Dimension-reduced Interior Point Method

Discussion 3

August 18, 2022

The original direction composes of projected gradient and momentum

$$\mathbf{d}^k \leftarrow \alpha^g \mathbf{P}_{\Delta}[\nabla \varphi(\mathbf{x}^k)] + \alpha^m (\mathbf{x}^k - \mathbf{x}^{k-1})$$
$$\mathbf{x}^k \leftarrow \mathbf{x}^k + \mathbf{d}^k$$

We can also consider scaled projected gradient

$$\mathbf{p}(\mathbf{x}^k) := rac{\mathbf{X}^k \Big(\mathbf{I} - rac{\mathbf{X}^k \mathbf{e} \mathbf{e}^ op \mathbf{X}^k}{\|\mathbf{x}^k\|^2}\Big) \mathbf{X}^k
abla arphi(\mathbf{x}^k)}{\left\| \Big(\mathbf{I} - rac{\mathbf{X}^k \mathbf{e} \mathbf{e}^ op \mathbf{X}^k}{\|\mathbf{x}^k\|^2}\Big) \mathbf{X}^k
abla arphi(\mathbf{x}^k)
ight\|}$$

and build up \mathbf{d}^k .

Empirically better than projected gradient

(m,n)/Iteration	Projected gradient	Scaled Projected Gradient
(50, 100)	37	33
(200, 1000)	45	39
(500, 2000)	46	34

Need more careful tuning for higher accuracy

A preliminary attempt by simplifying the dual problem

$$egin{array}{ll} \min & \mathbf{c}^{ op} \mathbf{x} \\ \mathrm{subject \ to} & \mathbf{A} \mathbf{x} = \mathbf{b} \\ & \mathbf{x} \geq \mathbf{0} \end{array}$$

$$\begin{array}{ccc} \max_{\mathbf{y}} & \mathbf{b}^{\top}\mathbf{y} & \mathbf{b}^{\top}\mathbf{y}^{+} - \mathbf{b}^{\top}\mathbf{y}^{-} \\ \text{subject to} & \mathbf{A}^{\top}\mathbf{y} + \mathbf{s} = \mathbf{c} & \mathbf{A}^{\top}\mathbf{y}^{+} - \mathbf{A}^{\top}\mathbf{y}^{-} + \mathbf{s} = \mathbf{c} \\ & \mathbf{s} \geq \mathbf{0} & \mathbf{y}^{+}, \mathbf{y}^{-}, \mathbf{s} \geq \mathbf{0} \end{array}$$

$$\mathbf{b}^{\top}\mathbf{y}^{+} - \mathbf{b}^{\top}\mathbf{y}^{-}$$
 $\mathbf{A}^{\top}\mathbf{y}^{+} - \mathbf{A}^{\top}\mathbf{y}^{-} + \mathbf{s} = \mathbf{0}$
 $\mathbf{y}^{+}, \mathbf{y}^{-}, \mathbf{s} \ge \mathbf{0}$

and

Simplex constrained QP formulation

$$\min_{\mathbf{u}=(\mathbf{y},\mathbf{x},\mathbf{s},\kappa,\tau)} f(\mathbf{u}) := \frac{1}{2} ||\hat{\mathbf{A}}\mathbf{u}||^2$$
subject to $\mathbf{e}^{\top}\mathbf{u} = 1$
 $\mathbf{u} \ge \mathbf{0}$.

Using the potential function

$$\varphi(\mathbf{u}) := \rho \log \left(f(\mathbf{u}) \right) - B(\mathbf{y}^+) - B(\mathbf{y}^-) - B(\mathbf{x}) - B(\mathbf{s}) - \log \kappa - \log \tau$$

and apply the dimension-reduced method.

Solving synthetic LPs, 20000 iterations

m	n	$\ \mathbf{A}\mathbf{x} - \mathbf{b}\ $	$\ \mathbf{A}^{\top}\mathbf{y} + \mathbf{s} - \mathbf{c}\ $	$\mathbf{c}^{ op}\mathbf{x} - \mathbf{b}^{ op}\mathbf{y}$
10	100	3e-06	4e-09	2e-05
50	200	6e-04	9e-07	2e-03
100	500	3e-05	3e-07	4e-04
500	1000	2e-03	5e-06	1e-03

Table 1. Synthetic tests

- Possible to solve LPs to low accuracy
- Needs much tuning for real-life LPs (e.g., Netlib)
- ullet Or just using HSD without ${f y}={f y}^+-{f y}^-$ / primal-dual potential function