ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «САНКТ-ПЕТЕРБУРГСКИЙ НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ ИТМО»

Факультет информационных технологий и программирования

Дисциплина:

«Прикладная математика»

Отчёт по лабораторной работе №3

«Методы спуска»

Группа М32001

Выполнили:

Соловьев Роман Сергеевич

Халилов Роман Эдуардович

Преподаватель:

Москаленко Мария

Александровна

Санкт-Петербург 2023 г.

Цель работы:

Анализ методов многомерного спуска на квадратичных функциях.

Постановка задачи:

Необходимо реализовать методы нахождения минимума квадратичной, имеющей минимум, функции. Сравнить методы по количеству итераций на разных функциях. Провести анализ количества итераций алгоритма градиентного спуска на различных функциях от размерности и числа обусловленности.

Ход работы:

Весь код, использованный в ходе выполнения работы: GitHub

Для исследования методов используем функции:

1.
$$f_1(x, y) = x^2 + 2y^2 - xy - 8y + 1$$
,

2.
$$f_1(x, y) = x^2+y^2+0.5 \cdot x \cdot y+3 \cdot x+2 \cdot y$$
,

3. $f_1(x, y) = 3 \cdot x^2 + 4 \cdot y^2 + 4 \cdot x + 3 \cdot y - 12$.

Часть 1 – реализация алгоритмов:

Метод 1: Градиентный спуск с постоянным шагом

Направление: в сторону антиградиента в текущей точке.

Длина перемещения: постоянная.

При этом метод может не сходиться, что будет исследовано позднее.

Метод 2: Спуск с дроблением шага по условию Армихо

Направление: в сторону антиградиента в текущей точке.

<u>Длина перемещения:</u> пересчитывается для каждой итерации по условию Армихо – увеличиваем длину перемещения, пока перемещение не пройдёт точку минимума функции, индуцированной плоскостью, содержащей вектор антиградиента и перпендикулярной всем осям аргументов.

Метод 3: Метод наискорейшего спуска с оптимизацией методом золотого сечения

Направление: в сторону антиградиента в текущей точке.

<u>Длина перемещения:</u> в минимум функции, индуцированной плоскостью, содержащей вектор антиградиента и перпендикулярной всем осям аргументов.

С помощью методов одномерного поиска на каждой итерации находим точку минимума индуцированной двумерной функции и принимаем её за текущую.

Метод 4: Метод сопряженных градиентов

<u>Направление</u>: в сторону суммы векторов антиградиента в текущей точке и антиградиента в предыдущей точке с коэффициентом скалярного произведения нового антиградиента с собой, делённого на скалярное произведение нового антиградиента с собой.

<u>Длина перемещения:</u> в минимум функции, индуцированной плоскостью, содержащей вектор антиградиента и перпендикулярной всем осям аргументов.

Сравнение количества итераций методов – значение функции от номера итерации:

Вывод:

Вычислив минимум функций с помощью разных методов спуска, сравнили их между собой по метрике количества итераций, наиболее эффективным оказался метод сопряженных градиентов.

Часть 2 – траектории методов:

На функции f₁:

На функции f₃:

Часть 3 – количество итераций на f_1 в зависимости от расстояния выбранной точки начала:

Вывод:

Подтверждая теоретические ожидания, у всех методов, кроме метода сопряженных градиентов, количество итераций в среднем увеличивается при отдалении начальной точки от точки минимума. По полученным диаграммам можно сделать вывод о том, что самый нестабильно работающий метод — метод наискорейшего спуска с оптимизацией методом золотого сечения, так как график данного метода очень сильно осциллирует.

Часть 4 – график зависимости количества итераций градиентного спуска от размерности пространства и числа обусловленности:

Вывод:

На количество итераций гораздо большее влияние оказывает число обусловленности функции, а не размерность. При малом числе обусловленности можно наблюдать слабую корреляцию числа итераций от размерности пространства. При фиксированной размерности пространства можно наблюдать сильную прямую корреляцию количества итераций от числа обусловленности.

Общий вывод по проделанной работе:

В ходе работы были реализованы методы спуска на квадратичных функциях и произведено их сравнение по критерию количества итераций. Были проведены наблюдения за траекториями методов, сравнение эффективности методов между собой.