Unsaturated Flow

Geohydraulics | CE60113

Lecture:17

Learning Objective(s)

- To explain unsaturated flow
- To estimate infiltration

Unsaturated Flow

- Partially Saturated Flow
- Unsaturated Flow
- Vadose Zone Flow

FIGURE 4.1.5(a)
Profiles of total soil moisture head through time at Deep Dean in Sussex, England. (Source: Research Report 1981–84, Institute of Hydrology, Wallingford, England, Fig. 36, p. 33, 1984. Used with permission.)

FIGURE 4.1.4

Variation of soil suction head ψ and hydraulic conductivity K with moisture content θ for Yolo light clay. (Reprinted with permission from A. J. Raudkivi, *Hydrology*, Copyright 1979, Pergamon Books Ltd.)

- Total Head
- Darcy's Law
- Relative Permeability

 $k_r(\theta) = \frac{K(\theta)}{K_S}$

 $h = z + \psi$

 $\mathbf{q} = -K(\theta)\nabla h$

- $0 \le k_r(\theta) \le 1$
- Expanded form of Darcy's Law

$$\mathbf{q} = -K_{S}k_{r}(\theta)\nabla(z + \psi)$$
$$= -K_{S}k_{r}(\theta)\mathbf{e}_{z} - K_{S}k_{r}(\theta)\nabla\psi$$

• Continuity Equation

$$\frac{\partial \theta}{\partial t} + \nabla \cdot \mathbf{q} = S'$$

• Mixed Form (h – θ based)

$$\frac{\partial \theta}{\partial t} - \nabla \cdot (K(\theta)\nabla h) = 0$$

or,

$$\frac{\partial \theta}{\partial t} = \nabla \cdot (K_{S} k_{r}(\theta) \mathbf{e}_{z} + K_{S} k_{r}(\theta) \nabla \psi)$$

• One equation with two unknowns

• Pressure Form (ψ based)

$$C(\psi)\frac{\partial \psi}{\partial t} = \nabla \cdot (K(\psi)\nabla \psi) + \frac{\partial K(\psi)}{\partial z}$$

where

$$C(\psi) = \frac{d\theta}{d\psi}$$

- $C(\psi)$ -Specific capacity or capillary (soil water) capacity
- Moisture Form (θ based)

$$\frac{\partial \theta}{\partial t} = \nabla \cdot (D(\theta)\nabla \theta) + \frac{\partial K(\theta)}{\partial z}$$

where

$$D(\theta) = K(\theta) \frac{d\psi}{d\theta}$$

• $D(\theta)$ -Specific diffusivity or capillary (soil water) diffusivity

- van Genuchten-Mualem model
 - Degree of saturation- $S_{\rho}(\theta)$

$$S_e(\theta) = \frac{\theta - \theta_r}{\theta_s - \theta_r} = \begin{cases} \frac{1}{(1 + |\alpha\psi|^n)^m}, \psi < 0\\ 1, \psi \ge 0 \end{cases}$$

- Hydraulic Conductivity

$$K(\psi) = \begin{cases} K_s S_e^{0.5} \left[1 - \left(1 - S_e^{1/m} \right)^m \right]^2, \psi < 0 \\ K_s, \psi \ge 0 \end{cases}$$

- Soil Water Capacity

$$C(\psi) = \frac{d\theta}{d\psi} = \begin{cases} -\frac{\alpha m n(\theta_s - \theta_r) |\alpha\psi|^{n-1}}{(1 + |\alpha\psi|^n)^{m+1}}, \psi < 0\\ 0, \psi \ge 0 \end{cases}$$

- Soil Water Diffusivity

$$D(\theta) = K(\theta) \frac{d\psi}{d\theta}$$

• Cumulative Infiltration

$$F(t) = \int_0^t f(\tau) \, d\tau$$

$$f(t) = \frac{dF(t)}{dt}$$

FIGURE 4.2.1 Moisture zones during infiltration.

• Horton's Equation

$$f(t) = f_c + (f_0 - f_c)e^{-kt}$$

Governing Equation

$$\frac{\partial \theta}{\partial t} = \nabla \cdot (D(\theta)\nabla \theta) + \frac{\partial K(\theta)}{\partial z}$$

• K and D are constants independent of the moisture content of the soil

$$\frac{\partial \theta}{\partial t} = D \frac{\partial^2 \theta}{\partial z^2}$$

Cumulative Infiltration

$$F = f_c t + \frac{f_0 - f_c}{k} \left(1 - e^{-kt} \right)$$

FIGURE 4.2.2 Infiltration by Horton's equation.

(b) Infiltration rate and cumulative infiltration.

• Philip's Equation

$$F(t) = St^{1/2} + Kt$$

$$f(t) = \frac{1}{2} S t^{-1/2} + K$$

As $t \to \infty$, f(t) tends to K.

For a horizontal column

$$F(t) = St^{1/2}$$

• Green-Ampt Model

FIGURE 4.3.2

Infiltration into a column of soil of unit cross-sectional area for the Green-Ampt model.

FIGURE 4.3.1

Variables in the Green-Ampt infiltration model. The vertical axis is the distance from the soil surface, the horizontal axis is the moisture content of the soil.

Continuity

$$F(t) = L(\eta - \theta_i)$$
$$= L\Delta\theta$$

where
$$\Delta \theta = \eta - \theta_i$$
.

Momentum

$$q = -K \frac{\partial h}{\partial z}$$

$$f = K \left[\frac{h_1 - h_2}{z_1 - z_2} \right]$$

$$f = K \left[\frac{h_0 - (-\psi - L)}{L} \right]$$

$$\approx K \left[\frac{\psi + L}{L} \right]$$

$$f = K \left[\frac{\psi \Delta \theta + F}{F} \right]$$

$$f = K \left[\frac{\psi \Delta \theta + F}{F} \right] \qquad \frac{dF}{dt} = K \left[\frac{\psi \Delta \theta + F}{F} \right]$$

$$\left[\frac{F}{F + \psi \Delta \theta}\right] dF = K dt$$

$$\left[\left(\frac{F + \psi \Delta \theta}{F + \psi \Delta \theta} \right) - \left(\frac{\psi \Delta \theta}{F + \psi \Delta \theta} \right) \right] dF = K dt$$

$$\int_0^{F(t)} \left(1 - \frac{\psi \Delta \theta}{F + \psi \Delta \theta} \right) dF = \int_0^t K dt$$

$$F(t) - \psi \Delta \theta \bigg\{ \ln \big[F(t) + \psi \Delta \theta \big] - \ln \big(\psi \Delta \theta \big) \bigg\} = Kt$$

or

$$F(t) - \psi \Delta \theta \ln \left(1 + \frac{F(t)}{\psi \Delta \theta}\right) = Kt$$

Infiltration rate

$$f(t) = K \left(\frac{\psi \Delta \theta}{F(t)} + 1 \right)$$

Cumulative Infiltration

$$F(t) = Kt + \psi \Delta \theta \ln \left(1 + \frac{F(t)}{\psi \Delta \theta} \right)$$

$$s_e = \frac{\theta - \theta_r}{\eta - \theta_r}$$

$$\Delta\theta = \eta - \theta_i = \eta - (s_e\theta_e + \theta_r)$$

$$\Delta\theta = (1 - s_e)\theta_e$$

TABLE 4.3.1 Green-Ampt infiltration parameters for various soil classes

Soil class	Porosity η	Effective porosity $ heta_e$	Wetting front soil suction head ψ (cm)	Hydraulic conductivity <i>K</i> (cm/h)
(0.374-0.500)	(0.354 - 0.480)	(0.97-25.36)		
Loamy sand	0.437	0.401	6.13	2.99
	(0.363-0.506)	(0.329 - 0.473)	(1.35-27.94)	,
Sandy loam	0.453	0.412	11.01	1.09
	(0.351-0.555)	(0.283 - 0.541)	(2.67-45.47)	
Loam	0.463	0.434	8.89	0.34
	(0.375 - 0.551)	(0.334 - 0.534)	(1.33-59.38)	
Silt loam	0.501	0.486	16.68	0.65
	(0.420 - 0.582)	(0.394 - 0.578)	(2.92-95.39)	
Sandy clay loam	0.398	0.330	21.85	0.15
	(0.332 - 0.464)	(0.235-0.425)	(4.42-108.0)	
Clay loam	0.464	0.309	20.88	0.10
	(0.409 - 0.519)	(0.279 - 0.501)	(4.79 - 91.10)	
Silty clay loam	0.471	0.432	27.30	0.10
	(0.418 - 0.524)	(0.347-0.517)	(5.67-131.50)	
Sandy clay	0.430	0.321	23.90	0.06
	(0.370 - 0.490)	(0.207-0.435)	(4.08-140.2)	
Silty clay	0.479	0.423	29.22	0.05
	(0.425 - 0.533)	(0.334-0.512)	(6.13-139.4)	
Clay	0.475	0.385	31.63	0.03
	(0.427-0.523)	(0.269-0.501)	(6.39–156.5)	

The numbers in parentheses below each parameter are one standard deviation around the parameter value given. Source: Rawls, Brakensiek, and Miller, 1983.

Learning Strategy

Chapter 4: Subsurface Water

Thank you