

Interrogación 2

17 de noviembre de 2023 Profesores: Nicolás Alvarado - Bernardo Barías - Sebastián Bugedo - Gabriel Diéguez

Instrucciones

- La duración de la interrogación es de 2:30 horas.
- Durante la evaluación **no puede** hacer uso de sus apuntes o slides del curso.
- Rellene sus datos en cada hoja de respuesta que utilice.
- Cada pregunta debe responderse en hojas separadas.
- Entregue al menos una hoja por pregunta.
 - Si entrega la pregunta completamente en blanco, tiene nota mínima 1.5 en vez de 1.0 en la pregunta entregada. Esto solo aplica a preguntas completas.
- Escriba sus respuestas con lápiz pasta. Por el uso de lápiz mina usted pierde el derecho a recorreción.

Pregunta 1 - Relaciones de orden

Sea (A, \leq) un orden parcial. Una secuencia a_1, a_2, \ldots, a_n de elementos en A se dice ordenada si todos sus elementos son distintos y $a_i \leq a_{i+1}$, con $1 \leq i < n$. Además, diremos que dicha secuencia tiene largo n.

- a) Demuestre que para todo $n \geq 2$, no existe una secuencia ordenada a_1, a_2, \ldots, a_n de largo n tal que $a_n \leq a_1$.
- b) Decimos que una secuencia ordenada de largo n es de largo máximo si no existe una secuencia ordenada de largo m > n de elementos en A.

Demuestre que si A es finito y a_1, a_2, \ldots, a_n es una secuencia ordenada de largo máximo, entonces a_1 es un elemento minimal de A.

Recuerde que x es un elemento minimal de A si $x \in A$ y para todo $y \in A$ se cumple que si $y \leq x$, entonces y = x.

Solución

a) Por contradicción, supongamos que existe una secuencia ordenada a_1, \ldots, a_n de largo $n \geq 2$ tal que $a_n \leq a_1$. Como la secuencia está ordenada, sabemos que todos sus elementos son distintos, y que $a_i \leq a_{i+1}$, con $1 \leq i < n$. Por ejemplo, $a_1 \leq a_2$ y $a_2 \leq a_3$. Como \leq es una relación de orden parcial, es transitiva, y luego $a_1 \leq a_3$. Podemos repetir el argumento, con $a_3 \leq a_4$, de donde obtenemos que $a_1 \leq a_4$. En general, se cumple que

$$a_1 \leq a_i \ \forall i \in \{1, \dots, n\}$$

Para mayor formalidad demostraremos este resultado por inducción sobre el índice i:

- **BI:** Para i, es claro que $a_1 \leq a_1$, pues \leq es una relación de orden parcial, y por lo tanto es refleja.
- **HI:** Supongamos que $a_1 \leq a_i$.
- **TI:** Por demostrar que $a_1 \leq a_{i+1}$. Por HI sabemos que $a_1 \leq a_i$, y como la secuencia está ordenada, se cumple que $a_i \leq a_{i+1}$. Como \leq es transitiva, concluimos que $a_1 \leq a_{i+1}$.

Del resultado anterior se deduce que, en particular, $a_1 \leq a_n$. Como \leq es una relación de orden, es antisimétrica, y como $a_n \leq a_1$, tenemos que $a_1 = a_n$, lo que contradice nuestra suposición inicial de que la secuencia está ordenada (pues todos sus elementos deben ser distintos). Concluimos que no puede existir tal secuencia.

b) Por contradicción, supongamos que A es finito y a_1, \ldots, a_n es una secuencia ordenada de largo máximo, pero a_1 no es un elemento minimal de A; vale decir, existe $a \in A$ tal que $a \leq a_1$ y $a \neq a_1$. Tenemos dos casos:

- a no está en la secuencia: en este caso podríamos extender la secuencia poniendo al elemento a al principio: a, a_1, \ldots, a_n . Esta sería una secuencia ordenada de largo n+1>n, lo cual contradice que a_1, \ldots, a_n sea una secuencia ordenada de largo máximo.
- a está en la secuencia: en este caso $a = a_i$ para algún a_i en la secuencia, con $i \in \{2, ..., n\}$. Sea entonces la secuencia $a_1, ..., a_i$; esta secuencia cumple con que $a_i \leq a_1$, lo cual contradice lo demostrado en el inciso a).

Como en ambos casos llegamos a una contradicción, concluimos que a_1 debe ser un elemento minimal de A.

Pauta (6 pts.)

- a) 1.25 ptos. por usar transitividad para mostrar que $a_1 \leq a_n$.
 - 1.25 ptos. por usar antisimetría para mostrar que $a_1 = a_n$.
 - 0.5 ptos. por concluir que no existe tal secuencia.
 - Bonus de 0.5 ptos. si usa inducción para demostrar que $a_1 = a_n$.
- b) 0.5 ptos. por tomar un elemento $a \leq a_1$.
 - 1 pto. por mostrar que no puede ponerse al principio de la secuencia.
 - 1 pto. por mostrar que no puede estar en otro lugar de la secuencia.
 - 0.5 ptos. por concluir que a_1 es minimal.

Puntajes parciales y soluciones alternativas a criterio del corrector.

Pregunta 2 - Relaciones de equivalencia

Sea A un conjunto no vacío y S una relación binaria sobre A.

- a) (2 ptos.) Demuestre que existe una relación de equivalencia R sobre A tal que $S \subseteq R$.
- b) (4 ptos.) Considere el conjunto

$$T_S = \{ E \subseteq A^2 \mid E \text{ es una relación de equivalencia tal que } S \subseteq E \}.$$

Sea $R_S = \bigcap T_S$ la relación que resulta de intersectar los elementos de T_S .

Demuestre que R_S es una relación de equivalencia.

Solución

- a) Consideremos la relación completa $R = A \times A$. Es claro que para cualquier relación S, se tiene que $S \subseteq R$. Además, tenemos que:
 - Para todo $a \in A$, se cumple que $(a, a) \in R$, por lo que R es refleja.
 - Para todo par de elementos $a, b \in A$, se tiene que tanto $(a, b) \in R$ como $(b, a) \in R$, por lo que R es simétrica.
 - Para todo trío de elementos $a, b, c \in A$, ocurre que $(a, b) \in R$, $(b, c) \in R$ y $(a, c) \in R$, por lo que R es transitiva.

De lo anterior, se concluye que R es una relación de equivalencia.

- b) Demostraremos las tres propiedades requeridas para que R_S sea relación de equivalencia.
 - Refleja: Sea $a \in A$. Como cada $E \in T_S$ es relación de equivalencia, en particular es refleja, por lo que $(a, a) \in E$. Luego, por definición de intersección tenemos que $(a, a) \in \bigcap T_S$. Se concluye que R_S es refleja.
 - Simétrica: Sea $(a, b) \in R_S$. Por definición de R_S , se tiene que $(a, b) \in E$ para cada $E \in T_S$. Como toda E es simétrica, $(b, a) \in E$ y por definición de intersección, $(b, a) \in \bigcap T_S$. Concluimos que R_S es simétrica.
 - Transitiva: Sean $(a, b) \in R_S$ y $(b, c) \in R_S$. De forma similar al caso de la simetría, por definición de intersección obtenemos que $(a, c) \in E$ para toda $E \in T_S$. Finalmente, $(a, c) \in \bigcap T_S$ y por lo tanto R_S es transitiva.

Pauta (6 pts.)

- a) 0.5 ptos. por proponer relación R que contiene a S.
 - 0.5 ptos. por reflexividad de R.
 - 0.5 ptos. por simetría de R.
 - 0.5 ptos. por transitividad de R.
- b) 1 pto. por reflexividad de R_S .
 - 1.5 ptos. por simetría de R_S .
 - 1.5 ptos. por transitividad de R_S .

Puntajes parciales y soluciones alternativas a criterio del corrector.

Pregunta 3 - Cardinalidad

Una función $f: \mathbb{R} \to \mathbb{R}$ es un polinomio con coeficientes enteros si es de la forma

$$f(x) = \sum_{i=0}^{n} a_i x^i$$
, donde $a_i \in \mathbb{Z}$ y $n \in \mathbb{N}$.

Sea $\mathcal{P} = \{f \mid f \text{ es un polinomio con coeficientes enteros}\}.$

Demuestre que \mathcal{P} es enumerable.

Solución

Sea P_n el conjunto de todos los polinomios de grado n con coeficientes enteros (donde el grado corresponde a la mayor potencia presente en el polinomio). Como todo polinomio en \mathcal{P} tiene un grado $n \in \mathbb{N}$, es claro que

$$\mathcal{P} = \bigcup_{i=0}^{\infty} P_n$$

Es decir, \mathcal{P} corresponde a la unión enumerable de los P_n . Luego, basta demostrar que cada P_n es enumerable. Sea

$$g: P_n \to \mathbb{Z}^{n+1}$$
 tal que $g(f) = (a_n, \dots, a_1, a_0)$

con f un polinmio de grado n con la forma descrita en el enunciado.

Es claro que esta función es inyectiva, pues si $g(f_1) = g(f_2)$, se tiene que f_1 y f_2 tienen los mismos coeficientes, y por lo tanto son el mismo polinomio. Además, como todos los coeficientes son enteros, esta función es sobreyectiva. Tenemos entonces una biyección entre P_n y \mathbb{Z}^{n+1} . En clases demostramos que \mathbb{N}^n es enumerable, y como $|\mathbb{N}| = |\mathbb{Z}|$, es fácil demostrar que \mathbb{Z}^n es enumerable (se deja como ejercicio). Concluimos entonces que cada P_n es enumerable, y por el argumento dado anteriormente, que \mathcal{P} es enumerable.

Pauta (6 pts.)

- 0.75 ptos. por fundamentar que la unión enumerable de conjuntos enumerables es enumerable.
- 0.75 ptos. por fundamentar que \mathcal{P} es la unión enumerable de los P_n .
- 0.5 ptos. por fundamentar que \mathbb{Z}^n es enumerable.

- 2.5 ptos, por mostrar que todo P_n es enumerable encontrando una biyección entre P_n y \mathbb{Z}^{n+1} .
- 0.5 ptos. por concluir.

Puntajes parciales y soluciones alternativas a criterio del corrector.

Pregunta 4 - Análisis de algoritmos

Considere la siguiente ecuación de recurrencia:

$$T(n) = \begin{cases} 1 & \text{si } n = 1\\ 4 \cdot T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n^2 \log_2(n) & \text{si } n > 1 \end{cases}$$

Demuestre usando inducción que $T(n) \in O(n^2 (\log n)^2)$.

Puede que los siguientes valores le resulten útiles:

$$\log_2(3) \approx 1.6 \quad \log_2(5) \approx 2.3 \quad \log_2(6) \approx 2.6 \quad \log_2(7) \approx 2.8$$

Solución

Por definición de O asintótica, tenemos que $g \in O(f)$ si y solo si

$$(\exists c \in \mathbb{R}^+)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0)(g(n) \le c \cdot f(n))$$

Demostraremos por inducción que $T(n) \in O(n^2 (\log n)^2)$. Usaremos logaritmo en base 2, pues es el que aparece en la ecuación de recurrencia. Debemos encontrar $c \in \mathbb{R}^+$ y $n_0 \in \mathbb{N}$ tales que para todo $n \geq n_0$ se cumpla que

$$T(n) \le c \cdot n^2 (\log_2(n))^2$$

Para esto, vamos a inspeccionar los primeros valores de $T(\cdot)$, y de esta forma trataremos de inferir ambas constantes. Reemplazando en la ecuación de recurrencia, y comparando con los valores de $n^2(\log_2(n))^2$, tenemos que:

Teniendo estos valores en cuenta, podemos observar que para $n \ge 3$ se cumple que si c = 1 entonces $T(n) \le c \cdot n^2(\log_2(n))^2$. Demostraremos entonces, por inducción fuerte, que

$$T(n) \le n^2 (\log_2(n))^2 \quad \forall n \ge 3$$

BI: Como la propiedad no se cumple para T(1) y T(2), todos los casos que involucren estos subcasos en la ecuación de recurrencia serán casos base. Dado lo anterior, los casos bases son $n \in \{3, 4, 5\}$ (cuando n = 6 se usa T(3), que ya sería un caso base; por lo tanto, n = 6 no es un caso base).

Como vimos antes, para $n \in \{3, 4, 5\}$ se cumple la propiedad.

HI: Suponemos que para todo $k \in \{3, ..., n-1\}$ se cumple la propiedad.

TI: Por demostrar que $T(n) \le n^2(\log_2(n))^2$, para $n \ge 6$.

$$T(n) = 4 \cdot T\left(\left\lfloor \frac{n}{2} \right\rfloor\right) + n^2 \log_2(n) \qquad \text{como } 3 \leq \left\lfloor \frac{n}{2} \right\rfloor < n \text{ aplicamos la HI}$$

$$\leq 4 \cdot \left\lfloor \frac{n}{2} \right\rfloor^2 \cdot \left(\log_2\left\lfloor \frac{n}{2} \right\rfloor\right)^2 + n^2 \log_2(n)$$

$$\leq 4 \cdot \left(\frac{n}{2}\right)^2 \cdot \left(\log_2\left(\frac{n}{2}\right)\right)^2 + n^2 \log_2(n)$$

$$= n^2 \left(\log_2\left(\frac{n}{2}\right)\right)^2 + n^2 \log_2(n)$$

$$= n^2 \left(\left(\log_2\left(\frac{n}{2}\right)\right)^2 + \log_2(n)\right)$$

$$= n^2 \left(\left(\log_2(n) - \log_2(2)\right)^2 + \log_2(n)\right)$$

$$= n^2 \left(\left(\log_2(n) - 1\right)^2 + \log_2(n)\right)$$

$$= n^2 \left(\left(\log_2(n)\right)^2 - 2\log_2(n) + 1 + \log_2(n)\right)$$

$$= n^2 \left(\left(\log_2(n)\right)^2 - \log_2(n) + 1\right) \qquad \text{como } n \geq 3, -\log_2(n) + 1 \leq 0$$

$$\leq n^2 \left(\left(\log_2(n)\right)^2 + 0\right)$$

$$= n^2 (\log_2(n))^2$$

Con esto hemos demostrado que para todo $n \ge 3$ se cumple que $T(n) \le n^2(\log_2(n))^2$, por lo que $T(n) \in O(n^2(\log n)^2)$.

<u>Observación</u>: este ejercicio también se podía demostrar utilizando otro c y su n_0 correspondiente, pero el procedimiento de la inducción es análogo al caso anterior. Lo importante es fijar el c y el n_0 antes de empezar la inducción.

Pauta (6 pts.)

- 2.5 ptos. por encontrar c y n_0 de forma justificada.
- 1 pto. por todos los casos bases (distribución uniforme entre la cantidad de casos base).
- 0.5 ptos. por la hipótesis de inducción.
- 2 ptos. por la tesis de inducción.

Puntajes parciales y soluciones alternativas a criterio del corrector.