathbf{minb} & 3.6024 & 0.5503 & 6.5462 & 0.0000 & 2.5238 & 4.6810 \\ \mathbf{w} - \mathbf{minc} & 3.0501 & 0.3225 & 9.4574 & 0.0000 & 2.4180 & 3.6822 \\ \mathbf{w} - \mathbf{rain} & 1.7415 & 0.2269 & 7.6745 & 0.0000 & 1.2967 & 2.1862 \\ \mathbf{w} - \mathbf{snow} & 1.4631 & 0.6946 & 2.1063 & 0.0352 & 0.1016 & 2.8245 \\ \mathbf{year2} & 1.5297 & 0.1526 & 10.022 & 0.0000 & 1.2306 & 1.8289 \\ \mathbf{year3} & 1.7852 & 0.1677 & 10.646 & 0.0000 & 1.4565 & 2.1139 \\ \mathbf{year4} & 2.2659 & 0.1728 & 13.117 & 0.0000 & 1.9273 & 2.6045 \\ \mathbf{year5} & 2.4164 & 0.1830 & 13.203 & 0.0000 & 2.0577 & 2.7751 \\ \mathbf{year6} & 2.3753 & 0.1693 & 14.033 & 0.0000 & 2.0436 & 2.7070 \\ \mathbf{year7} & 2.6131 & 0.1711 & 15.277 & 0.0000 & 2.2779 & 2.9484 \\ \mathbf{year8} & 2.3433 & 0.1845 & 12.699 & 0.0000 & 1.9816 & 2.7050 \\ \mathbf{year9} & 2.3747 & 0.1789 & 13.276 & 0.0000 & 2.0241 & 2.7253 \\ \mathbf{year10} & 2.6030 & 0.1753 & 14.847 & 0.0000 & 2.2594 & 2.9467 \\ \mathbf{month2} & 1.3267 & 0.2045 & 6.4865 & 0.0000 & 2.9241 & 2.7253 \\ \mathbf{month3} & 2.2704 & 0.2040 & 11.132 & 0.0000 & 1.8706 & 2.6701 \\ \mathbf{month4} & 3.1781 & 0.1930 & 16.468 & 0.0000 & 2.8978 & 3.8405 \\ \mathbf{month6} & 2.7740 & 0.2756 & 10.064 & 0.0000 & 2.8978 & 3.8405 \\ \mathbf{month6} & 3.692 & 0.2405 & 14.010 & 0.0000 & 2.8978 & 3.8405 \\ \mathbf{month6} & 2.7740 & 0.2756 & 10.064 & 0.0000 & 2.8978 & 3.8405 \\ \mathbf{month9} & 3.8706 & 0.2021 & 19.151 & 0.0000 & 3.4744 & 4.2667 \\ \mathbf{month10} & 3.4674 & 0.1796 & 19.302 & 0.0000 & 3.1153 & 3.8195 \\ \mathbf{month11} & 1.6990 & 0.2377 & 7.1471 & 0.0000 & 1.2331 & 2.1650 \\ \mathbf{month11} & 1.6990 & 0.2377 & 7.1471 & 0.0000 & 0.7778 & 1.6602 \\ \mathbf{attend_v} & 0.1199 & 0.0182 & 6.5803 & 0.0000 & 0.0842 & 0.1556 \\ \hline{\textbf{Model statistics:}} \\ \mathbf{R}. \mathbf{S}_{\mathbf{quared}} & 0.9912 \\ \mathbf{F}. \mathbf{S}_{\mathbf{tatistics}} & 1.08e+05 & (Prob \textit{\textit{\textit{F}-statistic}} = 0.0000) \\ \mathbf{N}_{0} & 0_{0} & 0_{0} & 0_{0} & 0_{0} \\ 0_{0} & 0_{0} & 0_{0} & 0_{0} & 0_{0} \\ 0_{0} & 0_{0} & 0_{0} & 0_{0} \\ 0_{0} & 0_{0} & 0_{$	w_{maxb}	0.3844	0.2536	1.5160	0.1295	-0.1126	0.8814	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$w_{}maxc$	-1.2307	0.9379	-1.3121	0.1895	-3.0690	0.6076	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$w_{\rm mina}$	2.7672	0.8390	3.2980	0.0010	1.1227	4.4116	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$w_{\rm minb}$	3.6024	0.5503	6.5462	0.0000	2.5238	4.6810	
w_snow1.46310.69462.10630.03520.10162.8245year21.52970.152610.0220.00001.23061.8289year31.78520.167710.6460.00001.45652.1139year42.26590.172813.1170.00001.92732.6045year52.41640.183013.2030.00002.05772.7751year62.37530.169314.0330.00002.04362.7070year72.61310.171115.2770.00002.27792.9484year82.34330.184512.6990.00001.98162.7050year92.37470.178913.2760.00002.02412.7253year102.60300.175314.8470.00002.25942.9467month21.32670.20456.48650.00000.92581.7275month32.27040.204011.1320.00001.87062.6701month43.17810.193016.4680.00002.79983.5563month53.36920.240514.0100.00002.23383.3143month72.56720.29748.63180.00001.98433.1502month83.02970.260611.6250.00002.51893.5405month103.46740.179619.3020.00003.47444.2667month111.69900.23777.14710.00000.77781.6602<	w_minc	3.0501	0.3225	9.4574	0.0000	2.4180	3.6822	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	w_rain	1.7415	0.2269	7.6745	0.0000	1.2967	2.1862	
year3 1.7852 0.1677 10.646 0.0000 1.4565 2.1139 year4 2.2659 0.1728 13.117 0.0000 1.9273 2.6045 year5 2.4164 0.1830 13.203 0.0000 2.0577 2.7751 year6 2.3753 0.1693 14.033 0.0000 2.0436 2.7070 year7 2.6131 0.1711 15.277 0.0000 2.2779 2.9484 year8 2.3433 0.1845 12.699 0.0000 1.9816 2.7050 year9 2.3747 0.1789 13.276 0.0000 2.0241 2.7253 year10 2.6030 0.1753 14.847 0.0000 2.2594 2.9467 month2 1.3267 0.2045 6.4865 0.0000 2.9258 1.7275 month3 2.2704 0.2040 11.132 0.0000 1.8706 2.6701 month4 3.1781 0.1930 16.468 0.0000 2.8978 3.8405	w_snow	1.4631	0.6946	2.1063	0.0352	0.1016	2.8245	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	year2	1.5297	0.1526	10.022	0.0000	1.2306	1.8289	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	year3	1.7852	0.1677	10.646	0.0000	1.4565	2.1139	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	year4	2.2659	0.1728	13.117	0.0000	1.9273	2.6045	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	year5	2.4164	0.1830	13.203	0.0000	2.0577	2.7751	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	year6	2.3753	0.1693	14.033	0.0000	2.0436	2.7070	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	year7	2.6131	0.1711	15.277	0.0000	2.2779	2.9484	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	year8	2.3433	0.1845	12.699	0.0000	1.9816	2.7050	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	year9	2.3747	0.1789	13.276	0.0000	2.0241	2.7253	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	year10	2.6030	0.1753	14.847	0.0000	2.2594	2.9467	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	month2	1.3267	0.2045	6.4865	0.0000	0.9258	1.7275	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	month3	2.2704	0.2040	11.132	0.0000	1.8706	2.6701	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	month4	3.1781	0.1930	16.468	0.0000	2.7998	3.5563	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	month5	3.3692	0.2405	14.010	0.0000	2.8978	3.8405	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	month6	2.7740	0.2756	10.064	0.0000	2.2338	3.3143	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	month7	2.5672	0.2974	8.6318	0.0000	1.9843	3.1502	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	month8	3.0297	0.2606	11.625	0.0000	2.5189	3.5405	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	month9	3.8706	0.2021	19.151	0.0000	3.4744	4.2667	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	month10	3.4674	0.1796	19.302	0.0000	3.1153	3.8195	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	month11	1.6990	0.2377	7.1471	0.0000	1.2331	2.1650	
Model statistics:R-squared 0.9918 Adj. R-squared 0.9912 F-statistic $1.08e+05$ (Prob F-statistic = 0.0000)No. Observations 516 P-value (F-stat) 0.0000 Distribution $chi2(37)$	month12	1.2190	0.2251	5.4149	0.0000	0.7778	1.6602	
$ \begin{array}{lll} \text{R-squared} & 0.9918 \\ \text{Adj. R-squared} & 0.9912 \\ \text{F-statistic} & 1.08\text{e}{+}05 & (\text{Prob }F\text{-statistic} = 0.0000) \\ \text{No. Observations} & 516 \\ \text{P-value (F-stat)} & 0.0000 \\ \text{Distribution} & \text{chi2}(37) \\ \end{array} $	$attend_v$	0.1199	0.0182	6.5803	0.0000	0.0842	0.1556	
$ \begin{array}{lll} \text{Adj. R-squared} & 0.9912 \\ \text{F-statistic} & 1.08\text{e}{+05} & (\text{Prob }F\text{-statistic} = 0.0000) \\ \text{No. Observations} & 516 \\ \text{P-value (F-stat)} & 0.0000 \\ \text{Distribution} & \text{chi}2(37) \\ \end{array} $	Model state	istics:						
$ \begin{array}{lll} \text{F-statistic} & 1.08\text{e}{+05} & (\text{Prob }F\text{-statistic} = 0.0000) \\ \text{No. Observations} & 516 \\ \text{P-value (F-stat)} & 0.0000 \\ \text{Distribution} & \text{chi}2(37) \\ \end{array} $	R-squared		0.9918					
No. Observations 516 P-value (F-stat) 0.0000 Distribution chi2(37)	Adj. R-squ	ared	0.9912					
P-value (F-stat) 0.0000 Distribution $chi2(37)$	F-statistic		1.08e + 05	(Prob F = 1)	-statistic =	0.0000)		
Distribution chi2(37)	No. Observ	vations	516			•		
,	P-value (F-	-stat)	0.0000					
· /	,	,	chi2(37)					
	Cov. Estin	nator	, ,					

```
endog = data[['attend_v']]
other_controls = df.select(pl.all().exclude("assaults", "ln_assaults", "wkd_ind", "^attendexog = data[['attend_m', 'attend_n'] + other_controls]
instruments = data[["pr_attend_v", "pr_attend_m", "pr_attend_n"]]
ivolsmod = IV2SLS(dependent=data[["ln_assaults"]], endog=endog, exog=exog, instruments=instruments = ivolsmod.fit()
print(res_ivols.summary)
```

(ii) **Answer:** after doing the test we get a p value of 0.000 thus we reject the null hypothesis of that no of the moves have an impact on assault and thus conclude there is significant evidence to conclude that there is an association between the movies and assaults.

Table 16: Linear Equality Hypothesis Test

Statistic	Value	Notes
Test Statistic	96.8238	-
p-value	0.0000	-
Distribution	chi2(3)	-

Python Code

```
print(res_ivols.wald_test(formula="attend_v = attend_m = attend_n = 0"))
```

Table 17: Predicted Percentage Change in Assaults

Statistic	Value
Predicted % change in assaults	49.64%
95% Confidence Interval (CI)	[24.24%, 80.24%]

```
#iii

#iii

coeffs = res_ivols.params[['attend_v', 'attend_m', 'attend_n']].values
    cov = res_ivols.cov.loc[['attend_v', 'attend_m', 'attend_n'], ['attend_v', 'attend_m', 'at
    delta_x = np.array([6, -2, -1])

delta_ln_assaults = np.dot(delta_x, coeffs)

std_error = np.sqrt(np.dot(delta_x, np.dot(cov, delta_x)))

lower = delta_ln_assaults - 1.96 * std_error
    upper = delta_ln_assaults + 1.96 * std_error

percent_change = 100 * (np.exp(delta_ln_assaults) - 1)
    ci_lower = 100 * (np.exp(lower) - 1)
    ci_upper = 100 * (np.exp(upper) - 1)
```

```
print(f"Predicted % change in assaults: {percent_change:.2f}%")
print(f"95% CI: [{ci_lower:.2f}%, {ci_upper:.2f}%]")
```

- (d) It is difficult to control for all the variables that affect assaults and that might be correlated with movie attendance. For example, the effect of the weather on assaults and movie attendance is only crudely approximated by the weather variables in the data set. However, the data set does include a set of instruments, pr_attend_v, pr_attend_m, and pr_attend_n, that are correlated with attendance but are (arguably) uncorrelated with weekend-specific factors (such as the weather) that affect both assaults and movie attendance. These instruments use historical attendance patterns, not information on a particular weekend, to predict a film's attendance in a given weekend. For example, if a film's attendance is high in the second week of its release, then this can be used to predict that its attendance was also high in the first week of its release. (The details of the construction of these instruments are available in the Dahl and DellaVigna's paper on Canvas) Run the regression from part (b) (including year, month, holiday, and weather controls) but now using pr_attend_v, pr_attend_m, and pr_attend_n as instruments for attend_v, attend_m, and attend_n. Use this regression to answer (b)(i)-(b)(iii).
 - (i) **Answer:** When taking into account all the controls, it seems that viewing a stro ngly violent movie decreases assaults by 12.22 percent, which is significant since it's associated p-value is below 0.00.

Table 18: IV-2SLS Estimation Results: ln_assaults						
Variable	Coef.	Std. Err.	t-stat	P-value	[0.025]	0.975]
$attend_m$	0.1222	0.0157	7.7982	0.0000	0.0915	0.1529
$attend_n$	0.1431	0.0141	10.184	0.0000	0.1156	0.1707
h _chris	-1.2236	0.6015	-2.0342	0.0419	-2.4025	-0.0447
h_newyr	-1.0918	0.6409	-1.7035	0.0885	-2.3479	0.1644
h_{easter}	-0.0730	0.1730	-0.4223	0.6728	-0.4120	0.2660
h_july4	-0.0104	0.1988	-0.0525	0.9581	-0.4000	0.3792
h_mem	-1.1828	0.2242	-5.2759	0.0000	-1.6222	-0.7434
h_labor	-0.0397	0.1749	-0.2272	0.8203	-0.3825	0.3031
$w_{}maxa$	0.5675	0.1919	2.9574	0.0031	0.1914	0.9436
w_{maxb}	0.2810	0.2805	1.0017	0.3165	-0.2688	0.8307
w_{maxc}	-1.1101	1.0709	-1.0366	0.2999	-3.2091	0.9889
$w_{}mina$	2.7290	0.8219	3.3203	0.0009	1.1181	4.3399
w_minb	3.3800	0.5602	6.0335	0.0000	2.2820	4.4779
w_minc	2.6254	0.3399	7.7231	0.0000	1.9591	3.2917
w_rain	1.5124	0.2337	6.4712	0.0000	1.0544	1.9705
w_snow	1.1629	0.6960	1.6708	0.0948	-0.2013	2.5271
year2	1.4104	0.1580	8.9280	0.0000	1.1008	1.7201
year3	1.5671	0.1710	9.1649	0.0000	1.2320	1.9023
year4	2.0745	0.1765	11.751	0.0000	1.7285	2.4206
year5	2.2178	0.1824	12.159	0.0000	1.8603	2.5753
year6	2.2026	0.1744	12.629	0.0000	1.8608	2.5444
year7	2.4496	0.1765	13.879	0.0000	2.1036	2.7955
year8	2.2256	0.1913	11.632	0.0000	1.8506	2.6006
year9	2.1518	0.1826	11.781	0.0000	1.7938	2.5098
year10	2.3896	0.1753	13.632	0.0000	2.0460	2.7332
month2	1.1674	0.2055	5.6802	0.0000	0.7646	1.5702
month3	2.0868	0.2050	10.181	0.0000	1.6851	2.4885
month4	3.0009	0.1950	15.391	0.0000	2.6187	3.3830
month5	3.1219	0.2494	12.516	0.0000	2.6330	3.6108
month6	2.4022	0.2845	8.4435	0.0000	1.8446	2.9599
month7	1.9796	0.3285	6.0268	0.0000	1.3358	2.6233
month8	2.6224	0.2760	9.5004	0.0000	2.0814	3.1634
month9	3.6537	0.2077	17.595	0.0000	3.2467	4.0607
month10	3.1680	0.1864	16.996	0.0000	2.8027	3.5334
month11	1.3457	0.2530	5.3198	0.0000	0.8499	1.8414
month12	1.1511	0.2299	5.0062	0.0000	0.7004	1.6018
$attend_v$	0.2263	0.0276	8.1979	0.0000	0.1722	0.2804
Model state	istics:					
R-squared		0.9912				
Adj. R-squ	Adj. R-squared					
F-statistic	• -		(Prob F-	-statistic $=$	0.0000)	
No. Observ	vations	516				
P-value (F-	-stat)	0.0000				
Distributio	n	chi2(37)				
Cov. Estim	nator	robust				

```
endog = data[['attend_v']]
other_controls = df.select(pl.all().exclude("assaults", "ln_assaults", "wkd_ind", "^attend_exog = data[['attend_m', 'attend_n'] + other_controls]
instruments = data[["attend_v_f", "attend_m_f", "attend_n_f", "attend_v_b", "attend_m_b",
ivolsmod = IV2SLS(dependent=data[["ln_assaults"]], endog=endog, exog=exog, instruments=instruments = ivolsmod.fit()
print(res_ivols.summary)
```

(ii) **Answer:** after doing the test we get a p value of 0.000 thus we reject the null hypothesis of that no of the moves have an impact on assault and thus conclude there is significant evidence to conclude that there is an association between the movies and assaults.

Table 19: Linear Equality Hypothesis Test

Statistic	Value	Notes
Test Statistic	122.5900	-
p-value	0.0000	-
Distribution	chi2(3)	-

```
#iii
coeffs = res_ivols.params[['attend_v', 'attend_m', 'attend_n']].values
cov = res_ivols.cov.loc[['attend_v', 'attend_m', 'attend_n'], ['attend_v', 'attend_m', 'at
delta_x = np.array([6, -2, -1])
delta_ln_assaults = np.dot(delta_x, coeffs)
std_error = np.sqrt(np.dot(delta_x, np.dot(cov, delta_x)))
lower = delta_ln_assaults - 1.96 * std_error
upper = delta_ln_assaults + 1.96 * std_error

percent_change = 100 * (np.exp(delta_ln_assaults) - 1)
ci_lower = 100 * (np.exp(lower) - 1)
ci_upper = 100 * (np.exp(upper) - 1)
print(f"Predicted % change in assaults: {percent_change:.2f}%")
print(f"Predicted % change in assaults: {percent_change:.2f}%")
```

Table 20: Predicted Percentage Change in Assaults

Statistic

Predicted % change in assaults

95% Confidence Interval (CI)

[97.23%, 253.09%]

```
(iii) #ii
print(res_ivols.wald_test(formula="attend_v = attend_m = attend_n = 0"))
```

(e) Based on your analysis, what do you conclude about the effect of violent movies on (short-run) violent behavior?

Answer: yes, but looking at the other results for the other types of movies there seems to an association with the other type of movies and assaults

Problem 3

We examined **Koop** and **Tobias's** data on wages, education, ability, and so on. We considered the model.

$$\begin{split} \ln wage &= \beta_0 + \beta_1 educ + \beta_2 ability + \beta_3 experience \\ &+ \beta_4 mother Educ + \beta_5 Father Educ + \beta_6 broken \\ &+ \beta_7 sinlings + \epsilon \end{split}$$

(a) We are interested in possible non-linearities in the effect of education on ln Wage. (Koop and Tobias focused on experience. As before, we are not attempting to replicate their results.) A histogram of the education variable shows values from 9 to 20, a spike at 12 years (high school graduation), and a second at 15. Consider aggregating the education variable into a set of dummy variables:

```
HS = 1 if Educ \le 12, 0 otherwise Col = 1 if 12 < Educ \le 16, 0 otherwise Grad = 1 if Educ > 16, 0 otherwise
```

replace Educ in the model with (Col, Grad), making high school (HS) the base category, and recompute the model. Report all results. How do the results change? Based on your results, what is the marginal value of a college degree? What is the marginal impact on ln Wage of a graduate degree?

Answer: the marginal efect is of 0.1747. this means that 1 unit increas in collage means an incrament of 17% in wages.

Table 21: OLS Regression Results: lwage

Variable	Coef.	Std. Err.	t	P > t	[0.025]	0.975]
Intercept	0.9897	0.034	29.198	0.000	0.923	1.056
edu	0.0712	0.002	31.538	0.000	0.067	0.076
ability	0.0774	0.005	15.682	0.000	0.068	0.087
exper	0.0395	0.001	43.970	0.000	0.038	0.041
meduc	7.099e-05	0.002	0.042	0.967	-0.003	0.003
feduc	0.0053	0.001	3.974	0.000	0.003	0.008
brokenhome	-0.0529	0.010	-5.292	0.000	-0.072	-0.033
siblings	0.0049	0.002	2.720	0.007	0.001	0.008
Model statisti	ics:					
R-squared		0.176				
Adj. R-square	ed	0.176				
F-statistic		546.6	(Prob I	7-statistic	e = 0.000	
No. Observat	ions	17919				
Df Residuals		17911				
Df Model		7				
Log-Likelihoo	$_{ m od}$	-12255				
AIC		2.453e + 04				
BIC		2.459e + 04				
Durbin-Watso	on: 0.804					

Omnibus: 1110.722, Prob(Omnibus): 0.000 Jarque-Bera (JB): 2075.146, $\operatorname{Prob}(\operatorname{JB}) \colon 0.000$

Skew: -0.458, Kurtosis: 4.393

Cond. No.: 218

Table 22: OLS Regression Results: lwage

Variable	Coef.	Std. Err.	t	$\mathbf{P} > t $	[0.025]	0.975]
Intercept	1.8112	0.021	87.523	0.000	1.771	1.852
col	0.1747	0.009	20.020	0.000	0.158	0.192
grad	0.3624	0.021	17.373	0.000	0.322	0.403
ability	0.1010	0.005	20.747	0.000	0.091	0.111
exper	0.0381	0.001	42.078	0.000	0.036	0.040
meduc	0.0008	0.002	0.478	0.633	-0.003	0.004
feduc	0.0070	0.001	5.186	0.000	0.004	0.010
brokenhome	-0.0696	0.010	-6.908	0.000	-0.089	-0.050
siblings	0.0037	0.002	2.049	0.040	0.000	0.007
Model statisti	ics:					
R-squared		0.157				
Adj. R-square	ed	0.157				
F-statistic		416.8	$(Prob\ F$	7-statistic	e = 0.000	
No. Observat	ions	17919				
Df Residuals		17910				
Df Model		8				
Log-Likelihoo	$_{ m od}$	-12460				
AIC		2.494e + 04				
BIC		2.501e + 04				
Durbin Water	m. 0.705					

Durbin-Watson: 0.795

Omnibus: 999.899, Prob(Omnibus): 0.000 Jarque-Bera (JB): 1810.345, Prob(JB): 0.000

Skew: -0.429, Kurtosis: 4.300

Cond. No.: 111

```
import polars as pl
import statsmodels.formula.api as smf
import matplotlib.pyplot as plt
import numpy as np
# Question 3
df1 = pl.read_excel("data/timeinvar-1.xlsx")
df2 = pl.read_excel("data/timevar-1.xlsx")
df = df1.join(df2, on="id", how="left", validate="1:m")
df = df.with_columns(
   hs=pl.when(pl.col("edu") <= 12).then(1).otherwise(0),
    col=pl.when((pl.col("edu") > 12) & (pl.col("edu") <= 16)).then(1).otherwise(0),
    tao1=pl.when((pl.col("edu") <= 16)).then(pl.col("edu")).otherwise(0),</pre>
    tao2=pl.when((pl.col("edu") > 16)).then(pl.col("edu")).otherwise(0),
    grad=pl.when(pl.col("edu") > 16).then(1).otherwise(0),
    educab=pl.col("edu") * pl.col("ability"),
    edu2=pl.col("edu")**2,
data = df.to_pandas()
formula = "lwage ~ edu + ability + exper + meduc + feduc + brokenhome + siblings"
model = smf.ols(formula=formula, data=data).fit()
print(model.summary())
formula = "lwage ~ col + grad + ability + exper + meduc + feduc + brokenhome + siblings"
model = smf.ols(formula=formula, data=data).fit()
print(model.summary())
```

(b) The aggregation in part (a) actually loses quite a bit of information. Another way to introduce non-linearity in education is through the function itself. Add $educ^2$ to the equation in part (a) and recompute the model. Again, report all results. What changes are suggested? Test the hypothesis that the quadratic term in the equation is not needed—that is, that its coefficient is zero. Based on your results, sketch a profile of log wages as a function of education.

Table 23: OLS Regression Results: lwage

	10010 -	o. o == 100810	DESTOIL TOOK	JOHN THE	8°	
Variable	Coef.	Std. Err.	t	P > t	[0.025]	0.975]
Intercept	0.4278	0.120	3.562	0.000	0.192	0.663
edu	0.1559	0.018	8.901	0.000	0.122	0.190
edu2	-0.0031	0.001	-4.877	0.000	-0.004	-0.002
ability	0.0743	0.005	14.958	0.000	0.065	0.084
exper	0.0396	0.001	44.108	0.000	0.038	0.041
meduc	0.0003	0.002	0.180	0.857	-0.003	0.004
feduc	0.0052	0.001	3.884	0.000	0.003	0.008
brokenhome	-0.0496	0.010	-4.954	0.000	-0.069	-0.030
siblings	0.0050	0.002	2.789	0.005	0.001	0.009
Model statisti	ics:					
R-squared		0.177				
Adj. R-squar	ed	0.177				
F-statistic		481.8	(Prob I	7-statistic	e = 0.000	
No. Observat	ions	17919				
Df Residuals		17910				
Df Model		Q				

 $\begin{array}{ll} \text{Df Model} & 8 \\ \text{Log-Likelihood} & -12243 \\ \text{AIC} & 2.450\text{e}{+04} \\ \text{BIC} & 2.457\text{e}{+04} \end{array}$

Durbin-Watson: 0.805

Omnibus: 1107.409, Prob(Omnibus): 0.000 Jarque-Bera (JB): 2083.917, Prob(JB): 0.000

Skew: -0.455, Kurtosis: 4.401

Cond. No.: 5.89e+03

Figure 1: Histograma de la la gama simulada

plt.savefig("assets/fig2.png")

b formula = "lwage ~ edu + edu2 + ability + exper + meduc + feduc + brokenhome + siblings" model = smf.ols(formula=formula, data=data).fit() print(model.summary()) plt.scatter(data["edu"], data["lwage"]) plt.savefig("assets/fig1.png") plt.hist(data["edu"])

(c) One might suspect that the value of education is enhanced by greater ability. We could examine this effect by introducing an interaction of the two variables in the equation. Add the variable

$$EducAb = Educ \times ability$$

to the base model in part a. Now, what is the marginal value of an additional year of education? The sample mean value of ability is 0.052374. Compute a confidence interval for the marginal impact on ln Wage of an additional year of education for a person of average ability.

Table 24: OLS Regression Results: lwage

		: OLS Regres	sion nest			
Variable	Coef.	Std. Err.	\mathbf{z}	P > z	[0.025]	0.975]
Intercept	1.0019	0.034	29.130	0.000	0.934	1.069
edu	0.0701	0.002	28.353	0.000	0.065	0.075
educab	0.0025	0.002	1.202	0.229	-0.002	0.007
ability	0.0469	0.026	1.824	0.068	-0.003	0.097
exper	0.0395	0.001	43.684	0.000	0.038	0.041
meduc	5.423 e-05	0.002	0.032	0.975	-0.003	0.003
feduc	0.0053	0.001	3.949	0.000	0.003	0.008
brokenhome	-0.0531	0.010	-5.256	0.000	-0.073	-0.033
siblings	0.0048	0.002	2.689	0.007	0.001	0.008
Model statisti	ics:					
R-squared		0.176				
Adj. R-square	ed	0.176				
F-statistic		478.7	$(Prob\ F$	7-statistic	= 0.000	
No. Observat	ions	17919				
Df Residuals		17910				
Df Model		8				
Log-Likelihoo	od	-12254				
AIC		2.453e + 04				
BIC		2.460e+04				
Durbin-Watso	on: 0.804					

Durbin-Watson: 0.804

Omnibus: 1115.367, Prob(Omnibus): 0.000 Jarque-Bera (JB): 2085.291, Prob(JB): 0.000

Skew: -0.460, Kurtosis: 4.396

Cond. No.: 232

Table 25: Predicted Change in Assaults

Statistic	Value
Predicted change in assaults	0.07
95% Confidence Interval (CI)	[0.07, 0.08]

```
# c
formula = "lwage ~ edu + educab + ability + exper + meduc + feduc + brokenhome + siblings"
model = smf.ols(formula=formula, data=data).fit(cov_type='HC1')
print(model.summary())
coeffs = model.params[['edu', 'educab']].values
cov = model.cov_params().loc[['edu', 'educab'], ['edu', 'educab']].values
delta_x = np.array([1, 0.052374])
delta_ln_assaults = np.dot(delta_x, coeffs)
std_error = np.sqrt(np.dot(delta_x, np.dot(cov, delta_x)))
lower = delta_ln_assaults - 1.96 * std_error
upper = delta_ln_assaults + 1.96 * std_error
change = (np.exp(delta ln assaults) - 1)
ci_lower = (np.exp(lower) - 1)
ci_upper = (np.exp(upper) - 1)
print(f"Predicted change in assaults: {change:.2f}")
print(f"95% CI: [{ci_lower:.2f}, {ci_upper:.2f}]")
```

(d) Combine the models in (b) and (c). Add both $educ^2$ and EducAb to the base model in the beginning of the question and re-estimate. As before, report all results and describe your findings. If we define low ability as less than the mean and high ability as greater than the mean, the sample averages are -0.798563 for the 7,864 low-ability individuals in the sample and +0.717891 for the 10,055 high-ability individuals in the sample. Using the formulation in part (b), with this new functional form, sketch, describe, and compare the log wage profiles for low- and high-ability individuals.

Table 26: OLS Regression Results: lwage

Variable	Coef.	Std. Err.	${f z}$	P > z	[0.025	0.975]
Intercept	-0.1051	0.154	-0.683	0.494	-0.407	0.196
edu	0.2409	0.023	10.343	0.000	0.195	0.287
edu2	-0.0065	0.001	-7.350	0.000	-0.008	-0.005
educab	0.0163	0.003	5.986	0.000	0.011	0.022
ability	-0.1245	0.034	-3.717	0.000	-0.190	-0.059
exper	0.0395	0.001	43.801	0.000	0.038	0.041
meduc	0.0005	0.002	0.264	0.792	-0.003	0.004
feduc	0.0052	0.001	3.884	0.000	0.003	0.008
brokenhome	-0.0478	0.010	-4.710	0.000	-0.068	-0.028
siblings	0.0046	0.002	2.595	0.009	0.001	0.008
Model statist	ics:					
R-squared		0.179				
Adj. R-squar	red	0.178				
F-statistic		439.1	(Prob F -statistic = 0.000)			
No. Observations		17919				
Df Residuals		17909				
Df Model		9				
Log-Likelihoo	od	-12225				
AIC		2.447e + 04				

Durbin-Watson: 0.806

BIC

Omnibus: 1133.720, Prob(Omnibus): 0.000 Jarque-Bera (JB): 2158.151, Prob(JB): 0.000

2.455e + 04

Skew: -0.460, Kurtosis: 4.429

Cond. No.: 7.41e+03

Figure 2: Histograma de la la gama simulada

```
Python Code

formula = "lwage ~ edu + edu2 + educab + ability + exper + meduc + feduc + brokenhome + sibli

model = smf.ols(formula=formula, data=data).fit(cov_type='HC1')

print(model.summary())

mean_ability = data['ability'].mean()
low_ability_data = data[data['ability'] < mean_ability]
high_ability_data = data[data['ability'] >= mean_ability]

low_ability_lwage = model.predict(low_ability_data)
high_ability_lwage = model.predict(high_ability_data)

plt.scatter(low_ability_data['edu'], low_ability_lwage, label='Low Ability', color= blue')

plt.scatter(high_ability_data['edu'], high_ability_lwage, label='High Ability', color='red')

plt.xlabel('Years of Education')
plt.ylabel('Predicted Log Wage')
plt.savefig("assets/fig3.png")
```

(e) Suppose that you are now given the following regression model:

$$\begin{split} \ln(\text{wage}) &= \beta_0 + \beta_1 \text{educ} \times \mathbf{1}(\text{educ} < \tau) + \beta_2 \text{educ} \times \mathbf{1}(\text{educ} \geq \tau) + \beta_3 \text{exp} \\ &+ \beta_4 \text{MotherEduc} + \beta_5 \text{FatherEduc} + \beta_6 \text{broken} \\ &+ \beta_7 \text{siblings} + \epsilon \end{split}$$

where τ is the threshold parameter, and

$$\mathbf{1}(\mathrm{Educ} < \tau) = \begin{cases} 1 & \text{if } \mathrm{Educ} < \tau, \\ 0 & \text{otherwise} \end{cases} \quad \text{and} \quad \mathbf{1}(\mathrm{Educ} \ge \tau) = \begin{cases} 1 & \text{if } \mathrm{Educ} \ge \tau, \\ 0 & \text{otherwise}. \end{cases}$$

Table 27: OLS Regression Results: lwage

Variable	Coef.	Std. Err.	t	$\mathbf{P} > t $	[0.025]	0.975]
Intercept	0.9469	0.037	25.458	0.000	0.874	1.020
tao1	0.0747	0.003	28.915	0.000	0.070	0.080
tao2	0.0711	0.002	31.510	0.000	0.067	0.076
ability	0.0761	0.005	15.347	0.000	0.066	0.086
exper	0.0396	0.001	44.021	0.000	0.038	0.041
meduc	0.0002	0.002	0.091	0.928	-0.003	0.003
feduc	0.0053	0.001	3.931	0.000	0.003	0.008
brokenhome	-0.0519	0.010	-5.192	0.000	-0.071	-0.032
siblings	0.0048	0.002	2.689	0.007	0.001	0.008
Model statistics						

Model statistics: R-squared 0.176Adj. R-squared 0.176(Prob F-statistic = 0.000) F-statistic 479.4No. Observations 17919 Df Residuals 17910 Df Model 8 -12251Log-Likelihood AIC 2.452e + 04BIC 2.459e + 04

Durbin-Watson: 0.804

Omnibus: 1113.540, Prob(Omnibus): 0.000 Jarque-Bera (JB): 2094.899, Prob(JB): 0.000

Skew: -0.457, Kurtosis: 4.404

Cond. No.: 235

```
formula = "lwage ~ tao1 + tao2 + ability + exper + meduc + feduc + brokenhome + siblings"
model = smf.ols(formula=formula, data=data).fit()
print(model.summary())
```

Problem 4

Using the California test score date, estimate the regression below using Nonlinear Least Squares. Report you coefficient estimates and standard errors.

$$TestScore = \beta_0(1 - e^{\beta_1(income - \beta_2)}) + \epsilon$$

Table 28:	Array Values
Index	\mathbf{V} alue
β_1	7.0322e+02
eta_2	5.5234 e-02
β_3	-3.4004e+01

Figure 3: Histograma de la la gama simulada

```
import polars as pl
import numpy as np
from scipy.optimize import curve_fit
import matplotlib.pyplot as plt

df = pl.read_excel("data/CASchools2.xlsx").sort("avginc")

def func(income,b0,b1,b2):
    return b0 * (1 - np.exp(-b1 * (income - b2)))
```

```
initial_guess = [250, 0.1, 5.0]
params2, covariance = curve_fit(func, df["avginc"], df["testscr"], p0=initial_guess)

plt.scatter(df["avginc"], df["testscr"], label="Observed Data", color="blue", alpha=0.6)
plt.plot(df["avginc"], func(df["avginc"], *params2), label="Fitted Model", color="red", linew plt.xlabel("avginc")
plt.ylabel("testscr")
plt.title("Nonlinear Fit: testscr = b0 * (1 - exp(-b1 * (avginc - b2)))")
plt.legend()
plt.grid(True)
plt.savefig("assets/fig4.png")
```

Problem 5

Use the **Consumption.xlsx**. We have previously estimated the nonlinear consuption function below using nonlinear least squares in class:

$$C = \alpha + \beta Y^{\gamma} + \epsilon$$

Where C is the real consumption and Y is the real disposable income. Alternatively, we can assume that the error term has a normal distribution and estimate the nonlinear regression above using the maximum likeligood estimation (MLE) approach, In particular, the MLE approach maximizes the log-likelihood function given by:

$$L(\alpha, \beta, \gamma, \sigma^2) = -\frac{n}{2}\log(\sigma^2) - \log(2\pi) - \frac{1}{2\sigma^2} \sum_{i=1}^n (C_i - \alpha - \beta Y^{\gamma})^2$$

Where σ^2 is the variance of the error term. Using a statistical programming language of you choice, estimate the regression model using the maximum likelihood estimation approach. Your estimate are expected to be similar to those in Table 7.1 of Green's textbook. Please submit the following:

(a) Your code used to preform the estimation.

```
import polars as pl
import numpy as np
from scipy.optimize import minimize
from scipy.stats import rv_continuous

df = pl.read_excel("data/Consumption.xlsx").to_pandas()
C = df['realcons'].values
Y = df['realgdp'].values

class consumption_model(rv_continuous):
    def __init__(self, Y, C):
        super().__init__(name='consumption')
        self.Y = np.asarray(Y)
        self.C = np.asarray(C)
        self.n = len(C)

def _loglike(self, params):
```

```
alpha, beta, gamma, sigma_squared = params
        predicted_C = alpha + beta * self.Y**gamma
        residuals = self.C - predicted_C
        11 = (
            -self.n / 2 * np.log(sigma_squared)
            - np.log(2 * np.pi)
            - (1 / (2 * sigma_squared)) * np.sum(residuals**2)
        return -11
    def fit(self, start_params=None, bounds=None):
        if start_params is None:
            start_params = [50, 2, 1.2, 1]
        if bounds is None:
            bounds = [
                (None, None),
                (None, None),
                (1e-6, None),
                (1e-6, None)
            ]
        result = minimize(self._loglike, start_params, method='L-BFGS-B', bounds=bounds)
        self.mle_result = result
        if result.success:
            self.alpha_hat, self.beta_hat, self.gamma_hat, self.sigma2_hat = result | x
        else:
            raise RuntimeError("MLE optimization failed.")
        return result.x
model = consumption_model(Y, C)
alpha_hat, beta_hat, gamma_hat, sigma2_hat = model.fit()
print(f"Estimated alpha: {alpha_hat:.4f}")
print(f"Estimated beta: {beta_hat:.4f}")
print(f"Estimated gamma: {gamma_hat:.4f}")
print(f"Estimated sigma^2: {sigma2_hat:.4f}")
```

(b) The output of your estimation, including the estimated parameters and the error variance.

Table 29: Estimated ParametersParameterEstimateAlpha (α)49.2447Beta (β)0.3588Gamma (γ)1.0691Sigma-squared (σ^2)1701.1853