Introduction to Data Science

- Statistical Inference: Hypotesis testing and Significance -

Mauricio Molina

Keio University, Faculty of Economics

June 11, 2025

Contents

- Statistical Hypotheses
- Standardized Test Statistic
- p-Values
- Testing sample Mean
- 5 Rejection Region & Critical Value
- 6 Large-Sample Statistical Test for μ
- Types of Errors
- Difference Between Two Means
- Assignment 9

June 11, 2025

Hypotheses: Definition

Definition

A hypothesis test is a process that uses sample statistics to test a claim about the value of a population parameter.

- Two competing hypotheses:
 - H_a Alternative hypothesis: what the researcher wishes to support
 - H_0 Null hypothesis: the contradictory statement to H_a
- We begin by assuming H_0 is true.
- To support H_a , we must produce evidence that makes H_0 unlikely.
- Based on our sample data, we draw one of two conclusions:
 - **Reject** H_0 and conclude that H_a is true.
 - Accept (do not reject) H_0 as true.
- Note: "Accept H_0 " does not prove it true, only that there is insufficient evidence against it.

Mauricio Molina (Keio University)

Examples of Hypothesis Tests

Example 1: Electrician Wages in California

- Research question: Is the average hourly wage of electricians in California different from the national average of \$21?
- $H_a: \mu \neq 21$, $H_0: \mu = 21$
- Goal: Reject H_0 to conclude $\mu \neq 21$.

Example 2: Die Cutting Defect Rate

- A sheet-metal die cutting process currently produces 3% defectives.
- You wish to show that an adjustment decreases *p*, the defective proportion.
- H_a : p < 0.03, H_0 : p = 0.03
- If you can reject H_0 , conclude the adjusted process yields fewer than 3% defectives.

Mauricio Molina (Keio University)

Two-Tailed vs One-Tailed Tests

• In Example 1, the alternative hypothesis is

$$H_a: \mu \neq 21,$$

which does not specify a direction (could be less *or* greater). This is a two-tailed test.

• In Example 2, the alternative hypothesis is

$$H_a: p < 0.03,$$

which specifies a lower direction only.

This is a one-tailed (left-tailed) test.

Introduction to Data Science June 11, 2025 5/39

Deciding with Sample Information

To decide whether to reject or accept H_0 , we can use two pieces of information calculated from a sample, drawn from the population of interest:

Test statistic:

- A single number calculated from the sample.
- Based on the best estimator for the parameter being tested.

p-value:

• The probability, assuming H_0 is true, of observing a test statistic as extreme as (or more extreme than) the one computed.

Mauricio Molina (Keio University)

Example: Assessing Unusualness

- Test form: $H_0: \mu = 21$ versus $H_a: \mu \neq 21$.
- Assume H_0 true ($\mu = 21$).
- Sample of n = 100 electricians:

$$\bar{X} = 22, \quad s = 2.$$

• Is $\bar{X} = 22$ unusual under H_0 ? We use two measures to decide.

7/39

Mauricio Molina (Kejo University) Introduction to Data Science June 11 2025

Standardized Test Statistic

Standard error of the mean:

$$SE = \frac{s}{\sqrt{n}} = \frac{2}{\sqrt{100}} = 0.2.$$

Test statistic:

$$z = \frac{\bar{X} - \mu_0}{\text{SE}} = \frac{22 - 21}{0.2} = 5.$$

• $\bar{X}=22$ lies 5 standard deviations above μ_0 — very unlikely if H_0 is true.

Introduction to Data Science June 11, 2025 8/39

p-Value for Two-Tailed Test

What is the probability of observing $\bar{X}=22$ or something even more unlikely if $\mu=21$? The value $\bar{X}=22$ lies 5 standard deviations above $\mu=21$, but an equally "unlikely" value of would be one lying 5 standard deviations below $\mu=21$.

The p-value is

$$P(|Z| \ge 5) = P(Z > 5) + P(Z < -5) \approx 0 + 0 = 0.$$

- Such an outcome is essentially impossible under H_0 .
- Conclusion: Strong evidence to reject H_0 .

Introduction to Data Science June 11, 2025 9/39

A Statistical Test of Hypothesis

Definition

The level of significance (significance level) α for a statistical test of hypothesis is

$$\alpha = P(\text{falsely rejecting } H_0) = P(\text{rejecting } H_0 \mid H_0 \text{ is true}).$$

This value α represents the maximum tolerable risk of incorrectly rejecting H_0 . Once this significance level is fixed, the rejection region can be set to allow the researcher to reject H_0 with a fixed degree of confidence in the decision.

The Essentials of the Test

The sample mean \bar{X} is the best estimate of the actual value of μ , which is presently in question. If H_0 is true and $\mu=\mu_0$, then \bar{X} should be fairly close to μ_0 . But if \bar{X} is much larger than μ_0 , this would indicate that $H_a:\mu>\mu_0$ might be true.

Since the sampling distribution of the sample mean \bar{X} is approximately normal when n is large, the number of standard deviations that \bar{X} lies from μ_0 can be measured using the test statistic

$$z = \frac{\bar{X} - \mu_0}{s / \sqrt{n}},$$

which has an approximate standard normal distribution when H_0 is true and $\mu = \mu_0$.

Mauricio Molina (Keio University)

Introduction to Data Science

The rejection region, shown in the figure, consists of values of z which are much larger than expected.

Since the significance level α is defined as the probability of rejecting H_0 when it is true, it is the area under the curve above the rejection region—the shaded area in the figure. The critical value of z cutting off area α in the right tail is called z_{α} .

Mauricio Molina (Keio University)

Example 4: Weekly Earnings of Social Workers The average weekly earnings for female social workers is \$670. Do men in the same positions have average weekly earnings higher than \$670? A random sample of n=40 male social workers showed $\bar{X}=725$ and s=102. Test the hypotheses using $\alpha=0.01$.

Hypotheses & Test Statistic

You would like to show that the average weekly earnings for men are higher than \$670, the women's average. Hence, if μ is the average weekly earnings for male social workers, you can set out the formal test of hypothesis in steps:

Null and alternative hypotheses:

$$H_0: \mu = 670$$
 vs. $H_a: \mu > 670$

Test statistic: Using the sample information, with s as an estimate of the population standard deviation, calculate

$$z = \frac{\bar{X} - \mu_0}{s/\sqrt{n}} = \frac{725 - 670}{102/\sqrt{40}} \approx 3.41$$

Rejection Region & Critical Value

- One-tailed (right-tailed) test at $\alpha = 0.01$.
- Critical value $z_{0.01}$ satisfies

$$P(Z > z_{0.01}) = 0.01 \implies z_{0.01} \approx 2.33.$$

• Rejection region: z > 2.33.

Conclusion

$$z_{\rm obs} = 3.41 > z_{0.01} = 2.33$$

Therefore, $z_{\rm obs}$ lies in the rejection region. Reject H_0 . Conclude that male social workers earn on average more than \$670 weekly. The probability that you made an incorrect decision is $\alpha = 0.01$.

Mauricio Molina (Keio University)

Python Example

Python code

```
import numpy as np
from scipy.stats import norm
# Given data
xbar, mu0, s, n = 725, 670, 102, 40
alpha = 0.01
# Compute test statistic and critical value
z_{obs} = (xbar - mu0) / (s / np.sqrt(n))
z_{crit} = norm.ppf(1 - alpha)
# Decision
if z_obs > z_crit:
decision = "Reject HO"
else:
decision = "Fail to reject HO"
print(f"z_obs = {z_obs:.2f}, z_crit = {z_crit:.2f}")
print(decision)
```

Large-Sample Statistical Test for μ

• Null hypothesis:

$$H_0: \mu = \mu_0$$

Alternative hypothesis:

$$\begin{cases} H_{\texttt{a}}: \mu > \mu_0 & \text{(or } H_{\texttt{a}}: \mu < \mu_0 \text{)} & \text{(one-tailed)} \\ H_{\texttt{a}}: \mu \neq \mu_0 & \text{(two-tailed)} \end{cases}$$

Test statistic:

$$z = rac{ar{x} - \mu_0}{\sigma / \sqrt{n}}$$
 (or estimated as) $z = rac{ar{x} - \mu_0}{s / \sqrt{n}}$.

Rejection Region: Reject H₀ When...

One-Tailed Test

$z>z_{lpha}$ (or $z<-z_{lpha}$ when $H_{a}:\mu<\mu_{0}$)

Assumptions:

The *n* observations in the sample are randomly selected from the population and *n* is large (say, $n \ge 30$).

Rejection regions:

- Right-tailed: $z > z_{\alpha}$
- Two-tailed: $z < -z_{\alpha/2}$ or $z > z_{\alpha/2}$

Two-Tailed Test

$$z>z_{\alpha/2}$$
 or $z<-z_{\alpha/2}$

Calculating the p-Value

In the previous examples, different significance levels may lead to different conclusions. To avoid ambiguity, some experimenters prefer a variable level of significance called the p-value.

Definition

The *p*-value or observed significance level of a test is the smallest value of α for which H_0 can be rejected. It is the actual risk of committing a Type I error if H_0 is rejected based on the observed test statistic. The p-value measures the strength of the evidence against H_0 .

- Small p-values indicates the observed test statistic lies far from the hypothesized value of μ . This presents strong evidence that H_0 is false and should be rejected.
- Large p-values indicate the observed statistic is not far from the hypothesized mean and do not support rejecting H_0 .

Definition

If the p-value \leq a preassigned significance level α , then H_0 can be rejected, and the results are said to be *statistically significant* at level α .

Example 5 A quality-control manager wants to know whether the daily yield at a chemical plant—which has averaged 880 tons for years—has changed in recent months. A random sample of n = 50 days gives

$$\bar{X} = 871, \quad s = 21.$$

Calculate the p-value for this two-tailed test and draw conclusions.

22/39

Mauricio Molina (Keio University) Introduction to Data Science June 11, 2025

Solution steps:

$$H_0: \mu = 880$$
 vs. $H_a: \mu \neq 880$

Sampling distribution (large n):

$$z = \frac{\bar{X} - \mu_0}{s/\sqrt{n}} = \frac{871 - 880}{21/\sqrt{50}} \approx -3.03.$$

Rejection region (two-tailed): $|z| > z_{\alpha/2}$. The p-value is

$$P(|Z| \ge 3.03) = P(Z > 3.03) + P(Z < -3.03) = (1 - 0.9988) + 0.0012 = 0.0024.$$

Since 0.0024 is less than 0.01 (and 0.05), reject H_0 .

Introduction to Data Science June 11, 2025 23/39

Python Example: Computing z and the p-Value

```
# Given data
    xbar, mu0, s, n = 871, 880, 21, 50

# Compute test statistic
    z_obs = (xbar - mu0) / (s / np.sqrt(n))

# Two-tailed p-value sf = 1-cdf
    p_val = 2 * norm.sf(abs(z_obs))

print(f"Observed z = {z_obs:.2f}")
    print(f"Two-tailed p-value = {p_val:.4f}")

# Conclusion at alpha = 0.01
    alpha = 0.01
    if p_val <= alpha:
    print("Reject HO: evidence of change in daily yield.")
    else:
    print("Fail to reject HO: no evidence of change.")</pre>
```

Classifying p-Values: A "Sliding Scale"

- If the p-value is less than 0.01, reject H_0 . The results are **highly significant**.
- If the p-value is between 0.01 and 0.05, reject H_0 . The results are statistically significant.
- If the p-value is between 0.05 and 0.10, you usually do *not* reject H_0 . The results are only **tending toward statistical significance**.
- If the p-value is greater than 0.10, do not reject H_0 . The results are **not statistically significant**.

Example 6: Sodium Intake Test Standards recommend that Japanese should not exceed an average daily sodium intake of 3300 mg. A sample of n = 100 Japanese yields:

$$\bar{X} = 3400 \text{ mg}, \quad s = 1100 \text{ mg}.$$

Conduct a one-tailed test at $\alpha = 0.05$ to see if the mean exceeds 3300 mg.

$$H_0: \mu = 3300$$
 versus $H_a: \mu > 3300$

$$z = \frac{\bar{X} - \mu_0}{s/\sqrt{n}} = \frac{3400 - 3300}{1100/\sqrt{100}} = 0.91$$

Critical Value Approach

The critical-value approach (one-tailed, $\alpha = 0.05$):

$$z_{\alpha} = 1.645$$
.

Rejection region: z > 1.645.

Since $z_{\rm obs} = 0.91$ is not greater than 1.645, we do not reject H_0 .

Mauricio Molina (Keio University)

p-Value Approach

Calculate the p-value for z = 0.91:

$$p$$
-value = $P(Z > 0.91) = 1 - 0.8186 = 0.1814$.

Reject H_0 only if p-value ≤ 0.05 .

Here, 0.1814 > 0.05, so we do not reject H_0 .

Conclusion: There is not enough evidence to indicate that the average daily sodium intake exceeds 3300 mg.

Advantages of the p-Value Approach

- Statistical software typically reports the p-value directly. In python (see ttest_rel from scipy.stats)
- You can evaluate your results using *any* significance level you choose. Many researchers report the smallest α for which their results are statistically significant.

Mauricio Molina (Keio University)

Python Example: Sodium Intake Test

Python code

```
import numpy as np
from scipy.stats import norm
# Given data
xbar, mu0, s, n = 3400, 3300, 1100, 100
alpha = 0.05
# Compute test statistic and p-value
z_{obs} = (xbar - mu0) / (s / np.sqrt(n))
p_val = 1 - norm.cdf(z_obs)
print(f"Observed z = \{z_obs:.2f\}")
print(f"One-tailed p-value = {p_val:.4f}")
# Decision
if p_val <= alpha:
print("Reject HO: mean sodium > 3300 mg")
else:
print("Fail to reject HO: no evidence mean > 3300 mg")
```

Two Types of Errors (1 of 2)

There are two possible errors in a statistical test.

- The researcher might reject H_0 when it is really true.
- ② The researcher might accept H_0 when it is really false.

For a statistical test, these two types of errors are defined as Type I and Type II errors, shown in the decision table below.

	Null Hypothesis	
Decision	True	False
Reject H_0 Accept H_0	Type I Error (α) Correct	Correct Type II Error (eta)

Two Types of Errors (2 of 2)

Definition

A Type I error for a statistical test happens if you reject the null hypothesis when it is true. The probability of making a Type I error is denoted by the symbol α .

Definition

A Type II error for a statistical test happens if you accept the null hypothesis when it is false and some alternative hypothesis is true. The probability of making a Type II error is denoted by the symbol β .

June 11, 2025

The Power of a Statistical Test

Definition

The *power* of a statistical test, given as

$$1 - \beta = P(\text{reject } H_0 \mid H_a \text{ is true}),$$

measures the ability of the test to detect an effect when the alternative hypothesis is true.

A graph of $1-\beta$, the probability of rejecting H_0 when in fact H_0 is false, as a function of the true value of the parameter of interest is called the *power curve* for the test. Ideally, you would like α to be small and the power $(1-\beta)$ to be large.

Introduction to Data Science June 11, 2025 33/39

Statistical Power. Source: The Science of Machine Learning and AI; https://www.ml-science.com/statistical-power-of-a-test

Large-Sample Test for the Difference Between Two Means

The statistic summarizing sample information for $\mu_1 - \mu_2$ is the difference in sample means $\bar{x}_1 - \bar{x}_2$. Its true standard error is

$$\sqrt{\frac{\sigma_1^2}{n_1}+\frac{\sigma_2^2}{n_2}} \quad \text{(estimated by)} \quad \mathrm{SE} = \sqrt{\frac{s_1^2}{n_1}+\frac{s_2^2}{n_2}}.$$

We form the z statistic

$$z = \frac{(\bar{x}_1 - \bar{x}_2) - D_0}{\text{SE}} \quad ,$$

which (for large n_1, n_2) is approximately standard normal under H_0 .

Mauricio Molina (Keio University)

Introduction to Data Science

Assumptions: Samples are random and independent from two populations, each with $n_i \ge 30$.

Procedure:

- **1** Null hypothesis: $H_0: (\mu_1 \mu_2) = D_0$. Often $D_0 = 0$.
- Alternative hypothesis:

$$\begin{cases} H_{\text{a}}: (\mu_1 - \mu_2) > D_0 & \text{(or } < D_0) \text{ one-tailed,} \\ H_{\text{a}}: (\mu_1 - \mu_2) \neq D_0 & \text{two-tailed.} \end{cases}$$

Test statistic:

$$z pprox rac{\left(ar{x}_{1} - ar{x}_{2}
ight) - D_{0}}{\sqrt{rac{s_{1}^{2}}{n_{1}} + rac{s_{2}^{2}}{n_{2}}}}.$$

Example: To determine whether car ownership affects a student's academic achievement, random samples of 100 car owners and 100 nonowners were drawn from the student body. The grade point average for the $n_1=100$ nonowners had an average and variance equal to $\bar{x}_1=2.70,\ s_1^2=0.36,$ and for the $n_2=100$ car owners: $\bar{x}_2=2.54,\ s_2^2=0.40.$ Do the data present sufficient evidence to indicate a difference in the mean achievements between car owners and nonowners? Test at $\alpha=0.05$ whether $\mu_1-\mu_2\neq 0.$

$$H_0: \mu_1 - \mu_2 = 0$$
 vs. $H_a: \mu_1 - \mu_2 \neq 0$
$$z = \frac{(2.70 - 2.54) - 0}{\sqrt{\frac{0.36}{100} + \frac{0.40}{100}}} = 1.84.$$

Critical-value approach:

Two-tailed $\alpha = 0.05$ gives $z_{0.025} = 1.96$. Since |1.84| < 1.96, do not reject H_0 .

4日 → 4団 → 4 三 → 4 三 → 9 0 ○

p-value approach:

$$p$$
-value = $P(Z > 1.84) + P(Z < -1.84) = (1 - 0.9671) + 0.0329 = 0.0658.$

Since 0.05 < 0.0658 < 0.10, we cannot reject H_0 at $\alpha =$ 0.05 (but could at 0.10).

Python code:

```
# Data
x1, s1, n1 = 2.70, np.sqrt(0.36), 100
x2, s2, n2 = 2.54, np.sqrt(0.40), 100
# Compute z and p-value
       = (x1 - x2)
nıım
den = np.sqrt(s1**2/n1 + s2**2/n2)
z_{obs} = num / den
p_val = 2 * norm.sf(abs(z_obs))
print(f"z = \{z_obs:.2f\}, p-value = \{p_val:.4f\}")
```

Assignment 9

Answer all three questions in a Jupyter Notebook. Show your Python code (when requested) and a short explanation for every result. Upload the completed .ipynb to K-LMS by next Tuesday at midnight.

- Q1. From the Student Performance dataset:
 - Load the two student datasets: student-mat.csv and student-por.csv.
 - Merge them on the common identifiers (e.g. school, sex, age, address, famsize, Pstatus, guardian, etc.).
 - Compute and report:

$$\bar{G}_{1, \text{math}} = \text{mean of G1 in math}, \quad \bar{G}_{1, \text{por}} = \text{mean of G1 in Portuguese}.$$

- **Q2.** Test whether the mean G_1 is the same in math and Portuguese.
 - Formulate hypotheses:

$$H_0: \mu_{\mathsf{math}} = \mu_{\mathsf{por}} \quad \mathsf{vs.} \quad H_{\mathsf{a}}: \mu_{\mathsf{math}}
eq \mu_{\mathsf{por}}$$

- Use a two-sample (or paired) large-sample z and test for $\alpha=5\%$ and $\alpha=1\%$.
- Compute the corresponding p-value
- Make the interpretion based on results of the tests.
- Q3. Consider the difference in studytime between courses
 - ullet State hypotheses for $\mu_{\mathrm{studytime, math}}$ vs. $\mu_{\mathrm{studytime, por}}$.
 - Perform an appropriate test at $\alpha = 0.05$.
 - Compute the p-value and state your conclusion: Is there evidence of a difference in study time between math and Portuguese?