- a) Read and understand the table below, parts (a),..,(d)! What happens between steps (c)->(d) and why is this necessary?
- b) How to find a line ℓ going through two points \mathbf{x}_1 , \mathbf{x}_2 and how to determine the intersection point \mathbf{x} of two lines ℓ_1 and ℓ_2 ?
- c) Then write a MATLAB function for the following objective: Given the vanishing line of the ground plane ℓ and the vertical vanishing point \mathbf{v} and the top $(\mathbf{t_1}, \mathbf{t_2})$ and base $(\mathbf{b_1}, \mathbf{b_2})$ points of two line segments as in the table, compute the ratio of lengths of the line segments in the scene.

Hint:

- (i) Compute the vanishing point \mathbf{u} as intersection of ℓ with the line through $\mathbf{b_1}, \mathbf{b_2}$
- (ii) Compute the transferred point \tilde{t}_1 as intersection of the lines t_1 , u and v, b_2
- (iii) Represent the four points $\mathbf{b_2}$, $\mathbf{t_1}$, $\mathbf{t_2}$ and \mathbf{v} on the image line ℓ_2 by their distance from $\mathbf{b_2}$, as ℓ_2 , and ℓ_3 respectively
- (iv) Compute an 1D projective \mathbf{H}_{2x2} mapping homogeneous coordinates $(0,1) \longrightarrow (0,1)$ and $(v, 1) \longrightarrow (1,0)$ (which maps the vanishing point v to infinity).
- (v) The (scaled) distance of the scene points ${}^{\sim}\mathbf{T_1}$ and $\mathbf{T_2}$ from $\mathbf{B_2}$ on $\mathbf{L_2}$ may then be obtained from the position of the points $\mathbf{H_{2x2}}(\mathbf{t_1}, \mathbf{1})^{\mathrm{T}}$ and $\mathbf{H_{2x2}}(\mathbf{t_2}, \mathbf{1})^{\mathrm{T}}$. Their distance ratio is then given by

$$\frac{d_1}{d_2} = \frac{t_1^{\sim}(v - t_2)}{t_2(v - t_1^{\sim})}$$

(a) Example in 3D Euclidian geometry:

The vertical line segments $L_1 = \langle B_1, T_1 \rangle$ and $L_2 = \langle B_2, T_2 \rangle$ have length d_1 and d_2 respectively. The base points B_1 , B_2 are on the ground plane. We wish to compute the scene length ratio $d_1:d_2$ from the imaged configuration

(b) Idea (in 3D Euclidian geometry):

In the scene the length of the line segment L_1 may be transferred to L_2 by constructing a line parallel to the ground plane to generate the point ${}^{\sim}T_1$.

(c) in projective image geometry:

 ℓ is the ground plane vanishing line, and \mathbf{v} the vertical vanishing point. A corresponding parallel line construction in the image requires first determining the vanishing point \mathbf{u} from the images $\mathbf{b_i}$ of $\mathbf{B_i}$, and then determining $\mathbf{\tilde{t}_1}$ (the image of $\mathbf{t_1}$) by the intersection of ℓ_2 and the line $<\mathbf{t_1},\mathbf{u}>$.

(d) using rectified, parallel lines: The line ℓ_3 is parallel to ℓ_1 in the image. The points ${}^{\hat{}}t_1$ and ${}^{\hat{}}t_2$ are constructed by intersecting ℓ_3 with the lines $< t_1, \tilde{}t_1 >$ and $< t_1, t_2 >$ respectively. The distance ratio $d(b_2, {}^{\hat{}}t_1) : d(b_2, {}^{\hat{}}t_2)$ is the computed estimate of $d_1:d_2$.

Use this Test data							
null null	0	0	at	lower	left	ground	grid
b1	222	43					
b2	389	168					
t1	232	311					
~t1	344	340					
t2	331	391					
v	247	713					
u'	590	451					
u	767	451					