

Circuit Theory & Analysis

Objectives

- Derive the relationships for stardelta and delta to star transformation.
- &Use star-delta and delta to star transformation to simplify the given circuit.

Star-Delta transformation is a mathematical tool where circuits connected in Star (Y) are converted into their Delta (Δ) equivalent, or vice versa.

$$Y \rightarrow \Delta$$
and
$$\Delta \rightarrow Y$$

To make the Δ and the Y equivalent, the impedance across any two terminals in the Δ must be equal to that across the corresponding terminals in the Y.

$$R_{AB} = R_A / / (R_B + R_C)$$
 Equals $R_{AB} = R_1 + R_2$

$$= \frac{R_A (R_B + R_C)}{R_A + R_B + R_C}$$

$$\mathbf{R_{BC}} = \mathbf{R_B} / / (\mathbf{R_A} + \mathbf{R_C}) \quad Equals \quad \mathbf{R_{BC}} = \mathbf{R_2} + \mathbf{R_3}$$

$$= \frac{\mathbf{R_B}(\mathbf{R_A} + \mathbf{R_C})}{\mathbf{R_A} + \mathbf{R_B} + \mathbf{R_C}}$$

$$R_{CA} = R_C //(R_A + R_B)$$
 Equals $R_{CA} = R_1 + R_3$

$$= \frac{R_C (R_A + R_B)}{R_A + R_B + R_C}$$

For the Δ and the Y to be equivalent, the following three equations must therefore be satisfied *at the* same time.

For terminals AB
For terminals BC
For terminals CA

$$\frac{R_{A}R_{B} + R_{A}R_{C}}{R_{A} + R_{B} + R_{C}} = R_{1} + R_{2}....(12)$$

$$\frac{R_{A}R_{B} + R_{B}R_{C}}{R_{A}R_{B} + R_{B}R_{C}} = R_{2} + R_{3}....(13)$$

$$\frac{R_{A}R_{C} + R_{B}R_{C}}{R_{A}R_{C} + R_{B}R_{C}} = R_{1} + R_{3}....(14)$$

Delta-Star Transformation

Equations (12) - (13) + (14) results in

$$2R_1 = \frac{2R_A R_C}{R_A + R_B + R_C}$$
 or $R_1 = \frac{R_A R_C}{R_A + R_B + R_C}$...(15)

Equations (13) - (14) + (12) results in

$$2R_2 = \frac{2R_A R_B}{R_A + R_B + R_C}$$
 or $R_2 = \frac{R_A R_B}{R_A + R_B + R_C}$...(16)

Equations (14) - (12) + (13) results in

$$2R_3 = \frac{2R_BR_C}{R_A + R_B + R_C}$$
 or $R_3 = \frac{R_BR_C}{R_A + R_B + R_C}$...(17)

Equations for Delta to Star *Transformation*

Star-Delta Transformation

Equations (17) divided by (15) will result in

$$R_{B} = \frac{R_{A}R_{3}}{R_{1}}$$
 (18)

Equations (17) divided by (16) will result in

$$R_{C} = \frac{R_{A}R_{3}}{R_{2}} \tag{19}$$

Substituting (18) and (19) into (17) will result in

$$R_{3} = \frac{\left(\frac{R_{A}R_{3}}{R_{1}}\right)\left(\frac{R_{A}R_{3}}{R_{2}}\right)}{R_{A} + \frac{R_{A}R_{3}}{R_{1}} + \frac{R_{A}R_{3}}{R_{2}}} = \frac{R_{A}^{2}R_{3}^{2}}{R_{A}R_{1}R_{2} + R_{A}R_{2}R_{3} + R_{A}R_{1}R_{3}}$$

Star-Delta Transformation

$$1 = \frac{R_A R_3}{R_1 R_2 + R_2 R_3 + R_1 R_3}$$

$$R_{A} = R_{1} + R_{2} + \frac{R_{1}R_{2}}{R_{3}} \qquad (20)$$

Similarly with the same approach, we can solve for R_B and R_C.

$$R_{B} = R_{2} + R_{3} + \frac{R_{2}R_{3}}{R_{1}} \qquad (21)$$

$$R_{C} = R_{1} + R_{3} + \frac{R_{1}R_{3}}{R_{2}} \qquad (22)$$

Equations for Star to Delta Transformation

Summary of transformation rules:

Delta to star

$$Z_1 = \frac{Z_A Z_C}{Z_A + Z_B + Z_C}$$

$$Z_1 = \frac{Z_A Z_C}{Z_A + Z_B + Z_C}$$
 $Z_2 = \frac{Z_A Z_B}{Z_A + Z_B + Z_C}$ $Z_3 = \frac{Z_B Z_C}{Z_A + Z_B + Z_C}$

$$Z_3 = \frac{Z_B Z_C}{Z_A + Z_B + Z_C}$$

Summary of transformation rules:

Star to delta

$$Z_{A} = Z_{1} + Z_{2} + \frac{Z_{1}Z_{2}}{Z_{3}}$$
 $Z_{B} = Z_{2} + Z_{3} + \frac{Z_{2}Z_{3}}{Z_{1}}$ $Z_{C} = Z_{1} + Z_{3} + \frac{Z_{1}Z_{3}}{Z_{2}}$

$$Z_{\rm B} = Z_2 + Z_3 + \frac{Z_2 Z_3}{Z_1}$$

$$Z_{\rm C} = Z_1 + Z_3 + \frac{Z_1 Z_3}{Z_2}$$

Equations for Balanced Star to Delta or Balanced Delta to Star Transformation

When the Δ or the Y circuit is balanced

$$R_{\Delta} = R_Y + R_Y + (R_Y R_Y) / R_Y$$

giving $R_{\Delta} = 3 R_Y$ or $Z_{\Delta} = 3 Z_Y$

Find the delta equivalent of the balanced star network.

 \square Solution: $Z_D = 3xZ_S = 3 \times 20 \angle 30^\circ \Omega = 60 \angle 30^\circ \Omega$

Find R_{AB}

The Δ formed by the 10 Ω , 6 Ω and 4 Ω resistors is transformed to Y formed by R_1 , R_2 and R_3

$$R_1 = (10 \times 4) / (10 + 6 + 4) = 2 \Omega$$

 $R_2 = (10 \times 6) / (10 + 6 + 4) = 3 \Omega$
 $R_3 = (4 \times 6) / (10 + 6 + 4) = 1.2 \Omega$

The 10 Ω , 6 Ω and 4 Ω resistors in Delta are now replaced by the R_1 , R_2 and R_3 in Star

Now add the series resistors together, the circuit then becomes.....

Finally,
$$R_{AB} = 16 + (8 // 11.2) = 20.67 \Omega$$

A network is arranged as shown in Figure 1. Calculate the equivalent resistance between A & C using stardelta transformation.

Figure 1

Transform the blue star into the green delta.

$$\mathbf{R_1} = 2 + 4 + (2 \times 4) / 3$$

= 8.667 Ω
 $\mathbf{R_2} = 2 + 3 + (2 \times 3) / 4$
= 6.5 Ω
 $\mathbf{R_3} = 3 + 4 + (3 \times 4) / 2$
= 13 Ω

Now the 6 Ω resistor is parallel to R₁. Similarly for the $10 \Omega \& R_2$ and 15 Ω & R₃ $R_4 = (6x8.667)/(6+8.667)$ $= 3.55 \Omega$ $R_5 = (10x6.5)/(10+6.5)$ $= 3.94 \Omega$ $R_6 = (15x13)/(15+13)$ $=6.96 \Omega$

And the circuit becomes

$$R_4 = 3.55 \Omega$$

$$R_5 = 3.94 \Omega$$

$$R_6 = 6.96 \Omega$$

Resistance between A & C

$$= (R_4 + R_6) // R_5$$

 $= 10.51 \times 3.94/(10.51+3.94)$

 $=2.86 \Omega$

...next topic

Thevenin's Theorem

Nurturing Curious Minds, Producing Passionate Engineers

Lee M L

Office: T12A522 School of EEE

Tel: 6879-0657