

Geometric and Combinatorial Properties of Self-Similar Measures

Alex Rutar University of St Andrews

Self-similar Measures and the Weak Separation Condition

Definition 0.1 Let \mathcal{I} be a finite index set and let $\{S_i\}_{i\in\mathcal{I}}$ be maps from \mathbb{R} to \mathbb{R} of the form

$$S_i(x) = r_i x + d_i \text{ where } 0 < |r_i| < 1 \text{ and } d_i \in \mathbb{R}$$

for each $i \in \mathcal{I}$. Let $(p_i)_{i \in \mathcal{I}}$ be a probability vector, i.e. $p_i > 0$ and $\sum_{i \in \mathcal{I}} p_i = 1$. Then there is a unique Borel probability measure satisfying

$$\mu = \sum_{i \in \mathcal{I}} p_i \cdot \mu \circ S_i^{-1}.$$

We say μ is a self-similar measure, and supp $\mu = K$ is a self-similar set.

Definition 0.2 Let $\mathcal{I}^* = \bigcup_{k=0}^{\infty} \mathcal{I}^k$. Given $\sigma = (\sigma_1, \dots, \sigma_j) \in \mathcal{I}^*$, we denote

$$S_{\sigma} = S_{\sigma_1} \circ \cdots \circ S_{\sigma_i}, \ r_{\sigma} = r_{\sigma_1} \cdots r_{\sigma_i}, \ \ and \ p_{\sigma} = p_{\sigma_1} \cdots p_{\sigma_n}$$

We also write $\sigma^- = (\sigma_1, \dots, \sigma_{j-1})$. Then given t > 0, put

$$\Lambda_t = \{ \sigma \in \mathcal{I}^* : |r_{\sigma}| < t \le |r_{\sigma^-}| \}.$$

We say that $\{S_i\}_{i\in\mathcal{I}}$ satisfies the weak separation condition if

$$\sup_{x \in K, t > 0} \# \{ S_{\sigma} : \sigma \in \Lambda_r, S_{\sigma}(K) \cap B(x, t) \} < \infty.$$

Throughout, μ is a self-similar measure and the associated IFS satisfies the weak separation condition.

Net Intervals and Neighbour Sets

Let h_1, \ldots, h_s be elements of the set $\{S_{\sigma}(0), S_{\sigma}(1) : \sigma \in \Lambda_t\}$ listed in strictly ascending order. An interval $[h_i, h_{i+1}]$ where $(h_i, h_{i+1}) \cap K \neq \emptyset$ is a *net interval* (of generation t).

Suppose Δ is a net interval. Denote by T_{Δ} the unique contraction $T_{\Delta}(x) = rx + a$ with r > 0 such that $T_{\Delta}(\operatorname{conv}(K)) = \Delta$.

Definition 0.3 A similarity f(x) = Rx + a is a neighbour of Δ of generation t if there exists some $\sigma \in \Lambda_t$ such that $S_{\sigma}(K) \cap \Delta^{\circ} \neq \emptyset$ and $f = T_{\Delta}^{-1} \circ S_{\sigma}$. The neighbour set of Δ is the set of all possible neighbours.

We can define a notion of transition generation, $tg(\Delta)$, to capture the notion of children of a neighbour set.

Proposition 0.4 Up to rescaling by T_{Δ} , the geometry and neighbour sets of the children of a net interval Δ depend only on $\mathcal{V}(\Delta)$.

The *transition graph* is a weighted graph where the vertices are the possible neighbour sets, and edges correspond to parent—child pairs of neighbour sets.

- Bijection π from finite paths in the transition graph with weight approximately t to net intervals in generation t.
- Can associate transition matrices to edges such that $\mu(\Delta)$ is the norm of the product of matrices corresponding to $\pi^{-1}(\Delta)$.
- The edge weights keep track of the current scale (important since the IFS is not necessarily equicontractive).

Example transition graph

Consider the IFS given by the maps

$$S_1(x) = \rho \cdot x$$
 $S_2(x) = r \cdot x + \rho(1 - r)$ $S_3(x) = r \cdot x + 1 - r$

where $\rho > 0$, r > 0 satisfy $\rho + 2r - \rho r \le 1$. The transition graph, along with the transition matrices, are given below:

Since the transition graph has only one loop class, the multifractal formalism is satisfied for all choices of probabilities.

L^q -spectra and Multifractal Formalism

Definition 0.5 The L^q -spectrum of μ is given by

$$au_{\mu}(q) \coloneqq \liminf_{t \to 0} rac{\log \sup \sum_{i} \mu(B(x_i, t))^q}{\log t}$$

for each $q \in \mathbb{R}$, where the supremum is over disjoint families of closed balls with centres $x_i \in K$.

Let

$$K_{\mu}(\alpha) = \left\{ x \in \operatorname{supp} \mu : \lim_{r \to 0} \frac{\log \mu(B(x,r))}{\log r} = \alpha \right\}.$$

The multifractal formalism states, roughly speaking, that the dimension of the level sets can be computed as the concave conjugate of $\tau(q)$, i.e.

$$\dim_{\mathrm{H}} K(\alpha) = \tau_{\mu}^{*}(\alpha) := \inf_{q \in \mathbb{R}} \{ q\alpha - \tau_{\mu}(q) \}.$$

If the IFS satisfies the open set condition, the multifractal formalism is always satisfied. However, under the weak separation condition, the multifractal formalism can fail for q < 0.

Definition 0.6 We call the strongly connected components of the transition graph loop classes. We can associate to each loop class \mathcal{L} a certain subadditive set function, and define corresponding loop class L^q -spectra $\tau_{\mathcal{L}}$ and loop class multifractal spectra $f_{\mathcal{L}}$.

Heuristically, the loop classes will have "more regularity" than the self-similar measure μ , so one would hope that they satisfy the multifractal formalism.

Multifractal decomposition

Theorem 0.7 Suppose μ is a self-similar measure with finite transition graph. Denote the loop classes by $\mathcal{L}_1, \ldots, \mathcal{L}_m$ and corresponding symbolic L^q -spectra $\tau_{\mathcal{L}_1}, \ldots, \tau_{\mathcal{L}_m}$. Suppose each loop class is non-degenerate. Then:

1. If the irreducibility assumption is satisfied,

$$f_{\mu}(\alpha) = \max\{\tau_{\mathcal{L}_1}^*(\alpha), \dots, \tau_{\mathcal{L}_m}^*(\alpha)\}.$$

2. If the decomposability assumption is satisfied, the limit defining $\tau_{\mu}(q)$ exists for every $q \in \mathbb{R}$. Moreover,

$$au_{\mu}(q) = \min\{ au_{\mathcal{L}_1}(q), \ldots, au_{\mathcal{L}_m}(q)\}.$$

If the multifractal formalism fails, this occurs on the phase transitions between distinct loop class L^q -spectra.

References

- 1. A. Rutar. A Multifractal Decomposition for Self-similar Measures with Exact Overlaps. arXiv:2104.06997 (submitted).
- 2. K. E. Hare, A. Rutar. Local Dimensions of Self-similar Measures Satisfying the Finite Neighbour Condition. arXiv:2101.07400 (submitted)
- 3. A. Rutar. Geometric and Combinatorial Properties of Self-similar Multifractal Measures. Ergodic Theory Dynam. Systems (accepted).