文献分享

Deep vessel segmentation by learning graphical connectivity

Seung Yeon Shin^a, Soochahn Lee^{b,*}, Il Dong Yun^c, Kyoung Mu Lee^a

通过学习图形连接实现血管分割

^a Department of Electrical and Computer Engineering, Automation and Systems Research Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea

^b School of Electrical Engineering, Kookmin University, Seoul, 02707, South Korea

^c Division of Computer and Electronic Systems Engineering, Hankuk University of Foreign Studies, Yongin, 17035, South Korea

问题背景

- □ 血管结构有其形状特殊性
- □ 普通CNN在欧式空间提取特征
- 图网络GNN可以在不规则空间 提取特征

网络结构

■ 融合CNN和GNN网络

GNN网络

- □ Graph 初始化 G = (V, E)
- □ 顶点V,特征f,边E

□ 边的构造由测地距离决定 保证这种构造方式可以保 留血管的结构

0.9	0.8	0.7
0.1	0.8	0.1
0.4	0.7	0.9

GNN网络

□ 图网络的内部连接

$$e_{jk} = \text{LeakyReLU}(\vec{a}^T [\mathbf{W} \vec{f}_j || \mathbf{W} \vec{f}_k]),$$

$$\alpha_{jk} = \operatorname{softmax}_k(e_{jk}) = \frac{\exp(e_{jk})}{\sum_{m \in N_j} \exp(e_{jm})},$$

$$\vec{f}_j' = \prod_{r=1}^R \text{ELU}\left(\sum_{k \in N_j} \alpha_{jk}^r \mathbf{W}^r \vec{f}_k\right),$$

$$p^{GNN}(v_j) = \sigma\left(\frac{1}{R} \sum_{r=1}^{R} \sum_{k \in N_j} \alpha_{jk}^r \mathbf{W}^r \vec{f_k}\right),$$

$$L_{GNN}(G^{X}) = -\frac{1}{|V|} \sum_{v_{j} \in V} \left(p^{*}(v_{j}) \log p^{GNN}(v_{j}) + (1 - p^{*}(v_{j})) \log \left(1 - p^{GNN}(v_{j}) \right) \right),$$

网络结构

$$L_{total}(X) = L_{CNN}(X) + L_{GNN}(G^X) + L_{INFER}(X).$$

□ 数据集

Dataset	Retinal	Coronary			
	DRIVE	STARE	CHASE_DB1	HRF	CA-XRA
# of images (train/test) Resolution FoV mask 2nd GT	40 (20/20) 584 × 565 Y Y	20 (10/10) 605 × 700 Y Y	28 (20/8) 960 × 999 Y Y	45 (15/30) 2336 × 3504 Y N	3137 (2958/179) 512 × 512 N N

□ 数据增广 水平翻转,对比度调整

VGN的CNN部分与DRIU相同

□ 不同的边构造方式 测地距离、欧式距离和全连接

Edge const. method	DRIU* (Maninis et al., 2016)	Geodesic	Euclidean	Full CXT
Average precision (%)	91.36	92.67	92.56	90.34

□ 与其他方法的定量对比

Network architecture	Average precision (%)	#params (million)
DRIU* (Maninis et al., 2016)	91.36	7.86
U-Net (Ronneberger et al., 2015)	92.20	7.89
DRIU + Deformable convolution (Dai et al., 2017)	91.82	7.87
Ours	92.67	7.91

文章亮点

- □ 结合血管特点,引入图网络
- □ 把图网络和CNN结合
- □ 精心设计了图网络的输入输出
- □ 图网络可以捕捉到血管的连续性