Tian Han

Outline

Polynomial Regression

• Binary Classification - Logistic regression

Warm-up: Linear Regression

Linear Regression (Task)

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$

Output: a vector $\mathbf{w} \in \mathbb{R}^d$ and scalar $\mathbf{b} \in \mathbb{R}$ such that $\mathbf{x}_i^T \mathbf{w} + \mathbf{b} \approx y_i$.

assume y_i is a linear function of \mathbf{x}_i .

Linear Regression

Least Squares Regression (Method)

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$

- 1. Add one dimension to $\mathbf{x} \in \mathbb{R}^d$: $\bar{\mathbf{x}}_i = [\mathbf{x}_i; 1] \in \mathbb{R}^{d+1}$.
- 2. Solve least squares regression: $\min_{\mathbf{w} \in \mathbb{R}^{d+1}} \left| \left| \overline{\mathbf{X}} \mathbf{w} \mathbf{y} \right| \right|_2^2$.

Tasks

Methods

Linear Regression

Least Squares Regression

Least Squares Regression (Method)

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$

- 1. Add one dimension to $\mathbf{x} \in \mathbb{R}^d$: $\bar{\mathbf{x}}_i = [\mathbf{x}_i; 1] \in \mathbb{R}^{d+1}$.
- 2. Solve least squares regression: $\min_{\mathbf{w} \in \mathbb{R}^{d+1}} \left| \left| \overline{\mathbf{X}} \mathbf{w} \mathbf{y} \right| \right|_2^2$.

Tasks

Methods

Algorithms

Linear Regression

Least Squares Regression

Analytical Solution

Gradient Descent

The Regression Task

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$.

Output: a function $f: \mathbb{R}^d \to \mathbb{R}$ such that $f(\mathbf{x}) \approx y$.

Question: f is unknown! So how to learn f?

The Regression Task

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$.

Output: a function $f: \mathbb{R}^d \mapsto \mathbb{R}$ such that $f(\mathbf{x}) \approx y$.

Question: f is unknown! So how to learn f?

Answer: polynomial approximation; f is a polynomial function.

Taylor expansion: $f(x) = f(a) + f'(a)(a - x) + \frac{f''(a)}{2!}(a - x)^2 + \cdots$

Polynomial Regression: 1D Example

Input: scalars $x_1, \dots, x_n \in \mathbb{R}$ and labels $y_1, \dots, y_n \in \mathbb{R}$.

Output: a function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) \approx y$.

One-dimensional example: $f(x) = w_0 + w_1 x + w_2 x^2 + \cdots + w_p x^p$.

Polynomial Regression: 1D Example

Input: scalars $x_1, \dots, x_n \in \mathbb{R}$ and labels $y_1, \dots, y_n \in \mathbb{R}$.

Output: a function $f: \mathbb{R} \to \mathbb{R}$ such that $f(x) \approx y$.

One-dimensional example: $f(x) = w_0 + w_1 x + w_2 x^2 + \dots + w_p x^p$.

- 1. Define a feature map $\mathbf{\phi}(x) = [1, x, x^2, x^3, \dots, x^p]$.
- 2. For j=1 to n, do the mapping $x_j\mapsto \mathbf{\Phi}(x_j)$.
 - Let $\mathbf{\Phi} = [\mathbf{\Phi}(x_1); \cdots, \mathbf{\Phi}(x_n)]^T \in \mathbb{R}^{n \times (p+1)}$
- 3. Solve the least squares regression $\min_{\mathbf{w} \in \mathbb{R}^{p+1}} ||\mathbf{\Phi} \mathbf{w} \mathbf{y}||_2^2$.

Polynomial Regression: 2D Example

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^2$ and labels $y_1, \dots, y_n \in \mathbb{R}$.

Output: a function $f: \mathbb{R}^2 \to \mathbb{R}$ such that $f(\mathbf{x}_i) \approx y_i$.

Two-dimensional example: how to do feature mapping?

Polynomial features:

$$\mathbf{\phi}(\mathbf{x}) = [1, x_1, x_2, x_1^2, x_2^2, x_1x_2, x_1^3, x_2^3, x_1x_2^2, x_1^2x_2].$$

degree-0 degree-1 degree-2 degree-3

```
import numpy
X = numpy.arange(6).reshape(3, 2)
print('X = ')
print(X)

X =
[[0 1]
  [2 3]
  [4 5]]
```

```
import numpy
  X = numpy.arange(6).reshape(3, 2)
  print('X = ')
  print(X)
  X =
  [0 1]
   [2 3]
   [4 5]]
  from sklearn.preprocessing import PolynomialFeatures
  poly = PolynomialFeatures(degree=3)
  Phi = poly.fit transform(X)
  print('Phi = ')
  print(Phi)
  Phi =
  [[1. 0. 1. 0. 0. 1. 0. 0. 0. 1.]
     1. 2. 3. 4. 6. 9. 8. 12. 18. 27.]
               5. 16. 20. 25. 64. 80. 100. 125.]]
          degree-1
                     degree-2
                                      degree-3
degree-0
```

- x: d-dimensional
- $\phi(x)$: degree-p polynomial
- The dimension of $\phi(\mathbf{x})$ is $O(d^p)$

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$.

Output: a function $f: \mathbb{R}^d \to \mathbb{R}$ such that $f(\mathbf{x}_i) \approx y_i$.

Training, Test, and Overfitting

Polynomial Regression: Training

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$.

Feature map: $\phi(\mathbf{x})$. Its dimension is $O(d^p)$.

Least squares: $\min_{\mathbf{w}} ||\Phi \mathbf{w} - \mathbf{y}||_2^2$.

Polynomial Regression: Training

Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$.

Feature map: $\phi(x)$. Its dimension is $O(d^p)$.

Least squares: $\min_{\mathbf{w}} ||\Phi \mathbf{w} - \mathbf{y}||_2^2$.

Question: what will happen as *p* grows?

- 1. For sufficiently large p, the dimension of the feature $\phi(x)$ exceeds n.
- 2. Then you can find w such that $\Phi w = y$. (Zero training error!)

Overfitting

Train: Input: vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \mathbb{R}$.

Output: a function $f: \mathbb{R}^d \mapsto \mathbb{R}$ such that $f(\mathbf{x}_i) \approx y_i$.

Input: a never-seen-before feature vectors $\mathbf{x}' \in \mathbb{R}^d$.

output: predict its label by $f(\mathbf{x}')$.

Question: for the polynomial regression model, how to determine the degree p?

Answer: the degree p leads to the smallest test error.

Trai	ini	ng	Set

Train a degree-1 polynomial regression

Train a degree-2 polynomial regression

Train a degree-3 polynomial regression

Train a degree-4 polynomial regression

Train a degree-5 polynomial regression

Train a degree-6 polynomial regression

Train a degree-7 polynomial regression

Train a degree-8 polynomial regression

Test Set

Test MSE = 23.2

Test MSE = 19.0

Test MSE = 16.7

Test MSE = 12.2

Test MSE = 14.8

Test MSE = 25.1

Test MSE = 39.4

Test MSE = 53.0

Training So	et
--------------------	----

Train a degree-1 polynomial regression

Train a degree-2 polynomial regression

Train a degree-3 polynomial regression

Train a degree-4 polynomial regression

Train a degree-5 polynomial regression

Train a degree-6 polynomial regression

Train a degree-7 polynomial regression

Train a degree-8 polynomial regression

Test Set

Test MSE = 23.2

Test MSE = 19.0

Test MSE = 16.7

Test MSE = 12.2

Test MSE = 14.8

Test MSE = 25.1

Test MSE = 39.4

Test MSE = 53.0

• Wrong! The test labels are unavailable! Even if you have the test labels, never do this!

Cross-Validation (Naïve Approach) for Hyper-Parameter Tuning

Training Set		Testet
Train a degree-1 polynomial regression	\longrightarrow	Test M = 23.2
Train a degree-2 polynomial regression	\longrightarrow	Test M35 = 19.0
Train a degree-3 polynomial regression	\longrightarrow	Test M\$= 16.7
Train a degree-4 polynomial regression	\longrightarrow	Test M\$5= 12.2
Train a degree-5 polynomial regression	\longrightarrow	Test MS 14.8
Train a degree-6 polynomial regression	\longrightarrow	Test M\$= 25.1
Train a degree-7 polynomial regression	\longrightarrow	Test MS = 39.4
Train a degree-8 polynomial regression	\longrightarrow	Test MS 53.0

Training Set

Train a degree-1 polynomial regression

Train a degree-2 polynomial regression

Train a degree-3 polynomial regression

Train a degree-4 polynomial regression

Train a degree-5 polynomial regression

Train a degree-6 polynomial regression

Train a degree-7 polynomial regression

Train a degree-8 polynomial regression

Validation Set

Valid. MSE = 23.1

→ Valid. MSE = 19.2

──→ Valid. MSE = 16.3

→ Valid. MSE = 12.5

→ Valid. MSE = 14.4

→ Valid. MSE = 25.0

Valid. MSE = 39.1

Valid. MSE = 53.5

k-Fold Cross-Validation

k-Fold Cross-Validation

- 1. Propose a grid of hyper-parameters.
 - E.g. $p \in \{1, 2, 3, 4, 5, 6\}$.
- 2. Randomly partition the training samples to k parts.
 - k-1 parts for training.
 - One part for test.
- 3. Compute the averaged test errors of the k repeats.
 - The average is called the validation error.
- 4. Choose the hyper-parameter *p* that leads to the smallest validation error.

Example: 5-fold cross-validation

Example: 10-Fold Cross-Validation

Example: 10-Fold Cross-Validation

hyper-parameter		validation error	
	p=1	23.19	
	p=2	21.00	
	p=3	18.54	
	p=4	24.36	
	p=5	27.96	
	p=6	33.10	

Real-World Machine Learning Competition

The Available Data

> The public and private are mixed; Participants cannot distinguish them.

Train A Model

Labels:

Features:

Training

y

X

Model

Public

unknown

X_{public}

Private

unknown

Xprivate

Prediction

Submission to Leaderboard

Training

y

Features: X

Labels:

Public Private unknown unknown **X**private Xpublic ypublic **y**private **Submission** Score=0.9527 Secret!

Submission to Leaderboard

Training

Labels:

Features: X

Question: Why two leaderboards?

Answer: The score can be evilly used _ for hyper-parameter tuning (cheating).

Summary

- Polynomial regression for non-linear problems.
- Polynomial regression has a hyper-parameter p.
- Underfitting (very small p) and overfitting (very big p).
- Tune the hyper-parameters using cross-validation.
- Make your model parameters and hyper-parameters independent of the test set!!!

(Logistic Regression)

Vector and Matrix Derivatives

Derivative of Scalar w.r.t. Scalar

Examples:

•
$$y = x^2$$
; $\frac{dy}{dx} = 2x$.

•
$$y = e^x$$
; $\frac{dy}{dx} = e^x$.

Derivative of Vector w.r.t. Scalar

• The derivative of a vector $\mathbf{y} \in \mathbb{R}^n$ w.r.t. a scalar $x \in \mathbb{R}$:

$$\frac{\partial \mathbf{y}}{\partial x} = \begin{bmatrix} \frac{\partial y_1}{\partial x} \\ \frac{\partial y_2}{\partial x} \\ \vdots \\ \frac{\partial y_n}{\partial x} \end{bmatrix}$$

• Example:

$$\mathbf{y} = \begin{bmatrix} 3x^2 \\ x+1 \\ \log x \\ e^x \end{bmatrix}, \qquad \frac{\partial \mathbf{y}}{\partial x} = \begin{bmatrix} 6x \\ 1 \\ 1/x \\ e^x \end{bmatrix}$$

Derivative of Scalar w.r.t. Vector

• The derivative of a scalar $y \in \mathbb{R}$ w.r.t. a vector $\mathbf{x} \in \mathbb{R}^m$:

$$\left[egin{array}{c} rac{\partial y}{\partial x_1} \ rac{\partial y}{\partial x_2} \ rac{\partial y}{\partial x_m} \end{array}
ight]$$

• Example 1:

$$y = \|\mathbf{x}\|_2^2 = \sum_{i=1}^m x_i^2, \qquad \frac{\partial y}{\partial \mathbf{x}} = 2\mathbf{x}.$$

Derivative of Scalar w.r.t. Vector

• The derivative of a scalar $y \in \mathbb{R}$ w.r.t. a vector $\mathbf{x} \in \mathbb{R}^m$:

$$\left[egin{array}{c} rac{\partial y}{\partial x_1} \ rac{\partial y}{\partial x_2} \ rac{\partial y}{\partial x_m} \end{array}
ight]$$

• Example 2:

$$y = \mathbf{x}^T \mathbf{z} = \sum_{i=1}^m x_i z_i, \qquad \frac{\partial y}{\partial \mathbf{x}} = \mathbf{z}.$$

Derivative of Scalar w.r.t. Vector

• The derivative of a scalar $y \in \mathbb{R}$ w.r.t. a vector $\mathbf{x} \in \mathbb{R}^m$:

$$\frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y}{\partial x_1} \\ \frac{\partial y}{\partial x_2} \\ \vdots \\ \frac{\partial y}{\partial x_m} \end{bmatrix}$$

• Example 3:

$$y = \sum_{i=1}^{m} \log(1 + e^{-x_i}), \qquad \frac{\partial y}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial \log(1 + e^{-x_1})}{\partial x_1} \\ \vdots \\ \frac{\partial \log(1 + e^{-x_m})}{\partial x_m} \end{bmatrix} = \begin{bmatrix} -\frac{1}{1 + e^{x_1}} \\ \vdots \\ -\frac{1}{1 + e^{x_m}} \end{bmatrix}$$

Derivative of Vector w.r.t. Vector

• The derivative of a vector $\mathbf{y} \in \mathbb{R}^n$ w.r.t. a vector $\mathbf{x} \in \mathbb{R}^m$:

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \cdots & \frac{\partial y_n}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_n}{\partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_1}{\partial x_m} & \frac{\partial y_2}{\partial x_m} & \cdots & \frac{\partial y_n}{\partial x_m} \end{bmatrix}$$

$$m \times n \text{ matrix}$$

• Example 1:

$$\frac{\partial \mathbf{x}}{\partial \mathbf{x}} = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

$$m \times m$$

The (i, j)-th entry is $\frac{\partial y_j}{\partial x_i}$

Derivative of Vector w.r.t. Vector

• The derivative of a vector $\mathbf{y} \in \mathbb{R}^n$ w.r.t. a vector $\mathbf{x} \in \mathbb{R}^m$:

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \cdots & \frac{\partial y_n}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_n}{\partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_1}{\partial x_m} & \frac{\partial y_2}{\partial x_m} & \cdots & \frac{\partial y_n}{\partial x_m} \end{bmatrix}$$

$$m \times n \text{ matrix}$$

• Example 2:

$$\mathbf{y} = \begin{bmatrix} a_1 x_1^2 \\ a_2 x_2^2 \\ \vdots \\ a_m x_m^2 \end{bmatrix} \in \mathbb{R}^m, \qquad \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \underbrace{\begin{bmatrix} 2a_1 x_1 & 0 & \cdots & 0 \\ 0 & 2a_2 x_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 2a_m x_m \end{bmatrix}}_{m \times m}$$

Derivative of Vector w.r.t. Vector

• The derivative of a vector $\mathbf{y} \in \mathbb{R}^n$ w.r.t. a vector $\mathbf{x} \in \mathbb{R}^m$:

$$\frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial y_1}{\partial x_1} & \frac{\partial y_2}{\partial x_1} & \cdots & \frac{\partial y_n}{\partial x_1} \\ \frac{\partial y_1}{\partial x_2} & \frac{\partial y_2}{\partial x_2} & \cdots & \frac{\partial y_n}{\partial x_2} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial y_1}{\partial x_m} & \frac{\partial y_2}{\partial x_m} & \cdots & \frac{\partial y_n}{\partial x_m} \end{bmatrix}$$

$$m \times n \text{ matrix}$$

• Example 3:

$$\mathbf{A} \in \mathbb{R}^{n imes m}, \qquad \mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{R}^n, \qquad \frac{\partial \mathbf{y}}{\partial \mathbf{x}} = \mathbf{A}^T \in \mathbb{R}^{m imes n}$$

Chain Rule

• Let $\mathbf{z} \in \mathbb{R}^{n_z}$ be a function of $\mathbf{y} \in \mathbb{R}^{n_y}$ and \mathbf{y} be a function of $\mathbf{x} \in \mathbb{R}^{n_x}$.

$$\frac{d\mathbf{z}}{d\mathbf{x}} = \underbrace{\frac{d\mathbf{y}}{d\mathbf{x}}}_{n_x \times n_z} \underbrace{\frac{d\mathbf{z}}{d\mathbf{y}}}_{n_x \times n_y} \underbrace{\frac{d\mathbf{z}}{n_y \times n_z}}_{n_y \times n_z}$$

Derivative of Scalar w.r.t. Matrix

- The derivative of a scalar $y \in \mathbb{R}$ w.r.t. a matrix $\mathbf{Z} \in \mathbb{R}^{p \times q}$:
 - 1. Vectorization: $\mathbf{x} = \text{vec}(\mathbf{Z}) \in \mathbb{R}^{pq \times 1}$.
 - 2. Compute $\frac{\partial y}{\partial x} \in \mathbb{R}^{pq \times 1}$.
 - 3. Reshape the resulting $pq \times 1$ vector to $p \times q$ matrix.

Derivative of Vector w.r.t. Matrix

- The derivative of a vector $\mathbf{y} \in \mathbb{R}^n$ w.r.t. a matrix $\mathbf{Z} \in \mathbb{R}^{p \times q}$:
 - 1. Vectorization: $\mathbf{x} = \text{vec}(\mathbf{Z}) \in \mathbb{R}^{pq \times 1}$.
 - 2. Compute $\frac{\partial \mathbf{y}}{\partial \mathbf{x}} \in \mathbb{R}^{pq \times n}$.
 - 3. Reshape the resulting $pq \times n$ matrix to $p \times q \times n$ tensor.

Tasks

Methods

Algorithms

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \{-1, +1\}$.

Output: a function $f: \mathbb{R}^d \mapsto \{-1, +1\}$.

Input: feature vectors $\mathbf{x}_1, \dots, \mathbf{x}_n \in \mathbb{R}^d$ and labels $y_1, \dots, y_n \in \{-1, +1\}$.

Output: a function $f: \mathbb{R}^d \mapsto \{-1, +1\}$.

Linear Classification

Nonlinear Classification

Logistic Regression (Linear Classifier)

Tasks

Methods

Algorithms

Learn a vector w such that

• If $y_j = +1$, then $\mathbf{w}^T \mathbf{x}_j > 0$.

Learn a vector w such that

- If $y_i = +1$, then $\mathbf{w}^T \mathbf{x}_i > 0$.
- If $y_j = -1$, then $\mathbf{w}^T \mathbf{x}_j < 0$.

Learn a vector w such that

- If $y_i = +1$, then $\mathbf{w}^T \mathbf{x}_i > 0$.
- If $y_i = -1$, then $\mathbf{w}^T \mathbf{x}_i < 0$.

Key Idea:

Encourage $y_i \mathbf{w}^T \mathbf{x}_i$ to be positive

Directly Minimize the Classification Error?

Minimize
$$\sum_{j} h(y_{j} \mathbf{w}^{T} \mathbf{x}_{j})$$
, where $h(z) = \begin{cases} 1, & \text{if } z < 0; \\ 0, & \text{if } z \geq 0. \end{cases}$

Key Idea:

Encourage $y_i \mathbf{w}^T \mathbf{x}_i$ to be positive

Directly Minimize the Classification Error?

Directly Minimize the Classification Error?

Logistic Regression

Minimize $\sum_{j} l(y_{j} \mathbf{w}^{T} \mathbf{x}_{j})$, where $l(\mathbf{z}) = \log(1 + e^{-z})$.

Key Idea:

Encourage $y_i \mathbf{w}^T \mathbf{x}_i$ to be positive

Logistic Regression

Tasks

Methods

Algorithms

Logistic Regression

Logistic regression:
$$\min_{\mathbf{w}} \frac{1}{n} \sum_{j=1}^{n} l(y_j \mathbf{w}^T \mathbf{x}_j)$$
, where $l(\mathbf{z}) = \log(1 + e^{-z})$.

Tasks

Methods

Algorithms

Binary Classification

Logistic Regression

Gradient Descent (GD)

Multi-Class Classification

SVM

Accelerated GD

Neural Networks

Stochastic GD

Gradient

Logistic regression: $\min_{\mathbf{w}} \frac{1}{n} \sum_{j=1}^{n} l(y_j \mathbf{w}^T \mathbf{x}_j)$, where $l(\mathbf{z}) = \log(1 + e^{-z})$.

$$z = y \mathbf{w}^T \mathbf{x} \qquad l = \log(1 + e^{-z})$$

$$z = y \mathbf{w}^T \mathbf{x} \qquad l = \log(1 + e^{-z})$$

•
$$\frac{\partial z}{\partial \mathbf{w}} = y\mathbf{x}$$
,

$$z = y \mathbf{w}^T \mathbf{x} \qquad l = \log(1 + e^{-z})$$

•
$$\frac{\partial z}{\partial \mathbf{w}} = y\mathbf{x}$$
, $\frac{\partial l(z)}{\partial z} = \frac{-e^{-z}}{1+e^{-z}} = -\frac{1}{1+e^{z}}$.

$$z = y \mathbf{w}^T \mathbf{x} \qquad l = \log(1 + e^{-z})$$

•
$$\frac{\partial z}{\partial \mathbf{w}} = y\mathbf{x}$$
, $\frac{\partial l(z)}{\partial z} = \frac{-e^{-z}}{1+e^{-z}} = -\frac{1}{1+e^{z}}$.

• Chain rule:
$$\frac{\partial l}{\partial \mathbf{w}} = \frac{\partial z}{\partial \mathbf{w}} \cdot \frac{\partial l}{\partial z} = (y\mathbf{x}) \left(-\frac{1}{1+e^z} \right) = -\frac{y\mathbf{x}}{1+\exp(y\mathbf{w}^T\mathbf{x})}.$$

Logistic regression:
$$\min_{\mathbf{w}} \frac{1}{n} \sum_{j=1}^{n} l(y_j \mathbf{w}^T \mathbf{x}_j)$$
, where $l(\mathbf{z}) = \log(1 + e^{-z})$.

- We have shown: $\frac{\partial l(y\mathbf{w}^T\mathbf{x})}{\partial \mathbf{w}} = \frac{-y\mathbf{x}}{1 + \exp(y\mathbf{w}^T\mathbf{x})}$.
- Objective function: $f(\mathbf{w}) = \frac{1}{n} \sum_{j} l(y_j \mathbf{w}^T \mathbf{x}_j)$.

- We have shown: $\frac{\partial l(y\mathbf{w}^T\mathbf{x})}{\partial \mathbf{w}} = \frac{-y\mathbf{x}}{1 + \exp(y\mathbf{w}^T\mathbf{x})}$.
- Objective function: $f(\mathbf{w}) = \frac{1}{n} \sum_{j} l(y_j \mathbf{w}^T \mathbf{x}_j)$.

•
$$\frac{\partial f(\mathbf{w})}{\partial \mathbf{w}} = \frac{1}{n} \sum_{j} \frac{\partial l(y_{j} \mathbf{w}^{T} \mathbf{x}_{j})}{\partial \mathbf{w}} = \frac{1}{n} \sum_{j} \frac{-y_{j} \mathbf{x}_{j}}{1 + \exp(y_{j} \mathbf{w}^{T} \mathbf{x}_{j})}.$$

Logistic regression:
$$\min_{\mathbf{w}} \frac{1}{n} \sum_{j=1}^{n} l(y_j \mathbf{w}^T \mathbf{x}_j)$$
, where $l(\mathbf{z}) = \log(1 + e^{-z})$.

Gradient at
$$\mathbf{w}_t$$
: $\mathbf{g}_t = \frac{1}{n} \sum_{j=1}^n \frac{-y_j \mathbf{x}_j}{1 + \exp(y_j \mathbf{w}_t^T \mathbf{x}_j)}$.

- We have shown: $\frac{\partial l(y\mathbf{w}^T\mathbf{x})}{\partial \mathbf{w}} = \frac{-y\mathbf{x}}{1 + \exp(y\mathbf{w}^T\mathbf{x})}$.
- Objective function: $f(\mathbf{w}) = \frac{1}{n} \sum_{j} l(y_j \mathbf{w}^T \mathbf{x}_j)$.

•
$$\frac{\partial f(\mathbf{w})}{\partial \mathbf{w}} = \frac{1}{n} \sum_{j} \frac{\partial l(y_{j} \mathbf{w}^{T} \mathbf{x}_{j})}{\partial \mathbf{w}} = \frac{1}{n} \sum_{j} \frac{-y_{j} \mathbf{x}_{j}}{1 + \exp(y_{j} \mathbf{w}^{T} \mathbf{x}_{j})}.$$

Gradient Descent (GD) Algorithm

Logistic regression:
$$\min_{\mathbf{w}} \frac{1}{n} \sum_{j=1}^{n} l(y_j \mathbf{w}^T \mathbf{x}_j)$$
, where $l(\mathbf{z}) = \log(1 + e^{-z})$.

Gradient at
$$\mathbf{w}_t$$
: $\mathbf{g}_t = \frac{1}{n} \sum_{j=1}^n \frac{-y_j \mathbf{x}_j}{1 + \exp(y_j \mathbf{w}_t^T \mathbf{x}_j)}$.

GD repeat:

- 1. Compute gradient: \mathbf{g}_t
- 2. Update: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \mathbf{g}_t$

Tune the step size (learning rate) α

Algorithms

Gradient Descent (GD)

Accelerated GD

AGD Algorithm

Logistic regression:
$$\min_{\mathbf{w}} \frac{1}{n} \sum_{j=1}^{n} l(y_j \mathbf{w}^T \mathbf{x}_j)$$
, where $l(\mathbf{z}) = \log(1 + e^{-z})$.

Gradient at
$$\mathbf{w}_t$$
: $\mathbf{g}_t = \frac{1}{n} \sum_{j=1}^n \frac{-y_j \mathbf{x}_j}{1 + \exp(y_j \mathbf{w}_t^T \mathbf{x}_j)}$.

AGD repeat:

- 1. Compute gradient: \mathbf{g}_t
- 2. Update momentum: $\mathbf{v}_{t+1} = \beta \mathbf{v}_t + \mathbf{g}_t$
- 3. Update: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \mathbf{v}_{t+1}$

Tune α and β ($0 \le \beta < 1$)

Algorithms

Gradient Descent (GD)

Accelerated GD

GD versus **AGD**

Time Complexity

Gradient at
$$\mathbf{w}_t$$
: $\mathbf{g}_t = \frac{1}{n} \sum_{j=1}^n \tilde{\mathbf{g}}_{t,j}$, where $\tilde{\mathbf{g}}_{t,j} = \frac{-y_j \mathbf{x}_j}{1 + \exp(y_i \mathbf{w}_t^T \mathbf{x}_j)}$.

Per-iteration time complexity is O(nd).

- O(d) time for computing $\mathbf{w}_t^T \mathbf{x}_i$.
- O(d) time for computing $\tilde{\mathbf{g}}_{t,j}$.
- O(nd) time for computing all the $\tilde{\mathbf{g}}_{t,j}$.

Algorithms

Gradient Descent (GD)

Accelerated GD

SGD Algorithm

Gradient at
$$\mathbf{w}_t$$
: $\mathbf{g}_t = \frac{1}{n} \sum_{j=1}^n \tilde{\mathbf{g}}_{t,j}$, where $\tilde{\mathbf{g}}_{t,j} = \frac{-y_j \mathbf{x}_j}{1 + \exp(y_i \mathbf{w}_t^T \mathbf{x}_j)}$.

The stochastic gradient is close to the full gradient:

$$\mathbf{g}_t = \mathbb{E}_j \big[\widetilde{\mathbf{g}}_{t,j} \big],$$

where j is randomly sampled from $\{1, \dots, n\}$.

Algorithms

Gradient Descent (GD)

Accelerated GD

SGD Algorithm

Gradient at
$$\mathbf{w}_t$$
: $\mathbf{g}_t = \frac{1}{n} \sum_{j=1}^n \tilde{\mathbf{g}}_{t,j}$, where $\tilde{\mathbf{g}}_{t,j} = \frac{-y_j \mathbf{x}_j}{1 + \exp(y_i \mathbf{w}_t^T \mathbf{x}_j)}$.

SGD repeats

- 1. Randomly draw j from $\{1, 2, \dots, n\}$.
- 2. Compute the stochastic gradient $\tilde{\mathbf{g}}_{t,i}$.
- 3. Update: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \ \tilde{\mathbf{g}}_{t,j}$.

Per-iteration time complexity is O(d).

Algorithms

Gradient Descent (GD)

Accelerated GD

Accelerated SGD Algorithm

Gradient at
$$\mathbf{w}_t$$
: $\mathbf{g}_t = \frac{1}{n} \sum_{j=1}^n \tilde{\mathbf{g}}_{t,j}$, where $\tilde{\mathbf{g}}_{t,j} = \frac{-y_j \mathbf{x}_j}{1 + \exp(y_j \mathbf{w}_t^T \mathbf{x}_j)}$.

Accelerated SGD repeats

- 1. Randomly draw j from $\{1, 2, \dots, n\}$.
- 2. Compute the stochastic gradient $\tilde{\mathbf{g}}_{t,j}$.
- 3. Update momentum: $\mathbf{v}_{t+1} = \beta \mathbf{v}_t + \tilde{\mathbf{g}}_{t,j}$.
- 4. Update: $\mathbf{w}_{t+1} = \mathbf{w}_t \alpha \mathbf{v}_{t+1}$.

Algorithms

Gradient Descent (GD)

Accelerated GD

SGD Algorithm

Gradient at
$$\mathbf{w}_t$$
: $\mathbf{g}_t = \frac{1}{n} \sum_{j=1}^n \tilde{\mathbf{g}}_{t,j}$, where $\tilde{\mathbf{g}}_{t,j} = \frac{-y_j \mathbf{x}_j}{1 + \exp(y_j \mathbf{w}_t^T \mathbf{x}_j)}$.

Output of SGD:

- Option 1: output the last iteration \mathbf{w}_{T+1}
- Option 2: output the average of w produced by the last tens of iteration.

Algorithms

Gradient Descent (GD)

Accelerated GD

GD versus **SGD**

Iterations t

GD versus **SGD**

Training and Prediction

• Training:

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{j} l(y_j \mathbf{w}^T \mathbf{x}_j)$$
, where $l(\mathbf{z}) = \log(1 + e^{-z})$.

• For a test feature vector $\mathbf{x}' \in \mathbb{R}^d$, make prediction by $\mathrm{sign}(\mathbf{x'}^T\mathbf{w}^\star).$

Summary

• Logistic regression model for *linear binary* classification.

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_j l(y_j \mathbf{w}^T \mathbf{x}_j)$$
, where $l(\mathbf{z}) = \log(1 + e^{-z})$.

- Compute the gradient using vector derivatives and the chain rule.
- Gradient-based algorithms: GD, AGD, SGD, etc.
- Make prediction using $sign(x'^Tw^*)$.

- Error Rate = $\frac{\text{# Classification Errors}}{\text{# Samples}}$
- Accuracy = 1 Error Rate

- Error Rate = $\frac{\text{# Classification Errors}}{\text{# Samples}}$
- Accuracy = 1 Error Rate

Error rate and Accuracy are not meaningful in class-imbalanced problems.

False Positive Rate (FPR)

Thank you!