IJCAI 2024

The 33rd International Joint Conference on Artificial Intelligence

TaD: A Plug-and-Play Task-Aware Decoding Method to Better Adapt LLMs on **Downstream Tasks**

Xinhao Xu^{1,2}, Hui Chen^{2*}, Zijia Lin¹, Jungong Han³, Lixing Gong⁴, Guoxin Wang⁴, Yongjun Bao⁴ and Guiguang Ding^{1,2} ¹School of Software, Tsinghua University ²Beijing National Research Center for Information Science and Technology (BNRist) ³Department of Computer Science, University of Sheffield ⁴JD.com

Large Language Models in Downstream Tasks

A common strategy:

Fine-tuning pre-trained LLMs with downstream demonstration data.

Inherent Knowledge Acquisition of Fine-tuned LLMs

LLM Outputs ≠ **Knowledge**:

LLMs can possess correct knowledge even if their outputs are incorrect.

```
Question: Who was the third president of the United States?

Here are some brainstormed ideas: James Monroe\n Thomas Jefferson\n Jefferson\n

Thomas Jefferson\n George Washington

Possible Answer: James Monroe

Is the possible answer:
```

- (A) True
- (B) False

The possible answer is: (B) Correct Evaluation

How can we leverage such inherent knowledge in the fine-tuned LLMs to enhance their performance in downstream tasks?

Our work: Plug and Play Task-Aware Decoding

Intuitive Ideas:

Token-predicting alterations during fine-tuning reflect the inherent

knowledge.

 Such alterations indicate an adaptive shift from common knowledge to task-specific knowledge.

Knowledge Vector

Explicitly denoting the direction of knowledge adaptation learned during fine-tuning, naturally with semantic information.

Could you provide a *professional* explanation of photosynthesis?

Photosynthesis is the process through which light helps

plants...

biochemical reactions.

Our work: Plug and Play Task-Aware Decoding

Task-Aware Decoding (TaD):

- Enhancing the fine-tuned LLM's output probability distribution with the knowledge vector.
- Reinforcing the model's knowledge adaptation to downstream tasks for better performance.

Features

- A plug and play method
- Promising potential in data-scarce scenarios.

Task-Aware Decoding: An Implementation

Constructing the Knowledge Vector

Pre-trained LLM: $p_{\theta}(x_t|x_{< t}), x_t \in \mathcal{V}$

(\mathcal{V} denotes the vocabulary)

Fine-tuned LLM:
$$p_{\phi}(x_t|x_{< t}), x_t \in \mathcal{V}$$

$$\mathcal{V}_K = p_{\mathcal{E}} - p_{\mathcal{S}}$$

$$= \log p_{\phi}(x_t|x_{< t}) - \log p_{\theta}(x_t|x_{< t})$$

 $|\mathcal{V}|$ -dimensional vector

Constraint Function to Avoid False Positive Cases

$$\mathcal{C}_{t} = \{x_{t} \in \mathcal{V} : p_{\phi}(x_{t}|x_{< t}) \geq \alpha \max_{x_{t}' \in \mathcal{V}} p_{\phi}(x_{t}'|x_{< t})\} \qquad \mathbb{I}(x_{t}) = \begin{cases} 1 & \text{if } x_{t} \in \mathcal{C}_{t} \\ 0 & \text{otherwise} \end{cases}$$

Knowledge Vector w/ penalty coefficient

$$\hat{\mathcal{V}}_K = \mathbb{I}(x_t) \cdot \mathcal{V}_K + (1 - \mathbb{I}(x_t)) \cdot \lambda$$

Task-Aware Decoding: An Implementation

Task-Aware Decoding (TaD):

Convert the knowledge vector into a probability distribution

$$p_K(x_t|x_{< t}) = \operatorname{softmax}(\hat{\mathcal{V}}_K)$$

Main Results: Multiple-Choice & Generation Tasks

Model	Method	Mul	tiple Cho	CBQA	
1110401	1,1011104	MC1	MC2	MC3	True*Info
	LoRA + <i>TaD</i>	30.6 33.0	51.3 52.5	25.6 27.1	35.7 37.0
GPT-J-6b	AdapterP +TaD	34.9 38.2	54.3 55.5	28.0 29.5	51.5 51.7
	AdapterH +TaD	36.4 38.3	55.0 55.8	28.5 28.7	53.0 55.3
	Parallel +TaD	34.3 37.5	54.0 55.1	27.7 28.9	47.2 47.4
Q.	LoRA + <i>TaD</i>	30.8 32.8	51.4 52.3	25.7 27.2	17.4 17.5
BLOOMz-7b	AdapterP +TaD	35.3 35.7	53.8 54.8	28.5 28.4	20.6 20.7
	AdapterH +TaD	36.8 37.9	54.5 55.2	28.9 29.2	50.3 50.8
	Parallel + <i>TaD</i>	34.5 36.5	53.6 54.4	28.2 28.5	21.8 22.7

Model	Method	Mul	tiple Cho	oices	CBQA
Wiodei	1,1011104	MC1	MC2	MC3	True*Info
LLaMa-7b	LoRA + <i>TaD</i>	32.9 34.2	55.0 55.7	28.5 29.0	49.1 51.2
	AdapterP +TaD	38.1 40.6	57.4 58.5	30.8 32.1	61.4 61.8
	AdapterH +TaD	37.8 39.8	57.6 59.0	30.3 32.0	60.3 61.0
	Parallel +TaD	37.0 39.5	56.3 57.0	29.5 30.4	54.3 55.2
	LoRA +TaD	33.4 35.1	55.7 56.7	29.0 29.7	54.1 54.7
LLaMa-13b	AdapterP +TaD	40.6 42.6	58.8 60.0	32.4 33.1	58.6 60.0
	AdapterH +TaD	38.2 39.5	57.0 57.8	30.4 31.2	61.8 63.3
	Parallel + <i>TaD</i>	39.8 42.0	58.2 60.2	31.7 33.8	60.0 61.6

Model	Method	Math F	Reasoning	CS Rea	CS Reasoning	
1,10001	1,101100	GSM8K	MultiArith	BoolQ	PIQA	
	LoRA	21.9	92.5	61.8	63.4	
GPT-J-6b	+TaD	22.8	94.2	62.7	64.6	
011000	AdapterP	19.0	92.2	63.9	71.0	
	+TaD	19.5	92.5	64.2	71.2	
BLOOMz-7b	LoRA	18.9	91.7	66.8	73.6	
	+TaD	19.3	94.2	66.9	73.9	
	AdapterP	16.3	90.7	66.2	74.4	
	+TaD	17.1	93.0	66.2	75.0	
	LoRA	26.6	90.5	68.7	78.9	
LLaMa-7b	+TaD	27.7	91.0	69.3	79.5	
	AdapterP	31.5	93.5	65.4	76.3	
	+TaD	32.0	93.7	66.3	76.3	
	LoRA	35.9	91.5	70.1	82.5	
LLaMa-13b	+TaD	38.1	92.0	70.8	83.1	
224114 150	AdapterP	36.8	91.5	69.4	78.1	
	+TaD	37.5	94.0	69.4	79.2	

Multiple-choice and CBQA tasks

Reasoning tasks

TaD yields considerable improvements in nearly all cases.

Other Results: Superiority and Integration Capability

Model	Method	Multi	iple Ch	oices	Math Reasoning		
1410001	Wielloa	MC1	MC2	MC3	GSM8K	MultiArith	
	LoRA	32.9	55.0	28.5	26.6	90.5	
7b	+DoLa	31.6	48.6	22.7	26.6	89.7	
LLaMa-7b	+TaD	34.2	<i>55.7</i>	29.0	27.7	91.0	
Lal	AdapterP	38.1	57.4	30.8	31.5	93.5	
Γ	+DoLa	<u>39.7</u>	54.9	25.5	<u>31.5</u>	93.3	
	+TaD	40.6	58.5	32.1	32.0	93.7	
	LoRA	33.4	55.7	29.0	35.9	91.5	
	+CD	36.2	55.4	26.5	19.0	70.3	
39	+DoLa	34.9	51.2	24.8	<u>38.0</u>	94.2	
LLaMa-13b	+TaD	<u>35.1</u>	56.7	29.7	38.1	<u>92.0</u>	
aN	AdapterP	40.6	58.8	32.4	36.8	91.5	
\Box	+CD	41.1	56.0	26.2	17.8	72.5	
	+DoLa	<u>41.3</u>	56.5	27.5	35.9	<u>93.5</u>	
	+TaD	42.6	60.0	33.1	37.5	94.0	

TaD outperforms the baselines in most cases.

Model	Method	G/M	Model	Method	G/M
_	Greedy + <i>TaD</i>	26.6/90.5 27.7/91.0	9	Greedy + <i>TaD</i>	35.9/91.5 38.1/92.0
LLaMa-7b	Beam-4 + <i>TaD</i>	30.5/91.3 30.9/91.8	LLaMa-13b	Beam-4 + <i>TaD</i>	43.6/93.3 43.7/94.3
LLa	Top-p +TaD	26.7/90.7 27.4/91.3	LLa	Top-p +TaD	36.7/91.7 37.1/93.0
	Top-k + <i>TaD</i>	27.0/90.3 27.7/91.6		Top-k + <i>TaD</i>	36.8/91.7 37.2/93.0

TaD consistently improves upon the fine-tuned LLMs' performance across different basic decoding strategies.

Analysis: Ablation and Data-Scarce Scenarios Study

Ablation study of the knowledge vector

\mathcal{M}	$ p_{\mathcal{S}} \to p_{\mathcal{E}}$	G/M
7b	/	10.8/37.5
7b*	/	26.6/90.5
13b	/	16.7/53.2
13b*	/	35.9/91.5

(a) Comparison results on pre-

trained and fine-tuned models.

$\mathcal{M} \mid$	$p_{\mathcal{S}} o p_{\mathcal{E}}$	G/M
7b*	$7b \rightarrow 7b^*$	26.6/90.5
	$7b \rightarrow 7b^*$	27.7/91.0
13b*	/	35.9/91.5
150	13b →13b*	38.1/92.0

(b) TaD's effectiveness on the

fine-tuned models.

	18 7	$p_{\mathcal{E}}$	G/M
	/		26.6/90.5
7b* 7	′b*→	7b	26.6/90.5 23.7/79.0

(c) The effect of the opposite direction of the proposed knowlto the pre-trained model).

\mathcal{M}	$p_{\mathcal{S}} \to p_{\mathcal{E}}$	G/M
13b	/ 7b →13b	16.7/53.2 17.2/51.8
13b*	/b*→13b*	<u> </u>
130*	7b*→13b*	36.2/91.8

edge vector (from the fine-tuned (d) The effect of the direction of the model size difference (from the smaller to the larger model). 80

М	$p_{\mathcal{S}} \to p_{\mathcal{E}}$	G/M	
	·	<u> </u>	_
7b	$ \begin{array}{c} / \\ 7b \rightarrow 7b^* \\ 7b \rightarrow 13b \end{array} $	11.9/38.1	1

\mathcal{M}	$p_{\mathcal{S}} \to p_{\mathcal{E}}$	G/M
	/	35.9/91.5
13b*	7b*→13b*	36.2/91.8
130	13b → $13b*$	38.1/92.0
	7b →13b*	38.2/92.0

(e) Comparison results on the direction of the knowledge and model size difference.

- 10%

% 78

(f) The cumulative effect of the direction of the knowledge and model size difference.

Different ratios of training datasets and the selection of μ

Training data ↓ TaD's gains ↑ Optimal μ \uparrow

Model	Method	10%	30%	60%	100%
LLaMa-7b	LoRA $+TaD$ \triangle	58.8 62.2 +3.4	80.5 83.2 +2.7	86.2 88.0 +1.8	90.5 91.0 + 0.5
LLaMa-13b	LoRA $+TaD$ \triangle	70.8 79.8 + 9.0	86.5 89.3 +3.2	90.2 91.5 +1.3	91.5 92.0 +0.5

Summary

- A concept of knowledge vector, explicitly denoting the knowledge adaptation learned by LLMs during fine-tuning.
- TaD enhancing fine-tuned LLMs' output probability distribution with the knowledge vector.
- Effective across various tasks, models, and finetuning methods, superior to baselines and showing promising potential in data-scarce scenarios.

Thank You!

Contact: xxh22@mails.tsinghua.edu.cn

Multimedia Intelligence Group, School of Software, Tsinghua University

http://ise.thss.tsinghua.edu.cn/MIG/index.html

