Biologicky motivované výpočtové modely

Mgr. Michal Kováč Školiteľ: doc. RNDr. Damas Gruska, PhD.

FMFI UK

17.1.2018

- Prehľad problematiky
 - Biologicky motivované modely
 - P systémy
- Skúmané varianty P systémov
 - Sekvenčné P systémy s inhibítormi
 - Sekvenčné P systémy s aktívnymi membránami
 - Sekvenčné P systémy s množinami namiesto multimnožín
 - Záver

Biologicky motivované výpočtové modely

Dvojaké uplatnenie:

- reálne modely živých systémov
 - virtuálne biologické experimenty
 - verifikácia správnosti chápania ich činností
- modely na popis iných systémov

Biologicky motivované výpočtové modely

- Neurónové siete (od 1943)
- Celulárne automaty (od 1968)
- Evolučné algoritmy (od 1954)
- L systémy (od 1968)
- Swarm Intelligence (od 1989)
- P systémy (od 1998) [Păun, 1998]
- . . .

Membránová štruktúra

Membránová štruktúra

Multimnožiny objektov

Membránová štruktúra

- Multimnožiny objektov
- Prepisovacie pravidlá

Prepisovacie pravidlá

 $u \rightarrow v$, where

• $u \in \mathbb{N}^{\Sigma}$

Prepisovacie pravidlá

 $u \rightarrow v$, where

- $u \in \mathbb{N}^{\Sigma}$
- v = v' or $v = v'\delta$, where $\delta \notin \Sigma$
- $\bullet \ v' \in \mathbb{N}^{\Sigma \times (\{\textit{here},\textit{out}\} \cup \{\textit{in}_j | 1 \leq \textit{j} \leq \textit{m}\})}$

Prepisovacie pravidlá

Krok výpočtu P systému

- Krok výpočtu
 - Sekvenčný
 - Paralelný
 - Maximálne paralelný

Ukážka výpočtu P systému

Jazyk definovaný P systémom

- Jazyk nad postupnosťami/multimnožinami objektov
 - Generatívny mód: postupnosť/multimnožina objektov vypustených do okolitého prostredia

Jazyk definovaný P systémom

- Jazyk nad postupnosťami/multimnožinami objektov
 - Generatívny mód: postupnosť/multimnožina objektov vypustených do okolitého prostredia
 - Akceptačný mód: vstupnú multimnožinu vložíme do špecifickej membrány, ak výpočet zastaví, akceptujeme

$$u \rightarrow v$$

ullet Kooperatívne ($u \in \mathbb{N}^{\Sigma}$) (PsRE [Păun, 1998])

 $u \rightarrow v$

- Kooperatívne $(u \in \mathbb{N}^{\Sigma})$ (PsRE [Păun, 1998])
- Nekooperatívne $(u \in \Sigma)$ (PsCF [Sburlan, 2005])

```
u \rightarrow v
```

- Kooperatívne $(u \in \mathbb{N}^{\Sigma})$ (PsRE [Păun, 1998])
- Nekooperatívne $(u \in \Sigma)$ (PsCF [Sburlan, 2005])
- Nekooperatívne s inhibítormi ($u \to v \mid_{\neg Inh}, Inh \subseteq \Sigma$) (PsET0L [lonescu and Sburlan, 2004])

```
u \rightarrow v
```

- ullet Kooperatívne $(u \in \mathbb{N}^{\Sigma})$ (PsRE [Păun, 1998])
- Nekooperatívne $(u \in \Sigma)$ (PsCF [Sburlan, 2005])
- Nekooperatívne s inhibítormi ($u o v \mid_{\neg Inh}, Inh \subseteq \Sigma$) (PsET0L [lonescu and Sburlan, 2004])
- Katalytické ($cu \rightarrow cv, u \in \Sigma, c \in C \subseteq \Sigma$)
 - s 2 katalyzátormi (PsRE [Freund et al., 2005])
 - s 1 katalyzátorom (otvorený problém)
 - s 1 katalyzátorom a inhibítormi (PsRE [lonescu and Sburlan, 2004])

Sekvenčné P systémy

Maximálny paralelizmus vs. sekvenčný mód

Sekvenčné P systémy

- Maximálny paralelizmus vs. sekvenčný mód
- Sekvenčné P systémy s kooperatívnymi pravidlami (VASS [Ibarra et al., 2005])

Sekvenčné P systémy

- Maximálny paralelizmus vs. sekvenčný mód
- Sekvenčné P systémy s kooperatívnymi pravidlami (VASS [Ibarra et al., 2005])
 - s prioritami (PsRE [Ibarra et al., 2005])
 - s aktívnymi membránami (PsRE [Ibarra et al., 2005])
 - s inhibítormi (PsRE [Kováč, 2014])

Vlastné výsledky

Vlastné výsledky

1. Sekvenčné P systémy s inhibítormi

• Pravidlo s inhibítormi: $u \to v|_I$, $I \subseteq \Sigma$

- Pravidlo s inhibítormi: $u \to v|_I$, $I \subseteq \Sigma$
- Turingovská úplnosť pre akceptačný aj generatívny mód

- Pravidlo s inhibítormi: $u \to v|_I$, $I \subseteq \Sigma$
- Turingovská úplnosť pre akceptačný aj generatívny mód
- Kováč (2014). Using Inhibitors to Achieve Universality of Sequential P Systems.

In Electronic Proceedings of CiE 2014

Sekvenčné P systémy s inhibítormi Sekvenčné P systémy s aktívnymi membránami Sekvenčné P systémy s množinami namiesto multimnožín Záver

Prehľad simulácie pre akceptačný mód

Simulácia registrového stroja

- Simulácia registrového stroja
- Obsah registra x sa reprezentuje početnosťou objektu x
- Objekt pre každú inštrukciu

- Simulácia registrového stroja
- Obsah registra x sa reprezentuje početnosťou objektu x
- Objekt pre každú inštrukciu
- SUB inštrukcia sa simuluje pomocou inhibítora

• Registrový stroj M = (n, P, i, h, Lab)

- Registrový stroj M = (n, P, i, h, Lab)
- P systém (Σ, μ, w, R)

•
$$\Sigma = Lab \cup \# \cup a_j, 1 \leq j \leq n$$

- Registrový stroj M = (n, P, i, h, Lab)
- P systém (Σ, μ, w, R)
 - $\Sigma = Lab \cup \# \cup a_j, 1 \leq j \leq n$
 - $w = i \cup a_i^{n_i}, n_i$ je počiatočná hodnota registra i

- Registrový stroj M = (n, P, i, h, Lab)
- P systém (Σ, μ, w, R)
 - $\Sigma = Lab \cup \# \cup a_j, 1 \leq j \leq n$
 - $w = i \cup a_i^{n_i}$, n_i je počiatočná hodnota registra i
 - $\forall (e : add(j), k, l) \in P$:
 - $ullet e
 ightarrow a_j k \in R$
 - $ullet e
 ightarrow a_j I \in R$

- Registrový stroj M = (n, P, i, h, Lab)
- P systém (Σ, μ, w, R)
 - $\Sigma = Lab \cup \# \cup a_j, 1 \leq j \leq n$
 - $w = i \cup a_i^{n_i}, n_i$ je počiatočná hodnota registra i
 - $\forall (e : add(j), k, l) \in P :$
 - $ullet e
 ightarrow a_j k \in R$
 - $ullet e
 ightarrow a_j I \in R$
 - $\forall (e : sub(j), k, l) \in P$:
 - $ea_j \rightarrow k \in R$
 - $e \rightarrow I|_{\neg} a_j \in R$

- Registrový stroj M = (n, P, i, h, Lab)
- P systém (Σ, μ, w, R)
 - $\Sigma = Lab \cup \# \cup a_j, 1 \leq j \leq n$
 - $w = i \cup a_i^{n_i}, n_i$ je počiatočná hodnota registra i
 - $\forall (e : add(j), k, l) \in P$:
 - $ullet e
 ightarrow a_j k \in R$
 - $ullet e
 ightarrow a_j I \in R$
 - $\forall (e : sub(j), k, l) \in P :$
 - $ea_j \rightarrow k \in R$
 - $e \rightarrow I|_{\neg} a_j \in R$
 - Akceptovanie prázdnymi registrami:
 - $ha_i \rightarrow h\# \in R$
 - $\# \rightarrow \# \in R$

Prehľad simulácie pre generatívny mód

• Simulácia maximálne paralelného P systému Π_1 pomocou sekvenčného P systému s inhibítormi Π_2 .

- Simulácia maximálne paralelného P systému Π₁ pomocou sekvenčného P systému s inhibítormi Π₂.
- Každý maximálne paralelný krok Π₁ simulujeme sekvenčnými krokmi Π₂.

- Simulácia maximálne paralelného P systému Π₁ pomocou sekvenčného P systému s inhibítormi Π₂.
- Každý maximálne paralelný krok Π₁ simulujeme sekvenčnými krokmi Π₂.
- Maximálne paralelný krok rozdeľujeme na 4 fázy:

- Simulácia maximálne paralelného P systému Π_1 pomocou sekvenčného P systému s inhibítormi Π_2 .
- Každý maximálne paralelný krok Π₁ simulujeme sekvenčnými krokmi Π₂.
- Maximálne paralelný krok rozdeľujeme na 4 fázy:
 - RUN

- Simulácia maximálne paralelného P systému Π₁ pomocou sekvenčného P systému s inhibítormi Π₂.
- Každý maximálne paralelný krok Π₁ simulujeme sekvenčnými krokmi Π₂.
- Maximálne paralelný krok rozdeľujeme na 4 fázy:
 - RUN
 - SYNCHRONIZE

- Simulácia maximálne paralelného P systému Π_1 pomocou sekvenčného P systému s inhibítormi Π_2 .
- Každý maximálne paralelný krok Π₁ simulujeme sekvenčnými krokmi Π₂.
- Maximálne paralelný krok rozdeľujeme na 4 fázy:
 - RUN
 - SYNCHRONIZE
 - SENDDOWN
 - RESTORE

Zhrnutie výsledkov pre sekvenčné P systémy s inhibítormi

Sekvenčné P systémy s inhibítormi sú Turingovsky úplné

Zhrnutie výsledkov pre sekvenčné P systémy s inhibítormi

- Sekvenčné P systémy s inhibítormi sú Turingovsky úplné
- Podobné výsledky pre Petriho siete

Zhrnutie výsledkov pre sekvenčné P systémy s inhibítormi

- Sekvenčné P systémy s inhibítormi sú Turingovsky úplné
- Podobné výsledky pre Petriho siete
- Rozpúšťanie, vytváranie membrán, pravidlá s prioritami
- Výskum iných obmedzení pravidiel

2. Sekvenčné P systémy s aktívnymi membránami

• Pravidlo, ktoré vytvorí membránu: $u \to [jv]_j$, $u \in \mathbb{N}^{\Sigma}$, $v \in \mathbb{N}^{\Sigma}$, $1 \le j \le m$

- Pravidlo, ktoré vytvorí membránu: $u \to [jv]_j$, $u \in \mathbb{N}^{\Sigma}$, $v \in \mathbb{N}^{\Sigma}$, 1 < j < m
- Bez limitu počtu aplikovaní pravidla na vytvorenie membrány (PsRE [Ibarra, 2005])

- Pravidlo, ktoré vytvorí membránu: $u \to [jv]_j$, $u \in \mathbb{N}^{\Sigma}$, $v \in \mathbb{N}^{\Sigma}$, $1 \le j \le m$
- Bez limitu počtu aplikovaní pravidla na vytvorenie membrány (PsRE [Ibarra, 2005])
- Rozhodnuteľnosť existencie nekonečného výpočtu
- Nerozhodnuteľnosť existencie konečného výpočtu

- Pravidlo, ktoré vytvorí membránu: $u \to [jv]_j$, $u \in \mathbb{N}^{\Sigma}$, $v \in \mathbb{N}^{\Sigma}$, $1 \le j \le m$
- Bez limitu počtu aplikovaní pravidla na vytvorenie membrány (PsRE [Ibarra, 2005])
- Rozhodnuteľnosť existencie nekonečného výpočtu
- Nerozhodnuteľnosť existencie konečného výpočtu
- Kováč, M. (2015). Decidability of termination problems for sequential p systems with active membranes.
 In Beckmann, A., Mitrana, V., and Soskova, M., editors, Evolving Computability, volume 9136 of Lecture Notes in Computer Science, pages 236–245. Springer International Publishing

Problém zastavenia

Problém zastavenia je definovaný pre deterministické modely

Problém zastavenia

- Problém zastavenia je definovaný pre deterministické modely
- Zovšeobecnenie: Existencia (ne)konečného výpočtu

- Membránova konfigurácia (T, I, c), kde
 - T je stromová štruktúra

- Membránova konfigurácia (T, I, c), kde
 - T je stromová štruktúra
 - $\bullet \ \textit{I}: \textit{V(T)} \rightarrow \{1, \ldots, \textit{m}\}$

- Membránova konfigurácia (T, I, c), kde
 - T je stromová štruktúra
 - $I:V(T) \rightarrow \{1,\ldots,m\}$
 - $c:V(T)\to\mathbb{N}^{\Sigma}$

- Membránova konfigurácia (T, I, c), kde
 - T je stromová štruktúra
 - $I:V(T) \rightarrow \{1,\ldots,m\}$
 - $c: V(T) \to \mathbb{N}^{\Sigma}$
- Aktívny P systém je $(\Sigma, C_0, R_1, R_2, \dots, R_m)$, kde
 - Σ je abeceda
 - C₀ je počiatočná membránová konfigurácia
 - R_i je množina pravidiel

• Existencia konečného výpočtu je nerozhodnuteľný problém

- Existencia konečného výpočtu je nerozhodnuteľný problém
- Redukcia na halting problem

Existencia nekonečného výpočtu je rozhodnuteľný problém

- Existencia nekonečného výpočtu je rozhodnuteľný problém
- Obmedzenie na počet membrán

Graf dosiahnuteľnosti

- Graf dosiahnuteľnosti
- Čiastočné usporiadanie ≤:

- Graf dosiahnuteľnosti
- Čiastočné usporiadanie ≤:
 - $C_1 = (T_1, I_1, c_1)$
 - $C_2 = (T_2, I_2, c_2)$

- Graf dosiahnuteľnosti
- Čiastočné usporiadanie ≤:
 - $C_1 = (T_1, I_1, c_1)$
 - $C_2 = (T_2, I_2, c_2)$
 - $C_1 \leq C_2$, ak \exists izomorfizmus $f: T_1 \to T_2$ taký, že: $\forall d \in T_1$ platí:
 - $I_1(d) = I_2(f(d))$
 - $c_1(d) \subseteq c_2(f(d))$

- Graf dosiahnuteľnosti
- Čiastočné usporiadanie ≤:
 - $C_1 = (T_1, I_1, c_1)$
 - $C_2 = (T_2, I_2, c_2)$
 - $C_1 \leq C_2$, ak \exists izomorfizmus $f: T_1 \to T_2$ taký, že: $\forall d \in T_1$ platí:
 - $l_1(d) = l_2(f(d))$
 - $c_1(d) \subseteq c_2(f(d))$
- $C_1 \leq C_2 \Rightarrow$ každé pravidlo v C_1 je aplikovateľné v C_2 .

• Dicksonova lemma: Pre každú nekonečnú postupnosť n-tíc nad \mathbb{N} $\{a_i\}_{i=0}^{\infty}$ existujú i < j: $a_i \le a_j$

- Dicksonova lemma: Pre každú nekonečnú postupnosť n-tíc nad \mathbb{N} $\{a_i\}_{i=0}^{\infty}$ existujú i < j: $a_i \le a_j$
- Pre každú nekonečnú postupnosť konfigurácií existuje C_1 , C_2 : $C_1 \rightarrow^* C_2$ a $C_1 \leq C_2$.

- Dicksonova lemma: Pre každú nekonečnú postupnosť n-tíc nad \mathbb{N} $\{a_i\}_{i=0}^{\infty}$ existujú i < j: $a_i \le a_j$
- Pre každú nekonečnú postupnosť konfigurácií existuje C_1 , C_2 : $C_1 \rightarrow^* C_2$ a $C_1 \leq C_2$.
- Kodovanie konfigurácií $enc(C_1) \leq enc(C_2) \Rightarrow C_1 \leq C_2$

Algoritmus rozhodujúci existenciu nekonečného výpočtu

- Traverzuj graf dosiahnuteľnosti
- Dosiahnutá konfigurácia C₂, taká, že na ceste z počiatočnej konfigurácie existuje C₁ ≤ C₂ ⇒ YES.
- Ak traverzovanie skončilo ⇒ NO.

Zhrnutie výsledkov pre sekvenčné P systémy s aktívnymi membránami

• Existencia nekonečného výpočtu je rozhodnuteľná.

Zhrnutie výsledkov pre sekvenčné P systémy s aktívnymi membránami

- Existencia nekonečného výpočtu je rozhodnuteľná.
- Existencia konečného výpočtu je nerozhodnuteľná.

Sekvenčné P systémy s množinami namiesto multimnožín

3. Sekvenčné P systémy s množinami namiesto multimnožín

Sekvenčné P systémy s množinami namiesto multimnožín

Inšpirácia z Reaction systems

Sekvenčné P systémy s množinami namiesto multimnožín

- Inšpirácia z Reaction systems
- Nakoľko realistické je reprezentovať presný počet objektov?

Sekvenčné P systémy s množinami namiesto multimnožín

- Inšpirácia z Reaction systems
- Nakoľko realistické je reprezentovať presný počet objektov?
- Nepraktická analýza kvôli veľkosti stavového priestoru

• [Alhazov, 2006]: počty objektov sa ignorujú

- [Alhazov, 2006]: počty objektov sa ignorujú
 - Maximálny paralelizmus ⇒ determinizmus.

- [Alhazov, 2006]: počty objektov sa ignorujú
 - Maximálny paralelizmus ⇒ determinizmus.
 - Ekvivalencia s konečnostavovými automatmi.

- [Alhazov, 2006]: počty objektov sa ignorujú
 - Maximálny paralelizmus ⇒ determinizmus.
 - Ekvivalencia s konečnostavovými automatmi.
 - S aktívnymi membránami je model Turingovsky úplný.

- [Alhazov, 2006]: počty objektov sa ignorujú
 - Maximálny paralelizmus ⇒ determinizmus.
 - Ekvivalencia s konečnostavovými automatmi.
 - S aktívnymi membránami je model Turingovsky úplný.
- [Kleijn and Koutny, 2011]: "min-enabled" computational step (= sekvenčný mód)

- [Alhazov, 2006]: počty objektov sa ignorujú
 - Maximálny paralelizmus ⇒ determinizmus.
 - Ekvivalencia s konečnostavovými automatmi.
 - S aktívnymi membránami je model Turingovsky úplný.
- [Kleijn and Koutny, 2011]: "min-enabled" computational step (= sekvenčný mód)
 - Ekvivalencia s konečnostavovými automatmi.

- [Alhazov, 2006]: počty objektov sa ignorujú
 - Maximálny paralelizmus ⇒ determinizmus.
 - Ekvivalencia s konečnostavovými automatmi.
 - S aktívnymi membránami je model Turingovsky úplný.
- [Kleijn and Koutny, 2011]: "min-enabled" computational step (= sekvenčný mód)
 - Ekvivalencia s konečnostavovými automatmi.
- Vlastnosti:
 - Pravidlá bez konfliktu (objekty sa môžu zúčastniť ako reaktanty súčasne vo viacerých pravidlách).
 - Ak je objekt použitý aspoň v jednom pravidle ako reaktant, bude spotrebovaný.

Aktívny P systém

- Membránova konfigurácia (T, I, c), kde
 - T je stromová štruktúra
 - $I:V(T) \rightarrow \{1,\ldots,m\}$
 - $c: V(T) \to \mathbb{N}^{\Sigma}$
- Aktívny P systém je $(\Sigma, C_0, R_1, R_2, \dots, R_m)$, kde
 - Σ je abeceda
 - C₀ je počiatočná membránová konfigurácia
 - R_i je množina pravidiel

Aktívny P systém s množinami objektov

- Membránova konfigurácia (T, I, c), kde
 - T je stromová štruktúra
 - $I:V(T) \rightarrow \{1,\ldots,m\}$
 - $c:V(T)\to 2^{\Sigma}$
- Aktívny P systém je $(\Sigma, C_0, R_1, R_2, \dots, R_m)$, kde
 - Σ je abeceda
 - C₀ je počiatočná membránová konfigurácia
 - R_i je množina pravidiel

Iné spôsoby vytvárania membrány

- Problémy pôvodnej definície:
 - Vytváranie membrány, ktorá už existuje
 - Posielanie objektu do neexistujúcej membrány

Iné spôsoby vytvárania membrány

- Problémy pôvodnej definície:
 - Vytváranie membrány, ktorá už existuje
 - Posielanie objektu do neexistujúcej membrány
- Inject-or-create

Iné spôsoby vytvárania membrány

- Problémy pôvodnej definície:
 - Vytváranie membrány, ktorá už existuje
 - Posielanie objektu do neexistujúcej membrány
- Inject-or-create
- Wrap-or-create

	membrány	čas
original	<i>O</i> (<i>n</i>)	O(n)

	membrány	čas
original	<i>O</i> (<i>n</i>)	<i>O</i> (<i>n</i>)
original	O(log(n))	O(log(n))

	membrány	čas
original	O(n)	O(n)
original	O(log(n))	O(log(n))
inject-or-create	O(log(n))	O(log(n))

	membrány	čas
original	O(n)	O(n)
original	O(log(n))	O(log(n))
inject-or-create	O(log(n))	O(log(n))
wrap-or-create	O(n)	O(1)

 Kováč and Gruska (2015). Sequential p systems with active membranes working on sets.

In Zbigniew Suraj, L. C., editor, *Proceedings of the 24th International Workshop on Concurrency, Specification and Programming*, pages 247–257

Sekvenčné P systémy s inhibítormi Sekvenčné P systémy s aktívnymi membránami Sekvenčné P systémy s množinami namiesto multimnožír **Záver**

Záver

Záver

Záver

- Sekvenčné P systémy s inhibítormi sú Turingovsky úplné
 - simulácia maximálne paralelného systému
 - simulácia registrového stroja
- Sekvenčné P systémy s aktívnymi membránami
 - existencia nekonečnej postupnosti je rozhodnuteľný problém
 - existencia konečnej postupnosti je nerozhodnuteľný problém
- Sekvenčné P systémy s aktívnymi membránami s množinami namiesto multimnožín sú Turingovsky úplné

Sekvenčné P systémy s inhibitormi Sekvenčné P systémy s aktívnymi membránami Sekvenčné P systémy s množinami namiesto multimnožín **Záver**

Záver

Detekcia prázdnosti membrán

• Objekty vyhýbajúce sa prázdnym membránam

Sekvenčné P systémy s inhibítormi Sekvenčné P systémy s aktívnymi membránami Sekvenčné P systémy s množinami namiesto multimnožín **Záver**

Záver

Detekcia prázdnosti membrán

- Objekty vyhýbajúce sa prázdnym membránam
- Mutovanie objektov pri poslaní do prázdnej membrány

Sekvenčné P systémy s inhibítormi Sekvenčné P systémy s aktívnymi membránami Sekvenčné P systémy s množinami namiesto multimnožín **Záver**

Záver

Detekcia prázdnosti membrán

- Objekty vyhýbajúce sa prázdnym membránam
- Mutovanie objektov pri poslaní do prázdnej membrány
- Objekt reprezetujúci vákuum

Ďakujem za pozornosť

- The statement of Theorem 4.1.2 should be reformulated, although intuitive meaning is clear. *PsRE* does not equal to mentioned P systems but to the family of number sets they generate.
- Theorem 4.1.2: Sequential P systems with cooperative rules and inhibitors can simulate register machines and thus equal PsRE.

- The statement of Theorem 4.1.2 should be reformulated, although intuitive meaning is clear. PsRE does not equal to mentioned P systems but to the family of number sets they generate.
- Theorem 4.1.2: Sequential P systems with cooperative rules and inhibitors can simulate register machines and thus generate PsRE.

 Symbols in rules in Section 4.4.2 are sometimes separated by commas (Ex. 4.4.1), sometimes not (p. 87). In Section 4.2, separators | are sometimes used, sometimes not.

- Symbols in rules in Section 4.4.2 are sometimes separated by commas (Ex. 4.4.1), sometimes not (p. 87). In Section 4.2, separators | are sometimes used, sometimes not.
- Example 4.4.1: $x_j, t_i \to x_l, t_i$
- **p. 87**: $z_j st \to y_k t$
- Definition 2.6.3 ... As elements of a multiset can also be strings, we separate them with the pipe symbol, e.g. element|element|other_element
- Proof 4.3.1 $e|a \rightarrow k \uparrow$

- In rule 6 at p. 84, label 1 of the membrane should be i.
- $\bullet \ 6: x_jt_i \rightarrow [_1y_kt_i]_1$

- In rule 6 at p. 84, label 1 of the membrane should be i.
- 6 : $x_j t_i \rightarrow [iy_k t_i]_i$

 It is not clear where Proof 4.4.1 ends. Example 4.4.1 presents the general part of the proof (translation of rules of a register machine into a P system), hence it should be denoted as an example.

- It is not clear where Proof 4.4.1 ends. Example 4.4.1 presents the general part of the proof (translation of rules of a register machine into a P system), hence it should be denoted as an example.
- Dôkaz 4.4.1 má dve strany, Example 4.4.1 je jeden odstavec v strede. Potom ešte pokračuje dôkaz.

• Dôkaz zrejme vyžaduje drobnú úpravu pre prípad $M(a_i) > 1$ v pravidle r_j na str. 60

- Dôkaz zrejme vyžaduje drobnú úpravu pre prípad $M(a_i) > 1$ v pravidle r_j na str. 60
- Áno, dôkaz funguje len pre pravidlá s ľavou stranou veľkosti nanajvýš 2
- $a|RUN \rightarrow \dot{a}|RUN|_{\neg \dot{a}}$
- $\forall r_j \in R_i$ such that

$$r_j = a_1^{M(a_1)} a_2^{M(a_2)} \dots a_n^{M(a_n)} \to a_1^{N(a_1)} a_2^{N(a_2)} \dots a_n^{N(a_n)}$$

we will have the following rules $(\forall 0 \leq m_k \leq min(M(a_k), 1))$:

$$a_1^{M(a_1)-m_1}\dot{a}_1^{m_1}a_2^{M(a_2)-m_2}\dot{a}_2^{m_2}\dots a_n^{M(a_n)-m_n}\dot{a}_n^{m_n}|RUN$$

 $\to a_1'^{N(a_1)}a_2'^{N(a_2)}\dots a_n'^{N(a_n)}|RUN$

 Pozor na formuláciu v dôkaze 4.2.6. Nekonečná postupnosť môže byť aj konštantná a vtedy rastúci pár neexistuje.
 Analogicky v dôkaze 4.2.7 treba rastúci pár zameniť za neklesajúci pár.

- Pozor na formuláciu v dôkaze 4.2.6. Nekonečná postupnosť môže byť aj konštantná a vtedy rastúci pár neexistuje.
 Analogicky v dôkaze 4.2.7 treba rastúci pár zameniť za neklesajúci pár.
- Áno, má tam byť neklesajúci. Hoci je uvedené znamienko ≤, v texte je použité "increasing".

• Ak porovnávam kódy ako reťazce, $enc(C_1) < enc(C_2)$ môže platiť aj v situácii, keď príslušné "stromy" nie sú izomorfné, čo podľa môjho názoru znamená, že dôkaz Lemy 4.2.5 neplatí (opačná implikácia platí).

- Ak porovnávam kódy ako reťazce, $enc(C_1) < enc(C_2)$ môže platiť aj v situácii, keď príslušné "stromy" nie sú izomorfné, čo podľa môjho názoru znamená, že dôkaz Lemy 4.2.5 neplatí (opačná implikácia platí).
- $enc(C_1) = 1001\ 0000\ 0000\ 0000,$ $enc(C_2) = 0000\ 0000\ 1010\ 1210$

Je nutné dávať dávať umelý predpoklad na ohraničenie počtu membrán zvonku cez zablokovanie aplikovateľnosti pravidla vytvárajúceho novú membránu v situácii, ktorá by viedla k prekročeniu stanoveného počtu membrán keď aktívne P-systémy s obmedzeným sumárnym počtom membrán sú univerzálne?

- Je nutné dávať dávať umelý predpoklad na ohraničenie počtu membrán zvonku cez zablokovanie aplikovateľnosti pravidla vytvárajúceho novú membránu v situácii, ktorá by viedla k prekročeniu stanoveného počtu membrán keď aktívne P-systémy s obmedzeným sumárnym počtom membrán sú univerzálne?
- V dôkaze využívame tento limit pri stanovení počtu navzájom neizomorfných stromov.
- Nekonečná postupnosť membránových štruktúr \Rightarrow dve štruktúry T_1, T_2 s nejakou vlastnosťou, vdaka ktorej budeme môcť tvrdiť, že postupnosť je nekonečná.
 - T_1 je podstrom T_2
 - $parent(v_1) = v_2 \ v \ T_1$, potom $parent^*(v_1) = v_2 \ v \ T_2$

Mohli by ste vysvetliť motivácie pre definované modifikácie
 P-systémov v závere kapitoly 4?

- Mohli by ste vysvetliť motivácie pre definované modifikácie
 P-systémov v závere kapitoly 4?
- V pôvodnej definícii:
 - Posielanie do membrány je definované iba pre prípad, kedy cieľová membrána existuje.
 - Vytvorenie novej membrány bolo definované iba pre prípad, kedy cieľová membrána neexistuje
 - Prirodzene sa žiadalo zjednotiť tieto dva pojmy, aby výsledný jeden pojem bol definovaný vo všetkých prípadoch, aj ked cieľová membrána existuje, aj ked neexistuje ⇒ inject-or-create