CENTRO DE ESTATÍSTICA APLICADA – CEA – USP RELATÓRIO DE CONSULTA

PROJETO:

"Reconstrução do Hiato Esofágico nas Grandes Aberturas do Diafragma"

PESQUISADOR: Jorge H. Reina Neto

ÁREA E INSTITUIÇÃO: Faculdade de Medicina da Universidade de São Paulo

FINALIDADE DO PROJETO: Doutorado

PARTICIPANTES DA ENTREVISTA: Jorge H. Reina Neto

Denise Aparecida Botter Júlia Maria Pavan Soler Gilberto Alvarenga Paula

Kim Samejima Mascarenhas Lopes

Larissa Teruko Kaneko

DATA: 18/05/2004

FINALIDADE DA ENTREVISTA: Sugestão para análise de dados

RELATÓRIO ELABORADO POR: Kim Samejima Mascarenhas Lopes

Larissa Teruko Kaneko

1. Introdução

O esôfago é um canal elástico que liga a boca ao estômago e tem início na parte inferior da garganta, cruzando o diafragma (músculo que divide o tórax do abdome) através de um orifício chamado hiato, poucos centímetros antes de se abrir no estômago.

O esôfago tem ligamentos para prendê-lo junto ao hiato. Estes ligamentos formam um tipo de válvula de retenção para impedir o refluxo do conteúdo gástrico para o esôfago. Porém, pode ocorrer do mesmo se deslocar para cima puxando o estômago e ambas as estruturas se deslocarem para o tórax, prejudicando a válvula anti-refluxo. Quando o conteúdo estomacal entra em contato com a mucosa esofágica, ocorre uma inflamação do tecido originando a DRGE, doença do refluxo gastro-esofágico. A DRGE é um conjunto de queixas que acompanha alterações no esôfago resultantes do refluxo do conteúdo estomacal para o esôfago, sendo que não costumam ocorrer sintomas como náuseas e vômitos.

Algumas cirurgias são realizadas a fim de se reconstruir o hiato esofágico, porém, em alguns casos - geralmente em pessoas idosas ou muito obesas - o hiato não possui elasticidade suficiente, o que não torna possível o fechamento dessa abertura, podendo até ocorrer o rompimento do músculo. Uma saída para tal problema é a técnica operatória com utilização de tela de prolene. Esta técnica porém, pode vir a causar danos por conta do atrito da tela com o músculo. O pesquisador propõe então, a fixação da tela revestida por epiplon - camada de gordura retirada da porção entre o abdômen e as vísceras — que, a princípio, reduz as agressões causadas pelo contato da tela no esôfago e aumenta o poder de cicatrização na área de contato (www.abcdasaude.com.br).

O objetivo do pesquisador é estudar essa técnica de correção do hiato, e verificar se ela apresenta condições de cicatrização pós-operatória mais rápidas em relação aos procedimentos usuais. A finalidade da consulta é fornecer sugestões para o tamanho amostral e para a construção de um delineamento experimental apropriado para o estudo.

2. Descrição do Experimento e das Variáveis

O estudo experimental será feito com coelhos de 2,5 a 3,0 kg, operados com a técnica proposta. A idéia inicial do pesquisador é que os animais recebam os dois tipos de tratamentos a seguir:

T1: correção da abertura do hiato com uma tela de prolene revestida por uma camada de epiplon;

T2 : correção da abertura do hiato com a tela de prolene sem revestimento de epiplon;

O rompimento do hiato ocorre, em geral, no sentido da posição posterior ao esôfago. Há, portanto, maior interesse na fixação da tela na parte posterior ao esôfago. Porém, a tela também será colocada na posição anterior para que se possa avaliar a taxa de cicatrização com e sem o epiplon, dentro do mesmo animal. Isso pode ser explicado pelo fato de haver algumas variáveis - como diferentes técnicas cirúrgicas, tempos de recuperação e sistema imunológico - que dependem muito de fatores individuais e que podem dar origem a resultados distintos. Para que se possa fazer um controle das mesmas, é de interesse do pesquisador aplicar os dois tratamentos no mesmo animal, aleatorizados nas posições anterior e posterior para que se possa controlar o efeito de posição.

Teremos, portanto, dois grupos de coelhos a serem analisados:

G1: Aplicação de T1 na posição posterior e T2 na posição anterior;

G2: Aplicação de T2 na posição posterior e T1 na posição anterior.

Após receber o tratamento, o animal será mantido vivo por 28 dias, para que haja um intervalo considerável até que ele responda ao tratamento. Ao término deste período, o coelho será sacrificado sendo retirados o hiato e o esôfago, que serão acondicionados em uma solução ainda desconhecida pelo pesquisador. O período máximo de armazenamento será de 24 horas, a fim de que não haja nenhum tipo de modificação do material no qual será feito o estudo das seguintes características:

 Cicatrização (medida pela taxa de colágeno quantificada por métodos histológicos); Integridade do esôfago (será verificada macroscopicamente e microscopicamente se houve algum tipo de lesão no órgão).

Foi sugerido durante a consulta um possível planejamento para o estudo do tecido e coleta das variáveis citadas acima, de cada unidade experimental (coelho). O material será coletado em três pontos (regiões) diferentes a fim de se estudar a taxa de colágeno ao longo da região, já que esta resposta pode variar com a presença do epiplon. Essas regiões sugeridas, a princípio, seriam as seguintes:

- Material contendo somente o tecido diafragmático (isento dos efeitos de tela e epiplon);
- Material contendo tela, diafragma e epiplon;
- Material contendo tela e epiplon.

A coleta será feita em ambas posições (anterior e posterior), para que se verifique o efeito de cicatrização por conta do epiplon dentro do mesmo indivíduo. Se adotado o delineamento proposto acima, deve-se considerar o efeito de região, verificando primeiramente se há diferença de resultados entre essas regiões prédeterminadas.

3. Situação do Estudo

O estudo ainda está na fase de planejamento e, portanto, não há nenhum dado amostral até o momento. O pesquisador ainda estuda a melhor maneira de coletar e armazenar os dados, sendo que muitas dessas sugestões foram levantadas durante a consulta e documentadas neste relatório.

4. Sugestões do CEA

Como visto na Seção 2, deseja-se analisar o comportamento médio das variáveis resposta de interesse - notadamente a taxa de cicatrização - de acordo com os fatores de posição e tratamento, considerando as ressalvas feitas naquela seção. Com base nestas considerações, sugere-se na Seção 4.1 a seguir um delineamento para a análise de tais comparações, e um possível modelo para este delineamento.

4.1. Sugestão de Delineamento

O principal interesse do estudo é avaliar o efeito do epiplon na cicatrização – bem como sua agressão à região de implante – em comparação ao tratamento padrão, que consiste do implante da tela de prolene sem seu revestimento. Uma sugestão de delineamento do estudo seria:

Grupo→	G	i1	G2							
Tratamento→	T1	T2	T1	T2						
Animal↓										
1	Х	Х	-	-						
n	X	X	-	-						
1	-	-	Х	Х						
n	-	-	X	X						

Em consequência deste delineamento, teremos como efeitos principais grupo, posição e tratamento, no qual grupo pode ser grupo 1 (G1) e grupo 2 (G2), posição anterior e posterior e tratamento tela com revestimento (T1) e tela sem revestimento (T2).

Por exemplo, para o tratamento T1, deseja-se comparar a diferença entre as médias da variável resposta nas posições <u>posterior</u> e <u>anterior</u>. Se for verificada a sua significância, ter-se-á assim o efeito que se obtém ao se aplicar o tratamento

T1 na posição anterior ao invés da posterior. Outras possíveis comparações de interesse podem ser feitas, como a diferença entre a aplicação dos tratamentos T1 e T2 na posição posterior (ou anterior).

Um possível modelo para este delineamento pode ser resumido, como em Botter e Singer (1997) da seguinte forma:

$$Y_{ijk} = \mu + \gamma_i + \pi_j + \xi_{k(j)} + \varepsilon_{ijk}$$
,

onde:

 $i = 1,2, j = 1,2, k = 1, 2,..., n_{(j)}, com n_{(j)}$ sendo o tamanho do j-ésimo grupo

Y_{ijk} : valor da variável resposta de interesse avaliado no i-ésimo tratamento j-ésimo grupo e k-ésimo coelho;

μ : média geral

γ_i: efeito do i-ésimo tratamento;

 π_j : efeito do j-ésimo grupo;

 $\xi_{k(j)}$: efeito aleatório do k-ésimo coelho no j-ésimo grupo;

ε_{ikj} : erro aleatório.

Suposição: $\varepsilon_{ijk} \sim \text{Normal } (0, \sigma_u^2)^1 \text{ independentes}$

 $\xi_{\mathbf{k}(\mathbf{j})}$ ~ Normal $(0, \sigma_e^2)$ independentes

Restrições: $\sum_{i} \gamma_{i} = 0$, $\sum_{i} \pi_{j} = 0$

Outra questão levantada pelo pesquisador é o cálculo do tamanho amostral necessário para a realização do experimento. Este valor pode ser calculado, porém, necessitamos de uma estimativa da variância amostral existente. Seguem assim, nas Seções 4.2.1. e 4.2.2. algumas sugestões para o cálculo do tamanho amostral baseado em dados de uma futura amostra piloto.

4.2.1. Cálculo do tamanho amostral baseado na estimativa do desvio padrão

Seja $\Delta = \text{Max}(\mu_i) - \text{Min}(\mu_j)$ o parâmetro que mede o menor intervalo para o qual é importante detectar diferenças na cicatrização média entre os tratamentos T_i e T_j com grande probabilidade. Por exemplo, existe diferença entre os

¹ Significa que os erros são independentes, identicamente distribuídos, segundo uma distribuição normal de probabilidade, com média 0 (zero) e variância constante, positiva e finita.

tratamentos quando a taxa média de cicatrização entre os tratamentos varia em Δ unidades de medida — u.m.). A partir de uma amostra piloto ou de experimentos passados, podemos estimar σ (desvio padrão de uma variável resposta de interesse). Esta estimativa de σ poderia ser calcula apenas como a raiz quadrada da Soma de Quadrados Médios dos Resíduos (QME), caso estivéssemos em um delineamento completamente casualisado. No entanto, para este experimento, temos que o delineamento e o modelo são dados como na Seção 4.1 de tal maneira que uma estimativa para σ^2 é dada por:

$$s^2 = \hat{\sigma}^2 = \frac{QMR}{2} \left(\frac{1}{n_{(1)}} + \frac{1}{n_{(2)}} \right)$$

Fixando valores para α (probabilidade do erro tipo I) e β (probabilidade de erro tipo II), conseguimos obter um tamanho amostral necessário para que sejam controlados os riscos de se tomar uma decisão incorreta (ver Bussab e Morettin, 2002).

Além disso, é necessário também o valor de r (número de tratamentos que queremos comparar) que, nesse caso, é 2. Com esses valores, consultamos a Tabela A1 que nos fornece o valor de n^2 (tamanho amostral para cada um dos grupos) a partir de Δ/s , α , β e r. Neste relatório, apresentamos as tabelas para um poder 1 – β = 95% e 1 – β = 80%. Para outros valores de β , veja Neter et. al. (1996).

Por exemplo, suponha que, a partir de uma amostra piloto, calculamos s = 4 (estimativa de σ) e que tenhamos interesse em Δ = 10 u.m.. Assim, Δ /s = 2,5 . Fixemos β = 0,05 (probabilidade não detectarmos diferença entre tratamentos, dado que eles são diferentes) e α = 0,01 (probabilidade de existir diferença entre tratamentos, dado que eles são iguais). Como temos r = 2 (T1 e T2), pela tabela, devemos ter um tamanho amostral igual a 8 coelhos. Como sugerimos um experimento balanceado, teríamos oito coelhos em cada tratamento.

_

² Note que esta tabela fornece o tamanho amostral de cada um dos grupos, supondo que eles têm o mesmo tamanho, ou seja, que o experimento é balanceado.

4.2.2. Cálculo do tamanho amostral baseado na diferença entre médias

Outra maneira de se obter o tamanho amostral utilizando a mesma tabela, seria especificar o valor de Δ em função de σ . Por exemplo, supondo o caso em que consideramos uma diferença entre as médias das respostas de 2 desviospadrão ou mais, temos Δ / s = 2. A consulta à Tabela A1 é feita da mesma maneira como descrito na Seção 4.1.1.

5. Bibliografia

BOTTER, D.A. e SINGER, J.M. (1997). Experimento com Intercâmbio de Dois Tratamentos e Dois Períodos: Estratégias para Análise e Aspectos Computacionais, Revista Brasileira de Estatística, Rio de janeiro, v.58, n.209, p.81-103

BUSSAB, W.O. e MORETTIN, P.A. (2002). **Estatística Básica**, 5ed. São Paulo: Saraiva.

NETER, J., KUTNER, M.H., NACHTSHEIM, C.J. and WASSERMAN, W. (1996). **Applied Linear Statistical Models**, 4ed. New York: McGraw-Hill.

APÊNDICE A: DETERMINAÇÃO DE TAMANHO AMOSTRAL POR ANÁLISE DE VARIÂNCIA (PARA MODELOS COM NÍVEIS DOS FATORES FIXOS)

Tabela A1. Tabela para Determinação de Tamanho Amostral por Análise de Variância (para modelos com níveis dos fatores fixos)

	$1-\beta=95\%$																											
	Δ/σ = 1			Δ/σ = 1,25				Δ/σ = 1,5				Δ/σ = 1,75					Δ/σ	= 2			Δ/σ	= 2,5		Δ/σ = 3				
	α				α				α				α				α					(α		α			
r	,2	,1	,05	,01	,2	,1	,05	,01	,2	,1	,05	,01	,2	,1	,05	,01	,2	,1	,05	,01	,2	,1	,05	,01	,2	,1	,05	,01
2	18	23	27	38	12	15	18	25	9	11	13	18	7	8	10	14	5	7	8	11	4	5	6	8	3	4	5	6
3	22	27	32	43	14	18	21	29	10	13	15	20	8	10	12	16	6	8	9	12	5	6	7	9	4	4	5	7
4	25	30	36	47	16	20	23	31	12	14	17	22	9	11	13	17	7	9	10	13	5	6	7	9	4	5	5	7
5	27	33	39	51	18	22	25	33	13	15	18	23	10	12	14	18	8	9	11	14	5	6	7	10	4	5	6	7
6	29	35	41	53	19	23	27	35	13	16	19	25	10	12	14	19	8	10	11	15	6	7	8	10	4	5	6	8
7	30	37	43	56	20	24	28	36	14	17	20	26	11	13	15	19	8	10	12	15	6	7	8	10	4	5	6	8
8	32	39	45	58	21	25	29	38	15	18	21	27	11	14	16	20	9	11	12	16	6	7	8	11	5	5	6	8
9	33	40	47	60	22	26	30	39	15	19	22	28	12	14	16	21	9	11	13	16	6	8	9	11	5	6	6	8
10	34	42	48	62	22	27	31	40	16	19	22	29	12	15	17	21	9	11	13	17	6	8	9	11	5	6	7	8

Tabela A2. Tabela para Determinação de Tamanho Amostral por Análise de Variância (para modelos com níveis dos fatores fixos)

	$1-\beta=80\%$																											
	Δ/σ = 1			Δ/σ = 1,25 α					Δ/σ	= 1,5		Δ/σ = 1,75					Δ/σ	= 2			Δ/σ	= 2,5		Δ/σ = 3				
	α							α				α				α					(α		α				
r	,2	,1	,05	,01	,2	,1	,05	,01	,2	,1	,05	,01	,2	,1	,05	,01	,2	,1	,05	,01	,2	,1	,05	,01	,2	,1	,05	,01
2	10	14	17	26	7	9	12	17	5	7	9	13	4	5	7	10	3	4	6	8	3	3	4	6	2	3	4	5
3	12	17	21	30	8	11	14	20	6	8	10	14	5	6	8	11	4	5	6	9	3	4	5	7	3	3	4	5
4	14	19	23	33	9	13	15	22	7	9	11	16	5	7	9	12	4	6	7	10	3	4	5	7	3	3	4	5
5	16	21	25	35	10	14	17	23	8	10	12	17	6	8	9	13	5	6	7	10	4	4	5	7	3	4	4	6
6	17	22	27	38	11	15	18	25	8	11	13	18	6	8	10	13	5	7	8	11	4	5	6	8	3	4	4	6
7	18	24	29	39	12	16	19	26	9	11	14	18	7	9	10	14	5	7	8	11	4	5	6	8	3	4	5	6
8	19	25	30	41	12	16	20	27	9	12	14	19	7	9	11	15	6	7	9	12	4	5	6	8	3	4	5	6
9	20	26	31	43	13	17	21	28	9	12	15	20	7	9	11	15	6	7	9	12	4	5	6	8	3	4	5	6
10	21	27	33	44	14	18	21	29	10	13	15	21	8	10	12	16	6	8	9	12	4	5	6	8	3	4	5	6