华中科技大学考试题(A卷) 数字电路与逻辑设计(闭卷)(2011/01/05)

全亚	12/210	班级_	- N	姓	名	学	号	10
题号	_	= [Ξ	四四	五	六	总分	
分值	20	12	10	14	32	12		
得分								
		E = (A + A)						
2. 二边	性制数(1	101010.0	1)2对应-	十进制数	(为			
. CPI	D 基于			技术实现	见组合逻	辑函数, FP	GA 中每个逻辑单	单元
是禾	划用		技术	来实现:	组合逻辑	的, 当需实	现 4 输入 2 输出	出的
组合	电路所	需占用的	SRAM	配置容量	量至少为		_bit。	
. 若月	利 JK	触发器	来实现	见方程	为 Q ⁿ⁺¹	$=\overline{AQ}^n+B$,	则驱动方程	为
. 将口	触发器	的D端与	□ □ <i>Q</i> 端相	连,当角	触发器的	现态为		至过
2011	个时钟	脉冲作用	后,触	发器的制	代态为 0。			
							减法计数器从1开	F始
		2012 个记						
. 对于	采集温	度范围	为 0~8	0℃,能	辨别 0.	1℃变化的	应用要求,应选	译
	bit	的 A/D	转换器	器;如乡	 K 样温度	更为 20℃,	对应的数字量	为
)16 •					
			电路具征	有一个稳	态和一	个暂稳态,智	f 稳态存在的时间]由
	LE .		环节决员	È.				
8bit	移位寄	存器构成	的扭环	形计数器	有	个有	效计数状态。	

,在 RAM 器件的输入输出电路

10. 能够实现线与功能的是

	中使用的是	_ 0	(集电极开路门,三态门,	异或门,	传输
11.	门) 8K ×8 的 RAM 芯片有 2K ×4 的 RAM 芯片才能扩展符	寻 到	根地址线,需要 16K ×8 的 RAM。	. B ₁₀ P ₁	片

二、 化简题 (2 小题, 共 12 分, 每小题 6 分)

1、用逻辑代数法将下式化简为最简与或式。 $F = \overline{AB}(A+C) + \overline{C}(BD + A\overline{B} + AD)$

2、用卡诺图化简逻辑函数,写出最简与或式。(注: A 为最高位,D 为最低位) $F(A,B,C,D) = \sum m(0,8,9,10,11,13,15) + \sum d(1,2,5,6,14)$

AB	177	FUT N	1,3	
	- 20			
		Een l		
			-	
	ride	odn		

三、 波形题(10分)

- 1、分析如图所示电路,完成下列工作:
- (1)分析电路的功能,列写该电路的功能表;

(2) 若已知输入信号 CP、A、D、LD 的波形如下图所示,试画出 Q 端波形。

四、 组合逻辑分析与设计(14分)

- 1、完成下面的全减器真值表,表中M为被减数,S为减数, B_{i-1} 是低位的借位,D为差, B_{i} 是向高位的借位。
- (1) 若要求仅用与非门实现全减器功能,要求电路最简,请给出电路的逻辑表达式(不必画出逻辑图);

(2) 将下面的 Verilog HDL 程序补充完整,使其实现全减器;

module M_Sub(M, S, Bi_1, D, Bi);
input M, S, Bi_1; // Bi_1 为低位的借位
output D, Bi; // Bi 为向高位的借位
assign D = ______;
assign Bi = _____;
endmodule

(3) 使用 74LS138 和少量门电路,实现全减器。

- 五、 时序逻辑分析与设计 (3 小题, 共 32 分, 10 分+12 分+10 分)
- 1、现需设计一个单输入单输出的同步时序电路,对串行输入数据 X 进行检测:
- a) 假设 Z 的初始状态为 Z=0;
- b) 当检测到 X 连续输入两个 0 时,输出 Z 变为 0,当检测到 X 连续输入两个 1 时,输出 Z 变为 1,否则 Z 保持不变,例如:

输入序列为X=010110101111010010100010 输出序列为Z=0000111111111110000000000

根据上述要求完成以下设计工作:

(1) 画出原始状态图

(2) 建立原始状态表,并检查是否需要化简

(3) 给出一种状态分配方案并说明理由

2、分析如图所示同步时序电路

(1) 写出电路的驱动方程,输出方程和状态方程

(2) 列出状态转换表, 画出状态图

(3) 画出在 8 个 CP 作用下,Q1、Q2 和 Z 的时序图,初始状态为 Q_2Q_1 =00

(4) 总结该电路实现的功能

3、阅读下面的 Verilog HDL 程序,完成以下问题。

```
module m_test2 (CP, A, B, C, D);
input CP;
input A, B;
input[2:0] C;
output[2:0] D;

always @ (negedge A or posedge CP)
begin
    if (!A) D <= 3'b000;
    else if (B) D <= C;
    else D <= { D[1:0], D[2] };
end
endmodule
```

- (1) 简要解释程序实现的功能,并说明其中信号 A、B 的作用及有效电平。
- (2) 程序中有一处语法错误,请指出,并改正。
- (3) 根据以下给定的输入波形, 画出输出信号 D 的波形。

六、 综合题 (12分)

一个任意波形产生电路的简要框图如图所示,EEPROM 中存储了一个周期的完整波形数据,由计数器产生的信号 A 连续读出 EEPROM 中的数据 B 并送入下一级电路处理,处理所得波形为 Vo2。

- (1) 试问时钟源可由什么功能电路产生?
- (2) 图中空白框图中是什么电路? 完成什么功能?
- (3) 图中 A、B 分别接 EEPROM 的什么信号总线?如果要求输出波形的量化等级达到 256,每周期采样点个数为 64,则总线 A、B 分别为多少位宽?
- (4) 试采用 2 片 74HC161 设计满足要求的计数电路。

(5) 若输出信号 Vo2 的频率 f_{Vo2} 为 1kHz,那么时钟源的频率 f_{Vo1} 应为多少?

输入						输出							
Gı	G _{2A}	G _{2B}	С	В	A	Y ₀	Y1 .	Y ₂	Y ₃	Y_4	Y 5	Y ₆	Y7
X	Н	X	X	X	X	Н	Н	H	Н	Н	Н	Н	Н
X	. X	Н	X	X	X	Н	Н	Н	Н	Н	Н	Н	H
L	X	X	X	X	X	Н	Н	Н	Н	Н	Н	Н	Н
Н	I	L	L	L	L	L	Н	Н	Н	Н	Н	Н	Н
Н	ī	L	L	L	Н	Н	L	Н	Н	Н	Н	Н	Н
Н	I	L	L	Н	L	Н	Н	L	Н	Н	Н	Н	H
Н	L	L	L	Н	Н	Н	Н	Н	L	Н	Н	Н	H
Н	I	L	Н	L	L	Н	Н	Н	Н	L	Н	Н	H
Н	I	L	Н	L	Н	Н	Н	Н	Н	Н	L	Н	H
Н	I	L	Н	Н	L	Н	Н	Н	Н	Н	Н	L	H
Н	I	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	I