Task# 2

Language: python

Goal: The use of direct methods (one-dimensional methods of exhaustive search, dichotomy, golden section search; multidimensional methods of exhaustive search, Gauss (coordinate descent), Nelder-Mead) in the tasks of unconstrained nonlinear optimization

Problem: Use the one-dimensional methods of exhaustive search, dichotomy and golden section search to find an approximate (with precision x: $f(x) \rightarrow min$ for the following functions and domains:

I.

Theory:

exhaustive search: In this approach, we generate each element in the problem and then select the ones that satisfy all the constraints, and finally find a desired element

dichotomy search : use bound index to keep finding mid index , and keep trying find the smallest func(index)

golden section search: use golden rate (0.618) and two bound indexes to shrink the range and find the min

Gauss (coordinate descent): is used to solve non-linear least squares problems, which is equivalent to minimizing a sum of squared function values

Nelder-Mead: is a numerical method used to find the minimum or maximum of an objective function by reflection, expansion, contraction and shrink coefficients in a multidimensional space

1.
$$f(x)=x^3, x \in [0,1];$$


```
iteration is : 10
The value of root is : 0.0010
evaluation of objective function is : 41

bounday is minimun
evaluation of objective function is : 2995
iteration is : 998

evaluation of objective function is : 32
iteration is : 15
```

(iter, evalation)

Bisection (10,41)

Exhaustive (998,2995)

golden sec(15,32)


```
success: True
x: array([1.e-06])
iteration is : 1
evaluation of objective function is : 2

iteration is : 1
lowest point -0.099999,-0.001000
evaluation of objective function is : 1
```

2. $f(x)=|x-0.2|, x \in [0,1]$;

(iter, evalation)

Bisection (10,25)

Exhaustive (200,601)

golden sec(15,18)

```
iteration is : 10
The value of root is : 0.2002
evaluation of objective function is : 25

The minimum point lies between 0.19900080100000025 & 0.20100079900000026
evaluation of objective function is : 601
iteration is : 200

evaluation of objective function is : 18
iteration is : 15
```

Gradient Descent Python (1d test) Nelder-Mead 0.8 low erpoint 0.7 0.7 0.6 0.6 0.5 0.5 0.4 0.4 0.3 0.3 0.2 0.2 0.1 0.1 0.0 0.0 0.25 0.75 0.25 0.75 0.00 0.50 1.00 0.00 0.50 1.00 iteration is : 2 evaluation of objective function is : 72 nelder is called : 1 (iter, evalation) iteration is : 52 lowest point 0.199165,0.000835 evaluation of objective function is : 52 *Nelder:(1,2) Gradient:* (52,52)

3. $f(x)=x\sin(1/x), x \in [0.01,1]$.:

(iter, evalation)

Bisection (10,17)

Exhaustive (2,7)

golden sec(18,15)

(iter, evalation)

Nelder:(1,97)

Gradient:(1,1)

0.001)

Generate random numbers $\alpha \in (0,1)$ and $\beta \in (0,1)$. Furthermore, generate the noisy data $\{x_>, y_>\}$, where $k=0,\ldots,100$, according to the following rule:

$$y_k = \alpha x_k + \beta + \delta_k$$
, $x_k = k/100$

where $\delta_{\mathbf{k}} \sim N(0,1)$ are values of a random variable with standard normal distribution. Approximate the data by the following linear and rational functions:

- 1. $F(x,a,b)=ax+b(linear\ approximant)$
- 2. F(x, a, b) = a/1+bx (rational approximant),

by means of least squares through the numerical minimization (with precision ε =

nfev is Number of evaluations of the objective functions

Leftside(linear): nfev=7

right(rational): nfev=13

```
Help Variable Explorer Plots Code Analysis

**Console 1/A

-2.15343692e-06, -2.09386409e-06, -2.02855057e-06, -1.95749508e-06, -1.88069631e-06, -1.79815295e-06, -1.70986369e-06, -1.61582724e-06, -1.51604228e-06, -1.41050751e-06, -1.29922163e-06, -1.18218331e-06, -1.05939127e-06, -9.30844190e-07, -7.96540760e-07, -6.56479675e-07, -5.10659624e-07, -3.59079299e-07, -2.01737389e-07, -3.86325848e-08, 1.30236424e-07, 3.04870949e-07, 4.85272301e-07, 6.71441793e-07, 8.63380735e-07, 1.06109044e-06, 1.26457222e-06, 1.4782740e-06, 1.68885727e-06, 1.90966317e-06, 2.13624639e-06, 2.36860827e-06, 2.60675011e-06, 2.85067322e-06, 3.10037893e-06, 3.35586855e-06, 3.61714340e-06, 3.88420479e-06, 4.15705405e-06, 4.43569249e-06, 4.72012143e-06]), 'nfev': 13, 'fjac': array([[-1.00879539e+01, 9.91355993e-02, 9.91580416e-02, 9.91580416e-02, 9.91804403e-02, 9.91879177e-02, 9.9158046e-02, 9.9225726e-02, 9.9228763e-02, 9.9228763e-02, 9.9228763e-02, 9.9238061e-02, 9.92287738e-02, 9.9227735e-02, 9.933807149e-02, 9.93377044e-02, 9.93377049e-02, 9.93152076e-02, 9.93377049e-02, 9.93377044e-02, 9.93377049e-02, 9.93377044e-02, 9.93377045e-02, 9.93377049e-02, 9.93377049e-02, 9.93377044e-02, 9.93377045e-02, 9.93377045e-02, 9.93377049e-02, 9.93377049e-02, 9.93377049e-02, 9.93377049e-02, 9.93377049e-02, 9.93377049e-02, 9.93377049e-02, 9.9377745e-02, 9.93377049e-02, 9.93377049e-02, 9.9377745e-02, 9.93377049e-02, 9.9377745e-02, 9.93377049e-02, 9.9377745e-02, 9.9377764e-02, 9.9377745e-02, 9.937775e-02, 9.937776e-02, 9.937776e-02, 9.937776e-02, 9.937776e-02, 9.9377
```

Conclusion:

In first section , through graphs which I created , we can see that in most of formulas , we can achieve minimum values from each algorithm which I tested . But as we can see I found difficulty to use gauss and Nelder-Mead to find minimum from any function with trigonometric .

Most of time it cost a lot of iterations for exhaustive search to find a min , but somehow in third one with trigonometric , it only cost 2 times of iterations and 7 times of function , probably there is error in my algorithm . But we still can conclude that exhaustive search is not efficient to make calculation , it takes too much time to calculate each possibility .

On the contrary, we can see that Nelder-Mead and gauss show a very efficient way to get to result. But there is little mistake, so I can not get to desired answer.

In the second section , we used linear and rational approximant to try to approximate the data . As we can see that linear one complete with prettier way , and rational goes to wrong side . Maybe it is because the original data that I use to approximate is closer to a line , so rational approximant can not optimize it with better way . Even though we still can see that number of evaluation for rational approximant is higher .

Appendix

https://github.com/MaChengYuan/task2.git