Algebry Boole'a i funkcje boolowskie

dr inż. Bartłomiej Pawlik

19 czerwca 2024

Logika - powtórka

		p	q	$p \lor q$	$p \wedge q$	$p \Rightarrow q$	$p \Leftrightarrow q$
p	$\neg p$	0	0	0	0	1	1
0	1	0	1	1	0	1	0
1	0	1	0	1	0	$\begin{matrix} 1 \\ 0 \end{matrix}$	0
	·	1	1	1	1	1	1

Każde zdanie (formuła zdaniowa) może być zapisane w równoważnej postaci wyłącznie za pomocą spójników $\land, \lor i \lnot$.

Przykładowe reprezentacje implikacji i równoważności:

$$\begin{array}{ccc} (p \Rightarrow q) & \Longleftrightarrow & (\neg p \lor q) \\ (p \Leftrightarrow q) & \Longleftrightarrow & \left((\neg p \lor q) \land (p \lor \neg q) \right) \end{array}$$

Definicia

- Wielomianem boolowskim W zmiennych x_1,x_2,\ldots,x_n nazywamy formułę zdaniową zbudowaną wyłącznie z x_1,x_2,\ldots,x_n oraz spójników \wedge,\vee i $\neg.$
- Wartościowanie logiczne wielomianu boolowskiego W nazywamy n-argumentową funkcją boolowską $f=W(x_1,x_2,\ldots,x_n)$ i mówimy wtedy, że W generuje f.
- Zbiór wszystkich n-argumentowych fukcji boolowskich oznaczamy przez Bool(n).

Przykład

Podać przykład wielomianu boolowskiego zmiennych x,y,z. Ustalić jego wartościowanie logiczne.

Rozpatrzmy wielomian $(x\vee y)\wedge (\neg z)$ generujący funkcję $f(x,y,z)=(x\vee y)\wedge (\neg z)$. Mamy

$$f(0,0,0) = 0$$
 $f(1,0,0) = 1$
 $f(0,0,1) = 0$ $f(1,0,1) = 0$
 $f(0,1,0) = 1$ $f(1,1,0) = 1$

Algebry Boole'a i funkcje boolowskie

Określić Bool(1).

Wypiszmy wszystkie możliwe wartościowania funkcji boolowskiej na jednej binarnej zmiennej x:

Nietrudno zauważyć, że $f_1(x)=0,\, f_2(x)=x,\, f_3(x)=\neg x$ i $f_4(x)=1.$

Zatem Bool(1) = $\{0, 1, x, \neg x\}$.

Przykład

Podać trzy przykładowe elementy zbioru Bool(3).

$$f_1(x, y, z) = (x \wedge (\neg y)) \vee z,$$

$$f_2(x, y, z) = 1,$$

$$f_3(x, y, z) = x \wedge y \wedge z$$

Stwierdzenie

Dla każdej liczby naturalnej n zachodzi $|Bool(n)| = 2^{2^n}$.

Dowód.

Funkcja boolowska f każdemu argumentowi przypisuję jedną z dwóch wartości (0 lub 1). Zatem liczba różnych n-argumentowych funkcji boolowskich wynosi

 $2^{|D_f|}$, gdzie $|D_f|$ to liczba elementów dziedziny funkcji f .

Dziedzina składa się z n-elementowych ciągów binarnych, których jest 2^n . Zatem ostatecznie $|\mathsf{Bool}(n)| = 2^{2^n}$.

Niech B będzie zbiorem z działaniami binarnymi \land , \lor , działaniem unarnym \neg i niech $0,1\in B,\ 0\neq 1.$ Szóstkę $(B,\land,\lor,\lnot,0,1)$ nazywamy **algebrą Boole'a** wtedy i tylko wtedy, gdy dla dowolnych $x,y,z\in B$ mamy

- $\bullet \ x \land y = y \land x, \ x \lor y = y \lor x,$
- $(x \wedge y) \wedge z = x \wedge (y \wedge z), (x \vee y) \vee z = x \vee (y \vee z),$
- $x \lor (y \land z) = (x \lor y) \land (x \lor z), \quad x \land (y \lor z) = (x \land y) \lor (x \land z),$
- \bullet $1 \land x = x, \quad 0 \lor x = x,$
- $\bullet \neg x \land x = 0, \neg x \lor x = 1$
- Działania można interpretować następująco: ∧ to mnożenie, ∨ to dodawanie,
 a ¬ to dopełnienie.
- Jeżeli operacje są z góry określone, to $(B, \wedge, \vee, \neg, 0, 1)$ oznaczamy w skrócie przez B.

Podstawowe przykłady algebry Boole'a

 $\mathbb{B}=\{0,1\}$ — zbiór wartości logicznych (boolowskich); działaniami są $\wedge,\vee,\neg.$

 $\mathbb{B}^n=\{0,1\}^n$ — produkt kartezjański nkopii zbioru \mathbb{B} z naturalnie określonymi działaniami (po współrzędnych).

Przykład

Wykonać działania \land,\lor,\lnot na elementach $(1,1,0,0,0),(0,1,1,0,1)\in\mathbb{B}^5.$

$$(1,1,0,0,0) \land (0,1,1,0,1) = (0,1,0,0,0)$$

$$(1,1,0,0,0) \lor (0,1,1,0,1) = (1,1,1,0,1)$$

$$\neg(1,1,0,0,0) = (0,0,1,1,1)$$

$$\neg (0, 1, 1, 0, 1) = (1, 0, 0, 1, 0)$$

Podstawowe przykłady algebr Boole'a

 ${\sf Bool}(n)$ wraz z naturalnie określonymi działaniami (po wartościach) stanowi algebrę Boole'a ze względu na fakt, że każda n-argumentowa funkcja boolowska działa z \mathbb{B}^n w \mathbb{B} .

Przykład

Wykonać działania w Bool(1).

W jednym z poprzednich przykładów określiliśmy, że $\operatorname{Bool}(1) = \{0,1,x,\neg x\}.$

Ponadto $\neg 0 = 1, \neg 1 = 0, \neg (x) = \neg x, \neg (\neg x) = x.$

Stwierdzenie

W każdej algebrze Boola elementy 0, 1 oraz $\neg x$ (dla każdego elementu x) są określone jednoznacznie.

Twierdzenie

Niech B będzie algebrą Boole'a. Wówczas dla każdego $x,y\in B$ mamy

- $x \lor 1 = 1, x \land 0 = 0,$
- $\bullet (x \land y) \lor x = x, (x \lor y) \land x = x,$
- $\bullet \ \neg 0 = 1, \ \neg 1 = 0, \ \neg (\neg x) = x,$
- \bullet $x \lor x = x$, $x \land x = x$,

W algebrze Boole'a B definiujemy relację \leq następująco:

$$\forall_{x,y \in B} \ x \leqslant y \iff x \lor y = y.$$

Twierdzenie

Niech B będzie algebrą Boole'a i niech $x,y\in B$. Wtedy

- $x \leqslant y \iff x \land y = x$
- $2 x \land y \leqslant x \leqslant x \lor y$
- **3** $0 \le x \le 1$

Ponadto (B,\leqslant) jest kratą (tzn. zbiorem częściowo uporządkowanym, w którym każdy dwuelementowy podzbiór ma supremum i infimum).

Narysować diagram Hassego dla \mathbb{B}^3 .

Niech B będzie nietrywialną algebrą Boole'a.

- Niezerowy element $a \in B$ nazywamy **atomem** B wtedy i tylko wtedy, gdy dla każdych $b, c \in B$ z równania $a = b \lor c$ wynika, że a = b lub a = c.
- Niejedynkowy element $a \in B$ nazywamy **co-atomem** B wtedy i tylko wtedy, gdy dla każdych $b, c \in B$ z równania $a = b \wedge c$ wynika, że a = b lub a = c.

Zauważmy, że co-atom to dopełnienie atomu.

Wniosek

- Niezerowy element $a \in B$ jest atomem algebry B wtedy i tylko wtedy, gdy nie istnieje $x \in B$ taki, że 0 < x < a.
- Niejedynkowy $a \in B$ jest co-atomem algebry B wtedy i tylko wtedy, gdy nie istnieje $x \in B$ taki, że a < x < 1.

Wyznaczyć atomy i co-atomy \mathbb{B}_3 i \mathbb{B}_n dla dowolnej liczby naturalnej n.

Atomami \mathbb{B}_3 są

natomiast co-atomy \mathbb{B}_3 to

(por. przykład z diagramem Hassego \mathbb{B}_3).

Analogicznie, atomy \mathbb{B}_n to elementy zawierające 1 na dokładnie jednej współrzędnej, a co-atomy to elementy zawierające 0 na dokładnie jednej współrzędnej.

Zauważmy, że liczba różnych (co-)atomów \mathbb{B}_n wynosi n.

Twierdzenie

Każdy niezerowy element <u>skończonej</u> algebry Boole'a jest sumą różnych atomów tej algebry. Przedstawienie to jest jednoznaczne z dokładnością do kolejności czynników.

Dokładniej, jeżeli niezerowy element algebry Boole'a nie jest atomem, to jest sumą wszystkich atomów mniejszych od niego.

Wniosek

Każdy niejedynkowy element skończonej algebry Boole'a jest iloczynem różnych co-atomów tej algebry. Przedstawienie to jest jednoznaczne z dokładnością do kolejności czynników.

Przykład

Zapisać (1,0,1,1,0) jako sumę atomów i jako iloczyn co-atomów.

$$(1,0,1,1,0) = (1,0,0,0,0) \lor (0,0,1,0,0) \lor (0,0,0,1,0)$$

$$(1,0,1,1,0) = (1,0,1,1,1) \land (1,1,1,1,0)$$

Niech B_1 , B_2 będą algebrami Boole'a. Funkcję $f:B_1\to B_2$ nazywamy izomorfizmem B_1 i B_2 wtedy i tylko wtedy, gdy dla każdych $x,y\in B_1$ mamy

- f jest bijekcją,
- $f(x \wedge y) = f(x) \wedge f(y),$
- $f(x \vee y) = f(x) \vee f(y),$
- **5** f(0) = 0,
- f(1) = 1

Zatem izomorfizm to bijekcja, która zachowuje wszystkie działania.

Twierdzenie

Dwie <u>skończone</u> algebry Boole'a są izomorficzne, gdy mają taką samą liczbę atomów.

Wniosek

Każda skończona algebra Boole'a jest izomorficzna z \mathbb{B}^n dla pewnej liczby naturalnej n.

Pamiętamy, że \mathbb{B}^n ma dokładnie n atomów.

Metody reprezentacji funkcji boolowskich

- Za pomocą wielomianów boolowskich.
- Za pomocą wartości zazwyczaj w tabelce.
- Za pomocą indeksów atomów: indeksem atomu a nazywamy ten argument, dla którego funkcja przyjmuje wartość 1. Indeks atomu zwykle zapisywany jest nie w postaci ciągu zer i jedynek, ale jako liczba w systemie dziesiętnym, która ten ciąg reprezentuje. Takie przedstawienie funkcji zaczyna się od symbolu ∑, po którym wypisuje się indeksy odpowiednich atomów (w dowolnej kolejności).
- Za pomocą indeksów co-atomów: indeksem co-atomu c nazywamy ten argument, dla którego funkcja przyjmuje wartość 0. Takie przedstawienie f zaczyna się od symbolu \prod .

- **1** Literałem dla zmiennej x_i nazywamy x_i lub $\neg x_i$.
- 2 Termem nazywamy iloczyn literałów różnych zmiennych.
- **Mintermem** nazywamy term zawierający wszystkie zmienne.
- Co-termem nazywamy sumę literałów różnych zmiennych.
- Maxtermem nazywamy co-term zawierający wszystkie zmienne.

Przykład

Rozpatrzmy algebrę \mathbb{B}_3 na zmiennych x_1, x_2, x_3 .

Literałami są $x_1, \neg x_1, x_2, \neg x_2, x_3, \neg x_3$.

Przykładowe termy to $x_1 \wedge x_3$, $\neg x_1 \wedge x_2 \wedge x_3$, $\neg x_1 \wedge \neg x_2$.

Jedynym mintermem wśród powyższych termów jest $\neg x_1 \land x_2 \land x_3$.

Przykładowe co-termy to $x_1 \vee x_2$, $x_2 \vee \neg x_3$, $x_1 \vee \neg x_2 \vee \neg x_3$.

Jedynym maxtermem wśród powyższych co-termów jest $x_1 \vee \neg x_2 \vee \neg x_3$.

Generowanie funkcji boolowskich przez wielomiany

Twierdzenie

Każdy atom Bool(n) jest generowany przez dokładnie jeden minterm.

Wniosek

Każda funkcja boolowska jest generowana przez sumę mintermów.

Reprezentacja wielomianu boolowskiego w postaci sumy mintermów jest nazywana jego dysjunkcyjną (alternatywną) postacią normalną (DNF).

Wygenerować funkcję $f \in Bool(3)$ daną wzorem

$$f(x, y, z) = \neg (x \land (\neg y \Leftrightarrow z)) \Rightarrow y$$

za pomocą wielomianu DNF.

Zapiszmy tabelę wartości funkcji f, aby sprawdzić, kiedy przyjmuje ona wartość 1:

x	y	z	f(x,y,z)		
0	0	0	0		
0	0	1	0		
0	1	0	1	\rightarrow	$\neg x \wedge y \wedge \neg z$
0	1	1	1	\rightarrow	$\neg x \wedge y \wedge z$
1	0	0	0		
1	0	1	1	\rightarrow	$x \wedge \neg y \wedge z$
1	1	0	1	\rightarrow	$x \wedge y \wedge \neg z$
1	1	1	1	\rightarrow	$x \wedge y \wedge z$

Zatem funkcja f w postaci wielomianu DNF to

$$(\neg x \land y \land \neg z) \lor (\neg x \land y \land z) \lor (x \land \neg y \land z) \lor (x \land y \land \neg z) \lor (x \land y \land z)$$

Analogicznie:

Twierdzenie

Każdy co-atom Bool(n) jest generowany przez dokładnie jeden maxterm.

Wniosek

Każda funkcja boolowska jest generowana przez iloczyn maxtermów.

Reprezentacja wielomianu boolowskiego w postaci iloczynu maxtermów jest nazywana jego koniunkcyjną postacią normalną (CNF).

Uwaga!

Każda funkcja boolowska może być generowana przez nieskończenie wiele wielomianów boolowskich.

Wygenerować funkcję $f \in \mathsf{Bool}(3)$ daną wzorem

$$f(x, y, z) = \neg (x \land (\neg y \Leftrightarrow z)) \Rightarrow y$$

za pomocą wielomianu CNF.

Zapiszmy tabelę wartości funkcji f, aby sprawdzić, kiedy przyjmuje ona wartość 0:

x	y	z	f(x,y,z)		
0	0	0	0	\rightarrow	$x \lor y \lor z$
0	0	1	0	\rightarrow	$x \vee y \vee \neg z$
0	1	0	1		
0	1	1	1		
1	0	0	0	\rightarrow	$\neg x \lor y \lor z$
1	0	1	1		
1	1	0	1		
1	1	1	1		

Zatem funkcja f w postaci wielomianu CNF to

$$(x \lor y \lor z) \land (x \lor y \lor \neg z) \land (\neg x \lor y \lor z)$$

Zastosowanie do układów elektrycznych

- Switch (łącznik) to urządzenie dwustanowe. Może być ustawiony albo w pozycji otwartej (wartość 0, prąd nie płynie) lub zamkniętej (wartość 1, prąd płynie).
- (Prosty) system przełączający (obwód elektryczny) składa się ze źródła energii, wyjścia oraz switchów.
- Dwa podstawowe sposoby łączenia switchów to równoległy (∨)
 i szeregowy (∧). Czasami konieczne jest użycie switcha, który zawsze jest
 w pozycji odwrotnej do ustalonego (¬).
- Prosty system przełączający nie zawiera pętli, więc wyjście zależy tylko od sposobu połączenia switchy (nie od czasu).

Zatem wszystkie połączenia switchów w systemie przełączającym można opisać wielomianem boolowskim, a wyjście — funkcją boolowską generowaną przez ten wielomian.

- Sieć logiczna to matematyczny model systemu przełączającego.
- Switche są reprezentowane przez **bramki logiczne**, źródło energii się pomija. Podstawowe bramki logiczne to

Podać wzór funkcji boolowskiej zrealizowanej za pomocą poniższej sieci:

Przyjmując, że na wejściu mamy źródła x, y, z (od góry), otrzymujemy

$$f(x, y, z) = \neg(\neg(x \lor \neg y) \lor (x \lor z)) \land y$$

Narysować sieć logiczną realizującą $x \wedge \neg x$.

Przykład

Narysować sieć logiczną realizującą $(x \vee (y \wedge \neg z)) \wedge (\neg x \vee z)$.