INSTITUTO FEDERAL Piauí Campus

INSTITUTO FEDERAL DA PIAUÍ

Campus Picos

Disciplina: Matemática Computacional

Professor(a): Rogerio Figueredo de Sousa

Curso: Análise e Desenvolvimento de Sistemas Semestre: 1

Lista 1: Lógica Proposicional

- 1. São dadas diversas formas de negação para cada uma das proposições a seguir. Quais estão corretas?
 - a) A resposta é 2 ou 3.
 - i. A resposta é nem 2 nem 3.
 - ii. A resposta não é 2 ou não é 3.
 - iii. A resposta não é 2 e não é 3.
 - b) Pepinos são verdes e têm sementes.
 - i. Pepinos não são verdes e não têm sementes.
 - ii. Pepinos não são verdes ou não têm sementes.
 - iii. Pepinos são verdes e não têm sementes.
 - c) 2 < 7 e 3 é impar.
 - (a) 2 > 7 e 3 é par.
 - (b) $2 \ge 7 e 3 é par$.
 - (c) 2 > 7 ou 3 é impar.
 - (d) $2 \ge 7$ ou 3 é par.
- 2. Qual é o valor lógico (V ou F) de cada uma das proposições a seguir?
 - a) Se 8 for ímpar, então 6 é ímpar.
- c) Se 8 for ímpar, então 6 é par.
- b) Se 8 for par, então 6 é ímpar.
- d) Se 8 for împar e 6 for par, então 8 < 6.
- 3. Encontre o antecedente e o consequente de cada uma das proposições a seguir:
 - a) O crescimento sadio de plantas é consequência de quantidade suficiente de água.
 - b) O aumento da disponibilidade de informação é uma condição necessária para um maior desenvolvimento tecnológico.
 - c) Serão introduzidos erros apenas se forem feitas modificações no programa.
 - d) A economia de energia para aquecimento implica boa insulação ou vedação de todas as janelas.
- 4. Escreva a negação de cada fbf a seguir:
 - a) Se a comida é boa, então o serviço é excelente.
 - b) Ou a comida é boa, ou o serviço é excelente.
 - c) Ou a comida é boa e o serviço é excelente, ou então está caro.
 - d) Nem a comida é boa, nem o serviço é excelente.
 - e) Se é caro, então a comida é boa e o serviço é excelente.

- 5. Sejam A, B e C as seguintes proposições:
 - A Rosas são vermelhas.
 - B Violetas são azuis.
 - C Açúcar é doce.

Escreva as proposições compostas a seguir em notação simbólica.

- a) Rosas são vermelhas e violetas são azuis.
- b) Rosas são vermelhas e, ou bem violetas são, ou bem açúcar é doce.
- c) Sempre que violetas são azuis, rosas são vermelhas e açúcar é doce.
- d) Rosas são vermelhas apenas se violetas não forem azuis ou se açúcar for amargo.
- e) Rosas são vermelhas e, se açúcar for amargo, então ou violetas não são azuis ou açúcar é doce.
- 6. Use A, B e C como no exercício 5 para escrever as seguintes proposições compostas em português:

a)
$$B \vee C'$$

e)
$$(B \wedge C')' \leftrightarrow A$$

b)
$$B' \vee (A \to C)$$

f)
$$A \vee (B \wedge C')$$

c)
$$(C \wedge A') \leftrightarrow B$$

d)
$$C \wedge (A' \leftrightarrow B)$$

g)
$$(A \vee B) \wedge C'$$

- 7. Escreva cada uma das proposições compostas a seguir em notação simbólica usando letras de proposição para denotar as componentes.
 - a) Se os preços subirem, então haverá muitas casas para vender e elas serão caras; mas se as casas não forem caras, então, ainda assim, haverá muitas casas para vender.
 - b) Tanto ir dormir como ir nadar é uma condição suficiente para a troca de roupa; no entanto, mudar a roupa não significa que se vai nadar.
 - c) Vai chover ou nevar, mas não ambos.
 - d) Se Jane vender ou perder, vai ficar cansada.
 - e) Ou Jane irá vender ou, se perder, ela ficará cansada.
- 8. Escreva cada uma das proposições compostas a seguir em notação simbólica usando letras de proposição para denotar as componentes.
 - a) Se o cavalo estiver descansado, o cavaleiro vencerá.
 - b) O cavaleiro vencerá apenas se o cavalo estiver descansado e a armadura for forte.
 - c) Um cavalo descansado é uma condição necessária para o cavaleiro vencer.
 - d) O cavaleiro vencerá se, e somente se, a armadura for forte.
 - e) Uma condição suficiente para o cavaleiro vencer é que a armadura seja forte ou o cavalo esteja descansado.
- 9. Construa tabelas-verdade para as fbfs a seguir. Note quaisquer tautologias, contradições e contingências.

- a) $(A \to B) \leftrightarrow A' \lor B$
- b) $(A \wedge B) \vee C \rightarrow A \wedge (B \vee C)$
- c) $A \wedge (A' \vee B')'$
- d) $A \wedge B \rightarrow A'$
- e) $(A \to B) \to [(A \lor C) \to (B \lor C)]$
- f) $A \to (B \to A)$
- g) $A \wedge B \leftrightarrow B' \vee A'$
- h) $(A \vee B') \wedge (A \wedge B)'$
- i) $[(A \lor B) \land C'] \rightarrow A' \lor C$
- 10. Nas sentenças a seguir que regra de inferência é ilustrada pelo argumento dado:
 - a) Se Martins é o autor, então o livro é de ficção. Mas o livro não é de ficção. Portanto, Martins não é o autor.
 - b) Se a firma falir, todos os seus ativos têm que ser confiscados. A firma faliu. Segue que todos os seus bens têm que ser confiscados.
 - c) O cachorro tem um pêlo sedoso e adora latir. Portanto, o cachorro adora latir.
 - d) Se Paulo é um bom nadador, então ele é um bom corredor. Se Paulo é um bom corredor, então ele é um bom ciclista. Portanto, se Paulo é um bom nadador, então ele é um bom ciclista.
- 11. Nas fbfs a seguir use lógica proposicional para provar que o argumento é válido:
 - a) $A' \wedge (B \to A) \to B'$
 - b) $(A \to B) \land [A \to (B \to C)] \to (A \to C)$
 - c) $[(C \to D) \to C] \to [(C \to D) \to D]$
 - d) $A' \wedge (A \vee B) \rightarrow B$
 - e) $[A \to (B \to C)] \land (A \lor D') \land B \to (D \to C)$
 - f) $(A' \to B') \land B \land (A \to C) \to C$
 - g) $(A \to B) \land [B \to (C \to D)] \land [A \to (B \to C)] \to (A \to D)$
 - h) $[A \rightarrow (B \rightarrow C)] \rightarrow [B \rightarrow (A \rightarrow C)]$
 - i) $(A \wedge B) \to (A \to B')'$
- 12. Nas sentenças a seguir use lógica proposicional para provar que o argumento é válido. Use as letras de proposição dadas:
 - a) A colheita é boa, mas não há água suficiente. Se houver muita chuva ou se não houver muito sol, então haverá água suficiente. Portanto, a colheita é boa e há muito sol. C, A, V(chuva), S
 - b) Se o anúncio for bom, o volume de vendas aumentará. O anúncio é bom ou a loja vai fechar. O volume de vendas não vai aumentar. Portanto a loja vai fechar. A, V, L
 - c) A Rússia era uma potência superior e, a França não era suficientemente poderosa ou Napoleão fez um erro. Napoleão não fez um erro, mas, se o exército não perdeu, então a França era poderosa. Portanto, o exército perdeu e a Rússia era uma potência superior. R, F, N, E
 - d) Não é verdade que, se as tarifas de energia elétrica subirem, então o uso diminuirá, nem é verdade que, novas usinas elétricas serão construídas ou as contas não serão pagas com atraso. Portanto, o uso não vai diminuir e as contas serão pagas com atraso. T, U, E, C
 - e) Se José levou as jóias ou a Sra. Krasov mentiu, então foi cometido um crime. O Sr. Krasov não estava na cidade. Se um crime foi cometido, então o Sr. Krasov estava na cidade. Portanto, José não levou as jóias. J, M, C, K

Gabarito

Questão 1:

a) i e iii

b) ii

c) iv

Questão 2:

a) V

b) F

c) V

d) V

Questão 3:

a) antecedente: água suficiente

consequente: crescimento saudável da planta

b) antecedente: maior desenvolvimento tecnológico

consequente: aumento da disponibilidade da informação

c) antecedente: erros serão introduzidos

consequente: haver uma modificação no programa

d) antecedente: economia de energia

consequente: boa insulação ou vedação de todas as janelas

Questão 4:

a) A comida é boa mas o serviço é ruim.

b) A comida e o serviço são ruins.

c) A comida é ruim ou o serviço é ruim, mas o preço é baixo.

d) A comida é boa ou o serviço é excelente.

e) O preço é alto, mas a comida é ruim ou o serviço é ruim.

Questão 5:

a) $A \wedge B$

c) $B \to (A \land C)$

e) $A \wedge [C' \rightarrow (B' \vee C)]$

b) $A \wedge (B \vee C)$

d) $A \to (B' \lor C')$

Questão 6:

a) Violetas são azuis ou açúcar é amargo.

b) Violetas não são azuis ou, se rosas são vermelhas então o açúcar é doce.

c) O açúcar é doce e rosas não são vermelhas se, e somente se, violetas são azuis.

d) O açúcar é doce e, rosas não serem vermelhas é uma condição necessária e suficiente para violetas serem azuis.

e) Se é falso que violetas são azuis e que açúcar é amargo, então rosas são vermelhas.

f) As rosas são vermelhas ou, violetas são azuis e o açúcar é amargo.

g) As rosas são vermelhas ou violetas são azuis, mas o açúcar é amargo.

Questão 7:

- a) A - Preços subirem; B - Haverá muitas casas para vender; C - As casas serão caras; $A \to (B \land C) \land (C' \to B)$
- b) A Ir dormir; B Ir nadar; C Trocar de roupa $[(A \vee B) \to C] \wedge (C \to B)'$
- c) A Vai chover; B Vai nevar. $(A \vee B) \wedge (A \wedge B)'$ ou $A \vee B$
- d) A - Jane vai vender; B - Jane vai perder; C - Jane vai ficar cansada. $(A \vee B) \to C$
- e) A - Jane vai vender; B - Jane vai perder; C - Jane vai ficar cansada. $A \vee (B \to C)$

Questão 8:

Prop.: A - Cavalo estiver descansado; B - Cavaleiro vencerá; C - Armadura é forte

- a) $A \to B$
- c) $B \to A$
- e) $(C \vee A) \rightarrow B$

- b) $B \to (A \land C)$
- d) $B \leftrightarrow C$

Questão 9:

a) Tautologia

A	В	A'	$A \rightarrow B$	$A' \vee B$	$(A \to B) \leftrightarrow \neg A \lor B$
V	V	F	V	V	V
V	F	F	F	F	V
F	V	V	V	V	V
F	F	V	V	V	V

b) Contingência

A	В	С	$(A \wedge B)$	$(A \wedge B) \vee C$	$(B \lor C)$	$A \wedge (B \vee C)$	$(A \land B) \lor C \to A \land (B \lor C)$
V	V	V	V	V	V	V	V
V	V	F	V	V	V	V	V
V	F	V	F	V	V	V	V
V	F	F	F	F	F	F	V
F	V	V	F	V	V	F	F
F	V	F	F	F	V	F	V
F	F	V	F	V	V	F	F
F	F	F	F	F	F	F	V

c) Contingência

A	A'	B'	$A' \vee B'$	$(A' \vee B')'$	$A \wedge (A' \vee B')'$
V	F	F	F	V	V
V	F	V	V	F	F
F	V	F	V	F	F
F	V	V	V	F	F

d) Contingência

A	В	A'	$A \wedge B$	$(A \wedge B) \to A'$
V	V	F	V	F
V	F	F	F	V
F	V	V	F	V
F	F	V	F	V

e) Tautologia

A	В	С	$(A \to B)$	$(A \lor C)$	$(B \vee C)$	$[(A \lor C) \to (B \lor C)]$	$(A \to B) \to [(A \lor C) \to (B \lor C)]$
V	V	V	V	V	V	V	V
V	V	F	V	V	V	V	V
V	F	V	F	V	V	V	V
V	F	F	F	V	F	F	V
F	V	V	V	V	V	V	V
F	V	F	V	F	V	V	V
F	F	V	V	V	V	V	V
F	F	F	V	F	F	F	V

f) Tautologia

A	В	$(B \to A)$	$A \to (B \to A)$
V	V	V	V
V	F	V	V
F	V	F	V
F	F	V	V

g) Contradição

		,				
A	В	A'	B'	$A \wedge B$	$B' \vee A'$	$A \wedge B \leftrightarrow B' \vee A'$
V	V	F	F	V	F	F
V	F	F	V	F	V	F
F	V	V	F	F	V	F
F	F	V	V	F	V	F

h) Contingência

A	В	B'	$(A \vee B')$	$(A \wedge B)$	$(A \wedge B)'$	$(A \vee B') \wedge (A \wedge B)'$
V	V	F	V	V	F	F
V	F	V	V	F	V	V
F	V	F	F	F	V	F
F	F	V	V	F	V	V

i) Contingência

A	В	С	A'	C'	$(A \lor B)$	$[(A \vee B) \wedge C']$	$A' \lor C$	$[(A \lor B) \land C'] \to A' \lor C$
V	V	V	F	F	V	F	V	V
V	V	F	F	V	V	V	F	F
V	F	V	F	F	V	F	V	V
V	F	F	F	V	V	V	F	F
F	V	V	V	F	V	F	V	V
F	V	F	V	V	V	V	V	V
F	F	V	V	F	F	F	V	V
F	F	F	V	V	F	F	V	V

Questão 10:

- a) Modus tollens
- b) Modus Ponens

- c) Simplificação
- d) Silogismo hipotético

Questão 11:

a)
$$A' \wedge (B \to A) \to B'$$

- 1. A'
- $2. \ B \to A$
- 3. **B'**

(hip)

(hip)

(1,2,modus tollens)

b)
$$(A \to B) \land [A \to (B \to C)] \to (A \to C)$$

- 1. $A \rightarrow B$
- $2. \ A \to (B \to C)$
- 3. *A*
- 4. B
- 5. $B \rightarrow C$
- 6. **C**

- (hip)
- (hip)
- (hip da conclusão)
- (1, 3, modus ponens)
- (2, 3, modus ponens)
- (4, 5, modus ponens)

c)
$$[(C \to D) \to C] \to [(C \to D) \to D]$$

- 1. $(C \to D) \to C$
- 2. $C \rightarrow D$
- 3. *C*
- 4. **D**

- (hip)
- (hip da conclusão)
- (1, 2, modus ponens)
- (2, 3, modus ponens)

d) $A' \wedge (A \vee B) \rightarrow B$

- 1. *A'*
- $2. A \vee B$
- 3. $A'' \vee B$
- 4. $A' \rightarrow B$
- 5. **B**

- (hip)
- (hip)
- (2, dupla negação)
- (3, condicional)
- (1, 4, modus ponens)
- e) $[A \to (B \to C)] \land (A \lor D') \land B \to (D \to C)$
 - 1. $A \rightarrow (B \rightarrow C)$
 - 2. $A \vee D'$
 - 3. *B*
 - 4. D
 - 5. A
 - 6. $B \rightarrow C$
 - 7. **C**

- (hip)
- (hip)
- (hip)
- (hip da conclusão)
- (2, 4, silogismo disjuntivo)
- (1, 5, modus ponens)
- (3, 6, modus ponens)

- f) $(A' \to B') \land B \land (A \to C) \to C$
 - 1. $A' \rightarrow B'$
 - 2. *B*
 - 3. $A \rightarrow C$
 - 4. *A*
 - 5. **C**

- (hip)
- (hip)
- (hip)
- (1, 2, modus tollens)
- (3, 4, modus ponens)
- g) $(A \to B) \land [B \to (C \to D)] \land [A \to (B \to C)] \to (A \to D)$
 - 1. $A \rightarrow B$
 - 2. $B \to (C \to D)$
 - 3. $A \rightarrow (B \rightarrow C)$
 - 4. A
 - 5. *B*
 - 6. $B \rightarrow C$
 - 7. C
 - 8. $C \rightarrow D$
 - 9. **D**

- (hip)
- (hip)
- (hip)
- (hip)
- (1, 4, modus ponens)
- (3, 4, modus ponens)
- (5, 6, modus ponens)
- (2, 5, modus ponens)
- (7, 8, modus ponens)

h) $[A \rightarrow (B \rightarrow C)] \rightarrow [B \rightarrow (A \rightarrow C)]$

- 1. $A \rightarrow (B \rightarrow C)$
- 2. *B*
- 3. *A*
- 4. $B \rightarrow C$
- 5. **C**
- i) $(A \wedge B) \rightarrow (A \rightarrow B')'$
 - 1. $A \wedge B$
 - 2. $A'' \wedge B''$
 - 3. $(A' \vee B')'$
 - 4. $(A \rightarrow B')'$
- Questão 12:
 - a) $[(C \land A') \land ((V \lor S') \to A)] \to (C \lor S)$
 - 1. $C \wedge A'$
 - 2. $(V \vee S') \rightarrow A$
 - 3. *C*
 - 4. A'
 - 5. $(V \vee S')$
 - 6. $V' \wedge (S')'$
 - 7. (S')'
 - 8. S
 - 9. $C \wedge S$
 - b) $(A \to V) \land (A \lor L) \land V' \to L$
 - 1. $A \rightarrow V$
 - $2. A \lor L$
 - 3. V'
 - 4. A'
 - 5. $(A')' \vee L$
 - 6. $A' \rightarrow L$
 - 7. **L**
 - c) $[R \land (F' \lor N)] \land N' \land (E' \to F) \to (E \land R)$

- (hip)
- (hip da conclusão)
- (hip da hipótese da conclusão)
- (1, 3, modus ponens)
- (2, 4, modus ponens)
- (hip)
- (1, dupla negação)
- (2, De Morgan)
- (3, condicional)
- (hip)
- (hip)
- (hip)
- (1, simplificação)
- (2,4, modus tollens)
- (5, De Morgan)
- (6, simplificação)
- (7, dupla negação)
- (3, 8, conjunção)
- (hip)
- (hip)
- (hip)
- (1,3, modus tollens)
- (5, dupla negação)
- (5, condicional)
- (4, 6, modus ponnens)

- 1. $R \wedge (F' \vee N)$
- 2. N'
- 3. $E' \to F$
- 4. R
- 5. $F' \vee N$
- 6. $F' \to N$
- 7. $E' \to N$
- 8. (E')'
- 9. E
- 10. $\boldsymbol{E} \wedge \boldsymbol{R}$
- d) $(T \to U)' \land (E \lor C')' \to (U' \land C)$
 - 1. $(T \to U)'$
 - 2. $(E \vee C')'$
 - 3. $(T' \vee U)'$
 - 4. $(T')' \wedge U'$
 - 5. $E' \wedge (C')'$
 - 6. U'
 - 7. (C')'
 - 8. C
 - 9. $U' \wedge C$
- e) $[(J \lor M) \to C] \land K' \land (C \to K) \to J'$
 - 1. $(J \vee M) \to C$
 - 2. *K'*
 - 3. $C \rightarrow K$
 - 4. C'
 - 5. $(J \vee M)'$
 - 6. $J' \wedge M'$
 - 7. **J**

- (hip)
- (hip)
- (hip)
- (1, simplificação)
- (1, simplificação)
- (5, condicional)
- (3,6, silogismo hipotético)
- (2,7, modus tollens)
- (8, dupla negação)
- (4, 6, modus ponnens)
- (hip)
- (hip)
- (1, condicional)
- (3, lei de Morgan)
- (2, lei de Morgan)
- (4, simplificação)
- (5, simplificação)
- (7, dupla negação)
- (6, 8, conjunção)
- (hip)
- (hip)
- (hip)
- (2, 3, modus tollens)
- (1, 4, modus tollens)
- (5, lei de Morgan)
- (6, simplificação)