Universidade Federal de Minas Gerais Departamento de Ciência da Computação

Processamento Digital de Imagens - relatório de trabalho sobre detecção de mudanças

Flávio Roberto dos Santos Coutinho (2019679021)

30 de Junho de 2019

1 Introdução

O trabalho de detecção de mudanças no *dataset* ONERA¹, obtido por meio do satélite Sentinel-2, foi realizado usando duas técnicas e, então, as acurácias obtidas com cada uma foram comparadas².

A primeira técnica usada foi *image differencing* [1], uma técnica algébrica simples que prevê a subtração dos tempos t_1 e t_2 e a classificação de cada pixel como mudança ou não-mudança de acordo com a diferença ser maior ou não que um *threshold* definido.

Complementarmente, foi implementada outra solução, baseada na redução de dimensionalidade das imagens em t_1 e em t_2 usando PCA [1], seguido do cálculo de descritores de textura com LBP [2], da segmentação em superpixels com SLIC [3] e da classificação de cada superpixel em mudança ou não-mudança de acordo com a distância euclidiana das características de cada segmento em t_1 e t_2 .

2 Desenvolvimento e Metodologia

A solução que usa *image differencing* foi implementada conforme metodologia de Rivera (2005) [4] (Figura 1a) e a segunda solução foi baseada em PCA, LBP e segmentação com SLIC (Figura 1b).

(a) Metodologia para image differencing

Figura 1: Esquema da metodologia para image differencing e para PCA/LBP/SLIC

Em ambos os casos, as imagens foram pre-processadas para que todas as bandas tivessem as dimensões da maior banda. Esse ajuste de *upscaling* foi feito usando interpolação bicúbica. Assumiuse que as imagens de t_1 e t_2 já estavam corretamente registradas.

Sobre a **primeira solução**, foi usado um valor de *threshold* de 3,5% da intensidade de cada pixel - caso a diferença entre t_1 e t_2 seja maior que esse valor, esse pixel é considerado como mudança. Esse valor foi determinado experimentalmente.

A **segunda solução** seguiu as etapas de *i*) redução da dimensionalidade (13 bandas) de cada t usando PCA e gerando uma nova imagem com os 3 componentes principais, *ii*) cálculo do descritor de textura LBP da imagem gerada via PCA, *iii*) segmentação da imagem t₁ usando SLIC *iv*) comparação das características de cada segmento em t₁ e t₂ usando distância euclidiana do histograma da imagem LBP e *v*) classificação em mudança ou não-mudança de cada segmento de acordo com um *threshold* específico para cada cidade.

A (i) redução de dimensionalidade foi feita para acelerar o processamento ao descartar informação redundante, de baixa variância, nas 13 bandas de cada pixel. As imagens foram reduzidas de 13 bandas para 3, mantendo em média 89% da variância total presente nas bandas originais. Foi gerada uma imagem PCA para t_1 e outra para t_2 .

As imagens PCA para t₁ e t₂ tiveram (ii) descritores de textura LBP enunc.² calculados usando o método nri_uniform [2] que é invariante ao valor de cinza. Esse método foi usado em detrimento

¹Enunciado: https://github.com/fegemo/change-detection/blob/master/EnunciadoTP2_change.pdf

²Código, resultados e relatório: https://github.com/fegemo/change-detection

³Referente ao item 2 do enunciado do trabalho

de outros que são invariantes à rotação porque assumiu-se que as imagens t₁ e t₂ já estavam registradas. Os descritores foram gerados separadamente por banda. LBP foi usado em vez de GLCM porque a matriz de coocorrência precisaria ser gerada para cada segmento (criado no passo seguinte), e a imagem de padrões binários poderia ser gerada apenas uma vez.

A imagem t_1 foi (iii) segmentada em superpixels com SLIC enunc.1 usando compactness 20 e um máximo de 2.000 segmentos. Os mesmos segmentos (de t_1) foram usados para comparar t_1 e t_2 . Foi gerado um descritor de textura de cada segmento baseado no (iv) enunc.2 histograma da imagem LBP dos pixels que compunham cada segmento e a distância euclidiana entre esse descritor de t_1 e t_2 foi calculada. Em seguida, os segmentos cuja distância foi maior do que um valor de threshold foram (v) classificados como mudança enunc.3. Esse threshold foi definido por cidade e foi calculado como a média das distâncias dos segmentos mais dois desvios padrões. Esse valor foi obtido experimentalmente.

Depois disso, foi gerado um enunc.4 mapa binário de mudanças mostrando o resultado de todos os segmentos e a acurácia do mapa quanto ao *ground truth* foi avaliada enunc.5.

3 Experimentos e Testes

Ambas soluções geram mapas binários que indicam, para cada pixel, se houve mudança de t_1 para t_2 ou não. A comparação dos mapas com a *ground truth* foi feita por meio das métricas *structural similarity index* (SSIM) e acurácia, sendo esta definida pelas Equações 1 e 2, onde a é a quantidade de pixels de uma imagem e d é a quantidade de pixels diferentes entre a img_1 e img_2 .

$$acc = (a - d)/a \tag{1}$$

$$d = \|abs(img_1 - img_2) > 0\|$$
 (2)

Os valores de acurácia e SSIM obtidos para as 14 cidades cujo *ground truth* era conhecido podem ser vistos numericamente na Tabela 1 ou visualizados no gráfico da Figura 2. Os mapas binários com as diferenças detectadas pelas duas técnicas para as 14 cidades podem ser vistos na Figura 3.

Figura 2: Gráfico com SSIM e acurácia de cada técnica para as 14 cidades com ground truth

Figura 3: Mapas binários e ground truth das 14 cidades

Tabela 1: SSIM e Acurácia das 14 cidades com ground truth

Cidade	Image Differencing		PCA/seg/LBP	
	SSIM	Acurácia	SSIM	Acurácia
saclay_e	0,9638	0,9883	0,8828	0,9388
paris	0,9626	0,9881	0,8912	0,9527
nantes	0,9557	0,9845	0,8683	0,9331
bercy	0,9485	0,9883	0,8499	0,9460
mumbai	0,9415	0,9710	0,8586	0,9218
beirut	0,9375	0,9742	0,8423	0,8922
beihai	0,9367	0,9721	0,8758	0,9332
cupertino	0,9339	0,9729	0,8939	0,9413
hongkong	0,9257	0,9600	0,8634	0,9207
abudhabi	0,9119	0,9553	0,8455	0,9110
bordeaux	0,8983	0,9807	0,8772	0,9355
rennes	0,8981	0,9658	0,8037	0,9222
aguasclaras	0,8796	0,9733	0,8293	0,9337
pisa	0,8490	0,9559	0,8726	0,9301
Média	0,9245	0,9736	0,8611	0,9295
Desvio	0,0334	0,0115	0,0250	0,0153

4 Conclusão

Os resultados usando a solução *image differencing* foram melhores do que usando PCA/LBP/SLIC. Motivos para o pior resultado da segunda técnica pode ter sido a definição de parâmetros experimentais. Outro potencial problema é a detecção ser feita no segundo caso considerando um superpixel inteiro como mudança ou não-mudança.

Referências

- [1] D. Lu, P. Mausel, E. Brondízio, and E. Moran. Change detection techniques. *International Journal of Remote Sensing*, 25(12):2365–2401, 2004.
- [2] Timo Ahonen, Abdenour Hadid, and Matti Pietikainen. Face description with local binary patterns: Application to face recognition. *IEEE Transactions on Pattern Analysis & Machine Intelligence*, (12):2037–2041, 2006.
- [3] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi, Pascal Fua, and Sabine Süsstrunk. Slic superpixels compared to state-of-the-art superpixel methods. *IEEE transactions on pattern analysis and machine intelligence*, 34(11):2274–2282, 2012.
- [4] Vanessa Ortiz Rivera. *Hyperspectral change detection using temporal Principal component analysis*. PhD thesis, Citeseer, 2005.