Física Nuclear y de Partículas Grado en Física UNED

Tema 2: La interacción nuclear. El deuterón y la interacción nucleón-nucleón

César Fernández Ramírez Departamento de Física Interdisciplinar Universidad Nacional de Educación a Distancia (UNED)

Contextualización dentro de la asignatura

- Bloque I. Estructura nuclear
 - Tema 1. Principales características del núcleo atómico
 - · Tema 2. La interacción nuclear. El deuterón y la interacción nucleón-nucleón
 - Tema 3. Modelos nucleares
- Bloque II. Radioactividad y desintegraciones nucleares
 - Tema 4. Desintegración nuclear
 - Tema 5. Desintegración α , β y γ
- · Bloque III. Reacciones nucleares e interacción radiación-materia
 - · Tema 6. Reacciones nucleares
 - Tema 7. Interacción radiación-materia
- Bloque IV. Física subnuclear
 - · Tema 8. El Modelo Estándar de partículas elementales
 - Tema 9. Quarks y hadrones

Cronograma

	L	М	Х	J	V	S	D
Octubre		1	2	3	4	5	6
	7	8	9	10	11	12	13
	14	15	16	17	18	19	20
	21	22	23	24	25	26	27
	28	29	30	31			
Noviembre					1	2	3
	4	5	6	7	8	9	10
	11	12	13	14	15	16	17
	18	19	20	21	22	23	24
	25	26	27	28	29	30	
Diciembre							1
	2	3	4	5	6	7	8
	9	10	11	12	13	14	15
	16	17	18	19	20	21	22
	23	24	25	26	27	28	29
	30	31					
Enero			1	2	3	4	5
	6	7	8	9	10	11	12
	13	14	15	16	17	18	19
	20	21	22	23	24	25	26
	27	28	29	30	31		

Bloque I	
	Tema 1
	Tema 2
	Tema 3
Bloque II	
	Tema 4
	Tema 5
Bloque III	
	Tema 6
	Tema 7
Bloque IV	
	Tema 8
	Tema 9
	•

Apertura foros				
Apertura TE				
PEC				
Periodo vacacional				
Cierre foros				
Exámenes				
Cierre TE				

Material disponible

- Material disponible en el repositorio Github de la asignatura
 - https://github.com/cefera/FNyP
 - Esta presentación:
 - ./Presentaciones/Tema3.pdf
 - Código en Python asociado:
 - ./Notebooks/Tema2.ipynb

Esquema

- Introducción
- Deuterón
 - Momento dipolar magnético
 - Momento cuadrupolar eléctrico
 - · Función de onda
- Dispersión nucleón-nucleón
 - Desarrollo de ondas parciales
 - Desfasajes
 - · Aproximación de alcance efectivo
- Potencial de Yukawa

Objetivos específicos

- Justificar la necesidad de la presencia de fuerzas nucleares para explicar la existencia de los núcleos.
- Estudiar la interacción nuclear en estados ligados (deuterón) y en colisiones nucleón-nucleón.
- Describir las principales caracteríssticas de las fuerzas nucleares.

Introducción

- Hemos visto las propiedades generales de los núcleos
 - Núcleos compuestos por nucleones
 - Radio nuclear, densidad de carga y materia
 - Masa y abundancia de los núcleos
 - Energía de ligadura. Estabilidad nuclear
 - Momentos nucleares, espín, isospín, paridad
- Vamos a estudiar
 - El sistema más simple de interacción nuclear: nucleón-nucleón
 - · El estado nuclear ligado más simple: el deuterón
 - · Propiedades de la interacción nucleón-nucleón

Propiedades generales

- Sistema ligado protón-neutrón. Descubierto en 1932
- Único núcleo estable formado por dos nucleones

⇒ Ideal para estudiar la interacción nucleón-nucleón

A, Z, N	JP, T	Abundancia	Radio de carga	Energía de ligadura	Masa	Momento dipolar magnético	Momento cuadrupolar eléctrico
2, 1, 1	1+, 0	0,0145 %	2,1421(88) fm	2,225 MeV	2014,10178 u.m.a. 1876,124 MeV	0,857μΝ	0,00286 b

d=p+n

- El momento angular total o espín total se puede escribir: $\vec{J} = \vec{s}_p + \vec{s}_n + \vec{L}$, donde \vec{L} es el momento angular orbital entre el protón y el neutrón.
- La paridad viene dada por:

$$\mathscr{P}(d) = \mathscr{P}(p)\,\mathscr{P}(n)\,\mathscr{P}(L) = (+)(+)\mathscr{P}(L) = \mathscr{P}(L) \Rightarrow L = \text{par}$$

- · Los espines del protón y el neutrón se pueden acoplar a S=0,1
- · Si S=0, $|L| \leq J \leq |L|$, y como J=1, entonces L=1 que está prohibido por paridad
- Si S = 1, $|L 1| \le J \le |L + 1|$ y como J = 1, L = 0,1,2
- · Como L=1 está prohibido por la paridad, L=0,2

Momento angular

- Utilizando la notación espectroscópica $^{2S+1}L_J$ los dos posibles estados son: L=0 (onda S) : 3S_1 y L=2 (onda D) : 3D_1
- · La función del onda del deuterón será una mezcla de ambos estados de momento angular orbital relativo: 96% 3S_1 y 4% 3D_1
- · La función de onda total del deuterón ha de ser antisimétrica bajo el intercambio de dos nucleones $|d\rangle = |\phi(\vec{r})\rangle \otimes |\chi\rangle_S \otimes |\chi\rangle_T$
- La componente de espín $|\chi\rangle_S$ es simétrica (triplete) y la componente espacial $|\phi(\vec{r})\rangle$ también (ondas S y D)
- · La componente de isoespín $|\chi\rangle_T$ ha de ser **antisimétrica**

Isospín y función de onda

El isopín del sistema N-N es:

$$|p\rangle = |T = \frac{1}{2}, T_3 = +\frac{1}{2}\rangle$$

$$|n\rangle = |T = \frac{1}{2}T_3 = -\frac{1}{2}\rangle$$

$$|1,1\rangle = |p\rangle \otimes |p\rangle$$

$$|1,0\rangle = \frac{1}{\sqrt{2}} [|p\rangle \otimes |n\rangle + |n\rangle \otimes |p\rangle]$$

$$|1,-1\rangle = |n\rangle \otimes |n\rangle$$

luego $|\chi\rangle_T=|T=0,T_3=0\rangle$ y la f.d.o del deuterón se puede escribir:

$$|d\rangle = \left[a_S |\phi_S(r)\rangle \otimes |^3 S_1\rangle + a_D |\phi_D(r)\rangle \otimes |^3 D_1\rangle \right] \otimes |\chi\rangle_{S=1} \otimes |\chi\rangle_{T=0}$$

Momento dipolar magnético

- · Hipótesis más simple $\mu_d=\langle\overrightarrow{\mu}_d\rangle=\mu_p+\mu_n=0.87956(7)\,\mu_N$ que es mayor que el valor experimental $\mu_d=\langle\overrightarrow{\mu}_d\rangle=0.857438231(5)\,\mu_N$
- El desacuerdo es, mayormente, consecuencia de que el deuterón no es un estado puro de onda S.

$$\mu_d = a_S^2 \,\mu(^3S_1) + a_D^2 \,\mu(^3D_1)$$

$$\mu(^{3}S_{1}) = \frac{1}{2} \left(g_{s}^{(p)} + g_{s}^{(n)} \right) \mu_{N} = \mu_{p} + \mu_{n}$$

$$\mu(^{3}D_{1}) = \left[\frac{3}{4} - \frac{1}{4} \left(g_{s}^{(p)} + g_{s}^{(n)}\right)\right] \mu_{N}$$

• El valor experimental se obtiene si $a_S^2=0.96$ y $a_D^2=0.04$

Momento cuadrupolar eléctrico

Según vimos en el Tema 1, el momento cuadrupolar eléctrico se escribe:

$$Q_{20} = \sqrt{\frac{16\pi}{5}} \langle \psi_d(\vec{r}) | r^2 Y_{20}^*(\theta, \phi) | \psi_d(\vec{r}) \rangle$$

· Como la función de onda del deuterón es una mezcla de estados S y D:

$$Q_d = a_S^2 \langle {}^3S_1 | Q_{20} | {}^3S_1 \rangle + a_D^2 \langle {}^3D_1 | Q_{20} | {}^3D_1 \rangle + 2a_S a_D \langle {}^3S_1 | Q_{20} | {}^3D_1 \rangle$$

• Pero el término $\langle {}^3S_1 \mid Q_{20} \mid {}^3S_1 \rangle = 0$ y el resultado final es:

$$Q_d = \frac{a_D a_S}{\sqrt{50}} \int u(r) v(r) r^2 dr - \frac{a_D^2}{20} \int v^2(r) r^2 dr = 0,00286 \text{ b}$$

Deformación

- La existencia de un momento cuadrupolar implica que el deuterón no es esférico
- Al ser $Q_d = 0.00286 \,\mathrm{b} > 0$ el deuterón es prolato
- Dado que es un sistema de dos cuerpos, implica la existencia de fuerzas NO centrales

Función de onda

Caso sencillo. Pozo de potencial central y onda S

$$r < R_0 u(r) = A \sin\left(k_1 r\right)$$

$$r < R_0 u(r) = A \sin\left(k_1 r\right) \qquad \hbar k_1 = \sqrt{2\mu \left(V_0 + E_d\right)}$$

$$r > R_0 u(r) = C \exp(-k_2 r) \qquad \hbar k_2 = \sqrt{-2\mu E_d}$$

$$\hbar k_2 = \sqrt{-2\mu E_d}$$

La continuidad de la f.d.o. y su derivada imponen $k_1 = -k_2 \tan(k_1 R_0)$

Si

$$R_0=2.14\,\mathrm{fm} \Rightarrow V_0=32.65\,\mathrm{MeV} \Rightarrow V_0R_0^2\simeq 150\,\mathrm{MeV}\,\mathrm{fm}^2$$

Para que haya estados ligados en onda S se ha de cumplir que

$$V_0 R_0^2 > \frac{\pi^2 \hbar^2}{8\mu} = 102,33 \text{ MeV fm}^2$$

Dispersión elástica bajo potencial central

- Tenemos dos secciones eficaces, una para el estado singlete y otra para el triplete. En el sistema de referencia centro de masas $\frac{d\sigma}{d\Omega} = \frac{1}{4} \left. \frac{d\sigma}{d\Omega} \right|_{S=0} + \frac{3}{4} \left. \frac{d\sigma}{d\Omega} \right|_{S=1}$ y podemos analizar cada sección eficaz independientemente
- La amplitud de colisión entre dos partículas cuya interacción es invariante bajo rotaciones depende de dos variables cinemáticas
- La teoría de dispersión se basa en construir el operador de dispersión S que conecta los estados iniciales de dispersión con los finales. Dicho operador S cumple:

$$[S,H_0]=0\Rightarrow$$
 Se conserva la energía
$$[S,\vec{p}_{\rm CM}]=\vec{0}\Rightarrow$$
 Se conserva el momento lineal total
$$[S,\overrightarrow{L}^2]=0\Rightarrow$$
 Se conserva el momento angular total

Se puede expandir S en una base de momento angular: ondas parciales

Desarrollo en ondas parciales

- $\cdot S \mid E, \ell, m \rangle = S_{\ell}(E) \mid E, \ell, m \rangle \text{ donde } S_{\ell}(E) = \mathrm{e}^{2i\delta_{\ell}(k)}; \text{ teniendo presente: } (\hbar k)^2 = p^2 = E^2 m^2$
- · La amplitude de dispersión se puede escribir:

$$f(k,\theta) = \frac{1}{2ik} \sum_{\ell=0}^{\infty} (2j+1) \left(S_{\ell}(k) - 1 \right) P_{\ell}(\cos \theta) = \sum_{\ell=0}^{\infty} (2j+1) f_{\ell}(k) P_{\ell}(\cos \theta)$$
$$f_{\ell}(k) = \frac{S_{\ell}(k) - 1}{2ik} = \frac{\sin \delta_{\ell}(k) e^{i\delta_{\ell}(k)}}{k}$$

$$\sigma(k) = \int d\Omega \left| f(k,\theta) \right|^2 = 4\pi \sum_{\ell=0}^{\infty} \left| f_{\ell}(k) \right|^2 = \sum_{\ell=0}^{\infty} \sigma_{\ell} \text{ donde } \sigma_{\ell} = 4\pi \left(2\ell + 1 \right) \frac{\sin^2 \delta_{\ell}(k)}{k^2}$$

· Los desfasajes $\delta_{\ell}(k)$ contienen toda la información sobre la interacción

Teorema óptico

- . Cota de unitaridad: $\sigma_{\ell}(k) \leq \frac{4\pi(2\ell+1)}{k^2}$
- . Si $\delta_{\ell}(k)=\frac{\pi}{2}\mod\pi\Rightarrow\sin^2\delta_{\ell}(k)=1$ y se satura la cota de unitaridad y se dice que la onda parcial es resonante
- · Si calculamos la amplitud a ángulo cero:

$$\operatorname{Im}\left[f(k,0)\right] = \sum_{\ell=0}^{\infty} (2\ell+1) \operatorname{Im}\left[f_{\ell}(k)\right] = \sum_{\ell=0}^{\infty} (2\ell+1) \frac{\sin^2 \delta_{\ell}(k)}{k} = \sum_{\ell=0}^{\infty} \frac{k}{4\pi} \sigma_{\ell}(k) = \frac{k}{4\pi} \sigma(k)$$

se obtiene el denominado teorema óptico

Dispersión a baja energía

- · A baja energía sólo contribuyen unas pocas ondas parciales
- Si R_0 es el alcance del potencial (donde es apreciable) solo contribuyen las ondas tales que $\ell < kR_0$
- · A muy baja energía $kR_0 \ll 1$ sólo contribuye la onda $\ell=0$ $f(k,\theta) \simeq f_0(k) = \frac{e^{\delta_0(k)} \sin \delta_0(k)}{k} \text{ luego } \sigma(k) \simeq \sigma_0(k) = 4\pi \frac{\sin^2 \delta_0(k)}{k^2} \text{ y}$ $\frac{d\sigma}{d\Omega} \simeq |f_0(k)|^2 = \frac{\sin^2 \delta_0(k)}{k^2} \text{ es isótropa}$

Relación entre el desfasaje y el potencial

Tomamos de nuevo el pozo cuadrado

$$r < R_0 \rightarrow u_1(r) = A \sin \left(k_1 r\right)$$
 $\hbar k_1 = \sqrt{2\mu(V_0 + E)}$
 $r > R_0 \rightarrow u_2(r) = C \sin \left(k_2 r + \delta\right)$ donde $\hbar k_2 = \sqrt{2\mu E}$

- Bajo la hipótesis de que la colisión es a baja energía y se pueden utilizar relaciones no relativistas $E=\frac{p^2}{2\mu}=\frac{\hbar k_2^2}{2\mu}$
- · Aplicando la ecuación de continuidad en R_0 : $k_1 \tan \left(k_2 R_0 + \delta\right) = k_2 \tan \left(k_1 R_0\right)$ de donde se obtiene el desfasaje δ
- SI E = 0, $u_2(r) = A + Br$

Aproximación de alcance efectivo

Para el límite $E \to 0$ se puede, se obtiene $\sigma \to 4\pi a^2$ donde a es la «longitud de dispersión» y cumple $a = \frac{\sin \delta_0}{\iota}$ ya que sólo contribuye $\ell = 0$

$$u_2(r) = 1 - \frac{r}{a}; \quad k_2 = 0$$

Si se normaliza $u_2(0) = 1$, se puede escribir

$$u_2(r) = 1 - \frac{r}{a}; \quad k_2 = 0$$

$$r \quad u_2(r) = \frac{\sin\left(k_2 r + \delta_0\right)}{\sin\delta_0}; \quad k_2 > 0$$

La dependencia del desfasaje con la energía la proporciona el alcance efectivo r_e a través de $k \cot \delta_0 = -\frac{1}{a} + \frac{1}{2} r_e k^2$

La sección eficaz queda:
$$\sigma = 4\pi a^2 \left[\left(1 - \frac{a r_e k^2}{2} \right)^2 + a^2 k^2 \right]^{-1}$$

Parámetros de dispersión nucleón-nucleón

		T=1	T=O
pp	а	-17,1(2) fm	_
	R_0	2,794(15) fm	-
nn	а	-16,6(6) fm	_
	R_0	2,84(3) fm	_
np	а	-23,715(15) fm	5,423(5) fm
	R_0	2,73(3) fm	1,738(2) fm

- Simetría de carga
- Si a>0 existe un estado ligado
 Si a<0 la interacción no es lo suficientemente fuerte para ligar el sistema
- Dependencia de la interacción con el isospín

Desfasajes

- Para los sistemas pp y nn, el isospín es 1, luego hay dos posibilidades:
 - $S=0 \rightarrow L \text{ par } (^{1}S_{0}, ^{1}D_{2}, ...)$ $S=1 \rightarrow L \text{ impar } (^{3}P_{0}, ^{3}P_{1}, ^{3}P_{2}, ...)$
- Para el sistema np, si el isospín es 1, los casos son los mismos que antes
- Para el sistema np, si el isospín es 0, hay dos posibilidades:
 - $S=0 \rightarrow L \text{ impar } (^{1}P_{1}, ...)$ $S=1 \rightarrow L \text{ par } (^{3}S_{1}, ^{3}D_{1}, ^{3}D_{2}, ^{3}D_{3}, ...)$

Potencial de Yukawa

- · Desde el punto de vista clásico, el potencial crea un campo con el que se produce la interacción
- Yukawa introdujo la idea de que la interacción era debido al intercambio de cuantos de campo (mesones)
- Esto dió lugar al modelo OPEP (one pion exchange potential)
- · El pión intercambiado es virtual ya que no cumple la relación $E^2 = (mc^2)^2 + (pc)^2$

$$V(r) = \frac{g^2}{4\pi} \frac{e^{-r/r_0}}{r}$$

- donde $r_0 = \hbar/mc$
- La masa del pión es $m_\pi=139{,}57~{\rm MeV}/c^2$ implicando $r_0\sim 1{,}4~{\rm fm}$

Potencial nucleón-nucleón

- Atractivo
- Corto alcance
- Existe saturación
- Energía de ligadura por nucleón promedio 8 MeV
- Tiene un core impenetrable (repulsivo)
- Hay dependencia con el isospín (como se ve por la diferencia entre el singlete y el triplete en el deuterón)
- Hay dependencia con el espín
- Es necesaria una fuerza tensorial que explique el momento cuadrupolar eléctrico del deuterón
- A gran distancia el potencial se puede explicar como el intercambio de un pión (Yukawa)

Potencial nucleón-nucleón (II)

El potencial más general contiene 12 términos

$$\begin{split} V(r) &= V_c(r) V_s(r) \vec{\sigma}_1 \cdot \vec{\sigma}_2 + V_{LS}(r) \overrightarrow{L} \left(\vec{\sigma}_1 + \vec{\sigma}_2 \right) + V_T(r) S_{12} \\ &+ V_Q(r) \left[\left(\vec{\sigma}_1 \cdot \overrightarrow{L} \right) \left(\vec{\sigma}_2 \cdot \overrightarrow{L} \right) + \left(\vec{\sigma}_2 \cdot \overrightarrow{L} \right) \left(\vec{\sigma}_1 \cdot \overrightarrow{L} \right) \right] \\ &+ V_{PP} \left[\left(\vec{\sigma}_1 \cdot \vec{p} \right) \left(\vec{\sigma}_2 \cdot \vec{p} \right) \right] \\ &\text{donde } S_{12} &= \frac{3}{r^2} \left(\vec{\sigma} \cdot \vec{r} \right)^2 - \vec{\sigma}_1 \vec{\sigma}_2 \text{ a los que hay que añadir otros 6 términos} \\ &\text{dependientes del isospín } V_\tau(r) \vec{\tau}_1 \cdot \vec{\tau}_2 + V_{sr}(r) \left(\vec{\sigma}_1 \cdot \vec{\sigma}_2 \right) \left(\vec{\tau}_1 \cdot \vec{\tau}_2 \right) + \dots \end{split}$$

Resumen

- Los núcleos existen debido a la existencia de «fuerzas nucleares»
- El mejor sitio para empezar a entender las fuerzas nucleares son los sistemas de dos nucleones y el sistema ligado más sencillo, el deuterón
- Las principales características de la fuerza nuclear son:
 - Es muy intensa, permite superar la repulsión Coulombiana
 - Depende del espín
 - Tiene una componente tensorial
 - Tiene corto alcance
 - Es independiente de la carga eléctrica
 - La energía de ligadura por nucleón satura