Error Propagation

Paul G. Plöger

Outline

Input, method, roundoff, trunction, modeling, machine errors

Numeric impression in formulas

 μ and σ for linear case

 μ and σ in non-linear case

(Physical) Errors in digital cameras

Parallax

What is a "point", how is it mapped?

Input, method, roundoff, trunction, modeling, machine + human errors

Input

Given numbers are no machine numbers (sqrt(2))

While running

accumulated round off errors per calculation

Truncate

Systematic errors when stopping an approximation too early

Modeling

Too strong idealizations

Machine + Human

Hardware errors, programming errors

Some rules for measurements

Rule for Stating Uncertainties:

(Measured value of x) = $x_{best} \pm \delta x$

Experimental uncertainties should almost always be rounded to one significant figure

 x_{best} = best estimate for x δx = uncertainty or error in the

measurement

Rule for Stating Answers:

Fractional uncertainty:

The last significant figure in any stated answer should usually be of the same order of magnitude (in the same decimal position) as the uncertainty.

 $=\delta x / |x_{best}|$

Approximate correspondence between significant figures and fractional uncertainties.

Number of significant figures	Corresponding fractional uncertainty is	
	between	or roughly
1	10% and 100%	50%
2	1% and 10%	5%
3	0.1% and 1%	0.5%

Uncertainty in Experiements

Counting Experiment:

The uncertainty in any counted number of random events, as an estimate of the true average number, is the square root of the counted number.

(average numer of events in time T)= $v\pm\sqrt{v}$

Example: 14 births in 2 weeks =>

(average births in a two-week period) = 14 ± 4

Uncertainties: "+","-","*","/"

Sums and diffs:

If
$$q = x + \cdots + z - (u + \cdots + w)$$
, then

$$\delta q \begin{cases} a = \sqrt{(\delta x)^2 + (\delta y)^2 ... (\delta w)^2} \\ b \le \delta x + \delta y ... + \delta w \end{cases}$$

Case a):

Independend and random

Products and Quotients:

if
$$q = \frac{x \cdot y \cdot ... \cdot z}{u \cdot v \cdot ... \cdot w}$$
, $\delta x, \delta y, ..., \delta w$ uncertainties

always

$$\delta q \begin{cases} a = \sqrt{\left(\frac{\delta x}{x}\right)^2 + \left(\frac{\delta y}{y}\right)^2 \dots + \left(\frac{\delta w}{w}\right)^2} \\ b \leq \frac{\delta x}{|x|} + \frac{\delta y}{|y|} \dots + \frac{\delta w}{|w|} \end{cases}$$

Uncertainties, special cases

If q = Bx, where B is known exactly, then $q = |B| \delta x$.

If q is a function of one variable, q(x), then $\delta q = |dq/dx| \delta x$

If q is a power, $q = x^n$, then $\delta q/|q| = |n| \delta x/|x|$.

Differential Error Analysis

input data: $x \in IR^m$, output $y \in IR^n$, algorithm $y = \varphi(x)$.

Let Δ_x be the vector of absolute data error in x and

$$JAC(\varphi) := \begin{pmatrix} \frac{\partial \varphi_1}{\partial x_1} & \cdots & \frac{\partial \varphi_1}{\partial x_m} \\ \vdots & \ddots & \vdots \\ \frac{\partial \varphi_n}{\partial x_1} & \cdots & \frac{\partial \varphi_n}{\partial x_m} \end{pmatrix} \in IR^{n \times m}$$

Then for the absolut output error it holds (to first order):

$$\Delta_{y} \doteq JAC(\varphi)\Delta_{x}$$

if we calculate in absence of round off errros.

Example curvature Radius R

$$R(v_r, v_l) = \frac{d}{2} \frac{v_r + v_l}{v_r - v_l}$$

$$\frac{\partial R}{\partial v_r} = \frac{d}{2} \left[\frac{1(v_r - v_l) - (v_r + v_l)1}{(v_r - v_l)^2} \right] = -d \frac{v_l}{(v_r - v_l)^2}$$

$$\frac{\partial R}{\partial v_l} = \frac{d}{2} \left[\frac{1(v_r - v_l) + (v_r + v_l)1}{(v_r - v_l)^2} \right] = -d \frac{v_r}{(v_r - v_l)^2}$$

$$\Delta R = -d \left[\frac{v_l}{(v_r - v_l)^2} \Delta v_r + \frac{v_r}{(v_r - v_l)^2} \Delta v_l \right]$$

When $v_1 \approx v_r$ then R is very imprecise Input errors in v₁ and v_r are grossly amplified

E[] for linear maps

Linear case, y is a linear map of x:

$$\vec{y} = F(\vec{x}) = A\vec{x} + \vec{b} \Rightarrow$$

$$E[\vec{y}] = E[A\vec{x} + \vec{b}]$$

$$= \iiint ... \int (A\vec{x} + \vec{b})p(x_1, x_2, ..., x_n) dx_1 dx_2 ... dx_n \quad take \ component \ j :$$

$$E[y_j] = \iiint ... \int \left(\sum_i a_{ij} x_i\right) p(x_1, x_2, ..., x_n) dx_1 dx_2 ... dx_n +$$

$$\iiint ... \int b_j p(x_1, x_2, ..., x_n) dx_1 dx_2 ... dx_n$$

$$= \sum_i a_{ij} \iiint ... \int x_i p(x_1, x_2, ..., x_n) dx_1 dx_2 ... dx_n + b_j$$

$$= \sum_i a_{ij} E[x_i] + b_j \Rightarrow E[\vec{y}] = AE[\vec{x}] + \vec{b}$$

Covariances for linear case

cov(y)

$$= E[((A\vec{x} + \vec{b}) - (AE[\vec{x}] + \vec{b})) ((A\vec{x} + \vec{b}) - (AE[\vec{x}] + \vec{b}))^{T}]$$

$$= E[(A\vec{x} - AE[\vec{x}])(A\vec{x} - AE[\vec{x}])^{T}]$$

$$= E[A(\vec{x} - E[\vec{x}])(\vec{x} - E[\vec{x}])^{T} A^{T}]$$

$$= A \operatorname{cov}(x) A^{T}$$

How Uncertainties get mapped

Use Taylor expansion

μ and cov nonlinear

$$\vec{u} = F(\vec{x}) (via \ Taylor) \Rightarrow E[\vec{u}] = F(E[\vec{x}])$$

$$\operatorname{cov}(\vec{u}) = JAC(F)\big|_{\vec{x}} \operatorname{cov}(\vec{x}) JAC(F)\big|_{\vec{x}}^{T}$$

where JAC(F) is the Jacobian of the map F

Example Covariance

assume: Laser scanner measures polar coordinates (d, α), measument of d and α independend normally distributed d~N(μ_d , σ_d^2), α ~N(μ_α , σ_α^2), they have to be mapped to cartesian (x,y) via:

 $F([d,\alpha]^T) = [d \cos(\alpha), d \sin(\alpha)]^T.$

How does the original covariance matrix change?

Solution Covariance

Jacobian:

Jacobian:
$$\nabla F = \begin{pmatrix} \cos(\alpha) & -d\sin(\alpha) \\ \sin(\alpha) & d\cos(\alpha) \end{pmatrix} \qquad F\begin{pmatrix} d \\ \alpha \end{pmatrix} = \begin{pmatrix} d\cos(\alpha) \\ d\sin(\alpha) \end{pmatrix} = :\begin{pmatrix} x \\ y \end{pmatrix}$$
Expected value:

covariance:

$$\operatorname{cov}\begin{pmatrix} x \\ y \end{pmatrix} = \nabla F \operatorname{cov}\begin{pmatrix} d \\ \alpha \end{pmatrix} \nabla F^{T} =$$

$$\begin{pmatrix} \cos(\alpha) & -d\sin(\alpha) \\ \sin(\alpha) & d\cos(\alpha) \end{pmatrix} \begin{pmatrix} \sigma_d^2 & 0 \\ 0 & \sigma_\alpha^2 \end{pmatrix} \begin{pmatrix} \cos(\alpha) & \sin(\alpha) \\ -d\sin(\alpha) & d\cos(\alpha) \end{pmatrix} =$$

$$\begin{pmatrix} \sigma_d^2 \cos^2(\alpha) + d^2 \sigma_\alpha^2 \sin^2(\alpha) & (\sigma_d^2 - d^2 \sigma_\alpha^2) \cos(\alpha) \sin(\alpha) \\ (\sigma_d^2 - d^2 \sigma_\alpha^2) \cos(\alpha) \sin(\alpha) & \sigma_d^2 \sin^2(\alpha) + d^2 \sigma_\alpha^2 \cos^2(\alpha) \end{pmatrix}$$

Mapping:

$$F\binom{d}{\alpha} = \binom{d\cos(\alpha)}{d\sin(\alpha)} =: \binom{x}{y}$$

Covariance in Error Propagation

Let F(x,y) be given, let N data pairs given: $(x_1,y_1),(x_2,y_2),...,(x_N,y_N)$.

Then we can compute empirical mean x^{-} , S_{x} , y^{-} and S_{y} as usual.

Assume $x_1,...,x_N$ close to x^- (same for y). Then:

$$G_i = G(x_i, y_i) \approx G(\overline{x}, \overline{y}) + \frac{\partial G}{\partial x} \bigg|_{\mu_x} (x_i - \overline{x}) + \frac{\partial G}{\partial y} \bigg|_{\mu_y} (y_i - \overline{y})$$

$$\overline{G} = \frac{1}{N} \sum_{i} G_{i} = \frac{1}{N} \sum_{i} \left[G(\overline{x}, \overline{y}) + \frac{\partial G}{\partial x} \Big|_{\mu_{x}} (x_{i} - \overline{x}) + \frac{\partial G}{\partial y} \Big|_{\mu_{y}} (y_{i} - \overline{y}) \right] =$$

$$= G(\overline{x}, \overline{y}) + \frac{1}{N} \frac{\partial G}{\partial x} \sum_{\substack{\text{Flaghbereich} \\ \text{Informatik}}} (x_i - \overline{x}) + \frac{1}{N_{\text{Prof. Opt.}}} \sum_{\substack{u \\ \text{Paul G. Ploger}}} (y_i - \overline{y}) = G(\overline{x}, \overline{y})$$

Standard deviation for G:

$$S_G^2 = \frac{1}{N} \sum (G_i - \overline{G})^2$$

$$\approx \frac{1}{N} \sum \left(\overline{G} + \frac{\partial G}{\partial x} \Big|_{\overline{x}, \overline{y}} (x_i - \overline{x}) + \frac{\partial G}{\partial y} \Big|_{\overline{x}, \overline{y}} (y_i - \overline{y}) - \overline{G} \right)^2 =$$

$$= \left(\frac{\partial G}{\partial x}\Big|_{\overline{x},\overline{y}}\right)^{2} \frac{1}{N} \sum_{i} (x_{i} - \overline{x})^{2} + \left(\frac{\partial G}{\partial y}\Big|_{\overline{x},\overline{y}}\right)^{2} \frac{1}{N} \sum_{i} (y_{i} - \overline{y})^{2} + \left(\frac{\partial G}{\partial y}\Big|_{\overline{x},\overline{y}}\right)^{2} \frac{1}{N} \sum_{i} (y_{i} - \overline{y})^{2} + \left(\frac{\partial G}{\partial y}\Big|_{\overline{x},\overline{y}}\right)^{2} \frac{1}{N} \sum_{i} (y_{i} - \overline{y})^{2} + \left(\frac{\partial G}{\partial y}\Big|_{\overline{x},\overline{y}}\right)^{2} \frac{1}{N} \sum_{i} (y_{i} - \overline{y})^{2} + \left(\frac{\partial G}{\partial y}\Big|_{\overline{x},\overline{y}}\right)^{2} \frac{1}{N} \sum_{i} (y_{i} - \overline{y})^{2} + \left(\frac{\partial G}{\partial y}\Big|_{\overline{x},\overline{y}}\right)^{2} \frac{1}{N} \sum_{i} (y_{i} - \overline{y})^{2} + \left(\frac{\partial G}{\partial y}\Big|_{\overline{x},\overline{y}}\right)^{2} \frac{1}{N} \sum_{i} (y_{i} - \overline{y})^{2} + \left(\frac{\partial G}{\partial y}\Big|_{\overline{x},\overline{y}}\right)^{2} \frac{1}{N} \sum_{i} (y_{i} - \overline{y})^{2} + \left(\frac{\partial G}{\partial y}\Big|_{\overline{x},\overline{y}}\right)^{2} \frac{1}{N} \sum_{i} (y_{i} - \overline{y})^{2} + \left(\frac{\partial G}{\partial y}\Big|_{\overline{x},\overline{y}}\right)^{2} \frac{1}{N} \sum_{i} (y_{i} - \overline{y})^{2} + \left(\frac{\partial G}{\partial y}\Big|_{\overline{x},\overline{y}}\right)^{2} \frac{1}{N} \sum_{i} (y_{i} - \overline{y})^{2} + \left(\frac{\partial G}{\partial y}\Big|_{\overline{x},\overline{y}}\right)^{2} \frac{1}{N} \sum_{i} (y_{i} - \overline{y})^{2} + \left(\frac{\partial G}{\partial y}\Big|_{\overline{x},\overline{y}}\right)^{2} \frac{1}{N} \sum_{i} (y_{i} - \overline{y})^{2} + \left(\frac{\partial G}{\partial y}\Big|_{\overline{x},\overline{y}}\right)^{2} \frac{1}{N} \sum_{i} (y_{i} - \overline{y})^{2} \frac{1}{N} \sum_{i} (y_{i} - \overline{y})^{2} + \left(\frac{\partial G}{\partial y}\Big|_{\overline{x},\overline{y}}\right)^{2} \frac{1}{N} \sum_{i} (y_{i} - \overline{y})^{2} \frac{1}{N} \sum_{i} (y$$

$$2\frac{\partial G}{\partial x}\bigg|_{\overline{x},\overline{y}}\frac{\partial G}{\partial y}\bigg|_{\overline{x},\overline{y}}\frac{1}{N}\sum_{x,\overline{y}}(x_i-\overline{x})(y_i-\overline{y})$$

$$= \left(\frac{\partial G}{\partial x}\Big|_{\overline{x},\overline{y}}\right)^{2} S_{x}^{2} + \left(\frac{\partial G}{\partial y}\Big|_{\overline{x},\overline{y}}\right)^{2} S_{y}^{2} + 2\frac{\partial G}{\partial x}\Big|_{\overline{x},\overline{y}} \frac{\partial G}{\partial y}\Big|_{\overline{x},\overline{y}} S_{xy}$$

Hochschule Bonn-Rhein-Sieg Fachbereich Informatik

Prof. Dr. Paul G. Plöger

...cont

S_{xv} is empirical covariance If x ,y independent $S_{xy} \approx 0$ So then it follows:

$$S_G^2 = \sum_{i} S_{z_i}^2 \left(\frac{\partial G}{\partial z_i} \right)^2$$

Hochschule

Bonn-Rhein-Sieg

Parallax during Observation

(a) Farbkreise als Trackingmerkmale

(b) Korrektur der Positionsabweichung aufgrund der Perspektive

Camera setup

Make sure that the frame used during calibration (and extrinsic parameter finding) is aligned like shown.

Provide Rc_1 and TC_1
And the current view of robot by the camera

 $XXc = Rc_1 * XX + Tc_1$

"Point" observations

Like the circles in last image the observered LED is mapped as to many points. Where is the robot?

Q: how about observed points, which are outside depth of field (DOF) and are thus depicted as "circles of confusion" instead of points?

Hochschule

Bonn-Rhein-Siea

