

TIPO DE FILTRO	CURVA DE ATENUACIÓN	CIRCUITO APLICADO CON VALORES NORMALIZADOS	CÁLCULO DE LOS ELEMENTOS COMPONENTES DEL FILTROS
FILTRO PASA BAJOS KCTE	α 2 2	$\begin{array}{c c} & 1 & h & 1 & h & \\ \hline & L_1 & & L_1 & \\ \hline & C_2 & 2 & f & \\ \hline \end{array}$	$L_{1} = \frac{2R_{0}}{\omega_{c}} \therefore \frac{L_{1}}{2} = \frac{R_{0}}{\omega_{c}}$ $C_{1} = \frac{2}{R_{0}\omega_{c}}$ $\omega_{c} = \frac{2}{\sqrt{L_{1} \times C_{2}}}$ $ X_{K} _{pb} = \frac{\omega}{\omega_{c}}$
FILTRO PASA ALTOS KCTE	α	$ \begin{array}{c c} & & & & & & 1f \\ & & & & & & \\ & & & & & \\ & & & & $	$C_1 = \frac{1}{2R_0 \omega_c} \therefore 2 C_1 = \frac{1}{R_0 \omega_c}$ $L_2 = \frac{R_0}{2\omega_c}$ $\omega_c = \frac{1}{2\sqrt{L_1 \times C_2}}$ $ X_K _{pa} = -\frac{\omega_c}{\omega} = -\frac{1}{ X_K _{pb}}$
FILTRO PASA BANDA KCTE	ω _{c1} ω _{c2}	$2C_1 = \frac{1}{\omega_{on}^2} f$ $\frac{L_1}{2}$ $\frac{1}{2\omega_{on}^2} h$ L_2 C_2 $2 f$	$L_{1} = \frac{2R_{0}}{W} \therefore \frac{L_{1}}{2} = \frac{R_{0}}{W}$ $C_{1} = \frac{W}{2R_{0}\omega_{0}^{2}} \therefore 2 C_{1} = \frac{W}{R_{0}\omega_{0}^{2}}$ $L_{2} = \frac{R_{0}W}{2\omega_{0}^{2}}$ $C_{2} = \frac{2}{R_{0}W}$ $\omega_{0} = \frac{1}{\sqrt{L_{1} \times C_{1}}} = \frac{1}{\sqrt{L_{2} \times C_{2}}}$ $W = \frac{2R_{0}}{L_{1}} = \frac{2}{\sqrt{L_{1} \times C_{2}}}$ $ X_{K} _{PB} = \frac{1}{W} \times \frac{\omega^{2} - \omega_{0}^{2}}{\omega_{0}^{2}}$ $L_{1} = \frac{2R_{0}W}{\omega_{0}^{2}} \therefore \frac{L_{1}}{2} = \frac{R_{0}W}{\omega_{0}^{2}}$ $C_{1} = \frac{1}{2R_{0}W} \therefore 2 C_{1} = \frac{1}{R_{0}W}$
FILTRO ELIMINA BANDA KCTE	ω _{C1}	$ \begin{array}{c c} & 1 & f \\ \hline 2C_1 & 2C_1 \\ \hline \frac{1}{\omega_{on}^2}h & \frac{1}{\omega_{on}^2}h \\ \hline C_2 & \frac{2}{\omega_{on}^2}f \end{array} $	$L_{1} = \frac{2R_{0}W}{\omega_{o}^{2}} : \frac{L_{1}}{2} = \frac{R_{0}W}{\omega_{o}^{2}}$ $C_{1} = \frac{1}{2R_{0}W} : 2C_{1} = \frac{1}{R_{0}W}$ $L_{2} = \frac{R_{0}}{2W}$ $C_{2} = \frac{2W}{R_{0}\omega_{0}^{2}}$ $\omega_{0} = \frac{1}{\sqrt{L_{1} \times C_{1}}} = \frac{1}{\sqrt{L_{2} \times C_{2}}}$ $W = \frac{1}{2R_{0}C_{1}} = \frac{1}{2\sqrt{L_{2} \times C_{1}}}$ $ X_{K} _{PB} = -W \times \frac{\omega}{\omega^{2} - \omega_{o}^{2}} = -\frac{1}{ X_{K} _{PB}}$

 R_o = Impedancia de carga; ω_c = Pulsación de corte (pb y pa); ω_1 = Pulsación de corte inferior; ω_2 = Pulsación de corte superior; W = Ancho de banda = ω_2 - ω_1 y ω_0 = Pulsación de Resonancia.