2 180E

DRINKING WATER SURVEILLANCE PROGRAM WALPOLE ISLAND WATER TREATMENT PLANT REPORT FOR 1991 AND 1992

® Ontario

WALPOLE ISLAND WATER TREATMENT PLANT DRINKING WATER SURVEILLANCE PROGRAM REPORT FOR 1991 AND 1992

APRIL 1994

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1994

This publication may be reproduced for non-commercial purposes with appropriate attribution.

PIBS 2980

EXECUTIVE SUMMARY

DRINKING WATER SURVEILLANCE PROGRAM

WALPOLE ISLAND WATER TREATMENT PLANT 1991 AND 1992 REPORT

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

The Walpole Island water treatment plant is a package plant which uses conventional treatment and treats water from St. Clair River. The process consists of coagulation, flocculation, sedimentation, filtration and disinfection. Powder activated carbon is added on a continuous basis for taste and odour control and for removal of organics. This plant has a rated capacity of 0.87 x 1000 $\rm m^3/day$. The Walpole Island water treatment plant serves a population of approximately 1,900.

Water at the plant was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the and Energy Environment facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

Table A is a summary of all results by group.

No known health related guidelines were exceeded.

The Walpole Island water treatment plant, for the sample years 1991 and 1992, produced good quality water. Water from the distribution system was not sampled.

TABLE A
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALPOLE ISLAND WTP

SUMMARY TABLE BY SCAN

AKEN	%POSITIVE	0	100	72	22	0	0	0	0	0	0	13	19	
A INDICATES THAT NO SAMPLE WAS TAKEN	TREATED TESTS POSITIVE %POSITIVE	0	69	. 206	09	0	. 0	0	0	0	0	87	7	787
NO ON IN	TESTS POS	9	69	584	592	126	18	339	12	89	29	358	12	227 1
CALES I	POSITIVE	100	100	82	56	0	0	0	0	0	0	0	19	
	RAW TESTS POSITIVE %POSITIVE	́ м	35	233	.112	0	Ö	0	0	0	0	0	4	311
SITE	RAW	М	35	282	592	140	12	363	12	s 85	24	358	21	1 420
	SCAN	BACTERIOLOGICAL	CHEMISTRY (FIELD)	CHEMISTRY (LABORATORY)	METALS	CHLOROAROMATICS	CHLOROPHENOLS	PESTICIDES AND PCB	PHENOL ICS	POLYAROMATIC HYDROCARBONS	SPECIFIC PESTICIDES	VOLATILES	RADIONUCLIDES	

DRINKING WATER SURVEILLANCE PROGRAM

WALPOLE ISLAND WATER TREATMENT PLANT 1991 AND 1992 REPORT

INTRODUCTION

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to include all municipal supplies in Ontario. In 1991, 96 supplies and in 1992, 109 supplies were being monitored.

Appendix A has a full description of the DWSP.

The DWSP was initiated for the Walpole Island water treatment plant in the spring of 1985 as part of a survey of the St.Clair /Detroit River area. Previous DWSP annual reports have been published for 1986, 1987, 1988, 1989 and 1990.

PLANT DESCRIPTION

The Walpole Island water treatment plant is a package plant which uses conventional treatment and treats water from St. Clair River. The process consists of coagulation, flocculation, sedimentation, filtration and disinfection. Powder activated carbon is added on a continuous basis for taste and odour control and for removal of organics. This plant has a rated capacity of 0.87 x 1000 $\rm m^3/day$. The Walpole Island water treatment plant serves a population of approximately 1,900.

The sample day flows ranged from 0.39 x 1000 m^3/day to 0.56 x 1000 m^3/day .

General plant information is presented in Table 1 and a schematic of plant processes, chemical addition points and sampling locations in Figure 1.

SAMPLING AND ANALYSES

Stringent DWSP sampling protocols were followed to ensure that all samples were collected in a uniform manner (see Appendix B).

Sample lines in the plant were flushed prior to sampling to ensure that the water obtained was indicative of its origin and not residual water standing in the sample line. Attempts were made to capture the same block of water at each sampling point by taking the retention time into consideration. Retention time was calculated by dividing the volume of water between two sampling points by sample day flow. For example, if it was determined that retention time within the plant was five hours, then there would be a five hour interval between the raw and treated sampling. Similarly, if it was estimated that it took approximately one day for the water to travel from the plant to the distribution system site, this site would be sampled one day after the treated water from the plant.

To obtain a representative raw water sample, free from any added chemicals, at plants which used chlorine for zebra mussel control, the operator was required to turn off the chlorine feed to the mouth of the intake and allow enough time for the chlorinated water to clear from the intake works.

Plant operating personnel routinely analyzed parameters for process control (Table 2).

At all distribution system locations, two types of samples were obtained, a standing and a free flow. The standing sample consisted of water that had been in the household plumbing and service connection for a minimum of six hours. These samples were used to make an assessment of the change in the levels of inorganic compounds and metals due to leaching from, or deposition on, the plumbing system. The only analyses carried out on the standing samples, therefore, were laboratory chemistry and metals. The free flow sample represented fresh water from the distribution system main, since the sample tap was flushed for five minutes prior to sampling. No distribution samples were taken during this sample period.

Water at the plant was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons and volatiles) and radiological (radionuclides). Most laboratory analyses were conducted at the Ministry of the Environment and Energy facilities in Rexdale, Ontario. Radionuclides were analyzed by the Ministry of Labour.

RESULTS

Field measurements were recorded on the day of sampling and were entered onto the DWSP database as submitted by plant personnel.

Table 3 contains information on delay time between the raw and treated water sampling, flow rate, and treatment chemical dosages.

Table 4 is a summary of all results by parameter and by water type. If a parameter was not detected, the total number of negative sample results is given. In contrast, if a parameter was detected at any location, the detailed results for all samples are provided.

Positive denotes that the result is greater than the statistical limit of detection established by the Ministry of the Environment and Energy laboratory staff and is quantifiable. Trace (<T) denotes that the level measured is greater than the lowest value detectable by the method but lies so close to the detection limit that it cannot be confidently quantified.

Table 5 lists all parameters analyzed in the DWSP.

Associated guidelines and detection limits are also supplied on Tables 4 and 5. Parameters are listed alphabetically within each scan.

DISCUSSION

GENERAL

Water quality was judged by comparison with the Ontario Drinking Water Objectives publication (ODWOs). When an Ontario Drinking Water Objective (ODWO) was not available, guidelines/limits from other agencies were used. These guidelines were obtained from the Parameter Listing System database.

IN THIS REPORT, DISCUSSION IS LIMITED TO:

-THE TREATED AND DISTRIBUTED WATER;

-ONLY THOSE PARAMETERS WITH CONCENTRATIONS ABOVE GUIDELINE VALUES; AND

-POSITIVE ORGANIC PARAMETERS DETECTED.

BACTERIOLOGICAL

Guidelines for bacteriological sampling and testing of a supply are developed to maintain a proper supervision of its bacteriological quality. Routine monitoring programs usually require that multiple samples be collected in a given system. Full interpretation of bacteriological quality cannot be made on the basis of single samples. Standard plate count was the only bacteriological analysis conducted on the treated and distributed water. No results were above the guideline.

INORGANIC & PHYSICAL

CHEMISTRY (FIELD)

It is desirable that the temperature of drinking water be less than 15°C . The palatability of water is enhanced by its coolness. A

temperature below 15°C will tend to reduce the growth of nuisance organisms and hence minimize associated taste, colour, odour and corrosion problems. The temperature of delivered water may increase in the distribution system due to the warming effect of soil in late summer and fall and/or as a result of higher temperatures in the source water.

Field temperature exceeded the ODWO Aesthetic Objective of 15°C in 3 of 11 treated water samples with a maximum reported value of 22.2°C.

CHEMISTRY (LABORATORY)

The ODWOs indicate that a hardness level of between 80 and 100 mg/L as calcium carbonate for domestic waters provides an acceptable balance between corrosion and encrustation. Water supplies with a hardness greater than 200 mg/L are considered poor and possess a tendency to form scale deposits and result in excessive soap consumption.

Hardness exceeded the ODWO Recommended Operational Guideline of 80-100 mg/L in 10 of 12 treated water samples with a maximum reported value of 114.0 mg/L.

METALS

At present, there is no evidence that aluminum is physiologically harmful and no health limit for drinking water has been specified. The measure of aluminum in treated water is important to measure the efficiency of the treatment process. The ODWOs indicate that a useful quideline is to maintain a residual below 100 ug/L as aluminum in the water leaving the plant to avoid problems in the distribution system.

Aluminum exceeded the ODWO Recommended Operational Guideline of 100 ug/L in 6 of 11 treated water samples with a maximum reported value of 220 ug/L.

ORGANIC

CHLOROAROMATICS

The results of the chloroaromatic scan showed that none were detected above trace levels.

CHLOROPHENOLS

The results of the chlorophenol scan showed that one was detected at a trace level.

PESTICIDES AND PCB

The results of the pesticide and PCB scan showed that none were detected above trace levels.

PHENOLICS

The results of the phenolic test showed that none were detected above trace levels.

POLYAROMATIC HYDROCARBONS

The results of the polyaromatic hydrocarbon scan showed that none were detected.

SPECIFIC PESTICIDES

The results of the specific pesticide scan showed that none were detected.

VOLATTLES

The detection of benzene, ethylbenzene, toluene and xylenes at low, trace levels may be a laboratory artifact derived from the analytical methodology. Trace levels of styrene are considered to be laboratory artifacts resulting from the sample shipping containers.

Toluene was found at a positive level in 1 of the 12 treated and distributed water samples analyzed. The maximum observed level was 0.55 μ L. This was below the ODWO Aesthetic Objective of 24 μ L.

Trihalomethanes (THMs) are produced during the water treatment process and will always occur in chlorinated waters. THMs are comprised of chloroform, chlorodibromomethane and dichlorobromomethane. Bromoform occurs occasionally. Results are reported for the individual compounds as well as for total THMs. Only total THM results are discussed. Starting in 1991, samples from the distribution system were quenched with sodium thiosulphate to stop the further production of THMs in the sample bottle. This provided a more representative estimation of the THMs consumed in tap water.

Total trihalomethanes were found at positive levels in all 12 treated and distributed water samples analyzed with a maximum level of 56.5 ug/L. This was below the ODWO Maximum Acceptable Concentration of 350 ug/L.

RADIOLOGICAL

RADIONUCLIDES

There are more than 200 radionuclides, some of which occur naturally and others which originate from the activities of society. The radionuclides currently of greater interest from a health view-point are tritium, strontium-90, iodine-131, cesium-137 and radium-226. The gross beta and gross alpha determinations are suitable for preliminary screening except for tritium which must be measured separately. Radionuclides are measured in becquerels per litre (Bg/L). No results were above the available guidelines.

CONCLUSIONS

No known health related guidelines were exceeded.

The Walpole Island water treatment plant, for the sample years 1991 and 1992, produced good quality water. Water from the distribution system was not sampled.

TABLE 1

DRÍNKING WATER SURVEILLANCE PROGRAM

PLANT GENERAL REPORT

PLANT NAME:

WALPOLE ISLAND WTP

WORKS #:

230000129

UTM #:

173755504718525

DISTRICT: REGION:

SARNIA SOUTHWEST

DISTRICT OFFICER:

O. WIGLE

SUPERINTENDENT:

S. KICKNOSWAY

ADDRESS:

RR # 3

WALLACEBURG, ONTARIO

N8A 4K9

519-627-1426

MUNICIPALITY:

WALLACEBURG

AUTHORITY:

FEDERAL

PLANT INFORMATION

PLANT VOLUME:

DESIGN CAPACITY:

.829 (X 1000 M3) 2.511 (X 1000 M3/DAY)

RATED CAPACITY:

.878 (X 1000 M3/DAY)

MUNICIPALITY

POPULATION

WALPOLE RESERVE

1,900

TABLE 2 DRINKING WATER SURVEILLANCE PROGRAM IN-PLANT MONITORING

PARAMETER	LOCATION	FREQUENCY
FREE CHLORINE RESIDUAL	LAB RAW LAB TREATED	2 TIMES/DAY 2 TIMES/DAY
TOTAL CHLORINE RESIDUAL	LAB SETTLED LAB TREATED	2 TIMES/DAY 2 TIMES/DAY
РН	LAB RAW LAB TREATED	WEEKLY WEEKLY
TURBIDITY	LAB RAW LAB SETTLED LAB TREATED	2 TIMES/DAY 2 TIMES/DAY 2 TIMES/DAY

Page 10

TABLE 3 DRINKING WATER SURVEILLANCE PROGRAM WALPOLE ISLAND UTP SAMPLE DAY CONDITIONS AND TREATMENT CHEMICAL DOSAGES FOR 1991 AND 1992

PRE CHLORINATION CHLORINE	1	1.00	•\$0	.50	.50	1.00	09.	09.	1.00	02.	06.	1.00	1.00
COAGULATION AID POLYELECTROLYTE	2 3 4 1 2 1 3 3 3 3 3 3 4 1 1 1 1 1 1 1 1 1 1 1 1	.10	.10	٥٠.	.10	.10	01.	.10	.10	.10	.10	.10	.10
TASTE AND ODOUR ACTIVATED CARBON POWDER	=	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	4.50	9.00	00.6	00.6
COAGULATION ALUM DRY		7.00	20.00	10.00	7.00	12.50	10.00	00.6	7.00	6.50	7.50	7.50	9.50
	FLOW (1000M3)	485	.547	.461	.527	777	.562	777	097	.393	667	459	.438
	DELAY * TIME(HRS)	08 41.00			2 47.12	3 44.50	05 53.00	7 44 78	0 43.00	.05.05.90	A 39 85	11 43.20	04.52.40
. "	· DATE	O I JAN D	MAR	ΜAΥ	Ξ	SEP	200	A	MAR	MAY	1	S P P	92 NOV 0

^{*} THE DELAY TIME BETWEEN THE RAW AND TREATED WATER SAMPLING, SHOULD ESTIMATE THE RETENTION TIME.

KEY TO TABLE 4 and 5

- A ONTARIO DRINKING WATER OBJECTIVES (ODWO)
 - 1. Maximum Acceptable Concentration (MAC)
 - 1+. MAC for Total Trihalomethanes
 - 2. Interim Maximum Acceptable Concentration (IMAC)
 - Aesthetic Objective (AO)
 - 3*. AO for Total Xylenes
 - 4. Recommended Operational Guideline
 - 5. Health Related Guidance Value
- B HEALTH & WELFARE CANADA (H&W)
 - 1. Maximum Acceptable Concentration (MAC)
 - 2. Proposed MAC
 - 3. Interim MAC
 - 4. Aesthetic Objective (AO)
- C WORLD HEALTH ORGANIZATION (WHO)
 - 1. Guideline Value (GV)
 - 2. Tentative GV
 - 3. Aesthetic GV
- D US ENVIRONMENTAL PROTECTION AGENCY (EPA)
 - 1. Maximum Contaminant Level (MCL)
 - Suggested No-Adverse Effect Level (SNAEL)
 - 3. Lifetime Health Advisory
 - 4. EPA Ambient Water Quality Criteria
- F EUROPEAN ECONOMIC COMMUNITY (EEC)
 - 1. Health Related Guideline Level
 - 2. Aesthetic Guideline Level
 - 3. Maximum Admissable Concentration (MADC)
- G CALIFORNIA STATE DEPARTMENT OF HEALTH-GUIDELINE VALUE
- I NEW YORK STATE AMBIENT WATER GUIDELINE
- N/A NONE AVAILABLE

LABORATORY RESULTS, REMARK DESCRIPTIONS

	•
•	No Sample Taken
BDL	Below Minimum Measurement Amount
<t< td=""><td>Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)</td></t<>	Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)
>	Results Are Greater Than The Upper Limit
<=>	Approximate Result
! 48	No Data: Sample Age Exceeded 48 Hours
! AR	No Data: No Numeric Results
! AW	No Data: Analysis Withdrawn
!BT	No Data: Sample Broken In Transit
!cs	No Data: Contamination Suspected
! EF	No Data: Laboratory Equipment Failure
!IR	No Data: Insufficient Sample
!IS	No Data: Insufficient Sample
!LA	No Data: Laboratory Accident
!NP	No Data: No Procedure
!NR	No Data: Sample Not Received
!OP	No Data: Obscured Plate
!PE	No Data: Procedure Error: Sample Discarded
!PR	No Data: Preservative Required
!QU	No Data: Quality Control Unacceptable
!RE	No Data: Received Empty
!RO	No Data: No Numeric Results
!SM	No Data: Sample Missing
!ss	No Data: Sample Improperly Preserved
! U ·	No Data: Sample Unsuitable For Analysis
!UB	No Data: Bottle Broken
! UN	No Data: Result Unreliable

No Data: Unpreserved Sample Required ! UR Approximate Value Α A3C Approximate, Total Count Exceeded 300 Colonies Approximate Value, Exceeded Normal Range A> Additional Peak, Less Than, Not Priority Pollutant APS ARO Additional Information In Laboratory Report CRO Calculated Result Only NAF Not All Required Tests Found Ioncal Calculated on Incomplete Data Set RID P and M-Xylene Not Separated RMP RRR Result Obtained by Repeat Analysis

RRV Rerun Verification

SFA Sample Filtered: Filtrate Analyzed

SIL Sample Incorrectly Labelled

SPS Several Peaks, Small, Not Priority Pollutant

U48 Unreliable: Sample Age Exceeded 48 Hours

UAL Unreliable: Sample Age Exceeded Limit

UAU Unreliable: Sample Age Unknown

UCS Unreliable: Contamination Suspected

WSD Wrong Sample Description On Bottle

DRINKING WATER SURVEIL TREATMENT PLANT TREATED TREATED

GUIDELINE = 0 (A1)		GUIDELINE = 500 (A3) =			•				 GUIDELINE = 5/100ML (AI)		GUIDELINE = N/A		
DET'N LIMIT = 0		DET'N LIMIT = 0	2 <=>	0 <=>	2 <=>	1 <=> -	0 <=>	3 <=>	DET'N LIMIT = 0		DET'N LIMIT = 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
BACTERIOLOGICAL FECAL COLIFORM MF (CT/100ML)	1991 SEP 126	STANDRD PLATE CNT MF (CT/ML)	1991 SEP	1991 NOV .	1992 JAN -	1992 MAR	1992 MAY	1992 NOV	TOTAL COLIFORM MF (CT/100ML)	1991 SEP 1300 A3C	T COLIFORM BCKGRD MF (CT/100ML)	1991 SEP 49000 A3C	

TREATMENT PLANT	TREATED
PLANT	
TREATMENT	RAW

= N/A		= N/A	н Х/
GUIDELINE =		GUIDELINE = N/A	GUIDELINE
0		0	•
п		и	п
DET'N LIMIT		DET'N LIMIT	DET'N LIMIT
	001.2.200		1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
(FIELD)		_	^
CHEMISTRY (FIELD) (MG/L)		MG/L	CMG/L
(COMB)		FREE ((T07AL
CHEMIST CHLORINE (COMB) (MG/L	JAN MAR MAY JUL JUL NOV MAR MAR SE MAY NOV SE MAY	FLD CHLORINE FREE (MG/L	1991 JAN 1991 MAR 1991 MAY 1993 MAY 1992 MAR 1992 MAR 1992 MAY 1992 LUL 1992 LOL 1991 JAN 1991 JAN 1991 JAN 1991 JAN 1991 JAN 1991 JAN 1991 JAN 1991 JAN 1992 MAY 1992 MAY
FLD CF	1991 1991 1991 1992 1992 1992 1992 1992	FLD CF	1991 1991 1992 1992 1992 1992 1992 1991 1991 1992 1992 1992 1992 1992 1992 1992 1992

TREATMENT PLANT TREATMENT PLANT RAW

GUIDELINE = 6.5-8.5 (A4)		GUIDELINE = 15 (A3)		GUIDELINE = 1.0 (A1)
DET'N LIMIT = N/A				DET'N LIMIT = N/A
IELD)	7.200 7.100 7.600 7.600 7.600 8.000	7.600 7.600 7.600 7.600 7.700	2.700 1.200 8.500 21.000 22.200 11.500 7.000 7.000 17.500	. 150 . 150 . 106 . 106
CHEMISTRY (FIELD)	8.200 7.600 8.300 7.400 8.500 7.900	8.400 8.400 8.400 8.400 8.300	2.000 8.000 20.500 20.500 10.000 3.500 7.000 17.000	1.500 46.000 8.000 3.100 11.600 3.500 4.300 2.500 7.700 1.600
FLD PH (DMNSLESS		1992 MAR 8 8 1992 MAY 8 1992 MAY 8 1992 JUL 8 1992 NOV 1992 NOV 8	1991 JAN 1991 MAY 1991 JUL 1991 SEP 1991 NOV 1992 JAN 1992 MAY 1992 JUL 1992 JUL	FLD TURBIDITY (FTU 1991 JAN 1991 MAY 1991 MAY 1991 JUL 1991 SEP 1991 NOV 1992 JAN 1992 MAR 19

TREATMENT PLANT TREATMENT PLANT RAW

GUIDELINE = 30-500 (A4)		GUIDELINE = 100 (F2)	GUIDELINE = 0.2 (A1)
0ET'N LIMIT = 0.2 GL		0ET'N LIMIT = 0.20 GU	DET'N LIMIT = 0.001 GU
ABORATORY)	77.400 78.300 77.600 80.200 80.200 80.400 77.400 78.900 78.900 78.900 79.700 80.800	29.600 32.200 30.000 30.000 30.000 27.500 27.500 28.700 28.700 28.700 28.700 28.700 28.700 28.700 28.700 28.700 28.700 28.700	801
CHEMISTRY (LABORATORY)	83.700 88.800 88.500 87.900 87.900 83.800 85.200 83.800 83.800	28.800 28.800 28.400 28.400 27.400 27.400 28.800 28.800 28.300 27.700 28.300 28.300 27.700	BDL
ALKALINITY (MG/L	1991 JAN 1991 MAR 1991 JUL 1991 SEP 1991 SEP 1992 MAR 1992 MAR 1992 HAR 1992 LILL 1992 SEP	CAL C.I.UR (MG/L 1991 JAN 1991 MAR 1991 JUL 1991 SEP 1991 SEP 1992 MAR 1992 MAR 1992 ULL 1992 SEP	CYANIDE (MG/L 18 SAMPLES

1335		
AM		
1 3 3		
FKCCKA		
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992		
WALER	PLANT	
DKINAING	TREATMENT PLANT TREATMENT PLANT	TREATED
	PLANT	
	TREATMENT	RAW

GUIDELINE = 250 (A3)		GUIDELINE = 5 (A3)	GUIDELINE = 400 (F2)
DET'N LIMIT = 0.20		DET'N LIMIT = 0.50	0ET'N LIMIT = 1.0
BORATORY)	10,300 11,000 9,900 10,000 9,400 9,400 11,700 11,700 11,700 8,600 8,800 9,800 10,100) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	800 + 1 1,000 + 1 1,
CHEMISTRY (LABORATORY)	9.300 10.300 8.400 9.400 9.100 8.600 7.000 7.000 7.000 8.500		1,000 <1 BDL BDL BDL S00 <1 S0
CHLORIDE (MG/L	1991 JAN 1991 MAR 1991 MAY 1991 JUL 1992 JAN 1992 MAY 1992 MAY 1992 JUL 1992 SEP 1992 SEP	COLOUR (HZU	1991 JAN 1991 MAR 1991 MAY 1991 JUL 1992 JAN 1992 JAN 1992 JUL 1992 JUL 1992 JAN 1991 JAN 1991 JAN 1991 JAN 1991 JUL 1992 JAN 1993 JUL 1992 JAN 1992 JAN 199

TREATMENT PLANT TREATMENT PLANT RAW

GUIDELINE = 5.0 (A3)		GUIDELINE ≈ 1.5 (A1)		GUIDELINE = 80-100 (A4)
OET'N LIMIT = 0.10		DET'N LIMIT = 0.01		DET'N LIMIT = 0.5
LABORATORY)	1.000 1.300 1.300 1.200 1.300 1.300 1.200 1.200		0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	104,600 114,000 102,400 108,000 108,000 108,000 104,000 103,000 102,260 105,260
CHEMISTRY (LABORATORY) (MG/L)	1.700 1.800 1.600 1.700 1.700 1.700 1.700 1.300		. 080 . 080 . 080 . 080 . 080 . 080 . 080 . 080	104,000 114,000 102,300 102,300 102,300 97,500 105,000 105,000 102,000 103,000 103,000
CHE DISS ORG CARBON (MG/L	1991 JAN 1991 MAR 1991 MAY 1991 MAY 1991 SEP 1991 NOV 1992 MAR 1992 MAR 1992 MAR 1992 SEP 1992 SEP	FLUORIDE (MG/L	1991 JAN 1991 MAR 1991 MAY 1991 SEP 1991 NOV 1992 MAR 1992 MAR 1992 MAR 1992 CAR 1992 CAR 1992 CAR	HARDNESS (MG/L 1991 JAN 1991 JAN 1991 MAY 1991 JUL 1991 SEP 1992 JAN 1992 MAR 1992 MAR 1992 MAR 1992 JUL 1992 SEP 1992 SEP

GUIDELINE = N/A		GUIDELINE = 10 (F2)		GUIDELINE = N/A		
DET'N LIMIT = N/A	RID NAF NAF RID NAF NAF	DET'N.LIMIT = 0.01		DET'N LIMIT = N/A	RID RID NAF	
CHEMISTRY (LABORATORY)	3.228 2.284 3.758 RID 1.796 1.752 2.374 3.013 NAF 1.808 3.589 NAF 3.647 3.249 11.180 1.049 RID 932 4.35 NAF 2.263 6.55 NAF 1.947 1.102 2.63 6.656 809	, ,	1.050950	(DMMSLESS)	. 142 267 RID091 R 163004 183047 258048 175048 176082 411 RID295 R 170046	.236 .082 .257 .256
IONCAL (DMNSLESS	1991 JAN 1991 MAR 1991 MAY 1991 JUL 1991 SEP 1992 JAN 1992 MAR 1992 MAY 1992 UL 1992 OU	POTASSIUM (MG/L	1991 JAN 1991 MAR 1991 MAY 1991 JUL 1991 SEP 1992 JAN 1992 MAY 1992 JUL 1992 LIC 1992 LIC 1992 LIC	LANGELIERS INDEX (DMNSLESS	1991 JAN 1991 MAR 1991 MAY 1991 JUL 1991 JUL 1992 JAN 1992 MAR 1992 JAN 1992 JUL	1992 SEP 1992 NOV

TREATMENT PLANT TREATMENT PLANT .
RAW TREATED

GUIDELINE = 30.0 (F2)		GUIDELINE = 200 (A4)		GUIDELINE = 0.05 (F2)	
DET'N LIMIT = 0.1	*	DET'N LIMIT = 0.20	•	DET'N LIMIT = 0.002	
-ABORATORY)	7,450 8,200 7,550 8,100 7,700 7,500 7,500 7,500 7,590 7,610 7,610		6.800 7.000 5.200 5.200 6.200 6.870 6.870 7.760 6.870 6.870 6.870 6.870 6.870		7- 800. 100
CHEMISTRY (LABORATORY)	7.700 8.300 7.450 8.100 7.550 7.550 7.550 7.570	^	6.400 6.800 5.600 5.600 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000 6.000	- (MG/L)	.010 .006 47 .012 .018 .018 .018 .010 .006 47 .006 7
MAGNESIUM (MG/L	1991 JAN 1991 MAR 1991 MAY 1991 JUL 1991 SEP 1992 MAR 1992 MAY 1992 JUL 1992 SEP 1992 SEP	SODIUM (MG/L	1991 JAN 1991 MAR 1991 MAY 1991 JUL 1991 SEP 1992 MAR 1992 MAY 1992 JUL 1992 SEP 1992 SEP	AMMONIUM TOTAL (MG/L	1991 JAN 1991 MAR 1991 MAY 1991 JUL 1991 SEP 1991 NOV 1992 JAN 1992 MAR 1992 SEP 1992 NOV

DRINKING WATER SURV TREATMENT PLANT TREATMENT PLANT RAW TREATED

GUIDELINE = 1.0 (Aį)		GUIDELINE = 10.0 (A1)		GUIDELINE = N/A
ORY) DET*N LIMIT = 0.001	801 801 801 801 801 801 801 7 003 <7 003 <7 003 <7	DET'N LIMIT = 0.005	.330 .360 .360 .315 .290 .340 .345 .345 .345	150 .150 .090 <7 .080 <7 .080 <7 .080 <7 .140 .120 .120 .100 .100
CHEMISTRY (LABORATORY)	1991 JAN	NITRATE (TOTAL) (MG/L)	1991 JAN .330 1991 MAY .385 1991 MAY .315 1991 SEP .275 1991 NOV .290 1992 MAY .410 1992 MAY .410 1992 UL .335 1992 NOV .325	NITROGEN TOT KJELD (MG/L) 1991 JAN .320 1991 MAR .320 1991 MAR .150 1991 JUL .290 1991 JUL .290 1992 JAN .170 1992 JAN .170 1992 JUL .150

TREATMENT PLANT TREATED

TREATMENT PLANT

GUIDELINE = 6.5-8.5 (A4) GUIDELINE = 0.40 (F2) GUIDELINE = N/A DET'N LIMIT = 0.0005DET'N LIMIT = 0,002 DET'N LIMIT = N/A .004 <1 .002 <1 BBU BBU BBU BBU BBU .004 <1 .005 <1 .005 <1 .000 <1 .000 <1 .000 <1 .001 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 <1 .000 < 7.940 8.050 8.050 8.180 8.180 8.130 8.360 8.290 8.290 8.300 CHEMISTRY (LABORATORY) .000 <1 .006 <1 .001 <1 .001 <1 .001 <1 .001 <1 .001 <1 .001 <1 .001 <1 .001 <1 .008 <1 .036 <1 .006 <1 .005 <1 .005 <1 .008 <1 .006 <1 .006 <1 .006 <1 8.170 8.220 8.180 8.180 8.270 8.220 8.220 8.220 8.240 8.200 8.280 PHOSPHORUS FIL REACT (MG/L PHOSPHORUS TOTAL (MG/L PH (DMNSLESS) 1991 JAN 1991 MAR 1991 JUL 1991 SEP 1991 NOV 1992 MAR 1992 MAR 1992 MAR 1992 SEP 1992 SEP 1991 JAN 1991 MAR 1991 JUL 1991 SEP 1991 NOV 1992 JAN 1992 MAR 1992 JUL 1992 SEP 1992 SOV 1991 JAN 1991 MAR 1991 MAY 1991 JUL 1991 SEP 1992 JAN 1992 JUL 1992 MAY 1992 JUL 1992 SEP 1992 SEP

TREATMENT PLANT TREATMENT PLANT RAW TREATED

GUIDELINE = 500 (A3)	
U II	
¥. ¥	
10661	
3 3	
S S S	
DET'N LIMIT = 0.20 DET'N LIMIT = 0.05	
1	, A
0000 0000 0000 0000 0000 0000 0000 0000 0000	490 450 450
25. 25. 25. 25. 25. 25. 25. 25. 25. 25.	
HEMISTRY (LABORATORY) HGA. DOD CRO 153. 159. DOD CRO 154. 150. DOD CRO 154. 150. DOD CRO 154. 164. DOD CRO 150. 167. DOD CRO 150. 167. DOD CRO 150. 167. DOD CRO 150. 167. DOD CRO 151. 167. DOD CRO 151. 16. 490 22. 16. 490 22. 16. 100 22. 16. 100 22. 16. 100 22. 16. 100 23. 16. 100 23. 16. 100 23. 16. 100 23. 16. 100 23. 16. 100 23. 16. 100 23. 16. 100 23. 16. 100 23. 16. 100 23. 17. 340 22. 16. 100 22. 17. 340 22. 16. 100 22. 17. 340 22. 16. 100 22. 17. 340 22. 16. 100 22. 17. 360 22. 18. 380 21.	
HEMISTRY (L. 5/L)) (L. 5/L)) (L. 5/L)) (L. 5/L) (5.400 4.500 1.490 4.100 9.000
	0 0 0 0
RESIDUE FILTRATE 1991 MAR 1991 MAR 1991 MAR 1993 SEP 1992 JAN 1993 JAN 1991 JAN 1992 JAN 1992 JAN 1992 JAN 1993 JAN 1992 JAN 1993 JAN 1992 JAN 1991 JAN	5 4 5 1 4 5 1 1 1 1 1 1 1 1 1 1 1 1 1 1
100 F 11 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L 1 L	992 MAR 992 MAY 992 JUL 992 SEP 1992 NOV
1991 JAN 1991 JAN 1991 JAN 1991 JAN 1992 JAN 1992 JAN 1992 JAN 1992 JAN 1992 JAN 1992 JAN 1991 JAN 1991 JAN 1991 JAN 1992 MAR 1991 JAN 1992 MAR 1991 MAR 1992 MAR 1992 MAR 1992 MAR 1992 JAN 1992 JAN 1993 MAR 1991 MAR 1991 JAN 1991 JAN 1992 JAN 1993 JAN 1994 JAN 1995 JAN 1994 JAN 1995 JAN 199	20000

PLANT	
TREATMENT	TREATED
PLANT	
EATMENT	3

GUIDELINE = 1000 (A2)		GUIDELINE = 5000 (A1)	GUIDELINE = 6800 (04)
DET'N LIMIT, = 0.05	13,000 14,000 14,000 14,000 15,000 15,000 15,000 15,000 15,000 15,000 15,000	DET'N LIMIT = 2.00	15,000 <7 20,000 <7 15,000 <7 15,000 <7 15,000 <7 16,000 <7 16,000 <7 17,000 <7 17,000 <7 18,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000 <7 19,000
BARIUM (UG/L)	1991 JAN 14,000 1991 MAY 17,000 1991 JUL 14,000 1991 SEP 15,000 1991 NOV 15,000 1992 MAR 17,000 1992 MAR 17,000 1992 JUL 14,000 1992 SEP 15,000 1992 SEP 15,000	BORON (UG/L)	1991 JAN 18.000 <t 11.000="" 13.000="" 15.000="" 17.000="" 18.000="" 1991="" 1992="" 801<="" <t="" jan="" mar="" may="" sep="" td=""></t>

	GUIDELINE = 300 (A3)	GUIDELINE = 1.0 (A1)	
4.500 < 7 3.700 < 7 3.300 < 7 3.300 < 7 3.300 < 7 3.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000 < 7 7.000	, DET'N LIMIT = 6.00	8.100 <t 6.400="" 8.000="" 8.0<="" <t="" th=""><th>, , , , , , , , , , , , , , , , , , ,</th></t>	, , , , , , , , , , , , , , , , , , ,
780 <1 .700 <1 .810 <1 .810 <1 .900 <1 .760 <1 .760 <1 .760 <1 .760 <1 .100 <1 .100 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800 <1 .1800		17. (20. 1420. 150. 35. 150. 177. 177. 170.	JAN . 060 < T MAR . 80L MAY . 80L JUL . 80L NOV . 80L
	780	4,500 <7 4,500 <7 4,000 <7 5,700 <7 5,700 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7 7,1,000 <7	1.780 <

TREATMENT PLANT

TREATMENT PLANT

GUIDELINE = 50.0 (A3) GUIDELINE = 350 (D3) GUIDELINE = N/A DET'N LIMIT = 0.05 DET'N LIMIT = 0.20 DET'N LIMIT = 0.05 .930 <T 1.000 <T .400 <T .720 <T .801 .440 <T .970 <T .640 <T .510 .500 <1 .520 .530 .530 .540 <1 .660 <1 .560 .590 .590 <1 .590 <1 .590 <1 .590 <1 ۲ .490 1.900 .680 .880 .560 1.500 1.200 .850 720 <1
1.800 <1
1.800 <1
1.600 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 <1
1.500 17.200 4.900 5.700 6.700 1.600 2.500 4.100 3.600 2.000 4.700 METALS MOLYBDENUM (UG/L MANGANESE (UG/L 1991 JAN 1991 MAR 1991 MAY 1991 SEP 1991 NOV 1992 MAR 1992 MAR 1992 MAR 1992 SEP 1992 SEP 1991 JAN 1991 MAR 1991 JUL 1991 JUL 1991 NOV 1992 JAN 1992 MAR 1992 JUL 1992 SEP 1992 SEP NICKEL (UG/L MAR MAY JUL SEP JUL SEP NOV

	GUIDELINE = 10 (A1)							•						GUIDELINE = 146 (D4)													GUIDELINE = 10 (A1)			
	DET'N LIMIT = 005													DET'N LIMIT = 0.05													DET'N LIMIT = 1.00		4 4	
		.110 <t< td=""><td>T> 070,</td><td>.130 <t< td=""><td>.110 <t< td=""><td>T> 071.</td><td>.130 <t< td=""><td>T> 080.</td><td>.110 <t< td=""><td>.120 <t< td=""><td>.310 <t< td=""><td>WS i</td><td>T> 080.</td><td></td><td>. 330 <1</td><td>. 380 <t< td=""><td>T> 044.</td><td>.560</td><td>.590</td><td>. 780</td><td>009.</td><td>1> 077</td><td>.310 <t< td=""><td>.410 <t< td=""><td>WS i</td><td>.380 <t< td=""><td></td><td>BDL</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 070,	.130 <t< td=""><td>.110 <t< td=""><td>T> 071.</td><td>.130 <t< td=""><td>T> 080.</td><td>.110 <t< td=""><td>.120 <t< td=""><td>.310 <t< td=""><td>WS i</td><td>T> 080.</td><td></td><td>. 330 <1</td><td>. 380 <t< td=""><td>T> 044.</td><td>.560</td><td>.590</td><td>. 780</td><td>009.</td><td>1> 077</td><td>.310 <t< td=""><td>.410 <t< td=""><td>WS i</td><td>.380 <t< td=""><td></td><td>BDL</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.110 <t< td=""><td>T> 071.</td><td>.130 <t< td=""><td>T> 080.</td><td>.110 <t< td=""><td>.120 <t< td=""><td>.310 <t< td=""><td>WS i</td><td>T> 080.</td><td></td><td>. 330 <1</td><td>. 380 <t< td=""><td>T> 044.</td><td>.560</td><td>.590</td><td>. 780</td><td>009.</td><td>1> 077</td><td>.310 <t< td=""><td>.410 <t< td=""><td>WS i</td><td>.380 <t< td=""><td></td><td>BDL</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 071.	.130 <t< td=""><td>T> 080.</td><td>.110 <t< td=""><td>.120 <t< td=""><td>.310 <t< td=""><td>WS i</td><td>T> 080.</td><td></td><td>. 330 <1</td><td>. 380 <t< td=""><td>T> 044.</td><td>.560</td><td>.590</td><td>. 780</td><td>009.</td><td>1> 077</td><td>.310 <t< td=""><td>.410 <t< td=""><td>WS i</td><td>.380 <t< td=""><td></td><td>BDL</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 080.	.110 <t< td=""><td>.120 <t< td=""><td>.310 <t< td=""><td>WS i</td><td>T> 080.</td><td></td><td>. 330 <1</td><td>. 380 <t< td=""><td>T> 044.</td><td>.560</td><td>.590</td><td>. 780</td><td>009.</td><td>1> 077</td><td>.310 <t< td=""><td>.410 <t< td=""><td>WS i</td><td>.380 <t< td=""><td></td><td>BDL</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.120 <t< td=""><td>.310 <t< td=""><td>WS i</td><td>T> 080.</td><td></td><td>. 330 <1</td><td>. 380 <t< td=""><td>T> 044.</td><td>.560</td><td>.590</td><td>. 780</td><td>009.</td><td>1> 077</td><td>.310 <t< td=""><td>.410 <t< td=""><td>WS i</td><td>.380 <t< td=""><td></td><td>BDL</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.310 <t< td=""><td>WS i</td><td>T> 080.</td><td></td><td>. 330 <1</td><td>. 380 <t< td=""><td>T> 044.</td><td>.560</td><td>.590</td><td>. 780</td><td>009.</td><td>1> 077</td><td>.310 <t< td=""><td>.410 <t< td=""><td>WS i</td><td>.380 <t< td=""><td></td><td>BDL</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	WS i	T> 080.		. 330 <1	. 380 <t< td=""><td>T> 044.</td><td>.560</td><td>.590</td><td>. 780</td><td>009.</td><td>1> 077</td><td>.310 <t< td=""><td>.410 <t< td=""><td>WS i</td><td>.380 <t< td=""><td></td><td>BDL</td><td></td><td></td></t<></td></t<></td></t<></td></t<>	T> 044.	.560	.590	. 780	009.	1> 077	.310 <t< td=""><td>.410 <t< td=""><td>WS i</td><td>.380 <t< td=""><td></td><td>BDL</td><td></td><td></td></t<></td></t<></td></t<>	.410 <t< td=""><td>WS i</td><td>.380 <t< td=""><td></td><td>BDL</td><td></td><td></td></t<></td></t<>	WS i	.380 <t< td=""><td></td><td>BDL</td><td></td><td></td></t<>		BDL		
METALS		T> 080.	.770	.330 <1	1> 041.	.280 ×T		.250 <t< td=""><td>.210 <t< td=""><td></td><td>T> 090.</td><td>WS i</td><td>.200 <t< td=""><td>^</td><td>.520</td><td>.310 <t< td=""><td>T> 067</td><td>069.</td><td>T> 067°</td><td>.590</td><td>.780</td><td></td><td>.390 <t< td=""><td>. 570</td><td>i SM</td><td>T> 024.</td><td>. (</td><td>BOL</td><td></td><td></td></t<></td></t<></td></t<></td></t<></td></t<>	.210 <t< td=""><td></td><td>T> 090.</td><td>WS i</td><td>.200 <t< td=""><td>^</td><td>.520</td><td>.310 <t< td=""><td>T> 067</td><td>069.</td><td>T> 067°</td><td>.590</td><td>.780</td><td></td><td>.390 <t< td=""><td>. 570</td><td>i SM</td><td>T> 024.</td><td>. (</td><td>BOL</td><td></td><td></td></t<></td></t<></td></t<></td></t<>		T> 090.	WS i	.200 <t< td=""><td>^</td><td>.520</td><td>.310 <t< td=""><td>T> 067</td><td>069.</td><td>T> 067°</td><td>.590</td><td>.780</td><td></td><td>.390 <t< td=""><td>. 570</td><td>i SM</td><td>T> 024.</td><td>. (</td><td>BOL</td><td></td><td></td></t<></td></t<></td></t<>	^	.520	.310 <t< td=""><td>T> 067</td><td>069.</td><td>T> 067°</td><td>.590</td><td>.780</td><td></td><td>.390 <t< td=""><td>. 570</td><td>i SM</td><td>T> 024.</td><td>. (</td><td>BOL</td><td></td><td></td></t<></td></t<>	T> 067	069.	T> 067°	.590	.780		.390 <t< td=""><td>. 570</td><td>i SM</td><td>T> 024.</td><td>. (</td><td>BOL</td><td></td><td></td></t<>	. 570	i SM	T> 024.	. (BOL		
	LEAD (UG/L)	1991 JAN	1991 MAR	1991 MAY	1991 JUL	1991 SEP	1991 NOV	1992 JAN	1992 MAR	1992 MAY	1992 JUL	1992 SEP	1992 NOV	ANTIMONY (UG/L	1991 JAN	1991 MAR	1991 MAY	1991 JUL	1991 SEP	1991 NOV	1992 JAN	1992 MAR	1992 MAY	1992 JUL	1992 SEP	1992 NOV	SELENIUM (UG/L	22 SAMPLES		

DEI*N LIMIT = 0.05	.090 <₹		. 070 cT	1> 060	1> 050.	1> 090	1> 001.	.160 <r< th=""><th>.100 <t< th=""><th>, 140 <t< th=""><th>DET*N LIMIT = 0.05</th><th>T> 090.</th><th>.100 <t< th=""><th>108</th><th>BOL</th><th>150 <1</th><th>. 060 «T</th><th>108</th><th>. 160 cT</th><th>1000</th><th>,350 <t< th=""><th>DET'N LIMIT = 0.20</th><th>3,800</th><th>7.800</th><th>T> 088.</th><th>7,100</th><th>2.900</th><th>3.500</th><th>1,800 <t< th=""><th>3.600</th><th>203.0</th></t<></th></t<></th></t<></th></t<></th></t<></th></r<>	.100 <t< th=""><th>, 140 <t< th=""><th>DET*N LIMIT = 0.05</th><th>T> 090.</th><th>.100 <t< th=""><th>108</th><th>BOL</th><th>150 <1</th><th>. 060 «T</th><th>108</th><th>. 160 cT</th><th>1000</th><th>,350 <t< th=""><th>DET'N LIMIT = 0.20</th><th>3,800</th><th>7.800</th><th>T> 088.</th><th>7,100</th><th>2.900</th><th>3.500</th><th>1,800 <t< th=""><th>3.600</th><th>203.0</th></t<></th></t<></th></t<></th></t<></th></t<>	, 140 <t< th=""><th>DET*N LIMIT = 0.05</th><th>T> 090.</th><th>.100 <t< th=""><th>108</th><th>BOL</th><th>150 <1</th><th>. 060 «T</th><th>108</th><th>. 160 cT</th><th>1000</th><th>,350 <t< th=""><th>DET'N LIMIT = 0.20</th><th>3,800</th><th>7.800</th><th>T> 088.</th><th>7,100</th><th>2.900</th><th>3.500</th><th>1,800 <t< th=""><th>3.600</th><th>203.0</th></t<></th></t<></th></t<></th></t<>	DET*N LIMIT = 0.05	T> 090.	.100 <t< th=""><th>108</th><th>BOL</th><th>150 <1</th><th>. 060 «T</th><th>108</th><th>. 160 cT</th><th>1000</th><th>,350 <t< th=""><th>DET'N LIMIT = 0.20</th><th>3,800</th><th>7.800</th><th>T> 088.</th><th>7,100</th><th>2.900</th><th>3.500</th><th>1,800 <t< th=""><th>3.600</th><th>203.0</th></t<></th></t<></th></t<>	108	BOL	150 <1	. 060 «T	108	. 160 cT	1000	,350 <t< th=""><th>DET'N LIMIT = 0.20</th><th>3,800</th><th>7.800</th><th>T> 088.</th><th>7,100</th><th>2.900</th><th>3.500</th><th>1,800 <t< th=""><th>3.600</th><th>203.0</th></t<></th></t<>	DET'N LIMIT = 0.20	3,800	7.800	T> 088.	7,100	2.900	3.500	1,800 <t< th=""><th>3.600</th><th>203.0</th></t<>	3.600	203.0
_	.180 <t< td=""><td>.250 <t< td=""><td>.230 <1</td><td>.200 <1</td><td>1> 057.</td><td>7000</td><td></td><td>.220 <t< td=""><td>.200 <t< td=""><td>1.5M 1.230 <t< td=""><td>^</td><td>.140 <t< td=""><td>.720</td><td>BDL</td><td>80L</td><td>015. Ing</td><td>150 <1</td><td>.240 <1</td><td>180 <1</td><td>NS -</td><td>.260 <t< td=""><td></td><td>1.600 <t< td=""><td>7.400</td><td>.530 <t< td=""><td>3.200</td><td>2.600</td><td>4.800</td><td>3.900</td><td>3.400</td><td>7 206:1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.250 <t< td=""><td>.230 <1</td><td>.200 <1</td><td>1> 057.</td><td>7000</td><td></td><td>.220 <t< td=""><td>.200 <t< td=""><td>1.5M 1.230 <t< td=""><td>^</td><td>.140 <t< td=""><td>.720</td><td>BDL</td><td>80L</td><td>015. Ing</td><td>150 <1</td><td>.240 <1</td><td>180 <1</td><td>NS -</td><td>.260 <t< td=""><td></td><td>1.600 <t< td=""><td>7.400</td><td>.530 <t< td=""><td>3.200</td><td>2.600</td><td>4.800</td><td>3.900</td><td>3.400</td><td>7 206:1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.230 <1	.200 <1	1> 057.	7000		.220 <t< td=""><td>.200 <t< td=""><td>1.5M 1.230 <t< td=""><td>^</td><td>.140 <t< td=""><td>.720</td><td>BDL</td><td>80L</td><td>015. Ing</td><td>150 <1</td><td>.240 <1</td><td>180 <1</td><td>NS -</td><td>.260 <t< td=""><td></td><td>1.600 <t< td=""><td>7.400</td><td>.530 <t< td=""><td>3.200</td><td>2.600</td><td>4.800</td><td>3.900</td><td>3.400</td><td>7 206:1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	.200 <t< td=""><td>1.5M 1.230 <t< td=""><td>^</td><td>.140 <t< td=""><td>.720</td><td>BDL</td><td>80L</td><td>015. Ing</td><td>150 <1</td><td>.240 <1</td><td>180 <1</td><td>NS -</td><td>.260 <t< td=""><td></td><td>1.600 <t< td=""><td>7.400</td><td>.530 <t< td=""><td>3.200</td><td>2.600</td><td>4.800</td><td>3.900</td><td>3.400</td><td>7 206:1</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1.5M 1.230 <t< td=""><td>^</td><td>.140 <t< td=""><td>.720</td><td>BDL</td><td>80L</td><td>015. Ing</td><td>150 <1</td><td>.240 <1</td><td>180 <1</td><td>NS -</td><td>.260 <t< td=""><td></td><td>1.600 <t< td=""><td>7.400</td><td>.530 <t< td=""><td>3.200</td><td>2.600</td><td>4.800</td><td>3.900</td><td>3.400</td><td>7 206:1</td></t<></td></t<></td></t<></td></t<></td></t<>	^	.140 <t< td=""><td>.720</td><td>BDL</td><td>80L</td><td>015. Ing</td><td>150 <1</td><td>.240 <1</td><td>180 <1</td><td>NS -</td><td>.260 <t< td=""><td></td><td>1.600 <t< td=""><td>7.400</td><td>.530 <t< td=""><td>3.200</td><td>2.600</td><td>4.800</td><td>3.900</td><td>3.400</td><td>7 206:1</td></t<></td></t<></td></t<></td></t<>	.720	BDL	80L	015. Ing	150 <1	.240 <1	180 <1	NS -	.260 <t< td=""><td></td><td>1.600 <t< td=""><td>7.400</td><td>.530 <t< td=""><td>3.200</td><td>2.600</td><td>4.800</td><td>3.900</td><td>3.400</td><td>7 206:1</td></t<></td></t<></td></t<>		1.600 <t< td=""><td>7.400</td><td>.530 <t< td=""><td>3.200</td><td>2.600</td><td>4.800</td><td>3.900</td><td>3.400</td><td>7 206:1</td></t<></td></t<>	7.400	.530 <t< td=""><td>3.200</td><td>2.600</td><td>4.800</td><td>3.900</td><td>3.400</td><td>7 206:1</td></t<>	3.200	2.600	4.800	3.900	3.400	7 206:1

TREATMENT PLANT TREATMENT PLANT RAW TREATED

GUIDELINE = 450 (D4)		GUIDELINE = N/A	GUIDELINE = N/A	GUIDELINE = N/A	GUIDELINE = .10000 (1)	GUIDELINE = 38000 (04)	GUIDELINE = N/A	GUIDELÍNE = 10 (C1)	GUIDELINE = 1900 (D4)
DET'N LIMIT = 1.000		DET'N LIMIT = 5.000	DET'N LIMIT = 1.000	DET'N LIMIT = 1.000	DET'N LIMIT = 5.000	DET'N LIMIT = 1.000	DET'N LIMIT = 5.000	DET'N LIMIT = 1.000	DET'N LIMIT = 1.000
ATICS	1 000 1 001 1 001 1 001 1 1 000 1 1 000 1 1 000 1 1 000 1 001 1 00	BDL	108) BDL	108 () BDL) BDL	108 (BDL
CHLOROAROMATICS HEXACHLOROBUTADIENE (NG/L)	1991 JAN BDL 1991 MAR 2.000 <1 1991 MAY BDL 1991 JUL 1991 JUL 1991 JUL 1992 JAN BDL 1992 MAR BDL 1992 JUL BDL 1992 JUL BDL 1992 JUL BDL 1992 NOV BDL 1992 NOV BDL	123-TRICHLOROBENZENE (NG/L 19 SAMPLES BDL	1234-TETCLOROBENZENE (NG/L 19 SAMPLES BDL	1235-TETCLOROBENZENE (NG/L 19 SAMPLES BDL	124-TRICHLOROBENZENE (NG/L 19 SAMPLES BDL	1245-TETCLOROBENZENE (NG/L 19 SAMPLES BDL	135-TRICHLOROBENZENE (NG/L 19 SAMPLES BDL	HEXACHLOROBENZENE (NG/L 19 SAMPLES BDL	HEXACHLOROETHANE (MG/L) 19 SAMPLES BDL

TABLE 4
DRINKING WATER SURVEILLANGE PROGRAM 1991 AND 1992 WALPOLE ISLAND WTP

TREÄTMENT PLANT TREATMENT PLANT RAW TREATED

1
i
1
1
-
-
ŀ
i
1
1
-
8

GUIDELINE = N/A		GUIDELINE = 74000 (D4)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		
DET'N LIMIT = 1,000		DET'N LIMIT = 1.000	,	DET'N LIMIT = 5.000		DET'N LIMIT = 5.000		DET'N LIMIT = 5.000	1	
	BDL		BDL		BDL		BDL		BDL	
AATICS)		^	٠	^		^		^		
CHLOROAROMATICS OCTACHLOROSTYRENE (NG/L)	ES BDL	PENTACHLOROBENZENE (NG/L	ES BDL	236-TRICHLOROTOLUENE (NG/L	ES BDL	245-TRICHLOROTOLUENE (NG/L	ES BDL	OLUEN	ES BDL	
OCTACHLOROS	19 SAMPLES	PENTACHLORO	19 SAMPLES	236-TRICHLOROTOLU	19 SAMPLES	245-TRICHLOROT	19 SAMPLES	26A-TRICHLOROT	19 SAMPLES	

PLANT	
TREATMENT	TREATED
PLANT	
TREATMENT	RAW

GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 2600000 (04)		GUIDELINE = 5000 (A1)			GUIDELINE = 60000 (A1)		
DET'N LIMIT =.100.0		DET'N LIMIT = 20.0		DET'N LIMIT = 10.0		DET*N LIMIT = 100.0	;	DET'N LIMIT = 20.0			DET'N LIMIT = 10.00		
LS	BDL	^	BOL	^	TOB	^	BDL	^	1> 000.000	80L 80L	-	BOL	; ; ; ; ; ; ; ; ; ; ; ; ; ;
CHLOROPHENOLS (NG/L)	5 SAMPLES BOL	2345-TETCHLOROPHENOL (NG/L	5 SAMPLES BOL	2356-TETCHLOROPHENOL (NG/L	5 SAMPLES BOL	245-TRICHLOROPHENOL (NG/L	5 SAMPLES BOL	246-TRICHLOROPHENOL (NG/L	1991 MAY BDL	1992 MAY BDL	PENTACHLOROPHENOL (NG/L)	5 SAMPLES BOL	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GUIDELINE = 900000 (A1) GUIDELINE = 74000 (04) GUIDELINE = 7000 (A1) GUIDELINE = 7000 (A1) GUIDELINE = 4000 (A1) GUIDELINE = 700 (A1) GUIDELINE = 700 (A1)GUIDELINE = 300 (G) GUIDELINE = 700 (G) DET'N LIMIT = 1.000 -DET'N LIMIT = 1,000 DET'N LIMIT = 2.000 DET'N LIMIT = 1.000 DET'N LIMIT = 2.00 DET'N LIMIT = 1.00 DET'N LIMIT = 2.00 DET'N LIMIT = 2.00 DET'N LIMIT = 5.0 B0L B0L B0L B0L 1.000 <T 3 AM. BOL **8**0 BOL BOL **B**0 BOL BOL PESTICIDES AND PCB BDL BDL BDL !AW !AW 1.000 <T BDL BDL 1.000 <T 1.000 <T BDL 1.000 <T BOL BOL BOL BOL 80L BOL BOL LINDANE (GAMMA BHC) (NG/L ALPHA CHLORDANE (NG/L GAMMA CHLORDANE (NG/L 19 SAMPLES ENDOSULFAN 1 (NG/L METHOXYCHLOR (NG/L ALDRIN (NG/L ALPHA BHC (NG/L BETA BHC (NG/L DIELDRIN (NG/L 19 SAMPLES 1991 JAN 1991 MAR 1991 MAY 1991 SEP 1991 SEP 1992 JAN 1992 MAY 1992 MAY 1992 SEP 1992 NOV

TREATMENT PLANT	TREATED
PLANT	
TREATMENT	RAW

GUIDELINE = 74000 (D4)		GUIDELINE = 1600 (D3)		GUIDELINE = N/A		GUIDELINE = 3000 (A1)		GUIDELINE = 3000 (A1)		GUIDELINE = N/A		GUIDELINE:= N/A		GUIDELINE = 30000 (A1)		GUIDELINE = 3000 (A2)		GUIDELINE = 30000 (A1)		GUIDELINE = 30000 (A1)		GUIDELINE = 30000 (A1)	
DET'N LIMIT = 5.000		DET'N LIMIT = 5.000		DET'N LIMIT = 5.00		DET'N LIMIT = 1.000		DET'N LIMIT = 1.000		DET'N LIMIT = 5.000		DET'N' LIMIT = 2.000		DET'N LIMIT = 5.000		DET'N LIMIT = 20.00		DET'N LIMIT = 5.000		DET'N LIMIT = 1.000		DET*N LIMIT = 5.000	
PESTICIDES AND PCB	- BDL		BDL	•	BDL	^	BDL		BDL		T BDL		TO8		TOB .		108	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ר . 80נ		L BDL		L 80L
PESTICID ENDOSULFAN II (NG/L)	19 SAMPLES BDL	ENDRIN (NG/L)	19 SAMPLES BDL	ENDOSULFAN SULPHATE (NG/L	19 SAMPLES BDL	HEPTACHLOR EPOXIDE (NG/L	11 SAMPLES BOL	HEPTACHLOR (NG/L)	19 SAMPLES BDL	MIREX (NG/L)	19 SAMPLES BDL	OXYCHLORDANE (NG/L)	19 SAMPLES BDL	O,P-DDT (NG/L)	. 19 SAMPLES . BDL	PCB (NG/L)	19 SAMPLES BDL	P,P-D0D (NG/L)	19 SAMPLES BDL	P,P-DDE (NG/L)	19 SAMPLES BDL	P,P-DDT (NG/L)	19 SAMPLES BDL

GUIDELINE = 5000 (A1)		GUIDELINE = 300000 (D3)		GUIDELINE = 60000 (A2)												GUIDELINE = N/A		GUIDELINE = 10000 (A2)		GUIDELINE = 60000 (A2)		GUIDELINE = 10000 (A2)		GUIDELINE = 52500 (D3)		GUIDELINE = 700000 (D3)	-
DET'N LIMIT = 500.0	BDL ·	DET'N LIMIT = 50.0	BDL	DET'N LIMIT = 50.0	BDL	BDL	BNI	i Aw	BDL	BDL	BDL	801	BDL	.BDL	BDL	DET'N LIMIT = 50.0	BDL	DET'N LIMIT = 100.0	BDL	DET'N LIMIT = 200.0	BOL	DET'N LIMIT = 200.0	. 108	DET'N LIMIT = 50.000	BDL .	DET'N LIMIT = 50,000	B01
PESTICIDES AND PCB TOXAPHENE (NG/L)	15 SAMPLES BDL .	AMETRINE (NG/L)	22 SAMPLES BDL	ATRAZINE (NG/L)	JAN		1991 AM BDL	SEP	NOV	108	MAR 70.	MAY	JUL	SEP	1992 NOV BDL	ATRATONE (NG/L)	22 SAMPLES BDL	CYANAZINE (BLADEX) (NG/L)	22 SAMPLES BOL	DESETHYL ATRAZINE (NG/L)	22 SAMPLES BDL	DESETHYL SIMAZINE (NG/L)	22 SAMPLES BOL	PROMETONE (NG/L)	22 SAMPLES BOL	PROPAZINE (NG/L)	22 SAMPLES BDL

					-						•												
LE ISLAND WTP		GUIDELINE = 1000 (A2)		GUIDELINE = 80000 (A1)		GUIDELINE = 10000 (A2)		GUIDELINE = 5000 (A2)		GUIDELINE = 50000 (A2)		GUIDELINE = 206000 (04)											
AND 1992 WALPO		GUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE		GUIDELINE											
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALPOLE ISLAND WTP		DET'N LIMIT = 50.000	•	DET'N LIMIT = 100.0		DET'N LIMIT = 50.00.		DET'N LIMIT = 500.0		DET'N LIMIT = 500.0		DET'N LIMIT = 5.00											
TER SURVEILLA	ANT .	DET'N LIM		DET'N LIM		DET'N LIM		DET'N LIM		DET'N LIM		DET'N LIM						<⊺					
DRINKING WA	TREATMENT PLANT TREATEO	ND PC8	BOL		108		108	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	108 1	5 7 0 2 7 9 9 9 9 9	108	^	BOL	no:	80r	141	36,000	16,000 <t< th=""><th>no:</th><th>no i</th><th>Op i</th><th>Og :</th><th>no:</th></t<>	no:	no i	Op i	Og :	no:
	TREATMENT PLANT RAW	PESTICIDES AND PCB	BOL	OR) (NG/L	BOL	^	BOL	(NG/L)	108	٦)	BOL	DIEN (NG/L	BDL'	BDL	BOL	AL	BOL	BOL	BOL	00:	no i	no:	. oo:
	~ α	PROMETRYNE (NG/L	22 SAMPLES	METRIBUZIN (SENCOR) (NG/L	22 SAMPLES	SIMAZINE (NG/L	22 SAMPLES	ALACHLOR (LASSO) (NG/L	22 SAMPLES	METOLACHLOR (NG/L	22 SAMPLES	HEXACLCYCLOPENTADIEN (NG/L	1991 JAN	1991 MAR	1991 MAY	1991 JUL 1991 SEP	1991 NOV	1992 JAN		1992 MAY	. 1992 JUL	1992 SEP	1992 NOV

DRINKING WATER S TREATMENT PLANT TREATED RAW

GUIDELINE = N/A		,										
0.2					ŀ							
DET'N LIMIT =	BDL	.200 <t< td=""><td>. 400 <t< td=""><td>BDL</td><td>.600 <t< td=""><td>BDL</td><td>BDL</td><td>. 400 <t< td=""><td>BDL</td><td>. 600 <t< td=""><td>.400 <t< td=""><td>.600 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	. 400 <t< td=""><td>BDL</td><td>.600 <t< td=""><td>BDL</td><td>BDL</td><td>. 400 <t< td=""><td>BDL</td><td>. 600 <t< td=""><td>.400 <t< td=""><td>.600 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	BDL	.600 <t< td=""><td>BDL</td><td>BDL</td><td>. 400 <t< td=""><td>BDL</td><td>. 600 <t< td=""><td>.400 <t< td=""><td>.600 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	BDL	BDL	. 400 <t< td=""><td>BDL</td><td>. 600 <t< td=""><td>.400 <t< td=""><td>.600 <t< td=""></t<></td></t<></td></t<></td></t<>	BDL	. 600 <t< td=""><td>.400 <t< td=""><td>.600 <t< td=""></t<></td></t<></td></t<>	.400 <t< td=""><td>.600 <t< td=""></t<></td></t<>	.600 <t< td=""></t<>
PHENOLICS)	BOL	T> 009.	. 108	BDL	T> 007.	BDL	BDL	BDL	BDL	BDL	BDL	BDL
PHENOLICS (UG/L												1992 NOV

TREATMENT PLANT	TREATED
PLANT	
TREATMENT	RAW

GUIDELINE = N/A		GUIDÉLINE = N/A		GUIDELINE = 42000 (D4)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 10 (A1)	
S DET'N LIMIT = 10.0	-	DET'N LIMIT = 1.0	1	DET'N LIMIT = 20.0	1	DET'N LIMIT = 20.0	-	DET'N LIMIT = 20.0	-	DET'N LIMIT = 50.0		DET'N LIMIT = 5.0		DET'N LIMIT = 50.0	-	DET'N LIMIT = 10.0		DET'N LIMIT = 10.0	74	DET'N LIMIT = 1.0	2	DET'N LIMIT = 5.0	
POLYAROMATIC HYDROCARBONS (NG/L)	9 SAMPLES BDL BDL	ANTHRACENE (NG/L)	9 SAMPLES BDL BDL	FLUORANTHENE (NG/L)	9 SAMPLES BDL BDL	PYRENE (NG/L)	9 SAMPLES BDL BDL	BENZO(A)ANTHRACENE (NG/L)	9 SAMPLES BDL BDL	CHRYSENE (NG/L)	9 SAMPLES · BDL BDL	DIMETH. BENZ(A)ANTHR (NG/L)	9 SAMPLES BDL BDL	BENZO(E) PYRENE (NG/L)	9 SAMPLES BDL BDL	BENZO(B) FLUORANTHEN (NG/L)	9 SAMPLES BDL BDL	PERYLENE (NG/L)	9 SAMPLES BDL BDL	BENZO(K) FLUORANTHEN (NG/L)	9 SAMPLES BDL BDL	BENZO(A) PYRENE (NG/L)	9 SAMPLES BOL BDL

GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINĘ = N/A		GUIDELINE = N/A		GUIDELINE = N/A	
DET'N LIMIT = 20.0	1	DET'N LIMIT = 10.0		DET'N LIMIT = 20.0		DET'N LIMIT = 2.0		DET'N LIMIT = 10.0	
POLYAROMATIC HYDROCARBONS EN (NG/L)	BDL	~	BDL	^	BDL		BDL		. BDL .
POLYAROMATIC HYDROCA BENZO(G,H,I) PERYLEN (NG/L)	9 SAMPLES BDL	DIBENZO(A,H) ANTHRAC (NG/L	9 SAMPLES BDL	INDENO(1,2,3-C,D) PY (NG/L	9 SAMPLES BOL	BENZO(B) CHRYSENE (NG/L	9 SAMPLES BOL	CORONENE (NG/L)	9 SAMPLES BOL

	GUIDELINE = 5000 (A1)	GUIDELINE = 280000 (A1)		GUIDELINE = 100000 (A1)	E = N/A		E = N/A		GUIDELINE = 120000 (A1)		GUIDELINE = 10000 (A1)		GUIDELINE = 20000 (A1)		E = N/A		E = N/A		GUIDELINE = 35000 (G)		GUIDELINE = 190000 (A1)	
	GUIDELIN	GUIDELIN		GUIDELIN	GUIDELINE =		GUIDELINE = N/A		GUIDELIN		GUIDELIN		GUIDELIN		GUIDELINE = N/A	,	GUIDELINE = N/A		GUIDELIN		GUIDELIN	
	 Det'n LIMIT = 500.0	DET'N LIMIT = 50.0	-	DET'N LIMIT = 100.0	DET'N LIMIT = 200.0		DET*N LIMIT = 100.0		DET*N LIMIT = 50.0		DET*N LIMIT = 20.00		DET*N LIMIT = 20.0		DET'N LIMIT = 20.0		DET'N LIMIT = 20.0		DET'N LIMIT = 20.0		DET'N LIMIT = 20.0	
INT TREATMENT PLANT TREATED .	SPECIFIC PESTICIDES)		BDL	BOL	9 9 9 9 9 9 9 1 1 9 1 1 9 1 1 1 1 1 1 1	BOL	(BOL		BOL	•	BOL		BDL		BOL		BOL		BDL		
TREATMENT PLANT	:	(BDL	BDL	,	108	C ACID (NG/L	108 .	(BOL	FX) (NG/L	BDL	^	108	(1/91	108	NG/L)	108	^	BDL	ر)	
	TOXAPHENE (NG/L	2,4,5-T (NG/L	5 SAMPLES	2,4-D (NG/L 5 SAMPLES	2,4-0B (NG/L	5 SAMPLES	2,4 D PROPIONIC ACID (NG/L	5 SAMPLES	DICAMBA (NG/L	5 SAMPLES	2,4,5-TP (SILVEX) (NG/L	5 SAMPLES	DIAZINON (NG/L	4 SAMPLES	DICHLOROVOS (NG/L	4 SAMPLES	CHLORPYRIFOS (NG/L	4 SAMPLES	ETHION (NG/L	4 SAMPLES	MALATHION (NG/L	

TREATMENT PLANT TREATMENT PLANT RAW TREATED

GUIDELINE = N/A		GUIDELINE = 9000 (03)		GUIDELINE = N/A		GUIDELINE = 50000 (A1)		GUIDELINE = 2000 (A2)		GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 90000 (A1)		GUIDELINE = 350000 (G)		GUIDELINE = N/A	٠	GUIDELINE = N/A		GUIDELINE = N/A		
DET'N LIMIT = 20.0		DET'N LIMIT = 50.0		DET'N LIMIT = 20.0		DET'N LIMIT = 20.0	8 9 9 9	DET'N LIMIT = 20.0		DET'N LIMIT = 20.0		DET'N LIMIT = 20.0		DET'N LIMIT = 2000.0		DET'N LIMIT = 2000.0		DET'N LIMIT = 2000.0		DET'N LIMIT = 2000.0		DET'N LIMIT = 2000.0		
SPECIFIC PESTICIDES MEVINPHOS (NG/L)	4 SAMPLES BDL BDL	METHYL PARATHION (NG/L)	4 SAMPLES. BDL BDL	METHYLTRITHION (NG/L)	4 SAMPLES BDL BDL	PARATHION (NG/L)	4 SAMPLES BDL BDL	PHORATE (NG/L)	4 SAMPLES BDL BDL	RELDAN (NG/L)	4 SAMPLES BDL BDL	RONNEL (NG/L)	4 SAMPLES BOL BOL	CARBOFURAN (NG/L)	5 SAMPLES BOL BOL	CHLORPROPHAM (CIPC) (NG/L)	5 SAMPLES BDL BDL	DIALLATE (NG/L)	5 SAMPLES BDL . BDL	EPTAM (NG/L)	5 SAMPLES BDL BDL	IPC (NG/L)	5 SAMPLES BDL BDL	

PLANT
TREATMENT PLANT TREATED
PLANT
TREATMENT PLANT RAW

GUIDELINE = 5 (A1)		GUIDELINE = 24 (A3)	GUIDELINE = 2.4 (A3)
DET'N LIMIT = 0.05		DET'N LIMIT = 0.05	DET*N LIMIT = 0.05
	. 150 ct . 150 ct . 150 ct . 100 ct . 100 ct . 150 ct . 150 ct . 150 ct . 150 ct	. 450 . 100 ct . 150 ct . 150 ct . 100 ct	150 47 100 47 100 47 100 47 100 47 100 47 100 47 100 47 100 47 100 47
ıles	.150 <1 801 801 801 801 801 801 801 801 801 80	100 <1 80L 80L 1100 <7 80L 100 <7 80L 80L 80L 80L 80L) 801 801 801 801 902 903 904 904 905 907 907 908 908 908 909 909 909 909 909
VOLATILES)		^	
BENZENE (UG/L	11 JAN 11 MAY 11 JUL 11 NOV 12 JAN 12 JAN 12 JUL 12 SEP 12 NOV	100 I JAN 1991 MAR 1991 MAR 1991 MAY 1991 MAY 1991 MAY 1991 MAY 1991 MAY 1992 MAR 1992 MAR 1992 MAR 1992 SEP 1992 NOV 1992 NOV	ETHYLBERZENE (UG/L 1991 JAN 1991 MAY 1991 JUL 1991 JUL 1991 NOV 1992 JAN 1992 MAR 1992 MAY 1992 SEP 1992 NOV
BENZEN	1991 1991 1991 1992 1992 1992 1992 1992	100 LUENE 1991 1991 1991 1992 1992 1992 1992 199	ETHYLBEN 1991 1991 1992 1992 1992 1992 1992 199

TREATMENT PLANT TREATMENT PLANT RAW TREATED

GUIDELINE = 100 (D1)		GUIDELINE = 7 (D1)	GUIDELINE = 50 (A1)	GUIDELINE = 70 (D1)	GUIDELINE = N/A
DET'N LIMIT = 0.05		DET'N LIMIT = 0.100	DET'N LIMIT = 0.50	DET'N LIMIT = 0.10	DET'N LIMIT = 0.100
	108 108 108 108 108 108 108 108 108) BDL	BDL	, BDL	BDL
VOLATILES)	801 801 801 801 150 <1 801 801 801 801 801 801 801	TYLENE (UG/L	RIDE (UG/L) BDL	HYLENE (UG/L BDL	ANE (UG/L) BDL
STYRENE (UG/L	1991 JAN 1991 MAR 1991 JUL 1991 SEP 1991 SEP 1992 JAN 1992 MAR 1992 MAY 1992 SEP 1992 OU	1,1-DICHLOROETHYLENE (UG/L 24 SAMPLES BDL	METHYLENE CHLORIDE (UG/L	T12-DICHLOROETHYLENE (UG/L 24 SAMPLES BDL	1,1-DICHLOROETHANE (UG/L 24 SAMPLES B

								•																				
GUIDELINE = 5 (D1)		GUIDELINE = 50 (A1)		GUIDELINE = 350 (A1+)										GUIDELINE = 0.6 (04)		GUIDELINE = 350 (A1+)												
DET'N LIMIT. = 0.05		DEL'N LIMIT = 0.10	į	0ET'N LIMIT = 0.05										DET'N LIMIT = 0.05		DET'N LIMIT = 0.10											:	
9 9 6 4 1 1 9 9	BDL		BDL		10.550	8.050	11.500	8.900	80L	12.600	11	10.800	10.900		BDL		6.800	3.200	3.900	4.100	4.800	3.500	10,600	3.900	5.700	4.700	6.200	
^		^	-	^										^		^												
VOLATILES E (UG/L	108	3/1	BDL	(UG/L	80L 80L	BOL	80L	BOL	BOL	80L	ם מ	80L	BOL	CUG/L	BOL	(UG/L	BDL	BOL	BOL	B01	BOL Bol	BOL	BDL	BOL	BOL	BOL	BOL	
VOLATILI 1,2-DICHLOROPROPANE (UG/L	24 SAMPLES	TRICHLOROETHYLENE (UG/L	24 SAMPLES	DICHLOROBROMOMETHANE (UG/L	1991 JAN		1991 SEP		1992 JAN	1992 MAR		1992 SEP	1992 NOV	112-TRICHLOROETHANE (UG/L	24 SAMPLES	CHLORODIBROMOMETHANE (UG/L	1991 JAN		_	1991 JUL	1991 SEP			1992 MAY	1992 JUL	1992 SEP	1992 NOV	

TREATMENT PLANT TREATED

TREATMENT PLANT

GUIDELINE = 350 (A1+) GUIDELINE = 0.17 (D4) GUIDELINE = 1510 (D3) GUIDELINE = 65 (A5) GUIDELINE = 70 (D1)GUIDELINE = 2 (D1)DET'N LIMIT = 0.100 DET'N LIMIT = 0.100 DET'N LIMIT = 0.10 DET'N LIMIT = 0.05 DET'N LIMIT = 0.20 DET'N LIMIT = 0.05 ...600 <1 ...200 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 <1 ...400 801 801 801 801 801 801 801 801 801 BOL **BD**L BOL \$10.050 \cdot \text{PBC} \text{PB VOLATILES 1122-TETCHLOROETHANE (UG/L C12-DICHLOROETHYLENE (UG/L TETRACHLOROETHYLENE (UG/L VINYL CHLORIDE (UG/L CHLOROBENZENE (UG/L BROMOFORM (UG/L 10 SAMPLES 24 SAMPLES 10 SAMPLES 24 SAMPLES 1991 JAN 1991 MAR 1991 JUL 1991 SEP 1991 NOV 1992 MAR 1992 MAR 1992 MAY 1992 SEP 1992 SEP 1991 JAN 1991 MAR 1991 JUL 1991 SEP 1991 NOV 1992 MAR 1992 MAR 1992 MAY 1992 SEP 1992 SEP

DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992 WALPOLE ISLAND WTP

GUIDELINE = 5 (A1)		GUIDELINE = $3750 (03)$		GUIDELINE = 200 (A1)		GUIDELINE = 50 (D1)		GUIDELINE = 350 (A1)	
DET'N LIMIT = 0.10	,	DET'N LIMIT = 0.10	į	DET'N LIMIT = 0.05	,	DET'N LIMIT = 0.05	;	DET'N LÌMIT = 0.50	
	BDL		BOL		BOL		BOL		29.400 21.350 27.550 27.550 27.550 27.550 27.500 33.700 33.800 33.800 33.800
· ·		^		^		^			
VOLATILES ZENE (UG/L	BDL	ZENE (UG/L	BDL	ZENE (UG/L	BDL	IDE (UG/L	BDL	HANES (UG/L	108 108 108 108 108 108 108 108
VOLATIL 1,4-DICHLOROBENZENE (UG/L	24 SAMPLES	1,3-DICHLOROBENZENE (UG/L	24 SAMPLES	1,2-DICHLOROBENZENE (UG/L	24 SAMPLES	ETHYLENE DIBROMIDE (UG/L	24 SAMPLES	TOTL TRIHALOMETHANES (UG/L	1991 JAN 1991 MAR 1991 MAY 1991 SEP 1992 NOV 1992 MAR 1992 MAR 1992 LUL 1992 SEP

DRINKING WATER SURVE	REATMENT PLANT
	TREATMENT PLANT TR

										•			
GUIDELINE = N/A		GUIDELINE = N/A		GUIDELINE = 50 (A1)		GUIDELINE = 0.55 (01)		GUIDELINE = N/A		GUIDELINE = 40000 (A1)		GUIDELINE = 10 (A1)	
DET'N LIMIT = 0.70		DET'N LIMIT = 0.70		DET'N LIMIT = 0.70		DET'N LIMIT = 0.04		DET'N LIMIT = 0.04		DET'N LIMIT = 7.00		DET'N LIMIT = 0.70	1 1
S	108	1 1 1 1 2 3 4 4 5 6 6 6 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	B0L		BOL	5 5 6 7 7 8 8 8 8 8 9 9 9 8	BDL		080.		15.000 BOL BOL		BOL
RADIONUCLIDES	108	(BDL	^	BOL	IT (BQ/L)	BOL	(80/L)	.070 .070 .070	^	80L 80L 8,000	^	BDL
COBALT 60 (BQ/L	6 SAMPLES	CESIUM 134 (BQ/L	6 SAMPLES	CESIUM 137 (BQ/L	6 SAMPLES	GROSS ALPHA COUNT (BQ/L	6 SAMPLES	GROSS BETA COUNT (BQ/L	1991 JUL 1991 SEP 1992 JUL	TRITIUM (BQ/L	1991 JUL 1991 SEP 1992 JUL	1001NE 131 (BQ/L	6 SAMPLES

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992

		DETECTION				
SCAN/PARAMETER	UNIT .	LIMIT	GUIDELINE			
BACTERIOLOGICAL						
FECAL COLIFORM MEMBRANE FILTRATION	CT/100ML	0	0	(A1)		
STANDARD PLATE COUNT MEMBRANE FILT.	CT/ML	Ö	500/ML			
TOTAL COLIFORM BACKGROUND MF	CT/100ML	0	N/A	4445		
TOTAL COLIFORM MEMBRANE FILTRATION	CT/100ML	0	5/100ML	(AI)		
CHEMISTRY (FLD)						
FIELD COMBINED CHLORINE RESIDUAL	MG/L	0	N/A			
FIELD TOTAL CHLORINE RESIDUAL FIELD FREE CHLORINE RESIDUAL	MG/L MG/L	0	N/A N/A			
FIELD PH	DMNSLESS	N/A		(A4)		
FIELD TEMPERATURE	DEG.C	N/A	6.5-8.5 15.0	(A3)		
FIELD TURBIDITY	FTU	N/A	1.0	(A1)		
CHEMISTRY (LAB)					81	
ALKALINITY .	MG/L	0.20	30-500			
AMMONIUM TOTAL	MG/L	0.002 0.20	0.05	(12)		
CALCIUM CHLORIDE	MG/L MG/L	0.20	100.0 250.0	(A3)		
COLOUR	TCU	0.50	. 5.0			
CONDUCTIVITY	UMHO/CM	1.00	400.0	(F2)		
CYANIDE	MG/L	0.001	0.2	(A1)		
DISSOLVED ORGANIC CARBON	MG/L	0.10		(A3)		
FLUORIDE	MG/L	0.01 0.50	1.5* 80-100	(A1) (A4)		
HARDNESS IONCAL	MG/L DMNSLESS	N/A	N/A	(44)		
ANGELIERS INDEX	DMNSLESS	N/A	N/A			
MAGNESIUM	MG/L	0.10	30.0	(F2)		
NITRATES (TOTAL)	MG/L	0.005	10.0			
NITRITE	MG/L	0.001	1.0	(A1)		
NITROGEN TOTAL KJELDAHL PH	MG/L DMNSLESS	0.02 N/A	N/A 6.5-8.5	(44)		
PHOSPHORUS FIL REACT	MG/L	0.0005	N/A	(747)		
PHOSPHORUS TOTAL	MG/L	0.002	0.4	(F2)		
POTASSIUM	MG/L	0.010	10.0			
RESIDUE FILTRATE (CALCULATED TDS)	MG/L	N/A	500.0			
SOD IUM .	MG/L	0.20	200.0 500.0			
SULPHATE TURBIDITY	MG/L FTU	0.20 0.05	1.0			
* The Maximum Acceptable Concentration	(MAC) for natu	rally occurring	g fluoride in	drinking	water is 2.4	mg/
CHLOROAROMATICS						
1,2,3-TRICHLOROBENZENE	NG/L	5.0	N/A			
1,2,3,4-TETRACHLOROBENZENE	NG/L	1.0	N/A			
1,2,3,5-TETRACHLOROBENZENE	NG/L	1.0	N/A			
1,2,3,5-TETRACHLOROBENZENE 1,2,4-TRICHLOROBENZENE	NG/L NG/L	5.0	10000	(1)		
1,2,3,5-TETRACHLOROBENZENE 1,2,4-TRICHLOROBENZENE 1,2,4,5-TETRACHLOROBENZENE	NG/L NG/L NG/L	5.0 1.0	10000 38000	(1) (D4)		
1,2,3,5-TETRACHLOROBENZENE 1,2,4-TRICHLOROBENZENE 1,2,4,5-TETRACHLOROBENZENE 1,3,5-TRICHLOROBENZENE	NG/L NG/L NG/L NG/L	5.0 1.0 5.0	10000 38000 N/A			
,2,3,5-TETRACHLOROBENZENE ,2,4-TRICHLOROBENZENE ,2,4,5-TETRACHLOROBENZENE ,3,5-TRICHLOROBENZENE 2,3,6-TRICHLOROTOLUENE	NG/L NG/L NG/L	5.0 1.0 5.0 5.0 5.0	10000 38000			
1,2,3,5-TETRACHLOROBENZENE 1,2,4,5-TETRACHLOROBENZENE 1,2,4,5-TETRACHLOROBENZENE 1,3,5-TRICHLOROBENZENE 2,3,6-TRICHLOROTOLUENE 2,4,5-TRICHLOROTOLUENE 2,6,5-TRICHLOROTOLUENE 2,64-TRICHLOROTOLUENE	NG/L NG/L NG/L NG/L NG/L NG/L NG/L	5.0 1.0 5.0 5.0 5.0 5.0	10000 38000 N/A . N/A N/A N/A	(D4)		
1,2,3,5-TETRACHLOROBENZENE 1,2,4,5-TETRACHLOROBENZENE 1,3,5-TRICHLOROBENZENE 2,3,6-TRICHLOROTOLUENE 2,4,5-TRICHLOROTOLUENE 2,4,5-TRICHLOROTOLUENE 2,6A-TRICHLOROTOLUENE MEXACHLOROBENZENE (HCB)	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	5.0 1.0 5.0 5.0 5.0 5.0	10000 38000 N/A N/A N/A N/A 10	(D4) (C1)		
1,2,3,5-TETRACHLOROBENZENE 1,2,4,5-TETRACHLOROBENZENE 1,3,5-TETRACHLOROBENZENE 1,3,5-TRICHLOROBENZENE 2,3,6-TRICHLOROTOLUENE 2,4,5-TRICHLOROTOLUENE 2,6A-TRICHLOROTOLUENE HEXACHLOROBENZENE (HCB) HEXACHLOROBENZENE (HCB)	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	5.0 1.0 5.0 5.0 5.0 5.0 1.0	10000 38000 N/A N/A N/A 10 450	(C1) (D4)		
1,2,3,5-TETRACHLOROBENZENE 1,2,4,5-TETRACHLOROBENZENE 1,3,5-TRICHLOROBENZENE 1,3,5-TRICHLOROTOLUENE 2,4,5-TRICHLOROTOLUENE 2,4,5-TRICHLOROTOLUENE 2,64-TRICHLOROTOLUENE HEXACHLOROBENZENE (HCB) HEXACHLOROBENZENE (HCB) HEXACHLOROBETAENE	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	5.0 5.0 5.0 5.0 5.0 1.0	10000 38000 N/A N/A N/A 10 450 1900	(C1) (D4)	٠.	
1,2,3,5-TETRACHLOROBENZENE 1,2,4,5-TETRACHLOROBENZENE 1,3,5-TETRACHLOROBENZENE 1,3,5-TRICHLOROBENZENE 2,3,6-TRICHLOROTOLUENE 2,4,5-TRICHLOROTOLUENE 2,64-TRICHLOROTOLUENE HEXACHLOROBENZENE (HCB) HEXACHLOROBENZENE (HCB) HEXACHLOROBITADIENE HEXACHLOROTHANE DICTACHLOROSTYRENE	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	5.0 1.0 5.0 5.0 5.0 5.0 1.0	10000 38000 N/A N/A N/A 10 450	(D4) (C1) (D4) (D4)	= .	
1,2,3,5-TETRACHLOROBENZENE 1,2,4,5-TETRACHLOROBENZENE 1,3,5-TETRACHLOROBENZENE 1,3,5-TRICHLOROTOLUENE 2,4,5-TRICHLOROTOLUENE 2,4,5-TRICHLOROTOLUENE 2,6A-TRICHLOROTOLUENE HEXACHLOROBENZENE (HCB) HEXACHLOROBENZENE (HCB) HEXACHLOROBENZENE (HCB) HEXACHLOROSTHANE HEXACHLOROSTHANE	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	5.0 1.0 5.0 5.0 5.0 1.0 1.0	10000 38000 N/A N/A N/A 10 450 1900 N/A	(D4) (C1) (D4) (D4)		
1,2,3,5-TETRACHLOROBENZENE 1,2,4,5-TETRACHLOROBENZENE 1,3,5-TETRACHLOROBENZENE 1,3,5-TRICHLOROBENZENE 2,3,6-TRICHLOROTOLUENE 2,4,5-TRICHLOROTOLUENE 2,6A-TRICHLOROTOLUENE EXACHLOROBENZENE (HCB) HEXACHLOROBENZENE (HCB) HEXACHLOROBENZENE EXACHLOROSTYRENE PENTACHLOROBENZENE CHLOROPHENOLS 2,3,4-TRICHLOROPHENOL	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	5.0 1.0 5.0 5.0 5.0 1.0 1.0 1.0	10000 38000 N/A N/A N/A 10 450 1900 N/A 74000	(D4) (C1) (D4) (D4)		
1,2,3,5-TETRACHLOROBENZENE 1,2,4,5-TETRACHLOROBENZENE 1,2,4,5-TETRACHLOROBENZENE 1,3,6-TRICHLOROBENZENE 2,4,5-TRICHLOROTOLUENE 2,4,5-TRICHLOROTOLUENE 2,6A-TRICHLOROTOLUENE HEXACHLOROBENZENE (HCB) HEXACHLOROBUTADIENE HEXACHLOROBUTADIENE HEXACHLOROBETHANE OCTACHLOROSTYRENE PENTACHLOROBENZENE CHLOROPHENOLS	NG/L NG/L NG/L NG/L NG/L NG/L NG/L NG/L	5.0 1.0 5.0 5.0 5.0 1.0 1.0 1.0	10000 388000 N/A N/A N/A 10 450 1900 N/A 74000	(D4) (C1) (D4) (D4)		

	1017 T	DETECTION	CHIRELINE	
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE	
2,4,5-TRICHLOROPHENOL	NG/L	100.0	2600000	(04)
2,4,6-TRICHLOROPHENOL	NG/L	20.0	5000	
PENTACHLOROPHENOL	NG/L	10.0	60000	(A1)
METALS				
ALUMINUM	UG/L	0.10	100	(A4)
ANTIMONY	UG/L	0.05	146	(D4)
ARSENIC BARIUM	UG/L UG/L	0.10 0.05	25 1000	(A1)
BERYLLIUM	UG/L	0.05	6800	(04)
BORON	UG/L	2.00	5000	(A1)
CADMIUM	UG/L	0.05	5	(A1)
CHROMIUM	UG/L	0.50 0.02	50 N/A	(A1)
COBALT COPPER	UG/L UG/L	0.50	1000	(A3)
1 RON	UG/L	6.00	300	(A3)
LEAD	UG/L	0.05	10	(A1)
MANGANESE	UG/L	0.05	50	(A3)
MERCURY MOLYBDENUM	UG/L UG/L	0.02 0.05	N/A	(AI)
NICKEL	UG/L	0.20	350	(03)
SELENIUM	UG/L	1.00	10	(A1)
SILVER	UG/L	0.05	N/A	
STRONTIUM THALLIUM	UG/L UG/L .	0.10 0.05	N/A 13	(04)
TITANIUM	UG/L .	0.50	N/A	(04)
URANIUM	UG/L	0.05	100	(A1)
VANADIUM	UG/L	0.05	N/A	
ZINC	UG/L	0.20	5000	(A3)
POLYNUCLEAR AROMATIC HYDROCARBONS				
ANTHRACENE	NG/L	1.0	N/A	
BENZO(A) ANTHRACENE	NG/L	20.0	N/A 10	(44)
BENZO(A) PYRENE BENZO(B) CHRYSENE	NG/L NG/L	5.0 2.0	N/A	(A1)
BENZO(B) FLUORANTHENE	NG/L	10.0	N/A	
BENZO(E) PYRENE	NG/L	50.0	N/A	
BENZO(G,H,I) PERYLENE	NG/L	. 20.0	N/A	
BENZO(K) FLUORANTHENE CHRYSENE	NG/L NG/L	1.0 50.0	N/A N/A	
CORONENE	NG/L	10.0	N/A	
DIBENZO(A, H) ANTHRACENE	NG/L	10.0	N/A	
DIMETHYL BENZO(A) ANTHRACENE	NG/L	5.0	N/A	
FLUORANTHENE	NG/L NG/L	20.0 20.0	42000 N/A	(D4)
INDENO(1,2,3-C,D) PYRENE PERYLENE	NG/L	10.0	N/A	
PHENANTHRENE	NG/L	10.0	N/A	
PYRENE	NG/L	20.0	N/A	
PESTICIDES & PCB				
ALACHLOR (LASSO)	NG/L	500.0	5000	(A2)
ALDRIN ALPHA HEXACHLOROCYCLOHEXANE (BHC)	NG/L NG/L	1.0 1.0	700 700	(A1)
ALPHA CHLORDANE	NG/L	2.0	7000	(A1)
AMETRINE	NG/L	50.0	300000	(D3)
ATRATONE	NG/L	50.0	N/A	(12)
ATRAZINE DESETHYL ATRAZINE	NG/L NG/L	50.0 200.0	60000	(A2)
BETA HEXACHLOROCYCLOHEXANE (BHC)	NG/L	1.0	300	(G)
CYANAZINE (BLADEX)	NG/L	100.0	10000	(A2)
DIELDRIN	NG/L	2.0	700	(A1)
ENDOSULFAN 1 (THIODAN I) ENDOSULFAN 2 (THIODAN II)	NG/L	2.0 5.0	74000 74000	(D4)
ENDOSULFAN SULPHATE (THIODAN SULPHATE)	NG/L NG/L	5.0	N/A	(04)

·		DETECTION	
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE
ENDRIN	NG/L	5.0	1600 (D3)
GAMMA CHLORDANE	NG/L	2.0	7000 (A1)
HEPTACHLOR	NG/L	1.0	3000 (A1)
HEPTACHLOR EPOXIDE	NG/L	1.0	3000 (A1)
HEXACHLOROCYCLOPENTAD I ENE	NG/L	5.0	206000 (D4)
LINDANE (GAMMA BHC)	NG/L	1.0	4000 (A1) 900000 (A1)
METHOXYCHLOR METOLACHLOR	NG/L NG/L	5.0 500.0	900000 (A1) 50000 (A2)
METRIBUZIN (SENCOR)	NG/L	100.0	80000 (A1)
MIREX	NG/L	5.0	N/A
P,P-DDD	NG/L	5.0	30000 (A1)
O,P-DDT	NG/L	5.0	30000 (A1)
P,P-DDT	NG/L	5.0	30000 (A1)
P,P-DDE	NG/L	1.0	30000 (A1)
OXYCHLORDANE PCB	NG/L	2.0. 20.0	N/A 3000 (A2)
PROMETONE	NG/L NG/L	50.0	52500 (D3)
PROMETRYNE	NG/L	50.0	1000 (A2)
PROPAZINE	NG/L	50.0	700000 (D3)
SIMAZINE	NG/L	50.0	10000 (A2)
DESETHYL SIMAZINE	NG/L	200.0	10000 (A2)
TOXAPHENE .	NG/L	500.0	5000 (A1)
PHENOLICS			
PHENOLICS (UNFILTERED REACTIVE)	UG/L	0.2	N/A
SPECIFIC PESTICIDES			
2,4 D PROPIONIC ACID	NG/L	100.0	N/A
2,4,5-TRICHLOROPHENOXY ACETIC ACID	NG/L	50.0	280000 (A1)
2,4-DICHLOROBUTYRIC ACID (2,4-D)	NG/L	100.0	100000 (A1)
2,4-DICHLORORPHENOXYBUTYRIC ACID (2,4-DB) 2,4,5-TP (SILVEX)		200.0	N/A 10000 (A1)
BUTYLATE (SUTAN)	NG/L NG/L	2000.0	10000 (A1) 245000 (D3)
CARBARYL (SEVIN)	NG/L	200.0	90000 (A1)
CARBOFURAN	NG/L	2000.0	90000 (A1)
CHLORPROPHAM (CIPC)	NG/L	2000.0	350000 (G)
CHLORPYRIFOS (DURSBAN)	NG/L	20.0	N/A
DIALLATE	NG/L	2000.0	N/A
DIAZINON DICAMBA	NG/L NG/L	20.0 50.0	20000 (A1) 120000 (A1)
DICHLOROVOS	NG/L	20.0	N/A
EPTAM	NG/L	2000.0	N/A
ETHION	NG/L	20.0	35000 (G)
IPC	NG/L	- 2000.0	N/A
MALATHION	NG/L	20.0	190000 (A1)
METHYL PARATHION METHYLTRITHION	NG/L	50.0	9000 (03)
MEVINPHOS	NG/L NG/L	20.0 20.0	N/A N/A
PARATHION	NG/L	20.0	50000 (A1)
PHORATE (THIMET)	NG/L	20.0	2000 ·(A2)
PICHLORAM	NG/L	100.0	190000 (A2)
PROPOXUR (BAYGON)	NG/L	2000.0	140000 (D3)
RELDAN	NG/L	20.0	N/A
RONNEL	NG/L	20.0	N/A
VOLATILES			
1,1-DICHLOROETHANE	UG/L	0.10	N/A
1,1-DICHLOROETHYLENE	UG/L	0.10	7 (D1)
1,2-DICHLOROBENZENE 1,2-DICHLOROETHANE	UG/L	0.05	200 (A1) 5 (A1)
1,2-DICHLOROPROPANE	UG/L UG/L	0.05 0.05	5 (D1)
1,3-DICHLOROBENZENE	UG/L	0.10	· 3750 (D3)
1,4-DICHLOROBENZENE	UG/L	0.10	5 (A1)
1,1,1-TRICHLOROETHANE	UG/L	0.02	200 (D1)
1,1,2-TRICHLOROETHANE	UG/L	0.05	0.6 (D4)
1,1,2,2-TETRACHLOROETHANE	UG/L	0.05	0.17 (D4)

TABLE 5
DRINKING WATER SURVEILLANCE PROGRAM 1991 AND 1992

	DETECTION					
.SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE			
BENZENE	UG/L	0.05	5	(A1)		
BROMOFORM	UG/L	0.20	350	(A1+)		
CARBON TETRACHLORIDE	UG/L	0.20	5	(A1)		
CHLOROBENZENE	UG/L	0.10	1510	(D3)		
CHLOROD I BROMOMETHANE	UG/L	0.10	350	(A1+)		
CHLOROFORM	UG/L	0.10	350	(A1+)		
CIS 1,2-DICHLOROETHYLENE	UG/L	0.10	70	(D1)		
DICHLOROBROMOMETHANE	UG/L	0.05	350	(A1+)		
ETHYLENE DIBROMIDE	UG/L ·	0.05	50	(D1)		
ETHYLBENZENE	UG/L	0.05	2.	4 (A3)		
M-XYLENE	UG/L	0.10	300	(A3*)		
METHYLENE CHLORIDE	- UG/L	0.50	50	(A1)		
O-XYLENE	UG/L	0.05	300	(A3*)		
P-XYLENE	UG/L	0.10	300	(A3*)		
STYRENE	UG/L	0.05	100	(D1)		
TETRACHLOROETHYLENE	UG/L'	0.05	65	(A5)		
TRANS 1,2-DICHLOROETHYLENE	- UG/L	0.10	70	(D1)		
TOLUENE .	UG/L	0.05	24	(A3)		
TOTAL TRIHALOMETHANES	UG/L	0.50	350	(A1)		
TRICHLOROETHYLENE .	UG/L	0.10	50	(A1)		
VINYL CHLORIDE .	UG/L	0.10	2	(D1)		
RADIONUCLIDES		•				
TRITIÚM	BQ/L	7.0	40000	(A1)		
GROSS ALPHA COUNT	BQ/L	0.04	0.	55# (D1)		
GROSS BETA COUNT	BQ/L	0.04	N/A			
COBALT 60	BQ/L	0.70	N/A			
CESIUM · 134	BQ/L	0.70	N/A			
CESIUM 137	BQ/L	0.70	50	(A1)		
IODINE 131	BQ/L	0.70	10	(A1)		

[#] Equal to 15.0 Picocuries/litre

DRINKING WATER SURVEILLANCE PROGRAM PROGRAM DESCRIPTION

The Drinking Water Surveillance Program (DWSP) for Ontario monitors drinking water quality at municipal water supply systems. The DWSP Database Management System provides a computerized drinking water quality information system for the supplies monitored. The objectives of the program are to provide:

- immediate, reliable, current information on drinking water quality;
- a flagging mechanism for guideline exceedance;
- a definition of contaminant levels and trends;
- a comprehensive background for remedial action;
- a framework for assessment of new contaminants; and
- an indication of treatment efficiency of plant processes.

PROGRAM

The DWSP officially began in April 1986 and is designed to eventually include all municipal water supplies in Ontario. In 1992, 109 systems were being monitored. Water supply locations have been prioritized for surveillance based primarily on criteria such as population density, probability of contamination and geographical location.

An ongoing assessment of future monitoring requirements at each location will be made. Monitoring will continue at the initial locations at an appropriate level and further locations will be phased into the program as resources permit.

A major goal of the program is to collect valid water quality data in context with plant operational characteristics at the time of sampling. As soon as sufficient data have been accumulated and analyzed, both the frequency of sampling and the range of parameters may be adjusted accordingly.

Assessments are carried out at all locations prior to initial sampling, in order to acquire complete plant process and distribution system details and to designate (and retrofit if necessary) all sampling systems and locations. This ensures that the sampled water is a reflection of the water itself.

Samples are taken of raw (ambient water) and treated water at the treatment plant and of consumer's tap water in the distribution system. In order to determine possible effects of distribution on water quality, both standing and free flow water in old and new sections of the distribution system are sampled. Sampling is carried out by operational personnel who have been trained in applicable procedures.

Comprehensive standardized procedures and field test kits are supplied to sampling personnel. This ensures that samples are taken and handled according to standard protocols and that field testing will supply reliable data. All field and laboratory analyses are carried out using "approved documented procedures". Most laboratory analyses are carried out by the Ministry of Environment and Energy (MOEE), Laboratory Services Branch. Radionuclides are analyzed by the Ministry of Labour.

DATA REPORTING MECHANISM

When the analytical results are transferred from the MOEE laboratory into the DWSP system, printouts of the completed analyses are sent to the MOEE District Officer, the appropriate operational staff and are also retained by the DWSP unit.

PROGRAM INPUTS AND OUTPUTS

There are four major inputs and four major outputs in the program.

Program Input - Plant and Distribution System Description

The system description includes plant specific non-analytical information acquired through a questionnaire and an initial plant visit. During the initial assessment of the plant and distribution system, questionnaire content is verified and missing information added. It is intended that all data be kept current with scheduled annual updates.

The Plant and Distribution System Description consists of the following seven components:

1. PROCESS COMPONENT INVENTORY

All physical and chemical processes to which the water is subjected, from the intake pipe to the consumers' tap (where possible), are documented. These include: process type, general description of physical structures, material types, sizes, and retention time for each process within the plant. The processes may be as simple as transmission or as complex as carbon adsorption.

2. TREATMENT CHEMICALS

Chemicals used in the treatment processes, their function, application point, supplier and brand-name are recorded. Chemical dosages applied on the day of sampling are recorded in DWSP.

3. PROCESS CONTROL MEASUREMENTS

Documentation of in-plant monitoring of process parameters (eg. turbidity, chlorine residuals, pH, aluminum residuals) including methods used, monitoring locations and frequency is contained in this section. Except for the recorded Field Data, in-plant monitoring results are not retained in DWSP but are retained by the water treatment plant personnel.

4. DESIGN FLOW AND RETENTION TIME

Hydraulic capacity, designed and actual, is noted here. Retention time (the time that a block of water is retained in the plant) is also noted. Maximum, minimum and average flow, as well as a record of the flow rate on the day of sampling, are recorded in DWSP.

5. DISTRIBUTION SYSTEM DESCRIPTION

This area includes the storage and transmission characteristics of the distribution system after the water leaves the plant.

6. SAMPLING SYSTEM

Each plant is assessed for its adequacy in terms of the sampling of bacteriological, organic and inorganic parameters. Prime considerations in the assessment and design of the sampling system are:

- i/ the sample is an accurate representation of the actual water condition, eg. raw water has had no chemical treatment;
- ii/ the water being sampled is not being modified by the sampling system;
- iii/ the sample tap must be in a clean area of the plant, preferably a lab area; and
- iv/ the sample lines must be organically inert (no plastic, ideally stainless steel).

It is imperative that the sampled water be a reflection not of the sampling system but of the water itself.

The sampling system documentation includes: origin of the water; date sampling was initiated; size, length and material type (intake, discharge and tap); pump characteristics (model, type, capacity); and flow rate.

7. PERSONNEL

This section contains the names, addresses and phone numbers of current plant management and operational staff, distribution system management and operational staff, Medical Officer of Health and appropriate MOEE personnel associated with the plant.

Program Input - Field Data

The second major input to DWSP is field data. Field data is collected at the plant and from the distribution system sites on the day of sampling. Field data consists of general operating conditions and the results of testing for field parameters. General operating conditions include chemicals used, dosages, flow and retention time on the day of sampling, as well as, monthly maximum, minimum and average flows. Field parameters include turbidity, chlorine residuals (free, combined and total), temperature and pH. These parameters are analyzed according to standardized DWSP protocols to allow for interplant comparison.

Program Input - Laboratory Analytical Data

The third major input to DWSP is Laboratory Analytical Data. Samples gathered from the raw, treated and distribution sampling sites are analyzed for the presence of approximately 180 parameters at a frequency of two to twelve times per year. Sixty-five percent of the parameters are organic. Parameters measured may have health or aesthetic implications when present in drinking water. Many of the parameters may be used in the treatment process or may be treatment by-products. Due to the nature of certain analytical instruments, parameters may be measured in a "scan" producing some results for parameters that are not on the DWSP priority list, but which may be of interest. The majority of parameters are measured on a routine basis. Those that are technically more difficult and/or costly to analyze, however, are done less frequently. These include Specific Pesticides and Chlorophenols.

Although the parameter list is extensive, additional parameters with the potential to cause health or aesthetic related problems may be added provided reliable analytical and sampling methods exist.

All laboratory generated data is derived from standardized, documented analytical protocols. The analytical method is an integral part of the data and as methods change, notation will be made and comparison data documented.

Program Input - Parameter Reference Information

The fourth major input to DWSP is Parameter Reference Information. This is a catalogue of information for each substance analyzed on DWSP. It includes parameter name and aliases, physical and chemical properties, basic toxicology, world-wide health limits, treatment methods and uses. The Parameter Reference Information is computerized and can be accessed through the Query function of the DWSP database. An example is shown in figure 1.

Program output - Query

All DWSP information is easily accessed through the Query function, therefore, anything from addresses of plant personnel to complete water quality information for a plant's water supply is instantly available. The DWSP computer system makes relatively complex inquiries manageable. A personal password allowing access into the DWSP query mode in all MOEE offices is being developed by the DWSP group.

Program Output - Action Alerts

Drinking Water quality in Ontario is evaluated against provincial objectives as outlined in the Ontario Drinking Water Objectives publication. Should the reported level of a substance in treated water exceed the Ontario Drinking Water Objective, an "Action Alert" requiring resampling and confirmation is issued. This assures that operational staff, health authorities and the public are notified as soon as possible of the confirmation of an exceedance and remedial action taken. This report supplies a history of the occurrence of past exceedances at the plant plus a historical summary on the parameter of concern.

In the absence of Ontario Drinking Water Objectives, guidelines/limits from other agencies are used. The Parameter Listing System, published by MOEE (ISBN 0-7729-4461-X), catalogues and keeps current guidelines for 650 parameters from agencies throughout the world. If these guidelines are exceeded, the results are flagged and evaluated by DWSP personnel. An "Action Alert" will be issued if warranted.

Program Output - Report Generation

Custom reports can be generated from DWSP to meet MOEE Regional needs and to respond to public requests.

Program Output - Annual Reports

It is the practice of DWSP to produce an annual report containing analytical data along with companion plant information.

PARAMETER REFERENCE INFORMATION

NAME:

BENZENE

CAS#:

71-43-2

MOLECULAR FORMULAE:

 C_6H_6

DETECTION LIMIT:

(FOR METHOD POCODO) 0.05 μ g/L

SYNONYMS:

BENZOL; BENZOLE; COAL NAPHTHA; CARBON OIL (27)

CYCLOHEXATRIENE (41)

CHARACTERISTICS:

COLOURLESS TO LIGHT-YELLOW, MOBILE, NONPOLAR LIQUID, OF HIGHLY REFRACTIVE NATURE, AROMATIC ODOUR; VAPOURS BURN

WITH SMOKING FLAME (30)

PROPERTIES:

SOLUBILITY IN WATER: 1780-1800 mg/L AT 25C (41)

THRESHOLD ODOUR: 0.5 - 10 PPM IN WATER THRESHOLD TASTE: 0.5 mg/L IN WATER (39)

ENVIRONMENTAL FATE: MAY BIOACCUMULATE IN LIVING ORGANISMS AND APPEARS TO ACCUMULATE IN ANIMAL TISSUES THAT EXHIBIT A HIGH LIPID CONTENT OR REPRESENT MAJOR METABOLIC SITES, SUCH AS LIVER OR BRAIN; SMALL QUANTITIES EVAPORATE FROM

SOILS OR ARE DEGRADED RATHER QUICKLY (80)

SOURCES:

COMMERCIAL: PETROLEUM REFINING; SOLVENT RECOVERY; COAL TAR DISTILLATION (39); FOOD PROCESSING AND TANNING INDUSTRIES;

COMBUSTION OF CAR EXHAUST.

ENVIRONMENTAL: POSSIBLE SOURCE IS RUNOFF.

USES:

DETERGENTS; NYLON; INTERMEDIATE IN PRODUCTION OF OTHER COMPOUNDS, SUCH AS PESTICIDES; SOLVENT FOR EXTRACTION AND RECTIFICATION IN RUBBER INDUSTRY; DEGREASING AND CLEANSING

AGENT; GASOLINE.

REMOVAL:

THE FOLLOWING PROCESSES HAVE BEEN SUCCESSFUL IN REMOVING BENZENE FROM WASTEWATER: GAC ADSORPTION, PRECIPITATION WITH ALUM AND SUBSEQUENT REMOVAL VIA SEDIMENTATION, COAGULATION AND FLOCCULATION, SOLVENT EXTRACTION,

OXIDATION

ADDITIONAL PROPERTIES:

MOLECULAR WEIGHT: 78.12 MELTING POINT: 5.5°C (27) BOILING POINT: 80.1°C (27)

SPECIFIC GRAVITY: 0.8790 AT 20° C (27) VAPOUR PRESSURE: 100 MM AT 26.1° C (27)

HENRY'S LAW CONSTANT: 0.00555 ATM-M3/MOLE (41)

LOG OCT./WATER PARTITON COEFFICIENT: 1.95 TO 2.13 (39) CARBON ADSORPTION: K=1.0; 1/N=1.6; R=0.97; PH=5.3 (41)

SEDIMENT/WATER PARTITION COEFFICIENT: NO DATA

DWSP SAMPLING GUIDELINE

i) Raw and Treated at Plant

(OPOPUP)

Cyanide (Treated only)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Bacteriological -220 mL plastic bottle with white seal on cap
-do not rinse bottle, preservative has been added

-avoid touching bottle neck or inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)
-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃) (Caution: HNO₃ is corrosive)

Volatiles (duplicates) -45 mL glass vial with septum

(teflon side must be in contact with sample)

-do not rinse bottle

-fill bottle completely without bubbles

Organics -1 L amber glass bottle per scan (OWOC),(OWTRI) -do not rinse bottle

-do not rinse bottle
-fill to 2 cm from top

Specific Pesticides -as per Organics

(OWCP), (PEOP), (PECAR) -three extra bottles must be filled

Polyaromatic hydrocarbons -1 L amber glass bottle per scan

-do <u>not</u> rinse bottle -fill to 2 cm from top

-add 25 drops of sodium thiosulphate

·

-500 mL plastic bottle (PET 500)
-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops sodium hydroxide (NaOH)

(Caution: NaOH is corrosive)

Mercury -250 mL glass bottle

-rinse bottle and cap three times

-fill to top of label

-add 20 drops each nitric acid (HNO₃)
and potassium dichromate (K₂Cr₂O₇)
(Caution: HNO₃&K₂Cr₂O₇ are corrosive)

Phenols

-250 mL glass bottle

-do not rinse bottle, preservative has been added

-fill to top of label

Radionuclides (as scheduled)

-4 L plastic jug

-do <u>not</u> rinse, carrier added

-fill to 5 cm from top

Organic Characterization
(GC/MS - once per year)

-1 L amber glass bottle; instructions as per organic

(GC/MS - once per year)
(PBVOL), (PBEXT)

-250 mL glass bottle

-do <u>not</u> rinse bottle

-fill completely without bubbles

Steps:

- 1. Let sampling water tap run for an adequate time to clear the sample line.
- 2. Record time of day on submission sheet.
- 3. Record temperature on submission sheet.
- 4. Fill up all bottles as per instructions.
- Record chlorine residuals (free, combined and total for treated water only), turbidity and pH on submission sheet.
- 6. No smoking in area of sample location.

ii) Distribution Samples (standing water)

General Chemistry

-500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

.-fill to 2 cm from top

Metals

-500 mL plastic bottle (PET 500) -rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃)
 (Caution: HNO₃ is corrosive)

Steps:

- 1. Record time of day on submission sheet.
- 2. Place bucket under tap and open cold water.
- 3. Fill to predetermined volume.
- 4. After mixing the water, record the temperature on the submission sheet.

- 5. Fill general chemistry and metals bottles.
- Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

iii) Distribution Samples (free flow)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample water three

times

-fill to 2 cm from top

Bacteriological -250 mL plastic bottle with white seal on cap

-do not rinse bottle, preservative has been added
-avoid touching bottle neck or inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid HNO₃ (Caution: HNO₃ is corrosive)

Volatiles (duplicate)

(OPOPUP)

-45 mL glass vial with septum

(teflon side must be in contact with sample)
-do not rinse bottle, preservative has been added

-fill bottle completely without bubbles

Organics

(OWOC)

-1 L amber glass bottle per scan

-do <u>not</u> rinse bottle -fill to 2 cm from top

Polyaromatic Hydrocarbons

(OAPAHX)

-1 L amber glass bottle per scan

-do <u>not</u> rinse bottle -fill to 2 cm from top

-add 25 drops of sodium thiosulphate

Steps: .

- 1. Record time of day on submission sheet.
- 2. Let cold water flow for five minutes.
- 3. Record temperature on submission sheet.
- 4. Fill all bottles as per instructions.
- Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

