Week of May 17, 2017

- 1. For each of the cases below, suppose m=72, and $p_1=p_2=4$, Draw budget-constraint / indifference curve diagrams showing the consumer's choices. Then, on the other diagram, show what happens when the price of good 2 falls to $p_2=2$!
 - $U(x_1, x_2) = 3x_1 + 2x_2$
 - $U(x_1, x_2) = min \{2x_1, 4x_2\}$
 - Diminishing MRS preferences where MRS=x₂/2x₁
 - $U(x_1, x_2) = x_1$
- 2. Take the simplest case of perfect substitutes: $u(x_1, x_2) = x_1 + x_2$. First let m=60, and p2=10. Draw the demand curve for good 1.
- 3. $U(x_1, x_2) = min \{2x_1, x_2\}$, income is m, p_1 is the price of good 1 and p_2 is the price of good 2.
 - show that demands are $x_1=m/(p_1+2p_2)$ and $x_2=2m/(p_1+2p_2)$
 - Explain why these are both normal goods.
 - Fix m=72 and $p_2=1$. Draw a demand curve for good 1.
 - Fix m=72 and p₂=2. Draw another demand curve for good 1 on the same diagram.
 - Suppose m=72, p_2 =1 and p_1 =1. Draw a diagram showing this situation. Now show how the diagram changes when p_1 =2 instead. Finally, ask yourself this: suppose that p_1 did NOT increase, but instead income fell by JUST ENOUGH to make the consumer as well off as he would be if p_1 did increase. How much is this income change?
- 4. Sam spends his money, m=36, on chocolate bars (x_1) and all other goods (x_2) . His demand function for chocolate bars is $x_1=2m/3p_1$. Use the budget constraint to find Sam's demand function for x_2 . Then calculate the income and substitution effects from a decrease in p_1 from \$2 to \$1, and show these effects on a diagram.