

Data Structures Algorithms Interview Preparation Topic-wise Practice C++ Java Python

Binary Search Tree

Last Updated: 18 Jun, 2022

Data Structure and Algorithms Course Practice Problems on Binary Search Tree! Recent Articles on Binary Search Tree!

Binary Search Tree is a node-based binary tree data structure which has the following properties:

- The left subtree of a node contains only nodes with keys lesser than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- The left and right subtree each must also be a binary search tree.

Topic:

- Basic
- Construction and Conversion
- Check and Smallest/Largest Element
- Red Black Tree and Threaded Binary Tree
- Balanced Binary Search Tree
- Misc

Login

Register

By Sandeep Jain

Beginner to Advance Level ★★★★★

DSA's most popular course, trusted by over 75,000 students, is now available at an affordable price! Get 200+ algorithmic coding problems, premium video lectures guided by Mr Sandeep Jain and much more.

Explore Now

Basic:

- 1. Binary Search Tree | Set 1 (Search and Insertion)
- 2. Binary Search Tree | Set 2 (Delete)
- 3. Advantages of BST over Hash Table

Construction and Conversion:

- 1. Construct BST from given preorder traversal | Set 1
- 2. Construct BST from given preorder traversal | Set 2
- 3. Binary Tree to Binary Search Tree Conversion
- 4. Sorted Linked List to Balanced BST
- 5. Sorted Array to Balanced BST
- 6. Transform a BST to greater sum tree
- 7. Construct all possible BSTs for keys 1 to N
- 8. Convert a BST to a Binary Tree such that sum of all greater keys is added to every key
- 9. BST to a Tree with sum of all smaller keys
- 10. In-place Convert BST into a Min-Heap
- 11. Convert BST to Min Heap
- 12. Construct BST from its given level order traversal
- 13. Reverse a path in BST using queue
- 14. Binary Tree to Binary Search Tree Conversion using STL set
- 15. Check given array of size n can represent BST of n levels or not
- 16. Convert a normal BST to Balanced BST
- 17. Merge Two Balanced Binary Search Trees
- 18. Merge two BSTs with limited extra space

Checking and Searching:

- 1. Find the node with minimum value in a Binary Search Tree
- 2. Check if the given array can represent Level Order Traversal of Binary Search Tree

 Check if a given array can represent Preorder Traversal of Binary Search Tree

Login

Register

- 6. Find k-th smallest element in BST (Order Statistics in BST)
- 7. Check if each internal node of a BST has exactly one child
- 8. Check for Identical BSTs without building the trees
- 9. K'th Largest Element in BST when modification to BST is not allowed
- 10. K'th Largest element in BST using constant extra space
- 11. Second largest element in BST
- 12. K'th smallest element in BST using O(1) Extra Space
- 13. Check if given sorted sub-sequence exists in binary search tree
- 14. Simple Recursive solution to check whether BST contains dead end
- 15. Check if an array represents Inorder of Binary Search tree or not
- 16. Check if two BSTs contain same set of elements
- 17. Largest number in BST which is less than or equal to N
- 18. Maximum Unique Element in every subarray of size K
- 19. Iterative searching in Binary Search Tree
- 20. Find distance between two nodes of a Binary Search Tree
- 21. Count pairs from two BSTs whose sum is equal to a given value x
- 22. Find median of BST in O(n) time and O(1) space
- 23. Largest BST in a Binary Tree | Set 2
- 24. Remove BST keys outside the given range
- 25. Print BST keys in the given range
- 26. Print BST keys in given Range | O(1) Space
- 27. Count BST nodes that lie in a given range
- 28. Count BST subtrees that lie in given range
- 29. Remove all leaf nodes from the binary search tree
- 30. Sum of k smallest elements in BST
- 31. Inorder Successor in Binary Search Tree
- 32. Inorder predecessor and successor for a given key in BST
- 33. Inorder predecessor and successor for a given key in BST | Iterative Approach
- 34. Find if there is a triplet in a Balanced BST that adds to zero
- 35. Find a pair with given sum in a Balanced BST
- 36. Find a pair with given sum in BST
- 37. Maximum element between two nodes of BST
- 38. Find pairs with given sum such that pair elements lie in different BSTs
- 39. Find the closest element in Binary Search Tree
- 40. Find the largest BST subtree in a given Binary Tree

Replace every element with the least greater element on its right

Login

Register

Red Black Tree and Threaded Binary Tree:

- 1. C Program for Red Black Tree Insertion
- 2. Left Leaning Red Black Tree (Insertion)
- 3. Threaded Binary Tree
- 4. Threaded Binary Tree | Insertion
- 5. Threaded Binary Search Tree | Deletion
- 6. Convert a Binary Tree to Threaded binary tree | Set 1 (Using Queue)
- 7. Convert a Binary Tree to Threaded binary tree | Set 2 (Efficient)
- 8. Inorder Non-threaded Binary Tree Traversal without Recursion or Stack

Balanced Binary Search Tree:

- 1. Convert a normal BST to Balanced BST
- 2. Sorted Array to Balanced BST
- 3. Sorted Linked List to Balanced BST
- 4. How to determine if a binary tree is height-balanced?
- 5. AVL Tree | Set 1 (Insertion)
- 6. AVL Tree | Set 2 (Deletion)
- 7. Find a pair with given sum in a Balanced BST
- 8. Merge Two Balanced Binary Search Trees
- 9. Minimum number of nodes in an AVL Tree with given height

Misc:

- 1. Sorted order printing of a given array that represents a BST
- Two nodes of a BST are swapped, correct the BST
- 3. Floor and Ceil from a BST
- 4. Given n appointments, find all conflicting appointments
- 5. How to handle duplicates in Binary Search Tree?
- 6. Data Structure for a single resource reservations
- 7. How to implement decrease key or change key in Binary Search Tree?
- 8. Print Common Nodes in Two Binary Search Trees
- 9. Count inversions in an array | Set 2 (Using Self-Balancing BST)
- 10. Leaf nodes from Preorder of a Binary Search Tree
- 11. Leaf nodes from Preorder of a Binary Search Tree (Using Recursion)
 - ?. Binary Search Tree insert with Parent Pointer
 - .. Minimum Possible value of |ai + aj k| for given array and k.

Login

Register

Quick Links:

- 'Practice Problems' on Binary Search Tree
- 'Quizzes' on Binary Search Tree
- 'Quizzes' on Balanced Binary Search Trees
- Videos

Start Learning

Writing code in comment? Please use ide.geeksforgeeks.org, generate link and share the link here.

Load Comments

A-143, 9th Floor, Sovereign Corporate Tower, Sector-136, Noida, Uttar Pradesh – 201305

feedback@geeksforgeeks.org

Login

Register

Company

About Us

Careers

In Media

Contact Us

Privacy Policy

Copyright Policy

Learn

Algorithms

Data Structures

SDE Cheat Sheet

Machine learning

CS Subjects

Video Tutorials

Courses

News

Top News

Technology

Work & Career

Business

Finance

Lifestyle

Knowledge

Languages

Python

Java

CPP

Golang

C#

SQL

Kotlin

Web Development

Web Tutorials

Django Tutorial

HTML

JavaScript

Bootstrap

ReactJS

NodeJS

Contribute

Write an Article

Improve an Article

Pick Topics to Write

Write Interview Experience

Internships

Video Internship

@geeksforgeeks, Some rights reserved