点

番 名前

①関数 $y=rac{1}{2}x^2$ について, x の変域が $6\leq x\leq 9$ のときの y の変域を求めなさ

数学ミニテスト(解答・解説)

yは、x = 6のとき最小値12、 x = 9のとき最大値27をとるから yの変域は, $12 \le y \le 27$

②関数 $y = ax^2$ について, x の変域が $-4 \le x \le 9$ のとき y の変域は $0 \le y \le 3$ である。 a の値を求めなさい。 yが0以上の値をとるから,グラフは上に開いた放物線になる。 よって、yの最大値3はx=9のときの値である。

 $y = ax^2$ にx = 9, y = 3を代入して, $3=a imes 9^2$ $a=rac{1}{27}$

③関数 $y=-\frac{3}{2}x^2$ について, x の変域が $-4 \le x \le 2$ のときの y の変域を求め なさい。

yは、x = -4のとき最小値 -24, x=0のとき最大値0をとるから yの変域は, $-24 \leq y \leq 0$

④ 関数 $y = 3x^2$ で、x の値が 2 から 4 まで増加するときの変化の割合を求めな さい。

xの増加量は 4-2=2yの増加量は $3 \times 4^2 - 3 \times 2^2 = 48 - 12 = 36$ したがって、変化の割合は $\frac{30}{2} = 18$

⑤ 関数 $y=ax^2$ で、x の値が 4 から 5 まで増加するときの変化の割合が 1 次関 数 y = -6x + 5 の変化の割合と等しいとき, a の値を求めなさい。

x = 4のとき, $y = a \times 4^2 = 16a$ x = 5のとき, $y = a \times 5^2 = 25a$ したがって、変化の割合は $\frac{25a-16a}{5-4}=9a$ 1次関数 y = -6x + 5 の変化の割合は -6

9a = -6 $a = -\frac{7}{2}$

⑥ 1 辺が 2xcm の正方形の面積を ycm 2 とするとき, y を x の式で表しなさ

1辺が<math>2xcmの正方形だから, y=2x imes 2x $y = 4x^{2}$

 $12 \le y \le 27$

y を x の式で表しなさい。

高さは, $4x \times 2 = 8x$ (cm)だから, $y = - \times 4x \times 8x$

$-24 \le y \le 0$

$$a = -\frac{2}{3}$$

⑦底辺が 4xcm , 高さが底辺の 2 倍の長さの三角形の面積を ycm 2 とするとき,

 $y = 16x^{2}$

$$y=16x^2$$

 $y = 4x^2$

⑧ y が x の 2 乗に比例し, x=-10 のとき y=20 である。 x=9 のとき, yの値を求めなさい。

比例定数をaとすると, $y = ax^2$ x = -10のときy = 20だから,

 $20 = a \times (-10)^2$ $a = \frac{1}{-1}$

 $y = \frac{1}{5}x^2$ にx = 9を代入して, $y = \frac{1}{5} \times 9^2 = \frac{81}{5}$

$$y = \frac{81}{5}$$

⑨右の図の直角三角形で, x の値を求めなさい。

斜辺が6cmであるから、 $x^2 + (4\sqrt{2})^2 = 6^2$

 $x^2 = 36 - 32 = 4$ x > 0であるから、 $x = \sqrt{4} = 2$

$$x = 2$$

⑩右の図の直角三角形で, xの値を求めなさい。

xは斜辺であるから、 $12^2 + 5^2 = x^2$ $x^2 = 169$ x > 0であるから, $x = \sqrt{169} = 13$

$$x = 13$$