NOTES FROM NSF-MSGI INTERNSHIP

HUNTER LEHMANN

1. Introduction

We will explore the connection between statistical mechanics models and quantum Hamiltonians, primarily via examples.

More stuff here later. Basic objects/definitions.

2. Ising Models

The Ising models are a family of statistical mechanics models with nearest-neighbor interaction. Given any lattice $\mathcal{L} \subset \mathbb{Z}^d$ with N total points, define a *spin* at each site of the lattice via a variable $s \in \Omega_0 = \{\pm 1\}$. A *configuration* is a collection $\{s\} = \{s_\ell\}_{\ell \in \mathcal{L}} \in \Omega_0^N$. For convenience, we will usually work with cubic lattices of the form $\mathcal{L} = \{-n, -n+1, \ldots, n-1, n\}^d$ or $\mathcal{L} = \{1, \ldots, n\}^d$ and impose periodic boundary conditions. The *action* associated to this model is the function

$$S(\lbrace s \rbrace, \tau) = -\beta_{\tau}(\tau) \sum_{i \sim i} s_i s_j - \beta(\tau) h \sum_i s_i,$$

where τ is the lattice spacing in the "time" direction, h is the strength of an external magnetic field, and the first sum is over nearest neighbor sites of the lattice. The coefficients β_{τ} and β may depend on the time direction lattice spacing and are otherwise chosen to reflect some physical situation (e.g. they may be taken to be proportional to the "inverse temperature" $\frac{1}{kT}$ where k is Boltzmann's constant).

We will be interested in the partition function Z defined as

$$Z = \sum_{\{s\} \in \Omega_0^N} e^{-\mathcal{S}(\{s\},\tau)}.$$

2.1. 1+0 Ising. In the 1+0 Ising model, we take a 1-dimensional statistical mechanics system and relate it to a 0-dimensional (point) quantum Hamiltonian. See [1] and [6]. The definitions above simplify to the following. The lattice is now a set of N points x_0, \ldots, x_{N-1} on a circle so that $s_0 = s_N$. The action is given by

$$S(\{s\},\tau) = -\beta_{\tau}(\tau) \sum_{i=0}^{N-1} s_i s_{i+1} - \beta(\tau) h \sum_{i=0}^{N-1} s_i.$$

It will be helpful to rewrite this expression to be symmetric and expressed in terms of sums and differences of the s_i . Up to a constant factor of $-\beta_{\tau}N$, we find

$$S(\lbrace s \rbrace, \tau) = \frac{1}{2} \beta_{\tau}(\tau) \sum_{i=0}^{N-1} (s_i - s_{i+1})^2 - \frac{1}{2} \beta(\tau) h \sum_{i=0}^{N-1} (s_i + s_{i+1}).$$

Note that we needed periodicity in order to rewrite the second term in this way. Further, we now have S = 0 when all of the spins are identical and h = 0.

Now the partition function becomes

$$Z = \sum_{\{s\} \in \Omega_0^N} e^{\frac{1}{2}\beta_{\tau}(\tau) \sum_{i=0}^{N-1} (s_i - s_{i+1})^2 - \frac{1}{2}\beta(\tau)h \sum_{i=0}^{N-1} (s_i + s_{i+1})}$$

$$= \sum_{s_0 \in \{\pm 1\}} \dots \sum_{s_{N-1} \in \{\pm 1\}} e^{\frac{1}{2}\beta_{\tau}(s_0 - s_1)^2} e^{-\frac{1}{2}\beta h(s_0 + s_1)} \cdot \dots \cdot e^{\frac{1}{2}\beta_{\tau}(s_{N-1} - s_0)^2} e^{-\frac{1}{2}\beta h(s_{N-1} + s_0)}.$$

However, each factor in the product depends only on what the values of $s_i - s_{i+1}$ and $s_i + s_{i+1}$ are. We can construct the *transfer matrix*, T, to record this data, indexed by the possible spins at each site. So we have

$$T_{-1,-1} = e^{-\beta h}, \quad T_{-1,1} = T_{1,-1} = e^{-2\beta_{\tau}}, \quad \text{and } T_{1,1} = e^{\beta h}.$$

Thus

$$T = \begin{bmatrix} e^{-\beta h} & e^{-2\beta_{\tau}} \\ e^{-2\beta_{\tau}} & e^{\beta h} \end{bmatrix}.$$

Now we can write $Z = \operatorname{Tr} T^N$.

Our goal is to choose functions $\beta_{\tau}(\tau)$ and $\beta(\tau)$ so that the transfer matrix operator T has the form $T=e^{-\tau H}\approx I-\tau H$ for some quantum Hamiltonian H (independent of τ) acting on a 2-dimensional vector space. This is the τ -continuum Hamiltonian for the model. Here the idea is that statistical mechanics properties of the lattice action system (e.g. magnetization per site, average magnetization, two-point correlations, correlation length) will map to properties of the operator H related to its eigenvalues and eigenvectors.

For example, we could choose $\beta_{\tau}(\tau) = -\frac{1}{2} \log \tau$ and $\beta(\tau) = \tau$. Then we have

$$T = \begin{bmatrix} e^{-\tau h} & \tau \\ \tau & e^{\tau h} \end{bmatrix} \approx I_2 - \tau \begin{bmatrix} h & -1 \\ -1 & -h \end{bmatrix}.$$

From this it follows that

$$H = \begin{bmatrix} h & -1 \\ -1 & -h \end{bmatrix} = -\sigma_1 + h\sigma_3,$$

where σ_1, σ_2 , and σ_3 are the Pauli matrices.

More generally, we can ask what constraints β and β_{τ} must satisfy to be able to do this. Analyzing each of the four matrix entries shows that for small τ we need

$$e^{-\beta h} \approx 1 - \tau H_{0,0}, \quad e^{-2\beta \tau} \approx -\tau H_{1,0} = -\tau H_{0,1}, \quad \text{and } e^{\beta h} \approx 1 - \tau H_{1,1}.$$

Since $H_{1,0}$ and $H_{0,1}$ are constant with respect to τ we need $-2\beta_{\tau} \approx \log(\lambda \tau)$ for small τ and some $\lambda \in \mathbb{R}_{>0}$. Similarly, if β is small when τ is small we have $e^{-\beta h} \approx$

 $1 - \beta h \approx 1 - \tau H_{0,0}$ and $e^{\beta h} \approx 1 + \beta h \approx 1 - \tau H_{1,1}$. So to first order we have $\beta \approx \tau$ and we see $H_{0,0} = -H_{1,1} = \mu h$ for some $\mu \in \mathbb{R} \setminus \{0\}$.

Putting all of this together, we see that the general τ -continuum Hamiltonian for this model will have the form

$$H = \begin{bmatrix} \mu h & -\lambda \\ -\lambda & -\mu h \end{bmatrix} = -\lambda \sigma_1 + \mu h \sigma_3.$$

Now we could also attempt to find a second order approximation of T so that $T \approx I - \tau H + \frac{1}{2}\tau^2 H^2$ for an operator H not depending on τ . However, following the approach above will show us that there is no easy solution in this case. To get a higher order approximation (or the actual matrix logarithm solving $T = e^{-\tau H}$ for H), we may need to allow H to depend on τ .

In the second order case, we need

$$e^{-\beta h} \approx 1 - \tau H_{0,0} + \frac{\tau^2}{2} (H_{0,0}^2 + H_{0,1}^2),$$

$$e^{-2\beta \tau} \approx -\tau H_{0,1} + \frac{\tau^2}{2} (H_{0,0} H_{0,1} + H_{0,1} H_{1,1}),$$

$$e^{\beta h} \approx 1 - \tau H_{1,1} + \frac{\tau^2}{2} (H_{0,1}^2 + H_{0,0}^2)$$

for small τ , where we have used the fact that H should be real and symmetric and so $H_{0,1} = H_{1,0}$. From the first and third equations, we see that $H_{0,0}$ and $H_{1,1}$ must depend on h. But the second equation has no dependence on h, so the dependence of $H_{0,1}$ on h must be inversely related to the $H_{0,0}$ and $H_{1,1}$ dependence. On the other hand adding the first and third equations yields

$$\cosh(\beta h) \approx 1 - \frac{\tau}{2} (H_{0,0} + H_{1,1}) + \frac{\tau^2}{4} (H_{0,0}^2 + 2H_{0,1}^2 + H_{1,1}^2),$$

which naturally suggests taking $\beta = \mu \tau$, $H_{0,0} = -H_{1,1} = \mu h$, and $H_{0,1} = H_{1,0} = 0$. But this is a contradiction.

2.2. 1+1 Ising Model. We may analyze the 1+1 Ising model similarly to the 1+0 model. We are going to relate a statistical mechanics system on a 2-dimensional lattice (with one temporal and one spatial dimension) to a quantum mechanical Hamiltonian on a 1-dimensional system of interacting spins. See [1] and [6].

As in the 1+0 Ising model, we will work with a lattice with periodic boundary conditions. Suppose \mathcal{L} is a $N_x \times N_\tau$ lattice of points in \mathbb{Z}^2 with $\vec{\tau}$ a unit vector in the time direction and \vec{x} a unit vector in the spatial direction. Then the action for the model is

$$S = -\sum_{\ell} \beta_{\tau} s_{\ell} s_{\ell + \vec{\tau}} + \beta s_{\ell} s_{\ell + \vec{x}},$$

where the sum is over all lattice points $\ell \in \mathcal{L}$.

We want to write $S = \sum_{j=1}^{N_{\tau}} L(j, j+1)$ for some L(j, j+1) that describes the interaction between the spatial rows j and j+1. To do this, we first rewrite

$$S = \sum_{\ell} \frac{\beta_{\tau}}{2} (s_{\ell} - s_{\ell + \vec{\tau}})^2 - \frac{1}{2} \beta (s_{\ell} s_{\ell + \vec{x}} + s_{\ell + \vec{\tau}} s_{\ell + \vec{\tau} + \vec{x}}),$$

using the periodic boundary conditions. Note that the new S differs from the previous one by a normalization constant so that the first term is 0 when all of the spins are aligned, rather than being $-N\beta_{\tau}$. We can now define

$$L(j, j+1) := \sum_{\ell=1}^{N_x} \frac{\beta_{\tau}}{2} (s_{\ell} - \tilde{s}_{\ell})^2 - \frac{\beta}{2} (s_{\ell} s_{\ell+1} + \tilde{s}_{\ell} \tilde{s}_{\ell+1}),$$

where the sum is over the N_x indices in the spatial row, $\{s\}$ is the configuration of row j and $\{\tilde{s}\}$ is the configuration of row j+1.

Then the partition function is

$$Z = \sum_{\{s\}} e^{-L(1,2)} e^{-L(2,3)} \dots e^{-L(N_{\tau},1)}.$$

As in the previous section, we express Z as the trace of the N_{τ}^{th} power of a transfer matrix \hat{T} describing the transition between rows. Since there are 2^{N_x} configurations for each row, \hat{T} will be a $2^{N_x} \times 2^{N_x}$ matrix. The elements of \hat{T} can be organized by the number of spin flips between configurations, since these determine the value of the first term of L(j, j+1). We want to find β, β_{τ} so that for τ near $0, \hat{T} \approx 1 - \tau \hat{H}$.

$$\begin{split} \hat{T}|_{0 \, \text{flips}} &= e^{\beta \sum_{\ell=1}^{N_x} s_\ell s_{\ell+1}}, \\ \hat{T}|_{1 \, \text{flip}} &= e^{-2\beta_\tau} e^{\frac{\beta}{2} \sum_{\ell=1}^{N_x} (s_\ell s_{\ell+1} + \tilde{s}_\ell \tilde{s}_{\ell+1})}, \\ &\vdots & \vdots \\ \hat{T}|_{k \, \text{flips}} &= e^{-2k\beta_\tau} e^{\frac{\beta}{2} \sum_{\ell=1}^{N_x} (s_\ell s_{\ell+1} + \tilde{s}_\ell \tilde{s}_{\ell+1})} \end{split}$$

The nicest solution to this is to choose $\beta = \lambda \tau$ and $\tau = e^{-2\beta_{\tau}}$ for some $\lambda \in \mathbb{R}_{>0}$. Then to first order approximation in τ ,

$$\hat{T}|_{0 \text{ flips}} \approx 1 - \mu \lambda \tau,$$

$$\hat{T}|_{1 \text{ flip}} \approx \tau (1 + \kappa \lambda \tau) \approx \tau,$$

$$\vdots \qquad \vdots$$

$$\hat{T}|_{k \text{ flips}} \approx \tau^k (1 + \kappa \lambda \tau) \approx 0,$$

where $\mu = \sum_{\ell=1}^{N_x} s_{\ell} s_{\ell+1}$ and $\kappa = \frac{1}{2} \sum_{\ell=1}^{N_x} (s_{\ell} s_{\ell+1} + \tilde{s}_{\ell} \tilde{s}_{\ell+1})$ are independent of τ .

We can now express \hat{T} as $I - \tau \hat{H}$ where the Hamiltonian \hat{H} is given in terms of the Pauli operators at each site ℓ , $\hat{\sigma}_1(\ell)$ and $\hat{\sigma}_3(\ell)$:

$$\hat{H} = -\lambda \sum_{\ell=1}^{N_x} \hat{\sigma}_3(\ell) \hat{\sigma}_3(\ell+1) - \sum_{\ell=1}^{N_x} \hat{\sigma}_1(\ell).$$

2.3. Infinite Lattice Ising Models. The Ising model can be generalized to an infinite volume model by letting the lattice \mathcal{L} grow to \mathbb{Z}^d appropriately. We'll briefly sketch the ideas here - a detailed exposition can be found in [2] in chapters 3 and 6.

These models are extensively treated in [1],[4],[6]. As in the Ising model, we have a lattice $\mathcal{L} \subset \mathbb{Z}^d$ of M points, usually cubic. The spins at each site i of the lattice are now $\vec{x_i} \in \Omega_0 = S^{N-1} = \{\vec{x} \in \mathbb{R}^N \mid ||\vec{x}|| = 1\}$. The action is

$$\mathcal{S} = \sum_{i,j} -J_{i,j} \vec{x_i} \cdot \vec{x_j},$$

where the sum is over nearest-neighbor pairs in \mathcal{L} . Frequently we will take the interaction constants $J_{i,j}$ to depend only on which coordinate of the lattice the points differ in. As in the earlier examples, it may be helpful to renormalize the action so that when all the $\vec{x_i}$ are equal we get $\mathcal{S} = 0$. This results in a renormalized action

$$S = \sum_{i,j} \frac{1}{2} J_{i,j} (\vec{x_i} - \vec{x_j})^2.$$

As before, we are interested in thinking of our d-dimensional lattice as having 1 time dimension and d-1 spatial dimensions and finding a τ -continuum quantum mechanical Hamiltonian H that corresponds to the action as the lattice spacing τ goes to 0. Since the spin configuration space is now continuous, the partition function will now be an integral rather than a summation:

$$Z = \int_{(S^N)^M} d\vec{x_1} \dots d\vec{x_M} e^{-\beta \sum_{i,j} \frac{1}{2} J_{i,j} (\vec{x_i} - \vec{x_j})^2}.$$

3.1. O(2) model on a 1-dimensional lattice. First we consider the O(2) model on a 1-dimensional lattice of N points with periodic boundary conditions. When our configuration space is S^1 , we can parameterize the spins $\vec{x_i} = (\cos(\theta_i), \sin(\theta_i))$ for $\theta \in [0, 2\pi)$. Under this parameterization, the action becomes

$$S = -J \sum_{j=1}^{N} \cos(\theta_j) \cos(\theta_{j+1}) + \sin(\theta_j) \sin(\theta_{j+1}) = -J \sum_{j=1}^{N} \cos(\theta_j - \theta_{j+1}).$$

The corresponding partition function is then

$$Z = \int_{[0,2\pi]^N} \left(\prod_{j=1}^N d\theta_j \right) e^{\sum_{j=1}^N \beta J \cos(\theta_j - \theta_{j+1})},$$

where again $\beta = \frac{1}{kT}$ is the inverse temperature. We now wish find an analogue of the transfer matrix from the analysis of the Ising model.

4. Spherical Model

5. Lattice Gauge Theories

References

- [1] E. Fradkin and L. Susskind. Order and disorder in gauge systems and magnets. *Phys. Rev. D*, 17:2637–2658, May 1978.
- [2] S. Friedli and Y. Velenik. Statistical Mechanics of Lattice Systems: A Concrete Mathematical Introduction. Cambridge University Press, 2017.
- [3] B. C. Hall. Quantum Theory for Mathematicians. Springer-Verlag New York, 2013.
- [4] C. J. Hamer, J. B. Kogut, and L. Susskind. Strong-coupling expansions and phase diagrams for the O(2), O(3), and O(4) Heisenberg spin systems in two dimensions. *Phys. Rev. D*, 19:3091– 3105, May 1979.
- [5] M. Henkel and C. Hoeger. Hamiltonian formulation of the spherical model in d=r+1 dimensions. Zeitschrift für Physik B Condensed Matter, 55(1):67–73, Mar 1984.
- [6] J. B. Kogut. An introduction to lattice gauge theory and spin systems. Rev. Mod. Phys., 51:659–713, Oct 1979.
- [7] M. A. Nielsen. The Fermionic canonical commutation relations and the Jordan-Wigner transform. http://michaelnielsen.org/blog/archive/notes/fermions_and_jordan_wigner.pdf, July 2005.
- [8] C. J. Thompson. Spherical model as an instance of eigenvalue degeneracy. *Journal of Mathematical Physics*, 9(7):1059–1062, 1968.