Hook Document

Supermarket Swings: Forecasting Grocery Price Volatility

Scenario:

You've just joined the Virginia Cooperative Extension as a data consultant. Rising inflation is putting pressure on food budgets across the Mid-Atlantic. Your job? Use data from the Bureau of Labor Statistics to uncover which grocery items are most susceptible to price swings—and which are predictably stable.

Context/Motivation:

Families, food banks, and policymakers rely on food price forecasts to make strategic decisions. But which items can be trusted to remain steady? Which spike during crises like COVID-19? Using time-series forecasting, you'll uncover trends in eggs, dairy, produce, and more.

Mission:

You'll analyze 10 years of BLS grocery pricing data, build SARIMA (or alternative) forecasting models, and identify the most volatile products. Then, you'll make a clear, communicative notebook or report that helps non-technical readers understand the stakes.

Outcome:

Create an accessible and reproducible analysis that answers:

Which grocery items have shown the greatest price volatility in the past decade, and what might explain it?

Rubric

Case Study Rubric – Supermarket Swings

Target Audience: 2nd-Year UVA Data Science Students

Assignment Type: Case Study (Individual)

Deliverable Format: GitHub repo + Notebook/Report + Visualizations

Overview:

You will use historical data from the Bureau of Labor Statistics to explore price volatility in grocery items over the past 10 years in the Mid-Atlantic region. This includes time-series modeling (SARIMA or justified alternatives), data cleaning, and interpretation of trends. Your deliverable should be a clear analysis notebook or mini-report.

Required Components:

Component	Description	Points
Notebook or Report	Includes problem statement, analysis steps, SARIMA model, volatility comparison, and conclusions	40
Data Cleaning Pipeline	Clear documentation of how missing data was handled, how items were filtered, and data was prepped for modeling	20
Visualizations	Appropriate line plots, forecasts, and boxplots that effectively communicate trends	15
Interpretation & Insights	Reasoned explanation of volatility patterns and contextual factors (e.g., perishability, inflation, seasonality)	15
README & Reproducibility	GitHub repo includes README, code runs without errors, all data and outputs are accessible	10

Criteria Meets Expectations

Time-Series Modeling Implements SARIMA or alternative; justifies parameter

selection and model performance

Clarity of All findings clearly presented in notebook or report format

Communication

Thoughtful Explains tricky tradeoffs (e.g., why exclude some items, why

Decision-Making certain years are prioritized)

Relevance Connects volatility to external factors (e.g., supply chain,

COVID, seasonality)

Reproducibility Code runs without issues; GitHub repo is self-contained and

well-documented

3. Supporting Materials

Suggested Explainer Blog Post:

• Neptune.ai SARIMA Blog

Good entry point for understanding time-series forecasting techniques.

Suggested Article for Technical Depth:

• BLS Average Retail Food and Energy Prices, Mid-Atlantic Dataset:

https://www.bls.gov/regions/mid-atlantic/data/averageretailfoodandenergyprices_usandw est_table.htm

Includes methodology explanation and public dataset context.

Why this matters:

- https://www.sciencedirect.com/science/article/pii/S0306919213001188
- $\bullet \quad https://libertystreeteconomics.newyork fed.org/2024/07/what-was-up-with-grocery-prices/2024/07/what-was-up-with-grocery-$