BML lecture #4: Gaussian processes

http://github.com/rbardenet/bml-course

Julyan Arbel

Statify team, Inria Grenoble Rhône-Alpes & Univ. Grenoble-Alpes, France

Outline

1 Introduction

2 Examples

3 Reproducing kernel Hilbert space

Outline

1 Introduction

2 Examples

3 Reproducing kernel Hilbert space

What comes to your mind when you hear "Gaussian processes"?

GPs: Coulation function Stationarity

Normal increments

 $X \sim N(0/\Delta)$

Brownia motion

From Rasmussen and Williams, 2006

From Rasmussen and Williams, 2006

What this chapter is about:

- ► How to use GPs in Bayesian inference
- ► RKHS

What this chapter is not about:

- Relationship with regularization theory, splines, support vector machines
- ► PAC-Bayes analysis
- Approximation methods: GP prediction methods is intractable for large sample n datasets with complexity $\mathcal{O}(n^3)$ due to inversion of $n \times n$ matrix

Link with other chapters:

► Wide limit in Bayesian neural networks

What this chapter is about:

- ► How to use GPs in Bayesian inference
- ► RKHS

What this chapter is not about:

- Relationship with regularization theory, splines, support vector machines
- ► PAC-Bayes analysis
- ▶ Approximation methods: GP prediction methods is intractable for large sample n datasets with complexity $\mathcal{O}(n^3)$ due to inversion of $n \times n$ matrix

Link with other chapters:

► Wide limit in Bayesian neural networks

What this chapter is about:

- ► How to use GPs in Bayesian inference
- ► RKHS

What this chapter is not about:

- Relationship with regularization theory, splines, support vector machines
- ► PAC-Bayes analysis
- ▶ Approximation methods: GP prediction methods is intractable for large sample n datasets with complexity $\mathcal{O}(n^3)$ due to inversion of $n \times n$ matrix

Link with other chapters:

Wide limit in Bayesian neural networks

References

- ► Main reference on GPs: C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press, 2006
- ► GPs in Bayesian inference: Chapter 11 of Subhashis Ghosal and Aad Van der Vaart. Fundamentals of nonparametric Bayesian inference. Vol. 44. Cambridge University Press, 2017

Supervized learning

Two common approaches to supervized learning:

- restrict the class of functions considered, for example only linear functions of the input
- give a prior probability to every possible function, where higher probabilities are given to functions that we consider to be more likely

Definition (Rasmussen and Williams, 2006)

A *Gaussian process* is a collection of random variables, any finite number of which have a joint Gaussian distribution.

Definition (Ghosal and Van der Vaart, 2017)

A Gaussian process is a stochastic process $W=(W_t:t\in T)$ indexed by an arbitrary set T such that the vector (W_{t_1},\ldots,W_{t_k}) possesses a multivariate normal distribution, for every $t_i\in T$ and $k\in \mathbb{N}$. A Gaussian process W indexed by \mathbb{R}^d is called:

- ▶ self-similar of index α if $(W_{\sigma t}: t \in \mathbb{R}^d)$ is distributed like $(\sigma^{\alpha}W_t: t \in \mathbb{R}^d)$, for every $\sigma > 0$, and
- stationary if $(W_{t+h}: t \in \mathbb{R}^d)$ has the same distribution of $(W_t: t \in \mathbb{R}^d)$, for every $h \in \mathbb{R}^d$.

Definition (Rasmussen and Williams, 2006)

A *Gaussian process* is a collection of random variables, any finite number of which have a joint Gaussian distribution.

Definition (Ghosal and Van der Vaart, 2017)

A Gaussian process is a stochastic process $W=(W_t:t\in T)$ indexed by an arbitrary set T such that the vector (W_{t_1},\ldots,W_{t_k}) possesses a multivariate normal distribution, for every $t_i\in T$ and $k\in \mathbb{N}$. A Gaussian process W indexed by \mathbb{R}^d is called:

- self-similar of index α if $(W_{\sigma t}: t \in \mathbb{R}^d)$ is distributed like $(\sigma^{\alpha} W_t: t \in \mathbb{R}^d)$, for every $\sigma > 0$, and
- stationary if $(W_{t+h}: t \in \mathbb{R}^d)$ has the same distribution of $(W_t: t \in \mathbb{R}^d)$, for every $h \in \mathbb{R}^d$.

Mean function and covariance kernel

Vectors $(W_{t_1}, \dots, W_{t_k})$ are called marginals, and their distributions marginal distributions or finite-dimensional distributions

Mean function and covariance kerne

Finite-dimensional distributions are determined by the mean function and covariance kernel, defined by

$$\mu(t) = \mathbb{E}(W_t), \quad K(s,t) = \text{Cov}(W_s, W_t), \quad s, t \in T.$$

Mean function and covariance kernel

Vectors $(W_{t_1}, \ldots, W_{t_k})$ are called marginals, and their distributions marginal distributions or finite-dimensional distributions

Mean function and covariance kernel

Finite-dimensional distributions are determined by the mean function and covariance kernel, defined by

$$\mu(t) = \mathbb{E}(W_t), \quad K(s,t) = \text{Cov}(W_s, W_t), \quad s,t \in T.$$

Scaling

Scaling

If $W=(W_t:t\in\mathbb{R}^d)$) is a Gaussian process with covariance kernel K, then the process $(W_{\sigma t}:t\in\mathbb{R}^d)$) is another Gaussian process, with covariance kernel $K(\sigma s,\sigma t)$, for any $\sigma>0$. A scaling factor $\sigma<1$ stretches the sample paths, whereas a factor $\sigma>1$ shrinks them.

From Ghosal and Van der Vaart, 2017

Scaling

Scaling

If $W=(W_t:t\in\mathbb{R}^d)$) is a Gaussian process with covariance kernel K, then the process $(W_{\sigma t}:t\in\mathbb{R}^d)$) is another Gaussian process, with covariance kernel $K(\sigma s,\sigma t)$, for any $\sigma>0$. A scaling factor $\sigma<1$ stretches the sample paths, whereas a factor $\sigma>1$ shrinks them.

From Ghosal and Van der Vaart, 2017

Outline

1 Introduction

2 Examples

3 Reproducing kernel Hilbert space

Random series

If $Z_1, \ldots, Z_m \stackrel{\text{iid}}{\sim} \mathcal{N}(0,1)$ and a_1, \ldots, a_m are functions, then $W_t = \sum_{i=1}^m a_i(t) \overline{Z_i}$ defines a Gaussian process with:

$$\mu(t) = \mathbb{E}[\mathbb{W}_t] = \Sigma \quad \alpha_i(t) \, \mathbb{E}[\mathbb{Z}_i] = 0 \quad \Rightarrow \quad \text{Zew-mean}$$

$$K(s,t) = |E[W_s W_t] = \sum_{i,j} a_i(t) a_j(s) |E[Z_i Z_j] = \sum_{i=1}^{\infty} a_i(s) a_i(t)$$

Rough, smoothness

Brownian motion (or Wiener process)

It is the Gaussian process, say on $[0,\infty)$, with continuous sample paths and covariance function $K(s,t)=\min(s,t)$

Brownian motion properties

Let B_t be a Brownian motion, then $\forall s < t$

- ► Stationarity: $B_t B_s \sim$
- ▶ Independent increments: $B_t B_s \perp (B_u, u \leq s)$

Thus it is a Lévy process

► Self-similar of index 1/2.

Brownian motion (or Wiener process)

It is the Gaussian process, say on $[0,\infty)$, with continuous sample paths and covariance function $K(s,t)=\min(s,t)$, $\mu(t)=0$.

Brownian motion properties

Let B_t be a Brownian motion, then $\forall s < t$: $\mathbb{E}[B_t - B_s] = 0$

- ▶ Stationarity: $B_t B_s \sim \mathcal{N}(0, \xi s)$
- ▶ Independent increments: $B_t B_s \perp \!\!\! \perp (B_u, u \leq s)$

Thus it is a Lévy process. $(\beta_{G+1}\beta_{GS}) = \min(\sigma t_1 \sigma s) = \sigma \min(t_1 s)$

Self-similar of index
$$1/2$$
: $\mathbb{E}[B_{Gt}] = 0$ = $\mathbb{C} \circ (a^{1/2} B_{t}, a^{-1/2} B_{s})$
 $\mathbb{Var}(B_{t} - B_{s}) = \mathbb{E}[(B_{t} - B_{s})^{2}] = s + t - 2 \min(s, t) = t - 5$

Ornstein-Uhlenbeck

The standard Ornstein–Uhlenbeck process with parameter $\theta>0$ is a mean-zero, stationary GP with time set $T=[0,\infty)$, continuous sample paths, and covariance function

$$K(s,t) = (2\theta)^{-1} \exp\left(-\theta|t-s|\right)$$

Properties of Ornstein-Uhlenbeck process

The standard Ornstein–Uhlenbeck process with parameter $\theta > 0$ can be constructed from a Brownian motion B through the relation

$$W_t = (2\theta)^{-1/2} \exp(-\theta t) B_{e^{2\theta t}}$$

Ornstein-Uhlenbeck

The standard Ornstein–Uhlenbeck process with parameter $\theta > 0$ is a mean-zero, stationary GP with time set $T = [0, \infty)$, continuous sample paths, and covariance function $\theta = 1$

$$K(s,t) = (2\theta)^{-1} \exp\left(-\theta|t-s|\right)$$

Properties of Ornstein-Uhlenbeck process

The standard Ornstein–Uhlenbeck process with parameter $\theta>0$ can be constructed from a Brownian motion B through the relation

$$\begin{aligned} & \begin{bmatrix} W_t = (2\theta)^{-1/2} \exp\left(-\theta t\right) B_{e^{2\theta t}} \end{bmatrix} & EW_t = 0 \\ & K(s,t) = E[W_t W_s] = (2\theta)^{-1} e^{-\theta (t+s)} E[B_{e^{2\theta t}} B_{e^{2\theta s}}] = & \\ & * = \min\left[e^{2\theta t}, e^{2\theta s}\right] = e^{2\theta \min\{t,s\}} \end{aligned}$$

Square exponential

GP with covariance function

$$K(s,t) = \exp\left(-\frac{\|t-s\|^2}{2\ell^2}\right)$$

Parameter ℓ is called the *characteristic length-scale*.

Fractional Brownian motion

The fractional Brownian motion (fBm) with Hurst parameter $\alpha \in (0,1)$ is the mean zero Gaussian process $W=(W_t:t\in [0,1])$ with continuous sample paths and covariance function

$$\mathcal{K}(s,t) = \frac{1}{2} \left(s^{2\alpha} + t^{2\alpha} - |t-s|^{2\alpha} \right)$$

Kriging

Kriging

For a given Gaussian process $W=(W_t:t\in T)$ and fixed, distinct points $t_1,\ldots,t_m\in T$, the conditional expectations $W_t^\star=\mathbb{E}[W_t|W_{t_1},\ldots,W_{t_m}]$ define another Gaussian process.

Exercise

Find the covariance function of W_t^* , say $K^*(t,s)$, as a function of (t_1,\ldots,t_m) .

Properties of Kriging

- If W has continuous sample paths, then so does W[⋆].
- ▶ In that case the process W^* converges to W when $m \to \infty$ and the interpolating points (t_1, \ldots, t_m) grow dense in T.

Kriging

Kriging

For a given Gaussian process $W=(W_t:t\in T)$ and fixed, distinct points $t_1,\ldots,t_m\in T$, the conditional expectations $W_t^\star=\mathbb{E}[W_t|W_{t_1},\ldots,W_{t_m}]$ define another Gaussian process.

Exercise

Find the covariance function of W_t^* , say $K^*(t,s)$, as a function of (t_1,\ldots,t_m) .

Properties of Kriging

- If W has continuous sample paths, then so does W[⋆].
- ▶ In that case the process W^* converges to W when $m \to \infty$ and the interpolating points (t_1, \ldots, t_m) grow dense in T.

Kriging

Kriging

For a given Gaussian process $W=(W_t:t\in T)$ and fixed, distinct points $t_1,\ldots,t_m\in T$, the conditional expectations $W_t^\star=\mathbb{E}[W_t|W_{t_1},\ldots,W_{t_m}]$ define another Gaussian process.

Exercise

Find the covariance function of W_t^* , say $K^*(t,s)$, as a function of (t_1,\ldots,t_m) .

Properties of Kriging

- ▶ If W has continuous sample paths, then so does W^* .
- ▶ In that case the process W^* converges to W when $m \to \infty$ and the interpolating points (t_1, \ldots, t_m) grow dense in T.

Outline

1 Introduction

2 Examples

3 Reproducing kernel Hilbert space

To every Gaussian process corresponds a Hilbert space, determined by its covariance kernel. This space determines the support and shape of the process, and therefore is crucial for the properties of the Gaussian process as a prior.

Definition

A *Hilbert space* is an inner product space that is complete wrt the distance function induced by the inner product.

To every Gaussian process corresponds a Hilbert space, determined by its covariance kernel. This space determines the support and shape of the process, and therefore is crucial for the properties of the Gaussian process as a prior.

Definition

A *Hilbert space* is an <u>inner product</u> space that is complete wrt the distance function induced by the inner product.

For a Gaussian process $W=(W_t:t\in T)$, let $\overline{\lim}(W)$ be the closure of the set of all linear combinations $\sum_i \alpha_i W_{t_i}$ in the L_2 -space of square-integrable variables. The space $\overline{\lim}(W)$ is a Hilbert space.

Definition

The reproducing kernel Hilbert space (RKHS) of the mean-zero, Gaussian process $W=(W_t:t\in T)$ is the set $\mathbb H$ of all functions $z_H:T\to\mathbb R$ defined by $z_H(t)=\mathbb E(W_tH)$, for H ranging over $\overline{\text{lin}}(W)$ The corresponding inner product is

$$\langle z_{H_1}, z_{H_2} \rangle_{\mathbb{H}} = \mathbb{E}(H_1 H_2).$$

For a Gaussian process $W=(W_t:t\in T)$, let $\overline{\lim}(W)$ be the closure of the set of all linear combinations $\sum_I \alpha_i \underline{W}_{t_i}$ in the L_2 -space of square-integrable variables. The space $\overline{\lim}(W)$ is a Hilbert space.

Definition

The reproducing kernel Hilbert space (RKHS) of the mean-zero, Gaussian process $W=(W_t:t\in T)$ is the set $\mathbb H$ of all functions $z_H:T\to\mathbb R$ defined by $z_H(t)=\overline{\mathbb E(W_tH)}$ for H ranging over $\overline{\lim}(W)$. The corresponding inner product is

$$\langle z_{H_1}, z_{H_2} \rangle_{\mathbb{H}} = \mathbb{E}(H_1 H_2).$$

Properties of RKHS

- Correspondance z_H ↔ H is an isometry (by def of inner product), so the definition is well-posed (the correspondence is one-to-one), and
 H ⋈ is indeed a Hilbert space.
- Function corresponding to $H = \sum_{i} \alpha_{i} W_{s_{i}}$ is $z_{H}^{(i)} = \sum_{i} \alpha_{i} K(\cdot, s_{i})$ $z_{H}^{(k)} = \mathbb{E}[W_{t} \sum_{i} \alpha_{i} W_{s_{i}}] = \sum_{i} \alpha_{i} K(t, s_{i})$
- For any $s \in T$, function $K(s, \cdot)$ is in RKHS \mathbb{H} associated with $H = W_s$.

Reproducing formula

For a general function $z_H \in \mathbb{H}$ we have

$$\langle z_H \rangle$$
, $K(s,\cdot) \rangle_{\mathbb{H}} = \mathbb{E}(HW_s) = z_H(s)$.

That is to say, for any function $h \in \mathbb{H}$,

$$\widehat{h}(t) = \widehat{h}K(t,\cdot)\rangle_{\mathbb{H}}.$$

Example of RKHS: Euclidean space

$$W \sim N_{2}(0, \Sigma) \qquad W = \begin{pmatrix} W_{1} \\ W_{2} \end{pmatrix} \qquad \Sigma = \begin{pmatrix} \Sigma_{11} & \Sigma_{12} \\ \Sigma_{22} & \Sigma_{12} \end{pmatrix}$$

$$W = \begin{pmatrix} W_{1} : t \in \mathcal{E}_{1}/2 \\ 0 \end{pmatrix} \qquad W = \begin{pmatrix} W_{1} : W_{1} \end{pmatrix} = \sum_{i,j} \qquad \lim_{i \to \infty} \langle W_{i} \rangle \iff X$$

$$W = \begin{pmatrix} W_{1} : W_{1} \end{pmatrix} = Cov \begin{pmatrix} W_{1} : W_{1} \end{pmatrix} = \sum_{i,j} \qquad \lim_{i \to \infty} \langle W_{1} \rangle \iff X$$

$$W = \begin{pmatrix} W_{1} : W_{1} \\ W_{2} \end{pmatrix} = Cov \begin{pmatrix} W_{1} : W_{1} \\ W_{2} \end{pmatrix} = \sum_{i,j} \qquad \lim_{i \to \infty} \langle W_{1} \rangle = X$$

$$W = \begin{pmatrix} W_{1} \\ W_{2} \end{pmatrix} = \left[\sum_{i \to \infty} \langle W_{1} \rangle + \sum_{i \to \infty} \langle W_{1} \rangle +$$

References I

- [1] Subhashis Ghosal and Aad Van der Vaart. *Fundamentals of nonparametric Bayesian inference*. Vol. 44. Cambridge University Press, 2017.
- [2] C. E. Rasmussen and C. K. I. Williams. *Gaussian Processes for Machine Learning*. MIT Press, 2006.