面包板实验 1 门电路逻辑功能及性能测试

一、实验目的

- 1. 掌握了解 CMOS、TTL 系列门电路的逻辑功能。
- 2. 熟悉门电路基本性能参数的测试方法。
- 3. 熟悉实验箱的使用和掌握实验测试设备的操作方法。

二、实验仪器及器件

- 1. 实验仪器:数电实验箱、数字万用表
- 2. 器件:

74LS00 四路二输入端与非门 1片 74HC00 四路二输入端与非门 1片 74LS04 六路反相器 1片 74HC04 六路反相器 1片 74HC14 六路斯密特反相器 1片 74HC125 三态门 1片

三、实验步骤

本实验所用到的集成电路的引脚功能图见附录。选择实验用的集成电路,按自己设计的实验接线图接好连线,特别注意 Vcc 接电源线、GND 接地。线连接好后经检查无误方可通电实验。

1. 门电路功能验证

(1) 实验过程

任选 74HC00 中任意一个两输入与非门,验证与非门电路的功能:输入端 A、B 分别接逻辑电平开关 S1、S2,输出端 Y 接电平指示灯发光二极管 L1,芯片 7 脚接地,14 脚接电源。改变逻辑电平开关 S1、S2 的电平状态,观察发光二极管 L1 的状态,并将输出状态填入表中。

(2) 实验结果

输入	输出
S1 S2	74HC00
0 0	1
0 1	1
1 0	1
1 1	0
逻辑表达式	~(S1&S2)
逻辑功能	对输入进行与运算,对与运算结果进行非运算,将做种结
	果作为输出

(3) 实验结果分析与总结

此实验目的在于熟悉实验箱的使用方法,通过为简单的与非门连接输入和输出掌握最基础的实验流程。

2. 三态门逻辑功能测试

(1)实验过程

将74HC125中 两个三态门的输出端Y1和Y2连接到74HC00一个与非门输入端B1,74HC125的使能端C1、C2分别接到74HC04反相器输出端O1和输入端I1,74HC04输入端I1、74HC125的输入端A1和A2以及74HC00的另一个输入端B2分别连接到逻辑电平开关上。测试当输入端逻辑电平设置为不同值时,三态门输出端Y1/Y2和与非门输出Y3的电压值,并把测量到的数据填入表中。

(2) 实验结果

输入电平			输出电压		
I1	A1	A2	В2	Y1/Y2	Y 3
		L	L	0.02	5. 14
	T	L	Н	0.02	5. 14
	L	Н	L	5. 13	5. 14
L		Н	Н	5. 13	0.00
		L	L	0.02	5. 14
	Н	L	Н	0.02	5. 14
	11	Н	L	5. 13	5. 14
		Н	Н	5. 13	0.00
		L	L	0.02	5. 15
	L H	L	Н	0.02	5. 15
		Н	L	0.02	5. 15
Н		Н	Н	0.02	5. 15
		L	L	5. 14	5. 15
		L	Н	5. 14	0.00
		Н	L	5. 14	5. 15
		Н	Н	5. 14	0.00

(3) 实验结果分析与总结

此实验仍然是检测门电路性能,但是比上一个实验要复杂,使用了三个芯片,输入较多,线路较多,且增加了万用表的使用。

此实验用到的逻辑表达式为: 当 I1 为 L 时, Y3 = A2' + B2', Y1 = A2; 当 I1 为 H 时, Y3 = A1' + B2', Y1 = A1。

3. 测试三种不同系列反相器 74LS04、74HC04、74HC14 电压传输特性

门电路的输出电压 V_0 随输入电压 V_i 而变化的曲线 V_o = $f(V_i)$ 称为门的电压传输特性,通过它可读得门电路的一些重要参数,如输出高电平 V_{OH} 、输出低电平 V_{OL} 、关门电平 V_{OF} 、开门电平 V_{ON} 、阈值电平 V_T 及直流噪声容限等值。

(1) 将反相器04的输入端1脚连接到电位器的输出,调整电位器,严格按照上升和下降次序连续输入相应的电压值;把万用表测试量程换到20V,测量输出端电压,画出74LS04、74HC04、74HC14的电压传输特性曲线。

输入 V _i	74LS04	输入 V _i	74LS04
单调上	输出 Vo	单调下	输出 Vo
升 (V)	(V)	降 (V)	(V)
0.0	4. 63	5.0	0.07
0.5	4. 50	4.5	0.07
0.55	4. 50	4.0	0.07
0.6	4. 44	3.5	0.07
0.65	4. 37	3.0	0.07
0.7	4. 24	2.5	0.07
0.75	3. 93	2. 4	0.07
0.8	3. 56	2.35	0.07
0.85	3. 27	2.3	0.07
0.9	3. 02	2. 25	0.07
0.95	2. 63	2. 2	0.07
1.0	0.89	2.15	0.07
1.5	0.07	2. 1	0.07
2.0	0.07	2.0	0.07
2.1	0.07	1.5	0.07
2.15	0.07	1.05	0.77
2.2	0.07	1.0	0.84
2.25	0.07	0.95	0.90
2.3	0.07	0.9	1.00
2.35	0.07	0.85	3. 26
2.4	0.07	0.8	3.61
2.5	0.07	0.75	4.01
3.0	0.07	0.7	4. 27
3. 5	0.07	0.65	4. 41
4.0	0.07	0.6	4. 47
4.5	0.07	0.5	4.51
5.0	0.07	0.0	4.61

#△) U	7.41100.4	#△) U	7.411CO.4. #A
输入 V _i	74HC04	输入 V _i	74HC04 输
单调上升	输出 Vo	单调下降	出 Vo(V)
((V)	(V)	(V)	
0.0	5. 10	5.0	0.05
0.5	5. 10	4. 5	0.05
0.8	5.06	4.0	0.05
0.85	5. 07	3. 5	0.06
0.9	5. 07	3.0	1.54
0.95	5. 07	2.5	2.45
1.0	5. 07	2.0	2.90
1.05	5. 07	1.95	3. 07
1.1	5. 07	1.9	3.16
1.15	5. 07	1.85	3. 24
1.5	4. 01	1.8	3.33
1.55	4. 01	1.75	3.44
1.6	3.9	1.7	3. 59
1.65	3.9	1.65	3.68
1.7	3. 74	1.6	3.89
1.75	3.60	1.55	4. 26
1.8	3. 52	1.5	5.05
1.85	3. 38	1.15	5. 09
1.9	3. 26	1.1	5. 09
1.95	3. 19	1.05	5. 09
2.0	3. 12	1.0	5. 09
2.5	2. 36	0.95	5. 09
3.0	0.04	0.9	5. 09
3.5	0.04	0.85	5. 09
4.0	0.04	0.8	5. 09
4.5	0.04	0.5	5. 09
5.0	0.04	0.0	5. 09

输入 V _i	74HC14 输	输入 V _i	74HC14 输
单调上升(V)	出 Vo(V)	单调下降(V)	出Vo (V)
0.0	5. 12	5. 0	0.00
0.5	5. 10	4.5	0.00
1.0	5. 12	4.0	0.00
1.5	5. 10	3.5	0.00
2.0	5. 10	3.0	0.00
2.5	5. 13	2.5	0.00
2.55	5. 13	2.0	0.00
2.6	5. 13	1.95	0.00
2.65	0.00	1.9	5. 13
2.7	0.00	1.85	5. 13
2.75	0.00	1.8	5. 13
2.8	0.00	1.75	5. 13
2.85	0.00	1.7	5. 13
2.9	0.00	1.65	5. 13
3.0	0.00	1.6	5. 13
3.5	0.00	1.5	5. 13
4.0	0.00	1.0	5. 13
4.5	0.00	0.5	5. 13
5.0	0.00	0.0	5. 13

在同一张图上分别画出 74LS04、74HC04、74HC14 电压传输特性曲线 电压上升时的传输特性

电压下降时的传输特性

(2) 比较电压传输特性曲线,说明各自的特性。

74LS04输入的低电压范围较小,高电压范围较大,输出最高电压约为4.6V。它是TTL电路的反相器,功耗低,转换速度慢。

74HC04输入的高低电压范围差距不大,最大电压约为5V。它是CMOS电路的反相器,功耗略高,转换速度快。

74HC14比较特殊,它的图像仅在阈值附近才会迅速变化,其他时间保持状态不变,面对输入电压的变化,其输出电压能迅速变化且比较稳定。它是施密特触发器,采用内部反馈的特殊电路,根据输入变化移动开关阈值,还可以已知输入噪声对输出的影响,输入电压上升时,阈值电压大约为2.75V,输入电压下降时,阈值电压大约为1.75V。

(3) 从传输特性曲线计算出 74LS04、74HC04、74HC14 三种门电路的电压特性:

	74LS04	74HC04	74HC14
输出高电平 (V _{OH})	4. 50	5. 07	5. 13
输出低电平 (VoL)	0.07	0.04	0.00
输入高电平 (V _{IH})	1. 5	3. 5	1.9
输入低电平 (VIL)	0.5	1. 15	2.6
阈值电平 V _™	1.0	2. 33	2.75 / 1.75
低态直流噪声容限	0. 43	1.11	2.6
高态直流噪声容限	3	1. 57	3. 23

4. 测量空载电流 I_{CCL} 和 I_{CCH} (选做实验)

(1) 与非门处于不同的工作状态,电源提供的电流是不同的。 I_{CCL} 是指所有输入端接高电平时,输出端空载时,电源提供器件的电流。 I_{CCL} 是指输出端空截,所有输入端接地,电源提供给器件的电流。通常 I_{CCL} > I_{CCL} ,它们的大小标志着器件静态功耗的大小,器件的最大功耗为 P_{CCL} = $V_{CC}I_{CCL}$ 。

	输	出
	74HC00	74LS00
I_{ccl}	18. 6	3. 17
I_{CCH}	15. 4	2. 69

根据公式 P = Vcc * Iccl 可知,74HC00 的静态功耗要比 74LS00 大很多,这符合理论知识:74LS00 是 TTL 逻辑系列元器件,而 74HC00 是 CMOS 逻辑系列元器件,TTL 元器件静态功耗低于 CMOS 元器件。

四、实验报告

1、比较 TTL 逻辑门和 CMOS 逻辑门的异同点

(1)相同

都是由晶体管组成;

(2)不同

TTL 传播延迟短,传播速度快,但是功耗要比 CMOS 大

TTL 的噪声容限比 CMOS 小,而 CMOS 对干扰信号的捕捉能力很强。所以 CMOS 不用的管脚不要悬空,最好接上上拉电阻或下拉电阻

TTL 电路是电流控制器件, CMOS 电路是电压控制器件。

CMOS 的工作电压范围比 TTL 大

2、说明三态门的特性及其应用

(1)特性:

三态门的输出有三种状态:高电平、低电平、高阻性状态。高阻性状态相当于电阻很大,隔断电路,引入三态门可以实现断路的效果。

三态门存在一个控制使能端 EN, EN 有效的话呈现正常的高/低电平, EN 无效的话呈现高阻性隔断

(2)应用:

在一个总线上同时只能有一个设备端口作输出,这时其他端口必须在高阻态,同时可以输入这个输出端口的数据。所以,设备端口要挂在一个总线上,必须通过三态缓冲器。在总线控制管理下,访问到哪个端口,那个端口的三态缓冲器才可以工作在输出状态,其他端口仿佛断路一样。

3、说明斯密特反相器的特性及其应用

(1)特性:

由施密特触发器构成。施密特触发器有两个稳定状态,在状态转换过程中的正 反馈作用,可以把边沿变化缓慢的周期性信号变换为边沿很陡的矩形脉冲信号。提供稳 定的逻辑电平。消除普通反相器因为生产的不规范,导致的电压中间区域的空白。

(2)应用:

当电路需要反向信号时,就选用施密特反相器。它可以产生规范的逻辑信号, 抗干扰, 避免误触发, 还可以用来电流整形