FCC Test Report

for

2.4GHz RF Modular

Model Number : DZ-ZB-SP

FCC ID : YCMDZZBSP

Report Number: RF-D230-1210-474

Date of Receipt: November 23, 2012

Date of Report : December 11, 2012

Prepared for

DiZiC Co., Ltd.

3FI., No 4-2 Jin Xi Street, Zhong Shan District, 104 Taipei, TAIWAN

Prepared by

Central Research Technology Co. EMC Test Laboratory

No.11, Lane41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

NVLAP LAB CODE 200575-0

This report shall not be reproduced, except in full, without the written approval of Central Research Technology Co.. It may be duplicated completely in its entirely for legal use with the permission of the applicant. It should not be used to claim product endorsement by NVLAP, NIST or any U.S. government agency. The test result in the report applies only to the sample tested.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C. TEL.: 886-2-25984542 FAX.: 886-2-25984546

Verification of Compliance

Equipment under Test: 2.4GHz RF Modular

Model No. : DZ-ZB-SP

FCC ID : YCMDZZBSP

Manufacturer : DiZiC Co., Ltd.

Applicant : DiZiC Co., Ltd.

Address : 3FI., No 4-2 Jin Xi Street, Zhong Shan District, 104 Taipei,

TAIWAN

Applicable Standards : 47 CFR part 15, Subpart C

Date of Testing : November 26 ~ December 5, 2012

Deviation: N/A

Condition of Test Sample: Mass Production

We, **Central Research Technology Co.**, hereby certify that one sample of the designated product was tested in our facility during the period mentioned above. The test records, data evaluation and Equipment Under Test (EUT) configurations shown in the present report are true and accurate representation of the measurements of the sample's RF characteristics under the conditions herein specified.

The test results show that the EUT as described in the present report is in compliance with the requirements set forth in the standards mentioned above and apply to the tested sample identified in the present report only. The test report shall not be reproduced, except in its entirety, without the written approval of Central Research Technology Co.

PREPARED BY: Costy Chan, DATE: Dec. 11, 20/2

(Cathy Chen/ Technical Manager)

APPROVED BY : J. Y. Ell., DATE: Dec. 11, 2012

(Tsun-Yu Shih/General Manager)

Contents

1	General Description	5
1.1	General Description of EUT	5
1.2	Applied standards	6
1.3	The Support Units	8
1.4	Layout of Setup	8
1.5	Test Capability	9
1.6	Measurement Uncertainty	11
2	Maximum Peak Output Power	12
2.1	Applied standard	12
2.2	Test Instruments	12
2.3	Measurement Procedure	13
2.4	Test configuration	13
2.5	Test Data	14
3	Band Edge	16
3.1	Applied standard	16
3.2	Test Instruments	17
3.3	Measurement Procedure	18
3.4	Test configuration	18
3.5	Test Data	19
4	6dB Bandwidth	26
4.1	Applied standard	26
4.2	Test Instruments	26
4.3	Measurement Procedure	27
4.4	Test configuration	27
4.5	Test Data	28
5	Peak Power Spectral Density	30
5.1	Applied standard	30
5.2	Test Instruments	30
5.3	Measurement Procedure	31
5.4	Test configuration	31
5.5	Test Data	32
6	Radiated Emission	34
6.1	Applied standard	34

FCC Test Report

Report No.:RF-D230-1210-474

6.2	Test Instruments	35
6.3	Measurement Procedure	37
6.4	Test configuration	38
6.5	Test Data	39
7	Antenna Requirement	63
7.1	Applied standard	63
7.2	Antenna Information	63
7.3	Result	63

Attachment 1 – Photographs of the Test Configurations

Attachment 2 – External Photographs of EUT

Attachment 3 –Internal Photographs of EUT

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

1 General Description

1.1 General Description of EUT

Equipment under Test : 2.4GHz RF Modular

Model No. : DZ-ZB-SP

Power in : 3Vdc

Test Voltage : 3Vdc by batteries

Manufacturer : DiZiC Co. Ltd.

Channel Numbers : 16

Frequency Range : 2405~2480MHz

Function Modulation : OQPSK

Modular Function : IEEE 802.15.4 / Zigbee

Antenna Spec : Printed Antenna Gain : 1.95dBi

Function Description :

The EUT is used to transmit and receive command both. Please refer to the user's manual for the details.

Perform the functions of EUT continuously by executing the test program supplied by manufacturer.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

1.2 Applied standards

(1) Conduction Emission Requirement

For intentional device, according to §15.207(a) line conduction emission limit is as below table.

Frequency of Emission (MHz)	Conducted Limit (dBuV)		
Frequency of Emission (MH2)	Quasi-peak	Average	
0.15 – 0.5	66 to 56*	56 to 46*	
0.5 - 5	56	46	
5 - 30	60	50	

^{*} Decreases with the logarithm of the frequency.

(2) Radiated Emission Requirement

For intentional device, according to §15.209, the general requirement of field strength of radiated emissions from intentional radiator at a distance of 3 meters shall not exceed the below table.

Frequency (MHz)	Measurement Distance (m)	Field Strength (uV/m)	Field Strength (dBuV/m)
30 – 88	3	100	40.0
88 – 216	3	150	43.5
216 – 960	3	200	46.0
960 – 1610	3	500	54.0
above 1610	3	500	54.0

Note 1- The lower limit shall apply at the transition frequency.

(3) 6dB Bandwidth

According to 15.247(a)(2), Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

(4) Maximun Peak Output Power

According to 15.247(b)(3), For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

(5) 100kHz Bandedge

According to 15.247(d), in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

(6) Power spectral density

According to 15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

(7) Restricted Band

Frequency (MHz)	Frequency (MHz)	Frequency (MHz)	Frequency (GHz)
0.090 - 0.110	16.42 - 16.423	399.9 - 410	4.5 - 5.15
¹ 0.495 - 0.505	16.69475 - 16.69525	608 - 614	5.35 - 5.46
² 1735 - 2.1905	16.80425 - 16.80475	960 - 1240	7.25 - 7.75
4.125 - 4.128	25.5 - 25.67	1300 - 1427	8.025 - 8.5
4.17725 - 4.17775	37.5 - 38.25	1435 - 1626.5	9.0 - 9.2
4.20725 - 4.20775	73 - 74.6	1645.5 - 1646.5	9.3 - 9.5
6.215 - 6.218	74.8 - 75.2	1660 - 1710	10.6 - 12.7
6.26775 - 6.26825	108 - 121.94	1718.8 - 1722.2	13.25 - 13.4
6.31175 - 6.31225	123 - 138	2200 - 2300	14.47 - 14.5
8.291 - 8.294	149.9 - 150.05	2310 - 2390	15.35 - 16.2
8.362 - 8.366	156.52475 - 156.52525	2483.5 - 2500	17.7 - 21.4
8.37625 - 8.38675	156.7 - 156.9	2690 - 2900	22.01 - 23.12
8.41425 - 8.41475	162.0125 - 167.17	3260 - 3267	23.6 - 24.0
12.29 - 12.293	167.72 - 173.2	3332 - 3339	31.2 - 31.8
12.51975 - 12.52025	240 - 285	3345.8 - 3358	36.43 - 36.5
12.57675 - 12.57725	322 - 335.4	3600 - 4400	(2)
13.36 - 13.41			

¹ Until February 1, 1999, this restricted band shall be 0.490-0.510 MHz.

² Above 38.6

The Support Units 1.3

No.	Unit	Model No./ Serial No.	Trade Name	Power Code	Supported by lab.
1.	Control Board	DZ_ZBDMB03	DiZiC	N/A	

Layout of Setup

EUT

1. Control Board

Connecting Cables:

No.	Cable	Length	Shielded	Core	Shielded	Supported	Note
110.	Gubic	Longin	Omeraca	0010	Backshell	by lab.	14010
N/A	*	*	*	*	*	*	

Page : 8/63

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

1.5 Test Capability

Test Facility

The test facility used for evaluating the conformance of the EUT with each standard in the present report meets what required in CISPR16-1-4, CISPR16-2-3 and ANSI C63.4:2003.

Test Room	Type of Test Room	Descriptions	
TR1	10m semi-anechoic chamber (23m×14m×9m)	Complying with the NSA requirements in documents CISPR 22 and ANSI	
TR11		C63.4:2003. For the radiated emission measurement.	
TR13	Test Site	For the RF conducted emission measurement.	
TR5	Shielding Room (8m×5m×4m)	For the conducted emission measurement.	

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Laboratory Competence Information

Central Research Technology Co. has been accredited / filed / authorized by the agencies listed in the following table.

Certificate	Nation	Agency	Code	Mark
	USA	NVLAP	200575-0	ISO/IEC 17025
	R.O.C. (Taiwan)	TAF	0905	ISO/IEC 17025
Accreditation Certificate	R.O.C. (Taiwan)	BSMI	SL2-IN-E-0033, SL2-IS-E-0033, SL2-R1/R2-E-0033, SL2-A1-E-0033 SL2-L1-E-0033	ISO/IEC 17025
	USA	FCC	474046, TW1053	Test facility list & NSA/SVSWR Data
Site Filing Document	Canada	IC	4699A-1,-3	Test facility list & NSA Data
	Japan	VCCI	R-1527,C-1609,T-1441, G-10, C-4400, G-614, T-1334	Test facility list & NSA/SVSWR Data
Authorization	Germany	TUV	10021687	ISO/IEC 17025
Certificate	Norway	Nemko	ELA212	ISO/IEC 17025

The copy of each certificate can be downloaded from our web site: www.crc-lab.com

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

1.6 Measurement Uncertainty

The assessed measurement uncertainty with a suitable coverage factor K to ensure 95% confidence level for the normal distribution are shown as below, the values are less than U_{cispr} in table 1 of CISPR 16-4-2.

Test Item	Measurement Uncertainty		
Radiated Emission: (30MHz~200MHz)	Horizontal 3.5dB; Vertical 3.8dB		
Radiated Emission: (200MHz~1GHz)	Horizontal 3.9dB; Vertical 3.9dB		
Radiated Emission: (1GHz~18GHz)	Horizontal 3.5dB; Vertical 3.6dB		
Radiated Emission: (18GHz~26.5GHz)	Horizontal 4.4dB; Vertical 4.5dB		
Line Conducted Emission	ESH2-Z5	3.1dB	
Line Conducted Emission	ENV 4200	2.8dB	

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 12/63

2 Maximum Peak Output Power

Result: Pass

2.1 Applied standard

According to 15.247(b)(3), For systems using digital modulation in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands: 1 Watt.

2.2 Test Instruments

Test Site and	Manufacturer	Model No./	Last	Calibration
Equipment	Manufacturer	Serial No.	Serial No. Calibration Date	
Spectrum Analyzer	Agilent	E4405B/ MY45106706	March 29, 2012	March 29, 2013
Test Site	N.A.	TR13	NCR	NCR

Note:

1. The calibrations are traceable to NML/ROC.

2.NCR: No Calibration Required.

Instrument Setting

RBW	VBW	Detector	Trace	Comment
3MHz	3MHz	Peak	Maxhold	

Climatic Condition

Ambient Temperature : 21°C Relative Humidity : 54%

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 13/63

2.3 Measurement Procedure

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. The software provided by client enabled the EUT to transmit data at lowest, middle and highest channel frequencies individually.
- c. Measurement the maximum peak output and compare with the required limit.

2.4 Test configuration

CENTRAL RESEARCH TECHNOLOGY CO. No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

2.5 Test Data

Test Mode : Continuous Transmitting Tester : Jun

Operating Frequency (MHz)	Reading Data (dBm)	Correction Factor (dB)	Emission (dBm)	Limit (dBm)	Margin (dB)
2405	6.25	0.8	7.05	30	22.95
2440	6.23	0.8	7.03	30	22.97
2480	-3.36	0.8	-2.56	30	32.56

Note:

- 1. Correction Factor (dB) = Cable Loss + Attenuator
- 2. Emission (dBm) = Reading Data + Correction Factor
- 3. Margin (dB) = Limit Emission

Low Channel (2405MHz)

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

MiddleChannel (2440MHz)

High Channel (2480MHz)

Page: 16/63

3 Band Edge

Result: Pass

3.1 Applied standard

According to 15.247(c),in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

3.2 Test Instruments

Test Site and	Manufacturer	Model No./	Last	Calibration
Equipment	Manaracturer	Serial No.	Calibration Date	Due Date
Spectrum Analyzer	Agilent	E4405B/ MY45106706	March 29, 2012	March 29, 2013
Test Site	N.A.	TR13	NCR	NCR
Spectrum Analyzer	Agilent	FSP40/ 100031	July 11, 2012	July 11, 2013
Antenna	EMCO	3117/ 00082847	March 1, 2012	March 1, 2013
PRE-AMPLIFIER	MITEQ	JS4-00101800-28 -10P/1498979	Dec. 21, 2011	Dec. 21, 2012
PRE-AMPLIFIER	MITEQ	JS4-00101800-28 -5A/742309	Dec. 14, 2011	Dec. 14, 2012
Semi - anechoic Chamber	ETS. LINDGREN	TR11/ 906-A	Feb. 12, 2012	Feb. 12, 2013

Note:

- 1. The calibrations are traceable to NML/ROC.
- 2.NCR: No Calibration Required.

Instrument Setting

RBW	VBW	Detector	Trace	Comment
100kHz	300kHz	Peak	Maxhold	100kHz Bandedge
1MHz	3MHz	Peak	Maxhold	Bandedge Peak
1MHz	10Hz	Peak	Maxhold	Bandedge Average

Climatic Condition

Ambient Temperature: 24°C Relative Humidity: 54%

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

3.3 Measurement Procedure

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. The software provided by client enabled the EUT to transmit data at lowest and highest channel frequencies individually.
- C. Measurement the band edge and compare with the required limit.

3.4 Test configuration

100kHz Bandedge

Restricted Bandedge Measurement

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page : 19/63

3.5 Test Data

100KHz Bandedge Measurement

Test Mode : Continuous Transmitting Tester : Jun

Operation Frequency (MHz)	Maximum Emission Level (dBm)	Emission Frequency (MHz)	Emission Level of out band (dBm)	Attenuation (dB)	Limit (dB)	Margin (dB)
2405	3.79	2399.8	-38.15	41.94	20	21.94
2480	-6.48	2483.7	-43.07	36.59	20	16.59

Note:

1. Attenuation (dB) = Maximum Emission Level - Emission Level

2. Margin (dB) = Attenuation – Limit

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Low Channel (2405MHz)

High Channel (2480MHz)

Restricted Bandedge Measurement

Test Mode : Continuous Transmitting Tester : Liu

Operation frequency : 2405MHz							
Frequency (MHz)	Reading Data (dBuV)	Correction Factor (dB/m)	Emission (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Polarization	Remark
2385.30	53.33	-2.40	50.93	74	23.07	Horizontal	Peak
2385.30	43.01	-2.40	40.61	54	13.39	Horizontal	Average
2390.00	53.42	-2.40	51.02	74	22.98	Vertical	Peak
2390.00	43.07	-2.40	40.67	54	13.33	Vertical	Average
Operation fr	requency : 248	0MHz					
2483.5	60.39	-2.25	58.14	74	15.86	Horizontal	Peak
2483.5	54.56	-2.25	52.31	54	1.69	Horizontal	Average
2483.5	59.3	-2.25	57.05	74	16.95	Vertical	Peak
2483.5	53.44	-2.25	51.19	54	2.81	Vertical	Average

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Pre-amplifier
- 2. Emission (dBuV/m) = Reading Data + Correction Factor
- 3. Margin(dB) = Limit Emission

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Low Channel (2405MHz), H Polarization – Peak

Low Channel (2405MHz), H Polarization – Average

Low Channel (2405MHz), V Polarization - Peak

Low Channel (2405MHz), V Polarization – Average

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

High Channel (2480MHz), H Polarization - Peak

High Channel (2480MHz), H Polarization - Average

High Channel (2480MHz), V Polarization – Peak

High Channel (2480MHz), V Polarization - Average

Page: 26/63

4 6dB Bandwidth

Result: Pass

4.1 Applied standard

According to 15.247(a)(2), Systems using digital modulation techniques may operate in the 902–928 MHz, 2400–2483.5 MHz, and 5725–5850 MHz bands. The minimum 6 dB bandwidth shall be at least 500 kHz.

4.2 Test Instruments

Test Site and	Manufacturer	Model No.	Last	Calibration
Equipment	Wallulacturel	/Serial No.	Calibration Date	Due Date
Spectrum Analyzer	Agilent	E4405B/ MY45106706	March 29, 2012	March 29, 2013
Test Site	N.A.	TR13	NCR	NCR

Note:

- 1. The calibrations are traceable to NML/ROC.
- 2. NCR:No Calibration Required.

Instrument Setting

RBW	VBW	Detector	Trace	Comment
30kHz	100kHz	Peak	Maxhold	

Climatic Condition

Ambient Temperature : 22℃ Relative Humidity :60%

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 27/63

4.3 Measurement Procedure

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. A software provided by client enabled the EUT to transmit data at low, middle and high channel frequencies individually.
- c. Measure the 6dB bandwidth and compare with the required limit.

4.4 Test configuration

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

4.5 Test Data

Test Mode : Continuous Transmitting Tester : Jun

Operating Frequency (MHz)	6 dB Bandwidth (MHz)	Limit (kHz)
2405	1.597	500
2440	1.637	500
2480	1.597	500

Low Channel (2405MHz)

Middle Channel (2440MHz)

High Channel (2480MHz)

Page: 30/63

5 Peak Power Spectral Density

Result: Pass

5.1 Applied standard

According to 15.247(e), for digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.

5.2 Test Instruments

Test Site and	Manufacturer	Model No.	Last	Calibration
Equipment	Manufacturer	/Serial No.	Calibration Date	Due Date
Spectrum Analyzer	Agilent	E4405B/ MY45106706	March 29, 2012	March 29, 2013
Test Site	N.A.	TR13	NCR	NCR

Note:

- 1. The calibrations are traceable to NML/ROC.
- 2. NCR:No Calibration Required.

Instrument Setting

RBW	VBW	Detector	Trace	Comment
3kHz	10kHz	Peak	Maxhold	

Climatic Condition

Ambient Temperature : 22°C Relative Humidity :60%

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 31/63

5.3 Measurement Procedure

- a. The EUT was set up per the test configuration figured in the next section of this chapter to simulate the typical usage per the user's manual.
- b. A software provided by client enabled the EUT to transmit data at low, middle and high channel frequencies individually.
- c. Measure the peak power spectrum density and compare with the required limit.

5.4 Test configuration

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

5.5 Test Data

Test Mode : Continuous Transmitting Tester : Jun

Operating Frequency (MHz)	Reading Data (dBm)	Correction Factor (dB)	Emission (dBm)	Limit (dBm)	Margin (dBm)
2405	-8.29	0.8	-7.49	8	15.49
2440	-8.25	0.8	-7.45	8	15.45
2480	-18.45	0.8	-17.65	8	25.65

Note:

- 1. Correction Factor (dB) = Cable Loss + Attenuator
- 2. Emission (dBm) = Reading Data + Correction Factor
- 3. Margin (dB) = Limit Emission

Low Channel (2405MHz)

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Span 3 kHz

#Sweep 100 s (501 pts)

#VBW 10 kHz

High Channel (2480MHz)

Center 2.44 GHz

#Res BW 3 kHz

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 34/63

6 Radiated Emission

Result: Pass

6.1 Applied standard

According to 15.247(c),in any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a).

CENTRAL RESEARCH TECHNOLOGY CO.

Page : 35/63

6.2 Test Instruments

Test Site and	Manufacturer	Model No./	Last	Calibration
Equipment	Manufacturer	Serial No.	Calibration Date	Due Date
EMI Test Receiver	R&S	ESCS 30/ 836858/020	Sept. 10, 2012	Sept. 10, 2013
Spectrum Analyzer	Agilent	FSP40/ 100031	July 11, 2012	July 11, 2013
Broadband Antenna	R&S	HL-562/ 830547/010	May 2, 2012	May 2, 2013
Antenna	EMCO	3117/ 00082847	March 1, 2012	March 1, 2013
Pre-Amplifier	Mini Circuit	ZKL-2/ 001	July 16, 2012	Jan.16, 2013
Pre-Amplifier	Mini Circuit	ZKL-2/ 002	July 16, 2012	Jan.16, 2013
PRE-AMPLIFIER	MITEQ	JS4-00101800-28-1 0P/1498979	Dec. 21, 2011	Dec. 21, 2012
PRE-AMPLIFIER	MITEQ	JS4-00101800-28-5 A/742309	Dec. 14, 2011	Dec. 14, 2012
RF Cable	JYEBAO	0214/ C0049	July 16, 2012	Jan.16, 2013
RF Cable	JYEBAO	0214/ C0050	July 16, 2012	Jan.16, 2013
RF Cable	H+S	Sucoflex 104/ C0081	Oct. 15, 2012	April 15, 2013
Semi - anechoic Chamber	ETS. LINDGREN	TR11/ 906-A	Feb. 12, 2012	Feb. 12, 2013

Note:

- 1. The calibrations are traceable to NML/ROC.
- 2. NCR: No Calibration Required.
- The calibration date of the semi-anechoic chamber listed above is the date of NSA measurement.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page : 36/63

Instrument Setting

RBW	VBW	Detector	Trace	Comment
120kHz	N/A	Quasi-Peak	Maxhold	Below 1GHz
1MHz	3MHz	Peak	Maxhold	Above 1GHz, Peak
1MHz	10Hz	Peak	Maxhold	Above 1GHz, Average

Climatic Condition

Ambient Temperature : 24°℃ Relative Humidity:53%

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

FCC Test Report

Report No.:RF-D230-1210-474

Page: 37/63

6.3 **Measurement Procedure**

a. The EUT was set up per the test configuration figured in the next section of this chapter to

simulate the typical usage per the user's manual.

b. A software provided by client enabled the EUT to transmit and receive data at operating

frequency.(if necessary)

c. If the EUT is tabletop equipment, it should be placed on a wooden table with a height of 0.8

meters above the reference ground plane in the semi-anechoic chamber. If the EUT is

floor-standing equipment, it should be placed on a non-conducted support with a height of 12

millimeters above the reference ground plane in the semi-anechoic chamber.

d. The EUT is set 3m away from the interference receiving antenna.

e. Rapidly sweep the signal in the test frequency range by using the spectrum through the

Maximum-peak detector.

f. Rotate the EUT from 0° to 360° and position the receiving antenna at heights from 1 to 4

meters above the reference ground plane continuously to determine at least six frequencies

associated with higher emission levels and record them.

g. Then measure each frequency found from step f. by using the spectrum with rotating the EUT

and positioning the receiving antenna height to determine the maximum level.

h. For measurement of frequency below 1000MHz, set the receiver detector to be Quasi-Peak per

CISPR 16-1 to find out the maximum level occurred.

i. For measurement of frequency above 1000MHz, set the spectrum detector to be Peak or

Average to find out the maximum level occurred, if any.

j. Record frequency, azimuth angle of the turntable, height, and polarization of the receiving

antenna and compare the maximum level with the required limit.

k. Change the receiving antenna to another polarization to measure radiated emission by

following step e. to j. again.

I. If the peak emission level below 1000MHz measured from step f. is 4dB lower than the limit

specified, then the emission values presented will be the peak value only. Otherwise, accurate

Q.P. value will be measured and presented.

m. If the peak emission level above 1000MHz measured from step f. is 20dB lower than the limit

specified, then the emission values presented will be the peak value only. Otherwise, accurate

A.V. value will be measured and presented.

: Pre-amplifier

Test configuration 6.4

Below 1GHz 3m H=1~4m ΕΨΤ 0.8m **∮**0° Spectrum analyzer

CENTRAL RESEARCH TECHNOLOGY CO.
No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

6.5 Test Data

Radiated Emission Measurement below 1000MHz

Test Mode : 2405MHz, Continuous Transmitting

Test Distance : 3m Tester : Liu

Polarization : Horizontal Frequency Range : 30MHz~1000MHz

Note:

- Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 40/63

Test Mode : 2405MHz, Continuous Transmitting

Test Distance : 3m Tester : Liu

Polarization: Vertical **Frequency Range**: 30MHz~1000MHz

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2440MHz, Continuous Transmitting

Polarization : Horizontal Frequency Range : 30MHz~1000MHz

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2440MHz, Continuous Transmitting

Test Distance : 3m Tester : Liu

Polarization: Vertical **Frequency Range**: 30MHz~1000MHz

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2480MHz, Continuous Transmitting

Test Distance : 3m Tester : Liu

Polarization : Horizontal Frequency Range : 30MHz~1000MHz

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2480MHz, Continuous Transmitting

Test Distance : 3m Tester : Liu

Polarization: Vertical **Frequency Range**: 30MHz~1000MHz

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2405MHz, Continuous Receiving

Test Distance : 3m Tester : Liu

Polarization : Horizontal Frequency Range : 30MHz~1000MHz

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2405MHz, Continuous Receiving

Test Distance : 3m Tester : Liu

Polarization: Vertical Frequency Range: 30MHz~1000MHz

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2440MHz, Continuous Receiving

Test Distance : 3m Tester : Liu

Polarization: Horizontal Frequency Range: 30MHz~1000MHz

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Mode : 2440MHz, Continuous Receiving

Test Distance : 3m **Tester** : Liu

Polarization : Vertical **Frequency Range** : 30MHz~1000MHz

Note:

4

5

- Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- Emission Level (dBuV/m) = Reading Data + Correction Factor

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Model : 2480MHz, Continuous Receiving

Polarization : Horizontal Frequency Range : 30MHz~1000MHz

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Model : 2480MHz, Continuous Receiving

Test Distance : 3m Tester : Liu

Polarization: Vertical **Frequency Range**: 30MHz~1000MHz

Note:

- 1. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier
- 2. Emission Level (dBuV/m) = Reading Data + Correction Factor

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 51/63

Radiated Emission Measurement above 1000MHz

Test Model : 2405MHz, Continuous Transmitting

Antenna Polarization: Horizontal Frequency Range: 1GHz~25GHz

Note:

- 1. Emission Level (dBuV/m) = Reading Value + Correction Factor.
- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 18GHz to 25GHz, so the graphs are omitted above 18GHz.

CENTRAL RESEARCH TECHNOLOGY CO. No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Model : 2405MHz, Continuous Transmitting

Antenna Polarization: Vertical Frequency Range: 1GHz~25GHz

Note:

- 1. Level (dBuV/m) = Read level + Factor.
- 2. Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. Over Limit (dB) = Level Limit line
- 4. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 18GHz to 25GHz, so the graphs are omitted above 18GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Model : 2440MHz, Continuous Transmitting

Antenna Polarization: Horizontal Frequency Range: 1GHz~25GHz

Note:

- 1. Level (dBuV/m) = Read level + Factor.
- 2. Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. Over Limit (dB) = Level Limit line
- 4. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 18GHz to 25GHz, so the graphs are omitted above 18GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 54/63

Test Model : 2440MHz, Continuous Transmitting

Test Distance : 3m Tester : Liu

Antenna Polarization: Vertical Frequency Range: 1GHz~25GHz

Note:

- 1. Level (dBuV/m) = Read level + Factor.
- 2. Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. Over Limit (dB) = Level Limit line
- 4. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 18GHz to 25GHz, so the graphs are omitted above 18GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 55/63

Test Model : 2480MHz, Continuous Transmitting

Antenna Polarization: Horizontal Frequency Range: 1GHz~25GHz

Note:

- 1. Level (dBuV/m) = Read level + Factor.
- 2. Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. Over Limit (dB) = Level Limit line
- 4. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 18GHz to 25GHz, so the graphs are omitted above 18GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Model : 2480MHz, Continuous Transmitting

Antenna Polarization: Vertical Frequency Range: 1GHz~25GHz

Note:

- Level (dBuV/m) = Read level + Factor.
- 2. Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. Over Limit (dB) = Level Limit line
- 4. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 18GHz to 25GHz, so the graphs are omitted above 18GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page : 57/63

Test Model : 2405MHz, Continuous Receiving

Antenna Polarization: Horizontal Frequency Range: 1GHz~25GHz

Note:

- 1. Emission Level (dBuV/m) = Reading Value + Correction Factor.
- 2. Correction Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 18GHz to 25GHz, so the graphs are omitted above 18GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Model : 2405MHz, Continuous Receiving

Antenna Polarization: Vertical Frequency Range: 1GHz~25GHz

Note:

- Level (dBuV/m) = Read level + Factor.
- 2. Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. Over Limit (dB) = Level Limit line
- 4. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 18GHz to 25GHz, so the graphs are omitted above 18GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Test Model : 2440MHz, Continuous Receiving

Antenna Polarization: Horizontal Frequency Range: 1GHz~25GHz

Note:

- 1. Level (dBuV/m) = Read level + Factor.
- 2. Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. Over Limit (dB) = Level Limit line
- 4. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 18GHz to 25GHz, so the graphs are omitted above 18GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 60/63

Test Model : 2440MHz, Continuous Receiving

Antenna Polarization: Vertical Frequency Range: 1GHz~25GHz

Note:

- 1. Level (dBuV/m) = Read level + Factor.
- 2. Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. Over Limit (dB) = Level Limit line
- 4. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 18GHz to 25GHz, so the graphs are omitted above 18GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 61/63

Test Model : 2480MHz, Continuous Receiving

Antenna Polarization: Horizontal Frequency Range: 1GHz~25GHz

Note:

- Level (dBuV/m) = Read level + Factor.
- 2. Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. Over Limit (dB) = Level Limit line
- 4. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 18GHz to 25GHz, so the graphs are omitted above 18GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 62/63

Test Model : 2480MHz, Continuous Receiving

Antenna Polarization: Vertical Frequency Range: 1GHz~25GHz

Note:

- 1. Level (dBuV/m) = Read level + Factor.
- 2. Factor (dB/m) = Cable Loss + Antenna Factor Gain of Preamplifier.
- 3. Over Limit (dB) = Level Limit line
- 4. PK. and AV. are abbreviation of peak and average respectively.

No signal can be detected from 18GHz to 25GHz, so the graphs are omitted above 18GHz.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.

Page: 63/63

7 Antenna Requirement

7.1 Applied standard

According to 15.247(4), The conducted output power limit specified in paragraph (b) of this section is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from the intentional radiator shall be reduced below the stated values in paragraphs (b)(1), (b)(2), and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6 dBi

7.2 Antenna Information

This antenna's relative information as follow:

Brand	Model	Frequency Range (MHz)	Gain (dBi)	Comment
DiZiC	N/A	2400-2483.5	1.95	Printed antenna

7.3 Result

Gain of the antenna is less than 6dBi.

CENTRAL RESEARCH TECHNOLOGY CO.

No. 11, Lane 41, Fushuen St., Jungshan Chiu, Taipei, Taiwan, 104, R.O.C.