Algorithm-1

Step	Cost of each execution	Total # of times executed
1	1	1
2	1	n + 1
3	1	$\sum_{i=1}^{n} (i) + 1$
4	1	$\sum_{i=1}^{n}(i)$
5	1	$\sum_{i=1}^{n} \sum_{j=1}^{i} (j) + 1$
6	6	$\sum_{i=1}^{n} \sum_{j=1}^{i} (j)$
7	5	$\sum_{i=1}^{n} (i)$
8	2	1

Multiply col.1 with col.2, add across rows and simplify

$$T_{1}(n) = 1 + n + 1 + \sum_{i=1}^{n} (i) + 1 + \sum_{i=1}^{n} (i) + \sum_{i=1}^{n} \sum_{j=1}^{i} (j) + 1 + 6\sum_{i=1}^{n} \sum_{j=1}^{i} (j) + 5\sum_{i=1}^{n} (i) + 2$$

$$= 1 + n + 1 + \frac{n(n+1)}{2} + 1 + \frac{n(n+1)}{2} + \frac{1}{6}n(n+1)(n+2) + 1 + 6\frac{1}{6}n(n+1)(n+2) + 5$$

$$\frac{n(n+1)}{2} + 2$$

$$= 6 + n + \frac{n(n+1)}{2} + \frac{n(n+1)}{2} + \frac{1}{6}n(n+1)(n+2) + n(n+1)(n+2) + 5\frac{n(n+1)}{2}$$

$$= 6 + n + 7\frac{n(n+1)}{2} + \frac{7}{6}n(n+1)(n+2)$$

$$= 6 + n + 7\frac{n(n+1)}{2} + \frac{7}{6}(n(n^{2} + 3n + 2))$$

$$= 6 + n + 7\frac{n(n+1)}{2} + \frac{7}{6}(n^{3} + 3n^{2} + 2n)$$

$$= 6 + n + \frac{7}{2}n^{2} + \frac{7}{2}n + \frac{7}{6}n^{3} + \frac{21n^{2}}{6} + \frac{14n}{6}$$

$$= \frac{7}{6}n^{3} + \frac{42n^{2}}{6} + \frac{41}{6}n + 6$$

$$= \frac{7}{6}n^{3} + 7n^{2} + \frac{41}{6}n + 6$$

Algorithm-2

Step	Cost of each execution	Total # of times executed
1	1	1
2	1	n+1
3	1	n
4	1	$\sum_{i=1}^{n} (i) + 1$
5	6	$\sum_{i=1}^{n} (i)$
6	5	$\sum_{i=1}^{n}(i)$
7	2	1

Multiply col.1 with col.2, add across rows and simplify

$$T_{2}(n) = 1 + n + 1 + n + \sum_{i=1}^{n} (i) + 1 + 6 \sum_{i=1}^{n} (i) + 5 \sum_{i=1}^{n} (i) + 2$$

$$= 5 + 2n + \frac{n(n+1)}{2} + 6 \frac{n(n+1)}{2} + 5 \frac{n(n+1)}{2}$$

$$= 5 + 2n + 12 \frac{n(n+1)}{2}$$

$$= 5 + 2n + \frac{12n^{2}}{2} + \frac{12n}{2}$$

$$= 6n^{2} + 8n + 5$$

$$T_2(n) = O(n^2) \\$$

Algorithm-3

Step	Cost of each execution	Total # of times executed			
1	4	1			
2	11	1			
Steps executed when the input is a base case: Steps 1 or 2					
First recurrence relation: $T(n=1 \text{ or } n=0) = T(n=1)$: 11, $T(n=0)$:4,					
3	5	1			
4	2	1			
5	1	$\frac{n}{2}+1$			
6	6	$\frac{n}{2}$			
7	5	$\frac{n}{2}$			
8	2	1			
9	1	$\frac{n}{2}+1$			

10	6	n		
		$\overline{2}$		
11	5	n		
		$\overline{2}$		
12	4	1		
13	5	Lgn (cost excluding the recursive call)		
14	6	Lgn (cost excluding the recursive call)		
15	6	1		
Steps executed when input is NOT a base case: Steps 1 - 15				
Second recurrence relation: $T(n>1) = 2T(n/2) + c$				
Simplified second recurrence relation (ignore the constant term): $T(n>1) = 2^{i}(T(n/2^{i}) + (2^{i}-1)$				

Solve the two recurrence relations using any method (recommended method is the Recursion Tree). Show your work below:

$$c = 12n + 38$$

$$T_3(n) = 2T(n/2) + c$$

$$= 2(2T(n/4) + c) + c$$

$$= 4(T(n/4) + 2c + c$$

$$= 4(2T(n/8) + c) + 2c + c$$

$$= 8(T(n/8) + 4c + 2c + c$$

$$= 2^{i}(T(n/2^{i}) + (2^{i} - 1)c$$

$$= 2^{lgn}T(1) + (2^{lgn} - 1)(12n + 38)$$

$$= 11n + (12n + 38)(n - 1)$$

$$= 11n + 12n^2 + 38n - 12n - 38$$

$$= 12n^2 + 37n - 38$$

$$T_3(n) = O(n^2)$$

Algorithm-4

Step	Cost of each execution	Total # of times executed
1	1	1
2	1	1
3	1	n + 1
4	8	n
5	5	n
6	2	1

Multiply col.1 with col.2, add across rows and simplify

$$\begin{aligned} T_4(n) &= 1 + 1 + n + 1 + 8n + 5n + 2 \\ &= 5 + n + 13n \\ &= 14n + 5 \\ T_4(n) &= O(n) \end{aligned}$$