

Sekil 9.8. Örnek akım kaynağı devreleri.

$$\Delta V_{BE} = V_{BE1} - V_{BE2} \cong R_1 I_S \tag{9.44}$$

dir. (9.43) ve (9.44) bağıntılarından hareketle R_1 direncinin değeri,

$$R_1 = \frac{V_T}{I_S} \ln \frac{I}{I_S} \tag{9.45}$$

olur. I ve I_s 'in bilinmesi halinde R_1 direnci kolayca hesaplanabilir.

Şekil 9.8. de verilen (b) devresi, akım kaynağı devrelerinin bir adım gelişmiş biçimidir. Devrede geribesleme ile akım değişimleri kompanze edilmiş ve çıkış direnci büyük değerlere çıkartılmıştır. Bu devre **Willson akım aynası** olarak adlandırılır.

9.2. Tranzistorlu Çok Katlı Devre Örnekleri

Bu kısımda tranzistor kullanılarak gerçekleştirilen çeşitli çok katlı devrelerin çözümleri incelenecektir. Devrelerin doğru akım analizleri yapılırken Bölüm VII de verilen inceleme yöntemlerinden yararlanılmıştır.

Örnek olarak Şekil 7.11. da verilen doğrudan bağlamalı kuvvetlendirici devre alınsın Bu devreden elde edilen çözümü yapılacak örnek devre, Şekil 9.9. da verilen biçimde olsun. Şekil 9.9. da verilen devrede kullanılan tranzistorlar için $h_{\text{FE}}=h_{\text{fe}}=200$, $V_{\text{BE}}=0,6V$, $h_{\text{re}}=0$, $h_{\text{oe}}=0$ ve $V_{\text{T}}=25\text{mV}$ değerleri verilsin. T_1 tranzistorunun kolektör akımı, baz bölücülü devrenin çalışma noktası akımının bulunusunda olduğu gibi

$$I_{CQ1} = h_{FE1} \frac{V_{BB} - V_{BE1}}{R_B + (h_{FE1} + 1)R_4}$$
 (9.46)

ilişkisinden hesaplanır. (9.46) bağıntısında görülen V_{BB} ve R_{B} büyüklükleri (7.48) bağıntıları yardımı ile hesaplanırlar. Bu hesaplar yapıldığında

Şekil 9.9. Çok katlı çözüm örneği.

$$V_{RR} = 2.5 \text{ V}$$
 $R_R = 20 \text{ k}\Omega$

değerleri bulunur. T_1 tranzistorunun çalışma noktası akımı I_{CQ1} , hesaplanan büyüklüklerin (9.46) bağıntısında kullanılması ile 1mA olarak bulunur. I_{CQ1} 'in bu değeri için r_{e1} =25 Ω olur. T_2 tranzistorunun çalışma noktası kolektör akımı, Şekil 7.11. de verilen devrenin kolektör akımı ilişkilerinden benzeşim yoluyla hesaplanır. Bu hesap yapılırsa,

$$I_{CQ2} = h_{FE2} \frac{V_{CC} - R_3 I_{C1} - V_{BE2}}{R_3 + (h_{FE2} + 1)(R_6 + R_7)}$$
 9.47)

bağıntısı bulunur. (9.47) ifadesinde bilinen değerlerin yerine konulması ile $I_{CO2}\cong 2mA$ elde edilir. Bu akım değeri için $r_{e2}=12,5\Omega$ olur.

Değişken işaretlerde devredeki besleme gerilim kaynağı ile köprüleme ve bağlama kondansatörleri kısa devre alınırlar. Kuvvetlendirici kaskat bir yapıya sahiptir. Kuvvetlendiricinin gerilim kazancı, T_1 ve T_2 tranzistorlarının sağladığı gerilim kazançlarının çarpımına eşittir. Çıkış katı T_2 tranzistorundan oluşmaktadır. Bu katın yükü belli ve devre ortak emetörlü devre olduğundan gerilim kazancı,

$$K_{v2} = -\frac{R'_{v2}}{r_{e2} + R_{e2}}$$

ile hesaplanır. $R'_{y2}=R_5//R_{\gamma}\approx 1,82k\Omega$, $R_{e2}=R_6=100\Omega$ ve $r_{e2}=12,5\Omega$ değerleri kullanıldığında T_2 tranzistorunun sağladığı gerilim kazancı,

$$K_{V2} = -16,2$$

olur. T_2 tranzistorunun bazından görülen direnç r'_{i2} emetöründe direnç bulunan ortak emetörlü devre için verilen bağıntı yardımı ile hesaplanır. Bu direnç,

$$r'_{12} = h_{fe2}(r_{e2} + R_{e2}) = 22,5 \text{ k}\Omega$$

bulunur. T_1 tranzistorunun yükü R_3 ile r'_{i2} dirençlerinin paralel eşdeğeridir. Bu yük hesaplanırsa, $R'_{y1}\cong 6k\Omega$ elde edilir. R_4 ve r_{e1} 'in değerleri kullanıldığında

$$K_{v1} = -3.3$$

değeri elde edilir. Kaskat kuvvetlendiricinin gerilim kazancı, katların kazançlarının çarpımına eşittir. Buna göre K_{v1} ve K_{v2} kazançlarının değeri yerine konarak

$$K_{\nu} = 3,3.16,2 \cong 53,5$$

sonucuna varılır.

Kaskat kuvvetlendiricinin giriş direnci, T_1 tranzistorundan oluşan giriş kuvvetlendirici katının giriş direncine eşittir. T_1 tranzistorunun bazından görülen direnç,

$$r'_{11} = h_{fe1}(r_{e1} + R_4) = 365 \,\mathrm{k}\Omega$$

olarak hesaplanır. r_i , r'_{i1} ve R_B dirençlerinin paralel eşdeğeridir. r_i direnci hesaplanırsa,

$$r_{i} = r_{i1} = R_B // r'_{i1} = 20 \,\mathrm{k}\Omega // 365 \,\mathrm{k}\Omega \cong 19 \,\mathrm{k}\Omega$$

bulunur. Kaskat kuvvetlendiricinin çıkış direnci T_2 tranzistorundan oluşan kuvvetlendirici katın çıkış direncine eşittir; yani $r_o = r_{o2} = R_5 = 2k\Omega$ dir.

Kaskat kuvvetlendiricilerin değişken işaret incelemesine bir başka örnek olarak Şekil 7.16 da verilen devreden elde edilen Şekil 9.10 da görülen örnek devre alınsın. Devrede görülen C_1 ve C_3 kondansatörleri bağlama kondansatörü, C_2 ise köprüleme kondansatörüdür. Kondansatörler doğru bileşen incelemesi sırasında açık devre, değişken işaret incelemesinde ise kısa devre varsayılacaktır. Devrede uzun kuyruklu kuvvetlendirici yapısında görülen T_1 ve T_2 tranzistorları eş tranzistordur. Hesapları kolaylaştırmak için devrede kullanılan tranzistorların tümü için $h_{\text{FE}} = h_{\text{fe}} = 250$, $V_{\text{T}} = 25\text{mV}$ ve $|V_{\text{BE}}| = 0,6\text{V}$ seçilmiştir. Tranzistorlarda $h_{\text{re}} = 0$ ve $h_{\text{oe}} = 0$ olarak alınacaktır.

Doğru bileşenler açısından devre incelenirken kondansatörlerin açık devre alınacağı yukarıda belirtilmişti. T_1 ve T_2 eş tranzistorlar olduğundan ve baz devreleri aynı dirençle kapatıldığından, bu iki tranzistorun kolektör akımları eşit olur. R_2 direncinden, T_1 ve T_2 tranzistorlarının emetör akımlarının toplamı akmaktadır. T_1 tranzistorunun baz çevriminden

$$V_{CC} = -2R_2(I_{C1} + I_{B1}) - V_{BF1} - R_1 I_{B1}$$
 (9.48)

Şekil 9.10. Örnek kaskat kuvvetlendirici.

denklemi elde edilir. $I_{B1}=I_{C1}/h_{FE1}$ olduğu göz önüne alınarak T_1 tranzistorunun kolektör akımı hesaplanırsa, bu akım aynı zamanda T_2 tranzistorunun da kolektör akımı olacaktır. (9.48) bağıntısından gerekli işlemler yapılarak T_1 ve T_2 tranzistorlarının kolektör akımları için

$$I_{CQ2} = I_{CQ1} = -h_{FE1} \frac{V_{CC} + V_{BE1}}{R_1 + 2(h_{FE1} + 1)R_2}$$

elde edilir. Bu bağıntıda T_1 tranzistoru pnp olduğundan $V_{BE1} = -0.6V$ dır. Verilen değerler akım ilişkisinde kullanıldığında T_1 ve T_2 tranzistorlarının kolektör akımları için $I_{CQ1} = I_{CQ2} = -0.1$ mA değeri bulunur. T_1 ve T_2 tranzistorları pnp olduğundan kolektör akımları negatif çıkmaktadır. Akım değerlerinin negatif olması, gerçek akım yönünün referans olarak seçilen yönden farklı olduğunu gösterir. I_{CQ1} ve I_{CQ2} akımlarının bu değeri için $r_{e1} = r_{e2} = 250\Omega$ olur. T_3 tranzistorunun çalışma noktası Kolektör akımı (7.83) bağıntısı yardımı ile hesaplanır. Bu bağıntı yardımı ile T_3 tranzistorunun kolektör akımı,

$$I_{CQ3} = -h_{FE3} \frac{R_4 I_{CQ2} + V_{BE3}}{R_4 + (h_{FE3} + 1)(R_7 + R_8)}$$

ifadesine dönüşür. Bağıntıda bilinen değerlerin yerlerine konması ile T_3 tranzistorunun kolektör akımı, $I_{\text{CQ3}}\cong 0,95\text{mA}$ olarak elde edilir. T_3 tranzistorunun bu kolektör akımı değeri için baz-emetör jonksiyonu değişken işaret direnci $r_{e3}=26,3\Omega$ olur.

Devre değişken işaretler açısından incelendiğinde, bağlama ve köprüleme kondansatörleri ile besleme gerilim kaynakları kısa devre alınırlar. Şekil 9.10. da verilen devrede T₃ tranzistorundan oluşan devre, emetöründe köprülenmemiş direnç bulunan ortak emetörlü bir kuvvetlendiricidir. Bu kuvvetlendiricinin sağladığı gerilim kazancı,

$$K_{V3} = -\frac{R'_{V3}}{r_{e3} + R_{e3}} = -\frac{R_6 //R_V}{r_{e3} + R_7} = -15,6$$

değerindedir. T3 tranzistòrunun bazından görülen direnç,

$$r_{/3} = r'_{/3} = h_{fe3}(r_{e3} + R_7) = 81,6 \text{ k}\Omega$$

dir. Uzun kuyruklu kuvvetlendirici katında kullanılan T_2 tranzistorunun yükü R'_{y2} ile gösterildiğine göre, R_4 ile r_{i3} dirençlerinin paralel eşdeğeri olacaktır. R_4 ve r_{i3} dirençlerinin değeri kullanılarak $R'_{y2} \cong 25 k\Omega$ bulunur. T_2 tranzistorunun bazında köprülenmemiş bir direnç bulunmaktadır. Bu direnç de hesaplara katıldığında T_1 tranzistorunun bazından T_2 tranzistorunun kolektörüne gerilim kazancı,

$$K_{v2} = \frac{R_4 / / r_{v3}}{2 r_{e2} + \frac{R_5}{h_{fe2}}}$$
 (9.49)

bağıntısı ile hesaplanır. Değeri bilinen büyüklüklerden hareketle K_{v2} =27,8 bulunur. Kaskat kuvvetlendiricinin gerilim kazancı, K_v = $K_{v2}K_{v3}$ =-438 olacaktır. Kuvvetlendiricinin giriş direnci r_i , r'_i ile R_1 dirençlerinin paralel eşdeğeridir. T_2 tranzistorunun bazında değişken işaretler açısından R_3 direnci bulunduğundan T_1 tranzistorunun bazından görülen r'_{i1} direnci,

$$r'_{i1} = 2 h_{fe1} r_{e1} + R_5 = 225 \text{ k}\Omega$$

olur. R₁ direnci ve r'_{i1} dirençlerinin değerleri bilindiğinden devrenin giriş direnci

$$r_{i1} = R_1 // r'_{i1} = 69,2 \,\mathrm{k}\Omega$$

olarak elde edilir. Kuvvetlendiricinin çıkış direnci r_o , r_{o3} ile gösterilen T_3 tranzistorundan oluşan kuvvetlendirici katın çıkış direncine eşittir. $h_{oe} \cong 0$ alındığından r_{o3} direnci R_6 dır. Buna göre kaskat kuvvetlendiricinin çıkış direnci

$$r_o = R_6 = 6.8 \,\mathrm{k}\Omega$$

olacaktır.

Kaskat kuvvetlendiricinin çözümüne örnek olarak Şekil 9.11. de verilen devre alınsın. Devrede kullanılan tranzistorlar için $h_{fe}=h_{FE}=200$, $V_{BE}=0,6V$, $h_{re}\cong0$, $h_{oe}\cong0$ ve $V_{T}=25mV$ değerleri verilsin. Devre doğrudan bağlamalı iki kattan oluşmaktadır. T_{1} ile oluşturulan devre emetöründe köprülenmemiş direnç

bulunan ortak emetörlü kuvvetlendiricidir. T_2 tranzistorundan kuvvetlendirici, emetör çıkışlı devredir.

Devre, doğru bileşenler açısından incelendiğinde C_1 , C_2 ve C_3 kondansatörleri açık devre alınır. Bu durumda T_1 tranzistorunun çalışma noktası kolektör akımı, baz bölücülü kutuplama devresi için verilen ilişkiden hesaplanır. T_1 tranzistorunun kolektör akımı,

$$I_{CQ1} = h_{FE1} \frac{V_{BB} - V_{BE1}}{R_B + (h_{FE1} + 1)(R_4 + R_5)}$$

ile hesaplanır. Bağıntıda görülen V_{BB} ve R_B'nin

$$V_{BB} = 4,77 \text{ V}$$
 $R_B = 35,8 \text{ k}\Omega$

değerleri kolektör akımı ilişkisinde kullanılarak T_1 tranzistorunun kolektör akımı için $I_{\text{CQ1}}=1\text{mA}$ değeri elde edilir. I_{CQ1} 'in bu değeri için $r_{\text{e1}}=25\Omega$ olur. T_2 tranzistorunun çalışma noktasındaki kolektör akımı,

Şekil 9.11. Örnek devre.

$$I_{CQ2} = h_{FE2} \frac{V_{CC} - R_3 I_{CQ1} - V_{BE2}}{R_3 + (h_{FE2} + 1)R_6}$$

ilişkisinden bulunur. Bilinen büyüklükler yerine konunca T_2 'nin çalışma noktası akımı $I_{CO2}\cong 4,1$ mA olur ve $r_{e2}=6,1\Omega$ değerini alır.

Değişken işaretlerde C_1 , C_2 ve C_3 kondansatörleri ile V_{CC} besleme gerilim kaynağı kısa devre kabul edilir. T_1 tranzistorundan oluşan devrenin gerilim kazancının bulunabilmesi için T_2 tranzistorunun bazından görülen direncin

hesaplanması gerekir. Bu nedenle gerilim kazancının hesabına T₂'den oluşan kuvvetlendirici katından başlamak daha uygun olur.

 T_2 'den oluşan devre, emetör çıkışlı bir kuvvetlendirici olarak çalışmaktadır. T_2 tranzistorunun gerilim kazancı için bu tranzistorun emetörü ile devrenin toprağı arasına gelen eşdeğer direnç R_e 'nin değerinin bilinmesi gerekir. $R_e=R_6//R_y=2,1k\Omega$ dur. Bu direnç değeri kullanılarak T_2 tranzistorundan oluşan devrenin gerilim kazancı,

$$K_{v2} = \frac{R_{e2}}{r_{e2} + R_{e2}} = 0,997$$

olarak hesaplanır. r_{i2}=r'_{i2} dir ve bu direnç,

$$r_{i2} = h_{fe2}(r_{e2} + R_{e2}) \cong 426 \,\mathrm{k}\Omega$$

olur. T_1 tranzistorunun kolektöründe bulunan değişken işaret yükü R'_{y1} , r_{i2} ve R_3 dirençlerinin paralel eşdeğeridir. R'_{y1} direnci, r_{i2} ve R_3 dirençlerinin değerlerinden hareketle yaklaşık olarak $8k\Omega$ olarak hesaplanır. Değişken işaretler açısından T_1 tranzistorunun emetöründe R_{e1} = R_4 = 100Ω değerinde bir direnç bulunmaktadır. R'_{y1} ve R_{e1} direnç değerleri kullanılarak T_1 tranzistorundan oluşan ortak emetörlü kuvvetlendiricinin gerilim kazancı,

$$K_{v1} = -\frac{R'_{v1}}{r_{e1} + R_{e1}} = -64$$

olur. Tı tranzistorunun bazından görülen direnç,

$$r'_{i1} = h_{fe1}(r_{e1} + R_{e1}) = 25 \,\mathrm{k}\Omega$$

dir. Kaskat kuvvetlendiricinin giriş direnci,

$$r_i = R_B // r'_{i1} = 14,72 \text{k}\Omega$$

bulunur. Kaskat kuvvetlendiricinin gerilim kazancı, katların kazancı kullanılarak

$$K_{\nu} = K_{\nu 1} K_{\nu 2} = -63.8$$

değerinde elde edilir. Kuvvetlendiricinin çıkış direnci r_0 , emetör çıkışlı devrenin çıkış direnci r_{02} 'ye eşittir. Emetör çıkışlı devreyi süren işaret kaynağı, bir önceki kattır. Bu katın çıkış direnci emetör çıkışlı devre için kaynak direncine eşit olup $R_{C1}=R_3=8,2k\Omega$ dir. Belirtilen değerler için

$$r_o = R_6 //(r_{e2} + \frac{R_3}{h_{fe2}}) \approx 46.3 \Omega$$

olacaktır.

Çözüm örneklerine Şekil 9.12. de verilen devre ile devam edilsin. Bu devre, Şekil 7.18. de verilen devrenin düzenlenmiş biçimidir. Devrede kullanılan

tranzistorlar için $h_{fe}=h_{FE}=200$, $|V_{BE}|=0.6V$, $h_{re}\cong0$, $h_{oe}\cong0$ ve $V_T=25mV$ değerleri verilsin. Devreden görüldüğü gibi T_1 tranzistoru npn, T_2 tranzistoru ise pnp dir. Tranzistorların baz-emetör gerilimleri tranzistorların tipine göre $V_{BE1}=0.6V$ ve $V_{BE2}=-0.6V$ olacaktır.

Devre doğru bileşenler açısından ele alındığında C_1 , C_2 , C_3 ve C_4 kondansatörleri açık devre alınır. Kondansatörlerin açık devre alınması ile elde edilen devreden T_1 tranzistorunun çalışma noktası akımı

$$I_{CQ1} = h_{FE1} \frac{V_{EE} - V_{BE1}}{R_1 + (h_{FE1} + 1)(R_3 + R_4)} \approx 0,51 \,\text{mA}$$

olur. T_2 tranzistorunun çalışma noktası akımı, bu tranzistorun baz çevriminden hareketle hesaplanırsa,

Şekil 9.12. Çok katlı kuvvetlendirici devre örneği.

$$I_{CQ2} = -h_{FE2} \frac{R_2 I_{CQ1} + V_{BE1}}{R_2 + (h_{FE2} + 1)(R_5 + R_6)} \cong -2 \,\text{mA}$$

olacaktır. I_{CQ1} ve I_{CQ2} akımlarından hareketle $r_{e1}{\cong}50\Omega$, $r_{e2}{\cong}12,5\Omega$ değerleri elde edilir.

Değişken işaretler için C_1 , C_2 , C_3 ve C_4 kondansatörleri ile besleme gerilim kaynakları kısa devre kabul edilirler. T_1 ve T_2 'den oluşan devreler ortak emetörlü kuvvetlendiricilerdir. T_1 'den oluşan devrenin gerilim kazancının bulunabilmesi için T_2 'den oluşan kuvvetlendiricinin bazından görülen direncin hesaplanması gerekir. T_2 'nin kolektöründe değişken işaretler açısından $R'_{y2}=R_7//R_y=2,48k\Omega$ değerinde bir direnç bulunmaktadır. T_2 'nin gerilim kazancı bu direnç değeri kullanılarak

$$K_{v2} = -\frac{R'_{v2}}{r_{e2} + R_6} = -15,3$$

biçiminde hesaplanır. T2 tranzistorunun bazından görülen direnç,

$$r_{i2} = r'_{i2} = h_{fe2}(r_{e2} + R_6) = 32,5 \,\mathrm{k}\Omega$$

değerindedir. T_1 tranzistorunun kolektöründe değişken işaretler açısından $R'_{y1}=R_2//r_{i2}\cong 7,65$ k Ω değerinde bir direnç bulunmaktadır. T_1 tranzistorunun sağladığı gerilim kazancı

$$K_{v1} = -\frac{R'_{v1}}{r_{e1} + R_3} \cong -17.4$$

olarak bulunur. Kaskat kuvvetlendiricinin gerilim kazancı

$$K_{\nu} = K_{\nu 1} K_{\nu 2} \cong 266,2$$

olur.

Kaskat kuvvetlendiricinin giriş direnci, T_i 'den oluşan devrenin giriş direncine eşittir. Buna göre kuvvetlendiricinin giriş direnci

$$r_i = r_{i1} = R_1 // r'_{i1} = R_1 // h_{fe1} (r_{e1} + R_3) = 30,6 \text{ k}\Omega$$

olacaktır. Kuvvetlendiricinin çıkış direnci T_2 'den oluşan devrenin çıkış direncine eşittir. $h_{oe}{\cong}0$ alındığından T_2 tranzistorundan oluşan devrenin çıkış direnci R_7 direncine eşittir. Kaskat kuvvetlendiricinin çıkış direnci, son katının çıkış direnci olduğundan

$$r_o = r_{o2} \cong R_7 = 3.3 \,\mathrm{k}\Omega$$

bulunur.

Çok katlı devrelere bir başka örnek olarak Şekil 9.13. de verilen devre seçilsin. Örnek devrede kullanılan tranzistorlar için $h_{fe}=h_{FE}=200$, $|V_{BE}|=0.6V$, $h_{re}\cong 0$, $h_{oe}\cong 0$ ve $V_T=25$ mV değerleri verilsin. Devreden görüldüğü gibi T_1 ve T_2 tranzistorları pnp, T_3 ve T_4 tranzistorları npn dir. pnp tranzistorlarda $V_{BE}=-0.6V$, npn tranzistorda ise $V_{BE}=0.6V$ tur.

Devre doğru bileşen analizi yapılırken devredeki kondansatörler açık devre kabul edilir. Devrede T_1 ve T_2 tranzistorları eştir. R_1 ve R_5 dirençlerinin değerleri de eşit olduğundan T_1 ve T_2 tranzistorlarının çalışma noktası kolektör akımları eşit olacaktır. Devreden hareketle

$$V_{CC} = -[2R_2(I_{B1} + I_{C1}) + V_{BE1} + R_1I_{B1}]$$

ilişkisi yazılır. $I_{B1}=I_{C1}/h_{FE1}$ eşitliği ile T_1 ve T_2 tranzistorlarının çalışma noktası kolektör akımları,

$$I_{C1} = I_{C2} = -h_{FE1} \frac{V_{CC} + V_{BE1}}{R_2 + 2(h_{FE1} + 1)R_2}$$

bağıntısından hesaplanır. Büyüklüklerin verilen değerlerinin kullanılması ile

Şekil 9.13. Örnek devre.

$$I_{CQ1}=I_{CQ2}\cong -0.047\,\mathrm{mA}$$

değerleri elde edilir. T_3 tranzistorunun çalışma noktası akımı, bu tranzistorun baz çevriminden hesaplanır. Baz çevriminden çevre denkleminin yazılması ile T_3 tranzistorunun kolektör akımı,

$$I_{C3} = -h_{FE3} \frac{R_4 I_{C2} + V_{BE3}}{R_4 + (h_{FE3} + 1)(R_7 + R_8)} \cong 0,5 \,\mathrm{mA}$$

olur. T_4 tranzistorunun kolektör akımı, baz çevriminden elde edilen bağıntı ile hesaplanır. I_{C4} akımının değeri

$$I_{C4} = h_{FE4} \frac{V_{CC} + V_{EE} - R_6 I_{C3} - V_{BE4}}{R_6 + (h_{FE4} + 1)R_9} = 2 \text{ mA}$$

bulunur. Bulunan akım değerleri için $r_{e1}=r_{e2}$ =532 Ω , r_{e3} =50 Ω ve r_{e4} =12,5 Ω değerindedir.

Değişken işaret incelemesi yapılırken devrede kullanılan kondansatörler ve besleme gerilim kaynakları kısa devre varsayılır. T₄ tranzistorundan oluşan kuvvetlendirici, emetör çıkışlı bir devredir. Kuvvetlendirici katın gerilim kazancı ve T₄'ün bazından görülen direnç,

$$K_{v4} = \frac{R_{e4}}{r_{e4} + R_{e4}}$$
 $r_{i4} = r'_{i4} = h_{fe4}(r_{e4} + R_{e4})$

ilişkileri ile hesaplanırlar. $R_{e4}=R_9//R_y=3,38k\Omega$ değeri kullanılarak

$$K_{V4} = 0,996$$
 $r_{/4} = 678 \,\mathrm{k}\Omega$

elde edilir. T₃'den oluşan devre ortak emetörlü bir kuvvetlendirici kattır. T₃ tranzistorunun kolektör yükü R'_{y3} = R_6 // r_{i4} =17,5 $k\Omega$ ve emetöründeki değişken işaret direnci $R_{e3}=R_7=120\Omega$ dur. T_3 tranzistorunun sağladığı gerilim kazancı, $K_{v3}=-\frac{R'_{v3}}{r_{e3}+R_{e3}}=-103$

$$K_{V3} = -\frac{R'_{V3}}{r_{e3} + R_{e3}} = -103$$

ve T3'ün bazından görülen direnç

$$r_{i3} = r_{i3}' = h_{fe3}(r_{e3} + R_{e3}) = 34 \text{ k}\Omega$$

olacaktır.

Uzun kuyruklu devrede kullanılan T2 tranzistorunun bazıyla toprak arasında R₅ direnci bulunmaktadır. T₂ tranzistorunun kolektöründe değişken işaretlerde R_4 ile r_{i3} direncinin paralel eşdeğeri vardır. $R'_{y2}=R_4//r_{i3}=25,4k\Omega$ dur. T₁ ve T₂'den oluşan devrenin sağladığı gerilim kazancı,

$$K_{v2} = \frac{R'_{v2}}{2r_{e2} + \frac{R_{e2}}{h_{fe2}}} = 16.2$$

dir. Kaskat kuvvetlendiricinin giriş direnci, \dot{T}_1 tranzistorunun bazından görülen dirençle R_1 direncinin paralel eşdeğeridir. T_1 tranzistorunun bazından görülen direnc,

$$r'_{i1} = 2 h_{fe1} r_{e1} + R_5 = 312_{I} 8 k\Omega$$

olur. Kaskat kuvvetlendiricinin giris direnci

$$r_i = R_1 // r'_{i1} = 75,8 \,\mathrm{k}\Omega$$

değeri bulunur. Kaskat kuvvetlendiricinin gerilim kazancı, katların gerilim kazançlarının çarpımına eşittir. Buna göre kaskat kuvvetlendiricinin gerilim kazancı,

$$K_{v} = K_{v2}K_{v3}K_{v4} \cong -1662$$

olacaktır.

Kaskat kuvvetlendiricinin çıkış direnci, T4'den oluşan kuvvetlendirici katın çıkış direncine eşittir. T_4 ile gerçeklenen emetör çıkışlı devrenin işaret kaynağı, T_3 tranzistorundan oluşan devredir. T3'den meydana gelen devrenin çıkış direnci, h_{oe} parametreleri ihmal edildiğinden R_6 direncine eşittir. Buna göre emetör çıkışlı kuvvetlendiricinin çıkış direnci,

$$(re + \frac{Rg'}{hge})$$

$$r_o = r_{o4} = R_9 //(r_{e4} + \frac{R_6}{h_{fe4}}) = 100,5 \Omega$$

olur.

9.3. MOS'lu Çok Katlı Kuvvetlendiriciler

Bu kısımda MOS tranzistor kullanılarak gerçekleştirilmiş çok katlı devrelere değinilecektir. MOS tranzistor, daha çok tüm devre içerisinde kullanılan bir yarıiletken elektronik devre elemanıdır. Bu nedenle gerçekleştirilen devreler tümdevre yapısına uygun yapılar olacaktır. Kısım içerisinde MOS kullanılarak gerçekleştirilen uzun kuyruklu devrelere değinilecektir.

Şekil 7.20. de verilen MOS'lu uzun kuyruklu devrenin değişken işaret eşdeğerinde MOS yerine gerilim eşdeğerini kullanmak daha uygun olacaktır. MOS'un gerilim eşdeğeri kullanılarak MOS uzun kuyruklu devrenin değişken işaret eşdeğeri çizilirse devre Şekil 9.14. de verilen biçimde olur. Devrede görülen parametreler, MOS'un çalışma noktasına bağlıdır. Hesaplar yapılırken çalışma noktasının bilindiği ve parametrelerin hesaplandığı varsayılacaktır. MOS'ların giriş gerilimleri V_{i1} ve V_{i2} ile gösterilmiştir. MOS'ların ortak kaynak gerilimi V_{s} dir. Bu gerilim,

$$V_s = R_s(i_{d1} + i_{d2}) (9.50)$$

bağıntısı ile MOS'ların savak akımlarına ve R_S direncine bağlıdır. Uzun kuyruklu devrenin giriş gerilimleri ve V_s gerilimi bilindiğine göre MOS'ların geçit-kaynak arası gerilimleri,

$$V_{gs1} = V_{i1} - V_s$$
 $V_{gs2} = V_{i2} - V_s$ (9.51)

dir. MOS'ların savak çevrimlerine ilişkin bağıntılar yazılırsa,

$$(r_d + R_D)i_{d1} + (\mu + 1)V_S = \mu V_{i1}$$

$$(r_d + R_D)i_{d2} + (\mu + 1)V_S = \mu V_{i2}$$
(9.52)

bulunur. (9.51) ve (9.52) bağıntılarından hareketle savak akımlarının toplamı,

$$i_{d1} + i_{d2} = \frac{\mu(V_{i1} + V_{i2})}{r_d + R_D + 2(\mu + 1)R_S}$$
(9.53)

biçiminde elde edilir. MOS tranzistorda $\mu >>1$ alınarak akımların toplamından V_s gerilimi,

$$V_{s} \cong \frac{R_{S}(V_{i1} + V_{i2})}{\frac{r_{d} + R_{D}}{\mu} + 2R_{S}}$$
(9.54)

biçiminde hesaplanır. R_S direnci $(r_d+R_D)/\mu$ den çok büyük olduğundan

Şekil 9.14. Değişken işaretlerde MOS uzun kuyruklu devre.

$$V_s \cong \frac{V_{i1} + V_{i2}}{2} \tag{9.55}$$

yaklaşık bağıntısına erişilir. Vs'in bu ifadesi kullanılarak

$$-V_{o2} = V_{o1} = -\frac{\mu R_D}{2(r_d + R_D)}(V_{/1} - V_{/2}) = -\frac{g_m(r_d // R_D)}{2}(V_{/1} - V_{/2})$$
 (9.56)

bağıntısı bulunur. Tranzistorlu uzun kuyruklu devrede olduğu gibi fark işaret kazancı hesaplanırsa,

$$K_d = -g_m(r_d //R_D)$$
 (9.57)

elde edilir. Bu kazanç, kaynak direnci tümüyle köprülenmiş MOS'un sağladığı gerilim kazancına eşit olmaktadır.

MOS'lu uzun kuyruklu devrenin ortak işaret kazancı hesaplanabilir. Hesaplama sırasında V_s yerine (9.54) bağıntısı ile verilen ifadesi kullanıldığında

$$K_C = -g_m(r_d // R_D) \frac{r}{r + 2R_S}$$
 (9.58)

olur. Bu bağıntıda görülen r direnci, MOS'un kaynak elektrotundan görülen dirençtir. Bu r direnci,

$$r = \frac{r_d + R_D}{\mu} \tag{9.59}$$

bağıntısı ile hesaplanır. MOS tranzistor kullanılarak gerçekleştirilen uzun kuyruklu devrenin ortak işaret zayıflatma oranı, (9.57) ve (9.58) bağıntılarından yararlanılarak

$$\rho = \frac{K_d}{K_C} = 1 + 2\frac{R_S}{r} \tag{9.60}$$

biçiminde bulunur. ρ'nun logaritması alınarak dB cinsinden CMRR oranı bulunabilir.

(9.60) bağıntısından görüldüğü gibi ρ 'nun çok küçük olabilmesi için R_S direncinin çok büyük olması gerekir. Tranzistorlu uzun kuyruklu devrede olduğu gibi R_s direnci yerine akım kaynağı kullanmak gerekir. Tranzistor kullanılarak akım kaynağı gerçekleştirilişinde olduğu gibi MOS tranzistorlarıyla da değişik kaynağı devreleri oluşturulabilir. Eş MOS'ların geçit ve kaynak elektrotlarının birbirine bağlanması durumunda, savak akımları eşit olacaktır. MOS'ların kanal boyu ve kanal genişliklerinin farklı olması halinde akım kaynağı görevi yapan MOS'un akımını, akım kontrol görevini üstlenen MOS'un akımından farklı yapmak mümkündür. MOS tranzistorlar, çok küçük akımlarda çalışabilen elemanlardır. Ancak eğimleri küçük olduğundan sağladıkları gerilim kazançları, bipolar tranzistora göre küçük olmaktadır. Bu sorunun giderilebilmesi için uzun kuyruklu devrede aktif yük kullanılmalıdır. MOS tranzistorlar daha çok tümdevre yapılarında kullanıldıklarından, tümdevre içerisinde kutuplanış ve kuvvetlendirici olarak kullanılış biçimleri, ayrık kullanılma şeklinden farklıdır. Bu nedenle MOS'lu kuvvetlendirici biçimlerine bölüm içerisinde fazla değinilmemiştir. Tümdevrelerle ilgili kitaplarda bu tip devreleri bulmak mümkündür.

Çözümlü Sorular:

Soru 1- Şekil 1. deki devrede kullanılan tranzistorlar için h_{FE} =300 ve $|V_{\text{BE}}|$ =0,6V değerleri verilmiştir. T_1 ve T_2 tranzistorları eştir.

- a) $V_{B1} = V_{B2} = 0V$ iken $V_{E4} = 0V$ olabilmesi için R_S direncinin değerini hesaplayınız.
- b) Tranzistorların kolektör-emetör gerilimlerini hesaplayınız ve kolektör akımlarını belirtiniz.

Çözüm:

a) V_{E4} =0V olduğuna göre T_4 tranzistorunun emetöründen akan akım

$$I_{C4} + I_{B4} = \frac{V_{E4} - (-V_{EE})}{R_6} = \frac{10}{2k} = 5 \,\text{mA}$$

olur. T_1 ve T_2 tranzistorlarının kolektör akımları bir birine eşittir. Bu akım, (7.77) bağıntısından yararlanılarak hesaplanırsa,

رد.

Şekil 1.

$$I_{C1} = I_{C2} = \frac{V_{EE} - V_{BE1}}{2R_3} = \frac{10 - 0.6}{94k} = 0.1 \text{ mA}$$

bulunur. T_3 tranzistorunun kolektör akımı, baz çevriminden hareketle

$$I_{C3} = -h_{FE3} \frac{R_2 I_{C2} + V_{BE3}}{R_2 + (h_{FE3} + 1)R_4} \cong -1 \, \text{mA}$$

olarak elde edilir. T_4 tranzistorunun kolektör akımı biliniyor buna göre T_4 tranzistorunun baz çevriminden hareketle

$$I_{C4} = -h_{FE4} \frac{R_5 I_{C3} + V_{BE4}}{R_5 + (h_{FE4} + 1)R_6} = -300 \frac{-R_5.1 mA + 0.6}{R_5 + 301.2 k} = 5 \text{ mA}$$

denklemi elde edilir. Bu denklemden yararlanarak R₅ direnci,

 $R_5=10,8k\Omega$ olarak elde edilir.

b) Tranzistorların kolektör-emetör arası gerilimleri kolektör çevrimlerinden hareketle hesaplanabilir. Gerekli işlemler yapıldığında bu gerilimler,

$$V_{CE1} = V_{CC} + V_{BE1} - R_1 I_{C1} = 10 + 0,6 - 47.0,1 = 5,9 \text{ V}$$
 $V_{CE2} = V_{CC} + V_{BE1} - R_2 I_{C2} - R_2 I_{B3} = 6,06 \text{ V}$
 $V_{CE3} = -(V_{CC} + V_{EE}) - R_5 (I_{C3} + I_{B4}) - R_4 (I_{C3} + I_{B3}) = -5,48 \text{ V}$
 $V_{CE4} = V_{CC} = 10 \text{ V}$

Soru 2.- Şekil 2. de kullanılan tranzistorlar için $h_{fe}=h_{FE}=200$, $|V_{BE}|=0,6V$, $h_{re}\cong 0$, $h_{oe}\cong 0$ ve $V_T=25mV$ değerleri verilmiştir.

- a) T_1 ve T_2 tranzistorların çalışma noktası kolektör akımlarını hesaplayınız.
 - b) Devrenin V_o /V_i gerilim kazancını ve r_i giriş direncini hesaplayınız.

Şekil 2.

Çözüm:

a) T_1 tranzistorunun çalışma noktası kolektör akımı için baz çevriminden hareketle

$$I_{C1} = -h_{FE1} \frac{V_{CC} + V_{BE1}}{R_1 + (h_{FE1} + 1)(R_2 + R_3)} = -0.482 \,\text{mA}$$
 $r_{e1} = 51.9 \,\Omega$

değeri elde edilir. I_{C1} bilindiğine göre T_2 tranzistorunun çalışma noktası kolektör akımı için

$$I_{C2} = -h_{FE2} \frac{R_4 I_{C1} + V_{BE2}}{R_4 + (h_{FE2} + 1)(R_6 + R_7)} = 1,02 \,\text{mA}$$
 $r_{e2} = 24,51 \,\Omega$

değeri elde edilir.

b) Kaskat kuvvetlendiricinin gerilim kazancı katların kazançlarının çarpımına eşittir. Buna göre T_2 den oluşan ortak emetörlü devrenin gerilim kazancı için

$$K_{v2} = -\frac{R'_{v2}}{r_{e2} + R_6} = -\frac{R_5 //R_y}{r_{e2} + R_6} = -\frac{7500}{324,51} = -23,1$$

değeri elde edilir. T2'den oluşan devrenin giriş direnci,

$$r_{i2} = h_{fe2}(r_{e2} + R_6) = 64.9 \,\mathrm{k}\Omega$$

olarak elde edilir. T_1 tranzistorunun kolektöründeki eşdeğer direnç $R_{\gamma} = r_2 / / R_4$ dir. T_1 tranzistorunun sağladığı gerilim kazancı,

$$K_{v1} = -\frac{R'_{v1}}{r_{e1} + R_3} = -\frac{r_{i2} //R_4}{r_{e1} + R_3} = -\frac{10127}{51,9 + 1000} = -9,63$$

olarak elde edilir. Kaskat kuvvetlendiricinin gerilim kazancı,

$$K_{\nu} = K_{\nu 1} K_{\nu 2} = -23,1.(-9,63) \cong 222,45$$

olur. Devrenin giriş direnci için $r_i = R_1//h_{fe1}(r_{e1} + R_3) = 100 \text{k}\Omega//210,38 \cong 67,8 \text{k}\Omega$ değeri elde-edilir.

değeri elde edilir. Soru 3.- Şekil 3.de kullanılan tranzistorlar için $h_{fe}=h_{FE}=250$, $h_{re}\cong 0$, $h_{oe}\cong 0$, $|V_{BF}|=0.6V$ ve $V_T=25mV$ değerleri verilmiştir.

- a) Tranzistorların çalışma noktası kolektör akımlarını hesaplayınız.
- b) V_o/V_i gerilim kazancını, r_i giriş direncini ve r_o çıkış direncini hesaplayınız.

Şekil 3.

Çözüm:

Tı tranzistorunun çalışma noktası akımı için baz çevriminden hareketle,

$$I_{C1} = -h_{FE1} \frac{V_{CC} + V_{BE1}}{R_1 + (h_{FE1} + 1)(R_2 + R_3)} = -0.2 \,\text{mA}$$
 $r_{e1} = 12.5 \,\Omega$

değerine varılır. T_2 tranzistorunun baz çevriminden hareketle kolektör akımı için

$$I_{C2} = -h_{FE2} \frac{R_4 I_{C1} + V_{BE2}}{R_4 + (h_{FE2} + 1)(R_6 + R_7)} = 0,936 \,\text{mA}$$
 $r_{e2} = 26,71 \,\Omega$

elde edilir. T₃ tranzistorunun baz çevriminden hareketle kolektör akımı için

$$I_{C3} = h_{FE3} \frac{V_{CC} + V_{EE} - R_5 I_{C2} - V_{BE3}}{R_5 + (h_{FE3} + 1)R_8} = 3,98 \,\text{mA}$$
 $r_{e3} = 6,28 \,\Omega$

bulunur.

b) Kaskat kuvvetlendiricinin kazancı katların kazançlarının çarpımına eşittir. T_3 den oluşan emetör çıkışlı devrenin gerilim kazancı için

$$K_{v3} = \frac{R_{e3}}{r_{e3} + R_{e3}} = \frac{R_8 //R_y}{r_{e3} + (R_8 //R_y)} = \frac{1875}{6,28 + 1875} = 0,997$$

olur. T_3 'den oluşan devrenin giriş direnci $r_\beta = h_{fe3}(r_{e3} + R_{e3}) = 470,3k\Omega$ dir. T_3 'den oluşan ortak emetörlü kuvvetlendirici devrenin gerilim kazancı,

$$K_{v2} = -\frac{R_5 // r_{/3}}{r_{e2} + R_6} = -35.8$$

değerinde bulunur. T_2 'den oluşan devrenin giriş direnci $r_2 = h_{fe2}(r_{e2} + R_6) = 81,68$ k Ω dir. Ortak emetörlü kuvvetlendirici olan T_1 'den oluşan devrenin gerilim kazancı,

$$K_{v1} = -\frac{R_4 // r_{i2}}{r_{e1} + R_3} = -29,6$$

olur. Kaskat kuvvetlendiricinin gerilim kazancı katların kazançlarının çarpımına eşittir. Bulunan kazanç değerleri kullanıldığında

$$K_v = K_{v1} K_{v2} K_{v3} \approx 1058$$

olur. Devrenin giriş direnci $R_1//r_{i1}'=R_1//h_{fe1}(r_{e1}+R_3)$ bağıntısı ile hesaplanır. Değerler yerine konduğunda $r_i=100//171,25{\cong}63k\Omega$ bulunur. Çıkış direnci emetör çıkışlı kuvvetlendiricinin çıkış direncidir. Buna göre devrenin çıkış direnci,

$$r_o = (r_{e3} + \frac{R_5}{h_{fe3}}) // R_8 = 54.3 // 3000 = 53.3 \Omega$$
 olur.

Soru 4.-

Şekil 4 de kullanılan tranzistorlardan T_1 ve T_2 eştir. Tranzistorlar için $h_{fe}=h_{FF}=250$, $|V_{BF}|=0.6V$, $h_{re}\cong 0$, $h_{oe}\cong 0$ ve $V_T=25mV$ değerleri verilmiştir.

- a) Tranzistorların çalışma noktası kolektör akımlarını hesaplayınız.
- b) $V_{\text{o}}/V_{\text{i}}$ gerilim kazancını, r_{i} giriş direncini ve r_{o} çıkış direncini hesaplayınız.

Cözüm:

 T_1 ve T_2 tranzistorları eş tranzistorlardır ve bazlarına bağlanan R_1 ve R_5 dirençleri de eşittir. Buna göre sükûnet halinde (V_i =0 iken) kolektör akımları eşit olacaktır. T_1 'in baz çevriminden hareketle T_1 ve T_2 tranzistorlarının kolektör akımı,

$$I_{C1} = I_{C2} = h_{FE1} \frac{V_{EE} - V_{BE1}}{R_1 + 2(h_{FE1} + 1)R_3} \cong 0,052 \,\mathrm{mA}$$
 $r_{e1} = r_{e2} = 481 \,\Omega$

olur. T_3 tranzistorunun baz çevriminden hareketle T_3 'ün kolektör akımı için

Sekil 4.

$$I_{C3} = -h_{FE3} \frac{R_4 I_{C2} + V_{BE3}}{R_4 + (h_{FE3} + 1)/R_6 + R_7)} \cong -0,99 \,\text{mA}$$
 $r_{e3} = 25,3 \,\Omega$

bulunur. T4 tranzistorunun kolektör akımı için

$$I_{C4} = -h_{FE4} \frac{R_8 I_{C3} + V_{BE4}}{R_8 + (h_{FE4} + 1)R_9} = 4 \text{ mA}$$
 $r_{e4} = 6,25 \Omega$

değeri elde edilir.

b) Kaskat kuvvetlendiricinin gerilim kazancı, katların kazançlarının çarpımına eşittir. T₄ tranzistoru emetör çıkışlı bir kuvvetlendirici olarak çalışmaktadır. Bu kuvvetlendiricinin gerilim kazancı,

$$K_{v4} = \frac{R_{e4}}{r_{e4} + R_{e4}} = \frac{R_9 // R_y}{r_{e4} + (R_9 // R_y)} = \frac{2609}{6,25 + 2609} = 0,998$$

değerinde hesaplanır. T₄'den oluşan emetör çıkışlı devrenin girişinden görülen direnç,

$$r_{i4} = h_{fe4}(r_{e4} + R_{e4}) = 654 \,\mathrm{k}\Omega$$

dir. T_3 tranzistorunun kolektöründeki değişken işaret yükü, $R_8//r_{i4}$ dür. Buna göre ortak emetörlü bir kuvvetlendirici olan bu devrenin sağladığı gerilim kazancı,

$$K_{v3} = \frac{R_8 // r_{/4}}{r_{e3} + R_7} = \frac{12747}{25,3 + 200} = -56,6$$

bulunur. T₃ tranzistorunun bazından görülen direnç,

$$r_{/3} = h_{fe3}(r_{e3} + R_7) = 56.3 \text{ k}\Omega$$

olur. T₁ ve T₂ den oluşan uzun kuyruklu devrenin sağladığı gerilim kazancı,

$$K_{v2} = \frac{R_4 //r_{/3}}{2r_{e2} + R_{g}} = \frac{34781}{1362} = 25.5$$

dir. Kaskat kuvvetlendiricinin gerilim kazancı, katların kazançlarının çarpımına eşittir. Buna göre,

$$K_{\nu} = K_{\nu 2} K_{\nu 3} K_{\nu 4} = -1440$$

olacaktır. Devrenin giriş direnci,

$$r_i = R_1 //(2h_{fe1}r_{e1} + R_5) = 77.3 \text{ k}\Omega$$

dir. Devrenin çıkış direnci, emetör çıkışlı kuvvetlendirici olan T4 tranzistorunun emetöründen görülen dirence eşittir. Buna göre

$$r_o = (r_{e4} + \frac{R_8}{h_{fe4}}) // R_9 = 58,25 // 3 \text{ k}\Omega \cong 57\Omega$$

olur.

Koltherin whoman the last flowers borosper

Şekil 5.de kullanılan tranzistor için h_{FE} =250, V_{BE} =0,6V, h_{re} =0, h_{oe} =0 ve Deturne De collector correct V_T=25mV değerleri verilmistir.

- a) Tranzistorların çalışma noktasında kolektör akımlarını hesaplayınız.
- b) $V_{\text{o}}/V_{\text{i}}$ gerilim kazancını, r_{i} giriş direncini ve r_{o} çıkış direncini Find sound signal and single form. Us I the hesaplayınız.

Çözüm:

T₁ tranzistoru baz bölücülü bir kuvvetlendiricidir. Bu kuvvetlendiricinin kolektör akımı için

$$I_{c1} = h_{FE1} \frac{V_{BB} - V_{BE1}}{R_B + (h_{FE1} + 1)R_4} = 250 \frac{1,644 - 0,6}{14,25 + 251.1} = 0,984 \,\text{mA} \qquad r_{e1} = 25,4 \,\Omega = \frac{\sqrt{10}}{14,25 + 251.1} = 0.984 \,\text{mA}$$

bulunur. T₂ tranzistorunun kolektör akımı,

$$I_{C2} = h_{FE2} \frac{V_{CC} - R_3 I_{C1} - V_{BE1}}{R_3 + (h_{FE2} + 1)R_5} = 2,08 \,\text{mA}$$
 $r_{e2} = 12 \,\Omega$

olur.

Receipte 289

b) Kaskat kuvvetlendirici, ortak emetörlü bir kuvvetlendirici ile emetör çıkışlı bir kattan oluşmaktadır. T2'den oluşan emetör çıkışlı devrenin gerilim kazancı ve giriş direnci,

Şekil 5.

$$K_{v2} = \frac{R_{e2}}{r_{e2} + R_{e2}} = \frac{R_5}{r_{e2} + R_5} = \frac{3000}{12 + 3000} = 0,996$$
 $r_{i2} = h_{fe2}(r_{e2} + R_5) = 753 \text{ k}\Omega$

olur. T₁'den oluşan ortak emetörlü devrenin gerilim kazancı ve bazdan görülen direnç,

$$K_{V1} = -\frac{R_3 //r_{/2}}{r_{e1} + R_4} = -\frac{8112}{1025,41} = -7,91$$
 $r'_{/1} = h_{fe1}(r_{e1} + R_4) = 256 \text{ k}\Omega$

dir. Kuvvetlendiricinin giriş direnci R_{B} ile $r^{'}_{i1}$ dirençlerinin paralel eşdeğeridir. Buna göre,

$$r_i = 14,24 // 256 = 13,5 \,\mathrm{k}\Omega$$

olur. Devrenin çıkış direnci emetör çıkışlı devrenin çıkış direncidir. Bu direnç hesaplanırsa,

$$r_o = (r_{e2} + \frac{R_3}{h_{e2}}) // R_5 = 44.8 // 3000 = 44.14 \Omega$$

elde edilir.

Soru 6.-

Şekil 6. de kullanılan tranzistorlar için $h_{fe}=h_{FE}=300$, $h_{re}\cong 0$, $h_{oe}\cong 0$, $|V_{BF}|=0.6V$ ve $V_T=25mV$ değerleri verilmiştir.

a) Tranzistorların çalışma noktası kolektör akımlarını hesaplayınız.

b) $V_{\text{o}}/V_{\text{i}}$ gerilim kazancını, r_{i} giriş direncini ve r_{o} çıkış direncini hesaplayınız.

Cözüm:

Sekil 6.

 T_1 ve T_2 tranzistorları eştir ve baz çevrimlerindeki dirençler de doğru bileşenler açısından eşittir. Bu durumda kolektör akımları eşit olacaktır. Kolektör akımları için

$$I_{C1} = I_{C2} = -h_{FE1} \frac{V_{CC} + V_{BE1}}{R_1 + 2(h_{FE1} + 1)R_2} = -300 \frac{15 - 0.6}{47 + 2.301.13} = -0.549 \,\text{mA}$$

olur. $r_{e1} = r_{e2} = 45,54\Omega$ dir. T_2 tranzistorunun kolektör akımı için baz çevriminden hareketle, T_4 tranzistorunun baz akımı ihmal edilerek,

$$I_{C3} = -h_{FE3} \frac{R_4 I_{C2} + V_{BE3}}{R_4 + (h_{FE3} + 1)R_6} = 1,06 \,\text{mA}$$
 $r_{e3} = 23,6 \,\Omega$

değeri elde edilir. T4 tranzistorunun kolektör akımı,

$$I_{C4} = -h_{FE4} \frac{-R_6 I_{C3} + V_{BE4}}{R_6 + (h_{FE4} + 1)(R_8 + R_9)} = 1,06 \,\text{mA}$$
 $r_{e4} = 23,6\Omega$

ile hesaplanır.

b) Kaskat kuvvetlendiricinin gerilim kazancı katların kazançlarının çarpımına eşittir. T4 den oluşan ortak emetörlü devrenin gerilim kazancı

$$K_{v4} = -\frac{R'_{v4}}{r_{e4} + R_{e4}} = -\frac{R_7 //R_y}{r_{e4} + R_8} = -\frac{11538}{23,6 + 300} = -36,7$$

olacaktır. Bu kuvvetlendiricinin bazından görülen direnç, T_3 'den oluşan emetör çıkışlı devrenin yüküdür. Bu yük,

$$R_{e3} = R_6 // r'_{i4} = R_6 // h_{fe4} (r_{e4} + R_8) = 5.6 // 97,08 \approx 5.3 \text{ k}\Omega$$

olur. T3'den oluşan emetör çıkışlı devrenin gerilim kazancı,

$$K_{V3} = \frac{R_{e3}}{r_{e3} + R_{e3}} = \frac{5300}{23.6 + 5300} = 0,996$$
 $r_{/3} = h_{fe3}(r_{e3} + R_{e3}) = 1597 \,\mathrm{k}\Omega$

dır. Uzun kuyruklu devre olan giriş katının gerilim kazancı,

$$K_{v2} = \frac{R_4 // r_{i3}}{2r_{e2}} = \frac{11911}{2.45,54} = 130,8$$

olur. Kaskat devrenin gerilim kazancı, katların gerilim kazançlarının çarpımına esittir. Bu islem yapıldığında,

$$K_{V} = K_{V2}K_{V3}K_{V4} = 130,8.0,996.(36,7) \cong 4791$$

biçiminde elde edilir.

Kuvvetlendiricinin giriş direnci, T_1 tranzistorunun bazından görülen dirençle R_1 direncinin paralel eşdeğerine eşittir. T_1 'in bazından görülen direnç,

$$r'_{/1} = 2h_{fe1}r_{e1} = 27,3\,\mathrm{k}\Omega$$

dur. Kuvvetlendiricinin giriş direnci,

$$r_i = R_1 // r_i' = 17,3 \,\mathrm{k}\Omega$$

olur. Kuvvetlendiricinin çıkış direnci $^{\hat{}}$ R $_7$ direncine eşittir ve r_0 =15k Ω dır.