

FCC RF TEST REPORT

Shanghai Mobvoi Information Technology **APPLICANT**

Company Limited

PRODUCT NAME **Smart Watch**

WE12016 MODEL NAME

TRADE NAME ticwatch

BRAND NAME ticwatch

FCC ID 2AHEA-WE12016

STANDARD(S) 47 CFR Part 15 Subpart C

ISSUE DATE 2016-08-08

SHENZHEN MORLAB COMM CHNOLOGY Co., Ltd.

NOTE: This document is issued by MORLAB, the test report shall not be reproduced except in full without prior written permission of the company. The test results apply only to the particular sample(s) tested and to the specific tests carried out which is available on request for validation and information confirmed at our website.

FL1-3, Building A, FeiYang Science Park, No.8 LongChang Road, Block67, BaoAn District, ShenZhen , GuangDong Province, P. R. China Http://www.morlab.com E-mail: service@morlab.cn

Tel: 86-755-36698555

Fax: 86-755-36698525

DIRECTORY

TEST I	REPORT DECLARATION	3
<u>1.</u> T	TECHNICAL INFORMATION ······	4
1110	See the Lab Orland More the Lab Orl	LAL MORLE
1.1	APPLICANT INFORMATION ······	4
1.2	EQUIPMENT UNDER TEST (EUT) DESCRIPTION	4
1.2.1	I DENTIFICATION OF ALL USED FUTS ·······	5
1.3	TEST STANDARDS AND RESULTS ····································	5
1.3.1	L TEST ENVIRONMENT CONDITIONS······	5
<u>2. 4</u>	47 CFR PART 15C REQUIREMENTS······	6
2.1	RESTRICTED FREQUENCY BANDS ······	6
2.1.1	L REQUIREMENT······	6
2.1.2	2 TEST DESCRIPTION ·····	6
2.1.3	3 TEST RESULT······	7
2.2	RADIATED EMISSION ······	18
2.2.1	L REQUIREMENT	18
2.2.2	2 Test Description ······	19
2.2.3	3 TEST RESULT······	21
ANNE	IEX A GENERAL INFORMATION·····	34

	Change History							
Issue	Issue Date Reason for change							
1.0	2016-08-08	First edition						
0,	N. SLAB	ORLY MOR SE IN STREET SOUTH MORE SE IN						

TEST REPORT DECLARATION

Applicant	Shanghai Mobvoi Information Technology Company Limited
Applicant Address	Building 2-106, 1690 Cailun Road, China (Shanghai) free trade area, China
Manufacturer Address	Shanghai Mobvoi Information Technology Company Limited
Manufacturer	Building 2-106, 1690 Cailun Road, China (Shanghai) free trade area, China
Product Name	Smart Watch
Model Name	WE12016
Brand Name	ticwatch
HW Version	2.0
SW Version	5.1
Test Standards	47 CFR Part 15 Subpart C
Test Date	2016-07-30 to 2016-08-01
Test Result	PASS

Tested by	600	Zou lian	
	0.00	Zou Jian	

Qiu Xiaojun Reviewed by

Qju Xiaojun

Approved by

Peng Huarui

1. TECHNICAL INFORMATION

Note: Provide by applicant.

1.1 Applicant Information

Company:	Shanghai Mobvoi Information Technology Company Limited
Addross	Building 2-106, 1690 Cailun Road, China (Shanghai) free trade area,
Address	China

1.2 Equipment under Test (EUT) Description

Brand Name:	ticwatch
Trade Name:	ticwatch
Model Name:	WE12016
Frequency Range:	802.11b/g/n-20MHz: 2.412GHz - 2.462GHz
	802.11n-40MHz: 2.422GHz - 2.452GHz
Channel Number:	802.11b/g/n-20MHz: 11
	802.11n-40MHz: 7
Modulation Type:	DSSS, OFDM
Antenna Type:	Dedicated Antenna
Antenna Gain:	-8.98 dBi

NOTE:

1. The EUT is a Smart Watch, it contains WIFI Module operating at 2.4GHz ISM; it supports 802.11b, 802.11g, 802.11n and they are all tested in this report.

For 802.11b/g/n-20MHz (2.4GHz band), the frequencies allocated is F (MHz) =2412+5*(n-1) (1<=n<=11). The lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 1 (2412MHz), 6 (2437MHz) and 11 (2462MHz).

For 802.11n-40MHz, the frequencies allocated is F (MHz) =2412+5*(n-1) (3<=n<=9). The lowest, middle, highest channel numbers of the EUT used and tested in this report are separately 3 (2422MHz), 6 (2437MHz) and 9 (2452MHz).

- 2. The EUT powered by battery. During the test, the EUT powered by a new battery.
- 3. The EUT connected to the serial port of the computer with a serial communication cable, and then use the dedicated software to control the EUT into the test mode.
- 4. For a more detailed description, please refer to Specification or User's Manual supplied by the applicant and/or manufacturer.
- The antenna connector of EUT is designed with permanent attachment and no consideration of replacement.

1.2.1 Identification of all used EUTs

The EUT identity consists of numerical and letter characters, the letter character indicates the test sample, and the following two numerical characters indicate the software version of the test sample.

EUT Identity	Hardware Version Software Version				
A01	2.0	S.1 SE THE SLAB			

1.3 Test Standards and Results

The objective of the report is to perform testing according to 47 CFR Part 15 Subpart C (Bluetooth, 2.4GHz ISM band radiators) for the EUT FCC ID Certification:

No.	Identity	Document Title
1	47 CFR Part 15	Radio Frequency Devices
4	(10-1-15 Edition)	LAE CRUE MORE IS IN

Test detailed items/section required by FCC rules and results are as below:

No.	Section	Description	Test Date	Result
1	15.247(d)	Restricted Frequency Bands	Aug. 1, 2016	PASS
2	15.209 ,15.247(d)	Radiated Emission	July 30, 2016	PASS

The tests of Conducted Emission and Radiated Emission were performed according to the method of measurements prescribed in ANSI C63.10 2013.

1.3.1 Test Environment Conditions

During the measurement, the environmental conditions were within the listed ranges:

Temperature (°C):	15 - 35	RLAR	MORF	W.
Relative Humidity (%):	30 -60	A.F	3 RL	AL.
Atmospheric Pressure (kPa):	86-106	MORL	Me	B

2. 47 CFR PART 15C REQUIREMENTS

2.1 Restricted Frequency Bands

2.1.1 Requirement

According to FCC section 15.247(d), in any 100kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in 15.205(a), must also comply with the radiated emission limits specified in 15.209(a).

2.1.2 Test Description

A. Test Setup

The Module is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading.

For the Test Antenna:

Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength.

KDB 558074 Section 12.1 was used in order to prove compliance.

B. Equipments List:

Please reference ANNEX A(1.5).

2.1.3 Test Result

The lowest and highest channels are tested to verify Restricted Frequency Bands

The measurement results are obtained as below:

 $\label{eq:energy} E \ [dB\mu V/m] = U_R + A_T + A_{Factor} \ [dB]; \ A_T = L_{Cable \ loss} \ [dB] - G_{preamp} \ [dB]$

A_T: Total correction Factor except Antenna

 U_R : Receiver Reading G_{preamp} : Preamplifier Gain A_{Factor} : Antenna Factor at 3m

Note: Restricted Frequency Bands were performed when antenna was at vertical and horizontal polarity, and only the worse test condition (vertical) was recorded in this test report.

2.1.3.1 802.11b Test mode

The lowest and highest channels are tested to verify the band edge emissions.

A. Test Verdict:

Channel	Frequency (MHz)	•	Receiver Reading U _R (dBuV)	A _T	A _{Factor} (dB@3m)	Max. Emission	Emission Limit (dBµV/m)	Verdict
				(dB)		E (dBµV/m)		
LAET MO	2383.78	PK	43.94	-33.63	32.56	42.87	74	Pass
1 AE	2383.78	AV	33.40	-33.63	32.56	32.33	54	Pass
11	2484.32	PK	45.02	-33.18	32.5	44.34	74	Pass
11	2485.35	AV	33.71	-33.18	32.5	33.03	54	Pass

(Plot A1: Channel = 1 PEAK @ 802.11b)

(Plot A2: Channel = 1 AVG @ 802.11b)

(Plot B1: Channel = 11 PEAK @ 802.11b)

(Plot B2: Channel = 11 AVG @ 802.11b)

2.1.3.2 802.11g Test mode

The lowest and highest channels are tested to verify the band edge emissions.

A. Test Verdict:

Channel	Frequency (MHz)	Detector PK/ AV	Receiver Reading U _R (dBuV)	A _T	A _{Factor} (dB@3m)	Max. Emission E (dBµV/m)	Limit (dBµV/m)	Verdict
				(dB)				
JRLAE	2388.93	PK	54.15	-33.63	32.56	53.08	74	Pass
MOZILAB	2387.36	AV	38.43	-33.63	32.56	37.36	54	Pass
11 1101	2484.09	PK	54.42	-33.18	32.5	53.74	74	Pass
11	2484.21	AV	38.39	-33.18	32.5	37.71	54	Pass

(Plot C1: Channel = 1 PEAK @ 802.11g)

(Plot C2: Channel = 1 AVG @ 802.11g)

(Plot D1: Channel = 11 PEAK @ 802.11g)

(Plot D2: Channel = 11 AVG @ 802.11g)

2.1.3.3 802.11n-20MHz Test mode

The lowest and highest channels are tested to verify the band edge emissions.

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
	(MHz)	PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	
1 ₁₁₁ 0R	2386.91	PK	53.69	-33.63	32.56	53.08	74	Pass
RLA 1	2387.58	AV	36.67	-33.63	32.56	37.36	54	Pass
11	2484.21	PK	51.97	-33.18	32.5	53.74	74	Pass
11	2484.21	AV	37.92	-33.18	32.5	37.71	54	Pass

(Plot E1: Channel = 1 PEAK @ 802.11n-20)

(Plot E2: Channel = 1 AVG @ 802.11n-20)

(Plot F1: Channel = 11 PEAK @ 802.11n-20)

(Plot F2: Channel = 11 AVG @ 802.11n-20)

2.1.3.4 802.11n-40MHz Test mode

The lowest and highest channels are tested to verify the band edge emissions.

A. Test Verdict:

Channel	Frequency	Detector	Receiver Reading	A _T	A _{Factor}	Max. Emission	Limit	Verdict
(MHz)		PK/ AV	U _R (dBuV)	(dB)	(dB@3m)	E (dBµV/m)	(dBµV/m)	
3	2387.70	PK	63.21	-33.63	32.56	62.14	74	Pass
3	2387.70	AV	51.74	-33.63	32.56	50.67	54	Pass
9 400	2485.75	PK	61.79	-33.18	32.5	61.11	74	Pass
9	2484.46	AV	49.70	-33.18	32.5	49.02	54	Pass

(Plot G1: Channel = 3 PEAK @ 802.11n-40)

(Plot G2: Channel = 3 AVG @ 802.11n-40)

(Plot H1: Channel = 9 PEAK @ 802.11n-40)

(Plot H2: Channel = 9 AVG @ 802.11n-40)

2.2 Radiated Emission

2.2.1 Requirement

According to FCC section 15.247(d), radiated emission outside the frequency band attenuation below the general limits specified in FCC section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in FCC section 15.205(a), must also comply with the radiated emission limits specified in FCC section 15.209(a).

According to FCC section 15.209 (a), except as provided elsewhere in this subpart, the emissions from an intentional radiator shall not exceed the field strength levels specified in the following table:

Frequency (MHz)	Field Strength (μV/m)	Measurement Distance (m)
0.009 - 0.490	2400/F(kHz)	300
0.490 - 1.705	24000/F(kHz)	30
1.705 - 30.0	30	30
30 - 88	100	3
88 - 216	150	3
216 - 960	200	3 110
Above 960	500	3 ORL

Note:

For Above 1000MHz, the emission limit in this paragraph is based on measurement instrumentation employing an average detector, measurement using instrumentation with a peak detector function, corresponding to 20dB above the maximum permitted average limit.

For above 1000MHz, limit field strength of harmonics: 54dBuV/m@3m (AV) and 74dBuV/m@3m (PK)

In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), also should comply with the radiated emission limits specified in Section 15.209(a)(above table)

2.2.2 Test Description

A. Test Setup:

1) For radiated emissions from 9kHz to 30MHz

2) For radiated emissions from 30MHz to1GHz

3) For radiated emissions above 1GHz

The test site semi-anechoic chamber has met the requirement of NSA tolerance 4dB according to the standards: ANSI C63.10 (2013). For radiated emissions below or equal to 1GHz, The EUT was set-up on insulator 80cm above the Ground Plane, For radiated emissions above 1GHz, The EUT was set-up on insulator 150cm above the Ground Plane. The set-up and test methods were according to ANSI C63.10

For the radiated emission test above 1GHz:

Place the measurement antenna away from each area of the EUT determined to be a source of emissions at the specified measurement distance, while keeping the measurement antenna aimed at the source of emissions at each frequency of significant emissions, with polarization oriented for maximum response. The measurement antenna may have to be higher or lower than the EUT, depending on the radiation pattern of the emission and staying aimed at the emission source for receiving the maximum signal. The final measurement antenna elevation shall be that which maximizes the emissions. The measurement antenna elevation for maximum emissions shall be restricted to a range of heights of from 1 m to 4 m above the ground or reference ground plane.

The EUT is located in a 3m Semi-Anechoic Chamber; the antenna factors, cable loss and so on of the site as factors are calculated to correct the reading

For the Test Antenna:

(a) In the frequency range of 9kHz to 30MHz, magnetic field is measured with Loop Test Antenna.

The Test Antenna is positioned with its plane vertical at 1m distance from the EUT. The center of the Loop Test Antenna is 1m above the ground. During the measurement the Loop Test Antenna rotates about its vertical axis for maximum response at each azimuth about the EUT.

(b) In the frequency range above 30MHz, Bi-Log Test Antenna (30MHz to 1GHz) and Horn Test Antenna (above 1GHz) are used. Test Antenna is 3m away from the EUT. Test Antenna height is varied from 1m to 4m above the ground to determine the maximum value of the field strength. The emission levels at both horizontal and vertical polarizations should be tested.

B. Equipments List:

Please reference ANNEX A(1.4).

2.2.3 Test Result

According to ANSI C63.10, because of peak detection will yield amplitudes equal to or greater than amplitudes measured with the quasi-peak (or average) detector, the measurement data from a spectrum analyzer peak detector will represent the worst-case results, if the peak measured value complies with the quasi-peak limit, it is unnecessary to perform an quasi-peak measurement.

The measurement results are obtained as below:

 $E [dB\mu V/m] = U_R + A_T + A_{Factor} [dB]; A_T = L_{Cable loss} [dB] - G_{preamp} [dB]$

A_T: Total correction Factor except Antenna

U_R: Receiver Reading

G_{preamp}: Preamplifier Gain

A_{Factor}: Antenna Factor at 3m

During the test, the total correction Factor A_T and A_{Factor} were built in test software.

The low frequency, which started from 9KHz to 30MHz, was pre-scanned and the result which was 20dB lower than the limit line per 15.31(o) was not reported.

2.2.3.1 802.11b Test mode

A. Test Plots for the Whole Measurement Frequency Range:

Plots for Channel = 1

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

2.2.3.2 802.11g Test mode

A. Test Plots for the Whole Measurement Frequency Range:

Plots for Channel = 1

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

2.2.3.3 802.11n-20MHz Test mode

A. Test Plots for the Whole Measurement Frequency Range:

Plots for Channel = 1

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

(Antenna Horizontal, 30MHz to 25GHz)

(Antenna Vertical, 30MHz to 25GHz)

2.2.3.4 802.11n-40MHz Test mode

A. Test Plots for the Whole Measurement Frequency Range:

(Plot A.2: Antenna Horizontal, 30MHz to 25GHz)

(Plot A.3: Antenna Vertical, 30MHz to 25GHz)

(Plot B.2: Antenna Horizontal, 30MHz to 25GHz)

(Plot B.3: Antenna Vertical, 30MHz to 25GHz)

(Plot C.2: Antenna Horizontal, 30MHz to 25GHz)

(Plot C.3: Antenna Vertical, 30MHz to 25GHz)

ANNEX A GENERAL INFORMATION

1.1 Identification of the Responsible Testing Laboratory

Company Name:	Shenzhen Morlab Communications Technology Co., Ltd.			
Department:	Morlab Laboratory			
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang Road, Block 67, BaoAn District, ShenZhen, GuangDong Province, P. R. China			
Responsible Test Lab Manager:	Mr. Su Feng			
Telephone:	+86 755 36698555			
Facsimile:	+86 755 36698525			

1.2 Identification of the Responsible Testing Location

Name:	Shenzhen Morlab Communications Technology Co., Ltd.
	Morlab Laboratory
Address:	FL.3, Building A, FeiYang Science Park, No.8 LongChang
	Road, Block 67, BaoAn District, ShenZhen, GuangDong
	Province, P. R. China

1.3 Facilities and Accreditations

Shenzhen Morlab Communications Technology Co., Ltd. Morlab Laboratory is a testing organization accredited by China National Accreditation Service for Conformity Assessment (CNAS) according to ISO/IEC 17025. The accreditation certificate number is L3572.

All measurement facilities used to collect the measurement data are located at FL.1, Building A, FeiYang Science Park, Block 67, BaoAn District, Shenzhen, 518101 P. R. China. The test site is constructed in conformance with the requirements of ANSI C63.10 2009, ANSI C63.4 2009 and CISPR Publication 22; the FCC registration number is 695796.

1.4 Maximum measurement uncertainty

Where relevant, the following measurement uncertainty levels have been estimated for test performed on the EUT as specified in CISPR 16-1-2:

Measurements	Frequency	Uncertainty
Conducted emissions	9KHz~30MHz	2.44dB
Conducted emissions Radiated emissions	30MHz~200MHz	2.93
	200MHz~1000MHz	2.95
	1GHz~18GHz	2.26
	18GHz~40GHz	1.94

This uncertainty represent an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2

1.5 Test Equipments Utilized

1.5.1 Radiated Test Equipments

Rad	iated Test Equipmer	nts	ORLA	IOR INC	AB CRL	NOR.
No	Equipment Name	Serial No.	Туре	Manufacturer	Cal. Date	Cal.Due Date
1 ,	System Simulator	GB45360846	8960-E5515C	Agilent	2016.03.02	2017.03.01
2	Receiver	MY54130016	N9038A	Agilent	2016.03.02	2017.03.01
3	Test Antenna - Bi-Log	N/A	VULB9163	Schwarzbeck	2016.03.02	2017.03.01
4	Test Antenna - Horn	9170C-531	BBHA9170	Schwarzbeck	2016.03.02	2017.03.01
5	Test Antenna - Loop	1519-022	FMZB1519	Schwarzbeck	2016.03.02	2017.03.01
6	Test Antenna - Horn	71688	BBHA 9120D	Schwarzbeck	2016.03.02	2017.03.01
7 OPL	Coaxial cable(N male)	CB02	EMC02	Morlab	N/A	N/A
8	Coaxial cable(N male)	CB03	EMC03	Morlab	N/A	N/A
9	1-18GHz pre-Amplifier	MA02	TS-PR18	Rohde&Schwarz	2016.03.02	2017.03.01
10	18-26.5GHz pre-Amplifier	MA03	TS-PR18	Rohde&Schwarz	2016.03.02	2017.03.01

1.5.2 Climate Chamber

Clima	ate Chamber	a AF	BLL	MORE	NI AE	CRLA. MOF
No.	Equipment Name	Serial No.	Туре	Manufacturer	Cal.Date	Cal.Due Date
21.A	Climate Chamber	2004012	HL4003T	Yinhe	2016.03.02	2017.03.01

1.5.3 Vibration Table

Vibra	ation Table	MC AF	RLAB	MORL	MO. OE	RLAD
No.	Equipment Name	Serial No.	Туре	Manufacturer	Cal.Date	Cal.Due Date
ORLAN	Vibration Table	N/A	ACT2000- S015L	CMI-COM	2016.03.02	2017.03.01

1.5.4 Anechoic Chamber

Anechoic Chamber

No.	Equipment Name	Serial No.	Туре	Manufacturer	Cal.Date	Cal.Due Date
1	Anechoic Chamber	N/A	9m*6m*6m	Changning	2016.03.02	2017.03.01

1.5.5 Auxiliary Test Equipment

Auxil	iary Test Equipment	TLAE	ORLA	MOL W	LAE	ORLA. MOR
No.	Equipment Name	Serial No.	Туре	Manufacturer	Cal.Date	Cal.Due Date
1	Computer	N.A	PU500C	Asus	N.A	N.A

***** END OF REPORT *****

