

CONCEPTION DE SYSTÈMES ÉLECTRONIQUES

ENSEA

Nicolas Papazoglou 17 mars 2023

Sommaire

- 1 Organisation des projets de 1ère année
- 2 Conception de systèmes électroniques
- 3 KiCAD ♥

Plan

- 1 Organisation des projets de 1ère année
 - Evaluation
 - Amphi
 - TD Machine KiCAD
 - Projet
- 2 Conception de systèmes électroniques
- 3 KiCAD ♥

Organisation

Projet d'électronique et sa gestion responsable et durable :

- 2h d'amphi de conception de systèmes électroniques : Nicolas Papazoglou,
- 2h d'amphi + 2h de TD de gestion durable et responsable du projet : Roseline Descout,
- 4h de TD machine KiCAD : CAO de conception de circuit électroniques,
- 40h de projet,
- 1h d'examen.

- 1 Organisation des projets de 1ère année
 - Evaluation
 - Amphi
 - TD Machine KiCAD
 - Projet
- 2 Conception de systèmes électroniques
 - Etablissement du cahier des charges
 - Les composants
 - Les critères de sélection
 - Technologies
- 3 KiCAD ♥

Evaluation

3 crédits ECTS :

- Jalon intermédiaire : diagramme de Gantt et diagramme d'architecture,
- Soutenance lors de la dernière séance : 10min par groupe, quelques slides et démonstration sur la paillasse.
- Utilisation d'une grille critariée :
 - Gestion de projet : rendu à temps, qualité du jalon, esprit d'équipe, implication,
 - Rapport : présentation, contenu technique,
 - Hardware : qualité du schéma, qualité du routage, fonctionnalités prévues,
 - Software : structuration du code, inventivités des solutions, fonctionnalités prévues.
- Evaluation des étudiants :
 - Pour chcaque membre du groupe, une pondération est affectée en fonction de la partitation en séance (présence, dynamiste et efficacité).
- 1 crédit ECTS :
 - Examen commun avec le cours de Mme Descout

- 1 Organisation des projets de 1ère année
 - Evaluation
 - Amphi
 - TD Machine KiCAD
 - Projet
- 2 Conception de systèmes électroniques
 - Etablissement du cahier des charges
 - Les composants
 - Les critères de sélection
 - Technologies
- 3 KiCAD ♥

Amphi

- 2h de conception de systèmes électroniques : Nicolas Papazoglou,
- Amphi collaboratif: wooclap,
- Présentation du projet CoHoMa (par les 2A).

- 1 Organisation des projets de 1ère année
 - Evaluation
 - Amphi
 - TD Machine KiCAD
 - Projet
- 2 Conception de systèmes électroniques
 - Etablissement du cahier des charges
 - Les composants
 - Les critères de sélection
 - Technologies
- 3 KiCAD ♥

Découverte de KiCAD

- Logiciel de conception de systèmes électronique : schéma, simulation et réalisation de board (PCB), visualiseur de Gerber, etc...
- Logiciel libre et multi-plateforme (Linux, Windows, Mac OS (Puce M1 pris en charge),
- Créé en 1992 par Jean-Pierre Charras, IUT de Grenoble.
- Financé par le CERN,
- Utilisé dans de grandes entreprises : Thalès, CEA, etc...

Alternatives:

- Altium Designer: très complet, très compliqué, cher. Windows only.
- Eagle : pas très bien supporté sur Linux, payant mais compte étudiant possible : inscription compliquée, Mac M1 non pris en charge.

Installation de KiCAD

KiCAD version 7

- Windows
- Mac OS
- Linux

Déroulé des séances

- 2 séances de 4h en TD machine :
 - 2h de réalisation de schéma,
 - 2h de réalisation du pcb.
- Travail à faire seul → besoin que vous rameniez votre PC perso,
- Evaluation par les pairs.

Evaluation par les pairs

- En fin de séance, déposer un screenshot :
 - Séance 1 : schéma,
 - Séance 2 : pcb.
- Chaque étudiant aura 3 schéma/pcb à évaluer à partir de critères simples.
- Retour constructifs de vos schéma.

- 1 Organisation des projets de 1ère année
 - Evaluation
 - Amphi
 - TD Machine KiCAD
 - Projet
- 2 Conception de systèmes électroniques
 - Etablissement du cahier des charges
 - Les composants
 - Les critères de sélection
 - Technologies
- 3 KiCAD ♥

Répartition des étudiants :

- Mélange des étudiants des 1G1 et 1G3,
- Mélange des étudiants des 1G2,
- Groupe d'une 12aine d'étudiants, ne correspond pas aux groupes de TD/TP.
- Choix des groupes imposés.

Exception:

■ Projet CoHoMa → postuler auprès des étudiants de 2A.

Volume horaire et encadrant :

- 10 séances de 4h en laboratoire,
- Encadrant : liste fournie prochainement.

Plan

- 1 Organisation des projets de 1ère année
- 2 Conception de systèmes électroniques
 - Etablissement du cahier des charges
 - Les composants
 - Les critères de sélection
 - Technologies
- 3 KiCAD ♥

- 1 Organisation des projets de 1ère année
 - Evaluation
 - Amphi
 - TD Machine KiCAD
 - Projet
- 2 Conception de systèmes électroniques
 - Etablissement du cahier des charges
 - Les composants
 - Les critères de sélection
 - Technologies
- 3 KiCAD ♥

Cahier des charges

Choix du projet à réaliser.

Cahier des charges

Choix du projet à réaliser.

→ Wooclap.

Etablissement du cahier des charges.

→ Wooclap.

Diagramme d'architecture

Base du diagramme d'architecture.

- Ørganisation des projets de 1ère année
 - Evaluation
 - Amphi
 - TD Machine KiCAD
 - Projet
- 2 Conception de systèmes électroniques
 - Etablissement du cahier des charges
 - Les composants
 - Choix des composants
 - Datasheets et Application Notes
 - Les critères de sélection
 - Technologies
- 3 KiCAD ♥

- 1 Organisation des projets de 1ère année
 - Evaluation
 - Amphi
 - TD Machine KiCAD
 - Projet
- 2 Conception de systèmes électroniques
 - Etablissement du cahier des charges
 - Les composants
 - Choix des composants
 - Datasheets et Application Notes
 - Les critères de sélection
 - Technologies
- 3 KiCAD ♥

Où les trouver?

Les fabricants : ST, NXP, TI, Analog Device, Microchip, etc...

Les revendeurs (par ordre de priorité décroissante) :

- **Farnell**, beaucoup de composants d'électroniques, commande rapide.
- RS, beaucoup de composants d'électroniques ainsi que du matériel de mécanique, commande rapide.
- Mouser, Digikey, très très gros stock d'électronique, le plus complet de tous en composants d'électronique,
- GoTronic, Conrad, Lextronic, Robotshop, orienté DIY, de puces sur carte d'évaluation, de petits moteurs, petits robots, etc...
- Miniplanes, orienté drône, voiture RC, beaucoup de batterie LiPo.

Budget:

■ 10€ par étudiant, si plus, voir avec M. Bares,

Procédure de commande disponible sur Moodle (à venir très prochainement).

Les outils : Octopart & SnapEda

Octopart

- Pour acheter un composant,
- Comparaison des prix et des stocks,

SnapEDA

- Trouver un symbole,
- Trouver une empreinte (footprint),
- Trouver une vue 3D.

4 composantes essentielles :

4 composantes essentielles :

- Unité de traitement des données (uC, FPGA, etc...),
- Actionneurs,
- Capteurs,
- Alimentations.

4 composantes essentielles :

- Unité de traitement des données (uC, FPGA, etc...),
- Actionneurs,
- Capteurs,
- Alimentations.

La communication entre eux :

- Grandeurs analogiques,
- Transmission numérique : ON / OFF (GPIO),
- Bus de communication.

4 composantes essentielles :

- Unité de traitement des données (uC, FPGA, etc...),
- Actionneurs,
- Capteurs,
- Alimentations.

La communication entre eux :

- Grandeurs analogiques,
- Transmission numérique : ON / OFF (GPIO),
- Bus de communication.

L'alimentation de tous les composants :

- Les tensions nécessaires,
- Les courant consommés.

- 1 Organisation des projets de 1ère année
 - Evaluation
 - Amphi
 - TD Machine KiCAD
 - Projet
- 2 Conception de systèmes électroniques
 - Etablissement du cahier des charges
 - Les composants
 - Choix des composants
 - Datasheets et Application Notes
 - Les critères de sélection
 - Technologies
- 3 KiCAD ♥

Lecture d'une datasheet

Exemple: LT1076

- Features
- Description
- Typical Application
- Absolute maximum ratings
- Package
- Electrical Characteristics

- 1 Organisation des projets de 1ère année
 - Evaluation
 - Amphi
 - TD Machine KiCAD
 - Projet
- 2 Conception de systèmes électroniques
 - Etablissement du cahier des charges
 - Les composants
 - Les critères de sélection
 - Bus de communication
 - Packages et technologies
 - Technologies
- 3 KiCAD ♥

- 1 Organisation des projets de 1ère année
 - Evaluation
 - Amphi Amphi
 - TD Machine KiCAD
 - Projet
- 2 Conception de systèmes électroniques
 - Etablissement du cahier des charges
 - Les composants
 - Les critères de sélection
 - Bus de communication
 - Packages et technologies
 - Technologies
- 3 KiCAD ♥

Bus Série

Objectif : Transmettre les données sur un fil les unes après les autres

UART vs SPI vs I2C

- 1 Organisation des projets de 1ère année
 - Evaluation
 - Amphi
 - TD Machine KiCAD
 - Projet
- 2 Conception de systèmes électroniques
 - Etablissement du cahier des charges
 - Les composants
 - Les critères de sélection
 - Bus de communication
 - Packages et technologies
 - Technologies
- 3 KiCAD ♥

1 Composant ≠ 1 Package

Available Packages

Connecteurs

- Faible coût.
- Câbles de prototypage déjà réalisé,
- Courant maximum : 3A pour un pas de 2.54mm.
- Pas de 2.54mm et 1.27mm.
- Existe en SMD/THT.
- Erreur de câblage possible.

- Coût plus élevé,
- Câbles à réaliser soit même,
- Courant maximum : 3A.
- Pas de 2.5mm.
- Série XH en stock à l'école.
- Pas d'erreur de câblage possible : présence d'un détrompeur.

Résistances, condensateurs, inductances CMS

Taille	0201	0402	0603	0805	1206	2512
Dissipation thermique	0.05 W	0.0625 W	0.0625 W	0.1 W	0.125 W	0.5 W

Condensateur electrolytique

- Condensateur polarisé,
- \blacksquare $Taille = C * V_{max}$
- Video explosion : 3"15'

Packages

Ball-grid Array	Dual-in-line Package	Quad-flat no-leads	Quad-flat Package
Small-outline IC	Small-outline Package	Small-outlin	e Transistor

- 1 prganisation des projets de 1ère année
 - Evaluation
 - Amphi
 - TD Machine KiCAD
 - Projet
- 2 Conception de systèmes électroniques
 - Etablissement du cahier des charges
 - Les composants
 - Les critères de sélection
 - Technologies
 - Régulateurs
- 3 KiCAD ♥

- 1 prganisation des projets de 1ère année
 - Evaluation
 - Amphi
 - TD Machine KiCAD
 - Projet
- 2 Conception de systèmes électroniques
 - Etablissement du cahier des charges
 - Les composants
 - Les critères de sélection
 - Technologies
 - Régulateurs
- 3 KiCAD ♥

Régulateurs

Objectif: fournir une tension d'alimentation à partir d'une autre tension.

Régulateur linéaire / LDO :

- Rendement faible,
- Très simple de mise en oeuvre,
- Dissipation thermique élevée

Régulateur à découpage (hacheur 1Q) :

- Rendement élevé (80-90%),
- Beaucoup de composant annexes à rajouter,
- Prix plus élevé,

Régulateurs

LM7805 : régulateur linéaire

Fixed Output Voltage Regulator

LT1074 : régulateur à découpage Basic Positive Buck Converter

Régulateurs

Plan

- Organisation des projets de 1ère année
- 2 Conception de systèmes électroniques
- 3 KiCAD ♥

Let's Go

Speedrun de création de carte!

