ELEN90055 Semester 2 Exam Formula Sheet (2 Pages)

NO HAND-WRITING OR ADDITIONS ALLOWED TO PRE-PRINTED SHEET

$$\begin{split} \ell_{\text{lin}}(y_n, \dots, y_1, y_0, u_n, \dots, u_1, u_0) \\ &\doteq \ell(0, \dots, 0, \bar{y}, 0, \dots, 0, \bar{u}) + \frac{\partial \ell}{\partial y_n} \big|_{(0, \dots, 0, \bar{y}, 0, \dots, 0, \bar{u})} (y_n - 0) + \dots + \frac{\partial \ell}{\partial y_0} \big|_{(0, \dots, 0, \bar{y}, 0, \dots, 0, \bar{u})} (y_0 - \bar{y}) \\ &+ \frac{\partial \ell}{\partial u_n} \big|_{(0, \dots, 0, \bar{y}, 0, \dots, 0, \bar{u})} (u_n - 0) + \dots + \frac{\partial \ell}{\partial u_0} \big|_{(0, \dots, 0, \bar{y}, 0, \dots, 0, \bar{u})} (u_0 - \bar{u}) \end{split}$$

$f(t) \qquad (t \ge 0)$	$\mathcal{L}\left[f(t) ight]$	Region of Convergence
1	$\frac{1}{s}$	$\sigma > 0$
$\delta_D(t)$	1	$ \sigma < \infty$
t	$\frac{1}{s^2}$	$\sigma > 0$
$t^n \qquad n \in \mathbb{Z}^+$	$\frac{n!}{s^{n+1}}$	$\sigma > 0$
$e^{\alpha t} \qquad \alpha \in \mathbb{C}$	$\frac{1}{s-\alpha}$	$\sigma > \Re\{\alpha\}$
$te^{\alpha t} \qquad \alpha \in \mathbb{C}$	$\frac{1}{(s-\alpha)^2}$	$\sigma > \Re\{\alpha\}$
$\cos(\omega_o t)$	$\frac{s}{s^2 + \omega_o^2}$	$\sigma > 0$
$\sin(\omega_o t)$	$\frac{\omega_o}{s^2 + \omega_o^2}$	$\sigma > 0$

f(t)	$\mathcal{L}\left[f(t) ight]$	Names
$\sum_{i=1}^{l} a_i f_i(t)$	$\sum_{i=1}^{l} a_i F_i(s)$	Linear combination
$\frac{dy(t)}{dt}$	$sY(s) - y(0^-)$	Derivative Law
$\frac{d^k y(t)}{dt^k}$	$\left s^{k}Y(s) - \sum_{i=1}^{k} s^{k-i} \left. \frac{d^{i-1}y(t)}{dt^{i-1}} \right _{t=0} - \right $	High order derivative
$\int_{0^-}^t y(\tau)d\tau$	$\frac{1}{s}Y(s)$	Integral Law
$y(t-\tau)\mu(t-\tau)$	$e^{-s\tau}Y(s)$	Delay
ty(t)	$-\frac{dY(s)}{ds}$	
$t^k y(t)$	$(-1)^k \frac{d^k Y(s)}{ds^k}$	
$\int_{0^{-}}^{t} f_1(\tau) f_2(t-\tau) d\tau$	$F_1(s)F_2(s)$	Convolution
$\lim_{t \to \infty} y(t)$	$\lim_{s \to 0} sY(s)$	Final Value Theorem
$\lim_{t \to 0^+} y(t)$	$\lim_{s \to \infty} sY(s)$	Initial Value Theorem

 $\label{eq:mote_model} \begin{aligned} &\text{note } M_f \text{ (deg)} \approx 100 \psi \\ &\text{for } 0 < \psi < 0.6 \end{aligned}$

$$(\psi = \zeta)$$

To achieve 1% settling time, $\,\sigma \geq rac{4.6}{t_s}\,$ where $\sigma = \zeta \omega_n$.

To achieve 10%-90% rise time, $\,\omega_n \geq rac{1.8}{t_r}\,$

$$\omega_d = \omega_n \sqrt{1 - \zeta^2}$$

Routh-Hurwitz array:

$$\gamma_{k,j} := -\frac{1}{\gamma_{k-1,1}} \begin{vmatrix} \gamma_{k-2,1} & \gamma_{k-2,j+1} \\ \gamma_{k-1,1} & \gamma_{k-1,j+1} \end{vmatrix}$$