#Ejercicio 1:

Para el siguiente cuadripolo se pide calcular los parámetros Z.

Directiva SPICE para calcular parámetros de cuadripolos

.net I(R3) V2

Directiva SPICE para análisis AC

.ac dec 100 .001 100

Bonus:

- +1 Simular en SPICE los parámetros de cuadripolo con la directiva .net
 +1 Verifique mediante el módulo de simulación simbólica SymPy la impedancia de entrada
 +1 Presentación en jupyter notebook

#Ejercicio 2:

Dado el siguiente circuito:

 $\overline{V_i}$ por método de cuadripolos (se sugiere referirse a alguno de 👉 Obtener la transferencia de tensión

los métodos de interconexión ya vistos). Ayuda: si $C_2 = \frac{4}{3}$ (se utilizó 1.333 para la simulación), los polos de la transferencia están ubicados sobre una circunferencia de radio unitario.

- ← Construya la matriz de admitancia indefinida (MAI) del circuito.
- \leftarrow Compute la misma transferencia de tensión V_i mediante MAI.

- +1 ♥ Simular en SPICE para verificar la transferencia.
 +1 ☺ Compute la impedancia de entrada con la MAI.
 +1 ☺ Presentación en jupyter notebook

$$Z_{11} = \frac{V_1}{I_1} \Big|_{I_2 = 0} = \frac{1}{G_1 + 4G_2 + G_3} = \frac{3}{10}$$

$$Z_{21} = \frac{V_2}{I_1} \Big|_{I_2 = 0} = \frac{1}{G_1 + 4G_2 + G_3} = \frac{3}{10}$$

$$Z_{12} = \frac{V_1}{I_2} \Big|_{I_1 = 0} = \frac{3}{G_1 + 4G_2 + G_3} = \frac{3}{10}$$

$$Z_{22} = \frac{V_2}{I_2} \Big|_{I_1 = 0} = \frac{3}{G_1 + 4G_2 + G_3} = \frac{3}{10}$$

$$Z_{22} = \frac{V_2}{I_2} \Big|_{I_1 = 0} = \frac{3}{G_1 + 4G_2 + G_3} = \frac{3}{10}$$

$$z_{12} = V_1 \Big|_{T_2} = -1 = -3$$

$$G_1 + 4G_2 + G_3$$

$$Z_{zz} = \frac{V_z}{T_z} = \frac{1}{G_1 + 4G_z + G_3}$$

Ejercicio #2

$$A = \frac{V_1}{V_2} \bigg|_{\mathbf{I}_2 = 0} = \mathbf{Z} \mathbf{Y} + \mathbf{7}$$

$$\begin{vmatrix}
B = V_1 & = Z \\
(-I_2) & V_2 = 0
\end{vmatrix}$$

$$\begin{vmatrix}
D = I_2 & = 1 \\
(-I_2) & V_2 = 0
\end{vmatrix}$$

$$T_{i} = \begin{pmatrix} zy + 1 & z \\ y & 1 \end{pmatrix}$$

$$T = \left(z_1 x_2 + \frac{1}{2}\right)$$

$$z_1$$
 $\left(z_3 \chi + 1 + z_4 + z_4 + 1 + z_4 + z_4$

$$= (Y_4 \ Z_1 + (Y_2 \ Z_1 + 1))(Y_4 \ Z_3 + 1)$$

$$Y_2(Y_4 \ Z_3 + 1) + Y_4$$

$$\frac{V_0}{V_1} = \frac{1}{A} = \frac{1}{Y_4 Z_1 + (Y_2 Z_1 + 1)(Y_4 Z_3 + 1)}$$

$$\frac{V_{o}}{V_{i}} = \frac{R}{C_{2} L_{1} L_{3}} = \frac{R}{C_{2} L_{1} L_{2}} = \frac{R}{C_{2} L_{1} L_{3}} = \frac{R}{C_{2} L_{1} L_{2}} = \frac{R}{C_{2} L_{1} L_{2}}$$

* Reemplazon do por sus respectives valores:

