

ENE - UnB

Latches - Introdução aos circuitos sequenciais

Sistemas Digitais 1

Dispositivos lógicos

- I. Lógica Combinacional
 - a)Saída corrente depende apenas das entradas correntes
 - Portas
 - Decodificadores
 - Multiplexadores
 - ALUs

- II. Lógica Sequencial
 - a)Saída corrente depende das entradas passadas bem como presentes; assim tem uma memória (estado)
 - Latches e Flip-Flops
 - Máquinas de estado
 - Contadores
 - Registradores de deslocamento

- Quando R=S=0 o circuito permanece em seu estado atual (mesmo que Qa=1 e Qb=0 ou quando Qa=0 e Qb=1)
- Quando S=1 e R=0, o latch é ativado (set) no estado em que Qa=1 e Qb=0
- Quando S=0 and R=1, o latch é desativado (reset) no estado em que Qa=0 e Qb=1
- Quando S=1 e R=1, Qa=Qb=0 (esse estado provocará problemas na saída do circuito)

S	R	Q _a	$Q_{\rm b}$
0	0	0/1	1/0
0	1	0	1
1	0	1	0
1	1	0	0

- Se o atraso de propagação de Qa e Qb são exatamente iguais, a oscilação no instante de tempo t₁₀ continuará indefinidamente.
- Em circuitos reais existirá alguma diferença entre os atrasos (quase insignificante) e o *latch* seria, eventualmente, jogado em um de seus estados estáveis (mas não se sabe qual exatamente)
- Portanto, a combinação S=R=1 é geralmente considerada um estado proibido no latch RS.

Latch /R-/S: Portas NAND

S_L	R_L	Q	QN
0	0	1	1
0	1	1	0
1	0	0	1
1	1	last Q	last QN

Function Table

	/S	/R	Q	/Q
Illegal	0	0	1	1
Set	0	1	1	0
Reset	1	0	0	1
Hold	1	1	Last Q	Last /Q

Exemplo:

1. Botão "chamar" pressionado - luz acesa

2. Botão "chamar" liberado - luz continua acesa

3. Botão "cancelar" pressionado - luz apagada

- Chamar =1 : Q vai para 1
 Q fica em 1 mesmo
 depois que Chamar =0
- Cancelar=1 : Q vai para 0

Latch RS gatilhado

Latch RS gatilhado

Sinal de clock

- Período do sinal de clock
 - tempo entre dois pulsos
 - sinal: período = 20 ns
- Ciclo do clock
 - um intervalo de tempo
 - sinal abaixo tem 3,5 ciclos de clock
- Frequência do clock
 - 1/período
 - sinal: frequência = 1/20 ns = 50 MHz
 - 1 Hz = 1/s

freqüência	período
100 GHz	0.01 ns
10 GHz	0.1 ns
1 GHz	1 ns
100 MHz	10 ns
10 MHz	100 ns

Latch D

CLK	D	Q(t+1)
0	Χ	Q(t)
1	0	0
1	1	1

representação

Flip-Flops

Flip-flop D (mestre-escravo)

Formado por 2 latches D:

O primeiro é chamado de **mestre** e muda de estado quando o clock=1

O segundo é chamado de **escravo** e muda de estado quando o clock=0

Flip-flop D (mestre-escravo)

 Quando o clock=1, o estágio mestre é acionado de acordo com o sinal de entrada D, e o estágio escravo não muda

Portanto Qm segue qualquer mudança em D e Qe permanece constante

- Quando o clock muda para 0, o estágio mestre permanece constante e o flip-flop-escravo
- Ao mesmo tempo, o estágio escravo responde às variações de Qm e muda de estado de acordo
- Se Qm não variar enquanto o clock estiver em 0, o escravo sofrerá apenas uma mudança de estado durante o ciclo de clock
- A saída Qe do circuito só mudará na borda de descida (ou negativa) do sinal de clock

Flip-flop D (mestre-escravo)

	Q(t+1)
Χ	Q(t)
0	0
1	1
	D X 0 1

1/2013 UnB-FT-ENE

15

Gatilhado pela borda

Pode-se projetar *flip-flops* que operem na borda de subida ou na borda de descida Depende de qual estágio (mestre ou escravo) estiver com o sinal de *clock* invertido

Comparação

Flip-flop T

O flip-flop T pode ser obtido do flip-flop D apresentado anteriormente

Conexões de realimentação fazem com que a entrada D seja igual ao valor de Q ou Q' sob o controle de uma sinal denominado T

Flip-flop T

O nome T vem do termo "toggle" ("chavear") que descreve o comportamento do circuito, pois o estado será chaveado de acordo com o valor de T.

Essa característica faz com que o flip-flop T seja um elemento utilizado na construção de contadores

Flip-flop T

gatilhado pela borda de subida

Flip-flop T com enable

Alguns flip-flops T possuem sinal de enable

O flip-flop JK também pode ser obtido do flip-flop D, de modo que:

O flip-flop JK combina aspectos do latch SR com o flip-flop T

Se comporta como um latch RS, considerando J = S e K = R, para todos os valores exceto J=K=1

Para J=K=1, se comporta com o flip-flop T

J	K	Q(t+1)
0	0	Q(t)
0	1	0
1	0	1
1	1	Q'(t)

Resumo

Característica:

S=1 faz com que Q=1 e R=1 faz com que Q seja 0.

Problema:

RS=11 leva a um valor indefinido de Q.

Característica:

S e R somente têm efeito quando C=1. Pode-se projetar um circuito externo de forma que RS =11 nunca ocorra quando C=1.

Problema:

Evitar RS=11 pode ser uma tarefa difícil.

Característica:

RS não pode ser 11 se D estiver estável antes e depois de C=1, e pode ser 11 apenas em pequenos intervalos de transição.

Problema:

Se C=1 for muito longo propaga valores novos por muitos latches. Se for muito curto pode não funcionar.

Característica:

Somente carrega valores de D na borda de subida do sinal de clock de modo que valores não podem propagar para outros flip-flops no mesmo ciclo de clock

Ponto fraco:

Usa mais portas que o latch D e requer mais portas externas que o latch RS.

Registradores

- Um flip-flop armazena 1 bit de informação
- Quando um conjunto de n flip-flops é usado para armazenar n bits de dados, esse conjunto é chamado de registrador
 - O emprego de registradores inclui:
 - Armazenar a informação de saída de um circuito aritmético
 - Armazenar informação de circuitos contadores
- Um sinal de clock comum é usado em cada flip-flop de um registrador.

Registradores

Exemplo:

Registrador de deslocamento

- Um registrador que tem a habilidade de deslocar seu conteúdo de um bit
 - Pode ser para a direita ou esquerda (ou ambos)

- Os dados são deslocados à direita de forma serial usando o sinal de entrada
- Gatilhado pela borda de subida
 - O conteúdo de cada flip-flop é transferido para o flip-flop da direita na borda positiva do sinal de clock
- Circuitos sensíveis ao nível não são apropriados para este tipo de operação.

Exemplo: Display para informação de histórico de temperatura

- O sensor fornece a temperatura como um número de 5 bits;
- O timer pulsa o sinal de clock a cada hora;
- A temperatura é armazenada a cada pulso e os três últimos valores guardados são mostrados;

Exemplo: Display para informação de histórico de temperatura

- Pode-se projetar um registrador que desloque ou armazene os dados, de acordo com um sinal de controle (controle):
 - Se controle=0 o circuito armazena os dados e se controle=1, desloca os dados à direita

Registrador rotativo

 Similar ao registrador anterior, mas o bit de entrada vem do bit de saída mais à direita

Registrador de deslocamento à direita de acesso paralelo

- A transferência de dados em sistemas computacionais é uma tarefa comum
 - Se a transferência é de n-bits a cada instante de tempo, a transferência é denominada de paralela
 - Se a transferência é de 1 bit a cada instante de tempo, a transferência é denominada <u>serial</u>
- Para transferir dados de forma serial, a informação é carregada em um registrador em paralelo (em um ciclo de clock) e transferida bit a bit
 - Conversão de dados paralelo-serial
- Se os bits são recebidos de forma serial, após n ciclos de clock o conteúdo do registrador pode ser acessado de forma paralela como uma palavra de n bits:
 - Conversão de dados serial-paralela

Registrador de carregamento paralelo

Registrador de carregamento paralelo

Registradores multifuncionais

Exemplo: орегаçãо s1s00 0 mantém valor atual 0 carga paralela desloca à direita 13 12 11 10 desloca à esquerda ent esq ent_dir 3 2 1 0/ 3 2 1 0/ 3 2 1 0, 3 2 1 0/ s0 12 ent_esq ent_dir D D D s0 s1 clk Q3 Q2 Q1 Q0 Q3 Q2 Q1 Q0