MAT 1375, Classwork10, Fall2024

1. The graph of $f(x) = \frac{p(x)}{q(x)}$ is displayed below, where $\deg(p(x)) = 1$ and $\deg(q(x)) = 3$.

By (1), we know
$$f(2) = 0$$
, then $\frac{p(2)}{g(2)} = 0 \Rightarrow p(2) = 0$
input output
Since $deg(p) = 1$, $p(x) = C \cdot (x-2)$ where C is a constant.

Since
$$deg(p) = 1$$
, $p(x) = C \cdot (x-2)$ where C is a constant.
Now $f(x) = \frac{p(x)}{g(x)} = \frac{C(x-2)}{(x-4)(x+1)(x+3)}$, we can use E $(f(0)=-1)$ to find C :
$$-1 = f(0) = \frac{C \cdot (0-2)}{(0-4) \cdot (0-1)(0+3)} = \frac{-2 \cdot C}{(-4)(+1)(3)} = \frac{-2}{12} C \Rightarrow \frac{-1}{2} C \Rightarrow C = 6$$
Thus $f(x) = \frac{6 \cdot (x-2)}{(x-4)(x-1)(x+3)}$

For 2. And 3., let $f(x) = \frac{p(x)}{q(x)}$ be a rational function and $\deg(p(x)) > \deg(q(x))$

2. Rational Function and Long Division:

If p(x) divided by q(x) can be represented with a quotient g(x) and a remainder r(x)where $\deg(r(x)) \leq \deg(q(x))$, one can rewrite f(x) as

$$f(x) = \frac{p(x)}{q(x)} = \frac{q(x)}{q(x)} + \frac{r(x)}{q(x)}.$$

3. Asymptotic Behavior with Slant Asymptote:

Since $\deg(r(x)) < \deg(q(x))$, for large |x| (which is $x \to \pm \underline{\hspace{1cm}}$), we have

$$\frac{r(x)}{q(x)}$$
 approaches so that $f(x)$ $g(x)$.

If g(x) is a linear function (which is a polynomial of degree _____), then g is called the s asymptote of f.

4. Find the slant asymptote of the rational function
$$f(x) = \frac{2x^3 - 13x^2 + 35x - 26}{x^2 - 4x + 6}$$
.

Let $p(x) = 2x^3 - 13x^2 + 35x - 26$, $q(x) = x^2 - 4x + 6$, $f(x) = \frac{p(x)}{q(x)}$.

$$p(x) = q(x) \cdot q(x) + r(x) = (x^2 - 4x + 6) \cdot (2x - 5) + (3x + 4)$$

$$= (x^2 - 4x + 6) \cdot (2x - 5) + (3x + 4)$$

$$\Rightarrow f(x) = \frac{p(x)}{q(x)} = q(x) + \frac{r(x)}{q(x)}$$

$$= 2x - 5 + \frac{3x + 4}{x^2 - 4x + 6}$$

$$= 2x - 5 + \frac{3x + 4}{x^2 - 4x + 6}$$
Thus, $y = 2x - 5$ is the slawt asymptote.

5. The Strategy for Solving Inequalities (Application of Number Line Test):

Step1. Replace ``>" (`` \geq ") or ``<" (`` \leq ") by ``=" and solve the equation.

Step2. Mark the solutions on the number line and check <u>Positivity</u> in each subinterval.

Step3. Check the <u>end points</u> of the subintervals to see if they are included in the solution set.

6. Given
$$x^3 + 15x \ge 7x^2 + 9$$
. Solve for x .

Move all the terms to left hand side (LHS): $\chi^3 - \chi^2 + 15\chi - 9 \ge 0$

Stap1 change ">" to "=": $\chi^3 - \chi^2 + 15\chi - 9 = 0$ ($\chi = 1$ is a root: $\chi = 1$ is