Point Estimation

Definition

A point estimate of some population parameter θ is a single numerical value $\hat{\theta}$ of a statistic $\hat{\Theta}$. The statistic $\hat{\Theta}$ is called the point estimator.

Estimation problems occur frequently in engineering. We often need to estimate

- The mean μ of a single population
- The variance σ^2 (or standard deviation σ) of a single population
- The proportion p of items in a population that belong to a class of interest
- The difference in means of two populations, $\mu_1 \mu_2$
- The difference in two population proportions, $p_1 p_2$

Reasonable point estimates of these parameters are as follows:

- For μ , the estimate is $\hat{\mu} = \overline{x}$, the sample mean.
- For σ^2 , the estimate is $\hat{\sigma}^2 = s^2$, the sample variance.
- For p, the estimate is $\hat{p} = x/n$, the sample proportion, where x is the number of items in a random sample of size n that belong to the class of interest.
- For $\mu_1 \mu_2$, the estimate is $\hat{\mu}_1 \hat{\mu}_2 = \overline{x}_1 \overline{x}_2$, the difference between the sample means of two independent random samples.
- For $p_1 p_2$, the estimate is $\hat{p}_1 \hat{p}_2$, the difference between two sample proportions computed from two independent random samples.

A number of important properties are required of good point estimators. Two of the most important of these properties are the following:

- 1. The point estimator should be **unbiased**. That is, the expected value of the point estimator should be the parameter being estimated.
- 2. The point estimator should have minimum variance. Any point estimator is a random variable. Thus, a minimum variance point estimator should have a variance that is smaller than the variance of any other point estimator of that parameter.

The sample mean and variance \bar{x} and s^2 are unbiased estimators of the population mean and variance μ and σ^2 , respectively. That is,

$$E(\overline{x}) = \mu$$
 and $E(s^2) = \sigma^2$

where the operator E is simply the expected value operator, a shorthand way of writing the process of finding the mean of a random variable. (See the supplemental material for this chapter for more information about mathematical expectation.)

Unbiased Estimators

Definition

The point estimator $\hat{\Theta}$ is an unbiased estimator for the parameter θ if

$$E(\hat{\Theta}) = \theta$$

(7-5)

If the estimator is not unbiased, then the difference

$$E(\hat{\Theta}) - \theta$$

(7-6)

is called the bias of the estimator $\hat{\Theta}$.

Example

Suppose that X is a random variable with mean μ and variance σ^2 . Let X_1, X_2, \dots, X_n be a random sample of size n from the population represented by X. Show that the sample mean \overline{X} and sample variance S^2 are unbiased estimators of μ and σ^2 , respectively.

First consider the sample mean. In Equation 5.40a in Chapter 5, we showed that $E(\overline{X}) = \mu$. Therefore, the sample mean \overline{X} is an unbiased estimator of the population mean μ .

Now consider the sample variance. We have

$$E(S^{2}) = E\left[\frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}\right] = \frac{1}{n-1} E\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

$$= \frac{1}{n-1} E\sum_{i=1}^{n} (X_{i}^{2} + \overline{X}^{2} - 2\overline{X}X_{i}) = \frac{1}{n-1} E\left(\sum_{i=1}^{n} X_{i}^{2} - n\overline{X}^{2}\right)$$

$$= \frac{1}{n-1} \left[\sum_{i=1}^{n} E(X_{i}^{2}) - nE(\overline{X}^{2})\right]$$

Example (continued)

The last equality follows from Equation 5-37 in Chapter 5. However, since $E(X_i^2) = \mu^2 + \sigma^2$ and $E(\overline{X}^2) = \mu^2 + \sigma^2/n$, we have

$$E(S^{2}) = \frac{1}{n-1} \left[\sum_{i=1}^{n} (\mu^{2} + \sigma^{2}) - n(\mu^{2} + \sigma^{2}/n) \right]$$
$$= \frac{1}{n-1} (n\mu^{2} + n\sigma^{2} - n\mu^{2} - \sigma^{2})$$
$$= \sigma^{2}$$

Therefore, the sample variance S^2 is an unbiased estimator of the population variance σ^2 .

The sample standard deviation s is *not* an unbiased estimator of the population standard deviation σ . It can be shown that

$$E(s) = \left(\frac{2}{n-1}\right)^{1/2} \frac{\Gamma(n/2)}{\Gamma[(n-1)/2]} \sigma$$
$$= c_4 \sigma \tag{3-17}$$

Appendix Table VI gives values of c_4 for sample sizes $2 \le n \le 25$. We can obtain an unbiased estimate of the standard deviation from

$$\hat{\sigma} = \frac{s}{c_4} \tag{3-18}$$

•As n gets large the bias goes to zero