1. Übung für die Vorlesung Rechnerorganisation

Sommersemester 2019

Abgabe: Donnerstag, 11.04.2019, vor Beginn der Vorlesung

Hinweise zur Abgabe:

- 1. Alle Abgaben müssen handschriftlich erfolgen. Einzige Ausnahme stellen hierbei lediglich die Programmieraufgaben dar, die auch maschinell gedruckt abgegeben werden dürfen.
- 2. Programmieraufgaben müssen zusätzlich in elektronischer Form abgegeben werden. Den Quellcode der MIPS-Assembler Aufgaben schicken Sie bitte direkt an Ihren Tutor.
- 3. Alle Programmieraufgaben müssen sinnvoll dokumentiert werden!

MIPS-Simulator: Unter http://spimsimulator.sourceforge.net/ ist der kostenlose MIPS- Simulator SPIM verfügbar, mit dem Sie Ihren Assemblercode testen können. Dort befindet sich ebenfalls der Anhang A "Assemblers, Linkers, and the SPIM Simulator" aus dem Vorlesungsbuch "Computer Organization & Design" von Patterson & Hennessy, in dem Sie unter anderem einen vollständigen Befehlsüberblick finden. Es lohnt sich weiterhin auch, einen Blick in die, SPIM beiliegende, Dokumentation zu werfen.

Aufgabe 1. Durchsatz

6 P.

	Laufzeit (Sekunden)	
Programm	Typ R_1	Typ R_2
P_1	10	5
P_2	3	4

Tabelle 1: Implementierung I_2

Betrachten Sie die in der Tabelle 1 angegebenen Laufzeiten von zwei verschiedenen Programmen P_1 , P_2 auf zwei unterschiedlichen Rechnern R_1 , R_2 . Ein Rechner des Typs R_1 koste $10.000 \in$, ein Rechner des Typs R_2 koste $15.000 \in$.

- 1. Berechnen Sie den Mittelwert der Ausführungszeiten der beiden Programme auf den beiden Rechnern, und zwar sowohl arithmetisch als auch geometrisch.
- 2. Angenommen, Programm P_1 müsste möglichst häufig ausgeführt werden (\rightarrow hoher Durchsatz!). Welchen Rechnertyp würden Sie anschaffen, wenn ein Budget von $30.000 \in \text{zur Verfügung steht?}$ Begründen Sie Ihre Antwort.
- 3. Nun soll Programm P_1 genau 200-mal pro Stunde ausgeführt werden. Die verbleibende Zeit kann für die Ausführung von P_2 genutzt werden. Die Performance werde anhand des Durchsatzes von Programm P_2 gemessen. Welcher Maschinentyp ist schneller für dieses Arbeitspaket? Welcher ist kosteneffizienter?

Aufgabe 2. Mittelwert

4 P.

Beweisen Sie, dass der geometrische Mittelwert zweier nichtnegativer reeller Zahlen immer kleiner oder gleich dem arithmetischen Mittelwert ist, dass also gilt:

$$\sqrt{ab} \le \frac{a+b}{2}$$

In welchen Fällen stimmen die Mittelwerte überein?