Table of Contents

INITIALIZATIONCALCULATIONSOUTPUTS	1 2
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	
<pre>% Problem Description: Add the problem description here and delete this % line. %</pre>	
% Assignment Information	
% Assignment: MA2	
% Author: Leo Yu, yu1398@purdue.edu	
% Team ID: LC018-03	
% Date: 11/6/2024 %	
% Contributor: Name, login@purdue [repeat for each]	
% My contributor(s) helped me:	
<pre>% [] understand the assignment expectations without</pre>	
<pre>telling me how they will approach it.</pre>	
<pre>% [] understand different ways to think about a solution</pre>	
% without helping me plan my solution.	
<pre>% [] think through the meaning of a specific error or</pre>	
<pre>% bug present in my code without looking at my code.</pre>	
% Note that if you helped somebody else with their code, you	
% have to list that person as a contributor here as well.	
8	
% Academic Integrity Statement:	
§ I have not used source code obtained from any unauthorized	
% source, either modified or unmodified; nor have I provided	
% another student access to my code. The project I am	
% submitting is my own original work.	
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%	
%%	

Error using evalin Unrecognized function or variable 'ma2_ind_1_yu1398'.

INITIALIZATION

Define tank dimensions

r = 1.25; % Inner radius in meters
length = 5.5; % Inner length in meters

```
height_increment = 0.1; % Height decrease in meters (sensor interval)
% Calculate maximum volume and threshold volume
max_volume = pi * r^2 * length;
threshold_volume = 0.2 * max_volume;
fprintf('max volume: %.2f m^3\n', threshold_volume);
% Initialize variables
h = 2 * r; % Starting fluid height (full tank)
index = 1;
volume = [];
```

CALCULATIONS

While loop to simulate tank emptying

```
while h > 0
  % Calculate volume at current height
  current_volume = length * (acos((r - h) / r) * r^2 - (r - h) * sqrt(2 *
r * h - h^2));
  volume(index) = current_volume; % Store in volume vector
  % Check if the current volume is below the threshold
  if current_volume < threshold_volume
        break; % Exit loop once below 20% capacity
  end

% Update variables
  h = h - height_increment; % Decrement height
  index = index + 1; % Move to the next index
end</pre>
```

OUTPUTS

Display results

```
fprintf('Number of iterations = %d\n', index);
fprintf('Remaining volume = %.2f m\n', current_volume);
fprintf('Fluid Height= %.2f m^3\n', h);
fprintf('Warning: The tank volume is below 20%% capacity!\n');
```

Published with MATLAB® R2024b