Math 302/600 Spring 2017 Homework #1

Due Feb. 7, Tue. in class

- 1. Let V be an inner product space with the induced norm $\|\cdot\|$. Show that for any $x, y \in V$, $\|x+y\|^2 + \|x-y\|^2 = 2(\|x\|^2 + \|y\|^2)$.
- 2. On the Euclidean space \mathbb{R}^n , define for each $x=(x_1,\cdots,x_n)\in\mathbb{R}^n$,

$$||x||_{\star} := c_1|x_1| + c_2|x_2| + \dots + c_n|x_n|,$$

where c_i is a positive real number for each $i = 1, \dots, n$. Show that $\|\cdot\|_{\star}$ is a norm on \mathbb{R}^n .

3. Recall that C([0,1]) is the vector space of all continuous functions $f:[0,1] \to \mathbb{R}$ on the interval [0,1]. For any $f \in C([0,1])$, define

$$||f||_{\infty} := \max \{|f(t)| : t \in [0,1]\}.$$

- (1) Explain why $||f||_{\infty}$ exists for any $f \in C([0,1])$. (*Hint*: think of Theorem 5.3.4 of Bartle and Sherbert's book.)
- (2) Prove that $\|\cdot\|_{\infty}$ is a norm on C([0,1]).

The following extra problems are for Math 600 students only:

- 4. Let V be an inner product space with the induced norm $\|\cdot\|$. Show that for any $x, y \in V$, $\|x+y\|\cdot\|x-y\| \leq \|x\|^2 + \|y\|^2$.
- 5. On the Euclidean space \mathbb{R}^n , define for each $x = (x_1, \dots, x_n) \in \mathbb{R}^n$,

$$||x||_{\infty} := \max(|x_1|, |x_2|, \dots, |x_n|)$$

Show that $\|\cdot\|_{\infty}$ is a norm on \mathbb{R}^n .