Predictive Maintenance

Wind Turbine Failure Modelling

Dennis Bader Antoine Madrona, Aron Horvath, Samuele Piazzetta

2024.05.30

Unit8_m

1 Why Predictive Maintenance

2 Predictive Maintenance Approaches

3 Real-world example: Wind Turbine Failures

1 Why Predictive Maintenance

2 Predictive Maintenance Approaches

3 Real-world example: Wind Turbine Failures

Why Predictive Maintenance?

- Minimize Downtime: Reduce unexpected equipment failures by predicting issues before they occur.
- **Cost Efficiency**: Lower maintenance costs by addressing problems proactively rather than reactively.
- **Extend Equipment Life**: Regular monitoring and early intervention help extend the lifespan of machinery.
- Increase Safety: Prevents accidents by identifying potential failures in advance.
- **Improve Operational Efficiency**: Ensures continuous and optimal performance of machinery, leading to improved productivity.

1 Why Predictive Maintenance

2 Predictive Maintenance Approaches

3 Real-world example: Wind Turbine Failures

Which Approaches Exist?

- Outlier Detection: Identify deviations from a known distribution of normal operating data
 - Statistical Methods: use techniques like Z-scores or IQR analysis
 - Rule-Based Systems: use predefined thresholds / rules derived from historical data
- ML Modeling: Predict future equipment failures based on historical data
 - Supervised Learning: Train models n labeled data to predict specific failure types.
 - Unsupervised Learning: Detects anomalies without predefined labels, often used for clustering
- **Time Series Analysis**: Forecast future conditions and detect deviation trends indicating potential failures

• **Hybrid Approaches**: Combine multiple methodologies to enhance predictive accuracy and robustness

Our Approach

- ML modeling to estimate the normal operating range (NOR) of some signal:
 - Use only unidirectional causal input features
 - Train a probabilistic model to predict quantile interval (proxy for NOR)
 - o Train on anomaly-free (or cleaned) historic data
- On a scheduled basis (e.g. every couple of hours, ...):
 - Estimate the NOR over most recent past using the trained model
 - Determine when / how much actual signal deviated from NOR
 - Detect anomalies looking at windowed statistics (minimum dev. threshold, minimum number of points, ...)

1 Why Predictive Maintenance

2 Predictive Maintenance Approaches

3 Real-world example: Wind Turbine Failures

Real World Example - Wind Turbine Failures

Dataset characteristics	Sensors & failure/error logs for 4 offshore Wind Turbines (WT) in the West African Gulf of Guinea	
Signals	82 features; wind-turbine components sensors as well as meteorological data	
Size ~70'000 measurements per wind turbine		
Time resolution	10 minutes	
Date	2016-2017	
Source	EDP - Energias de Portugal https://www.edp.com/en/innovation/open-data/reuses/hack-the-wind	

Wind Turbine Components

Components in Dataset

- Gearbox
- Generator
- Generator Bearing
- Transformer
- Hydraulic Group

Error Log Book Analysis

Observations:

- 12 recorded anomalies
- Turbine 6 had by far the most anomalies (6)
- Majority of anomalies related to generator
- Majority of Generator anomalies are related to temperatures

Takeaways:

- Let's focus on Turbine 6
- We try to detect anomalous generator behavior
- By monitoring the temperature

Turbi	ne_ID	Component	Timestamp	Remarks
0	T01	GEARBOX	2016-07-18 02:10:00	Gearbox pump damaged
1	T06	HYDRAULIC_GROUP	2016-04-04 18:50:00	Error in pitch regulation
2	T06	GENERATOR	2016-07-11 19:50:00	Generator replaced
3	T06	GENERATOR	2016-07-24 17:00:00	Generator temperature sensor failure
4	T06	GENERATOR	2016-09-04 08:10:00	High temperature generator error
5	T06	GENERATOR	2016-10-02 17:10:00	Refrigeration system and temperature sensors i
6	T06	GENERATOR	2016-10-27 16:30:00	Generator replaced
7	T07	GENERATOR_BEARING	2016-04-30 12:40:00	High temperature in generator bearing (replace
8	T07	TRANSFORMER	2016-07-10 03:50:00	Hig <mark>h temperature</mark> transformer
9	T07	TRANSFORMER	2016-08-23 02:20:00	Hig <mark>h temperatur</mark> e transformer. Transformer refr
14	T11	GENERATOR	2016-03-03 19:00:00	Electric circuit error in generator
15	T11	HYDRAULIC_GROUP	2016-10-17 17:40:00	Hydraulic group error in the brake circuit

Predictive Maintenance Task Definition

- **Goal**: detect anomalies early in generator by monitoring generator health on a scheduled basis (post hoc)
- How: Model the normal operating range (NOR) of the temperature using unidirectional causal signals (UCS)
- Target signal: Generator Bearing Temperature Sensor
- Input features: We do post hoc monitoring, so we can use measurements of any UCS signal at time T to model the NOR at any time T

Use only unidirectional causal signals as model input

Unidirectional Causal Signals (UCS): Features that can cause the temperature to change, but which are not themselves affected by a change in temperature (or a temperature anomaly in the generator)

- Bad features (available):
 - past values of the bearing temperature
 - o another temperature sensor close to it
 - 0 ...
- Good features (available):
 - Generator Rotational Speed (heat/energy source)
 - Nacelle (turbine housing) temperature (heat source)
 - Generated Active Power (heat source)
 - o ...
- Good features (not available):
 - Cooling liquid flow (but not the liquid temperature!)
 - o ...

There are other useful features that can be generated

Other UCS features that can be generated

- Timer since Rotational Speed last crossed 1200 RPM mark (linear proxy for heat buildup/cooldown over time)
- Missing date flag
- Timer since last significant change in power generation
- ...

Selected Feature Correlation with Bearing Temperature

1 Why Predictive Maintenance

2 Predictive Maintenance Approaches

3 Real-world example: Wind Turbine Failures

Time To Work

- Open: https://colab.google/
- Click on "Open Colab"
- On the left sidebar click GitHub
 - Enter GitHub URL: "unit8co"
 - Select repository: "unit8co/sds2024-anomaly-detection"
 - Select notebook: "colab_1_Predictive_workshop.ipynb"

Unit8... unit8.com thank you!