TD 4 – Introduction to gradient descent

Mathematics of data

09/10/24

Exercise 1. Let $f: \mathbb{R}^d \to \mathbb{R}$ be a differentiable function. Starting from $x_0 \in \mathbb{R}^d$, gradient descent with step-size $\eta > 0$ iterates

$$x_{n+1} = x_n - \eta \nabla f(x_n). \tag{1}$$

The behavior of such an algorithm is more easily understood by looking at the gradient flow, which is the Ordinary Differential Equation (ODE) starting from $x(0) = x_0$ defined as:

$$\dot{x}(t) = -\nabla f(x(t)). \tag{2}$$

Indeed, Equation (1) is an Euler discretization of the gradient flow equation with step η , and as such we have $x_n \simeq x(\eta n)$.

- 1. Define $\phi(t) := f(x(t))$. Show that $\phi'(t) = -\|\nabla f(x(t))\|^2$.
- 2. We assume that f is bounded from below by $f^* \in \mathbb{R}$. Prove that the function $t \mapsto \|\nabla f(x(t))\|^2$ is integrable, and that

$$\inf_{t \le T} \left\| \nabla f(x(t)) \right\|^2 \le \frac{f(x_0) - f^*}{T}.$$

3. Assume that f satisfies the Polyak-Lojasciewicz inequality for some $\mu > 0$:

$$\forall x, \quad f(x) - f^* \le \frac{1}{2u} \|\nabla f(x(t))\|^2.$$

Prove that f(x(t)) converges to f^* , and give the convergence rate.

Exercise 2. Let $d \ge 0$ and consider a vector $b \in \mathbb{R}^d$ and a matrix $A \in \mathbb{R}^{d \times d}$. We assume that A is a symmetric matrix with positive eigenvalues $\lambda_{\max} = \lambda_1 \ge \cdots \ge \lambda_d = \lambda_{\min} > 0$. We define the following *quadratic* objective function:

$$f(x) = \frac{1}{2}x^{\top}Ax - b^{\top}x.$$

1. Show that this function is convex, and compute its gradient. Find the analytical expression of its minimizer x^* , and of $f(x^*)$.

We now consider the sequence of iterates of gradient descent with a step-size $\rho > 0$, starting from $x_0 = 0$:

$$x_{n+1} = x_n - \rho \nabla f(x_n).$$

- 2. Derive a closed-form expression for x_n and give a condition on ρ for this sequence to converge to x^* . In the following, we assume that $\rho = \frac{1}{\lambda_{max}}$.
 - 3. Show that $||x_n x^*|| \le (1 \frac{\lambda_{\min}}{\lambda_{\max}})^n ||x^*||$.

This is what we call *linear* convergence, and $1 - \frac{\lambda_{\min}}{\lambda_{\max}}$ is the rate of convergence. The quantity $\kappa = \frac{\lambda_{\min}}{\lambda_{\max}} \in [0, 1]$ is called the *conditioning* of the matrix A (and of the function f). The closer κ is to 1, the faster gradient descent converges.

4. Assume that $\kappa = \frac{1}{1000}$ and $||x^*|| = 1$. How many iterations of gradient descent are needed to reach an error $||x_n - x^*|| \le \frac{1}{10}$? And to get $||x_n - x^*|| \le \frac{1}{100}$?

In these ill-conditioned cases, it is useful to compute a bound on the error that does not depend on the conditioning of the problem. To get such a bound, we look at another measure of the error, $f(x_n) - f(x^*)$.

5. Show that for all $\mu \in [0,1]$ and all $n \geq 0$ we have $(1-\mu)^{2n}\mu \leq \frac{1}{2n+1}$. Deduce that

$$f(x_n) - f(x^*) \le \frac{1}{2(2n+1)\rho} \|x^*\|^2$$
.

This is called sub-linear convergence. Note that this rate of convergence does not get worse when λ_{\min} goes to zero: it does not depend on the conditioning of the problem.

Exercise 3. Let $(x^*, f^*) \in \mathbb{R}^d \times \mathbb{R}$ and $H \in \mathbb{R}^{d \times d}$ be a positive definite symmetric matrix. Denote f the associated quadratic form

$$f(x) := (x - x^*)^{\top} H(x - x^*) + f^*.$$

Assume H's eigenvalues λ satisfy $0 < \mu \le \lambda \le L$. A general first-order minimization method writes

$$x_{t+1} = x_0 - \sum_{s=0}^{t} \gamma_{t,s} \nabla f(x_s)$$

with $\gamma_{t,t} \neq 0$.

- 1. Prove that for each of these methods, there exists a sequence of polynomials $(P_t)_{t\in\mathbb{N}}$ with P_t of degree t such that $P_t(0) = 1$ and for all t it holds $x_t x^* = P_t(H)(x_0 x^*)$.
- 2. Prove the reciproqua of question 1.
- 3. Assuming $\mu \neq 0$, prove that the best method corresponds to a family (P_t) that minimises $\sup_{\lambda \in [\mu, L]} |P_t(\lambda)|$ for all t.
- 4. Show that finding (P_t) is equivalent to finding a family $(Q_t)_{t\in\mathbb{N}}$ such that $\sup_{x\in[-1,1]}|Q_t(x)|=1$ and $Q_t(\frac{L+\mu}{L-\mu})$ is maximal.
- 5. Prove that the t-th Tchebychev polynomial, defined as verifying $\forall \theta$, $T_t(\cos(\theta)) = \cos(t\theta)$, is solution of the problem of question 4.

If you have finished all the exercises, you can move on to the TP4 on github.com/vcastin/teaching

Solutions

Exercise 1.

- 1. Computation with the chain rule.
- 2. We have $\int_0^T \|\nabla f(x(t))\|^2 dt = -\int_0^T \phi'(t) dt = \phi(0) \phi(T) \le \phi(0) f^*$. The function $T \mapsto \int_0^T \|\nabla f(x(t))\|^2 dt$ is non decreasing and upper bounded, so it converges when $T \to +\infty$, which shows the integrability. Moreover.

$$\inf_{t < T} \|\nabla f(x(t))\|^2 \le \frac{1}{T} \int_0^T \|\nabla f(x(t))\|^2 dt \le \frac{f(x_0) - f^*}{T}$$

according to the previous computation.

3. The PL inequality applied to x(t) can be rewritten as $\phi(t) - f^* \le -\frac{1}{2\mu}\phi'(t)$. Then, applying Grönwall's inequality leads to

$$\phi(t) - f^* \le e^{-\frac{1}{2\mu}t}(\phi(0) - f^*).$$

Exercise 2.

- 1. We have $\nabla f(x) = Ax b$ so the Hessian of f is A, which is a positive definite matrix. Therefore, f is strictly convex. This implies that x^* is characterized by the equation $\nabla f(x^*) = 0$ (if this equation has a solution). We obtain $x^* = A^{-1}b$ and $f(x^*) = -\frac{1}{2}b^{\top}A^{-1}b$.
- 2. Using the expression of $\nabla f(x_n)$, we can rewrite x_{n+1} as

$$x_{n+1} = (I - \rho A)x_n + \rho b.$$

Substracting x^* , which satisfies $x^* = x^* - \rho \nabla f(x^*) = (I - \rho A)x^* + \rho b$, to both sides of the equation, we obtain

$$x_{n+1} - x^* = (I - \rho A)(x_n - x^*),$$

so that

$$x_n - x^* = (I - \rho A)^n (x_0 - x^*) = -(I - \rho A)^n x^*$$

as $x_0 = 0$. A sufficient condition for x_n to converge to x^* is then that the module of all the eigenvalues of $I - \rho A$ is strictly smaller than 1. The eigenvalues of $I - \rho A$ are of the form $1 - \rho \lambda$ with λ an eigenvalue of A, so our condition is satisfied if and only if

$$1 - \rho \lambda_{\text{max}} > -1$$
.

We obtain the sufficient condition

$$\rho < \frac{2}{\lambda_{\text{max}}}.$$

- 3. According to question 2, we have $||x_n x^*|| \le ||I \rho A||_2^n ||x^*||$, where $||\cdot||_2$ is the operator norm. Recall that the operator norm of a symmetric matrix is the maximum of the modules of its eigenvalues. The largest eigenvalue (in module) of $I \rho A$ is $1 \rho \lambda_{\min} = 1 \frac{\lambda_{\min}}{\lambda_{\max}}$, which allows us to conclude.
- 4. We obtain $n \simeq 2300$ for 1/10 and $n \simeq 4600$ for 1/100.
- 5. Denoting $g(\mu) := (1-\mu)^{2n}\mu$, we have $g'(\mu) = (1-\mu)^{2n-1}(1-(2n+1)\mu)$. g reaches its maximum on [0,1] either at 0, at 1, or at a point where $g'(\mu)$ is zero. The only candidates are therefore 0, 1 and 2n+1. But g(0) = g(1) = 0 so the maximum is reached at 2n+1, as we have $g(2n+1) = \left(\frac{2n}{2n+1}\right)^{2n} \frac{1}{2n+1} > 0$. We conclude by noticing that $g(2n+1) \le \frac{1}{2n+1}$. Then, to prove the inequality, we write

$$f(x_n) - f^* = \frac{1}{2} (x_n - x^*)^{\top} A(x_n - x^*)$$

$$= \frac{1}{2} (x^*)^{\top} A(I - \rho A)^{2n} x^*$$

$$\leq \frac{1}{2} \|x^*\|^2 \sup_{\lambda \in [\lambda_{\min}, \lambda_{\max}]} \lambda (1 - \rho \lambda)^{2n}$$

$$\leq \frac{1}{2\rho(2n+1)} \|x^*\|^2$$

by applying the previous inequality to $\mu := \rho \lambda$.