

Atividade

Perceptron

Em nossa aula vimos alguns tipos de funções de ativação e foi citado que há outras que serão abordadas nas próximas aulas. Considere a tabela de funções de ativação apresentadas a seguir para responder a atividade.

Activation function	Equation	Example	1D Graph
Unit step (Heaviside)	$\phi(z) = \begin{cases} 0, & z < 0, \\ 0.5, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Sign (Signum)	$\phi(z) = \begin{cases} -1, & z < 0, \\ 0, & z = 0, \\ 1, & z > 0, \end{cases}$	Perceptron variant	
Linear	$\phi(z) = z$	Adaline, linear regression	-
Piece-wise linear	$\phi(z) = \begin{cases} 1, & z \ge \frac{1}{2}, \\ z + \frac{1}{2}, & -\frac{1}{2} < z < \frac{1}{2}, \\ 0, & z \le -\frac{1}{2}, \end{cases}$	Support vector machine	
Logistic (sigmoid)	$\phi(z) = \frac{1}{1 + e^{-z}}$	Logistic regression, Multi-layer NN	-
Hyperbolic tangent	$\phi(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}}$	Multi-layer Neural Networks	-
Rectifier, ReLU (Rectified Linear Unit)	$\phi(z) = \max(0, z)$	Multi-layer Neural Networks	
Rectifier, softplus Copyright © Sebastian Raschka 2016 (http://sebastianraschka.com)	$\phi(z) = \ln(1 + e^z)$	Multi-layer Neural Networks	

1. Considere o Perceptron apresentado a seguir e calcule o que se pede para alternativa apresentada. A tabela de funções de ativação considera "z" como potencial de ativação.

a) Calcule a saída do neurônio considerando:

Entradas:	Pesos:
• x1 = 0.5	• w1 = 0.4
• $x2 = -0.3$	• w2 = -0.6
• x3 = 0.8	• w3 = 0.2
Bias:	Função de ativação:
• bias = 0.1	 Sigmoid (logistic)

b) Calcule a saída do neurônio considerando:

Entradas:	Pesos:
• $x1 = 0.3$	• w1 = -0.7
• $x^2 = 0.5$	• $w2 = 0.4$
• x3 = -0.2	• $w3 = 0.9$
Bias:	Função de ativação:
• bias = 0.1	 tanh (hyperbolic tangent)

c) Calcule a saída do neurônio considerando:

Entradas:	Pesos:	
• $x1 = 0.78$	• w1 = -0.5	
• $x2 = -0.1$	• $w2 = 0.3$	
• $x3 = 0.2$	• w3 = 0.8	
Bias:	Função de ativação:	
• bias = -0.2	 Degrau unitário (unit step) 	