(1) We know that,

$$Sxy = \sum_{j=1}^{n} (x_j - \overline{x}) (y_j - \overline{y})$$

To show that,

then Core,
$$\hat{B}_1 = \frac{Sxy}{Sxx} = \frac{\sum_{i=1}^{N} (x_i - \overline{x_i})y_i}{Sxx} = \sum_{i=1}^{N} (x_i - \overline{x_i})y_i}$$

where,
$$Ci = \frac{x_i - \overline{x}}{Sxx}$$
, $i = 1, \dots, n$.

Now Let's solve!

SNY =
$$\sum_{j=1}^{\infty} (\pi i - \pi)(y_j - y_j)$$

$$= \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g_i)^2 - \sum_{i \neq i} (\pi_i g_i)^2$$

$$= \sum_{i \neq i} (\pi_i g$$

(": we know,
$$\overline{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$
, $\overline{y} = \frac{\sum_{i=1}^{n} x_i}{n}$)

=
$$\sum_{i=1}^{n} \overline{x}(n\overline{y}) - \overline{y}(n\overline{x}) + \overline{x}\overline{y}n$$
.

$$Sxy = \sum_{i=1}^{\infty} (x_i^2 - \overline{x_i}) y_i^2$$

Enow that,
$$\sum_{i=1}^{n} (x_i - \overline{x}) y_i$$

We can write;
$$\frac{1}{\sqrt{3}}$$

$$\frac{$$

from the class, we know that. (a)

Bo and B, are unbiased estimators of Bo.

and Br.

This means that $E(\hat{\beta}_0) = \beta_0$ and $E(\hat{\beta}_0) = \hat{\beta}_i$

In that proof, we have assumed E(E;)=E(E,di)=0

what if $E(\xi) = \alpha E(\xi|\chi) = \alpha$ Here d is a non-gero constant.

Find out, how would this assumption affect expectations of Bo and Bi?

from problem (1), we know.

 $\hat{\beta}_{i} = \sum_{i=1}^{n} c_{i}^{n} y_{i}^{n} \cdot \left(\text{where } , c_{i}^{n} = \frac{\alpha_{i}^{n} - \overline{\alpha}_{i}}{S_{xx}} \right)^{n}$

Bo = y-B, x.

NOW, lets solve for. $E(\hat{\beta}_i) = E(\hat{\Sigma}_i c^i y^i) = \sum_{i=1}^{n} c^i E(y_i)$

we know the true relation, yi= Bot Bixit Ei

$$= \sum_{i=1}^{n} c_{i}^{n} E(B_{0} + B_{1}x_{i}^{n} + E_{i}^{n})$$

$$= \sum_{i=1}^{n} c_{i}^{n} E(B_{0} + B_{1}x_{i}^{n} + E_{i}^{n})$$

$$= \sum_{i=1}^{n} c_{i}^{n} E(B_{0} + B_{1}x_{i}^{n} + E_{i}^{n})$$

from earlier, E(Ei) = a. non-zero constant.

=
$$Bo\sum_{i=1}^{n} Ci^{i} + Bi\sum_{i=1}^{n} Ci^{i}\alpha_{i}^{i} + \alpha\sum_{i=1}^{n} o^{i}C_{i}^{i}$$

we leave it as an exercise to show that.

As we nowe done inthe class

As we so
$$\sum_{i=1}^{n} \frac{(x_i - x_i)}{s_{x_i}}$$

$$= \frac{1}{Sxx} \left(n\overline{x} - n\overline{x} \right) \leq 0$$

similarly
$$\sum_{i=1}^{\infty} (x_i - x_i) x_i$$

$$\frac{1}{5} \left(\frac{5}{5} x_1^2 - 0 \overline{x} \right) = \frac{1}{5} \frac{5}{5} x x = 1$$

9 4

1 anoch

80, the expectation of
$$\hat{\beta}_i$$
 remains β_i even eff $E(\xi_i) = \alpha$,

$$\mathbf{E} \in (\hat{\mathbf{B}}_0) = \mathbf{E} (\mathbf{\hat{\mathbf{Y}}} - \hat{\mathbf{\beta}}_1 \mathbf{\bar{\mathbf{x}}})$$

$$SE\left(\frac{\sum_{i=1}^{n}y_{i}^{n}}{\sum_{i=1}^{n}y_{i}^{n}}\right)-ZE\left(\frac{\hat{\beta}}{\hat{\beta}}\right)$$

$$=\frac{1}{2}\sum_{i=1}^{2}E(B0+Bixi+\Sigma_{i})-\overline{\lambda}B_{i}$$

$$= \frac{1}{n} \left[\frac{2}{\beta_0} \sum_{i=1}^{n} 1 + \beta_i \sum_{i=1}^{n} x_i^2 + \sum_{i=1}^{n} E(\xi_i^2) \right] - \frac{1}{n} \beta_1$$

Now Here, Bo is biased by d.

(5) Given that consider the true relation $y = \beta o + \beta i \forall i \in \mathbb{R}$

Data = (a1, 41)... (an be expressed as.

yis Bot Bizi + Ei

To find,

what assumptions about the error terms si are necessary to obtain.

(a)
$$E(\hat{\beta}_0) = \beta_0$$
.

Let solve $E(\hat{\beta}_0)$. We know, $\hat{\beta}_0 = \overline{y} - \hat{\beta}_1 \overline{x}$. 80, $E(\hat{\beta}_0) = E(\overline{y} - \hat{\beta}_1 \overline{x})$ $= E(\overline{y}) - E(\hat{\beta}_1 \overline{x})$

$$= E\left(\frac{\sum g^{*}}{N}\right) - \pi E(\hat{B})$$

we know that, Bi is unbiased estimators of Bi even after error term.

we have to assume that E(Ei)=0.

we know, $\beta_1 = \frac{S_{xy}}{S_{xx}}$

$$\hat{\beta}_1 = \sum_{i=1}^{\infty} \frac{(\alpha_i - \overline{\alpha}) y_i}{Sxx_i}$$

$$Var(\beta_{i}) = Var\left(\sum_{i=1}^{2} (3i - \overline{n}) y_{i}\right)$$

$$= \frac{1}{Sxx^{2}} \left(var\left(\sum_{i=1}^{2} (n_{i} - \overline{n}) (y_{i})\right)\right)$$

$$= \frac{1}{Sxx^{2}} \left(var\left(\sum_{i=1}^{2} (n_{i} - \overline{n}) (y_{i})\right)\right)$$

$$= \frac{1}{Sxx^{2}} \left(var\left(\sum_{i=1}^{2} (iy_{i})\right) \right)$$

$$= \frac{1}{Sxx^{2}} \left(var\left(\sum_{i=1}^{2} (iy_{i})\right)\right)$$

$$= \frac{1}{Sxx^{2$$

(c) B₁, 0 N(B₁, 5 / SXX)

We have got the above resulte, from the above we can say that $\beta_1 \sim N$ (B1, $\frac{5}{cxx}$) where Equi

for the above result to be right,
we have to assume that, error term

we have to assume that, error term $\varepsilon_i \sim N(0, \sigma^2)$ and $\cos(\varepsilon_i, \varepsilon_j) = 0$, $\varepsilon_i \sim N(0, \sigma^2)$ and $\sin(\varepsilon_i, \varepsilon_j) = 0$,