Rule-based Knowledge Graph Completion with Canonical Models Zināšanu grafu pabeigšana ar noteikumiem balstītiem kanoniskiem modeļiem

Ronalds Rundāns 2024

Izmantotā literatūra

Rule-based Knowledge Graph Completion with Canonical Models

Simon Ott*
Bosch Center for Artificial
Intelligence
Renningen, Germany
Simon.Ott@de.bosch.com

Mohamed H. Gad-Elrab

Bosch Center for Artificial

Intelligence

Renningen, Germany

Mohamed.Gad-Elrab@de.bosch.com

Patrick Betz
University Mannheim
Mannheim, Germany
patrick@informatik.unimannheim.de

Christian Meilicke University Mannheim Mannheim, Germany christian@informatik.unimannheim.de Daria Stepanova
Bosch Center for Artificial
Intelligence
Renningen, Germany
Daria.Stepanova@de.bosch.com

Heiner Stuckenschmidt University Mannheim Mannheim, Germany heiner@informatik.unimannheim.de

Zināšanu grafi

• Struktūra, kas parāda zināšanas par kādu domēnu.

- Freebase
- DBPedia
- Google Knowledge Graph
- Microsoft Satori

Bieži nepilnīgi

Miljardiem elementu un saišu

Knowledge graph completion (KGC) or link prediction

Risanāšanas metodes

- Deep Learning
- Ar noteikumiem bāzēta pieeja var izsekot katru minējumu līdz noteikumu ģenerēšanai un kādi fakti tos ietekmēja.

Grafa piemērs

Figure 1: Example KG G where solid edges represent known relations and dotted edges represent unknown relations.

Problēma

$$\mathcal{G} \subset \{p(s,o) \mid p \in \mathcal{P}, s,o \in C\}$$

- C ir konstanšu kopa (a.k.a. entities)
- P ir bināru predikātu kopa (a.k.a. relations)
- s ir subjekts
- o ir objekts
- p (s, o) ("triple") fakts

Kāda ir Toma pilsonība?

Vaicājums citizen(tom,?)

- citizen(tom,germany) vai citizen(tom, switzerland)?
- Šiem vaicājumiem piešķirs varbūtību skaitļus, lai tos sarindotu
- Automatizēta procedūra trūkstošo KG faktu konstatēšanai

Pabeigšanas vaicājums

- Pabeigšanas vaicājumu parasti iegūst no testa "triple" kas ir viens no testa kopas "tripl - iem".
- Katrs "triple" sastāv no diviem vaicājumiem, pa vienam katram virzienam.

Testa kopa

- Ja vaicājums citizen(tom,germany) ir testa kopa, tad jāatbild uz sekojošiem vaicājumiem:
 - citizen(tom,?) un citizen(?,germany).
- Attiecīgajam modelim ir jāprognozē un jāvērtē fakti tādi, ka lielāka vērtība dažām prognozēm nozīmē, ka tā ir ticamāka nekā prognoze ar mazāku vērtību.

Kas ir uz noteikumiem balstītas pieejas?

 Noteikumu bāzes pieejas izpilde ir būtiski atkarīga no noteikumu apkopošanas(agregācijas) problēmas risinājuma, kas attiecas uz punktu skaita aprēķināšanu prognoze, ko ģenerē vairākas kārtulas.

Kas ir uz noteikumiem balstītas pieejas?

- Uz noteikumiem balstītās KGC metodes skaidri atspoguļo pareizību, kas atrodama KG.
- Šos attēlojumus sauc par kārtulām, loģikas formulām vai klauzulām.
- Tālāk ir parādīti daži noteikumi, ko var iegūt no piemēra KG.

Noteikumi no Example KG

$$r_1: citizen(X, Y) \leftarrow born(X, Y)$$
 0.80[4/5]
 $r_2: citizen(X, Y) \leftarrow works(X, A), city(A, Y)$ 0.60[3/5]
 $r_3: citizen(X, Y) \leftarrow works(X, A), capital(A, Y)$ 0.60[3/5]
 $r_4: citizen(X, Y) \leftarrow married(X, A), citizen(A, Y)$ 0.50[1/2]

Trīs noteikumu tipi

$$h(X, Y) \leftarrow b_1(X, A_1), b_2(A_1, A_2), \dots, b_n(A_n, Y)$$

 $h(X, c_h) \leftarrow b(X, c_d)$

- Lielie burti mainīgie. $h(X, c_h) \leftarrow b(X, A)$
- mazie burti konstantes, h(. . .) noteikuma galvas (head) atoms ar mērķa relāciju h
- b1 (...) ... bn (...) ir noteikuma ķermeņi(body) atomi.

Noteikumi no Example KG

$$r_1: citizen(X, Y) \leftarrow born(X, Y)$$
 0.80[4/5]
 $r_2: citizen(X, Y) \leftarrow works(X, A), city(A, Y)$ 0.60[3/5]
 $r_3: citizen(X, Y) \leftarrow works(X, A), capital(A, Y)$ 0.60[3/5]
 $r_4: citizen(X, Y) \leftarrow married(X, A), citizen(A, Y)$ 0.50[1/2]

"Triples" no vaicājuma citizen(tom,?) ar noteikumiem no r1 līdz r4

$$G \cup r_1 \models citizen(tom, germany)$$

 $G \cup r_2 \models citizen(tom, switzerland)$
 $G \cup r_3 \models citizen(tom, switzerland), citizen(tom, austria)$
 $G \cup r_4 \models citizen(tom, austria)$

Ko piedāvā šajā rakstā?

 Ierosina uzraudzītu pieeju, lai uzzinātu pārsvērto ticamības vērtību katram noteikumam, lai iegūtu optimālu skaidrojumu par apmācības kopumu, ņemot vērā konkrētu agregācijas funkciju.

Max+ agregācija

- Sakārto prognozes leksikogrāfiskā secībā.
- Rezultāta pamatā ir noteikumu maksimums, kas deva prognozi.
- Ja šī vērtība ir identiska divām prognozēm, tad rekursīvi kārtojot prognozes tālāk, izmantojot nākamos augstākos noteikumus, kamēr nav izšķiramas visas prognozes līdz vairākiem top k skaitā vai līdz visu noteikumu piemērošanai.

Noisy-or agregācija

- Modelis, lai raksturotu attiecības starp mainīgajiem Baijesas nosacītās varbūtības tabulā, un apraksta varbūtību, ka vismaz viens noteikums, kas paredzēja saiti, paredzēja to pareizi.
- $R_t \subseteq R$ ir prognozētie noteikumi no "triple" t, kam piešķir:

$$score(t) = 1 - \prod_{r \in R_t} (1 - conf(r))$$

Noisy-or

- Mainīgie lielumi, kas parādās varbūtības tabulā, mūsu darba kontekstā atbilst apgūtajiem noteikumiem.
- Kārtulām saistītie svari nav mācīti, tādēļ bieži sliktāki rezultāti nekā Max+.

Noteikumu r uzticamība

- Noteikums r , tā uzticamība (confidence) ir:
 conf (r) = T P/(T P + F P + lc), kur
- FP-False positives
- TP -true positives
- maza konstante lc > 0
- Relatīvs skaitlis patiesās vērtības no visiem likuma minējumiem.

Melns = pareizi, sarkana = nepareizi

Table 1: Rankings generated using Max+ and Noisy-or based on the rules r_1 to r_4 .

	Max+	Noisy-or			
1	germany (0.8)	switzerland (0.84)			
2	switzerland (0.6,0.6)	germany (0.8)			
3	austria (0.6,0.5)	austria (0.8)			

Rangu rezultāti

- Switzerland ir uzpūsta vērtība no r2 un r3
- Tā kā nav zināms, ka Vīne ir pilsēta Austrijā, r2 neprognozē pilsoni (Tom, Austria), kas neļauj Max+ ģenerēt pareizu vērtību.

Metode

• Šajā rakstā autori mēģina atrisināt noteikumu ticamības apkopošanas problēmu, iegūstot modificētu ticamības punktu variantu ar Noisy-or modeli.

Papildus noteikumi

```
r_5: born(X, Y) \leftarrow married(X, A), born(A, Y) \quad 0.625[10/16]
```

$$r_6: born(X, usa) \leftarrow gender(X, male)$$
 0.5[8/16]

$$r_7: born(X, norway) \leftarrow works(X, oslo)$$
 0.4[4/10]

Melns=eksistē, sarkans=neeksistē

Figure 2: Predictions made by three rules r_5 , r_6 , and r_7 on example dataset D'. Black dots are predictions that exist in the KG, red dots are predictions that do not exist in the KG.

Table 2: Final values for a candidate to be true for different combinations of predicting rules and different aggregation strategies. NO and LR stand for Noisy-Or and Logistic Regression respectively.

Rules		Data	w. Confidence		Learned Weights			
r_5	r_6	r_7	Optimal	Max+	NO	LR	LR+	NO
			-	0.000	0.000	0.100	0.100	0.000
		×	0.400	0.400	0.400	0.400	0.400	0.400
	×		0.250	0.500	0.500	0.250	0.250	0.279
	×	×	-	0.500	0.700	0.667	0.667	0.567
×			0.500	0.625	0.625	0.500	0.500	0.557
×		×	-	0.625	0.775	0.857	0.857	0.734
×	×		0.750	0.625	0.813	0.750	0.750	0.680
×	×	×	-	0.625	0.888	0.947	0.947	0.808
В	BCE-Loss		0.272	0.292	0.289	0.272	0.272	0.273

Noteikumu punktu interpretējamība

film genre (the_love_guru, ?) => romantic_comedy

```
genre(X, romantic\_comedy) \leftarrow genre(X, romance\_film) 1.09

genre(X, romantic\_comedy) \leftarrow netflix\_genre(comedy, X) 1.08

genre(X, romantic\_comedy) \leftarrow genre(X, comedy) 0.99

genre(X, Y) \leftarrow distributor(A, X), nominated(A, B), genre(B, Y) 0.05

genre(X, Y) \leftarrow composer(X, A), nominated(A, B), genre(B, Y) 0.04
```

Secinājumi

- Lai uzlabotu noteikumu apkopošanas kvalitāti, apskatījām pieeju noteikumu uzticamības iegūšanu ar uzraudzību no datiem ar loģistisko regresiju.
- Ierosinātā metode parādīja labākus vai salīdzināmus rezultātus ar pašreizējiem neironu modeļiem, ja tos testēja pēc ievērojamiem etaloniem, lai gan izmantoja vienkāršākus modeļus.
- Svarīgi, ka ierosinātās prognožu vērtēšanas metodes ir elastīgas, jo tās var izmantot papildus ikvienai noteikumu apguves sistēmai.

