

19^a Vingança Olímpica 23^a Semana Olímpica – Natal, RN 30 e 31 de janeiro de 2020

- Não escreva mais de uma questão por folha.
- Escreva seu nome em cada folha que usar.

► PROBLEMA 1

Seja n um inteiro positivo e a_1, a_2, \ldots, a_n reais não-nulos. Qual é a quantidade mínima de coeficientes não-nulos que o polinômio $P(x) = (x - a_1)(x - a_2) \cdots (x - a_n)$ pode ter?

▶ PROBLEMA 2

Para um inteiro positivo n, dizemos que um n-embaralhamento é uma bijeção $\sigma:\{1,2,\ldots,n\} \to \{1,2,\ldots,n\}$ tal que existem exatamente dois elementos i em $\{1,2,\ldots,n\}$ tal que $\sigma(i) \neq i$.

Fixe três n-embaralhamentos distintos dois a dois $\sigma_1, \sigma_2, \sigma_3$. Seja q um primo e seja \mathbb{F}_q o conjunto dos inteiros módulo q. Considere todas as funções $f: (\mathbb{F}_q^n)^n \to \mathbb{F}_q$ que satisfazem, para todo inteiro i com $1 \le i \le n$ e todo $x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n, y, z \in \mathbb{F}_q^n$,

$$f(x_1,\ldots,x_{i-1},y,x_{i+1},\ldots,x_n)+f(x_1,\ldots,x_{i-1},z,x_{i+1},\ldots,x_n)=f(x_1,\ldots,x_{i-1},y+z,x_{i+1},\ldots,x_n),$$

e que satisfazem, para todo $x_1, \ldots, x_n \in \mathbb{F}_q^n$ e todo $\sigma \in \{\sigma_1, \sigma_2, \sigma_3\}$,

$$f(x_1,\ldots,x_n)=-f(x_{\sigma(1)},\ldots,x_{\sigma(n)}).$$

Dada uma n-upla $(x_1, \ldots, x_n) \in (\mathbb{F}_q^n)^n$, seja $g(x_1, \ldots, x_n)$ o número de diferentes valores que $f(x_1, \ldots, x_n)$ pode assumir sobre todas as possíveis funções f nas condições acima.

Pegue $(x_1, \ldots, x_n) \in (\mathbb{F}_q^n)^n$ de forma uniformemente aleatória, e seja $\varepsilon(q, \sigma_1, \sigma_2, \sigma_3)$ o valor esperado de $g(x_1, \ldots, x_n)$. Finalmente, seja

$$\kappa(\sigma_1, \sigma_2, \sigma_3) = -\lim_{q \to \infty} \log_q \left(-\ln \left(\frac{\varepsilon(q, \sigma_1, \sigma_2, \sigma_3) - 1}{q - 1} \right) \right).$$

Pegue três n-embaralhamentos distintos dois a dois $\sigma_1, \sigma_2, \sigma_3$ de forma uniformemente aleatória do conjunto de todos os n-embaralhamentos. Seja $\pi(n)$ o valor esperado de $\kappa(\sigma_1, \sigma_2, \sigma_3)$. Suponha que p(x) e q(x) são polinômios com coeficientes reais tais que $q(-3) \neq 0$ e $\pi(n) = \frac{p(n)}{q(n)}$ para infinitos valores de n inteiros positivos. Calcule $\frac{p(-3)}{q(-3)}$.

▶ PROBLEMA 3

Seja ABC um triângulo e ω o seu circuncírculo. Defina D e E como os pés das bissetrizes por B e C. A reta DE encontra ω nos pontos F e G. Prove que as tangentes a ω por F e G são tangentes ao exincírculo do $\triangle ABC$ relativo ao vértice A.

▶ PROBLEMA 4

Seja n um inteiro positivo e A um conjunto de inteiros tal que o conjunto $\{x=a+b\mid a,b\in A\}$ contém $\{1^2,2^2,\ldots,n^2\}$. Prove que existe N tal que se $n\geq N$, então $|A|>n^{0.666}$.

▶ PROBLEMA 5

Seja n um inteiro positivo. Dados n pontos no plano, prove que é possível marcar um ângulo de medida $\frac{2\pi}{n}$ com vértice em cada um dos pontos dados, tal que qualquer ponto do plano está no interior de um ângulo.

Linguagem: Português Tempo: 5 horas.

Cada problema vale 7 pontos.