Álgebra Linear e Geometria Analítica

Agrupamento IV (ECT, EET, EI)

Capítulo 5

Valores Próprios e Vetores Próprios

Sejam A uma matriz $n \times n$ e $\lambda \in \mathbb{R}$.

 λ é um valor próprio de A se existe um vetor não nulo $X \in \mathbb{R}^n$ tal que

$$AX = \lambda X$$
.

Todo o vetor $X \in \mathbb{R}^n$ não nulo que satisfaz $AX = \lambda X$ é designado por vetor próprio de A associado ao valor próprio λ .

 λ é um valor próprio de A

$$\downarrow$$

o sistema homogéneo $(A-\lambda I_n)X=0$ possui uma solução não trivial

$$\det\left(A - \frac{\lambda}{\lambda} I_n\right) = 0$$

Seja A uma matriz $n \times n$.

O polinómio caraterístico de A é um polinómio de grau n em λ dado por

$$p_A(\lambda) = \det(A - \lambda I_n).$$

A equação $\det(A-\lambda I_n)=0$ diz-se a equação caraterística de A.

Teorema: Os valores próprios de A são as raízes reais do polinómio caraterístico de A.

Observação: Os valores próprios de uma matriz triangular são as entradas da sua diagonal principal.

Teorema: Seja λ um valor próprio da matriz A $n \times n$. Então,

 $U_{\pmb{\lambda}} = \{X \in \mathbb{R}^n : X \text{ \'e vetor pr\'oprio de } A \text{ associado a } \pmb{\lambda}\} \cup \{0\}$

é um subespaço vetorial de \mathbb{R}^n .

 U_{λ} diz-se o subespaço próprio de A associado ao valor próprio λ e

$$U_{\lambda} = \{X \in \mathbb{R}^n : (A - \lambda I_n)X = 0\} = \mathcal{N}(A - \lambda I_n).$$

Teorema: Seja A $n \times n$ com k valores próprios distintos $\lambda_1, \ldots, \lambda_k$ e

$$p_A(\lambda) = (\lambda_1 - \lambda)^{n_{\lambda_1}} \cdots (\lambda_k - \lambda)^{n_{\lambda_k}}.$$

Então $1 \leq \dim U_{\lambda_i} \leq n_{\lambda_i}$, $i = 1, \ldots, k$.

Determinar valores os próprios e os subespaços próprios de $A=\left|egin{array}{cc}1&1\\-2&4\end{array}
ight|.$

O polinómio caraterístico de A é

$$p_A(\lambda) = \det(A - \lambda I) = egin{bmatrix} 1 - \lambda & 1 \ -2 & 4 - \lambda \end{bmatrix} = \lambda^2 - 5\lambda + 6.$$

A equação caraterística de A é

$$\det(A - \lambda I) = 0 \iff \lambda^2 - 5\lambda + 6 = (2 - \lambda)^1 (3 - \lambda)^1 = 0$$
$$\Leftrightarrow \lambda = 2 \lor \lambda = 3$$

Os valores próprios de A são 2 e 3, com $n_2 = n_3 = 1$. A dimensão dos subespaços associados é igual a 1, pois $1 \le \dim U_2 \le 1$ e $1 \le \dim U_3 \le 1$.

$$(A-\mathbf{2}I)X=0 \;\Leftrightarrow\; egin{bmatrix} -1 & 1 \ -2 & 2 \end{bmatrix} egin{bmatrix} x \ y \end{bmatrix} = egin{bmatrix} 0 \ 0 \end{bmatrix} \;\Leftrightarrow\; y=x,\; x\in\mathbb{R}$$

$$egin{aligned} egin{aligned} oldsymbol{U_2} &= \left\{egin{bmatrix} x \ x \end{bmatrix} : x \in \mathbb{R}
ight\} = \langle oldsymbol{X_1}
angle, & \mathsf{com} \ oldsymbol{X_1} &= egin{bmatrix} 1 \ 1 \end{bmatrix}. \end{aligned}$$

$$(A-rac{3}{i})X=0 \;\Leftrightarrow\; egin{bmatrix} -2 & 1 \ -2 & 1 \end{bmatrix} egin{bmatrix} x \ y \end{bmatrix} = egin{bmatrix} 0 \ 0 \end{bmatrix} \;\Leftrightarrow\; y=2x,\; x\in\mathbb{R}$$

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Determinar valores e subespaços próprios de $A=egin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}.$

O polinómio caraterístico de A

$$p_A(\lambda) = \det(A-\lambda I) = egin{bmatrix} -\lambda & 0 & 0 \ 0 & -\lambda & -1 \ 0 & 1 & -\lambda \end{bmatrix} = -\lambda(\lambda^2+1)$$

possui uma única raiz real $\lambda = 0$ (e um par de raízes complexas conjugadas).

O espaço próprio de A é $U_0\!=\!\mathcal{N}(A)\!=\!\langle X
angle$, com $X\!=\!egin{bmatrix}1\\0\\0\end{bmatrix}$, e $\dim U_0\!=\!1$.

Seja
$$A=egin{bmatrix} 1 & 1 & 0 \ 0 & 1 & 0 \ 0 & 0 & 2 \end{bmatrix}$$
 . Determinar valores e subespaços próprios.

 $A \text{ \'e triangular} \Rightarrow p_A(\lambda) = (1-\lambda)^2(2-\lambda) \Rightarrow \text{possui valores pr\'oprios 1 e 2}.$

$$X \in oldsymbol{U_1} \Leftrightarrow (A-oldsymbol{1}{I_3})X = 0 \Leftrightarrow egin{bmatrix} 0 & 1 & 0 \ 0 & 0 & 0 \ 0 & 0 & 1 \end{bmatrix} X = 0 \Leftrightarrow oldsymbol{U_1} = \langle egin{bmatrix} 1 \ 0 \ 0 \end{bmatrix}
angle$$

$$X \in oldsymbol{U_2} \Leftrightarrow (A-2I_3)X = 0 \Leftrightarrow egin{bmatrix} -1 & 1 & 0 \ 0 & -1 & 0 \ 0 & 0 & 0 \end{bmatrix} X = 0 \Leftrightarrow oldsymbol{U_2} = \langle egin{bmatrix} 0 \ 0 \ 1 \end{bmatrix}
angle$$

A e B são matrizes semelhantes se existir uma matriz invertível P tal que

$$P^{-1}AP = B.$$

Observação: Com P invertível, $P^{-1}AP = B \Leftrightarrow AP = PB \Leftrightarrow A = PBP^{-1}$.

Teorema: Matrizes semelhantes possuem o mesmo polinómio caraterístico e, portanto, os mesmo valores próprios.

Uma matriz diz-se diagonalizável se é semelhante a uma matriz diagonal.

Sendo A diagonalizável, uma matriz diagonalizante de A é uma matriz invertível P tal que

$$P^{-1}AP = D$$

é uma matriz diagonal.

Sejam A, P e D matrizes $n \times n$, sendo X_1, \ldots, X_n as colunas de P e D diagonal com $\lambda_1, \ldots, \lambda_n \in \mathbb{R}$ na diagonal principal. Então (verifique que)

$$ullet$$
 $AP = A \begin{bmatrix} X_1 & \cdots & X_n \end{bmatrix} = \begin{bmatrix} AX_1 & \cdots & AX_n \end{bmatrix}$

•
$$PD = \begin{bmatrix} X_1 & \cdots & X_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \ddots & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 X_1 & \cdots & \lambda_n X_n \end{bmatrix}$$

• $AP = PD \Leftrightarrow X_i$ é vetor próprio de A associado a λ_i , $i=1,\ldots,n$.

Teorema: $A n \times n$ é diagonalizável $\Leftrightarrow A$ possui n vetores próprios I.i.

Nestas condições, A é semelhante à matriz diagonal $P^{-1}AP = D$ e

- ullet as colunas da matriz diagonalizante P são n vetores próprios l.i. de A,
- ullet a matriz D contém os valores próprios de A na diagonal principal e
- a ordem dos vetores próprios determina a ordem dos valores próprios.

Lema: Vetores próprios associados a valores próprios distintos são l.i.

Demonstração: Sejam X_1 e X_2 vetores próprios de A associados a dois valores próprios distintos λ_1 e λ_2 e suponha-se que $\alpha_1 X_1 + \alpha_2 X_2 = 0$. Pré-multiplicando ambos os membros da igualdade por $A - \lambda_1 I$, obtém-se

$$\alpha_1 \underbrace{(A - \lambda_1 I) X_1}_{0} + \alpha_2 \underbrace{(A - \lambda_1 I) X_2}_{AX_2 - \lambda_1 X_2} = 0 \Leftrightarrow \alpha_2 \underbrace{(\lambda_2 - \lambda_1)}_{\neq 0} \underbrace{X_2}_{\neq 0} = 0,$$

donde $\alpha_2=0$. Logo, $\alpha_1X_1+\alpha_2X_2=0\Leftrightarrow \alpha_1X_1=0$ e, como $X_1\neq 0$, também $\alpha_1=0$. Conclui-se que o conjunto $\{X_1,X_2\}$ é l.i.

Teorema: Sejam $\lambda_1,\ldots,\lambda_k$ os valores próprios distintos de A. Então A possui $\dim U_{\lambda_1}+\cdots+\dim U_{\lambda_k}$ vetores próprios l.i.

Teorema: Seja $p_A(\lambda)=(\lambda_1-\lambda)^{n_{\lambda_1}}\cdots(\lambda_k-\lambda)^{n_{\lambda_k}}$ o polinómio caraterístico de A, sendo $\lambda_1,\ldots,\lambda_k$ os valores próprios distintos. Então,

A é diagonalizável se e só se $\dim U_{\lambda_i} = n_{\lambda_i}$, $i=1,\ldots,k$.

Observações: Seja A uma matriz $n \times n$.

- Se A possui n valores próprios distintos, é diagonalizável.
- O recíproco da afirmação anterior é falso! Vide o exemplo 4.
- Para descobrir se A, com k < n valores próprios distintos, é diagonalizável, é preciso verificar se $\dim U_{\lambda_i} = n_{\lambda_i}$ só para $n_{\lambda_i} > 1$.
- dim U_{λ_i} = dim $\mathcal{N}(A \lambda_i I)$ = nul $(A \lambda_i I)$ = $n \text{car}(A \lambda_i I)$.

Exemplo 1: $A \times 2 \times 2$ é diagonalizável, pois tem 2 valores próprios distintos.

Exemplo 2: $A \times 3 \times 3$ não é diagonálizável, tendo apenas 1 vetor próprio l.i.

Exemplo 3: A não é diagonálizável, pois $\dim U_1 = 1 < n_1 = 2$.

$$A=egin{bmatrix} 1&1&0\0&\mathbf{2}&0\0&0&1 \end{bmatrix}$$
 tem valores próprios $\mathbf{1}$ e $\mathbf{2}$ e $p_A(\lambda)=(\mathbf{1}-\lambda)^2(\mathbf{2}-\lambda)^1.$

 $1 \le \dim U_2 \le 1 \Rightarrow \dim U_2 = 1$, mas $1 \le \dim U_1 \le 2 \Rightarrow \dim U_1 \in \{1, 2\}$.

Contudo,
$$A-1I=egin{bmatrix} 0 & 1 & 0 \ 0 & 1 & 0 \ 0 & 0 & 0 \end{bmatrix} \sim egin{bmatrix} 0 & 1 & 0 \ 0 & 0 & 0 \ 0 & 0 & 0 \end{bmatrix}$$
 tem caraterística 1.

Logo, dim $U_1 = \text{nul}(A-1I) = 3 - \text{car}(A-1I) = 2$ e A é diagonalizável.

Assim,
$$U_1 = \mathcal{N}(A - 1I) = \langle X_1, X_2 \rangle$$
. Verifique que $X_1 = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$ e $X_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$.

Como
$$A-2I=egin{bmatrix} -1 & 1 & 0 \ 0 & 0 & 0 \ 0 & 0 & -1 \end{bmatrix} \sim egin{bmatrix} 1 & -1 & 0 \ 0 & 0 & 1 \ 0 & 0 & 0 \end{bmatrix}$$
, $m{U_2}=\langle \pmb{X_3} \rangle$ com $m{X_3}=egin{bmatrix} 1 \ 1 \ 0 \end{bmatrix}$.

Então, uma matriz diagonalizante de A é

$$P = egin{bmatrix} X_1 & X_2 & X_3 \end{bmatrix} = egin{bmatrix} 1 & 0 & 1 \ 0 & 0 & 1 \ 0 & 1 & 0 \end{bmatrix}, ext{ tal que } P^{-1}AP = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 2 \end{bmatrix}.$$

Outra matriz diagonalizante de A, por exemplo, é

$$Q = egin{bmatrix} X_2 & X_3 & X_1 \end{bmatrix} = egin{bmatrix} 0 & 1 & 1 \ 0 & 1 & 0 \ 1 & 0 & 0 \end{bmatrix}, ext{ sendo } Q^{-1}A \ Q = egin{bmatrix} 1 & 0 & 0 \ 0 & 2 & 0 \ 0 & 0 & 1 \end{bmatrix}.$$

Se A é diagonalizável, então existe P invertível tal que $A = PDP^{-1}$.

Para $k \in \mathbb{N}$,

$$A = PDP^{-1} \Rightarrow A^k = PDP^{-1}PDP^{-1} \cdots PDP^{-1} = PD^kP^{-1}.$$

Se A é invertível, $A = PDP^{-1} \Rightarrow A^{-1} = PD^{-1}P^{-1}$.

Exemplo:
$$A = \begin{bmatrix} 5 & -3 \\ 6 & -4 \end{bmatrix}$$
 é semelhante a $\begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}^{-1} A \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}$.

Então,
$$A^8 = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & -1 \end{bmatrix}^8 \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} 256 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} 511 & -255 \\ 510 & -254 \end{bmatrix}.$$

Recorde que A é simétrica se $A^T = A$.

Teorema: Uma matriz simétrica $n \times n$ possui n valores próprios (reais).

Teorema: Vetores próprios de uma matriz simétrica associados a valores próprios distintos são ortogonais.

Demonstração: Se A n imes n é simétrica e $X_1, X_2 \in \mathbb{R}^n$, tem-se que

$$(AX_1) \cdot X_2 = X_1^T A^T X_2 = X_1^T A X_2 = X_1 \cdot (AX_2).$$

Se X_1 e X_2 são vetores próprios de A associados, respetivamente, aos valores próprios λ_1 e λ_2 , $(AX_1)\cdot X_2 = \lambda_1 X_1\cdot X_2 = X_1\cdot (AX_2) = \lambda_2 X_1\cdot X_2$, donde $(\lambda_1-\lambda_2)X_1\cdot X_2=0$. Se $\lambda_1\neq \lambda_2$, então $X_1\cdot X_2=0$.

A matriz quadrada P é ortogonal se $P^TP = I \Leftrightarrow$ é invertível e $P^{-1} = P^T$.

Teorema: Dada uma matriz $P=egin{bmatrix} P_1 & \cdots & P_n \end{bmatrix}$ de colunas P_1,\ldots,P_n , P é ortogonal $\Leftrightarrow \{P_1,\ldots,P_n\}$ é uma base o.n. de \mathbb{R}^n .

A é ortogonalmente diagonalizável se A é diagonalizável e possui uma matriz diagonalizante ortogonal (cujas colunas são uma base o.n. de A formada por vetores próprios).

Teorema: Toda a matriz simétrica é ortogonalmente diagonalizável.

$$A = egin{bmatrix} 1 & 2 \ 2 & 1 \end{bmatrix}$$
 é simétrica $\Rightarrow A$ é ortogonalmente diagonalizável

$$p_A(\lambda) = (1 - \lambda^2) - 4 = 0 \Leftrightarrow \lambda = 3 \lor \lambda = -1$$

$$egin{aligned} oldsymbol{U_3} &= \left\{egin{bmatrix} x \ x \end{bmatrix} : x \in \mathbb{R}
ight\} = \langle X_1
angle, \qquad X_1 = egin{bmatrix} 1 \ 1 \end{bmatrix}, \quad oldsymbol{P_1} &= rac{X_1}{\|X_1\|} = egin{bmatrix} rac{\sqrt{2}}{2} \ rac{\sqrt{2}}{2} \end{bmatrix}. \end{aligned}$$

$$egin{aligned} egin{aligned} oldsymbol{U_{-1}} &= \left\{egin{bmatrix} -x \ x \end{bmatrix}: x \in \mathbb{R}
ight\} &= \langle X_2
angle, & X_2 = egin{bmatrix} -1 \ 1 \end{bmatrix}, & P_2 = rac{X_2}{\|X_2\|} = egin{bmatrix} -rac{\sqrt{2}}{2} \ rac{\sqrt{2}}{2} \end{bmatrix} \end{aligned}$$

Uma matriz diagonalizante ortogonal de $oldsymbol{A}$ é

$$m{P} = egin{bmatrix} m{P}_1 & m{P}_2 \end{bmatrix} = egin{bmatrix} rac{\sqrt{2}}{2} & -rac{\sqrt{2}}{2} \ rac{\sqrt{2}}{2} & rac{\sqrt{2}}{2} \end{bmatrix}, \quad ext{sendo} \quad m{P}^T\!Am{P} = egin{bmatrix} m{3} & 0 \ 0 & -1 \end{bmatrix}.$$

$$A = egin{bmatrix} 0 & 0 & 1 \ 0 & 1 & 0 \ 1 & 0 & 0 \end{bmatrix}$$
 é simétrica \Rightarrow A é ortogonalmente diagonalizável

$$p_A(\lambda) = (1 - \lambda)(\lambda^2 - 1) = 0 \Leftrightarrow \lambda = 1 \lor \lambda = -1$$

$$egin{aligned} oldsymbol{U_1} &= \left\{egin{bmatrix} x \ y \ x \end{bmatrix} : x,y \in \mathbb{R}
ight\} = \langle egin{bmatrix} 1 \ 0 \ 1 \end{bmatrix}, egin{bmatrix} 0 \ 1 \ 0 \end{bmatrix}
angle \end{aligned}$$

$$P_1=egin{bmatrix} rac{\sqrt{2}}{2} \ 0 \ rac{\sqrt{2}}{2} \end{bmatrix}, \quad P_2=egin{bmatrix} 0 \ 1 \ 0 \end{bmatrix}, \quad P_1\cdot P_2=0$$

$$egin{aligned} egin{aligned} oldsymbol{U_{-1}} &= \left\{egin{bmatrix} -z \ 0 \ z \end{bmatrix}: z \in \mathbb{R}
ight\} = \left\langleegin{bmatrix} -1 \ 0 \ 1 \end{bmatrix}
ight
angle & oldsymbol{P_3} = egin{bmatrix} rac{-\sqrt{2}}{2} \ 0 \ rac{\sqrt{2}}{2} \end{bmatrix} \end{aligned}$$

Então $\{P_1, P_2, P_2\}$ é uma base o.n. de vetores próprios de A e

$$P = egin{bmatrix} P_1 & P_2 & P_3 \end{bmatrix} = egin{bmatrix} rac{\sqrt{2}}{2} & 0 & -rac{\sqrt{2}}{2} \ 0 & 1 & 0 \ rac{\sqrt{2}}{2} & 0 & rac{\sqrt{2}}{2} \end{bmatrix}$$

é uma matriz diagonalizante ortogonal de $oldsymbol{A}$ tal que