if. pdf

1.1 (a) M., M. 的起始状态是各自的包,

(b) M, 的接受状态: {92}, M.的接受状态: {91,94}

(C) $M_1: q_1 \xrightarrow{a} q_2 \xrightarrow{a} q_3 \xrightarrow{b} q_1 \xrightarrow{b} q_1$

 $M_2: q_1 \xrightarrow{a} q_1 \xrightarrow{a} q_1 \xrightarrow{b} q_2 \xrightarrow{b} q_4$

(d) M, 硅多, M. 接多.

1.2 M,的形式化描述:

$$\Sigma = \{a, b\}$$

start state = 91

$$S(q_1, \alpha) = q_2$$

$$\delta(9_2, \alpha) = 9_3$$

$$\{(92,b)=93$$

$$\delta(93, a) = 92$$

M2的形式化描述:

$$\delta(q_1, a) = q_1 \quad \delta(q_1, b) = q_2$$

$$\delta(q_2, a) = q_3 \quad \delta(q_2, b) = q_4$$

$$\delta(93, a) = 91, \delta(93, b) = 91$$

$$S(94, a)=93 - S(94, b)=94$$

ef. pdf

a. Compute the complete truth table of the formula:

(1) $((p \rightarrow q) \rightarrow p) \rightarrow p$

- 1	0 1	p→q	$(p\rightarrow q)\rightarrow p$	((P>q)>P)>
7	-4 T	T	T	((P>2)->P)->T T
1	E	F	T	T
 	T	T	F	T
	F		F	T

(2) (PAQ) → (PVQ)

2 1 2 1 2	PV91(PN9)→(PV	(9) 79/P/9	1 P>9	P->79	(p>q)V(p=1)
PITT	TTT	TY TY	T	F	T
P 9 PA9 T T T F F	TT	TTF	F	TX	sherry In T
FTF	TIT	F F T T F F	T	T	T
FFFF	FIT	TFF	T	TV	7

 $(4) ((p \vee q) \rightarrow r) \rightarrow ((p \rightarrow r) \vee (q \rightarrow r))$

|--|

- 1. (a) $\forall x (P(x) \rightarrow A(m.x))$
 - (b) IX (P(X) A (X,m))
 - (c) A(m, m)
 - (d) $1 \exists x (S(x) \land Vy = S(x)) \land Yy (L(y) \rightarrow B(x, y))$ Student x attended every lecture: $S(x) \land \forall y (L(y) \rightarrow B(x, y))$ $\neg \exists x (S(x) \land \forall y (L(y) \rightarrow B(x, y)))$
 - (e) Lecture y was attended by every student: L(y) $\wedge \forall x (P(x) \rightarrow B(x,y))$ $\forall \exists y (L(y) \land \forall x (P(x) \rightarrow B(x,y)))$
 - (f) Lecture y was not attended by any student: $\neg \exists x (P(x) \land B(x, y))$ $\forall y (\neg \exists x (P(x) \land B(x, y)))$
- 2. (a) 将PM def {(m,n) | m<n}代入め、の変成 YX3y3Z(X<y ∧ Z<y ∧ (X<Z→Z<X))
 可満足、对于任意的以、取y=Xt1、Z=X就可使の得到满足
 能数
 - (b) 将pm' def {(m, 2*m) | m natura | number] 代人,

Ø= VX Jy JZ (y=2x Ny=ZZ ~ (Z=2X > X=2Z))

可满足.对于任意的自然数义,取y=2x, Z=x就可使申得到满足.

(c)将PM"代入中, Ø=YX=y=Z(X<y+1 AZ<y+1 A(XXZ+1))

可凝,对于随的缺数人,取了一个, Z=X 就可使用到满足.