Math 630 Notes

Survival Models

- Furure Life Time T_x and Its Distribution
 - -(x): a life aged x
 - T_x : the future life time of (x)

Example: Consider a life (55). If $T_{55} = 30$, then (55) dies at age $55 + T_{55} = 85$.

- The CDF of T_x : $F_x(t) = P(T_x \le t)$, the probability that (x) dies within t years
- Survival function of (x): $S_x(t) = 1 F_x(t) = P(T_x > t)$, the probability that (x) survives for at least t years
- Notation: $_tp_x = S_x(t) = P(T_x > t), \quad _tq_x = F_x(t) = P(T_x \le t).$ For t = 1, we drop the front subscript and use $p_x = _1p_x$ and $q_x = _1q_x$
- An important formula $P(T_x \le t) = P(T_0 \le x + t | T_0 > x)$.
- Similarly, $P(T_x > t) = P(T_0 > x + t \mid T_0 > x)$
- Exercise Show that

1)
$$F_x(t) = \frac{F_0(x+t) - F_0(x)}{S_0(x)}$$

2)
$$S_x(t) = \frac{S_0(x+t)}{S_0(x)}$$
 or $S_0(x+t) = S_0(x)S_x(t)$

3)
$$S_x(t+u) = S_x(t)S_{x+t}(u)$$

- Conditions on $S_x(t)$: $S_x(0) = 1$, $\lim_{t \to \infty} S_x(t) = 0$, $S_x(t)$ is non-increasing.
- Assumptions: $S_x(t)$ is smooth, $\lim_{t\to\infty} t^2 S_x(t) = 0 \ (\Rightarrow \lim_{t\to\infty} t S_x(t) = 0.)$
- Example (Exercise 2.3) Given the survival function $S_0(x) = \frac{1}{10}\sqrt{100 x}$ for $0 \le x \le 100$, find the probability that (0) will die between ages 19 and 36.
- EXAMPLE. You are given the following survival data of a group of 100 people, where l_x is the number of people in the group who survive to age x.

Find $F_0(53)$, $S_0(51)$, $f_0(51)$, $S_2(50)$, and the probability that someone age 2 will die between 51 and 53.

$$P(51 < T_0 \le 53 \mid T_0 > 2) = \frac{S_0(51) - S_0(53)}{S_0(2)} = P(49 < T_2 \le 51)$$

or just count how many among the 94 survived to age 2 die between 51 and 53.

• The Force of Mortality

$$- \mu_x = \lim_{\Delta x \to 0} \frac{1}{\Delta x} P(T_x \le \Delta x) \left(= \lim_{\Delta x \to 0} \frac{1}{\Delta x} P(T_0 \le x + \Delta x \mid T_0 > x) = \lim_{\Delta x \to 0} \frac{1}{\Delta x} F_x(\Delta x) \right)$$

$$- \mu_x \Delta x \approx P(T_x \le \Delta x)$$

$$-F_x(\Delta x) = 1 - S_x(\Delta x) = 1 - \frac{S_0(x + \Delta x)}{S_0(x)} = \frac{S_0(x) - S_0(x + \Delta x)}{S_0(x)} \text{ implies that}$$

$$\mu_x = \lim_{\Delta x \to 0} \frac{1}{\Delta x} \frac{S_0(x) - S_0(x + \Delta x)}{S_0(x)} = \frac{-1}{S_0(x)} \frac{dS_0(x)}{dx} = \frac{-S'_0(x)}{S_0(x)}$$

$$- \mu_x = \frac{-S_0'(x)}{S_0(x)} = -\frac{d}{dx} \ln S_0(x)$$

- Let $f_0(x)$ be the density function of T_0 . Then $-S'_0(x) = F'_0(x) = f_0(x)$, and so

$$-\mu_x = \frac{f_0(x)}{S_0(x)}$$

- Let x be fixed and t be variable. Then $\mu_{x+t} = \cdots = \frac{-1}{S_x(t)} \frac{d}{dt} S_x(t) = \frac{-S'_x(t)}{S_x(t)}$

$$- \mu_{x+t} = \frac{-S'_x(t)}{S_x(t)} = \frac{f_x(t)}{S_x(t)} = -\frac{d}{dt} \ln S_x(t)$$

- Integrating $\mu_{x+s} = -\frac{d}{ds} \ln S_x(s)$ from s = 0 to s = t, we get

$$S_x(t) = \exp\left(-\int_0^t \mu_{x+s} \, ds\right) = \exp\left(-\int_x^{x+t} \mu_r \, dr\right).$$

$$-\mu_x \iff S_x$$

- Example. (Exercise 2.1 (a)-(d))

Let $F_0(t) = 1 - (1 - t/105)^{1/5}$ for $0 \le t \le 105$. Calculate

- (a) the probability that a newborn dies before age 60.
- (b) the probability that a life aged 30 survives to at least age 70.
- (b) the probability that a life aged 20 dies between ages 90 and 100.
- (a) the force of mortality at age 50.

- Example. (Exercise 2.5 (a) and (b))

Let $F_0(t) = 1 - e^{-\lambda t}$, where $\lambda > 0$.

- (a) Show that $S_x(t) = e^{-\lambda t}$.
- (b) Show that $\mu_x = \lambda$.
- Special Mortality Laws
 - * Constant mortality: $\mu_x = c$
 - * Gompertz' Law: $\mu_x = Bc^x$ (See Example 2.3)
 - * Makeham's Law: $\mu_x = A + Bc^x$
 - * De Moivre's Law: $\mu_x = \frac{1}{\omega x}$ for $0 \le x < \omega$

- Example

Given that μ_x is constant μ and that the probability that a life aged 60 survives to age 80 is 0.1, find μ_x .

$$_{20}p_{60} = 0.1 \implies \exp\left(-\int_0^{20} \mu_{x+t} dt\right) = 0.1 \implies e^{-20\mu} = 0.1 \implies \mu = 0.11513.$$

- Example. DML with $\omega = 100$

$$\mu_x = \frac{1}{100 - x}$$
 for $0 \le x < 100 \implies$ for $0 \le t < 100 - x$,

$$_{t}p_{x} = \exp\left(-\int_{0}^{t} \frac{1}{100 - (x+s)} ds\right) = \frac{100 - (x+t)}{100 - x}, \quad _{t}q_{x} = \frac{t}{100 - x}.$$

(Use a time line to express these expressions.)

• More on Notations

$$- {}_{t}p_{x} = S_{x}(t) = P(T_{x} > t), \quad {}_{t}q_{x} = F_{x}(t) = P(T_{x} \leq t),$$

$${}_{u|t}q_{x} = P(u < T_{x} \leq u + t) = S_{x}(u) - S_{x}(u + t) = F_{x}(u + t) - F_{x}(u)$$

$$- {}_{u|t}q_{x} = {}_{u}p_{xt} \cdot q_{x+u} = {}_{u}p_{x} - {}_{u+t}p_{x} = {}_{u+t}q_{x} - {}_{u}q_{x}, \quad {}_{u+t}p_{x} = {}_{u}p_{x} \cdot {}_{t}p_{x+u}$$

$$- {}_{u}p_{x} = -\frac{1}{{}_{x}p_{0}}\frac{d}{dx}({}_{x}p_{0}), \quad {}_{u}p_{x+t} = -\frac{1}{{}_{t}p_{x}}\frac{d}{dt}({}_{t}p_{x})$$

$$- {}_{x}(t) = \frac{d}{dt}F_{x}(t) = {}_{t}p_{x}\mu_{x+t}, \quad {}_{t}q_{x} = \int_{0}^{t} {}_{s}p_{x}\mu_{x+s} ds$$

• Mean and Variance of T_x

$$-\stackrel{\circ}{e}_x = \mathbb{E}(T_x) = \int_0^\infty t f_x(t) dt = \int_0^\infty t_t p_x \mu_{x+t} dt = \dots = \int_0^\infty t p_x dt$$

$$-\mathbb{E}(T_x^2) = \int_0^\infty t^2 f_x(t) dt = \dots = 2 \int_0^\infty t \cdot t p_x dt$$

$$\mathbb{V}(T_x) = \mathbb{E}(T_x^2) - [\mathbb{E}(T_x)]^2 = \mathbb{E}(T_x^2) - \left(\stackrel{\circ}{e}_x\right)^2$$

- Example

For constant force of mortality $\mu_x = 0.3$, $_tp_x = e^{-0.3t} \Rightarrow$

$$\stackrel{\circ}{e}_x = \int_0^\infty e^{-0.3t} dt = \frac{1}{0.3} = \frac{1}{\mu_x}.$$

$$\mathbb{E}(T_x^2) = 2 \int_0^\infty t \cdot e^{-0.3t} dt = \dots = \frac{2}{0.3^2} \Rightarrow$$

$$\mathbb{V}(T_x) = \frac{2}{0.3^2} - \left(\frac{1}{0.3}\right)^2 = \frac{1}{0.3^2}.$$

In general, for constant $\mu_x = \mu$,

$$\stackrel{\circ}{e}_x = \mathbb{E}(T_x) = \frac{1}{\mu}, \quad \mathbb{V}(T_x) = \frac{1}{\mu^2}.$$

- Example. (DML with
$$\omega = 100$$
) $_tp_x = \frac{100 - (x+t)}{100 - x} \Rightarrow$

$$e_x = \int_0^{100-x} \frac{100 - (x+t)}{100 - x} dt = \frac{100 - x}{2}.$$

It can be computed that

$$\mathbb{V}(T_x) = \frac{(100 - x)^2}{12}.$$

In general

$$\stackrel{\circ}{e}_x = \frac{\omega - x}{2}, \quad \mathbb{V}(T_x) = \frac{(\omega - x)^2}{12}.$$

• Curtate Life Time K_x

– Definition:
$$K_x = \lfloor T_x \rfloor$$
, the integer part of T_x .

$$-P(K_x = k) = P(k \le T_x < k+1) = {}_{k|}q_x = {}_{k}p_x - {}_{k+1}p_x = {}_{k}p_x \cdot q_{x+k}$$

$$- e_x = \mathbb{E}(K_x) = \sum_{k=1}^{\infty} kP(K_x = k) = \sum_{k=1}^{\infty} k(kp_x - k+1p_x) = \dots = \sum_{k=1}^{\infty} kp_x$$

– Similarly,
$$\mathbb{E}(K_x^2) = \dots = 2\sum_{k=1}^{\infty} k \cdot {}_k p_x - \sum_{k=1}^{\infty} {}_k p_x = 2\sum_{k=1}^{\infty} k \cdot {}_k p_x - e_x$$
 and so

$$\mathbb{V}(K_x) = 2\sum_{k=1}^{\infty} k \cdot {}_k p_x - e_x - e_x^2$$

- Example. Find e_{50} for DML with $\omega = 100$.
- EXERCISE. Find e_{50} for CFM with $\mu_x = 0.3$.
- Relation between $\stackrel{\circ}{e}_x$ and e_x : $\stackrel{\circ}{e}_x \approx e_x + \frac{1}{2}$.

• Suggested Exrecises

- From the text:

Exercises 2.1–2.3, 2.6–2.7, 2.10–2.11 (Exercises 2.9, 2.14, and 2.15 require more calculus; they are strongly recommended.)

- Find $_{5|}q_{40}$ if $S_0(t) = \left(\frac{100}{100+t}\right)^2$.
- Given $\mu_x = \frac{2}{100-x}$ for $0 \le x < 100$. Calculate $_{10|} q_{65}$.
- Under DML with $\omega = 100$, calculate the probability that (30) will die in his 70's.
- Given that $\mu_{70+t} = \begin{cases} 0.01 & \text{if } t \leq 5 \\ 0.02 & \text{if } t > 5 \end{cases}$, calculate $\stackrel{\circ}{e}_{70}$.

(Hint: Find explicit expressions for $_tp_{70}$ for $t \leq 5$ and for t > 5.)

Appendix It is shown in the text that $\stackrel{\circ}{e}_x = \int_0^\infty {}_t p_x \, dt$ using integration by parts. In order to use integration by parts, it is assumed that $\lim_{t\to\infty} tS_x(t) = 0$. Here is an alternative proof without making the further assumption. First a general resulty in probability.

Lemma If X is a non-negative continuous random variable with CDF F(x) and if $\mathbb{E}(X)$ exists, then

$$\mathbb{E}(X) = \int_0^\infty (1 - F(t)) dt. \tag{1}$$

Proof. Let f(x) = F'(x), the density function of X. Then, we have

$$\mathbb{E}(X) = \int_0^\infty s \cdot f(s) \, ds = \int_0^\infty \left(\int_0^s dt \right) \cdot f(s) \, ds$$

$$= \int_0^\infty \int_0^s f(s) \, dt \, ds = \int_0^\infty \int_t^\infty f(s) \, ds \, dt$$

$$= \int_0^\infty \int_t^\infty f(s) \, ds \, dt = \int_0^\infty P(X > t) \, dt$$

$$= \int_0^\infty (1 - F(t)) \, dt$$

Now for $X = T_x$, $F(t) = P(T_x \le t) = {}_tq_x$, and $1 - F(t) = 1 - {}_tq_x = {}_tp_x$. We have by (1)

$$\stackrel{\circ}{e}_x = \mathbb{E}[T_x] = \int_0^\infty (1 - F(t)) dt = \int_0^\infty {}_t p_x dt.$$

The formula for $\mathbb{E}(T_x^2)$ and $\mathbb{V}(T_x)$ can be similarly onbtained.