

Practice 3 / Control test 2
Operational Amplifiers
Wien bridge oscillator

Nikolai Poliakov Arina Arbuzina (polyakov_n_a@itmo.ru) (arbyzina99@gmail.com)

Summary

ITMO

- 1. Wien Bridge Oscillator
- 2. Practice work 2: simulation
- 3. Control test (after the break)

ITMO

$$\frac{R_3}{R_4} = \frac{R_1}{R_2} + \frac{C_2}{C_1}$$

$$f_0 = \frac{1}{2\pi\sqrt{R_1 R_2 C_1 C_2}}$$

If, in particular, the values are $R_1 = R_2 = R$ and $C_1 = C_2 = C$, the resulting oscillator frequency is

$$f_0 = \frac{1}{2\pi RC}$$

$$\frac{R_3}{R_4} = 2$$

ITMO

$$\frac{R_3}{R_4} = \frac{R_1}{R_2} + \frac{C_2}{C_1}$$

$$f_0 = \frac{1}{2\pi\sqrt{R_1 R_2 C_1 C_2}}$$

If in particular the values are $R_1 = R_2 = R$ and $C_1 = C_2 = C$, the resulting oscillator frequency is

$$f_0 = \frac{1}{2\pi RC}$$

$$\frac{R_3}{R_4} = 2$$

ITMO

Wien Bridge Oscillator

E24	Nominal values of resistances							
1.0	0.01 Ω	0.1 Ω	1Ω	10 Ω	100 Ω	1 kΩ	10 kΩ	10 0 kΩ
1.1	0.011 Ω	0.11 Ω	1.1 Ω	11 Ω	110 Ω	1.1 kΩ	11 kΩ	H
1.2	0.012 Ω	0.12 Ω	1.2 Ω	12 Ω	120 Ω	1.2 kΩ	12 kΩ	
1.3	0.013 Ω	0.13 Ω	1.3 Ω	13 Ω	130 Ω	1.3 kΩ	13 kΩ	
1.5	0.015 Ω	0.15 Ω	1.5 Ω	15 Ω	150 Ω	1.5 kΩ	15 kΩ	—
1.6	0.016 Ω	0.16 Ω	1.6 Ω	16 Ω	160 Ω	1.6 kΩ	16 kΩ	
1.8	0.018 Ω	0.18 Ω	1.8 Ω	18 Ω	180 Ω	1.8 kΩ	18 kΩ	———
2.0	0.02 Ω	0.2 Ω	2.0 Ω	20 Ω	200 Ω	2.0 kΩ	20 kΩ	
2.2	0.022 Ω	0.22 Ω	2.2 Ω	22 Ω	220 Ω	2.2 kΩ	22 kΩ	
2.4	0.024 Ω	0.24 Ω	2.4 Ω	24 Ω	240 Ω	2.4 kΩ	24 kΩ	
2.7	0.027 Ω	0.27 Ω	2.7 Ω	27 Ω	270 Ω	2.7 kΩ	27 kΩ	
3.0	0.03 Ω	0.3 Ω	3.0 Ω	30 Ω	300 Ω	3.0 kΩ	30 kΩ	
3.3	0.033 Ω	0.33 Ω	3.3 Ω	33 Ω	330 Ω	3.3 kΩ	33 kΩ	
3.6	0.036 Ω	0.36 Ω	3.6 Ω	36 Ω	360 Ω	3.6 kΩ	36 kΩ	
3.9	0.039 Ω	0.39 Ω	3.9 Ω	39 Ω	390 Ω	3.9 kΩ	39 kΩ	
4.3	0.043 Ω	0.43 Ω	4.3 Ω	43 Ω	430 Ω	4.3 kΩ	43 kΩ	
4.7	0.047 Ω	0.47 Ω	4.7 Ω	47 Ω	470 Ω	4.7 kΩ	47 kΩ	
5.1	0.051 Ω	0.51 Ω	5.1 Ω	51 Ω	510 Ω	5.1 kΩ	51 kΩ	
5.6	0.056 Ω	0.56 Ω	5.6 Ω	56 Ω	560 Ω	5.6 kΩ	56 kΩ	
6.2	0.062 Ω	0.62 Ω	6.2 Ω	62 Ω	620 Ω	6.2 kΩ	62 kΩ	
6.8	0.068 Ω	0.68 Ω	6.8 Ω	68 Ω	680 Ω	6.8 kΩ	68 kΩ	
7.5	0.075 Ω	0.75 Ω	7.5 Ω	75 Ω	750 Ω	7.5 kΩ	75 kΩ	
8.2	0.082 Ω	0.82 Ω	8.2 Ω	82 Ω	820 Ω	8.2 kΩ	82 kΩ	
9.1	0.091 Ω	0.91 Ω	9.1 Ω	91 Ω	910 Ω	9.1 kΩ	91 kΩ	

$$\frac{R_3}{R_4} = \frac{R_1}{R_2} + \frac{C_2}{C_1}$$

$$f_0 = \frac{1}{2\pi\sqrt{R_1 R_2 C_1 C_2}}$$

If in particular the values are $R_1 = R_2 = R$ and $C_1 = C_2 = C$, the resulting oscillator frequency is

$$f_0 = \frac{1}{2\pi RC}$$

$$\frac{R_3}{R_4} = 2$$

ITMO

$$f_0 = \frac{1}{2\pi\sqrt{R_1R_2C_1C_2}} = \frac{1}{2\pi RC} = \frac{1}{2\pi R_1C};$$

	Source voltage kequency,	Load resistance, [Ω]	Resistance $[\Omega]$	Voltage source power supply [V]				
	$f_{\it test}$	R _{Load}	R_{I}	Vcc ±	Vref			
ĺ	1000	1000000	10000	±5	0,2			

$$C_1 = C_2$$

$$R_1 = R_2$$

$$R_3 = 2R_4$$

$$C_1 = C_2 = \frac{1}{2\pi R_1 f_{test}}$$

Choose real capacitor E24

$$f_{0_calculated} = \frac{1}{2\pi R_1 C_{1_real}}$$

1 pF	10 pF	100 pF	1 nF	10 nF	0.1 μF	1 μF	10 μF	100 μF	1000 μF
1.1 pF	11 pF	110 pF	1.1 nF	11 nF	0.11 μF	1.1 μF	11 μF	110 μF	1100 μF
1.2 pF	12 pF	120 pF	1.2 nF	12 nF	0.12 μF	1.2 μF	12 μF	120 μF	1200 μF
1.3 pF	13 pF	130 pF	1.3 nF	13 nF	0.13 μF	1.3 μF	13 μF	130 μF	1300 μF
1.5 pF	15 pF	150 pF	1.5 nF	15 nF	0.15 μF	1.5 μF	15 μF	150 μF	1500 μF
1.6 pF	16 pF	160 pF	1.6 nF	16 nF	0.16 μF	1.6 μF	16 μF	160 μF	1600 μF
1.8 pF	18 pF	180 pF	1.8 nF	18 nF	0.18 μF	1.8 μF	18 μF	180 μF	1800 μF
2 pF	20 pF	200 pF	2 nF	20 nF	0.2 μF	2 μF	20 μF	200 μF	2000 μF
2.2 pF	22 pF	220 pF	2.2 nF	22 nF	0.22 μF	2.2 μF	22 μF	220 μF	2200 μF
2.4 pF	24 pF	240 pF	2.4 nF	24 nF	0.24 μF	2.4 μF	24 μF	240 μF	2400 μF
2.7 pF	27 pF	270 pF	2.7 nF	27 nF	0.27 μF	2.7 μF	27 μF	270 μF	2700 μF
3 pF	30 pF	300 pF	3 nF	30 nF	0.3 μF	3 μF	30 μF	300 μF	3000 μF
3.3 pF	33 pF	330 pF	3.3 nF	33 nF	0.33 μF	3.3 μF	33 μF	330 μF	3300 μF
3.6 pF	36 pF	360 pF	3.6 nF	36 nF	0.36 μF	3.6 μF	36 μF	360 μF	3600 μF
3.9 pF	39 pF	390 pF	3.9 nF	39 nF	0.39 μF	3.9 μF	39 μF	390 μF	3900 μF
4.3 pF	43 pF	430 pF	4.3 nF	43 nF	0.43 μF	4.3 μF	43 μF	430 μF	4300 μF
4.7 pF	47 pF	470 pF	4.7 nF	47 nF	0.47 μF	4.7 μF	47 μF	470 μF	4700 μF
5.1 pF	51 pF	510 pF	5.1 nF	51 nF	0.51 μF	5.1 μF	51 μF	510 μF	5100 μF
5.6 pF	56 pF	560 pF	5.6 nF	56 nF	0.56 μF	5.6 μF	56 μF	560 μF	5600 μF
6.2 pF	62 pF	620 pF	6.2 nF	62 nF	0.62 μF	6.2 μF	62 μF	620 μF	6200 μF
6.8 pF	68 pF	680 pF	6.8 nF	68 nF	0.68 μF	6.8 µF	68 μF	680 μF	6800 μF
7.5 pF	75 pF	750 pF	7.5 nF	75 nF	0.75 μF	7.5 μF	75 μF	750 μF	7500 μF
8.2 pF	82 pF	820 pF	8.2 nF	82 nF	0.82 μF	8.2 μF	82 μF	820 μF	8200 μF
9.1 pF	91 pF	910 pF	9.1 nF	91 nF	0.91 μF	9.1 μF	91 μF	910 μF	9100 μF

10 = 100 = 1 = 10 = 0.1 ... 1 ... 10 ... 100 ... 1000 ...

$$C_1 = C_2$$

$$R_1 = R_2$$

$$R_3 = 2R_4$$

$$C_1 = C_2 = \frac{1}{2\pi R_1 f_{test}}$$

Choose real capacitor

$$f_{0_calculated} = \frac{1}{2\pi R_1 C_{1_real}}$$

$$=\frac{1}{2\pi R_1 C_{1_real}}$$

ITMO

Gueral Videlgem vitor 479.28767 μ 5 Vert 8.85298416V Videlgem vitor 569.299812 Vert 8.85298416V VIDElgem vitor

$$f_{0_calculated} = \frac{1}{2\pi\sqrt{R_1R_2C_1C_2}} = \frac{1}{2\pi*110*10^{-12}*130*10^3} = 11,129 \text{kHz}$$

Real operational amplifier

Ideal operational amplifier

https://forms.yandex.com/cloud/637312472530c27b0ef20287/

https://clck.ru/32hC3U

1st deadline: 04.11.2024 10:00 (GMT +8)

Thanks for your attention!