target-Side Augmentation for Document-level Machine Translation

Guangsheng Bao, Zhiyang Teng, Yue Zhang, ACL 2023

SECTION 1 Introduction

Data Augmentation in MT

Rely on external data or models.

Introduction

Data Augmentation in MT

Samples from data distribution for training:

$$x_i \sim P_{data}(x), \ y_i \sim P_{data}(y|x_i)$$

Step 1. DA model training:

die meisten freien Gesellschaften halten diese Einschränkungen für sinnvoll, aber die Gesetze wurden in letzter Zeit verschärft.

One reference:

most free societies accept such limits as reasonable, but the law has recently become more restrictive.

Step 2. Target-side data augmentation:

die meisten freien Gesellschaften halten diese Einschränkungen für sinnvoll, aber die Gesetze wurden in letzter Zeit verschärft.

Sample from DA model:

- \hat{y}_1 : while most free societies consider these restrictions useful, the law has recently been tightened.
- \hat{y}_2 : most free societies regard such restrictions as reasonable, but the law has been strengthened lately.
- \hat{y}_3 : ...

Step 3. MT model training:

die meisten freien Gesellschaften halten diese Einschränkungen für sinnvoll , aber die Gesetze wurden in letzter Zeit verschärft .

The DA Model

$$P_{da}(y|x_i, y_i) = \sum_{z \in \mathcal{Z}_i} P_{\varphi}(y|x_i, z) P_{\alpha}(z|y_i), \quad (1)$$

$$P_{da}(y|x_i, y_i) \approx \frac{1}{|\hat{\mathcal{Z}}_i|} \sum_{z \in \hat{\mathcal{Z}}_i} P_{\varphi}(y|x_i, z), \quad (2)$$

$$\mathcal{L}_{da} = -\sum_{i=1}^{N} \log P_{da}(y = y_i | x_i, y_i)$$

$$\approx -\sum_{i=1}^{N} \log \frac{1}{|\hat{\mathcal{Z}}_i|} \sum_{z \in \hat{\mathcal{Z}}_i} P_{\varphi}(y = y_i | x_i, z) \qquad (3)$$

$$\leq -\sum_{i=1}^{N} \frac{1}{|\hat{\mathcal{Z}}_i|} \sum_{z \in \hat{\mathcal{Z}}_i} \log P_{\varphi}(y = y_i | x_i, z),$$

The MT Model

$$\mathcal{L}_{mt} = -\sum_{i=1}^{N} \sum_{y \in \mathcal{Y}_i} P_{da}(y|x_i, y_i) \log P_{mt}(y|x_i),$$
(5)

$$\hat{\mathcal{Y}}_i = \{\arg\max_{y} P_{\varphi}(y|x_i, z_j) | z_j \sim P_{\alpha}(z|y_i) \}_{j=1}^M,$$
(6)

$$\mathcal{L}_{mt} \approx -\sum_{i=1}^{N} \frac{1}{|\hat{\mathcal{Y}}_i|} \sum_{y \in \hat{\mathcal{Y}}_i} \log P_{\theta}(y|x_i), \quad (7)$$

Data Augmentation Process

Main Results

Method	TED		News		Europarl		Average	
	s-BLEU	d-BLEU	s-BLEU	d-BLEU	s-BLEU	d-BLEU	s-BLEU	
HAN (Miculicich et al., 2018)	24.58	-	25.03	-	28.60	-	26.07	
SAN (Maruf et al., 2019)	24.42	-	24.84	-	29.75	-	26.34	
Hybrid Context (Zheng et al., 2020)	25.10	-	24.91	-	30.40	-	26.80	
Flat-Transformer (Ma et al., 2020)	24.87	-	23.55	-	30.09	-	26.17	
G-Transformer (rnd.) (Bao et al., 2021)	23.53	25.84	23.55	25.23	32.18	33.87	26.42	
G-Transformer (fnt.) (Bao et al., 2021)	25.12	27.17	25.52	27.11	32.39	34.08	27.68	
MultiResolution (Sun et al., 2022)	25.24	29.27	25.00	26.71	32.11	34.48	27.45	
RecurrentMem (Feng et al., 2022)	25.62	29.47	25.73	27.78	31.41	33.50	27.59	
SMDT (Zhang et al., 2022)	25.12	-	25.76	-	32.42	-	27.77	
Transformer (sent baseline) ♦	24.91	-	24.82	-	31.22	-	26.98	
+ Target-side data augmentation (ours)	26.14*	-	27.03*	-	31.75*	-	28.31	
G-Transformer (fnt.) (doc baseline) \Diamond	25.20	77.94	25.12	$-\overline{27.02}$	31.93	33.88	727.42	
+ Target-side augmentation (ours)	26.59*	29.20*	28.06*	29.83*	32.85*	34.76*	29.17	
Transformer + Back-translation (sent) ♥	25.03	-	26.07	-	31.12	-	27.41	
Target-side augmentation (ours)	26.13	-	28.01	-	31.27	-	28.47	
G-Transformer + Back-translation (doc) ♥	25.45	⁻ 2 8.06 ⁻	26.25	⁻ 2 8.2 1 ⁻	32.00	33.94		
Target-side augmentation (ours)	26.21	28.58	28.69	30.41	32.52	34.50	29.14	
Pre-training Setting for Comparison								
Flat-Transformer+BERT (Ma et al., 2020)	26.61	-	24.52	-	31.99	-	27.71	
G-Transformer+BERT (Bao et al., 2021)	26.81	-	26.14	-	32.46	-	28.47	
G-Transformer+mBART (Bao et al., 2021)	28.06	30.03	30.34	31.71	32.74	34.31	30.38	

Posterior vs Prior Distribution

Method	Diversity ↑	Deviation \downarrow	PPL ↓
Prior distribution	78.68	76.55	8.68
Posterior distribution	45.42	47.14	7.00

Table 4: Quality of generated translations and accuracy of the estimated distributions from the DA model, evaluated on *News*.

Impact of Latent Variable

Figure 4: Impact of the observed ratio for z, trained on G-Transformer (fnt.) and evaluated in s-BLEU. Beta(a,b) – The function curves are shown in Appendix B.3.

Thank you!

Github:

https://github.com/baoguangsheng/target-side-augmentation

