

Chapter 5

Finite Fields

Discovery

- Evariste Galois (1811-1832)
- Niels Abel (1802-1829)
- Applications

- Squaring a circle
- Trisecting an angle
- Show that degree-5 equations have no formula solutions.
 250+ years old
- Physics
- Cryptography
- •

Abelian Group

- (G, •) is a **group**, where G is a set of elements and the binary operator has the following properties:
 - (A1) Closure
 - If a and b belong to G, then a b is also in G
 - (A2) Associative
 - a (b c) = (a b) c for all a, b, c in G
 - (A₃) Identity element
 - There is an element e in G such that $a \cdot e = e \cdot a = a$ for all a in G
 - (A4) Inverse element
 - For each a in G, there is an element a^{-1} in G such that $a \cdot a^{-1} = a^{-1} \cdot a = e$
 - (A5) Commutative: $a \cdot b = b \cdot a$ for all a, b in G

Examples

- (Z, +)
- (R, +)
- $(R-\{0\}, \times)$
- $(Q-\{0\}, x)$
- $(Z_n, +_n)$, where $Z_n = \{0, 1, 2, ..., n-1\}$
- (Z_n^*, x_n) , where $Z_n^* = \{a: 1 \le a \le n 1, \gcd(a, n) = 1\}$
- $(Z_p, +_p)$, for any prime p
- (Z_p^*, x_p) , for any prime p

Cyclic Group

- Notation
 - $a^3 = a \cdot a \cdot a$
 - $a^0 = e$: identity element
 - $a^{-n} = (a^{-1})^n$, where a^{-1} is the inverse of a
- (G, •) is cyclic if there is g∈G, such that any a∈G can be expressed as a=g^k for some k.
- g is called a generator of G
 - g spans all elements of G, that is, G={g^k: k≥0}
- $\{Z_7^*, x_7^*\}$ is a cyclic group with generators 3 and 5. Check 3°=1, 3¹=3, 3²=2, 3³=6, 3⁴=5, 3⁵=4.

Field

- $\{F, +, \times\}$ is a **field**, where F is a set of elements and
 - $\{F, +\}$ and $\{F-\{o\}, \times\}$ are both groups
 - Distributive laws
 - a(b+c) = ab + ac for all a, b, c in F
 - (a+b)c = ac + bc for all a,b,c in F
- o: the identity for +
- 1: the identity for ×
- -a: the inverse of a under +
- a⁻¹: the inverse of a under ×
- a-b = a+(-b)
- $a/b = axb^{-1}$

Field: examples

- {R, +, x} is an infinite field, where R is the set of reals
- {Q, +, x} is an infinite field, where Q is the set of rationals
- ${Z_p, +_p, x_p}$ is a finite field of p elements, where p is prime

Types of fields

Finite Fields GF(pm)

- For every prime p and m≥,1 there is a unique finite field, up to isomorphism
- $GF(p^m)$: the finite field with p^m elements

Finite Field: GF(p)

•
$$GF(p) = \{Z_p, +_p, x_p\}$$

- GF(2): Boolean algebra
- $GF(7) = \{Z_7, +_7, X_7\}$

+	0	1	2	3	4	5	6
0	0	1	2	3	4	5	6
1	1	2	3	4	5	6	0
2	2	3	4	5	6	0	1
3	3	4	5	6	0	1	2
4	4	5	6	0	1	2	3
5	5	6	0	1	2	3	4
6	6	0	1	2	3	4	5

×	0	1	2	3	4	5	6
0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6
2	0	2	4	6	1	3	5
3	0	3	6	2	5	1	4
4	0	4	1	5	2	6	3
5	0	5	3	1	6	4	2
6	0	6	5	4	3	2	1

Polynomial arithmetic

$$x^{3} + x^{2} + 2$$

$$+ (x^{2} - x + 1)$$

$$x^{3} + 2x^{2} - x + 3$$

(a) Addition

(c) Multiplication

$$x^{3} + x^{2} + 2$$

$$- (x^{2} - x + 1)$$

$$x^{3} + x + 1$$

(b) Subtraction

$$\begin{array}{r}
 x + 2 \\
 x^{2} - x + 1 \overline{\smash)x^{3} + x^{2}} + 2 \\
 \underline{x^{3} - x^{2} + x} \\
 \underline{2x^{2} - x + 2} \\
 \underline{2x^{2} - 2x + 2} \\
 x
 \end{array}$$

(d) Division

Polynomials over GF(p)

- $f(x) = a_t x^t + a_{t-1} x^{t-1} + \dots + a_0$ over GF(p), each $a_i \in GF(p)$
- Operations over GF(5)
 - $(3x^2+2x+4) + (2x^2+x+3) = 5x^2+3x+7 = 3x+2$
 - $(3x^2+2x+4) \times (2x^2+x+3) = 6x^4+7x^3+19x^2+10x+12=x^4+2x^3+4x^2+2$
 - $4x^5+2x^3+x+3 \mod 3x^2+x+1 = 4x+1$

Irreducible poly over GF(p)

- g(x) over GF(p) is **irreducible** (or prime) if g(x) cannot be expressed as a product of two polynomials over GF(p) of degree ≥ 1 .
 - x^3+x+1 is irreducible over GF(2)
 - $x^2+1 = (x+2)(x+3)$ over GF(5)

Finite field: $GF(p^m)/g(x)$, $m \ge 2$

- GF(p^m) = the set of polys over GF(p) with degree < m
- g(x) is degree-m and irreducible over GF(p)
- Operations of GF(p^m)/g(x)
 - -a(x): additive inverse of a(x) mod g(x)
 - $a(x)^{-1}$: multiplicative inverse of a(x) mod g(x)
 - existent since gcd(a(x), g(x))=1
 - $a(x)+b(x) \mod g(x)$
 - $a(x)b(x) \mod g(x)$

Finite field: $GF(p^m)/g(x)$, $m \ge 2$

 GF(p^m)/g(x) and GF(p^m)/h(x) are isomorphic for any degree-m irreducible polys g(x) and h(x)

Example: $GF(2^{3})/x^{3}+x+1$

- $g(x)=x^3+x+1$ is irreducible over GF(2)
- $GF(2^3) = \{0, 1, x, x+1, x^2, x^2+1, x^2+x, x^2+x+1\}$
- Operations
 - $-(x^2+1) \mod g(x) = x^2+1$
 - $(x+1)^{-1} \mod g(x) = x^2 + x$
 - $(x+1)(x^2) \mod g(x) = x^2 + x + 1$
 - • •

Example: $GF(2^3)/x^3+x+1$

- Trick: computing a(x) mod g(x)
 - a(x) = q(x) g(x) + r(x)
 - Let $g(x)=x^3+x+1=0 \Rightarrow x^3=-x-1=x+1$
 - Substitute x+1 for x^3 in a(x) repetitively and get r(x)

$GF(2^3)/(x^3+x+1)$

		000	001	010	011	100	101	110	111
	+	0	1	X	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
000	0	0	1	Х	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
001	1	1	0	<i>x</i> + 1	х	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$
010	x	Х	<i>x</i> + 1	0	1	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$
011	x + 1	x + 1	Х	1	0	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2
100	x^2	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$	0	1	х	<i>x</i> + 1
101	$x^2 + 1$	$x^2 + 1$	x^2	$x^2 + x + 1$	$x^2 + x$	1	0	x + 1	х
110	$x^2 + x$	$x^2 + x$	$x^2 + x + 1$	x^2	$x^2 + 1$	X	x + 1	0	1
111	$x^2 + x + 1$	$x^2 + x + 1$	$x^2 + x$	$x^2 + 1$	x^2	x + 1	X	1	0
		000	001	010	011	100	101	110	111
	×	0	1	x	x + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
000	0	0	0	0	0	0	0	0	0
001	1	0	1	х	<i>x</i> + 1	x^2	$x^2 + 1$	$x^2 + x$	$x^2 + x + 1$
010	х	0	х	x^2	$x^2 + x$	<i>x</i> + 1	1	$x^2 + x + 1$	$x^2 + 1$
011	x + 1	0	<i>x</i> + 1	$x^2 + x$	$x^2 + 1$	$x^2 + x + 1$	x^2	1	х
100	THE RESERVE OF THE PROPERTY OF	_			2	2	14	2 1	1
	x^2	0	x^2	x + 1	$x^2 + x + 1$	$x^2 + x$	X	$x^2 + 1$	1
101	x^2 $x^2 + 1$	0	$\frac{x^2}{x^2 + 1}$	x+1	$\frac{x^2 + x + 1}{x^2}$	$x^2 + x$	$x^2 + x + 1$	$\frac{x^2 + 1}{x + 1}$	$\frac{1}{x^2 + x}$

$GF(2^m)/g(x)$: computation

- Since coefficients are o or 1, a polynomial can be represented as a binary string
- Addition/substraction: XOR of these strings
- Multiplication
 - long-hand multiplication
 - the "shift-XOR" algorithm
- Modulo reduction:
 - repeatedly substituting highest power with with irreducible polynomial (also shift and XOR)

$GF(2^m)/g(x)$: computation

- Multiplication: "shift-XOR" algorithm
 - Example: $GF(2^3)/x^3+x+1$

```
1 0 1 (multiplicand)
 x 1 1 1 (multiplier)
1 0 1
 1 0 1
1111
1011
  100
    1 0 1
 1 1 0 1
  1011
    1 1 0
```

$GF(2^m)/g(x)$: example

- $GF(2^8)/x^8+x^4+x^3+x+1$ (1 0001 1011)
- $axb = 3Fx86 = 00111111 \times 10000110$
 - Let $b_7b_6b_5b_4b_3b_2b_1b_0 = 1000 0110$ and a = 0011 1111

i	b _i	f (shift-XOR)	f' (mod g(x))
Initial			0000 0000
7	1	0011 1111	0011 1111
6	0	0111 1110	0111 1110
5	0	1111 1100	1111 1100
4	0	1 1111 1000	1110 0011
3	0	1 1100 0110	1101 1101
2	1	1 1000 0101	1001 1110
1	1	1 0000 0011	0001 1000
0	0	0011 0000	0011 0000

Finite field: $GF(p^{nm})/g(x),f(y)$

- Let f(y) be an irreducible m-degree polynomial with coefficients over a field GF(pⁿ)/g(x)
- $GF(p^{nm})/g(x),f(y)$
 - The element set consists of all polynomials (of y)
 with coefficients over GF(pⁿ)/g(x) and degree < m
 - On variable y, the operations are mod f(y)
 - Coefficient operations are operated on GF(pⁿ)/g(x)

$GF(p^{nm})/g(x),f(y)$: Example

- $GF(2^{3\times4})/x^3+x+1$, $y^4+(x^2+1)y^2+(x+1)$
 - $a(y) = (x+1)y^3 + (x^2+1)y^2 + (x+1)$ is a polynomial over the field $GF(2^3)/x^3 + x + 1$
- $f(y) = y^4 + (x^2+1) y^2 + (x+1)$ is irreducible over $GF(2^3)/x^3+x+1$

•
$$[(x+1)y^3 + (x)y^2 + 1)] \times [y+(x^2+1)] \mod f(y)$$

= $(x+1)y^4 + [(x+1)(x^2+1) + x]y^3 + [(x)(x^2+1)]y^2 + y + (x^2+1)$
= $(x+1)[(x^2+1)y^2 + (x+1)] + [(x+1)(x^2+1) + x]y^3 +$
 $[(x)(x^2+1)]y^2 + y + (x^2+1)$
= $(x^2+x)y^3 + (x^2)y^2 + (1)y$

Finite field: $GF(p^{nm})/g(x),f(y)$

- For any a(y) and b(y) over GF(pⁿ)/g(x) of degree < m,
 - a(y)+b(y) and a(y)xb(y) are defined on "mod f(y)", where coefficients are operated over G(pⁿ)/g(x)
 - -a(y) mod f(y) is defined by negating coefficients
 - a⁻¹ (y) mod f(y) is also defined except a(y)=0 since gcd(a(y), f(y))=1
- Thus, $GF(p^{nm})/g(x)$, f(y) is indeed a field.

Generator for GF(q)/f(x)

- A generator g for GF(q=p^m) is an element whose powers span all non-zero elements of GF(q)
 - $GF(q) = \{0, g^0, g^1, ..., g^{q-2}\}$
- Example, 3 and 5 are generators for GF(7).
- For a polynomial field GF(q)/f(x)
 - Let g be a root of f(x)=0, that is, f(g)=0
 - Use g as a symbol, no need to find out
 - g is a generator for GF(q)/f(x)

Generator for $GF(2^3)/x^3 + x + 1$

• g is a root of x^3+x+1 . Thus, $g^3+g+1=0$, or $g^3=g+1$

Power Representation	Polynomial Representation	Binary Representation	Decimal (Hex) Representation
0	0	000	0
$g^0 (= g^7)$	1	001	1
g^1	g	010	2
g^2	g^2	100	4
g^3	g + 1	011	3
g^4	$g^2 + g$	110	6
g ⁵	$g^2 + g + 1$	111	7
g^6	$g^2 + 1$	101	5

Operations using generator

		000	001	010	100	011	110	111	101
	+	0	1	G	g^2	g^3	g^4	g^5	g^6
000	0	0	1	G	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$
001	1	1	0	g + 1	$g^2 + 1$	g	$g^2 + g + 1$	$g^2 + g$	g^2
010	g	g	g + 1	0	$g^2 + g$	1	g^2	$g^2 + 1$	$g^2 + g + 1$
100	g^2	g^2	$g^2 + 1$	$g^2 + g$	0	$g^2 + g + 1$	g	g + 1	1
011	g^3	g + 1	8	1	$g^2 + g + 1$	0	$g^2 + 1$	g^2	$g^2 + g$
110	g^4	$g^2 + g$	$g^2 + g + 1$	g^2	g	$g^2 + 1$	0	1	g + 1
111	g^5	$g^2 + g + 1$	$g^2 + g$	$g^2 + 1$	g + 1	g^2	1	0	g
101	g^6	$g^2 + 1$	g^2	$g^2 + g + 1$	1	$g^2 + g$	<i>g</i> + 1	g	0

		000	001	010	100	011	110	111	101
	X	0	1	G	g^2	g^3	g^4	g^5	g^6
000	0	0	0	0	0	0	0	0	0
001	1	0	1	G	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$
010	8	0	g	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$	1
100	g^2	0	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$	1	g
011	g^3	0	g + 1	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$	1	g	g^2
110	g^4	0	$g^2 + g$	$g^2 + g + 1$	$g^2 + 1$	1	g	g^2	g + 1
111	g^5	0	$g^2 + g + 1$	$g^2 + 1$	1	g	g^2	g + 1	$g^2 + g$
101	g^6	0	$g^2 + 1$	1	g	g^2	g + 1	$g^2 + g$	$g^2 + g + 1$

Summary

- Groups
 - Abelian group
 - Cyclic group
- Finite fields of the form GF(p)
 - Finite fields of order p
 - Finding the multiplicative inverse in GF(p)
- Polynomial arithmetic
 - Ordinary polynomial arithmetic
 - Polynomial arithmetic with coefficients in Z_p

- Finite fields of the form GF(2ⁿ)
 - Motivation
 - Modular polynomial arithmetic
 - Finding the multiplicative inverse
 - Computational considerations
 - Using a generator