

实验物理中的统计方法

第九章: 置信区间

杨振伟

回顾

- □ 矩的定义
 - 用样本的k阶矩代替总体的k阶矩,解方程组
- □ 矩方法估计量及其应用
- □ 矩方法与最大似然法和最小二乘法的比较

本章要点

- □ 统计不确定度中的标准差问题
- □ 经典置信区间问题
- □利用似然函数或二乘函数确定置信区间
- □贝叶斯上限
- □物理发现或上限的检验统计量

测量结果的表述与含义

实验数据: $x_1, ..., x_n$ 实验目的: 估计参数 $\theta \rightarrow \hat{\theta}_{obs}$

还应该给出 $\hat{\theta}$ 的方差,即 $\hat{\sigma}_{\hat{\theta}}^2$ 。结果应该报告成如下形式

$$\hat{\theta}_{\rm obs} \pm \hat{\sigma}_{\widehat{\theta}} = 5.73 \pm 0.21$$

其真正的含义是什么呢?

如果我们知道 $\hat{\theta}_{obs}$ 服从某概率密度 $g(\hat{\theta};\theta)$, 那么上述结果 的正确表述应该是

 θ 的估计值为5.73

 $\sigma_{\hat{\theta}}$ 的估计值为0.21 $\sigma_{\hat{\theta}}$ 描述 $g(\hat{\theta}; \theta)$ 的分布宽度

参数估计值的分布

通常参数估计值服从的概率密度 $g(\hat{\vec{\theta}}; \vec{\theta})$ 是多维高斯分布 $\hat{\vec{\theta}}$ 和 $\hat{V} = \hat{cov}[\hat{\theta}_i, \hat{\theta}_i]$ 综合了我们对 $g(\hat{\vec{\theta}}; \vec{\theta})$ 的了解或估计

可以用来作为不确定度传递的输入参量, 以及用最小二乘法求平均值等等。

可按照约定报道不确定度,而不管概率密度 $g(\hat{\theta};\theta)$ 的形式。 只有在需要对不同实验求平均时,其形式才会发挥作用。 如果 $g(\hat{\theta}; \theta)$ 是高斯形式,则置信区间可以表述为

$$[\hat{\theta}_{\text{obs}} - \hat{\sigma}_{\hat{\theta}}, \hat{\theta}_{\text{obs}} + \hat{\sigma}_{\hat{\theta}}] \longrightarrow 68.3\%$$
置信区间范围。

如果 $g(\hat{\theta}; \theta)$ 不是高斯形式

中心置信区间应给出不对称的不确定度

区间估计

除了参数的"点估计",还应当报道反映其统计不确定度的一个区间(interval)。

这个区间 (interval) 最好具有以下性质:

- 1) 客观地描述实验结果;
- 2) 以给定的概率包含参数真值;
- 3) 为给参数下结论提供必要的信息

经常用"生所得估计量的标准差"表示不确定度,

但有时这种做法不适用:

估计值在物理边界附近,例如观测得到的事例率与零一致。

将简要介绍频率论区间(经典置信区间)和贝叶斯区间。

置信区间的定义

设 θ 是总体的一个待估参数, 其参数空间为 θ , X_1, \dots, X_n 为来自总体的样本。对给定的实数 α (0 < α < 1),假设有两个统计量 $T_1(X_1, \dots, X_n)$, $T_2(X_1, \dots, X_n)$,若对任意 $\theta \in \theta$,有 $P(T_1 \le \theta \le T_2) \ge 1 - \alpha$

则称随机区间 $[T_1,T_2]$ 为 θ 的置信水平为 $1-\alpha$ 的置信区间或区间估计。

 T_1 称为(双侧)置信下限, T_2 称为(双侧)置信上限。

若满足 $P(T_1 \le \theta \le T_2) = 1 - \alpha$,则称[T_1, T_2] 为 θ 的 $1 - \alpha$ 同等置信区间。连续随机变量一般要求取等号。

置信区间的含义

置信水平 $1-\alpha$ 的频率解释:在大量重复估计置信区间时,每次得到的样本观测值不同,从而每次得到的区间也不同。对每个区间而言,要么包含未知参数 θ 的真值,要么不包含。平均而言,在这些大量的区间中,至少有 $100(1-\alpha)$ %个包含 θ 。

关于置信区间的几点说明

- ightharpoonup 置信区间的长度 $T_2 T_1$ 反映了估计精度
 - $T_2 T_1$ 越小,估计精度越高
- - α 越小, 1α 越大, 估计的可靠度越高; 但此时 $T_2 T_1$ 往往增大, 因而估计精度降低

区间估计三部曲

> 选取枢轴量

> 由分位点的定义建立不等式

➤ 求解不等式得到下界a和上界b

枢轴量

—— 仅含一个待估参数的 样本的连续函数

枢轴量的分布不依赖于未知参数。

例: 正态分布均值的区间估计

➤ 已知 $X \sim N(\mu, 1)$ 。 设样本容量为n = 5:

$$(X_1, X_2, X_3, X_4, X_5)$$

$$\overline{X} \sim N\left(\mu, \frac{1}{5}\right) \Rightarrow \sqrt{\overline{X} - \mu} \sim N(0, 1)$$
 枢轴量

取 $\alpha = 0.05$, 查表或计算得 $Z_{\alpha/2} = 1.96$

$$P\left(\left|\frac{\overline{X}-\mu}{\sqrt{1/5}}\right| \ge 1.96\right) = 0.05$$
 称随机区间 $(\overline{X}-1.96\sqrt{1/5}, \overline{X}+1.96\sqrt{1/5})$

$$(\overline{X} - 1.96\sqrt{1/5}, \overline{X} + 1.96\sqrt{1/5})$$

为未知参数 μ 的置信度为0.95的置信区间。

若测得一组样本值, 算得 $\bar{X} = 1.86$,

代入得到区间(0.983,2.737)

此时,有:

$$P(\bar{X} - 1.96\sqrt{1/5} \le \mu \le \bar{X} + 1.96\sqrt{1/5})$$

= $P(0.983 \le \mu \le 2.737) = 0.95$

关于置信区间的构造的两点说明:

- \triangleright 满足置信度要求的 a 与 b 通常不唯一。若有可能,应选平均长度 $E(T_2 T_1)$ 达到最短的a与b。枢轴 量G满足对称分布时通常容易实现。
- 》实际中,选平均长度 $E(T_2 T_1)$ 尽可能短的a = b 往往不易实现。因此,常选择 a = b,使得两个尾 部概率各为 $\alpha/2$,即 $P(G < a) = P(G > b) = \alpha/2$ 。这样的置信区间称为等尾置信区间。在G为偏态分布时常用这种方法。

频率论置信区间

假设参数 θ 的估计量为 $\hat{\theta}$,估计值为 $\hat{\theta}_{obs}$ 。 为了正确表述结果,还需要知道 $\hat{\theta}$ 的分布形式 $g(\hat{\theta}; \theta)$ 。 首先指定"上下尾部的概率",如: $\alpha = \beta = 0.05$, 然后找到函数关系 $u_{\alpha}(\theta)$ 和 $v_{\beta}(\theta)$,使得

$$\alpha = P\left(\hat{\theta} \ge u_{\alpha}(\theta)\right) = \int_{u_{\alpha}(\theta)}^{\infty} g(\hat{\theta}; \theta) d\hat{\theta}$$
$$= 1 - G(u_{\alpha}(\theta); \theta)$$

$$\beta = P\left(\hat{\theta} \le v_{\beta}(\theta)\right) = \int_{-\infty}^{v_{\beta}(\theta)} g(\hat{\theta}; \theta) d\hat{\theta}$$
$$= G(v_{\beta}(\theta); \theta)$$

 $G(\hat{\theta}; \theta)$ 为概率密度 $g(\hat{\theta}; \theta)$ 的累积分布

参数置信带的定义

在 $u_{\alpha}(\theta)$ 和 $v_{\beta}(\theta)$ 之间的区域称为置信带。

无论 θ 为何值,在置信带找到 $\hat{\theta}_{obs}$ 的概率为

$$P(v_{\beta}(\theta) \leq \widehat{\theta} \leq u_{\alpha}(\theta)) = 1 - \alpha - \beta$$

假设 $u_{\alpha}(\theta)$ 和 $v_{\beta}(\theta)$ 单调,则有

反函数

$$a(\widehat{m{ heta}}) \equiv u_{lpha}^{-1}(\widehat{m{ heta}})$$
, $b(\widehat{m{ heta}}) \equiv v_{m{eta}}^{-1}(\widehat{m{ heta}})$

不等式

$$\widehat{\theta} \geq u_{\alpha}(\theta),$$
 $\widehat{\theta} \leq v_{\beta}(\theta),$

$$a(\widehat{\theta}) \geq \theta,$$
 $b(\widehat{\theta}) \leq \theta$

$$P(a(\widehat{\theta}) \geq \theta)$$

 $P(b(\widehat{\theta}) \leq \theta)$

参数的置信区间确定

根据置信带的定义,有不等式

$$a(\hat{\theta}) \ge \theta, \qquad b(\hat{\theta}) \le \theta$$

$$P(a(\hat{\theta}) \ge \theta) = \alpha, \qquad P(b(\hat{\theta}) \le \theta) \le \beta$$

或者合并成

$$P(a(\hat{\theta}) \le \theta \le b(\hat{\theta})) = 1 - \alpha - \beta$$

在真值 θ 未知的情况下,通过估计值 $\hat{\theta}$ 与函数 $a(\hat{\theta})$ 和 $b(\hat{\theta})$ 给出 θ 的置信区间。

置信区间的求解

求解置信区间 [a,b] 的诀窍是求解下列方程:

$$\alpha = \int_{u_{\alpha}(\theta)}^{\infty} g(\hat{\theta}; \theta) d\hat{\theta} = \int_{\hat{\theta}_{obs}}^{\infty} g(\hat{\theta}; a) d\hat{\theta}$$
$$\beta = \int_{-\infty}^{v_{\beta}(\theta)} g(\hat{\theta}; \theta) d\hat{\theta} = \int_{-\infty}^{\hat{\theta}_{obs}} g(\hat{\theta}; b) d\hat{\theta}$$

$$a \equiv u_{\alpha}^{-1}(\hat{\theta}_{\text{obs}}),$$
 $b \equiv v_{\beta}^{-1}(\hat{\theta}_{\text{obs}})$

a是 θ 的假设值,使得: $P(\hat{\theta} > \hat{\theta}_{obs}) = \alpha$

b是 θ 的假设值,使得: $P(\hat{\theta} < \hat{\theta}_{obs}) = \beta$

参数置信区间含义

注意,得到的区间是随机的,而真值 θ 是一个未知常数。

我们经常将置信区间 [a,b] 报道为 $\hat{\theta}_{-c}^{+d}$, 即

$$c = \hat{\theta} - a$$
, $d = b - \hat{\theta}$

那么 $\hat{\theta} = 80.25^{+0.31}_{-0.25}$ 意味着什么呢?

它并不意味着任意一次实验:

$$P(80.00 < \theta < 80.56) = 1 - \alpha - \beta$$

它意味着:

重复样本容量相同的实验多次,每次按相同方法构造置信区间,那么,覆盖 θ 的置信区间占比为 $1 - \alpha - \beta$ 。

高斯分布估计量的置信区间

如果 $\hat{\theta}$ 服从

$$g(\widehat{\theta}; \theta) = \frac{1}{\sqrt{2\pi\sigma_{\widehat{\theta}}^2}} \exp\left(-\frac{(\widehat{\theta} - \theta)^2}{2\sigma_{\widehat{\theta}}^2}\right)$$

为了找到 θ 的置信区间,解下列方程

$$\alpha = \mathbf{1} - G(\widehat{\boldsymbol{\theta}}_{\text{obs}}; a, \sigma_{\widehat{\boldsymbol{\theta}}}) = \mathbf{1} - \Phi\left(\frac{\widehat{\boldsymbol{\theta}}_{\text{obs}} - a}{\sigma_{\widehat{\boldsymbol{\theta}}}}\right),$$

$$\beta = G(\widehat{\boldsymbol{\theta}}_{\text{obs}}; b, \sigma_{\widehat{\boldsymbol{\theta}}}) = \Phi\left(\frac{\widehat{\boldsymbol{\theta}}_{\text{obs}} - b}{\sigma_{\widehat{\boldsymbol{\theta}}}}\right)$$

a 与 b 的解

高斯分布的累积函数与分位点

前面的函数G是 $\hat{\theta}$ 的累积分布,且

$$\Phi(x) = \int_{-\infty}^{x} \frac{1}{\sqrt{2\pi}} e^{-x'^2/2} dx'$$

是标准高斯的累积分布函数,可以证明

$$a = \hat{\theta}_{obs} - \sigma_{\widehat{\theta}} \Phi^{-1} (1 - \alpha),$$

$$b = \hat{\theta}_{obs} + \sigma_{\widehat{\theta}} \Phi^{-1} (1 - \beta)$$

这里Φ¯¹给出标准高斯的分位数(可以调用ROOT中的函数 Double_t TMath::NormQuantile(Double_t p)计算)

$$\Phi^{-1}(1-\alpha), \qquad \Phi^{-1}(1-\beta)$$

给出a与b离 $\hat{\theta}$ 有多少倍标准差。

标准高斯的分位点

为了找到服从高斯分布的参数估计量的置信区间,需要确定下列分位点(取 $\alpha = \beta = \gamma/2$)

通常对分位点取整

中心

单边

$\Phi^{-1}\left(1-\frac{\gamma}{2}\right)$	1 – γ	$\Phi^{-1}(1-\alpha)$	1 – α
1	0.6827	1	0.8413
2	0.9544	2	0.9772
3	0.9973	3	0.9987

有时对概率覆盖率取整

中心

单边

1 – γ	$\Phi^{-1}\left(1-\frac{\gamma}{2}\right)$	$1-\alpha$	$\Phi^{-1}(1-\alpha)$
0.90	1.645	0.90	1.282
0.95	1.960	0.95	1.645
0.99	2.576	0.99	2.326

泊松分布均值的置信区间

假设n是泊松变量, $\hat{v} = n$, 估计值 $\hat{v}_{obs} = n_{obs}$,

$$P(n; \nu) = \frac{\nu^n}{n!} e^{-\nu}, \qquad n = 0, 1, ...$$

对于固定的 α , β , 由于 ν 只能取离散值,用来确定置信带的函数 $u_{\alpha}(\nu)$ 和 $v_{\beta}(v)$ 不一定对任意 v 都存在,即不一定能找到整数 \hat{v} ,满足

$$P(\hat{v} \ge u_{\alpha}(v)) = \alpha$$
, $P(\hat{v} \le v_{\beta}(v)) = \beta$ 。此时,可类似于前面提到的如

下处理,
$$\alpha = P\left(\widehat{\theta} \ge u_{\alpha}(\theta)\right)$$

$$\beta = P\left(\widehat{\theta} \le v_{\beta}(\theta)\right)$$

$$\alpha = P\left(a(\widehat{\theta}) \ge \theta\right)$$

$$\beta = P\left(b(\widehat{\theta}) \le \theta\right)$$

考虑求解

$$\alpha = P(\widehat{\nu} \ge \widehat{\nu}_{\text{obs}}; \boldsymbol{a}) = 1 - \sum_{n=0}^{n_{\text{obs}}-1} \frac{\boldsymbol{a}^n}{n!} e^{-\boldsymbol{a}},$$

$$\beta = P(\widehat{\nu} \le \widehat{\nu}_{\text{obs}}; \boldsymbol{b}) = \sum_{n=0}^{n_{\text{obs}}} \frac{\boldsymbol{b}^n}{n!} e^{-\boldsymbol{b}},$$

a是 ν 的假设值,使得: $P(\hat{\nu} \geq \hat{\nu}_{obs}) = \alpha$

b是 ν 的假设值,使得: $P(\hat{\nu} \leq \hat{\nu}_{obs}) = \beta$

泊松分布均值的置信区间确定

$$\sum_{n=0}^{m} \frac{v^n}{n!} e^{-v} = 1 - F_{\chi^2} (2v; n_d = 2(m+1))$$

这里 F_{χ^2} 是自由度为 n_d 的卡方变量的累积分布函数。

$$\alpha = 1 - \sum_{n=0}^{n_{\text{obs}}-1} \frac{a^n}{n!} e^{-a},$$

$$\beta = \sum_{n=0}^{n_{\text{obs}}} \frac{b^n}{n!} e^{-b},$$

$$a = \frac{1}{2} F_{\chi^2}^{-1}(\alpha; n_d = 2n_{\text{obs}}),$$

$$b = \frac{1}{2} F_{\chi^2}^{-1}(1 - \beta; n_d = 2(n_{\text{obs}} + 1)),$$

这里 $F_{\chi^2}^{-1}$ 是卡方分布的分位数(可以调用ROOT中的函数

Double_t TMath::ChisquareQuantile(Double_t p, Double_t ndf)计算)

泊松求和与卡方分布积分关系的推导

$$\sum_{n=0}^{m} \frac{v^{n}}{n!} e^{-v} = \int_{2v}^{\infty} f_{\chi^{2}}(z; n_{d} = 2(m+1)) dz = 1 - F_{\chi^{2}}(2v; n_{d} = 2(m+1))$$

已知
$$f_{\chi^2}(z;n) = \frac{1}{2^{n/2}\Gamma(n/2)} z^{\frac{n}{2}-1} e^{-\frac{z}{2}}$$

$$\text{III} f_{\chi^2}(z; 2(m+1)) = \frac{1}{2^{m+1}\Gamma(m+1)} z^m e^{-\frac{z}{2}} = \frac{1}{2} \frac{(z/2)^m}{m!} e^{-\frac{z}{2}}$$

$$\int_{2\nu}^{\infty} f_{\chi^2}(z; n_d = 2(m+1)) dz = \int_{2\nu}^{\infty} \frac{1}{2} \frac{(z/2)^m}{m!} e^{-\frac{z}{2}} dz = \int_{\nu}^{\infty} \frac{x^m}{m!} e^{-x} dx$$

对
$$\int_{\nu}^{\infty} \frac{x^m}{m!} e^{-x} dx$$
 反复用分部积分,可得

$$\int_{\nu}^{\infty} \frac{x^{m}}{m!} e^{-x} dx = \frac{\nu^{m}}{m!} e^{-\nu} + \frac{\nu^{m-1}}{(m-1)!} e^{-\nu} + \dots + \frac{\nu^{1}}{1!} e^{-\nu} + \frac{\nu^{0}}{0!} e^{-\nu} = \sum_{n=0}^{m} \frac{\nu^{n}}{n!} e^{-\nu}$$

泊松分布均值的置信水平上限值

重要特例: $n_{obs} = 0$

$$\beta = \sum_{n=0}^{0} \frac{b^n}{n!} e^{-b} = e^{-b}$$

$$b = -\ln \beta$$

$$b = -\ln \beta$$

对于置信水平 $1-\beta=95\%$ 的上限,

$$b = -\ln \beta$$

= $-\ln(0.05)$
= 2.996
 ≈ 3

$n_{ m obs}$	lower limit a		upper limit b			
	$\alpha = 0.1$	$\alpha = 0.05$	$\alpha = 0.01$	$\beta = 0.1$	$\beta = 0.05$	$\beta = 0.01$
0	-	-	- (2.30	3.00	4.61
1	0.105	0.051	0.010	3.89	4.74	6.64
2	0.532	0.355	0.149	5.32	6.30	8.41
3	1.10	0.818	0.436	6.68	7.75	10.04
4	1.74	1.37	0.823	7.99	9.15	11.60
5	2.43	1.97	1.28	9.27	10.51	13.11
6	3.15	2.61	1.79	10.53	11.84	14.57
7	3.89	3.29	2.33	11.77	13.15	16.00
8	4.66	3.98	2.91	12.99	14.43	17.40
9	5.43	4.70	3.51	14.21	15.71	18.78
10	6.22	5.43	4.13	15.41	16.96	20.14

反用检验得到置信区间

参数 θ 的置信区间可通过定义假设参数值 θ 的检验得到:

指定 θ "不偏好的"数据值(临界域),使得 P(数据在临界域) $\leq \gamma$, γ 为预先指定值,如 0.05或0.1。

反用检验来定义置信区间:

在置信水平 $1-\gamma$ 的检验中不被拒绝的 θ 值的集合。

置信区间包含 θ 真值的概率大于等于 $1-\gamma$ 。

等价于置信带的构造;置信带是检验的接受域。

反转正态分布均值检验得到置信区间

设 $X_1, ..., X_n$ 是来自 $N(\mu, \sigma^2)$ 的独立同分布(iid)。考虑检验 $H_0: \mu = \mu_0$ 对 $H_1: \mu \neq \mu_0$ 。对于固定的显著性水平 α ,一个合理的检验的拒绝域为

$$\left\{\vec{x}: |\bar{x} - \mu_0| > \frac{z_{\alpha/2}\sigma}{\sqrt{n}}\right\}$$

当
$$|\bar{x} - \mu_0| \le \frac{z_{\alpha/2}\sigma}{\sqrt{n}}$$
时, H_0 被接受。

$$P\left(\left|\bar{x} - \mu_0\right| \le \frac{z_{\alpha/2}\sigma}{\sqrt{n}} \middle| \mu = \mu_0\right)$$

$$= P\left(\bar{x} - \frac{z_{\alpha/2}\sigma}{\sqrt{n}} \le \mu_0 \le \bar{x} + \frac{z_{\alpha/2}\sigma}{\sqrt{n}} \middle| \mu = \mu_0\right) = 1 - \alpha$$

这对所有 μ 都成立,即

$$P\left(\bar{x} - \frac{z_{\alpha/2}\sigma}{\sqrt{n}} \le \mu \le \bar{x} + \frac{z_{\alpha/2}\sigma}{\sqrt{n}}\right) = 1 - \alpha$$

置信区间

置信区间与检验的接受域的关系

- ▶ 假设检验:固定参数 并询问什么样本值 (接受域A)与该固定 值相符
- ▶ 置信区间:固定样本值并询问什么参数值(置信区间C)使该样本值好像最合理

置信区间与p值的关系

等价地,我们可以考虑每个假设的 θ 值的显著性检验,得到相应的 p值, p_{θ} :

如果 $p_{\theta} < \gamma$,则拒绝 θ 。

置信水平 $CL = 1 - \gamma$ 的置信区间包含没有被拒绝的 θ 值。

例如, θ 的上限 (upper limit) 是满足 $p_{\theta} \geq \gamma$ 的最大 θ 值。

实际应用中, $\Diamond p_{\theta} = \gamma$ 并求解 θ 即得到最大 θ 值。

中心置信区间与单侧置信区间

有时,单独指定 α 或 β

单边置信区间(极限,上限或下限)

通常, 取 $\alpha = \beta = \gamma/2$

中心置信区间

注意:中心置信区间并不意味着区间对于 $\hat{\theta}$ 是对称的,它仅仅意味着 $\alpha = \beta$ 。

粒子与核物理的不确定度惯例是: 68.3%的中心置信区间。

从似然函数估计近似的置信区间

假设利用似然比检验参数值 $\vec{\theta} = (\theta_1, ..., \theta_n)$:

$$\lambda(\vec{\theta}) = \frac{L(\vec{\theta})}{L(\hat{\vec{\theta}})}$$

$$0 \le \lambda(\vec{\theta}) \le 1$$

 $\lambda(\vec{\theta})$ 小 \rightarrow 数据与假设的 $\vec{\theta}$ 符合更差。等价地,通常定义

$$t_{\vec{\theta}} = -2\ln\lambda(\vec{\theta})$$

 $t_{\vec{\theta}}$ 大 数据与假设的 $\vec{\theta}$ 符合得更差。

因此, $\vec{\theta}$ 的 p值为:

$$p_{\vec{\theta}} = \int_{t_{\widehat{\theta}} \text{obs}}^{\infty} f(t_{\vec{\theta}} | \vec{\theta}) dt_{\vec{\theta}}$$

需要知道概率 密度 $f(t_{\vec{\theta}}|\vec{\theta})$

从Wilks定理估计置信区间

Wilks定理(满足大样本极限和其他一些条件):

$$f(t_{\vec{\theta}}|\vec{\theta}) \sim \chi^2(n)$$

自由度数目等于参数 $\vec{\theta} = (\theta_1, ..., \theta_n)$ 分量个数 n 的卡方分布

假设Wilks定理成立, p值为

$$p_{\overrightarrow{\theta}} = 1 - F_{\chi^2(n)}(t_{\overrightarrow{\theta}})$$

要得到置信区间的边界,令 $p_{\vec{\theta}} = \alpha$ 并求解 $t_{\vec{\theta}}$:

$$t_{\vec{\theta}} = F_{\chi^2(n)}^{-1}(1 - \alpha)$$

注意, $t_{\vec{\theta}}$ 还可以表示为:

$$t_{\vec{\theta}} = -2\ln\lambda(\vec{\theta}) = -2\ln\frac{L(\vec{\theta})}{L(\hat{\theta})} \implies \ln\vec{\theta} \text{ 可用 } F_{\chi^2(n)}^{-1} \text{ 表示}$$

从Wilks定理估计置信区间(续)

在 $\vec{\theta}$ 空间,置信区域的边界为

$$\ln L(\vec{\theta}) = \ln L(\hat{\vec{\theta}}) - \frac{1}{2} F_{\chi^{2}(n)}^{-1} (1 - \alpha)$$

例如,对于 $1-\alpha=68.3\%$ 和 n=1个参数

$$F_{\chi^2(n)}^{-1}(0.683) = 1$$

所以, 68.3%置信水平的置信区间由下式确定:

$$ln L(\theta) = ln L(\widehat{\theta}) - \frac{1}{2}$$

这与求估计量标准差的方法一样,即

$$[\hat{\theta} - \sigma_{\hat{\theta}}, \hat{\theta} + \sigma_{\hat{\theta}}]$$
 是 CL = 68.3% 的置信区间。

例:由 $\ln L(\theta)$ 求置信区间

对于 n = 1个参数, CL = 68.3% , $Q_{\alpha} = F_{\chi^{2}(n)}^{-1}(1 - \alpha) = 1$ 。

在指数函数例子中,只有 n = 5个观测值时:

可以报道ML估计值,以利用 $\ln L_{\text{max}} - \frac{1}{2}$ 得到的近似置信区间为"不对称误差棒":

$$\hat{\tau} = 0.85^{+0.52}_{-0.30}$$

多维参数置信区间

当参数个数增大时,由 $Q_{\alpha} = F_{\chi^2(n)}^{-1}(1-\alpha)$ 确定的置信区间的置信水平 $CL = 1-\alpha$ 相应地降低。

Q_{α}	$1-\alpha$				
	n = 1	n=2	n=3	n=4	n = 5
1.0	0.683	0.393	0.199	0.090	0.037
2.0	0.843	0.632	0.428	0.264	0.151
4.0	0.954	0.865	0.739	0.594	0.451
9.0	0.997	0.989	0.971	0.939	0.891

多维参数置信区间(续)

等价地,对于给定 $CL = 1 - \alpha$, Q_{α} 随着 n 增大而增大。

$1-\alpha$	Q_{α}				
	n = 1	n=2	n = 3	n=4	n = 5
0.683	1.00	2.30	3.53	4.72	5.89
0.90	2.71	4.61	6.25	7.78	9.25
0.95	3.84	5.99	7.82	9.49	11.1
0.99	6.63	9.21	11.3	13.3	15.1

讨论: 检验/置信区间的要素

需要注意的是,我们只能利用观测数据计算得到的似然函数估计这些置信区间。这种做法可行的原因是,大样本极限下

统计量
$$t_{\vec{\theta}} = -2 \ln \frac{L(\hat{\theta})}{L(\hat{\theta})}$$
 趋于定义明确的分布,与数据无关。

然而,对于有限样本,我们得到的区间是近似的。

通常来说,要做一个统计检验,需要知道检验统计量 t(x) 的分布函数,这意味着需要知道 $P(x|\vec{\theta})$ 的完整信息。

泊松参数s的上限:频率论

考虑观测事例数 $n \sim poi(s+b)$, 假设 b=4.5, $n_{obs}=5$. 求置信水平 CL = 95% 的上限。

相关的备择假设是 s = 0 (小 n 时的临界域), 假设的 s 的 p值为 $P(n \le n_{\text{obs}}; s, b)$,求解下式得 $CL = 1 - \alpha$ 的上限 s_{up}

$$\alpha = P(n \le n_{\text{obs}}; s_{\text{up}}, b) = \sum_{n=0}^{n_{\text{obs}}} \frac{(s_{\text{up}} + b)^n}{n!} e^{-(s_{\text{up}} + b)}$$

利用
$$\sum_{n=0}^{m} \frac{v^n}{n!} e^{-v} = 1 - F_{\chi^2} (2v; n_d = 2(m+1))$$

$$s_{\text{up}} = \frac{1}{2} F_{\chi^2}^{-1} (1 - \alpha; 2(n_{\text{obs}} + 1)) - b$$
$$= \frac{1}{2} F_{\chi^2}^{-1} (0.95; 2(5 + 1)) - 4.5 = 6.0$$

泊松参数s的上限:频率论

对于事例数 $n_{\rm obs}$ 很小的涨落,

$$s_{\text{up}} = \frac{1}{2} F_{\chi^2}^{-1} (1 - \alpha; 2(n_{\text{obs}} + 1)) - b$$
 可以给出负的结果。

即,置信区间可能是空的。

给定 n_{obs} , 95% 置信水平下 $s_{\rm up}$ 随 本底数 b 的变化关系。 例如,如果 $n_{\text{obs}} = 1$, b = 6, 那么 $s_{up} < 0$ 。

$$\alpha \ge 1 - F_{\chi^2}(2b; 2(n_{\text{obs}} + 1))$$
时, $s_{\text{up}} \le 0$ 。

物理边界附近的极限

假设 b = 2.5, 观测到 $n_{obs} = 0$ 。

$$s_{\rm up} = \frac{1}{2} F_{\chi^2}^{-1} (1 - \alpha; 2(n_{\rm obs} + 1)) - b = \frac{1}{2} F_{\chi^2}^{-1} (1 - \alpha; 2) - b$$

$$F_{\chi^2}^{-1}(x;2) = -2\ln(1-x) \implies s_{\text{up}} = -\ln(\alpha) - b$$

如果选择 $CL = 1 - \alpha = 0.9$,

$$s_{\rm up} = -\ln(0.1) - 2.5 = -0.197$$

物理学家: 我们一开始就知道 $s \ge 0$; 不能用负的上限报道

昂贵实验的结果!

统计学家: 置信区间按照定义只有 90% 的次数涵盖了真 值——这无非是没覆盖真值的一次结果。

这种情况并不少见,尤其是在实验灵敏度很低的情况下检验 参数值,例如信号 s 非常少的情况。

物理边界附近的极限 (续)

物理学家: 我应当选 CL = 0.95 $\rightarrow s_{up} = 0.496$ 。

$$\rightarrow s_{\rm up} = 0.496$$

"更好的做法": $CL = 0.917923 \rightarrow s_{up} = 10^{-4}!$

$$s_{\rm up} = -0.197 \quad (CL = 0.90)$$

实际情况: b = 2.5时, n 的典型泊松涨落至少是 $\sqrt{2.5} = 1.6$ 。 上限怎么会这么小呢?

零信号假设 (s=0) 下的平均上限: 取 b = 2.5,CL = 0.95

 $n_{\rm obs} \sim Poi(2.5)$,对于给定的 $n_{\rm obs}$,上限为 $s_{\rm up}(n_{\rm obs}) = \frac{1}{2} F_{\chi^2}^{-1} (0.95; 2(n_{\rm obs} + 1)) - 2.5$ 平均上限: $\overline{s}_{up} = \sum_{n_{obs}=0}^{\infty} p(n_{obs}) s_{up}(n_{obs}) = 4.44$

 $n_{\rm obs} = 0$ 的概率为 8.2%

b = 2.5, s = 0 H CL = 95% 上限 $S_{\rm up}$ 的分布。

贝叶斯方法确定上限

贝叶斯统计需要从"验前概率" $\pi(\theta)$ 出发,它反映实验前对于参数的信心程度。

贝叶斯定理给出,观测到数据 x 如何改进我们的信心程度:

$$p(\theta|x) = \frac{L(x|\theta)\pi(\theta)}{\int_{-\infty}^{+\infty} L(x|\theta')\pi(\theta')d\theta'} \propto L(x|\theta)\pi(\theta)$$

对验后概率 $p(\theta|x)$ 积分可给出任意期待概率下的区间。

例如,对于 $n \sim Poi(s + b)$, 95% 置信水平下 s 的上限由下面的积分给出:

$$0.95 = \int_{-\infty}^{s_{\rm up}} p(s|n) \, \mathrm{d}s$$

贝叶斯验前概率: 泊松参数

考虑到 $s \ge 0$,可以要求 s < 0 时 $\pi(s) = 0$ 。

一种"验前无倾向"的选择是:

$$\pi(s) = \begin{cases} 1 & s \ge 0 \\ 0 & 其他 \end{cases}$$

没有归一化,但只要 s 很大时 L(s) 趋于零即可。

参数变化下不能保持不变。

并不真的反映合理的信心程度,但通常用来作为参考。

贝叶斯上限:均匀分布的s验前概率

将泊松似然函数和均匀分布的验前概率代入贝叶斯定理:

$$p(s|n) \propto \frac{(s+b)^n}{n!} e^{-(s+b)} \quad (s \ge 0)$$

归一化到单位面积:
$$p(s|n) = \frac{(s+b)^n e^{-(s+b)}}{\Gamma(b,n+1)}$$

求解
$$1-\alpha = \int_0^{s_{\rm up}} p(s|n) \, \mathrm{d}s$$
 确定上限 $s_{\rm up}$.

 $= \int_0^\infty (s+b)^n e^{-(s+b)} \mathrm{d}s$ $=\int_{h}^{\infty} t^n e^{-t} dt$

 $=\Gamma(b,n+1)$ 上不完全厂函数

$$s_{\rm up} = \frac{1}{2} F_{\chi^2}^{-1} (p; 2(n+1)) - b$$

其中
$$p = 1 - \alpha (1 - F_{\chi^2}[2b, 2(n+1)])$$

对特殊情况 b = 0, 可得 $p = 1 - \alpha$, 验前概率均匀的贝叶斯 上限从数值上与单侧频率论结果相同("巧合")。

推导过程

$$1 - \alpha = \int_0^{s_{\rm up}} p(s|n) \, \mathrm{d}s \implies s_{\rm up}$$

$$1 - \alpha = \int_0^{s_{\text{up}}} p(s|n) \, \mathrm{d}s \Rightarrow s_{\text{up}} \qquad \qquad \alpha = \int_{s_{\text{up}}}^{\infty} p(s|n) \, \mathrm{d}s = \frac{\int_{s_{\text{up}}}^{\infty} \frac{(s+b)^n}{n!} e^{-(s+b)} \, \mathrm{d}s}{\int_0^{\infty} \frac{(s+b)^n}{n!} e^{-(s+b)} \, \mathrm{d}s}$$

分部积分:
$$\int_0^\infty \frac{(s+b)^n}{n!} e^{-(s+b)} ds = \int_b^\infty \frac{t^n}{n!} e^{-t} dt = \sum_{k=0}^n \frac{b^k}{k!} e^{-b}$$

分部积分:
$$\int_{S_{\text{up}}}^{\infty} \frac{(s+b)^n}{n!} e^{-(s+b)} ds = \int_{S_{\text{up}}+b}^{\infty} \frac{t^n}{n!} e^{-t} dt = \sum_{k=0}^{n} \frac{(s_{\text{up}}+b)^k}{k!} e^{-(s_{\text{up}}+b)}$$

利用
$$\sum_{k=0}^{m} \frac{v^k}{k!} e^{-v} = 1 - F_{\chi^2} (2v; n_d = 2(m+1))$$

$$\Rightarrow \alpha = \frac{\sum_{k=0}^{n} \frac{(s_{\text{up}} + b)^{k}}{k!} e^{-(s_{\text{up}} + b)}}{\sum_{k=0}^{n} \frac{b^{k}}{k!} e^{-b}} = \frac{1 - F_{\chi^{2}} (2(s_{\text{up}} + b); 2(n+1))}{1 - F_{\chi^{2}} (2b; 2(n+1))}$$

$$\Rightarrow F_{\chi^2}\left(2(s_{\rm up}+b);2(n+1)\right) = 1 - \alpha\left(1 - F_{\chi^2}(2b;2(n+1))\right) \equiv p$$

$$\Rightarrow 2(s_{\text{up}} + b) = F_{\chi^2}^{-1}(p; 2(n+1)) \implies s_{\text{up}} = \frac{1}{2}F_{\chi^2}^{-1}(p; 2(n+1)) - b$$

贝叶斯上限:均匀分布的s验前概率

对于 b>0, 贝叶斯上限处处都大于频率论上限。

- 1) 贝叶斯上限 *s*_{up} > 0
- 2) n = 0 时,贝叶斯上限与 b 无关

$$n = 0$$
时:
$$\alpha = \frac{\sum_{k=0}^{n} \frac{(s_{\text{up}} + b)^{k}}{k!} e^{-(s_{\text{up}} + b)}}{\sum_{k=0}^{n} \frac{b^{k}}{k!} e^{-b}}$$

$$= \frac{e^{-(s_{\text{up}} + b)}}{e^{-b}} = e^{-s_{\text{up}}}$$

$$\Rightarrow s_{\text{up}} = -\ln(\alpha) > 0$$

对于经典上限,
$$n = 0$$
 时: $s_{\rm up} = -\ln(\alpha) - b$ $\alpha \ge e^{-b}$ 时, $s_{\rm up} \le 0$

由形式规则确定验前概率

由于很难将模糊的信心程度体现在验前概率中,人们经常尝试由形式规则 (formal rules) 确定验前概率,例如,要求满足某种不变原则,或者对某组测量提供最大的信息增益。

经常称其为"客观验前概率" 这构成了"客观贝叶斯统计"的基础

验前概率不反映信心程度(但可能表示可能的极端情形)。

在"客观贝叶斯"分析中,可以像频率论那样使用置信区间,即,将贝叶斯定理看作产生具有特定覆盖性质的区间的方法。

相关综述参见: R. E. Kass and L. Wasserman, *The Selection of Prior Distributions by Formal rules*, J. Am. Stat. Assoc., Vol. 91, 1343 (1996)

粒子物理中的应用: L. Demortier, S. Jain and H. Prosper, *Reference priors for high energy physics*, Phys. Rev. D82 (2010) 034002 [arXiv:1002.1111]
D. Casadei, Reference analysis of the signal + background model in counting experiments, JINST 7 (2012) 01012 [arXiv:1108.4270]

Jeffrey's 验前概率

根据"Jeffrey 规则",验前概率取为

$$\pi(\vec{\theta}) \propto \sqrt{\det(I(\vec{\theta}))}$$

其中 $I(\vec{\theta})$ 是费舍尔信息矩阵:

$$I_{ij}(\vec{\theta}) = -E\left[\frac{\partial^2 \ln L(\vec{x}|\vec{\theta})}{\partial \theta_i \partial \theta_j}\right] = -\int \frac{\partial^2 \ln L(\vec{x}|\vec{\theta})}{\partial \theta_i \partial \theta_j} L(\vec{x}|\vec{\theta}) d\vec{x}$$

可以证明,这种验前概率选择给出的推断在参数变换下不变。

对于高斯分布的均值 μ , Jeffrey 验前概率为常数; 对于泊松分布的均值 μ , Jeffrey 验前概率正比于 $1/\sqrt{\mu}$ 。

Jeffrey's 验前概率:泊松分布均值

假设 $n \sim Poi(\mu)$, 要得到 μ 的 Jeffrey 验前概率, 取

$$L(n|\mu) = \frac{\mu^n}{n!} e^{-\mu} \qquad \frac{\partial^2 \ln L}{\partial \mu^2} = -\frac{n}{\mu^2}$$

$$\frac{\partial^2 \ln L}{\partial \mu^2} = -\frac{n}{\mu^2}$$

$$I(\mu) = -E\left[\frac{\partial^2 \ln L}{\partial \mu^2}\right] = \frac{E[n]}{\mu^2} = \frac{1}{\mu}$$

$$\pi(\mu) \propto \sqrt{I(\mu)} = \frac{1}{\sqrt{\mu}}$$

例如,对于 $\mu = s + b$,这意味着验前概率 $\pi(s) \sim 1/\sqrt{s + b}$, 依赖于 b。这不是关于 s 的信心程度。

搜索型分析

在某个相空间寻找信号,结果用变量 x 的直方图表示:

$$\vec{n} = (n_1, \dots, n_N)$$

假设 n_i 服从泊松分布,其均值为 $E[n_i] = \mu s_i + b_i$,其中

μ:强度参数

信号
$$s_i = s_{\text{tot}} \int_{\text{bin } i} f_s(x; \vec{\theta}_s) dx;$$

本底 $b_i = b_{\text{tot}} \int_{\text{bin } i} f_b(x; \vec{\theta}_b) dx$

通常还有辅助测量,用来约束本底或形状参数:

$$\vec{m} = (m_1, \dots, m_M)$$

$$L(\mu, \vec{\theta}) = \prod_{j=1}^{N} \frac{(\mu s_j + b_j)^{n_j}}{n_j!} e^{-(\mu s_j + b_j)} \prod_{k=1}^{M} \frac{u_k^{m_k}}{m_k!} e^{-u_k}$$

搜索型实验的统计检验

考虑参数 μ, 正比于某尚未发现的信号过程的发生率。

假设描述数据的模型同时包含 μ 和一组冗余参数 $\vec{\theta}$ 。

为了检验假设的 μ 值,利用轮廓似然比 (profile likelihood ratio)

$$\lambda(\mu) = \frac{L\left(\mu, \frac{\hat{\vec{\theta}}}{\hat{\theta}}\right)}{L\left(\hat{\mu}, \hat{\vec{\theta}}\right)}$$

 $\hat{\vec{\theta}}$: 对指定的 μ 值使 L 最大

 $\hat{\mu}$, $\hat{\vec{\theta}}$: 使 L 最大

物理发现或上限的检验统计量

物理发现:利用检验统计量 q_0 拒绝纯本底 ($\mu = 0$) 假设

$$q_0 = \begin{cases} -2 \ln \lambda(0), & \hat{\mu} \ge 0 \\ 0, & \hat{\mu} < 0 \end{cases}$$

即,我们把正的 μ 当作相关的备择假设,所以临界域选为对应于 $\hat{\mu}$ 值大的区域。

注意:尽管物理上 $\mu \ge 0$,我们在这里允许 $\hat{\mu}$ 为负值。在大样本极限下, $\hat{\mu}$ 服从高斯分布,从而检验统计量的分布可以化成简单的形式。

上限:为了对 μ 设定上限,利用 q_{μ} 作为检验统计量

$$q_{\mu} = \begin{cases} -2 \ln \lambda(\mu), & \hat{\mu} \leq 0 \\ 0, & \hat{\mu} > 0 \end{cases}$$

我们取相关的备择假设为 μ 较小,所以临界域定义为对应于 $\hat{\mu}$ 值小的区域。

轮廓似然比的 Wald 近似

为了求 p值,需要知道 $f(q_0|0)$ 和 $f(q_\mu|\mu)$ 。

对于备择假设下的中位数显著性,需要知道 $f(q_{\mu}|\mu')$ 。

利用 Wald 近似:
$$-2\ln\lambda(\mu) = \frac{(\mu - \hat{\mu})^2}{\sigma^2} + \mathcal{O}(1/\sqrt{N})$$

$$\hat{\mu} \sim N(\mu', \sigma^2) \Rightarrow E[\hat{\mu}] = \mu'$$
 N: 样本容量

$$\sigma$$
 可从协方差矩阵得到: $V^{-1} = -E\left[\frac{\partial^2 \ln L}{\partial \theta_i \partial \theta_j}\right]$

如果可以忽略 $O(1/\sqrt{N})$ 项,则 $-2 \ln \lambda(\mu)$ 服从非中心的自由度为 1 的 卡方分布, 非中心参数为

$$\Lambda = \frac{(\mu - \mu')^2}{\sigma^2}$$

特例:如果 $\mu' = \mu$,则 $\Lambda = 0$, $-2 \ln \lambda(\mu) \sim \chi^2(1)$ 【Wilks 定理】。

大样本极限下 q_0 的分布

假设大样本极限下近似成立,可以将 q_0 的完整分布写为

$$f(q_0|\mu') = \left(1 - \Phi\left(\frac{\mu'}{\sigma}\right)\right)\delta(q_0) + \frac{1}{2}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{q_0}}e^{-\frac{1}{2}\left(\sqrt{q_0} - \frac{\mu'}{\sigma}\right)^2}$$

 $\mu' = 0$ 的特例是"半卡方分布":

$$f(q_0|0) = \frac{1}{2}\delta(q_0) + \frac{1}{2}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{q_0}}e^{-q_0/2}$$

在大样本极限下, $f(q_0|0)$ 与冗余参数无关; $f(q_0|\mu')$ 通过 σ 依赖于冗余参数。

G. Cowan, K. Cranmer, E. Gross, O. Vitells, EPJC 71 (2011) 1554 [arXiv:1007.1727]

大样本极限下 q_0 的累积分布、显著性

根据 q_0 的概率密度,其累积分布为

$$F(q_0|\mu') = \Phi\left(\sqrt{q_0} - \frac{\mu'}{\sigma}\right)$$

 $\mu'=0$ 的特例:

$$F(q_0|0) = \Phi(\sqrt{q_0})$$

 $\mu = 0$ 假设的 p值为

$$p_0 = 1 - F(q_0|0)$$

因此,物理发现的显著性 Z 为

$$Z = \Phi^{-1}(1 - p_0) = \sqrt{q_0}$$

G. Cowan, K. Cranmer, E. Gross, O. Vitells, EPJC 71 (2011) 1554 [arXiv:1007.1727]

上限 q_{μ} 的分布

对 q_{μ} 可以得到类似结果

$$f(q_{\mu}|\mu') = \Phi\left(\frac{\mu' - \mu}{\sigma}\right)\delta(q_{\mu}) + \frac{1}{2}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{q_{\mu}}}e^{-\frac{1}{2}\left(\sqrt{q_{\mu}} - \frac{(\mu - \mu')}{\sigma}\right)^{2}}$$

$$f(q_{\mu}|\mu) = \frac{1}{2}\delta(q_{\mu}) + \frac{1}{2}\frac{1}{\sqrt{2\pi}}\frac{1}{\sqrt{q_{\mu}}}e^{-\frac{q_{\mu}}{2}}$$

$$F(q_{\mu}|\mu') = \Phi\left(\sqrt{q_{\mu}} - \frac{(\mu - \mu')}{\sigma}\right)$$

$$p_{\mu} = 1 - F(q_{\mu}|\mu) = 1 - \Phi\left(\sqrt{q_{\mu}}\right)$$

ATLAS, Phys. Lett. B 716 (2012) 1

注意:这是 CL。上限而不是似然比上限。 参见 G. Cowan, arXiv:1307.2487.

G. Cowan, K. Cranmer, E. Gross, O. Vitells, EPJC 71 (2011) 1554 [arXiv:1007.1727]

本底 b 不确定的轮廓似然函数

测量两个泊松变量:

$$n \sim Poi(s+b)$$

 $m \sim Poi(\tau b)$

 $n \sim Poi(s+b)$ (主测量或"搜索"测量) $m \sim Poi(\tau b)$ (控制测量, τ 已知)

似然函数为

$$L(s,b) = \frac{(s+b)^n}{n!} e^{-(s+b)} \frac{(\tau b)^m}{m!} e^{-\tau b}$$

利用L构造轮廓似然比(b 为冗余参数):

$$\lambda(0) = \frac{L\left(0, \hat{b}(0)\right)}{L(\hat{s}, \hat{b})}$$

需要的要素包括:

$$\hat{s} = n - m/\tau$$

$$\hat{b} = m/\tau$$

$$\hat{\hat{b}}(s) = \frac{n + m - (1 + \tau)s + \sqrt{(n + m - (1 + \tau)s)^2 + 4(1 + \tau)sm}}{2(1 + \tau)}$$

对于物理发现 (s=0) 的检验: $\hat{b}(0) = \frac{n+m}{(1+\tau)}$

$$\widehat{\widehat{b}}(0) = \frac{n+m}{(1+\tau)}$$

渐进显著性

利用:
$$\hat{s} = n - m/\tau$$
 $\hat{b} = m/\tau$

$$\hat{b} = m/\tau$$

$$\hat{\hat{b}}(0) = \frac{n+m}{(1+\tau)}$$

$$\lambda(0) = \frac{L\left(0, \hat{b}(0)\right)}{L(\hat{s}, \hat{b})} = \left(\frac{n+m}{(1+\tau)n}\right)^n \left(\frac{\tau(n+m)}{(1+\tau)m}\right)^m$$

$$Z = \sqrt{q_0} = \sqrt{-2 \ln \lambda(0)}$$

$$= \left[-2 \left(n \ln \left[\frac{n+m}{(1+\tau)n} \right] + m \ln \left[\frac{\tau(n+m)}{(1+\tau)m} \right] \right) \right]^{1/2}$$

$$n > \hat{b}$$

$$Z = 0$$

$$n \leq \hat{b}$$

期待的(或中位数)显著性/灵敏度

筹划实验时,我们希望量化实验对可能的发现的灵敏度,例如,在假定某个非零的强度参数 μ' 的情况下,通过给定的中位数显著性来量化。

求 p值需要 $f(q_0|0)$; 求灵敏度需要 $f(q_0|\mu')$ 。

含本底的计数实验中期待的发现显著性

1. 本底 b 已知的计数实验的发现灵敏度:

(a)
$$\frac{s}{\sqrt{b}}$$

(b) 轮廓似然比及Asimov近似: $\sqrt{2((s+b)\ln(1+s/b)-s)}$

2. 本底 b 不确定度为 σ_b 的发现灵敏度:

(a)
$$\frac{s}{\sqrt{b+\sigma_b^2}}$$

(b) 轮廓似然比及Asimov近似:

$$\sqrt{2\left((s+b)\ln\left(\frac{(s+b)(b+\sigma_{b}^{2})}{b^{2}+(s+b)\sigma_{b}^{2}}\right)-\frac{b^{2}}{\sigma_{b}^{2}}\ln\left[1+\frac{\sigma_{b}^{2}s}{b(b+\sigma_{b}^{2})}\right]\right)}$$

本底已知的计数实验

实验记录事例数 $n \sim Poi(s + b)$, 其中

s = 期待的信号数

b = 期待的本底数

要检验信号的发现,需要计算 s=0 假设的 p值:

$$p = P(n \ge n_{\text{obs}}|b) = \sum_{n=n_{\text{obs}}}^{\infty} \frac{b^n}{n!} e^{-b} = 1 - F_{\chi^2}(2b; 2n_{\text{obs}})$$

通常将 p值转换为等价的显著性: $Z = \Phi^{-1}(1 - p)$, 其中 Φ 是标准正态的累积分布,例如, $Z > 5 (5\sigma效应)$ 意味着 $p < 2.9 \times 10^{-7}$ 。

要表征对发现的灵敏度,可以给出给定 s 的假定下期待的(均值或中位数)显著性 Z。

期待的发现显著性: s/\sqrt{b}

s + b很大时, $n \to x \sim N(\mu, \sigma^2)$, $\mu = s + b$, $\sigma^2 = s + b$ 。 对于观测值 $x_{\rm obs}$,s = 0 假设的 p值为 $P(x > x_{\rm obs} | s = 0)$:

$$p_0 = 1 - \Phi\left(\frac{x_{\text{obs}} - b}{\sqrt{b}}\right)$$

因此, 拒绝 s=0 的显著性为:

$$Z_0 = \Phi^{-1}(1 - p_0) = \frac{x_{\text{obs}} - b}{\sqrt{b}}$$

假定信号率为 s时,期待的(中位数)显著性为:

$$\mathrm{median}[Z_0|s+b] = \frac{s}{\sqrt{b}}$$

显著性的更好的近似

参数 s 的泊松似然函数为 $L(s) = \frac{(s+b)^n}{n!} e^{-(s+b)}$

$$L(s) = \frac{(s+b)^n}{n!} e^{-(s+b)}$$

为了检验某个发现,利用轮廓似然比:

此时没有 冗余参数

$$q_0 = \begin{cases} -2 \ln \lambda(0), & \hat{s} \ge 0 \\ 0, & \hat{s} < 0 \end{cases}$$

$$\lambda(s) = \frac{L\left(s,\widehat{\theta}(s)\right)}{L(\widehat{s},\widehat{\theta})}$$

所以, 检验 s=0 的似然比统计量为

$$q_0 = -2 \ln \frac{L(0)}{L(\hat{s})} = 2 \left(n \ln \frac{n}{b} + b - n \right)$$
 $(n > b,$ 其他情况下 $q_0 = 0)$

s+b 足够大时,利用 Wilks 定理

$$q_0 = \sqrt{2\left(n\ln\frac{n}{b} + b - n\right)} \qquad (n > b, 其他情况下 Z = 0)$$

为了求 median[Z|s], $\Diamond n \rightarrow s + b$ (即Asimov数据集):

$$Z_A = \sqrt{2((s+b)\ln(1+s/b)-s)}$$
 $s \ll b$ 时,回到 s/\sqrt{b} 。

s=0假设的中位数显著性的对比

$n \sim Poi(s+b)$,假定 s条件下 s=0 假设的中位数显著性:

CCGV, EPJC 71 (2011) 1554, arXiv:1007.1727

"Exact": 来自MC,数据离散导致跳跃。

 $\sqrt{q_{0,A}}$: 在很大范围的 s和b 都是很好的近似。

 s/\sqrt{b} : 仅在 $s \ll b$ 时符合得才较好近。

s/\sqrt{b} 推广到 b 不确定的情形

 s/\sqrt{b} 的直观解释是,它比较的是信号 s 与零信号假设下 n 的标准差 \sqrt{b} 。

现在假设 b 的值不确定,其标准差为 σ_b 。

一个合理的猜测是,将 \sqrt{b} 替换为 \sqrt{b} 和 σ_b 的平方和,即

$$\operatorname{median}[Z|s] = \frac{s}{\sqrt{b + \sigma_b^2}}$$

人们有时用这种方法优化某些分析,例如, σ_b 不可忽略的一些分析。

中位数显著性的Asimov近似

为了得到物理发现的中位数显著性,假定本底+信号模型, 并用它们的期待值替换 n和 $m: n \rightarrow s + b$, $m \rightarrow \tau b$

$$Z_{A} = \left[-2\left((s+b) \ln \left[\frac{s + (1+\tau)b}{(1+\tau)(s+b)} \right] + \tau b \ln \left[1 + \frac{s}{(1+\tau)b} \right] \right) \right]^{1/2}$$

或者利用 $\hat{b} = m/\tau$ 的方差 $V[\hat{b}] \equiv \sigma_b^2 = b/\tau$ 消除 τ :

$$Z_{A} = \left[2 \left((s+b) \ln \left[\frac{(s+b)(b+\sigma_{b}^{2})}{b^{2} + (s+b)\sigma_{b}^{2}} \right] - \frac{b^{2}}{\sigma_{b}^{2}} \ln \left[1 + \frac{\sigma_{b}^{2}s}{b(b+\sigma_{b}^{2})} \right] \right) \right]^{1/2}$$

按 s/b 和 $\sigma_b^2/b (= 1/\tau)$ 展开得到:

$$Z_{A} = \frac{s}{\sqrt{b + \sigma_{b}^{2}}} \left(1 + \mathcal{O}(s/b) + \mathcal{O}(\sigma_{b}^{2}/b) \right)$$

所以,"直观的"公式可以解释为一种极限情形,即将轮廓似然比检验用于Asimov数据集。

几个公式的对比: s=5

用显著性/灵敏度优化事例筛选

期待的显著性随筛选条件 x_{cut} 的变化。

信号与本底的分布及不同 的事例筛选结果。

对 μ 的检验灵敏度很低的情形

有时,给定假设的 μ 的效应相对于纯本底(μ = 0)预言的效应很小。这意味着 $f(q_{\mu}|\mu)$ 和 $f(q_{\mu}|0)$ 几乎相同:

对 μ 的检验灵敏度很高的情形

如果对 μ 的检验灵敏度很高,意味着 $f(q_{\mu}|\mu)$ 和 $f(q_{\mu}|0)$ 明

显不同:

即,检验效力($\mu = 0$ 时拒绝 μ 的概率)显著高于 α 。 这个效力可以表征灵敏度。

不可靠的假设排除情形

考虑低灵敏度。 μ 为真时拒绝 μ 的概率为 α (例如5%),而 $\mu = 0$ 时拒绝 μ 的概率(效力)稍大于 α 。

这意味着,我们将以稍大于 $\alpha = 5\%$ 的概率拒绝 μ 为真的假设,但几乎 没有灵敏度。

这称为"不可靠的假设排除"。

为了解决这个问题,提出了"CL_s"方法设置上限。

T. Junk, Nucl. Instrum. Methods Phys. Res., Sec. A 434, 435 (1999); A. L. Read, J. Phys. G 28, 2693 (2002).

CLs方法

在通常的 CL_s 表示中,我们用同一个统计量 $Q = -2 \ln L_{s+b} / L_b$ 同时检验假设 $\mu = 0$ (b) 和 $\mu > 0$ ($\mu s + b$)。

"灵敏度低"意味着在 b 和 s + b 假设下 Q 的分布非常接近。

CL_s 方法 (续)

 CL_s 的做法是,检验不基于通常的 p值(CL_{s+b})而是基于 CL_{s+b} 与 CL_b 的比值,即定义

$$CL_S = \frac{CL_{S+b}}{CL_b} = \frac{p_{S+b}}{1 - p_b}$$

如果 $CL_s \leq \alpha$, 则拒绝 s + b 假设。

当两个分布离得越来越近时,则提高"有效的"p值(防止灵敏度太低时得出排除结论)。

对 $\mu = \sigma/\sigma_{SM}$ 设置上限

对参数 $\mu = \sigma/\sigma_{SM}$ 实施 CL_s 步骤,得到上限 μ_{up} 。

例如,寻找希格斯粒子,定义 $\mu = m_H/m_H^{SM}$ 。对于每个给定的 m_H 值,有一个 μ_{up} 的观测值,也可以得到分布 $f(\mu_{up}|0)$ 。

 $\pm 1\sigma$ (绿色)和 $\pm 2\sigma$ (黄色)条带来自简易模拟(toy MC);

竖线来自渐进公式。

如何理解上限图

对每个 m_H 值,求 μ 的 CL_s 上限,并确定 $\mu = 0$ 假设下得到的上限 μ_{up} 的分布。

虚线是中位数 μ_{up} , 绿色 (黄色) 条带给出这个分布的 $\pm 1\sigma$ (2σ) 范围。

ATLAS, Phys. Lett. B 710 (2012) 49

小结

- □ 统计不确定度中的标准差问题
- □ 经典置信区间问题
- □利用似然函数或二乘函数确定置信区间
- □贝叶斯上限
- □物理发现或上限的检验统计量