

Dr. Xueping Li University of Tennessee

Agenda

- ☐ Intro to the Internet
- Internet Protocol
- □ LAN/MAN/WAN
- ☐ ISO/OSI RM
- ☐ TCP/IP Protocol Suite

Introduction

■ What is Internet

- "A network of networks, joining many government, university and private computers together and providing an infrastructure for the use of E-mail, bulletin boards, file archives, hypertext documents, databases and other computational resources"*
- "The vast collection of computer networks which form and act as a single huge network for transport of data and messages across distances which can be anywhere from the same office to anywhere in the world."*

^{*} William F. Slater, III, 1996. President of the Chicago Chapter of the Internet Society

Introduction

- □ A brief history of Internet
 - J.C.R. Licklider first proposed a global network of computers in 1962, and moved over to the Defense Advanced Research Projects Agency (**DARPA**) in late 1962 to develop it
 - The Internet, then known as **ARPANET**, was brought online in 1969 by the renamed Advanced Research Projects Agency (ARPA)
 - The Internet matured (?) in the 70's as a result of the **TCP/IP** architecture
 - The European Laboratory for Particle Physics (CERN) invented the World Wide Web (**WWW**) to share information among research groups

Introduction

☐ Growth of the Internet [1]

Figure 2.1 Internet growth measured by the number of computers attached to the Internet in each year from 1981 though 2003. The y-axis is labeled in millions of computers.

Introduction

- What does the Internet look like?
- Consists of
 - Backbones
 - Regional
 - Commercial
 - Local

HOWTO

- Architecture
- Protocols
- Web Services
 - > WWW
 - > FTP
 - Email
 - Blogs...

Internet Protocol (IP) Addresses

- Configuring IP addresses
- IP Address Space
- Subnet

Ipconfig

- Usage: ipconfig [/? | /all | /renew [adapter] | /release [adapter] | /flushdns | /displaydns |/registerdns | /showclassid adapter | /setclassid adapter [classid]
- Options:
 - Display this help message
 - > /all Display full configuration information.
 - /release Release the IP address for the specified adapter.
 - /renew Renew the IP address for the specified adapter.
 - /flushdns Purges the DNS Resolver cache.
 - /registerdns Refreshes all DHCP leases and re-registers DNS names
 - /displaydns Display the contents of the DNS Resolver Cache.
 - /showclassid Displays all the dhcp class IDs allowed for adapter.
 - /setclassid Modifies the dhcp class id.

Examples:

- > ipconfig > ipconfig /all > ipconfig /renew
- > ipconfig/all > ipconfig /release
- Ref & examples

Ping

- Usage: ping [-t] [-a] [-n count] [-l size] [-f] [-i TTL] [-v TOS] [-r count] [-s count] [[-j host-list] | [-k host-list]] [-w timeout] target_name
- Options:

```
Ping the specified host until stopped.
```

To see statistics and continue - type Control-Break;

To stop - type Control-C.

Resolve addresses to hostnames.

-n count Number of echo requests to send.

-I size Send buffer size.

Set Don't Fragment flag in packet.

-i TTL Time To Live.
-v TOS Type Of Service.

r count Record route for count hops.

-s count Timestamp for count hops.

j host-list Loose source route along host-list.
 k host-list Strict source route along host-list.

-w timeout Timeout in milliseconds to wait for each reply.

Tracert

- Usage: tracert [-d] [-h maximum_hops] [-j host-list] [-w timeout] target_name
- Options:
 - -d Do not resolve addresses to hostnames.
 - -h maximum_hops Maximum number of hops to search for target.
 - -j host-list Loose source route along host-list.
 - -w timeout Wait timeout milliseconds for each reply.

netstat

- ☐ Displays protocol statistics and current TCP/IP network connections.
- ☐ Syntax:
 - NETSTAT [-a] [-b] [-e] [-n] [-o] [-p proto] [-r] [-s] [-v] [interval]

Network Configuration

- 1. Go to the Start menu, select All Programs, then Accessories, then Communications, then Network Connections
- Right-click on the Local Area Connection icon and select
 Properties

Network Configuration (Cont.)

- 3. Click the Internet
 Protocol (TCP/IP)
 listing, then Properties
- 4. Make sure that the TCP/IP settings are set to Obtain an IP address automatically and Obtain DNS server address automatically, as

illustrated to the left.

Network Configuration (Cont.)

□ Change Computer
Name by Right-click on the My Computer icon.
Select Properties.

IPv4

- □ An IPv4 address consists of four bytes (32 bits) those are also known as octets
 - Eg. 00001010 00000000 00000000 00000001

 usually appears in the equivalent dotted decimal representation 10.0.0.1
- □ The full range of IP addresses is from 0.0.0.0 through 255.255.255.255. That represents a total of 4,294,967,296 possible IP addresses (2^32).

IP Classes

network.

IP Classes

Class A, Class B, and Class C are the three classes of addresses used on IP networks in common practice; Class D addresses as reserved for multicast; Class E addresses as reserved

Class	Leftmost bits	Start address	Finish address
Α	0xxx	0.0.0.0	127.255.255.255
В	10xx	128.0.0.0	191.255.255.255
С	110x	192.0.0.0	223.255.255.255
D	1110	224.0.0.0	239.255.255.255
E	1111	240.0.0.0	255.255.255.255

Assigned Classes of Internet Addresses

Loopback

- □ 127.0.0.1 is the loopback address in IP
- Loopback is a test mechanism of network adapters.
- Messages sent to 127.0.0.1 do not get delivered to the network

IP Network Partioning

- Network addressing fundamentally organizes hosts into groups.
 - Improve security (by isolating critical nodes)
 - Reduce network traffic (by preventing transmissions between nodes that do not need to communicate with each other)

Class	Host address range	Network address	Default mask		
A	0.0.0.0 – 127.255.255.255	x.0.0.0	255.0.0.0		
В	128.0.0.0 – 191.255.255.255	x.x.0.0	255.255.0.0		
С	192.0.0.0 – 223.255.255.255	x.x.x.0	255.255.255.0		

Subnet Masks and Subnetting

- □ A subnet allows the flow of network traffic between hosts to be segregated based on a network configuration
- ☐ Perhaps the most recognizable aspect of subnetting is the **subnet mask**
 - E.g. 255.255.255.0

Subnetting in Practice

- ☐ Three-level scheme
 - network address, subnet number and host address
 - <network number><subnet number><host number>

Network address (24 bits)	Subnet Number (1 bit)	Extended network	Host address range 192.168.1.1 – 192.168.1.127		
11000000 10101000 00000001	0	192.168.1.0			
11000000 10101000 00000001	1	192.168.1.128	192.168.1.129 – 92.168.1.255		

Subnetting Demo (I)

Subnetting Demo (II)

- ☐ E.g. subnet mask: 255.255.250.240
- □ 240 (Dec) = 11110000 (BIN)
- How many subnets?
- How many hosts in each subnets?

- ☐ Ex: how about 255.255.255.0
- ☐ Ex: how about 255.255.254.0
- ☐ Ex: how about 255.255.255.248?

CIDR -

Classless Inter-Domain Routing

- ☐ CIDR was developed in the 1990s as a standard scheme for routing IP addresses.
- CIDR allows a more flexible way to associate groups of IP addresses without relying on the original class system. CIDR is also known as supernetting.
- CIDR Notation
 - xxx.xxx.xxx.xxx/n where n is the number of (leftmost) '1' bits in the mask. For example, 192.168.12.0/23 applies the network mask 255.255.254.0 to the 192.168 network

IPv4-IPv6

Cls	Total	Year End 1990			Year End 1992			Year End 1994					
	Assigned		Allocated		Assigned		Allocated	Assigned		Allocated			
		Nbr	%	Nbr	%	Nbr	%	Nbr	%	Nbr	%	Nbr	%
A	126	38	30	101	80	51	40	114	90	53	42	116	92
В	16382	3238	20	4079	25	6812	42	7919	48	8432	51	9976	61
C	2097150	7792	0.4	104404	5.0	23339	1.1	200742	10	52833	2.5	521489	25

IPv6

- ☐ IPv6 addresses are **16** bytes (128 bits) long rather than four bytes (32 bits), more than
 - - possible addresses!
- ☐ IPv6 uses 0:0:0:0:0:0:0:1 as its loopback address, equivalent to 127.0.0.1 in IPv4.
- - E.g. E3D7::51F4:9BC8:C0A8:6420

Applying subnetting

☐ See to demo~~~

(Domain Name System) DNS

- Humans prefer to work with names (<u>www.utk.edu</u>) rather than numbers
- DNS is a hierarchical system. DNS organizes all registered names in a tree structure
- At the base or **root** of the tree are a group of **top-level domains** including familiar names like com, org, and edu and numerous **country-level domains** like fi (Finland), ca (Canada) ...

DNS Resolvers

- □ DNS works in a **client/server** fashion.
- DNS servers respond to requests from DNS clients called resolvers

To be continued...

