Faster DNN Training With Selective Backpropagation

Angela Jiang, Daniel Wong, Michael Kaminsky[†], Michael A. Kozuch[†], Padmanabhan Pillai[†], David G. Andersen, Gregory R. Ganger

Overview

Can we speed up DNN training by backpropagating only useful examples?

Motivation

- Labeled datasets are getting larger
- Often not enough time or resources to train on whole dataset (e.g., ImageNet)
- Fast inference (e.g., with accelerators) => Training bottlenecked by backprop

Goal

- Speed up training by reducing the number of backprops
 - Learn mostly from surprising examples that have a lot to teach the network

Approach

- Identify useful examples using inference (the output of the forward pass)
- If example's output is different from target, learn from this example
- Changes sampling distribution of dataset, biased towards interesting examples

Training wth Selective-Backprop (SB)

- Baseline does not filter examples
- SB filters >80% of examples of MNIST
- SB gets 98.5% acc. with 75% fewer backprops

- SB filters >75% of CIFAR10 examples
- SB reduces test loss with fewer examples

- SB gets 80% acc. with 74% fewer backprops
- Acc has sharp increase from learning rate scheduler

Diving into CIFAR10

• SB trains images with higher loss

Easy Examples

Next steps

- Use SB to reduce wall-clock time
- Use SB on high frame-rate video datasets
 - To avoid filtering useful frames
- Use SB offline to dictate order to train examples
 - To improve training of other models

