Database Management Systems

Lecture

Contents

- Relational model concepts
- Constraints
- Operations

- What is Cartesian Product of two sets A={a1, a2}, B={b1, b2, b3}?
 - A set of all possible ordered pairs (ai, bi) such that ai is from set A and bi is from set B

```
    {
        (a1, b1), (a1, b2), (a1, b3), (a2, b1), (a2, b2), (a2, b3), (a3, b1),
        (a3, b2), (a3, b3)
        }
```


- Let's say A = {"Hassan", "Ali", "Basit"}, B = {"Lahore, Karachi"}
- What is the Cartesian Product C of A and B (C = A X B)?

```
{
(Hassan, Lahore), (Hassan, Karachi), (Ali, Lahore), (Ali, Karachi),
(Basit, Lahore), (Basit, Karachi)
}
```

What if we write these pairs in a neat way?

- Let's say A = {"Hassan", "Ali", "Basit"}, B = {"Lahore, Karachi"}
- What is the Cartesian Product C of A and B (C = A X B)?

```
(Hassan, Lahore),
(Hassan, Karachi),
(Ali, Lahore),
(Ali, Karachi),
(Basit, Lahore),
(Basit, Karachi)
```


- If we say that set A is domain of an attribute Name, and set B is the domain of attribute City, then what does their Cartesian product represent?
 - A relation! A set of all possible tuples!
 - R ⊂ Dom(Name) X Dom(City)
- If we have n attributes A1, A2, ..., An, and their domains are Dom (A1), Dom (A2), Dom (An), then a relation R is represented by
 - \circ R ⊂ Dom (A1) X Dom (A2) X ... X Dom (An)
- Any tuple r from the set R represents an instance of R
 - Denoted as r(R)

- Recall, a relation schema is description of a relation
 - R (A1, A2, ... An)
 - n is the degree of relation
- The schema for STUDENT relation could be:
 - STUDENT(Name, RegNo, DateOfBirth, Major, Address, CGPA)
- We can also specify the data type for each attribute
 - STUDENT(Name: String, RegNo: Integer, DateOfBirth: Date, Major:String, Address:String, CGPA:Real)

Name	Reg_No	Major	CGPA
Ahmed	112	CS	3.2
Bashir	134	SE	2.9
Jalal	125	Al	3.85
Nasir	137	SE	2.7

Domain constraints

- Values that can be accepted for a given attribute
- Generally include data type, format
 - Data type: String, Integer, Real Number, Date/Time, etc.
 - Format: (051)1234567, 0321-1234567, etc.

NOT NULL

- Specifies if an attribute can take an empty value
 - 'Phone' attribute may be left blank for a particular student if he/she doesn't have a phone
 - 'Address' attribute may be constrained to be NOT NULL each student must have an address where he/she may be contacted

Key constraint

- There cannot be duplicate values in the primary key of a relation
- Recall that a key attribute is the one which can be used to uniquely identify an entity, or a tuple, in a relation
- There may be more than one key attributes (also called candidate keys), but one such attribute is selected as the primary key
- Primary keys are highlighted by underlining them in the schema
- STUDENT (RegNo, Name, Address, CGPA)

Entity integrity constraint

No primary key can be NULL!

Referential integrity constraint

- We first need to define Foreign key
 - A key, or set of keys, that are used to link data between two relations
 - The are used to specify the relationship between two entity types
 - If the primary key of schema R1 is used in another relation R2, then it is called foreign key in R2
 - EMPLOYEE (EmpNo, Name, Address, DNo)
 - DEPT (Dno, Name, Location)
 - DNo is primary key of DEPT but it is foreign key in EMPLOYEE

Foreign key

 The foreign key in referencing relation is linked to primary key in referenced relation

EMPLOYEE

Emp No	Name	Address	Dep No

DEPT

Foreign key

Foreign key

Foreign key

Foreign key

Referential integrity constraint

 either each foreign key value must match a primary key value in referencing relation, or it must be NULL

EMPLOYEE

Emp No	Name	Address	Dep No
E_123	John	Street 1	D_23
E_238	Charles	Street 3	NULL
E_124	David	Street 2	D_21

DEPT

Dep No	Name	Location
D_21	Sales	Los Angeles
D_23	Production	San Francisco

Referential integrity constraint

 either each foreign key value must match a primary key value in referencing relation, or it must be NULL

EMPLOYEE

Emp No	Name	Address	Dep No
E_123	John	Street 1	D_23
E_238	Charles	Street 3	NULL
E_124	David	Street 2	D_24

DEPT

Dep No	Name	Location
D_21	Sales	Los Angeles
D_23	Production	San Francisco

Is this correct?

Referential integrity constraint

either each foreign key value must match a primary key value in referencing relation, or it must be NULL

EMPLOYEE

Emp No	Name	Address	Dep No
E_123	John	Street 1	D_23
E_238	Charles	Street 3	NULL
E_124	David	Street 2	D_24

DEPT

Dep No	Name	Location
D_21	Sales	Los Angeles
D_23	Production	San Francisco

No! This value must be present in the parent table!

Referential integrity constraint

 either each foreign key value must match a primary key value in referencing relation, or it must be NULL

EMPLOYEE

Emp No	Name	Address	Dep No
E_123	John	Street 1	D_23
E_238	Charles	Street 3	D_23
E_124	David	Street 2	D_21

DEPT

Dep No	Name	Location
D_21	Sales	Los Angeles
D_23	Production	San Francisco

Is this correct?

Referential integrity constraint

either each foreign key value must match a primary key value in referencing relation, or it must be NULL

EMPLOYEE

Emp No	Name	Address	Dep No
E_123	John	Street 1	D_23
E_238	Charles	Street 3	D_23
E_124	David	Street 2	D_21

DEPT

Dep No	Name	Location
D_21	Sales	Los Angeles
D_23	Production	San Francisco

Yes, we may have duplicate values in the foreign key!

Thanks a lot