- 1. Let $C_d \subseteq \mathbb{R}^d$ be the unit ball in l_1 norm
 - (a) Let's consider the polytope P derived from the following set of inequalities: $a_i x \leq 1$ where $a_i \in \{-1,1\}^d, 1 \leq i \leq 2^d$ the set of a_i contain all possibilities of each coordinate being either 1 or -1. I claim that $P = C_d$

First, let's suppose that $x \in C_d$, then $\sum_{i=1}^n |x_i| \le 1$ Suppose, by contradiction, that there exist two subsets $M, N \subset [d]$ such that $M \cup N = [d]$ and such that:

$$1 < \sum_{i \in M} -x_i + \sum_{i \in N} x_i$$

Since $\sum_{i \in M} -x_i + \sum_{i \in N} x_i \le \sum_{i \in [d]} |x_i|$ we get $1 < \sum_{i \in [d]} |x_i|$ in contradiction to $x \in C_d$.

So we know that for every two subsets $M,N\subset [d]$ such that $M\cup N=[d]: \sum_{i\in M} -x_i + \sum_{i\in N} x_i \leq 1$. Therefore, for all $1\leq i\leq 2^d$ $a_ix\leq 1$ Now suppose that $x\in P$, therefore $1\leq i\leq 2^d$ $a_ix\leq 1$, and suppose, by contradiction, that $\sum_{i=1}^n |x_i|>1$, then there exist two subsets $M,N\subset [d]$ such that $M\cup N=[d]$ and such that:

$$1 < \sum_{i \in M} -x_i + \sum_{i \in N} x_i$$

But that means that there exist a vector $a \in \{-1,1\}^d$ such that $a_i x > 1$ in contradiction to the assumption.

(b) Let's first show $C_d \subseteq conv\left(\{e_1,...,e_d,-e_1,...,-e_d\}\right)$: Let $x \in C_d, \Rightarrow x = \sum_{i=1}^d x_i e_i, \sum_{i=1}^d |x_i| \le 1$. We wish to find a convex combination of $e_1,...,e_d,-e_1,...,-e_d$ that will give us x. Let's denote $\sum_{i=1}^d |x_i| = p$ and so:

$$x = \sum_{i=1}^{d} x_i e_i = \sum_{i \in [n]} |x_i| e_i + \sum_{i \in [n]} |x_i| (-e_i) =$$

$$\sum_{i \in [n]} |x_i| \, e_i + \sum_{i \in [n]} |x_i| \, (-e_i) + \frac{(1-p)}{2} e_k + \frac{(1-p)}{2} \left(-e_k\right), \ k \in [n]$$

This is a convex combination of $e_1, ..., e_d, -e_1, ..., -e_d$ since:

- i. All coefficients in $[0,1]:\sum_{i=1}^d|x_i|\leq 1\Rightarrow 1\leq i\leq d, |x_i|\leq 1\Rightarrow |x_i|\in [0,1], p\in [0,1]\Rightarrow \frac{(1-p)}{2}\in [0,1]$
- ii. Sum of coefficients is 1:

$$\sum_{i=1}^{d} |x_i| + \frac{(1-p)}{2} + \frac{(1-p)}{2} = p + 2\frac{(1-p)}{2} = p + 1 - p = 1$$

Now we will show that $conv(\{e_1,...,e_d,-e_1,...,-e_d\}) \subseteq C_d$:

 $\begin{array}{l} conv\left(\{e_{1},...,e_{d},-e_{1},...,-e_{d}\}\right)\ni v=\sum_{i=1}^{n}\alpha_{i}e_{i}+\sum_{i=1}^{n}\beta_{i}\left(-e_{i}\right)\\ \text{such that }0\leq\alpha_{i},\beta_{i}\leq1,\;\sum_{i=1}^{n}\alpha_{i}+\beta_{i}=1 \end{array}$

$$v = \sum_{i=1}^{n} \alpha_i e_i + \sum_{i=1}^{n} \beta_i (-e_i) = \sum_{i=1}^{n} (\alpha_i - \beta_i) e_i$$

 $||v||_1 = \sum_{i=1}^n |\alpha_i - \beta_i| \le \sum_{i=1}^n |\alpha_i| + |\beta_i| = \sum_{i=1}^n \alpha_i + \beta_i = 1$ and so $v \in C_d$

- (c) Claim: the set of vertices of C_d is $e_1, ..., e_d, -e_1, ..., -e_d$. Proof: Let's consider the vector e_i . The following set $L(e_i, -1) =$ $\{x \in \mathbb{R}^d : \langle e_i, x \rangle = -1\}$ is a supporting hyper-plane of C_d since:
 - i. Let $x \in C_d$ then $\langle e_i, x \rangle = \sum_{j=1}^d x_j e_{i,j} = x_i$ and since $x \in C_d$ we know that $|x_i| \le 1 \Rightarrow -1 \le x_i \le 1$. So $\langle e_i, x \rangle \ge -1$ and so $C_d \subseteq H(e_i, -1)$
 - ii. $-e_i \in C_d$ and since $\langle e_i, -e_i \rangle = -1$ we get that $L(e_i, -1) \cap P \neq \emptyset$ Furthermore, let $x \in C_d$ s.t $\langle e_i, x \rangle = -1$. It is clear that x must be equal to $-e_i$ and so we have shown that $-e_i$ is a vertex of C_d .

Taking the exact same steps we can show that $L(-e_i, -1) =$ $\{x \in \mathbb{R}^d : \langle -e_i, x \rangle = -1\}$ is a supporting hyper-plane of C_d :

- i. Let $x \in C_d$ then $\langle -e_i, x \rangle = -\sum_{j=1}^d x_j e_{i,j} = -x_i$ and since $x \in C_d$ we know that $|x_i| \le 1 \Rightarrow -1 \le -x_i \le 1$. So $\langle -e_i, x \rangle \ge -1$ and so $C_d \subseteq H(-e_i, -1)$
- ii. $e_i \in C_d$ and since $\langle -e_i, e_i \rangle = -1$ we get that $L(-e_i, -1) \cap P \neq \emptyset$ Furthermore, let $x \in C_d$ s.t $\langle -e_i, x \rangle = -1$. It is clear that x must be equal to e_i and so we have shown that e_i is a vertex of C_d .
- (d) C_2 drawing:

- 2. Let $H_d \subseteq \mathbb{R}^d$ be the unit ball in l_{∞} norm
 - (a) $H_d = \{x \in \mathbb{R} : \max\{|x_i| : i \in [d]\} \le 1\} = \bigcap_{j=1}^d \{x \in \mathbb{R} : -1 \le x_i \land x_i \le 1\}$ Therefore H_d is the intersection of d halfspaces and is bounded in all dimensions and so it is a Polytope.
 - (b) $S = \{x \in \mathbb{R}^d : \forall i \in [d], x_i \in \{-1, 1\}\}$ First let's show $H_d \subseteq conv(S)$ We will prove by induction on the dimension d that the hypercube $H_d \subseteq conv(S_d), S_d = \{x \in \mathbb{R}^d : \forall i \in [d], x_i \in \{-1, 1\}\}$:
 - i. Base: For d=1:

 $H_1 = \{x \in \mathbb{R} : |x| \le 1\} = [-1, 1], S = \{-1, 1\}$ So $x \in H_1 \Rightarrow |x| \le 1 \Rightarrow$ there exists $a_1, a_2 \in [0, 1]$ such that $a_1 + a_2 = 1$ and such that $x = a_1 - a_2$:

$$\begin{cases} a_1 = \frac{1+x}{2}, a_2 = \frac{1-x}{2} & x \ge 0 \\ a_1 = \frac{1-x}{2}, a_2 = \frac{1+x}{2} & x < 0 \end{cases}$$

ii. Step: Take H_d and transform it in the following way: given a vector

 $x \in H_d, x = [x_1 \quad x_2 \quad \dots \quad x_d]$ get the vector : $y = [x_1 \quad x_2 \quad \dots \quad x_{d-1}]$, denote the received set H_{d-1} .

This set is a hypercube of dimension d-1 because for all $x \in H_{d-1}$ $\forall 1 \leq i \leq d-1 \ |x_i| \leq 1$

By the induction assumption $H_{d-1} = conv(S_{d-1})$ where $S_{d-1} = \{x \in \mathbb{R}^{d-1} : \forall i \in [d-1], x_i \in \{-1,1\}\}$ and so each vector in H_{d-1} is a convex combination of all ± 1 vectors in \mathbb{R}^{d-1} .

Now, let $x \in H_d$, $x = \begin{bmatrix} x_1 & x_2 & \dots & x_d \end{bmatrix}$ the vector $y = \begin{bmatrix} x_1 & x_2 & \dots & x_{d-1} & 1 \end{bmatrix}$ can be expressed as a convex combination of $\{s \in S_d : s_d = 1\}$ because there exists a convex combination of S_{d-1} that gives $\begin{bmatrix} x_1 & x_2 & \dots & x_{d-1} \end{bmatrix}$ and the same coefficients, since their sum is 1, will give us 1 in the d coordinate.

In the same way, the vector $z=\begin{bmatrix}x_1 & x_2 & \dots & x_{d-1} & -1\end{bmatrix}$ can be expressed as a convex combination of $\{s\in S_d: s_d=-1\}$ because there exists a convex combination of S_{d-1} that gives $\begin{bmatrix}x_1 & x_2 & \dots & x_{d-1}\end{bmatrix}$ and the same coefficients, since their sum is 1, will give us -1 in the d coordinate.

Now, x is a convex combination of y and z: $x = a_1 y + a_2 z$, $\begin{cases} a_1 = \frac{1+x_d}{2}, a_2 = \frac{1-x_d}{2} & x_d \ge 0 \\ a_1 = \frac{1-x_d}{2}, a_2 = \frac{1+x_d}{2} & x_d < 0 \end{cases}$

this is true since the sum of a_1 , a_2 is 1 and y and z are equal for all coordinates other than d then for all coordinates different than d, the convex combination $a_1y + a_2z$ will give us the same value. For coordinate d this is easily checked.

So x is a convex combination of two vectors in \mathbb{R}^d one which is a convex combination of ± 1 vectors where the d coordinate is 1 and the other which is a convex combination of ± 1 vectors where the d coordinate is -1, therefore x is a convex combination of ± 1 vectors where the d coordinate is 1 and ± 1 vectors where the d coordinate is -1 or simply all the ± 1 vectors in \mathbb{R}^d . so

$$x \in conv(S_d)$$

Now let's show that $conv(S) \subseteq H_d$

Let $x \in conv(S)$, then x is equal to some convex combination of ± 1 vectors, let the coefficients of this convex combination be $\alpha_1, ..., \alpha_n$

Such that

$$\sum_{i=1}^{n} \alpha_i = 1$$

Now let's consider some coordinate of x : $x_j = \sum_{i=1}^n \alpha_i a_i$ where a_i is a ± 1 vector in \mathbb{R}^n .

$$|x_j| = \left| \sum_{i=1}^n \alpha_i a_i \right| \le \sum_{i=1}^n |\alpha_i a_i| = \sum_{i=1}^n \alpha_i |a_i| = \sum_{i=1}^n \alpha_i = 1$$

This is true for every coordinate of the vector **x** and so $||x||_{\infty} \le 1$ so $x \in H_d$.

(c) Claim : The set of vertices of H_d are $V=\{x\in\mathbb{R}^d:\ 1\leq i\leq d\ x_i\in\{1,-1\}\}$

Proof: Let $v \in V$, let us consider the hyperplane $L(v,d) = \{x \in \mathbb{R}^d : \langle v, x \rangle = d\}$. First let's show that this is a supporting hyperplane of H_d

i. Let
$$x \in H_d$$
 then $\langle x, v \rangle = \sum_{i=1}^d x_i v_i \le \sum_{i=1}^d |x_i v_i| = \sum_{i=1}^d |x_i| |v_i| \le \sum_{i=1}^d 1 = d$.

ii. $\langle v, v \rangle = d$, which means $L(v, d) \cap H_d \neq \emptyset$ Finally let's show that for $x \in H_d$ if $\langle v, x \rangle = d \Rightarrow x = v$:

$$\langle x, v \rangle = \sum_{i=1}^{d} x_i v_i = d$$

We have d terms in the sum and the sum is equal to d, each term in the sum is at most equal to 1 and therefore all terms in the sum must be equal to 1. So x=v.

This means that $L(v,d) \cap H_d = v$ and so v is a vertex of H_d .

- 3. $\triangle_d \subseteq \mathbb{R}^{d+1} = \left\{ x \in [0,1]^{d+1} : \sum_{i=1}^{d+1} x_i = 1 \right\}$
 - (a) $\triangle_d = \left\{ x \in \mathbb{R}^{d+1} : \forall i \in [d+1], \ 0 \le x_i \le 1, \sum_{i=1}^{d+1} x_i = 1 \right\}$ So \triangle_d is a set of $x \in \mathbb{R}^{d+1}$ which satisfies a finite set of equalities and inequalities and is bounded in all coordinates. By the definition we saw in class this is a Polytope.
 - (b) Claim \triangle_d 's vertices $V = \{e_1, ..., e_d, e_{d+1}\}$ Let $e_i \in V$ let's consider the hyperplane : $L(v, d) = \{x \in \mathbb{R}^{d+1} : \langle e_i, x \rangle = 1\}$, this is a supporting hyperplane of \triangle_d since:
 - i. Let $x \in \triangle_d$ then $\langle x, e_i \rangle = x_i \leq 1$
 - ii. $e_i \in \triangle_d$, $\langle e_i, e_i \rangle = \sum_{i=1}^{d+1} e_i e_i = 1 \Rightarrow \triangle_d \cap L(v, d) \neq \emptyset$ Finally $x \in \triangle_d$, $\langle x, e_i \rangle = 1 \Rightarrow \sum_{i=1}^{d+1} x_i e_i = x_i = 1 \Rightarrow x_i = 1$ and since $\sum_{i=1}^{d+1} x_i = 1 \Rightarrow \forall j \in [d+1], j \neq i \ x_j = 0$ and so

$$x = v$$

So $L(v,d) \cap \triangle_d = v$ and so v is a vertex \triangle_d .

- (c) First let's show that $\triangle_d \subseteq conv(V)$: Let $x \in \triangle_d$ $x = \sum_{i=1}^d x_i e_i$ and this is exactly the convex combination of V that is equal to x, since $0 \le x_i \le 1$, $\sum_{i=1}^{d+1} x_i = 1$ Now let's show that $conv(V) \subseteq \triangle_d$: Let $v \in conv(V)$ so $v = \sum_{i=1}^{d+1} v_i e_i$ where $\sum_{i=1}^{d+1} v_i = 1$, $0 \le v_i \le 1$, and this is by defintion of \triangle_d means that $v \in \triangle_d$
- 4. $x_1,...x_t\mathbb{R}^d$ and let $P=conv(\{x_1,...,x_t\})$. Let $f:\mathbb{R}^d\longrightarrow\mathbb{R},\ c\in\mathbb{R}^d,\ f(x)=\langle c,x\rangle$

let
$$x \in P$$
, $x = \sum_{i=1}^{t} a_i x_i$, $a_i \in [0, 1]$, $\sum_{i=1}^{t} a_i = 1$
 $f(x) = \langle c, x \rangle = \left\langle c, \left(\sum_{i=1}^{t} a_i x_i \right) \right\rangle = \sum_{i=1}^{t} a_i \langle c, x_i \rangle$

$$\max_{x \in P} f(x) = \max_{x \in P} \sum_{i=1}^{t} a_i \langle c, x_i \rangle$$

To maximize this sum we must choose what weights to give each inner product of a vertex with c.

The solution is to take the maximal such inner product and to give it the maximal weight, i.e 1, therefore

$$max_{x \in P} f(x) = \max_{x \in P} \sum_{i=1}^{t} a_i \langle c, x_i \rangle = \max_{i=1,\dots,t} \langle c, x_i \rangle = \max_{i=1,\dots,t} f(x_i)$$

- 5. Max 3x y
 - (a) Feasible Solutions:

(b) $\max 3x - y$ on the feasible set will be received on one of the politope's vertices, let's compute the objective function on each:

$$f\left(\begin{bmatrix}0\\0\end{bmatrix}\right) = 0, f\left(\begin{bmatrix}1\\1\end{bmatrix}\right) = 2, f\left(\begin{bmatrix}2\\1\end{bmatrix}\right) = 5, f\left(\begin{bmatrix}3\\0\end{bmatrix}\right) = 9, f\left(\begin{bmatrix}2\\-1\end{bmatrix}\right) = 7, f\left(\begin{bmatrix}1\\-1\end{bmatrix}\right) = 4$$

Therefore max 3x - y = 9

$$max \quad \begin{bmatrix} 3 & -1 & 0 & 0 & 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z_1 \\ z_2 \\ z_3 \\ z_4 \\ z_5 \\ z_6 \end{bmatrix}$$

$$s.t. \quad \begin{bmatrix} -1 & -1 & -1 \\ -1 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & -1 & -1 \\ 1 & 1 & -1 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z_1 \\ z_2 \\ z_3 \\ z_4 \\ z_5 \\ z_6 \end{bmatrix} = \begin{bmatrix} -3 \\ -3 \\ -1 \\ -1 \\ 0 \\ 0 \end{bmatrix}$$
$$z_1, \dots, z_6 \ge 0$$