CSE512 Fall 2018 - Machine Learning - Homework 7

Your Name: Amit Dharmadhikari

Solar ID: 112044244

NetID email address: <u>amit.dharmadhikari@stonybrook.com</u>

adharmadhika@cs.stonybrook.edu

Names of people whom you discussed the homework with:

Mihir Parulekar

	Manual calculation of one round of EM for
	a amm
Alog.	M step
	Write down the likelihood function you are
	trying to optimize.
Ans	
	(0,0 ^{t-1})= { & ric log Tic + { & ric log P(xi Oc)
2,	After performing the M step for the mixing
^	After performing the M step for the mixing weights TI, TI2, what are the new values.
Ans	$\frac{1}{N} = \frac{1}{N} \leq m_{ic}$
	$T_{i} = \frac{1}{N} \xi r_{i} = \frac{1}{3} (1 + 0.3 + 0) = \frac{1.3}{3} = 0.433$
	$T_2 = \frac{1}{N} \xi r_{i_2} = \frac{1}{3} (0 + 0.7 + 1) = 1.7 = 0.567$
	N 3
	Λ Γ.
3.	Atter performing the Mistep for the origina
	After performing the Mistep for the enipoing weights The, The means u, and us, what are the new values?
Ans.	The new values!
	$M_c = \sum_{i} r_{ic} X_i$
	Yc.
	AND

...
$$u_1 = \frac{y}{1} \frac{y_1}{y_1} \frac{y_1}{z_1} = \frac{1}{1 \cdot 3} \frac{1}{1 \cdot 3}$$

$$= \frac{4}{1 \cdot 3}$$

$$= \frac{4}{1 \cdot 3}$$

$$= \frac{3.07}{1.7}$$

$$u_2 = \frac{y}{1} \frac{y_1}{y_2} = \frac{0 \times 1 + 0.7 \times 10 + 1 \times 20}{1.7}$$

$$= \frac{27}{1.7} \frac{x_1}{z_2}$$

$$= 19.88$$
4. After performing the M step for the standard deviations 6, and 6, what are the new values!
$$6\frac{y}{1} = \frac{y}{1} \frac{y}{1} \frac{y}{1} = \frac{y}{1} =$$

	$6_{2}^{2} = (0 \times 1) + (0.7 \times 100) + (1 \times 400) - 292.17$ $= 24.30$
	$6_2 = \sqrt{24.30} = 4.92$
Ans.	E step Write down the formula for the probability of observation X_i belonging to cluster C . $T_i = \frac{T_c P(X_i u_c^{(t-1)})}{Z_c T_c P(X_i u_c^{(t-1)})}$
	$= T_{c} \frac{1}{\sqrt{2\pi} 6c} \exp \left(-\frac{(x_{i} - \mu_{c}^{t-1})^{2}}{26c^{2}}\right)$ $= \frac{2}{\sqrt{2\pi} 6c} \left(-\frac{(x_{i} - \mu_{c}^{t-1})^{2}}{26c^{2}}\right)$
2.	After performing the E step, what is the new value of R2
Anc.	(i) $r_{11} = \pi_{11} \exp\left(-\frac{(x_{1} - \frac{1}{2}u_{1}^{t-1})^{2}}{26^{2}}\right)$ $\frac{\pi_{1}}{\sqrt{2\pi}6_{1}} \exp\left(-\frac{(x_{1} - u_{1}^{t-1})^{2}}{26^{2}}\right) + \frac{\pi_{2}}{\sqrt{2\pi}6_{2}}$
	$\frac{+ \pi_2}{\sqrt{2\pi} 6_2} \exp\left(\frac{-(\chi_1 - \mu_2^{+-1})^2}{26_2^2}\right)$

Rank: 67

Test accuracy: 0.66600