```
In [1]: #Importing Libraries
  import numpy as np
  import pandas as pd
  import matplotlib.pyplot as plt
  import seaborn as sns
```

```
In [5]: #Importing dataset
    df = pd.read_csv("student_scores_v1.csv")
    df
```

Out[5]:	Hours_Studied	Score
O	1.0	10
1	2.0	25
2	3.0	35
3	4.0	50
4	5.0	65
5	6.0	70
6	7.0	85
7	8.0	88
8	9.0	94
9	10.0	98

In [6]: df.describe()

Out[6]:		Hours_Studied	Score
	count	10.00000	10.000000
	mean	5.50000	62.000000
	std	3.02765	30.811253
	min	1.00000	10.000000
	25%	3.25000	38.750000
	50%	5.50000	67.500000
	75 %	7.75000	87.250000
	max	10.00000	98.000000

```
In [7]: df.info()
```

```
<class 'pandas.core.frame.DataFrame'>
        RangeIndex: 10 entries, 0 to 9
        Data columns (total 2 columns):
         # Column Non-Null Count Dtype
        --- -----
        0 Hours Studied 10 non-null
                                           float64
        1
            Score
                    10 non-null
                                           int64
        dtypes: float64(1), int64(1)
        memory usage: 292.0 bytes
 In [8]: df.isnull().sum()
 Out[8]: Hours_Studied
         Score
                          0
         dtype: int64
In [14]: #Splitting the feature and target
         X = df[["Hours_Studied"]]
         y = df[["Score"]]
In [15]: #Polynomial Features
         from sklearn.preprocessing import PolynomialFeatures
         poly ft = PolynomialFeatures(degree=2)
         poly_X = poly_ft.fit_transform(X)
In [17]: #Train Test Split
         from sklearn.model selection import train test split
         X_train, X_test, y_train, y_test = train_test_split(poly_X,y,test_size=0.3,random_s
In [18]: #Implementing the model
         from sklearn.linear model import LinearRegression
         model = LinearRegression()
         model.fit(X_train, y_train)
Out[18]:
             LinearRegression
         LinearRegression()
In [19]: y_pred = model.predict(X_test)
In [33]: X_{grid} = np.linspace(X.min(), X.max(), 100).reshape(-1, 1)
         X_grid_poly = poly_ft.transform(X_grid)
         y_pred_grid = model.predict(X_grid_poly)
         # Plotting
         plt.figure(figsize=(12, 8))
         plt.scatter(X, y, color='red')
         plt.plot(X_grid, y_pred_grid, color='blue')
         plt.show()
        C:\ProgramData\anaconda3\Lib\site-packages\sklearn\base.py:493: UserWarning: X does
        not have valid feature names, but PolynomialFeatures was fitted with feature names
```

warnings.warn(

In []: