Drugi međuispit

18. svibnja 2009.

Ime i Prezime: Matični broj:

Napomena: Zadatke obavezno predati s rješenjima nakon završetka testa.

1. zadatak (5 bodova)

- a) (2 bod) Kako se kod LS metode estimiraju parametri modela? Koji se kriterij koristi? Napišite matematički izraz i komentirajte.
- b) (2 boda) Koji je razlog uvođenja instrumentalnih varijabli u postupak estimacije parametara? Koje uvjete instrumentalne varijable moraju zadovoljiti da bi procjena parametara bila konzistentna?
- c) (1 bod) Navedite prednosti odnosno nedostatke RLS metode procjene parametara u odnosu na LS metodu.

2. zadatak (4 boda)

Broj vozila k koja u i-tom vremenskom intervalu prođu pored kontrolne točke na nekoj dionici puta mjeri se pomoću brojila prometa. Pokazuje se da se broj vozila k može u statističkom smislu opisati s Poissonovom razdiobom:

$$f(k,\lambda) = \frac{e^{-\lambda}\lambda^k}{k!}, \lambda > 0$$

pri čemu $f(k,\lambda)$ označava vjerojatnost da u vremenskom intervalu i preko kontrolne točke prođe upravo k_i vozila. Potrebno je na temelju poznatih rezultata mjerenja broja vozila k_i odrediti optimalni iznos parametra razdiobe λ korištenjem ML metode (engl. Maximum Likelihood Method).

3. zadatak (3 boda)

Za identifikaciju tromasenog elektromehaničkog sustava koristi se RLS metoda uz faktor zaboravljanja zasnovan na filtru prvog reda koji je zadan prijenosnom funkcijom:

$$\frac{\rho(z)}{\rho_f(z)} = \frac{1 - a_\lambda}{1 - a_\lambda z^{-1}}$$

Konačna vrijednost faktora zaboravljanja je 0.98, a a_{λ} iznosi 0.97.

- a) (1 bod) Koja je vrijednost faktora zaboravljanja u 10. koraku, ako u 8. koraku iznosi $\rho(8) = 0.975$?
- b) (2 boda) Koje prednosti u odnosu na standardnu metodu ima metoda kod koje se koriste faktori zaboravljanja?

4. zadatak (4 boda)

- a) (2 boda) Objasnite i matematički opišite kako se provodi test odnosa determinanata.
- b) (2 boda) Postupkom identifikacije ARMAX modela dobiveni su polinomi:

$$\begin{split} A(z^{-1}) &= 1 - 4z^{-1} + 4z^{-2} \\ B(z^{-1}) &= z^{-2} - 10^{-5}z^{-3} \\ C(z^{-1}) &= z^{-1} - 1.998z^{-2} \end{split}$$

Koristeći polinomski test procijenite minimalni red dobivenog modela.

5. zadatak (5 bodova)

Zadan je diskretni matematički model sustava dvostrukog integratora:

$$x_{k+1} = \begin{bmatrix} 1 & T \\ 0 & 1 \end{bmatrix} x_k + \begin{bmatrix} \frac{T^2}{2} \\ T \end{bmatrix} u_k,$$
$$y_k = \begin{bmatrix} 1 & 0 \end{bmatrix} x_k,$$

gdje je T = 0.5[s].

- a) (3 boda) Projektirajte diskretni prediktivni estimator stanja tako da u prvom slučaju svi polovi sustava budu u nuli $(z_p = 0)$, a u drugom u 0.6 $(z_p = 0.6)$.
- b) (2 boda) Pretpostavimo da u sustavu postoji mjerni šum v_k očekivane vrijednosti nula i varijance R ($v_k \sim N(0,R)$). Obrazložite koji bi od dvaju projektiranih regulatora imao bolje vladanje s obzirom na šum. Napišite izraz za dinamiku pogreške estimacije uz postojanje mjernog šuma u sustavu.

6. zadatak (5 bodova)

Radioaktivna masa ima vrijeme poluraspada τ sekundi. U svakom koraku uzorkovanja, broj emitiranih čestica x jednak je polovici broja čestica emitiranih u prethodnom koraku. Međutim, u tom procesu postoji određena pogreška uzrokovana pozadinskom radijacijom, koju možemo modelirati šumom w_k nulte očekivane vrijednosti i varijance Q ($w_k \sim N(0,Q)$). U svakom koraku uzorkovanja, instrumentom je određen broj emitiranih čestica y. Instrument u koraku k ima šum mjerenja v_k koji se može opisati Gaussovom slučajnom varijablom očekivane vrijednosti nula i varijance R ($v_k \sim N(0,R)$). Pretpostavite da su w_k i v_k nekorelirani.

- a) (1 bod) Postavite matematički model zadanog linearnog sustava.
- b) (2 boda) Napišite jednadžbe Kalmanova filtra za naknadnu (a posteriori) estimaciju broja emitiranih čestica.
- c) (1 bod) Odredite a posteriori varijancu pogreške estimacije Kalmanova filtra u ustaljenom stanju.
- d) (1 bod) Koliko iznosi Kalmanovo pojačanje u ustaljenom stanju kada je Q=R, a koliko kada je Q=2R? Objasnite ovisnost ustaljenog Kalmanova pojačanja o omjeru Q naprama R.