

PREDICTING CUSTOMER CHURN FOR AN ONLINE STORE

STAT 642 DATA MINING FINAL PROJECT

PRESENTED BY - TEAM A3

UNDERSTANDING THE CHALLENGE

- Problem at hand: Significant churn rate of roughly 90%.
- Impact: Failing to retain customers can lead to decreased revenue, increased marketing costs and negative brand reputation
- Solution: To address the issue, we developed a robust machine learning model capable of predicting customers who are unlikely to return. The model serves as a tool for idnetifying at-risk customers and develop strategies to tackle the issue and spur sustainability and growth of the business

DATA UNDERSTANDING

- To analyze the significance of the variables in the dataset we plotted the correlation of each one to churn as well as the importance plot which is a feature of the XGBoost package that ranks features by their impact on model predictions
 - The top 5 variables by correlation are days inactive, visits, days inactive SD, active since and clicks.
 - the top 5 by importance are days inactive, visits, days inactive SD, active since and average days inactive
 - These findings highlight how instrumental active engagement is in preventing churn
- The target variable churn appears moderately imbalanced, with 3850 customers not churning over a total of 30009
 - steps were taken in the model development process to address the problem

DATA PREPARATION

- we looked for null values and found none, therefore no further processing was needed
- We opted for no under sampling/oversampling for handling target variable imbalance. However, we used stratified cross-validation in the hyperparameter tuning process, which ensures that each fold has the same proportion of the target class as the whole dataset.
- We tried to employ feature engineering, namely by creating new variables out of the already available ones and also by removing some.
 - For instance, we tried to remove the specific categories and only use the "clicks", as it sums them up.
 - we decided not to pursue this approach as the accuracy of our model was negatively affected by it

- for reproducibility, we set a random seed.
 - This step is essential for reproducibility in processes that involve random number generation.
 - It ensures that everyone running the code will encounter the same random numbers sequence, which is essential for consistent outputs

```
library(xgboost)

train_path <- "train.csv"
test_path <- "test.csv"
data_train <- read.csv(train_path, stringsAsFactors = FALSE)
data_test <- read.csv(test_path, stringsAsFactors = FALSE)

set.seed(42)
# Summary statistics
summary(data_train)</pre>
```

MODELING XGBOOST FOR CUSTOMER CHURN PREDICTION

Model Used

• XGBoost (Extreme Gradient Boosting) Known for its efficiency and accuracy in classification problems.

Why XGBoost?

 Handles unbalanced data well, flexible with extensive customisation through hyperparameters, and excels in predicting categorical outcomes like customer churn.

Core Mechanism

 Utilizes a series of decision trees, each correcting its predecessor, to iteratively refine predictions. The gradient boosting technique minimizes prediction errors using a gradient descent algorithm, enhancing accuracy over iterations.

Algorithmic Efficiency

 XGBoost's speed and performance stem from its capability to parallelize the tree construction process and implement advanced regularization techniques, which prevent overfitting and improve model stability.

Interpretability

 Despite its complexity, XGBoost offers tools for understanding feature importance, allowing insights into which customer attributes significantly impact churn. This transparency is invaluable for crafting targeted retention strategies.

EVALUATION METHODOLOGY

```
# Define XGBoost parameters
params <- list(
  objective = "binary:logistic",
  booster = "gbtree",
  eval_metric = "auc",
  eta = 0.01,
  max_depth = 4,
  subsample = 0.8,
  colsample_bytree = 0.8,
  min_child_weight = 5,
  lambda = 3,
  alpha = 2,
  colsample_bylevel = 0.8,
  colsample_bynode = 0.8</pre>
```

```
# Cross-validation
cv <- xgb.cv(
  params = params,
  data = dtrain,
  nrounds = 100,
  nfold = 4,
  stratified = TRUE,
  print_every_n = 10,
  early_stopping_rounds = 10,
  maximize = TRUE
)</pre>
```

```
# Grid search for hyperparameter tuning
for (eta in c(0.05, 0.1)) {
  for (max_depth in c(4, 6)) {
    params$eta <- eta
    params$max_depth <- max_depth</pre>
```

Model Performance

- The model's performance was evaluated using the Area Under the ROC Curve (AUC), emphasizing its ability to differentiate between churned and retained customers.
- We employed a stratified k-fold cross-validation approach to enhance the reliability and generalizability of our findings.
- With the graphical representation of AUC progress we illustrate the models learning and influential predictors.
- The model with optimal parameters was then applied on full dataset and predicted churn probabilities for the test data.

- Hyperparameter Tuning: A grid search approach to find the optimal model parameters, focusing on learning rate (eta) and tree depth (max_depth)
- Cross-validation: Employed to estimate the effectiveness of the model, ensuring robustness and avoiding overfitting.

```
> # Report the best AUC and parameters
> print(paste("Best AUC:", best_auc))
[1] "Best AUC: 0.754089620276968"
```


MANAGERIAL IMPLICATIONS AND LIMITATIONS

Reasons for customer retention:

- 1. Engagement and experience engagement metrics ssuch as days inactive, clicks, and visits are strong churn predictors
- Product diversification the diversity of product categories viewed and engaged with affect churn, showwing the important of offering a wide range of products
- 3. Timely and relevant communication the variables related to frequency of customer interactions and timing provide insights into the best moments to engage with customers

Strategies for preventing churn

- 1.To increase engagement personalize marketing communications and reccomendations based on customer data. Implement loyalty programs to incentivize repeat purchases
- 2. To enahnce user experience optimize product offerings based on customer interest trends and online shopping experience by continuously updating the platform to keep it user-friendly and functional
- 3. To enhance customer relationship adopting a data driven approach to manage customer relationship. Utilize predictive analysis and ML to anticipate customer needs and engage with the right approach at the right time.
- For consistency regularly monitor key performance metrics to track trends and intervene if necessary

Limitations:

- 1. Model interpretability while our model shows strong performance in identifying churn risk, it is not as straightforward to pinpoint the specific factors causing customers to churn
- 2. Data preparation we acknoledge that we could have employed better practices to handle outliers and target imbalance to provide a more robust and accurate model.
- 3. Overfitting although the model does not overfit excessively, further reducing the probelm would result beneficial

THANK YOU

