Lista de fórmulas - Parcial 2

Estadística General - CM0244

- 1. Muestra Aleatoria: Sean las variables aleatorias X_1, X_2, \dots, X_n , se dice que estas conforman una muestra aleatoria si:
 - i) Las n variables son independientes entre si.
 - ii) Cada una de estas variables tiene la misma distribución de probabilidad, f(x) con media μ y varianza σ^2 .
- 2. Distribución Chi-Cuadrado: Sean las variables Z_1, Z_2, \dots, Z_n una muestra aleatoria de la distribución N(0,1). Ahora, consideremos la variable:

$$Y = \sum_{i=1}^{n} Z_i^2.$$

Se dice que Y tiene distribución Chi-Cuadrado con n grados de libertad, denotado como $Y \sim \chi^2(n)$. Además, Y cumple las siguientes propiedades:

i) Su función de densidad de probabilidad es:

$$f(x) = \frac{1}{2^{\frac{n}{2}} \Gamma(\frac{n}{2})} y^{\frac{n}{2} - 1} e^{-\frac{y}{2}}, \text{ para } y > 0$$

donde $\Gamma(\cdot)$ es la función gamma.

- ii) $\mathbb{E}(Y) = n$
- iii) $\mathbb{V}(Y) = 2n$
- 3. Distribución t-Student: Sean Z y Y variables aleatorias independientes entre si, tales que $Z \sim N(0,1)$ y $Y \sim \chi^2(n)$. Ahora, consideremos la variable:

$$T = \frac{Z}{\sqrt{\frac{Y}{n}}}$$

Se dice que T tiene distribución t-Student con n grados de libertad, denotado como $T \sim t(n)$. Además, T cumple las siguientes propiedades:

i) Su función de densidad de probabilidad es:

$$f(t) = \frac{\Gamma\left(\frac{n+1}{2}\right)}{\sqrt{n\pi}\,\Gamma\left(\frac{n}{2}\right)}\,\left(1 + \frac{t^2}{n}\right)^{-\frac{n+1}{2}}, \text{ para } n > 0, \, t \in \mathbb{R}$$

ii)
$$\mathbb{E}(T) = 0$$
, para $n > 1$

iii)
$$\mathbb{V}(T) = \frac{n}{n-2}$$
, para $n > 2$

4. Distribución F: Sean W_1 y W_2 variables aleatorias independientes, tales que $W_1 \sim \chi^2(n_1)$ y $W_2 \sim \chi^2(n_2)$. Ahora, consideremos la variable:

$$X = \frac{W_1/n_1}{W_2/n_2}$$

Se dice que la variable X tiene distribución F con n_1 grados de libertad en el numerador y n_2 grados de libertad en el denominador, denotada $X \sim F(n_1, n_2)$. Además, F cumple las siguientes propiedades:

i) Su función de densidad de probabilidad es:

$$f(x) = \frac{\Gamma\left(\frac{n_1+n_2}{2}\right)}{\Gamma\left(\frac{n_1}{2}\right)\Gamma\left(\frac{n_2}{2}\right)} \left(\frac{n_1}{n_2}\right)^{\frac{n_1}{2}} \frac{x^{\frac{n_1-2}{2}}}{\left(1 + \frac{n_1x}{n_2}\right)^{\frac{n_1+n_2}{2}}},$$

para $n_1, n_2, x > 0$

- ii) $\mathbb{E}(X) = \frac{n_2}{n_2 2}$, para $n_2 > 1$
- iii) $\mathbb{V}(X) = \frac{2n_2^2(n_1 + n_2 2)}{n_1(n_2 2)^2(n_2 4)}$, para $n_2 > 4$
- 5. Distribuciones muestrales: Sea $X_1, X_2, \dots X_n$ una muestra aleatoria de una distribución normal con media μ y varianza σ^2 . Entonces:

i)
$$\bar{X} \sim N\left(\mu, \frac{\sigma^2}{n}\right)$$

ii)
$$\frac{(n-1)S^2}{\sigma^2} \sim \chi^2(n-1)$$

iii)
$$\sqrt{n} \left(\frac{\bar{X} - \mu}{S} \right) \sim t(n-1)$$

iv)
$$\frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1 - 1, n_2 - 1)$$

6. Teorema del Límite Central: Sea $X_1, X_2, \dots X_n$ una muestra aleatoria de una distribución cualquiera con media μ y varianza σ^2 . Si n es grande $(n \geq 30)$, aproximadamente se cumple que:

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \sim N\left(\mu, \frac{\sigma^2}{n}\right) \text{ y } T = \sum_{i=1}^{n} X_i \sim N(n\mu, n\sigma^2)$$

Lo cual equivale a decir que:

$$\frac{\sqrt{n}(\bar{X} - \mu)}{\sigma} \sim N(0, 1) \quad \text{y} \quad \frac{T - n\mu}{\sqrt{n}\sigma} \sim N(0, 1)$$

- 7. Ley de los Grandes Números: Sea X_1, X_2, \dots, X_n una muestra aleatoria de una distribución cualquiera, con media μ . Se tiene que, cuando $n \to \infty$, $\bar{X} \to \mu$, es decir, cuando n tiende al infinito, se tiene que \bar{X} converge (probabilísticamente) a μ .
- 8. Propiedades del Valor Esperado y la Varianza: Sean a y b constantes; X, Y y W variables aleatorias, con X y W independientes. Entonces:
 - i) $\mathbb{E}(a) = a$
 - ii) $\mathbb{E}(aX+bY) = \mathbb{E}(aX) + \mathbb{E}(bY) = a \mathbb{E}(X) + b \mathbb{E}(Y)$
 - iii) $\mathbb{V}(X) = \mathbb{E}\left[\left(X \mu_X\right)^2\right] = \mathbb{E}(X^2) \mu_X^2$
 - iv) $\mathbb{E}(X^2) = \mu_X^2 + \sigma_X^2$
 - v) $\mathbb{V}(a) = 0$
 - vi) $\mathbb{V}(aX + bW) = \mathbb{V}(aX) + \mathbb{V}(bW) = a^2 \mathbb{V}(X) + b^2 \mathbb{V}(W)$
- 9. Propiedades de estimadores puntuales: Sea $\hat{\theta}$ un estimador de un parámetro θ . Entonces:
 - i) Se dice que $\hat{\theta}$ es insesgado, si $\mathbb{E}(\hat{\theta}) = \theta$.
 - ii) El sesgo del estimador se define como $b(\hat{\theta}) = \mathbb{E}(\hat{\theta}) \theta$.
 - iii) Se dice que $\hat{\theta}$ es consistente si $\lim_{n\to\infty} \mathbb{E}(\hat{\theta}) = \theta$ y $\lim_{n\to\infty} \mathbb{V}(\hat{\theta}) = 0.$
 - iv) Entre todos los estimadores insesgados de un parámetro, se prefiere el de menor varianza.
 - v) El error cuadrático medio (ECM) de $\hat{\theta}$ se define como: $ECM(\hat{\theta}) = \mathbb{E}\left[\left(\hat{\theta} \theta\right)^2\right] = \mathbb{V}(\hat{\theta}) + \left[b(\hat{\theta})\right]^2$. Entre múltiples estimadores de un parámetro, se prefiere el de menor ECM.
- 10. Intervalo de Confianza para la Media con Muestras Grandes: Sea X_1, X_2, \dots, X_n una muestra aleatoria, con n grande ($n \ge 30$), de una distribución cualquiera con media μ y varianza σ^2 . Un intervalo de confianza aproximado al $100(1-\alpha)\%$ para μ es:

$$\left(\bar{X} - Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \, \bar{X} + Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

Si la varianza de la distribución es desconocida, en la fórmula anterior se puede remplazar σ por S.

11. Determinación del Tamaño de Muestra: El mínimo tamaño de muestra que garantiza que $P(|\bar{X}-\mu| \leq \varepsilon) = 1-\alpha$, es:

$$n = \left(\frac{Z_{1-\frac{\alpha}{2}} \sigma}{\varepsilon}\right)^2$$

Si la varianza de la distribución es desconocida, en el resultado anterior se puede remplazar σ por S.

12. Intervalo de Confianza para una Proporción: Sea X una variable aleatoria, tal que $X \sim Bin(n, p)$, con n grande $(n \geq 30)$ y p desconocido. Un intervalo de confianza aproximado al $100(1-\alpha)\%$ para p es:

$$\left(\hat{p} - Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}, \, \hat{p} + Z_{1-\frac{\alpha}{2}} \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}\right)$$

- 13. Intervalos de Confianza para la Media Bajo Normalidad: Sea X_1, X_2, \dots, X_n una muestra aleatoria de una distribución normal con media μ y varianza σ^2 .
 - i) Si σ^2 es conocida, un intervalo de confianza al $100(1-\alpha)\%$ para μ es:

$$\left(\bar{X} - Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}, \, \bar{X} + Z_{1-\frac{\alpha}{2}} \frac{\sigma}{\sqrt{n}}\right)$$

ii) Si σ^2 es desconocida, un intervalo de confianza al $100(1-\alpha)\%$ para μ es:

$$\left[\bar{X} - t\left(n-1, 1-\frac{\alpha}{2}\right) \, \frac{S}{\sqrt{n}} \, , \, \bar{X} + t\left(n-1, 1-\frac{\alpha}{2}\right) \, \frac{S}{\sqrt{n}}\right]$$

- 14. Prueba de Hipótesis para la media con muestras grandes: Sea X_1, X_2, \dots, X_n una muestra aleatoria, con n grande ($n \geq 30$), de una distribución cualquiera con media μ y varianza σ^2 . Se plantea:
 - Hipótesis nula, $H_0: \mu = \mu_0$
 - El estadístico de prueba y su distribución aproximada bajo H₀ cierta:

$$Z_c = \frac{\bar{X} - \mu_0}{\sigma/\sqrt{n}} \sim N(0, 1)$$

Hipótesis	Región de	Valor p
Alternativa	Rechazo	
$H_1: \mu \neq \mu_0$	$ Z_c \ge Z_{1-\frac{\alpha}{2}}$	$2P(Z > Z_c)$
$H_1: \mu > \mu_0$	$Z_c > Z_{1-\alpha}$	$P(Z>Z_c)$
$H_1: \mu < \mu_0$	$Z_c < -Z_{1-\alpha}$	$P(Z < Z_c)$

Si σ es desconocida, el único cambio es en el estadístico de prueba reemplazar dicho valor por la desviación estándar muestral, S.

- 15. Prueba de Hipótesis para la media bajo normalidad: Sea X_1, X_2, \cdots, X_n una muestra aleatoria de una distribución normal con media μ y varianza σ^2 desconocidas. Se plantea:
 - Hipótesis nula, $H_0: \mu = \mu_0$
 - El estadístico de prueba y su distribución bajo H_0 cierta:

$$T_c = \frac{\bar{X} - \mu_0}{S/\sqrt{n}} \sim t(n-1)$$

Hipótesis	Región de	Valor p
Alternativa	Rechazo	
$H_1: \mu \neq \mu_0$	$ T_c \ge t\left(n-1, 1-\frac{\alpha}{2}\right)$	$2P(t(n-1) > T_c)$
$H_1: \mu > \mu_0$	$T_c > t(n-1, 1-\alpha)$	$P(t(n-1) > T_c)$
$H_1: \mu < \mu_0$	$T_c < -t(n-1, 1-\alpha)$	$P(t(n-1) < T_c)$

Si σ es conocida, el procedimiento de prueba de hipótesis es igual al caso de muestras grandes.

16. Prueba de Hipótesis para una proporción: Sea X una variable aleatoria tal que $X \sim Bin(n,p)$, con p desconocida y n grande ($n \geq 30$). Se plantea:

- Hipótesis nula, $H_0: p = p_0$
- El estadístico de prueba y su distribución aproximada bajo H_0 cierta:

$$Z_c = \frac{\hat{p} - p_0}{\sqrt{\frac{p_0(1 - p_0)}{n}}} \sim N(0, 1)$$

I	Hipótesis	Región de	Valor p
A.	lternativa	Rechazo	
H	$p \neq p_0$	$ Z_c \ge Z_{1-\frac{\alpha}{2}}$	$2P(Z > Z_c)$
H	$p > p_0$	$Z_c > Z_{1-\alpha}$	$P(Z>Z_c)$
H	$p_1 : p < p_0$	$Z_c < -Z_{1-\alpha}$	$P(Z < Z_c)$