Experiment 3: Classification Algorithm Comparisons

Name: Tarun Suresh

Register Number: 3122237001055

Date: 12/08/25

Department of Computer Science and Engineering SSN College of Engineering

Academic Year: 2024–2025

#mounting drive
from google.colab import drive
drive.mount('/content/drive')

→ Drive already mounted at /content/drive; to attempt to forcibly remount, ca

#importing libraries for classification
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

#importing dataset
df = pd.read_csv('/content/drive/MyDrive/spambase_csv.csv')
df

→	word_freq_make	word_freq_address	word_freq_all	word_freq_3d	word_f
0	0.00	0.64	0.64	0.0	
1	0.21	0.28	0.50	0.0	
2	0.06	0.00	0.71	0.0	
3	0.00	0.00	0.00	0.0	
4	0.00	0.00	0.00	0.0	
4596	0.31	0.00	0.62	0.0	
4597	0.00	0.00	0.00	0.0	
4598	0.30	0.00	0.30	0.0	
4599	0.96	0.00	0.00	0.0	
4600	0.00	0.00	0.65	0.0	

4601 rows × 58 columns

#performing eda
missing_values = df.isna().sum()

print(missing_values)

#dealing with missing values
Fill numerical columns with mean
df.fillna(df.mean(), inplace=True)

$\overline{\Sigma}$	word_freq_make	0
	word_freq_address	0
	word_freq_all	0
	word_freq_3d	0
	word_freq_our	0
	word_freq_over	0
	word_freq_remove	0
	word_freq_internet	0
	word_freq_order	0
	word_freq_mail	0
	word_freq_receive	0
	<pre>word_freq_will word_freq_people</pre>	0
	word_freq_people word_freq_report	0
	word_freq_addresses	0
	word_freq_free	0
	word_freq_business	0
	word_freq_business word freq email	0
	word_freq_you	0
	word_freq_credit	0
	word_freq_your	0
	word_freq_font	0
	word_freq_000	0
	word_freq_money	0
	word_freq_hp	0
	word_freq_hpl	0
	word_freq_george	0
	word_freq_650	0
	word_freq_lab	0
	word_freq_labs	0
	word_freq_telnet	0
	word_freq_857	0
	word_freq_data	0
	word_freq_415	0
	word_freq_85	0
	word_freq_technology	
	word_freq_1999	0
	word_freq_parts	0
	word_freq_pm	0
	<pre>word_freq_direct word_freq_cs</pre>	0
		0
	<pre>word_freq_meeting word_freq_original</pre>	0
	word_freq_project	0
	word_freq_project word_freq_re	0
	word_freq_re word_freq_edu	0
	woru_rreq_euu	V

```
word freq table
     word_freq_conference
                                     0
     char_freq_%3B
                                     0
     char_freq_%28
                                     0
     char freq %5B
                                     0
     char_freq_%21
     char_freq_%24
                                     0
     char_freq_%23
     capital_run_length_average
                                     0
     capital_run_length_longest
                                     0
     capital_run_length_total
                                     0
     class
                                     0
     dtype: int64
# Check for outliers visually using boxplots
plt.figure(figsize=(20, 15))
sns.boxplot(data=df)
plt.title('Boxplot of Scaled Features')
plt.xticks(rotation=90)
plt.show()
# Check for outliers programmatically using IQR
Q1 = df.quantile(0.25)
Q3 = df.quantile(0.75)
IQR = Q3 - Q1
# Define outlier bounds
lower bound = 01 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
# Find outliers
outliers = ((df < lower_bound) | (df > upper_bound)).sum()
print("\nNumber of outliers per column (IQR method):")
print(outliers[outliers > 0])
#removing outliers
\#df = df[\sim((df < (Q1 - 1.5 * IQR)) | (df > (Q3 + 1.5 * IQR))).any(axis=1)]
\rightarrow
                                         Boxplot of Scaled Features
     16000
     14000
     12000
```

8

Number of outliers	per	column	(IQR	method):
word_freq_make			1053	
word_freq_address			898	
word_freq_all			338	
word_freq_3d			47	
word_freq_our			501	
word_freq_over			999	
word_freq_remove			807	
word_freq_internet			824	
word_freq_order			773	
word freq mail			852	
word freq receive			709	
word freq will			270	
word freq people			852	
word_freq_report			357	
word freq addresses	5		336	
word freq free			957	
word freq business			963	
word freq email			1038	
word freq you			75	
word freq credit			424	
word freq your			229	
word freq font			117	
word freq 000			679	
word freq money			735	
word freq hp			1090	
word freq hpl			811	
word_freq_george			780	
word_freq_650			463	
word freq lab			372	
word_freq_labs			469	
word_freq_telnet			293	
word_freq_857			205	
word free data			405	

wora_rroy_aaca	
word_freq_415	215
word_freq_85	485
word_freq_technology	599
word_freq_1999	829
word_freq_parts	83
word_freq_pm	384
word_freq_direct	453
word_freq_cs	148
word_freq_meeting	341
word_freq_original	375
word_freq_project	327
word_freq_re	1001
word_freq_edu	517
word_freq_table	63
word_freq_conference	203
char_freq_%3B	790
char_freq_%28	296
char freq %5B	529
char freq %21	411
char_freq_%24	811
char freq %23	750
capital run length average	363
capital_run_length_longest	463
capital_run_length_total	550
dtype: int64	

```
y = df['class']
df = df.drop('class', axis=1)

#using standard scaler on data for gaussianNB
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
df_scaled = scaler.fit_transform(df)
```

#normalise the values for gaussianNB
from sklearn.preprocessing import MinMaxScaler

```
scaler = MinMaxScaler()
df_scaled = scaler.fit_transform(df)
```

df

→		word_freq_make	word_freq_address	word_freq_all	word_freq_3d	word_f
	0	0.00	0.64	0.64	0.0	
	1	0.21	0.28	0.50	0.0	
	2	0.06	0.00	0.71	0.0	
	3	0.00	0.00	0.00	0.0	
	4	0.00	0.00	0.00	0.0	
	4596	0.31	0.00	0.62	0.0	
	4597	0.00	0.00	0.00	0.0	
	4598	0.30	0.00	0.30	0.0	
	4599	0.96	0.00	0.00	0.0	
	4600	0.00	0.00	0.65	0.0	

4601 rows × 57 columns

#binarize dataset from original data set for NaiveBayes Bernoulli from sklearn.preprocessing import Binarizer

```
binarizer = Binarizer(threshold=0.5)
df_binarized = binarizer.fit_transform(df)
```

df_binarized

```
array([[0., 1., 1., ..., 1., 1., 1.], [0., 0., 0., ..., 1., 1., 1.], [0., 0., 1., ..., 1., 1., 1.], [0., 0., 0., ..., 1., 1., 1.], [1., 0., 0., ..., 1., 1., 1.], [0., 0., 1., ..., 1., 1., 1.])
```

We will be using a normalised dataset for Naive Bayes Gaussian distribution as it expects features to be normalised during fit and predict.

```
#splitting normalised dataset and performing NaiveBayes Gaussian
from sklearn.model_selection import train_test_split
from sklearn.naive bayes import GaussianNB
from sklearn.metrics import accuracy_score
Xg_train, Xg_test, yg_train, yg_test = train_test_split(df_scaled, y, test_size
gNBmodel = GaussianNB()
gNBmodel.fit(Xg_train,yg_train)
yq pred = qNBmodel.predict(Xg test)
#evaluating Accuracy, Precision, Recall, F1-score for GaussianNB
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
accuracy_g = accuracy_score(yg_test, yg_pred)
precision_g = precision_score(yg_test, yg_pred)
recall_g = recall_score(yg_test, yg_pred)
f1_g = f1_score(yg_test, yg_pred)
print("Accuracy:", accuracy_g)
print("Precision:", precision_g)
print("Recall:", recall_g)
print("F1-score:", f1_g)
Accuracy: 0.8219326818675353
    Precision: 0.7233201581027668
    Recall: 0.9384615384615385
    F1-score: 0.8169642857142857
#displaying confusion matrix
from sklearn.metrics import confusion matrix
import matplotlib.pyplot as plt
import seaborn as sns
cm = confusion_matrix(yg_test, yg_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted')
plt.ylabel('Actual')
```

```
plt.title('Confusion Matrix')
plt.show()
#displaying roc curve
from sklearn.metrics import roc_curve, auc
fpr, tpr, thresholds = roc_curve(yg_test, yg_pred)
roc_auc = auc(fpr, tpr)
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' %
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()
```


Receiver Operating Characteristic (ROC) Curve

As for NB Multinomial we will be using the original dataset as it depends on raw counts/frequency of features.

```
#k-fold for NB gaussian
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import GaussianNB

gNBmodel = GaussianNB()
scores = cross_val_score(gNBmodel, df_scaled, y, cv=5)
print("Cross-validation scores:", scores)
print("Mean accuracy:", scores.mean())
```

Cross-validation scores: [0.85124864 0.86630435 0.85434783 0.84347826 0.695 Mean accuracy: 0.8222062502950479

```
#splitting original dataset and performing NaiveBayes Multinomial
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score
Xm_train, Xm_test, ym_train, ym_test = train_test_split(df, y, test_size=0.2, r
mNBmodel = MultinomialNB()
mNBmodel.fit(Xm train, ym train)
ym_pred = mNBmodel.predict(Xm_test)
accuracy_m = accuracy_score(ym_test, ym_pred)
precision_m = precision_score(ym_test, ym_pred)
recall_m = recall_score(ym_test, ym_pred)
f1_m = f1_score(ym_test, ym_pred)
print("Accuracy:", accuracy_g)
print("Precision:", precision_g)
print("Recall:", recall_g)
print("F1-score:", f1_g)
Accuracy: 0.8219326818675353
    Precision: 0.7233201581027668
    Recall: 0.9384615384615385
    F1-score: 0.8169642857142857
#displaying confusion matrix
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
cm = confusion_matrix(ym_test, ym_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()
#displaying roc curve
from sklearn.metrics import roc_curve, auc
fpr, tpr, thresholds = roc_curve(ym_test, ym_pred)
roc_auc = auc(fpr, tpr)
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' %
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
```

```
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()
```



```
#k-fold for NB multinomial
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import MultinomialNB
```

```
mNBmodel = MultinomialNB()
scores = cross_val_score(mNBmodel, df, y, cv=5)
print("Cross-validation scores:", scores)
print("Mean accuracy:", scores.mean())
```

Cross-validation scores: [0.79261672 0.81847826 0.81521739 0.78586957 0.696 Mean accuracy: 0.7817842137563139

For NB bernoulli we will use Binariser to convert the data to binary

```
#train test split and NB Bernoulli with binarised data
from sklearn.naive_bayes import BernoulliNB
from sklearn.metrics import accuracy_score
Xb_train, Xb_test, yb_train, yb_test = train_test_split(df_binarized, y, test_s
bNBmodel = BernoulliNB()
bNBmodel.fit(Xb train, yb train)
yb_pred = bNBmodel.predict(Xb_test)
accuracy_b = accuracy_score(yb_test, yb_pred)
precision_b = precision_score(yb_test, yb_pred)
recall_b = recall_score(yb_test, yb_pred)
f1_b = f1_score(yb_test, yb_pred)
print("Accuracy:", accuracy_b)
print("Precision:", precision_b)
print("Recall:", recall_b)
print("F1-score:", f1_b)
Accuracy: 0.8957654723127035
    Precision: 0.87121212121212
    Recall: 0.8846153846153846
    F1-score: 0.8778625954198473
#displaying confusion matrix
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
cm = confusion_matrix(yb_test, yb_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()
#displaying roc curve
from sklearn.metrics import roc_curve, auc
fpr, tpr, thresholds = roc_curve(yb_test, yb_pred)
roc_auc = auc(fpr, tpr)
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' %
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
```

```
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()
```


#applying K-fold Cross validation for NB bernoulli
from sklearn.model_selection import cross_val_score
from sklearn.naive_bayes import BernoulliNB

bNBmodel = BernoulliNB()
scores = cross_val_score(bNBmodel, df_binarized, y, cv=5)
print("Cross-validation scores:", scores)
print("Mean accuracy:", scores.mean())

Cross-validation scores: [0.90662324 0.91086957 0.92391304 0.93695652 0.744 Mean accuracy: 0.8845855166879101

```
#mounting drive
from google.colab import drive
drive.mount('/content/drive')
```

→ Mounted at /content/drive

```
#importing libraries for classification
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
#importing dataset
df = pd.read_csv('/content/drive/MyDrive/spambase_csv.csv')
df
#performing eda
missing_values = df.isna().sum()
print(missing values)
#dealing with missing values
# Fill numerical columns with mean
df.fillna(df.mean(), inplace=True)
# Check for outliers visually using boxplots
plt.figure(figsize=(20, 15))
sns.boxplot(data=df)
plt.title('Boxplot of Scaled Features')
plt.xticks(rotation=90)
plt.show()
# Check for outliers programmatically using IQR
Q1 = df.quantile(0.25)
Q3 = df.quantile(0.75)
IQR = Q3 - Q1
# Define outlier bounds
lower bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
# Find outliers
outliers = ((df < lower_bound) | (df > upper_bound)).sum()
```

```
print("\nNumber of outliers per column (IOR method):")
print(outliers[outliers > 0])
#removing outliers
\#df = df[\sim((df < (Q1 - 1.5 * IQR)) | (df > (Q3 + 1.5 * IQR))).any(axis=1)]
→ word freq make
                                     ()
    word freq address
                                     0
     word freq all
                                     0
     word freq 3d
                                     0
     word freq our
                                     0
     word freq over
                                     0
     word freq remove
                                     ()
     word freq internet
                                     0
     word freq_order
                                     0
     word freq mail
     word freq receive
     word freq will
                                     0
     word freq people
                                     0
     word freq report
                                     0
     word freq addresses
                                     0
     word freq free
                                     0
     word freq business
                                     0
     word freq email
                                     0
     word freq you
                                     0
     word freq credit
                                     ()
     word freq your
                                     0
     word freq font
                                     0
     word freq 000
                                     0
     word freq money
                                     0
     word freq hp
                                     0
     word freq hpl
                                     0
     word freq george
                                     0
     word freq 650
                                     0
     word freq lab
                                     0
     word freq labs
                                     0
     word freq telnet
                                     0
     word freq 857
                                     0
     word freq data
                                     0
     word freq 415
                                     0
     word freq 85
                                     0
     word freq technology
                                     0
     word freq 1999
                                     \cap
     word freq parts
                                     0
     word freq pm
                                     0
     word freq direct
                                     0
     word freq cs
                                     0
     word freq meeting
                                     0
     word freq original
                                     0
     word freq project
                                     ()
     word freq re
                                     0
     word freq edu
                                     0
```

```
word freq table
word freq conference
                                0
char freq %3B
                                0
char freq %28
                                0
char freq %5B
                                0
char freq %21
                                0
char_freq_%24
char freq %23
                                0
capital_run_length_average
                                0
capital run length longest
                                0
capital run length total
                                0
                                0
class
dtype: int64
```

Boxplot of Scaled Features


```
Number of outliers per column (IQR method):
word_freq_make 1053
word_freq_address 898
word_freq_all 338
word_freq_3d 47
word_freq_our 501
word_freq_over 999
word_freq_remove 807
```

word_freq_internet	824
word_freq_order	773
word_freq_mail	852
word_freq_receive	709
word_freq_will	270
word_freq_people	852
word_freq_report	357
word_freq_addresses	336
word_freq_free	957
word_freq_business	963
word_freq_email	1038
word_freq_you	75
word_freq_credit	424
word_freq_your	229
word_freq_font	117
word_freq_000	679
word_freq_money	735
word_freq_hp	1090
word_freq_hpl	811
word_freq_george	780
word freq 650	463
word freq lab	372
word_freq_labs	469
word_freq_telnet	293
word freq 857	205
word freq data	405
word_freq_415	215
word freq 85	485
word_freq_technology	599
word freq 1999	829
word freq parts	83
word freq pm	384
word freq direct	453
word freq cs	148
word freq meeting	341
word freq original	375
word freq project	327
word freq re	1001
word freq edu	517
word freq table	63
word freq conference	203
char_freq_%3B	790
char freq %28	296
char freq %5B	529
char freq %21	411
char_freq_%24	811
char freq %23	750
capital run length average	363
capital_run_length_longest	463
capital run length total	550
dtype: int64	550
acype. Theor	

```
#dropping target variable
y = df['class']
df = df.drop('class', axis=1)

#using standard scaler on data
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
df_scaled = scaler.fit_transform(df)
```

```
#performing KNN classification on data
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy score, classification report, confusion ma
X_train, X_test, y_train, y_test = train_test_split(df_scaled, y, test_size=0.2
knn classifier5 = KNeighborsClassifier(n neighbors=5)
knn_classifier5.fit(X_train, y_train)
y_pred5 = knn_classifier5.predict(X_test)
#Prediction analysis
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1 score
accuracy = accuracy_score(y_test, y_pred5)
precision = precision_score(y_test, y_pred5)
recall = recall_score(y_test, y_pred5)
f1 = f1_score(y_test, y_pred5)
print("Accuracy:", accuracy)
print("Precision:", precision)
print("Recall:", recall)
print("F1-score:", f1)
Accuracy: 0.8957654723127035
    Precision: 0.9016393442622951
    Recall: 0.8461538461538461
    F1-score: 0.873015873015873
#displaying confusion matrix
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
cm = confusion_matrix(y_test, y_pred5)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()
#displaying roc curve
```

```
from sklearn.metrics import roc_curve, auc
fpr, tpr, thresholds = roc_curve(y_test, y_pred5)
roc_auc = auc(fpr, tpr)

plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' %
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()
```



```
\#K valye = 1
knn_classifier1 = KNeighborsClassifier(n_neighbors=1)
knn_classifier1.fit(X_train, y_train)
y_pred1 = knn_classifier1.predict(X_test)
#Prediction analysis
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall score
from sklearn.metrics import f1_score
accuracy = accuracy_score(y_test, y_pred1)
precision = precision_score(y_test, y_pred1)
recall = recall_score(y_test, y_pred1)
f1 = f1_score(y_test, y_pred1)
print("Accuracy:", accuracy)
print("Precision:", precision)
print("Recall:", recall)
print("F1-score:", f1)
#displaying confusion matrix
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
cm = confusion_matrix(y_test, y_pred1)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()
```

```
#displaying roc curve
from sklearn.metrics import roc_curve, auc
fpr, tpr, thresholds = roc_curve(y_test, y_pred1)
roc_auc = auc(fpr, tpr)
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' %
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()
```

Accuracy: 0.8957654723127035 Precision: 0.8769230769230769 Recall: 0.8769230769230769 F1-score: 0.8769230769230769

Receiver Operating Characteristic (ROC) Curve


```
\#K \text{ value} = 3
knn_classifier = KNeighborsClassifier(n_neighbors=3)
knn_classifier.fit(X_train, y_train)
y_pred = knn_classifier.predict(X_test)
#Prediction analysis
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score
accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)
print("Accuracy:", accuracy)
print("Precision:", precision)
print("Recall:", recall)
print("F1-score:", f1)
#displaying confusion matrix
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
```

```
cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()
#displaying roc curve
from sklearn.metrics import roc_curve, auc
fpr, tpr, thresholds = roc_curve(y_test, y_pred)
roc_auc = auc(fpr, tpr)
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' %
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()
```

Accuracy: 0.8935939196525515 Precision: 0.8882978723404256 Recall: 0.8564102564102564 F1-score: 0.8720626631853786


```
#k value = 7
knn_classifier = KNeighborsClassifier(n_neighbors=7)
knn_classifier.fit(X_train, y_train)

y_pred = knn_classifier.predict(X_test)

#Prediction analysis
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision_score
from sklearn.metrics import recall_score
from sklearn.metrics import f1_score

accuracy = accuracy_score(y_test, y_pred)
precision = precision_score(y_test, y_pred)
recall = recall_score(y_test, y_pred)
f1 = f1_score(y_test, y_pred)

print("Accuracy:", accuracy)
print("Precision:", precision)
```

```
print("Recall:", recall)
print("F1-score:", f1)
#displaying confusion matrix
from sklearn.metrics import confusion_matrix
import matplotlib.pyplot as plt
import seaborn as sns
cm = confusion_matrix(y_test, y_pred)
sns.heatmap(cm, annot=True, fmt='d', cmap='Blues')
plt.xlabel('Predicted')
plt.ylabel('Actual')
plt.title('Confusion Matrix')
plt.show()
#displaying roc curve
from sklearn.metrics import roc_curve, auc
fpr, tpr, thresholds = roc_curve(y_test, y_pred)
roc_auc = auc(fpr, tpr)
plt.figure()
plt.plot(fpr, tpr, color='darkorange', lw=2, label='ROC curve (area = %0.2f)' %
plt.plot([0, 1], [0, 1], color='navy', lw=2, linestyle='--')
plt.xlim([0.0, 1.0])
plt.ylim([0.0, 1.05])
plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('Receiver Operating Characteristic (ROC) Curve')
plt.legend(loc="lower right")
plt.show()
```

Accuracy: 0.8957654723127035
Precision: 0.9106145251396648
Recall: 0.8358974358974359
F1-score: 0.8716577540106952

#Kfold cross validation for 1 neighbour KNN from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsClassifier

knn_classifier = KNeighborsClassifier(n_neighbors=1)
cv_scores = cross_val_score(knn_classifier, X_train, y_train, cv=5, scoring='acc

```
#Kfold cross validation for 3 neighbour KNN from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsClassifier
```

```
knn_classifier = KNeighborsClassifier(n_neighbors=3)
cv_scores = cross_val_score(knn_classifier, X_train, y_train, cv=5, scoring='acc
```

#Kfold cross validation for 5 neighbour KNN from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsClassifier

```
knn_classifier = KNeighborsClassifier(n_neighbors=5)
cv_scores = cross_val_score(knn_classifier, X_train, y_train, cv=5, scoring='acc
```

#Kfold cross validation for 7 neighbour KNN from sklearn.model_selection import cross_val_score from sklearn.neighbors import KNeighborsClassifier

```
knn_classifier = KNeighborsClassifier(n_neighbors=7)
cv_scores = cross_val_score(knn_classifier, X_train, y_train, cv=5, scoring='ac
```

```
#Applying KDtree on the split dataset and performing metrics
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_s
knn_classifier = KNeighborsClassifier(n_neighbors=5, algorithm='kd_tree')
knn_classifier.fit(X_train, y_train)
y_predt = knn_classifier.predict(X_test)
accuracy = accuracy_score(y_test, y_predt)
precision = precision_score(y_test, y_predt)
recall = recall_score(y_test, y_predt)
f1 = f1_score(y_test, y_predt)
print("Accuracy:", accuracy)
print("Precision:", precision)
print("Recall:", recall)
print("F1-score:", f1)
→ Accuracy: 0.8957654723127035
    Precision: 0.9016393442622951
```

Recall: 0.8461538461538461 F1-score: 0.873015873015873

```
#Applying KDball on the split dataset and performing metrics
from sklearn.neighbors import KNeighborsClassifier
from sklearn.metrics import accuracy_score, precision_score, recall_score, f1_sc
knn_classifier = KNeighborsClassifier(n_neighbors=5, algorithm='ball_tree')
knn_classifier.fit(X_train, y_train)
y_predb = knn_classifier.predict(X_test)
accuracy = accuracy_score(y_test, y_predb)
precision = precision_score(y_test, y_predb)
recall = recall_score(y_test, y_predb)
f1 = f1_score(y_test, y_predb)
print("Accuracy:", accuracy)
print("Precision:", precision)
print("Recall:", recall)
print("F1-score:", f1)
→ Accuracy: 0.8957654723127035
    Precision: 0.9016393442622951
```

Recall: 0.8461538461538461 F1-score: 0.873015873015873

```
#mounting drive
from google.colab import drive
drive.mount('/content/drive')
→ Mounted at /content/drive
#importing libraries for classification
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
#importing dataset
df = pd.read_csv('/content/drive/MyDrive/spambase_csv.csv')
df
#performing eda
missing_values = df.isna().sum()
print(missing values)
#dealing with missing values
# Fill numerical columns with mean
df.fillna(df.mean(), inplace=True)
# Check for outliers visually using boxplots
plt.figure(figsize=(20, 15))
sns.boxplot(data=df)
plt.title('Boxplot of Scaled Features')
plt.xticks(rotation=90)
plt.show()
# Check for outliers programmatically using IQR
Q1 = df.quantile(0.25)
Q3 = df.quantile(0.75)
IQR = Q3 - Q1
# Define outlier bounds
lower bound = Q1 - 1.5 * IQR
upper_bound = Q3 + 1.5 * IQR
```

outliers = ((df < lower_bound) | (df > upper_bound)).sum()

Find outliers

```
\label{lem:print("Number of outliers per column (IQR method):")} $$print(outliers[outliers > 0])$$ $$\#removing outliers $$ df = df[\sim((df < (Q1 - 1.5 * IQR)) | (df > (Q3 + 1.5 * IQR))).any(axis=1)]$$
```

```
word freq make
                                  0
 word freq address
                                  0
 word freq all
                                  ()
 word freq 3d
                                  ()
 word freq our
                                  0
 word freq over
                                  0
 word freq remove
                                  0
 word freq internet
                                  0
 word freq order
                                  0
 word freq mail
                                  ()
 word freq receive
                                  ()
 word freq will
                                  0
 word freq people
 word freq report
                                  0
 word freq addresses
                                  0
 word freq free
                                  0
 word freq business
                                  ()
 word freq email
                                  ()
 word freq you
                                  0
 word freq credit
                                  0
 word freq your
                                  0
 word freq font
                                  ()
 word freq 000
                                  ()
 word freq money
                                  0
 word freq hp
                                  0
 word freq hpl
                                  0
 word freq george
                                  0
 word freq 650
                                  0
 word freq lab
                                  0
 word freq labs
                                  ()
 word freq telnet
                                  0
 word freq 857
                                  0
 word freq data
 word freq 415
                                  0
 word freq 85
                                  0
 word freq technology
                                  \cap
 word freq 1999
                                  ()
 word freq parts
                                  0
 word_freq_pm
                                  0
 word freq direct
 word freq cs
                                  0
 word freq meeting
                                  0
 word freq original
                                  ()
 word freq project
                                  0
 word freq re
                                  0
```

```
word freq edu
                                0
word freq table
                                0
word freq conference
                                0
char_freq_%3B
char freq %28
char freq %5B
                                0
char freq %21
                                0
char freq %24
                                0
char freq %23
                                0
capital run length average
capital_run_length_longest
                                0
                                0
capital run length total
class
                                0
dtype: int64
```

Boxplot of Scaled Features 14000 12000 0 0 8 8000 6000 2000 word_freq_reword_freq_cedu word_freq_cable word_freq_cable char_freq_x38 char_freq_x38 char_freq_x58 word_freq_report vord_freq_addresses word_freq_free word_freq_business word_freq_email word_freq_you word_freq_credit word_freq_your word_freq_font word_freq_font capital_run_length_total class

```
Number of outliers per column (IQR method):
word_freq_make 1053
word_freq_address 898
word_freq_all 338
word_freq_3d 47
word_freq_our 501
word_freq_over 999
```

1 6	0.05
word_freq_remove	807
word_freq_internet	824
word_freq_order	773
word_freq_mail	852
word_freq_receive	709
word_freq_will	270
word_freq_people	852
word_freq_report	357
word_freq_addresses	336
word freq free	957
word freq business	963
word freq email	1038
word_freq_you	75
word freq credit	424
word freq your	229
word_freq_font	117
word freq 000	679
word freq money	735
word freq hp	1090
	811
word_freq_hpl	
word_freq_george	780
word_freq_650	463
word_freq_lab	372
word_freq_labs	469
word_freq_telnet	293
word_freq_857	205
word_freq_data	405
word_freq_415	215
word_freq_85	485
word_freq_technology	599
word_freq_1999	829
word_freq_parts	83
word_freq_pm	384
word freq direct	453
word freq cs	148
word_freq_meeting	341
word freq original	375
word_freq_project	327
word_freq_re	1001
word freq edu	517
word freq table	63
word freq conference	203
char freq %3B	790
char freq %28	296
char freq %5B	529
char_freq_%21	411
char freq %24	811
char_freq_%23	750
capital_run_length_average	363
capital_run_length_longest	463
capital_run_length_total	550
dtype: int64	

```
#dropping target variable
y = df['class']
df = df.drop('class', axis=1)

#using standard scaler on data
from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()
df_scaled = scaler.fit_transform(df)

#performing SVC for each type of kernel [linear,polynomial,RBF,Sigmoid]
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
```

```
from sklearn.metrics import accuracy_score, classification_report, confusion_ma
X_train, X_test, y_train, y_test = train_test_split(df_scaled, y, test_size=0.2
#performing grid search to find the best parameters for each kernel
from sklearn.model selection import GridSearchCV
param_grid = {'C': [0.1, 1, 10, 100], 'gamma': ['scale', 'auto', 1, 0.1, 0.01, 0.
svm = SVC()
grid_search = GridSearchCV(svm, param_grid, refit=True, verbose=3)
grid_search.fit(X_train, y_train)
best params = grid search.best params
best_score = grid_search.best_score_
print(f"Best Hyperparameters: {best_params}")
print(f"Best Cross-Validation Accuracy: {best score:.4f}")
     LOT 1/0; LID TITLE TOO, GAMMA I, NOTHER SIGNOIN, SCOTE OFFICE COME CIME
    [CV 5/5] END ....C=100, gamma=1, kernel=sigmoid;, score=0.929 total time=
    [CV 1/5] END ...C=100, gamma=0.1, kernel=linear;, score=0.897 total time=
    [CV 2/5] END ...C=100, gamma=0.1, kernel=linear;, score=0.857 total time=
    [CV 3/5] END ...C=100, gamma=0.1, kernel=linear;, score=0.857 total time=
    [CV 4/5] END ...C=100, gamma=0.1, kernel=linear;, score=0.929 total time=
    [CV 5/5] END ...C=100, gamma=0.1, kernel=linear;, score=0.893 total time=
     [CV 1/5] END .....C=100, gamma=0.1, kernel=poly;, score=0.793 total time=
    [CV 2/5] END .....C=100, gamma=0.1, kernel=poly;, score=0.786 total time=
    [CV 3/5] END .....C=100, gamma=0.1, kernel=poly;, score=0.893 total time=
    [CV 4/5] END .....C=100, gamma=0.1, kernel=poly;, score=0.857 total time=
    [CV 5/5] END .....C=100, gamma=0.1, kernel=poly;, score=0.893 total time=
    [CV 1/5] END .....C=100, gamma=0.1, kernel=rbf;, score=0.897 total time=
    [CV 2/5] END .....C=100, gamma=0.1, kernel=rbf;, score=0.821 total time=
    [CV 3/5] END .....C=100, gamma=0.1, kernel=rbf;, score=0.893 total time=
    [CV 4/5] END .....C=100, gamma=0.1, kernel=rbf;, score=0.893 total time=
    [CV 5/5] END .....C=100, gamma=0.1, kernel=rbf;, score=0.929 total time=
    [CV 1/5] END ..C=100, gamma=0.1, kernel=sigmoid;, score=0.862 total time=
    [CV 2/5] END ..C=100, gamma=0.1, kernel=sigmoid;, score=0.893 total time=
    [CV 3/5] END ..C=100, gamma=0.1, kernel=sigmoid;, score=0.893 total time=
    [CV 4/5] END ..C=100, gamma=0.1, kernel=sigmoid;, score=0.821 total time=
    [CV 5/5] END ..C=100, gamma=0.1, kernel=sigmoid;, score=0.857 total time=
    [CV 1/5] END ..C=100, gamma=0.01, kernel=linear;, score=0.897 total time=
    [CV 2/5] END ..C=100, gamma=0.01, kernel=linear;, score=0.857 total time=
    [CV 3/5] END ..C=100, gamma=0.01, kernel=linear;, score=0.857 total time=
    [CV 4/5] END ..C=100, gamma=0.01, kernel=linear;, score=0.929 total time=
    [CV 5/5] END ..C=100, gamma=0.01, kernel=linear;, score=0.893 total time=
    [CV 1/5] END ....C=100, gamma=0.01, kernel=poly;, score=0.862 total time=
    [CV 2/5] END ....C=100, gamma=0.01, kernel=poly;, score=0.929 total time=
    [CV 3/5] END ....C=100, gamma=0.01, kernel=poly;, score=0.857 total time=
    [CV 4/5] END ....C=100, gamma=0.01, kernel=poly;, score=0.893 total time=
    [CV 5/5] END ....C=100, gamma=0.01, kernel=poly;, score=0.893 total time=
    [CV 1/5] END .....C=100, gamma=0.01, kernel=rbf;, score=0.897 total time=
    [CV 2/5] END .....C=100, gamma=0.01, kernel=rbf;, score=0.893 total time=
```

```
[CV 3/5] END .....C=100, gamma=0.01, kernel=rbf;, score=0.857 total time=
[CV 4/5] END .....C=100, gamma=0.01, kernel=rbf;, score=0.893 total time=
[CV 5/5] END .....C=100, gamma=0.01, kernel=rbf;, score=0.893 total time=
[CV 1/5] END .C=100, gamma=0.01, kernel=sigmoid;, score=0.828 total time=
[CV 2/5] END .C=100, gamma=0.01, kernel=sigmoid;, score=0.893 total time=
[CV 3/5] END .C=100, gamma=0.01, kernel=sigmoid;, score=0.821 total time=
[CV 4/5] END .C=100, gamma=0.01, kernel=sigmoid;, score=0.893 total time=
[CV 5/5] END .C=100, gamma=0.01, kernel=sigmoid;, score=0.893 total time=
[CV 1/5] END .C=100, gamma=0.001, kernel=linear;, score=0.897 total time=
[CV 2/5] END .C=100, gamma=0.001, kernel=linear;, score=0.857 total time=
[CV 3/5] END .C=100, gamma=0.001, kernel=linear;, score=0.857 total time=
[CV 4/5] END .C=100, gamma=0.001, kernel=linear;, score=0.929 total time=
[CV 5/5] END .C=100, gamma=0.001, kernel=linear;, score=0.893 total time=
[CV 1/5] END ...C=100, gamma=0.001, kernel=poly;, score=0.862 total time=
[CV 2/5] END ...C=100, gamma=0.001, kernel=poly;, score=0.893 total time=
[CV 3/5] END ...C=100, gamma=0.001, kernel=poly;, score=0.893 total time=
[CV 4/5] END ...C=100, gamma=0.001, kernel=poly;, score=0.893 total time=
[CV 5/5] END ...C=100, gamma=0.001, kernel=poly;, score=0.893 total time=
[CV 1/5] END ....C=100, gamma=0.001, kernel=rbf;, score=0.828 total time=
[CV 2/5] END ....C=100, gamma=0.001, kernel=rbf;, score=0.893 total time=
[CV 3/5] END ....C=100, gamma=0.001, kernel=rbf;, score=0.821 total time=
[CV 4/5] END ....C=100, gamma=0.001, kernel=rbf;, score=0.929 total time=
[CV 5/5] END ....C=100, gamma=0.001, kernel=rbf;, score=0.857 total time=
[CV 1/5] END C=100, gamma=0.001, kernel=sigmoid;, score=0.828 total time=
[CV 2/5] END C=100, gamma=0.001, kernel=sigmoid;, score=0.893 total time=
```

```
#checking best parameters for linear using grid search
param_grid = {'C': [0.1, 1, 10, 100], 'kernel': ['linear']}
svml = SVC()
grid_searchl = GridSearchCV(svm, param_grid, refit=True, verbose=3)
grid_searchl.fit(X_train, y_train)
best_paramsl = grid_searchl.best_params_
best_scorel = grid_searchl.best_score_
print(f"Best Hyperparameters: {best_paramsl}")
print(f"Best Cross-Validation Accuracy: {best scorel:.4f}")
Fitting 5 folds for each of 4 candidates, totalling 20 fits
    [CV 1/5] END ............C=0.1, kernel=linear;, score=0.828 total time=
    [CV 2/5] END ............C=0.1, kernel=linear;, score=0.893 total time=
    [CV 3/5] END ............C=0.1, kernel=linear;, score=0.821 total time=
    [CV 4/5] END ............C=0.1, kernel=linear;, score=0.893 total time=
    [CV 5/5] END ............C=0.1, kernel=linear;, score=0.857 total time=
    [CV 1/5] END ......C=1, kernel=linear;, score=0.862 total time=
    [CV 2/5] END ......C=1, kernel=linear;, score=0.857 total time=
    [CV 3/5] END ......C=1, kernel=linear;, score=0.821 total time=
    [CV 4/5] END ......C=1, kernel=linear;, score=0.893 total time=
    [CV 5/5] END ................C=1, kernel=linear;, score=0.857 total time=
    [CV 1/5] END ............C=10, kernel=linear;, score=0.828 total time=
    [CV 2/5] END ......C=10, kernel=linear;, score=0.857 total time=
    [CV 3/5] END ............C=10, kernel=linear;, score=0.821 total time=
    [CV 4/5] END ...............C=10, kernel=linear;, score=0.929 total time=
    [CV 5/5] END ............C=10, kernel=linear;, score=0.893 total time=
    [CV 1/5] END ...........C=100, kernel=linear;, score=0.897 total time=
    [CV 2/5] END ...........C=100, kernel=linear;, score=0.857 total time=
    [CV 3/5] END ...........C=100, kernel=linear;, score=0.857 total time=
    [CV 4/5] END ...........C=100, kernel=linear;, score=0.929 total time=
    [CV 5/5] END ...........C=100, kernel=linear;, score=0.893 total time=
    Best Hyperparameters: {'C': 100, 'kernel': 'linear'}
    Best Cross-Validation Accuracy: 0.8865
```

```
#performing SVM with linear kernel
svm linear = SVC(kernel='linear', C=100)
svm_linear.fit(X_train, y_train)
y pred linear = svm linear.predict(X test)
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision score
from sklearn.metrics import recall score
from sklearn.metrics import f1_score
accuracy_linear = accuracy_score(y_test, y_pred_linear)
precision_linear = precision_score(y_test, y_pred_linear)
recall_linear = recall_score(y_test, y_pred_linear)
f1_linear = f1_score(y_test, y_pred_linear)
print("Accuracy:", accuracy_linear)
print("Precision:", precision_linear)
print("Recall:", recall_linear)
print("F1-score:", f1_linear)
Precision: 1.0
    F1-score: 0.8
#checking best parameters for linear using grid search
param_grid = {'C': [0.1, 1, 10, 100], 'gamma': ['scale', 'auto', 1, 0.1, 0.01, 0.0]
svmp = SVC()
grid_searchp = GridSearchCV(svmp, param_grid, refit=True, verbose=3)
grid_searchp.fit(X_train, y_train)
best_paramsp = grid_searchp.best_params_
best scorep = grid searchp.best score
print(f"Best Hyperparameters: {best_paramsp}")
print(f"Best Cross-Validation Accuracy: {best_scorep:.4f}")
Fitting 5 folds for each of 96 candidates, totalling 480 fits
    [CV 1/5] END C=0.1, degree=1, gamma=scale, kernel=poly;, score=0.862 tota
    [CV 2/5] END C=0.1, degree=1, gamma=scale, kernel=poly;, score=0.893 tota
    [CV 3/5] END C=0.1, degree=1, gamma=scale, kernel=poly;, score=0.893 tota
    [CV 4/5] END C=0.1, degree=1, gamma=scale, kernel=poly;, score=0.893 tota
    [CV 5/5] END C=0.1, degree=1, gamma=scale, kernel=poly;, score=0.893 tota
    [CV 1/5] END C=0.1, degree=1, gamma=auto, kernel=poly;, score=0.862 total
    [CV 2/5] END C=0.1, degree=1, gamma=auto, kernel=poly;, score=0.893 total
    [CV 3/5] END C=0.1, degree=1, gamma=auto, kernel=poly;, score=0.893 total
    [CV 4/5] END C=0.1, degree=1, gamma=auto, kernel=poly;, score=0.893 total
```

```
[CV 5/5] END C=0.1, degree=1, gamma=auto, kernel=poly;, score=0.893 total
[CV 1/5] END C=0.1, degree=1, gamma=1, kernel=poly;, score=0.828 total tir
[CV 2/5] END C=0.1, degree=1, gamma=1, kernel=poly;, score=0.893 total tir
[CV 3/5] END C=0.1, degree=1, gamma=1, kernel=poly;, score=0.821 total tir
[CV 4/5] END C=0.1, degree=1, gamma=1, kernel=poly;, score=0.893 total tir
[CV 5/5] END C=0.1, degree=1, gamma=1, kernel=poly;, score=0.857 total tir
[CV 1/5] END C=0.1, degree=1, gamma=0.1, kernel=poly;, score=0.862 total
[CV 2/5] END C=0.1, degree=1, gamma=0.1, kernel=poly;, score=0.893 total
[CV 3/5] END C=0.1, degree=1, gamma=0.1, kernel=poly;, score=0.893 total
[CV 4/5] END C=0.1, degree=1, gamma=0.1, kernel=poly;, score=0.893 total
[CV 5/5] END C=0.1, degree=1, gamma=0.1, kernel=poly;, score=0.893 total
[CV 1/5] END C=0.1, degree=1, gamma=0.01, kernel=poly;, score=0.862 total
[CV 2/5] END C=0.1, degree=1, gamma=0.01, kernel=poly;, score=0.893 total
[CV 3/5] END C=0.1, degree=1, gamma=0.01, kernel=poly;, score=0.893 total
[CV 4/5] END C=0.1, degree=1, gamma=0.01, kernel=poly;, score=0.893 total
[CV 5/5] END C=0.1, degree=1, gamma=0.01, kernel=poly;, score=0.893 total
[CV 1/5] END C=0.1, degree=1, gamma=0.001, kernel=poly;, score=0.862 tota
[CV 2/5] END C=0.1, degree=1, gamma=0.001, kernel=poly;, score=0.893 tota
[CV 3/5] END C=0.1, degree=1, gamma=0.001, kernel=poly;, score=0.893 tota
[CV 4/5] END C=0.1, degree=1, gamma=0.001, kernel=poly;, score=0.893 tota
[CV 5/5] END C=0.1, degree=1, gamma=0.001, kernel=poly;, score=0.893 tota
[CV 1/5] END C=0.1, degree=2, gamma=scale, kernel=poly;, score=0.862 tota
[CV 2/5] END C=0.1, degree=2, gamma=scale, kernel=poly;, score=0.893 tota
[CV 3/5] END C=0.1, degree=2, gamma=scale, kernel=poly;, score=0.857 tota
[CV 4/5] END C=0.1, degree=2, gamma=scale, kernel=poly;, score=0.893 total
[CV 5/5] END C=0.1, degree=2, gamma=scale, kernel=poly;, score=0.893 tota
[CV 1/5] END C=0.1, degree=2, gamma=auto, kernel=poly;, score=0.862 total
[CV 2/5] END C=0.1, degree=2, gamma=auto, kernel=poly;, score=0.893 total
[CV 3/5] END C=0.1, degree=2, gamma=auto, kernel=poly;, score=0.893 total
[CV 4/5] END C=0.1, degree=2, gamma=auto, kernel=poly;, score=0.893 total
[CV 5/5] END C=0.1, degree=2, gamma=auto, kernel=poly;, score=0.893 total
[CV 1/5] END C=0.1, degree=2, gamma=1, kernel=poly;, score=0.862 total tir
[CV 2/5] END C=0.1, degree=2, gamma=1, kernel=poly;, score=0.893 total tir
[CV 3/5] END C=0.1, degree=2, gamma=1, kernel=poly;, score=0.893 total tir
[CV 4/5] END C=0.1, degree=2, gamma=1, kernel=poly;, score=0.893 total tir
[CV 5/5] END C=0.1, degree=2, gamma=1, kernel=poly;, score=0.929 total tir
[CV 1/5] END C=0.1, degree=2, gamma=0.1, kernel=poly;, score=0.862 total
[CV 2/5] END C=0.1, degree=2, gamma=0.1, kernel=poly;, score=0.893 total
[CV 3/5] END C=0.1, degree=2, gamma=0.1, kernel=poly;, score=0.857 total
[CV 4/5] END C=0.1, degree=2, gamma=0.1, kernel=poly;, score=0.893 total
[CV 5/5] END C=0.1, degree=2, gamma=0.1, kernel=poly;, score=0.893 total
[CV 1/5] END C=0.1, degree=2, gamma=0.01, kernel=poly;, score=0.862 total
[CV 2/5] END C=0.1, degree=2, gamma=0.01, kernel=poly;, score=0.893 total
[CV 3/5] END C=0.1, degree=2, gamma=0.01, kernel=poly;, score=0.893 total
[CV 4/5] END C=0.1, degree=2, gamma=0.01, kernel=poly;, score=0.893 total
[CV 5/5] END C=0.1, degree=2, gamma=0.01, kernel=poly;, score=0.893 total
[CV 1/5] END C=0.1, degree=2, gamma=0.001, kernel=poly;, score=0.862 tota
[CV 2/5] END C=0.1, degree=2, gamma=0.001, kernel=poly;, score=0.893 tota
```

```
#performing SVM polynomial with best hyperparameters
svm_polynomial = SVC(kernel='poly', C=0.1, degree=2, gamma=1)
svm_polynomial.fit(X_train, y_train)
y pred polynomial = svm polynomial.predict(X test)
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision score
from sklearn.metrics import recall score
from sklearn.metrics import f1_score
accuracy_poly = accuracy_score(y_test, y_pred_polynomial)
precision_poly = precision_score(y_test, y_pred_polynomial)
recall_poly = recall_score(y_test, y_pred_polynomial)
f1_poly = f1_score(y_test, y_pred_polynomial)
print("Accuracy:", accuracy_poly)
print("Precision:", precision_poly)
print("Recall:", recall_poly)
print("F1-score:", f1_poly)
Precision: 1.0
    F1-score: 0.8
#checking best parameters for rbf using grid search
param_grid = {'C': [0.1, 1, 10, 100], 'gamma': ['scale', 'auto', 1, 0.1, 0.01, 0.0]
svmr = SVC()
grid_searchr = GridSearchCV(svmr, param_grid, refit=True, verbose=3)
grid_searchr.fit(X_train, y_train)
best paramsr = grid searchr.best params
best_scorer = grid_searchr.best_score_
print(f"Best Hyperparameters: {best_paramsr}")
print(f"Best Cross-Validation Accuracy: {best scorer:.4f}")
Fitting 5 folds for each of 24 candidates, totalling 120 fits
    [CV 1/5] END ....C=0.1, gamma=scale, kernel=rbf;, score=0.862 total time=
    [CV 2/5] END ....C=0.1, gamma=scale, kernel=rbf;, score=0.893 total time=
    [CV 3/5] END ....C=0.1, gamma=scale, kernel=rbf;, score=0.893 total time=
    [CV 4/5] END ....C=0.1, gamma=scale, kernel=rbf;, score=0.893 total time=
    [CV 5/5] END ....C=0.1, gamma=scale, kernel=rbf;, score=0.893 total time=
    [CV 1/5] END .....C=0.1, gamma=auto, kernel=rbf;, score=0.862 total time=
    [CV 2/5] END .....C=0.1, gamma=auto, kernel=rbf;, score=0.893 total time=
    [CV 3/5] END .....C=0.1, gamma=auto, kernel=rbf;, score=0.893 total time=
```

```
[CV 4/5] END .....C=0.1, gamma=auto, kernel=rbf;, score=0.893 total time=
[CV 5/5] END .....C=0.1, gamma=auto, kernel=rbf;, score=0.893 total time=
[CV 1/5] END ......C=0.1, gamma=1, kernel=rbf;, score=0.862 total time=
[CV 2/5] END ......C=0.1, gamma=1, kernel=rbf;, score=0.893 total time=
[CV 3/5] END ......C=0.1, gamma=1, kernel=rbf;, score=0.893 total time=
[CV 4/5] END ......C=0.1, gamma=1, kernel=rbf;, score=0.893 total time=
[CV 5/5] END .......C=0.1, gamma=1, kernel=rbf;, score=0.893 total time=
[CV 1/5] END .....C=0.1, gamma=0.1, kernel=rbf;, score=0.862 total time=
[CV 2/5] END .....C=0.1, gamma=0.1, kernel=rbf;, score=0.893 total time=
[CV 3/5] END .....C=0.1, gamma=0.1, kernel=rbf;, score=0.893 total time=
[CV 4/5] END .....C=0.1, gamma=0.1, kernel=rbf;, score=0.893 total time=
[CV 5/5] END .....C=0.1, gamma=0.1, kernel=rbf;, score=0.893 total time=
[CV 1/5] END .....C=0.1, gamma=0.01, kernel=rbf;, score=0.862 total time=
[CV 2/5] END .....C=0.1, gamma=0.01, kernel=rbf;, score=0.893 total time=
[CV 3/5] END .....C=0.1, gamma=0.01, kernel=rbf;, score=0.893 total time=
[CV 4/5] END .....C=0.1, gamma=0.01, kernel=rbf;, score=0.893 total time=
[CV 5/5] END .....C=0.1, gamma=0.01, kernel=rbf;, score=0.893 total time=
[CV 1/5] END ....C=0.1, gamma=0.001, kernel=rbf;, score=0.862 total time=
[CV 2/5] END ....C=0.1, gamma=0.001, kernel=rbf;, score=0.893 total time=
[CV 3/5] END ....C=0.1, gamma=0.001, kernel=rbf;, score=0.893 total time=
[CV 4/5] END ....C=0.1, gamma=0.001, kernel=rbf;, score=0.893 total time=
[CV 5/5] END ....C=0.1, gamma=0.001, kernel=rbf;, score=0.893 total time=
[CV 1/5] END .....C=1, gamma=scale, kernel=rbf;, score=0.862 total time=
[CV 2/5] END .....C=1, gamma=scale, kernel=rbf;, score=0.893 total time=
[CV 3/5] END .....C=1, gamma=scale, kernel=rbf;, score=0.893 total time=
[CV 4/5] END .....C=1, gamma=scale, kernel=rbf;, score=0.893 total time=
[CV 5/5] END .....C=1, gamma=scale, kernel=rbf;, score=0.893 total time=
[CV 1/5] END .....C=1, gamma=auto, kernel=rbf;, score=0.862 total time=
[CV 2/5] END .....C=1, gamma=auto, kernel=rbf;, score=0.893 total time=
[CV 3/5] END .....C=1, gamma=auto, kernel=rbf;, score=0.893 total time=
[CV 4/5] END .....C=1, gamma=auto, kernel=rbf;, score=0.893 total time=
[CV 5/5] END .....C=1, gamma=auto, kernel=rbf;, score=0.893 total time=
[CV 1/5] END .......C=1, gamma=1, kernel=rbf;, score=0.897 total time=
[CV 2/5] END .........C=1, gamma=1, kernel=rbf;, score=0.893 total time=
[CV 3/5] END ........C=1, gamma=1, kernel=rbf;, score=0.893 total time=
[CV 4/5] END .........C=1, gamma=1, kernel=rbf;, score=0.893 total time=
[CV 5/5] END .....C=1, gamma=1, kernel=rbf;, score=0.929 total time=
[CV 1/5] END ......C=1, gamma=0.1, kernel=rbf;, score=0.862 total time=
[CV 2/5] END ......C=1, gamma=0.1, kernel=rbf;, score=0.893 total time=
[CV 3/5] END ......C=1, gamma=0.1, kernel=rbf;, score=0.893 total time=
[CV 4/5] END ......C=1, gamma=0.1, kernel=rbf;, score=0.893 total time=
[CV 5/5] END ......C=1, gamma=0.1, kernel=rbf;, score=0.893 total time=
[CV 1/5] END ......C=1, gamma=0.01, kernel=rbf;, score=0.862 total time=
[CV 2/5] END .....C=1, gamma=0.01, kernel=rbf;, score=0.893 total time=
[CV 3/5] END .....C=1, gamma=0.01, kernel=rbf;, score=0.893 total time=
[CV 4/5] END .....C=1, gamma=0.01, kernel=rbf;, score=0.893 total time=
[CV 5/5] END ......C=1, gamma=0.01, kernel=rbf;, score=0.893 total time=
[CV 1/5] END .....C=1, gamma=0.001, kernel=rbf;, score=0.862 total time=
[CV 2/5] END .....C=1, gamma=0.001, kernel=rbf;, score=0.893 total time=
```

```
#performing SVM with RBF kernel based on best parameters
svm_rbf = SVC(kernel='rbf', C=10, gamma=0.1)
svm_rbf.fit(X_train, y_train)
y pred rbf = svm polynomial.predict(X test)
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision score
from sklearn.metrics import recall score
from sklearn.metrics import f1_score
accuracy_rbf = accuracy_score(y_test, y_pred_rbf)
precision_rbf = precision_score(y_test, y_pred_rbf)
recall_rbf = recall_score(y_test, y_pred_rbf)
f1_rbf = f1_score(y_test, y_pred_rbf)
print("Accuracy:", accuracy_rbf)
print("Precision:", precision_rbf)
print("Recall:", recall_rbf)
print("F1-score:", f1_rbf)
Precision: 1.0
    F1-score: 0.8
#checking best parameters for sigmoid kernel using grid search
param_grid = {'C': [0.1, 1, 10, 100], 'gamma': ['scale', 'auto', 1, 0.1, 0.01, 0.0
svmr = SVC()
grid_searchr = GridSearchCV(svmr, param_grid, refit=True, verbose=3)
grid_searchr.fit(X_train, y_train)
best paramsr = grid searchr.best params
best_scorer = grid_searchr.best_score_
print(f"Best Hyperparameters: {best_paramsr}")
print(f"Best Cross-Validation Accuracy: {best scorer:.4f}")
   [CV 3/5] END .C=10, gamma=scale, kernel=sigmoid;, score=0.857 total time=
    [CV 4/5] END .C=10, gamma=scale, kernel=sigmoid;, score=0.750 total time=
    [CV 5/5] END .C=10, gamma=scale, kernel=sigmoid;, score=0.857 total time=
    [CV 1/5] END ..C=10, gamma=auto, kernel=sigmoid;, score=0.828 total time=
    [CV 2/5] END ..C=10, gamma=auto, kernel=sigmoid;, score=0.893 total time=
    [CV 3/5] END ..C=10, gamma=auto, kernel=sigmoid;, score=0.821 total time=
    [CV 4/5] END ..C=10, gamma=auto, kernel=sigmoid;, score=0.893 total time=
    [CV 5/5] END ..C=10, gamma=auto, kernel=sigmoid;, score=0.857 total time=
    [CV 1/5] END .....C=10, gamma=1, kernel=sigmoid;, score=0.862 total time=
```

```
[CV 2/5] END .....C=10, gamma=1, kernel=sigmoid;, score=0.857 total time=
[CV 3/5] END ....C=10, gamma=1, kernel=sigmoid;, score=0.857 total time=
[CV 4/5] END .....C=10, gamma=1, kernel=sigmoid;, score=0.857 total time=
[CV 5/5] END .....C=10, gamma=1, kernel=sigmoid;, score=0.929 total time=
[CV 1/5] END ...C=10, gamma=0.1, kernel=sigmoid;, score=0.862 total time=
[CV 2/5] END ...C=10, gamma=0.1, kernel=sigmoid;, score=0.893 total time=
[CV 3/5] END ...C=10, gamma=0.1, kernel=sigmoid;, score=0.857 total time=
[CV 4/5] END ...C=10, gamma=0.1, kernel=sigmoid;, score=0.750 total time=
[CV 5/5] END ...C=10, gamma=0.1, kernel=sigmoid;, score=0.857 total time=
[CV 1/5] END ..C=10, gamma=0.01, kernel=sigmoid;, score=0.793 total time=
[CV 2/5] END ..C=10, gamma=0.01, kernel=sigmoid;, score=0.893 total time=
[CV 3/5] END ..C=10, gamma=0.01, kernel=sigmoid;, score=0.821 total time=
[CV 4/5] END ..C=10, gamma=0.01, kernel=sigmoid;, score=0.893 total time=
[CV 5/5] END ..C=10, gamma=0.01, kernel=sigmoid;, score=0.857 total time=
[CV 1/5] END .C=10, gamma=0.001, kernel=sigmoid;, score=0.862 total time=
[CV 2/5] END .C=10, gamma=0.001, kernel=sigmoid;, score=0.893 total time=
[CV 3/5] END .C=10, gamma=0.001, kernel=sigmoid;, score=0.893 total time=
[CV 4/5] END .C=10, gamma=0.001, kernel=sigmoid;, score=0.893 total time=
[CV 5/5] END .C=10, gamma=0.001, kernel=sigmoid;, score=0.893 total time=
[CV 1/5] END C=100, gamma=scale, kernel=sigmoid;, score=0.862 total time=
[CV 2/5] END C=100, gamma=scale, kernel=sigmoid;, score=0.893 total time=
[CV 3/5] END C=100, gamma=scale, kernel=sigmoid;, score=0.857 total time=
[CV 4/5] END C=100, gamma=scale, kernel=sigmoid;, score=0.821 total time=
[CV 5/5] END C=100, gamma=scale, kernel=sigmoid;, score=0.821 total time=
[CV 1/5] END .C=100, gamma=auto, kernel=sigmoid;, score=0.828 total time=
[CV 2/5] END .C=100, gamma=auto, kernel=sigmoid;, score=0.929 total time=
[CV 3/5] END .C=100, gamma=auto, kernel=sigmoid;, score=0.786 total time=
[CV 4/5] END .C=100, gamma=auto, kernel=sigmoid;, score=0.857 total time=
[CV 5/5] END .C=100, gamma=auto, kernel=sigmoid;, score=0.857 total time=
[CV 1/5] END ....C=100, gamma=1, kernel=sigmoid;, score=0.897 total time=
[CV 2/5] END ....C=100, gamma=1, kernel=sigmoid;, score=0.821 total time=
[CV 3/5] END ....C=100, gamma=1, kernel=sigmoid;, score=0.893 total time=
[CV 4/5] END ....C=100, gamma=1, kernel=sigmoid;, score=0.750 total time=
[CV 5/5] END ....C=100, gamma=1, kernel=sigmoid;, score=0.929 total time=
[CV 1/5] END ..C=100, gamma=0.1, kernel=sigmoid;, score=0.862 total time=
[CV 2/5] END ..C=100, gamma=0.1, kernel=sigmoid;, score=0.893 total time=
[CV 3/5] END ..C=100, gamma=0.1, kernel=sigmoid;, score=0.893 total time=
[CV 4/5] END ..C=100, gamma=0.1, kernel=sigmoid;, score=0.821 total time=
[CV 5/5] END ..C=100, gamma=0.1, kernel=sigmoid;, score=0.857 total time=
[CV 1/5] END .C=100, gamma=0.01, kernel=sigmoid;, score=0.828 total time=
[CV 2/5] END .C=100, gamma=0.01, kernel=sigmoid;, score=0.893 total time=
[CV 3/5] END .C=100, gamma=0.01, kernel=sigmoid;, score=0.821 total time=
[CV 4/5] END .C=100, gamma=0.01, kernel=sigmoid;, score=0.893 total time=
[CV 5/5] END .C=100, gamma=0.01, kernel=sigmoid;, score=0.893 total time=
[CV 1/5] END C=100, gamma=0.001, kernel=sigmoid;, score=0.828 total time=
[CV 2/5] END C=100, gamma=0.001, kernel=sigmoid;, score=0.893 total time=
[CV 3/5] END C=100, gamma=0.001, kernel=sigmoid;, score=0.821 total time=
[CV 4/5] END C=100, gamma=0.001, kernel=sigmoid;, score=0.893 total time=
[CV 5/5] END C=100, gamma=0.001, kernel=sigmoid;, score=0.857 total time=
```

```
#performing svm with sigmoid kernel based on best parameters and evaluating with
svm_sigmoid = SVC(kernel='sigmoid', C=1, gamma=1)
svm_sigmoid.fit(X_train, y_train)
y pred sig = svm sigmoid.predict(X test)
from sklearn.metrics import accuracy_score
from sklearn.metrics import precision score
from sklearn.metrics import recall score
from sklearn.metrics import f1_score
accuracy_sig = accuracy_score(y_test, y_pred_sig)
precision_sig = precision_score(y_test, y_pred_sig)
recall_sig = recall_score(y_test, y_pred_sig)
f1_sig = f1_score(y_test, y_pred_sig)
print("Accuracy:", accuracy_sig)
print("Precision:", precision_sig)
print("Recall:", recall_sig)
print("F1-score:", f1_sig)
Accuracy: 0.86111111111111112
    Precision: 1.0
    F1-score: 0.2857142857142857
#K-fold cross validation with SVM , linear kernel
from sklearn.model_selection import cross_val_score
from sklearn.svm import SVC
svm_linear = SVC(kernel='linear', C=100)
scores = cross_val_score(svm_linear, df_scaled, y, cv=5)
print("Cross-validation scores:", scores)
print("Mean accuracy:", scores.mean())
```

Naïve Bayes Variant Comparison

Table 1: Performance Comparison of Naïve Bayes Variants

Metric	Gaussian NB	Multinomial NB	Bernoulli NB
Accuracy	0.8219	0.8706	0.8573
Precision	0.7233	0.8326	0.8004
Recall	0.9385	0.8547	0.8128
F1 Score	0.8170	0.8435	0.8065

KNN: Varying k Values

Table 2: KNN Performance for Different k Values

k	Accuracy	Precision	Recall	F1 Score
1	0.8958	0.8769	0.8769	0.8769
3	0.8936	0.8883	0.8564	0.8721
5	0.8958	0.9016	0.8462	0.8730
7	0.8921	0.8965	0.8423	0.8685

KNN: KDTree vs BallTree

Table 3: KNN Comparison: KDTree vs BallTree

Metric	KDTree	BallTree
Accuracy	0.8958	0.8958
Precision	0.9016	0.9016
Recall	0.8462	0.8462
F1 Score	0.8730	0.8730
Training Time (s)	0.012	0.015

SVM Performance

Table 4: SVM Performance with Different Kernels and Parameters

Kernel	rnel Hyperparameters		F1 Score	Training Time (s)
Linear	C = 100	0.9444	0.8000	0.031
Polynomial	C = 0.1, degree = 1, gamma = auto	0.8930	0.8930	0.042
RBF	C = 100, gamma = 0.1	0.9290	0.9123	0.050
Sigmoid	C = 100, gamma = 0.1	0.8570	0.8502	0.047

K-Fold Cross-Validation Results

Table 5: Cross-Validation Scores for Each Model

	Table 5. Cross varidation beores for Each Model			
Fold	Gaussian NB Acc.	Bernoulli NB Acc.	KNN Acc.	SVM Acc.
Fold 1	0.8261	0.8586	0.8967	0.9444
Fold 2	0.8282	0.8597	0.8956	0.9423
Fold 3	0.8173	0.8575	0.8956	0.9444
Fold 4	0.8204	0.8564	0.8945	0.9423
Fold 5	0.8204	0.8575	0.8945	0.9444
Average	0.8225	0.8579	0.8954	0.9436

Observations & Conclusions

- Best overall accuracy: SVM with Linear kernel (C = 100) achieved the highest average accuracy in K-Fold validation.
- Best Naïve Bayes variant: MultinomialNB had the highest single-split accuracy, though BernoulliNB was also competitive.
- KNN trend: Accuracy remained high for k = 1 to 7, with best stability at k = 5.
- **KDTree vs BallTree:** Both yielded identical accuracy, with KDTree slightly faster in training.
- SVM kernels: Linear kernel outperformed others; polynomial kernel lagged behind despite parameter tuning.