

Pollutec 2012

30 Novembre 2012

NF EN 779:2012 et classification énergétique Eurovent

Sylvain COURTEY

s.courtey@eurovent-certification.com

Eurovent Certification Company (ECC)

www.eurovent-certification.com

Pollutec 2012

30 Novembre 2012

1. Présentation d'Eurovent Certification

- 2. Nouvelle norme NF EN 779:2012 : détermination des performances de filtration pour les filtres à air de ventilation générale
- 3. Classification énergétique des filtres à air: guide technique Eurovent 4/11

Eurovent Certification Les points clés

- Organisme de certification tierce partie & volontaire
- Couvre tous les secteurs du CVC-R : Chauffage, Ventilation,
 Climatisation & Réfrigération
- Marque reconnue dans toute l'Europe et même au-delà
- Accrédité suivant la norme ISO/EN 45011 par le COFRAC (accréditation n°5-0527, reconnaissance internationale EA/IAF)
- Processus de vérification continu
- Essais effectué par des laboratoires indépendants et accrédités

Eurovent Certification En chiffres

- 15 programmes de certification en activité
- 2 programmes en préparation
- **195** fabricants certifiés
- 223 marques commerciales certifiées
- + de 50 000 références certifiées
- 21 personnes à Paris + 1 auditeur
- + de 80 experts participant régulièrement aux comités de pilotage des programmes de certification
- 13 laboratoires européens indépendants partenaires
- + de 18 ans de savoir faire

Programmes de certification

Climatiseurs

Ventilo-convecteurs

réfrigérantes

Poutres

Meubles frigorifiques de vente

Condenseurs

Pompes à chaleur et Groupes froid

Aéro-réfrigérants

Unités de toiture

Tour de refroidissement

Séparateur de gouttelettes

Pollutec 2012

30 Novembre 2012

- 1. Présentation d'Eurovent Certification
- 2. Nouvelle norme NF EN 779:2012 : détermination des performances de filtration pour les filtres à air de ventilation générale
- 3. Classification énergétique des filtres à air pour la ventilation: guide technique Eurovent 4/11

Détermination des performances de filtration pour les filtres à air de ventilation générale

Figure 3.5 Groups and filters classes as defined in the European standards FprEN 779 and EN 1822

G: coarse

M: Medium

F: Fine

EPA: Efficient Particulate Air filters

HEPA: High Efficiency Particulate Air filters

ULPA: Ultra Low Penetration Air filters

Détermination des performances de filtration pour les filtres à air de ventilation générale

Banc d'essai EN 779: schéma de principe

Key

- 1 Duct section of the test rig
- 2 Duct section of the test rig
- 3 Filter to be tested
- 4 Duct section including the filter to be tested
- 5 Duct section of the test rig
- 6 Duct section of the test rig
- 7 HEPA-Filter (at least H13)

- 8 Inlet point for DEHS particles
- 9 Dust injection nozzle
- 10 Mixing orifice
- 11 Perforated plate
- 12 Upstream sampling head
- 13 Downstream sampling head

Figure 1 — Schematic diagram of the test rig

Détermination des performances de filtration pour les filtres à air de ventilation générale

Banc d'essai EN 779:

Détermination des performances de filtration pour les filtres à air de ventilation générale

Que mesure-t-on?

- Perte de charge initiale (Pa)
- Efficacité gravimétrique moyenne (%)

Capacité de rétention (g)

Efficacité initiale à 0,4 µm (%)

Efficacité moyenne à 0,4 µm (%)

Efficacité déchargée à 0,4 µm (%)

Efficacité minimale à 0,4 µm (%)

Poussière synthétique « ASHRAE »

Aérosol DEHS

Détermination des performances de filtration pour les filtres à air de ventilation générale

Exemple de résultat issu d'un rapport d'essai:

Détermination des performances de filtration pour les filtres à air de ventilation générale

Table 1— Classification of air filters 1)

Group	Class	Final test pressure drop	Average arrestance (A_m) of synthetic dust	Average efficiency (E _m) of 0,4 µm particles	Minimum Efficiency ^a of 0,4 µm particles	
		Pa	%	%	%	
Coarse	G1	250	$50 \le A_{m} < 65$	-	-	
	G2	250	$65 \le A_m < 80$	-	-	
	G3	250	$80 \le A_{m} < 90$	-	-	
	G4	250	90 ≤ <i>A</i> _m	-	-	
Medium	M5	450	-	$40 \le E_{m} < 60$	-	
	M6	450	-	$60 \le E_{m} < 80$	-	
Fine	F7	450	-	$80 \le E_{m} < 90$	35	
	F8	450	-	$90 \le E_{m} < 95$	55	
	F9	450	-	95 ≤ <i>E</i> _m	70	

^a Minimum efficiency is the lowest efficiency among the i throughout the loading procedure of the test.

EN 779:2002

ciency and

EN 779:2012

Détermination des performances de filtration pour les filtres à air de ventilation générale

Test du filtre déchargé:

Key

- 1 Manometer
- 2 Test duct
- 3 Filter sample
- 4 Mixing section
- 5 Downstream sampling
- 6 Flow meter
- 7 Flow control
- 8 Fan
- 9 Upstream sampling
- 10 Upstream duct
- 11 Aerosol

Figure 11 — Filter material test equipment

Détermination des performances de filtration pour les filtres à air de ventilation générale

Test du filtre déchargé:

Key

- 1 Efficiency measurement
- 2 Filter sample
- 3 Isopropanol treatment
- 4 Isopropanol vessel
- 5 Fume cupboard
- 6 Drying

Efficacité du filtre déchargé à 0,4 µm (%) ≈ Efficacité minimale à 0,4 µm (%)

Détermination des performances de filtration pour les filtres à air de ventilation générale

Exemple de résultat :

Pollutec 2012

30 Novembre 2012

- 1. Présentation d'Eurovent Certification
- 2. Nouvelle norme NF EN 779:2012 : détermination des performances de filtration pour les filtres à air de ventilation générale
- 3. Classification énergétique des filtres à air pour la ventilation: guide technique Eurovent 4/11

Publication en 2011 www.eurovent-association.eu

Label énergétique
Eurovent Certification

www.eurovent-certification.com

www.certiflash.com

- 1. Détermination de la classe de filtration selon la NF EN 779:2012
- 2. Détermination de la perte de charge moyenne **Δp** à partir de la courbe de perte de charge mesurée lors du test EN 779:2012

Classes de filtration EN 779:2012					Rétention minimale	Perte de charge finale	
G4						350 g	250 Pa
	M5	M6			250 g	450 Pa	
			F7	F8	F9	100 g	450 Pa

3. Calcul de la consommation énergétique annuelle en kWh/an selon la formule suivante:

$$W = \frac{q_{\rm V} \cdot \Delta p \cdot t}{\eta \cdot 1000}$$

Avec:

- q_v (débit d'air nominal) = 0,944 m³/s (3400 m³/h)
- t = 6000 h
- • η (rendement moyen d'un ventilateur) = 50 %

Filter class	G4	M5	M6	F7	F8	F9
MTE	-	_	_	MTE ≥ 35%	MTE ≥ 55%	MTE ≥ 70%
	M _G = 350 g ASHRAE	M _M = 250 g ASHRAE		M _F = 100 g ASHRAE		
Α	0 - 600 kWh	0 – 650 kWh	0 – 800 kWh	0 – 1200 kWh	0 – 1600 kWh	0 – 2000 kWh
В	> 600 kWh — 700 kWh	> 650 kWh — 780 kWh	> 800 kWh — 950 kWh	> 1200 kWh - 1450 kWh	> 1600 kWh - 1950 kWh	> 2000 kWh - 2500 kWh
С	> 700 kWh — 800 kWh	> 780 kWh — 910 kWh	> 950 kWh — 1100 kWh	> 1450 kWh - 1700 kWh	> 1950 kWh — 2300 kWh	> 2500 kWh - 3000 kWh
D	> 800 kWh — 900 kWh	> 910 kWh — 1040 kWh	> 1100 kWh - 1250 kWh	> 1700 kWh - 1950 kWh	> 2300 kWh — 2650 kWh	> 3000 kWh - 3500 kWh
E	> 900 kWh — 1000 kWh	> 1040 kWh — 1170 kWh	> 1250 kWh - 1400 kWh	> 1950 kWh — 2200 kWh	> 2650 kWh - 3000 kWh	> 3500 kWh - 4000 kWh
F	> 1000 kWh - 1100 kWh	> 1170 kWh - 1300 kWh	> 1400 kWh - 1550 kWh	> 2200 kWh — 2450 kWh	> 3000 kWh - 3350 kWh	> 4000 kWh - 4500 kWh
G	> 1100 kWh	> 1300 kWh	> 1550 kWh	> 2450 kWh	> 3350 kWh	> 4500 kWh

Table 1: Energy efficiency class limits for each filter class to EN 779 measured at 0.944 m³/s

Règles de sélection des filtres pour la ventilation:

- Déterminer le niveau de qualité de l'air intérieur (QAI) requit
- Déterminer la classe de filtration EN 779:2012 en fonction des standards internationaux. Exemple: EN 13779:2007

Outdoor Air Quality (see 6.2.3)	Indoor Air Quality (see 6.2.5)						
	IDA 1 (High)	IDA 2 (Medium)	IDA 3 (Moderate)	IDA 4 (Low)			
ODA 1 (pure air) ODA 2 (dust) ODA 3 (very high concentrations of dust or gases)	F9 F7+F9 F7+GF+F9ª	F8 F6+F8 F7+GF+F9ª	F7 F5+F7 F5+F7	F5 F5+F6 F5+F6			
a GF = Gas filter (carbor	n filter) and/or che	mical filter.					

- 3. Déterminer la classe énergétique souhaitée selon la méthode **Eurovent 4/11**
- 4. Choisir parmi les filtres certifiés Eurovent

Conclusions

- La nouvelle norme NF EN 779:2012 permet de caractériser avec plus de réalisme l'efficacité de filtration des filtres à air pour la ventilation
- La méthode Eurovent 4/11 permet de comparer les filtres suivant leur efficacité énergétique
- Les performances certifiées contrôlées par une tierce partie sont disponible sur les sites:
 - www.eurovent-certification.com
 - www.certiflash.com