ACUERDO POR EL QUE SE APRUEBA EL MÉTODO DE VALORACIÓN DEL ARBOLADO ORNAMENTAL, NORMA GRANADA, PARA SU APLICACIÓN EN EL TERRITORIO DE LA COMUNIDAD DE MADRID.

Acuerdo de 7 de noviembre de 1991, del Consejo de Gobierno, por el que se aprueba el método de valoración del arbolado ornamental, Norma Granada, para su aplicación en el territorio de la Comunidad de Madrid. $\binom{1}{1}$

La protección de las especies vegetales existentes en el ámbito de la Comunidad de Madrid, ha sido y sigue siendo uno de los objetivos prioritarios marcados por el Gobierno Regional, dentro de la política de conservación de la naturaleza.

En este sentido, se debe señalar que fue Madrid la primera Comunidad del Estado Español, que ya en el año 1983, contaba con una normativa para proteger una especie que en ese momento se encontraba en fase regresiva en el territorio de la Comunidad madrileña. Dicha normativa fue precedida de otras disposiciones para la salvaguarda de otras plantas amenazadas.

La sensibilidad e interés de la Comunidad de Madrid, por la protección de estas especies, queda corroborada con la promulgación de la Ley 2/1991, de 14 de febrero, para la Protección y Regulación de la Fauna y Flora Silvestres del territorio de nuestra Comunidad.

Sin embargo, cuando lamentablemente se produce alguna infracción relacionada con la materia que nos ocupa, a la hora de fijar la cuantía de la multa o sanción correspondiente, se detecta la falta de un método de aplicación para calcular el valor intrínseco de la especie dañada.

Teniendo en cuenta que la protección de estas especies es una labor que concierne a todos, es por lo que la Asociación Española de Parques y Jardines Públicos, de la cual la Agencia de Medio Ambiente es socio corporativo desde su fundación en 1973, se ha venido ocupando en congresos, reuniones, jornadas técnicas y publicaciones de muchos aspectos concernientes al cuidado y defensa de los árboles.

Dentro de los trabajos realizados, se debe incluir la Norma Granada, elaborada como método de valoración del arbolado ornamental, refrendada con el apoyo de la UNESCO a través de su programa El Hombre y la Biosfera, en cuyo Comité Español también está presente la Agencia de Medio Ambiente.

En consecuencia, el Consejo de Gobierno, con el fin de cubrir este vacío técnico, en materia de valoración del arbolado, en el territorio de la Comunidad de Madrid, a iniciativa de la Agencia de Medio Ambiente, y a propuesta del Consejero de Cooperación,

¹.-BOCM 12 de diciembre de 1991.

ACUERDA

Aprobar como método de valoración del arbolado ornamental, para su aplicación en el territorio de la Comunidad de Madrid, la Norma Granada, que se adjunta como anexo único.

Publicar el presente Acuerdo en el «Boletín Oficial de la Comunidad de Madrid» y en el «Boletín Oficial del Estado».

ANEXO ÚNICO JUSTIFICACIÓN DEL MÉTODO

A. ANTECEDENTES

1. Consideraciones generales sobre la valoración del arbolado.

Una de las especificidades de esta valoración que analizamos es que no se trata de las habituales en una economía de competencia. No existe demanda ni oferta en términos de mercado, ni tampoco comprador ni vendedor; por lo tanto, no se puede buscar precio, que es un dato histórico, fruto de una compraventa, sino un valor.

No se valora aquí un proceso de explotación, ni un bien productivo de transformación o de consumo.

Por lo tanto, la valoración de árboles de interés paisajístico debe aspirar a reflejar una función de utilidad de contenido económico, pero a través de cierto equilibrio entre los procedimientos estrictamente econométricos y las componentes de significación simbólica, paisajística, histórica, estética o de bienestar, que son valores de afección que completan el cuadro.

La valoración pretende brindar una solución cifrada y un apoyo objetivo a las decisiones o al análisis de cualquiera de los siguientes supuestos en los que aparece arbolado de interés paisajístico, tanto en órbita pública como privada:

- Expropiación, afección a arbolado de terceros por actividad de planeamiento de la Administración.
- Estimación de repercusión de catástrofes, incendios, inundaciones.
- Daños a bienes municipales, concepto de valoración de daños por obras en vía pública, redes de servicio, accidentes de tráfico y vandalismo. Fianzas e indemnizaciones por infracciones.
- Análisis presupuestario o financiero de la actividad pública.
- Catastro, inventario o catálogo.
- Trasplantes.
- Seguros.
- Regulación mediante Ordenanzas y Normas Urbanísticas.
- Tasas urbanísticas. Garantía hipotecaria. Compraventa.
- Consideraciones de impacto ambiental, evaluación económica.

Existen distintos procedimientos de valoración, traducidos y adaptados de Alemania, Australia, Bélgica, Francia, Finlandia, Italia, Reino Unido, Suiza, USA y algunas normas españolas prestigiosas y en vigor.

Las razones que avalan la búsqueda de un nuevo método son:

- Falta de actualización en algunas de ellas. La actualización simplemente monetaria no es satisfactoria, ni acorde con la realidad.
- Omisión de bloques de vegetación, carencia o lagunas en el repertorio (arbolado mediterráneo, tropical y palmeras).
- Fórmulas proporcionales, con valor unitario fijo en cada tramo.
- Fórmulas empíricas, polinómicas, de conversión económica discutible y dificil justificación.

Al mismo tiempo, la inevitable componente subjetiva del tasador se sintetiza en un criterio de fundamento estadístico que postula que la valoración más correcta es aquella a la que corresponde una probabilidad más alta para los datos de mercado de que disponemos, y siendo el mismo siempre concurrente. Presumiblemente en tal valor coincidirán, por tanto, diferentes tasadores y según este principio, en el hipotético caso de varios tasadores, el valor objetivo sería la moda (valor de mayor frecuencia) de los valores subjetivos.

B. PRESENTACIÓN DEL MÉTODO

El método de valoración que se propone con la presente Norma de Granada se basa en los siguientes elementos:

Objetivación máxima de los elementos y factores tomados del mercado y/o medidos en la realidad; proyección en el tiempo de los datos y funciones tamaño-precio obtenidos, tanto para supuestos de mayor envergadura del árbol, como para actualización automática, sin más que utilizar al día la información del sector.

Se distingue entre árboles sustituibles, que son aquellos que se pueden comprar y replantar, y los no sustituibles, que son los que no es posible conseguir en el mercado de los viveros ornamentales. Se precisará algo más la noción de sustituible, pero como referencia, en las frondosas la frontera está a partir de los 30 cm. de circunferencia.

Se fijan tres grandes grupos de intervención con variaciones en el procedimiento de valoración:

- a) Frondosas.
- b) Coníferas.
- c) Palmeras y similares.

A lo largo de la descripción del método, se utilizarán algunos conceptos que se referencian a continuación:

Calibre característico. Tamaño del árbol cuyo precio medio en vivero va a servir como base de la valoración. Va referido, por tanto, a un precio de catálogo, y se fija en un perímetro de 10-12 cm. para las frondosas (tomado a 1,30 m. sobre el nivel del suelo), y en una altura de 100-125 cm. para las coníferas.

Valor básico. Llamado también valor standard o tipo. Tiene un carácter objetivo, por obtenerse de las ecuaciones o funciones tamaño precio, y se da en términos monetarios. Es un punto de partida mínimo, con el que se puede continuar el proceso de valoración.

Si el árbol está vivo, ya tiene un valor mínimo, el valor básico.

Las circunstancias de estado, singularidad, sanidad, etc., sólo pueden considerarse para aumentar, nunca reducirán el valor básico.

Valor de reposición. Es realmente un valor de compra (más los costos de trasplante y de mantenimiento, actualizados).

B.1. VALORACIÓN PARA ÁRBOLES SUSTITUIBLES.

Para los árboles sustituibles, se buscaría el precio de compra del árbol en cuestión en los catálogos de viveros ornamentales, o bien se buscaría en la curva o función de regresión correspondiente al grupo de especies de similar comportamiento. Una vez obtenido el precio de mercado, se le sumarían los gastos de plantación y arranque y los gastos anuales de mantenimiento, capitalizados con interés compuesto durante el tiempo que ha vivido el árbol. Se ha considerado la probabilidad de éxito en el trasplante (riesgo del trasplante).

La fórmula más general sería, de acuerdo con Caballer:

Valor Básico =
$$\frac{(Pm + Ct)}{\alpha} (1+r)^t + (Ccn+1)(1+r)^t + (Ccn+2)(1+r)^{t-1} + + (Cct-1)(1+r) + Cct$$

Donde:

n = año de plantación.

Pm = precio de mercado para un calibre (y edad determinado).

Ct = Coste de arranque y plantación.

 α = Probabilidad de éxito en trasplante ($0 \le \alpha \ge 1$).

t = Edad del árbol arrancado (año de la valoración).

Cc = Costes de cultivo y mantenimiento el año n+1.

La introducción de Ct y de a permite fijar el límite de los árboles sustituibles (Ct no excesivo, igual que Pm y Ct alto) y también sitúa los árboles históricos con Pm y Ct altísimo, y a tendiendo a cero, con los que Vb tendería a infinito.

Si se supone que los costes de cultivo y mantenimiento son iguales todos los años, la fórmula queda así:

$$Vp = \frac{(Pm + Ct)}{\alpha} (1+r)^{t-n} + Cc \frac{[(1+r)^{t-n+1} - 1]}{r}$$

B.2. VALORACIÓN PARA ÁRBOLES NO SUSTITUIBLES. FRONDOSAS Y CONÍFERAS.

Para llegar a la formulación objetiva del valor básico, la Comisión de Valoración centró su trabajo en el estudio de la posibilidad de encontrar una cierta función «f» cuya variable dependiente fuese el valor básico (o el precio) en términos monetarios.

Existe, para ello, dos supuestos de partida:

- 1. No es posible hallar una ecuación en la que intervengan variables territoriales, culturales o cualitativas del árbol (singularidad, rareza, etc.). Hay que buscar, por lo tanto, «un valor básico», como punto de partida, y dejar estas variables mencionadas para una segunda etapa, la de los índices correctores.
- 2. Hay que utilizar variables cuantitativas, medibles, significativas, y en el menor número posible.

Ya desde el principio se pensó que un camino válido era la pauta de precios existentes en el mercado de árboles (viveros ornamentales) en función de los valores de circunferencia para las frondosas, y de altura para las coníferas.

Hay que definir una función circunferencia-precio o altura- precio, de modo que la simple medición pueda traducirse inmediatamente en valor. El procedimiento es obtener por regresión las funciones, con el ajuste que da el conocimiento profesional de los especialistas, fácilmente convergente.

Para los árboles no sustituibles habría que suponer que la función de regresión o ley, conocida en el tramo en que hay precios de compra en los viveros comerciales, se mantiene y se traslada fuera de dicho tramo y, por lo tanto, para obtener el valor básico podemos extrapolar como si tuviera el precio virtual que nos da la curva para el tamaño real observado (Figura III).

Se han fijado nueve grupos para las frondosas, de acuerdo con la información manejada, y seis grupos para las coníferas. Como se aprecia en las tablas I y II, dichos grupos se han formado atendiendo al hábito de crecimiento y a la expectativa de longevidad de cada árbol (mayor información en Anejos).

Se han probado varios modelos de regresión: lineal, multiplicativo, exponencial y logarítmico, con buenos resultados de precisión estadística. Pero al proyectar la regresión fuera del ámbito habitual de los datos de precios en vivero, se descartaron finalmente todos ellos.

Posteriormente, el comportamiento de crecimiento del árbol en sí ha conducido a una regresión que presenta un ajuste muy preciso para el caso propuesto.

La sigmoide o función de Richards, de fructífera tradición en el análisis de los fenómenos biológicos, y su caso particular la ecuación o función logística, se acomoda muy bien al modo de comportamiento del árbol en su evolución; a semejanza de lo que ocurre con éste, la función logística presenta un punto de inflexión, a partir del cual comienza a disminuir el crecimiento relativo, y tiende asintóticamente a un valor máximo.

La ecuación es y =
$$\frac{k}{[1 + V eb(x.xi)]^{l_v}}$$

Donde «v» es un coeficiente que después de estudios detenidos, se ha fijado en 0,01 para todos los grupos.

«k» es el valor máximo, el parámetro más independiente del comportamiento del árbol, y al que tiende asintóticamente la curva. Es el multiplicador máximo del precio estándar en vivero para un calibre característico (tamaño 10-12 cm. de circunferencia en frondosas, y 100-125 cm. de altura en coníferas). Se han tomado tres valores de k, que cambia con la longevidad de las especies: 1.000, 750 y 500 (ver Tabla III).

«x_i» representa el punto de inflexión, que también cambia según la longevidad y el hábito de crecimiento; «b» es un parámetro para el precio de partida. (Ver valores de ambos en Tabla III).

Así, el valor básico «y» es un multiplicador del precio que tendría el árbol en vivero a los calibres característicos. Este valor se da tabulado para las 15 ecuaciones que han resultado, en las Tablas IV y V, con valores cada 5 cm. para el perímetro en frondosas, y cada 50 cm. de altura para las coníferas.

Por lo tanto, para obtener el valor básico de un determinado árbol, se situaría a través de las Tablas I y II en el grupo que corresponda. Con la medición de su circunferencia de tronco (frondosas) o de la altura del árbol (coníferas), se pasaría a la Tabla III para usar las fórmulas o a las Tablas IV y V para localizar directamente el multiplicador «y».

Con las gráficas I, II y III se puede obtener igualmente el factor multiplicador «y», aunque ya se sabe que será con menos precisión este procedimiento gráfico que usando las ecuaciones o los valores tabulados. De ambos modos se llega al valor básico, «Vb», por tablas o por gráficas.

B.3. VALORACIÓN PARA ÁRBOLES NO SUSTITUIBLES. PALMERAS Y SIMILARES.

La distinta configuración morfológica de las palmeras, su sensible diferencia fisiológica respecto a los árboles frondosos y coníferas, hace tener presentes, a la hora de establecer un método de valoración objetivo, ciertos elementos de diferenciación:

- Sus variados y a la vez anárquicos modos de presentación, venta y expedición.
- La escasa representatividad de viveros especializados, en comparación con el resto del conjunto de viveros ornamentales.

Por todo ello, es difícil la obtención de más datos fiables y con evolución conocida que nos permita realizar una curva de regresión, que proporcione un valor básico de arranque, susceptible de aplicarse en la fórmula final de valoración. Se sigue optando, por lo tanto, por una fórmula empírica.

El coste característico representaría en estos especímenes el precio medio teórico de mercado de ese individuo para el mínimo tamaño comercial (habitualmente posible) que se debe revisar y actualizar periódicamente.

Se adopta el término h/k como mejor expresión de la edad, donde h = altura en cm. del tronco y k = constante de crecimiento (Tabla VI). Así pues, se patentiza en este cociente h/k la relación entre la altura del ejemplar (en cm), como resultante de la edad del mismo y su respuesta fisiológica. En la fórmula final aparecería este cociente elevado al cuadrado por la gran importancia del mismo en el cómputo del valor final.

Así pues, la fórmula quedaría como sigue:

^v básico = ^v característico ^x
$$\left(\frac{h}{k}\right)^2$$

Los índices correctores ponderarían igual que en las frondosas y coníferas. Las mismas consideraciones expuestas antes, en cuanto a los árboles sustituibles y no sustituibles.

B.4. ÍNDICES CORRECTORES.

A partir de disponer del valor básico, entran en juego unos índices correctores que se agrupan en dos bloques:

Factores	1. Tamaño fotosintéticamente activo (Volumen y superficie de copa), por comparación con la copa hipotéticamente ideal para su tamaño y edad
(propios de la especie y del	2. Estado sanitario. Referencia al vigor o grado de decrepitud, presencia de alteraciones sanitarias, ataques de parásitos, podredumbres, etc
individuo)	3. Expectativa de vida útil. Es la supuesta por el tasador, con relación a los dos valores tabulados, de vida ornamental y de vida total máxima esperada
(correspondiendo	1. Estético y funcional. Apreciación del interés estético del árbol, como parte de una alineación o grupo, y de su papel funcional (cortavientos, pantalla visual o sonora, acompañamiento de sombra)
al medio que le rodea)	2. Representatividad y rareza. Indice relativo a consideraciones de

mayor o menor abundancia en la zona, y aprecio o cualidades históricas, culturales o simbólicas del ejemplar

- 3. Situación. Índice relativo del interés del árbol en el entorno que le rodea, y su contribución a la mejora ambiental, plástica o urbana
- 4. Factores extraordinarios. Referencia a otros valores o parámetros que merezcan tal consideración

La fórmula de aplicación de los índices descritos sería:

$$Vf = Vb \left(1 + \sum Ii + \sum Ie\right)$$

Donde:

Vf = Valor final

Vb = Valor básico

\(\sum \) Ii = Sumatorio de los índices de factores intrínsecos

\(\sum \) Ie = Sumatorio de los índices de factores extrínsecos

La escala de valores de los índices se recoge en la Tabla VII.

B.5. TRONCOS MÚLTIPLES.

Para el caso de árboles con troncos múltiples, si se puede descubrir el cuello del árbol, medir el perímetro envolvente inmediatamente por encima del cuello, que sería el valor de circunferencia con el que se entra en las ecuaciones o curvas de regresión.

Si el árbol tiene fuerte engrosamiento en el cuello o no se puede descubrir éste, tomar las circunferencias de todos los troncos que existan, a una altura de 80 cm. del suelo, y tomar como perímetro virtual el de una circunferencia que circunscriba como envolvente todas las de los troncos existentes, tangentes entre sí (figura IV).

B.6. DAÑOS PARCIALES.

Cuando se analizan los daños parciales de un árbol, en muchas ocasiones no es cuestión de valoración, sino de considerar la especie y la estación del año, elementos fundamentales a la hora de estimar si los daños parciales son de consideración para el ejemplar o no.

En este caso de daños parciales, por desgracia muy habitual en el medio urbano, puede tratarse de una situación en la que lo procedente para el técnico no sea emitir una valoración, sino un informe en cuanto al riesgo de supervivencia, riesgo de estabilidad, seguridad para el peatón y tráfico, medidas de restauración y de actuación en consecuencia.

Se reproduce el texto aparecido en su día en el método ya clásico publicado por Icona en 1975, que sigue teniendo perfecta validez, para el cálculo de la valoración referente a daños parciales.

El valor de los daños que se causen a un árbol se cifrará en un tanto por ciento del valor total de éste, calculado con las anteriores normas. Al causar daños a un árbol en cualquiera de sus partes, éste pierde valor en sus cualidades estéticas, sanitarias, etc., y esta pérdida debe ser compensada por medio de una indemnización.

Los daños se clasificarán según sean: heridas en el tronco, desgajamiento de ramas o destrucción de raíces.

El cálculo de las indemnizaciones a que haya lugar por estas tres causas se hará separadamente, sumando luego los porcentajes obtenidos para obtener el valor total de la indemnización. Si este total resultara mayor del 100%, se tomará, lógicamente, el valor total del árbol.

B.6.1. Heridas en el tronco.

Cuando se causan heridas en el tronco de un árbol, se destruye muchas veces la capa viva de éste, lo que ocasiona un déficit en la aportación de savia a la copa, con la consiguiente pérdida de vigor. Estas heridas, sobre todo si son anchas, cicatrizan muy lentamente, dando lugar a deformaciones del tronco, por lo que se ocasiona también una pérdida en su valor estético. Por último, las heridas en el tronco suponen un gran peligro para la vida del árbol, por ser un foco de infección y facilitar el ataque de los parásitos.

La extensión del daño se mide en anchura, proyectando sus extremos más separados sobre la circunferencia que pasa por el punto más alto de la herida. La proyección P se expresa como fracción de la circunferencia citada C y se multiplica por la altura h de la herida en milímetros (figura V).

$$I\% = \frac{P}{C} \text{ (h+50)}$$

I se considera igual a 100 cuando tome valores superiores a 50%.

En esta expresión, P y C vienen dadas en las mismas unidades y su cociente P/C evalúa la fracción de la circunferencia que ha sido afectada por la herida, lo que da una idea de la magnitud del daño causado.

Este cociente se multiplica por (50+h), siendo «h» la altura de la herida, expresada en milímetros, con lo que se introduce en la valoración la magnitud de la superficie dañada; cuanto mayor sea esta superficie, mayor será la dificultad de cicatrización, con la siguiente pérdida de vigor y merma en su valor estético. Por otra parte, el peligro de infecciones que puedan afectar al árbol, penetrando por la herida, es tanto mayor cuanto más grande sea ésta, que, siendo P constante, es proporcional a «h».

Cuando el daño causado sea lineal, como el ocasionado por amarre de cables a los troncos de los árboles, las heridas causadas tienen una superficie muy pequeña, lo

que daría lugar a indemnizaciones muy bajas, siendo el daño causado muy grande. Para evitar esta discordancia entre daños e indemnización, se ha dotado al segundo factor de un sumando «50» que nos da el valor mínimo de la indemnización cuando sea muy pequeña la altura de la herida.

Cuando la herida lineal afecte a toda la circunferencia del árbol, la indemnización ha de ser el valor total del árbol, pues esta herida, al destruir la capa viva o cambium en toda su anchura, provoca un cese en el suministro de savia a la copa que puede provocar la muerte de éste.

En este caso el daño causado será:

$$I\% = \frac{P}{C}$$
 (50+h);

si P = C,
$$\frac{P}{C}$$
 = 1, h \longrightarrow 0 y entonces
I % > 50%

y esta cifra corresponde al 100% de indemnización, según la tabla de valores VIII.

B.6.2. Pérdidas de ramas.

La pérdida de ramas en la copa de un árbol supone una disminución tanto de su valor estético como de su vigor.

Esta pérdida de su valor está en relación con la cantidad de ramas que sean destruidas. Se medirá en tanto por ciento del volumen inicial de la copa. Si la destrucción de las ramas afectara a más del 80% de ellas, el valor de la indemnización será el del total del árbol.

Cuando la destrucción suponga un desequilibrio en la copa del árbol, se incluirá también para el cálculo de la indemnización el volumen de copa que sea preciso quitar para lograr otra vez el equilibrio, y el costo de ello.

B.6.3. Destrucción de raíces.

La destrucción de raíces da lugar a una disminución en la aportación de nutrientes y, por tanto, a una pérdida de vigor que puede llegar a ocasionar la muerte del árbol. También puede representar peligro de descalce del árbol, en caso de fuertes vientos.

Para calcular el tanto por ciento que suponen las raíces destruidas sobre el conjunto del sistema radical, se toma como extensión de éste la de la proyección de la copa del árbol y como profundidad, un metro.

Se debe aplicar este criterio en caso de zanjas que pasen cerca del árbol, o incluso en caso de un trasplante de éste.

B.6.4. Otros daños.

Los daños no mencionados expresamente en los párrafos anteriores como los ocasionados por sacudidas, separación de la vertical, corte de yema terminal u otros cualesquiera, se valorarán estimando la repercusión que puedan tener en la vida futura del árbol, y en su clasificación dentro de los distintos índices.

Las consideraciones anteriores se han sistematizado en la tabla de valores VIII:

A un 50% en la raíz corresponderá una indemnización del 60% del valor del árbol; si, además, se diera un 30% de daños en la copa, habría que sumar un 20% más a la indemnización anterior, que quedaría en 60+20=80%.

EJEMPLOS

SUSTITUIBLE

Hay que arrancar una Robinia de 15 años, y 60 cm. perímetro.

1. Robinia pseudacacia «umbraculifera», 20-25 cm. perímetro en vivero.

Precio en vivero 4.200 ptas. = Pm (n = 4 años)

Ct (coste plantación) 3.000 ptas.

Cc (coste cultivo anual 5.500 ptas./año

 $\alpha \alpha$ (% éxito transplante) 80% r = 14%

$$V_b = \frac{Pm + Ct}{\alpha} (1+r)^t + Cc \left[\frac{(1+r)^{t-n+1} - 1}{r} \right]$$

$$V_b = \ \frac{4.200 + 3.000}{0.8} (1.14)^{15} + 5.500 \ \frac{\left(1.14\right)^{15 - 4 + 1} - 1}{0.14} = 64.241 + 149.989 = 214.230 \ Ptas.$$

NO SUSTITUIBLE

FRONDOSA

- 1 Robinia pseudacacia de 160 cm. perímetro.
 - 1°) Frondosa.
 - 2°) Tabla I, Crecimiento Medio, Longeva, Tipo H.
 - 3°) Tabla IV, para x = 160, tipo H, y = 616. En figuras III, y = 620.
 - 4°) Valor característico para perímetro 10-12, 735 ptas.

Valor básico = $735 \times 616 = 452.760 \text{ ptas}$.

5°) Factores intrínsecos y extrínsecos máximos y mínimos (Tabla VII). \sum Ii excelentes = 0,5 + 0,5 + 0,5 = 1,5 Poco = 0.1 + 0.1 + 0.1 = 0.3 \sum Ie excelentes = 0,25 + 0,25 + 0,25 = 1

$$Poco = 0.05 + 0.05 + 0.05 + 0.05 = 0.20$$

Poco = 0.05 + 0.05 + 0.05 + 0.05 = 0.20Valor final=Vb (1+ \sum Ii + \sum Ie) 6°) 452.760 (1+1,5+1)=1.584.660 Máximo 452.760 (1+0,3+0,20)=679.140 Mínimo

> Fórmula econométrica. Relación edad-tamaño.

Perímetro= -83,725 + 131,72 log t... log t =
$$\frac{160 + 83,725}{131,72}$$

CONIFERA

1 Pino piñonero, 150 cm. perímetro, 18 m. altura.

- 1°) Conífera.
- Tabla II, Crecimiento medio, longeva, tipo E. 2°)
- Tabla V, para x = 18 y Tipo E, y = 680. Gráfico Fig.I bis y II bis, sale
- 4°) Valor característico para altura 100-125 cm. Maceta = 800 ptas.
- 5°) Valor básico Vb = $800 \times 680 = 544.000 \text{ ptas}$.
- Factores intrínsecos y extrínsecos máximos y mínimos (Tabla VII).
- ∑ Ii 1,5 Máximo 0,3 Mínimo

∑ Ie 1 Máximo 0,20 Mínimo

Valor final.

PALMERA

- 1 Phoenix dactylifera, de diámetro 0,15 y altura 6 m = 600 cm., de unos 50 años.
 - 1°) Ver en tabla VI el grupo, valor característico y cte., de crecimiento.

3°) Valor final=Valor básico(1+
$$\sum$$
 Ii + \sum Ie)= 175 x 675 x (3,5) = 352.800 ptas. Máximo. 175 x 576 x (1,5) = 151.200 ptas. Máximo.

TABLAS

(Véase en Formato PDF)

FIGURAS

(Véase en Formato PDF)

TABLA I FRONDOSAS

ADSCRIPCION DE ESPECIES A GRUPOS, SEGUN LONVEGIDAD Y CRECIMIENTO (LOPEZ LILLO, 1989) CRECIMIENTO

LENTO	MEDIO	RAPIDO
A	В	C
Acer campestre Acer palmatum	Laburnum an. Elaeagnus ang. Casuarina c.	Salix babylonica Salix matsudana Ailanthus a. CORTA Acer negundo Ulmus pumila
D	Е	F
Aesculus h. Carpinus b. Quercus rubra Lagerstroemia i. Citrus sp. Betula sp. Liquidambar st. Acer saccharinum Alnus sp. Brachichyton sp. Ceratonia s.	Paulownia t. Gleditsia t. Schinus m. Fraxinus s.p. Morus sp. Melia a. Cercis s. Koelreuteria p. Ligustrum j. Albizia j. Catalpa b. Chorisia sp. Delonix r. Parkinsonia a. Acacia cyanophylla Acacia dealbata	Populus sp. Salix alba Tamarix sp. Eucalyptus sp. MEDIA
G	Н	J
Ficus sp. Quercus sp. Tilia sp. Juglans sp. Sorbus sp. Carya o. Fagus sp.	Celtis sp. Ulmus sp. Sophora j. Robinia s. Liriodendron t. Acer sp. Grevillea r.	Platanus sp. Tipuana s. ALTA Acacia melanoxylon
Magnolia sp. Olea e.		n P G

TABLA II

CONIFERAS

ADSCRIPCION DE ESPECIES A GRUPOS, SEGUN LONGEVIDAD Y CRECIMIENTO (LOPEZ LILLO, 1989)

TIPO DE CRECIMIENTO

P 0	LENTO. MUY LENTO	MEDIO	RELATIVAMENTE RAPIDO	
0	A	В	С	
L O N G E V A		Pinus griffithii	Pinus radiata Cupressus macrocarpa Cupressus glabra	

LENTO. MUY LENTO	MEDIO	RELATIVAMENTE RAPIDO			
D · ·	Е .	F			
Araucaria araucana Abies pinsapo Abies sp. Juniperus sp. Podocarpus sp. Picea sp. Pinus sylvestris Pinus nigra Sequoiadendron g.	Thuyopsis dolabrata Thuja sp. Cupressus sempervirens Calocedrus decurrens Cedrus sp. Pseudotsuga menziesii Pinus canariensis Larix sp.				
Taxus baccata Sciadopitys verticillata Taxodium distichum Tetraclinis articulata Torreya sp. Tsuga sp. Ginkgo biloba Pinus uncinata Cephalotaxus sp.		a			

TABLA III

ECUACION LOGISTICA Y VALORES DE COEFICIENTES

FRONDOSAS

	LENTA	MEDIA	RAPIDA	
VIDA CORTA	b = 0.0269295 $\times_{i} = 80$ A	$b = 0.0221207$ $\times_{i} = 95$ B	$b = 0.017047$ $\times_{i} = 120$ C	K=500
VIDA MEDIA	$b = 0.0243467$ $\times_{i} = 90$ D	$b = 0.0194282$ $\times_{i} = 110$ E	b = 0.015265 $\times_{i} = 137$	K=750
LON- GEVA	$b = 0.0221054$ $\times_{i} = 100$ G	$b = 0.0180494$ $\times_{i} = 120$ H	$b = 0.0141538$ $\times_{i} = 150$ J	K = 1.000

$$\text{ECUACION: } y = \frac{V = 0.01}{(1 + 0.01 \ e^{b \cdot (v \cdot \xi_i)})^{100}}$$

CONIFERAS

	LENTA	MEDIA	RAPIDA	
POCO LON- GEVA	b = 0,2555999 $\times_{i} = 8,65$ A	$b = 0.1947736$ $\times_{i} = 11$ B	$b = 0,1554254$ $\times_{\hat{1}} = 13,5$ C	K=750
LON- GEVA	b = 0.2216769 $\times_{i} = 10$	$b = 0,1729567$ $\times_{i} = 12,5$ E	$b = 0,1417933$ $\times_{i} = 25$ F	K=1.000

v = 0.01

TABLA IV. VALORES DEL FACTOR Y FRONDOSAS

CRECIMIENTO LENTO MEDIO RAPIDO

CRECIMIENTO		LENIC)		ME	טוט		IV.A	ribo	
VIDA		CORTA	MEDIA	LONGEVA	CORTA	MEDIA	LONGEVA	CORTA	MEDIA	LONGEVA
e ge		0,0269295	0,0243467	0,0221054	0,0221207	0,0194282	0,0180494	0,0170471	0,015265	0,0141538
	v k	500	750	1.000	500		1000	500	750	1.000
	X	80	90		95			120	137	
G	RUPO	A	D		В			C	F	
PERI	METRO	Factor								
	X	Y	Y	Y	Y	' }	Y	Y	. Y	Y
	_	_		_						_
	40	28	27		18			11	10	
	45	40	39		25			15 19		
	50		55		35			25	24	
	55 60	72 91	74 96		58			32		
	65	113	121		73			40		
	70	136			. 89			49		
-	75	160			107			59		
4	-80				125			71	71	
	85				145			83		
	90				165			96	99	
	95				185	5 19	8 211	109	114	116
	100				20.			124		
	105		376	410	22.	5 25	1 272	139		
	110	320	400	5 450	24	5 27	7 304	154	168	3 174
	115				26	4 30	4 337	169	187	196
	120				28			185	207	219
F 4	125				29			200		
	130				310			216		
	135				33			231		
	140				340			246		
	145				359			261		
	150				37			275		
	155 160	438			384 394			289		
	165				404			302 315		
# P 21	170				41.			327		
	175	463			42			338		
	180				42			349		
	185	47.1	679		430			360		2 100000
	190		687		447			369		
	195	-478			448			379		
	200		700		455			387	512	
	205	483	706		458			395	527	
	210	485	711		462			403	540	653
	215	487	715	924	464		9 • 835	410	554	672
	220				46.			417		690
in the second	225	490			473	3 67		423	578	
	230		726		475			429	589	
	235	492	728		478			434	600	m p /
	240		731		480			439	610	P1 P1 1
800 B B B B B B B B B B B B B B B B B B	245	494			482			444	619	MOF
	250	495	735	964	484	702	909	449	628	100

TABLA V VALORES DEL FACTOR Y CONIFERAS

CRECIMIENTO)	VAMENTE PIDO		MEDIO	1	LENTO MUY LEN	
VIDA		POCO LONGEVA	LONGEVA	POCO LONGEVA	LONGEVA	POCO LONGEVA	LONGEVA
	ь	-0,1554254		0,1947736	0,1729567	0,255599	0,2216769
	v	0,1334234	0,1111700	0,1741130	0.01	0,200077	0,2210107
	k	750	1.000	750	1000	750	1.000
	X	13,5	15	11	. 12,5	8,65	10
	GRUPO	C	F	В	Ε.	A	D
	ALTURA (m.)	FACTOR					
	X	Y	Y	Y	Y	Y	Y
· · · · · · · · · · · · · · · · · · ·					 	_	
	4,0	10	10	16	14	30	24
	4,5	14	13	23	20	43	36
	5,0	. 19	18	32	28	61	51
	5,5	25	23	42	37	82	69
	6,0.	32	30	55	48	107	91
	6.5	40	38	70	62	135	117
	7,0	50	47	87	78	165	146
	7,5	61	58	106	96	198	178
	8,0	73	70	127	116	232	213
	8,5	87	84	149	138	267	250
	9,0	102	99	173	163	302	289
	9,5	119	116	198	189	336	329
18 2 2	10,0	136	134	224	217	370	370
	10,5	154	153	251	240	403	410
	11,0	173	174	277	276	434	450
*	11,5	193	196	304	307	463	489
	12,0	214	219	330	338	491	527
	12,5	235	243	356	370	516	564
(E) (E)	13,0	256	267	382	401	540	599
	13,5	277	292	406	433	562	632
	<i>*</i> 14,0	299	318	430	464	582	663
	14.5	320	344	453	494	600	692
	15,0 15,5	341	370	475	524	616	719
	15,5	361	396	495	552	631	745
	16,0	382	421	514	580	644	768
	16,5	401	447	533	607	656	789
	17,0	420	472	550	632	666	809
	17,5	439	. 497	566	657	676	827
	18,0	457	521	581	680	684	844
	18,5	474	545	595	702	692	859
	19,0	491	568	608	723	699	873
	19,5	506	590	620	743	705	885
	20,0	521	612	631	761	7.10	897
	20,5	536	633 .	641	779	715	907
	21,0	549	653	650	795	719	916
	21,5	562	672	659	810	722	925
	22,0	575	691	667	824	726	932
	22,5	586	708	674	838	729	939

CRECIMIENTO	30.000.0000000	VAMENTE PIDO		MEDIO	·	LENTO MUY LEN		
VIDA		POCO LONGEVA	LONGEVA	POCO LONGEVA	LONGEVA	POCO LONGEVA	LONGEVA	
	b	-0,1554254	-0,1417933	-0,1947736	-0,1729567	-0,255599	-0,2216769	
	V	750	4 000		0.01			
	k	750	1.000	750	1000	750	1.000	
	Chupo	13,5	15	11	12,5	8,65	10	
	GRUPO	С	F	В	E	A	D	
	ALTURA (m.)	FACTOR						
	X	Y	Y	Y	Y	Y .	Y	
			<u> </u>		_		1	
	23,0	597	725	681	850	731	946	
	23,5	607	741	687	861	733	951	
	24,0	617	757	693	872	735	956	
	24,5	626	771	698	882	737	961	
	25,0	634	785	703	891	739	965	
	25,5	642	798	707	900	740	968	
	26,0	650	811	711	908	741	972	
	26,5	657	822	714	915	742		
	27,0	663	833	717	922	743	975	
*	27,5	670	844	720	928		977	
						744	980	
	28,0	675	854	723	934	. 745	982	
	28,5	681	863	726	939	745	984	
	29,0	686	872	728	944	746	985	
	29,5	690	880	730	949	746	987	
	30,0	694	888	732	953	747	988	
	30,5	698	895	733	957	747	989	
	31,0	702	902	735	960	748	991	
	31,5	706	908	736	963	748	992	
	32,0	709	914	738	966	748	992	
	32.5	712	920	739	969	748	99:	
	33,0	715	925	740	972	749	994	
	33,5	717	930	741	974	749	995	
	34,0	720	935	742	976	749	995	
	34,5	722	939	742	978	749	996	
	35,0	724	943	743	980	749	996	
	35,5	726	947	744				
	36,0	728	950	744	981	749	996	
	36,5	729	954		983	749	997	
	37,0	731		745	984	749	997	
			957	745	986	749	997	
	37,5	732	960	746	987	750	998	
	38,0	734	962	746	988	750	998	
	38,5	735	965	746	989	750	998	
	39,0	736	967	747	990	750	998	
	39,5	737	969	747	991	750	999	
	40	738	972	747	991	750	999	

TABLA VI

CARACTERIZACION DE GRUPOS DE PALMERAS
(PALOMARES, 1989)

ESPECIE	Valor caraterístico (ptas.)	Cte. crecimiento K	ESPECIE		Valor caraterístico (ptas.)	Cte. crecimiento K
Archonthophoenix cunninghamiana Areca catechu			Livistona australis		5	
Arecastum rommanzzoffianum Brahea edulis	220	12	Phoenix canariensis Phoenix dactylifera Phoenix reclinata	* 1	175	25
Butia capitata	190	5	Roystonea regia			
Chamaedorea elegans	15	2	Rhapis excelsa		18	3
Chrysalidocarpus lucubensis Caryota mitis			Sabal palmetto Sabal umbraculifera		250	20
Caryota urens			Trachycarpus fortunei		70	12
Howea forsteriana Latania borbónica	800	16	Washingtonia filifera Washingtonia robusta		115	16

TABLA VII

VALOR DE LOS INDICES CORRECTORES

	Indic	e/consideración del árbol	Excelente	Buena	Media	Regular	Poca	Escasa/nula
	1.	Tamaño fotosintética- mente activo.	0,5	0,4	0,3	0,2	0,1	0
I_i	2.	Estado sanitario	0,5	0,4	0,3	0,2	0,1	0
	3.	Expectativa de vida ùtil.	0,5	0,4	0,3	0,2	0,1	0
	i.	Estético y funcional.	0,25		0,15	3	0,05	0
	2.	Representatividad y rareza.	0,25	-	0,15		0,05	0
Ie	3. 4.	Situación. Factores extraordina-	0,25	<u>-</u>	0,15	- \	0,05	0
		rios.	0,25	_	0,15	_	0,05	0

TABLA VIII VALORES DE INDEMNIZACION

	- 9/	6 D	E II	NDE	EMN	IIZA	CIC	N
	20	25	35	45	60	75	90	100
Daños en tronco (%)	20	25	30	35	40	45	50	>50
Daños en raíz (%)	25	30	35	45	50	60	70	>70
Daños en copa (%)	30	35	40	50	60	70	80	>80

FIGURA I

ESPECIES DE VIDA CORTA

CRECIMIENTOS. LENTO, MEDIO Y RAPIDO

FIGURA I bis

CONIFERAS POCO LONGEVAS

GRUPO A

Crecimiento lento

GRUPO B
+ Crecimiento medio

GRUPO C

☐ Crecimiento rápido

FIGURA II

ESPECIES DE VIDA MEDIA

CRECIMIENTOS. LENTO, MEDIO Y RAPIDO

FIGURA II bis

CONIFERAS LONGEVAS

FIGURA III

ESPECIES DE VIDA LONGEVA

CRECIMIENTOS. LENTO, MEDIO Y RAPIDO

Fig. IV
PERIMETRO VIRTUAL EN ARBOLES
DE TRONCOS MULTIPLES

