Practice Problem Set 7 - Optimization, LDA, Naive Bayes

1. (Chang, NCU Taiwan) Consider the optimization problem

$$\min ||Ax - b||^2,$$

where $A \in \Re^{m \times n}$, $m \ge n, b \in \Re^m$. Compute the gradient and Hessian of the objective function. Write down the fixed step size gradient descent algorithm for solving the optimization problem.

- 2. (Pena, CMU) Prove that for a quadratic cost function, Newton's method reaches the optimum point in one step.
- 3. (Adapted from Boyd) Consider the quadratic objective function $f(x) = \frac{1}{2}(x_1^2 + \gamma x_2^2)$, where $\gamma > 0$. Consider the initial starting point $x^{(0)} = \begin{bmatrix} \gamma & 1 \end{bmatrix}^{\top}$. Derive the steepest descent update equation, and show the general term of $x^{(k)}$ for $k = 0, 1, 2, \cdots$.
- 4. (Boyd) Consider the following problem with $x \in \Re^2$.

minimize
$$x_1^2 + x_2^2$$

subject to $(x_1 - 1)^2 + (x_2 - 1)^2 \le 1$
subject to $(x_1 - 1)^2 + (x_2 + 1)^2 \le 1$

- (a) Sketch the feasible set and level sets of the objective. Find the optimal point x^* and optimal value p^* .
- (b) Write the KKT conditions and the Lagrangian.
- 5. Murphy 9.1
- 6. (StatQuest) Consider that there are two types of messages, normal and spam. Normal messages have the following words that occur: "Dear" 8 times, "Friend" 5 times, "Lunch" 3 times, and "Money" 1 time. Spam messages have words occurring with different frequencies: "Dear" 2 times, "Friend" 1 time, "Lunch" zero times, and "Money" 4 times.

Now consider a new message with the words "Dear Friend". Consider the words are independent of each other. The prior probability that any message is a normal message is $2/3 (\approx 0.67)$.

- (a) Using Naive Bayes, is the new message normal or spam?
- (b) Does it matter if the message was "Friend Dear"? What does that say about the independence assumption?
- (c) What would happen if one of the words was "Lunch"?