```
In [50]: import pandas as pd
   import seaborn as sns
   import numpy as np
   from matplotlib import pyplot as plt
```

In [51]: aerofit = pd.read_csv('Desktop/aerofit_treadmill.txt')

In [52]: aerofit

Out[52]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
0	KP281	18	Male	14	Single	3	4	29562	112
1	KP281	19	Male	15	Single	2	3	31836	75
2	KP281	19	Female	14	Partnered	4	3	30699	66
3	KP281	19	Male	12	Single	3	3	32973	85
4	KP281	20	Male	13	Partnered	4	2	35247	47
175	KP781	40	Male	21	Single	6	5	83416	200
176	KP781	42	Male	18	Single	5	4	89641	200
177	KP781	45	Male	16	Single	5	5	90886	160
178	KP781	47	Male	18	Partnered	4	5	104581	120
179	KP781	48	Male	18	Partnered	4	5	95508	180

180 rows × 9 columns

In [53]: aerofit.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Product	180 non-null	object
1	Age	180 non-null	int64
2	Gender	180 non-null	object
3	Education	180 non-null	int64
4	MaritalStatus	180 non-null	object
5	Usage	180 non-null	int64
6	Fitness	180 non-null	int64
7	Income	180 non-null	int64
8	Miles	180 non-null	int64

dtypes: int64(6), object(3)
memory usage: 10.6+ KB

In [54]: aerofit.describe()

Out[54]:

	Age	Education	Usage	Fitness	Income	Miles
count	180.000000	180.000000	180.000000	180.000000	180.000000	180.000000
mean	28.788889	15.572222	3.455556	3.311111	53719.577778	103.194444
std	6.943498	1.617055	1.084797	0.958869	16506.684226	51.863605
min	18.000000	12.000000	2.000000	1.000000	29562.000000	21.000000
25%	24.000000	14.000000	3.000000	3.000000	44058.750000	66.000000
50%	26.000000	16.000000	3.000000	3.000000	50596.500000	94.000000
75%	33.000000	16.000000	4.000000	4.000000	58668.000000	114.750000
max	50.000000	21.000000	7.000000	5.000000	104581.000000	360.000000

```
In [55]: aerofit.notna().sum()
Out[55]: Product
                            180
                            180
          Age
          Gender
                            180
          Education
                            180
          MaritalStatus
                            180
                            180
          Usage
          Fitness
                            180
          Income
                            180
          Miles
                            180
          dtype: int64
In [56]: | aerofit.nunique()
Out[56]: Product
                             3
                            32
          Age
          Gender
                             2
          Education
                             8
                             2
          MaritalStatus
          Usage
                             6
                             5
          Fitness
          Income
                            62
          Miles
                            37
          dtype: int64
```

In [57]: sns.scatterplot(data=aerofit,x='Age',y='Income',hue='Product')

Out[57]: <AxesSubplot:xlabel='Age', ylabel='Income'>


```
In [58]: #KP281 is mostly bought by people with income>50000 #KP481 and 781 is mostly bought by people with income<50000
```

In [59]: sns.countplot(data=aerofit,x='Gender',hue='Product')
#Females have not bought 781, for it target base should be male

Out[59]: <AxesSubplot:xlabel='Gender', ylabel='count'>

In [60]: sns.countplot(data=aerofit,x='Education',hue='Product')

Out[60]: <AxesSubplot:xlabel='Education', ylabel='count'>


```
In [134]: print(aerofit.value_counts('Product'))
           print(aerofit.value_counts('Gender'))
           print(aerofit.value_counts('MaritalStatus'))
          print(aerofit.value counts('Usage'))
           print(aerofit.value_counts('Fitness'))
           #most sevalue_countsct is 281
           Product
           KP281
                    80
                    60
          KP481
          KP781
                    40
           dtype: int64
           Gender
          Male
                     104
           Female
                      76
           dtype: int64
          MaritalStatus
           Partnered
                        107
           Single
                         73
           dtype: int64
           Usage
           3
                69
                52
           4
           2
                33
           5
                17
                 7
           6
                 2
           7
           dtype: int64
           Fitness
                97
           3
           5
                31
           2
                26
           4
                24
                 2
           dtype: int64
 In [62]: sns.countplot(data=aerofit,x='Fitness',hue='Product')
```

Out[62]: <AxesSubplot:xlabel='Fitness', ylabel='count'>


```
In [63]: sns.countplot(data=aerofit,x='MaritalStatus',hue='Product')
```

Out[63]: <AxesSubplot:xlabel='MaritalStatus', ylabel='count'>

In [64]: sns.histplot(data=aerofit,x='Age',hue='Product')

Out[64]: <AxesSubplot:xlabel='Age', ylabel='Count'>

In [65]: pd.crosstab(columns=aerofit['Product'],index=1)

Out[65]:

Product		KP281	KP481	KP781	
	row_0				
	1	90	60	40	

In [66]: sns.barplot(data=aerofit,x='Product',y='Miles')

Out[66]: <AxesSubplot:xlabel='Product', ylabel='Miles'>

In [67]: sns.barplot(data=aerofit,x='Product',y='Usage',hue='Gender')

Out[67]: <AxesSubplot:xlabel='Product', ylabel='Usage'>

In [68]: sns.pairplot(data=aerofit)

Out[68]: <seaborn.axisgrid.PairGrid at 0x14cf2cd0>

_	μ.	.	
In	L.]:	

In [69]: #two-way contingency tables

pd.crosstab([aerofit.Age, aerofit.Gender], aerofit.Product, margins = False)

Out[69]:

	Product	KP281	KP481	KP781
Age	Gender			
18	Male	1	0	0
19	Female	1	0	0
	Male	2	1	0
20	Female	1	1	0
	Male	1	2	0
21	Female	2	1	0
	Male	2	2	0
22	Female	3	0	0
	Male	1	0	3
23	Female	3	3	1
	Male	5	4	2
24	Female	3	2	1
	Male	2	1	3
25	Female	4	5	1
	Male	3	6	6
26	Female	3	2	1
	Male	4	1	1
27	Female	2	0	0
	Male	1	1	3
28	Female	4	0	1
	Male	2	0	2
29	Female	2	1	0
	Male	1	0	2
30	Female	0	2	1
	Male	2	0	2
31	Female	1	2	0
	Male	1	1	1
32	Female	1	0	0
	Male	1	2	0
33	Female	2	3	1
	Male	0	2	0

	Product	KP281	KP481	KP781
Age	Gender			
34	Female	1	1	0
	Male	1	2	1
35	Female	2	2	0
	Male	1	2	1
36	Male	1	0	0
37	Female	1	1	0
38	Female	1	1	0
	Male	3	1	1
39	Male	1	0	0
40	Female	0	2	0
	Male	1	1	1
41	Male	1	0	0
42	Male	0	0	1
43	Male	1	0	0
44	Female	1	0	0
45	Male	0	1	1
46	Female	1	0	0
47	Male	1	0	1
48	Male	0	1	1
50	Female	1	0	0

```
In [70]: aerofit.isnull().sum()
         #No null values
Out[70]: Product
                           0
                           0
         Age
         Gender
                           0
         Education
                           0
         MaritalStatus
                           0
         Usage
                           0
         Fitness
                           0
         Income
                           0
         Miles
         dtype: int64
```

```
In [81]: prob1 = pd.crosstab([aerofit.MaritalStatus], aerofit.Product, margins = False)
prob1
```

Out[81]:

Product	KP281	KP481	KP/81	
MaritalStatus				
Partnered	48	36	23	
Single	32	24	17	

```
In [93]: #probablity
print(prob1.loc[['Single'][0]]/prob1.loc['Single'].sum())
print(prob1.loc[['Partnered'][0]]/prob1.loc['Partnered'].sum())
```

```
Product
KP281 0.438356
KP481 0.328767
KP781 0.232877
```

Name: Single, dtype: float64

Product

KP281 0.448598
KP481 0.336449
KP781 0.214953

Name: Partnered, dtype: float64

In [97]: prob2=pd.crosstab([aerofit.Usage, aerofit.Fitness], aerofit.Product, margins = Fa
prob2

Out[97]:

	Product	KP281	KP481	KP781
Usage	Fitness			
2	1	0	1	0
	2	9	5	0
	3	10	8	0
3	1	1	0	0
	2	4	6	0
	3	27	20	0
	4	5	5	0
	5	0	0	1
4	2	1	1	0
	3	17	9	4
	4	3	2	2
	5	1	0	12
5	3	0	2	0
	4	1	1	4
	5	1	0	8
6	4	0	0	1
	5	0	0	6
7	5	0	0	2

```
In [99]: #probablity
```

```
print(prob2.loc[[2][0]]/prob2.loc[2].sum())
print(prob2.loc[[3][0]]/prob2.loc[3].sum())
print(prob2.loc[[4][0]]/prob2.loc[4].sum())
print(prob2.loc[[5][0]]/prob2.loc[5].sum())
print(prob2.loc[[6][0]]/prob2.loc[6].sum())
print(prob2.loc[[7][0]]/prob2.loc[7].sum())
```

Product	KP28	1	KP481	KP781
Fitness				
1	0.00000	0.0	71429	NaN
2	0.47368	4 0.3	357143	NaN
3	0.52631	6 0.5	71429	NaN
Product	KP28	1	KP481	KP781
Fitness				
1	0.02702	7 0.6	00000	0.0
2	0.10810	8 0.1	.93548	0.0
3	0.72973	0 0.6	45161	0.0
4	0.13513	5 0.1	61290	0.0
5	0.00000	0.0	00000	1.0
Product	KP28	1	KP481	KP781
Fitness				
2	0.04545	5 0.0	83333	0.000000
3	0.77272	7 0.7	750000	0.222222
4	0.13636	4 0.1	.66667	0.111111
5	0.04545	5 0.0	00000	0.666667
Product	KP281	KP4	81	KP781
Fitness				
3	0.0	0.6666	67 0.	000000
4	0.5	0.3333	33 0.	333333
5	0.5	0.0000	00 0.	666667
Product	KP281	KP481	KP	781
Fitness				
4	NaN	NaN	0.142	857
5	NaN	NaN	0.857	143
Product	KP281	KP481	KP781	
Fitness				
5	NaN	NaN	1.0	

In [103]: prob3=pd.crosstab([aerofit.Education], aerofit.Product, margins = False)
prob3

Out[103]:

Product	KP281	KP481	KP781
Education			
12	2	1	0
13	3	2	0
14	30	23	2
15	4	1	0
16	39	31	15
18	2	2	19
20	0	0	1
21	0	0	3

```
In [106]: print(prob3.loc[[12][0]]/prob3.loc[12].sum())
          print(prob3.loc[[13][0]]/prob3.loc[13].sum())
          print(prob3.loc[[14][0]]/prob3.loc[14].sum())
          print(prob3.loc[[15][0]]/prob3.loc[15].sum())
          print(prob3.loc[[16][0]]/prob3.loc[16].sum())
          print(prob3.loc[[18][0]]/prob3.loc[18].sum())
          print(prob3.loc[[20][0]]/prob3.loc[20].sum())
          print(prob3.loc[[21][0]]/prob3.loc[21].sum())
          Product
          KP281
                    0.666667
          KP481
                    0.333333
                    0.000000
          KP781
          Name: 12, dtype: float64
          Product
          KP281
                    0.6
          KP481
                    0.4
          KP781
                    0.0
          Name: 13, dtype: float64
          Product
          KP281
                    0.545455
          KP481
                    0.418182
          KP781
                    0.036364
          Name: 14, dtype: float64
          Product
          KP281
                    0.8
          KP481
                    0.2
          KP781
                    0.0
          Name: 15, dtype: float64
          Product
          KP281
                    0.458824
          KP481
                    0.364706
                    0.176471
          KP781
          Name: 16, dtype: float64
          Product
          KP281
                    0.086957
                    0.086957
          KP481
          KP781
                    0.826087
          Name: 18, dtype: float64
          Product
          KP281
                    0.0
          KP481
                    0.0
          KP781
                    1.0
          Name: 20, dtype: float64
          Product
          KP281
                    0.0
          KP481
                    0.0
          KP781
                    1.0
          Name: 21, dtype: float64
```

```
In [108]: prob4=pd.crosstab([aerofit.Gender], aerofit.Product, margins = False)
prob4
```

Out[108]:

```
        Product
        KP281
        KP481
        KP781

        Gender
        40
        29
        7

        Male
        40
        31
        33
```

```
In [124]: print(prob4.loc[['Female'][0]]/prob4.loc['Female'].sum())
    print(prob4.loc[['Male'][0]]/prob4.loc['Male'].sum())
```

Product
KP281 0.526316
KP481 0.381579
KP781 0.092105

Name: Female, dtype: float64

Product

KP281 0.384615
KP481 0.298077
KP781 0.317308

Name: Male, dtype: float64

In [73]: #convert categorical into numerical values

In [74]: #Creating new df
aerofit1=aerofit

In [75]: aerofit1

Out[75]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
0	KP281	18	Male	14	Single	3	4	29562	112
1	KP281	19	Male	15	Single	2	3	31836	75
2	KP281	19	Female	14	Partnered	4	3	30699	66
3	KP281	19	Male	12	Single	3	3	32973	85
4	KP281	20	Male	13	Partnered	4	2	35247	47
175	KP781	40	Male	21	Single	6	5	83416	200
176	KP781	42	Male	18	Single	5	4	89641	200
177	KP781	45	Male	16	Single	5	5	90886	160
178	KP781	47	Male	18	Partnered	4	5	104581	120
179	KP781	48	Male	18	Partnered	4	5	95508	180

180 rows × 9 columns

In [77]: | aerofit1

Out[77]:

	Product	Age	Gender	Education	MaritalStatus	Usage	Fitness	Income	Miles
0	KP281	18	Male	14	Single	3	4	29562	112
1	KP281	19	Male	15	Single	2	3	31836	75
2	KP281	19	Female	14	Partnered	4	3	30699	66
3	KP281	19	Male	12	Single	3	3	32973	85
4	KP281	20	Male	13	Partnered	4	2	35247	47
175	KP781	40	Male	21	Single	6	5	83416	200
176	KP781	42	Male	18	Single	5	4	89641	200
177	KP781	45	Male	16	Single	5	5	90886	160
178	KP781	47	Male	18	Partnered	4	5	104581	120
179	KP781	48	Male	18	Partnered	4	5	95508	180

180 rows × 9 columns

In [78]: sns.heatmap(aerofit1.corr(), cmap="YlGnBu", annot=True)

Out[78]: <AxesSubplot:>

In [79]: aerofit1.corr()

Out[79]:

	Age	Education	Usage	Fitness	Income	Miles
Age	1.000000	0.280496	0.015064	0.061105	0.513414	0.036618
Education	0.280496	1.000000	0.395155	0.410581	0.625827	0.307284
Usage	0.015064	0.395155	1.000000	0.668606	0.519537	0.759130
Fitness	0.061105	0.410581	0.668606	1.000000	0.535005	0.785702
Income	0.513414	0.625827	0.519537	0.535005	1.000000	0.543473
Miles	0.036618	0.307284	0.759130	0.785702	0.543473	1.000000

In []:	
In []:	
In []:	