MODERN ALGEBRA IFS PYQs

2019

1. 1a

Q1. (a) Let R be an integral domain. Then prove that ch R (characteristic of R) is 0 or a prime.

2. 2a

Q2. (a) Let I and J be ideals in a ring R. Then prove that the quotient ring (I + J)/J is isomorphic to the quotient ring $I/(I \cap J)$.

3. 3a

Q3. (a) If in the group G, $a^5 = e$, $aba^{-1} = b^2$ for some a, $b \in G$, find the order of b.

4. 4a

Q4. (a) Show that the smallest subgroup V of A_4 containing (1, 2)(3, 4), (1, 3)(2, 4) and (1, 4)(2, 3) is isomorphic to the Klein 4-group.

2018

5. 1a

1. (a) Prove that a non-commutative group of order 2n, where n is an odd prime, must have a subgroup of order n.

6. 2a

2. (a) Find all the homomorphisms from the group $(\mathbb{Z}, +)$ to $(\mathbb{Z}_4, +)$.

7. 2d

(d) Let R be a commutative ring with unity. Prove that an ideal P of R is prime if and only if the quotient ring R/P is an integral domain.

8.3b

(b) Show by an example that in a finite commutative ring, every maximal ideal need not be prime.

9. 4c

(c) Let H be a cyclic subgroup of a group G. If H be a normal subgroup of G, prove that every subgroup of H is a normal subgroup of G.

10. 1a

1.(a) Prove that every group of order four is Abelian.

11. 2a

2.(a) Let G be the set of all real numbers except -1 and define $a*b = a + b + ab \forall a, b \in G$. Examine if G is an Abelian group under *.

12. 2b

2.(b) Let H and K are two finite normal subgroups of co-prime order of a group G. Prove that $hk = kh \forall h \in H$ and $k \in K$.

13. 2c

2.(c) Let A be an ideal of a commutative ring R and $B = \{x \in R : x^n \in A \text{ for some positive integer } n\}$. Is B an ideal of R? Justify your answer.

10

14. 2d

2.(d) Prove that the ring $\mathbb{Z}[i] = \{a + ib : a, b \in \mathbb{Z}, i = \sqrt{-1}\}$ of Gaussian integers is a Euclidean domain. 10

15. 1a

1.(a) Prove that the set of all bijective functions from a non-empty set X onto itself is a group with respect to usual composition of functions.

16. 2a

2.(a) Show that any non-abelian group of order 6 is isomorphic to the symmetric group S_3 .

17. 2b

2.(b) Let G be a group of order pq, where p and q are prime numbers such that p > q and $q \nmid (p-1)$. Then prove that G is cyclic.

18. 2c

2.(c) Show that in the ring $R = \{a + b\sqrt{-5} \mid a, b \text{ are integers}\}$, the elements $\alpha = 3$ and $\beta = 1 + 2\sqrt{-5}$ are relatively prime, but $\alpha \gamma$ and $\beta \gamma$ have no g.c.d in R, where $\gamma = 7(1 + 2\sqrt{-5})$.

19. 1a

Q1. (a) If in a group G there is an element a of order 360, what is the order of a^{220} ? Show that if G is a cyclic group of order n and m divides n, then G has a subgroup of order m.

20. 2a

12. (a) If p is a prime number and e a positive integer, what are the elements 'a' in the ring \mathbb{Z}_{p^e} of integers modulo p^e such that $a^2 = a$? Hence (or otherwise) determine the elements in \mathbb{Z}_{35} such that $a^2 = a$.

21. 3a

(a) What is the maximum possible order of a permutation in S₈, the group of permutations on the eight numbers {1, 2, 3, ..., 8}? Justify your answer. (Majority of marks will be given for the justification).

2014

22. 1a

(a) If G is a group in which $(a \cdot b)^4 = a^4 \cdot b^4$, $(a \cdot b)^5 = a^5 \cdot b^5$ and $(a \cdot b)^6 = a^6 \cdot b^6$, for all $a, b \in G$, then prove that G is Abelian.

23. 2a

2. (a) Let J_n be the set of integers mod n. Then prove that J_n is a ring under the operations of addition and multiplication mod n. Under what conditions on n, J_n is a field? Justify your answer.

24. 3a

 (a) Let R be an integral domain with unity. Prove that the units of R and R[x] are same.

25. 1b

(b) Prove that if every element of a group (G, 0) be its own inverse, then it is an abelian group.

26. 2a

(a) Show that any finite integral domain is a field.

27. 2b

(b) Every field is an integral domain — Prove it.

28.3b

- (b) Prove that :
 - (i) the intersection of two ideals is an ideal.
 - (ii) a field has no proper ideals.

29. 1b

(b) Show that every field is without zero divisor.

10

30. 2a

(a) Show that in a symmetric group S_3 , there are four elements σ satisfying $\sigma^2 = Identity$ and three elements satisfying $\sigma^3 = Identity$.

31.3c

(c) If R is an integral domain, show that the polynomial ring R[x] is also an integral domain.
14

32. 1a

(a) Let G be a group, and x and y be any two elements of G. If $y^5 = e$ and $yxy^{-1} = x^2$, then show that O(x) = 31, where e is the identity element of G and $x \ne e$.

10

33. 1b

(b) Let Q be the set of all rational numbers. Show that

$$Q(\sqrt{2}) = \{a + b\sqrt{2} : a, b \in Q\}$$

is a field under the usual addition and multiplication.

10

34, 2a

(a) Let G be the group of non-zero complex numbers under multiplication, and let N be the set of complex numbers of absolute value 1. Show that G/N is isomorphic to the group of all positive real numbers under multiplication.

13

35.3b

(b) Let G be a group of order 2p, p prime. Show that either G is cyclic or G is generated by $\{a, b\}$ with relations $a^p = e = b^2$ and $bab = a^{-1}$.

36. 1a

(a) Let

$$G = \left\{ \begin{bmatrix} a & a \\ a & a \end{bmatrix} \middle| a \in \mathbb{R}, \ a \neq 0 \right\}$$

Show that G is a group under matrix multiplication.

37. 1b

(b) Let F be a field of order 32. Show that the only subfields of F are F itself and {0, 1}.

38. 2b

(b) Prove or disprove that $(\mathbb{R}, +)$ and $(\mathbb{R}^+, +)$ are isomorphic groups where \mathbb{R}^+ denotes the set of all positive real numbers.

39. 3a

(a) Show that zero and unity are only idempotents of Z_n if $n = p^r$, where p is a prime.

40. 4a

4. (a) Let R be a Euclidean domain with Euclidean valuation d. Let n be an integer such that $d(1) + n \ge 0$. Show that the function $d_n : R - \{0\} \to S$, where S is the set of all negative integers defined by $d_n(a) = d(a) + n$ for all $a \in R - \{0\}$ is a Euclidean valuation.

41. 1a

(a) Prove that a non-empty subset H of a group G is normal subgroup of $G \Leftrightarrow$ for all $x, y \in H$, $g \in G$, $(gx)(gy)^{-1} \in H$.

42. 1d

(d) If G is a finite Abelian group, then show that O(a, b) is a divisor of l.c.m. of O(a), O(b).

43, 2c

(c) Find the multiplicative inverse of the element

 $\begin{bmatrix} 2 & 5 \\ 1 & 3 \end{bmatrix}$

of the ring, M, of all matrices of order two over the integers.

44. 4a

4. (a) Show that d(a) < d(ab), where a, b be two non-zero elements of a Euclidean domain R and b is not a unit in R. 13

45.4b

(b) Show that a field is an integral domain and a non-zero finite integral domain is a field.