August/September-2022

B.Tech (For a september-2022	015201
B.Tech.(ECE/ENC/EEIOT)- II SEMESTER	
(Calculus, Ordinary Differential Equation and Complex Varia Instructions: 1. It is compulsory to appear to a second complex variation and complex Variations (Calculus, Ordinary Differential Equation and Complex Variations)	
Instructions: 1. It is compute	ble)(BSC-106D)
1. It is compulsory to answer all the questions (1.5 marks each) of Pa 2. Answer any four questions from Part -B in detail.	Max. Marks:75
2. Answer any four questions from Part -B in detail. 3. Different sub-parts of a question are to be	rt -A in short
3. Different sub-parts of a question are to be attempted adjacent to e	5.00
mpteu adjacent to e	ach other,
PART-A	
Que.1(a) Evaluate $\int_{0}^{1} \int_{y}^{y^{3}+1} x^{2} y dx dy$	
$\int x^2 y dx dy$	
(b) Find the area lying between the parabola $y = 4x - x^2$ and the line $y = 3$	(4.55
and area lying between the parabola v = 4v = v2 = 144	(1.5)
$y = yx^2$ and the line $y = y$	×. 🔘(1.5)
((c) dolya ((2.0)
(c) Solve $(xy^3+y)dx+(2x^2y^2+x+y^4)dy=0$.	
	(1.5)
₩ V ₩ Z 11V ± 1393/2 C α = 1 1 1 1	(1.5)
	(1.5)
Write the Bessel's differential equation of order n. (g) State C-R Equations.	$(1.5) \qquad \text{If } \mathcal{I}$
	$(1.5) \qquad \qquad 0$
(h) Define conformal mapping.	(1.5)
(i) State Cauchy's integral theorem and Cauchy's integral formula (i) (j) State Cauchy's Residue Theorem	(3 مِ <u>1</u>)
(i) State Cauchy's Position and Cauchy's integral formula (1)	(1.5)
(j) State Cauchy's Residue Theorem. (1.5)	/ N //
	(1.5)
PART-B	
Que.2 (a)Change the order of integration in the given integral and then evaluated (2)	4a 2√ax
and then evaluation in the given integral and then evaluation	ate f dydy
(b) Verify the Green's the	0 v2/40
The original theorem in the plane for $\oint (3x^2 - 8y^2) dx + (4y - 6y) dx$	(1)
(b) Verify the Green's theorem in the plane for $\oint_C (3x^2 - 8y^2) dx + (4y - 6xy) dy$ boundary of the region defined by $x = 0, y = 0, x + y = 1$, where C is the
boundary of the region defined by $x = 0, y = 0, x + y = 1$.	
Que.3 (a) Solve the differential equation $(2y\sin x + 3y^4 \sin x \cos x) dx - (4y^3 \cos^2 x + y) dx$	(8)
(b) Solve the disc	$\cos x$)dy = 0.
(b) Solve the differential equation: $y = 2px + v^2 p^3 (Solveble Const.)$	(7) \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
Que.4 (a) Using variation of parameter, solve (D²-6D+9)y = $\frac{e^{3x}}{x^2}$, where D = d	(8)
(b) Express $4x^3 - 2x^2 - 2$ where D = d	1/dx (7) (7) (5)
(b) Express $4x^3 - 2x^2 - 3x + 8$ in terms of Legendre's polynomial.	$\frac{1}{\mathrm{dx}} \left(\frac{1}{2} \right) \left(\frac{1}{2} \right)$
and express $u + iv$ and the function $u = e^{-2xy} \sin(x^2 - y^2)$ is harmonic Find the	(8)
Que.5 (a) Show that the function $u = e^{-2xy}\sin(x^2-y^2)$ is harmonic. Find the conjugate the transformation of z.	ugate function 'v'
(b) Under the transformation $w = 1/z$, find the image of the given curve: $ z - 2i $	(7)
or the given curve: z - 2i	=2(8) (8)

Que.6 (a) Expand $\frac{e^{2x}}{(x-1)^3}$ about the singularity z=1 in Laurent's series. (7)

(b)Evaluate $\int_{0}^{2\pi} \frac{d\theta}{2 + \cos \theta}$ using Residue theorem. (8)

Que.7 (a) Find the volume bounded by the cylinder $x^2+y^2=4$ and the planes y+z=4 and z=0.

(b) Find the sum of the residues of the function $f(z) = \frac{\sin z}{z\cos z}$ at its poles inside the circle |z| = 2