Ported or Relative Oriented Matroids and Electric Circuits

Seth Chaiken

Dept. of Computer Science

Univ. at Albany

schaiken@albany.edu

March 2, 2015

Why Electricity, EE?

- ▶ Scholarly topic suggested by G.-C. Rota \approx 1980?.
- ➤ 100 yrs. geometry-like intuition of circuit configurations known by engineers, EE books: "Intuitive Analog Circuit Design (2013)" [11]; "Non-linear Circuits" [5] translates to our Oriented Matroid pair model.
- Geometry of linear spaces and oriented matroids; Tutte decomp. w/ techniques from Barnabi, Brini and Rota's Exterior Calculus [1])
- ▶ Real behavior ≈ ideal plus perturbations, ideal constraints predict intended real behavior,
- Interesting, accessible, intuitively understandable intentential designs, applicable, easy to both simulate and build physically, dimension \approx 12 or 24, depending on formulation
- ► Analogs to chemical (and real algebraic geometry [8]), biological, elastic/tensegrity strs. etc., random walks ...
- Merely one scalar non-linearity can cause chaos.

Kirchhoff (1847) [6] Maxwell (1891) [7] The equivalent resistance PROBLEM IS SOLVED by the Matrix Tree Theorem. (1) POSE! the VARIABLES or COORDINATES

DISTINGUISHED, PORT edge $p \in P$

The interface to an environment is modelled with 2|P| variables.

(math, not EE sign convention)

(2) POSE: EQUATIONS. Preview the consequences.

- ▶ (KCL) $(i_e)_{e \in S}$ is a cycle (a flow).
- ▶ (KVL) $(v_e)_{e \in S}$ is a cocycle
- (constituitive Law) i_e = g_e(v_e) non-linear, usually monotonic increasing R → R.
 (Sometimes use Ohm's approximation i_e = g_ev_e)

Combinatorics!

The signs $\{+, -, 0\}$ have a DUAL-PAIR ORIENTED MATROID structure (combinatorial, geometric, topological).

Engineering with amplifiers!

There's good unique solvablility due to STRUCTURE, when the NON-DUAL PAIR (for voltages and currents) is ALMOST DUAL: No common covectors.

SOLUTION: Equiv. Resistance := $-(v_p/i_p)$ observed at a port p by the environment EQUALS a Ratio of Spanning Tree Enumerators! (Port edge p locates the 2 terminals.)

$$-(\frac{v_p}{i_p}) = \frac{\mathsf{WTS}(G/p)}{\mathsf{WTS}(G \backslash p)} = \frac{\mathsf{Matrix}\text{-}\mathsf{Tree}\ \mathsf{Det}(G/p)}{\mathsf{Matrix}\text{-}\mathsf{Tree}\ \mathsf{Det}(G \backslash p)}$$

- "Maxwell's rule" uses MatrTreeT on 2 DIFFERENT GRAPHS $(G/p \text{ and } G \setminus p)$ (Sorry, amplifiers come later.)
- ▶ Weighted Tree Sum (WTS) is a colored Tutte function:

$$\mathsf{WTS}(G') = g_e \mathsf{WTS}(G'/e) + r_e \mathsf{WTS}(G \backslash e) \text{ for all } e \not\in P$$

$$\mathsf{WTS}(\mathsf{coloop}(e)) = g_e$$

$$\mathsf{WTS}(\mathsf{loop}(e)) = r_e$$

Multiple Ports. (your stereo: 3=power plug & 2 speakers)

- ▶ One formula expresses $\binom{2|P|}{|P|}$ different Matrix Tree Theorems...
- long vertex-based proofs are shortened; Rayleigh inequalities too.
- ► Interesting **non-commutative ranges** of new ORIENTED MATROID Tutte invariants with pattern:

$$\mathsf{TF}(\mathsf{N}(P \cup E)) = \mathsf{F}(\mathsf{N}(P \cup E)/E)$$

(They distinguish DIFFERENT ORIENTATIONS of the SAME MATROID.)

- ▶ Ported/Relative OM Tutte Poly. terms embed SPECIFIC MINORS as variables, making proofs just with $\partial T/\partial x_e$ easier.
- ► Formalize composition of systems [9], Tutte poly. splitting formulas.
- ▶ Model practical devices (transistors, op amps); Label variables to observe.
- ► Align EE applications with knots [3] (Ported = "Relative") and combinatorial geometry [13] (Ported = "Set Pointed").

Constraint/Generator Duals and 2 Results.

► (Part 1) Technique: Solution Space

∩ Constraint Subspaces

▶ Result: An exterior algebraic algebraic Tutte function: Each of its (2|P|) Plücker coordinates satisfies a Matrix Tree Theorem. This and det. formulas easily prove Rayleigh inequalities.

Part 2) Combine with:
Solution Space

Closure(Set of Generators)

- To apply: An oriented matroid's COVECTOR SET encodes ALL POSSIBLE (+, −, 0) coordinate behaviors or δs.
- Result: An oriented matroid pair model for some non-linear problem (AMPLIFIER!) well-posedness. (How? Sign contradictions ⇒ a KERNEL={(0)}.)

Part 1) Use Matrix M in CONSTRAINTS MX = 0 to get...

The Tutte-like function $\mathbf{M}_{E}()$: Extensor $\mathbf{N} \to \text{Extensor } \mathbf{M}_{E}(\mathbf{N})$. (STUDENT NOTE: An EXTENSOR represents the row-space of an $r \times s$ r-rank matrix M by the $\binom{s}{r}$ -TUPLE of the DETERMINANTS of M's $r \times r$ submatrices. Plücker coords.)

Given N (matrix), construct N^{\perp} with orthog. comp. row space. Construct: $(G = \text{diag}(g_e), R = \text{diag}(r_e))$

$$M = \begin{bmatrix} N(P) & 0 & N(E)G \\ \hline 0 & N^{\perp}(P) & N^{\perp}(E)R \end{bmatrix}$$

with columns labelled by $P_I \cup P_V \cup E$.

Extensor **M** over $k[g_e, r_e](P_V \cup P_I \cup E)$ is the \land -product of M's **row vectors**. The contraction result $\mathbf{M}_E(\mathbf{N}) = \mathbf{M}/E$ appears:

$$\mathsf{M} = \mathsf{M}_{\mathsf{E}}(\mathsf{N})\mathsf{e}_1\mathsf{e}_2\cdots\mathsf{e}_{|\mathsf{E}|} + (\cdots)$$

 $M_E(N)$ is our Tutte function $N \to Ext$. Alg.

Contracting means "Eliminate variables"

ELIMINATE the variables indexed by E, leaving 2|P| variables labelled by P_I and P_V . ie, CONTRACT E. **Answer M**_E IS:

$$\mathbf{M}_{\textit{E}} = \bigwedge_{\text{JOIN over rows}}^{\text{Exterior}} \left[\begin{array}{c|c} A_{\textit{I},\textit{I}} & A_{\textit{I},\textit{V}} \\ \hline A_{\textit{V}_{\textit{I}}} & A_{\textit{V},\textit{V}} \end{array} \right] \left[\mathbf{p_{l_1}}, \cdots, \mathbf{p_{l_p}}; \mathbf{p_{V_1}}, \cdots, \mathbf{p_{V_p}} \right]^t$$

$$= \ldots + C_i \mathbf{XXX} + \ldots$$
; Equiv. Resistance = certain C_i / C_j

All the other C_k 's have similar interpretations. $\binom{2|P|}{|P|}$ **Matr. Tree Theorems:** Each $C_k(N)$ (a PRINCIPAL MINOR of MATRIX A ABOVE!) = $g_e C_k(N/e) + r_e C_k(N \setminus e)$ ($e \notin P$, e not (co)loop).

Each C_k is a signed weighted enumerator of forests satisfying **conditions** ...

Conditions (what sets F are enumerated by one det. C_i)

The **conditions** ... are on the rank, nullity of F and, WHAT ORIENTED MINOR is $G/F \setminus (E \setminus F)$, the minor with ONLY PORT EDGES from contracting F and deleting the other resistor edges, leaving the ports.

The conditions for a given C_k sometimes make all the signs the same (eg: C_i and C_j in 1-port equivalent resistance $R = C_i/C_j$) Othertimes, the oriented **P-minors** in the completed Tutte decomposition of C_k determine some + and some - signs.

Application: Rayleigh Identity, "Neg. Spanning Tree Correlation"

$$\Gamma_e(G)$$
 is equivalent conductance across e . Rayleigh: $0 \le \frac{\partial \Gamma_p}{\partial g_f} = \frac{\partial \frac{\Gamma_G}{T_{G/e}}}{\partial g_f}$

is equivalent to

$$0 \le \frac{\partial T_G}{\partial g_f} T_{G/e} - T_G \frac{\partial T_{G/e}}{\partial g_f} = T_{G/f} T_{G/e} - T_G T_{G/e/f}$$

In fact,

$$T_{G/f}T_{G/e} - T_{G}T_{G/e/f} = \left(T_{G/e \& G/f}^{+} - T_{G/e \& G/f}^{-}\right)^{2}$$

 $T_{G/e~\&~G/f}^{\pm}$ enumerate the \pm common spanning trees.

Known Partial and Full Combinatorial Proofs

$$T_{G/f}T_{G/e} - T_{G}T_{G/e/f} = \left(T_{G/e \& G/f}^{+} - T_{G/e \& G/f}^{-}\right)^{2}$$

 $T^{\pm}_{G/e~\&~G/f}$ enumerate the \pm common spanning trees.

Choe (2004) proved essentially this using the vertex-based all-minors matrix tree theorem, combinatorial cases and Jacobi's theorem relating the minors of a matrix to the minors of its inverse..

Cibulka, Hladky, Lacroix and Wagner (2008) gave a completely bijective proof that utilizes some natural 2:2 and 2:1 correspondances.

Difficulty: Some terms on the left cancel and some reduce to terms with coefficients ± 2 .

Linear Alg./Oriented Matroid Proof of Rayleigh's Identity

Let R be the transfer resistance matrix for 2 ports across e and f. Our result implies that

$$\det R = \left| \begin{array}{cc} R_{\text{ee}} & R_{\text{ef}} \\ R_{\text{fe}} & R_{\text{ff}} \end{array} \right| = + \frac{T_{G/e/f}}{T_G}$$

It and better-known results tell us

$$R_{ee} = \frac{T_{G/e}}{T_{G}}; R_{ff} = \frac{T_{G/f}}{T_{G}}; R_{ef} = R_{fe} = \frac{T_{G/e \& G/f}^{+} - T_{G/e \& G/f}^{-}}{T_{G}}$$

$$T_{G/f}T_{G/e} - T_GT_{G/e/f} = \left(T_{G/e \& G/f}^+ - T_{G/e \& G/f}^-\right)^2$$
 is immediate after substituting these into

$$\det R = R_{ee}R_{ff} - (R_{ef})^2$$

The + follows from physical grounds if the $g_e, r_e \ge 0$. Our characterization and proof are combinatorial.

New Rayleigh's Identities!

The same method generates identities and inequalities from

$$\begin{vmatrix} R_{ee} & R_{ef} & R_{eg} \\ R_{fe} & R_{ff} & R_{fg} \\ R_{ge} & R_{gf} & R_{gg} \end{vmatrix} = + \frac{T_{G/e/f/g}}{T_G} \ge 0$$

when all $r_{..}, g_{..} \geq 0$, ETC...

(Applications???)

Might the same methods address a much harder problem: The same inequality for forests instead of spanning trees?

(Part 2) Common Covector Model

The cycle space of G_I GENERATES the covectors of an **oriented matroid** over $(E \cup P_I)$.

(signs indexed by E) (by P_I)

Non-linear monotone resistors CONSTRAIN SIGNS of voltage drops (from ↓) and flows (from ↑)

TO BE EQUAL

Voltage and Current graphs G_V , G_I

"Voltage graph" G_V (EE [5, 10], NOT Gross, ...) represents KVL $\mathbf{v} \in \mathsf{Cocycles} \; \mathsf{W} / \; \mathsf{SOME} \; v_e \equiv 0$

"Current graph" G_I represents KCL i ∈ Cycles WITH SOME FLOWS $\equiv 0$

- They are EQUAL GRAPHS for resistor networks.
- For networks with idealized amplifiers, they are not equal.

The output voltage and current are whatever makes the input voltage and current BOTH BE zero.

▶ (More) realistic amp. model = idealized amp. + resistors.

open $G_{v} = G \backslash e$ $G_{I} = G \backslash e$

short $G_v = G/e$ $G_I = G/e$

$$G_I = G/e$$

nullator $G_{v} = G/e$ $G_{I} = G\backslash e$

norator
$$G_{v} = G \setminus e$$

$$G_{v} = G / e$$

"Colors" are parameters on every Tutte decomposition step

The Bollobos/Riordan/Zaslavsky [2, 14],

Traldi-Ellis-Monaghan [12,4], (sdc unpub) BRZ theory for well-definedness of "Relative Tutte Polynomials for Colored Graphs" ALL GOES THROUGH (Diao and Hetyei [3]): The 3 BRZ conditions on (colors,initial values) GENERALIZE TO 5; activity theory WORKS TOO, when based on linear orders on the non-port-elements.

In a nutshell

The 5 conditions \Longrightarrow activities define an unambiguous Tutte function from the deletion/contraction and initial value formulas. Additional conditions \Longrightarrow the Tutte function has a rank-nullity expansion.

(The rank-nullity conditions are satisfied in our application.)

To specify the activity/deletion-contraction linear order GLOBALLY is UNNECESSARY.

The Gordon/McMahon computation-tree-based activity theory also generalizes. (sdc).

References I

Marilena Barnabei, Andrea Brini, and Gian-Carlo Rota. On the exterior calculus of invariant theory. Journal of Algebra, 96:120–160, 1985.

B. Bollobas and O. Riordan.
A Tutte polynomial for colored graphs.

Combin. Probab. Computat., 8(1–2):45–93, 1999.

Yuanan Diao and Gábor Hetyei.
Relative Tutte polynomials for colored graphs and virtual knot theory.

Combin. Probab. Comput., 19(3):343–369, 2010.

J. A. Ellis-Monaghan and Lorenzo Traldi.

Parametrized Tutte polynomials of graphs and matroids.

Combinatorics, Probability and Computing, 15:835-854, 2006.

References II

M. Hasler and J. Neirynck.

Nonlinear Circuits.

Artech House, Norwood, Mass., 1986.

G. Kirchhoff.

Uber die auflösung der gleichungen, auf welshe man bei der untersuchung der linearen verteilung galvanischer ströme gefuhrt wird.

Ann. Physik Chemie, 72:497-508, 1847. On the solution of the equations obtained from the investigation of the linear distribution of Galvanic currents, (J. B. O'Toole, tr.) IRE Trans. Circuit Theory, 5, 1958, pp. 238-249.

References III

James Clerk Maxwell.

A Treatise on Electricity and Magnetism, volume 1, Part II, Appendix of Chapter VI, Mathematical Theory of the Distribution of Electric Currents, pages 409–410. Claredon Press and reprinted by Dover, New York (1954), 3rd edition, 1891.

🔋 Stefan Müller, Elisenda Feliu, Georg Regensburger, Carsten Conradi, Anne Shiu, and Alicia Dickenstein.

Sign conditions for injectivity of generalized polynomial maps with applications to chemical reaction networks and real algebraic geometry.

Foundations of Computational Mathematics, 2015.

H. Narayanan.

On the decomposition of vector spaces.

Linear Algebra and its Applications, 79:61–98, 1986.

References IV

C. Sanchez-Lopez, F. V. Fernandez, E. Tlelo-Cuautle, and S. X. Tan.

Pathological element-based active device models and their application to symbolic analysis.

IEEE Transactions on Circuits and Systems-I-Regular Papers, 58(6):1382–1395, 2011.

Marc Thompson.

Intuitive Analog Circuit Design.

Newnes/Elsevier, 2nd edition, 2014.

Lorenzo Traldi.

A dichromatic polynomial for weighted graphs and link polynomials.

Proc. Amer. Math. Soc., 106:279-286, 1989.

References V

The Tutte polynomial of a morphism of matroids I. set-pointed matroids and matroid perspectives. *Annales de l'Institut Fourier*, 49(3):973–1015, 1999.

Thomas Zaslavsky.
Strong Tutte functions of matroids and graphs.

Trans. Amer. Math. Soc., 334(1):317–347, 1992.