Lengyel forma¹

Lengyel forma: egy aritmetikai kifejezés postfix alakja. Jellemzői:

- Nincsenek benne zárójelek, a kiértékelés mégis egyértelmű, és könnyen elvégezhető,
- Operandusok sorrendje nem változik, az infix kifejezéshez képest,
- Operátorok sorrendje: az elvégzésük sorrendjében szerepelnek,
- Minden operátort közvetlen megelőznek az operandusai. Az operandus lehet változó, konstans, de lehet postfix kifejezés is.

infix kifejezés	lengyel forma (postfix alak)	Megjegyzés	
a+b	ab+	műveleti jel az operandusai mögött áll	
a+b*c	abc*+	műveletek rangsorának hatása: (prec(*) > prec(+)	
a*b+c	ab*c+	műveletek rangsorának hatása: (prec(*) > prec(+)	
a*(b+c)	abc+*	zárójelezés felülbírálhatja a műveletek rangsorát	
a/b*c	ab/c*	azonos rangú műveletek általában balról jobbra sorrendben végzendők el	
a^b^c	abc^^	a fenti szabály alól akad néhány kivétel, például az egymást követő hatványozás sorrendje jobbról balra értendő	

Feladat:

A) $(a+b)*(c-d)/f^{(g-h)}+j-l-i$ kifejezés lengyel formára hozása.

B) Értékadó operátor hatása, Hova illik az értékadó operátor?

$$x = (a + b) * (c - d) / f * (g - h) + j - l - i$$

Megoldás:

$$x a b + c d - * f g h - ^ / j + 1 - i - =$$

Lengyel formára hozás verem segítségével – bemutatás példákon keresztül

1. a * b + c

Kimenet: a b * c +

¹ Az eredeti prefix jelölési formát, **Jan Łukasiewicz** lengyel matematikus javasolta 1920-ban, később az ausztrál filozófus, **Charles Leonard Hamblin** javasolta a postfix alakot (1950), melyet emiatt "fordított lengyel formának" is szokás nevezni. (forrás: wikipedia)

2. a + b * c

Kimenet: a b c * +

3. a + b - c

Kimenet: ab + c -

Precedencia hatása:

- Minden beolvasott műveleti jel bekerül a verembe, hogy "megvárja", míg az operandusai kiíródnak, de előtte a veremben várakozó műveleti jelek vizsgálata történik:
- ha azonos rangú a beolvasott és a verem tetején lévő műveleti jel, kiírjuk a veremben lévőt (balról jobbra sorrend esetén) 3. példa,
- ha a veremben magasabb prioritású művelet szerepel, mint ami bekerülne, kiírjuk 1. példa,
- ha a verem tetején alacsonyabb rangú van, mint az olvasott, akkor bekerül a verembe − 2. példa.

Feladat:

a-(b+c*(d-f))+h kifejezés lengyel formára hozása verem segítségével. A verem tartalmát folyamatosan tartsuk nyilván!

Megoldás:

Kimenet: a b c d f - * + - h +

Kicsit bonyolultabb kifejezés gyakorlásra:

$$x=a+(-b^{c}^{2}+d^{e})/((f+g)^{h}-k)-p^{z}$$

Algoritmus:

Bemenet: egy helyesen zárójelezett kifejezés: S (Az operandusokat, mint szimbólumokat tesszük a verembe. Feltesszük, hogy S csak bináris operátorokat tartalmaz.)

LengyelForma(S) V: Stack x := Read (S) 3 =! x \Operandus(x) x = '('x = ')' Operator(x) BalJobbOperator(x) V.top ≠ '(' $V.IsEmpty() \land V.top() \neq '('$ $!V.lsEmpty() \land V.top() \neq '('$ Write(V.pop()) $\wedge pr(x) \leq pr(V.top())$ ∧ pr(x) < pr(V.top())</p> Write(x) V.push(x) Write(V.pop()) Write(V.pop()) V.pop() V.push(x) V.push(x) x := Read (S) ! V.IsEmpty() Write(V.pop())

Megemlítendő:

- Vannak jobbról balra sorrendű operátorok, ezek feldolgozása hogyan történik?
 y = x = a ^ b ^ c
- Gondoljuk meg, hogy az egy operandusú operátorok (pl. negatív előjel –a^b, vagy ++i*x) hogyan illeszthetők be a lengyel formába?
- Egyszerű függvények bevonása. pl: $x = z * \sin(y/w)^2$
- Javasoljuk a hallgatóknak, hogy keressék meg az interneten a C++ nyelv operátorait és precedenciájukat, például: http://www.cplusplus.com/doc/tutorial/operators/

Lengyel forma kiértékelése

Feladat:

Hozzuk lengyel formára a következő kifejezést, majd verem segítségével értékeljük ki: (a+b) * c-d

Lengyel forma: a b + c * d -

Tegyük fel, hogy a változók az alábbi értékkel rendelkeznek, számítsuk ki a kifejezés értékét a lengyel formából!

$$a = 2$$
, $b = 4$, $c = 3$, $d = 1$

Kiértékelés:

Az algoritmus:

Bemenet: egy lengyel formájú kifejezés: S (Az operandusok értékét tesszük a verembe. Feltesszük, hogy S csak bináris operátorokat tartalmaz, de értékadó operátort nem.)

lengyel_kiertekeles(S)

S - lengyel formájú kifejezés

Megjegyzések az Operator(x) ághoz:

- bal ⊗ jobb jelölés: elvégezzük az x műveletet,
- feltettük, hogy az operárorok két operandusúak,
 de ez könnyen kiterjeszthető egy oprandusú műveletekre
- az algoritmus kiszámíthatja az értéket, vagy fordító program esetén generálhatja a kiszámítás kódját.

Javasolt házifeladatok lengyel forma témakörhöz:

Egyet érdemes feladni az (1)-(3) feladatokból, jobb csoportoknál fel lehet adni a (4)-est is.

- (1) Teljesen és helyesen zárójelezett kifejezésből hogyan állítható elő a lengyel forma.
- (2) Teljesen és helyesen zárójelezett kifejezésből hogyan értékelhető ki verem segítségével a kifejezés.
- (3) Lengyel formából hogyan állíthatjuk elő a teljesen zárójelezett alakot.

Megoldások:

(1) Teljesen és helyesen zárójelezett kifejezésből a lengyel forma előállítása.

lengyelforma(Inp,Out)

V:Stack; x:=read(Inp)							
	x≠ε						
	x = '('	Operandus(x)	Operator(x)	x = ')'			
	skip	Write(Out,x)	V.push(x)	Write(Out,V.pop())			
	x:=read(Inp)						

Inp - egy teljesen és helyesen zárójezett aritmetikai kifejezés

Out - a kifejezés lengyel formája

(2) Teljesen és helyesen zárójelezett kifejezésből hogyan értékelhető ki verem segítségével a kifejezés.

Kiertekeles_teljesenzarojelezettbol(Inp)

V:Stack; W:Stack; z:=read(Inp)								
	Z≠ε							
	z = '('	Operandus(z)	Operator(z)	z = ')'				
skip		Manak (a)	W =======(=)	jobb:=V.pop()				
	akin			bal:=V.pop()				
	V.push(z)	W.push(z)	x:=W.pop()					
			V.push(bal⊗jobb)					
	z:=read(Inp)							
Write(V.pop())								

V - operandusokat tároló verem W - operátorokat tároló verem

Inp - egy teljesen és helyesen zárójelezett kifejezés.

z=')' ágra ugyanazok a megjegyzések vonatkoznak, mint a lengyel forma kiértékelő algoritmusra