Algebra I – Prof. Christian Urech

Mitschrift: Franz Nowak

Herbstsemester 2025

Vorlesung 1

Definition 1. Eine **Gruppe** ist eine Menge G zusammen mit einer Verknüpfung $*: G \to G, (g,h) \to g * h, sodass:$

- (1) (Assoziativität) $\forall g, h, k \in G : (g * h) * k = g * (h * k)$
- (2) (Neutrales Element) $\exists e \in G : g * e = e * g = g \quad \forall g \in G$
- (3) (Inverses Element) $\forall g \in G \exists g^{-1} \in G \text{ s.d. } g * g^{-1} = g^{-1} * g = e$

Eine Gruppe ist **abelsch** (kommutativ), wenn $\forall g, h \in G, g * h = h * g$.

Wir schreiben oft 1 oder 1_G für e und gg' für g*g' mit $g,g' \in G$. Wenn G kommutativ ist, dann schreiben wir e=0 und a+b für a*b. Des Weiteren sind $a^n:=\overbrace{a\cdots a}^{\text{n-mal}}$ und $a^0:=1$.

Bemerkung 1. Wenn G assoziativ ist, dann ist $g_1g_2 \cdots g_n$ eindeutig definiert $(f\ddot{u}r \ g_1, g_2, \dots, g_n \in G)$.

Satz 1. (a) Das neutrale Element ist eindeutig.

(b) Das Inverse von jedem Element ist eindeutig.

Beweis: (a) Seien $e, e' \in G$ neutrale Elemente. Dann ist e = ee' = e'.

(b) Seien \overline{g}, g^{-1} Inverse von $g \in G$. Dann ist $\overline{g} = \overline{g}g = \overline{g}gg^{-1} = eg^{-1} = g^{-1}$.

Satz 2. Seien G eine Gruppe und $a, b, c \in G$, sodass ab = ac. Dann ist b = c.

Beweis:

$$ab = ac \implies \underbrace{a^{-1}a}_{e}b = \underbrace{a^{-1}a}_{e}c \implies b = c$$

Beispiele

- Ganze Zahlen mit Addition, $(\mathbb{Z}, +)$ oder \mathbb{Z}^+
- Reelle Zahlen mit Addition, $(\mathbb{R}, +)$ oder \mathbb{R}^+
- Körper K mit Addition, (K, +) oder K^+ . (Bemerkung: Keine Gruppe mit Multiplikation, wenn 0 enthalten ist.)
- Vektorraum V mit Addition, (V, +) oder V^+ .
- Allgemeine lineare Gruppe, $GL_n(K)$
- Spezielle lineare Gruppe, $SL_n(K) := \{A \in GL_n(K) \mid \det A = 1\}$
- Orthogonale Gruppe, O_n
- Unitäre Gruppe, U_n

Permutationsgruppen

Sei $\operatorname{Sym}(M)$ die Menge der Bijektionen von einer Menge M zu sich selbst, zusammen mit der Verknüpfung von Abbildungen. Die **symmetrische Gruppe** $S_n := \operatorname{Sym}(\{1, 2, \dots, n\})$ ist eine Gruppe mit n! Elementen.

Bemerkung 2. Jedes Element in S_n ist ein Produkt von Transpositionen.

Erinnerung: Eine **Transposition** ist eine Permutation, die genau zwei Elemente vertauscht und die übrigen gleich lässt.

Beispiel 1. S_3 , die Gruppe der Permutationen von $\{1, 2, 3\}$. Seien $\sigma, \tau \in S_3$,

$$\sigma \colon \begin{cases} 1 \to 2 \\ 2 \to 1 \\ 3 \to 3 \end{cases} \qquad \tau \colon \begin{cases} 1 \to 2 \\ 2 \to 3 \\ 3 \to 1 \end{cases}$$

Dann sind $\sigma^2 = id$ und $\tau^3 = id$.

$$\begin{cases}
\sigma\tau(1) = 1 \\
\tau\sigma(1) = 3
\end{cases} \to \sigma\tau \neq \tau\sigma$$

D.h. S_3 ist nicht abelsch.

Untergruppen

Definition 2. Sei G eine Gruppe. Eine Untergruppe $H \leq G$ ist eine Teilmenge $H \subseteq G$ sodass

- (a) $\forall a, b \in H, ab \in H$
- (b) $1_G \in H$
- (c) $\forall a \in H, a^{-1} \in H$

Bemerkung 3. Jede Untergruppe ist eine Gruppe $(H, *_H)$. $*_G$ induziert $*_H$.

Bemerkung 4. $H \subseteq G$ mit $H \neq \{\emptyset\}$ ist eine Untergruppe von G genau wenn $\forall a, b \in H, ab^{-1} \in H$.

Beweis: " \Rightarrow ": klar.

"\(= \)": Bedingung: Seien $a, b \in H$.

- (a) $\Longrightarrow b^{-1} \in H$ $\Longrightarrow ab = a(b^{-1})^{-1} \in H$
- (b) $\implies aa^{-1} \in H, d.h.1_G \in H$
- (c) $\implies 1_G a^{-1} \in H \text{ d.h. } a^{-1} \in H$

Bemerkung 5. Jede Gruppe G hat als Untergruppen immer $\{1\}$ (die triviale Untergruppe) und G selbst. Andere Untergruppen heissen **echte** Untergruppen.

Beispiele

- $SL_n(K) \leq GL_n(K)$
- $n\mathbb{Z} \leq \mathbb{Z} \quad \forall n \in \mathbb{Z}$
- Sei $S^1 := \{c \in \mathbb{C}^* \mid |C| = 1\}.$ $S^1 \leq \mathbb{C}^*.$ $(\mathbb{C}^* := (\mathbb{C} \setminus \{0\}, \cdot)$
- $B_n(K) := \{A \in GL_n(K) \mid A \text{ obere Dreiecksmatrix} \}.$ $B_n \leq GL_n(K).$
- $O_n \leq GL_n(\mathbb{R})$
- Die alternierende Gruppe $A_n \leq S_n$ ist die Untergruppe aller Permutationen, die das Produkt einer geraden Anzahl von Transpositionen sind.

Bemerkung 6. Seien G eine Gruppe und $a \in G$. Dann ist

$$\langle a \rangle := \{\dots, a^{-2}, a^{-1}, a^0, a, a^2, \dots\}$$

eine Untergruppe von G, genannt die von a erzeugte zyklische Gruppe.

Bemerkung 7. $\langle a \rangle$ ist abelsch: $a^m a^n = a^{m+n} = a^{n+m} = a^n a^m$

Lemma 1. Sei $X \subseteq \mathbb{Z}$ die Menge der Zahlen n, sodass $a^n = 1$. Dann ist $X = m\mathbb{Z}$ für ein $m \in \mathbb{Z}$.

Beweis: X ist eine Untergruppe von \mathbb{Z} :

- (a) Seien $m, n \in X$, dann ist $a^{m+n} = a^m a^n = 1_G \implies m+n \in X$
- (b) $a^0 = 1_G \implies 0 \in X$
- (c) $n \in X \implies a^{-n} = a^n a^{-n} = 1_G \implies -n \in X$

Gemäss Übung ist X von der Form $m\mathbb{Z}$ für ein $m \in \mathbb{Z}$.

Falls $m \neq 0$:

Für $n \in \mathbb{Z}$ schreibe n = km + r für ein $k \in \mathbb{Z}$ s.d. $0 \le r < m$. Dann ist $a^n = a^{km+r} = a^{km}a^r = a^r$. $\Longrightarrow \langle a \rangle = \{1, a, \ldots, a^{m-1}\}$ und all diese Elemente sind verschieden. (Falls $a^r = a^{r'} \implies a^{r-r'} = 1 \implies r - r' \in m\mathbb{Z} \implies r = r' \quad 0 \le r, r' < m$)

Falls m = 0:

Dann ist $\langle a \rangle = \{\dots, a^{-2}, a^{-1}, 1, a, a^2, \dots\}$ und alle Partitionen sind verschieden.

Vorlesung 2

Definition 3. Die **Ordnung** |G| einer Gruppe G ist die Anzahl der Elemente in G (kann ∞ sein). Die **Ordnung des Elements** $a \in G$ ist $|\langle a \rangle|$, wobei $\langle a \rangle = \{1, a, \ldots, a^{m-1}\}$ mit m > 0 die kleinste Zahl s.d. $a^m = 1$.

Beispiele

- $A = \begin{pmatrix} 1 & 1 \\ -1 & 0 \end{pmatrix} \in GL_2(\mathbb{R})$ hat Ordnung 6.
- $B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \in GL_2(\mathbb{R})$ hat Ordnung ∞ .

Homomorphismen

Definition 4. Seien G, G' zwei Gruppen. Ein **Homomorphismus** ist eine Abbildung $\phi: G \to G'$ s.d. $\phi(ab) = \phi(a)\phi(b) \quad \forall a, b \in G$.

Definition 5. Ein Isomorphismus ist ein bijektiver Homomorphismus.

Beispiele

- det: $GL_n(K) \to K^*$
- signum sign: $S_n \to \mathbb{Z}/2\mathbb{Z}$, $\operatorname{sign}(x) = \begin{cases} 0: & \text{gerade Anzahl von Transpositionen} \\ 1: & \text{ungerade Anzahl von Transpositionen} \end{cases}$
- Fixiere $a \in G$. $\phi \colon \mathbb{Z} \to G$, $\phi(n) = a^n$. ϕ ist injektiv $\Leftrightarrow \operatorname{Ord}(a) = \infty$.
- $H \leq G$, die Inklusion $\iota : H \to G$, $\iota(x) = x$.

Satz 3.

(1) Falls $\phi: G \to G'$ und $\psi: G' \to G''$ Homomorphismen sind, so auch $\psi \circ \phi: G \to G''$

(2) Falls $\phi: G \to G'$ ein Isomorphismus ist, so auch $\phi^{-1}: G' \to G$.

Beweis: (1) $\psi \circ \phi(ab) = \psi(\phi(a)\phi(b)) = \psi \circ \phi(a)\psi \circ \phi(b)$

(2) zu zeigen: ϕ^{-1} ist ein Homomorphismus.

Seien
$$a', b' \in G'$$
. Dann gibt es $a, b \in G$ s.d. $\phi(a) = a', \phi(b) = b'$

Es gilt
$$\phi(ab) = \phi(a)\phi(b) = a'b' \implies \phi^{-1}(a'b') = \phi^{-1}(a')\phi^{-1}(b')$$

Bemerkung 8. Zwei zuklische Gruppen gleicher Ordnung sind immer isomorph.

Beweis: Seien $G = \langle a \rangle, G' = \langle b \rangle$ und $\phi \colon G \to G', \quad \phi(a^n) \mapsto b^n$.

Falls |G| = |G'| endlich ist, so ist $G = \{1, a, \dots, a^{m-1}\}$, $G' = \{1, b, \dots, b^{m-1}\}$. Somit ist ϕ wohldefiniert, bijektiv und ein Homomorphismus.

Falls $|G|=|G'|=\infty,$ so ist ϕ wohldefiniert, bijektiv und ein Homomorphismus. \Box

Wir schreiben C_n für die zyklische Gruppe der Ordnung n.

Satz 4. Sei ϕ : $G \to G'$ ein Homomorphismus. Dann sind $\phi(1_G) = 1_{G'}$ und $\phi(a^{-1}) = \phi(a)^{-1} \ \forall a \in G$

Beweis:

$$\begin{aligned} \mathbf{1}_G &= \mathbf{1}_G \mathbf{1}_G \\ &\implies \phi(\mathbf{1}_G) = \phi(\mathbf{1}_G \mathbf{1}_G) = \phi(\mathbf{1}_G) \phi(\mathbf{1}_G) \\ &\underset{\text{kürzen}}{\Longrightarrow} \mathbf{1}_{G'} = \phi(\mathbf{1}_G) \end{aligned}$$

Ausserdem:

$$\phi(a^{-1}\phi(a) = \phi(a^{-1}a) = \phi(1_G) = 1_{G'}$$

$$\implies \phi(a^{-1} = \phi(a)^{-1}$$

Definition 6. Ein **Automorphismus** ist ein Isomorphismus $\phi: G \to G$ von einer Gruppe G zu sich selbst.

Beispiel 2. Für $f \in G$ definiere $\phi \colon G \to G$, $\phi(g) := fgf^{-1}$ (fgf^{-1} ist das Konjugierte von g unter f). ϕ ist ein Automorphismus.

Beweis: Homomorphismus:
$$\phi(gh) = fghf^{-1} = fg(f^{-1}f)hf^{-1} = \phi(g)\phi(h)$$
. Bijektiv: $\phi^{-1}(g) = f^{-1}gf$

Definition 7. Für einen Homomorphismus $\phi: G \to G'$ definiere:

$$\operatorname{Bild} \phi := \{ x \in G' \mid x = \phi(a) \text{ für ein } a \in G \}$$

$$\operatorname{Kern} \phi := \{ a \in G \mid \phi(a) = 1 \}$$

Übung: Zeige, dass beides Untergruppen von G' bzw. G sind.

Beispiele

- det: $GL_n(K) \to K^*$, Kern det = $SL_n(K)$
- $\operatorname{sign} S_N \to C_2$, Kern $\operatorname{sign} = A_n$

Bemerkung 9. Seien $\phi: G \to G'$ ein Homomorphismus und $a \in \operatorname{Kern} \phi$ und $b \in G$. Dann ist

$$\phi(bab^{-1}) = \phi(b)\phi(a)\phi(b)^{-1} = 1$$
$$\implies bab^{-1} \in \operatorname{Kern} \phi$$

Definition 8. Eine Untergruppe $N \leq G$ heisst **Normalteiler**, falls $a \in N$ und $\forall b \in G \ bab^{-1} \in N$.

 $\stackrel{\text{Bem. 9}}{\Longrightarrow}$ Kern ϕ ist immer ein Normalteiler.

Vorlesung 3

Erinnerung: Eine Untergruppe $N \leq G$ ist ein Normalteiler, falls:

$$\forall a \in N, \forall b \in G : bab^{-1} \in N$$

- . Clicker Frage zu Normalteilern $\unlhd :$
 - 1. $B_n(K) \leq GL_n(K)$ ist kein Normalteiler.
 - 2. $Z^+ \subseteq R^+$ ist Normalteiler (weil R^+ abelsch)
 - 3. $SL_n(K) \leq GL_n(K)$, weil $\det(ABA^{-1}) = \det(A)\det(B)\det(A)^{-1} = \det(B)$, oder bemerke, dass $SL_n(K) = \text{Kern det}$
 - 4. $A_n \leq S_n$ weil $A_n = \text{Kern sign.}$

Partitionen

Sei $\phi \colon G \to G'$ ein Homomorphismus. Für jedes Element $h \in H$ betrachte die Faser $\phi^{-1}(h) = \{g \in G \mid \phi(g) = h\}$ (Urbild von G in H). Die Fasern bilden eine Partition von G.

Beispiel 3. Sei $\phi \colon \mathbb{C}^* \to \mathbb{R}^*_{>0}$, $\phi(z) \mapsto |z|$. Allgemein: $\phi^{-1} = \operatorname{Kern} \phi$.

Satz 5. Sei $U: G \to G'$ ein Homomorphismus mit Kern N. Für $a, b \in G$ gilt $\phi(a) = \phi(b) \Leftrightarrow \exists n' \in N \text{ s.d. } b = an, \text{ d.h. } a^{-1}b \in N$.

Beweis: " \Rightarrow ": Falls $\phi(a) = \phi(b)$, dann it $U(a)^{-1}\phi(b) = \phi(a^{-1}b) = 1$, d.h. $\exists n \in \mathbb{N}$, s.d. $a^{-1}b = n \implies b = an$.

"\(= \)" Falls
$$b = an$$
 f\(\text{fir} \ n \in N, \text{ dann ist } \(\phi(b) = \phi(a) \phi(n) = \phi(a). \end{aligned} \)

Aus dem Satz folgt, dass die Fasern von ϕ alle von der folgenden Form sind:

$$aN = \{g \in G \mid g = an \text{ für ein } n \in N\}$$

Korollar 1. Ein Homomorphismus $\phi: G \to G'$ ist injektiv $\Leftrightarrow \operatorname{Kern} \phi = \{1\}.$

Beweis: " \Rightarrow " klar.

"\(\infty\)" Man nehme an, dass der Kern
$$\phi = \{1\}$$
. $\phi(a) = \phi(b) \Leftrightarrow a^{-1}b \in \operatorname{Kern} \phi$, d.h. $a^{-1} + b = 1 \implies a = b$.

Nebenklassen

Erinnerung: Sei X eine Menge. Eine Äquivalenzrelation auf X ist eine binäre Relation \sim so dass:

- i) (Transitivität) Falls $a \sim b$ und $b \sim c$, dann ist $a \sim c$.
- ii) (Symmetrie) Falls $a \sim b$, so ist $b \sim a$.
- iii) (Reflexivität) $a \sim a$ für alle $a \in X$.

Gesehen: Jede Äquivalenzrelation definiert eine Partition von X. Diese besteht aus den Äquivalenzklassen, d.h. Teilmengen von der Form $[a] := \{b \in X \mid b \sim a\}$.

Sei \overline{X} die Menge der Äquivalenzklassen. Dann erhalten wir eine surjektive Abbildung $\pi \colon X \to \overline{X}, \qquad \pi(a) := [a]$. Dann ist $\pi^{-1}([a]) = \{b \in X \mid b \sim a\}$.

Gesehen: "Rechnen modulo m". \mathbb{Z} mit Äquivalenzrelation \equiv , wobei $a \equiv b$ falls $a - b \in m\mathbb{Z}$.

Menge der Äquivalenzklassen: $\mathbb{Z}/m\mathbb{Z}$. $\mathbb{Z}/m\mathbb{Z} = \{[0], [1], \dots, [m-1]\}.$

Ausserdem können wir die Klassen in $\mathbb{Z}/m\mathbb{Z}$ miteinander addieren, so dass [a+b]=[a]+[b].

 $\mathbb{Z}/m\mathbb{Z}$ mit Addition ist somit eine Gruppe, und die Quotientenabbildung $\pi \colon \mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}, \quad \pi(n) := [n]$ ist ein Homomorphismus.

Definition 9. Sei $H \leq G$ eine Untergruppe. Eine **Linksnebenklasse** von H ist eine Teilmenge von der Form $aH = \{ah \mid h \in H\}$ für ein $a \in G$.

Beispiel 4. $m\mathbb{Z}^+ \leq \mathbb{Z}^+$. Dann sind die Linksnebenklassen $m\mathbb{Z}$ die Teilmengen von der Form $0 + m\mathbb{Z}, 1 + m\mathbb{Z}, \dots, (m-1) + m\mathbb{Z}$.

Wir schreiben $a \equiv b$, falls ein $h \in H$ existiert, so dass b = ah, d.h. falls $b \in aH$.

Satz 6. Die Relation "\equivalent ist eine Äquivalenzrelation."

Beweis: 1. Falls $a \equiv b$ und $b \equiv a \implies \exists h, h' \in H$, so dass b = ah und $c = bh' \implies c = a\underbrace{hh'}_{\in H} \implies c \equiv a$.

2. falls
$$a \equiv b$$
, so $\exists h \in H$ s.d. $b = ah \implies a = b\underbrace{h^{-1}}_{\in H} \implies b \equiv a$.

3. $a = a \cdot 1$ und $1 \in H \implies a \equiv a$.

$$\phi \colon X \to Y$$
 Abbildung $\phi^{-1}(y) = \{x \in X \mid \phi(x) = y\}$ für $y \in Y$.

Korollar 2. Die Linksnebenklassen bilden eine Partition von G.

Beweis:
$$aH = bH \Leftrightarrow a \equiv b$$
.

Definition 10. Die Anzahl der Linksnebenklassen von H in G ist der sogenannte **Index von** H **in** G. Wir schreiben [G:H] für den Index. ([G in H] kann ∞ sein.)

Beispiel 5. $m \ge 1$, $[\mathbb{Z} : m\mathbb{Z}] = m$.

Satz 7. Sei G eine endliche Gruppe und $H \leq G$. Dann ist |G| = |H|[G:H].

Beweis: Die Abbildung $\phi: H \to aH$, $\phi(h) = ah$.

 ϕ ist eine Bijektion. $\Longrightarrow |H| = |aH|$.

Die Linksnebenklassen bilden eine Partition von $G. \implies |G| = |H|[G:H]$

Daraus folgt direkt:

Korollar 3 (Satz von Lagrange). Seien G eine Gruppe und $H \leq G$ eine Untergruppe. Dann ist |H| ein Teiler von |G|.

Bemerkung 10. Falls $a \in G$, dann folgt mit Lagrange, dass $|\langle a \rangle| \mid |G|$, d.h. Ord(a) teilt die Ordnung von G.

Korollar 4. Sei G eine Gruppe, s.d. |G| prim ist. Sei $a \in G, a \neq 1$, dann ist $G = \langle a \rangle$.

Beweis: ord $a \mid p$, da ord a > 1 ist, ord a = p, d.h. $|\langle a \rangle| = p \implies \langle a \rangle = G$. \square

Korollar 5. Seien G, G' endliche Gruppen und $\phi: G \to G'$ ein Homomorphismus. Dann gilt:

$$|G| = |\operatorname{Kern} \phi| \cdot |\operatorname{Bild} \phi|$$

Beweis: Gesehen: Die Linksnebenklassen von Kern ϕ sind die Fasern von ϕ .

$$\implies |\operatorname{Bild} \phi| = [G : \operatorname{Kern} \phi]$$

$$\implies |G| = |\operatorname{Kern} \phi| \cdot [G : \operatorname{Kern} \phi]$$

$$= |\operatorname{Kern} \phi| \cdot |\operatorname{Bild} \phi|$$

Definition 11. Sei G eine Gruppe und $H \leq G$. Die **Rechtsnebenklassen** von H in G sind die Mengen $Ha := \{ha \mid h \in H\}$.

Definiere $a \equiv_R b$, falls es ein $h \in H$ gibt, so dass b = ha.

Dies definiert eine Äquivalenzrelation auf G und die Rechtsnebenklassen sind die Äquivalenzklassen bezüglich dieser Relation. \leadsto Partition von G.

Satz 8. Eine Untergruppe $H \leq G$ ist ein Normalteiler \Leftrightarrow jede Linksnebenklasse ist auch eine Rechtsnebenklasse. In diesem Fall ist aH = Ha.

Beweis: " \Rightarrow " H Normalteiler. Sei $h \in H$ und $a \in G$.

$$\implies ah = \underbrace{(aha^{-1})}_{=:k \in H} a = ka$$

$$\implies aH \subseteq Ha$$

Analog zeigt man $Ha \subseteq aH$. $\Longrightarrow aH = Ha$.

" \Leftarrow " Man nehme an, H ist kein Normalteiler.

- $\implies \exists h \in H, g \in G \text{ s.d. } aha^{-1} \notin H, \text{ d.h. es gibt kein } h' \in H \text{ s.d. } ah = h'a.$
- $\implies ah \in aH$, aber $ah \notin Ha$, d.h. $aH \neq Ha$.

Gleichzeitig ist $a \in aH \cap Ha \neq \emptyset$

 $\implies aH$ ist in keiner anderen Rechtsnebenklasse enthalten. D.h. Rechts- und Linksnebenklassen definieren zwei verschiedene Partitionen.

Vorlesung 4

Clicker Frage zu Homomorphismen $\phi: G \to G'$:

- Gesehen in Übung: Bild $\phi \leq G'$.
- Dann folgt mit Kor. 3: $|\operatorname{Bild} \phi| ||G'||$
- Und mit Kor. 5: $|\operatorname{Bild} \phi| ||G|$.

Seien G eine Gruppe und $H \leq G \rightsquigarrow G/H$ Linksnebenklassen von H in G. Können wir auf G/H eine Gruppenstruktur definieren, so dass die Abbildung $\pi \colon G \to G/H, \pi(g) = gH$ ein Gruppenhomomorphismus ist?

Ja, wenn $H \subseteq G$ (siehe Übung).

Faktorgruppen

Lemma 2. Seien G eine Gruppe und X eine Menge mit einer Verknüpfung. Sei $\phi: G \to X$ eine surjektive Abbildung, so dass $\phi(ab) = \phi(a)\phi(b) \quad \forall a,b \in G$. Dann ist X eine Gruppe.

Beweis: (i) Seien $u, v, w \in X$. $\exists a, b, c \in G$ s.d. $\phi(a) = u, \phi(b) = v, \phi(c) = w$. Dann ist

$$u(vw) = \phi(a)(\phi(b)\phi(c)) = \phi(a)\phi(bc)$$
$$= \phi(abc) = \phi(ab)\phi(c)$$
$$= (\phi(a)\phi(b))\phi(c) = (uv)w$$

→ Assoziativität der Verknüpfung auf X.

(ii) Sei $e := \phi(1)$ und $u \in X$. Dann

$$\exists u \in G$$
, s.d. $u = \phi(a) \implies eu = \phi(1)\phi(a) = \phi(1a) = \phi(a) = u$.

Analog: $u=u. \rightarrow e$ ist ein neutrales Element.

(iii) Sei $u \in X \implies \exists a \in G \text{ s.d. } u = \phi(a)$. Sei $u' := \phi(a^{-1})$. Dann ist

$$u'u = \phi(a^{-1}\phi(a)) = \phi(a^{-1}a) = \phi(1) = e.$$

Analog: uu' = e. \leadsto es existieren Inverse.

Notation: Seien G eine Gruppe, $A, B \subseteq G$. Dann definieren wir

$$AB := \{ab \mid a \in A, b \in B\} \subseteq G.$$

Lemma 3. Seien G eine Gruppe, $N \subseteq G$ ein Normalteiler und $a, b \in G$. Dann ist (aN)(bN) = abN. Das Produkt von zwei Nebenklassen ist also wieder eine Nebenklasse.

Beweis: In Vorlesung 3 gesehen:

$$Nb = bN \quad \forall b \in G$$

Da N eine Untergruppe ist, ist NN = N (Übung).

$$\implies (aN)(bN) = a(Nb)N = a(bN)N = abNN = abN.$$

Wir erhalten also eine Verknüpfung auf die Nebenklassen. Falls $K_1, K_2 \in G/N$: Sei $a \in K_1, b \in K_2$. $\Longrightarrow K_1 = aN, K_2 = bN$. Dann ist $K_1K_2 = abN$ (gemäss Lemma), d.h. K_1K_2 ist die Nebenklasse, die das Element ab enthält.

Satz 9. Seien G eine Gruppe und $N \subseteq G$. Mit dieser Verknüpfung bildet $G/N =: \overline{G}$ eine Gruppe und die Abbildung $\pi : G \to G/N = \overline{G}$ $a \mapsto aN =: \overline{a}$ ist ein Homomorphismus.

Beweis: Bereits beobachtet: $\pi(a)\pi(b) = (aN)(bN) = abN = \pi(ab)$.

Aus Lem. 2 folgt, dass $\overline{G}=G/N$ eine Gruppe ist und daher π ein Homomorphismus ist.

Korollar 6. Jeder Normalteiler $N \leq G$ ist Kern von einem Homomorphismus. Nämlich vom Homomorphismus $\pi: G \to G/N$.

Beweis: Das neutrale Element von G/N ist $N. \rightsquigarrow \operatorname{Kern} \pi = N$

Satz 10 (erster Isomorphiesatz). Sei $\phi \colon G \to G'$ ein surjektiver Homomorphismus und $N := \operatorname{Kern} \phi$. Dann ist die Gruppe G/N isomorph zur Gruppe G' unter dem Homomorphismus $\overline{\phi} \colon G/N \to G'$ $\overline{a} = aN \mapsto \phi(a)$

Beweis: 1. $\overline{\phi}$ ist wohldefiniert: $\phi(an) = \phi(a)\phi(n) = \phi(a)$, d.h. $\overline{\phi}(aN)$ hängt nicht von der Wahl des Repräsentanten ab.

2. $\overline{\phi}$ ist ein Homomorphismus:

$$\overline{\phi}((aN)(bN)) = \overline{\phi}(abN)$$

$$= \phi(ab) = \phi(a)\phi(b)$$

$$= \overline{\phi}(aN)\overline{\phi}(bN)$$

3. $\overline{\phi}$ ist bijektiv: $\overline{\phi}$ ist surjektiv, da ϕ surjektiv ist. $\overline{\phi}$ ist injektiv, da Kern $\overline{\phi} = \{N\}$ und N ist das neutrale Element in G/N. $\Longrightarrow \overline{\phi}$ ist injektiv.

Definition 12. Seien G, G' Gruppen, dann ist $G \times G'$ eine Gruppe mit der Verknüpfung (a, a')(b, b') = (ab, a'b'). Neutrales Element: $(1_G, 1_{G'})$. Inverses Element: $(a, a')^{-1} = (a^{-1}, a'^{-1})$. Es heisst das **direkte Produkt** von G und G'.

Vorlesung 5

Clicker Frage: Sei $S^1 \leq \mathbb{C}^*$ die Untergruppe der komplexen Zahlen bestehnd aus den Elementen mit Betrag 1. Dann ist der Quotient \mathbb{C}^*/S^1 isomorph zu $\mathbb{R}^*_{>0}$. (Wahr)

Begründung: Die Abbildung $\phi \colon \mathbb{C}^* \to R_{>0}^*$, $z \mapsto |z|$ ist ein surjektiver Homomorphismus. Kern $\phi = S^1 \stackrel{\text{1.}}{\Longrightarrow} \stackrel{\text{Isosatz}}{\Longrightarrow} C^*/S^1 \simeq \mathbb{R}_{>0}^*$

Clicker Frage: Sei G eine Gruppe und $H_1, H_2 \leq G$ Untergruppen. Dann ist $H_1 \cup H_2$ eine Untergruppe von G. (Wahr)

Begründung:

$$1 \in H_1 \cup H_2$$

$$a, b \in H_1 \cup H_2 \implies ab \in H_1 \cup H_2$$

$$a^{-1} \in H_1 \cup H_2$$

AllgemeinL Falls $H_i \leq G, i \in I$ eine Familie von Untergruppen ist, so ist $\bigcup_{i \in I} H_i \leq G$ eine Untergruppe (selber Beweis).

Definition 13. Sei $S \subseteq G$ eine Teilmenge. Dann ist $\langle s \rangle := \bigcup_{H \leq Gs.d.S \subseteq H} H$ die von S erzeugte Untergruppe.

Erinnerung: G, G' Gruppen $\leadsto G \times G'$ ist Gruppe mit Verknüpfung (a, a')(b, b') = (ab, a'b').

Bsp: Kleinsche Vierergruppe (die "Matratzengruppe").

$$C_2 \times C_2 = \{(1,1), (1,-1), (-1,1), (-1,-1)\}$$

Bsp: m, n > 0 s.d. ggT(m, n) = 1 dann ist $C_{mn} \simeq C_m \times C_n$

Wir haben vier Homomorphismen:

$$i(x) = (x, 1)$$

 $i'(x) = (1, x')$
 $p(x, x') = x$
 $p'(x, x') = x'$

Bemerkung 11. i, i' sind injektiv, d.h.

$$G \times 1 = \text{Bild } i \simeq G$$

 $1 \times G' = \text{Bild } i' \simeq G'$

p und p' sind surjektiv

$$\operatorname{Kern} p = 1 \times G', \operatorname{Kern} p' = G \times 1$$

Sei H eine Gruppe und $\phi \colon H \to G, \phi' \colon H \to G'$ Homomorphismen. Dann ist $\Phi \colon H \to G \times G' \quad \Phi(h) = (\phi(h), \phi'(h))$ ein Homomorphismus.

Umgekehrt ist jeder Homomorphismus $\Phi \colon H \to G \times G'$ von dieser Form mit $\phi = \Phi \circ p$ und $\phi' = \Phi \circ p'$.

Bemerkung 12. $\Phi(h) - (1,1) \Leftrightarrow \phi(h) = 1 \ und \ \phi'(h) = 1 \ d.h. \ \operatorname{Kern} \Phi = \operatorname{Kern} \phi \cup \operatorname{Kern} \phi'.$

Seien $H, K \leq G$. Betrachte $HK = \{hk \mid h \in H, k \in K\}$. Wann ist HK eine Untergruppe? Wann ist $\pi \colon H \times K \to G \quad \pi(h, k) = hk$ ein Homomorphismus?

Satz 11. (a) Ist $H \cup K = \{1\}$, so ist π injektiv.

- (b) Ist H oder K ein Normalteiler, so ist HK = KH und HK ist eine Untergruppe von G.
- (c) Sind H und K Normalteiler und gilt $H \cup K = \{1\}$ und HK = G so ist $\pi \colon H \times K \to G$ ein Isomorphismus.

Beweis: (a) Seien $(h_1, k_1), (h_2, k_2) \in H \times K$ s.d. $h_1k_1 = h_2k_2$.

$$\implies \underbrace{k_1 k_2^{-1}}_{\in K} = \underbrace{h_1^{-1} h_2}_{\in H} \stackrel{H \cup K = \{1\}}{=} 1$$

$$\implies k_1 = k_2 \text{ und } h_1 = h_2$$

$$\implies \pi \text{ ist injektiv.}$$

(b) oBdA. H ist Normalteiler. Seien $h \in H, k \in K$.

$$\implies kh = \underbrace{(khk^{-1})}_{\in H} k \in HK$$

 $\implies KH \subset HK$

Analog: $HK \subset KH$. $\Longrightarrow KH = HK$. Z.z: HK ist Untergruppe.

(i) Seien $hk, h'k' \in HK$.

$$\implies (hk)(h'k') = h \underbrace{(kh')}_{\in KH = HK} k'$$

$$= h(h''k'')k'$$

$$= (hh'')(k''k') \in HK$$

(ii) $1 \in HK$

(iii)
$$hk \in HK \implies (hk) = k^{-1}h^{-1} \in kh = HK$$

(c) Seien $h \in H, k \in K$

$$\Longrightarrow \underbrace{(hkh^{-1})}_{\in k} k^{-1} = h\underbrace{(kh^{-1}k^{-1})}_{\in H}$$

$$\Longrightarrow hkh^{-1}k^{-1} = 1$$

$$\Longrightarrow hk = kh$$

$$\Longrightarrow \pi(h_1, k_1)\pi(h_2, k_2) = h_1k_1h_2k_2 = h)1h_2k_1k_2 = \pi((h_1, k_1)(h_2, k_2))$$

 $\implies \pi$ ist Homomorphismus. Gemäss (a) ist π injetiv. Da HK=G ist π surjektiv $\implies \pi$ ist Isomorphismus.

Beispiele

• Gruppen von der Ordnung 1: nur {1}

• Gruppen von der Ordnung 2: nur C_2

• Gruppen von der Ordnung 3: nur C_3

• Gruppen von der Ordnung 4: $C_4, C_2 \times C_2$ (s. Übung).

• Gruppen von der Ordnung 5: C_5

Behauptung 1. Die einzigen Gruppen von Ordnung 6 sind C_6 und S_3 (bis auf Isomorphie).

Beweis: Sei G eine Gruppe mit |G|=G. Falls G ein Element der Ordnung 6 enthält, so ist $G\simeq C_6$. Ansonsten 3 mögliche Fälle:

(a) Alle $g \in G, g \neq 1$ haben Ordnung 2

(b) Alle $g \in G, g \neq 1$ haben Ordnung 3

(c) Es gibt $g \in G$ von Ordnung 2 und $h \in G$ von Ordnung 3.

Falls (a), so ist G abelsch. Sei $g \in G$

$$\implies \langle g \rangle == \{1, g\} \le G$$

$$\implies |G/\langle g \rangle| = 3$$

$$\implies G/\langle g \rangle \simeq C_3$$

 $\pi\colon G\to G/{<\!g\!>}$ Quotient

 $\forall g \in G \text{ ist } \pi(g)^2 = \pi(g^2) = 1.$ Widerspruch zu $|G/{<}g{>}| = 3.$

Falls (b), so gilt $g = g^{-1}$ nur wenn g = 1.. $\Longrightarrow G = \{1, g, g^{-1}, h, h^{-1}, \ldots\}$. Nicht möglich, da G eine gerade Ordnung hat.

D.h. wir sind im Fall (c). G enthält $1, g, h, h^2, gh, gh^2$. (kleine Übung: Diese Elemente sind alle verschieden). $\implies G = \{1, g, h, h^2, gh, gh^2\}$.

Wir haben hg = gh oder $hg = gh^2$. Falls hg = gh, so hate (gh) Ordnung 6. Das haben wir aber ausgeschlossen. Also ist $hg = gh^2$.

Die Relation $gh = h^2g$ definiert die Verknüpfung aug G eindeutig. Jedes Produkt in g und h lässt sich mit dieser Regel in die Form g^ih^j bringen, wobei $0 \le i \le 1, 0 \le j \le 2$.

Im Fall (c) gibt es also höchstens eine Gruppe. Diese muss S_3 sein.

Bemerkung 13. Seien $g, h \in S_3$, mit

$$g: \begin{cases} 1 \mapsto 2 \\ 2 \mapsto 3 \\ 3 \mapsto 1 \end{cases} \qquad h: \begin{cases} 1 \mapsto 2 \\ 2 \mapsto 3 \\ 3 \mapsto 1 \end{cases}$$

Dann ist $S_3 = \{1, g, h, h^2, gh, gh^2\}.$

Bemerkung 14. Jede echte Untergruppe von S_3 ist zyklisch (da von Ordnung 2 oder 3).

Bemerkung 15. $A_3 = \langle h \rangle$

Symmetrie

Isometrien von \mathbb{R}^n

Definition 14. Eine **Isometrie** von \mathbb{R}^n ist eine Abbildung $f: \mathbb{R}^n \to R^n$ von der Form f(X) = BX + a wobei $B \in O(n), b \in R^n$. Wir bezeichnen mit $Isom(\mathbb{R}^n)$ die Gruppe der Isometrien von \mathbb{R}^n .

Bemerkung 16. Man kann zeigen, dass Isometrien genau die Abbildungen $\mathbb{R}^n \to R^n$ sind, welche die Distanzen erhalten.

Zwei wichtige Untergruppen:

- (1) $\mathcal{T}_n \leq \text{Isom}(\mathbb{R}^n)$: Die Untergruppe der **Translationen**, d.h. Abbildung on der Form $t_a \colon X \mapsto X + a$ für $a \in \mathbb{R}^n$. Es gilt $t_a t_{a'} = t_{a+a'}$.
- (2) $O \leq \text{Isom}(\mathbb{R}^n)$: Die Untergruppe der Isometrien von der Form $d_B \colon X \mapsto BX$ für $B \in O(n)$. Es gilt $d_B d_{B'} = d_{BB'}$.

Jedes $f \in \text{Isom}(\mathbb{R}^n)$ lässt sich eindeutig schreiben als $t_a d_B$ für $B \in O(n), a \in \mathbb{R}^n$. Falls f(X) = BX + a, g(X) = B'X + a', dann ist

$$f \circ g(X) = B(B'X + a') + a$$
$$= BB'X + Ba' + a$$

. d.h. falls $F=t_ad_B, g=t_{a'}+d_{B'},$ so ist

$$f \circ g = t_a d_B t_{a'} d_{B'}$$
$$= t_{Ba'+a} d_{BB'}.$$

Wir haben also insbesondere Homomorphismus ψ : Isom $(R^n) \to O, \psi(t_a d_B) = d_B$.

 $\operatorname{Kern} \psi = \mathcal{T}_n.$

Bemerkung 17. Die Abbildung Isom $(R^n) \to \mathcal{T}_n, t_a d_B \mapsto t_a$ ist kein Homomorphismus.