Practical Machine Learning Project

faeez safedien June 22, 2018

Executive Summary

Using devices such as Jawbone Up, Nike FuelBand, and Fitbit it is now possible to collect a large amount of data about personal activity relatively inexpensively. These type of devices are part of the quantified self movement – a group of enthusiasts who take measurements about themselves regularly to improve their health, to find patterns in their behavior, or because they are tech geeks. One thing that people regularly do is quantify how much of a particular activity they do, but they rarely quantify how well they do it.

In this project, your goal will be to use data from accelerometers on the belt, forearm, arm, and dumbell of 6 participants. They were asked to perform barbell lifts correctly and incorrectly in 5 different ways. More information is available from the website here: HAR [http://groupware.les.inf.puc-rio.br/har] (see the section on the Weight Lifting Exercise Dataset).

Libraries

We use the lattice, ggplot2, plyr and libraries

```
knitr::opts_chunk$set(echo = TRUE, warning=FALSE, message=FALSE, fig.width=10, fig.height=5)
options(width=120)
library(lattice)
library(ggplot2)
library(plyr)
library(randomForest)
## randomForest 4.6-14
## Type rfNews() to see new features/changes/bug fixes.
##
## Attaching package: 'randomForest'
## The following object is masked from 'package:ggplot2':
##
       margin
library(knitr)
library(caret)
library(rpart)
library(rpart.plot)
library(rattle)
## Rattle: A free graphical interface for data science with R.
## Version 5.1.0 Copyright (c) 2006-2017 Togaware Pty Ltd.
## Type 'rattle()' to shake, rattle, and roll your data.
##
## Attaching package: 'rattle'
```

```
## The following object is masked from 'package:randomForest':
##
## importance
library(corrplot)
## corrplot 0.84 loaded
set.seed(112233)
```

Download the Data

```
trainUrl <-"https://d396qusza40orc.cloudfront.net/predmachlearn/pml-training.csv"
testUrl <- "https://d396qusza40orc.cloudfront.net/predmachlearn/pml-testing.csv"
trainFile <- "./data/pml-training.csv"
testFile <- "./data/pml-testing.csv"
if (!file.exists("./data")) {
    dir.create("./data")) {
        download.file(trainUrl, destfile=trainFile, method="curl")
}
if (!file.exists(testFile)) {
        download.file(testUrl, destfile=testFile, method="curl")
}</pre>
```

Read the Data

We read the csv files into data frames

```
train <- read.csv(trainFile)
test <- read.csv(testFile)
dim(train)

## [1] 19622 160
dim(test)

## [1] 20 160</pre>
```

Clean the Data

The training data will be partioned in order to Training set fro the modelling process and a Test set for validation, the split will be 70%-Training and 30%-Test. The original testing data will be used for the quiz.

```
#remove variables with variance close to zero
smallVar <- nearZeroVar(train)
cleanedTrain <- train[, -smallVar]
cleanedTest <- test[, -smallVar]
dim(cleanedTrain)</pre>
```

```
## [1] 19622 100
```

```
#remove values that are mostly NA
mostlyNA <- sapply(cleanedTrain, function(x) mean(is.na(x))) > 0.95
cleanedTrain <- cleanedTrain[, mostlyNA == FALSE]</pre>
cleanedTest <- cleanedTest[, mostlyNA == FALSE]</pre>
dim(cleanedTrain)
## [1] 19622
# the first five variables (X, user_name, raw_timestamp_part_1, raw_timestamp_part_2, cvtd_timestamp) a
cleanedTrain <- cleanedTrain[, -(1:5)]</pre>
cleanedTest <- cleanedTest[, -(1:5)]</pre>
dim(cleanedTrain)
## [1] 19622
## partition the training dat to train the model
inTrain <- createDataPartition(cleanedTrain$classe, p=0.7, list = FALSE)</pre>
TrainSet <- cleanedTrain[inTrain, ]</pre>
TestSet <- cleanedTrain[-inTrain, ]</pre>
dim(TrainSet)
## [1] 13737
                 54
dim(TestSet)
## [1] 5885
               54
```

Correlation Analysis

Before building the model the correlation between variables in analysed

```
corMatrix <- cor(TrainSet[, -54])
corrplot(corMatrix, order="FPC", method = "color", type = "lower", tl.cex = 0.8, tl.col = rgb(0,0,0))</pre>
```

The dark shades represent pairs of highly correlated varibles. Since the aren't that many we won't perform Principal Components Analysis to further reduced the variables.

Prediction Model Building

We will test 3 different models: Classification Trees, Random Forest and Gradient Descent.

Cross Validation is used for efficiency and to limit the effect of overfitting. We will use 5 folds

```
trControl <- trainControl(method="cv", number=5, verboseIter = FALSE)</pre>
```

Classification Trees

```
# fit model
set.seed(112233)
modDT <- train(classe ~ ., data=TrainSet, method="rpart", trControl=trControl)
fancyRpartPlot(modDT$finalModel)</pre>
```

```
#prediction
predDT <- predict(modDT, newdata=TestSet)</pre>
ConfMatrixDT <- confusionMatrix(predDT, TestSet$classe)</pre>
ConfMatrixDT
## Confusion Matrix and Statistics
##
##
            Reference
## Prediction A B
                        C
                               D
                                    Ε
           A 1516 472 486 415 111
##
               28 380
                         32 173
           C 127
                             333 240
##
                   287
                        508
                0
##
           D
                    0
                          0
                             0
           Ε
##
                3
                     0
                          0
                              43 645
##
## Overall Statistics
##
##
                 Accuracy : 0.5181
##
                   95% CI: (0.5052, 0.5309)
      No Information Rate: 0.2845
##
##
      P-Value [Acc > NIR] : < 2.2e-16
##
##
                    Kappa: 0.371
## Mcnemar's Test P-Value : < 2.2e-16
##
## Statistics by Class:
##
                       Class: A Class: B Class: C Class: D Class: E
                         0.9056 0.33363 0.49513 0.0000
## Sensitivity
                                                           0.5961
## Specificity
                         0.6476 0.93279 0.79687
                                                  1.0000
                                                           0.9904
## Pos Pred Value
                         0.5053 0.54363 0.33980
                                                      \mathtt{NaN}
                                                            0.9334
## Neg Pred Value
                        0.9452 0.85364 0.88200
                                                  0.8362
                                                           0.9159
## Prevalence
                        0.2845 0.19354 0.17434
                                                  0.1638
                                                           0.1839
## Detection Rate
                       0.2576 0.06457 0.08632
                                                  0.0000
                                                           0.1096
## Detection Prevalence 0.5098 0.11878 0.25404 0.0000
                                                            0.1174
                       0.7766 0.63321 0.64600 0.5000
## Balanced Accuracy
                                                           0.7933
Random Forest
# fit model
set.seed(112233)
modRF<- train(classe ~ ., data=TrainSet, method="rf", trControl=trControl)</pre>
modRF$finalModel
##
## randomForest(x = x, y = y, mtry = param$mtry)
                 Type of random forest: classification
##
##
                       Number of trees: 500
## No. of variables tried at each split: 27
          OOB estimate of error rate: 0.25%
```

Confusion matrix:

```
##
                  C
                       D
                            E class.error
        Α
## A 3904
             1
                  0
                       0
                            1 0.0005120328
## B
        6 2648
                  3
                            0 0.0037622272
## C
             7 2389
                       0
                            0 0.0029215359
        0
## D
        0
             0
                 10 2241
                            1 0.0048845471
## E
        0
                  Λ
                       3 2521 0.0015841584
# prediction
predRF <- predict(modRF, newdata=TestSet)</pre>
ConfMatrixRF <- confusionMatrix(predRF, TestSet$classe)</pre>
ConfMatrixRF
## Confusion Matrix and Statistics
##
             Reference
## Prediction
                      В
                           C
                                D
                                     Ε
                 Α
##
            A 1674
                      1
                           0
                                0
##
            В
                 0 1138
                           2
                                      1
                                0
            С
##
                 0
                      0 1024
                                3
##
            D
                 0
                      0
                              961
                                      1
                           0
            Ε
##
                 0
                      0
                           0
                                0 1080
##
## Overall Statistics
##
##
                  Accuracy : 0.9986
##
                    95% CI: (0.9973, 0.9994)
##
       No Information Rate: 0.2845
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                     Kappa: 0.9983
  Mcnemar's Test P-Value : NA
##
##
## Statistics by Class:
##
##
                        Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                          1.0000 0.9991
                                           0.9981
                                                      0.9969
                                                               0.9982
## Specificity
                          0.9998 0.9994
                                            0.9994
                                                     0.9998
                                                               1.0000
## Pos Pred Value
                          0.9994 0.9974
                                            0.9971
                                                      0.9990
                                                               1.0000
## Neg Pred Value
                          1.0000 0.9998
                                            0.9996
                                                      0.9994
                                                               0.9996
## Prevalence
                          0.2845
                                   0.1935
                                            0.1743
                                                      0.1638
                                                               0.1839
## Detection Rate
                          0.2845 0.1934
                                            0.1740
                                                      0.1633
                                                               0.1835
## Detection Prevalence
                          0.2846 0.1939
                                            0.1745
                                                      0.1635
                                                               0.1835
## Balanced Accuracy
                          0.9999 0.9992
                                            0.9987
                                                      0.9983
                                                               0.9991
```

Generalised Boosted Model

```
# fit model
set.seed(112233)
modGBM <- train(classe ~ ., data=TrainSet, method="gbm", trControl=trControl)</pre>
## Iter
          TrainDeviance
                           ValidDeviance
                                            StepSize
                                                        Improve
##
                  1.6094
                                              0.1000
                                                         0.1314
        1
                                     -nan
        2
##
                  1.5217
                                     -nan
                                              0.1000
                                                         0.0871
##
        3
                  1.4648
                                              0.1000
                                                         0.0670
                                     -nan
```

##	4	1.4207	-nan	0.1000	0.0517
##	5	1.3858	-nan	0.1000	0.0434
##	6	1.3572	-nan	0.1000	0.0470
##	7	1.3280	-nan	0.1000	0.0413
##	8	1.3023	-nan	0.1000	0.0319
##	9	1.2807	-nan	0.1000	0.0411
##	10	1.2542	-nan	0.1000	0.0320
##	20	1.0931	-nan	0.1000	0.0190
##	40	0.9078	-nan	0.1000	0.0093
##	60	0.7962	-nan	0.1000	0.0074
##	80	0.7163	-nan	0.1000	0.0033
##	100	0.6516	-nan	0.1000	0.0034
##	120	0.5987	-nan	0.1000	0.0035
##	140	0.5497	-nan	0.1000	0.0023
##	150	0.5286	-nan	0.1000	0.0032
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	-nan	0.1000	0.1927
##	2	1.4856	-nan	0.1000	0.1259
##	3	1.4018	-nan	0.1000	0.1108
##	4	1.3312	-nan	0.1000	0.0932
##	5	1.2720	-nan	0.1000	0.0734
##	6	1.2243	-nan	0.1000	0.0655
##	7	1.1826	-nan	0.1000	0.0611
##	8	1.1446	-nan	0.1000	0.0540
##	9	1.1095	-nan	0.1000	0.0490
##	10	1.0780	-nan	0.1000	0.0393
##	20	0.8452	-nan	0.1000	0.0216
##	40	0.6207	-nan	0.1000	0.0150
##	60	0.4768	-nan	0.1000	0.0074
##	80	0.3924	-nan	0.1000	0.0057
##	100	0.3230	-nan	0.1000	0.0045
##	120	0.2706	-nan	0.1000	0.0015
##	140	0.2279	-nan	0.1000	0.0015
##	150	0.2097	-nan	0.1000	0.0024
##	.			a. a.	-
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	-nan	0.1000	0.2434
##	2	1.4570	-nan	0.1000	0.1576
##	3	1.3557	-nan	0.1000	0.1300
##	4	1.2737	-nan	0.1000	0.1175
##	5	1.1999	-nan	0.1000	0.0901
##	6	1.1432	-nan	0.1000	0.0738
##	7	1.0956	-nan	0.1000	0.0781
##	8	1.0462	-nan	0.1000	0.0542
##	9	1.0097	-nan	0.1000	0.0629
##	10	0.9707	-nan	0.1000	0.0608
##	20	0.6901	-nan	0.1000	0.0216
##	40	0.4437	-nan	0.1000	0.0083
##	60 en	0.3252	-nan	0.1000	0.0067
##	80 100	0.2448	-nan	0.1000	0.0026
##	100	0.1903	-nan	0.1000	0.0033
##	120	0.1534	-nan	0.1000	0.0017
##	140	0.1255	-nan	0.1000	0.0016

## ##	150	0.1130	-nan	0.1000	0.0016
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	-nan	0.1000	0.1243
##	2	1.5244	-nan	0.1000	0.0889
##	3	1.4649	-nan	0.1000	0.0677
##	4	1.4206	-nan	0.1000	0.0554
##	5	1.3840	-nan	0.1000	0.0449
##	6	1.3539	-nan	0.1000	0.0445
##	7	1.3253	-nan	0.1000	0.0402
##	8	1.3000	-nan	0.1000	0.0320
##	9	1.2791	-nan	0.1000	0.0404
##	10	1.2518	-nan	0.1000	0.0261
##	20	1.0894	-nan	0.1000	0.0157
##	40	0.9065	-nan	0.1000	0.0095
##	60	0.7961	-nan	0.1000	0.0067
##	80	0.7138	-nan	0.1000	0.0051
##	100	0.6496	-nan	0.1000	0.0037
##	120	0.5950	-nan	0.1000	0.0031
##	140	0.5495	-nan	0.1000	0.0028
##	150	0.5291	-nan	0.1000	0.0042
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	-nan	0.1000	0.1928
##	2	1.4864	-nan	0.1000	0.1349
##	3	1.4002	-nan	0.1000	0.1049
##	4	1.3325	-nan	0.1000	0.0833
##	5	1.2785	-nan	0.1000	0.0806
##	6	1.2273	-nan	0.1000	0.0636
##	7	1.1853	-nan	0.1000	0.0654
##	8	1.1439	-nan	0.1000	0.0574
##	9	1.1076	-nan	0.1000	0.0491
##	10	1.0764	-nan	0.1000	0.0438
##	20	0.8581	-nan	0.1000	0.0229
##	40	0.6310	-nan	0.1000	0.0146
##	60	0.4885	-nan	0.1000	0.0058
##	80	0.3964	-nan	0.1000	0.0059
##	100	0.3272	-nan	0.1000	0.0020
##	120	0.2751	-nan	0.1000	0.0031
##	140	0.2344	-nan	0.1000	0.0022
##	150	0.2167	-nan	0.1000	0.0015
##	т.	m · p ·	17 1 · 1D ·	a. a.	-
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	-nan	0.1000	0.2423
## ##	2	1.4561 1.3520	-nan	0.1000 0.1000	0.1615 0.1271
##	4	1.2710	-nan	0.1000	0.1271
##	5	1.2022	-nan	0.1000	0.1008
##	6	1.1467	-nan	0.1000	0.0340
##	7	1.0975	-nan	0.1000	0.0700
##	8	1.0518	-nan -nan	0.1000	0.0714
##	9	1.0119	-nan	0.1000	0.0517
##	10	0.9742	-nan	0.1000	0.0599
##	20	0.7050	-nan	0.1000	0.0337
	20	5.1.000	11411	3.2000	

##	40	0.4452	-nan	0.1000	0.0093
##	60	0.3264	-nan	0.1000	0.0058
##	80	0.2496	-nan	0.1000	0.0046
##	100	0.1936	-nan	0.1000	0.0031
##	120	0.1526	-nan	0.1000	0.0016
##	140	0.1228	-nan	0.1000	0.0009
##	150	0.1127	-nan	0.1000	0.0021
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	-nan	0.1000	0.1287
##	2	1.5235	-nan	0.1000	0.0901
##	3	1.4648	-nan	0.1000	0.0658
##	4	1.4215	-nan	0.1000	0.0546
##	5	1.3852	-nan	0.1000	0.0499
##	6	1.3533	-nan	0.1000	0.0397
##	7	1.3272	-nan	0.1000	0.0404
##	8	1.3020	-nan	0.1000	0.0402
##	9	1.2748	-nan	0.1000	0.0342
##	10	1.2522	-nan	0.1000	0.0279
##	20	1.0927	-nan	0.1000	0.0204
##	40	0.9079	-nan	0.1000	0.0085
##	60	0.7953	-nan	0.1000	0.0061
##	80	0.7133	-nan	0.1000	0.0047
##	100	0.6508	-nan	0.1000	0.0032
##	120	0.5954	-nan	0.1000	0.0040
##	140	0.5487	-nan	0.1000	0.0037
##	150	0.5273	-nan	0.1000	0.0022
шш					
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
	Iter 1	TrainDeviance 1.6094	ValidDeviance -nan	StepSize 0.1000	0.1953
##	1 2			_	=
## ##	1	1.6094	-nan	0.1000	0.1953
## ## ##	1 2	1.6094 1.4834	-nan -nan	0.1000 0.1000	0.1953 0.1230
## ## ## ##	1 2 3	1.6094 1.4834 1.4015	-nan -nan -nan	0.1000 0.1000 0.1000	0.1953 0.1230 0.1080
## ## ## ##	1 2 3 4 5 6	1.6094 1.4834 1.4015 1.3309 1.2737	-nan -nan -nan -nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1953 0.1230 0.1080 0.0898 0.0701 0.0727
## ## ## ## ##	1 2 3 4 5 6 7	1.6094 1.4834 1.4015 1.3309 1.2737 1.2282 1.1810	-nan -nan -nan -nan -nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1953 0.1230 0.1080 0.0898 0.0701 0.0727 0.0659
## ## ## ## ## ##	1 2 3 4 5 6	1.6094 1.4834 1.4015 1.3309 1.2737 1.2282 1.1810 1.1400	-nan -nan -nan -nan -nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1953 0.1230 0.1080 0.0898 0.0701 0.0727 0.0659 0.0573
## ## ## ## ## ##	1 2 3 4 5 6 7	1.6094 1.4834 1.4015 1.3309 1.2737 1.2282 1.1810 1.1400 1.1039	-nan -nan -nan -nan -nan -nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1953 0.1230 0.1080 0.0898 0.0701 0.0727 0.0659 0.0573 0.0428
## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	1.6094 1.4834 1.4015 1.3309 1.2737 1.2282 1.1810 1.1400	-nan -nan -nan -nan -nan -nan -nan -nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1953 0.1230 0.1080 0.0898 0.0701 0.0727 0.0659 0.0573 0.0428 0.0489
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	1.6094 1.4834 1.4015 1.3309 1.2737 1.2282 1.1810 1.1400 1.1039	-nan -nan -nan -nan -nan -nan -nan -nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1953 0.1230 0.1080 0.0898 0.0701 0.0727 0.0659 0.0573 0.0428 0.0489 0.0198
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	1.6094 1.4834 1.4015 1.3309 1.2737 1.2282 1.1810 1.1400 1.1039 1.0765	-nan -nan -nan -nan -nan -nan -nan -nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1953 0.1230 0.1080 0.0898 0.0701 0.0727 0.0659 0.0573 0.0428 0.0489 0.0198
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	1.6094 1.4834 1.4015 1.3309 1.2737 1.2282 1.1810 1.1400 1.1039 1.0765 0.8485	-nan -nan -nan -nan -nan -nan -nan -nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1953 0.1230 0.1080 0.0898 0.0701 0.0727 0.0659 0.0573 0.0428 0.0489 0.0198
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.6094 1.4834 1.4015 1.3309 1.2737 1.2282 1.1810 1.1400 1.1039 1.0765 0.8485 0.6220	-nan -nan -nan -nan -nan -nan -nan -nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1953 0.1230 0.1080 0.0898 0.0701 0.0727 0.0659 0.0573 0.0428 0.0489 0.0198
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	1.6094 1.4834 1.4015 1.3309 1.2737 1.2282 1.1810 1.1400 1.1039 1.0765 0.8485 0.6220 0.4879	-nan -nan -nan -nan -nan -nan -nan -nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1953 0.1230 0.1080 0.0898 0.0701 0.0727 0.0659 0.0573 0.0428 0.0489 0.0198 0.0107
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.6094 1.4834 1.4015 1.3309 1.2737 1.2282 1.1810 1.1400 1.1039 1.0765 0.8485 0.6220 0.4879 0.3960 0.3269 0.2743	-nan -nan -nan -nan -nan -nan -nan -nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1953 0.1230 0.1080 0.0898 0.0701 0.0727 0.0659 0.0573 0.0428 0.0489 0.0198 0.0107 0.0076 0.0040
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.6094 1.4834 1.4015 1.3309 1.2737 1.2282 1.1810 1.1400 1.1039 1.0765 0.8485 0.6220 0.4879 0.3960 0.3269	-nan -nan -nan -nan -nan -nan -nan -nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1953 0.1230 0.1080 0.0898 0.0701 0.0727 0.0659 0.0573 0.0428 0.0489 0.0198 0.0107 0.0076 0.0040
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.6094 1.4834 1.4015 1.3309 1.2737 1.2282 1.1810 1.1400 1.1039 1.0765 0.8485 0.6220 0.4879 0.3960 0.3269 0.2743	-nan -nan -nan -nan -nan -nan -nan -nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1953 0.1230 0.1080 0.0898 0.0701 0.0727 0.0659 0.0573 0.0428 0.0489 0.0198 0.0107 0.0076 0.0040 0.0026 0.0031
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.6094 1.4834 1.4015 1.3309 1.2737 1.2282 1.1810 1.1400 1.1039 1.0765 0.8485 0.6220 0.4879 0.3960 0.3269 0.2743 0.2311	-nan -nan -nan -nan -nan -nan -nan -nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1953 0.1230 0.1080 0.0898 0.0701 0.0727 0.0659 0.0573 0.0428 0.0489 0.0198 0.0107 0.0076 0.0040 0.0026 0.0031 0.0016
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150	1.6094 1.4834 1.4015 1.3309 1.2737 1.2282 1.1810 1.1400 1.1039 1.0765 0.8485 0.6220 0.4879 0.3960 0.3269 0.2743 0.2311 0.2138 TrainDeviance	-nan -nan -nan -nan -nan -nan -nan -nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1953 0.1230 0.1080 0.0898 0.0701 0.0727 0.0659 0.0573 0.0428 0.0489 0.0198 0.0107 0.0076 0.0040 0.0026 0.0031 0.0016
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.6094 1.4834 1.4015 1.3309 1.2737 1.2282 1.1810 1.1400 1.1039 1.0765 0.8485 0.6220 0.4879 0.3960 0.3269 0.2743 0.2311	-nan -nan -nan -nan -nan -nan -nan -nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1953 0.1230 0.1080 0.0898 0.0701 0.0727 0.0659 0.0573 0.0428 0.0489 0.0198 0.0107 0.0076 0.0040 0.0026 0.0031 0.0016 0.0023
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.6094 1.4834 1.4015 1.3309 1.2737 1.2282 1.1810 1.1400 1.1039 1.0765 0.8485 0.6220 0.4879 0.3960 0.3269 0.2743 0.2311 0.2138 TrainDeviance 1.6094 1.4588	-nan -nan -nan -nan -nan -nan -nan -nan	0.1000 0.1000	0.1953 0.1230 0.1080 0.0898 0.0701 0.0727 0.0659 0.0573 0.0428 0.0489 0.0198 0.0107 0.0076 0.0040 0.0026 0.0031 0.0016 0.0023 Improve 0.2325 0.1624
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter	1.6094 1.4834 1.4015 1.3309 1.2737 1.2282 1.1810 1.1400 1.1039 1.0765 0.8485 0.6220 0.4879 0.3960 0.3269 0.2743 0.2311 0.2138 TrainDeviance 1.6094 1.4588 1.3528	-nan -nan -nan -nan -nan -nan -nan -nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.1953 0.1230 0.1080 0.0898 0.0701 0.0727 0.0659 0.0573 0.0428 0.0489 0.0198 0.0107 0.0076 0.0040 0.0026 0.0031 0.0016 0.0023
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3 4	1.6094 1.4834 1.4015 1.3309 1.2737 1.2282 1.1810 1.1400 1.1039 1.0765 0.8485 0.6220 0.4879 0.3960 0.3269 0.2743 0.2311 0.2138 TrainDeviance 1.6094 1.4588	-nan -nan -nan -nan -nan -nan -nan -nan	0.1000 0.1000	0.1953 0.1230 0.1080 0.0898 0.0701 0.0727 0.0659 0.0573 0.0428 0.0489 0.0198 0.0107 0.0076 0.0040 0.0026 0.0031 0.0016 0.0023 Improve 0.2325 0.1624
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 150 Iter 1 2 3	1.6094 1.4834 1.4015 1.3309 1.2737 1.2282 1.1810 1.1400 1.1039 1.0765 0.8485 0.6220 0.4879 0.3960 0.3269 0.2743 0.2311 0.2138 TrainDeviance 1.6094 1.4588 1.3528	-nan -nan -nan -nan -nan -nan -nan -nan	0.1000 0.1000	0.1953 0.1230 0.1080 0.0898 0.0701 0.0727 0.0659 0.0573 0.0428 0.0489 0.0198 0.0107 0.0076 0.0040 0.0026 0.0031 0.0016 0.0023 Improve 0.2325 0.1624 0.1284

##	6	1.1519	-non	0.1000	0.0862
##	7		-nan		0.0834
		1.0980	-nan	0.1000	
##	8	1.0459	-nan	0.1000	0.0641
##	9	1.0055	-nan	0.1000	0.0689
##	10	0.9631	-nan	0.1000	0.0537
##	20	0.7033	-nan	0.1000	0.0277
##	40	0.4534	-nan	0.1000	0.0141
##	60	0.3312	-nan	0.1000	0.0055
##	80	0.2463	-nan	0.1000	0.0050
##	100	0.1888	-nan	0.1000	0.0042
##	120	0.1509	-nan	0.1000	0.0010
##	140	0.1234	-nan	0.1000	0.0012
##	150	0.1124	-nan	0.1000	0.0009
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.6094	-nan	0.1000	0.1325
##	2	1.5217	-nan	0.1000	0.0884
##	3	1.4638	-nan	0.1000	0.0679
##	4	1.4174	-nan	0.1000	0.0550
##	5	1.3810	-nan	0.1000	0.0448
##	6	1.3515	-nan	0.1000	0.0457
##	7	1.3229	-nan	0.1000	0.0383
##	8	1.2968	-nan	0.1000	0.0324
##	9	1.2760	-nan	0.1000	0.0391
##	10	1.2503	-nan	0.1000	0.0285
##	20	1.0880	-nan	0.1000	0.0164
##	40	0.9050	-nan	0.1000	0.0104
##	60	0.7938	-nan	0.1000	0.0062
##	80	0.7123	-nan	0.1000	0.0002
##	100	0.6458	-nan	0.1000	0.0043
##	120	0.5907		0.1000	0.0033
##	140	0.5431	-nan	0.1000	0.0032
			-nan		
##	150	0.5233	-nan	0.1000	0.0021
##	T+	T i Di	ValidDaniana	C+ C	T
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.6094	-nan	0.1000	0.1956
##	2	1.4836	-nan	0.1000	0.1271
##	3	1.4006	-nan	0.1000	0.1052
##	4	1.3324	-nan	0.1000	0.0913
##	5	1.2742	-nan	0.1000	0.0758
##	6	1.2249	-nan	0.1000	0.0628
##	7	1.1846	-nan	0.1000	0.0579
##	8	1.1472	-nan	0.1000	0.0605
##	9	1.1095	-nan	0.1000	0.0605
##	10	1.0724	-nan	0.1000	0.0348
##	20	0.8470	-nan	0.1000	0.0223
##	40	0.6251	-nan	0.1000	0.0098
##	60	0.4859	-nan	0.1000	0.0075
##	80	0.3937	-nan	0.1000	0.0045
##	100	0.3274	-nan	0.1000	0.0035
##	120	0.2741	-nan	0.1000	0.0040
##	140	0.2330	-nan	0.1000	0.0017
##	150	0.2136	-nan	0.1000	0.0028
##					

##	Iter	TrainDeviance	ValidDeviance	StepSize	Tmnmorro
##	1	1.6094		0.1000	Improve 0.2384
##	2	1.4567	-nan	0.1000	0.2304
##	3	1.3541	-nan		0.1010
##	4	1.2719	-nan	0.1000 0.1000	0.1291
			-nan		
##	5	1.2035	-nan	0.1000	0.0946
##	6	1.1433	-nan	0.1000	0.0764
##	7	1.0947	-nan	0.1000	0.0784
##	8	1.0451	-nan	0.1000	0.0779
##	9	0.9980	-nan	0.1000	0.0597
##	10	0.9600	-nan	0.1000	0.0604
##	20	0.6924	-nan	0.1000	0.0304
##	40	0.4482	-nan	0.1000	0.0091
##	60	0.3233	-nan	0.1000	0.0072
##	80	0.2415	-nan	0.1000	0.0025
##	100	0.1896	-nan	0.1000	0.0048
##	120	0.1503	-nan	0.1000	0.0025
##	140	0.1204	-nan	0.1000	0.0011
##	150	0.1095	-nan	0.1000	0.0012
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	-nan	0.1000	0.1289
##	2	1.5225	-nan	0.1000	0.0850
##	3	1.4654	-nan	0.1000	0.0658
##	4	1.4218	-nan	0.1000	0.0557
##	5	1.3848	-nan	0.1000	0.0500
##	6	1.3529	-nan	0.1000	0.0437
##	7	1.3246	-nan	0.1000	0.0340
##	8	1.3024	-nan	0.1000	0.0337
##	9	1.2789	-nan	0.1000	0.0381
##	10	1.2541	-nan	0.1000	0.0323
##	20	1.0867	-nan	0.1000	0.0189
##	40	0.9029	-nan	0.1000	0.0095
##	60	0.7914	-nan	0.1000	0.0061
##	80	0.7095	-nan	0.1000	0.0053
##	100	0.6409	-nan	0.1000	0.0057
##	120	0.5866	-nan	0.1000	0.0029
##	140	0.5408	-nan	0.1000	0.0028
##	150	0.5207	-nan	0.1000	0.0027
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.6094	-nan	0.1000	0.1895
##	2	1.4858	-nan	0.1000	0.1353
##	3	1.3988	-nan	0.1000	0.1132
##	4	1.3258	-nan	0.1000	0.0829
##	5	1.2716	-nan	0.1000	0.0722
##	6	1.2241	-nan	0.1000	0.0774
##	7	1.1761	-nan	0.1000	0.0699
##	8	1.1327	-nan	0.1000	0.0540
##	9	1.0976	-nan	0.1000	0.0515
##	10	1.0652	-nan	0.1000	0.0404
##	20	0.8361	-nan	0.1000	0.0212
##	40	0.6059	-nan	0.1000	0.0102
##	60	0.4695	-nan	0.1000	0.0079

```
##
       80
                   0.3864
                                                  0.1000
                                                             0.0040
                                       -nan
##
       100
                   0.3225
                                                  0.1000
                                                             0.0033
                                       -nan
##
       120
                   0.2694
                                        -nan
                                                  0.1000
                                                             0.0029
##
       140
                                                  0.1000
                                                             0.0022
                   0.2282
                                        -nan
##
       150
                   0.2111
                                        -nan
                                                  0.1000
                                                             0.0030
##
##
   Iter
           TrainDeviance
                             ValidDeviance
                                               StepSize
                                                            Improve
##
         1
                   1.6094
                                       -nan
                                                  0.1000
                                                             0.2442
##
         2
                   1.4538
                                                  0.1000
                                                             0.1669
                                       -nan
         3
##
                   1.3482
                                       -nan
                                                  0.1000
                                                             0.1267
##
         4
                   1.2670
                                                  0.1000
                                                             0.0983
                                       -nan
         5
##
                   1.2052
                                       -nan
                                                  0.1000
                                                             0.1054
##
         6
                                                  0.1000
                                                             0.0758
                   1.1397
                                       -nan
##
         7
                   1.0918
                                       -nan
                                                  0.1000
                                                             0.0764
##
        8
                   1.0437
                                                  0.1000
                                                             0.0695
                                       -nan
##
        9
                   1.0001
                                                  0.1000
                                                             0.0732
                                        -nan
##
       10
                                                             0.0524
                   0.9545
                                                  0.1000
                                       -nan
##
       20
                   0.7005
                                                  0.1000
                                                             0.0353
                                       -nan
##
       40
                   0.4425
                                                  0.1000
                                                             0.0082
                                       -nan
##
       60
                   0.3242
                                        -nan
                                                  0.1000
                                                             0.0034
##
       80
                   0.2467
                                                  0.1000
                                                             0.0051
                                       -nan
##
                                                             0.0037
       100
                   0.1958
                                        -nan
                                                  0.1000
##
       120
                   0.1555
                                                  0.1000
                                                             0.0015
                                        -nan
##
       140
                   0.1245
                                                  0.1000
                                                             0.0018
                                       -nan
##
       150
                   0.1131
                                       -nan
                                                  0.1000
                                                             0.0013
##
##
           TrainDeviance
                             ValidDeviance
                                               StepSize
                                                            Improve
   Iter
##
         1
                   1.6094
                                                  0.1000
                                                             0.2268
                                       -nan
         2
##
                   1.4632
                                       -nan
                                                  0.1000
                                                             0.1685
##
         3
                                                  0.1000
                                                             0.1258
                   1.3574
                                       -nan
##
         4
                   1.2764
                                        -nan
                                                  0.1000
                                                             0.1128
##
         5
                                                  0.1000
                                                             0.0944
                   1.2081
                                       -nan
##
         6
                   1.1489
                                                  0.1000
                                                             0.0830
                                       -nan
##
         7
                   1.0965
                                                  0.1000
                                                             0.0692
                                       -nan
##
         8
                   1.0526
                                                  0.1000
                                                             0.0606
                                       -nan
##
        9
                   1.0143
                                       -nan
                                                  0.1000
                                                             0.0734
##
       10
                   0.9690
                                        -nan
                                                  0.1000
                                                             0.0601
##
       20
                   0.6966
                                                  0.1000
                                                             0.0260
                                        -nan
##
       40
                   0.4556
                                        -nan
                                                  0.1000
                                                             0.0141
##
       60
                   0.3346
                                                  0.1000
                                                             0.0084
                                       -nan
##
       80
                   0.2489
                                       -nan
                                                  0.1000
                                                             0.0033
##
                                                             0.0036
       100
                   0.1950
                                        -nan
                                                  0.1000
##
       120
                   0.1570
                                       -nan
                                                  0.1000
                                                             0.0034
##
                                                  0.1000
                                                             0.0014
       140
                   0.1245
                                        -nan
##
      150
                   0.1130
                                                  0.1000
                                                             0.0016
                                        -nan
```

modGBM\$finalModel

- ## A gradient boosted model with multinomial loss function.
- ## 150 iterations were performed.
- ## There were 53 predictors of which 43 had non-zero influence.

prediction

predGBM <- predict(modGBM, newdata=TestSet)
ConfMatrixGBM <- confusionMatrix(predGBM, TestSet\$classe)</pre>

ConfMatrixGBM

```
## Confusion Matrix and Statistics
##
##
             Reference
## Prediction
                  Α
                       В
                            C
                                 D
                                       Ε
            A 1665
                       3
                                  2
##
                            0
                                       0
##
            В
                  8 1124
                            6
                                  2
                                       8
##
            C
                  0
                      12 1016
                                 11
                                       3
##
            D
                  1
                       0
                            4
                               948
                                      11
##
            Ε
                  0
                       0
                            0
                                  1 1060
##
## Overall Statistics
##
##
                   Accuracy : 0.9878
##
                     95% CI: (0.9846, 0.9904)
##
       No Information Rate: 0.2845
##
       P-Value [Acc > NIR] : < 2.2e-16
##
##
                      Kappa: 0.9845
##
   Mcnemar's Test P-Value : NA
##
## Statistics by Class:
##
##
                         Class: A Class: B Class: C Class: D Class: E
## Sensitivity
                           0.9946
                                     0.9868
                                              0.9903
                                                        0.9834
                                                                  0.9797
## Specificity
                           0.9988
                                     0.9949
                                              0.9946
                                                        0.9967
                                                                  0.9998
## Pos Pred Value
                                              0.9750
                           0.9970
                                     0.9791
                                                        0.9834
                                                                  0.9991
## Neg Pred Value
                                     0.9968
                                              0.9979
                                                        0.9967
                                                                  0.9954
                           0.9979
## Prevalence
                           0.2845
                                     0.1935
                                              0.1743
                                                        0.1638
                                                                  0.1839
## Detection Rate
                           0.2829
                                     0.1910
                                              0.1726
                                                        0.1611
                                                                  0.1801
## Detection Prevalence
                           0.2838
                                     0.1951
                                              0.1771
                                                        0.1638
                                                                  0.1803
## Balanced Accuracy
                           0.9967
                                     0.9909
                                              0.9925
                                                        0.9901
                                                                  0.9897
```

Model Selection

The accuracy of the three models are as follows: * Classification Trees, 0.5181 * Random Forest, 0.9994 *GBM, 0.9878 The Random Forest will we used for the quiz with the testing data set (with reduced variables).

Before predicting on the test set the model will be retrained on the full training set (cleanedTrain) in order to improve accuracy.

```
# retrain the model
modFinal <- train(classe ~ ., data=cleanedTrain, method="rf", trControl=trControl)

# predict the results from the test set
predTest <- predict(modFinal, newdata=cleanedTest)
predTest</pre>
```

[1] B A B A A E D B A A B C B A E E A B B B ## Levels: A B C D E