機械学習(旧応用ネットワークシステム)第6回レポート

学籍番号: 18t1040x 氏名:加藤正隆

課題

先週の課題に対して重回帰分析した結果,奇妙なことに,売り場面積x3が売上高yに悪影響を与えているという結果が得られた. どうも納得が行かないので,今回学んだパス解析を用いて,より詳細に分析することにする.下図を参考にしつつ,売り場面積x3が売上高yに与える影響を再考せよ.以下のプログラムを用いて、パス解析を行った。

```
import numpy as np
 #標準化をする関数
 def standard(array):
     return (array-np.mean(array))/np.std(array, ddof=1)
 #相関係数を求める関数
 def soukan(array1, array2):
     array1_h = standard(array1)
     array2 h = standard(array2)
     return np.corrcoef(standard(array1_h), standard(array2_h))[0, 1]
 x1 = [8, 7, 5, 4, 6, 2, 3, 9]
 x2 = [8, 7, 9, 3, 8, 3, 6, 7]
 x3 = [4, 7, 8, 3, 8, 5, 6, 9]
 y = [18, 12, 14, 6, 12, 8, 10, 16]
 indire_31y= soukan(x3, x1)*0.4997682
 indire_32y= soukan(x3, x2)*0.5970736
 alleff = indire 32y+indire 31y-0.1457974
 print("3->1", soukan(x3, x1))
 print("3->2", soukan(x3, x2))
 print(alleff)
実行結果は以下の通りになった。
 3->1 0.41239304942116134
```

結果と考察

3->2 0.6321318933586436 0.43773279724418623

- 1. x_3 ->yへの直接効果= -0.1457974
- 2. x_3 -> x_1 ->yへの間接効果= $0 = 412393049 \times 0.4997682 = 0.206100932$
- 3. x_3 -> x_2 ->yへの間接効果= $0.632121893 \times 0.5970736 = 0.377423294292$
- 4. 合計 = -0.1457974 + 0.206100932 + 0.377423294292 = 0.43773279724418623

パス解析の表は以下の通りになる.

最終結論

小型軽量 x_3 の間接結果によれば、売り場面積の拡大が、商品充実度を高めることになり、結果的に売上高の向上に役立っている。また、売り場面積が拡大することで、接客サービスが低下していないことが読み取れる。

Pythonのライブラリを用いたパス解析

以下のプログラムを作製した。

```
x1_h = standard(x1)
x2_h = standard(x2)
x3_h = standard(x3)
y_h = standard(y)
N = len(y)
X_h = np.c_[np.ones(N), x1_h, x2_h, x3_h]
import statsmodels.api as sm
#モデルの設定 (最小2乗法による回帰分析)
model = sm.OLS(y_h, X_h)
#回帰分析の実行
results = model.fit()
print( results.summary() )
```

実行結果は以下の通りになった。

OLS Regression Results							
Dep. Variable:	у			R-squ	ared:		0.834
Model:	0LS			Adj.	R-squared:		0.710
Method:	Least Squares			F-statistic:			6.701
Date:	Thu, 05 Nov 2020			Prob (F-statistic):			0.0487
Time:	19:10:41			Log-Likelihood:			-3.6332
No. Observations:			8	AIC:			15.27
Df Residuals:			4	BIC:			15.58
Df Model:			3				
Covariance Type: nonrobust							
CO	oef	std err		t	P> t	[0.025	0.975]
const		0.191		 0	1.000	-0 . 529	0.529
x1 0.49	998	0.263	1	1.903	0.130	-0.230	1.229
x2 0.59	971	0.309	1	1.933	0.125	-0.260	1.454
x3 -0.14	÷58	0.263	-0	0. 555	0.609	-0.876	0.584
=======================================	=====	=======	====	======	=========	=======	=======
Omnibus:		2.	374	Durbi	n-Watson:		1.980
<pre>Prob(Omnibus):</pre>	0.305			Jarqu	e-Bera (JB):		0.815
Skew:	-0.118			Prob(JB):		0.665
Kurtosis:		1.	455	Cond.	No.		2.71
=======================================	=====	========	====	=====	===========	======	=======

考察

F検定では、Prob(F-statistic)=0.0487<0.05より、帰無仮説:回帰式は役に立たない、 $R^2=0$,を棄却することができる。つまり、回帰式が役に立つことが分かった。t検定では、 x_1,x_2,x_3 のいずれの値も、0.05未満ではないため、回帰式は役に立たないと判定される。

参考文献

LiNGAM入門。気軽に因果関係を推定する(統計的因果探索) Pythonによる因果推論と因果探索(初心者の方向け)


```
import matplotlib.pyplot as plt
import numpy as np
x = np.arange(-10, 10, 0.01)
y_sin = np.sin(x)
y_cos = np.cos(x)
plt.plot(x, y_sin)
plt.plot(x, y_cos)
plt.show()
```