Theorems Löb's Theorem Fixed point theorem

The Provability Logic G

Abraham Hinteregger

Vienna University of Technology

17.12.2015

Chapter

Incompleteness

Theorems

Löb's Theorem

Fixed point theorem

The Logic (

Incompleteness

- ▶ 1931: Paper by Gödel "Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme"[1]
 - Incompleteness of Peano Arithmetic was shown by enumerating formulas of PA which enabled arguing about them in PA itself
 - ▶ Predicate Prov(x) formula A s.t. $\lceil A \rceil = x$ is provable in PA. More formally $\text{Prov}(x) \equiv \exists p \, \text{Proof}(p, x)$ where Proof(p, x) formalizes the notion that p is the GN of the formula that is a proof of the formula with GN x.
 - Constructed formula that asserts its own unprovability.

Incompleteness Theorems

Theorem (First Incompleteness Theorem)

Every consistent and reasonably expressive arithmetic system contains sentences that are neither provable nor refutable.

Theorem (Second Incompleteness Theorem)

No consistent and moderately expressive arithmetic system can prove its own consistency.

► Gödel proved his theorem by constructing a (true) formula that is asserts its own unprovability.

- Gödel proved his theorem by constructing a (true) formula that is asserts its own unprovability.
- What about formula that asserts its own provability?

- Gödel proved his theorem by constructing a (true) formula that is asserts its own unprovability.
- What about formula that asserts its own provability? Löb 1955

$$\Box(\Box A\supset A)\supset\Box A$$

- Gödel proved his theorem by constructing a (true) formula that is asserts its own unprovability.
- ▶ What about formula that asserts its own provability? Löb 1955

$$\Box(\Box A\supset A)\supset\Box A$$

Gödel's second incompleteness theorem is instance of Löb's theorem (it also implies it[2]):

- ► Gödel proved his theorem by constructing a (true) formula that is asserts its own unprovability.
- ▶ What about formula that asserts its own provability? Löb 1955

$$\Box(\Box A\supset A)\supset\Box A$$

► Gödel's second incompleteness theorem is instance of Löb's theorem (it also implies it[2]):

- Gödel proved his theorem by constructing a (true) formula that is asserts its own unprovability.
- ▶ What about formula that asserts its own provability? Löb 1955

$$\Box(\Box A\supset A)\supset\Box A$$

► Gödel's second incompleteness theorem is instance of Löb's theorem (it also implies it[2]):

- ▶ Gödel proved his theorem by constructing a (true) formula that is asserts its own unprovability.
- ▶ What about formula that asserts its own provability? Löb 1955

$$\Box(\Box A\supset A)\supset\Box A$$

► Gödel's second incompleteness theorem is instance of Löb's theorem (it also implies it[2]):

$$\neg\Box\bot\supset\neg\Box\neg\Box\bot$$

- ▶ Gödel proved his theorem by constructing a (true) formula that is asserts its own unprovability.
- ▶ What about formula that asserts its own provability? Löb 1955

$$\Box(\Box A\supset A)\supset\Box A$$

► Gödel's second incompleteness theorem is instance of Löb's theorem (it also implies it[2]):

$$\neg\Box\bot\supset\neg\Box\neg\Box\bot$$

- ▶ Gödel proved his theorem by constructing a (true) formula that is asserts its own unprovability.
- What about formula that asserts its own provability? Löb 1955

$$\Box(\Box A\supset A)\supset\Box A$$

► Gödel's second incompleteness theorem is instance of Löb's theorem (it also implies it[2]):

$$A \supset B \equiv \neg B \supset \neg A$$
: $\Box (\neg \Box \bot) \supset \Box \bot$

- Gödel proved his theorem by constructing a (true) formula that is asserts its own unprovability.
- What about formula that asserts its own provability? Löb 1955

$$\Box(\Box A\supset A)\supset\Box A$$

Gödel's second incompleteness theorem is instance of Löb's theorem (it also implies it[2]):

$$\neg\Box\bot\supset\neg\Box\neg\Box\bot$$

$$A \supset B \equiv \neg B \supset \neg A$$
: $\Box (\neg \Box \bot) \supset \Box \bot$
 $\neg A \equiv A \supset \bot$: $\Box (\Box \bot \supset \bot) \supset \Box \bot$

Fixed point theorem[3]

▶ Variable p only occurs in the scope of \square in a formula A(p), e.g.:

$$A(p) := \neg \Box p$$

Fixed point theorem[3]

▶ Variable p only occurs in the scope of \square in a formula A(p), e.g.:

$$A(p) := \neg \Box p$$

▶ Formula *B* where the set of variables $Var(B) = Var(A) \setminus \{p\}$ and

$$G \vdash B \equiv A(B)$$

is a fixed point of A(p) and (almost) uniquely defined.

Fixed point theorem[3]

▶ Variable p only occurs in the scope of \square in a formula A(p), e.g.:

$$A(p) := \neg \Box p$$

▶ Formula *B* where the set of variables $Var(B) = Var(A) \setminus \{p\}$ and

$$G \vdash B \equiv A(B)$$

is a fixed point of A(p) and (almost) uniquely defined.

▶ For A(p) as defined above the fixed point B is $\neg\Box\bot$ and:

$$G \vdash \neg \Box \bot \equiv \neg \Box (\neg \Box \bot)$$

Chapter

Incompleteness

The Logic G

Axioms

Tableau for G

Properties

The Logic G – Axioms

Distribution axiom

$$\Box(A\supset B)\supset (\Box A\supset \Box B)$$

Necessitation

$$\frac{A}{\Box A}$$

The Logic G – Axioms

Distribution axiom

$$\Box(A\supset B)\supset (\Box A\supset \Box B)$$

Necessitation

$$\frac{A}{\Box A}$$

▶ Löb's theorem

$$\Box(\Box A\supset A)\supset\Box A$$

The Logic G – Axioms

► Distribution axiom

$$\Box(A\supset B)\supset (\Box A\supset \Box B)$$

Necessitation

$$\frac{A}{\Box A}$$

▶ Löb's theorem

$$\Box(\Box A\supset A)\supset\Box A$$

▶ Transitivity (consequence of Löb's theorem $[(B \land \Box B)/A])$

$$\Box B \supset \Box \Box B$$

Tableau rules

- Start with K4 (transitive) tableau
 - ▶ If α is true in Γ then α_1 and α_2 are true in Γ.
 - ▶ If β is true in Γ then β¹ or β² are true in Γ.
 - ▶ If π is true in Γ then π_0 is true in some Γ^* .
 - If ν is true in Γ then ν_0 is true in all Γ^* .
 - If ν is true in Γ then ν is true in all Γ^* .

α		β		
$\overline{TA \wedge B}$	TA, TB	$FA \wedge B$	FA	FB
$FA \lor B$	FA, FB	$TA \lor B$	FA	FB
$FA\supset B$	TA, FB	$TA\supset B$	FA	TB

ν	$F \Diamond A$	$FA,F\Diamond A$
ν	$T\Box A$	TA , $T\Box A$
π	$T\Diamond A$	TA
π	$F\Box A$	FA

Tableau rules

- Start with K4 (transitive) tableau and modify to account for Löb's theorem
 - ▶ If α is true in Γ then α_1 and α_2 are true in Γ.
 - ▶ If β is true in Γ then β¹ or β² are true in Γ.
 - ▶ If π is true in Γ then π_0 is true in some Γ^* .
 - If ν is true in Γ then ν_0 is true in all Γ^* .
 - ▶ If ν is true in Γ then ν is true in all Γ*.
 - ▶ If π is true in Γ then $\bar{\pi}$ is true in some Γ*

α		β		
$\overline{TA \wedge B}$	TA, TB	$FA \wedge B$	FA	FB
$FA \lor B$	FA, FB	$TA \lor B$	FA	FB
$FA\supset B$	TA, FB	$TA\supset B$	FA	TB

ν	F◊A	$FA,F\Diamond A$
ν	$T\Box A$	$TA,T\Box A$
π	$T\Diamond A$	$TA, F \lozenge A$
π	$F\Box A$	$FA, T \square A$

Examples

On the blackboard:

With K4 Tableau: $\Box A$

α		β		
$\overline{TA \wedge B}$	TA, TB	$FA \wedge B$	FA	FB
$FA \lor B$	FA, FB	TA ∨ B	FA	FB
$FA\supset B$	TA, FB	$TA\supset B$	FA	TB

$\overline{\nu}$	F◊A	$FA,F\Diamond A$
$\overline{\nu}$	$T\Box A$	$TA,T\Box A$
π	$T\Diamond A$	TA
π	$F\Box A$	FA

Examples

On the blackboard:

With K4 Tableau: $\Box A$

α		β		
$\overline{TA \wedge B}$	TA, TB	$FA \wedge B$	FA	FB
$FA \lor B$	FA, FB	TA ∨ B	FA	FB
$FA\supset B$	TA, FB	$TA\supset B$	FA	TB

$\overline{\nu}$	F◊A	$FA,F\Diamond A$
$\overline{\nu}$	$T\Box A$	$TA,T\Box A$
π	$T\Diamond A$	$TA,F\Diamond A$
π	$F\Box A$	$FA,T\Box A$

Examples

On the blackboard:

With K4 Tableau: $\Box A$

With G Tableau: $\Box(\Box A \supset A) \supset \Box A$

α		β		
$\overline{TA \wedge B}$	TA, TB	$FA \wedge B$	FA	FB
FA ∨ B	FA, FB	TA ∨ B	FA	FB
$FA\supset B$	TA, FB	$TA\supset B$	FA	TB

$\overline{\nu}$	F◊A	$FA,F\Diamond A$
$\overline{\nu}$	$T\Box A$	$TA,T\Box A$
π	$T\Diamond A$	TA
π	$F\Box A$	FA

 Model existence theorem: only holds for finite sets of signed formulas (finite set model existence theorem)

- Model existence theorem: only holds for finite sets of signed formulas (finite set model existence theorem)
- ► Tableau completeness for finite sets follows (strong tableau completeness theorem only for finite sets)

- Model existence theorem: only holds for finite sets of signed formulas (finite set model existence theorem)
- Tableau completeness for finite sets follows (strong tableau completeness theorem only for finite sets)
- Local compactness does not hold for G

$$\Diamond P_1$$
 $\forall i: \Box (P_i \supset \Diamond P_{i+1})$

- Model existence theorem: only holds for finite sets of signed formulas (finite set model existence theorem)
- Tableau completeness for finite sets follows (strong tableau completeness theorem only for finite sets)
- Local compactness does not hold for G

$$\Diamond P_1$$
 $\forall i: \Box (P_i \supset \Diamond P_{i+1})$

 Global compactness not known (at least neither Fittings nor Google knew)

References

- K. Gödel, "Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme," 1931. [Online]. Available: http://dx.doi.org/10.1007/BF01700692
- G. Boolos, *The Logic of Provability*. Cambridge University Press, 1995. [Online]. Available: https://books.google.at/books?id=WekaT3OLoUcC
- R. L. Verbrugge, "Provability logic," in *The Stanford Encyclopedia of Philosophy*, 2014. [Online]. Available: http://plato.stanford.edu/entries/goedel-incompleteness/
- M. Fitting, *Proof methods for modal and intuitionistic logics*. Springer Science & Business Media, 1983, vol. 169.

Derivation of Löb's theorem

```
Assume T \not\models A

T \not\models \operatorname{Prov}(\lceil A \rceil) \supset A

T \cup \{\neg A\} \not\models \bot

T \cup \{\neg A\} \not\models \neg \operatorname{Prov}_{T \cup \neg A}(\lceil \bot \rceil)

T \cup \{\neg A\} \not\models \neg \operatorname{Prov}_{T}(\lceil \neg A \supset \bot \rceil)

T \cup \{\neg A\} \not\models \neg \operatorname{Prov}_{T}(\lceil A \rceil)

T \not\models \neg A \supset \neg \operatorname{Prov}_{T}(\lceil A \rceil)

T \not\models \operatorname{Prov}_{T}(\lceil A \rceil) \supset A
```