華中科技大學

《运动控制系统》课程设计报告

实验名称: 200kW 单相电压型两电平 SPWM 整流器设计与仿真

自动化 2002 班 邓一帆 U202014987 周承禹 U202015007

日期: 2024年1月17日

目录

一、	绪论	1
	1.1、PWM 整流器发展及现状	1
	1.2、PWM 整流器拓扑结构	1
	1.2.1 单相电压型 PWM 整流器主电路拓扑结构	2
	1.2.2 大功率的 PWM 整流器拓扑结构	2
	1.2.3 双极性调制及波形分析	2
	1.3、PWM 整流器的优点	3
Ξ,	单相 PWM 整流器基本	4
三、	双闭环控制系统 PI 参数整定	5
	3.1、电流内环调节器 PI 参数整定	5
	3.2、电压外环调节器 PI 参数整定	6
四、	设计要求和主要设计内容	7
	4.1 技术要求	7
	4.2 主要设计内容	8
五、	参数整定	8
	5.1 直流侧负载电阻参数设计	8
	5.2 交流侧电感参数设计	8
	5.3 直流侧电容参数设计	9
	5.4 PID 整定	10
	5.5 仿真运行	11
六、	性能分析	12
七、	实验结论	15
八、	总结	错误!未定义书答。

一、绪论

1.1、PWM 整流器发展及现状

PWM 整流对电网不产生谐波污染,因而是一种真正意义上的绿色环保电力电子装置。经过几十年的研究和发展,PWM 整流器技术已日趋成熟。PWM 整流器主 电路已从早期的半控型器件桥路发展到如今的全控型器件桥路;其拓扑结构已从单 相、三相电路发展到多相组合及多电平拓扑电路;PWM 开关控制由单纯的硬开关调制发展到软开关调制;功率等级从千瓦级发展到兆瓦级。

在中大功率场合特别是需要能量双向传递的场合中,PWM 整流电路具有非常广泛的应用前景。IGBT 等新型电力半导体开关器件的出现和 PWM 控制技术的发展,极大地促进了 PWM 整流电路的发展,并使之进入了实用化阶段,已经应用于 有源滤波器、超导储能、交流传动、高压直流输电以及统一潮流控制等方面。在我国,PWM 整流电路地研究仍处于起步阶段,有关 PWM 整流电路的 研究主要以理论和实验研究为主,虽然取得了一定进展,但是还不够完善。

1.2、PWM 整流器拓扑结构

根据不同的功率等级以及不同的用途,有各种不同的 PWM 整流器拓扑结构: PWM 整流器的拓扑结构如下图 1 所示:

图 1. PWM 整流器拓扑结构

1.2.1 单相电压型 PWM 整流器主电路拓扑结构

对于单相 PWM 整流器, 其常用的拓扑结构有以下单相全桥式和单相倍压式两种, 如图 2、3 所示:

图 2. 单相全桥式可逆 PWM 变流器

图 3. 单相倍压式可逆 PWM 变流器

目前对单相电压型 PWM 整流器而言,其主要研究集中在这两种主电路的控制策略和算法上。

1.2.2 大功率的 PWM 整流器拓扑结构

如前所述,要实现 VSR 的四象限运行,关键在于网侧电流的控制。而网侧电流控制,可以通过控制 VSR 交流侧基波电压的幅值、相位来实现。对于单相 VSR 而言,其交流侧基波电压控制有两种 PWM 控制方式,即双极性调制和单极性调制。以下将根据这两种 PWM 控制方式,分别分析单相 VSR PWM 过程。PWM 整流器而言,电压源型 PWM 整流器有较快的响应速度,且易于实现,所以目前 PWM 整流器一般采用电压源型 PWM 整流电路。

1.2.3 双极性调制及波形分析

值得注意的是,当网侧电流 i(t)方向不同时,同一开关模式将存在不同的电流回路。单相 VSR 双极性调制不同开关模式时的电流回路如图 4 所示。

图 4 单相 VSR 双极性调制不同开关模式时的电流回路

1.3、PWM 整流器的优点

传统的相控整流器虽然应用时间较长,技术也较成熟,且被广泛使用,但仍 然存在很多如下问题:

- 晶闸管换相引起网侧电压波形畸变。
- 网侧谐波电流对电网产生谐波"污染"。
- 深控时网侧功率因数降低。
- 闭环控制时动态响应相对较慢。
- 二极管整流器改善了整流器网侧功率因数,但仍会产生网侧谐波电流;
- 它的不足还在于其直流电压的不可控性。

PWM 整流器用全控型功率开关管取代了半控型功率开关管或二极管,以 PWM 斩控整流取代了相控整流或不控整流。把逆变电路中的 PWM 控制技术用于整流电路,就形成了 PWM 整流电路。它的优势在于:

- 对交流电源侧,通过适当控制,可以使电网电流波形接近于正弦,且和输入 电压同相位,电网功率因数接近于1,实现单位功率因数,最大程度地提高 电网的经济效益,减少电网对周围环境的电磁污染;
- 对直流侧,在电网电压或负载发生变化时,能够维持直流中间电压的稳定, 给电源侧逆变器提供良好的工作条件;
- 可以实现牵引与再生制动工况间快速平滑地转换,实现电能双向传输;
- 动态控制响应较快。

二、单相 PWM 整流器基本

在采样控制理论中有一个重要的结论:冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量即指窄脉冲的面积。这里所说的效果基本相同,是指环节的输出响应波形基本相同。如果把各输出波形用傅里叶变换分析,则其低频段非常接近,仅在高频段略有差异。例如图 7—1 所示的三个窄脉冲形状不同,其中图 7—1a 为矩形脉冲,图 7—1b 为三角形脉冲,图 7—1c 为正弦半波脉冲,但它们的面积(即冲量)都等于 1,那么,当它们分别加在具有惯性的同一个环节上时,其输出响应基本相同。当窄脉冲变为图 7—1d 的单位脉冲函数 8(t)时,环节的响应即为该环节的脉冲过渡函数。

图 7-1 形状不同而冲量相同的各种窄脉冲 a) 矩形脉冲 b) 三角形脉冲 c) 正弦半波脉冲 d) 单位脉冲函数

对式(1)进行拉普拉斯变化,可得单相 VSR 的传递函数:

$$\begin{split} L \frac{\mathrm{d}i_{\mathrm{a}}}{\mathrm{d}t} + Ri_{\mathrm{a}} = e_{\mathrm{a}} - u_{\mathrm{a}0} \\ L \frac{\mathrm{d}i_{\mathrm{b}}}{\mathrm{d}t} + Ri_{\mathrm{b}} = e_{\mathrm{b}} - u_{\mathrm{b}0} \\ L \frac{\mathrm{d}i_{\mathrm{c}}}{\mathrm{d}t} + Ri_{\mathrm{c}} = e_{\mathrm{c}} + u_{\mathrm{c}0} \end{split} \tag{1}$$

$$\frac{i_{a}(s)}{e_{a}(s) - u_{a0}(s)} = \frac{1}{Ls + R}$$

$$\frac{i_{b}(s)}{e_{b}(s) - u_{b0}(s)} = \frac{1}{Ls + R}$$

$$\frac{i_{c}(s)}{e_{c}(s) - u_{c0}(s)} = \frac{1}{Ls + R}$$
(2)

三、双闭环控制系统 PI 参数整定

3.1、电流内环调节器 PI 参数整定

根据文献, 考虑电流内环信号采样的延迟和 PWM 控制的小惯性特性, 电流内环结构可由图 8 所示的结构图描述, 以 a 相为例。

图 8. 电流内环控制原理图

 T_s 为电流内环电流采样周期(即 PWM 开关周期), K_{pwm} 为桥路 PWM 等效增益。电流控制器采用 PI 调节,其传递函数为:

$$G_{PI1}(s) = K_{iP} + \frac{K_{iI}}{s} \tag{3}$$

在实际工程中,当电流采样频率、即 PWM 的开关频率 f_s 足够高时,可以忽略电流内环等效小时间常数 $(1.5T_s)$ 影响,若不考虑电压扰动作用,电流内环可近似简化为如图 9 所示结构。

图 9. 简化的电流内环控制框图

电流内环闭环传递函数为:

$$G_{oi} = \frac{K_p}{L} \frac{s + K_1 / K_p}{s^2 + (R + K_p) s / L + K_1 / L}$$
(4)

由式(4)求得电流内环阻尼比和自然震荡频率为:

$$\begin{cases} \xi = \frac{(R+K_{P})}{2\sqrt{K_{I}L}} \\ \omega_{n} = \sqrt{K/L} \end{cases}$$
(6)

联立式 (5)、式 (6) 得:
$$\begin{cases} K_{iP} = \frac{2\xi\omega_{n}L - R}{K} \end{cases}$$

$$\begin{cases} K_{iP} = \frac{2\xi\omega_{n}L - R}{K_{PWM}} \\ K_{iI} = \frac{L\omega_{n}^{2}}{K_{PWM}} \end{cases}$$
 (7)

工程上取电流内环自然震荡频率 $\omega_n \le 2\pi f_s/20$,阻尼比 $\zeta = 0.707$,将 $\omega_n \setminus \zeta$ 参考值带入式 (7),即可设计出电流内环 PI 调节参数。

由于式 (4) 所示的电流内环闭环传递函数有一个一阶零点,它将使系统的超调量增大,因此,为了抵消这个零点,可在闭环系统的前面加一个时间常数为 K_n/K_t 的惯性环节,此环节称为给定滤波器。如图 10 所示:

图 10. 有给定滤波器的电流内环结构图

为了消除相电压 u_a 、 u_b 、 u_c 的干扰作用, 提高系统的电流跟踪性能,可在控制端引入电源电压作为扰动补偿,控制原理框图 11 所示。

图 11. 引入扰动补偿的内环控制框图

图 11 中,当 $K_f = 1/K_{pwm}$ 时,可消除相电压对系统的扰动作用。

3.2、电压外环调节器 PI 参数整定

电压外环调节器控制 PWM 整流器输出稳定的直流电压,使直流侧输出电压高于电源线电压的峰值。通常电流内环控制的带宽比电压外环控制的带宽大得多,在电压外环控制中可以认为三相实际电流 i_a 、 i_b 、 i_c 完全跟踪三相参考电流 i_a^* 、 i_b^* 、 i_c^* ,因此在电压外环控制中电流内环的闭环传递函数 G_{oi} 可以简化为 1。结

合文献给出的电压外环控制结构图,可得到简化的电压外环控制结构图,如图 12 所示。

图 12. 三相 VSR 电压外环控制结构图

图 12 中 TV 为电压采样小惯性时间常数,调节器采用 PI 调节,其传递函数为:

$$G_{PP2}(s) = \frac{K_V (1 + T_V s)}{T_V s} \tag{9}$$

电压外环开环传递函数为:

$$W_{ov} = \frac{0.75K_v(1+T_v s)}{T_v C s^2(\tau_v s+1)}$$
 (10)

由式(10)河知电压外环为二型系统,因此可用典型 II 型系统整定法求取电压调节器参数为

$$\begin{cases} K_v = \frac{4C}{\tau_v} \\ T_v = 5\tau_v \end{cases} \tag{11}$$

四、设计要求和主要设计内容

4.1 技术要求

- 1) 功率因数: 0.9
- 2) 输出功率 200KW
- 3) 单相输入电压 220V
- 4) 整流直流电压: 550V
- 5) 开关频率 6kHz
- 6) 直流侧带电阻性负载
- 7) 整流直流纹波小于 4%

8) 交流侧电流谐波 iTHD 小于 4%

4.2 主要设计内容

- 1) 设计交流侧电感
- 2) 设计直流侧电容
- 3) 设计电流内环的 Kp、Ki 参数
- 4) 设计电压外环的 Kp、Ki 参数。

五、参数整定

5.1 直流侧负载电阻参数设计

$$P = 200kw, V_{dc} = 550V$$
, 所以 $R = V_{dc}^{2} / P = 1.5\Omega$.

5.2 交流侧电感参数设计

交流侧电感的取值不仅影响系统的静态性能,而且还会对三相 PWM 整流器的额定输出功率等其它因素产生影响。以下针对三相 PWM 整流器额定功率和输入电流脉动两个技术指标来设计交流侧电感。

交流侧电感的主要作用:

- 1、滤波,滤除电流谐波,进而满足总体谐波失真(THD)要求。
 - 2、储能,作为Boost型AC/DC变换器的储能电感。
 - 3、阻尼, 使控制系统具有一定的阻尼, 有利于系统稳定。
 - 4、实现 VSR (电压型整流器) 的四象限运行

据此,核心要求是两个,具体分析如下

1. 为了满足交流侧稳态矢量关系,满足电压型整流器(VSR)四象限运行:

$$P = V_s I_{s1} \cos \theta = \frac{V_s^2}{\omega L_s} \left(\frac{V_{conv1}}{V_s} \sin \delta \right)$$

$$Q = V_s I_{s1} \sin \theta = \frac{V_s^2}{\omega L_s} \left(1 - \frac{V_{conv1}}{V_s} \cos \delta \right)$$

$$L \leq \frac{V_{dc} - E}{\omega I_{m}}$$

 $I_{\text{\tiny m}}$ 是交流侧电感电流的最大值, $V_{\text{\tiny dc}}$ =550V, $E=220*\sqrt{2}$

2. 满足谐波 THD 要求:

$$L \geq \frac{1}{I_1 \delta\%} \left[\sum_{n=2}^{\infty} \left(\frac{V_{ab}(n)}{\omega_n} \right)^2 \right]^{1/2}$$

更加具体的值与快速傅里叶分析有关。

本题目的技术要求为交流侧电流谐波 iTHD 小于 4%

由条件 1 得到 $L \le 0.000513H$, 综合之下, 最终设定 L=0.0005H

5.3 直流侧电容参数设计

直流侧电容有两个作用:滤波、抑制直流侧谐波电压;稳定直流侧电压,负载变化时能快速反应。

直流侧的电流输出后相当进入了一个低通滤波器,其传递函数如下:

$$G(s) = \frac{R}{1 + RCs} = R \frac{\frac{1}{RC}}{\frac{1}{RC} + jw}$$

$$i_{dc} \times R \left| \frac{\frac{1}{RC}}{\frac{1}{RC} + jw} \right| \le$$
整流直流纹迹

对于整流输出的直流侧电压,其中的纹波主要是二倍频分量纹波,故设定 $w=2\pi f*2=200\pi$,R由上已知为 1.5Ω , i_{dc} 根据功率运算得到是 376A。而技术要求中,整流直流纹波小于 4%且整流直流电压要求为 550V

同时需要考虑到,快速性和稳定性之间的矛盾:电容越大,输出电压越稳定,但充电的越慢,响应越慢;电容越小,输出电压的波动就越大,稳定电压的能力就越差,单数充电速度快,响应就相应更快。

因此直流侧的电容不宜过大,过大会导致响应缓慢,在保证稳定性要求的情况下,再追求快速性。再结合裕量的思想,最终设定的**直流侧电容为 C=0.07F。**

5.4 PID 整定

电流内环控制框图设计:

图 4-1 电流内环控制框图

相应的电流环传递函数:

开环: Gi_op=(kpi+kii/s)/(Ls+R1) 其中是电感的等效电阻,根据情况自己拟定

闭环: Gi_cl= Gi_op/(1+ Gi_op)

电压外环控制框图设计:

图 1-2 电压外环控制框图

相应的电压环传递函数:

输出端回路的传递函数: Go=R/(1+RCs)

开环: Gu_op=(kpu+kiu/s)*Go

闭环: Gu c1= Gu op/(1+ Gu op)

上述的控制器全部设计为 PI 调节器,由此得到 kpi、kii 和 kpu、kiu。

5.5 仿真运行

• 功率因数

• 直流侧电压

计算相应直流纹波为 3.88%<4% , 满足技术要求

六、性能分析

技术要求:

- 1) 功率因数: 0.9
- 2) 输出功率 200KW
- 3) 单相输入电压 220V
- 4) 整流直流电压: 550V
- 5) 开关频率 6kHz
- 6) 直流侧带电阻性负载

- 7) 整流直流纹波小于 4%
- 8) 交流侧电流谐波 iTHD 小于 4%

(1) 直流电压和功率

负载电阻为 1.5 欧姆,输出电压稳定在 550V,由 $P = U^2/R$,知功率约为 200KW,符合实验要求。

(2) 输入电压 220V

图 20. 输入电压设置截图

(3) 开关频率 6Khz

图 21. 开关频率设置截图

(4) 功率因数

纹波波形图

由图知,稳态情况下电压的变化范围约为 600±0.3,波动 0.3/600×100%=0.04%,几乎没有纹波,性能良好,符合实验要求。

(5) 电流侧谐波 iTHD

电流测谐波值

由 simulink 仿真结果知,畸变率约为 3.7%,基本上符合要求。

七、实验结论

通过对 PWM 整流电路的适当控制,可以使其输入电流非常接近正弦波,且和输入电压同相位,功率因数近似为 1。同时,也可以实现能量的双向流动,直流电压输出稳定,动态性能良好等,减少谐波,在实际生活中广泛应用。