

Instructor: Dr. Sunho Lim (Ph.D., Assistant Professor)

Lecture 08

sunho.lim@ttu.edu

Adapted partially from Data Structures and Algorithms in C++, Adam Drozdek, 4th Edition, Cengage Learning; and Algorithms and Data Structures, Douglas Wilhelm Harder, Mmath

CS2413: Data Structures, Fall 2021

1

Trees, Binary Trees, and Binary Search Trees

- Limitations of linked lists, stacks, and queues,
 - Linked lists:
 - linear in form and cannot reflect hierarchically organized data
 - Stacks and queues
 - one-dimensional structures and have limited expressiveness

Ŧ

- A new data structure, the tree,
 - two components, <u>nodes</u> and <u>arcs</u> (or <u>edges</u>)
 - the **root** at the top, and "grow" down
 - the *leaves* of the tree (also called *terminal nodes*)
 - at the bottom of the tree

CS2413: Data Structures, I

3

Trees, Binary Trees, and Binary Search Trees (cont.)

- Trees can be defined recursively,
 - A tree with no nodes or edges (an empty structure) is an empty tree
 - If we have a set $t_1 \cdots t_k$ of disjoint trees, the structure whose root has as its children the roots of $t_1 \cdots t_k$ is also a tree
 - Only structures generated by rules 1 and 2 are trees
- Every node in the tree must be accessible
 - from the root through a unique sequence of edges,
 - a path
- The number of edges in the path
 - path's length
- The length of the path to that node, plus I
 - a node's level

- The maximum level of a node in a tree: the tree's height
- An empty tree: height 0
- A tree of height I: a single node, which is both the tree's root and leaf
- The level of a node: must be between I and the tree's height

5

Trees, Binary Trees, and Binary Search Trees (cont.)

- The number of children of a given node?
 - can be arbitrary
- Using trees to improve the process of searching for elements??

- In order to find a particular element in a **list** of **n** elements,
 - examine all nodes, if the list is ordered
- If the elements of a list are stored in a tree??
 - the number of elements that must be looked at can be reduced

7

4

Trees, Binary Trees, and Binary Search Trees (cont.)

- Linked list,
 - no consideration of searching incorporated into design
- Tree
 - considerable savings in searching if a consistent ordering to the nodes is applied

T,

8

- A binary tree is a tree
 - each node has only two children, the left child and the right child
 - these children can be empty

- check the number of leaves
- useful in assessing efficiency of algorithms

CS2413: Data Structures, Fall 2021

9

Trees, Binary Trees, and Binary Search Trees (cont.)

- The level of a node,
 - the number of edges between it and the root, plus I
 - e.g., the root: level 1, its children: level 2, etc.
- Complete Binary Tree: if each node at any given level (except the last) had two children,
 - 2º nodes at level 1, 2¹ nodes at level 2, etc.
 - in general, 2ⁱ nodes at level i + I
 - all nonterminal nodes have both children
 - all leaves are on the same level
- Decision Tree: a binary tree, all nodes have either zero or two nonempty children
 - the number of leaves (m) = number of nonterminal nodes (k) + I

- For any given tree for which the condition holds,
 - attaching two leaves to an existing leaf will make it nonterminal
 - decreases the leaf nodes by I but increase the number of nonterminals by I
- The two new leaves increase the number of leaves by 2
 - the relation becomes (m-1)+2=(k+1)+1
 - $\rightarrow m = k + 1$
- An i + I level complete decision tree has,
 - 2ⁱ leaves and 2ⁱ − 1 nonterminal nodes
 - totaling $2^{i+1} 1$ nodes

CS2413: Data Structures, Fall 2021

11

- In a binary search tree (or ordered binary tree),
 - values stored in the left subtree of a given node are less than the value stored in that node
 - values stored in the right subtree of a given node are greater than the value stored in that node
 - the values stored are considered unique;
 - attempts to store duplicate values can be treated as an error

CS2413: Data Stri

T

13

Implementing Binary Trees 2

- Use arrays or linked structures to implement binary trees
- If using an array,
 - an information field
 - two "pointer" fields containing the indexes of the array locations of the left and right children
 - I, an empty child
- The root of the tree
 - always in the first cell of the array

Index	Info	Left	Right
0	13	4	2
1	31	-,6	-1
2	25	7	1
3	12	-1	-1
4 💉	10	5	3
5	2	-1	-1
6	29	-1	-1
7	20	-1	-1
			i
			T.

Implementing Binary Trees (cont.)

- Drawbacks, binary tree arrays
 - need to keep track of the locations of each node,
 - have to be located sequentially
 - deletion operation??
 - · requiring tag to mark empty cells,
 - moving elements around, or
 - requiring updating values
- Use a linked implementation
 - an information data member
 - two pointer data members

CS2413: Data Structures, Fall 2021

15

Searching a Binary Search Tree

- Locating a specific value in a binary tree:
 - compare the value to the target value; if match, the search is done
 - If the target is smaller, branch to the left subtree
 - If the target is larger, branch to the right subtree
 - If at any point we cannot proceed further,
 - search has failed and the target isn't in the tree

16

Searching a Binary Search Tree (cont.)

- Find the value 31??
 - only three comparisons
- Finding (or not finding) the values 26 30
 - the maximum of four comparisons;
- Allowing duplicates requires additional searches:
 - If there is a duplicate,
 - either locate the first occurrence and ignore the others, or
 - locate each duplicate,
 - search until no path contains another instance of the value
- This search will always terminate at a leaf node

CS2413: Data Structures, Fall 2021

C32 113. Data Structures,

17

Searching a Binary Search Tree (cont.)

- The number of comparisons performed during the search
 - determine the complexity of the search
 - depend on the number of nodes encountered on the path from the root to the target node
- The complexity??
 - the length of the path plus I
 - influenced by the shape of the tree and location of the target
- Searching in a binary tree
 - quite efficient, even if it isn't balanced

Ŧ