October 27
Not all flows can be defined globally.
A flow domain is on open
\rightarrow \sim \Re \times \Re
S.t. Y pett the open set
is an open set wintaining OER.
R

A local flow is a smooth my 8:7-14 s.t. for all pet1: ·) 8 (0,7) = p. 2) For all $s \in D^{(p)}$ and $t \in D$ S.t. $s + t \in D^{(p)}$ we have $\Theta(t, \Theta(s, p)) = \Theta(t+s, p)$ As before, we call the of. V Jeford by infinksimal generatar of 8.

•	maximal integral corre is one that
	et be extended to an integral cure on
Max	bigger open interval. Likewik a mul flow is one that comot be
	ended to a bigger flow domain.
	: Let V & Veet (M). There is a signer maximal local flow
	$\Theta: \mathcal{D} \to \mathcal{M}$
	se infinitesimel jenerator is V.
In for	d determins a flow in sure reighborhoud
	'

Next, we move on to a generalization of the wreept of a "dreetronal derivative Lie Derivatues Give the frankty JJ = Datle This is a generalization of the directional derivative of fat p. What about the directional derivative of a vector field? In R' we can do this. If X
is a vf. on R' thin.

Attempt at a resolution: replace the line and $\chi(t) = b + f \chi$ para X(0) = Y(0) = X(0)Bot still me have a problem: XX(t) - XX(o) make sense! Indeed, in R" we have used the courried Tomorphism To(0) R" = T R". We fix this by front changing VETPM, to a v-f. VEVert(M). of the flow of V to "more" X g(s) and X g(t) to lim

in the same space. This is defind in a local 5 nbd of p. Let & be the flow corresponding to V. Define the hie derivative of X with respect to V or lin 1/16

Lem: 9 tm (LyX) defors a smooth
vector fiet on M denoted L, X.
If: (U, b) that containing q. Let
Jo be open interval containing 0 al
Uo CU be open 5.t.
9 (J, × U,) c U.
Have composent fas $(\Theta'(t,z),,\Theta'(t,x))$ and $(d\Theta_{-t})$ is represented by the
matrix
$\frac{\partial \theta'}{\partial r'} \left(-t, \Theta_t(r) \right).$

50
$\frac{\left(\frac{1}{9} - f\right)}{\left(\frac{1}{9} \left(\frac{1}{8}\right)} \left(\frac{1}{8} + \frac{1}{9}\right)$
$=\frac{3x_{i}}{38_{i}}\left(-f'\theta^{f}(x)\right)\chi_{i}\left(\Theta(f'n)\right)\frac{9x_{i}}{3}$
Bewer &i, X) ore smooth it follows
that this is smooth.
October 30
Thu: $L X = [V, X]$ for any $v \in V$.
<u> </u>
Pf. Let R(V) = {pem V, + o } CM
This is open some V is cts. We show
- (X, Y) - (X, Y) P.