AM 221:	Advanced	Optimization
---------	----------	--------------

Spring 2016

Prof. Yaron Singer

Lecture 24 — April 25th

1 Overview

The goal of today's lecture is to see how the multilinear extension of a submodular function that we introduced in the previous lecture can be used to solve a very general class of submodular optimization problems. In particular, we will introduce the Continuous Greedy Algorithm which is a general algorithm to optimize the multilinear extension of a submodular function over polytopes.

2 Multilinear Extension

In this section $N\hat{A}$ äwill denote a finite set with n elements, $N = \{1, ..., n\}$ and f will be a set function defined over the power set of N, $f: 2^N \to \mathbb{R}$.

Definition 1. The multilinear extension of f is the function $F:[0,1]^n \to \mathbb{R}$ defined by:

$$F(x) = \sum_{S \subseteq N} f(S) \prod_{i \in S} x_i \prod_{i \in N \setminus S} (1 - x_i)$$

Remark 2. There is a probabilistic interpretation of the multilinear extension. Given $x \in [0, 1]^n$ we can define X to be the random subset of N in which each element $i \in N$ is included independently with probability $x_i \hat{A}$ aand not included with probability $1 - x_i$. We write $X \sim x$ to say that X is the random subset sampled according to x. Then the multilinear extension F is simply:

$$F(x) = \underset{X \sim x}{\mathbb{E}} \left[f(X) \right]$$

For this reason, using the multilinear extension is often called relaxing through expectation.

It is possible to relate properties of f to properties of its multilinear extension F. In particular, we have:

Proposition 3. Let F be the multilinear extension of f, then:

- 1. If f is non-decreasing, then F is non-decreasing along any direction d > 0.
- 2. If f is submodular then F is concave along any line $d \geq 0$.

Proof. Both properties can be established by first looking at how F behaves along coordinates axes.

1. Let $i \in N$, since F is linear in x_i , we have:

$$\frac{\partial F}{\partial x_i}(x) = F(x_1, \dots, x_{i-1}, 1, x_{i+1}, \dots, x_n) - F(x_1, \dots, x_{i-1}, 0, x_{i+1}, \dots, x_n)$$

Let R be the random subset of $N \setminus \{i\}$ where each element $j \in N \setminus \{i\}$ is included with probability x_j , then we can rewrite:

$$\frac{\partial F}{\partial x_i}(x) = \mathbb{E}\left[f(R \cup \{i\})\right] - \mathbb{E}\left[f(R)\right].$$

Since f is non decreasing we get that $\frac{\partial F}{\partial x_i}(x) \geq 0$.

2. Similarly, if we denote by R the random subset of $N \setminus \{i, j\}$ where each element k is included with probability x_k , we have:

$$\frac{\partial^2 F}{\partial x_i \partial x_j}(x) = \mathbb{E}\left[f(R \cup \{i, j\})\right] - \mathbb{E}\left[f(R \cup \{i\})\right] - \mathbb{E}\left[f(R \cup \{j\})\right] + \mathbb{E}\left[f(R)\right]$$

by reordering the terms we obtain:

$$\frac{\partial^2 F}{\partial x_i \partial x_j}(x) = \mathbb{E}\left[f(R \cup \{i, j\}) - f(R \cup \{i\})\right] - \left(\mathbb{E}\left[f(R \cup \{j\}) - f(R)\right]\right).$$

By submodularity of f this last quantity is non-positive, i.e. $\frac{\partial^2 F}{\partial x_i \partial x_j}(x) \leq 0$.

We conclude the proof of the proposition as follows. Let $x \in [0,1]^n$ and $d \ge 0$. We define the function $F_{x,d}(\lambda) = F(x + \lambda d)$ of the real variable λ . We note that $F'_{x,d}(\lambda) = \langle d, \nabla F(x + \lambda d) \rangle$ and $F''_{x,d} = d^T H_f(x + \lambda d) d$.

- 1. If f is non-decreasing, then $\nabla F(x + \lambda d) \ge 0$ and $\langle d, \nabla F(x + \lambda d) \rangle \ge 0$. Hence $F_{x,d}$ is non-decreasing.
- 2. If f is submodular, then $H_f(x + \lambda d) \leq 0$ and $d^T H_f(x + \lambda d) d \leq 0$. Hence $F_{x,d}$ is concave. \square

3 Submodular Welfare Problem

In the submodular welfare problem we have:

- a set $N = \{1, \ldots, n\}$ of n items,
- a set $M = \{1, \dots, m\}$ of m agents,
- each agent $i \in M$ has a valuation function $v_i : 2^N \to \mathbb{R}^+$ over subsets of items. Valuation functions are assumed to be monotone and submodular.

A partition of the items is a m-tuple (S_1, \ldots, S_m) such that $S_i \subseteq N$ for all $i \in M$ and $S_i \cap S_j = \emptyset$ for all pairs (i, j) in M^2 .

The value of a partition $S = (S_1, \ldots, S_m)$ is simply $v(S) = \sum_{i=1}^m v_i(S_i)$. The submodular welfare problem is to find a partition of maximum value.

3.1 Reformulation of the Submodular Welfare Problem

A more amenable way to write partition of items is to write them as subsets of $M \times N$: if $S \subseteq M \times N$ and if $(i,j) \in S$ then it means that we allocate item j to agent i. The fact that S has to be a partition of the items simply means that we cannot allocate the same item to more than one agent, in other terms:

$$\forall j \in N, \ \left| \{ i \mid (i,j) \in S \} \right| \le 1 \tag{1}$$

We will denote by I the set of all subsets S of $M \times N$ satisfying the property (1). The value of a partition S can then be written:

$$v(S) = \sum_{i \in M} v_i (\{j \mid (i, j) \in S\})$$

and the submodular welfare problem is simply:

$$\max_{S \in I} v(S) \tag{2}$$

3.2 Relaxation of the Submodular Welfare Problem

We now want to write a continuous relaxation of the problem (2). We can introduce a decision variable $x_{ij} \in [0,1]$ for all $(i,j) \in M \times N$ expressing that we allocate the fraction x_{ij} of item j to agent i. The partition constraint now expresses that we cannot allocate more than 100% of the same object, i.e:

$$\sum_{i \in M} x_{ij} \le 1, \ j \in N$$

we will denote by:

$$P = \left\{ x \in [0, 1]^{m \times n} \mid \forall j \in N, \sum_{i \in M} x_{ij} \le 1 \right\}$$

the feasible domain of the relaxed problem.

To relax the value function v, one can simply use its multilinear extension F. Using the linearity of the expectation, we can write:

$$F(x) = \underset{X \sim x}{\mathbb{E}} \left[v(X) \right] = \sum_{i \in M} \underset{X \sim x}{\mathbb{E}} \left[v_i \left(\left\{ j \mid (i, j) \in X \right\} \right) \right] = \sum_{i \in M} \mathbb{E} \left[v_i(X_i) \right]$$

where X_i is a random subset of N such that item j is included with probability x_{ij} and excluded with probability $1 - x_{ij}$.

Finally our relaxation of problem (2) is:

$$\max_{x} F(x)$$
s.t. $x \in P$ (3)

Algorithm 1 Continuous Greedy Algorithm

```
Require: F, P

1: define: v_{max}(x) = \operatorname{argmax}_{v \in P} \langle v, \nabla F(x) \rangle

2: x(0) \leftarrow 0 \in \mathbb{R}^n

3: for t \in [0, 1] do

4: x'(t) = v_{max}(x(t))

5: end for

6: return x(1)
```

4 Continuous Greedy Algorithm

We see that problem (3) consists in maximizing the multilinear extension of v over a polyhedron. More generally, many submodular maximization problems have a relaxation of this form and the Continuous Greedy AlgorithmÂă(Algorithm 1 was specifically designed for these relaxations.

We note that Algorithm 1 is not readily implementable. In particular, line 4 requires solving a differential equation. In practice we will only be able to solve it approximately. For now, we will study this *abstract* algorithm and come back to practical considerations in Section 4.2.

4.1 Analysis of Algorithm 1

In this section we assume that F is the multilinear extension of a non-decreasing submodular function f. Our goal is to prove that x(1) returned by Algorithm 1 is an approximate solution to problem 3. First we need the following lemma:

Lemma 4. For any $x \in \mathbb{R}^n$, there exists $v \in P$ such that $\langle v, \nabla F(x) \rangle \geq OPT - F(x)$, where OPT denotes the optimal solution to problem 3.

Proof. Let us take $v \in P$ such that F(v) = OPT. We want to show that $\langle v, \nabla F(x) \rangle \geq F(v) - F(x)$. We note that if F was concave, this would follow from the characterization of concavity in terms of tangent lines. From Proposition 3, we know that F is only concave along directions $d \geq 0$ and we need to cheat a bit.

Let us consider the direction $d = (v - x) \lor 0$, where $x \lor y$ denotes the coordinate-wise min of x and y: $(x \lor y)_i := \min(x_i, y_i)$. Now $d \ge 0$ and F is concave along direction d, hence:

$$\langle d, \nabla F(x) \rangle > F(x+d) - F(x)$$
 (4)

But we note that:

- 1. $x + d = v \lor x \ge v$ and since F is non-decreasing along positive directions, $F(x + d) \ge F(v)$.
- 2. $d \le v$ and $\nabla F(x) \ge 0$ hence $\langle d, \nabla F(x) \rangle \le \langle v, \nabla F(x) \rangle$.

Combining the two points above with (4), we obtain:

$$\langle v, \nabla F(x) \rangle > F(v) - F(x)$$

which concludes the proof of the lemma.

We can now state the main result.

Theorem 5. When F is the multilinear extension of a non-decreasing submodular function f, x(1) computed by Algorithm 1 is such that:

- 1. $x(1) \in P$.
- 2. $F(x(1)) \ge (1 \frac{1}{e}) OPT$.

Proof. 1. Using the fundamental theorem of calculus:

$$x(1) = \int_0^1 x'(t)dt = \int_0^1 v_{max}(x(t))dt$$

where the second equality uses the fact that x(t) is the solution of the differential equation given in line 4 of Algorithm 1. Now we can write the integral as the limit of its Riemann sum:

$$x(1) = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^{n} v_{max} \left(x \left(\frac{i}{n} \right) \right)$$

By definition $v_{max}(x) \in P$ for any x and the term inside the limit is a convex combination of finitely many elements of P, since P is convex, it belongs to P. P being closed, the limit x(1) belongs to P.

2. Using the chain rule, we can write:

$$\frac{d}{dt}F(x(t)) = \langle x'(t), \nabla F(x(t)) \rangle = \langle v_{max}(x(t)), \nabla F(x(t)) \rangle$$

Using lemma 4, we know that there exist $v \in P$ such that $\langle v, \nabla F(x(t)) \rangle \geq OPT - F(x(t))$. In particular, this is true for $v_{max}(x(t))$ and we get:

$$\frac{d}{dt}F(x(t)) \ge OPT - F(x(t))$$

Let us define $g:[0,1]\to\mathbb{R}$ by g(t)=F(x(t)). We have:

$$g'(t) + g(t) \ge OPT$$
 and $g(0) = 0$

Defining h(t) = g'(t) + g(t) and solving this differential equation about g:

$$g(t) = \int_0^t e^{x-t} h(x) dx$$

But by definition $h(x) \geq OPT$, hence:

$$F(x(1)) = g(1) \ge OPT \int_0^1 e^{x-1} dx = OPT \left[e^{x-1}\right]_0^1 = OPT \left(1 - \frac{1}{e}\right)$$

which concludes the proof of the theorem.

4.2 Practical Implementation

There are a few points to address before we can actually implement Algorithm 1.

1. Computing F(x) and $\nabla F(x)$. Note that the definition of F involves summing over all subsets S of N. There are 2^n such subsets, hence even computing F(x) for a single x could take exponential time...

Fortunately, using a Chernoff bound, we can obtain:

$$\left| \frac{1}{t} \sum_{i=1}^{t} f(X_i) - F(x) \right| \le \varepsilon f(N)$$

with probability at lest $1 - e^{-t\varepsilon^2/4}$, where $X_1, \ldots X_t$ are random subsets of N sampled according to x. What that means is that using $O\left(\frac{1}{\varepsilon^2}\right)$ random samples, we can compute a ε -approximation of F(x) with constant probability.

Similarly, we saw in Proposition 3 that $\frac{\partial F}{\partial x_i}(x) = \mathbb{E}\left[f(R \cup \{i\})\right] - E[f(R)]$ where R is a random subset of $N \setminus \{i\}$ sampled according to x. Again, using $O\left(\frac{1}{\varepsilon^2}\right)$ samples, we can obtain a ε -approximation of $\nabla F(x)$ with constant probability.

- 2. Computing $v_{max}(x)$. By definition, $v_{max}(x) = \operatorname{argmax}_{v \in P} \langle v, \nabla F(x) \rangle$. But observe that once we have computed $\nabla F(x)$, this is simply a linear program in v. We learned how to solve them in the first part of this course!
- 3. Solving $x'(t) = v_{max}(x(t))$. The differential equation can be solved approximately by discretizing time. There are entire books written on this topic, but a simple approach is the following algorithm:

Algorithm 2 Solving the differential equation

Require: Solver to compute v_{max}

- 1: $\delta \leftarrow \frac{1}{n}, x \leftarrow 0$
- 2: for k = 1 to n do
- 3: $v \leftarrow v_{max}(x)$
- 4: $\hat{A} \breve{a} x \leftarrow x + \delta v$
- 5: end for
- 6: return x

It is possible to show that the x returned by Algorithm 2 is arbitrarily close to x(1) returned by Algorithm 1 as n goes to infinity.

It remains to show that the different approximations that we introduced in these practical considerations can be combined to obtain an efficient (polynomial-time) algorithm which computes an arbitrarily good approximation of what is computed by the *abstract* Algorithm 1. For details about this see [2].

5 Discussion and Further Reading

Since 1978 it was know that there is a 1/2 approximation algorithm for the submodular welfare problem (this is the algorithm that we discussed and analyzed in Lecture 19). Until 2008 it was unknown whether 1/2 is the best approximation ratio achievable for this problem. The continuous greedy algorithm we discussed here was developed and analyzed by Vondrak [2], and settled this open question by giving a 1-1/e which is optimal unless P=NP. Interestingly, in 2012 Filmus and Ward showed that the 1-1/e approximation ratio is also achievable via a local-search algorithm [1].

References

- [1] Yuval Filmus and Justin Ward. A tight combinatorial algorithm for submodular maximization subject to a matroid constraint. In *FOCS*, pages 659–668, 2012.
- [2] Jan Vondrák. Optimal approximation for the submodular welfare problem in the value oracle model. In *STOC*, pages 67–74, 2008.