Name	
ten-digit Student ID number	
Lecture Time	
Recitation Instructor	
Section Number	

Instructions:

- 1. Fill in all the information requested above. On the scantron sheet fill in your name, student ID number, and the section number of your recitation with an extra 0 at the left. See list below. Blacken the correct circles.
- 2. On the bottom under Test/Quiz Number, write 02 and fill in the little circles.
- 3. This booklet contains 25 problems, each worth 8 points. The maximum score is 200 points.
- 4. For each problem mark your answer on the scantron sheet and also circle it in this booklet.
- 5. Work only on the pages of this booklet.
- 6. Books, notes, calculators are not to be used on this test.
- 7. At the end turn in your exam and scantron sheet to your recitation instructor.

TA	Lecture time	Rec. time	Sect. #	TA	Lecture time	Rec. time	Sect. #
Yun Ge	11:30	7:30	0001	Chris Bush	1:30	7:30	0011
		8:30	0002			8:30	0012
Huijie Wang	11:30	9:30	0003	Chi Weng Cheong	1:30	8:30	0031
		10:30	0004	Jing Feng Lau	1:30	9:30	0013
Wei-Nan Lin	11:30	11:30	0005			10:30	0014
		12:30	0006	Raakesh Pankanti	1:30	11:30	0015
Feng Chen	11:30	1:30	0007			12:30	0016
		2:30	8000	Phani Surapaneni	1:30	1:30	0017
Abhijeet Bhalerao	11:30	3:30	0009			2:30	0018
		4:30	0010	Himanshu Markandeya	1:30	3:30	0019
Kevin Mugo	11:30 or 1:30	1:30	0027			4:30	0020

1. The domain of the function $y = \ln(2^{x/3})$ is

- A. All real numbers.
- B. x > 0
- C. $x > \ln\left(\frac{2}{3}\right)$
- D. $x > \ln\left(\frac{3}{2}\right)$
- E. $x > -\frac{1}{3}$

2. Express $tan(sin^{-1}(x))$ as an algebraic function of x.

A.
$$\frac{1}{\sqrt{1-x^2}}$$

B.
$$\frac{1}{\sqrt{x^2 - 1}}$$

$$C. \frac{x}{\sqrt{1-x^2}}$$

D.
$$\sqrt{1-x^2}$$

D.
$$\sqrt{1-x^2}$$

E. $\frac{\sqrt{1-x^2}}{x}$

$$3. \lim_{x \to -2} \frac{\frac{1}{2} + \frac{1}{x}}{2 + x} =$$

A.
$$\infty$$

B.
$$-\infty$$

D.
$$-\frac{1}{4}$$

E.
$$\frac{1}{2}$$

$$4. \lim_{x \to -\infty} \frac{\sqrt{x^2 + 2}}{x} =$$

A.
$$\infty$$

B.
$$-\infty$$

5. Find an equation of the tangent line to the curve, $y = \frac{x}{x+1}$ at the point $\left(1, \frac{1}{2}\right)$.

A.
$$y = \frac{1}{2}$$

B.
$$x + 2y = 2$$

C.
$$x - 2y = 0$$

D.
$$4y + x = 3$$

E.
$$4y - x = 1$$

6. The radius of a sphere is increasing at a rate of 2 mm/sec. How fast is the volume increasing when the radius is 10 mm? $(V = \frac{4}{3} \pi r^3)$

A.
$$640\pi \text{ mm}^3/\text{sec}$$

B.
$$1600\pi \text{ mm}^3/\text{sec}$$

C.
$$1000\pi \,\mathrm{mm}^3/\mathrm{sec}$$

D.
$$800\pi \text{ mm}^3/\text{sec}$$

$$E. 1200\pi \text{ mm}^3/\text{sec}$$

- 7. Use a linear approximation (or differentials) to estimate $\sqrt[3]{994}$.
- A. 9.95
- B. 9.8
- C. 10.02
- D. 9.99
- E. 9.98

- 8. A population of bacteria doubles every 2 days. How long will it take for the population to triple?
 - A. $2\ln(\frac{3}{2})$ days
 - B. $2 \frac{\ln 3}{\ln 2}$ days
 - C. 3 days
 - D. 2.5 days
 - E. $2 \ln 6$ days

9. If
$$f(x) = \ln(\sin(x^2))$$
, then $f'(x) =$

$$A. \frac{\sin(x^2)}{2x\cos(x^2)}$$

$$B. \frac{\cos(x^2)}{2x\sin(x^2)}$$

$$C. \frac{2x\cos(x^2)}{\sin(x^2)}$$

$$D. \frac{2x\sin(x^2)}{\cos(x^2)}$$

$$E. \frac{2x}{\sin(x^2)\cos(x^2)}$$

10. If
$$f(x) = x^{\sin x}$$
, then $f'(x) =$

A.
$$x^{\cos x}$$

B.
$$x^{\sin x} \cos x$$

C.
$$x^{\sin x} \left(\cos x \ln x + \frac{\sin x}{x} \right)$$

D.
$$x^{\sin x}(\cos x \ln x)$$

E.
$$x^{\sin x} \frac{\cos x}{x}$$

11. Find an equation of the tangent line to the curve $(x^2 + y^2)^2 = 4x^2y$ at the point (x, y) = (1, 1).

A.
$$y = 1$$

B.
$$y = x$$

C.
$$y = 2x - 1$$

D.
$$y = -x + 2$$

E.
$$y = -2x + 3$$

12. The absolute maximum value of the function $f(x) = \frac{x}{x^2 + 1}$ on the interval [0, 2] is

A.
$$\frac{2}{5}$$

D.
$$\frac{1}{2}$$

E.
$$\frac{3}{4}$$

- 13. Let f be a function whose derivative f' is given by $f'(x) = (x-2)^2 x^4 (x+2)^5$. Then f has a
 - A. local minimum at x = 0
 - B. local minimum at x = -2
 - C. local maximum at x = 0
 - D. local minimum at x=2
 - E. local maximum at x = 2

14. $\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x) =$

- A. 0
- B. 1
- C. ∞
- D. -1
- E. $\frac{1}{2}$

- 15. A box with square base and open top must have a volume of 4000 cm³. If the cost of the material used is \$1/cm², the smallest possible cost of the box is
 - A. \$500
 - B. \$600
 - C. \$1000
 - D. \$1200
 - E. \$2000

16. If
$$\int_{-2}^{2} f(x)dx = 2$$
 and $\int_{0}^{2} f(x)dx = 3$, then $\int_{-2}^{0} f(x)dx = 3$

- A. -1
- B. 1
- C. -5
- D. 5
- E. -3

17.
$$\int_0^1 (x^2 - \sqrt{x} + 1) dx =$$

A.
$$-\frac{1}{6}$$

B.
$$\frac{5}{6}$$

B.
$$\frac{5}{6}$$
C. $\frac{2}{3}$

D.
$$\frac{1}{3}$$

18.
$$\int_0^{\frac{\pi}{2}} \sin(2x) dx =$$

D.
$$-2$$

19.
$$\int_0^1 x^2 (x^3 + 1)^{17} dx =$$

A.
$$\frac{2^{18}}{18}$$

B.
$$\frac{2^{18}}{54}$$

C.
$$\frac{2^{18} - 1}{18}$$

D.
$$\frac{2^{18} - 1}{54}$$

E.
$$\frac{2^{18}-1}{3}$$

20. If
$$g(x) = \int_0^{2x} e^{t^2} dt$$
, then $g'(x) =$

A.
$$e^{2x^2}$$

B.
$$2e^{x^2}$$

C.
$$2e^{2x^2}$$

D.
$$2e^{4x^2}$$

E.
$$e^{4x^2}$$

21. The function $2x^3 - 9x^2 - 24x + 1$ is increasing on

A.
$$(-\infty, -1)$$
 only

B.
$$(-1, 4)$$
 only

C.
$$(4, \infty)$$
 only

D.
$$(-\infty, 1)$$
 and $(4, \infty)$

E.
$$(-\infty, -1)$$
 and $(4, \infty)$

22. The function $x^4 - 6x^3 + 12x^2 + 1$ is concave down on

A.
$$(-\infty, 1)$$
 only

B.
$$(1, 2)$$
 only

C.
$$(2, \infty)$$
 only

D.
$$(-\infty, -1)$$
 and $(2, \infty)$

E.
$$(-\infty, 1)$$
 and $(2, \infty)$

23. The graph of the function f is given below, and $\lim_{x\to 1^+} f(x) = a$, $\lim_{x\to 1^-} f(x) = b$. Which of the following is true? Fall 2008

1. The graph of y = f(x) is shown below.

A.
$$a = 2, b = 1$$

B.
$$a = 1, b = 2$$

C.
$$a = dne, b = dne$$

D.
$$a = dne, b = 2$$

E.
$$a = 1, b = dne$$

(dne means "does not exist")

24. The graph of the function $y = \sin(x)$ is shrunk horizontally by a factor of 2, then translated 1 unit to left. The resulting graph is that of

$$A. y = \sin\left(\frac{1}{2} x + 1\right)$$

$$B. y = \sin\left(\frac{1}{2} x - 1\right)$$

$$C. y = \sin\left(\frac{1}{2} x + 2\right)$$

$$D. y = \sin(2x+1)$$

$$E. y = \sin(2x+2)$$

25. For what value of the constant c is the function f continuous on $(-\infty, \infty)$?

$$f(x) = \begin{cases} 2cx^2 + 3x & \text{if } x < 2\\ x^3 + cx^2 & \text{if } x \ge 2 \end{cases}$$

- A. $\frac{1}{4}$
- B. 4
- $C.\frac{1}{2}$
- D. 2
- E. No value of c makes f continuous on $(-\infty, \infty)$