

Ciência dos Materiais A

Departamento de Ciência dos Materiais

Margarida Lima (mmal@fct.unl.pt), Rui Borges (rcb@fct.unl.pt);

Carmo Lança (mcl@fct.unl.pt)

Departamento de Química

Ana Rita Duarte (ard08968@unl.pt)

FACULDADE DE CIÊNCIAS E TECNOLOGIA

UNIVERSIDADE NOVA DE LISBOA

Ano letivo de 2023-2024

- 4 Considere uma estrutura cúbica simples:
- a) Desenhe os planos com os seguintes índices de Miller i) (001), ii) (110), iii) (111)
- b) Sobre cada um dos planos anteriores desenhe, respetivamente, as direções: i)[210],
- ii) $[\bar{1}11]$ e iii) $[10\bar{1}]$

Resolução:

4 – a) Desenhe os planos com os seguintes índices de Miller i) (001), ii) (110), iii) (111) b)Sobre cada um dos planos anteriores desenhe, respetivamente, as direções: i)[210], ii) $[\bar{1}11]$ e iii) $[10\bar{1}]$

Resolução:

a direção perpendicular ao plano possui os mesmos índices de Miller

5 – Quantos átomos por mm² existem nos planos (100) e (111) do chumbo?

Resolução:

O Pb possui estrutura Cúbica de Faces Centradas (CFC) e o parâmetro de rede é $a_{Pb} = 4,95 \text{Å}$

NOVA SCHOOL OF SCIENCE & TECHNOLOGY

$$\text{Á}rea = a^2 = 4,95^2 \text{ Å}^2 = 24,5 \text{ Å}^2$$

$$= 24,5x10^{-14}mm^2$$

n°. de átomos no plano =
$$4x\frac{1}{4}+1=2$$

átomos/mm² =
$$\frac{2}{24,5x10^{-14}}$$
 = 8,16 x 10¹² átom/ mm 2

1 Å =
$$10^{-10}$$
 m
1 Å = 10^{-8} cm
1 Å = 10^{-7} mm

$$a^2 + a^2 = d_f^2$$

$$2a^2 = d_f^2$$

$$d_f = \sqrt{2}a$$

NOVA SCHOOL OF SCIENCE & TECHNOLOGY

Área do plano = Área do triângulo

Altura do triângulo

$$\left(\frac{\sqrt{2}}{2}a\right)^2 + h^2 = \left(\sqrt{2}a\right)^2$$

$$\frac{2a^2}{4} + h^2 = 2a^2$$

$$h^2 = 2a^2 - \frac{2a^2}{4} = \frac{8a^2}{4} - \frac{2a^2}{4} = \frac{3}{2}a_1^2$$

Área do plano
$$=$$
 $\frac{base\ x\ altura}{2} = \sqrt{2}a\ x\ \sqrt{\frac{3}{2}}a\ x\ \frac{1}{2} = \frac{\sqrt{3}}{2}a^2 = 4,95^2\ x\ \frac{\sqrt{3}}{2} = 21.2\ \text{Å}^2$

$$= 21,2x10^{-14}mm^2$$

n°. de átomos no plano =
$$3x\frac{1}{2} + 3x\frac{1}{6} = 2$$

átomos/mm² =
$$\frac{2}{21,2x10^{-14}}$$
 = 9,43 $x10^{12}$ átom/ mm^2

NOVA SCHOOL OF SCIENCE & TECHNOLOGY

6 – O cobre tem uma estrutura CFC e um raio atómico de 1,278 Å. Quantas camadas de planos {100} existem ao longo da espessura de uma película de 1 μm de espessura; Suponha que os planos (001) são paralelos às superfícies superior e inferior da película.

Resolução:

Quantas vezes **a** cabe em 1 µm?

$$a = 2\sqrt{2}R$$

$$a = 2\sqrt{2}x$$
1,278 = 3,615 Å

$$1 \mu m = 10^{-6} m$$

$$1 \text{ Å} = 10^{-10} \text{ m}$$

$$\frac{10^{-6}}{3.615 \times 10^{-10}} = \mathbf{2766}$$

- 7 Sabendo que os critérios para determinar a existência de difração por parte de uma família de planos são na estrutura:
 - cúbica simples (CS): todos os índices possíveis
 - cúbica de corpo centrado (CCC): soma dos índices par
- cúbica de faces centradas (CFC): índices todos pares ou todos ímpares assinale abaixo nas colunas correspondentes as reflexões possíveis para cada caso.

Resolução:

$$N = h^2 + k^2 + l^2$$

N	h	k	I	CS	CFC	CCC
1	1	0	0	X		
2	1	1	0	X		X
3	1	1	1	Х	Х	
4	2	0	0	Х	X	X
5	2	1	0	X		
6	2	1	1	X		X
8	2	2	0	X	X	X
9	2	2	1	X		
9	3	0	0	X		
10	3	1	0	X		X
11	3	1	1	Х	Х	
12	2	2	2	Х	Х	X

cúbica simples (CS): todos os índices possíveis

cúbica de faces centradas (CFC): índices todos pares ou todos ímpares

cúbica de corpo centrado (CCC): soma dos índices par

8 – Os elementos do Grupo IV-A da tabela periódica apresentam uma estrutura cristalina designada de diamante em que as reflexões ocorrem nos planos nos quais os índices (hkl) são: i) todos ímpares ou ii) todos pares e h+k+l = 4n, i.e., a soma é um múltiplo de 4. Determine as posições 20 em que deverá obter os primeiros 12 picos de difração do Si $(a_{silício} = 5,4309 \text{ Å})$, utilizando o comprimento de onda da radiação $K\alpha_{Mo} = 0,71073 \text{ Å}$ e $K\alpha_{Cu} = 1,5406 \text{ Å}$.

Resolução:

$$n\lambda = 2d_{hkl}Sen\theta$$

para a primeira ordem de reflexão n = 1

para o sistema cúbico

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

$$sen\theta = \frac{\lambda}{2d} = \frac{\lambda\sqrt{N}}{2a}$$
 \implies $\theta = arc sen\left(\frac{\lambda\sqrt{N}}{2a}\right)$ \implies $2\theta = 2arc sen\left(\frac{\lambda\sqrt{N}}{2a}\right)$

- todos ímpares

- todos pares e h+k+l = 4n

$$2\theta = 2arc sen\left(\frac{\lambda\sqrt{N}}{2a}\right)$$

A variação do λ da radiação utilizada origina uma variação do espectro, i.e., do número de picos que surgem numa dada gama angular

N	h	k	I	2θ	2θ Κα _{Cu}
				$K\alpha_{Mo}$	
3	1	1	1	13,02	28,44
8	2	2	0	21,33	47,30
11	3	1	1	25,07	56,12
16	4	0	0	30,35	69,13
19	3	3	1	33,14	76,38
24	4	2	2	37,39	88,03
27	3	3	3	39,75	94,95
27	5	1	1	39,75	94,95
32	4	4	0	43,45	106,71
35	5	3	1	45,55	114,09
40	6	2	0	48,89	127,55
43	5	3	3	50,81	136,90

9 – a) Usando a lei de Bragg, calcule os ângulos de difração 2θ para os três primeiros picos do Fe- α (CCC) obtidos com uma ampola de cobre e com uma ampola de crómio. b) Compare os dados obtidos a partir destes cálculos com os valores do espectro do aço ferramenta H13.

Dados:
$$r_{Fe} = 1.24 \text{ Å}$$
; $\lambda K \alpha_{Cu} = 1.54 \text{ Å}$; $\lambda K \alpha_{Cr} = 2.29 \text{ Å}$

Resolução:

CCC

soma dos índices h, k, l, par

N	h	k	I
2	1	1	0
4	2	0	0
6	2	1	1

$$\lambda = 2d_{hkl}Sen\theta$$
 $d_{hkl} = \frac{a}{\sqrt{N}}$

$$\theta = arc sen\left(\frac{\lambda\sqrt{N}}{2a}\right)$$
 $\square > 2\theta = 2arc sen\left(\frac{\lambda\sqrt{N}}{2a}\right)$

$$a = \frac{4}{\sqrt{3}}r$$
 $= \frac{4}{\sqrt{3}} \times 1,24 \text{ Å} = 2,864 \text{ Å}$

Dados:
$$r_{Fe} = 1,24 \text{ Å}$$
; $\lambda K \alpha_{Cu} = 1,54 \text{ Å}$; $\lambda K \alpha_{Cr} = 2,29 \text{ Å}$

$$2\theta = 2arc sen\left(\frac{\lambda\sqrt{N}}{2a}\right)$$

N	h	k	I	2θ Kα _{Cu}	2θ Kα _{Cr}
2	1	1	0	44,71	68,89
4	2	0	0	65,08	106,25
6	2	1	1	82,42	156,88

Os picos dos espectros do aço-ferramenta desviam-se ligeiramente dos valores calculados, como resultado de uma variação do parâmetro de rede **a** devido ao material analisado não se tratar de Fe puro e conter outros elementos como, por exemplo, o C em posições intersticiais e o Cr em posições substitucionais.

10 – Considere uma estrutura cúbica simples. Liste por ordem crescente de densidade atómica os seguintes planos: {100}, {110}, {210}, {111}, {211}, {311}, {221}

Resolução:

Quanto maior for N=h²+k²+l² menor é a densidade atómica e menor o espaçamento entre planos

$$d = \frac{a}{\sqrt{1^2 + 0 + 0}} = a$$

$$d = \frac{a}{\sqrt{1^2 + 1^2 + 0}} = \frac{a}{\sqrt{2}}$$

$$d = \frac{a}{\sqrt{1^2 + 0 + 0}} = a \qquad d = \frac{a}{\sqrt{1^2 + 1^2 + 0}} = \frac{a}{\sqrt{2}} \qquad d = \frac{a}{\sqrt{1^2 + 1^2 + 1^2}} = \frac{a}{\sqrt{3}}$$

Os planos são ordenados da seguinte forma : {100}, {110}, {111}, {210}, {211}, {221}, {311}

- 11 Considere os seguintes ângulos de difração para os primeiros três picos do padrão de difração de raios X de um metal. Utilizou-se radiação monocromática que possui um comprimento de onda de 0,1542 nm.
- a) Determinar se esta estrutura cristalina é CFC ou CCC, ou nenhuma delas, justificando a sua escolha.

Resolução:

Ordem dos picos	Ângulo de difração	Θ	d _{hkl}
	(2θ)	(nm)	(nm)
1º	38,6	19,3	0,233
2º	55,7	27,85	0,165
3º	70,0	35,0	0,134

i) determinar dhkl para cada uma das reflexões

$$n\lambda = 2d_{hkl}Sen\theta$$

$$d_{hkl} = \frac{\lambda}{2Sen\theta}$$

para a primeira ordem de reflexão n=1

SCIENCE & TECHNOLOGY

ii) utilizar o dhkl para calcular o parâmetro de rede para estas primeiras reflexões

$$d_{hkl} = \frac{a}{\sqrt{h^2 + k^2 + l^2}} \qquad \frac{1}{d_{hkl}^2} = \frac{h^2 + k^2 + l^2}{a^2}$$

$$\frac{1}{d_{hkl}^2} = \frac{h^2 + k^2 + l^2}{a^2}$$

o parâmetro de rede a é constante

se
$$d_{hkl}^2 \uparrow h^2 + k^2 + l^2 \downarrow$$

cúbica de faces centradas (CFC): índices h, k, l, todos pares ou todos ímpares

os primeiros três picos são: (111), (200) e (220)

$$a_1 = d_1\sqrt{1^2 + 1^2 + 1^2} = 0,233 \ x \sqrt{3} = 0,403 \ nm$$

$$a_2 = d_2\sqrt{2^2 + 0^2 + 0^2} = 0,165 \ x \ 2 = 0,33 \ nm$$

$$a_3 = d_3\sqrt{2^2 + 2^2 + 0^2} = 0.134 \, x \, \sqrt{8} = 0.38 \, nm$$

$$a_1 \neq a_2 \neq a_3$$

o metal não tem estrutura CFC

cúbica de corpo centrado (CCC): soma dos índices h, k, l, par

os primeiros três picos são: (110), (200) e (211)

$$a_1 = d_1 \sqrt{1^2 + 1^2 + 0^2} = 0,233 \, x \, \sqrt{2} = 0,3295 \, nm$$

$$a_2 = d_2\sqrt{2^2 + 0^2 + 0^2} = 0,165 \ x \ 2 = 0,33 \ nm$$

$$a_3 = d_3\sqrt{2^2 + 1^2 + 0^2} = 0.134 \, x \, \sqrt{6} = 0.329 \, nm$$

 $a_1 \approx a_2 \approx a_3$

o metal tem estrutura CCC

b) com base na seguinte tabela identifique qual dos metais possui esse padrão de difração

Resolução:

ou

N A - + - I	Faturitius.	Dais at fusion
Metal	Estrutura	Raio atómico
	cristalina	(nm)
Alumínio	CFC	0,1431
Cadmio	HC	0,1490
Crómio	CCC	0,1249
Cobalto	HC	0,1253
Cobre	CFC	0,1278
Ouro	CFC	0,1442
Ferro-α	CCC	0,1241
Chumbo	CFC	0,1750
Molibdénio	CCC	0,1363
Níquel	CFC	0,1246
Platina	CFC	0,1387
Prata	CFC	0,1445
Tântalo)	CCC	0,1430
Titanıo-α	HC	0,1445
Tungsténio	CCC	0,1371
Zinco	HC	0,1332

$$r = \frac{\sqrt{3}}{4}x \ 0.3295 = 0.1428 \ \text{nm}$$