ANNOUNCEMENTS

- Homework 3 is out on Canvas:
 - Due date: May 25 (midnight) on Canvas
 - Should be submitted as a pdf file
- Quiz 7: This thursday, last 10 minutes of class.
 - Material: "Logic-Philosophical Wars" chapter from Logicomix and lectures on 5/14 and 5/19
- Exam 2: June 2. Canvas quiz during class time. Covering all month of May.

LAST CLASS: DIRECT PROOFS $P \rightarrow Q EQUIVALENTLY P \vdash Q$

- While p → q or p ⊢ q are different in our formal proofs:
 - $p \rightarrow q$ is a proposition
 - p ⊢ q. says that q can be "proved" assuming p is a premise
- In the proofs starting on Chapter 4 of ZyBooks the above are technically the same and in questions in and after chapter 4 we can use them interchangeably.

LAST CLASS: DIRECT PROOFS $P \rightarrow Q \ OR \ P \vdash Q$

- Step 1:
 - Write down premises (hypothesis) i.e., p
- Step 2:
 - Use definitions to express premises/hypothesis P in mathematical terms
- Step 3:
 - Use definitions to express the conclusion Q in mathematical terms (what we want to prove)
- Step 4
 - Use algebra/previous results/etc. to arrive at the mathematical expression for Q.

INDIRECT PROOFS

- Proof by contraposition
- Proof by contradiction
- If direct methods of proof do not work:
 - We may need a clever use of a proof by contraposition.
 - Or a proof by contradiction.

$\neg Q \rightarrow \neg P$ IS THE SAME AS $P \rightarrow Q$

 Two propositions are equivalent if they always have the same truth value.

p	q	$\neg p$	$\neg q$	$p \rightarrow q$	$\neg q \rightarrow \neg p$
T	T	F	F	T	T
T	F	F	T	F	F
F	T	T	F	T	T
F	F	T	Т	T	Т

CONTRAPOSITIVE PROOF OF $P \rightarrow Q$ I.E., DIRECT PROOF OF $\neg Q \rightarrow \neg P$

- Step 1:
 - Write down premises (hypothesis) i.e., $\neg Q$
- Step 2:
 - Use definitions to express premises/hypothesis $\neg Q$ in mathematical terms
- Step 3:
 - Use definitions to express the conclusion $\neg P$ in mathematical terms (what we want to prove)
- Step 4
 - Use algebra/previous results/etc. to arrive at the mathematical expression for $\neg P$.

PROOF BY CONTRAPOSITION: $P \rightarrow Q$ I.E. PROVING $\neg Q \rightarrow \neg P$

■ Proof by Contraposition: Assume $\neg q$ and show $\neg p$ is true also. This is sometimes called an *indirect proof* method. If we give a direct proof of $\neg q$ $\rightarrow \neg p$ then we have a proof of $p \rightarrow q$.

Example: Prove that if n is an integer and 3n + 2 is odd, then n is odd.

Solution: Assume n is even. So, n = 2k for some integer k. Thus

$$3n + 2 = 3(2k) + 2 = 6k + 2 = 2(3k + 1) = 2j$$
 for $j = 3k + 1$

Therefore 3n + 2 is even. Since we have shown $\neg q \rightarrow \neg p$, $p \rightarrow q$ must hold as well. If n is an integer and 3n + 2 is odd (not even), then n is odd (not even).

PROVING BY CONTRAPOSITION: $P \rightarrow Q$ I.E. PROVING $\neg Q \rightarrow \neg P$

Example: Prove that for an integer n, if n^2 is odd, then n is odd.

Solution: Use proof by contraposition. Assume n is even (i.e., not odd). Therefore, there exists an integer k such that n = 2k. Hence,

$$n^2 = 4k^2 = 2(2k^2)$$

and n^2 is even(i.e., not odd).

We have shown that if n is an even integer, then n^2 is even. Therefore by contraposition, for an integer n, if n^2 is odd, then n is odd.

PROOFS BY CONTRAPOSITIVE WITH MULTIPLE PREMISES

- Suppose we want to prove:
 If H₁ and H₂ are both true then C is true.
- The contrapositive of this conditional statement is:
- If C is false, then it cannot be the case that H_1 and H_2 are both true.
- By De Morgan's law, the statement is equivalent to:
- If C is false, then H_1 is false or H_2 is false.
- which is in turn equivalent to:
- If C is false and H₁ is true, then H₂ is false.

WHY DOES THE PREVIOUS STEP WORK?

• This truth table shows that $\neg p \lor q$ is equivalent to $p \to q$.

p	q	$\neg p$	$\neg p \lor q$	$p \rightarrow q$
T	T	F	T	T
Т	F	F	F	F
F	Т	Т	T	T
F	F	Т	T	Т

•
$$s_0$$
 $p \land q \rightarrow r \equiv$

$$\neg r \rightarrow \neg p \lor \neg q \equiv$$

$$\neg \neg r \lor \neg p \lor \neg q \equiv$$

$$\neg (\neg r \land p) \lor \neg q \equiv$$

$$\neg r \land p \rightarrow \neg q$$

INDIRECT PROOFS

- Proof by contraposition
- Proof by contradiction
- If direct methods of proof do not work:
 - We may need a clever use of a proof by contraposition.
 - Or a proof by contradiction.

PROOF BY CONTRADICTION

Meta – Theorem

Let Γ be a set of premises

Meta-Corollary

$$\Gamma, \neg \alpha \vdash \beta, \neg \beta \implies \Gamma \vdash \alpha$$

$$(a)\Gamma, \alpha \vdash \beta, \neg \beta \implies \Gamma \vdash \neg \alpha$$

$$(b)\Gamma, \neg \alpha \vdash \alpha \implies \Gamma \vdash \alpha$$

PROVING BY CONTRADICTION: $P \rightarrow Q$ (I.E. $P \vdash Q$)

Proof by Contradiction: (AKA reductio ad absurdum).

To prove q, assume $\neg q$ and derive a contradiction such as $q \land \neg q$. (an indirect form of proof).

Example: Prove that if you pick 22 days from the calendar, at least 4 must fall on the same day of the week.

Solution: Assume that no more than 3 of the 22 days fall on the same day of the week. Because there are 7 days of the week, we could only have picked 21 days. This contradicts the assumption that we have picked 22 days.

PRACTICING VARIOUS METHODS

- •Prove that if a is even and b is even, then a+b is even:
 - Direct proof
 - Proof by contrapositive
 - Proof by contradiction

Document camera

PROOF BY CONTRADICTION THEOREM 4.6.1 (ZYBOOKS)

Example: Use a proof by contradiction to give a proof that $\sqrt{2}$ is irrational.

Solution: Suppose $\sqrt{2}$ is rational. Then there exists integers a and b with $\sqrt{2} = a/b$, where $b \neq 0$ and a and b have no common factors. Then

$$2 = \frac{a^2}{b^2}$$
 $2b^2 = a^2$

Therefore a^2 must be even. If a^2 is even then a must be even (previously proven). Since a is even, a=2c for some integer c. Thus,

$$2b^2 = 4c^2$$
 $b^2 = 2c^2$

Therefore b^2 is even. Again then b must be even as well.

But then 2 must divide both a and b. This contradicts our assumption that a and b have no common factors. We have proved by contradiction that our initial assumption must be false and therefore $\sqrt{2}$ is irrational

THERE ARE INFINITE PRIMES (EUCLID 300BC)

• **theorem**: There are infinitely many primes

Solution: Assume by contradiction that there is a largest prime number. Call it p_n . Hence, we can list all the primes $2,3,...,p_n$. Form

$$r = p_1 \times p_2 \times \ldots \times p_n + 1$$

 r is larger than the largest prime and therefore it should not be a prime number (it should be composite)

Let q be a prime dividing r, q also divides $p_1 p_2 ... p_n$

It should also divide $r-p_1p_2...p_n=1$ but this is impossible

PROVING THEOREMS THAT ARE BICONDITIONAL STATEMENTS $P \leftrightarrow Q$

• **Example**: An integer x is even if and only if x^2 is even.

Solution: The quantified assertion is

 $\forall x [x \text{ is even} \leftrightarrow x^2 \text{ is even}]$

We assume x is arbitrary.

Recall that $p \leftrightarrow q$ is equivalent to $(p \to q) \land (q \to p)$

So, we have to prove the assertion both ways. These are considered in turn.

THEOREMS THAT ARE BICONDITIONAL STATEMENTS $P \leftrightarrow Q$

■ To prove a theorem that is a biconditional statement, that is, a statement of the form $p \leftrightarrow q$, we show that $p \rightarrow q$ and $q \rightarrow p$ are both true.

Example: Prove the theorem: "given n is an integer, n is even if and only if n^2 is even."

Sometimes *iff* is used as an abbreviation for "if an only if," as in "n is even iif n^2 is even."

PROVE ONE DIRECTION $P \rightarrow Q$

 \rightarrow . We show that if x is even then x^2 is even using a direct proof (the *only if*).

If x is even then x = 2k for some integer k.

Hence $x^2 = 4k^2 = 2(2k^2)$ which is even since it is an integer divisible by 2.

This completes the proof of case 1.

PROVE THE OTHER DIRECTION $Q \rightarrow P$

We show that if x^2 is even then x must be even (the *if* part). We use a proof by contraposition.

Assume x is not even and then show that x^2 is not even.

If x is not even then it must be odd. So, x = 2k + 1 for some k. Then $x^2 = (2k + 1)^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$

which is odd and hence not even. This completes the proof of case 2.

Since x was arbitrary, the result follows by UG.

Therefore we have shown that x is even if and only if x^2 is even.

PROOF BY CASES: SOMETIMES P CAN BE DIVIDED IN DIFFERENT PARTS

To prove a conditional statement of the form:

$$(p_1 \vee p_2 \vee \ldots \vee p_n) \rightarrow q$$

Use the tautology

$$[(p_1 \lor p_2 \lor \dots \lor p_n) \to q] \leftrightarrow [(p_1 \to q) \land (p_2 \to q) \land \dots \land (p_n \to q)]$$

ullet Each of the implications $p_i o q$ is a *case*.

PROOF BY CASES

Example: Let $a @ b = \max\{a, b\} = a$ if $a \ge b$, otherwise $a @ b = \max\{a, b\} = b$. Show that for all real numbers a, b, c

(This means the operation @ is associative.)

Proof: Let a, b, and c be arbitrary real numbers.

Then one of the following 6 cases must hold.

- 1. $a \ge b \ge c$
- 2. $a \ge c \ge b$
- 3. $b \ge a \ge c$
- 4. $b \ge c \ge a$
- 5. $c \ge a \ge b$
- 6. $c \ge b \ge a$

Continued on next slide →

PROOF BY CASES

Case 1: $a \ge b \ge c$

$$(a @ b) = a, a @ c = a, b @ c = b$$

Hence
$$(a @ b) @ c = a = a @ (b @ c)$$

Therefore the equality holds for the first case.

A complete proof requires that the equality be shown to hold for all 6 cases. But the proofs of the remaining cases are similar. Try them.

WITHOUT LOSS OF GENERALITY

Example: Show that if x and y are integers and both $x \cdot y$ and x + y are even, then both x and y are even.

Proof: Use a proof by contraposition. Suppose x and y are not both even. Then, one or both are odd. Without loss of generality, assume that x is odd. Then x = 2m + 1 for some integer m.

Case 1: y is even. Then y = 2n for some integer n, so x + y = (2m + 1) + 2n = 2(m + n) + 1 is odd.

Case 2: y is odd. Then y = 2n + 1 for some integer n, so $x \cdot y = (2m + 1)(2n + 1) = 2(2m \cdot n + m + n) + 1$ is odd.

We only cover the case where *x* is odd because the case where *y* is odd is similar. The use phrase *without loss of generality* (WLOG) indicates this.

THE ROLE OF OPEN PROBLEMS

Unsolved problems have motivated much work in mathematics.
 Fermat's Last Theorem was conjectured more than 300 years ago. It has only recently been finally solved.

Fermat's Last Theorem: The equation $x^n + y^n = z^n$

has no solutions in integers x, y, and z, with $xyz \neq 0$ whenever n is

an integer with n > 2.

A proof was found by Andrew Wiles in the 1990s.

AN OPEN PROBLEM

• The 3x + 1 Conjecture: Let T be the transformation that sends an even integer x to x/2 and an odd integer x to 3x + 1. For all positive integers x, when we repeatedly apply the transformation T, we will eventually reach the integer 1.

For example, starting with x = 13:

$$T(13) = 3.13 + 1 = 40, T(40) = 40/2 = 20, T(20) = 20/2 = 10,$$

$$T(10) = 10/2 = 5$$
, $T(5) = 3.5 + 1 = 16$, $T(16) = 16/2 = 8$,

$$T(8) = 8/2 = 4$$
, $T(4) = 4/2 = 2$, $T(2) = 2/2 = 1$

The conjecture has been verified using computers up to $5.6 \cdot 10^{13}$.

Other famous Examples, Hillbert Problems (as seen in Logicomix); e.g. the Riemann hypothesis https://en.wikipedia.org/wiki/Hilbert%27s_problems