State space models

Sensor fusion & nonlinear filtering

Lars Hammarstrand

DISCRETE-TIME STATE SPACE MODELS

Discrete-time state space models

For a state vector, \mathbf{x}_k , and a measurement vector, \mathbf{y}_k , where k denotes a discrete time index, we have the following models,

Motion Model:
$$\mathbf{x}_{k} = f_{k-1}(\mathbf{x}_{k-1}, \mathbf{q}_{k-1})$$
 (1)

Motion Model:
$$\mathbf{x}_k = f_{k-1}(\mathbf{x}_{k-1}, \mathbf{q}_{k-1})$$
 (1)
Measurement model: $\mathbf{y}_k = h_k(\mathbf{x}_k, \mathbf{r}_k)$ (2)

where $\mathbf{x}_0 \sim p(\mathbf{x}_0)$.

• We also assume that both the motion noise, \mathbf{q}_{k-1} , and the measurement noise, \mathbf{r}_k , are independent of all other noise vectors.

THE MOTION MODEL

Motion / process model

• The system dynamics are described by (1),

$$\mathbf{x}_{k} = f_{k-1}(\mathbf{x}_{k-1}, \mathbf{q}_{k-1}), \qquad P(\mathbf{x}_{k} | \mathbf{x}_{k-1})$$

which we refer to as the motion / process model.

Note:

- It describes the state evolution, $p(\mathbf{x}_k | \mathbf{x}_{k-1})$, i.e., the distribution of \mathbf{x}_k given \mathbf{x}_{k-1} .
- The motion model thus connects state over time and helps us to rule out unreasonable trajectories.

MM

THE MEASUREMENT MODEL

Measurement model

 How the measurements relate to the state vector is described by (2),

$$\mathbf{y}_k = h_k(\mathbf{x}_k, \mathbf{r}_k) \iff \rho(\mathbf{y}_k | \mathbf{x}_k)$$

and is called the measurement model or the sensor model.

Note:

- It describes the distribution of \mathbf{y}_k given \mathbf{x}_k , $p(\mathbf{y}_k|\mathbf{x}_k)$, i.e., it defines the likelihood function.
- The measurement model relates data to the state vector and helps us to use data to learn about the states.

MODELS WITH INPUT VARIABLES

Known input signal

• The system may also have a known input signal, **u**_k,

$$\begin{cases} \mathbf{x}_k &= f_{k-1}(\mathbf{x}_{k-1}, \mathbf{u}_k, \mathbf{q}_{k-1}) \\ \mathbf{y}_k &= h_k(\mathbf{x}_k, \mathbf{u}_k, \mathbf{r}_k). \end{cases} \iff \begin{cases} \rho(\mathbf{x}_k | \mathbf{x}_{k-1}; \mathbf{u}_k), \\ \rho(\mathbf{y}_k | \mathbf{x}_k; \mathbf{u}_k), \end{cases}$$

The time index for **u** in the motion model can also be k-1.

 The input signal is often a control signal but it may also be an accurate measurement.

SELF-ASSESSMENT

An important benefit with having both a measurement and a motion model is that past data can provide information about the current state.

- True.
- False.