1a. Prove that "Implication Introduction" (the opposite of Implication Elimination) is a sound rule of inference (ROI) using a truth table. If you have a Horn clause, with T positive literal and n-T negative literals, like ($\neg X \lor Z \lor \neg Y$), you can transform it into a conjunctive rule by collecting the negative literals as positive antecedents, e.g. $X^Y \rightarrow Z$. It is sufficient to prove this for n-T=2 antecedents. (In fact, this is a truth-preserving operation, hence sound.)

Х	Υ	X^Y	Z	$X^{\Lambda}Y \rightarrow Z$
F	F	F	Т	Т
F	Т	F	Т	Т
Т	F	F	Т	Т
Т	Т	Т	Т	Т

Because Z is always true, it does not matter what the truth value of X^Y is, the statement $X^Y \to Z$ is always true. Thus, if we have premises X and Y and derive $(X Y) \to Z$ using Implication Introduction, Z is true on X and Y. Since the implication is always true, we can conclude that Implication Introduction is a sound ROI.

1b. Prove that (A^B \rightarrow C^D) |- (A^B \rightarrow C) ("conjunctive rule splitting") is a sound rule-of-inference using a truth table.

А	В	С	D	A^B	C^D	A^B→C^D	A^B→C
F	F	F	F	F	F	Т	Т
F	F	F	Т	F	F	Т	Т
F	F	Т	F	F	F	Т	Т
F	F	Т	Т	F	Т	Т	Т
F	Т	F	F	F	F	Т	Т
F	Т	F	Т	F	F	Т	Т
F	Т	т	F	F	F	т	Т
F	Т	Т	Т	F	Т	Т	Т
Т	F	F	F	F	F	Т	Т
Т	F	F	Т	F	F	Т	Т
Т	F	Т	F	F	F	Т	Т
Т	F	Т	Т	F	Т	Т	Т
Т	Т	F	F	Т	F	F	F
Т	Т	F	Т	Т	F	F	F
Т	Т	Т	F	Т	F	F	Т
Т	Т	Т	Т	Т	Т	Т	Т

From this truth table, we can conclude that the statement ($A^B \rightarrow C^D$) |- ($A^B \rightarrow C$) is a sound ROI, as the conclusion is always true if the premise is true.

1c. Also prove $(A^B \rightarrow C^D) = (A^B \rightarrow C)$ using Natural Deduction. (hint: use 1a above)

- 1. A^B (Assumption)
- 2. $A^B \rightarrow C^D$ (Premise)
- 3. C^D (Modus Ponens)
- 4. C (AndElimination)
- 5. $A^B \rightarrow C$ (Implication Introduction)

1d. Also prove (A^B→C^D) |= (A^B→C) using Resolution.

Convert to CNF

- 1. ¬(A^B) v C^D (Implication Elimination)
- 2. Distribute negation: (¬A v ¬B) v (C^D)
- 3. $(\neg A \lor \neg B \lor C)^{(\neg A \lor \neg B \lor D)}$
 - a. (¬A v ¬B v C)
 - b. (¬A v ¬B v D)

Negate the query

- 1. (IE) $\neg (A \land B) \lor C = \neg A \lor \neg B \lor C$
- 2. $\neg(\neg A \lor \neg B \lor C) = A^B^\neg C (DML)$
 - a. A
 - b. B
 - c. ¬C

Now we have:

- 1. A
- 2. B
- 3. ¬C
- 4. ¬A v ¬B v C
- 5. ¬A v ¬B v D
- 6. C (resolve 4 with 1 and 2)
- 7. Ø (Resolve 6 and 3, empty clause)

2a.

Initial facts: O1Y, L1W, O2W, L2Y, O3Y, L3B

Using x to represent a color in our domain (W, Y, B).

Using z to represent a box in our domain (1, 2, 3)

KB = {

Boxes are definitely labeled wrong

- 1. $L1Y \rightarrow \neg C1Y$
- 2. $L1W \rightarrow \neg C1W$
- 3. L1B $\rightarrow \neg$ C1B
- 4. $L2Y \rightarrow \neg C2Y$
- 5. $L2W \rightarrow \neg C2W$
- 6. L2B $\rightarrow \neg$ C2B
- 7. $L3Y \rightarrow \neg C3Y$
- 8. L3W $\rightarrow \neg$ C3W
- 9. L3B $\rightarrow \neg$ C3B

If we observe a color out of a particular box, the box is that color or both

- 10. O1Y \rightarrow C1Y v C1B
- 11. O1W \rightarrow C1W v C1B
- 12. $O2Y \rightarrow C2Y \lor C2B$
- 13. $O2W \rightarrow C2W \ v \ C2B$
- 14. O3Y \rightarrow C3Y v C3B
- 15. O3W \rightarrow C3W v C3B

Colors not the same between boxes

- 16. C1Y $\rightarrow \neg$ C2Y $^{\neg}$ C3Y
- 17. C1W $\rightarrow \neg$ C2W^ \neg C3W
- 18. C1B $\rightarrow \neg$ C2B $^{\neg}$ C3B
- 19. C2Y $\rightarrow \neg$ C1Y^ \neg C3Y
- 20. C2W $\rightarrow \neg$ C1W^ \neg C3W
- 21. C2B $\rightarrow \neg$ C1B $^{\neg}$ C3B
- 22. $C3Y \rightarrow \neg C1Y^{\neg}C2Y$
- 23. $C3W \rightarrow \neg C1W^{\neg}C2W$
- 24. $C3B \rightarrow \neg C1B^{\neg}C2B$

If a box is not two distinct colors, it must be the remaining color

25.
$$\neg C1W^{\neg}C1Y \rightarrow C1B$$

26.
$$\neg C1W^{\land}\neg C1B \rightarrow C1Y$$

27.
$$\neg C1Y^{\neg}C1B \rightarrow C1W$$

28.
$$\neg C2W^{\neg}C2Y \rightarrow C2B$$

29.
$$\neg C2W^{\neg}C2B \rightarrow C2Y$$

30.
$$\neg C2Y^{\neg}C2B \rightarrow C2W$$

32.
$$\neg C3W^{\neg}C3B \rightarrow C3Y$$

33.
$$\neg C3Y^{\neg}C3B \rightarrow C3W$$

If we know the colors (x_1, x_2) of two boxes $(z_1 \text{ and } z_2)$, then the last box must be the remaining color $(z_3 \text{ is } x_3)$

34.
$$Cz_1x_1^{\ \ }Cz_2x_2^{\ \ } \rightarrow Cz_3x_3$$
 a. i.e. $C1Y^{\ \ }C2W \rightarrow C3B$

2b. Prove that box 2 must contain white balls (C2W) using Natural Deduction.

Premises	Derivations
35. O1Y	(35, 10, and Modus Ponens) 41. C1Y v C1B
36. L1W	(36, 2, and MP) 42. ¬C1W
37. O2W	(37, 13, MP) 43. C2W v C2B
38. L2Y	(38, 4, MP) 44. ¬C2Y
39. O3Y	(39, 14, MP) 45. C3Y v C3B
40. L3B	(40, 9, MP) 46. ¬C3B

(40, 39, AndIntroduction) 47. ¬C3B^(C3Y v C3B) = ¬C3B^C3Y 48. (AndElimination) C3Y	
(22, MP) 49. ¬C1Y^¬C2Y 50. (49, AE) ¬C1Y 51. (50, 42, AI) ¬C1Y^¬C1W 52. (51, 25, MP) C1B 53. (48, 52, AI) C1B^C3Y 54. (34, 53, MP) C2W	

2c. Convert your KB to CNF.

Converted KB using Implication Elimination for every rule (each number corresponds to the original KB rule)

$KB_{CNF} = {$

- 1. ¬L1Y v ¬C1Y
- 2. ¬L1W v ¬C1W
- 3. ¬L1B v ¬C1B
- 4. ¬L2Y v ¬C2Y
- 5. ¬L2W v ¬C2W
- 6. ¬L2B v ¬C2B
- 7. ¬L3Y v ¬C3Y
- 8. ¬L3W v ¬C3W
- 9. ¬L3B v ¬C3B
- 10. ¬O1Y v C1Y v C1B
- 11. ¬O1W v C1W v C1B
- 12. ¬O2Y v C2Y v C2B
- 13. ¬O2W v C2W v C2B
- 14. ¬O3Y v C3Y v C3B
- 15. ¬O3W v C3W v C3B
- 16. $\neg C1Y \lor (\neg C2Y^{\neg}C3Y) = (\neg C1Y \lor \neg C2Y)^{(\neg}C1Y \lor \neg C3Y)$
 - a. (¬C1Y v ¬C2Y)
 - b. (¬C1Y v ¬C3Y)
- 17. (¬C1W v ¬C2W)^(¬C1W v ¬C3W)
 - a. (¬C1W v ¬C2W)
 - b. (¬C1W v ¬C3W)
- 18. (¬C1B v ¬C2B)^(¬C1B v ¬C3B)
 - a. (¬C1B v ¬C2B)
 - b. (¬C1B v ¬C3B)
- 19. $\neg C2Y \lor (\neg C1Y^{\land} \neg C3Y) = (\neg C2Y \lor \neg C1Y)^{\land}(\neg C2Y \lor \neg C3Y)$
 - a. (¬C2Y v ¬C1Y)
 - b. (¬C2Y v ¬C3Y)
- 20. (¬C2W v ¬C1W)^(¬C2W v ¬C3W)

```
a. (¬C2W v ¬C1W)
```

21. (¬C2B v ¬C1B)^(¬C2B v ¬C3B)

- a. (¬C2B v ¬C1B)
- b. (¬C2B v ¬C3B)
- 22. (¬C3Y v ¬C1Y)^(¬C3Y v ¬C2Y)
 - a. (¬C3Y v ¬C1Y)
 - b. (¬C3Y v ¬C2Y)
- 23. (¬C3W v ¬C1W)^(¬C3W v ¬C2W)
 - a. (¬C3W v ¬C1W)
 - b. (¬C3W v ¬C2W)
- 24. (¬C3B v ¬C1B)^(¬C3B v ¬C2B)
 - a. (¬C3B v ¬C1B)
 - b. (¬C3B v ¬C2B)
- 25. ¬(¬C1W^¬C1Y) v C1B = (DML) C1W v C1Y v C1B
- 26. C1W v C1Y v C1B
- 27. C1W v C1Y v C1B
- 28. C2W v C2Y v C2B
- 29. C2W v C2Y v C2B
- 30. C2W v C2Y v C2B
- 31. C3W v C3Y v C3B
- 32. C3W v C3Y v C3B
- 33. C3W v C3Y v C3B
- 34. $\neg Cz_1x_1 \lor \neg Cz_2x_2 \lor Cz_3x_3$
- 35. (Negate query) ¬C2W

}

2d. Prove C2W using Resolution.

Premise	Derivation
36. O1Y	(36, 10, AI) 43. C1Y v C1B
37. L1W	(37, 2, AI) 44. ¬C1W
38. O2W	(38, 13, AI) 45. C2W v C2B
39. L2Y	(39, 4, AI) 46. ¬C2Y
40. O3Y	(40, 14, AI) 47. C3Y v C3B
41. L3B	(41, 9, AI) 48. ¬C3B
42. ¬C2W	(48, 47, AI) 49. C3Y
	(22a, 49, AI) 50. ¬C1Y
	(50, 43, AI) 51. C1B
	(18a, 51, AI) 52. ¬C2B
	(52, 45, AI) 53. C2W
	(53, 42, AI) 54. ∅

3. Do Forward Chaining for the CanGetToWork KB below

Facts (with irrelevant facts discarded): { HaveMoutainBike, WorkCloseToHome, HaveMoney, AvisOpen }

Start	HaveMoutainBike, WorkCloseToHome, HaveMoney, AvisOpen
Rule e	HaveMoutainBike, WorkCloseToHome, HaveMoney, AvisOpen, HaveBike
Rule m	WorkCloseToHome, HaveMoney, AvisOpen, HaveBike, CarRentalOpen
Rule k, Rule o	WorkCloseToHome, HaveMoney, AvisOpen, HaveBike, CarRentalOpen, CanRentCar, IsNotAHoliday
Rule j	WorkCloseToHome, HaveMoney, AvisOpen, HaveBike, CarRentalOpen, CanRentCar, IsNotAHoliday, CanDriveToWork,
Rule b	WorkCloseToHome, HaveMoney, AvisOpen, HaveBike, CarRentalOpen, CanRentCar, IsNotAHoliday, CanDriveToWork, CanGetToWork

CanGetToWork is in the final list of inferred propositions

4. Do Backward Chaining for the CanGetToWork KB

Facts (with irrelevant facts discarded): { HaveMountainBike, WorkCloseToHome, HaveMoney, AvisOpen }

Start	CanGetToWork
Pop CanGetToWork, replace with antecedent of rule (a)	CanBikeToWork
Pop CanBikeToWork, replace with antecedent of rule (d)	HaveBike, WorkCloseToHome, Sunny
Pop HaveBike, push HaveMountainBike (rule e)	HaveMountainBike, WorkCloseToHome, Sunny
Pop HaveMountainBike (fact)	WorkCloseToHome, Sunny
Pop WorkCloseToHome (fact)	Sunny
Pop Sunny, push StreetsDry (rule s)	StreetsDry
StreetsDry not provable, backtrack to other rule for CanGetToWork (rule b)	CanDriveToWork
Pop CanDriveToWork, push OwnCar (g)	OwnCar
OwnCar not provable, backtrack to other rule for CanDriveToWork (rule j)	
Push CanRentCar (j)	CanRentCar
Pop CanRentCar, push HaveMoney, CarRentalOpen (rule k)	HaveMoney, CarRentalOpen
Pop HaveMoney (fact)	CarRentalOpen
Pop CarRentalOpen, push HertzOpen	HertzOpen
HertzOpen not provable, backtrack to other rule for CarRentalOpen (rule m)	
Push AvisOpen (m)	AvisOpen
Pop AvisOpen (fact)	Return True