Parallel Deep Learning

Lecture 21

April 23, 2025

Recap – Algorithms for Collectives

Allgather – Ring Algorithm

- Every process sends to and receives from everyone else
- Assume p processes and total n bytes
- Every process sends and receives n/p bytes
- Time
 - (p-1) * (L + n/p*(1/B))
- How can we improve?

Broadcast – Binomial Tree

- #Steps for p (=2^d) processes?
 - log p
- Transfer time for n bytes
 - T(p) = log p * (L + n/B)

Reduce Algorithm – Recursive doubling

Reduce – Rabenseifner's Algorithm

Allreduce – Rabenseifner's Algorithm


```
Time:

log p * L + (p-1)/p*(n/B) + (p-1)/p*n*c (reduce-scatter) +

log p * L + (p-1)/p*(n/B) (allgather using recursive vector doubling and distance halving)

n = data size L = latency

p = \#processes B = bandwidth

c = compute cost per byte
```

Reduce/Allreduce (Ring)

ith segment is reduced by ith process following a ring algorithm (i.e. rank r sends to rank (r+1) mod P)

Efficient MPI-AllReduce for large-scale deep learning on GPU-clusters, Nyugen et al., CCPE, 2019

Illustration of MPI_Allreduce (Ring)

a0	b0	c0	d0
a1	b1	c1	d1
a2	b2	c2	d2
a3	b3	c 3	d3

a0	b0	c0+c3	d0
a1	b1	c1	d0+d1
a1+a2	b2	c2	d2
a3	b2+b3	c3	d3

Step 1

a0	b0+b2+b3	c0+c3	d0
a1	b1	c0+c1+c3	d0+d1
a1+a2	b2	c2	d0+d1+d2
a1+a2+a3	b2+b3	c 3	d3

Step 2

Illustration (contd.) of MPI_Allreduce (Ring)

a0+a1+a2+a3	b0+b2+b3	c0+c3	d0
a1	b0+b1+b2+b3	c0+c1+c3	d0+d1
a1+a2	b2	c0+c1+c2+c3	d0+d1+d2
a1+a2+a3	b2+b3	c3	d0+d1+d2+d3

Step 3

Distributed Deep Learning

Data Parallelism

• ...

Distributed DL Frameworks

- Horovod
- Tensorflow + Horovod
- PyTorch + Horovod
- •

Accelerating distributed deep neural network training with pipelined MPI_Allreduce, Castello et al., Cluster Computing, 2021

Introduction

MPI (Message Passing Interface) [28] is the *de facto* standard for distributed high performance computing (HPC) applications. Therefore, it has been naturally adopted as the communication layer for distributed training frameworks such as Google's TensorFlow (TF) [1], TF+Horovod (HVD) [25], and PyTorch [24]. The MPI application programming interface (API) comprises a large variety of peer-to-peer and collective communication primitives. Among these, the DP scheme for distributed training basically relies on the blocking MPI_Allreduce primitive, which internally reduces a collection of local values broadcasting the global result to all processes participating in the communication.

Quite a few papers address this limitation in the context of ML/DL

Pipelined MPI_Allreduce

int MPI_Allreduce (const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

int MPI_Iallreduce (const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op, MPI_Comm comm, MPI_Request *request)

Segmented MPI_Iallreduce

```
int MPI_Iallreduce (const void *sendbuf, void *recvbuf, int count, MPI_Datatype datatype, MPI_Op op, MPI_Comm comm, MPI_Request *request)
```

```
for (....)

MPI_Iallreduce (...count/x...)
```

How do we segment?

- Segment of fixed size
- Fixed number of segments

Algorithms for MPI_Allreduce

Algorithm	Latency factor	Bandwidth factor	Computation factor
Binomial tree	$\log(p)\alpha$	$log(p)N\beta$	$log(p)N\gamma$
Recursive-doubling	$\log(p)\alpha$	$log(p)N\beta$	$log(p)N\gamma$
Rabenseifner ³²	$2\log(p)\alpha$	$2\frac{p-1}{p}N\beta$	$\frac{p-1}{p}N\gamma$
Logical ring ³³	$2(p-1)\alpha$	$2\frac{p-1}{p}N\beta$	$\frac{p-1}{p}N\gamma$

Performance of MPI_Allreduce using OpenMPI implementation (8 and 9 processes)

Performance with Fixed Segment Size (AUTO)

Performance with Fixed Segment Size (RING)

Performance with Fixed #Segments (AUTO)

Performance with Fixed #Segments (RING)

Performance of TF+HVD (Batch size = 128)

Performance of TF+HVD (Batch size = 256)

Optimal Batch Sizes Vary

Credit: M.A. Wani

Thank you for your attention!