Discrete Mathematics Lecture 12

Liangfeng Zhang
School of Information Science and Technology
ShanghaiTech University

Summary of Lecture 11

THEOREM: There is a T-route from $A = (a, \alpha)$ to $B = (b, \beta)$ iff (1) b > a; (2) $b - a \ge |\beta - \alpha|$; and (3) $2|(b + \beta - a - \alpha)$.

THEOREM: If $A = (a, \alpha), B = (b, \beta)$ satisfy the T-condition.

- # of T-routes from A to B is $\frac{(b-a)!}{(\frac{b-a}{a} + \frac{\beta-\alpha}{a})!(\frac{b-a}{a} \frac{\beta-\alpha}{a})!}$
- $\alpha, \beta > 0$: # of T-Routes intersecting the x-axis is $\frac{(b-a)!}{(\frac{b-a}{2} + \frac{\beta+\alpha}{2})!(\frac{b-a}{2} \frac{\beta+\alpha}{2})!}$

THEOREM: The number of solutions of the equation system

$$\begin{cases} x_1 + x_2 + \dots + x_{2n+1} = n \\ x_1 + x_2 + \dots + x_i < i/2, i = 1, 2, \dots, 2n + 1 \\ x_i \in \{0, 1\}, i = 1, 2, \dots, 2n + 1 \end{cases}$$

is
$$C_n = \frac{(2n)!}{n!(n+1)!}$$

is $C_n = \frac{(2n)!}{n!(n+1)!}$ Catalan Number: # of ways of parenthesizing $a_1 * a_2 * \cdots * a_n * a_{n+1}$

Combinations of Sets

- **DEFINITION:** Let $A = \{a_1, ..., a_n\}$ and let $r \in \{0, 1, ..., n\}$.
 - r-combination of A: an r-subset of A.
 - Notation: $\{a_{i_1}, \dots, a_{i_r}\}$ with $1 \le i_1 < \dots < i_r \le n$
 - $\binom{n}{r}$: the number of r-combinations of an n-element set $\binom{n}{r}$ r! $= \binom{n}{r}$
- **THEOREM:** $\binom{n}{r} = \frac{n!}{r!(n-r)!}$ for all $n \in \mathbb{Z}^+$ and $r \in \{0,1,\ldots,n\}$.
- **DEFINITION:** Let $A = \{a_1, ..., a_n\}$ and let $r \ge 0$.
 - *r*-combination of *A* with repetition: a multiset $\{x_1 \cdot a_1, ..., x_n \cdot a_n\}$ of r elements, where $x_1, ..., x_n \ge 0$ are integers and $x_1 + \cdots + x_n = r$.
 - Notation: $\{a_{i_1}, \dots, a_{i_r}\}$ with $1 \le i_1 \le i_2 \le \dots \le i_r \le n$
- **THEOREM**: The number of r-combinations of an n element set with repetition is $\binom{n+r-1}{r}$

Combinations of Sets

- u: the set of all r-combinations of A with repetition
- \mathcal{V} : the set of all r-combinations of [n+r-1] without repetition
 - Let $U = \{u_1, u_2, ..., u_r\} \in \mathcal{U} \text{ and } 1 \le u_1 \le u_2 \le ... \le u_r \le n.$
 - $1 \le u_1 < u_2 + 1 < u_3 + 2 < \dots < u_r + r 1 \le n + r 1$ 保证收入后
 - $\{u_1, u_2 + 1, \dots, u_r + r 1\} \in \mathcal{V}$
 - $f: \mathcal{U} \to \mathcal{V} \{u_1, u_2, ..., u_r\} \mapsto \{u_1, u_2 + 1, ..., u_r + r 1\}$
 - f is bijective. Hence, $|\mathcal{U}| = |\mathcal{V}| = {n+r-1 \choose r}$

HEOREM: The number of natural number solutions of the

equation
$$x_1 + x_2 + \dots + x_n = r$$
 is $\binom{n+r-1}{r}$.

- $\mathcal{X} = \{(x_1, ..., x_n) : x_1, ..., x_n \in \mathbb{N} \text{ and } x_1 + \dots + x_n = r\}$
- y: the set of all r-combinations of [n] with repetition
- $f: \mathcal{X} \to \mathcal{Y} (x_1, ..., x_n) \mapsto \{x_1 \cdot 1, x_2 \cdot 2, ..., x_n \cdot n\}$
 - f is bijective. Hence, $|\mathcal{X}| = |\mathcal{Y}| = {n+r-1 \choose r}$.

Application

EXAMPLE: What is the value of k after the program execution?

- k := 0;
- for i_1 : = 1 to n do
 - for i_2 : = 1 to i_1 do
 - •
- for i_r : = 1 to i_{r-1} do
 - $k \coloneqq k + 1$;

Analysis:

- Loop variables: $1 \le i_r \le i_{r-1} \le \dots \le i_1 \le n$
- The number of iterations is equal to the number of r-combinations of the set [n] with repetition
- In every iteration, *k* increases by 1.
 - After the program execution, $k = \binom{n+r-1}{r}$

Combinations of Multiset

- **DEFINITION:** Let $A = \{n_1 \cdot a_1, n_2 \cdot a_2, ..., n_k \cdot a_k\}$ be an nmultiset. Let $r \in \{0, 1, ..., n\}$.
 - r-combination of A: an r-subset (multiset) of A
 - Notation: $\{x_1 \cdot a_1, x_2 \cdot a_2, ..., x_k \cdot a_k\}$, where $0 \le x_i \le n_i$ for every $i \in [k]$ and $x_1 + x_2 + \cdots + x_k = r$.

EXAMPLE: $A = \{1 \cdot a, 2 \cdot b, 3 \cdot c\}$

• $\{1 \cdot b, 2 \cdot c\}$ is a 3-combination of *A*; a 3-subset of *A*

REMARK:

- For every $r \in \{0,1,...,n\}$, an r-combination of $A = \{a_1, a_2, ..., a_n\}$ without repetition is an r-combination of $\{1 \cdot a_1, 1 \cdot a_2, ..., 1 \cdot a_n\}$.
- For every $r \ge 0$, an r-combination of $A = \{a_1, a_2, ..., a_n\}$ with repetition is an r-combination of $\{\infty \cdot a_1, \infty \cdot a_2, ..., \infty \cdot a_n\}$.

Inverse Binomial Transform

DEFINITION: The **binomial transform** of $\{a_n\}_{n\geq s}$ is a sequence $\{b_n\}_{n\geq s}$ such that

$$b_n = \sum_{k=s}^n \binom{n}{k} a_k \qquad (1)$$

 $b_n = \sum_{k=s}^n \binom{n}{k} a_k$ (1) **DEFINITION:** The **inverse binomial transform** of $\{a_n\}_{n \geq s}$ is a sequence $\{b_n\}_{n\geq s}$ such that

$$b_n = \sum_{k=s}^{n} (-1)^{n-k} \binom{n}{k} a_k \quad (2)$$

QUESTION: Given (1), how to find the sequence $\{a_n\}$?

- Answer: $\{a_n\}$ is the inverse binomial transform of $\{b_n\}$
- Application: determine $\{a_n\}$ via $\{b_n\}$
- Proof?

Combinatorial Proofs

DEFINITION: A combinatorial proof of an identity L = R is

- **a double counting proof,** which shows that L, R count the same set of objects but in different ways:
- L = |X| = R and L, R count |X| in different ways.

 a bijective proof, which shows a bijection between the sets of objects counted by *L* and *R*:
 - L = |X|, R = |Y| and there is a bijection $f: X \to Y$.

EXAMPLE:
$$\binom{n}{r} = \binom{n}{n-r}$$

- $X = \{s \in \{0,1\}^n : s \text{ contains } \underline{r \text{ 0s}}\} = \{s \in \{0,1\}^n : s \text{ contains } \underline{n-r \text{ 1s}}\}$
 - $\binom{n}{r} = |X|$
 - $\binom{n}{n-r} = |X|$

Inverse Binomial Transform

LEMMA: $\binom{n}{\nu}\binom{k}{r} = \binom{n}{r}\binom{n-r}{\nu-r}$ for any $n, k, r \in \mathbb{N}$ such that $n \geq k \geq r$.

- Let $U = \{u_1, u_2, ..., u_n\}$ be a finite set of n elements
- $S = \{(A, B): A \subseteq U, |A| = k, B \subseteq A, |B| = r\}$
 - choose A then choose B: $|S| = \binom{n}{k} \binom{k}{r}$, the left-hand side
 - choose B then choose A: $|S| = \binom{n}{r} \binom{n-r}{k-r}$, the right-hand side

LEMMA:
$$\sum_{k=r}^{n} (-1)^{n-k} \binom{n}{k} \binom{k}{r} = \begin{cases} 1 & n=r \\ 0 & n>r \end{cases}$$
 when $n \ge r$.

•
$$\binom{n}{k}\binom{k}{r} = \binom{n}{r}\binom{n-r}{k-r}$$
 as $n \ge k \ge r \ge 0$

• left =
$$\sum_{k=r}^{n} (-1)^{n-k} \binom{n}{r} \binom{n-r}{k-r} = \binom{n}{r} \sum_{k=r}^{n} (-1)^{(n-r)-(k-r)} \binom{n-r}{k-r}$$

$$= \binom{n}{r} \sum_{i=0}^{n-r} (-1)^{(n-r)-i} \binom{n-r}{i}$$

$$= \mathbf{right}$$

Inverse Binomial Transform

LEMMA: Let $n, s \in \mathbb{N}$, $s \leq n$. Then $\sum_{k=s}^{n} \sum_{i=s}^{k} a_{k,i} = \sum_{i=s}^{n} \sum_{k=i}^{n} a_{k,i}$

				K		
k i	S	s+1	s+2	• • •	n	row sum
S	$a_{s,s}$			•••		$\alpha_{\scriptscriptstyle S}$
s + 1	$a_{s+1,s}$	$a_{s+1,s+1}$		•••		α_{s+1}
s + 2	$a_{s+2,s}$	$a_{s+2,s+1}$	$a_{s+2,s+2}$	•••		α_{s+2}
:	:	:	:	• • •	:	:
n	$a_{n,s}$	$a_{n,s+1}$	$a_{n,s+2}$	•••	$a_{n,n}$	α_n
col sum	$eta_{\scriptscriptstyle S}$	β_{s+1}	β_{s+2}	• • •	β_n	ΣΣ

THEOREM: Let $\{a_n\}$, $\{b_n\}$ be two sequences s.t. for all $n \ge s$,

$$a_n = \sum_{k=s}^n \binom{n}{k} b_k$$
. Then $b_n = \sum_{k=s}^n (-1)^{n-k} \binom{n}{k} a_k$ $(n \ge s)$.

•
$$\sum_{k=s}^{n} (-1)^{n-k} \binom{n}{k} a_k = \sum_{k=s}^{n} (-1)^{n-k} \binom{n}{k} \sum_{i=s}^{k} \binom{k}{i} b_i$$

$$= \sum_{i=s}^{n} \sum_{k=i}^{n} (-1)^{n-k} \binom{n}{k} \binom{k}{i} b_i = b_n$$

Distributing Objects into Boxes

The Problem Statement: distributing n objects into k boxes

- Objects may be distinguishable (labeled with numbers 1, 2, ..., n) or indistinguishable (unlabeled) 745
 - Boxes may be distinguishable (**labeled** with numbers 1, 2, ..., k) or indistinguishable (**unlabeled**)
 - ? What is the # of distributing *n* objects into *k*?

Problem Type	Objects	Boxes
1	labeled	labeled
2	unlabeled	labeled
3	labeled	unlabeled
4	unlabeled	unlabeled

Problem Classification

Problem: distributing n labeled objects into k labled boxes

THEOREM: The number of ways of distributing n labeled objects into k labeled boxes such that n_i objects are placed into box i for every $i \in [k]$ is $N_1 = n!/(n_1! n_2! \cdots n_k!)$.

- *S*: the set of the expected distributing schemes
- $|S| = \binom{n}{n_1} \binom{n-n_1}{n_2} \cdots \binom{n-n_1-\cdots-n_{k-1}}{n_k} = \frac{n!}{n_1!n_2!\cdots n_k!}$

REMARK: $N_1 = \#$ of permutations of $\{n_1 \cdot 1, ..., n_k \cdot k\}$.

Problem: distributing n unlabeled objects into k labled boxes

THEOREM: The number of ways of distributing n unlabeled objects into k labeled boxes is $N_2 = \binom{n+k-1}{n}$.

- *S*: the set of the expected distributing schemes
- $T = \{(n_1, n_2, \dots, n_k): n_1 + n_2 + \dots + n_k = n; n_1, n_2, \dots, n_k \in \mathbb{N}\}$
- $f: T \to S$ $(n_1, n_2, ..., n_k) \mapsto$ a scheme where n_i objects are put into box i
 - f is a bijection. Hence, $|S| = |T| = {n+k-1 \choose n}$

REMARK: $N_2 = \#$ of *n*-combinations of $\{\infty \cdot 1, ..., \infty \cdot k\}$

Problem: distributing n labeled objects into k unlabled boxes

EXAMPLE: Assigning 4 employees {a, b, c, d} into 3 unlabeled offices. Each office can contain any number of employees.

- 4 0 0: [abcd --]
- 3 1 0: [abc d -] [abd c -] [acd b -] [bcd a -]
- 2 2 0: [ab cd -] [ac bd -] [ad bc -]
- 2 1 1: [ab c d][ac b d] [ad b c] [bc a d] [bd a c] [cd a b]

REMARK: The schemes can be classified with $\{n_1, ..., n_k\}$

$S_2(n,j)$ 第2类斯特林数

DEFINITION: $S_2(n, j)$, the **Stirling number of the second kind**, is defined as the number of different ways of distributing n labeled objects into j unlabeled boxes so that no box is empty.

THEOREM: $S_2(n,j) = \frac{1}{j!} \sum_{i=0}^{j-1} (-1)^i {j \choose i} (j-i)^n$ when $n \ge j \ge 1$.

THEOREM: The number of schemes of distributing n labeled objects into k unlabeled boxes is

$$\sum_{j=1}^{k} S_2(n,j) = \sum_{j=1}^{k} \frac{1}{j!} \sum_{i=0}^{j-1} (-1)^i \binom{j}{i} (j-i)^n$$

• $S_2(n, j)$: the number of schemes that use exactly j boxes, j = 1, 2, ..., k

$S_2(n,j)$

THEOREM:
$$S_2(n,j) = \frac{1}{j!} \sum_{i=0}^{j-1} (-1)^i {j \choose i} (j-i)^n$$
 when $n \ge j \ge 1$.

- T(n, j): the number of ways of distributing n labeled objects into j labeled boxes such that no box is empty
 - $T(n,j) = j! \cdot S_2(n,j)$
 - T(n,j) = ?
- *X*: the set of ways of distributing *n* labeled objects into *j* labeled boxes.
 - By the product rule, $|X| = j^n$
- $X_i \subseteq X$: the set of ways where exactly *i* boxes are used, i = 1, 2, ..., j
 - $\{X_1, X_2, ..., X_j\}$ is a partition of X and $|X_i| = {j \choose i} T(n, i)$
 - $j^n = |X| = \sum_{i=1}^j |X_i| = \sum_{i=1}^j {j \choose i} T(n, i)$
 - $T(n,j) = \sum_{i=1}^{j} (-1)^{j-i} {j \choose i} i^n = \sum_{i=0}^{j-1} (-1)^i {j \choose i} (j-i)^n //\text{inversion}$
- $S_2(n,j) = \frac{1}{j!} \cdot T(n,j) = \frac{1}{j!} \sum_{i=0}^{j-1} (-1)^i {j \choose i} (j-i)^n$

Problem: distributing n unlabeled objects into k unlabled boxes

EXAMPLE: # of ways of distributing 4 identical books into 3 identical boxes.

- 400
- 310
- 220
- 211

REMARK: The schemes are determined by $\{n_1, ..., n_k\}$

Partitions of Integers

DEFINITION: $n = a_1 + a_2 + \dots + a_j$ is called an *n***-partition** with exactly *j* parts if $a_1 \ge a_2 \ge \dots \ge a_j$ are all positive integers.

- $p_j(n) = |\{(a_1, ..., a_j): a_1 + \cdots + a_j = n, a_1 \ge a_2 \ge \cdots \ge a_j \ge 1 \text{ are integers}\}|$
 - $p_j(n)$: # of ways of writing n as the sum of j positive integers.

EXAMPLE: The integer 4 has four different partitions:

- 4 = 4
- 4 = 3 + 1
- 4 = 2 + 2
- 4 = 2 + 1 + 1

REMARK: solution to the type 4 problem= $\sum_{i=1}^{k} p_i(n)$

Partitions of Integers

THEOREM: For $n \in \mathbb{Z}^+$, $j \in [n]$, $p_j(n+j) = \sum_{k=1}^j p_k(n)$

- $p_1(n) = 1, p_n(n) = 1$
- Let $S_k = \{\text{partitions of } n \text{ into } k \text{ positive integers} \}, k \in [j]$
- Let $S = \bigcup_{k=1}^{j} S_k$.
 - $|S| = |S_1| + \dots + |S_i| = p_1(n) + \dots + p_i(n)$
- Let $T = \{\text{partitions of } n + j \text{ into } j \text{ positive integers} \}$
 - $|T| = p_i(n+j)$
- $f: S \to T$ $(n_1, \dots, n_k) \mapsto (n_1 + 1, \dots, n_k + 1, 1, \dots, 1)$ f is bijective

 - |T| = |S|

EXAMPLE: determine $p_3(6)$ and $p_4(6)$ with the above theorem

- $p_3(6) = p_3(3+3) = p_1(3) + p_2(3) + p_3(3) = 1 + 1 + 1 = 3$
- $p_4(6) = p_4(2+4) = p_1(2) + p_2(2) + p_3(2) + p_4(2) = 1 + 1 + 0 + 0 = 2$

Computing $p_i(n)$ Recursively

Principle of Inclusion-Exclusion

Problem: S is a finite set and $A_1, A_2, ..., A_n \subseteq S$.

- $|\bigcup_{i=1}^n A_i| = ?$
- $|\bigcap_{i=1}^n A_i| = ?$

EXAMPLE: Let *S* be the set of permutations of [n]. Find |A| for $A = \{x_1 x_2 \dots x_n : x_1 x_2 \dots x_n \in S; x_i \neq i \text{ for all } i \in [n]\}.$

- $A_i = \{x_1 x_2 \cdots x_n : x_1 x_2 \cdots x_n \in S; x_i = i\}, i = 1, 2, ..., n$
 - $A = S \bigcup_{i=1}^{n} A_i$
 - |S| = n!
 - $|\bigcup_{i=1}^n A_i| = ?$

Principle of IE (Two Sets)

THEOREM: Let S be a finite set. Let A_1 , A_2 be subsets of S. Then

•
$$|S - A_1| = |S| - |A_1|$$
; $|A_1 - A_2| = |A_1| - |A_1 \cap A_2|$

•
$$S = A_1 \cup (S - A_1), A_1 \cap (S - A_1) = \emptyset;$$

•
$$\{A_1, S - A_1\}$$
 is a partition of S

•
$$|S| = |A_1| + |S - A_1|$$

•
$$|S - A_1| = |S| - |A_1|$$

•
$$A_1 - A_2 = A_1 - A_1 \cap A_2$$

•
$$|A_1 - A_2| = |A_1| - |A_1 \cap A_2|$$

•
$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$$

•
$$A_1 \cup A_2 = (A_1 - A_2) \cup A_2, (A_1 - A_2) \cap A_2 = \emptyset;$$

•
$$\{A_1 - A_2, A_2\}$$
 is a partition of $A_1 \cup A_2$

•
$$|A_1 \cup A_2| = |A_1 - A_2| + |A_2| = |A_1| - |A_1 \cap A_2| + |A_2|$$

•
$$|A_1 \cap A_2| = |A_1| + |A_2| - |A_1 \cup A_2|$$

Principle of IE (Three Sets)

THEOREM: Let S be a finite set. Let A_1 , A_2 , A_3 be subsets of S.

Then
$$\left| \bigcup_{i=1}^{3} A_i \right| = \sum_{t=1}^{3} (-1)^{t-1} \sum_{1 \le i_1 < \dots < i_t \le 3} |A_{i_1} \cap \dots \cap A_{i_t}|$$

- $\left|\bigcup_{i=1}^{3} A_i\right| = \left|(A_1 \cup A_2) \cup A_3\right| = \left|A_1 \cup A_2\right| + \left|A_3\right| \left|(A_1 \cup A_2) \cap A_3\right|$
 - $|A_1 \cup A_2| = |A_1| + |A_2| |A_1 \cap A_2|$
 - $|(A_1 \cup A_2) \cap A_3| = |(A_1 \cap A_3) \cup (A_2 \cap A_3)|$

$$= |A_1 \cap A_3| + |A_2 \cap A_3| - |(A_1 \cap A_3) \cap (A_2 \cap A_3)|$$

$$= |A_1 \cap A_3| + |A_2 \cap A_3| - |A_1 \cap A_2 \cap A_3|$$

•
$$\left| \bigcup_{i=1}^{3} A_i \right| = |A_1| + |A_2| - |A_1 \cap A_2| + |A_3|$$

 $-(|A_1 \cap A_3| + |A_2 \cap A_3| - |A_1 \cap A_2 \cap A_3|)$

•
$$\left| \bigcap_{i=1}^{3} A_i \right| = \sum_{t=1}^{3} (-1)^{t-1} \sum_{1 \le i_1 < \dots < i_t \le 3} |A_{i_1} \cup \dots \cup A_{i_t}|$$

Principle of IE (n Sets)

THEOREM: Let S be a finite set. Let $A_1, A_2, ..., A_n$ be subsets of S.

Then
$$|\bigcup_{i=1}^n A_i| = \sum_{t=1}^n (-1)^{t-1} \sum_{1 \le i_1 < \dots < i_t \le n} |A_{i_1} \cap \dots \cap A_{i_t}|$$

- $n = 1: |A_1| = |A_1|$
- $n = 2: |A_1 \cup A_2| = |A_1| + |A_2| |A_1 \cap A_2|$
- n = 3: $|A_1 \cup A_2 \cup A_3| = |A_1| + |A_2| + |A_3| |A_1 \cap A_2| |A_1 \cap A_3|$ $-|A_2 \cap A_3| + |A_1 \cap A_2 \cap A_3|$
- **Induction hypothesis**: the identity holds for $n \le k$ ($k \ge 3$)
- Need to show the identity for n = k + 1
- $|A_1 \cup \dots \cup A_{k+1}| = |A_1 \cup \dots \cup A_k| + |A_{k+1}| |(A_1 \cup \dots \cup A_k) \cap A_{k+1}|$ $= \left| \bigcup_{i=1}^k A_i \right| + |A_{k+1}| - \left| \bigcup_{i=1}^k (A_i \cap A_{k+1}) \right|$

Principle of IE (n Sets)

•
$$\left| \bigcup_{i=1}^k A_i \right| = \sum_{t=1}^k (-1)^{t-1} \sum_{1 \le i_1 < \dots < i_t \le k} |A_{i_1} \cap \dots \cap A_{i_t}|$$

•
$$\left| \bigcup_{i=1}^k (A_i \cap A_{k+1}) \right| = \sum_{t=1}^k (-1)^{t-1} \sum_{1 \le i_1 < \dots < i_t \le k} \left| (A_{i_1} \cap A_{k+1}) \cap \dots \cap (A_{i_t} \cap A_{k+1}) \right|$$

•
$$\left| \bigcup_{i=1}^{k+1} A_i \right| = \sum_{t=1}^k (-1)^{t-1} \sum_{1 \le i_1 < \dots < i_t \le k} |A_{i_1} \cap \dots \cap A_{i_t}| + |A_{k+1}| - \|A_{i_1} \cap \dots \cap A_{i_t}\|$$

$$\sum_{t=1}^{k} (-1)^{t-1} \sum_{1 \le i_1 < \dots < i_t \le k} |(A_{i_1} \cap A_{k+1}) \cap \dots \cap (A_{i_t} \cap A_{k+1})|$$

$$= \sum_{t=1}^{k+1} (-1)^{t-1} \sum_{1 \le i_1 < \dots < i_t \le k+1} |A_{i_1} \cap \dots \cap A_{i_t}|$$

THEOREM: Let S be a finite set. Let $A_1, A_2, ..., A_n$ be subsets of S.

Then
$$|\bigcap_{i=1}^n A_i| = \sum_{t=1}^n (-1)^{t-1} \sum_{1 \le i_1 < \dots < i_t \le n} |A_{i_1} \cup \dots \cup A_{i_t}|$$

Principle of Inclusion-Exclusion

EXAMPLE: Let S be the set of permutations of [n]. Find |A| for

$$A = \{x_1 x_2 \dots x_n : x_1 x_2 \dots x_n \in S; x_i \neq i \text{ for all } i \in [n]\}.$$

- $A_i = \{x_1 x_2 \cdots x_n : x_1 x_2 \cdots x_n \in S; x_i = i\}, i = 1, 2, ..., n$
 - $\bullet \quad A = S \bigcup_{i=1}^{n} A_i$
 - |S| = n!
 - $|\bigcup_{i=1}^n A_i| = ?$
- $|\bigcup_{i=1}^n A_i| = \sum_{t=1}^n (-1)^{t-1} \sum_{1 \le i_1 < \dots < i_t \le n} |A_{i_1} \cap \dots \cap A_{i_t}|$
 - $|A_{i_1} \cap \dots \cap A_{i_t}| = (n-t)!$ for $t = 1, 2, \dots, n$
- $|A| = |S| |\bigcup_{i=1}^{n} A_i|$ = $n! - \left(\binom{n}{1} * (n-1)! - \binom{n}{2} * (n-2)! + \dots + (-1)^{n-1} * \binom{n}{n} * 1\right)$ = $n! \left(1 - \frac{1}{1!} + \frac{1}{2!} - \dots + (-1)^t \frac{1}{t!} + \dots + (-1)^n \frac{1}{n!}\right)$

Pigeonhole Principle (1998)

EXAMPLE: There are 15 workstations W_1, \ldots, W_{15} and 10 servers S_1, \ldots, S_{10} . A cable can connect a workstation to a server. Connect the workstations and servers such that any ≥ 10 workstations have access to all servers. How many cables are needed?

- Solution 1: Connecting every workstation directly to every server. 150
- Solution 2: S_i is connected to W_i for every $i \in [10]$; and each of $W_{11}, W_{12}, W_{13}, W_{14}, W_{15}$ is connected to all servers.
 - This solution requires 60 lines.
 - Is this solution optimal?

Cover

DEFINITION: A **cover**_{\mathbb{Z} \mathbb{Z}} of a finite set A is a family $\{A_1, A_2, \dots, A_n\}$ of subsets of A such that $\bigcup_{i=1}^n A_i = A$. //partition is disjoint cover

LEMMA: Let $\{A_1, A_2, ..., A_n\}$ be a cover of a finite set A.

Then $|A| \leq \sum_{i=1}^{n} |A_i|$.

- $n = 1: |A| = |A_1|$
- n = 2: $|A| = |A_1 \cup A_2| = |A_1| + |A_2| |A_1 \cap A_2| \le |A_1| + |A_2|$
- Suppose true when $n \le k \ (k \ge 2)$.

• When
$$n = k + 1$$
, $|A| = \left| \bigcup_{i=1}^{k} A_i \cup A_{k+1} \right|$

$$\leq \left| \bigcup_{i=1}^{k} A_i \right| + \left| A_{k+1} \right|$$

$$\leq \sum_{i=1}^{k} |A_i| + \left| A_{k+1} \right|$$

$$= \sum_{i=1}^{k+1} |A_i|$$

Pigeonhole Principle (simple form)

- **THEOREM:** Let A be a set with $\geq n+1$ elements. Let $\{A_1,A_2,\ldots,A_n\}$ be a cover of A. Then $\exists k \in [n]$ such that $|A_k| \geq 2$.
 - Suppose that $|A_i| \le 1$ for every $i \in [n]$. Then $n+1 \le |A| \le \sum_{i=1}^n |A_i| \le n$.
 - If $\geq n+1$ objects are distributed into n boxes, then there is at least one box containing ≥ 2 objects.

EXAMPLE: Given 367 people, there are two with the same birthday.

- $A = \{a_1, ..., a_{367}\}$
- $A_i = \{a \in A: \text{ the birthday of } a \text{ is the } i\text{th day of a year}\}, i = 1, 2, \dots, 366$
- $\{A_1, A_2, ..., A_{366}\}$ is a cover of A
 - $\exists k \in [366]$ such that $|A_k| \ge 2$

Simple Form

EXAMPLE: Let $n \in \mathbb{Z}^+$. Let $A \subseteq \{1,2,...,2n\}$ have n+1 elements. Then there exist $x,y \in A$ such that x|y.

- Let $A = \{a_1, ..., a_{n+1}\} \subseteq [2n]$ be any subset of n+1 elements.
- $a_j = 2^{u_j} \cdot v_j$, where $u_j \in \mathbb{N}$ and $v_j \in [2n]$ is odd for all j = 1, 2, ..., n + 1
 - $\{v_1, v_2, \dots, v_{n+1}\} \subseteq \{1, 3, \dots, 2n-1\}$
- $A_i = \{a_i : v_i = i\}$ for i = 1, 3, ..., 2n 1
- $\{A_1, A_3, ..., A_{2n-1}\}$ is a cover of A
 - $\exists k \in \{1,3,...,2n-1\}$ such that $|A_k| \ge 2$
 - $a_s, a_t \in A_k \Rightarrow (a_s = 2^{u_s} \cdot v_s) \land (a_t = 2^{u_t} \cdot v_t) \land (v_s = v_t = k)$
 - $(x,y) = \begin{cases} (a_s, a_t), & \text{if } u_s \leq u_t \\ (a_t, a_s), & \text{if } u_s > u_t \end{cases}$

Pigeonhole Principle (general form)

- **THEOREM:** Let A be a set with $\geq N$ elements. Let $\{A_1, A_2, ..., A_n\}$ be a cover of A. Then $\exists k \in [n]$ such that $|A_k| \geq \lceil N/n \rceil$.
 - If $|A_i| < \lceil N/n \rceil$ for all $i \in [n]$, then $N \le |A| \le \sum_{i=1}^n |A_i| \stackrel{!}{<} n \cdot N/n = N$
 - If we distribute $\geq N$ objects into n boxes, then there is at least one box that contains $\geq \lceil N/n \rceil$ objects.
- **EXAMPLE:** How many students are needed in a discrete math class to ensure that ≥ 6 will receive the same grade? The possible grades are A+, A, A-, B+, B, B-, C+, C, C-, and F.
 - Let $A = \{a_1, a_2, ..., a_N\}$ be a set of students. Let s_j be the score of a_j .
 - $A_1 = \{a_j \in A : s_j = A + \}; A_2 = \{a_j \in A : s_j = A\}; ...; A_{10} = \{a_j \in A : s_j = F\}$
 - $\{A_1, ..., A_{10}\}$ is a cover of A
 - $\exists k \in [10]$ such that $|A_k| \geq [N/10]$
 - $[N/10] \ge 6 \Rightarrow N \ge 51$

General Form

EXAMPLE: There are 15 workstations $W_1, ..., W_{15}$ and 10 servers $S_1, ..., S_{10}$. A cable can connect a workstation to a server. Connect the workstations and servers such that any ≥ 10 workstations have access to all servers. How many cables are needed?

- Solution 2: S_i is connected to W_i for every $i \in [10]$; and each of $W_{11}, W_{12}, W_{13}, W_{14}, W_{15}$ is connected to all servers. // 60 lines, optimal?
- Consider an optimal scheme Π .
 - Let $A = \{(W_i, S_j): i \in [15], j \in [10], W_i \text{ is not connected to } S_j\}$ in Π
 - $A_t = \{(W_i, S_j) \in A: j = t\} \text{ for } t = 1, 2, ..., 10$
 - $\{A_1, A_2, ..., A_{10}\}$ is a cover of A
- If there are < 60 lines in Π , then |A| > 150 60 = 90.
 - $\exists k \in [10]$ such that $|A_k| \ge \lceil 91/10 \rceil = 10$
 - There are 10 workstations not connected to S_k