

(11)Publication number:

09-081178

(43) Date of publication of application: 28.03.1997

(51)Int.Cl.

G10L 3/00

G10L 3/00

(21)Application number: 07-239821

(71)Applicant: ATR ONSEI HONYAKU TSUSHIN

KENKYUSHO:KK

(22)Date of filing:

19.09.1995

(72)Inventor: TONOMURA MASAHIRO

MATSUNAGA SHOICHI

(54) UNSPECIFIED SPEAKER MODEL GENERATING DEVICE AND VOICE RECOGNITION **DEVICE**

(57)Abstract:

PROBLEM TO BE SOLVED: To always generate an unspecified speaker model by independently clustering the output Gaussian distribution of each state of the hidden Markov model of single Gaussian distribution of plural specific speakers and synthesizing them. SOLUTION: The unspecified speaker model generation section 31 learns the output Gaussian distribution only for the state, in which data exist, based on the uttered voice data of plurality N specific speakers stored in the memory of uttered voice data 30 of the specific speakers, extracts only the parameters of the learned output Gaussian distributions among the specific speaker's models and performs clustering for every state corresponding to the hidden Markov model(HMM). Then, synthesis and mixing are performed to generate a hidden Markov network (an HM network) 11 of the mixed Gaussian distributions and it is stored in the memory of the network 11. Then, voice recognition is performed by referring to the network 11. In other words, the output

Gaussian distribution of each state of the hidden Markov model of a single Gaussian distribution of plural specific speakers is independently clustered for every state and an HMM is generated.

LEGAL STATUS

[Date of request for examination]

19.09.1995

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number] [Date of registration] 2852210

13.11.1998

[Number of appeal agains aminer's decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平9-81178

(43)公開日 平成9年(1997)3月28日

(51) Int.Cl. ⁶		酸別記号	庁内整理番号	FΙ			技術表示箇所
G10L	3/00	5 2 1		G10L	3/00	5 2 1 N	
						5 2 1 C	
		5 3 5				5 3 5	

審査請求 有 請求項の数5 OL (全 10 頁)

(21)出願番号	特願平7-239821	(71) 出願人 593118597
		株式会社エイ・ティ・アール音声翻訳通信
(22)出顧日	平成7年(1995)9月19日	研究所
		京都府相楽郡精華町大字乾谷小字三平谷 5
		番地
		(72) 発明者 外村 政啓
		京都府相楽郡精華町大字乾谷小字三平谷5
		番地 株式会社エイ・ティ・アール音声観
		歌通信研究所内
		(72)発明者 松永 昭一
		京都府相楽郡精華町大字乾谷小字三平谷5
		番地 株式会社エイ・ティ・アール音声観
		訳通信研究所内
		(74)代理人 弁理士 貴山 葆 (外2名)
		(INIVER NET HE M OF THE

(54) 【発明の名称】 不特定話者モデル作成装置及び音声認識装置

(57)【要約】

【課題】 各特定話者モデルのすべてのバラメータが学習されている必要がなく、また話者毎に学習されているバラメータが異なっている場合においても不特定話者モデルを作成できる不特定話者モデル作成装置及び音声認識装置を提供する。

【解決手段】 複数の特定話者の発声音声データに基づいて複数の話者に対して同一の初期話者モデルを用いてデータの存在する状態に対してのみ出力ガウス分布を学習することにより、複数個の特定話者用単一ガウス分布のHMMを作成し、各出力ガウス分布間の距離を基準にして、各クラスタにより短い距離に出力ガウス分布が含まれるように複数のクラスタにクラスタリングを行う。次いで、各状態毎にクラスタリングされた単一ガウス分布のHMMに基づいて、各クラスタ内の複数の出力ガウス分布のHMMを各状態の単一ガウス分布のHMMに合成した後混合することにより、不特定話者の混合ガウス分布のHMMを作成する。

【特許請求の範囲】

【請求項1】 入力された複数の特定話者の単一ガウス 分布の隠れマルコフモデルに基づいて、不特定話者の混 合ガウス分布の隠れマルコフモデルを作成する不特定話 者モデル作成装置において、

入力された複数の特定話者の単一ガウス分布の隠れマルコフモデルの各状態の出力ガウス分布を各状態ごとに独立にクラスタリングして合成することにより不特定話者の混合ガウス分布の隠れマルコフモデルを作成するモデル作成手段を備えたことを特徴とする不特定話者モデル 10作成装置。

【請求項2】 上記モデル作成手段は、

入力された複数の特定話者の発声音声データに基づいて、複数の話者に対して同一の初期話者隠れマルコフモデルを用いて所定の学習法により上記発声音声データの存在する状態に対してのみ出力ガウス分布を学習するととにより、複数個の特定話者用単一ガウス分布の隠れマルコフモデルを作成する学習手段と、

上記学習手段によって作成された複数個の特定話者用単一ガウス分布の隠れマルコフモデルに基づいて、各出力 20 ガウス分布間の距離を基準にして、各クラスタにより短い距離に出力ガウス分布が含まれるように複数のクラスタにクラスタリングを行うクラスタリング手段と、

上記クラスタリング手段によって各状態毎にクラスタリングされた単一ガウス分布の隠れマルコフモデルに基づいて、各クラスタ内の複数の出力ガウス分布の隠れマルコフモデルを各状態の単一ガウス分布の隠れマルコフモデルに合成する合成手段と、

上記合成手段によって合成された各状態の単一ガウス分布の隠れマルコフモデルを混合することにより、不特定 30 話者の混合ガウス分布の隠れマルコフモデルを作成する混合手段とを備えたことを特徴とする請求項1記載の不特定話者モデル作成装置。

【請求項3】 上記クラスタリング手段は、各状態毎に 予め設定したしきい値以上のデータ量で学習された出力 ガウス分布のみを取り出した後、クラスタリングすることを特徴とする請求項2記載の不特定話者モデル作成装

【請求項4】 上記クラスタリング手段は、各状態においてクラスタリングされた各クラスタの中心と各出力ガ 40 ウス分布間の距離の平均値が予め決めた距離以下になるまでクラスタリングを繰り返すことにより、各状態における各出力ガウス分布のバラツキが大きいほどクラスタ数が多くなるように各状態におけるクラスタ数を決定することを特徴とする請求項2又は3記載の不特定話者モデル作成装置。

【請求項5】 入力された複数の特定話者の単一ガウス を行っている。具体的には、十分に学 分布の隠れマルコフモデルに基づいて、不特定話者の混 モデルをモデル間の距離を定義すると 合ガウス分布の隠れマルコフモデルを作成する請求項1 タリングした後、各特定話者モデルを 乃至4のうちの1つに記載の不特定話者モデル作成装置 50 り不特定話者モデルを作成している。

と、

入力された発声音声文の音声信号に基づいて、上記不特定話者モデル作成装置によって作成された不特定話者の 混合分布の隠れマルコフモデルを用いて、音声認識する 音声認識手段とを備えたことを特徴とする音声認識装 置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、複数の特定話者の 隠れマルコフモデルに基づいて、不特定話者の隠れマル コフモデル(以下、HMMという。)を作成する不特定 話者モデル作成装置、及びその不特定話者モデル作成装 置を用いた音声認識装置に関する。

[0002]

【0003】上記第1の従来例の方法を用いて、多様な話者の音声の音響的特徴量の変動に対応するために多数話者の音声データでモデルを学習することが望ましく学習データが多量になる傾向があり、多数の話者による多量の音声データでモデルを学習することが望ましい。しかしながら、このような多量のデータを取り扱う場合、その膨大な計算量はコンピューターの処理速度が高速化しつつある現在においても問題となっている。

【0004】とのような不特定話者モデルの計算量を削減するために、既に小坂らによって特定話者モデルによる話者クラスタリングとモデル合成によるCCL法(以下、第2の従来例という。)が提案されている(従来文献2「小坂ほか,"クラスタリング手法を用いた不特定話者モデル作成法",日本音響学会論文集,1-R-12、1994年11月」参照。)。この第2の従来例の方法では、各話者の音声の音響的特徴の類似性がすべての音響空間で等しいという仮定のもとに、すべての音韻にわたるモデルセット全体を単位としてクラスタリングを行っている。具体的には、十分に学習された特定話者モデルをモデル間の距離を定義することによってクラスタリングした後、各特定話者モデルを合成することにより不特定話者モデルを作成している。

10

3

[0005]

【発明が解決しようとする課題】第2の従来例の方法では、少ない計算量で不特定話者モデルを作成することが可能であるが、特定話者モデルのすべてのパラメータが十分学習されていない場合には性能のよいモデルが得られないため各話者に対して多くの発声データが必要となる。また、HMMの全ての状態において混合出力ガウス分布の混合数が必ず同じになり、話者による特徴量のバラッキの少ない状態に対して無駄なパラメータが増えるという問題があった。

【0006】本発明の第1の目的は以上の問題点を解決し、各特定話者モデルのすべてのパラメータが学習されている必要がなく、また話者毎に学習されているパラメータが異なっている場合においても不特定話者モデルを作成でき、しかも処理装置のメモリ容量が少なくてすみ、その計算時間を短縮することができる不特定話者モデル作成装置を提供することにある。また、本発明の第2の目的は、上記第1の目的に加えて、作成された不特定話者モデルを用いて音声認識することができ、従来例に比較して音声認識率を改善することができる音声認識20装置を提供することにある。

[0007]

【課題を解決するための手段】本発明に係る請求項1記載の不特定話者モデル作成装置は、入力された複数の特定話者の単一ガウス分布の隠れマルコフモデルに基づいて、不特定話者の混合ガウス分布の隠れマルコフモデルを作成する不特定話者モデル作成装置において、入力された複数の特定話者の単一ガウス分布の隠れマルコフモデルの各状態の出力ガウス分布を各状態ごとに独立にクラスタリングして合成することにより不特定話者の混合 30ガウス分布の隠れマルコフモデルを作成するモデル作成手段を備えたことを特徴とする。

【0008】また、請求項2記載の不特定話者モデル作 成装置は、請求項1記載の不特定話者モデル作成装置に おいて、上記モデル作成手段は、入力された複数の特定 話者の発声音声データに基づいて、複数の話者に対して 同一の初期話者隠れマルコフモデルを用いて所定の学習 法により上記発声音声データの存在する状態に対しての み出力ガウス分布を学習することにより、複数個の特定 話者用単一ガウス分布の隠れマルコフモデルを作成する 学習手段と、上記学習手段によって作成された複数個の 特定話者用単一ガウス分布の隠れマルコフモデルに基づ いて、各出力ガウス分布間の距離を基準にして、各クラ スタにより短い距離に出力ガウス分布が含まれるように 複数のクラスタにクラスタリングを行うクラスタリング 手段と、上記クラスタリング手段によって各状態毎にク ラスタリングされた単一ガウス分布の隠れマルコフモデ ルに基づいて、各クラスタ内の複数の出力ガウス分布の 隠れマルコフモデルを各状態の単一ガウス分布の隠れマ ルコフモデルに合成する合成手段と、上記合成手段によ 50

って合成された各状態の単一ガウス分布の隠れマルコフ モデルを混合することにより、不特定話者の混合ガウス 分布の隠れマルコフモデルを作成する混合手段とを備え たことを特徴とする。

【0009】さらに、請求項3記載の不特定話者モデル 作成装置は、請求項2記載の不特定話者モデル作成装置 において、上記クラスタリング手段は、各状態毎に予め 設定したしきい値以上のデータ量で学習された出力ガウ ス分布のみを取り出した後、クラスタリングすることを 特徴とする。

【0010】またさらに、請求項4記載の不特定話者モデル作成装置は、請求項2又は3記載の不特定話者モデル作成装置において、上記クラスタリング手段は、各状態においてクラスタリングされた各クラスタの中心と各出力ガウス分布間の距離の平均値が予め決めた距離以下になるまでクラスタリングを繰り返すことにより、各状態における各出力ガウス分布のバラツキが大きいほどクラスタ数が多くなるように各状態におけるクラスタ数を決定することを特徴とする。

1 (0011)また、本発明に係る請求項5記載の音声認識装置は、入力された複数の特定話者の単一ガウス分布の隠れマルコフモデルに基づいて、不特定話者の混合ガウス分布の隠れマルコフモデルを作成する請求項1乃至4のうちの1つに記載の不特定話者モデル作成装置と、入力された発声音声文の音声信号に基づいて、上記不特定話者モデル作成装置によって作成された不特定話者の混合分布の隠れマルコフモデルを用いて、音声認識する音声認識手段とを備えたことを特徴とする。

[0012]

【発明の実施の形態】以下、図面を参照して本発明に係る実施形態について説明する。図1は、本発明に係る一実施形態である音声認識装置のブロック図である。本実施形態の音声認識装置は、特に、特定話者の発声音声データ30のメモリに格納された複数N人の特定話者の発声音声データに基づいて公知の最尤推定法を用いてデータの存在する状態に対してのみ出力ガウス分布を学習し、上記特定話者モデルの中から学習された出力ガウス分布のパラメータのみを取り出しHMMの対応する状態毎にクラスタリングを行った後合成及び混合を行って混合ガウス分布の隠れマルコフ網(以下、HM網という。)を作成し、作成したHM網をHM網11のメモリに格納する不特定話者モデル作成部31を備え、HM網11のメモリに格納されたHM網を参照して音声認識を行うことを特徴とする。

【0013】との音声認識装置は、マイクロホン1と、特徴抽出部2と、バッファメモリ3と、音素照合部4と、文脈自由文法データベース20のメモリに格納された所定の文脈自由文法に基づいて作成された、メモリに格納されたLRテーブル13のメモリを参照して音声認識処理を実行する音素コンテキスト依存型LRバーザ

(以下、LRパーザという。) 5とを備える。

【0014】図2は、不特定話者モデル作成部31によ って実行される不特定話者モデル作成処理を示すフロー チャートである。当該作成処理においては、まず、ステ ップS1において、複数N人の特定話者の発声音声デー タに基づいて、当該発声音声データの特徴パラメータを 抽出し、抽出した特徴パラメータに基づいて、複数N人 の全ての話者に対して同一のHM網である初期話者モデ ル(各状態1混合)を用いて公知の最尤推定法によりデ ータの存在する状態に対してのみ出力ガウス分布の平均 10 値と分散を学習することにより、N個の特定話者用単一 ガウス分布のHM網を作成する。

【0015】次いで、ステップ2では、図3に示すよう に、作成されたN個の特定話者用単一ガウス分布のHM 網に基づいて、各状態毎に予め設定したしきい値以上の データ量で学習された出力ガウス分布のみを取り出した 後、図4に示すように、出力ガウス分布間の公知のバタ ーチャ(Bhattacharyya)距離を基準にし て、各クラスタにより短い距離に出力ガウス分布が含ま れるように複数のクラスタにクラスタリングを行なう。 ここで、取り出す学習データ量にしきい値を設けたのは 信頼性の低い出力ガウス分布がクラスタリングに悪影響 を及ぼさないようにするためである。これにより、信頼 性の高いHM網11を得ることができ、当該HM網11 を用いて音声認識することにより、従来例に比較して高 い音声認識率で音声認識することができる。また、当該 クラスタリングでは、各状態においてクラスタリングさ れ各クラスタの中心と各出力ガウス分布間の公知のバタ ーチャ(Bhattacharyya)距離の平均値が 予め決めた距離以下になるまでクラスタリングを繰り返 30 すことにより、各状態における各メンバーの出力ガウス 分布のパラツキに応じてクラスタ数Kを決定する。こと*

$$Sh_i = \sum_i w_i^{(i)} S_i^{(i)} + \sum_i$$

【数3】

$$\mathbf{w}_{\mathbf{i}}^{(1)} = \mathbf{n}_{\mathbf{i}}^{(1)} / \left\{ \sum_{\mathbf{i}} \mathbf{n}_{\mathbf{i}}^{(1)} \right\}$$

【0019】数1と数2はそれぞれ、複数のガウス分布 を単一ガウス分布と見なして求めた場合の平均値、分散 を表す。 ここで、μ, ('') と S, ('') は自然数 i 番目の H M 網のの状態jにおける単一ガウス分布である出力確率密 度関数の平均値と分散を表わす。また、n,(1)は i 番目 のHM網の状態jにおけるサンプル数を表す。すなわ ち、数1から明らかなように、合成後の平均値μ h, と 分散Sh,とはそれぞれ、合成前の平均値 μ ,と分散S, を、各状態におけるサンプル数 n,(1) に応じてサンプル 数n,(1)が大きいほど大きい重み係数w,(1)で重み付け されて計算される。

【0020】本実施形態においては、音声認識のための

*で、バラツキが大きい場合はクラスタ数Kを比較的多く 設定する一方、バラツキが小さい場合はクラスタ数Kを 比較的少なく設定する。また、上記クラスタ数Kの決定 においては、最大のクラスタ数Kmax及び最小のクラ スタ数Kminを設定してもよい。さらに、学習データ 量が小さい場合は、好ましくは、クラスタ数Kを小さく 設定する。

【0016】次いで、ステップS3においては、上記ス テップS2で各状態ごとにクラスタリングされた結果を 用いて、図5に示すように、クラスタ内の複数の出力ガ ウス分布を各状態の単一ガウス分布に合成する。合成は 出力ガウス分布の総数、及びクラスタリング結果が各状 態でとに異なること以外は、従来文献2の方法と同様の 方法で行なった。当該ステップS3の合成方法について は詳細後述する。さらに、ステップS4においては、各 状態でとに全てのクラスタの合成された単一ガウス分布 を公知の話者混合法を用いて混合することにより混合ガ ウス分布のHM網を作成してHM網11のメモリに格納 する。混合比率は各クラスタのメンバーの出力ガウス分 布の学習データ量の総和の比に比例する値とした。すな わち、各クラスタのメンバーの学習データ量が大きいほ ど、混合比率を大きく設定する。

【0017】上記ステップS3において用いられる各ク ラスタにおける合成後の平均値μ h, と分散 S h, は、次 の数1及び数2で表される。なお、重み係数w,(1)は次 の数3で表される。

[0018]

【数1】

$$\mu h_1 = \sum_i w_i^{(i)} \mu_i^{(i)}$$

【数2】

40

$$w_1^{(1)} (\mu_1^{(1)} - \mu h_1)^2$$

る。当該HM網11は効率的に表現された音素環境依存 モデルである。1つのHM網は多数の音素環境依存モデ ルを包含する。HM網11はガウス分布を含む状態の結 合で構成され、個々の音素環境依存モデル間で状態が共 有される。このためパラメータ推定のためのデータ数が 不足する場合も、頑健なモデルを作成することができ る。このHM網11は逐次状態分割法(Successive Sta te Splitting:以下、SSSという。)を用いて自動作 成される。上記SSSではHM網のトポロジーの決定、 異音クラスタの決定、各々の状態におけるガウス分布の パラメータの推定を同時に行なう。本実施形態において は、HM網のパラメータとして、ガウス分布で表現され る出力確率及び遷移確率を有する。このため認識時には 一般のHMMと同様に扱うことができる。

【0021】次いで、上述の本実施形態の音声認識方法 統計的音素モデルセットとしてHM網11を使用してい 50 を用いた、SSS-LR(left-to-right rightmost

型)不特定話者連続音声認識装置について説明する。と の装置は、メモリに格納されたHM網11と呼ばれる音 素環境依存型の効率のよいHMMの表現形式を用いてい る。また、上記SSSにおいては、音素の特徴空間上に 割り当てられた確率的定常信号源(状態)の間の確率的 な遷移により音声パラメータの時間的な推移を表現した 確率モデルに対して、尤度最大化の基準に基づいて個々 の状態をコンテキスト方向又は時間方向へ分割するとい う操作を繰り返すことによって、モデルの精密化を逐次 的に実行する。

【0022】図1において、話者の発声音声はマイクロ ホン1に入力されて音声信号に変換された後、特徴抽出 部2に入力される。特徴抽出部2は、入力された音声信 号をA/D変換した後、例えばLPC分析を実行し、対 数パワー、16次ケプストラム係数、△対数パワー及び 16次△ケプストラム係数を含む34次元の特徴パラメ ータを抽出する。抽出された特徴パラメータの時系列は バッファメモリ3を介して音素照合部4に入力される。 【0023】音素照合部4に接続されるメモリ内のHM 網11は、各状態をノードとする複数のネットワークと 20 して表され、各状態はそれぞれ以下の情報を有する。

- (a) 状態番号
- (b) 受理可能なコンテキストクラスタ
- (c) 先行状態、及び後続状態のリスト
- (d) 出力確率密度分布のパラメータ
- (e)自己遷移確率及び後続状態への遷移確率

【0024】音素照合部4は、音素コンテキスト依存型 LRバーザ5からの音素照合要求に応じて音素照合処理 を実行する。そして、不特定話者モデルを用いて音素照 合区間内のデータに対する尤度が計算され、この尤度の 値が音素照合スコアとしてLRパーザ5に返される。と のときに用いられるモデルは、HMMと等価であるため に、尤度の計算には通常のHMMで用いられている前向 きパスアルゴリズムをそのまま使用する。

【0025】一方、メモリ内の所定の文脈自由文法(C FG) データベース20を公知の通り自動的に変換して LRテーブルを作成してLRテーブル13のメモリに格 納される。LRパーザ5は、上記LRテーブル13を参 照して、入力された音素予測データについて左から右方 向に、後戻りなしに処理する。構文的にあいまいさがあ る場合は、スタックを分割してすべての候補の解析が平 行して処理される。LRパーザ5は、LRテーブル13 から次にくる音素を予測して音素予測データを音素照合 部4に出力する。これに応答して、音素照合部4は、そ の音素に対応するHM網11内の情報を参照して照合 し、その尤度を音声認識スコアとしてLRパーザ5に戻 し、順次音素を連接していくことにより、連続音声の認 識を行い、その音声認識結果データを出力する。上記連 続音声の認識において、複数の音素が予測された場合 は、これらすべての存在をチェックし、ビームサーチの 50 ラスタリングによる方法では特定話者モデルの各状態の

方法により、部分的な音声認識の尤度の高い部分木を残 すという枝刈りを行って高速処理を実現する。

【0026】以上の実施形態において、特定話者の発声 音声データ30と、HM網11と、LRテーブル13 と、文脈自由文法データベース20とはそれぞれ、例え ばハードディスクメモリに格納される。また、音素照合 部4とLRパーザ5と不特定話者モデル作成部31は例 えばデジタル電子計算機によって構成される。

【0027】以上の実施形態においては、図2の不特定 話者モデル作成処理によって不特定話者モデルを作成し ているが、当該作成処理によって作成されたHM網に対 して公知のバーム・ウェルチの学習アルゴリズムを用い て再学習して、HM網を作成してもよい。

[0028]

【実施例】本発明者は、図1の音声認識装置の有効性を 確かめるために、以下の通り実験を行った。当該実験に は、コンテキスト依存型の音素HMMの状態を効果的に 共有したHM網(例えば、従来文献3「鷹見ほか、"音 素コンテキストと時間に関する逐次状態分割による隠れ マルコフ網の自動生成",電子通信情報学会技術研究報 告、SP91-88、1991年12月」参照。) を使 用した。HM網の構造は1人の話者の発声した2620 単語の音声データを用いて決定し、総状態数200、及 び600の2種類のモデルを作成した。各モデルには1 状態10混合の無音モデルを付加した。特定話者モデル 学習用の初期話者モデルは無音モデルを除き各状態とも 単一分布としパラメータの初期値は構造決定と同じ音声 データで決定した。との初期話者モデルをもとに、本特 許出願人が所有する、トラベル・プランニングをタスク とした自然発話の音声認識データベース(例えば、従来 文献4「T. Morimoto et al., "A Speech andLanguage Databa se for Speech Translation Research", Proc. of ICSLP' 94, pp. 1791-1794, 1994年」参照) の中の男性81名の自然発話データを用いて最尤推定法 により出力ガウス分布の平均値と分散を学習することに より81名分の特定話者モデルを作成した。但し、1人 あたりのデータ量が20発話程度と少ないため、分散は 初期パラメータより値が大きくなる場合のみ更新した。 なお、今回は男性話者のみを用いて不特性話者モデルの 作成、及び認識実験を行なった。認識実験は学習に用い たものと同じ自然発話データベースより選択した学習デ ータに含まれない男性9人に対して行なった。 【0029】不特定話者モデルはHM網全体を単位とし

たモデルベースのクラスタリングを用いた第2の従来例 のCCL法と本発明に係るHMMの状態別クラスタリン グの結果を用いる方法により作成し両者の性能を音素認 識実験により比較した。ただし、本発明に係る状態別ク

10

出力ガウス分布の内、学習時の状態占有データ量が10 フレーム以上のもののみを使用した。さらに、状態別ク ラスタリングによって作成したモデルを初期モデルとし てバーム・ウェルチの学習アルゴリズムによって再学習 したモデルの認識率との比較も行なった。またさらに、 本発明に係る状態別クラスタリングによる方法でHMM* *を作成した後、バーム・ウェルチの学習アルゴリズムに よって再学習したモデルの認識率についても実験を行っ た。ここで、実験条件である、分析条件、使用バラメー タ、学習/認識データを表1に示す。

[0030]

【表1】

実験条件

分析条件 サンプリング周波数=12KHz ハミング窓=20ms フレーム周期=5mg 使用パラメータ 16次LPCケプストラム+16次Δケプストラム +対数パワー+△対数パワー 学習データ 男性81名--各話者1会話(合計1799発声) 不特定話者モデル評価データ

男性9名--各話者1会話(11~29発声)

【0031】表2及び表3に、第2の従来例のCCL法 (以下、表においてモデルクラスタリングと略す。)及 び、本発明に係る状態別クラスタリングによる方法(以 下、表において、状態別クラスタリングと略す。)で作 成した各状態、混合数のHM網に含まれる出力ガウス分 布の総数を示す。第2の従来例のCCL法による場合は 無音モデルを除き全ての状態に対して混合分布数が等し くなるが、本発明に係る状態別クラスタリングによる場 合は各状態に対して特定話者モデルから抽出された10 フレーム以上のデータで学習された出力ガウス分布数が 30 設定した混合数より少ない場合には抽出された分布数が※

※その状態の混合分布数となるためモデルベースのクラス タリングによる場合より総分布数が少なくなっている。 但し、今回は各状態における抽出した出力ガウス分布の 平均値のばらつきの度合は混合数の決定において考慮し ていない。このように音素バランスを考慮した音声デー タの収集が困難な自由発話音声データベースを用いた場 合には各状態でとに混合分布数を設計することにより不 要なパラメータの増加を防ぐことができる可能性がある ことがわかる。

[0032]

【表2】

不特定話者モデルの総分布数-201状態のHM網の場合

	作成法/混合数	5	1 0	1 5	2 0			
	モデルクラスタリング	1010	2010	3010	4010			
	状態別クラスタリング	979	1903	2798	3678			
033]	★40★【表3】 不特定話者モデルの総分布数-601状態のHM網の場合							
	作成法/混合数	3	5	1 0	1 5			
	モデルクラスタリング	1810	3010	6010	9010			
	状態別クラスタリング	1617	2540	4614	6447			

【0034】表4及び表5は各方法により作成した不特 定話者モデルを用いた音素認識実験の結果である。表中 50 【0035】

[0]

の結果は男性9人に対する平均値を示している。

11

【表4】

[0036]

モデル作成法による	音素認識率	(%)	の比較-20	1 状態のHM網の場合

作成法/混合数	5		1 0)	1 5	2 0
バーム・ウェルチ	65.	9	66.	8	_	<u>-</u>
モデルクラスタリング	62.	2	62.	5	63.3	63.2
 状態別クラスタリング	63.	6	64.	1	64.0	64.5
状態別クラスタリング +パーム・ウェルチ	68.	0	68.	6	_	_
モデル作成法による音素	認識率(————		*【表 の比較-		1 状態のHM: 	網の場合
作成法/混合数	3		5	,	1 0	1 5
バーム・ウェルチ	67.	6	67.	8	_	-
モデルクラスタリング	65.	1	65.	5	66. 2	66. 2
 状態別クラスタリング	67.	8	67.	9	67.8	67.8
状態別クラスタリング	69.	2	69.	2	_	_

【0037】表4及び表5の結果を表2及び表3の結果 とあわせて見ると、本発明に係る状態別クラスタリング 30 りの可能性が高くなると考えられる。 による方法は全ての条件のもとで第2の従来例のCCL 法による場合より少ないバラメータ数で高い認識性能を 示しており、認識率の差はHM網の状態数が201状態 の場合より601状態の場合の方が大きくなっている。 実際の認識処理のスピードや話者適応を行なう場合の効 率を考えた場合できるだけ少ないパラメータ数で高い認 識性能が得られる方が不特定話者モデルとしての性能は 良いと考えられ、このことは、本発明に係る状態別クラ スタリングによる方法が性能の良いモデルを得るのに有 効な方法であることを示している。

+バーム・ウェルチ

【0038】また、HM網の状態数と認識性能の関係を 見た場合、601状態のHM網は201状態のHM網よ り高い認識性能を示しており、これは、第2の従来例の CCL法及び、本発明に係る状態別クラスタリング法の どちらの場合にも同様のことが言える。これは、201 状態ではまだ音韻環境が十分に細分化されてモデル化さ れていないことが原因であると考えられる。音韻環境が 十分に細分化されるように状態分割されていなければ、 各状態の出力ガウス分布は音韻環境及び話者環境の両方 ばならず、音韻性と話者性の区別が難しくなり、認識誤

【0039】さらに、表4及び表5から明らかなよう に、本発明に係る状態別クラスタリング法でクラスタリ ングした後バーム・ウェルチの学習アルゴリズムを用い て再学習した場合、他の方法に比較してより高い音素認 識率が得られている。

【0040】最後に、不特定話者モデルの作成時間につ いて述べる。従来文献2において開示された第2の従来 例のCCL法では、バーム・ウェルチの学習アルゴリズ ムの数パーセント程度の計算時間しか要しないと報告さ 40 れている。本発明に係る状態別クラスタリングを用いる 場合にはクラスタリングを行なう回数が増える分、第2 の従来例のCCL法に比較して計算時間が増加するが、 この時間はモデル作成に要する時間の大部分を占める特 定話者モデルの学習時間に比較すると非常に小さいた め、全体の時間で見た場合には、第2の従来例のCCL 法と同様にバーム・ウェルチの学習アルゴリズムの数パ ーセント程度の計算時間で不特定話者モデルを作成可能

【0041】以上説明したように、本発明に係る実施形 の要因による音響的特徴量の変動を同時に表現しなけれ 50 態によれば、入力された複数の特定話者の単一ガウス分

布のHMMの各状態の出力ガウス分布を各状態ととに独 立にクラスタリングして合成することにより不特定話者 の混合ガウス分布のHMMを作成するので、各特定話者 モデルの全てのパラメータが学習されている必要はな く、また話者ごとに学習されているパラメータが異なっ ていてる場合にも対応することができる。従って、発話 数が少ない話者の音声データや自由発話音声のような話 者ごとに発話内容が異なるデータに対しても使用するこ とができる。さらに、HMMの状態ごとに各特定話者モ デルから取り出された出力ガウス分布の平均値のばらつ きやその学習データ量の情報を利用することによって状 態
と
に
分割する
クラスタ
数を
決める
ことが
できる
た め、学習データ量や話者間の音響的特徴の変動の度合を 考慮した混合分布数をHMMの各状態ごとに決定するこ とができる。当該不特定話者モデルのHMMを用いて音 声認識することにより、従来例に比較して高い音声認識 率で音声認識することができる。

[0042]

【発明の効果】以上詳述したように本発明に係る請求項 1記載の不特定話者モデル作成装置によれば、入力され 20 た複数の特定話者の単一ガウス分布の隠れマルコフモデ ルに基づいて、不特定話者の混合ガウス分布の隠れマル コフモデルを作成する不特定話者モデル作成装置におい て、入力された複数の特定話者の単一ガウス分布の隠れ マルコフモデルの各状態の出力ガウス分布を各状態ごと に独立にクラスタリングして合成することにより不特定 話者の混合ガウス分布の隠れマルコフモデルを作成する モデル作成手段を備える。具体的には、上記モデル作成 手段は、入力された複数の特定話者の発声音声データに 基づいて、複数の話者に対して同一の初期話者隠れマル コフモデルを用いて所定の学習法により上記発声音声デ ータの存在する状態に対してのみ出力ガウス分布を学習 することにより、複数個の特定話者用単一ガウス分布の 隠れマルコフモデルを作成する学習手段と、上記学習手 段によって作成された複数個の特定話者用単一ガウス分 布の隠れマルコフモデルに基づいて、各出力ガウス分布 間の距離を基準にして、各クラスタにより短い距離に出 力ガウス分布が含まれるように複数のクラスタにクラス タリングを行うクラスタリング手段と、上記クラスタリ ング手段によって各状態毎にクラスタリングされた単一 40 ガウス分布の隠れマルコフモデルに基づいて、各クラス タ内の複数の出力ガウス分布の隠れマルコフモデルを各 状態の単一ガウス分布の隠れマルコフモデルに合成する 合成手段と、上記合成手段によって合成された各状態の 単一ガウス分布の隠れマルコフモデルを混合することに より、不特定話者の混合ガウス分布の隠れマルコフモデ ルを作成する混合手段とを備える。

【0043】すなわち、多数の特定話者モデルから学習されている出力ガウス分布のみを取り出してHMMの各状態で独立にクラスタリングを行なうことにより、各状 50

態における特徴量の変動の大きさや学習データ量を考慮してクラスタ数を決定することが可能となり各状態ごとに最適な出力ガウス分布数を決定することができる。また、各特定話者モデルの学習されている出力ガウス分布のみを選択的に使用することができるため各特定話者でルの全ての出力ガウス分布が学習されている必要はなく、一人あたりの発話量の少ないデータベースに対しても有効に使用することができる。また、各話者ごとに別々にパラメータ推定を行なうため、全てのデータを一度に使って学習する第1の従来例のバーム・ウェルチの学習アルゴリズムによる方法に対して計算量を飛躍的に減らすことが可能となる。従って、不特定話者モデルの作成時間を大幅に短縮することができる。

14

【0044】また、請求項3記載の不特定話者モデル作成装置によれば、上記クラスタリング手段は、各状態毎に予め設定したしきい値以上のデータ量で学習された出力ガウス分布のみを取り出した後、クラスタリングする。これにより、信頼性のより高い最適な不特定話者モデルを作成することができる。従って、当該不特定話者モデルを用いて音声認識を行うことにより、従来例に比較してより高い音声認識率で音声認識することができる。

【0045】さらに、請求項4記載の不特定話者モデル作成装置によれば、上記クラスタリング手段は、各状態においてクラスタリングされた各クラスタの中心と各出力ガウス分布間の距離の平均値が予め決めた距離以下になるまでクラスタリングを繰り返すことにより、各状態における各出力ガウス分布のバラツキが大きいほどクラスタ数が多くなるように各状態におけるクラスタ数を決定する。従って、各状態における各出力ガウス分布のバラツキを考慮してクラスタ数を決定することが可能となり各状態ごとに最適な出力ガウス分布数を決定することができる。これにより、信頼性のより高い最適な不特定話者モデルを作成することができる。それ故、当該不特定話者モデルを用いて音声認識を行うことにより、従来例に比較してより高い音声認識率で音声認識することができる。

【0046】また、本発明に係る請求項5記載の音声認識装置によれば、入力された複数の特定話者の単一ガウス分布の隠れマルコフモデルに基づいて、不特定話者の混合ガウス分布の隠れマルコフモデルを作成する請求項1乃至4のうちの1つに記載の不特定話者モデル作成装置と、入力された発声音声文の音声信号に基づいて、上記不特定話者モデル作成装置によって作成された不特定話者の混合分布の隠れマルコフモデルを用いて、音声認識する音声認識手段とを備える。従って、当該不特定話者モデルを用いて音声認識を行うことにより、従来例に比較してより高い音声認識率で音声認識することができる。

【図面の簡単な説明】

【図5】

(9)

【図1】 本発明に係る一実施形態である音声認識装置 のブロック図である。

【図2】 図1の不特定話者モデル作成部によって実行 される不特定話者モデル作成処理を示すフローチャート である。

[図3] 図1の不特定話者モデル作成部によって実行 される不特定話者モデル作成処理のうち特定話者モデル の学習と出力ガウス分布の抽出の処理を示す図である。

図1の不特定話者モデル作成部によって実行 される不特定話者モデル作成処理のうち各状態毎の出力 10 ガウス分布のクラスタリングの処理を示す図である。

図1の不特定話者モデル作成部によって実行 される不特定話者モデル作成処理のうち各クラスタ毎に米 * 複数の確率密度関数を混合する処理を示す図である。 【符号の説明】

1…マイクロホン、

2…特徵抽出部、

3…パッファメモリ、

4…音素照合部、

5…LRパーザ、

11…隠れマルコフ網(HM網)、

13…LRテーブル、

20…文脈自由文法データベース、

30…特定話者の発声音声データ、

31…不特定話者モデル作成部。

【図1】

【図2】

【図4】

【図3】

