四川大学计算机学院、软件学院 实验报告

学号: 2023141460321 姓名: 孙谦昊 专业: 计算机科学与技术班级: 行政七班 第 12 周

课程名称	计算机组成原理实验	实验课时	1-4 节
实验项目	多路数据选择器的设计与实现	实验时间	2024. 11. 21
实验目的	1. 掌握ISE软件设计的方法 2. 掌握数据选择器的工作原理和逻辑功能 3. 掌握简单的Verilog代码编写 4. 掌握schematic使用方法		
实验环境	SWORD 4.0套件、ISE Design Suite 14.7 、Vivado Design Suite 2014.3 及以上版本		

1. 建立新的工程

双击桌面上"Xilinx ISE 14.7"图标,启动 ISE 软件,选择 File>New Project 选项,弹出新建工程引导界面。在对话框中输入工程名称 adder_4bit,并指定工程路径。点击 Next 按钮进入下一页选 Kintex7 XC7K325T 芯片,采用 FFG676 封装。另外,选择 Verilog 作为默认的硬件描述语言。再点击 Next 按钮进入下一页确认新建工程的信息。若无误,点击 Finish 。

2. 一位 2 选 1 多路选择器设计

实验内容 (算法、程序、步骤和 方法) 在工程管理区(左上角)任意位置单击鼠标右键,在弹出的菜单中选择 New Source 命令,弹出新建源代码对话框: Select Source Type。选择 Schematic 进行画图,文件命名为 mux2t1。单击 Next 进入下一步,忽略模 块的端口定义,点 next 继续,点击 Finish 完成创建。在空白的画布中绘制 如下图所示的电路图:

绘制完成电路后,对这个1位2选1数据选择器进行封装。

先点击 保存工程,然后在工程区选中 mux2t1,在 process 中展开 Design Utilities,双击 Create Schematic Symbol,生成 mux2t1 的符号 mux2t1.sym

在工程管理区的 View 中选择 Implementation,并选中要综合的模块 mux2t1,然后在过程管理区中双击 Synthesize-XST,开始综合过程。综合过程结束后,建立仿真文件在工程管理区将 View 设置为 Simulation,在任意位置单击鼠标右键,并在弹出的菜单中选择 New Source。选择要进行测试的模块: mux2t1 模块。点击 Next,单击 Finish 按钮。在弹出的代码页面中,将`ifdef auto init 和`endif 及其之间的代码都注释掉,替换为:

```
initial begin
a = 0;
b = 0;
sel = 0;
#100;
a = 1;
b = 0;
sel = 0;
#100;
a = 0;
b = 1;
sel = 1;
end
```

完成测试文件编辑并保存后,确认工程管理区中 View 选项设置为 Simulation,并选中 mux2t1_tb 模块。右键单击其中的 Simulate Behavioral Model 项,选择弹出菜单中的 Process Properties 项,使用默认配置即可。在工程管理区选中测试代码(顶层代码),然后在过程管理区双击 Simulate Behavioral Model 进行仿真。仿真结果与理论值想同后即可进行下一步。以后的步骤均按照此节中的步骤进行。

3. 四位 2 选 1 多路选择器的设计

创建新的文件,命名为 mux2t1 4。电路图设计为:

随后进行封装。将测试代码中的`ifdef auto_init 和`endif 及其之间的代码都注释掉,替换为:

```
initial begin
a = 0;
b = 0;
sel = 0;
#100;
a = 4' b1010;
b = 4' b0001;
sel = 0;
#100;
sel = 1;
end
```

随后进行仿真验证, 正确进入下一步。

4. 四位8选1多路选择器的设计

建立 mux8t1 4 文件, 绘制如下所示的电路图:

随后进行封装。将测试代码中的`ifdef auto_init 和`endif 及其之间的代码都注释掉,替换为:

```
initial begin

x0 = 4' h0;

x1 = 4' h1;

x2 = 4' h2;

x3 = 4' h3;

x4 = 4' h4;

x5 = 4' h5;

x6 = 4' h6;

x7 = 4' h7;

sel = 0;
```

```
#100;

se1 = 1;

#100;

se1 = 2;

#100;

se1 = 3;

#100;

se1 = 4;

#100;

se1 = 5;

#100;

se1 = 6;

#100;

se1 = 7;

end
```

随后进行仿真验证, 正确进入下一步。

5. 八位 8 选 1 多路选择器的设计

建立文件 mux8t1_8, 绘制如下所示的电路图:

随后进行封装。将测试代码中的`ifdef auto_init 和`endif 及其之间的代码都注释掉,替换为:

```
initial begin
sel = 0;
x0 = 8'h00;
x1 = 8'h11;
x2 = 8'h22;
x3 = 8'h33;
x4 = 8'h44;
```

```
x5 = 8' h55;
   x6 = 8' h66;
   x7 = 8' h77:
   #100:
   se1 = 1;
   #100;
   se1 = 2:
   #100:
   se1 = 3;
   #100;
   se1 = 4;
   #100;
   se1 = 5:
   #100;
   se1 = 6;
   #100;
   se1 = 7;
   end
6. 顶层模块设计
   顶层模块的核心是 8 位 8 选 1 多路选择器 mux8t1 8,数据来源于 rom。
一个64位的数据,可以分为8个8位宽的数据,作为多路选择器的输入。
多路选择器的8位输出连接到8个LED,多路选择器的控制信号sel为3位,
来自于拨位开关 sw 的低三位(2:0)。rom 的地址线输入为 addr,即 sw[3]。
图中还有一个8位 buf。
   rom. v 的代码如下:
      module rom(
          input addr,
          output [63:0] dout
      );
         reg [63:0] data[1:0];
          initial begin
            data[0] = 64' hF8829299 B0A4F9C0;
```

data[1] = 64' h8E86A1C6 83889080;

assign dout = data[addr];

end

endmodule buf8的代码如下:

module buf8(

input [7:0] din,
output [7:0] dout

```
);
    assign dout = din;
    endmodule
绘制如下所示的电路图:
```


注意: 画图连接后,双击下图 2.31 中框线中的总线,将其 Name 改为: dout (63:0)。设计完成后,对该模块进行综合、仿真,建立仿真文件 top_mux_tb.v,测试激励代码如下:

```
initial begin
sw = 0;
#100;
sw = 8'h01;
#100:
sw = 8'h02;
#100;
sw = 8'h03;
#100;
sw = 8'h04;
#100;
sw = 8'h05;
#100;
sw = 8'h06;
#100:
sw = 8'h07;
#100;
sw = 8'h08;
#100;
sw = 8'h09;
#100;
sw = 8'h0a;
#100;
sw = 8'h0b;
#100;
sw = 8'h0c;
#100;
```


最终实验结果为:

结 论 (结 果)	实验结果与理论结果保持一致。		
小结	1.在本实验中,掌握了数据选择器的工作原理和逻辑功能。掌握了简单的 Verilog 代码编写。掌握了 schematic 使用方法。 2. 复习了多路数据选择器的逻辑电路图和工作原理。		
指导老师 评 议	成绩评定: 指导教师签名:		