

Universidad Autónoma de San Luis Potosí Facultad de ingeniería Inteligencia Artificial Aplicada Practica 6 Implementación de una red neuronal en sistemas embebidos

Ana Sofía Medina Martínez

Fecha 3/10/2024

Objetivo

El estudiante aprenderá a construir, compilar y entrenar una red neuronal utilizando la librería Keras para resolver problemas de clasificación y regresión y que aprenda a importar modelos de redes neuronales en sistemas embebidos.

Procedimiento

- 6.1.- Sigue las instrucciones del archivo "practica_6_training" para desarrollar y entrenar un modelo de red neuronal de clasificación.
- 6.2.- Sigue las instrucciones del archivo "practica_6_inferencia" para implementar una red neuronal en un microcontrolador.

Resultados

→ Model: "sequential 1"

Layer (type)	Output Shape	Param #
dense_2 (Dense)	(None, 8)	32
dense_3 (Dense)	(None, 8)	72
dense_4 (Dense)	(None, 5)	45

Total params: 149 (596.00 B) Trainable params: 149 (596.00 B) Non-trainable params: 0 (0.00 B)

Después de definir la arquitectura de la red, vamos a compilar el modelo

```
model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
```

- optimizer: Optimizador.
- loss: Función de pérdida, en este caso, utilizamos la entropía cruzada categórica porque estamos realizando una clasificación multiclase.
- metrics: Métricas que se utilizarán para evaluar el modelo.

```
14] model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy'])
```

Por último, vamos a entrenar el modelo.

model.fit(train_data, train_labels, epochs=20, validation_data=(test_data, test_labels))

history = model.fit(X_train, y_train, epochs=20, validation_data=(X_test, y_test)) 51/51 Epoch 15/20 51/51 Epoch 16/20 51/51 Epoch 16/20 51/51 Epoch 17/20 51/51 Epoch 18/20 51/51 Fpoch 18/20 51/51 Fpoch 19/20 ______ 1s 18ms/step - accuracy: 0.2467 - loss: 1.5934 - val_accuracy: 0.2401 - val_loss: 1.598

Si el modelo se entrena correctamente debes de obtener un valor de perdida bajo y un valor de precisión alto, ádemas de que la precisión en los datos de validación debe ser similar a la precisión en los datos de entrenamiento.

--- 0s 2ms/step - accuracy: 0.2581 - loss: 1.5919 - val_accuracy: 0.2401 - val_loss: 1.5985

3. Convertir el modelo a TensorFlow Lite

4

Una vez que hemos entrenado el modelo, vamos a convertirlo a TensorFlow Lite para poder ejecutarlo en la ESP32.

Para convertir el modelo a TensorFlow Lite, vamos a utilizar la función TFLiteConverter, de TensorFlow.

```
from tensorflow import lite as tflite

model_name = "mpu6650_model" #Nombre del archivo donde se guardará el modelo

converter = tflite.TfliteConverter.from.keras_model(model)

tflite_model = converter.convert() %forevertions el modelo a un modelo tflite

with open(f"(model_name).tflite", 'wb') as f: #Abrimos un archivo en modo ascritura binaria

f.write(tflite_model) #Guardamos el modelo en un archivo llamado model.tflite

*Saved artifact at '/tmp/tmpfq5emcdg'. The following andpoints are available:

*Endostr' iserve'

args_0 (MOSITIONIL_ONLY): TensorSpec(shape+(None, 3), dtypextf.float32, name='keras_tensor_4')

OUTUT Type:

TensorSpec(shape(), dtypextf.resource, name=None)

133366636631218: TensorSpec(shape(), dtypextf.resource, name=None)

1333666366363128: TensorSpec(shape(), dtypextf.resource, name=None)

1333663636363128: TensorSpec(shape(), dtypextf.resource, name=None)

133366363636363631: TensorSpec(shape(), dtypextf.resource, name=None)

1333663636363636363636: TensorSpec(shape(), dtypextf.resource, name=None)

1333663636363636363636: TensorSpec(shape(), dtypextf.resource, name=None)

1333663636363636363636: TensorSpec(shape(), dtypextf.resource, name=None)

13336636363636363636: TensorSpec(shape(), dtypextf.resource, name=None)

13336636363636363636: TensorSpec(shape(), dtypextf.resource, name=None)

133366363636363636: TensorSpec(shape(), dtypextf.resource, name=None)

133366363636363636: TensorSpec(shape(), dtypextf.resource, name=None)

13336636363636363636: TensorSpec(shape(), dtypextf.resource, name=None)

13336636363636363636: TensorSpec(shape(), dtypextf.resource, name=None)

13336636363636363636: TensorSpec(shape(), dtypextf.resource, name=None)

1333663636363636363636: TensorSpec(shape(), dtypextf.resource, name=None)

1333663636363636363636: TensorSpec(shape(), dtypextf.resource, name=None)

13336636363636363636: TensorSpec(shape(), dtypextf.resource, name=None)

13336636363636363636: TensorSpec(shape(), dtypextf.resource, name=None)

133366363636363636: TensorSpec(shape(), dtypextf.resour
```

Comprensión

- 1. ¿Qué pasos se deben seguir para entrenar una red neuronal con Keras?
 - Definir el modelo.
 - Compilar el modelo especificando optimizador, función de pérdida y métricas.
 - Preparar los datos.
 - Entrenar el modelo con el conjunto de entrenamiento
 - Evaluar el rendimiento con el conjunto de prueba
- 2. ¿Cuál es la función del conjunto de entrenamiento y del conjunto de prueba en el proceso de entrenamiento?
 - El conjunto de entrenamiento se usa para ajustar los pesos del modelo.
 - El conjunto de prueba evalúa el rendimiento generalizado del modelo, comprobando que no haya sobreajuste.
- 3. ¿Qué se entiende por función de pérdida, optimizador y métricas en el contexto del entrenamiento de una red neuronal?
 - Función de pérdida: mide qué tan bien o mal está funcionando el modelo.
 - Optimizador: ajusta los pesos para minimizar la pérdida.
 - Métricas: evaluan el rendimiento del modelo durante el entrenamiento.
- 4. ¿Qué tipo de problemas se pueden resolver utilizando una red neuronal entrenada con Keras?

Clasificación, regresión, reconocimiento de imágenes, procesamiento de lenguaje natural, predicción de series temporales, entre otros.

5. 5.- ¿Qué es IA on the Edge?

Es el uso de inteligencia artificial directamente en dispositivos locales, sin necesidad de depender de servidores o la nube para realizar cálculos.

6. 6.- ¿Qué ventajas tiene IA on the Edge en los sistemas embebidos?

Menor latencia, mayor seguridad de datos, menor consumo de ancho de banda y operación en tiempo real, incluso sin conexión a internet.

7. 7.- ¿Qué es TensorFlow Lite?

Es una versión optimizada de TensorFlow diseñada para ejecutar modelos de machine learning en dispositivos móviles y sistemas embebidos.

Conclusiones

En conclusión, entrenar una red neuronal con Keras implica seguir un proceso estructurado que incluye la preparación de datos, la definición del modelo y su evaluación. La importancia de usar conjuntos de entrenamiento y prueba asegura que el modelo generalice correctamente, evitando el sobreajuste. Además, herramientas como TensorFlow Lite permiten llevar la inteligencia artificial a dispositivos embebidos, impulsando el desarrollo de soluciones de IA on the Edge, que ofrecen ventajas como mayor eficiencia, menor latencia y mejor privacidad de los datos.

El reto en esta práctica fue la falta de espacio de almacenamiento en mi computadora y la falta de conocimiento de microcontroladores y de Arduino, mismos que me impidió desarrollar por completo la práctica.