Temporal-Difference Learning

- Combination of learning from experience without a model (like Monte Carlo methods) and bootstrapping (like DP methods)
- Based on GPI and differences between DP, TD and MC are in their approaches to the prediction problem (value function evaluation).

TD prediction

 While MC methods must wait until the end of the episode to calculate return for the value function update...

$$V(S_t) \leftarrow V(S_t) + \alpha \Big[G_t - V(S_t) \Big],$$

 TD methods need to wait only until the next time step, and the update for TD(0) or one-step TD is

$$V(S_t) \leftarrow V(S_t) + \alpha \left[R_{t+1} + \gamma V(S_{t+1}) - V(S_t) \right]$$

Bootstrapping: updating from an existing estimate

Tabular TD(0) for estimating v_{π}

```
Input: the policy \pi to be evaluated Algorithm parameter: step size \alpha \in (0,1] Initialize V(s), for all s \in S^+, arbitrarily except that V(terminal) = 0 Loop for each episode:

Initialize S
Loop for each step of episode:
```

 $A \leftarrow \text{action given by } \pi \text{ for } S$

Take action A, observe R, S'

$$V(S) \leftarrow V(S) + \alpha \left[R + \gamma V(S') - V(S) \right]$$

$$S \leftarrow S'$$

Driving Home example

Advantages of TD Prediction Methods

- Implemented in an online, fully incremental fashion so suitable for very long episodes or continuous tasks
- For any fixed policy TD(0) prediction converges to the correct value function (with decreasing step-size)
- In practice TD methods converge faster than MC method (not proved)

Random walk

Optimality of TD(0)

- Batch updating: the value function is updated only once per batch, by the sum of all the increments in the batch
- TD(0) and MC methods both converge deterministically but to different answers

Example:

A, 0, B, 0	B, 1
B, 1	B, 1
B, 1	B, 1
B, 1	B,0

	V(A)	V(B)
MC (minimum MSE)	0	3/4
TD (certainty-equivalence - maximum likelihood estimate)	3/4	3/4

Sarsa: On-policy TD Control

 GPI with TD prediction considering transitions from state—action pairs to state—action pairs (with the corresponding reward)

Sarsa

Learning an action value function with the following update rule

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t) \right].$$

• Policy improvement: ε -greedy or ε -soft

Sarsa (on-policy TD control) for estimating $Q \approx q_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$ Initialize Q(s,a), for all $s \in \mathbb{S}^+$, $a \in \mathcal{A}(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$ Loop for each episode: Initialize SChoose A from S using policy derived from Q (e.g., ε -greedy) Loop for each step of episode:

Take action A, observe R, S'

Choose A' from S' using policy derived from Q (e.g., ε -greedy)

$$Q(S,A) \leftarrow Q(S,A) + \alpha \left[R + \gamma Q(S',A') - Q(S,A) \right]$$

$$S \leftarrow S'; A \leftarrow A';$$

Q-learning: Off-policy TD Control

 Learned action-value function directly approximates the optimal action-value function, independent of the policy being followed.

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \Big[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \Big].$$

Convergence if all pairs continue to be updated and step-size decay

Q-learning (off-policy TD control) for estimating $\pi \approx \pi_*$

Algorithm parameters: step size $\alpha \in (0, 1]$, small $\varepsilon > 0$

Initialize Q(s, a), for all $s \in S^+$, $a \in A(s)$, arbitrarily except that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using policy derived from Q (e.g., ε -greedy)

Take action A, observe R, S'

$$Q(S, A) \leftarrow Q(S, A) + \alpha \left[R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]$$

 $S \leftarrow S'$

Expected Sarsa

 Like Q-learning except that instead of the maximum over next state action pairs it uses the expected value

$$Q(S_{t}, A_{t}) \leftarrow Q(S_{t}, A_{t}) + \alpha \left[R_{t+1} + \gamma \mathbb{E}_{\pi} [Q(S_{t+1}, A_{t+1}) \mid S_{t+1}] - Q(S_{t}, A_{t}) \right]$$

$$\leftarrow Q(S_{t}, A_{t}) + \alpha \left[R_{t+1} + \gamma \sum_{a} \pi(a \mid S_{t+1}) Q(S_{t+1}, a) - Q(S_{t}, A_{t}) \right],$$

• Eliminates the variance of random action selection A_{t+1} of Sarsa

Cliff walking example

• ε -greedy with $\varepsilon=0.1$

Maximization Bias and Double Learning

- Maximization (Q-learning target or ε -greedy action selection) leads to positive bias
- Double learning: 2 Qfunctions where Q_1 determines the maximizing action and Q_2 estimates its value (target)

$$Q_1(S_t, A_t) \leftarrow Q_1(S_t, A_t) + \alpha \left[R_{t+1} + \gamma Q_2(S_{t+1}, \underset{a}{\operatorname{argmax}} Q_1(S_{t+1}, a)) - Q_1(S_t, A_t) \right].$$

Double Q-learning, for estimating $Q_1 \approx Q_2 \approx q_*$

Algorithm parameters: step size $\alpha \in (0,1]$, small $\varepsilon > 0$

Initialize $Q_1(s, a)$ and $Q_2(s, a)$, for all $s \in S^+, a \in A(s)$, such that $Q(terminal, \cdot) = 0$

Loop for each episode:

Initialize S

Loop for each step of episode:

Choose A from S using the policy ε -greedy in $Q_1 + Q_2$

Take action A, observe R, S'

With 0.5 probability:

$$Q_1(S, A) \leftarrow Q_1(S, A) + \alpha \left(R + \gamma Q_2(S', \operatorname{argmax}_a Q_1(S', a)) - Q_1(S, A)\right)$$

else:

$$Q_2(S, A) \leftarrow Q_2(S, A) + \alpha \Big(R + \gamma Q_1 \big(S', \operatorname{argmax}_a Q_2(S', a) \big) - Q_2(S, A) \Big)$$

 $S \leftarrow S'$

Summary

Algorithm	Sarsa	Q-learning	Expected sarsa
Target	$R_{t+1} + \gamma Q(S_{t+1}, A_{t+1})$	$R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a)$	$R_{t+1} + \gamma \sum_{a} \pi(a S_{t+1})Q(S_{t+1}, a)$
Backup diagram			