This report documents inspired insights resulting from data wrangling.

1) What is the distribution of ratings?

By filtering out denominators not equaling 10 (according to project introduction, "These ratings almost always have a denominator of 10."), we find numerators range from 0 to max 1776. If we draw the histogram of these left numerators, it will show only one bar, meaning outliers exist. Using Q3 + 1.5*IQR as an upper limit, the histogram is demonstrated below.

It indicates most ratings from twitter users are in the range of 9 to 13.

2) What is the relationship between favorite count and retweet count for these tweets?

By drawing a scatter plot of favorite count and retweet count, we can see the relationship between these two columns.

The scatter plot shows that favorite_count and retweet_count have a positive correlation. For favorite_count equaling zero, there exist several retweet_counts, ranging from 0 ~ nearly 6000. This shows that users tend to retweet rather than favorite tweets.

3) How good is prediction of dogs for this neural network model?

Join two DataFrame twitter and predict by the column 'tweet_id'. Use the generated column 'dog_type' with not-null value as real dog tweets. Then use the 'p1_dog' column with True value as predicted dog tweets.

237(dog tweets and predicted correct) / 321(all dog tweets) = 0.738

The accuracy of predicting dogs is 73.8%.

4) Analyze sources of tweets.

The 'source' column represents where each tweet is generated. Normalize the counts and draw a pie chart of it.

The pie chart shows more than 90% of tweets are generated from iPhone.