Optimal Auctions for Two goods with Uniformly Distributed Valuations

EECS Symposium 2016

Thirumulanathan D

Advised by Prof. Rajesh Sundaresan and Prof. Y. Narahari

Department of Electrical Communication Engineering Indian Institute of Science, Bangalore

Overview

- Introduction
- 2 Two-item case
- Our work
- 4 Summary

Overview

- Introduction
- 2 Two-item case
- Our work
- 4 Summary

Introduction to Auctions

- When does an auction happen?
 It happens when there are one or more agents vying for an item that is ready to be sold.
- What does designing an auction mean?
 Deciding who should be allocated the item(s) and how much they pay. Mathematically, it is the design of two functions: the allocation function q and the payment function t.
- What is an optimal auction?
 It is an auction mechanism that generates the highest expected revenue to the seller.

- The buyer has a valuation z for the item known only to him.
- z is picked from a distribution f. The distribution is known to both the buyer and the seller.
- The auction must be designed so that the buyer reports his valuation truthfully.
- ullet Also, the buyer must NOT be asked to pay more than z.
- Recall that the auction design involves designing the allocation function q, and the payment function t.

- The buyer has a valuation z for the item known only to him.
- z is picked from a distribution f. The distribution is known to both the buyer and the seller.
- The auction must be designed so that the buyer reports his valuation truthfully.
- ullet Also, the buyer must NOT be asked to pay more than z.
- Recall that the auction design involves designing the allocation function q, and the payment function t.

- ullet The buyer has a valuation z for the item known only to him.
- z is picked from a distribution f. The distribution is known to both the buyer and the seller.
- The auction must be designed so that the buyer reports his valuation truthfully.
- Also, the buyer must NOT be asked to pay more than z.
- Recall that the auction design involves designing the allocation function q, and the payment function t.

- ullet The buyer has a valuation z for the item known only to him.
- z is picked from a distribution f. The distribution is known to both the buyer and the seller.
- The auction must be designed so that the buyer reports his valuation truthfully.
- Also, the buyer must NOT be asked to pay more than z.
- Recall that the auction design involves designing the allocation function q, and the payment function t.

- The buyer has a valuation z for the item known only to him.
- z is picked from a distribution f. The distribution is known to both the buyer and the seller.
- The auction must be designed so that the buyer reports his valuation truthfully.
- Also, the buyer must NOT be asked to pay more than z.
- Recall that the auction design involves designing the allocation function q, and the payment function t.

Single item Optimal Auctions

 Thus the objective of the seller is now to design an auction that solves the following optimization problem:

Maximize the expected revenue $(max_{q(\cdot),t(\cdot)}\mathbb{E}_{z\sim f}t(z))$

- subject to (1) Truthful Extraction of valuation
 - (2) Buyer is asked to pay at most his valuation
 - Myerson [1981] solved this problem. Define the virtual

$$(q(z), t(z)) = \begin{cases} (0,0) & \text{if } z \le \phi^{-1}(0), \\ (1, \phi^{-1}(0)) & \text{if } z > \phi^{-1}(0). \end{cases}$$

• The item is allocated if buyer's valuation is at least $\phi^{-1}(0)$,

Single item Optimal Auctions

 Thus the objective of the seller is now to design an auction that solves the following optimization problem:

Maximize the expected revenue $(\max_{g(\cdot),t(\cdot)} \mathbb{E}_{z \sim f} t(z))$

- subject to (1) Truthful Extraction of valuation
 - (2) Buyer is asked to pay at most his valuation
 - Myerson [1981] solved this problem. Define the virtual valuation function $\phi(z) := z - \frac{1 - F(z)}{f(z)}$. The solution is then given by

$$(q(z), t(z)) = egin{cases} (0,0) & ext{if } z \leq \phi^{-1}(0), \ (1,\phi^{-1}(0)) & ext{if } z > \phi^{-1}(0). \end{cases}$$

• The item is allocated if buyer's valuation is at least $\phi^{-1}(0)$,

Single item Optimal Auctions

 Thus the objective of the seller is now to design an auction that solves the following optimization problem:

Maximize the expected revenue $(\max_{g(\cdot),t(\cdot)} \mathbb{E}_{z \sim f} t(z))$

- subject to (1) Truthful Extraction of valuation
 - (2) Buyer is asked to pay at most his valuation
 - Myerson [1981] solved this problem. Define the virtual valuation function $\phi(z) := z - \frac{1 - F(z)}{f(z)}$. The solution is then given by

$$(q(z), t(z)) = \begin{cases} (0,0) & \text{if } z \leq \phi^{-1}(0), \\ (1, \phi^{-1}(0)) & \text{if } z > \phi^{-1}(0). \end{cases}$$

• The item is allocated if buyer's valuation is at least $\phi^{-1}(0)$, and he pays $\phi^{-1}(0)$. He is not allocated the item otherwise.

An Example

- $z \sim \text{unif}[0,1]$. F(z) = z, f(z) = 1, and thus $\phi(z) = z (1-z) = 2z 1$.
- $\phi(z) = 0$ when z = 1/2. So, the buyer gets the item for 1/2, if his valuation is at least 1/2. He doesn't get it if his valuation is not even 1/2.
- Observe that the optimal auction is a take-it-or-leave-it offer for a reserve price. The reserve price depends only on the distribution function f.

An Example

- $z \sim \text{unif}[0,1]$. F(z) = z, f(z) = 1, and thus $\phi(z) = z (1-z) = 2z 1$.
- $\phi(z) = 0$ when z = 1/2. So, the buyer gets the item for 1/2, if his valuation is at least 1/2. He doesn't get it if his valuation is not even 1/2.
- Observe that the optimal auction is a take-it-or-leave-it offer for a reserve price. The reserve price depends only on the distribution function f.

An Example

- $z \sim \text{unif}[0,1]$. F(z) = z, f(z) = 1, and thus $\phi(z) = z (1-z) = 2z 1$.
- $\phi(z) = 0$ when z = 1/2. So, the buyer gets the item for 1/2, if his valuation is at least 1/2. He doesn't get it if his valuation is not even 1/2.
- Observe that the optimal auction is a take-it-or-leave-it offer for a reserve price. The reserve price depends only on the distribution function f.

Overview

- Introduction
- 2 Two-item case
- Our work
- 4 Summary

- The problem of optimal auction for one-item was solved in 1981. That for two-items is unsolved even today.
- Solutions for certain distributions are known, however. When $z \sim \text{unif}[0, b_1] \times [0, b_2]$, (Daskalakis et al. [2013]).

- So the buyer gets only item 1 if $\mathbf{z_1} > 2\mathbf{b_1}/3$ (and z_2 is small), only item 2 if $\mathbf{z_2} > 2\mathbf{b_2}/3$ (and z_1 is small), and both items if $\mathbf{z_1} + \mathbf{z_2} > (2\mathbf{b_1} + 2\mathbf{b_2} \sqrt{2\mathbf{b_1}\mathbf{b_2}})/3$.
- Bundling plays a crucial role in two-item optimal auctions.

- The problem of optimal auction for one-item was solved in 1981. That for two-items is unsolved even today.
- Solutions for certain distributions are known, however. When $z \sim \text{unif}[0, b_1] \times [0, b_2]$, (Daskalakis et al. [2013]).

- So the buyer gets only item 1 if $\mathbf{z_1} > 2\mathbf{b_1}/3$ (and z_2 is small), only item 2 if $\mathbf{z_2} > 2\mathbf{b_2}/3$ (and z_1 is small), and both items if $\mathbf{z_1} + \mathbf{z_2} > (2\mathbf{b_1} + 2\mathbf{b_2} \sqrt{2\mathbf{b_1}\mathbf{b_2}})/3$.
- Bundling plays a crucial role in two-item optimal auctions.

- The problem of optimal auction for one-item was solved in 1981. That for two-items is unsolved even today.
- Solutions for certain distributions are known, however. When $z \sim \text{unif}[0, b_1] \times [0, b_2]$, (Daskalakis et al. [2013]).

- So the buyer gets only item 1 if $\mathbf{z_1} > 2\mathbf{b_1}/3$ (and z_2 is small), only item 2 if $\mathbf{z_2} > 2\mathbf{b_2}/3$ (and z_1 is small), and both items if $\mathbf{z_1} + \mathbf{z_2} > (2\mathbf{b_1} + 2\mathbf{b_2} \sqrt{2\mathbf{b_1}\mathbf{b_2}})/3$.
- Bundling plays a crucial role in two-item optimal auctions.

- The problem of optimal auction for one-item was solved in 1981. That for two-items is unsolved even today.
- Solutions for certain distributions are known, however. When $z \sim \text{unif}[0, b_1] \times [0, b_2]$, (Daskalakis et al. [2013]).

- So the buyer gets only item 1 if $\mathbf{z_1} > 2\mathbf{b_1}/3$ (and z_2 is small), only item 2 if $\mathbf{z_2} > 2\mathbf{b_2}/3$ (and z_1 is small), and both items if $\mathbf{z_1} + \mathbf{z_2} > (2\mathbf{b_1} + 2\mathbf{b_2} \sqrt{2\mathbf{b_1b_2}})/3$.
- Bundling plays a crucial role in two-item optimal auctions.

Overview

- Introduction
- 2 Two-item case
- Our work
- 4 Summary

Uniform Distribution on arbitrary rectangles

• Consider the buyer's valuations to be uniformly distributed in the intervals $[c_1, c_1 + b_1] \times [c_2, c_2 + b_2]$ for arbitrary nonnegative values of c_1, c_2, b_1, b_2 .

• In our work, we prove the following theorem:

Theorem

The structure of the optimal solution takes one of the following eight structures for any nonnegative (c_1, c_2, b_1, b_2) .

Uniform Distribution on arbitrary rectangles

• Consider the buyer's valuations to be uniformly distributed in the intervals $[c_1, c_1 + b_1] \times [c_2, c_2 + b_2]$ for arbitrary nonnegative values of c_1, c_2, b_1, b_2 .

• In our work, we prove the following theorem:

Theorem

The structure of the optimal solution takes one of the following eight structures for any nonnegative (c_1, c_2, b_1, b_2) .

The structure of optimal auctions

When both c_1 and c_2 are low

The solution is very close to the case $(c_1, c_2) = (0, 0)$. The difference is that the buyer gets item 1 with some positive probability, even when z_1 is low. Similar is the case for item 2.

When c_1 is low and c_2 is high, or vice-versa

- Since c_2 is very high, item 2 is allocated with probability 1 for the least possible price c_2 , no matter what z_2 is. Myerson auction is conducted for item 1.
- Similar is the case when c_2 is low and c_1 is high.

When both c_1 and c_2 are high

For higher values of c_1 and c_2 , the optimal auction is a *take-it-or-leave-it* auction with a reserve price, with both the items bundled as a single item.

Phase diagram

The phase diagram indicates the optimal menu for all the values of c_1, c_2 , when $b_1 = 2$ and $b_2 = 1$.

Overview

- Introduction
- 2 Two-item case
- Our work
- 4 Summary

- The optimal auction for a single item is a simple take-it-or-leave-it auction at a reserve price. The reserve price depends on the distribution f.
- The optimal auction for two-item case is much more complicated. It is NOT the single item optimal auction repeated twice. Bundling increases the revenue.
- In our work, we prove that the optimal auction when the valuations are uniformly distributed in the rectangle $[c_1, c_1 + b_1] \times [c_2, c_2 + b_2]$ is to sell the items according to one of the eight simple menus.
- The auctions resemble the single item optimal auctions when either of c_1 or c_2 is high.

- The optimal auction for a single item is a simple take-it-or-leave-it auction at a reserve price. The reserve price depends on the distribution f.
- The optimal auction for two-item case is much more complicated. It is NOT the single item optimal auction repeated twice. Bundling increases the revenue.
- In our work, we prove that the optimal auction when the valuations are uniformly distributed in the rectangle $[c_1, c_1 + b_1] \times [c_2, c_2 + b_2]$ is to sell the items according to one of the eight simple menus.
- The auctions resemble the single item optimal auctions when either of c_1 or c_2 is high.

- The optimal auction for a single item is a simple take-it-or-leave-it auction at a reserve price. The reserve price depends on the distribution f.
- The optimal auction for two-item case is much more complicated. It is NOT the single item optimal auction repeated twice. Bundling increases the revenue.
- In our work, we prove that the optimal auction when the valuations are uniformly distributed in the rectangle $[c_1, c_1 + b_1] \times [c_2, c_2 + b_2]$ is to sell the items according to one of the eight simple menus.
- The auctions resemble the single item optimal auctions when either of c_1 or c_2 is high.

- The optimal auction for a single item is a simple take-it-or-leave-it auction at a reserve price. The reserve price depends on the distribution f.
- The optimal auction for two-item case is much more complicated. It is NOT the single item optimal auction repeated twice. Bundling increases the revenue.
- In our work, we prove that the optimal auction when the valuations are uniformly distributed in the rectangle $[c_1, c_1 + b_1] \times [c_2, c_2 + b_2]$ is to sell the items according to one of the eight simple menus.
- The auctions resemble the single item optimal auctions when either of c_1 or c_2 is high.