Part 1: Machine learning theory

- 1. Learning framework
- 2. Uniform convergence
- 3. Learnability of infinite size hypotheses set
 - 1. No-Free-Lunch theorem
 - 2. Infinite hypothesis class: Exemple
 - 3. Classification: VC dimension
 - 4. Regression: Covering number
- 4. Tradeoff Bias/Variance

Reminder:

If S is ε - representative $\Longrightarrow H$ is UC learnable $\Longrightarrow H$ is APAC learnable $\Longrightarrow H$ is PAC learnable

Learning PAC (targget f exist):
$$m_H^{PAC}(\varepsilon, \delta)$$
 If $|H| < \infty$, $m_H^{PAC}(\varepsilon, \delta) = \left[\frac{ln\left(\frac{|H|}{\delta}\right)}{\varepsilon}\right]$

• $\forall \varepsilon, \delta \in [0,1]^2$, and $\forall \mathcal{D}$ over $Z, \exists m_H^{PAC}(\varepsilon, \delta)$ such that $\forall m > m_H^{PAC}(\varepsilon, \delta)$ we have $P_{S \sim \mathcal{D}^m}[S_x, L_{\mathcal{D},f}(h_S) > \varepsilon] \leq \delta$

$$\text{Learning APAC: } m_H^{APAC}(\boldsymbol{\varepsilon},\boldsymbol{\delta}) \text{If } |H| < \infty, \\ m_H^{APAC}(\boldsymbol{\varepsilon},\boldsymbol{\delta}) \approx m_H^{CU}\left(\frac{\boldsymbol{\varepsilon}}{2},\boldsymbol{\delta}\right) \approx \left[\frac{2 \ln\left(\frac{2|H|}{\delta}\right)}{\epsilon^2}\right]$$

• $\forall \varepsilon, \delta \in [0,1]^2$ and $\forall \mathcal{D}$ over $Z, \exists m_H(\varepsilon, \delta)$ such that $\forall m > m_H^{APAC}(\varepsilon, \delta)$ we have $P_{S \sim \mathcal{D}^m}[S_x, L_{\mathcal{D}}(h_S) > \min_{h \in H} L_{\mathcal{D}}(h) + \varepsilon] \leq \delta$

Learning UC:
$$m_H^{\mathcal{C}\mathcal{U}}(\varepsilon, \delta)$$
 If $|H| < \infty$, $m_H^{\mathcal{C}\mathcal{U}}(\varepsilon, \delta) \approx \left[\frac{ln\left(\frac{2|H|}{\delta}\right)}{2\epsilon^2}\right]$

• $\forall \varepsilon, \delta \in [0,1]^2$, and $\forall \mathcal{D}$ over $Z, \exists m_H^{CU}(\varepsilon, \delta)$ such that $\forall m > m_H^{CU}(\varepsilon, \delta)$ we have $(S \text{ is } \varepsilon\text{-representative}) \ \forall h \in H \ P_{S \sim \mathcal{D}^m}[S_x, |L_S(h) - L_D(h)| > \varepsilon] \leq \delta$

Supervised Learning Passive Offline Algorithm (SLPOA)

Pr. Abdellatif El Afia: Course of Machine Learning

Reminder

Definition: Markov Inequality

Let θ be a positive random variable, such that $E[\theta] = \mu$.

So:

$$\forall a > 0$$
 $\mathbf{1} - \mathbf{F}_{\theta}(a) = P(\theta > a) \le \frac{\mu}{a}$

Lemme:

Let θ be a random variable that takes values [0,1] such that $E[\theta] = \mu$. So:

$$\forall a \in]0,1[$$

$$\forall a \in]0,1[$$
 $P(\theta > 1-a) \ge \frac{\mu - (1-a)}{a}$

$$\forall a \in]0,1[$$

$$\forall a \in]0,1[$$
 $P(\theta>a) \ge \frac{\mu-a}{1-a} \ge \mu-a$

Proof:

Take
$$\overline{m{ heta}} = \mathbf{1} - m{ heta}$$

Motivation

Objectives:

1- Is there a universal algorithm to solve all types of tasks without having prior knowledge on the task to solve?

The No-Free-Lunch Theorem: Choosing the Right Distribution.

2- The finite size of *H* is a sufficient condition, but is not necessary for PAC learning (PAC or APC).

when we have $|H| = \infty$

- VC dimension for classification. (Projet multiclass)
- Covering number for regression.

Theorem:

Let H be a class of all functions from $X \subseteq \mathbb{R}^n \to y = \{0,1\}$ $(|H| = \infty, h \in H = \{h(x) = a^T x + b, (a,b) \in \mathbb{R}^n \times \mathbb{R}\} \iff H = \{(a,b) \in \mathbb{R}^n \times \mathbb{R}\}),$

- $\forall A_{\alpha}$ and $\forall S$ of sample size $|S| \leq \frac{|X|}{2}$
- \exists **D** a distribution on $X \times \{0,1\}$ and $\exists f: X \longrightarrow \{0,1\}$ such that $L_D(f) = 0$. using ERM to find $A_{\alpha}(S) = h_S$,

Then if we take $\varepsilon = \frac{1}{8}$, $\delta = \frac{1}{7}$, But:

$$P_{S \sim D^m} (L_D(h_S) > \frac{1}{8}) \ge \frac{1}{7}$$

• $\forall D, \forall \varepsilon, \delta > 0 : PAC: P_{S \sim D^m} (L_D(h_S) > \varepsilon) \leq \delta$

Corollary:

Let X be an finite domaine and H the set of all functions from X to $\{0,1\}$. $|H| = \infty$ So $\exists D$ a distribution on $X \times \{0,1\}$ such that H is not PAC learning.

Proof:

Tool: No-Free-Lunch theorem

We will use absurd reasonning.

Therefore, we are going to suppose that H is a class of hypothesis that is PAC learnable.

And, we are going to select a random ε and δ in [0,1], such that:

$$\varepsilon < \frac{1}{8}$$

And:

$$\delta < \frac{1}{7}$$

Proof: (continu)

According to PAC definition, there exist an algorithm A and a number $m_H(\varepsilon, \delta)$, such that:

Whatever the distribution that generates the data on $X \times \{0,1\}$ and $\forall f: X \to \{0,1\}$ such that the realizability assumption is respected.

If we execute the algorithm A_{α} on $m \geq m_H(\varepsilon, \delta)$ sampled (i.i.d.) by D, A will generate a hypothesis such that: $h_S = A_{\alpha}(S)$

$$L_D(h_S) \leq \varepsilon$$

If we apply the NFL theorem, such that $|X| \ge 2m$

Whatever the algorithm is (in particular A_{α}), there exist a distribution D such that with a probability $\geq \frac{1}{7}$, we have:

$$L_D(h_S) > \frac{1}{8} > \varepsilon$$
 which is absurd

So,
$$H$$
 is not PAC learnable. No PAC: $P_{S \sim D^m} (L_D(h_S) > \frac{1}{8}) \ge \frac{1}{7}$

Notice:

- The theorem states that whatever the model A_{α} , there exists a certain distribution D where it fails.
- To avoid this bad distribution, it is necessary to use prior knowledge.
- \blacksquare This prior knowledge implies a restriction on the class of hypotheses H.

How to choose a good class?

- \implies We should avoid this bad distribution.
- \implies We should use prior knowledge of H.H(S) with $|S| < \infty$
- \implies We must apply a restriction on H: instead of working on the whole set X, we will work on another set $S \subset X$.

It has been shown from the other chapters that:

1-
$$|H| < \infty \implies H \text{ is } PAC$$

2- $\begin{cases} X \text{ is an infinite domain} \\ H = \{h, h: X \to \{0,1\}\} \end{cases} \implies H \text{ can be not } PAC$

- What makes a class H PAC and other non PAC?
- Are the infinite classes PAC?
- What determines the complexity of the sample for an infinite class?

$$|H(S)| < \infty$$

3.2 Infinite hypothesis class

Example 1:

Let H_s be a set of threshold hypothesis, such that the threshold a belongs to a real set:

$$H_S = \{h_a, a \in \mathbb{R}\}, \qquad |H_S| = \infty$$

Let: $X = \mathbb{R}$

and

$$h_a: \mathbb{R} \to \{0,1\}$$

$$x \mapsto h_a(x) = \mathbb{1}_{[x < a]} = \begin{cases} 0 & \text{if } x < a \\ 1 & \text{if } x \ge a \end{cases}$$

 H_S has a infinite size because $a \in \mathbb{R}$.

Lemma 1:

 H_S is PAC by ERM_H , such that the sample complexity is:

$$m_{H_S}(\varepsilon,\delta) \leq \frac{ln(\frac{2}{\delta})}{\varepsilon}$$

3.2 Infinite hypothesis class

Example 2:

Let:
$$X=\mathbb{R}$$
, $H_S=\{h_A=\mathbb{1}_A, A\subseteq \mathbb{R}\}\cup \mathbb{1}_{\mathbb{R}}=\{A: A\subseteq \mathbb{R}\}$ and
$$h_A\colon \qquad \mathbb{R} \longrightarrow \{0,1\}$$

$$x\mapsto h_A(x)=\mathbb{1}_A(x) \qquad =\begin{cases} 1 \ if \ x\in A \\ 0 \ if \ x\not\in A \end{cases}$$

Such that *A* is a finite set.

 H_S has a infinite size because $A \subseteq \mathbb{R}$.

Lemma 2:

$$H_S$$
 is not PAC by ERM_H .
$$A = \{1,2,4,5\}, \qquad h_A(7) = h_A(3) = 0, h_A(5) = h_A(2) = h_A(1) = h_A(4) = 1$$

$$h_A\colon \ \mathbb{R} \to \{0,1\}$$

$$x \mapsto h_A(x) = \begin{cases} 1 \text{ if } x \in A \\ 0 \text{ otherwise} \end{cases}$$

Pr. Abdellatif El Afia: Course of Machine Learning

3.3 Classification: Vapnik-Chervonenkis Dimension

- d_{vc} : V-C dimension.
- Growth function (d_{vc}) .
- (PAC: Generalisation bound) of infinite *H*.
- Fundamental theorems of learning.

Definition: shuttering

Let H be a set of functions from X to $\{0,1\}$ and $S\subseteq X$ a finite set. $|H|=\infty$

We say that H shutters S if the restriction of H over S is of finite cardinality:

$$|H(S)| = 2^{|S|}$$

Such that:

$$H(S) = \{h(a_1), ..., h(a_{|S|}): h \in H\}$$

Example 1:

Let $X = \mathbb{R}$; $H = H_S = \{h_a = \mathbb{1}_{[x < a]} : a \in \mathbb{R}, x \in X\}$ and $S = \{7, 8\}$.

Is S shuttered by H? No

Example 1: answer

We notice that $h_a = \mathbb{1}_{[x < a]}$ has four behaviors of $\{0,1\}$ in S |S| = 2:

$$H(S) = \{h_a(7), h_a(8) : a \in \mathbb{R}\}$$

But the hypotheses $h \in H(S)$ do capture only three behaviors.

Then, A is not shuttered by H(S), because we have $|H(S)| = 3 \neq 2^2$.

- 1. $\forall a < 7 (< 8) h_a(7) = h_a(8) = 0$
- 2. $\forall a < 8 (\geq 7) h_a(7) = 1 \& h_a(8) = 0$
- 3. $\forall a \ge 8 (\ge 7) h_a(8) = h_a(7) = 1$

Example 2:

Let $X = \mathbb{R}$ and $H = \{h_a(x) = \mathbb{1}_{[x < a]} : a \in \mathbb{R}, x \in X\}$. If |S| = 3 (for example $S = \{6,7,8\}$). Is S shuttered by H?

Example 3:

Let $X = \mathbb{R}^2$ and $H = \{B_{(x,r)} : x \in \mathbb{R}^2 et \ r \in \mathbb{R}^+\}$ such that:

$$B_{(x,r)} = \{y : ||y - x|| \le r\}$$

If |S| = 2.

Is S shuttered by H?

Example 4:

Let $X = \mathbb{R}^2$ and $H = \{B_{(x,r)} : x \in \mathbb{R}^2 et \ r \in \mathbb{R}^+\}$ such that:

$$B_{(x,r)} = \{y : ||y - x|| \le r\}$$

If |S| = 3.

Is *S* shuttered by *H*?

Example 2: answer

Let
$$X = \mathbb{R}$$
, $H = \{h_a(x) = \mathbb{1}_{[x < a]} : a \in \mathbb{R}, x \in X\}$ and $A = \{7,8\}$.

There exist four subsets in *A*:

$$\{\emptyset\}, \{7\}, \{8\}, \{7; 8\}$$

Here, the subsets of H have the following form :

By intersection between elements of H and the set A, we can obtain only three subsets of A:

$$\{\emptyset\}, \{7\}, \{7; 8\}$$

Hence, A is not shuttered by H.

Example 3: answer
$$|H(S)| = 2^{|2|} = 4$$

Let $X = \mathbb{R}^2$ and $H = \{B_{(x,r)} : x \in \mathbb{R}^2 \text{ and } r \in \mathbb{R}^+\}$ such that:

$$B_{(x,r)} = \{y : ||y - x|| \le r\}$$

We have |S| = 2.

Let
$$S = \{(a, b); (c, d)\}.$$

There are four subsets in *S*:

$$\{\emptyset\}, \{(a,b)\}, \{(c,d)\}, \{(a,b); (c,d)\}$$

Here, the subsets of *H* are cercles.

By intersection betwen the elements of H and the set S, we can capture all the subsets of S.

So, A is shuttered by H.

Example 4: answer $|H(S)| = 2^{|S|} = 8$

Let $X = \mathbb{R}^2$ and $H = \{B_{(x,r)} : x \in \mathbb{R}^2 \text{ and } r \in \mathbb{R}^+\}$ such that:

$$B_{(x,r)} = \{y : ||y - x|| \le r\}$$

We have that |S| = 3, this implies that S contains 8 subsets.

Case 1: non-collinear points

All subsets of S are captured by the elements of H. $|H(S)| = 8 = 2^3$ So, S is shuttered by H.

Case 2: collinear points

Only seven subsets of S are captured by the elements of H. $|H(S)| = 7 \neq 8 = 2^3$ So, S is not shuttered by H.

Definition: VC Dimension

The VC dimension is a property of H which measures the maximum size of a set $S \subset X$ to be shuttered by H:

$$d_{VC}(H) = \begin{cases} \max\{|S|, S \text{ is shuttered by } H\} \\ +\infty \text{ there is no maximum for } S \end{cases}$$

S is shuttered by $H \Leftrightarrow H(S) = 2^{|S|}$

Lemma-L.S.:

PLA: For linear seperators: $d_{VC}(H) = n + 1$ with n is the number of features.

Examples:

What is the VC dimension of the following sets:

1-
$$H = H_s = \{h_a : a \in \mathbb{R}\}$$
, such that:

$$h_a(x) = \mathbb{1}_{[x < a]} \text{ and } X = \mathbb{R} \Longrightarrow d_{VC}(H_s) = 1$$

2-
$$H = H_S = \{h_A : A \subset \mathbb{R}\}$$
, such that:

$$h_A(x) = \begin{cases} 1 & \text{si } x \in A \\ 0 & \text{sinon} \end{cases} \text{ and } X = \mathbb{R}$$

Example 1: answer

Let $X = \mathbb{R}$

And

$$H = H_s = \{h_a : a \in \mathbb{R}\}$$
, such that: $h_a(x) = \mathbb{1}_{[x < a]}$

We had proved that $\forall S$ of size ≥ 2 , it is not shuttered by H_S .

Finally, we have:

$$d_{VC}(H_s) = 1$$

Example 2: answer

Let $X = \mathbb{R}$

And

$$H = H_S = \{h_A : A \subset \mathbb{R}\}$$
, such that: $h_A(x) = \begin{cases} 1 \text{ if } x \in A \\ 0 \text{ otherwise} \end{cases}$

We notice that \forall the size of S, it is always shuttered by H_S , because there is no maximum for S.

Hence:

$$d_{VC}(H_S) = +\infty$$

Conclusion:

We have : $d_{VC}(H_S) = 1$ and $d_{VC}(H_S) = +\infty$ and the two sets are infinite.

Therefore, we just proved that the VC dimension is a good measure to make the difference between the infinite sets.

•
$$H = H_S = \{h_A : A \subseteq \mathbb{R}\}$$
, such that: $h_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{if } x \notin A \end{cases}$

•
$$S = \{1,2,3,4\}, H_S(S), h_A(x), \forall x \in S, \forall A \subseteq \mathbb{R} \setminus S \quad h_A(x) = 0$$

Tous les h_A possible:

- $h_A: A = S$
- h_A : $A = \{1\}, A = \{2\}, A = \{3\}, A = \{4\}$
- h_A : $A = \{1,2\}, A = \{1,3\}, A = \{1,4\}, A = \{2,3\}, A = \{2,4\}, A = \{3,4\}$
- $h_A: A = \{1,2,3\}, A = \{1,2,4\}, A = \{2,3,4\}, A = \{1,3,4\}$
- $h_A: A \subseteq \mathbb{R} \backslash S$

Then $|H_S(S)|=16=2^4$ If $|S|=n \Rightarrow |H_S(S)|=2^n$ then we don'thave a maximum $\Rightarrow d_{VC}(H_S)=+\infty$

Corollary: No Free Lunch for $B \subset X$

Let H be a class of all hypotheses from X to $\{0,1\}$. $|H| = \infty$

Let's suppose that there exist $B \subset X$, such that **B** is shuttered by **H**, $|H(B)| = 2^{|B|} < \infty$ and |B| = 2m.

For any algorithm A_{α} and for any sample S of size:

$$|S| = \frac{|B|}{2} = m$$

There exist a certain distribution D on $X \times \{0,1\}$ such that:

■
$$\exists f: X \longrightarrow \{0,1\}: L_D(f) = 0.$$

$$\exists \varepsilon = \frac{1}{8}, \exists \delta = \frac{1}{7}, P_{S \sim D^m} \left(L_D \left(A_{\alpha}(S) \right) > \varepsilon = \frac{1}{8} \right) \ge \delta = \frac{1}{7}$$

Theorem:

Let H be a class of hypotheses, if $d_{VC}(H) = +\infty \implies H$ is not PAC.

Proof: (Theorem)

We have $d_{VC}(H) = +\infty$.

So, for any sample S of size m, there exist a class $A \subset X$ of size |A| = 2m such that A is shuttered by H.

According to the above corollary:

 $\forall A_{\alpha}, \exists D \text{ on } X \times \{0,1\} \text{ and } h \in H \text{ such that } L_D(h) = 0 \text{ but:}$ $P_{S \sim D^m} \left(L_D \big(A_{\alpha}(S) \big) > \frac{1}{8} \right) \geq \frac{1}{7}$

$$P_{S \sim D^m} \left(L_D \left(A_{\alpha}(S) \right) > \frac{1}{8} \right) \ge \frac{1}{7}$$

Therefore, *H* is not PAC.

Growth function

Definition:

Let H be a class of hypothesis, the growth function of H is $\Pi_H: \mathbb{N} \to \mathbb{N}$, such that:

$$\Pi_H(m) = \max_{\substack{A \subset X \ |A| = m}} |H_A = H(A)|$$
 $H(A)$ is the restriction of H on A .

Notice:

- $\forall H$ and $\forall m, \Pi_H(m) \leq 2^m$
- If H shutters the class of size m, $|H_A| = 2^m$ So:

$$\Pi_H(m) = 2^m$$

■ If $d_{VC}(H) < m$, So:

$$\Pi_H(m) < 2^m$$

Results

Lemma 4: Sauer

Let *H* be a class of hypotheses such that:

$$d_{VC}(H) \leq d < +\infty$$

Then:

$$\forall m$$
, $\Pi_H(m) \leq \sum_{i=0}^d C_m^i \Longrightarrow log(\Pi_H(m)) \leq log(\sum_{i=0}^d C_m^i)$

$$\Rightarrow \frac{4 + \sqrt{\log(\Pi_H(2m))}}{\delta\sqrt{2m}} \leq \frac{4 + \sqrt{\log(\sum_{i=0}^d C_m^i)}}{\delta\sqrt{2m}}$$

In particular, if m > d + 1, so:

$$\Pi_H(m) \le \left(\frac{me}{d}\right)^d$$

Generalization bound of infinite H (classification)

Theorem: Generalization bound of VC(C.U)

Let H be a class of hypotheses and Π_H is its growth function. So, for any D and for any $\delta \in [0,1]$:

$$P_{S \sim D^m} \left(|L_D(h) - L_S(h)| \le \varepsilon = rac{4 + \sqrt{\log(\Pi_H(2m))}}{\delta \sqrt{2m}}
ight) \ge 1 - \delta$$

$$P_{S \sim D^m} \left(|L_D(h) - L_S(h)| > \frac{4 + \sqrt{\log(\Pi_H(2m))}}{\delta \sqrt{2m}} \right) \le \delta$$

Such that:

$$arepsilon = rac{4 + \sqrt{logigl(\Pi_H(2m)igr)}}{\delta\sqrt{2m}}$$

Pr. Abdellatif El Afia: Course of Machine Learnin

Fundamental Theorems of Learning

Theorem 1:

Let H be a class of hypotheses in $X \times \{0,1\}$.

Let *l* be the classification loss function.

We have equivalence between:

- 1. H follows a uniform convergence.
- 2. H is APAC learnable by ERM.
- 3. H is APAC learnable.
- 4. H is PAC learnable.
- 5. H is PAC learnable by ERM.
- 6. $d_{VC}(H)$ is finite.

Notice:

The VC dimension is a tool characterizing the PAC learning.

Fundamental Theorems of Learning

Theorem 2:

Let H be a class of hypotheses in $X \to \{0,1\}$. Let l a classification loss function.

Let's suppose that $d_{VC}(H) = d < +\infty$. So, there exist two constants C_1 and C_2 such that:

1. H follows a uniform convergence having the sample complexity;

$$C_1 \frac{d + \log(\frac{1}{\delta})}{\varepsilon^2} \le m_H^{CU}(\varepsilon, \delta) \le C_2 \frac{d + \log(\frac{1}{\delta})}{\varepsilon^2}$$

2. H is agnostic PAC learnable having the sample complexity:

$$C_1 \frac{d + \log(\frac{1}{\delta})}{\varepsilon^2} \le m_H^{APAC} \quad (\varepsilon, \delta) \le C_2 \frac{d + \log(\frac{1}{\delta})}{\varepsilon^2}$$

3. H is PAC learnable having the sample complexity:

$$C_1 \frac{d + \log(\frac{1}{\delta})}{\varepsilon} \le m_H^{PAC} (\varepsilon, \delta) \le C_2 \frac{d \log(\frac{1}{\varepsilon}) + \log(\frac{1}{\delta})}{\varepsilon}$$

Notice: The VC dimension allows to determine the sample complexity.

${m S}$ is a sample of size ${m m}$ ${m A}_{lpha}({m S}) = {m h}_{m S}$,(ch1, Ch2,Ch3)

• PAC

 $\forall D, \forall (\varepsilon, \delta) \in [0,1]^2, \exists m_H^{PAC}(\varepsilon, \delta), \text{ such that } \forall m \geq m_H^{PAC}(\varepsilon, \delta)$

$$P_{S \sim D^m} (L_D(h_S) > \varepsilon) \le \delta \iff P_{S \sim D^m} (L_D(h_S) \le \varepsilon) > 1 - \delta$$

APAC

 $\forall D, \forall (\varepsilon, \delta) \in [0,1]^2, \exists m_H^{APAC}(\varepsilon, \delta), \text{ such that } \forall m \geq m_H^{APAC}(\varepsilon, \delta)$

$$P_{S \leadsto \mathcal{D}^m} \left[L_{\mathcal{D}}(h_S) > \min_{h \in H} L_{\mathcal{D}}(h) + \varepsilon \right] \leq \delta \iff P_{S \leadsto D^m} \left(L_D(h_S) \leq \min_{h \in H} L_{\mathcal{D}}(h) + \varepsilon \right) > 1 - \delta$$

Uniform Convergence

 $\forall D, \forall \varepsilon, \delta \in [0,1], \exists m_H^{CU}(\varepsilon, \delta), \text{ such that } \forall m \geq m_H^{CU}(\varepsilon, \delta)$

$$P_{S \sim \mathcal{D}^m}[|L_S(h_S) - L_D(h_S)| > \varepsilon] \le \delta \iff P[|L_S(h_S) - L_D(h_S)| \le \varepsilon] \ge 1 - \delta$$

- |*H*| < ∞
 - With the Realizabilty hypotheses we have PAC
 - Without we have APAC (tool: Uniform Convergence \Rightarrow APAC)

$$|H|=\infty, |S|=m$$

1. Binary Classification

$$d_{VC}(H) = \begin{cases} \max\{|S|, S \text{ is shuttered by } H\} \\ +\infty \text{ there is no maximum for } S \end{cases}$$

- S is shuttered by $H \Leftrightarrow H(S) = 2^{|S|}$
- PLA: For linear seperators: $d_{VC}(H) = n + 1$ with n is the number of features.
- APAC learnable \Leftrightarrow PAC learnable \Leftrightarrow CU learnable \Leftrightarrow $d = d_{VC}(H) < \infty$

$$\bullet \begin{cases}
\mathbf{m} \leq \mathbf{d} \Rightarrow \Pi_{H}(\mathbf{m}) \leq \sum_{i=0}^{d} C_{\mathbf{m}}^{i} \\
\mathbf{m} > \mathbf{d} + \mathbf{1} \Rightarrow \Pi_{H}(\mathbf{m}) \leq \left(\frac{me}{d}\right)^{d}
\end{cases}$$

•
$$P_{S \sim D^m} \left(|L_D(h) - L_S(h)| \le \varepsilon = \frac{4 + \sqrt{\log(\Pi_H(2m))}}{\delta \sqrt{2m}} \right) \ge 1 - \delta$$

3.4 Regression: Covering number

- Background
- Covering numbers in a general metric space
- Covering numbers in Euclidean space
- Uniform covering numbers for a real-valued function class

•
$$H = \{h_{a,b,c}(x) = ax^2 + bx + c : (a,b,c) \in \mathbb{R}^3\} \Longrightarrow |H| \approx \infty$$

•
$$S = \{(x_i, y_i)\} \Longrightarrow |H(S_x)|: S_x = \{x_i\}$$

•
$$h_s(x_i) = y_i \in \mathbb{R} \text{ and } x_i \in \mathbb{R}$$

Background

Definition: Metric space

(M, d) is called a metric space that consists of a set M together with a metric $d: M \times M \to [0, \infty)$ that satisfies the following for all $x, y, z \in M$:

$$d(x,y) = 0 \implies x = y.$$

$$d(x,y) = d(y,x).$$

$$d(x,z) \le d(x,y) + d(y,z).$$

Definition: Open *d***-ball**

An open d-ball centered at $x \in M$ is defined as:

$$\mathbf{B}_{d,\varepsilon}(\mathbf{x}) = \{ y \in M \mid d(x,y) < \varepsilon \}$$

Open d-ball : Space M

- $d(x, y_1) > \varepsilon$
- $d(x, y_2) < \varepsilon$
- $d(x, y_3) = \varepsilon$
- $y_3 \in F_{d,\varepsilon}(x)$

 $y_3 \in F_{d,\varepsilon}(x) = \{y \in M \mid d(x,y) = \varepsilon\}$ $F_{d,\varepsilon}(x) \neq B_{d,\varepsilon}(x)$

Definition: ε-cover

Let (M,d) be a metric space. 1: Let $W\subseteq M$ and let $\varepsilon>0$. A set $C\subseteq W$ is said to be ε cover of W with respect to d if $(\forall w\in W)(\exists c\in C)$ such that: $d(w,c)<\varepsilon$

2: In other words, $C \subseteq W$ is an ε -cover of W with respect to d if the union of (open) d-balls of radius ε centered at points in C contains W: $\bigcup_{c \in C} B_{d,\varepsilon}(c) \supseteq W$

Let $W \subseteq M$ and let $\varepsilon > 0$. A set $C \subseteq W$ is said to be ε -cover of W with respect to d if $(\forall w \in W)(\exists c \in C)$ such that: $d(w,c) < \varepsilon$

Let $W \subseteq M$ and let $\varepsilon > 0$. A set $C \subseteq W$ is said to be ε -cover of W with respect to d if $(\forall w \in W)(\exists c \in C)$ such that: $d(w,c) < \varepsilon$

• $w_2 \in C \implies d(w_2, w_2) = 0 < \varepsilon$

• $w_1 \notin C \Longrightarrow d(w_1, c) = 3\varepsilon > \varepsilon$

C isn't said to be ε -cover of W

But C is said to be 4ε -cover of W

${\mathcal C} \subseteq W$ is an ${\varepsilon}$ -cover of W with respect to d

• if the union of (open) d-balls of radius ε centered at points in C contains $W: \bigcup_{c \in C} B_{d,\varepsilon}(c) \supseteq W$

•
$$c = \{1,2,3\}$$

•
$$\Rightarrow B_{d,\varepsilon}(1) = \{ y \in M \mid d(1,y) < \varepsilon \}$$

•
$$\Rightarrow B_{d,\varepsilon}(2) = \{ y \in M \mid d(2,y) < \varepsilon \}$$

•
$$\Rightarrow B_{d,\varepsilon}(3) = \{ y \in M \mid d(3,y) < \varepsilon \}$$

Definition: ε **-covering number**

The ε -covering number $\mathcal{N}(\varepsilon, W, d)$ of W with respect to d is defined as the cardinality of the smallest ε -cover of W if W has a finite ε -cover with respect to d. Otherwise, if W does not have a finite ε -cover with respect to d, ε -covering number is equal to infinity.

$$C \subseteq W$$

$$\mathcal{N}(\varepsilon, W, \mathbf{d}) = \begin{cases} \min\{|C|, C \text{ is an } \varepsilon - \text{cover of } W \text{ with respect to } d\} \\ \infty \text{ if } W \text{ does not have a finite } \varepsilon - \text{cover} \end{cases}$$

• $\varepsilon \in [0,1]$

Example:

For instance, for the H shown in the figure the set of points $\{1, 2, 3, 4, 5, 6\}$ is a covering. However, the covering number is 5 as point 6 can be removed from the set C and the resulting points are still a covering.

Example:

$$\{1, 2, 3, 4, 5, 6\} \Longrightarrow$$

•
$$B_{d,\varepsilon}(1) = \{ y \in M \mid d(1,y) < \varepsilon \}, B_{d,\varepsilon}(2) = \{ y \in M \mid d(2,y) < \varepsilon \}$$

•
$$B_{d,\varepsilon}(3) = \{ y \in M \mid d(3,y) < \varepsilon \}, B_{d,\varepsilon}(4) = \{ y \in M \mid d(4,y) < \varepsilon \}$$

•
$$B_{d,\varepsilon}(5) = \{ y \in M \mid d(5,y) < \varepsilon \}$$

•
$$B_{d,\varepsilon}(6) = \{ y \in M \mid d(6,y) < \varepsilon \} \subset \bigcup_{x=1,\dots,5} B_{d,\varepsilon}(x)$$

•
$$\Rightarrow \bigcup_{x=1,\dots,5} B_{d,\varepsilon}(x) = \bigcup_{x=1,\dots,6} B_{d,\varepsilon}(x)$$

Covering numbers in Euclidean space

Consider now $M = \mathbb{R}^n$. We can define a number of different metrics on \mathbb{R}^n , including in particular the following:

$$d_1(x, x') = \frac{1}{n} \sum_{i=1}^{n} |x_i - x_i'|$$

$$d_2(x, x') = \sqrt{\frac{1}{n} \sum_{i=1}^n (x_i - x_i')^2}$$

$$d_{\infty}(x, x') = \max_{i} |x_i - x_i'|$$

Covering numbers in Euclidean space

Accordingly, for any $W \subseteq \mathbb{R}^n$, we can define the corresponding covering numbers $\mathcal{N}(\varepsilon, W, d)$ for $p = 1, 2, \infty$.

It is easy to see that:

$$d_1(x, x') \le d_2(x, x') \le d_{\infty}(x, x') \le \varepsilon$$

Therefore, the corresponding covering numbers satisfy the relation:

$$\mathcal{N}(\varepsilon, W, d_1) \leq \mathcal{N}(\varepsilon, W, d_2) \leq \mathcal{N}(\varepsilon, W, d_{\infty})$$

$$d_1(x,x') \leq \varepsilon' \Rightarrow d_2(x,x') \leq \varepsilon'$$

Uniform covering numbers for a real-valued function class

Definition: uniform covering number

Let H be a class of real-valued functions on X:

$$H = \{h \in H \mid h: X \longrightarrow \mathbb{R}\} \Longrightarrow |H| \approx \infty$$

And let $A = \{x_1, ..., x_m\} \subset X$. Then the $H_A = H(A) = \{h(x_1), ..., h(x_m): h \in H\} \subseteq \mathbb{R}$.

For any $\varepsilon>0$ and $m\in N$, the uniform d_p covering numbers of H for $p=1,2,\infty$ are defined as:

$$\mathcal{N}_p(\varepsilon,H,m) = \begin{cases} \max_{A \subseteq X} \mathcal{N}(\varepsilon,H_A,d_p) & if \ \mathcal{N}\left(\varepsilon,H_A,d_p\right) \text{ is finite for all } A \subseteq X \ |A| = m \\ \infty & otherwise \end{cases}$$

Notice: The number of "uniform" refers to the maximum over all $A \subset X$. It has no relationship with uniform convergence.

$$|H|=\infty$$

1. Regression

• ε -covering number

$$\mathcal{N}(\varepsilon, W, \mathbf{d}) = \begin{cases} \min\{|C|, C \text{ is an } \varepsilon - \text{cover of } W \text{ with respect to } d\} \\ \infty \text{ if } W \text{ does not have a finite } \varepsilon - \text{cover} \end{cases}$$

Uniform Covering Number

$$\mathcal{N}_{p}(\varepsilon,H,m) = \begin{cases} \max_{A \subset X} \mathcal{N}(\varepsilon,H_{A},d_{p}) & \text{if } \mathcal{N}(\varepsilon,H_{A},d_{p}) \text{ is finite for all } A \subset X |A| = m \\ \infty & \text{otherwise} \end{cases}$$

- $H_A = H(A)$
- APAC learnable \Leftrightarrow PAC learnable \Leftrightarrow CU learnable $\Leftrightarrow \mathcal{N}_p(\varepsilon, H, m) < \infty$

Let's assume that H takes values in some set $\widehat{Y} \subseteq \mathbb{R}$, so that $H \subseteq \widehat{Y}^X$.

We will require the loss function l to be bounded. we will assume $\exists B > 0$ such that:

$$(\forall y \in Y)(\forall \hat{y} \in \hat{Y})$$
 $0 \le l(y, \hat{y}) \le B$ and $l: Y \times \hat{Y} \longrightarrow [0, B]$

Definition: The loss function class $\overline{H} = l_H \Longrightarrow |l_H| = \infty \ because |H| = \infty$

We will find it useful to define for any function class $H \subseteq \hat{Y}^X$ and loss $l: Y \times \hat{Y} \to [0, B]$ the loss function class $l_H \subseteq [0, B]^{X \times Y}$ given by:

$$\overline{H} = l_H = \{l_h: X \times Y \longrightarrow [0, B] \mid l_h(x, y) = l(y, h(x)) \text{ for some } h \in H\}$$

•
$$\hat{Y}^X = \{h: X \longrightarrow \hat{Y} \subseteq \mathbb{R}\}, \hat{Y} = \{h(x), x \in X, h \in \hat{Y}^X\}$$

- (x,y), $d(y,h(x)) = l(y,\hat{y})$
- the loss function $l(:Y \times \hat{Y} \to \mathbb{R})$ to be bounded:
 - $(\forall y \in Y)(\forall \hat{y} \in \hat{Y})$ $0 \le l(y, \hat{y}) \le B$
 - $l: Y \times \hat{Y} \longrightarrow [0, B]$

Theorem: generalization bound

Let the sets $Y, \hat{Y} \subseteq \mathbb{R}$. Let $H \subseteq \hat{Y}^X$, and let $l: Y \times \hat{Y} \longrightarrow [0, B]$.

Let D be any distribution on $X \times Y$.

For any $\varepsilon > 0$:

$$\Pr_{S \sim D^m} \left(\sup_{h \in H} |L_D(h) - L_S(h)| \ge \varepsilon \right) \le \delta = 4 \, \mathcal{N}_1 \left(\frac{\varepsilon}{8}, l_H, 2m \right) e^{-m\varepsilon^2/32B^2}$$

Lemma: L-Lipschitz loss

Let $Y, \hat{Y} \subseteq \mathbb{R}$.

Let $H \subseteq \hat{Y}^X$, and let $l: Y \times \hat{Y} \longrightarrow [0, B]$.

l is Lipschitz in its second argument with Lipschitz constant L>0, if and only if:

$$|l(y, \hat{y}_1) - l(y, \hat{y}_2)| \le L|\hat{y}_1 - \hat{y}_2| \quad \forall y \in Y, \hat{y}_1, \hat{y}_2 \in \hat{Y} = h(X)$$

Then for any $m \in N$

$$\mathcal{N}_1(\varepsilon, l_F, m) \leq \mathcal{N}_1(\frac{\varepsilon}{L}, l_H, m)$$

 l_F is Lipshitz with L

Corollary: generalization bound

Let $Y, \hat{Y} \subseteq \mathbb{R}$.

Let $H \subseteq \widehat{Y}^X$, and let $l: Y \times \widehat{Y} \longrightarrow [0, B]$ such that l is Lipchitz in its second argument with Lipschitz constant L > 0.

Let D be any distribution on $X \times Y$.

For any $\varepsilon > 0$:

$$\Pr_{S \sim D^m} \left(\sup_{h \in H} |L_D(h) - L_S(h)| \ge \varepsilon \right) \le \delta = 4 \, \mathcal{N}_1 \left(\frac{\varepsilon}{8L}, l_H, 2m \right) e^{-m\varepsilon^2/32B^2} \le \mathcal{N}_2 \le \mathcal{N}_\infty$$