PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		O	1) International Publication Number:	WO 99/31236	
C12N 15/12, C07K 14/47, 16/18, C12Q 1/68	A2	(4	3) International Publication Date:	24 June 1999 (24.06.99)	
(21) International Application Number: PCT/I	T/IB98/021		(81) Designated States: AL, AM, AT, ABY, CA, CH, CN, CU, CZ, DE		

(22) International Filing Date:	17 December 1998 (17.1	2.98)	GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR,
(30) Priority Data: 60/069,957 17 1 60/074,121 9 Fe 60/081,563 13 4	December 1997 (17.12.97) ebruary 1998 (09.02.98) April 1998 (13.04.98) August 1998 (10.08.98)	US US US US	KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN,
		- 1	TD TG)

(71) Applicant (for all designated States except US): GENSET [FR/FR]; 24, rue Royale, F-75008 Paris (FR).

(72) Inventors; and
(75) Inventors/Applicants (for US only): BOUGUELERET, Lydie [FR/FR]; 108, avenue Victor Hugo, F-92170 Vanves (FR). DUCLERT, Aymeric [FR/FR]; 6 ter, rue Victorine, F-94100 Saint-Maur (FR). DUMAS MILNE EDWARDS, Jean-Baptiste [FR/FR]; 8, rue Grégoire de Tours, F-75006

Paris (FR).

(74) Agents: MARTIN, Jean-Jacques et al.; Cabinet Regimbeau, 26, avenue Kléber, F-75116 Paris (FR).

Published

Without international search report and to be republished upon receipt of that report.

(54) Title: EXTENDED cDNAs FOR SECRETED PROTEINS

(57) Abstract

The sequences of extended cDNAs encoding secreted proteins are disclosed. The extended cDNAs can be used to express secreted proteins or portions thereof or to obtain antibodies capable of specifically binding to the secreted proteins. The extended cDNAs may also be used in diagnostic, forensic, gene therapy, and chromosome mapping procedures. The extended cDNAs may also be used to design expression vectors and secretion vectors.

BEST AVAILABLE COPY

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
ΑU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	ТJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand		
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
DE	Germany	LI	Liechtenstein	SD	Sudan		
DK	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 99/31236 PCT/IB98/02122

EXTENDED cDNAS for secreted proteins

The present application relates to extended cDNAs which were disclosed in several United States Provisional Patent Applications. Table I lists the SEQ ID Nos. of the extended cDNAs in the present application, the SEQ ID Nos. of the identical or nearly identical extended cDNAs in the provisional applications, and the identities of the provisional applications in which the extended cDNAs were disclosed.

Background of the Invention

The estimated 50,000-100,000 genes scattered along the human chromosomes offer tremendous promise for the understanding, diagnosis, and treatment of human diseases. In addition, probes capable of specifically hybridizing to loci distributed throughout the human genome find applications in the construction of high resolution chromosome maps and in the identification of individuals.

In the past, the characterization of even a single human gene was a painstaking process, requiring years of effort. Recent developments in the areas of cloning vectors, DNA sequencing, and computer technology have merged to greatly accelerate the rate at which human genes can be isolated, sequenced, mapped, and characterized. Cloning vectors such as yeast artificial chromosomes (YACs) and bacterial artificial chromosomes (BACs) are able to accept DNA inserts ranging from 300 to 1000 kilobases (kb) or 100-400 kb in length respectively, thereby facilitating the manipulation and ordering of DNA sequences distributed over great distances on the human chromosomes. Automated DNA sequencing machines permit the rapid sequencing of human genes. Bioinformatics software enables the comparison of nucleic acid and protein sequences, thereby assisting in the characterization of human gene products.

Currently, two different approaches are being pursued for identifying and characterizing the genes distributed
along the human genome. In one approach, large fragments of genomic DNA are isolated, cloned, and sequenced.
Potential open reading frames in these genomic sequences are identified using bio-informatics software. However, this approach entails sequencing large stretches of human DNA which do not encode proteins in order to find the protein encoding sequences scattered throughout the genome. In addition to requiring extensive sequencing, the bio-informatics software may mischaracterize the genomic sequences obtained. Thus, the software may produce-false positives in which non-coding DNA is mischaracterized as coding DNA or false negatives in which coding DNA is mischaeled as non-coding DNA.

An alternative approach takes a more direct route to identifying and characterizing human genes. In this approach, complementary DNAs (cDNAs) are synthesized from isolated messenger RNAs (mRNAs) which encode human proteins. Using this approach, sequencing is only performed on DNA which is derived from protein coding portions of the genome. Often, only short stretches of the cDNAs are sequenced to obtain sequences called expressed sequence tags (ESTs). The ESTs may then be used to isolate or purify extended cDNAs which include sequences adjacent to the EST sequences. The extended cDNAs may contain all of the sequence of the EST which was used to obtain them or only a portion of the sequence of the EST which was used to obtain them. In addition, the extended cDNAs may contain the full coding sequence of the gene from which the EST was derived or, alternatively, the extended cDNAs may include

WO 99/31236 PCT/IB98/02122

-2-

portions of the coding sequence of the gene from which the EST was derived. It will be appreciated that there may be several extended cDNAs which include the EST sequence as a result of alternate splicing or the activity of alternative promoters.

In the past, the short EST sequences which could be used to isolate or purify extended cDNAs were often 5 obtained from oligo-dT primed cDNA libraries. Accordingly, they mainly corresponded to the 3' untranslated region of the mRNA. In part, the prevalence of EST sequences derived from the 3' end of the mRNA is a result of the fact that typical techniques for obtaining cDNAs, are not well suited for isolating cDNA sequences derived from the 5' ends of mRNAs. (Adams et al., *Nature* 377:174, 1996, Hillier et al., *Genome Res.* 6:807-828, 1996).

In addition, in those reported instances where longer cDNA sequences have been obtained, the reported 10 sequences typically correspond to coding sequences and do not include the full 5' untranslated region of the mRNA from which the cDNA is derived. Such incomplete sequences may not include the first exon of the mRNA, particularly in situations where the first exon is short. Furthermore, they may not include some exons, often short ones, which are located upstream of splicing sites. Thus, there is a need to obtain sequences derived from the 5' ends of mRNAs which can be used to obtain extended cDNAs which may include the 5' sequences contained in the 5' ESTs.

While many sequences derived from human chromosomes have practical applications, approaches based on the identification and characterization of those chromosomal sequences which encode a protein product are particularly relevant to diagnostic and therapeutic uses. Of the 50,000-100,000 protein coding genes, those genes encoding proteins which are secreted from the cell in which they are synthesized, as well as the secreted proteins themselves, are particularly valuable as potential therapeutic agents. Such proteins are often involved in cell to cell communication and 20 may be responsible for producing a clinically relevant response in their target cells.

15

In fact, several secretory proteins, including tissue plasminogen activator, G-CSF, GM-CSF, erythropoietin, human growth hormone, insulin, interferon- α , interferon- β , interferon- γ , and interleukin-2, are currently in clinical use. These proteins are used to treat a wide range of conditions, including acute myocardial infarction, acute ischemic stroke, anemia, diabetes, growth hormone deficiency, hepatitis, kidney carcinoma, chemotherapy induced neutropenia and 25 multiple sclerosis. For these reasons, extended cDNAs encoding secreted proteins or portions thereof represent a particularly valuable source of therapeutic agents. Thus, there is a need for the identification and characterization of secreted proteins and the nucleic acids encoding them.

In addition to being therapeutically useful themselves, secretory proteins include short peptides, called signal peptides, at their amino termini which direct their secretion. These signal peptides are encoded by the signal sequences 30 located at the 5' ends of the coding sequences of genes encoding secreted proteins. Because these signal peptides will direct the extracellular secretion of any protein to which they are operably linked, the signal sequences may be exploited to direct the efficient secretion of any protein by operably linking the signal sequences to a gene encoding the protein for which secretion is desired. This may prove beneficial in gene therapy strategies in which it is desired to deliver a particular gene product to cells other than the cell in which it is produced. Signal sequences encoding signal peptides

.3.

also find application in simplifying protein purification techniques. In such applications, the extracellular secretion of the desired protein greatly facilitates purification by reducing the number of undesired proteins from which the desired protein must be selected. Thus, there exists a need to identify and characterize the 5' portions of the genes for secretory proteins which encode signal peptides.

Public information on the number of human genes for which the promoters and upstream regulatory regions have been identified and characterized is quite limited. In part, this may be due to the difficulty of isolating such regulatory sequences. Upstream regulatory sequences such as transcription factor binding sites are typically too short to be utilized as probes for isolating promoters from human genomic libraries. Recently, some approaches have been developed to isolate human promoters. One of them consists of making a CpG island library (Cross, S.H. et al.,

Purification of CpG Islands using a Methylated DNA Binding Column, Nature Genetics 6: 236-244 (1994)). The second consists of isolating human genomic DNA sequences containing Spel binding sites by the use of Spel binding protein. (Mortlock et al., Genome Res. 6:327-335, 1996). Both of these approaches have their limits due to a lack of specificity or of comprehensiveness.

5' ESTs and extended cDNAs obtainable therefrom may be used to efficiently identify and isolate upstream regulatory regions which control the location, developmental stage, rate, and quantity of protein synthesis, as well as the stability of the mRNA. (Theil et al., BioFactors 4:87-93, (1993). Once identified and characterized, these regulatory regions may be utilized in gene therapy or protein purification schemes to obtain the desired amount and locations of protein synthesis or to inhibit, reduce, or prevent the synthesis of undesirable gene products.

In addition, ESTs containing the 5' ends of secretory protein genes or extended cDNAs which include
sequences adjacent to the sequences of the ESTs may include sequences useful as probes for chromosome mapping and
the identification of individuals. Thus, there is a need to identify and characterize the sequences upstream of the 5'
coding sequences of genes encoding secretory proteins.

Summary of the Invention

The present invention relates to purified, isolated, or recombinant extended cDNAs which encode secreted proteins or fragments thereof. Preferably, the purified, isolated or recombinant cDNAs contain the entire open reading frame of their corresponding mRNAs, including a start codon and a stop codon. For example, the extended cDNAs may include nucleic acids encoding the signal peptide as well as the mature protein. Alternatively, the extended cDNAs may contain a fragment of the open reading frame. In some embodiments, the fragment may encode only the sequence of the mature protein. Alternatively, the fragment may encode only a portion of the mature protein. A further aspect of the present invention is a nucleic acid which encodes the signal peptide of a secreted protein.

The present extended cDNAs were obtained using ESTs which include sequences derived from the authentic 5' ends of their corresponding mRNAs. As used herein the terms "EST" or "5' EST" refer to the short cDNAs which were used to obtain the extended cDNAs of the present invention. As used herein, the term "extended cDNA" refers to the cDNAs which include sequences adjacent to the 5' EST used to obtain them. The extended cDNAs may contain all or a

WO 99/31236 PCT/IB98/02122

.4.

portion of the sequence of the EST which was used to obtain them. The term "corresponding mRNA" refers to the mRNA which was the template for the cDNA synthesis which produced the 5' EST. As used herein, the term "purified" does not require absolute purity; rather, it is intended as a relative definition. Individual extended cDNA clones isolated from a cDNA library have been conventionally purified to electrophoretic homogeneity. The sequences obtained from these clones could not be obtained directly either from the library or from total human DNA. The extended cDNA clones are not naturally occurring as such, but rather are obtained via manipulation of a partially purified naturally occurring substance (messenger RNA). The conversion of mRNA into a cDNA library involves the creation of a synthetic substance (cDNA) and pure individual cDNA clones can be isolated from the synthetic library by clonal selection. Thus, creating a cDNA library from messenger RNA and subsequently isolating individual clones from that library results in an approximately 10⁴·10⁶ fold purification of the native message. Purification of starting material or natural material to at least one order of magnitude, preferably two or three orders, and more preferably four or five orders of magnitude is expressly contemplated.

As used herein, the term "isolated" requires that the material be removed from its original environment (e.g., the natural environment if it is naturally occurring). For example, a naturally-occurring polynucleotide present in a living animal is not isolated, but the same polynucleotide, separated from some or all of the coexisting materials in the natural system, is isolated.

As used herein, the term "recombinant" means that the extended cDNA is adjacent to "backbone" nucleic acid to which it is not adjacent in its natural environment. Additionally, to be "enriched" the extended cDNAs will represent 5% or more of the number of nucleic acid inserts in a population of nucleic acid backbone molecules. Backbone molecules according to the present invention include nucleic acids such as expression vectors, self-replicating nucleic acids, viruses, integrating nucleic acids, and other vectors or nucleic acids used to maintain or manipulate a nucleic acid insert of interest. Preferably, the enriched extended cDNAs represent 15% or more of the number of nucleic acid inserts in the population of recombinant backbone molecules. More preferably, the enriched extended cDNAs represent 50% or more of the number of nucleic acid inserts in the population of recombinant backbone molecules. In a highly preferred embodiment, the enriched extended cDNAs represent 90% or more of the number of nucleic acid inserts in the population of recombinant backbone molecules. "Stringent", "moderate," and "low" hybridization conditions are as defined in Example 29.

Unless otherwise indicated, a "complementary" sequence is fully complementary. Thus, extended cDNAs encoding secreted polypeptides or fragments thereof which are present in cDNA libraries in which one or more extended cDNAs encoding secreted polypeptides or fragments thereof make up 5% or more of the number of nucleic acid inserts in the backbone molecules are "enriched recombinant extended cDNAs" as defined herein. Likewise, extended cDNAs encoding secreted polypeptides or fragments thereof which are in a population of plasmids in which one or more extended cDNAs of the present invention have been inserted such that they represent 5% or more of the number of inserts in the plasmid backbone are "enriched recombinant extended cDNAs" as defined herein. However, extended

5

cDNAs encoding secreted polypeptides or fragments thereof which are in cDNA libraries in which the extended cDNAs encoding secreted polypeptides or fragments thereof constitute less than 5% of the number of nucleic acid inserts in the population of backbone molecules, such as libraries in which backbone molecules having a cDNA insert encoding a secreted polypeptide are extremely rare, are not "enriched recombinant extended cDNAs."

.5.

PCT/IB98/02122

In particular, the present invention relates to extended cDNAs which were derived from genes encoding secreted proteins. As used herein, a "secreted" protein is one which, when expressed in a suitable host cell, is transported across or through a membrane, including transport as a result of signal peptides in its amino acid sequence. "Secreted" proteins include without limitation proteins secreted wholly (e.g. soluble proteins), or partially (e.g. receptors) from the cell in which they are expressed. "Secreted" proteins also include without limitation proteins which are 10 transported across the membrane of the endoplasmic reticulum.

Extended cDNAs encoding secreted proteins may include nucleic acid sequences, called signal sequences, which encode signal puptides which direct the extracellular secretion of the proteins encoded by the extended cDNAs. Generally, the signal peptides are located at the amino termini of secreted proteins.

Secreted proteins are translated by ribosomes associated with the "rough" endoplasmic reticulum. Generally, 15 secreted proteins are co-translationally transferred to the membrane of the endoplasmic reticulum. Association of the ribosome with the endoplasmic reticulum during translation of secreted proteins is mediated by the signal peptide. The signal peptide is typically cleaved following its co-translational entry into the endoplasmic reticulum. After delivery to the endoplasmic reticulum, secreted proteins may proceed through the Golgi apparatus. In the Golgi apparatus, the proteins may undergo post-translational modification before entering secretory vesicles which transport them across the 20 cell membrane.

The extended cDNAs of the present invention have several important applications. For example, they may be used to express the entire secreted protein which they encode. Alternatively, they may be used to express portions of the secreted protein. The portions may comprise the signal peptides encoded by the extended cDNAs or the mature proteins encoded by the extended cDNAs (i.e. the proteins generated when the signal peptide is cleaved off). The 25 portions may also comprise polypeptides having at least 10 consecutive amino acids encoded by the extended cDNAs. Alternatively, the portions may comprise at least 15 consecutive amino acids encoded by the extended cDNAs. In some embodiments, the portions may comprise at least 25 consecutive amino acids encoded by the extended cDNAs. In other embodiments, the portions may comprise at least 40 amino acids encoded by the extended cDNAs.

Antibodies which specifically recognize the entire secreted proteins encoded by the extended cDNAs or 30 fragments thereof having at least 10 consecutive amino acids, at least 15 consecutive amino acids, at least 25 consecutive amino acids, or at least 40 consecutive amino acids may also be obtained as described below. Antibodies which specifically recognize the mature protein generated when the signal peptide is cleaved may also be obtained as described below. Similarly, antibodies which specifically recognize the signal peptides encoded by the extended cDNAs may also be obtained.

WO 99/31236 PCT/IB98/02122

-6-

In some embodiments, the extended cDNAs include the signal sequence. In other embodiments, the extended cDNAs may include the full coding sequence for the mature protein (i.e. the protein generated when the signal polypeptide is cleaved off). In addition, the extended cDNAs may include regulatory regions upstream of the translation start site or downstream of the stop codon which control the amount, location, or developmental stage of gene expression. As discussed above, secreted proteins are therapeutically important. Thus, the proteins expressed from the cDNAs may be useful in treating or controlling a variety of human conditions. The extended cDNAs may also be used to obtain the corresponding genomic DNA. The term "corresponding genomic DNA" refers to the genomic DNA which encodes mRNA which includes the sequence of one of the strands of the extended cDNA in which thymidine residues in the sequence of the extended cDNA are replaced by uracil residues in the mRNA.

The extended cDNAs or genomic DNAs obtained therefrom may be used in forensic procedures to identify individuals or in diagnostic procedures to identify individuals having genetic diseases resulting from abnormal expression of the genes corresponding to the extended cDNAs. In addition, the present invention is useful for constructing a high resolution map of the human chromosomes.

10

The present invention also relates to secretion vectors capable of directing the secretion of a protein of

interest. Such vectors may be used in gene therapy strategies in which it is desired to produce a gene product in one cell which is to be delivered to another location in the body. Secretion vectors may also facilitate the purification of desired proteins.

The present invention also relates to expression vectors capable of directing the expression of an inserted gene in a desired spatial or temporal manner or at a desired level. Such vectors may include sequences upstream of the extended cDNAs such as promoters or upstream regulatory sequences.

In addition, the present invention may also be used for gene therapy to control or treat genetic diseases. Signal peptides may also be fused to heterologous proteins to direct their extracellular secretion.

One embodiment of the present invention is a purified or isolated nucleic acid comprising the sequence of one of SEO ID NOs: 40-140 and 242-377 or a sequence complementary thereto. In one aspect of this embodiment, the nucleic acid is recombinant.

Another embodiment of the present invention is a purified or isolated nucleic acid comprising at least 10 consecutive bases of the sequence of one of SEQ ID NOs: 40-140 and 242-377 or one of the sequences complementary thereto. In one aspect of this embodiment, the nucleic acid comprises at least 15, 25, 30, 40, 50, 75, or 100 consecutive bases of one of the sequences of SEQ ID NOs: 40-140 and 242-377 or one of the sequences complementary thereto. The nucleic acid may be a recombinant nucleic acid.

Another embodiment of the present invention is a purified or isolated nucleic acid of at least 15 bases capable of hybridizing under stringent conditions to the sequence of one of SEQ ID NOs: 40-140 and 242-377 or a sequence complementary to one of the sequences of SEQ ID NOs: 40-140 and 242-377. In one aspect of this embodiment, the nucleic acid is recombinant.

20

25

30

Another embodiment of the present invention is a purified or isolated nucleic acid comprising the full coding sequences of one of SEQ ID NOs: 40-140 and 242-377, wherein the full coding sequence optionally comprises the sequence encoding signal peptide as well as the sequence encoding mature protein. In a preferred embodiment, the isolated or purified nucleic acid comprises the full coding sequence of one of SEQ ID Nos. 40, 42-44, 46, 48, 49, 51, 53, 60, 62-72, 76-78, 80-83, 85-88, 90, 93, 94, 97, 99-102, 104, 107-125, 127, 132, 135-138, 140 and 242-377 wherein the full coding sequence comprises the sequence encoding signal peptide and the sequence encoding mature protein. In one aspect of this embodiment, the nucleic acid is recombinant.

A further embodiment of the present invention is a purified or isolated nucleic acid comprising the nucleotides of one of SEQ ID NOs: 40-140 and 242-377 which encode a mature protein. In a preferred embodiment, the purified or isolated nucleic acid comprises the nucleotides of one of SEQ ID NOs: 40-44, 46, 48, 49, 51-53, 55, 56, 58-72, 75-78, 80-88, 90, 93, 94, 97, 99-125, 127, 132, 133, 135-138, 140, and 242-377 which encode a mature protein. In one aspect of this embodiment, the nucleic acid is recombinant.

Yet another embodiment of the present invention is a purified or isolated nucleic acid comprising the nucleotides of one of SEQ ID NOs: 40-140 and 242-377 which encode the signal peptide. In a preferred embodiment, the purified or isolated nucleic acid comprises the nucleotides of SEQ ID NOs: 40, 42-46, 48, 49, 51, 53, 57, 60, 62-73, 76-78, 80-83, 85-88, 90, 93-95, 97, 99-102, 104, 107-125, 127, 128, 130, 132, 134-140 and 242-377 which encode the signal peptide. In one aspect of this embodiment, the nucleic acid is recombinant.

Another embodiment of the present invention is a purified or isolated nucleic acid encoding a polypeptide having the sequence of one of the sequences of SEQ ID NOs: 141-241 and 378-513.

Another embodiment of the present invention is a purified or isolated nucleic acid encoding a polypeptide having the sequence of a mature protein included in one of the sequences of SEQ ID NOs: 141-241 and 378-513. In a preferred embodiment, the purified or isolated nucleic acid encodes a polypeptide having the sequence of a mature protein included in one of the sequences of SEQ ID NOs: 141-145, 147, 149, 150, 152-154, 156, 157, 159-172, 176-179, 181-189, 191, 194, 195, 198, 200-226, 228, 233, 234, 236-239, 241 and 378-513.

Another embodiment of the present invention is a purified or isolated nucleic acid encoding a polypeptide having the sequence of a signal peptide included in one of the sequences of SEQ ID NOs: 141-241 and 378-513. In a preferred embodiment, the purified or isolated nucleic acid encodes a polypeptide having the sequence of a signal peptide included in one of the sequences of SEQ ID NOs: 141, 143-147, 149, 150, 152, 154, 158, 161, 163-174, 177-179, 181-184, 186-189, 191, 194-196, 198, 200-203, 205, 208-226, 228, 229, 231, 233, 235-241, and 378-513.

Yet another embodiment of the present invention is a purified or isolated protein comprising the sequence of one of SEQ ID NOs: 141-241 and 378-513.

Another embodiment of the present invention is a purified or isolated polypeptide comprising at least 10 consecutive amino acids of one of the sequences of SEQ ID NOs: 141-241 and 378-513. In one aspect of this embodiment, the purified or isolated polypeptide comprises at least 15, 20, 25, 35, 50, 75, 100, 150 or 200 consecutive

amino acids of one of the sequences of SEQ ID NOs: 141-241 and 378-513. In still another aspect, the purified or isolated polypeptide comprises at least 25 consecutive amino acids of one of the sequences of SEQ ID NOs: 141-241 and 378-513.

Another embodiment of the present invention is an isolated or purified polypeptide comprising a signal peptide of one of the polypeptides of SEQ ID NOs: 141-241 and 378-513. In a preferred embodiment, the isolated or purified polypeptide comprises a signal peptide of one of the polypeptides of SEQ ID NOs: 141, 143-147, 149, 150, 152, 154, 158, 161, 163-174, 177-179, 181-184, 186-189, 191, 194-196, 198, 200-203, 205, 208-226, 228, 229, 231, 233, 235-241, and 378-513.

Yet another embodiment of the present invention is an isolated or purified polypeptide comprising a mature protein of one of the polypeptides of SEQ ID NOs: 141-241 and 378-513. In a preferred embodiment, the isolated or purified polypeptide comprises a mature protein of one of the polypeptides of SEQ ID NOs: 141-145, 147, 149, 150, 152-154, 156, 157, 159-172, 176-179, 181-189, 191, 194, 195, 198, 200-226, 228, 233, 234, 236-239, 241 and 378-513.

A further embodiment of the present invention is a method of making a protein comprising one of the sequences of SEQ ID NO: 141-241 and 378-513, comprising the steps of obtaining a cDNA comprising one of the sequences of sequence of SEQ ID NO: 40-140 and 242-377, inserting the cDNA in an expression vector such that the cDNA is operably linked to a promoter, and introducing the expression vector into a host cell whereby the host cell produces the protein encoded by said cDNA. In one aspect of this embodiment, the method further comprises the step of isolating the protein.

Another embodiment of the present invention is a protein obtainable by the method described in the preceding paragraph.

Another embodiment of the present invention is a method of making a protein comprising the amino acid sequence of the mature protein contained in one of the sequences of SEQ ID NO: 141-241 and 378-513, comprising the steps of obtaining a cDNA comprising one of the nucleotides sequence of sequence of SEQ ID NO: 40-140 and 242-377 which encode for the mature protein, inserting the cDNA in an expression vector such that the cDNA is operably linked to a promoter, and introducing the expression vector into a host cell whereby the host cell produces the mature protein encoded by the cDNA. In one aspect of this embodiment, the method further comprises the step of isolating the protein.

Another embodiment of the present invention is a mature protein obtainable by the method described in the 30 preceding paragraph.

In a preferred embodiment, the above method comprises a method of making a protein comprising the amino acid sequence of the mature protein contained in one of the sequences of SEQ ID NO: 141-145, 147, 149, 150, 152-154, 156, 157, 159-172, 176-179, 181-189, 191, 194, 195, 198, 200-226, 228, 233, 234, 236-239, 241 and 378-513, comprising the steps of obtaining a cDNA comprising one of the nucleotides sequence of sequence of SEQ ID NO:

40-44, 46, 48, 49, 51-53, 55, 56, 58-72, 75-78, 80-88, 90, 93, 94, 97, 99-125, 127, 132, 133, 135-138, 140, and 242-377 which encode for the mature protein, inserting the cDNA in an expression vector such that the cDNA is operably linked to a promoter, and introducing the expression vector into a host cell whereby the host cell produces the mature protein encoded by the cDNA. In one aspect of this embodiment, the method further comprises the step of isolating the protein.

Another embodiment of the present invention is a host cell containing the purified or isolated nucleic acids comprising the sequence of one of SEQ ID NOs: 40-140 and 242-377 or a sequence complementary thereto described herein.

Another embodiment of the present invention is a host cell containing the purified or isolated nucleic acids comprising the full coding sequences of one of SEO ID NOs: 40-140 and 242-377, wherein the full coding sequence comprises the sequence encoding signal peptide and the sequence encoding mature protein described herein.

Another embodiment of the present invention is a host cell containing the purified or isolated nucleic acids comprising the nucleotides of one of SEQ ID NOs: 40-140 and 242-377 which encode a mature protein which are described herein. Preferably, the host cell contains the purified or isolated nucleic acids comprising the nucleotides of one of SEQ ID NOs: 40-44, 46, 48, 49, 51-53, 55, 56, 58-72, 75-78, 80-88, 90, 93, 94, 97, 99-125, 127, 132, 133, 135-138, 140, and 242-377 which encode a mature protein.

Another embodiment of the present invention is a host cell containing the purified or isolated nucleic acids comprising the nucleotides of one of SEQ ID NOs: 40-140 and 242-377 which encode the signal peptide which are described herein. Preferably, the host cell contains the purified or isolated nucleic acids comprising the nucleotides of one of SEQ ID Nos.: 40, 42-46, 48, 49, 51, 53, 57, 60, 62-73, 76-78, 80-83, 85-88, 90, 93-95, 97, 99-102, 104, 107-125, 127, 128, 130, 132, 134-140 and 242-377 which encode the signal peptide.

Another embodiment of the present invention is a purified or isolated antibody capable of specifically binding to a protein having the sequence of one of SEQ ID NOs: 141-241 and 378-513. In one aspect of this embodiment, the antibody is capable of binding to a polypeptide comprising at least 10 consecutive amino acids of the sequence of one of SEQ ID NOs: 141-241 and 378-513.

Another embodiment of the present invention is an array of cDNAs or fragments thereof of at least 15 nucleotides in length which includes at least one of the sequences of SEQ ID NOs: 40-140 and 242-377, or one of the sequences complementary to the sequences of SEQ ID NOs: 40-140 and 242-377, or a fragment thereof of at least 15 consecutive nucleotides. In one aspect of this embodiment, the array includes at least two of the sequences of SEQ ID NOs: 40-140 and 242-377, the sequences complementary to the sequences of SEQ ID NOs: 40-140 and 242-377, or fragments thereof of at least 15 consecutive nucleotides. In another aspect of this embodiment, the array includes at least five of the sequences of SEQ ID NOs: 40-140 and 242-377, the sequences complementary to the sequences of SEQ ID NOs: 40-140 and 242-377, or fragments thereof of at least 15 consecutive nucleotides.

WO 99/31236

A further embodiment of the invention encompasses purified polynucleotides comprising an insert from a clone deposited in a deposit having an accession number selected from the group consisting of the accession numbers listed in Table VI or a fragment thereof comprising a contiguous span of at least 8, 10, 12, 15, 20, 25, 40, 60, 100, or 200 nucleotides of said insert. An additional embodiment of the invention encompasses purified polypeptides which comprise, consist of, or consist essentially of an amino acid sequence encoded by the insert from a clone deposited in a deposit having an accession number selected from the group consisting of the accession numbers listed in Table VI, as well as polypeptides which comprise a fragment of said amino acid sequence consisting of a signal peptide, a mature protein, or a contiguous span of at least 5, 8, 10, 12, 15, 20, 25, 40, 60, 100, or 200 amino acids encoded by said insert.

An additional embodiment of the invention encompasses purified polypeptides which comprise a contiguous span of at least 5, 8, 10, 12, 15, 20, 25, 40, 60, 100, or 200 amino acids of SEQ ID NOs: 158, 174, 175, 196, 226, 231, 232, wherein said contiguous span comprises at least one of the amino acid positions which was not shown to be identical to a public sequence in any of Figures 11 to 15. Also encompassed by the invention are purified polynuculeotides encoding said polypeptides.

15

25

10

Brief Description of the Drawings

Figure 1 is a summary of a procedure for obtaining cDNAs which have been selected to include the 5' ends of the mRNAs from which they are derived.

Figure 2 is an analysis of the 43 amino terminal amino acids of all human SwissProt proteins to determine the frequency of false positives and false negatives using the techniques for signal peptide identification described herein.

Figure 3 shows the distribution of von Heijne scores for 5' ESTs in each of the categories described herein and the probability that these 5' ESTs encode a signal peptide.

Figure 4 shows the distribution of 5' ESTs in each category and the number of 5' ESTs in each category having a given minimum von Heijne's score.

Figure 5 shows the tissues from which the mRNAs corresponding to the 5' ESTs in each of the categories described herein were obtained.

Figure 6 illustrates a method for obtaining extended cDNAs.

Figure 7 is a map of pED6dpc2. pED6dpc2 is derived from pED6dpc1 by insertion of a new polylinker to facilitate cDNA cloning. SSt cDNAs are cloned between EcoRI and Notl. PED vectors are described in Kaufman et al. 30 (1991), NAR 19: 4485-4490.

Figure 8 provides a schematic description of the promoters isolated and the way they are assembled with the corresponding 5' tags.

Figure 9 describes the transcription factor binding sites present in each of these promoters.

Figure 10 is an alignment of the protein of SEO ID NO: 217 with the human protein TFAR19 that may play a role in apoptosis (Genbank accession number AF014955, SEO ID NO: 516).

Figure 11 is an alignment of the proteins of SEQ ID NOs: 174, 175 and 232 with a human secreted protein (Genseq accession number W36955, SEQ ID NO: 517).

Figure 12 is an alignment of the protein of SEQ ID NO: 231 with the human E25 protein (Genbank accession number AF038953, SEQ ID NO: 515).

Figure 13 is an alignment of the protein of SEQ ID NO: 196 with the human seventransmembrane protein (Genbank accession number Y11395, SEQ ID NO: 518).

Figure 14 is an alignment of the protein of SEQ ID NOs: 158 with the murine subunit 7a of the COP9 complex 10 (Genbank accession number AF071316, SEQ ID NO: 519).

Figure 15 is an alignment of the protein of SEQ ID NO: 226 with the bovine subunit B14.5B of the NADHubiquinone oxidureductase complex (Arizmendi *et al, FEBS Lett.*, **313**: 80-84 (1992) and Swissprot accession -number Q02827, SEQ ID NO: 514).

Detailed Description of the Preferred Embodiment

15 I. Obtaining 5' ESTs

The present extended cDNAs were obtained using 5' ESTs which were isolated as described below.

A. Chemical Methods for Obtaining mRNAs having Intact 5' Ends

In order to obtain the 5' ESTs used to obtain the extended cDNAs of the present invention, mRNAs having intact 5' ends must be obtained. Currently, there are two approaches for obtaining such mRNAs. One of these 20 approaches is a chemical modification method involving derivatization of the 5' ends of the mRNAs and selection of the derivatized mRNAs. The 5' ends of eucaryotic mRNAs possess a structure referred to as a "cap" which comprises a guanosine methylated at the 7 position. The cap is joined to the first transcribed base of the mRNA by a 5', 5'triphosphate bond. In some instances, the 5' guanosine is methylated in both the 2 and 7 positions. Rarely, the 5' guanosine is trimethylated at the 2, 7 and 7 positions. In the chemical method for obtaining mRNAs having intact 5' 25 ends, the 5' cap is specifically derivatized and coupled to a reactive group on an immobilizing substrate. This specific derivatization is based on the fact that only the ribose linked to the methylated guanosine at the 5' end of the mRNA and the ribose linked to the base at the 3' terminus of the mRNA, possess 2', 3'-cis diols. Optionally, where the 3' terminal ribose has a 2', 3'-cis diol, the 2', 3'-cis diol at the 3' end may be chemically modified, substituted, converted, or eliminated, leaving only the ribose linked to the methylated guanosine at the 5' end of the mRNA with a 2', 3'-cis diol. A 30 variety of techniques are available for eliminating the 2', 3'-cis diol on the 3' terminal ribose. For example, controlled alkaline hydrolysis may be used to generate mRNA fragments in which the 3' terminal ribose is a 3'-phosphate, 2'phosphate or (2', 3')-cyclophosphate. Thereafter, the fragment which includes the original 3' ribose may be eliminated from the mixture through chromatography on an oligo-dT column. Alternatively, a base which lacks the 2', 3'-cis diol

may be added to the 3' end of the mRNA using an RNA ligase such as T4 RNA ligase. Example 1 below describes a method for ligation of pCp to the 3' end of messenger RNA.

EXAMPLE 1

Ligation of the Nucleoside Diphosphate pCp to the 3' End of Messenger RNA

1 μg of RNA was incubated in a final reaction medium of 10 μl in the presence of 5 U of T_4 phage RNA ligase in the buffer provided by the manufacturer (Gibco - BRL), 40 U of the RNase inhibitor RNasin (Promega) and, 2 μl of 32 pCp (Amersham #PB 10208).

The incubation was performed at 37°C for 2 hours or overnight at 7-8°C.

Following modification or elimination of the 2', 3'-cis diol at the 3' ribose, the 2', 3'-cis diol present at the 5' end of the mRNA may be oxidized using reagents such as NaBH, NaBH, CN, or sodium periodate, thereby converting the 2', 3'-cis diol to a dialdehyde. Example 2 describes the oxidation of the 2', 3'-cis diol at the 5' end of the mRNA with sodium periodate.

EXAMPLE 2

Oxidation of 2', 3'-cis diol at the 5' End of the mRNA

0.1 OD unit of either a capped oligoribonucleotide of 47 nucleotides (including the cap) or an uncapped oligoribonucleotide of 46 nucleotides were treated as follows. The oligoribonucleotides were produced by in vitro transcription using the transcription kit "AmpliScribe T7" (Epicentre Technologies). As indicated below, the DNA template for the RNA transcript contained a single cytosine. To synthesize the uncapped RNA, all four NTPs were included in the in vitro transcription reaction. To obtain the capped RNA, GTP was replaced by an analogue of the cap, m7G(5')ppp(5')G. This compound, recognized by polymerase, was incorporated into the 5' end of the nascent transcript during the step of initiation of transcription but was not capable of incorporation during the extension step.

Consequently, the resulting RNA contained a cap at its 5' end. The sequences of the oligoribonucleotides produced by the in vitro transcription reaction were:

+ Cap:

25 5'm7GpppGCAUCCUACUCCCAUCCAAUUCCACCCUAACUCCUCCAUCUCCAC-3' (SEQ ID NO:1)
-Cap:

5'-pppGCAUCCUACUCCCAUCCAAUUCCACCCUAACUCCUCCCAUCUCCAC-3' (SEQ ID NO:2)

The oligoribonucleotides were dissolved in 9 µl of acetate buffer (0.1 M sodium acetate, pH 5.2) and 3 µl of freshly prepared 0.1 M sodium periodate solution. The mixture was incubated for 1 hour in the dark at 4°C or room temperature. Thereafter, the reaction was stopped by adding 4 µl of 10% ethylene glycol. The product was ethanol precipitated, resuspended in 10µl or more of water or appropriate buffer and dialyzed against water.

The resulting aldehyde groups may then be coupled to molecules having a reactive amine group, such as hydrazine, carbazide, thiocarbazide or semicarbazide groups, in order to facilitate enrichment of the 5' ends of the mRNAs. Molecules having reactive amine groups which are suitable for use in selecting mRNAs having intact 5' ends

include avidin, proteins, antibodies, vitamins, ligands capable of specifically binding to receptor molecules, or oligonucleotides. Example 3 below describes the coupling of the resulting dialdehyde to biotin.

EXAMPLE 3

Coupling of the Dialdehyde with Biotin

The oxidation product obtained in Example 2 was dissolved in 50 μ l of sodium acetate at a pH of between 5 and 5.2 and 50 μ l of freshly prepared 0.02 M solution of biotin hydrazide in a methoxyethanol/water mixture (1:1) of formula:

In the compound used in these experiments, n=5. However, it will be appreciated that other commercially available hydrazides may also be used, such as molecules of the formula above in which n varies from 0 to 5.

The mixture was then incubated for 2 hours at 37°C. Following the incubation, the mixture was precipitated with ethanol and dialyzed against distilled water.

Example 4 demonstrates the specificity of the biotinylation reaction.

15

EXAMPLE 4

Specificity of Biotinylation

The specificity of the biotinylation for capped mRNAs was evaluated by gel electrophoresis of the following samples:

- Sample 1. The 46 nucleotide uncapped in vitro transcript prepared as in Example 2 and labeled with ³²pCp as described in Example 1.
 - Sample 2. The 46 nucleotide uncapped in vitro transcript prepared as in Example 2, labeled with ³²pCp as described in Example 1, treated with the oxidation reaction of Example 2, and subjected to the biotinylation conditions of Example 3.
- Sample 3. The 47 nucleotide capped in vitro transcript prepared as in Example 2 and labeled with ³²pCp as described in Example 1.
 - Sample 4. The 47 nucleotide capped in vitro transcript prepared as in Example 2, labeled with ³²pCp as described in Example 1, treated with the oxidation reaction of Example 2, and subjected to the biotinylation conditions of Example 3.
- Samples 1 and 2 had indentical migration rates, demonstrating that the uncapped RNAs were not oxidized and 30 biotinylated. Sample 3 migrated more slowly than Samples 1 and 2, while Sample 4 exhibited the slowest migration.

10

The difference in migration of the RNAs in Samples 3 and 4 demonstrates that the capped RNAs were specifically biotinylated.

In some cases, mRNAs having intact 5' ends may be enriched by binding the molecule containing a reactive amine group to a suitable solid phase substrate such as the inside of the vessel containing the mRNAs, magnetic beads, 5 chromatography matrices, or nylon or nitrocellulose membranes. For example, where the molecule having a reactive amine group is biotin, the solid phase substrate may be coupled to avidin or streptavidin. Alternatively, where the molecule having the reactive amine group is an antibody or receptor ligand, the solid phase substrate may be coupled to the cognate antigen or receptor. Finally, where the molecule having a reactive amine group comprises an oligonucleotide, the solid phase substrate may comprise a complementary oligonucleotide.

The mRNAs having intact 5' ends may be released from the solid phase following the enrichment procedure. For example, where the dialdehyde is coupled to biotin hydrazide and the solid phase comprises streptavidin, the mRNAs may be released from the solid phase by simply heating to 95 degrees Celsius in 2% SDS. In some methods, the molecule having a reactive amine group may also be cleaved from the mRNAs having intact 5' ends following enrichment. Example 5 describes the capture of biotinylated mRNAs with streptavidin coated beads and the release of the 15 biotinylated mRNAs from the beads following enrichment.

EXAMPLE 5

Capture and Release of Biotinylated mRNAs Using Strepatividin Coated Beads

The streptavidin-coated magnetic beads were prepared according to the manufacturer's instructions (CPG Inc., USA). The biotinvlated mRNAs were added to a hybridization buffer (1.5 M NaCl, pH 5 - 6). After incubating for 30 20 minutes, the unbound and nonbiotinylated material was removed. The beads were washed several times in water with 1% SDS. The beads obtained were incubated for 15 minutes at 95°C in water containing 2% SDS.

Example 6 demonstrates the efficiency with which biotinylated mRNAs were recovered from the streptavidin coated beads.

EXAMPLE 6

25 Efficiency of Recovery of Biotinylated mRNAs

The efficiency of the recovery procedure was evaluated as follows. RNAs were labeled with 32pCp, oxidized, biotinylated and bound to streptavidin coated beads as described above. Subsequently, the bound RNAs were incubated for 5, 15 or 30 minutes at 95°C in the presence of 2% SDS.

The products of the reaction were analyzed by electrophoresis on 12% polyacrylamide gels under denaturing 30 conditions (7 M urea). The gels were subjected to autoradiography. During this manipulation, the hydrazone bonds were not reduced.

Increasing amounts of nucleic acids were recovered as incubation times in 2% SDS increased, demonstrating that biotinylated mRNAs were efficiently recovered.

In an alternative method for obtaining mRNAs having intact 5' ends, an oligonucleotide which has been derivatized to contain a reactive amine group is specifically coupled to mRNAs having an intact cap. Preferably, the 3' end of the mRNA is blocked prior to the step in which the aldehyde groups are joined to the derivatized oligonucleotide, as described above, so as to prevent the derivatized oligonucleotide from being joined to the 3' end of the mRNA. For example, pCp may be attached to the 3' end of the mRNA using T4 RNA ligase. However, as discussed above, blocking the 3' end of the mRNA is an optional step. Derivatized oligonucleotides may be prepared as described below in Example 7.

EXAMPLE 7

Derivatization of the Oligonucleotide

An oligonucleotide phosphorylated at its 3' end was converted to a 3' hydrazide in 3' by treatment with an aqueous solution of hydrazine or of dihydrazide of the formula H₂N(R1)NH₂ at about 1 to 3 M, and at pH 4.5, in the presence of a carbodiimide type agent soluble in water such as 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide at a final concentration of 0.3 M at a temperature of 8°C overnight.

The derivatized oligonucleotide was then separated from the other agents and products using a standard technique for isolating oligonucleotides.

As discussed above, the mRNAs to be enriched may be treated to eliminate the 3' OH groups which may be present thereon. This may be accomplished by enzymatic ligation of sequences lacking a 3' OH, such as pCp, as described above in Example 1. Alternatively, the 3' OH groups may be eliminated by alkaline hydrolysis as described in Example 8 below.

20

EXAMPLE 8

Alkaline Hydrolysis of mRNA

The mRNAs may be treated with alkaline hydrolysis as follows. In a total volume of 100µJ of 0.1N sodium hydroxide, 1.5µg mRNA is incubated for 40 to 60 minutes at 4°C. The solution is neutralized with acetic acid and precipitated with ethanol.

Following the optional elimination of the 3' OH groups, the diol groups at the 5' ends of the mRNAs are oxidized as described below in Example 9.

EXAMPLE 9

Oxidation of Diols

Up to 1 OD unit of RNA was dissolved in 9 µl of buffer (0.1 M sodium acetate, pH 6-7 or water) and 3 µl of freshly prepared 0.1 M sodium periodate solution. The reaction was incubated for 1 h in the dark at 4°C or room temperature. Following the incubation, the reaction was stopped by adding 4 µl of 10% ethylene glycol. Thereafter the mixture was incubated at room temperature for 15 minutes. After ethanol precipitation, the product was resuspended in 10µl or more of water or appropriate buffer and dialyzed against water.

Following oxidation of the diol groups at the 5' ends of the mRNAs, the derivatized oligonucleotide was joined to the resulting aldehydes as described in Example 10.

EXAMPLE 10

Reaction of Aldehydes with Derivatized Oligonucleotides

The oxidized mRNA was dissolved in an acidic medium such as 50 µl of sodium acetate pH 4-6. 50 µl of a solution of the derivatized oligonucleotide was added such that an mRNA:derivatized oligonucleotide ratio of 1:20 was obtained and mixture was reduced with a borohydride. The mixture was allowed to incubate for 2 h at 37°C or overnight (14 h) at 10°C. The mixture was ethanol precipitated, resuspended in 10µl or more of water or appropriate buffer and dialyzed against distilled water. If desired, the resulting product may be analyzed using acrylamide gel electrophoresis, HPLC analysis, or other conventional techniques.

Following the attachment of the derivatized oligonucleotide to the mRNAs, a reverse transcription reaction may be performed as described in Example 11 below.

EXAMPLE 11

Reverse Transcription of mRNAs

An oligodeoxyribonucleotide was derivatized as follows. 3 OD units of an oligodeoxyribonucleotide of sequence ATCAAGAATTCGCACGAGACCATTA (SEQ ID NO:3) having 5'-OH and 3'-P ends were dissolved in 70 µl of a 1.5 M hydroxybenzotriazole solution, pH 5.3, prepared in dimethylformamide/water (75:25) containing 2 µg of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. The mixture was incubated for 2 h 30 min at 22°C. The mixture was then precipitated twice in LiClO₄/acetone. The pellet was resuspended in 200 µl of 0.25 M hydrazine and incubated at 8°C from 3 to 14 h. Following the hydrazine reaction, the mixture was precipitated twice in LiClO₄/acetone.

The messenger RNAs to be reverse transcribed were extracted from blocks of placenta having sides of 2 cm which had been stored at -80°C. The mRNA was extracted using conventional acidic phenol techniques. Oligo-dT chromatography was used to purify the mRNAs. The integrity of the mRNAs was checked by Northern-blotting.

The diol groups on 7 µg of the placental mRNAs were oxidized as described above in Example 9. The
derivatized oligonucleotide was joined to the mRNAs as described in Example 10 above except that the precipitation step
was replaced by an exclusion chromatography step to remove derivatized oligodeoxyribonucleotides which were not
joined to mRNAs. Exclusion chromatography was performed as follows:

10 ml of AcA34 (BioSepra#230151) gel were equilibrated in 50 ml of a solution of 10 mM Tris pH 8.0, 300 mM NaCl, 1 mM EDTA, and 0.05% SDS. The mixture was allowed to sediment. The supernatant was eliminated and the gel was resuspended in 50 ml of buffer. This procedure was repeated 2 or 3 times.

A glass bead (diameter 3 mm) was introduced into a 2 ml disposable pipette (length 25 cm). The pipette was filled with the gel suspension until the height of the gel stabilized at 1 cm from the top of the pipette. The column was then equilibrated with 20 ml of equilibration buffer (10 mM Tris HCl pH 7.4, 20 mM NaCl).

10 μ l of the mRNA which had been reacted with the derivatized oligonucleotide were mixed in 39 μ l of 10 mM urea and 2 μ l of blue-glycerol buffer, which had been prepared by dissolving 5 mg of bromophenol blue in 60% glycerol (v/v), and passing the mixture through a filter with a filter of diameter 0.45 μ m.

The column was loaded. As soon as the sample had penetrated, equilibration buffer was added. 100 µl

fractions were collected. Derivatized oligonucleotide which had not been attached to mRNA appeared in fraction 16 and later fractions. Fractions 3 to 15 were combined and precipitated with ethanol.

The mRNAs which had been reacted with the derivatized oligonucleotide were spotted on a nylon membrane and hybridized to a radioactive probe using conventional techniques. The radioactive probe used in these hybridizations was an oligodeoxyribonucleotide of sequence TAATGGTCTCGTGCGAATTCTTGAT (SEQ ID NO:4) which was anticomplementary to the derivatized oligonucleotide and was labeled at its 5' end with 32P. 1/10th of the mRNAs which had been reacted with the derivatized oligonucleotide was spotted in two spots on the membrane and the membrane was visualized by autoradiography after hybridization of the probe. A signal was observed, indicating that the derivatized oligonucleotide had been joined to the mRNA.

The remaining 9/10 of the mRNAs which had been reacted with the derivatized oligonucleotide was reverse transcribed as follows. A reverse transcription reaction was carried out with reverse transcriptase following the manufacturer's instructions. To prime the reaction, 50 pmol of nonamers with random sequence were used.

A portion of the resulting cDNA was spotted on a positively charged nylon membrane using conventional methods. The cDNAs were spotted on the membrane after the cDNA:RNA heteroduplexes had been subjected to an alkaline hydrolysis in order to eliminate the RNAs. An oligonucleotide having a sequence identical to that of the derivatized oligonucleotide was labeled at its 5' end with ³²P and hybridized to the cDNA blots using conventional techniques. Single-stranded cDNAs resulting from the reverse transcription reaction were spotted on the membrane. As controls, the blot contained 1 pmol, 100 fmol, 50 fmol, 10 fmol and 1 fmol respectively of a control oligodeoxyribonucleotide of sequence identical to that of the derivatized oligonucleotide. The signal observed in the spots containing the cDNA indicated that approximately 15 fmol of the derivatized oligonucleotide had been reverse transcribed.

These results demonstrate that the reverse transcription can be performed through the cap and, in particular, that reverse transcriptase crosses the 5'-P-P-P-5' bond of the cap of eukaryotic messenger RNAs.

The single stranded cDNAs obtained after the above first strand synthesis were used as template for PCR reactions. Two types of reactions were carried out. First, specific amplification of the mRNAs for the alpha globin, dehydrogenase, pp15 and elongation factor E4 were carried out using the following pairs of oligodeoxyribonucleotide primers.

alpha-globin

25

GLO-S: CCG ACA AGA CCA ACG TCA AGG CCG C (SEQ ID NO:5)
GLO-As: TCA CCA GCA GGC AGT GGC TTA GGA G 3' (SEQ ID NO:6)

dehydrogenase

3 DH-S: AGT GAT TCC TGC TAC TTT GGA TGG C (SEQ ID NO:7)

3 DH-As: GCT TGG TCT TGT TCT GGA GTT TAG A (SEQ ID NO:8)

pp15

PP15-S: TCC AGA ATG GGA GAC AAG CCA ATT T (SEQ ID NO:9)

5 PP15-As: AGG GAG GAG GAA ACA GCG TGA GTC C (SEQ ID NO:10)

Elongation factor E4

EFA1-S: ATG GGA AAG GAA AAG ACT CAT ATC A (SEQ ID NO:11)

EF1A-As: AGC AGC AAC AAT CAG GAC AGC ACA G (SEQ ID NO:12)

Non specific amplifications were also carried out with the antisense (_As) oligodeoxyribonucleotides of the pairs described above and a primer chosen from the sequence of the derivatized oligodeoxyribonucleotide (ATCAAGAATTCGCACGAGACCATTA) (SEQ ID NO:13).

A 1.5% agarose gel containing the following samples corresponding to the PCR products of reverse transcription was stained with ethidium bromide. (1/20th of the products of reverse transcription were used for each PCR reaction).

- Sample 1: The products of a PCR reaction using the globin primers of SEQ ID NOs 5 and 6 in the presence of cDNA.
 - Sample 2: The products of a PCR reaction using the globin primers of SEQ ID NOs 5 and 6 in the absence of added cDNA.
- Sample 3: The products of a PCR reaction using the dehydrogenase primers of SEQ ID NOs 7 and 8 in the 20 presence of cDNA.
 - Sample 4: The products of a PCR reaction using the dehydrogenase primers of SEQ ID NOs 7 and 8 in the absence of added cDNA.
 - Sample 5: The products of a PCR reaction using the pp15 primers of SEQ ID NOs 9 and 10 in the presence of cDNA.
- Sample 6: The products of a PCR reaction using the pp15 primers of SEQ ID NOs 9 and 10 in the absence of added cDNA.
 - Sample 7: The products of a PCR reaction using the EIE4 primers of SEQ ID NOs 11 and 12 in the presence of added cDNA.
- Sample 8: The products of a PCR reaction using the EIE4 primers of SEQ ID NOs 11 and 12 in the absence of 30 added cDNA.

In Samples 1, 3, 5 and 7, a band of the size expected for the PCR product was observed, indicating the presence of the corresponding sequence in the cDNA population.

PCR reactions were also carried out with the antisense oligonucleotides of the globin and dehydrogenase primers (SEO ID NOs 6 and 8) and an oligonucleotide whose sequence corresponds to that of the derivatized

oligonucleotide. The presence of PCR products of the expected size in the samples corresponding to samples 1 and 3 above indicated that the derivatized oligonucleotide had been incorporated.

The above examples summarize the chemical procedure for enriching mRNAs for those having intact 5' ends.

Further detail regarding the chemical approaches for obtaining mRNAs having intact 5' ends are disclosed in

International Application No. W096/34981, published November 7, 1996.

Strategies based on the above chemical modifications to the 5' cap structure may be utilized to generate cDNAs which have been selected to include the 5' ends of the mRNAs from which they are derived. In one version of such procedures, the 5' ends of the mRNAs are modified as described above. Thereafter, a reverse transcription reaction is conducted to extend a primer complementary to the mRNA to the 5' end of the mRNA. Single stranded RNAs are eliminated to obtain a population of cDNA/mRNA heteroduplexes in which the mRNA includes an intact 5' end. The resulting heteroduplexes may be captured on a solid phase coated with a molecule capable of interacting with the molecule used to derivatize the 5' end of the mRNA. Thereafter, the strands of the heteroduplexes are separated to recover single stranded first cDNA strands which include the 5' end of the mRNA. Second strand cDNA synthesis may then proceed using conventional techniques. For example, the procedures disclosed in WO 96/34981 or in Carninci, P. et al. High-Efficiency Full-Length cDNA Cloning by Biotinylated CAP Trapper. Genomics 37:327-336 (1996) may be employed to select cDNAs which include the sequence derived from the 5' end of the coding sequence of the mRNA.

Following ligation of the oligonucleotide tag to the 5' cap of the mRNA, a reverse transcription reaction is conducted to extend a primer complementary to the mRNA to the 5' end of the mRNA. Following elimination of the RNA component of the resulting heteroduplex using standard techniques, second strand cDNA synthesis is conducted with a primer complementary to the oligonucleotide tag.

Figure 1 summarizes the above procedures for obtaining cDNAs which have been selected to include the 5' ends of the mRNAs from which they are derived.

B. Enzymatic Methods for Obtaining mRNAs having Intact 5' Ends

Other techniques for selecting cDNAs extending to the 5' end of the mRNA from which they are derived are fully enzymatic. Some versions of these techniques are disclosed in Dumas Milne Edwards J.B. (Doctoral Thesis of Paris VI University, Le clonage des ADNc complets: difficultes et perspectives nouvelles. Apports pour l'etude de la regulation de l'expression de la tryptophane hydroxylase de rat, 20 Dec. 1993), EPO 625572 and Kato et al. Construction of a Human Full-Length cDNA Bank. Gene 150:243-250 (1994).

Briefly, in such approaches, isolated mRNA is treated with alkaline phosphatase to remove the phosphate

30 groups present on the 5' ends of uncapped incomplete mRNAs. Following this procedure, the cap present on full length mRNAs is enzymatically removed with a decapping enzyme such as T4 polynucleotide kinase or tobacco acid pyrophosphatase. An oligonucleotide, which may be either a DNA oligonucleotide or a DNA-RNA hybrid oligonucleotide having RNA at its 3' end, is then ligated to the phosphate present at the 5' end of the decapped mRNA using T4 RNA

ligase. The oligonucleotide may include a restriction site to facilitate cloning of the cDNAs following their synthesis. Example 12 below describes one enzymatic method based on the doctoral thesis of Dumas.

EXAMPLE 12

Enzymatic Approach for Obtaining 5' ESTs

Twenty micrograms of PolyA+ RNA were dephosphorylated using Calf Intestinal Phosphatase (Biolabs). After a phenol chloroform extraction, the cap structure of mRNA was hydrolysed using the Tobacco Acid Pyrophosphatase (purified as described by Shinshi et al., Biochemistry 15: 2185-2190, 1976) and a hemi 5'DNA/RNA-3' oligonucleotide having an unphosphorylated 5' end, a stretch of adenosine ribophosphate at the 3' end, and an EcoRI site near the 5' end was ligated to the 5'P ends of mRNA using the T4 RNA ligase (Biolabs). Oligonucleotides suitable for use in this 10 procedure are preferably 30-50 bases in length. Oligonucleotides having an unphosphorylated 5' end may be synthesized by adding a fluorochrome at the 5' end. The inclusion of a stretch of adenosine ribophosphates at the 3' end of the oligonucleotide increases ligation efficiency. It will be appreciated that the oligonucleotide may contain cloning sites other than EcoRI.

Following ligation of the oligonucleotide to the phosphate present at the 5' end of the decapped mRNA, first 15 and second strand cDNA synthesis may be carried out using conventional methods or those specified in EPO 625,572 and Kato et al. Construction of a Human Full-Length cDNA Bank. Gene 150:243-250 (1994), and Dumas Milne Edwards, supra. The resulting cDNA may then be ligated into vectors such as those disclosed in Kato et al. Construction of a Human Full-Length cDNA Bank. Gene 150:243-250 (1994) or other nucleic acid vectors known to those skilled in the art using techniques such as those described in Sambrook et al., Molecular Cloning: A Laboratory Manual 2d Ed., Cold 20 Spring Harbor Laboratory Press, 1989.

II. Characterization of 5' ESTs

The above chemical and enzymatic approaches for enriching mRNAs having intact 5' ends were employed to obtain 5' ESTs. First, mRNAs were prepared as described in Example 13 below.

EXAMPLE 13

25

5

Preparation of mRNA

Total human RNAs or PolyA+ RNAs derived from 29 different tissues were respectively purchased from LABIMO and CLONTECH and used to generate 44 cDNA libraries as described below. The purchased RNA had been isolated from cells or tissues using acid guanidium thiocyanate-phenol-chloroform extraction (Chomczyniski, P and Sacchi, N., Analytical Biochemistry 162:156-159, 1987). PolyA+ RNA was isolated from total RNA (LABIMO) by 30 two passes of oligodT chromatography, as described by Aviv and Leder (Aviv, H. and Leder, P., Proc. Natl. Acad. Sci. USA 69:1408-1412, 1972) in order to eliminate ribosomal RNA.

The quality and the integrity of the poly A+ were checked. Northern blots hybridized with a globin probe were used to confirm that the mRNAs were not degraded. Contamination of the PolyA+ mRNAs by ribosomal sequences was checked using RNAs blots and a probe derived from the sequence of the 28S RNA. Preparations of mRNAs with less

WO 99/31236 PCT/IB98/02122

-21-

than 5% of ribosomal RNAs were used in library construction. To avoid constructing libraries with RNAs contaminated by exogenous sequences (prokaryotic or fungal), the presence of bacterial 16S ribosomal sequences or of two highly expressed mRNAs was examined using PCR.

Following preparation of the mRNAs, the above described chemical and/or the enzymatic procedures for
enriching mRNAs having intact 5' ends discussed above were employed to obtain 5' ESTs from various tissues. In both
approaches an oligonucleotide tag was attached to the cap at the 5' ends of the mRNAs. The oligonucleotide tag had an
EcoRI site therein to facilitate later cloning procedures.

Following attachment of the oligonucleotide tag to the mRNA by either the chemical or enzymatic methods, the integrity of the mRNA was examined by performing a Northern blot with 200-500ng of mRNA using a probe complementary to the oligonucleotide tag.

EXAMPLE 14

cDNA Synthesis Using mRNA Templates Having Intact 5' Ends

For the mRNAs joined to oligonucleotide tags using both the chemical and enzymatic methods, first strand cDNA synthesis was performed using reverse transcriptase with random nonamers as primers. In order to protect internal EcoRI sites in the cDNA from digestion at later steps in the procedure, methylated dCTP was used for first strand synthesis. After removal of RNA by an alkaline hydrolysis, the first strand of cDNA was precipitated using isopropanol in order to eliminate residual primers.

For both the chemical and the enzymatic methods, the second strand of the cDNA was synthesized with a Klenow fragment using a primer corresponding to the 5'end of the ligated oligonucleotide described in Example 12.

20 Preferably, the primer is 20-25 bases in length. Methylated dCTP was also used for second strand synthesis in order to protect internal EcoRI sites in the cDNA from digestion during the cloning process.

Following cDNA synthesis, the cDNAs were cloned into pBlueScript as described in Example 15 below.

EXAMPLE 15

Insertion of cDNAs into BlueScript

Following second strand synthesis, the ends of the cDNA were blunted with T4 DNA polymerase (Biolabs) and the cDNA was digested with EcoRI. Since methylated dCTP was used during cDNA synthesis, the EcoRI site present in the tag was the only site which was hemi-methylated. Consequently, only the EcoRI site in the oligonucleotide tag was susceptible to EcoRI digestion. The cDNA was then size fractionated using exclusion chromatography (AcA, Biosepra). Fractions corresponding to cDNAs of more than 150 bp were pooled and ethanol precipitated. The cDNA was directionally cloned into the Smal and EcoRI ends of the phagemid pBlueScript vector (Stratagene). The ligation mixture was electroporated into bacteria and propagated under appropriate antibiotic selection.

Clones containing the oligonucleotide tag attached were selected as described in Example 16 below.

EXAMPLE 16

Selection of Clones Having the Oligonucleotide Tag Attached Thereto

The plasmid DNAs containing 5' EST libraries made as described above were purified (Qiagen). A positive selection of the tagged clones was performed as follows. Briefly, in this selection procedure, the plasmid DNA was converted to single stranded DNA using gene II endonuclease of the phage F1 in combination with an exonuclease (Chang et al., Gene 127:95-8, 1993) such as exonuclease III or T7 gene 6 exonuclease. The resulting single stranded DNA was then purified using paramagnetic beads as described by Fry et al., Biotechniques, 13: 124-131, 1992. In this procedure, the single stranded DNA was hybridized with a biotinylated oligonucleotide having a sequence corresponding to the 3' end of the oligonucleotide described in Example 13. Preferably, the primer has a length of 20-25 bases. Clones including a sequence complementary to the biotinylated oligonucleotide were captured by incubation with streptavidin coated magnetic beads followed by magnetic selection. After capture of the positive clones, the plasmid DNA was released from the magnetic beads and converted into double stranded DNA using a DNA polymerase such as the ThermoSequenase obtained from Amersham Pharmacia Biotech. Alternatively, protocols such as the Gene Trapper kit (Gibco BRL) may be used. The double stranded DNA was then electroporated into bacteria. The percentage of positive clones having the 5' tag oligonucleotide was estimated to typically rank between 90 and 98% using dot blot analysis.

Following electroporation, the libraries were ordered in 384-microtiter plates (MTP). A copy of the MTP was stored for future needs. Then the libraries were transferred into 96 MTP and sequenced as described below.

EXAMPLE 17

Sequencing of Inserts in Selected Clones

Plasmid inserts were first amplified by PCR on PE 9600 thermocyclers (Perkin-Elmer), using standard SETA-A and SETA-B primers (Genset SA), AmpliTaqGold (Perkin-Elmer), dNTPs (Boehringer), buffer and cycling conditions as recommended by the Perkin-Elmer Corporation.

PCR products were then sequenced using automatic ABI Prism 377 sequencers (Perkin Elmer, Applied Biosystems Division, Foster City, CA). Sequencing reactions were performed using PE 9600 thermocyclers (Perkin Elmer) with standard dye-primer chemistry and ThermoSequenase (Amersham Life Science). The primers used were either T7 or 21M13 (available from Genset SA) as appropriate. The primers were labeled with the JOE, FAM, ROX and TAMRA dyes. The dNTPs and ddNTPs used in the sequencing reactions were purchased from Boehringer. Sequencing buffer, reagent concentrations and cycling conditions were as recommended by Amersham.

Following the sequencing reaction, the samples were precipitated with EtOH, resuspended in formamide loading buffer, and loaded on a standard 4% acrylamide gel. Electrophoresis was performed for 2.5 hours at 3000V on an ABI 377 sequencer, and the sequence data were collected and analyzed using the ABI Prism DNA Sequencing

Analysis Software, version 2.1.2.

The sequence data from the 44 cDNA libraries made as described above were transferred to a proprietary database, where quality control and validation steps were performed. A proprietary base-caller ("Trace"), working using a Unix system automatically flagged suspect peaks, taking into account the shape of the peaks, the inter-peak resolution, and the noise level. The proprietary base-caller also performed an automatic trimming. Any stretch of 25 or

WO 99/31236 PCT/IB98/02122

.23.

fewer bases having more than 4 suspect peaks was considered unreliable and was discarded. Sequences corresponding to cloning vector or ligation oligonucleotides were automatically removed from the EST sequences. However, the resulting EST sequences may contain 1 to 5 bases belonging to the above mentioned sequences at their 5' end. If needed, these can easily be removed on a case by case basis.

Thereafter, the sequences were transferred to the proprietary NETGENE™ Database for further analysis as described below.

5

20

Following sequencing as described above, the sequences of the 5' ESTs were entered in a proprietary database called NETGENETM for storage and manipulation. It will be appreciated by those skilled in the art that the data could be stored and manipulated on any medium which can be read and accessed by a computer. Computer readable media include magnetically readable media, optically readable media, or electronically readable media. For example, the computer readable media may be a hard disc, a floppy disc, a magnetic tape, CD-ROM, RAM, or ROM as well as other types of other media known to those skilled in the art.

In addition, the sequence data may be stored and manipulated in a variety of data processor programs in a variety of formats. For example, the sequence data may be stored as text in a word processing file, such as

MicrosoftWORD or WORDPERFECT or as an ASCII file in a variety of database programs familiar to those of skill in the art, such as DB2, SYBASE, or ORACLE.

The computer readable media on which the sequence information is stored may be in a personal computer, a network, a server or other computer systems known to those skilled in the art. The computer or other system preferably includes the storage media described above, and a processor for accessing and manipulating the sequence data.

Once the sequence data has been stored it may be manipulated and searched to locate those stored sequences which contain a desired nucleic acid sequence or which encode a protein having a particular functional domain. For example, the stored sequence information may be compared to other known sequences to identify homologies, motifs implicated in biological function, or structural motifs.

Programs which may be used to search or compare the stored sequences include the MacPattern (EMBL),

25 BLAST, and BLAST2 program series (NCBI), basic local alignment search tool programs for nucleotide (BLASTN) and
peptide (BLASTX) comparisons (Altschul et al, J. Mol. Biol. 215: 403 (1990)) and FASTA (Pearson and Lipman, Proc.

Natl. Acad. Sci. USA, 85: 2444 (1988)). The BLAST programs then extend the alignments on the basis of defined
match and mismatch criteria.

Motifs which may be detected using the above programs include sequences encoding leucine zippers, helix-turn30 helix motifs, glycosylation sites, ubiquitination sites, alpha helices, and beta sheets, signal sequences encoding signal peptides which direct the secretion of the encoded proteins, sequences implicated in transcription regulation such as homeoboxes, acidic stretches, enzymatic active sites, substrate binding sites, and enzymatic cleavage sites.

5

25

Before searching the cDNAs in the NETGENE™ database for sequence motifs of interest, cDNAs derived from mRNAs which were not of interest were identified and eliminated from further consideration as described in Example 18 below.

EXAMPLE 18

Elimination of Undesired Sequences from Further Consideration

5' ESTs in the NETGENE™ database which were derived from undesired sequences such as transfer RNAs, ribosomal RNAs, mitochondrial RNAs, procaryotic RNAs, fungal RNAs, Alu sequences, L1 sequences, or repeat sequences were identified using the FASTA and BLASTN programs with the parameters listed in Table II.

To eliminate 5' ESTs encoding tRNAs from further consideration, the 5' EST sequences were compared to the 10 sequences of 1190 known tRNAs obtained from EMBL release 38, of which 100 were human. The comparison was performed using FASTA on both strands of the 5' ESTs. Sequences having more than 80% homology over more than 60 nucleotides were identified as tRNA. Of the 144,341 sequences screened, 26 were identified as tRNAs and eliminated from further consideration.

To eliminate 5' ESTs encoding rRNAs from further consideration, the 5' EST sequences were compared to the 15 sequences of 2497 known rRNAs obtained from EMBL release 38, of which 73 were human. The comparison was performed using BLASTN on both strands of the 5' ESTs with the parameter S = 108. Sequences having more than 80% homology over stretches longer than 40 nucleotides were identified as rRNAs. Of the 144,341 sequences screened, 3,312 were identified as rRNAs and eliminated from further consideration.

To eliminate 5' ESTs encoding mtRNAs from further consideration, the 5' EST sequences were compared to 20 the sequences of the two known mitochondrial genomes for which the entire genomic sequences are available and all sequences transcribed from these mitochondrial genomes including tRNAs, rRNAs, and mRNAs for a total of 38 sequences. The comparison was performed using BLASTN on both strands of the 5' ESTs with the parameter S=108. Sequences having more than 80% homology over stretches longer than 40 nucleotides were identified as mtRNAs. Of the 144,341 sequences screened, 6,110 were identified as mtRNAs and eliminated from further consideration.

Sequences which might have resulted from exogenous contaminants were eliminated from further consideration by comparing the 5' EST sequences to release 46 of the EMBL bacterial and fungal divisions using BLASTN with the parameter S = 144. All sequences having more than 90% homology over at least 40 nucleotides were identified as exogenous contaminants. Of the 42 cDNA libraries examined, the average percentages of procaryotic and fungal sequences contained therein were 0.2% and 0.5% respectively. Among these sequences, only one could be 30 identified as a sequence specific to fungi. The others were either fungal or procaryotic sequences having homologies with vertebrate sequences or including repeat sequences which had not been masked during the electronic comparison.

In addition, the 5' ESTs were compared to 6093 Alu sequences and 1115 L1 sequences to mask 5' ESTs containing such repeat sequences from further consideration. 5' ESTs including THE and MER repeats, SSTR sequences or satellite, micro-satellite, or telomeric repeats were also eliminated from further consideration. On average, 11.5% of

the sequences in the libraries contained repeat sequences. Of this 11.5%, 7% contained Alu repeats, 3.3% contained L1 repeats and the remaining 1.2% were derived from the other types of repetitive sequences which were screened. These percentages are consistent with those found in cDNA libraries prepared by other groups. For example, the cDNA libraries of Adams et al. contained between 0% and 7.4% Alu repeats depending on the source of the RNA which was used to prepare the cDNA library (Adams et al., *Nature* 377:174, 1996).

The sequences of those 5' ESTs remaining after the elimination of undesirable sequences were compared with the sequences of known human mRNAs to determine the accuracy of the sequencing procedures described above.

EXAMPLE 19

Measurement of Sequencing Accuracy by Comparison to Known Sequences

To further determine the accuracy of the sequencing procedure described above, the sequences of 5' ESTs derived from known sequences were identified and compared to the known sequences. First, a FASTA analysis with overhangs shorter than 5 bp on both ends was conducted on the 5' ESTs to identify those matching an entry in the public human mRNA database. The 6655 5' ESTs which matched a known human mRNA were then realigned with their cognate mRNA and dynamic programming was used to include substitutions, insertions, and deletions in the list of "errors" which would be recognized. Errors occurring in the last 10 bases of the 5' EST sequences were ignored to avoid the inclusion of spurious cloning sites in the analysis of sequencing accuracy.

This analysis revealed that the sequences incorporated in the NETGENE™ database had an accuracy of more than 99.5%.

To determine the efficiency with which the above selection procedures select cDNAs which include the 5' ends of their corresponding mRNAs, the following analysis was performed.

EXAMPLE 20

Determination of Efficiency of 5' EST Selection

To determine the efficiency at which the above selection procedures isolated 5' ESTs which included sequences close to the 5' end of the mRNAs from which they were derived, the sequences of the ends of the 5' ESTs which were derived from the elongation factor 1 subunit α and ferritin heavy chain genes were compared to the known cDNA sequences for these genes. Since the transcription start sites for the elongation factor 1 subunit α and ferritin heavy chain are well characterized, they may be used to determine the percentage of 5' ESTs derived from these genes which included the authentic transcription start sites.

For both genes, more than 95% of the cDNAs included sequences close to or upstream of the 5' end of the 30 corresponding mRNAs.

To extend the analysis of the reliability of the procedures for isolating 5' ESTs from ESTs in the NETGENETM database, a similar analysis was conducted using a database composed of human mRNA sequences extracted from GenBank database release 97 for comparison. For those 5' ESTs derived from mRNAs included in the GeneBank database, more than 85% had their 5' ends close to the 5' ends of the known sequence. As some of the mRNA

15

sequences available in the GenBank database are deduced from genomic sequences, a 5' end matching with these sequences will be counted as an internal match. Thus, the method used here underestimates the yield of ESTs including the authentic 5' ends of their corresponding mRNAs.

The EST libraries made above included multiple 5' ESTs derived from the same mRNA. The sequences of such 5' ESTs were compared to one another and the longest 5' ESTs for each mRNA were identified. Overlapping cDNAs were assembled into continuous sequences (contigs). The resulting continuous sequences were then compared to public databases to gauge their similarity to known sequences, as described in Example 21 below.

EXAMPLE 21

Clustering of the 5' ESTs and Calculation of Novelty Indices for cDNA Libraries

For each sequenced EST library, the sequences were clustered by the 5' end. Each sequence in the library was compared to the others with BLASTN2 (direct strand, parameters S = 107). ESTs with High Scoring Segment Pairs (HSPs) at least 25 bp long, having 95% identical bases and beginning closer than 10 bp from each EST 5' end were grouped. The longest sequence found in the cluster was used as representative of the cluster. A global clustering between libraries was then performed leading to the definition of super-contigs.

To assess the yield of new sequences within the EST libraries, a novelty rate (NR) was defined as: NR = 100 X (Number of new unique sequences found in the library/Total number of sequences from the library). Typically, novelty rating range between 10% and 41% depending on the tissue from which the EST library was obtained. For most of the libraries, the random sequencing of 5' EST libraries was pursued until the novelty rate reached 20%.

Following characterization as described above, the collection of 5' ESTs in NETGENE™ was screened to identify those 5' ESTs bearing potential signal sequences as described in Example 22 below.

EXAMPLE 22

Identification of Potential Signal Sequences in 5' ESTs

The 5' ESTs in the NETGENETM database were screened to identify those having an uninterrupted open reading frame (ORF) longer than 45 nucleotides beginning with an ATG codon and extending to the end of the EST.

25 Approximately half of the cDNA sequences in NETGENETM contained such an ORF. The ORFs of these 5' ESTs were searched to identify potential signal motifs using slight modifications of the procedures disclosed in Von Heijne, G. A New Method for Predicting Signal Sequence Cleavage Sites. Nucleic Acids Res. 14:4683-4690 (1986). Those 5' EST sequences encoding a 15 amino acid long stretch with a score of at least 3.5 in the Von Heijne signal peptide identification matrix were considered to possess a signal sequence. Those 5' ESTs which matched a known human mRNA or EST sequence and had a 5' end more than 20 nucleotides downstream of the known 5' end were excluded from further analysis. The remaining cDNAs having signal sequences therein were included in a database called SIGNALTAGTM.

To confirm the accuracy of the above method for identifying signal sequences, the analysis of Example 23 was performed.

EXAMPLE 23

Confirmation of Accuracy of Identification of Potential Signal Sequences in 5' ESTs

The accuracy of the above procedure for identifying signal sequences encoding signal peptides was evaluated by applying the method to the 43 amino terminal amino acids of all human SwissProt proteins. The computed Von Heijne score for each protein was compared with the known characterization of the protein as being a secreted protein or a non-secreted protein. In this manner, the number of non-secreted proteins having a score higher than 3.5 (false positives) and the number of secreted proteins having a score lower than 3.5 (false negatives) could be calculated.

Using the results of the above analysis, the probability that a peptide encoded by the 5' region of the mRNA is in fact a genuine signal peptide based on its Von Heijne's score was calculated based on either the assumption that 10% of human proteins are secreted or the assumption that 20% of human proteins are secreted. The results of this analysis are shown in Figures 2 and 3.

Using the above method of identifying secretory proteins, 5' ESTs for human glucagon, gamma interferon induced monokine precursor, secreted cyclophilin-like protein, human pleiotropin, and human biotinidase precursor all of which are polypeptides which are known to be secreted, were obtained. Thus, the above method successfully identified those 5' ESTs which encode a signal peptide.

To confirm that the signal peptide encoded by the 5' ESTs actually functions as a signal peptide, the signal sequences from the 5' ESTs may be cloned into a vector designed for the identification of signal peptides. Some signal peptide identification vectors are designed to confer the ability to grow in selective medium on host cells which have a signal sequence operably inserted into the vector. For example, to confirm that a 5' EST encodes a genuine signal peptide, the signal sequence of the 5' EST may be inserted upstream and in frame with a non-secreted form of the yeast invertase gene in signal peptide selection vectors such as those described in U.S. Patent No. 5,536,637. Growth of host cells containing signal sequence selection vectors having the signal sequence from the 5' EST inserted therein confirms that the 5' EST encodes a genuine signal peptide.

Alternatively, the presence of a signal peptide may be confirmed by cloning the extended cDNAs obtained using
the ESTs into expression vectors such as pXT1 (as described below), or by constructing promoter-signal sequencereporter gene vectors which encode fusion proteins between the signal peptide and an assayable reporter protein. After
introduction of these vectors into a suitable host cell, such as COS cells or NIH 3T3 cells, the growth medium may be
harvested and analyzed for the presence of the secreted protein. The medium from these cells is compared to the
medium from cells containing vectors lacking the signal sequence or extended cDNA insert to identify vectors which
encode a functional signal peptide or an authentic secreted protein.

Those 5' ESTs which encoded a signal peptide, as determined by the method of Example 22 above, were further grouped into four categories based on their homology to known sequences. The categorization of the 5' ESTs is described in Example 24 below.

25

Categorization of 5' ESTs Encoding a Signal Pentide

Those 5' ESTs having a sequence not matching any known vertebrate sequence nor any publicly available EST sequence were designated "new." Of the sequences in the SIGNALTAGTM database, 947 of the 5' ESTs having a Von Heijne's score of at least 3.5 fell into this category.

5 Those 5' ESTs having a sequence not matching any vertebrate sequence but matching a publicly known EST were designated "EST-ext", provided that the known EST sequence was extended by at least 40 nucleotides in the 5' direction. Of the sequences in the SIGNALTAGTM database, 150 of the 5' ESTs having a Von Heijne's score of at least 3.5 fell into this category.

Those ESTs not matching any vertebrate sequence but matching a publicly known EST without extending the 10 known EST by at least 40 nucleotides in the 5' direction were designated "EST." Of the sequences in the SIGNALTAG™ database, 599 of the 5' ESTs having a Von Heijne's score of at least 3.5 fell into this category.

Those 5' ESTs matching a human mRNA sequence but extending the known sequence by at least 40 nucleotides in the 5' direction were designated "VERT-ext." Of the sequences in the SIGNALTAG™ database, 23 of the 5' ESTs having a Von Heijne's score of at least 3.5 fell into this category. Included in this category was a 5' EST which 15 extended the known sequence of the human translocase mRNA by more than 200 bases in the 5' direction. A 5' EST which extended the sequence of a human tumor suppressor gene in the 5' direction was also identified.

Figure 4 shows the distribution of 5' ESTs in each category and the number of 5' ESTs in each category having a given minimum von Heijne's score.

Each of the 5' ESTs was categorized based on the tissue from which its corresponding mRNA was obtained, 20 as described below in Example 25.

EXAMPLE 25

Categorization of Expression Patterns

Figure 5 shows the tissues from which the mRNAs corresponding to the 5' ESTs in each of the above described categories were obtained.

In addition to categorizing the 5' ESTs by the tissue from which the cDNA library in which they were first identified was obtained, the spatial and temporal expression patterns of the mRNAs corresponding to the 5' ESTs, as well as their expression levels, may be determined as described in Example 26 below. Characterization of the spatial and temporal expression patterns and expression levels of these mRNAs is useful for constructing expression vectors capable of producing a desired level of gene product in a desired spatial or temporal manner, as will be discussed in more detail 30 below.

In addition, 5' ESTs whose corresponding mRNAs are associated with disease states may also be identified. For example, a particular disease may result from lack of expression, over expression, or under expression of an mRNA corresponding to a 5' EST. By comparing mRNA expression patterns and quantities in samples taken from healthy

WO 99/31236 PCT/IB98/02122

.29.

individuals with those from individuals suffering from a particular disease, 5' ESTs responsible for the disease may be identified.

It will be appreciated that the results of the above characterization procedures for 5' ESTs also apply to extended cDNAs (obtainable as described below) which contain sequences adjacent to the 5' ESTs. It will also be appreciated that if it is desired to defer characterization until extended cDNAs have been obtained rather than characterizing the ESTs themselves, the above characterization procedures can be applied to characterize the extended cDNAs after their isolation.

EXAMPLE 26

Evaluation of Expression Levels and Patterns of mRNAs

Corresponding to 5' ESTs or Extended cDNAs

10

Expression levels and patterns of mRNAs corresponding to 5' ESTs or extended cDNAs (obtainable as described below) may be analyzed by solution hybridization with long probes as described in International Patent Application No. WO 97/05277. Briefly, a 5' EST, extended cDNA, or fragment thereof corresponding to the gene encoding the mRNA to be characterized is inserted at a cloning site immediately downstream of a bacteriophage (T3, T7 or SP6) RNA polymerase promoter to produce antisense RNA. Preferably, the 5' EST or extended cDNA has 100 or more nucleotides. The plasmid is linearized and transcribed in the presence of ribonucleotides comprising modified ribonucleotides (i.e. biotin-UTP and DIG-UTP). An excess of this doubly labeled RNA is hybridized in solution with mRNA isolated from cells or tissues of interest. The hybridizations are performed under standard stringent conditions (40-50°C for 16 hours in an 80% formamide, 0.4 M NaCl buffer, pH 7-8). The unhybridized probe is removed by digestion with ribonucleases specific for single-stranded RNA (i.e. RNases CL3, T1, Phy M, U2 or A). The presence of the biotin-UTP modification enables capture of the hybrid on a microtitration plate coated with streptavidin. The presence of the DIG modification enables the hybrid to be detected and quantified by ELISA using an anti-DIG antibody coupled to alkaline phosphatase.

The 5' ESTs, extended cDNAs, or fragments thereof may also be tagged with nucleotide sequences for the serial analysis of gene expression (SAGE) as disclosed in UK Patent Application No. 2 305 241 A. In this method, cDNAs are prepared from a cell, tissue, organism or other source of nucleic acid for which it is desired to determine gene expression patterns. The resulting cDNAs are separated into two pools. The cDNAs in each pool are cleaved with a first restriction endonuclease, called an "anchoring enzyme," having a recognition site which is likely to be present at least once in most cDNAs. The fragments which contain the 5' or 3' most region of the cleaved cDNA are isolated by binding to a capture medium such as streptavidin coated beads. A first oligonucleotide linker having a first sequence for hybridization of an amplification primer and an internal restriction site for a "tagging endonuclease" is ligated to the digested cDNAs in the first pool. Digestion with the second endonuclease produces short "tag" fragments from the cDNAs.

WO 99/31236 PCT/IB98/02122

.30-

A second oligonucleotide having a second sequence for hybridization of an amplification primer and an internalrestriction site is ligated to the digested cDNAs in the second pool. The cDNA fragments in the second pool are also digested with the "tagging endonuclease" to generate short "tag" fragments derived from the cDNAs in the second pool. The "tags" resulting from digestion of the first and second pools with the anchoring enzyme and the tagging 5 endonuclease are ligated to one another to produce "ditags." In some embodiments, the ditags are concatamerized to produce ligation products containing from 2 to 200 ditags. The tag sequences are then determined and compared to the sequences of the 5' ESTs or extended cDNAs to determine which 5' ESTs or extended cDNAs are expressed in the cell, tissue, organism, or other source of nucleic acids from which the tags were derived. In this way, the expression pattern of the 5' ESTs or extended cDNAs in the cell, tissue, organism, or other source of nucleic acids is obtained.

Quantitative analysis of gene expression may also be performed using arrays. As used herein, the term array means a one dimensional, two dimensional, or multidimensional arrangement of full length cDNAs (i.e. extended cDNAs which include the coding sequence for the signal peptide, the coding sequence for the mature protein, and a stop codon), extended cDNAs, 5' ESTs or fragments of the full length cDNAs, extended cDNAs, or 5' ESTs of sufficient length to permit specific detection of gene expression. Preferably, the fragments are at least 15 nucleotides in length. More 15 preferably, the fragments are at least 100 nucleotides in length. More preferably, the fragments are more than 100 nucleotides in length. In some embodiments the fragments may be more than 500 nucleotides in length.

10

25

For example, quantitative analysis of gene expression may be performed with full length cDNAs, extended cDNAs, 5' ESTs, or fragments thereof in a complementary DNA microarray as described by Schena et al. (Science 270:467-470, 1995; Proc. Natl. Acad. Sci. U.S.A. 93:10614-10619, 1996). Full length cDNAs, extended cDNAs, 5' 20 ESTs or fragments thereof are amplified by PCR and arrayed from 96-well microtiter plates onto silylated microscope slides using high-speed robotics. Printed arrays are incubated in a humid chamber to allow rehydration of the array elements and rinsed, once in 0.2% SDS for 1 min, twice in water for 1 min and once for 5 min in sodium borohydride solution. The arrays are submerged in water for 2 min at 95°C, transferred into 0.2% SDS for 1 min, rinsed twice with water, air dried and stored in the dark at 25°C.

Cell or tissue mRNA is isolated or commercially obtained and probes are prepared by a single round of reverse transcription. Probes are hybridized to 1 cm² microarrays under a 14 x 14 mm glass coverslip for 6-12 hours at 60°C. Arrays are washed for 5 min at 25°C in low stringency wash buffer (1 x SSC/0.2% SDS), then for 10 min at room temperature in high stringency wash buffer (0.1 x SSC/0.2% SDS). Arrays are scanned in 0.1 x SSC using a fluorescence laser scanning device fitted with a custom filter set. Accurate differential expression measurements are 30 obtained by taking the average of the ratios of two independent hybridizations.

Quantitative analysis of the expression of genes may also be performed with full length cDNAs, extended cDNAs, 5' ESTs, or fragments thereof in complementary DNA arrays as described by Pietu et al. (Genome Research 6:492-503, 1996). The full length cDNAs, extended cDNAs, 5' ESTs or fragments thereof are PCR amplified and spotted on membranes. Then, mRNAs originating from various tissues or cells are labeled with radioactive nucleotides. WO 99/31236 PCT/IB98/02122

-31-

After hybridization and washing in controlled conditions, the hybridized mRNAs are detected by phospho-imaging or autoradiography. Duplicate experiments are performed and a quantitative analysis of differentially expressed mRNAs is then performed.

Alternatively, expression analysis of the 5' ESTs or extended cDNAs can be done through high density

nucleotide arrays as described by Lockhart et al. (Nature Biotechnology 14: 1675-1680, 1996) and Sosnowsky et al.

(Proc. Natl. Acad. Sci. 94:1119-1123, 1997). Oligonucleotides of 15-50 nucleotides corresponding to sequences of the
5' ESTs or extended cDNAs are synthesized directly on the chip (Lockhart et al., supra) or synthesized and then
addressed to the chip (Sosnowski et al., supra). Preferably, the oligonucleotides are about 20 nucleotides in length.

cDNA probes labeled with an appropriate compound, such as biotin, digoxigenin or fluorescent dye, are
synthesized from the appropriate mRNA population and then randomly fragmented to an average size of 50 to 100 nucleotides. The said probes are then hybridized to the chip. After washing as described in Lockhart et al., supra and application of different electric fields (Sosnowsky et al., Proc. Natl. Acad. Sci. 94:1119-1123)., the dyes or labeling compounds are detected and quantified. Duplicate hybridizations are performed. Comparative analysis of the intensity of the signal originating from cDNA probes on the same target oligonucleotide in different cDNA samples indicates a differential expression of the mRNA corresponding to the 5' EST or extended cDNA from which the oligonucleotide sequence has been designed.

III. Use of 5' ESTs to Clone Extended cDNAs and to Clone the Corresponding Genomic DNAs

Once 5' ESTs which include the 5' end of the corresponding mRNAs have been selected using the procedures described above, they can be utilized to isolate extended cDNAs which contain sequences adjacent to the 5' ESTs. The extended cDNAs may include the entire coding sequence of the protein encoded by the corresponding mRNA, including the authentic translation start site, the signal sequence, and the sequence encoding the mature protein remaining after cleavage of the signal peptide. Such extended cDNAs are referred to herein as "full length cDNAs." Alternatively, the extended cDNAs may include only the sequence encoding the mature protein remaining after cleavage of the signal peptide, or only the sequence encoding the signal peptide.

Example 27 below describes a general method for obtaining extended cDNAs. Example 28 below describes the cloning and sequencing of several extended cDNAs, including extended cDNAs which include the entire coding sequence and authentic 5' end of the corresponding mRNA for several secreted proteins.

25

The methods of Examples 27, 28, and 29 can also be used to obtain extended cDNAs which encode less than the entire coding sequence of the secreted proteins encoded by the genes corresponding to the 5' ESTs. In some embodiments, the extended cDNAs isolated using these methods encode at least 10 amino acids of one of the proteins encoded by the sequences of SEQ ID NOs: 40-140 and 242-377. In further embodiments, the extended cDNAs encode at least 20 amino acids of the proteins encoded by the sequences of SEQ ID NOs: 40-140 and 242-377. In further embodiments, the extended cDNAs encode at least 30 amino acids of the sequences of SEQ ID NOs: 40-140 and

-32-

242-377. In a preferred embodiment, the extended cDNAs encode a full length protein sequence, which includes the protein coding sequences of SEO ID NOs: 40-140 and 242-377.

EXAMPLE 27

General Method for Using 5' ESTs to Clone and Sequence Extended cDNAs

The following general method has been used to quickly and efficiently isolate extended cDNAs including sequence adjacent to the sequences of the 5' ESTs used to obtain them. This method may be applied to obtain extended cDNAs for any 5' EST in the NETGENETM database, including those 5' ESTs encoding secreted proteins. The method is summarized in Figure 6.

1. Obtaining Extended cDNAs

10 a) First strand synthesis

The method takes advantage of the known 5' sequence of the mRNA. A reverse transcription reaction is conducted on purified mRNA with a poly 14dT primer containing a 49 nucleotide sequence at its 5' end allowing the addition of a known sequence at the end of the cDNA which corresponds to the 3' end of the mRNA. For example, the primer may have the following sequence: 5'-ATC GTT GAG ACT CGT ACC AGC AGA GTC ACG AGA GAG ACT ACA CGG TAC TGG TTT TTT TTT TTT TTVN -3' (SEQ ID NO:14). Those skilled in the art will appreciate that other sequences may also be added to the poly dT sequence and used to prime the first strand synthesis. Using this primer and a reverse transcriptase such as the Superscript II (Gibco BRL) or Rnase H Minus M-MLV (Promega) enzyme, a reverse transcript anchored at the 3' polyA site of the RNAs is generated.

After removal of the mRNA hybridized to the first cDNA strand by alkaline hydrolysis, the products of the
alkaline hydrolysis and the residual poly dT primer are eliminated with an exclusion column such as an AcA34 (Biosepra)
matrix as explained in Example 11.

b) Second strand synthesis

30

A pair of nested primers on each end is designed based on the known 5' sequence from the 5' EST and the known 3' end added by the poly dT primer used in the first strand synthesis. Software used to design primers are either based on GC content and melting temperatures of oligonucleotides, such as OSP (Illier and Green, *PCR Meth. Appl.* 1:124-128, 1991), or based on the octamer frequency disparity method (Griffais et al., *Nucleic Acids Res.* 19: 3887-3891, 1991 such as PC-Rare (http://bioinformatics.weizmann.ac.il/software/PC-Rare/doc/manuel.html).

Preferably, the nested primers at the 5' end are separated from one another by four to nine bases. The 5' primer sequences may be selected to have melting temperatures and specificities suitable for use in PCR.

Preferably, the nested primers at the 3' end are separated from one another by four to nine bases. For example, the nested 3' primers may have the following sequences: (5'- CCA GCA GAG TCA CGA GAG AGA CTA CAC GG -3'(SEQ ID NO:15), and 5'- CAC GAG AGA GAC TAC ACG GTA CTG G -3' (SEQ ID NO:16). These primers were selected because they have melting temperatures and specificities compatible with their use in PCR. However, those skilled in the art will appreciate that other sequences may also be used as primers.

The first PCR run of 25 cycles is performed using the Advantage Tth Polymerase Mix (Clontech) and the outer primer from each of the nested pairs. A second 20 cycle PCR using the same enzyme and the inner primer from each of the nested pairs is then performed on 1/2500 of the first PCR product. Thereafter, the primers and nucleotides are removed.

5 2. Sequencing of Full Length Extended cDNAs or Fragments Thereof

Due to the lack of position constraints on the design of 5' nested primers compatible for PCR use using the OSP software, amplicons of two types are obtained. Preferably, the second 5' primer is located upstream of the translation initiation codon thus yielding a nested PCR product containing the whole coding sequence. Such a full length extended cDNA undergoes a direct cloning procedure as described in section a below. However, in some cases, the second 5' primer is located downstream of the translation initiation codon, thereby yielding a PCR product containing only part of the ORF. Such incomplete PCR products are submitted to a modified procedure described in section b below.

a) Nested PCR products containing complete ORFs

When the resulting nested PCR product contains the complete coding sequence, as predicted from the 5'EST sequence, it is closed in an appropriate vector such as pED6dpc2, as described in section 3.

b) Nested PCR products containing incomplete ORFs

When the amplicon does not contain the complete coding sequence, intermediate steps are necessary to obtain both the complete coding sequence and a PCR product containing the full coding sequence. The complete coding sequence can be assembled from several partial sequences determined directly from different PCR products as described in the following section.

Once the full coding sequence has been completely determined, new primers compatible for PCR use are designed to obtain amplicons containing the whole coding region. However, in such cases, 3' primers compatible for PCR use are located inside the 3' UTR of the corresponding mRNA, thus yielding amplicons which lack part of this region, i.e. the polyA tract and sometimes the polyadenylation signal, as illustrated in figure 6. Such full length extended cDNAs are then cloned into an appropriate vector as described in section 3.

c) Sequencing extended cDNAs

Sequencing of extended cDNAs is performed using a Die Terminator approach with the AmpliTaq DNA polymerase FS kit available from Perkin Elmer.

In order to sequence PCR fragments, primer walking is performed using software such as OSP to choose

30 primers and automated computer software such as ASMG (Sutton et al., *Genome Science Technol.* 1: 9-19, 1995) to construct contigs of walking sequences including the initial 5' tag using minimum overlaps of 32 nucleotides. Preferably, primer walking is performed until the sequences of full length cDNAs are obtained.

Completion of the sequencing of a given extended cDNA fragment is assessed as follows. Since sequences located after a polyA tract are difficult to determine precisely in the case of uncloned products, sequencing and primer

walking processes for PCR products are interrupted when a polyA tract is identified in extended cDNAs obtained as described in case b. The sequence length is compared to the size of the nested PCR product obtained as described above. Due to the limited accuracy of the determination of the PCR product size by gel electrophoresis, a sequence is considered complete if the size of the obtained sequence is at least 70 % the size of the first nested PCR product. If the 5 length of the sequence determined from the computer analysis is not at least 70% of the length of the nested PCR product, these PCR products are cloned and the sequence of the insertion is determined. When Northern blot data are available, the size of the mRNA detected for a given PCR product is used to finally assess that the sequence is complete. Sequences which do not fulfill the above criteria are discarded and will undergo a new isolation procedure.

Sequence data of all extended cDNAs are then transferred to a proprietary database, where quality controls 10 and validation steps are carried out as described in example 15.

3. Cloning of Full Length Extended cDNAs

20

The PCR product containing the full coding sequence is then cloned in an appropriate vector. For example, the extended cDNAs can be cloned into the expression vector pED6dpc2 (DiscoverEase, Genetics Institute, Cambridge, MA) as follows. The structure of pED6dpc2 is shown in Figure 7. pED6dpc2 vector DNA is prepared with blunt ends by 15 performing an EcoRI digestion followed by a fill in reaction. The blunt ended vector is dephosphorylated. After removal of PCR primers and ethanol precipitation, the PCR product containing the full coding sequence or the extended cDNA obtained as described above is phosphorylated with a kinase subsequently removed by phenol-Sevag extraction and precipitation. The double stranded extended cDNA is then ligated to the vector and the resulting expression plasmid introduced into appropriate host cells.

Since the PCR products obtained as described above are blunt ended molecules that can be cloned in either direction, the orientation of several clones for each PCR product is determined. Then, 4 to 10 clones are ordered in microtiter plates and subjected to a PCR reaction using a first primer located in the vector close to the cloning site and a second primer located in the portion of the extended cDNA corresponding to the 3' end of the mRNA. This second primer may be the antisense primer used in anchored PCR in the case of direct cloning (case a) or the antisense primer located 25 inside the 3'UTR in the case of indirect cloning (case b). Clones in which the start codon of the extended cDNA is operably linked to the promoter in the vector so as to permit expression of the protein encoded by the extended cDNA are conserved and sequenced. In addition to the ends of cDNA inserts, approximately 50 bp of vector DNA on each side of the cDNA insert are also sequenced.

The cloned PCR products are then entirely sequenced according to the aforementioned procedure. In this case, 30 contig assembly of long fragments is then performed on walking sequences that have already contigated for uncloned PCR products during primer walking. Sequencing of cloned amplicons is complete when the resulting contigs include the whole coding region as well as overlapping sequences with vector DNA on both ends.

4. Computer Analysis of Full Length Extended cDNA

Sequences of all full length extended cDNAs are then submitted to further analysis as described below and using the parameters found in Table II with the following modifications. For screening of miscellaneous subdivisions of Genbank, FASTA was used instead of BLASTN and 15 nucleotide of homology was the limit instead of 17. For Alu detection, BLASTN was used with the following parameters: S = 72; identity = 70%; and length = 40 nucleotides.

- Polyadenylation signal and polyA tail which were not search for the 5' ESTs were searched. For polyadenylation signal detection the signal (AATAAA) was searched with one permissible mismatch in the last ten nucleotides preceding the 5' end of the polyA. For the polyA, a stretch of 8 amino acids in the last 20 nucleotides of the sequence was searched with BLAST2N in the sense strand with the following parameters (W = 6, S = 10, E = 1000, and identity = 90%). Finally, patented sequences and ORF homologies were searched using, respectively, BLASTN and BLASTP on GenSEQ

 (Derwent's database of patented nucleotide sequences) and SWISSPROT for OREs with the following parameters (W = 8).
- 10 (Derwent's database of patented nucleotide sequences) and SWISSPROT for ORFs with the following parameters (W=8 and B=10). Before examining the extended full length cDNAs for sequences of interest, extended cDNAs which are not of interest are searched as follows.

a) Elimination of undesired sequences

Although 5'ESTs were checked to remove contaminant sequences as described in Example 18, a last verification was carried out to identify extended cDNAs sequences derived from undesired sequences such as vector RNAs, transfer RNAs, ribosomal rRNAs, mitochondrial RNAs, prokaryotic RNAs and fungal RNAs using the FASTA and BLASTN programs on both strands of extended cDNAs as described below.

To identify the extended cDNAs encoding vector RNAs, extended cDNAs are compared to the known sequences of vector RNA using the FASTA program. Sequences of extended cDNAs with more than 90% homology over stretches of 15 nucleotides are identified as vector RNA.

To identify the extended cDNAs encoding tRNAs, extended cDNA sequences were compared to the sequences of 1190 known tRNAs obtained from EMBL release 38, of which 100 were human. Sequences of extended cDNAs having more than 80% homology over 60 nucleotides using FASTA were identified as tRNA.

To identify the extended cDNAs encoding rRNAs, extended cDNA sequences were compared to the sequences
of 2497 known rRNAs obtained from EMBL release 38, of which 73 were human. Sequences of extended cDNAs having
more than 80% homology over stretches longer than 40 nucleotides using BLASTN were identified as rRNAs.

To identify the extended cDNAs encoding mtRNAs, extended cDNA sequences were compared to the sequences of the two known mitochondrial genomes for which the entire genomic sequences are available and all sequences transcribed from these mitochondrial genomes including tRNAs, rRNAs, and mRNAs for a total of 38 sequences. Sequences of extended cDNAs having more than 80% homology over stretches longer than 40 nucleotides using BLASTN were identified as mtRNAs.

Sequences which might have resulted from other exogenous contaminants were identified by comparing extended cDNA sequences to release 105 of Genbank bacterial and fungal divisions. Sequences of extended cDNAs

having more than 90% homology over 40 nucleotides using BLASTN were identified as exogenous prokaryotic or fungal contaminants.

In addition, extended cDNAs were searched for different repeat sequences, including Alu sequences, L1 sequences, THE and MER repeats, SSTR sequences or satellite, micro-satellite, or telomeric repeats. Sequences of extended cDNAs with more than 70% homology over 40 nucleotide stretches using BLASTN were identified as repeat sequences and masked in further identification procedures. In addition, clones showing extensive homology to repeats, i.e., matches of either more than 50 nucleotides if the homology was at least 75% or more than 40 nucleotides if the homology was at least 90%, were flagged.

b) Identification of structural features

Structural features, e.g. polyA tail and polyadenylation signal, of the sequences of full length extended cDNAs are subsequently determined as follows.

A polyA tail is defined as a homopolymeric stretch of at least 11 A with at most one alternative base within it.

The polyA tail search is restricted to the last 20 nt of the sequence and limited to stretches of 11 consecutive A's because sequencing reactions are often not readable after such a polyA stretch. Stretches with 100% homology over 6 nucleotides are identified as polyA tails.

To search for a polyadenylation signal, the polyA tail is clipped from the full-length sequence. The 50 bp preceding the polyA tail are searched for the canonic polyadenylation AAUAAA signal allowing one mismatch to account for possible sequencing errors and known variation in the canonical sequence of the polyadenylation signal.

c) Identification of functional features

25

Functional features, e.g. ORFs and signal sequences, of the sequences of full length extended cDNAs were subsequently determined as follows.

The 3 upper strand frames of extended cDNAs are searched for ORFs defined as the maximum length fragments beginning with a translation initiation codon and ending with a stop codon. ORFs encoding at least 20 amino acids are preferred.

Each found ORF is then scanned for the presence of a signal peptide in the first 50 amino-acids or, where appropriate, within shorter regions down to 20 amino acids or less in the ORF, using the matrix method of von Heijne (Nuc. Acids Res. 14: 4683-4690 (1986)) and the modification described in Example 22.

d) Homology to either nucleotidic or proteic sequences

Sequences of full length extended cDNAs are then compared to known sequences on a nucleotidic or proteic 30 basis.

Sequences of full length extended cDNAs are compared to the following known nucleic acid sequences: vertebrate sequences (Genbank), EST sequences (Genbank), patented sequences (Geneseqn) and recently identified sequences (Genbank daily releases) available at the time of filing for the priority documents. Full length cDNA sequences are also compared to the sequences of a private database (Genset internal sequences) in order to find sequences that

5

have already been identified by applicants. Sequences of full length extended cDNAs with more than 90% homology over 30 nucleotides using either BLASTN or BLAST2N as indicated in Table III are identified as sequences that have already been described. Matching vertebrate sequences are subsequently examined using FASTA; full length extended cDNAs with more than 70% homology over 30 nucleotides are identified as sequences that have already been described.

ORFs encoded by full length extended cDNAs as defined in section c) are subsequently compared to known amino acid sequences found in Swissprot release CHP, PIR release PIR# and Genpept release GPEPT public databases using BLASTP with the parameter W=8 and allowing a maximum of 10 matches. Sequences of full length extended cDNAs showing extensive homology to known protein sequences are recognized as already identified proteins.

In addition, the three-frame conceptual translation products of the top strand of full length extended cDNAs

10 are compared to publicly known amino acid sequences of Swissprot using BLASTX with the parameter E=0.001.

Sequences of full length extended cDNAs with more than 70% homology over 30 amino acid stretches are detected as already identified proteins.

5. Selection of Cloned Full Length Sequences of the Present Invention

Cloned full length extended cDNA sequences that have already been characterized by the aforementioned computer analysis are then submitted to an automatic procedure in order to preselect full length extended cDNAs containing sequences of interest.

a) Automatic sequence preselection

All complete cloned full length extended cDNAs clipped for vector on both ends are considered. First, a negative selection is operated in order to eliminate unwanted cloned sequences resulting from either contaminants or PCR artifacts as follows. Sequences matching contaminant sequences such as vector RNA, tRNA, mtRNA, rRNA sequences are discarded as well as those encoding ORF sequences exhibiting extensive homology to repeats as defined in section 4 a). Sequences obtained by direct cloning using nested primers on 5' and 3' tags (section 1. case a) but lacking polyA tail are discarded. Only ORFs containing a signal peptide and ending either before the polyA tail (case a) or before the end of the cloned 3'UTR (case b) are kept. Then, ORFs containing unlikely mature proteins such as mature proteins which size is less than 20 amino acids or less than 25% of the immature protein size are eliminated.

In the selection of the OFR, priority was given to the ORF and the frame corresponding to the polypeptides described in SignalTag Patents (United States Patent Application Serial Nos: 08/905,223; 08/905,135; 08/905,051; 08/905,144; 08/905,279; 08/904,468; 08/905,134; and 08/905,133). If the ORF was not found among the OFRs described in the SignalTag Patents, the ORF encoding the signal peptide with the highest score according to Von Heijne method as defined in Example 22 was chosen. If the scores were identical, then the longest ORF was chosen.

Sequences of full length extended cDNA clones are then compared pairwise with BLAST after masking of the repeat sequences. Sequences containing at least 90% homology over 30 nucleotides are clustered in the same class. Each cluster is then subjected to a cluster analysis that detects sequences resulting from internal priming or from

-38-

alternative splicing, identical sequences or sequences with several frameshifts. This automatic analysis serves as a basis for manual selection of the sequences.

b) Manual sequence selection

Manual selection is carried out using automatically generated reports for each sequenced full length extended cDNA clone. During this manual procedures, a selection is operated between clones belonging to the same class as follows. ORF sequences encoded by clones belonging to the same class are aligned and compared. If the homology between nucleotidic sequences of clones belonging to the same class is more than 90% over 30 nucleotide stretches or if the homology between amino acid sequences of clones belonging to the same class is more than 80% over 20 amino acid stretches, than the clones are considered as being identical. The chosen ORF is the best one according to the criteria mentioned below. If the nucleotide and amino acid homologies are less than 90% and 80% respectively, the clones are said to encode distinct proteins which can be both selected if they contain sequences of interest.

Selection of full length extended cDNA clones encoding sequences of interest is performed using the following criteria. Structural parameters (initial tag, polyadenylation site and signal) are first checked. Then, homologies with known nucleic acids and proteins are examined in order to determine whether the clone sequence match a known nucleic/proteic sequence and, in the latter case, its covering rate and the date at which the sequence became public. If there is no extensive match with sequences other than ESTs or genomic DNA, or if the clone sequence brings substantial new information, such as encoding a protein resulting from alternative slicing of an mRNA coding for an already known protein, the sequence is kept. Examples of such cloned full length extended cDNAs containing sequences of interest are described in Example 28. Sequences resulting from chimera or double inserts as assessed by homology to other sequences are discarded during this procedure.

EXAMPLE 28

Cloning and Sequencing of Extended cDNAs

The procedure described in Example 27 above was used to obtain the extended cDNAs of the present invention. Using this approach, the full length cDNA of SEQ ID NO:17 was obtained. This cDNA falls into the "EST-ext" category described above and encodes the signal peptide MKKVLLLITAILAVAVG (SEQ ID NO: 18) having a von Heijne score of 8.2.

The full length cDNA of SEQ ID NO:19 was also obtained using this procedure. This cDNA falls into the "EST-ext" category described above and encodes the signal peptide MWWFQQGLSFLPSALVIWTSA (SEQ ID NO:20) having a von Heijne score of 5.5.

Another full length cDNA obtained using the procedure described above has the sequence of SEQ ID NO:21.

This cDNA, falls into the "EST-ext" category described above and encodes the signal peptide

MVLTTLPSANSANSPVNMPTTGPNSLSYASSALSPCLT (SEQ ID NO:22) having a von Heijne score of 5.9.

WO 99/31236

.39.

PCT/IB98/02122

The above procedure was also used to obtain a full length cDNA having the sequence of SEQ ID NO:23. This cDNA falls into the "EST-ext" category described above and encodes the signal peptide ILSTVTALTFAXA (SEQ ID NO:24) having a von Heijne score of 5.5.

The full length cDNA of SEQ ID NO:25 was also obtained using this procedure. This cDNA falls into the "new" category described above and encodes a signal peptide LVLTLCTLPLAVA (SEQ ID NO:26) having a von Heijne score of 10.1.

The full length cDNA of SEQ ID NO:27 was also obtained using this procedure. This cDNA falls into the "new" category described above and encodes a signal peptide LWLLFFLVTAIHA (SEQ ID NO:28) having a von Heijne score of 10.7.

The above procedures were also used to obtain the extended cDNAs of the present invention. 5' ESTs expressed in a variety of tissues were obtained as described above. The appended sequence listing provides the tissues from which the extended cDNAs were obtained. It will be appreciated that the extended cDNAs may also be expressed in tissues other than the tissue listed in the sequence listing.

5' ESTs obtained as described above were used to obtain extended cDNAs having the sequences of SEQ ID

NOs: 40-140 and 242-377. Table IV provides the sequence identification numbers of the extended cDNAs of the present invention, the locations of the full coding sequences in SEQ ID NOs: 40-140 and 242-377 (i.e. the nucleotides encoding both the signal peptide and the mature protein, listed under the heading FCS location in Table IV), the locations of the nucleotides in SEQ ID NOs: 40-140 and 242-377 which encode the signal peptides (listed under the heading SigPep Location in Table IV), the locations of the nucleotides in SEQ ID NOs: 40-140 and 242-377 which encode the mature proteins generated by cleavage of the signal peptides (listed under the heading Mature Polypeptide Location in Table IV), the locations in SEQ ID NOs: 40-140 and 242-377 of stop codons (listed under the heading Stop Codon Location in Table IV), the locations in SEQ ID NOs: 40-140 and 242-377 of polyA signals (listed under the heading Poly A Signal Location in Table IV) and the locations of polyA sites (listed under the heading Poly A Site Location in Table IV).

The polypeptides encoded by the extended cDNAs were screened for the presence of known structural or

functional motifs or for the presence of signatures, small amino acid sequences which are well conserved amongst the
members of a protein family. The conserved regions have been used to derive consensus patterns or matrices included in
the PROSITE data bank, in particular in the file prosite.dat (Release 13.0 of November 1995, located at
http://expasy.hcuge.ch/sprot/prosite.html. Prosite_convert and prosite_scan programs
(http://ulrec3.unil.ch/ftpserveur/prosite_scan) were used to find signatures on the extended cDNAs.

For each pattern obtained with the prosite_convert program from the prosite.dat file, the accuracy of the detection on a new protein sequence has been tested by evaluating the frequency of irrelevant hits on the population of human secreted proteins included in the data bank SWISSPROT. The ratio between the number of hits on shuffled proteins (with a window size of 20 amino acids) and the number of hits on native (unshuffled) proteins was used as an index. Every pattern for which the ration was greater than 20% (one hit on shuffled proteins for 5 hits on native

-40-

proteins) was skipped during the search with prosite_scan. The program used to shuffle protein sequences (db_shuffled) and the program used to determine the statistics for each pattern in the protein data banks (prosite statistics) are available on the ftp site http://ulrec3.unil.ch/ftpserveur/prosite scan.

Table V lists the sequence identification numbers of the polypeptides of SEQ ID NOs: 141-241 and 378-513, the locations of the amino acid residues of SEQ ID NOs: 141-241 and 378-513 in the full length polypeptide (second column), the locations of the amino acid residues of SEQ ID NOs: 141-241 and 378-513 in the signal peptides (third column), and the locations of the amino acid residues of SEQ ID NOs: 141-241 and 378-513 in the mature polypeptide created by cleaving the signal peptide from the full length polypeptide (fourth column).

The nucleotide sequences of the sequences of SEQ ID NOs: 40-140 and 242-377 and the amino acid sequences

10 encoded by SEQ ID NOs: 40-140 and 242-377 (i.e. amino acid sequences of SEQ ID NOs: 141-241 and 378-513) are

provided in the appended sequence listing. In some instances, the sequences are preliminary and may include some
incorrect or ambiguous sequences or amino acids. The sequences of SEQ ID NOs: 40-140 and 242-377 can readily be
screened for any errors therein and any sequence ambiguities can be resolved by resequencing a fragment containing
such errors or ambiguities on both strands. Nucleic acid fragments for resolving sequencing errors or ambiguities may be

15 obtained from the deposited clones or can be isolated using the techniques described herein. Resolution of any such
ambiguities or errors may be facilitated by using primers which hybridize to sequences located close to the ambiguous or
erroneous sequences. For example, the primers may hybridize to sequences within 50-75 bases of the ambiguity or
error. Upon resolution of an error or ambiguity, the corresponding corrections can be made in the protein sequences
encoded by the DNA containing the error or ambiguity. For example, in the sequences of the present invention, ambiguities

20 in the sequence of SEQ ID NO: 131 were resolved. The amino acid sequence of the protein encoded by a particular clone
can also be determined by expression of the clone in a suitable host cell, collecting the protein, and determining its
sequence.

For each amino acid sequence, Applicants have identified what they have determined to be the reading frame best identifiable with sequence information available at the time of filing. Some of the amino acid sequences may contain "Xaa" designators. These "Xaa" designators indicate either (1) a residue which cannot be identified because of nucleotide sequence ambiguity or (2) a stop codon in the determined sequence where Applicants believe one should not exist (if the sequence were determined more accurately).

Cells containing the extended cDNAs (SEQ ID NOs: 40-140 and 242-377) of the present invention in the vector pED6dpc2, are maintained in permanent deposit by the inventors at Genset, S.A., 24 Rue Royale, 75008 Paris, France.

30

Pools of cells containing the extended cDNAs (SEQ ID NOs: 40-140 and 242-377), from which cells containing a particular polynucleotide are obtainable, were deposited with the American Type Culture Collection, 10801 University Blvd., Manassas, VA 20110-2209 or the European Collection of Cell Cultures, Vaccine Research and Production Laboratory, Public Health Laboratory Service, Centre for Applied Microbiology and Research, Porton Down, Salisbury, Wiltshire SP4 OJG, United Kingdom. Each extended cDNA clone has been transfected into separate bacterial cells (E-

WO 99/31236

-41-

PCT/IB98/02122

coli) for this composite deposit. Table VI lists the deposit numbers of the clones containing the extended cDNAs of the present invention. Table VII provides the internal designation number assigned to each SEQ ID NO and indicates whether the sequence is a nucleic acid sequence or a protein sequence.

Each extended cDNA can be removed from the pED6dpc2 vector in which it was deposited by performing a 5 Notl, Pstl double digestion to produce the appropriate fragment for each clone. The proteins encoded by the extended cDNAs may also be expressed from the promoter in pED6dpc2.

Bacterial cells containing a particular clone can be obtained from the composite deposit as follows:

An oligonucleotide probe or probes should be designed to the sequence that is known for that particular clone. This sequence can be derived from the sequences provided herein, or from a combination of those sequences. The design 10 of the oligonucleotide probe should preferably follow these parameters:

(a) It should be designed to an area of the sequence which has the fewest ambiguous bases ("N's"), if any;

(b) Preferably, the probe is designed to have a T_m of approx. 80°C (assuming 2 degrees for each A or T and 4 degrees for each G or C). However, probes having melting temperatures between 40 °C and 80 °C may also be used provided that specificity is not lost.

15

20

The oligonucleotide should preferably be labeled with (-[32P]ATP (specific activity 6000 Ci/mmole) and T4 polynucleotide kinase using commonly employed techniques for labeling oligonucleotides. Other labeling techniques can also be used. Unincorporated label should preferably be removed by gel filtration chromatography or other established methods. The amount of radioactivity incorporated into the probe should be quantified by measurement in a scintillation counter. Preferably, specific activity of the resulting probe should be approximately 4X106 dpm/pmole.

The bacterial culture containing the pool of full-length clones should preferably be thawed and 100 μ l of the stock used to inoculate a sterile culture flask containing 25 ml of sterile L-broth containing ampicillin at 100 ug/ml. The culture should preferably be grown to saturation at 37°C, and the saturated culture should preferably be diluted in fresh L-broth. Aliquots of these dilutions should preferably be plated to determine the dilution and volume which will yield approximately 5000 distinct and well-separated colonies on solid bacteriological media containing L-broth containing 25 ampicillin at 100 μg/ml and agar at 1.5% in a 150 mm petri dish when grown overnight at 37°C. Other known methods of obtaining distinct, well-separated colonies can also be employed.

Standard colony hybridization procedures should then be used to transfer the colonies to nitrocellulose filters and lyse, denature and bake them.

The filter is then preferably incubated at 65°C for 1 hour with gentle agitation in 6X SSC (20X stock is 30 175.3 g NaC1/liter, 88.2 g Na citrate/liter, adjusted to pH 7.0 with NaOH) containing 0.5% SDS, 100 pg/ml of yeast RNA, and 10 mM EDTA (approximately 10 mL per 150 mm filter). Preferably, the probe is then added to the hybridization mix at a concentration greater than or equal to 1X10⁶ dpm/mL. The filter is then preferably incubated at 65°C with gentle agitation overnight. The filter is then preferably washed in 500 mL of 2X SSC/0.1% SDS at room temperature with gentle shaking for 15 minutes. A third wash with 0.1X SSC/0.5% SDS at 65°C for 30 minutes to

5

15

30

1 hour is optional. The filter is then preferably dried and subjected to autoradiography for sufficient time to visualize the positives on the X-ray film. Other known hybridization methods can also be employed.

The positive colonies are picked, grown in culture, and plasmid DNA isolated using standard procedures. The clones can then be verified by restriction analysis, hybridization analysis, or DNA sequencing.

The plasmid DNA obtained using these procedures may then be manipulated using standard cloning techniques familiar to those skilled in the art. Alternatively, a PCR can be done with primers designed at both ends of the extended cDNA insertion. For example, a PCR reaction may be conducted using a primer having the sequence GGCCATACACTTGAGTGAC (SEQ ID NO:38) and a primer having the sequence ATATAGACAAACGCACACC (SEQ. ID. NO:39). The PCR product which corresponds to the extended cDNA can then be manipulated using standard cloning 10 techniques familiar to those skilled in the art.

In addition to PCR based methods for obtaining extended cDNAs, traditional hybridization based methods may also be e.nployed. These methods may also be used to obtain the genomic DNAs which encode the mRNAs from which the 5' ESTs were derived, mRNAs corresponding to the extended cDNAs, or nucleic acids which are homologous to extended cDNAs or 5' ESTs. Example 29 below provides an example of such methods.

EXAMPLE 29

Methods for Obtaining Extended cDNAs or Nucleic Acids Homologous to Extended cDNAs or 5' ESTs

A full length cDNA library can be made using the strategies described in Examples 13, 14, 15, and 16 above by replacing the random nonamer used in Example 14 with an oligo-dT primer. For instance, the oligonucleotide of SEQ ID 20 NO:14 may be used.

Alternatively, a cDNA library or genomic DNA library may be obtained from a commercial source or made using techniques familiar to those skilled in the art. The library includes cDNAs which are derived from the mRNA corresponding to a 5' EST or which have homology to an extended cDNA or 5' EST. The cDNA library or genomic DNA library is hybridized to a detectable probe comprising at least 10 consecutive nucleotides from the 5' EST or extended 25 cDNA using conventional techniques. Preferably, the probe comprises at least 12, 15, or 17 consecutive nucleotides from the 5' EST or extended cDNA. More preferably, the probe comprises at least 20-30 consecutive nucleotides from the 5' EST or extended cDNA. In some embodiments, the probe comprises at least 30 nucleotides from the 5' EST or extended cDNA. In other embodiments, the probe comprises at least 40, at least 50, at least 75, at least 100, at least 150, or at least 200 consecutive nucleotides from the 5' EST or extended cDNA.

Techniques for identifying cDNA clones in a cDNA library which hybridize to a given probe sequence are disclosed in Sambrook et al., Molecular Cloning: A Laboratory Manual 2d Ed., Cold Spring Harbor Laboratory Press, 1989. The same techniques may be used to isolate genomic DNAs.

Briefly, cDNA or genomic DNA clones which hybridize to the detectable probe are identified and isolated for further manipulation as follows. A probe comprising at least 10 consecutive nucleotides from the 5' EST or extended

PCT/IB98/02122

cDNA is labeled with a detectable label such as a radioisotope or a fluorescent molecule. Preferably, the probe comprises at least 12, 15, or 17 consecutive nucleotides from the 5' EST or extended cDNA. More preferably, the probe comprises 20-30 consecutive nucleotides from the 5' EST or extended cDNA. In some embodiments, the probe comprises more than 30 nucleotides from the 5' EST or extended cDNA. In some embodiments, the probe comprises at least 40, at least 50, at least 75, at least 100, at least 150, or at least 200 consecutive nucleotides from the 5' EST or extended cDNA.

Techniques for labeling the probe are well known and include phosphorylation with polynucleotide kinase, nick translation, in vitro transcription, and non-radioactive techniques. The cDNAs or genomic DNAs in the library are transferred to a nitrocellulose or nylon filter and denatured. After incubation of the filter with a blocking solution, the filter is contacted with the labeled probe and incubated for a sufficient amount of time for the probe to hybridize to cDNAs or genomic DNAs containing a sequence capable of hybridizing to the probe.

By varying the stringency of the hybridization conditions used to identify extended cDNAs or genomic DNAs which hybridize to the detectable probe, extended cDNAS having different levels of homology to the probe can be identified and isolated. To identify extended cDNAs or genomic DNAs having a high degree of homology to the probe sequence, the melting temperature of the probe may be calculated using the following formulas:

For probes between 14 and 70 nucleotides in length the melting temperature (Tm) is calculated using the formula: Tm=81.5+16.6(log [Na+])+0.41(fraction G+C)-(600/N) where N is the length of the probe.

If the hybridization is carried out in a solution containing formamide, the melting temperature may be calculated using the equation Tm = 81.5 + 16.6(log [Na +]) + 0.41(fraction G + C)-(0.63% formamide)-(600/N) where N is the length of the probe.

Prehybridization may be carried out in 6X SSC, 5X Denhardt's reagent, 0.5% SDS, 100µg denatured fragmented salmon sperm DNA or 6X SSC, 5X Denhardt's reagent, 0.5% SDS, 100µg denatured fragmented salmon sperm DNA, 50% formamide. The formulas for SSC and Denhardt's solutions are listed in Sambrook et al., supra.

Hybridization is conducted by adding the detectable probe to the prehybridization solutions listed above. Where
the probe comprises double stranded DNA, it is denatured before addition to the hybridization solution. The filter is
contacted with the hybridization solution for a sufficient period of time to allow the probe to hybridize to extended
cDNAs or genomic DNAs containing sequences complementary thereto or homologous thereto. For probes over 200
nucleotides in length, the hybridization may be carried out at 15-25°C below the Tm. For shorter probes, such as
oligonucleotide probes, the hybridization may be conducted at 15-25°C below the Tm. Preferably, for hybridizations in
SX SSC, the hybridization is conducted at approximately 68°C. Preferably, for hybridizations in 50% formamide
containing solutions, the hybridization is conducted at approximately 42°C.

All of the foregoing hybridizations would be considered to be under "stringent" conditions. Following hybridization, the filter is washed in 2X SSC, 0.1% SDS at room temperature for 15 minutes. The filter is then washed

WO 99/31236

5

PCT/IB98/02122

-44-

with 0.1X SSC, 0.5% SDS at room temperature for 30 minutes to 1 hour. Thereafter, the solution is washed at the hybridization temperature in 0.1X SSC, 0.5% SDS. A final wash is conducted in 0.1X SSC at room temperature.

Extended cDNAs, nucleic acids homologous to extended cDNAs or 5' ESTs, or genomic DNAs which have hybridized to the probe are identified by autoradiography or other conventional techniques.

The above procedure may be modified to identify extended cDNAs, nucleic acids homologous to extended cDNAs, or genomic DNAs having decreasing levels of homology to the probe sequence. For example, to obtain extended cDNAs, nucleic acids homologous to extended cDNAs, or genomic DNAs of decreasing homology to the detectable probe, less stringent conditions may be used. For example, the hybridization temperature may be decreased in increments of 5°C from 68°C to 42°C in a hybridization buffer having a Na+ concentration of approximately 1M. Following 10 hybridization, the filter may be washed with 2X SSC, 0.5% SDS at the temperature of hybridization. These conditions are considered to be "moderate" conditions above 50°C and "low" conditions below 50°C.

Alternatively, the hybridization may be carried out in buffers, such as 6X SSC, containing formamide at a temperature of 42°C. In this case, the concentration of formamide in the hybridization buffer may be reduced in 5% increments from 50% to 0% to identify clones having decreasing levels of homology to the probe. Following 15 hybridization, the filter may be washed with 6X SSC, 0.5% SDS at 50°C. These conditions are considered to be "moderate" conditions above 25% formamide and "low" conditions below 25% formamide.

Extended cDNAs, nucleic acids homologous to extended cDNAs, or genomic DNAs which have hybridized to the probe are identified by autoradiography.

If it is desired to obtain nucleic acids homologous to extended cDNAs, such as allelic variants thereof or nucleic 20 acids encoding proteins related to the proteins encoded by the extended cDNAs, the level of homology between the hybridized nucleic acid and the extended cDNA or 5' EST used as the probe may readily be determined. To determine the level of homology between the hybridized nucleic acid and the extended cDNA or 5'EST from which the probe was derived, the nucleotide sequences of the hybridized nucleic acid and the extended cDNA or 5'EST from which the probe was derived are compared. For example, using the above methods, nucleic acids having at least 95% nucleic acid 25 homology to the extended cDNA or 5'EST from which the probe was derived may be obtained and identified. Similarly. by using progressively less stringent hybridization conditions one can obtain and identify nucleic acids having at least 90%, at least 85%, at least 80% or at least 75% homology to the extended cDNA or 5'EST from which the probe was derived. The level of homology between the hybridized nucleic acid and the extended cDNA or 5' EST used as the probe may be further determined using BLAST2N; parameters may be adapted depending on the sequence length and degree of 30 homology studied. In such comparisons, the default parameters or the parameters listed in Tables II and III may be used.

To determine whether a clone encodes a protein having a given amount of homology to the protein encoded by the extended cDNA or 5' EST, the amino acid sequence encoded by the extended cDNA or 5' EST is compared to the amino acid sequence encoded by the hybridizing nucleic acid. Homology is determined to exist when an amino acid sequence in the extended cDNA or 5' EST is closely related to an amino acid sequence in the hybridizing nucleic acid. A

WO 99/31236

30

sequence is closely related when it is identical to that of the extended cDNA or 5' EST or when it contains one or more amino acid substitutions therein in which amino acids having similar characteristics have been substituted for one another. Using the above methods, one can obtain nucleic acids encoding proteins having at least 95%, at least 90%, at least 85%, at least 80% or at least 75% homology to the proteins encoded by the extended cDNA or 5'EST from which the probe was derived. Using the above methods and algorithms such as FASTA with parameters depending on the sequence length and degree of homology studied the level of homology may be determined. In determining the level of homology using FASTA, the default parameters or the parameters listed in Tables II or III may be used.

Alternatively, extended cDNAs may be prepared by obtaining mRNA from the tissue, cell, or organism of interest using mRNA preparation procedures utilizing poly A selection procedures or other techniques known to those skilled in the art. A first primer capable of hybridizing to the poly A tail of the mRNA is hybridized to the mRNA and a reverse transcription reaction is performed to generate a first cDNA strand.

The first cDNA strand is hybridized to a second primer containing at least 10 consecutive nucleotides of the sequences of the 5' EST for which an extended cDNA is desired. Preferably, the primer comprises at least 12, 15, or 17 consecutive nucleotides from the sequences of the 5' EST. More preferably, the primer comprises 20-30 consecutive nucleotides from the sequences of the 5' EST. In some embodiments, the primer comprises more than 30 nucleotides from the sequences of the 5' EST. If it is desired to obtain extended cDNAs containing the full protein coding sequence, including the authentic translation initiation site, the second primer used contains sequences located upstream of the translation initiation site. The second primer is extended to generate a second cDNA strand complementary to the first cDNA strand. Alternatively, RTPCR may be performed as described above using primers from both ends of the cDNA to be obtained.

Extended cDNAs containing 5' fragments of the mRNA may be prepared by contacting an mRNA comprising the sequence of the 5' EST for which an extended cDNA is desired with a primer comprising at least 10 consecutive nucleotides of the sequences complementary to the 5' EST, hybridizing the primer to the mRNAs, and reverse transcribing the hybridized primer to make a first cDNA strand from the mRNAs. Preferably, the primer comprises at least 12, 15, or 17 consecutive nucleotides from the 5' EST. More preferably, the primer comprises 20-30 consecutive nucleotides from the 5' EST.

Thereafter, a second cDNA strand complementary to the first cDNA strand is synthesized. The second cDNA strand may be made by hybridizing a primer complementary to sequences in the first cDNA strand to the first cDNA strand and extending the primer to generate the second cDNA strand.

The double stranded extended cDNAs made using the methods described above are isolated and cloned. The extended cDNAs may be cloned into vectors such as plasmids or viral vectors capable of replicating in an appropriate host cell. For example, the host cell may be a bacterial, mammalian, avian, or insect cell.

Techniques for isolating mRNA, reverse transcribing a primer hybridized to mRNA to generate a first cDNA strand, extending a primer to make a second cDNA strand complementary to the first cDNA strand, isolating the double

stranded cDNA and cloning the double stranded cDNA are well known to those skilled in the art and are described in Current Protocols in Molecular Biology, John Wiley 503 Sons, Inc. 1997 and Sambrook et al. Molecular Cloning: A Laboratory Manual, Second Edition, Cold Spring Harbor Laboratory Press, 1989.

Alternatively, kits for obtaining full length cDNAs, such as the GeneTrapper (Cat. No. 10356-020, Gibco, BRL),

may be used for obtaining full length cDNAs or extended cDNAs. In this approach, full length or extended cDNAs are
prepared from mRNA and cloned into double stranded phagemids. The cDNA library in the double stranded phagemids is
then rendered single stranded by treatment with an endonuclease, such as the Gene II product of the phage F1, and
Exonuclease III as described in the manual accompanying the GeneTrapper kit. A biotinylated oligonucleotide comprising
the sequence of a 5' EST, or a fragment containing at least 10 nucleotides thereof, is hybridized to the single stranded
phagemids. Preferably, the fragment comprises at least 12, 15, or 17 consecutive nucleotides from the 5' EST. More
preferably, the fragment comprises 20-30 consecutive nucleotides from the 5' EST. In some procedures, the fragment
may comprise more than 30 consecutive nucleotides from the 5' EST. For example, the fragment may comprises at least
40, at least 50, at least 75, at least 100, at least 150, or at least 200 consecutive nucleotides from the 5' EST.

Hybrids between the biotinylated oligonucleotide and phagemids having inserts containing the 5' EST sequence are isolated by incubating the hybrids with streptavidin coated paramagnetic beads and retrieving the beads with a magnet. Thereafter, the resulting phagemids containing the 5' EST sequence are released from the beads and converted into double stranded DNA using a primer specific for the 5' EST sequence. The resulting double stranded DNA is transformed into bacteria. Extended cDNAs containing the 5' EST sequence are identified by colony PCR or colony hybridization.

A plurality of extended cDNAs containing full length protein coding sequences or sequences encoding only the mature protein remaining after the signal peptide is cleaved may be provided as cDNA libraries for subsequent evaluation of the encoded proteins or use in diagnostic assays as described below.

IV. Expression of Proteins Encoded by Extended cDNAs Isolated Using 5' ESTs

Extended cDNAs containing the full protein coding sequences of their corresponding mRNAs or portions

thereof, such as cDNAs encoding the mature protein, may be used to express the secreted proteins or portions thereof which they encode as described in Example 30 below. If desired, the extended cDNAs may contain the sequences encoding the signal peptide to facilitate secretion of the expressed protein. It will be appreciated that a plurality of extended cDNAs containing the full protein coding sequences or portions thereof may be simultaneously cloned into expression vectors to create an expression library for analysis of the encoded proteins as described below.

30 EXAMPLE 30

20

Expression of the Proteins Encoded by Extended cDNAs or Portions Thereof

To express the proteins encoded by the extended cDNAs or portions thereof, nucleic acids containing the coding sequence for the proteins or portions thereof to be expressed are obtained as described in Examples 27-29 and cloned into a suitable expression vector. If desired, the nucleic acids may contain the sequences encoding the signal

.47.

peptide to facilitate secretion of the expressed protein. For example, the nucleic acid may comprise the sequence of one of SEQ ID NOs: 40-140 and 242-377 listed in Table IV and in the accompanying sequence listing. Alternatively, the nucleic acid may comprise those nucleotides which make up the full coding sequence of one of the sequences of SEQ ID NOs: 40-140 and 242-377 as defined in Table IV above.

5 It will be appreciated that should the extent of the full coding sequence (i.e. the sequence encoding the signal peptide and the mature protein resulting from cleavage of the signal peptide) differ from that listed in Table IV as a result of a sequencing error, reverse transcription or amplification error, mRNA splicing, post-translational modification of the encoded protein, enzymatic cleavage of the encoded protein, or other biological factors, one skilled in the art would be readily able to identify the extent of the full coding sequences in the sequences of SEQ ID NOs. 40-140 and 242-377. 10 For example, the sequence of SEQ ID NO: 115 represents an alternatively spliced transcript of a previously identified mRNA.. Accordingly, the scope of any claims herein relating to nucleic acids containing the full coding sequence of one of SEQ ID NOs. 40-140 and 242-377 is not to be construed as excluding any readily identifiable variations from or equivalents to the full coding sequences listed in Table IV Similarly, should the extent of the full length polypeptides differ from those indicated in Table V as a result of any of the preceding factors, the scope of claims relating to polypeptides 15 comprising the amino acid sequence of the full length polypeptides is not to be construed as excluding any readily identifiable variations from or equivalents to the sequences listed in Table V.

Alternatively, the nucleic acid used to express the protein or portion thereof may comprise those nucleotides which encode the mature protein (i.e. the protein created by cleaving the signal peptide off) encoded by one of the sequences of SEO ID NOs: 40-140 and 242-377 as defined in Table IV above.

20

It will be appreciated that should the extent of the sequence encoding the mature protein differ from that listed in Table IV as a result of a sequencing error, reverse transcription or amplification error, mRNA splicing, posttranslational modification of the encoded protein, enzymatic cleavage of the encoded protein, or other biological factors, one skilled in the art would be readily able to identify the extent of the sequence encoding the mature protein in the sequences of SEQ ID NOs. 40-140 and 242-377. Accordingly, the scope of any claims herein relating to nucleic acids 25 containing the sequence encoding the mature protein encoded by one of SEQ ID Nos. 40-140 and 242-377 is not to be construed as excluding any readily identifiable variations from or equivalents to the sequences listed in Table IV. Thus, claims relating to nucleic acids containing the sequence encoding the mature protein encompass equivalents to the sequences listed in Table IV, such as sequences encoding biologically active proteins resulting from post-translational modification, enzymatic cleavage, or other readily identifiable variations from or equivalents to the secreted proteins in 30 addition to cleavage of the signal peptide. Similarly, should the extent of the mature polypeptides differ from those indicated in Table V as a result of any of the preceding factors, the scope of claims relating to polypeptides comprising the sequence of a mature protein included in the sequence of one of SEQ ID NOs. 141-241 and 378-513 is not to be construed as excluding any readily identifiable variations from or equivalents to the sequences listed in Table V. Thus, claims relating to polypeptides comprising the sequence of the mature protein encompass equivalents to the sequences

listed in Table IV, such as biologically active proteins resulting from post-translational modification, enzymatic cleavage, or other readily identifiable variations from or equivalents to the secreted proteins in addition to cleavage of the signal peptide. It will also be appreciated that should the biologically active form of the polypeptides included in the sequence of one of SEQ ID NOs. 141-241 and 378-513 or the nucleic acids encoding the biologically active form of the polypeptides differ from those identified as the mature polypeptide in Table V or the nucleotides encoding the mature polypeptide in Table IV as a result of a sequencing error, reverse transcription or amplification error, mRNA splicing, post-translational modification of the encoded protein, enzymatic cleavage of the encoded protein, or other biological factors, one skilled in the art would be readily able to identify the amino acids in the biologically active form of the polypeptides and the nucleic acids encoding the biologically active form of the polypeptides. In such instances, the claims relating to polypetides comprising the mature protein included in one of SEQ ID NOs. 141-241 and 378-513 or nucleic acids comprising the nucleotides of one of SEQ ID NOs. 40-140 and 242-377 encoding the mature protein shall not be construed to exclude any readily identifiable variations from the sequences listed in Table IV and Table V.

In some embodiments, the nucleic acid used to express the protein or portion thereof may comprise those nucleotides which encode the signal peptide encoded by one of the sequences of SEQ ID NOs: 40-140 and 242-377 as defined in Table IV above.

It will be appreciated that should the extent of the sequence encoding the signal peptide differ from that listed in Table IV as a result of a sequencing error, reverse transcription or amplification error, mRNA splicing, post-translational modification of the encoded protein, enzymatic cleavage of the encoded protein, or other biological factors, one skilled in the art would be readily able to identify the extent of the sequence encoding the signal peptide in the sequences of SEQ ID NOs. 40-140 and 242-377. Accordingly, the scope of any claims herein relating to nucleic acids containing the sequence encoding the signal peptide encoded by one of SEQ ID Nos. 40-140 and 242-377 is not to be construed as excluding any readily identifiable variations from the sequences listed in Table IV. Similarly, should the extent of the signal peptides differ from those indicated in Table V as a result of any of the preceding factors, the scope of claims relating to polypeptides comprising the sequence of a signal peptide included in the sequence of one of SEQ ID NOs. 141-241 and 378-513 is not to be construed as excluding any readily identifiable variations from the sequences listed in Table V.

Alternatively, the nucleic acid may encode a polypeptide comprising at least 10 consecutive amino acids of one of the sequences of SEQ ID NOs: 141-241 and 378-513. In some embodiments, the nucleic acid may encode a polypeptide comprising at least 15 consecutive amino acids of one of the sequences of SEQ ID NOs: 141-241 and 378-513. In other embodiments, the nucleic acid may encode a polypeptide comprising at least 25 consecutive amino acids of one of the sequences of SEQ ID NOs: 141-241 and 378-513. In other embodiments, the nucleic acid may encode a polypeptide comprising at least 60, at least 75, at least 100 or more than 100 consecutive amino acids of one of the sequences of SEQ ID Nos: 141-241 and 378-513.

.49.

The nucleic acids inserted into the expression vectors may also contain sequences upstream of the sequences encoding the signal peptide, such as sequences which regulate expression levels or sequences which confer tissue specific expression.

The nucleic acid encoding the protein or polypeptide to be expressed is operably linked to a promoter in an expression vector using conventional cloning technology. The expression vector may be any of the mammalian, yeast, insect or bacterial expression systems known in the art. Commercially available vectors and expression systems are available from a variety of suppliers including Genetics Institute (Cambridge, MA), Stratagene (La Jolla, California), Promega (Madison, Wisconsin), and Invitrogen (San Diego, California). If desired, to enhance expression and facilitate proper protein folding, the codon context and codon pairing of the sequence may be optimized for the particular expression organism in which the expression vector is introduced, as explained by Hatfield, et al., U.S. Patent No. 5,082,767.

The following is provided as one exemplary method to express the proteins encoded by the extended cDNAs corresponding to the 5' ESTs or the nucleic acids described above. First, the methionine initiation codon for the gene and the poly A signal of the gene are identified. If the nucleic acid encoding the polypeptide to be expressed lacks a methionine to serve as the initiation site, an initiating methionine can be introduced next to the first codon of the nucleic acid using conventional techniques. Similarly, if the extended cDNA lacks a poly A signal, this sequence can be added to the construct by, for example, splicing out the Poly A signal from pSG5 (Stratagene) using Bgll and Sall restriction endonuclease enzymes and incorporating it into the mammalian expression vector pXT1 (Stratagene). pXT1 contains the LTRs and a portion of the gag gene from Moloney Murine Leukemia Virus. The position of the LTRs in the construct allow efficient stable transfection. The vector includes the Herpes Simplex Thymidine Kinase promoter and the selectable neomycin gene. The extended cDNA or portion thereof encoding the polypeptide to be expressed is obtained by PCR from the bacterial vector using oligonucleotide primers complementary to the extended cDNA or portion thereof and containing restriction endonuclease sequences for Pst I incorporated into the 5'primer and Bglll at the 5' end of the corresponding cDNA 3' primer, taking care to ensure that the extended cDNA is positioned in frame with the poly A signal. The purified fragment obtained from the resulting PCR reaction is digested with Pstl, blunt ended with an exonuclease, digested with Bgl II, purified and ligated to pXT1, now containing a poly A signal and digested with Bgl II.

The ligated product is transfected into mouse NIH 3T3 cells using Lipofectin (Life Technologies, Inc., Grand Island, New York) under conditions outlined in the product specification. Positive transfectants are selected after growing the transfected cells in 600ug/ml G418 (Sigma, St. Louis, Missouri). Preferably the expressed protein is released into the culture medium, thereby facilitating purification.

Alternatively, the extended cDNAs may be cloned into pED6dpc2 as described above. The resulting pED6dpc2 constructs may be transfected into a suitable host cell, such as COS 1 cells. Methotrexate resistant cells are selected and expanded. Preferably, the protein expressed from the extended cDNA is released into the culture medium thereby facilitating purification.

-50-

Proteins in the culture medium are separated by gel electrophoresis. If desired, the proteins may be ammonium sulfate precipitated or separated based on size or charge prior to electrophoresis.

As a control, the expression vector lacking a cDNA insert is introduced into host cells or organisms and the proteins in the medium are harvested. The secreted proteins present in the medium are detected using techniques such as Coomassie or silver staining or using antibodies against the protein encoded by the extended cDNA. Coomassie and silver staining techniques are familiar to those skilled in the art.

Antibodies capable of specifically recognizing the protein of interest may be generated using synthetic 15-mer peptides having a sequence encoded by the appropriate 5' EST, extended cDNA, or portion thereof. The synthetic peptides are injected into mice to generate antibody to the polypeptide encoded by the 5' EST, extended cDNA, or portion thereof.

Secreted proteins from the host cells or organisms containing an expression vector which contains the extended cDNA derived from a 5' EST or a portion thereof are compared to those from the control cells or organism. The presence of a band in the medium from the cells containing the expression vector which is absent in the medium from the control cells indicates that the extended cDNA encodes a secreted protein. Generally, the band corresponding to the protein encoded by the extended cDNA will have a mobility near that expected based on the number of amino acids in the open reading frame of the extended cDNA. However, the band may have a mobility different than that expected as a result of modifications such as glycosylation, ubiquitination, or enzymatic cleavage.

Alternatively, if the protein expressed from the above expression vectors does not contain sequences directing its secretion, the proteins expressed from host cells containing an expression vector containing an insert encoding a secreted protein or portion thereof can be compared to the proteins expressed in host cells containing the expression vector without an insert. The presence of a band in samples from cells containing the expression vector with an insert which is absent in samples from cells containing the expression vector without an insert indicates that the desired protein or portion thereof is being expressed. Generally, the band will have the mobility expected for the secreted protein or portion thereof. However, the band may have a mobility different than that expected as a result of modifications such as glycosylation, ubiquitination, or enzymatic cleavage.

The protein encoded by the extended cDNA may be purified using standard immunochromatography techniques. In such procedures, a solution containing the secreted protein, such as the culture medium or a cell extract, is applied to a column having antibodies against the secreted protein attached to the chromatography matrix. The secreted protein is allowed to bind the immunochromatography column. Thereafter, the column is washed to remove non-specifically bound proteins. The specifically bound secreted protein is then released from the column and recovered using standard techniques.

If antibody production is not possible, the extended cDNA sequence or portion thereof may be incorporated into expression vectors designed for use in purification schemes employing chimeric polypeptides. In such strategies the coding sequence of the extended cDNA or portion thereof is inserted in frame with the gene encoding the other half of

the chimera. The other half of the chimera may be β-globin or a nickel binding polypeptide encoding sequence. A chromatography matrix having antibody to β-globin or nickel attached thereto is then used to purify the chimeric protein. Protease cleavage sites may be engineered between the β-globin gene or the nickel binding polypeptide and the extended cDNA or portion thereof. Thus, the two polypeptides of the chimera may be separated from one another by protease digestion.

One useful expression vector for generating β-globin chimerics is pSG5 (Stratagene), which encodes rabbit β-globin. Intron II of the rabbit β-globin gene facilitates splicing of the expressed transcript, and the polyadenylation signal incorporated into the construct increases the level of expression. These techniques as described are well known to those skilled in the art of molecular biology. Standard methods are published in methods texts such as Davis et al.,

(Basic Methods in Molecular Biology, L.G. Davis, M.D. Dibner, and J.F. Battey, ed., Elsevier Press, NY, 1986) and many of the methods are available from Stratagene, Life Technologies, Inc., or Promega. Polypeptide may additionally be produced from the construct using in vitro translation systems such as the In vitro ExpressTM Translation Kit (Stratagene).

Following expression and purification of the secreted proteins encoded by the 5' ESTs, extended cDNAs, or fragments thereof, the purified proteins may be tested for the ability to bind to the surface of various cell types as described in Example 31 below. It will be appreciated that a plurality of proteins expressed from these cDNAs may be included in a panel of proteins to be simultaneously evaluated for the activities specifically described below, as well as other biological roles for which assays for determining activity are available.

EXAMPLE 31

Analysis of Secreted Proteins to Determine Whether they Bind to the Cell Surface

20

The proteins encoded by the 5' ESTs, extended cDNAs, or fragments thereof are cloned into expression vectors such as those described in Example 30. The proteins are purified by size, charge, immunochromatography or other techniques familiar to those skilled in the art. Following purification, the proteins are labeled using techniques known to those skilled in the art. The labeled proteins are incubated with cells or cell lines derived from a variety of organs or tissues to allow the proteins to bind to any receptor present on the cell surface. Following the incubation, the cells are washed to remove non-specifically bound protein. The labeled proteins are detected by autoradiography. Alternatively, unlabeled proteins may be incubated with the cells and detected with antibodies having a detectable label, such as a fluorescent molecule, attached thereto.

Specificity of cell surface binding may be analyzed by conducting a competition analysis in which various

amounts of unlabeled protein are incubated along with the labeled protein. The amount of labeled protein bound to the
cell surface decreases as the amount of competitive unlabeled protein increases. As a control, various amounts of an
unlabeled protein unrelated to the labeled protein is included in some binding reactions. The amount of labeled protein
bound to the cell surface does not decrease in binding reactions containing increasing amounts of unrelated unlabeled
protein, indicating that the protein encoded by the cDNA binds specifically to the cell surface.

-52-

As discussed above, secreted proteins have been shown to have a number of important physiological effects and, consequently, represent a valuable therapeutic resource. The secreted proteins encoded by the extended cDNAs or portions thereof made according to Examples 27-29 may be evaluated to determine their physiological activities as described below.

5 EXAMPLE 32

Assaying the Proteins Expressed from Extended cDNAs or Portions Thereof for Cytokine, Cell Proliferation or Cell Differentiation Activity

As discussed above, secreted proteins may act as cytokines or may affect cellular proliferation or differentiation. Many protein factors discovered to date, including all known cytokines, have exhibited activity in one or more factor dependent cell proliferation assays, and hence the assays serve as a convenient confirmation of cytokine activity. The activity of a protein of the present invention is evidenced by any one of a number of routine factor dependent cell proliferation assays for cell lines including, without limitation, 32D, DA2, DA1G, T10, B5, B9/11, BaF3, MC9/G, M+ (preB M+), 2E8, RB5, DA1, 123, T1165, HT2, CTLL2, TF-1, Mo7c and CMK. The proteins encoded by the above extended cDNAs or portions thereof may be evaluated for their ability to regulate T cell or thymocyte proliferation in assays such as those described above or in the following references: Current Protocols in Immunology, Ed. by J.E. Coligan et al., Greene Publishing Associates and Wiley-Interscience; Takai et al. J. Immunol. 137:3494-3500, 1986. Bertagnolli et al. J. Immunol. 145:1706-1712, 1990. Bertagnolli et al., Cellular Immunology 133:327-341, 1991. Bertagnolli, et al. J. Immunol. 149:3778-3783, 1992; Bowman et al., J. Immunol. 152:1756-1761, 1994.

In addition, numerous assays for cytokine production and/or the proliferation of spleen cells, lymph node cells
and thymocytes are known. These include the techniques disclosed in Current Protocols in Immunology. J.E. Coligan
et al. Eds., Vol 1 pp. 3.12.1-3.12.14 John Wiley and Sons, Toronto. 1994; and Schreiber, R.D. Current Protocols in
Immunology., supra Vol 1 pp. 6.8.1-6.8.8, John Wiley and Sons, Toronto. 1994.

The proteins encoded by the cDNAs may also be assayed for the ability to regulate the proliferation and differentiation of hematopoietic or lymphopoietic cells. Many assays for such activity are familiar to those skilled in the art, including the assays in the following references: Bottomly, K., Davis, L.S. and Lipsky, P.E., Measurement of Human and Murine Interleukin 2 and Interleukin 4, Current Protocols in Immunology., J.E. Coligan et al. Eds. Vol 1 pp. 6.3.1-6.3.12, John Wiley and Sons, Toronto. 1991; deVries et al., J. Exp. Med. 173:1205-1211, 1991; Moreau et al., Nature 36:690-692, 1988; Greenberger et al., Proc. Natl. Acad. Sci. U.S.A. 80:2931-2938, 1983; Nordan, R., Measurement of Mouse and Human Interleukin 6 Current Protocols in Immunology. J.E. Coligan et al. Eds. Vol 1 pp. 6.6.1-6.6.5, John Wiley and Sons, Toronto. 1991; Smith et al., Proc. Natl. Acad. Sci. U.S.A. 83:1857-1861, 1986; Bennett, F., Giannotti, J., Clark, S.C. and Turner, K.J., Measurement of Human Interleukin 11 Current Protocols in Immunology. J.E. Coligan et al. Eds. Vol 1 pp. 6.15.1 John Wiley and Sons, Toronto. 1991; Ciarletta, A., Giannotti, J., Clark, S.C. and Turner, K.J., Measurement of Mouse and Human Interleukin 9 Current Protocols in Immunology. J.E. Coligan et al., Eds. Vol 1 pp. 6.13.1, John Wiley and Sons, Toronto. 1991.

15

The proteins encoded by the cDNAs may also be assayed for their ability to regulate T-cell responses to antigens. Many assays for such activity are familiar to those skilled in the art, including the assays described in the following references: Chapter 3 (In Vitro Assays for Mouse Lymphocyte Function), Chapter 6 (Cytokines and Their Cellular Receptors) and Chapter 7, (Immunologic Studies in Humans) in Current Protocols in Immunology, J.E. Coligan et al. Eds. Greene Publishing Associates and Wiley-Interscience; Weinberger et al., Proc. Natl. Acad. Sci. USA 77:6091-6095, 1980; Weinberger et al., Eur. J. Immun. 11:405-411, 1981; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988.

Those proteins which exhibit cytokine, cell proliferation, or cell differentiation activity may then be formulated as pharmaceuticals and used to treat clinical conditions in which induction of cell proliferation or differentiation is beneficial. Alternatively, as described in more detail below, genes encoding these proteins or nucleic acids regulating the expression of these proteins may be introduced into appropriate host cells to increase or decrease the expression of the proteins as desired.

EXAMPLE 33

Assaying the Proteins Expressed from Extended cDNAs or Portions

Thereof for Activity as Immune System Regulators

The proteins encoded by the cDNAs may also be evaluated for their effects as immune regulators. For example, the proteins may be evaluated for their activity to influence thymocyte or splenocyte cytotoxicity. Numerous assays for such activity are familiar to those skilled in the art including the assays described in the following references: Chapter 3 (In Vitro Assays for Mouse Lymphocyte Function 3.1-3.19) and Chapter 7 (Immunologic studies in Humans) in Current Protocols in Immunology, J.E. Coligan et al. Eds, Greene Publishing Associates and Wiley-Interscience; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al., J. Immunol. 140:508-512, 1988; Herrmann et al., Proc. Natl. Acad. Sci. USA 78:2488-2492, 1981; Herrmann et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 128:1968-1974, 1982; Handa et al., J. Immunol. 135:1564-1572, 1985; Takai et al., J. Immunol. 140:508-512, 1988; Bertagnolli et al., Cellular Immunology 133:327-341, 1991; Brown et al., J. Immunol. 153:3079-3092, 1994.

The proteins encoded by the cDNAs may also be evaluated for their effects on T-cell dependent immunoglobulin responses and isotype switching. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Maliszewski, J. Immunol. 144:3028-3033, 1990; Mond, J.J. and Brunswick, M Assays for B Cell Function: *In vitro* Antibody Production, Vol 1 pp. 3.8.1-3.8.16 in Current Protocols in Immunology. J.E. Coligan et al Eds., John Wiley and Sons, Toronto. 1994.

The proteins encoded by the cDNAs may also be evaluated for their effect on immune effector cells, including their effect on Th1 cells and cytotoxic lymphocytes. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Chapter 3 (In Vitro Assays for Mouse Lymphocyte

Function 3.1-3.19) and Chapter 7 (Immunologic Studies in Humans) in Current Protocols in Immunology, J.E. Coligan et al. Eds., Greene Publishing Associates and Wiley-Interscience; Takai et al., J. Immunol. 137:3494-3500, 1986; Takai et al.; J. Immunol. 140:508-512, 1988; Bertagnolli et al., J. Immunol. 149:3778-3783, 1992.

The proteins encoded by the cDNAs may also be evaluated for their effect on dendritic cell mediated activation of naive T-cells. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Guery et al., J. Immunol. 134:536-544, 1995; Inaba et al., Journal of Experimental Medicine 173:549-559, 1991; Macatonia et al., Journal of Immunology 154:5071-5079, 1995; Porgador et al., Journal of Experimental Medicine 182:255-260, 1995; Nair et al., Journal of Virology 67:4062-4069, 1993; Huang et al., Science 264:961-965, 1994; Macatonia et al., Journal of Experimental Medicine 169:1255-1264, 1989; Bhardwaj et al., Journal of Clinical Investigation 94:797-807, 1994; and Inaba et al., Journal of Experimental Medicine 172:631-640, 1990.

The proteins ercoded by the cDNAs may also be evaluated for their influence on the lifetime of lymphocytes.

Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Darzynkiewicz et al., Cytometry 13:795-808, 1992; Gorczyca et al., Leukemia 7:659-670, 1993; Gorczyca et al., Cancer Research 53:1945-1951, 1993; Itoh et al., Cell 66:233-243, 1991; Zacharchuk, Journal of Immunology 145:4037-4045, 1990; Zamai et al., Cytometry 14:891-897, 1993; Gorczyca et al., International Journal of Oncology 1:639-648, 1992.

Assays for proteins that influence early steps of T-cell commitment and development include, without limitation, those described in: Antica et al., Blood 84:111-117, 1994; Fine et al., Cellular immunology 155:111-122, 1994; Galy et al., Blood 85:2770-2778, 1995; Toki et al., Proc. Nat. Acad Sci. USA 88:7548-7551, 1991.

Those proteins which exhibit activity as immune system regulators activity may then be formulated as pharmaceuticals and used to treat clinical conditions in which regulation of immune activity is beneficial. For example, the protein may be useful in the treatment of various immune deficiencies and disorders (including severe combined immunodeficiency (SCID)), e.g., in regulating (up or down) growth and proliferation of T and/or B lymphocytes, as well as effecting the cytolytic activity of NK cells and other cell populations. These immune deficiencies may be genetic or be caused by viral (e.g., HIV) as well as bacterial or fungal infections, or may result from autoimmune disorders. More specifically, infectious diseases caused by viral, bacterial, fungal or other infection may be treatable using a protein of the present invention, including infections by HIV, hepatitis viruses, herpesviruses, mycobacteria, Leishmania spp., malaria spp. and various fungal infections such as candidiasis. Of course, in this regard, a protein of the present invention may also be useful where a boost to the immune system generally may be desirable, i.e., in the treatment of cancer.

Autoimmune disorders which may be treated using a protein of the present invention include, for example, connective tissue disease, multiple sclerosis, systemic lupus erythematosus, rheumatoid arthritis, autoimmune pulmonary inflammation, Guillain-Barre syndrome, autoimmune thyroiditis, insulin dependent diabetes mellitis,

.55.

myasthenia gravis, graft-versus-host disease and autoimmune inflammatory eye disease. Such a protein of the present invention may also to be useful in the treatment of allergic reactions and conditions, such as asthma (particularly allergic asthma) or other respiratory problems. Other conditions, in which immune suppression is desired (including, for example, organ transplantation), may also be treatable using a protein of the present invention.

5

tolerizing agent.

Using the proteins of the invention it may also be possible to regulate immune responses, in a number of ways. Down regulation may be in the form of inhibiting or blocking an immune response already in progress or may involve preventing the induction of an immune response. The functions of activated T-cells may be inhibited by suppressing T cell responses or by inducing specific tolerance in T cells, or both. Immunosuppression of T cell responses is generally an active, non-antigen-specific, process which requires continuous exposure of the T cells to the suppressive agent. 10 Tolerance, which involves inducing non-responsiveness or anergy in T cells, is distinguishable from immunosuppression in that it is generally antigen-specific and persists after exposure to the tolerizing agent has ceased. Operationally, tolerance can be demonstrated by the lack of a T cell response upon reexposure to specific antigen in the absence of the

Down regulating or preventing one or more antigen functions (including without limitation B lymphocyte 15 antigen functions (such as, for example, B7)), e.g., preventing high level lymphokine synthesis by activated T cells, will be useful in situations of tissue, skin and organ transplantation and in graft-versus-host disease (GVHD). For example, blockage of T cell function should result in reduced tissue destruction in tissue transplantation. Typically, in tissue transplants, rejection of the transplant is initiated through its recognition as foreign by T cells, followed by an immune reaction that destroys the transplant. The administration of a molecule which inhibits or blocks interaction of a B7 20 lymphocyte antigen with its natural ligand(s) on immune cells (such as a soluble, monomeric form of a peptide having B7-2 activity alone or in conjunction with a monomeric form of a peptide having an activity of another B lymphocyte antigen (e.g., B7-1, B7-3) or blocking antibody), prior to transplantation can lead to the binding of the molecule to the natural ligand(s) on the immune cells without transmitting the corresponding costimulatory signal. Blocking B lymphocyte antigen function in this matter prevents cytokine synthesis by immune cells, such as T cells, and thus acts as an 25 immunosuppressant. Moreover, the lack of costimulation may also be sufficient to anergize the T cells, thereby inducing tolerance in a subject. Induction of long-term tolerance by B lymphocyte antigen-blocking reagents may avoid the necessity of repeated administration of these blocking reagents. To achieve sufficient immunosuppression or tolerance in a subject, it may also be necessary to block the function of a combination of B lymphocyte antigens.

The efficacy of particular blocking reagents in preventing organ transplant rejection or GVHD can be assessed 30 using animal models that are predictive of efficacy in humans. Examples of appropriate systems which can be used include allogeneic cardiac grafts in rats and xenogeneic pancreatic islet cell grafts in mice, both of which have been used to examine the immunosuppressive effects of CTLA4lg fusion proteins in vivo as described in Lenschow et al., Science 257:789-792 (1992) and Turka et al., Proc. Natl. Acad. Sci USA, 89:11102-11105 (1992). In addition, murine models

-56-

of GVHD (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 846-847) can be used to determine the effect of blocking B lymphocyte antigen function in vivo on the development of that disease.

Blocking antigen function may also be therapeutically useful for treating autoimmune diseases. Many autoimmune disorders are the result of inappropriate activation of T cells that are reactive against self tissue and which 5 promote the production of cytokines and autoantibodies involved in the pathology of the diseases. Preventing the activation of autoreactive T cells may reduce or eliminate disease symptoms. Administration of reagents which block costimulation of T cells by disrupting receptor ligand interactions of B lymphocyte antigens can be used to inhibit T cell activation and prevent production of autoantibodies or T cell-derived cytokines which may be involved in the disease process. Additionally, blocking reagents may induce antigen-specific tolerance of autoreactive T cells which could lead 10 to long-term relief from the disease. The efficacy of blocking reagents in preventing or alleviating autoimmune disorders can be determined using a number of well-characterized animal models of human autoimmune diseases. Examples include murine experimental autoimmune encephalitis, systemic lupus erythmatosis in MRL/pr/pr mice or NZB hybrid mice, murine autoimmuno collagen arthritis, diabetes mellitus in OD mice and BB rats, and murine experimental myasthenia gravis (see Paul ed., Fundamental Immunology, Raven Press, New York, 1989, pp. 840-856).

Upregulation of an antigen function (preferably a B lymphocyte antigen function), as a means of up regulating immune responses, may also be useful in therapy. Upregulation of immune responses may be in the form of enhancing an existing immune response or eliciting an initial immune response. For example, enhancing an immune response through stimulating B lymphocyte antigen function may be useful in cases of viral infection. In addition, systemic viral diseases such as influenza, the common cold, and encephalitis might be alleviated by the administration of stimulatory 20 form of B lymphocyte antigens systemically.

15

Alternatively, anti-viral immune responses may be enhanced in an infected patient by removing T cells from the patient, costimulating the T cells in vitro with viral antigen-pulsed APCs either expressing a peptide of the present invention or together with a stimulatory form of a soluble peptide of the present invention and reintroducing the in vitro activated T cells into the patient. The infected cells would now be capable of delivering a costimulatory signal to T cells 25 in vivo, thereby activating the T cells.

In another application, up regulation or enhancement of antigen function (preferably B lymphocyte antigen function) may be useful in the induction of tumor immunity. Tumor cells (e.g., sarcoma, melanoma, lymphoma, leukemia, neuroblastoma, carcinoma) transfected with a nucleic acid encoding at least one peptide of the present invention can be administered to a subject to overcome tumor-specific tolerance in the subject. If desired, the tumor cell can be 30 transfected to express a combination of peptides. For example, tumor cells obtained from a patient can be transfected ex vivo with an expression vector directing the expression of a peptide having B7-2-like activity alone, or in conjunction with a peptide having B7-1-like activity and/or B7-3-like activity. The transfected tumor cells are returned to the patient to result in expression of the peptides on the surface of the transfected cell. Alternatively, gene therapy techniques can be used to target a tumor cell for transfection in vivo.

·57·

The presence of the peptide of the present invention having the activity of a B lymphocyte antigen(s) on the surface of the tumor cell provides the necessary costimulation signal to T cells to induce a T cell mediated immune response against the transfected tumor cells. In addition, tumor cells which lack MHC class I or MHC class II molecules, or which fail to reexpress sufficient amounts of MHC class I or MHC class II molecules, can be transfected with nucleic acids encoding all or a portion of (e.g., a cytoplasmic-domain truncated portion) of an MHC class I α chain protein and β2 macroglobulin protein or an MHC class II α chain protein and an MHC class II β chain protein to thereby express MHC class I or MHC class II proteins on the cell surface. Expression of the appropriate class II or class II MHC in conjunction with a peptide having the activity of a B lymphocyte antigen (e.g., B7-1, B7-2, B7-3) induces a T cell mediated immune response against the transfected tumor cell. Optionally, a gene encoding an antisense construct which blocks expression of an MHC class II associated protein, such as the invariant chain, can also be cotransfected with a DNA encoding a peptide having the activity of a B lymphocyte antigen to promote presentation of tumor associated antigens and induce tumor specific immunity. Thus, the induction of a T cell mediated immune response in a human subject may be sufficient to overcome tumor-specific tolerance in the subject. Alternatively, as described in more detail below, genes encoding these proteins or nucleic acids regulating the expression of these proteins may be introduced into appropriate host cells to increase or decrease the expression of the proteins as desired.

EXAMPLE 34

Assaving the Proteins Expressed from Extended cDNAs or Portions Thereof for Hematopoiesis Regulating Activity

The proteins encoded by the extended cDNAs or portions thereof may also be evaluated for their hematopoiesis regulating activity. For example, the effect of the proteins on embryonic stem cell differentiation may be evaluated. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Johansson et al. Cellular Biology 15:141-151, 1995; Keller et al., Molecular and Cellular Biology 13:473-486, 1993; McClanahan et al., Blood 81:2903-2915, 1993.

The proteins encoded by the extended cDNAs or portions thereof may also be evaluated for their influence on the lifetime of stem cells and stem cell differentiation. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Freshney, M.G. Methylcellulose Colony Forming Assays, in Culture of Hematopoietic Cells. R.I. Freshney, et al. Eds. pp. 265-268, Wiley-Liss, Inc., New York, NY. 1994; Hirayama et al., Proc. Natl. Acad. Sci. USA 89:5907-5911, 1992; McNiece, I.K. and Briddell, R.A. Primitive Hematopoietic Colony Forming Cells with High Proliferative Potential, in Culture of Hematopoietic Cells. R.I. Freshney, et al. eds. Vol pp. 23-39, Wiley-Liss, Inc., New York, NY. 1994; Neben et al., Experimental Hematology 22:353-359, 1994; Ploemacher, R.E. Cobblestone Area Forming Cell Assay, In Culture of Hematopoietic Cells. R.I. Freshney, et al. Eds. pp. 1-21, Wiley-Liss, Inc., New York, NY. 1994; Spooncer, E., Dexter, M. and Allen, T. Long Term Bone Marrow Cultures in the Presence of Stromal Cells, in Culture of Hematopoietic Cells. R.I. Freshney, et al. Eds.

pp. 163-179, Wiley-Liss, Inc., New York, NY. 1994; and Sutherland, H.J. Long Term Culture Initiating Cell Assay, in Culture of Hematopoietic Cells. R.I. Freshney, et al. Eds. pp. 139-162, Wiley-Liss, Inc., New York, NY. 1994.

Those proteins which exhibit hematopoiesis regulatory activity may then be formulated as pharmaceuticals and used to treat clinical conditions in which regulation of hematopoeisis is beneficial. For example, a protein of the present 5 invention may be useful in regulation of hematopoiesis and, consequently, in the treatment of myeloid or lymphoid cell deficiencies. Even marginal biological activity in support of colony forming cells or of factor-dependent cell lines indicates involvement in regulating hematopoiesis, e.g. in supporting the growth and proliferation of erythroid progenitor cells alone or in combination with other cytokines, thereby indicating utility, for example, in treating various anemias or for use in conjunction with irradiation/chemotherapy to stimulate the production of erythroid precursors and/or erythroid 10 cells; in supporting the growth and proliferation of myeloid cells such as granulocytes and monocytes/macrophages (i.e., traditional CSF activity) useful, for example, in conjunction with chemotherapy to prevent or treat consequent myelosuppression; in supporting the growth and proliferation of megakaryocytes and consequently of platelets thereby allowing prevention or treatment of various platelet disorders such as thrombocytopenia, and generally for use in place of or complimentary to platelet transfusions; and/or in supporting the growth and proliferation of hematopoietic stem 15 cells which are capable of maturing to any and all of the above-mentioned hematopoietic cells and therefore find therapeutic utility in various stem cell disorders (such as those usually treated with transplantion, including, without limitation, aplastic anemia and paroxysmal nocturnal hemoglobinuria), as well as in repopulating the stem cell compartment post irradiation/chemotherapy, either in-vivo or ex-vivo (i.e., in conjunction with bone marrow transplantation or with peripheral progenitor cell transplantation (homologous or heterologous)) as normal cells or 20 genetically manipulated for gene therapy. Alternatively, as described in more detail below, genes encoding these proteins or nucleic acids regulating the expression of these proteins may be introduced into appropriate host cells to increase or decrease the expression of the proteins as desired.

EXAMPLE 35

Assaying the Proteins Expressed from Extended cDNAs or Portions Thereof for Regulation of Tissue Growth

The proteins encoded by the extended cDNAs or portions thereof may also be evaluated for their effect on tissue growth. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in International Patent Publication No. W095/16035, International Patent Publication No. W095/05846 and International Patent Publication No. W091/07491.

Assays for wound healing activity include, without limitation, those described in: Winter, <u>Epidermal Wound</u>

30 <u>Healing</u>, pps. 71-112 (Maibach, H1 and Rovee, DT, eds.), Year Book Medical Publishers, Inc., Chicago, as modified by Eaglstein and Mertz, J. Invest. Dermatol 71:382-84 (1978).

Those proteins which are involved in the regulation of tissue growth may then be formulated as pharmaceuticals and used to treat clinical conditions in which regulation of tissue growth is beneficial. For example, a protein of the present invention also may have utility in compositions used for bone, cartilage, tendon, ligament and/or

-59-

nerve tissue growth or regeneration, as well as for wound healing and tissue repair and replacement, and in the treatment of burns, incisions and ulcers.

A protein of the present invention, which induces cartilage and/or bone growth in circumstances where bone is not normally formed, has application in the healing of bone fractures and cartilage damage or defects in humans and 5 other animals. Such a preparation employing a protein of the invention may have prophylactic use in closed as well as open fracture reduction and also in the improved fixation of artificial joints. De novo bone formation induced by an osteogenic agent contributes to the repair of congenital, trauma induced, or oncologic resection induced craniofacial defects, and also is useful in cosmetic plastic surgery.

A protein of this invention may also be used in the treatment of periodontal disease, and in other tooth repair processes. Such agents may provide an environment to attract bone-forming cells, stimulate growth of bone-forming cells or induce differentiation of progenitors of bone-forming cells. A protein of the invention may also be useful in the treatment of osteoporosis or osteoarthritis, such as through stimulation of bone and/or cartilage repair or by blocking inflammation or processes of tissue destruction (collagenase activity, osteoclast activity, etc.) mediated by inflammatory processes.

15

Another category of tissue regeneration activity that may be attributable to the protein of the present invention is tendon/ligament formation. A protein of the present invention, which induces tendon/ligament-like tissue or other tissue formation in circumstances where such tissue is not normally formed, has application in the healing of tendon or ligament tears, deformities and other tendon or ligament defects in humans and other animals. Such a preparation employing a tendon/ligament-like tissue inducing protein may have prophylactic use in preventing damage to 20 tendon or ligament tissue, as well as use in the improved fixation of tendon or ligament to bone or other tissues, and in repairing defects to tendon or ligament tissue. De novo tendon/ligament-like tissue formation induced by a composition of the present invention contributes to the repair of congenital, trauma induced, or other tendon or ligament defects of other origin, and is also useful in cosmetic plastic surgery for attachment or repair of tendons or ligaments. The compositions of the present invention may provide an environment to attract tendon- or ligament-forming cells, stimulate 25 growth of tendon- or ligament-forming cells, induce differentiation of progenitors of tendon- or ligament-forming cells, or induce growth of tendon/ligament cells or progenitors ex vivo for return in vivo to effect tissue repair. The compositions of the invention may also be useful in the treatment of tendinitis, carpal tunnel syndrome and other tendon or ligament defects. The compositions may also include an appropriate matrix and/or sequestering agent as a carrier as is well known in the art.

30 The protein of the present invention may also be useful for proliferation of neural cells and for regeneration of nerve and brain tissue, i.e., for the treatment of central and peripheral nervous system diseases and neuropathies, as well as mechanical and traumatic disorders, which involve degeneration, death or trauma to neural cells or nerve tissue. More specifically, a protein may be used in the treatment of diseases of the peripheral nervous system, such as peripheral nerve injuries, peripheral neuropathy and localized neuropathies, and central nervous system diseases, such as Alzheimer's, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and Shy-Drager syndrome. Further conditions which may be treated in accordance with the present invention include mechanical and traumatic disorders, such as spinal cord disorders, head trauma and cerebrovascular diseases such as stroke. Peripheral neuropathies resulting from chemotherapy or other medical therapies may also be treatable using a protein of the invention.

Proteins of the invention may also be useful to promote better or faster closure of non-healing wounds, including without limitation pressure ulcers, ulcers associated with vascular insufficiency, surgical and traumatic wounds, and the like.

It is expected that a protein of the present invention may also exhibit activity for generation or regeneration of other tissues, such as organs (including, for example, pancreas, liver, intestine, kidney, skin, endothelium) muscle (smooth, skeletal or cardiac) and vascular (including vascular endothelium) tissue, or for promoting the growth of cells comprising such tissues. Part of the desired effects may be by inhibition or modulation of fibrotic scarring to allow normal tissue to generate. A protein of the invention may also exhibit angiogenic activity.

A protein of the present invention may also be useful for gut protection or regeneration and treatment of lung or liver fibrosis, reperfusion injury in various tissues, and conditions resulting from systemic cytokinc damage.

A protein of the present invention may also be useful for promoting or inhibiting differentiation of tissues described above from precursor tissues or cells; or for inhibiting the growth of tissues described above.

Alternatively, as described in more detail below, genes encoding these proteins or nucleic acids regulating the expression of these proteins may be introduced into appropriate host cells to increase or decrease the expression of the proteins as desired.

20

15

5

EXAMPLE 36

Assaying the Proteins Expressed from Extended cDNAs or Portions Thereof for Regulation of Reproductive Hormones or Cell Movement

The proteins encoded by the extended cDNAs or portions thereof may also be evaluated for their ability to regulate reproductive hormones, such as follicle stimulating hormone. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Vale et al., Endocrinology 91:562-572, 1972; Ling et al., Nature 321:779-782, 1986; Vale et al., Nature 321:776-779, 1986; Mason et al., Nature 318:659-663, 1985; Forage et al., Proc. Natl. Acad. Sci. USA 83:3091-3095, 1986. Chapter 6.12 (Measurement of Alpha and Beta Chemokines) Current Protocols in Immunology, J.E. Coligan et al. Eds. Greene Publishing Associates and Wiley-Intersciece; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Muller et al. Eur. J. Immunol. 25:1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol. 153:1762-1768, 1994.

Those proteins which exhibit activity as reproductive hormones or regulators of cell movement may then be formulated as pharmaceuticals and used to treat clinical conditions in which regulation of reproductive hormones or cell movement are beneficial. For example, a protein of the present invention may also exhibit activin- or inhibin-related

activities. Inhibins are characterized by their ability to inhibit the release of follicle stimulating hormone (FSH), while activins are characterized by their ability to stimulate the release of folic stimulating hormone (FSH). Thus, a protein of the present invention, alone or in heterodimers with a member of the inhibin α family, may be useful as a contraceptive based on the ability of inhibins to decrease fertility in female mammals and decrease spermatogenesis in male mammals.

Administration of sufficient amounts of other inhibins can induce infertility in these mammals. Alternatively, the protein of the invention, as a homodimer or as a heterodimer with other protein subunits of the inhibin-B group, may be useful as a fertility inducing therapeutic, based upon the ability of activin molecules in stimulating FSH release from cells of the anterior pituitary. See, for example, United States Patent 4,798,885. A protein of the invention may also be useful for advancement of the onset of fertility in sexually immature mammals, so as to increase the lifetime reproductive performance of domestic animals such as cows, sheep and pigs.

Alternatively, as described in more detail below, genes encoding these proteins or nucleic acids regulating the expression of these proteins may be introduced into appropriate host cells to increase or decrease the expression of the proteins as desired.

EXAMPLE 36A

15

25

Assaying the Proteins Expressed from Extended cDNAs or

Portions Thereof for Chemotactic/Chemokinetic Activity

The proteins encoded by the extended cDNAs or portions thereof may also be evaluated for chemotactic/chemokinetic activity. For example, a protein of the present invention may have chemotactic or chemokinetic activity (e.g., act as a chemokine) for mammalian cells, including, for example, monocytes, fibroblasts, neutrophils, T-cells, mast cells, cosinophils, epithelial and/or endothelial cells. Chemotactic and chmokinetic proteins can be used to mobilize or attract a desired cell population to a desired site of action. Chemotactic or chemokinetic proteins provide particular advantages in treatment of wounds and other trauma to tissues, as well as in treatment of localized infections. For example, attraction of lymphocytes, monocytes or neutrophils to tumors or sites of infection may result in improved immune responses against the tumor or infecting agent.

A protein or peptide has chemotactic activity for a particular cell population if it can stimulate, directly or indirectly, the directed orientation or movement of such cell population. Preferably, the protein or peptide has the ability to directly stimulate directed movement of cells. Whether a particular protein has chemotactic activity for a population of cells can be readily determined by employing such protein or peptide in any known assay for cell chemotaxis.

The activity of a protein of the invention may, among other means, be measured by the following methods:

Assays for chemotactic activity (which will identify proteins that induce or prevent chemotaxis) consist of assays that measure the ability of a protein to induce the migration of cells across a membrane as well as the ability of a protein to induce the adhension of one cell population to another cell population. Suitable assays for movement and adhesion include, without limitation, those described in: Current Protocols in Immunology, Ed by J.E. Coligan, A.M. Kruisbeek, D.H. Margulies, E.M. Shevach, W. Strober, Pub. Greene Publishing Associates and Wiley-Interscience (Chapter 6.12,

5

Measurement of alpha and beta Chemokincs 6.12.1-6.12.28; Taub et al. J. Clin. Invest. 95:1370-1376, 1995; Lind et al. APMIS 103:140-146, 1995; Mueller et al Eur. J. Immunol. 25:1744-1748; Gruber et al. J. of Immunol. 152:5860-5867, 1994; Johnston et al. J. of Immunol, 153:1762-1768, 1994.

EXAMPLE 37

Assaying the Proteins Expressed from Extended cDNAs or

Portions Thereof for Regulation of Blood Clotting

The proteins encoded by the extended cDNAs or portions thereof may also be evaluated for their effects on blood clotting. Numerous assays for such activity are familiar to those skilled in the art, including the assays disclosed in the following references: Linet et al., J. Clin. Pharmacol. 26:131-140, 1986; Burdick et al., Thrombosis Res.

45:413-419, 1987; Humphrey et al., Fibrinolysis 5:71-79 (1991); Schaub, Prostaglandins 35:467-474, 1988.

Those proteins which are involved in the regulation of blood clotting may then be formulated as pharmaceuticals and used to treat clinical conditions in which regulation of blood clotting is beneficial. For example, a protein of the invention may also exhibit hemostatic or thrombolytic activity. As a result, such a protein is expected to be useful in treatment of various coagulations disorders (including hereditary disorders, such as hemophilias) or to enhance coagulation and other hemostatic events in treating wounds resulting from trauma, surgery or other causes. A protein of the invention may also be useful for dissolving or inhibiting formation of thromboses and for treatment and prevention of conditions resulting therefrom (such as, for example, infarction of cardiac and central nervous system vessels (e.g., stroke). Alternatively, as described in more detail below, genes encoding these proteins or nucleic acids regulating the expression of these proteins may be introduced into appropriate host cells to increase or decrease the expression of the proteins as desired.

EXAMPLE 38

Assaying the Proteins Expressed from Extended cDNAs or

Portions Thereof for Involvement in Receptor/Ligand Interactions

The proteins encoded by the extended cDNAs or a portion thereof may also be evaluated for their involvement in receptor/ligand interactions. Numerous assays for such involvement are familiar to those skilled in the art, including the assays disclosed in the following references: Chapter 7.28 (Measurement of Cellular Adhesion under Static Conditions 7.28.1-7.28.22) in Current Protocols in Immunology, J.E. Coligan et al. Eds. Greene Publishing Associates and Wiley-Interscience; Takai et al., Proc. Natl. Acad. Sci. USA 84:6864-6868, 1987; Bierer et al., J. Exp. Med. 168:1145-1156, 1988; Rosenstein et al., J. Exp. Med. 169:149-160, 1989; Stoltenborg et al., J. Immunol. Methods 175:59-68, 1994; Stitt et al., Cell 80:661-670, 1995; Gyuris et al., Cell 75:791-803, 1993.

For example, the proteins of the present invention may also demonstrate activity as receptors, receptor ligands or inhibitors or agonists of receptor/ligand interactions. Examples of such receptors and ligands include, without limitation, cytokine receptors and their ligands, receptor kinases and their ligands, receptor phosphatases and their ligands, receptors involved in cell-cell interactions and their ligands (including without limitation, cellular adhesion

-63-

molecules (such as selectins, integrins and their ligands) and receptor/ligand pairs involved in antigen presentation, antigen recognition and development of cellular and humoral immune respones). Receptors and ligands are also useful for screening of potential peptide or small molecule inhibitors of the relevant receptor/ligand interaction. A protein of the present invention (including, without limitation, fragments of receptors and ligands) may themselves be useful as inhibitors of receptor/ligand interactions.

EXAMPLE 38A

Assaying the Proteins Expressed from Extended cDNAs or Portions

Thereof for Anti-Inflammatory Activity

The proteins encoded by the extended cDNAs or a portion thereof may also be evaluated for anti-inflammatory activity. The anti-inflammatory activity may be achieved by providing a stimulus to cells involved in the inflammatory response, by inhibiting or promoting cell-cell interactions (such as, for example, cell adhesion), by inhibiting or promoting chemotaxis of cells involved in the inflammatory process, inhibiting or promoting cell extravasation, or by stimulating or suppressing production of other factors which more directly inhibit or promote an inflammatory response. Proteins exhibiting such activities can be used to treat inflammatory conditions including chronic or acute conditions), including without limitation inflammation associated with infection (such as septic shock, sepsis or systemic inflammatory response syndrome (SIRS)), ischemia-reperfusioninury, endotoxin lethality, arthritis, complement-mediated hyperacute rejection, nephritis, cytokine or chemokine-induced lung injury, inflammatory bowel disease, Crohn's disease or resulting from over production of cytokines such as TNF or IL-1. Proteins of the invention may also be useful to treat anaphylaxis and hypersensitivity to an antigenic substance or material.

20

30

EXAMPLE 38B

Assaying the Proteins Expressed from Extended cDNAs or

Portions Thereof for Tumor Inhibition Activity

The proteins encoded by the extended cDNAs or a portion thereof may also be evaluated for tumor inhibition activity. In addition to the activities described above for immunological treatment or prevention of tumors, a protein of the invention may exhibit other anti-tumor activities. A protein may inhibit tumor growth directly or indirectly (such as, for example, via ADCC). A protein may exhibit its tumor inhibitory activity by acting on tumor tissue or tumor precursor tissue, by inhibiting formation of tissues necessary to support tumor growth (such as, for example, by inhibiting angiogenesis), by causing production of other factors, agents or cell types which inhibit tumor growth, or by suppressing, climinating or inhibiting factors, agents or cell types which promote tumor growth.

A protein of the invention may also exhibit one or more of the following additional activities or effects: inhibiting the growth, infection or function of, or killing, infectious agents, including, without limitation, bacteria, viruses, fungi and other parasites; effecting (suppressing or enhancing) bodily characteristics, including, without limitation, height, weight, hair color, eye color, skin, fat to lean ratio or other tissue pigmentation, or organ or body part size or shape (such as, for example, breast augmentation or diminution, change in bone form or shape); effecting biorhythms or

circadian cycles or rhythms; effecting the fertility of male or female subjects; effecting the metabolism, catabolism, anabolism, processing, utilization, storage or climination of dietary fat, lipid, protein, carbohydrate, vitamins, minerals, cofactors or other nutritional factors or component(s); effecting behavioral characteristics, including, without limitation, appetite, libido, stress, cognition (including cognitive disorders), depression (including depressive disorders) and violent behaviors; providing analgesic effects or other pain reducing effects; promoting differentiation and growth of embryonic stem cells in lineages other than hematopoietic lineages; hormonal or endocrine activity; in the case of enzymes, correcting deficiencies of the enzyme and treating deficiency-related diseases; treatment of hyperproliferative disorders (such as, for example, psoriasis); immunoglobulin-like activity (such as, for example, the ability to bind antigens or complement); and the ability to act as an antigen in a vaccine composition to raise an immune response against such protein or another material or entity which is cross-reactive with such protein.

EXAMPLE 39

Identification of Proteins which Interact with Polypeptides Encoded by Extended cDNAs

Proteins which interact with the polypeptides encoded by extended cDNAs or portions thereof, such as

receptor proteins, may be identified using two hybrid systems such as the Matchmaker Two Hybrid System 2 (Catalog No. K1604-1, Clontech). As described in the manual accompanying the Matchmaker Two Hybrid System 2 (Catalog No. K1604-1, Clontech), the extended cDNAs or portions thereof, are inserted into an expression vector such that they are in frame with DNA encoding the DNA binding domain of the yeast transcriptional activator GAL4. cDNAs in a cDNA library which encode proteins which might interact with the polypeptides encoded by the extended cDNAs or portions thereof

are inserted into a second expression vector such that they are in frame with DNA encoding the activation domain of GAL4. The two expression plasmids are transformed into yeast and the yeast are plated on selection medium which selects for expression of selectable markers on each of the expression vectors as well as GAL4 dependent expression of the HIS3 gene. Transformants capable of growing on medium lacking histidine are screened for GAL4 dependent lacZ expression. Those cells which are positive in both the histidine selection and the lacZ assay contain plasmids encoding proteins which interact with the polypeptide encoded by the extended cDNAs or portions thereof.

Alternatively, the system described in Lustig et al., Methods in Enzymology 283: 83-99 (1997) may be used for identifying molecules which interact with the polypeptides encoded by extended cDNAs. In such systems, *in vitro* transcription reactions are performed on a pool of vectors containing extended cDNA inserts cloned downstream of a promoter which drives *in vitro* transcription. The resulting pools of mRNAs are introduced into *Xenopus laevis* oocytes.

30 The oocytes are then assayed for a desired acitivity.

Alternatively, the pooled *in vitro* transcription products produced as described above may be translated *in vitro*. The pooled *in vitro* translation products can be assayed for a desired activity or for interaction with a known polypeptide.

Proteins or other molecules interacting with polypeptides encoded by extended cDNAs can be found by a variety of additional techniques. In one method, affinity columns containing the polypeptide encoded by the extended cDNA or a portion thereof can be constructed. In some versions, of this method the affinity column contains chimeric proteins in which the protein encoded by the extended cDNA or a portion thereof is fused to glutathione S-transferase. 5 A mixture of cellular proteins or pool of expressed proteins as described above and is applied to the affinity column. Proteins interacting with the polypeptide attached to the column can then be isolated and analyzed on 2-D

-65-

electrophoresis gel as described in Ramunsen et al. Electrophoresis, 18, 588-598 (1997). Alternatively, the proteins retained on the affinity column can be purified by electrophoresis based methods and sequenced. The same method can be used to isolate antibodies, to screen phage display products, or to screen phage display human antibodies.

10

Proteins interacting with polypeptides encoded by extended cDNAs or portions thereof can also be screened by using an Optical Biosensor as described in Edwards & Leatherbarrow, Analytical Biochemistry, 246, 1-6 (1997). The main advantage of the method is that it allows the determination of the association rate between the protein and other interacting molecules. Thus, it is possible to specifically select interacting molecules with a high or low association rate. Typically a target molecule is linked to the sensor surface (through a carboxymethl dextran matrix) and a sample of test 15 molecules is placed in contact with the target molecules. The binding of a test molecule to the target molecule causes a change in the refractive index and/ or thickness. This change is detected by the Biosensor provided it occurs in the evanescent field (which extend a few hundred manometers from the sensor surface). In these screening assays, the target molecule can be one of the polypeptides encoded by extended cDNAs or a portion thereof and the test sample can be a collection of proteins extracted from tissues or cells, a pool of expressed proteins, combinatorial peptide and/ or 20 chemical libraries, or phage displayed peptides. The tissues or cells from which the test proteins are extracted can originate from any species.

In other methods, a target protein is immobilized and the test population is a collection of unique polypeptides encoded by the extended cDNAs or portions thereof.

To study the interaction of the proteins encoded by the extended cDNAs or portions thereof with drugs, the 25 microdialysis coupled to HPLC method described by Wang et al., Chromatographia, 44, 205-208(1997) or the affinity capillary electrophoresis method described by Busch et al., J. Chromatogr. 777:311-328 (1997), the disclosures of which are incorporated herein by referenc can be used.

The system described in U.S. Patent No. 5,654,150 may also be used to identify molecules which interact with the polypeptides encoded by the extended cDNAs. In this system, pools of extended cDNAs are transcribed and 30 translated in vitro and the reaction products are assayed for interaction with a known polypeptide or antibody.

It will be appreciated by those skilled in the art that the proteins expressed from the extended cDNAs or portions may be assayed for numerous activities in addition to those specifically enumerated above. For example, the expressed proteins may be evaluated for applications involving control and regulation of inflammation, tumor

proliferation or metastasis, infection, or other clinical conditions. In addition, the proteins expressed from the extended cDNAs or portions thereof may be useful as nutritional agents or cosmetic agents.

The proteins expressed from the extended cDNAs or portions thereof may be used to generate antibodies capable of specifically binding to the expressed protein or fragments thereof as described in Example 40 below. The antibodies may capable of binding a full length protein encoded by one of the sequences of SEQ ID NOs. 40-140 and 242-377, a mature protein encoded by one of the sequences of SEQ ID NOs. 40-140 and 242-377, or a signal peptide encoded by one of the sequences of SEQ ID Nos. 40-140 and 242-377. Alternatively, the antibodies may be capable of binding fragments of the proteins expressed from the extended cDNAs which comprise at least 10 amino acids of the sequences of SEQ ID NOs: 141-241 and 378-513. In some embodiments, the antibodies may be capable of binding fragments of the proteins expressed from the extended cDNAs which comprise at least 15 amino acids of the sequences of SEQ ID NOs: 141-241 and 378-513. In other embodiments, the antibodies may be capable of binding fragments of the proteins expressed from the extended cDNAs which comprise at least 25 amino acids of the sequences of SEQ ID NOs: 141-241 and 378-513. In further embodiments, the antibodies may be capable of binding fragments of the proteins expressed from the extended cDNAs which comprise at least 40 amino acids of the sequences of SEQ ID NOs: 141-241 and 378-513.

EXAMPLE 40

Production of an Antibody to a Human Protein

Substantially pure protein or polypeptide is isolated from the transfected or transformed cells as described in Example 30. The concentration of protein in the final preparation is adjusted, for example, by concentration on an Amicon filter device, to the level of a few micrograms/ml. Monoclonal or polyclonal antibody to the protein can then be prepared as follows:

A. Monoclonal Antibody Production by Hybridoma Fusion

Monoclonal antibody to epitopes of any of the peptides identified and isolated as described can be prepared from murine hybridomas according to the classical method of Kohler, G. and Milstein, C., Nature 256:495 (1975) or derivative methods thereof. Briefly, a mouse is repetitively inoculated with a few micrograms of the selected protein or peptides derived therefrom over a period of a few weeks. The mouse is then sacrificed, and the antibody producing cells of the spleen isolated. The spleen cells are fused by means of polyethylene glycol with mouse myeloma cells, and the excess unfused cells destroyed by growth of the system on selective media comprising aminopterin (HAT media). The successfully fused cells are diluted and aliquots of the dilution placed in wells of a microtiter plate where growth of the culture is continued. Antibody producing clones are identified by detection of antibody in the supernatant fluid of the wells by immunoassay procedures, such as Elisa, as originally described by Engvall, E., Meth. Enzymol. 70:419 (1980), and derivative methods thereof. Selected positive clones can be expanded and their monoclonal antibody product harvested for use. Detailed procedures for monoclonal antibody production are described in Davis, L. et al. Basic Methods in Molecular Biology Elsevier, New York. Section 21-2.

B. Polyclonal Antibody Production by Immunization

10

Polyclonal antiserum containing antibodies to heterogenous epitopes of a single protein can be prepared by immunizing suitable animals with the expressed protein or peptides derived therefrom described above, which can be unmodified or modified to enhance immunogenicity. Effective polyclonal antibody production is affected by many factors 5 related both to the antigen and the host species. For example, small molecules tend to be less immunogenic than others and may require the use of carriers and adjuvant. Also, host animals vary in response to site of inoculations and dose, with both inadequate or excessive doses of antigen resulting in low titer antisera. Small doses (ng level) of antigen administered at multiple intradermal sites appears to be most reliable. An effective immunization protocol for rabbits can be found in Vaitukaitis, J. et al. **J. Clin. Endocrinol. Metab. 33**:988-991 (1971).

Booster injections can be given at regular intervals, and antiserum harvested when antibody titer thereof, as determined semi-quantitatively, for example, by double immunodiffusion in agar against known concentrations of the antigen, begins to fall. See, for example, Ouchterlony, O. et al., Chap. 19 in: Handbook of Experimental Immunology D. Wier (ed) Blackwell (1973). Plateau concentration of antibody is usually in the range of 0.1 to 0.2 mg/ml of serum (about 12 μ M). Affinity of the antisera for the antigen is determined by preparing competitive binding curves, as 15 described, for example, by Fisher, D., Chap. 42 in: Manual of Clinical Immunology, 2d Ed. (Rose and Friedman, Eds.) Amer. Soc. For Microbiol., Washington, D.C. (1980).

Antibody preparations prepared according to either protocol are useful in quantitative immunoassays which determine concentrations of antigen-bearing substances in biological samples; they are also used semi-quantitatively or qualitatively to identify the presence of antigen in a biological sample. The antibodies may also be used in therapeutic 20 compositions for killing cells expressing the protein or reducing the levels of the protein in the body.

V. Use of Extended cDNAs or Portions Thereof as Reagents

The extended cDNAs of the present invention may be used as reagents in isolation procedures, diagnostic assays, and forensic procedures. For example, sequences from the extended cDNAs (or genomic DNAs obtainable 25 therefrom) may be detectably labeled and used as probes to isolate other sequences capable of hybridizing to them. In addition, sequences from the extended cDNAs (or genomic DNAs obtainable therefrom) may be used to design PCR primers to be used in isolation, diagnostic, or forensic procedures.

EXAMPLE 41

Preparation of PCR Primers and Amplification of DNA

The extended cDNAs (or genomic DNAs obtainable therefrom) may be used to prepare PCR primers for a 30 variety of applications, including isolation procedures for cloning nucleic acids capable of hybridizing to such sequences, diagnostic techniques and forensic techniques. The PCR primers are at least 10 bases, and preferably at least 12, 15, or 17 bases in length. More preferably, the PCR primers are at least 20-30 bases in length. In some embodiments, the PCR primers may be more than 30 bases in length. It is preferred that the primer pairs have approximately the same G/C

ratio, so that melting temperatures are approximately the same. A variety of PCR techniques are familiar to those skilled in the art. For a review of PCR technology, see Molecular Cloning to Genetic Engineering White, B.A. Ed. in Methods in Molecular Biology 67: Humana Press, Totowa 1997. In each of these PCR procedures, PCR primers on either side of the nucleic acid sequences to be amplified are added to a suitably prepared nucleic acid sample along with dNTPs and a thermostable polymerase such as Taq polymerase, Pfu polymerase, or Vent polymerase. The nucleic acid in the sample is denatured and the PCR primers are specifically hybridized to complementary nucleic acid sequences in the sample. The hybridized primers are extended. Thereafter, another cycle of denaturation, hybridization, and extension is initiated. The cycles are repeated multiple times to produce an amplified fragment containing the nucleic acid sequence between the primer sites.

10

EXAMPLE 42

Use of Extended cDNAs as Probes

Probes derived from extended cDNAs or portions thereof (or genomic DNAs obtainable therefrom) may be labeled with detectable labels familiar to those skilled in the art, including radioisotopes and non-radioactive labels, to provide a detectable probe. The detectable probe may be single stranded or double stranded and may be made using techniques known in the art, including in vitro transcription, nick translation, or kinase reactions. A nucleic acid sample containing a sequence capable of hybridizing to the labeled probe is contacted with the labeled probe. If the nucleic acid in the sample is double stranded, it may be denatured prior to contacting the probe. In some applications, the nucleic acid sample may be immobilized on a surface such as a nitrocellulose or nylon membrane. The nucleic acid sample may comprise nucleic acids obtained from a variety of sources, including genomic DNA, cDNA libraries, RNA, or tissue samples.

Procedures used to detect the presence of nucleic acids capable of hybridizing to the detectable probe include well known techniques such as Southern blotting, Northern blotting, dot blotting, colony hybridization, and plaque hybridization. In some applications, the nucleic acid capable of hybridizing to the labeled probe may be cloned into vectors such as expression vectors, sequencing vectors, or in vitro transcription vectors to facilitate the characterization and expression of the hybridizing nucleic acids in the sample. For example, such techniques may be used to isolate and clone sequences in a genomic library or cDNA library which are capable of hybridizing to the detectable probe as described in Example 30 above.

PCR primers made as described in Example 41 above may be used in forensic analyses, such as the DNA fingerprinting techniques described in Examples 43-47 below. Such analyses may utilize detectable probes or primers based on the sequences of the extended cDNAs isolated using the 5' ESTs (or genomic DNAs obtainable therefrom).

EXAMPLE 43

Forensic Matching by DNA Sequencing

In one exemplary method, DNA samples are isolated from forensic specimens of, for example, hair, semen, blood or skin cells by conventional methods. A panel of PCR primers based on a number of the extended cDNAs (or

genomic DNAs obtainable therefrom), is then utilized in accordance with Example 41 to amplify DNA of approximately 100-200 bases in length from the forensic specimen. Corresponding sequences are obtained from a test subject. Each of these identification DNAs is then sequenced using standard techniques, and a simple database comparison determines the differences, if any, between the sequences from the subject and those from the sample. Statistically significant differences between the suspect's DNA sequences and those from the sample conclusively prove a lack of identity. This lack of identity can be proven, for example, with only one sequence. Identity, on the other hand, should be demonstrated with a large number of sequences, all matching. Preferably, a minimum of 50 statistically identical sequences of 100 bases in length are used to prove identity between the suspect and the sample.

EXAMPLE 44

10

Positive Identification by DNA Sequencing

The technique outlined in the previous example may also be used on a larger scale to provide a unique fingerprint-type identification of any individual. In this technique, primers are prepared from a large number of sequences from Table IV and the appended sequence listing. Preferably, 20 to 50 different primers are used. These primers are used to obtain a corresponding number of PCR-generated DNA segments from the individual in question in accordance with Example 41. Each of these DNA segments is sequenced, using the methods set forth in Example 43. The database of sequences generated through this procedure uniquely identifies the individual from whom the sequences were obtained. The same panel of primers may then be used at any later time to absolutely correlate tissue or other biological specimen with that individual.

EXAMPLE 45

20

Southern Blot Forensic Identification

The procedure of Example 44 is repeated to obtain a panel of at least 10 amplified sequences from an individual and a specimen. Preferably, the panel contains at least 50 amplified sequences. More preferably, the panel contains 100 amplified sequences. In some embodiments, the panel contains 200 amplified sequences. This PCR-generated DNA is then digested with one or a combination of, preferably, four base specific restriction enzymes. Such enzymes are commercially available and known to those of skill in the art. After digestion, the resultant gene fragments are size separated in multiple duplicate wells on an agarose gel and transferred to nitrocellulose using Southern blotting techniques well known to those with skill in the art. For a review of Southern blotting see Davis et al. (Basic Methods in Molecular Biology, 1986, Elsevier Press. pp 62-65).

A panel of probes based on the sequences of the extended cDNAs (or genomic DNAs obtainable therefrom), or fragments thereof of at least 10 bases, are radioactively or colorimetrically labeled using methods known in the art, such as nick translation or end labeling, and hybridized to the Southern blot using techniques known in the art (Davis et al., supra). Preferably, the probe comprises at least 12, 15, or 17 consecutive nucleotides from the extended cDNA (or genomic DNAs obtainable therefrom). More preferably, the probe comprises at least 20-30 consecutive nucleotides from the extended cDNA (or genomic DNAs obtainable therefrom). In some embodiments, the probe comprises more than 30

-70-

nucleotides from the extended cDNA (or genomic DNAs obtainable therefrom). In other embodiments, the probe comprises at least 40, at least 50, at least 75, at least 100, at least 150, or at least 200 consecutive nucleotides from the extended cDNA (or genomic DNAs obtainable therefrom).

Preferably, at least 5 to 10 of these labeled probes are used, and more preferably at least about 20 or 30 are 5 used to provide a unique pattern. The resultant bands appearing from the hybridization of a large sample of extended cDNAs (or genomic DNAs obtainable therefrom) will be a unique identifier. Since the restriction enzyme cleavage will be different for every individual, the band pattern on the Southern blot will also be unique. Increasing the number of extended cDNA probes will provide a statistically higher level of confidence in the identification since there will be an increased number of sets of bands used for identification.

10 **EXAMPLE 46**

25

Dot Blot Identification Procedure

Another technique for identifying individuals using the extended cDNA sequences disclosed herein utilizes a dot blot hybridization technique.

Genomic DNA is isolated from nuclei of subject to be identified. Oligonucleotide probes of approximately 30 bp 15 in length are synthesized that correspond to at least 10, preferably 50 sequences from the extended cDNAs or genomic DNAs obtainable therefrom. The probes are used to hybridize to the genomic DNA through conditions known to those in the art. The oligonucleotides are end labeled with P32 using polynucleotide kinase (Pharmacia). Dot Blots are created by spotting the genomic DNA onto nitrocellulose or the like using a vacuum dot blot manifold (BioRad, Richmond California). The nitrocellulose filter containing the genomic sequences is baked or UV linked to the filter, prehybridized and 20 hybridized with labeled probe using techniques known in the art (Davis et al. supra). The ¹²P labeled DNA fragments are sequentially hybridized with successively stringent conditions to detect minimal differences between the 30 bp sequence and the DNA. Tetramethylammonium chloride is useful for identifying clones containing small numbers of nucleotide mismatches (Wood et al., Proc. Natl. Acad. Sci. USA 82(6):1585-1588 (1985)). A unique pattern of dots distinguishes one individual from another individual.

Extended cDNAs or oligonucleotides containing at least 10 consecutive bases from these sequences can be used as probes in the following alternative fingerprinting technique. Preferably, the probe comprises at least 12, 15, or 17 consecutive nucleotides from the extended cDNA (or genomic DNAs obtainable therefrom). More preferably, the probe comprises at least 20-30 consecutive nucleotides from the extended cDNA (or genomic DNAs obtainable therefrom). In some embodiments, the probe comprises more than 30 nucleotides from the extended cDNA (or genomic 30 DNAs obtainable therefrom). In other embodiments, the probe comprises at least 40, at least 50, at least 75, at least 100, at least 150, or at least 200 consecutive nucleotides from the extended cDNA (or genomic DNAs obtainable therefrom).

Preferably, a plurality of probes having sequences from different genes are used in the alternative fingerprinting technique. Example 47 below provides a representative alternative fingerprinting procedure in which the probes are derived from extended cDNAs.

EXAMPLE 47

Alternative "Fingerprint" Identification Technique

20-mer oligonucleotides are prepared from a large number, e.g. 50, 100, or 200, of extended cDNA sequences (or genomic DNAs obtainable therefrom) using commercially available oligonucleotide services such as Genset, Paris, France. Cell samples from the test subject are processed for DNA using techniques well known to those with skill in the art. The nucleic acid is digested with restriction enzymes such as EcoRI and Xbal. Following digestion, samples are applied to wells for electrophoresis. The procedure, as known in the art, may be modified to accommodate polyacrylamide electrophoresis, however in this example, samples containing 5 ug of DNA are loaded into wells and separated on 0.8% agarose gels. The gels are transferred onto nitrocellulose using standard Southern blotting techniques.

10 ng of each of the oligonucleotides are pooled and end-labeled with P³². The nitrocellulose is prehybridized with blocking solution and hybridized with the labeled probes. Following hybridization and washing, the nitrocellulose filter is exposed to X-Omat AR X-ray film. The resulting hybridization pattern will be unique for each individual.

It is additionally contemplated within this example that the number of probe sequences used can be varied for additional accuracy or clarity.

The antibodies generated in Examples 30 and 40 above may be used to identify the tissue type or cell species 20 from which a sample is derived as described above.

EXAMPLE 48

Identification of Tissue Types or Cell Species by Means of

Labeled Tissue Specific Antibodies

Identification of specific tissues is accomplished by the visualization of tissue specific antigens by means of
antibody preparations according to Examples 30 and 40 which are conjugated, directly or indirectly to a detectable
marker. Selected labeled antibody species bind to their specific antigen binding partner in tissue sections, cell
suspensions, or in extracts of soluble proteins from a tissue sample to provide a pattern for qualitative or semiqualitative interpretation.

Antisera for these procedures must have a potency exceeding that of the native preparation, and for that
reason, antibodies are concentrated to a mg/ml level by isolation of the gamma globulin fraction, for example, by ionexchange chromatography or by ammonium sulfate fractionation. Also, to provide the most specific antisera, unwanted
antibodies, for example to common proteins, must be removed from the gamma globulin fraction, for example by means
of insoluble immunoabsorbents, before the antibodies are labeled with the marker. Either monoclonal or heterologous
antisera is suitable for either procedure.

A. Immunohistochemical Techniques

Purified, high-titer antibodies, prepared as described above, are conjugated to a detectable marker, as described, for example, by Fudenberg, H., Chap. 26 in: Basic 503 Clinical Immunology, 3rd Ed. Lange, Los Altos, California (1980) or Rose, N. et al., Chap. 12 in: Methods in Immunodiagnosis, 2d Ed. John Wiley 503 Sons, New York (1980).

A fluorescent marker, either fluorescein or rhodamine, is preferred, but antibodies can also be labeled with an enzyme that supports a color producing reaction with a substrate, such as horseradish peroxidase. Markers can be added to tissue-bound antibody in a second step, as described below. Alternatively, the specific antitissue antibodies can be labeled with ferritin or other electron dense particles, and localization of the ferritin coupled antigen-antibody complexes achieved by means of an electron microscope. In yet another approach, the antibodies are radiolabeled, with, for example ¹²⁵I, and detected by overlaying the antibody treated preparation with photographic emulsion.

Preparations to carry out the procedures can comprise monoclonal or polyclonal antibodies to a single protein or peptide identified as specific to a tissue type, for example, brain tissue, or antibody preparations to several antigenically distinct tissue specific antigens can be used in panels, independently or in mixtures, as required.

Tissue sections and cell suspensions are prepared for immunohistochemical examination according to common histological techniques. Multiple cryostat sections (about 4 µm, unfixed) of the unknown tissue and known control, are mounted and each slide covered with different dilutions of the antibody preparation. Sections of known and unknown tissues should also be treated with preparations to provide a positive control, a negative control, for example, pre-immune sera, and a control for non-specific staining, for example, buffer.

Treated sections are incubated in a humid chamber for 30 min at room temperature, rinsed, then washed in buffer for 30-45 min. Excess fluid is blotted away, and the marker developed.

If the tissue specific antibody was not labeled in the first incubation, it can be labeled at this time in a second antibody-antibody reaction, for example, by adding fluorescein- or enzyme-conjugated antibody against the immunoglobulin class of the antiserum-producing species, for example, fluorescein labeled antibody to mouse IgG. Such labeled sera are commercially available.

The antigen found in the tissues by the above procedure can be quantified by measuring the intensity of color or fluorescence on the tissue section, and calibrating that signal using appropriate standards.

B. Identification of Tissue Specific Soluble Proteins

The visualization of tissue specific proteins and identification of unknown tissues from that procedure is

carried out using the labeled antibody reagents and detection strategy as described for immunohistochemistry; however
the sample is prepared according to an electrophoretic technique to distribute the proteins extracted from the tissue in
an orderly array on the basis of molecular weight for detection.

A tissue sample is homogenized using a Virtis apparatus; cell suspensions are disrupted by Dounce homogenization or osmotic lysis, using detergents in either case as required to disrupt cell membranes, as is the practice

in the art. Insoluble cell components such as nuclei, microsomes, and membrane fragments are removed by ultracentrifugation, and the soluble protein-containing fraction concentrated if necessary and reserved for analysis.

A sample of the soluble protein solution is resolved into individual protein species by conventional SDS polyacrylamide electrophoresis as described, for example, by Davis, L. et al., Section 19-2 in: Basic Methods in 5 Molecular Biology (P. Leder, ed), Elsevier, New York (1986), using a range of amounts of polyacrylamide in a set of gels to resolve the entire molecular weight range of proteins to be detected in the sample. A size marker is run in parallel for purposes of estimating molecular weights of the constituent proteins. Sample size for analysis is a convenient volume of from 5 to 55 μ l, and containing from about 1 to 100 μ g protein. An aliquot of each of the resolved proteins is transferred by blotting to a nitrocellulose filter paper, a process that maintains the pattern of resolution. Multiple copies 10 are prepared. The procedure, known as Western Blot Analysis, is well described in Davis, L. et al., (above) Section 19-3. One set of nitrocellulose blots is stained with Coomassie Blue dye to visualize the entire set of proteins for comparison with the antibody bound proteins. The remaining nitrocellulose filters are then incubated with a solution of one or mora specific antisera to tissue specific proteins prepared as described in Examples 30 and 40. In this procedure, as in procedure A above, appropriate positive and negative sample and reagent controls are run.

In either procedure A or B, a detectable label can be attached to the primary tissue antigen-primary antibody complex according to various strategies and permutations thereof. In a straightforward approach, the primary specific antibody can be labeled; alternatively, the unlabeled complex can be bound by a labeled secondary anti-IgG antibody. In other approaches, either the primary or secondary antibody is conjugated to a biotin molecule, which can, in a subsequent step, bind an avidin conjugated marker. According to yet another strategy, enzyme labeled or radioactive 20 protein A, which has the property of binding to any IgG, is bound in a final step to either the primary or secondary antibody.

15

The visualization of tissue specific antigen binding at levels above those seen in control tissues to one or more tissue specific antibodies, prepared from the gene sequences identified from extended cDNA sequences, can identify tissues of unknown origin, for example, forensic samples, or differentiated tumor tissue that has metastasized to foreign 25 bodily sites.

In addition to their applications in forensics and identification, extended cDNAs (or genomic DNAs obtainable therefrom) may be mapped to their chromosomal locations. Example 49 below describes radiation hybrid (RH) mapping of human chromosomal regions using extended cDNAs. Example 50 below describes a representative procedure for mapping an extended cDNA (or a genomic DNA obtainable therefrom) to its location on a human chromosome. Example 30 51 below describes mapping of extended cDNAs (or genomic DNAs obtainable therefrom) on metaphase chromosomes by Fluorescence In Situ Hybridization (FISH).

EXAMPLE 49

Radiation hybrid mapping of Extended cDNAs to the human genome

Radiation hybrid (RH) mapping is a somatic cell genetic approach that can be used for high resolution mapping of the human genome. In this approach, cell lines containing one or more human chromosomes are lethally irradiated, breaking each chromosome into fragments whose size depends on the radiation dose. These fragments are rescued by fusion with cultured rodent cells, yielding subclones containing different portions of the human genome. This technique is described by Benham et al. (*Genomics* 4:509-517, 1989) and Cox et al., (*Science* 250:245-250, 1990). The random and independent nature of the subclones permits efficient mapping of any human genome marker. Human DNA isolated from a panel of 80-100 cell lines provides a mapping reagent for ordering extended cDNAs (or genomic DNAs obtainable therefrom). In this approach, the frequency of breakage between markers is used to measure distance, allowing construction of fine resolution maps as has been done using conventional ESTs (Schuler et al., *Science* 274:540-546, 1996).

RH mapping has been used to generate a high-resolution whole genome radiation hybrid map of human chromosome 17q22-q25.3 across the genes for growth hormone (GH) and thyr.idine kinase (TK) (Foster et al., *Genomics* 33:185-192, 1996), the region surrounding the Gorlin syndrome gene (Obermayr et al., *Eur. J. Hum. Genet.* 4:242-245, 1996), 60 loci covering the entire short arm of chromosome 12 (Raeymaekers et al., *Genomics* 29:170-178, 1995), the region of human chromosome 22 containing the neurofibromatosis type 2 locus (Frazer et al., *Genomics* 14:574-584, 1992) and 13 loci on the long arm of chromosome 5 (Warrington et al., *Genomics* 11:701-708, 1991).

EXAMPLE 50

Mapping of Extended cDNAs to Human

Chromosomes using PCR techniques

Extended cDNAs (or genomic DNAs obtainable therefrom) may be assigned to human chromosomes using PCR based methodologies. In such approaches, oligonucleotide primer pairs are designed from the extended cDNA sequence (or the sequence of a genomic DNA obtainable therefrom) to minimize the chance of amplifying through an intron. Preferably, the oligonucleotide primers are 18-23 bp in length and are designed for PCR amplification. The creation of PCR primers from known sequences is well known to those with skill in the art. For a review of PCR technology see Erlich, H.A., PCR Technology; Principles and Applications for DNA Amplification. 1992. W.H. Freeman and Co., New York.

The primers are used in polymerase chain reactions (PCR) to amplify templates from total human genomic DNA. PCR conditions are as follows: 60 ng of genomic DNA is used as a template for PCR with 80 ng of each oligonucleotide primer, 0.6 unit of Taq polymerase, and 1 µCu of a ³²P-labeled deoxycytidine triphosphate. The PCR is performed in a microplate thermocycler (Techne) under the following conditions: 30 cycles of 94°C, 1.4 min; 55°C, 2 min; and 72°C, 2 min; with a final extension at 72°C for 10 min. The amplified products are analyzed on a 6% polyacrylamide sequencing gel and visualized by autoradiography. If the length of the resulting PCR product is identical to the distance between the ends of the primer sequences in the extended cDNA from which the primers are derived, then the PCR reaction is repeated with DNA templates from two panels of human-rodent somatic cell hybrids, BIOS

PCRable DNA (BIOS Corporation) and NIGMS Human-Rodent Somatic Cell Hybrid Mapping Panel Number 1 (NIGMS, - Camden, NJ).

PCR is used to screen a series of somatic cell hybrid cell lines containing defined sets of human chromosomes for the presence of a given extended cDNA (or genomic DNA obtainable therefrom). DNA is isolated from the somatic hybrids and used as starting templates for PCR reactions using the primer pairs from the extended cDNAs (or genomic DNAs obtainable therefrom). Only those somatic cell hybrids with chromosomes containing the human gene corresponding to the extended cDNA (or genomic DNA obtainable therefrom) will yield an amplified fragment. The extended cDNAs (or genomic DNAs obtainable therefrom) are assigned to a chromosome by analysis of the segregation pattern of PCR products from the somatic hybrid DNA templates. The single human chromosome present in all cell hybrids that give rise to an amplified fragment is the chromosome containing that extended cDNA (or genomic DNA obtainable therefrom). For a review of techniques and analysis of results from somatic cell gene mapping experiments. (See Ledbetter et al., Genomics 6:475-481 (1990).)

Alternatively, the extended cDNAs (or genomic DNAs obtainable therefrom) may be mapped to individual chromosomes using FISH as described in Example 51 below.

15

EXAMPLE 51

Mapping of Extended 5' ESTs to Chromosomes

Using Fluorescence in situ Hybridization

Fluorescence in situ hybridization allows the extended cDNA (or genomic DNA obtainable therefrom) to be mapped to a particular location on a given chromosome. The chromosomes to be used for fluorescence in situ hybridization techniques may be obtained from a variety of sources including cell cultures, tissues, or whole blood.

In a preferred embodiment, chromosomal localization of an extended cDNA (or genomic DNA obtainable therefrom) is obtained by FISH as described by Cherif et al. (*Proc. Natl. Acad. Sci. U.S.A.*, 87:6639-6643, 1990).

Metaphase chromosomes are prepared from phytohemagglutinin (PHA)-stimulated blood cell donors. PHA-stimulated lymphocytes from healthy males are cultured for 72 h in RPMI-1640 medium. For synchronization, methotrexate (10 µM) is added for 17 h, followed by addition of 5-bromodeoxyuridine (5-BudR, 0.1 mM) for 6 h. Colcemid (1 µg/ml) is added for the last 15 min before harvesting the cells. Cells are collected, washed in RPMI, incubated with a hypotonic solution of KCI (75 mM) at 37°C for 15 min and fixed in three changes of methanol:acetic acid (3:1). The cell suspension is dropped onto a glass slide and air dried. The extended cDNA (or genomic DNA obtainable therefrom) is labeled with biotin-16 dUTP by nick translation according to the manufacturer's instructions (Bethesda Research

Laboratories, Bethesda, MD), purified using a Sephadex G-50 column (Pharmacia, Upssala, Sweden) and precipitated. Just prior to hybridization, the DNA pellet is dissolved in hybridization buffer (50% formamide, 2 X SSC, 10% dextran sulfate, 1 mg/ml sonicated salmon sperm DNA, pH 7) and the probe is denatured at 70°C for 5-10 min.

Slides kept at $\cdot 20^{\circ}$ C are treated for 1 h at 37°C with RNase A (100 μ g/ml), rinsed three times in 2 X SSC and dehydrated in an ethanol series. Chromosome preparations are denatured in 70% formamide, 2 X SSC for 2 min at

70°C, then dehydrated at 4°C. The slides are treated with proteinase K (10 μg/100 ml in 20 mM Tris-HCl, 2 mM CaCl₂) at 37°C for 8 min and dehydrated. The hybridization mixture containing the probe is placed on the slide, covered with a coverslip, sealed with rubber cement and incubated overnight in a humid chamber at 37°C. After hybridization and post-hybridization washes, the biotinylated probe is detected by avidin-FITC and amplified with additional layers of
5 biotinylated goat anti-avidin and avidin-FITC. For chromosomal localization, fluorescent R-bands are obtained as previously described (Cherif et al., supra.). The slides are observed under a LEICA fluorescence microscope (DMRXA). Chromosomes are counterstained with propidium iodide and the fluorescent signal of the probe appears as two symmetrical yellow-green spots on both chromatids of the fluorescent R-band chromosome (red). Thus, a particular extended cDNA (or genomic DNA obtainable therefrom) may be localized to a particular cytogenetic R-band on a given
10 chromosome.

Once the extended cDNAs (or genomic DNAs obtainable therefrom) have been assigned to particular chromosomes using the techniques described in Examples 49-51 above, they may be utilized to construct a high resolution map of the chromosomes on which they are located or to identify the chromosomes in a sample.

EXAMPLE 52

15

Use of Extended cDNAs to Construct or Expand Chromosome Maps

Chromosome mapping involves assigning a given unique sequence to a particular chromosome as described above. Once the unique sequence has been mapped to a given chromosome, it is ordered relative to other unique sequences located on the same chromosome. One approach to chromosome mapping utilizes a series of yeast artificial chromosomes (YACs) bearing several thousand long inserts derived from the chromosomes of the organism from which the extended cDNAs (or genomic DNAs obtainable therefrom) are obtained. This approach is described in Ramaiah Nagaraja et al. Genome Research 7:210-222, March 1997. Briefly, in this approach each chromosome is broken into overlapping pieces which are inserted into the YAC vector. The YAC inserts are screened using PCR or other methods to determine whether they include the extended cDNA (or genomic DNA obtainable therefrom) whose position is to be determined. Once an insert has been found which includes the extended cDNA (or genomic DNA obtainable therefrom), the insert can be analyzed by PCR or other methods to determine whether the insert also contains other sequences known to be on the chromosome or in the region from which the extended cDNA (or genomic DNA obtainable therefrom) was derived. This process can be repeated for each insert in the YAC library to determine the location of each of the extended cDNAs (or genomic DNAs obtainable therefrom) relative to one another and to other known chromosomal markers. In this way, a high resolution map of the distribution of numerous unique markers along each of the organisms 30 chromosomes may be obtained.

As described in Example 53 below extended cDNAs (or genomic DNAs obtainable therefrom) may also be used to identify genes associated with a particular phenotype, such as hereditary disease or drug response.

EXAMPLE 53

Identification of genes associated with hereditary diseases or drug response

This example illustrates an approach useful for the association of extended cDNAs (or genomic DNAs obtainable therefrom) with particular phenotypic characteristics. In this example, a particular extended cDNA (or genomic DNA obtainable therefrom) is used as a test probe to associate that extended cDNA (or genomic DNA obtainable therefrom) with a particular phenotypic characteristic.

Extended cDNAs (or genomic DNAs obtainable therefrom) are mapped to a particular location on a human chromosome using techniques such as those described in Examples 49 and 50 or other techniques known in the art. A search of Mendelian Inheritance in Man (V. McKusick, Mendelian Inheritance in Man (available on line through Johns Hopkins University Welch Medical Library) reveals the region of the human chromosome which contains the extended cDNA (or genomic DNA obtainable therefrom) to be a very gene rich region containing several known genes and several 10 diseases or phenotypes for which genes have not been identified. The gene corresponding to this extended cDNA (or genomic DNA obtainable therefrom) thus becomes an immediate candidate for each of these genetic diseases.

Cells from patients with these diseases or phenotypes are isolated and expanded in culture. PCR primers from the extended cDNA (or genomic DNA obtainable therefrom) are used to screen genomic DNA, mRNA or cDNA obtained from the patients. Extended cDNAs (or genomic DNAs obtainable therefrom) that are not amplified in the patients can 15 be positively associated with a particular disease by further analysis. Alternatively, the PCR analysis may yield fragments of different lengths when the samples are derived from an individual having the phenotype associated with the disease than when the sample is derived from a healthy individual, indicating that the gene containing the extended cDNA may be responsible for the genetic disease.

VI. Use of Extended cDNAs (or genomic DNAs obtainable therefrom) to Construct Vectors

The present extended cDNAs (or genomic DNAs obtainable therefrom) may also be used to construct secretion vectors capable of directing the secretion of the proteins encoded by genes inserted in the vectors. Such secretion vectors may facilitate the purification or enrichment of the proteins encoded by genes inserted therein by reducing the number of background proteins from which the desired protein must be purified or enriched. Exemplary secretion vectors are described in Example 54 below.

25

30

20

EXAMPLE 54

Construction of Secretion Vectors

The secretion vectors of the present invention include a promoter capable of directing gene expression in the host cell, tissue, or organism of interest. Such promoters include the Rous Sarcoma Virus promoter, the SV40 promoter, the human cytomegalovirus promoter, and other promoters familiar to those skilled in the art.

A signal sequence from an extended cDNA (or genomic DNA obtainable therefrom), such as one of the signal sequences in SEQ ID NOs: 40-140 and 242-377 as defined in Table IV above, is operably linked to the promoter such that the mRNA transcribed from the promoter will direct the translation of the signal peptide. The host cell, tissue, or organism may be any cell, tissue, or organism which recognizes the signal peptide encoded by the signal sequence in the WO 99/31236 PCT/IB98/02122

-78-

extended cDNA (or genomic DNA obtainable therefrom). Suitable hosts include mammalian cells, tissues or organisms; avian cells, tissues, or organisms, insect cells, tissues or organisms, or yeast.

In addition, the secretion vector contains cloning sites for inserting genes encoding the proteins which are to be secreted. The cloning sites facilitate the cloning of the insert gene in frame with the signal sequence such that a fusion protein in which the signal peptide is fused to the protein encoded by the inserted gene is expressed from the mRNA transcribed from the promoter. The signal peptide directs the extracellular secretion of the fusion protein.

The secretion vector may be DNA or RNA and may integrate into the chromosome of the host, be stably maintained as an extrachromosomal replicon in the host, be an artificial chromosome, or be transiently present in the host. Many nucleic acid backbones suitable for use as secretion vectors are known to those skilled in the art, including retroviral vectors, SV40 vectors, Bovine Papilloma Virus vectors, yeast integrating plasmids, yeast episomal plasmids, yeast artificial chromosomes, human artificial chromosomes, P element vectors, baculovirus vectors, or bacterial plasmids capable of being transiently introduced into the host.

The secretion vector may also contain a polyA signal such that the polyA signal is located downstream of the gene inserted into the secretion vector.

After the gene encoding the protein for which secretion is desired is inserted into the secretion vector, the secretion vector is introduced into the host cell, tissue, or organism using calcium phosphate precipitation, DEAE-Dextran, electroporation, liposome-mediated transfection, viral particles or as naked DNA. The protein encoded by the inserted gene is then purified or enriched from the supernatant using conventional techniques such as ammonium sulfate precipitation, immunoprecipitation, immunochromatography, size exclusion chromatography, ion exchange chromatography, and hplc. Alternatively, the secreted protein may be in a sufficiently enriched or pure state in the supernatant or growth media of the host to permit it to be used for its intended purpose without further enrichment.

The signal sequences may also be inserted into vectors designed for gene therapy. In such vectors, the signal sequence is operably linked to a promoter such that mRNA transcribed from the promoter encodes the signal peptide. A cloning site is located downstream of the signal sequence such that a gene encoding a protein whose secretion is desired may readily be inserted into the vector and fused to the signal sequence. The vector is introduced into an appropriate host cell. The protein expressed from the promoter is secreted extracellularly, thereby producing a therapeutic effect.

The extended cDNAs or 5' ESTs may also be used to clone sequences located upstream of the extended cDNAs or 5' ESTs which are capable of regulating gene expression, including promoter sequences, enhancer sequences, and other upstream sequences which influence transcription or translation levels. Once identified and cloned, these upstream regulatory sequences may be used in expression vectors designed to direct the expression of an inserted gene in a desired spatial, temporal, developmental, or quantitative fashion. Example 55 describes a method for cloning sequences upstream of the extended cDNAs or 5' ESTs.

WO 99/31236 PCT/IB98/02122

.79.

Use of Extended cDNAs or 5' ESTs to Clone Upstream

Sequences from Genomic DNA

Sequences derived from extended cDNAs or 5' ESTs may be used to isolate the promoters of the corresponding genes using chromosome walking techniques. In one chromosome walking technique, which utilizes the 5 GenomeWalker™ kit available from Clontech, five complete genomic DNA samples are each digested with a different restriction enzyme which has a 6 base recognition site and leaves a blunt end. Following digestion, oligonucleotide adapters are ligated to each end of the resulting genomic DNA fragments.

For each of the five genomic DNA libraries, a first PCR reaction is performed according to the manufacturer's instructions using an outer adaptor primer provided in the kit and an outer gene specific primer. The gene specific primer 10 should be selected to be specific for the extended cDNA or 5' EST of interest and should have a melting temperature, length, and location in the extended cDNA or ' EST which is consistent with its use in PCR reactions. Each first PCR reaction contains 5ng of genomic DNA, 5 μ l of 10X Tth reaction buffer, 0.2 mM of each dNTP, 0.2 μ M each of outer adaptor primer and outer gene specific primer, 1.1 mM of $Mg(OAc)_2$, and 1 μ l of the Tth polymerase 50X mix in a total volume of 50 μ l. The reaction cycle for the first PCR reaction is as follows: 1 min @ 94°C / 2 sec @ 94°C, 3 min @ 15 72°C (7 cycles) / 2 sec @ 94°C, 3 min @ 67°C (32 cycles) / 5 min @ 67°C.

The product of the first PCR reaction is diluted and used as a template for a second PCR reaction according to the manufacturer's instructions using a pair of nested primers which are located internally on the amplicon resulting from the first PCR reaction. For example, 5 μ l of the reaction product of the first PCR reaction mixture may be diluted 180 times. Reactions are made in a 50 μ l volume having a composition identical to that of the first PCR reaction except 20 the nested primers are used. The first nested primer is specific for the adaptor, and is provided with the GenomeWalker™ kit. The second nested primer is specific for the particular extended cDNA or 5' EST for which the promoter is to be cloned and should have a melting temperature, length, and location in the extended cDNA or 5' EST which is consistent with its use in PCR reactions. The reaction parameters of the second PCR reaction are as follows: 1 min @ 94°C / 2 sec @ 94°C, 3 min @ 72°C (6 cycles) / 2 sec @ 94°C, 3 min @ 67°C (25 cycles) / 5 min @ 67°C

The product of the second PCR reaction is purified, cloned, and sequenced using standard techniques. Alternatively, two or more human genomic DNA libraries can be constructed by using two or more restriction enzymes. The digested genomic DNA is cloned into vectors which can be converted into single stranded, circular, or linear DNA. A biotinylated oligonucleotide comprising at least 15 nucleotides from the extended cDNA or 5' EST sequence is hybridized to the single stranded DNA. Hybrids between the biotinylated oligonucleotide and the single stranded DNA containing 30 the extended cDNA or EST sequence are isolated as described in Example 29 above. Thereafter, the single stranded DNA containing the extended cDNA or EST sequence is released from the beads and converted into double stranded DNA using a primer specific for the extended cDNA or 5' EST sequence or a primer corresponding to a sequence included in the cloning vector. The resulting double stranded DNA is transformed into bacteria. DNAs containing the 5' EST or extended cDNA sequences are identified by colony PCR or colony hybridization.

25

25

WO 99/31236 PCT/IB98/02122

-80-

Once the upstream genomic sequences have been cloned and sequenced as described above, prospective promoters and transcription start sites within the upstream sequences may be identified by comparing the sequences upstream of the extended cDNAs or 5' ESTs with databases containing known transcription start sites, transcription factor binding sites, or promoter sequences.

In addition, promoters in the upstream sequences may be identified using promoter reporter vectors as described in Example 56.

EXAMPLE 56

Identification of Promoters in Cloned Upstream Sequences

The genomic sequences upstream of the extended cDNAs or 5' ESTs are cloned into a suitable promoter 10 reporter vector, such as the pSEAP-Basic, pSEAP-Enhancer, pβgal-Basic, pβgal-Enhancer, or pEGFP-1 Promoter Reporter vectors available from Clontech. Briefly, each of these promoter reporter vectors include multiple cloning sites positioned upstream of a reporter gene encoding a readily assayable protein such as secreted alkaline phosphatase, $oldsymbol{eta}$ galactosidase, or green fluorescent protein. The sequences upstream of the extended cDNAs or 5' ESTs are inserted into the cloning sites upstream of the reporter gene in both orientations and introduced into an appropriate host cell. The 15 level of reporter protein is assayed and compared to the level obtained from a vector which lacks an insert in the cloning site. The presence of an elevated expression level in the vector containing the insert with respect to the control vector indicates the presence of a promoter in the insert. If necessary, the upstream sequences can be cloned into vectors which contain an enhancer for augmenting transcription levels from weak promoter sequences. A significant level of expression above that observed with the vector lacking an insert indicates that a promoter sequence is present in the 20 inserted upstream sequence.

Appropriate host cells for the promoter reporter vectors may be chosen based on the results of the above described determination of expression patterns of the extended cDNAs and ESTs. For example, if the expression pattern analysis indicates that the mRNA corresponding to a particular extended cDNA or 5' EST is expressed in fibroblasts, the promoter reporter vector may be introduced into a human fibroblast cell line.

Promoter sequences within the upstream genomic DNA may be further defined by constructing nested deletions in the upstream DNA using conventional techniques such as Exonuclease III digestion. The resulting deletion fragments can be inserted into the promoter reporter vector to determine whether the deletion has reduced or obliterated promoter activity. In this way, the boundaries of the promoters may be defined. If desired, potential individual regulatory sites within the promoter may be identified using site directed mutagenesis or linker scanning to obliterate 30 potential transcription factor binding sites within the promoter individually or in combination. The effects of these mutations on transcription levels may be determined by inserting the mutations into the cloning sites in the promoter reporter vectors.

EXAMPLE 57

Cloning and Identification of Promoters

WO 99/31236 PCT/IB98/02122

Using the method described in Example 55 above with 5' ESTs, sequences upstream of several genes were obtained. Using the primer pairs GGG AAG ATG GAG ATA GTA TTG CCT G (SEQ ID NO:29) and CTG CCA TGT ACA TGA TAG AGA GAT TC (SEQ ID NO:30), the promoter having the internal designation P13H2 (SEQ ID NO:31) was obtained.

Using the primer pairs GTA CCA GGGG ACT GTG ACC ATT GC (SEQ ID NO:32) and CTG TGA CCA TTG CTC CCA AGA GAG (SEQ ID NO:33), the promoter having the internal designation P15B4 (SEQ ID NO:34) was obtained.

5

Using the primer pairs CTG GGA TGG AAG GCA CGG TA (SEQ ID NO:35) and GAG ACC ACA CAG CTA GAC AA (SEQ ID NO:36), the promoter having the internal designation P29B6 (SEQ ID NO:37) was obtained.

Figure 8 provides a schematic description of the promoters isolated and the way they are assembled with the corresponding 5' tags. The upstream sequences were screened for the presence of motifs resembling transcription factor binding sites or known transcription start sites using the computer program MatInspector release 2.0, August 1996.

Figure 9 describes the transcription factor binding sites present in each of these promoters. The columns labeled matrice provides the name of the MatInspector matrix used. The column labeled position provides the 5' postion of the promoter site. Numeration of the sequence starts from the transcription site as determined by matching the genomic sequence with the 5' EST sequence. The column labeled "orientation" indicates the DNA strand on which the site is found, with the + strand being the coding strand as determined by matching the genomic sequence with the sequence of the 5' EST. The column labeled "score" provides the MatInspector score found for this site. The column labeled "length" provides the length of the site in nucleotides. The column labeled "sequence" provides the sequence of the site found.

The promoters and other regulatory sequences located upstream of the extended cDNAs or 5' ESTs may be used to design expression vectors capable of directing the expression of an inserted gene in a desired spatial, temporal, developmental, or quantitative manner. A promoter capable of directing the desired spatial, temporal, developmental, and quantitative patterns may be selected using the results of the expression analysis described in Example 26 above. For example, if a promoter which confers a high level of expression in muscle is desired, the promoter sequence upstream of an extended cDNA or 5' EST derived from an mRNA which is expressed at a high level in muscle, as determined by the method of Example 26, may be used in the expression vector.

Preferably, the desired promoter is placed near multiple restriction sites to facilitate the cloning of the desired insert downstream of the promoter, such that the promoter is able to drive expression of the inserted gene. The promoter may be inserted in conventional nucleic acid backbones designed for extrachromosomal replication, integration into the host chromosomes or transient expression. Suitable backbones for the present expression vectors include retroviral backbones, backbones from eukaryotic episomes such as SV40 or Bovine Papilloma Virus, backbones from bacterial episomes, or artificial chromosomes.

30

Preferably, the expression vectors also include a polyA signal downstream of the multiple restriction sites for directing the polyadenylation of mRNA transcribed from the gene inserted into the expression vector.

Following the identification of promoter sequences using the procedures of Examples 55-57, proteins which interact with the promoter may be identified as described in Example 58 below.

EXAMPLE 58

Identification of Proteins Which Interact with Promoter Sequences, Upstream Regulatory Sequences, or mRNA

Sequences within the promoter region which are likely to bind transcription factors may be identified by homology to known transcription factor binding sites or through conventional mutagenesis or deletion analyses of reporter plasmids containing the promoter sequence. For example, deletions may be made in a reporter plasmid containing the promoter sequence of interest operably linked to an assayable reporter gene. The reporter plasmids carrying various deletions within the promoter region are transfected into an appropriate host cell and the effects of the deletions on expression levels is assessed. Transcription factor binding sites within the regions in which deletions reduce expression levels may be further localized using site directed mutagenesis, linker scanning analysis, or other techniques familiar to those skilled in the art. Nucleic acids encoding proteins which interact with sequences in the promoter may be identified using one-hybrid systems such as those described in the manual accompanying the Matchmaker One-Hybrid System kit avalilabe from Clontech (Catalog No. K 1603-1). Briefly, the Matchmaker One-hybrid system is used as follows. The target sequence for which it is desired to identify binding proteins is cloned upstream of a selectable reporter gene and integrated into the yeast genome. Preferably, multiple copies of the target sequences are inserted into the reporter plasmid in tandem.

A library comprised of fusions between cDNAs to be evaluated for the ability to bind to the promoter and the activation domain of a yeast transcription factor, such as GAL4, is transformed into the yeast strain containing the integrated reporter sequence. The yeast are plated on selective media to select cells expressing the selectable marker linked to the promoter sequence. The colonies which grow on the selective media contain genes encoding proteins which bind the target sequence. The inserts in the genes encoding the fusion proteins are further characterized by sequencing. In addition, the inserts may be inserted into expression vectors or in vitro transcription vectors. Binding of the polypeptides encoded by the inserts to the promoter DNA may be confirmed by techniques familiar to those skilled in the art, such as gel shift analysis or DNAse protection analysis.

VII. Use of Extended cDNAs (or Genomic DNAs Obtainable Therefrom) in Gene Therapy

The present invention also comprises the use of extended cDNAs (or genomic DNAs obtainable therefrom) in gene therapy strategies, including antisense and triple helix strategies as described in Examples 57 and 58 below. In antisense approaches, nucleic acid sequences complementary to an mRNA are hybridized to the mRNA intracellularly, thereby blocking the expression of the protein encoded by the mRNA. The antisense sequences may prevent gene expression through a variety of mechanisms. For example, the antisense sequences may inhibit the ability of ribosomes

to translate the mRNA. Alternatively, the antisense sequences may block transport of the mRNA from the nucleus to the cytoplasm, thereby limiting the amount of mRNA available for translation. Another mechanism through which antisense sequences may inhibit gene expression is by interfering with mRNA splicing. In yet another strategy, the antisense nucleic acid may be incorporated in a ribozyme capable of specifically cleaving the target mRNA.

EXAMPLE 59

Preparation and Use of Antisense Oligonucleotides

The antisense nucleic acid molecules to be used in gene therapy may be either DNA or RNA sequences. They may comprise a sequence complementary to the sequence of the extended cDNA (or genomic DNA obtainable therefrom). The antisense nucleic acids should have a length and melting temperature sufficient to permit formation of an intracellular duplex having sufficient stability to inhibit the expression of the mRNA in the duplex. Strategies for designing antisense nucleic acids suitable for use in gene therapy are disclosed in Green et al., Ann. Rev. Biochem. 55:569-597 (1986) and Izant and Weintraub, Cell 36:1007-1015 (1984).

In some strategies, antisense molecules are obtained from a nucleotide sequence encoding a protein by reversing the orientation of the coding region with respect to a promoter so as to transcribe the opposite strand from that which is normally transcribed in the cell. The antisense molecules may be transcribed using in vitro transcription systems such as those which employ T7 or SP6 polymerase to generate the transcript. Another approach involves transcription of the antisense nucleic acids in vivo by operably linking DNA containing the antisense sequence to a promoter in an expression vector.

Alternatively, oligonucleotides which are complementary to the strand normally transcribed in the cell may be synthesized in vitro. Thus, the antisense nucleic acids are complementary to the corresponding mRNA and are capable of hybridizing to the mRNA to create a duplex. In some embodiments, the antisense sequences may contain modified sugar phosphate backbones to increase stability and make them less sensitive to RNase activity. Examples of modifications suitable for use in antisense strategies are described by Rossi et al., Pharmacol. Ther. 50(2):245-254, (1991).

Various types of antisense oligonucleotides complementary to the sequence of the extended cDNA (or genomic DNA obtainable therefrom) may be used. In one preferred embodiment, stable and semi-stable antisense oligonucleotides described in International Application No. PCT W094/23026 are used. In these molecules, the 3' end or both the 3' and 5' ends are engaged in intramolecular hydrogen bonding between complementary base pairs. These molecules are better able to withstand exonuclease attacks and exhibit increased stability compared to conventional antisense oligonucleotides.

In another preferred embodiment, the antisense oligodeoxynucleotides against herpes simplex virus types 1 and 2 described in International Application No. WO 95/04141.

In yet another preferred embodiment, the covalently cross-linked antisense oligonucleotides described in International Application No. WO 96/31523 are used. These double- or single-stranded oligonucleotides comprise one or -84-

more, respectively, inter- or intra-oligonucleotide covalent cross-linkages, wherein the linkage consists of an amide bond between a primary amine group of one strand and a carboxyl group of the other strand or of the same strand, respectively, the primary amine group being directly substituted in the 2' position of the strand nucleotide monosaccharide ring, and the carboxyl group being carried by an aliphatic spacer group substituted on a nucleotide or nucleotide analog of the other strand or the same strand, respectively.

The antisense oligodeoxynucleotides and oligonucleotides disclosed in International Application No. WO 92/18522 may also be used. These molecules are stable to degradation and contain at least one transcription control recognition sequence which binds to control proteins and are effective as decoys therefor. These molecules may contain "hairpin" structures, "dumbbell" structures, "modified dumbbell" structures, "cross-linked" decoy structures and "loop" structures.

In another preferred embodiment, the cyclic double-stranded oligonucleotides described in European Patent Application No. 0 572 287 A2 are used. These ligated oligonucleotide "dumbbells" contain the binding site for a transcription factor and inhibit expression of the gene under control of the transcription factor by sequestering the factor.

Use of the closed antisense oligonucleotides disclosed in International Application No. WO 92/19732 is also contemplated. Because these molecules have no free ends, they are more resistant to degradation by exonucleases than are conventional oligonucleotides. These oligonucleotides may be multifunctional, interacting with several regions which are not adjacent to the target mRNA.

The appropriate level of antisense nucleic acids required to inhibit gene expression may be determined using in vitro expression analysis. The antisense molecule may be introduced into the cells by diffusion, injection, infection or transfection using procedures known in the art. For example, the antisense nucleic acids can be introduced into the body as a bare or naked oligonucleotide, oligonucleotide encapsulated in lipid, oligonucleotide sequence encapsidated by viral protein, or as an oligonucleotide operably linked to a promoter contained in an expression vector. The expression vector may be any of a variety of expression vectors known in the art, including retroviral or viral vectors, vectors capable of extrachromosomal replication, or integrating vectors. The vectors may be DNA or RNA.

The antisense molecules are introduced onto cell samples at a number of different concentrations preferably between 1x10⁻¹⁰M to 1x10⁻⁴M. Once the minimum concentration that can adequately control gene expression is identified, the optimized dose is translated into a dosage suitable for use in vivo. For example, an inhibiting concentration in culture of 1x10⁻⁷ translates into a dose of approximately 0.6 mg/kg bodyweight. Levels of oligonucleotide approaching 100 mg/kg bodyweight or higher may be possible after testing the toxicity of the oligonucleotide in laboratory animals. It is additionally contemplated that cells from the vertebrate are removed, treated with the antisense oligonucleotide, and reintroduced into the vertebrate.

It is further contemplated that the antisense oligonucleotide sequence is incorporated into a ribozyme sequence to enable the antisense to specifically bind and cleave its target mRNA. For technical applications of ribozyme and antisense oligonucleotides see Rossi et al., supra.

In a preferred application of this invention, the polypeptide encoded by the gene is first identified, so that the

effectiveness of antisense inhibition on translation can be monitored using techniques that include but are not limited to
antibody-mediated tests such as RIAs and ELISA, functional assays, or radiolabeling.

The extended cDNAs of the present invention (or genomic DNAs obtainable therefrom) may also be used in gene therapy approaches based on intracellular triple helix formation. Triple helix oligonucleotides are used to inhibit transcription from a genome. They are particularly useful for studying alterations in cell activity as it is associated with a particular gene. The extended cDNAs (or genomic DNAs obtainable therefrom) of the present invention or, more preferably, a portion of those sequences, can be used to inhibit gene expression in individuals having diseases associated with expression of a particular gene. Similarly, a portion of the extended cDNA (or genomic DNA obtainable therefrom) can be used to study the effect of inhibiting transcription of a particular gene within a cell. Traditionally, homopurine sequences were considered the most useful for triple helix strategies. However, homopyrimidine sequences can also inhibit gene expression. Such homopyrimidine oligonucleotides bind to the major groove at homopurine:homopyrimidine sequences. Thus, both types of sequences from the extended cDNA or from the gene corresponding to the extended cDNA are contemplated within the scope of this invention.

EXAMPLE 60

Preparation and use of Triple Helix Probes

The sequences of the extended cDNAs (or genomic DNAs obtainable therefrom) are scanned to identify 10-mer to 20-mer homopyrimidine or homopurine stretches which could be used in triple-helix based strategies for inhibiting gene expression. Following identification of candidate homopyrimidine or homopurine stretches, their efficiency in inhibiting gene expression is assessed by introducing varying amounts of oligonucleotides containing the candidate sequences into tissue culture cells which normally express the target gene. The oligonucleotides may be prepared on an oligonucleotide synthesizer or they may be purchased commercially from a company specializing in custom oligonucleotide synthesis, such as GENSET, Paris, France.

The oligonucleotides may be introduced into the cells using a variety of methods known to those skilled in the art, including but not limited to calcium phosphate precipitation, DEAE-Dextran, electroporation, liposome-mediated transfection or native uptake.

Treated cells are monitored for altered cell function or reduced gene expression using techniques such as

Northern blotting, RNase protection assays, or PCR based strategies to monitor the transcription levels of the target
gene in cells which have been treated with the oligonucleotide. The cell functions to be monitored are predicted based
upon the homologies of the target gene corresponding to the extended cDNA from which the oligonucleotide was derived
with known gene sequences that have been associated with a particular function. The cell functions can also be

predicted based on the presence of abnormal physiologies within cells derived from individuals with a particular inherited disease, particularly when the extended cDNA is associated with the disease using techniques described in Example 53.

The oligonucleotides which are effective in inhibiting gene expression in tissue culture cells may then be introduced in vivo using the techniques described above and in Example 59 at a dosage calculated based on the in vitro results, as described in Example 59.

In some embodiments, the natural (beta) anomers of the oligonucleotide units can be replaced with alpha anomers to render the oligonucleotide more resistant to nucleases. Further, an intercalating agent such as ethidium bromide, or the like, can be attached to the 3' end of the alpha oligonucleotide to stabilize the triple helix. For information on the generation of oligonucleotides suitable for triple helix formation see Griffin et al. (Science 245:967-10 971 (1989).

EXAMPLE 61

Use of Extended cDNAs to Express an Encoded Protein in a Host Organism

The extended cDNAs of the present invention may also be used to express an encoded protein in a host organism to produce a beneficial effect. In such procedures, the encoded protein may be transiently expressed in the host organism or stably expressed in the host organism. The encoded protein may have any of the activities described above. The encoded protein may be a protein which the host organism lacks or, alternatively, the encoded protein may augment the existing levels of the protein in the host organism.

A full length extended cDNA encoding the signal peptide and the mature protein, or an extended cDNA encoding only the mature protein is introduced into the host organism. The extended cDNA may be introduced into the host organism using a variety of techniques known to those of skill in the art. For example, the extended cDNA may be injected into the host organism as naked DNA such that the encoded protein is expressed in the host organism, thereby producing a beneficial effect.

Alternatively, the extended cDNA may be cloned into an expression vector downstream of a promoter which is active in the host organism. The expression vector may be any of the expression vectors designed for use in gene therapy, including viral or retroviral vectors.

The expression vector may be directly introduced into the host organism such that the encoded protein is expressed in the host organism to produce a beneficial effect. In another approach, the expression vector may be introduced into cells in vitro. Cells containing the expression vector are thereafter selected and introduced into the host organism, where they express the encoded protein to produce a beneficial effect.

EXAMPLE 62

30

Use Of Signal Peptides Encoded By 5' Ests Or Sequences

Obtained Therefrom To Import Proteins Into Cells

The short core hydrophobic region (h) of signal peptides encoded by the 5'ESTS or extended cDNAs derived from the 5'ESTs of the present invention may also be used as a carrier to import a peptide or a protein of interest, so-

called cargo, into tissue culture cells (Lin et al., J. Biol. Chem., 270: 14225-14258 (1995); Du et al., J. Peptide Res., 51: 235-243 (1998); Rojas et al., Nature Biotech., 16: 370-375 (1998)).

When cell permeable peptides of limited size (approximately up to 25 amino acids) are to be translocated across cell membrane, chemical synthesis may be used in order to add the h region to either the C-terminus or the N-terminus to the cargo peptide of interest. Alternatively, when longer peptides or proteins are to be imported into cells, nucleic acids can be genetically engineered, using techniques familiar to those skilled in the art, in order to link the extended cDNA sequence encoding the h region to the 5' or the 3' end of a DNA sequence coding for a cargo polypeptide. Such genetically engineered nucleic acids are then translated either *in vitro* or *in vivo* after transfection into appropriate cells, using conventional techniques to produce the resulting cell permeable polypeptide. Suitable hosts cells are then simply incubated with the cell permeable polypeptide which is then translocated across the membrane.

This method may be applied to study diverse intracellular functions and cellular processes. For instance, it has been used to probe functionally relevant domains of intracellular proteins and to examine protein-protein interactions involved in signal transduction pathways (Lin et al., supra; Lin et al., J. Biol. Chem., 271: 5305-5308 (1996); Rojas et al., J. Biol. Chem., 271: 27456-27461 (1996); Liu et al., Proc. Natl. Acad. Sci. USA, 93: 11819-11824 (1996); Rojas et al., Bioch. Biophys. Res. Commun., 234: 675-680 (1997)).

Such techniques may be used in cellular therapy to import proteins producing therapeutic effects. For instance, cells isolated from a patient may be treated with imported therapeutic proteins and then re-introduced into the host organism.

Alternatively, the h region of signal peptides of the present invention could be used in combination with a nuclear localization signal to deliver nucleic acids into cell nucleus. Such oligonucleotides may be antisense oligonucleotides or oligonucleotides designed to form triple helixes, as described in examples 59 and 60 respectively, in order to inhibit processing and maturation of a target cellular RNA.

EXAMPLE 63

Reassembling & Resequencing of Clones

Full length cDNA clones obtained by the procedure described in Example 27 were double-sequenced. These sequences were assembled and the resulting consensus sequences were then reanalyzed. Open reading frames were reassigned following essentially the same process as the one described in Example 27.

After this reanalysis process a few abnormalities were revealed. The sequences presented in SEQ ID NOs: 47, 73, 79, 89, 91, 96, 126, 128, 134, and 139 are apparently unlikely to be genuine full length cDNAs. These clones are missing a stop codon and are thus more probably 3' truncated cDNA sequences. Similarly, the sequences presented in SEQ ID NOs: 45, 50, 54, 57, 73, 74, 89, 92, 95, 98, 126, 129, 130, 131 and 139 may also not be genuine full length cDNAs based on homology studies with existing protein sequences. Although both of these sequences encode a potential start methionine each could represent a 5' truncated cDNA.

WO 99/31236

In addition, SEQ ID NO: 115 was found to be an alternatively spliced transcript and the identities of some of the bases in SEQ ID NO: 131 were corrected.

Finally, after the reassignment of open reading frames for the clones, new open reading frames were chosen in some instances. For example, in the case of SEQ ID NOs: 41, 47, 50, 52, 54-56, 58, 59, 61, 74, 75, 79, 84, 89, 91, 92, 96, 98, 103, 105, 106, 126, 129, 131, and 133 the new open reading frames were no longer predicted to contain a signal peptide.

As discussed above, Table IV provides the sequence identification numbers of the extended cDNAs of the present invention, the locations of the full coding sequences in SEQ ID NOs: 40-140 and 242-377 (i.e. the nucleotides encoding both the signal peptide and the mature protein, listed under the heading FCS location in Table IV), the locations of the nucleotides in SEQ ID NOs: 40-140 and 242-377 which encode the signal peptides (listed under the heading SigPep Location in Table IV), the locations of the nucleotides in SEQ ID NOs: 40-140 and 242-377 which encode the mature proteins generated by cleavage of the signal peptides (listed under the heading Mature Polypeptide Location in Table IV), the locations in SEQ ID NOs: 40-140 and 242-377 of stop codons (listed under the heading Stop Codon Location in Table IV) the locations in SEQ ID NOs: 40-140 and 242-377 of polyA signals (listed under the heading g PolyA Signal Location in Table IV) and the locations of polyA sites (listed under the heading PolyA Site Location in Table IV).

As discussed above, Table V lists the sequence identification numbers of the polypeptides of SEQ ID NOs: 141-241 and 378-513, the locations of the amino acid residues of SEQ ID NOs: 141-241 and 378-513 in the full length polypeptide (second column), the locations of the amino acid residues of SEQ ID NOs: 141-241 and 378-513 in the signal peptides (third column), and the locations of the amino acid residues of SEQ ID NOs: 141-241 and 379-513 in the mature polypeptide created by cleaving the signal peptide from the fall length polypeptide (fourth column). In Table V, and in the appended sequence listing, the first amino acid of the mature protein resulting from cleavage of the signal peptide is designated as amino acid number 1 and the first amino acid of the signal peptide is designated with the appropriate negative number, in accordance with the regulations governing sequence listings.

25 EXAMPLE 64

Functional Analysis of Predicted Protein Sequences

Following double-sequencing, new contigs were assembled for each of the extended cDNAs of the present invention and each was compared to known sequences available at the time of filing. These sequences originate from the following databases: Genbank (release 108 and daily releases up to October, 15, 1998), Genseq (release 32) PIR (release 33) and SwissProt (release 35). The predicted proteins of the present invention matching known proteins were further classified into 3 categories depending on the level of homology.

The first category contains proteins of the present invention exhibiting more than 70% identical amino acid residues on the whole length of the matched protein. They are clearly close homologues which most probably have the same function or a very similar function as the matched protein.

The second category contains proteins of the present invention exhibiting more remote homologies (40 to 70% over the whole protein) indicating that the protein of the present inventionmay have functions similar to those of the homologous protein.

The third category contains proteins exhibiting homology (90 to 100%) to a domain of a known protein indicating that the matched protein and the protein of the invention may share similar features.

It should be noted that the numbering of amino acids in the protein sequences discussed in Figures 10 to 15, and Table VIII, the first methionine encountered is designated as amino acid number 1. In the appended sequence listing, the first amino acid of the mature protein resulting from cleavage of the signal peptide is designated as amino acid number 1, and the first amino acid of the signal peptide is designated with the appropriate negative number, in accordance with the regulations governing sequence listings.

In addition all of the corrected amino acid sequences (SEQ ED NOs: 141-241 and 378-513) were scanned for the presence of known protein signatures and motifs. This search was performed against the Prosite 15.0 database, using the Proscan software from the GCG package- Functional signatures and their locations are indicated in Table VIII.

15 A) Proteins which are closely related to known proteins

Protein of SEQ ID NO: 217

The protein of SEQ ID NO: 217 encoded by the extended cDNA SEQ ID NO: 116 isolated from lymphocyte shows complete identity to a human protein TFAR19 that may play a role in apoptosis (Genbank accession number AF014955, SEQ ID NO: 516) as shown by the alignment in figure 10.

Taken together, these data suggest that the protein of SEQ ID NO: 217 may be involved in the control of development and homeostasis. Thus, this protein may be useful in diagnosis and/or treating several types of disorders including, but not limited to, cancer, autoimmune disorders, viral infections such as AIDS, neurodegenerative disorders, osteoporosis.

25 Proteins of SEQ ID NOs: 174, 175 and 232

The proteins of SEQ ID NOs: 174, 175 and 232 encoded by the extended cDNAs SEQ ID NOs:. 73, 74 and 131 respectively and isolated from lymphocytes shows complete extensive homologies to a human secreted protein (Genseq accession number W36955, SEQ ID NO: 517). As shown by the alignments of figure 11, the amino acid residues are identical to those of the 110 amino acid long matched protein except for positions 51 and 108-110 of the matched protein for the protein of SEQ ID NOs: 174, for positions 48, 94 and 108-110 of the matched protein of SEQ ID NOs:175 and for positions 94, and 108-110 of the matched protein for the protein of SEQ ID NOs: 232. Proteins of SEQ ID NOs: 174 and 232 may represent alternative forms issued from alternative use of polyadenylation signals.

Taken together, these data suggest that the proteins of SEQ ID NOs: 174, 175 and 232 may play a role in cell proliferation and/or differentiation, in immune responses and/or in haematopoeisis. Thus, this protein or part therein,

may be useful in diagnosing and treating several disorders including, but not limited to, cancer, immunological, haematological and/or inflammatory disorders. It may also be useful in modulating the immune and inflammatory responses to infectious agents and/or to suppress graft rejection.

5 Proteins of SEQ ID NO: 231

The protein of SEQ ID NO: 231 encoded by the extended cDNA SEQ ID NO: 130 shows extensive homology with the human E25 protein (Genbank accession number AF038953, SEQ ID NO: 515). As shown by the alignments in figure 12, the amino acid residues are identical except for position 159 in the 263 amino acid long matched sequence. The matched protein might be involved in the development and differentiation of haematopoietic stem/progenitor cells.

10 In addition, it is the human homologue of a murine protein thought to be involved in chondro-osteogenic differentiation and belonging to a novel multigene family of integral membrane proteins (Deleersnijder et al, J. Biol. Chem., 271: 19475-19482 (1996)).

The protein of invention contains two short segments from positions 1 to 21 and from 100 to 120 as predicted by the software TopPred II (Claros and von Heijne, *CABIOS applic. Notes*, 10 : 685-686 (1994)). The first transmembrane domains matches exactly those predicted for the murine E25 protein.

Taken together, these data suggest that the protein of SEQ ID NO: 231 may be involved in cellular proliferation and differentiation. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer and embryogenesis disorders.

20 Protein of SEQ ID NO: 196

The protein of SEQ ID NO: 196 encoded by the extended cDNA SEQ ID NO: 95 shows extensive homology with the human seventransmembrane protein (Genbank accession number Y11395, SEQ ID NO: 518) and its murine homologue (Genbank accession number Y11550). As shown by the alignments in figure 13, the amino acid residues are identical except for position 174 in the 399 amino acid long human matched sequence. The matched protein potentially associated to stomatin may act as a G-protein coupled receptor and is likely to be important for the signal transduction in neurons and haematopoietic cells (Mayer et al, Biochem. Biophys. Acta., 1395 : 301-308 (1998)).

Taken together, these data suggest that the protein of SEQ ID NOs: 196 may be involved in signal transduction. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer, neurodegenerative diseases cardiovascular disorders, hypertension, renal injury and repair and septic shock.

Protein of SEQ ID NO: 158

The protein of SEQ ID NOs: 158 encoded by the extended cDNA SEQ ID NO: 57 shows homology with the murine subunit 7a of the COP9 complex (Genbank accession number AF071316, SEQ ID NO: 520). As shown by the

alignments in figure 14, the amino acid residues are identical except for positions 90, 172 and 247 in the 275 amino acid long matched sequence. This complex is highly conserved between mammals and higher plants where it has been shown to act as a repressor of photomorphogenesis All the components of the mammalian COP9 complex contain structural features also present in components of the proteasome regulatory complex and the translation initiation complex eIF3 complex, suggesting that the mammalian COP9 complex is an important cellular regulator modulating multiple signaling pathways (Wei et al, Curr. Biol., 8: 919-922 (1998)).

Taken together, these data suggest that the protein of SEQ ID NO: 158 may be involved in cellular signaling, probably as a subunit of the human COP9 complex. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer, neurodegenerative diseases, cardiovascular disorders, hypertension, renal injury and repair and septic shock.

Protein of SEQ ID NO: 226

The protein of SEQ ID NO: 226 encoded by the extended cDNA SEQ ID NO: 125 shows homology with the bovine subunit B14.5B of the NADH-ubiquinone oxidureductase complex (Arizmendi *et al., FEBS Lett.*, 313: 80-84 (1992) and Swissprot accession -number Q02827, SEQ ID NO: 514). As shown by the alignments in figure 15, the amino acid residues are identical except for positions 3-4, 6-12, 32-34, 47, 53-55, 67 and 69-74 in the 120 amino acid long matched sequence. This complex is the first of four complexes located in the inner mitochondrial membrane and composing the mitochondrial electron transport chain. Complex I is involved in the dehydrogenation of NADH and the transportation of electrons to coenzyme Q. It is composed of 7 subunits encoded by the mitochondrial genome and 34 subunits encoded by the nuclear genome. It is also thought to play a role in the regulation of apoptosis and necrosis. Mitochondriocytopathies due to complex I deficiency are frequently encountered and affect tissues with a high energy demand such as brain (mental retardation, convulsions, movement disorders), heart (cardiomyopathy, conduction disorders), kidney (Fanconi syndrome), skeletal muscle (exercise intolerance, muscle weakness, hypotonia) and/or eye (opthmaloplegia, ptosis, cataract and retinopathy). For a review on complex I see Smeitink *et al.*, *Hum. Mol. Gent.*, 7: 1573-1579 (1998).

Taken together, these data suggest that the protein of SEQ ID NO: 226 may be part of the mitochondrial energy-generating system, probably as a subunit of the NADH-ubiquinone oxidoreductase complex. Thus, this protein or part therein, may be useful in diagnosing and/or treating several disorders including, but not limited to, brain disorders (mental retardation, convulsions, movement disorders), 'heart disorders (cardiomyopathy, conduction disorders), kidney disorders (Fanconi syndrome), skeletal muscle disorders (exercise intolerance, muscle weakness, hypotonia) and/or eye disorders opthmalmoplegia, ptosis, cataract and retinopathy).

B) Proteins which are remotely related to proteins with known functions Proteins of SEQ ID NOs: 149, 150 and 211 The proteins of SEQ ID NOs: 1.49,150 and 211 encoded by the extended cDNAs SEQ ID NOs: 48, 49 and 110 respectively and found in, skeletal muscle shows homologies with T1/ST2 ligand polypeptide of either human (Genbank accession number U41804 and Genseq accession number W09639) or rodent species (Genbank accession number U41805 and Genseq accession number W09640). These polypeptides are thought to be cytokines that bind to the ST2 receptor, a member of the immunoglobulin family homologous to the interleukin-1 receptor and present on some lymphoma cells. They are predicted to be cell-surface proteins containing a short transmembrane domain. (Gayle et al, J. Biol. Chem., 271: 5784-5789 (1996)). Proteins of SEQ ID NOs: 149, 150 and 211 may represent alternative forms issued from alternative use of polyadenylation signals.

The protein of invention contains two short transmembrane segments from positions 5 to 25 and from 195 to 215 as predicted by the software TopPred II (Claros and von Heijne, *CABIOS applic. Notes*, 10:685-686 (1994)). The second transmembrane domain matches exactly those of the matched cell-surface protein.

Taken together, these data suggest that the protein of SEQ ID NOs: 149, 150 and 211 may act as a cytokine, thus may play a role in the regulation of cell growth and differentiation and/or in the regulation of the immune response. Thus, this protein or part therein, may be useful in diagnosing and treating several disorders including, but not limited to, cancer, immunological, haematological and/or inflammatory disorders. It may also be useful in modulating the immune and inflammatory responses to infectious agents such as HIV and/or to suppress graft rejection.

Protein of SEQ ID NO: 177

The protein SEQ ID NO: 177 found in testis encoded by the extended cDNA SEQ ID NO: 76 shows homologies to serine protease inhibitor proteins belonging to the pancreatic trypsin inhibitor family (Kunitz) such as the extracellular proteinase inhibitor named chelonianin (Swissprot accession number P00993). The characteristic PROSITE signature of this family is conserved in the protein of the invention (positions 69 to 87) except for a drastic change of the last cysteine residue into an arginine residue.

Taken together, these data suggest that the protein of SEQ ID NO: 177 may be a protease inhibitor, probably
of the Kunitz family. Thus, this protein or part therein, may be useful in diagnosing and treating several disorders
including but not limited to, cancer and neurodegenerative disorders such as Alzheimer's disease.

Protein of SEQ ID NO: 146

The protein SEQ ID NO: 146 encoded by the extended cDNA SEQ ID NO: 45 shows homology to human apolipoprotein L (Genbank accession number AFO19225). The matched protein is a secreted high density lipoprotein associated with apoA-I-containing lipoproteins which play a key role in reverse cholesterol transport.

Taken together, these data suggest that the protein of SEQ ID NO. 146 may play a role in lipid metabolism. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to,

hyperlipidemia, hypercholesterolemia, atherosclerosis, cardiovascular disorders such as, coronary heart disease, and neurodegenerative disorders such as Alzheimer's disease or dementia.

Protein of SEQ ID NO: 163

5

The protein SEQ ED NO: 163 encoded by the extended cDNA SEQ ID NO: 62 shows homology to the yeast autophagocytosis protein AUT1 (SwissProt accession number P40344). The matched protein is required for starvation-induced non-specific bulk transport of cytoplasmic proteins to the vacuole.

Taken together, these data suggest that the protein of SEQ ID NO: 163 may play a role in protein transport.

Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to,
autoimmune disorders and immune disorders due to dysfunction of antigen presentation.

C) Proteins homologous to a domain of a protein with known function

Protein of SEQ ID NO: 214

The protein of SEQ ID NO: 214 encoded by the extended cDNA SEQ ID NO: 113 and expressed in adult brain shows extensive homology to part of the murine SHYC protein (Genbank accession number AF072697) which is expressed in the developing and embryonic nervous system as well as along the olfactory pathway in adult brains (Köster et al., Neuroscience Letters., 252: 69-71 (1998)).

Taken together, these data suggest that the protein of SEQ ID NO: 214 may play a role in nervous system development and function. Thus, this protein may be useful in diagnosing and/or treating cancer and/or brain disorders, including neurodegenerative disorders such as Alzheimer's and Parkinson's diseases.

Protein of SEQ ID NO: 225

The protein of SEQ ID NO: 225 encoded by the extended cDNA SEQ ID NO: 124 and expressed in adult prostate belong to the phosphatidylethanolainin-binding protein from which it exhibits the characteristic PROSITE signature from positions 90 to 112 (see table VIII). Proteins from this widespread family, from nematodes to fly, yeast, rodent and primate species, bind hydrophobic ligands such as phospholipids and nucleotides. They are mostly expressed in brain and in testis and are thought to play a role in cell growth and/or maturation, in regulation of the sperm maturation, motility and 'in membrane remodeling. They may act either through signal transduction or through oxidoreduction reactions (for a review see Schoentgen and Jollès, FEBS Letters, 369: 22-26 (1995)).

Taken together, these data suggest that the protein of SEQ ID NO: 225 may play a role in cell. Thus, these growth, maturation and in membrane remodeling and/or may be related to male fertility. Thus, this protein may be useful in diagnosing and/or treating cancer, neurodegenerative diseases, and/of, disorders related to male fertility and sterility.

Protein of SEQ ID NO: 153

30

The protein of SEQ ID NO: 153 encoded by the extended cDNA SEQ ID NO. 52 and expressed in brain exhibits homology to different integral membrane proteins. These membrane proteins include the nematode protein SRE-2 (Swissprot accession number Q09273) that belongs to the multigene SRE family of *C. elegans* receptor-like proteins and a family of tricarboxylate carriers conserved between flies and mammals. One member of this matched family is the rat tricarboxylate carrier (Genbank accession number S70011), an anion transporter localized in the inner membrane of mitochondria and involved in the biosynthesis of fatty acids and cholesterol. The protein of the invention contains a short transmembrane segments from positions 5 to 25 as predicted by the software TopPred II (Claros and von Heijne, *CABIOS applic. Notes*, 10:685-686 (1994)).

Taken together, these data suggest that the protein of SEQ ID NO: 153 may play a role in signal transduction
and/or in molecule transport. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer, neurodegenerative diseases, immune disorders, cardiovascular disorders, hypertension, renal injury and repair and septic shock

Protein of SEQ ID NO: 213

The protein of SEQ ID NO: 213 encoded by the extended cDNA SEQ ID NO: 112 and expressed in brain exhibits homology with part of the tRNA pseudouridine 55 synthase found in *Escherichia Coli* (Swissprot accession number P09171). This bacterial protein belongs to the NAP57/CBF5/TRUB family of nucleolar proteins found in bacteria, yeasts and mammals involved in rRNA or tRNA biosynthesis, ribosomal subunit assembly and/or centromere/mircotubule binding.

Taken together, these data suggest that the protein of SEQ ID NO: 213 may play a role in rRNA or tRNA biogensis and function. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer, hearing loss or disorders linked to chromosomal instability such as dyskeratosis.

Protein of SEQ ED NO: 240

20

25

The protein of SEQ ID NO: 240 encoded by the extended cDNA SEQ ID NO: 139 and expressed in brain exhibits homology with a family of eukaryotic cell surface antigens containing 4 transmembrane domains. The PROSITE signature for this family is conserved in the protein of the invention except for a substitution of an alanine residue in place of any of the following hydrophic residues: leucine, valine, isoleucine or methionine (positions 21 to 36).

The protein of the invention contains three short transmembrane segments from positions 6 to 26, 32 to 52

30 and from 56 to 76 as predicted by the software TopPred II (Claros and von Heijne, *CABIOS applic. Notes*, 10: 685-686 (1994)). These transmembrane domains match the last three transmembrane domains of the matched protein family.

Taken together, these data suggest that the protein of SEQ ID NO: 240 may play a role in immunological and/or inflammatory responses, probably as a cell surface antigen. Thus, this protein or part therein, may be useful in diagnosing and treating several disorders including, but not limited to, cancer, immunological, haematological and/or

inflammatory disorders. It may also be useful in modulating the immune and inflammatory responses to infectious agents and/or to suppress graft rejection.

Protein of SEQ ID NO: 239

5

10

The protein of SEQ ID NO: 239 encoded by the extended cDNA SEQ ID NO: 138 exhibits homology with a conserved region in a family of NA+/H+ exchanger conserved in yeast, nematode and mammals. These cation/proton exchangers are integral membrane proteins with 5 transmembrane segments involved in intracellular pH regulation, maintenance of cell volume, reabsorption of sodium across specialized epithelia, vectorial transport and are also thought to play a role in signal transduction and especially in the induction of cell proliferation and in the induction of apoptosis.

The protein of invention contains four short transmembrane segments from positions 21 to 41, 48 to 68 and from 131 to 151 as predicted by the software TopPred II (Claros and von Heijne, *CABIOS applic. Notes*, 10: 685-686 (1994)). The third and fourth transmembrane domains match the fourth and fifth transmembrane segments of the matched family of proteins.

Taken together, these data suggest that the protein of SEQ ID NO: 239 may play a role in membrane

15 permeability and/or in signal transduction. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer, neurodegenerative diseases, cardiovascular disorders, hypertension, renal injury and repair, septic shock as well as disorders of membrane permeability such as diarrhea.

Protein of SEQ ID NO: 200

The protein of SEQ ID NO: 200 encoded by the extended cDNA SEQ ED NO: 99 and expressed in brain exhibits extensive homology to the N-terminus of cell division cycle protein 23 (Genbank accession number AF053977) and also to a lesser extent to its homologue in *Saccharomyces cerevisiae*. The matched protein is required for chromosome segregation and is part of the anaphae-promoting complex necessary for cell cycle progression to mitosis.

Taken together, these data suggest that the protein of SEQ ID NO: 200 may play a role in cellular mitosis.

Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer and leukemia.

Protein of SEQ ID NO: 230

The protein of SEQ ID NO: 230 encoded by the extended cDNA SEQ ID NO: 129 exhibits extensive homology to the C-terminus of the eta subunit of T-complex polypeptide 1 conserved from yeasts to mammals, and even complete identity with the last 54 amino acid residues of the human protein (Genbank accession number AF026292). The matched protein is a chaperonin which assists the folding of actins and tubulins in eukaryotic cells upon ATP hydrolysis.

Taken together, these data suggest that the protein of SEQ ID NO: 230 may play a role in the folding, transport, assembly and degradation of proteins. Thus, this protein may be useful in diagnosing and/or treating several

types of disorders including, but not limited to, cancer, cardiovascular disorders, immune disorders, neurodegenerative disorders, osteoporosis and arthritis.

Protein of SEQ ED NO: 167

5

The protein of SEQ ID NO: 167 encoded by the extended cDNA SEQ ID NO: 66 exhibits homology to a monkey pepsinogen A-4 precursor (Swissprot accession number P27678) and to related members of the aspartyl protease family. The matched protein belongs to a family of widely distributed proteolytic enzymes known to exist in vertebrate, fungi, plants, retroviruses and some plant viruses.

Taken together, these data suggest that the protein of SEQ ID NO: 167 may play a role in the degradation of proteins. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer, autoimmune disorders and immune disorders due to dysfunction of antigen presentation.

Protein of SEQ ID NO: 179

The protein of SEQ ID NO: 179 encoded by the extended cDNA SEQ ID NO: 78 found in testis exhibits

15 homology to part of mammalian colipase precursors. Colipases are secreted cofactors for pancreatic lipases that allow the lipase to anchor at the water-lipid interface. Colipase plays a crucial role in the intestinal digestion and absorption of dietary fats. The 5 cysteines characteristic for this protein family are conserved in the protein of the invention although the colipase PROSITE signature is not.

Taken together, these data suggest that the protein of SEQ ED NO: 179 may play a role in the lipid metabolism and/or in male fertility. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, hyperlipidemia, hypercholesterolemia, atherosclerosis, cardiovascular disorders such as coronary heart disease, and neurodegenerative disorders such as Alzheimer's disease or dementia, and disorders linked to male fertility.

25 Protein of SEQ ID NO: 227

The protein of SEQ ID NO: 227 encoded by the extended cDNA SEQ ID NO: 126 exhibits extensive homology to the ATP binding region of a whole family of serine/threonine protein kinases belonging to the CDC2/CDC28 subfamily. The PROSITE signature characteristic for this domain is present in the protein of the invention from positions 10 to 34.

Taken together, these data suggest that the protein of SEQ ED NO: 158 may bind ATP, and even be a protein sinase. Thus, this protein may be useful in diagnosing and/or treating several types of disorders including, but not limited to, cancer, neurodegenerative diseases, cardiovascular disorders, hypertension, renal injury and repair and septic shock.

Although this invention has been described in terms of certain preferred embodiments, other embodiments which will be apparent to those of ordinary skill in the art in view of the disclosure herein are also within the scope of this invention. Accordingly, the scope of the invention is intended to be defined only by reference to the appended claims.

As discussed above, the extended cDNAs of the present invention or portions thereof can be used for various purposes. The polynucleotides can be used to express recombinant protein for analysis, characterization or therapeutic use; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in disease states); as molecular weight markers on Southern gels; as chromosome markers or tags (when labeled) to identify chromosomes or to map related gene positions; to 10 compare with endogenous DNA sequences in patients to identify potential genetic disorders; as probes to hybridize and thus discover novel, related DNA sequences; as a source of information to derive PCR primers for genetic fingerprinting; for selecting and making oligomers for attachment to a "gene chip" or other support, including for examination for expression patterns; to raise anti-protein antibodies using DNA immunization techniques; and as an antigen to raise anti-DNA antibodies or elicit another immune response. Where the polynucleotide encodes a protein which binds or 15 potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the polynucleotide can also be used in interaction trap assays (such as, for example, that described in Gyuris et al., Cell 75:791-803 (1993)) to identify polynucleotides encoding the other protein with which binding occurs or to identify inhibitors of the binding interaction.

The proteins or polypeptides provided by the present invention can similarly be used in assays to determine biological activity, including in a panel of multiple proteins for high-throughput screening; to raise antibodies or to elicit 20 another immune response; as a reagent (including the labeled reagent) in assays designed to quantitatively determine levels of the protein (or its receptor) in biological fluids; as markers for tissues in which the corresponding protein is preferentially expressed (either constitutively or at a particular stage of tissue differentiation or development or in a disease state); and, of course, to isolate correlative receptors or ligands. Where the protein binds or potentially binds to another protein (such as, for example, in a receptor-ligand interaction), the protein can be used to identify the other 25 protein with which binding occurs or to identify inhibitors of the binding interaction. Proteins involved in these binding interactions can also be used to screen for peptide or small molecule inhibitors or agonists of the binding interaction.

Any or all of these research utilities are capable of being developed into reagent grade or kit format for commercialization as research products.

Methods for performing the uses listed above are well known to those skilled in the art. References disclosing 30 such methods include without limitation "Molecular Cloning; A Laboratory Manual", 2d ed., Cole Spring Harbor Laboratory Press, Sambrook, J., E.F. Fritsch and T. Maniatis eds., 1989, and "Methods in Enzymology; Guide to Molecular Cloning Techniques", Academic Press, Berger, S.L. and A.R. Kimmel eds., 1987.

Polynucleotides and proteins of the present invention can also be used as nutritional sources or supplements. Such uses include without limitation use as a protein or amino acid supplement, use as a carbon source, use as a

nitrogen source and use as a source of carbohydrate. In such cases the protein or polynucleotide of the invention can be added to the feed of a particular organism or can be administered as a separate solid or liquid preparation, such as in the form of powder, pills, solutions, suspensions or capsules. In the case of microorganisms, the protein or polynucleotide of the invention can be added to the medium in or on which the microorganism is cultured.

-99-

SEQUENCE LISTING FREE TEXT

The following free text appears in the accompanying Sequence Listing:

In vitro transcription product

oligonucleotide

5 promoter

transcription start site

Von Heijne matrix

Score

matinspector prediction

10 name

TABLE I

		•
SEQ ID NO. in Present application	Provisional Application Disclosing Sequence	SEQ ID NO. in provisional application
40	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	51
41	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	72
42	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	52
43	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	78
44	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	73
45	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	41
46	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	67
47	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	82
48	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	80
49	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	81
50	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	53
51	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	54
52	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	195
53	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	44
54	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	46
55	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	68
56	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	48
57	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	55
58	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	49
59	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	50
60	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	97
61	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	51
62	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	69
63	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	49
64	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	199
65	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	53
66	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	57
67	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	54
68	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	55
	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	58
70	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	59

U.S. Provisional Patent Application Serial No. 60(098,957, filed Dec. 17, 1997	CONT. TABLE I		
U.S. Provisional Patent Application Serial No. 60/068,957, filed Dec. 17, 1997 52	71	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	60
74 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 59 75 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 136 76 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 136 77 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 61 78 U.S. Provisional Patent Application Serial No. 60/096,916, filed Dec. 17, 1997 130 80 U.S. Provisional Patent Application Serial No. 60/096,957, filed Dec. 17, 1997 130 81 U.S. Provisional Patent Application Serial No. 60/096,957, filed Dec. 17, 1997 54 82 U.S. Provisional Patent Application Serial No. 60/098,957, filed Dec. 17, 1997 54 83 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 63 84 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 65 85 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 65 86 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 66 87 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 60 88	72	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	112
15	73	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	52
U.S. Provisional Patent Application Serial No. 60(069,957, filed Dec. 17, 1997 136 136 136 136 137 136 137 136 137 138 1	74	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	59
177	75	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	60
U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 61	76	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	136
U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 61	77	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	75
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	78	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	61
State	79	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	61
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 54	80	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	130
U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 78	81	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	65
U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 63	82	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	54
U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 152	83	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	78
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 152 152 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 66 158 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 67 159	84	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	63
U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 68	85	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	65
U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 67	86	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	152
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 60	87	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	66
90 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 68 91 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 61 92 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 62 93 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 166 94 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 70 95 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 73 96 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 63 97 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 63 98 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 52 99 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 176 100 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 176 101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187 102 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 190 103 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 190 104 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 180 105 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 180 105 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 180	88	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	67
91 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 62 92 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 62 93 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 166 94 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 70 95 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 73 96 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 63 97 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 52 98 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 62 99 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 176 100 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187 101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187 102 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 190 103 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 190 104 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 180 105 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 180 106 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 180 107 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 180 108 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 180	89	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	60
92 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 166 93 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 166 94 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 70 95 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 73 96 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 63 97 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 52 98 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 62 99 U.S. Provisional Patent Application Serial No. 60/096,957, filed Dec. 17, 1997 176 100 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 63 101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187 102 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 190 103 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 83 104 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 180 105 U.S. Provisional Patent Application Serial No. 60/096,957, filed Dec. 17, 1997 180 105 U.S. Provisional Patent Application Serial No. 60/096,957, filed Dec. 17, 1997 180	90	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	68
93 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 166 94 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 70 95 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 73 96 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 63 97 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 52 98 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 176 100 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187 101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 180 103 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 83 104 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 180 105 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 64	91	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	61
94 U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998 70 95 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 73 96 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 63 97 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 52 98 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 62 99 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 176 100 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1998 63 101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187 102 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 190 103 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 83 104 U.S. Provisional Patent Application Serial No. 60/089,957, filed Dec. 17, 1997 180 105 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 64	92	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	62
95 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 73 96 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 63 97 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 52 98 U.S. Provisional Patent Application Serial No. 60/096, 116, filed Aug. 10, 1998 62 99 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 176 100 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 63 101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187 102 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 190 103 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1998 83 104 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 180 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 180 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 180 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 180	93	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	166
96 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 63 97 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 52 98 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 62 99 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 176 100 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998, 63 101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187 102 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 190 103 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 83 104 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 180 105 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 64	94	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	70
97 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 52 98 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 62 99 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 176 100 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998, 63 101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187 102 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 190 103 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 83 104 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 180 105 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 64	95	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	73
98 U.S. Provisional Patent Application Serial No. 60/096, 116, filed Aug. 10, 1998 62 99 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 176 100 U.S. Provisional Patent Application Serial No. 60/096, 116, filed Aug. 10, 1998 63 101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187 102 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 190 103 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 83 104 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 180 105 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 64	96	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	63
99 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 176 100 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998, 63 101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187 102 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 190 103 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 83 104 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 180 105 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 64	97	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	52
100 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998, 63 101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187 102 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 190 103 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 83 104 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 180 105 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 64	98	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	62
101 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 187 102 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 190 103 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 83 104 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 180 105 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 64	99	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	176
102 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 190 103 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 83 104 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 180 105 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 64	100	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	63
103 U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998 83 104 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 180 105 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 64	101	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	187
104 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 180 105 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 64	102	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	190
104 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 180 105 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 64	103	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	83
105 U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998 64	104	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	
	105	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	64
	106	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	

CUNT. TABLE I		
107	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	40
108	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	77
109	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	43
110	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	82
111	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	76
112	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	43
113	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	46
114	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	47
115	U.S. Provisional Patent Application Serial No. 60/066,677, filed Nov. 13, 1997	53
116	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	58
117	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	74
118	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	71
119	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	145
120	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	67
121	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	58
122	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	72
123	U.S. Provisional Patent Application Serial No. 60/074,121, filed Feb. 9, 1998	73
124	U.S. Provisional Patent Application Serial No. 60/081,563, filed Apr. 13, 1998	70
125	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	40
126	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	44
127	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	45
128	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	47
129	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	48
130	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	51
131	U.S. Provisional Patent Application Serial No. 60/066,677, filed Nov. 13, 1997	50
132	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	56
133	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	57
134	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	71
135	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	72
136	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	64
137	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	65
138	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	66
139	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	74
140	U.S. Provisional Patent Application Serial No. 60/096,116, filed Aug. 10, 1998	67
242	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	75
243	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	76

CONT. TABLE I

CONT. TABLE I		
244	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	77
245	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	78
246	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	79
247	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	80
248	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	81
249	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	82
250	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	83
251	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	84
252	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	85
253	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	86
254	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	87
255	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	88
256	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	89
257	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	90
258	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	91
259	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	92
260	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	93
261	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	94
262	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	95
263	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	96
264	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	97
265	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	98
266	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	99
267	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	100
268	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	101
269	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	102
270	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	103
271	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	104
272	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	105
273	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	106
274	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	107
275	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	108
276	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	109
277	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	110
278	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	111
279	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	112

CONT. TABLE I

CONT. TABLE I		·
280	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	113
281	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	114
282	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	115
283	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	116
284	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	117
285	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	118
286	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	119
287	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	120
288	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	121
289	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	122
290	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	123
291	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	124
292	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	125
293	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	126
294	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	127
295	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	128
296	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	129
297	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	130
298	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	131
299	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	132
300	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	133
301	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	134
302	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	135
303	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	136
304	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	137
305	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	138
306	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	139
307	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	140
308	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	141
309	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	142
310	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	143
311	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	144
312	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	145
313	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	146
314	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	147
315	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	148

WO 99/31236

CONT. TABLE I		•
316	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	149
317	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	150
318	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	151
319	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	152
320	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	153
321	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	154
322	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	155
323	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	156
324	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	157
325	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	158
326	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	159
327	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	160
328	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	161
329	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	162
330	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	163
331	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	164
332	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	165
333	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	166
334	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	167
335	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	168
336	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	169
337	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	170
338	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	171
339	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	172
340	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	173
341	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	174
342	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	175
343	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	176
344	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	177
345	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	178
346	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	179
347	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	180
348	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	181
349	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	182
350	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	183
351	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	184

U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	185
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	186
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	187
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	188
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	189
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	190
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	191
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	192
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	193
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	194
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	195
L.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	196 ·
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	197
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	1998
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	199
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	200
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	201
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	202
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	203
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	204
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	205
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	206
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	207
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	208
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	209
U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997	210
	U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 17, 1997 U.S. Provisional Patent Application Serial No. 60/069,957, filed Dec. 1

TABLE II : Parameters used for each step of EST analysis

		Search Charac	cteristics	Selection Charac	teristics
Step	Program	Strand	Parameters	Identity (%))	Length (bp)
Miscellaneous	Blastn	both	S=61 X=16	90	17
tRNA	Fasta	both	•	80	60
rRNA	Blastn	both	S=108	80	40
mtRNA	Blastn	both	S=108	80	40
Procaryotic	Blastn	both	S-144	90	40
Fungal	Blastn	both	S-144	90	40
Alu	fasta*	both	•	70	40
L1	Blastn	both	S-72	70	40
Repeats	Blastn	both	S=72	70	40
Promoters	Blastn	top	S-54 X-16	90	15⊥
Vertebrate	fasta*	both	S-108	90	30
ESTs	Blatsn	both	S-108 X-16	90	30
Proteins	blastxn	top	E-0.001		

^{*} use "Quick Fast" Database Scanner

 $oldsymbol{\perp}$ alignment further constrained to begin closer than 10bp to EST\5' end

 $^{5~\}eta~using~BLOSUM62~substitution~matrix$

TABLE III: Parameters used for each step of extended cDNA analysis

	Search characte	ristics	Selection characteristics			
Step	Program	Strand	Parameters	Identity (%)	Length (bp)	Comments
miscellaneous	FASTA	both		90	15	
tRNA*	FASTA	both	•	80	90	
rRNA*	BLASTN	both	S-108	80	40	
mtRNA*	BLASTN	both	S-108	80	40	
Procaryotic*	BLASTN	both	S-144	90	40	~
Fungal*	BLASTN	both	S-144	90	40	
Alu*	BLASTN	both	S-72	70	40	max 5 matches, masking
£11*	BLASTN	both	S-72	70	40	max 5 matches, masking
Repeats*	BLASTN	both	S=72	70	40	masking
PolyA	BLAST2N	top	W-6,S-10,E-1000	90	8	in the last 20 nucleotides
Polyadenylati on signal		top	AATAAA allowing 1 mis	match		in the 50 nucleotides preceding the 5' end of the polA
Vertebrate*	BLASTN then FASTA	both		90 then 70	30	first BLASTN and then FASTA on matching sequences
ESTs*	BLAST2N	both		90	30	
Geneseq	BLASTN	both	W-8, B-10	90	30	
ORF	BLASTP	top	W-8, B-10	•	•	on ORF proteins, max 10 matches
Proteins*	BLASTX	top	E=0.001	70	30	

steps common to EST analysis and using the same algorithms and parameters
 steps also used in EST analysis but with different algorithms and/or parameters

-109-

TABLE IV

ld	FCS Location	SigPep Location	Mature	Stop	PolyA Signal	PolyA Site Location
1			Polypeptide	Codon	Location	Toryx one cocation
40	7 through 471	7 through 99	Location	Location		
41	168 through 332	/ through 99	100 through 471	472	537 through 542	554 through 568
		·	168 through 332	333	557 through 562	•
42	51 through 251	51 through 110	111 through 251	252	849 through 854	882 through 895
43	20 through 613	20 through 82	83 through 613	614	·	·
44	12 through 416	12 through 86	87 through 416	417	425 through 430	445 through 458
45	276 through 1040		486 through 1040	1041	•	2024 through 2036
46	443 through 619	443 through 589	590 through 619	620	•	1267 through 1276
47	206 through 747	<u> </u>	206 through 747	·	•	•
48	36 through 521	36 through 104	105 through 521	522	528 through 533	548 through 561
49	36 through 395	36 through 104	105 through 395	396	599 through 604	619 through 632
50	21 through 41	·	21 through 41	42	328 through 333	357 through 370
51	35 through 631	35 through 160	161 through 631	632	901 through 906	979 through 994
52	271 through 399	·	271 through 399	400		•
53	103 through 252	103 through 213	214 through 252	253		588 through 597
54	2 through 460	•	2 through 460	461	713 through 718	735 through 748
55	31 through 231	-	31 through 231	232	769 through 774	690 through 703
56	305 through 565	•	305 through 565	566	694 through 699	713 through 725
57	124 through 873	124 through 378	379 through 873	874	1673 through 1678	1694 through 1705
58	135 through 206		135 through 206	207	850 through 855	1056 through 1069
59	135 through 818		135 through 818	819	909 through 914	1071 through 1084
60	33 through 290	33 through 92	93 through 290	291	1.	
61	485 through 616		485 through 616	617		669 through 682
62	54 through 995	54 through 227	228 through 995	996	1130 through 1135	1181 through 1191
63	657 through 923	657 through 896	897 through 923	924	957 through 962	974 through 1008
64	18 through 311	18 through 62	63 through 311	312		
65	151 through 426	151 through 258	259 through 426	427	505 through 510	527 through 538
66	10 through 1062	10 through 57	58 through 1062	1063	1710 through 1715	1735 through 1747
67	78 through 491	78 through 218	219 through 491	492	1652 through 1657	1673 through 1686
68	69 through 371	69 through 287	288 through 371	372	510 through 515	530 through 542
69	2 through 757	2 through 205	206 through 757	758		1160 through 1174
70	2 through 1051	2 through 205	206 through 1051	1052	1248 through 1253	1272 through 1285
71	2 through 1171	2 through 205	206 through 1171	1172	1368 through 1373	1386 through 1398
72	42 through 611	42 through 287	288 through 611	612	787 through 792	808 through 821
73	62 through 916	62 through 757	758 through 916			
74	62 through 520		62 through 520	521	1124 through 1129	904 through 916
75	21 through 167		21 through 167	168		1141 through 1153
76	22 through 318		94 through 318	319	497 through 502	
77	8 through 292		119 through 292	293		516 through 526
78	16 through 378		85 through 378	379	317 through 322 502 through 507	339 through 352
	g., -, -,			5/3	502 tarough 507	522 through 542

-110-

CONT TARIFIV

57 through 233	CON	T. TABLE IV					
81	79	57 through 233	•	57 through 233	1.	•	
82 48 through 285 48 through 150 151 through 285 286 384 through 369 38 through 399 83 22 through 240 22 through 84 85 through 240 241 397 through 402 421 through 422 84 89 through 382 383 . 408 through 420 421 through 475 488 through 501 85 80 through 415 80 through 421 143 through 315 152 through 283 284 through 316 416 471 through 475 488 through 501 86 152 through 361 152 through 283 284 through 310 322 through 475 126 through 361 152 through 283 284 through 310 322 through 361 152 through 361 152 through 277 793 through 317 793 through 361 152 through 277 793 through 361 174 t	80	83 through 340	83 through 124	125 through 340	341	573 through 578	607 through 660
83 22 through 240 22 through 84 85 through 322 383	81	47 through 541	47 through 220	221 through 541	542	•	597 through 605
84 89 through 382	82	46 through 285	46 through 150	151 through 285	286	364 through 369	385 through 396
85 80 through 415 80 through 142 143 through 415 416 471 through 476 488 through 501 86 152 through 361 152 through 283 284 through 361 362 - - 87 32 through 361 152 through 283 284 through 361 362 - - 88 114 through 734 114 through 239 240 through 734 735 768 through 773 793 through 804 89 199 through 802 - 199 through 802 - 780 through 785 791 through 802 90 38 through 1174 38 through 184 149 through 8174 1175 1452 through 1457 1476 through 4169 91 26 through 361 - 26 through 361 - 350 through 361 - 350 through 417 1176 1452 through 1457 1476 through 1490 91 3 through 185 33 through 80 31 through 185 186 570 through 575 588 through 519 196 through 116 1119 through 115 113 through 115 113 through 116 1119 through 1474 1133 through 116 113 through 1474	83	22 through 240	22 through 84	85 through 240	241	397 through 402	421 through 432
86 152 through 361 152 through 361 362 through 361 362 through 361 362 through 367 32 through 307 32 through 307 32 through 307 308 1240 through 1245 1261 through 272 88 114 through 734 114 through 239 240 through 734 735 768 through 773 793 through 802 90 38 through 1174 38 through 148 149 through 1174 1175 1452 through 1457 1478 through 1490 91 28 through 361 - - 350 through 1490 30 through 131 - 30 through 151 132 - 591 through 605 93 33 through 185 33 through 80 81 through 155 166 570 through 575 586 through 591 94 184 through 915 184 through 237 238 through 915 916 1119 through 1124 1133 through 150 95 58 through 116 58 through 159 160 through 1166 110 through 1174 1130 through 1160 1117 through 1491 1504 through 1513 96 327 through 417 - 327 through 417 - 404 through 417 <	84	89 through 382	1.	89 through 382	383	•	408 through 420
87 32 through 307 32 through 707 71 through 307 308 1240 through 1245 1261 through 1272 88 114 through 734 114 through 734 114 through 734 735 768 through 773 793 through 804 89 199 through 802 . 199 through 802 . 780 through 1457 1478 through 802 90 38 through 1314 . 199 through 361 . . . 350 through 1459 .	85	80 through 415	80 through 142	143 through 415	416	471 through 476	488 through 501
88 114 through 734 114 through 239 240 through 734 735 768 through 773 793 through 804 89 199 through 802 . 199 through 802 . 780 through 7785 791 through 802 90 38 through 1174 38 through 148 149 through 361 . . 350 through 361 . . 350 through 361 . . . 350 through 361 . </td <td>86</td> <td>152 through 361</td> <td>152 through 283</td> <td>284 through 361</td> <td>362</td> <td></td> <td>·</td>	86	152 through 361	152 through 283	284 through 361	362		·
89 199 through 802 . 199 through 802 . 780 through 785 791 through 802 90 38 through 1174 38 through 1174 149 through 149 1452 through 1457 1478 through 1490 91 26 through 361 .	87	32 through 307	32 through 70	71 through 307	308	1240 through 1245	1261 through 1272
90 38 through 1174 38 through 148 149 through 1174 1175 1452 through 1457 1478 through 1490 91 26 through 361 - 26 through 361 - - 350 through 361 92 3 through 131 - 3 through 185 33 through 80 81 through 185 186 570 through 575 586 through 591 94 184 through 915 184 through 237 238 through 915 918 1119 through 1124 1139 through 1150 95 58 through 1116 58 through 159 160 through 1116 1117 1486 through 1491 1504 through 1513 96 327 through 417 - 327 through 381 399 - - 97 63 through 363 - 2 through 381 399 - - 98 21 through 485 13 through 265 20 through 383 399 - - 100 20 through 465 13 through 465 1486 - - - 110 13 through 465 13 through 243 244 through 274 295	88	114 through 734	114 through 239	240 through 734	735	768 through 773	793 through 804
91 26 through 361 . 25 through 361 . . 350 through 361 92 3 through 131 . . 3 through 131 .	89	199 through 802	·	199 through 802	•	780 through 785	791 through 802
92 3 through 131 . 3 through 131 132 . 591 through 605 93 33 through 185 33 through 80 81 through 185 186 570 through 575 586 through 591 94 184 through 915 184 through 237 238 through 115 916 1119 through 1124 1139 through 1150 95 58 through 1116 58 through 159 160 through 1116 1117 1486 through 1491 1504 through 1513 96 327 through 417 . . 404 through 417 . 404 through 417 97 63 through 388 63 through 206 207 through 398 399 . . 98 2 through 163 . 2 through 163 164 488 through 493 511 through 522 99 13 through 655 13 through 455 76 through 465 468 . . 100 20 through 703 20 through 243 244 through 244 295 . . 101 103 through 258 . 66 through 326 . . .	90	38 through 1174	38 through 148	149 through 1174	1175	1452 through 1457	1478 through 1490
93 33 through 185 33 through 80 81 through 185 186 570 through 575 586 through 591 94 184 through 915 184 through 237 238 through 915 916 1119 through 1124 1139 through 1150 95 58 through 915 184 through 237 238 through 915 916 1119 through 1124 1139 through 1150 95 58 through 417	91	26 through 361	•	26 through 361		•	350 through 361
94 184 through 915 184 through 237 238 through 915 916 1119 through 1124 1139 through 150 95 58 through 1116 58 through 159 160 through 1116 1117 1486 through 1491 1504 through 1513 96 327 through 417 . . 404 through 417 . . 404 through 417 97 63 through 398 63 through 206 207 through 398 399 . . . 98 2 through 163 . 2 through 163 164 488 through 493 511 through 522 99 13 through 465 13 through 75 76 through 465 466 . . 100 20 through 703 20 through 494 95 through 703 704 1000 through 1005 1023 through 1041 101 103 through 294 103 through 243 244 through 294 295 . . 102 81 through 518 81 through 173 174 through 326 327 1066 through 1071 1087 through 1098 104 170 through 289 170 through 289 170 through 289 290 . . 105 36	92	3 through 131	•	3 through 131	132		591 through 605
95 58 through 1116 58 through 159 160 through 1116 1117 1486 through 1491 1504 through 1513 96 327 through 417 . . . 404 through 417 97 63 through 398 63 through 206 207 through 398 399 . 98 2 through 163 . 2 through 163 164 488 through 493 511 through 522 99 13 through 465 13 through 575 76 through 465 466 . . 100 20 through 703 20 through 243 244 through 294 295 . . 101 103 through 284 103 through 281 519 . . . 102 81 through 518 81 through 173 174 through 518 519 . . . 102 81 through 286 103 66 through 326 	93	33 through 185	33 through 80	81 through 185	186	570 through 575	586 through 591
Section Sect	94	184 through 915	184 through 237	238 through 915	916	1119 through 1124	1139 through 1150
97 63 through 398 63 through 206 207 through 398 399	95	58 through 1116	58 through 159	160 through 1116	1117	1486 through 1491	1504 through 1513
98 2 through 163 - 2 through 163 164 488 through 493 511 through 522 99 13 through 465 13 through 75 76 through 465 456 - 100 20 through 703 20 through 94 95 through 703 704 1000 through 1005 1023 through 1041 101 103 through 294 103 through 243 244 through 518 519 - - 102 81 through 518 81 through 173 174 through 518 519 - - 103 66 through 326 - 66 through 326 327 1066 through 1071 1087 through 1098 104 170 through 289 170 through 289 290 - - 105 36 through 497 - 36 through 320 321 539 through 554 542 through 554 106 18 through 138 71 through 1438 71 through 1438 137 through 1438 1439 1644 through 1649 1665 through 484 109 84 through 332 84 through 75 76 through 318 319 452 through 457	96	327 through 417	•	327 through 417			404 through 417
99 13 through 465 13 through 75 76 through 465 456	97	63 through 398	63 through 206	207 through 398	399		
100 20 through 703 20 through 94 95 through 703 704 1000 through 1005 1023 through 1041 101 103 through 294 103 through 243 244 through 294 295	98	2 through 163		2 through 163	164	488 through 493	511 through 522
101 103 through 294 103 through 243 244 through 294 295	99	13 through 465	13 through 75	76 through 465	466		1.
102 81 through 518 81 through 173 174 through 518 519 . <td< td=""><td>100</td><td>20 through 703</td><td>20 through 94</td><td>95 through 703</td><td>704</td><td>1000 through 1005</td><td>1023 through 1041</td></td<>	100	20 through 703	20 through 94	95 through 703	704	1000 through 1005	1023 through 1041
103 66 through 326 . 66 through 326 327 1066 through 1071 1087 through 1098 104 170 through 289 170 through 250 251 through 289 290 . . 105 36 through 497 . 36 through 497 498 650 through 655 663 through 685 106 18 through 320 . 18 through 320 321 539 through 544 542 through 554 107 71 through 1438 71 through 136 137 through 1438 1439 1644 through 1649 1665 through 1678 108 25 through 318 25 through 75 76 through 318 319 452 through 457 482 through 494 109 84 through 332 84 through 332 333 . 702 through 714 110 32 through 718 32 through 100 101 through 718 719 770 through 775 793 through 805 111 26 through 481 26 through 88 89 through 481 482 755 through 760 775 through 787 112 26 through 810 4 through 279 280 through 810 811 858 through 863 881 through 881 through 1459 115	101	103 through 294	103 through 243	244 through 294	295		
104 170 through 289 170 through 250 251 through 289 290 - - 105 36 through 497 - 36 through 497 498 650 through 655 663 through 685 106 18 through 320 - 18 through 320 321 539 through 544 542 through 554 107 71 through 1438 71 through 136 137 through 1438 1439 1644 through 1649 1665 through 1678 108 25 through 318 25 through 75 76 through 318 319 452 through 457 482 through 494 109 84 through 332 84 through 170 171 through 332 333 - 702 through 714 110 32 through 718 32 through 100 101 through 718 719 770 through 775 793 through 805 111 26 through 481 26 through 88 89 through 481 482 755 through 760 775 through 787 112 26 through 562 26 through 187 188 through 810 811 858 through 863 881 through 881 through 893 114 55 through 459 55 through 120 121 through 459 460 1444 through 1449 1462 through 147	102	81 through 518	81 through 173	174 through 518	519	•	
105 36 through 497 . 36 through 497 498 650 through 655 663 through 685 106 18 through 320 . 18 through 320 321 539 through 544 542 through 554 107 71 through 1438 71 through 136 137 through 1438 1439 1644 through 1649 1665 through 1678 108 25 through 318 25 through 75 76 through 318 319 452 through 457 482 through 494 109 84 through 332 84 through 170 171 through 332 333 . 702 through 714 110 32 through 718 32 through 100 101 through 718 719 770 through 775 793 through 805 111 26 through 481 26 through 88 89 through 481 482 755 through 760 775 through 787 112 26 through 562 26 through 187 188 through 562 563 . . 113 4 through 810 4 through 279 280 through 810 811 858 through 863 881 through 893 114 55 through 459 55 through 120 121 through 459 460 1444 through 1449 1462 through 1475	103	66 through 326		66 through 326	327	1066 through 1071	1087 through 1098
106 18 through 320 . 18 through 320 321 539 through 544 542 through 554 107 71 through 1438 71 through 136 137 through 1438 1439 1644 through 1649 1665 through 1678 108 25 through 318 25 through 75 76 through 318 319 452 through 457 482 through 494 109 84 through 332 84 through 170 171 through 332 333 . 702 through 714 110 32 through 718 32 through 100 101 through 718 719 770 through 775 793 through 805 111 26 through 481 26 through 88 89 through 481 482 755 through 760 775 through 787 112 26 through 562 26 through 187 188 through 562 563 . 113 4 through 810 4 through 279 280 through 810 811 858 through 863 881 through 893 114 55 through 459 55 through 120 121 through 459 460 1444 through 1449 1462 through 1475 115 48 through 248 48 through 161 162 through 399 400 . . 116	104	170 through 289	170 through 250	251 through 289	290		•
107 71 through 1438 71 through 136 137 through 1438 1439 1644 through 1649 1665 through 1678 108 25 through 318 25 through 75 76 through 318 319 452 through 457 482 through 494 109 84 through 332 84 through 170 171 through 332 333 - 702 through 714 110 32 through 718 32 through 100 101 through 718 719 770 through 775 793 through 805 111 26 through 481 26 through 88 89 through 481 482 755 through 760 775 through 787 112 26 through 562 26 through 187 188 through 562 563 - - 113 4 through 810 4 through 279 280 through 810 811 858 through 863 881 through 893 114 55 through 459 55 through 120 121 through 459 460 1444 through 1449 1462 through 1475 115 48 through 248 48 through 248 249 283 through 288 308 through 321 116 25 through 399 25 through 186 187 through 399 400 - - 117	105	36 through 497		36 through 497	498	650 through 655	663 through 685
108 25 through 318 25 through 75 76 through 318 319 452 through 457 482 through 494 109 84 through 332 84 through 170 171 through 332 333 - 702 through 714 110 32 through 718 32 through 100 101 through 718 719 770 through 775 793 through 805 111 26 through 481 26 through 88 89 through 481 482 755 through 760 775 through 787 112 26 through 562 26 through 187 188 through 562 563 - - 113 4 through 810 4 through 279 280 through 810 811 858 through 863 881 through 893 114 55 through 459 55 through 120 121 through 459 460 1444 through 1449 1462 through 1475 115 48 through 248 48 through 161 162 through 248 249 283 through 288 308 through 321 116 25 through 399 25 through 186 187 through 399 400 - - 117 10 through 704 72 through 1137 1138 1144 through 1149 1162 through 1173 118	106	18 through 320		18 through 320	321	539 through 544	542 through 554
109 84 through 332 84 through 170 171 through 332 333 . 702 through 714 110 32 through 718 32 through 100 101 through 718 719 770 through 775 793 through 805 111 26 through 481 26 through 88 89 through 481 482 755 through 760 775 through 787 112 26 through 562 26 through 187 188 through 562 563 . . 113 4 through 810 4 through 279 280 through 810 811 858 through 863 881 through 893 114 55 through 459 55 through 120 121 through 459 460 1444 through 1449 1462 through 1475 115 48 through 248 48 through 161 162 through 248 249 283 through 288 308 through 321 116 25 through 399 25 through 186 187 through 1137 1138 1144 through 1149 1162 through 1173 118 72 through 704 72 through 161 162 through 704 705 772 through 777 . 119 44 through 505 44 through 223 224 through 505 506 . . <	107	71 through 1438	71 through 136	137 through 1438	1439	1644 through 1649	1665 through 1678
110 32 through 718 32 through 100 101 through 718 719 770 through 775 793 through 805 111 26 through 481 26 through 88 89 through 481 482 755 through 760 775 through 787 112 26 through 562 26 through 187 188 through 562 563 . . 113 4 through 810 4 through 279 280 through 810 811 858 through 863 881 through 893 114 55 through 459 55 through 120 121 through 459 460 1444 through 1449 1462 through 1475 115 48 through 248 48 through 161 162 through 248 249 283 through 288 308 through 321 116 25 through 399 25 through 186 187 through 399 400 . . 117 10 through 1137 10 through 72 73 through 1137 1138 1144 through 1149 1162 through 1173 118 72 through 704 72 through 161 162 through 505 506 . . 119 44 through 505 44 through 223 224 through 505 506 . .	108	25 through 318	25 through 75	76 through 318	319	452 through 457	482 through 494
111 26 through 481 26 through 88 89 through 481 482 755 through 760 775 through 787 112 26 through 562 26 through 187 188 through 562 563 . . 113 4 through 810 4 through 279 280 through 810 811 858 through 863 881 through 893 114 55 through 459 55 through 120 121 through 459 460 1444 through 1449 1462 through 1475 115 48 through 248 48 through 161 162 through 248 249 283 through 288 308 through 321 116 25 through 399 25 through 186 187 through 399 400 . . 117 10 through 1137 10 through 72 73 through 1137 1138 1144 through 1149 1162 through 1173 118 72 through 704 72 through 161 162 through 505 705 772 through 777 . 119 44 through 505 44 through 223 224 through 505 506 . .	109	84 through 332	84 through 170	171 through 332	333	·	702 through 714
112 26 through 562 26 through 187 188 through 562 563 . . 113 4 through 810 4 through 279 280 through 810 811 858 through 863 881 through 893 114 55 through 459 55 through 120 121 through 459 460 1444 through 1449 1462 through 1475 115 48 through 248 48 through 161 162 through 248 249 283 through 288 308 through 321 116 25 through 399 25 through 186 187 through 399 400 . . 117 10 through 1137 10 through 72 73 through 1137 1138 1144 through 1149 1162 through 1173 118 72 through 704 72 through 161 162 through 704 705 772 through 777 . 119 44 through 505 44 through 223 224 through 505 506 . .	110	32 through 718	32 through 100	101 through 718	719	770 through 775	793 through 805
113 4 through 810 4 through 279 280 through 810 811 858 through 863 881 through 893 114 55 through 459 55 through 120 121 through 459 460 1444 through 1449 1462 through 1475 115 48 through 248 48 through 248 249 283 through 288 308 through 321 116 25 through 399 25 through 186 187 through 399 400 . . 117 10 through 1137 10 through 72 73 through 1137 1138 1144 through 1149 1162 through 1173 118 72 through 704 72 through 161 162 through 704 705 772 through 777 . 119 44 through 505 44 through 223 224 through 505 506 . .	111	26 through 481	26 through 88	89 through 481	482	755 through 760	775 through 787
114 55 through 459 55 through 120 121 through 459 460 1444 through 1449 1462 through 1475 115 48 through 248 48 through 161 162 through 248 249 283 through 288 308 through 321 116 25 through 399 25 through 186 187 through 399 400 - - 117 10 through 1137 10 through 72 73 through 1137 1138 1144 through 1149 1162 through 1173 118 72 through 704 72 through 161 162 through 704 705 772 through 777 - 119 44 through 505 44 through 223 224 through 505 506 - -	112	26 through 562	26 through 187	188 through 562	563		
115 48 through 248 48 through 161 162 through 248 249 283 through 288 308 through 321 116 25 through 399 25 through 186 187 through 399 400 . . 117 10 through 1137 10 through 72 73 through 1137 1138 1144 through 1149 1162 through 1173 118 72 through 704 72 through 161 162 through 704 705 772 through 777 . 119 44 through 505 44 through 223 224 through 505 506 . .	113	4 through 810	4 through 279	280 through 810	811	858 through 863	881 through 893
116 25 through 399 25 through 186 187 through 399 400 . . 117 10 through 1137 10 through 72 73 through 1137 1138 1144 through 1149 1162 through 1173 118 72 through 704 72 through 161 162 through 704 705 772 through 777 . 119 44 through 505 44 through 223 224 through 505 506 . .	114	55 through 459	55 through 120	121 through 459	460	1444 through 1449	1462 through 1475
117 10 through 1137 10 through 72 73 through 1137 1138 1144 through 1149 1162 through 1173 118 72 through 704 72 through 161 162 through 704 705 772 through 777 - 119 44 through 505 44 through 223 224 through 505 506 - -	115	48 through 248	48 through 161	162 through 248	249	283 through 288	308 through 321
118 72 through 704 72 through 161 162 through 704 705 772 through 777 - 119 44 through 505 44 through 223 224 through 505 506 - -	116	25 through 399	25 through 186	187 through 399	400		
119 44 through 505 44 through 223 224 through 505 506	117	10 through 1137	10 through 72	73 through 1137	1138	1144 through 1149	1162 through 1173
	118	72 through 704	72 through 161	162 through 704	705	772 through 777	
120 25 through 393 25 through 150 151 through 393 394 734 through 739 757 through 770	119	44 through 505	44 through 223	224 through 505	506		
	120	25 through 393	25 through 150	151 through 393	394	734 through 739	757 through 770

-111-

CONT. TABLE IV

COV	IT. TABLE IV					
121	58 through 1095	58 through 114	115 through 1095	1096		1202 through 1213
122	31 through 660	31 through 90	91 through 660	661	1288 through 1293	1307 through 1318
123	31 through 582	31 through 90	91 through 582	583	816 through 821	840 through 853
124	15 through 695	15 through 80	81 through 695	696	795 through 800	814 through 826
125	74 through 295	74 through 196	197 through 295	296	545 through 550	561 through 571
126	440 through 659		440 through 659	1.	601 through 606	
127	38 through 283	38 through 85	86 through 283	284	257 through 262	1.
128	121 through 477	121 through 288	289 through 477	-		·
129	2 through 163	-	2 through 163	164	292 through 297	310 through 323
130	46 through 675	46 through 87	88 through 675	676	1364 through 1369	1383 through 1392
131	62.through 385	•	62 through 385	386	974 through 979	987 through 999
132	422 through 550	422 through 475	476 through 550	551		714 through 725
133	124 through 231	·	124 through 231	232	· · · · · · · · · · · · · · · · · · ·	387 through 400
134	131 through 1053	131 through 169	170 through 1053	-	1019 through 1024	
135	86 through 403	86 through 181	182 through 403	404	1097 through 1102	1117 through 1128
136	37 through 162	37 through 93	94 through 162	163	224 through 229 .	243 through 254
137	31 through 381	31 through 90	91 through 381	382		875 through 886
138	46 through 579	46 through 156	157 through 579	580		1.
139	92 through 471	92 through 172	173 through 471	 . 	454 through 459	458 through 471
140	154 through 675	154 through 498	499 through 675	676	819 through 824	838 through 849
242	18 through 173	18 through 77	78 through 173	174	864 through 869	882 through 893
243	17 through 595	17 through 85	86 through 595	596	820 through 825	840 through 851
244	89 through 334	89 through 130	131 through 334	335	462 through 467	484 through 495
245	21 through 614	21 through 83	84 through 614	615	849 through 854	873 through 884
246	94 through 573	94 through 258	259 through 573	574	862 through 867	886 through 897
247	74 through 397	74 through 127	128 through 397	398	472 through 477	507 through 518
248	51 through 242	51 through 116	117 through 242	243	319 through 324	339 through 350
249	111 through 191	111 through 155	156 through 191	192	965 through 970	986 through 996
250	45 through 602	45 through 107	108 through 602	603	828 through 833	850 through 860
251	24 through 560	24 through 101	102 through 560	561	563 through 568	583 through 593
252	109 through 558	109 through 273	274 through 558	559	·	1104 through 1114
253	128 through 835	128 through 220	221 through 835	836	1145 through 1150	1170 through 1181
254	59 through 505	59 through 358	359 through 505	506	1042 through 1047	1062 through 1073
255	1 through 207	1 through 147	148 through 207	208	784 through 789	807 through 818
256	12 through 734	12 through 101	102 through 734	.735	914 through 919	961 through 971
257	378 through 518	378 through 467	468 through 518	519	607 through 612	628 through 640
258	110 through 304	110 through 193	194 through 304	305	708 through 713	732 through 743
259	201 through 419	201 through 272	273 through 419	420	601 through 606	627 through 637
260	123 through 302	123 through 176	177 through 302	303	1279 through 1284	1301 through 1312
261	98 through 673	98 through 376	377 through 673	674		1025 through 1035
262	17 through 463	17 through 232	233 through 463	464	657 through 662	684 through 696
263	263 through 481	263 through 322	323 through 481	482		858 through 868
					L	Jogn 000

CONT. TABLE IV

_	IT. TABLE IV				-	•
264	42 through 299	42 through 101	102 through 299	300		762 through 775
265	198 through 431	198 through 260	261 through 431	432	·	1064 through 1074
266	279 through 473	279 through 362	363 through 473	474	944 through 949	970 through 981
267	12 through 644	12 through 92	93 through 644	645	1002 through 1007	1020 through 1031
268	91 through 459	91 through 330	331 through 459	460	•	1271 through 1281
269	70 through 327	70 through 147	148 through 327	328	1741 through 1746	1763 through 1774
270	12 through 497	12 through 104	105 through 497	498	935 through 940	955 through 967
271	90 through 383	90 through 200	201 through 383	384	609 through 614	632 through 643
272	332 through 541	332 through 376	377 through 541	542	739 through 744	761 through 773
273	43 through 222	43 through 177	178 through 222	223	530 through 535	555 through 566
274	115 through 231	115 through 180	181 through 231	232	419 through 424	445 through 455
275	232 through 384	232 through 300	301 through 384	385	650 through 655	662 through 673
276	143 through 427	143 through 286	287 through 427	428	606 through 611	628 through 639
277	284 through 463	284 through 379	380 through 463	464		762 through 772
278	162 through 671	162 through 398	399 through 671	672	805 through 810	830 through 840
279	63 through 632	63 through 308	309 through 632	633	808 through 813	829 through 840
280	21 through 362	21 through 200	201 through 362	363	821 through 826	838 through 849
281	21 through 503	21 through 344	345 through 503	504	1305 through 1310	1330 through 1341
282	1 through 201	1 through 63	64 through 201	202	637 through 642	660 through 671
283	39 through 1034	39 through 134	135 through 1034	1035	1566 through 1571	1587 through 1597
284	69 through 263	69 through 125	126 through 263	264	1173 through 1178	1196 through 1205
285	115 through 285	115 through 204	205 through 285	286	505 through 510	525 through 536
286	90 through 344	90 through 140	141 through 344	345	500 through 505	515 through 527
287	57 through 311	57 through 107	108 through 311	312	467 through 472	482 through 493
288	96 through 302	96 through 182	183 through 302	303		501 through 514
289	161 through 526	161 through 328	329 through 526	527		799 through 811
290	210 through 332	210 through 299	300 through 332	333	594 through 599	613 through 625
291	212 through 361	212 through 319	320 through 361	362	650 through 655	673 through 684
292	75 through 482	75 through 128	129 through 482	483	595 through 600	618 through 627
293	50 through 631	50 through 244	245 through 631	632	777 through 782	801 through 812
294	154 through 576	154 through 360	361 through 576	577	737 through 742	763 through 775
295	154 through 897	154 through 360	361 through 897	898	1017 through 1022	1044 through 1054
296	146 through 292	146 through 253	254 through 292	293	395 through 400	433 through 444
297	126 through 383	126 through 167	168 through 383 .	384	726 through 731	743 through 754
298	66 through 497	66 through 239	240 through 497	498	594 through 599	618 through 629
299	49 through 411	49 through 96	97 through 411	412	732 through 737	750 through 763
300	49 through 534	49 through 96	97 through 534	535	593 through 598	612 through 623
301	86 through 415	86 through 145	146 through 415	416	540 through 545	560 through 571
302	56 through 268	56 through 100	101 through 268	269	584 through 589	601 through 612
303	32 through 328	32 through 103	104 through 328	329	508 through 513	528 through 539
304	21 through 527	21 through 95	96 through 527	528	921 through 926	953 through 963
305	147 through 647	147 through 374	375 through 647	648	timough 020	668 through 681
				J-10	L	and minnfil DO I

CONT. TABLE IV

	INT. TABLE IV					
30	6 262 through 471	262 through 306	307 through 471	472	663 through 668	682 through 693
30	7 74 through 1216	74 through 172	173 through 1218	1217	1627 through 1632	1640 through 1652
30	8 48 through 164	48 through 89	90 through 164	165	482 through 487	505 through 517
30	9 185 through 334	185 through 295	296 through 334	335	355 through 360	392 through 405
310	195 through 347	195 through 272	273 through 347	348	1037 through 1042	1071 through 1082
311	90 through 815	90 through 179	180 through 815	816	883 through 888	905 through 916
312	52 through 513	52 through 231	232 through 513	514	553 through 558	572 through 583
313	172 through 438	172 through 354	355 through 438	439	682 through 687	685 through 697
314	148 through 366	148 through 225	226 through 366	367	770 through 775	792 through 803
315	175 through 336	175 through 276	277 through 336	337		812 through 823
316	191 through 553	191 through 304	305 through 553	554	766 through 771	804 through 817
317	106 through 603	106 through 216	217 through 603	604		1102 through 1112
318	47 through 586	47 through 124	125 through 586	587	1583 through 1588	1614 through 1623
319	99 through 371	99 through 290	291 through 371	372	491 through 496	513 through 524
320	44 through 814	44 through 112	113 through 814	815		978 through 989
321	3 through 581	3 through 182	183 through 581	582	1.	1006 through 1016
322	107 through 427	107 through 190	191 through 427	428	499 through 504	516 through 529
323	45 through 407	45 through 83	84 through 407	408	1008 through 1013	1032 through 1042
324	201 through 332	201 through 251	252 through 332	333		869 through 880
325	217 through 543	217 through 255	256 through 543	544	•	1206 through 1217
326	18 through 446	18 through 140	141 through 446	447	930 through 935	948 through 959
327	29 through 724	29 through 118	119 through 724	725	886 through 891	910 through 920
328	404 through 586	404 through 466	467 through 586	587	1304 through 1309	1334 through 1344
329	331 through 432	331 through 387	388 through 432	433	548 through 553	573 through 585
330	59 through 703	59 through 220	221 through 703	704	886 through 891	903 through 914
331	672 through 752	672 through 722	723 through 752	753		1150 through 1161
332	57 through 311	57 through 128	129 through 311	312	332 through 337	351 through 363
333	80 through 232	80 through 127	128 through 232	233	617 through 622	634 through 645
334	91 through 291	91 through 219	220 through 291	292	367 through 372	389 through 400
335	196 through 384	196 through 240	241 through 384	385	461 through 466	485 through 496
336	54 through 590	54 through 227	228 through 590	591	-	955 through 965
337	133 through 846	133 through 345	346 through 846	847	•	890 through 901
338	138 through 671	138 through 248	249 through 671	672	1319 through 1324	1338 through 1347
339	124 through 411	124 through 186	187 through 411	412	948 through 953	971 through 983
340	372 through 494	372 through 443	444 through 494	495	708 through 713	732 through 745
341	112 through 450	112 through 192	193 through 450	451	1053 through 1058	1095 through 1106
342	117 through 866	117 through 170	171 through 866	867	1159 through 1164	1178 through 1190
343	13 through 465	13 through 75	76 through 465	466	1035 through 1040	1060 through 1070
344	2 through 718	2 through 76	77 through 718	719	1170 through 1175	1203 through 1213
345	86 through 709	86 through 361	362 through 709	710	943 through 948	963 through 973
346	63 through 320	63 through 179	180 through 320	321	771 through 776	799 through 810
347	299 through 418	299 through 379	380 through 418	419	739 through 744	762 through 771

CONT. TABLE IV

_ 60	VI. TABLE IV					
348	186 through 380	186 through 233	234 through 380	381	383 through 388	396 through 409
349	69 through 458	69 through 233	234 through 458	459	564 through 569	602 through 613
350	12 through 638	12 through 263	264 through 638	639	951 through 956	975 through 985
351	282 through 389	282 through 332	333 through 389	390	1413 through 1418	1437 through 1447
352	208 through 339	208 through 294	295 through 339	340	1.	1631 through 1641
353	69 through 557	69 through 224	225 through 557	558	849 through 854	870 through 883
354	134 through 325	134 through 274	275 through 325	326	·	718 through 729
355	78 through 731	78 through 227	228 through 731	732	1.	1002 through 1013
356	46 through 693	46 through 90	91 through 693	694	937 through 942	962 through 973
357	126 through 527	126 through 182	183 through 527	528	834 through 839	856 through 867
358	66 through 320	66 through 113	114 through 320	321	490 through 495	508 through 519
359	73 through 948	73 through 159	160 through 948	949	•	1016 through 1028
360	69 through 434	69 through 236	237 through 434	435	419 through 424	441 through 452
361	628 through 804	628 through 711	712 through 804	805	1.	864 through 875
362	70 through 366	70 through 108	109 through 366	367	496 through 501	521 through 531
363	70 through 366	70 through 108	109 through 366	367		1233 through 1244
364	111 through 434	111 through 185	186 through 434	435		618 through 631
365	19 through 567	19 through 63	64 through 567	568	749 through 754	771 through 781
366	19 through 312	19 through 63	64 through 312	313	896 through 901	921 through 931
367	64 through 612	64 through 234	235 through 612	613		839 through 849
368	39 through 458	39 through 80	81 through 458	459	613 through 618	633 through 644
369	9 through 185	9 through 50	51 through 185	186		906 through 918
370	14 through 316	14 through 121	122 through 316	317	442 through 447	458 through 471
371	70 through 1092	70 through 234	235 through 1092	1093	1475 through 1480	1493 through 1504
372	274 through 597	274 through 399	400 through 597	598	731 through 736	754 through 765
373	230 through 469	230 through 307	308 through 469	470	1004 through 1009	1027 through 1040
374	72 through 545	72 through 203	204 through 545	546		1151 through 1162
375	36 through 425	36 through 119	120 through 425	426	1215 through 1220	1240 through 1250
376	155 through 751	155 through 340	341 through 751	752	912 through 917	937 through 947
377	46 through 585	46 through 120	121 through 585	586	584 through 589	606 through 619
						-

TABLE V

I ABLE V						
ld	Full Length Polypeptide Location	Signal Peptide Location	Mature Polypeptide Location			
141	-31 through 124	-31 through -1	1 through 124			
142	1 through 55	•	1 through 55			
143	-20 through 47	-20 through -1	1 through 47			
144	-21 through 177	-21 through -1	1 through 177			
145	-25 through 110	-25 through -1	1 through 110			
146	-70 through 185	-70 through -1	1 through 185			
147	-49 through 10	-49 through -1	1 through 10			
148	1 through 180	•	1 through 180			
149	-23 through 139	-23 through -1	1 through 139			
150	-23 through 97	-23 through -1	1 through 97			
151	1 through 7	•	1 through 7			
152	-42 through 157	-42 through -1	1 through 157			
153	1 through 43		1 through 43			
154	-37 through 13	-37 through -1	1 through 13			
155	1 through 153	•	1 through 153			
156	1 through 67	•	1 through 67			
157	1 through 87	•	1 through 87			
158	-85 through 165	-85 through -1	1 through 165			
159	1 through 24	-	1 through 24			
160	1 through 228	•	1 through 228			
161	-20 through 66	-20 through -1	1 through 66			
162	1 through 44		1 through 44			
163	-58 through 256	-58 through -1	1 through 256			
164	-80 through 9	-80 through -1	1 through 9			
165	-15 through 83	-15 through -1	1 through 83			
166	-36 through 56	-36 through -1	1 through 56			
167	-16 through 335	-16 through -1	1 through 335			
168	-47 through 91	-47 through -1	1 through 91			
169	-73 through 28	-73 through -1	1 through 28			
170	-68 through 184	-68 through -1	1 through 184			
171	-68 through 282	-68 through -1	1 through 282			
172	-68 through 322	-68 through -1	1 through 322			
173	-82 through 108	-82 through -1	1 through 108			
174	-232 through 53	-232 through -1	1 through 53			
175	1 through 153		1 through 153			
176	1 through 49		1 through 49			
177	-24 through 75	-24 through -1	1 through 75			
178	-37 through 58	-37 through -1	1 through 58			
179	-23 through 98	-23 through -1	1 through 98			
180	1 through 59		1 through 59			
181	-14 through 72	-14 through -1	1 through 72			
182	-58 through 107	-58 through -1	1 through 107			
183	-35 through 45	-35 through -1	1 through 45			
184	-21 through 52	-21 through -1	1 through 52			
185	1 through 98		1 through 98			
186	-21 through 91	-21 through -1	1 through 91			
187	-44 through 26	-44 through -1	1 through 26			
188	-13 through 79	-13 through -1	1 through 79			
189	-42 through 165	-42 through -1	1 through 165			
190	1 through 201		1 through 201			

WO 99/31236 PCT/IB98/02122

-116-

CONT. TABLE V

C <u>ont. Tabli</u>	<u> </u>		
191	-37 through 342	-37 through -1	1 through 342
192	1 through 112		1 through 112
193	1 through 43		1 through 43
194	-16 through 35	-16 through -1	1 through 35
195	-18 through 226	-18 through -1	1 through 226
196	-34 through 319	-34 through -1	1 through 319
197	1 through 30		1 through 30
198	-48 through 64	-48 through -1	1 through 64
199	1 through 54		1 through 54
200	-21 through 130	-21 through -1	1 through 130
201	-25 through 203	-25 through -1	1 through 203
202	-47 through 17	-47 through -1	1 through 17
203	-31 through 115	-31 through -1	1 through 115
204	1 through 87	•	1 through 87
205	-27 through 13	-27 through -1	1 through 13
206	1 through 154		1 through 154
207	1 through 101		
208	-22 through 434	-22 through -1	1 through 101
209	-17 through 81	-17 through -1	1 through 434
210	·29 through 54	-29 through -1	1 through 81
211	-23 through 206	-23 through -1	1 through 54
212	-21 through 131	-21 through -1	1 through 206
213	-54 through 125	-54 through -1	1 through 131
214	-92 through 177	-92 through -1	1 through 125
215	-22 through 113	-22 through -1	1 through 177
216	-38 through 29	-38 through -1	1 through 113
217	-54 through 71	-54 through -1	1 through 29
218	-21 through 355	-21 through -1	1 through 71
219	-30 through 181	-30 through -1	1 through 355
220	-60 through 94	-60 through -1	1 through 181
221	-42 through 81	-42 through -1	1 through 94
222	-19 through 327	-19 through -1	1 through 81
223	-20 through 190	-20 through -1	1 through 327
224	-20 through 164		1 through 190
225	-22 through 205	-20 through -1	1 through 164
226	-41 through 33	-22 through -1	1 through 205
227	1 through 73	-41 through -1	1 through 33
228	-16 through 66	16 shared 1	1 through 73
229	-56 through 63	-16 through -1	1 through 66
230	1 through 54	-56 through -1	1 through 63
231	-14 through 196	1411	1 through 54
232	1 through 108	-14 through -1	1 through 196
233	-18 through 25	10.1	1 through 108
234		-18 through -1	1 through 25
235	1 through 36	<u> </u>	1 through 36
236	-13 through 294	-13 through -1	1 through 294
237	-32 through 74	-32 through -1	1 through 74
238	-19 through 23	-19 through -1	1 through 23
	-20 through 97	-20 through -1	1 through 97
239	-37 through 141	-37 through -1	1 through 141
240	-27 through 99	-27 through -1	1 through 99
241	-115 through 59	-115 through -1	1 through 59
378	-20 through 32	-20 through -1	1 through 32
379	-23 through 170	-23 through -1	1 through 170
380	-14 through 68	-14 through -1	1 through 68

-117-

CONT. TABLE V

ONT. TABLE V			
381	-21 through 177	-21 through -1	1 through 177
382	-55 through 105	-55 through -1	1 through 105
383	-18 through 90	-18 through -1	1 through 90
384	-22 through 42	-22 through -1	1 through 42
385	-15 through 12	-15 through -1	1 through 12
386	-21 through 165	-21 through -1	1 through 165
387	-26 through 153	-26 through -1	1 through 153
388	-55 through 95	-55 through -1	1 through 95
389	-31 through 205	-31 through -1	1 through 205
390	-100 through 49	-100 through -1	1 through 49
391	-49 through 20	-49 through -1	1 through 20
392	-30 through 211	-30 through -1	1 through 211
393	-30 through 17	-30 through -1	1 through 17
394	-28 through 37	-28 through -1	1 through 37
395	-24 through 49	-24 through -1	1 through 49
396	-18 through 42	-18 through -1	1 through 42
397	-93 through 99	-93 through -1	1 through 99
398	-72 through 77	-72 through -1	1 through 77
399	-20 through 53	-20 through -1	1 through 53
400	-20 through 66	-20 through -1	1 through 66
401	-21 through 57	-21 through -1	1 through 57
402	-28 through 37	-28 through -1	1 through 37
403	-27 through 184	-27 through -1	1 through 184
404	-80 through 43	-80 through -1	1 through 43
405	-26 through 60	-26 through -1	1 through 60
406	-31 through 131	-31 through -1	1 through 131
407	-37 through 61	-37 through -1	1 through 61
408	·15 through 55	-15 through -1	1 through 55
409	-45 through 15	-45 through -1	1 through 15
410	-22 through 17	-22 through -1	1 through 17
411	-23 through 28	-23 through ⋅1	1 through 28
412	-48 through 47	-48 through -1	1 through 47
413	-32 through 28	-32 through -1	1 through 28
414	-79 through 91	·79 through ·1	1 through 91
415	-82 through 108	-82 through -1	1 through 108
416	-60 through 54	-60 through -1	1 through 54
417	-108 through 53	-108 through -1	1 through 53
418	-21 through 46	-21 through -1	1 through 46
419	-32 through 300	-32 through -1	1 through 300
420	-19 through 46	-19 through -1	1 through 46
422	-30 through 27	-30 through -1	1 through 27
423	-17 through 68	-17 through -1	1 through 68
424	-17 through 68	-17 through -1	1 through 68
425	-29 through 40	-29 through -1	
426	-56 through 66	-56 through -1	1 through 40
427	-30 through 11	-30 through -1	1 through 66
428	-36 through 14		1 through 11
429	-18 through 118	-36 through -1	1 through 14
430		-18 through -1	1 through 118
	-65 through 129	-65 through -1	1 through 129
431	-69 through 72	-69 through -1	1 through 72
432	-69 through 179	-69 through -1	1 through 179
433	-36 through 13	-36 through -1	1 through 13
434	-14 through 72	-14 through -1	1 through 72
435	-58 through 86	-58 through -1	1 through 86

-118-

CONT. TABLE V

CONT. TABL	.E V		
436	-16 through 105	-16 through -1	1 through 105
437	·16 through 146	-16 through -1	1 through 146
438	-20 through 90	-20 through -1	1 through 90
439	-15 through 56	-15 through -1	1 through 56
440	-24 through 75	-24 through -1	1 through 75
441	-25 through 144	-25 through -1	
442	·76 through 91	-76 through -1	1 through 144 1 through 91
443	-15 through 55	-15 through -1	1 through 55
444	-33 through 348	-33 through -1	1 through 348
445	-14 through 25	-14 through -1	1 through 348
446	-37 through 13	-37 through -1	
447	-26 through 25	-26 through -1	1 through 13
448	-30 through 212	-30 through -1	1 through 25
449	-60 through 94	-60 through -1	1 through 212
450	-61 through 28	-61 through -1	1 through 94
451	-26 through 47	-26 through -1	1 through 28
452	-34 through 20	-34 through -1	1 through 47
453	-38 through 83		1 through 20
454	-37 through 129	-38 through -1	1 through 83
455	-26 through 154	-37 through -1	1 through 129
456	-64 through 27	-26 through -1	1 through 154
457	-23 through 234	-64 through -1	1 through 27
458	-60 through 133	-23 through -1	1 through 234
459	-28 through 79	-60 through -1	1 through 133
460	-13 through 108	-28 through -1	1 through 79
461	-17 through 27	-13 through -1	1 through 108
462	-13 through 96	-17 through -1	1 through 27
463	-41 through 102	-13 through -1	1 through 96
464	-30 through 202	-41 through -1	1 through 102
465	-21 through 40	-30 through -1	1 through 202
466	-19 through 15	-21 through -1	1 through 40
467	-54 through 161	-19 through -1	1 through 15
468	-17 through 10	-54 through -1	1 through 161
469	-24 through 61	-17 through -1	1 through 10
470	-16 through 35	-24 through -1	1 through 61
471	-43 through 24	-16 through -1	1 through 35
472	-15 through 48	-43 through -1	1 through 24
473	-58 through 121	-15 through -1	1 through 48
474	-71 through 167	-58 through -1	1 through 121
475	-37 through 141	-71 through -1 -37 through -1	1 through 167
476	-21 through 75		1 through 141
477	-24 through 17	-21 through -1	1 through 75
478	-27 through 86	-24 through -1	1 through 17
479	-18 through 232	-27 through -1	1 through 86
480		-18 through -1	1 through 232
481	-21 through 130	-21 through -1	1 through 130
482	-25 through 214	-25 through -1	1 through 214
483	-92 through 116	-92 through -1	1 through 116
484	-39 through 47	-39 through -1	1 through 47
485	-27 through 13	-27 through -1	1 through 13
	-16 through 49	-16 through -1	1 through 49
486	-55 through 75	-55 through -1	1 through 75
487	-84 through 125	-84 through -1	1 through 125
488	-17 through 19	-17 through -1	1 through 19
489	-29 through 15	-29 through -1	. 1 through 15

490	-52 through 111	-52 through -1	T
491	-47 through 17	-47 through -1	1 through 111
492	-50 through 168		1 through 17
493	-15 through 201	-50 through -1	1 through 168
494	-19 through 115	-15 through -1	1 through 201
495	-16 through 69	-19 through -1	1 through 115
496	-29 through 263	-16 through -1	1 through 69
497		-29 through -1	1 through 263
498	-56 through 66	-56 through -1	1 through 66
499	-28 through 31	-28 through -1	1 through 31
	-13 through 86	-13 through -1	1 through 86
500	-13 through 86	-13 through -1	1 through 86
501	-25 through 83	-25 through -1	1 through 83
502	-15 through 168	-15 through -1	1 through 168
503	-15 through 83	-15 through -1	1 through 83
504	-57 through 126	-57 through -1	1 through 126
505	-14 through 126	-14 through -1	1 through 126
506	-14 through 45	-14 through -1	1 through 45
507	-36 through 65	-36 through -1	1 through 65
508	-55 through 286	-55 through -1	
509	-42 through 66	-42 through -1	1 through 286
510	-26 through 54	-26 through -1	1 through 66
511	-44 through 114	-44 through -1	1 through 54
512	-28 through 102	-28 through -1	1 through 114
513	-62 through 137	-28 through -1	1 through 102
514	-25 through 155		1 through 137
	20 11100811 100	-25 through -1	1 through 155

-120-

TABLE VI

la.	Callantin	ADLE VI
ld	Collection refs	Deposit Name
40	ATCC # 98921	SignalTag 121-144
41	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
42	ATCC # 98921	SignalTag 121-144
43	ATCC # 98920	SignalTag 67-90
44	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
45	ATCC # 98920	SignalTag 67-90
46	ATCC # 98923	SignalTag 44-66
47	ATCC # 98920	SignalTag 67-90
48	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
49	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
50	ATCC # 98921	SignalTag 121-144
51	ATCC # 98921	SignalTag 121-144
52	ATCC # 98920	SignalTag 67-90
53	ATCC # 98923	SignalTag 44-66
54	ATCC # 98920	SignalTag 67-90
55	ATCC # 98920	SignalTag 67-90
6	ATCC # 98920	SignalTag 67-90
7	ATCC # 98921	SignalTag 121-144
i8	ATCC # 98920	SignalTag 67-90
9	ATCC # 98920	SignalTag 67-90
0	ATCC # 98920	SignalTag 67-90
1	ATCC # 98923	SignalTag 44-66
2	ATCC # 98923	SignalTag 44-66
3	ATCC # 98923	SignalTag 44-66
4	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
5	ATCC # 98923	SignalTag 44-66
6	ATCC # 98921	SignalTag 121-144
7	ATCC # 98920	SignalTag 67-90
B	ATCC # 98920	SignalTag 67-90
9	ATCC # 98921	SignalTag 121-144
<u> </u>	ATCC # 98921	SignalTag 121-144
<u> </u>	ATCC # 98921	SignalTag 121-144
2	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
}	ATCC # 98923	SignalTag 44-66

		.121.
74	ATCC # 98923	SignalTag 44-66
75	ATCC # 98920	SignalTag 67-90
76	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
77	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
78	ATCC # 98921	SignalTag 121-144
79	ATCC # 98923	SignalTag 44-66
80	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
81	ATCC # 98921	SignalTag 121-144
82	ATCC # 98920	SignalTag 67-90
83	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
84	ATCC # 98923	SignalTag 44-66
85	ATCC # 98923	SignalTag 44-66
86	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
87	ATCC # 98923	SignalTag 44-66
88	ATCC # 98923	SignalTag 44-66
89	ATCC # 98923	SignalTag 44-66
90	ATCC # 98923	SignalTag 44-66
91	ATCC # 98923	SignalTag 44-66
92	ATCC # 98920	SignalTag 67-90
93	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
94	ATCC # 98923	SignalTag 44-66
95	ATCC # 98923	SignalTag 44-66
96	ATCC # 98920	SignalTag 67-90
97	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
98	ATCC # 98921	SignalTag 121-144
99	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
100	ATCC # 98921	SignalTag 121-144
101	ATCC # 98920	SignalTag 67-90
102	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
103	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
104	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
105	ATCC # 98921	SignalTag 121-144
106	ATCC # 98920	SignalTag 67-90
107	ATCC # 98920	SignalTag 67-90
08	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
09	ATCC # 98923	SignalTag 44-66
10	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120

111	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120.
112	ATCC # 98920	SignalTag 67:90
113	ATCC # 98920	SignalTag 67-90
114	ATCC # 98923	SignalTag 44-66
115	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
116	ATCC # 98920	SignalTag 67-90
117	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
118	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
119	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
120	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
121	ATCC # 98923	SignalTag 44-66
122	ATCC # 98920	SignalTag 67-90
123	ATCC # 98920	SignalTag 67-90
124	ATCC # 98922	SignalTag 91-94, 96, 97, 99-107, 109-112 et 114-120
125	ECACC # 98121506	SignalTag 11121998
126	ECACC # 98121506	SignalTag 11121998
127	ECACC # 98121506	SignalTag 11121998
128	ECACC # 98121506	SignalTag 11121998
129	ECACC # 98121506	SignalTag 11121998
130	ECACC # 98121506	SignalTag 11121998
131	ECACC # 98121506	SignalTag 11121998
132	ECACC # 98121506	SignalTag 11121998
133	ECACC # 98121506	SignalTag 11121998
134	ECACC # 98121506	SignalTag 11121998
135	ECACC # 98121506	SignalTag 11121998
136	ECACC # 98121506	SignalTag 11121998
137	ECACC # 98121506	SignalTag 11121998
138	ECACC # 98121506	SignalTag 11121998
139	ECACC # 98121506	SignalTag 11121998
140	ECACC # 98121506	SignalTag 11121998

-123-TABLE VII

Internal designation number	SEQ ID NO	Type of sequence
20-5-2-C3-CL0_4	40	DNA
20-8-4-A11-CL2_6	41	DNA
21-1-4-F2-CL11_1	42	DNA
22-11-2-H9-CL1_1	43	DNA
25-7-3-D4-CLO_2	44	DNA
26-27-3-D7-CLO_1	45	DNA
26-35-4-H9-CL1_1	46	DNA
26-45-2-C4-CL2_6	47	DNA
27-1-2-B3-CL0_1	48	DNA
27-1-2-B3-CLO_2	49	DNA
27-19-3-G7-CL11_2	50	DNA
33-10-4-E2-CL13_4	51	DNA
33-10-4-H2-CL2_2	52	DNA
33-110-4-A5-CL1_1	53	DNA
33-13-1-C1-CL1_1	54	DNA
33-30-2-A6-CL0_1	55	DNA
33-35-4-F4-CL1_2	56	DNA
33-35-4-G1-CL1_2	57	DNA
33-36-3-E2-CL1_1	58	DNA
33-36-3-E2-CL1_2	59	DNA
33-36-3-F2-CL2_2	60	DNA
33-4-2-G5-CL2_1	61	DNA
33-49-1-H4-CL1_1	62	DNA
33-66-2-B10-CL4_1	63	DNA
33-97-4-G8-CL2_2	64	DNA
33-98-4-C1-CL1_3	-65	DNA
47-14-1-C3-CL0_5	66	DNA
47-15-1-E11-CLO_1	67	DNA
47-15-1-H8-CLO_2	68	DNA
48-1-1-H7-CLO_1	69	DNA
48-1-1-H7-CLO_4	70	DNA
48-1-1-H7-CLO_5	71	DNA
48-3-1-H9-CLO_6	72	DNA
48-54-1-G9-CL2_1	73	DNA

48-54-1-G9-CL3_1	74	DNA
48-7-4-H2-CL2_2	75	DNA
51-11-3-D5-CL1_3	76	DNA
51-11-3-G9-CLD_1	77	DNA
51-15-4-A12-CL11_3	78	DNA
51-17-4-A4-CL3_1	79	DNA
51-2-3-F10-CL1_5	80	DNA
51-2-4-F5-CL11_2	81	DNA
51-27-4-F2-CLO_2	82	DNA
51-34-3-F8-CLO_2	83	DNA
57-1-4-E2-CL1_2	84	DNA
57-19-2-G8-CL2_1	85	DNA
57-27-3-G10-CL2_2	86	DNA
58-33-3-B4-CL1_2	87	DNA
58-34-3-C9-CL1_2	88	DNA
58-4-4-G2-CL2_1	89	DNA
58-48-1-G3-CL2_4	90	DNA
58-6-1-H4-CL1_1	91	DNA
60-12-1-E11-CL1_2	92	DNA
65-4-4-H3-CL1_1	93	DNA
74-5-1-E4-CL1_2	94	DNA
76-13-3-A9-CL1_2	95	DNA
76-16-1-D6-CL1_1	96	DNA
76-28-3-A12-CL1_5	97	DNA
76-42-2-F3-CLO_1	98	DNA
77-16-4-G3-CL1_3	99	DNA
77-39-4-H4-CL11_4	100	DNA
78-24-3-H4-CL2_1	101	DNA
78-27-3-D1-CL1_6	102	DNA
78-28-3-D2-CLO_2	103	DNA
78-7-1-G5-CL2_6	104	DNA
84-3-1-G10-CL11_6	105	DNA
58-48-4-E2-CLO_1	106	DNA
23-12-2-G6-CL1_2	107	DNA
25-8-4-B12-CLO_5	108	DNA
26-44-3-C5-CL2_1	109	DNA
27-1-2-B3-CLO_3	110	DNA
····		

30-12-3-G5-CLO_1	111	DNA
33-106-2-F10-CL1_3	112	DNA
33-28-4-D1-CLO_1	113	DNA
33-31-3-C8-CL2_1	114	DNA
48-24-1-D2-CL3_2	115	DNA
48-46-4-A11-CL1_4	116	DNA
51-1-4-C1-CL0_2	117	DNA
51-39-3-H2-CL1_2	118	DNA
51-42-3-F9-CL1_1	119	DNA
51-5-3-G2-CLO_4	120	DNA
57-18-4-H5-CL2_1	121	DNA
76-23-3-G8-CL1_1	122	DNA
76-23-3-G8-CL1_3	123	DNA
78-8-3-E6-CLO_1	124	DNA
19-10-1-C2-CL1_3	125	DNA
33-11-1-B11-CL1_2	126	DNA
33-113-2-B8-CL1_2	127	DNA
33-19-1-C11-CL1_1	128	DNA
33-61-2-F6-CLO_2	129	DNA
47-4-4-C6-CL2_2	130	DNA
48-54-1-G9-CL1_1	131	DNA
51-43-3-G3-CLO_1	132	DNA
55-1-3-D11-CLO_1	133	DNA
58-14-2-D3-CL1_2	134	DNA
58-35-2-B6-CL2_3	135	DNA
76-18-1-F6-CL1_1	136	DNA
76-23-3-G8-CL2_2	137	DNA
76-30-3-B7-CL1_1	138	DNA
78-21-3-G7-CL2_1	139	DNA
58-45-4-B11-CL13_2	140	DNA
20-5-2-C3-CL0_4	141	PRT
20-8-4-A11-CL2_6	142	PRT
21-1-4-F2-CL11_1	143	PRT
22-11-2-H9-CL1_1	144	PRT
25-7-3-D4-CLO_2	145	PRT
26-27-3-D7-CLO_1	146	PRT
26-35-4-H9-CL1_1	147	PRT

26-45-2-C4-CL2_6	148	PRT
27-1-2-B3-CLO_1	149	PRT
27-1-2-B3-CLO_2	150	PRT
27-19-3-G7-CL11_2	151	PRT
33-10-4-E2-CL13_4	152	PRT
33-10-4-H2-CL2_2	153	PRT
33-110-4-A5-CL1_1	154	PRT
33-13-1-C1-CL1_1	155	PRT
33-30-2-A6-CLO_1	156	PRT
33-35-4-F4-CL1_2	157	PRT
33-35-4-G1-CL1_2	158	PRT
33-36-3-E2-CL1_1	159	PRT
33-36-3-E2-CL1_2	160	PRT
33-36-3-F2-CL2_2	161	PRT
33-4-2-G5-CL2_1	162	PRT
33-49-1-H4-CL1_1	163	PRT
33-66-2-B10-CL4_1	164	PRT
33-97-4-G8-CL2_2	165	PRT
33-98-4-C1-CL1_3	166	PRT
47-14-1-C3-CLO_5	167	PRT
47-15-1-E11-CLO_1	168	PRT
47-15-1-H8-CLO_2	169	PRT
48-1-1-H7-CLO_1	170	PRT
48-1-1-H7-CLO_4	171	PRT
48-1-1-H7-CLO_5	172	PRT
48-3-1-H9-CLO_6	173	PRT
48-54-1-G9-CL2_1	174	PRT
48-54-1-G9-CL3_1	175	PRT
48-7-4-H2-CL2_2	176	PRT
51-11-3-D5-CL1_3	177	PRT
51-11-3-G9-CLO_1	178	PRT
51-15-4-A12-CL11_3	179	PRT
51-17-4-A4-CL3_1	180	PRT
51-2-3-F10-CL1_5	181	PRT
51-2-4-F5-CL11_2	182	PRT
51-27-4-F2-CLO_2	183	PRT
51-34-3-F8-CLO_2	184	PRT

57-1-4-E2-CL1_2	185	PRT
57-19-2-G8-CL2_1	186	PRT
57-27-3-G10-CL2_2	187	PRT
58-33-3-B4-CL1_2	188	PRT
58-34-3-C9-CL1_2	189	PRT
58-4-4-G2-CL2_1	190	PRT
58-48-1-G3-CL2_4	191	PRT
58-6-1-H4-CL1_1	192	PRT
60-12-1-E11-CL1_2	193	PRT
65-4-4-H3-CL1_1	194	PRT
74-5-1-E4-CL1_2	195	PRT
76-13-3-A9-CL1_2	196	PRT
76-16-1-D6-CL1_1	197	PRT
76-28-3-A12-CL1_5	198	PRT
76-42-2-F3-CLO_1	199	PRT
77-16-4-G3-CL1_3	200	PRT
77-39-4-H4-CL11_4	201	PRT
78-24-3-H4-CL2_1	202	PRT
78-27-3-D1-CL1_6	203	PRT
78-28-3-D2-CLO_2	204	PRT
78-7-1-G5-CL2_6	205	PRT
84-3-1-G10-CL11_6	206	PRT
58-48-4-E2-CLO_1	207	PRT
23-12-2-G6-CL1_2	208	PRT
25-8-4-B12-CL0_5	209	PRT
26-44-3-C5-CL2_1	210	PRT
27-1-2-B3-CL0_3	211	PRT
30-12-3-G5-CL0_1	212	PRT
33-106-2-F10-CL1_3	213	PRT
33-28-4-D1-CL0_1	214	PRT
33-31-3-C8-CL2_1	215	PRT
48-24-1-D2-CL3_2	216	PRT
48-46-4-A11-CL1_4	217	PRT
51-1-4-C1-CL0_2	218	PRT
51-39-3-H2-CL1_2	219	PRT
51-42-3-F9-CL1_1	220	PRT
51-5-3-G2-CL0_4	221	PRT

57-18-4-H5-CL2_1	222	PRT
76-23-3-G8-CL1_1	223	PRT
76-23-3-G8-CL1_3	224	PRT
78-8-3-E6-CL0_1	225	PRT
19-10-1-C2-CL1_3	226	PRT
33-11-1-B11-CL1_2	227	PRT
33-113-2-B8-CL1_2	228	PRT
33-19-1-C11-CL1_1	229	PRT
33-61-2-F6-CLO_2	230	PRT
47-4-4-C6-CL2_2	231	PRT
48-54-1-G9-CL1_1	232	PRT
51-43-3-G3-CLO_1	233	PRT
55-1-3-D11-CLO_1	234	PRT
58-14-2-D3-CL1_2	235	PRT
58-35-2-B6-CL2_3	236	PRT
76-18-1-F6-CL1_1	237	PRT
76-23-3-G8-CL2_2	238	PRT
76-30-3-B7-CL1_1	239	PRT
78-21-3-G7-CL2_1	240	PRT
58-45-4-B11-CL13_2	241	PRT
20-6-1-D11-FL2	242	DNA
20-8-4-A11-FL2	243	DNA
22-6-2-C1-FL2	244	DNA
22-11-2-H9-FL1	245	DNA
23-8-3-B1-FL1	246	DNA
24-3-3-C6-FL1	247	DNA
24-4-1-H3-FL1	248	DNA
26-45-2-C4-FL2	249	DNA
26-48-1-H10-FL1	250	DNA
26-49-1-A5-FL2	251	DNA
30-6-4-E3-FL3	252	DNA
33-6-1-G11-FL1	253	DNA
33-8-1-A3-FL2	254	DNA
33-11-3-C6-FL1	255	DNA
33-14-4-E1-FL1	256	DNA
33-21-2-D5-FL1	257	DNA
33-26-4-E10-FL1	258	DNA

33-27-1-E11-FL1	259	DNA
33-28-4-D1-FL1	260	DNA
33-28-4-E2-FL2	261	DNA
33-30-4-C4-FL1	262	DNA
33-35-4-F4-FL1	263	DNA
33-36-3-F2-FL2	264	DNA
33-52-4-F9-FL2	265	DNA
33-52-4-H3-FL1	266	DNA
33-59-1-B7-FL1	267	DNA
33-71-1-A8-FL1	268	DNA
33-72-2-B2-FL1	269	DNA
33-105-2-C3-FL1	270	DNA
33-107-4-C3-FL1	271	DNA
33-110-2-G4-FL1	272	DNA
47-7-4-D2-FL2	273	DNA
47-10-2-G12-FL1	274	DNA
47-14-3-D8-FL1	275	DNA
47-18-3-C2-FL1	276	DNA
47-18-3-G5-FL2	277	DNA
47-18-4-E3-FL2	278	DNA
48-3-1-H9-FL3	279	DNA
48-4-2-H3-FL1	280	DNA
48-6-1-C9-FL1	281	DNA
48-7-4-H2-FL2	282	DNA
48-8-1-D8-FL3	283	DNA
48-13-3-H8-FL1	284	DNA
48-19-3-A7-FL1	285	DNA
48-19-3-G1-FL1	286	DNA
48-25-4-D8-FL1	287	DNA
48-21-4-H4-FL1	288	DNA
48-26-3-B8-FL2	289	DNA
48-29-1-E2-FL1	290	DNA
48-31-3-F7-FL1	291	DNA
48-47-3-A5-FL1	292	DNA
51-1-1-G12-FL1	293	DNA
51-1-4-E9-FL3	294	DNA
51-1-4-E9-FL2	295	DNA

51-2-1-E10-FL1	296	DNA
51-2-3-F10-FL1	297	DNA
51-2-4-F5-FL1	298	DNA
51-3-3-B10-FL2	299	DNA
51-3-3-B10-FL3	300	DNA
51-7-3-G3-FL1	301	DNA
51-10-3-D11-FL1	302	DNA
51-11-3-D5-FL1	303	DNA
51-13-1-F7-FL3	304	DNA
51-15-4-H10-FL1	305	DNA
51-17-4-A4-FL1	306	DNA
51-18-1-C3-FL1	307	DNA
51-25-3-F3-FL1	308	DNA
51-27-1-E8-FL1	309	DNA
51-28-2-G1-FL2	310	DNA
51-39-3-H2-FL1	311	DNA
51-42-3-F9-FL1	312	DNA
51-44-4-H4-FL1	313	DNA
55-1-3-H10-FL1	314	DNA
55-5-4-A6-FL1	315	DNA
58-26-3-D1-FL1	316	DNA
57-18-1-D5-FL1	317	DNA
57-27-3-A11-FL1	318	DNA
57-27-3-G10-FL2	319	DNA
58-10-3-D12-FL1	320	DNA
58-11-1-G10-FL1	321	DNA
58-11-2-G8-FL2	322	DNA
58-36-3-A9-FL2	323	DNA
58-38-1-A2-FL2	324	DNA
58-38-1-E5-FL1	325	DNA
58-44-2-B3-FL3	326	DNA
58-45-3-H11-FL1	327	DNA
58-53-2-B12-FL2	328	DNA
59-9-4-A10-FL1	329	DNA
60-16-3-A6-FL1	330	DNA
60-17-3-G8-FL2	331	DNA
62-5-4-B10-FL1	332	DNA

65-4-4-H3-FL1	333	DNA
74-3-1-B9-FL1	334	DNA
76-4-1-G5-FL1	335	DNA
76-7-3-A12-FL1	336	DNA
76-16-4-C9-FL3	337	DNA
76-30-3-B7-FL1	338	DNA
77-5-1-C2-FL1	339	DNA
77-5-4-E7-FL1	340	DNA
77-11-1-A3-FL1	341	DNA
77-16-3-D7-FL1	342	DNA .
77-16-4-G3-FL1	343	DNA
77-25-1-A6-FL1	344	DNA
77-26-2-F2-FL3	345	DNA
78-6-2-E3-FL2	346	DNA
78-7-1-G5-FL2	347	DNA
78-16-2-C2-FL1	348	DNA
78-18-3-B4-FL3	349	DNA
78-20-1-G11-FL1	350	DNA
78-22-3-E10-FL1	351	DNA
78-24-2-B8-FL1	352	DNA
78-24-3-A8-FL1	353	DNA
78-24-3-H4-FL2	354	DNA
78-25-1-F11-FL1	355	DNA
78-26-1-B5-FL1	356	DNA
78-27-3-D1-FL1	357	DNA
78-29-1-B2-FL1	358	DNA
78-29-4-B6-FL1	359	DNA
14-1-3-E6-FL1	360	DNA
30-9-1-G8-FL2	361	DNA
33-10-4-H2-FL2	362	DNA
33-10-4-H2-FL1	363	DNA
74-10-3-C9-FL2	364	DNA
33-97-4-G8-FL3	365	DNA
33-97-4-G8-FL2	366	DNA
33-104-4-H4-FL1	367	DNA
47-2-3-B3-FL1	368	DNA
47-37-4-G11-FL1	369	DNA

-132-

370 DNA 371 DNA 372 DNA 372 DNA 373 DNA 374 DNA 375 DNA 376 DNA 377 DNA 378 PRT 379 PRT 380 PRT 381 PRT 382 PRT 383 PRT
372 DNA 373 DNA 374 DNA 375 DNA 376 DNA 377 DNA 377 DNA 378 PRT 379 PRT 380 PRT 381 PRT 382 PRT 383 PRT 384 PRT
373 DNA 374 DNA 375 DNA 376 DNA 377 DNA 378 PRT 379 PRT 380 PRT 381 PRT 382 PRT 383 PRT 384 PRT
374 DNA 375 DNA 376 DNA 377 DNA 378 PRT 379 PRT 380 PRT 381 PRT 382 PRT 383 PRT 384 PRT
375 DNA 376 DNA 377 DNA 377 DNA 378 PRT 379 PRT 380 PRT 381 PRT 382 PRT 383 PRT 384 PRT
376 DNA 377 DNA 378 PRT 379 PRT 380 PRT 381 PRT 382 PRT 383 PRT 384 PRT
377 DNA 378 PRT 379 PRT 380 PRT 381 PRT 382 PRT 383 PRT 384 PRT
378 PRT 379 PRT 380 PRT 381 PRT 382 PRT 383 PRT 384 PRT
379 PRT 380 PRT 381 PRT 382 PRT 383 PRT 384 PRT
380 PRT 381 PRT 382 PRT 383 PRT 384 PRT
381 PRT 382 PRT 383 PRT 384 PRT
382 PRT 383 PRT 384 PRT
383 PRT 384 PRT
384 PRT
205
385 PRT
386 PRT
387 PRT
388 PRT
889 PRT
90 PRT
91 PRT
92 PRT
93 PRT
94 PRT
95 PRT
96 PRT
97 PRT
98 PRT
99 PRT
DO PRT
D1 PRT
O2 PRT
O3 PRT
14 PRT
5 PRT
6 PRT

33-107-4-C3-FL1	407	PRT
33-110-2-G4-FL1	408	PRT
47-7-4-D2-FL2	409	PRT
47-10-2-G12-FL1	410	PRT
47-14-3-D8-FL1	411	PRT
47-18-3-C2-FL1	412	PRT
47-18-3-G5-FL2	413	PRT
47-18-4-E3-FL2	414	PRT
48-3-1-H9-FL3	415	PRT
48-4-2-H3-FL1	416	PRT
48-6-1-C9-FL1	417	PRT
48-7-4-H2-FL2	418	PRT
48-8-1-D8-FL3	419	PRT
48-13-3-H8-FL1	420	PRT
48-19-3-A7-FL1	421	PRT
48-19-3-G1-FL1	422	PRT
48-25-4-D8-FL1	423	PRT
48-21-4-H4-FL1	424	PRT
48-26-3-B8-FL2	425	PRT
48-29-1-E2-FL1	426	PRT
48-31-3-F7-FL1	427	PRT
48-47-3-A5-FL1	428	PRT
51-1-1-G12-FL1	429	PRT
51-1-4-E9-FL3	430	PRT
51-1-4-E9-FL2	431	PRT
51-2-1-E10-FL1	432	PRT
51-2-3-F10-FL1	433	PRT
51-2-4-F5-FL1	434	PRT
51-3-3-B10-FL2	435	PRT
51-3-3-B10-FL3	436	PRT
51-7-3-G3-FL1	437	PRT
51-10-3-D11-FL1	438	PRT
51-11-3-D5-FL1	439	PRT
51-13-1-F7-FL3	440	PRT
51-15-4-H10-FL1	441	PRT
51-17-4-A4-FL1	442	PRT
51-18-1-C3-FL1	443	PRT

51-25-3-F3-FL1	444	PRT
51-27-1-E8-FL1	445	PRT
51-28-2-G1-FL2	446	PRT
51-39-3-H2-FL1	447	PRT
51-42-3-F9-FL1	448	PRT
51-44-4-H4-FL1	449	PRT
55-1-3-H10-FL1	450	PRT
55-5-4-A6-FL1	451	PRT
58-26-3-D1-FL1	452	PRT
57-18-1-D5-FL1	453	PRT
57-27-3-A11-FL1	454	PRT
57-27-3-G10-FL2	455	PRT
58-10-3-D12-FL1	456	PRT
58-11-1-G10-FL1	457	PRT
58-11-2-G8-FL2	458	PRT
58-36-3-A9-FL2	459	PRT
58-38-1-A2-FL2	460	PRT
58-38-1-E5-FL1	461	PRT
58-44-2-B3-FL3	462	PRT
58-45-3-H11-FL1	463	PRT
58-53-2-B12-FL2	464	PRT
59-9-4-A10-FL1	465	PRT
60-16-3-A6-FL1	466	PRT
60-17-3-G8-FL2	467	PRT
62-5-4-B10-FL1	468	PRT
65-4-4-H3-FL1	469	PRT
74-3-1-B9-FL1	470	PRT
76-4-1-G5-FL1	471	PRT
76-7-3-A12-FL1	472	PRT
76-16-4-C9-FL3	473	PRT
76-30-3-B7-FL1	474	PRT
77-5-1-C2-FL1	475	PRT
77-5-4-E7-FL1	476	PRT
77-11-1-A3-FL1	477	PRT
77-16-3-D7-FL1	478	PRT
77-16-4-G3-FL1	479	PRT
77-25-1-A6-FL1	480	PRT

77-26-2-F2-FL3	481	PRT
78-6-2-E3-FL2	482	PRT
78-7-1-G5-FL2	483	PRT
78-16-2-C2-FL1	484	PRT
78-18-3-B4-FL3	485	PRT
78-20-1-G11-FL1	486	PRT
78-22-3-E10-FL1	487	PRT
78-24-2-B8-FL1	488	PRT
78-24-3-A8-FL1	489	PRT
78-24-3-H4-FL2	490	PRT
78-25-1-F11-FL1	491	PRT
78-26-1-B5-FL1	492	PRT
78-27-3-D1-FL1	493	PRT
78-29-1-B2-FL1	494	PRT
78-29-4-B6-FL1	495	PRT
14-1-3-E6-FL1	496	PRT
30-9-1-G8-FL2	497	PRT
33-10-4-H2-FL2	498	PRT
33-10-4-H2-FL1	499	PRT
74-10-3-C9-FL2	500	PRT
33-97-4-G8-FL3	501	PRT
33-97-4-G8-FL2	502	PRT
33-104-4-H4-FL1	503	PRT
47-2-3-B3-FL1	504	PRT
47-37-4-G11-FL1	505	PRT
57-25-1-F10-FL2	506	PRT
58-19-3-D3-FL1	507	PRT
58-34-3-C9-FL2	508	PRT
58-48-4-E2-FL2	509	PRT
76-21-1-C4-FL1	510	PRT
78-26-2-H7-FL1	511	PRT
77-20-2-E11-FL1	512	PRT
47-1-3-F7-FL2	513	PRT

-136-

TABLE VIII

ID	Locations	PROSITE Signature Name	
195	110-121	Aldehyde dehydrogenases csyteine active site	
221	28-37	ATP synthase alpha and beta subunits signature	
223	171-181	Regulator of chromosome condensation (RCC1) signature 2	
225	90-112	Phosphatidylethanolamine-binding protein family signature	
226	10-34	Protein kinases ATP-binding region signature	

WHAT IS CLAIMED IS:

- A purified or isolated nucleic acid comprising the sequence of one of SEQ ID NOs: 40-140 and 242 377 or a sequence complementary thereto.
- 2. A purified or isolated nucleic acid comprising at least 10 consecutive bases of the sequence of one of SEQ ID NOs: 40-140 and 242-377 or one of the sequences complementary thereto.
 - 3. A purified or isolated nucleic acid comprising the full coding sequences of one of SEQ ID Nos: 40, 42-44, 46, 48, 49, 51, 53, 60, 62-72, 76-78, 80-83, 85-88, 90, 93, 94, 97, 99-102, 104, 107-125, 127, 132, 135-138, 140 and 242-377wherein the full coding sequence comprises the sequence encoding signal peptide and the sequence encoding mature protein.
- A purified or isolated nucleic acid comprising the nucleotides of one of SEQ ID NOs: 40-44, 46, 48, 49, 51-53, 55, 56, 58-72, 75-78, 80-88, 90, 93, 94, 97, 99-125, 127, 132, 133, 135-138, 140, and 242-377 which encode a mature protein.
- 5. A purified or isolated nucleic acid comprising the nucleotides of one of SEQ ID NOs: 40, 42-46, 48, 49, 51, 53, 57, 60, 62-73, 76-78, 80-83, 85-88, 90, 93-95, 97, 99-102, 104, 107-125, 127, 128, 130, 132, 134-140 and 242-377 which encode the signal peptide.
 - 6. A purified or isolated nucleic acid encoding a polypeptide having the sequence of one of the sequences of SEQ ID NOs: 141-241 and 378-513.
- A purified or isolated nucleic acid encoding a polypeptide having the sequence of a mature protein included in one of the sequences of SEO ID NOs: 141-145, 147, 149, 150, 152-154, 156, 157, 159-172, 176-179, 181-20
 189, 191, 194, 195, 198, 200-226, 228, 233, 234, 236-239, 241 and 378-513.
 - 8. A purified or isolated nucleic acid encoding a polypeptide having the sequence of a signal peptide included in one of the sequences of SEQ ID NOs: 141, 143-147, 149, 150, 152, 154, 158, 161, 163-174, 177-179, 181-184, 186-189, 191, 194-196, 198, 200-203, 205, 208-226, 228, 229, 231, 233, 235-241, and 378-513.
 - A purified or isolated protein comprising the sequence of one of SEO ID NOs: 141-241 and 378-513.
- 25 10. A purified or isolated polypeptide comprising at least 10 consecutive amino acids of one of the sequences of SEQ ID NOs: 141-241 and 378-513.
 - 11. An isolated or purified polypeptide comprising a signal peptide of one of the polypeptides of SEQ ID NOs: 141, 143-147, 149, 150, 152, 154, 158, 161, 163-174, 177-179, 181-184, 186-189, 191, 194-196, 198, 200-203, 205, 208-226, 228, 229, 231, 233, 235-241, and 378-513.
- An isolated or purified polypeptide comprising a mature protein of one of the polypeptides of SEQ ID
 NOs: 141-145, 147, 149, 150, 152-154, 156, 157, 159-172, 176-179, 181-189, 191, 194, 195, 198, 200-226, 228, 233, 234, 236-239, 241 and 378-513.
 - 13. A method of making a protein comprising one of the sequences of SEQ ID NO: 141-241 and 378-513, comprising the steps of:

WO 99/31236 PCT/IB98/02122

-138-

obtaining a cDNA comprising one of the sequences of sequence of SEQ ID NO: 40-140 and 242-377; inserting said cDNA in an expression vector such that said cDNA is operably linked to a promoter; and introducing said expression vector into a host cell whereby said host cell produces the protein encoded by said cDNA.

- 5 14. The method of Claim 13, further comprising the step of isolating said protein.
 - 15. A protein obtainable by the method of Claim 14.
 - 16. A host cell containing a recombinant nucleic acid of Claim 1.
 - 17. A purified or isolated antibody capable of specifically binding to a protein having the sequence of one of SEQ ID NOs: 141-241 and 378-513.
- 10 18. In an array of polynucleotides of at least 15 nucleotides in length, the improvement comprising inclusion in said array of at least one of the sequences of SEQ ID NOs: 40-140 and 242-377, or one of the sequences complementary to the sequences of SEQ ID NOs: 40-140 and 242-377, or a fragment thereof of at least 15 consecutive nucleotides.
- A purified or isolated nucleic acid of at least 15 bases capable of hybridizing under stringent
 conditions to the sequence of one of SEQ ID NOs: 40-140 and 242-377 or a sequence complementary to one of the sequences of SEQ ID NOs: 40-140 and 242-377.
 - 20. A purified or isolated antibody capable of binding to a polypeptide comprising at least 10 consecutive amino acids of the sequence of one of SEQ ID NOs: 141-241 and 378-513.

Figure 1

Minimum signal peptide score	false positive rate	false negative rate	proba(0.1)	proba(0.2)
3,5	0,121	0,036	0,467	0,664
4	0,096	0,06	0,519	0,708
4,5	0,078	0,079	0,565	0,745
5	0,062	0,098	0,615	0,782
5,5	0,05	0,127	0,659	0,813
6	0,04	0,163	0,694	0,836
6,5	0,033	0,202	0,725	0,855
7	0,025	0,248	0,763	0,878
7,5	0,021	0,304	0,78	0,889
8	0,015	0,368	0,816	0,909
8,5	0,012	0,418	0,836	0,92
9	0,009	0,512	0,856	0,93
9,5	0,007	0,581	0,863	0,934
10	0,006	0,679	0,835	0,919

influence of minimum score on signal peptide recognition

Minimum signal peptide score		New ESTs	ESTs matching public EST closer than 40 bp from beginning	ESTs extending known mRNA more than 40 bp	ESTs extending public EST more than 40 bp
3,5	2674	947	599	23	150
4	2278	784	499	23	126
4,5	1943	647	425	22	112
5	1657	523	353	21	96
5,5	1417	419	307	19	80
6	1190	340	238	18	68
6,5	1035	280	186	18	60
7	893	219	161	15	48
7,5	753	173	132	12	36
8	636	133	101	11	29
8,5	543	104	83	8	26
9	456	81	63	6	24
9,5	364	57	48	6	18
10	303	47	35	6	15

					
Tissue	All ESTs	New ESTs	ESTs matching public EST closer than 40 bp from beginning	ESTs extending known mRNA more than 40 bp	ESTs extending public EST more than 40 bp
Brain	329	131	75	3	24
Cancerous prostate	134	40	37	1	6
Cerebellum	17	9	1	0	6
Colon	21	11	4	0	o
Dystrophic muscle	41	18	8	0	1
Fetal brain	70	37	16	0	1
Fetal kidney	227	116	46	1	19
Fetal liver	13	7	2	Ô	0
Heart	30	15	7	0	1
Hypertrophic prostate	86	23	22	2	2
Kidney	10	7	3	0	ō
Large intestine	21	8	4	0	11
Liver	23	9	6	0	ó
Lung	24	12	4	Ō	1
Lung (cells)	57	38	6	0	4
Lymph ganglia	163	60	23	2	12
Lymphocytes	23	6	4	0	2
Muscle	33	16	6	0	4
Normal prostate	181	61	45	7	11
Ovary	90	57	12	1	2
Pancreas	48	11	6	0	1
Placenta	24	5	1	0	
Prostate	34	16	4	0	0 2 1
Spleen	56	28	10	Ō	1
Substantia nigra	108	47	27	1	6
Surrenals	15	3	3	1	ŏ
Testis	131	68	25	1	8
Thyroid	17	8	2	0	2
Umbilical cord	55	17	12	1	2 3
Uterus	28	15	3	0	2
Non tissue-specific	568	48	177	2	28
Total	2677	947	601	23	150

WO 99/31236

Plasmid name: pED6dpc2 Plasmid size: 5374 bp 8/15

FIGURE 8

WO 99/31236

9/15

PCT/IB98/02122

Description of Transcription Factor Binding Sites present on promoters isolated from SignalTag sequences

Promoter sequence P13H2 (546 bp):

Matrix	Position	Orientation	Score	Length	Sequence
CMYB_01	-502	+	0.983	9	TGTCAGTTG
MYOD_Q6	-501	⊷.	0.961	10	CCCAACTGAC
S8_01	-444	•	0.960	11	AATAGAATTAG
S8_01	-425	+	0.966	11	AACTAAATTAG
DELTAEF1_01	-390	•	0.960	11	GCACACCTCAG
GATA_C	-364	•	0.964	11	AGATAAATCCA
CMYB_01	-349	+	0.958	9	CTTCAGTTG
GATA1_02	-343	+	0.959	14	TTGTAGATAGGACA
GATA_C	-339	+	0.953	11	AGATAGGACAT
TAL1ALPHAE47_01	-235	+	0.973	16	CATAACAGATGGTAAG
TAL1BETAE47_01	-235	+	0.983	16	CATAACAGATGGTAAG
TAL1BETAITF2_01	-235	+	0.978	16	CATAACAGATGGTAAG
MYOD_Q6	-232	•	0.954	10	ACCATCTGTT
GATA1_04	-217	-	0.953	13	TCAAGATAAAGTA
IK1_01	-126	+	0.963	13	AGTTGGGAATTCC
IK2_01	-126	+	0.985	12	AGTTGGGAATTC
CREL_01	-123	+	0.962	10	TGGGAATTCC
GATA1_02	-9 6	+	0.950	14	TCAGTGATATGGCA
SRY_02	-41		0.951	12	TAAAACAAAACA
E2F_02	-33	+	0.957	8	TTTAGCGC
MZF1_01	-5	-	0.975	8	TGAGGGGA

Promoter sequence P15B4 (861bp):

Matrix	Position	Orientation	Score	Length	Sequence
NFY_Q6	-748	-	0.956	11	GGACCAATCAT
MZF1_01	-738	+	0.962	8	CCTGGGGA
CMYB_01	-684	+	0.994	9	TGACCGTTG
VMYB_02	-682	-	0.985	9	TCCAACGGT
STAT_01	-673	+	0.968	9	TTCCTGGAA
STAT_01	-673	•	0.951	9	TTCCAGGAA
MZF1_01	-556	-	0.956	8	TTGGGGGA
IK2_01	-451	+	0.965	12	GAATGGGATTTC
MZF1_01	-424	+	0.986	8	AGAGGGGA
SRY_02	-398	-	0.955	12	GAAAACAAAACA
MZF1_01	-216	+	0.960	8	GAAGGGGA
MYOD_Q6	-190	+	0.981	10	AGCATCTGCC
DELTAEF1_01	-176	+	0.958	11	TCCCACCTTCC
S8_01	5	-	0.992	11	GAGGCAATTAT
MZF1_01	16	-	0.986	8	AGAGGGGA

Promoter sequence P29B6 (555 bp):

Matrix	Position	Orientation	Score	Length	Sequence
ARNT_01	-311	+	0.964	16	GGACTCACGTGCTGCT
NMYC_01	-309	+	0.965	12	ACTCACGTGCTG
USF_01	-309	+	0.985	12	ACTCACGTGCTG
USF_01	-309	-	0.985	12	CAGCACGTGAGT
NMYC_01	-309	-	0.956	12	CAGCACGTGAGT
MYCMAX_02	-309	•	0.972	12	CAGCACGTGAGT
USF_C	-307	+	0.997	8	TCACGTGC
USF_C	-307	•	0.991	8	GCACGTGA
MZF1_01	-292	-	0.968	8	CATGGGGA
ELK1_02	-105	+	0.963	14	CTCTCCGGAAGCCT
CETS1P54_01	-102	+	0.974	10	TCCGGAAGCC
AP1_Q4	-42	-	0.963	11	AGTGACTGAAC
AP1FJ_Q2	-42	-	0.961	11	AGTGACTGAAC
PADS_C	45	+	1.000	9	TGTGGTCTC

Figure 9

10/15

100.0% identity in 125 aa overlap 20 30 40 50 SEQ ID NO: 217 MADEELEALRRQRLAELQAKHGDPGDAAQQEAKHREAEMRNSILAQVLDQSARARLSNLA SEQ ID NO: 516 MADEELEALRRQRLAELQAKHGDPGDAAQQEAKHREAEMRNSILAQVLDQSARARLSNLA 10 20 30 40 50 60 70 80 90 100 110 120 SEQ ID NO: 217 LVKPEKTKAVENYLIQMARYGQLSEKVSEQGLIEILKKVSQQTEKTTTVKFNRRKVMDSD SEQ ID NO: 516 LVKPEKTKAVENYLIQMARYGQLSEKVSEQGLIEILKKVSQQTEKTTTVKFNRRKVMDSD 70 80 90 100 110 SEQ ID NO: 217 EDDDY ::::X SEQ ID NO: 516 EDDDY

FIGURE 10

WO 99/31236 PCT/IB98/02122

11/15

CLUSTAL W(1.5) multiple sequence alignment

SEQ SEQ	ID ID	NO:	517 232 174 175	MFCPLKLILLPVLLDYSLGLNDLNVSPPELTVHVGDSALMGCVFQSTEDKCIFKIDWTLSMGCVFQSTEDKCIFKIDWTLSMGCVFQSTEDKRIFKIDWTLS
SEQ SEQ	ID ID	NO: NO: NO:	232 174	PGEHAKDEYVLYYYSNLSVPIGRFQNRVHLMGDNLCNDGSLLLQDVQDVE
SEQ SEQ	ID ID	NO: NO: NO:	232 174	KGESQVFKKAVVLHVLPEEPKGTQMLTKGESQVFKKAVVLHVLPEEPKELMVHVGGLIQMGCVFQSTEVKHVTKVEWIFSGRRAKEEKGESQVFKKAVVLHVLPEEPKELMVHVGGLIQMGCVFQSTEVKHVTKVEWIFSGRRAK
SEQ SEQ	ID ID	NO: NO: NO:	232 174	IVFRYYHKLRMSAEYSQSWGHFQNRVNLVGDIFRNDGSIMLQGVRESDGGNYTCSIHLGN VTRRKHHCVREGSG
SEQ SEQ	ID ID	NO: NO: NO: NO:	232 174	LVFKKTIVLHVSPEEPRTLVTPAALRPLVLGGNQLVIIVGIVCATILLLPVLILIVKKTC
SEQ SEQ	ID ID		232 174	GNKSSVNSTVLVKNTKKTNP

PCT/IB98/02122 WO 99/31236

12/15

99.6% identity in 225 aa overlap SEQ ID NO: 515 PTAVQKEEARQDVEALLSRTVRTQILTGKELRVATQEKEGSSGRCMLTLLGLSFILAGLI SEQ ID NO: 231 LRVATQEKEGSSGRCMLTLLGLSFILAGLI SEQ ID NO: 515 VGGACIYKYFMPKSTIYRGEMCFFDSEDPANSLRGGEPNFLPVTEEADIREDDNIAIIDV SEQ ID NO: 231 VGGACIYKYFMPKSTIYRGEMCFFDSEDPANSLRGGEPNFLPVTEEADIREDDNIAIIDV SEQ ID NO: 515 PVPSFSDSDPAAIIHDFEKGMTAYLDLLLGNCYLMPLNTSIVMPPKNLVELFGKLASGRY SEQ ID NO: 231 PVPSFSDSDPAAIIHDFEKGMTAYLDLLLGICYLMPLNTSIVMPPKNLVELFGKLASGRY SEQ ID NO: 515 LPQTYVVREDLVAVEEIRDVSNLGIFIYQLCNNRKSFRLRRRDLLLGFNKRAIDKCWKIR SEQ ID NO: 231 LPQTYVVREDLVAVEEIRDVSNLGIFIYQLCNNRKSFRLRRRDLLLGFNKRAIDKCWKIR SEQ ID NO: 515 HFPNEFIVETKICQE

SEQ ID NO: 231 HFPNEFIVETKICQE

WO 99/31236 PCT/IB98/02122

13/15

99.7% identity in 353 aa overlap SEQ ID NO:196 MERGLKSADPRDGTGYTGWAGIAVLYLHLY SEQ ID NO:518 LAEGYFDAAGRLTPEFSQRLTNKIRELLQQMERGLKSADPRDGTGYTGWAGIAVLYLHLY a٥ SEQ ID NO:196 DVFGDPAYLQLAHGYVKQSLNCLTKRSITFLCGDAGPLAVAAVLYHKMNNEKQAEDCITR SEQ ID NO:518 DVFGDPAYLQLAHGYVKQSLNCLTKRSITFLCGDAGPLAVAAVLYHKMNNEKQAEDCITR SEQ ID NO:196 LIHLNKIDPHAPNEMLYGRIGYIYALLFVNKNFGVEKTPQSHIQQICETILTSGENLARK SEQ ID NO:518 LIHLNKIDPHAPNEMLYGRIGYIYALLFVNKNFGVEKIPQSHIQQICETILTSGENLARK SEQ ID NO:196 RNFTAKSPLMYEWYQEYYVGAAHGLAGIYYYLMQPSLQVSQGKLHSLVKPSVDYVCQLKF SEQ ID NO:518 RNFTAKSPLMYEWYQEYYVGAAHGLAGIYYYLMQPSLQVSQGKLHSLVKPSVDYVCQLKF SEQ ID NO:196 PSGNYPPCIGDNRDLLVHWCHGAPGVIYMLIQAYKVFREEKYLCDAYQCADVIWOYGLLK SEQ ID NO:518 PSGNYPPCIGDNRDLLVHWCHGAPGVIYMLIQAYKVFREEKYLCDAYQCADVIWQYGLLK SEQ ID NO:196 KGYGLCHGSAGNAYAFLTLYNLTQDMKYLYRACKFAEWCLEYGEHGCRTPDTPFSLFEGM SEQ ID NO:518 KGYGLCHGSAGNAYAFLTLYNLTQDMKYLYRACKFAEWCLEYGEHGCRTPDTPFSLFEGM SEQ ID NO:196 AGTIYFLADLLVPTKARFPAFEL SEQ ID NO:518 AGTIYFLADLLVPTKARFPAFEL

WO 99/31236 PCT/IB98/02122

14/15

98.5% identity in 194 aa overlap SEQ ID NO:519 ARNLPPLTDAQKNKLRHLSVVTLAAKVKCIPYAVLLEALALRNVRQLEDLVIEAVYADVL SEQ ID NO:158 ARNLPPLTEAQKNKLRHLSVVTLAAKVKCIPYAVLLEALALRNVRQLEDLVIEAVYADVL SEQ ID NO:519 RGSLDQRNQRLEVDYSIGRDIQRQDLSAIAQTLQEWCVGCEVVLSGIEEQVSRANQHKEQ SEQ ID NO:158 RGSLDQRNQRLEVDYSIGRDIQRQDLSAIARTLQEWCVGCEVVLSGIEEQVSRANQHKEQ SEQ ID NO:519 QLGLKQQIESEVANLKKTIKVTTAAAAAATSQDPEQHLTELREPASGTNQRQPSKKASKG SEQ ID NO:158 QLGLKQQIESEVANLKKTIKVTTAAAAAATSQDPEQHLTELREPAPGTNQRQPSKKASKG SEQ ID NO:519 KGLRGSAKIWSKSN SEQ ID NO:158 KGLRGSAKIWSKSN 88.7% identity in 62 aa overlap SEQ ID NO:519 MSAEVKVTGQNQEQFLLLAKSAKGAALATLIHQVLEAPGVYVFGELLDMPNVRELAESDF SEQ ID NO:158 MSAEVKVTGQNQEQFLLLAKSAKGAALATLIHQVLEAPGVYVFGELLDMPNVRELXARNL SEQ ID NO:519 AS

SEQ ID NO:158 PP

15/15

68.9% identity in 74 aa overlap

SEQ ID NO:514 MMTGRQGRATFQFLPDEARSLPPPKLTDPRLAFVGFLGYCSGLIDNAIRRRPVLLAGLHR
10 20 30 40 50 60

60 70

SEQ ID NO:226 QLLYITAFFLLDIIL

SEQ ID NO:514 QLLYITSFVFVGYYLLKRQDYMYAVRDHDMFSYIKSHPEDFPEKDKKTYGEVFEEFHPVR 70 80 90 100 110 120

. WO 99/31236 PCT/IB98/02122

<110> Dumas Milne Edwards, Jean-Baptiste
Duclert, Aymeric
Bougueleret, Lydie

<120> Extended cDNAS for Secreted Proteins

<130> GENSET.019A

<160> 519

<210> 2

<170> Patent.pm

<210> 1
<211> 47
<212> RNA
<213> Artificial Sequence
<220>
<221> In vitro transcription product
<221> modified_base
<222> (1)...(1)
<223> m7g
<400> 1

ngcauccuac ucccauccaa uuccacccua acuccuccca ucuccac

<211> 46 <212> RNA <213> Artificial Sequence <220> <223> In vitro transcription product <400> 2

gcauccuacu cccauccaau uccacccuaa cuccucccau cuccac

<210> 3
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> In vitro transcription product
<400> 3
atcaagaatt cgcacgagac catta

<210> 4 <211> 25 <212> DNA <213> Artificial Sequence 25

47

46

WO 99/31236 -2- PCT/IB98/02122

<220> <223> Oligonucleotide	
<400> 4 taatggtete gtgegaatte ttgat	25
<210> 5 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 5 ccgacaagac caacgtcaag gccgc	25
<210> 6 <211> 25 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 6 tcaccagcag gcagtggctt aggag	25
<210> 7 <211> 25 <212> DNA <213> Artificial Sequence	
<211> 25 <212> DNA	
<211> 25 <212> DNA <213> Artificial Sequence <220>	25
<211> 25 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 7	25
<211> 25 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 7 agtgattcct gctactttgg atggc <210> 8 <211> 25 <212> DNA	25

<210> 10
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 10
agggaggagg aaacagcgtg agtcc
25

<210> 11
<211> 25
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 11

atgggaaagg aaaagactca tatca

25

<210> 12
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 12
agcagcaaca atcaggacag cacag

<210> 13
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Oligonucleotide

<400> 13
atcaagaatt cgcacgagac catta

<210>		
<211>		
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide	
<400>		
atcgtt	gaga ctcgtaccag cagagtcacg agagagacta cacggtactg gttttttttt	60
tttttv	n e e e e e e e e e e e e e e e e e e e	67
<210>	15	
<211>	29	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide	
	•	
<400>	15	
ccagca	ngagt cacgagagag actacacgg	29
<210>	16	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Oligonucleotide	
<400>	16	
cacgag	gagag actacacggt actgg	25
	·	
	1D	
<210>		
<211>		
<212>		
<213>	Homo sapiens	
<220>		
	misc_feature	
	complement (261376)	
<223>	blastn	
	misc_feature	
	complement (380486)	
<223>	blastn	
.00-	ning forburn	
	misc_feature	
	complement (110145)	
<223>	blastn	
.00-	-i facture	
	misc_feature	
	complement (196229)	
<223>	blastn	

```
<221> sig_peptide
<222> 90..140
<223> Von Heijne matrix
<400> 17
                                                                  60
aatatrarac agctacaata ttccagggcc artcacttgc catttctcat aacagcgtca
                                                                  113
qagagaaaga actgactgar acgtttgag atg aag aaa gtt ctc ctc ctg atc
                              Met Lys Lys Val Leu Leu Leu Ile
                                      -15
aca gec atc ttg gca gtg gct gtw ggt ttc cca gtc tct caa gac cag
                                                                  161
Thr Ala Ile Leu Ala Val Ala Val Gly Phe Pro Val Ser Gln Asp Gln
               - 5
                                  1
gaa cga gaa aaa aga agt atc agt gac agc gat gaa tta gct tca ggr
                                                                  209
Glu Arg Glu Lys Arg Ser Ile Ser Asp Ser Asp Glu Leu Ala Ser Gly
                          15
                                                                  257
wtt ttt gtg ttc cct tac cca tat cca ttt cgc cca ctt cca cca att
Xaa Phe Val Phe Pro Tyr Pro Tyr Pro Phe Arg Pro Leu Pro Pro Ile
                       30
cca ttt cca aga ttt cca tgg ttt aga cgt aan ttt cct att cca ata
                                                                  305
Pro Phe Pro Arg Phe Pro Trp Phe Arg Arg Xaa Phe Pro Ile Pro Ile
40
                   45
                                   50
cct gaa tct gcc cct aca act ccc ctt cct agc gaa aag taaacaaraa
                                                                  354
Pro Glu Ser Ala Pro Thr Thr Pro Leu Pro Ser Glu Lys
ggaaaagtca crataaacct ggtcacctga aattgaaatt gagccacttc cttgaaraat
                                                                  414
                                                                  474
caaaattcct gttaataaaa raaaaacaaa tgtaattgaa atagcacaca gcattctcta
                                                                  526
<210> 18
<211> 17
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> 1..17
<223> Von Heijne matrix
     score 8.2
     seg LLLITAILAVAVG/FP
Met Lys Lys Val Leu Leu Ile Thr Ala Ile Leu Ala Val Ala Val
               5
1
Gly
<210> 19
<211> 822
<212> DNA
<213> Homo sapiens
<220>
<221> misc_feature
<222> 260..464
<223> blastn
<221> misc_feature
<222> 118..184
```

WO 99/31236 -6- PCT/IB98/02122

<223> blastn	
<221> misc_feature	
<222> 56113	
<223> blastn	
<221> misc_feature	
<222> 454485	
<223> blastn	
<221> misc feature	
<222> 118545	
<223> blastn	
<221> misc feature	
<222> 65369	
<223> blastn	
<221> misc_feature	
<222> 61399	
<223> blastn	
2207 2200	
<221> misc_feature	
<222> 408458	
<223> blastn	
C2237 DIGSCII	
221. ming forture	
<221> misc_feature	
<223> blastn	
non mine facture	
<221> misc_feature	
<222> 393432	
<223> blastn	
<221> sig_peptide	
<222> 346408	
<223> Von Heijne matrix	
<400> 19	
actcctttta gcataggggc ttcggcgcca gcggccagcg ctagtcggtc tggtaagtgc	60
ctgatgccga gttccgtctc tcgcgtcttt tcctggtccc aggcaaagcg gasgnagatc	120
ctcaaacggc ctagtgcttc gcgcttccgg agaaaatcag cggtctaatt aattcctctg	180
gtttgttgaa gcagttacca agaatcttca accctttccc acaaaagcta attgagtaca	240
cgttcctgtt gagtacacgt tcctgttgat ttacaaaagg tgcaggtatg agcaggtctg	300
aagactaaca ttttgtgaag ttgtaaaaca gaaaacctgt tagaa atg tgg tgt ttt	357
Met Trp Trp Phe	
-20	
cag caa ggc ctc agt ttc ctt cct tca gcc ctt gta att tgg aca tct	405
Gln Gln Gly Leu Ser Phe Leu Pro Ser Ala Leu Val Ile Trp Thr Ser	
-15 -10 -5	
gct gct ttc ata ttt tca tac att act gca gta aca ctc cac cat ata	453
Ala Ala Phe Ile Phe Ser Tyr Ile Thr Ala Val Thr Leu His His Ile	
1 5 10 15	
gac cog got tta cot tat atc agt gac act ggt aca gta got coa raa	501
Asp Pro Ala Leu Pro Tyr Ile Ser Asp Thr Gly Thr Val Ala Pro Xaa	
20 25 30	
aaa tgc tta ttt ggg gca atg cta aat att gcg gca gtt tta tgt caa	549
Lys Cys Leu Phe Gly Ala Met Leu Asn Ile Ala Ala Val Leu Cys Gln	
35 40 45	
aaa tagaaatcag gaarataatt caacttaaag aakttcattt catgaccaaa	602
	002
Lys	662
ctcttcaraa acatgtcttt acaagcatat ctcttgtatt gctttctaca ctgttgaatt	002

-7-WO 99/31236 PCT/IB98/02122 -

722

782

gtctggcaat atttctgcag tggaaaattt gatttarmta gttcttgact gataaatatg

gtaaggtggg cttttccccc tgtgtaattg gctactatgt cttactgagc caagttgtaw 822 ' tttqaaataa aatgatatga gagtgacaca aaaaaaaaaa <210> 20 <211> 21 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> 1..21 <223> Von Heijne matrix score 5.5 seq SFLPSALVIWTSA/AF <400> 20 Met Trp Trp Phe Gln Gln Gly Leu Ser Phe Leu Pro Ser Ala Leu Val 10 Ile Trp Thr Ser Ala 20 <210> 21 <211> 405 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> complement (103..398) <223> blastn <221> sig_peptide <222> 185..295 <223> Von Heijne matrix 60 atcaccttct tctccatcct tstctgggcc agtccccarc ccagtccctc tcctgacctg 120 cccagcccaa gtcagccttc agcacgcgct tttctgcaca cagatattcc aggcctacct ggcattccag gacctccgma atgatgctcc agtcccttac aagcgcttcc tggatgaggg 180 229 tggc atg gtg ctg acc acc ctc ccc ttg ccc tct gcc aac agc cct gtg Met Val Leu Thr Thr Leu Pro Leu Pro Ser Ala Asn Ser Pro Val -30 aac atg ccc acc act ggc ccc aac agc ctg agt tat gct agc tct gcc 277 Asn Met Pro Thr Thr Gly Pro Asn Ser Leu Ser Tyr Ala Ser Ser Ala -10 -15 ctg tcc ccc tgt ctg acc gct cca aak tcc ccc cgg ctt gct atg atg 325 Leu Ser Pro Cys Leu Thr Ala Pro Xaa Ser Pro Arg Leu Ala Met Met 1 374 cct gac aac taaatatcct tatccaaatc aataaarwra raatcctccc Pro Asp Asn 405 tccaraaggg tttctaaaaa caaaaaaaaa a

<210> 22

<211> 37

<212> PRT

WO 99/31236 PCT/IB98/02122

<213> Homo sapiens <220> <221> SIGNAL <222> 1..37 <223> Von Heijne matrix score 5.9 seq LSYASSALSPCLT/AP <400> 22 Met Val Leu Thr Thr Leu Pro Leu Pro Ser Ala Asn Ser Pro Val Asn 10 5 Met Pro Thr Thr Gly Pro Asn Ser Leu Ser Tyr Ala Ser Ser Ala Leu 20 Ser Pro Cys Leu Thr 35 <210> 23 <211> 496 <212> DNA <213> Homo sapiens <220> <221> misc_feature <222> 149..331 <223> blastn <221> misc_feature <222> 328..485 <223> blastn <221> misc_feature <222> complement (182..496) <223> blastn <221> sig_peptide <222> 196..240 <223> Von Heijne matrix 60 aaaaaattqq tcccaqtttt cacctgccg cagggctggc tggggagggc agcggtttag attagccgtg gcctaggccg tttaacgggg tgacacgagc ntgcagggcc gagtccaagg 120 cccggagata ggaccaaccg tcaggaatgc gaggaatgtt tttcttcgga ctctatcgag 180 231 gcacacagac agacc atg ggg att ctg tct aca gtg aca gcc tta aca ttt Met Gly Ile Leu Ser Thr Val Thr Ala Leu Thr Phe -10 -15 gcc ara gcc ctg gac ggc tgc aga aat ggc att gcc cac cct gca agt 279 Ala Xaa Ala Leu Asp Gly Cys Arg Asn Gly Ile Ala His Pro Ala Ser 10 gag aag cac aga ctc gag aaa tgt agg gaa ctc gag asc asc cac tcg 327 Glu Lys His Arg Leu Glu Lys Cys Arg Glu Leu Glu Xaa Xaa His Ser 15 20 gcc cca gga tca acc cas cac cga aga aaa aca acc aga aga aat tat 375 Ala Pro Gly Ser Thr Xaa His Arg Arg Lys Thr Thr Arg Arg Asn Tyr 40 35 tct tca gcc tgaaatgaak ccgggatcaa atggttgctg atcaragccc 424 Ser Ser Ala atatttaaat tggaaaagtc aaattgasca ttattaaata aagcttgttt aatatgtctc 484 aaacaaaaaa aa 496

WO 99/31236 -9- PCT/IB98/02122 ·

```
<210> 24
<211> 15
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> 1..15
<223> Von Heijne matrix
     score 5.5
     seq ILSTVTALTFAXA/LD
Met Gly Ile Leu Ser Thr Val Thr Ala Leu Thr Phe Ala Xaa Ala
                                    10
<210> 25
<211> 623
<212> DNA
<213> Homo sapiens
<220>
<221> sig_peptide
<222> 49..96
<223> Von Heijne matrix
<400> 25
aaagateeet geageeegge aggagagaag getgageett etggegte atg gag agg
                                                      Met Glu Arg
                                                                      105
ctc gtc cta acc ctg tgc acc ctc ccg ctg gct gtg gcg tct gct ggc
Leu Val Leu Thr Leu Cys Thr Leu Pro Leu Ala Val Ala Ser Ala Gly
                                -5
tgc gcc acg acg cca gct cgc aac ctg agc tgc tac cag tgc ttc aag
                                                                      153
Cys Ala Thr Thr Pro Ala Arg Asn Leu Ser Cys Tyr Gln Cys Phe Lys
    5
                        10
gtc agc agc tgg acg gag tgc ccg ccc acc tgg tgc agc ccg ctg gac
                                                                      201
Val Ser Ser Trp Thr Glu Cys Pro Pro Thr Trp Cys Ser Pro Leu Asp
                                        30
                    25
caa gtc tgc atc tcc aac gag gtg gtc gtc tct ttt aaa tgg agt gta
                                                                      249
Gln Val Cys Ile Ser Asn Glu Val Val Val Ser Phe Lys Trp Ser Val
                                     45
                40
cgc gtc ctg ctc agc aaa cgc tgt gct ccc aga tgt ccc aac gac aac
                                                                      297
Arg Val Leu Leu Ser Lys Arg Cys Ala Pro Arg Cys Pro Asn Asp Asn
atg aak ttc gaa tgg tcg ccg gcc ccc atg gtg caa ggc gtg atc acc
                                                                      345
Met Xaa Phe Glu Trp Ser Pro Ala Pro Met Val Gln Gly Val Ile Thr
                                                80
        70
agg cgc tgc tgt tec tgg gct ctc tgc aac agg gca ctg acc cca cag
                                                                       393
Arg Arg Cys Cys Ser Trp Ala Leu Cys Asn Arg Ala Leu Thr Pro Gln
gag ggg cgc tgg gcc ctg cra ggg ggg ctc ctg ctc cag gac cct tcg
                                                                       441
Glu Gly Arg Trp Ala Leu Xaa Gly Gly Leu Leu Leu Gln Asp Pro Ser
                                         110
                    105
100
agg ggc ara aaa acc tgg gtg cgg cca cag ctg ggg ctc cca ctc tgc
                                                                       489
Arg Gly Xaa Lys Thr Trp Val Arg Pro Gln Leu Gly Leu Pro Leu Cys
                                    125
ctt ccc awt tcc aac ccc ctc tgc cca rgg gaa acc cag gaa gga
                                                                       534
```

WO 99/31236 -10- PCT/IB98/02122

Leu Pro Xaa Ser Asn Pro Leu Cys Pro Xaa Glu Thr Gln Glu Gly 135 140 145	
	94 23
<210> 26 <211> 16	
<212> PRT	
<213> Homo sapiens	
<220>	
<221> SIGNAL	
<223> Von Heijne matrix	
score 10.1 seq LVLTLCTLPLAVA/SA	
<pre><400> 26 Met Glu Arg Leu Val Leu Thr Leu Cys Thr Leu Pro Leu Ala Val Ala</pre>	
1 5 10 15	
<210> 27 <211> 848	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> sig_peptide	
<222> 3273 <223> Von Heijne matrix	
<pre><400> 27 aactttgcct tgtgttttcc accetgaaag a atg ttg tgg ctg ctc ttt ttt</pre>	52
Met Leu Trp Leu Leu Phe Phe	-
-10 ctg gtg act gcc att cat gct gaa ctc tgt caa cca ggt gca gaa aat 10	00
Leu Val Thr Ala Ile His Ala Glu Leu Cys Gln Pro Gly Ala Glu Asn	•
-5 1 5	40
gct ttt aaa gtg aga ctt agt atc aga aca gct ctg gga gat aaa gca 14 Ala Phe Lys Val Arg Leu Ser Ile Arg Thr Ala Leu Gly Asp Lys Ala	48
10 15 20 25	
	96
Tyr Ala Trp Asp Thr Asn Glu Glu Tyr Leu Phe Lys Ala Met Val Ala 30 35 40	
and and may aga ama got out and again and are are	44
Phe Ser Met Arg Lys Val Pro Asn Arg Glu Ala Thr Glu Ile Ser His 45 50 55	
	92
Val Leu Leu Cys Asn Val Thr Gln Arg Val Ser Phe Trp Phe Val Val	
60 65 70 aca gae eet tea aaa aat eac ace ett eet get gtt gag gtg caa tea 34	40
Thr Asp Pro Ser Lys Asn His Thr Leu Pro Ala Val Glu Val Gln Ser	- •
75 80 85	00
gcc ata aga atg aac aag aac cgg atc aac aat gcc ttc ttt cta aat 38 Ala Ile Arg Met Asn Lys Asn Arg Ile Asn Asn Ala Phe Phe Leu Asn	88
90 95 100 105	
3 J	36
Asp Gln Thr Leu Glu Phe Leu Lys Ile Pro Ser Thr Leu Ala Pro Pro	

110 115 120	
atg gac cca tct gtg ccc atc tgg att att ata ttt ggt gtg ata ttt	484
Met Asp Pro Ser Val Pro Ile Trp Ile Ile Phe Gly Val Ile Phe	
125 130 135	
tgc atc atc ata gtt gca att gca cta ctg att tta tca ggg atc tgg	532
Cys Ile Ile Ile Val Ala Ile Ala Leu Leu Ile Leu Ser Gly Ile Trp	
140 145 150	
caa cgt ada ara aag aac aaa gaa cca tct gaa gtg gat gac gct gaa	580
Gln Arg Xaa Xaa Lys Asn Lys Glu Pro Ser Glu Val Asp Asp Ala Glu	
155 160 165	
rat aak tgt gaa aac atg atc aca att gaa aat ggc atc ccc tct gat	628
Xaa Xaa Cys Glu Asn Met Ile Thr Ile Glu Asn Gly Ile Pro Ser Asp	
170 175 180 185	
ccc ctg gac atg aag gga ggg cat att aat gat gcc ttc atg aca gag	676
Pro Leu Asp Met Lys Gly Gly His Ile Asn Asp Ala Phe Met Thr Glu	
190 195 200	
gat gag agg ctc acc cct ctc tgaagggctg ttgttctgct tcctcaaraa	727
Asp Glu Arg Leu Thr Pro Leu	
205	
attaaacatt tgtttctgtg tgactgctga gcatcctgaa ataccaagag cagatcatat	787
wttttgtttc accattcttc ttttgtaata aattttgaat gtgcttgaaa aaaaaaaaaa	847
c	848

<210> 28 <211> 14

<212> PRT

<213> Homo sapiens

<220>

<221> SIGNAL

<222> 1..14

<223> Von Heijne matrix
 score 10.7
 seq LWLLFFLVTAIHA/EL

<400> 28

Met Leu Trp Leu Leu Phe Phe Leu Val Thr Ala Ile His Ala 1 5 10

<210> 29

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Oligonucleotide

<400> 29

gggaagatgg agatagtatt gcctg

25

<210> 30

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Olignucleotide <400> 30 ctgccatgta catgatagag agattc

26

PCT/IB98/02122

<210> 31 <211> 546 <212> DNA <213> Homo sapiens <220> <221> promoter <222> 1..517 <221> transcription start site <222> 518 <221> protein_bind <222> 17..25 <223> matinspector prediction name CMYB_01 score 0.983 sequence tgtcagttg <221> protein_bind <222> complement (18..27) <223> matinspector prediction name MYOD Q6 score 0.961 sequence cccaactgac <221> protein_bind <222> complement (75..85) <223> matinspector prediction name S8_01 score 0.960 sequence aatagaattag <221> protein_bind <222> 94..104 <223> matinspector prediction name S8 01 score 0.966 sequence aactaaattag <221> protein_bind <222> complement (129..139) <223> matinspector prediction name DELTAEF1_01 score 0.960 sequence gcacacctcag <221> protein_bind <222> complement (155..165) <223> matinspector prediction name GATA C score 0.964 sequence agataaatcca

<221> protein_bind

WO 99/31236 -13 - PCT/IB98/02122

- <222> 170..178
 <223> matinspector prediction
 name CMYB_01
 score 0.958
 sequence cttcagttg
- <221> protein_bind
- <222> 176..189
- <223> matinspector prediction name GATA1_02 score 0.959 sequence ttgtagataggaca
- <221> protein_bind
- <222> 180..190
- <223> matinspector prediction
 name GATA_C
 score 0.953
 sequence agataggacat
- <221> protein_bind
- <222> 284..299
- <223> matinspector prediction
 name TAL1ALPHAE47_01
 score 0.973
 sequence cataacagatggtaag
- <221> protein_bind
- <222> 284..299
- <223> matinspector prediction
 name TAL1BETAE47_01
 score 0.983
 sequence cataacagatggtaag
- <221> protein_bind
- <222> 284..299
- <223> matinspector prediction name TAL1BETAITF2_01 score 0.978 sequence cataacagatggtaag
- <221> protein_bind
- <222> complement (287..296)
- <223> matinspector prediction name MYOD_Q6 score 0.954 sequence accatctgtt
- <221> protein bind
- <222> complement (302..314)
- <223> matinspector prediction name GATA1_04 score 0.953 sequence tcaagataaagta
- <221> protein bind
- <222> 393..405
- <223> matinspector prediction
 name IK1_01
 score 0.963
 sequence agttgggaattcc

PCT/IB98/02122

<221> protein_bind <222> 393..404 <223> matinspector prediction name IK2 01 score 0.985 sequence agttgggaattc <221> protein bind <222> 396..405 <223> matinspector prediction name CREL 01 score 0.962 sequence tgggaattcc <221> protein_bind <222> 423..436 <223> matinspector prediction name GATA1_02 score 0.950 sequence tcagtgatatggca <221> protein_bind <222> complement (478..489) <223> matinspector prediction name SRY 02 score 0.951 sequence taaaacaaaca <221> protein_bind <222> 486..493 <223> matinspector prediction name E2F 02 score 0.957 sequence tttagcgc <221> protein bind <222> complement (514..521) <223> matinspector prediction name MZF1 01 score 0.975 sequence tgagggga 60 tgagtgcagt gttacatgtc agttgggtta agtttgttaa tgtcattcaa atcttctatg tcttgatttg cctgctaatt ctattatttc tggaactaaa ttagtttgat ggttctatta 120 gttattgact gaggtgtgct aatctcccat tatgtggatt tatctatttc ttcagttgta 180 gataggacat tgatagatac ataagtacca ggacaaaagc agggagatct tttttccaaa 240 atcaggagaa aaaaatgaca tctggaaaac ctatagggaa aggcataaca gatggtaagg 300 atactttatc ttgagtagga gagccttcct gtggcaacgt ggagaaggga agaggtcgta 360 gaattgagga gtcagctcag ttagaagcag ggagttggga attccgttca tgtgatttag 420 catcagtgat atggcaaatg tgggactaag ggtagtgatc agagggttaa aattgtgtgt 480 tttgttttag cgctgctggg gcatcgcctt gggtcccctc aaacagattc ccatgaatct 540 546 cttcat

<210> 32

<211> 23

<212> DNA

<213> Artificial Sequence

WO 99/31236 -15- PCT/IB98/02122

<223> Oligonucleotide <400> 32 gtaccaggga ctgtgaccat tgc 23 <210> 33 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> Oligonucleotide <400> 33 ctgtgaccat tgctcccaag agag 24 <210> 34 <211> 861 <212> DNA <213> Homo sapiens <220> <221> promoter <222> 1..806 <221> transcription start site <222> 807 <221> protein_bind <222> complement(60..70) <223> matinspector prediction name NFY Q6 score 0.956 sequence ggaccaatcat <221> protein_bind <222> 70..77 <223> matinspector prediction name MZF1 01 score 0.962 sequence cctgggga <221> protein_bind <222> 124..132 <223> matinspector prediction name CMYB_01 score 0.994 sequence tgaccgttg <221> protein_bind <222> complement (126..134) <223> matinspector prediction name VMYB 02 score 0.985 sequence tccaacggt

<221> protein_bind <222> 135..143

WO 99/31236 -16- PCT/IB98/02122

- <223> matinspector prediction
 name STAT_01
 score 0.968
 sequence ttcctggaa
- <221> protein_bind
- <222> complement (135..143)
- <223> matinspector prediction name STAT_01 score 0.951 sequence ttccaggaa
- <221> protein bind
- <222> complement (252..259)
- <223> matinspector prediction name MZF1_01 score 0.956 sequence ttggggga
- <221> protein_bind
- <222> 357..368
- <223> matinspector prediction
 name IK2_01
 score 0.965
 sequence gaatgggatttc
- <221> protein bind
- <222> 384..391
- <223> matinspector prediction name MZF1_01 score 0.986 sequence agagggga
- <221> protein_bind
- <222> complement (410..421)
- <223> matinspector prediction name SRY_02 score 0.955 sequence gaaaacaaaaca
- <221> protein_bind
- <222> 592..599
- <223> matinspector prediction name MZF1_01 score 0.960 sequence gaaggga
- <221> protein_bind
- <222> 618..627
- <223> matinspector prediction name MYOD_Q6 score 0.981 sequence agcatctgcc
- <221> protein_bind
- <222> 632..642
- <223> matinspector prediction name DELTAEF1_01 score 0.958 seguence tcccaccttcc
- <221> protein_bind

-17-WO 99/31236 PCT/IB98/02122

```
<222> complement (813..823)
<223> matinspector prediction
     name S8 01
      score 0.992
      sequence gaggcaattat
<221> protein bind
<222> complement (824..831)
<223> matinspector prediction
     name MZF1_01
      score 0.986
      sequence agaggga
<400> 34
tactataggg cacgcgtggt cgacggccgg gctgttctgg agcagagggc atgtcagtaa
                                                                   120
tgattggtcc ctggggaagg tctggctggc tccagcacag tgaggcattt aggtatctct
                                                                   180
eggtgacegt tggatteetg gaageagtag etgttetgtt tggatetggt agggacaggg
ctcagagggc taggcacgag ggaaggtcag aggagaaggs aggsarggcc cagtgagarg
                                                                   240
ggagcatgcc ttcccccaac cctggcttsc ycttggymam agggcgktty tgggmacttr
                                                                   300
aaytcagggc ccaascagaa scacaggccc aktcntggct smaagcacaa tagcctgaat
                                                                   360
420
ccaaatcaag gtaacttgct cccttctgct acgggccttg gtcttggctt gtcctcaccc
                                                                   480
                                                                   540
agteggaact coctaccact tteaggagag tggttttagg cocgtggggc tgttctgttc
caagcagtgt gagaacatgg ctggtagagg ctctagctgt gtgcggggcc tgaaggggag
                                                                   600
tgggttctcg cccaaagagc atctgcccat ttcccacctt cccttctccc accagaagct
                                                                   660
tgcctgagct gtttggacaa aaatccaaac cccacttggc tactctggcc tggcttcagc
                                                                   720
ttggaaccca atacctaggc ttacaggcca tcctgagcca ggggcctctg gaaattctct
                                                                   780
tcctgatggt cctttaggtt tgggcacaaa atataattgc ctctcccctc tcccattttc
                                                                   840
                                                                   861
tctcttggga gcaatggtca c
<210> 35
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 35
                                                                    20
ctgggatgga aggcacggta
<210> 36
<211> 20
<212> DNA
<213> Artificial Sequence
<220>
<223> Oligonucleotide
<400> 36
gagaccacac agctagacaa
                                                                    20
<210> 37
<211> 555
```

<212> DNA

<213> Homo sapiens

WO 99/31236 PCT/IB98/02122 .

<220> <221> promoter <222> 1..500 <221> transcription start site <222> 501 <221> protein_bind <222> 191..206 <223> matinspector prediction name ARNT_01 score 0.964 sequence ggactcacgtgctgct <221> protein_bind <222> 193..204 <223> matinspector prediction name NMYC_01 score 0.965 sequence actcacgtgctg <221> protein_bind <222> 193..204 <223> matinspector prediction name USF_01 score 0.985 sequence actcacgtgctg <221> protein_bind <222> complement(193..204) <223> matinspector prediction name USF 01 score 0.985 sequence cagcacgtgagt <221> protein_bind <222> complement(193..204) <223> matinspector prediction name NMYC_01 score 0.956 sequence cagcacgtgagt <221> protein_bind <222> complement (193..204) <223> matinspector prediction name MYCMAX_02 score 0.972 sequence cagcacgtgagt <221> protein_bind <222> 195..202 <223> matinspector prediction name USF C score 0.997 sequence tcacgtgc <221> protein_bind <222> complement (195..202) <223> matinspector prediction name USF C

score 0.991

WO 99/31236 -19- PCT/IB98/02122

sequence gcacgtga <221> protein bind <222> complement (210..217) <223> matinspector prediction name MZF1_01 score 0.968 sequence catgggga <221> protein_bind <222> 397..410 <223> matinspector prediction name ELK1 02 score 0.963 sequence ctctccggaagcct <221> protein bind <222> 400..409 <223> matinspector prediction name CETS1P54 01 score 0.974 sequence tccggaagcc <221> protein_bind <222> complement(460..470) <223> matinspector prediction name AP1 Q4 score 0.963 sequence agtgactgaac <221> protein_bind <222> complement (460..470) <223> matinspector prediction name AP1FJ_Q2 score 0.961 sequence agtgactgaac <221> protein bind <222> 547..555 <223> matinspector prediction name PADS C score 1.000 sequence tgtggtctc <400> 37 60 ctatagggca cgcktggtcg acggcccggg ctggtctggt ctgtkgtgga gtcgggttga aggacagcat ttgtkacatc tggtctactg caccttccct ctgccgtgca cttggccttt 120 180 kawaagetea geaceggtge ceateacagg geeggeagea cacacatece attacteaga aggaactgac ggactcacgt gctgctccgt ccccatgagc tcagtggacc tgtctatgta 240 300 gagcagtcag acagtgcctg ggatagagtg agagttcagc cagtaaatcc aagtgattgt cattcctgtc tgcattagta actcccaacc tagatgtgaa aacttagttc tttctcatag 360

gttgctctgc ccatggtccc actgcagacc caggcactct ccggaagcct ggaaatcacc

cgtgtcttct gcctgctccc gctcacatcc cacacttgtg ttcagtcact gagttacaga

ttttgcctcc tcaatttctc ttgtcttagt cccatcctct gttcccctgg ccagtttgtc

420

480

540

555

<210> 38 <211> 19 <212> DNA <213> Artificial Sequence

tagctgtgtg gtctc

WO 99/31236 -20- PCT/IB98/02122

<220> <223> Oligonucleotide	
<400> 38 ggccatacac ttgagtgac	19
<210> 39 <211> 19 <212> DNA <213> Artificial Sequence	
<220> <223> Oligonucleotide	
<400> 39 atatagacaa acgcacacc	19
<210> 40 <211> 568	
<212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 7471	
<221> sig_peptide	
<222> 799 <223> Von Heijne matrix	
score 6.9 seq LLLVPSALSLLLA/LL	
<221> polyA_signal <222> 537542	
<221> polyA_site <222> 554568	
<400> 40 gggacc atg ttc acc agc acc ggc tcc agt ggg ctc tac aag gcg cct Met Phe Thr Ser Thr Gly Ser Ser Gly Leu Tyr Lys Ala Pro	48
-30 -25 -20 ctg tcg aag agc ctt ctg ctg gtc ccc agt gcc ctc tcc ctc ctg ctc Leu Ser Lys Ser Leu Leu Leu Val Pro Ser Ala Leu Ser Leu Leu Leu	96
-15 -10 -5 gcc ctc ctc ctg cct cac tgc cag aag ccc ttt gtg tat gac ctt cac	144
Ala Leu Leu Pro His Cys Gln Lys Pro Phe Val Tyr Asp Leu His	144
1 5 10 15 gca gtc aag aac gac ttc cag att tgg agg ttg ata tgt gga aga ata	192
Ala Val Lys Asn Asp Phe Gln Ile Trp Arg Leu Ile Cys Gly Arg Ile 20 25 30	
att tgc ctt gat ttg aaa gat act ttc tgc agt agt ctg ctt att tat	240
Ile Cys Leu Asp Leu Lys Asp Thr Phe Cys Ser Ser Leu Leu Ile Tyr 35 40 45	
aat ttt agg ata ttt gaa aga aga tat gga agc aga aaa ttt gca tcc Asn Phe Arg Ile Phe Glu Arg Arg Tyr Gly Ser Arg Lys Phe Ala Ser	288
50 55 60	

-21-WO 99/31236 PCT/IB98/02122

ttt ttg															
Phe Leu					Val					Phe					336
65					70					75			•		
att gaa Ile Glu									Thr					Leu	384
80				85					90		,			95	
cct tct	gga	tta	atc	ttt	tgt	tgt	gct	ttt	tgc	tct	gag	act	aaa	ctc	432
Pro Ser	Gly		Ile 100	Phe	Cys	Cys	Ala	Phe 105	Cys	Ser	Glu	Thr	Lys 110	Leu	
ttc tta	tca	aga	caa	gct	atg	gca	gag	aac	ttt	tcc	atc	taat	taaat	tt	481
Phe Leu	Ser	Arg 115	Gln	Āla	Met	Ala	Glu 120	Asn	Phe	Ser	Ile				
aagagtag	at t	cate	tata	t go	ittaa	qaqt	ago	actet	gac	tato	rtata	atq t	tqtat	aataa	541
acctaca			-						_		•	_			568
acctaca	-40	·cuau	uuuu	u uc	uuuu										
<210> 43	1														
<211> 5	59														
<212> D	JA														
<213> He		anie	ns												
\ 2 23> 11	JO L	,aprc	110												
<220>															
<221> C															
<222> 1	383	32													
<221> po			al												
<222> 5	575	62													
<400> 43	L														
agggggc	gtg g	ggcc	atgg	it go	tctt	gcgg	gcg	ggga	aga	agac	cttt	ct o	cccc	ctctc	60
tgccgcg	oct t			a co	racto	tcaa	cto	gata		aged	cggc	eqc c	gago	gcagg	120
		cgcc	tgcc	·	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				cyy	~5~5					120
gatacqq		_	_		-	gcaa		-			gaa	_			176
gatacgg		_	_		-	gcaa		-			gaa	atg	gcg	gac	
gatacgg		_	_		-	gcaa		-			gaa	atg		gac	
_	ege d	cagc	a <u>ā</u> g9	it ca	igaaa		cat	tgaa	itgc	agaa		atg Met 1	gcg Ala	gac Asp	176
ttc tac	aag	cagc gaa	gggg ttt	tta	agt	aaa	aat	tgaa ttt	cag	agaa	cgc	atg Met 1 atg	gcg Ala tat	gac Asp tat	
ttc tac	aag	cagc gaa	gggg ttt	tta	agt Ser	aaa	aat	tgaa ttt	cag	agaa aag Lys	cgc	atg Met 1 atg	gcg Ala tat	gac Asp tat	176
ttc tac Phe Tyr 5	aag Lys	cagc gaa Glu	gggg ttt Phe	t ca tta Leu	agt Ser 10	aaa Lys	aat Asn	ttgaa ttt Phe	cag Gln	agaa aag Lys 15	cgc Arg	atg Met 1 atg Met	gcg Ala tat Tyr	gac Asp tat Tyr	176 224
ttc tac Phe Tyr 5 aac aga	aag Lys gat	gaa Glu tgg	9999 ttt Phe tac	tta Leu aag	agt Ser 10	aaa Lys aat	aat Asn ttt	ttt The gcc	cag Gln atc	agaa aag Lys 15 acc	cgc Arg	atg Met 1 atg Met	gcg Ala tat Tyr	gac Asp tat Tyr	176
ttc tac Phe Tyr 5	aag Lys gat	gaa Glu tgg	9999 ttt Phe tac	tta Leu aag	agt Ser 10	aaa Lys aat	aat Asn ttt	ttt The gcc	cag Gln atc	agaa aag Lys 15 acc	cgc Arg	atg Met 1 atg Met	gcg Ala tat Tyr	gac Asp tat Tyr	176 224
ttc tac Phe Tyr 5 aac aga	aag Lys gat	gaa Glu tgg	9999 ttt Phe tac	tta Leu aag	agt Ser 10	aaa Lys aat	aat Asn ttt	ttt The gcc	cag Gln atc	agaa aag Lys 15 acc	cgc Arg	atg Met 1 atg Met	gcg Ala tat Tyr	gac Asp tat Tyr	176 224
ttc tac Phe Tyr 5 aac aga Asn Arg 20	aag Lys gat Asp	gaa Glu tgg Trp	gggg ttt Phe tac Tyr	tta Leu aag Lys 25	agt Ser 10 cgc Arg	aaa Lys aat Asn	aat Asn ttt Phe	ttt Phe gcc Ala	cag Gln atc Ile	agaa aag Lys 15 acc Thr	cgc Arg ttc Phe	atg Met 1 atg Met ttc Phe	gcg Ala tat Tyr atg Met	gac Asp tat Tyr gga Gly 35	176 224
ttc tac Phe Tyr 5 aac aga Asn Arg 20 aaa gtg	aag Lys gat Asp	gaa Glu tgg Trp	gggg ttt Phe tac Tyr	tta Leu aag Lys 25 agg	agt Ser 10 cgc Arg	aaa Lys aat Asn	aat Asn ttt Phe	ttt Phe gcc Ala	cag Gln atc Ile 30 ctt	agaa aag Lys 15 acc Thr	cgc Arg ttc Phe	atg Met 1 atg Met ttc Phe	gcg Ala tat Tyr atg Met	gac Asp tat Tyr gga Gly 35 aag	176 224 272
ttc tac Phe Tyr 5 aac aga Asn Arg 20	aag Lys gat Asp	gaa Glu tgg Trp ctg Leu	gggg ttt Phe tac Tyr gaa Glu	tta Leu aag Lys 25 agg	agt Ser 10 cgc Arg	aaa Lys aat Asn	aat Asn ttt Phe	ttt Phe gcc Ala aag	cag Gln atc Ile 30 ctt	agaa aag Lys 15 acc Thr	cgc Arg ttc Phe	atg Met 1 atg Met ttc Phe	gcg Ala tat Tyr atg Met caa Gln	gac Asp tat Tyr gga Gly 35 aag	176 224 272
ttc tac Phe Tyr 5 aac aga Asn Arg 20 aaa gtg Lys Val	aag Lys gat Asp gcc	gaa Glu tgg Trp ctg Leu	gggggtttt Phe tac Tyr gaa Glu 40	tta Leu aag Lys 25 agg Arg	agt Ser 10 cgc Arg	aaa Lys aat Asn tgg	aat Asn ttt Phe aac Asn	ttt Phe gcc Ala aag Lys 45	cag Gln atc Ile 30 ctt Leu	agaa aag Lys 15 acc Thr aaa Lys	cgc Arg ttc Phe cag Gln	atg Met 1 atg Met ttc Phe aaa Lys	gcg Ala tat Tyr atg Met caa Gln 50	gac Asp tat Tyr gga Gly 35 aag	176 224 272 320
ttc tac Phe Tyr 5 aac aga Asn Arg 20 aaa gtg Lys Val aag agg	aag Lys gat Asp gcc Ala	gaa Glu tgg Trp ctg Leu	gggggtttt Phe tac Tyr gaa Glu 40	tta Leu aag Lys 25 agg Arg	agt Ser 10 cgc Arg	aaa Lys aat Asn tgg	aat Asn ttt Phe aac Asn	ttt Phe gcc Ala aag Lys 45	cag Gln atc Ile 30 ctt Leu	agaa aag Lys 15 acc Thr aaa Lys	cgc Arg ttc Phe cag Gln	atg Met 1 atg Met ttc Phe aaa Lys	gcg Ala tat Tyr atg Met caa Gln 50	gac Asp tat Tyr gga Gly 35 aag	176 224 272
ttc tac Phe Tyr 5 aac aga Asn Arg 20 aaa gtg Lys Val	aag Lys gat Asp gcc Ala	gaa Glu tgg Trp ctg Leu aac Asn	gggggtttt Phe tac Tyr gaa Glu 40	tta Leu aag Lys 25 agg Arg	agt Ser 10 cgc Arg	aaa Lys aat Asn tgg	aat Asn ttt Phe aac Asn	ttt Phe gcc Ala aag Lys 45	cag Gln atc Ile 30 ctt Leu	agaa aag Lys 15 acc Thr aaa Lys	cgc Arg ttc Phe cag Gln	atg Met 1 atg Met ttc Phe aaa Lys	gcg Ala tat Tyr atg Met caa Gln 50	gac Asp tat Tyr gga Gly 35 aag	176 224 272 320
ttc tac Phe Tyr 5 aac aga Asn Arg 20 aaa gtg Lys Val aag agg Lys Arg	aag Lys gat Asp gcc Ala agc	gaa Glu tgg Trp ctg Leu aac Asn	gggg ttt Phe tac Tyr gaa Glu 40 tagg	tta Leu aag Lys 25 agg Arg	agt Ser 10 cgc Arg att Ile	aaa Lys aat Asn tgg Trp	aat Asn ttt Phe aac Asn	ttt Phe gcc Ala aag Lys 45	cag Gln atc Ile 30 ctt Leu	agaa Lys 15 acc Thr aaa Lys	cgc Arg ttc Phe cag Gln	atg Met 1 atg Met ttc Phe aaa Lys	gcg Ala tat Tyr atg Met caa Gln 50	gac Asp tat Tyr gga Gly 35 aag Lys	176 224 272 320 372
ttc tac Phe Tyr 5 aac aga Asn Arg 20 aaa gtg Lys Val aag agg Lys Arg	aag Lys gat Asp gcc Ala agc Ser	gaa Glu tgg Trp ctg Leu aac Asn 55	ggggg ttt Phe tac Tyr gaa Glu 40 tagg	tta Leu aag Lys 25 agg Arg	agt Ser 10 cgc Arg att Ile	aaa Lys aat Asn tgg Trp	aat Asn ttt Phe aac Asn	ttt Phe gcc Ala aag Lys 45 ca gc	cag Gln atc Ile 30 ctt Leu	agaa Lys 15 acc Thr aaa Lys	cgc Arg ttc Phe cag Gln	atg Met 1 atg Met ttc Phe aaa Lys	gcg Ala tat Tyr atg Met caa Gln 50 ccac	gac Asp tat Tyr gga Gly 35 aag Lys	176 224 272 320 372 432
ttc tac Phe Tyr 5 aac aga Asn Arg 20 aaa gtg Lys Val aag agg Lys Arg aggaagca	aag Lys gat Asp gcc Ala agc Ser	gaa Glu tgg Trp ctg Leu aac Asn 55	ggggg ttt Phe tac Tyr gaa Glu 40 tagg	tta Leu aag Lys 25 agg Arg	agt Ser 10 cgc Arg att Ile	aaa Lys aat Asn tgg Trp	aat Asn ttt Phe aac Asn	ttt Phe gcc Ala aag Lys 45 ca gc	cag Gln atc Ile 30 ctt Leu caga	agaa Lys 15 acc Thr aaa Lys	cgc Arg ttc Phe cag Gln agg	atg Met 1 atg Met ttc Phe aaa Lys	gcg Ala tat Tyr atg Met caa Gln 50 ccac	gac Asp tat Tyr gga Gly 35 aag Lys	176 224 272 320 372 432 492
ttc tac Phe Tyr 5 aac aga Asn Arg 20 aaa gtg Lys Val aag agg Lys Arg aggaagcagcagcagcccaa	aag Lys gat Asp gcc Ala agc Ser	gaa Glu tgg Trp ctg Leu aac Asn 55	ggggg ttt Phe tac Tyr gaa 40 tagg	tta Leu aag Lys 25 agg Arg	agt Ser 10 cgc Arg att Ile	aaa Lys aat Asn tgg Trp	aat Asn ttt Phe aac Asn	ttt Phe gcc Ala aag Lys 45 ca gc	cag Gln atc Ile 30 ctt Leu caga	agaa Lys 15 acc Thr aaa Lys	cgc Arg ttc Phe cag Gln agg	atg Met 1 atg Met ttc Phe aaa Lys	gcg Ala tat Tyr atg Met caa Gln 50 ccac	gac Asp tat Tyr gga Gly 35 aag Lys	176 224 272 320 372 432 492 552
ttc tac Phe Tyr 5 aac aga Asn Arg 20 aaa gtg Lys Val aag agg Lys Arg aggaagca	aag Lys gat Asp gcc Ala agc Ser	gaa Glu tgg Trp ctg Leu aac Asn 55	ggggg ttt Phe tac Tyr gaa 40 tagg	tta Leu aag Lys 25 agg Arg	agt Ser 10 cgc Arg att Ile	aaa Lys aat Asn tgg Trp	aat Asn ttt Phe aac Asn	ttt Phe gcc Ala aag Lys 45 ca gc	cag Gln atc Ile 30 ctt Leu caga	agaa Lys 15 acc Thr aaa Lys	cgc Arg ttc Phe cag Gln agg	atg Met 1 atg Met ttc Phe aaa Lys	gcg Ala tat Tyr atg Met caa Gln 50 ccac	gac Asp tat Tyr gga Gly 35 aag Lys	176 224 272 320 372 432 492
ttc tac Phe Tyr 5 aac aga Asn Arg 20 aaa gtg Lys Val aag agg Lys Arg aggaagcagcagcagcccaa	aag Lys gat Asp gcc Ala agc Ser	gaa Glu tgg Trp ctg Leu aac Asn 55	ggggg ttt Phe tac Tyr gaa 40 tagg	tta Leu aag Lys 25 agg Arg	agt Ser 10 cgc Arg att Ile	aaa Lys aat Asn tgg Trp	aat Asn ttt Phe aac Asn	ttt Phe gcc Ala aag Lys 45 ca gc	cag Gln atc Ile 30 ctt Leu caga	agaa Lys 15 acc Thr aaa Lys	cgc Arg ttc Phe cag Gln agg	atg Met 1 atg Met ttc Phe aaa Lys	gcg Ala tat Tyr atg Met caa Gln 50 ccac	gac Asp tat Tyr gga Gly 35 aag Lys	176 224 272 320 372 432 492 552
ttc tac Phe Tyr 5 aac aga Asn Arg 20 aaa gtg Lys Val aag agg Lys Arg aggaagcagcagcagcccaa	aag Lys gat Asp gcc Ala agc Ser	gaa Glu tgg Trp ctg Leu aac Asn 55	ggggg ttt Phe tac Tyr gaa 40 tagg	tta Leu aag Lys 25 agg Arg	agt Ser 10 cgc Arg att Ile	aaa Lys aat Asn tgg Trp	aat Asn ttt Phe aac Asn	ttt Phe gcc Ala aag Lys 45 ca gc	cag Gln atc Ile 30 ctt Leu caga	agaa Lys 15 acc Thr aaa Lys	cgc Arg ttc Phe cag Gln agg	atg Met 1 atg Met ttc Phe aaa Lys	gcg Ala tat Tyr atg Met caa Gln 50 ccac	gac Asp tat Tyr gga Gly 35 aag Lys	176 224 272 320 372 432 492 552
ttc tac Phe Tyr 5 aac aga Asn Arg 20 aaa gtg Lys Val aag agg Lys Arg aggaagcagcagcagcccaa	aag Lys gat Asp gcc Ala agc Ser	gaa Glu tgg Trp ctg Leu aac Asn 55	ggggg ttt Phe tac Tyr gaa 40 tagg	tta Leu aag Lys 25 agg Arg	agt Ser 10 cgc Arg att Ile	aaa Lys aat Asn tgg Trp	aat Asn ttt Phe aac Asn	ttt Phe gcc Ala aag Lys 45 ca gc	cag Gln atc Ile 30 ctt Leu caga	agaa Lys 15 acc Thr aaa Lys	cgc Arg ttc Phe cag Gln agg	atg Met 1 atg Met ttc Phe aaa Lys	gcg Ala tat Tyr atg Met caa Gln 50 ccac	gac Asp tat Tyr gga Gly 35 aag Lys	176 224 272 320 372 432 492 552
ttc tac Phe Tyr 5 aac aga Asn Arg 20 aaa gtg Lys Val aag agg Lys Arg aggaagcagcagcagcccaa	aag Lys gat Asp gcc Ala agc Ser	gaa Glu tgg Trp ctg Leu aac Asn 55	ggggg ttt Phe tac Tyr gaa 40 tagg	tta Leu aag Lys 25 agg Arg	agt Ser 10 cgc Arg att Ile	aaa Lys aat Asn tgg Trp	aat Asn ttt Phe aac Asn	ttt Phe gcc Ala aag Lys 45 ca gc	cag Gln atc Ile 30 ctt Leu caga	agaa Lys 15 acc Thr aaa Lys	cgc Arg ttc Phe cag Gln agg	atg Met 1 atg Met ttc Phe aaa Lys	gcg Ala tat Tyr atg Met caa Gln 50 ccac	gac Asp tat Tyr gga Gly 35 aag Lys	176 224 272 320 372 432 492 552

<211> 895

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 51..251

WO 99/31236 -22- PCT/IB98/02122 .

```
<221> sig_peptide
<222> 51..110
<223> Von Heijne matrix
      score 5.3
      seq ALIFGGFISLIGA/AF
<221> polyA_signal
<222> 849..854
<221> polyA_site
<222> 882..895
<400> 42
ccgagagtgc cgggcggtcg gcgggtcagg gcagcccggg gcctqacqcc atq tcc
                                                                       56
                                                        Met Ser
egg aac etg ege ace geg etc att tte gge gge tte ate tee etq ate
                                                                      104
Arg Asn Leu Arg Thr Ala Leu Ile Phe Gly Gly Phe Ile Ser Leu Ile
            -15
                                -10
ggc gcc ttc tat ccc atc tac ttc cgg ccc cta atg aga ttg gag
                                                                      152
Gly Ala Ala Phe Tyr Pro Ile Tyr Phe Arg Pro Leu Met Arg Leu Glu
                                            10
gag tac aag aag gaa caa gct ata aat cgg gct gga att gtt caa gag
                                                                      200
Glu Tyr Lys Lys Glu Gln Ala Ile Asn Arg Ala Gly Ile Val Gln Glu
                    20
                                        25
gat gtg cag cca cca ggg tta aaa gtg tgg tct gat cca ttt ggc agg
                                                                      248
Asp Val Gln Pro Pro Gly Leu Lys Val Trp Ser Asp Pro Phe Gly Arg
                                    40
                                                       45
aaa tgagaggct gtcatcagct ctgattaaga aaggagattt cttcatgctt
                                                                      301
tcgattctgc atggggtaca gccagtcacc tcaccagaga atgacggctg gagaagaaaa
                                                                      361
ctctgtaata ccataaataa gagtgcttgt aataaaagac tgtgcacaag gattaatatt
                                                                      421
tcccttctta agtatcaaaa gaactctgga acaaattata ccattaggaa ggttttcatg
                                                                      481
attcagttga ttttccaaaa atgaagctat ctcacccagc tgggtttgga ggagcaatct
                                                                      541
gcttattatt ctgtcgttac cacttactca agcgagctgt gatatgaata caagcaacca
                                                                      601
gtgggctcgg gaaggtccgg gtctcttctg ccatcttcca gataagagat ttcagtaaaa
                                                                      661
aactgccatg ctgagctgcc ttatagagct cttcgaaaat gttcgagttg ataaagctct
                                                                      721
ttgaggacaa ggtacttcgt gcacctcatg ctgaagattg caccatgttg gaagataaat
                                                                     781
atgaagcaag tcaaactaga tgcatacact tgtgtagaaa tcaataatca attaatagaa
                                                                      841
gtgaaaaaat agacattaag atgatttatt tccactttgc aaaaaaaaa aaaa
                                                                      895
<210> 43
<211> 691
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 20..613
<221> sig_peptide
<222> 20..82
<223> Von Heijne matrix
     score 10
     seq LWALAMVTRPASA/AP
```

atacettaga coetcagte atg cca gtg cct gct ctg tgc ctg ctc tgg gcc

Met Pro Val Pro Ala Leu Cys Leu Leu Trp Ala

52

						-20)				-15	5				
														ggc Gly 5		100
gaa Glu	ctg Leu	gca Ala	cag Gln 10	cat His	gag Glu	gag Glu	Leu	acc Thr 15	ctg Leu	ctc Leu	ttc Phe	cat His	999 Gly 20	acc Thr	ctg Leu	148
Gln	Leu	Gly 25	Gln	Ala	Leu	Asn	Gly 30	Val	Tyr	Arg	Thr	Thr 35	Glu	gga Gly	Trp	196
														ata Ile		244
														gaa Glu		292
														cag Gln 85		340
														gca Ala		388
aag Lys	gtg Val	cta Leu 105	cgg Arg	gac Asp	agc Ser	gtg Val	cag Gln 110	cgg Arg	cta Leu	gaa Glu	gtc Val	cag Gln 115	ctg Leu	agg Arg	agc Ser	436
														gct Ala		484
														gtg Val		532
														cag Gln 165		580
				cac His							tgaa	atct	gcc t	eggat	ggaac	633
tgad	qac	caa t	cato	acta	ca ac	gaac	cactt	cca	ege	ccq	tgad	gcc	ct o	gtgca	aggg	691

<210> 44

<211> 458

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 12..416

<221> sig_peptide

<222> 12..86

<223> Von Heijne matrix
score 4
seq LVVMVPLVGLIHL/GW

<221> polyA_signal

<222> 425..430

<221> polyA_site

<222> 445..458

<pre><400> 44 gctgaagtac t atg agc ctt cgg aac ttg tgg aga gac tac aaa gtt ttg</pre>																
		Met		cct			Gly		ata					tac Tyr		98
														att Ile		146
gag														atc Ile 35		194
ggg Gly	aag Lys	nta Xaa	gca Ala 40	ggc Gly	ttg Leu	caa Gln	tct Ser	tca Ser 45	ggt Gly	aaa Lys	gaa Glu	gca Ala	gct Ala 50	ttg Leu	aat Asn	242
Leu	Ser	Phe 55	Ile	Ser	Lys	Glu	Glu 60	Met	Lys	Asn	Thr	Ser 65	Trp	att Ile	Arg	290
Lys	Asn 70	Trp	Leu	Leu	Val	Ala 75	Gly	Ile	Ser	Phe	Ile 80	Gly	Asp	cat His	Leu	338
														ttt Phe		386
		_	aaa Lys		_	-		_		tgaa	agtaa	aaa 1	taaat	tatt	g	436
gaat	tact	aa a	aaaa	aaaa	aa aa	a										458
<210> 45 <211> 2036 <212> DNA <213> Homo sapiens																
<220> <221> CDS <222> 2761040																
<22	2> 2'	764														
<223> Von Heijne matrix score 3.9 seq SVIGVMLAPFTAG/LS																
<221> polyA_site <222> 20242036																
gate tgge aga: tcg: atc:	etgg: aagt: tgcg: ttac:	ggt g aca g tag d tgt g acc a	gttco ccca ggcto atato	caaga gtgca ggat gtgg	aa aa at ci tg co	agaaa tgaaa ccagg ttgag	acget aated ggaag ggae	t too c tgo g aag a aag	accga etgad gcaga gac a	aaga ctag atgc atg (Met (-70	agto cgat tcto cag o	catt gaa ctat caa Gln	gaa gcc gaa gaa tys	tacti tggaa gctci gaa (Glu (31n -65	60 120 180 240 293
Gln	Phe	Arg	Glu	Trp -60	Phe	Leu	Lys	Glu	Phe -55	Pro	Gln	Ile	Arg	tgg Trp -50	Lys	341
att	cag	gag	tcc	ata	gaa	agg	CLL	cgt	gtc	att	gca	aat	gag	att	gaa	389

			Ser -45					-40					-35			
aaq	atc	cac	aga	ggc	tgc	gtc	atc	gcc	aat	gtg	gtg	tct	ggc	tcc.	act	437
Lvs	Val	His	Arg	Gly	Cys	Val	Ile	Ala	Asn	Val	Val	Ser	Gly	Ser	Thr	
-1-		-30	•	•	-		-25					-20				
aac	atc		tct	atc	att	aac	att	atq	ttq	qca	cca	ttt	aca	gca	999	485
Glv	Tle	Len	Ser	Val	Tle	GIV	Val	Met	Leu	Ala	Pro	Phe	Thr	Ala	Gly	
Gry	-15	LCu	JU1	· u _		-10					-5				•	
			agc	~++	act		act	aaa	nt a	aaa	-	aaa	ata	gca	tct	533
ctg	age	etg	Ser	all Tla	mb-	Nla	310	999	yra val	999	Tau	614	Tla	λla	Ser	
	ser	ьeu	ser		THE	ATG	ALA	GIY		GIY	пец	GLY	110	15	JUL	
1				5					10				*		200	581
gcc	acg	gct	999	atc	gcc	tcc	agc	atc	gtg	gag	aac	aca mb	Tac.	mh-	233	301
Ala	Thr	Ala	Gly	11e	AIA	ser	ser		vai	GIU	ASII	THE		1111	Arg	
			20					25					30			629
tca	gca	gaa	ctc	aca	gcc	agc	agg	ctg	act	gca	acc	agc	acc	gac	Caa	027
Ser	Ala		Leu	Thr	Ala	Ser		Leu	Thr	Ala	Thr		Thr	Asp	GIII	
		35					40					45				688
ttg	gag	gca	tta	agg	gac	att	ctg	cat	gac	atc	aca	CCC	aat	gtg	CEE	677
Leu	Glu	Ala	Leu	Arg	qzA	Ile	Leu	His	Asp	Ile	Thr	Pro	Asn	Val	Leu	
	50					55					60					
tcc	ttt	gca	ctt	gat	ttt	gac	gaa	gcc	aca	aaa	atg	att	gcg	aat	gat	725
Ser	Phe	Ala	Leu	Asp	Phe	Asp	Glu	Ala	Thr	Lys	Met	Ile	Ala	Asn	Asp	
65				_	70	•				75					80	
atc	cat	aca	ctc	agg	aga	tct	aaa	gcc	act	gtt	gga	cgc	cct	ttg	att	773
Val	His	Thr	Leu	Arg	Arg	Ser	Lys	Āla	Thr	Val	Gly	Arg	Pro	Leu	Ile	
				85	•		•		90		-	_		95		
act	taa	cga	tat		cct	ata	aat	att	att	qaq	aca	ctq	aga	aca	cgt	821
Δla	שמים	Ara	Tyr	Val	Pro	Tle	Asn	Val	Val	Glu	Thr	Leu	Ara	Thr	Arq	
mu			100					105					110		-	
~~~	acc	000	acc	caa	ata	ata	aga		αta	acc	caa	aac		aac	aaq	869
999	312	Dro	Thr	722	Tla	Val	Ara	Lve	Val	Δla	Ara	Δsn	Len	Glv	Lvs	
GIY	ATA	115	1111	Arg	116	vai	120	шуз	V 0 1	AIG	9	125	204	1	-1-	
			ggt			~++		ata	ant-	ata	ata		ctt	ata	caa	917
900	act mb-	Cca	Gly	y.c.	Tou	77-1	77-1	Ton	) an	Val	Wal	λen	T.OII	773 1	Gln	•
Ala		Ser	Gly	Val	Leu	135	val	цец	wah	VAI	140	ADII	DCu	Vul	0111	
	130						~~~	~~~	222	+		+	act	gag	tta	965
gac	tca	ctg	gac	ttg	cac	aay	999	gaa	T	Com	Clu	602	712	Glu	Len	,,,,
_	Ser	Leu	Asp	Leu		ьys	GIY	Gru	пλг		GIU	261	MIG	GIU	160	
145					150					155			~~~	a+a		1013
ctg	agg	cag	tgg	gct	cag	gag	ctg	gag	gag	aat	CCC	aac	gag	CLC Tan	acc	1013
Leu	Arg	Gln	Trp		Gin	Glu	Leu	GIU		Asn	Leu	Asn	GIU		THE	
				165					170					175		1000
			cag							gccc	aat	tgtt	gegg	ga		1060
His	Ile	His	Gln	Ser	Leu	Lys	Ala	Gly								
			180					185								
agt	cagg	gac	ccca	aacg	ga g	ggac	tggc	t ga	agcc	atgg	cag	aaga	acg	tgga	ttgtga	1120
aga	tttc	atg	gaca	ttta	tt a	gttc	ccca	a at	taat	actt	tta	taat	ttc	ctat	gcctgt	1180
ctt	tacc	gca	atct	ctaa	ac a	caaa	ttgt	g aa	gatt	tcat	gga	cact	tat	cact	tcccca	1240
atc	aata	ccc	ttgt	gatt	tc t	tatg	cctg	t ct	ttac	ttta	atc	tcct	aat	cctg	tcagct	1300
gag	gagg	gtg	tatg	tcac	ct c	aggā	ccat	g tg	ataa	ttgc	gtt	aact	gca	caaa	ttgtag	1360
agc	atgt	gtg	tttq	aaca	at a	tgaa	atct	g gg	cacc	ttga	aaa	aaga	aca	ggat	aacagc	1420
aat	cgtt	caq	ggqa	taaq	ag a	gata	acct	t aa	actc	tgac	caa	cagt	gag	ccgg	gtggag	1480
cao	agtc	ata	tttc	tttt	ct t	tcaa	aaqc	a aa	tgga	agaa	ata	togo	tga	attc	ttttc	1540
tca	gcaa	gga	acar	ccct	ga a	aaaa	aqaa	t ac	accc	ctqa	gga	tgga	tct	ataa	atggcc	1600
tee	ttaa	ata	taac	catc	tt c	tato	atca	a da	ctat	agga	ato	aaat	aaa	cccc	agtctc	1660
CCS	tagt	act 2-2	CCCS	aact	ta t	tagg	aada	a as	aatr	CCCa	cct	aata	aat	ttta	gtcaga	1720
cca	atte.	ctc	tras	2200	ct a	33 tctc	ctas	ב בג ל	gato	ttat	Caa	tgac	aat	aata	cctgaa	1780
200	+~~+	+ » ~	ccaa caa+	+++-	o	+c+c	cccc	o +-	3	aatr	cta	tast	ctc	accc	tgcctc	1840
a 0 0	++~~	-ay	caal	a	at t	tter	y	t ce	auta	aata	ato	-34C	tga	CCCA	caccct	1900
Cac	cugo		yıya •	udii	ct d	ac	y	c sa	49 Cd	33-3	200	+444	aa+ -aa	+++~	cadett	1960
att	cata	cac	LCCC	1000		<u>-</u>	aayt	.c ∪∪	caal	aaad	+~~	2000	SE.	actt	cagctt taaaat	2020
					La C	Lyat	gryt	y at	guut	CCCC	-99	acac	CLA	9000	taaaat	2036
TTC	aaaa	aaa	aaaa	da												2030

```
<210> 46
<211> 1276
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 443..619
<221> sig_peptide
<222> 443..589
<223> Von Heijne matrix
      score 7
      seg LICVVCLYIVCRC/GS
<221> polyA_site
<222> 1267..1276
<400> 46
gaggcactca cggcatttca ttgctacttt aattttcatt attatgggat tgattgctgt
                                                                      60
                                                                     120
cacagetact getgeagtag etggagttge tttgcattce acagtacaaa cagcagacta
tgtaaataat tggtagaaaa attctactct gctgtggaat taccaagata atatagacca
gaaactagct gatcaaatta atgatctcca acaaactgta atgtggctag gggatcatat
agttagttta gaatatagaa tgcggttaca atgtgattga aatacctctg atttttgcat
tactcctcat ctgtgtaatg aaacagagca tgagtgggaa aaagttaaga gatatttaaa
                                                                     420
aggtcatact agaaatttat ctttggatat tgcaaagcta aaggaacaag tatttcaagc
ccctcagata catctgacac ta atg cca gga act gaa gtg ctt gaa gga gct
                                                                     472
                         Met Pro Gly Thr Glu Val Leu Glu Gly Ala
                                         -45
aca gac gga tta gca gct att aac ctg cta aaa tgg atc aag aca ctt
                                                                      520
Thr Asp Gly Leu Ala Ala Ile Asn Leu Leu Lys Trp Ile Lys Thr Leu
                                    -30
                -35
gga ggc tct gtg att tca atg att gtg ctt tta atc tgt gtt gtt tgt
                                                                      568
Gly Gly Ser Val Ile Ser Met Ile Val Leu Leu Ile Cys Val Val Cys
                                -15
            -20
ctt tat ata gtc tgt aga tgc gga agc cac ctc tgg aga gaa agc cac
                                                                      616
Leu Tyr Ile Val Cys Arg Cys Gly Ser His Leu Trp Arg Glu Ser His
                                                                      669
cac tgagagcaag caatgatagc tgtggcggtt ttgcaaaaag aaaagggaga
His
caagcgccca gctatagtta ccaataaagc atggtactgg tattaaaata ggcatgtgtt
                                                                      729
ctgttccaat ggaacagaat agagaaccca gaaacaaagc caaatattta cagccaactg
atctctgaca aagcaaacaa aaacataaag tggggaaagg acaccctatt ccacaaatag
                                                                      849
tgcagggata attggcaagc cacatgtaga aaaatgaagc tggatcctcg tctctcactt
tatacaaaaa tcaactcaaa atgggtcaaa gtcttaactc taagacctga aaccataaca
attctagaaa ataacattgg aaaaactctt ctagacattg gtttaggcaa aaagttcatg
accaagaacc caaaagcaaa tgcaataaaa aggaagataa atagatggga cctaattaag
                                                                     1089
ctgaaaagct tctgcatagc aaaaggaata atcagcagag caaacagaca acccacaggg
                                                                     1149
tgggagaaaa tatttgcaag ctatgtatct gacaatggac taatatccag aatctacaag
                                                                     1209
gaattcaaac aattagcaag aaaaaacact tgtattgtgt ttgctctgta aatcagcaaa
                                                                     1269
                                                                     1276
aaaaaaa
```

<210> 47

<211> 747

<212> DNA

<213> Homo sapiens

<220> <221> CDS <222> 206..745 accagaagca ggtgatttcc gagctcagca atgctcagct cataatgatg tcaagcacca tggccagttt tatgaatggc ttcctgtgtc taatgaccct gacaacccat gttcactcaa 120 gtgccaagcc aaaggaacaa ccctggttgt tgaactagca cctaaggtct tagatggtac 180 gcgttgctat acagaatctt tggat atg tgc atc agt ggt tta tgc caa att 232 Met Cys Ile Ser Gly Leu Cys Gln Ile gtt ggc tgc gat cac cag ctg gga agc acc gtc aag gaa gat aac tgt 280 Val Gly Cys Asp His Gln Leu Gly Ser Thr Val Lys Glu Asp Asn Cys 15 20 ggg gtc tgc aac gga gat ggg tcc acc tgc cgg ctg gtc cga ggg cag 328 Gly Val Cys Asn Gly Asp Gly Ser Thr Cys Arg Leu Val Arg Gly Gln 30 35 376 tat aaa tcc cag ctc tcc gca acc aaa tcg gat gat act gtg gtt gca Tyr Lys Ser Gln Leu Ser Ala Thr Lys Ser Asp Asp Thr Val Val Ala 45 50 att ccc tat gga agt aga cat att cgc ctt gtc tta aaa ggt cct gat 424 Ile Pro Tyr Gly Ser Arg His Ile Arg Leu Val Leu Lys Gly Pro Asp 65 cac tta tat ctg gaa acc aaa acc ctc cag ggg act aaa ggt gaa aac 472 His Leu Tyr Leu Glu Thr Lys Thr Leu Gln Gly Thr Lys Gly Glu Asn 80 agt etc age tec aca gga act tte ett gtg gac aat tet agt gtg gac 520 Ser Leu Ser Ser Thr Gly Thr Phe Leu Val Asp Asn Ser Ser Val Asp 95 100 ttc cag aaa ttt cca gac aaa gag ata ctg aga atg gct gga cca ctc 568 Phe Gln Lys Phe Pro Asp Lys Glu Ile Leu Arg Met Ala Gly Pro Leu 110 115 aca gca gat ttc att gtc aag att cgt aac tcg ggc tcc gct gac agt 616 Thr Ala Asp Phe Ile Val Lys Ile Arg Asn Ser Gly Ser Ala Asp Ser 130 aca gtc cag ttc atc ttc tat caa ccc atc atc cac cga tgg agg gag 664 Thr Val Gln Phe Ile Phe Tyr Gln Pro Ile Ile His Arg Trp Arg Glu 140 145 acg gat ttc ttt cct tgc tca gca acc tgt gga gga ggt tat cag ctg 712 Thr Asp Phe Pro Cys Ser Ala Thr Cys Gly Gly Gly Tyr Gln Leu 160 aca tcg gct gag tgc tac gat ctg agg agc aac cg 747 Thr Ser Ala Glu Cys Tyr Asp Leu Arg Ser Asn 175

<210> 48

<211> 561

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 36..521

<221> sig_peptide

<222> 36..104

<223> Von Heijne matrix score 7.4 seq VLLLAALPPVLLP/GA <221> polyA signal <222> 528..533 <221> polyA_site <222> 548..561 <400> 48 gacgcctctt tcagcccggg atcgccccag caggg atg ggc gac aag atc tgg 53 Met Gly Asp Lys Ile Trp -20 101 Leu Pro Phe Pro Val Leu Leu Ala Ala Leu Pro Pro Val Leu Leu -10 cet ggg gcg gcc ggc ttc aca cct tcc ctc gat agc gac ttc acc ttt 149 Pro Gly Ala Ala Gly Phe Thr Pro Ser Leu Asp Ser Asp Phe Thr Phe 10 acc ctt ccc gcc ggc cag aag gag tgc ttc tac cag ccc atg ccc ctg 197 Thr Leu Pro Ala Gly Gln Lys Glu Cys Phe Tyr Gln Pro Met Pro Leu 25 20 aag gcc tcg ctg gag atc gag tac caa gtt tta gat gga gca gga tta 245 Lys Ala Ser Leu Glu Ile Glu Tyr Gln Val Leu Asp Gly Ala Gly Leu 40 35 gat att gat ttc cat ctt gcc tct cca gaa ggc aaa acc tta gtt ttt 293 Asp Ile Asp Phe His Leu Ala Ser Pro Glu Gly Lys Thr Leu Val Phe 55 gaa caa aga aaa tca gat gga gtt cac act gta gag act gaa gtt ggt 341 Glu Gln Arg Lys Ser Asp Gly Val His Thr Val Glu Thr Glu Val Gly 70 389 gat tac atg ttc tgc ttt gac aat aca ttc agc acc att tct gag aag Asp Tyr Met Phe Cys Phe Asp Asn Thr Phe Ser Thr Ile Ser Glu Lys 90 gtg att ttc ttt gaa tta atc ccg gat aat atg gga gaa cag gca caa 437 Val Ile Phe Phe Glu Leu Ile Pro Asp Asn Met Gly Glu Gln Ala Gln 100 105 485 gaa caa gaa gat tgg aag aaa tat att act ggc aca gat ata ttg gat Glu Gln Glu Asp Trp Lys Lys Tyr Ile Thr Gly Thr Asp Ile Leu Asp 120 531 atg aaa ctg gaa gac atc ctg gtc agt atg gtc ttc taataaaata Met Lys Leu Glu Asp Ile Leu Val Ser Met Val Phe 135 130 561 aaaattatta acagccaaaa aaaaaaaaaa

<210> 49

<211> 632

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 36..395

<221> sig_peptide

<222> 36..104

<223> Von Heijne matrix score 7.4 seq VLLLAALPPVLLP/GA

<221> polyA_signal <222> 599..604

	-	olyA_ .96	_site 332	<b>:</b>												
	> 49 cct		cago	cegg	gg at	cgco	ccag	g cag	ggg a	itg g	gc g	Asp I	ag a Lys :	atc t [le ]	rp gg	53
ctg Leu	ccc Pro	Phe	ccc Pro	gtg Val	ctc Leu	ctt Leu	Leu	gcc Ala	gct Ala	ctg Leu	cct Pro	ccg	gtg	ctg Leu	ctg Leu	101
cct Pro	ggg Gly	-15 gcg Ala	gcc Ala	ggc Gly	ttc Phe	aca Thr	-10 cct Pro	tcc Ser	ctc Leu	gat Asp	agc Ser	gac	ttc Phe	acc Thr	Phe	149
acc	1 ctt	ccc	gcc Ala	ggc	5 cag	aag	gag	tgc	ttc	10 tac	cag	ccc	atg	ccc	15 ctg	197
			ctg	20					25					30		245
Lys	Ala	Ser	Leu 35	Glu	Ile	Glu	Tyr	Gln 40	Val	Leu	Asp	Gly	Ala 45	Gly	Leu	202
gat Asp	att Ile	gat Asp 50	ttc Phe	cat His	ctt Leu	gcc Ala	tct Ser 55	cca Pro	gaa Glu	ggc Gly	aaa Lys	acc Thr 60	tta Leu	gtt Val	Phe	293
gaa Glu	caa Gln 65	aga Arg	aaa Lys	tca Ser	gat Asp	gga Gly 70	gtt Val	cac His	acg Thr	tgt Cys	ata Ile 75	aga Arg	agt Ser	aaa Lys	aat Asn	341
gly ggg	cca	ggc Gly	act Thr	gcg Ala	Val	cac	gcc Ala	tat Tyr	aat Asn	Pro	agc	act Thr	ttc Phe	cga Arg	Gly	389
80 caa Gln		tag	agaci	tga a	85 agtt	ggtga	at ta	acat	gttci	90 : gc1	tttg	acaa	tac	attc	95 agc	445
acca	attt	ctg	agaa	ggtg	at t	ttct	ttga	a tt	aatc	ctgg	ata	atat	ggg (	agaa	caggca	505
caag	ggac	aag	aagai	ttgg	aa g	aaata	atati	t ac	tggca	acag	ata:	tatt:	gga '	tatg	aaactg aaaaaa	565 625
	aaaa		cggc	cage	ac g	gccc	ccca							<b>,</b>		632
<21 <21	0> 5 1> 3 2> D 3> H	70 NA	sapi	ens												
<22	0>		_													
	1> C 2> 2	DS 14	1													
		olyA 28	_sig 333	nal												
		olyA 57	_sit 370	е												
	0> 5 ggac		tggc	ctca		let V				hr G			agca	gtgc	С	51
tag agc cgt cag	gaga agac gtga agct	agg aca gca	gcat agcc agtc	gctc acct caac tgac	gc c ag g ca c	ttcc ccag caac	ccca ccag ggaa	t ta c ca g at	ctct gccc aggc	cgtg agga tgtc ctag	gga ctg tca	ggac aatt agcc	aag agc caa	aaac aacc ccaa	cattgt acacgg ctgaca gactgg catgcc	111 171 231 291 351

WO 99/31236 -30- PCT/IB98/02122 -

<210> 51	
<211> 994	
<212> DNA	
<213> Homo sapiens	
·	
<220>	
<221> CDS	
<222> 35631	
<221> sig_peptide	
<222> 35160	
<223> Von Heijne matrix	
score 8.6	
seq ASLFLLLSLTVFS/IV	
<221> polyA_signal	
<222> 901906	
<221> polyA_site	
<222> 97999 <del>4</del>	
<400> 51	
ataattggag ctgcaaagca gatcgtgaca agag atg gac ggt cag aag aaa aat	55
Met Asp Gly Gln Lys Lys Asn	
-40	
tgg aag gac aag gtt gtt gac ctc ctg tac tgg aga gac att aag aag	103
Trp Lys Asp Lys Val Val Asp Leu Leu Tyr Trp Arg Asp Ile Lys Lys	
-35 -30 -25 -20	
act gga gtg gtg ttt ggt gcc agc cta ttc ctg ctg ctt tca ttg aca	151
Thr Gly Val Val Phe Gly Ala Ser Leu Phe Leu Leu Leu Ser Leu Thr	
-15 -10 -5	
gta ttc agc att gtg agc gta aca gcc tac att gcc ttg gcc ctg ctc	199
Val Phe Ser Ile Val Ser Val Thr Ala Tyr Ile Ala Leu Ala Leu Leu	
1 5 10	
tot gtg acc atc age ttt agg ata tac aag ggt gtg atc caa gct atc	247
Ser Val Thr Ile Ser Phe Arg Ile Tyr Lys Gly Val Ile Gln Ala Ile	
15 20 25	
cag aaa tca gat gaa ggc cac cca ttc agg gca tat ctg gaa tct gaa	295
Gln Lys Ser Asp Glu Gly His Pro Phe Arg Ala Tyr Leu Glu Ser Glu	
30 35 40 45	
gtt gct ata tot gag gag ttg gtt cag aag tac agt aat tot gct ott	343
Val Ala Ile Ser Glu Glu Leu Val Gln Lys Tyr Ser Asn Ser Ala Leu	
50 55 60	
ggt cat gtg aac tgc acg ata aag gaa ctc agg cgc ctc ttc tta gtt	391
Gly His Val Asn Cys Thr Ile Lys Glu Leu Arg Arg Leu Phe Leu Val	
65 70 75	
gat gat tta gtt gat tot otg aag ttt goa gtg ttg atg tgg gta ttt	439
Asp Asp Leu Val Asp Ser Leu Lys Phe Ala Val Leu Met Trp Val Phe	
80 85 90	
acc tat gtt ggt gcc ttg ttt aat ggt ctg aca cta ctg att ttg gct	487
Thr Tyr Val Gly Ala Leu Phe Asn Gly Leu Thr Leu Leu Ile Leu Ala	
95 100 105	
ctc att tca ctc ttc agt gtt cct gtt att tat gaa cgg cat cag gca	535
Leu Ile Ser Leu Phe Ser Val Pro Val Ile Tyr Glu Arg His Gln Ala	
110 115 120 125	
cag ata gat cat tat cta gta ctt gca aat aag aat gtt aaa gat gct	583
Gln Ile Asp His Tyr Leu Val Leu Ala Asn Lys Asn Val Lys Asp Ala	
130 135 140	
atg gct aaa atc caa gca aaa atc cct gga ttg aag cgc aaa gct gaa	631

Met Ala Lys Ile Gln Ala Lys Ile Pro Gly Leu Lys Arg Lys Ala Glu  145  tgaaaacgcc caaaataatt agtaggagtt catctttaaa ggggatattc atttgattat acgggggagg gtcagggaag aacgaacctt gacgttgcag tgcagtttca cagatcgttg ttagatcttt atttttagcc atgcactgtt gtgaggaaaa attacctgtc ttgactgcca tgtgttcatc atcttaagta ttgtaagctg ctatgtatgg atttaaaccg taatcatatc tttttcctat ctatctgagg cactggtgga ataaaaaacc tgtatattt actttgttgc agatagtctt gccgcatctt ggcaagttgc agagatggtg gagctagaaa aaaaaaaac	691 751 811 871 931 991
<210> 52 <211> 412 <212> DNA <213> Homo sapiens <220>	
<221> CDS <222> 271399	
<pre>&lt;400&gt; 52 gccgctagcg cctcgagcga tgcacctcct ttccaactgg gcaaaccccg cttccagcag acgtccttct atggccgctt caggcacttc ttggatatca tcgaccctcg cacactcttt gtcactgaga gacgtctcag agaggctgtg cagctgctgg aggactataa gcatgggacc ctgcgcccgg gggtcaccaa tgaacagctc tggagtgcac agaaaatcaa gcaggctatt ctacatccgg acaccaatga gaagatcttc atg cca ttt aga atg tca ggt tat</pre>	60 120 180 240 294
att cct ttt ggg acg cca att gta agt gtt acc ttc aaa gga ttt cct Ile Pro Phe Gly Thr Pro Ile Val Ser Val Thr Phe Lys Gly Phe Pro 10 15 20	342
ttt cta aaa aat tat ttt aaa tgt cta act tta tgt tat tgc tca cgg Phe Leu Lys Asn Tyr Phe Lys Cys Leu Thr Leu Cys Tyr Cys Ser Arg 25 30 35 40	390
gta ttt gac tgaattgttg att Val Phe Asp	412
<210> 53 <211> 597 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 103252	
<221> sig_peptide <222> 103213 <223> Von Heijne matrix score 3.9 seq PGPSLRLFSGSQA/SV	
<221> polyA_site <222> 588597	
<400> 53	<i>e</i> 0
gaaaggtcag aggaaggagc tgtgggaagc tcgcagcagg tatcggagct taagccagtg gatttggggg ccctgggctc cctagccggc tgcggtgtga ga atg gag tgg gca Met Glu Trp Ala	60 114

gga aag cag cgg gac ttt cag gta agg gca gct ccg ggc tgg gat cat	
Gly Lys Gln Arg Asp Phe Gln Val Arg Ala Ala Pro Gly Trp Asp His -30 -25 -20	162
ttg gcc tcc ttt cct ggc cct tct ctc cgg ctg ttt tct ggg agt cag Leu Ala Ser Phe Pro Gly Pro Ser Leu Arg Leu Phe Ser Gly Ser Gln -15 -10 -5	210
gcg agt gtc tgt agt ctc tgc tcg ggg ttt ggg gct cag gaa Ala Ser Val Cys Ser Leu Cys Ser Gly Phe Gly Ala Gln Glu 1 5 10	252
tgatgtcatg ctccaacagt tggattctat tagcttaagg aggagggaaa cagccaattt tcttgacttt gcaaatctag ctgatctcac tcttgctgaa tctgaggtgt ttagacttca ctctaaaaaag catcatttta cttttattta gcacaaaggc acaggatatt tttacaggaa gaatctttta tatggaaaaa tctgagttaa catcactccc gtggtgtttg tagttcttac agggaaactc cagtgccttt tgagccgctt gttcgtccta gtgaacactg tctgttttgt ctcttggtgc tgctatgtct gacctgtaat gggagaaaaa aagaa	312 372 432 492 552 597
<210> 54 <211> 748 <212> DNA	
<2213> Homo sapiens <220> <221> CDS	
<222> 2460	
<221> polyA_signal	
<221> polyA_site <222> 735748	
<pre>&lt;400&gt; 54 c aca gtt cct ctc ctc cta gag cct gcc gac cat gcc cgc ggg cgt gcc Thr Val Pro Leu Leu Glu Pro Ala Asp His Ala Arg Gly Arg Ala 1</pre>	49
c aca gtt cct ctc ctc cta gag cct gcc gac cat gcc cgc ggg cgt gcc Thr Val Pro Leu Leu Glu Pro Ala Asp His Ala Arg Gly Arg Ala 1 5 10 15 cat gtc cac cta cct gaa aat gtt cgc agc cag tct cct ggc cat gtg His Val His Leu Pro Glu Asn Val Arg Ser Gln Ser Pro Gly His Val	49 97
c aca gtt cct ctc ctc cta gag cct gcc gac cat gcc cgc ggg cgt gcc Thr Val Pro Leu Leu Leu Glu Pro Ala Asp His Ala Arg Gly Arg Ala  1 5 10 15  cat gtc cac cta cct gaa aat gtt cgc agc cag tct cct ggc cat gtg His Val His Leu Pro Glu Asn Val Arg Ser Gln Ser Pro Gly His Val  20 25 30  cgc agg ggc aga agt ggt gca cag gta cta ccg acc gga cct gat gag Arg Arg Gly Arg Ser Gly Ala Gln Val Leu Pro Thr Gly Pro Asp Glu	
c aca gtt cct ctc ctc cta gag cct gcc gac cat gcc cgc ggg cgt gcc Thr Val Pro Leu Leu Leu Glu Pro Ala Asp His Ala Arg Gly Arg Ala  1 5 10 15  cat gtc cac cta cct gaa aat gtt cgc agc cag tct cct ggc cat gtg His Val His Leu Pro Glu Asn Val Arg Ser Gln Ser Pro Gly His Val  20 25 30  cgc agg ggc aga agt ggt gca cag gta cta ccg acc gga cct gat gag Arg Arg Gly Arg Ser Gly Ala Gln Val Leu Pro Thr Gly Pro Asp Glu  35 40 45  aaa cag gtt gag aag agt gaa gtt gat ttc tca aag tca cat agc tta Lys Gln Val Glu Lys Ser Glu Val Asp Phe Ser Lys Ser His Ser Leu	97
c aca gtt cct ctc ctc cta gag cct gcc gac cat gcc cgc ggg cgt gcc Thr Val Pro Leu Leu Leu Glu Pro Ala Asp His Ala Arg Gly Arg Ala  1	97 145
c aca gtt cct ctc ctc cta gag cct gcc gac cat gcc cgc ggg cgt gcc Thr Val Pro Leu Leu Leu Glu Pro Ala Asp His Ala Arg Gly Arg Ala  1	97 145 193
c aca gtt cct ctc ctc cta gag cct gcc gac cat gcc cgc ggg cgt gcc Thr Val Pro Leu Leu Leu Glu Pro Ala Asp His Ala Arg Gly Arg Ala  1	97 145 193 241
C aca gtt cct ctc ctc cta gag cct gcc gac cat gcc cgc ggg cgt gcc Thr Val Pro Leu Leu Leu Glu Pro Ala Asp His Ala Arg Gly Arg Ala  1	97 145 193 241 289

480

Gln Val Ser Gln Gln Glu Leu Lys	480
tgaataatat aagtettaaa tatgtattte ttaatttatt geateaaact aettgteett aageaettag tetaatgeta aetgeaagag gaggtgetea gtggatgttt ageegataeg ttgaaattta attaeggttt gattgatatt tettgaaaac egeeaaagea eatateatea aaceatttea tgaatatggt ttggaagatg tttagtettg aatataatge gaaatagaat atttgtaagt etaecaaaa aaaaaaaa	540 600 660 720 748
٠.	
<210> 55 <211> 703 <212> DNA <213> Homo sapiens	
<220>	
<221> CDS	
<222> 31231	
<221> polyA_signal	
<221> polyA site	
<222> 690703	
444 - 55	
<400> 55	
ctctggtggc tctgctacgg cggcgcagaa atg agg cag aag cgg aaa gga gat Met Arg Gln Lys Arg Lys Gly Asp	54
Met Arg Gln Lys Arg Lys Gly Asp 1 5	54 102
Met Arg Gln Lys Arg Lys Gly Asp	
Met Arg Gln Lys Arg Lys Gly Asp  1 5  ctc agc cct gct aag ctg atg atg ctg act ata gga gat gtt att aaa  Leu Ser Pro Ala Lys Leu Met Met Leu Thr Ile Gly Asp Val Ile Lys  10 15 20  caa ctg att gaa gcc cac gag cag ggg aaa gac atc gat cta aat aag	
Met Arg Gln Lys Arg Lys Gly Asp  1 5  ctc agc cct gct aag ctg atg atg ctg act ata gga gat gtt att aaa  Leu Ser Pro Ala Lys Leu Met Met Leu Thr Ile Gly Asp Val Ile Lys  10 15 20  caa ctg att gaa gcc cac gag cag ggg aaa gac atc gat cta aat aag  Gln Leu Ile Glu Ala His Glu Gln Gly Lys Asp Ile Asp Leu Asn Lys	102
Met Arg Gln Lys Arg Lys Gly Asp  1 5  ctc agc cct gct aag ctg atg atg ctg act ata gga gat gtt att aaa  Leu Ser Pro Ala Lys Leu Met Met Leu Thr Ile Gly Asp Val Ile Lys  10 15 20  caa ctg att gaa gcc cac gag cag ggg aaa gac atc gat cta aat aag  Gln Leu Ile Glu Ala His Glu Gln Gly Lys Asp Ile Asp Leu Asn Lys  25 30 35 40	102
Met Arg Gln Lys Arg Lys Gly Asp  1 5  ctc agc cct gct aag ctg atg atg ctg act ata gga gat gtt att aaa  Leu Ser Pro Ala Lys Leu Met Met Leu Thr Ile Gly Asp Val Ile Lys  10 15 20  caa ctg att gaa gcc cac gag cag ggg aaa gac atc gat cta aat aag  Gln Leu Ile Glu Ala His Glu Gln Gly Lys Asp Ile Asp Leu Asn Lys	102
Met Arg Gln Lys Arg Lys Gly Asp  1 5  ctc agc cct gct aag ctg atg atg ctg act ata gga gat gtt att aaa  Leu Ser Pro Ala Lys Leu Met Met Leu Thr Ile Gly Asp Val Ile Lys  10 15 20  caa ctg att gaa gcc cac gag cag ggg aaa gac atc gat cta aat aag  Gln Leu Ile Glu Ala His Glu Gln Gly Lys Asp Ile Asp Leu Asn Lys  25 30 35 40  gtg aga acc aag aca gct gcc aaa tat ggc ctt tct gcc cag ccc cgc  Val Arg Thr Lys Thr Ala Ala Lys Tyr Gly Leu Ser Ala Gln Pro Arg  45 50 55  ctg gtg gat atc att gct gcc gtc cct cct gag tagctgggat tacaggcacc	102
Met Arg Gln Lys Arg Lys Gly Asp  1 5  ctc agc cct gct aag ctg atg atg ctg act ata gga gat gtt att aaa  Leu Ser Pro Ala Lys Leu Met Met Leu Thr Ile Gly Asp Val Ile Lys  10 15 20  caa ctg att gaa gcc cac gag cag ggg aaa gac atc gat cta aat aag  Gln Leu Ile Glu Ala His Glu Gln Gly Lys Asp Ile Asp Leu Asn Lys  25 30 35 40  gtg aga acc aag aca gct gcc aaa tat ggc ctt tct gcc cag ccc cgc  Val Arg Thr Lys Thr Ala Ala Lys Tyr Gly Leu Ser Ala Gln Pro Arg  45 50 55  ctg gtg gat atc att gct gcc gtc cct cct gag tagctgggat tacaggcacc  Leu Val Asp Ile Ile Ala Ala Val Pro Pro Glu	102 150 198
Met Arg Gln Lys Arg Lys Gly Asp  1 5  ctc agc cct gct aag ctg atg atg ctg act ata gga gat gtt att aaa  Leu Ser Pro Ala Lys Leu Met Met Leu Thr Ile Gly Asp Val Ile Lys  10 15 20  caa ctg att gaa gcc cac gag cag ggg aaa gac atc gat cta aat aag  Gln Leu Ile Glu Ala His Glu Gln Gly Lys Asp Ile Asp Leu Asn Lys  25 30 35 40  gtg aga acc aag aca gct gcc aaa tat ggc ctt tct gcc cag ccc cgc  Val Arg Thr Lys Thr Ala Ala Lys Tyr Gly Leu Ser Ala Gln Pro Arg  45 50 55  ctg gtg gat atc att gct gcc gtc cct cct gag tagctgggat tacaggcacc  Leu Val Asp Ile Ile Ala Ala Val Pro Pro Glu  60 65	102 150 198 251
Met Arg Gln Lys Arg Lys Gly Asp  1 5  ctc agc cct gct aag ctg atg atg ctg act ata gga gat gtt att aaa  Leu Ser Pro Ala Lys Leu Met Met Leu Thr Ile Gly Asp Val Ile Lys  10 15 20  caa ctg att gaa gcc cac gag cag ggg aaa gac atc gat cta aat aag  Gln Leu Ile Glu Ala His Glu Gln Gly Lys Asp Ile Asp Leu Asn Lys  25 30 35 40  gtg aga acc aag aca gct gcc aaa tat ggc ctt tct gcc cag ccc cgc  Val Arg Thr Lys Thr Ala Ala Lys Tyr Gly Leu Ser Ala Gln Pro Arg  45 50 55  ctg gtg gat atc att gct gcc gtc cct cct gag tagctgggat tacaggcacc  Leu Val Asp Ile Ile Ala Ala Val Pro Pro Glu  60 65  cgccgctgcc aatttttgta tttttagtag ggatggggt ttcaccatat tggtcaggct	102 150 198
Met Arg Gln Lys Arg Lys Gly Asp  1 5  ctc agc cct gct aag ctg atg atg ctg act ata gga gat gtt att aaa  Leu Ser Pro Ala Lys Leu Met Met Leu Thr Ile Gly Asp Val Ile Lys  10 15 20  caa ctg att gaa gcc cac gag cag ggg aaa gac atc gat cta aat aag  Gln Leu Ile Glu Ala His Glu Gln Gly Lys Asp Ile Asp Leu Asn Lys  25 30 35 40  gtg aga acc aag aca gct gcc aaa tat ggc ctt tct gcc cag ccc cgc  Val Arg Thr Lys Thr Ala Ala Lys Tyr Gly Leu Ser Ala Gln Pro Arg  45 50 55  ctg gtg gat atc att gct gcc gtc cct cct gag tagctgggat tacaggcacc  Leu Val Asp Ile Ile Ala Ala Val Pro Pro Glu  60 65  cgccgctgcc aatttttgta tttttagtag ggatggggt ttcaccatat tggtcaggct  ggtctcgaac tcctgacctc aggtgatcaa cccaccttgg cctccctaaa tgccgggatt	102 150 198 251
Met Arg Gln Lys Arg Lys Gly Asp  1 5  ctc agc cct gct aag ctg atg atg ctg act ata gga gat gtt att aaa  Leu Ser Pro Ala Lys Leu Met Met Leu Thr Ile Gly Asp Val Ile Lys  10 15 20  caa ctg att gaa gcc cac gag cag ggg aaa gac atc gat cta aat aag  Gln Leu Ile Glu Ala His Glu Gln Gly Lys Asp Ile Asp Leu Asn Lys  25 30 35 40  gtg aga acc aag aca gct gcc aaa tat ggc ctt tct gcc cag ccc cgc  Val Arg Thr Lys Thr Ala Ala Lys Tyr Gly Leu Ser Ala Gln Pro Arg  45 50 55  ctg gtg gat atc att gct gcc gtc cct cct gag tagctgggat tacaggcacc  Leu Val Asp Ile Ile Ala Ala Val Pro Pro Glu  60 65  cgccgctgcc aatttttgta tttttagtag ggatggggt ttcaccatat tggtcaggct  ggtctcgaac tcctgacctc aggtgatcaa cccaccttgg cctccctaaa tgccgggatt  acaggcatga gccaccgctc cgggcctttg atttttaag gtggattttg gttgttataa  atggagaaag gtaagagttc aagttcaacc cgtgtgtgaa agcaaaacaa tggaaaacag	102 150 198 251 311 371 431 491
Met Arg Gln Lys Arg Lys Gly Asp  1 5  ctc agc cct gct aag ctg atg atg ctg act ata gga gat gtt att aaa  Leu Ser Pro Ala Lys Leu Met Met Leu Thr Ile Gly Asp Val Ile Lys  10 15 20  caa ctg att gaa gcc cac gag cag ggg aaa gac atc gat cta aat aag  Gln Leu Ile Glu Ala His Glu Gln Gly Lys Asp Ile Asp Leu Asn Lys  25 30 35 40  gtg aga acc aag aca gct gcc aaa tat ggc ctt tct gcc cag ccc cgc  Val Arg Thr Lys Thr Ala Ala Lys Tyr Gly Leu Ser Ala Gln Pro Arg  45 50 55  ctg gtg gat atc att gct gcc gtc cct cct gag tagctgggat tacaggcacc  Leu Val Asp Ile Ile Ala Ala Val Pro Pro Glu  60 65  cgccgctgcc aattitigta titttagtag ggatggggt ttcaccatat tggtcaggct ggtctcgaac tcctgacctc aggtgatcaa cccaccttgg cctccctaaa tgccgggatt acaggcatga gccaccgctc cgggcctttg attittaag gtggattttg gttgttataa atggagaaag gtaagagttc aagttcaacc cgtgtgtgaa agcaaaacaa tggaaaacag gattggcttc ttcaaaggct cctcttgtag aactgcctct ttgaaattc gaggtaatct	102 150 198 251 311 371 431 491 551
Met Arg Gln Lys Arg Lys Gly Asp  1 5  ctc agc cct gct aag ctg atg atg ctg act ata gga gat gtt att aaa  Leu Ser Pro Ala Lys Leu Met Met Leu Thr Ile Gly Asp Val Ile Lys  10 15 20  caa ctg att gaa gcc cac gag cag ggg aaa gac atc gat cta aat aag  Gln Leu Ile Glu Ala His Glu Gln Gly Lys Asp Ile Asp Leu Asn Lys  25 30 35 40  gtg aga acc aag aca gct gcc aaa tat ggc ctt tct gcc cag ccc cgc  Val Arg Thr Lys Thr Ala Ala Lys Tyr Gly Leu Ser Ala Gln Pro Arg  45 50 55  ctg gtg gat atc att gct gcc gtc cct cct gag tagetggat tacaggcacc  Leu Val Asp Ile Ile Ala Ala Val Pro Pro Glu  60 65  cgccgctgcc aatttttgta tttttagtag ggatggggt ttcaccatat tggtcaggct  ggtctcgaac tcctgacctc aggtgatcaa cccaccttgg cctccctaaa tgccgggatt  acaggcatga gccaccgctc cgggcetttg atttttaag gtggattttg gttgttataa  atggagaaag gtaagagttc aagttcaacc cgtgtgtgaa agcaaaacaa tggaaaacag  gattggcttc ttcaaaggct cctcttgtag aactgcctct ttgaaatttc gaggtaatct  actttggaga ctctgcctgg agagggtcag ttcctaagtt aaaagcatcg cttaaccttg	102 150 198 251 311 371 431 491 551 611
Met Arg Gln Lys Arg Lys Gly Asp  1 5  ctc agc cct gct aag ctg atg atg ctg act ata gga gat gtt att aaa  Leu Ser Pro Ala Lys Leu Met Met Leu Thr Ile Gly Asp Val Ile Lys  10 15 20  caa ctg att gaa gcc cac gag cag ggg aaa gac atc gat cta aat aag  Gln Leu Ile Glu Ala His Glu Gln Gly Lys Asp Ile Asp Leu Asn Lys  25 30 35 40  gtg aga acc aag acc gct gcc aaa tat ggc ctt tct gcc cag ccc cgc  Val Arg Thr Lys Thr Ala Ala Lys Tyr Gly Leu Ser Ala Gln Pro Arg  45 50 55  ctg gtg gat atc att gct gcc gtc cct cct gag tagetgggat tacaggcacc  Leu Val Asp Ile Ile Ala Ala Val Pro Pro Glu  60 65  cgccgctgcc aatttttgta tttttagtag ggatggggt ttcaccatat tggtcaggct  ggtctcgaac tcctgacctc aggtgatcaa cccaccttgg cctccctaaa tgccgggatt  acaggcatga gccaccgctc cgggcctttg atttttaag gtggattttg gttgttataa  atggagaaag gtaagagtc aagttcaacc cgtgtgtgaa agcaaaacaa tggaaaacag  gattggcttc ttcaaaggct cctcttgtag aactgcctct ttgaaattc gaggtaaact  actttggaga ctctgcctgg agagggtcag ttcctaagtt aaaagcatcg cttaaccttg  gctcctgtgg cattttacaa aggtttaaag gaattgattc ctctgaaagg gcctgaaaat	102 150 198 251 311 371 431 491 551 611 671
Met Arg Gln Lys Arg Lys Gly Asp  1 5  ctc agc cct gct aag ctg atg atg ctg act ata gga gat gtt att aaa  Leu Ser Pro Ala Lys Leu Met Met Leu Thr Ile Gly Asp Val Ile Lys  10 15 20  caa ctg att gaa gcc cac gag cag ggg aaa gac atc gat cta aat aag  Gln Leu Ile Glu Ala His Glu Gln Gly Lys Asp Ile Asp Leu Asn Lys  25 30 35 40  gtg aga acc aag aca gct gcc aaa tat ggc ctt tct gcc cag ccc cgc  Val Arg Thr Lys Thr Ala Ala Lys Tyr Gly Leu Ser Ala Gln Pro Arg  45 50 55  ctg gtg gat atc att gct gcc gtc cct cct gag tagetggat tacaggcacc  Leu Val Asp Ile Ile Ala Ala Val Pro Pro Glu  60 65  cgccgctgcc aatttttgta tttttagtag ggatggggt ttcaccatat tggtcaggct  ggtctcgaac tcctgacctc aggtgatcaa cccaccttgg cctccctaaa tgccgggatt  acaggcatga gccaccgctc cgggcetttg atttttaag gtggattttg gttgttataa  atggagaaag gtaagagttc aagttcaacc cgtgtgtgaa agcaaaacaa tggaaaacag  gattggcttc ttcaaaggct cctcttgtag aactgcctct ttgaaatttc gaggtaatct  actttggaga ctctgcctgg agagggtcag ttcctaagtt aaaagcatcg cttaaccttg	102 150 198 251 311 371 431 491 551 611

<210> 56

<211> 725

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 305..565

<221> polyA_signal <222> 694699	
<221> polyA_site <222> 713725	
<400> 56 ctcacggtgg tgaaggtcac agggttgcag cactcccagt agaccaggag ctccgggagg cagggccggc cccacgtcct ctgcgcacca ccctgagttg gatcctctgt gcgccaccc tgagttggat ccagggctag ctgctgttga cctcccact cccacgctgc cctcctgct gcagccatga cgcccctgct caccctgatc ctggtggtcc tcatgggctt acctctggcc	60 120 180 240
caggecatga egetetiget taccetgate degaggets todaysgate doorses caggecttgg actgecacgt gtgaggacta caaatcoctc caggatatca ttgccatcct gggt atg gat gaa ctt tct gag gaa gac aag ttg acc gtg tcc cgt gca  Met Asp Glu Leu Ser Glu Glu Asp Lys Leu Thr Val Ser Arg Ala  1 5 10 15	300 349
cgg aaa ata cag cgt ttc ttg tct cag cca ttc cag gtt gct gag gtc Arg Lys Ile Gln Arg Phe Leu Ser Gln Pro Phe Gln Val Ala Glu Val 20 25 30	397
ttc aca ggt cat atg ggg aag ctg gta ccc ctg aag gag acc atc aaa Phe Thr Gly His Met Gly Lys Leu Val Pro Leu Lys Glu Thr Ile Lys 35 40 45	445
gga ttc cag cag att ttg gca ggt gaa tat gac cat ctc cca gaa cag Gly Phe Gln Gln Ile Leu Ala Gly Glu Tyr Asp His Leu Pro Glu Gln 50 55	493
gcc ttc tat atg gtg gga ccc att gaa gaa gct gtg gca aaa gct gat Ala Phe Tyr Met Val Gly Pro Ile Glu Glu Ala Val Ala Lys Ala Asp 65 70 75	541
aag ctg gct gaa gag cat tca tcg tgaggggtct ttgtcctctg tactgtctct Lys Leu Ala Glu Glu His Ser Ser 80 85	595
ctccttgccc ctaacccaaa aagcttcatt tttctgtgta ggctgcacaa gagccttgat tgaagatata ttctttctga acagtattta aggtttccaa taaagtgtac acccctcaaa aaaaaaaaaa	655 715 725
<210> 57 <211> 1705 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 124873	
<221> sig_peptide <222> 124378 <223> Von Heijne matrix score 3.6 seq HLSVVTLAAKVKC/IP	
<221> polyA_signal	
<221> polyA_site <222> 16941705	
<400> 57 cggaggtgag gagcggcggc cccgcccggt gcgctggagg tcgaagcttc caggtagcgg cccgcagagc ctgacccagg ctctggacat cctgagccca agtccccac actcagtgca gtg atg agt gcg gaa gtg aag gtg aca ggg cag aac cag gag caa ttt Met Ser Ala Glu Val Lys Val Thr Gly Gln Asn Gln Glu Gln Phe	60 120 168

-85 -80 -75	
ctg ctc cta gcc aag tcg gcc aag ggg gca gcg ctg gcc aca ctc atc	216
Leu Leu Ala Lys Ser Ala Lys Gly Ala Ala Leu Ala Thr Leu Ile	•
-70 -65 -60 -55	
cat cag gtg ctg gag gcc cct ggt gtc tac gtg ttt gga gaa ctg ctg	264
His Gln Val Leu Glu Ala Pro Gly Val Tyr Val Phe Gly Glu Leu Leu	
-50 -45 -40	
gac atg ccc aat gtt aga gag ctg naa gcc cgg aat ctt cct cca cta	312
Asp Met Pro Asn Val Arg Glu Leu Xaa Ala Arg Asn Leu Pro Pro Leu	
-35 -30 -25	360
aca gag gct cag aag aat aag ctt cga cac ctc tca gtt gtc acc ctg Thr Glu Ala Gln Lys Asn Lys Leu Arg His Leu Ser Val Val Thr Leu	300
-20 -15 -10	
gct gct aaa gta aag tgt atc cca tat gca gtg ttg ctg gag gct ctt	408
Ala Ala Lys Val Lys Cys Ile Pro Tyr Ala Val Leu Leu Glu Ala Leu	
-5 1 5 10	
gcc ctg cgt aat gtg cgg cag ctg gaa gac ctt gtg att gag gct gtg	456
Ala Leu Arg Asn Val Arg Gln Leu Glu Asp Leu Val Ile Glu Ala Val	
15 20 25	
tat get gae gtg ett egt gge tee etg gae eag ege aac eag egg ete	504
Tyr Ala Asp Val Leu Arg Gly Ser Leu Asp Gln Arg Asn Gln Arg Leu	
30 35 40	552
gag gtt gac tac agc atc ggg cgg gac atc cag cgc cag gac ctc agt	332
Glu Val Asp Tyr Ser Ile Gly Arg Asp Ile Gln Arg Gln Asp Leu Ser  50 55	
45 50 55  gec att gec ega acc etg eag gaa tgg tgt gtg ggc tgt gag gtc gtg	600
Ala Ile Ala Arg Thr Leu Gln Glu Trp Cys Val Gly Cys Glu Val Val	
60 65 70	
ctg tca ggc att gag gag cag gtg agc cgt gcc aac caa cac aag gag	648
Leu Ser Gly Ile Glu Glu Gln Val Ser Arg Ala Asn Gln His Lys Glu	
75 80 85 90	
cag cag ctg ggc ctg aag cag cag att gag agt gag gtt gcc aac ctt	696
Gln Gln Leu Gly Leu Lys Gln Gln Ile Glu Ser Glu Val Ala Asn Leu	
95 100 105	744
aaa aaa acc att aaa gtt acg acg gca gca gcc gca gcc aca tct	/23
Lys Lys Thr Ile Lys Val Thr Thr Ala Ala Ala Ala Ala Ala Thr Ser	
110 115 120 cag gac cct gag caa cac ctg act gag ctg agg gaa cca gct cct ggc	792
Gln Asp Pro Glu Gln His Leu Thr Glu Leu Arg Glu Pro Ala Pro Gly	
125 130 135	
acc aac cag cgc cag ccc agc aag aaa gcc tca aag ggc aag ggg ctc	840
Thr Asn Gln Arg Gln Pro Ser Lys Lys Ala Ser Lys Gly Lys Gly Leu	
140 145 150	
cga ggg agc gcc aag att tgg tcc aag tcg aat tgaaagaact gtcgtttcct	893
Arg Gly Ser Ala Lys Ile Trp Ser Lys Ser Asn	
155 160 165	953
ccctggggat gtggggtccc agctgcctgc ctgcctctta ggagtcctca gagagccttc	1013
tgtgccctg gccagctgat aatcctaggt tcatgaccct tcacctccc taaccccaaa	1073
catagateae acctteteta gggaggagte aaatgtaggt catgtttttg ttggtaettt etgttttttg tgaetteatg tgtteeattg eteceegetg ceatgetete teeettgttt	1133
cettaagage teageatetg teeetgttea ttacatgtea ttgagtaggt gggtageeet	1193
gatgggggtc gctctgtctg gagcataacc cacaggcgtt ttttctgcca ccccatecct	1253
gcatgcctga tccccagttc ctatacccta cccctgacct attgagcagc ctctgaagag	1313
ccatagggcc cccaccttta ctcacaccct gagaattctg ggagccagtc tgccatgcca	1373
ggagtcactg gacatgttca tectagaate etgteacaet acagteattt etttteetet	1433
ctctggccct tgggtcctgg gaatgctgct gcttcaaccc cagagcctaa gaatggcagc	1493
cgtttcttaa catgttgaga gatgattctt tcttggccct ggccatctcg ggaagcttga	1553
tggcaatcct ggaagggttt aatctccttt tgtgagtttg gtggggaagg gaagggtata	1613
tagattatat taaaaaaaaa aaggtatata tgcatatatc tatatataat atgacgcaga	1673 1705
aataaatcta tgagaaatcc aaaaaaaaaa aa	1/05

```
<210> 58
<211> 1069
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 135..206
<221> polyA_signal
<222> 850..855
<221> polyA_site
<222> 1056..1069
<400> 58
cccactccgc tctcacgact aagctctcac gattaaggca cgcctgcctc gattgtccag
                                                                       60
                                                                      120
cctctgccag aagaaagctt agcagccagc gcctcagtag agacctaagg gcgctgaatg
                                                                      170
agtgggaaag ggaa atg ccg acc aat tgc gct gcg gcg ggc tgt gcc act
                Met Pro Thr Asn Cys Ala Ala Ala Gly Cys Ala Thr
acc tac aac aag cac att aac atc agc ttc cac agg taacctgggc
                                                                      216
Thr Tyr Asn Lys His Ile Asn Ile Ser Phe His Arg
                            20
                                                                      276
agggagtggg ggtgacggaa actggagttc ctattgtggc tatcgcttgt gtggaaggaa
caggaggatt ctgctaattc taataacttt cccagctggt agcagggaag catcgtatgt
                                                                      336
cctttgtgtt tctcaaatct gcccaattgt tctctgcttt cggggaagct ttactcattt
                                                                      396
tctaaaagaa atccaagtac tgtttggtca ttacccctta gtaaaaaaaa gtaacaggag
                                                                      456
gatategtaa tittetaetg tittatteet etgitagaee gggeetigae atgaatgaeg
                                                                      516
ccgtaaggga gaaagagatc ttcccaatca gcaatcaccg taaaagcctg ctgtgttccc
                                                                      576
gttaaaatta ggaaattoto actagatgaa ttgacatggg aggcatttag atttotaata
                                                                      636
                                                                      696
gtcacatagt aattctgcgg aggaattgag tcatctttga tagccatgga attaagcgat
                                                                      756
gttaattaaa gtgcaaacga taacctttct gttcttacta gaatagagta ataaaaagaa
cctaggtttt cttttgtttg ctggaagaaa aatcaaaatt ctttagttct gtcaaaccag
                                                                      816
aactottgaa agcactttga acaatgootg gaaaataaca ggtactotgt aaatgtttac
                                                                      876
cttctctgca agtgcctgcc acgtgcccga agaaaagaca cattaaaaag ttaagtgaca
                                                                      936
                                                                      996
ccagtcctga ttttatatat tttatatacc taacaacgta tatgttagta tgtagaaatt
atateettga cettttteee taeetattae gaaetgtaet tttattaaaa getgeeacta
                                                                     1056
                                                                     1069
aaaaaaaaa aaa
<210> 59
<211> 1084
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 135..818
<221> polyA_signal
<222> 909..914
<221> polyA site
<222> 1071..1084
<400> 59
                                                                       60
cccactccgc tctcacgact aagctctcac gattaaggca cgcctgcctc gattgtccag
cctctgccag aagaaagctt agcagccagc gcctcagtag aggcctaagg gcgctgaatg
                                                                       120
```

agtgggaaag ggaa atg ccg acc aat tgc gct gcg gcg ggc tgt gcc act

170

				Met 1	Pro	Thr	Asn	Cys	Ala	Ala	Ala	Gly	Cys	Ala	Thr	
200	tac	aac	аад	_	att	aac	atc	age	ttc	cac	agg	ttt	cct	tta	gat	218
Thr	Tvr	Asn	Lvs	His	Ile	Asn	Ile	Ser	Phe	His	Arg	Phe	Pro	Leu	Asp	
	-1-	15	-1-				20				_	25			_	
cct	aaa		aga	aaa	gaa	tgg	gtt	cgc	ctg	gtt	agg	cgc	aaa	aat	ttt	266
Pro	Lys	Arg	Arg	Lys	Glu	Trp	Val	Arg	Leu	Val	Arg	Arg	Lys	Asn	Phe	
	30					35					40					
gtg	cca	gga	aaa	cac	act	ttt	ctt	tgt	tca	aag	cac	ttt	gaa	gcc	tcc	314
Val	Pro	Gly	Lys	His	Thr	Phe	Leu	Cys	Ser	Lys	His	Phe	Glu	Ala		
45					50					55					60	
tgt	ttt	gac	cta	aca	gga	caa	act	cga	cga	ctt	aaa	atg	gat	gct	gtt	362
Cys	Phe	Asp	Leu		Gly	Gln	Thr	Arg		Leu	Lys	Met	Asp		Val	
				65					70					75		430
cca	acc	att	ttt	gat	ttt	tgt	acc	cat	ata	aag	tct	atg	aaa	CCC	aag	410
Pro	Thr	Ile		Asp	Phe	Cys	Thr		тте	гаг	ser	Met		ьeu	ьys	
_		Λ.	80					85					90			458
tca	agg	aat	ctt	ttg	aag	aaa	aac	aac	agt	tgt	CCT	cca	gct	gga	Dro	450
ser	arg		Leu	Leu	Lys	гÀг		ASI	ser	Cys	ser	105	Ald	GIY	PIO	
		95					100	-~+			a+ a		a++	~	C2C	506
CCL	agt	tta	aaa	Cam	aac	Tlo	agu	agu	cag	Cla	yca Val	Lou	Lou	Glu	Uic	300
ser		ьeu	гуѕ	Ser	Asn	115	ser	261	GIII	GIII	120	Deu	пеп	GIU	птэ	
	110	~~~			aat		2+4	~~~	~~~	222		200	atc	att	222	554
age	Tree	712	Dha	ayy	Asn	Dro	Mat	Glu	yca λla	Lve	Lve	Ara	Tle	Tle	Lvs	33.
125	IÀI	ALA	Pile	Arg	130	PIU	Mec	GIU	ALG	135	цys	n 9	110	110	140	
	~~~	222	~~~	2+2	gca	200	tta	2072	2/12		ato	222	act	tac		602
Leu	Glu	Tare	Glu	Tla	Ala	Ser	Leu	Ara	Ara	Lvs	Met	Lvs	Thr	Cvs	Leu	
пец	GIU	Dys	Giu	145	AIG	JCI	Deu.	9	150	_,_		_,_		155		
caa	aarr	caa	cac		gca	act	cga	aσa		atc	aaa	acc	atσ		tta	650
Gln	Lvs	Glu	Ara	Ara	Ala	Thr	Ara	Ara	Tro	Tle	Lvs	Ala	Met	Cvs	Leu	
0111	2,2		160	9			5	165			-,		170	•		
gta	aaq	aat		gaa	gca	aat	aqt	qta	tta	cct	aaa	ggt	aca	tca	gaa	698
Val	Lvs	Asn	Leu	Glu	Ala	Asn	Ser	Val	Leu	Pro	Lys	Gly	Thr	Ser	Glu	
		175					180				•	185				
cac	atq	tta	cca	act	gcc	tta	agc	agt	ctt	cct	ttg	gaa	gat	ttt	aag	746
His	Met	Leu	Pro	Thr	Āla	Leu	Ser	Ser	Leu	Pro	Leu	Glu	Asp	Phe	Lys	
	190					195					200					
atc	ctt	gaa	caa	gat	caa	caa	gat	aaa	aca	ctg	cta	agt	cta	aat	cta	794
Ile	Leu	Glu	Gln	Asp	Gln	Gln	Asp	Lys	Thr	Leu	Leu	Ser	Leu	Asn	Leu	
205					210					215					220	
aaa	cag	acc	aag	agt	acc	ttc	att	taa	attt	agc 1	ttgc	acag	ag c	ttga	tgcct	848
Lys	Gln	Thr	Lys	Ser	Thr	Phe	Ile									
				225												
															ttattt	908
															agaata	968
															aattac	1028
gga	ctta	aaa	attt	tgct	aa t	aaat	tgtg	t gt	ttga	aagg	tga	aaaa	aaa	aaaa	aa	1084

<210> 60

<211> 419

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 33..290

<221> sig_peptide <222> 33..92

WO 99/31236 -38- PCT/IB98/02122 .

<223> Von Heijne matrix score 5.4 seq WFVHSSALGLVLA/PP

<400> 60	53
aatggtaggc cttcatgtga gccagttact ac atg aat ctt cat ttc cca cag Met Asn Leu His Phe Pro Gln	22
-20 -15	
tgg ttt gtt cat tca tca gcg tta ggc ttg gtc ctg gct cca cct ttc	101
Trp Phe Val His Ser Ser Ala Leu Gly Leu Val Leu Ala Pro Pro Phe	
-10 -5 1	
tcc tct ccg ggc act gac ccc acc ttt ccg tgt att tac tgt agg cta	149
Ser Ser Pro Gly Thr Asp Pro Thr Phe Pro Cys Ile Tyr Cys Arg Leu	
5 10 15	
tta aat atg atc atg acc cgc ctt gca ttt tca ttc atc acc tgt tta	197
Leu Asn Met Ile Met Thr Arg Leu Ala Phe Ser Phe Ile Thr Cys Leu	
20 25 30 35	245
tgc cca aat tta aag gaa gtt tgt ctc att ttg cca gaa aaa aat tgt	245
Cys Pro Asn Leu Lys Glu Val Cys Leu Ile Leu Pro Glu Lys Asn Cys 40 45 50	
	290
aat agt cgg cac gct gga ttt gta ggg cca gca aaa ttg cgg cag Asn Ser Arg His Ala Gly Phe Val Gly Pro Ala Lys Leu Arg Gln	250
55 60 65	
tgaaactagt ttcacttcta aagcccttca tttcccacaa ggttaagctc tcgaaacccc	350
atttgatect tggttectat ttcgatecte ctttggaate tgaaaategg tetecatgtt	410
gtatgcaaa	419
<210> 61	
<211> 682	
<212> DNA	
<213> Homo sapiens	
.000.	
<220>. <221> CDS	
<222> 485616	
(2227 403010	
<221> polyA_site	
<222> 669682	
<400> 61	
ctcctttctc attccttatc ttgcgtgttt ttaccttttt ttcataacta agtttttgag	60
gaagttagtg ttcttttcaa agaaccggtt cgaaatgtac ttttctttgc tactttttgt	120
tattttattg atcacatctt taatcttttg ttctctatac gtggcctgtt ttgatttatt	180
ttactattct tgctttctaa ggtaagtatt ttgttgtgta gtgctttatt tttttcatct	240
ttcttcttga ataataatga catttttagg ttataaattt tcctctggta ctcagtttgc	300
ctcattaatt ttggcagtaa gcattctcct tttattgctt tctatgtagt ctttaatttt	360
gcttttaact tcttctttga tctaaggatt acctacttgt taatttccaa atattatctt	420 480
atctatctat ctatctatct atctatctat ctatctat	529
ggct atg tcg ccg agg ctg gag tgc agt ggt gca atc ttg gct cac tgc Met Ser Pro Arg Leu Glu Cys Ser Gly Ala Ile Leu Ala His Cys	363
net ser pro Arg Leu Giu Cys ser Giy Ala lie Leu Ala Als Cys 1 10 15	
aac ccc cgc ctc cca ggt tca agt tat tct cct gcc tca gct act tgg	5 7 7
Asn Pro Arg Leu Pro Gly Ser Ser Tyr Ser Pro Ala Ser Ala Thr Trp	- · ·
20 25 30	
gtg aga gga tcc ctt gag ccg ggg agg ttg agg ctg cag tgagccataa	626
Val Arg Gly Ser Leu Glu Pro Gly Arg Leu Arg Leu Gln	
35 40	
ccactactct ccagcctgga taacaaaagt gagactctga ccaaaaaaaa aaaaaa	682

```
<210> 62
<211> 1191
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 54..995
<221> sig_peptide
<222> 54..227
<223> Von Heijne matrix
     score 4.1
     seq LVHHCPTWQWATG/EE
<221> polyA_signal
<222> 1130..1135
<221> polyA_site
<222> 1181..1191
<400> 62
                                                                      56
cacggctgca ctttccatcc cgtcgcgggg ccggccgcta ctccggcccc agg atg
cag aat gtg att aat act gtg aag gga aag gca ctg gaa gtg gct gag
                                                                      104
Gln Asn Val Ile Asn Thr Val Lys Gly Lys Ala Leu Glu Val Ala Glu
                            -50
                                                                      152
tac ctg acc ccg gtc ctc aag gaa tca aag ttt agg gaa aca ggt gta
Tyr Leu Thr Pro Val Leu Lys Glu Ser Lys Phe Arg Glu Thr Gly Val
                                            -30
                       -35
                                                                      200
att acc cca gaa gag ttt gtg gca gct gga gat cac cta gtc cac cac
Ile Thr Pro Glu Glu Phe Val Ala Ala Gly Asp His Leu Val His His
                                        -15
                   -20
tgt cca aca tgg caa tgg gct aca ggg gaa gaa ttg aaa gtg aag gca
                                                                      248
Cys Pro Thr Trp Gln Trp Ala Thr Gly Glu Glu Leu Lys Val Lys Ala
                - 5
tac cta cca aca ggc aaa caa ttt ttg gta acc aaa aat gtg ccg tgc
                                                                      296
Tyr Leu Pro Thr Gly Lys Gln Phe Leu Val Thr Lys Asn Val Pro Cys
                            15
       10
                                                                      344
tat aag cgg tgc aaa cag atg gaa tat tca gat gaa ttg gaa gct atc
Tyr Lys Arg Cys Lys Gln Met Glu Tyr Ser Asp Glu Leu Glu Ala Ile
                                                                      392
att gaa gaa gat gat ggt gat ggc gga tgg gta gat aca tat cac aac
Ile Glu Glu Asp Asp Gly Asp Gly Gly Trp Val Asp Thr Tyr His Asn
                    45
                                        50
                                                                      440
aca ggt att aca gga ata acg gaa gcc gtt aaa gag atc aca ctg gaa
Thr Gly Ile Thr Gly Ile Thr Glu Ala Val Lys Glu Ile Thr Leu Glu
                                    65
                                                                      488
aat aaq gac aat ata agg ctt caa gat tgc tca gca cta tgt gaa gag
Asn Lys Asp Asn Ile Arg Leu Gln Asp Cys Ser Ala Leu Cys Glu Glu
                                80
                                                                      536
gaa gaa gat gaa gat gaa gga gaa gct gca gat atg gaa gaa tat gaa
Glu Glu Asp Glu Asp Glu Gly Glu Ala Ala Asp Met Glu Glu Tyr Glu
                            95
gag agt gga ttg ttg gaa aca gat gag gct acc cta gat aca agg aaa
                                                                      584
Glu Ser Gly Leu Leu Glu Thr Asp Glu Ala Thr Leu Asp Thr Arg Lys
                        110
ata gta gaa gct tgt aaa gcc aaa act gat gct ggc ggt gaa gat gct
                                                                      632
Ile Val Glu Ala Cys Lys Ala Lys Thr Asp Ala Gly Glu Asp Ala
                    125
                                        130
                                                                      680
att ttq caa acc aga act tat gac ctt tac atc act tat gat aaa tat
```

Ile Le	eu Gln	Thr	Arg 140	Thr	Tyr	Asp	Leu	Tyr 145	Ile	Thr	Tyr	Asp	Lys 150	Tyr	
tac ca				++>	taa	++~	+++		tat	ast	a a a	caa		cad	728
Tyr Gl	eg act	Des	Cga N==	LLA	ryy	Leu	Dhe	Glv	Tur) an	Glu	Gln	723	Gln	,
Tyr GI	in inc		Arg	ьеu	пр		160	Gry	- y -	vsh	Gru	165	n g	U1	
cct tt		155	~~~		- 			a a c	atc	aat	C 2 C		cat	ata	776
Pro Le	a aca	get	gag	tti -	Mot	Ture	Clu	yac	Tla	cor	Cln	Jac	Hic	17a l	
PLO TE		vai	GIU	uis	Mec	175	GIU	ASD	116	SET	180	vaħ	HIS	Val	
	170												aat	000	824
aag aa	a aca	grg	acc	att	gaa	aat	cat	CCC	cat	etg	CCa	Don	Dwo	Dro	024
Lys Ly		Val	Thr	TTE		Asn	HIS	Pro	HIS		Pro	Pro	PIO	PIO	
18					190					195				_ * *	072
atg tg	gt tca	gtt	cac	cca	tgc	agg	cat	gct	gag	gtg	atg	aag	aaa	atc	872
Met Cy	s Ser	Val	His		Cys	Arg	His	Ala		vaı	Met	гÀв	гÀг		
200				205					210					215	000
att ga	ag act	gtt	gca	gaa	gga	<u>a</u> aa	gga	gaa	ctt	gga	gtt	cat	atg	tat	920
Ile Gl	lu Thr	Val	Ala	Glu	Gly	Gly	Gly		Leu	Gly	Val	His		Tyr	
			220					225					230		- 40
ctt ct	t att	ttc	ttg	aaa	ttt	gta	caa	gct	gtc	att	cca	aca	ata	gaa	968
Leu Le	eu Ile	Phe	Leu	Lys	Phe	Val	Gln	Ala	Val	Ile	Pro	Thr	Ile	Glu	
		235					240					245			
tat ga	ac tac	aca	aga	cac	ttc	aca	atg	taat	gaag	gag a	igcat	aaa	at		1015
Tyr As	sp Tyr	Thr	Arg	His	Phe	Thr	Met								
_	250					255									
ctatco	ctaat	tatto	ggtto	t ga	atttt	taaa	gaa	attaa	accc	atag	gatgi	ga	ccatt	gacca	1075
tattca	atcaa	tatat	acaq	t tt	ctct	aata	ago	gact	tat	atgt	ttat	gc a	attaa	aataaa	1135
aatato															1191
-			-			•				_					
<210>	63									•					
<211>															
<212>		:													
<213>	Homo	sapro	5115												
<220>	an a														
<221>															
<222>	657	923													
			-												
	sig_p		de												
	657														
<223>	Von H	eijn	e mat	rix											
		3.5													
			ACAP	IGDG,	/ST										
	score seq R		ACAPV	IGDG,	/ST										
<221>		GLLS		IGDG,	/ST										
	seq R	GLLS:		NGDG,	/ST										
	seq R	GLLS:		(GDG	/ST										
<222>	seq R polyA 957	GLLS _sign 962	nal	(GDG	/st										
<222> <221>	polyA 957 polyA	GLLS _sign 962 _site	nal	(GDG	/ST										
<222> <221>	seq R polyA 957	GLLS _sign 962 _site	nal	NGDG,	/ST										
<222> <221> <222>	polyA 957 polyA 974	GLLS _sign 962 _site	nal	NGDG,	/st										
<222> <221> <222> <400>	polyA 957 polyA 974	GLLSign _sign 962 _site	nal e			act or	ı ct	cato	rata	caa	ctga	gar	tato	agagca	60
<222> <221> <222> <400> ntcgna	polyA 957 polyA 974 63 atgtg	_sign 962 _site 1008	nal e	ee e	ctct	getge	g ct	catg	tgtg	caa	ctga	gac	tgtc	agagca gratet	
<222> <221> <222> <400> ntcgnatggcta	polyA 957 polyA 974 63 atgtg	_sign 962 _sitc 1008	nal e aaaac gtcca	ec c	ctctg	ctggg	tg:	9999	ctag	aga	ggaa	gca	ggga	gtatct	120
<222> <221> <222> <400> ntcgnatggctaggctaggcacae	polyA 957 polyA 974 63 atgtg agctc cagga	_sign 962 _sitc 1008 gcac tggg	nal e aaaac gtcca tgcgc	cc c ag c ct c	ctct; tctg; aggt;	ctggg ggttg	j tg	gggg gaag	ctag tcag	aga tgc	ggaa ccag	gca gcc	ggga cccc	gtatct cacaca	120 180
<222> <221> <222> <400> ntcgnatggctagcacacgtccca	polyA 957 polyA 974 63 atgtg agctc cagga caaag	_sign 962 _sitc 1008 gcac tggg	nal e aaaac gtcca tgcgc ggcct	cc c ag c ct c	ctctg tctg aggt ccag	ctggg ggttg cgcgg	g tg g ca g gg	gggg gaag ctcc	ctag tcag tcgt	aga tgc ttg	ggaa ccag aggg	gca gcc gag	ggga cccc gtga	gtatct cacaca cttccc	120 180 240
<222> <221> <222> <400> ntcgnatggctagcacacgtcccagtcccag	polyA 957 polyA 974 63 atgtg agctc cagga caaag gcagg	_sign 962 _sitc 1008 gcac tggggtgcc gtcc	aaaaa gtcca tgcg ggcct	ec cag cat	ctct; tctg; aggt; ccag; agta;	ctggg ggttg cgcgg agctt	g tg g ca g gg g cc	gggg gaag ctcc ccag	ctag tcag tcgt ccct	aga tgc ttg gcc	ggaa ccag aggg tgag	gca gcc gag cag	ggga cccc gtga cctt	gtatet cacaca cttece tectee	120 180 240 300
<222> <221> <222> <400> ntegnategetagetagetaeeeeeeeeeeeeeeeeeeee	polyA 957 polyA 974 63 atgtg agctc cagga caaag gcagg ctgtt	_sign 962 _sitc 1008 gcac tggg tgcc gtcc ctct	aaaaa gtcca tgcga ggcct tggaa acctc	ec coag coac coac coac coac coac coac coa	ctctg tctg aggt ccag agta ggct	ctggg ggttg cgcgg agctt ccagt	tg g ca g gg c cc cc	gggg gaagi ctcci ccag agggi	ctag tcag tcgt ccct agct	tgc ttg gcc ccc	ggaa ccag aggg tgag aggg	gca gcc gag cag aag	ggga cccc gtga cctt tggt	gtatet cacaca cttccc tcctcc cgaccc	120 180 240 300 360
<222> <221> <222> <400> ntegnategetagetagetaeeeeeeeeeeeeeeeeeeee	polyA 957 polyA 974 63 atgtg agctc cagga caaag gcagg ctgtt gtggc	_sign 962 _sitc 1008 gcac tggg tgcc gtcc ctct cccc	aaaaa gtcca tgcg ggcct tggaa acctc	cc cag cc cc cc cc cc cc	ctctg tctg aggt ccag agta ggct gcta	ctggg ggttg cgcgg agctt ccagt	g tgg g gg g cc cc cc ca	gggg gaag ctcc ccag aggg tccg	ctag tcag tcgt ccct agct ccaa	aga tgc ttg gcc ccc gct	ggaa; ccag; aggg; tgag aggg	gca gcc gag cag aag gca	ggga cccc gtga cctt tggt tcgg	gtatet cacaca cttccc tcctcc cgaccc caaggc	120 180 240 300 360 420
<222> <221> <222> <400> ntegnategetegetegeteegeteegeteegeteegete	polyA 957 polyA 974 63 atgtg agctc cagga cagga ctgtt gtggc ttgcgc	_sign 962 _sitc 1008 gcac tggg tgcc gtcc ctct cccc tggg agca	e aaaaa gtcca tgcga ggcct tgga acctc	co c	ctct tctg aggt ccag agta ggct gcta gcga	ctggg ggttg cgcgg agctt ccagt gagtc aagct	g tgg g cag g gg c cc c cc c ca	gggg gaag ctcc ccag aggg tccg agaa	ctag tcag tcgt ccct agct ccaa gaag	aga tgc ttg gcc ccc gct aag	ggaa ccag aggg tgag aggg gggg caga	gca gcc gag cag aag gca	ggga cccc gtga cctt tggt tcgg agca	gtatet cacaca cttccc tcctcc cgaccc caaggc ggagca	120 180 240 300 360 420 480
<222> <221> <222> <400> ntegnategetegetegeteceateceateceateceateceate	polyA 957 polyA 974 63 atgtg agctc cagga cagga ctgtt gtggc ttgcgc	_sign 962 _sitc 1008 gcac tggg tgcc gtcc ctct cccc tggg agca	e aaaaa gtcca tgcga ggcct tgga acctc	co c	ctct tctg aggt ccag agta ggct gcta gcga	ctggg ggttg cgcgg agctt ccagt gagtc aagct	g tgg g cag g gg c cc c cc c ca	gggg gaag ctcc ccag aggg tccg agaa	ctag tcag tcgt ccct agct ccaa gaag	aga tgc ttg gcc ccc gct aag	ggaa ccag aggg tgag aggg gggg caga	gca gcc gag cag aag gca	ggga cccc gtga cctt tggt tcgg agca	gtatet cacaca cttccc tcctcc cgaccc caaggc ggagca	120 180 240 300 360 420 480 540
<222> <221> <222> <400> ntegnategetegetegetegetegetegetegetegetegeteg	polyA 957 polyA 974 63 atgtg agctc cagga cagga ctgtt gtggc ttggc gagcc	_sign 962 _sitc 1008 gcac tggg tgcc ctct cccc tggg agca acga	e aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	co c	ctct; tctg; aggt; ccag; agta; gcta; gcga; tggg;	ctggg ggttg cgcgg agctt ccagt gagto aagct	g tgg g cag g gg c cc c ca c gg	gggggggggggggggggggggggggggggggggggggg	ctag tcag tcgt ccct agct ccaa gaag	agae tgc ttg gcc ccc gct aag	ggaa ccag aggg aggg aggg caga ttca	gca gcc gag cag aag gca agg	ggga cccc gtga cctt tggt tcgg agca agct	gtatet cacaca cttccc tcctcc cgaccc caaggc ggagca ggtcat	120 180 240 300 360 420 480
<222> <221> <222> <400> ntegnategetegetegetegetegetegetegetegetegeteg	polyA 957 polyA 974 63 atgtg agctc cagga cagga ctgttt gtggc ttggc gtggc gtggc ggagc ggagc	_sign 962 _sitc 1008 gcac tgggc tgcc ctct cccc tggga acga ggca	mal aaaaa gtcca tgggct tggaa acctc ccact tgaa gccaa tctct	cc	ctct; tctg; aggt; ccag; ggcta; gcga; tggg; gaaa;	ctggg ggttg cgcgg agctt ccagt gagtt aagct cactt	g tgg g ca g gg c cc c ca gg c tg	gggg gaag ctcc ccag aggg tccg agaa tgtc gggc	ctag tcag tcgt ccct agct ccaa gaag ggat tggt	againtgo	ggaa ccag tgag tgag aggg caga ttca gggc	gca gcc gag cag aag gca agg aca	ggga cccc gtga cctt tggt tcgg agca agct gagg	gtatet cacaca cttccc tcctcc cgaccc caaggc ggagca	120 180 240 300 360 420 480 540

Met -80		
agg aca agg acg act ggg aat cot agg ggg ctc cat gac acc ttc ccc	707	٠
Arg Thr Arg Thr Thr Gly Asn Pro Arg Gly Leu His Asp Thr Phe Pro -75 -70 -65	255	
cgc aga ccc aga ctt ggc cgt tgc tct gac atg gac aca gcc agg aca Arg Arg Pro Arg Leu Gly Arg Cys Ser Asp Met Asp Thr Ala Arg Thr	755	
-60 -55 -50 agc tgc tca gac ctg ctt ccc tgg gag gtg acg gaa cca gca ctg	803	
Ser Cys Ser Asp Leu Leu Pro Trp Glu Gly Val Thr Glu Pro Ala Leu -45 -40 -35		
tgt gga gac cag ctt caa gga acg gaa ggc tgg ctt gag gcc aca cag Cys Gly Asp Gln Leu Gln Gly Thr Glu Gly Trp Leu Glu Ala Thr Gln	851	
-30 -25 -20 ctg ggg cgg gga ctt ctg tct gcc tgt gct cca tgg ggg gac ggc tcc	899	
Leu Gly Arg Gly Leu Leu Ser Ala Cys Ala Pro Trp Gly Asp Gly Ser		
-15 -10 -5 1 acc cag cct gtg cca ctg tgt tct taagaggett ccagagaaaa cggcacacca	953	
Thr Gln Pro Val Pro Leu Cys Ser		
atcaataaag aactgagcag aaaaaaaaaa aaaaaaaaaa	1008	
<210> 64		
<211> 568		
<212> DNA <213> Homo sapiens		
<220>		
<221> CDS <222> 18311		
<221> sig_peptide <222> 1862		
<pre><223> Von Heijne matrix score 8.4</pre>		
seq AMWLLCVALAVLA/WG		
<400> 64	50	
agtgctgctt acccatc atg gaa gca atg tgg ctc ctg tgt gtg gcg ttg Met Glu Ala Met Trp Leu Leu Cys Val Ala Leu -15 -10 -5	30	
gcg gtc ttg gca tgg ggc ttc ctc tgg gtt tgg gac tcc tca gaa cga	98	
Ala Val Leu Ala Trp Gly Phe Leu Trp Val Trp Asp Ser Ser Glu Arg 1 5 10		
atg aag agt cgg gag cag gga gga cgg ctg gga gcc gaa agc cgg acc Met Lys Ser Arg Glu Gln Gly Gly Arg Leu Gly Ala Glu Ser Arg Thr	146	
15 20 25	194	
ctg ctg gtc ata gcg cac cct gac gat gaa gcc atg ttt ttt gct ccc Leu Leu Val Ile Ala His Pro Asp Asp Glu Ala Met Phe Phe Ala Pro	134	
30 35 40 aca gtg cta ggc ttg gcc cgc cta agg cac tgg gtg tac ctg ctt tgc	242	
Thr Val Leu Gly Leu Ala Arg Leu Arg His Trp Val Tyr Leu Leu Cys		
45 50 55 60 ttc tct gca gtt ttc cgt agg gag cta agt gaa tac acc gaa ggt ctt	290	
Phe Ser Ala Val Phe Arg Arg Glu Leu Ser Glu Tyr Thr Glu Gly Leu 65 70 75		
acc tot gaa coc oto aca goo tagggacagg agoggooggo ttacotggtg	341	
Thr Ser Glu Pro Leu Thr Ala 80		
ggttggggga cgtcggcagc tcgcgtacta cgccagcagg attgaggagc agagaaacag	401	

tetgtagetegg tegeat tetgtggaac tttttt cgaaacaate tatget	tatt tgtagaagga	gcaagaatat t	actecacetg tact tgacettact atat agttaac	tgttat 461 agcaca 521 568
<210> 65 <211> 538 <212> DNA <213> Homo sapier	ns			
<220> <221> CDS <222> 151426				
<221> sig_peptide <222> 151258 <223> Von Heijne score 5.2 seq KVALAGI	matrix			
<221> polyA_signa <222> 505510	al			
<221> polyA_site <222> 527538				
<400> 65	,		. •	
cactgggtca aggagt	taagc agaggataaa	caactggaag	gagagcaagc aca	aagtcat 60
	taata ataassecs		acceptite cac	
catggcttca gcgtc	cycec geggaaacca	agacaaagac	900000000000000000000000000000000000000	caccaag 120
caagcagctc tgcct	ttttc tcttgtaago	e atg ctt gtc Met Leu Val -35	acc cag gga co Thr Gln Gly Lo	ta gtc 174 eu Val 30
tac caa ggt tat f	ttttc tcttgtaago	e atg ctt gtc Met Leu Val -35 tct aga ttt	acc cag gga co Thr Gln Gly Lo -: gga tca ttg cc	ta gtc 174 eu Val 30 c aaa 222 o Lys
tac caa ggt tat for Gln Gly Tyr 1-25 gtt gca ctt gct	tttc tcttgtaago ttg gca gct aat Leu Ala Ala Asn ggt ctc ttg gga	e atg ctt gtc Met Leu Val -35 tct aga ttt Ser Arg Phe -20 ttt ggc ctt	acc cag gga co Thr Gln Gly Lo gga tca ttg co Gly Ser Leu Pro -15 gga aag gta tc	ta gtc 174 eu Val 30 c aaa 222 c Lys a tac 270
tac caa ggt tat from the control of the cas ggt tat from the cas ggt tat from the cas ggt gca ctt gct gca ctt gca	tttc tcttgtaago ttg gca gct aat Leu Ala Ala Asn ggt ctc ttg gga Gly Leu Leu Gly	e atg ctt gtc Met Leu Val -35 tct aga ttt Ser Arg Phe -20 ttt ggc ctt	acc cag gga co Thr Gln Gly Lo gga tca ttg cco Gly Ser Leu Pro -15 gga aag gta tco Gly Lys Val Se	ta gtc 174 eu Val 30 c aaa 222 c Lys a tac 270
tac caa ggt tat for the cas ggt gca ctt gct for the cas gca ctt gct for the cas gca ctt gc	tttc tcttgtaago ttg gca gct aat Leu Ala Ala Asn ggt ctc ttg gga Gly Leu Leu Gly -5	e atg ctt gtc Met Leu Val -35 tct aga ttt Ser Arg Phe -20 ttt ggc ctt Phe Gly Leu	Thr Gln Gly Le gga tca ttg cc Gly Ser Leu Pre -15 gga aag gta tc Gly Lys Val Se	ta gtc 174 eu Val 30 c aaa 222 o Lys a tac 270 r Tyr
tac caa ggt tat for the case tac cas ggt tat for the case ggt tat for the case ggt tat for the case ggt gca ctt gct for the case ggt gca ctt gct for the case gga gta tac for the case gga gta gas gas gas ga	tttc tcttgtaago ttg gca gct aat Leu Ala Ala Asn ggt ctc ttg gga Gly Leu Leu Gly -5 cag agt aaa ttc	e atg ctt gtc Met Leu Val -35 tct aga ttt Ser Arg Phe -20 ttt ggc ctt Phe Gly Leu cat ttt ttt	acc cag gga control of the control o	ta gtc 174 eu Val 30 c aaa 222 o Lys a tac 270 r Tyr c cgt 318
tac caa ggt tat to the caa ggt tat to the caa ggt tat to the case ggt tat to the case ggt tat gca ctt gct to the case gga gta tgc to the case gga gta	tttc tcttgtaago ttg gca gct aat Leu Ala Ala Asn ggt ctc ttg gga Gly Leu Leu Gly -5 cag agt aaa ttc Gln Ser Lys Phe 10	e atg ctt gtc Met Leu Val -35 tct aga ttt Ser Arg Phe -20 ttt ggc ctt Phe Gly Leu cat ttt ttt His Phe Phe 15	acc cag gga co Thr Gln Gly Lo gga tca ttg cco Gly Ser Leu Pro -15 gga aag gta tco Gly Lys Val Sec 1 gaa gat cag ct Glu Asp Gln Le	ta gtc 174 eu Val 30 c aaa 222 o Lys a tac 270 r Tyr c cgt 318 u Arg 20
tac caa ggt tat to tac caa ggt tat to tac caa ggt tat to tac cas ggt tat to tac cas ggt tat to tac caa ggt tat to tac caa gga gta tac caa gga gct ggt tat tac caa gga gct ggt tac caa ggt tac caa ggt tac caa ggt tac caa ggt tac	tttc tcttgtaago ttg gca gct aat Leu Ala Ala Asn ggt ctc ttg gga Gly Leu Leu Gly -5 cag agt aaa ttc Gln Ser Lys Phe 10 qgt cca cag cat	e atg ctt gtc Met Leu Val -35 tct aga ttt Ser Arg Phe -20 ttt ggc ctt Phe Gly Leu cat ttt ttt His Phe Phe 15 aac agg cac	acc cag gga control of the control o	ta gtc 174 eu Val 30 c aaa 222 o Lys a tac 270 r Tyr c cgt 318 u Arg 20 c tgt 366
tac caa ggt tat grant gland gg tat gca ctt gct gca ctt gct yal Ala Leu Ala caa gga gta tgc lle Gly Val Cys ggg gct ggt ttt ggy Ala Gly Phe	tttc tcttgtaago ttg gca gct aat Leu Ala Ala Asn ggt ctc ttg gga Gly Leu Leu Gly -5 cag agt aaa ttc Gln Ser Lys Phe 10 ggt cca cag cat Gly Pro Gln His	e atg ctt gtc Met Leu Val -35 tct aga ttt Ser Arg Phe -20 ttt ggc ctt Phe Gly Leu cat ttt ttt His Phe Phe 15 aac agg cac Asn Arg His 30	acc cag gga control of the control o	ta gtc 174 eu Val 30 c aaa 222 o Lys a tac 270 r Tyr c cgt 318 u Arg 20 c tgt 366 r Cys
tac caa ggt tat grant glant gl	tttc tcttgtaago ttg gca gct aat Leu Ala Ala Asn ggt ctc ttg gga Gly Leu Leu Gly -5 cag agt aaa ttc Gln Ser Lys Phe 10 ggt cca cag cat Gly Pro Gln His 25 ata aag cat gga	e atg ctt gtc Met Leu Val -35 tct aga ttt Ser Arg Phe -20 ttt ggc ctt Phe Gly Leu cat ttt ttt His Phe Phe 15 aac agg cac Asn Arg His 30 tta agt gag	acc cag gga control of the control o	ta gtc
tac caa ggt tat grant gland gag gaa tgc aaa ggt tat gca ctt gct yal Ala Leu Ala con at a gga gta tgc ggg gct ggt ttt gly Ala Gly Phe gag gaa tgc aaa glu Glu Cys Lys 40	tttc tcttgtaage ttg gca gct aat Leu Ala Ala Asn ggt ctc ttg gga Gly Leu Leu Gly -5 cag agt aaa ttc Gln Ser Lys Phe 10 ggt cca cag cat Gly Pro Gln His 25 ata aag cat gga Ile Lys His Gly	e atg ctt gtc Met Leu Val -35 tct aga ttt Ser Arg Phe -20 ttt ggc ctt Phe Gly Leu cat ttt ttt His Phe Phe 15 aac agg cac Asn Arg His 30 tta agt gag Leu Ser Glu 45	Thr Gln Gly Legga tca ttg ccc Gly Ser Leu Pro-15 gga aag gta tcc Gly Lys Val Ser 1 gaa gat cag ct Glu Asp Gln Legt tgc ctc ctt ac Cys Leu Leu Th 35 aag gga gac tcc Lys Gly Asp Ser 50	ta gtc 174 eu Val 30 c aaa 222 c Lys a tac 270 r Tyr c cgt 318 u Arg 20 c tgt 366 r Cys t cag 414 r Gln
tac caa ggt tat grant glant gl	tttc tcttgtaage ttg gca gct aat Leu Ala Ala Asn ggt ctc ttg gga Gly Leu Leu Gly -5 cag agt aaa ttc Gln Ser Lys Phe 10 ggt cca cag cat Gly Pro Gln His 25 ata aag cat gga Ile Lys His Gly	e atg ctt gtc Met Leu Val -35 tct aga ttt Ser Arg Phe -20 ttt ggc ctt Phe Gly Leu cat ttt ttt His Phe Phe 15 aac agg cac Asn Arg His 30 tta agt gag Leu Ser Glu 45	Thr Gln Gly Legga tca ttg ccc Gly Ser Leu Pro-15 gga aag gta tcc Gly Lys Val Ser 1 gaa gat cag ct Glu Asp Gln Legt tgc ctc ctt ac Cys Leu Leu Th 35 aag gga gac tcc Lys Gly Asp Ser 50	ta gtc 174 eu Val 30 c aaa 222 c Lys a tac 270 r Tyr c cgt 318 u Arg 20 c tgt 366 r Cys t cag 414 r Gln
tac caa ggt tat grant glant gl	tttc tcttgtaage ttg gca gct aat Leu Ala Ala Asn ggt ctc ttg gga Gly Leu Leu Gly -5 cag agt aaa ttc Gln Ser Lys Phe 10 ggt cca cag cat Gly Pro Gln His 25 ata aag cat gga Ile Lys His Gly	e atg ctt gtc Met Leu Val -35 tct aga ttt Ser Arg Phe -20 ttt ggc ctt Phe Gly Leu cat ttt ttt His Phe Phe 15 aac agg cac Asn Arg His 30 tta agt gag Leu Ser Glu 45	Thr Gln Gly Legga tca ttg ccc Gly Ser Leu Pro-15 gga aag gta tcc Gly Lys Val Ser 1 gaa gat cag ct Glu Asp Gln Legt tgc ctc ctt ac Cys Leu Leu Th 35 aag gga gac tcc Lys Gly Asp Ser 50	ta gtc 174 eu Val 30 c aaa 222 c Lys a tac 270 r Tyr c cgt 318 u Arg 20 c tgt 366 r Cys t cag 414 r Gln
tac caa ggt tat grant gland gl	ttg gca gct aat Leu Ala Ala Asn ggt ctc ttg gga Gly Leu Leu Gly -5 cag agt aaa ttc Gln Ser Lys Phe 10 ggt cca cag cat Gly Pro Gln His 25 ata aag cat gga Ile Lys His Gly taaattctgt gtcts	tet aga ctt gtc Met Leu Val -35 tct aga ttt Ser Arg Phe -20 ttt ggc ctt Phe Gly Leu cat ttt ttt His Phe Phe 15 aac agg cac Asn Arg His 30 tta agt gag Leu Ser Glu 45 gtgact ttcgaa	acc cag gga compared to the Gln Gly Long gga tca ttg ccc Gly Ser Leu Property Gga aag gta tcc Gly Lys Val Ser 1 gaa gat cag ct Glu Asp Gln Lev tgc ctc ctt ac Cys Leu Leu Th 35 aag gga gac tcc Lys Gly Asp Ser 50 agttt tttaaacct	ta gtc
tac caa ggt tat grant glant gl	ttg gca gct aat Leu Ala Ala Asn ggt ctc ttg gga Gly Leu Leu Gly -5 cag agt aaa ttc Gln Ser Lys Phe 10 ggt cca cag cat Gly Pro Gln His 25 ata aag cat gga Ile Lys His Gly taaattctgt gtcts	tet aga ctt gtc Met Leu Val -35 tct aga ttt Ser Arg Phe -20 ttt ggc ctt Phe Gly Leu cat ttt ttt His Phe Phe 15 aac agg cac Asn Arg His 30 tta agt gag Leu Ser Glu 45 gtgact ttcgaa	acc cag gga compared to the Gln Gly Long gga tca ttg ccc Gly Ser Leu Property Gga aag gta tcc Gly Lys Val Ser 1 gaa gat cag ct Glu Asp Gln Lev tgc ctc ctt ac Cys Leu Leu Th 35 aag gga gac tcc Lys Gly Asp Ser 50 agttt tttaaacct	ta gtc
tac caa ggt tat grade to the tac caa ggt tat grade to the tac cat gct gct gct gca ctt gct gct gca ctt gct gca gga gta tgc gca ggg gct ggt ttt gca gca caa gca gca caa gca gca cca cca	ttg gca gct aat Leu Ala Ala Asn ggt ctc ttg gga Gly Leu Leu Gly -5 cag agt aaa ttc Gln Ser Lys Phe 10 ggt cca cag cat Gly Pro Gln His 25 ata aag cat gga Ile Lys His Gly taaattctgt gtcts	tet aga ctt gtc Met Leu Val -35 tct aga ttt Ser Arg Phe -20 ttt ggc ctt Phe Gly Leu cat ttt ttt His Phe Phe 15 aac agg cac Asn Arg His 30 tta agt gag Leu Ser Glu 45 gtgact ttcgaa	acc cag gga compared to the Gln Gly Long gga tca ttg ccc Gly Ser Leu Property Gga aag gta tcc Gly Lys Val Ser 1 gaa gat cag ct Glu Asp Gln Lev tgc ctc ctt ac Cys Leu Leu Th 35 aag gga gac tcc Lys Gly Asp Ser 50 agttt tttaaacct	ta gtc
tac caa ggt tat grade to the tac caa ggt tat grade to the tac cat gct gct gct gca ctt gct gct gca ctt gct gca gga gta tgc gca ggg gct ggt ttt gca gca caa gca gca caa gca gca cca cca	ttg gca gct aat Leu Ala Ala Asn ggt ctc ttg gga Gly Leu Leu Gly -5 cag agt aaa ttc Gln Ser Lys Phe 10 ggt cca cag cat Gly Pro Gln His 25 ata aag cat gga Ile Lys His Gly taaattctgt gtcts	tet aga ctt gtc Met Leu Val -35 tct aga ttt Ser Arg Phe -20 ttt ggc ctt Phe Gly Leu cat ttt ttt His Phe Phe 15 aac agg cac Asn Arg His 30 tta agt gag Leu Ser Glu 45 gtgact ttcgaa	acc cag gga compared to the Gln Gly Long gga tca ttg ccc Gly Ser Leu Property Gga aag gta tcc Gly Lys Val Ser 1 gaa gat cag ct Glu Asp Gln Lev tgc ctc ctt ac Cys Leu Leu Th 35 aag gga gac tcc Lys Gly Asp Ser 50 agttt tttaaacct	ta gtc

<210> 66 <211> 1747 <212> DNA <213> Homo sapiens

<221: <222:			62													
<221: <222: <223:	> 10 > Vo: sc	57 n He ore	ijne	mat		ws			·							
<221 <222	_		_													
<221 <222																
<400	> 66															
gcct	cacc	a at	g gt t Va -1	l Pr	c tt	c at e Il	c ta e Ty	t ct r Le -1	u Gl	a go n Al	c ca a Hi	c tt s Ph	t ac e Th	r Le	c tgt u Cys	3
tct Ser	gly ggg	tgg Trp 1	tcc Ser	agc Ser	aca Thr	tac Tyr 5	cgg Arg	gac Asp	ctc Leu	cgg Arg	aag Lys 10	ggt Gly	gtg Val	tat Tyr	gtg Val	99
ccc Pro 15	tac Tyr	acc	cag Gln	ggc Gly	aag Lys 20	tgg Trp	gaa Glu	ggg Gly	gag Glu	ctg Leu 25	ggc Gly	acc Thr	gac Asp	ctg Leu	gta Val 30	147
agc	atc Ile	ccc Pro	cat His	Gly	CCC	aac Asn	gtc Val	act Thr	gtg Val 40	cgt	gcc Ala	aaç Asn	att Ile	gct Ala 45	gcc Ala	195
atc Ile	act Thr	gaa Glu	tca Ser	35 gac Asp	aag Lys	ttc Phe	ttc Phe	Ile	aac	ggc Gly	tcc Ser	aac Asn	tgg Trp 60	gaa	ggc Gly	243
atc Ile	ctg Leu	Gly	50 ctg Leu	gcc Ala	tat Tyr	gct Ala	Glu	55 att Ile	gcc Ala	agg Arg	cct Pro	gac Asp 75	gac	tcc Ser	ccg Pro	291
gag Glu	Pro	65 ttc Phe	ttt Phe	gac Asp	tct Ser	Leu	70 gta Val	aag Lys	cag Gln	acc Thr	His	gtt	ccc Pro	aac Asn	ctc Leu	339
ttc Phe	80 tcc Ser	ctg Leu	cag Gln	ctt Leu	tgt Cys	85 ggt Gly	gct Ala	ggc Gly	ttc Phe	Pro	90 ctc Leu	aac Asn	cag Gln	tct Ser	GIU	387
95 gtg Val	ctg Leu	gcc Ala	tct Ser	gtc Val	100 gga Gly	ggg Gly	agc Ser	atg Met	atc Ile	105 att Ile	gga Gly	ggt Gly	atc Ile	gac Asp	110 cac His	435
tca	cta	tac	aca Thr	115 ggc	agt	ctc	tgg	tat	120 aca	ccc	atc	cgg	cgg	gag	tgg	483
tat	tat	gag	130 ata	atc	att	ata	cqq	135 gtg	gag	atc	aat	gga	140 cag	gat	ctg	531
Tyr	Tyr	Glu 145	Val tgc	Ile	Ile	Val	Arg 150	Val	Glu	Ile	Asn	Gly 155	GIn	Asp	гел	579
Lys	Met 160	Asp	Cys	Lys	Glu	Tyr 165	Asn	Tyr	Asp	Lys	Ser 170	Ile	Val	Asp	ser	627
ggc Gly 175	acc Thr	acc Thr	aac Asn	ctt Leu	cgt Arg 180	Leu	Pro	aag Lys	aaa Lys	gtg Val 185	Phe	gaa Glu	gct Ala	Ala	Val 190	627
aaa	tcc Ser	atc Ile	aag Lys	gca Ala 195	Ala	tcc Ser	tcc Ser	acg Thr	gag Glu 200	Lys	ttc Phe	cct Pro	gac Asp	ggt Gly 205	ttc Phe	675
tgg Trp	cta Leu	gga Gly	Glu	cag Gln	ctq	gtg Val	tgc Cys	tgg Trp 215	caa Gln	gca	ggc Gly	acc Thr	acc Thr 220	cct Pro	tgg Trp	723
aac	att	ttc	210 cca		ato	tca	ctc			atg	ggt	gag			aac	771

Asn	Ile	Phe 225	Pro	Val	Ile	Ser	Leu 230	Tyr	Leu	Met	Gly	Glu 235	Val	Thr	Asn	
cag Gln	tcc Ser 240	ttc	cgc Arg	atc Ile	acc Thr	atc Ile 245	ctt Leu	ccg Pro	cag Gln	caa Gln	tac Tyr 250	ctg Leu	cgg Arg	cca Pro	gtg Val	819
gaa Glu 255	gat	gtg Val	gcc Ala	acg Thr	tcc Ser 260	caa Gln	gac Asp	gac Asp	tgt Cys	tac Tyr 265	aag Lys	ttt Phe	gcc Ala	atc Ile	tca Ser 270	867
caq	tca Ser	tcc Ser	acg Thr	ggc Gly 275	act	gtt Val	atg Met	gga Gly	gct Ala 280	gtt Val	atc Ile	atg Met	gag Glu	ggc Gly 285	ttc Phe	915
tac Tyr	gtt Val	gtc Val	ttt Phe 290	gat Asp	cgg Arg	gcc Ala	cga Arg	aaa Lys 295	cga Arg	att Ile	ggc Gly	ttt Phe	gct Ala 300	gtc Val	agc Ser	963
gct Ala	tgc Cys	cat His 305	qtq	cac His	gat Asp	gag Glu	ttc Phe 310	agg	acg Thr	gca Ala	gcg Ala	gtg Val 315	gaa Glu	ggc Gly	ccn Pro	1011
ttt Phe	tgt Cys 320	cac	ctt Leu	gga Gly	cat His	gga Gly 325	aga	ctg Leu	tgg Trp	cta Leu	caa Gln 330	cat His	tcc Ser	aca Thr	gac Asp	1059
aga Arg 335		gtca	acc	ctcat	gac	ca ta	agcci	tatg	t cai	tggci	tgcc	atc	tgcg	CCC		1112
ago: aag: cag: ttg: aaa: cgg: tcc:	agcat atagg atgg agaga gaaat aacc tggc	tga gga aga aga ttc caa	tgac ttcc ctgt agga aaag tgct agta tgtc	tttge cctge ggcca aagga aagga gctte ttcte cctg	et ga caga a ge taga te ga a t	atgadescace gcace ggcadesctgc actte tttc tacc	catci cctci aggti aggci cagci caggi ctgg	t cc g ga g gg g ct t tt c ag	ctgc ggtt ccct ttcc aata gaac caga agaa	tgaa cact cccc aggg ctct cttt agta gaga	gtg acc act tgg gtc ctg	agga gtca cacc gtac tcac acca gcat agct	ggc caa aaa ctg ctc ttc tgt	ccat gtag tgcc tagg aaat cttt acgc ttcc	tgcgcc gggcag gagaca tctgcc agacag ttaagt aaattc aggtta ctgctg	1232 1292 1352 1412 1472 1532 1592
				ttgg											_	1747

<400> 67
ggtatagecc accagaaagg acagagtcat ttgatgtggt cacaaaaatgt gtgagtttca 60
cactaactga gcagttc atg gag aaa ttt gtt gat ccc gga aac cac aat 110
Met Glu Lys Phe Val Asp Pro Gly Asn His Asn

	-45		-40	
agc ggg att gat ct		tat ctt tgg		ctt 158
Ser Gly Ile Asp Let	Leu Arg Thr	Tyr Leu Trp	Ara Cvs Gln Phe	Leu
-35	-30	-7	-25	
tta cct ttt gtg ag		atg tgc ttt	ggg gct ttg atc	gga 206
Leu Pro Phe Val Se	r Leu Glv Leu	Met Cys Phe	Gly Ala Leu Ile	Gly
-20	-15	-10	-	-5
ctt tot gct tgc at	t tgc cga agc	tta tat ccc	acc att gcc acg	ggc 254
Leu Cys Ala Cys Il	e Cys Arg Ser	Leu Tyr Pro	Thr Ile Ala Thr	Gly
1		5	10	
att ctc cat ctc ct	t gca ggt ctg	tgt aca ctg	ggc tca gta agt	tgt 302
Ile Leu His Leu Le	u Ala Gly Leu	Cys Thr Leu		Cys
15	20		25	350
tat gtt gct gga at	t gaa cta ctc	cac cag aaa	cta gag ctc cct	gac 350
Tyr Val Ala Gly Il		His Gln Lys		Asp
30	35		40	tct 398
aat gta tcc ggt ga	a ttt gga tgg	tee tte tge	ter ale Gre Val	Cor Sor
Asn Val Ser Gly Gl		Ser Phe Cys	Leu Ala Cys val	60
45 gct ccc tta cag tt	50		ate too act act	* -
Ala Pro Leu Gln Ph	e atg get tet	. Ala Leu Dhe	Tle Trn Ala Ala	
Ala Pro Leu Gin Pn	e Met Ala Bel	70	75	
acc aac cgg aga ga	d tac acc tta	· -	tat cgt gtg gca	491
Thr Asn Arg Arg Gl	u Tvr Thr Leu	Met Lys Ala	Tyr Arg Val Ala	
80	u	85	90	
tgagcaagaa actgcct	gct ttacaattg	c catttttatt	tttttaaaat aata	ctgata 551
ttttccccac ctctcaa	ttg tttttaatt	t ttatttgtgg	atataccatt ttat	tatgaa 611
aatctatttt atttata	cac attcaccac	t aaatacacac	ttaataccac taaa	atttat 671
gtggtttact ttaagcg	atg ccatctttc	a aataaactaa	.tctaggtcta gaca	gaaaga 731
aatggataga gacttga	cac aaatttatg	ga aagaaaattg	ggagtaggaa tgtg	accgaa 791
aacaagttgt gctaatg	tct gttagactt	t tcagtaaaac	caaagtaact gtat	ctgttc 851
aactaaaaac tctatat	tag tttctttgg	g aaacctctca	tcgtcaaaac ttta	tgttca 911 tttaag 971
ctttgctgtt gtagata	gcc agtcaacca	ng cagtattagt	gctgttttca aaga	
ctctataaaa ttgggaa	att atctaagat	c attttcccta	agcattgaca cata	5
tctgaggtga gatatgg	cag ctgtttgta	at ctgcactgtg	tetgtetaca aaga	.5-5
aatacagtgt ttacttg	aaa ttttaactt	t graactgcaa	tagangan ttgt	555
gaggattagt attattt	tta actotocgu	a agailticag	tatactttat tttt	
tattacagtt acaaggt	tca cataccage	gy ttattaaaay	trattccage ccae	
aaagaacgtt tcaccat	aaa alleeleaa	ad adctdddaaaa	cctaccacaa gato	
tctggctgtc cattaac	ctc caactator	t ctttatttct	tgtggtaata tgat	gtgcct 1451
ttccttgcct aaatcc	etto ctaatatata	ta tcaacattat	ttaatgtctt ctaa	ttcagt 1511
catttttat aagtatg	tct ataaacatt	g aactttaaaa	aacttattta ttta	ttccac 1571
tactgtagca attgaca	gat taaaaaaat	tg taacttcata	atttcttacc ataa	cctcaa 1631
tgtctttttt aaaaaat	aaa attaaaaat	tg aaaagagacc	caaaaaaaaa aaa	la 1686

<210> 68
<211> 542
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> 69..371

<221> sig_peptide
<222> 69..287
<223> Von Heijne matrix score 4

seq AVGFLFWVIVLTS/WI

<221> polyA_signal <222> 510515	
<221> polyA_site <222> 530542	
<pre><400> 68 tgttacttag ggtcaaggct tgggtcttgc cccgcaaacc cttgggacga cccggcccca gcgcagct atg aac ctg gag cga gtg tcc aat gag gag aaa ttg aac ctg</pre>	60 110
tgc cgg aag tac tac ctg ggg ggg ttt gct ttc ttg cct ttt ctc tgg Cys Arg Lys Tyr Tyr Leu Gly Gly Phe Ala Phe Leu Pro Phe Leu Trp -55 -50 -45	158
ttg gtc aac atc ttc tgg ttc tac cga gag gcc ttc ctt gtc cca gcc Leu Val Asn Ile Phe Trp Phe Tyr Arg Glu Ala Phe Leu Val Pro Ala	206
tac aca gaa cag agc caa atc aaa ggc tat gtc tgg cgc tca gct gtg Tyr Thr Glu Gln Ser Gln Ile Lys Gly Tyr Val Trp Arg Ser Ala Val -25 -20 -15	254
ggc ttc ctc ttc tgg gtg ata gtg ctc acc tcc tgg atc acc atc ttc Gly Phe Leu Phe Trp Val Ile Val Leu Thr Ser Trp Ile Thr Ile Phe -10 -5 1 5	302
cag atc tac cgg ccc cgc tgg ggt gcc ctt ggg gac tac ctc tcc ttc Gln Ile Tyr Arg Pro Arg Trp Gly Ala Leu Gly Asp Tyr Leu Ser Phe 10 15 20	350
acc ata ccc ctg ggc acc ccc tgacaacttc tgcacatact ggggccctgc Thr Ile Pro Leu Gly Thr Pro	401
ttattctccc aggacagget cettaaagca gaggageetg teetgggage ceetteteaa acteetaaga ettgttetea tgteecaegt tetetgetga cateeceeaa taaaggaeee taaettteaa aaaaaaaaaa a	461 521 542
<210> 69 <211> 1174 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 2757	
<221> sig_peptide <222> 2205 <223> Von Heijne matrix score 7.3 seq LRLILSPLPGAQP/QQ	
<221> polyA_site <222> 11601174	
<pre><400> 69 g atg cct gag ggc ccc gag ctg cac ctg gcc agc cag ttt gtg aat gag Met Pro Glu Gly Pro Glu Leu His Leu Ala Ser Gln Phe Val Asn Glu -65 -60 -55</pre>	49
gcc tgc agg gcg ctg gtg ttc ggc ggc tgc gtg gag aag tcc tct gtc Ala Cys Arg Ala Leu Val Phe Gly Gly Cys Val Glu Lys Ser Ser Val -50 -45 -40	97
age ege aac eet gag gtg eee ttt gag age agt gee tae ege ate tea	145

	3	7	7	61 11	บาไ	Dro	Dhe	Glu	Ser	Ser	Δla	Tvr	Ara	Ile	Ser	
	-35					-30					-25					102
gct	tca	gcc	cgc	ggc	aag	gag	ctg	cgc	ctg	ata	ctg	agc	CCT	ctg	CCL	193
Ala	Ser	Ala	Arg	Gly	Lys	Glu	Leu	Arg	Leu	Ile	Leu	Ser	Pro	Leu	Pro	
-20					-15					-10					-5	
ggg	gcc	cag	cct	caa	cag	gag	cca	ctg	gcc	ctg	gtc	ttc	cgc	ttc	ggc	241
Gly	Ala	Gln	Pro	Gln	Gln	Glu	Pro	Leu	Ala	Leu	Val	Phe	Arg	Phe	Gly	
_				1				5					10			
atq	tcc	ggc	tct	ttt	cag	ctg	gtg	ccc	cgc	gag	gag	ctg	cca	cgc	cat	289
Met	Ser	Gly	Ser	Phe	Gln	Leu	Val	Pro	Arg	Glu	Glu	Leu	Pro	Arg	His	
		15					20					25				
acc	cac	cta	cac	ttt	tac	acg	gcc	ccg	cct	ggc	ccc	cgg	ctc	gcc	cta	337
Ala	His	Leu	Ara	Phe	Tyr	Thr	Ala	Pro	Pro	Gly	Pro	Arg	Leu	Ala	Leu	
	30				•	35					40					
tat		ata	σac	atc	·cac	caa	ttc	ggc	cgc	tgg	gac	ctt	ggg	gga	aag	385
Cva	Phe	Val	Asp	Tle	Ara	Ara	Phe	Gly	Arq	Trp	Asp	Leu	Gly	Gly	Lys	
45					50	5			_	55	-		_		60	
+~~	cac	cca	aac	cac		ccc	tat	atc	tta	cag	aaa	tac	caq	cag	ttc	433
ryy	Cla	Dro	990	724	222	Dro	Cvs	Val	Leu	Gln	Glu	Tvr	Gln	Gln	Phe	
irp	GIII	PIO	GIY	65	GLY	110	Cy D		70			-1-		75		
					040		at a	aca		aad	acc	+++	gac	cgg	ccc	481
agg	gag	aat	gcg	Tan	bya N==	aac aac	Ton	712) co	Larg	900	Dhe	Asn	Arg	Pro	
Arg	GIU	Asn		Leu	Arg	ASII	ьeп		Asp	цуа	AIG	FIIC	90	AT 9	110	
			80					85				~~~		~~~	220	529
atc	tgc	gag	gcc	ctc	ctg	gac	cag	agg	בלכ	222	aat	990	Tlo	ggc	Acr	323
Ile	Cys		Ala	Leu	Leu	Asp		Arg	Pne	Pne	Asn	GIY	116	Gly	Abii	
		95					100					105				577
tat	ctg	cgg	gca	gag	atc	ctg	tac	cgg	ctg	aag	atc	ccc	ccc	ttt	gag	5//
Tyr	Leu	Arg	Ala	Glu	Ile		Tyr	Arg	Leu	Lys	Ile	Pro	Pro	Phe	GIU	
	110					115					120					605
aag	gcc	cgc	tcg	gtc	ctg	gag	gcc	ctg	cag	cag	cac	agg	ccg	agc	ccg	625
Lys	Ala	Arg	Ser	Val	Leu	Glu	Ala	Leu	Gln	Gln	His	Arg	Pro	Ser	Pro	
125					130					135					140	
gag	ctg	acc	ctg	agc	cag	aag	ata	agg	acc	aag	ctg	cag	aat	tca	gac	673
Glu	Leu	Thr	Leu	Ser	Gln	Lys	Ile	Arg	Thr	Lys	Leu	Gln	Asn	Ser	Asp	
				145					150					155		
cta	cta	gag	cta	tat	cac	tca	gtg	CCC	aag	gaa	gtg	gtc	cag	ttg	ggt	721
Leu	Leu	Glu	Leu	Cvs	His	Ser	Val	Pro	Lys	Glu	Val	Val	Gln	Leu	Gly	
			160					165					170			
gag	acc	aaa			agc	aac	ctc	tqc	ttc	agc	aaa	tga	ttgt	gta		767
Glu	Δla	Larg	Agn	Glv	Ser	Asn	Leu	Cvs	Phe	Ser	Lvs	•	_	_		
GIU	. AIU	175	nop	U _1			180									
200	ataa		actt	ataa	cc c	teta			ttca	ccga	ttt	agaa	att	tata	gcccta	827
200	~~+~	990	2250	geet	20 0	cctc	ctca	c tt	gtca	ataq	tat	ttcc	agg	ctaa	gcgcag	887
900	yald	+44	aa.y	gatt	~3 3	acea	ttca	a as	aacc	aaat	-30	ataa	ctc	acct	gaggtc	947
ugg	CCCa	Lyc	ange	35.6		gcac	~=+~	3 3ª	3320	2~26	777	CCSC	taa	aato	caaaaa	1007
agg	agtt	cga	yacc	alcc	-y g	-caa	cary	3 C+	atac	acte	ctc	aaaa	aaa	taaa	acagga	1067
att	agco	agg	rgtg	gugg	cg g	ycac		a 91	~++~	gcca acc+	727	222ª	774 tac	catt	gcagga	1127
aaa	rcgc	ttg	aacc	cagg	ag g	ugga	ggee	y ca	guug	ayet	949	2222	Lyc	-4-6	gcactc	1174
cag	cctg	ggc	aacg	agag	ca a	aact	ccat	U LC	aaaa	aaad	aaa	aaaa				

<210> 70

<211> 1285

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 2..1051

<221> sig_peptide <222> 2..205

WO 99/31236 -48- PCT/IB98/02122

<223	sc	ore	7.3		rix BAQP/	' QQ										
<221: <222:	-															
<221: <222:	-		-													
<400: g ato Me	a cc	t qa	19 99 .u Gl	y Pr	c ga co Gl	ig ct	g ca u Hi	c ct s Le	eu Al	c ag a Se	jc ca er Gl	g tt n Ph	t gt ie Va	al As	at gag sn Glu	49
gcc (tgc Cys	agg Arg -50	gcg	ctg	gtg Val	ttc Phe	ggc Gly -45	ggc	tgc	gtg Val	gag Glu	aag Lys -40	tcc Ser	tct Ser	gtc Val	97
agc Ser	cgc Arg -35	aac	cct Pro	gag Glu	gtg Val	ccc Pro -30	ttt Phe	gag Glu	agc Ser	agt Ser	gcc Ala -25	tac Tyr	cgc Arg	atc Ile	tca Ser	145
gct Ala -20	tca	gcc Ala	cgc Arg	ggc Gly	aag Lys -15	gag	ctg Leu	cgc Arg	ctg Leu	ata Ile -10	ctg Leu	agc Ser	cct Pro	ctg Leu	cct Pro -5	193
ggg Gly	gcc Ala	cag Gln	ccc Pro	caa Gln	cag	gag Glu	cca Pro	ctg Leu 5	gcc Ala	ctg	gtc Val	ttc Phe	cgc Arg 10	ttc Phe	ggc Gly	241
atg Met	tcc Ser	ggc Gly 15	tct Ser	ttt Phe	cag Gln	ctg Leu	gtg Val 20	ccc Pro	cgc Arg	gag Glu	gag Glu	ctg Leu 25	cca Pro	cgc Arg	cat His	289
gcc Ala	cac His	ctg	cgc Arg	ttt Phe	tac Tyr	acg Thr 35	gcc	ccg Pro	cct Pro	ggc Gly	ccc Pro	cgg	ctc Leu	gcc Ala	cta Leu	337
tgt Cys 45	ttc	gtg Val	gac Asp	atc Ile	cgc Arg 50	cgg	ttc Phe	ggc Gly	cgc Arg	tgg Trp 55	gac	ctt Leu	Gly ggg	gga Gly	aag Lys 60	385
tgg Trp	cag Gln	ccg Pro	ggc Gly	cgc Arg 65	999	ccc Pro	tgt Cys	gtc Val	ttg Leu 70	cag Gln	gag Glu	tac Tyr	cag Gln	cag Gln 75	ttc Phe	433
agg Arg	ctg Leu	aag Lys	atc Ile 80	ccc	ccc Pro	ttt Phe	gag Glu	aag Lys 85	gcc	cgc Arg	tcg Ser	gtc Val	ctg Leu 90	gag Glu	gcc Ala	481
ctg Leu	cag Gln	cag Gln 95	cac	agg Arg	ccg Pro	agc Ser	ccg Pro 100	gag Glu	ctg Leu	acc Thr	ctg Leu	agc Ser 105	cag Gln	aag Lys	ata Ile	529
agg Arg	acc Thr 110	aag	ctg Leu	cag Gln	aat Asn	cca Pro 115	gac	ctg Leu	ctg Leu	gag Glu	cta Leu 120	tgt Cys	cac His	tca Ser	gtg Val	577
ccc Pro	aag	gaa Glu	gtg Val	gac Asp	cag Gln 130	Leu	Gly 999	ggc Gly	agg Arg	ggc Gly 135	tac Tyr	ggg Gly	tca Ser	gag Glu	agc Ser 140	625
ggg	gag Glu	gag Glu	gac Asp	ttt Phe 145	gct Ala	gcc	ttt Phe	cga Arg	gcc Ala 150	tgg Trp	ctg Leu	cgc Arg	tgc Cys	tat Tyr 155	ggc Gly	673
atg Met	cca Pro	ggc Gly	atg Met 160	agc Ser	tcc	ctg Leu	cag Gln	gac Asp 165	cgg	cat His	ggc Gly	cgt Arg	acc Thr 170	atc Ile	tgg Trp	721
ttc Phe	cag Gln	999 Gly 175	gat	cct	gga Gly	ccg Pro	ttg Leu 180	gca Ala	ccc Pro	aaa Lys	ggg Gly	cgc Arg 185	aag Lys	tcc Ser	cgc Arg	769
aaa Lys	aag Lys 190	aaa Lys	tcc Ser	aag Lys	gcc	aca Thr 195	cag Gln	ctg	agt Ser	cct Pro	gag Glu 200	gac	aga Arg	gtg Val	gag Glu	817

WO 99/31236 -49- PCT/IB98/02122 -

	0.55
gac gct ttg cct cca agc aag gcc cct tcc aag aca cga agg gca aag Asp Ala Leu Pro Pro Ser Lys Ala Pro Ser Lys Thr Arg Arg Ala Lys 205 210 215 220	
aga gac ctt cct aag agg act gca acc cag cgg cct gag ggg acc agc Arg Asp Leu Pro Lys Arg Thr Ala Thr Gln Arg Pro Glu Gly Thr Ser	913
ctc cag cag gac cca gaa gct ccc aca gtg ccc aag aag ggg agg agg Leu Gln Gln Asp Pro Glu Ala Pro Thr Val Pro Lys Lys Gly Arg Arg	961
240 245 250 aag ggg cga cag gca gcc tct ggc cac tgc aga ccc cgg aag gtc aag Lys Gly Arg Gln Ala Ala Ser Gly His Cys Arg Pro Arg Lys Val Lys	1009
gct gac atc cca tcc ttg gaa cca gag ggg acc tca gcc tct Ala Asp Ile Pro Ser Leu Glu Pro Glu Gly Thr Ser Ala Ser	1051
270 275 280	ıgg 1111
tagcaggagg ctctccttgc ttgcactcac cctttcttat tgtcttgccc tgcatctg	cc 1171
ggtctgaatt tttgggagca ggcaatatct gaaggtgcaa acaggcccta cggctgtt ctgcacaact ctcatggttt taattgtacc ccatcttcca catctttaaa gctcatgt	ga 1231
aaaatgctgc atttttaata aactgataca tttgaactcc aaaaaaaaaa	1285
<pre><210> 71 <211> 1398 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 21171 <221> sig_peptide <222> 2205 <223> Von Heijne matrix</pre>	
<pre><400> 71 g atg cct gag ggc ccc gag ctg cac ctg gcc agc cag ttt gtg aat Met Pro Glu Gly Pro Glu Leu His Leu Ala Ser Gln Phe Val Asn</pre>	GIU
gcc tgc agg gcg ctg gtg ttc ggc ggc tgc gtg gag aag tcc tct gt Ala Cys Arg Ala Leu Val Phe Gly Gly Cys Val Glu Lys Ser Ser Va -50 -40	.1
agc cgc aac cct gag gtg ccc ttt gag agc agt gcc tac cgc atc tc Ser Arg Asn Pro Glu Val Pro Phe Glu Ser Ser Ala Tyr Arg Ile Se -35 -25	:L
gct tca gcc cgc ggc aag gag ctg cgc ctg ata ctg agc cct ctg cc Ala Ser Ala Arg Gly Lys Glu Leu Arg Leu Ile Leu Ser Pro Leu Pr -10 -10 -5	;
ggg gcc cag ccc caa cag gag cca ctg gcc ctg gtc ttc cgc ttc gg Gly Ala Gln Pro Gln Glu Pro Leu Ala Leu Val Phe Arg Phe Gl	. У
atg tcc ggc tct ttt cag ctg gtg ccc cgc gag gag ctg cca cgc ca Met Ser Gly Ser Phe Gln Leu Val Pro Arg Glu Glu Leu Pro Arg Hi 15 20 25	it 289 İs

WO 99/31236 -50- PCT/IB98/02122 -

			cgc Arg													337
_	ttc		gac Asp		_	cgg			_		gac				Lys	385
			ggc Gly													433
				65					70	·				75		401
			gtg Val 80													481
	_		gcc Ala		_	_	_									529
	_	cgg	gca Ala	_		_	tac		_	_		ccc				577
_	gcc	_	tcg Ser	•	_	gag	_	_	_	_	cac		-	_	-	625
gag			ctg Leu	Ser	cag				Thr	aag				Pro	gac	673
			cta Leu					Pro					Gln			721
			160 tac Tyr													769
		175	ctg	_			180				•	185				817
Arg	Ala 190	Trp	Leu	Arg	Cys	Tyr 195	Gly	Met	Pro	Gly	Met 200	Ser	Ser	Leu	Gln	D.C.E.
_			ggc	_					_		_			_	_	865
			ggg ggg													913
			gag Glu 240													961
			aca Thr													1009
		cgg	cct Pro				agc					cca				1057
	gtg		aag Lys			agg					cag					1105
cac			ccc Pro		aag					atc						1153
			tca Ser 320	gcc		tago	cagga	agg (cttg	gc tt	gcad	ctcad			1201
			_	_	-	-			_		_				atatct	1261
															gtacc	1321
			atct		aa go	ctcat	gtga	a aaa	atgo	etge	att	ttaa	ata a	aact	gataca	1381 1398

WO 99/31236 -51- PCT/IB98/02122 .

```
<210> 72
<211> 821
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 42..611
<221> sig_peptide
<222> 42..287
<223> Von Heijne matrix
      score 4.4
     seq NLPHLQVVGLTWG/HI
<221> polyA_signal
<222> 787..792
<221> polyA_site
<222> 808..821
<400> 72
                                                                       56
ccqttgccaq ttctqcqcqt qtcctgcgtc tccagtatgg a atg tat gtt tgg ccc
                                              Met Tyr Val Trp Pro
tgt gct gtg gtc ctg gcc cag tac ctt tgg ttt cac aga aga tct ctg
                                                                      104
Cys Ala Val Val Leu Ala Gln Tyr Leu Trp Phe His Arg Arg Ser Leu
                            -70
        -75
                                                                      152
cca ggc aag gcc atc tta gag att gga gca gga gtg agc ctt cca gga
Pro Gly Lys Ala Ile Leu Glu Ile Gly Ala Gly Val Ser Leu Pro Gly
                       -55
                                            -50
                                                                      200
att ttg act gcc aaa tgt ggt gca gaa gta ata ctg tca gac agc tca
Ile Leu Thr Ala Lys Cys Gly Ala Glu Val Ile Leu Ser Asp Ser Ser
                                        -35
                    -40
gaa ctg cct cac tgt ctg gaa gtc tgt cgg caa agc tgc caa atg aat
                                                                      248
Glu Leu Pro His Cys Leu Glu Val Cys Arg Gln Ser Cys Gln Met Asn
               -25
                                    -20
aac ctg cca cat ctg cag gtg gta gga cta aca tgg ggt cat ata tct
                                                                      296
Asn Leu Pro His Leu Gln Val Val Gly Leu Thr Trp Gly His Ile Ser
                                -5
tgg gat ctt ctg gct cta cca cca caa gat att atc ctt gca tct gat
                                                                      344
Trp Asp Leu Leu Ala Leu Pro Pro Gln Asp Ile Ile Leu Ala Ser Asp
                       10
                                            15
                                                                      392
gtg ttc ttt gaa cca gaa gat ttt gaa gac att ttg gct aca ata tat
Val Phe Phe Glu Pro Glu Asp Phe Glu Asp Ile Leu Ala Thr Ile Tyr
                   25
                                        30
                                                                      440
ttt ttg atg cac aag aat ccc aag gtc caa ttg tgg tct act tat caa
Phe Leu Met His Lys Asn Pro Lys Val Gln Leu Trp Ser Thr Tyr Gln
               40
                                    45
                                                                      488
gtt agg agt gct gac tgg tca ctt gaa gct tta ctc tac aaa tgg gat
Val Arg Ser Ala Asp Trp Ser Leu Glu Ala Leu Leu Tyr Lys Trp Asp
                                60
           55
                                                                      536
atg aaa tgt gtc cac att cct ctt gag tct ttt gat gca gac aaa gaa
Met Lys Cys Val His Ile Pro Leu Glu Ser Phe Asp Ala Asp Lys Glu
                            75
                                                80
                                                                      584
gat ata gca gaa tct acc ctt cca gga aga cat aca gtt gaa atg ctg
Asp Ile Ala Glu Ser Thr Leu Pro Gly Arg His Thr Val Glu Met Leu
                        90
gtc att tcc ttt gca aag gac agt ctc tgaattatac ctacaacctg
                                                                      631
Val Ile Ser Phe Ala Lys Asp Ser Leu
```

WO 99/31236 -52- PCT/IB98/02122

100		105			
cagcttgaga	atgcagtgg	g tctgaagat	g gtcaagtctg	: aaactatgag cagaccact ; tctgccttag attttgatg ; aatacgtatt acaagtaaa	rt 751
<210> 73 <211> 916 <212> DNA <213> Homo	sapiens				
<220> <221> CDS <222> 62	916				
	757				
<221> polya <222> 904.	-				
g atg gga Met Gly	tgt gtt tt	c cag agc a e Gln Ser T	ca gaa gac a	catgtgggtg attcagcto aa cgt ata ttc aag at ys Arg Ile Phe Lys Il -220	a 109
				gac gaa tat gtg cta Asp Glu Tyr Val Leu -205	157
	r Ser Asn			cgc ttc cag aac cgc Arg Phe Gln Asn Arg 0 -185	205
		Asp Asn Leu		ggc tct ctc ctg ctc Gly Ser Leu Leu Leu -170	253
				atc tgt gaa atc cgc Tle Cys Glu Ile Arg -155	301
Leu Lys Gl	y Glu Ser 50	Gln Val Phe -14	Lys Lys Ala 5	gtg gta ctg cat gtg Val Val Leu His Val -140	349
				gtg ggt gga ttg att Val Gly Gly Leu Ile -125	397
	y Cys Val			aaa cac gtg acc aag Lys His Val Thr Lys 0 -105	445
		Ser Gly Arg		gag gag att gta ttt Glu Glu Ile Val Phe -90	493
-				tac tcc cag agc tgg Tyr Ser Gln Ser Trp -75	541
	e Gln Asn			gac att ttc cgc aat Asp Ile Phe Arg Asn -60	589
gac ggt tc	c atc atg	ctt caa gga	gtg agg gag	tca gat gga gga aac	637

-53-PCT/IB98/02122

	WO 9	9/312	36						- 5	53 -						PCT/IB98/
Asp	Gly	Ser	Ile	Met	Leu	Gln -50	Gly	Val	Arg	Glu	Ser	Asp	Gly	Gly	Asn	
tac Tyr -40	acc Thr	tgc Cys	agt Ser	atc Ile	cac His	cta	Gly 999	aac Asn	ctg Leu	gtg Val -30	ttc Phe	aag Lys	aaa Lys	acc Thr	att Ile -25	
gtg	ctg Leu	cat His	gtc Val	agc Ser -20	ccg	gaa Glu	gag Glu	cct Pro	cga Arg -15	aca	ctg Leu	gtg Val	acc Thr	ccg Pro -10	gca	73
gcc Ala	ctg Leu	agg Arg	cct Pro -5	ctg	gtc Val	ttg Leu	ggt Gly	ggt Gly 1	aat	cag Gln	ttg Leu	gtg Val 5	atc Ile	att Ile	gtg Val	78
gga Gly	att Ile 10	gtc Val	tgt	gcc Ala	aca Thr	atc Ile 15	ctg Leu	ctg Leu	ctc Leu	cct Pro	gtc Val 20	ctg Leu	ata Ile	ttg Leu	atc Ile	82
gtg Val 25	aag Lys	aag Lys	acc Thr	tgt Cys	gga Gly 30	aat	aag Lys	agt Ser	tca Ser	gtg Val 35	aat	tct Ser	aca Thr	gtc Val	ttg Leu 40	87
gtg	aag Lys				aag											91
	1> CI 2> 62	252	_sig													
<22	2> 11			_												
<22: <22: <22:	2> 11 1> po 2> 11	olyA 141.	_site													
<22: <22: <22: <40: cct; g a:	2 > 11 1 > po 2 > 11 0 > 74 gaatg tg gg et G	olyA 141. 1 gac 1	_site .115: ttga: gt g	atgt:	tc c	ag ag	gc a	ca g	ta ga al A	ac as sp L	aa t	gt a	ta t	tc a he L	ag a ys I	ta 10
<22: <22: <22: <40: cct; g a: M: 1 gac	2 > 11 1 > po 2 > 11 0 > 74 gaatg tg gg et G	olyA 141. 4 gac s ga to ly C	_sitc .115: ttga: gt g ys V ctg Leu	atgt tt t al P 5 tca	tc c he G cca	ag ag ln Se gga	gc acer Tl	ca g hr V cac His	ta ga al Aa 1 gcc	ac a sp L 0 aag	aa to ys Co gac	gt a ys I gaa	ta t le P tat Tyr	tc a he L 1 gtg	ag a ys I 5 cta	ta 10
<22: <22: <22: <40: cct; g a: Mc 1 gac Asp	1> po 2> 11 0> 74 gaatg tg gg et Gl	olyA 141. I gac t ga t ga t ga t ga t t t act Thr	_site.115:	atgt tt t al P 5 tca Ser	tc ca cca Pro	ag ag ln Se gga Gly agt	gc acer Ti gag Glu gtg Val	ca g hr Va cac His 25 cct	ta ga al As gcc Ala att	ac as sp Ly 0 aag Lys	gac Asp	gt a ys I gaa Glu ttc Phe	ta to le Pl tat Tyr 30 cag	tc a he L gtg Val	ag a ys I 5 cta Leu cgc	ta 10
<22: <22: <22: <400 cct; g a 1 n 1 gac Asp	2> 11 1> po 2> 11 0> 74 gaats tgg get Gi tgg Trp tat Tyr cac His	olyA l41. i gac f ga t gly C act Thr tac Tyr 35 ttg	_site. .115: ttga: gt g; ys V: ctg Leu 20 tcc Ser	atgt tt t al P tca Ser aat Asn	tc che G cca Pro ctc Leu	gga Gly agt Ser atc	gc acer Tl gag Glu gtg Val 40 tta	cac His 25 cct Pro	ta gal Ala gcc Ala att Ile aat	ac acsp Los	gac Asp cgc Arg	gt a ys I gaa Glu ttc Phe 45 tct	ta t le P tat Tyr 30 cag Gln	tc a he L gtg Val aac Asn	ag a ys I 5 cta Leu cgc Arg	ta 10 le 15 le 20 le 25
<22: <22: <22: <400 cct; g a M 1 gac Asp tac Tyr gta Gln caa	2> 11 1> po 2> 11 0> 74 gaatg tg gg et G Trp tat Tyr cac	olyA 141. i ggac t gga t ly C act Thr tac Tyr 35 ttg Leu	_site. .115: ttga: gt g; ys V: ctg Leu 20 tcc Ser atg	atgt tt tt al P 5 tca Ser aat Asn ggg Gly	tc che G cca Pro ctc Leu gac Asp	gga Gly agt ser atc Ile 55 gac	gc acer Tl gag Glu gtg Val 40 tta Leu	cac His 25 cct Pro tgc Cys	ta ga al As gcc Ala att Ile aat Asn	ac ac ac sp Lys aag Lys ggg Gly gat Asp	gac Asp cgc Arg ggc Gly 60 atc	gt a ys I gaa Glu ttc Phe 45 tct Ser	tat le P tat Tyr 30 cag Gln ctc Leu	tc and he Lingtg Val aac Asn ctg Leu atc	ag a ys I cta Leu cgc Arg ctc	ta 10 le 15 le 20 le 25
<22: <22: <22: <400 cctc g at MacAsp tacAsp tacTyr gta Val caa Gln 65 ctc	2 > 11 1 > po 2 > 11 0 > 74 gaatg tg gg et G Trp tat Tyr cac His 50 gat	olyA 141. I gac t ga t ga t ly C act Thr tac Tyr 35 ttg Leu gtg Val	_site. .115: ttga: gt g; ys V: ctg Leu 20 tcc ser atg Met caa Gln	atgt: tt t: al P: tca Ser aat Asn ggg Glu agc Ser	tc che G cca Pro ctc Leu gac Asp gct Ala 70 cag	gga gga Gly agt ser atc Ile 55 gac Asp	gc acer Tl gag Glu gtg Val 40 tta Leu cag Gln	ca grant Value of the Value of	ta gal As att Ile aatt Asn acc Thr	ac ac ac sp L C C C C C C C C C C C C C C C C C C	gac Asp cgc Arg ggc Gly 60 atc Ile	gt a ys I gaa Glu ttc Phe 45 tct Ser tgt Cys	ta t le P tat Tyr 30 cag Gln ctc Leu gaa Glu	tc a he Li gtg Val aac Asn ctg Leu atc Ile cat	ag a ys I 5 cta Leu cgc Arg cteu cgrg gtg	ta 10 le 15 le 20 le 25 le 30 le 34
<22: <22: <22: <400 cctt g a M	2 > 11 1 > po 2 > 11 0 > 7 gaatg tg gg et G Trp tat Tyr cac His 50 gat Asp	blyA data. dat	_site. .115: ttga: gt g; ys V; ctg Leu 20 tcc Ser atg Met caa Gln gag	atgt: atgt: al p; tcar ser aatn gggglu agc Ser 85 ccc Pro	tc can be	ag ag ln So gga Gly agt Ser atc Ile 55 gac Asp Val	gc ager Tl gag Glu gtg Val 40 tta Leu cag Gln ttc Phe ctc	ca grant Value of the Value of	ta gal Al al gcc Ala att Ile ast Asn acc Thr agg Lys 90 gtc	ac a	gac Asp cgc Arg ggc Atc Ile gtg Val gtg	gt a ys I gaa Glu ttc Phe 45 tct Ser tgt Cys gta Val	ta telle Pitat Tyr 30 cag Gln ctc Leu gaa Glu ctg Leu gga	tc a he L gtg Val acc Asn ctg Leu atc Ile cat His gtg Leu	ag a ag	ta 10 le 15 le 20 le 25 le 30 le 34 le 35 le 35 le 36

Gln Met Gly Cys Val Phe Gln Ser Thr Glu Val Lys His Val Thr Lys 115 120 125	
gta gaa tgg ata ttt tca gga cgg cgc gca aag gta aca agg agg aaa Val Glu Trp Ile Phe Ser Gly Arg Arg Ala Lys Val Thr Arg Arg Lys 130 135 140	493
cat cac tgt gtt aga gaa ggc tct ggc tgatggtatc aggacaaagg His His Cys Val Arg Glu Gly Ser Gly 145 150	540
tagaatcagg cacatgagga ggtgttgcaa gagcctgggc tttggtgctt atcagaactg gaccttctcc tagcaatttc agctttctgg tgggaaaggt aactccaatg aagaacaaga	600 660
acaagaagat gatgatgatg cttaactttt tggatgccga tatgagattg tacatgtaaa gcattttgta taagacttgg cccctgcatt ttagtttcct tctttctccc ttttccttcg	720 780
tatagagtcc atgggagaat gagggagatg atttttgtgg cccagccaag aaagcaatgg	840 900
gctagacatt aaaatgatta cacttttatt cttactgggg ttagttctgt gagttttcat ctgtgcccca ttgccccatt tatgtgatgg agggaatttt catgggtact tcacgtgttg	960
ggattgattg atcctggggg ccagggtgaa gggtatttta cgggacctct ataaagcagg aagaagcaag tttattcttt agaccagtag ctctcaacca tgatgtggtc atatatttat	1020 1080
gggtcaacat gtgttgtggg gatatcccaa gtaacttgtt attaataaaa gttaagttgc	1140
aaaaaaaaa aaa	1153
<210> 75	
<211> 1517	
<212> DNA <213> Homo sapiens	
<220>	
<221> CDS	
<222> 21167	
<400> 75	
atatananta attatatatata ata ata ana ant ana ant ara art ata	E 2
ctctgaaatg cttgtctttt atg ctg gna ggt gac cat agg gct ctg ctt tta Met Leu Xaa Gly Asp His Arg Ala Leu Leu 1 5 10	53
Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu 1 5 10 aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro	53 101
Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu 1 5 10 aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro 15 20 25 ggg aga tta gtg gtg atg gag agg aga gtt aaa atg acc tca tgt cct	
Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu 1 5 10 aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro 15 20 25	101
Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu 1 5 10 aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro 15 20 25 ggg aga tta gtg gtg atg gag agg aga gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro 30 35 40 tct tgt cca cgg ttt tgt tgagttttca ctettctaat gcaagggtct	101
Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu 1 5 10 aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro 15 20 25 ggg aga tta gtg gtg atg gag agg aga gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro 30 35 40 tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys 45	101 149 197
Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu 1 5 10 aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro 15 20 25 ggg aga tta gtg gtg atg gag aga ggt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro 30 35 40 tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys 45 cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtctt	101 149 197 257
Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu 1 5 10 aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro 15 20 25 ggg aga tta gtg gtg atg gag agg aga gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro 30 35 40 tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys 45	101 149 197 257 317 377
Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu 1 5 10 aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro 15 20 25 ggg aga tta gtg gtg atg gag agg aga gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro 30 35 40 tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys 45 cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtctt tggctcagtt catttaaaaa agatatctat ttgaaagttc tcagagttgt acatatgttt cacagtacag gatctgtaca taaaagtttc tttcctaaac cattcaccaa gagccaatat ctaggcattt tcttggtagc acaaattttc ttattgctta gaaaattgtc ctccttgtta	101 149 197 257 317 377 437
Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu 1 5 10 aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro 15 20 25 ggg aga tta gtg gtg atg gag agg aga gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro 30 35 40 tct tgt cca cgg ttt tgt tgagttttca ctettctaat gcaagggtct Ser Cys Pro Arg Phe Cys 45 cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtctt tggctcagtt catttaaaaa agatatctat ttgaaagttc tcagagttgt acatatgttt cacagtacag gatctgtaca taaaagtttc tttcctaaac cattcaccaa gagccaatat ctaggcattt tcttggtagc acaaattttc ttattgctta gaaaattgtc ctccttgtta tttctgtttg taagacttaa gtgagttagg tctttaagga aagcaacgct cctctgaaat	101 149 197 257 317 377 437 497
Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu 1 5 10 aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro 15 20 25 ggg aga tta gtg gtg atg gag agg aga gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro 30 35 40 tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys 45 cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtctt tggctcagtt catttaaaaa agatatctat ttgaaagttc tcagagttgt acatatgttt cacagtacag gatctgtaca taaaagtttc tttcctaaac cattcaccaa gagccaatat ctaggcattt tcttggtagc acaaattttc ttattgctta gaaaattgtc ctccttgtta	101 149 197 257 317 377 437
Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu 1 5 10 aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro 15 20 25 ggg aga tta gtg gtg atg gag agg aga gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro 30 35 40 tct tgt cca cgg ttt tgt tgagttttca ctettctaat gcaagggtct Ser Cys Pro Arg Phe Cys 45 cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtctt tggctcagtt cattaaaaa agatatctat ttgaaagttc tcagagttgt acatatgttt cacagtacag gatctgtaca taaaagttc tttctaaac cattcaccaa gagccaatat ctaggcattt tcttggtagc acaaattttc ttattgctta gaaaattgtc ctccttgtta tttctgtttg taagacttaa gtgagttagg tcttaagga aagcaacgct cctctgaaat gcttgtcttt tatgctgga ggtgaccata gggctctgct tttaaagata tggctgctc aaaggccaga gtcacaggaa ggacttcttc cagggagatt agtggtgatg gagaggagg ttaaaatgac ctcatgtcct tcttgtccac ggttttgttg agttttcact cttctaatgc	101 149 197 257 317 377 437 497 557 617 677
Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu 1 5 10 aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro 15 20 25 ggg aga tta gtg gtg atg gag agg aga gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro 30 35 40 tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys 45 cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtctt tggctcagtt catttaaaaa agatatctat ttgaaagttc tcagagttgt acatatgttt cacagtacag gatctgtaca taaaagttc tttcctaaac cattcaccaa gagccaatat ctaggcattt tcttggtagc acaaatttc ttattgctta gaaaattgtc ctccttgtta tttctgtttg taagacttaa gtgagttagg tctttaagga aagcaacgct cctctgaaat gcttgtcttt tatgctgga ggtgaccata gggctctgct ttaaaggat gagaggagag	101 149 197 257 317 377 437 497 557 617 677 737
Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu 1 5 10 aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro 15 20 25 ggg aga tta gtg gtg atg gag agg agg att aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro 30 35 40 tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys 45 cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtctt tggetcagtt catttaaaaa agatatctat ttgaaagttc tcagagttgt acatatgttt cacagtacag gatctgtaca taaaagtttc tttcctaaac cattcaccaa gagccaatat ctaggcattt tcttggtage acaaatttc ttattgctta gaaaattgtc ctccttgtta tttctgtttg taagacttaa gtgagttagg tctttaagga aagcaacgct cctctgaaat gcttgtcttt tatgctgga ggtgaccata gggctctgct tttaaagata tggctgctc aaaggccaga gtcacaggaa ggacttcttc cagggagatt agtggtgatg gagaggagg ttaaaatgac ctcatgtcct tcttgtccac ggttttgttg agttttcact cttctaatgc aagggtctca cactggaac cacttaggat gtgatcactt tcaggtggc aggaatgttg aatgtctttg gctcagttca tttaaaaaaag atatctatt gaaagttctc agaggttga	101 149 197 257 317 377 437 497 557 617 677
Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu 1 5 10 aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro 20 25 ggg aga tta gtg gtg atg gag agg agg gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro 30 35 40 tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys 45 cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtctt tggctcagtt catttaaaaa agatatctat ttgaaagttc tcagagttgt acatatgtt cacagtacag gatctgtaca taaaagttc tttcctaaac cattcaccaa gagccaatat ctaggcattt tcttggtagc acaaattttc ttattgctta gaaaattgtc ctccttgtta ttctctgttt taagacttaa gtgagttagg tctttaagga aagcaacgct cctctgaaat gcttgtctt tatgctgga ggtgaccata gggctctgct ttaaaagaata tggctgctc aaaggccaga gtcacaggaa ggactctct ccaggagatt tcataggaag gtcacaggaa ggtctcac cacttagga tctttattcact tcttgtcac aggagttgt aggaggagag ttaaaattgc ctcatttcac cagtacaga ggactctct ccaggagatt agtggtgatg gagaggagag	101 149 197 257 317 377 437 497 557 617 677 737 797 857 917
Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu 1 5 10 aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro 20 25 ggg aga tta gtg gtg atg gag agg agg gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro 30 35 40 tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys 45 cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtct tggctcagtt catttaaaaa agatatctat ttgaaagttc tcagagttgt acatatgtt cacagtacag gatctgtaca taaaagttc tttcctaaac cattcaccaa gagccaatat ctaggcattt tcttggtagc acaaattttc ttattgctta gaaaattgtc ctccttgtta tttctgtttg taagacttaa gtgagttagg tctttaagga aagcaacgct cctctgaaat gcttgtctt tatgctggga ggtgaccata gggctctgct ttaaaagata tggagttgt caaaggccaga gtcacaggaa ggacttctc cagggagatt agtggtgatg gagaggagg ttaaaatgac ctcatgtcct tcttgtccac ggttttgttg agtttcact cttctaatgc aagggtctca cactgtgaac cacttaggat gtgatcactt tcaggtggc aggagaggat taaaatgac ctcatgtcct tcttgtccac ggttttgttg agttttcact cttctaatgc aagggtctca cactgtgaac cacttaggat gtgatcactt cagggtggc aggatggttg aatgtcttg gccagttca tttaaaaaag atatctatt gaaagttct agaggttgta aatgtctttg gccaatatct ttggtagca aaattttct tcctaaacca ttcaccaaga gccaatatct aggcatttc ttggtagca aaattttct tcctaaacca ttcaccaaga gccaatatct aggcatttc ttggtagcac aaattttct tcctaaacca ttcaccaaga gccaatatct aggcatttc ttggtagcac aaattttct tcctaaacca ttcaccaaga gccaatatct aggcatttc ttggtagcac aaattttct actgcttaga aaattgtcct ccttgttatt tctgtttgta agacttaacca ttcaccaaga gccaatatct aggcatttc ttggtagcac aaattttct actgcttaga aaattgtcct ccttgttatt tctgtttgta agacttaag gagcaacgct cctttgttatt tctgtttgta agacttaag gagcaacacca tcaccaaga gccaatatct aggcatttc ttggtagcac aaattttct actgcttaga aaattgtcct ccttgttatt tctgtttgta agacttaag gagcaacaccaccaccaccaccaccaccaccaccaccacc	101 149 197 257 317 377 437 497 557 617 677 737 797 857 917
Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu 1 5 10 aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro 15 20 25 ggg aga tta gtg gtg atg gag agg agg gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro 30 35 40 tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys 45 cacactgga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtct tggctcagtc catttaaaaa agatatctat ttgaaagttc tcagagttgt accatatgtt cacagtacag gatctgtaca taaaagttc ttctctaaac cattcaccaa gagccaatat ctaggcattt tcttggttg acacatttt ttattgctta gaaaatttgc ctccttgtta ttctgtttg taagacttaa gtgagttagg tctttaagga aagcaacgct cctctgaaat gcttgtctt tatgctgga ggtgaccata gggctctgct ttaaagata tggctgcttc aaaggccaga gtcacaggaa ggactctctc cagggagatt agtggtgatg gagaggagag	101 149 197 257 317 377 437 497 557 617 677 737 797 857 917 977
Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu 1 5 10 aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro 20 25 ggg aga tta gtg gtg atg gag agg agg gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro 30 35 40 tct tgt cca cgg ttt tgt tgagttttca ctcttctaat gcaagggtct Ser Cys Pro Arg Phe Cys 45 cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtct tggctcagtt catttaaaaa agatatctat ttgaaagttc tcagagttgt acatatgtt cacagtacag gatctgtaca taaaagttc tttcctaaac cattcaccaa gagccaatat ctaggcattt tcttggtagc acaaattttc ttattgctta gaaaattgtc ctccttgtta tttctgtttg taagacttaa gtgagttagg tctttaagga aagcaacgct cctctgaaat gcttgtctt tatgctggga ggtgaccata gggctctgct ttaaaagata tggagttgt caaaggccaga gtcacaggaa ggacttctc cagggagatt agtggtgatg gagaggagg ttaaaatgac ctcatgtcct tcttgtccac ggttttgttg agtttcact cttctaatgc aagggtctca cactgtgaac cacttaggat gtgatcactt tcaggtggc aggagaggat taaaatgac ctcatgtcct tcttgtccac ggttttgttg agttttcact cttctaatgc aagggtctca cactgtgaac cacttaggat gtgatcactt cagggtggc aggatggttg aatgtcttg gccagttca tttaaaaaag atatctatt gaaagttct agaggttgta aatgtctttg gccaatatct ttggtagca aaattttct tcctaaacca ttcaccaaga gccaatatct aggcatttc ttggtagca aaattttct tcctaaacca ttcaccaaga gccaatatct aggcatttc ttggtagcac aaattttct tcctaaacca ttcaccaaga gccaatatct aggcatttc ttggtagcac aaattttct tcctaaacca ttcaccaaga gccaatatct aggcatttc ttggtagcac aaattttct actgcttaga aaattgtcct ccttgttatt tctgtttgta agacttaacca ttcaccaaga gccaatatct aggcatttc ttggtagcac aaattttct actgcttaga aaattgtcct ccttgttatt tctgtttgta agacttaag gagcaacgct cctttgttatt tctgtttgta agacttaag gagcaacacca tcaccaaga gccaatatct aggcatttc ttggtagcac aaattttct actgcttaga aaattgtcct ccttgttatt tctgtttgta agacttaag gagcaacaccaccaccaccaccaccaccaccaccaccacc	101 149 197 257 317 377 437 497 557 617 677 737 797 857 917
Met Leu Xaa Gly Asp His Arg Ala Leu Leu Leu 1 5 10 aag ata tgg ctg ctt caa agg cca gag tca cag gaa gga ctt ctt cca Lys Ile Trp Leu Leu Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro 15 20 25 ggg aga tta gtg gtg atg gag agg aga gtt aaa atg acc tca tgt cct Gly Arg Leu Val Val Met Glu Arg Arg Val Lys Met Thr Ser Cys Pro 30 35 40 tct tgt cca cgg ttt tgt tgagttttca ctettetaat gcaagggtct Ser Cys Pro Arg Phe Cys 45 cacactgtga accacttagg atgtgatcac tttcaggtgg ccaggaatgt tgaatgtctt tggctcagt cattaaaaa agatatctat ttgaaagtte tcagagttgt acatatgtt cacagtacag gatctgtaca taaaagtte ttctctaaac cattcaccaa gagccaatat ctaggcattt tettggtage acaaattte ttattgctta gaaaattgte ctccttgtta ttcttgtttg taagacttaa gtgagttagg tctttaagga aagcaacget cetctgaaat gcttgtctt tatgctgga ggtgaccata gggctctget ttaaagata tggctgcttc aaaggccaga gtcacaggaa ggactctte caggagatt agtggtgatg gagaggagg ttaaaatgac ctcatgtcet tettgtccac ggttttgttg agttttcact cttctaatgc aagggtctca cactgtgaac cacttaggat gtgatcactt tcaggagtt gagaggagg ttaaaatgac ctcatgtcet tettgtccac ggttttgttg agttttcact cttctaatgc aagggtctca cactgtgaac cacttaggat gtgatcactt tcaggtggc aggaatgttg aatgttttc gctcagttca tttaaaaaaa atatcttt gaaagttctc agagttgtaa atatgtttca cagtacagga tctgacata aaagtttct tcctaaacca ttcaccaaga gccaatatct aggcattttc ttggtagca aaattttct attagctaga aaatttct tcctaaacca ttcaccaaga gccaatatct aggcattttc ttggtagca aaattttct attagctaga aaattgcct ccttgttatt tctgtttgt aggctataag gctctctt taaaggaaa gcaacgctcc tcttgaaatg ttgtctttna tgctggagag tgaccataag gctctcttt taaagaaa gcaacgctcc tctgaaatgc ttgtctttna tgctggagag tgaccataag gctctcttt taaagaaa gcaacgctcc tctgaaatgc ttgtctttna tgctggagag taaccataag gcctctctt taaagaaa gcaacgctcc tctgaaatgc ttgtctttna tgctggagag taaccataag gcctctcttc ggaagattag tggtgataga	101 149 197 257 317 377 437 497 557 617 677 737 797 857 917 977 1037

-55-WO 99/31236 PCT/IB98/02122

1337

1397 1457

agttgtacat atgtttcaca gtacaggatc tgtacataaa agtttctttc ctaaaccatt

attgtcctcc ttgttatttc tgtttgtaag acttaagtga gttaggtctt taaggaaagc

caccaagage caatatetag geattteett ggtageacaa attttettat tgettagaaa

1517 aacgctcctc tgaaatgctt gtcttttatg ctgggaggtg accatagggc tctgctttta <210> 76 <211> 526 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 22..318 <221> sig_peptide <222> 22..93 <223> Von Heijne matrix score 4.6 seq FFIFCSLNTLLLG/GV <221> polyA_signal <222> 497..502 <221> polyA site <222> 516..526 <400> 76 ctgcctgctg cttgctgcac c atg aag tct gcc aag ctg gga ttt ctt cta Met Lys Ser Ala Lys Leu Gly Phe Leu Leu -20 99 aga ttc ttc atc ttc tgc tca ttg aat acc ctg tta ttg ggt ggt gtt Arg Phe Phe Ile Phe Cys Ser Leu Asn Thr Leu Leu Gly Gly Val -10 -5 aat aaa att gcg gag aag ata tgt gga gac ctc aaa gat ccc tgc aaa 147 Asn Lys Ile Ala Glu Lys Ile Cys Gly Asp Leu Lys Asp Pro Cys Lys 10 ttg gac atg aat ttt gga agc tgc tat gaa gtt cac ttt aga tat ttc 195 Leu Asp Met Asn Phe Gly Ser Cys Tyr Glu Val His Phe Arg Tyr Phe 25 30 243 tac aac aga acc tcc aaa aga tgt gaa act ttt gtc ttc tcc ggc tgt Tyr Asn Arg Thr Ser Lys Arg Cys Glu Thr Phe Val Phe Ser Gly Cys 45 291 aat ggc aac ctt aac aac ttc aag ctt aaa ata gaa cgt gaa gta gcc Asn Gly Asn Leu Asn Asn Phe Lys Leu Lys Ile Glu Arg Glu Val Ala 55 60 338 tgt gtt gca aaa tac aaa cca ccg agg tgagaggatg tgaactcatg Cys Val Ala Lys Tyr Lys Pro Pro Arg 70 aagttgtctg ctgcaccatc cgaaataaag acacaagaaa attcagactg attttgaaat 398 ctttgtaata tttccataat gctttaagct tccatatgtt tgctattttc ctgaccctag 458 ttttgtcttt cctggaaatt aactgtatga tcattagaat gaaagagtct ttctgtcaaa 518 526 aaaaaaa

<210> 77 <211> 352

<212> DNA

<213> Homo sapiens

<220> <221> CDS <222> 8..292 <221> sig_peptide <222> 8..118 <223> Von Heijne matrix score 5.6 seg WLLLDALLRLGDT/KK <221> polyA signal <222> 317..322 <221> polyA site <222> 339..352 <400> 77 ctgagat atg gca agt ccc gct gta aac agg tgg aaa agg cca agg ttg Met Ala Ser Pro Ala Val Asn Arg Trp Lys Arg Pro Arg Leu -35 -30 -25 97 aag ccg gtg tgg cca cgg cgc ttg gaa tcc tgg ttg ttg ctg gat gct Lys Pro Val Trp Pro Arg Arg Leu Glu Ser Trp Leu Leu Leu Asp Ala -20 -15 ctt ttg cga tta gga gat acc aaa aaa aag cga cag cct gaa gca gcc 145 Leu Leu Arg Leu Gly Asp Thr Lys Lys Lys Arg Gln Pro Glu Ala Ala -5 1 193 aca aaa too tgt gtt aga ago ago tgt ggg ggt coo agt gga gat ggg Thr Lys Ser Cys Val Arg Ser Ser Cys Gly Gly Pro Ser Gly Asp Gly 20 15 cet eee eea tge ete eag eag eet gae eet egt gee etg tet eag geg 241 Pro Pro Pro Cys Leu Gln Gln Pro Asp Pro Arg Ala Leu Ser Gln Ala 35 30 ttc tct aga tcc ttt cct ctg ttt ccc tct ctc gct ggc aaa agt atg 289 Phe Ser Arg Ser Phe Pro Leu Phe Pro Ser Leu Ala Gly Lys Ser Met 50 342 atc taattgaaac aagactgaag gatcaataaa cagccatctg ccccttcaaa Ile 352 aaaaaaaaa <210> 78 <211> 542 <212> DNA <213> Homo sapiens

<220>

<221> CDS

<222> 16..378

<221> sig_peptide

<222> 16..84

<223> Von Heijne matrix score 9.8 seq FLLFFFLFLLTRG/SL

<221> polyA_signal

<222> 502..507

<221> polyA_site

<222> 522..542

<400> 78	
cacgacctgt gggcc atg atg cta ccc caa tgg ctg ctg ctg ctg ttc ctt Met Met Leu Pro Gln Trp Leu Leu Leu Phe Leu -20 -15	51
ctc ttc ttc ttc ctc ctc ctc acc agg ggc tca ctt tct cca aca Leu Phe Phe Leu Phe Leu Leu Thr Arg Gly Ser Leu Ser Pro Thr -10 -5 1 5	99
aaa tat aac ctt ttg gag ctc aag gag tct tgc atc cgg aac cag gac Lys Tyr Asn Leu Leu Glu Leu Lys Glu Ser Cys Ile Arg Asn Gln Asp 10 15 20	147
tgc gag act ggc tgc tgc caa cgt gct cca gac aat tgc gag tcg cac Cys Glu Thr Gly Cys Cys Gln Arg Ala Pro Asp Asn Cys Glu Ser His 25 30 35	195
tgc gcg gag aag ggg tcc gag ggc agt ctg tgt caa acg cag gtg ttc Cys Ala Glu Lys Gly Ser Glu Gly Ser Leu Cys Gln Thr Gln Val Phe 40 45 50	243
ttt ggc caa tat aga gcg tgt ccc tgc ctg cgg aac ctg act tgt ata Phe Gly Gln Tyr Arg Ala Cys Pro Cys Leu Arg Asn Leu Thr Cys Ile 55 60 65	291
tat tca aag aat gag aaa tgg ctt agc atc gcc tat ggc cgt tgt cag Tyr Ser Lys Asn Glu Lys Trp Leu Ser Ile Ala Tyr Gly Arg Cys Gln 70 75 80 85	339
aaa att gga agg cag aag ttg gct aag aaa atg ttc ttc tagtgctccc Lys Ile Gly Arg Gln Lys Leu Ala Lys Lys Met Phe Phe 90 95	388
teettettge tgeeteetee teeteeacet geteteetee etacecagag etetgtgtte accetgttee ceagageete caccatgagt ggagggaagt ggggagtgat tgaaataaag agetttttea atgaaaaaaa aaaaaaaaaa	448 508 542
<210> 79 <211> 233 <212> DNA <213> Homo sapiens	
<220>	
<221> CDS <222> 57233	
<pre><400> 79 gcaaaaccaa aaccagcacc gatcccgaca tagatcagtg acgtcttttt cttcag atg</pre>	59
atc cta tgt ttc ctt ctt cct cat cat cgt ctt cag gaa gcc aga cag Ile Leu Cys Phe Leu Leu Pro His His Arg Leu Gln Glu Ala Arg Gln 5 10 15	107
att caa gta ttg aag atg ctg cca agg gaa aaa tta aga aga aga gaa Ile Gln Val Leu Lys Met Leu Pro Arg Glu Lys Leu Arg Arg Arg Glu 20 25 30	155
gag aga aaa caa ata aat ggg aaa aaa gaa agg aca aaa tat gaa aca Glu Arg Lys Gln Ile Asn Gly Lys Lys Glu Arg Thr Lys Tyr Glu Thr 35 40 45	203
CCA aga aaa aga gaa gga aaa aaa aaa aaa Pro Arg Lys Arg Glu Gly Lys Lys Lys 50 55	233

<210> 80

<211> 660 <212> DNA

WO 99/31236 -58- PCT/IB98/02122

```
<213> Homo sapiens
<220>
<221> CDS
<222> 83..340
<221> sig peptide
<222> 83..124
<223> Von Heijne matrix
     score 7.5
     seq VALNLILVPCCAA/WC
<221> polyA_signal
<222> 573..578
<221> polyA_site
<222> 607..660
<400> 80
                                                                      60
qaatttgtaa aacttctgct cgtttacact gcacattgaa tacaggtaac taattggaag
gagaggggag atcactcttt tg atg gtg gcc ctg aac ctc att ctg gtt ccc
                                                                     112
                         Met Val Ala Leu Asn Leu Ile Leu Val Pro
                                         -10
                                                                     160
tgc tgc gct gct tgg tgt gac cca cgg agg atc cac tcc cag gat gac
Cys Cys Ala Ala Trp Cys Asp Pro Arg Arg Ile His Ser Gln Asp Asp
                1
gtg ccc cgt agc tct gct gct gat act ggg tct gcg atg cag cgg cgt
                                                                      208
Val Pro Arg Ser Ser Ala Ala Asp Thr Gly Ser Ala Met Gln Arg Arg
                            20
gag gcc tgg gct ggt tgg aga agg tca caa ccc ttc tct gtt ggt ctg
Glu Ala Trp Ala Gly Trp Arg Arg Ser Gln Pro Phe Ser Val Gly Leu
                       35
                                                                      304
cct tct gct gaa aga ctc gag aac caa cca ggg aag ctg tcc tgg agg
Pro Ser Ala Glu Arg Leu Glu Asn Gln Pro Gly Lys Leu Ser Trp Arg
                                      55
                                                                     350
tcc ctg gtc gga gag gga tat aga atc tgt gac ctc tgacaactgt
Ser Leu Val Gly Glu Gly Tyr Arg Ile Cys Asp Leu
                                    70
                                                                     410
gaagccaccc tgggctacag aaaccacagt cttcccagca attattacaa ttcttgaatt
ccttggggat tttttactgc cctttcaaag cacttaagtg ttagatctaa cgtgttccag
                                                                      470
                                                                      530
tgtctgtctg aggtgactta aaaaatcaga acaaaacttc tattatccag agtcatggga
                                                                      590
gagtacaccc tttccaggaa taatgttttg ggaaacactg aaatgaaatc ttcccagtat
                                                                      650
tataaattgt gtatttaaaa aaagaaactt ttctgaatgc ctacctggcg gtgtatacca
                                                                      660
ggcagtgtgc
<210> 81
<211> 605
<212> DNA
```

<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> 47..541

<221> sig_peptide
<222> 47..220
<223> Von Heijne matrix
score 5.4
seq QLLDSVLWLGALG/LT

<221> polyA site <222> 597..605 <400> 81 aaagtgggag gagcactagg tetteeegte acctecacet etetee atg acc egg 55 ctc tgc tta ccc aga ccc gaa gca cgt gag gat ccg atc cca gtt cct 103 Leu Cys Leu Pro Arg Pro Glu Ala Arg Glu Asp Pro Ile Pro Val Pro -50 -45 cca agg ggc ctg ggt gct ggg gag ggg tca ggt agt cca gtg cgt cca 151 Pro Arg Gly Leu Gly Ala Gly Glu Gly Ser Gly Ser Pro Val Arg Pro -35 -30 -25 cct gta tcc acc tgg ggc cct agc tgg gcc cag ctc ctg gac agt gtc 199 Pro Val Ser Thr Trp Gly Pro Ser Trp Ala Gln Leu Leu Asp Ser Val -20 -15 -10 cta tgg ctg ggg gca cta gga ctg aca atc cag gca gtc ttt tcc acc 247 Leu Trp Leu Gly Ala Leu Gly Leu Thr Ile Gln Ala Val Phe Ser Thr -5 1 act ggc cca gcc ctg ctg ctt ctg gtc agc ttc ctc acc ttt gac 295 Thr Gly Pro Ala Leu Leu Leu Leu Leu Val Ser Phe Leu Thr Phe Asp 15 ctg ctc cat agg ccc gca ggt cac act ctg cca cag cgc aaa ctt ctc 343 Leu Leu His Arg Pro Ala Gly His Thr Leu Pro Gln Arg Lys Leu Leu 30 acc agg ggc cag agt cag ggg gcc ggt gaa ggt cct gga cag cag gag 391 Thr Arg Gly Gln Ser Gln Gly Ala Gly Glu Gly Pro Gly Gln Glu Glu 50 gct cta ctc ctg caa atg ggt aca gtc tca gga caa ctt agc ctc cag 439 Ala Leu Leu Gln Met Gly Thr Val Ser Gly Gln Leu Ser Leu Gln 60 65 70 gac gca ctg ctg ctg ctc atg ggg ctg ggc ccg ctc ctg aga gcc 487 Asp Ala Leu Leu Leu Leu Met Gly Leu Gly Pro Leu Leu Arg Ala 80 85 tgt ggc atg ccc ttg acc ctg ctt ggc ctg gct ttc tgc ctc cat cct 535 Cys Gly Met Pro Leu Thr Leu Leu Gly Leu Ala Phe Cys Leu His Pro 100 tgg gcc tgagagcccc tccccacaac tcagtgtcct tcaaatatac aatgaccacc 591 Trp Ala cttcttcaaa aaaa 605

<210> 82

<211> 396

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 46..285

<221> sig_peptide

<222> 46..150

<223> Von Heijne matrix
 score 3.6
 seq LEPGLSSSAACNG/KE

<221> polyA_signal

<222> 364..369

<221> polyA_site

<222> 385..396

WO 99/31236 -60- PCT/IB98/02122

<pre><400> 82 cctctacagg aatcagactc agcctctttt ggttttcagt gaagt atg cct ttt caa</pre>	57
ttt gga acc cag cca agg agg ttt cca gtg gaa gga gga gat tct tca Phe Gly Thr Gln Pro Arg Arg Phe Pro Val Glu Gly Gly Asp Ser Ser -30 -25 -20	105
att gag ctg gaa cct ggg ctg agc tcc agt gct gcc tgt aat ggg aag Ile Glu Leu Glu Pro Gly Leu Ser Ser Ala Ala Cys Asn Gly Lys -15 -10 -5 1	153
gag atg tca cca acc agg caa ctc cgg agg tgc cct gga agt cat tgc Glu Met Ser Pro Thr Arg Gln Leu Arg Arg Cys Pro Gly Ser His Cys 10 15	201
ctg aca ata act gat gtt ccc gtc act gtt tat gca aca acg aga aag Leu Thr Ile Thr Asp Val Pro Val Thr Val Tyr Ala Thr Thr Arg Lys 20 25 30	249
cca cct gca caa agc agc aag gaa atg cat cct aaa tagcaccatt Pro Pro Ala Gln Ser Ser Lys Glu Met His Pro Lys 35 40 45	295
aagtettttg teaaggtetg actaggteaa gggtaatgga ceagtateat etggtgatet ggtaaacaaa taaaagtggt ggeaeettea aaaaaaaaaa a	355 396
<210> 83 <211> 432	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS <222> 22240	
<221> sig_peptide <222> 2284	
<223> Von Heijne matrix	
score 12 seg VLVLCVLLLQAQG/GY	
<221> polyA_signal	
<222> 397402	
<221> polyA_site <222> 421432	
<400> 83	
gctcacgctc tggtcagagt t atg gca ccc cag act ctg ctg cct gtc ctg Met Ala Pro Gln Thr Leu Leu Pro Val Leu -20 -15	51
gtt ctc tgt gtg ctg ctg ctg cag gcc cag gga gga tac cgt gac aag Val Leu Cys Val Leu Leu Gln Ala Gln Gly Gly Tyr Arg Asp Lys -10 -5 1 5	99
atg agg atg cag aga atc aag gtc tgt gag aag cga ccc agc ata gat Met Arg Met Gln Arg Ile Lys Val Cys Glu Lys Arg Pro Ser Ile Asp	147
cta tgc atc cac cac tgt tca tgt ttc caa aag tgt gaa aca aat aag Leu Cys Ile His His Cys Ser Cys Phe Gln Lys Cys Glu Thr Asn Lys	195
25 30 35 ata tgc tgt tca gcc ttc tgt ggg aac att tgt atg agc atc cta Ile Cys Cys Ser Ala Phe Cys Gly Asn Ile Cys Met Ser Ile Leu 40 45 50	240

300

tgagtgggag agtgggctgg gatgtgcatc ctgctccctg aacccttcca tccgagactg

tgeceacate egaageacaa ggacateaaa teateageae aagaacatea acagga cacceteece agtgtetgaa etecetgtee etgteaaatg aaccagaaca aatgeaaaaaaaaaa aa	
<210> 84 <211> 420 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 89382	
<221> polyA_site <222> 408420	
<400> 84 gcttgcctga cccccatgtc gcctctgtag gtagaagaag tatgtcttcc tggacc	ccct 60
ggctggtgct gtaacaaaga cccatgtg atg ctg ggg gca gag aca gag ga Met Leu Gly Ala Glu Thr Glu Gl	
aag ctg ttt gat gcc ccc ttg tcc atc agc aag aga gag cag ctg g Lys Leu Phe Asp Ala Pro Leu Ser Ile Ser Lys Arg Glu Gln Leu G	
cag cag gtc cca gag aac tac ttc tat gtg cca gac ctg ggc cag g	rta 208
Gln Gln Val Pro Glu Asn Tyr Phe Tyr Val Pro Asp Leu Gly Gln V 25 30 35	/al
· · · ·	7al 80 gcc 256
25 30 35 4 cct gag att gat gtt cca tcc tac ctg cct gac ctg ccc ggc att g Pro Glu Ile Asp Val Pro Ser Tyr Leu Pro Asp Leu Pro Gly Ile A	Val 10 10 10 10 10 10 10 10 10 10
25 30 35 4 cct gag att gat gtt cca tcc tac ctg cct gac ctg ccc ggc att g Pro Glu Ile Asp Val Pro Ser Tyr Leu Pro Asp Leu Pro Gly Ile A 45 50 55 aac gac ctc atg tac att gcc gac ctg ggc ccc ggc att gcc ccc t Asn Asp Leu Met Tyr Ile Ala Asp Leu Gly Pro Gly Ile Ala Pro S	7al 10 10 10 10 10 10 10 10 10 10
25	7al 10 10 10 10 10 10 10 10 10 10

<210> 85

<211> 501

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 80..415

<221> sig_peptide

<222> 80..142

<223> Von Heijne matrix score 5.4 seq TFCLIFGLGAVWG/LG

<221> polyA_signal

WO 99/31236 -62 - PCT/IB98/02122 -

<222> 471..476 <221> polyA site <222> 488..501 <400> 85 cccgcttgat tccaagaacc tcttcgatat ttatttttat ttttaaagag ggagacgatg gactgagetg atecgeace atg gag tet egg gte tta etg aga aca tte tgt 112 Met Glu Ser Arg Val Leu Leu Arg Thr Phe Cys ttg atc ttc ggt ctc gga gca gtt tgg ggg ctt ggt gtg gac cct tcc 160 Leu Ile Phe Gly Leu Gly Ala Val Trp Gly Leu Gly Val Asp Pro Ser - 5 1 208 cta cag att gac gtc tta aca gag tta gaa ctt ggg gag tcc acg acc Leu Gln Ile Asp Val Leu Thr Glu Leu Glu Leu Gly Glu Ser Thr Thr 10 15 gga gtg cgt cag gtc ccg ggg ctg cat aat ggg acg aaa gcc ttt ctc 256 Gly Val Arg Gln Val Pro Gly Leu His Asn Gly Thr Lys Ala Phe Leu 30 35 304 ttt caa gat act ccc aga agc ata aaa gca tcc act gct aca gct gaa Phe Gln Asp Thr Pro Arg Ser Ile Lys Ala Ser Thr Ala Thr Ala Glu 45 cag ttt ttt cag aag ctg aga aat aaa cat gaa ttt act att ttg gtg Gln Phe Phe Gln Lys Leu Arg Asn Lys His Glu Phe Thr Ile Leu Val 65 60 acc cta aaa cag acc cac tta aat tca gga gtt att ctc tca att cac 400 Thr Leu Lys Gln Thr His Leu Asn Ser Gly Val Ile Leu Ser Ile His cac ttg gat cac agg taaatgtggt tgctggagtt tcctgtgttt tcattatatg 455 His Leu Asp His Arg 501 tggttaaatg aatatattaa agagaagtaa acaaaaaaa aaaaaa <210> 86 <211> 454 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 152..361 <221> sig_peptide <222> 152..283 <223> Von Heijne matrix score 4.7 seq FLLSLSLITYCFW/DP <400> 86 60 gacattttac ttttttctgt taacgcttac cctagaaatt agaaatgaca ccacgtattc 120 ttagcgaagt ccagttttca gcattttgtc cttattggac aatagcaagg atattagaac gtgttggttc cgcgtgcttc cgtcttgagt t atg tgc tgc tat tgt cgg ata 172 Met Cys Cys Tyr Cys Arg Ile ttt tgt ctt aga tgt acg tac ttt cct gtt cat tgt ggt atg tgt aat 220 Phe Cys Leu Arg Cys Thr Tyr Phe Pro Val His Cys Gly Met Cys Asn -30 -25 ttg cgt tac ttt gaa ttt tcc acg ttt tta ctt tct ttg tct ctc atc 268 Leu Arg Tyr Phe Glu Phe Ser Thr Phe Leu Leu Ser Leu Ser Leu Ile -20 -15

WO 99/31236 -63- PCT/IB98/02122 -

act tac tgc ttt tgg gac ccc ccc cat cgg ggt tca cat tcc ctc tcc Thr Tyr Cys Phe Trp Asp Pro Pro His Arg Gly Ser His Ser Leu Ser -5 1 5 10	316
cta gag cac act ccc ttg gat ttc ctc gag tgg ggt ctg ctg cgg Leu Glu His Thr Pro Leu Asp Phe Leu Glu Trp Gly Leu Leu Arg 15 20 25	361
tgaagctttc ccattttatg tgcagattat tttcagaggg tatatagaat tcaggcagct	421
gtttcgttgt agcacattaa aaatattttc ccc	454
<210> 87	
<211> 1272	
<212> DNA <213> Homo sapiens	
Tarry nome bupicus	
<220>	
<221> CDS <222> 32307	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
<221> sig_peptide	
<222> 3270 <223> Von Heijne matrix	
score 4.2	
seq MLFSLSLLSNLNQ/IG	
2001. maluk adamal	
<221> polyA_signal <222> 12401245	
<221> polyA_site <222> 12611272	
<400> 87	
gtcaggttgc accgcccttt ggttcccgag c atg ctg ttt tct ctc agc ctt	52
gtcaggttgc accgcccttt ggttcccgag c atg ctg ttt tct ctc agc ctt Met Leu Phe Ser Leu Ser Leu	52
gtcaggttgc accgcccttt ggttcccgag c atg ctg ttt tct ctc agc ctt Met Leu Phe Ser Leu Ser Leu -10	
gtcaggttgc accgcccttt ggttcccgag c atg ctg ttt tct ctc agc ctt Met Leu Phe Ser Leu Ser Leu	52
gtcaggttgc accgcccttt ggttcccgag c atg ctg ttt tct ctc agc ctt Met Leu Phe Ser Leu Ser Leu -10 ctc tcc aac ctt aac caa atc ggc agc agc cac ctc gac cgc cca cac Leu Ser Asn Leu Asn Gln Ile Gly Ser Ser His Leu Asp Arg Pro His -5 1 5 10	100
gtcaggttgc accgcccttt ggttcccgag c atg ctg ttt tct ctc agc ctt Met Leu Phe Ser Leu Ser Leu -10 ctc tcc aac ctt aac caa atc ggc agc agc cac ctc gac cgc cca cac Leu Ser Asn Leu Asn Gln Ile Gly Ser Ser His Leu Asp Arg Pro His -5 1 5 10 att cct ggc caa tca gct cag ctg ttt att tac caa atg tct tca caa	
gtcaggttgc accgcccttt ggttcccgag c atg ctg ttt tct ctc agc ctt Met Leu Phe Ser Leu Ser Leu -10 ctc tcc aac ctt aac caa atc ggc agc agc cac ctc gac cgc cca cac Leu Ser Asn Leu Asn Gln Ile Gly Ser Ser His Leu Asp Arg Pro His -5 1 5 10 att cct ggc caa tca gct cag ctg ttt att tac caa atg tct tca caa Ile Pro Gly Gln Ser Ala Gln Leu Phe Ile Tyr Gln Met Ser Ser Gln	100
gtcaggttgc accgcccttt ggttcccgag c atg ctg ttt tct ctc agc ctt Met Leu Phe Ser Leu Ser Leu -10 ctc tcc aac ctt aac caa atc ggc agc agc cac ctc gac cgc cca cac Leu Ser Asn Leu Asn Gln Ile Gly Ser Ser His Leu Asp Arg Pro His -5 1 5 10 att cct ggc caa tca gct cag ctg ttt att tac caa atg tct tca caa Ile Pro Gly Gln Ser Ala Gln Leu Phe Ile Tyr Gln Met Ser Ser Gln 15 20 25	100
gtcaggttgc accgcccttt ggttcccgag c atg ctg ttt tct ctc agc ctt Met Leu Phe Ser Leu Ser Leu -10 ctc tcc aac ctt aac caa atc ggc agc agc cac ctc gac cgc cca cac Leu Ser Asn Leu Asn Gln Ile Gly Ser Ser His Leu Asp Arg Pro His -5 1 5 10 att cct ggc caa tca gct cag ctg ttt att tac caa atg tct tca caa Ile Pro Gly Gln Ser Ala Gln Leu Phe Ile Tyr Gln Met Ser Ser Gln 15 20 25 caa cta cag cag cag cct tcg gct aac aaa aaa gca gga aaa atc cac Gln Leu Gln Gln Gln Pro Ser Ala Asn Lys Lys Ala Gly Lys Ile His	100
gtcaggttgc accgcccttt ggttcccgag c atg ctg ttt tct ctc agc ctt Met Leu Phe Ser Leu Ser Leu -10 ctc tcc aac ctt aac caa atc ggc agc agc cac ctc gac cgc cca cac Leu Ser Asn Leu Asn Gln Ile Gly Ser Ser His Leu Asp Arg Pro His -5 1 5 10 att cct ggc caa tca gct cag ctg ttt att tac caa atg tct tca caa Ile Pro Gly Gln Ser Ala Gln Leu Phe Ile Tyr Gln Met Ser Ser Gln 15 20 25 caa cta cag cag cag cct tcg gct aac aaa aaa gca gga aaa atc cac Gln Leu Gln Gln Gln Pro Ser Ala Asn Lys Lys Ala Gly Lys Ile His 30 35 40	100 148 196
gtcaggttgc accgcccttt ggttcccgag c atg ctg ttt tct ctc agc ctt Met Leu Phe Ser Leu Ser Leu -10 ctc tcc aac ctt aac caa atc ggc agc agc cac ctc gac cgc cca cac Leu Ser Asn Leu Asn Gln Ile Gly Ser Ser His Leu Asp Arg Pro His -5 1 5 10 att cct ggc caa tca gct cag ctg ttt att tac caa atg tct tca caa Ile Pro Gly Gln Ser Ala Gln Leu Phe Ile Tyr Gln Met Ser Ser Gln 15 20 25 caa cta cag cag cag cct tcg gct aac aaa aaa gca gga aaa atc cac Gln Leu Gln Gln Gln Pro Ser Ala Asn Lys Lys Ala Gly Lys Ile His 30 35 40 aac acc ccc ttc gcc aac caa cta aat cca acg caa cat ctg gca aaa	100
gtcaggttgc accgcccttt ggttcccgag c atg ctg ttt tct ctc agc ctt Met Leu Phe Ser Leu Ser Leu -10 ctc tcc aac ctt aac caa atc ggc agc agc cac ctc gac cgc cca cac Leu Ser Asn Leu Asn Gln Ile Gly Ser Ser His Leu Asp Arg Pro His -5 1 5 10 att cct ggc caa tca gct cag ctg ttt att tac caa atg tct tca caa Ile Pro Gly Gln Ser Ala Gln Leu Phe Ile Tyr Gln Met Ser Ser Gln 15 20 25 caa cta cag cag cag cct tcg gct aac aaa aaa gca gga aaa atc cac Gln Leu Gln Gln Gln Pro Ser Ala Asn Lys Lys Ala Gly Lys Ile His 30 35 40 aac acc ccc ttc gcc aac caa cta aat cca acg caa cat ctg gca aaa Asn Thr Pro Phe Ala Asn Gln Leu Asn Pro Thr Gln His Leu Ala Lys 45 50 55	100 148 196
gtcaggttgc accgcccttt ggttcccgag c atg ctg ttt tct ctc agc ctt Met Leu Phe Ser Leu Ser Leu -10 ctc tcc aac ctt aac caa atc ggc agc agc cac ctc gac cgc cca cac Leu Ser Asn Leu Asn Gln Ile Gly Ser Ser His Leu Asp Arg Pro His -5 1 5 10 att cct ggc caa tca gct cag ctg ttt att tac caa atg tct tca caa Ile Pro Gly Gln Ser Ala Gln Leu Phe Ile Tyr Gln Met Ser Ser Gln 15 20 25 caa cta cag cag cag cct tcg gct aac aaa aaa gca gga aaa atc cac Gln Leu Gln Gln Gln Pro Ser Ala Asn Lys Lys Ala Gly Lys Ile His 30 35 40 aac acc ccc ttc gcc aac caa cta aat cca acg caa cat ctg gca aaa Asn Thr Pro Phe Ala Asn Gln Leu Asn Pro Thr Gln His Leu Ala Lys 45 50 55 cct ttt cag caa att ctt cct ggc cgt cag tcc ggc agc ctc acc tca	100 148 196
gtcaggttgc accgcccttt ggttcccgag c atg ctg ttt tct ctc agc ctt Met Leu Phe Ser Leu Ser Leu -10 ctc tcc aac ctt aac caa atc ggc agc agc cac ctc gac cgc cca cac Leu Ser Asn Leu Asn Gln Ile Gly Ser Ser His Leu Asp Arg Pro His -5 1 5 10 att cct ggc caa tca gct cag ctg ttt att tac caa atg tct tca caa Ile Pro Gly Gln Ser Ala Gln Leu Phe Ile Tyr Gln Met Ser Ser Gln 15 20 25 caa cta cag cag cag cct tcg gct aac aaa aaa gca gga aaa atc cac Gln Leu Gln Gln Gln Pro Ser Ala Asn Lys Lys Ala Gly Lys Ile His 30 35 40 aac acc ccc ttc gcc aac caa cta aat cca acg caa cat ctg gca aaa Asn Thr Pro Phe Ala Asn Gln Leu Asn Pro Thr Gln His Leu Ala Lys 45 50 55 cct ttt cag caa att ctt cct ggc cgt cag tcc ggc agc ctc acc tca Pro Phe Gln Gln Ile Leu Pro Gly Arg Gln Ser Gly Ser Leu Thr Ser	100 148 196 244
gtcaggttgc accgcccttt ggttcccgag c atg ctg ttt tct ctc agc ctt Met Leu Phe Ser Leu Ser Leu -10 ctc tcc aac ctt aac caa atc ggc agc agc cac ctc gac cgc cca cac Leu Ser Asn Leu Asn Gln Ile Gly Ser Ser His Leu Asp Arg Pro His -5 1 5 10 att cct ggc caa tca gct cag ctg ttt att tac caa atg tct tca caa Ile Pro Gly Gln Ser Ala Gln Leu Phe Ile Tyr Gln Met Ser Ser Gln 15 20 25 caa cta cag cag cag cct tcg gct aac aaa aaa gca gga aaa atc cac Gln Leu Gln Gln Gln Pro Ser Ala Asn Lys Lys Ala Gly Lys Ile His 30 35 40 aac acc ccc ttc gcc aac caa cta aat cca acg caa cat ctg gca aaa Asn Thr Pro Phe Ala Asn Gln Leu Asn Pro Thr Gln His Leu Ala Lys 45 50 55 cct ttt cag caa att ctt cct ggc cgt cag tcc ggc agc ctc acc tca Pro Phe Gln Gln Ile Leu Pro Gly Arg Gln Ser Gly Ser Leu Thr Ser 60 65	100 148 196 244 292
gtcaggttgc accgcccttt ggttcccgag c atg ctg ttt tct ctc agc ctt Met Leu Phe Ser Leu Ser Leu -10 ctc tcc aac ctt aac caa atc ggc agc agc cac ctc gac cgc cca cac Leu Ser Asn Leu Asn Gln Ile Gly Ser Ser His Leu Asp Arg Pro His -5 1 5 10 att cct ggc caa tca gct cag ctg ttt att tac caa atg tct tca caa Ile Pro Gly Gln Ser Ala Gln Leu Phe Ile Tyr Gln Met Ser Ser Gln 15 20 25 caa cta cag cag cag cct tcg gct aac aaa aaa gca gga aaa atc cac Gln Leu Gln Gln Gln Pro Ser Ala Asn Lys Lys Ala Gly Lys Ile His 30 35 40 aac acc ccc ttc gcc aac caa cta aat cca acg caa cat ctg gca aaa Asn Thr Pro Phe Ala Asn Gln Leu Asn Pro Thr Gln His Leu Ala Lys 45 50 55 cct ttt cag caa att ctt cct ggc cgt cag tcc ggc agc ctc acc tca Pro Phe Gln Gln Ile Leu Pro Gly Arg Gln Ser Gly Ser Leu Thr Ser	100 148 196 244
gtcaggttgc accgcccttt ggttcccgag c atg ctg ttt tct ctc agc ctt Met Leu Phe Ser Leu Ser Leu -10 ctc tcc aac ctt aac caa atc ggc agc agc cac ctc gac cgc cca cac Leu Ser Asn Leu Asn Gln Ile Gly Ser Ser His Leu Asp Arg Pro His -5	100 148 196 244 292
gtcaggttgc accgcccttt ggttcccgag c atg ctg ttt tct ctc agc ctt Met Leu Phe Ser Leu Ser Leu -10 ctc tcc aac ctt aac caa atc ggc agc agc cac ctc gac cgc cca cac Leu Ser Asn Leu Asn Gln Ile Gly Ser Ser His Leu Asp Arg Pro His -5 1 5 10 att cct ggc caa tca gct cag ctg ttt att tac caa atg tct tca caa Ile Pro Gly Gln Ser Ala Gln Leu Phe Ile Tyr Gln Met Ser Ser Gln 15 20 25 caa cta cag cag cag cct tcg gct aac aaa aaa gca gga aaa atc cac Gln Leu Gln Gln Gln Pro Ser Ala Asn Lys Lys Ala Gly Lys Ile His 30 35 40 aac acc ccc ttc gcc aac caa cta aat cca acg caa cat ctg gca aaa Asn Thr Pro Phe Ala Asn Gln Leu Asn Pro Thr Gln His Leu Ala Lys 45 50 cct ttt cag caa att ctt cct ggc cgt cag tcc ggc agc ctc acc tca Pro Phe Gln Gln Ile Leu Pro Gly Arg Gln Ser Gly Ser Leu Thr Ser 60 65 70 cca ttt cta gct tgc tgaaacccaa aactaatctc caagaaggag aagcttctct Pro Phe Leu Ala Cys 75 cgcagccgga gcaggtccct ttctagagat aggagaagag agagatcgct gtctcgggag	100 148 196 244 292 347
gtcaggttgc accgcccttt ggttcccgag c atg ctg ttt tct ctc agc ctt Met Leu Phe Ser Leu Ser Leu -10 ctc tcc aac ctt aac caa atc ggc agc agc cac ctc gac cgc cca cac Leu Ser Asn Leu Asn Gln Ile Gly Ser Ser His Leu Asp Arg Pro His -5	100 148 196 244 292 347 407 467
gtcaggttgc accgcccttt ggttcccgag c atg ctg ttt tct ctc agc ctt Met Leu Phe Ser Leu Ser Leu -10 ctc tcc aac ctt aac caa atc ggc agc agc cac ctc gac cgc cca cac Leu Ser Asn Leu Asn Gln Ile Gly Ser Ser His Leu Asp Arg Pro His -5	100 148 196 244 292 347 407 467 527
gtcaggttgc accgcccttt ggttcccgag c atg ctg ttt tct ctc agc ctt Met Leu Phe Ser Leu Ser Leu -10 ctc tcc aac ctt aac caa atc ggc agc agc cac ctc gac cgc cca cac Leu Ser Asn Leu Asn Gln Ile Gly Ser Ser His Leu Asp Arg Pro His -5 1 5 10 att cct ggc caa tca gct cag ctg ttt att tac caa atg tct tca caa Ile Pro Gly Gln Ser Ala Gln Leu Phe Ile Tyr Gln Met Ser Ser Gln 15 20 25 caa cta cag cag cag cct tcg gct aac aaa aaa gca gga aaa atc cac Gln Leu Gln Gln Gln Pro Ser Ala Asn Lys Lys Ala Gly Lys Ile His 30 35 40 aac acc ccc ttc gcc aac caa cta aat cca acg caa cat ctg gca aaa Asn Thr Pro Phe Ala Asn Gln Leu Asn Pro Thr Gln His Leu Ala Lys 45 50 55 cct ttt cag caa att ctt cct ggc cgt cag tcc ggc agc ctc acc tca Pro Phe Gln Gln Ile Leu Pro Gly Arg Gln Ser Gly Ser Leu Thr Ser 60 65 70 cca ttt cta gct tgc tgaaacccaa aactaatctc caagaaggag aagcttctct Pro Phe Leu Ala Cys 75 cgcagccgga gcaggtccct ttctagagat aggagaagag agagatcgct gtctcgggag agaaatcaca agccgtcccg atcctctct aggtctcgta gtcgatttag gtcaaatgaa aggaaataga agacagtttg caagagaagt ggtgtacagg aaattacttc atttgacagg agtatgtaca gaaaattcaa gttttgtttg agacttcata agcttggtgc atttttaaga	100 148 196 244 292 347 407 467
gtcaggttgc accgccttt ggttcccgag c atg ctg ttt tct ctc agc ctt Met Leu Phe Ser Leu Ser Leu -10 ctc tcc aac ctt aac caa atc ggc agc agc cac ctc gac cgc cca cac Leu Ser Asn Leu Asn Gln Ile Gly Ser Ser His Leu Asp Arg Pro His -5	100 148 196 244 292 347 407 467 527 587
gtcaggttgc accgcccttt ggttcccgag c atg ctg ttt tct ctc agc ctt Met Leu Phe Ser Leu Ser Leu -10 ctc tcc aac ctt aac caa atc ggc agc agc cac ctc gac cgc cca cac Leu Ser Asn Leu Asn Gln Ile Gly Ser Ser His Leu Asp Arg Pro His -5 1 5 10 att cct ggc caa tca gct cag ctg ttt att tac caa atg tct tca caa Ile Pro Gly Gln Ser Ala Gln Leu Phe Ile Tyr Gln Met Ser Ser Gln 15 20 25 caa cta cag cag cag cct tcg gct aac aaa aaa gca gga aaa atc cac Gln Leu Gln Gln Gln Pro Ser Ala Asn Lys Lys Ala Gly Lys Ile His 30 35 40 aac acc ccc ttc gcc aac caa cta aat cca acg caa cat ctg gca aaa Asn Thr Pro Phe Ala Asn Gln Leu Asn Pro Thr Gln His Leu Ala Lys 45 50 cct ttt cag caa att ctt cct ggc cgt cag tcc ggc agc ctc acc tca Pro Phe Gln Gln Ile Leu Pro Gly Arg Gln Ser Gly Ser Leu Thr Ser 60 65 70 cca ttt cta gct tgc tgaaacccaa aactaatctc caagaaggag agagttctct Pro Phe Leu Ala Cys 75 cgcagccgga gcaggtccct ttctagagat aggagaagag agagatcgct gtctcgggag agaaatcaca agccgtcccg atccttctct aggtctcgta gtcgatttag gtcaaatgaa aggaaataga agacagtttg caagagaagt ggtgtacagg aaattactc atttgacagg agtatgtaca gaaaattcaa gttttgtttg agacttcata agcttggtgc atttttaaga tgttttagct gttcaaatct gtttgtttt tgaaacagtg acacaaaagt gtaattctc	100 148 196 244 292 347 407 467 527 587 647

WO 99/31236 -64 - PCT/IB98/02122

aaattgaact aagatttact ttttttcca tagctgggat ataggctgca gctatagttg aacaagcagt ctttaaaaac tgctgtgaaa cacaggccat cagggaaaac gaaatgctgc actattaaat tagaggtttt tgaaaaatcc aactctcatc ctgggcagag gttgcctagt tggtatagaa tgttaagttt caagaaagtt tacctttgct ttaggtcgta agttccttat ttgattgccg tatatggata catggctgtt cgtgacattc tttatgtgca aatttgtgat ttcaaaaaatg tcctgccagt ttaagggtac attgtagagc cgaactttga gttactgtgc aagatttttt ttcatgctgt catttgtaat atgttttgtg agaatccttg ggattaaagt tttggttaca gattaaaaaa aaaaa	887 947 1007 1067 1127 1187 1247
<210> 88 <211> 804 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 114734	
<pre><221> sig_peptide <222> 114239 <223> Von Heijne matrix</pre>	
<400> 88 ccaacaccag gaagagtctg aagagcagcc agtgtttcgg cttgtgccct gtatacttga agctgccaaa caagtacggt agttctgaaa atccagaatg gcttgatgtt tac atg Met	60 116
ccaacaccag gaagagtctg aagagcagcc agtgtttcgg cttgtgccct gtatacttga	
ccaacaccag gaagagtctg aagagcagcc agtgtttcgg cttgtgccct gtatacttga agctgccaaa caagtacggt agttctgaaa atccagaatg gcttgatgtt tac atg Met cac att tta caa ctg ctt act aca gtg gat gat gga att caa gca att His Ile Leu Gln Leu Leu Thr Thr Val Asp Asp Gly Ile Gln Ala Ile	116
ccaacaccag gaagagtctg aagagcagcc agtgtttcgg cttgtgccct gtatacttga agctgccaaa caagtacggt agttctgaaa atccagaatg gcttgatgtt tac atg Met cac att tta caa ctg ctt act aca gtg gat gat gga att caa gca att His Ile Leu Gln Leu Leu Thr Thr Val Asp Asp Gly Ile Gln Ala Ile -40 -35 -30 gta cat tgt cct gac act gga aaa gac att tgg aat tta ctt ttt gac Val His Cys Pro Asp Thr Gly Lys Asp Ile Trp Asn Leu Leu Phe Asp	116 164
ccaacaccag gaagagtetg aagagcagcc agtgtttegg ettgtgeeet gtatacttga agetgecaaa caagtacggt agttetgaaa atccagaatg gettgatgtt tac atg Met cac att tta caa etg ett act aca gtg gat gat gga att caa gca att His Ile Leu Gln Leu Leu Thr Thr Val Asp Asp Gly Ile Gln Ala Ile -40 -35 -30 gta cat tgt cet gae act gga aaa gae att tgg aat tta ett ttt gae Val His Cys Pro Asp Thr Gly Lys Asp Ile Trp Asn Leu Leu Phe Asp -25 -20 -15 -10 ctg gte tge cat gaa tte tge cag tet gat gat cea eec att ett Leu Val Cys His Glu Phe Cys Gln Ser Asp Asp Pro Pro Ile Ile Leu	116 164 212
ccaacaccag gaagagtetg aagagcagcc agtgtttegg ettgtgeeet gtatacttga agetgecaaa caagtaeggt agttetgaaa atceagaatg gettgatgtt tac atg Met cac att tta caa etg ett act aca gtg gat gat gga att caa gca att His Ile Leu Gln Leu Leu Thr Thr Val Asp Asp Gly Ile Gln Ala Ile -40 -35 gta cat tgt eet gae act gga aaa gae att tgg aat tta ett ttt gae Val His Cys Pro Asp Thr Gly Lys Asp Ile Trp Asn Leu Leu Phe Asp -25 -20 -15 -10 ctg gte tge cat gaa tte tge cag tet gat gat eca ece att ett Leu Val Cys His Glu Phe Cys Gln Ser Asp Asp Pro Pro Ile Ile Leu -5 caa gaa cag aaa aca gtg eta gee tet gtt ttt tea gtg ttg tet gee Gln Glu Gln Lys Thr Val Leu Ala Ser Val Phe Ser Val Leu Ser Ala	116 164 212 260
ccaacaccag gaagagtetg aagagcagcc agtgtttegg ettgtgeeet gtatacttga agetgecaaa caagtaeggt agttetgaaa atceagaatg gettgatgtt tac atg Met cac att tta caa etg ett act aca gtg gat gat gga att caa gea att His Ile Leu Gln Leu Leu Thr Thr Val Asp Asp Gly Ile Gln Ala Ile -40 -35 -30 gta cat tgt eet gae act gga aaa gae att tgg aat tta ett ttt gae Val His Cys Pro Asp Thr Gly Lys Asp Ile Trp Asn Leu Leu Phe Asp -25 -20 -15 -10 ctg gte tge cat gaa tte tge eag tet gat gat eea eec att ett Leu Val Cys His Glu Phe Cys Gln Ser Asp Asp Pro Pro Ile Ile Leu -5 1 5 caa gaa cag aaa aca gtg eta gee tet gtt ttt tea gtg ttg tet gee Gln Glu Gln Lys Thr Val Leu Ala Ser Val Phe Ser Val Leu Ser Ala 10 15 20 ate tat gee tea cag act gag caa gag tat eta aag ata gaa aaa gta Ile Tyr Ala Ser Gln Thr Glu Gln Glu Tyr Leu Lys Ile Glu Lys Val	116164212260308
ccaacaccag gaagagtetg aagagcagcc agtgtttegg cttgtgeect gtatacttga agetgecaaa caagtacggt agtetgaaa atccagaatg gettgatgtt tac atg Met cac att tta caa ctg ctt act aca gtg gat gat gga att caa gca att His Ile Leu Gln Leu Leu Thr Thr Val Asp Asp Gly Ile Gln Ala Ile -40 -35 -30 gta cat tgt cct gac act gga aaa gac att tgg aat tta ctt ttt gac Val His Cys Pro Asp Thr Gly Lys Asp Ile Trp Asn Leu Leu Phe Asp -25 -20 -15 -10 ctg gtc tgc cat gaa ttc tgc cag tct gat gat cca ccc atc att ctt Leu Val Cys His Glu Phe Cys Gln Ser Asp Asp Pro Pro Ile Ile Leu -5 1 5 caa gaa cag aaa aca gtg cta gcc tct gtt ttt tca gtg ttg tct gcc Gln Glu Gln Lys Thr Val Leu Ala Ser Val Phe Ser Val Leu Ser Ala 10 15 20 atc tat gcc tca cag act gag caa gag tat cta aag ata gaa aaa gta Ile Tyr Ala Ser Gln Thr Glu Gln Glu Tyr Leu Lys Ile Glu Lys Val 25 30 35 gat ctt cct cta att gac agc ctc att cgg gtc tta caa aat atg gaa Asp Leu Pro Leu Ile Asp Ser Leu Ile Arg Val Leu Gln Asn Met Glu	116 164 212 260 308
ccaacaccag gaagagtctg aagagcagcc agtgtttcgg cttgtgccct gtatacttga agctgccaaa caagtacggt agttctgaaa atccagaatg gcttgatgtt tac atg Met cac att tta caa ctg ctt act aca gtg gat gat gga att caa gca att His Ile Leu Gln Leu Leu Thr Thr Val Asp Asp Gly Ile Gln Ala Ile -40 -35 gta cat tgt cct gac act gga aaa gac att tgg aat tta ctt ttt gac Val His Cys Pro Asp Thr Gly Lys Asp Ile Trp Asn Leu Leu Phe Asp -25 -20 -15 ctg gtc tgc cat gaa ttc tgc cag tct gat gat cca ccc atc att ctt Leu Val Cys His Glu Phe Cys Gln Ser Asp Asp Pro Pro Ile Ile Leu -5 caa gaa cag aaa aca gtg cta gcc tct gtt ttt tca gtg ttg tct gcc Gln Glu Gln Lys Thr Val Leu Ala Ser Val Phe Ser Val Leu Ser Ala 10 15 20 atc tat gcc tca cag act gag caa gag tat cta aag ata gaa aaa gta Ile Tyr Ala Ser Gln Thr Glu Gln Glu Tyr Leu Lys Ile Glu Lys Val 25 gat ctt cct cta att gac agc ctc att cgg gtc tta caa aat atg gaa Asp Leu Pro Leu Ile Asp Ser Leu Ile Arg Val Leu Gln Asn Met Glu 40 45 cag tgt cag aaa aaa cca gag aac tcg gca gag tct aac aca gag gaa Gln Cys Gln Lys Lys Pro Glu Asn Ser Ala Glu Ser Asn Thr Glu Glu	116 164 212 260 308 356 404

90 95 100	
90 95 100 aag gag acg gtg gct cag gga gta aag gaa ggc cag ttg agc aaa cag	596
Lys Glu Thr Val Ala Gln Gly Val Lys Glu Gly Gln Leu Ser Lys Gln	
105 110 115	644
aag tgt tcc tct gca ttt caa aac ctt ctt cct ttc tat agc cct gtg Lys Cys Ser Ser Ala Phe Gln Asn Leu Leu Pro Phe Tyr Ser Pro Val	044
120 125 130 135	
gtg gaa gat ttt att aaa atc cta cgt gaa gtt gat aag gcg ctt gct	692
Val Glu Asp Phe Ile Lys Ile Leu Arg Glu Val Asp Lys Ala Leu Ala	
140 145 150	734
gat gac ttg gaa aaa aac ttc cca agt ttg aag gtt cag act Asp Asp Leu Glu Lys Asn Phe Pro Ser Leu Lys Val Gln Thr	734
155 160 165	
taaaacctga attggaatta cttctgtaca agaaataaac tttatttttc tcactgacaa	794
aaaaaaaaa	804
<210> 89	
<211> 802	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 199801	
221. moluh giamal	
<221> polyA_signal <222> 780785	
4422 1001.703	
<221> polyA_site	
<222> 791802	
<222> 791802	
<222> 791802 <400> 89	60
<222> 791802	120
<222> 791802 <400> 89 agtcacegec tgettegeac tgagectece gacteagact etgagtecag etcegaagag gaagaggaat teggtgtgt tggaaatege tetegetttg ceaagggaga etatttaega tgetgeaaga tetgttatee getetgtgt tttgtcatee ttgetgeetg tgttgtggee	120 180
<222> 791802 <400> 89 agtcaccgcc tgcttcgcac tgagcctccc gactcagact ctgagtccag ctccgaagag gaagaggaat tcggtgtgt tggaaatcgc tctcgctttg ccaagggaga ctatttacga tgctgcaaga tctgttatcc gctctgtggt tttgtcatcc ttgctgcctg tgttgtggcc tgtgttggct tggtgtgg atg cag gtt gct ctc aag gag gat ctg gat gcc	120
<pre><222> 791802 <400> 89 agtcaccgcc tgcttcgcac tgagcctccc gactcagact ctgagtccag ctccgaagag gaagaggaat tcggtgtggt tggaaatcgc tctcgctttg ccaagggaga ctatttacga tgctgcaaga tctgttatcc gctctgtggt tttgtcatcc ttgctgcctg tgttgtggcc tgtgttggct tggtgtgg atg cag gtt gct ctc aag gag gat ctg gat gcc Met Gln Val Ala Leu Lys Glu Asp Leu Asp Ala</pre>	120 180
<222> 791802 <400> 89 agtcaccgcc tgcttcgcac tgagcctccc gactcagact ctgagtccag ctccgaagag gaagaggaat tcggtgtgt tggaaatcgc tctcgctttg ccaagggaga ctatttacga tgctgcaaga tctgttatcc gctctgtggt tttgtcatcc ttgctgcctg tgttgtggcc tgtgttggct tggtgtgg atg cag gtt gct ctc aag gag gat ctg gat gcc	120 180
<pre><222> 791802 <400> 89 agtcaccgcc tgcttcgcac tgagcctccc gactcagact ctgagtccag ctccgaagag gaagaggaat tcggtgtgt tggaaatcgc tctcgctttg ccaagggaga ctatttacga tgctgcaaga tctgttatcc gctctgtggt tttgtcatcc ttgctgcctg tgttgtggcc tgtgttggct tggtgtgg atg cag gtt gct ctc aag gag gat ctg gat gcc</pre>	120 180 231
<pre><222> 791802 <400> 89 agtcaccgcc tgcttcgcac tgagcctccc gactcagact ctgagtccag ctccgaagag gaagaggaat tcggtgtgt tggaaatcgc tctcgctttg ccaagggaga ctatttacga tgctgcaaga tctgttatcc gctctgtggt tttgtcatcc ttgctgcctg tgttgtggcc tgtgttggct tggtgtgg atg cag gtt gct ctc aag gag gat ctg gat gcc</pre>	120 180 231
<pre><222> 791802 <400> 89 agtcaccgcc tgcttcgcac tgagcctccc gactcagact ctgagtccag ctccgaagag gaagaggaat tcggtgtggt tggaaatcgc tctcgctttg ccaagggaga ctatttacga tgctgcaaga tctgttatcc gctctgtggt tttgtcatcc ttgctgcctg tgttgtggcc tgtgttggct tggtgtgg atg cag gtt gct ctc aag gag gat ctg gat gcc</pre>	120 180 231
<pre><222> 791802 <400> 89 agtcaccgcc tgcttcgcac tgagcctccc gactcagact ctgagtccag ctccgaagag gaagaggaat tcggtgtggt tggaaatcgc tctcgctttg ccaagggaga ctatttacga tgctgcaaga tctgttatcc gctctgtggt tttgtcatcc ttgctgcctg tgttgtggcc tgtgttggct tggtgtgg atg cag gtt gct ctc aag gag gat ctg gat gcc</pre>	120 180 231
<pre><222> 791802 <400> 89 agtcaccgcc tgcttcgcac tgagcctccc gactcagact ctgagtccag ctccgaagag gaagaggaat tcggtgtggt tggaaatcgc tctcgctttg ccaagggaga ctatttacga tgctgcaaga tctgttatcc gctctgtggt tttgtcatcc ttgctgcctg tgttgtggcc tgtgttggct tggtgtgg atg cag gtt gct ctc aag gag gat ctg gat gcc</pre>	120 180 231
<pre><222> 791802 <400> 89 agtcaccgcc tgcttcgcac tgagcctccc gactcagact ctgagtccag ctccgaagag gaagaggaat tcggtgtggt tggaaatcgc tctcgctttg ccaagggaga ctatttacga tgctgcaaga tctgttatcc gctctgtggt tttgtcatcc ttgctgcctg tgttgtggcc tgtgttggct tggtgtgg atg cag gtt gct ctc aag gag gat ctg gat gcc</pre>	120 180 231 279
<pre><222> 791802 <400> 89 agtcaccgcc tgcttcgcac tgagcctccc gactcagact ctgagtccag ctccgaagag gaagaggaat tcggtgtggt tggaaatcgc tctcgctttg ccaagggaga ctatttacga tgctgcaaga tctgttatcc gctctgtggt tttgtcatcc ttgctgcctg tgttgtggcc tgtgttggct tggtgtgg atg cag gtt gct ctc aag gag gat ctg gat gcc</pre>	120 180 231 279 327
<pre><222> 791802 <400> 89 agtcaccgcc tgcttcgcac tgagcctccc gactcagact ctgagtccag ctccgaagag gaagaggaat tcggtgtggt tggaaatcgc tctcgctttg ccaagggaga ctatttacga tgctgcaaga tctgttatcc gctctgtggt tttgtcatcc ttgctgcctg tgttgtggcc tgtgttggct tggtgtgg atg cag gtt gct ctc aag gag gat ctg gat gcc</pre>	120 180 231 279
<pre><222> 791802 <400> 89 agtcaccgcc tgcttcgcac tgagcctccc gactcagact ctgagtccag ctccgaagag gaagaggaat tcggtgtggt tggaaatcgc tctcgctttg ccaagggaga ctatttacga tgctgcaaga tctgttatcc gctctgtggt tttgtcatcc ttgctgcctg tgttgtggcc tgtgttggct tggtgtgg atg cag gtt gct ctc aag gag gat ctg gat gcc</pre>	120 180 231 279 327
<pre><222> 791802 <400> 89 agtcaccgcc tgcttcgcac tgagcctccc gactcagact ctgagtccag ctccgaagag gaagaggaat tcggtgtggt tggaaatcgc tctcgctttg ccaagggaga ctatttacga tgctgcaaga tctgttatcc gctctgtggt tttgtcatcc ttgctgcctg tgttgtggcc tgtgttggct tggtgtgg atg cag gtt gct ctc aag gag gat ctg gat gcc</pre>	120 180 231 279 327
<pre><400> 89 agtcaccgcc tgcttcgcac tgagcctccc gactcagact ctgagtccag ctccgaagag gaagaggaat tcggtgtggt tggaaatcgc tctcgctttg ccaagggaga ctatttacga tgctgcaaga tctgttatcc gctctgtggt tttgtcatcc ttgctgcctg tgttgtggcc tgtgttggct tggtgtgg atg cag gtt gct ctc aag gag gat ctg gat gcc</pre>	120 180 231 279 327 375
<pre><400> 89 agtcaccgcc tgcttcgcac tgagcctccc gactcagact ctgagtccag ctccgaagag gaagaggaat tcggttggt tggaaatcgc tctcgctttg ccaagggaga ctatttacga tgctgcaaga tctgttatcc gctctgtggt tttgtcatcc ttgctgcctg tgttgtggcc tgtgttggct tggtgtgg atg cag gtt gct ctc aag gag gat ctg gat gcc</pre>	120 180 231 279 327 375 423
<pre><222> 791802 <400> 89 agtcaccgcc tgcttcgcac tgagcctccc gactcagact ctgagtccag ctccgaagag gaagaggaat tcggtgtggt tggaaatcgc tctcgctttg ccaagggaga ctattacga tgctgcaaga tctgttatcc gctctgtggt ttgtcatcc ttgctgcctg tgttgtggcc tgtgttggct tggtgtgg atg cag gtt gct ctc aag gag gat ctg gat gcc</pre>	120 180 231 279 327 375
<pre><400> 89 agtcaccgcc tgcttcgcac tgagcctccc gactcagact ctgagtccag ctccgaagag gaagaggaat tcggttggt tggaaatcgc tctcgctttg ccaagggaga ctatttacga tgctgcaaga tctgttatcc gctctgtggt tttgtcatcc ttgctgcctg tgttgtggcc tgtgttggct tggtgtgg atg cag gtt gct ctc aag gag gat ctg gat gcc</pre>	120 180 231 279 327 375 423
<pre><222> 791802 <400> 89 agtcaccgcc tgcttcgcac tgagcctccc gactcagact ctgagtccag ctccgaagag gaagaggaat tcggtgtggt tggaaatcgc tctcgctttg ccaagggaga ctatttacga tgctgcaaga tctgttatcc gctctgtgt tttgtcatcc ttgctgcctg tgttgtggcc tgtgttggct tggtgtgg atg cag gtt gct ctc aag gag gat ctg gat gcc</pre>	120 180 231 279 327 375 423
<pre><400> 89 agtcaccgcc tgcttcgcac tgagcctccc gactcagact ctgagtccag ctccgaagag gaagaggaat tcggtgggt tggaaatcgc tctcgctttg ccaagggaga ctatttacga tgctgcaaga tctgttatcc gctctgtggt tttgtcatcc ttgctgcctg tgttgtggcc tgtgttggct tggtgtgg atg cag gtt gct ctc aag gag gat ctg gat gcc</pre>	120 180 231 279 327 375 423 471
<pre><222> 791802 <400> 89 agtcaccgcc tgcttcgcac tgagcctccc gactcagact ctgagtccag ctccgaagag gaagaggaat tcggtgtggt tggaaatcgc tctcgctttg ccaagggaga ctatttacga tgctgcaaga tctgttatcc gctctgtggt tttgtcatcc ttgctgctg tgttgtggcc tgtgttggct tggtgtgg atg cag gtt gct ctc aag gag gat ctg gat gcc</pre>	120 180 231 279 327 375 423 471

Asp Glu His Lys Lys Thr Met Glu Leu Leu Gln Ser Asp Met Asn Gln

									aac Asn						663
									acc Thr 165						711
									aaa Lys						759
									atc Ile				а		802
<21 <21	0> 90 1> 14 2> Di 3> Ho	190 VA	sapie	ens											
	0> l> CI 2> 38		174												
<22	l> s:	ig_pe	eptio	ie											
<22	2> 38	314	18		•										
<22.		on He	eijne 7.3	mat	rıx					•					
			SACI	LVTLV	VGLG/	'EP									
	_		_sigr .1457												
			_site .1490												
)> 90														
tcai	cato	ca g	gagca	agcca	ag to	gteeg	ggaç	g gca	agaag			s Sez		ctg Leu	55
				_	-				cac His	 _	_	_	-		103
									acc Thr						151
									gtc Val						199
									tgc Cys						247
									agc Ser						295
									Gly 999						343
									gcg				ttc Phe		391

70 75 80	
tgg atg ctt gcc ctc ctg ggc ctc tcg cag gca ctg aac atc ctc ctg	439
Trp Met Leu Ala Leu Leu Gly Leu Ser Gln Ala Leu Asn Ile Leu Leu 85 90 95	
ggc ctc aag ggc ctg gcc cca gct gag atc tct gca gtg tgt gaa aaa	487
Gly Leu Lys Gly Leu Ala Pro Ala Glu Ile Ser Ala Val Cys Glu Lys	
100 105 110 ggg aat ttc aac gtg gcc cat ggg ctg gca tgg tca tat tac atc gga	535
Gly Asn Phe Asn Val Ala His Gly Leu Ala Trp Ser Tyr Tyr Ile Gly	
115 120 125	F.0.2
tat ctg cgg ctg atc ctg cca gag ctc cag gcc cgg att cga act tac Tyr Leu Arg Leu Ile Leu Pro Glu Leu Gln Ala Arg Ile Arg Thr Tyr	583
130 135 140 145	
aat cag cat tac aac aac ctg cta cgg ggt gca gtg agc cag cgg ctg	631
Asn Gln His Tyr Asn Asn Leu Leu Arg Gly Ala Val Ser Gln Arg Leu 150 155 160	
tat att etc etc eca ttg gae tgt ggg gtg ect gat aac etg agt atg	679
Tyr Ile Leu Leu Pro Leu Asp Cys Gly Val Pro Asp Asn Leu Ser Met	
165 170 175 gct gac ccc aac att cgc ttc ctg gat aaa ctg ccc cag cag acc ggt	727
Ala Asp Pro Asn Ile Arg Phe Leu Asp Lys Leu Pro Gln Gln Thr Gly	
180 185 190	775
gac cgt gct ggc atc aag gat cgg gtt tac agc aac agc atc tat gag Asp Arg Ala Gly Ile Lys Asp Arg Val Tyr Ser Asn Ser Ile Tyr Glu	775
195 200 205	
ctt ctg gag aac ggg cag cgg ggc acc tgt gtc ctg gag tac gcc	823
Leu Leu Glu Asn Gly Gln Arg Ala Gly Thr Cys Val Leu Glu Tyr Ala 210 225 225	
acc ccc ttg cag act ttg ttt gcc atg tca caa tac agt caa gct ggc	871
Thr Pro Leu Gln Thr Leu Phe Ala Met Ser Gln Tyr Ser Gln Ala Gly	
230 235 240 ttt agc egg gag gat agg ett gag eag gec aaa ete tte tge egg aca	919
Phe Ser Arg Glu Asp Arg Leu Glu Gln Ala Lys Leu Phe Cys Arg Thr	
245 250 255	967
ctt gag gac atc ctg gca gat gcc cct gag tct cag aac aac tgc cgc Leu Glu Asp Ile Leu Ala Asp Ala Pro Glu Ser Gln Asn Asn Cys Arg	967
260 265 270	
ctc att gcc tac cag gaa cct gca gat gac agc agc ttc tcg ctg tcc	1015
Leu Ile Ala Tyr Gln Glu Pro Ala Asp Asp Ser Ser Phe Ser Leu Ser 275 280 285	
cag gag gtt ctc cgg cac ctg cgg cag gag gaa aag gaa gag gtt acc	1063
Gln Glu Val Leu Arg His Leu Arg Gln Glu Glu Lys Glu Glu Val Thr	
290 295 300 305 gtg ggc agc ttg aag acc tca gcg gtg ccc agt acc tcc acg atg tcc	1111
Val Gly Ser Leu Lys Thr Ser Ala Val Pro Ser Thr Ser Thr Met Ser	
310 315 320	1159
caa gag cct gag ctc ctc ctc agt gga atg gga aag ccc ctc cct ctc Gln Glu Pro Glu Leu Leu Ser Gly Met Gly Lys Pro Leu Pro Leu	1133
325 330 335	
cgc acg gat ttc tct tgagacccag ggtcaccagg ccagagcctc cagtggtctc	1214
Arg Thr Asp Phe Ser 340	
caageetetg gaetggggge tetetteagt ggetgaatgt ceageagage tattteette	1274
cacagggggc cttgcaggga agggtccagg acttgacatc ttaagatgcg tcttgtcccc	1334
ttgggccagt catttcccct ctctgagcct cggtgtcttc aacctgtgaa atgggatcat	1394 1454
aatcactgoc ttacctccct cacggttgtt gtgaggactg agtgtgtgga agtttttcat aaactttgga tgctagtgta cttaaaaaaaa aaaaaa	1490

<212> DNA <213> Homo sapiens												
<220> <221> CDS <222> 26361												
<221> polyA_site <222> 350361												
<pre><400> 91 tcgagaagct gccccttagc caacc atg ccg tct gag ggt cgc tgc tgg gag</pre>	52											
acc ttg aag gcc cta cgc agt tcc gac aaa ggt cgc ctt tgc tac tac Thr Leu Lys Ala Leu Arg Ser Ser Asp Lys Gly Arg Leu Cys Tyr Tyr 10 15 20 25	100											
cgc gac tgg ctg ctg cgc gag gat gtt tta gaa gaa tgt atg tct Arg Asp Trp Leu Leu Arg Arg Glu Asp Val Leu Glu Glu Cys Met Ser 30 35 40	148											
ctt ccc aag cta tct tct tat tct gga tgg gtg gta gag cac gtc cta Leu Pro Lys Leu Ser Ser Tyr Ser Gly Trp Val Val Glu His Val Leu 45 50 55	196											
ccc cat atg cag gag aac caa cct ctg tct gag act tcg cca tcc tct Pro His Met Gln Glu Asn Gln Pro Leu Ser Glu Thr Ser Pro Ser Ser 60 65 70	244											
acg tca gct tca gcc cta gat caa ccc tca ttt gtt ccc aaa tct cct Thr Ser Ala Ser Ala Leu Asp Gln Pro Ser Phe Val Pro Lys Ser Pro 75 80 85	292											
gac gca agc tct gcc ttt tcc cca gcc tcc cct gca aca cca aat gga Asp Ala Ser Ser Ala Phe Ser Pro Ala Ser Pro Ala Thr Pro Asn Gly 90 95 100 105	340											
acc aag ggc aaa aaa aaa Thr Lys Gly Lys Lys Lys 110	361											
<210> 92 <211> 605 <212> DNA <213> Homo sapiens												
<220> <221> CDS <222> 3131												
<221> polyA_site <222> 591605												
<pre><400> 92 ca tcc ctt ccc cag gct tta tgg ttc cag ttc ttc tac cac tct gga Ser Leu Pro Gln Ala Leu Trp Phe Gln Phe Phe Tyr His Ser Gly 1</pre>	47											
agc tcc cta gaa tct cct gga atg ctt aat gga cct ttc cag cac cga Ser Ser Leu Glu Ser Pro Gly Met Leu Asn Gly Pro Phe Gln His Arg 20 25 30	95											
aat tca aga att atg act cat cgg tca gca gaa aag tgaggatacc Asn Ser Arg Ile Met Thr His Arg Ser Ala Glu Lys 35 40	141											
ttttcctaac ctacctgctt cccctgcagt ttcctcacaa tcttactctt tatattttag catatgtagc ttctcaggat gttaattctg ttctctctgt gttggtgtct gagcacccag	201 261											

aaggtagagc caggggcact tataaaccag gagcattatt tgacaggcac ttaagaaaga cactggctac gtaatcccag cactttggga ggctgaggcg gatggatcac atgaggtcag gagttcgaga ccagcctggc cagcatggtg aaaccctgtc tctactaaaa atacaaaaat tagctgggtg tggttgcaca cgcctgtaat cccagctacc tgggaggctg aggcaggaga atcgcttgaa cttgggaggc ggaggttgca gtgagcctag attttgccat tgcactccag cctgggtgac aaggcgaaa ctccatccca aaaaaaaaaa	321 381 441 501 561 605
<210> 93 <211> 591 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 33185	
<221> sig_peptide <222> 3380 <223> Von Heijne matrix score 3.7 seq IALTLIPSMLSRA/AG	
<221> polyA_signal	
<221> polyA_site <222> 586591	
<pre><400> 93 caatcttctc agcttataac cgtctttccc tt atg cta agg ata gcc ctt aca</pre>	53
ctc atc cca tct atg ctg tca agg gct gct ggt tgg tgc tgg tac aag Leu Ile Pro Ser Met Leu Ser Arg Ala Ala Gly Trp Cys Trp Tyr Lys	101
gag ccc act cag cag ttt tct tac ctt tgc ctg ccc tgc ctt tca tgg Glu Pro Thr Gln Gln Phe Ser Tyr Leu Cys Leu Pro Cys Leu Ser Trp 10 15 20	149
aat aag aaa ggc aac gtt ttg cag ctt cca aat ttc tgaagaaact Asn Lys Lys Gly Asn Val Leu Gln Leu Pro Asn Phe 25 30 35	195
aatctcagat tggcagttaa agtcaaaatg ttgccaaata tttattcctt ttgcctaagt ttggctaccc ggttcaattg ctttttattt ttaatgtctt gactcttcag agttcgtacc tcaaaagaac aatgagaaca tttgctttgc	255 315 375 435 495 555 591
<210> 94 <211> 1150 <212> DNA <213> Homo sapiens	

<220>

<221> CDS

<222> 184..915

WO 99/31236 -70- PCT/IB98/02122

<221> sig_peptide <222> 184..237 <223> Von Heijne matrix score 3.5 seg LLGLELSEAEAIG/AD <221> polyA_signal <222> 1119..1124 <221> polyA site <222> 1139..1150 <400> 94 60 cqqatttgac gatggtgttc ggtcttgaat ggaaatgtag tcttaggcca gtcttaggtt 120 tttgaacagg atagtaggta tccggagtcg attgagggcc agagcaggca ctggggttcg 180 gatectggge aaagttteee aegttgaggg tetegaggae geetagatet ettteeeagg gcc atg gcg aac ccg aag ctg ctg gga ctg gag cta agc gag gcg gag 228 Met Ala Asn Pro Lys Leu Leu Gly Leu Glu Leu Ser Glu Ala Glu -15 gcg atc ggt gct gat tcg gcg cga ttt gag gag ctg ctg ctg cag gcc 276 Ala Ile Gly Ala Asp Ser Ala Arg Phe Glu Glu Leu Leu Gln Ala 5 324 tog aag gag oto cag caa goo cag aca aco aga coa gaa tog aca caa Ser Lys Glu Leu Gln Gln Ala Gln Thr Thr Arg Pro Glu Ser Thr Gln 20 atc cag cct cag cct ggt ttc tgc ata aag acc aac tcc tcg gaa ggg 372 Ile Gln Pro Gln Pro Gly Phe Cys Ile Lys Thr Asn Ser Ser Glu Gly 40 35 aag gtt ttc atc aac atc tgc cac tcc ccc tct atc cct ccc gcc 420 Lys Val Phe Ile Asn Ile Cys His Ser Pro Ser Ile Pro Pro Pro Ala 55 50 gac gtg acc gag gag gag ctg ctt cag atg cta gag gag gac caa gct 468 Asp Val Thr Glu Glu Glu Leu Leu Gln Met Leu Glu Glu Asp Gln Ala 65 ggg ttt cgc atc ccc atg agt ctg gga gag cct cat gca gaa ctg gat 516 Gly Phe Arg Ile Pro Met Ser Leu Gly Glu Pro His Ala Glu Leu Asp 85 gca aaa ggc cag gga tgt acc gcc tac gac gta gct gtc aac agc gac 564 Ala Lys Gly Gln Gly Cys Thr Ala Tyr Asp Val Ala Val Asn Ser Asp 100 105 95 ttc tac cgg agg atg cag aac agc gat ttc ttg cgg gag ctc gtg atc 612 Phe Tyr Arg Arg Met Gln Asn Ser Asp Phe Leu Arg Glu Leu Val Ile 120 660 acc atc gcc agg gag ggc ctt gag gac ata tac aac ttg cag ctg aat Thr Ile Ala Arg Glu Gly Leu Glu Asp Ile Tyr Asn Leu Gln Leu Asn 135 708 ccg gaa tgg cgc atg atg aag aac cgg cca ttc atg ggc tcc atc tcg Pro Glu Trp Arg Met Met Lys Asn Arg Pro Phe Met Gly Ser Ile Ser 150 155 cag cag aac atc cgc tcg gag cag cgt cct cgg atc cag gag ctg ggg 756 Gln Gln Asn Ile Arg Ser Glu Gln Arg Pro Arg Ile Gln Glu Leu Gly 170 165 804 gac ctg tac acg ccc gcc ccc ggg aga gct gag tca ggg cct gaa aag Asp Leu Tyr Thr Pro Ala Pro Gly Arg Ala Glu Ser Gly Pro Glu Lys 185 180 cct cac ctg aac ctg tgg ctg gaa gcc ccc gac ctc ctc ttg gcc gaa 852 Pro His Leu Asn Leu Trp Leu Glu Ala Pro Asp Leu Leu Leu Ala Glu 200 195 gtt gac ctc ccc aaa ctg gat gga gcc ctg ggg ctg tcg ctg gag atc 900 Val Asp Leu Pro Lys Leu Asp Gly Ala Leu Gly Leu Ser Leu Glu Ile 210 215 ggg aga acc gcc tgg tgatgggggg cccccagcag ctgtatcatc tagacgctta 955 WO 99/31236 -71- PCT/IB98/02122 -

atta tcts	aatgg	gtg g	gccat ggaga	gccg	c tt	ctgo	cggt	gco	ttct	tga	tcag	ggt	gtc t	tectt	aagca gtgct ttgcc	1075
<211 <212	0> 95 1> 15 2> DN 3> Ho	13 IA	sapie	ens												
	0> 1> CI 2> 58		116					-								
<222		n He ore	59 eijne	e mat		'DP										
	1> pc 2> 14		_													
	1> pc 2> 19		_													
	0> 99 actco		agtto	ctcac	a ac	cactt	gaco	: aat	aaga	ttc	ggga	igctt	ct t	cago	aa	57
ctga atg	0> 99 actco gag Glu	tg a	ggc	ctg Leu	aaa	tca	gca	gac	cct Pro	cgg	gat	ggc	acc	ggt Gly	tac	57 105
ctga atg Met act	acteo gag	tg a aga Arg tgg	ggc Gly gca Ala	ctg Leu -30 ggt	aaa Lys att	tca Ser gct	gca Ala gtg	gac Asp ctt Leu	CCT Pro -25 tac	cgg Arg tta	gat Asp cat	ggc Gly ctt	acc Thr tat Tyr	ggt Gly -20 gat	tac Tyr gta	
ctga atg Met act Thr	gag Glu ggc	aga Arg tgg Trp gac Asp	ggc Gly gca Ala -15 cct	ctg Leu -30 ggt Gly gcc	aaa Lys att Ile tac	tca Ser gct Ala cta	gca Ala gtg Val cag	gac Asp ctt Leu -10 tta	CCT Pro -25 tac Tyr	cgg Arg tta Leu cat	gat Asp cat His	ggc Gly ctt Leu tat	acc Thr tat Tyr -5 gta	ggt Gly -20 gat Asp	tac Tyr gta Val	105
ctga atg Met act Thr ttt Phe agt Ser	gag Glu ggc Gly	tg aga Arg tgg Trp gac Asp 1 aac	ggc Gly gca Ala -15 cct Pro	ctg Leu -30 ggt Gly gcc Ala	aaa Lys att Ile tac Tyr acc	ser gct Ala cta Leu 5	gca Ala gtg Val cag Gln	gac Asp ctt Leu -10 tta Leu	cct Pro -25 tac Tyr gca Ala	cgg Arg tta Leu cat His acc	gat Asp cat His ggc Gly 10 ttc	ggc Gly ctt Leu tat Tyr	acc Thr tat Tyr -5 gta Val	ggt Gly -20 gat Asp aag Lys	tac Tyr gta Val caa Gln gat Asp	105 153
ctgatg Met act Thr ttt Phe agt Ser 15 gca	gag Glu ggc Gly ggg Gly	tg a aga Arg tgg Trp gac Asp 1 aac Asn	ggc Gly gca Ala -15 cct Pro tgc Cys	ctg Leu -30 ggt Gly gcc Ala tta Leu gca Ala	aaa Lys att Ile tac Tyr acc Thr 20 gtg	ser gct Ala cta Leu 5 aag Lys gcc	gca Ala gtg Val cag Gln cgc Arg	gac Asp ctt Leu -10 tta Leu tcc ser	cct Pro -25 tac Tyr gca Ala atc Ile cta Leu	cgg Arg tta Leu cat His acc Thr 25 tat	gat Asp cat His ggc Gly 10 ttc Phe	ggc Gly ctt Leu tat Tyr ctt Leu	acc Thr tat Tyr -5 gta Val tgt Cys	ggt Gly -20 gat Asp aag Lys ggg Gly aac Asn	tac Tyr gta Val caa Gln gat Asp 30 aat	105 153 201
ctga atg Met act Thr ttt Phe agt 15 aga gag	gag Glu ggc Gly gga Gly ctg Leu	tgg tgg Trp gac Asp l aac Asn ccc Pro	ggc Gly gca Ala -15 cct Pro tgc Cys ctg Leu gca Ala	ctg Leu -30 ggt Gly gcc Ala tta Leu gca Ala 35 gaa	aaa Lys att Ile tac Tyr acc Thr 20 gtg Val	ser gct Ala cta Leu 5 aag Lys gcc Ala tgc	gca Ala gtg Val cag Gln cgc Arg gct Ala	gac Asp ctt Leu -10 tta Leu tcc ser gtg Val aca Thr	cct Pro -25 tac Tyr gca Ala atc Ile cta Leu 40 cgg	cgg Arg tta Leu cat His acc Thr 25 tat Tyr	gat Asp cat His ggc Gly 10 ttc Phe cat His	ggc Gly ctt Leu tat Tyr ctt Leu aag Lys	acc Thr tat Tyr -5 gta Val tgt Cys atg Met cta Leu	ggt Gly -20 gat Asp aag Lys ggg Gly aac Asn 45 aat	tac Tyr gta Val caa Gln gat Asp 30 aat Asn	105 153 201 249
ctga actga Met actr ttt Phe agt 15 aga Ala gag Glu att	gag Glu ggc Gly ggg Gly ctg Leu ggc Gly	tgg tgg Trp gac Asp l aac Asn ccc Pro cag Gln cct	ggc Gly gca Ala -15 cct Pro tgc Cys ctg Leu gca Ala 50 cat	ctg Leu -30 ggt Gly gcc Ala tta Leu gca Ala 35 gaa Glu	aaa Lys att Ile tac Tyr acc Thr 20 gtg Val gat Asp	ser gct Ala cta Leu s aag Lys gcc Ala tgc Cys aat	gca Ala gtg Val cag Gln cgc Arg gct Ala atc Ile	gac Asp ctt Leu -10 tta Leu tcc Ser gtg Val aca Thr 55 atg	cct Pro -25 tac Tyr gca Ala atc Ile cta Leu 40 cgg Arg	cgg Arg tta Leu cat His acc Thr 25 tat Tyr cta Leu tat	gat Asp cat His ggc Gly 10 ttc Phe cat His att Ile	ggc Gly ctt Leu tat Tyr ctt Leu aag Lys cac His cga Arg	acc Thr tat Tyr -5 gta Val tgt Cys atg Met cta Leu 60 ata	ggt Gly -20 gat Asp aag Lys ggg Gly aac Asn 45 aat Asn	tac Tyr gta Val caa Gln gat Asp 30 aat Asn aag Lys tac	105 153 201 249 297
ctga actga Met actrhr ttte agtra 15 aggalu atte atc	gag Glu ggc Gly ggg Gly ctg Leu ggc Gly aag Lys gat Asp	tgg tgg Trp gac Asp aac Asn ccc Pro cag Gln cct Pro 65 gct	ggc Gly gca Ala -15 cct Pro tgc Cys ctg Leu gca Ala 50 cat His	ctg Leu -30 ggt Gly gcc Ala tta Leu gca Ala 35 gaa Glu gct Ala	aaa Lys att Ile tac Tyr acc Thr 20 gtg Val gat Asp cca Pro	ser gct Ala cta Leu 5 aag Lys gcc Ala tgc Cys aat Asn gtc Val	gca Ala gtg Val cag Gln cgc Arg gct Ala atc Ile gaa Glu 70 aat	gac Asp ctt Leu -10 tta Leu tcc Ser gtg Val aca Thr 55 atg Met aag	cct Pro -25 tac Tyr gca Ala atc Ile cta Leu 40 cgg Arg ctc Leu	cgg Arg tta Leu cat His acc Thr 25 tat Tyr cta Leu tat Tyr ttt	gat Asp cat His ggc Gly 10 ttc Phe cat His att Ile ggg Gly	ggc Gly ctt Leu tat Tyr ctt Leu aag Lys cac His cga Arg 75 gtg	acc Thr tat Tyr -5 gta Val tgt Cys atg Met cta Leu 60 ata Ile	ggt Gly -20 gat Asp aag Lys ggg Gly aac Asn 45 aat Asn	tac Tyr gta Val caa Gln gat Asp 30 aat Asn aag Lys tac Tyr act	105 153 201 249 297 345
ctga amet act ttte Phe agt 15 aga Ala gag Glu atte atcet	gag Glu ggc Gly ggg Ctg Leu ggc Gly aag Lys	tgg tgg Trp gac Asp laac Asn ccc Pro cag Gln cct Pro 65 gct Ala agc	ggc Gly gca Ala -15 cct Pro tgc Cys ctg Leu gca Ala 50 cat His ctt	ctg Leu -30 ggt Gly gcc Ala tta Leu gca Ala 35 gaa Glu gct Ala	aaa Lys att Ile tac Tyr acc Thr 20 gtg Val gat Asp cca Pro ttt	ser gct Ala cta Leu saag Lys gcc Ala tgc Cys aat Asn gtc Val 85 cag	gca Ala gtg Val cag Gln cgc Arg gct Ala atc Ile gaa Glu 70 aat Asn	gac Asp ctt Leu -10 tta Leu tcc Ser gtg Val aca Thr 55 atg Met agg Lys	cct Pro -25 tac Tyr gca Ala atc Ile cta Leu 40 cgg Arg ctc Leu aac Asn	cgg Arg tta Leu cat His acc Thr 25 tat Tyr cta Leu tat Tyr ttt Phe aca	gat Asp cat His ggc Gly 10 ttc Phe cat His att Ile ggg Gly gga Gly 90 att	ggc Gly ctt Leu tat Tyr ctt Leu aag Lys cac His cga Arg 75 gtg Val	acc Thr tat Tyr -5 gta Val tgt Cys atg Met cta Leu 60 ata Ile gaa Glu acc	ggt Gly -20 gat Asp aag Lys ggg Gly aac Asn 45 aat Asn ggc Gly aag Lys	tac Tyr gta Val caa Gln gat Asp 30 aat Asn aag Lys tac Tyr act Thr	105 153 201 249 297 345 393

tat	gaa	tgg	tac	cag	gaa	tat	tat	gta	999	gct	gct	cat	ggc	ctg	gct	585
Tyr	Glu	Trp	Tyr	Gln	Glu	Tyr	Tyr	Val	Gly	Ala	Ala	His	Gly	Leu	Ala	
			130					135					140		•	
gga	att	tat	tac	tac	ctg	atg	cag	CCC	agc	ctt	caa	gtg	agc	caa	a aa	633
Gly	Ile		Tyr	Tyr	Leu	Met		Pro	Ser	Leu	Gln		ser	Gln	GIÀ	
		145					150					155				681
aag	tta	cat	agt	ttg	gtc	aag	CCC	agt	gta	gac	tac	gtc	tgc	cag	Lou	901
Lys		Hls	Ser	ьeu	vaı	ьуs 165	PLO	Ser	vaı	Asp	171 170	vaı	Cys	Gln	neu	
	160			~~~	- a+		cct	cca	tat	ata	-	cat	aat	cga	gat	729
Two	Dho	Dro	Car	Glv	Acn	Tur	Dro	Dro	Cvs	Tle	Glv	Asp	Asn	Arg	Asp	
175	FIIC	PIO	Ser	Gry	180	- y -	110	110	C, S	185	U -7	р		5	190	
	ctt	atc	cat	taa		cat	aac	acc	cct		gta	atc	tac	atg		777
Leu	Len	Val	His	Trn	Cvs	His	Glv	Ala	Pro	Glv	Val	Ile	Tyr	Met	Leu	
Dea	Deu	· u _		195	0,70		7		200	2			•	205		
atc	caq	qcc	tat	aaq	qta	ttc	aga	gag	gaa	aag	tat	ctc	tgt	gat	gcc	825
Ile	Gln	Ala	Tyr	Lys	Val	Phe	Arg	Glu	Glu	Lys	Tyr	Leu	Cys	Asp	Ala	
			210					215					220			
tat	cag	tgt	gct	gat	gtg	atc	tgg	caa	tat	999	ttg	ctg	aag	aag	gga	873
Tyr	Gln	Cys	Ala	Asp	Val	Ile	Trp	Gln	Tyr	Gly	Leu	Leu	Lys	Lys	Gly	
		225					230					235				
tat	999	ctg	tgc	cac	ggt	tct	gca	999	aat	gcc	tat	gcc	ttc	ctg	aca	921
Tyr		Leu	Cys	His	Gly		Ala	Gly	Asn	Ala		Ala	Phe	Leu	Thr	
	240					245					250					0.00
														tgt		969
	Tyr	Asn	Leu	Thr		Asp	Met	ьуs	Tyr		ıyr	Arg	Ala	Cys	шув 270	
255					260				~~~	265	~~~	+~~	262	202		1017
ממם	gct	gaa	tgg	tgc	tta	gag	Tac	gga	gaa	Udl	99a	Cyc	Aya	aca Thr	Dro	1017
Pne	Ala	GIU	Trp	275	Leu	GIU	TAT	GTA	280	urs	Gry	Cys	ALG	Thr 285	FIO	
~~~	200	cct	ttc		ctc	+++	gaa	gga		act	aaa	aca	ata	tat	ttc	1065
Asn	Thr	Pro	Phe	Ser	Len	Phe	Glu	Glv	Met	Ala	Glv	Thr	Ile	Tyr	Phe	
пор	****		290	001				295			2		300	•		
cta	act	gac		cta	atc	ccc	aca	aaa	qcc	agg	ttc	cct	gca	ttt	gaa	1113
Leu	Ala	Asp	Leu	Leu	Val	Pro	Thr	Lys	Ala	Arg	Phe	Pro	Āla	Phe	Glu	
		305					310	-				315				
ctc	tga	aagg	ata 🤉	gcat	gcca	cc t	gcaa	ctca	c tg	catga	accc	ttt	ctgt	ata		1166
Leu																
ttc	aaac	cca a	agct.	aagt	gc t	tccg	ttgc	t tt	ccaa	ggaa	aca	aaga	gtc	aaac	tgtgga	1226
ctt	gatt	ttg '	ttag	cttt	tt t	caga	attt	a tc	tttc	attc	agti	tccc	ttc	catt	atcatt	1286
tac	tttt	act '	taga	agta	tc c	aagg	aagt	c tt	ttaa	cttt	aat	ttcc	att '	tett	cctaaa	1346
999	agag	tga	gtga	tatg	ta c	agtg	tttt	g ag	attg	tata	cata	atat	CCC .	agaa	cttgga	1406
gga	aatc	tta ·	ttta	agtt	ta t	gaat	ataa	c ca	cctg	ctac	tgt	ccta	aaa	atgt	ttaaaa	1466 1513
gaa	actc	aat	acag	ataa	ag a	taaa	catg	t ga	ctat	caaa	aaa	aaaa				1213

<210> 96

<211> 417

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 327..416

<221> polyA_site

<222> 404..417

<400> 96

tgttttgagg tgttggcatt cttcgctgat ttggctgttc ccaatgttta cattatttaa 60 tcttgcaaaa atggttctgt gcacttggat gtgaaatgct gtccagtttt attttttta 120

tgttgttatc cttggatgta caaaaaattc agaaaatgat ctctgtagat att attttggtca tctttagaag ttatcaggaa tgtgtttaaa acaagaagag aac aggaatgata catagaaaag attttattt aaaatgagtt gtaaagcttg tgtttgctgcaag ctatctgccc aagtta atg caa atg gac aca ttt ttt a Met Gln Met Asp Thr Phe Phe M	ttttcta 240 ttctttg 300 ttg tca 353 Met Ser
gaa aaa cac aca cac aca cac aca cat ata cac aca cac aca cg Glu Lys His Thr His Thr His Thr His Ile His Thr His Thr Ar 10 20	,
aca aaa aaa aaa aa aa aa aa aa aa aa aa	417
<210> 97 <211> 603 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 63398	
<221> sig_peptide <222> 63206 <223> Von Heijne matrix score 4.9 seq PSLAAGLLFGSLA/GL	
<pre>&lt;400&gt; 97 ggggccttcg tgagaccggt gcaggcctgg ggtagtctcc tgtctggaca gag aa atg cag gac act ggc tca gta gtg cct ttg cat tgg ttt ggg Met Gln Asp Thr Gly Ser Val Val Pro Leu His Trp Phe Gly -45</pre> -40 -35	y Phe
ggc tac gca gca ctg gtt gct tct ggt ggg atc att ggc tat gt Gly Tyr Ala Ala Leu Val Ala Ser Gly Gly Ile Ile Gly Tyr Va -30 -25 -20	ta aaa 155 al Lys
gca ggc agc gtg ccg tcc ctg gct gca ggg ctg ctc ttt ggc ag Ala Gly Ser Val Pro Ser Leu Ala Ala Gly Leu Leu Phe Gly Se -15 -10 -5	gt cta 203 er Leu
gcc ggc ctg ggt gct tac cag ctg tct cag gat cca agg aac g Ala Gly Leu Gly Ala Tyr Gln Leu Ser Gln Asp Pro Arg Asn V	tt tgg 251 al Trp 15
gtt ttc cta gct aca tct ggt acc ttg gct ggc att atg gga a Val Phe Leu Ala Thr Ser Gly Thr Leu Ala Gly Ile Met Gly Me 20 25 3	et Arg
ttc tac cac tct gga aaa ttc atg cct gca ggt tta att gca gg Phe Tyr His Ser Gly Lys Phe Met Pro Ala Gly Leu Ile Ala G 35 40 45	gt gcc 347 ly Ala
agt ttg ctg atg gtc gcc aaa gtt gga gtt agt atg ttc aac a Ser Leu Leu Met Val Ala Lys Val Gly Val Ser Met Phe Asn A 50 55 60	ga ccc 395 rg Pro
cat tagcagaagt catgttccag cttagactga tgaagaatta aaaatctgc His	a 448

<211> 522	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 2163	
<221> polyA_signal   <222> 488493	
<221> polyA_site <222> 511522	
<400> 98 c gag att gcg ggc tat ggc gcc gaa ggt ttt tcg tca gta ctg gga tat	49
Glu Ile Ala Gly Tyr Gly Ala Glu Gly Phe Ser Ser Val Leu Gly Tyr 1 5 10 15	
ccc cga tgg cac cga ttg cca ccg caa agc cta cag cac cac cag tat Pro Arg Trp His Arg Leu Pro Pro Gln Ser Leu Gln His His Gln Tyr 20 25 30	97
tgc cag cgt cgc tgg cct gac cgc cgc tgc cta cag agt cac act caa Cys Gln Arg Arg Trp Pro Asp Arg Arg Cys Leu Gln Ser His Thr Gln 35 40	145
tcc tcc ggg cac ctt cct nntgaaggag tggctaaggt tggacaatac Ser Ser Gly His Leu Pro	193
acgttcactg cagetgetgt eggggeegtg tttggeetea ceaectgeat cagegeecat	253
gtccgcgaga agcccgacga ccccctgaac tacttccccg gtggctgcgc cnggaggcct	313
gactetggga gcacgcacgc acaactacgg gattggcgcc gccgcctgcg tgtactttgg	373
catageggee tecetggtea agatgggeeg getggaggge tgggaggtgt ttgcaaaace	433
caaggtgtga gccctgtgcc tgccgggacc tccagcctgc agaatgcgtc cagaaataaa	493
ttctgtgtct gtgtgtgaaa aaaaaaaaa	522
<210> 99 <211> 956 <212> DNA <213> Homo sapiens	
<220>	
<221> CDS <222> 13465	
<221> sig_peptide <222> 1375	
<223> Von Heijne matrix	
score 3.9 seq PVAVTAAVAPVLS/IN	
<400> 99	
ngagtcggga aa atg gct gcg agt acn tcn atg gnc ccg gtg gct gtg acg Met Ala Ala Ser Thr Ser Met Xaa Pro Val Ala Val Thr -20 -15 -10	51
gcg gca gtg gcg cct gtc ctg tcc ata aac agc gat ttc tca gat ttg Ala Ala Val Ala Pro Val Leu Ser Ile Asn Ser Asp Phe Ser Asp Leu -5 1 5	99
cgg gaa att aaa aag caa ctg ctg ctt att gcg ggc ctt acc cgg gag Arg Glu Ile Lys Lys Gln Leu Leu Leu Ile Ala Gly Leu Thr Arg Glu 10 15 20	147
cgg ggc cta cta cac agt agc aaa tgg tcg gcg gag ttg gct ttc tct	195

WO 99/31236 -75- PCT/IB98/02122

25	_		Leu		30					35					40		
			ttg													243	•
			Leu	45		-			50					55			
			gcc													291	
			Ala 60					65					70				
			aaa													339	
		75	Lys				80					85					
			aaa													387	
Asn	Ser 90	Lys	Lys	Ala	Tyr	Phe 95	Leu	Tyr	Met	Tyr	Ser 100	Arg	Tyr	Leu	Val		
agg	gcc	att	tta	aaa	tgt	cat	tct	gcc	ttt	agt	gaa	aca	tcc	ata	ttt	435	
-	Ala	Ile	Leu	Lys		His	Ser	Ala	Phe		Glu	Thr	Ser	Ile			
105					110					115			_4		120	405	
			gga Gly							tago	ctag	gca q	grgg	gccad	EE	485	
				125					130								
															taaaa	545	
		_		-			_								ctgatt	605 665	
															gtgtaa gtttat	725	
															aatgca	785	
															gaaac	845	
															aaaaa	905	
	_		acnti					_	_				_			956	
<220 <221 <222 <221 <222 <223 <221 <222 <221	> 1() > DI	DS D	eptio 4 eijno	le e mat LMLGV nal 5		/ns											
	> 10 gtc		catc	ctaco	Me	t Se				Glu	ı Thi				c ttc e Phe	52	
			gtg Val			ctg					act					100	
tac Tyr	tgg Trp	cga Arg 5	gtg Val	tcc	act Thr	gtg Val	cac His 10	Gly 999	aac	gtc Val	atc Ile	acc Thr 15	acc Thr	aac	acc Thr	148	

-																
atc	ttc	gag	aac	ctc	tgg	ttt	agc	tgt	gcc	acc	gac	tcc	ctg	ggc	gtc	196
Ile	Phe	Glu	Asn	Leu	Trp	Phe	Ser	Cys	Ala	Thr	Asp	Ser	Leu	Gly	Val	
	20					25					30				_ = 4.	244
tac	aac	tgc	tgg	gag	ttc	ccg	tcc	atg	ctg	gcc	ctc	tct	999	tat	att	244
-	Asn	Cys	Trp	GIu		Pro	ser	met	ьеи	45	Leu	Ser	GIY	Tyr	50	
35	~~~	+ ~ ~	caa	ac.	40 ctc	ato	atc	acc	acc		ctc	cta	aac	ttc		292
Gln	gec ala	Cve	Ara	Δla	Leu	Met	Tle	Thr	Ala	Tle	Leu	Leu	Glv	Phe	Leu	
0111	ALG	Cys	9	55					60				1	65		
ggc	ctc	ttg	cta	ggc	ata	gcg	ggc	ctg	cgc	tgc	acc	aac	att	999	ggc	340
Gly	Leu	Leu	Leu	Gly	Ile	Ala	Gly	Leu	Arg	Cys	Thr	Asn	Ile	Gly	Gly	
			70					75					80			
ctg	gag	ctc	tcc	agg	aaa	gcc	aag	ctg	gcg	gcc	acc	gca	aaa	gcc	CCC	388
Leu	Glu		Ser	Arg	Lys	Ala		Leu	Ala	Ala	Thr		GIY	Ala	Pro	
		85				+	90	- <b>-</b> ~	~+ ~	~~~	250	95	taa	tac	acc	436
Cac	att	Lou	gee	ggt	Tla	Cve	999 Glv	Met	Val	Δla	Tle	Ser	Trn	tac Tyr	Ala	150
urs	100	пец	AIA	Gry	110	105	OLY	1100	***	7114	110	-		-1-		
ttc		atc	acc	caa	qac		ttc	gac	ccc	ttg		ccc	gga	acc	aag	484
Phe	Asn	Ile	Thr	Arg	Asp	Phe	Phe	Asp	Pro	Leu	Tyr	Pro	Gly	Thr	Lys	
115					120					125					130	
tac	gag	ctg	ggc	CCC	gcc	ctc	tac	ctg	999	tgg	agc	gcc	tca	ctg	atc	532
Tyr	Glu	Leu	Gly		Ala	Leu	Tyr	Leu		Trp	Ser	Ala	Ser	Leu	Ile	
				135					140					145		580
tcc	atc	ctg	ggt	ggc	ctc	tgc	ctc	tgc	Cor	gcc	tgc	tgc	Cyc	ggc	Car	560
ser	TTE	Leu	150	GIY	Leu	Cys	neu	155	ser	Ala	Cys	Cys	160	Gly	301	
gac	gag	gac		acc	acc	age	acc		caa	ccc	tac	caq		cca	ata	628
Asp	Glu	Asp	Pro	Ala	Ala	Ser	Ala	Arq	Ara	Pro	Tyr	Gln	Ala	Pro	Val	
		165					170	_				175				
														agc		676
Ser	Val	Met	Pro	Val	Ala	Thr	Ser	Asp	Gln	Glu		Asp	Ser	Ser	Phe	
	180					185					190					722
				aga					tag	cage	tet	ggcc	cgtg	99		723
195	гЛs	ıyr	GIY	Arg	Asn 200	Ala	Tyr	vai								
	cact	atc	ttcc	cact		ccaa	agag.	a gg	ggac	ctaa	cca	aaac	cca	ttcc	cctata	783
															cccgtg	843
															tctccc	903
ctc	tgag	gct	ggat	ccct	ca t	cttc	tgac	c ct	gggt	tctg	ggc	tgtg	aag	ggga	cggtgt	963
															ccgtta	1023
aaa	aaaa	aaa	aaaa	aaaa												1041

<210> 101

<211> 558

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 103..294

<221> sig_peptide

<222> 103..243

<223> Von Heijne matrix score 5.9

seq TWLGLLSFQNLHC/FP

<400> 101

ttcccatggt ttagaagcat aacctgtaat gtaatgcaag tcccctaact ccctggttgc 60

taacattaac ttccttaagt aataatcaat gaaagaaatt ct atg cat ggt ttt Met His Gly Phe -45 ·	114
gaa ata ata tcc ttg aaa gag gaa tca cca tta gga aag gtg agt cag Glu Ile Ile Ser Leu Lys Glu Glu Ser Pro Leu Gly Lys Val Ser Gln -40 -35 -30	162
ggt cct ttg ttt aat gtg act agt ggc tca tca tca cca gtg acc tgg Gly Pro Leu Phe Asn Val Thr Ser Gly Ser Ser Pro Val Thr Trp -25 -20 -15	210
ttg ggc cta ctc tcc ttc cag aac ctg cat tgc ttc cca gac ctc ccc Leu Gly Leu Leu Ser Phe Gln Asn Leu His Cys Phe Pro Asp Leu Pro -10 -5 1 5	258
act gag atg cct cta aga gcc aaa gga gtc aac act tgagcctagg Thr Glu Met Pro Leu Arg Ala Lys Gly Val Asn Thr 10 15	304
gtgggctaca acaaaagatt ctaatttacc ttgcttcatc taggtccagg ccccaagtag cttgctgaag gaacttaaaa agtagctgtt atttattgta ttgtataagc taaaaacatt tattttgtt gaatcgaaac aattccatgt agcaatcttt tttctgttca cggtgtttgt gatagaacct taaattccgc aagcatcagt tttttgaaaa aatgggaatt gaccggatag taacaggcaa agtt	364 424 484 544 558
<210> 102 <211> 730 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 81518	
<221> sig_peptide <222> 81173 <223> Von Heijne matrix     score 3.9     seq ILFHGVFYAGGFA/IV	
<400> 102	
ctcgtcatgc tctttgtagc gtggtgcttc tgttgctcac aggacaactt gcctttgatg attttcaaga gagttgtgct atg atg tgg caa aag tat gca gga agc agg cgg Met Met Trp Gln Lys Tyr Ala Gly Ser Arg Arg -30	60 113
tca atg cct ctg gga gca agg atc ctt ttc cac ggt gtg ttc tat gcc Ser Met Pro Leu Gly Ala Arg Ile Leu Phe His Gly Val Phe Tyr Ala -20 -15 -10 -5	161
ggg ggc ttt gcc att gtg tat tac ctc att caa aag ttt cat tcc agg Gly Gly Phe Ala Ile Val Tyr Tyr Leu Ile Gln Lys Phe His Ser Arg	209
gct tta tat tac aag ttg gca gtg gag cag ctg cag agc cat ccc gag Ala Leu Tyr Tyr Lys Leu Ala Val Glu Gln Leu Gln Ser His Pro Glu 15 20 25	257
gca cag gaa gct ctg ggc cct cct ctc aac atc cat tat ctc aag ctc Ala Gln Glu Ala Leu Gly Pro Pro Leu Asn Ile His Tyr Leu Lys Leu 30 35 40	305
atc gac agg gaa aac ttc gtg gac att gtt gat gcc aag ttg aag att  Ile Asp Arg Glu Asn Phe Val Asp Ile Val Asp Ala Lys Leu Lys Ile  45 50 55 60	353
cct gtc tct gga tcc aaa tca gag ggc ctt ctc tac gtc cac tca tcc Pro Val Ser Gly Ser Lys Ser Glu Gly Leu Leu Tyr Val His Ser Ser 65 70 75	401
70	

WO 99/31236 -78- PCT/IB98/02122 .

Arg Gly Gly Pro Phe Gln Arg Trp His Leu Asp Glu Val Phe Leu Glu 80 85 90	
ctc aag gat ggt cag cag att cct gtg ttc aag ctc agt ggg gaa aac	497
Leu Lys Asp Gly Gln Gln Ile Pro Val Phe Lys Leu Ser Gly Glu Asn	-27
95 100 105	E 4 0
ggt gat gaa gtg aaa aag gag tagagacgac ccagaagacc cagcttgctt	548
Gly Asp Glu Val Lys Lys Glu	
110 115	
ctagtccatc cttccctcat ctctaccata tggccactgg ggtggtggcc catctcagtg	608
acagacactc ctgcaaccca gttttccagc caccagtggg atgatggtat gtgccagcac	668
atggtaattt tggtgtaatt ctaacttggg cacaacgaat gctatttgtc atttttaaac	728
tq	730
0.00	
<210> 103	
<211> 1098	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 66326	
<221> polyA signal	
<222> 10661071	
(222) 100010/1	
221 molya gita	
<221> polyA_site	
<222> 10871098	
<400> 103	
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc	60
	60 110
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc	
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc	
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc  Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser  1 5 10 15	
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser  1 5 10 15 ttg ccc cat ggt gtc ctg gga ccc aga gca aca gga tct gtc acc cac	110
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser  1 5 10 15  ttg ccc cat ggt gtc ctg gga ccc aga gca aca gga tct gtc acc cac Leu Pro His Gly Val Leu Gly Pro Arg Ala Thr Gly Ser Val Thr His	110
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc    Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser    1	110
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc    Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser    1	110
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc     Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser     1	110
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc  Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser  1 5 10 15  ttg ccc cat ggt gtc ctg gga ccc aga gca aca gga tct gtc acc cac Leu Pro His Gly Val Leu Gly Pro Arg Ala Thr Gly Ser Val Thr His  20 25 30  ctc tct ctt ctc ccc cag atc aag caa cgt gcc tca gag gct ttg ccc Leu Ser Leu Leu Pro Gln Ile Lys Gln Arg Ala Ser Glu Ala Leu Pro 35 40 45	110 158 206
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc  Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser  1 5 10 15  ttg ccc cat ggt gtc ctg gga ccc aga gca aca gga tct gtc acc cac Leu Pro His Gly Val Leu Gly Pro Arg Ala Thr Gly Ser Val Thr His  20 25 30  ctc tct ctt ctc ccc cag atc aag caa cgt gcc tca gag gct ttg ccc Leu Ser Leu Leu Pro Gln Ile Lys Gln Arg Ala Ser Glu Ala Leu Pro  35 40 45  gaa ttg ctt cgt cct gtc acc ccc atc acc aat ttt gag ggc agc cag	110
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc  Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser  1 5 10 15  ttg ccc cat ggt gtc ctg gga ccc aga gca aca gga tct gtc acc cac Leu Pro His Gly Val Leu Gly Pro Arg Ala Thr Gly Ser Val Thr His  20 25 30  ctc tct ctt ctc ccc cag atc aag caa cgt gcc tca gag gct ttg ccc Leu Ser Leu Leu Pro Gln Ile Lys Gln Arg Ala Ser Glu Ala Leu Pro 35 40 45  gaa ttg ctt cgt cct gtc acc ccc atc acc aat ttt gag ggc agc cag Glu Leu Leu Arg Pro Val Thr Pro Ile Thr Asn Phe Glu Gly Ser Gln	110 158 206
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc  Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser  1 5 10 15  ttg ccc cat ggt gtc ctg gga ccc aga gca aca gga tct gtc acc cac Leu Pro His Gly Val Leu Gly Pro Arg Ala Thr Gly Ser Val Thr His  20 25 30  ctc tct ctt ctc ccc cag atc aag caa cgt gcc tca gag gct ttg ccc Leu Ser Leu Leu Pro Gln Ile Lys Gln Arg Ala Ser Glu Ala Leu Pro  35 40 45  gaa ttg ctt cgt cct gtc acc ccc atc acc aat ttt gag ggc agc cag Glu Leu Leu Arg Pro Val Thr Pro Ile Thr Asn Phe Glu Gly Ser Gln  50 55 60	110 158 206 254
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc  Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser  1 5 10 15  ttg ccc cat ggt gtc ctg gga ccc aga gca aca gga tct gtc acc cac Leu Pro His Gly Val Leu Gly Pro Arg Ala Thr Gly Ser Val Thr His  20 25 30  ctc tct ctt ctc ccc cag atc aag caa cgt gcc tca gag gct ttg ccc Leu Ser Leu Leu Pro Gln Ile Lys Gln Arg Ala Ser Glu Ala Leu Pro  35 40 45  gaa ttg ctt cgt cct gtc acc ccc atc acc aat ttt gag ggc agc cag Glu Leu Leu Arg Pro Val Thr Pro Ile Thr Asn Phe Glu Gly Ser Gln  50 55 60  tct cag gac cac agt gga atc ttt ggc ctg gta aca aac ctg gaa gag	110 158 206
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc  Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser  1 5 10 15  ttg ccc cat ggt gtc ctg gga ccc aga gca aca gga tct gtc acc cac Leu Pro His Gly Val Leu Gly Pro Arg Ala Thr Gly Ser Val Thr His  20 25 30  ctc tct ctt ctc ccc cag atc aag caa cgt gcc tca gag gct ttg ccc Leu Ser Leu Leu Pro Gln Ile Lys Gln Arg Ala Ser Glu Ala Leu Pro  35 40 45  gaa ttg ctt cgt cct gtc acc ccc atc acc aat ttt gag ggc agc cag Glu Leu Leu Arg Pro Val Thr Pro Ile Thr Asn Phe Glu Gly Ser Gln  50 55 60  tct cag gac cac agt gga atc ttt ggc ctg gta aca aac ctg gaa gag	110 158 206 254
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc  Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser  1 5 10 15  ttg ccc cat ggt gtc ctg gga ccc aga gca aca gga tct gtc acc cac Leu Pro His Gly Val Leu Gly Pro Arg Ala Thr Gly Ser Val Thr His  20 25 30  ctc tct ctt ctc ccc cag atc aag caa cgt gcc tca gag gct ttg ccc Leu Ser Leu Leu Pro Gln Ile Lys Gln Arg Ala Ser Glu Ala Leu Pro  35 40 45  gaa ttg ctt cgt cct gtc acc ccc atc acc aat ttt gag ggc agc cag Glu Leu Leu Arg Pro Val Thr Pro Ile Thr Asn Phe Glu Gly Ser Gln  50 55 60	110 158 206 254
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc  Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser  1 5 10 15  ttg ccc cat ggt gtc ctg gga ccc aga gca aca gga tct gtc acc cac Leu Pro His Gly Val Leu Gly Pro Arg Ala Thr Gly Ser Val Thr His  20 25 30  ctc tct ctt ctc ccc cag atc aag caa cgt gcc tca gag gct ttg ccc Leu Ser Leu Leu Pro Gln Ile Lys Gln Arg Ala Ser Glu Ala Leu Pro  35 40 45  gaa ttg ctt cgt cct gtc acc ccc atc acc aat ttt gag ggc agc cag Glu Leu Leu Arg Pro Val Thr Pro Ile Thr Asn Phe Glu Gly Ser Gln  50 55 60  tct cag gac cac agt gga atc ttt ggc ctg gta aca aac ctg gaa gag Ser Gln Asp His Ser Gly Ile Phe Gly Leu Val Thr Asn Leu Glu Glu  65 70 75	110 158 206 254
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc  Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser  1	110 158 206 254 302
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc  Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser  1	110 158 206 254 302
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc  Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser  1	110 158 206 254 302 356
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc     Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser     1	110 158 206 254 302 356 416
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc     Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser     1	110 158 206 254 302 356 416 476
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc  Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser  1 5 10 15  ttg ccc cat ggt gtc ctg gga ccc aga gca aca gga tct gtc acc cac Leu Pro His Gly Val Leu Gly Pro Arg Ala Thr Gly Ser Val Thr His  20 25 30  ctc tct ctt ctc ccc cag atc aag caa cgt gcc tca gag gct ttg ccc Leu Ser Leu Leu Pro Gln Ile Lys Gln Arg Ala Ser Glu Ala Leu Pro  35 40 45  gaa ttg ctt cgt cct gtc acc ccc atc acc aat ttt gag ggc agc cag Glu Leu Leu Arg Pro Val Thr Pro Ile Thr Asn Phe Glu Gly Ser Gln  50 55 60  tct cag gac cac agt gga atc ttt ggc ctg gta aca aac ctg gaa gag Ser Gln Asp His Ser Gly Ile Phe Gly Leu Val Thr Asn Leu Glu Glu  65 70 75  ctg gag gtg gac gat tgg gag ttc tgagcctctg caaactgtgc gcattctcca Leu Glu Val Asp Asp Trp Glu Phe  80 85  gccagggatg cagaggccac ccagaggccc ttcctgaggg ccggccacat tcccgccctc ctgggcagat tgggtagaaa ggacattctt ccaggaaagt tgactgctgg ctgattgga aagaaaatcc tggagagata cttcactgct ccaaggcttt tgagacacaa gggaatctca	110 158 206 254 302 356 416 476 536
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc  Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser  1 5 10 15  ttg ccc cat ggt gtc ctg gga ccc aga gca aca gga tct gtc acc cac Leu Pro His Gly Val Leu Gly Pro Arg Ala Thr Gly Ser Val Thr His  20 25 30  ctc tct ctt ctc ccc cag atc aag caa cgt gcc tca gag gct ttg ccc Leu Ser Leu Pro Gln Ile Lys Gln Arg Ala Ser Glu Ala Leu Pro  35 40 45  gaa ttg ctt cgt cct gtc acc ccc atc acc aat ttt gag ggc agc cag Glu Leu Leu Arg Pro Val Thr Pro Ile Thr Asn Phe Glu Gly Ser Gln  50 55 60  tct cag gac cac agt gga atc ttt ggc ctg gta aca aac ctg gaa gag Ser Gln Asp His Ser Gly Ile Phe Gly Leu Val Thr Asn Leu Glu Glu  65 70 75  ctg gag gtg gac gat tgg gag ttc tgagcctctg caaactgtgc gcattctca Leu Glu Val Asp Asp Trp Glu Phe 80 85  gccagggatg cagaggccac ccagaggccc ttcctgaggg ccggcacat tcccgccctc ctgggcagat tgggtagaaa ggacattctt ccaggaaagt tgactgctgg ctgattgga aagaaaatcc tggagagata ctcaactgct ccaaaggctt tgagacacaa gggaatctca acaaccaggg atcaggaggg tccaaagccg acattcccag tcctgtgagc tcaggtgacc	110 158 206 254 302 356 416 476 536 596
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc  Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser  1 5 10 15  ttg ccc cat ggt gtc ctg gga ccc aga gca aca gga tct gtc acc cac Leu Pro His Gly Val Leu Gly Pro Arg Ala Thr Gly Ser Val Thr His  20 25 30  ctc tct ctt ctc ccc cag atc aag caa cgt gcc tca gag gct ttg ccc Leu Ser Leu Leu Pro Gln Ile Lys Gln Arg Ala Ser Glu Ala Leu Pro  35 40 45  gaa ttg ctt cgt cct gtc acc ccc atc acc aat ttt gag ggc agc cag Glu Leu Leu Arg Pro Val Thr Pro Ile Thr Asn Phe Glu Gly Ser Gln  50 55 60  tct cag gac cac agt gga atc ttt ggc ctg gta aca aac ctg gaa gag Ser Gln Asp His Ser Gly Ile Phe Gly Leu Val Thr Asn Leu Glu Glu  65 70 75  ctg gag gtg gac gat tgg gag ttc tgagcctctg caaactgtgc gcattctca Leu Glu Val Asp Asp Trp Glu Phe 80 85  gccagggatg cagaggccac ccagaggccc ttcctgaggg ccggccacat tcccgccctc ctgggcagat tgggtagaaa ggacattctt ccaggaaagt tgactgctgg ctgattgga aagaaaatcc tggagagata cttcactgct ccaaagctt tgagacacaa gggaatctca acaaccaggg atcaggagg tccaaagccg acattcccag tcctgtgagc tcaggtgacc tcctccgcag aagagagat ctgctctggc cctgggagct gaattccaag cccagggttt	110 158 206 254 302 356 416 476 536 596 656
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc	110 158 206 254 302 356 416 476 536 596 656 716
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc	110 158 206 254 302 356 416 476 536 596 656
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc Met Glu Leu Ala Pro Thr Ala Arg Leu Pro Pro Gly His Gly Ser 1 5 10 15  ttg ccc cat ggt gtc ctg gga ccc aga gca aca gga tct gtc acc cac Leu Pro His Gly Val Leu Gly Pro Arg Ala Thr Gly Ser Val Thr His 20 25 30  ctc tct ctt ctc ccc cag atc aag caa cgt gcc tca gag gct ttg ccc Leu Ser Leu Leu Pro Gln Ile Lys Gln Arg Ala Ser Glu Ala Leu Pro 35 40 45  gaa ttg ctt cgt cct gtc acc ccc atc acc aat ttt gag ggc agc cag Glu Leu Leu Arg Pro Val Thr Pro Ile Thr Asn Phe Glu Gly Ser Gln 55 60  tct cag gac cac agt gga atc ttt ggc ctg gta aca aac ctg gaa gag Ser Gln Asp His Ser Gly Ile Phe Gly Leu Val Thr Asn Leu Glu Glu Glu 65 70 75  ctg gag gtg gac gat tgg gag ttc tgagcctctg caaactgtgc gcattctcca Leu Glu Val Asp Asp Trp Glu Phe 80 85  gccagggatg cagaaggccac ccagaggccc ttcctgaggg ccggccacat tcccgcctc ctggcagat tgggtagaaa ggacattctt ccaggaaagt tgactgaga aggaatctca acaaccaggg atcagagag cccaacaccct tccaggcagt tggagagata ctcaaaccg acatcccaa cccagggttt tggagacacaa gggaatctca acaaccaggg atcagagag ccgcacctct tccaggagct taccagggttt ggatcctaa acccagggttt ggagagatg cccaaagccg accaccctct tcccaggact tgcgcacac cccagggttt ggctccttaa acccagagac cgcacctct tcccagtgct tggagaccac ctcattctac tccactcccca accacagga cccaggacccctct tcccaggact tgcgcacacac cccagggttt ggctccttaa acccaaggac cgcacctct tcccagtagt tacaggacca cccagggttt ggctccttaa acccaaggac cccaagcccctct tcccactccc tcccccagaccccctct tcccaggaccc tccattctac tccactcctct tcccagacccccctct tcccagacccccctct tcccagacccccctct tcccactccct tcccagacccccctctcccccagaccccctct tcccacagcccccctctcccccagacccccctctcccacagacccccccc	110 158 206 254 302 356 416 476 536 596 656 716
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc	110 158 206 254 302 356 416 476 536 596 656 716 776
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc	110 158 206 254 302 356 416 476 536 596 656 716 776 836 896
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc	110 158 206 254 302 356 416 476 536 656 716 776 836 896 956
ctccctttga atgagagaaa ctaacccgct tccgaagccc ctgaaagaca ctgctccttc ctctc atg gag ttg gct ccg aca gcc cgt ctg cca cca ggc cat ggt tcc	110 158 206 254 302 356 416 476 536 596 656 716 776 836 896

tcagagacgc aaaaaaaaaa aa 1098

<210> 104 <211> 346 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 170..289 <221> sig_peptide <222> 170..250 <223> Von Heijne matrix score 3.6 seq LTLLLITPSPSPL/LF <400> 104 60 ccatttqaqc cccaccacqq aggttatgtg gtcccaaaag gaatgatggc caagcaatta 120 atttttcctc ctagttctta gcttgcttct gcattgattg gctttacaca actggcattt 178 agtotgcatt acacaaatag acactaattt atttggaaca agcagcaaa atg aga act Met Arg Thr tta ttt ggt gca gtc agg gct cca ttt agt tcc ctc act ctg ctt cta 226 Leu Phe Gly Ala Val Arg Ala Pro Phe Ser Ser Leu Thr Leu Leu Leu -20 -15 274 atc acc cct tct ccc agc cct ctt cta ttt gat aga ggt ctg tcc ctc Ile Thr Pro Ser Pro Ser Pro Leu Leu Phe Asp Arg Gly Leu Ser Leu 1 aga toa goa atg tot tagoccotot cototottoc attoottoot gttggtacto 329 Arg Ser Ala Met Ser 10 atttcttcta actttta 346 <210> 105 <211> 685 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 36..497 <221> polyA signal <222> 650..655 <221> polyA site <222> 663..685 <400> 105 aagttotgog otggtoggog gagtagcaag tggco atg ggg agc otc agc ggt 53 Met Gly Ser Leu Ser Gly ctg cgc ctg gca gca gga agc tgt ttt agg tta tgt gaa aga gat gtt Leu Arg Leu Ala Ala Gly Ser Cys Phe Arg Leu Cys Glu Arg Asp Val 10 149 tcc tca tct cta agg ctt acc aga agc tct gat ttg aag aga ata aat Ser Ser Ser Leu Arg Leu Thr Arg Ser Ser Asp Leu Lys Arg Ile Asn

WO 99/31236 -80 - PCT/IB98/02122 -

25	
25 30 35 gga ttt tgc aca aaa cca cag gaa agt ccc gga gct cca tcc cgc act	197
Gly Phe Cys Thr Lys Pro Gln Glu Ser Pro Gly Ala Pro Ser Arg. Thr 40 45 50	
tac aac aga gtg cct tta cac aaa cct acg gat tgg cag aaa aag atc	245
Tyr Asn Arg Val Pro Leu His Lys Pro Thr Asp Trp Gln Lys Lys Ile 55 60 65 70	
ctc ata tgg tca ggt cgc ttc aaa aag gaa gat gaa atc cca gag act	293
Leu Ile Trp Ser Gly Arg Phe Lys Lys Glu Asp Glu Ile Pro Glu Thr 75 80 85	247
gtc tcg ttg gag atg ctt gat gct gca aag aac aag atg cga gtg aag	341
Val Ser Leu Glu Met Leu Asp Ala Ala Lys Asn Lys Met Arg Val Lys 90 95 100	200
agc agc tat cta atg att gcc ctg acg gtg gta gga tgc atc ttc atg Ser Ser Tyr Leu Met Ile Ala Leu Thr Val Val Gly Cys Ile Phe Met	389
105 110 115	
gtt att gag ggc aag aag gct gcc caa aga cac gag act tta aca agc	437
Val Ile Glu Gly Lys Lys Ala Ala Gln Arg His Glu Thr Leu Thr Ser 120 125 130	
ttg aac tta gaa aag aaa gct cgt ctg aaa gag gaa gca gct atg aag	485
Leu Asn Leu Glu Lys Lys Ala Arg Leu Lys Glu Glu Ala Ala Met Lys	
gcc aaa aca gag tagcagaggt atccgtgttg gctggatttt gaaaatccag	537
Ala Lys Thr Glu gaattatgtt ataacgtgcc tgtattaaaa aggatgtggt atgaggatcc atttcataaa	597
gtatgatttg cccaaacctg taccatttcc gtatttctgc cgtagaagta gaaataaatt	657
ttcttaaaaa aaaaaaaaa aaaaaaaa	685
<210> 106	
<211> 554	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS <222> 18320	
<221> polyA_signal	
<222> 539544	
<221> polyA_site	
<222> 542554	
<400> 106	
	50
aaccgtcgtg gggaagg atg gtg tgc gaa aaa tgt gaa aag aaa ctt ggt	
aaccgtcgtg gggaagg atg gtg tgc gaa aaa tgt gaa aag aaa ctt ggt Met Val Cys Glu Lys Cys Glu Lys Lys Leu Gly 1 5 10	
Met Val Cys Glu Lys Cys Glu Lys Lys Leu Gly 1 5 10 act gtt atc act cca gat aca tgg aaa gat ggt gct agg aat acc aca	98
Met Val Cys Glu Lys Cys Glu Lys Lys Leu Gly  1 5 10  act gtt atc act cca gat aca tgg aaa gat ggt gct agg aat acc aca Thr Val Ile Thr Pro Asp Thr Trp Lys Asp Gly Ala Arg Asn Thr Thr	98
Met Val Cys Glu Lys Cys Glu Lys Lys Leu Gly  1 5 10  act gtt atc act cca gat aca tgg aaa gat ggt gct agg aat acc aca  Thr Val Ile Thr Pro Asp Thr Trp Lys Asp Gly Ala Arg Asn Thr Thr  15 20 25	
Met Val Cys Glu Lys Cys Glu Lys Lys Leu Gly  1 5 10  act gtt atc act cca gat aca tgg aaa gat ggt gct agg aat acc aca Thr Val Ile Thr Pro Asp Thr Trp Lys Asp Gly Ala Arg Asn Thr Thr  15 20 25  gaa agt ggt gga aga aag ctg aat aaa aat aaa gct ttg act tca aaa	98 146
Met Val Cys Glu Lys Cys Glu Lys Lys Leu Gly  1 5 10  act gtt atc act cca gat aca tgg aaa gat ggt gct agg aat acc aca Thr Val Ile Thr Pro Asp Thr Trp Lys Asp Gly Ala Arg Asn Thr Thr  15 20 25  gaa agt ggt gga aga aag ctg aat aaa aat aaa gct ttg act tca aaa Glu Ser Gly Gly Arg Lys Leu Asn Lys Asn Lys Ala Leu Thr Ser Lys  30 35 40	146
Met Val Cys Glu Lys Cys Glu Lys Lys Leu Gly  1 5 10  act gtt atc act cca gat aca tgg aaa gat ggt gct agg aat acc aca Thr Val Ile Thr Pro Asp Thr Trp Lys Asp Gly Ala Arg Asn Thr Thr  15 20 25  gaa agt ggt gga aga aag ctg aat aaa aat aaa gct ttg act tca aaa Glu Ser Gly Gly Arg Lys Leu Asn Lys Asn Lys Ala Leu Thr Ser Lys  30 35 40  aaa gca aga ttt gat cca tat gga aag aat aag ttc tcc act tgt aga	
Met Val Cys Glu Lys Cys Glu Lys Lys Leu Gly  1 5 10  act gtt atc act cca gat aca tgg aaa gat ggt gct agg aat acc aca Thr Val Ile Thr Pro Asp Thr Trp Lys Asp Gly Ala Arg Asn Thr Thr  15 20 25  gaa agt ggt gga aga aag ctg aat aaa aat aaa gct ttg act tca aaa Glu Ser Gly Gly Arg Lys Leu Asn Lys Asn Lys Ala Leu Thr Ser Lys  30 35 40  aaa gca aga ttt gat cca tat gga aag aat aag ttc tcc act tgt aga Lys Ala Arg Phe Asp Pro Tyr Gly Lys Asn Lys Phe Ser Thr Cys Arg	146
Met Val Cys Glu Lys Cys Glu Lys Lys Leu Gly  1 5 10  act gtt atc act cca gat aca tgg aaa gat ggt gct agg aat acc aca Thr Val Ile Thr Pro Asp Thr Trp Lys Asp Gly Ala Arg Asn Thr Thr  15 20 25  gaa agt ggt gga aga aag ctg aat aaa aat aaa gct ttg act tca aaa Glu Ser Gly Gly Arg Lys Leu Asn Lys Asn Lys Ala Leu Thr Ser Lys  30 35 40  aaa gca aga ttt gat cca tat gga aag aat aag ttc tcc act tgt aga Lys Ala Arg Phe Asp Pro Tyr Gly Lys Asn Lys Phe Ser Thr Cys Arg  45 50 55	146
Met Val Cys Glu Lys Cys Glu Lys Lys Leu Gly  1 5 10  act gtt atc act cca gat aca tgg aaa gat ggt gct agg aat acc aca Thr Val Ile Thr Pro Asp Thr Trp Lys Asp Gly Ala Arg Asn Thr Thr  15 20 25  gaa agt ggt gga aga aag ctg aat aaa aat aaa gct ttg act tca aaa Glu Ser Gly Gly Arg Lys Leu Asn Lys Asn Lys Ala Leu Thr Ser Lys  30 35 40  aaa gca aga ttt gat cca tat gga aag aat aag ttc tcc act tgt aga Lys Ala Arg Phe Asp Pro Tyr Gly Lys Asn Lys Phe Ser Thr Cys Arg  45 50 55  att tgt aaa agt tct gtg cac caa cca ggt tct cat tac tgc cag ggc Ile Cys Lys Ser Ser Val His Gln Pro Gly Ser His Tyr Cys Gln Gly	146
Met Val Cys Glu Lys Cys Glu Lys Lys Leu Gly  1 5 10  act gtt atc act cca gat aca tgg aaa gat ggt gct agg aat acc aca Thr Val Ile Thr Pro Asp Thr Trp Lys Asp Gly Ala Arg Asn Thr Thr  15 20 25  gaa agt ggt gga aga aag ctg aat aaa aat aaa gct ttg act tca aaa Glu Ser Gly Gly Arg Lys Leu Asn Lys Asn Lys Ala Leu Thr Ser Lys  30 35 40  aaa gca aga ttt gat cca tat gga aag aat aag ttc tcc act tgt aga Lys Ala Arg Phe Asp Pro Tyr Gly Lys Asn Lys Phe Ser Thr Cys Arg  45 50 55  att tgt aaa agt tct gtg cac caa cca ggt tct cat tac tgc cag ggc	146

WO 99/31236 -81- PCT/IB98/02122 -

Cys Ala Tyr	Lys Lys G	ly Ile Cys	Ala Met Cys	Gly Lys Lys Val	. Leu								
gat acc aaa Asp Thr Lys	aac tac a			atgtatt gatggaat	340								
cagaataaca 1	aaatgatttt gttttaaga :tctaaacag	taattaagt: caacagtgt:	c ttgaattttc t taaaccagag a actagtcttt	aaggcataga tgto aatttgattg ttao tgttgtaaat ggtt	tcattt 460								
<210> 107 <211> 1678 <212> DNA <213> Homo sapiens													
<220> <221> CDS <222> 711438													
<222> 711438  <221> sig_peptide  <222> 71136  <223> Von Heijne matrix													
<pre>&lt;221&gt; polyA_signal &lt;222&gt; 16441649</pre>													
<221> polyA <222> 1665.													
<222> 1665.  <400> 107  ccgacttcca  cccgaccctc	.1678 gaggagcgct atg ttc ga	aa gag cct lu Glu Pro	gag tgg gcc	ggactcggcg acco gag gcg gcc cca Glu Ala Ala Pro	gta 109								
<222> 1665.  <400> 107 ccgacttcca cccgaccctc	.1678 gaggagcgct atg ttc ga Met Phe Gl -2 ctt ggg c	aa gag cct lu Glu Pro 20 ccc gta atc	gag tgg gcc Glu Trp Ala -15 tca cga cct	gag gcg gcc cca	gta 109 Val -10 c tcc 157								
<222> 1665.  <400> 107 ccgacttcca cccgaccctc  gcc gcg ggc Ala Ala Gly tcg caa aac Ser Gln Asn	gaggagcgct atg ttc ga Met Phe Gl -2 ctt ggg c Leu Gly P -5 aag ggc t	aa gag cct lu Glu Pro lo ccc gta atc Pro Val Ile ccc aag cgc Ser Lys Arg	gag tgg gcc Glu Trp Ala -15 tca cga cct Ser Arg Pro 1 cgc cag ctc	gag gcg gcc cca Glu Ala Ala Pro ccg cct gcg gco Pro Pro Ala Ala	gta 109 Val -10 c tcc 157 a Ser								
<pre>&lt;222&gt; 1665. &lt;400&gt; 107 ccgacttcca cccgaccctc  gcc gcg ggc Ala Ala Gly  tcg caa aac Ser Gln Asn</pre>	gaggagcgct atg ttc ga Met Phe Gl -2 ctt ggg c Leu Gly P -5 aag ggc t Lys Gly S	aa gag cct lu Glu Pro 20 ccc gta atc Pro Val Ile ccc aag cgc Ser Lys Arg 15 cct ctt tcc Ser Leu Ser	gag tgg gcc Glu Trp Ala -15 tca cga cct Ser Arg Pro 1 cgc cag ctc Arg Gln Leu cag cat ccc	gag gcg gcc cca Glu Ala Ala Pro ccg cct gcg gcc Pro Pro Ala Ala 5 ttg gcc aca tta Leu Ala Thr Lea	gta 109 Val -10 c tcc 157 a Ser a cgg 205 1 Arg c ata 253								
<pre>&lt;222&gt; 1665. &lt;400&gt; 107 ccgacttcca cccgaccctc  gcc gcg ggc Ala Ala Gly  tcg caa aac Ser Gln Asn</pre>	gaggagcgct atg ttc ga Met Phe Gl -2 ctt ggg c Leu Gly F -5 aag ggc t Lys Gly S gca gca t Ala Ala S gag gag g	aa gag cct lu Glu Pro 20 ccc gta atc 2ro Val Ile ccc aag cgc Ser Lys Arg 15 cct ctt tcc Ser Leu Ser 30 gag gag gag 3lu Glu Glu	gag tgg gcc Glu Trp Ala -15 tca cga cct Ser Arg Pro 1 cgc cag ctc Arg Gln Leu cag cat ccc Gln His Pro gaa agg aag Glu Arg Lys	gag gcg gcc cca Glu Ala Ala Pro  ccg cct gcg gcc Pro Pro Ala Ala  5  ttg gcc aca tta Leu Ala Thr Leu 20  ccc agc cta tgc	gta 109 Val -10 c tcc 157 a Ser a cgg 205 i Arg c ata 253 s Ile c aaa 301 b Lys								
<pre>&lt;222&gt; 1665. &lt;400&gt; 107 ccgacttcca cccgaccctc  gcc gcg ggc Ala Ala Gly tcg caa aac Ser Gln Asn</pre>	gaggagcgctatg ttc gamet Phe Gl ctt ggg cc Leu Gly P -5 aag ggc t Lys Gly S gca gca t Ala Ala S gag gag g Glu Glu G ttt gcc a Phe Ala S	aa gag cct lu Glu Pro lo ccc gta atc Pro Val Ile ccc aag cgc Ser Lys Arg 15 cct ctt tcc Ser Leu Ser 30 gag gag gag Glu Glu Glu 45 agt gcc tct	gag tgg gcc Glu Trp Ala -15 tca cga cct Ser Arg Pro 1 cgc cag ctc Arg Gln Leu cag cat ccc Gln His Pro gaa agg aag Glu Arg Lys 50 gct gaa gta Ala Glu Val	gag gcg gcc cca Glu Ala Ala Pro  ccg cct gcg gcc Pro Pro Ala Ala  5  ttg gcc aca tta Leu Ala Thr Leu 20  ccc agc cta tgc Pro Ser Leu Cys 35  aag aaa tgc ccc Lys Lys Cys Pro  ggg aag aaa ggg Gly Lys Lys Gl	gta 109 Val -10 ctcc 157 a Ser a cgg 205 n Arg cata 253 s Ile caaa 301 b Lys 55 g aag 349								
<pre>&lt;222&gt; 1665. &lt;400&gt; 107 ccgacttcca cccgaccctc  gcc gcg ggc Ala Ala Gly tcg caa aac Ser Gln Asn</pre>	gaggagcgctatg ttc gamet Phe Gl ctt ggg cc Leu Gly P aag ggc t Lys Gly S gca gca t Ala Ala S gag gag g Glu Glu G ttt gcc a Phe Ala S Gln Lys G	aa gag cct lu Glu Pro lo ccc gta atc Pro Val Ile ccc aag cgc Ser Lys Arg 15 cct ctt tcc Ser Leu Ser 30 gag gag gag Glu Glu Glu 45 agt gcc tct Ser Ala Ser	gag tgg gcc Glu Trp Ala -15 tca cga cct Ser Arg Pro 1 cgc cag ctc Arg Gln Leu cag cat ccc Gln His Pro gaa agg aag Glu Arg Lys 50 gct gaa gta Ala Glu Val 65 cct tgc agt	gag gcg gcc cca Glu Ala Ala Pro  ccg cct gcg gcc Pro Pro Ala Ala  5  ttg gcc aca tta Leu Ala Thr Leu 20  ccc agc cta tgc Pro Ser Leu Cys 35  aag aaa tgc ccc Lys Lys Cys Pro  ggg aag aaa ggg	gta 109 Val -10 c tcc 157 a Ser a cgg 205 i Arg c ata 253 s Ile c aaa 301 b Lys 55 g aag 349 y Lys a gaa 397								
<pre>&lt;222&gt; 1665. &lt;400&gt; 107 ccgacttcca cccgaccctc  gcc gcg ggc Ala Ala Gly tcg caa aac Ser Gln Asn</pre>	gaggagcgctatg ttc gamet Phe Gl ctt ggg cc Leu Gly F aag ggc t Lys Gly S gca gca t Ala Ala S gag gag gag Glu Glu G ttt gcc a Phe Ala S Caa aaa c Gln Lys G aag aag	aa gag cct lu Glu Pro lu Glu Pro lo ccc gta atc lu Cro Val Ile lcc aag cgc Ser Lys Arg ls lct ctt tcc Ser Leu Ser 30 gag gag gag Glu Glu Glu ls lagt gcc tct Ser Ala Ser lag ggc cca Gln Gly Pro laaa tgc cac	gag tgg gcc Glu Trp Ala  -15  tca cga cct Ser Arg Pro  1  cgc cag ctc Arg Gln Leu  cag cat ccc Gln His Pro  gaa agg aag Glu Arg Lys 50 gct gaa gta Ala Glu Val 65 cct tgc agt Pro Cys Ser 80 aaa cag gct	gag gcg gcc cca Glu Ala Ala Pro  ccg cct gcg gcc Pro Pro Ala Ala  5  ttg gcc aca tta Leu Ala Thr Leu 20  ccc agc cta tgc Pro Ser Leu Cys 35  aag aaa tgc ccc Lys Lys Cys Pro  ggg aag aaa ggg Gly Lys Lys Gly  gac tct gag gaa Asp Ser Glu Glo	gta 109 Val -10 ctcc 157 a Ser 205 a cgg 205 a Arg 253 a le 253 a le 253 a le 253 a aaa 301 bys 55 a aag 349 y Lys 29 a gaa 397 a Glu 245								

Ile														ccc Pro		541
					act					cca				cct Pro	999	589
	-	_	_	140					145					150		637
			Pro					Thr		_	_	_	Gln	tgg Trp		637
aac	caa	caa	155 aag	aat	aaσ	aga	aga	160 tat	aaq	aac	aaq	ttt	165 caq	cca	cct	685
														Pro		
														aca		733
	185		_			190					195			Thr		703
														Gly Gly		781
200	JC1	110	vai	110	205	****	nop	501		210	*****	**** 5		0-7	215	
														cgc		829
	_		_	220					225					Arg 230		
														cgt Arg		877
			235					240					245			025
														ttc Phe		925
rnc	GIII	250	App	FIO	GIU	AIG	255	Dea	200	- / -		260	<b>0</b> 17		01	
														gcc		973
	265					270					275			Ala		
														ggc		1021
280					285					290				Gly	295	1060
ggg	gat	Cys	cgc Ara	ttg	gct	Ser	agt Ser	atc	cgg	Asn	Pro	grg Val	His	tgc Cys	Phe	1069
				300					305					310		1117
														gcc Ala		111,
_			315		_			320					325			
														ctt		1165
		330					335					340		Leu		
														aga		1213
пеп	345	GIÀ	1111	ASII	116	350	Asp	PIIC	пеп	Giu	355	AIA	ASII	Arg	Vai	
														cgc		1261
	Lys	Pro	Gly	Gly		Leu	Lys	Val	Ala		Val	Ser	Ser	Arg		
360	ast	~++		200	365	cta	666	act	ata	370	220	cta	aac	ttc	375	1309
														Phe		1303
	-		_	380					385		•			390 gat		1357
														Asp		
			395	_				400					405			
caa	aag	act	999	CCC	cct	ctg	gta	999	ccc	aag	gct	cag	ctt	tca	ggc	1405
		410	_				415					420		Ser		
			_								tga	cctc	tgg	atct	tccttg	1458
neu	425	ьеи	GIN	Pro	Cys	430	ıyr	гλг	Arg	arg						
	9999					ctcc									cctggc	1518
															tctggc	1578

<210> 108 <211> 494 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 25..318 <221> sig_peptide <222> 25..75 <223> Von Heijne matrix score 7.4 seq FFLLLQFFLRIDG/VL <221> polyA_signal <222> 452..457 <221> polyA_site <222> 482..494 <400> 108 aggotgagtg tgaagattag agta atg cot tot ago ttt tto otg otg ttg 51 Met Pro Ser Ser Phe Phe Leu Leu -15 99 cag ttt ttc ttg aga att gat ggg gtg ctt atc aga atg aat gac acg Gln Phe Phe Leu Arg Ile Asp Gly Val Leu Ile Arg Met Asn Asp Thr 1 -5 aga ctt tac cat gag gct gac aag acc tac atg tta cga gaa tat acg 147 Arg Leu Tyr His Glu Ala Asp Lys Thr Tyr Met Leu Arg Glu Tyr Thr 10 15 tca cga gaa agc aaa att tct agt ttg atg cat gtt cca cct tcc ctc 195 Ser Arg Glu Ser Lys Ile Ser Ser Leu Met His Val Pro Pro Ser Leu 30 35 243 ttc acg gaa cct aat gaa ata tcc cag tat tta cca ata aag gaa gca Phe Thr Glu Pro Asn Glu Ile Ser Gln Tyr Leu Pro Ile Lys Glu Ala 50 45 gtt tgt gag aag cta ata ttt cca gaa aga att gat cct aac cca gca 291 Val Cys Glu Lys Leu Ile Phe Pro Glu Arg Ile Asp Pro Asn Pro Ala 65 gac tca caa aaa agt aca caa gtg gaa taaaatgtga tacaacatat 338 Asp Ser Gln Lys Ser Thr Gln Val Glu 80 75 398 actcactatg gaatctgact ggacaccttg gctatttgta aggggttatt tttattatga 458 gaattaattg ccttgtttat gtacagattt tctgtagcct taaaggaaaa aaaaataaag 494 atcgttacag gcaggtttca ctcaaaaaaa aaaaac

<210> 109 <211> 714 <212> DNA <213> Homo sapiens <220>

<221> CDS <222> 84..332

<221> sig_peptide <222> 84170 <223> Von Heijne matrix	
<221> polyA_site <222> 702714	
<400> 109 cctatctctt ctgctggctg ggctcaatgc cgcgggtgag cgttcggccg aggctgctcc tacccttgag tgatgtgcct tga atg acg ctg ctt tca ttc gct gct ttc acg Met Thr Leu Leu Ser Phe Ala Ala Phe Thr -25 -20	60 113
gct gct ttc tcc gtc ctc ccc tgt tac tac ctt ggg ctg ttt cag cgg Ala Ala Phe Ser Val Leu Pro Cys Tyr Tyr Leu Gly Leu Phe Gln Arg -15 -10 -5	161
gcg ctc gcg tcg gtc ttc gac cca ctt tgc gtt tgt tca cgt gtg ctc Ala Leu Ala Ser Val Phe Asp Pro Leu Cys Val Cys Ser Arg Val Leu  1 5 10	209
ccg aca cct gta tgt acc ttg gtc gca aca caa gcc gaa aaa ata tta Pro Thr Pro Val Cys Thr Leu Val Ala Thr Gln Ala Glu Lys Ile Leu 15 20 25	257
gag aat ggg ccc tgt cca acc aag gag gcg gcc cag ctt gtc ggg aag Glu Asn Gly Pro Cys Pro Thr Lys Glu Ala Ala Gln Leu Val Gly Lys 30 35 40 45	305
ggc agc gtt tcc gcc aga aat gct tcg tgaaaggcac ttgagggacc Gly Ser Val Ser Ala Arg Asn Ala Ser 50	352
ttagcagcat cctcaacagg ccttgtaggg aatgccagaa gaagcagtcc ttggccgggc ggggtggctc atgcctgtgg tcccagcact ttgggaggcc ggggcgggcg gatcacctga ggtcgggagg tccagaccag cctgaccgac atggagaaac cccgtctnta ctagaaatac aaaactagcc gggtgtggtg gcgcatgcct gtagtcccag ctactcggga gggtgaggca ggagacgttc ttgaacccgg gaggcggagt ttgtggtgag ccgagatcgc gccattgcac tccagcctgg gcatgccaag agcgaaactc cgtctcaaaa aaaaaaaaaa	412 472 532 592 652 712 714
<210> 110 <211> 805 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 32718	
<221> sig_peptide <222> 32100 <223> Von Heijne matrix	
<221> polyA_signal	

<400> 110

<221> polyA_site <222> 793..805

cctctttcag cccgggatcg ccccagcagg g atg ggc gac aag atc tgg ctg  Met Gly Asp Lys Ile Trp Leu -20	<b>52</b>
ccc ttc ccc gtg ctc ctt ctg gcc gct ctg cct ccg gtg ctg c	100
ggg gcg gcc ggc ttc aca cct tcc ctc gat agc gac ttc acc ttt acc Gly Ala Ala Gly Phe Thr Pro Ser Leu Asp Ser Asp Phe Thr Phe Thr	148
ctt ccc gcc ggc cag aag gag tgc ttc tac cag ccc atg ccc ctg aag Leu Pro Ala Gly Gln Lys Glu Cys Phe Tyr Gln Pro Met Pro Leu Lys 20 25 30	196
gcc tcg ctg gag atc gag tac caa gtt tta gat gga gca gga tta gat Ala Ser Leu Glu Ile Glu Tyr Gln Val Leu Asp Gly Ala Gly Leu Asp	244
att gat ttc cat ctt gcc tct cca gaa ggc aaa acc tta gtt ttt gaa Ile Asp Phe His Leu Ala Ser Pro Glu Gly Lys Thr Leu Val Phe Glu	292
caa aga aaa tca gat gga gtt cac act gta gag act gaa gtt ggt gat Gln Arg Lys Ser Asp Gly Val His Thr Val Glu Thr Glu Val Gly Asp	340
tac atg ttc tgc ttt gac aat aca ttc agc acc att tct gag aag gtg Tyr Met Phe Cys Phe Asp Asn Thr Phe Ser Thr Ile Ser Glu Lys Val	388
att ttc ttt gaa tta atc ctg gat aat atg gga gaa cag gca caa gaa Ile Phe Phe Glu Leu Ile Leu Asp Asn Met Gly Glu Gln Ala Gln Glu	436
caa gaa gat tgg aag aaa tat att act ggc aca gat ata ttg gat atg Gln Glu Asp Trp Lys Lys Tyr Ile Thr Gly Thr Asp Ile Leu Asp Met	484
aaa ctg gaa gac atc ctg gaa tcc atc agc agc atc aag tcc aga cta Lys Leu Glu Asp Ile Leu Glu Ser Ile Ser Ser Ile Lys Ser Arg Leu	532
agc aaa agt ggg cac ata caa att ctg ctt aga gca ttt gaa gct cgt Ser Lys Ser Gly His Ile Gln Ile Leu Leu Arg Ala Phe Glu Ala Arg	580
gat cga aac ata caa gaa agc aac ttt gat aga gtc aat ttc tgg tct Asp Arg Asn Ile Gln Glu Ser Asn Phe Asp Arg Val Asn Phe Trp Ser  165 170 175	628
atg gtt aat tta gtg gtc atg gtg gtg gtg tca gcc att caa gtt tat  Met Val Asn Leu Val Val Met Val Val Val Ser Ala Ile Gln Val Tyr  180 185 190	676
atg ctg aag agt ctg ttt gaa gat aag agg aaa agt aga act Met Leu Lys Ser Leu Phe Glu Asp Lys Arg Lys Ser Arg Thr	718
195 200 205 taaaactcca aactagagta cgtaacattg aaaaatgagg cataaaaatg caataaactg ttacagtcaa gaccaaaaaa aaaaaaa	778 805

<210> 111

<211> 787

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 26..481

<221> sig_peptide <222> 26..88

<223> Von Heijne matrix

score 4.4 seq AVASSFFCASLFS/AV

<221> polyA_signal
<222> 755..760

<221> polyA_site
<222> 775..787

<400> 111 gacagectgg ataaaggete acttg atg get cag ttg gga gea gtt gtg get Met Ala Gln Leu Gly Ala Val Val Ala -20 gtg gct tcc agt ttc ttt tgt gca tct ctc ttc tca gct gtg cac aag 100 Val Ala Ser Ser Phe Phe Cys Ala Ser Leu Phe Ser Ala Val His Lys -5 ata gaa gag gga cat att ggg gta tat tac aga ggc ggt gcc ctg ctg 148 Ile Glu Glu Gly His Ile Gly Val Tyr Tyr Arg Gly Gly Ala Leu Leu 10 15 act tog acc age gge cot ggt tto cat oto atg oto cot tto atc aca 196 Thr Ser Thr Ser Gly Pro Gly Phe His Leu Met Leu Pro Phe Ile Thr 25 30 244 tca tat aag tct gtg cag acc aca ctc cag aca gat gag gtg aag aat Ser Tyr Lys Ser Val Gln Thr Thr Leu Gln Thr Asp Glu Val Lys Asn 45 gta cct tgt ggg act agt ggt gtg atg atc tac ttt gac aga att 292 Val Pro Cys Gly Thr Ser Gly Gly Val Met Ile Tyr Phe Asp Arg Ile 55 60 gaa gtg gtg aac ttc ctg gtc ccg aac gca gtg cat gat ata gtg aag 340 Glu Val Val Asn Phe Leu Val Pro Asn Ala Val His Asp Ile Val Lys 75 aac tat act gct gac tat gac aag gcc ctc atc ttc aac aag atc cac 388 Asn Tyr Thr Ala Asp Tyr Asp Lys Ala Leu Ile Phe Asn Lys Ile His 90 95 cac gaa ctg aac cag ttc tgc agt gtg cac acg ctt caa gag gtc tac 436 His Glu Leu Asn Gln Phe Cys Ser Val His Thr Leu Gln Glu Val Tyr 105 110 att gag ctg ttt gga ctg gaa aat gat ttt tcc cag gaa tct tca 481 Ile Glu Leu Phe Gly Leu Glu Asn Asp Phe Ser Gln Glu Ser Ser 120 125 taaaagggac cctgagcaag aacatttttc atagcagaca ggaggactca tccacatcgc 541 cagcaatcat aattaagcaa accgcctttt gcaccattta agatttagga aatcatccaa 601 attactttta atgtttctgc agtagaaaat gaatctaaat tcattttata gggtttgtag 661 tettttatet gttttggatt caetgtgett ttaagaaaaa gttggtaaat ttgeegttga 721 tttttctttt taacctcaaa ctaatagaat tttataaaat attaattttc tccaaaaaaa 781 aaaaaa 787

<210> 112 <211> 569 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 26..562 <221> sig_peptide <222> 26..187 <223> Von Heijne matrix score 4.1

## seq AVVAAAARTGSEA/RV

<400> 112			•
agaaacaggt ctgggctaca aaagt	atg gcc gct to	ct gag gcg gcg	gtg gtg 52
	Met Ala Ala S	er Glu Ala Ala	Val Val
		-50	
tot tog cog tot ttg aaa aca	gac aca tcc c	ct gtc ctt gaa	act gca 100
Ser Ser Pro Ser Leu Lys Thr			
-45 -40		35	-30
gga acg gtc gca gca atg gct			
Gly Thr Val Ala Ala Met Ala		er Ala Arg Ala	
-25	-20		-15 atc tcc 196
gcg gtg gtt gcg gcc gcg gcc			3
Ala Val Val Ala Ala Ala Ala	-5	er Giu Aia Aig	var ser
-10	=	ta san aan ata	ttc qcc 244
aag gcc gct ttg gct acc aag Lys Ala Ala Leu Ala Thr Lys			3
5 10	neu neu ser n	15	1110 1114
gtg cac aag ccc aaa ggg ccc	act toa god g		caa tta 292
Val His Lys Pro Lys Gly Pro	Thr Ser Ala G	lu Leu Leu Asn	- 33
20 25	3		35
aag gag aag ctg ctg gca gaa	get gga atg c	ct tct cca gaa	tgg acc 340
Lys Glu Lys Leu Leu Ala Glu			
40	45		50
aag agg aaa aag cag act ttg	aaa att ggg c	at gga ggg act	cta gac 388
Lys Arg Lys Lys Gln Thr Leu			
55	60	65	
age gea gee ega gga gtt etg			
Ser Ala Ala Arg Gly Val Leu	Val Val Gly I		Thr Lys
	75	80	
atg ttg acc agt atg ttg tca			
Met Leu Thr Ser Met Leu Ser	Gly Ser Lys A		Ile Gly
85 90		95	
gaa ctg ggg aaa gct act gat			
Glu Leu Gly Lys Ala Thr Asp	-		
100 105		10	115 569
gaa gaa aaa cct tac ggt atg		aagtag	563
Glu Glu Lys Pro Tyr Gly Met			
120	125		

<210> 113 <211> 893 <212> DNA

<213> Homo sapiens

<220>

<221> CDS <222> 4..810

<221> sig_peptide <222> 4..279

<223> Von Heijne matrix score 6.8 seq AVMLYTWRSCSRA/IP

<221> polyA_signal

<222> 858..863

<221> polyA_site <222> 881..893

	> 11	.s ato	acg	cac	atc	acc	cta	gaa	gat	acc	cta	tcc	aac	qtq	gac	48
UU	ary Me+	Tle	Thr	Hie	Val	Thr	Len	G] u	Asp	Ala	Leu	Ser	Asn	Val	Asp	
	1-1C C	116	-90	****		****		-85	<u>-</u> -				-80		•	
ta	ctt	qaa	qaq	ctt	ccc	ctc	ccc	gac	cag	cag	cca	tgc	atc	gag	cct	96
eu	Leu	Glu	Glu	Leu	Pro	Leu	Pro	Āsp	Gln	Gln	Pro	Cys	Ile	Glu	Pro	
		-75					-70					-65				
ca	cct	tcc	tcc	atc	atg	tac	cag	gct	aac	ttt	gac	aca	aac	ttt	gag	144
ro	Pro	Ser	Ser	Ile	Met	Tyr	Gln	Ala	Asn	Phe	Asp	Thr	Asn	Phe	Glu	
	-60					-55					-50					
gac	agg	aat	gca	ttt	gtc	acg	ggc	att	gca	agg	tac	att	gag	cag	gct	192
sp	Arg	Asn	Ala	Phe	Val	Thr	Gly	Ile	Ala		Tyr	Ile	Glu	Gln	Ala	
45					-40					-35					-30	240
ıca	gtc	cac	tcc	agc	atg	aat	gag	atg	ctg	gag	gaa	gga	cat	gag	tat	240
hr,	Val	His	Ser		Met	Asn	Glu	Met		Glu	GIU	GIA	HIS		туг	
				-25					-20			~~~	- <del></del>	-15	cac	288
gcg	gtc	atg	ctg	tac	acc	tgg	cgc	agc	cgt	CCC	caa	900	TIA	Dro	Gln	200
\la	Val	Met	Leu	Tyr	Thr	Trp	Arg		cys	ser	Arg	ATA	TIE	P10	GIII	
		<b>-</b>	-10			~~~	226	-5	at a	aea	ato	tat	dad.	aac	aca	336
gcg	aaa	cgc	aac Asn	gag	cag	Dro	Acr	Δ×α	yea Val	Glu	Tla	Tur	Glu	Lvs	Thr	550
/al	Lys 5	cys	ASI	GIU	CTII	10	TOIL	T.A	Val	UIU	15	-1-		-,5	- <del></del>	
<b>1</b> + 2		ata	ctg	nen	cca		atc	acc	aao	ctc		aaσ	ttc	ata	tat	384
jea Isl	Glu	Val	Leu	Glu	Pro	Glu	Val	Thr	Lvs	Leu	Met	Lvs	Phe	Met	Tyr	
20 20	JIU	AGI	u.		25	-Lu			_, _	30		_, _			35	
	caa	cac	aag	qcc		gag	caa	ttc	tqc		gag	gtg	aag	cgg	ctg	432
Phe	Gln	Ara	Lys	Ala	Ile	Glu	Arq	Phe	Cys	Ser	Glu	Val	Lys	Arg	Leu	
		3	_, _	40			- 3		45				-	50		
tac	cat	qcc	gag	cgc	agg	aaq	gac	ttt	gtc	tct	gag	gcc	tac	ctc	ctg	480
Cys	His	Ala	Glu	Ara	Arg	Lys	Asp	Phe	Val	Ser	Glu	Ala	Tyr	Leu	Leu	
-			55					60					65			
acc	ctt	ggc	aag	ttc	atc	aac	atg	ttt	gct	gtc	ctg	gat	gag	cta	aag	528
Thr	Leu	Gly	Lys	Phe	Ile	Asn	Met	Phe	Ala	Val	Leu	Asp	Glu	Leu	Lys	
		70					75					80				
aac	atg	aag	tgc	agc	gtc	aag	aat	gac	cac	tcc	gcc	tac	aag	agg	gca	576
Asn		Lys	Cys	Ser	Val		Asn	Asp	His	Ser	Ala	Tyr	Lys	Arg	Ala	
	85					90					95				<b>+</b> ~ ~	624
gca	cag	ttc	ctg	cgg	aag	atg	gca	gat	ccc	cag	CCL	atc	cag	gag	ccy	024
	Gln	Phe	Leu	Arg		Met	Ala	Asp	Pro		ser	тте	GIN	GIU	115	
100			<b>.</b>		105	<b></b> -	~	225	a	110	-~~	a+~	200	cad		672
cag	aac	CLL	tcc	atg	CCC	ctg	gcc	aac Ac-	uic	Adc	499	Tle	Thr	Gln	Cvs	0,2
GID	Asn	гел	Ser		rne	ьeu					Arg				O, D	
- <del>-</del> -	000		caa	120	~~~	~+~										720
Len	ui-	cag	Gln	Len	gaa	y.9	Tle	Dro	83.4	Tur	Glii	Glu	Len	Leu	Ala	, -
neu	UTR	GIII	135	Ten	GIU	val	116	140		- 7 -	-Lu		145			
~~~	2++	a+c	aac	ato	tat	ata	gat			gag	aac	aao		tac	ctq	768
yac Nen	Tle	77=1	Asn	Tle	Cve	ya]	Asn	Tvr	Tvr	Glu	Asn	Lvs	Met	Tyr	Leu	
vaħ	116	150		116	Cys	- 41	155		- 1 -			160		- 2		
	CCC			222	cat	ato			aao	qta	aaa		ccc			810
act		معد	203	Tara	Uic	Met	Leu	Leu	Lvs	Val	Lvs	Leu	Pro			
act Thr	Pro	Ser	(711	LVS	п : -											
act Thr	Pro 165		Glu	гÀг	пть	170			•		175					

<210> 114 <211> 1475 <212> DNA

<213> Homo sapiens

<220> <221> CDS <222> 55..459 <221> sig_peptide <222> 55..120 <223> Von Heijne matrix score 7.2 seq GLWLALVDGLVRS/SP <221> polyA_signal <222> 1444..1449 <221> polyA_site <222> 1462..1475 <400> 114 57 cagtteegea getacgtgtg ggaccegetg etgateetgt egeagategt cete atg Met 105 Gln Thr Val Tyr Tyr Gly Ser Leu Gly Leu Trp Leu Ala Leu Val Asp -15 -10 153 ggg cta gtg cga agc agc ccc tcg ctg gac cag atg ttc gac gcc gag Gly Leu Val Arg Ser Ser Pro Ser Leu Asp Gln Met Phe Asp Ala Glu 201 atc ctg ggc ttt tcc acc cct cca ggc cgg ctc tcc atg atg tcc ttc Ile Leu Gly Phe Ser Thr Pro Pro Gly Arg Leu Ser Met Met Ser Phe 20 atc ttc aac gcc ctc acc tgt gcc ctg ggc ttg ctg tac ttc atc cgg 249 Ile Phe Asn Ala Leu Thr Cys Ala Leu Gly Leu Leu Tyr Phe Ile Arg 40 35 297 cga gga aag cag tgt ctg gat ttc act gtc act gtc cat ttc ttt cac Arg Gly Lys Gln Cys Leu Asp Phe Thr Val Thr Val His Phe Phe His 50 ctc ctg ggc tgc tgg ttc tac agc tcc cgt ttc ccc tcg gcg ctg acc 345 Leu Leu Gly Cys Trp Phe Tyr Ser Ser Arg Phe Pro Ser Ala Leu Thr 70 60 65 393 tgg tgg ctg gtc caa gcc gtg tgc att gca ctc atg gct gtc atc ggg Trp Trp Leu Val Gln Ala Val Cys Ile Ala Leu Met Ala Val Ile Gly 85 gag tac ctg tgc atg cgg acg gag ctc aag gag ata ccc ctc aac tca Glu Tyr Leu Cys Met Arg Thr Glu Leu Lys Glu Ile Pro Leu Asn Ser 100 489 gcc cct aaa tcc aat gtc tagaatcagg ccctttggac atcccgctga Ala Pro Lys Ser Asn Val cacttgggcc ccttaacacc ttgggctgct cagaccctcc agatgaggtc cagcccagat 549 ctgagaggaa ccctggaaat gtgaagtctc tgttggtgtg ggagagatag tgagggcctg tcaaagaagg caggtagcag tcagcatgac agctgcaaga atgacctctg tctgttgaag 669 ccttggtatc tgagaggtca ggaaggggac ctctttgagg gtaataacat aattggaacc 729 789 atgccactct tgagccacaa tacctgtcac cagcctgttg ttttaagaga gaaaaaaaat caaggatatc tgattggagc aaaccacttc tttagtcatc tgtcttacct ccctgggaca 849 909 gctgttacct ttgcagtgtt gccgaatcac agcagttacc tttgcaatgt tgccgaatca 969 cagcagttct gttggagaaa cgcttggttt ccggatccag agccacagaa agaaatgtag 1029 gtgtgaagta ttaggctgct gtcagggaga ggatggcaga tggaggcatc aagcacaagg aaaatgcaca acctgtgccc tgttatacac acgttcatgt gcgcccaaga acctatgact 1089 ttcttccagt tccttctacc aggtccccat cctgctgcca gctctcaaca tagcaggcca 1149 1209 taggacccag agaagaatcc cagtgttgct caaagtctga ccatcataaa gacactgcct gtettetagg aatgaccagg cacccagete ceactggact ceaattttt tteetgeett 1269 atttagaatt ctttggcggg aagggtatga tgggttccca gagacaagaa gcccaacctt 1329 1389 ctggcctggg ctgtgctgat agtgctgagg gagataggaa tttgctgcta agatttttct

1449

ttggggtgga gtttcctctg tgaggggctt gcagctatcc tccctgtgta tacaaataca gtattttcca tgaaaaaaaa aaaaaa <210> 115 <211> 321 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 48..248 <221> sig_peptide <222> 48..161 <223> Von Heijne matrix score 6.3 seq LVFALVTAVCCLA/DG <221> polyA signal <222> 283..288 <221> polyA_site <222> 308..321 <400> 115 gctgagaaga gttgagggaa agtgctgctg ctgggtctgc agacgcg atg aat aac 56 gtg cag ccg aaa ata aaa cat cgc ccc ttc tgc ttc agt gtg aaa ggc 104 Val Gln Pro Lys Ile Lys His Arg Pro Phe Cys Phe Ser Val Lys Gly -25 -35 -30 cac gtg aag atg ctg cgg ctg gtg ttt gca ctt gtg aca gca gta tgc 152 His Val Lys Met Leu Arg Leu Val Phe Ala Leu Val Thr Ala Val Cys -10 -15 200 tgt ctt gcc gac ggg gcc ctt att tac cgg aag ctt ctg ttc aat ccc Cys Leu Ala Asp Gly Ala Leu Ile Tyr Arg Lys Leu Leu Phe Asn Pro 5 248 aac ggt cct tac cag aaa aag cct gtg cat gaa aaa aaa gaa gtt ttg Asn Gly Pro Tyr Gln Lys Lys Pro Val His Glu Lys Lys Glu Val Leu 20 308 tgattttata ttactttta gtttgatact aagtattaaa catatttctg tattcttcca 321 aaaaaaaaa aaa <210> 116 <211> 450 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 25..399 <221> sig_peptide <222> 25..186 <223> Von Heijne matrix score 3.5

<400> 116

seq SILAQVLDQSARA/RL

ctgctccagc gctgacgccg agcc atg gcg gac gag gag ctt gag gcg ctg Met Ala Asp Glu Glu Leu Glu Ala Leu -50	51
agg aga cag agg ctg gcc gag ctg cag gcc aaa cac ggg gat cct ggt Arg Arg Gln Arg Leu Ala Glu Leu Gln Ala Lys His Gly Asp Pro Gly -45 -40 -35 -30	99
gat gcg gcc caa cag gaa gca aag cac agg gaa gca gaa atg aga aac Asp Ala Ala Gln Gln Glu Ala Lys His Arg Glu Ala Glu Met Arg Asn -25 -20 -15	147
agt atc tta gcc caa gtt ctg gat cag tcg gcc cgg gcc agg tta agt Ser Ile Leu Ala Gln Val Leu Asp Gln Ser Ala Arg Ala Arg Leu Ser -10 -5 1	195
aac tta gca ctt gta aag cct gaa aaa act aaa gca gta gag aat tac Asn Leu Ala Leu Val Lys Pro Glu Lys Thr Lys Ala Val Glu Asn Tyr 5 10 15	243
ctt ata cag atg gca aga tat gga caa cta agt gag aag gta tca gaa Leu Ile Gln Met Ala Arg Tyr Gly Gln Leu Ser Glu Lys Val Ser Glu	291
caa ggt tta ata gaa atc ctt aaa aaa gta agc caa caa aca gaa aag Gln Gly Leu Ile Glu Ile Leu Lys Lys Val Ser Gln Gln Thr Glu Lys	339
aca aca aca gtg aaa ttc aac aga aga aaa gta atg gac tct gat gaa Thr Thr Thr Val Lys Phe Asn Arg Arg Lys Val Met Asp Ser Asp Glu	387
55 60 65 gat gac gat tat tgaactacaa gtgctcacag actagaactt aacggaacaa Asp Asp Asp Tyr	439
70 gtctaggaca g	450
<pre><210> 117 <211> 1173 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 101137 <221> sig_peptide <222> 1072</pre>	
gagctgctt atg gga cac cgc ttc ctg cgc ggc ctc tta acg ctg ctg Met Gly His Arg Phe Leu Arg Gly Leu Leu Thr Leu Leu Leu -20 -15 -10	51
ccg ccg cca ccc ctg tat acc cgg cac cgc atg ctc ggt cca gag tcc Pro Pro Pro Pro Leu Tyr Thr Arg His Arg Met Leu Gly Pro Glu Ser -5 1 5	99
gtc ccg ccc cca aaa cga tcc cgc agc aaa ctc atg gca ccg ccc cga Val Pro Pro Pro Lys Arg Ser Arg Ser Lys Leu Met Ala Pro Pro Arg 10 15 20 25	147

•	•															
atc Ile	gly aaa	acg Thr	cac His	Asn	ggc Gly	acc Thr	ttc Phe	cac His	tgc Cys 35	gac Asp	gag Glu	gca Ala	ctg Leu	gca Ala 40	tgc Cys	195
gca Ala	ctg Leu	ctt Leu	Arg	30 ctc Leu	ctg Leu	ccg Pro	gag Glu	Tyr	cgg	gat Asp	gca Ala	gag Glu	Ile	gtg	cgg Arg	243
acc Thr	cgg Arg	gat Asp	45 CCC Pro	gaa Glu	aaa Lys	ctc Leu	Ala	50 tcc Ser	tgt Cys	gac Asp	atc Ile	gtg Val	55 gtg Val	gac Asp	gtg Val	291
ggg Gly	ggc Gly	60 gag Glu	tac Tyr	gac Asp	cct Pro	Arg	65 aga Arg	cac His	cga Arg	tat Tyr	Asp	70 cat His	cac His	cag Gln	agg Arg	339
tct Ser	75 ttc Phe	aca Thr	gag Glu	acc Thr	atg Met	80 agc Ser	tcc Ser	ctg Leu	tcc Ser	Pro	85 999 85	agg Arg	ccg Pro	tgg Trp	Gln	387
90 acc Thr	aag Lys	ctg Leu	agc Ser	agt Ser	95 gcg Ala	gga Gly	ctc Leu	atc Ile	Tyr	100 ctg Leu	cac His	ttc Phe	Gly 333	His	105 aag Lys	435
ctg Leu	ctg Leu	gcc Ala	cag Gln	110 ttg Leu	ctg Leu	ggc Gly	act Thr	agt Ser	115 gaa Glu	gag Glu	gac Asp	agc Ser	atg Met	120 gtg Val	ggc Gly	483
acc Thr	ctc Leu	tat Tyr	125 gac Asp	aag Lys	atg Met	tat Tyr	gag Glu	130 aac Asn	ttt Phe	gtg Val	gag Glu	gag Glu	135 gtg Val	gat Asp	gct Ala	531
gtg Val	gac Asp	140 aat Asn	ggg	atc Ile	tcc Ser	cag Gln	145 tgg Trp	gca Ala	gag Glu	ggg ggg	gag Glu	150 cct Pro	cga Arg	tat Tyr	gca Ala	579
ctq	155 acc	act	acc	ctg	agt	160 gca	cga	gtt	gct	cga	165 ctt	aat Asn	cct	acc	tgg	627
170 aac	cac	ccc	gac	caa	175 gac	act	gag	gca	999	180 ttc	aag	cgt Arg	gca	atg	185 gat	675
cta	att	caa	gag	190 gag	ttt	ctg	cag	aga	195 tta	gat	ttc	tac Tyr	caa	200 cac	agc	723
taa	cta	cca	205 qcc	cqq	qcc	ttg	gtg	210 gaa	gag	gcc	ctt	gcc	215 cag	cga	ttc	771
cag	ata	220 gac	cca	aqt	qqa	gag	225 att	gtg	gaa	ctg	gcg	Ala 230 aaa	ggt	gca	tgt	819
Gln	Val 235	Asp	Pro	Ser	Gly	Glu 240	Ile	Val	Glu	Leu	Ala 245	Lys	Gly	Ala	Cys	867
Pro 250	Trp	Lys	Glu	His	Leu 255	Tyr	His	Leu	Glu	Ser 260	Gly	Leu	Ser	Pro	Pro 265 cga	915
Val	Āla	Ile	Phe	Phe 270	Val	Ile	Tyr	Thr	Asp 275	Gln	Ala	Gly	Gln	Trp 280	Arg	963
Ile	Gln	Сув	Val 285	Pro	Lys	Glu	Pro	His 290	Ser	Phe	Gln	Ser	Arg 295	Leu	Pro	1011
Leu	Pro	Glu 300	Pro	Trp	Arg	Gly	Leu 305	ı Arg	Asp	Glu	Ala	Leu 310	Asp	Gln	gtc Val	
Ser	Gly 315	Ile	Pro	Gly	r Cys	320	Phe	e Val	His	: Ala	Sex 325	Gly	Phe	Ile	ggc	1059
ggt Gly 330	, His	cgc	acc Thr	cga Arc	gag Glu 335	Gly	gcc Ala	ttg Leu	ago Ser	ato Met	Ala	c cgt	gco Ala	: acc	Leu 345	1107
gco		cgo Arg	tca Ser	tac Tyr	cto	cca	caa Glr	a ato	tco Ser	tag	gtcta	aata	aaac	ctto	ca	1157

355 350 1173 tctcaaaaaa aaaaaa <210> 118 <211> 785 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 72..704 <221> sig_peptide <222> 72..161 <223> Von Heijne matrix score 13.2 seg LLLLSTLVIPSAA/AP <221> polyA_signal <222> 772..777 <400> 118 cggaatccgg gagtccggtg acccgggctg tggtctagca taaaggcgga gcccagaaga 60 aggggggggg t atg gga gaa gcc tcc cca cct gcc ccc gca agg cgg cat 110 Met Gly Glu Ala Ser Pro Pro Ala Pro Ala Arg Arg His -25 -30 ctg ctg gtc ctg ctg ctc ctc tct acc ctg gtg atc ccc tcc gct 158 Leu Leu Val Leu Leu Leu Leu Ser Thr Leu Val Ile Pro Ser Ala -10 gca gct cct atc cat gat gct gac gcc caa gag agc tcc ttg ggt ctc 206 Ala Ala Pro Ile His Asp Ala Asp Ala Gln Glu Ser Ser Leu Gly Leu 10 aca ggc ctc cag agc cta ctc caa ggc ttc agc cga ctt ttc ctg aaa 254 Thr Gly Leu Gln Ser Leu Leu Gln Gly Phe Ser Arg Leu Phe Leu Lys 25 20 ggt aac ctg ctt cgg ggc ata gac agc tta ttc tct gcc ccc atg gac 302 Gly Asn Leu Leu Arg Gly Ile Asp Ser Leu Phe Ser Ala Pro Met Asp 40 ttc cgg ggc ctc cct ggg aac tac cac aaa gag gag aac cag gag cac 350 Phe Arg Gly Leu Pro Gly Asn Tyr His Lys Glu Glu Asn Gln Glu His 55 cag ctg ggg aac aac acc ctc tcc agc cac ctc cag atc gac aag gta 398 Gln Leu Gly Asn Asn Thr Leu Ser Ser His Leu Gln Ile Asp Lys Val 70 ccc agg atg gag gag gag gcc ctg gta ccc atc cag aag gcc acg 446 Pro Arg Met Glu Glu Lys Glu Ala Leu Val Pro Ile Gln Lys Ala Thr 90 85 gac agc ttc cac aca gaa ctc cat ccc cgg gtg gcc ttc tgg atc att 494 Asp Ser Phe His Thr Glu Leu His Pro Arg Val Ala Phe Trp Ile Ile 100 105 aag ctg cca cgg cgg agg tcc cac cag gat gcc ctg gag ggc ggc cac 542 Lys Leu Pro Arg Arg Arg Ser His Gln Asp Ala Leu Glu Gly Gly His 120 115 tgg ctc agc gag aag cga cac cgc ctg cag gcc atc cgg gat gga ctc 590 Trp Leu Ser Glu Lys Arg His Arg Leu Gln Ala Ile Arg Asp Gly Leu 135 cgc aag ggg acc cac aag gac gtc cta gaa gag ggg acc gag agc tcc 638 Arg Lys Gly Thr His Lys Asp Val Leu Glu Glu Gly Thr Glu Ser Ser

150

tee cae tee agg etg tee eec ega aag ace cae tta etg tae ate etc

686

Ser His Ser Arg Leu Ser Pro Arg Lys Thr His Leu Leu Tyr Ile Leu 160 165 170 175	724													
agg ccc tct cgg cag ctg taggggtggg gaccggggag cacctgcctg Arg Pro Ser Arg Gln Leu 180	734													
tagcccccat cagaccctgc cccaagcacc atatggaaat aaagttcttt c	785													
<210> 119														
<211> 559														
<212> DNA														
<213> Homo sapiens														
<220>														
<221> CDS <222> 44505														
<pre><221> sig_peptide <222> 44223</pre>														
<223> Von Heijne matrix														
score 4														
seq LVRRTLLVAALRA/WM														
<400> 119	55													
agcaaccaga gggagatgat cacctgaacc actgctccaa acc atg ggc agt aaa Met Gly Ser Lys -60	33													
tgc tgt aaa ggt ggt cca gat gaa gat gca gta gaa aga cag agg cgg	103													
Cys Cys Lys Gly Gly Pro Asp Glu Asp Ala Val Glu Arg Gln Arg Arg -55 -50 -45														
cag aag ttg ctt ctt gca caa ctg cat cac aga aaa agg gtg aag gca	151													
Gln Lys Leu Leu Ala Gln Leu His His Arg Lys Arg Val Lys Ala														
-40 -35 -30 -25 gct ggg cag atc cag gcc tgg tgg cgt ggg gtc ctg gtg cgc agg acc	199													
Ala Gly Gln Ile Gln Ala Trp Trp Arg Gly Val Leu Val Arg Arg Thr														
-20 -15 -10	247													
ctg ctg gtt gct gcc ctc agg gcc tgg atg att cag tgc tgg tgg agg Leu Leu Val Ala Ala Leu Arg Ala Trp Met Ile Gln Cys Trp Trp Arg														
-5 1 5	295													
acg ttg gtg cag aga cgg atc cgt cag cgg cgg cag gcc ctg ttg agg Thr Leu Val Gln Arg Arg Ile Arg Gln Arg Arg Gln Ala Leu Leu Arg	293													
10 15 20														
gtc tac gtc atc cag gag cag gcg acg gtc aag ctc cag tcc tgc atc	343													
Val Tyr Val Ile Gln Glu Gln Ala Thr Val Lys Leu Gln Ser Cys Ile 25 30 35 40														
cgc atg tgg cag tgc cgg caa tgt tac cgc caa atg tgc aat gct ctc	391													
Arg Met Trp Gln Cys Arg Gln Cys Tyr Arg Gln Met Cys Asn Ala Leu 45 50 55														
tgc ttg ttc cag gtc cca gag agc agc ctt gcc ttc cag act gat ggc	439													
Cys Leu Phe Gln Val Pro Glu Ser Ser Leu Ala Phe Gln Thr Asp Gly 60 65 70														
ttt tta cag gtc caa tat gca atc cct tca aag cag cca gag ttc cac	487													
Phe Leu Gln Val Gln Tyr Ala Ile Pro Ser Lys Gln Pro Glu Phe His 75 80 85														
att gaa atc cta tca atc tgaaaggcct ggggcatgga gaacaggctg	535													
Ile Glu Ile Leu Ser Ile														
90 cactacccta ataaatgtct gacc	559													
and the control of th														

WO 99/31236 -95- PCT/IB98/02122 -

```
<210> 120
<211> 770
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 25..393
<221> sig_peptide
<222> 25..150
<223> Von Heijne matrix
      score 4.6
      seg LDPAVSLSAPAFA/SA
<221> polyA_signal
<222> 734..739
<221> polyA_site
<222> 757..770
<400> 120
cgcagaaagg agagacacac atac atg aaa gga gga gct ttc tcc aat ctt
                          Met Lys Gly Gly Ala Phe Ser Asn Leu
                                   -40
aat gat too cag oto toa goo tog ttt otg caa coo ago otg caa goa
                                                                       99
Asn Asp Ser Gln Leu Ser Ala Ser Phe Leu Gln Pro Ser Leu Gln Ala
           -30
                                -25
aac tgt cct gct ttg gac cct gct gtg tca ctc tcc gca cca gcc ttt
                                                                      147
Asn Cys Pro Ala Leu Asp Pro Ala Val Ser Leu Ser Ala Pro Ala Phe
                                                -5
                            -10
ged tot get ett ege tet atg aag tee tee eag get gea egg aag gae
                                                                      195
Ala Ser Ala Leu Arg Ser Met Lys Ser Ser Gln Ala Ala Arg Lys Asp
                   5
                                        10
gac ttt ctc agg tct ctt agt gat gga gac tca ggg aca tca gaa cac
                                                                      243
Asp Phe Leu Arg Ser Leu Ser Asp Gly Asp Ser Gly Thr Ser Glu His
               20
                                    25
                                                                      291
atc tca gcg gtg gtg act agc cct cgg att tcc tgc cat ggt gct gcc
Ile Ser Ala Val Val Thr Ser Pro Arg Ile Ser Cys His Gly Ala Ala
                                40
                                                 45
           35
att ccc acc gcc cgt gcc ctc tgc cta ggc tgt tcc tgc tgc acc gaa
                                                                      339
Ile Pro Thr Ala Arg Ala Leu Cys Leu Gly Cys Ser Cys Cys Thr Glu
                                                60
                            55
                                                                      387
 ege etc etc etg eca ecg ecc tec etc ett tet tta gaa gee eet gee
 Arg Leu Leu Pro Pro Pro Ser Leu Leu Ser Leu Glu Ala Pro Ala
                                             75
                         70
                                                                      443
 age ace tgagetetet getgattget gtteeteeca gtetgtggaa getttgeeca
 Ser Thr
                                                                      503
 tatgetttee ttaaaagggt tetgggeagg geaggegeee ceatttetea gggateeeet
                                                                      563
 ccaggacaac gccttttcct tgtgtcttca gctctcctta ccagatatct atatatttgt
 atatattcag tttcaccaac aatgcatcaa gtactttttt ttttaagtaa agaaccgcag
                                                                      623
                                                                      683
 tcatcgaact ggagccccat tgattccctc cccctcgcct ccccaaatct ggcacctgcc
                                                                      743
 caaggtatcc tcagaaccat ttggggtgtc ctttggcatt ggataataga aataaaattt
                                                                      770
 tacctctttc tacaaaaaaa aaaaaac
```

<210> 121 <211> 1213 <212> DNA <213> Homo sapiens WO 99/31236 -96- PCT/IB98/02122

<220: <221: <222:	- CD		95													
<pre><221> sig_peptide <222> 58114 <223> Von Heijne matrix</pre>																
<pre><221> polyA_site <222> 12021213</pre>																
<pre><400> 121 cctggctttg cctttgccct gctgtgtgat cttagctccc tgcccaggcc cacagcc 57 atg gcc atg gcc cag aaa ctc agc cac ctc ctg ccg agt ctg cgg cag 105</pre>															57	
ata	acc	ata	acc	cag Gln ~15	aaa	ctc	agc	cac	ctc	ctg	ccg	agt	ctg	cgg	cag	105
gtc Val	atc Ile	cag Gln	gag Glu 1	cct Pro	cag Gln	cta Leu	tct Ser 5	ctg Leu	cag Gln	cca Pro	gag Glu	cct Pro 10	gtc Val	ttc Phe	acg Thr	153
gtg Val	gat Asp 15	cga Arg	act	gag Glu	gtg Val	ccg Pro 20	ccg Pro	ctc Leu	ttc Phe	tgg Trp	aag Lys 25	ccg Pro	tac Tyr	atc Ile	tat Tyr	201
gcg Ala 30	aac	tac Tyr	cgg Arg	ccg Pro	ctg Leu 35	cat	cag Gln	acc Thr	tgg Trp	cgc Arg 40	ttc Phe	tat Tyr	ttc Phe	cgc Arg	acg Thr 45	249
cta	ttc Phe	cag Gln	cag Gln	cac His 50	aac	gag Glu	gcc Ala	gtg Val	aat Asn 55	gtc Val	tgg Trp	acc Thr	cac His	ctg Leu 60	ctg Leu	297
gcg Ala	gcc Ala	ctg Leu	gta Val 65	ctg Leu	ctg Leu	ctg Leu	cgg Arg	ctg Leu 70	gcc	ctc Leu	ttt Phe	gtg Val	gag Glu 75	acc Thr	gtg Val	345
gac Asp	ttc Phe	Trp	gga	gac Asp	cca Pro	cac His	gcc Ala 85	ctg	ccc Pro	ctc Leu	ttc Phe	atc Ile 90	att	gtc Val	ctt Leu	393
gcc Ala	Ser	80 ttc Phe	acc Thr	tac Tyr	ctc Leu	tcc Ser 100	ctc	agt Ser	gcc Ala	ttg Leu	gct Ala 105	cac	ctc Leu	ctg Leu	cag Gln	441
Ala	95 aag Lys	tct Ser	gag Glu	ttc Phe	tgg Trp 115	cat	tac Tyr	agc Ser	ttc Phe	ttc Phe 120	ttc	ctg Leu	gac Asp	tat Tyr	gtg Val 125	489
110 999 Gly	gtg Val	gcc Ala	gtg Val	tac Tyr	caq	ttt Phe	ggc Gly	agt Ser	gcc Ala 135	ttg	gca Ala	cac His	ttc Phe	tac Tyr 140	tat Tyr	537
gct Ala	atc Ile	gag Glu	Pro	130 gcc Ala	tgg Trp	cat His	gcc Ala	cag Gln 150	gtg	cag Gln	gct Ala	gtt Val	ttt Phe 155	ctg	ccc Pro	585
atg Met	gct Ala	Ala	Phe	ctc Leu	gcc Ala	tgg Trp	ctt Leu 165	tcc	tgc Cys	att Ile	ggc Gly	tcc Ser 170	tgc	tat Tyr	aac Asn	633
aag Lys	Tyr	Ile	caq	aaa Lys	cca Pro	Gly	ctg Leu	ctg Leu	ggc Gly	cgc Arg	aca Thr 185	tgc Cys	cag Gln	gag Glu	gtg Val	681
Pro	Ser	atc	ctg Leu	gcc Ala	Tyr	Ala	ctq	gac Asp	att Ile	agt Ser 200	cct Pro	gtg	gtg Val	cat His	cgt Arg 205	729
190 atc Ile	ttc	gtg Val	tcc Ser	Ser	Asp	ccc	acc Thr	acg Thr	Asp	gat Asp	cca	gct Ala	ctt Leu	ctc Leu 220	tac Tyr	777
cac	æag	tgo	cag	210 gtg	gto	tto	ttt	ctg	215 ctg		gct	gcc	tto			825

WO 99/31236 -97- PCT/IB98/02122 -

	His	ГÀг	Cys	Gln 225	Val	Val	Phe	Phe	Leu 230	Leu	Ala	Ala	Ala	Phe 235	Phe	Ser		
	acc Thr	ttc Phe	Met	ccc Pro	gag Glu	cgc Arg	tgg Trp	Phe	cct Pro	ggc Gly	agc Ser	tgc Cys	cat His 250	gtc Val	ttc Phe	ggg Gly	873	3
	caq	aac	240 cac	caa	ctt	ttc	cat	245 atc	ttc	ttg	gtg	ctg	tgc	acg	ctg	gct	921	ı
	Gln	Gly 255	His	Gln	Leu	Phe	His 260	Ile	Phe	Leu	Val	Leu 265	Cys	Thr	Leu	Ala	061	n
	cag	ctg	gag	gct Ala	gtg Val	gca Ala	ctg	gac	tat Tvr	gag Glu	gcc Ala	cga Arq	cgg	Pro	Ile	Tyr	969	9
	270					275					280					285	1017	7
	gag Glu	cct Pro	ctg Leu	cac His	acg Thr 290	cac His	tgg Trp	Pro	cac His	aac Asn 295	Phe	Ser	Gly	Leu	Phe	Leu	101	,
	ctc	acg	gtg	ggc	agc	agc	atc	ctc	act	gca	ttc	ctc	ctg	agc	cag	ctg	1069	5
•	Leu	Thr		Gly 305	Ser	Ser	Ile	Leu	Thr	Ala	Phe	Leu	Leu	315	GIII	Leu		
	gta	cag	cgc	aaa	ctt	gat	cag	aag	acc	aag	tgaa	aggg	gga	tggca	atct	3 9	111!	5
	Val	Gln	Arg 320	Lys	Leu	Asp	Gln	Lys 325	Thr	ГЛЗ								
	tag	ggag	gga g	ggtat	agtt	g gg	ggad	agg	g gt	ctgg	gttt	ggc	tcca	agt 9	ggga	acaagg	1179 121	
	cct	ggta	aag t	ttgtt	tgtg	gt ct	ggco	caaaa	a aa	aaaa	aa						121.	_
	<21	0> 1	22															
		1> 1																
		2> D: 3> H		sapie	ens													
		٥.																
	<22 <22	U> 1> C	DS															
	<22	2> 3	16	60														
<221> sig_peptide																		
<222> 3190 <223> Von Heijne matrix																		
score 5.4																		
seq AFVIACVLSLIST/IY																		
<221> polyA_signal																		
<221> polyA_site <222> 13071318																		
			••															
	998	0> 1 ggat	.22 .999	cgag	cagt	ct g	aatg	ccag	a at	g ga	t aa	c cg	t tt	t go	t ac	a gca	5	4
									Me - 2	t As	p As	n Ar	g Ph	e Al -1	a Th	r Ala		
	ttt	gta	att	gct	tgt	gtg	ctt	ago	cto	att	tcc	acc	ato	tac	atg	gca	10	2
	Phe	· Val	. Ile	Ala	Cys	Val	Leu	Ser	Leu	ı Ile	Ser	Thr	: Ile	туг	Met	Ala	15	: ^
	gct Als	tcc Ser	att	ggc	aca Thr	gac Asn	ttc Phe	tgg Tro	tat Tyr	gag Glu	ı tat ı Tyr	cga Arc	agt Ser	cca Pro	ytt Val	caa Gln	15	
	5					10					15					20	19	9 6
	gaa Gli	aat Aqr	tco Ser	agt Ser	gat Asn	ttg Len	aat Asn	aaa Lvs	ago Ser	c ato	tgg Tru	gat Ast	gaa Gli	i ttc i Phe	: att	agt Ser	13	, 0
					25					30					35		24	16
	gat Asr	gag Gli	g gca	gat Asn	gaa Glu	aag Lvs	act Thr	tat Tyr	: aat : Ası	: gat n Asr	gca Ala	ı ctt ı Lei	t ttt 1 Phe	. cga . Arg	rac Tyr	aat Asn	24	.0
				40		,-		•	45					50				

WO 99/31236 -98- PCT/IB98/02122 -

qqc	aca	gtg	gga	ttg	tgg	aga	cgg	tgt	atc	acc	ata	ccc	aaa	aac	atg	294
Gly	Thr	Val	Gly	Leu	Trp	Arg	Arg 60	Cys	Ile	Thr	Ile	Pro 65	Lys	Asn	Met	
cat	taa	tat	agc	cca	cca	gaa	agg	aca	gag	tca	ttt	gat	gtg	gtc	aca	342
His	Trp	Tyr	Ser	Pro	Pro	Glu 75	Arg	Thr	Glu	Ser	Phe 80	Asp	Val	Val	Inr	.0.
aaa	tgt	gtg	agt	ttc	aca	cta	act	gag	cag	ttc	atg	gag	aaa	ttt	gtt	390
Lys	Cys	Val	Ser	Phe	Thr	Leu	Thr	Glu	Gln	Phe	.Met	Glu	Lys	Phe	Val	
85					90					95	- 4. 4-				100	438
gat	CCC	gga	aac	cac	aat	agc	a aa	att	gat	CCC	CEE	agg	acc The	Tur	T.All	430
Asp	Pro	Gly	Asn	His	Asn	Ser	GIŸ	TTE	110	Leu	Leu	Arg	TIII	115	пси	
				105 ttc		++-	cct	+++		aat	tta	aat	tta		tac	486
tgg	cgt	tgc	cag	Phe	Len	LLa	Dro	Phe	Val	Ser	Leu	Glv	Leu	Met	Cys	
Trp	Arg	Cys	120	PHE	TIER	цец	FIO	125	741			- -1	130		- 4	
+++	aaa	act		atc	gga	ctt	tat		tgc	att	tgc	cga	agc	tta	tat	534
Phe	Glv	Ala	Leu	Ile	Gly	Leu	Cys	Ala	Cys	Ile	Cys	Arg	Ser	Leu	Tyr	
		135					140					145				
ccc	acc	att	gcc	acg	ggc	att	ctc	cat	ctc	ctt	gca	gtg	aca	aag	gag	582
Pro	Thr	Ile	Ala	Thr	Gly	Ile	Leu	His	Leu	Leu	Ala	Val	Thr	Lys	Glu	
	150					155					160					C2.0
agc	atg	ctt	cca	gct	gga	gct	gag	tcc	aag	cac	aca	gcc	act	CCT	gca	630
	Met	Leu	Pro	Ala		Ala	Glu	Ser	Lys	HIS	Thr	Ala	Inr	PIO	180	
165					170					175		243	~~==	agag		680
cac	gca	tgc	gtg	caa	aca	999	aag	Dro	Luc	cag	gaya	aya	ggaa	ugug	9.0	
His	Ата	Cys	vai	Gln 185		GIY	шys	PIO	190							
+~+	2000	att	taaa	202	ac c	ttga	ttat	t cc		agga	aaa	gaca	aat	ctac	ttccct	740
gaa	ayyy	CCC	tcga	atct	ac t	tcca	ccct	c aq	aact	taaa	atg	aact	gca	tcct	ttttt	800
cat	cttc	ttt	tctt	ctcc	ag t	qaat	atga	t ct	ccaa	accc	tta	tttt	ttc	tttg	aactgt	860
aaa	attt	cca	ctca	taga	cq a	tgca	acca	a ca	gatg	caat	ctc	tgag	aag	atga	aaattg	920
σσa	cctc	tta	ttat	aaaa	tt q	acct	agct	g ga	ctca	ggaa	acc	aggg	aag	aagt	caatgc	980
ago	catt	taa	aatq	taaa	gt t	tttt	ctgg	t ta	aatc	tatt	tat	tttt	ctt	gtag	gttgag	1040
tat	ttet	tcc	cagt	tttt	ct q	ctct	ggtg	t at	aaca	aaca	ggt	caaa	att	tccc	atcttt	1100 1160
cct	cctg	ata	gtag	ttga	at c	ctac	cttg	c at	actt	aatg	cat	agtg	aaa	tggc	atctag	1220
cag	aaat	aca	cacc	ccca	aa a	caca	ccac	c at	ttca	ttag	grg	ccca	aaa	ttas	ctgtat	1280
tta	gctt	att	tatt	tatt	gt t	attt	ttgc	כ ככ	CCC	caac	сса	ccat	ala	ccya	ctgcaa	1318
acg	aatt	aat	aaat	tato	CC T	tetg	yaaa	a da	aaad	aa						

```
<210> 123
<211> 853
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 31..582
<221> sig_peptide
<222> 31..90
<223> Von Heijne matrix
     score 5.4
      seq AFVIACVLSLIST/IY
<221> polyA_signal
<222> 816..821
<221> polyA_site
<222> 840..853
```

<400> ggagg	12: gatg	gg c	gagc	agtc	t ga	atgc	caga	Mec	ASP	aac Asn	cgt Arg	ttt Phe	gct Ala -15	aca Thr	gca Ala	54
ttt g	/al	Ile	gct Ala	tgt Cys	gtg Val	ctt Leu	ser	-20 ctc Leu	att	tcc Ser	acc Thr	atc Ile 1	tac	atg Met	gca Ala	102
gcc t		-10 att Ile	ggc Gly	aca Thr	gac Asp 10	ttc Phe	-5 tgg Trp	tat Tyr	gaa Glu	tat Tyr 15	cga Arg	agt	cca Pro	gtt Val	caa Gln 20	150
5 gaa a Glu i	aat Asn	tcc Ser	agt Ser	gat Asp 25	tta	aat Asn	aaa Lys	agc Ser	atc Ile 30	tqq	gat Asp	gaa Glu	ttc Phe	att Ile 35	agt Ser	198
gat (gaa Glu	gca Ala	Asp	~~~	aag Lys	act Thr	tat Tyr	aat Asn 45	gat	gca Ala	cct Pro	ttt Phe	cga Arg 50	tac Tyr	aat Asn	246
ggc Gly	aca Thr	Val	40 gga Gly	ttg Leu	tgg Trp	aga Arg	cgg Arg 60	tat	atc Ile	acc Thr	ata Ile	ccc Pro 65	aaa Lys	aac Asn	atg Met	294
cat His	Trp	55 tat Tyr	agc Ser	cca Pro	cca Pro	Glu	agg	aca Thr	gag Glu	tca Ser	ttt Phe 80	gat	gtg Val	gtc Val	aca Thr	342
	70 tgt Cys	gtg Val	agt Ser	ttc Phe	Thr	75 cta Leu	act Thr	gag Glu	cag Gln	ttc Phe 95	atg	gag Glu	aaa Lys	ttt Phe	gtt Val 100	390
85 gat Asp	ccc Pro	gga Gly	aac Asn	His	90 aat Asn	agc Ser	ggg ggg	att Ile	Asp	ctc Leu	ctt Leu	agg Arg	acc Thr	tat Tyr 115	ctt	438
				105	att	++a	cct	ttt Phe	gtg Val	aqt	tta	ggt	ttg Leu 130	atg	tgc	486
			120		~~~	c++	tat	125	tac	att	tqc	cga Arg	agc Ser	tta	tat	534
		135	~~~		aac	att	140	cat	cto	ctt	gca Ala	gat Asp	acc	atg		582
tgaa gcta gcca	150 agtc ccca ttaa ctaa	cag act caa	gcca	icatg igoca itcag	ga g ac a ag g	155 gtgtgt itcat gactt igctg	ccts ttcc cago gagoo	gt gt ca go cc ao	agat cate	gcto	cag g gga a tct	, gctga agcca ctact	aat itcc aca	ccca tgga tcct	agctaa tgtcca tgtgag ataaaa	642 702 762 822 853

<210> 124

<211> 826

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 15..695

<221> sig_peptide

<222> 15..80

<223> Von Heijne matrix
 score 8.5
 seq AALLLGLMMVVTG/DE

<221> polyA_signal <222> 795..800

<222> 814826	•
<400> 124	
aaccagaggt gccc atg ggt tgg aca atg agg ctg gtc aca gca gca ctg Met Gly Trp Thr Met Arg Leu Val Thr Ala Ala Leu -20 -15	50
tta ctg ggt ctc atg atg gtg gtc act gga gac gag gat gag aac agc Leu Leu Gly Leu Met Met Val Val Thr Gly Asp Glu Asp Glu Asn Ser -10 -5 5	98
ccg tgt gcc cat gag gcc ctc ctg gac gag gac acc ctc ttt tgc cag Pro Cys Ala His Glu Ala Leu Leu Asp Glu Asp Thr Leu Phe Cys Gln 10 15 20	146
ggc ctt gaa gtt ttc tac cca gag ttg ggg aac att ggc tgc aag gtt Gly Leu Glu Val Phe Tyr Pro Glu Leu Gly Asn Ile Gly Cys Lys Val 25 30 35	194
gtt cct gat tgt aac aac tac aga cag aag atc acc tcc tgg atg gag Val Pro Asp Cys Asn Asn Tyr Arg Gln Lys Ile Thr Ser Trp Met Glu 40 45 50	242
ccg ata gtc aag ttc ccg ggg gcc gtg gac ggc gca acc tat atc ctg Pro Ile Val Lys Phe Pro Gly Ala Val Asp Gly Ala Thr Tyr Ile Leu 55 60 65 70	290
gtg atg gtg gat cca gat gcc cct agc aga gca gaa ccc aga cag aga Val Met Val Asp Pro Asp Ala Pro Ser Arg Ala Glu Pro Arg Gln Arg 75 80 85	338
ttc tgg aga cat tgg ctg gta aca gat atc aag ggc gcc gac ctg aag Phe Trp Arg His Trp Leu Val Thr Asp Ile Lys Gly Ala Asp Leu Lys 90 95 100	386
aaa ggg aag att cag ggc cag gag tta tca gcc tac cag gct ccc tcc Lys Gly Lys Ile Gln Gly Gln Glu Leu Ser Ala Tyr Gln Ala Pro Ser 105 110 115	434
cca ccg gca cac agt ggc ttc cat cgc tac cag ttc ttt gtc tat ctt Pro Pro Ala His Ser Gly Phe His Arg Tyr Gln Phe Phe Val Tyr Leu 120 125 130	482
cag gaa gga aag gtc atc tct ctc ctt ccc aag gaa aac aaa act cga Gln Glu Gly Lys Val Ile Ser Leu Leu Pro Lys Glu Asn Lys Thr Arg 135 140 145 150	530
ggc tct tgg aaa atg gac aga ttt ctg aac cgt ttc cac ctg ggc gaa Gly Ser Trp Lys Met Asp Arg Phe Leu Asn Arg Phe His Leu Gly Glu 155 160 165	578
cct gaa gca agc acc cag ttc atg acc cag aac tac cag gac tca cca Pro Glu Ala Ser Thr Gln Phe Met Thr Gln Asn Tyr Gln Asp Ser Pro 170 175 180	626
acc ctc cag gct ccc aga gaa agg gcc agc gag ccc aag cac aaa aac Thr Leu Gln Ala Pro Arg Glu Arg Ala Ser Glu Pro Lys His Lys Asn 185 190 195	674
cag gcg gag ata gct gcc tgc tagatagccg gctttgccat ccgggcatgt Gln Ala Glu Ile Ala Ala Cys 200 205	725
ggccacactg cccaccaccg acgatgtggg tatggaaccc cctctggata cagaacccct	785
tcttttccaa ataaaaaaaa aatcatccaa aaaaaaaa	826

<210> 125

<221> polyA_site

<211> 571

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

WO 99/31236 -101- PCT/IB98/02122

<222> 74..295 <221> sig_peptide <222> 74..196 <223> Von Heijne matrix score 5.4 seg RLLYIGFLGYCSG/LI <221> polyA signal <222> 545..550 <221> polyA_site <222> 561..571 <400> 125 cgggtagtgg tcgtcgtggt tttccttgta gttcgtggtc tgagaccagg cctcaagtgg 60 109 aaacggcgtc acc atg atc gca cgg cgg aac cca gta ccc tta cgg ttt Met Ile Ala Arg Arg Asn Pro Val Pro Leu Arg Phe -35 ctg ccg gat gag gcc cgg agc ctg ccc ccg ccc aag ctg acc gac ccg 157 Leu Pro Asp Glu Ala Arg Ser Leu Pro Pro Pro Lys Leu Thr Asp Pro -25 -20 -15 cgg ctc ctc tac atc ggc ttc ttg ggc tac tgc tcc ggc ctg att gat 205 Arg Leu Leu Tyr Ile Gly Phe Leu Gly Tyr Cys Ser Gly Leu Ile Asp -5 aac ctg atc cgg cgg agg ccg atc gcg acg gct ggt ttg cat cgc cag 253 Asn Leu Ile Arg Arg Pro Ile Ala Thr Ala Gly Leu His Arg Gln 10 15 ctt cta tat att acg gcc ttt ttt ttg ctg gat att atc ttg 295 Leu Leu Tyr Ile Thr Ala Phe Phe Leu Leu Asp Ile Ile Leu 30 taaaacgtga agactacctg tatgctgtga gggaccgtga aatgtttgga tatatgaaat 355 tacatccaga ggattttcct gaagaagata agaaaacata tggtgaaatt tttgaaaaaat 415 tccatccaat acgttgaagt cttcaaaaatg cttgctccag tttcactgat acctgctgtt 475 535 cctgaatttg atggaacatg tttcttatga cagttgaagc ttatgctaat ctgtatgttg acaccttgta attaaaatac gtaccaaaaa aaaaaa 571 <210> 126 <211> 659 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 440..658 <221> polyA_signal <222> 601..606 <400> 126 cgccttacga gctgggaggt ggtgcctctc acccagctaa ttgctctcta gcccttggcc 60 ttcacaggtg ttggtgcctg ccgtgaacgc attctgacct gggccgtatc tgtctcccaa 120 gactttgtgc ctatggttgg ggacagagtg aggtcgttgc cttgacgacg acagcatgcg gcccgtggtc ctcctaagtg tgagcttgcg gcggaccgag gcccacctgc ctccctgcct 240 gettegecca ggaetegtga etgegteege agaagaaate acaacagege tggaattget 300 agtttgctag gcagcatctt ttggacctgc gaaccatatg catttcacct caaatctgtt tccaagttga aaacctttgg gtctttctat gcgaacggat tgaagaaacg caaaaagttt 420 ctacggactt taaattaaa atg gaa aaa tat gaa aac ctg ggt ttg gtt gga 472 Met Glu Lys Tyr Glu Asn Leu Gly Leu Val Gly

gaa ggg agt tat gga atg gtg atg aag tgt agg aat aaa gat act gga 520

Glu Gly Se						
aga att gte Arg Ile Va 30						
gtt aaa aag Val Lys Lys 45						
cat gaa aad His Glu Ass 60						659
<210> 127 <211> 301 <212> DNA <213> Homo	sapiens					
<220> <221> CDS <222> 38	83					
<221> sig_1 <222> 38 <223> Von 1 score seq 1	85 Meijne ma					
<221> poly/ <222> 257.						
<400> 127 cacctgaatc	ccaggaac	cc tcaat	gaggt ct	g aag aga t Lys Arg -15		
gct acc ago Ala Thr Ser -10					•	
Pro Met Let						
aag tot cad Lys Ser His 25						
ttt gga aat Phe Gly Ass 40						
Phe Cys Met				aat tgad	caaaaa	293
aaaaaaaa						301

<210> 128

<211> 477

<212> DNA

<213> Homo sapiens

WO 99/31236 -103 - PCT/IB98/02122.

<221> CDS <222> 121..477 <221> sig_peptide <222> 121..288 <223> Von Heijne matrix score 3.5 seq SSCADSFVSSSSS/QP <400> 128 cctcggagca ggcggagtaa agggacttga gcgagccagt tgccggatta ttctatttcc 60 cotcoctote tecogeocog tatetetttt caccettete ceaccetege tegegtagee 120 atg geg gag ceg teg geg gec act cag tee cat tee ate tee teg teg 168 Met Ala Glu Pro Ser Ala Ala Thr Gln Ser His Ser Ile Ser Ser Ser -50 tcc ttc gga gcc gag ccg tcc gcg ccc ggc ggc ggc ggg agc cca gga 216 Ser Phe Gly Ala Glu Pro Ser Ala Pro Gly Gly Gly Ser Pro Gly -35 -30 gcc tgc ccc gcc ctg ggg acg aag agc tgc agc tcc tcc tgt gcg gat 264 Ala Cys Pro Ala Leu Gly Thr Lys Ser Cys Ser Ser Ser Cys Ala Asp -20 -15 tcc ttt gtt tct tcc tct tcc tct cag cct gta tct cta ttt tcg acc 312 Ser Phe Val Ser Ser Ser Ser Ser Gln Pro Val Ser Leu Phe Ser Thr tca caa gag gga ttg agc tct ctt tgc tct gat gag cca tct tca gaa 360 Ser Gln Glu Gly Leu Ser Ser Leu Cys Ser Asp Glu Pro Ser Ser Glu att atg act tot too tit ott toa tot tot gaa ata cat aac act ggc 408 Ile Met Thr Ser Ser Phe Leu Ser Ser Glu Ile His Asn Thr Gly 30 35 456 ctt aca ata cta cat gga gaa aaa agc cat gtg tta ggg agc cag cct Leu Thr Ile Leu His Gly Glu Lys Ser His Val Leu Gly Ser Gln Pro 50 45 477 att tta gcc aaa aaa aaa aaa Ile Leu Ala Lys Lys Lys <210> 129 <211> 323 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 2..163 <221> polyA signal <222> 292..297 <221> polyA site <222> 310..323 <400> 129 a gct ttc gtg tgg gag cca gct atg gtg cgg atc aat gcg ctg aca gca 49 Ala Phe Val Trp Glu Pro Ala Met Val Arg Ile Asn Ala Leu Thr Ala 10 gcc tct gag gct gcg tgc ctg atc gtg tct gta gat gaa acc atc aag 97 Ala Ser Glu Ala Ala Cys Leu Ile Val Ser Val Asp Glu Thr Ile Lys 25

aac ccc cgc tcg act gtg gat gct ccc aca gca gca ggc cgg ggc cgt

WO 99/31236 -104- PCT/IB98/02122

Asn	Pro	Arg 35	Ser	Thr	Val	Asp	Ala 40	Pro	Thr	Ala	Ala	Gly 45	Arg	Gly	Arg	
						tano				ccat	C 20		ctac			193
			cgc Arg			cyay	ayyc	ac c	.ccac	ccac		acgg	cegg	,		230
ctaa		ta a	atac	actt	a co	ctcc	ttgg	ctt	ggtt	act	tcat	ttta	.ca a	ıggaa	ıggggt	253
															caaaa	313
_	aaaa						JJ - J	J				_	_			323
auau	uuuu															
-210	> 13															
	> 13															
	> DN															
			ania	na												
<213	> nc	MIO S	apie	1115												
-220																
<220																
	> CE															
<222	> 46	67	ש													
				١.												
			ptid	le												
		587														
<223			ijne	mat	rix											
		ore														
	se	q LI	LLGL	SFIL	AGL/	'IV										
<221	.> pc	olyA_	sign	al												
<222	> 13	64	1369)												
<221	.> pc	lyA_	site	:												
<222	> 13	83	1392	:												
	> 13															
ctcc	gagt	tg c	cacc	cago	ga aa	aaga	gggc	tco	tctg	ıgga	gate	jt at	g ct	t ac	t ctc	57
															ır Leu	
			tca													105
Leu	Gly	Leu	Ser	Phe	Ile	Leu	Ala	Gly	Leu	Ile	Val	Gly	Gly	Ala	Cys	
-10	-				-5					1				5		
att	tac	aaq	tac	ttc	atq	ccc	aag	agc	acc	att	tac	cgt	gga	gag	atg	153
Ile	Tvr	Lvs	Tyr	Phe	Met	Pro	Lvs	Ser	Thr	Ile	Tyr	Arg	Gly	Glu	Met	
	-1-	-1-	10				4	15			•	_	20			
tac	ttt	ttt	gat	tct	gag	gat	cct	qca	aat	tcc	ctt	cat	qqa	qqa	gag	201
Cve	Dhe	Dhe	Asp	Ser	Glu	Asn	Pro	Ala	Asn	Ser	Len	Ara	Glv	Glv	Glu	
cy 5	1110	25	nop.			р	30					35	,			
aat	220		ctg	cat	ata	act		727	act	asc.	att	-	aaa	gat	gac	249
			Leu													•
PIO		Pne	Leu	PIO	vai		GIU	GIU	Ala	wah	50	ALG	GIU	изр	nop	
	40			4. 4.		45							~		~~~	297
			atc													231
	Ile	Ala	Ile	Ile		Val	Pro	val	Pro		Pne	Ser	Asp	ser		
55					60					65					70	245
cct	gca	gca	att	att	cat	gac	ttt	gaa	aag	gga	atg	act	gct	tac	ctg	345
Pro	Ala	Ala	Ile	Ile	His	Asp	Phe	Glu	Lys	Gly	Met	Thr	Ala		Leu	
				75					80					85		
gac	ttg	ttg	ctg	999	atc	tgc	tat	ctg	atg	CCC	ctc	aat	act	tct	att	393
Asp	Leu	Leu	Leu	Gly	Ile	Cys	Tyr	Leu	Met	Pro	Leu	Asn	Thr	Ser	Ile	
_			90	-				95					100			
gtt	atg	cct	cca	aaa	aat	ctg	gta	gag	ctc	ttt	ggc	aaa	ctg	gcg	agt	441
Val	Met	Pro	Pro	Lys	Asn	Leu	Val	Glu	Leu	Phe	Gly	Lys	Leu	Ala	Ser	
		105		-			110				-	115				
qqc	aga		ctg	cct	caa	act		gta	gtt	cqa	gaa	gac	cta	gtt	gct	489
Glv	Ara	Tvr	Leu	Pro	Gln	Thr	Tyr	Val	Val	Ara	Glu	Āsp	Leu	val	Ala	
1	120	-1-	_~~	0		125			. —	J	130					

-105-WO 99/31236 PCT/IB98/02122 - .

135 140 145 · 150	537
ctt tgc aat aac aga aag tcc ttc cgc ctt cgt cgc aga gac ctc ttg Leu Cys Asn Asn Arg Lys Ser Phe Arg Leu Arg Arg Arg Asp Leu Leu 155 160 165	585
ctg ggt ttc aac aaa cgt gcc att gat aaa tgc tgg aag att aga cac Leu Gly Phe Asn Lys Arg Ala Ile Asp Lys Cys Trp Lys Ile Arg His 170 175 180	633
ttc ccc aac gaa ttt att gtt gag acc aag atc tgt caa gag Phe Pro Asn Glu Phe Ile Val Glu Thr Lys Ile Cys Gln Glu 185 190 195	675
taagaggcaa cagatagagt gtccttggta ataagaagtc agagatttac aatatgactt	735
taacattaag gtttatggga tactcaagat atttactcat gcatttactc tattgcttat	795
gctttaaaaa aaggaaaaaa aaaaaactac taaccactgc aagctcttgt caaattttag	855
tttaattggc attgcttgtt ttttgaaact gaaattacat gagtttcatt ttttctttgc	915
atttataggg tttagatttc tgaaagcagc atgaatatat cacctaacat cctgacaata	975
aattccatcc gttgtttttt ttgtttgttt gttttttctt ttcctttaag taagctcttt	1035
attcatctta tggtggagca attttaaaat ttgaaatatt ttaaattgtt tttgaacttt	1095
ttqtqtaaaa tatatcaqat ctcaacattg ttggtttctt ttgtttttca ttttgtacaa	1155
ctttcttgaa tttagaaatt acatctttgc agttctgtta ggtgctctgt aattaacctg	1215
acttatatgt gaacaatttt catgagacag tcatttttaa ctaatgcagt gattctttct	1275
cactactate tgtattgtgg aatgeacaaa attgtgtagg tgctgaatge tgtaaggagt	1335
ttaggttgta tgaattctac aaccctataa taaattttac tctatacaaa aaaaaaa	1392
<210> 131 <211> 999 <212> DNA <213> Homo sapiens	
<220>	
<221> CDS	
<222> 62385	
<221> polyA_signal	
<221> polyA_signal	
<221> polyA_signal <222> 974979 <221> polyA_site	
<221> polyA_signal <222> 974979 <221> polyA_site <222> 987999 <400> 131 cctgaatgac ttgaatgttt ccccgcctga gctaacagtc catgtgggtg attcagctct	60
<221> polyA_signal <222> 974979 <221> polyA_site <222> 987999 <400> 131 cctgaatgac ttgaatgttt ccccgcctga gctaacagtc catgtgggtg attcagctct	60 109
<221> polyA_signal <222> 974979 <221> polyA_site <222> 987999 <400> 131	
<221> polyA_signal <222> 974979 <221> polyA_site <222> 987999 <400> 131 cctgaatgac ttgaatgttt ccccgcctga gctaacagtc catgtgggtg attcagctct g atg gga tgt gtt ttc cag agc aca gaa gac aaa tgt ata ttc aag ata	
<pre><221> polyA_signal <222> 974979 <221> polyA_site <222> 987999 <400> 131 cctgaatgac ttgaatgttt ccccgcctga gctaacagtc catgtgggtg attcagctct g atg gga tgt gtt ttc cag agc aca gac gac aaa tgt ata ttc aag ata Met Gly Cys Val Phe Gln Ser Thr Glu Asp Lys Cys Ile Phe Lys Ile 1</pre>	
<221> polyA_signal <222> 974979 <221> polyA_site <222> 987999 <400> 131 cctgaatgac ttgaatgttt ccccgcctga gctaacagtc catgtgggtg attcagctct g atg gga tgt gtt ttc cag agc aca gac gac aca tgt ata ttc aag ata Met Gly Cys Val Phe Gln Ser Thr Glu Asp Lys Cys Ile Phe Lys Ile 1 5 10 15 gac tgg act ctg tca cca gga gag cac gcc aag gac gaa tat gtg cta	109
<221> polyA_signal <222> 974979 <221> polyA_site <222> 987999 <400> 131 cctgaatgac ttgaatgttt ccccgcctga gctaacagtc catgtgggtg attcagctct g atg gga tgt gtt ttc cag agc aca gac gac aca tgt ata ttc aag ata Met Gly Cys Val Phe Gln Ser Thr Glu Asp Lys Cys Ile Phe Lys Ile 1 5 10 15 gac tgg act ctg tca cca gga gag cac gcc aag gac gaa tat gtg cta Asp Trp Thr Leu Ser Pro Gly Glu His Ala Lys Asp Glu Tyr Val Leu	109
<pre><221> polyA_signal <222> 974979 <221> polyA_site <222> 987999 <400> 131 cctgaatgac ttgaatgttt ccccgcctga gctaacagtc catgtgggtg attcagctct g atg gga tgt gtt ttc cag agc aca gac gac aaa tgt ata ttc aag ata Met Gly Cys Val Phe Gln Ser Thr Glu Asp Lys Cys Ile Phe Lys Ile</pre>	109
<pre><221> polyA_signal <222> 974979 <221> polyA_site <222> 987999 <400> 131 cctgaatgac ttgaatgttt ccccgcctga gctaacagtc catgtgggtg attcagctct g atg gga tgt gtt ttc cag agc aca gac gac aaa tgt ata ttc aag ata Met Gly Cys Val Phe Gln Ser Thr Glu Asp Lys Cys Ile Phe Lys Ile</pre>	109
<pre><221> polyA_signal <222> 974979 <221> polyA_site <222> 987999 <400> 131 cctgaatgac ttgaatgttt ccccgcctga gctaacagtc catgtgggtg attcagctct g atg gga tgt gtt ttc cag agc aca gaa gac aaa tgt ata ttc aag ata Met Gly Cys Val Phe Gln Ser Thr Glu Asp Lys Cys Ile Phe Lys Ile</pre>	109
<pre><221> polyA_signal <222> 974979 <221> polyA_site <222> 987999 <400> 131 cctgaatgac ttgaatgttt ccccgcctga gctaacagtc catgtgggtg attcagctct g atg gga tgt gtt ttc cag agc aca gaa gac aaa tgt ata ttc aag ata Met Gly Cys Val Phe Gln Ser Thr Glu Asp Lys Cys Ile Phe Lys Ile</pre>	109 157 205
<pre><221> polyA_signal <222> 974979 <221> polyA_site <222> 987999 <400> 131 cctgaatgac ttgaatgttt ccccgcctga gctaacagtc catgtgggtg attcagctct g atg gga tgt gtt ttc cag agc aca gaa gac aaa tgt ata ttc aag ata Met Gly Cys Val Phe Gln Ser Thr Glu Asp Lys Cys Ile Phe Lys Ile</pre>	109
<pre><221> polyA_signal <222> 974979 <221> polyA_site <222> 987999 <400> 131 cctgaatgac ttgaatgttt ccccgcctga gctaacagtc catgtgggtg attcagctct g atg gga tgt gtt ttc cag agc aca gaa gac aaa tgt ata ttc aag ata Met Gly Cys Val Phe Gln Ser Thr Glu Asp Lys Cys Ile Phe Lys Ile</pre>	109 157 205
<pre><221> polyA_signal <222> 974979 <221> polyA_site <222> 987999 <400> 131 cctgaatgac ttgaatgttt ccccgcctga gctaacagtc catgtgggtg attcagctct g atg gga tgt gtt ttc cag agc aca gaa gac aaa tgt ata ttc aag ata Met Gly Cys Val Phe Gln Ser Thr Glu Asp Lys Cys Ile Phe Lys Ile</pre>	109 157 205
<pre><221> polyA_signal <222> 974979 <221> polyA_site <222> 987999 <400> 131 cctgaatgac ttgaatgttt ccccgcctga gctaacagtc catgtgggtg attcagctct g atg gga tgt gtt ttc cag agc aca gaa gac aaa tgt ata ttc aag ata Met Gly Cys Val Phe Gln Ser Thr Glu Asp Lys Cys Ile Phe Lys Ile</pre>	109 157 205
<pre><221> polyA_signal <222> 974979 <221> polyA_site <222> 987999 <400> 131 cctgaatgac ttgaatgttt ccccgcctga gctaacagtc catgtgggtg attcagctct g atg gga tgt gtt ttc cag agc aca gaa gac aaa tgt ata ttc aag ata Met Gly Cys Val Phe Gln Ser Thr Glu Asp Lys Cys Ile Phe Lys Ile</pre>	109 157 205 253
<pre><221> polyA_signal <222> 974979 <221> polyA_site <222> 987999 <400> 131 cctgaatgac ttgaatgttt ccccgcctga gctaacagtc catgtgggtg attcagctct g atg gga tgt gtt ttc cag agc aca gaa gac aaa tgt ata ttc aag ata Met Gly Cys Val Phe Gln Ser Thr Glu Asp Lys Cys Ile Phe Lys Ile</pre>	109 157 205 253
<pre><221> polyA_signal <222> 974979 <221> polyA_site <222> 987999 <400> 131 cctgaatgac ttgaatgttt ccccgcctga gctaacagtc catgtgggtg attcagctct g atg gga tgt gtt ttc cag agc aca gaa gac aaa tgt ata ttc aag ata Met Gly Cys Val Phe Gln Ser Thr Glu Asp Lys Cys Ile Phe Lys Ile</pre>	109 157 205 253
<pre><221> polyA_signal <222> 974979 <221> polyA_site <222> 987999 <400> 131 cctgaatgac ttgaatgttt ccccgcctga gctaacagtc catgtgggtg attcagctct g atg gga tgt gtt ttc cag agc aca gaa gac aaa tgt ata ttc aag ata Met Gly Cys Val Phe Gln Ser Thr Glu Asp Lys Cys Ile Phe Lys Ile</pre>	109 157 205 253 301
<pre><221> polyA_signal <222> 974979 <221> polyA_site <222> 987999 <400> 131 cctgaatgac ttgaatgttt ccccgcctga gctaacagtc catgtgggtg attcagctct g atg gga tgt gtt ttc cag agc aca gaa gac aaa tgt ata ttc aag ata Met Gly Cys Val Phe Gln Ser Thr Glu Asp Lys Cys Ile Phe Lys Ile 1</pre>	109 157 205 253 301

ctt cca gag gag ccc aaa ggt acg caa atg ctt act taaagagggg Leu Pro Glu Glu Pro Lys Gly Thr Gln Met Leu Thr 100 105	395
ccaagggca agagettea tgtgcaagag gcaaggaaac tgattatett gagtaaatge cageetttgg gctaagtaet taccacagag tgaatettea aaaaatgate attattate cagteaataa aaatagagtt attttattaa ataaaatatt gataattatt gtattattae tttaaacaca etteeeete acaaaageee tgtgaaggat gttttgttea cataatagte caatatgtt ttggacacat atttattaaa tggaataaat agtaettgaa eeettgacace aagteeatgt tettttaet atgeeetaat aeettteate agttateeac attgatgeta eatetgtatt ttataggtae eettetgaa eettegage eetaggteeat geetgtaate etageatttt gggaagaaa etgeetgage eecaggete agtgeetaat eetgeetgage gageagaaa etgeetgage eecagggte aagaetgeag tgagetatga tggeaceact geattetage etgggtgaca gageaagaet etgtetaaaa taaaaaaaaa gaaaaaaaaaa	455 515 575 635 695 755 815 875 935 995
<210> 132 <211> 725 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 422550	
<221> sig_peptide <222> 422475 <223> Von Heijne matrix score 4.5 seq LRWLMPVIPALWG/AE	
<221> polyA_site <222> 714725	
<400> 132 tctgcgaggg tgggagaaa aattaggggg agaaaggaca gagagagcaa ctaccatcca tagccagata ggtgagtaaa tatatttgca gtaacctatt tgctattcct tgctgcaact gtgtttaatg ttccttccag aatcagagag agtattgcca tccaagaaat cgtttttaga tatgacattt gagctatcat cttgagacca atacctaaaa caatttcagt ttaagaaatg tctaggtatg gtgaaaacac agtttaaaac cagcaaaaca gaatttattg ccctcagcga atacccacaa tgtacatata ccttgtattt ctgaaagcaa agcaagcatg ccaagtagtt tttatttacc tgtacctata atacagcaag gtgaaacagg atatattttt gaagtttaaaa	60 120 180 240 300 360 420
a atg tct tca ggc cgg ctg cgg tgg ctc atg cct gta atc cca gca ctt Met Ser Ser Gly Arg Leu Arg Trp Leu Met Pro Val Ile Pro Ala Leu -15 -10 -5	469
tgg gga gcc gag aag ggt gaa tca cct gag gtc agc agt ttt gag acc Trp Gly Ala Glu Lys Gly Glu Ser Pro Glu Val Ser Ser Phe Glu Thr 1 5 10	517
agg ctg gcc aac atg gcg aaa ccc tgt ctc tac tgaaaataca aaaattagct Arg Leu Ala Asn Met Ala Lys Pro Cys Leu Tyr 15 20 25	570
gggtgtggtg gcgggcgcct gtagtcccag ctacttggga gactgaggca ggagaattgc ttgaacacgg aaggcggaag ttgcagtaag ctgagatcgt gccaccgcac accagcttgg gcaacagagt gagactccct ctcaaaaaaa aaaaa	630 690 725

<210> 133 <211> 400

<212> DNA

<213> Homo sapiens

WO 99/31236 -107- PCT/IB98/02122

<220> <221> CDS	
<222> 124231	
<221> polyA_site <222> 387400	
gcatcactcc tatcacatgg tcatcttcac cctgtgtgtc ttcacactac cctttctctg 1	60 20
Met Ser Ala Arg Ile Pro Phe Tyr Lys Asp Thr Ser Gln Ile Arg 1 5 10 15	
tta ggg tct acc ata ata cct cat ttt aac tta atc acc ttt gta aag Leu Gly Ser Thr Ile Ile Pro His Phe Asn Leu Ile Thr Phe Val Lys 20 25 30	16
acc ttt ttc caa ata tagtcactct ctgaggtact gatggttagg atctcaacat Thr Phe Phe Gln Ile 35	71
tttgaaagaa aggtggtatt tgcttagata gatagggcac agctttctag gtgacaaaaa 3	31 91 00
<210> 134	
<211> 1053 <212> DNA	
<213> Homo sapiens	
<220> <221> CDS	
<222> 1311051	
<221> sig_peptide <222> 131169	
<223> Von Heijne matrix	
score 4.2 seq MLAVSLTVPLLGA/MM	
<221> polyA_signal	
<400> 134	
tgatggccag gccccggagg ctaaggacgg cagctccttt agcggcagag ttttccgagt 13	60 20
gaccttcttg atg ctg gct gtt tct ctc acc gtt ccc ctg ctt gga gcc Met Leu Ala Val Ser Leu Thr Val Pro Leu Leu Gly Ala -10 -5	69
atg atg ctg ctg gaa tct cct ata gat cca cag cct ctc agc ttc aaa Met Met Leu Leu Glu Ser Pro Ile Asp Pro Gln Pro Leu Ser Phe Lys	17
1 5 10 15	<i>c</i> =
gaa ccc ccg ctc ttg ctt ggt gtt ctg cat cca aat acg aag ctg cga Glu Pro Pro Leu Leu Gly Val Leu His Pro Asn Thr Lys Leu Arg 20 25 30	65
cag gca gaa agg ctg ttt gaa aat caa ctt gtt gga ccg gag tcc ata Gln Ala Glu Arg Leu Phe Glu Asn Gln Leu Val Gly Pro Glu Ser Ile	13
35 40 45	۔ م
gca cat att ggg gat gtg atg ttt act ggg aca gca gat ggc cgg gtc Ala His Ile Gly Asp Val Met Phe Thr Gly Thr Ala Asp Gly Arg Val	61

_	aaa Lys		_			_				_				_	•	409
ggc	cct Pro	-			_	-	_		gtg	_		_		ctg	•	457
	atc Ile	_	_	999				ctc			_	_	gca	_	!	505
	gga Gly														:	553
	tcc Ser 130														•	601
_	ctt Leu		_		_	_		 _					_		•	649
	agc Ser														6	597
	gat Asp														7	745
	gtt Val														7	793
	gca Ala 210														8	341
	aga Arg														8	389
	gag Glu														9	937
	ggg Gly														9	985
	atg Met														10	33
	aag Lys 290					aa									10	053

<210> 135

<211> 1128

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 86..403

<221> sig_peptide <222> 86..181

<223> Von Heijne matrix score 8.8 seq VPMLLLIVGGSFG/LR

<221> polyA_signal <222> 1097..1102 <221> polyA_site <222> 1117..1128 <400> 135 egtettggtg agagegtgag etgetgagat ttgggagtet gegetaggee egettggagt 60 tctgagccga tggaagagtt cactc atg ttt gca ccc gcg gtg atg cgt gct 112 Met Phe Ala Pro Ala Val Met Arg Ala -30 ttt cgc aag aac aag act ctc ggc tat gga gtc ccc atg ttg ttg ctg 160 Phe Arg Lys Asn Lys Thr Leu Gly Tyr Gly Val Pro Met Leu Leu Leu -20 -15 att gtt gga ggt tct ttt ggt ctt cgt gag ttt tct caa atc cga tat 208 Ile Val Gly Gly Ser Phe Gly Leu Arg Glu Phe Ser Gln Ile Arg Tyr -5 1 gat gct gtg aag agt aaa atg gat cct gag ctt gaa aaa aaa ctg aaa 256 Asp Ala Val Lys Ser Lys Met Asp Pro Glu Leu Glu Lys Lys Leu Lys 15 20 gag aat aaa ata tot tta gag tog gaa tat gag aaa ato aaa gac too 304 Glu Asn Lys Ile Ser Leu Glu Ser Glu Tyr Glu Lys Ile Lys Asp Ser 30 35 40 aag ttt gat gac tgg aag aat att cga gga ccc agg cct tgg gaa gat 352 Lys Phe Asp Asp Trp Lys Asn Ile Arg Gly Pro Arg Pro Trp Glu Asp 50 cct gac ctc ctc caa gga aga aat cca gaa agc ctt aag act aag aca 400 Pro Asp Leu Leu Gln Gly Arg Asn Pro Glu Ser Leu Lys Thr Lys Thr 60 65 act tgactctgct gattcttttt tccnnntttt ttttttttta aataaaaata 453 Thr ctattaactg gacttcctaa tatatacttc tatcaagtgg aaaggaaatt ccaggcccat 513 ggaaacttgg atatgggtaa tttgatgaca aataatcttc actaaaggtc atgtacaggt 573 ttttatactt cccagctatt ccatctgtgg atgaaagtaa caatgttggc cacgtatatt 633 ttacacctcg aaataaaaaa tgtgaatact gctccaaaaa aaaaaaccag taccgtgtag 693 tctctctcgt ggcttggatt tacactgggc aacgtggttg gaatgtatct ggctcagaac 753 tatgatatac caaacctggc taaaaaactt gaagaaatta aaaaggactt ggatgccaag 813 aagaaacccc ctagtgcatg agactgcctc cagcactgcc ttcaggatat accgattcta 873 ctgctcttga gggcctcgtt tactatctga accaaaagct tttgttttcg tctccagcct 933 cagcacttct cttctttgct agaccctgtg ttttttgctt taaagcaagc aaaatggggc 993 cccaatttga gaactacccg acgtttccaa catactcacc tcttcccata atccctttcc 1053 aactgcatgg gaggttctaa gactggaatt atggtgctag attagtaaac atgactttta 1113 acgaaaaaaa aaaaa 1128

<210> 136

<211> 254

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 37..162

<221> sig_peptide

<222> 37..93

<223> Von Heijne matrix
scoxe 9.5
sexp-lmCLSLCTAFALS/KP

<pre><221> polyA_signal <222> 224229</pre>	
<221> polyA_site <222> 243254	
<400> 136	
tgtgctgtgg gggctacgag gaaagatcta attatc atg gac ctg cga cag ttt Met Asp Leu Arg Gln Phe -15	54
ctt atg tgc ctg tcc ctg tgc aca gcc ttt gcc ttg agc aaa ccc aca Leu Met Cys Leu Ser Leu Cys Thr Ala Phe Ala Leu Ser Lys Pro Thr -10 -5 1	102
gaa aag aag gac cgt gta cat cat gag cct cag ctc agt gac aag gtt Glu Lys Lys Asp Arg Val His His Glu Pro Gln Leu Ser Asp Lys Val 5 10	150
cac aat gat att tgatagaacc aattgttgta cataaaacag atctgcgcat His Asn Asp Ile 20	202
atatatatat gtataaaaaa taataaaata atggaagatg aaaaaaaa	254
<pre><210> 137 <211> 886 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 31381 <221> sig_peptide <222> 3190 <223> Von Heijne matrix</pre>	
<pre><400> 137 ggaggatggg cgagcagtct gaatggcaga atg gat aac cgt ttt gct aca gca</pre>	54
-20 -15 ttt gta att gct tgt gtg ctt agc ctc att tcc acc atc tac atg gca Phe Val Ile Ala Cys Val Leu Ser Leu Ile Ser Thr Ile Tyr Met Ala -10 -5 1	102
gcc tcc att ggc aca gac ttc tgg tat gaa tat cga agt cca gtt caa Ala Ser Ile Gly Thr Asp Phe Trp Tyr Glu Tyr Arg Ser Pro Val Gln 5 10 15 20	150
gaa aat tcc agt gat ttg aat aaa agc atc tgg gat gaa ttc att agt Glu Asn Ser Ser Asp Leu Asn Lys Ser Ile Trp Asp Glu Phe Ile Ser 25 30 35	198
gat gag gca gat gaa aag act tat aat gat gca ctt ttt cga tac aat Asp Glu Ala Asp Glu Lys Thr Tyr Asn Asp Ala Leu Phe Arg Tyr Asn 40 45 50	246
ggc aca gtg gga ttg tgg gga cgg tgt atc acc ata ccc aaa aac atg	294
Gly Thr Val Gly Leu Trp Gly Arg Cys Ile Thr Ile Pro Lys Asn Met 55 60 65	
cat tgg tat agc cca cca gaa agg aca ggt att tct ctt att tta act	342
His Trp Tyr Ser Pro Pro Glu Arg Thr Gly Ile Ser Leu Ile Leu Thr	

WO 99/31236 -111- PCT/IB98/02122

+ = +	70 ata	++0	++-	200	taa	75	ata	2+2	a a c	222	80	3.00	taa	tgat	tac	391
			Phe												Lgc	331
85					90					95						
															gtgtat tcaata	451 511
				-						-		_	_		ttctta	571
-	_	-							_						agttgg	631
			_	_							_		_		atcgaa	691
				_				_							atcatt attatg	751 811
_					-		_		_				_	_	acagaa	871
	-		aaaa			_									_	886
<210)> 1	38														
	l> 1:															
	2 > D		sapi	226												
(21.) N	Onto ;	sapı	=115												
<220)>															
	L> CI	-														
<222	2> 40	65	79													
<22	L> s:	ig pe	eptio	de												
<222	2 > 4	61	56													
<223			eijne	e mat	crix											
		core ea LV	J.5 VFNF1	LLIL	TILT.	/TW										
		-1 -			,	,										
<400																
			ggtti	nttai	to ta	angga	aatco	c cni	nnaag	gact	333	-		lu A	ga cag rg Gln	57
ccct	tato	cca g										Me	et G	lu A	rg Gln 35	57 105
ccct	tato agg	cca g gtt	atg Met	tca	gaa	aag	gat	gag Glu	tat	cag	ttt	Me caa	cat His	lu Ai	rg Gln 35 nna	
ccct tca Ser	agg Arg	gtt Val	atg Met -30	tca Ser	gaa Glu	aag Lys	gat Asp	gag Glu -25	tat Tyr	cag Gln	ttt Phe	Me caa Gln	cat His	can Xaa	rg Gln 35 nna Xaa	105
tca Ser gcg	agg Arg gng	gtt Val gan	atg Met -30 ctg	tca Ser	gaa Glu gtc	aag Lys ttc	gat Asp aat	gag Glu -25 ttt	tat Tyr ttg	cag Gln ctc	ttt Phe atc	caa Gln	cat His -20 acc	lu Ai -: can	rg Gln 35 nna Xaa ttg	
tca Ser gcg Ala	agg Arg gng Xaa	gtt Val gan Xaa	atg Met -30 ctg Leu	tca Ser ctt Leu	gaa Glu gtc Val	aag Lys ttc Phe	gat Asp aat Asn -10	gag Glu -25 ttt Phe	tat Tyr ttg Leu	cag Gln ctc Leu	ttt Phe atc Ile	caa Gln ctt Leu	cat His -20 acc	can Xaa att	rg Gln 35 nna Xaa ttg Leu	105
tca Ser gcg Ala	agg Arg gng Xaa	gtt Val gan Xaa -15	atg Met -30 ctg Leu	tca ser ctt Leu	gaa Glu gtc Val	aag Lys ttc Phe	gat Asp aat Asn -10 cat	gag Glu -25 ttt Phe	tat Tyr ttg Leu	cag Gln ctc Leu	ttt Phe atc Ile	caa Gln ctt Leu -5 ttg	cat His -20 acc Thr	can Xaa att Ile	rg Gln 35 nna Xaa ttg Leu act	105
tca Ser gcg Ala	agg Arg gng Xaa	gtt Val gan Xaa -15	atg Met -30 ctg Leu	tca ser ctt Leu	gaa Glu gtc Val aaa Lys	aag Lys ttc Phe	gat Asp aat Asn -10 cat	gag Glu -25 ttt Phe	tat Tyr ttg Leu	cag Gln ctc Leu cgc Arg	ttt Phe atc Ile	caa Gln ctt Leu -5 ttg	cat His -20 acc Thr	can Xaa att	rg Gln 35 nna Xaa ttg Leu act	105 153
tca Ser gcg Ala aca Thr	agg Arg gng Xaa atc Ile 1	gtt Val gan Xaa -15 tgg Trp	atg Met -30 ctg Leu tta Leu	tca Ser ctt Leu ttt Phe	gaa Glu gtc Val aaa Lys 5	aag Lys ttc Phe aat Asn	gat Asp aat Asn -10 cat His	gag Glu -25 ttt Phe cga Arg	tat Tyr ttg Leu ttc Phe	cag Gln ctc Leu cgc Arg 10	ttt Phe atc Ile ttc Phe	Caa Gln Ctt Leu -5 ttg Leu	cat His -20 acc Thr cat His	can Xaa att Ile gaa Glu	rg Gln 35 nna Xaa ttg Leu act Thr 15 tat	105 153
tca Ser gcg Ala aca Thr	agg Arg gng Xaa atc Ile 1	gtt Val gan Xaa -15 tgg Trp	atg Met -30 ctg Leu tta Leu	tca Ser Ctt Leu ttt Phe	gaa Glu gtc Val aaa Lys 5	aag Lys ttc Phe aat Asn	gat Asp aat Asn -10 cat His	gag Glu -25 ttt Phe cga Arg	tat Tyr ttg Leu ttc Phe atg Met	cag Gln ctc Leu cgc Arg 10	ttt Phe atc Ile ttc Phe	Caa Gln Ctt Leu -5 ttg Leu	cat His -20 acc Thr cat His	can Xaa att Ile gaa Glu cga Arg	rg Gln 35 nna Xaa ttg Leu act Thr 15 tat	105 153 201
tca Ser gcg Ala aca Thr	agg Arg gng Xaa atc Ile 1 gga Gly	gtt Val gan Xaa -15 tgg Trp gca Ala	atg Met -30 ctg Leu tta Leu atg Met	tca Ser Ctt Leu ttt Phe gtg Val 20	gaa Glu gtc Val aaa Lys 5 tat Tyr	aag Lys ttc Phe aat Asn ggc Gly	gat Asp aat Asn -10 cat His ctt Leu	gag Glu -25 ttt Phe cga Arg ata Ile	tat Tyr ttg Leu ttc Phe atg Met 25	cag Gln ctc Leu cgc Arg 10 gga Gly	ttt Phe atc Ile ttc Phe cta Leu	Caa Gln Ctt Leu -5 ttg Leu att	cat His -20 acc Thr cat His	can Xaa att Ile gaa Glu cga Arg 30	rg Gln 35 nna Xaa ttg Leu act Thr 15 tat Tyr	105 153 201 249
tca Ser gcg Ala aca Thr gga Gly	agg Arg gng Xaa atc Ile 1 gga Gly	gtt Val gan Xaa -15 tgg Trp gca Ala	atg Met -30 ctg Leu tta Leu atg Met	tca Ser ctt Leu ttt Phe gtg Val 20 act	gaa Glu gtc Val aaa Lys 5 tat Tyr	aag Lys ttc Phe aat Asn ggc Gly	gat Asp aat Asn -10 cat His ctt Leu	gag Glu -25 ttt Phe cga Arg ata Ile	tat Tyr ttg Leu ttc Phe atg Met 25 gga	cag Gln ctc Leu cgc Arg 10 gga Gly	ttt Phe atc Ile ttc Phe cta Leu	Caa Gln ctt Leu -5 ttg Leu att Ile	cat His -20 acc Thr cat His	lu Ai can Xaa att Ile gaa Glu cga Arg 30 tgt	rg Gln 35 nna Xaa ttg Leu act Thr 15 tat Tyr	105 153 201
tca Ser gcg Ala aca Thr gga Gly	agg Arg gng Xaa atc Ile 1 gga Gly	gtt Val gan Xaa -15 tgg Trp gca Ala	atg Met -30 ctg Leu tta Leu atg Met	tca Ser ctt Leu ttt Phe gtg Val 20 act	gaa Glu gtc Val aaa Lys 5 tat Tyr	aag Lys ttc Phe aat Asn ggc Gly	gat Asp aat Asn -10 cat His ctt Leu	gag Glu -25 ttt Phe cga Arg ata Ile	tat Tyr ttg Leu ttc Phe atg Met 25 gga	cag Gln ctc Leu cgc Arg 10 gga Gly	ttt Phe atc Ile ttc Phe cta Leu	Caa Gln ctt Leu -5 ttg Leu att Ile	cat His -20 acc Thr cat His	can Xaa att Ile gaa Glu cga Arg 30	rg Gln 35 nna Xaa ttg Leu act Thr 15 tat Tyr	105 153 201 249
tca Ser gcg Ala aca Thr gga Gly gct Ala aaa	agg Arg gng Xaa atc Ile 1 gga Gly aca Thr	gtt Val gan Xaa -15 tgg Trp gca Ala gca Ala	atg Met -30 ctg Leu tta Leu atg Met cca Pro 35	tca Ser Ctt Leu ttt Phe gtg Val 20 act Thr	gaa Glu gtc Val aaa Lys 5 tat Tyr gat Asp	aag Lys ttc Phe aat Asn ggc Gly att Ile	gat Asp aat Asn -10 cat His ctt Leu gaa Glu act	gag Glu -25 ttt Phe cga Arg ata Ile agt Ser 40 ctg	tat Tyr ttg Leu ttc Phe atg Met 25 gga Gly	cag Gln ctc Leu cgc Arg 10 gga Gly act Thr	ttt Phe atc Ile ttc Phe cta Leu gtc Val	caa Gln ctt Leu -5 ttg Leu att Ile tgt Cys	cat His -20 acc Thr cat His tca Ser gac Asp 45 act	lu Ai can Xaa att Ile gaa Glu cga Arg 30 tgt Cys	rg Gln 35 nna Xaa ttg Leu act Thr 15 tat Tyr gta Val caa	105 153 201 249
tca Ser gcg Ala aca Thr gga Gly gct Ala aaa	agg Arg gng Xaa atc Ile 1 gga Gly aca Thr	gtt Val gan Xaa -15 tgg Trp gca Ala gca Ala	atg Met -30 ctg Leu tta Leu atg Met cca Pro 35	tca Ser Ctt Leu ttt Phe gtg Val 20 act Thr	gaa Glu gtc Val aaa Lys 5 tat Tyr gat Asp	aag Lys ttc Phe aat Asn ggc Gly att Ile	gat Asp aat Asn -10 cat His ctt Leu gaa Glu act	gag Glu -25 ttt Phe cga Arg ata Ile agt Ser 40 ctg	tat Tyr ttg Leu ttc Phe atg Met 25 gga Gly	cag Gln ctc Leu cgc Arg 10 gga Gly act Thr	ttt Phe atc Ile ttc Phe cta Leu gtc Val	caa Gln ctt Leu -5 ttg Leu att Ile tgt Cys	cat His -20 acc Thr cat His tca Ser gac Asp 45 act	can Xaa att Ile gaa Glu cga Arg 30 tgt Cys	rg Gln 35 nna Xaa ttg Leu act Thr 15 tat Tyr gta Val caa	105 153 201 249 297
tca Ser gcg Ala aca Thr gga Gly gct Ala aaa Lys	agg Arg gng Xaa atc Ile 1 gga Gly aca Thr	gtt Val gan Xaa -15 tgg Trp gca Ala gca Ala act Thr	atg Met -30 ctg Leu tta Leu atg Met cca Pro 35 ttc	tca Ser Ctt Leu ttt Phe gtg Val 20 act Thr agt	gaa Glu gtc Val aaa Lys 5 tat Tyr gat Asp	aag Lys ttc Phe aat Asn ggc Gly att Ile cca Pro	gat Asp aat Asn -10 cat His ctt Leu gaa Glu act Thr	gag Glu -25 ttt Phe cga Arg ata Ile agt Ser 40 ctg Leu	tat Tyr ttg Leu ttc Phe atg Met 25 gga Gly ctg Leu	cag Gln ctc Leu cgc Arg 10 gga Gly act Thr	ttt Phe atc Ile ttc Phe cta Leu gtc Val aat	caa Gln ctt Leu -5 ttg Leu att Ile tgt Cys gtc Val 60	cat His -20 acc Thr cat His tca Ser gac Asp 45 act Thr	can Xaa att Ile gaa Glu cga Arg 30 tgt Cys gac Asp	rg Gln 35 nna Xaa ttg Leu act Thr 15 tat Tyr gta Val caa Gln	105 153 201 249 297
tca Ser gcg Ala aca Thr gga Gly gct Ala aaa Lys	agg Arg gng Xaa atc Ile 1 gga Gly aca Thr	gtt Val gan Xaa -15 tgg Trp gca Ala gca Ala act Thr 50 gaa	atg Met -30 ctg Leu tta Leu atg Met cca Pro 35 ttc Phe	tca Ser Ctt Leu ttt Phe gtg Val 20 act Thr agt Ser	gaa Glu gtc Val aaa Lys 5 tat Tyr gat Asp cca Pro	aag Lys ttc Phe aat Asn ggc Gly att Ile cca Pro	gat Asp aat Asn -10 cat His ctt Leu gaa Glu act Thr 55 aga	gag Glu -25 ttt Phe cga Arg ata Ile agt Ser 40 ctg Leu	tat Tyr ttg Leu ttc Phe atg Met 25 gga Gly ctg Leu ata	cag Gln ctc Leu cgc Arg 10 gga Gly act Thr	ttt Phe atc Ile ttc Phe cta Leu gtc Val aat Asn	caa Gln ctt Leu -5 ttg Leu att Ile tgt Cys gtc Val 60 cac	cat His -20 acc Thr cat His tca Ser gac Asp 45 act Thr aac	lu Ai can Xaa att Ile gaa Glu cga Arg 30 tgt Cys	rg Gln 35 nna Xaa ttg Leu act Thr 15 tat Tyr gta Val caa Gln aat	105 153 201 249 297
tca Ser gcg Ala aca Thr gga Gly gct Ala aaa Lys gtt Val	agg Arg gng Xaa atc Ile 1 gga Gly aca Thr cta Leu tat Tyr 65	gtt Val gan Xaa -15 tgg Trp gca Ala gca Ala act Thr 50 gaa Glu	atg Met -30 ctg Leu tta Leu atg Met cca Pro 35 ttc Phe tat Tyr	tca Ser Ctt Leu ttt Phe gtg Val 20 act Thr agt Ser aaa Lys	gaa Glu gtc Val aaa Lys 5 tat Tyr gat Asp cca Pro	aag Lys ttc Phe aat Asn ggc Gly att Ile cca Pro aaa Lys 70	gat Asp aat Asn -10 cat His ctt Leu gaa Glu act Thr 55 aga Arg	gag Glu -25 ttt Phe cga Arg ata Ile agt Ser 40 ctg Leu gaa Glu	tat Tyr ttg Leu ttc Phe atg Met 25 gga Gly ctg Leu ata Ile	cag Gln ctc Leu cgc Arg 10 gga Gly act Thr gtt Val agt Ser	ttt Phe atc Ile ttc Phe cta Leu gtc Val aat Asn cag Gln 75	caa Gln ctt Leu -5 ttg Leu att Ile tgt Cys gtc Val 60 cac His	cat His -20 acc Thr cat His tca Ser gac Asp 45 act Thr aac Asn	lu Ai can Xaa att Ile gaa Glu cga Arg 30 tgt Cys gac Asp atc Ile	rg Gln 35 nna Xaa ttg Leu act Thr 15 tat Tyr gta Val caa Gln aat Asn	105 153 201 249 297 345
tca Ser gcg Ala aca Thr gga Gly gct Ala aaa Lys gtt Val	agg gng Xaa atc Ile 1 gga Gly aca Thr cta Leu tat Tyr 65 cat	gtt Val gan Xaa -15 tgg Trp gca Ala gca Ala act Thr 50 gaa Glu caa	atg Met -30 ctg Leu tta Leu atg Met cca Pro 35 ttc Phe tat Tyr	tca Ser Ctt Leu ttt Phe gtg Val 20 act Thr agt Ser aaa Lys	gaa Glu gtc Val aaa Lys 5 tat Tyr gat Asp cca Pro tac Tyr	aag Lys ttc Phe aat Asn ggc Gly att Ile cca Pro aaa Lys 70 ata	gat Asp aat Asn -10 cat His ctt Leu gaa Glu act Thr 55 aga Arg	gag Glu -25 ttt Phe cga Arg ata Ile agt 40 ctg Leu gaa Glu	tat Tyr ttg Leu ttc Phe atg Met 25 gga Gly ctg Leu ata Ile	cag Gln ctc Leu cgc Arg 10 gga Gly act Thr gtt Val agt Ser atg	ttt Phe atc Ile ttc Phe cta Leu gtc Val aat Asn cag Gln 75 aca	caa Gln ctt Leu -5 ttg Leu att Ile tgt Cys gtc Val 60 cac His	cat His -20 acc Thr cat His tca Ser gac Asp 45 act Thr aac Asn gat	lu Ai can Xaa att Ile gaa Glu cga Arg 30 tgt Cys gac Asp atc Ile cca	rg Gln 35 nna Xaa ttg Leu act Thr 15 tat Tyr gta Val caa Gln aat Asn	105 153 201 249 297
tca Ser gcg Ala aca Thr gga Gly gct Ala aaa Lys gtt Val	agg gng Xaa atc Ile 1 gga Gly aca Thr cta Leu tat Tyr 65 cat	gtt Val gan Xaa -15 tgg Trp gca Ala gca Ala act Thr 50 gaa Glu caa	atg Met -30 ctg Leu tta Leu atg Met cca Pro 35 ttc Phe tat Tyr	tca Ser Ctt Leu ttt Phe gtg Val 20 act Thr agt Ser aaa Lys	gaa Glu gtc Val aaa Lys 5 tat Tyr gat Asp cca Pro tac Tyr	aag Lys ttc Phe aat Asn ggc Gly att Ile cca Pro aaa Lys 70 ata	gat Asp aat Asn -10 cat His ctt Leu gaa Glu act Thr 55 aga Arg	gag Glu -25 ttt Phe cga Arg ata Ile agt 40 ctg Leu gaa Glu	tat Tyr ttg Leu ttc Phe atg Met 25 gga Gly ctg Leu ata Ile	cag Gln ctc Leu cgc Arg 10 gga Gly act Thr gtt Val agt Ser atg	ttt Phe atc Ile ttc Phe cta Leu gtc Val aat Asn cag Gln 75 aca	caa Gln ctt Leu -5 ttg Leu att Ile tgt Cys gtc Val 60 cac His	cat His -20 acc Thr cat His tca Ser gac Asp 45 act Thr aac Asn gat	lu Ai can Xaa att Ile gaa Glu cga Arg 30 tgt Cys gac Asp atc Ile	rg Gln 35 nna Xaa ttg Leu act Thr 15 tat Tyr gta Val caa Gln aat Asn	105 153 201 249 297 345
tca Ser gcg Ala aca Thr gga Gly gct Ala aaa Lys gtt Val cct Pro 80 atc	agg gng Xaa atc Ile 1 gga Gly aca Thr cta Leu tat Tyr 65 cat His	gtt Val gan Xaa -15 tgg Trp gca Ala gca Ala act Thr 50 gaa Glu caa Gln	atg Met -30 ctg Leu tta Leu atg Met cca Pro 35 ttc Phe tat Tyr gga Gly aat	tca Ser Ctt Leu ttt Phe gtg Val 20 act Thr agt Ser aaa Lys aat Asn	gaa Glu gtc Val aaa Lys 5 tat Tyr gat Asp cca Pro tac Tyr gct Ala 85 tta	aag Lys ttc Phe aat Asn ggc Gly att Ile cca Pro aaa Lys 70 ata Ile ctg	gat Asp aat Asn -10 cat His ctt Leu gaa Glu act Thr 55 aga Arg	gag Glu -25 ttt Phe cga ata Ile agt 40 ctg Leu gaa Glu gaa Glu	tat Tyr ttg Leu ttc Phe atg Met 25 gga Gly ctg Leu ata Ile aag Lys	cag Gln ctc Leu cgc Arg 10 gga Gly act Thr gtt Val agt Ser atg Met 90 ata	ttt Phe atc Ile ttc Phe cta Leu gtc Val aat Asn cag Gln 75 aca Thr	caa Gln ctt Leu -5 ttg Leu att Ile tgt Cys gtc Val 60 cac His ttt Phe cat	cat His -20 acc Thr cat Ser gac Asp act Thr aac Asp gca	lu Ai can Xaa att Ile gaa Glu cga Arg 30 tgt Cys gac Asp atc Ile cca Pro	rg Gln 35 nna Xaa ttg Leu act Thr 15 tat Tyr gta Val caa Gln aat Asn gaa Glu 95 tat	105 153 201 249 297 345
tca Ser gcg Ala aca Thr gga Gly gct Ala aaa Lys gtt Val cct Pro 80 atc	agg gng Xaa atc Ile 1 gga Gly aca Thr cta Leu tat Tyr 65 cat His	gtt Val gan Xaa -15 tgg Trp gca Ala gca Ala act Thr 50 gaa Glu caa Gln	atg Met -30 ctg Leu tta Leu atg Met cca Pro 35 ttc Phe tat Tyr gga Gly aat	tca Ser Ctt Leu ttt Phe gtg Val 20 act Thr agt Ser aaa Lys aat Asn	gaa Glu gtc Val aaa Lys 5 tat Tyr gat Asp cca Pro tac Tyr gct Ala 85 tta	aag Lys ttc Phe aat Asn ggc Gly att Ile cca Pro aaa Lys 70 ata Ile ctg	gat Asp aat Asn -10 cat His ctt Leu gaa Glu act Thr 55 aga Arg	gag Glu -25 ttt Phe cga ata Ile agt 40 ctg Leu gaa Glu gaa Glu	tat Tyr ttg Leu ttc Phe atg Met 25 gga Gly ctg Leu ata Ile aag Lys	cag Gln ctc Leu cgc Arg 10 gga Gly act Thr gtt Val agt Ser atg Met 90 ata	ttt Phe atc Ile ttc Phe cta Leu gtc Val aat Asn cag Gln 75 aca Thr	caa Gln ctt Leu -5 ttg Leu att Ile tgt Cys gtc Val 60 cac His ttt Phe cat	cat His -20 acc Thr cat Ser gac Asp act Thr aac Asp gca	can Xaa att Ile gaa Glu cga Arg 30 tgt Cys gac Asp atc Ile cca Pro	rg Gln 35 nna Xaa ttg Leu act Thr 15 tat Tyr gta Val caa Gln aat Asn gaa Glu 95 tat	105 153 201 249 297 345 393

WO 99/31236 -112 - PCT/IB98/02122

•				
	His Phe Phe		gga tct att tta acg Gly Ser Ile Leu Thr 125	
tat gcc ttc ttg gga Tyr Ala Phe Leu Gly 130				579
taagtgacat toggagot totaacactt coaggatt atttgtatgt tttttetg aagcaaacta gaggattg gtggatcact tgccttga gccgatatgg tcactgca aggagtgcaa aagtaact gcagtctgaa acagatat ttcagttaat accetgta actgagocct aagtcaca	ca agttgcaggt ct tgctggctgg ac ttaattccac ct ggactttctc gt tatgtgaagc tt cttttttgtc at atgccaagag gn tccaaatatn ga atgcagactc cg ttatatactc	gaaaattgtc ggcttctgac tgtgagttct gcattgcatt	tctgtgatct gtgtgagg ttttttttag tatatcac aaatacaagg cttcaaat ggacttctga cttaggga cttcttttag tttgagta agaccttacc tgtatttg aaaggaaagt ttacaaga gcttaataca gggatagc tgtatttct tgattatg ctcatcataa agtaaaat gtccaataca ttaaagnt	cat 699 ca 759 nat 819 nat 879 ggc 939 nca 999 ctt 1059 gct 1119 cgt 1179
<210> 139 <211> 471 <212> DNA <213> Homo sapiens		·		
<220> <221> CDS <222> 92469				
<221> sig_peptide <222> 92172 <223> Von Heijne ma score 7.9 seq VVVLALGFL				
<221> polyA_signal <222> 454459				
<221> polyA_site <222> 458471				
<400> 139 gcaagtgcag aagtcggt gaagatcttc gggccact		c atg cag t Met Gln F	atcgatgggg catccttt tt gtc aac gtg ggc Phe Val Asn Val Gly	ct 60 112
			gct ctt ggt ttc ctg Ala Leu Gly Phe Leu -5	
	Lys Thr Glu		gcc ctc gtg acg ttc Ala Leu Val Thr Phe 10	
			gtt gca gct gct gtg Val Ala Ala Ala Val 25	
			ttc ctg acg ttg ctg Phe Leu Thr Leu Leu 40	
			cag gaa gac ttc act Gln Glu Asp Phe Thr 60	

WO 99/31236 -113 - PCT/IB98/02122

5					10					15					20	
tcc	atg	gct	ctc	atc	ctc	ttc	tgc	aac	tac	tat	gtt	tta	ttt	aaa	ctt	606
Ser	Met	Ala	Leu	Ile	Leu	Phe	Суѕ	Asn	Tyr	Tyr	Val	Leu	Phe	Lys	Leu	•
				25					30					35		
ctc	cgg	gac	aga	ata	gta	tta	ggc	agg	gca	tac	tcc	tac	cca	ctc	aac	654
Leu	Arg	Asp	Arg	Ile	Val	Leu	Gly	Arg	Ala	Tyr	Ser	Tyr	Pro	Leu	Asn	
			40					45					50			
agt	tat	gaa	ctc	aag	gca	aac	taag	gctgo	ct o	ctcaa	acaat	gag	gggag	gaact	:	705
Ser	Tyr	Glu	Leu	Lys	Ala	Asn										
	_	55		-												
cagataaaaa tattttcata cgttctattt ttttcttgtg atttttataa atatttaaga													765			
tgttttatat tttgtatact attatgtttt gaaagtcggg aagagtaagg gatattaaat												825				
gtatccgtaa acaaaaaaa aaaa														849		
-	_															

<210> 141

<211> 155

<212> PRT

<213> Homo sapiens

<220>

<221> SIGNAL

<222> -31..-1

<400> 141

Met Phe Thr Ser Thr Gly Ser Ser Gly Leu Tyr Lys Ala Pro Leu Ser -30 -25 -20 Lys Ser Leu Leu Leu Val Pro Ser Ala Leu Ser Leu Leu Leu Ala Leu -15 -10 -5 Leu Leu Pro His Cys Gln Lys Pro Phe Val Tyr Asp Leu His Ala Val 10 Lys Asn Asp Phe Gln Ile Trp Arg Leu Ile Cys Gly Arg Ile Ile Cys 20 25 Leu Asp Leu Lys Asp Thr Phe Cys Ser Ser Leu Leu Ile Tyr Asn Phe 40 Arg Ile Phe Glu Arg Arg Tyr Gly Ser Arg Lys Phe Ala Ser Phe Leu 55 60 Leu Gly Thr Trp Val Leu Ser Ala Leu Phe Asp Phe Leu Leu Ile Glu 75 Ala Met Gln Tyr Phe Phe Gly Ile Thr Ala Ala Ser Asn Leu Pro Ser 90 Gly Leu Ile Phe Cys Cys Ala Phe Cys Ser Glu Thr Lys Leu Phe Leu

105

Ser Arg Gln Ala Met Ala Glu Asn Phe Ser Ile

120

<210> 142

115

<211> 55

<212> PRT

<213> Homo sapiens

<400> 142

WO 99/31236 -115- PCT/IB98/02122 -

50 55

<210> 143 <211> 67 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -20..-1

<210> 144 <211> 198 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -21..-1

<400> 144 Met Pro Val Pro Ala Leu Cys Leu Leu Trp Ala Leu Ala Met Val Thr -15 -10 Arg Pro Ala Ser Ala Ala Pro Met Gly Gly Pro Glu Leu Ala Gln His 1 5 Glu Glu Leu Thr Leu Leu Phe His Gly Thr Leu Gln Leu Gly Gln Ala 20 Leu Asn Gly Val Tyr Arg Thr Thr Glu Gly Trp Leu Thr Lys Ala Arg 35 Asn Ser Leu Gly Leu Tyr Gly Arg Thr Ile Glu Leu Leu Gly Gln Glu 50 Val Ser Arg Gly Arg Asp Ala Ala Gln Glu Leu Arg Ala Ser Leu Leu 65 70 Glu Thr Gln Met Glu Glu Asp Ile Leu Gln Leu Gln Ala Glu Ala Thr 80 85 Ala Glu Val Leu Gly Glu Val Ala Gln Ala Gln Lys Val Leu Arg Asp 100 Ser Val Gln Arg Leu Glu Val Gln Leu Arg Ser Ala Trp Leu Gly Pro 115 Ala Tyr Arg Glu Phe Glu Val Leu Lys Ala His Ala Asp Lys Gln Ser 130 His Ile Leu Trp Ala Leu Thr Gly His Val Gln Arg Gln Arg Glu 145 150 Met Val Ala Gln Gln His Arg Leu Arg Gln Ile Gln Glu Arg Leu His 160 165 Thr Ala Ala Leu Pro Ala

175

<210> 145 <211> 135 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -25..-1 <400> 145 Met Ser Leu Arg Asn Leu Trp Arg Asp Tyr Lys Val Leu Val Val Met -25 -20 -15 -10 Val Pro Leu Val Gly Leu Ile His Leu Gly Trp Tyr Arg Ile Lys Ser 1 - 5 Ser Pro Val Phe Gln Ile Pro Lys Asn Asp Asp Ile Pro Glu Gln Asp 10 15 20 Ser Leu Gly Leu Ser Asn Leu Gln Lys Ser Gln Ile Gln Gly Lys Xaa 30 Ala Gly Leu Gln Ser Ser Gly Lys Glu Ala Ala Leu Asn Leu Ser Phe 45 50 Ile Ser Lys Glu Glu Met Lys Asn Thr Ser Trp Ile Arg Lys Asn Trp 60 65 70 Leu Leu Val Ala Gly Ile Ser Phe Ile Gly Asp His Leu Gly Thr Tyr 80 Phe Leu Gln Arg Ser Ala Lys Gln Ser Val Lys Phe Gln Ser Gln Ser Lys Gln Lys Ser Ile Glu Glu 105 <210> 146 <211> 255 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -70..-1 <400> 146 Met Gln Gln Lys Glu Gln Gln Phe Arg Glu Trp Phe Leu Lys Glu Phe -60 -55 -65 Pro Gln Ile Arg Trp Lys Ile Gln Glu Ser Ile Glu Arg Leu Arg Val -50 -45 Ile Ala Asn Glu Ile Glu Lys Val His Arg Gly Cys Val Ile Ala Asn -30 -25 Val Val Ser Gly Ser Thr Gly Ile Leu Ser Val Ile Gly Val Met Leu -20 -15 -10 Ala Pro Phe Thr Ala Gly Leu Ser Leu Ser Ile Thr Ala Ala Gly Val 1 5 Gly Leu Gly Ile Ala Ser Ala Thr Ala Gly Ile Ala Ser Ser Ile Val 15 20 Glu Asn Thr Tyr Thr Arg Ser Ala Glu Leu Thr Ala Ser Arg Leu Thr

Ala Thr Ser Thr Asp Gln Leu Glu Ala Leu Arg Asp Ile Leu His Asp
45
50
55

Ile Thr Pro Asn Val Leu Ser Phe Ala Leu Asp Phe Asp Glu Ala Thr

70 Lys Met Ile Ala Asn Asp Val His Thr Leu Arg Arg Ser Lys Ala Thr 80 85 Val Gly Arg Pro Leu Ile Ala Trp Arg Tyr Val Pro Ile Asn Val Val 100 Glu Thr Leu Arg Thr Arg Gly Ala Pro Thr Arg Ile Val Arg Lys Val 110 115 Ala Arg Asn Leu Gly Lys Ala Thr Ser Gly Val Leu Val Val Leu Asp 130 Val Val Asn Leu Val Gln Asp Ser Leu Asp Leu His Lys Gly Glu Lys 150 145 Ser Glu Ser Ala Glu Leu Leu Arg Gln Trp Ala Gln Glu Leu Glu Glu 160 165 Asn Leu Asn Glu Leu Thr His Ile His Gln Ser Leu Lys Ala Gly 180 175

<210> 147
<211> 59
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -49..-1
<400> 147

 Met Pro Gly Thr Glu Val Leu Glu Gly Ala Thr Asp Gly Leu Ala Ala -45
 -40
 -35

 Ile Asn Leu Leu Lys Trp Ile Lys Thr Leu Gly Gly Ser Val Ile Ser -30
 -25
 -20

 Met Ile Val Leu Leu Leu Ile Cys Val Val Cys Leu Tyr Ile Val Cys Arg -15
 -10
 -5

 Cys Gly Ser His Leu Trp Arg Glu Ser His His 1
 5
 10

<210> 148 <211> 180 <212> PRT <213> Homo sapiens

<400> 148 Met Cys Ile Ser Gly Leu Cys Gln Ile Val Gly Cys Asp His Gln Leu 10 Gly Ser Thr Val Lys Glu Asp Asn Cys Gly Val Cys Asn Gly Asp Gly 25 20 Ser Thr Cys Arg Leu Val Arg Gly Gln Tyr Lys Ser Gln Leu Ser Ala 35 40 Thr Lys Ser Asp Asp Thr Val Val Ala Ile Pro Tyr Gly Ser Arg His 60 55 Ile Arg Leu Val Leu Lys Gly Pro Asp His Leu Tyr Leu Glu Thr Lys 70 75 Thr Leu Gln Gly Thr Lys Gly Glu Asn Ser Leu Ser Ser Thr Gly Thr 90 Phe Leu Val Asp Asn Ser Ser Val Asp Phe Gln Lys Phe Pro Asp Lys 105 100 Glu Ile Leu Arg Met Ala Gly Pro Leu Thr Ala Asp Phe Ile Val Lys 120 Ile Arg Asm Ser Gly Ser Ala Asp Ser Thr Val Gln Phe Ile Phe Tyr WO 99/31236 -118- PCT/IB98/02122 -

```
140
                  135
Gln Pro Ile Ile His Arg Trp Arg Glu Thr Asp Phe Phe Pro Cys Ser
      150 155 160
Ala Thr Cys Gly Gly Gly Tyr Gln Leu Thr Ser Ala Glu Cys Tyr Asp
    165 170
Leu Arg Ser Asn
      180
<210> 149
<211> 162
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -23..-1
<400> 149
Met Gly Asp Lys Ile Trp Leu Pro Phe Pro Val Leu Leu Leu Ala Ala
    -20 -15 -10
Leu Pro Pro Val Leu Leu Pro Gly Ala Ala Gly Phe Thr Pro Ser Leu
 -5 1 5
Asp Ser Asp Phe Thr Phe Thr Leu Pro Ala Gly Gln Lys Glu Cys Phe
10 15 20 25
Tyr Gln Pro Met Pro Leu Lys Ala Ser Leu Glu Ile Glu Tyr Gln Val
         30
                           35
Leu Asp Gly Ala Gly Leu Asp Ile Asp Phe His Leu Ala Ser Pro Glu
                        50
Gly Lys Thr Leu Val Phe Glu Gln Arg Lys Ser Asp Gly Val His Thr
             65 70
Val Glu Thr Glu Val Gly Asp Tyr Met Phe Cys Phe Asp Asn Thr Phe
Ser Thr Ile Ser Glu Lys Val Ile Phe Phe Glu Leu Ile Pro Asp Asn
                     100 105
            95
Met Gly Glu Gln Ala Gln Glu Gln Glu Asp Trp Lys Lys Tyr Ile Thr
            110 115 120
Gly Thr Asp Ile Leu Asp Met Lys Leu Glu Asp Ile Leu Val Ser Met
         125 130
Val Phe
<210> 150
<211> 120
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -23..-1
<400> 150
Met Gly Asp Lys Ile Trp Leu Pro Phe Pro Val Leu Leu Leu Ala Ala
      -20 -15 -10
Leu Pro Pro Val Leu Leu Pro Gly Ala Ala Gly Phe Thr Pro Ser Leu
                1
Asp Ser Asp Phe Thr Phe Thr Leu Pro Ala Gly Gln Lys Glu Cys Phe
10 15 20
Tyr Gln Pro Met Pro Leu Lys Ala Ser Leu Glu Ile Glu Tyr Gln Val
```

Leu Asp Gly Ala Gly Leu Asp Ile Asp Phe His Leu Ala Ser Pro Glu
45
Gly Lys Thr Leu Val Phe Glu Gln Arg Lys Ser Asp Gly Val His Thr
60
Cys Ile Arg Ser Lys Asn Gly Pro Gly Thr Ala Val His Ala Tyr Asn
75
Pro Ser Thr Phe Arg Gly Gln Val
90

<210> 151 <211> 7 <212> PRT <213> Homo sapiens <400> 151 Met Val Glu Met Thr Gly Val 1 5

<210> 152 <211> 199 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -42..-1

<400> 152 Met Asp Gly Gln Lys Lys Asn Trp Lys Asp Lys Val Val Asp Leu Leu -40 -35 -30 Tyr Trp Arg Asp Ile Lys Lys Thr Gly Val Val Phe Gly Ala Ser Leu -15 -20 Phe Leu Leu Ser Leu Thr Val Phe Ser Ile Val Ser Val Thr Ala -5 1 5 Tyr Ile Ala Leu Ala Leu Leu Ser Val Thr Ile Ser Phe Arg Ile Tyr 10 15 20 Lys Gly Val Ile Gln Ala Ile Gln Lys Ser Asp Glu Gly His Pro Phe 25 30 Arg Ala Tyr Leu Glu Ser Glu Val Ala Ile Ser Glu Glu Leu Val Gln 40 45 50 Lys Tyr Ser Asn Ser Ala Leu Gly His Val Asn Cys Thr Ile Lys Glu 60 Leu Arg Arg Leu Phe Leu Val Asp Asp Leu Val Asp Ser Leu Lys Phe 75 Ala Val Leu Met Trp Val Phe Thr Tyr Val Gly Ala Leu Phe Asn Gly 95 90 Leu Thr Leu Leu Ile Leu Ala Leu Ile Ser Leu Phe Ser Val Pro Val 110 Ile Tyr Glu Arg His Gln Ala Gln Ile Asp His Tyr Leu Val Leu Ala 130 120 125 Asn Lys Asn Val Lys Asp Ala Met Ala Lys Ile Gln Ala Lys Ile Pro 145 135 140 Gly Leu Lys Arg Lys Ala Glu

WO 99/31236 -120- PCT/IB98/02122 -

```
<211> 43
<212> PRT
<213> Homo sapiens
Met Pro Phe Arg Met Ser Gly Tyr Ile Pro Phe Gly Thr Pro Ile Val
                               10
Ser Val Thr Phe Lys Gly Phe Pro Phe Leu Lys Asn Tyr Phe Lys Cys
    20
                           25
Leu Thr Leu Cys Tyr Cys Ser Arg Val Phe Asp
<210> 154
<211> 50
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -37..-1
<400> 154
Met Glu Trp Ala Gly Lys Gln Arg Asp Phe Gln Val Arg Ala Ala Pro
 -35
            -30 -25
Gly Trp Asp His Leu Ala Ser Phe Pro Gly Pro Ser Leu Arg Leu Phe
             -15 -10
Ser Gly Ser Gln Ala Ser Val Cys Ser Leu Cys Ser Gly Phe Gly Ala
-5 1
Gln Glu
<210> 155
<211> 153
<212> PRT
<213> Homo sapiens
<400> 155
Thr Val Pro Leu Leu Glu Pro Ala Asp His Ala Arg Gly Arg Ala
                  10
1 5
His Val His Leu Pro Glu Asn Val Arg Ser Gln Ser Pro Gly His Val
                          25
Arg Arg Gly Arg Ser Gly Ala Gln Val Leu Pro Thr Gly Pro Asp Glu
                        40 45
Lys Gln Val Glu Lys Ser Glu Val Asp Phe Ser Lys Ser His Ser Leu
                    55
Val Arg Arg Phe Glu Asp Leu Lys Pro Lys Leu Ser Val Cys Lys Thr
               70
                           75
Gly Ser Gln Val Phe Arg Ser Glu Asn Trp Lys Val Trp Ala Glu Ser
                               90
Ser Arg Gly Asp His Asp Asp Cys Leu Asp Leu Cys Ser Val Leu Cys
                           105
Trp Gly Glu Leu Leu Arg Thr Ile Pro Glu Ile Pro Pro Lys Arg Gly
                       120
                               125
Glu Leu Lys Thr Glu Leu Leu Gly Leu Lys Glu Arg Lys His Lys Pro
                    135
Gln Val Ser Gln Gln Glu Glu Leu Lys
```

WO 99/31236 -121- PCT/IB98/02122 ·

```
<210> 156
<211> 67
<212> PRT
<213> Homo sapiens
<400> 156
Met Arg Gln Lys Arg Lys Gly Asp Leu Ser Pro Ala Lys Leu Met Met
                                  10
Leu Thr Ile Gly Asp Val Ile Lys Gln Leu Ile Glu Ala His Glu Gln
                              25
Gly Lys Asp Ile Asp Leu Asn Lys Val Arg Thr Lys Thr Ala Ala Lys
                        40
Tyr Gly Leu Ser Ala Gln Pro Arg Leu Val Asp Ile Ile Ala Ala Val
Pro Pro Glu
<210> 157
<211> 87
<212> PRT
<213> Homo sapiens
<400> 157
Met Asp Glu Leu Ser Glu Glu Asp Lys Leu Thr Val Ser Arg Ala Arg
                      10
Lys Ile Gln Arg Phe Leu Ser Gln Pro Phe Gln Val Ala Glu Val Phe
                              25
Thr Gly His Met Gly Lys Leu Val Pro Leu Lys Glu Thr Ile Lys Gly
                       40
Phe Gln Gln Ile Leu Ala Gly Glu Tyr Asp His Leu Pro Glu Gln Ala
Phe Tyr Met Val Gly Pro Ile Glu Glu Ala Val Ala Lys Ala Asp Lys
                               75
                   70
Leu Ala Glu Glu His Ser Ser
               85
<210> 158
<211> 250
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -85..-1
Met Ser Ala Glu Val Lys Val Thr Gly Gln Asn Gln Glu Gln Phe Leu
                   -80
                                      -75
Leu Leu Ala Lys Ser Ala Lys Gly Ala Ala Leu Ala Thr Leu Ile His
               -65
                                  -60
Gln Val Leu Glu Ala Pro Gly Val Tyr Val Phe Gly Glu Leu Leu Asp
                              -45
Met Pro Asn Val Arg Glu Leu Xaa Ala Arg Asn Leu Pro Pro Leu Thr
                          -30 -25
Glu Ala Gln Lys Asn Lys Leu Arg His Leu Ser Val Val Thr Leu Ala
```

-15

Ala Lys Val Lys Cys Ile Pro Tyr Ala Val Leu Leu Glu Ala Leu Ala

-10

WO 99/31236 -122- PCT/IB98/02122 -

Leu Arg Asn Val Arg Gln Leu Glu Asp Leu Val Ile Glu Ala Val Tyr 20 Ala Asp Val Leu Arg Gly Ser Leu Asp Gln Arg Asn Gln Arg Leu Glu Val Asp Tyr Ser Ile Gly Arg Asp Ile Gln Arg Gln Asp Leu Ser Ala 50 Ile Ala Arg Thr Leu Gln Glu Trp Cys Val Gly Cys Glu Val Val Leu 70 Ser Gly Ile Glu Glu Gln Val Ser Arg Ala Asn Gln His Lys Glu Gln Gln Leu Gly Leu Lys Gln Gln Ile Glu Ser Glu Val Ala Asn Leu Lys 100 Lys Thr Ile Lys Val Thr Thr Ala Ala Ala Ala Ala Ala Thr Ser Gln 115 Asp Pro Glu Gln His Leu Thr Glu Leu Arg Glu Pro Ala Pro Gly Thr 130 135 Asn Gln Arg Gln Pro Ser Lys Lys Ala Ser Lys Gly Lys Gly Leu Arg 145 Gly Ser Ala Lys Ile Trp Ser Lys Ser Asn

<210> 159 <211> 24 <212> PRT <213> Homo sapiens

<210> 160 <211> 228 <212> PRT <213> Homo sapiens

Met Pro Thr Asn Cys Ala Ala Ala Gly Cys Ala Thr Thr Tyr Asn Lys 10 His Ile Asn Ile Ser Phe His Arg Phe Pro Leu Asp Pro Lys Arg Arg 25 Lys Glu Trp Val Arg Leu Val Arg Arg Lys Asn Phe Val Pro Gly Lys 40 His Thr Phe Leu Cys Ser Lys His Phe Glu Ala Ser Cys Phe Asp Leu 55 60 Thr Gly Gln Thr Arg Arg Leu Lys Met Asp Ala Val Pro Thr Ile Phe 70 75 Asp Phe Cys Thr His Ile Lys Ser Met Lys Leu Lys Ser Arg Asn Leu 90 85 Leu Lys Lys Asn Asn Ser Cys Ser Pro Ala Gly Pro Ser Ser Leu Lys 105 Ser Asn Ile Ser Ser Gln Gln Val Leu Leu Glu His Ser Tyr Ala Phe 120 Arg Asn Pro Met Glu Ala Lys Lys Arg Ile Ile Lys Leu Glu Lys Glu 135 Ile Ala Ser Leu Arg Arg Lys Met Lys Thr Cys Leu Gln Lys Glu Arg

```
      145
      150
      155
      160

      Arg Ala Thr Arg Arg Trp Ile Lys Ala Met Cys Leu Val Lys Asn Leu 165
      170
      175

      Glu Ala Asn Ser Val Leu Pro Lys Gly Thr Ser Glu His Met Leu Pro 180
      185
      190

      Thr Ala Leu Ser Ser Leu Pro Leu Glu Asp Phe Lys Ile Leu Glu Gln 195
      200
      205

      Asp Gln Gln Asp Lys Thr Leu Leu Ser Leu Asn Leu Lys Gln Thr Lys 210
      215
      220

      Ser Thr Phe Ile 225
      220
      220
```

<210> 161 <211> 86 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -20..-1

<210> 162 <211> 44 <212> PRT <213> Homo sapiens

<210> 163 <211> 314 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -58..-1 <400> 163 Met Gln Asn Val Ile Asn Thr Val Lys Gly Lys Ala Leu Glu Val Ala -55 -50 Glu Tyr Leu Thr Pro Val Leu Lys Glu Ser Lys Phe Arg Glu Thr Gly -35 Val Ile Thr Pro Glu Glu Phe Val Ala Ala Gly Asp His Leu Val His -15 -20 His Cys Pro Thr Trp Gln Trp Ala Thr Gly Glu Glu Leu Lys Val Lys -5 1 Ala Tyr Leu Pro Thr Gly Lys Gln Phe Leu Val Thr Lys Asn Val Pro 10 . 15 Cys Tyr Lys Arg Cys Lys Gln Met Glu Tyr Ser Asp Glu Leu Glu Ala 30 Ile Ile Glu Glu Asp Asp Gly Asp Gly Gly Trp Val Asp Thr Tyr His 45 Asn Thr Gly Ile Thr Gly Ile Thr Glu Ala Val Lys Glu Ile Thr Leu 60 Glu Asn Lys Asp Asn Ile Arg Leu Gln Asp Cys Ser Ala Leu Cys Glu 80 Glu Glu Glu Asp Glu Asp Glu Gly Glu Ala Ala Asp Met Glu Glu Tyr 95 Glu Glu Ser Gly Leu Leu Glu Thr Asp Glu Ala Thr Leu Asp Thr Arg 110 105 115 Lys Ile Val Glu Ala Cys Lys Ala Lys Thr Asp Ala Gly Gly Glu Asp 125 130 Ala Ile Leu Gln Thr Arg Thr Tyr Asp Leu Tyr Ile Thr Tyr Asp Lys 145 140 Tyr Tyr Gln Thr Pro Arg Leu Trp Leu Phe Gly Tyr Asp Glu Gln Arg 155 160 Gln Pro Leu Thr Val Glu His Met Tyr Glu Asp Ile Ser Gln Asp His 175 180 Val Lys Lys Thr Val Thr Ile Glu Asn His Pro His Leu Pro Pro Pro 190 195 Pro Met Cys Ser Val His Pro Cys Arg His Ala Glu Val Met Lys Lys 205 210 Ile Ile Glu Thr Val Ala Glu Gly Gly Glu Leu Gly Val His Met 225 220 Tyr Leu Leu Ile Phe Leu Lys Phe Val Gln Ala Val Ile Pro Thr Ile 235 240 Glu Tyr Asp Tyr Thr Arg His Phe Thr Met

<210> 164 <211> 89 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -80..-1

<400> 164

 Met Arg Thr Arg Thr Arg Thr Gly Asn Pro Arg Gly Leu His Asp Thr Phe

 -80
 -75
 -70
 -65

 Pro Arg Arg Pro Arg Leu Gly Arg Cys Ser Asp Met Asp Thr Ala Arg
 -60
 -55
 -50

 Thr Ser Cys Ser Asp Leu Leu Pro Trp Glu Gly Val Thr Glu Pro Ala
 -45
 -40
 -35

 Leu Cys Gly Asp Gln Leu Gln Gly Thr Glu Gly Trp Leu Glu Ala Thr

-125-WO 99/31236 PCT/IB98/02122 -

```
-25
                                          -20
Gln Leu Gly Arg Gly Leu Leu Ser Ala Cys Ala Pro Trp Gly Asp Gly
 -15 -10
Ser Thr Gln Pro Val Pro Leu Cys Ser
1 5
<210> 165
<211> 98
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -15..-1
<400> 165
Met Glu Ala Met Trp Leu Leu Cys Val Ala Leu Ala Val Leu Ala Trp
-15 -10
                      -5
Gly Phe Leu Trp Val Trp Asp Ser Ser Glu Arg Met Lys Ser Arg Glu
                            10
Gln Gly Gly Arg Leu Gly Ala Glu Ser Arg Thr Leu Leu Val Ile Ala
                      25
His Pro Asp Asp Glu Ala Met Phe Phe Ala Pro Thr Val Leu Gly Leu
                    40
Ala Arg Leu Arg His Trp Val Tyr Leu Leu Cys Phe Ser Ala Val Phe
50 55
Arg Arg Glu Leu Ser Glu Tyr Thr Glu Gly Leu Thr Ser Glu Pro Leu
                               75
Thr Ala
<210> 166
<211> 92
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -36..-1
<400> 166
Met Leu Val Thr Gln Gly Leu Val Tyr Gln Gly Tyr Leu Ala Ala Asn
-35 -30 -25
Ser Arg Phe Gly Ser Leu Pro Lys Val Ala Leu Ala Gly Leu Leu Gly
               <del>-</del>15
                                   -10
Phe Gly Leu Gly Lys Val Ser Tyr Ile Gly Val Cys Gln Ser Lys Phe
              1
His Phe Phe Glu Asp Gln Leu Arg Gly Ala Gly Phe Gly Pro Gln His
Asn Arg His Cys Leu Leu Thr Cys Glu Glu Cys Lys Ile Lys His Gly
Leu Ser Glu Lys Gly Asp Ser Gln Pro Ser Ala Ser
                50
<210> 167
```

<211> 351 <212> PRT WO 99/31236 -126- PCT/IB98/02122 ·

<213> Homo sapiens <220> <221> SIGNAL <222> -16..-1 <400> 167 Met Val Pro Phe Ile Tyr Leu Gln Ala His Phe Thr Leu Cys Ser Gly -10 Trp Ser Ser Thr Tyr Arg Asp Leu Arg Lys Gly Val Tyr Val Pro Tyr 10 Thr Gln Gly Lys Trp Glu Gly Glu Leu Gly Thr Asp Leu Val Ser Ile 25 Pro His Gly Pro Asn Val Thr Val Arg Ala Asn Ile Ala Ala Ile Thr 40 Glu Ser Asp Lys Phe Phe Ile Asn Gly Ser Asn Trp Glu Gly Ile Leu 55 Gly Leu Ala Tyr Ala Glu Ile Ala Arg Pro Asp Asp Ser Pro Glu Pro 70 Phe Phe Asp Ser Leu Val Lys Gln Thr His Val Pro Asn Leu Phe Ser 90 Leu Gln Leu Cys Gly Ala Gly Phe Pro Leu Asn Gln Ser Glu Val Leu 105 Ala Ser Val Gly Gly Ser Met Ile Ile Gly Gly Ile Asp His Ser Leu 120 Tyr Thr Gly Ser Leu Trp Tyr Thr Pro Ile Arg Arg Glu Trp Tyr Tyr 135 140 Glu Val Ile Ile Val Arg Val Glu Ile Asn Gly Gln Asp Leu Lys Met 155 150 Asp Cys Lys Glu Tyr Asn Tyr Asp Lys Ser Ile Val Asp Ser Gly Thr 165 170 Thr Asn Leu Arg Leu Pro Lys Lys Val Phe Glu Ala Ala Val Lys Ser 185 190 Ile Lys Ala Ala Ser Ser Thr Glu Lys Phe Pro Asp Gly Phe Trp Leu 200 205 Gly Glu Gln Leu Val Cys Trp Gln Ala Gly Thr Thr Pro Trp Asn Ile 215 220 Phe Pro Val Ile Ser Leu Tyr Leu Met Gly Glu Val Thr Asn Gln Ser 235 Phe Arg Ile Thr Ile Leu Pro Gln Gln Tyr Leu Arg Pro Val Glu Asp 245 250 Val Ala Thr Ser Gln Asp Asp Cys Tyr Lys Phe Ala Ile Ser Gln Ser 260 265 Ser Thr Gly Thr Val Met Gly Ala Val Ile Met Glu Gly Phe Tyr Val 275 280 285 Val Phe Asp Arg Ala Arg Lys Arg Ile Gly Phe Ala Val Ser Ala Cys 295 300 His Val His Asp Glu Phe Arg Thr Ala Ala Val Glu Gly Pro Phe Cys 310 315 His Leu Gly His Gly Arg Leu Trp Leu Gln His Ser Thr Asp Arg 325 330

<210> 168 <211> 138 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -47..-1 WO 99/31236 -127- PCT/IB98/02122 ·

<400> 168 Met Glu Lys Phe Val Asp Pro Gly Asn His Asn Ser Gly Ile Asp Leu -40 -35 -45 Leu Arg Thr Tyr Leu Trp Arg Cys Gln Phe Leu Leu Pro Phe Val Ser -25 -20 Leu Gly Leu Met Cys Phe Gly Ala Leu Ile Gly Leu Cys Ala Cys Ile - 5. -10 Cys Arg Ser Leu Tyr Pro Thr Ile Ala Thr Gly Ile Leu His Leu Leu 10 Ala Gly Leu Cys Thr Leu Gly Ser Val Ser Cys Tyr Val Ala Gly Ile 25 Glu Leu Leu His Gln Lys Leu Glu Leu Pro Asp Asn Val Ser Gly Glu 40 Phe Gly Trp Ser Phe Cys Leu Ala Cys Val Ser Ala Pro Leu Gln Phe 55 60 Met Ala Ser Ala Leu Phe Ile Trp Ala Ala His Thr Asn Arg Arg Glu 70 75 Tyr Thr Leu Met Lys Ala Tyr Arg Val Ala

Ala Cys Arg Ala Leu Val Phe Gly Gly Cys Val Glu Lys Ser Ser Val -45 Ser Arg Asn Pro Glu Val Pro Phe Glu Ser Ser Ala Tyr Arg Ile Ser -30 -25 Ala Ser Ala Arg Gly Lys Glu Leu Arg Leu Ile Leu Ser Pro Leu Pro -15 Gly Ala Gln Pro Gln Gln Glu Pro Leu Ala Leu Val Phe Arg Phe Gly Met Ser Gly Ser Phe Gln Leu Val Pro Arg Glu Glu Leu Pro Arg His 20 Ala His Leu Arg Phe Tyr Thr Ala Pro Pro Gly Pro Arg Leu Ala Leu 35 Cys Phe Val Asp Ile Arg Arg Phe Gly Arg Trp Asp Leu Gly Gly Lys Trp Gln Pro Gly Arg Gly Pro Cys Val Leu Gln Glu Tyr Gln Gln Phe 70 Arg Glu Asn Val Leu Arg Asn Leu Ala Asp Lys Ala Phe Asp Arg Pro 85 Ile Cys Glu Ala Leu Leu Asp Gln Arg Phe Phe Asn Gly Ile Gly Asn 100 Tyr Leu Arg Ala Glu Ile Leu Tyr Arg Leu Lys Ile Pro Pro Phe Glu 115 Lys Ala Arg Ser Val Leu Glu Ala Leu Gln Gln His Arg Pro Ser Pro 130 Glu Leu Thr Leu Ser Gln Lys Ile Arg Thr Lys Leu Gln Asn Ser Asp 150 Leu Leu Glu Leu Cys His Ser Val Pro Lys Glu Val Val Gln Leu Gly 165 Glu Ala Lys Asp Gly Ser Asn Leu Cys Phe Ser Lys 175

<210> 171
<211> 350
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -68..-1
<400> 171
Met Pro Glu Gly Pro
-65
Ala Cys Arg Ala Leu

Met Pro Glu Gly Pro Glu Leu His Leu Ala Ser Gln Phe Val Asn Glu -60 Ala Cys Arg Ala Leu Val Phe Gly Gly Cys Val Glu Lys Ser Ser Val -45 Ser Arg Asn Pro Glu Val Pro Phe Glu Ser Ser Ala Tyr Arg Ile Ser -30 -25 Ala Ser Ala Arg Gly Lys Glu Leu Arg Leu Ile Leu Ser Pro Leu Pro -15 -10 Gly Ala Gln Pro Gln Gln Glu Pro Leu Ala Leu Val Phe Arg Phe Gly Met Ser Gly Ser Phe Gln Leu Val Pro Arg Glu Glu Leu Pro Arg His 20 Ala His Leu Arg Phe Tyr Thr Ala Pro Pro Gly Pro Arg Leu Ala Leu 35 Cys Phe Val Asp Ile Arg Arg Phe Gly Arg Trp Asp Leu Gly Gly Lys 50 55 Trp Gln Pro Gly Arg Gly Pro Cys Val Leu Glr. Glu Tyr Gln Gln Phe 70 Arg Leu Lys Ile Pro Pro Phe Glu Lys Ala Arg Ser Val Leu Glu Ala

-129-WO 99/31236 PCT/IB98/02122 ·

```
85
          80
Leu Gln Gln His Arg Pro Ser Pro Glu Leu Thr Leu Ser Gln Lys Ile
                                           105
                        100
Arg Thr Lys Leu Gln Asn Pro Asp Leu Leu Glu Leu Cys His Ser Val
                     115
                                       120
Pro Lys Glu Val Asp Gln Leu Gly Gly Arg Gly Tyr Gly Ser Glu Ser
                                    135
                 130
Gly Glu Glu Asp Phe Ala Ala Phe Arg Ala Trp Leu Arg Cys Tyr Gly
              145
                                150
Met Pro Gly Met Ser Ser Leu Gln Asp Arg His Gly Arg Thr Ile Trp
                          165
Phe Gln Gly Asp Pro Gly Pro Leu Ala Pro Lys Gly Arg Lys Ser Arg
                     180
                                           185
Lys Lys Lys Ser Lys Ala Thr Gln Leu Ser Pro Glu Asp Arg Val Glu
                                     200
                  195
Asp Ala Leu Pro Pro Ser Lys Ala Pro Ser Lys Thr Arg Arg Ala Lys
        210
                                   215
Arg Asp Leu Pro Lys Arg Thr Ala Thr Gln Arg Pro Glu Gly Thr Ser
             225
                               230
Leu Gln Gln Asp Pro Glu Ala Pro Thr Val Pro Lys Lys Gly Arg Arg
                  245
         240
Lys Gly Arg Gln Ala Ala Ser Gly His Cys Arg Pro Arg Lys Val Lys
      255 260
Ala Asp Ile Pro Ser Leu Glu Pro Glu Gly Thr Ser Ala Ser
```

<210> 172 <211> 390 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -68..-1 <400> 172 Met Pro Glu Gly Pro Glu Leu His Leu Ala Ser Gln Phe Val Asn Glu -60 -65 Ala Cys Arg Ala Leu Val Phe Gly Gly Cys Val Glu Lys Ser Ser Val -45 Ser Arg Asn Pro Glu Val Pro Phe Glu Ser Ser Ala Tyr Arg Ile Ser -30 -25 Ala Ser Ala Arg Gly Lys Glu Leu Arg Leu Ile Leu Ser Pro Leu Pro -15 -10 -5 Gly Ala Gln Pro Gln Gln Glu Pro Leu Ala Leu Val Phe Arg Phe Gly 1 5 Met Ser Gly Ser Phe Gln Leu Val Pro Arg Glu Glu Leu Pro Arg His 25 15 20 Ala His Leu Arg Phe Tyr Thr Ala Pro Pro Gly Pro Arg Leu Ala Leu 35 Cys Phe Val Asp Ile Arg Arg Phe Gly Arg Trp Asp Leu Gly Gly Lys 50 55 Trp Gln Pro Gly Arg Gly Pro Cys Val Leu Gln Glu Tyr Gln Gln Phe

70

105

Arg Glu Asn Val Leu Arg Asn Leu Ala Asp Lys Ala Phe Asp Arg Pro

100 Tyr Leu Arg Ala Glu Ile Leu Tyr Arg Leu Lys Ile Pro Pro Phe Glu

115

85 Ile Cys Glu Ala Leu Leu Asp Gln Arg Phe Phe Asn Gly Ile Gly Asn

65

Lys Ala Arg Ser Val Leu Glu Ala Leu Gln Gln His Arg Pro Ser Pro 130 135 Glu Leu Thr Leu Ser Gln Lys Ile Arg Thr Lys Leu Gln Asn Pro Asp 150 145 Leu Leu Glu Leu Cys His Ser Val Pro Lys Glu Val Val Gln Leu Gly 165 Gly Arg Gly Tyr Gly Ser Glu Ser Gly Glu Glu Asp Phe Ala Ala Phe 175 180 185 Arg Ala Trp Leu Arg Cys Tyr Gly Met Pro Gly Met Ser Ser Leu Gln 195 200 Asp Arg His Gly Arg Thr Ile Trp Phe Gln Gly Asp Pro Gly Pro Leu 215 210 Ala Pro Lys Gly Arg Lys Ser Arg Lys Lys Ser Lys Ala Thr Gln 225 230 Leu Ser Pro Glu Asp Arg Val Glu Asp Ala Leu Pro Pro Ser Lys Ala 245 Pro Ser Arg Thr Arg Arg Ala Lys Arg Asp Leu Pro Lys Arg Thr Ala 260 Thr Gln Arg Pro Glu Gly Thr Ser Leu Gln Gln Asp Pro Glu Ala Pro 275 Thr Val Pro Lys Lys Gly Arg Arg Lys Gly Arg Gln Ala Ala Ser Gly 290 295 300 His Cys Arg Pro Arg Lys Val Lys Ala Asp Ile Pro Ser Leu Glu Pro 305 310 Glu Gly Thr Ser Ala Ser 320

<210> 173 <211> 190 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -82..-1

<400> 173 Met Tyr Val Trp Pro Cys Ala Val Val Leu Ala Gln Tyr Leu Trp Phe -75 -70 His Arg Arg Ser Leu Pro Gly Lys Ala Ile Leu Glu Ile Gly Ala Gly -60 -55 Val Ser Leu Pro Gly Ile Leu Thr Ala Lys Cys Gly Ala Glu Val Ile -45 -40 Leu Ser Asp Ser Ser Glu Leu Pro His Cys Leu Glu Val Cys Arg Gln -30 -25 Ser Cys Gln Met Asn Asn Leu Pro His Leu Gln Val Val Gly Leu Thr -15 -10 Trp Gly His Ile Ser Trp Asp Leu Leu Ala Leu Pro Pro Gln Asp Ile 10 Ile Leu Ala Ser Asp Val Phe Phe Glu Pro Glu Asp Phe Glu Asp Ile 20 25 Leu Ala Thr Ile Tyr Phe Leu Met His Lys Asn Pro Lys Val Gln Leu 35 40 Trp Ser Thr Tyr Gln Val Arg Ser Ala Asp Trp Ser Leu Glu Ala Leu 55 50 Leu Tyr Lys Trp Asp Met Lys Cys Val His Ile Pro Leu Glu Ser Phe 70 Asp Ala Asp Lys Glu Asp Ile Ala Glu Ser Thr Leu Pro Gly Arg His Thr Val Glu Met Leu Val Ile Ser Phe Ala Lys Asp Ser Leu

PCT/IB98/02122 -

100 105 95

<210> 174 <211> 285 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -232..-1 <400> 174 Met Gly Cys Val Phe Gln Ser Thr Glu Asp Lys Arg Ile Phe Lys Ile -230 -225 -220 Asp Trp Thr Leu Ser Pro Gly Glu His Ala Lys Asp Glu Tyr Val Leu -205 -215 -210 Tyr Tyr Tyr Ser Asn Leu Ser Val Pro Ile Gly Arg Phe Gln Asn Arg -200 -195 -190 -185 Val His Leu Met Gly Asp Asn Leu Cys Asn Asp Gly Ser Leu Leu Leu -180 -175 -170 Gln Asp Val Gln Glu Ala Asp Gln Gly Thr Tyr Ile Cys Glu Ile Arg -165 -160 -155 Leu Lys Gly Glu Ser Gln Val Phe Lys Lys Ala Val Val Leu His Val -150 -145 -140 Leu Pro Glu Glu Pro Lys Glu Leu Met Val His Val Gly Gly Leu Ile -135 -130 -125 Gln Met Gly Cys Val Phe Gln Ser Thr Glu Val Lys His Val Thr Lys -120 -115 -110 -105 Val Glu Trp Ile Phe Ser Gly Arg Arg Ala Lys Glu Glu Ile Val Phe -100 -95 -90 Arg Tyr Tyr His Lys Leu Arg Met Ser Ala Glu Tyr Ser Gln Ser Trp -85 -80 -75 Gly His Phe Gln Asn Arg Val Asn Leu Val Gly Asp Ile Phe Arg Asn -70 -65 Asp Gly Ser Ile Met Leu Gln Gly Val Arg Glu Ser Asp Gly Gly Asn -55 -50 Tyr Thr Cys Ser Ile His Leu Gly Asn Leu Val Phe Lys Lys Thr Ile -35 -30 -25 Val Leu His Val Ser Pro Glu Glu Pro Arg Thr Leu Val Thr Pro Ala -20 -15 -10 Ala Leu Arg Pro Leu Val Leu Gly Gly Asn Gln Leu Val Ile Ile Val -5 1 5 Gly Ile Val Cys Ala Thr Ile Leu Leu Leu Pro Val Leu Ile Leu Ile 10 15 20 Val Lys Lys Thr Cys Gly Asn Lys Ser Ser Val Asn Ser Thr Val Leu

<210> 175 <211> 153

25

<212> PRT

<213> Homo sapiens

30

Val Lys Asn Thr Lys Lys Thr Asn Pro Lys Lys Lys 45 50

<400> 175

Met Gly Cys Val Phe Gln Ser Thr Val Asp Lys Cys Ile Phe Lys Ile Asp Trp Thr Leu Ser Pro Gly Glu His Ala Lys Asp Glu Tyr Val Leu

WO 99/31236 -132- PCT/IB98/02122

```
25
Tyr Tyr Tyr Ser Asn Leu Ser Val Pro Ile Gly Arg Phe Gln Asn Arg
                           40
                                               45
Val His Leu Met Gly Asp Ile Leu Cys Asn Asp Gly Ser Leu Leu Leu
                       55
Gln Asp Val Gln Glu Ala Asp Gln Gly Thr Tyr Ile Cys Glu Ile Arg
                   70
Leu Lys Gly Glu Ser Gln Val Phe Lys Lys Ala Val Val Leu His Val
                                   90
Leu Pro Glu Glu Pro Lys Glu Leu Met Val His Val Gly Gly Leu Ile
          100
                              105
Gln Met Gly Cys Val Phe Gln Ser Thr Glu Val Lys His Val Thr Lys
                          120
Val Glu Trp Ile Phe Ser Gly Arg Arg Ala Lys Val Thr Arg Arg Lys
                      135
His His Cys Val Arg Glu Gly Ser Gly
                   150
```

<210> 176 <211> 49 <212> PRT <213> Homo sapiens

<210> 177 <211> 99 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -24..-1

Pro Pro Arg 75

```
<210> 178
<211> 95
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -37..-1
<400> 178
Met Ala Ser Pro Ala Val Asn Arg Trp Lys Arg Pro Arg Leu Lys Pro
                        -30
Val Trp Pro Arg Arg Leu Glu Ser Trp Leu Leu Leu Asp Ala Leu Leu
                    -15
                                      -10
Arg Leu Gly Asp Thr Lys Lys Lys Arg Gln Pro Glu Ala Ala Thr Lys
                           5
Ser Cys Val Arg Ser Ser Cys Gly Gly Pro Ser Gly Asp Gly Pro Pro
                   20
       15
Pro Cys Leu Gln Gln Pro Asp Pro Arg Ala Leu Ser Gln Ala Phe Ser
               35
Arg Ser Phe Pro Leu Phe Pro Ser Leu Ala Gly Lys Ser Met Ile
           50
<210> 179
<211> 121
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -23..-1
<400> 179
Met Met Leu Pro Gln Trp Leu Leu Leu Phe Leu Leu Phe Phe Phe
                     -15 -10
       -20
Leu Phe Leu Leu Thr Arg Gly Ser Leu Ser Pro Thr Lys Tyr Asn Leu
     -5
Leu Glu Leu Lys Glu Ser Cys Ile Arg Asn Gln Asp Cys Glu Thr Gly
                 15
                       20
Cys Cys Gln Arg Ala Pro Asp Asn Cys Glu Ser His Cys Ala Glu Lys
             30
                               35
Gly Ser Glu Gly Ser Leu Cys Gln Thr Gln Val Phe Phe Gly Gln Tyr
              50
          45
Arg Ala Cys Pro Cys Leu Arg Asn Leu Thr Cys Ile Tyr Ser Lys Asn
                        65
Glu Lys Trp Leu Ser Ile Ala Tyr Gly Arg Cys Gln Lys Ile Gly Arg
                     80
Gln Lys Leu Ala Lys Lys Met Phe Phe
<210> 180
<211> 59
<212> PRT
<213> Homo sapiens
```

<400> 180

Met Ile Leu Cys Phe Leu Leu Pro His His Arg Leu Gln Glu Ala Arg

<210> 181 <211> 86 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -14..-1 <400> 181 Met Val Ala Leu Asn Leu Ile Leu Val Pro Cys Cys Ala Ala Trp Cys -10 -5 Asp Pro Arg Arg Ile His Ser Gln Asp Asp Val Pro Arg Ser Ser Ala 10 Ala Asp Thr Gly Ser Ala Met Gln Arg Arg Glu Ala Trp Ala Gly Trp 25 Arg Arg Ser Gln Pro Phe Ser Val Gly Leu Pro Ser Ala Glu Arg Leu 40 Glu Asn Gln Pro Gly Lys Leu Ser Trp Arg Ser Leu Val Gly Glu Gly 55 . 60 Tyr Arg Ile Cys Asp Leu

<210> 182 <211> 165 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -58..-1

70

<400> 182 Met Thr Arg Leu Cys Leu Pro Arg Pro Glu Ala Arg Glu Asp Pro Ile Pro Val Pro Pro Arg Gly Leu Gly Ala Gly Glu Gly Ser Gly Ser Pro -35 Val Arg Pro Pro Val Ser Thr Trp Gly Pro Ser Trp Ala Gln Leu Leu -15 -20 Asp Ser Val Leu Trp Leu Gly Ala Leu Gly Leu Thr Ile Gln Ala Val 1 5 - 5 Phe Ser Thr Thr Gly Pro Ala Leu Leu Leu Leu Leu Val Ser Phe Leu 15 Thr Phe Asp Leu Leu His Arg Pro Ala Gly His Thr Leu Pro Gln Arg 30 Lys Leu Leu Thr Arg Gly Gln Ser Gln Gly Ala Gly Glu Gly Pro Gly Gln Glu Ala Leu Leu Gln Met Gly Thr Val Ser Gly Gln Leu 60 Ser Leu Gln Asp Ala Leu Leu Leu Leu Leu Met Gly Leu Gly Pro Leu

```
80
 Leu Arg Ala Cys Gly Met Pro Leu Thr Leu Leu Gly Leu Ala Phe Cys
                   95
        90
 Leu His Pro Trp Ala
      105
 <210> 183
 <211> 80
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> SIGNAL
 <222> -35..-1
 <400> 183
 Met Pro Phe Gln Phe Gly Thr Gln Pro Arg Arg Phe Pro Val Glu Gly
 -35 -20 -25 -20
. Gly Asp Ser Ser Ile Glu Leu Glu Pro Gly Leu Ser Ser Ser Ala Ala
                    -10
 Cys Asn Gly Lys Glu Met Ser Pro Thr Arg Gln Leu Arg Arg Cys Pro
 Gly Ser His Cys Leu Thr Ile Thr Asp Val Pro Val Thr Val Tyr Ala
  15 20
                           25
 Thr Thr Arg Lys Pro Pro Ala Gln Ser Ser Lys Glu Met His Pro Lys
 30 35 40 45
 <210> 184
 <211> 73
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> SIGNAL
 <222> -21..-1
 <400> 184
 Met Ala Pro Gln Thr Leu Leu Pro Val Leu Val Leu Cys Val Leu Leu
  -20 -15
                                  -10
 Leu Gln Ala Gln Gly Gly Tyr Arg Asp Lys Met Arg Met Gln Arg Ile
 -5
              1 5
 Lys Val Cys Glu Lys Arg Pro Ser Ile Asp Leu Cys Ile His His Cys
          15 20
 Ser Cys Phe Gln Lys Cys Glu Thr Asn Lys Ile Cys Cys Ser Ala Phe
                                  40
               35
 Cys Gly Asn Ile Cys Met Ser Ile Leu
   45
                  50
 <210> 185
 <211> 98
 <212> PRT
 <213> Homo sapiens
 Met Leu Gly Ala Glu Thr Glu Glu Lys Leu Phe Asp Ala Pro Leu Ser
              5
```

WO 99/31236 -136- PCT/IB98/02122 -

 The Ser Lys
 Arg Glu
 Glu
 Leu
 Glu
 Glu
 Glu
 Glu
 Pro
 Glu
 Asn
 Tyr
 Phe 30

 Tyr
 Val
 Pro
 Asp
 Leu
 Gly
 Gln
 Val
 Pro
 Glu
 Ile
 Asp
 Val
 Pro
 Ser
 Tyr

 Leu
 Pro
 Asp
 Leu
 Pro
 Gly
 Ile
 Ala
 Asp
 Leu
 Met
 Tyr
 Ile
 Ala
 Asp

 Leu
 Gly
 Pro
 Gly
 Ile
 Ala
 Pro
 Ser
 Ala
 Pro
 Gly
 Thr
 Ile
 Pro
 Glu
 Leu

 65
 70
 70
 75
 75
 80
 80

 Pro
 Thr
 Phe
 His
 Thr
 Glu
 Val
 Ala
 Glu
 Pro
 Leu
 Lys
 Thr
 Tyr
 Lys
 Met

 6ly
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Tyr
 Lys
 Thr
 Tyr
 Lys
 Met

 6ly
 Tyr
 Tyr
 Tyr

<211> 112 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -21..-1 <400> 186 Met Glu Ser Arg Val Leu Leu Arg Thr Phe Cys Leu Ile Phe Gly Leu -15 -10 Gly Ala Val Trp Gly Leu Gly Val Asp Pro Ser Leu Gln Ile Asp Val 5 Leu Thr Glu Leu Glu Leu Gly Glu Ser Thr Thr Gly Val Arg Gln Val 20 Pro Gly Leu His Asn Gly Thr Lys Ala Phe Leu Phe Gln Asp Thr Pro 35 Arg Ser Ile Lys Ala Ser Thr Ala Thr Ala Glu Gln Phe Phe Gln Lys 50 Leu Arg Asn Lys His Glu Phe Thr Ile Leu Val Thr Leu Lys Gln Thr 70 65

His Leu Asn Ser Gly Val Ile Leu Ser Ile His His Leu Asp His Arg

<210> 187 <211> 70 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -44..-1

<210> 186

<400> 187 Met Cys Cys Tyr Cys Arg Ile Phe Cys Leu Arg Cys Thr Tyr Phe Pro -40 -35 Val His Cys Gly Met Cys Asn Leu Arg Tyr Phe Glu Phe Ser Thr Phe -20 -25 Leu Leu Ser Leu Ser Leu Ile Thr Tyr Cys Phe Trp Asp Pro Pro His ~ 5 1 -10 Arg Gly Ser His Ser Leu Ser Leu Glu His Thr Pro Leu Asp Phe Leu 15 10 Glu Trp Gly Leu Leu Arg 25

WO 99/31236 -137- PCT/IB98/02122 -

```
<210> 188
<211> 92
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -13..-1
<400> 188
Met Leu Phe Ser Leu Ser Leu Leu Ser Asn Leu Asn Gln Ile Gly Ser
    -10 -5
Ser His Leu Asp Arg Pro His Ile Pro Gly Gln Ser Ala Gln Leu Phe
                    10
Ile Tyr Gln Met Ser Ser Gln Gln Leu Gln Gln Gln Pro Ser Ala Asn
                 25
                                   30
Lys Lys Ala Gly Lys Ile His Asn Thr Pro Phe Ala Asn Gln Leu Asn
              40
                               45
Pro Thr Gln His Leu Ala Lys Pro Phe Gln Gln Ile Leu Pro Gly Arg
                        60
Gln Ser Gly Ser Leu Thr Ser Pro Phe Leu Ala Cys
<210> 189
<211> 207
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -42..-1
<400> 189
Met His Ile Leu Gln Leu Leu Thr Thr Val Asp Asp Gly Ile Gln Ala
                         -35
Ile Val His Cys Pro Asp Thr Gly Lys Asp Ile Trp Asn Leu Leu Phe
                      -20
                               -15
Asp Leu Val Cys His Glu Phe Cys Gln Ser Asp Asp Pro Pro Ile Ile
               -5
                           1 5
Leu Gln Glu Gln Lys Thr Val Leu Ala Ser Val Phe Ser Val Leu Ser
                          15 20
Ala Ile Tyr Ala Ser Gln Thr Glu Gln Glu Tyr Leu Lys Ile Glu Lys
                      30
Val Asp Leu Pro Leu Ile Asp Ser Leu Ile Arg Val Leu Gln Asn Met
                                       50
                    45
Glu Gln Cys Gln Lys Lys Pro Glu Asn Ser Ala Glu Ser Asn Thr Glu
                 60
                                   65
Glu Thr Lys Arg Thr Asp Leu Thr Gln Asp Asp Leu His Leu Lys Ile
                                80
              75
Leu Lys Asp Ile Leu Cys Glu Phe Leu Ser Asn Ile Phe Gln Ala Leu
                             95
          90
Thr Lys Glu Thr Val Ala Gln Gly Val Lys Glu Gly Gln Leu Ser Lys
       105
                        110
                                           115
Gln Lys Cys Ser Ser Ala Phe Gln Asn Leu Leu Pro Phe Tyr Ser Pro
```

125

Ala Asp Asp Leu Glu Lys Asn Phe Pro Ser Leu Lys Val Gln Thr

140

Val Val Glu Asp Phe Ile Lys Ile Leu Arg Glu Val Asp Lys Ala Leu

120

130

155 160 165

<210> 190 <211> 201 <212> PRT <213> Homo sapiens <400> 190 Met Gln Val Ala Leu Lys Glu Asp Leu Asp Ala Leu Lys Glu Lys Phe 1 5 10 15 Arg Thr Met Glu Ser Asn Gln Lys Ser Ser Phe Gln Glu Ile Pro Lys 25 Leu Asn Glu Glu Leu Leu Ser Lys Gln Lys Gln Leu Glu Lys Ile Glu 40 Ser Gly Glu Met Gly Leu Asn Lys Val Trp Ile Asn Ile Thr Glu Met 55 Asn Lys Gln Ile Ser Leu Leu Thr Ser Ala Val Asn His Leu Lys Ala 70 75 Asn Val Lys Ser Ala Ala Asp Leu Ile Ser Leu Pro Thr Thr Val Glu Gly Leu Gln Lys Ser Val Ala Ser Ile Gly Asn Thr Leu Asn Ser Val 100 105 110 His Leu Ala Val Glu Ala Leu Gln Lys Thr Val Asp Glu His Lys Lys 120 Thr Met Glu Leu Gln Ser Asp Met Asn Gln His Phe Leu Lys Glu 130 135 Thr Pro Gly Ser Asn Gln Ile Ile Pro Ser Pro Ser Ala Thr Ser Glu 145 150 155 160 Leu Asp Asn Lys Thr His Ser Glu Asn Leu Lys Gln Met Gly Asp Arg 165 170 Ser Ala Thr Leu Lys Arg Gln Ser Leu Asp Gln Val Thr Asn Arg Thr Asp Thr Val Lys Ile Gln Lys Lys

<210> 191

<211> 379

<212> PRT

<213> Homo sapiens

<220>

<221> SIGNAL

<222> -37..-1

<400> 191

Met Pro His Ser Ser Leu His Pro Ser Ile Pro Cys Pro Arg Gly His
-35 -30 -25

Gly Ala Gln Lys Ala Ala Leu Val Leu Leu Ser Ala Cys Leu Val Thr
-20
-15

Leu Trp Gly Leu Gly Glu Pro Pro Glu His Thr Leu Arg Tyr Leu Val

-5 1 5 10
Leu His Leu Ala Ser Leu Gln Leu Gly Leu Leu Leu Asn Gly Val Cys
15 20 25

Ser Leu Ala Glu Glu Leu Arg His Ile His Ser Arg Tyr Arg Gly Ser 30 40

Tyr Trp Arg Thr Val Arg Ala Cys Leu Gly Cys Pro Leu Arg Arg Gly
45 50 55

Ala Leu Leu Leu Ser Ile Tyr Phe Tyr Tyr Ser Leu Pro Asn Ala

```
65
                            70
Val Gly Pro Pro Phe Thr Trp Met Leu Ala Leu Leu Gly Leu Ser Gln
          80
                  85 90 ·
Ala Leu Asn Ile Leu Leu Gly Leu Lys Gly Leu Ala Pro Ala Glu Ile
              100 105
Ser Ala Val Cys Glu Lys Gly Asn Phe Asn Val Ala His Gly Leu Ala
           115 120
Trp Ser Tyr Tyr Ile Gly Tyr Leu Arg Leu Ile Leu Pro Glu Leu Gln
        130 135
Ala Arg Ile Arg Thr Tyr Asn Gln His Tyr Asn Asn Leu Leu Arg Gly
      145 150
Ala Val Ser Gln Arg Leu Tyr Ile Leu Leu Pro Leu Asp Cys Gly Val
    160 165 170
Pro Asp Asn Leu Ser Met Ala Asp Pro Asn Ile Arg Phe Leu Asp Lys
                      180
      175
Leu Pro Gln Gln Thr Gly Asp Arg Ala Gly Ile Lys Asp Arg Val Tyr
    190 195
Ser Asn Ser Ile Tyr Glu Leu Leu Glu Asn Gly Gln Arg Ala Gly Thr
                210
Cys Val Leu Glu Tyr Ala Thr Pro Leu Gln Thr Leu Phe Ala Met Ser
              225
                            230 235
Gln Tyr Ser Gln Ala Gly Phe Ser Arg Glu Asp Arg Leu Glu Gln Ala
           240 245 250
Lys Leu Phe Cys Arg Thr Leu Glu Asp Ile Leu Ala Asp Ala Pro Glu
       255
                      260
Ser Gln Asn Asn Cys Arg Leu Ile Ala Tyr Gln Glu Pro Ala Asp Asp
                   275
Ser Ser Phe Ser Leu Ser Gln Glu Val Leu Arg His Leu Arg Gln Glu
  285 290
                               295
Glu Lys Glu Glu Val Thr Val Gly Ser Leu Lys Thr Ser Ala Val Pro
            305
                            310
Ser Thr Ser Thr Met Ser Gln Glu Pro Glu Leu Leu Ser Gly Met
         320
                        325
Gly Lys Pro Leu Pro Leu Arg Thr Asp Phe Ser
```

<210> 192 <211> 112 <212> PRT <213> Homo sapiens

<400> 192

Met Pro Ser Glu Gly Arg Cys Trp Glu Thr Leu Lys Ala Leu Arg Ser 10 Ser Asp Lys Gly Arg Leu Cys Tyr Tyr Arg Asp Trp Leu Leu Arg Arg 25 20 Glu Asp Val Leu Glu Glu Cys Met Ser Leu Pro Lys Leu Ser Ser Tyr 40 Ser Gly Trp Val Val Glu His Val Leu Pro His Met Gln Glu Asn Gln 55 Pro Leu Ser Glu Thr Ser Pro Ser Ser Thr Ser Ala Ser Ala Leu Asp 70 75 Gln Pro Ser Phe Val Pro Lys Ser Pro Asp Ala Ser Ser Ala Phe Ser 85 90 Pro Ala Ser Pro Ala Thr Pro Asn Gly Thr Lys Gly Lys Lys Lys

```
<211> 43
<212> PRT
<213> Homo sapiens
Ser Leu Pro Gln Ala Leu Trp Phe Gln Phe Phe Tyr His Ser Gly Ser
                                 10
Ser Leu Glu Ser Pro Gly Met Leu Asn Gly Pro Phe Gln His Arg Asn
Ser Arg Ile Met Thr His Arg Ser Ala Glu Lys
<210> 194
<211> 51
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -16..-1
<400> 194
Met Leu Arg Ile Ala Leu Thr Leu Ile Pro Ser Met Leu Ser Arg Ala
                       -10
Ala Gly Trp Cys Trp Tyr Lys Glu Pro Thr Gln Gln Phe Ser Tyr Leu
                       10
Cys Leu Pro Cys Leu Ser Trp Asn Lys Lys Gly Asn Val Leu Gln Leu
                      25
Pro Asn Phe
     35
<210> 195
<211> 244
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -18..-1
<400> 195
Met Ala Asn Pro Lys Leu Leu Gly Leu Glu Leu Ser Glu Ala Glu Ala
                            -10
Ile Gly Ala Asp Ser Ala Arg Phe Glu Glu Leu Leu Gln Ala Ser
Lys Glu Leu Gln Gln Ala Gln Thr Thr Arg Pro Glu Ser Thr Gln Ile
                  20
                                     25
Gln Pro Gln Pro Gly Phe Cys Ile Lys Thr Asn Ser Ser Glu Gly Lys
                                  40
Val Phe Ile Asn Ile Cys His Ser Pro Ser Ile Pro Pro Pro Ala Asp
                              55
Val Thr Glu Glu Leu Leu Gln Met Leu Glu Glu Asp Gln Ala Gly
                          70
Phe Arg Ile Pro Met Ser Leu Gly Glu Pro His Ala Glu Leu Asp Ala
                      85
                                         90
```

Lys Gly Gln Gly Cys Thr Ala Tyr Asp Val Ala Val Asn Ser Asp Phe

Tyr Arg Arg Met Gln Asn Ser Asp Phe Leu Arg Glu Leu Val Ile Thr

100

115 120 Ile Ala Arg Glu Gly Leu Glu Asp Ile Tyr Asn Leu Gln Leu Asn Pro 135 140 130 Glu Trp Arg Met Met Lys Asn Arg Pro Phe Met Gly Ser Ile Ser Gln 150 155 Gln Asn Ile Arg Ser Glu Gln Arg Pro Arg Ile Gln Glu Leu Gly Asp 170 165 Leu Tyr Thr Pro Ala Pro Gly Arg Ala Glu Ser Gly Pro Glu Lys Pro 180 185 His Leu Asn Leu Trp Leu Glu Ala Pro Asp Leu Leu Leu Ala Glu Val 195 200 205 Asp Leu Pro Lys Leu Asp Gly Ala Leu Gly Leu Ser Leu Glu Ile Gly Arg Thr Ala Trp 225

<210> 196 <211> 353 <212> PRT <213> Homo sapiens <220> <221> SIGNAL

<222> -34..-1

<400> 196 Met Glu Arg Gly Leu Lys Ser Ala Asp Pro Arg Asp Gly Thr Gly Tyr -25 Thr Gly Trp Ala Gly Ile Ala Val Leu Tyr Leu His Leu Tyr Asp Val -10 Phe Gly Asp Pro Ala Tyr Leu Gln Leu Ala His Gly Tyr Val Lys Gln 1 5 Ser Leu Asn Cys Leu Thr Lys Arg Ser Ile Thr Phe Leu Cys Gly Asp 20 25 Ala Gly Pro Leu Ala Val Ala Ala Val Leu Tyr His Lys Met Asn Asn 40 Glu Lys Gln Ala Glu Asp Cys Ile Thr Arg Leu Ile His Leu Asn Lys 55 Ile Asp Pro His Ala Pro Asn Glu Met Leu Tyr Gly Arg Ile Gly Tyr 70 75 Ile Tyr Ala Leu Leu Phe Val Asn Lys Asn Phe Gly Val Glu Lys Thr 85 Pro Gln Ser His Ile Gln Gln Ile Cys Glu Thr Ile Leu Thr Ser Gly 100 105 Glu Asn Leu Ala Arg Lys Arg Asn Phe Thr Ala Lys Ser Pro Leu Met 115 120 Tyr Glu Trp Tyr Gln Glu Tyr Tyr Val Gly Ala Ala His Gly Leu Ala 135 140 Gly Ile Tyr Tyr Tyr Leu Met Gln Pro Ser Leu Gln Val Ser Gln Gly 150 155 Lys Leu His Ser Leu Val Lys Pro Ser Val Asp Tyr Val Cys Gln Leu 165 170 Lys Phe Pro Ser Gly Asn Tyr Pro Pro Cys Ile Gly Asp Asn Arg Asp 185 Leu Leu Val His Trp Cys His Gly Ala Pro Gly Val Ile Tyr Met Leu 195 200 Ile Gln Ala Tyr Lys Val Phe Arg Glu Glu Lys Tyr Leu Cys Asp Ala 210 215 Tyr Gln Cys Ala Asp Val Ile Trp Gln Tyr Gly Leu Leu Lys Lys Gly 230

WO 99/31236 -142 - PCT/IB98/02122 -

```
Tyr Gly Leu Cys His Gly Ser Ala Gly Asn Ala Tyr Ala Phe Leu Thr
                            250
                      245
Leu Tyr Asn Leu Thr Gln Asp Met Lys Tyr Leu Tyr Arg Ala Cys. Lys
                                      265
Phe Ala Glu Trp Cys Leu Glu Tyr Gly Glu His Gly Cys Arg Thr Pro
               275 280
Asp Thr Pro Phe Ser Leu Phe Glu Gly Met Ala Gly Thr Ile Tyr Phe
                   295
Leu Ala Asp Leu Leu Val Pro Thr Lys Ala Arg Phe Pro Ala Phe Glu
                        310
Leu
<210> 197
<211> 30
<212> PRT
<213> Homo sapiens
<400> 197
Met Gln Met Asp Thr Phe Phe Met Ser Glu Lys His Thr His Thr His
                                 10
Thr His Ile His Thr His Thr Arg Lys Thr Lys Lys Lys
                              25
<210> 198
<211> 112
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -48..-1
<400> 198
Met Gln Asp Thr Gly Ser Val Val Pro Leu His Trp Phe Gly Phe Gly
     -45
                           -40
Tyr Ala Ala Leu Val Ala Ser Gly Gly Ile Ile Gly Tyr Val Lys Ala
                          -25
Gly Ser Val Pro Ser Leu Ala Ala Gly Leu Leu Phe Gly Ser Leu Ala
                   -10
Gly Leu Gly Ala Tyr Gln Leu Ser Gln Asp Pro Arg Asn Val Trp Val
                                 10
Phe Leu Ala Thr Ser Gly Thr Leu Ala Gly Ile Met Gly Met Arg Phe
         20
                             25
Tyr His Ser Gly Lys Phe Met Pro Ala Gly Leu Ile Ala Gly Ala Ser
                          40
Leu Leu Met Val Ala Lys Val Gly Val Ser Met Phe Asn Arg Pro His
                     55
<210> 199
<211> 54
<212> PRT
<213> Homo sapiens
Glu Ile Ala Gly Tyr Gly Ala Glu Gly Phe Ser Ser Val Leu Gly Tyr
```

WO 99/31236 -143 - PCT/IB98/02122 .

 Pro
 Arg
 Trp
 His
 Arg
 Leu
 Pro
 Pro
 Gln
 Ser
 Leu
 Gln
 His
 His
 Gln
 Tyr

 Cys
 Gln
 Arg
 Arg
 Trp
 Pro
 Asp
 Arg
 Arg
 Cys
 Leu
 Gln
 Ser
 His
 Thr
 Gln

 Ser
 Ser
 Gly
 His
 Leu
 Pro
 45
 Frage
 <210> 200 <211> 151 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -21...1

<400> 200

Met Ala Ala Ser Thr Ser Met Xaa Pro Val Ala Val Thr Ala Ala Val -15 -10 Ala Pro Val Leu Ser Ile Asn Ser Asp Phe Ser Asp Leu Arg Glu Ile -5 1 5 Lys Lys Gln Leu Leu Leu Ile Ala Gly Leu Thr Arg Glu Arg Gly Leu 15 20 Leu His Ser Ser Lys Trp Ser Ala Glu Leu Ala Phe Ser Leu Pro Ala 35 40 Leu Pro Xaa Gly Gln Leu Gln Pro Pro Pro Pro Ile Thr Glu Glu Asp 50 ..55 Ala Gln Asp Met Asp Ala Tyr Thr Leu Ala Lys Ala Tyr Phe Asp Val 65 70 Lys Glu Tyr Asp Arg Ala Ala His Phe Leu His Gly Cys Asn Ser Lys 80 Lys Ala Tyr Phe Leu Tyr Met Tyr Ser Arg Tyr Leu Val Arg Ala Ile 100 105 Leu Lys Cys His Ser Ala Phe Ser Glu Thr Ser Ile Phe Arg Thr Asn 110 115 Gly Lys Val Lys Ser Phe Lys

Gly Lys Val Lys Ser Phe Lys 125 130

<210> 201 <211> 228 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -25..-1 <400> 201

Met Ser Met Ala Val Glu Thr Phe Gly Phe Phe Met Ala Thr Val Gly

WO 99/31236 -144- PCT/IB98/02122 -

```
Leu Met Ile Thr Ala Ile Leu Leu Gly Phe Leu Gly Leu Leu Gly
          60 65
Ile Ala Gly Leu Arg Cys Thr Asn Ile Gly Gly Leu Glu Leu Ser Arg
Lys Ala Lys Leu Ala Ala Thr Ala Gly Ala Pro His Ile Leu Ala Gly
                    95
                            100
Ile Cys Gly Met Val Ala Ile Ser Trp Tyr Ala Phe Asn Ile Thr Arg
           110
                           115
Asp Phe Phe Asp Pro Leu Tyr Pro Gly Thr Lys Tyr Glu Leu Gly Pro
      125 130 135
Ala Leu Tyr Leu Gly Trp Ser Ala Ser Leu Ile Ser Ile Leu Gly Gly
  . 140 145 150
Leu Cys Leu Cys Ser Ala Cys Cys Cys Gly Ser Asp Glu Asp Pro Ala
   155 160 165
Ala Ser Ala Arg Arg Pro Tyr Gln Ala Pro Val Ser Val Met Pro Val
                  175
Ala Thr Ser Asp Gln Glu Gly Asp Ser Ser Phe Gly Lys Tyr Gly Arg
                 190
Asn Ala Tyr Val
200
```

<210> 202 <211> 64 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -47..-1

<400> 202

Met His Gly Phe Glu Ile Ile Ser Leu Lys Glu Glu Ser Pro Leu Gly
-45

Lys Val Ser Gln Gly Pro Leu Phe Asn Val Thr Ser Gly Ser Ser Ser
-30

Pro Val Thr Trp Leu Gly Leu Leu Ser Phe Gln Asn Leu His Cys Phe
-15

Pro Asp Leu Pro Thr Glu Met Pro Leu Arg Ala Lys Gly Val Asn Thr
5

10

<210> 203
<211> 146
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -31..-1
<400> 203
Met Met Trp Gln Lys

<210> 204 <211> 87 <212> PRT <213> Homo sapiens

<400> 204

 Met
 Glu
 Leu
 Ala
 Pro
 Thr
 Ala
 Arg
 Leu
 Pro
 Pro
 His
 Gly
 Ser
 Leu

 Pro
 His
 Gly
 Val
 Leu
 Gly
 Pro
 Arg
 Ala
 Thr
 Gly
 Ser
 Val
 Thr
 His
 Leu
 Leu
 Dro
 Glu
 Arg
 Ala
 Thr
 Gly
 Ser
 Val
 Arg
 Ala
 Thr
 Glu
 Ala
 Leu
 Arg
 Arg
 Ala
 Ser
 Glu
 Arg
 Arg
 Ala
 Ser
 Glu
 Arg
 <210> 205 <211> 40 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -27..-1

<210> 206 <211> 154 <212> PRT <213> Homo sapiens

<400> 206
Met Gly Ser Leu Ser Gly Leu Arg Leu Ala Ala Gly Ser Cys Phe Arg

10 Leu Cys Glu Arg Asp Val Ser Ser Ser Leu Arg Leu Thr Arg Ser Ser Asp Leu Lys Arg Ile Asn Gly Phe Cys Thr Lys Pro Gln Glu Ser Pro 40 Gly Ala Pro Ser Arg Thr Tyr Asn Arg Val Pro Leu His Lys Pro Thr 55 Asp Trp Gln Lys Lys Ile Leu Ile Trp Ser Gly Arg Phe Lys Lys Glu 70 75 Asp Glu Ile Pro Glu Thr Val Ser Leu Glu Met Leu Asp Ala Ala Lys **85** 90 95 Asn Lys Met Arg Val Lys Ser Ser Tyr Leu Met Ile Ala Leu Thr Val 100 105 110 Val Gly Cys Ile Phe Met Val Ile Glu Gly Lys Lys Ala Ala Gln Arg 115 120 125 His Glu Thr Leu Thr Ser Leu Asn Leu Glu Lys Lys Ala Arg Leu Lys 130 135 Glu Glu Ala Ala Met Lys Ala Lys Thr Glu

<210> 207 <211> 101

<212> PRT

<213> Homo sapiens

<400> 207

 Met
 Val
 Cys
 Glu
 Lys
 Cys
 Glu
 Lys
 Leu
 Gly
 Thr
 Val
 Ile
 Thr
 Pro

 1
 1
 5
 1
 1
 10
 1
 15
 15
 15

 Asp
 Thr
 Try
 Lys
 Asp
 Gly
 Ala
 Arg
 Asp
 Thr
 Thr
 Thr
 Glu
 Ser
 Gly
 Arg
 Arg
 Arg
 Phe
 Asp
 Asp
 Arg
 Arg
 Arg
 Ile
 Cys
 Arg
 Phe
 Asp
 Arg
 Arg
 Ile
 Cys
 Lys
 Ser
 Ser
 Ser
 Ser
 Arg
 Ile
 Cys
 Lys
 Ser
 Ser
 Ser
 Ser
 Arg
 Ile
 Cys
 Lys
 Ser
 Ser
 Ser
 Ser
 Ser
 Gl
 Tyr
 Cys
 Ala
 Tyr
 Lys
 Lys
 Ala
 Tyr
 Lys
 Ala
 Tyr
 Lys
 Ala
 Tyr
 Ala</td

100

<210> 208

<211> 456

<212> PRT

<213> Homo sapiens

<220>

<221> SIGNAL

<222> -22..-1

<400> 208

Met Phe Glu Glu Pro Glu Trp Ala Glu Ala Ala Pro Val Ala Ala Gly
-20
-15
-10
Leu Gly Pro Val Ile Ser Arg Pro Pro Pro Ala Ala Ser Ser Gln Asn

Leu Gly Pro Val Ile Ser Arg Pro Pro Pro Ala Ala Ser Ser Gln Asn -5 1 5 10

Lys Gly Ser Lys Arg Arg Gln Leu Leu Ala Thr Leu Arg Ala Leu Glu
15 20 25

Ala Ala Ser Leu Ser Gln His Pro Pro Ser Leu Cys Ile Ser Asp Ser

WO 99/31236 -147- PCT/IB98/02122 -

```
40
                       3.5
Glu Glu Glu Glu Glu Arg Lys Lys Cys Pro Lys Lys Ala Ser
           50
Phe Ala Ser Ala Ser Ala Glu Val Gly Lys Lys Gly Lys Lys Cys
               65
Gln Lys Gln Gly Pro Pro Cys Ser Asp Ser Glu Glu Glu Val Glu Arg
                   85
     80
Lys Lys Lys Cys His Lys Gln Ala Leu Val Gly Ser Asp Ser Ala Glu
        95
                100 105
Asp Glu Lys Arg Lys Arg Lys Cys Gln Lys His Ala Pro Ile Asn Ser
       110 115
Ala Gln His Leu Asp Asn Val Asp Gln Thr Gly Pro Lys Ala Trp Lys
     125 130 135
Gly Ser Thr Thr Asn Asp Pro Pro Lys Gln Ser Pro Gly Ser Thr Ser
        145
                     150
Pro Lys Pro Pro His Thr Leu Ser Arg Lys Gln Trp Arg Asn Arg Gln
              160 165
Lys Asn Lys Arg Arg Cys Lys Asn Lys Phe Gln Pro Pro Gln Val Pro
           175 180 185
Asp Gln Ala Pro Ala Glu Ala Pro Thr Glu Lys Thr Glu Val Ser Pro
        190
                       195
Val Pro Arg Thr Asp Ser His Gly Ala Arg Ala Gly Ala Leu Arg Ala
     205 210 215
Arg Met Ala Gln Arg Leu Asp Gly Ala Arg Phe Arg Tyr Leu Asn Glu
  220 225
                               230
Gln Leu Tyr Ser Gly Pro Ser Ser Ala Ala Gln Arg Leu Phe Gln Glu
             240
                             245
Asp Pro Glu Ala Phe Leu Leu Tyr His Arg Gly Phe Gln Ser Gln Val
           255
                          260
Lys Lys Trp Pro Leu Gln Pro Val Asp Arg Ile Ala Arg Asp Leu Arg
                       275
Gln Arg Pro Ala Ser Leu Val Val Ala Asp Phe Gly Cys Gly Asp Cys
                   290 295
Arg Leu Ala Ser Ser Ile Arg Asn Pro Val His Cys Phe Asp Leu Ala
                 305 310
Ser Leu Asp Pro Arg Val Thr Val Cys Asp Met Ala Gln Val Pro Leu
                             325 330
              320
Glu Asp Glu Ser Val Asp Val Ala Val Phe Cys Leu Ser Leu Met Gly
                          340 345
           335
Thr Asn Ile Arg Asp Phe Leu Glu Glu Ala Asn Arg Val Leu Lys Pro
        350 355 360
Gly Gly Leu Leu Lys Val Ala Glu Val Ser Ser Arg Phe Glu Asp Val
                    370
Arg Thr Phe Leu Arg Ala Val Thr Lys Leu Gly Phe Lys Ile Val Ser
  380 385
                               390
Lys Asp Leu Thr Asn Ser His Phe Phe Leu Phe Asp Phe Gln Lys Thr
395 400 405 410
Gly Pro Pro Leu Val Gly Pro Lys Ala Gln Leu Ser Gly Leu Gln Leu
                   420
        415
Gln Pro Cys Leu Tyr Lys Arg Arg
        430
```

<210> 209 <211> 98 <212> PRT <213> Homo sapiens <220>

<221> SIGNAL <222> -17..-1

WO 99/31236 -148- PCT/IB98/02122 .

 <400> 209

 Met Pro Ser Ser Phe Phe Leu Leu Leu Gln Phe Phe Leu Arg Ile Asp -15

 Gly Val Leu Ile Arg Met Asn Asp Thr Arg Leu Tyr His Glu Ala Asp 1

 Lys Thr Tyr Met Leu Arg Glu Tyr Thr Ser Arg Glu Ser Lys Ile Ser 20

 Ser Leu Met His Val Pro Pro Ser Leu Phe Thr Glu Pro Asn Glu Ile 35

 Ser Gln Tyr Leu Pro Ile Lys Glu Ala Val Cys Glu Lys Leu Ile Phe 50

 Pro Glu Arg Ile Asp Pro Asn Pro Ala Asp Ser Gln Lys Ser Thr Gln 65

 Val Glu 80

<210> 210 <211> 83 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -29..-1

<210> 211 <211> 229 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -23..-1

Asn Ala Ser

WO 99/31236 -149- PCT/IB98/02122 -

```
50
        45
Gly Lys Thr Leu Val Phe Glu Gln Arg Lys Ser Asp Gly Val His Thr
                            70
              65
Val Glu Thr Glu Val Gly Asp Tyr Met Phe Cys Phe Asp Asn Thr Phe
                 80
Ser Thr Ile Ser Glu Lys Val Ile Phe Phe Glu Leu Ile Leu Asp Asn
                     100 105
            95
Met Gly Glu Gln Ala Gln Glu Gln Glu Asp Trp Lys Lys Tyr Ile Thr
      110 115 120
Gly Thr Asp Ile Leu Asp Met Lys Leu Glu Asp Ile Leu Glu Ser Ile
                       130 135
        125
Ser Ser Ile Lys Ser Arg Leu Ser Lys Ser Gly His Ile Gln Ile Leu
                          150
                     145
Leu Arg Ala Phe Glu Ala Arg Asp Arg Asn Ile Gln Glu Ser Asn Phe
                       165
 155 160
Asp Arg Val Asn Phe Trp Ser Met Val Asn Leu Val Val Met Val Val
170 175
Val Ser Ala Ile Gln Val Tyr Met Leu Lys Ser Leu Phe Glu Asp Lys
                   195
         190
Arg Lys Ser Arg Thr
        205
```

<210> 212 <211> 152 <212> PRT <213> Homo sapiens <220>

<221> SIGNAL <222> -21..-1

<400> 212 Met Ala Gln Leu Gly Ala Val Val Ala Val Ala Ser Ser Phe Phe Cys -15 Ala Ser Leu Phe Ser Ala Val His Lys Ile Glu Glu Gly His Ile Gly 1 Val Tyr Tyr Arg Gly Gly Ala Leu Leu Thr Ser Thr Ser Gly Pro Gly 20 Phe His Leu Met Leu Pro Phe Ile Thr Ser Tyr Lys Ser Val Gln Thr 35 Thr Leu Gln Thr Asp Glu Val Lys Asn Val Pro Cys Gly Thr Ser Gly 50 Gly Val Met Ile Tyr Phe Asp Arg Ile Glu Val Val Asn Phe Leu Val 70 65 Pro Asn Ala Val His Asp Ile Val Lys Asn Tyr Thr Ala Asp Tyr Asp 85 80 Lys Ala Leu Ile Phe Asn Lys Ile His His Glu Leu Asn Gln Phe Cys 100 Ser Val His Thr Leu Gln Glu Val Tyr Ile Glu Leu Phe Gly Leu Glu 115 Asn Asp Phe Ser Gln Glu Ser Ser 125

<210> 213 <211> 179 <212> PRT <213> Homo sapiens WO 99/31236 -150- PCT/IB98/02122 -

```
<220>
<221> SIGNAL
<222> -54..-1
<400> 213
Met Ala Ala Ser Glu Ala Ala Val Val Ser Ser Pro Ser Leu Lys Thr
                   -45
Asp Thr Ser Pro Val Leu Glu Thr Ala Gly Thr Val Ala Ala Met Ala
                  -30
Ala Thr Pro Ser Ala Arg Ala Ala Ala Ala Val Val Ala Ala Ala Ala
                     -15
                               -10
Arg Thr Gly Ser Glu Ala Arg Val Ser Lys Ala Ala Leu Ala Thr Lys
                         5 10
Leu Leu Ser Leu Ser Gly Val Phe Ala Val His Lys Pro Lys Gly Pro
                              20
       15
Thr Ser Ala Glu Leu Leu Asn Arg Leu Lys Glu Lys Leu Leu Ala Glu
                           35
Ala Gly Met Pro Ser Pro Glu Trp Thr Lys Arg Lys Lys Gln Thr Leu
                       50
Lys Ile Gly His Gly Gly Thr Leu Asp Ser Ala Ala Arg Gly Val Leu
                            70
Val Val Gly Ile Gly Ser Gly Thr Lys Met Leu Thr Ser Met Leu Ser
                80
                                 85
Gly Ser Lys Arg Tyr Thr Ala Ile Gly Glu Leu Gly Lys Ala Thr Asp
            95
                              100
Thr Leu Asp Ser Thr Gly Lys Val Thr Glu Glu Lys Pro Tyr Gly Met
                   115
Asn Leu Ile
      125
<210> 214
```

<210> 214 <211> 269 <212> PRT <213> Homo sapiens <220> <221> SIGNAL

<400> 214

<222> -92..-1

Met Ile Thr His Val Thr Leu Glu Asp Ala Leu Ser Asn Val Asp Leu -90 -85 Leu Glu Glu Leu Pro Leu Pro Asp Gln Gln Pro Cys Ile Glu Pro Pro -70 -65 Pro Ser Ser Ile Met Tyr Gln Ala Asn Phe Asp Thr Asn Phe Glu Asp -**55** -**5**0 Arg Asn Ala Phe Val Thr Gly Ile Ala Arg Tyr Ile Glu Gln Ala Thr -40 -35 Val His Ser Ser Met Asn Glu Met Leu Glu Glu Gly His Glu Tyr Ala -25 -20 Val Met Leu Tyr Thr Trp Arg Ser Cys Ser Arg Ala Ile Pro Gln Val -5 Lys Cys Asn Glu Gln Pro Asn Arg Val Glu Ile Tyr Glu Lys Thr Val 10 15 Glu Val Leu Glu Pro Glu Val Thr Lys Leu Met Lys Phe Met Tyr Phe 25 30 Gln Arg Lys Ala Ile Glu Arg Phe Cys Ser Glu Val Lys Arg Leu Cys 4.5 His Ala Glu Arg Arg Lys Asp Phe Val Ser Glu Ala Tyr Leu Leu Thr Leu Gly Lys Phe Ile Asn Met Phe Ala Val Leu Asp Glu Leu Lys Asn 75 80 Met Lys Cys Ser Val Lys Asn Asp His Ser Ala Tyr Lys Arg Ala Ala 95 90 Gln Phe Leu Arg Lys Met Ala Asp Pro Gln Ser Ile Gln Glu Ser Gln 105 110 115 Asn Leu Ser Met Phe Leu Ala Asn His Asn Arg Ile Thr Gln Cys Leu 120 125 130 His Gln Gln Leu Glu Val Ile Pro Gly Tyr Glu Glu Leu Leu Ala Asp 145 135 140 Ile Val Asn Ile Cys Val Asp Tyr Tyr Glu Asn Lys Met Tyr Leu Thr 160 150 155 Pro Ser Glu Lys His Met Leu Leu Lys Val Lys Leu Pro 165 170

<210> 215 <211> 135 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -22..-1

Asp Gly Leu Val Arg Ser Ser Pro Ser Leu Asp Gln Met Phe Asp Ala
-5
1
5
10

Glu Ile Leu Gly Phe Ser Thr Pro Pro Gly Arg Leu Ser Met Met Ser
15 20 25

Phe Ile Phe Asn Ala Leu Thr Cys Ala Leu Gly Leu Leu Tyr Phe Ile
30 35 40

Arg Arg Gly Lys Gln Cys Leu Asp Phe Thr Val Thr Val His Phe Phe 45 50 55

His Leu Leu Gly Cys Trp Phe Tyr Ser Ser Arg Phe Pro Ser Ala Leu 60 65 70

Thr Trp Trp Leu Val Gln Ala Val Cys Ile Ala Leu Met Ala Val Ile
75 80 85 90
Gly Glu Tyr Leu Cys Met Arg Thr Glu Leu Lys Glu Ile Pro Leu Asn

95 100 105

Ser Ala Pro Lys Ser Asn Val 110

<210> 216 <211> 67 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -38..-1

<400> 216

Met Asn Asn Val Gln Pro Lys Ile Lys His Arg Pro Phe Cys Phe Ser
-35

Val Lys Gly His Val Lys Met Leu Arg Leu Val Phe Ala Leu Val Thr
-20

-15

WO 99/31236 -152- PCT/IB98/02122

 Ala Val Cys Cys Leu Ala Asp Gly Ala Leu Ile Tyr Arg Lys Leu Leu
 -5
 1
 5
 10

 Phe Asn Pro Asn Gly Pro Tyr Gln Lys Lys Pro Val His Glu Lys Lys
 15
 20
 25

 Glu Val Leu
 25

<210> 217 <211> 125 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -54..-1 <400> 217

Met Ala Asp Glu Glu Leu Glu Ala Leu Arg Arg Gln Arg Leu Ala Glu -40

Leu Gln Ala Lys His Gly Asp Pro Gly Asp Ala Ala Gln Gln Glu Ala -25

Lys His Arg Glu Ala Glu Met Arg Asn Ser Ile Leu Ala Gln Val Leu -20

Asp Gln Ser Ala Arg Ala Arg Leu Ser Asn Leu Ala Leu Val Lys Pro 10

Glu Lys Thr Lys Ala Val Glu Asn Tyr Leu Ile Gln Met Arg Tyr Leu Ile Gln Met Ala Arg Tyr 25

Gly Gln Leu Ser Glu Lys Val Ser Glu Gln Gly Leu Ile Gln Met Ala Arg Tyr Leu Ser Ser Ser Ile Clu Ala Arg Tyr 25

Gly Gln Leu Ser Glu Lys Val Ser Glu Gln Gly Leu Ile Gln Met Ala Arg Tyr 36

Lys Lys Val Ser Gln Gln Thr Glu Lys Thr Thr Thr Val Lys Phe Asn 45

Arg Arg Lys Val Met Asp Ser Asp Glu Asp Asp Asp Tyr

<210> 218 <211> 376 <212> PRT <213> Homo sapiens <220> <221> SIGNAL

<400> 218

<222> -21..-1

Met Gly His Arg Phe Leu Arg Gly Leu Leu Thr Leu Leu Pro Pro -15 Pro Pro Leu Tyr Thr Arg His Arg Met Leu Gly Pro Glu Ser Val Pro 1 Pro Pro Lys Arg Ser Arg Ser Lys Leu Met Ala Pro Pro Arg Ile Gly 20 Thr His Asn Gly Thr Phe His Cys Asp Glu Ala Leu Ala Cys Ala Leu 35 Leu Arg Leu Leu Pro Glu Tyr Arg Asp Ala Glu Ile Val Arg Thr Arg 50 Asp Pro Glu Lys Leu Ala Ser Cys Asp Ile Val Val Asp Val Gly Gly 65 70 Glu Tyr Asp Pro Arg Arg His Arg Tyr Asp His His Gln Arg Ser Phe 80 85 Thr Glu Thr Met Ser Ser Leu Ser Pro Gly Arg Pro Trp Gln Thr Lys

WO 99/31236 -153- PCT/IB98/02122

```
100
Leu Ser Ser Ala Gly Leu Ile Tyr Leu His Phe Gly His Lys Leu Leu
                115 . 120
Ala Gln Leu Leu Gly Thr Ser Glu Glu Asp Ser Met Val Gly Thr Leu
                  130
                                   135
Tyr Asp Lys Met Tyr Glu Asn Phe Val Glu Glu Val Asp Ala Val Asp
               145
                                150
Asn Gly Ile Ser Gln Trp Ala Glu Gly Glu Pro Arg Tyr Ala Leu Thr
                           165 170
Thr Thr Leu Ser Ala Arg Val Ala Arg Leu Asn Pro Thr Trp Asn His
                         180 185
Pro Asp Gln Asp Thr Glu Ala Gly Phe Lys Arg Ala Met Asp Leu Val
           195
                             200
Gln Glu Glu Phe Leu Gln Arg Leu Asp Phe Tyr Gln His Ser Trp Leu
  205 210 215
Pro Ala Arg Ala Leu Val Glu Glu Ala Leu Ala Gln Arg Phe Gln Val
      225 230
Asp Pro Ser Gly Glu Ile Val Glu Leu Ala Lys Gly Ala Cys Pro Trp
            240
                           245
Lys Glu His Leu Tyr His Leu Glu Ser Gly Leu Ser Pro Pro Val Ala
                        260
Ile Phe Phe Val Ile Tyr Thr Asp Gln Ala Gly Gln Trp Arg Ile Gln
          275
Cys Val Pro Lys Glu Pro His Ser Phe Gln Ser Arg Leu Pro Leu Pro
                  290
                                 295
Glu Pro Trp Arg Gly Leu Arg Asp Glu Ala Leu Asp Gln Val Ser Gly
                305
                                310
Ile Pro Gly Cys Ile Phe Val His Ala Ser Gly Phe Ile Gly Gly His
            320 325 .. 330
Arg Thr Arg Glu Gly Ala Leu Ser Met Ala Arg Ala Thr Leu Ala Gln
               340
         335
Arg Ser Tyr Leu Pro Gln Ile Ser
      350
```

```
<210> 219
<211> 211
<212> PRT
<213> Homo sapiens
<220>
```

<221> SIGNAL <222> -30..-1

<400> 219 Met Gly Glu Ala Ser Pro Pro Ala Pro Ala Arg Arg His Leu Leu Val -25 -20 Leu Leu Leu Leu Ser Thr Leu Val Ile Pro Ser Ala Ala Pro -5 Ile His Asp Ala Asp Ala Gln Glu Ser Ser Leu Gly Leu Thr Gly Leu 10 Gln Ser Leu Leu Gln Gly Phe Ser Arg Leu Phe Leu Lys Gly Asn Leu 25 Leu Arg Gly Ile Asp Ser Leu Phe Ser Ala Pro Met Asp Phe Arg Gly 40 45 Leu Pro Gly Asn Tyr His Lys Glu Glu Asn Gln Glu His Gln Leu Gly 55 60 Asn Asn Thr Leu Ser Ser His Leu Gln Ile Asp Lys Val Pro Arg Met 75 Glu Glu Lys Glu Ala Leu Val Pro Ile Gln Lys Ala Thr Asp Ser Phe 90

WO 99/31236 -154- PCT/IB98/02122

```
His Thr Glu Leu His Pro Arg Val Ala Phe Trp Ile Ile Lys Leu Pro
 100 105
Arg Arg Arg Ser His Gln Asp Ala Leu Glu Gly Gly His Trp Leu Ser
               120
                               125
Glu Lys Arg His Arg Leu Gln Ala Ile Arg Asp Gly Leu Arg Lys Gly
            135
                            140 145
Thr His Lys Asp Val Leu Glu Glu Gly Thr Glu Ser Ser His Ser
         150
              155
Arg Leu Ser Pro Arg Lys Thr His Leu Leu Tyr Ile Leu Arg Pro Ser
 165 170
Arg Gln Leu
  180
<210> 220
<211> 154
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -60..-1
<400> 220
Met Gly Ser Lys Cys Lys Gly Gly Pro Asp Glu Asp Ala Val Glu
         -55
Arg Gln Arg Arg Gln Lys Leu Leu Leu Ala Gln Leu His His Arg Lys
                   -35 ⋅⋅ -30
           -40
Arg Val Lys Ala Ala Gly Gln Ile Gln Ala Trp Trp Arg Gly Val Leu
        -25 -20 -15
Val Arg Arg Thr Leu Leu Val Ala Ala Leu Arg Ala Trp Met Ile Gln
     -10 -5 1
Cys Trp Trp Arg Thr Leu Val Gln Arg Arg Ile Arg Gln Arg Arg Gln
         10
                      15 20
Ala Leu Leu Arg Val Tyr Val Ile Gln Glu Gln Ala Thr Val Lys Leu
                         30 35
           25
Gln Ser Cys Ile Arg Met Trp Gln Cys Arg Gln Cys Tyr Arg Gln Met
                        45
Cys Asn Ala Leu Cys Leu Phe Gln Val Pro Glu Ser Ser Leu Ala Phe
                    60
Gln Thr Asp Gly Phe Leu Gln Val Gln Tyr Ala Ile Pro Ser Lys Gln
                 75
Pro Glu Phe His Ile Glu Ile Leu Ser Ile
                90
<210> 221
<211> 123
<212> PRT
<213> Homo sapiens
```

WO 99/31236 -155- PCT/IB98/02122

```
<210> 222
<211> 346
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -19..-1
<400> 222
Met Ala Met Ala Gln Lys Leu Ser His Leu Leu Pro Ser Leu Arg Gln
             -15
                              -10
Val Ile Gln Glu Pro Gln Leu Ser Leu Gln Pro Glu Pro Val Phe Thr
                 5
Val Asp Arg Ala Glu Val Pro Pro Leu Phe Trp Lys Pro Tyr Ile Tyr
                                     25
          20
Ala Gly Tyr Arg Pro Leu His Gln Thr Trp Arg Phe Tyr Phe Arg Thr
              35
                                40
Leu Phe Gln Gln His Asn Glu Ala Val Asn Val Trp Thr His Leu Leu
Ala Ala Leu Val Leu Leu Arg Leu Ala Leu Phe Val Glu Thr Val
                            70
Asp Phe Trp Gly Asp Pro His Ala Leu Pro Leu Phe Ile Ile Val Leu
                        85
Ala Ser Phe Thr Tyr Leu Ser Leu Ser Ala Leu Ala His Leu Leu Gln
                    100
Ala Lys Ser Glu Phe Trp His Tyr Ser Phe Phe Phe Leu Asp Tyr Val
                 115
                                  120
Gly Val Ala Val Tyr Gln Phe Gly Ser Ala Leu Ala His Phe Tyr Tyr
              130
                               135 140
Ala Ile Glu Pro Ala Trp His Ala Gln Val Gln Ala Val Phe Leu Pro
                           150
Met Ala Ala Phe Leu Ala Trp Leu Ser Cys Ile Gly Ser Cys Tyr Asn
                        165
Lys Tyr Ile Gln Lys Pro Gly Leu Leu Gly Arg Thr Cys Gln Glu Val
                    180
                                      185
Pro Ser Val Leu Ala Tyr Ala Leu Asp Ile Ser Pro Val Val His Arg
                 195
                                   200
Ile Phe Val Ser Ser Asp Pro Thr Thr Asp Asp Pro Ala Leu Leu Tyr
             210
                               215
His Lys Cys Gln Val Val Phe Phe Leu Leu Ala Ala Phe Phe Ser
                           230
Thr Phe Met Pro Glu Arg Trp Phe Pro Gly Ser Cys His Val Phe Gly
                       245
Gln Gly His Gln Leu Phe His Ile Phe Leu Val Leu Cys Thr Leu Ala
                    260
                                     265
Gln Leu Glu Ala Val Ala Leu Asp Tyr Glu Ala Arg Arg Pro Ile Tyr
```

280

275

```
Glu Pro Leu His Thr His Trp Pro His Asn Phe Ser Gly Leu Phe Leu
                      295 300°
        290
Leu Thr Val Gly Ser Ser Ile Leu Thr Ala Phe Leu Leu Ser Gln Leu
         305
                  310
Val Gln Arg Lys Leu Asp Gln Lys Thr Lys
      320
              325
<210> 223
<211> 210
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -20..-1
<400> 223
Met Asp Asn Arg Phe Ala Thr Ala Phe Val Ile Ala Cys Val Leu Ser
    -15 -10
Leu Ile Ser Thr Ile Tyr Met Ala Ala Ser Ile Gly Thr Asp Phe Trp
             1 5
Tyr Glu Tyr Arg Ser Pro Val Gln Glu Asn Ser Ser Asp Leu Asn Lys
     15
                       20
Ser Ile Trp Asp Glu Phe Ile Ser Asp Glu Ala Asp Glu Lys Thr Tyr
Asn Asp Ala Leu Phe Arg Tyr Asn Gly Thr Val Gly Leu Trp Arg Arg
                50
                                   55
Cys Ile Thr Ile Pro Lys Asn Met His Trp Tyr Ser Pro Pro Glu Arg
                               70
Thr Glu Ser Phe Asp Val Val Thr Lys Cys Val Ser Phe Thr Leu Thr
Glu Gln Phe Met Glu Lys Phe Val Asp Pro Gly Asn His Asn Ser Gly
                        100
Ile Asp Leu Leu Arg Thr Tyr Leu Trp Arg Cys Gln Phe Leu Leu Pro
                     115
Phe Val Ser Leu Gly Leu Met Cys Phe Gly Ala Leu Ile Gly Leu Cys
125 130
                                  135
Ala Cys Ile Cys Arg Ser Leu Tyr Pro Thr Ile Ala Thr Gly Ile Leu
             145 150
His Leu Leu Ala Val Thr Lys Glu Ser Met Leu Pro Ala Gly Ala Glu
                           165
                                            170
Ser Lys His Thr Ala Thr Pro Ala His Ala Cys Val Gln Thr Gly Lys
Pro Lys
  190
<210> 224
<211> 184
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -20..-1
```

Met Asp Asn Arg Phe Ala Thr Ala Phe Val Ile Ala Cys Val Leu Ser

<400> 224

-15 -10 Leu Ile Ser Thr Ile Tyr Met Ala Ala Ser Ile Gly Thr Asp Phe Trp Tyr Glu Tyr Arg Ser Pro Val Gln Glu Asn Ser Ser Asp Leu Asn Lys 20 Ser Ile Trp Asp Glu Phe Ile Ser Asp Glu Ala Asp Glu Lys Thr Tyr Asn Asp Ala Pro Phe Arg Tyr Asn Gly Thr Val Gly Leu Trp Arg Arg 50 Cys Ile Thr Ile Pro Lys Asn Met His Trp Tyr Ser Pro Pro Glu Arg 65 70 Thr Glu Ser Phe Asp Val Val Thr Lys Cys Val Ser Phe Thr Leu Thr 85 Glu Gln Phe Met Glu Lys Phe Val Asp Pro Gly Asn His Asn Ser Gly 100 Ile Asp Leu Leu Arg Thr Tyr Leu Trp Arg Cys Gln Phe Leu Leu Pro 115 120 Phe Val Ser Leu Gly Leu Met Cys Phe Gly Ala Leu Ile Gly Leu Cys 130 135 Ala Cys Ile Cys Arg Ser Leu Tyr Pro Thr Ile Ala Thr Gly Ile Leu 145 150 His Leu Leu Ala Asp Thr Met Leu

<210> 225 <211> 227 <212> PRT <213> Homo sapiens

<220> <221> SIGNAL <222> -22..-1

<400> 225

Met Gly Trp Thr Met Arg Leu Val Thr Ala Ala Leu Leu Leu Gly Leu -20 -15 -10 Met Met Val Val Thr Gly Asp Glu Asp Glu Asn Ser Pro Cys Ala His Glu Ala Leu Leu Asp Glu Asp Thr Leu Phe Cys Gln Gly Leu Glu Val Phe Tyr Pro Glu Leu Gly Asn Ile Gly Cys Lys Val Val Pro Asp Cys Asn Asn Tyr Arg Gln Lys Ile Thr Ser Trp Met Glu Pro Ile Val Lys 50 Phe Pro Gly Ala Val Asp Gly Ala Thr Tyr Ile Leu Val Met Val Asp 65 Pro Asp Ala Pro Ser Arg Ala Glu Pro Arg Gln Arg Phe Trp Arg His 85 80 Trp Leu Val Thr Asp Ile Lys Gly Ala Asp Leu Lys Lys Gly Lys Ile 95 100 Gln Gly Gln Glu Leu Ser Ala Tyr Gln Ala Pro Ser Pro Pro Ala His 115 Ser Gly Phe His Arg Tyr Gln Phe Phe Val Tyr Leu Gln Glu Gly Lys 130 135 Val Ile Ser Leu Leu Pro Lys Glu Asn Lys Thr Arg Gly Ser Trp Lys 145 Met Asp Arg Phe Leu Asn Arg Phe His Leu Gly Glu Pro Glu Ala Ser 160 165 Thr Gln Phe Met Thr Gln Asn Tyr Gln Asp Ser Pro Thr Leu Gln Ala 175 180

```
Pro Arg Glu Arg Ala Ser Glu Pro Lys His Lys Asn Gln Ala Glu Ile
   190 195
Ala Ala Cys
     205
<210> 226
<211> 74
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -41..-1
<400> 226
Met Ile Ala Arg Arg Asn Pro Val Pro Leu Arg Phe Leu Pro Asp Glu
         -35
                               -30
Ala Arg Ser Leu Pro Pro Pro Lys Leu Thr Asp Pro Arg Leu Leu Tyr
                        -15
              -20
Ile Gly Phe Leu Gly Tyr Cys Ser Gly Leu Ile Asp Asn Leu Ile Arg
          -5 1 5
Arg Arg Pro Ile Ala Thr Ala Gly Leu His Arg Gln Leu Leu Tyr Ile
              15
Thr Ala Phe Phe Leu Leu Asp Ile Ile Leu
   25
                    30
<210> 227
<211> 73
<212> PRT
<213> Homo sapiens
<400> 227
Met Glu Lys Tyr Glu Asn Leu Gly Leu Val Gly Glu Gly Ser Tyr Gly
1
          5
                 10
Met Val Met Lys Cys Arg Asn Lys Asp Thr Gly Arg Ile Val Ala Ile
         20
                          25
Lys Lys Phe Leu Glu Ser Asp Asp Lys Met Val Lys Lys Ile Ala
                       40
                                       45
Met Arg Glu Val Lys Leu Leu Lys Gln Leu Arg His Glu Asn Leu Val
                    55
Asn Leu Leu Glu Val Cys Lys Lys
<210> 228
<211> 82
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -16..-1
<400> 228
Met Lys Arg Leu Leu Pro Ala Thr Ser Leu Ala Gly Pro Val Leu Ser
           -10
                               -5
 -15
```

Thr Leu Ile Ala Pro Thr Pro Met Leu Phe Cys Glu Asp Lys Ser Trp

```
5
                               10
Asp Leu Phe Leu Phe Phe Lys Ser His Lys Thr Trp Gly Ile Ser Thr
      20
                      25
Asn Leu Ser Ser Cys Pro Phe Gly Asn Leu Phe Leu Cys Val Gln Phe
                     40
Val Arg Glu Lys Gln Ser Phe Cys Met Asn Thr Glu Cys Asp Leu Arg
             55
Lys Asn
65
<210> 229
<211> 119
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -56..-1
<400> 229
Met Ala Glu Pro Ser Ala Ala Thr Gln Ser His Ser Ile Ser Ser Ser
-55 -50 -45
Ser Phe Gly Ala Glu Pro Ser Ala Pro Gly Gly Gly Ser Pro Gly
             -35 -30
Ala Cys Pro Ala Leu Gly Thr Lys Ser Cys Ser Ser Ser Cys Ala Asp
```

-20 -15 -10

50

10

40

Ser Phe Val Ser Ser Ser Ser Ser Gln Pro Val Ser Leu Phe Ser Thr -5 1 5 Ser Gln Glu Gly Leu Ser Ser Leu Cys Ser Asp Glu Pro Ser Ser Glu

Ile Met Thr Ser Ser Phe Leu Ser Ser Ser Glu Ile His Asn Thr Gly

Leu Thr Ile Leu His Gly Glu Lys Ser His Val Leu Gly Ser Gln Pro

15

25 30 35

Ile Leu Ala Lys Lys Lys 60

<212> PRT <213> Homo sapiens

<210> 230 <211> 54

Ala Phe Val Trp Glu Pro Ala Met Val Arg Ile Asn Ala Leu Thr Ala Ala Ser Glu Ala Ala Cys Leu Ile Val Ser Val Asp Glu Thr Ile Lys 25 Asn Pro Arg Ser Thr Val Asp Ala Pro Thr Ala Ala Gly Arg Gly Arg

Gly Arg Gly Arg Pro His 50

<210> 231 <211> 210 <212> PRT <213> Homo sapiens

```
<221> SIGNAL
<222> -14..-1
<400> 231
Met Leu Thr Leu Leu Gly Leu Ser Phe Ile Leu Ala Gly Leu Ile Val
          -10 -5
Gly Gly Ala Cys Ile Tyr Lys Tyr Phe Met Pro Lys Ser Thr Ile Tyr
                      10
Arg Gly Glu Met Cys Phe Phe Asp Ser Glu Asp Pro Ala Asn Ser Leu
                    25
Arg Gly Glu Pro Asn Phe Leu Pro Val Thr Glu Glu Ala Asp Ile
                                45
Arg Glu Asp Asp Asn Ile Ala Ile Ile Asp Val Pro Val Pro Ser Phe
                             60
Ser Asp Ser Asp Pro Ala Ala Ile Ile His Asp Phe Glu Lys Gly Met
                         75
Thr Ala Tyr Leu Asp Leu Leu Cly Ile Cys Tyr Leu Met Pro Leu
               90
Asn Thr Ser Ile Val Met Pro Pro Lys Asn Leu Val Glu Leu Phe Gly
             105
Lys Leu Ala Ser Gly Arg Tyr Leu Pro Gln Thr Tyr Val Val Arg Glu
115 120 125
Asp Leu Val Ala Val Glu Glu Ile Arg Asp Val Ser Asn Leu Gly Ile
          135 140 145
Phe Ile Tyr Gln Leu Cys Asn Asn Arg Lys Ser Phe Arg Leu Arg Arg
        150 155 160
Arg Asp Leu Leu Gly Phe Asn Lys Arg Ala Ile Asp Lys Cys Trp
           170
                             175
Lys Ile Arg His Phe Pro Asn Glu Phe Ile Val Glu Thr Lys Ile Cys
         185
Gln Glu
195
```

<210> 232 <211> 108 <212> PRT <213> Homo sapiens

<400> 232

<220>

 Met
 Gly
 Cys
 Val
 Phe
 Gln
 Ser
 Thr
 Glu
 Asp
 Lys
 Lys
 Ile
 Phe
 Lys
 Ile

 Asp
 Trp
 Thr
 Leu
 Ser
 Pro
 Glu
 His
 Ala
 Lys
 Asp
 Glu
 Tyr
 Val
 Leu
 Jule
 Leu
 Leu
 Lule
 <210> 233 <211> 43

WO 99/31236 -161- PCT/IB98/02122 -

```
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -18..-1
<400> 233
Met Ser Ser Gly Arg Leu Arg Trp Leu Met Pro Val Ile Pro Ala Leu
 -15 -10
Trp Gly Ala Glu Lys Gly Glu Ser Pro Glu Val Ser Ser Phe Glu Thr
  1 5
Arg Leu Ala Asn Met Ala Lys Pro Cys Leu Tyr
15 20
<210> 234
<211> 36
<212> PRT
<213> Homo sapiens
<400> 234
Met Ser Ala Arg Ile Pro Phe Tyr Lys Asp Thr Ser Gln Ile Arg Leu
1 5
                           10
Gly Ser Thr Ile Ile Pro His Phe Asn Leu Ile Thr Phe Val Lys Thr
   20
                       25
Phe Phe Gln Ile
     35
<210> 235
<211> 307
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -13..-1
<400> 235
Met Leu Ala Val Ser Leu Thr Val Pro Leu Leu Gly Ala Met Met Leu
      -10 -5 1
Leu Glu Ser Pro Ile Asp Pro Gln Pro Leu Ser Phe Lys Glu Pro Pro
Leu Leu Gly Val Leu His Pro Asn Thr Lys Leu Arg Gln Ala Glu
               25
                               30
Arg Leu Phe Glu Asn Gln Leu Val Gly Pro Glu Ser Ile Ala His Ile
            40
Gly Asp Val Met Phe Thr Gly Thr Ala Asp Gly Arg Val Val Lys Leu
                          60
Glu Asn Gly Glu Ile Glu Thr Ile Ala Arg Phe Gly Ser Gly Pro Cys
                      75
Lys Thr Arg Asp Asp Glu Pro Val Cys Gly Arg Pro Leu Gly Ile Arg
                 90
Ala Gly Pro Asn Gly Thr Leu Phe Val Ala Asp Ala Cys Lys Gly Leu
    105
                                110
Phe Glu Val Asn Pro Trp Lys Arg Glu Val Lys Leu Leu Ser Ser
            120
                    125 130
Glu Thr Pro Ile Glu Gly Lys Asn Met Ser Phe Val Asn Asp Leu Thr
```

Val Ser Gln Asp Gly Arg Lys Ile Tyr Phe Thr Asp Ser Ser Ser Lys 150 155 Trp Gln Arg Arg Asp Tyr Leu Leu Leu Val Met Glu Gly Thr Asp Asp 170 Gly Arg Leu Leu Glu Tyr Asp Thr Val Thr Arg Glu Val Lys Val Leu 185 190 195 Leu Asp Gln Leu Arg Phe Pro Asn Gly Val Gln Leu Ser Pro Ala Glu 200 205 210 Asp Phe Val Leu Val Ala Glu Thr Thr Met Ala Arg Ile Arg Arg Val 215 220 225 Tyr Val Ser Gly Leu Met Lys Gly Gly Ala Asp Leu Phe Val Glu Asn 235 240 Met Pro Gly Phe Pro Asp Asn Ile Arg Pro Ser Ser Ser Gly Gly Tyr 250 255 Trp Val Gly Met Ser Thr Ile Arg Pro Asn Pro Gly Phe Ser Met Leu 270 275 Asp Phe Leu Ser Glu Arg Pro Trp Ile Lys Arg Met Ile Phe Lys Ala 285 Lys Lys Lys

<210> 236 <211> 106 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -32..-1

<400> 236

Met Phe Ala Pro Ala Val Met Arg Ala Phe Arg Lys Asn Lys Thr Leu -30 -25 -20 Gly Tyr Gly Val Pro Met Leu Leu Leu Ile Val Gly Gly Ser Phe Gly -15 -10 -5 Leu Arg Glu Phe Ser Gln Ile Arg Tyr Asp Ala Val Lys Ser Lys Met 1 5 10 15 Asp Pro Glu Leu Glu Lys Lys Leu Lys Glu Asn Lys Ile Ser Leu Glu 25 30 Ser Glu Tyr Glu Lys Ile Lys Asp Ser Lys Phe Asp Asp Trp Lys Asn 35 40 Ile Arg Gly Pro Arg Pro Trp Glu Asp Pro Asp Leu Leu Gln Gly Arg 55 Asn Pro Glu Ser Leu Lys Thr Lys Thr Thr

<210> 237 <211> 42 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -19..-1 <400> 237

Met Asp Leu Arg Gln Phe Leu Met Cys Leu Ser Leu Cys Thr Ala Phe -15 -10 -5 Ala Leu Ser Lys Pro Thr Glu Lys Lys Asp Arg Val His His Glu Pro

WO 99/31236 -163- PCT/IB98/02122

```
1
                                               10
Gln Leu Ser Asp Lys Val His Asn Asp Ile
<210> 238
<211> 117
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -20..-1
<400> 238
Met Asp Asn Arg Phe Ala Thr Ala Phe Val Ile Ala Cys Val Leu Ser
                -15
                                      -10
Leu Ile Ser Thr Ile Tyr Met Ala Ala Ser Ile Gly Thr Asp Phe Trp
              1
Tyr Glu Tyr Arg Ser Pro Val Gln Glu Asn Ser Ser Asp Leu Asn Lys
                         20
                                          25
Ser Ile Trp Asp Glu Phe Ile Ser Asp Glu Ala Asp Glu Lys Thr Tyr
                      35
Asn Asp Ala Leu Phe Arg Tyr Asn Gly Thr Val Gly Leu Trp Gly Arg
                50
                                   . . 55
Cys Ile Thr Ile Pro Lys Asn Met His Trp Tyr Ser Pro Pro Glu Arg
                       70
Thr Gly Ile Ser Leu Ile Leu Thr Ser Val Phe Phe Thr Trp Leu Ile
          80
                        85
Ile Asp Lys Thr Thr
       95
<210> 239
<211> 178
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -37..-1
<400> 239
Met Glu Arg Gln Ser Arg Val Met Ser Glu Lys Asp Glu Tyr Gln Phe
    -35
                          -30
                                              -25
Gln His Xaa Xaa Ala Xaa Xaa Leu Leu Val Phe Asn Phe Leu Leu Ile
                       -15
                                         -10
Leu Thr Ile Leu Thr Ile Trp Leu Phe Lys Asn His Arg Phe Arg Phe
Leu His Glu Thr Gly Gly Ala Met Val Tyr Gly Leu Ile Met Gly Leu
                              20
Ile Ser Arg Tyr Ala Thr Ala Pro Thr Asp Ile Glu Ser Gly Thr Val
                           35
Cys Asp Cys Val Lys Leu Thr Phe Ser Pro Pro Thr Leu Leu Val Asn
                       50
Val Thr Asp Gln Val Tyr Glu Tyr Lys Tyr Lys Arg Glu Ile Ser Gln
                   65
                                     70
```

His Asn Ile Asn Pro His Gln Gly Asn Ala Ile Leu Glu Lys Met Thr

Phe Asp Pro Glu Ile Phe Phe Asn Val Leu Leu Pro Pro Ile Ile Phe

WO 99/31236 -164 - PCT/IB98/02122

```
100
                                        105
His Ala Gly Tyr Ser Leu Lys Lys Arg His Phe Phe Gln Asn Leu Gly
                             120
 110 115
Ser Ile Leu Thr Tyr Ala Phe Leu Gly Thr Ala Ile Ser Cys Ile Val
 125 130
Ile Gly
140
<210> 240
<211> 126
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -27..-1
<400> 240
Met Gln Phe Val Asn Val Gly Tyr Phe Leu Ile Ala Ala Gly Val Val
 -25 -20 -15
Val Leu Ala Leu Gly Phe Leu Gly Cys Tyr Gly Ala Lys Thr Glu Ser
  -10 -5
Met Cys Ala Leu Val Thr Phe Phe Phe Ile Leu Leu Leu Ile Phe Ile
                15
          10
Ala Glu Val Ala Ala Ala Val Val Ala Leu Val Tyr Thr Thr Met Ala
                      30
Glu His Phe Leu Thr Leu Leu Val Val Pro Ala Ile Lys Lys Asp Tyr
          45
                         50
Gly Ser Gln Glu Asp Phe Thr Gln Val Trp Asn Thr Thr Met Lys Gly
         60
Leu Lys Cys Arg Gly Phe Thr Asn Tyr Thr Asp Phe Glu Asp Ser Pro
               75
                            80
Tyr Phe Lys Met His Lys Pro Val Thr Met Lys Lys Lys
            90
<210> 241
<211> 174
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -115..-1
Met Arg Trp Ser Cys Glu His Leu Val Met Val Trp Ile Asn Ala Phe
-115 -110
                               -105 -100
Val Met Leu Thr Thr Gln Leu Leu Pro Ser Lys Tyr Cys Asp Leu Leu
            ~95
                           -90
His Lys Ser Ala Ala His Leu Gly Lys Trp Gln Lys Leu Glu His Gly
                        -75 -70
Ser Tyr Ser Asn Ala Pro Gln His Ile Trp Ser Glu Asn Thr Ile Trp
     -65 -60
Pro Gln Gly Val Leu Val Arg His Ser Arg Cys Leu Tyr Arg Ala Met
-50 -45 -40
Gly Pro Tyr Asn Val Ala Val Pro Ser Asp Val Ser His Ala Arg Phe
```

-25

Tyr Phe Leu Phe His Arg Pro Leu Arg Leu Leu Asn Leu Leu Ile Leu

-30

-15 -10 -5

Ile Glu Gly Gly Val Val Phe Tyr Gln Leu Tyr Ser Leu Leu Arg Ser

1 5 10

Glu Lys Trp Asn His Thr Leu Ser Met Ala Leu Ile Leu Phe Cys Asn
15 20 25

PCT/IB98/02122 -

896

Tyr Tyr Val Leu Phe Lys Leu Leu Arg Asp Arg Ile Val Leu Gly Arg
30 35 40 45
Ala Tyr Ser Tyr Bro Leu Asp Ser Tyr Cly Leu Lys Ala Asp

Ala Tyr Ser Tyr Pro Leu Asn Ser Tyr Glu Leu Lys Ala Asn 50

<210> 242

<211> 896

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 18..173

<221> sig_peptide

<222> 18..77

<223> Von Heijne matrix
 score 6.5
 seq GLCVLQLTTAVTS/AF

<221> polyA_signal

<222> 864..869

<221> polyA_site

<222> 882..893

<400> 242

aaccttcaca gtgtgag atg cct agt gtg aac agt gct gga tta tgt gtc 50

Met Pro Ser Val Asn Ser Ala Gly Leu Cys Val

-20

-15

-10

ttg cag ttg aca acg gca gtr acc agt gcc ttt tta cta gca aaa gtg 98
Leu Gln Leu Thr Thr Ala Val Thr Ser Ala Phe Leu Leu Ala Lys Val
-5 1 5

aat cct ttc gaa rct ttt ctc tca agg ggc ttt tgg cta tgt gct gcc 146 Asn Pro Phe Glu Xaa Phe Leu Ser Arg Gly Phe Trp Leu Cys Ala Ala

cat cat ttc att cat cct tgc ctg gat tgagacgtgt tcctgattca 193
His His Phe Ile His Pro Cys Leu Asp

25 30 aagtgttacc tcaagaagca gaagaagaaa acagactcct gatagttcag gatgcttcag

agagggcagc acttatacct ggtggtcttt ctgatggtca gttttattcc cctcctgaat 313 Ccgaagcagg atctgaagaa gctgaagaaa aacaggacag tgagaaacca cttttagaac 373 tatgagtact acttttgtta aatgtgaaaa accctcacag aaagtcatcg aggcaaaaag 433 aggcaggcag tggagtctcc ctgtcgacag taaagttgaa atggtgacgt ccactgctgg 493

ctttattgaa cagctaataa agatttattt attgtaatac ctcacagacg ttgtaccata 553 tccatgcaca tttagttgcc tgcctgtggc tggtaaggta atgtcatgat tcatcctctc 613 ttcagtgaga ctgagcctga tgtgttaaca aataggtgaa gaaagtcttg tgctgtattc 673

ctaatcaaaa gacttaatat attgaagtaa cactttttta gtaagcaaga taccttttta 733
tttcaattca cagaatggaa tttttttgtt tcatgtctca gatttatttt gtattcttt 793
ttttaacactc tacatttccc ttgttttta actcatgcac atgtgctctt tgtacagttt 853

taaaaagtgt aataaaatct gacatgtcaa araaaaaaaa mcy

```
<211> 851
 <212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 17..595
<221> sig_peptide
<222> 17..85
<223> Von Heijne matrix
      score 3.70000004768372
      seq FLPPLXRAFACRG/CQ
<221> polyA_signal
<222> 820..825
<221> polyA site
<222> 840..851
<400> 243
aagggggcgt ggggcc atg gtg gtc ttg cgg gcg ggg aag aag acc ttt ctc
                                                                       52
                  Met Val Val Leu Arg Ala Gly Lys Lys Thr Phe Leu
                                                  -15
ccc cct ctm wgc cgc gcc ttc gcc tgc cgc ggc tgt caa ctc gct ccg
                                                                      100
Pro Pro Leu Xaa Arg Ala Phe Ala Cys Arg Gly Cys Gln Leu Ala Pro
                        -5
gag ege gge gee gag ege agg gat aca geg eee age ggg gte tea aga
                                                                      148
Glu Arg Gly Ala Glu Arg Arg Asp Thr Ala Pro Ser Gly Val Ser Arg
                10
                                    15
ttc tgc cct cca aga aag tct tgc cat gat tgg ata gga ccc cca gat
                                                                      196
Phe Cys Pro Pro Arg Lys Ser Cys His Asp Trp Ile Gly Pro Pro Asp
                                30
aaa tat tca aac ctt cga cct gtt cac ttt tac ata cct gaa aat gaa
                                                                      244
Lys Tyr Ser Asn Leu Arg Pro Val His Phe Tyr Ile Pro Glu Asn Glu
        40
                            45
tct cca ttg gaa caa aag ctt aga aaa tta aga caa gaa aca caa gaa
                                                                      292
Ser Pro Leu Glu Gln Lys Leu Arg Lys Leu Arg Gln Glu Thr Gln Glu
                        60
tgg aat caa cag ttc tgg gca aac cag aat ttg act ttt agt aag gaa
                                                                      340
Trp Asn Gln Gln Phe Trp Ala Asn Gln Asn Leu Thr Phe Ser Lys Glu
                    75
aaa gaa gaa ttt att cac tca aga cta aaa act aaa ggc ctg ggc ctg
                                                                      388
Lys Glu Glu Phe Ile His Ser Arg Leu Lys Thr Lys Gly Leu Gly Leu
                90
aga act gaa tca ggt cag aaa gca aca ttg aat gca gaa gaa atg gcg
                                                                      436
Arg Thr Glu Ser Gly Gln Lys Ala Thr Leu Asn Ala Glu Glu Met Ala
            105
                                110
gac ttc tac aag gaa ttt tta agt aaa aat ttt cag aag cac atg tat
                                                                      484
Asp Phe Tyr Lys Glu Phe Leu Ser Lys Asn Phe Gln Lys His Met Tyr
                            125
tat aac aga gat tgg tac aag cgc aat ttt gcc atc acc ttc ttc atg
                                                                      532
Tyr Asn Arg Asp Trp Tyr Lys Arg Asn Phe Ala Ile Thr Phe Phe Met
                        140
gga aaa gtg gcc ctg gaa agg att tgg aac aag ctt aaa cag aaa caa
                                                                      580
Gly Lys Val Ala Leu Glu Arg Ile Trp Asn Lys Leu Lys Gln Lys Gln
                    155
                                        160
aag aag agg agc aac taggagtcca ctctgaccca gccagagtcc aggtttccac
                                                                      635
Lys Lys Arg Ser Asn
                170
aggaagcara tggagctcct ttcacagggg ctctgagaaa aactggagct gatctcaaga
                                                                      695
agccccacat cttcctaagg ggccccatgg cctgtttggg ggcagggtag gtcctggggc
                                                                      755
```

actgtgggcc gcctgcctgc tgatgtgggc tctaggccag cttgttgtca cgtacgtggt 815 gtgaaataaa gcccaagcac tgggaaaaaa aaaaaa 851 <210> 244 <211> 495 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 89..334 <221> sig_peptide <222> 89..130 <223> Von Heijne matrix score 3.59999990463257 seq AFTLXSLLQAALL/CV <221> polyA signal <222> 462..467 <221> polyA_site <222> 484..495 <400> 244 agtaggaasg cgccgsccgt ggaggcgcca cgtcccttgc sgcggcggga gagamatcgc 60 ttggacttcg gggcggcctc ggacggcc atg gcc ttt acc ctg tas tca ctg 112 Met Ala Phe Thr Leu Xaa Ser Leu ctg cag gca gcc ctg ctc tgc gtc aac gcc atc gca gtg ctg cac gag 160 Leu Gln Ala Ala Leu Leu Cys Val Asn Ala Ile Ala Val Leu His Glu 1 gag cga ttc ctc aag aac att ggc tgg gga aca gac cag gga att ggt 208 Glu Arg Phe Leu Lys Asn Ile Gly Trp Gly Thr Asp Gln Gly Ile Gly 15 20 gga ttt gga gaa gag ccg gga att aaa tca sag sta atg avs ctt att 256 Gly Phe Gly Glu Glu Pro Gly Ile Lys Ser Xaa Xaa Met Xaa Leu Ile 30 35 cga tct gta aga acc gtg atg aga gtg cca ttg ata ata gta aac tca 304 Arg Ser Val Arg Thr Val Met Arg Val Pro Leu Ile Ile Val Asn Ser 50 att gca att gtg tta ctt tta tta ttt gga tgaatwtcat tggagaaaat 354 Ile Ala Ile Val Leu Leu Leu Phe Gly ggakactcag aaraggacat gccaktaraa kttattactt tggtcattat tggaatattt 414 atatettage tggetgacet tgcacttgte aaaaatgtaa agetgaaaat aaaaccaggg 474 tttctattta aaaaaaaaaa a 495 <210> 245 <211> 884 <212> DNA

<212> DNA <213> Homo sapiens <220> <221> CDS <222> 21..614

<221> sig_peptide

WO 99/31236 -168- PCT/IB98/02122

<222> 21..83 <223> Von Heijne matrix score 10 seq LWALAMVTRPASA/AP

<221> polyA_signal <222> 849..854

<221> polyA_site <222> 873..884

<400> 245

					M	et P	ro V 20	al F	ro A	la I	eu C	ys L	eu I	eu I	gg gcc rp Ala	53
-10	Ala	Met	\ Val	Thr	Arg -5	Pro	Ala	Ser	Ala	Ala 1	Pro	Met	Gly	Gly 5	CCa Pro	101
Glu	Leu	Ala	Gln 10	His	Glu	Glu	Leu	Thr 15	Leu	Leu	Phe	His	Gly 20	Thr	ctg Leu	149
GIN	Leu	G1y 25	Gln	Ala	Leu	Asn	Gly 30	Val	Tyr	Arg	Thr	acg Thr 35	Glu	Gly	Arg	197
Leu	Thr 40	Lys	Ala	Arg	Asn	Ser 45	Leu	Gly	Leu	Tyr	Gly 50	cgc Arg	Thr	Ile	Glu	245
55	Leu	GIY	GIN	GIu	Val 60	Ser	Arg	Gly	Arg	Asp. 65	Ala	gcc Ala	Gln	Glu	Leu 70	293
Arg	Ala	Ser	Leu	Leu 75	Glu	Thr	Gln	Met	Glu 80	Glu	Asp	att Ile	Leu	Xaa 85	Leu	341
GIN	Ala	Xaa	90	Thr	Ala	Glu	Val	Leu 95	Gly	Glu	Val	gcc Ala	Gln 100	Ala	Gln	389
гуѕ	Val	Leu 105	Arg	Asp	Ser	Val	Gln 110	Arg	Leu	Xaa	Xaa	cag Gln 115	Leu	Xaa	Xaa	437
Ala	120	ьеи	GIA	Pro	Ala	Tyr 125	Arg	Lys	Phe	Glu	Val	tta Leu	Lys	Ala	Pro	485
135	лаа	гÀе	GIn	Asn	H1S 140	Ile	Leu	Trp	Ala	Leu 145	Thr	ggc Gly	His	Val	Xaa 150	533
Arg	GIn	Xaa	Arg	Glu 155	Met	Val	Ala	Gln	Gln 160	Xaa	Xaa	ctg Leu	Xaa	Gln 165	Ile	581
GIN	GIU	Lys	Leu 170	His	Thr	Ala	Ala	Leu 175	Pro	Ala					ggaac	634
tgaggaccaa tcatgctgca aggaacactt ccacgccccg tgaggcccct gtgcagggag gagctgcctg ttcactggga tcagccaggg cgccgggccc cacttctgag cacagagcar											qqqaq	694				
gage	rgee	cg t	tcac	cggg	a tc	agcc	aggg	cgc	cggg	CCC	cact	tcta	ag c	acao	agcar	754
agac	agac	gc a	ggcg	ggga	c aa	aggc	agag	gat	gtag	CCC	catt	aaaa	ag g	aata	gagga	814
agga	catg	ta c	cctt	tcat	r mc	taca	cacc	cct	catt	aaa	gcav	agto	gt g	gcat	ctcaa	874
aaaa	aaaa	aa										-		-		884

<210> 246

<211> 897

<212> DNA

WO 99/31236 -169- PCT/IB98/02122 -

<21	3> H	omo	sapi	ens												
	0 > 1 > C 2 > 9		73													·
<22	2 > 9 3 > V s	42 on H core	epti 58 eijn 4.6 GILC	e ma 9999	9809	2651	4									
	1> p 2> 8	-	_sig 867	nal												
	1> po 2> 8		_sit 897	e												
	0> 2		acct	2002		7022	~~~~	- at								60
tga	ggag	ctg	gage	tggt	gg g	gact	gggc	g gca	a ato	g gad t As	c aag	g ct	g aa	g aag	tgccgc g gtg s Val	60 114
ctg Leu	agc Ser	Gly aaa	cag Gln -45	gac Asp	acg Thr	gag Glu	gac Asp	cgg Arg -40	agc Ser	ggc Gly	ctg Leu	tcc Ser	gag Glu -35	gtt Val	gtt Val	162
gag Glu	gca Ala	tct Ser -30	tca Ser	tta Leu	agc Ser	tgg Trp	agt Ser -25	acc Thr	agg Arg	ata Ile	aaa Lys	ggc Gly -20	ttc Phe	att Ile	gcg Ala	210
tgt Cys	ttt Phe -15	gct Ala	ata Ile	gga Gly	att Ile	ctc Leu -10	tgc Cys	tca Ser	ctg Leu	ctg Leu	ggt Gly -5	act	gtt Val	ctg Leu	ctg Leu	258
tgg Trp 1	gtg Val	ccc Pro	agg Arg	aag Lys 5	gga Gly	cta	cac His	ctc Leu	ttc Phe 10	gca Ala	gtg	ttt Phe	tat Tyr	acc Thr	ttt Phe	306
			gca Ala 20						atc					cca		354
aaa Lys	cag Gln	ctg Leu 35	aag Lys	cga Arg	atg Met	ttt Phe	gag Glu 40	cct Pro	act Thr	cgt Arg	ttg Leu	att Ile 45	gca Ala	act Thr	atc Ile	402
atg Met	gtg Val 50	ctg Leu	ttg Leu	tgt Cys	ttt Phe	gca Ala 55	ctt Leu	acc Thr	ctg Leu	tgt Cys	tct Ser 60	gcc	ttt Phe	tgg Trp	tgg Trp	450
cat His 65	aac Asn	aag Lys	gga Gly	ctt Leu	gca Ala 70	ctt Leu	atc Ile	ttc Phe	tgc Cys	att Ile 75	ttg	cag Gln	tct Ser	ttg Leu	gca Ala 80	498
ttg Leu	acg Thr	tgg Trp	tac Tyr	agc Ser 85	ctt Leu	tcc Ser	ttc Phe	ata Ile	cca Pro 90	ttt	gca Ala	agg Arg	gat Asp	gct Ala 95	gtg	546
aaa Lys	aad Xaa	tgt Cys	ttt Phe 100	gcc	gtg Val	tgt Cys	ctt Leu	Ala		tcat	gg c	cagt	ttta			593
gaagctttgg aaggcactat ggacagaagc tggtggacag ttttgtwact atcttcgaaa 653 cctctgtctt acagacatgt gccttttatc ttgcagcaat gtgttgcttg tgattcgaac 713 atttgagggt tacttttgga agcaacaata cattctcgaa cctgaatgtc agtagcacag 773 gatgagaagt gggttctgta tcttgtggag tggaatcttc ctcatgtacc tgtttcctct 833 ctggatgttg tcccactgaa ttcccatgaa tacaaaccta ttcagcaaca gcaaaaaaaa 893											713 773 833					
aaaa										09/						

```
<210> 247
<211> 518
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 74..397
<221> sig_peptide
<222> 74..127
<223> Von Heijne matrix
     score 7.69999980926514
     seq LLLLPVLGLLVSS/KT
<221> polyA_signal
<222> 472..477
<221> polyA site
<222> 507..518
<400> 247
aaagaaagag ctgcsgtgca ggaattcgtg tgccggattt ggttagctga gcccaccgag
                                                                   60
aggegeetge agg atg aaa get ete tgt ete ete ete eet gte etg
                                                                  109
              Met Lys Ala Leu Cys Leu Leu Leu Pro Val Leu
ggg ctg ttg gtg tct agc aag acc ctg tgc tcc atg gaa gaa gcc atc
                                                                  157
Gly Leu Leu Val Ser Ser Lys Thr Leu Cys Ser Met Glu Glu Ala Ile
aat gag agg atc cag gag gtc gcc ggc tcc cta ata ttt agg gca ata
                                                                  205
Asn Glu Arg Ile Gln Glu Val Ala Gly Ser Leu Ile Phe Arg Ala Ile
age age att gge ega ggg age gag age gte ace tee agg ggg gae etg
                                                                  253
Ser Ser Ile Gly Arg Gly Ser Glu Ser Val Thr Ser Arg Gly Asp Leu
           30
                              35
get act tgc ecc ega gge tte gee gte ace gge tgc act tgt gge tec
                                                                  301
Ala Thr Cys Pro Arg Gly Phe Ala Val Thr Gly Cys Thr Cys Gly Ser
       45
                          50
gee tgt gge teg tgg gat gtg ege gee gag ace aca tgt cae tge cag
                                                                  349
Ala Cys Gly Ser Trp Asp Val Arg Ala Glu Thr Thr Cys His Cys Gln
                       65
tgc gcg ggc atg gac tgg acc gga gcg cgc tgc tgt cgt gtg cag ccc
                                                                  397
Cys Ala Gly Met Asp Trp Thr Gly Ala Arg Cys Cys Arg Val Gln Pro
                                      85
tgaggtcgcg cgcagcgcgt gcacagcgcg ggcggaggcg gctccaggtc cggaggggtt
                                                                  457
517
                                                                  518
```

<210> 248

<211> 350

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 51..242

<221> sig_peptide

<222> 51..116

<223> Von Heijne matrix

WO 99/31236 -171-PCT/IB98/02122 .

score 6.5 seq SCLCPALFPGTSS/FI

<221> polyA_signal

<222> 319..324

<221> polyA_site <222> 339..350

<400> 248	
acgtcattcc aaaaccacac ccttgcaaag ctttgtactc cgcaccccag atg atc Met Ile	56
tcc agg cag ctc aga tct ctt tcc tgc ctt tgc cct gca ctg ttc ccc Ser Arg Gln Leu Arg Ser Leu Ser Cys Leu Cys Pro Ala Leu Phe Pro -20 -15 -10 -5	104
ggt act tcc tcc ttt att gta gca ctc agc tcc cca gcc gat ctg tac Gly Thr Ser Ser Phe Ile Val Ala Leu Ser Ser Pro Ala Asp Leu Tyr 1 5 10	152
atc cct cav agg cas cga tct gat gaa ttg gtt ttt gaa tcc car aaa Ile Pro Xaa Arg Xaa Arg Ser Asp Glu Leu Val Phe Glu Ser Gln Lys 15 20 25	200
ggg tct gcc atg gag ttg gca gtc atc acg gta rat ggc gta Gly Ser Ala Met Glu Leu Ala Val Ile Thr Val Xaa Gly Val 30 40	242
tgattttgct gaattttaaa taaaatgaaa accataaatt acatratgct tttattgach	302
cttgacmact ggcctaaata aaaaractct gactccaaaa aaaaaaaa	350

<210> 249

<211> 996

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 111..191

<221> sig_peptide

<222> 111..155

<223> Von Heijne matrix score 5.80000019073486 seq FLXLMTLTTHVHS/SA

<221> polyA_signal

<222> 965..970

<221> polyA site

<222> 986..996

<400> 249

atccgataca gaacatgcag taatgtggac tgcccaccag aagcaggtga tttccgagct cagcaatget cageteataa tgatgteaag caccatggee agttttatga atg ggy 116 Met Gly ttc ctg wgt cta atg acc ctg aca acc cat gtt cac tca agt gcc aag 164 Phe Leu Xaa Leu Met Thr Leu Thr Thr His Val His Ser Ser Ala Lys -5 cca aat gaa caa ccc tgg ttg ttg aac tagcacctaa ggtcttarat 211 Pro Asn Glu Gln Pro Trp Leu Leu Asn

ggtacgcgtt gctatacaga atctttggat atgtgcatca gtggtttatg ccaaattgtt

60

WO 99/31236 -172- PCT/IB98/02122

331

391

ggctgcgatc accagctggg aagcaccgtc aaggaarata actgtggggt ctgcaacrga

natgggtcca cctgccggct ggtccgaggg cartataaat cccakctctc cgcaaccaaa

```
torgatgata otgtggttgc aattooctat ggaagtakac atattogoot tgtottaaaa
                                                                       451
ggtcctgatc acttatatct ggaarccawa accctccagg ggactaawgg tgaaaacagt
                                                                      511
ctcasctcca caggaacttt ccttgtggac aattctagtg tggacttcca gaawtttcca
                                                                       571
gacwdagaga tactgagaat ggctggacca ctcacagcag atttcattgt caawattcgt
                                                                       631
aacteggget eegetgacag tacagtecag kkcatettet ateaacecat catecacega
                                                                       691
tggagggara cggatttett teettgetea geaacetgtg gaggaggtta teagetgaca
                                                                      751
tcggctgagt gctacgatct gaggagcaac cgtgtggttg ctgaccaata ctgtcactat
                                                                      811
tacccagaga acatcaaacc caaacccaag cttcaggagt gcaacttgga tccttgtcca
                                                                      871
gccaggtcag tcaaatttgc tagttcattt gtcataaaca taactcaagt tccaaatagg
                                                                      931
ttatttaaat taaaatgaaa cgttttaatt aaaaataaaa tgaaattaaa catcaaaaaa
                                                                      991
                                                                      996
<210> 250
<211> 860
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 45..602
<221> sig peptide
<222> 45..107
<223> Von Heijne matrix
      score 8.5
      seq LLTIVGLILPTRG/QT
<221> polyA signal
<222> 828..833
<221> polyA site
<222> 850..860
<400> 250
acctetetee acgaggetge eggettagga ecceeagete egae atg teg ecc tet
                                                                       56
                                                 Met Ser Pro Ser
                                                     -20
ggt ege etg tgt ett etc acc atc gtt gge etg att etc ecc acc aga
                                                                      104
Gly Arg Leu Cys Leu Leu Thr Ile Val Gly Leu Ile Leu Pro Thr Arg
                            -10
gga cag acg ttg aaa gat acc acg tcc agt tct tca gca gac tca act
                                                                      152
Gly Gln Thr Leu Lys Asp Thr Thr Ser Ser Ser Ser Ala Asp Ser Thr
    1
                                        10
atc atg gac att cag gtc ccg aca cga gcc cca gat gca gtc tac aca
                                                                      200
Ile Met Asp Ile Gln Val Pro Thr Arg Ala Pro Asp Ala Val Tyr Thr
                                    25
gaa ctc cag ccc acc tct cca acc cca acc tgg cct gct gat gaa aca
                                                                      248
Glu Leu Gln Pro Thr Ser Pro Thr Pro Thr Trp Pro Ala Asp Glu Thr
                              40
cca caa ccc cag acc cag acc cag caa ctg gaa gga acg gat ggg cct
                                                                      296
Pro Gln Pro Gln Thr Gln Thr Gln Gln Leu Glu Gly Thr Asp Gly Pro
                            55
cta gtg aca gat cca gag aca cac wak agc mcc aaa gca gct cat ccc
                                                                     344
Leu Val Thr Asp Pro Glu Thr His Xaa Ser Xaa Lys Ala Ala His Pro
                       70
                                           75
act gat gac acc acg acg ctc tct gag aga cca tcc cca agc aca kac
                                                                     392
Thr Asp Asp Thr Thr Thr Leu Ser Glu Arg Pro Ser Pro Ser Thr Xaa
                   85
```

WO 99/31236 -173 - PCT/IB98/02122 -

gtc cat dac aga ccb cba kda ccc tca akc cat ctg gtt ttc atg agg Val His Xaa Arg Pro Xaa Xaa Pro Ser Xaa His Leu Val Phe Met Arg 100 105 110	440
atg acc cct tct tct atg atg aac aca ccc tcc gga aac sgg ggc tgt Met Thr Pro Ser Ser Met Met Asn Thr Pro Ser Gly Asn Xaa Gly Cys	488
tgg tcg cag ctg tgc tgt tca tca cag gca tca tca tcc tca cca gtg Trp Ser Gln Leu Cys Cys Ser Ser Gln Ala Ser Ser Ser Pro Val	536
gca agt gca ggc agc tgt ccc ggt tat gcc gga atc att gca ggt gag Ala Ser Ala Gly Ser Cys Pro Gly Tyr Ala Gly Ile Ile Ala Gly Glu	584
tcc atc aga aac agg agc tgacaacctg ctgggcaccc gaagaccaag Ser Ile Arg Asn Arg Ser	632
160 165 ccccctgcca getcaccgtg cccagcetec tgcateccet egaagageet ggecagagag ggaagacaca gatgatgaag etggageeag ggetgeeggt eegagtetee taceteeee aaccetgeee geecetgaag getacetgge geettggggg etgteeetea agttatetee tetgetaaga caaaaagtaa agcaetgtgg tetttgcaaa aaaaaaaa	692 752 812 860
<210> 251 <211> 593 <212> DNA <213> Homo sapiens	
<220> <221> CDS	
<222> 24560	
<pre><221> sig_peptide <222> 24101 <223> Von Heijne matrix</pre>	
<221> polyA_signal <222> 563568	
<221> polyA_site <222> 583593	
<400> 251	
aanccagctg csgccggcca gcc atg gag act gga gcg ctg cgg cgc ccg caa Met Glu Thr Gly Ala Leu Arg Arg Pro Gln -25 -20	53
ctt ctc ccg ttg ctg ctg ctc tgc ggc cct tcc cag gat caa tgc Leu Leu Pro Leu Leu Leu Leu Cys Gly Pro Ser Gln Asp Gln Cys -15 -10 -5	101
cga cct gta ctc cag aat ctg ttg cag agc cca ggc ttg aca tgg agc Arg Pro Val Leu Gln Asn Leu Leu Gln Ser Pro Gly Leu Thr Trp Ser 1 10 15	149
ttg gaa gtg ccc act ggg aga gaa gga aag gaa ggt ggg gat cgg gga Leu Glu Val Pro Thr Gly Arg Glu Gly Lys Glu Gly Gly Asp Arg Gly 20 25 30	197
cca ggg cta akt ggg gcc act cca gcc agg agc cct cag ggc aag gag Pro Gly Leu Xaa Gly Ala Thr Pro Ala Arg Ser Pro Gln Gly Lys Glu 35 40 45	245
ato ogg aga caa agg agg agg aga agg	293

WO 99/31236 -174 - PCT/IB98/02122 -

aca Thr 65	gca Ala	aat Asn	cag Gln	gaa Glu	cta Leu 70	aac Asn	agg Arg	atg Met	agg Arg	tct Ser 75	ctg Leu	tct Ser	tct Ser	Gly	tcc Ser 80	341
					ctg Leu											389
acg Thr	ggc Gly	ctc Leu	cat His 100	tcc Ser	tgc Cys	ara Xaa	gat Asp	ggt Gly 105	atg	gct Ala	tct Ser	ctt Leu	gaa Glu 110	999	acg Thr	437
cca Pro	gct Ala	tca Ser 115	gtc Val	ctg Leu	gct Ala	gat Asp	gct Ala 120	tgc Cys	cca Pro	gga Gly	ttc Phe	cat His 125	gat	gtg Val	aan Xaa	485
gtt Val	car Gln 130	arg Xaa	gcc Ala	cta Leu	ttt Phe	999 Gly 135	tta Leu	agt Ser	ggg Gly	ana Xaa	rta Xaa 140	ctg	tgg Trp	ctg Leu	aaa Lys	533
					tct Ser 150	att				ataa		ctga	arac	ct		580
gtaa	aaaa	aaa a	aaa													593
<212 <213 <220 <221 <222)> L> CI ?> 1(NA omo i os os														
<222	2> 10 3> V0 50	on He core	eijne 3.70	mat	rix 00476 LVCK/		2									
			_site													
)> 25 igcts		caago	jtete	ec ec	cago	acto	g agg	gagct	cgc	ctgo	tgc	ect o	ettge	gegeg	60
													ate	g gct : Ala	aca Thr	117
Thr	Val	Pro -50	Asp	Gly	tgc Cys	Arg	Asn -45	Gly	Leu	Lys	Ser	Lys -40	Tyr	Tyr	Arg	165
Leu	Cys -35	Asp	Lys	Ala	gaa Glu	Ala -30	Trp	Gly	Ile	Val	Leu -25	Glu	Thr	Val	Ala	213
Thr -20	Ala	Gly	Val	Val	acc Thr -15	Ser	Val	Ala	Phe	Met -10	Leu	Thr	Leu	Pro	Ile -5	261
Leu	Val	Cys	Lys	Val 1	cag Gln	Asp	Ser	Asn 5	Arg	Arg	Lys	Met	Leu 10	Pro	Thr	309
Gln	Phe	Leu 15	Phe	Leu	ctg Leu	Gly	Val 20	Leu	Gly	Ile	Phe	Gly 25	Leu	Thr	Phe	357
gcc Ala	ttc Phe	atc Ile	atc Ile	gga Gly	ctg Leu	gac Asp	ggg ggg	agc Ser	aca Thr	G1y 999	ccc Pro	aca Thr	cgc Arg	ttc Phe	ttc Phe	405

WO 99/31236 -175- PCT/IB98/02122 -

### Company of Company	20 25	
Leu Phe Gly Ile Leu Phe Ser Ile Cys Phe Ser Cys Leu Leu Ala His 50 50 55 60 gct gtc agt ctg acc aag ctc gtc egg ggg agg aaa gac cct ttc cct Ala Val Ser Leu Thr Lys Leu Val Arg Gly Arg Lys Ala Pro Phe Pro 65 75 65 76 75 75 75 75 75 75 75 75 75 75 75 75 75	30 35 40	453
### 150		133.
Ala Val Ser Leu Thr Lys Leu Val Arg GJy Arg Lys Ala Pro Phe Pro 65		
st ggt ggt tet ggg tet ggg cgt ggg ctt cag cet agt cca ggs tgt Val Gly Asp Ser Gly Ser Gly Arg Gly Leu Gln Pro Ser Pro Gly Cys 80 85 90 tat ege tat tgaatatatt gtectgacea tgaataggac caacgteaat 595 gtettttetg agettteege tectegtege aatgaaaaact ttgeeteet ggtacetac 778 kteetettet tgatggeget gacetteete wtgteeteet tgaeteeket cattgeeate 778 kteetettet tgatggeget gacetteete wtgteeteet tgaeteeket 678 kteetettet tgatggeget gacetteete wtgteeteet tgaeteeket 678 kteetettet tgatggeget gacetacete tacetcasga tgeteekete 678 kteetettet tgatggeget gacetateete 678 kteetettet tgatggeget ggecacate tacetcasga tgeteekete 678 kteetettet tgatggeget ggecacate tacetcasga tgeteekete 678 kteetettet tgatggeget gressaatgge tegggtgttee tgttggetta tgttagtee 688 kgggtttgge tgeteacaaa gacackaaac cecatggatt atectgttga ggstgette 793 gaaatcacte aactgtyga gaaggatta ggttgtgrea acagagceta keteaaaga 1078 tttaggetge agaassacge tecceaaaaa aaaaaa 1078 ttttaggetge agaassacge tecceaaaaa aaaaaa 1078 ttttaggetge agaassacge tecceaaaaa aaaaaa 1078 ttttaggetge agaassacge tecceaaaaa aaaaaa 1078 tttaggetge agaassacge tecceaaaaa aaaaaa 1078 tttaggetge agaassacge tecceaaaaa aaaaaa 1078 tttagetge 178 keep 178 ke		501
gst ggst gst tet ggs cst ggs cst ggs cst ags cet ags cas gst gst Val Gly Asp Ser Gly Ser Gly Arg Gly Leu Gln Pro Ser Pro Gly Cys 80 85 90 tat cgc tat tgaatatatt gtcctgacca tgaataggac caacgtcaat 598 try Arg Tyr 95 gstetttetg agctttccgc tectegtege aatgaaaact ttgtcetect gstcacctac ktectettet gatgacget gacttecte wigtcectect teacettetig tggstkecttc 718 acgggstgga avagacatgg ggccacaat tacetcasga tgctcskctc cattgccac tgggatttetgg ggatcaccac tgccatgst cctgacttig accgraying ggatgacacc actmetcarct ccgccttggs tresaatgge tgggtggttet tgtgggttat gsttagtces gtgagtttetgg tgctcacaaa gcaackaaa cccatgggt accggst atctgtsgggttte tgttagtcec 898 ggagtttigg tgctcacaaa gcaackaaa cccatggat atctgtstig ggatgttcc gtgaaaccact aagctttaa aaggacaagg gaacgcta atcmetacac alloss gaatacacac aaggtttiga agaagaagg gaacgcta atcmetacacacac 1018 tttcagctgc agaascagc tccccaaaaa aaaaaa 1018 <210		
Val Gly Asp Ser Gly Ser Gly Arg Gly Leu Gln Pro Ser Pro Gly Cys 80 85 90 tat cgc tat tgaatatatt gtcctgacca tgaataggac caacgtcaat 598 Tyr Arg Tyr 95 gtctttttctg agctttcogc tcctcgtcgc aatgaaaact ttgtcctcct gctcacctac ktcctcttct tgatggegt gaccttcccc wtgtcctct tcaccttctg tggtkccttc 718 acgggctgga avagacatgg ggcccacatc tacctcasga tgctcskctc cattgccatc 178 tgggtggcct ggatcaccct gctcatgct cctgacttg acgcrggtg ggatgacacc 178 tgggtgggct ggcacacaca gcaackaac ccatggatt atcctgttga ggatgacac 178 tgggtgggct ggcacacaca gcaackaac ccatggatt atcctgttga ggatgcttc 178 tgggtggcct gactacacaa gcaackaac ccatggatt atcctgttga ggatgcttc 178 tgtgaacctc aactcgtgaa gaagagcat gggtgtgra cagagccta skctcaagag 189 gaaatcactc aactggtttga gaagagcat gggtgtgyga acaggccta ktccaacat 180 tttcagctgc agaascagcc tccccaaaaa aaaaaa 181 <210	·	549
80 85 90 tat cgc tat tgaatatatt gtcctgacca tgaataggac caacgtcaat Tyr Arg Tyr 95 gtcttttctg agctttccgc tcctcgtcgc aatgaaaact ttgtcctcct gctcacctac ktcctcttct tgatggcgct gaccttcctc wtgtcctcct tcaccttctg tggtkccttc 778 acgggtggag avagacatgg ggcccacatc tacctagaat tgtcskctc cattgccatc 778 tgggtggcct ggatcaccct gctcatgctt cctgactttg accgcrggtg ggatgacacc atcmctacrt ccgccttggs trosaatggc tgggtgttc tgttggctta tgttagtccc gagttttggc tgctcacaaa gcaackaaac ccatggat atcctgttga ggatgatctc tgtaaacctc aactgctgas gaagagctat ggttgtggra acagagccta skctcaagag ggaacaccatc aactgctgaa gaagagcggg gaacaccctat ttccacaca ttccacaca ttccacaca ttccacacaca		347
Tyr Arg Tyr 95 gtcttttctg agctttccgc tcctcgtcgc aatgaaaact ttgtcctcct gctcacctac ktcctcttct tgatgagcgt gacttcctc wtgtcctcct tcaccttctg tggtkccttc faacggatgag avagacatgg ggcccacatc tacctcasga tgctskctc cattgccatc tggggtggcct ggatcaccct gctcatgctt cctgactttg accgcrggtg ggatgacacc atcmccarct ccgccttggs trcsaatggc tgggtgttc tgttggctta tgttagtccc gagttttggc tgctcacaaa gcaackaaac ccatggatt atcctgttga ggatggcttc tgtaaccct aactcctgaa gaagagctat ggttgggra acagagccta skctcaaagag gaaatcactc aacgttttga agaagaggg gaacgctct atccaccat ttccaccat tttcagctgc agaascagcc tccccaaaaa aaaaaa		
gtcttttctg agctttccgc tcctcgtcgc aatgaaaact ttgtcctcct gctcacctac ktcctcttt tgatggcgct gaccttcctc wtgtcctct ttaccttctg tggtkccttc 718 acgggctgga avagacatgg ggccacatc tacctcasga tgctcskctc cattgccatc 778 tgggtggctc ggatcacct gctcacttgactctcacttgaccgraptg ggatgacacc 838 atcmtcarct ccgccttggs trcsaatggc tgggtgtcc tgttggctta tgttagtccc 898 aggttttggc tgctcaaaa gcaackaaac cccatggatt atcctgttga ggatgacacc gagtatttagctgctgaa gaaagactat ggttgtggra acagaccta skctcaagag 1018 gaaatcactc aactcgtgaa gaaagacgat ggttgtggra acagaccta ttccacacat ttccacacat ttccacacat cactggtt 1182 aggacacacaca aggatctga ggatgactac ggttggra acagacca agaaccacaca aggatgctg caccacacacacacacacacacacacacacacacacac	tat cgc tat tgaatatatt gtcctgacca tgaataggac caacgtcaat	598
gtcttttctg agctttccgc toctcgtcgc aatgaaaact ttgtcctct gctcacctac		
Rtcctcttct tgatggcgt gaccttcctc wtgtcctct tcaccttctg tggtkccttc acgggctgga avagacatgg ggcccacat cacctcagg tgctcskctc cattgcattc tgggtggct ggatcacct gctcatgttt ctgactttg acgcgrgtgg ggatgacacc atcmtcarct ccgccttggs trcsaatggc tgggtgttcc tgttggctta tgttagtcc gagtttgg tgctcacaaa gcaackaaac cccatggatt atcctgttga ggatgactc tgtaaacctc aactgtgaa gaagagctat ggtgtggrga acagagccta skctcaagag gaaatcactc aaggttttga agagacagg gacacgctct atgccccat attccaccacat tttcagctgc agaascagc tccccaaaaa aaaaaa **C210		650
acgggtgga avagacatgg ggcccacatc tacctcasga tgctcskctc cattgccatc tgggtggct tggatcaccct gctcatgctt cctgacttt accgcragtg ggatcaccc atcmtcarct ccgccttggs trosaatggc tgggtgttc tgttggctta tgttagtccc gagttttggc tgctcacaaa gcaackaaac cccatggatt atcctgtta ggatctttc tgtaaacctc aactgtgaa gaagagctat ggtgggrga acaagagcta skctcaagag gaaatcactc aaggttttga agagaacagg gacacgctct atgccccta ttccacacat tttcagctgc agaascagcc tccccaaaaa aaaaaa <pre> <210</pre>		
tgggtggcct ggatcaccct gctcatgctt cctgactttg accgrggtg ggatgacacc attentarct ccgccttggs trcsaatggc tgggtgtcc tgttggctta tgttagtccc gagttttggc tgctcacaaa gcaackaaac cccatggatt atcctgttga ggatgctttc tgtaaacctc aactgttga gaagaacgat ggtgtggra acagagcta skctcaagag gaaatcactc aaggtttga gaagaacggct atgccccta ttccacacat ttcacacat tttcacccacat tttcagctgc agaascagcc tccccaaaaa aaaaaa		
gagttttggc tgctcacaaa gcaackaaac cccatggatt atcctgttga ggatgctttc tgtaaacctc aactcgtgaa gaagagctat ggtgtggraa acagagccta skctcaagag gaaatcactc aaggttttga agagacaggg gacacgctct atgccccta ttccacacat tttcagctgc agaascagcc tccccaaaaa aaaaaa <pre> <210> 253</pre>		838
tgtaaacctc aactcgtgaa gaagagctat ggtgtggrga acagagcta skctcaagag 1018 gaaatcactc aaggttttga agagacaggg gacacgctct atgccccta ttccacacat tttcagctgc agaascagcc tccccaaaaa aaaaaa 1114 <2210 > 253 <211 > 1182 <212 > DNA <213 > Homo sapiens <220 > <221 > COS <222 > 128 835 <222 > 128 835 <222 > 128 220 <223 > Von Heijne matrix score 4 . 6999980926514 seq LAVDSWWLDPGHA/AV <221 > polyA_signal <222 > 1145 1150 <221 > polyA_site <222 > 1170 1181 <400 > 253 aagaactggc ttccggacc caggcgggg ttccggagg acagccaaca agcgatgctg gagcaaga atg ctg agc agg ggt gctacctctt cgttctgatt ggccgctagt gagcagag atg ctg aga cag gag aga gag gag gag agagcagcag atg ctg aga cag gag aga gag gag agagcaggag acagccaaca agcgatgctg ccgccgccgt ttcctgattg gttgtgggtg gctacctctt cgttctgatt ggccgctagt 120 gagcaag atg ctg agc aga ggt ctg aag cgg aaa cgg gag gag gag 169 Met Leu Ser Lys Gly Leu Lys Arg Lys Arg Glu	atcmtcarct ccgccttggs trcsaatggc tgggtgttcc tgttggctta tgttagtccc	898
gaaatcactc aaggttttga agagacaggg gacacgctct atgccccta ttccacacat tttcagctg agaascagcc tccccaaaaa aaaaaa 1114 <210> 253 <211> 1182 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 128835 <221> sig_peptide <222> 128220 <223> Von Heijne matrix		
tttcagctgc agaascagcc tccccaaaaa aaaaaa 1114 <2210> 253 <2211> 1182 <212> DNA <213> Homo sapiens <2220> <2221> CDS <2221> CDS <2221> 228835 <2222> 128835 <2223> Von Heijne matrix score 4.69999980926514 seq LAVDSWWLDPGHA/AV <2211> polyA_signal <222> 11451150 <2221> polyA_sidnal <222> 11451150 <2212> polyA_site <222> 11701181 <400> 253 aagaactgcg tctcgcgacc caggcgcggg ttcccggagg acagccaaca agcgatgctg gagcaag atg cts agc aag ggt cts ags cag gag gag gag gag Met Leu Ser Lys Gly Leu Lys Arg Lys Arg Glu Glu Glu Glu -30 -25 -20 gag aag gaa cct ctg gca gtc gac tcc tcg tcg cac ccc ggc gc gc cac Glu Lys Glu Pro Leu Ala Val Asp Ser Trp Trp Leu Asp Pro Gly His -15 -10 -5 gca gcg gtg gca cag gca ccc ccg gcc gtg gcc tct agc tcc ct tt Ala Ala Val Ala Gln Ala Pro Pro Ala Val Ala Ser Ser Ser Leu Phe 1 5 10 15 gac ctc tca gtg ctc aag ctc cac cac agc ctg cag vrr agt rag ccg 313 Asp Leu Ser Val Leu Lys Leu His Ser Leu Gln Xaa Ser Xaa Pro 20 25 30		
<pre><210> 253</pre>	· · · · · · · · · · · · · · · · · · ·	
<pre><211> 1182 <212> DNA <213> Homo sapiens </pre> <pre><220> <221> CDS <222> 128835 </pre> <pre><221> sig_peptide <222> 128220 <223> Von Heijne matrix</pre>	troongroup upunpenger teetetaana ananaa	
<pre><211> 1182 <212> DNA <213> Homo sapiens </pre> <pre><220> <221> CDS <222> 128835 </pre> <pre><221> sig_peptide <222> 128220 <223> Von Heijne matrix</pre>		
<pre><211> 1182 <212> DNA <213> Homo sapiens </pre> <pre><220> <221> CDS <222> 128835 </pre> <pre><221> sig_peptide <222> 128220 <223> Von Heijne matrix</pre>		
<pre><212> DNA <213> Homo sapiens <220> <221> CDS <222> 128835 <221> sig_peptide <222> 12820 <223> Von Heijne matrix</pre>		
<pre><213> Homo sapiens <220> <221> CDS <222> 128835 <221> sig_peptide <222> 128220 <223> Von Heijne matrix</pre>		
<pre><220> <221> CDS <222> 128835 </pre> <pre><221> sig_peptide <222> 128220 <223> Von Heijne matrix</pre>		
<pre><221> CDS <222> 128835 </pre> <pre><221> sig_peptide <222> 128220 <223> Von Heijne matrix</pre>	•	
<pre><222> 128835 <221> sig_peptide <222> 128220 <223> Von Heijne matrix</pre>		
<pre><221> sig_peptide <222> 128220 <223> Von Heijne matrix</pre>		
<pre><222> 128220 <223> Von Heijne matrix</pre>	<222> 128835	
<pre><222> 128220 <223> Von Heijne matrix</pre>	<221> sig peptide	
score 4.69999980926514 seq LAVDSWWLDPGHA/AV <221> polyA_signal <222> 11451150 <221> polyA_site <222> 11701181 <400> 253 aagaactgcg tctcgcgacc caggcgcggg ttcccggagg acagccaaca agcgatgctg ccgccgccgt ttcctgattg gttgtgggtg gctacctctt cgttctgatt ggccgctagt 120 gagcaag atg ctg agc aag ggt ctg aag cgg aaa cgg gag gag gag gag 169 Met Leu Ser Lys Gly Leu Lys Arg Lys Arg Glu Glu Glu Glu -30 -25 -20 gag aag gaa cct ctg gca gtc gac tcc tgg tgg cta gat cct ggc cac Glu Lys Glu Pro Leu Ala Val Asp Ser Trp Trp Leu Asp Pro Gly His -15 -10 -5 gca gcg gtg gca cag gca ccc ccg gcc gtg gcc tct agc tcc ctc ttt Ala Ala Val Ala Gln Ala Pro Pro Ala Val Ala Ser Ser Ser Ser Leu Phe 1 5 10 15 gac ctc tca gtg ctc aag ctc cac cac agc ctg cag vrr agt rag ccg Asp Leu Ser Val Leu Lys Leu His His Ser Leu Gln Xaa Ser Xaa Pro 20 25 30	<222> 128220	
<pre>seq LAVDSWWLDPGHA/AV <221> polyA_signal <222> 11451150 <221> polyA_site <222> 11701181 <400> 253 aagaactggg tctcgggacc caggcggggg ttcccggagg acagccaaca agcgatgctg ccgccgccgt ttcctgattg gttgtgggtg gctacctctt cgttctgatt ggccgctagt 120 gagcaag atg ctg agc aag ggt ctg aag cgg aaa cgg gag gag gag gag 169 Met Leu Ser Lys Gly Leu Lys Arg Lys Arg Glu Glu Glu Glu</pre>		
<pre> <221> polyA_signal <222> 11451150 <221> polyA_site <222> 11701181 <400> 253 aagaactgcg tctcgcgacc caggcgcggg ttcccggagg acagccaaca agcgatgctg ccgccgccgt ttcctgattg gttgtgggtg gctacctctt cgttctgatt ggccgctagt 120 gagcaag atg ctg agc aag ggt ctg aag cgg aaa cgg gag gag gag gag Met Leu Ser Lys Gly Leu Lys Arg Lys Arg Glu Glu Glu Glu -30</pre>		
<pre><222> 11451150 <221> polyA_site <222> 11701181 <400> 253 aagaactgcg tctcgcgacc caggcgcggg ttcccggagg acagccaaca agcgatgctg ccgccgccgt ttcctgattg gttgtgggtg gctacctctt cgttctgatt ggccgctagt 120 gagcaag atg ctg agc aag ggt ctg aag cgg aaa cgg gag gag gag 169 Met Leu Ser Lys Gly Leu Lys Arg Lys Arg Glu Glu Glu Glu</pre>	seq LAVDSWWLDPGHA/AV	
<pre><222> 11451150 <221> polyA_site <222> 11701181 <400> 253 aagaactgcg tctcgcgacc caggcgcggg ttcccggagg acagccaaca agcgatgctg ccgccgccgt ttcctgattg gttgtgggtg gctacctctt cgttctgatt ggccgctagt 120 gagcaag atg ctg agc aag ggt ctg aag cgg aaa cgg gag gag gag 169 Met Leu Ser Lys Gly Leu Lys Arg Lys Arg Glu Glu Glu Glu</pre>	<221> polyA signal	
<pre><222> 11701181 <400> 253 aagaactgcg tctcgcgacc caggcgcggg ttcccggagg acagccaaca agcgatgctg</pre>		
<pre><222> 11701181 <400> 253 aagaactgcg tctcgcgacc caggcgcggg ttcccggagg acagccaaca agcgatgctg</pre>		
<pre><400> 253 aagaactgcg tctcgcgacc caggcgcggg ttcccggagg acagccaaca agcgatgctg 60 ccgccgccgt ttcctgattg gttgtgggtg gctacctctt cgttctgatt ggccgctagt 120 gagcaag atg ctg agc aag ggt ctg aag cgg aaa cgg gag gag gag gag Met Leu Ser Lys Gly Leu Lys Arg Lys Arg Glu Glu Glu Glu Glu</pre>		
aagaactgcg tctcgcgacc caggcgcggg ttcccggagg acagccaaca agcgatgctg ccgccgccgt ttcctgattg gttgtgggtg gctacctctt cgttctgatt ggccgctagt 120 gagcaag atg ctg agc aag ggt ctg aag cgg aaa cgg gag gag gag gag 169 Met Leu Ser Lys Gly Leu Lys Arg Lys Arg Glu	(222) 11/01161	
cegecgecgt tteetgattg gttgtgggtg getacetett egttetgatt ggeegetagt gagcaag atg ctg age aag ggt ctg aag egg aaa egg gag gag gag gag Met Leu Ser Lys Gly Leu Lys Arg Lys Arg Glu Glu Glu Glu -30 -25 -20 gag aag gaa ect etg gea gte gae tee tgg tgg eta gat eet gge eac Glu Lys Glu Pro Leu Ala Val Asp Ser Trp Trp Leu Asp Pro Gly His -15 -10 -5 gea geg gtg gea eag gea eec eeg gee gtg gee tet age tee ete ttt Ala Ala Val Ala Gln Ala Pro Pro Ala Val Ala Ser Ser Ser Leu Phe 1 5 10 15 gae ete tea gtg ete aag ete eac eac age etg eag vrr agt rag eeg Asp Leu Ser Val Leu Lys Leu His His Ser Leu Gln Xaa Ser Xaa Pro 20 25 30	<400> 253	
gagcaag atg ctg agc aag ggt ctg aag cgg aaa cgg gag gag gag gag gag Met Leu Ser Lys Gly Leu Lys Arg Lys Arg Glu	aagaactgcg tctcgcgacc caggcgcggg ttcccggagg acagccaaca agcgatgctg	60
Met Leu Ser Lys Gly Leu Lys Arg Lys Arg Glu Glu Glu Glu Glu -30 -25 -20 gag aag gaa cct ctg gca gtc gac tcc tgg tgg cta gat cct ggc cac 217 Glu Lys Glu Pro Leu Ala Val Asp Ser Trp Trp Leu Asp Pro Gly His -15 -10 -5 gca gcg gtg gca cag gca ccc ccg gcc gtg gcc tct agc tcc ctc ttt Ala Ala Val Ala Gln Ala Pro Pro Ala Val Ala Ser Ser Ser Leu Phe 1 5 10 15 gac ctc tca gtg ctc aag ctc cac cac agc ctg cag vrr agt rag ccg 313 Asp Leu Ser Val Leu Lys Leu His His Ser Leu Gln Xaa Ser Xaa Pro 20 25 30		
gag aag gaa cct ctg gca gtc gac tcc tgg tgg cta gat cct ggc cac Glu Lys Glu Pro Leu Ala Val Asp Ser Trp Trp Leu Asp Pro Gly His -15 -10 -5 gca gcg gtg gca cag gca ccc ccg gcc gtg gcc tct agc tcc ctc ttt Ala Ala Val Ala Gln Ala Pro Pro Ala Val Ala Ser Ser Ser Leu Phe 1 5 10 15 gac ctc tca gtg ctc aag ctc cac cac agc ctg cag vrr agt rag ccg Asp Leu Ser Val Leu Lys Leu His His Ser Leu Gln Xaa Ser Xaa Pro 20 25 30		169
gag aag gaa cct ctg gca gtc gac tcc tgg tgg cta gat cct ggc cac Glu Lys Glu Pro Leu Ala Val Asp Ser Trp Trp Leu Asp Pro Gly His -15 -10 -5 gca gcg gtg gca cag gca ccc ccg gcc gtg gcc tct agc tcc ctc ttt Ala Ala Val Ala Gln Ala Pro Pro Ala Val Ala Ser Ser Ser Leu Phe 1 5 10 15 gac ctc tca gtg ctc aag ctc cac cac agc ctg cag vrr agt rag ccg Asp Leu Ser Val Leu Lys Leu His His Ser Leu Gln Xaa Ser Xaa Pro 20 25 30		
Glu Lys Glu Pro Leu Ala Val Asp Ser Trp Trp Leu Asp Pro Gly His -15 -10 -5 gca gcg gtg gca cag gca ccc ccg gcc gtg gcc tct agc tcc ctc ttt Ala Ala Val Ala Gln Ala Pro Pro Ala Val Ala Ser Ser Ser Leu Phe 1 5 10 15 gac ctc tca gtg ctc aag ctc cac cac agc ctg cag vrr agt rag ccg Asp Leu Ser Val Leu Lys Leu His His Ser Leu Gln Xaa Ser Xaa Pro 20 25 30		217
gca gcg gtg gca cag gca ccc ccg gcc gtg gcc tct agc tcc ctc ttt 265 Ala Ala Val Ala Gln Ala Pro Pro Ala Val Ala Ser Ser Leu Phe 1 5 10 15 gac ctc tca gtg ctc aag ctc cac cac agc ctg cag vrr agt rag ccg Asp Leu Ser Val Leu Lys Leu His His Ser Leu Gln Xaa Ser Xaa Pro 20 25 30		
Ala Ala Val Ala Gln Ala Pro Pro Ala Val Ala Ser Ser Leu Phe 1 5 10 15 gac ctc tca gtg ctc aag ctc cac cac agc ctg cag vrr agt rag ccg Asp Leu Ser Val Leu Lys Leu His His Ser Leu Gln Xaa Ser Xaa Pro 20 25 30	-15 -10 -5	
1 5 10 15 gac ctc tca gtg ctc aag ctc cac cac agc ctg cag vrr agt rag ccg Asp Leu Ser Val Leu Lys Leu His His Ser Leu Gln Xaa Ser Xaa Pro 20 25 30		265
gac ctc tca gtg ctc aag ctc cac cac agc ctg cag vrr agt rag ccg Asp Leu Ser Val Leu Lys Leu His His Ser Leu Gln Xaa Ser Xaa Pro 20 25 30		
Asp Leu Ser Val Leu Lys Leu His His Ser Leu Gln Xaa Ser Xaa Pro 20 25 30		313
20 25 30		
gac ctg cgg cac ctg gtg ctg gtc atr aac act ctg cgg cgc atc cag 361	20 25 30	
	gac ctg cgg cac ctg gtg ctg gtc atr aac act ctg cgg cgc atc cag	361

Asp	Leu	Arg	His 35	Leu	Val	Leu	Val	Xaa 40	Asn	Thr	Leu	Arg	Arg 45	Ile	Gln	
														cca Pro		409
_	-					-				_	-	_	_	gct Ala	_	457
														att Ile		505
	-	_	_	_				_	-	_				cca Pro 110		553
		Ile							-		-	_	_	ctg Leu	_	601
					_			-						ctg Leu		649
		att				_	tat	-		_		tgg	_	cca Pro	_	697
														gag Glu		745
														gtg Val 190		793
				gca Ala												835
gaga gaga gggg ctgg	ecteg agaca gaged gecet	gaa a aga a atg g	agad atcta gaatt ggtca	acag agtco	ge to	ggett ggeaa agtg	ccct actto gatgo	ato agt aca aca aat	acag tccg gaca ctct	gaga gtcc uggg ugat	tcts	ggct gtct ggtgg ggaag	gg d tg g ca g	ggcca gggct actga	accaac actttg aggcag aattcc aatcag	895 955 1015 1075 1135 1182

<210> 254

<211> 1073

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 59..505

<221> sig_peptide

<222> 59..358

<223> Von Heijne matrix
 score 3.70000004768372
 seq LASSFLFTMGGLG/FI

<221> polyA_signal

<222> 1042..1047

<221> polyA_site

<222> 1062..1073

<400> 254	
actgtttnng ggaggcgcgt ggggcttgag gccgagaacg gcccttgctg ccaccaac	58
atg gag act ttg tac cgt gtc ccg ttc tta gtg ctc gaa tgt ccc aac	106
Met Glu Thr Leu Tyr Arg Val Pro Phe Leu Val Leu Glu Cys Pro Asn	
-100 -95 -90 -85	
ctg aag ctg aag aag ccg ccc tgg ttg cac atg ccg tcg gcc atg act	154
Leu Lys Leu Lys Lys Pro Pro Trp Leu His Met Pro Ser Ala Met Thr	
-80 -75 -70	000
gtg tat gct ctg gtg gtg tct tac ttc ctc atc acc gga gga ata Val Tyr Ala Leu Val Val Val Ser Tyr Phe Leu Ile Thr Gly Gly Ile	202
-65 -60 -55	
att tat gat gtt att gtt gaa cct cca agt gtc ggt tct atg act gat	250
Ile Tyr Asp Val Ile Val Glu Pro Pro Ser Val Gly Ser Met Thr Asp	230
-50 -45 -40	
gaa cat ggg cat cag agg cca gta gct ttc ttg gcc tac aga gta aat	298
Glu His Gly His Gln Arg Pro Val Ala Phe Leu Ala Tyr Arg Val Asn	
-35 -30 -25	
gga caa tat att atg gaa gga ctt gca tcc agc ttc cta ttt aca atg	346
Gly Gln Tyr Ile Met Glu Gly Leu Ala Ser Ser Phe Leu Phe Thr Met	
-20 -15 -10 -5	
gga ggt tta ggt ttc ata atc ctg gac gga tcg aat gca cca aat atc	394
Gly Gly Leu Gly Phe Ile Ile Leu Asp Gly Ser Asn Ala Pro Asn Ile	
1 5 10	
cca aaa ctc aat aga ttc ctt ctt ctg ttc att gga ttc gtc tgt gtc	442
Pro Lys Leu Asn Arg Phe Leu Leu Leu Phe Ile Gly Phe Val Cys Val	
15 20 25 cta twr agt ttt tkc ayg gct aga gta ttc atg aga atg aaa ctg ccg	400
Leu Xaa Ser Phe Xaa Xaa Ala Arg Val Phe Met Arg Met Lys Leu Pro	490
30 35 40	
ggc tat ctg atg ggt tagagtgcct ttgasaagaa atcagtggat actggatttg	545
Gly Tyr Leu Met Gly	
45	
ctcctgtcaa wgaastttta aaggctgtmc caatcctcta atatgaaatg tggaaaagaa	605
tgaagagcag cagtaaaaga aatatctagt gaaaaaacag gaagcgtatt gaagcttgga	665
ctagaatttc ttcttggtat taaagagaca agtttatcac agaatttttt ttcctgctgg	725
cctattgcta taccaatgat gttgagtggc attttcttt tagtttttca ttaaaatata	785
ttccatatct acaactataa tatcaaataa agtgattatt ttttacaacc ctcttaacat	845
tttttggaga tgacatttct gattttcaga aattaacata aaatccagaa gcaagattcc	905
gtaagctgag aactctggac agttgatcag ctttacctat ggtgctttgc ctttaactag	965
agtgtgtgat ggtagattat ttcagatatg tatgtaaaac tgtttcctga acaataagat	1025
gtatgaacgg agcagaaata aatacttttt ctaattaaaa aaaaaaaa	1073

```
<210> 255
```

<221> CDS

<222> 1..207

<221> sig_peptide <222> 1..147

<223> Von Heijne matrix score 7.59999990463257 seq HLPFLLLLSCVGX/XP

<221> polyA_signal <222> 784..789

<211> 818

<212> DNA

<213> Homo sapiens

<220>

<221> polyA_site <222> 807818	
<400> 255	
atg cct ttc cat ttt ccg ttc ctt ggg ttt gtg tgt ctg cat ctc cat	48
Met Pro Phe His Phe Pro Phe Leu Gly Phe Val Cys Leu His Leu His	
-45 -40 -35	
ctt acc cct tgc ctg act gta ccc cgt aga ccc ctg ttt ctc ctc ctg	96
Leu Thr Pro Cys Leu Thr Val Pro Arg Arg Pro Leu Phe Leu Leu Leu	
-30 -25 -20	
cac ctg tgt ccc cat ctg ccc ttc ttg ttg ctc ctg tca tgt gtc ggg	144
His Leu Cys Pro His Leu Pro Phe Leu Leu Leu Ser Cys Val Gly	
-15 -10 -5	
gke www eec tee tgt etg eet tet tee tee act tgt gte age ttg eat	192
Xaa Xaa Pro Ser Cys Leu Pro Ser Ser Ser Thr Cys Val Ser Leu His	
1 5 10 15	
ttt ttt att cct gac tgagtcacca cacccctctc ccctgatcaa agggaatatk	247
Phe Phe Ile Pro Asp 20	
artttttaat ttggatcgac tgaggtgcca ggagaaactg cagkcccagg tatccmvaca	307
gccaccagga tggtccctcg ccccaccccc accgcctctk ccccaccttt tccaacgtgt	367
tgcatgctgg gaactggggg gtgtggggga aggggctgcc ggcttctttc aggangctga	427
rgtttggarg caaaatcaac ctgggaracc accccggccg cggcgcctca gtggacaggt	487
gggargaaaa gaaaacttct taccttggar garggacatc ccgcttcctt atccttagct	547
tttttgttgc tcctccccac tgcccctttt aatttatttg gttgtttgcg gaaggaggg	607
ggaagggggt aagctgggcc gggaactgtc cgaggtgctg agctggggcg ggaccggaat	667
cctcccggta gggtaccagg gactgagttg ggcctggggc cgtgtccaag gtgccaatga	727
tgcgggccga cagarcgggc cgcactgtct gtctgtccgt ctgtcccgga aagaactata	787
aagcgctgga agcgcctgca aaaaaaaaaa a	818
<pre><210> 256 <211> 971 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 12734 <221> sig_peptide <222> 12101 <223> Von Heijne matrix</pre>	
<400> 256 aatacacaga a atg ggg act gcg agc aga agc aac atc gct cgc cat ctg	50
Met Gly Thr Ala Ser Arg Ser Asn Ile Ala Arg His Leu	
-30 -25 -20	
caa acc aat ctc att cta ttt tgt gtc ggt gct gtg ggc gcc tgt act	98
Gln Thr Asn Leu Ile Leu Phe Cys Val Gly Ala Val Gly Ala Cys Thr	
-15 -10 -5	
ctc tct gtc aca caa ccg tgg tac cta gaa gtg gac tac act cat gag Leu Ser Val Thr Gln Pro Trp Tyr Leu Glu Val Asp Tyr Thr His Glu	146

	1				5					10					15	
gcc	gtc	acc	ata	aag	tgt	acc	ttc	tcc	gca	acc	gga	tgc	cct	tct	gag	19
				20					25					30	Glu	
caa	cca	aca	tgc	ctg	tgg	ttt	cgc	tac	ggt	gct	cac	cag	cct	gag	aac	24
			35					40					45		Asn	
ctg	tgc	ttg	gac	999	tgc	aaa	agt	gag	gca	gas	aag	ttc	aca	gtg	agg	29
		50					55				Lys	60			_	
gag	gcc	ctc	aaa	gaa	aac	caa	gtt	tcc	ctc	act	gta	aac	aga	gtg	act	33
	65					70					Val 75					
tca	aat	gac	agt	gca	att	tac	atc	tgt	gga	ata	gca	ttc	ccc	agt	gtg	38
	Asn	Asp	Ser	Ala		Tyr	Ile	Cys	Gly		Ala	Phe	Pro	Ser		
80					85					90					95	
Dro	gaa	gcg.	aga	gct	aaa	cag	aca	gga	gga	999	acc	aca	ctg	gtg	gta	434
FLO	Giu	AId	AIG	100	гÀв	GIN	THE	GIY	105	GIY	Thr	Thr	Leu	110	vaı	
aga	αaa	att	aaa		ctc	agc	aaα	gaa		caa	agc	ttc	cta		act	482
Arg	Glu	Ile	Lys	Leu	Leu	Ser	Lvs	Glu	Leu	Ara	Ser	Phe	Leu	Thr	Ala	407
_			115					120		3			125			
ctt	gta	tca	ctg	ctc	tct	gtc	tat	gtg	acc	ggt	gtg	tgc	gtg	gcc	ttc	530
Leu	Val	Ser	Leu	Leu	Ser	Val	Tyr	Val	Thr	Gly	Val	Cys	Val	Āla	Phe	
		130					135					140				
ata	CTC	ctc	tcc	aaa	tca	aaa	tcc	aac	cct	cta	aga	aac	aaa	gaa	ata	578
	145					150					Arg 155					
aaa	gaa	gac	tca	caa	aag	aag	aag	agt	gct	cgg.	cgt	att	ttt	cag	gaa	626
Lys	Glu	Asp	Ser	Gln		Lys	Lys	Ser	Ala		Arg	Ile	Phe	Gln		
160					165					170					175	
Tlo	gct	Caa	gaa	cta	tac	cat	aag	aga	cat	gtg	gaa	aca	aat	cag	caa	674
				180					185		Glu			190		
tct	gag	aaa	gat	aac	aac	act	tat	gaa	aac	aga	aga	gta	ctt	tcc	aac	722
			195					200			Arg		205		Asn	
tat Tyr	gaa Glu	agg Arg 210	cca Pro	taga	aacg	jtt t	taat	tttc	a at	gaag	tcac	tga	aaat	cca		774
acto	cago		tatq	gcac	it gt	taat	gaac	ata	tato	atc	agat	ctta	aa a	aaaa	ataaa	834
ggta	aact	ga a	.aaga	caac	t ga	ctac	aaac	aac	gato	cca	raat	gtaa	igg a	aact	ataac	894
taat	akto	at t	acca	aaat	a ct	aaaa	ccca	aca	aaat	gca	acto	aaaa	at a	cctt	ccaaa	954
			aaaa							-	_					971

<210> 257

<211> 640

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 378..518

<221> sig_peptide

<222> 378..467

<223> Von Heijne matrix score 5.5 seq SLMTCTTLINASA/IS WO 99/31236 -180- PCT/IB98/02122 -

<221> polyA_signal	
<221> polyA_site	
<pre><400> 257 agcctgggta akgcccaaga tggctgtctt cgccttagta ctcgtgtgaa gttggcgggg acggttcctg tcatcttctt gggcttattt ggtgtgctgt tgaagggggg agactagaga aatggcaggg aacctcttat ccggggcagg taggcgcctg tgggactggg tgcctctggc gtgcagaagc ttctctcttg gtgtgcctag attgatcggt ataaggctca ctctcccgcc ccccaaagtg gttgatcgtt ggaacgagaa aagggccatg ttcggagtgt atgacaacat cgggatcctg ggaaactttg aaaagcaccc caaagaactg atcagggggc ccatatggct tcgaggttgg aaaggga atg aat tgc aac gtt gta tcc gaa aga gga aaa Met Asn Cys Asn Val Val Ser Glu Arg Gly Lys -30 -25 -20</pre>	60 120 180 240 300 360 410
tgg ttg gaa gta gaa tgt tcg ctg atg acc tgc aca acc tta ata aac Trp Leu Glu Val Glu Cys Ser Leu Met Thr Cys Thr Thr Leu Ile Asn -15 -10 -5	458
gca tcc gct atc tct aca aac act tta acc gac atg gga agt ttc gat Ala Ser Ala Ile Ser Thr Asn Thr Leu Thr Asp Met Gly Ser Phe Asp 1 5 10	506
aga aga gaa agc tgagaacttc ggaaaaggct catctgtcac cctggaraag Arg Arg Glu Ser 15	558
ggaaactgta cttttccctg tgaggaaacg gctttgtatt ttctctgtaa taaaatgggg cttctttgga aaaaaaaaa aa	618 640
<pre><210> 258 <211> 745 <212> DNA <213> Homo sapiens </pre> <pre><220> <221> CDS <222> 110304 </pre> <pre><221> sig_peptide <222> 110193 </pre> <pre><223> Von Heijne matrix</pre>	
<pre><400> 258 acttccgcct gcgcctgcgc agcvcagctc cshgagccct gccaaccatg gtgaacttgg gtctgtcccg ggtggacgac gccgtggctg ccaagcaccc ggcaccggc atg gcc ttt</pre>	60 118
ggc ttg cag atg ttc att cag agg aag ttt cca tac cct ttg cag tgg Gly Leu Gln Met Phe Ile Gln Arg Lys Phe Pro Tyr Pro Leu Gln Trp -25 -20 -15 -10	166
agc ctc cta gtg gcc gtg gtt gca ggc tct gtg gtc agc tac ggg gtg Ser Leu Leu Val Ala Val Val Ala Gly Ser Val Val Ser Tyr Gly Val -5 1 5	214
acg aga gtg gag tcg gag aaa tgc aac ctc tgg ctc ttc ctg gag	262

WO 99/31236 -181- PCT/IB98/02122

Thr Arg Val Glu Ser Glu Lys Cys Asn Asn Leu Trp Leu Phe Leu Glu 10 15 20	
acc gga cag ctc ccc aaa gac agg agc aca gat cag ara agc Thr Gly Gln Leu Pro Lys Asp Arg Ser Thr Asp Gln Xaa Ser 25 30 35	304
taggagaget ccagcagggg cacagargat tgggggcagg argartctgg aacacakect tcatgecece tgaececagg ccgaecetee ccacacceta gggtaececa gtcgtateet ctgteegeat gtgtggecag geetgaeaaa cmeetgeaga tggetgetge cecaacetgg gacetgecea ggaggttgga geagaaaggg etetecetgg ggtggtgttt eteetetagg gtattgggat geatgteetg cactgecage agagagggtg tgtetggggg ceaecaceta tgggaeaegg ggtegaaggg geetgaeae tetgteattt eettetage eeetgeatet eeteetecaaaagte caaggtgaea getggtgeta ggggggtggg gttaataaaat ggettateet tetetecaaa araaaaaaam e	364 424 484 544 604 664 724 745
<210> 259 <211> 637 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 201419	
<221> sig_peptide <222> 201272 <223> Von Heijne matrix score 6.40000009536743 seq_LSYLPLWLGPIWP/CS	
<221> polyA_signal	
<221> polyA_site <222> 627637	
<400> 259 acaaaatata attgcctcts ccctctccca ttttctctct tgggagcaat ggtcacagtc cctggtacct gaaaaggtac ctaggtctag gcccttcttc cctttccctt cctctccct accccagaac tttggctccc tttcccttct ctctctggta gctccaggag gcctgtgatc cagctccctg cctagcatcc atg acc tgt tgg atg tta cct cca atc agt ttc Met Thr Cys Trp Met Leu Pro Pro Ile Ser Phe	60 120 180 233
-20 -15 ctg tcc tac ctg cct ctt tgg ctt gga cct ata tgg cca tgc tct ggc Leu Ser Tyr Leu Pro Leu Trp Leu Gly Pro Ile Trp Pro Cys Ser Gly	281
tct acc ctt ggg aag cct gat ccc ggt gtg tgg ccc agc ttg ttc agg Ser Thr Leu Gly Lys Pro Asp Pro Gly Val Trp Pro Ser Leu Phe Arg 5 10 15	329
ccc tgg gat gct gca tct cca ggc aac tat gca ctt tcc cgg gga rarPro Trp Asp Ala Ala Ser Pro Gly Asn Tyr Ala Leu Ser Arg Gly Xaa20253035	377
aac cak tat gav aak tgg ggg cag ggc aca cat tca tct ttg Asn Xaa Tyr Xaa Xaa Trp Gly Gln Gly Thr His Ser Ser Leu 40 45	419
targaaggte tggcetgggg terggtgaag gagggeeeag gteagttetg gggteeeagt gacetgettt geeattetee tggtgeeget getgeteeet gtttetggag etggatgtte eccaectgge agttgagetg eetgageeaa tgtgtetgte tttggtaact gagtgaacea taataaaggg gaacatttgg ecctgtgaaa aaaaaaaa	479 539 599 637

WO 99/31236 -182- PCT/IB98/02122

```
<210> 260
<211> 1315
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 123..302
<221> sig_peptide
<222> 123..176
<223> Von Heijne matrix
     score 4.30000019073486
     seq WTCLKSFPSPTSS/HA
<221> polyA_signal
<222> 1279..1284
<221> polyA site
<222> 1301..1312
<400> 260
aagagcatcc tgcgccccgg cgcggggccc tgcggtagcc tcaggcccct cccctggacc
                                                                    60
cgccgcagag ccagtgcaga atacagaaac tgcagccatg accacgcacg tcaccctgga
                                                                   120
ag atg ccc tgt cca acg tgg acc tgc ttg aag agc ttc ccc tcc ccg
                                                                   167
  Met Pro Cys Pro Thr Trp Thr Cys Leu Lys Ser Phe Pro Ser Pro
acc agc agc cat gca tcg agc ctc cac ctt cct cca tca tgt acc agg
                                                                   215
Thr Ser Ser His Ala Ser Ser Leu His Leu Pro Pro Ser Cys Thr Arg
                           5
                                                                   263
cta act ttg aca caa act ttg agg aca gga atg cat ttg tca cgg gca
Leu Thr Leu Thr Gln Thr Leu Arg Thr Gly Met His Leu Ser Arg Ala
                       20
ttg caa ggt aca ttg acc agg cta cag tcc act cca gca tgaatgarat
                                                                   312
Leu Gln Gly Thr Leu Thr Arg Leu Gln Ser Thr Pro Ala
                                       40
                   35
                                                                   372
gctggaggaa ggacatgakt atgeggtcat gctgtacacc tggcgcagct gttcccgggc
                                                                   432
cattccccag gtgaaatgca acragcagcc caaccgakta raratctatg araaracagt
araggtgctg gagccggagg tcaccaagct catgaagttc atgtattttc arcgcaaggc
                                                                   492
                                                                   552
categagegg ttetgeaseg aggtgaageg getgtgeeat geegagegea ggaaggaett
tgtctctgag gcctacctcc tgacccttgg caagttcatc aacatgtttg ctgtcctgga
                                                                   612
tgagetaaag aacatgaast geagegteaa raatgaeeae tetgeetaea agagggeage
                                                                   672
acagtteetg eggaagatgg eagateecea gtetateeag gagtegeaga acettteeat
                                                                   732
gttcctggcc aaccacaaca ggatcaccca gtgtctccac cagcaacttg aagtgatccc
aggctatgag gagctgctgg ctgacattgt caacatctgt gtggattact acgagaacaa
gatgtacctg actcccagtg agaaacatat gctcctcaag gtaaaactcc cctgaggccg
cacceatgga geetgggett acceteteac ettettetta ttaaaaatee gttttaaaaa
                                                                   972
acaatgtttc ttttttctta aacattgata cagatcttac ggcacataat ggtttgtaac
ctgttccttt cctgtaatat aatataccgt agtcaccttt ccagatgtca ttaaggctat
ttctacaatg ttatgtgtaa tgactgccaa gtattctgtt gtattggaac attgtcatgt
                                                                   1152
aacatatccc ctgtggttgg atatttgcta aacttcattg aacacccttg tagcagtttt
                                                                  1212
tgtgcacatc tttttgtcaa ggcaaacttc ctagaagaga aattgctggc tcaaagggaa
                                                                  1272
1315
```

<210> 261

<211> 1035

<212> DNA

<213> Homma sapiens

WO 99/31236 -183- PCT/IB98/02122

<220> <221> CDS <222> 98..673 <221> sig_peptide <222> 98..376 <223> Von Heijne matrix score 5.59999990463257 seq VLLLRQLFAQAEK/WY <221> polyA_site <222> 1025..1035 <400> 261 aattttcygt ggtccaacta ccctcggcga tcccaggctt ggcggggcac cgcctggcct 60 ctcccgttcc tttaggctgc cgccgctgcc tgccgcc atg gca gag ttg ggc cta 115 Met Ala Glu Leu Gly Leu aat gag cac cat caa aat gaa gtt att aat tat atg cgt ttt gct cgt 163 Asn Glu His His Gln Asn Glu Val Ile Asn Tyr Met Arg Phe Ala Arg -85 -80 -75 tca aag aga ggc ttg aga ctc aaa act gta gat tcc tgc ttc caa gac 211 Ser Lys Arg Gly Leu Arg Leu Lys Thr Val Asp Ser Cys Phe Gln Asp -70 -65 ctc aag gag agc agg ctg gtg gag gac acc ttc acc ata gat gaa gtc 259 Leu Lys Glu Ser Arg Leu Val Glu Asp Thr Phe Thr Ile Asp Glu Val -50 -45 tct gaa gtc ctc aat gga tta caa gct gtg gtt cat agt gag gtg gaa 307 Ser Glu Val Leu Asn Gly Leu Gln Ala Val Val His Ser Glu Val Glu -30 tct gag ctc atc aac act gcc tat acc aat gtg tta ctt ctg cga cag Ser Glu Leu Ile Asn Thr Ala Tyr Thr Asn Val Leu Leu Leu Arq Gln -15 ctg ttt gca caa gct gag aag tgg tat ctt aag cta cag aca gac atc 403 Leu Phe Ala Gln Ala Glu Lys Trp Tyr Leu Lys Leu Gln Thr Asp Ile -5 1 tct gaa ctt gaa aac cga gaa tta tta gaa caa ktt gca gaa ttt gaa 451 Ser Glu Leu Glu Asn Arg Glu Leu Leu Glu Gln Xaa Ala Glu Phe Glu 15 20 499 aaa gca rav att aca tct tca aac aaa aag ccc atc tta dat gtc aca Lys Ala Xaa Ile Thr Ser Ser Asn Lys Lys Pro Ile Leu Xaa Val Thr 30 35 547 aas cca aaa ctt gct cca ctt aat gaa ggt gga aca gca aaa ctc cta Xaa Pro Lys Leu Ala Pro Leu Asn Glu Gly Gly Thr Ala Lys Leu Leu 45 50 aac aag gta ata tgt att att ttg aga aac gga aag tct ctc att ctg 595 Asn Lys Val Ile Cys Ile Ile Leu Arg Asn Gly Lys Ser Leu Ile Leu 65 tcc tgt cat tgc cta ggg tgg aga aac aaa agt gga agg ttt gtt tca 643 Ser Cys His Cys Leu Gly Trp Arg Asn Lys Ser Gly Arg Phe Val Ser 80 85 ggt cct ctg agg ata att agt cca ttg cag tagttttact tgatggtacc 693 Gly Pro Leu Arg Ile Ile Ser Pro Leu Gln ccatgggcca gaagagggca tacttaacct tctagagagc ctgaagtagc tcctgatcac 753 accttttcaa ggtaaagtga agagcatgaa attttggaca gcgtttattg atggacattt 813 873 aattagccgg gtgtggtggt acgtgcctat agtcagagct actcgggagg ctgaggcagg 933 agaattgctt gaacceggga ggtggaggtt gcagtgagct gagatcacgc cactgcactc 993 tagcctgggc gacagagcga gactccatct caaaaaaaaa aa 1035

```
<210> 262
<211> 696
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 17..463
<221> sig_peptide
<222> 17..232
<223> Von Heijne matrix
     score 3.79999995231628
     seq LMGLALAVYKCQS/MG
<221> polyA signal
<222> 657..662
<221> polyA site
<222> 684..696
<400> 262
actcaaacag attccc atg aat ctc ttc atc atg tac atg gca ggc aat act
                                                                      52
                 Met Asn Leu Phe Ile Met Tyr Met Ala Gly Asn Thr
                          -70
atc tcc atc ttc cct act atg atg gtg tgt atg atg gcc tgg cga ccc
                                                                     100
Ile Ser Ile Phe Pro Thr Met Met Val Cys Met Met Ala Trp Arg Pro
                  -55
                                        -50
att cag gca ctt atg gcc att tca gcc act ttc aag atg tta gaa agt
Ile Gln Ala Leu Met Ala Ile Ser Ala Thr Phe Lys Met Leu Glu Ser
                -40
                                    -35
tca agc cag aag ttt ctt cag ggt ttg gtc tat ctc att ggg aac ctg
                                                                      196
Ser Ser Gln Lys Phe Leu Gln Gly Leu Val Tyr Leu Ile Gly Asn Leu
                                -20
atg ggt ttg gca ttg gct gtt tac aag tgc cag tcc atg gga ctg tta
                                                                     244
Met Gly Leu Ala Leu Ala Val Tyr Lys Cys Gln Ser Met Gly Leu Leu
        -10
                            ~5
cct aca cat gca tcg gat tgg tta gcc ttc att gag ccc cct gag aga
                                                                     292
Pro Thr His Ala Ser Asp Trp Leu Ala Phe Ile Glu Pro Pro Glu Arg
                    10
                                        15
atg gag tca gtg gtg gag gac tgc ttt tgt gaa cat gag aaa gca gcg
                                                                     340
Met Glu Ser Val Val Glu Asp Cys Phe Cys Glu His Glu Lys Ala Ala
                25
                                    30
cct ggt ccc tat gta ttt ggg tct tat tta cat cct tct tta agc cca
                                                                      388
Pro Gly Pro Tyr Val Phe Gly Ser Tyr Leu His Pro Ser Leu Ser Pro
                               45
gtg gct cct cag cat act ctt aaa cta atc act tat gtt aaa aaa aac
Val Ala Pro Gln His Thr Leu Lys Leu Ile Thr Tyr Val Lys Lys Asn
                            60
caa aaa act ctt ttc tcc atg gtg ggg tgacaggtcc taaaaggaca
                                                                      483
Gln Lys Thr Leu Phe Ser Met Val Gly
atgtgcatat tacgacaaac acaaaaaaac tataccataa cccagggctg aaaataatgt
                                                                     603
aaaaaacttt atttttgttt ccagtacaga gcaaaacaac aacaaaaaaa cataactatg
taaacaaaaa aataactgct gctaaatcaa aaactgttgc agcatctcct ttcaataaat
                                                                     663
                                                                     696
taaatggttg araacaatgc aaaaaaaaaa aaa
```

```
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 263..481
<221> sig_peptide
<222> 263..322
<223> Von Heijne matrix
      score 11.1999998092651
      seq ILVVLMGLPLAQA/LD
<221> polyA_site
<222> 858..868
aagacacgcc tacgattaga ctcaggcagg cacctaccgg cgagcggccg crvgtgactc
                                                                      60
ccaggcgcgg cggtacctca cggtggtgaa ggtcacaggg ttgcagcact cccagtagac
                                                                     120
caggagetee gggaggeagg geeggeeeea egteetetge geaceaeeet gagttggate
                                                                     180
ctctgtgcgc cacccctgag ttggatccag ggctagctgc tgttgacctc cccactccca
                                                                     240
egetgeeete etgeetgeag ee atg aeg eee etg ete aee etg ate etg gtg
                                                                     292
                         Met Thr Pro Leu Leu Thr Leu Ile Leu Val
gtc ctc atg ggc tta cct ctg gcc cag gcc ttg gac tgc cac gtg tgt
                                                                     340
Val Leu Met Gly Leu Pro Leu Ala Gln Ala Leu Asp Cys His Val Cys
                   -5
                                       1
gcc tac aac gga gac aac tgc ttc aac ccc atg cgc tgc ccg gct atg
                                                                     388
Ala Tyr Asn Gly Asp Asn Cys Phe Asn Pro Met Arg Cys Pro Ala Met
           10
                               15
gtt gcc tac tgc atg acc acg cgc acc tac tac acc ccc acc agg atg
                                                                     436
Val Ala Tyr Cys Met Thr Thr Arg Thr Tyr Tyr Thr Pro Thr Arg Met
                           30
aag gtc agt aag tcc tgc gtg ccc cgc tgc ttc gar nac tgt gta
                                                                     481
Lys Val Ser Lys Ser Cys Val Pro Arg Cys Phe Glu Xaa Cys Val
                        45
tgatggctac tccaagcacg cgtccaccac ctcctgctgc cagtacgacc tctgcaacgg
                                                                     541
caceggeett gecaceegg ceaceetgge cetggeece atecteetgg ceaceetetg
gggtctcctc taaagccccc gaggcagacc cactcaagaa caaagctctc gagacacact
                                                                     661
gctayaccct ckcacccakc tcaccctgcc tcaccctcca cactccctgc gacctcctca
                                                                     721
gccatgccca gggtcaggac tgtgggcaag aagacacccg acctccccca accaccacac
                                                                     781
gacctcactt cgaggccttg acctttcgat gctgtgtggg atcccaaaag tgtccggctt
                                                                     841
tgatgggctg atcagcaaaa aaaaaaa
                                                                     868
<210> 264
<211> 775
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
```

WO 99/31236 -186- PCT/IB98/02122 .

<222> 762..775 <400> 264 aacgatacaa atggtaggcc ttcatgtgag ccagtdacta c atg aat ctt cat ttc 56 Met Asn Leu His Phe cca cag tgg ttt gtt cat tca tca gcg tta ggc ttg gtc ctg gct cca 104 Pro Gln Trp Phe Val His Ser Ser Ala Leu Gly Leu Val Leu Ala Pro -10 - 5 cet the tee tet eeg gge act gae eee ace the eeg tgt att tae tgt 152 Pro Phe Ser Ser Pro Gly Thr Asp Pro Thr Phe Pro Cys Ile Tyr Cys 10 agg cta tta aat atg atc atg acc cgc ctt gca ttt tca ttc atc acc 200 Arg Leu Leu Asn Met Ile Met Thr Arg Leu Ala Phe Ser Phe Ile Thr 25 30 tgt tta tgc cca aat tta aag gaa gtt tgt ctc att ttg cca gaa aaa 248 Cys Leu Cys Pro Asn Leu Lys Glu Val Cys Leu Ile Leu Pro Glu Lys 40 aat tgt aat agt cga cac gct gga ttt gta ggg cca sca aaa ttg cgg 296 Asn Cys Asn Ser Arg His Ala Gly Phe Val Gly Pro Xaa Lys Leu Arg 55 cag tgaaactwkk ttcwcttcta aagcccttca tttcccacaa ggttaagctc 349 tegaaacccc atttgatect tggtteetat ttegatecte etttggaate tgaaaategg 409 tetecatgtt gtatgcaaat taaaakttge ettgtttgtt aetettecaa cacagggtat 469 cagggaraaa gaggccttat ctgttcctcc atccccctg ttttgacaga ctgctaagaa 529 ttcctcagga cttcctttgg ttggggattt tactttccca aaagtctgat ctgatttctt 589 tcaggggtag acaagcttgt cctagtgctc tgcttcaggt cttatcagaa gaaacccagg 649 aatagaaaag gtagatgcct tgacttttgt ccctgttgtg gggactaaag tgttttttgc 709 769 aaaaaa 775 <210> 265 <211> 1075 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 198..431 <221> sig_peptide <222> 198..260 <223> Von Heijne matrix score 6.90000009536743 seq LLACGSLLPGLWQ/HL <221> polyA_site <222> 1064..1074 <400> 265 atatatttct gaggcagtac ccatctcact tgtaaactta aaagacaccg cagagatttg 60 agggactcag aagtcaaata gagtaggtta aaaacctctt atttttcaaa ttaattgttt 120 taagaaacaa gcatacctgt gtaagtgaaa tatcttaatt tgtgttgaat caagttagga 180 gacagagatt ctcatga atg tgt cct gtg ttc tca aag cag ctg cta gcc 230 Met Cys Pro Val Phe Ser Lys Gln Leu Leu Ala -20 -15 tgt ggg tct ctc cta cct ggg tta tgg cag cac ctc aca gcc aat cac 278

Cys Gly Ser Leu Leu Pro Gly Leu Trp Gln His Leu Thr Ala Asn His

-10

tgg cct cca ttc tcc sct ttc ctc tgt aca gtt tgc tct ggt tcc tca Trp Pro Pro Phe Ser Xaa Phe Leu Cys Thr Val Cys Ser Gly Ser Ser	326
10 15 20 gag cag att tcc gag tat act gct tca gcc acg ccc cca ctg tgc cgt Glu Gln Ile Ser Glu Tyr Thr Ala Ser Ala Thr Pro Pro Leu Cys Arg	374
25 30 35 tcc ctg aac caa gag cca ttc gty tca aga gcc att cgt cca aag tac	422
Ser Leu Asn Gln Glu Pro Phe Val Ser Arg Ala Ile Arg Pro Lys Tyr 40 45 50	
tot ato aco tagocattgt akocatacca agoogggott cotacttoco Ser Ile Thr 55	471
tetgeteece ttggttteet eetgtraart aaateteact gaecettgat geaseteeaa	531
gcatatataa tatatatata ataaaaccat abtctaaaaa attcaaacca ggawaaataa asccaraaat ttgtatggga aaaatctgca caaatttatt tggccagcat ggttatcatg	591 651
gctctattga atttatcctt gaccgtcttt aaagccaaag caaacgggat aaagtgatca	711
actacttacc tctcaatacc aaaaargaag caggaggcaa aatctctcaw taatttcata	771
aaaacaatto ttakotgggo goggtggoto wcacctgtar toccaacact ttgggaggoo	831
saggtgggcg gatcatgagg tcgggagatc aamaccatcc tggctaacat ggtgaaaccc catctctact aaaattacaa aaaattrgct gggcgaggtg gcgggcacct gtggtcccag	891 951
ctactcggga ggctgaggca agagaatggt gtgaacccca gggggcggag cctgcagtga	1011
getgagateg caccactgea etceageetg ggegacagtg agaeteegte teaaaaaaaa	1071
aaah	1075
<210> 266 <211> 981 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 279473 <221> sig_peptide <222> 279362 <223> Von Heijne matrix	
score 4.4000009536743 seq SCFLVALIIWCYL/RE	
<221> polyA_signal <222> 944949	
<221> polyA_site <222> 970981	
<400> 266	
agaatcgtgt cttgtgtgcc ccggcggccg ggtgagctcc tcaaggtctc ggagggccga	60
gggcagacac cggcgggcgg gcggasgctt actgctctct ctcttccagg gccgtccggg	120 180
cgctgagget cataggetgg gettecegaa geetteatee gttgeeeggt teeegggate gggeeeacce tgeegeegag gaagaggaeg accetgaeeg ceeeattgag tttteeteea	240
gcaaagccaa ccctcaccgc tggtcggtgg gccatacc atg gga aag gga cat cag Met Gly Lys Gly His Gln -25	296
cgg ccc tgg tgg aag gtg ctg ccc ctc agc tgc ttc ctc gtg gcg ctg Arg Pro Trp Trp Lys Val Leu Pro Leu Ser Cys Phe Leu Val Ala Leu	344
-20 -15 -10	200
atc atc tgg tgc tac ctg agg gag gag agc gag gcg gac cag tgg ttg Ile Ile Trp Cys Tyr Leu Arg Glu Glu Ser Glu Ala Asp Gln Trp Leu -5 1 5 10	392

aga cag gtg tgg gga gag gtg cca gag ccc agt gat cgt tct gag gag 440

Arg Gln Val Trp Gly Glu Val Pro Glu Pro Ser Asp Arg Ser Glu Glu 15 20 25	493
cct gag act cca gct gcc tac aga gcg aga act tgacggggtg cccgctgggg Pro Glu Thr Pro Ala Ala Tyr Arg Ala Arg Thr 30 35	493
ctgqcaggaa gggagccgac asccgccctt cggatttgat ktcacgtttg cccgtgactg	553
tcctggctat gcktgcgtcc tcagcactra argacttggc tggtggatgg ggcacttggc tatgctgatt cgcgtgaagg cggavcaaaa tctcagcaaa tcggaaactg ctcctcscct	613 673
ggetettgat ktecaaggat tecateggea aaaettetea rateettggg gaaggtttea	733
qttqcactqt atgctgttgg atttgccaag tctttgtata acataatcat gtttccaaag	793
cacttetggt gacacttgte atceagtgtt agtttgcagg taatttgctt tetgagatag	853 913
aatatctggc agaagtgtga aactgtattg catgctgcgg cctgtgcaag gaacacttcc acatgtgagt tttacacaac aacaaatgaa aataaatttt aattttataa tatgggaaaa	973
aaaaaaaa	981
<210> 267	
<211> 1031 <212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 12644	
<221> sig_peptide	
<222> 1292	
<223> Von Heijne matrix	
score 4 seq LTFFSGVYGTCIG/AT	
-	
<pre><221> polyA_signal <222> 10021007</pre>	
<2225 10021007	
<221> polyA_site	
<222> 10201031	
<400> 267	
acaccaagga g atg ctc ctt ctt agt att aca act gct tat aca ggt ctg	
Met Leu Leu Ser Ile Thr Thr Ala Tvr Thr Glv Leu	50
Met Leu Leu Ser Ile Thr Thr Ala Tyr Thr Gly Leu -25 -20 -15	_
Met Leu Leu Ser Ile Thr Thr Ala Tyr Thr Gly Leu -25 -20 -15 gaa tta act ttc ttc tct ggt gta tat gga acc tgt att ggt gct aca	50 98
Met Leu Leu Ser Ile Thr Thr Ala Tyr Thr Gly Leu -25 -20 -15 gaa tta act ttc ttc tct ggt gta tat gga acc tgt att ggt gct aca Glu Leu Thr Phe Phe Ser Gly Val Tyr Gly Thr Cys Ile Gly Ala Thr	_
Met Leu Leu Ser Ile Thr Thr Ala Tyr Thr Gly Leu -25 -20 -15 gaa tta act ttc ttc tct ggt gta tat gga acc tgt att ggt gct aca Glu Leu Thr Phe Phe Ser Gly Val Tyr Gly Thr Cys Ile Gly Ala Thr -10 -5	_
Met Leu Leu Ser Ile Thr Thr Ala Tyr Thr Gly Leu -25 gaa tta act ttc ttc tct ggt gta tat gga acc tgt att ggt gct aca Glu Leu Thr Phe Phe Ser Gly Val Tyr Gly Thr Cys Ile Gly Ala Thr -10 -5 aat aaa ttt gga gca gaa gag ara agc ctt att gga ctt tct ggc att Asn Lys Phe Gly Ala Glu Glu Xaa Ser Leu Ile Gly Leu Ser Gly Ile	98
Met Leu Leu Ser Ile Thr Thr Ala Tyr Thr Gly Leu -25 gaa tta act ttc ttc tct ggt gta tat gga acc tgt att ggt gct aca Glu Leu Thr Phe Phe Ser Gly Val Tyr Gly Thr Cys Ile Gly Ala Thr -10 -5 aat aaa ttt gga gca gaa gag ara agc ctt att gga ctt tct ggc att Asn Lys Phe Gly Ala Glu Glu Xaa Ser Leu Ile Gly Leu Ser Gly Ile 5 10 15	98
Met Leu Leu Ser Ile Thr Thr Ala Tyr Thr Gly Leu -25 gaa tta act ttc ttc tct ggt gta tat gga acc tgt att ggt gct aca Glu Leu Thr Phe Phe Ser Gly Val Tyr Gly Thr Cys Ile Gly Ala Thr -10 -5 aat aaa ttt gga gca gaa gag ara agc ctt att gga ctt tct ggc att Asn Lys Phe Gly Ala Glu Glu Xaa Ser Leu Ile Gly Leu Ser Gly Ile 5 10 15 ttc atc ggc att gga gaa att tta ggt gga agc ctc ttc ggc ctg	98
Met Leu Leu Ser Ile Thr Thr Ala Tyr Thr Gly Leu -25 gaa tta act ttc ttc tct ggt gta tat gga acc tgt att ggt gct aca Glu Leu Thr Phe Phe Ser Gly Val Tyr Gly Thr Cys Ile Gly Ala Thr -10 aat aaa ttt gga gca gaa gag ara agc ctt att gga ctt tct ggc att Asn Lys Phe Gly Ala Glu Glu Xaa Ser Leu Ile Gly Leu Ser Gly Ile 5 10 15 ttc atc ggc att gga gaa att tta ggt gga agc ctc ttc ggc ctg Phe Ile Gly Ile Gly Glu Ile Leu Gly Gly Ser Leu Phe Gly Leu Leu 20 25 30	98 146 194
Met Leu Leu Ser Ile Thr Thr Ala Tyr Thr Gly Leu -25 gaa tta act ttc ttc tct ggt gta tat gga acc tgt att ggt gct aca Glu Leu Thr Phe Phe Ser Gly Val Tyr Gly Thr Cys Ile Gly Ala Thr -10 -5 aat aaa ttt gga gca gaa gag ara agc ctt att gga ctt tct ggc att Asn Lys Phe Gly Ala Glu Glu Xaa Ser Leu Ile Gly Leu Ser Gly Ile 5 10 ttc atc ggc att gga gaa att tta ggt gga agc ctc ttc ggc ctg ctg Phe Ile Gly Ile Gly Glu Ile Leu Gly Gly Ser Leu Phe Gly Leu Leu 20 25 30 agc aag aac aat cgt ttt ggt aga aat cca gtt gtg ctg ttg ggc atc	98
Met Leu Leu Ser Ile Thr Thr Ala Tyr Thr Gly Leu -25 -20 -15 gaa tta act ttc ttc tct ggt gta tat gga acc tgt att ggt gct aca Glu Leu Thr Phe Phe Ser Gly Val Tyr Gly Thr Cys Ile Gly Ala Thr -10 -5 aat aaa ttt gga gca gaa gag ara agc ctt att gga ctt tct ggc att Asn Lys Phe Gly Ala Glu Glu Xaa Ser Leu Ile Gly Leu Ser Gly Ile 5 10 15 ttc atc ggc att gga gaa att tta ggt gga agc ctc ttc ggc ctg Phe Ile Gly Ile Gly Glu Ile Leu Gly Gly Ser Leu Phe Gly Leu Leu 20 25 30 agc aag aac aat cgt ttt ggt aga aat cca gtt gtg ctg ttg ggc atc Ser Lys Asn Asn Arg Phe Gly Arg Asn Pro Val Val Leu Leu Gly Ile	98 146 194
Met Leu Leu Ser Ile Thr Thr Ala Tyr Thr Gly Leu -25 gaa tta act ttc ttc tct ggt gta tat gga acc tgt att ggt gct aca Glu Leu Thr Phe Phe Ser Gly Val Tyr Gly Thr Cys Ile Gly Ala Thr -10 aat aaa ttt gga gca gaa gag ara agc ctt att gga ctt tct ggc att Asn Lys Phe Gly Ala Glu Glu Xaa Ser Leu Ile Gly Leu Ser Gly Ile 5 10 ttc atc ggc att gga gaa att tta ggt gga agc ctc ttc ggc ctg Phe Ile Gly Ile Gly Glu Ile Leu Gly Gly Ser Leu Phe Gly Leu Leu 20 25 30 agc aag aac aat cgt ttt ggt aga aat cca gtt gtg ctg ttg ggc atc Ser Lys Asn Asn Arg Phe Gly Arg Asn Pro Val Val Leu Leu Gly Ile 35 40 45 50 ctg gtg cac ttc ata gct ttt tat cta ata ttt ctc aac atg cct gga	98 146 194
Met Leu Leu Ser Ile Thr Thr Ala Tyr Thr Gly Leu -25 -20 -15 gaa tta act ttc ttc tct ggt gta tat gga acc tgt att ggt gct aca Glu Leu Thr Phe Phe Ser Gly Val Tyr Gly Thr Cys Ile Gly Ala Thr -10 -5 aat aaa ttt gga gca gaa gag ara agc ctt att gga ctt tct ggc att Asn Lys Phe Gly Ala Glu Glu Xaa Ser Leu Ile Gly Leu Ser Gly Ile 5 ttc atc ggc att gga gaa att tta ggt gga agc ctc ttc ggc ctg ctg Phe Ile Gly Ile Gly Glu Ile Leu Gly Gly Ser Leu Phe Gly Leu Leu 20 25 30 agc aag aac aat cgt ttt ggt aga aat cca gtt gtg ctg ttg ggc atc Ser Lys Asn Asn Arg Phe Gly Arg Asn Pro Val Val Leu Leu Gly Ile 35 40 45 50 ctg gtg cac ttc ata gct ttt tat cta ata ttt ctc aac atg cct gga Leu Val His Phe Ile Ala Phe Tyr Leu Ile Phe Leu Asn Met Pro Gly	98 146 194 242
Met Leu Leu Ser Ile Thr Thr Ala Tyr Thr Gly Leu -25 gaa tta act ttc ttc tct ggt gta tat gga acc tgt att ggt gct aca Glu Leu Thr Phe Phe Ser Gly Val Tyr Gly Thr Cys Ile Gly Ala Thr -10 aat aaa ttt gga gca gaa gag ara agc ctt att gga ctt tct ggc att Asn Lys Phe Gly Ala Glu Glu Xaa Ser Leu Ile Gly Leu Ser Gly Ile 5 10 15 ttc atc ggc att gga gaa att tta ggt gga agc ctc ttc ggc ctg Phe Ile Gly Ile Gly Glu Ile Leu Gly Gly Ser Leu Phe Gly Leu Leu 20 25 30 agc aag aac aat cgt ttt ggt aga aat cca gtt gtg ctg ttg ggc atc Ser Lys Asn Asn Arg Phe Gly Arg Asn Pro Val Val Leu Leu Gly Ile 35 40 45 50 ctg gtg cac ttc ata gct ttt tat cta ata ttt ctc aac atg cct gga Leu Val His Phe Ile Ala Phe Tyr Leu Ile Phe Leu Asn Met Pro Gly 55	98 146 194 242 290
Met Leu Leu Ser Ile Thr Thr Ala Tyr Thr Gly Leu -25 -20 -15 gaa tta act ttc ttc tct ggt gta tat gga acc tgt att ggt gct aca Glu Leu Thr Phe Phe Ser Gly Val Tyr Gly Thr Cys Ile Gly Ala Thr -10 -5 aat aaa ttt gga gca gaa gag ara agc ctt att gga ctt tct ggc att Asn Lys Phe Gly Ala Glu Glu Xaa Ser Leu Ile Gly Leu Ser Gly Ile 5 10 ttc atc ggc att gga gaa att tta ggt gga agc ctc ttc ggc ctg Phe Ile Gly Ile Gly Glu Ile Leu Gly Gly Ser Leu Phe Gly Leu Leu 20 25 30 agc aag aac aat cgt ttt ggt aga aat cca gtt gtg ctg ttg ggc atc Ser Lys Asn Asn Arg Phe Gly Arg Asn Pro Val Val Leu Leu Gly Ile 35 40 45 50 ctg gtg cac ttc ata gct ttt tat cta ata ttt ctc aac atg cct gga Leu Val His Phe Ile Ala Phe Tyr Leu Ile Phe Leu Asn Met Pro Gly 55 60 65 gat gcc ccg att gct cct gtt aaa gga act gac agc agt gct tac atc	98 146 194 242
Met Leu Leu Ser Ile Thr Thr Ala Tyr Thr Gly Leu -25 -20 -15 gaa tta act ttc ttc tct ggt gta tat gga acc tgt att ggt gct aca Glu Leu Thr Phe Phe Ser Gly Val Tyr Gly Thr Cys Ile Gly Ala Thr -10 -5 aat aaa ttt gga gca gaa gag ara agc ctt att gga ctt tct ggc att Asn Lys Phe Gly Ala Glu Glu Xaa Ser Leu Ile Gly Leu Ser Gly Ile 5 ttc atc ggc att gga gaa att tta ggt gga agc ctc ttc ggc ctg Phe Ile Gly Ile Gly Glu Ile Leu Gly Gly Ser Leu Phe Gly Leu Leu 20 25 agc aag aac aat cgt ttt ggt aga aat cca gtt gtg ctg ttg ggc atc Ser Lys Asn Asn Arg Phe Gly Arg Asn Pro Val Val Leu Leu Gly Ile 35 ctg gtg cac ttc ata gct ttt tat cta ata ttt ctc aac atg cct gga Leu Val His Phe Ile Ala Phe Tyr Leu Ile Phe Leu Asn Met Pro Gly 55 Gat gcc ccg att gct cct gtt aaa gga act gac agc agt gct tac atc Asp Ala Pro Ile Ala Pro Val Lys Gly Thr Asp Ser Ser Ala Tyr Ile 70 75 80	98 146 194 242 290
Met Leu Leu Ser Ile Thr Thr Ala Tyr Thr Gly Leu -25 -20 -15 gaa tta act ttc ttc tct ggt gta tat gga acc tgt att ggt gct aca Glu Leu Thr Phe Phe Ser Gly Val Tyr Gly Thr Cys Ile Gly Ala Thr -10 -5 aat aaa ttt gga gca gaa gag ara agc ctt att gga ctt tct ggc att Asn Lys Phe Gly Ala Glu Glu Xaa Ser Leu Ile Gly Leu Ser Gly Ile 5 10 15 ttc atc ggc att gga gaa att tta ggt gga agc ctc ttc ggc ctg Phe Ile Gly Ile Gly Glu Ile Leu Gly Gly Ser Leu Phe Gly Leu Leu 20 25 30 agc aag aac aat cgt ttt ggt aga aat cca gtt gtg ctg ttg ggc atc Ser Lys Asn Asn Arg Phe Gly Arg Asn Pro Val Val Leu Leu Gly Ile 35 40 45 50 ctg gtg cac ttc ata gct ttt tat cta ata ttt ctc aac atg cct gga Leu Val His Phe Ile Ala Phe Tyr Leu Ile Phe Leu Asn Met Pro Gly 55 60 65 gat gcc ccg att gct cct gtt aaa gga act gac agc agt gct tac atc Asp Ala Pro Ile Ala Pro Val Lys Gly Thr Asp Ser Ser Ala Tyr Ile	98 146 194 242 290

85 90 95	
gga aac agc tgc ttt aat acc cas ctg ctt akt atc tkg ggc ttt ctg	434
Gly Asn Ser Cys Phe Asn Thr Xaa Leu Leu Xaa Ile Xaa Gly Phe Leu	
100 105 110	400
tat tot gaa rac ago goo coa koa ttt goo ato tto aat ttt gtt cag	482
Tyr Ser Glu Xaa Ser Ala Pro Xaa Phe Ala Ile Phe Asn Phe Val Gln	
115 120 125 130	E20
tet att tge gea gee gtg gea ttt tte tae age aac tae ett ete ett	530
Ser Ile Cys Ala Ala Val Ala Phe Phe Tyr Ser Asn Tyr Leu Leu Leu 135	
133	578
cac tgg caa ctc ctg gtc atg gtk atw ttt ggg ttt ttk gga aca att His Trp Gln Leu Leu Val Met Val Ile Phe Gly Phe Xaa Gly Thr Ile	3,0
150 155 160	
tot tto tto act gtg gaa tgg gaa sot goo goo ttt gta soo cgc ggo	626
Ser Phe Phe Thr Val Glu Trp Glu Xaa Ala Ala Phe Val Xaa Arg Gly	-
165 170 175	
tot gac tac cga agt atc tgatctggtg tccgtgaggg gacacgtatg	674
Ser Asp Tyr Arg Ser Ile	
180	
acctcagaaa cacagctgga cacagagctt ggtggaagaa gtcgcctttg atcttcacta	734
tatattgggt gatgttcagt atggaaaatc aagggattaa gactgttaaa tcagccagag	794
tkggtgttca agtttacaga tatgagttat ttaaagcaag tagaataagg gaaagctgtt	854
ctgtcaactg taattgttca aagatgttgt ttttcatttc atctatctca attcttataa	914
tcatgttata gaatgtaaat gttttcttct ctctcctgct cttgttggaa gatcctgcct	974
tgatttagaa tactaggcca tatgtcatat aaatatttt tctggaaaaa aaaaaaa	1031
tgatttagaa tattaggeta tatgetaaa aastatta teegaanaa	
<pre><210> 268 <211> 1283 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 91.459 <221> sig_peptide <222> 91.330 <223> Von Heijne matrix</pre>	
<400> 268	
tattccttgg agttccacga ctgaattaag actgttgtgg grdccataat tttcaaatac	60
ttgccctata ttcgtgttga gggttcacac atg agc aca tgg tat ttg gca ctt	114
Met Ser Thr Trp Tyr Leu Ala Leu -80 -75	
aat aag too tat aag aat aaa gac agc gtt agg att tat otc agc ttg	162
Asn Lys Ser Tyr Lys Asn Lys Asp Ser Val Arg Ile Tyr Leu Ser Leu -70 -65 -60	
tgc aca gtg agc att aaa ttt aca tac ttt cat gat ata cag act aat	210
Cys Thr Val Ser Ile Lys Phe Thr Tyr Phe His Asp Ile Gln Thr Asn	
-55 -50 -45	
tgt ctt aca aca tgg aaa cat tcg aga tgc aga ttt tat tgg gca ttt	258
Cys Leu Thr Thr Trp Lys His Ser Arg Cys Arg Phe Tyr Trp Ala Phe	
-40 -35 -30 -25	
ggt ggt tcc att tta cag cac tca gtg gat ccc ctt gtt ttg ttc cta	306

ggt ggt tcc att tta cag cac tca gtg gat ccc ctt gtt ttg ttc cta Gly Gly Ser Ile Leu Gln His Ser Val Asp Pro Leu Val Leu Phe Leu

306

				-20					-15					-10				
agc	ctg	gcc	ctg	tta	qtq	aca	CCC	act	tcc	acc	cct	tct	gct	aar	ata	L	354	
_	_	_	_										_	Lys				
			-5					1				5						
car	age	ctt	_	att	gac	ctc	cct	gga	aac	taa	agg	cta	acc	act	σac	•	402	
														Thr				
	10					15		1	1		20							
agg		ttt	acc	ctc	tcc		ata	CCC	ato	gac		ccc	ctc	atc	ctt		450	
														Ile			150	
25		- 110	****	200	30	110	· · · ·	110		35	nau	110	ыси		40	•		
	cag	tta	taas	aar:			-atte	-c +t	- 0020		2 202	test	-ac+		10		499	
	Gln	_	caac	1990	19a 1	Lacci	gee		-9945	9000	acc	iccai	gee				400	
				12721		at act	-tas		ctac	rata	tacs	+~~	~~~	ccwga		20	559	
-	_		_			_	_		_			_		taat		_	619	
	_			_		_							-	aatti			679	
	_		_	_	-				_	_				tgcti	_		739	
			_	_			-	_		_		_		taac			799	
_	_		_				_		_	_		_	_	ccati		_	859	
														gggag			919	
																	979	
		_							_				_	ttaat		-	1039	
_					_		_		-		_		_	ggagg		_	1039	
			_				-					_		gaaad		_	1159	
								_		-		_	_	gtaco	_		1219	
														gcast				
		ge c	accg	gcaet	.C ta	ageet	-9991	. gac	agag	gcga	gact	ccat	בב	caaaa	aaaa	aa	1279	
aamo	;																1283	
<210	> 26	9																
<211	.> 17	77																
<212	> DN	Ά																
<213	> Ho	mo s	sapie	ns														

<400> 269

agcccggttt cgtgcccgcg gccgactgcg casctgtccg cgagtctgag atacttacag 60 agagctaca atg gaa aag tcc tgg atg ctg tgg aac ttt gtt gaa aga tgg 111 Met Glu Lys Ser Trp Met Leu Trp Asn Phe Val Glu Arg Trp -25 -20 cta ata gcc ttg gct tca tgg tct tgg gct ctc tgc cgt att tct ctt 159 Leu Ile Ala Leu Ala Ser Trp Ser Trp Ala Leu Cys Arg Ile Ser Leu -10 - 5 tta cct tta ata gtg act ttt cat ctg tat gga ggc att atc tta ctt 207 Leu Pro Leu Ile Val Thr Phe His Leu Tyr Gly Gly Ile Ile Leu Leu 15 10 ttg tta ata ttc ata tca atw kca ggt att ctg tat aaa ttc cas gat 255

```
Leu Leu Ile Phe Ile Ser Ile Xaa Gly Ile Leu Tyr Lys Phe Xaa Asp
              25 30
                                                                    303
gta ttg ctt tat ttt ccw kaa cag yya tcc tct tca cgt ctt tat gat
Val Leu Leu Tyr Phe Pro Xaa Gln Xaa Ser Ser Ser Arg Leu Tyr Asp
                              45
tcc cat gcc cac tgg cmt tcg rca taaaaaaaatt ttcatcagaa ccaaagatgg
                                                                    357
Ser His Ala His Trp Xaa Ser Xaa
                                                                    417
aatacgtctg aatcttattt tgatacgata cactggagac aattcaccct attccccaac
                                                                    477
tataatttat tttcatggga atgcaggcaa cataggtcac aggttggcca aatgcattac
                                                                    537
ttatgttggt taacctcaaa gttaaccttt tgctggttga ttatcgagga tatggaaaaa
gtgaaggaga agcaagtgaa gaaggactct acttagattc tgaagctgtg ttagactacg
tgatgactag acctgacctt gataaaacaa aaatttttct ttttggccgt tccttgggtg
                                                                    657
garcagtggc tattcatttg gcttctgaaa attcacatag gatttcagcc attatggtgg
                                                                    717
agaacacatt tttaagcata ccacatatgg ccagcacttt attttcattc tttccgatgc
gttaccttcc tttatggtgc tacaaaaata aatttttgtc ctacagaaaa atctctcagt
                                                                    837
                                                                    897
qtaqaatgcc ttcacttttc atctctggac tctcagatca attaattcca ccagtaatga
                                                                    957
tqaaacaact ttatgaacte tecceatete ggactaagan attageeatt tttecagatg
ggactcacaa tgacacatgg cagtgccaag gctatttcac tgcacttgaa cagttcatca
                                                                   1017
                                                                   1077
aagaagtcgt aaagagccat totootgaag aaatggcaaa aacttcatot aatgtaacaa
ttatataatg tttccctttt tgattattgc attgtatttt aatttgtgca gaatgataaa
                                                                   1137
gaatgttcct tttagaagtg tgttatgtct gtacctgtct gaagagtgac attaaacttt
                                                                   1197
gaaaggactt cactgctcct ttacgatatt ccaaatagtt ttttacattg gaaaaactaa
                                                                   1257
ttcttgggat tctttcatac attttcatca aaactttcag tgtgattatg tattcatatc
                                                                   1317
ttcagtttaa tatgtcagta taatagatat tgttcaaaag tttcttgttg ctaaagtggt
                                                                   1377
gtaatctgtt acacagatga atagctagat gtggaaagag atatgtaaac aagaaacctt
                                                                   1437
                                                                   1497
tgggtattgt ttcttaagta aatattggga caatcatggt aagcaaactt agttctgtaa
ctgcattttt caccttaaaa gttaaatgaa atgcatgatg gtattttatt ccttgaatta
                                                                   1557
tgcaatgcaa cattttacat gtaaatagca ctggtcatat actgatgtat atggttatct
                                                                   1617
gggttatatc tatttttatg taaactctat ttttgttttt ggcaagaagt gaaattgaga
                                                                   1677
cttatgtgca ggttgccatt gaattttgct ctggtgaatg ctgagatcca gctttttctt
                                                                   1737
                                                                   1777
acaaataaat gggaccctgt tttccaaaaa aaaaaaamcm
<210> 270
<211> 970
<212> DNA
```

	-15	-10		-5	
aca gga ccc			tec acc ago	g ggc gag gag	tcq 146
				y Gly Glu Glu	_
1	1	5	10		
ctt aag tgc	gag gac ctc	aaa gtg gga	caa tat att	t tgt aaa gat	cca 194
	_	Lys Val Gly	Gln Tyr Ile	e Cys Lys Asp	
15	20		25		30
				t aca aac tac	
Lys lie Asn	Asp Ala Thr	Gin Giu Pro	_	s Thr Asn Tyr	Tnr
act cat att		CC3 CC3 CCC	40	45 t tgt aag gat	tcc 290
				r Cys Lys Asp	
	50	55		60	501
agt ggc aat	gaa aca cat	ttt act ggg	aac gaa gtt	ggt ttt ttc	aag 338
Ser Gly Asn	Glu Thr His	Phe Thr Gly	Asn Glu Val	l Gly Phe Phe	Lys
65		70		75	
				aat gag cag	
Pro lle Ser 80	Cys Arg Asn		-	Asn Glu Gln	Ser
	ttt tct tcc	85	90	g att tta cct	tgg 434
				Ile Leu Pro	
95	100		105		110
ata ccc tgc	ttt ggg ttt	gtt aaa btt		agg gtt tkg	
Ile Pro Cys	Phe Gly Phe	Val Lys Xaa	Xaa His Cys	Arg Val Xaa	Trp
	115		120	125	
		ttcaty cttat	ttcaa tgcag	gattgt tggacct	tca 537
Asn Trp Glu	Pro Asn 130				
		rattactat cos	access tto	annant anati	attact 597
				icaagact gagta :ttaaaag aaaca	
				aaagatt tctct	
				tttgttt tgttg	
				agctgta taata	
				actettt aatet	
		atttttgtt tct	gaaaaat aaa	agtataa cttat	
aaaaaaaaa m	ms				970

<210> 271

<211> 645

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 90..383

<221> sig_peptide

<222> 90..200

<223> Von Heijne matrix score 4.90000009536743 seq MLIMLGIFFNVHS/AV

<221> polyA_signal

<222> 609..614

<221> polyA_site

<222> 632..643

<400> 271

attetetgece coetgegagg geatectggg etttetecea eegettteeg agecegettg 60

WO 99/31236 -193- PCT/IB98/02122

cacctcggcg atccccgact cccttcttt atg gcg tcg ctc ctg tgc tgt ggg Met Ala Ser Leu Leu Cys Cys Gly -35 -30	113
ccg aag ctg gcc gcc tgc ggc atc gtc ctc agc gcc tgg gga gtg atc Pro Lys Leu Ala Ala Cys Gly Ile Val Leu Ser Ala Trp Gly Val Ile -25 -20 -15	161
atg ttg ata atg ctc gga ata ttt ttc aat gtc cat tcc gct gtg ttg Met Leu Ile Met Leu Gly Ile Phe Phe Asn Val His Ser Ala Val Leu -10 -5 1	209
att gag gac gtt ccc ttc acg gag aaa gat ttt gag aac ggc ccc car Ile Glu Asp Val Pro Phe Thr Glu Lys Asp Phe Glu Asn Gly Pro Gln 5 10 15	257
aac ata tac aac ctt tac rag caa ktc agc tac aac tgt ttc atc gct Asn Ile Tyr Asn Leu Tyr Xaa Gln Xaa Ser Tyr Asn Cys Phe Ile Ala 20 25 30 35	305
gca ggc ctt tac ctc ctc ctc gga ggc ttc tct ttc tgc caa ktt cgg Ala Gly Leu Tyr Leu Leu Gly Gly Phe Ser Phe Cys Gln Xaa Arg 40 45 50	353
ctc aat aag cgc aag gaa tac atg gtg cgc tagggccccg gcgcgtttcc Leu Asn Lys Arg Lys Glu Tyr Met Val Arg 55 60	403
ccgctccagc ccctcctcta tttaaaract ccctgcaccg tktcacccag gtcgcgtccc acccttgccg gcgccctctg tgggactggg tttcccgggc rararactga atcccttctc ccatctctgg catccggcc ccgtggarar ggctgaggct ggggggctgt tccgtctcc cacccttcgc tgtgtcccgt atctcaataa agagaatctg ctctcttcaa aaaaaaaaaa	463 523 583 643 645
<210> 272 <211> 773 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 332541	
<pre><221> sig_peptide <222> 332376 <223> Von Heijne matrix</pre>	
<221> polyA_signal <222> 739744	
<221> polyA_site <222> 761773	
<pre><400> 272 aaaacaattc atgcctttca tagtttatta ttattaaagt ctaaacaaaa ttgcaatttc ttaggtaacc ttatatttac aataaatgaa gattaccctc aaatgctaga agctgtctag gtccgtccgg tgtgtcagat tttcctcaga ttagatgtgc caataaccaa gtttattcag taaacaactt gtacttgttt catctggttt tattactctc acccataaac agtaatgact ctctgaccct ctggaaatat gtaatgcttc caatcttgct ttgtgtatct catttaattt gttataaggt agtactgatt ttagcatatt a atg cga ttt ctt cct tgt tgt Met Arg Phe Leu Pro Cys Cys -15 -10</pre>	60 120 180 240 300 352
ttg ctt tgg tct gtg ttc aat cca gag agc tta aat tgt cat tat ttt Leu Leu Trp Ser Val Phe Asn Pro Glu Ser Leu Asn Cys His Tyr Phe -5 1 5	400

WO 99/31236 -194 - PCT/IB98/02122 -

ghk ndd gaa amc tgt att ttt gyt agt tta caa tat tat gaa att tca Xaa Xaa Glu Xaa Cys Ile Phe Xaa Ser Leu Gln Tyr Tyr Glu Ile Ser	448
ctt cag gag aaa ctg ctg ggc ttc ctg tgg ctt tgt ttt ctt agt tac Leu Gln Glu Lys Leu Leu Gly Phe Leu Trp Leu Cys Phe Leu Ser Tyr 25 30 35 40	496
ttt ttc cgt gcc gtg tat ttt tta att gat ttt tct tct ttt act Phe Phe Arg Ala Val Tyr Phe Leu Ile Asp Phe Ser Ser Phe Thr 45 50 55	541
tgaaaagaaa gtgttttatt ttcaaatctg gtccatattt acattctagt tcagagcc gccttaaact gtacagaatt tccactgtaa ttaaaactat ttagtgttag ttataaat ccttcaaaaa gagagattct ccattacacg atcacctgca tcacagccca tggtgaat	ag 661 gt 721
atgtttctgc atagcgaaat aaaaatggca aatgcactga aaaaaaaaaa	773
<210> 273 <211> 566 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 43222	
<221> sig_peptide <222> 43177 <223> Von Heijne matrix score 4 seq ENFLSLLSKSCSA/DP	
<221> polyA_signal	
<221> polyA_site <222> 555566	
<pre><400> 273 aacgagtgga ggtgtggcta gtggctgtga tgagataaat cc atg cat agc ctt</pre>	54
ttc att gcg agc ttg aaa gtt ctt ttc tat tac agt ttt agc ttt agg Phe Ile Ala Ser Leu Lys Val Leu Phe Tyr Tyr Ser Phe Ser Phe Arg -40 -35 -30	102
ttt aat tgg ttc gac tgc ctt ctc cac aat ttg ggc gag aat ttc ctt Phe Asn Trp Phe Asp Cys Leu Leu His Asn Leu Gly Glu Asn Phe Leu -25 -20 -15 -10	
agc ctt ctc agc aaa agt tgt tct gcg gac ccg tct ggg tca act ttc Ser Leu Leu Ser Lys Ser Cys Ser Ala Asp Pro Ser Gly Ser Thr Phe -5 1 5	198
atg agg gac att gag aca aac aaa tgaaatatgg gttaaagtac tctgagcag Met Arg Asp Ile Glu Thr Asn Lys 10 15	c 252
tacaaaaaga araccagtct atcctgctgg agacagtggc cacgtgaara aagagctc gcagtatgaa agaccacatg gaaagagagg ccacatggaa ccaacagtca gcatcttg ttcggacacg tgaaraaatt catctcarac tgtgtatcct aaatcaggca cttgctga ctaactacat gagtgagacc agttgacaac acatggagca racatgagct gttctcag artcctacac aaattcctga ctcacaacac tgtgagcaat aaaatggttg ttatttta ccaaaaaaaa aaaa	gt 372 at 432 tg 492

WO 99/31236 -195- PCT/IB98/02122 -

```
<210> 274
<211> 455
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 115..231
<221> sig_peptide
<222> 115..180
<223> Von Heijne matrix
     score 5
     seq HLFVTWSSQRALS/HP
<221> polyA_signal
<222> 419..424
<221> polyA_site
<222> 445..455
<400> 274
                                                                      60
aacctgccag tkatgcaaat gccaaaatgt gggtcatcat atagtatatt tgaaaccttt
                                                                     117
ctgaacatgt acaccaccca atgctagagg ctgacttgga aaccggtggg tgca atg
ccc gag gct gtg gaa caa tca gcc cat ctc ttt gtg acc tgg agc agt
                                                                     165
Pro Glu Ala Val Glu Gln Ser Ala His Leu Phe Val Thr Trp Ser Ser
   -20
                       -15
                                            -10
                                                                      213
cag agg gcc ctc agt cac ccc gcc cca ttc ctc acc ara raa aar aat
Gln Arg Ala Leu Ser His Pro Ala Pro Phe Leu Thr Xaa Xaa Lys Asn
                   1
                                                                      261
cca ttt cta tgg aag ctc tgacgtaact tcagtgtttt ctacaatact
Pro Phe Leu Trp Lys Leu
           15
cctcctgccc cgccccatta aaacagttct tttgttaaaa aatavcctaa tggtccaact
                                                                      321
ttgctgtctg ttcttccaaa tgtttataat acacattatt tataaatatg tctgtttggg
                                                                     381
aagctaagaa caagctagtt tttacaacac aaatggaaat aaatgcaatt attataaaaa
                                                                      441
                                                                      455
tycaaaaaaa aaaa
<210> 275
<211> 673
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 232..384
<221> sig peptide
<222> 232..300
<223> Von Heijne matrix
      score 3.70000004768372
      seq FFLCAAFPLGAGV/KM
<221> polyA_signal
<222> 650..655
```

<221> polyA_site <222> 662..673

WO 99/31236 -196- PCT/IB98/02122

<400> 275		
atttggettg cagactgeet tetateccag aacagetgag	aaatctatga agctgagatt	60
tgaaggacc cagettaggt tettecaett aggeetcaat	tecetteett ttecagggge	120
ageettagtt teccatggee etgaaacaca cacatttece	ccttcctttc ccagaagcca	180
etggcccccc atagcaccca gtgcatcctt tttacaagtg	gaagaactag g atg gct Met Ala	237
tto caa agt ott ota gaa atg aag tto ttt oto	tgt gca gct ttc ccc	285
Phe Gln Ser Leu Leu Glu Met Lys Phe Phe Leu -20 -15	Cys Ala Ala Phe Pro	
ctt gga gca gga gtg aag atg ttt cat tat ctt	ggg cct ggg aaa cca	333
Leu Gly Ala Gly Val Lys Met Phe His Tyr Leu	Gly Pro Gly Lys Pro	
-5 1 5	10	
ett cyy cag get tet eee tee eee cae eee cat	agg amc agg att tgg	381
Leu Xaa Gln Ala Ser Pro Ser Pro His Pro His	Arg Xaa Arg Ile Trp	
15 20	25	424
cct tagettetgg geetatesge tgeetteect ettytt	ccta ccacctcttc	434
Pro tgccttcctt trawctctgt tgggcttggg gatcttagtt	ttcttttgtt tatttcccat	494
ctcatttttt tottotggto agtttttta agggggggt		554
tttgcttctg aaaaarcatt tgcctttctt cctctcccaa	cataacaatc gtggtaacag	614
aatgegaetg etgatttace gatgtattta atgtaagtaa	aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa	673
satgegacty etgatetace gatgeateta atgeaageaa	adaaayyaaa adaaraaaa	0,5
<210> 276		
<211> 639		
<212> DNA		
<213> Homo sapiens		
<220>	•	
<221> CDS		
<222> 143427		
<221> sig_peptide		
<222> 143286		
<223> Von Heijne matrix		
score 7.5		
seq FVILLLFIFTVVS/LV		
<221> polyA signal		
<222> 606611		
<221> polyA site		
<222> 628639		
400 076		
<400> 276	tatanttana ntanactata	60
aatcgcttca gcagcatcct ctcagacaag agccactatt	tergaticay accacetyce	120
atcgaagttt aaagaagggg aaacaggaga cagaaataca	ctgaaccaaa aagattcaaa	172
agagcaagtg gaatctctaa ga atg gct tcc agc ca	e tgg aat gaa acc act	1/2
	s Trp Asn Glu Thr Thr -40	
-45		220
acc tot gtt tat cag tac oft ggt ttt caa gtt	caa aaa att tac cct	220
Thr Ser Val Tyr Gln Tyr Leu Gly Phe Gln Val		
-35 -30	-25	200
ttc cat gac aac tgg aac act gcc tgc ttt gtc	atc ctg ctt tta ttt	268
Phe His Asp Asn Trp Asn Thr Ala Cys Phe Val	Ile Leu Leu Leu Phe	
-20 -15		316
ata ttt aca gtg gta tct tta gtg gtg ctg gct Ile Phe Thr Val Val Ser Leu Val Val Leu Ala	Dhe Len Tur Glu Val	J 1 C
	10	
-5 1 5 ctt gam wgc tgc tgc tgt gta aaa aac aaa acc		364
Leu Xaa Xaa Cys Cys Cys Val Lys Asn Lys Thr	· Val Lvs Asp Leu Lvs	30
nen van van che che che sar nie ven nie illi	210 210	

15 20	25
agt gaa ccc aac cct ctt ara akt atg atg gac	aac atc aga aaa cgt 412
Ser Glu Pro Asn Pro Leu Xaa Xaa Met Met Asp	Asn Ile Arg Lys Arg
30 35	40 casastoto tosasocado 467
gaa act gaa gtg gtc taacactcta taraaaatga a Glu Thr Glu Val Val	caaaacccc tyaaaycayc 10.
45	
tcaacctctt ctgaraaaaa aaatatattc tgaggccaac	tgttgctaca aaacaaattc 527
tgactgaatg gttaaaacat ttctagtara aggggaaaaa	aaakttaaac atgcactgtt 587
tgtgtgtata sccatttcat taaatataca gtaaaactyc	addadadada da 055
<210> 277	
<211> 772	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 284463	
<221> sig_peptide	
<222> 819_peptide <222> 284379	
<223> Von Heijne matrix	
score 3.79999995231628	
seq TFINITLWLGSLC/QR	
<221> polyA site	
<222> 762772	
<400> 277	gcaatagaag ttctcatcgc 60
acagctgggg ctttgtcttc tttattgcta ggagaatgta cctgtattgc acttttggtt ttaaggactg gacccagagt	geaacagaag cecessory
aagotgotca gtaagttoca agoacatago oggotkhggg	cccgaaage caasass
gttgaatgaa ggtagacgca gcaggcagtt tgtccttacc	agtgacctgg aagacggtgg 240
cactteetga gtgageteae ttacetteee tgaatggtga	ggc atg gat gaa tat 295
	Met Asp Glu Tyr
	-30 ggt caa atg ttt act 343
tcc tgg tgg tgc cac gtg tta gag gtg gta aag Ser Trp Trp Cys His Val Leu Glu Val Val Lys	55c can ac 5 cc
-25 -20	-15
ttt att aat att aca tta tgg ctt ggt tct ctg	tgt cag cga ttt ttc 391
Phe Ile Asn Ile Thr Leu Trp Leu Gly Ser Leu	Cys Gln Arg Phe Phe
-10 -5	1
tat gcc tcg ggt act tat ttc cta ata tat atc	agc aca gta acg cct 439
Tyr Ala Ser Gly Thr Tyr Phe Leu Ile Tyr Ile	Ser Thr Val Thr Pro
5 10 15 agc tgg agg ctt tgt ctt gtt agt tgataaatta	
Ser Trp Arg Leu Cys Leu Val Ser	geggeddodg gedgaeeegg
25	
ttacctccca aagtgctggg attrcagacg tgagccaccg	cgcctggccg aaacaattct 553
tttgaaagag agaagtetee etgtgttgeg caggetggte	tcagactect ggggtcaagt 613
gagectectg etttegeete etaaagtget gggattacag	gegtgageea cegeaceegg 673
acagatgtgt tgattttaaa gtgggtatga ggcctgagcc	ctggagtttg agaccagcct 733
ggacaacatg gcaagaccct gtctctccaa aaaaaaaaa	,,,

<210> 278 <211> 840 <212> DNA

WO 99/31236 -198- PCT/IB98/02122

<pre><220</pre>		
C221	<213> Homo sapiens	
C221	<220>	٠
\$\frac{222}\$ 162671 \$\frac{221}\$ sig_peptide \$\frac{222}\$ 167398 \$\frac{222}\$ 167398 \$\frac{222}\$ 167398 \$\frac{222}\$ 169810 \$\frac{222}\$ 805810 \$\frac{222}\$ 805810 \$\frac{222}\$ 805840 \$\frac{222}\$ 805840 \$\frac{240}\$ 278 \$\frac{240}\$ 278 \$\frac{2400}\$ 279 \$		
<pre></pre>		
2222> 1627.398 <2221> POINEIDER MATTIX SCOTE 4.09999990463257 seg OGVLFTCFTCARS/FP <2212> POINA_signal <2222> 805810 <2212> POINA_signal <2222> 805820 <400> 278 aaaaactgag gcctgggagc aggaacctgt aggcagcgct tgagggtagc gggatagcag atgttcccg ggaagactg ggggstctg ggcggaacaa aaatcacagg atgtcagaag atgttcccg ggaagaactg ggataaaggg gtcccagcac c atg gag gac ccg aac Met Glu Asp Pro Asm -75 cct gaa gag aac atg aag cag gat tca ccc aag gag ag agt ccc Pro Glu Glu Aan Met Lys Gln Gln Asp Ser Pro Lys Glu Arg Ser Pro -70 -65 -60 cag agc cca gga ggc aac atc tgc cac ctg ggg gcc ccg aag tgc acc Gln Ser Pro Gly Gly Asn Ile Cys His Leu Gly Ala Pro Lys Cys Thr -55 -50 -60 cgc tgc ctc atc acc ttc gca gat tcc aag ttc cag gag gct cac atg Arg Cys Leu Ile Thr Phe Ala Asp Ser Lys Phe Gln Glu Arg His Met -25 -20 -20 -25 -20 -25 -20 -25 -20 -25 -20 -25 -20 -25 -20 -20 -25 -20 -20 -25 -20 -25 -20 -20 -25 -20 -20 -25 -20 -20 -25 -20 -20 -25 -20 -20 -25 -20 -20 -25 -20 -20 -25 -20 -20 -25 -20 -20 -20 -25 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	(222) 1020/1	
2222> 1627.398 <2221> POINEIDER MATTIX SCOTE 4.09999990463257 seg OGVLFTCFTCARS/FP <2212> POINA_signal <2222> 805810 <2212> POINA_signal <2222> 805820 <400> 278 aaaaactgag gcctgggagc aggaacctgt aggcagcgct tgagggtagc gggatagcag atgttcccg ggaagactg ggggstctg ggcggaacaa aaatcacagg atgtcagaag atgttcccg ggaagaactg ggataaaggg gtcccagcac c atg gag gac ccg aac Met Glu Asp Pro Asm -75 cct gaa gag aac atg aag cag gat tca ccc aag gag ag agt ccc Pro Glu Glu Aan Met Lys Gln Gln Asp Ser Pro Lys Glu Arg Ser Pro -70 -65 -60 cag agc cca gga ggc aac atc tgc cac ctg ggg gcc ccg aag tgc acc Gln Ser Pro Gly Gly Asn Ile Cys His Leu Gly Ala Pro Lys Cys Thr -55 -50 -60 cgc tgc ctc atc acc ttc gca gat tcc aag ttc cag gag gct cac atg Arg Cys Leu Ile Thr Phe Ala Asp Ser Lys Phe Gln Glu Arg His Met -25 -20 -20 -25 -20 -25 -20 -25 -20 -25 -20 -25 -20 -25 -20 -20 -25 -20 -20 -25 -20 -25 -20 -20 -25 -20 -20 -25 -20 -20 -25 -20 -20 -25 -20 -20 -25 -20 -20 -25 -20 -20 -25 -20 -20 -25 -20 -20 -20 -25 -20 -20 -20 -20 -20 -20 -20 -20 -20 -20	<pre><221> sig mentide</pre>	
Score 4.09999990463257 Seq QGVLFICFTCARS/FP		
Seq QGVLFICFTCARS/FP		
<221> polyA_signal <221> polyA_site <222> 830840 <400> 278 aaaaactgag gcctgggagc gggggctctg ggcggaacaa aaatcacagg atgcagagcgctctgaggagc gggaggctctg ggcggaacaa aaatcacagg atgcagagggatgcagagagacggagaacgaacgaacgaa		
<pre><222> 805810 <pre><221> polyA_site <222> 830840 <pre><400> 278 aaaaactgag gcctgggagc aggaacctgt aggcagcgct tgagggtagc gggatagcag ctgcaacgcg cgtgggagc gggggctctg ggcggaacaa aaatcacagg atgtcagaggg atgtttcccg ggaagaactg ggataaaggg gtcccagcac c atg gag gac ccg acc</pre></pre></pre>	seq QGVLFICFTCARS/FP	
<pre><222> 805810 <pre><221> polyA_site <222> 830840 <pre><400> 278 aaaaactgag gcctgggagc aggaacctgt aggcagcgct tgagggtagc gggatagcag ctgcaacgcg cgtgggagc gggggctctg ggcggaacaa aaatcacagg atgtcagaggg atgtttcccg ggaagaactg ggataaaggg gtcccagcac c atg gag gac ccg acc</pre></pre></pre>		
<221> polyA_site <222> 830840 <400> 278 aaaaactgag gcctgggagc aggaacctgt aggcagcgct tgagggtagc ggggtatagcag ctgcaacgcg cgtgggaggg ggggggtcttg ggcggaaca aactcacag atgtcaagag 160 atgttteccg ggaagaactg ggataaaaggg gtccagcac c atg gag gac ccg aac met Glu Asp Pro Asn — 75 60 cct gaa gag aac atg aag cag cag gat tca ccc aag gag aga agt ccc Pro Glu Glu Asn Met Lys Gln Gln Asp Ser Pro Lys Glu Arg Ser Pro — 70 -65 -60 cag agc cca gga ggc aac atc tgc cac ctg ggg gcc ccg aag tgc acc Gln Ser Pro Gly Gly Asn Ile Cys His Leu Gly Ala Pro Lys Cys Thr — 55 -50 -45 cgt tgc ctc atc acc ttc gca gat tcc aag ttc cag gag cgt cac atg Arg Cys Leu Ile Thr Phe Ala Asp Ser Lys Phe Gln Glu Arg His Met — 40 -35 -30 aag cgg gag cac cca gcg gac ttc tgtg gcc cag aag tgc ag ggg gtc Lys Arg Glu His Pro Ala Asp Phe Val Ala Gln Lys Leu Gln Gly Val — 25 -20 -15 ctc ttc atc tgc ttc acc tgc gcc tcc tct ccc tcc tcc tcc tcc aaa gcc Leu Phe Ile Cys Phe Thr Cys Ala Arg Ser Phe Pro Ser Ser Lys Ala — 10 1 5 ckr rkc acc cac car cgc agc cac ggt cac ggt cac rcc gcc agc cac gt cac ggt cac acc gdt cac ggt cac acc acc ttc cac tcc tcc tcc tcc tc	<221> polyA_signal	
<222> 830840 <400> 278 aaaaactgag gcctgggagc aggaacctgt aggcagcgct tgaggggtagc ggggtagcag ctgcaacgcg cgtgggagc gggggctctg ggcggaacaa aaatcacagg atgtcagagg 120 atgtttcccg ggaagaactg ggataaaggg gtcccagcac c atg gag gac ccg aac Met Glu Asp Pro Asn -75 60 cct gaa gag aac atg aag cag cag gat tca ccc aag gag aga agt ccc Pro Glu Glu Asn Met Lys Gln Gln Asp Ser Pro Lys Glu Arg Ser Pro -70 -65 -60 cag agc cca gga ggc aac atc tgc cac ctg ggg gcc ccg aag tgc acc Gln Ser Pro Gly Gly Asn Ile Cys His Leu Gly Ala Pro Lys Cys Thr -55 -50 -45 cgc tgc ctc atc acc ttc gca gat tcc aag ttc cag gag cgt cac atg Arg Cys Leu Ile Thr Phe Ala Asp Ser Lys Phe Gln Glu Arg His Met -40 -35 -30 aag cgg gag cac cca gcg gac ttc gtg gcc cag aag ctg cac atg Arg Cys Leu Ile Thr Phe Ala Asp Phe Val Ala Gln Lys Leu Gln Gly Val -25 -20 -15 ctc ttc atc tgc ttc acc tgc gcc cgc tcc ttc ccc tcc tcc aaa gcc Leu Phe Ile Cys Phe Thr Cys Ala Arg Ser Phe Pro Ser Ser Lys Ala -10 5 1 chu Phe Ile Cys Phe Thr Cys Ala Arg Ser Phe Pro Ser Ser Lys Ala -10 -5 1 5 ckr rkc acc cac cac cac cac agc cac ggt cca rcc gca agc cac ctg txaa Ala Lys Pro Th Leu -10 15 20 ccg gtt gca acc act act act gcc car ccc acc ttc ctt gcc tgc agc cgc ttg ttc ctg acc ttg ctg ctg ctg ttg ttc ctg acc gg cac ccc ctg cac atg arg ctg cac acc ctg gc acc ccc ctg gc acc ctc ggc acc ccc ctg gc acc ctc gcc acc acc acc acc acc acc acc acc ac	<222> 805810	
<222> 830840 <400> 278 aaaaactgag gcctgggagc aggaacctgt aggcagcgct tgaggggtagc ggggtagcag ctgcaacgcg cgtgggagc gggggctctg ggcggaacaa aaatcacagg atgtcagagg 120 atgtttcccg ggaagaactg ggataaaggg gtcccagcac c atg gag gac ccg aac Met Glu Asp Pro Asn -75 60 cct gaa gag aac atg aag cag cag gat tca ccc aag gag aga agt ccc Pro Glu Glu Asn Met Lys Gln Gln Asp Ser Pro Lys Glu Arg Ser Pro -70 -65 -60 cag agc cca gga ggc aac atc tgc cac ctg ggg gcc ccg aag tgc acc Gln Ser Pro Gly Gly Asn Ile Cys His Leu Gly Ala Pro Lys Cys Thr -55 -50 -45 cgc tgc ctc atc acc ttc gca gat tcc aag ttc cag gag cgt cac atg Arg Cys Leu Ile Thr Phe Ala Asp Ser Lys Phe Gln Glu Arg His Met -40 -35 -30 aag cgg gag cac cca gcg gac ttc gtg gcc cag aag ctg cac atg Arg Cys Leu Ile Thr Phe Ala Asp Phe Val Ala Gln Lys Leu Gln Gly Val -25 -20 -15 ctc ttc atc tgc ttc acc tgc gcc cgc tcc ttc ccc tcc tcc aaa gcc Leu Phe Ile Cys Phe Thr Cys Ala Arg Ser Phe Pro Ser Ser Lys Ala -10 5 1 chu Phe Ile Cys Phe Thr Cys Ala Arg Ser Phe Pro Ser Ser Lys Ala -10 -5 1 5 ckr rkc acc cac cac cac cac agc cac ggt cca rcc gca agc cac ctg txaa Ala Lys Pro Th Leu -10 15 20 ccg gtt gca acc act act act gcc car ccc acc ttc ctt gcc tgc agc cgc ttg ttc ctg acc ttg ctg ctg ctg ttg ttc ctg acc gg cac ccc ctg cac atg arg ctg cac acc ctg gc acc ccc ctg gc acc ctc ggc acc ccc ctg gc acc ctc gcc acc acc acc acc acc acc acc acc ac		
<pre>4400> 278 aaaaactgag gcctgggagc aggaacctgt aggcagcgct tgaggggtagc ggggtagcag ctgcaacgcg cgtgggagc gggggctcttg ggcggaacaa aaatcacagg atgtcagagg atgtttcccg ggaagaactg ggataaaggg gtcccagcac c atg gag gac ccg aac Met Glu Asp Pro Asn</pre>	<221> polyA_site	
aaaaactgag gcctgggagc aggaacctgt aggcagcgct tgagggtagc gggstagcag ctgcaacgg ctgcgagagc aggaactgt aggcggaacaa aaatcacagg atgtcagagg atgttcagagg atgtttcccg ggaagaactg gggtagaacg ggcggaacaa aaatcacagg atgtcagagg atgttttcccg ggaagaactg ggataaaggg gtcccagcac c atg gag gac ccg aac Met Glu Asp Pro Asn — 75 cct gaa gag aac atg aag cag gat tca ccc aag gag aga agt ccc Pro Glu Glu Asn Met Lys Gln Gln Asp Ser Pro Lys Glu Arg Ser Pro — 65 cag agc cca gga ggc aca atc tgc cac ctg ggg gcc ccg aag tgc acc Gln Ser Pro Gly Gly Asn Ile Cys His Leu Gly Ala Pro Lys Cys Thr — 55 cgc tgc ctc atc acc ttc gca gat tcc aag ttc cag gag cgt cac atg 320 Arg Cys Leu Ile Thr Phe Ala Asp Ser Lys Phe Gln Glu Arg His Met — 40 agg ggg gac cc cag gcg gac ttc gtg gcc cag aag ctg cac atg 320 Lys Arg Glu His Pro Ala Asp Phe Val Ala Gln Lys Leu Gln Gly Val — 25 ctc ttc atc tgc ttc acc tgc ggc cgc tcc ttc ccc tcc tcc aaa gcc 416 Leu Phe Ile Cys Phe Thr Cys Ala Arg Ser Phe Pro Ser Ser Lys Ala — 10 cg gtt gca acc car cgc agc cac ggt cca rcc gcc aag ccc acc ctg 464 Xaa Xaa Thr His Gln Arg Ser His Gly Pro Xaa Ala Lys Pro Thr Leu 10 15 cg gtt gca acc act act gcc car ccc acc ttc cct tgc ctg act gt pro Val Ala Thr Thr Thr Ala Gln Pro Thr Phe Pro Cys Pro Asp Cys 25 gg aaa acc ttt ggg cag gct gtt tct ctg arg cgg cac csc caa atr 60 Gly Lys Thr Phe Gly Gln Ala Val Ser Leu Xaa Arg His Xaa Gln Xaa 40 40 45 cat gar gtc cgt gcc cct ctg gc ctc tcc gcc tgc cac cac ctg Gln Asp Phe Ala Gln Glu Xaa Gly Leu His Gln His Tyr Ile Arg His 75 80 60 65 65 66 67 67 68 69 69 69 69 69 69 69 69 69	<222> 830840	
aaaaactgag gcctgggagc aggaacctgt aggcagcgct tgagggtagc gggstagcag ctgcaacgg ctgcgagagc aggaactgt aggcggaacaa aaatcacagg atgtcagagg atgttcagagg atgtttcccg ggaagaactg gggtagaacg ggcggaacaa aaatcacagg atgtcagagg atgttttcccg ggaagaactg ggataaaggg gtcccagcac c atg gag gac ccg aac Met Glu Asp Pro Asn — 75 cct gaa gag aac atg aag cag gat tca ccc aag gag aga agt ccc Pro Glu Glu Asn Met Lys Gln Gln Asp Ser Pro Lys Glu Arg Ser Pro — 65 cag agc cca gga ggc aca atc tgc cac ctg ggg gcc ccg aag tgc acc Gln Ser Pro Gly Gly Asn Ile Cys His Leu Gly Ala Pro Lys Cys Thr — 55 cgc tgc ctc atc acc ttc gca gat tcc aag ttc cag gag cgt cac atg 320 Arg Cys Leu Ile Thr Phe Ala Asp Ser Lys Phe Gln Glu Arg His Met — 40 agg ggg gac cc cag gcg gac ttc gtg gcc cag aag ctg cac atg 320 Lys Arg Glu His Pro Ala Asp Phe Val Ala Gln Lys Leu Gln Gly Val — 25 ctc ttc atc tgc ttc acc tgc ggc cgc tcc ttc ccc tcc tcc aaa gcc 416 Leu Phe Ile Cys Phe Thr Cys Ala Arg Ser Phe Pro Ser Ser Lys Ala — 10 cg gtt gca acc car cgc agc cac ggt cca rcc gcc aag ccc acc ctg 464 Xaa Xaa Thr His Gln Arg Ser His Gly Pro Xaa Ala Lys Pro Thr Leu 10 15 cg gtt gca acc act act gcc car ccc acc ttc cct tgc ctg act gt pro Val Ala Thr Thr Thr Ala Gln Pro Thr Phe Pro Cys Pro Asp Cys 25 gg aaa acc ttt ggg cag gct gtt tct ctg arg cgg cac csc caa atr 60 Gly Lys Thr Phe Gly Gln Ala Val Ser Leu Xaa Arg His Xaa Gln Xaa 40 40 45 cat gar gtc cgt gcc cct ctg gc ctc tcc gcc tgc cac cac ctg Gln Asp Phe Ala Gln Glu Xaa Gly Leu His Gln His Tyr Ile Arg His 75 80 60 65 65 66 67 67 68 69 69 69 69 69 69 69 69 69		
ctgcaacgcg cgtgggaggc gggggctctg ggcggaacaa aaatcacagg atgtcagaag atgttcccg ggaagaactg ggataaaggg gtcccagcac c atg gag gac ccg aac Met Glu Asp Pro Asn — 75 cct gaa gag aac atg aag cag cag gat tca ccc aag gag aga gcc ccc 224 Pro Glu Glu Asn Met Lys Gln Gln Asp Ser Pro Lys Glu Arg Ser Pro — 60 cag agc cca ggg ggc aac atc tgc cac ctg ggg gcc ccg aag tgc acc gln Ser Pro Gly Gly Asn Ile Cys His Leu Gly Ala Pro Lys Cys Thr — 55 cgc tgc ctc atc acc ttc gca gttc ca agt tc cag gag cgt cac atg 320 Arg Cys Leu Ile Thr Phe Ala Asp Ser Lys Phe Gln Glu Arg His Met — 40 aag cgg gag cac cca ggg gac ttc gtg gcc cag aag ctg cag ggg gcc cca atg 320 kys Arg Glu His Pro Ala Asp Phe Val Ala Gln Lys Leu Gln Gly Val — 25 ctc ttc atc tgc ttc acc tgc gcc cgc tcc ttc ccc tcc tca ag gcc 416 Leu Phe Ile Cys Phe Thr Cys Ala Arg Ser Phe Pro Ser Ser Lys Ala — 10 ckr rkc acc cac car cgc agc cac ggt cca rcc gcc aag ccc acc ctg 26 ccg ttg cac acc act act gcc cac ggt cca rcc gcc aag ccc acc ctg 27 ccg ttg cac acc act act gcc cac ctc ccc tcc tcc tcc acc dcc dcc dcc dcc dcc dcc dcc dcc d		
### Associated Schools 176	aaaaactgag gcctgggagc aggaacctgt aggcagcgct tgagggtagc gggatagcag	
### Associated Schools 176	ctgcaacgcg cgtgggaggc gggggctctg ggcggaacaa aaatcacagg atgtcagagg	
Cct gaa gag aac atg aag cag gat tca ccc aag gag aga agt ccc Pro Glu Glu Asn Met Lys Gln Gln Asp Ser Pro Lys Glu Arg Ser Pro -70 -65 -66 -60 -70 -70 -65 -67 -68 -69 -70 -75 -75 -69 -69 -70 -75 -75 -75 -75 -75 -75 -75 -75 -75 -75	atgtttcccg ggaagaactg ggataaaggg gtcccagcac c atg gag gac ccg aac	176
cct gaa gag aac atg aag cag cag gat tca ccc aag gag aga agt ccc 224 Pro Glu Glu Asn Met Lys Gln Gln Asp Ser Pro Lys Glu Arg Ser Pro -60 -60 cag agc cca ga ggc aac atc tgc cac ctg ggg gcc ccg aag tgc acc 272 Gln Ser Pro Gly Gly Asn Ile Cys His Leu Gly Ala Pro Lys Cys Thr -55 -65 cgc tgc ctc atc acc ttc gca gat tcc aag ttc cag gag cgt cac atg 320 Arg Cys Leu Ile Thr Phe Ala Asp Ser Lys Phe Gln Glu Arg His Met -40 -35 -30 aag cgg gag cac cca gcg gac ttc gtg gcc cag aag ctg cag ggg gtc 368 Lys Arg Glu His Pro Ala Asp Phe Val Ala Gln Lys Leu Gln Gly Val -25 -20 -15 ctc ttc atc tgc ttc acc tgc gcc cgc tcc ttc ccc tcc tcc tca aag gcc 416 Leu Phe Ile Cys Phe Thr Cys Ala Arg Ser Phe Pro Ser Ser Lys Ala -10 5 ckr rkc acc cac car cgc agc cac ggt cca crc gcc aag cca agc cca cctg 464 Xaa Xaa Thr His Gln Arg Ser His Gly Pro Xaa Ala Lys Pro Thr Leu 10 15 ccg gtt gca acc act act act gcc car ccc acc ttc ct tgt cct gac tgt 512 Pro Val Ala Thr Thr Thr Ala Gln Pro Thr Phe Pro Cys Pro Asp Cys 25 30 35 ggc aaa ac ctt ggc gcc cct cct ggc acc ttc ggc aca rad tgc ggt 608 His Glu Val Arg Ala Pro Pro Gly Thr Phe Ala		
Pro Glu Glu Asn Met Lys Gln Gln Asp Ser Pro Lys Glu Arg Ser Pro -70 -65 -65 -60 -60	-75	
Pro Glu Glu Asn Met Lys Gln Gln Asp Ser Pro Lys Glu Arg Ser Pro -70 -65 -65 -60 -60	cct qaa qaq aac atq aag cag cag gat tca ccc aag gag aga agt ccc	224
Cag agc cca gga ggc aac atc tgc cac ctg ggg gcc ccg aag tgc acc 272 Gln Ser Pro Gly Gly Asn Ile Cys His Leu Gly Ala Pro Lys Cys Thr	Pro Glu Glu Asn Met Lvs Gln Gln Asp Ser Pro Lys Glu Arg Ser Pro	
Gln Ser Pro Gly Gly Asn Ile Cys His Leu Gly Ala Pro Lys Cys Thr -55 -50 -45 cgc tgc ctc atc acc ttc gca gat tcc aag gtc cag gag cgt cac atg Arg Cys Leu Ile Thr Phe Ala Asp Ser Lys Phe Gln Glu Arg His Met -40 -35 -30 aag cgg gag cac cca gcg gat ttc gtg gcc cag aag ctg cag ggg gtc Lys Arg Glu His Pro Ala Asp Phe Val Ala Gln Lys Leu Gln Gly Val -25 -20 -15 ctc ttc atc tgc ttc acc tgc gcc cgc tcc ttc ccc tcc tcc aaa gcc Leu Phe Ile Cys Phe Thr Cys Ala Arg Ser Phe Pro Ser Ser Lys Ala -10 -5 -5 -5 -5 -5 -5 -5 ckr rkc acc cac car cgc agc cac ggt cca rcc gcc aag ccc acc ctg Xaa Xaa Thr His Gln Arg Ser His Gly Pro Xaa Ala Lys Pro Thr Leu 10 15 -20 ccg gtt gca acc act act gcc car ccc acc ttc ct tgc tgc tgc tgc Pro Val Ala Thr Thr Thr Ala Gln Pro Thr Phe Pro Cys Pro Asp Cys 25 -30 -35 ggc aaa acc ttt ggg cag gct gtt tct ctg arg cgg cac csc caa atr Gly Lys Thr Phe Gly Gln Ala Val Ser Leu Xaa Arg His Xaa Gln Xaa 40 cat gar gtc cgt gcc cct cct ggc acc ttc gcc tgc acc acc acc ctg His Glu Val Arg Ala Pro Pro Gly Thr Phe Ala Cys Thr Xaa Cys Gly 55 -60 -65 -70 cag gac ttt gct car gaa rca ggg ctg acc ttc gcc tgc aca act act cgc acc cac acc ccc gcc acc ccc ggg ggg		
Gln Ser Pro Gly Gly Asn Ile Cys His Leu Gly Ala Pro Lys Cys Thr -55 -50 -45 cgc tgc ctc atc acc ttc gca gat tcc aag gtc cag gag cgt cac atg Arg Cys Leu Ile Thr Phe Ala Asp Ser Lys Phe Gln Glu Arg His Met -40 -35 -30 aag cgg gag cac cca gcg gat ttc gtg gcc cag aag ctg cag ggg gtc Lys Arg Glu His Pro Ala Asp Phe Val Ala Gln Lys Leu Gln Gly Val -25 -20 -15 ctc ttc atc tgc ttc acc tgc gcc cgc tcc ttc ccc tcc tcc aaa gcc Leu Phe Ile Cys Phe Thr Cys Ala Arg Ser Phe Pro Ser Ser Lys Ala -10 -5 -5 -5 -5 -5 -5 -5 ckr rkc acc cac car cgc agc cac ggt cca rcc gcc aag ccc acc ctg Xaa Xaa Thr His Gln Arg Ser His Gly Pro Xaa Ala Lys Pro Thr Leu 10 15 -20 ccg gtt gca acc act act gcc car ccc acc ttc ct tgc tgc tgc tgc Pro Val Ala Thr Thr Thr Ala Gln Pro Thr Phe Pro Cys Pro Asp Cys 25 -30 -35 ggc aaa acc ttt ggg cag gct gtt tct ctg arg cgg cac csc caa atr Gly Lys Thr Phe Gly Gln Ala Val Ser Leu Xaa Arg His Xaa Gln Xaa 40 cat gar gtc cgt gcc cct cct ggc acc ttc gcc tgc acc acc acc ctg His Glu Val Arg Ala Pro Pro Gly Thr Phe Ala Cys Thr Xaa Cys Gly 55 -60 -65 -70 cag gac ttt gct car gaa rca ggg ctg acc ttc gcc tgc aca act act cgc acc cac acc ccc gcc acc ccc ggg ggg		272
Cgc tgc ctc atc acc atc gag at tcc aag ttc cag gag cgt cac atg Arg Cys Leu Ile Thr Phe Ala Asp Ser Lys Phe Gln Glu Arg His Met -40 -35 -30 aag cgg gag cac cca gcg gac ttc gtg gcc cag aag ctg cag ggg gtc Lys Arg Glu His Pro Ala Asp Phe Val Ala Gln Lys Leu Gln Gly Val -25 -20 ctc ttc atc tgc ttc acc tgc gcc cgc tcc ttc ccc tcc aaa gcc Lys Arg Glu His Pro Ala Asp Phe Val Ala Gln Lys Leu Gln Gly Val -25 -20 ctc ttc atc tgc ttc acc tgc gcc cgc tcc ttc ccc tcc aaa gcc Leu Phe Ile Cys Phe Thr Cys Ala Arg Ser Phe Pro Ser Ser Lys Ala -10 -5 ckr rkc acc cac car cgc agc cac ggt cca rcc gcc aag cca ccc ctg Xaa Xaa Thr His Gln Arg Ser His Gly Pro Xaa Ala Lys Pro Thr Leu 10 ccg gtt gca acc act act gcc car ccc acc ttc cct tgc gac tgt Pro Val Ala Thr Thr Thr Ala Gln Pro Thr Phe Pro Cys Pro Asp Cys 25 ggc aaa acc ttt ggg cag gct gtt tct ctg arg cgg cac csc caa atr Gly Lys Thr Phe Gly Gln Ala Val Ser Leu Xaa Arg His Xaa Gln Xaa 40 40 45 cat gar gtc cgt gcc cct cct ggc acc ttc gcc tgc aca rad tgc ggt His Glu Val Arg Ala Pro Pro Gly Thr Phe Ala Cys Thr Xaa Cys Gly 55 60 65 70 cag gac ttt gct car gaa rca ggg ctg cat caa cac tac att cgg cat Gln Asp Phe Ala Gln Glu Xaa Gly Leu His Gln His Tyr Ile Arg His 75 80 gcc cgg ggg gga ctc tgagatcaccc atgatatggg gtgcaggaac tctgggggcc ctgaaggatt Ala Arg Gly Gly Leu 90 gtggctggta ggactcaccc atgatatggg gtgcaggaac tctgaggac cttgaaggatt 711 ### Ala Arg Gly Gly Leu 90 gtggctggta ggactcaccc atgatatggg gtgcaggaac tctgaggacc ctgaaggatt ### Ala	Gin Ser Pro Gly Gly Asn The Cys His Leu Gly Ala Pro Lys Cys Thr	
cgc tgc ctc atc acc ttc gca gat tcc aag ttc cag gag cgt cac atg 320 Arg Cys Leu Ile Thr Phe Ala Asp Ser Lys Phe Gln Glu Arg His Met -40 -35 -30 aag cgg gag cac cca gcg gac ttc gtg gcc cag aag ctg cag ggg gtc 368 Lys Arg Glu His Pro Ala Asp Phe Val Ala Gln Lys Leu Gln Gly Val -25 -20 -15 ctc ttc atc tgc ttc acc tgc gcc cgc tcc ttc ccc tcc tcc aaa gcc 416 Leu Phe Ile Cys Phe Thr Cys Ala Arg Ser Phe Pro Ser Ser Lys Ala -10 -5 1 5 ckr rkc acc cac cac cac cac cgc agc cac ggt cca rcc gcc aag ccc acc ctg 464 Xaa Xaa Thr His Gln Arg Ser His Gly Pro Xaa Ala Lys Pro Thr Leu 10 15 20 ccg gtt gca acc act act gcc car ccc acc ttc ctt tgt cct gac tgt 512 Pro Val Ala Thr Thr Thr Ala Gln Pro Thr Phe Pro Cys Pro Asp Cys 25 30 35 ggc aaa acc ttt ggg cag gct gtt tct ctg arg cgg cac csc caa atr 50 50 cat gar gtc cgt gcc cct cct ggc acc ttc gcc tgc aca rad tgc ggt 60 65 70 cat gar gtc cgt gcc cct cct ggg acc ttc gcc tac aca cac tac att cgg cat 656 Gln Asp Phe Ala Gln Glu Xaa Gly Leu His Gln His Tyr Ile Arg His 75 gcc cgg ggg gga ctc tc tgagttcagc tt		
Arg Cys Leu Ile Thr Phe Ala Asp Ser Lys Phe Gln Glu Arg His Met		320
aag cgg gag cac cca ggg gac ttc gtg gcc cag aag ctg cag ggg gtc Lys Arg Glu His Pro Ala Asp Phe Val Ala Gln Lys Leu Gln Gly Val -25 ctc ttc atc tgc ttc acc tgc gcc cgc tcc ttc ccc tcc tcc aaa gcc Leu Phe Ile Cys Phe Thr Cys Ala Arg Ser Phe Pro Ser Ser Lys Ala -10 -5 ckr rkc acc cac car cgc agc cac ggt cca rcc gcc aag ccc acc ctg Xaa Xaa Thr His Gln Arg Ser His Gly Pro Xaa Ala Lys Pro Thr Leu 10 15 ccg gtt gca acc act act gcc car ccc acc ttc cct tgt cct gac tgt Pro Val Ala Thr Thr Thr Ala Gln Pro Thr Phe Pro Cys Pro Asp Cys 25 30 ggc aaa acc ttt ggg cag gct gtt tct ctg arg cgg cac csc caa atr Gly Lys Thr Phe Gly Gln Ala Val Ser Leu Xaa Arg His Xaa Gln Xaa 40 45 cat gar gtc cgt gcc cct cct ggc acc ttc gcc tgc aca rad tgc ggt His Glu Val Arg Ala Pro Pro Gly Thr Phe Ala Cys Thr Xaa Cys Gly 55 60 60 65 60 65 70 cag gac ttt gct car gaa rca ggg ctg cat caa cac tac att cgg cat Gln Asp Phe Ala Gln Glu Xaa Gly Leu His Gln His Tyr Ile Arg His 75 gcc cgg ggg gga ctc tgagttcagc ttaagcctct ccacggtgac gggtggctct Ala Arg Gly Gly Leu 90 gtggctggta ggactcacc atgatatggg gtgcaggaac tctgaggggcc ctgaaggatt ttgcttccctc ccctgggaag gcagagggct cttaataaaag aggacccaka agattcttaa 831	Are the the the the health are Ser Lus Phe Glu Are His Met	
aag cgg gag cac cca gcg gac ttc gtg gcc cag aag ctg cag ggg gtc 368 Lys Arg Glu His Pro Ala Asp Phe Val Ala Gln Lys Leu Gln Gly Val -25 -20 -15 -20 -15 ctc ttc atc tgc ttc acc tgc gcc cgc tcc ttc ccc tcc tcc aaa gcc Leu Phe Ile Cys Phe Thr Cys Ala Arg Ser Phe Pro Ser Ser Lys Ala -10 -5 1 5 5 ckr rkc acc cac car cgc agc cac ggt cca rcc gcc aag ccc acc ctg Xaa Xaa Thr His Gln Arg Ser His Gly Pro Xaa Ala Lys Pro Thr Leu 10 15 20 464 ccg gtt gca acc act act gcc car ccc acc ttc cct tgt cct gac tgt Pro Val Ala Thr Thr Thr Ala Gln Pro Thr Phe Pro Cys Pro Asp Cys 25 30 35 35 ggc aaa acc ttt ggg cag gct gtt tct ctg arg cgg cac csc caa atr 40 40 45 50 50 cat gar gtc cgt gcc cct cct ggc acc ttc gcc tgc aca rad tgc ggt His Glu Val Arg Ala Pro Pro Gly Thr Phe Ala Cys Thr Xaa Cys Gly 55 60 60 65 70 60 65 70 cag gac ttt gct car gaa rca ggg ctg cat caa cac tac atc cgg cat Gln Asp Phe Ala Gln Glu Xaa Gly Leu His Gln His Tyr Ile Arg His 75 80 85 85 gcc cgg ggg gga ctc tgagttcagc ttaagcctct ccacggtgac gggtggctct 711 Ala Arg Gly Gly Leu 90 gtggctggta ggactcaccc atgatatggg gtgcaggaac tctgaggac cttaataaag aggacccaka agattcttaa 831 771 gtggctggta ggactcaccc atgatatggg gtgcaggaac tctaataaag aggacccaka agattcttaa 831 771 gtgcttccctc ccctgggaag gcagagggct cttaataaag aggacccaka agattcttaa 831 771		
Lys Arg Glu His Pro Ala Asp Phe Val Ala Gln Lys Leu Gln Gly Val -25	20	368
ctc ttc atc tgc ttc acc tgc gcc cgc tcc ttc ccc tcc tcc aaa gcc Leu Phe Ile Cys Phe Thr Cys Ala Arg Ser Phe Pro Ser Ser Lys Ala -10	aag egg gag cac caa geg gat tit geg get cag aag eeg eeg sag sag	
ctc ttc atc tgc ttc acc tgc gcc cgc tcc ttc ccc tcc taaa gcc Leu Phe Ile Cys Phe Thr Cys Ala Arg Ser Phe Pro Ser Ser Lys Ala -10		
Leu Phe Ile Cys Phe Thr Cys Ala Arg Ser Phe Pro Ser Ser Lys Ala -10 -5 -5 -1 -5 -1 -5 -5 -1 -5 -5 -6 -7 -5 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7		416
-10	ctc ttc atc tgc ttc acc tgc gcc cgc tcc ttc ctc tcc aa gcc	110
ckr rkc acc cac car cgc agc cac ggt cca rcc gcc aag ccc acc ctg Xaa Xaa Thr His Gln Arg Ser His Gly Pro Xaa Ala Lys Pro Thr Leu 10 15 20 ccg gtt gca acc act act gcc car ccc acc ttc cct tgt cct gac tgt Pro Val Ala Thr Thr Thr Ala Gln Pro Thr Phe Pro Cys Pro Asp Cys 25 30 35 ggc aaa acc ttt ggg cag gct gtt tct ctg arg cgg cac csc caa atr Gly Lys Thr Phe Gly Gln Ala Val Ser Leu Xaa Arg His Xaa Gln Xaa 40 45 50 cat gar gtc cgt gcc cct cct ggc acc ttc gcc tgc aca rad tgc ggt His Glu Val Arg Ala Pro Pro Gly Thr Phe Ala Cys Thr Xaa Cys Gly 55 60 65 70 cag gac ttt gct car gaa rca ggg ctg cat caa cac tac att cgg cat Gln Asp Phe Ala Gln Glu Xaa Gly Leu His Gln His Tyr Ile Arg His 75 80 85 gcc cgg ggg gga ctc tgagttcagc ttaagcetct ccacggtgac gggtggctct 711 Ala Arg Gly Gly Leu 90 gtggctggta ggactcaccc atgatatggg gtgcaggaac tctgggggcc ctgaaggatt tgcttccctc ccctgggaag gcagagggct cttaataaaag aggacccaka agattcttaa		
Xaa Xaa Thr His Gln Arg Ser His Gly Pro Xaa Ala Lys Pro Thr Leu 10 15 20 ccg gtt gca acc act act gcc car ccc acc ttc cct tgt cct gac tgt Pro Val Ala Thr Thr Thr Ala Gln Pro Thr Phe Pro Cys Pro Asp Cys 25 30 35 ggc aaa acc ttt ggg cag gct gtt tct ctg arg cgg cac csc caa atr Gly Lys Thr Phe Gly Gln Ala Val Ser Leu Xaa Arg His Xaa Gln Xaa 40 45 cat gar gtc cgt gcc cct cct ggc acc ttc gcc tgc aca rad tgc ggt His Glu Val Arg Ala Pro Pro Gly Thr Phe Ala Cys Thr Xaa Cys Gly 55 60 65 70 cag gac ttt gct car gaa rca ggg ctg cat caa cac tac att cgg cat Gln Asp Phe Ala Gln Glu Xaa Gly Leu His Gln His Tyr Ile Arg His 75 80 gc cgg ggg gga ctc tgagttcagc ttaagcctct ccacggtgac gggtggctct Ala Arg Gly Gly Leu 90 gtggctggta ggactcaccc atgatatggg gtgcaggaac tctgggggcc ctgaaggatt tgcttccctc ccctgggaag gcagagggct cttaataaaag aggacccaka agattcttaa 831	-	161
ccg gtt gca acc act act gcc car ccc acc ttc cct tgt cct gac tgt Pro Val Ala Thr Thr Thr Ala Gln Pro Thr Phe Pro Cys Pro Asp Cys 25 30 35 ggc aaa acc ttt ggg cag gct gtt tct ctg arg cgg cac csc caa atr Gly Lys Thr Phe Gly Gln Ala Val Ser Leu Xaa Arg His Xaa Gln Xaa 40 45 50 cat gar gtc cgt gcc cct cct ggc acc ttc gcc tgc aca rad tgc ggt His Glu Val Arg Ala Pro Pro Gly Thr Phe Ala Cys Thr Xaa Cys Gly 55 60 65 70 cag gac ttt gct car gaa rca ggg ctg cat caa cac tac att cgg cat Gln Asp Phe Ala Gln Glu Xaa Gly Leu His Gln His Tyr Ile Arg His 75 80 85 gcc cgg ggg gga ctc tgagttcagc ttaagcctct ccacggtgac gggtggctct Ala Arg Gly Gly Leu 90 gtggctggta ggactcaccc atgatatggg gtgcaggaac tctgggggcc ctgaaggatt tgcttccctc ccctgggaag gcagagggct cttaataaag aggacccaka agattcttaa	ckr rkc acc cac car egc agc cac ggt cca rec gcc aag ccc acc etg	404
ccg gtt gca acc act act gcc car ccc acc ttc cct tgt cct gac tgt Pro Val Ala Thr Thr Thr Ala Gln Pro Thr Phe Pro Cys Pro Asp Cys 25 ggc aaa acc ttt ggg cag gct gtt tct ctg arg cgg cac csc caa atr Gly Lys Thr Phe Gly Gln Ala Val Ser Leu Xaa Arg His Xaa Gln Xaa 40 45 cat gar gtc cgt gcc cct cct ggc acc ttc gcc tgc aca rad tgc ggt His Glu Val Arg Ala Pro Pro Gly Thr Phe Ala Cys Thr Xaa Cys Gly 50 cag gac ttt gct car gaa rca ggg ctg cat caa cac tac att cgg cat Gln Asp Phe Ala Gln Glu Xaa Gly Leu His Gln His Tyr Ile Arg His 75 80 gcc cgg ggg gga ctc tgagttcagc ttaagcctct ccacggtgac gggtggctct Ala Arg Gly Gly Leu 90 gtggctggta ggactcaccc atgatatggg gtgcaggaac tctgggggcc ctgaaggatt tgcttccctc ccctgggaag gcagagggct cttaataaag aggacccaka agattcttaa		
Pro Val Ala Thr Thr Thr Ala Gln Pro Thr Phe Pro Cys Pro Asp Cys 25 30 35 ggc aaa acc ttt ggg cag gct gtt tct ctg arg cgg cac csc caa atr Gly Lys Thr Phe Gly Gln Ala Val Ser Leu Xaa Arg His Xaa Gln Xaa 40 45 cat gar gtc cgt gcc cct cct ggc acc ttc gcc tgc aca rad tgc ggt His Glu Val Arg Ala Pro Pro Gly Thr Phe Ala Cys Thr Xaa Cys Gly 55 60 65 70 cag gac ttt gct car gaa rca ggg ctg cat caa cac tac att cgg cat Gln Asp Phe Ala Gln Glu Xaa Gly Leu His Gln His Tyr Ile Arg His 75 80 85 gcc cgg ggg gga ctc tgagttcagc ttaagcctct ccacggtgac gggtggctct 711 Ala Arg Gly Gly Leu 90 gtggctggta ggactcaccc atgatatggg gtgcaggaac tctgggggcc ctgaaggatt tgcttccctc ccctgggaag gcagagggct cttaataaag aggacccaka agattcttaa 831	±•	
ggc aaa acc ttt ggg cag gct gtt tct ctg arg cgg cac csc caa atr Gly Lys Thr Phe Gly Gln Ala Val Ser Leu Xaa Arg His Xaa Gln Xaa 40 45 cat gar gtc cgt gcc cct cct ggc acc ttc gcc tgc aca rad tgc ggt His Glu Val Arg Ala Pro Pro Gly Thr Phe Ala Cys Thr Xaa Cys Gly 55 60 cag gac ttt gct car gaa rca ggg ctg cat caa cac tac att cgg cat Gln Asp Phe Ala Gln Glu Xaa Gly Leu His Gln His Tyr Ile Arg His 75 80 gcc cgg ggg gga ctc tgagttcagc ttaagcctct ccacggtgac gggtggctct Ala Arg Gly Gly Leu 90 gtggctggta ggactcaccc atgatatggg gtgcaggaac tctgggggcc ctgaaggatt tgcttccctc ccctgggaag gcagagggct cttaataaag aggacccaka agattcttaa 831	ceg gtt gca acc act act gcc car ccc acc ttc cct tgt cct gac tgt	512
ggc aaa acc ttt ggg cag gct gtt tct ctg arg cgg cac csc caa atr Gly Lys Thr Phe Gly Gln Ala Val Ser Leu Xaa Arg His Xaa Gln Xaa 40 45 cat gar gtc cgt gcc cct cct ggc acc ttc gcc tgc aca rad tgc ggt His Glu Val Arg Ala Pro Pro Gly Thr Phe Ala Cys Thr Xaa Cys Gly 50 cag gac ttt gct car gaa rca ggg ctg cat caa cac tac att cgg cat Gln Asp Phe Ala Gln Glu Xaa Gly Leu His Gln His Tyr Ile Arg His 75 80 85 gcc cgg ggg gga ctc tgagttcagc ttaagcctct ccacggtgac gggtggctct Ala Arg Gly Gly Leu 90 gtggctggta ggactcaccc atgatatggg gtgcaggaac tctgggggcc ctgaaggatt tgcttccctc ccctgggaag gcagagggct cttaataaag aggacccaka agattcttaa		
Gly Lys Thr Phe Gly Gln Ala Val Ser Leu Xaa Arg His Xaa Gln Xaa 40 45 50 cat gar gtc cgt gcc cct cct ggc acc ttc gcc tgc aca rad tgc ggt His Glu Val Arg Ala Pro Pro Gly Thr Phe Ala Cys Thr Xaa Cys Gly 55 60 65 70 cag gac ttt gct car gaa rca ggg ctg cat caa cac tac att cgg cat Gln Asp Phe Ala Gln Glu Xaa Gly Leu His Gln His Tyr Ile Arg His 75 80 85 gcc cgg ggg gga ctc tgagttcagc ttaagcctct ccacggtgac gggtggctct Ala Arg Gly Gly Leu 90 gtggctggta ggactcaccc atgatatggg gtgcaggaac tctgggggcc ctgaaggatt tgcttccctc ccctgggaag gcagagggct cttaataaaag aggacccaka agattcttaa	23	
cat gar gtc cgt gcc cct cct ggc acc ttc gcc tgc aca rad tgc ggt His Glu Val Arg Ala Pro Pro Gly Thr Phe Ala Cys Thr Xaa Cys Gly 55 60 65 70 cag gac ttt gct car gaa rca ggg ctg cat caa cac tac att cgg cat Gln Asp Phe Ala Gln Glu Xaa Gly Leu His Gln His Tyr Ile Arg His 75 80 85 gcc cgg ggg gga ctc tgagttcagc ttaagcctct ccacggtgac gggtggctct Ala Arg Gly Gly Leu 90 gtggctggta ggactcaccc atgatatggg gtgcaggaac tctgggggcc ctgaaggatt tgcttccctc ccctgggaag gcagagggct cttaataaag aggacccaka agattcttaa 831	ggc aaa acc ttt ggg cag gct gtt tct ctg arg cgg cac csc caa atr	560
cat gar gtc cgt gcc cct cct ggc acc ttc gcc tgc aca rad tgc ggt His Glu Val Arg Ala Pro Pro Gly Thr Phe Ala Cys Thr Xaa Cys Gly 55	Gly Lys Thr Phe Gly Gln Ala Val Ser Leu Xaa Arg His Xaa Gln Xaa	
His Glu Val Arg Ala Pro Pro Gly Thr Phe Ala Cys Thr Xaa Cys Gly 55 60 65 70 cag gac ttt gct car gaa rca ggg ctg cat caa cac tac att cgg cat 656 Gln Asp Phe Ala Gln Glu Xaa Gly Leu His Gln His Tyr Ile Arg His 75 80 85 gcc cgg ggg gga ctc tgagttcagc ttaagcctct ccacggtgac gggtggctct 711 Ala Arg Gly Gly Leu 90 gtggctggta ggactcaccc atgatatggg gtgcaggaac tctgggggcc ctgaaggatt 771 tgcttccctc ccctgggaag gcagagggct cttaataaag aggacccaka agattcttaa 831	,	
His Glu Val Arg Ala Pro Pro Gly Thr Phe Ala Cys Thr Xaa Cys Gly 55 60 65 70 cag gac ttt gct car gaa rca ggg ctg cat caa cac tac att cgg cat 656 Gln Asp Phe Ala Gln Glu Xaa Gly Leu His Gln His Tyr Ile Arg His 75 80 85 gcc cgg ggg gga ctc tgagttcagc ttaagcctct ccacggtgac gggtggctct 711 Ala Arg Gly Gly Leu 90 gtggctggta ggactcaccc atgatatggg gtgcaggaac tctgggggcc ctgaaggatt 771 tgcttccctc ccctgggaag gcagagggct cttaataaag aggacccaka agattcttaa 831	cat gar gtc cgt gcc cct cct ggc acc ttc gcc tgc aca rad tgc ggt	608
cag gac ttt gct car gaa rca ggg ctg cat caa cac tac att cgg cat Gln Asp Phe Ala Gln Glu Xaa Gly Leu His Gln His Tyr Ile Arg His 75 80 85 gcc cgg ggg gga ctc tgagttcagc ttaagcctct ccacggtgac gggtggctct 711 Ala Arg Gly Gly Leu 90 gtggctggta ggactcaccc atgatatggg gtgcaggaac tctgggggcc ctgaaggatt 771 tgcttccctc ccctgggaag gcagagggct cttaataaag aggacccaka agattcttaa 831	His Glu Val Arg Ala Pro Pro Gly Thr Phe Ala Cys Thr Xaa Cys Gly	
Gln Asp Phe Ala Gln Glu Xaa Gly Leu His Gln His Tŷr Ile Arg His 75 80 85 gcc cgg ggg gga ctc tgagttcagc ttaagcctct ccacggtgac gggtggctct 711 Ala Arg Gly Gly Leu 90 gtggctggta ggactcaccc atgatatggg gtgcaggaac tctgggggcc ctgaaggatt 771 tgcttccctc ccctgggaag gcagagggct cttaataaag aggacccaka agattcttaa 831		
Gln Asp Phe Ala Gln Glu Xaa Gly Leu His Gln His Týr Ile Arg His 75 80 85 gcc cgg ggg gga ctc tgagttcagc ttaagcctct ccacggtgac gggtggctct 711 Ala Arg Gly Gly Leu 90 gtggctggta ggactcaccc atgatatggg gtgcaggaac tctgggggcc ctgaaggatt 771 tgcttccctc ccctgggaag gcagagggct cttaataaag aggacccaka agattcttaa 831		656
75 80 85 gcc cgg ggg gga ctc tgagttcagc ttaagcctct ccacggtgac gggtggctct 711 Ala Arg Gly Gly Leu 90 gtggctggta ggactcaccc atgatatggg gtgcaggaac tctggggggcc ctgaaggatt 771 tgcttccctc ccctgggaag gcagagggct cttaataaag aggacccaka agattcttaa 831	Cin hen the Ala Cin Cin Yaa Civ Leu His Cin His Tvr Ile Arg His	
gcc cgg ggg gga ctc tgagttcagc ttaagcctct ccacggtgac gggtggctct Ala Arg Gly Gly Leu 90 gtggctggta ggactcaccc atgatatggg gtgcaggaac tctgggggcc ctgaaggatt tgcttccctc ccctgggaag gcagagggct cttaataaag aggacccaka agattcttaa		
Ala Arg Gly Gly Leu 90 gtggctggta ggactcaccc atgatatggg gtgcaggaac tctgggggcc ctgaaggatt 771 tgcttccctc ccctgggaag gcagagggct cttaataaag aggacccaka agattcttaa 831	, ,	711
90 gtggctggta ggactcaccc atgatatggg gtgcaggaac tctggggggcc ctgaaggatt 771 tgcttccctc ccctgggaag gcagagggct cttaataaag aggacccaka agattcttaa 831		
gtggctggta ggactcaccc atgatatggg gtgcaggaac tctggggggcc ctgaaggatt 771 tgcttccctc ccctgggaag gcagagggct cttaataaag aggacccaka agattcttaa 831		
tgcttccctc ccctgggaag gcagaggct cttaataaag aggacccaka agattcttaa 831		771
940	guggetgeta ggaeteacee atgatatggg gugeaggade tetiggggget etgaaggate	_
Бабабабаба		
	Барарара	040

WO 99/31236 -199- PCT/IB98/02122 .

```
<210> 279
<211> 840
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 63..632
<221> sig peptide
<222> 63..308
<223> Von Heijne matrix
     score 4.40000009536743
      seq NLPHLQVVGLTWG/HI
<221> polyA signal
<222> 808..813
<221> polyA_site
<222> 829..840
<400> 279
aactteeggt egegeeaseg ecegttgeea gttetgegeg tgteetgeat etecagtatg
                                                                      60
ga atg tat gtd tgg ccc tgt gct gtg gtc ctg gcc cag tac ctt tgg
                                                                      107
   Met Tyr Val Trp Pro Cys Ala Val Val Leu Ala Gln Tyr Leu Trp
                                -75
                                                                      155
ttt cac aga aga tct ctg cca ggc aag gcc atc tta gag att gga gct
Phe His Arg Arg Ser Leu Pro Gly Lys Ala Ile Leu Glu Ile Gly Ala
                            -60
gga gtg agc ctt cca gga att ttg gct gcc aaa tgt ggt gca gaa gta
                                                                      203
Gly Val Ser Leu Pro Gly Ile Leu Ala Ala Lys Cys Gly Ala Glu Val
                        -45
ata ctg tca gac agc tca gaa ctg cct cac tgt ctg gaa gtc tgt cgg
                                                                      251
Ile Leu Ser Asp Ser Ser Glu Leu Pro His Cys Leu Glu Val Cys Arg
                                        -25
                    -30
-35
                                                                      299
caa agc tgc caa atg aat aac ctg cca cat ctg cag gtg gta gga cta
Gln Ser Cys Gln Met Asn Asn Leu Pro His Leu Gln Val Val Gly Leu
                                    -10
                -15
aca tgg ggt cat ata tot tgg gat ott otg got ota coa coa caa gat
Thr Trp Gly His Ile Ser Trp Asp Leu Leu Ala Leu Pro Pro Gln Asp
                          5
                                                                      395
att atc ctt gca tct gat gtg ttc ttt gaa cca gaa rat ttt gaa gac
Ile Ile Leu Ala Ser Asp Val Phe Phe Glu Pro Glu Xaa Phe Glu Asp
                                            25
                                                                      443
att ttg gct aca ata tat ttt ttg atg cac aar aat ccc aag gtc caa
Ile Leu Ala Thr Ile Tyr Phe Leu Met His Lys Asn Pro Lys Val Gln
                                        40
ttg tgg tct act tat caa gtt agg art gct gac tgg tca ctt gaa gct
                                                                      491
Leu Trp Ser Thr Tyr Gln Val Arg Xaa Ala Asp Trp Ser Leu Glu Ala
                                    55
                                                                      539
tta ctc tac aaa tgg gat atg aaa tgt gtc cac att cct ctt gag tct
Leu Leu Tyr Lys Trp Asp Met Lys Cys Val His Ile Pro Leu Glu Ser
                                 70
                                                                      587
ttt gat gca gac aaa gaa rat ata gca gaa tct acc ctt cca gga aga
Phe Asp Ala Asp Lys Glu Xaa Ile Ala Glu Ser Thr Leu Pro Gly Arg
                            85
                                                                      632
 cat aca gtt gaa atg ctg gtc att tcc ttt gca aag gac agt ctc
His Thr Val Glu Met Leu Val Ile Ser Phe Ala Lys Asp Ser Leu
                                             105
                        100
 tgaattatac ctacaacctg ttctgggaca gtatcaatac tgatgagcaa cctggcacac
                                                                      692
 aaactatgag cagaccactt cagcttgaga atgcagtggg tctgaagatg gtcaagtctg
                                                                      752
```

tttgccttar attttgatgt cacctagaca acacttaaac tcatatgaaa caaaaattaa 812 aatacgtatt acaagcaaaa aaaaaaaa 840	
<210> 280 <211> 849 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 21362	
<221> sig_peptide <222> 21200 <223> Von Heijne matrix score 4.80000019073486 seq LVILSLKSQTLDA/ET	
<221> polyA_signal	
<221> polyA_site <222> 838849	
<400> 280	
agtaagtccc cccgcctcgc atg atg gct gcg gtg ccg ccg ggc ctg gag ccg Met Met Ala Ala Val Pro Pro Gly Leu Glu Pro -60 -55 -50	
tgg aac cgt gtg aga atc cct aag gcg ggg aac cgc agc gca gtg aca 101 Trp Asn Arg Val Arg Ile Pro Lys Ala Gly Asn Arg Ser Ala Val Thr -45 -40 -35	
gtg cag aac ccc ggc gcg gcc ctt gac ctt tgc att gca gct gta att Val Gln Asn Pro Gly Ala Ala Leu Asp Leu Cys Ile Ala Ala Val Ile -30 -25 -20	
aaa gaa tgc cat ctc gtc ata ctg tcg ctg aag agc caa acc tta gat Lys Glu Cys His Leu Val Ile Leu Ser Leu Lys Ser Gln Thr Leu Asp -15 -10 -5	
gca gaa aca gat gtg tta tgt gca gtc ctt tac agc aat cac aac aga Ala Glu Thr Asp Val Leu Cys Ala Val Leu Tyr Ser Asn His Asn Arg 1 10 15	
atg ggc cgc cac aaa ccc cat ttg gcc ctc aaa cag gtt gag caa tgt 293 Met Gly Arg His Lys Pro His Leu Ala Leu Lys Gln Val Glu Gln Cys 20 25 30	
tta aag cgt ttg aaa aac atg aat ttg gag ggc tca att caa gac ctg Leu Lys Arg Leu Lys Asn Met Asn Leu Glu Gly Ser Ile Gln Asp Leu 35 40 45	
ttt gag ttg ttt tct tcc aag taagtaagtg gtccarttgc tttgtgatgt 392 Phe Glu Leu Phe Ser Ser Lys 50	
ggtgggctgg gaactcaatg tettgtgate keeettwgga ttketetakg etygekgttg 452	
gaatataacc aattataccw cagctgtaka aatwttgttt taatgtgggg taccyggtgt 512	
ktgtggtaat cttctgacat tgatctatgg gartgactgg tgtgacattg aaatctgggt 572	
catggtagat tatattaaaa catcagtggg ctgttattgt gcttaactac ctcaagttga 632	
gcttaaagca agtcttcact tgaaaactgc tatagaaatg ctttatattt aaaaatgaaa 692	
gtaatgggar mttgcacata gctgaaaatg tgaagggteg cccagggagg amatggaagc 752 tctgtgcttc ttctqccata ccttqcccta tqcatctctt tqtttcaatc ctttqtcata 812	
tottgtgcttc ttctgccata ccttgcccta tgcatctctt tgtttcaatc ctttgtcata 812 tcctttataa taaactggta aatgtaaaaa aaaaaaa 849	

WO 99/31236 -201- PCT/IB98/02122.

```
<210> 281
<211> 1344
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 21..503
<221> sig peptide
<222> 21..344
<223> Von Heijne matrix
      score 5.30000019073486
      seq ACMTLTASPGVFP/SL
<221> polyA_signal
<222> 1305.,1310
<221> polyA_site
<222> 1330..1341
<400> 281
aaacaactcc ggaaagtaca atg acc agc ggg cag gcc cga gct tcc wyc cag
                    Met Thr Ser Gly Gln Ala Arg Ala Ser Xaa Gln
                                  -105
tee eec cag gee etg gag gae teg gge eeg gtg aat ate tea gte tea
                                                                     101
Ser Pro Gln Ala Leu Glu Asp Ser Gly Pro Val Asn Ile Ser Val Ser
        -95
                          -90
atc acc cta acc ctg gac cca ctg aaa ccc ttc gga ggg tat tcc cgc
                                                                     149
Ile Thr Leu Thr Leu Asp Pro Leu Lys Pro Phe Gly Gly Tyr Ser Arg
                      -75
aac gtc acc cat ctg tac tca acc atc tta ggg cat cag att gga ctt
                                                                     197
Asn Val Thr His Leu Tyr Ser Thr Ile Leu Gly His Gln Ile Gly Leu
-65
                   -60
                                       -55
tca ggc agg gaa gcc cac gag gag ata aac atc acc ttc acc ctg cct
                                                                     245
Ser Gly Arg Glu Ala His Glu Glu Ile Asn Ile Thr Phe Thr Leu Pro
               -45
                                   -40
aca gcg tgg agc tca gat gac tgc gcc ctc cac ggt cac tgt gag cag
                                                                     293
Thr Ala Trp Ser Ser Asp Asp Cys Ala Leu His Gly His Cys Glu Gln
                               -25
                                                    -20
gtg gta ttc aca gcc tgc atg acc ctc acg gcc agc cct ggg gtg ttc
                                                                     341
Val Val Phe Thr Ala Cys Met Thr Leu Thr Ala Ser Pro Gly Val Phe
                            -10
ccg tca ctg tac agc cac cgc act gtg ttc ctg aca cgt aca gca acg
                                                                     389
Pro Ser Leu Tyr Ser His Arg Thr Val Phe Leu Thr Arg Thr Ala Thr
                                       10
cca cgc tct ggt aca aga tct tca caa ctg cca gag atg cca aca caa
                                                                     437
Pro Arg Ser Gly Thr Arg Ser Ser Gln Leu Pro Glu Met Pro Thr Gln
aat acg ccc aaa att aca atc ctt tct ggt gtt ata agg ggg cca ttg
                                                                     485
Asn Thr Pro Lys Ile Thr Ile Leu Ser Gly Val Ile Arg Gly Pro Leu
           35
gaa aag tot atc atg ott taaatoocaa gottacagtg attgttocag
                                                                     533
Glu Lys Ser Ile Met Leu
atgatgaccg ttcattaata aatttgcatc tcatgcacac cagttacttc ctctttgtga
                                                                     593
tggtgataac aatgttttgc tatgctgtta tcaagggcag acctagcaaa ttgcgtcaga
                                                                     653
gcaatcctga attttgtccc gagaaggtgg ctttggctga agcctaattc cacagctcct
                                                                     713
tgttttttga gagagactga gagaaccata atccttgcct gctgaaccca gcctgggcct
                                                                     773
ggatgctctg tgaatacatt atcttgcgat gttgggttat tccagccaaa gacatttcaa
                                                                     833
gtgcctgtaa ctgatttgta catatttata aaaatctatt cagaaattgg tccaataatg
cacgtgcttt gccctgggta cagccagagc ccttcaaccc caccttggac ttgaggacct
                                                                     953
```

```
atagtaacaa caataatacc tttttctcca ttttgcttgc aggaaacata ccttaagttt 1253
gtcacatttt aatacyaaaa aaaaaaaamc h
                                                                 1344
<210> 282
<211> 671
<212> DNA
<213> Homo sapiens
<220>
<221> CDS .
<222> 1..201
<221> sig_peptide
<222> 1..63
<223> Von Heijne matrix
     score 5.09999990463257
     seq LLLKIWLLQRPES/QE
<221> polyA signal
<222> 637..642
<221> polyA site
<222> 660..671
<400> 282
atg ctg gga ggt gac cat agg gct ctg ctt tta aag ata tgg ctg ctt
                                                                   48
Met Leu Gly Gly Asp His Arg Ala Leu Leu Leu Lys Ile Trp Leu Leu
                      -15
                                         -10
caa agg cca gag tca cag gaa gga ctt ctt cca ggg aga tta gtg gtg
                                                                   96
Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro Gly Arg Leu Val Val
-5
                  1
                                 5
atg gag agg aga gtt aaa aat gac ctc atg tcc ttc ttg tcc acg gtt
                                                                  144
Met Glu Arg Arg Val Lys Asn Asp Leu Met Ser Phe Leu Ser Thr Val
           15
                              20
ttg ttg agt ttt cac tct tct aat gca agg gtc tca cac tgt gaa cca
                                                                  192
Leu Leu Ser Phe His Ser Ser Asn Ala Arg Val Ser His Cys Glu Pro
                          35
ctt agg atg tgatcacttt caggtggcca ggaatgttga atgtctttgg
                                                                  241
Leu Arg Met
ctcagttcat ttaaaaaaga tatctatttg aaagttctca rarttgtaca tatgtttcac
                                                                  301
agtacaggat ctgtacataa aagtttcttt cctaaaccat tcaccaagag ccaatatcta
                                                                  361
ggcattttct tggtagcaca aattttctta ttgcttaraa aattgtcctc cttgttattt
                                                                  421
ctgtttgtaa racttaagtg agttaggtct ttaaggaaag caacgctcct ctgaaatgct
                                                                  481
tgtctttttt ctgttgccga aatarctggt cctttttcgg gagttaratg tatarartgt
                                                                  541
ttgtatgtaa acatttcttg taggcatcac catgaacaaa gatatatttt ctatttattt
                                                                  601
attatatgtg cacttcaaga agtcactgtc agagaaataa agaattgtct taaatgtcaa
                                                                  661
aaaaaaaaa
                                                                  671
```

<210> 283 <211> 1601 <212> DNA

<213> Homo sapiens

```
<220>
<221> CDS
<222> 39..1034
<221> sig_peptide
<222> 39..134
<223> Von Heijne matrix
      score 6.09999990463257
      seq LPLLTSALHGLQQ/QH
<221> polyA signal
<222> 1566..1571
<221> polyA_site
<222> 1587..1597
<400> 283
agccccagat cctgaaggag gtgcagagcc cagagggg atg atc kcg ctg agg gac
                                         Met Ile Xaa Leu Arg Asp
aca gct gcc tcc ctc cgc ctt gag aga gac aca agg cag ttg cca ctg
                                                                      104
Thr Ala Ala Ser Leu Arg Leu Glu Arg Asp Thr Arg Gln Leu Pro Leu
                        -20
                                            -15
ctc acc agt gcc ctg cac gga ctg cag cag cag cac cca gcc ttc tct
                                                                      152
Leu Thr Ser Ala Leu His Gly Leu Gln Gln His Pro Ala Phe Ser
                                                                      200
ggt gtg gca cgg ctg gcc aag cgg tgg gtg cgt gcc cag ctt ctt ggt
Gly Val Ala Arg Leu Ala Lys Arg Trp Val Arg Ala Gln Leu Leu Gly
           10
                                15
gag ggt ttc gct gat gag agc ctg gat ctg gtg gcc gct gcc ctt ttc
                                                                      248
Glu Gly Phe Ala Asp Glu Ser Leu Asp Leu Val Ala Ala Ala Leu Phe
                            30
ctg cac cct gag ccc ttc acc cct ccg agt tcc ccc cag gtt ggc ttc
                                                                      296
Leu His Pro Glu Pro Phe Thr Pro Pro Ser Ser Pro Gln Val Gly Phe
                       45
                                                                      344
ctt cga ttc ctt ttc ttg gta tca acg ttt gat tgg aag aac aac ccc
Leu Arg Phe Leu Phe Leu Val Ser Thr Phe Asp Trp Lys Asn Asn Pro
                                       65
                   60
ctc ttt gtc aac ctc aat aat gag ctc act gtg gag gag cag gtg gar
                                                                      392
Leu Phe Val Asn Leu Asn Asn Glu Leu Thr Val Glu Glu Gln Val Glu
                                                                      440
atc eqc aqt qqc ttc etg gea get egg gea eag etc ecc gtc atg gtc
Ile Arg Ser Gly Phe Leu Ala Ala Arg Ala Gln Leu Pro Val Met Val
                               95
                                                                      488
att gtt acc ccc caa rac cgc aaa aac tct gtg tgg aca cag gat gga
Ile Val Thr Pro Gln Xaa Arg Lys Asn Ser Val Trp Thr Gln Asp Gly
                           110
                                                                      536
ccc tca gcc car atc ctg cag cag ctt gtg gtc ctg gca gct gaa scc
Pro Ser Ala Gln Ile Leu Gln Gln Leu Val Val Leu Ala Ala Glu Xaa
                        125
                                            130
                                                                      584
ctg ccc atg tta rar aas cag ctc atg gat ccc cgg gga cct ggg gac
Leu Pro Met Leu Xaa Xaa Gln Leu Met Asp Pro Arg Gly Pro Gly Asp
135
                                       145
                   140
                                                                      632
atc agg aca gkg ttc cgg ccg ccc ttg gac att tac gac gtg ctg att
Ile Arg Thr Xaa Phe Arg Pro Pro Leu Asp Ile Tyr Asp Val Leu Ile
                                   160
                155
cgc ctg tct cct cgc cat atc ccg cgg cac cgc cag gct gtg gac tcr
Arg Leu Ser Pro Arg His Ile Pro Arg His Arg Gln Ala Val Asp Ser
            170
                                175
                                                                      728
cca gct gcc tcc ttc tgc cgg ggc ctg ctc agc cag ccg ggg ccc tca
Pro Ala Ala Ser Phe Cys Arg Gly Leu Leu Ser Gln Pro Gly Pro Ser
```

185 190 195	
tee etg atg eee gtg etg gge tak gat eet eet eag ete tat etg acg	776
Ser Leu Met Pro Val Leu Gly Xaa Asp Pro Pro Gln Leu Tyr Leu Thr	
200 205 210	
cag ctc arg gag gcc ttt ggg gat ctg gcc ctt ttc ttc tat gac cag	824
Gln Leu Xaa Glu Ala Phe Gly Asp Leu Ala Leu Phe Phe Tyr Asp Gln	
215 220 225 230	
cat ggt gga gag gtg att ggt gtc ctc tgg aag ccc acc agc ttc cag	872
His Gly Gly Glu Val Ile Gly Val Leu Trp Lys Pro Thr Ser Phe Gln	
235 240 245	
ccg cag ccc ttc aag gcc tcc agc aca aag ggg cgc atg gtg atg tct	920
Pro Gln Pro Phe Lys Ala Ser Ser Thr Lys Gly Arg Met Val Met Ser	
250 255 260	
cga ggt ggg gag cta gta atg gtg ccc aat gtt gaa gca atc ctg gag	968
Arg Gly Glu Leu Val Met Val Pro Asn Val Glu Ala Ile Leu Glu	
265 270 275	
gac ttt gct gtg ctg ggt gaa ggc ctg gtg cag act gtg gag gcc cga	1016
Asp Phe Ala Val Leu Gly Glu Gly Leu Val Gln Thr Val Glu Ala Arg	
280 285 290	
agt gag agg tgg act gtg tgatcccagc tctggagcaa gctgtagacg	1064
Ser Glu Arg Trp Thr Val	
295 300	
gacagcagga cattggacct ctagagcaag atgtcagtag gatgacctcc accetecttg	1124
gacatgaatc ctccatggag ggcctgctgg ctgaacatgc tgaatcatct ccaacaaaac	1184
ccagccccaa ctttctctct gatgctccag cattggggca ggggcatggt ggcccatgta	1244
gteteetggg ceteaceate ecagaagagg agtgggagee ageteagaga aggaactgaa	1304
cccaggagat ccatccacct attagccctg ggcctggacc tccctgcgat ttcccactcc	1364
tttcttagtc ttcttccaga aacagagaag gggatgtgtg cctgggagag gctctgtctc	1424
ctteetgetg ceaggacetg tgeetagact tageatgeec tteactgeag tgteaggeet	1484
ttagatggga cocagogaaa atgtggcoot totgagtoac atcacogaca otgagoagtg	1544
gaaaggggct atatgtgtat gaatagacca cattgaagga gcaaaaaaaa aaamcch	1601
<210> 284	
<211> 1206	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 69263	
<221> sig_peptide	
<222> 69125	
<223> Von Heijne matrix	
score 3.9000009536743	
seq ALSMSSFSFHSSS/CS	
<221> polyA signal	
<222> 11731178	
<221> polyh mita	
<221> polyA_site	

<400> 284

<222> 1196..1205

acatttgtga ctttaccaat accctcccag ttcttgatag acagctgtag gttgctgggt tcaagaat atg ggt ggg ata tgg aat gct ctt tca atg tct agc ttc agt 110

Met Gly Gly Ile Trp Asn Ala Leu Ser Met Ser Ser Phe Ser

-15

-10

ttt cat tca tcc tcc tgc tca gca ctg tca gcc aag agc tta ctc agc
Phe His Ser Ser Ser Cys Ser Ala Leu Ser Ala Lys Ser Leu Leu Ser

```
- 5
aga cac cac ata ctg cag cag ttc cta gtg aga aaa tct gtg cca cta
                                                                      206 .
Arg His His Ile Leu Gln Gln Phe Leu Val Arg Lys Ser Val Pro Leu
                               20
                                                    25
gaa aat gct tca ctt cca ttt cct cac ctg ggc agt tct ctg ttt aaa
                                                                      254
Glu Asn Ala Ser Leu Pro Phe Pro His Leu Gly Ser Ser Leu Phe Lys
                            35
att gtg ggc tgatttggtc ttcctctcct cctcccactg ttactgccct
                                                                      303
Ile Val Gly
    45
geagecettg tteaggtgta cagaceetta ttetggeete tagtgteett gtetgteatg
                                                                      363
acacaccett cegeceaaat acetetgace ecaaggetgg aatggggetg gtaggarata
                                                                      423
agtttgetta eteatartea tgteetttet ettggeaeet getteeetge ggtgteetea
                                                                      483
aatggattte tgtgtggcag tggartgatt gcatgaattt ttetgtaaca cattaaettt
                                                                      543
gtattattat taagggartt tgaraaagct ttgcttataa tgtcaaggca aggaggtaaa
                                                                      603
aactggagcc caaakaaatt cccttagggc aagattatgt tataataraa aattgaattt
                                                                      663
cctgaggcag tggctgccac cccttttcar atgtttagtc ctgcaaatag catctttctt
                                                                      723
gtagtctgtg acatggatgg ggatgctagg gcccttaggg gcaaggggac taaactaaat
                                                                      783
caakttgagt ttttttccag caggggttar gggaggtact csctgttgat atttgacact
                                                                      843
araaagtaat cttttttaca aaactgtttt tctaggtggg tggaaagtga aactgccaca
                                                                      903
tccttgttgg tttagtccaa raratcattt gcaacaacag taratgtccg ggttttgttt
                                                                      963
ctgtcttttt attatgaaaa actatgttaa gggggaaaat gtggattatg gtaaccarag
                                                                     1023
gaatccctas ccttgttttc cttaraarac ttgtttagtg ttttatcara cgtctgttgt
                                                                     1083
agttgtarac aggaaagctt gtgaraaaaa caccacatgg ascctgtaaa tgtttttgca
                                                                     1143
caacctgtaa agcattcttg gaaktggcca gtaaaaaggg gttttaccat ttaaaaaaaa
                                                                     1203
                                                                     1206
```

<210> 285 <211> 536 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 115..285 <221> sig_peptide <222> 115..204 <223> Von Heijne matrix score 3.7000004768372 seq SMMLLTVYGGYLC/SV <221> polyA signal <222> 505..510 <221> polyA site <222> 525..536 <400> 285 acgagtgctg cgttcggctg tgctgggaag ttgcgtagac agtggcctcg agaccctgcc 60 tgcctgagga ggcctcggtt ggatgcgaag gagctgcagc atccagggga caag atg 117 cca act ggc aag cag cta gct gac att ggc tat aag acc ttc tct acc 165 Pro Thr Gly Lys Gln Leu Ala Asp Ile Gly Tyr Lys Thr Phe Ser Thr -25 -20 tee atg atg ett ete act gtg tat ggg ggg tae ete tge agt gte ega Ser Met Met Leu Leu Thr Val Tyr Gly Gly Tyr Leu Cys Ser Val Arg gtc tac cac tat ttc cag tgg cgc agg gcc cag cgc cag gcc gca gaa 261

Val Tyr His Tyr Phe Gln Trp Arg Arg Ala Gln Arg Gln Ala Ala Glu

5 10 15	
gaa cag aag dac tca gga atc atg tagaactggg gggctttttc tcctgagcar	315
Glu Gln Lys Xaa Ser Gly Ile Met 20 25	
asakgcccaa ggcatgctgt ggagagactt cacctgccac catttccagg tcaacaggac	375
tagagogttg atggttttca aaccetgttg gaagaaagtg cecatggttt etetggttet	435
gccartttga cagtttatgg argcttttga atcgtaatar caatgtgagg gtgargtaca	495
cctacagaca ttaaataatt tgctgtgtca aaaaaaaaa a	536
<210> 286	
<211> 529	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 90344	
<221> sig_peptide <222> 90140	
<223> Von Heijne matrix	
score 8.19999980926514	
seq LLLITAILAVAVG/FP	
<221> polyA_signal	
<2222> 500505	
<221> polyA site	
<222> 515527	
<400> 286	60
aatatrarac agctacaata ttccagggcc artcacttgc catttctcat aacagcgtca gagagaaaga actgactgar acgtttgag atg aag aaa gtt ctc ctc ctg atc	60 113
Met Lys Lys Val Leu Leu Ile	113
-15 -10	
aca gcc atc ttg gca gtg gct gtw ggt ttc cca gtc tct caa gac cag	161
Thr Ala Ile Leu Ala Val Ala Val Gly Phe Pro Val Ser Gln Asp Gln	
-5 1 5	209
gaa cga gaa aaa aga agt atc agt gac agc gat gaa tta gct tca ggr Glu Arg Glu Lys Arg Ser Ile Ser Asp Ser Asp Glu Leu Ala Ser Gly	209
10 15 20	
with the geg the cet tac cea tat cea the ege cea eth cea cea att	257
Xaa Phe Val Phe Pro Tyr Pro Tyr Pro Phe Arg Pro Leu Pro Pro Ile	
25 30 35	
CCa ttt cca aga ttt cca tgg ttt aga cgt aat ttt cct att cca ata	305
Pro Phe Pro Arg Phe Pro Trp Phe Arg Arg Asn Phe Pro Ile 40 45 50 55	
cct gaa tot goo cot aca act coo ott cot ago gaa aag taaacaaraa	354
Pro Glu Ser Ala Pro Thr Thr Pro Leu Pro Ser Glu Lys	
60 65	
ggaaaagtca crataaacct ggtcacctga aattgaaatt gagccacttc cttgaaraat	414
Caaaatteet gitaataaaa raaaaacaaa tgtaattgaa atagcacaca gcatteteta gicaatatet ttagigatet tetitaataa acatgaaage aaaaaaaaaa aaace	474 529
groundade congregator contractae acatyacayo adadadada adado	323

<210> 287

<211> 493

<212> DNA

```
<213> Homo sapiens
<220>
<221> CDS
<222> 57..311
<221> sig peptide
<222> 57..107
<223> Von Heijne matrix
      score 8.19999980926514
      seq LLLITAILAVAVG/FP
<221> polyA_signal
<222> 467..472
<221> polyA site
<222> 482..493
<400> 287
aacttgccat ttctcataac agcgtcagag agaaagaact gactgaaacg tttgag atg
                                                                      59
aag aaa gtt ctc ctc ctg atc aca gcc atc ttg gca gtg gct gtt ggt
                                                                     107
Lys Lys Val Leu Leu Ile Thr Ala Ile Leu Ala Val Ala Val Gly
                       -10
ttc cca gtc tct caa gac cak gaa cga gaa aaa aga agt atc agt gac
                                                                     155
Phe Pro Val Ser Gln Asp Xaa Glu Arg Glu Lys Arg Ser Ile Ser Asp
                                    10
age gat gaa tta get tea ggg ttt ttt gtg tte eet tae eea tat eea
                                                                     203
Ser Asp Glu Leu Ala Ser Gly Phe Phe Val Phe Pro Tyr Pro Tyr Pro
                                25
ttt cgc cca ctt cca cca att cca ttt cca aga ttt cca tgg ttt aga
                                                                     251
Phe Arg Pro Leu Pro Pro Ile Pro Phe Pro Arg Phe Pro Trp Phe Arg
                           40
cgt aat ttt cct att cca ata cct gaa tct gcc cct aca act ccc ctt
                                                                     299
Arg Asn Phe Pro Ile Pro Ile Pro Glu Ser Ala Pro Thr Thr Pro Leu
                     55
ccg agc gaa aag taaacaagaa ggaaaagtca cgataaacct ggtcacctga
                                                                     351
Pro Ser Glu Lys
aattgaaatt gagccacttc cttgargaat caaaattcct gttaataaaa gaaaaacaaa
                                                                     411
tgtaattgaa atagcacaca gcattctcta gtcaatatct ttagtgatct tctttaataa
                                                                     471
acatgaaagc aaaaaaaaa aa
                                                                     493
<210> 288
<211> 521
<212> DNA
<213> Homo sapiens
```

<222> 501..514

<400> 288	
aagagacgtc accggctgcg cccttcagta tcgcggacgg aagatggcgt ccgccacccg	60
teteatecag eggetgegga actgggegte eggge atg ace tge agg gga age	113
Met Thr Cys Arg Gly Ser	
-25	
tgc agc tac gct acc agg aga tct cca agc gaa ctc agc ctc cca	161
Cys Ser Tyr Ala Thr Arg Arg Ser Pro Ser Glu Leu Ser Leu Pro	
-20 -15 -10	200
age tee etg tgg gte eta gee aca age tet eea aca att act att gea	209
Ser Ser Leu Trp Val Leu Ala Thr Ser Ser Pro Thr Ile Thr Ile Ala -5 5 5	
ctc gcg atg gcc gcc ggg aat ctg tgc ccc ctt cca tca tkt cgt	257
Leu Ala Met Ala Ala Gly Asn Leu Cys Pro Leu Pro Ser Ser Xaa Arg	
10 15 20 25	
crc aaa agg cgc tgg tgt cag gca asc car caa ara gct ctg ctg	302
Xaa Lys Arg Arg Trp Cys Gln Ala Xaa Gln Gln Xaa Ala Leu Leu	
30 35 40	
tagctgccac tgaaaaraag gcggtgactc cagctcctcc cataaagagg tgggagctgt	362
ceteggacea geettacetg tgacactgea ceetcaegge caceegacta etttgeetee	422
ttggatttcc tccagggaga atgtgaccta atttatgaca aatacgtara gctcaggtat	482
cacttctagt tttactttaa aaaataaaaa aatagagac	521
<210> 289	
<211> 811	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 161526	
<221> sig_peptide	
<222> 161328	
<223> Von Heijne matrix	
score 4.19999980926514	
seq XSPLLTLALLGQC/SL	
<221> polyA site	
<222> 799811	
, , , , , , , , , , , , , , , , , , ,	
<400> 289	
aaaaaattgc agtgctgaag acactggacc cgcaaaaggc tgtccctccc aaacctggga	60
ttctgggctc actgagttca cctgcgagtc agccctacct gcactgctct ggtctagtac	120
aaacaggetg etggeattga ggtetgetae aaaaanarta atg gte eea tgg eee	175
Met Val Pro Trp Pro	
- 55	
agg ggc aag gtg aaa act gct cct att ccc atc tct agg ttt cct ttc	223
Arg Gly Lys Val Lys Thr Ala Pro Ile Pro Ile Ser Arg Phe Pro Phe	
-50 -45 -40	222
ctc cct acc cac gac cca ccc acc cca gca cat tgg tct cca gca tct	271
Leu Pro Thr His Asp Pro Pro Thr Pro Ala His Trp Ser Pro Ala Ser -35 -25 -20	
= -	319
cat cag cag ttt aaa cat kkg tca ccc ctc ctc act ttg gcc ctg ctg His Gln Gln Phe Lys His Xaa Ser Pro Leu Leu Thr Leu Ala Leu Leu	313
-15 -10 -5	
ggt cag tgc tct ctg ttc arc aat ttg agg aaa aaa ctt gca ggg caa	367
Gly Gln Cys Ser Leu Phe Xaa Asn Leu Arg Lys Lys Leu Ala Gly Gln	
1 5 10	
aaa gca aaa aaa tta cct tcc ttc tcc agc ctg ccc ctg aca ctc tgg	415

Lys Ala Lys Lys Leu Pro Ser Phe Ser Ser Leu Pro Leu Thr Leu Trp 15 20 25	
cca tta act cct caa ttt gct gag ctc act aca gtg gca caa aaa aaa	463
Pro Leu Thr Pro Gln Phe Ala Glu Leu Thr Thr Val Ala Gln Lys Lys 30 45	
30 40 45 ttg agg tgg tcc ggg acc cta ggt tgg ggt cca gtt ccc agc tgg gtt	511
Leu Arg Trp Ser Gly Thr Leu Gly Trp Gly Pro Val Pro Ser Trp Val 50 55 60	
caa ttt ttt tta ggg tgaatggagg garagttggg gactgaaaas ccttcaaara	566
Gln Phe Phe Leu Gly 65	
caatgttatt acagcaktct ccccttatcc aaaktttcct tttcctgadt ttcagttagc	626
tatggtcaac cgcttggaaa atakttgaac acagtacaat aaratatttt gaggctggga	686
ktggtggete atgeetgtaa taateeeagg aetttgtgar aeeaaktttg aaggateaet tgaaceeagg aktttgarae easeetggge aaeatrgtra gaeeteatet etaeaaaaa	746 806
aaaaa	811
<210> 290	
<211> 625 <212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 210332	
<221> sig_peptide	
<222> 210299	
<pre><223> Von Heijne matrix score 8.10000038146973</pre>	
seq ITCLLAFWVPASC/IQ	
<221> polyA signal	
<222> 594599	
<221> polyA site	
<222> polyA_site <222> 613625	
<pre><400> 290 acaggtcsmc ttaacatctc ttgatttgag ccactcccac tgtcatcagc tttcacctgg</pre>	60
attategtga cageeteeta etgettetet ateatgtgge cagagetate tteeetaaaa	120
atgcattgca tagttgatca agtcactctc tggcctaaaa ccttccttgg ctccctgctg	180
ccctcaggat aaagtetgga cccctcage atg gct tgt gag act cat ggt gtc	233
Met Ala Cys Glu Thr His Gly Val -30 -25	
ctt gtc cct gct cac ctc tct ggt ctc atc act tgc ctt ctt gca ttc	281
Leu Val Pro Ala His Leu Ser Gly Leu Ile Thr Cys Leu Leu Ala Phe	
-20 -15 -10 tgg gtc cca gcc tcc tgt atc cag aga tgc agt ggc tct cca ttg cca	329
Trp Val Pro Ala Ser Cys Ile Gln Arg Cys Ser Gly Ser Pro Leu Pro	323
-5 1 5 10	
ctc tgattcctcc tttcttttgg tcacagagaa agggtacttt ctctgtcaaa Leu	382
totoaactta gaottgactt cotocaagga gotttggota tactototoo cwcgaccocc	442
accetggeat actacacara teactetggg eteacttgee tgeetaatgg teateteece	502
agtaaactgt aagctccttg agggcaagga ttgtgttgga atttttgtat taacagtgcc	562
tggcttggtg cctggcacct aaaaagcact caataaatgt ttgtttaatg aaaaaaaaaa	622 625

```
<210> 291
 <211> 684
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> CDS
 <222> 212..361
<221> sig_peptide
<222> 212..319
<223> Von Heijne matrix
      score 4.09999990463257
      seq HWLFLASLSGIKT/YQ
<221> polyA_signal
<222> 650..655
<221> polyA_site
<222> 673..684
<400> 291
atccccawns cactetetea cagagactgt tetttteett etgagaceet actccagett
                                                                       60
gtagttctaa atctgtgatt atgcactgtc tgtcttcctc ttgaggtcag gggccatttc
                                                                      120
ttttgttctc tgctatgctc aggacccaga tcaaaggagc tcagtaacta tttacaggcg
                                                                      180
tacatcatat gtggaggaca cttatgctgt g atg gcc cca cac aca gct tec
                                                                      232
                                   Met Ala Pro His Thr Ala Ser
                                       -35
ttt ggg gtc tgt ccc ctg ctc tcc gtt acc cgc gtg gta gcc act gag
                                                                      280
Phe Gly Val Cys Pro Leu Leu Ser Val Thr Arg Val Val Ala Thr Glu
                -25
                                    -20
cac tgg ctc ttc ctg gct tca ctc tct ggc atc aaa act tat cag tcc
                                                                     328
His Trp Leu Phe Leu Ala Ser Leu Ser Gly Ile Lys Thr Tyr Gln Ser
                               -5
tac atc tca gtc ttt tgc aag gtg aca ctt atc tgattaccta attcacacra
Tyr Ile Ser Val Phe Cys Lys Val Thr Leu Ile
                        10
aggtgttaat ggtggtaatg gcataktatt tattacccca ggggacccak aacggtggta
                                                                     441
tcaaaacata tcattcccca gtggtttaaa actctggtag ctttccargg aatccaaagt
                                                                     501
ggaatccagt ctccttagct gawttcacag ggccccgtct gcacaacttg gcttctgtcg
                                                                     561
gettecetan ecctgaette ceaageetta gteateacee teteteceae ceagggetea
                                                                     621
gcacagtacc tggaacagtc aagccctcaa taaatgttta ctgagtgcat yaaaaaaaa
                                                                     681
                                                                     684
<210> 292
<211> 628
```

<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> 75..482

<221> sig_peptide
<222> 75..128
<223> Von Heijne matrix
score 3.59999990463257
seq KMLISVAMLGAXA/GV

<221> polyA_signal <222> 595..600 <221> polyA_site <222> 618..627 <400> 292 aagtgagacc gcgcggcaac agcttgcggc tgcggggagc tcccgtgggc gctccgctgg 60 ctgtgcaggc ggcc atg gat tcc ttg cgg aaa atg ctg atc tca gtc gca 110 Met Asp Ser Leu Arg Lys Met Leu Ile Ser Val Ala -15 -10 atg ctg ggc gca rgg gct ggc gtg ggc tac gcg ctc ctc gtt atc gtg 158 Met Leu Gly Ala Xaa Ala Gly Val Gly Tyr Ala Leu Leu Val Ile Val -5 acc ccg gga gag cgg cgg aag cag gaa atg cta aag gag atg cca ctg 206 Thr Pro Gly Glu Arg Arg Lys Gln Glu Met Leu Lys Glu Met Pro Leu 20 254 Gln Asp Pro Arg Ser Arg Glu Glu Ala Ala Arg Thr Gln Gln Leu Leu. 35 ctg gcc act ctg cag gag gca gcg acc acg cag gag aac gtg gcc tgg 302 Leu Ala Thr Leu Gln Glu Ala Ala Thr Thr Gln Glu Asn Val Ala Trp 50 agg aag aac tgg atg gtt ggc ggc gaa ggc ggc gcc acg gga kgt cac 350 Arg Lys Asn Trp Met Val Gly Gly Glu Gly Gly Ala Thr Gly Xaa His 60 cgt gag acc gga ctt gcc tcc gtg ggc gcc gga cct tgg ctt ggg cgc 398 Arg Glu Thr Gly Leu Ala Ser Val Gly Ala Gly Pro Trp Leu Gly Arg 80 agg aat ccg agg cag ctt tct cct tcg tgg gcc can cgg aaa atc cgg 446 Arg Asn Pro Arg Gln Leu Ser Pro Ser Trp Ala Xaa Arg Lys Ile Arg 95 100 amc gaa aat wcc atg cca gga ctc tcc ggg gtc ctg tgaactgccg 492 Xaa Glu Asn Xaa Met Pro Gly Leu Ser Gly Val Leu 115 tcgggtgagc acgtgtcccc caaaccctgg actgactgct ttaaggtccg caaggcgggc 552 cagggccgag acgcgagtcg gatgtggtga actgaaagaa ccaataaaat catgttcctc 612 cammcaaaaa aaaaah 628

<210> 293

<211> 813

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 50..631

<221> sig_peptide

<222> 50..244

<223> Von Heijne matrix score 8 seq LTLIGCLVTGVES/KI

<221> polyA_signal

<222> 777..782

<221> polyA site

<222> 801..812

<400> 293	
aaggaaagga ttactcgagc cttgttagaa tcagacatgg cttcagggg atg cag gac Met Gln Asp -65	
gct ccc ctg agc tgc ctg tca ccg act aag tgg agc agt gtt tct tcc Ala Pro Leu Ser Cys Leu Ser Pro Thr Lys Trp Ser Ser Val Ser Ser -60 -55 -50	106
gca gac tca act gag aag tca gcc tct gcg gca ggc acc agg aat ctg Ala Asp Ser Thr Glu Lys Ser Ala Ser Ala Ala Gly Thr Arg Asn Leu -45 -40 -35	154
cct ttt cag ttc tgt ctc cgg cag gct ttg agg atg aag gct gcg ggc Pro Phe Gln Phe Cys Leu Arg Gln Ala Leu Arg Met Lys Ala Ala Gly -30 -25 -20 -15	202
att ctg acc ctc att ggc tgc ctg gtc aca ggc gtc gag tcc aaa atc Ile Leu Thr Leu Ile Gly Cys Leu Val Thr Gly Val Glu Ser Lys Ile -10 -5	250
tac act cgt tgc aaa ctg gca aaa ata ttc tcg agg gct ggc ctg gac Tyr Thr Arg Cys Lys Leu Ala Lys Ile Phe Ser Arg Ala Gly Leu Asp 5 10 15	298
aat cyg agg ggc ttc agc ctt gga aac tgg atc tgc atg gcg tat tat Asn Xaa Arg Gly Phe Ser Leu Gly Asn Trp Ile Cys Met Ala Tyr Tyr 20 25 30	346
gag agc ggc tac aac acc aca gcc car acg gtc ctg gat gac ggc agc Glu Ser Gly Tyr Asn Thr Thr Ala Gln Thr Val Leu Asp Asp Gly Ser 35	394
atc gac tay ggc atc ttc caa atc aac agc ttc gcg tgg tgc aga cgc Ile Asp Tyr Gly Ile Phe Gln Ile Asn Ser Phe Ala Trp Cys Arg Arg 55 60 65	442
gga aag ctg aag gag aac aac cac tgc cay gtc gcc tgc tca gcc ttg Gly Lys Leu Lys Glu Asn Asn His Cys His Val Ala Cys Ser Ala Leu 70 75 80	490
rtc act gat gac ctc aca gat gca att atc tgt gcc arg aaa att gtt Xaa Thr Asp Asp Leu Thr Asp Ala Ile Ile Cys Ala Xaa Lys Ile Val 85 90 95	538
aaa gag aca caa gga atg aac tat tgg caa ggc tgg aag aaa cay tgt Lys Glu Thr Gln Gly Met Asn Tyr Trp Gln Gly Trp Lys Lys His Cys 100 105 110	586
gag ggg aga gac ctg tcc gas tgg aaa aaa ggc tgt gag gtt tcc Glu Gly Arg Asp Leu Ser Xaa Trp Lys Lys Gly Cys Glu Val Ser 115 120 125	631
taaactggaa ctggacccag gatgctttgc ascaacgccc tagggtttgc agtgaatgtc caaatgcctg tgtcatcttg tcccgtttcc tcccaatatt ccttctcaaa cttggagagg gaaaattaag ctatactttt aagaaaataa atatttccat ttaaatgtca amaaaaaaaa ah	691 751 811 813

<210> 294

<211> 778

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 154..576

<221> sig_peptide

<222> 154..360

<223> Von Heijne matrix
 score 4.80000019073486
 seq MMVLSLGIILASA/SF

<221> polyA_signal <222> 737..742 <221> polyA site <222> 763..775 <400> 294 agtaaaaaaa cactggaata aggaagggct gatgactttc agaagatgaa ggtaagtaga 60 aaccgttgat gggactgaga aaccagagtk aaaacctctt tggagcttct gaggactcag 120 ctggaaccaa cgggcacagt tggcaacacc atc atg aca tca caa cct gtt ccc 174 Met Thr Ser Gln Pro Val Pro aat gag acc atc ata gtg ctc cca tca aat gtc atc aac ttc tcc caa 222 Asn Glu Thr Ile Ile Val Leu Pro Ser Asn Val Ile Asn Phe Ser Gln -55 gca gag aaa ccc gaa ccc acc aac cag ggg cag gat agc ctg aag aaa 270 Ala Glu Lys Pro Glu Pro Thr Asn Gln Gly Gln Asp Ser Leu Lys Lys -40 -35 cat cta cac gca gaa atc aaa gtt att ggg act atc cag atc ttg tgt 318 His Leu His Ala Glu Ile Lys Val Ile Gly Thr Ile Gln Ile Leu Cys -25 -20 ggc atg atg gta ttg agc ttg ggg atc att ttg gca tct gct tcc ttc 366 Gly Met Met Val Leu Ser Leu Gly Ile Ile Leu Ala Ser Ala Ser Phe -10 -5 tet eca aat tit ace caa gig act tet aca etg tig aac tet get tae 414 Ser Pro Asn Phe Thr Gln Val Thr Ser Thr Leu Leu Asn Ser Ala Tyr 10 cca ttc ata gga ccc ttt ttt gtr akt aaa btt tct gag gag ggc agg 462 Pro Phe Ile Gly Pro Phe Phe Val Xaa Lys Xaa Ser Glu Glu Gly Arg 25 atg ggg caa ara ggg gag gaa rat vcc aat agc tta aac ttc cca sct 510 Met Gly Gln Xaa Gly Glu Glu Xaa Xaa Asn Ser Leu Asn Phe Pro Xaa 40 45 gcc agc ttg cta tkt ttg atc tgc cag gav caa gga ttc aac ggt gaa 558 Ala Ser Leu Leu Xaa Leu Ile Cys Gln Xaa Gln Gly Phe Asn Gly Glu 60 tot tgt tot cot gtc ggg targataaca ggggttgctt rattttagat 606 Ser Cys Ser Pro Val Gly caatttctta tcagactcaa ataaacattt cttttgaaaa tcatcttatt cttcacatta 666 tcatcttgag ctatgatgga aactagtgas ktctctccag gtttaggcga aaaaaaaatc 726 catgaattag gataaagttg ggaaggaaca ttttatacaa aaaaaaaaah cc 778

<210> 295

<211> 1060

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 154..897

<221> sig_peptide

<222> 154..360

<223> Von Heijne matrix score 4.80000019073486 seq MMVLSLGIILASA/SF

<221> polyA_signal <222> 1017..1022

<221> polyA_site <222> 1044..1054

<222> 10441054	
<400> 295	
agtaaaaaaa cactggaata aggaagggct gatgactttc agaagatgaa ggtaagtaga	60
aaccgttgat gggactgaga aaccagagtk aaaacctctt tggagcttct gaggactcag	120 174
ctggaaccaa cgggcacagt tggcaacacc atc atg aca tca caa cct gtt ccc Met Thr Ser Gln Pro Val Pro -65	1/4
aat gag acc atc ata gtg ctc cca tca aat gtc atc aac ttc tcc caa	222
Asn Glu Thr Ile Ile Val Leu Pro Ser Asn Val Ile Asn Phe Ser Gln -60 -55 -50	
gca gag aaa ccc gaa ccc acc aac cag ggg cag gat agc ctg aag aaa	270
Ala Glu Lys Pro Glu Pro Thr Asn Gln Gly Gln Asp Ser Leu Lys Lys -45 -40 -35	
cat cta cac gca gar rtc aaa gtt att ggg act atc cag atc ttg tgt	318
His Leu His Ala Glu Xaa Lys Val Ile Gly Thr Ile Gln Ile Leu Cys -30 -25 -20 -15	
ggc atg atg gta ttg agc ttg ggg atc att ttg gca tct gct tcc ttc	366
Gly Met Met Val Leu Ser Leu Gly Ile Ile Leu Ala Ser Ala Ser Phe -10 -5 1	
tot coa aat tit ace caa gig act tot aca cig tig aac tot got tac	414
Ser Pro Asn Phe Thr Gln Val Thr Ser Thr Leu Leu Asn Ser Ala Tyr 5 10 15	
cca tte ata gga cce ttt ttt ttt ate ate tet gge tet eta tea ate	462
Pro Phe Ile Gly Pro Phe Phe Phe Ile Ile Ser Gly Ser Leu Ser Ile 20 25 30	
gcc aca aaa aaa agg tta acc aac ctt ttg gtg cat acc acc ctg gtt	510
Ala Thr Lys Lys Arg Leu Thr Asn Leu Leu Val His Thr Thr Leu Val 35 40 45 50	
gga agc att ctg agt gct ctg tct gcc ctg gtg ggt ttc att ayc ctg	558
Gly Ser Ile Leu Ser Ala Leu Ser Ala Leu Val Gly Phe Ile Xaa Leu 55 60 65	
tet gte aaa eag gee ace tta aat eet gee tea etg cak tgt gag ttg	606
Ser Val Lys Gln Ala Thr Leu Asn Pro Ala Ser Leu Xaa Cys Glu Leu 70 75 80	
gmc aaa aat aat ata cca aca ara akt tat gtt yct tac ttt tat cat	654
Xaa Lys Asn Asn Ile Pro Thr Xaa Xaa Tyr Val Xaa Tyr Phe Tyr His 85 90 95	
gat toa ott tat ace acg gac kgc tat aca gcc aaa gcc akt ctg gct Asp Ser Leu Tyr Thr Thr Asp Xaa Tyr Thr Ala Lys Ala Xaa Leu Ala	702
100 105 110	
gga act ctc tct ctg atg ctg att tgc act ctg ctg gaa ttc tgc cwa	750
Gly Thr Leu Ser Leu Met Leu Ile Cys Thr Leu Leu Glu Phe Cys Xaa 115 120 125 130	
set gtg etc act get gtg etg egg tgg aaa eag get tac tet gae tte	798
Xaa Val Leu Thr Ala Val Leu Arg Trp Lys Gln Ala Tyr Ser Asp Phe	
135 140 145	
cct ggg agt gta ctt ttc ctg cct cam agt tac att ggw aat tct ggm	846
Pro Gly Ser Val Leu Phe Leu Pro Xaa Ser Tyr Ile Gly Asn Ser Gly 150 155 160	
atg tcc tca aaa atg acy cat gac tgt gga tat gaa gaa cta ttg act	894
Met Ser Ser Lys Met Thr His Asp Cys Gly Tyr Glu Glu Leu Thr 165 170 175	
tct taagaaaaaa gggagaaata ttaatcagaa agttgattct tatgataata Ser	947
tggaaaagtt aaccattata gaaaagcaaa gcttgagttt cctaaatgta agcttttaaa	1007
gtaatgaaca ttaaaaaaaa ccattatttc actgtcaaaa aaaaaaamcc nkt	1060

```
<210> 296
<211> 444
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 146..292
<221> sig_peptide
<222> 146..253
<223> Von Heijne matrix
     score 5.5
     seq FTSMCILFHCLLS/FQ
<221> polyA signal
<222> 395..400
<221> polyA site
<222> 433..444
<400> 296
aacttgggac aagaratcaa actttaaaga tggtctaaag cccctcttaa aggtctgact
                                                                 60
gtgtcggacc tctagagcta atctcactag atgtgagcca ttgtttatat tctagccatc
                                                                 120
ctttcatttc attctagaag acccc atg caa gtt ccc cac cta agg gtc tgg
                         Met Gln Val Pro His Leu Arg Val Trp
                              -35
aca cag gtg awa gat acc ttc att ggt tat aga aat ttg gga ttt aca
                                                                 220
Thr Gln Val Xaa Asp Thr Phe Ile Gly Tyr Arg Asn Leu Gly Phe Thr
      -25
                          -20
agt atg tgc ata ttg ttc cac tgt ctt ctt agc ttt cag gtt ttc aaa
                                                                 268
Ser Met Cys Ile Leu Phe His Cys Leu Leu Ser Phe Gln Val Phe Lys
                      -5
                                                                 322
aag aaa aga aaa ctt ara ctt ttc tgatgttctt ttttacgtaa ataaccattt
Lys Lys Arg Lys Leu Xaa Leu Phe
              10
                                                                 382
tattgttgtt ttgctttttc tgccttcaaa ctactcccac aggccaaata tavctggctg
                                                                 442
444
aa
<210> 297
```

<211> 754 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 126..383

<221> sig_peptide

<222> 126..167

<223> Von Heijne matrix score 7.5 seq VALNLILVPCCAA/WC

<221> polyA_signal

<222> 726..731

<221> polyA_site

<222> 743..754

<400> 297	
aattgtatgt tacgatgttg tattgatttt taagaaagta attkratttg taaaacttct	60
gctcgtttac actgcacatt gaatacaggt aactaattgg wwggagaggg gaggtcactc	120
ttttg atg gtg gcc ctg aac ctc att ctg gtt ccc tgc tgc gct gct tgg Met Val Ala Leu Asn Leu Ile Leu Val Pro Cys Cys Ala Ala Trp -10 -5 1	170
tgt gac cca cgg agg atc cac tcc cag gat gac gtg ctc cgt agc tct	218
Cys Asp Pro Arg Arg Ile His Ser Gln Asp Asp Val Leu Arg Ser Ser 5 10 15	210
gct gct gat act ggg tct gcg atg cag cgg cgt gag gcc tgg gct ggt Ala Ala Asp Thr Gly Ser Ala Met Gln Arg Arg Glu Ala Trp Ala Gly 20 25 30	266
tgg aga agg tca caa ccc ttc tct gtt ggt ctg cct tct gct gaa aga Trp Arg Arg Ser Gln Pro Phe Ser Val Gly Leu Pro Ser Ala Glu Arg	314
35 40 45	363
ctc gag aac caa cca ggg aag ctg tcc tgg agg tcc ctg gtc gga gag Leu Glu Asn Gln Pro Gly Lys Leu Ser Trp Arg Ser Leu Val Gly Glu 50 55 60 65	362
gga cat aga atc tgt gac ctc tgacrrctgt gaasccaccc tgggctacar	413
Gly His Arg Ile Cys Asp Leu 70	
aaaccacagt cttcccagca attattacaa ttcttgaatt ccttggggat tttttactgc	473
cctttcaaag cacttaaktg tkrratctaa cgtkttccag tgtctgtctg aggtgactta	533
aaaaatcaga acaaaacttc tattatccag agtcatggga gagtacaccc tttccaggaa	593
taatgttttg ggaaacactg aaatgaaatc ttcccagtat tataaattgt gtatttaaaa	653
aaaagaaact tttctgaatg cctacctggc ggtgtatacc aggcagtgtg ccagtttaaa	713
aagatgaaaa agaataaaaa cttttgagga aaaaaaaaaa	754
<210> 298	
<211> 629	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 66497	
<221> sig_peptide	
<222> 66239	
<223> Von Heijne matrix	
score 5.4000009536743 seq QLLDSVLWLGALG/LT	
<221> polyA_signal	
<222> 594599	
<221> polyA_site	
<222> 618629	
400. 200	
<400> 298	

aactcccaga atgctgacca aagtgggagg agcactaggt cttcccgtca cctccacctc

totoc atg acc cgg ctc tgc tta ccc aga ccc gaa gca cgt gag gat ccg

atc cca gtt cct cca agg ggc ctg ggt gct ggg gag ggg tca ggt agt

Ile Pro Val Pro Pro Arg Gly Leu Gly Ala Gly Glu Gly Ser Gly Ser

Pro Val Arg Pro Pro Val Ser Thr Trp Gly Pro Ser Trp Ala Gln Leu

-35 cca gtg cgt cca cct gta tcc acc tgg ggc cct agc tgg gcc cag ctc

-55

-40

Met Thr Arg Leu Cys Leu Pro Arg Pro Glu Ala Arg Glu Asp Pro

60

110

158

206

		-25					-20					-15				
					tgg Trp											254
	ttt				ggc Gly	cca					ctt				ttc	30
				ctg	ctc Leu				gca					cac		350
			tca		ggg ggg			gtc					aag			398
		agg			tac Tyr		tgc					tct				446
	gcc			_	cac His 75	tgc	_	-	-		tgg			_	_	494
tcc	tgaa	aaco	ctg t	ggca	atgc	cc tt	gwad	cct	g cti		tgg	ctti	ctg	cct		547
				-	nc co		ccad	c aad	ctcag	gtgt	cctt	caaa	ata t	acaa	atgacc	607 629
<211)> 29 l> 76 l> Di	55														
<213	8 > Ho	omo s	sapie	ens												
	.> CI)S)4]	.1													
			ptic	le												
	l> Vo	ore	ijne 10.1	10000	rix 00381 LAVA		7							٠		
	_	olyA_ 32?	_sigr 737	nal												
	_	olyA_ 507	_site 763	2												
)> 29 gated		gcago	ccgg	gc ag	gaga	agaag	g gct	gago	ctt	ctg	gegte			g agg	57
														-15		
					tgc Cys											105
					gct Ala											153
					gag Glu 25											201
caa					aac Asn					tct					ccc	249

WO 99/31236 -218- PCT/IB98/02122 -

	40	4.5	50	
			kgg ccg gtg ccc ccg Kaa Pro Val Pro Pro 65	297
cct ctc wkc gac		cct cgg ckc y	ycc agg gcc tgg ggc Kaa Arg Ala Trp Gly 80	345
cck gtg ggt ccd	aaa gtg cct cct	Ala Val Ser F	ccc gcg ctg ggc tcg Pro Ala Leu Gly Ser	393
	rva btg tgaatkk	_		441
agtgtcacta ggaa gcaggaacrs ackg ggcacagcac arta acagtgtatg acaa	ctgtca gcaggacaa gtgggg atgggcagc cacctg ccatacaac tgtcat atagtataa cgatgt aatataatg	t gitcrarger a c carcatcagg o c acaacataat g	cactgaatt tacaaaraca atgggtkatc tgcccttcct cakgctgcac tggaatcgat gaatataacg tgtatattgc aacataatat aataaaatag	501 561 621 681 741 765
<210> 300 <211> 623 <212> DNA <213> Homo sapid	ens			
<220> <221> CDS <222> 49534				
<221> polyA_sign <222> 593598	nal			
<221> polyA_site <222> 612623	>	·		
<400> 300 aaagatccct gcago	ccggc aggagagaa	g gctgagcctt c	tggcgtc atg gag agg Met Glu Arg	57
ctc gtc cta acc Leu Val Leu Thr	ctg tgc acc ctc Leu Cys Thr Leu	ccg ctg gct g Pro Leu Ala V	-15 tg gcg tct gct ggc al Ala Ser Ala Gly	105
Cys Ala Thr Thr	Pro Ala Arg Asn	Leu Ser Cys T	1 ac cag tgc ttc aag yr Gln Cys Phe Lys	153
		ccc acc tgg t Pro Thr Trp C	5 gc agc ccg ctg gac ys Ser Pro Leu Asp	201
caa gtc tgc atc	tcc aac gag gtg	30 gtc gtc tct t Val Val Ser P 45	35 tt aaa tgg agt gta he Lys Trp Ser Val 50	249
cgc gtc ctg ctc Arg Val Leu Leu 55	agc aaa cgc tgt	gct ccc aga t	gt ccc aac gac aac ys Pro Asn Asp Asn 65	297

atg aak ttc gaa tgg tcg Met Xaa Phe Glu Trp Ser 70	ccg gcc ccc atg gt Pro Ala Pro Met Va 75	g caa ggc gtg atc acc l Gln Gly Val Ile Thr 80	345
agg cgc tgc tgt tcc tgg Arg Arg Cys Cys Ser Trp 85	Ala Leu Cys Asn Ar 90	g Ala Leu Thr Pro Gln 95	393
gag ggg cgc tgg gcc ctg Glu Gly Arg Trp Ala Leu 100 105	cra ggg ggg ctc ct Xaa Gly Gly Leu Le 11	u Leu Gln Asp Pro Ser	441
agg ggc ara aaa acc tgg Arg Gly Xaa Lys Thr Trp 120	gtg cgg cca cag ct Val Arg Pro Gln Le 125	g ggg ctc cca ctc tgc u Gly Leu Pro Leu Cys 130	489
ctt ccc awt tcc aac ccc Leu Pro Xaa Ser Asn Pro 135			534
taacactgtg ggtgccccca co		a cttcaccctc ttggaracaa	594 623
<210> 301			
<211> 571 <212> DNA <213> Homo sapiens			
<220> <221> CDS			
<222> 86415			
<221> sig_peptide <222> 86145 <223> Von Heijne matrix score 9.8000001907 seq FTIGLTLLLGXQA/			
<221> polyA_signal <222> 540545			
<221> polyA_site <222> 560571			
<400> 301 aaaaactcac ccagtgagtg tg	aggattta agaaggato	c totoccaaga ccaaaaggaa	60
agaagaaaaa bggccaaaag co	aaa atg ara ctg at	g gta ctt gtt ttc acc t Val Leu Val Phe Thr	112
att ggg cta act ttg ctg Ile Gly Leu Thr Leu Leu -10	cta gga rtt caa go	c atg cct gca aat cgc	160
ctc tct tgc tac aga aag Leu Ser Cys Tyr Arg Lys			208
ccg gaa gga gta gct gac Pro Glu Gly Val Ala Asp 25	ctg aca cag att ga	t gtc aat gtc cag gat	256
cat ttc tgg gat ggg aag His Phe Trp Asp Gly Lys	gga tgt gag atg at	c tgt tac tgc aac ttc	304
aag cga att gct ctg ctg			352

aag cga att gct ctg ctc caaa aga cgt ttt ctt tgg acc aaa gat

Lys Arg Ile Ala Leu Leu Pro Lys Arg Arg Phe Leu Trp Thr Lys Asp

ctc ttt cgt gat tcc ttg caa caa tca atg aga atc ttc atg tat tct

65

60

352

400

Leu Phe Arg Asp Ser Leu Gln Gln Ser Met Arg Ile Phe Met Tyr Ser 70 80 85	
ggc gaa cac cat tcc tgatttccca caaactgcac tacatcagta taactgcatt Gly Glu His His Ser 90	455
tctagtttct atatagtgca atagagcata gattctataa attcttactt gtctaagaaa gtaaatctgt gttaaacaag tagtaataaa agttaattca atccaaaaaa aaaaaa	515 571
<210> 302 <211> 612	
<212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 56268	
<pre><221> sig_peptide <222> 56100 <223> Von Heijne matrix score 4.59999990463257 seq LLTHNLLSSHVRG/VG</pre>	
<221> polyA_signal	
<221> polyA_site <222> 601612	
<pre><400> 302 ctaatcgaaa agggggattt tccggttccg gcctggcgag agtttgtgcg gcgac atg</pre>	58
aaa ctg ctt acc cac aat ctg ctg agc tcg cat gtg cgg ggg gtg ggg Lys Leu Leu Thr His Asn Leu Leu Ser Ser His Val Arg Gly Val Gly -10 -5	106
tcc cgt ggc ttc ccc ctg cgc ctc cag gcc acc gag gtc cgt atc tgc Ser Arg Gly Phe Pro Leu Arg Leu Gln Ala Thr Glu Val Arg Ile Cys	154
cct gtg gaa ttc aac ccc aac ttc gtg gcg cgt atg ata cct aaa gtg Pro Val Glu Phe Asn Pro Asn Phe Val Ala Arg Met Ile Pro Lys Val 20 25 30	202
gag tgg tcg gcg ttc ctg gag gcg rmc gat aac ttg cgt ctg atc cag Glu Trp Ser Ala Phe Leu Glu Ala Xaa Asp Asn Leu Arg Leu Ile Gln 35 40 45 50	250
gtg ccg aga agg gcc ggt tgagggatat gaggagaatg aggagtttct Val Pro Arg Arg Ala Gly 55	298
gaggaccatg caccacctgc tgctggaggt ggamstgaka gagggcaccc tgcagtgccc	358
ggaatetgga egtatgttee ceateageeg egggateece aacatgetge tgagtgaaga	418
ggaaactgag agttgattgt gccaggcgcc agtttttctt gttatgactg tgtatttttg	478
ttgatctata ccctgtttcc gaattctgcc gtgtgtatcc ccaacccttg acccaatgac	538
accaaacaca gtgtttttga gctcggtatt atatattttt ttctcattaa aggtttaaaa	598
CCaaaaaaa aaaa	612

<210> 303

<211> 539

<212> DNA

```
<213> Homo sapiens
<220>
<221> CDS
<222> 32..328
<221> sig_peptide
<222> 32..103
<223> Von Heijne matrix
     score 4.59999990463257
      seq FFIFCSLNTLLLG/GV
<221> polyA_signal
<222> 508..513
<221> polyA_site
<222> 528..539
<400> 303
aacaactate etgeetgetg ettgetgeac e atg aag tet gee aag etg gga
                                                                      52
                                   Met Lys Ser Ala Lys Leu Gly
ttt ctt cta aga ttc ttc atc ttc tgc tca ttg aat acc ctg tta ttg
                                                                      100
Phe Leu Leu Arg Phe Phe Ile Phe Cys Ser Leu Asn Thr Leu Leu Leu
                            -10
ggt ggt gtt aat aaa att gcg gag aag ata tgt gga gac ctc aaa gat
                                                                      148
Gly Gly Val Asn Lys Ile Ala Glu Lys Ile Cys Gly Asp Leu Lys Asp
                                        10
                                                                      196
ccc tgc aaa ttg gac atg aat ttt gga agc tgc tat gaa gtt cac ttt
Pro Cys Lys Leu Asp Met Asn Phe Gly Ser Cys Tyr Glu Val His Phe
               20
                                    25
aga tat ttc tac aac aga acc tcc aaa aga tgt gaa act ttt gtc ttc
                                                                      244
Arg Tyr Phe Tyr Asn Arg Thr Ser Lys Arg Cys Glu Thr Phe Val Phe
          35
                               40
tcc agc tgt aat ggc aac ctt aac aac ttc aag ctt aaa ata gaa cgt
                                                                      292
Ser Ser Cys Asn Gly Asn Leu Asn Asn Phe Lys Leu Lys Ile Glu Arg
                           55
gaa gta kcc tgt gtt gca aaa tac aaa cca ccg agg tgagaggatg
                                                                      338
Glu Val Xaa Cys Val Ala Lys Tyr Lys Pro Pro Arg
tgaactcatg aagttqtctg ctqcaccatc cgaaataaag acacaagaaa attcaractg
                                                                      398
                                                                      458
atttwgaaat ctttqttwta tttccmymak ggcgwktaag cttccatatg tttgctattt
                                                                      518
tcctgaccct agttttgtct ttcctggaaa ttaactgtat gakcattasa atgaaagagt
                                                                      539
ctttctgtca aaaaaaaaa a
<210> 304
```

<221> polyA_signal <222> 921..926 <221> polyA_site <222> 953..963 <400> 304 agggeggate tteteeggee atg agg aag eea gee get gge tte ett eee tea Met Arg Lys Pro Ala Ala Gly Phe Leu Pro Ser -25 -20 ctc ctg aag gtg ctg ctc ctg cct ctg gca cct gcc gca gcc cag gat 101 Leu Leu Lys Val Leu Leu Pro Leu Ala Pro Ala Ala Ala Gln Asp -10 - 5 tcg act cag gcc tcc act cca ggc agc cct ctc tct cct acc gaa tac 149 Ser Thr Gln Ala Ser Thr Pro Gly Ser Pro Leu Ser Pro Thr Glu Tyr 10 caa cgc ttc ttc gca ctg ctg act cca acc tgg aag gca gar act acc 197 Gln Arg Phe Phe Ala Leu Leu Thr Pro Thr Trp Lys Ala Glu Thr Thr 25 30 tgc cgt ctc cgt gca acc cac ggc tgc cgg aat ccc aca ctc gtc cag 245 Cys Arg Leu Arg Ala Thr His Gly Cys Arg Asn Pro Thr Leu Val Gln 40 45 ctg gac caa tat gaa aac cac ggc tta gtg ccc gat ggt gct gtc tgc 293 Leu Asp Gln Tyr Glu Asn His Gly Leu Val Pro Asp Gly Ala Val Cys 55 60 tee aac etc cet tat gee tee tgg ttt gag tet tte tge cag tte act 341 Ser Asn Leu Pro Tyr Ala Ser Trp Phe Glu Ser Phe Cys Gln Phe Thr 75 cac tac cgt tgc tcc aac cac gtc tac tat gcc aag aga gtc ctg tgt 389 His Tyr Arg Cys Ser Asn His Val Tyr Tyr Ala Lys Arg Val Leu Cys 90 tee cag eca gte tet att etc tew ect aac act etc aag gag ata gaa 437 Ser Gln Pro Val Ser Ile Leu Ser Pro Asn Thr Leu Lys Glu Ile Glu 105 110 sct tca gct gaa gtc tca ccc acc aca gat gac ctc ccc cat ctc acc 485 Xaa Ser Ala Glu Val Ser Pro Thr Thr Asp Asp Leu Pro His Leu Thr 120 125 130 cca ctt cac agt gac aga acg cca gac ctt cca gcc ctg gcc 527 Pro Leu His Ser Asp Arg Thr Pro Asp Leu Pro Ala Leu Ala 135 140 tgagaggete ageaacaaeg tggaagaget cetacaatee teettgteee tgggaggeea 587 ggagcaageg ccagagcaca agcaggagca aggagtggag cacaggcagg agccgacaca 647 agaacacaag caggaagagg ggcagaaaca ggaagagcaa gaagaggaac aggaagagga 707 gggaaagcag gaagaaqqac aqqqqactaa ggaggqacqq qaqqctqtqt ctcagctgca 767 gacagactca gagcccaagt ttcactctga atctctatct tctaaccctt cctcttttgc 827 tccccgggta cganaagtag agtctactcc tatgataatg gagaacatcc aggagctcat 887 tcgatcagcc caggaaatag atgaaatgaa tgaaatatat gatgagaact cctactggag 947 aaaccaaaaa aaaaaak 964

<210> 305

<211> 684

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 147..647

<221> sig_peptide

<222> 147..374

<223> Von Heijne matrix score 3.5 seq LASASELPLGSRP/AP

<221> polyA_site <222> 668..681

<400> 305

<400> 305	
aactteetgt gageeeggeg gtgacaaegg caacatggee egtgaaegga getgaagteg	60
acgaettete etrgrarmee eegaetgagg eggagaegaa ggtgetgeag gegegaeggg	120
ageggeaaga tegeatetee eggete atg gge gae tat etg etg ege ggt tae	173
Met Gly Asp Tyr Leu Leu Arg Gly Tyr	
-75 -70	
cgc atg ctg ggc gag acg tgt gcg gac tgc ggg acg atc ctc ctc caa	221
Arg Met Leu Gly Glu Thr Cys Ala Asp Cys Gly Thr Ile Leu Leu Gln	
-65 -60 -55	269
gac aaa cag cgg aaa atc tac tgc gtg gct tgt cag gaa ctc gac tca	209
Asp Lys Gln Arg Lys Ile Tyr Cys Val Ala Cys Gln Glu Leu Asp Ser -50 -45 -40	
gac gtg gat aaa gat aat ccc gct ctg aat gcc cag gct gcc ctc tcc	317
Asp Val Asp Lys Asp Asn Pro Ala Leu Asn Ala Gln Ala Ala Leu Ser	
-35 -30 -25 -20	
caa gct cgg gag cac cag ctg gcc tca gcc tca gag ctc ccc ctg ggc	365
Gln Ala Arg Glu His Gln Leu Ala Ser Ala Ser Glu Leu Pro Leu Gly	
-15 -10 -5	
tet ega eet geg eee caa eee eea gta eet egt eeg gag eae tgt gag	413
Ser Arg Pro Ala Pro Gln Pro Pro Val Pro Arg Pro Glu His Cys Glu	
1 5 10	
gga gct gca gga ctc aag gca gcc cag ggg cca cct gct cct gct	461
Gly Ala Ala Gly Leu Lys Ala Ala Gln Gly Pro Pro Ala Pro Ala	
15 20 25	509
gtg cct cca aat aca rat gtc atg gcc tgc aca cag aca gcc ctc ttg	309
Val Pro Pro Asn Thr Xaa Val Met Ala Cys Thr Gln Thr Ala Leu Leu 30 45	
caa aag ctg acc tgg gcc tct gct gaa ctg ggc tct anc acc tcc cyg	557
Gln Lys Leu Thr Trp Ala Ser Ala Glu Leu Gly Ser Xaa Thr Ser Xaa	
50 55 60	
gga aaa mta gca tcc agc tgt gtg gcc tta tcc gcg cat gtg cgg agg	605
Gly Lys Xaa Ala Ser Ser Cys Val Ala Leu Ser Ala His Val Arg Arg	
65 70 75	
ccc tgc gca gcc tgc agc agc tac agc act aag aga agc ccc	647
Pro Cys Ala Ala Cys Ser Ser Tyr Ser Thr Lys Arg Ser Pro	
80 85 90	
tgagaaaaac ctctagaaaa acaaaaaaaa aaaaccc	684

<210> 306

<211> 693

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 262..471

<221> sig_peptide

<222> 262..306

<223> Von Heijne matrix score 3.5 seq LCFLLPHHRLQEA/RQ

<221> polyA_signal <222> 663668	
<221> polyA_site <222> 682693	
<400> 306 atttegegge getegebgma cyhsgwtgtt cageacette ggteeggttg aggttgteaa gteggmecaa acaggttgtt tetetgeagt ttecaacatg geagggmsgt ttaatagaca tggataagaa gteeacteae agaaateetg aagatgeeag ggetggeaaa tatgaaggta aacacaaacg aaagaaaaga agaaagcaaa accaaaacea geacegatee egacatagat cagtgaegte tttteettea g atg ate eta tgt tte ett eet eat eat Met Ile Leu Cys Phe Leu Leu Pro His His	60 120 180 240 291
-15 -10 cgt ctt cag gaa gcc aga cag att caa gta ttg aag atg ctt cca agg Arg Leu Gln Glu Ala Arg Gln Ile Gln Val Leu Lys Met Leu Pro Arg	339
-5 10 gaa aaa tta aga aga aga gag aga aaa caa ata aat ggg aaa aaa Glu Lys Leu Arg Arg Arg Glu Glu Arg Lys Gln Ile Asn Gly Lys Lys	387
15 20 25 raa agg aca aaa tat gaa aca cca aga aaa rga raa gga aaa aaa gga Xaa Arg Thr Lys Tyr Glu Thr Pro Arg Lys Xaa Xaa Gly Lys Lys Gly 30 35 40	435
gga aac mac cmc wtw tkt cmc ctt tcc aar agg gac tgaaactggg Gly Asn Xaa Xaa Xaa Xaa Leu Ser Lys Arg Asp 45 50 55	481
ctgaccettt tgatttecaa veteasegtt ttggtgtaag geggeeaaar aaggatgegg ascecageae tgtgaageet acaaaaacat tgatgegetg gettggggat ttgaatttga acatetttea cactaagtte agacteatga aaccaatett cagatgetet gtaaaccaca taataaagag tttggaaatt aaaaaaaaar aa	541 601 661 693
<210> 307 <211> 1656 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 741216	
<221> sig_peptide <222> 74172 <223> Von Heijne matrix score 5.80000019073486 seq XLCLGMALCPRQA/TR	
<221> polyA_signal <222> 16271632	
<221> polyA_site <222> 16401652	
<pre><400> 307 atctcttggc gtctcaacgt tcggatcagc agcttttttc cattctctct ctccacttct tcagtgagca gcc atg agt tgg act gtg cct gtt gtg cgg gcc agc cag</pre>	60 109
aga gtg agc tcg gtg gga gcg aat ktc cta tgc ctg ggg atg gcc ctg Arg Val Ser Ser Val Gly Ala Asn Xaa Leu Cys Leu Gly Met Ala Leu -20 -15 -10	157

tgt Cys	ccg Pro	cgt Arg	caa Gln	gca Ala	acg Thr	cgc Arg	atc Ile	ccg Pro	ctc Leu	aac Asn	ggc Gly	acc Thr	tgg Trp	ctc Leu	ttc Phe	205
- 5					1				5					10		253
Thr	Pro	Val	ser 15	aag Lys	Met	Ala	Thr	Val 20	Lys	Ser	Glu	Leu	Ile 25	Glu	Arg	233
ttc	act	tcc	gar	aag	ccc	gtt	cat	cac	agt	aag	gtc	tcc	atc	ata	gga	301
		30		Lys			35					40				
				ggc												349
	45			Gly		50					55					
				ctt												397
60				Leu	65					70					75	
ggt	gag	acr	atg	gat	ctt	caa	cat	ggc	agc	cct	ttc	acg	aaa	atg	cca	445
				Asp 80					85					90		
				agc												493
			95	Ser				100					105			F.4.
gtg	att	atc	aca	gca	ggt	gca	cgc	caa	raa	aag	gga	gaa	acg	cgc	CEE	541
		110		Ala			115					120				500
				cga												589
	125			Arg		130					135					63.7
att	gtc	cag	tac	agc	ccc	cac	tgc	aaa -	ctg	att	att	gtt	tcc	aat	cca	637
	Val	GIn	Tyr	Ser		His	Cys	Lys	Leu		TTE	vai	ser	ASI		
140					145					150					155	605
				act												685
				Thr 160					165					170		722
aac	cgt	att	att	gga	agc	ggc	tgt	aat	ctg	ata	mng	get	cgt	Dho	yza cgr	733
			175	Gly				180					185			781
				caa												701
		190		Gln			195					200				829
rgg	atc	CCC	gga	gag	cat	gga	gac	CCd	agt co-	y.1	Dro	7727	Trn	Ser	Glv	023
	205			Glu		210					215					077
gtg	aac	ata	gct	ggt	gtc	cct	ttg	aag	gat	ctg	aac	tct	gat	ata	gga	877
220				Gly	225					230					235	
act	gat	aaa	gat	cct	gag	caa	tgg	aaa	aat	gtc	cac	aaa	gaa	gtg	act	925
				Pro 240					245					250		
gca	act	gcc	tat	gag	att	att	aaa	atg	aaa	ggt	tat	act	tct	tgg	gcc	973
			255	Glu				260					265			
				gtg												1021
Ile	Gly	Leu 270	Ser	Val	Ala	Asp	Leu 275	Thr	Glu	Ser	Ile	Leu 280	Lys	Asn	Leu	
				cca												1069
_	285			Pro		290					295					
				ttc												1117
				Phe												
	acc	aac	ctt	ata	aag	ata	aag	ctg	acc	cct	gaa	gaa	gag	gcc	cat	1165
				Ile												

320 325

320 325 330	
ctg aaa aaa agt gca aaa aca ctc tgg gaa att cag aat aag ctt aag Leu Lys Lys Ser Ala Lys Thr Leu Trp Glu Ile Gln Asn Lys Leu Lys 335 340 345	1213 .
ctt taaagttgcc taaaactacc attccgaaat tattgaagag atcatagata Leu	1266
caggattata taacgaaatt ttgaataaac ttgaattcct aaaagatgga aacaggaaag	1326
taggtagagt gattttccta tttatttagt cctccagctc ttttattgag catccacgtg	1386
ctggacgata cttatttaca attcckaagt atttttggta cctctgatgt agcagcactt	1446
gccatgttat atatatgtag ttgrmatttg gttcccaaaa agtaggatgt aggtatttat	1506
tgtgttctag aaattccgac tcttttcatt agatatatgc tatttctttc attcttgctg	1566
gtttatacct atgttcattt atatgctgta aaaaagtagt agcttcttct acaatgtaaa	1626
aataaatgta catacaaaaa aaaaaamcmc	1656
<pre><210> 308 <211> 517 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 48164 <221> sig_peptide <222> 4889 <223> Von Heijne matrix</pre>	
<221> polyA_signal <222> 482487 <221> polyA_site	
<222> 505517	
<400> 308	
aggagatagc ctcgtagaaa tgacaaccac aatgttaata ctaacat atg tat tac Met Tyr Tyr	56
atg gtt tgt ttg ttc ttt cgc tta ata ttt tca gag cac cta cct att	104
Met Val Cys Leu Phe Phe Arg Leu Ile Phe Ser Glu His Leu Pro Ile -10 -5 1 5	
ata ggc act gtc act tct cac aaa act ggg aca cta act gtt tat cca	152
Ile Gly Thr Val Thr Ser His Lys Thr Gly Thr Leu Thr Val Tyr Pro	
aca tot got ggc taaataaaga catgatotto accttttggg attgttaatt Thr Ser Ala Gly 25	204
taaaatggtt ccataagagc aatgcaaaga cagagatatt tggcagcact gcagctggtg	264
atttatatgg ctcttcacaa ggtgttattt tggggtatca aggtatggat gcttaaatca	324
gctgcaggaa gtaagaaaga agaaaaaagg agtgataaag ataaaaaaa atcaaccttg	384
gtccttccac caaaacccat taatttccat atcatcatct gcataararg gaaaattcct	444
acwtgaccag gttactgcaa ggatktkaat tttgaatatt aaaatattat mcmcaattgg	504
aaaaaaaaa aaa	517

<210> 309

<211> 405

<212> DNA

<213 > Homo sapiens

<220> <221> CDS <222> 185334	
<221> sig_peptide <222> 185295 <223> Von Heijne matrix score 5.90000009536743 seq_LSYASSALSPCLT/AP	
<221> polyA_signal <222> 355360	
<221> polyA_site <222> 392405	
<pre><400> 309 atcaccttct tetecatect tstetgggcc agtecccare ceagtecete teetgacetg cccageccaa gteageette ageaegeget tttetgeaea cagatattee aggeetacet ggeattecag gaceteegma atgatgetee agtecettae aagegettee tggatgaggg tgge atg gtg etg ace ace ete eee ttg eee tet gee aae age eet gtg Met Val Leu Thr Thr Leu Pro Leu Pro Ser Ala Asn Ser Pro Val</pre>	60 120 180 229
aac atg ccc acc act ggc ccc aac agc ctg agt tat gct agc tct gcc Asn Met Pro Thr Thr Gly Pro Asn Ser Leu Ser Tyr Ala Ser Ser Ala -20 -15 -10	277
ctg tcc ccc tgt ctg acc gct cca aag tcc ccc cga ctt gct atg atg Leu Ser Pro Cys Leu Thr Ala Pro Lys Ser Pro Arg Leu Ala Met Met -5 1 5 10	325
cct gac aac taaatatcct tatccaaatc aataaarwra raatcctccc Pro Asp Asn	374 405
<210> 310 <211> 1087 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 195347	
<221> sig_peptide <222> 195272 <223> Von Heijne matrix score 7.09999990463257 seq LASLQWSLTLAWC/GS	
<221> polyA_signal <222> 10371042	
<221> polyA_site <222> 10711082	
<400> 310 aaagtgtaga acacggacct ctgagttatg ctcttgagag gtgccaaagc tgggctgttt acctacctta tccacagagc tctgaaagtc aagccagaaa ggaaggattc caaattcttg gaattttatc tagaaaagaa gactaagcag cttttgttct tctgtgaccc agttgctggc ccaagacatg gaca atg acc ccc tgg tgt ttg gcg tgt ctg ggg agg agg	60 120 180 230

Met Thr Pro Trp Cys Leu Ala Cys Leu Gly Arg Arg	
-25 -20 -15	278
cct ctc gct tct ttg cag tgg agc ctg aca ctg gcg tgg tgt ggc tcc Pro Leu Ala Ser Leu Gln Trp Ser Leu Thr Leu Ala Trp Cys Gly Ser -10 -5	276
ggc agc cac tgg aca gag aga cca akt cag akt tca ccg tgg akt tct Gly Ser His Trp Thr Glu Arg Pro Xaa Gln Xaa Ser Pro Trp Xaa Ser 5 10 15	326
ctg tca gcg acc acc agg ggg tgatcacacg gaaggtgaac atccaggtcg	377
Leu Ser Ala Thr Thr Arg Gly 20 25	
gggatgtgaa tgacaacgcg cccacatttc acaatcagcc ctacagcgtc cgcatccctg	437
araatacacc agtggggacg cccatcttca tcgtgaatgc cacagacccc gacttggggg	497 557
cagggggcag cgtcctctac tccttccagc cccctccca attcttcgcc attgacagcg cccgcggtat cktcacagtg atccgggagc tggactacga taccacremg gcctaccagc	617
towoggtowa ogcoacagat caagacaara coaggootot gtocacostg gocaacttgg	677
ccatcatcat cacagatgte caggacatgg accecatett catcaacetg cettacagea	737
ccaacatcta cgagcattct cctccgggca cgacggtgcg catcatcacc gccatagacc	797
aggataaagg acgtccccgg ggcattggct acaccatcgt ttcagggcat ctgtgtttac	857 917
aagaacccaa gatctctcag gagctcagga aaaggggctt gctgtgaggc tcagggttcc catggacatt ctgagctgac cctcctcagc attggatctc ctggctcagg aactaggaac	977
gaagettgga tgttttetee ttteetacag catetgtatt cattteetat agttgecata	1037
ataaaatgcc actaacttag tggcttaaaa accaaaaaaa aaaaaccctt	1087
<pre><210> 311 <211> 916 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 90815 <221> sig_peptide <222> 90179 <223> Von Heijne matrix</pre>	
<400> 311 aaaacagtac gtgggcggcc ggaatccggg agtccggtga cccgggctgt ggtctagcat	60
aaaggcggag ccagaagaag gggcggggt atg gga gaa gcc tcc cca cct gcc	113
Met Gly Glu Ala Ser Pro Pro Ala -30 -25	
ccc gca agg cgg cat ctg ctg gtc ctg ctg ctc ctc tct acc ctg	161
Pro Ala Arg Arg His Leu Leu Val Leu Leu Leu Leu Ser Thr Leu -20 -15 -10	
gtg atc ccc tcc gct gca gct cct atc cat gat gct gac gcc caa gag	209
Val Ile Pro Ser Ala Ala Ala Pro Ile His Asp Ala Asp Ala Glu -5 1 5 10	
age tee ttg ggt ete aca gge ete cag age eta ete caa gge tte age	257
Ser Ser Leu Gly Leu Thr Gly Leu Gln Ser Leu Leu Gln Gly Phe Ser	,
15 20 25	
cga ctt ttc ctg aaa ggt aac ctg ctt cgg ggc ata gac agc tta ttc	305

```
Arg Leu Phe Leu Lys Gly Asn Leu Leu Arg Gly Ile Asp Ser Leu Phe
                                35
tet gee eec atg gae tte egg gge ete eet ggg aac tac eac aaa gag
                                                                      353
Ser Ala Pro Met Asp Phe Arg Gly Leu Pro Gly Asn Tyr His Lys Glu
                            50
        45
                                                                      401
gag aac cag gag cac cag ctg ggg aac aac acc ctc tcc agc cac ctc
Glu Asn Gln Glu His Gln Leu Gly Asn Asn Thr Leu Ser Ser His Leu
                        65
cag atc gac aag atg acc gac aac aag aca gga gag gtg ctg atc tcc
                                                                      449
Gln Ile Asp Lys Met Thr Asp Asn Lys Thr Gly Glu Val Leu Ile Ser
                                        85
gag aat gtg gtg gca tcc att caa cca vcg gag ggg anc ttc gag ggt
                                                                      497
Glu Asn Val Val Ala Ser Ile Gln Pro Xaa Glu Gly Xaa Phe Glu Gly
                                    100
                                                                      545
gat ttg aag gth ccc agg atg gag gar aag gag gcc ctg gta ccc mtc
Asp Leu Lys Val Pro Arg Met Glu Glu Lys Glu Ala Leu Val Pro Xaa
                                                    120
                                115
                                                                      593
car aag gcc acg gac agc ttc cac aca gaa ctc cat ccc cgg gtg gcc
Gln Lys Ala Thr Asp Ser Phe His Thr Glu Leu His Pro Arg Val Ala
                                                135
                            130
ttc tgg atc att aag ctg cca cgg cgg agg tcc cac cag gat gcc ctg
                                                                      641
Phe Trp Ile Ile Lys Leu Pro Arg Arg Arg Ser His Gln Asp Ala Leu
                        145
gag ggc ggc cac tgg ctc anc gar aag cga cac cgc ctg cag gcc atc
                                                                      689
Glu Gly Gly His Trp Leu Xaa Glu Lys Arg His Arg Leu Gln Ala Ile
                                        165
                    160
cgg gat gga ctc cgc aag ggg acc cac aag gac rtc cta daa rag ggg
                                                                      737
Arg Asp Gly Leu Arg Lys Gly Thr His Lys Asp Xaa Leu Xaa Xaa Gly
                                    180
                175
ace gar age tee tee cae tee agg etg tee eec ega aar amm cae tta
                                                                      785
Thr Glu Ser Ser Ser His Ser Arg Leu Ser Pro Arg Lys Xaa His Leu
            190
                                195
                                                                      835
ctg tac atc ctc arg ccc tct cgg cag ctg targggtggg gaccgggggar
Leu Tyr Ile Leu Xaa Pro Ser Arg Gln Leu
        205
                           210
macctgcctg tagcccccat caraccctgc cccaagcacc atatggaaat aaagttcttt
                                                                      895
                                                                      916
cttacatcca aaaaaaaaaa a
```

<210> 312 <211> 583 <212> DNA <213> Homo sapiens <220> <221> CDS

<221> sig_peptide

<222> 52..513

<222> 52..231
<223> Von Heijne matrix
score 4
seq LVRRTLLVAALRA/WM

<221> polyA_signal <222> 553..558

<221> polyA_site <222> 572..583

<400> 312

aaggaaacag	caaccaga	gg gagatga	tca cctgaa	ccac tgctcca	aac c atg ggc Met Gly -60	57
	•				gaa aga cag Glu Arg Gln -45	105
	n Lys Leu	Leu Leu A	_	_	aaa agg gtg Lys Arg Val	153
					ctg gtg cgc Leu Val Arg	201
					cag tgc tgg Gln Cys Trp 5	249
		'			cag gcc ctg Gln Ala Leu 20	297
			lu Gln Ala		ctc cag tcc Leu Gln Ser	345
				tac cgc caa Tyr Arg Gln 50	atg tgc aat Met Cys Asn	393
-	_		_	agc ctt gcc Ser Leu Ala 65	ttc caa act Phe Gln Thr 70	441
	_	-	_	cct tca aag Pro Ser Lys		489
		cta tca at Leu Ser II		ect ggggcatgg	ga gaacaggetg	543
cactacccta		ct gaccaggt	taa aaaaaa	aaa		583

<210> 313

<211> 697

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 172..438

<221> sig_peptide

<222> 172..354

<223> Von Heijne matrix
 score 4.69999980926514
 seq LLPCNLHCSWLHS/SP

<221> polyA_signal

<222> 682..687

<221> polyA_site

<222> 685..697

<400> 313

agattggctg ggcagatggg ctgactggct gggcagatgg gtgggtgagt tccctctccc 60 cagagccatc ggccaggtac caaagctcag ctgtatggat tcccaacagg aggacctgcg 120 cttccctggg acccattgtt gtactggatt aacaagcgac ggcgctacgg c atg aat 177

												Met	-60	
gca gcc a	atc aad	acq	qqc	cct	gcc	cct	gct	gtc	acc	aag	act	gag		225
Ala Ala	Ile Ası	Thr -55	Gly	Pro	Ala	Pro	Ala -50	Val	Thr	Lys	Thr	Glu -45	Thr	
gag gtc														273
Glu Val (Gln Asr -40		Asp	Val	Leu	Trp -35	Asp	Leu	Asp	Ile	Pro -30	Glu	Ala	
agg agc	cat gct	gac	caa	gac	agc	aac	ccc	aag	gcg	gaa	gcc	ctg	ctc	321
	-25	_			-20					-15				
ccc tgc a	aac cto	cac	tgc	agc	tgg	ctc	cac	agc	agc	ccc	agg	cca	gat	369
Pro Cys 7				-5					1				5	
ccc cat t														417
Pro His S	Ser His		Pro	Ser	Xaa	Arg		Cys	Pro	Leu	Pro	His 20	Pro	
tgt gca a	acc tac	10	CCS	kac	tgaa	accad	15 ctc 1	ratic	toota	at co	ettte		1	468
Cys Ala					cgu.		,	-900				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	-	
cctgtcctg		raato	tt ct	ctto	cati	t cc	ctcct	cgaa	tcto	acco	caq o	gaaga	ccata	528
gcttcaat														588
gcaggaat												attga	acagag	648
gtcaggac	cc acct	ggat	gt ca	atgct	catga	a aac	catta	aaaa	gaaa	aaaa	aa			697
-2105 21	A													
<210> 314 <211> 803														
<212> DN								•						
<213> Hor	mo sapi	ens												
<220>														
<221> CDS														
<222> 148	8366													
<221> sig	g_pepti	.de												
<222> 148														
<223> Voi	-		trix											
	ore 5.5 q LFTLI		7.371.K	/ T.D										
500	d niini	ie mitiri	טעט.	םם י										
<221> po:	_	nal												
(222) //	0,,5													
<221> po	lyA_sit	:e												
<222> 793	2803													
<400> 314	4													
aaatgggg		qqqc	qq aa	aaaq	gacaa	a qqa	atcca	aaac	taga	gaat	tt q	qctga	atcttc	60
gcgtccct														120
ctgcaaca	gc ctct	ttaa	ac to	gttta										174
					Me		-	et Se	er Le	eu Ai		ln Ai 20	rg Val	
cta ctc	acc too	1 C++	ttc	aca	cta		25 ttc	tta	atc	ato	_		tta	222
Leu Leu														
	-15				-10					-5				
aaa ctg														270
Lys Leu	Asp Glu	Lys		Pro	Trp	Asn	Trp		Leu	Ile	Phe	Ile		
1 gtc tgg a	ata tt:		5	a+~	c++	c++	ata	10	c+~	2++	at a	222	15	318
Val Trp														310
			_			-						-		

20 25	30
gct ggg cgg tgt aag tct ggc ttt gac ctc gac	
Ala Gly Arg Cys Lys Ser Gly Phe Asp Leu Asp	
35 40	45
taaaaaaaaa aacctggtac ctcattgcac tgtkacttaa	
tetgtgetaa actggaacag tttactacca tgaatetate	
gggccttgct ggctggggct ttaacagaac tcggatataa	
gacttctaag tacatcatct cotttctatt gotgttcaac	
tgaatctgtc aagcttcaag aataccagag aactgaggga	
tactacttcc ataaaacagg attggtgaat cacggacttc	
tattcagcat ttgagttatt gaaatcctta ttatctctat	_
acctcaaaaa aaaaaaa	803
accicadada dadadada	50.
-230: 215	
<210> 315	
<211> 823	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<222> 175336	
<221> sig_peptide	
<222> 175276	
<223> Von Heijne matrix	
score 3.70000004768372	
seq SVLNVGHLLFSSA/CS	
<221> polyA_site	
<222> 812823	
<400> 315	
aaggegegeg egaceggegg etetttggeg eggattaggg	ggtctcggcg agggagtcat 60
caagetttgg tgtatgtgtt ggccggttct gaagtettga	agaagctctg ctgaggaaga 120
ccaaagcagc actcgttgcc aattagggaa tggaccgttt	
	Met
atc cct ctg ata agc cac ctt gcc gag gct gct	cct cct acc tca tgg 225
Ile Pro Leu Ile Ser His Leu Ala Glu Ala Ala	
-30 -25	-20
ago ott ata toa agt gtg otg aat gtg ggo cac	ctc ctt ttt tcc tct 273
Ser Leu Ile Ser Ser Val Leu Asn Val Gly His	
-15 -10	-5
gct tgc agt gtt tca ctc gag gct ttg agt aca	
Ala Cys Ser Val Ser Leu Glu Ala Leu Ser Thr	
=	15
atc ata ctt atg aaa taatggette agatttteet g	tccttgatc ccagctggac 376
Ile Ile Leu Met Lys	
20	
tgctcaagaa raaatggccc ttttagaasc tgtgatggac	
ggatgtagcc aatcaaatgt gcaccaarac caaggaggag	
gcatttcatc aataacccyc tgtttgcatc trscctgctg	
agcaaaaact gctgacacag ccattccatt tcactctaca	
ctttgactcc ttgctttctc gggacatggc cgggtacwtg	
tgaggaattt gacaattatg cagaatggga cttgagagac	
ctcggacatt ttacatgctc tgaagatggc tgtggtagat	atctatcatt ccaggttaaa 796
ggagagaraa agargaaaaa aaaaaaaa	823

```
<211> 823
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 191..553
<221> sig_peptide
<222> 191..304
<223> Von Heijne matrix
      score 5.69999980926514
      seg LAFLSCLAFLVLD/TO
<221> polyA_signal
<222> 766..771
<221> polyA_site
<222> 804..817
<400> 316
aactctgcag ggcctccaag gccaggcttc agggctggga ctcagtcctg aggcactggg
                                                                      60
                                                                      120
gagccatgag gggctgtggc agggagggc agggtgtgga aagactcccc tggggccatg
gtggagatgt gctgaggtct tctccctgat cgtcttctcc tccctgctga ccgacggcta
                                                                      180
ccagaackag atg gag tot ccg cag ctc cac tgc att ctc aac agc aac
                                                                      229
          Met Glu Ser Pro Gln Leu His Cys Ile Leu Asn Ser Asn
                       -35
                                           -30
age gtg gee tge age ttt gee gtg gga gee gge tte etg gee tte etc
                                                                      277
Ser Val Ala Cys Ser Phe Ala Val Gly Ala Gly Phe Leu Ala Phe Leu
-25
                   -20
age tgc ctg gcc ttc ctc gtc ctg gac aca cag gag acc cgc att gcc
                                                                      325
Ser Cys Leu Ala Phe Leu Val Leu Asp Thr Gln Glu Thr Arg Ile Ala
ggc acc cgc ttc aag aca gcc ttc cag ctc ctg gac ttc atc ctg gct
                                                                      373
Gly Thr Arg Phe Lys Thr Ala Phe Gln Leu Leu Asp Phe Ile Leu Ala
        10
                            15
                                               20
gtt ctc tgg gca gtt gtc tgg ttc atg ggt ttc tgc ttc ctg gcc aac
                                                                      421
Val Leu Trp Ala Val Val Trp Phe Met Gly Phe Cys Phe Leu Ala Asn
                        30
                                            35
caa tgg cag cat tcg ccg ccc aaa gar kkc ctc ctg ggg agc agc agt
                                                                      469
Gln Trp Gln His Ser Pro Pro Lys Glu Xaa Leu Leu Gly Ser Ser Ser
                    45
                                        50
gcc cag gca gcc atc ggc stt cac ctt ctt ctc cat cct tgt ctg gat
                                                                      517
Ala Gln Ala Ala Ile Gly Xaa His Leu Leu Leu His Pro Cys Leu Asp
                                    65
att cca rgc cta cct ggc akk cca gga cct ccg aaa tgatgctcca
                                                                      563
Ile Pro Xaa Leu Pro Gly Xaa Pro Gly Pro Pro Lys
gtcccttacm arcgcttcct ggatgaaggt ggcatggtgs kkaacaccct ccccttgccc
                                                                      623
totgocaaca gootgtgaac atgoccacca otggocccaa cagootgagt tatgotagot
ctgccctgtc cccctgtctg accgctcmaa agtccccccg gcttgctatg atgcctgaca
                                                                      743
actaaatato ottatooaaa toaataaaga gagaatooto ootooagaag ggtttotaaa
                                                                      803
aacaaaaaa aaaahncctt
                                                                      823
```

<210> 317

<211> 1112

<212> DNA

<213> Homo sapiens

<221> polyA_site <222> 1102..1112

<400> 317

<400> 317	60
agcgattgcg aatcctccgc tgaggtgatt tggatatccc tagaacgttg agggcacgag tcgggtcctg agaccaggtc ctcagccagc agagccacgt tcctt atg agc acc gtg Met Ser Thr Val -35	117
ggt tta ttt cat ttt cct aca cca ctg acc cga ata tgc ccg gcg cca Gly Leu Phe His Phe Pro Thr Pro Leu Thr Arg Ile Cys Pro Ala Pro -30 -25 -20	165
tgg gga ctc cgg ctt tgg gag aag ctg acg ttg tta tcc cca gga ata Trp Gly Leu Arg Leu Trp Glu Lys Leu Thr Leu Leu Ser Pro Gly Ile -15 -10 -5	213
gct gtc act ccg gtc cag atg gca ggc aag aag gac tac cct gca ctg Ala Val Thr Pro Val Gln Met Ala Gly Lys Lys Asp Tyr Pro Ala Leu 1 5 10 15	261
ctt tcc ttg gat gag aat gaa ctc gaa gag cag ttt gtg aaa gga cac Leu Ser Leu Asp Glu Asn Glu Leu Glu Glu Gln Phe Val Lys Gly His 20 25 30	309
ggt cca ggg ggc cag gca acc aac aaa acc agc aac tgc gtg gtg ctg Gly Pro Gly Gln Ala Thr Asn Lys Thr Ser Asn Cys Val Val Leu 35 40	357
aar mac atc ccc tca ggc atc gtt gta aag tgc cat cag aca aga tca Lys Xaa Ile Pro Ser Gly Ile Val Val Lys Cys His Gln Thr Arg Ser 50 60	405
gtt gat cag aac aga aag cta gct cgg aaa atc cta caa gag aaa gta Val Asp Gln Asn Arg Lys Leu Ala Arg Lys Ile Leu Gln Glu Lys Val 65 70 75	453
rat gtt ttc tac aat ggt gaa aac agt cct gtt cac aaa gaa aaa cga Xaa Val Phe Tyr Asn Gly Glu Asn Ser Pro Val His Lys Glu Lys Arg 80 85 90 95	501
gaa gcg gcg aag aaa aaa car gaa agg aaa aaa aga gca aag gaa acc Glu Ala Ala Lys Lys Gln Glu Arg Lys Lys Arg Ala Lys Glu Thr 100 105 110	549
ctg gaa aaa aag aas ctm ctt aaa raa ctg tgg gag tca agt aaa aag Leu Glu Lys Lys Xaa Leu Leu Lys Xaa Leu Trp Glu Ser Ser Lys Lys 115 120 125	597
gtc cac tgagaaaaga attagagatt ccaactgaca gaatctgcca gaagctccca Val His	653
gggaataatg gtggcgagtt ccatcaccag cattattata gtgcttcaaa agaaatattt	713
ttgatgaact taaaagacaa caaatttatt taaatggtgc actaaactgt agtgaacaga	773
gacatgcacg attcaagaat aaaactcggc cgggcacggt ggacggtgcc tcacatctgt	833
aatcccagca ctttgggagg ccgaggcggg cggatcactt gaggtcagga gtttgagacc	893
agcctggcca acatggtgaa accccgtctc tactaaaaat acaaaaaatt agccaggcat	953
ggtggcgggc acctgtaatc ccagctactc gggaggccga ggcaggagaa ttgcgtgaac	1013
ctgggaggcg gaggttgcag tgagctgaga tcgcgccact gcactcaagc ctgggcaaca	1073
cctgggtgac agagcaagac cccatcycaa aaaaaaaaa	1112

```
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 47..586
<221> sig_peptide
<222> 47..124
<223> Von Heijne matrix
      score 6.30000019073486
      seq GVGLVTLLGLAVG/SY
<221> polyA_signal
<222> 1583..1588
<221> polyA site
<222> 1614..1623
<400> 318
                                                                       55
agggatetgt eggettgtea ggtggtggag gaaaaggege teegte atg ggg ate
                                                   Met Gly Ile
                                                        -25
                                                                      103
cag acg age eec gte etg etg gee tee etg ggg gtg ggg etg gte act
Gln Thr Ser Pro Val Leu Leu Ala Ser Leu Gly Val Gly Leu Val Thr
            -20
                                -15
                                                    -10
ctg ctc ggc ctg gct gtg ggc tcc tac ttg gtt cgg agg tcc cgc cgg
                                                                      151
Leu Leu Gly Leu Ala Val Gly Ser Tyr Leu Val Arg Arg Ser Arg Arg
       -5
cct cag gtc act ctc ctg gac ccc aat gaa aag tac ctg cta cga ctg
                                                                      199
Pro Gln Val Thr Leu Leu Asp Pro Asn Glu Lys Tyr Leu Leu Arg Leu
                                        20
                    15
cta gac aag acg act gtg agc cac aac acc aag agg ttc cgc ttt gcc
                                                                      247
Leu Asp Lys Thr Thr Val Ser His Asn Thr Lys Arg Phe Arg Phe Ala
                30
                                   35
                                                                      295
ctg ccc acc gcc cac cac act ctg ggg ctg cct gtg ggc aaa cat atc
Leu Pro Thr Ala His His Thr Leu Gly Leu Pro Val Gly Lys His Ile
                               50
                                                    55
                                                                      343
tac etc tec acm mga att gat ggc age etg gtc atc agg eca tac act
Tyr Leu Ser Thr Arg Ile Asp Gly Ser Leu Val Ile Arg Pro Tyr Thr
                           65
                                                70
                                                                      391
cct gtc acc agt gat gag gat caa ggc tat gtg gat ctt gtc mtc aag
Pro Val Thr Ser Asp Glu Asp Gln Gly Tyr Val Asp Leu Val Xaa Lys
                        80
                                            85
                                                                      439
gtc tac ctg aag ggt gtg cac ccc aaa ttt cct gag gga ggg aar atg.
Val Tyr Leu Lys Gly Val His Pro Lys Phe Pro Glu Gly Gly Lys Met
                                        100
                    95
                                                                      487
tot cak tac ctg gat asc ctg aaa gtt ggg gat btg gtg gaa ttt csg
Ser Xaa Tyr Leu Asp Xaa Leu Lys Val Gly Asp Xaa Val Glu Phe Xaa
                110
                                    115
                                                                      535
ggg cca agc ggg ttg ctc act tac act gga aaa ggg cat ttt aac att
Gly Pro Ser Gly Leu Leu Thr Tyr Thr Gly Lys Gly His Phe Asn Ile
                                130
            125
                                                                      583
cag ccc aac aag aat ctc cac cag aac ccc gag tgg cga aga aac tgg
Gln Pro Asn Lys Asn Leu His Gln Asn Pro Glu Trp Arg Arg Asn Trp
                            145
gaa tgattgccgg cgggacagga atcaccccaa tgctacagct gatccgggcc
                                                                      636
Glu
                                                                      696
atcctgaaag tccctgaaga tccaacccag tgctttctgc tttttgccaa ccagacagaa
aaggatatca tettgeggga ggaettagag gaactgeagg eeegetatee caategettt
                                                                      756
                                                                      816
aagetetggt teactetgga teateeceea aaagettggg cetacageaa gggetttgtg
                                                                      876
actgccgacw tgatccggga acacctgccc gctccagggg atgatgtgct ggtactgctt
```

```
tgtgggccmc ccccaatggt gcagctggcc tgccatccca acttggacaa actgggctac
                                                                     996
tcacaaaaga tgcgattcac ctactgagca tcctccagct tccctggtgc tgttcgctgc
agttgttccc catcagtact caagcactak aagccttagr ktcctktcct cagagtttca
ggttttttca gttrsatcka gagctgaaat ctggatagta cctgcaggaa caatattcct
gtagccatgg aagagggcca aggctcagtc actccttgga tggcctccta aatctccccg
tggcaacagg tccaggagag gcccatggag cagtctcttc catggagtaa gaaggaaggg
agcatgtacg cttggtccaa gattggctag ttccttgata gcatcttact ctcaccttct
ttgtgtctgt gatgaaagga acagtctgtg caatgggttt tacttaaact tcactgttca
acctatgagc aaatctgtat gtgtgagtat aagttgagca tagcatactt ccagaggtgg
                                                                    1416
tcttatggag atggcaagaa aggaggaaat gatttcttca gatctcaaag gagtctgaaa
                                                                    1476
tatcatattt ctgtgtgtgt cdctctcagc ccctgcccad gctagaggga wacagctact
                                                                    1536
                                                                    1596
gataatcgaa aactgctgtt tgtgggcarg aacccctggc tgtgcaaata atggggctga
                                                                    1623
ngccctgtgt gatattgaaa aaaaaaa
<210> 319
<211> 526
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 99..371
<221> sig_peptide
<222> 99..290
<223> Von Heijne matrix
      score 3.79999995231628
      seq LFIVVCVICVTLN/FP
<221> polyA signal
<222> 491..496
<221> polyA site
<222> 513..524
<400> 319
attggattag tagaattgct tttgtcattc cattgttttc atatatttgt ttgggacatt
                                                                      60
                                                                     116
ttactttttt ctgttaacgc ttaccctagr aattagaa atg aca cca cgt att ctt
                                          Met Thr Pro Arg Ile Leu
                                                                     164
age gaa gte cag ttt tea gea ttt tgt eet tat tgg aca ata gea agg
Ser Glu Val Gln Phe Ser Ala Phe Cys Pro Tyr Trp Thr Ile Ala Arg
                                -50
            -55
ata tta gaa cgt gtt ggt tcc gcg tgc ttc cgt ctt gag tta tgt gct
                                                                     212
Ile Leu Glu Arg Val Gly Ser Ala Cys Phe Arg Leu Glu Leu Cys Ala
                            -35
gct att gtc gga tat ttt gtc tta gat gta cgt act ttc ctg ttc att
                                                                     260
Ala Ile Val Gly Tyr Phe Val Leu Asp Val Arg Thr Phe Leu Phe Ile
                        -20
gtg gta tgt gta att tgc gtt act ttg aat ttt cca cgt ttt tac ttt
                                                                     308
Val Val Cys Val Ile Cys Val Thr Leu Asn Phe Pro Arg Phe Tyr Phe
                    -5
                                       1
                                                       5
ctt tgt etc tca ett acc get ttt ggg acc ecc ecc atc ggg gtt
                                                                     356
Leu Cys Leu Ser Ser Leu Thr Ala Phe Gly Thr Pro Pro Ile Gly Val
                                15
                                                                     411
cac att ccc tct ccc tararcacac tcccttggat ttcctcradt ggggtctgct
His Ile Pro Ser Pro
        25
                                                                     471
gcggtgaagc tttcccattt tatgtgcaga ttattttcag agggtatata gaattcaggc
                                                                     526
agotgtttog ttgtagcaca ttaaaaatat tttcccactt caaaaaaaaa aaacc
```

```
<210> 320
<211> 989
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 44..814
<221> sig_peptide
<222> 44..112
<223> Von Heijne matrix
     score 8.30000019073486
      seq VRLLLXLLLLLIA/LE
<221> polyA_site
<222> 978..989
<400> 320
                                                                       55
aaatgtgtac acgcccagct tectgcctgt tactctccac agt atg cga aga ata
                                                Met Arg Arg Ile
tcc ctg act tct age cct gtg cgc ctt ctt ttg tdt ctg ctg ttg cta
                                                                      103
Ser Leu Thr Ser Ser Pro Val Arg Leu Leu Leu Xaa Leu Leu Leu Leu
                -15
                                     -10
                                                                      151
cta ata gcc ttg gag atc atg gtt ggt ggt cac tct ctt tgc ttc aac
Leu Ile Ala Leu Glu Ile Met Val Gly Gly His Ser Leu Cys Phe Asn
                                                                      199
ttc act ata aaa tca ttg tcc aga cct gga cag ccc tgg tgt gaa gcg
Phe Thr Ile Lys Ser Leu Ser Arg Pro Gly Gln Pro Trp Cys Glu Ala
                        20
                                                                      247
cat gtc ttc ttg aat aaa aat ctt ttc ctt cag tac aac agt gac aac
His Val Phe Leu Asn Lys Asn Leu Phe Leu Gln Tyr Asn Ser Asp Asn
                   35
                                        40
aac atg gtc aaa cct ctg ggc ctc ctg ggg aag aag gta tat gcc acc
                                                                      295
Asn Met Val Lys Pro Leu Gly Leu Leu Gly Lys Lys Val Tyr Ala Thr
                                    55
                50
age act tgg gga gaa ttg ace caa acg ctg gga gaa gtg ggg cga gac
                                                                      343
Ser Thr Trp Gly Glu Leu Thr Gln Thr Leu Gly Glu Val Gly Arg Asp
                                70
ctc agg atg ctc ctt tgt gac atc aaa ccc car ata aag acc agt gat
                                                                      391
Leu Arg Met Leu Cys Asp Ile Lys Pro Gln Ile Lys Thr Ser Asp
                                                                      439
cct tcc act ctg caa gtc kar atk ttt tgt caa cgt gaa gca gaa cgg
Pro Ser Thr Leu Gln Val Xaa Xaa Phe Cys Gln Arg Glu Ala Glu Arg
                        100
                                                                      487
tgc act ggt gca tcc tgg cag ttc gcc acc aat gga gag aaa tcc ctc
Cys Thr Gly Ala Ser Trp Gln Phe Ala Thr Asn Gly Glu Lys Ser Leu
                    115
                                                                      535
ctc ttt gac gca atg aac atg acc tgg aca gta att aat cat gaa gcc
Leu Phe Asp Ala Met Asn Met Thr Trp Thr Val Ile Asn His Glu Ala
                                    135
                                                                      583
agt wag atc aag gag aca tgg aag aaa gac aga ngg ctg gaa aak tat
Ser Xaa Ile Lys Glu Thr Trp Lys Lys Asp Arg Xaa Leu Glu Xaa Tyr
                                150
                                                                      631
ttc agg aag ctc tca aar gga gac tgc gat cac tgg ctc agg gaa ttc
Phe Arg Lys Leu Ser Lys Gly Asp Cys Asp His Trp Leu Arg Glu Phe
                            165
                                                                      679
tta ggg cac tgg gaa gca atg cca raa ccg ama gtg tcm cca rta aat
```

Leu Gly His Trp Glu Ala Met Pro Xaa Pro Xaa Val Ser Pro Xaa Asn 175 180 185	
get tea raw ate eac tgg tet tet tet art eta eea raw ara tgg ate	727
Ala Ser Xaa Ile His Trp Ser Ser Ser Xaa Leu Pro Xaa Xaa Trp Ile 190 195 200 205	
atc ctg ggg gca ttc atc ctg tta vtt tta atg gga att gtt ctc atc	775
Ile Leu Gly Ala Phe Ile Leu Leu Xaa Leu Met Gly Ile Val Leu Ile	
210 215 220	
tgt gtc tgg tgg caa aat ggc ara ara tcc acc tad arg tgataccacg	824
Cys Val Trp Trp Gln Asn Gly Xaa Xaa Ser Thr Xaa Xaa 225 230	
225 230 geggegeaaa attgtteace tgtggteete gategetgae ageettgget cecaetgetg	884
tgtgttccct gagtcaagtg gaggcggagc ctgcaatgag cggaratcgc gcctctgcat	944
tccagtcttg gcaacagarc aagactccgt ctcaaaaaaa aaaaa	989
010. 201	
<210> 321 <211> 1017	
<211> 1017 <212> DNA	
<213> Homo sapiens	
•	
<220>	
<221> CDS	
<222> 3581	
<221> sig_peptide	
<222> 3182	
<223> Von Heijne matrix	
score 6.69999980926514	
seq LWPFLTWINPALS/IC	
<221> polyA site	
<222> 10061016	
<222> 10061016 <400> 321	
<222> 10061016 <400> 321 ac atg tgc cct agt ctg gaa gag gct ccc agt gtc aag ggg act ctg	47
<222> 10061016 <400> 321 ac atg tgc cct agt ctg gaa gag gct ccc agt gtc aag ggg act ctg Met Cys Pro Ser Leu Glu Glu Ala Pro Ser Val Lys Gly Thr Leu	47
<222> 10061016 <400> 321 ac atg tgc cct agt ctg gaa gag gct ccc agt gtc aag ggg act ctg Met Cys Pro Ser Leu Glu Glu Ala Pro Ser Val Lys Gly Thr Leu -60 -55 -50	
<222> 10061016 <400> 321 ac atg tgc cct agt ctg gaa gag gct ccc agt gtc aag ggg act ctg Met Cys Pro Ser Leu Glu Glu Ala Pro Ser Val Lys Gly Thr Leu -60	47 95
<222> 10061016 <400> 321 ac atg tgc cct agt ctg gaa gag gct ccc agt gtc aag ggg act ctg Met Cys Pro Ser Leu Glu Glu Ala Pro Ser Val Lys Gly Thr Leu -60 -55 -50	
<pre><222> 10061016 <400> 321 ac atg tgc cct agt ctg gaa gag gct ccc agt gtc aag ggg act ctg Met Cys Pro Ser Leu Glu Glu Ala Pro Ser Val Lys Gly Thr Leu -60</pre>	
<pre><222> 10061016 <400> 321 ac atg tgc cct agt ctg gaa gag gct ccc agt gtc aag ggg act ctg Met Cys Pro Ser Leu Glu Glu Ala Pro Ser Val Lys Gly Thr Leu -60</pre>	95
<pre><222> 10061016 <400> 321 ac atg tgc cct agt ctg gaa gag gct ccc agt gtc aag ggg act ctg Met Cys Pro Ser Leu Glu Glu Ala Pro Ser Val Lys Gly Thr Leu -60</pre>	95 143
<pre><222> 10061016 <400> 321 ac atg tgc cct agt ctg gaa gag gct ccc agt gtc aag ggg act ctg Met Cys Pro Ser Leu Glu Glu Ala Pro Ser Val Lys Gly Thr Leu -60</pre>	95
<pre><222> 10061016 <400> 321 ac atg tgc cct agt ctg gaa gag gct ccc agt gtc aag ggg act ctg Met Cys Pro Ser Leu Glu Glu Ala Pro Ser Val Lys Gly Thr Leu -60</pre>	95 143
<pre><222> 10061016 <400> 321 ac atg tgc cct agt ctg gaa gag gct ccc agt gtc aag ggg act ctg Met Cys Pro Ser Leu Glu Glu Ala Pro Ser Val Lys Gly Thr Leu -60</pre>	95 143 191
<pre><222> 10061016 <400> 321 ac atg tgc cct agt ctg gaa gag gct ccc agt gtc aag ggg act ctg Met Cys Pro Ser Leu Glu Glu Ala Pro Ser Val Lys Gly Thr Leu -60</pre>	95 143
<pre><222> 10061016 <400> 321 ac atg tgc cct agt ctg gaa gag gct ccc agt gtc aag ggg act ctg Met Cys Pro Ser Leu Glu Glu Ala Pro Ser Val Lys Gly Thr Leu -60</pre>	95 143 191
<pre><222> 10061016 <400> 321 ac atg tgc cct agt ctg gaa gag gct ccc agt gtc aag ggg act ctg Met Cys Pro Ser Leu Glu Glu Ala Pro Ser Val Lys Gly Thr Leu -60</pre>	95 143 191
<pre><222> 10061016 <400> 321 ac atg tgc cct agt ctg gaa gag gct ccc agt gtc aag ggg act ctg Met Cys Pro Ser Leu Glu Glu Ala Pro Ser Val Lys Gly Thr Leu -60</pre>	95 143 191 239
<pre><222> 10061016 <400> 321 ac atg tgc cct agt ctg gaa gag gct ccc agt gtc aag ggg act ctg Met Cys Pro Ser Leu Glu Glu Ala Pro Ser Val Lys Gly Thr Leu</pre>	95 143 191 239 287
<pre><222> 10061016 <400> 321 ac atg tgc cct agt ctg gaa gag gct ccc agt gtc aag ggg act ctg Met Cys Pro Ser Leu Glu Glu Ala Pro Ser Val Lys Gly Thr Leu</pre>	95 143 191 239
<pre><222> 10061016 <400> 321 ac atg tgc cct agt ctg gaa gag gct ccc agt gtc aag ggg act ctg Met Cys Pro Ser Leu Glu Glu Ala Pro Ser Val Lys Gly Thr Leu</pre>	95 143 191 239 287
<pre><222> 10061016 <400> 321 ac atg tgc cct agt ctg gaa gag gct ccc agt gtc aag ggg act ctg Met Cys Pro Ser Leu Glu Glu Ala Pro Ser Val Lys Gly Thr Leu</pre>	95 143 191 239 287
<pre><222> 10061016 <400> 321 ac atg tgc cct agt ctg gaa gag gct ccc agt gtc aag ggg act ctg Met Cys Pro Ser Leu Glu Glu Ala Pro Ser Val Lys Gly Thr Leu</pre>	95 143 191 239 287 335
<pre><222> 10061016 <400> 321 ac atg tgc cct agt ctg gaa gag gct ccc agt gtc aag ggg act ctg Met Cys Pro Ser Leu Glu Glu Ala Pro Ser Val Lys Gly Thr Leu</pre>	95 143 191 239 287 335
<pre><222> 10061016 <400> 321 ac atg tgc cct agt ctg gaa gag gct ccc agt gtc aag ggg act ctg Met Cys Pro Ser Leu Glu Glu Ala Pro Ser Val Lys Gly Thr Leu</pre>	95 143 191 239 287 335
<pre><222> 10061016 <400> 321 ac atg tgc cct agt ctg gaa gag gct ccc agt gtc aag ggg act ctg Met Cys Pro Ser Leu Glu Glu Ala Pro Ser Val Lys Gly Thr Leu</pre>	95 143 191 239 287 335

7.5	
70 75 80 ttc cas aaa cat ctg ttg gtg ctg ctg gtg gct gtg gcc cat agt gtt	479
Phe Xaa Lys His Leu Leu Val Leu Val Ala Val Ala His Ser Val 85 90 95	
ctg gaa cca cct gcc ctg gtc cca aat gtg cag tgt gag atg tgc aca	527
Leu Glu Pro Pro Ala Leu Val Pro Asn Val Gln Cys Glu Met Cys Thr	
100 105 110 . 115 cac tca ggg ccc cgt gac ctg gaa gcc gca gtc gtg tcc cca gca cct	575
His Ser Gly Pro Arg Asp Leu Glu Ala Ala Val Val Ser Pro Ala Pro 120 125 130	
tgg gaa tgagcctgtc ctctgtgtga aggagggggt ggttctcaaa ccactgactc Trp Glu	631
ttggtgctca ggaggggcct gctgctgtcc tgggcatggg gtggtcattg ttcaagactg	691
aggcagacte agtetttgaa agggtgeaga ggeeaggege ggtggeteae geetgtaatt	751
ccagcacttt gggaggccaa ggtggacaga tcatgaggtc aggagttcga gaccagcctg	811 871
gccaatacgg tgaaaccgca tctctactaa rraatawcaw aaattagtcg ggcatgggtg atgtgtgctt gtagtcccag ctactcatga ggyctgaggc agaagaatca cctgaatctg	931
ggaggcagag gttgcagtga accaagatcg cacgactgta caccagcctg ggcgacagag	991
tgagactccg tctcaaaaaa aaaaam	1017
<210> 322	
<211> 529 <212> DNA	
<213> Homo sapiens	
<220> <221> CDS	
<222> 107427	
<221> sig_peptide <222> 107190	
<223> Von Heijne matrix	
score 3.79999995231628	
seq RFLSLSAADGSDG/SH	
<221> polyA_signal	
<222> 499504	
<221> polyA site	
<222> 516529	
<400> 322	
aaagtcagcg ctggagtcgg ctaggcggct ggaaacggcg gctgccgccg gtgactcagg	60
gaggegggag geegmaggmg gagetettee tgeaggegtg garace atg gtg etc	115
Met Val Leu acg ctc gga gaa agt tgg ccg gta ttg gtg ggg agg agg ttt ctc agt	163
Thr Leu Gly Glu Ser Trp Pro Val Leu Val Gly Arg Arg Phe Leu Ser	
-25 -20 -15 -10	
ctg tee gea gee gae gge age gat gge age cae gae age tgg gae gtg	211
Leu Ser Ala Ala Asp Gly Ser Asp Gly Ser His Asp Ser Trp Asp Val	
gag ege gte gee gag tgg eee tgg ete tee ggg ace att ega get gtt	259
Glu Arg Val Ala Glu Trp Pro Trp Leu Ser Gly Thr Ile Arg Ala Val	
10 15 20	307
tcc cac acc gac gtt acc aag aag gat ctg aag gtg tgt gtg gaa ttt Ser His Thr Asp Val Thr Lys Lys Asp Leu Lys Val Cys Val Glu Phe	50,
25 30 35	
gak ggg gaa tot tgg agg aaa aga aga tgg ata gaa gto tac ago ott	355
- 50 - 61 - 61 - 6 - 60 1 1 1 1	355
Xaa Gly Glu Ser Trp Arg Lys Arg Arg Trp Ile Glu Val Tyr Ser Leu 40 45 50 55	333

cta agg aaa gca ttt tta gta aaa cat aat ttg gtt tta gct gaa cga Leu Arg Lys Ala Phe Leu Val Lys His Asn Leu Val Leu Ala Glu Arg 60 65 70	403
aag toa oot gaa att tot tgg ggt taaccatott tagttaaatg gaattttaat Lys Ser Pro Glu Ile Ser Trp Gly	457
ttaaatgacg ctttgctaat tttaagtgtt aagcattttg cattaaaata ttcatataat aaaaaaaaaa	517 529
<210> 323 <211> 1046 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 45407	
<221> sig_peptide <222> 4583 <223> Von Heijne matrix score 5.69999980926514 seq MLVLRSALTRALA/SR	
<221> polyA_signal <222> 10081013	
<221> polyA_site <222> 10321042	
<pre><400> 323 aaaaggacac ggctggctgc ttttctcagc gccgaagccg cgcc atg ctc gtc ctc</pre>	56
aaaaggacac ggctggctgc ttttctcagc gccgaagccg cgcc atg ctc gtc ctc Met Leu Val Leu -10 aga agc gcc ctg act cgg gcg ctg gcc tca cgg acg ctg gcg cct cag Arg Ser Ala Leu Thr Arg Ala Leu Ala Ser Arg Thr Leu Ala Pro Gln	56 104
aaaaggacac ggctggctgc ttttctcagc gccgaagccg cgcc atg ctc gtc ctc Met Leu Val Leu -10 aga agc gcc ctg act cgg gcg ctg gcc tca cgg acg ctg gcg cct cag Arg Ser Ala Leu Thr Arg Ala Leu Ala Ser Arg Thr Leu Ala Pro Gln -5 1 5 atg tgc tca tct ttt gct acg gga ccc aga caa tac gat gga ata ttc Met Cys Ser Ser Phe Ala Thr Gly Pro Arg Gln Tyr Asp Gly Ile Phe	
aaaaggacac ggctggctgc ttttctcagc gccgaagccg cgcc atg ctc gtc ctc Met Leu Val Leu -10 aga agc gcc ctg act cgg gcg ctg gcc tca cgg acg ctg gcg cct cag Arg Ser Ala Leu Thr Arg Ala Leu Ala Ser Arg Thr Leu Ala Pro Gln -5 1 5 atg tgc tca tct ttt gct acg gga ccc aga caa tac gat gga ata ttc Met Cys Ser Ser Phe Ala Thr Gly Pro Arg Gln Tyr Asp Gly Ile Phe 10 15 20 tat gaa ttt cgt tct tat tac ctt aag ccc tca aag atg aat gag ttc Tyr Glu Phe Arg Ser Tyr Tyr Leu Lys Pro Ser Lys Met Asn Glu Phe	104
aaaaggacac ggctggctgc ttttctcagc gccgaagccg cgcc atg ctc gtc ctc Met Leu Val Leu -10 aga agc gcc ctg act cgg gcg ctg gcc tca cgg acg ctg gcg cct cag Arg Ser Ala Leu Thr Arg Ala Leu Ala Ser Arg Thr Leu Ala Pro Gln -5 1 5 atg tgc tca tct ttt gct acg gga ccc aga caa tac gat gga ata ttc Met Cys Ser Ser Phe Ala Thr Gly Pro Arg Gln Tyr Asp Gly Ile Phe 10 15 20 tat gaa ttt cgt tct tat tac ctt aag ccc tca aag atg aat gag ttc	104
aaaaggacac ggctggctgc ttttctcagc gccgaagccg cgcc atg ctc gtc ctc Met Leu Val Leu -10 aga agc gcc ctg act cgg gcg ctg gcc tca cgg acg ctg gcg cct cag Arg Ser Ala Leu Thr Arg Ala Leu Ala Ser Arg Thr Leu Ala Pro Gln -5 atg tgc tca tct ttt gct acg gga ccc aga caa tac gat gga ata ttc Met Cys Ser Ser Phe Ala Thr Gly Pro Arg Gln Tyr Asp Gly Ile Phe 10 15 20 tat gaa ttt cgt tct tat tac ctt aag ccc tca aag atg aat gag ttc Tyr Glu Phe Arg Ser Tyr Tyr Leu Lys Pro Ser Lys Met Asn Glu Phe 25 30 35 ctg gaa aat ttt gag aaa aac gct caa ctt cgg aca gct cac tct gaa Leu Glu Asn Phe Glu Lys Asn Ala Gln Leu Arg Thr Ala His Ser Glu	104 152 200
aaaaggacac ggctggctgc ttttctcagc gccgaagccg cgcc atg ctc gtc ctc Met Leu Val Leu -10 aga agc gcc ctg act cgg gcg ctg gcc tca cgg acg ctg gcg cct cag Arg Ser Ala Leu Thr Arg Ala Leu Ala Ser Arg Thr Leu Ala Pro Gln -5 atg tgc tca tct ttt gct acg gga ccc aga caa tac gat gga ata ttc Met Cys Ser Ser Phe Ala Thr Gly Pro Arg Gln Tyr Asp Gly Ile Phe 10 15 20 tat gaa ttt cgt tct tat tac ctt aag ccc tca aag atg aat gag ttc Tyr Glu Phe Arg Ser Tyr Tyr Leu Lys Pro Ser Lys Met Asn Glu Phe 25 ctg gaa aat ttt gag aaa aac gct caa ctt cgg aca gct cac tct gaa Leu Glu Asn Phe Glu Lys Asn Ala Gln Leu Arg Thr Ala His Ser Glu 40 45 50 55 ttg gtt gga tac tgg agt gta kaa ttt gga ggc aga atg awt aca gtg Leu Val Gly Tyr Trp Ser Val Xaa Phe Gly Gly Arg Met Xaa Thr Val	104 152 200 248
aaaaggacac ggctggctgc ttttctcagc gccgaagccg cgcc atg ctc gtc ctc Met Leu Val Leu -10 aga agc gcc ctg act cgg gcg ctg gcc tca cgg acg ctg gcg cct cag Arg Ser Ala Leu Thr Arg Ala Leu Ala Ser Arg Thr Leu Ala Pro Gln -5 1 5 atg tgc tca tct ttt gct acg gga ccc aga caa tac gat gga ata ttc Met Cys Ser Ser Phe Ala Thr Gly Pro Arg Gln Tyr Asp Gly Ile Phe 10 15 20 tat gaa ttt cgt tct tat tac ctt aag ccc tca aag atg aat gag ttc Tyr Glu Phe Arg Ser Tyr Tyr Leu Lys Pro Ser Lys Met Asn Glu Phe 25 30 35 ctg gaa aat ttt gag aaa aac gct caa ctt cgg aca gct cac tct gaa Leu Glu Asn Phe Glu Lys Asn Ala Gln Leu Arg Thr Ala His Ser Glu 40 45 50 55 ttg gtt gga tac tgg agt gta kaa ttt gga ggc aga atg awt aca gtg Leu Val Gly Tyr Trp Ser Val Xaa Phe Gly Gly Arg Met Xaa Thr Val 60 65 70 ttt cat att tgg aag tat gat aat ttt gct cat cga act gaa ttt cag Phe His Ile Trp Lys Tyr Asp Asn Phe Ala His Arg Thr Glu Phe Gln	104 152 200 248 296
aaaaggacac ggctggctgc ttttctcagc gccgaagccg cgcc atg ctc gtc ctc Met Leu Val Leu -10 aga agc gcc ctg act cgg gcg ctg gcc tca cgg acg ctg gcg cct cag Arg Ser Ala Leu Thr Arg Ala Leu Ala Ser Arg Thr Leu Ala Pro Gln -5 atg tgc tca tct ttt gct acg gga ccc aga caa tac gat gga ata ttc Met Cys Ser Ser Phe Ala Thr Gly Pro Arg Gln Tyr Asp Gly Ile Phe 10 15 20 tat gaa ttt cgt tct tat tac ctt aag ccc tca aag atg aat gag ttc Tyr Glu Phe Arg Ser Tyr Tyr Leu Lys Pro Ser Lys Met Asn Glu Phe 25 ctg gaa aat ttt gag aaa aac gct caa ctt cgg aca gct cac tct gaa Leu Glu Asn Phe Glu Lys Asn Ala Gln Leu Arg Thr Ala His Ser Glu 40 45 ttg gtt gga tac tgg agt gta kaa ttt gga ggc aga atg awt aca gtg Leu Val Gly Tyr Trp Ser Val Xaa Phe Gly Gly Arg Met Xaa Thr Val 60 65 70 ttt cat att tgg aag tat gat aat ttt gct cat cga act gaa ttt cag Phe His Ile Trp Lys Tyr Asp Asn Phe Ala His Arg Thr Glu Phe Gln 75 80 85 aaa gcc ttg gcc aaa gat aag gaa tgg caa gaa caa ttc ctc att cca Lys Ala Leu Ala Lys Asp Lys Glu Trp Gln Glu Gln Phe Leu Ile Pro	104 152 200 248 296

ctaggctaca caaaactagt tggagtgttc cacacagagt acggagcact caacagagtt

627

```
687
catgttcttt ggtggaatga gagtgcagat agtcgtgcag ctgggagaca taagtcccat
                                                                    747
gaggatccca gagttgtggc agctgttcgg gaaagtgtca actacctagt atctcagcag
aatatgette tgatteetae ategttttea ceaetgaaat agttttetae tgaaatacaa
                                                                    807
aacatttcat taactgctat aggatctgtc tgctaatggt gcttaaattc tcccaagagg
                                                                    867
ttctcacttt tatttgaagg aggtggtaag ttaatttgct atgtttcttg cattatgaag
                                                                    927
gctacatctg tgctttgtaa gtaccacttc aaaaaatakt tctgtttact ttctgcatgg
                                                                    987
tatttcagtg tctgtcatac attaaaaata cttgtcactg tttyaaaaaa aaaaammcc
                                                                   1046
<210> 324
<211> 880
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 201..332
<221> sig peptide
<222> 201..251
<223> Von Heijne matrix
     score 7.80000019073486
     seq VLWLISFFTFTDG/HG
<221> polyA site
<222> 869..880
<400> 324
aattgctgat ggatcagtga gcctgtgttc atgccagtga gctgctgtgg ctcagatact
                                                                     60
gatactttct ttccaaacag cataagaagt gattgancca caagtatact gaaggmargg
                                                                    120
yhoccwsvar tyctggwgtg amgagataaa tcaccagtca cagactatgc acccgactgc
                                                                    180
tgctgttcag tccagggaaa atg aaa gtt gga gtg ctg tgg ctc att tct ttc
                                                                    233
                     Met Lys Val Gly Val Leu Trp Leu Ile Ser Phe
                             -15
                                                 -10
                                                                    281
ttc acc ttc act qac qqc cac ggt ggc ttc ctg ggg gtg agt tgg tgc
Phe Thr Phe Thr Asp Gly His Gly Gly Phe Leu Gly Val Ser Trp Cys
329
Tyr Val Ser Tyr Leu Phe Ser Thr Asn Ser Pro Leu Ser Phe Arg Arg
               15
                                   20
                                                                    382
att tagaacccct cactctctag gggactgcaa ctgcataatt taatgtactt
gagatcagaa gtcctgagtt ctcgtttcaa cattaccaac attcactgtg tggccttgga
                                                                    442
taagtragtc atttcatctc ttcggagctt agatgatcma actgcaarag gaggatcttt
                                                                    502
gattamacta tottagagat cttttccagt tcaacacatg ctgtactatg gcttctcgga
                                                                    562
tgcagaaaaa tcacatggat ggacattagc aatccttara cactgtcttt cctgtctaca
                                                                    622
ctcgcttgag tgatgckttc atctaggatc atggttttaa tattctctac atgctgatga
                                                                    682
ctcccagctg tatagctcca tctcagaacc tctcccctgt ccacactcac atatccatta
                                                                    742
cctacgtgtt atttccagct gggaaatcca gcggaacctc ggnaacttca tttgnttcaa
                                                                    802
aatcgnaacc caatcettet tgeetatete ageaagtggt atcaetatet tteeagetae
                                                                    862
                                                                    880
ttaggcaaaa aaaaaaaa
```

<210> 325

<211> 1217

<212> DNA

<213> Homo sapiens

```
<222> 217..543
<221> sig peptide
<222> 217..255
<223> Von Heijne matrix
      score 6.40000009536743
      seq MCLLTALVTQVIS/LR
<221> polyA_site
<222> 1206..1217
<400> 325
aatgccagtg tcagcttctc tccgaaaact gggtaatacg aaatggtctt tattggttgt
                                                                       60
gaacactcga gctgagaaac attttaggat ctttgtgtct tttgtgatga ttttgtttct
                                                                      120
graagrwgga aasctgtcta aaaatattca agtgtgcaac caaggattta gatgaagcca
                                                                      180
                                                                      234
qcaaacaaag gaatcatgta atcaggacct gagcga atg tgc tta ctc acg gcg
                                        Met Cys Leu Leu Thr Ala
                                                     -10
tta gtt aca cag gtg att tcc tta aga aaa aat gca gag aga act tgt
                                                                      282
Leu Val Thr Gln Val Ile Ser Leu Arg Lys Asn Ala Glu Arg Thr Cys
                                                                      330
tta tgc aag agg aga tgg ccc tgg ngc ccc tcg ccc cgg atc tac tgc
Leu Cys Lys Arg Arg Trp Pro Trp Xaa Pro Ser Pro Arg Ile Tyr Cys
                    15
                                        20
                                                                      378
tca tcc acc cca tgc gat tcc aaa ttc ccc acc gtc tac tcc agt gcc
Ser Ser Thr Pro Cys Asp Ser Lys Phe Pro Thr Val Tyr Ser Ser Ala
                                   35
                30
cca ttc cat gcc ccc ctc ccc gtc cag aat tcc tta tgg ggg cac ccg
                                                                      426
Pro Phe His Ala Pro Leu Pro Val Gln Asn Ser Leu Trp Gly His Pro
            45
                               50
                                                                      474
ctc cat ggt tgt tcc tgg caa tgc cac cat ccc cag gga car aat ctc
Leu His Gly Cys Ser Trp Gln Cys His His Pro Gln Gly Gln Asn Leu
                            65
                                                                      522
cag cct gcc agt ctc cad acc cat ctc tcc aag ccc aag cgc cat ttt
Gln Pro Ala Ser Leu Xaa Thr His Leu Ser Lys Pro Lys Arg His Phe
                                            85
                        80
                                                                      573
ara aar aar rra tgt caa gcc tgatgaarac atgagtggca aaaacattgc
Xaa Lys Lys Xaa Cys Gln Ala
                    95
                                                                      633
aatgtacara aatgagggtt totatgotga toottacott tatcacgagg gacggatgag
catascetca teccatggtg gacacecact ggatgteece gaccacatea ttgcatatea
                                                                      693
                                                                      753
ccgcaccgcc atccggtcag cgagtgctta ttgtaacccc tcaatgcaag cggaaatgca
                                                                      813
tatggaacaa tcactgtaca gacagaaatc aaggaaatat ccggatagcc atttgcctac
                                                                      873
actgggctcc aaaacacccc ctgcctctcc tcacagaktc agtgacctga ggatgataga
                                                                      933
catgcacgct cactataatg cccacggccc ccctcacacc atgcagccag accgggcctc
tecgageege caggeettta aaaaggagee aggeaeettg gtgtatatag aaaageeaeg
                                                                      993
gagegetgea ggattateca geettgtaga eeteggeeet eetetaatgg agaageaagt
                                                                     1053
ttttgcctac agcacggcga caatacccaa agacagagag accagagaga ggatgcaagc
                                                                     1113
catggagaaa cagattgcca gtttaactgg ccttgttcag tctgcgcttt ttaaagggcc
                                                                     1173
                                                                     1217
cattacaagt tatagcaaar atgcgtctag ctaaaaaaaa aaaa
```

<210> 326

<221> CDS

<211> 959

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 18..446

```
<221> sig_peptide
<222> 18..140
<223> Von Heijne matrix
     score 4.09999990463257
     seq GILILWIIRLLFS/KT
<221> polyA_signal
<222> 930..935
<221> polyA_site
<222> 948..959
<400> 326
aaaggaagcg gctaact atg gcg acc gcc acg gag cag tgg gtt ctg gtg
                  Met Ala Thr Ala Thr Glu Gln Trp Val Leu Val
                      -40
                                          -35
                                                                    98
gag atg gta cag gcg ctt tac gag gct cct gct tac cat ctt att ttg
Glu Met Val Gln Ala Leu Tyr Glu Ala Pro Ala Tyr His Leu Ile Leu
                                       -20
                   -25
gaa ggg att ctg atc ctc tgg ata atc aga ctt ctt ttc tct aag act
                                                                   146
Glu Gly Ile Leu Ile Leu Trp Ile Ile Arg Leu Leu Phe Ser Lys Thr
               -10
                                  -5
                                                                   194
tac aaa tta caa gaa cga tct gat ctt aca gtc aag gaa aaa gaa gaa
Tyr Lys Leu Gln Glu Arg Ser Asp Leu Thr Val Lys Glu Lys Glu Glu
                           10
ctg att gaa gag tgg caa cca gaa cct ctt gtt cct cct gtc cca aaa
                                                                   242
Leu Ile Glu Glu Trp Gln Pro Glu Pro Leu Val Pro Pro Val Pro Lys
                       25
                                         . 30
gac cat cct gct ctc aac tac aac atc gtt tca ggc cct cca agc cac
                                                                   290
Asp His Pro Ala Leu Asn Tyr Asn Ile Val Ser Gly Pro Pro Ser His
                   40
                                       45
aaa act gtg gtg aat gga aaa gaa tgt ata aac ttc gcc tca ttt aat
                                                                   338
Lys Thr Val Val Asn Gly Lys Glu Cys Ile Asn Phe Ala Ser Phe Asn
               55
                                   60
                                                                   386
ttt ctt gga ttg ttg gat aac cct agg gtt aag gca gca gct tta gca
Phe Leu Gly Leu Leu Asp Asn Pro Arg Val Lys Ala Ala Ala Leu Ala
           70
                               75
tct cta aag aag tat ggc gtg ggg act tgt gga ccc tgt gga ttt tat
                                                                    434
Ser Leu Lys Lys Tyr Gly Val Gly Thr Cys Gly Pro Cys Gly Phe Tyr
                           90
                                                                    486
ggc aca ttt gaa tgaaratgaa ggatcattga tttccttgtg tatggataat
Gly Thr Phe Glu
    100
                                                                   546
ccgggaacag gccaactaaa tatttgatga atgtatgatt tcaaatacag tgaattccct
                                                                   606
gggagtcatc aaaraagacg gcattttatg gttgttttta ttaagtgtat attctttgct
                                                                   666
cctgaaaatg ttattaaata attgtttagg ccgggcatgg tggctcatgc ctgtaatccc
agcactttca aaggctgagg caggcagatc acctgaggtc aggagttcaa aaccagcctg
                                                                   726
                                                                   786
gccaacatgc tgaaacctcg tctctactaa aaatacaaaa attagctggg cgtggtggtg
grtgcctgtg gtcccagctr cgtgggaggc tgaggtggga gaattgcttc aacctgggag
                                                                   846
                                                                   906
geggaggttg cagtgageeg agateatgee actgeactee ageetgggea acagageaag
                                                                   959
```

<210> 327

<211> 921

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 29..724 <221> sig_peptide <222> 29..118 <223> Von Heijne matrix score 3.90000009536743 seg VAHALSLPAESYG/NX <221> polyA signal <222> 886..891 <221> polyA site <222> 910..920 <400> 327 aaggagccac gctttcgggg gttgcaag atg gcg gcc acc agt gga act gat Met Ala Ala Thr Ser Gly Thr Asp -30 100 gag ccg gtt tcc ggg gag ttg gtg tct gtg gca cat gcg ctt tct ctc Glu Pro Val Ser Gly Glu Leu Val Ser Val Ala His Ala Leu Ser Leu -15 cca gca gag tcg tat ggy aac grt yct gac att gag atg gct tgg gcc 148 Pro Ala Glu Ser Tyr Gly Asn Xaa Xaa Asp Ile Glu Met Ala Trp Ala 196 atg aga gca atg cag cat gct gaa gtc tat tac aag ctg att tca tca Met Arg Ala Met Gln His Ala Glu Val Tyr Tyr Lys Leu Ile Ser Ser 15 gtt gac cca cag ttc ctg aaa ctc acc aaa gta gat gac caa att tac 244 Val Asp Pro Gln Phe Leu Lys Leu Thr Lys Val Asp Asp Gln Ile Tyr 35 292 tct gag ttc cgg aaa aat ttt gag acc ctt agg ata gat gtg ttg grc Ser Glu Phe Arg Lys Asn Phe Glu Thr Leu Arg Ile Asp Val Leu Xaa 50 cca gaa gan ctc aag tca gaa tca gcn aaa gag ccc cca gga tac aat 340 Pro Glu Xaa Leu Lys Ser Glu Ser Ala Lys Glu Pro Pro Gly Tyr Asn 65 tot ttg cca ttg aaa ttg ctc gga acc ggg aag gct ata aca aag ctg 388 Ser Leu Pro Leu Lys Leu Leu Gly Thr Gly Lys Ala Ile Thr Lys Leu 85 80 ttt ata tca gtg ttc agg aca aag gag aga aag gag tca aca atg 436 Phe Ile Ser Val Phe Arg Thr Lys Lys Glu Arg Lys Glu Ser Thr Met 100 95 gag gag aaa aaa gag ctg aca gtg gag aag aag aga aca cca aga atg 484 Glu Glu Lys Lys Glu Leu Thr Val Glu Lys Lys Arg Thr Pro Arg Met 115 110 gag gag aga aag gag ctg ata gtg gag aag aaa aag agg aag gaa tca 532 Glu Glu Arg Lys Glu Leu Ile Val Glu Lys Lys Lys Arg Lys Glu Ser 130 580 aca gag aag aca aaa ctg aca aag gag gag aaa aag gga aag aag ctg Thr Glu Lys Thr Lys Leu Thr Lys Glu Glu Lys Lys Gly Lys Leu 145 aca aag aaa tca aca aaa gtg gtg aaa aag cta tgt aag gta tac agg 628 Thr Lys Lys Ser Thr Lys Val Val Lys Lys Leu Cys Lys Val Tyr Arg 160 165 676 gaa cag cac tot aga ago tat gac toa att gag act aca agt acc acg Glu Gln His Ser Arg Ser Tyr Asp Ser Ile Glu Thr Thr Ser Thr Thr 180 175 gtg cta ctt gca cag acc cct ttg gtt aaa tgt aaa ttc ttg tac aat 724 Val Leu Leu Ala Gln Thr Pro Leu Val Lys Cys Lys Phe Leu Tyr Asn 195 tgaaggatac gcagaaggac atctttctag tctaacagtc aggagctgct ctggtcattc 784

ccttgtatga actggtctaa agactgttag tggggtgtta gttgattttt cctggtatac

904

tgtttcttgg ctgacactac tggtcaagta agaaatttgt aaataaattt cttttggttc

921 ttattaamaa aaaaaas <210> 328 <211> 1344 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 404..586 <221> sig peptide <222> 404..466 <223> Von Heijne matrix score 4.09999990463257 seq SLMFFSMMATCTS/NV <221> polyA_signal <222> 1304..1309 <221> polyA_site <222> 1334..1344 <400> 328 ataatttaat gcaaaatatc cttttatgaa tttcatgtta atattgtgaa atattaaaat 60 120 aattccacaa tagttgagaa aaatgagcat ttttttccat ttttaaaaaaa tgcatagaaa agacaatttt aaaatcctgg gamccawatt tatttagaag tagctgttag taaaacatta 180 240 gaaaaggagt caggccatba ggttatttat nbnaatctct aagcaattag gntgaagtta 300 ttaagtcaag cctagaaaag ctgcctcctt gtaaggcttt catgacaatg tatagtaatc 360 breagtgtcc aattettege acteetcagg aatateacta cetcaggtta eggtacaeag 415 gctataattg atgatgatgt tcagataact gaagacacaa taa atg aca ttc aga Met Thr Phe Arg -20 463 cat cag gac aat too oto atg tto ttt tot atg atg goo acc tgt acc His Gln Asp Asn Ser Leu Met Phe Phe Ser Met Met Ala Thr Cys Thr -10 -15 511 age aac gtg ggt ttc acc cac aca acg atg aac tgt tct ctt act tct Ser Asn Val Gly Phe Thr His Thr Thr Met Asn Cys Ser Leu Thr Ser 10 559 cca gtt gat ttt aaa gac ttg tta aga gtc tta cta ata aaa ttt ggg Pro Val Asp Phe Lys Asp Leu Leu Arg Val Leu Leu Ile Lys Phe Gly 20 606 tat gat aga aaa tcc aca atc aaa tct tgaaccaaat aacatattaa Tyr Asp Arg Lys Ser Thr Ile Lys Ser 35 666 attactaata tttaagtgat ggaagacaca caaaaaactt aaaagcacga acaacctaac 726 ttgaaaaara attttaaaat atgattaacc tgaaraaaar araatcctaa ragccaaagc 786 tcctttttat ttagcttgga attttcctat tggttcctaa caaactgtcc caatgtcata 846 taaggaaaca tgatctatta cattccttta taacaacgtg gararactat aaacctatgt aagtagtaaa actatatcag adactcagga ractgactww aaggcctgga tctgcagtgt 906 966 attatctgta taaaaattgg cagggggaag ctaaaaggaa aggagattgg agatctcaat 1026 tctatcatgg tgtatttcat acgcaaatca ragcatgcat tgttttttgt ttttggaaar 1086 avaarggaag tgtgttctgc cccatgtttc cttccgtgtt tatagttcaa actctatata 1146 tacttcaggt attttttgtt tagcccttca ttataaatgg gcaggaaatt gtttatcaac ctagccagtt tattactagt gaccttgact tcagtatctt gagcattctt ttatattttt 1206 1266 cttttattat cctgagtctg taactaaaca attttgtctt caaattttta tccaatatcc 1326 attgcaccac accaaatcaa gcttcttgat tttcaaaaat aaaaaggggg aaatacttac 1344 aacttgtaaa aaaaaaaa

60

120

180

240 300

354

402

452

512 572

585

<210> 329 <211> 585

<221> polyA_signal <222> 886..891

```
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 331..432
<221> sig peptide
<222> 331..387
<223> Von Heijne matrix
      score 7
      seg AGLSSCLLPLCWL/ER
<221> polyA signal
<222> 548..553
<221> polyA_site
<222> 573..585
<400> 329
aagcotaggt gtggcgcccc gaccggactt tcacttctgg ccagcccttt ccccacctgg
gcgcgggass ggtgccagtc tttaaacaac ctctcgatgg gtcccacgaa gatgtttcca
gaccettgga atgecaagtt caagtttage tatgtetege ggagaggeeg gtggaagaag
caacgagaat gaagcacccc agttctctgc tgagcacatg ggcatctgca ataaagattt
aatttcccag cttctcctga agctcggtat ggccacaaca ctaaattctg cccgaggaga
ttgagcaaaa tagtatggga cttccaagaa atg ttt tta aag tca ggg gca ggc
                                 Met Phe Leu Lys Ser Gly Ala Gly
                                                 -15
ctt tct tca tgc ctt ctt cct ctt tgc tgg ctg gaa cgc aaa gac cat
Leu Ser Ser Cys Leu Leu Pro Leu Cys Trp Leu Glu Arg Lys Asp His
                        -5
                                           1
ggc agg agg cca agc asc cat cct gga agg tgaaagcctc atactaagga
Gly Arg Arg Pro Ser Xaa His Pro Gly Arg
               10
cgtcaracag cgaaataara rcctgggtcc ttgaccctgt aaasatctcc ctccccatcc
tggtctgtct gccttgactc ctttcatatg aaaaaaataa acttttaact tgcgtwaacc
aaaaaaaaa aaa
<210> 330
<211> 914
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 59..703
<221> sig_peptide
<222> 59..220
<223> Von Heijne matrix
      score 5.09999990463257
      seg FLLSQMSQHQVHA/VQ
```

<221> polyA_site <222> 903..914

400																
<pre><400> 330 acaaatatca atgatgttta tgaatctagt gtgaaagtkt taatcacatc acaaggct</pre>												58				
ata	326	rra	tya.	.gcci	ant.	cca	ttc	220	taw	caa	tta	ard	tat	ttg	gak	106
Met	Aen	Yra	Tur	Δla	Ser	Pro	Phe	Asn	Xaa	Gln	Leu	Xaa	Tvr	Leu	Xaa	
Mec	A311	Add	1 y 1	-50	-				-45				2	-40		
tta	acc	aar	ttc		tat	atr	cat	aga		ασа	aga	gta	att	aca	ctq	154
Len	Ser	Ara	Dhe	Glu	Cvs	Val	His	Ara	Asp	Glv	Ara	Val	Ile	Thr	Leu	
neu	Jer	Arg	-35	JIU	Cyb	***		-30		1	5		-25			
tet	tat	CaG		cad	gag	cta	caq		ttt	ctt	cta	tct	caq	atg	tca	202
Ser	Tvr	Gln	Glu	Gln	Glu	Leu	Gln	Asp	Phe	Leu	Leu	Ser	Gln	Met	Ser	
561	- / -	-20	014	Q			-15					-10				
cad	cac		σta	cat	gca	att		caa	ctc	acc	aaq	qtt	atq	ggc	tgg	250
Gln	His	Gln	Val	His	Ala	Val	Gln	Gln	Leu	Āla	Lys	Val	Met	Gly	Trp	
	-5				•	1				5	-			_	10	
caa		cta	agc	ttc	agt	aat	cat	ata	qqa	ctt	gga	cct	ata	gag	agc	298
Gln	Val	Leu	Ser	Phe	Ser	Asn	His	Val	Gly	Leu	Gly	Pro	Ile	Glu	Ser	
				15					20		-			25		
abt	aat	aat	qca	tct	qcc	atc	acg	gtg	gcc	ccc	caa	gtg	gtg	act	atg	346
Xaa	Glv	Asn	Āla	Ser	Ala	Ile	Thr	Val	Ala	Pro	Gln	Val	Val	Thr	Met	
	•		30					35					40			
cta	ttt	caq	ttc	gta	atg	gac	ctg	aaa	gtg	gca	gca	aga	tta	tgg	ttc	394
Leu	Phe	Gln	Phe	Val	Met	Asp	Leu	Lys	Val	Āla	Āla	Arg	Leu	\mathtt{Trp}	Phe	
		45				_	50					55				
agt	ttc	ctc	gta	acc	aat	gta	aar	acc	ttc	caa	aaa	gtg	atg	ttt	tac	442
Ser	Phe	Leu	Val	Thr	Asn	Val	Lys	Thr	Phe	Gln	Lys	Val	Met	Phe	Tyr	
	60					65					.70					
aar	ata	aca	aat	gga	gtc	atc	ttc	gtg	ggc	cat	tca	aar	aag	ttc	agt	490
Lys	Ile	Thr	Asn	Gly	Val	Ile	Phe	Val	Gly	His	Ser	Lys	Lys	Phe	Ser	
75					80					85					90	
gga	ata	aaa	tgg	aag	gtc	kaa	att	ttg	ttt	ata	aaa	tgg	arm	tgc	tta	538
Gly	Ile	Lys	Trp	Lys	Val	Xaa	Ile	Leu	Phe	Ile	Lys	\mathtt{Trp}	Xaa	Cys	Leu	
				95					100					105		-06
tgt	ctg	cac	tta	gcc	ctt	gtc	tac	tat	gat	ttt	ttc	car	atg	ttt	cct	586
Cys	Leu	His	Leu	Ala	Leu	Val	Tyr		Asp	Phe	Phe	Gln		Phe	Pro	
			110					115					120			C 2 A
aaa	raa	gtt	tcc	ara	aac	ttt	gac	ttg	aaa	tgt	ttg	car	atc	aac	tat	634
Lys	Xaa		Ser	Xaa	Asn	Phe		Leu	Lys	Cys	Leu		lle	Asn	Tyr	
		125					130					135				602
aag	cac	aaa	gaa	gar	ata	act	tcc	aaa	aga	gtg	ctg	ttt	tta	aaa	ata	682
Lys		Lys	Glu	Glu	Ile		ser	ьуs	Arg	vaı		Pne	Leu	Lys	TTE	
	140					145					150					733
							tag	cact	ttc	aaac	tttt	ca c	ttta	taaa	.	/33
	Ile	Arg	Lys	Cys		Ile										
155					160	_										793
gac	aagt	gct	ttga	aatg	ca g	aagt	ttat	g ta	cagt	tgta	tat	acag	tat	gaca	agatgt	793 853
aaa	ataa	tat	gttt	ttca	tg c	agtt	caaa	a ta	ttac	taac	tta	aggg	בבב	ctat	gtgctt	913
	aaaa	tat	tcct	tctt	tg a	tgtt	gaca	t ca	aata	aagt	atg	rggt	tta	aaaa	aaaaa	913 914
а																714

<210> 331

<211> 1161

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 672..752

WO 99/31236 -248- PCT/IB98/02122 -

```
<221> sig_peptide
<222> 672..722
<223> Von Heijne matrix
      score 4.30000019073486
      seq LLYAHLSFTSKRA/VV
<221> polyA site
<222> 1150..1161
<400> 331
aagatatcac tgtcttgttt tcacttagat cctacttaca aagtgagggt tattaacaga
                                                                      60
ataaagcctt cctttaaagc tttataataa tcatatttat taataatgct gttgtgcata
                                                                      120
cttatagtat gcatatattc agcatatgtt gcatgtsttc agaattacat aagatgaaat
                                                                      180
ccctttcatt gcaacttgca agtgagaaaa gatccttagt ggctctggtg gaagaaatag
                                                                      240
tatttettet teteagggtg tetecetgee ttggeceete ccagaageee eggetttaaa
                                                                      300
                                                                      360
agtgaaaatg tttgaaacat gaaacatgtc tgtaggaagc atcagcatgg ccataagtgc
                                                                      420
artgattttc atatatgcct ctgcccattt caaatatatt tttgacatga ataaatctaa
cagtatacar aataattcat gtaaraccct aacgtgtaca tgtgaaaaag catttctata
                                                                      480
taatgtgagg agcactggcc atcaattagg gaaataaagg tcatgtaata ttgcaaattt
                                                                      540
tcaaaataga gcsstgcaag ataactgcaa tcataccaaa aactatttga gtaaatggat
                                                                      600
ttttaaagta attttgttt aaaaaaattt atatttcaga agsagaaaat gtcaaatgat
                                                                      660
agtetttgta a atg gtg gtg cac ett ete tat gea eat etg tet ttt aca
                                                                      710
             Met Val Val His Leu Leu Tyr Ala His Leu Ser Phe Thr
                                                              -5
                     -15
                                                                      752
tca aaa aga gct gtg gtc atg cta aaa tta gag ata act ttt
Ser Lys Arg Ala Val Val Met Leu Lys Leu Glu Ile Thr Phe
                               5
                                                    10
                1
                                                                      812
tgaatgactt ggtcaagctg tgtgtaaaat atttaaccat aagtcaagta cagtgtacta
tgtttaataa agttacattt aatgcattta ttgcatatat gaatatatac atgaagaggc
                                                                      872
tttatgtctt ctggtatttg attttgaatg ttttttaagt cagtggtgcc tttaggcaag
                                                                      932
                                                                      992
aactttcgaa attaatcatt ctttgtgttt tctgattttt caggtaacat gtacactatt
                                                                     1052
tagaaaccat catagtttat tcaccttaaa aaattgattg tattatttaa atatatcact
tagatgggca tttcctataa ttaggatatt ccaaatagtt gctgaaatca attgtgccat
                                                                     1112
                                                                     1161
tgaccaatgg atgcacttgg ttagccttaa ttttttyaaa aaaaaaaaa
<210> 332
<211> 363
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 57..311
<221> sig_peptide
<222> 57..128
<223> Von Heijne matrix
      score 5.30000019073486
      seq LFHLLFLPHYIET/FK
<221> polyA signal
<222> 332..337
<221> polyA site
<222> 351..363
<400> 332
acatttetta etgeettaeg eteateetga ggteeacett ggtetetaaa aacace atg
```

tgt tct cat gcc tcc atg tct ttt cac aca ctg ttc cat ttg ctc ttc Cys Ser His Ala Ser Met Ser Phe His Thr Leu Phe His Leu Leu Phe -20 -15 -10	107
ctc cca cat tac att gaa act ttc aag cct cag tcg aaa cat tgc ttc Leu Pro His Tyr Ile Glu Thr Phe Lys Pro Gln Ser Lys His Cys Phe	155
ttc tgg ata gca gcc ttc ttg aca tcc ctc ctc act ccc cag tcc cta Phe Trp Ile Ala Ala Phe Leu Thr Ser Leu Leu Thr Pro Gln Ser Leu 10 20 25	203
cag ggc ttc cat agc tct tta tgt gca ctt cga tcc cag cat ttt cca Gln Gly Phe His Ser Ser Leu Cys Ala Leu Arg Ser Gln His Phe Pro 30 35 40	251
tcg act tgt aat tgt ttc tgc tac ctg aca atc atc gcc ttg drd tac Ser Thr Cys Asn Cys Phe Cys Tyr Leu Thr Ile Ile Ala Leu Xaa Tyr 45 50 55	299
tgg gac aac ctt tgattactca ttatatcctc aataaatatt tgttgaacca Trp Asp Asn Leu 60	351
aaaaaaaaaa aa	363
<210> 333 <211> 645 <212> DNA <213> Homo sapiens	
<220> <221> CDS <222> 80232	
<221> sig_peptide <222> 80127 <223> Von Heijne matrix score 3.70000004768372 seq IALTLIPSMLSRA/AG	
<221> polyA_signal <222> 617622	
<221> polyA_site <222> 634645	
<400> 333	
accttcttgt tatttatgct attctctttg tggctccatt cttctttcaa tcttctcagc ttataaccgt ctttccctt atg cta agg ata gcc ctt aca ctc atc cca tct Met Leu Arg Ile Ala Leu Thr Leu Ile Pro Ser -15	60 112
atg ctg tca agg gct gct ggt tgg tgc tgg tac aag gag ccc act cag Met Leu Ser Arg Ala Ala Gly Trp Cys Trp Tyr Lys Glu Pro Thr Gln	160
cag ttt tct tac ctt tgc ctg ccc tgc ctt tca tgg aat aar aaa ggc Gln Phe Ser Tyr Leu Cys Leu Pro Cys Leu Ser Trp Asn Lys Lys Gly	208
aac gtt ttg cag ctt cca aat ttc tgaaraaact aatctcarat tggcagttaa Asn Val Leu Gln Leu Pro Asn Phe	262
30 35 agtcaaaatg ttgccaaata tttattcctt ttgcctaakt ttggctaccc ggttcaattg	322
ctttttattt ttaatgtett gactettear agttegtace teaaaaraac aatgaraaca	382
tttgctttgc tttctgctga atccctaatc tcaacaatct atacctggac tgtccagttc	442
tectectgtg ctatettete ttetatecaa gtaraatgta ygecaggare teetteecte	502
tarcaattte tactaaaatg tecaagtara atgttteett ttacaatcaa attactgtat	562

ttattaattt gctaraatcc aktaaatcat tttggtagct ctggctgtgc tatcaataaa aagatgaaag caaaaaaaaa aaa	622 645 _.									
<210> 334 <211> 400 <212> DNA <213> Homo sapiens										
<220> <221> CDS <222> 91291										
<pre><221> sig_peptide <222> 91219 <223> Von Heijne matrix</pre>										
<221> polyA_signal <222> 367372										
<221> polyA_site <222> 389400										
<400> 334 aacaaaagga gagttttata attcacttta aaaggagatt tgatggtaaa gtttaaagat 60 taaaatattt tgttcttcaa ttacagagcg atg acc cca cag tat ctg cct cac 114 Met Thr Pro Gln Tyr Leu Pro His										
ggt gga aaa tac caa gtt ctt gga gat tac tct ttg gca gtg gtc ttc Gly Gly Lys Tyr Gln Val Leu Gly Asp Tyr Ser Leu Ala Val Val Phe -35 -30 -25 -20	162									
ccc ctg cac ttt tct gat cta att tct gtt tta tac ctt ata ccc aaa Pro Leu His Phe Ser Asp Leu Ile Ser Val Leu Tyr Leu Ile Pro Lys -15 -10 -5	210									
aca ctt act acc aac aca gct gtt aaa cat tct ata caa aaa aat tgt Thr Leu Thr Thr Asn Thr Ala Val Lys His Ser Ile Gln Lys Asn Cys 1 10	258									
atg mat ctg gta tta gga aaa tta ctt tca cag taaatatcaa agaaaaaaga Met Xaa Leu Val Leu Gly Lys Leu Leu Ser Gln 15 20	311									
ttaagggtct ctttgccatg cttttcatca tatgcaccaa atgtaaattt tgtacaataa aattttattt cctaagyaaa aaaaaaaaa	371 400									
<210> 335 <211> 496 <212> DNA <213> Homo sapiens										
<220> <221> CDS <222> 196384										
<221> sig_peptide										

<223> Von Heijne matrix

score 6.69999980926514 seq ILSTVTALTFARA/LD

<221> polyA_signal	
<221> polyA_site <222> 485496	
<pre><400> 335 aaaaaattgg tcccagtttt caccctgccg cagggctggc tggggagggc agcggtttag attagccgtg gcctaggccg tttaacgggg tgacacgagc htgcagggcc gagtccaagg cccggagata ggaccaaccg tcaggaatgc gaggaatgtt tttcttcgga ctctatcgag gcacacagac atg ggg att ctg tct aca gtg aca gcc tta aca ttt</pre>	60 120 180 231
gcc aga gcc ctg gac ggc tgc aga aat ggc att gcc cac cct gca agt Ala Arg Ala Leu Asp Gly Cys Arg Asn Gly Ile Ala His Pro Ala Ser 10	279
gag aag cac aga ctc gag aaa tgt agg gaa ctc gag agc agc cac tcg Glu Lys His Arg Leu Glu Lys Cys Arg Glu Leu Glu Ser Ser His Ser 15 20 25	327
gcc cca gga tca acc cag cac cga aga aaa aca acc aga aga	375
tct tca gcc tgaaatgaak ccgggatcaa atggttgctg atcaragccc Ser Ser Ala	424
atatttaaat tggaaaagtc aaattgasca ttattaaata aagcttgttt aatatgtctc aaacaaaaaa aa	484 496
<pre><210> 336 <211> 968 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 54590 <221> sig_peptide <222> 54227 <223> Von Heijne matrix</pre>	E.C.
atatttgccc cttactttat cttgtgcctt gagaaattgc tggggagaga ggt atg Met	56
tcc act ggg cag ctg tac agg atg gag gat ata ggg cgt ttc cac tcc Ser Thr Gly Gln Leu Tyr Arg Met Glu Asp Ile Gly Arg Phe His Ser -55 -50 -45	104
cag cag cca ggt tcc ctc acc cca agc tca ccc act gtt ggg gag att Gln Gln Pro Gly Ser Leu Thr Pro Ser Ser Pro Thr Val Gly Glu Ile -40 -35 -30	152
atc tac aat aac acc aga aac aca ttg ggg tgg att ggg ggt atc ctt Ile Tyr Asn Asn Thr Arg Asn Thr Leu Gly Trp Ile Gly Gly Ile Leu -25 -20 -15 -10	200
atg ggt tct ttt cag gga acc att gct gga caa ggc aca gga gcc acc Met Gly Ser Phe Gln Gly Thr Ile Ala Gly Gln Gly Thr Gly Ala Thr	248

				- 5					1				5			
tcc	att	tct	gag	ctc	tgc	aag	gga	caa	gaa	cta	gag	cca	tca	999	gct	296
Ser	Ile	Ser	Glu	Leu	Cys	Lys		Gln	Glu	Leu	Glu		Ser	Gly	Ala	
		10					15					20				
999	ctc	act	gtg	gcc	cca	CCC	caa	gcc	gtc	agc	ctc	cag	ggw	atc	tac	344
Gly		Thr	Val	Ala	Pro		GIn	Ala	Val	Ser		GIn	GIY	Ile	Tyr	
	25					30					35		a+ >	~~~	an a	392
														rgg Xaa		392
Inr	Leu	Pro	Trp	Leu	15u	GIII	Leu	Pne	HIS	50	Tur	Ald	пеп	naa	55	
	C2.C	C33	cot	t		tet	cta	tot	cta		ato	tct	tca	tcc		440
														Ser		
Add	0111	U 111	110	60	047				65					70		
act	ccr	rat	cca		acc	tac	acc	cta		cca	qqa	ata	qac	cct	acc	488
														Pro		
			75			•		80			•		85			
cga	sct	gtc	tgt	att	aat	ccc	cat	ccc	cca	cca	cca	atc	tta	aaa	abc	536
Arg	Xaa	Val	Cys	Ile	Asn	Pro	His	Pro	Pro	Pro	Pro	Ile	Leu	ГЛЯ	Xaa	
		90					95					100				
														333		584
Pro		Ser	Pro	Tyr	Pro		Pro	Gln	Leu	Gly		His	Ala	Gly	Gln	
	105					110					115					
-		taad	caati	tta 1	tgcad	caggi	ta ct	tagtt	ttat	t tgt	catta	accg	ttc	cagg	gta	640
	Asn															
120													~~+		actat a	700
															cctgta agacca	
															tgtggt	
															aaccca	
															acagag	
					aa aa			, -,		- , - ,				,, ,		968
- 55		- 5														

<210> 337

<211> 901

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 133..846

<221> sig_peptide

<222> 133..345

<223> Von Heijne matrix
 score 9.39999961853027
 seq VVSFLLLLAGLIA/TY

<221> polyA_site <222> 890..901

<400> 337

aagcagcttc caggatcctg agatccggag cagccggggt cggagcggct cctcaagagt 60 120 tactgatcta tnnatggcag agaaaaaaa attgtgacca gagacgtgta gcaatgaaca 171 aggaacrtca ta atg rwn nnk ttc aca gac ccc tct tca gtg aat gaa aag Met Xaa Xaa Phe Thr Asp Pro Ser Ser Val Asn Glu Lys -70 -65 aag agg agg gag cgg gaa gaa agg cag aat att gtc ctg tgg aga cag 219 Lys Arg Arg Glu Arg Glu Glu Arg Gln Asn Ile Val Leu Trp Arg Gln -50 -45 267 ccg ctc att acc ttg cag tat ttt tct ctg gaa atc ctt gta atc ttg

Pro	Leu	Ile	Thr	Leu	Gln	Tyr	Phe	Ser	Leu	Glu	Ile	Leu -30	Val	Ile	Leu	
aag Lys	gaa Glu -25	tgg Trp	acc Thr	tca Ser	aaa Lys	tta Leu -20	tgg Trp	cat His	cgt Arg	caa Gln	agc Ser -15	att Ile	gtg Val	gtg Val	tct Ser	315
ttt Phe -10	tta	ctg Leu	ctg Leu	ctt Leu	gct Ala -5	ggg Gly	ctt Leu	ata Ile	gct Ala	acg Thr 1	tat Tyr	tat Tyr	gtt Val	gaa Glu 5	gga Gly	363
gtg	cat His	caa Gln	cag Gln 10	tat Tyr	gtg Val	caa Gln	cgt Arg	ata Ile 15	gag Glu	aaa Lys	cag Gln	ttt Phe	ctt Leu 20	ttg Leu	tat Tyr	411
gcc Ala	tac Tyr	tgg Trp 25	ata Ile	ggc Gly	tta Leu	gga Gly	att Ile 30	ttg Leu	tct Ser	tct Ser	gtt Val	999 Gly 35	ctt Leu	gga Gly	aca Thr	459
Gly 999	ctg Leu 40	cac His	acc Thr	ttt Phe	ctg Leu	ctt Leu 45	tat Tyr	ctg Leu	ggt Gly	cca Pro	cat His 50	ata Ile	gcc Ala	tca Ser	gtt Val	507
aca Thr 55	tta Leu	gct Ala	gct Ala	tat Tyr	gaa Glu 60	tgc Cys	aat Asn	tca Ser	gtt Val	aat Asn 65	ttt Phe	ccc Pro	gaa Glu	cca Pro	ccc Pro 70	555
tat Tyr	cct Pro	gat Asp	cag Gln	att Ile 75	att Ile	tgt Cys	cca Pro	gat Asp	gaa Glu 80	gag Glu	ggc Gly	act Thr	gaa Glu	gga Gly 85	acc Thr	603
Ile	Ser	Leu	tgg Trp 90	Ser	Ile	Ile	Ser	Lys 95	Val	Arg	Ile	Glu	Ala 100	Cys	Met	651
tgg Trp	ggt Gly	atc Ile 105	ggt Gly	aca Thr	gca Ala	atc Ile	gga Gly 110	gag Glu	ctg Leu	cct Pro	cca Pro	tat Tyr 115	ttc Phe	atg Met	gcc Ala	699
aga Arg	gca Ala 120	gct Ala	cgc Arg	ctc Leu	tca Ser	ggt Gly 125	gct Ala	gaa Glu	cca Pro	gat Asp	gat Asp 130	gaa Glu	gag Glu	tat Tyr	cag Gln	747
Glu 135	Phe	Glu	gag Glu	Met	Leu 140	Glu	His	Ala	Glu	Ser 145	Ala	Gln	Val	Arg	Thr 150	795
			gaa Glu													843
agg Arg	taa	aatt	gtt a	agta	gtta	ct c	tgaa	gaag	a aa	actg	ctaa	agt	aaaa	aaa a	aaaaa	901

```
<210> 338
```

<211> 1347

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 138..671

<221> sig_peptide <222> 138..248

<223> Von Heijne matrix score 3.5 seq LVFNFLLILTILT/IW

<221> polyA_signal <222> 1319..1324

<221> polyA_site

<222> 1338..1347

<400> 338	
aagaatgett gtgaagtage aactaaagtg geagtgttte ttetgaaatt eteaggeagt	60
cagactgtct taggcaaatc ttgataaaat agcccttatc caggttttta tctaaggaat	120
cccaagaaga ctgggga atg gag aga cag tca agg gtt atg tca gaa aag	170
Met Glu Arg Gln Ser Arg Val Met Ser Glu Lys	
-35 -30	
gat gag tat cag ttt caa cat cag gga gcg gtg gag ctg ctt gtc ttc	218
Asp Glu Tyr Gln Phe Gln His Gln Gly Ala Val Glu Leu Leu Val Phe	
-25 -20 -15	
aat ttt ttg ctc atc ctt acc att ttg aca atc tgg tta ttt aaa aat	266
Asn Phe Leu Leu Ile Leu Thr Ile Leu Thr Ile Trp Leu Phe Lys Asn	
-10 -5 1 5	
cat cga ttc cgc ttc ttg cat gaa act gga gga gca atg gtg tat ggc	314
His Arg Phe Arg Phe Leu His Glu Thr Gly Gly Ala Met Val Tyr Gly	
10 15 20	
ctt aya atg gga cta att tta csa tat gct aca gca cca act gat att	362
Leu Xaa Met Gly Leu Ile Leu Xaa Tyr Ala Thr Ala Pro Thr Asp Ile	
25 30 35	
gaa agt ggr rct gtc tat gac tgt gta aaa cta act ttc agt cca tca	410
Glu Ser Gly Xaa Val Tyr Asp Cys Val Lys Leu Thr Phe Ser Pro Ser	
40 45 50	
act ctg ctg gtt aat atc act gac caa gtt tat gar tat aaa tac aar	458
Thr Leu Leu Val Asn Ile Thr Asp Gln Val Tyr Glu Tyr Lys Tyr Lys	
55 60 65 70	
aga gaa ata agt cag cac amc atc aat cct cat cam gga aat gct ata	506
Arg Glu Ile Ser Gln His Xaa Ile Asn Pro His Xaa Gly Asn Ala Ile	
75 80 85	
ctt gaa aag atg aca ttt gat cca raa atc ttc ttc aat gtt tta ctg	554
Leu Glu Lys Met Thr Phe Asp Pro Xaa Ile Phe Phe Asn Val Leu Leu	
90 95 100	
cca cca att ata ttt cat gca gga tat agt cta aag aag aga cac ttt	602
Pro Pro Ile Ile Phe His Ala Gly Tyr Ser Leu Lys Lys Arg His Phe	
105 110 115	
ttt caa aac tta gga tct att tta acg tat gcc ttc ttg gga act gcc	650
Phe Gln Asn Leu Gly Ser Ile Leu Thr Tyr Ala Phe Leu Gly Thr Ala	
120 125 130	
ato too tgo ato gto ata ggg taagtgacat toggagotoa agttgcaggt	701
Ile Ser Cys Ile Val Ile Gly	
135 140	
ggctgtgggg tcygtgatct gtgtgaggga tctaacactt ccaggattct tgctggckgg	761
gaaaattgtc ttttttttar tawatcacaw atttgtatgt tttttcwgac ttaattccac	821
ggcttckgam aaatacaagg cttcaaatca aagcaaacta waggattgct ggactttctc	881
tgtgagttet ggaettetga ettagggaat gtggateaet tgeettgagt tatgtgaage	941
gcattgcatt cttcttttag tttgagtaat sccgatatgc tcactgcatt cttttttgtc	1001
ttgtattgag agaccttacc tgtatttggc aggagtgcaa aagtaactat atgccaagag	1061
ttttctttct aaaggaaagt ttacaagaca gcagtctgaa acagatatgt ccaaatatca	1121
acagagttgc ttaatacagg gatagctttt cagttaatac cctgtagaat gcagactctt	1181
tttttcattg tattttcttg attatgctac tgagccctaa gtcacacgtt atatactctg	1241
gettgeaget cateataaag taaaatgtgg taccaaatgg tgaaggeaat ceagectetg	1301
ataatcccgt ccaatacatt aaagctccac tgcaggaaaa aaaaaa	1347

<210> 339 <211> 987

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 124..411 <221> sig_peptide <222> 124..186 <223> Von Heijne matrix score 6.30000019073486 seq MVALCCCLWKISG/CE <221> polyA signal <222> 948..953 <221> polyA site <222> 971..983 <400> 339 aagacgctgc ctttagggag agataaaaag cataatgaca ttagctagga aagttaattt 60 tcagttctta ctgaagtgct gtatgaaact gaaatttcca aggaactgaa ttttgtgagc 120 caa atg agc atg caa ttc ttg ttt aag atg gtg gcc tta tgc tgt tgt 168 Met Ser Met Gln Phe Leu Phe Lys Met Val Ala Leu Cys Cys -15 -10 ctc tgg aag atc tcc ggc tgt gag gaa gtc cct cta act tac aac ctg 216 Leu Trp Lys Ile Ser Gly Cys Glu Glu Val Pro Leu Thr Tyr Asn Leu - 5 264 ctc aag tgc ctc cta gat aaa gcg cac tgt gta ctc ctg aca cct tgt Leu Lys Cys Leu Leu Asp Lys Ala His Cys Val Leu Leu Thr Pro Cys 20 ggt tac atc ttt tcc ttg atc agt cca gaa att ctc aaa ctc act tta 312 Gly Tyr Ile Phe Ser Leu Ile Ser Pro Glu Ile Leu Lys Leu Thr Leu 35 40 360 atc act ttg cav atc ctc tta ata ctc aaa aat cta cac tta ctg tgg Ile Thr Leu Xaa Ile Leu Leu Ile Leu Lys Asn Leu His Leu Leu Trp 50 55 408 ctg aca gtt tca agc awa tgt gtt cat cgc agt agt gca aga aaa gaa Leu Thr Val Ser Ser Xaa Cys Val His Arg Ser Ser Ala Arg Lys Glu 65 aag tagaagaacc ctgcagagat ttgatggaac ccagcttcta ttcattaaaa 461 Lys 75 ccaatggcaa aatataaagc aaataggagg tgacgaaggt tacaaaaata cgtattgttt 521 581 atgttttccc tggggtgtgc tgattgtcag gcatcagttc cctgtgccat tcattcccca 641 acacagcatg catcagaaat tttatcaata aatgctttct ctctcaatgt tcaacctatg 701 ctgatagacc attaaataca gtttttgggt tcacagcttg tcatcatcat ttgtctatac ctgtggcaaa gaatatctaa taagatactc tcagcatttt gcacacttaa actaagatgc 761 821 tgaatgctgt attttacgga ataatcagcc acattaaatt tggagactca acaagcatgc tgtgaacatt caacattagg tttaaatttt atttttaaaa gttaataata aaaggatata 881 tgttaagtat tatgaaaccc tgcatatact gtaataaaat ggtggatgtg aatggacaat 941 987 atatgcaata aaatttataa tttgattcya aaaaaaaaaa aamccv

```
<210> 340

<211> 748

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 372..494

<221> sig_peptide

<222> 372..443
```

<223> Von Heijne matrix

score 5.30000019073486 seg RILLLHFYCLLRS/SE <221> polyA_signal <222> 708..713 <221> polyA_site <222> 732..745 <400> 340 60 acatqaaatq tqcttqqtct gtgatctctt ggtcagatat ctgccttcca ggcgatcctt 120 tgaggttgtg taattcaget ggccetgget cetggteect gttactgage tgggcagteg 180 aaccgaagge agatgagete aagateatge ettgggaage atggtgetet aggggtgeet 240 ttttattcct ttcattgtat tatagactgt ttccaagttt atggttagaa atggtaaagt 300 gggtctggtg ttttgaggta gaacccagcc tagggcaaga tatgaactgt tcttgaggta 360 gaaatgtcta cagtcagttg tttcatctag cttgcatctt aaaacacaaa cccttcagtt gettteactt a atg cac aca ttt gee aat gae aga ggg tta tae agg ate 410 Met His Thr Phe Ala Asn Asp Arg Gly Leu Tyr Arg Ile -20 ctt ctt tta cat ttc tat tgt ctg cta cgc tca tca gag tat att ttg 458 Leu Leu Leu His Phe Tyr Cys Leu Leu Arg Ser Ser Glu Tyr Ile Leu ~ 5 1 ggg tac aag gtt ttg ggg gtt ttt tty ccc att ttg taactgcctt 504 Gly Tyr Lys Val Leu Gly Val Phe Phe Pro Ile Leu attgaaaadt aaktgccctt ccattccagg cctcctcata ttgtacttgt ttcctgccaa 564 624 atctggggga tcatttgtat tttaactttg taatctatgg ctctgtactg ttgaaagstc tcaattctgt ggggtctcct tagtatgtat gtgacttttc atgttgcaat atcacacgat 684 744 gggatggccc gacttttgct cttaataaat aatctgaatg agtaagaraa aaaaaaaaaa 748 accc <210> 341 <211> 1106 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 112..450 <221> sig_peptide <222> 112..192 <223> Von Heijne matrix score 7.19999980926514

seq SLLFFLLLEGGXT/EQ <221> polyA signal <222> 1053..1058 <221> polyA_site <222> 1095..1106 <400> 341 aagacetegg aacgagageg eeceggggag eteggagege gtgeaegegt ggeavaegga 60 gaaggevakk rennnnrett gaaggttetg teacettttg eagtggteea a atg aga 117 165 raa aag tgg aaa atg gga ggc atg aaa tac atc ttt tcg ttg ttc Xaa Lys Trp Lys Met Gly Gly Met Lys Tyr Ile Phe Ser Leu Leu Phe -20 -15 213 ttt ctt ttg cta gaa ggc kaa aca gag caa gtr amn cat tca gag

Phe Leu Leu Glu Gly Gly Xaa Thr Glu Gln Val Xaa His Ser Glu -5 1 5	
aca tat tgc atg ttt caa gac aag aag tac aga gtg ggt gag aga tgg	261
Thr Tyr Cys Met Phe Gln Asp Lys Lys Tyr Arg Val Gly Glu Arg Trp 10 15 20	
cat cct tac ctg gaa cct tat ggg ttg gtt tac tgc gtg aac tgc atc	309
His Pro Tyr Leu Glu Pro Tyr Gly Leu Val Tyr Cys Val Asn Cys Ile 25 30 35	
tgc tca gag aat ggg aat gtg ctt tgc agc cga gtc aga tgt cca aat	357
Cys Ser Glu Asn Gly Asn Val Leu Cys Ser Arg Val Arg Cys Pro Asn	
40 45 50 55	
gtt cat tgc ctt tct cct gtg cat att cct cat ctg tgc tgc cct cgc	405
Val His Cys Leu Ser Pro Val His Ile Pro His Leu Cys Cys Pro Arg	
60 65 70	
tgc cca gaa gac tcc tta ccc cca gtg aac aat rwg gtg acc agc	450
Cys Pro Glu Asp Ser Leu Pro Pro Val Asn Asn Xaa Val Thr Ser	
75 80 85	
tagtcttgck agtacaatgg gacaacttac caacatggas agctgttcgt agctgrrggg	510
ctctttcaga atcggcaacc cmatcaatgc acccagtgca gctgttcgga rggaaacktg	570
tattgtggtc tcaagacttg ccccaaatta acctgtgcct tcccagtctc tgttccarat	630
tcctgctgcc gggtwtgcag argagatgga caactgtcat gggaacmttc tgatggtgat	690
atcttccggc aacctgccaa cagagaagca agacattctt accaccgctc tcactatgat	750
cctccaccaa gccgacaggc tggaggtctg tcccgctttc ctggggccag aagtcaccgg	810
ggagctctta tggattccca gcaagcatca ggaaccattg tgcaaattgt catcaataac	870
aaacacaagc atggacaagt gtgtgtttcc aatggaaaga cctattctca tggcgagtcc	930
tggcacccaa acctccgggc atttggcatt gtggagtgtg tgctatgtac ttgtaatgtc	990
accaagcaag agtgtaagaa aatccactgc cccaatcgat acccctgcaa gtatcctcaa	1050
aaaatagacg gaaaatgctg caaggtgtgt ccaggtaaaa aagcaaaaaa aaaaaa	1106
<210> 342	
<211> 1191	

```
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 117..866
<221> sig_peptide
<222> 117..170
<223> Von Heijne matrix
     score 10.6999998092651
      seq LILLALATGLVGG/ET
<221> polyA_signal
<222> 1159..1164
<221> polyA_site
<222> 1178..1190
                                                                     60
aaaacccagc ctacctgctg tagctgccgc cactgccgtc tccgccgcca ctggwccccc
agagebnmag ccccagagec taggaacetg gggecegete etececete caggee atg
                                                                     119
agg att ctg cag tta atc ctg ctt gct ctg gca aca ggg ctt gta ggg
                                                                     167
Arg Ile Leu Gln Leu Ile Leu Leu Ala Leu Ala Thr Gly Leu Val Gly
       -15
                           -10
                                             ~5
                                                                     215
gga gag acc agg atc atc aag ggg ttc gag tgc aag cct cac tcc cag
Gly Glu Thr Arg Ile Ile Lys Gly Phe Glu Cys Lys Pro His Ser Gln
                                        10
```

				gcc Ala 20												263
				ccc Pro												311
Pro	Arg	Tyr 50	Ile	ktt Xaa	His	Leu	Gly 55	Gln	His	Asn	Leu	Gln 60	Lys	Glu	Glu	359
ggc Gly	tgt Cys 65	gag Glu	car Gln	acc Thr	cgg Arg	aca Thr 70	gcc Ala	act Thr	gag Glu	tcc Ser	ttc Phe 75	ccc Pro	cac His	ccc Pro	ggc Gly	407
			_	ctc Leu				-								455
				tcg Ser 100												503
				cgc Arg												551
				acg Thr												599
				atc Ile												647
				atc Ile												695
				tcc Ser 180												743
				caa Gln												791
atc Ile	acc Thr	cga Arg 210	aag Lys	cct Pro	ggt Gly	gtc Val	tac Tyr 215	acg Thr	aaa Lys	gtc Val	tgc Cys	aaa Lys 220	tat Tyr	gtg Val	gac Asp	839
				acg Thr					taga	actg	gac d	ccac	ccac	ca		886
acc tca aaa	ccal ctaa cttaa cttaa tatta kwca	gcc a ata a gtg a	aaga atcaa actc	cccto accto tggga	ct ac gg gg aa tg	cacti cgaa gttcg gacaa	catto gaaat acaco	tti cag	gtgag gttt	cctc gacc gttc	tgga tctg	gacta attca gttg:	aca g aaa g tat g	ggaga ttctq cccca	aagaa atgctg gccttg agcccc	946 1006 1066 1126 1186 1191

<210> 343

<211> 1070

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 13..465

<221> sig_peptide

<222> 13..75

<223> Von Heijne matrix
score 3.90000009536743
seq PVAVTAAVAPVLS/IN

<221> polyA_signal <222> 1035..1040

<221> polyA_site <222> 1060..1070

<400> 343			
agagtcggga aa atg gct gcg agt Met Ala Ala Ser -20		tc ccg gtg gct gtg acg al Pro Val Ala Val Thr -10	51
gcg gca gtg gcg cct gtc ctg to	cc ata aac agc	gat ttc tca gat ttg	99
Ala Ala Val Ala Pro Val Leu Se			
cgg gaa att aaa aag caa ctg c			147
Arg Glu Ile Lys Lys Gln Leu Lo		20	
cgg ggc cta cta cac agt agc a			195
Arg Gly Leu Leu His Ser Ser Ly	-		
25 30 ctc cct gca ttg cct ctg gcc ga	35	cct ccg cct att aca	243
Leu Pro Ala Leu Pro Leu Ala G			213
45	50	55	
gag gaa gat gcc cag gat atg ga	at gcc tat acc	ctg gcc aag gcc tac	291
Glu Glu Asp Ala Gln Asp Met As	_		
60	65	70	339
ttt gac gtt aaa gag tat gat ce Phe Asp Val Lys Glu Tyr Asp A			339
75 Sid Tyl Asp A	_	85	
aat gca aga aaa gcc tat ttt c	~	-	387
Asn Ala Arg Lys Ala Tyr Phe Lo			
90 95		100	
agg gcc att tta aaa tgt cat to			435
Arg Ala Ile Leu Lys Cys His So	er Ala Phe Ser 115	120	
aga acc aat gga aaa gtt aaa t			485
Arg Thr Asn Gly Lys Val Lys S			
125	130		
gaatgaatgt actttataca tagcaat			545
aggatggtaa aaaaaaaaat attotta			605 665
atttatttac tttaggttat ataaggt			725
gaattaagtt aaaaagcctg ggctgacagtatattta ttgtttttct ttcatgg			785
agtaaaccaa cttaatactg tattgaa			845
attatgaatt tactttccta ctttttc			905
cattttatgt acttctcatt tcctagt	aca ggttgagtat	cccttatttg aagtgcttgg	965
gaccaaaagt gtttcagatt tcagatt			1025
actggttgaa ataaaaaatg ctgcagt	gag tgtcaaaaaa	aaaaa	1070

<210> 344

<211> 1213

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 2..718

<221> sig_peptide <222> 2..76 <223> Von Heijne matrix score 3.90000009536743 seg RVGLLLGGGGVYG/SR <221> polyA_signal <222> 1170..1175 <221> polyA_site <222> 1203..1213 <400> 344 49 a atg ccc cgg aag cgg aag tgc gat ctt cgg gct gtc aga gtt ggt ctg Met Pro Arg Lys Arg Lys Cys Asp Leu Arg Ala Val Arg Val Gly Leu -20 -15 97 tta ctc ggt ggt ggc gga gtc tac gga agc cgt ttt cgc ttc act ttt Leu Leu Gly Gly Gly Val Tyr Gly Ser Arg Phe Arg Phe Thr Phe -5 cct ggc tgt aga gcg ctt tcc ccc tgg cgg gtg aga vtg cag aga cga 145 Pro Gly Cys Arg Ala Leu Ser Pro Trp Arg Val Arg Xaa Gln Arg Arg 15 193 agg tgc gag atg agc act atg ttc gcg gac act ctc ctc atc gtt ttt Arg Cys Glu Met Ser Thr Met Phe Ala Asp Thr Leu Leu Ile Val Phe 30 241 ate tet gtg tgc acg get etg etc gca gag ggc ata acc tgg gtc etg Ile Ser Val Cys Thr Ala Leu Leu Ala Glu Gly Ile Thr Trp Val Leu 45 50 gtt tac agg aca gac aag tac aag aga ctg aag gca gaa gtg gaa aaa 289 Val Tyr Arg Thr Asp Lys Tyr Lys Arg Leu Lys Ala Glu Val Glu Lys 60 65 cag agt aaa aaa ttg gaa aag aag gaa aca ata aca gag tca gct 337 Gln Ser Lys Lys Leu Glu Lys Lys Glu Thr Ile Thr Glu Ser Ala 80 ggt cga caa cag aaa aar aaa ata gag aga cdd kaa kas amc ctg arg 385 Gly Arg Gln Gln Lys Lys Ile Glu Arg Xaa Xaa Xaa Leu Xaa aat aac aac aga gat cta tca atg gtt cga atg aaa tcc atg ttt gct 433 Asn Asn Asn Arg Asp Leu Ser Met Val Arg Met Lys Ser Met Phe Ala 110 481 att ggc ttt tqt ttt act gcc cta atg gga atg ttc aat tcc ata ttt Ile Gly Phe Cys Phe Thr Ala Leu Met Gly Met Phe Asn Ser Ile Phe 130 125 529 gat ggt aga gtg gtg gca aag ctt cct ttt acc cct ctt tct tas rtc Asp Gly Arg Val Val Ala Lys Leu Pro Phe Thr Pro Leu Ser Xaa Xaa 140 145 577 sra gga ctg tct cat cga aat ctg ctg gga gat gac acc aca gac tgt Xaa Gly Leu Ser His Arg Asn Leu Leu Gly Asp Asp Thr Thr Asp Cys 160 tec ttc att ttc ctg taw att ctc tgt act atg tcg att cga cag aac 625 Ser Phe Ile Phe Leu Xaa Ile Leu Cys Thr Met Ser Ile Arg Gln Asn 170 175 att cag aag att ctc ggc ctt gcc cct tca cga gcc gcc acc aag cag 673 Ile Gln Lys Ile Leu Gly Leu Ala Pro Ser Arg Ala Ala Thr Lys Gln 190 718 gca ggt gga ttt ctt ggc cca cca cct cct tct ggg aag ttc tct Ala Gly Gly Phe Leu Gly Pro Pro Pro Pro Ser Gly Lys Phe Ser 205 210 tgaactcaag aactctttat tttctakcat tctttctaga cacacacaca tcagactggc aactgttttg tascaagagc cataggtagc cttackactt gggcctcttt ctagttttga 838 898 attatttcta agccttttgg gtatkattag agtgaaaatg gcagccagca aacttgatag

tgcttttggt cctagatgat ttttatcaaa taagtggatt gattagttaa gttcaggtaa tgtttatgta atgaaaaaca aatagcatcc ttcttgtttc atttacataa gtattttctg tgggaccgac tctcaaggca ctgtgtatgc cctgcaagtt ggctgtctat gagcatttag agatttagaa gaaaaattta gtttgtttaa cccttgtaac tgtttgtttt gttgtttt ttttttcaag ccaaatacat gacataarat caataaarag gccaaatttt tasctgtttt 1198 1213 atgtaaaaaa aaaaa <210> 345 <211> 978 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 86..709 <221> sig peptide <222> 86..361 <223> Von Heijne matrix score 6.30000019073486 seq LLMSILALIFIMG/NS <221> polyA_signal <222> 943..948 <221> polyA site <222> 963..973 <400> 345 60 aaagcateet teeetaggae tgetgtaage tttgageete tageaggaga catgeetegg ggacgaaaga gtcggcgccg ccgta atg cga gag ccg cag aag aga acc gca 112 Met Arg Glu Pro Gln Lys Arg Thr Ala -90 aca atc gca aaa tyc rrg gcs tva gag ggc ctc cga gac ccc tat ggc 160 Thr Ile Ala Lys Xaa Xaa Ala Xaa Glu Gly Leu Arg Asp Pro Tyr Gly -80 -75 cgc ctc tgt ggt agc gag cac ccc cga aga cca cct gag cgg ccc gag 208 Arg Leu Cys Gly Ser Glu His Pro Arg Arg Pro Pro Glu Arg Pro Glu -60 gaa gac ccg agc act cca gag gag gcc tct acc acc cct gaa gaa gcc 256 Glu Asp Pro Ser Thr Pro Glu Glu Ala Ser Thr Thr Pro Glu Glu Ala -45 tcg agc act gcc caa gca caa aag cct tca gtg ccc cgg agc aat ttt 304 Ser Ser Thr Ala Gln Ala Gln Lys Pro Ser Val Pro Arg Ser Asn Phe -25 -30 cag ggc acc aag aaa agt ctc ctg atg tct ata tta gcg ctc atc ttc 352 Gln Gly Thr Lys Lys Ser Leu Leu Met Ser Ile Leu Ala Leu Ile Phe -15 -10 400 atc atg ggc aac agc gcc aag gaa gct ctg gtc tgg aaa gtg ctg ggg Ile Met Gly Asn Ser Ala Lys Glu Ala Leu Val Trp Lys Val Leu Gly 5 10 448 aag tta gga atg cag cet gga egt cas cae age ate ttt gga gat eeg Lys Leu Gly Met Gln Pro Gly Arg Xaa His Ser Ile Phe Gly Asp Pro 20 496 aag aar atc gtc aca gaa ran ttt gtg cgc aga ggg tac ctg att tat Lys Lys Ile Val Thr Glu Xaa Phe Val Arg Arg Gly Tyr Leu Ile Tyr 35 40 544 ara ccg gtg ccc cgt abc agt ccg gtg gag tat gas ttc ttc tgg ggg Xaa Pro Val Pro Arg Xaa Ser Pro Val Glu Tyr Xaa Phe Phe Trp Gly

55

WO 99/31236 -262- PCT/IB98/02122 -

ccc cga gca cac gtg gaa tcg agc ara ctg aaa stc wtg cat ttt gtg Pro Arg Ala His Val Glu Ser Ser Xaa Leu Lys Xaa Xaa His Phe Val	592
65 70 75	
gca agg gtt cgt aac cga tgc tct aaa gac tgg cct tgt aat tat gac Ala Arg Val Arg Asn Arg Cys Ser Lys Asp Trp Pro Cys Asn Tyr Asp	640
80 85 90	
tgg gat tcg gac gat gat gca gag gtt gag gct atc ctc aat tca ggt	688
Trp Asp Ser Asp Asp Asp Ala Glu Val Glu Ala Ile Leu Asn Ser Gly 95 100 105	•
gct arg ggt tat tcc gcc cct taagtaratc tgaggcagac ccttgggggt	739
Ala Xaa Gly Tyr Ser Ala Pro	
110 115 gtaaaagaga gtcacaggta ccccaaggag tagatgccag ggtcctaagt tgaaaatgmt	799
gtcgattggg ggcgggggac actgtatttg atatttgtga tcagtgatca ttgttcaact	859
gcgaaataga gtgtttgctt ttgataatgg aaaattgtat tcgttttaaa attccgtttg	919
ttgagaataa caatatgttt aaaaatataa ttgaacaaat tttaaaaaaa aaaamcccy	978
<210> 346	
<211> 810 <212> DNA	
<213> Homo sapiens	
<220> <221> CDS	
<222> 63320	
<221> sig_peptide <222> 63179	
<222> 63179 <223> Von Heijne matrix	
score 3.9000009536743	
seq VLAIGLLHIVLLS/IP	
<221> polyA_signal	
<222> 771776	
<221> polyA_site <222> 799810	
(2227 733	
<400> 346	
agggaaccga tcccgggccg ttgatcttcg gccccacacg aacagcagag aggggcatca	60
gg atg aat gtk ggc aca gcg cac ags dag gtg aac ccc aac acg cgg Met Asn Val Gly Thr Ala His Xaa Xaa Val Asn Pro Asn Thr Arg	107
-35 -30 -25	
gtk atg aac agc cgt ggc atc tgg ctc tcc tac gtg ctg gcc atc ggt	155
Val Met Asn Ser Arg Gly Ile Trp Leu Ser Tyr Val Leu Ala Ile Gly -20 -15 -10	
ctc ctc cac atc gtg ctg ctg agc atc ccg ttt gtk agt gtc cct gtc	203
Leu Leu His Ile Val Leu Leu Ser Ile Pro Phe Val Ser Val Pro Val	
-5 1 5	
gtc tgg acc ctc acc aac ctc att cac aac atg ggc atg tat atc ttc Val Trp Thr Leu Thr Asn Leu Ile His Asn Met Gly Met Tyr Ile Phe	251
10 15 20	
ctg cac acg gtg aag ggg aca ccc ttt gag acc ccg gac cag ggc aag	299
Leu His Thr Val Lys Gly Thr Pro Phe Glu Thr Pro Asp Gln Gly Lys	
25 30 35 40	350
gcg agg ctg cta acc cac tgg tgagcagatg gattatgggg tccagttcac Ala Arg Leu Leu Thr His Trp	350
45	
ggcctctcgg aakttcttga ccatcacacc catcgtgctg tacttcctca ccagcttcta	410
cactaaktac raccaaatcc attttgtgct caacaccgtg teectgatra gegtgettat	470

530

590

650

ccccaagctg ccccagctcc acggaktccg gatttttgga atcaataakt actgaaaktg

casccccttc ccctgcccag ggtggcaggg gaggggtagg gtaaaaggca tktgctgcaa

```
chctgaaaac araaaraara rscctctgga cactgccara ratgggggtt gagcctctgg
                                                                        710
 cctaatttcc cccctcgctt cccccagtag ccaacttgga gtagcttgta ytggggttgg
 ggtaggcccc ctgggctctg accttttctg aattttttga tcttttcctt ttgctttttg
                                                                        770
                                                                        810
 aatararact ccatggagtt ggtcatggaa aaaaaaaaa
 <210> 347
 <211> 771
 <212> DNA
 <213> Homo sapiens
 <220>
  <221> CDS
  <222> 299..418
 <221> sig_peptide
 <222> 299..379
. <223> Von Heijne matrix
        score 3.59999990463257
        seq LTLLLITPSPSPL/LF
  <221> polyA signal
  <222> 739..744
  <221> polyA site
  <222> 762..771
  <400> 347
  accttgggct ccaaattcta gctcataaag atgcaagtkt tgcaatttcc tataaatggt
                                                                         60
  taagaaaaga gcaagctgtc cagagagtga gaagtttgaa aagagaggtg cataagagag
                                                                        120
  aaatgatgtc catttgagcc ccaccacgga ggttatgtgg tcccaaaagg aatgatggcc
                                                                        180
  aagcaattaa tttttcctcc tagttcttag cttgcttctg cattgattgg ctttacacaa
                                                                        240
  ctggcattta gtctgcatta cacaaataga cactaattta tttggaacaa gcagcaaa
                                                                        298
  atg aga act tta ttt ggt gca gtc agg gct cca ttt agt tcc ctc act
                                                                        346
  Met Arg Thr Leu Phe Gly Ala Val Arg Ala Pro Phe Ser Ser Leu Thr
                                                   -15
                              -20
          -25
                                                                        394
  ctg ctt cta atc acc cct tct ccc agc cct ctt cta ttt gat aga ggt
  Leu Leu Leu Ile Thr Pro Ser Pro Ser Pro Leu Leu Phe Asp Arg Gly
                                              1
  ctg tcc ctc aga tca gca atg tct tagcccctct cctctcttcc attccttcct
                                                                        448
  Leu Ser Leu Arg Ser Ala Met Ser
                                                                        508
  gttggtactc atttcttcta acttttaata aacatttagg tataatacat tacagtaagt
  gctatttaga tacaaactta aaacatacta tatattttaa ggatctaaga atcctttara
                                                                        628
  rrrggcacat gactgaagta cctcagctgc gcagcctgta accagttttt ttaatgtaaa
                                                                        688
  agtaaraatg ccagccttaa cctabccctg carataaaag ctaactttta ttaataccag
                                                                        748
  ccctgaataa tggcactaat ccacactctt ccttaragtg atgctggaaa aataaaatca
                                                                        771
  ggggcttcag attaaaaaaa aaa
```

<211> 409 <212> DNA <213> Homo sapiens <220>

<221> CDS <222> 186..380

<210> 348

<pre><221> sig_peptide <222> 186233 <223> Von Heijne matrix score 4 seq FFLFLSFVLMYDG/LR</pre>	
<221> polyA_signal	
<221> polyA_site <222> 396409	
<400> 348 ataaaagaag cagcaaatag aatttcccac aaagtaagtt gactctaaat cttaagtatt acctagtttt ttaaaggttt gaatataata atgcagtatt tgcagtataa aaaggaagga atttgtagag aatcattttg gtgctcaagt ctcttagcag tgccttattg cctcatagca agaag atg ctg ggg ttt ttt ttg ttt ttg tcc ttt gta tta atg tat gat	60 120 180 230
Met Leu Gly Phe Phe Leu Phe Leu Ser Phe Val Leu Met Tyr Asp -15 -10 -5 ggt ttg cgc ctt ttt ggc att ctt tca aca tgt cgt gta cat cac acc	278
Gly Leu Arg Leu Phe Gly Ile Leu Ser Thr Cys Arg Val His His Thr 1 5 10 15	
atg aat cag ttc cta att gat ata tct agc ttt acc tcc cga gtt aaa Met Asn Gln Phe Leu Ile Asp Ile Ser Ser Phe Thr Ser Arg Val Lys 20 25 30	326
aaa aaa atc ttt tta ttt tat gcc ttc awa ggt tgc ycg ttt car agt Lys Lys Ile Phe Leu Phe Tyr Ala Phe Xaa Gly Cys Xaa Phe Gln Ser	374
gcc aca taaataaaat gtttaacaaa aaaaaaaaa Ala Thr	409
<pre><210> 349 <211> 613 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 69458 <221> sig_peptide <222> 69233 <223> Von Heijne matrix</pre>	
aagaacctga gcagcctgtc ttcagacaga gagaggccca cggctgtttc ttgaaaytgg cgctggga atg gcc atg tgg aac agg cca tgb bag ang ctg cct cag cag Met Ala Met Trp Asn Arg Pro Xaa Xaa Xaa Leu Pro Gln Gln -55 -50 -45	60 110
cct cts sta gct gag ccc act gca gag ggg gag cca cac ctg ccc acg Pro Leu Xaa Ala Glu Pro Thr Ala Glu Gly Glu Pro His Leu Pro Thr	158

WO 99/31236 -265- PCT/IB98/02122

-40 -35 -30 ggc cgg gas byg act gag gcc aac cgc ttc gcc tat gcc gcc ctc tgt	206
Gly Arg Xaa Xaa Thr Glu Ala Asn Arg Phe Ala Tyr Ala Ala Leu Cys	
-25 -20 -15 -10	
gge ate tee etg tee eag tta ttt eet gaa eee gaa eae age tee tte	254
Gly Ile Ser Leu Ser Gln Leu Phe Pro Glu Pro Glu His Ser Ser Phe -5 1 5	
-5 1 5 tgc aca gag ttc atg gca ggc ctg gtg ckm tgg ctg gag ttg tct gaa	302
Cys Thr Glu Phe Met Ala Gly Leu Val Xaa Trp Leu Glu Leu Ser Glu	55
10 15 20	
gct gtc ttg cca acc atg act gct ttt gcg agc ggc ctg gga ggt gaa	350
Ala Val Leu Pro Thr Met Thr Ala Phe Ala Ser Gly Leu Gly Glu	
25 30 35 gga sca vma tgt gtt tgt tca aat ttt act gaa gga ccc cat ctt gaa	398
Gly Xaa Xaa Cys Val Cys Ser Asn Phe Thr Glu Gly Pro His Leu Glu	330
40 45 50 55	
gga cga ccc gac ggt gat cac tca gga cct tct gag ctt ctc act caa	446
Gly Arg Pro Asp Gly Asp His Ser Gly Pro Ser Glu Leu Leu Thr Gln	
60 65 70	400
gga tgg gca cta tgacscccgg gccagagtcc tcgtttgcca catgacctcc	498
Gly Trp Ala Leu 75	
ctgctccaag tgcccttgga ggagctggat gtccttgaaa agatgttcct ggagagcctg	558
aaggaaatca aagaagagga atctgaaatg gccgaggcat cccraaaaaa aaaaa	613
<210> 350	
<211> 986	
<212> DNA	
<213> Homo sapiens	
<220>	
<221> CDS	
<221> CDS <222> 12638	
<221> CDS	
<221> CDS <222> 12638 <221> sig_peptide	
<221> CDS <222> 12638 <221> sig_peptide <222> 12263 <223> Von Heijne matrix score 4.19999980926514	
<221> CDS <222> 12638 <221> sig_peptide <222> 12263 <223> Von Heijne matrix	
<pre><221> CDS <222> 12638 <221> sig_peptide <222> 12263 <223> Von Heijne matrix</pre>	
<pre><221> CDS <222> 12638 <221> sig_peptide <222> 12263 <223> Von Heijne matrix</pre>	
<pre><221> CDS <222> 12638 <221> sig_peptide <222> 12263 <223> Von Heijne matrix</pre>	
<pre><221> CDS <222> 12638 <221> sig_peptide <222> 12263 <223> Von Heijne matrix</pre>	
<pre><221> CDS <222> 12638 <221> sig_peptide <222> 12263 <223> Von Heijne matrix</pre>	
<pre><221> CDS <222> 12638 <221> sig_peptide <222> 12263 <223> Von Heijne matrix</pre>	
<pre><221> CDS <222> 12638 <221> sig_peptide <222> 12263 <223> Von Heijne matrix</pre>	50
<pre><221> CDS <222> 12638 <221> sig_peptide <222> 12263 <223> Von Heijne matrix</pre>	50
<pre><221> CDS <222> 12638 <221> sig_peptide <222> 12263 <223> Von Heijne matrix</pre>	50
<pre><221> CDS <222> 12638 <221> sig_peptide <222> 12263 <223> Von Heijne matrix</pre>	50 98
<pre><221> CDS <222> 12638 <221> sig_peptide <222> 12263 <223> Von Heijne matrix</pre>	
<pre><221> CDS <222> 12638 <221> sig_peptide <222> 12263 <223> Von Heijne matrix</pre>	98
<pre><221> CDS <222> 12638 <221> sig_peptide <222> 12263 <223> Von Heijne matrix</pre>	
<pre><221> CDS <222> 12638 <221> sig_peptide <222> 12263 <223> Von Heijne matrix</pre>	98
<pre><221> CDS <222> 12638 <221> sig_peptide <222> 12263 <223> Von Heijne matrix</pre>	98
<pre><221> CDS <222> 12638 <221> sig_peptide <222> 12263 <223> Von Heijne matrix</pre>	98
<pre><221> CDS <222> 12638 <221> sig_peptide <222> 12263 <223> Von Heijne matrix</pre>	98
<pre><221> CDS <222> 12638 <221> sig_peptide <222> 12263 <223> Von Heijne matrix</pre>	98

Tyr	Phe	Leu	Ala -20	Tyr	Leu	Cys	Asn	Ala -15	Gln	Ile	Thr	Met	Leu -10	Gln	Met	
			ctg Leu													290
		-5					1				5					
			aat													338
11e	Thr	туг	Asn	TIE	15	ьеи	Arg	Ald	neu	20	ıyı	Leu	PHE	пр	25	
ttg			gga													386
Leu	Val	Gly	Gly	Leu 30	Ser	Thr	Leu	Arg	Met 35	Val	Ala	Val	Leu	Val	Ser	
caa	acc	ata	ggc		aca	cad	cgg	mtg		ctc	tgt	ggc	acc		gct	434
Arg	Thr	Val	Gly	Pro	Thr	Xaa	Arg	Xaa	Leu	Leu	Cys	Gly	Thr	Leu	Ala	
			45				~-~	50				~~~	55	cac	222	482
			atg Met													402
ATG	LCu	60		Deu	1	202	65	-1-				70	-2-		,-	
			ggg													530
Xaa	Val	Xaa	Gly	Ile	Leu	Asp 80	Thr	Leu	Glu	Gly	Pro 85	Asn	Ile	Pro	Pro	
atc		agg	gtc	ccc	aga		atc	cct	gcc	atg		cct	gct	gct	cgg	578
			Val												Arg	
90					95					100				- 4	105	
			acc Thr													626
пец	PIO	IIII	1111	110	пеа	Apii	MIG	1111	115	ъур	AIG	Val	nıu	120	****	
ctg	cag	tca	cac	tga	cccc	acc 1	tgaaa	attci	t g	gccag	gtect	cti	ttcc	cgca		678
Leu	Gln	Ser	His 125													
act	acag	aga (gaas	ac ta	attaa	aagg	a cad	atcei	tgat	gaca	atati	ttc (gtaga	atgggg	738
															cacttc	798
															tgcaga	858
															atctct	918
			cttg	ctaa	at a	taga	cttg	g ta	atta	aaat	gtt	gatt	gaa (gtct	ggaaaa	978
aaa	aaaa	t														986

<210> 351

<211> 1447

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 282..389

<221> sig_peptide

<222> 282..332

<223> Von Heijne matrix score 3.5 seq RWWCFHLQAEASA/HP

<221> polyA_signal <222> 1413..1418

<221> polyA_site <222> 1437..1447

<400> 351

ataataatat ctaaaaagct aaattttaaa taccagcttt acataaatga ttgtkgactc 60 tggtctgtkt ctgacacctt tccagaaaaa agtcaattgt tcaggtacac caaagaggaa 120 WO 99/31236 -267- PCT/IB98/02122 -

gaagagctgt ggaggccacc ctctacaaag ctttatagaa cttctggatc taactcacaa	180
acaagcttcc agaagagact agagacctta ggccaggaga tgaaggagtt cagtagcaaa	240
gtcacacctg tccaattccc tgagctttgc tcactcagct a atg gga tgg caa agg	296
Met Gly Trp Gln Arg	
-15 tgg tgg tgc ttt cat ctt cag gca gaa gcc tct gcc cat ccc cct caa	344
Trp Trp Cys Phe His Leu Gln Ala Glu Ala Ser Ala His Pro Pro Gln	244
-10 -5 1	
ggg ctg cag gcc caa ttc tca tgc tgc cct tgg gtg ggc atc tgt	389
Gly Leu Gln Ala Gln Phe Ser Cys Cys Pro Trp Val Gly Ile Cys	
5 10 15	
taacaaadga aaacgtctgg gtggcggcag casctttgct ctgagtgcct acaaagctaa	449
tgcttggtgc tagaaacatc atcattatta aacttcagaa aagcagcagc catgttcagt	509
caggeteatg etgeeteact gettaagtge etgeaggage egeetgeeaa reteceette	569
ctacacctgg cacactgggg tctgcacaag gctttgtcaa ccaaaracag cttcccccww	629
ttgattgcct gtagactttg gagccaaraa acactctgtg tgactctaca cacacttcag	689
gtggtttgtg cttcaaagtc attgatgcaa cttgaaagga aacagtttaa tggtggaaat	749
gaactaccat ttataacttc tgttttttta ttgagaaaat gattcacgaa kkccaaatca	809 869
gattgccagg aagaaatagg acgtgacggt actgggccct gtgattctcc cagcccttgc agtccgctag gtgagaggaa aagctcttta cttccgcccc tggcagggac ttctgggtta	929
tgggagaaac cagagatggg aatgaggaaa atatgaacta cagcagaagc ccctgggcag	989
ctgtgatgga gcccctgaca ttactcttct tgcatctgtc ctgccttctt tccctctgcg	1049
aggcagtggg gtgggattca gagtgcttag tctgctcact gggagaagaa gagttcctgc	1109
gcatgcaagc cctgctgtgt ggctgtcgtt tacatttggg aggtgtcctg tatgtctgta	1169
cgttggggac tgcctgtatt tggaagattt aaaaacctag catcctgttc tcaccctcta	1229
agctgcattg agaaatgact cgtctctgta tttgtattaa gccttaacac ttttcttaag	1289
tgcattcggt gccaacattt tttagagctg taccaaaaca aaaagcctgt actcacatca	1349
camtgtcatt ttgataggag cgttttgtta tttttacaag gcagaatggg gtgtaacagt	1409
tgaattaaac ttagcaatca cgtgctcaaa aaaaaaaa	1447
<pre><210> 352 <211> 1641 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 208339 <221> sig_peptide <222> 208294 <223> Von Heijne matrix</pre>	
• •	
<221> polyA_site	
<222> 16311641	
400. 202	
<400> 352 AGREECTION FORGERS OF GREEN GREEN ARREST OF GREEN GR	60
agaaccgtga tgggaagatg gacaaggaag agaccaaaga ctggatcctt ccctcagact atgatcatgc agaggcagaa qccaggcacc tggtctatga atcagaccaa aacaaggatg	120
gcaagettac caaggaggag ategttgaca agtatgaett atttgttgge agecaggeca	180
cagattttgg ggaggcetta gtacgge atg atg agt tet gag eta egg agg aac	234
Met Met Ser Ser Glu Leu Arg Arg Asn	~- -
-25	
cct cat ttc ctc aaa agt aat tta ttt tta cag ctt ctg gtt tca cat	282
Pro His Phe Leu Lys Ser Asn Leu Phe Leu Gln Leu Leu Val Ser His	
-20 -15 -10 -5	
gaa att gtt tgc gct act gag act gtt act aca aac ttt tta aga cat	330
Glu Ile Val Cys Ala Thr Glu Thr Val Thr Thr Asn Phe Leu Arg His	

WO 99/31236 -268- PCT/IB98/02122 -

5

1

gaa aag gcg taatgaaaac catcccgtcc ccattcctcc tcctctctga 379 Glu Lys Ala 15 gggactggag ggaagccgtg cttctgagga acaactctaa ttagtacact tgtgtttgta 439 ratttacacw wigtattaig tattaacaig goglightial titligiatti ticicinggit 499 gggagtatka tatgaaggat caarateete aacteacaca tgtaracaaa cattasetet 559 ttactctttc tcaacccctt wtatgatttt aataattctc acttaactaa ttttgtaagc 619 ctgagatcaa taagaaatgt tcaggagaga ggaaagaaaa aaaatatatg ctccacaatt 679 tatatttaga gagagaacac ttagtcttgc ctgtcaaaaa gtccaacatt tcataggtag 739 taggggccac atattacatt cagttgctat aggtccagca actgaacctg ccattacctg 799 ggcaaggaaa gatccctttg ctctaggaaa gcttggccca aattgatttt cttcttttc 859 cccctgtagg actgactgtt ggctaatttt gtcaagcaca gctgtggtgg gaagagttag 919 ggccagtgtc ttgaaaatca atcaagtagt gaatgtgatc tctttgcara gctatagata 979 1039 gggtgtgcat ctgttgaaat gctcaagact taattatttg ccttttgaaa tcactgtaaa 1099 tgcccccatc cggttcctct tcttcccarg tgtgccaagg aattaatctt ggtttcacta caattaaaat tcactccttt ccaatcatgt cattgaaagt gcctttaacg aaagaaatgg 1219 tcactgaatg ggaattctct taagaaaccc tgagattaaa aaaagactat ttggataact 1279 tataggaaag cctagaacct cccagtagag tggggatttt tttcttcttc cctttctctt 1339 ttggacaata gttaaattag cagtattagt tatgagtttg gttgcagtgt tcttatcttg 1399 tgggctgatt tccaaaaacc acatgctgct gaatttacca gggatcctca tacctcacaa 1459 tgcaaaccac ttactaccag gcctttttct gtgtccactg gagagettga gctcacactc 1519 aaagatcaga ggacctacag agagggctet ttggtttgag gaccatgget taccttteet 1579 gcctttgacc catcacaccc catttcctcc tctttccctc tccccgctgc caaaaaaaaa 1639 1641 <210> 353 <211> 884 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 69..557 <221> sig_peptide <222> 69..224 <223> Von Heijne matrix score 4.69999980926514 seg LGLALGRLEGGSA/RH <221> polyA signal <222> 849..854 <221> polyA site <222> 870..883 <400> 353 attggctccg gatcgtgcgt gaggcggctt cgtgggcagc gagagtcaca gacaagacag 60 caagcagg atg gag cac tac cgg aaa gct ggc tct gta gag ctc cca gcg 110 Met Glu His Tyr Arg Lys Ala Gly Ser Val Glu Leu Pro Ala -50 ect tee eea atg eee eag eta eet eet gat ace ett gag atg egg gte 158 Pro Ser Pro Met Pro Gln Leu Pro Pro Asp Thr Leu Glu Met Arg Val -35 -30 cga gat ggc agc aaa att cgc aac ctg ctg ggg ttg gct ctg ggt cgg 206 Arg Asp Gly Ser Lys Ile Arg Asn Leu Leu Gly Leu Ala Leu Gly Arg -15 ttg gag ggc ggc agt gct cgg cat gta gtg ttc tca ggt tct ggc agg 254

Leu Glu Gly Gly Ser Ala Arg His Val Val Phe Ser Gly Ser Gly Ar -5 1 5 10	g
gct gca gga aag gct gtc agc tgc gct gag att gtc aag cgg cgg gt	c 302
Ala Ala Gly Lys Ala Val Ser Cys Ala Glu Ile Val Lys Arg Arg Va 15 20 25	
ccg ggc ctg cac cag ctc acc aag cta ckt ttc ctt caa act gag ga	
Pro Gly Leu His Gln Leu Thr Lys Leu Xaa Phe Leu Gln Thr Glu As 30 35 40	
age tgg gtc cca see tca cet gae aca ggg cta rac ccc etc aca gt	_
Ser Trp Val Pro Xaa Ser Pro Asp Thr Gly Leu Xaa Pro Leu Thr Va 45 50 55	
cgc cgc cat gtg cct gca ktg tgg gtg ctg ctc asc cgg gac ccc ctc Arg Arg His Val Pro Ala Xaa Trp Val Leu Leu Xaa Arg Asp Pro Le	
60 65 70	u
gac ccc aat gag tgt ggt tac caa ccc cca gga gca ccc cct ggc ct	9 494
Asp Pro Asn Glu Cys Gly Tyr Gln Pro Pro Gly Ala Pro Pro Gly Le	u
75 80 85 90	- 540
ggt too atg occ ago too ago tgt ggc cot cgt too ora aaa agg go Gly Ser Met Pro Ser Ser Ser Cys Gly Pro Arg Ser Xaa Lys Arg Ala	
95 100 105 105 105 105 105 105 105 105 10	-
cra rac acc cga tcg tgaaaacctg ctgasccagc ctgttctccg ggcctraat	597
Xaa Xaa Thr Arg Ser	
totggggtgc ttgtgccttt totranaagc gttgtgaskg ctcaacatcc ccatcaa	ggt 657
ttgagtccac aaaagtggac ctccctatca tgcttcccct tccctctagc atgtggg	aag 717
ggactgctgt gaagaatgac agatgtgggg cctctgccaa gttctgcatt gctaaat	-
ggetteetet geettetaee taeagtgeat ttgaaetgee ttetgaaaga ggteeak gggatttagg aaataaagtt tetaeetatt tgaaaaaaa aaaacae	gga 837 884
gggaccoagg addiadagec cocacocate tgadaadaa addacac	004
••	
<210> 354	
<211> 729 <212> DNA	
<213> Homo sapiens	
•	
<220>	
<221> CDS <222> 134325	
<222> 134325	
<221> sig_peptide	
<222> 134274	
<223> Von Heijne matrix	
score 5.90000009536743 seq TWLGLLSFQNLHC/FP	
TOTAL TIMES AND THE TANK THE T	
<221> polyA_site	
<222> 718729	
<400> 354	
atcattttct tatccctgct gatttcaaac cttcccatgg tttagaagca taacctg	aa 60
tgtaatgcaa gtcccctaac tccctggttg ctaacattaa cttccttaag taataatc	
tgaaagavat tot atg cat ggt ttt gaa ata ata too ttg aaa gag gaa	169
Met His Gly Phe Glu Ile Ile Ser Leu Lys Glu Glu -45 -40	
tca cca tta gga aag gtg agt cag ggt cct ttg ttt aat gtg act agt	217
Ser Pro Leu Gly Lys Val Ser Gln Gly Pro Leu Phe Asn Val Thr Ser	
-35 -30 -25 -20)
ggc tca tca tca cca gtg acc tgg ttg ggc cta ctc tcc ttc cag aac	
Gly Ser Ser Ser Pro Val Thr Trp Leu Gly Leu Leu Ser Phe Gln Asi -15 -10 -5	1

Leu His Cys Phe Pro Asp Leu Pro Thr Glu Met Pro Leu Xaa Ala Lys 1 5 10	
gga ktc aac act tgagcctagg gtgggctaca acaaaaratt ctaatttacc Gly Xaa Asn Thr	365
ttgcttcatc taggtccagg ccccaaktag cttgctgaag gaacttaaaa agtagctgtt atttattgta ttgtataasc taaaacatt tatttttgtt gaatcraaac aattccatgt ascaatcttt tttctgttca cggtgtttgt gataaaacct taaattccgc aagcatcagt tttttgaaaa aatgggaatt gaccggatag wwacaggcaa agwtataaat agctacaaca tcatttaact tttataaaca tgccttctct ctattgaara catctgatat ttttgctgga aagttggatc tatcctcagt aactctgcca tgaattcctg tttcckggtt ccaaaaaaaaa aaaa	425 485 545 605 665 725 729
<210> 355	
<211> 1013 <212> DNA	
<213> Homo sapiens	
<220> <221> CDS	
<222> 78731	
<221> sig_peptide <222> 78227	
<pre><223> Von Heijne matrix score 5.09999990463257 seq RTALILAVCCGSA/SI</pre>	
<221> polyA site	
<222> 10021013	
<400> 355	60
<400> 355 agtttccaag ggaaggagca gcgtgtggga aagcacagaa gagtgagaag gaagcgacta aattttattt actttct atg cat cat ggc ctc aca cca ctg tta ctt ggt	60 110
<pre><400> 355 agtttccaag ggaaggagca gcgtgtggga aagcacagaa gagtgagaag gaagcgacta aattttattt actttct atg cat cat ggc ctc aca cca ctg tta ctt ggt</pre>	110
<pre><400> 355 agtttccaag ggaaggagca gcgtgtggga aagcacagaa gagtgagaag gaagcgacta aattttattt actttct atg cat cat ggc ctc aca cca ctg tta ctt ggt</pre>	
<pre><400> 355 agtttccaag ggaaggagca gcgtgtggga aagcacagaa gagtgagaag gaagcgacta aattttattt actttct atg cat cat ggc ctc aca cca ctg tta ctt ggt</pre>	110
<pre><400> 355 agtttccaag ggaaggagca gcgtgtggga aagcacagaa gagtgagaag gaagcgacta aattttattt actttct atg cat cat ggc ctc aca cca ctg tta ctt ggt</pre>	110 158 206
<pre><400> 355 agtttccaag ggaaggagca gcgtgtggga aagcacagaa gagtgagaag gaagcgacta aattttattt actttct atg cat cat ggc ctc aca cca ctg tta ctt ggt</pre>	110
<pre><400> 355 agtttccaag ggaaggagca gcgtgtggga aagcacagaa gagtgagaag gaagcgacta aattttattt actttct atg cat cat ggc ctc aca cca ctg tta ctt ggt</pre>	110 158 206
<pre><400> 355 agtttccaag ggaaggagca gcgtgtggga aagcacagaa gagtgagaag gaagcgacta aattttattt actttct atg cat cat ggc ctc aca cca ctg tta ctt ggt</pre>	110 158 206 254
<pre><400> 355 agtttccaag ggaaggagca gcgtgtggga aagcacagaa gagtgagaag gaagcgacta aattttattt actttct atg cat cat ggc ctc aca cca ctg tta ctt ggt</pre>	110 158 206 254
<pre><400> 355 agtttccaag ggaaggagca gcgtgtggga aagcacagaa gagtgagaag gaagcgacta aattttattt actttct atg cat cat ggc ctc aca cca ctg tta ctt ggt</pre>	110 158 206 254 302 350
<pre><400> 355 agtttccaag ggaaggagca gcgtgtggga aagcacagaa gagtgagaag gaagcgacta aattttattt actttct atg cat cat ggc ctc aca cca ctg tta ctt ggt</pre>	110 158 206 254 302
<pre><400> 355 agtttccaag ggaaggagca gcgtgtggga aagcacagaa gagtgagaag gaagcgacta aattttattt acttct atg cat cat ggc ctc aca cca ctg tta ctt ggt</pre>	110 158 206 254 302 350
<pre><400> 355 agtttccaag ggaaggagca gcgtgtggga aagcacagaa gagtgagaag gaagcgacta aattttattt actttct atg cat cat ggc ctc aca cca ctg tta ctt ggt</pre>	110 158 206 254 302 350
<pre><400> 355 agtttccaag ggaaggagca gcgtgtggga aagcacagaa gagtgagaag gaagcgacta aattttattt actttt atg cat cat ggc ctc aca cca ctg tta ctt ggt</pre>	110 158 206 254 302 350

aat arg ggt ggt gat aga aag gtt gaa raa raa atg aar aag cac gga

	Gly Asp Arg Lys Val		Met Lys Lys His Gly	
agt wct cat a	atg gga ttc cca raa	a aac ctg mct	aac ggt gcc act gct	590
	110	115	Asn Gly Ala Thr Ala 120	
			aaa asc ara aca cct	638
•	L25	130	Lys Xaa Xaa Thr Pro 135	
gaa agc cas o	aa ttt cct gac act	gag aat gaa	cag tat cac agg gac	686
Glu Ser Xaa (In Phe Pro Asp Thi		Gln Tyr His Arg Asp 150	
ttt tct ggc o	cat ccc mac ttt ccc	acd acc ctt	ccc atc aaa cag	731
Phe Ser Gly I	His Pro Xaa Phe Pro 160	o Thr Thr Leu	Pro lle Lys Gin 165	
tgatgaacaa aa			caraacactg gaatattaca	791
			gctgaaaatg aattctgagc	851
			aaatagtacg ttgcaggaag	911 971
	gaggaaatt gaaagtgt		tcagagccag ctaararaaa	1013
aradacacce g	Jaggaaacc gaaagcgc	yy aaaaaaaaaa	aa	1025
-230> 256				
<210> 356 <211> 973				
<212> DNA				
<213> Homo sa	apiens			
<220>				
<221> CDS				
<222> 4669	3			
<221> sig_pep	otide			
<222> 4690				
<223> Von He	ijne matrix 7.59999990463257			
	LVLAAAAGAVA/VF			
001				
<221> polyA_s				
<221> polyA_s				
	· -			
<400> 356	naagaana ttaanaa	et acaccattte	totae ata eta tae ett	57
aaguggutgg te	Jeceggaag Luggaege	at gogoogiitt	totgo atg gtg tgc gtt Met Val Cys Val	5,
			-15	
ctc gtt cta	get geg gee gea gg	a gct gtg gcg	gtt ttc cta atc ctg	105
Leu Val Leu 7	Ala Ala Ala Gl; -5	y Ala Val Ala	Val Phe Leu Ile Leu 1 5	
	•	c atg gac qtt	acg ccc cgg gag tct	153
	Val Val Leu Arg Se	r Met Asp Val	Thr Pro Arg Glu Ser	
ctc act atc	10 tto ata ata act as	15 g too gat aga	20 cat acc act gag atc	201
-			His Thr Thr Glu Ile	201
:	25	30	35	
			tca cct aga cat tat	249
Leu Arg Leu :	Leu Gly Ser Leu Se 45	-	Ser Pro Arg His Tyr 50	
7.17	4.5		50	

45

gtc att gct gac act gat gaa atg agt gcc aat aaa ata aat tct ttt Val Ile Ala Asp Thr Asp Glu Met Ser Ala Asn Lys Ile Asn Ser Phe

WO 99/31236 -272- PCT/IB98/02122 -

	55					60					65					
gaa	cta	rat	cga	gsk	gat	aga	rac	cct	agt	aac	atg	twt	acc	aaa	tac	345
	Leu	Xaa	Arg	Xaa	Asp	Arg	Xaa	Pro	Ser	Asn	Met	Xaa	Thr	Lys	Tyr	
70					75					80					85	
					cca											393
Tyr	TIE	HIS	Arg	90	Pro	хаа	ser	Arg	95	vai	GIn	Gin	ser	100	Pro	
tcc	acc	att	tvc		acc	tta	cac	tcc		taa	ctc	tcc	ttk		cta	441
					Thr											111
			105					110					115			
att	cac	agg	gtg	aag	cca	rat	ttg	gtg	ttg	tgt	aac	gga	cca	gga	aca	489
Ile	His	Arg	Val	Lys	Pro	Xaa	Leu	Val	Leu	Cys	Asn	Gly	Pro	Gly	Thr	
		120					125					130				
					gta											537
Cys		Pro	ile	Cys	Val		Ala	Leu	Leu	Leu	_	He	Leu	GIA	lle	
220	135	ata	250	2++	a+a	140	~++	~ ~~	200	250	145				200	E 0 E
_			`		gtc Val		_	_	_		_	_	_			585
150	шуз	VAI	110	116	155	- y -	Vai	GIU	SCI	160	Cys	Arg	vai	БуS	165	
	tcc	ato	tcc	gga	aag	att	cta	ttt	cat		tca	aat	tac	ttc		633
					Lys											0,00
				170	-1-				175		501		-7-	180		
gtt	cag	tgg	ccg	gct	ctg	aaa	gaa	aag		ccc	aaa	tcq	qtq		ctt	681
			_	_	Leu		-	_				_	_			
			185					190	_		-		195	_		
999	cga	att	gtt	tgad	caaat	gg c	caact	gact	t ct	ttag	gaatt	tte	cast	taa		733
Gly	Arg		Val													
		200														
															cgtct	793
															gaara	853
															tgcct	913
ctgt	.aaac	Ca a	acci	CEEE	it et	arat	aaaa	ata	tgta	itta	ctac	ctgo	aa a	laaaa	aaaaa	973
<210)> 35	7														
<211	> 86	8														
<212	> DN	IA.														
<213	> Ho	omo s	apie	ns												
<220																
	.> CI															
<222	> 12	65	27													
-221		a no		1												
	2> 12		ptid	le												
			.oz :ijne	mat	riv											
7222			-		0953	6743										
					GFA/		'									
	-	·-			.0111,	- •										
<221	.> pc	lyA	sign	al												
	> 83															
<221	.> pc	lyA_	site	:												
<222	> 85	68	67													
		_														
	> 35															
actg	gaag	aa c	tcgt	cato	jc to	tttg	tago	gtg	gtgo	ttc	tgtt	gcto	ac a	ıggac	aactt caggc	60 120

ggtca atg cct ctg gga gca agg atc ctt ttc cac ggt gtg ttc tat gcc
Met Pro Leu Gly Ala Arg Ile Leu Phe His Gly Val Phe Tyr Ala

			gcc Ala													218
			tac Tyr													266
_	_	_	gct Ala	_										_		314
			gaa Glu													362
			gga Gly													410
			ccc Pro 80													458
			ggt Gly													506
			gtg Val				taga	gacg	jac c	caga	agac	c ca	gctt	gctt	:	557
ctag	jtcca	itc c	ttcc	ctca	it ct	ctac	cata	tgg	ccac	tgg	ggtg	gtgg	icc c	atct	cagtg	617
acag	jacac	tc c	tgca	acco	a gk	tttc	cago	cac	cagt	ggg	atga	tggt	at g	tgcc	agcac	677
atgg	taat	tt t	ggtg	rtaat	t ct	aact	tggg	cac	aacg	aat	gcta	tttg	tc a	tttt	taaac	737
															tgctt	797
															tttaa	857
aaaa	aaaa	aa h	1			3.		_				_	_	_		868

-15 -10 -5 ggc gtg agg acc atg caa gcc cga ggc ttc ggc tcg gat cag tcc gag

Gly Val Arg Thr Met Gln Ala Arg Gly Phe Gly Ser Asp Gln Ser Glu

10

110

158

<210> 358 <211> 519 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 66..320 <221> sig_peptide <222> 66..113 <223> Von Heijne matrix score 3.5 seq TALAAXTWLGVWG/VR <221> polyA_signal <222> 490..495 <221> polyA site <222> 508..519 <400> 358 aattagcgcg taacgcasag actgcttgct gcggcagaga cgccagakgt gcagctccag cagca atg gca gtg acg gcg ttg gcg gcg mrg acg tgg ctt ggc gtg tgg Met Ala Val Thr Ala Leu Ala Ala Xaa Thr Trp Leu Gly Val Trp -15

WO 99/31236 -274 - PCT/IB98/02122 -

aat Asn	gtc Val	gac Asp	cgg Arg	ggc Gly 20	gcg Ala	ggc Gly	tcc Ser	atc Ile	cgg Arg 25	gaa Glu	gcc Ala	ggt Gly	Gly ggg	gcc Ala 30	Phe	206
gga Gly	aag Lys	aga Arg	gag Glu 35	cag Gln	gct Ala	gaa Glu	gag Glu	gaa Glu 40	cga Arg	tat Tyr	ttc Phe	cga Arg	gca Ala 45	cag Gln	agt Ser	254
aca Thr	gaa Glu	caa Gln 50	ctg Leu	gca Ala	rct Xaa	ttg Leu	aaa Lys 55	aaa Lys	crc Xaa	cat His	gaa Glu	gaa Glu 60	gar Glu	atc Ile	gtt Val	302
			gaa Glu		gat Asp	tgag	gcgt	ctg o	cagaa	aagaa	aa tt	gago	egcca	a		350
taag	gcaga	ag a	atcaa	aat	gc ta	agaad	catga	a tga	ittaa	agtg	caca	ccgt	gt	gccat	cagaat	410 470
					ct to ca at									acci	gtctg	519
-9-5	,ccuc		.cugu		.				5-:	,						
-216)> 35	. 0														
	l> 10															
<212	2 > DN	IA														
<213	3> Hc	omo s	sapie	ens												
<220)>															
	L> CI	S														
<222	2> 73	394	8													
<22	l> si	a pe	eptid	le.												
	2> 73						•	•								
<223			eijne								•					
					00953		3									
	Se	ed I	\THT\	/LQGr	/TYVI	EI										
<22	l> pc	olyA_	site	.												
<222	2> 10	16	.1028	3												
<400)> 35	9														
agct	ttaa	ag g	gcctg	gcca	ag gg	ggagg	gagca	a cag	gatat	ttt	ccts	gtata	aat t	ccas	gaatgt	60
ctto	agag	gag c													ga aac rg Asn	111
			ME	:с п.	IS G	гу пе		zu n. 25	re t	ÅΤ ΤΙ	eu Pi		20	IL AI	.g Asii	
					ctg											159
His		Phe	Ile	Val	Leu			Val	Leu	Gln	Gly	Met	Val	Tyr	Thr	
gag	-15	acc	taa	gaa	gta	-10		tac	tat	caq	-5 gag	cta	aaa	tta	tcc	207
					Val											
1				5					10					15		
					ctg											255
тел	HIS	ıyr	ьеи 20	Leu	Leu	Pro	ıyr	ьеu 25	Leu	ьeu	GIY	vai	Asn 30	ьеu	Pne	
ttt	ttc	acc		act	tgt	gga	acc		cct	ggc	att	ata	_	aaa	gca	303
					Cys											
		35					40					45				253
					ctt Leu											351
veli	50	ucu	neu	FIIC	nen	55	val	TAT	o r u	- 116	60	O T U	nua.			
cca		aac	gtg	agg	tgc		act	tgt	gat	tta		aaa	cca	gct	cga	399
	Lys	Asn	Val	Arg	Cys	Ser	Thr	Cys	Asp		Arg	Lys	Pro	Ala		
65 t.c.c	225	Cac	tac	ak+	70 gtg	+~+	220	taa	tat	75 ata	Cac	cat	tto	rac	80 Cat	447
					Val											33/
			-	85		4			90					95		

cac His	tgt Cys	gtt Val	tgg Trp	gtg Val	aac Asn	aac Asn	tgc Cys	atc Ile	999 999	gcc Ala	tgg Trp	aac Asn	atc Ile	agg Arg	tmc Xaa	495
			100					105					110			<u></u>
ttc	ctc	atc	tac	gtc	ttg	acc	ttg	acg	gcc	tcg	gct	gcc	acc	gtc	gcc	543
Phe	Leu	Ile 115	Tyr	Val	Leu	Thr	Leu 120	Thr	Ala	Ser	Ala	Ala 125	Thr	Val	Ala	
att	ata	agc	acc	act	ttt	ctq	qtc	cac	ttg	gtg	gtg	atg	tca	gat	tta	591
Ile	Val	Ser	Thr	Thr	Phe	Leu	Val	His	Leu	Val	Val	Met	Ser	Asp	Leu	
	130	gag				135	~~~	a++	~~~	C2.C		cat	att	ato	gac	639
tac	cag	Glu	act Th~	Tac	Tla	yat Nen	Acn	Len	Glv	Hie	Leu	His	Val	Met	Asp	000
145	GIII	GIU	1111	ıyı	150	Asp	тэр	БСС	Cry	155	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				160	
142	atc	ttt	ctt	att		tac	cta	ttc	cta		ttt	cca	cgg	att	gtc	687
Thr	Val	Phe	Leu	Ile	Gln	Tvr	Leu	Phe	Leu	Thr	Phe	Pro	Arg	Ile	Val	
				165		- 2			170					175		
ttc	atg	ctg	ggc	ttt	gtc	gtg	gtt	ctg	arc	ttc	ctc	ctg	ggt	ggc	tac	735
Phe	Met	Leu	Gly	Phe	Val	Val	Val	Leu	Xaa	Phe	Leu	Leu	Gly	Gly	Tyr	
			180					185					190		•	
ctg	ttg	ttt	gtc	ctg	tat	ctg	gcg	gcc	acc	aac	cag	act	act	aac	gag	783
Leu	Leu	Phe	Val	Leu	Tyr	Leu		Ala	Thr	Asn	Gln	Thr	Thr	Asn	GIU	
		195					200					205		~+~	~~~	831
tgg	tac	aga	rgt	gac	tgg	gcc	rgg	tgc	cag	cgt	cgt	DYO	Lou	Val	900	051
Trp	Tyr 210	Arg	Xaa	Asp	Trp	A1a 215	Trp	Cys	GIN	Arg	220	PIO	пец	vai	ALG	
taa		ccg	tca	gca	gar		caa	atc	cac	caa	aac	att	cac	tcc	cat	879
Tro	Pro	Pro	Ser	Ala	Glu	Pro	Gln	Val	His	Arg	Asn	Ile	His	Ser	His	
225					230					235					240	
aaa	ctt	cgg	arc	aac	ctt	caa	gar	atc	ttt	cta	cct	gcc	ttt	cca	tgt	927
Gly	Leu	Arg	Xaa	Asn	Leu	Gln	Glu	Ile	Phe	Leu	Pro	Ala	Phe	Pro	Cys	
_				245					250					255		
		agg						cmag	tgt .	atga	ctgc	ct t	tgag	ctgt	a	978
His	Glu	Arg			Gln	Glu										
			260					_ •								1028
gtt	cccg	ttt	attt	acac	at g	tgga	tcct	c gt	LTTC	caaa	aaa	aaaa	add			1020

<211> 452
<212> DNA
<213> Homo sapiens

<220>
<221> CDS
<222> 69..434

<221> sig_peptide
<222> 69..236
<223> Von Heijne matrix
score 4.9000009536743
seq FACVPGASPTTLA/FP

<221> polyA_signal
<222> 419..424

<221> polyA_site
<222> 441..452

<210> 360

<400> 360
acagcgtgas tcgcccgcca gaagaatatg aaaaagcaga gcganctcgg ttaagggaaa 60
gcgccgag atg acg ggc ttt ctg ctg ccg ccc gca agc aga ggg act cgg 110
Met Thr Gly Phe Leu Leu Pro Pro Ala Ser Arg Gly Thr Arg

		r.o.	-45	
-55 aga tca tgc agc aga a	202 202 222	-50		158
Arg Ser Cys Ser Arg S	ser Arg Lys -35	Arg Gln Thr	Arg Arg Arg Arg Asn	
-40 cca agt agc ttt gtg g		cca acc ctc	-	206
Pro Ser Ser Phe Val I	Ala Ser Cys	Pro Thr Leu	Leu Pro Phe Ala Cys	
gtg cct gga gcc agt		ctc gcg ttt	cct cct gta ktg ctc	254
Val Pro Gly Ala Ser I	Pro Thr Thr	Leu Ala Phe	Pro Pro Val Xaa Leu 5	
aca ggt ccc avc acc	gat ggc att	ccc ttt gcc	ctr nak tct gca gcg	302
Thr Gly Pro Xaa Thr 1		15	20	
ggt ccc ttt tgt gct t	tcc ttc ccc	tca ggt avc	ctc tct ccc cct ggg	350
Gly Pro Phe Cys Ala S	30		35	
cca ctc ccg.ggg gtg	agg ggg tta	ccc ctt ccc	agt gtt ttt tat tcc	398
Pro Leu Pro Gly Val A	45		50	
tgt ggg gct cac ccc a	aaa gta tta	aaa gta gct	ttg taattcaaaa	444
Cys Gly Ala His Pro I			Leu	
• •	60	65		452
aaaaaaaa				
<210> 361				
<211> 875				
<212> DNA				
<213> Homo sapiens				
<220>				
<221> CDS <222> 628804				
(222) 020004				
<221> sig_peptide				
<222> 628711				
<pre><223> Von Heijne mat: score 4.1999999</pre>				
seq LMPVIPALQE				
•				
<221> polyA_site				
<222> 864875				
<400> 361				
aaagatggac accgcggag	g aagacatat	g tagagtgtgt	cggtcagaag gaacacctga	60
gaaaccgctt tatcatcct	t gtgtatgta	c tggcagtatt	aagttngtcc atcaagaatg	120
cttagttcaa tggctgaaa	c acagtcgaa	a agaatactgt	gaattatgca agcacagatt	180
tgcttttaca ccaatttat	t ctccagata	t gccttcacgg	cttccaattc aagacatatt	240 300
tgctggactg gttacaagt	a ttggcactg	c aatacgatat	tggtttcatt atacacttgt	360
ggcctttgca tggttggga	g tegitecte	a atattatan	gagtattcat gcctctgatt	420
tatttgagtg atgettege	t atttostot	a alallalada c agagtotost	gcaatattgc atcatattat gtattaggaa agccttactt	480
araaratott categoaac	t aaraatoak	t ttaacadoto	agttttttga gtgaatgtgg	540
gaaraacac agcatacag	a atquetaac	c atgaaagtto	atgaaagcgt kgaaaaaatc	600
aaatcaaatc ataattaga	it atgaagt a	itg cta rag c	ett tca agg gct aca aaa	654
	M	iet Leu Xaa I	Leu Ser Arg Ala Thr Lys	
rac qqc cqq qca caa	tgg ctt atc		c cca gca ctt cag gag	702
Xaa Gly Arg Ala Arg	Trp Leu Met	: Pro Val Ile	e Pro Ala Leu Gln Glu	
-15	+an -ac	-10	-5 - ann not age etg gee	750
gcc gan gca ggc gga	tca cga ggt	. cag gag ttt	gaa act agc ctg gcc	, 50

Ala :	Xaa			Gly	Ser	Arg	Gly 5	Gln	Glu	Phe	Glu	Thr 10	Ser	Leu	Ala	
226	= t-c		l act	aaa	aca	gga		ttg	ctt	aaa	ccc		agg	cgg	agg	798
Asn :	Met	Glu	Thr	Glu	Ala	Gly	Glu	Leu	Leu	Lys	Pro	Arg	Arg	Arg	Arg	
	15					20					25	202	asa	-2202	act	854
Leu	_	tgaa	ctga	ga t	.cgca	ccac	t go	cacto	cago	ניט ני	ggc	aca	gagi	Jaaye	200	051
30 ++a+	ctca	ca a	aaaa	222	аа											875
ttgt	cccg	ca a	aaaa	aaaa	u											
	> 36															
	> 53															
	> DN		apie	ns												
4213	<i>></i> 110	niiO 3	apro	.115												
<220	>		•													
<221	> CD	S														
<222	> 70	36	6													
				1												
	> 51 > 70		ptid	le												
			ijne	mat	rix											
\ZZ3		core	•													
				WANE	PASS/	RR										
	_		sign	ıal												
<222	> 49	65	01													
<221	> 00	alva	site	<u>.</u>												
	> 52		-													
<400	> 36	52													at 2 a a a	60
aagt	ggc	at c	gegg	gatad	ca go	gact	taca	g cai	cgg	cggc	ggc	gger	agu '	cc a	ctagcg gc aga	111
CCEC	gago	g at	g ca	ic T.	-11 T.6	-L L(or A	ac cy sn Ti	ro A	la A	sn P	ro A	la S	er S	er Arg	
		110				10			- P	_		_			1	
cgt	cct	tct	atg	gcc	gct	tca	ggc	act	tct	tgg	ata	tca	tcg	acc	ctc	159
Arg	Pro	Ser	Met	Ala	Āla	Ser	Gly	Thr	Ser	Trp	Ile	Ser	Ser	Thr	Leu	
			5					10					15			207
gca	cac	tct	ttg	tca	ctg	aga	gac	gtc	tca	gag	agg	ctg	tgc	agc	tgc	207
Ala	His		Leu	Ser	Leu	Arg	Asp 25	vai	ser	GIU	Arg	ьеu 30	Cys	261	Cys	
taa	300	20 20t	2+2	200	ato	aaa		tac	acc	caa	aaa	_	cca	atq	aac	255
Trn	Ara	Thr	Tle	Ser	Met	Glv	Pro	Cvs	Ala	Arq	Gly	Ser	Pro	Met	Asn	
	35					40		-		-	45					
agc	tct	gga	gtg	cac	aga	aaa	tca	agc	agg	cta	ttc	tac	atc	cgg	aca	303
Ser	Ser	Gly	Val	His	Arg	Lys	Ser	Ser	Arg		Phe	Tyr	Ile	Arg	Thr	
50					55					60			_ 4		65	351
cca -	atg	aga	aga	tct	tca	tgc	cat	tta	gaa	tgt	crg	gtt	ata	Dhe	ctt	331
Pro	Met	Arg	Arg		ser	Cys	HIS	ьeu	75	Cys	Ada	val	116	80	Leu	
++~	~~=	cac	C22	70	taa	ktat	tac	cttc	. –	ga t	ttcc	tttt	c ta		atta	406
			Gln						9	J						
	•	Ī	85													
ttt	tara	tgt	ctaa	cttt	at g	ttat	tgct	c ac	gggt	attt	gac	tgaa	ttg	ttga	tttagg	466
ata	agtc	aat	tect	ggag	gg a	aatt	acca	a at	aaaa	tgat	atg	tatt	tct	tacc	acaaaa	526
222	2.2															533

WO 99/31236 -278- PCT/IB98/02122 -

```
<210> 363
<211> 1244
<212> DNA
<213> Homo sapiens
<220>
<221> CDS
<222> 70..366
<221> sig_peptide
<222> 70..108
<223> Von Heijne matrix
      score 3.5
      seg MHLLSNWANPASS/RR
<221> polyA_site
<222> 1233..1244
<400> 363
aagtggccat ggcggataca gcgactacag catcggcggc ggcggctagt gccgctagcg
                                                                       60
cetegageg atg cae etc ett tee aac teg gea aac eec get tee age aga
                                                                      111
         Met His Leu Leu Ser Asn Trp Ala Asn Pro Ala Ser Ser Arg
                      -10
                                                                      159
cgt cct tct atg gcc gct tca ggc act tct tgg ata tca tcg acc ctc
Arg Pro Ser Met Ala Ala Ser Gly Thr Ser Trp Ile Ser Ser Thr Leu
                                                                      207
gca cac tot ttg toa ctg aga gac gtc toa gag agg ctg tgc agc tgc
Ala His Ser Leu Ser Leu Arg Asp Val Ser Glu Arg Leu Cys Ser Cys
                            25
                                                30
                                                                      255
tgq agg act ata agc atg gga ccc tgc gcc cgg ggg tca cca atg aac
Trp Arg Thr Ile Ser Met Gly Pro Cys Ala Arg Gly Ser Pro Met Asn
                                            45
                        40
                                                                      303
age tet gga gtg cac aga aaa tea age agg eta tte tac ate egg aca
Ser Ser Gly Val His Arg Lys Ser Ser Arg Leu Phe Tyr Ile Arg Thr
                                        60
                   55
cca atg aga aga tot toa tgc cat tta raa tgt cag gtt ata ttc ctt
                                                                      351
Pro Met Arg Arg Ser Ser Cys His Leu Xaa Cys Gln Val Ile Phe Leu
                70
ttg gga cgc caa ttg tagtcggtct tctcttgccc aaccagacac tggcatccac
                                                                      406
Leu Gly Arg Gln Leu
tgtcttctgg cagtggctga accagagcca caatgcctgt gtcaactatg caaaccgcaa
                                                                      466
tgcraccaag ccttcacctg catccaagtt catccaggga tacctgggag ctgtcatcag
                                                                      526
                                                                      586
cgccgtctcc attgctgtgg gccttatktc ctggttcaga aagccaacaa gttcacccca
                                                                      646
gccacccgcc ttctcatcca gaggtttgtg ccgttccctg ctgtagccag tgccaatatc
tgcaatgtgg tcctgatgcg gtacggggag ctggaggaag ggattgatgt cctggacagc
                                                                      706
gatggcaacc tcgtgggctc ctccaagatc gcagcccgac acgccctgct ggagacggcg
                                                                      766
ctgacgcgag tggtcctgcc catgcccatc ctggtgctac ccccgatcgt catgtccatg
                                                                      826
                                                                      886
ctggagaaga cggctctcct gcaggcacgc ccccggctgc tcctccctgt gcaaagcctc
                                                                      946
gtgtgcctgg cagccttcgg cctggccctg ccgctggcca tcagcctctt cccgcaaatg
                                                                     1006
tcagagattg aaacatccca attagagccg gagatagccc aggccacgag cagccggaca
                                                                     1066
gtggtgtaca acaaggggtt gtgagtgtgg tcagcggcct ggggacggag cactgtgcag
ccggggagct gaggggcarg gccgtagact cacggctgca cctgcaggga gcagcacgcc
                                                                     1126
                                                                     1186
aaccccagca gtcctgggcc ccctgggaga gtgctcaacc tacagtggag ggagactgac
                                                                     1244
ccattcacat tttaacatag gcaagaggag ttctaacaca tttcgtacaa aaaaaaaa
```

<210> 364

<211> 631

<212> DNA

<213> Homo sapiens

```
<220>
<221> CDS
<222> 111..434
<221> sig peptide
<222> 111..185
<223> Von Heijne matrix
      score 3.90000009536743
      seq WIAAVTIAAGTAA/IG
<221> polyA_site
<222> 618..631
<400> 364
aatogoggag toggtgottt agtacgoogc tggcaccttt actotogoog googoggaa
                                                                      60
cccgtttgag ctcggtatcc tagtgcacac gccttgcaag cgacggcgcc atg agt
                                                                      116
                                                        Met Ser
ctg act tcc agt tcc agc gta cga gtt gaa tgg atc gca gca gtt acc
                                                                      164
Leu Thr Ser Ser Ser Ser Val Arg Val Glu Trp Ile Ala Ala Val Thr
            -20
att gct gct ggg aca gct gca att ggt tat cta gct tac aaa aga ttt
                                                                      212
Ile Ala Ala Gly Thr Ala Ala Ile Gly Tyr Leu Ala Tyr Lys Arg Phe
tat gtt aaa gat cat cga aat aaa gct atg ata aac ctt cac atc cag
                                                                      260
Tyr Val Lys Asp His Arg Asn Lys Ala Met Ile Asn Leu His Ile Gln
10
                    15
                                        20
aaa gac aac ccc aag ata gta cat gct ttt gac atg gag gat ttg gga
                                                                      308
Lys Asp Asn Pro Lys Ile Val His Ala Phe Asp Met Glu Asp Leu Gly
                30
                                    35
gat aaa gct gtg tac tgc cgt tgt tgg agg tcc aaa aag ttc cca ttc
                                                                      356
Asp Lys Ala Val Tyr Cys Arg Cys Trp Arg Ser Lys Lys Phe Pro Phe
                                50
tgt gat ggg gct cac aca aaa cat aac gaa gag act gga gac aat gtg
                                                                      404
Cys Asp Gly Ala His Thr Lys His Asn Glu Glu Thr Gly Asp Asn Val
                            65
ggc cct ctg atc atc aag aaa aaa gaa act taaatggaca cttttgatgc
Gly Pro Leu Ile Ile Lys Lys Lys Glu Thr
                        80
tgcaaatcag cttgtcgtga agttacctga ttgtttaatt araatgacta ccacctctgt
ctgattcacc ttcgctggat tctaaatgtg gtatattgcm aactgcagct ttcacattta
                                                                      574
tggcatttgt cttgttgaaa catcgtggtg cacatttgtt taaacaaaaa aaaaaaa
```

<210> 365

<211> 781

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 19..567

<221> sig_peptide

<222> 19..63

<223> Von Heijne matrix score 8.39999961853027 seq AMWLLCVALAVLA/WG

<221> polyA_signal

<222> 749..754 <221> polyA site <222> 771..781 <400> 365 51 aaqtgctgct tacccatc atg gaa gca atg tgg ctc ctg tgt gtg gcg ttg Met Glu Ala Met Trp Leu Leu Cys Val Ala Leu -15 -10 99 gcg gtc ttg gca tgg ggc ttc ctc tgg gtt tgg gac tcc tca gaa cga Ala Val Leu Ala Trp Gly Phe Leu Trp Val Trp Asp Ser Ser Glu Arg 1 atg aag agt cgg gag cag gga aga cgg ctg gga gcc gaa agc cgg acc Met Lys Ser Arg Glu Gln Gly Arg Arg Leu Gly Ala Glu Ser Arg Thr 20 195 ctg ctg gtc ata gcg cac cct gac gat gaa gcc atg ttt ttt gct ccc Leu Leu Val Ile Ala His Pro Asp Asp Glu Ala Met Phe Phe Ala Pro aca gtg cta ggc ttg gcc cgc cta agg cac tgg gtg tac ctg ctt tgc 243 Thr Val Leu Gly Leu Ala Arg Leu Arg His Trp Val Tyr Leu Leu Cys 55 50 291 ttc tct gca gga aat tac tac aat caa gga gag act cgt aag aaa gaa Phe Ser Ala Gly Asn Tyr Tyr Asn Gln Gly Glu Thr Arg Lys Lys Glu 70 339 ctt ttg car agc tgt gat gtt ttg ggg att cca ctc tcc agt gta atg Leu Leu Gln Ser Cys Asp Val Leu Gly Ile Pro Leu Ser Ser Val Met 85 80 att att gac aac agg gat ttc cca rat gac cca ggc atg cag tgg gac 387 Ile Ile Asp Asn Arg Asp Phe Pro Xaa Asp Pro Gly Met Gln Trp Asp 95 100 435 aca rag cac gtg gcc ara gtc ctc ctt cag cac ata gaa gtg aat ggc Thr Xaa His Val Ala Xaa Val Leu Leu Gln His Ile Glu Val Asn Gly 115 483 atc aat ctg gtg gtg act ttc gat gca ggg gga rta agt ggc cac agc Ile Asn Leu Val Val Thr Phe Asp Ala Gly Gly Xaa Ser Gly His Ser 135 aat cac att get etg tat gea get gtg agg aag ett gag gge caa att 531 Asn His Ile Ala Leu Tyr Ala Ala Val Arg Lys Leu Glu Gly Gln Ile 150 577 tgc aag ccc tgt ggc act gga caa gac ttt aag gaa tgagtgctgt Cys Lys Pro Cys Gly Thr Gly Gln Asp Phe Lys Glu 160 165 caatcagtgt gcctccacct tcaccatctt cttcccctta ctctcacttc cgtcatgtgt 637 697 tttatacaac tctcaaatct ttcttggaga aggaggatat acatacataa tatgaaatgt gtttgttctt cacagtcacc cgattttact gatatttatt tgcattttac caataaaaag 757 781 aaaatgcaag ctcaaaaaaa aaaa

<210> 366

<211> 931

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 19..312

<221> sig_peptide

<222> 19..63

seg AMWLLCVALAVLA/WG

<221> polyA signal <222> 896..901 <221> polyA_site <222> 921..931 <400> 366 aagtgetget tacceate atg gaa gea atg tgg etc etg tgt gtg geg ttg Met Glu Ala Met Trp Leu Leu Cys Val Ala Leu -15 -10 99 gcg gtc ttg gca tgg ggc ttc ctc tgg gtt tgg gac tcc tca gaa cga Ala Val Leu Ala Trp Gly Phe Leu Trp Val Trp Asp Ser Ser Glu Arg 1 atg aag agt cgg gag cag gga rga cgg ctg gga gcc gaa agc cgg acc 147 Met Lys Ser Arg Glu Gln Gly Xaa Arg Leu Gly Ala Glu Ser Arg Thr 15 20 195 ctg ctg gtc ata gcg cac cct gac gat gaa gcc atg ttt ttt gct ccc Leu Leu Val Ile Ala His Pro Asp Asp Glu Ala Met Phe Phe Ala Pro 35 243 aca gtg cta ggc ttg gcc cgc cta agg cac tgg gtg tac ctg ctt tgc Thr Val Leu Gly Leu Ala Arg Leu Arg His Trp Val Tyr Leu Leu Cys 45 50 55 60 291 ttc tct gca gtt ttc cgt agg gag cta agt gaa tac acc gaa rgt ctt Phe Ser Ala Val Phe Arg Arg Glu Leu Ser Glu Tyr Thr Glu Xaa Leu 70 65 342 acc tot gaa coc oto ama goo tagggacagg arcggccggc ttacctggtg Thr Ser Glu Pro Leu Xaa Ala 80 ggttggggga cgtcggcagc tcrcgtacta cgccagcagg attganganc acagaaacag 402 ttgchsttgg ttgtattcag tacctkcatt tccgttggga actccaccwg tacttgttat kctqtqqaac tttttttat ttgtagaagg agcaagaata ttgaccttac tatatagcac

462 522 582 acqaaacaat ctatqctqta tcgtgcctgc tcaatcctta aagttaactt ctaatgatag 642 taaaaracct tcctqctqcc tttaaaatgc agcttgtgct aktaacatgc atgtgtcaaa 702 ttgaaraatt agacatagat gactaratar aaagtaattt tgtaggtaat tttaragttc 762 aactccaccc agctttcakt gaaggaacct ttcaaataat aratttttgc ttaccatara 822 raaaaratca aatgacaaag caaatattga ccattaagct ggaatatggt gataattgaa 882 cagttgtata aatgaaktaa ttgaattgta cacatacaat gggtgaattt tatggcatgt caaagtatac ctcaataaag ctatttttt aaattgcmaa aaaaaaaaa 931

<210> 367 <211> 849

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 64..612

<221> sig_peptide

<222> 64..234

<223> Von Heijne matrix
 score 3.79999995231628
 seq QLWLVMEFCGAGS/VT

<221> polyA_site <222> 839..849

<400> 367

acatacgggc aagtttataa gggtcgtcat gtcaaaacgg gccagcttgc agccatc	aag 60
gtt atg gat gtc aca ggg gat gaa gag gaa gaa atc aaa caa gaa at	
Met Asp Val Thr Gly Asp Glu Glu Glu Glu Ile Lys Gln Glu Il	.e
-55 -50 -45	
aac atg ttg aag aaa tat tct cat cac cgg aat att gct aca tac ta	
Asn Met Leu Lys Lys Tyr Ser His His Arg Asn Ile Ala Thr Tyr Ty	r
-40 -35 -30	
ggt gct ttt atc aaa aag aac cca cca ggc atg gat gac caa ctt tg	
Gly Ala Phe Ile Lys Lys Asn Pro Pro Gly Met Asp Asp Gln Leu Tr	.p
-25 -20 -15	
ttg gtg atg gag ttt tgt ggt gct ggc tct gtc acc gac ctg atc aa	
Leu Val Met Glu Phe Cys Gly Ala Gly Ser Val Thr Asp Leu Ile Ly	'S
-10 -5 1 5	
aac aca aaa ggt aac acg ttg aaa gag gag tgg att gca tac atc tg	
Asn Thr Lys Gly Asn Thr Leu Lys Glu Glu Trp Ile Ala Tyr Ile Cy	rs
10 15 20	
msg gaa atc tta cgg ggg ctg art cac ctg cac cag cat aaa gtg at	t 348
Xaa Glu Ile Leu Arg Gly Leu Xaa His Leu His Gln His Lys Val Il	.е
25 30 35	300
cat cga rat att aaa ggg caa aat gtc ttg ctg act gaa aat gca ga	
His Arg Xaa Ile Lys Gly Gln Asn Val Leu Leu Thr Glu Asn Ala Gl	.u
40 45 50	g 444
gtt aaa cta gtg gac ttt gga rtc akt gct cag ctt gat cga aca gt	
Val Lys Leu Val Asp Phe Gly Xaa Xaa Ala Gln Leu Asp Arg Thr Va	
55	
ggc agg arg aat act ttc att gga act ccc tac tgg atg gca cca ra Gly Arg Xaa Asn Thr Phe Ile Gly Thr Pro Tyr Trp Met Ala Pro Xa	
75 80 85	ıu
gtt att gcc tgt gat gaa aac cca sat gcc aca tat gat ttc aar ar	t 540
Val Ile Ala Cys Asp Glu Asn Pro Xaa Ala Thr Tyr Asp Phe Lys Xa	ia
90 95 100	
gac ttg tgg tct ttg ggt atc acc gcc att gaa atg gca gaa ggg ct	c 588
Asp Leu Trp Ser Leu Gly Ile Thr Ala Ile Glu Met Ala Glu Gly Le	
105 110 115	
ccc ctc tct gtg aca tgc acc cca tgagagetet ettecteate ecceggaa	atc 642
Pro Leu Ser Val Thr Cys Thr Pro	
120 125	
cagcgcctcg gctgaagtct aagaagtggt caaaaaaaatt ccagtcattt attgaga	agct 702
gcttggtaaa aaatcacagc cagcgaccag caacagaaca attgatgaag catccat	tta 762
tacgagacca acctaatgag cgacaggtcc gcattcaact caaggaccat attgata	agaa 822
caaagaagaa gcgaggaaaa aaaaaaa	849

```
<210> 368
```

<211> 644

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 39..458

<221> sig_peptide

<222> 39..80

<223> Von Heijne matrix
 score 4.40000009536743
 seq FLTALLWRGRIPG/RQ

<221> polyA_signal

<222> 613..618

WO 99/31236 -283 - PCT/IB98/02122 -

<221> polyA_site <222> 633..644 <400> 368 ageggagaeg cagagtettg ageagegegn caggeace atg tte etg act geg etc 56 Met Phe Leu Thr Ala Leu 104 ctc tqq cqc qqc cqc att ccc ggc cgt cag tgg atc ggg aag cac cgg Leu Trp Arg Gly Arg Ile Pro Gly Arg Gln Trp Ile Gly Lys His Arg 1 -5 cgg ccg cgg ttc gtg tcg ttg cgc gcc aag cag aac atg atc cgc cgc 152 Arg Pro Arg Phe Val Ser Leu Arg Ala Lys Gln Asn Met Ile Arg Arg 15 ctg gag atc gag gcg gag aac cat tac tgg ctg agc atg ccc tac atg 200 Leu Glu Ile Glu Ala Glu Asn His Tyr Trp Leu Ser Met Pro Tyr Met 30 35 248 acc egg gag cag gag ege gge cac gee geg ttg ege agg agg gag gee Thr Arg Glu Gln Glu Arg Gly His Ala Ala Leu Arg Arg Arg Glu Ala 50 45 ttc gag gcc ata aag gcg gcc gcc act tcc aag ttc ccc ccg cat aga 296 Phe Glu Ala Ile Lys Ala Ala Ala Thr Ser Lys Phe Pro Pro His Arg ttc att gcg gac cag ctc gac cat ctc aat vgt cac caa gaa atg gtc 344 Phe Ile Ala Asp Gln Leu Asp His Leu Asn Xaa His Gln Glu Met Val 80 392 cta atc ctg agt cgt cac cct tgg att tta tgg atc acg gag ctg acc Leu Ile Leu Ser Arg His Pro Trp Ile Leu Trp Ile Thr Glu Leu Thr 90 95 100 atc ttt acc tgg tct gga ctg aaa aac tgt agc ttg tgt gaa aat gag 440 Ile Phe Thr Trp Ser Gly Leu Lys Asn Cys Ser Leu Cys Glu Asn Glu 115 110 ctt tgg acc agt ctt tat taaaacaaac aaacatgagt agtctgcata 488 Leu Trp Thr Ser Leu Tyr 125 tcgaatatct agagctctaa accccccaat acttaaaagt ctaattgctg tcctgtggtt 548 608 tcattagtct gataggaaga tagggatttc ctcagtcaca gatgatattt tgaaggaaag 644 ctgcaataaa gccacaatga tttgaaaaaa aaaaaa <210> 369 <211> 918 <212> DNA <213> Homo sapiens <220>

<400> 369
agctcagc atg gct gct tta gtg act gtt ctc ttc aca ggt gtc cgg agg 50
Met Ala Ala Leu Val Thr Val Leu Phe Thr Gly Val Arg Arg

-10

WO 99/31236 -284 - PCT/IB98/02122.

ctg cac tgc agc gcr scg ctt ggg cgg gcg gcc agt ggc grc tac agc Leu His Cys Ser Ala Xaa Leu Gly Arg Ala Ala Ser Gly Xaa Tyr Ser 1 10 15	98
agg aac tgg ctg cca acc cct ccg gct acg ggc ccc tta ccg agc tcc Arg Asn Trp Leu Pro Thr Pro Pro Ala Thr Gly Pro Leu Pro Ser Ser 20 25 30	146
cag act ggt cat atg cgg atg gcc gcc ctg ctc ccc caa tgaaaggcca Gln Thr Gly His Met Arg Met Ala Ala Leu Leu Pro Gln 35 40 45	195
gcttcgaaaa aaagctgaaa gggagacktt tgcaaracra kttgtactgc tgtcacagga	255
aatggacgct ggattacaas catggcasct caggcagcar aakttgcagg aaraacaaag	315
gaagcaggaa aatgctctta aacccaaagg ggcttcactg aaaascccac ttccaaktca	375
ataaaaagca actcctgcct cccttcctca ccctgtctct ggatttcttt tctatcacct	435
aratgettea tecagecara aaatageett cackkteece atetgtette arageaaaar	495
agctgggacm ccaaraacaa gctgttarat cactgcctgg gaggcttggc ttartactct	555
catctctggt tocattccag ttcagctaag tottgottta aaatttttac ctcctagctg	615
ggtgeggtgg eteaegeetg taateecage aetttgggag getgaggegg geagateaca	675
agatcaggag ttcgagacca gcctggccaa cccagcctgg tcaacatggt gaaaccctgt	735
ccctactaaa gatacaaaca attagccggg cgtggtgggg tgcgcttgta atcccagcta	795
ctcaggaggc tgaggcagga gaatcgctta aactcgggag gtagaggttg cagtgagcca	855
aggtcacacc attgcactcc aacctgggcg acagggcgag actctgtctc aaaaaaaaa	915
aaa	918
<pre><210> 370 <211> 472 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 14316 <221> sig_peptide <222> 14121 <223> Von Heijne matrix</pre>	
<221> polyA_site <222> 458471	
<400> 370 attatataga gcc atg ggg cct tac aac gtg gca gtg cct tca gat gta	49
Met Gly Pro Tyr Asn Val Ala Val Pro Ser Asp Val -35 -30 -25	47
tot cat god ogo tit tat tio tia tit cat oga oca tia agg oig tia	97
Ser His Ala Arg Phe Tyr Phe Leu Phe His Arg Pro Leu Arg Leu Leu	
-20 -15 -10	
aat ctg ctc atc ctt att gag ggc agt gtc gtc ttc tat cag ctc tat	145
Asn Leu Leu Ile Leu Ile Glu Gly Ser Val Val Phe Tyr Gln Leu Tyr	
-5 1 5	
tcc ttg ctg cgg tcg gag aag tgg aac cac aca ctt tcc atg gct ctc	193
Ser Leu Leu Arg Ser Glu Lys Trp Asn His Thr Leu Ser Met Ala Leu	
10 15 20	
atc ctc ttc tgc aac tac tat gtt tta ttt aaa ctt ctc cgg gac aga	241
Ile Leu Phe Cys Asn Tyr Tyr Val Leu Phe Lys Leu Leu Arg Asp Arg	
25 30 35 40	

WO 99/31236 -285- PCT/IB98/02122 -

wta kta tta ggc a Xaa Xaa Leu Gly A	rg Ala Tyr S	tcc tac cca ctc Ser Tyr Pro Leu 50	aac agt tat gaa ctc Asn Ser Tyr Glu Leu 55	289
aag gca aac twa g Lys Ala Asn Xaa A 60			gaa ctcagataaa	336
aatattttca tacgtt	tgtt ttgaaag	cttg tgatttttat	aaatatttaa gatatttta gggatattaa atgtatccg	t 396 t 456 472
<210> 371 <211> 1504 <212> DNA <213> Homo sapien	.s			
<220> <221> CDS <222> 701092				
<221> sig_peptide <222> 70234 <223> Von Heijne score 4.099 seq AVCAALL	matrix 99990463257			
<221> polyA_signa <222> 14751480	1			
<221> polyA site				
<222> 14931504				
<222> 14931504 <400> 371 agaaatcgta ggactt tgcgcgaag atg cga Met Arg	aag gtg gt	t ttr att acc go	tcactgcttg gaagtgtga gg gct agc agt ggc at ly Ala Ser Ser Gly Il -45	t 111
<222> 14931504 <400> 371 agaaatcgta ggactt tgcgcgaag atg cga	aag gtg gt ; Lys Val Va :gc aag cgg :	t ttr att acc gg l Leu Ile Thr Gl -50 ctg ctg gcg gaa	gg gct agc agt ggc at ly Ala Ser Ser Gly Il	t 111
<222> 14931504 <400> 371 agaaatcgta ggactttgcgcgaag atg cga	aag gtg gt Lys Val Va gc aag cgg ys Lys Arg -35 gc agg aat ys Arg Asn	t ttr att acc gg l Leu Ile Thr Gl -50 ctg ctg gcg gaa Leu Leu Ala Glu atg agc aag gca Met Ser Lys Ala	gg gct agc agt ggc at ly Ala Ser Ser Gly Il -45 gat gat gag ctt cat Asp Asp Glu Leu His	t 111 e
<pre><222> 14931504 <400> 371 agaaatcgta ggactt tgcgcgaag atg cga</pre>	aag gtg gt Lys Val Val gc aag cgg Lys Lys Arg -35 gc agg aat Lys Arg Asn -20 cct cac ccc	t ttr att acc gg 1 Leu Ile Thr Gi -50 ctg ctg gcg gaa Leu Leu Ala Glu atg agc aag gca Met Ser Lys Ala -15 act gct gag gtc	gg gct agc agt ggc at ly Ala Ser Ser Gly Il -45 gat gat gag ctt cat Asp Asp Glu Leu His -30 gaa gct gtc tgt gct Glu Ala Val Cys Ala	111 e 159
<pre><222> 14931504 <400> 371 agaaatcgta ggactt tgcgcgaag atg cga</pre>	aag gtg gt Lys Val Val gc aag cgg ys Lys Arg -35 gc agg aat ys Arg Asn -20 ct cac ccc er His Pro stg cag tca Leu Gln Ser	t ttr att acc gg l Leu Ile Thr Gl -50 ctg ctg gcg gaa Leu Leu Ala Glu atg agc aag gca Met Ser Lys Ala -15 act gct gag gtc Thr Ala Glu Val l ttc ttc cgg gcc Phe Phe Arg Ala	gg gct agc agt ggc at ly Ala Ser Ser Gly II -45 gat gat gag ctt cat Asp Asp Glu Leu His -30 gaa gct gtc tgt gct Glu Ala Val Cys Ala -10 acc att gtc cag gtg Thr Ile Val Gln Val	111 e 159
<pre><222> 14931504 <400> 371 agaaatcgta ggactt tgcgcgaag atg cga</pre>	aag gtg gt Lys Val Val gc aag cgg ys Lys Arg -35 gc agg aat Lys Arg Asn -20 cct cac ccc er His Pro tg cag tca Leu Gln Ser aga tta gac arg Leu Asp	t ttr att acc gg l Leu Ile Thr Gi -50 ctg ctg gcg gaa Leu Leu Ala Glu atg agc aag gca Met Ser Lys Ala -15 act gct gag gtc Thr Ala Glu Val l ttc ttc cgg gcc Phe Phe Arg Ala 15 tgt ata tat cta	gg gct agc agt ggc at ly Ala Ser Ser Gly II -45 gat gat gag ctt cat Asp Asp Glu Leu His -30 gaa gct gtc tgt gct Glu Ala Val Cys Ala -10 acc att gtc cag gtg Thr Ile Val Gln Val 5 tcc aag gaa ctt aag Ser Lys Glu Leu Lys	111 e 159 207
<pre><222> 14931504 <400> 371 agaaatcgta ggactt tgcgcgaag atg cga</pre>	aag gtg gt Lys Val Val gc aag cgg Lys Lys Arg -35 gc agg aat -20 ct cac ccc er His Pro ttg cag tca Leu Gln Ser aga tta gac arg Leu Asp 30 cta aat atc	t ttr att acc gg l Leu Ile Thr G -50 ctg ctg gcg gaa Leu Leu Ala Glu atg agc aag gca Met Ser Lys Ala -15 act gct gag gtc Thr Ala Glu Val l ttc ttc cgg gcc Phe Phe Arg Ala 15 tgt ata tat cta Cys Ile Tyr Leu aaa gca ctt ttc	gg gct agc agt ggc at ly Ala Ser Ser Gly II -45 gat gat gag ctt cat Asp Asp Glu Leu His -30 gaa gct gtc tgt gct Glu Ala Val Cys Ala -10 acc att gtc cag gtg Thr Ile Val Gln Val 5 tcc aag gaa ctt aag Ser Lys Glu Leu Lys 20 aat gct ggg atc atg Asn Ala Gly Ile Met	207 255 303
<pre><222> 14931504 <400> 371 agaaatcgta ggactt tgcgcgaag atg cga</pre>	aag gtg gt Lys Val Val gc aag cgg Lys Lys Arg -35 gc agg aat Lys Arg Asn -20 ct cac ccc Ger His Pro ttg cag tca Leu Gln Ser aga tta gac Arg Leu Asp 30 cta aat atc Leu Asn Ile 45 cat atg ttc	t ttr att acc gg l Leu Ile Thr Gi -50 ctg ctg gcg gaa Leu Leu Ala Glu atg agc aag gca Met Ser Lys Ala -15 act gct gag gtc Thr Ala Glu Val l ttc ttc cgg gcc Phe Phe Arg Ala 15 tgt ata tat cta Cys Ile Tyr Leu aaa gca ctt ttc Lys Ala Leu Phe 50 tcc aca gct gaa	gg gct agc agt ggc at ly Ala Ser Ser Gly II -45 gat gat gag ctt cat Asp Asp Glu Leu His -30 gaa gct gtc tgt gct Glu Ala Val Cys Ala -10 acc att gtc cag gtg Thr Ile Val Gln Val 5 tcc aag gaa ctt aag Ser Lys Glu Leu Lys 20 aat gct ggg atc atg Asn Ala Gly Ile Met 35 ttt ggc ctc ttt tca Phe Gly Leu Phe Ser	207 255 303 351

			cat His													543
			aat Asn													591
Arg 120	Lys	Ser	aat Asn	Phe	Ser 125	Leu	Glu	Asp	Phe	Gln 130	His	Ser	Lys	Gly	Lys 135	639
gaa Glu	ccc Pro	tac Tyr	agc Ser	tct Ser 140	tcc Ser	aaa Lys	tat Tyr	gcc Ala	act Thr 145	gac Asp	ctt Leu	ttg Leu	agt Ser	gtg Val 150	gct Ala	687
			aac Asn 155													735
			gca Ala,													783
		_	ctg Leu	_	_	_	_		_			_			_	831
			act Thr													879
			caa Gln			- ·						_				927
agt Ser	gcc Ala	acc Thr	act Thr 235	ggc Gly	ttt Phe	gga Gly	aga Arg	aat Asn 240	tac Tyr	att Ile	atg Met	acc Thr	cag Gln 245	aag Lys	atg Met	975
			gaa Glu													1023
			cac His													1071
		_	ggc Gly		-		taat	tcca	agc a	actt	ggga	ag go	ccaag	ggcag	3	1122
aaaa	atca	act 1	tgaga	accad	ag ag	attca	agag	cac	accto	raga	aaca	tagt	qa d	accct	tgtct	1182
															cagcta	1242
															gagetg	1302
															tgtata	1362
															accttc	1422
															taaact	1482
-		-	aaaaa					- 54;	, 3:	,	2041	- 5041		, , , , , , ,		1504

<210> 372

<211> 765

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 274..597

<221> sig_peptide

<222> 274..399

<223> Von Heijne matrix
 score 5.19999980926514

seq LLFDLVCHEFCQS/DD

<221> polyA_signal <222> 731..736 <221> polyA_site <222> 754..765 <400> 372 accaggaaca tocagctatt tatgatagca tttgcttcat tatgtcaagt tcaacaaatg 60 120 ttgacttgct ggtgaaggtg ggggaggttg tggacaagct ctttgatttg gatgagaaac taatgttaag aatgggtcag aaatggggct gctcagcctc tggaccaacc ccaggaagag 180 totgaagago agocagtgtt toggottgtg cootgtatac ttgaagotgo caaacaagta 240 cgttctgaaa atccagaatg gcttgatgtt tac atg cac att tta caa ctg ctt Met His Ile Leu Gln Leu Leu act aca gtg gat gat gga att caa gca att gta cat tgt cct gac act 342 Thr Thr Val Asp Asp Gly Ile Gln Ala Ile Val His Cys Pro Asp Thr -25 -30 gga aaa gac att tgg aat tta ctt ttt gac ctg gtc tgc cat gaa ttc 390 Gly Lys Asp Ile Trp Asn Leu Leu Phe Asp Leu Val Cys His Glu Phe -15 -10 tgc cag tct gat gat cca gcc atc att ctt caa raa car aaa acr gtg 438 Cys Gln Ser Asp Asp Pro Ala Ile Ile Leu Gln Xaa Gln Lys Thr Val 486 cta qcc tct qtt ttt tca gtg ttg tct gcc atc tat gcc tca cag act Leu Ala Ser Val Phe Ser Val Leu Ser Ala Ile Tyr Ala Ser Gln Thr 25 15 20 534 gag caa gak tat cta aar ata raa aaa gga gac ggt ggc tca ggg agt Glu Gln Xaa Tyr Leu Lys Ile Xaa Lys Gly Asp Gly Gly Ser Gly Ser 40 35 aaa gga agg cca ktt gan caa aca gaa ktg ttc ctc tgc att tca aaa 582 Lys Gly Arg Pro Xaa Xaa Gln Thr Glu Xaa Phe Leu Cys Ile Ser Lys 50 55 637 cct tct tcc ttt cta tagccctgtg gtggaagatt ttattaaaat cctacgtgaa Pro Ser Ser Phe Leu gttgataagg cgcttgctga tgacttggaa aaaaacttcc caagtttgaa ggttcagact 697 757 taaaacctga attggaatta cttctgtaca agaaataaac tttattttc tcactgacaa

765

<210> 373

aaaaaaaa

<211> 1041

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 230..469

<221> sig_peptide

<222> 230..307

<223> Von Heijne matrix
score 4.90000009536743
seq VLCTNQVLITARA/VP

<221> polyA_signal

<222> 1004..1009

<221> polyA_site

<222> 1027..1040

<400> 373 aacttccaag ttgtagtgtt gttgttttca gcctgctgct gctgctgcta ttgcggctag 60 120 gggaaccgtc gtggggaagg atggtgtgcg aaaaatgtga aaagaaactt ggtactgtta tcactccaga tacatggaaa gatggtgcta ggaataccac agaaagtggt ggaagaaagc 180 tgaatgaaaa taaagctttg acttcaaaaa aagccagaat tgatccata atg gaa gaa 238 Met Glu Glu ata agt tot coa ott gta gaa tit gta aaa git tig tgo acc aac cag 286 Ile Ser Ser Pro Leu Val Glu Phe Val Lys Val Leu Cys Thr Asn Gln -20 -15 gtt ctc att act gcc agg gct gtg cct aca aaa aag gca tct gtg cga 334 Val Leu Ile Thr Ala Arg Ala Val Pro Thr Lys Lys Ala Ser Val Arg tgt gtg gaa aaa agg ttt tgg ata cca aaa act aca agc aaa cat ctg 382 Cys Val Glu Lys Arg Phe Trp Ile Pro Lys Thr Thr Ser Lys His Leu 10 20 tot aga tgt att gat gga att tot ggo ttt ota aat gat ttt act tto 430 Ser Arg Cys Ile Asp Gly Ile Ser Gly Phe Leu Asn Asp Phe Thr Phe tgc ctt gaa ttt tca agg cat aga tgt caa ctt aca gaa taacatgtkt 479 Cys Leu Glu Phe Ser Arg His Arg Cys Gln Leu Thr Glu 50 taagataatt aagtktaaac cagaraattt gattgttact cattttgctc tcatgtkcta 539 aaacagcaac agtgtaacta gtcttttgtt gtaaatggtt attttcctta taaaaatttt 599 aaaaactaag tggcaaattc catgaaaata tttctcagtt ctgtatgcac ttttatttaa 659 719 779 agataataaa tactttgctc tgaatttggc atccaaagtt aacatttctc ccctcactcc cttgctggtg tcatagttat tagaatcagc agcctcttaa ctaattgcgg tttcatagga 839 tatataaatg tttcaagcca ttattgctga atggttcttt agttattaac ctagacccaa 899 959 atcaaagacc agttggattt atgatatttt ttatttgttc ttgcagccaa agtgccagtt 1019 tetttaatat gtgaccaaga acacaaggag catecatatg gccaaataaa tacactgaat tttagaaaaa caaaaaaaa ar 1041

<210> 374 <211> 1164 <212> DNA <213> Homo sapiens <220> <221> CDS <222> 72..545 <221> sig_peptide <222> 72..203

<223> Von Heijne matrix
 score 5.5
 seq ILFFTGWWIMIDA/AV

<221> polyA_site <222> 1151..1162

<400> 374

aaagtcggcg tggacgtttg aggaagctgg gatacagcat ttaatgaaaa atttatgctt
aagaagtaaa a atg gca ggc ttc cta gat aat ttt cgt tgg cca gaa tgt

Met Ala Gly Phe Leu Asp Asn Phe Arg Trp Pro Glu Cys

-40

-35

gaa tgt att gac tgg agt gag aga aga aat gct gtg gca tct gtt gtc

Glu Cys Ile Asp Trp Ser Glu Arg Arg Asn Ala Val Ala Ser Val Val

-30	-25	-20	
gca ggt ata ttg ttt ttt	aca ggc tgg tg	gg ata atg att gat	gca gct 206
Ala Gly Ile Leu Phe Phe			Ala Ala
-15 -10		-5	1
gtg gtg tat cct aag cca	gaa cag ttg aa	ac cat gcc ttt cac	aca tgt 254
Val Val Tyr Pro Lys Pro	GIU GIN LEU AS	in his Ala Phe his	III Cys
ggt gta ttt tcc aca ttg			tcc aat 302
Gly Val Phe Ser Thr Leu	Ala Phe Phe Me	et Ile Asn Ala Val	Ser Asn
20	25	30	
gct cag gtg aga ggt gat			
Ala Gln Val Arg Gly Asp	ser Tyr Giu Se 40	er Gly Cys Leu Gly	Arg Inr
ggt gct cga gtt tgg ctt			ggg tca 398
Gly Ala Arg Val Trp Leu			
50 55		60	65
ctt att gct tcc atg tgg			
Leu Ile Ala Ser Met Trp			Gln Asn 80
70 act gat gtt tat ccg gga	cta act ata ti		• •
Thr Asp Val Tyr Pro Gly			
85	90	95	
ttt ttt agc act ctg atc			
Phe Phe Ser Thr Leu Ile			Leu Trp
100	105	110	ag 595
acc tgagatcact tcttaagt Thr	ca catttteett t	etgetatate etgeteg	.ay 575
ataggttttt tatctctcag t	acacattgc caaat	ggagt agattgtaca t	
tgtttcttta catttttatg t		•	
tcattgcata gactgttaat a			
tcagtttttt attcctgaga tcttgtcattt tagaagtaac c			,
taatcccagc actttgggag g	-		
cagcetggce aacatggega a			
tggtgggtgc ctgtaatccc a	actacctag gaggo	ctgagg caggagaatc g	cttgaaccc 1075
ggggggcaga ggttgyagtg a		cactgo actotageet o	
gtgaaactcc ctctcaaaaa a	aaaaaamc		1164

<210> 375

<211> 1250

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 36..425

<221> sig_peptide

<222> 36..119

<223> Von Heijne matrix score 11.6000003814697 seq LLLLVQLLRFLRA/DG

<221> polyA_signal <222> 1215..1220

<221> polyA_site <222> 1240..1250

<400> 375

atttcttccc cccgagctgg gcgtgcgcgg ccgca atg aac tgg gag ctg ctg Met Asn Trp Glu Leu Leu -25	53
ctg tgg ctg ctg gtg ctg tgc gcg ctg ctc ctg ctc ttg gtg cag ctg Leu Trp Leu Leu Val Leu Cys Ala Leu Leu Leu Leu Val Gln Leu -20 -15 -10	101
ctg cgc ttc ctg agg gct gac ggc gac ctg acg cta cta tgg gcc gag Leu Arg Phe Leu Arg Ala Asp Gly Asp Leu Thr Leu Leu Trp Ala Glu -5 10	149
tgg cag gga cga cgc cca gaa tgg gag ctg act gat atg gtg gtg tgg Trp Gln Gly Arg Arg Pro Glu Trp Glu Leu Thr Asp Met Val Val Trp 15 20 25	197
gtg act gga gcc tcg agt gga att ggt gag gag ctg gct tac cag ttg Val Thr Gly Ala Ser Ser Gly Ile Gly Glu Glu Leu Ala Tyr Gln Leu 30 35 40	245
tct aaa cta gga gtt tct ctt gtg ctg tca gcc aga aga gtg cat gag Ser Lys Leu Gly Val Ser Leu Val Leu Ser Ala Arg Arg Val His Glu 45 50 55	293
ctg gaa agg gtg aaa aga aga tgc cta gag aat ggc aat tta aaa gaa Leu Glu Arg Val Lys Arg Arg Cys Leu Glu Asn Gly Asn Leu Lys Glu 60 65 70	341
aaa gat ata ctt gtt ttg ccc ctt gac ctg acc gac act ggt tcc cat Lys Asp Ile Leu Val Leu Pro Leu Asp Leu Thr Asp Thr Gly Ser His 75 80 85 90	389
gaa agc ggc tac caa agc tgt tct cca gga att tgg tagaatcgac Glu Ser Gly Tyr Gln Ser Cys Ser Pro Gly Ile Trp 95	435
attotggtca acaatgtgga aatgtcccag cgttctctgt gcatggatac caacttggat	495
gtctacagaa agctaatgag agcttaacta cttagggacg gtgtccttga caaaatgtgk	555
kctgcctcac atgatcgaga ngaarcaagg aaagattgtt actgtgaata gcatcctggg	615
tatcatatot gtacotottt ccattggata ctgtgctago aagcatgoto tooggggktk	675
ktttaatggc cttcraacag aacttgccac atacccargt ataatagttt ctaacatttg	735
cccaggacct gtgcaatcaa atattgtgga aaattcccta gctggagaag tcacaaagac	795
tataggcaat aatggagacc agtcccacaa gatgacaacc agtcgttgtg tgcggctgat	855 915
gttaatcagc atggccaatg atttgaaaga agtttggatc tcagaacaac ctttcttgtt	975
agtaacatat ttgtggcaat acatgccaac ctgggcctgg tggataacca acaagatggg gaagaaaagg attgagaact ttaagagtgg tgtggatgca gactcttctt attttaaaat	1035
ctttaagaca aaacatgact gaaaagagca cctgtacttt tcaagccact ggagggagaa	1095
atggaaaaca tgaaaacagc aatcttctta tgcttctgaa taatcaaaga ctaatttgtg	1155
atttacttt ttaatagata tgactttgct tccaacatgg aatgaaataa aaaataaata	1215
ataaaagatt gccatgaatc ttgcaaaaaa aaaaa	1250

<210> 376

<211> 947

<212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 155..751

<221> sig_peptide

<222> 155..340

<223> Von Heijne matrix
 score 3.7000004768372
 seq SILGIISVPLSIG/YC

<221> polyA_signal

<222> 912..917

<221> polyA_site <222> 937..947

<400> 376 375	60
agtgaaaaga agatgcctag agaatggcaa tttaaaagaa aaagatatac ttgttttgcc ccttgacctg accgacactg gttcccatga agcggctacc aaagctgttc tccaggagtt	120
tggtagaatc gacattotgg toaacaatgg tgga atg too cag cgt tot otg tgc	175
Met Ser Gln Arg Ser Leu Cys	175
-60	
atg gat acc agc ttg gat gtc tac aga rag cta ata gag ctt aac tac	223
Met Asp Thr Ser Leu Asp Val Tyr Arg Xaa Leu Ile Glu Leu Asn Tyr	
-55 -50 -45 -40	
tta ggg acg gtg tcc ttg aca aaa tgt gtt ctg cct cac atg atc gag	271
Leu Gly Thr Val Ser Leu Thr Lys Cys Val Leu Pro His Met Ile Glu	
-35 -30 -25	
agg aag caa gga aag att gtt act gtg aat agc atc ctg ggt atc ata	319
Arg Lys Gln Gly Lys Ile Val Thr Val Asn Ser Ile Leu Gly Ile Ile	
-20 -15 -10	
tot gta cot ott too att gga tao tgt got age aag cat got etc egg	367
Ser Val Pro Leu Ser Ile Gly Tyr Cys Ala Ser Lys His Ala Leu Arg	
-5 1 5	
ggt ttt ttt aat ggc ctt cga aca gaa ctt gcc aca tac cca ggt ata	415
Gly Phe Phe Asn Gly Leu Arg Thr Glu Leu Ala Thr Tyr Pro Gly Ile 10 25	
	163
ata gtt tct aac att tgc cca gga cct gtg caa tca aat att gtg gaa Ile Val Ser Asn Ile Cys Pro Gly Pro Val Gln Ser Asn Ile Val Glu	463
30 35 40	
aat too ota got gga gaa gto aca aaa act ata ggo aat aat gga aac	511
Asn Ser Leu Ala Gly Glu Val Thr Lys Thr Ile Gly Asn Asn Gly Asn	
45 50 55	
cag too cac aag atg aca acc agt ogt tgt gtg ogg otg atg tta atc	559
Gln Ser His Lys Met Thr Thr Ser Arg Cys Val Arg Leu Met Leu Ile	
60 65 70	
age atg gee aat gat ttg aaa gaa gtt tgg ate tea gaa caa eet tte	607
Ser Met Ala Asn Asp Leu Lys Glu Val Trp Ile Ser Glu Gln Pro Phe	
75 80 85	
ttg tta gta aca tat ttg tgg caa tac atg cca acc tgg gcc tgg tgg	655
Leu Leu Val Thr Tyr Leu Trp Gln Tyr Met Pro Thr Trp Ala Trp Trp	
90 95 100 105	
ata acc aac aag atg ggg aag aaa agg att gag aac ttt aag agt ggt	703
Ile Thr Asn Lys Met Gly Lys Lys Arg Ile Glu Asn Phe Lys Ser Gly	
110 115 120	761
gtg gat gcm rac tot tot tat ttt aaa ato ttt aag aca aaa cat gac Val Asp Ala Xaa Ser Ser Tyr Phe Lys Ile Phe Lys Thr Lys His Asp	751
125 130 135	
tgaaaaganc acctgtactt ttcaagccac tggagggaga aatggaaaac atgaaaacag	811
caatcttctt atgcttctga ataatcaaag actaatttgt gattttactt tttaatagat	871
atgactttgc ttccaacatg grrtgaaata aaaaataaat aataaaagat tgccatgrrt	931
cttgcaaaaa aaaaaa	947
3	

<210> 377 <211> 621 <212> DNA

<213> Homo sapiens

<220>

<221> CDS

<222> 46..585

<221> sig_peptide

<223> Von Heijne matrix score 6.30000019073486 seg AFSLSVMAALTFG/CF <221> polyA signal <222> 584..589 <221> polyA_site <222> 606..619 <400> 377 aactgggtgt gcgtrtggag tccggactcg tgggagacga tcgcg atg aac acg gtg 57 Met Asn Thr Val ctg tcg cgg gcg aac tca ctg ttc gcc ttc tcg ctg agc gtg atg gcs 105 Leu Ser Arg Ala Asn Ser Leu Phe Ala Phe Ser Leu Ser Val Met Ala -20 -15 gcg ctc acc ttc ggc tgc ttc atc ayy acc gcc ttc aaa gac agg agc Ala Leu Thr Phe Gly Cys Phe Ile Xaa Thr Ala Phe Lys Asp Arg Ser 1 gtc ccg gtg cgg ctg cac gtc tcg cga atc atg cta aaa aat gta gaa 201 Val Pro Val Arg Leu His Val Ser Arg Ile Met Leu Lys Asn Val Glu 15 20 gat ttc act gga cct aga gaa aga agt gat ctg gga ttt atc aca ttt 249 Asp Phe Thr Gly Pro Arg Glu Arg Ser Asp Leu Gly Phe Ile Thr Phe 35 gat ata act gct gat cta gag aat ata ttt gat tgg aat gtt aag cag 297 Asp Ile Thr Ala Asp Leu Glu Asn Ile Phe Asp Trp Asn Val Lys Gln ttg ttt ctt tat tta tca gca gaa tat tca aca aaa aat aat gct ctg 345 Leu Phe Leu Tyr Leu Ser Ala Glu Tyr Ser Thr Lys Asn Asn Ala Leu aac caa ktt gtc cta tgg gac aag att gtt ttg aga ggt gat aat ccg Asn Gln Xaa Val Leu Trp Asp Lys Ile Val Leu Arg Gly Asp Asn Pro aag ctg ctg caa gat atg aaa aca aaa tat ttt ttc ttt gac gat 441 Lys Leu Leu Lys Asp Met Lys Thr Lys Tyr Phe Phe Phe Asp Asp 100 gga aat ggt ctc wag gga aac agg aat gtc act ttg acc ctg tct tgg 489 Gly Asn Gly Leu Xaa Gly Asn Arg Asn Val Thr Leu Thr Leu Ser Trp 110 115 aac gtc gta cca aat gct gga att cta cct ctt gtg aca gga tca gga 537 Asn Val Val Pro Asn Ala Gly Ile Leu Pro Leu Val Thr Gly Ser Gly 130 135 cac gta tct gtc cca ttt cca gat aca tat gaa ata acg aag agt tat 585 His Val Ser Val Pro Phe Pro Asp Thr Tyr Glu Ile Thr Lys Ser Tyr 145 150 taaattatto tgaatttgaa acaaaaaaa aaaahm 621

<222> 46..120

<210> 378

<211> 52

<212> PRT

<213> Homo sapiens

<220>

<221> SIGNAL

<222> -20..-1

<400> 378

WO 99/31236 -293 - PCT/IB98/02122 .

```
Met Pro Ser Val Asn Ser Ala Gly Leu Cys Val Leu Gln Leu Thr Thr
-20 -15 -10 -5
Ala Val Thr Ser Ala Phe Leu Leu Ala Lys Val Asn Pro Phe Glu Xaa
Phe Leu Ser Arg Gly Phe Trp Leu Cys Ala Ala His His Phe Ile His
                      20
Pro Cys Leu Asp
 30
<210> 379
<211> 193
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -23..-1
<400> 379
Met Val Val Leu Arg Ala Gly Lys Lys Thr Phe Leu Pro Pro Leu Xaa
                       -15
Arg Ala Phe Ala Cys Arg Gly Cys Gln Leu Ala Pro Glu Arg Gly Ala
                    1
                                 5
Glu Arg Arg Asp Thr Ala Pro Ser Gly Val Ser Arg Phe Cys Pro Pro
                                 20
         15
Arg Lys Ser Cys His Asp Trp Ile Gly Pro Pro Asp Lys Tyr Ser Asn
            30
                           35
Leu Arg Pro Val His Phe Tyr Ile Pro Glu Asn Glu Ser Pro Leu Glu
                       50
Gln Lys Leu Arg Lys Leu Arg Gln Glu Thr Gln Glu Trp Asn Gln Gln
 60 65
Phe Trp Ala Asn Gln Asn Leu Thr Phe Ser Lys Glu Lys Glu Glu Phe
 75 80
Ile His Ser Arg Leu Lys Thr Lys Gly Leu Gly Leu Arg Thr Glu Ser
                               100
              95
Gly Gln Lys Ala Thr Leu Asn Ala Glu Glu Met Ala Asp Phe Tyr Lys
                             115 120
            110
Glu Phe Leu Ser Lys Asn Phe Gln Lys His Met Tyr Tyr Asn Arg Asp
                                          135
                         130
         125
Trp Tyr Lys Arg Asn Phe Ala Ile Thr Phe Phe Met Gly Lys Val Ala
     140 145
                              150
Leu Glu Arg Ile Trp Asn Lys Leu Lys Gln Lys Gln Lys Lys Arg Ser
Asn
170
<210> 380
<211> 82
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -14..-1
<400> 380
Met Ala Phe Thr Leu Xaa Ser Leu Leu Gln Ala Ala Leu Leu Cys Val
```

WO 99/31236

```
Asn Ala Ile Ala Val Leu His Glu Glu Arg Phe Leu Lys Asn Ile Gly
                   10
Trp Gly Thr Asp Gln Gly Ile Gly Gly Phe Gly Glu Glu Pro Gly Ile
                      25
Lys Ser Xaa Xaa Met Xaa Leu Ile Arg Ser Val Arg Thr Val Met Arg
                                    45
              40
Val Pro Leu Ile Ile Val Asn Ser Ile Ala Ile Val Leu Leu Leu
           55
Phe Gly
<210> 381
<211> 198
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -21..-1
<400> 381
Met Pro Val Pro Ala Leu Cys Leu Leu Trp Ala Leu Ala Met Val Thr
 -20 -15
Arg Pro Ala Ser Ala Ala Pro Met Gly Gly Pro Glu Leu Ala Gln His
                  1
Glu Glu Leu Thr Leu Leu Phe His Gly Thr Leu Gln Leu Gly Gln Ala
                          20
           15
Leu Asn Gly Val Tyr Arg Thr Thr Glu Gly Arg Leu Thr Lys Ala Arg
Asn Ser Leu Gly Leu Tyr Gly Arg Thr Ile Glu Leu Leu Gly Gln Glu
                     50
Val Ser Arg Gly Arg Asp Ala Ala Gln Glu Leu Arg Ala Ser Leu Leu
                  65
                           70
Glu Thr Gln Met Glu Glu Asp Ile Leu Xaa Leu Gln Ala Xaa Ala Thr
                                 85
Ala Glu Val Leu Gly Glu Val Ala Gln Ala Gln Lys Val Leu Arg Asp
                             100
          95
Ser Val Gln Arg Leu Xaa Xaa Gln Leu Xaa Xaa Ala Trp Leu Gly Pro
                                           120
                         115
       110
Ala Tyr Arg Lys Phe Glu Val Leu Lys Ala Pro Pro Xaa Lys Gln Asn
                      130
His Ile Leu Trp Ala Leu Thr Gly His Val Xaa Arg Gln Xaa Arg Glu
                  145 150
Met Val Ala Gln Gln Xaa Xaa Leu Xaa Gln Ile Gln Glu Lys Leu His
                                165
Thr Ala Ala Leu Pro Ala
           175
<210> 382
<211> 160
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -55..-1
```

<400> 382 Met Asp Lys Leu Lys Lys Val Leu Ser Gly Gln Asp Thr Glu Asp Arg

-50 -45 Ser Gly Leu Ser Glu Val Val Glu Ala Ser Ser Leu Ser Trp Ser Thr -35 -30 Arg Ile Lys Gly Phe Ile Ala Cys Phe Ala Ile Gly Ile Leu Cys Ser -15 -20 Leu Leu Gly Thr Val Leu Leu Trp Val Pro Arg Lys Gly Leu His Leu Phe Ala Val Phe Tyr Thr Phe Gly Asn Ile Ala Ser Ile Gly Ser Thr 15 20 Ile Phe Leu Met Gly Pro Val Lys Gln Leu Lys Arg Met Phe Glu Pro 35 30 Thr Arg Leu Ile Ala Thr Ile Met Val Leu Leu Cys Phe Ala Leu Thr 50 45 Leu Cys Ser Ala Phe Trp Trp His Asn Lys Gly Leu Ala Leu Ile Phe 65 Cys Ile Leu Gln Ser Leu Ala Leu Thr Trp Tyr Ser Leu Ser Phe Ile 80 85 Pro Phe Ala Arg Asp Ala Val Lys Xaa Cys Phe Ala Val Cys Leu Ala 100 95

<210> 383 <211> 108 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -18..-1 <400> 383 Met Lys Ala Leu Cys Leu Leu Leu Leu Pro Val Leu Gly Leu Leu Val -10 -5 -15 Ser Ser Lys Thr Leu Cys Ser Met Glu Glu Ala Ile Asn Glu Arg Ile Gln Glu Val Ala Gly Ser Leu Ile Phe Arg Ala Ile Ser Ser Ile Gly 25 20 Arg Gly Ser Glu Ser Val Thr Ser Arg Gly Asp Leu Ala Thr Cys Pro 35 40 Arg Gly Phe Ala Val Thr Gly Cys Thr Cys Gly Ser Ala Cys Gly Ser 55 Trp Asp Val Arg Ala Glu Thr Thr Cys His Cys Gln Cys Ala Gly Met 70 Asp Trp Thr Gly Ala Arg Cys Cys Arg Val Gln Pro 85

<210> 384 <211> 64 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -22..-1

 WO 99/31236 -296- PCT/IB98/02122 -

```
Leu Tyr Ile Pro Xaa Arg Xaa Arg Ser Asp Glu Leu Val Phe Glu Ser
                    20
           15
Gln Lys Gly Ser Ala Met Glu Leu Ala Val Ile Thr Val Xaa Gly Val
                 35
         30
<210> 385
<211> 27
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -15..-1
<400> 385
Met Gly Phe Leu Xaa Leu Met Thr Leu Thr Thr His Val His Ser Ser
-15 -10 -5
Ala Lys Pro Asn Glu Gln Pro Trp Leu Leu Asn
<210> 386
<211> 186
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -21..-1
<400> 386
Met Ser Pro Ser Gly Arg Leu Cys Leu Leu Thr Ile Val Gly Leu Ile
                         -10
                  -15
Leu Pro Thr Arg Gly Gln Thr Leu Lys Asp Thr Thr Ser Ser Ser
                            5
               1
Ala Asp Ser Thr Ile Met Asp Ile Gln Val Pro Thr Arg Ala Pro Asp
                       20 25
      15
Ala Val Tyr Thr Glu Leu Gln Pro Thr Ser Pro Thr Pro Thr Trp Pro
                     35
 30
Ala Asp Glu Thr Pro Gln Pro Gln Thr Gln Thr Gln Gln Leu Glu Gly
                                   55
                 50
Thr Asp Gly Pro Leu Val Thr Asp Pro Glu Thr His Xaa Ser Xaa Lys
                                70
               65
Ala Ala His Pro Thr Asp Asp Thr Thr Thr Leu Ser Glu Arg Pro Ser
            80
                             85
Pro Ser Thr Xaa Val His Xaa Arg Pro Xaa Xaa Pro Ser Xaa His Leu
                         100
Val Phe Met Arg Met Thr Pro Ser Ser Met Met Asn Thr Pro Ser Gly
                       115
      110
Asn Xaa Gly Cys Trp Ser Gln Leu Cys Cys Ser Ser Gln Ala Ser Ser
                   130
                                   135
Ser Ser Pro Val Ala Ser Ala Gly Ser Cys Pro Gly Tyr Ala Gly Ile
               145 150
Ile Ala Gly Glu Ser Ile Arg Asn Arg Ser
             160
```

WO 99/31236 -297- PCT/IB98/02122 -

```
<210> 387
<211> 179
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -26..-1
<400> 387
Met Glu Thr Gly Ala Leu Arg Arg Pro Gln Leu Leu Pro Leu Leu
                    -20
Leu Leu Cys Gly Pro Ser Gln Asp Gln Cys Arg Pro Val Leu Gln Asn
Leu Leu Gln Ser Pro Gly Leu Thr Trp Ser Leu Glu Val Pro Thr Gly
                               15
Arg Glu Gly Lys Glu Gly Gly Asp Arg Gly Pro Gly Leu Xaa Gly Ala
                           30
Thr Pro Ala Arg Ser Pro Gln Gly Lys Glu Met Gly Arg Gln Arg Thr
                       45
Arg Lys Val Lys Gly Pro Ala Trp Xaa His Thr Ala Asn Gln Glu Leu
                   60
Asn Arg Met Arg Ser Leu Ser Ser Gly Ser Val Pro Val Gly His Leu
                                  80
               75
Glu Gly Gly Thr Val Lys Leu Gln Lys Asp Thr Gly Leu His Ser Cys
                              95
Xaa Asp Gly Met Ala Ser Leu Glu Gly Thr Pro Ala Ser Val Leu Ala
                          110
Asp Ala Cys Pro Gly Phe His Asp Val Xaa Val Gln Xaa Ala Leu Phe
                    125
                                130
Gly Leu Ser Gly Xaa Xaa Leu Trp Leu Lys Thr His Phe Cys Leu Ser
                                     145
                  140
Ile Xaa Leu
<210> 388
<211> 150
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -55..-1
<400> 388
Met Ala Thr Thr Val Pro Asp Gly Cys Arg Asn Gly Leu Lys Ser Lys
                                       -45
Tyr Tyr Arg Leu Cys Asp Lys Ala Glu Ala Trp Gly Ile Val Leu Glu
                                   -30
                -35
Thr Val Ala Thr Ala Gly Val Val Thr Ser Val Ala Phe Met Leu Thr
                                -15 -10
Leu Pro Ile Leu Val Cys Lys Val Gln Asp Ser Asn Arg Arg Lys Met
Leu Pro Thr Gln Phe Leu Phe Leu Gly Val Leu Gly Ile Phe Gly
                 15
                                      20
Leu Thr Phe Ala Phe Ile Ile Gly Leu Asp Gly Ser Thr Gly Pro Thr
                                 35
Arg Phe Phe Leu Phe Gly Ile Leu Phe Ser Ile Cys Phe Ser Cys Leu
                               50
Leu Ala His Ala Val Ser Leu Thr Lys Leu Val Arg Gly Arg Lys Ala
```

Pro Phe Pro Val Gly Asp Ser Gly Ser Gly Arg Gly Leu Gln Pro Ser

80

```
Pro Gly Cys Tyr Arg Tyr
<210> 389
<211> 236
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -31..-1
<400> 389
Met Leu Ser Lys Gly Leu Lys Arg Lys Arg Glu Glu Glu Glu Lys
                   -25
Glu Pro Leu Ala Val Asp Ser Trp Trp Leu Asp Pro Gly His Ala Ala
               -10
                              -5
Val Ala Gln Ala Pro Pro Ala Val Ala Ser Ser Ser Leu Phe Asp Leu
                           10
Ser Val Leu Lys Leu His His Ser Leu Gln Xaa Ser Xaa Pro Asp Leu
                     25
Arg His Leu Val Leu Val Xaa Asn Thr Leu Arg Arg Ile Gln Ala Ser
                   40
                                      45
Met Ala Pro Ala Ala Ala Leu Pro Pro Val Pro Thr Pro Pro Ala Ala
                                60
                 55
Pro Xaa Val Ala Asp Asn Leu Leu Ala Ser Ser Asp Ala Ala Leu Ser
                   75
             70
Ala Ser Met Ala Xaa Leu Leu Glu Asp Leu Ser His Ile Glu Gly Leu
                           90
Ser Gln Ala Pro Gln Pro Leu Ala Asp Glu Gly Pro Pro Gly Arg Ser
                        105
    100
Ile Gly Gly Xaa Pro Pro Xaa Leu Gly Ala Leu Asp Leu Leu Gly Pro
  115 120
                                       125
Ala Thr Gly Cys Leu Leu Asp Asn Gly Leu Glu Gly Leu Phe Glu Asp
                                    140
                 135
Ile Asp Thr Ser Met Tyr Asp Asn Glu Leu Trp Ala Pro Ala Ser Glu
           150
                                155
Gly Leu Lys Pro Gly Pro Glu Asp Gly Pro Gly Lys Glu Glu Ala Pro
                            170
Glu Leu Asp Glu Ala Glu Leu Asp Tyr Leu Met Asp Val Leu Val Gly
                        185
Thr Gln Ala Leu Glu Arg Pro Pro Gly Pro Gly Arg
                     200
<210> 390
<211> 149
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -100..-1
<400> 390
Met Glu Thr Leu Tyr Arg Val Pro Phe Leu Val Leu Glu Cys Pro Asn
                  - 95
```

WO 99/31236 -299- PCT/IB98/02122 -

```
Leu Lys Leu Lys Lys Pro Pro Trp Leu His Met Prc Ser Ala Met Thr
                   -75
            -80
Val Tyr Ala Leu Val Val Val Ser Tyr Phe Leu Ile Thr Gly Gly Ile
                              -55
         -65 -60
Ile Tyr Asp Val Ile Val Glu Pro Pro Ser Val Gly Ser Met Thr Asp
                                      -40
          -45
      -50
Glu His Gly His Gln Arg Pro Val Ala Phe Leu Ala Tyr Arg Val Asn
                  -30 -25
Gly Gln Tyr Ile Met Glu Gly Leu Ala Ser Ser Phe Leu Phe Thr Met
                     -10
              -15
Gly Gly Leu Gly Phe Ile Ile Leu Asp Gly Ser Asn Ala Pro Asn Ile
                                    10
                    5
Pro Lys Leu Asn Arg Phe Leu Leu Phe Ile Gly Phe Val Cys Val
              20
Leu Xaa Ser Phe Xaa Xaa Ala Arg Val Phe Met Arg Met Lys Leu Pro
                  35
Gly Tyr Leu Met Gly
```

<210> 391 <211> 69 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -49..-1

<210> 392 <211> 241 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -30..-1 <400> 392 Met Gly Thr Ala Ser Arg Serical Se

Cys Leu Trp Phe Arg Tyr Gly Ala His Gln Pro Glu Asn Leu Cys Leu 40 45 Asp Gly Cys Lys Ser Glu Ala Xaa Lys Phe Thr Val Arg Glu Ala Leu 55 60 Lys Glu Asn Gln Val Ser Leu Thr Val Asn Arg Val Thr Ser Asn Asp Ser Ala Ile Tyr Ile Cys Gly Ile Ala Phe Pro Ser Val Pro Glu Ala 90 Arg Ala Lys Gln Thr Gly Gly Gly Thr Thr Leu Val Val Arg Glu Ile 105 110 Lys Leu Leu Ser Lys Glu Leu Arg Ser Phe Leu Thr Ala Leu Val Ser 120 125 Leu Leu Ser Val Tyr Val Thr Gly Val Cys Val Ala Phe Ile Leu Leu 135 140 Ser Lys Ser Lys Ser Asn Pro Leu Arg Asn Lys Glu Ile Lys Glu Asp 155 150 160 Ser Gln Lys Lys Ser Ala Arg Arg Ile Phe Gln Glu Ile Ala Gln 170 175 Glu Leu Tyr His Lys Arg His Val Glu Thr Asn Gln Gln Ser Glu Lys 185 190 Asp Asn Asn Thr Tyr Glu Asn Arg Arg Val Leu Ser Asn Tyr Glu Arg 200 205 Pro

10

<210> 394 <211> 65 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -28..-1 <400> 394 Met Ala Phe Gly Leu Gln Met Phe Ile Gln Arg Lys Phe Pro Tyr Pro -25 -20 Leu Gln Trp Ser Leu Leu Val Ala Val Val Ala Gly Ser Val Val Ser -10 -5 Tyr Gly Val Thr Arg Val Glu Ser Glu Lys Cys Asn Asn Leu Trp Leu 10 15 Phe Leu Glu Thr Gly Gln Leu Pro Lys Asp Arg Ser Thr Asp Gln Xaa

35 25 30

Ser

<210> 395

<211> 73

<212> PRT

<213> Homo sapiens

<220>

<221> SIGNAL

<222> -24..-1

<400> 395

Met Thr Cys Trp Met Leu Pro Pro Ile Ser Phe Leu Ser Tyr Leu Pro -20 -15

-10

Leu Trp Leu Gly Pro Ile Trp Pro Cys Ser Gly Ser Thr Leu Gly Lys 5

1

Pro Asp Pro Gly Val Trp Pro Ser Leu Phe Arg Pro Trp Asp Ala Ala 10 15 20

Ser Pro Gly Asn Tyr Ala Leu Ser Arg Gly Xaa Asn Xaa Tyr Xaa Xaa

30 35

Trp Gly Gln Gly Thr His Ser Ser Leu

45

<210> 396

<211> 60

<212> PRT

<213> Homo sapiens

<220>

<221> SIGNAL

<222> -18..-1

<400> 396

Met Pro Cys Pro Thr Trp Thr Cys Leu Lys Ser Phe Pro Ser Pro Thr -5

-10 -15

Ser Ser His Ala Ser Ser Leu His Leu Pro Pro Ser Cys Thr Arg Leu 10

5

Thr Leu Thr Gln Thr Leu Arg Thr Gly Met His Leu Ser Arg Ala Leu 20 25

Gln Gly Thr Leu Thr Arg Leu Gln Ser Thr Pro Ala

35 40

<210> 397

<211> 192

<212> PRT

<213> Homo sapiens

<220>

<221> SIGNAL

<222> -93..-1

<400> 397

Met Ala Glu Leu Gly Leu Asn Glu His His Gln Asn Glu Val Ile Asn

-90 -85 -80

Tyr Met Arg Phe Ala Arg Ser Lys Arg Gly Leu Arg Leu Lys Thr Val

-65 -70 Asp Ser Cys Phe Gln Asp Leu Lys Glu Ser Arg Leu Val Glu Asp Thr -60 -55 -50 Phe Thr Ile Asp Glu Val Ser Glu Val Leu Asn Gly Leu Gln Ala Val -40 -35 Val His Ser Glu Val Glu Ser Glu Leu Ile Asn Thr Ala Tyr Thr Asn -25 -20 Val Leu Leu Arg Gln Leu Phe Ala Gln Ala Glu Lys Trp Tyr Leu -10 -5 Lys Leu Gln Thr Asp Ile Ser Glu Leu Glu Asn Arg Glu Leu Leu Glu 10 Gln Xaa Ala Glu Phe Glu Lys Ala Xaa Ile Thr Ser Ser Asn Lys Lys 30 25 Pro Ile Leu Xaa Val Thr Xaa Pro Lys Leu Ala Pro Leu Asn Glu Gly 45 50 40 Gly Thr Ala Lys Leu Leu Asn Lys Val Ile Cys Ile Ile Leu Arg Asn .55 60 Gly Lys Ser Leu Ile Leu Ser Cys His Cys Leu Gly Trp Arg Asn Lys 70 75 Ser Gly Arg Phe Val Ser Gly Pro Leu Arg Ile Ile Ser Pro Leu Gln 90

<210> 398 <211> 149

<212> PRT

<213> Homo sapiens

<220>

<221> SIGNAL

<222> -72..-1

<400> 398

Met Asn Leu Phe Ile Met Tyr Met Ala Gly Asn Thr Ile Ser Ile Phe
-70 -65 -60

Pro Thr Met Met Val Cys Met Met Ala Trp Arg Pro Ile Gln Ala Leu
-55 -50 -45

Met Ala Ile Ser Ala Thr Phe Lys Met Leu Glu Ser Ser Ser Gln Lys
-40 -35 -30 -25

Phe Leu Gln Gly Leu Val Tyr Leu Ile Gly Asn Leu Met Gly Leu Ala -20 -15 -10

Leu Ala Val Tyr Lys Cys Gln Ser Met Gly Leu Leu Pro Thr His Ala
-5 5

Ser Asp Trp Leu Ala Phe Ile Glu Pro Pro Glu Arg Met Glu Ser Val 10 15 20

Val Glu Asp Cys Phe Cys Glu His Glu Lys Ala Ala Pro Gly Pro Tyr
25 30 35 40

Val Phe Gly Ser Tyr Leu His Pro Ser Leu Ser Pro Val Ala Pro Gln
45 50 55

His Thr Leu Lys Leu Ile Thr Tyr Val Lys Lys Asn Gln Lys Thr Leu 60 70

Phe Ser Met Val Gly

75

<210> 399

<211> 73

<212> PRT

<213> Homo sapiens

```
<220>
<221> SIGNAL
<222> -20..-1
<400> 399
Met Thr Pro Leu Leu Thr Leu Ile Leu Val Val Leu Met Gly Leu Pro
-20 -15 -10 -5
Leu Ala Gln Ala Leu Asp Cys His Val Cys Ala Tyr Asn Gly Asp Asn
                                           10
             1
                     5
Cys Phe Asn Pro Met Arg Cys Pro Ala Met Val Ala Tyr Cys Met Thr
           20
                                         25
 15
Thr Arg Thr Tyr Tyr Thr Pro Thr Arg Met Lys Val Ser Lys Ser Cys
                  35
Val Pro Arg Cys Phe Glu Xaa Cys Val
<210> 400
<211> 86
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -20..-1
<400> 400
Met Asn Leu His Phe Pro Gln Trp Phe Val His Ser Ser Ala Leu Gly
-20 -15
                                 -10
Leu Val Leu Ala Pro Pro Phe Ser Ser Pro Gly Thr Asp Pro Thr Phe
                                             10
            1
Pro Cys Ile Tyr Cys Arg Leu Leu Asn Met Ile Met Thr Arg Leu Ala
                        20
                                          25
Phe Ser Phe Ile Thr Cys Leu Cys Pro Asn Leu Lys Glu Val Cys Leu
                    35
                                      40
Ile Leu Pro Glu Lys Asn Cys Asn Ser Arg His Ala Gly Phe Val Gly
                           55
               50
Pro Xaa Lys Leu Arg Gln
              65
<210> 401
<211> 78
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -21..-1
<400> 401
Met Cys Pro Val Phe Ser Lys Gln Leu Leu Ala Cys Gly Ser Leu Leu
                     -15
Pro Gly Leu Trp Gln His Leu Thr Ala Asn His Trp Pro Pro Phe Ser
                 1
Xaa Phe Leu Cys Thr Val Cys Ser Gly Ser Ser Glu Gln Ile Ser Glu
          15
                            20
                                             25
```

Tyr Thr Ala Ser Ala Thr Pro Pro Leu Cys Arg Ser Leu Asn Gln Glu

30 35 40 Pro Phe Val Ser Arq Ala Ile Arg Pro Lys Tyr Ser Ile Thr 45 50 55

<210> 402 <211> 65 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -28..-1

<210> 403 <211> 211 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -27..-1

<400> 403 Met Leu Leu Ser Ile Thr Thr Ala Tyr Thr Gly Leu Glu Leu Thr -20 Phe Phe Ser Gly Val Tyr Gly Thr Cys Ile Gly Ala Thr Asn Lys Phe Gly Ala Glu Glu Xaa Ser Leu Ile Gly Leu Ser Gly Ile Phe Ile Gly Ile Gly Glu Ile Leu Gly Gly Ser Leu Phe Gly Leu Leu Ser Lys Asn 30 Asn Arg Phe Gly Arg Asn Pro Val Val Leu Leu Gly Ile Leu Val His 45 Phe Ile Ala Phe Tyr Leu Ile Phe Leu Asn Met Pro Gly Asp Ala Pro 60 Ile Ala Pro Val Lys Gly Thr Asp Ser Ser Ala Tyr Ile Lys Ser Ser 75 80 Lys Xaa Phe Ala Ile Leu Cys Xaa Phe Leu Xaa Gly Leu Gly Asn Ser 95 Cys Phe Asn Thr Xaa Leu Leu Xaa Ile Xaa Gly Phe Leu Tyr Ser Glu 105 110 Xaa Ser Ala Pro Xaa Phe Ala Ile Phe Asn Phe Val Gln Ser Ile Cys 125 Ala Ala Val Ala Phe Phe Tyr Ser Asn Tyr Leu Leu Leu His Trp Gln 140 145 Leu Leu Val Met Val Ile Phe Gly Phe Xaa Gly Thr Ile Ser Phe Phe 160 155 Thr Val Glu Trp Glu Xaa Ala Ala Phe Val Xaa Arg Gly Ser Asp Tyr 175 170

-70

Arg Ser Ile

<210> 404 <211> 123 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -80..-1 <400> 404 Met Ser Thr Trp Tyr Leu Ala Leu Asn Lys Ser Tyr Lys Asn Lys Asp -75

Ser Val Arg Ile Tyr Leu Ser Leu Cys Thr Val Ser Ile Lys Phe Thr -55 -60 Tyr Phe His Asp Ile Gln Thr Asn Cys Leu Thr Thr Trp Lys His Ser -40 -45 Arg Cys Arg Phe Tyr Trp Ala Phe Gly Gly Ser Ile Leu Gln His Ser -25 ~30

Val Asp Pro Leu Val Leu Phe Leu Ser Leu Ala Leu Leu Val Thr Pro -5 -10 Thr Ser Thr Pro Ser Ala Lys Ile Gln Ser Leu Gln Ile Asp Leu Pro

10 Gly Gly Trp Arg Leu Ala Thr Asp Arg Ile Phe Thr Leu Ser Pro Val 25

Pro Met Asp Xaa Pro Leu Ile Leu His Gln Leu 40

<210> 405 <211> 86 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -26..-1

<400> 405

Met Glu Lys Ser Trp Met Leu Trp Asn Phe Val Glu Arg Trp Leu Ile -20 -15 Ala Leu Ala Ser Trp Ser Trp Ala Leu Cys Arg Ile Ser Leu Leu Pro -5 Leu Ile Val Thr Phe His Leu Tyr Gly Gly Ile Ile Leu Leu Leu Leu 15 Ile Phe Ile Ser Ile Xaa Gly Ile Leu Tyr Lys Phe Xaa Asp Val Leu 3.5 30 Leu Tyr Phe Pro Xaa Gln Xaa Ser Ser Ser Arg Leu Tyr Asp Ser His 50

Ala His Trp Xaa Ser Xaa

<210> 406 <211> 162 <212> PRT <213> Homo sapiens

```
<220>
 <221> SIGNAL
 <222> -31..-1
 <400> 406
 Met Ala Ala Arp Pro Ser Gly Pro Xaa Ala Pro Glu Ala Val Thr
                                -20
                       -25
 Ala Arg Leu Val Gly Val Leu Trp Phe Val Ser Val Thr Thr Gly Pro
                                   -5
                   -10
 Trp Gly Ala Val Ala Thr Ser Ala Gly Gly Glu Glu Ser Leu Lys Cys
                            10
  Glu Asp Leu Lys Val Gly Gln Tyr Ile Cys Lys Asp Pro Lys Ile Asn
                                     30
                           25
  Asp Ala Thr Gln Glu Pro Val Asn Cys Thr Asn Tyr Thr Ala His Val
                                 45
                     40
  Ser Cys Phe Pro Ala Pro Asn Ile Thr Cys Lys Asp Ser Ser Gly Asn
                                     60
                 55
  Glu Thr His Phe Thr Gly Asn Glu Val Gly Phe Phe Lys Pro Ile Ser
                                  75
                70
. Cys Arg Asn Val Asn Gly Tyr Ser Tyr Asn Glu Gln Ser His Val Ser
                            90
  Phe Ser Trp Met Val Gly Ser Arg Ser Ile Leu Pro Trp Ile Pro Cys
                          105
                                    110
  Phe Gly Phe Val Lys Xaa Xaa His Cys Arg Val Xaa Trp Asn Trp Glu
                       120
  Pro Asn
  130
  <210> 407
```

<210> 407 <211> 98 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -37..-1

<400> 407

 Met
 Ala
 Ser
 Leu
 Leu
 Cys
 Cys
 Gly
 Pro
 Lys
 Leu
 Ala
 Ala
 Cys
 Gly
 Ile

 Val
 Leu
 Ser
 Ala
 Trp
 Gly
 Val
 Ile
 Met
 Leu
 Ile
 Met
 Ile
 Ile
 Met
 Ile
 Met
 Ile
 Ile
 Ile
 Met
 Ile
 I

<210> 408 <211> 70 <212> PRT <213> Homo sapiens

```
<220>
<221> SIGNAL
<222> -15..-1
<400> 408
Met Arg Phe Leu Pro Cys Cys Leu Leu Trp Ser Val Phe Asn Pro Glu
    -10
                      -5 1
Ser Leu Asn Cys His Tyr Phe Xaa Xaa Glu Xaa Cys Ile Phe Xaa Ser
    5 10
Leu Gln Tyr Tyr Glu Ile Ser Leu Gln Glu Lys Leu Leu Gly Phe Leu
            25
Trp Leu Cys Phe Leu Ser Tyr Phe Phe Arg Ala Val Tyr Phe Leu Ile
 35 40
                           45
Asp Phe Ser Ser Phe Thr
50
<210> 409
<211> 60
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -45..-1
Met His Ser Leu Phe Ile Ala Ser Leu Lys Val Leu Phe Tyr Tyr Ser
             -40 -35
Phe Ser Phe Arg Phe Asn Trp Phe Asp Cys Leu Leu His Asn Leu Gly
           -25 -20 -15
Glu Asn Phe Leu Ser Leu Leu Ser Lys Ser Cys Ser Ala Asp Pro Ser
   -10 -5 1
Gly Ser Thr Phe Met Arg Asp Ile Glu Thr Asn Lys
  5 10
<210> 410
<211> 39
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -22..-1
<400> 410
Met Pro Glu Ala Val Glu Gln Ser Ala His Leu Phe Val Thr Trp Ser
     -20 -15 -10
Ser Gln Arg Ala Leu Ser His Pro Ala Pro Phe Leu Thr Xaa Xaa Lys
             1
Asn Pro Phe Leu Trp Lys Leu
            15
<210> 411
```

<211> 51 <212> PRT

<213> Homo sapiens <220> <221> SIGNAL <222> -23..-1 <400> 411 Met Ala Phe Gln Ser Leu Leu Glu Met Lys Phe Phe Leu Cys Ala Ala -10 -15 Phe Pro Leu Gly Ala Gly Val Lys Met Phe His Tyr Leu Gly Pro Gly 1 Lys Pro Leu Xaa Gln Ala Ser Pro Ser Pro His Pro His Arg Xaa Arg 20 15 10 Ile Trp Pro <210> 412 <211> 95 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -48..-1 <400> 412 Met Ala Ser Ser His Trp Asn Glu Thr Thr Ser Val Tyr Gln Tyr -40 -35 Leu Gly Phe Gln Val Gln Lys Ile Tyr Pro Phe His Asp Asn Trp Asn -20 -25 Thr Ala Cys Phe Val Ile Leu Leu Leu Phe Ile Phe Thr Val Val Ser -10 -5 Leu Val Val Leu Ala Phe Leu Tyr Glu Val Leu Xaa Xaa Cys Cys 1 5 10 Val Lys Asn Lys Thr Val Lys Asp Leu Lys Ser Glu Pro Asn Pro Leu 25 20 Xaa Xaa Met Met Asp Asn Ile Arg Lys Arg Glu Thr Glu Val Val <210> 413 <211> 60 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -32..-1 <400> 413 Met Asp Glu Tyr Ser Trp Trp Cys His Val Leu Glu Val Val Lys Gly -30 -25 -20 Gln Met Phe Thr Phe Ile Asn Ile Thr Leu Trp Leu Gly Ser Leu Cys -5 -10 Gln Arg Phe Phe Tyr Ala Ser Gly Thr Tyr Phe Leu Ile Tyr Ile Ser

10

25

5

20

Thr Val Thr Pro Ser Trp Arg Leu Cys Leu Val Ser

```
<210> 414
<211> 170
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -79..-1
<400> 414
Met Glu Asp Pro Asn Pro Glu Glu Asn Met Lys Gln Gln Asp Ser Pro
              -75
                     -70
Lys Glu Arg Ser Pro Gln Ser Pro Gly Gly Asn Ile Cys His Leu Gly
          -60 -55
Ala Pro Lys Cys Thr Arg Cys Leu Ile Thr Phe Ala Asp Ser Lys Phe
      -45 \ -40
                                       -35
Gln Glu Arg His Met Lys Arg Glu His Pro Ala Asp Phe Val Ala Gln
   -30 -25
                            -20
Lys Leu Gln Gly Val Leu Phe Ile Cys Phe Thr Cys Ala Arg Ser Phe
              -10
                                -5
Pro Ser Ser Lys Ala Xaa Xaa Thr His Gln Arg Ser His Gly Pro Xaa
       5
              10
Ala Lys Pro Thr Leu Pro Val Ala Thr Thr Ala Gln Pro Thr Phe
                25
Pro Cys Pro Asp Cys Gly Lys Thr Phe Gly Gln Ala Val Ser Leu Xaa
                   40
Arg His Xaa Gln Xaa His Glu Val Arg Ala Pro Pro Gly Thr Phe Ala
                55
                                  60
Cys Thr Xaa Cys Gly Gln Asp Phe Ala Gln Glu Xaa Gly Leu His Gln
             70
                               75
His Tyr Ile Arg His Ala Arg Gly Gly Leu
         85
<210> 415
<211> 190
<212> PRT
<213> Homo sapiens
```

<220> <221> SIGNAL <222> -82..-1 <400> 415 Met Tyr Val Trp Pro Cys Ala Val Val Leu Ala Gln Tyr Leu Trp Phe -75 His Arg Arg Ser Leu Pro Gly Lys Ala Ile Leu Glu Ile Gly Ala Gly -60 -55 Val Ser Leu Pro Gly Ile Leu Ala Ala Lys Cys Gly Ala Glu Val Ile -45 -40 Leu Ser Asp Ser Ser Glu Leu Pro His Cys Leu Glu Val Cys Arg Gln -30 -25 Ser Cys Gln Met Asn Asn Leu Pro His Leu Gln Val Val Gly Leu Thr -15 -10 Trp Gly His Ile Ser Trp Asp Leu Leu Ala Leu Pro Pro Gln Asp Ile 10 Ile Leu Ala Ser Asp Val Phe Phe Glu Pro Glu Xaa Phe Glu Asp Ile 20 25 Leu Ala Thr Ile Tyr Phe Leu Met His Lys Asn Pro Lys Val Gln Leu 35 40

WO 99/31236 -310- PCT/IB98/02122 ·

<210> 416 <211> 114 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -60..-1 <400> 416 Met Met Ala Ala Val Pro Pro Gly Leu Glu Pro Trp Asn Arg Val Arg -55 -50 Ile Pro Lys Ala Gly Asn Arg Ser Ala Val Thr Val Gln Asn Pro Gly -40 -35 Ala Ala Leu Asp Leu Cys Ile Ala Ala Val Ile Lys Glu Cys His Leu -25 -20 -15 Val Ile Leu Ser Leu Lys Ser Gln Thr Leu Asp Ala Glu Thr Asp Val -5 Leu Cys Ala Val Leu Tyr Ser Asn His Asn Arg Met Gly Arg His Lys 10 15 Pro His Leu Ala Leu Lys Gln Val Glu Gln Cys Leu Lys Arg Leu Lys 25 30 Asn Met Asn Leu Glu Gly Ser Ile Gln Asp Leu Phe Glu Leu Phe Ser

<210> 417 <211> 161 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -108..-1

Ser Lys

<400> 417 Met Thr Ser Gly Gln Ala Arg Ala Ser Xaa Gln Ser Pro Gln Ala Leu -100 -105 Glu Asp Ser Gly Pro Val Asn Ile Ser Val Ser Ile Thr Leu Thr Leu -85 -90 -80 Asp Pro Leu Lys Pro Phe Gly Gly Tyr Ser Arg Asn Val Thr His Leu -70 -65 Tyr Ser Thr Ile Leu Gly His Gln Ile Gly Leu Ser Gly Arg Glu Ala -55 -50 His Glu Glu Ile Asn Ile Thr Phe Thr Leu Pro Thr Ala Trp Ser Ser -35 -40 Asp Asp Cys Ala Leu His Gly His Cys Glu Gln Val Val Phe Thr Ala -25 -20 Cys Met Thr Leu Thr Ala Ser Pro Gly Val Phe Pro Ser Leu Tyr Ser WO 99/31236 -311- PCT/IB98/02122

```
-10 - -5 - 1 1

His Arg Thr Val Phe Leu Thr Arg Thr Ala Thr Pro Arg Ser Gly Thr 5 - 10 - 15 - 20

Arg Ser Ser Gln Leu Pro Glu Met Pro Thr Gln Asn Thr Pro Lys Ile 25 - 30 - 35

Thr Ile Leu Ser Gly Val Ile Arg Gly Pro Leu Glu Lys Ser Ile Met 40 - 45 - 50

Leu
```

<210> 418 <211> 67 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -21..-1 <400> 418 Met Leu Gly Gly Asp His Arg Ala Leu Leu Leu Lys Ile Trp Leu Leu -15 -10 Gln Arg Pro Glu Ser Gln Glu Gly Leu Leu Pro Gly Arg Leu Val Val 1 5 Met Glu Arg Arg Val Lys Asn Asp Leu Met Ser Phe Leu Ser Thr Val 20 Leu Leu Ser Phe His Ser Ser Asn Ala Arg Val Ser His Cys Glu Pro 30 35 Leu Arg Met

<210> 419
<211> 332
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -32..-1

<400> 419

45

Met Ile Xaa Leu Arg Asp Thr Ala Ala Ser Leu Arg Leu Glu Arg Asp -25 Thr Arg Gln Leu Pro Leu Leu Thr Ser Ala Leu His Gly Leu Gln Gln -10 Gln His Pro Ala Phe Ser Gly Val Ala Arg Leu Ala Lys Arg Trp Val Arg Ala Gln Leu Leu Gly Glu Gly Phe Ala Asp Glu Ser Leu Asp Leu Val Ala Ala Leu Phe Leu His Pro Glu Pro Phe Thr Pro Pro Ser 40 Ser Pro Gln Val Gly Phe Leu Arg Phe Leu Phe Leu Val Ser Thr Phe **5**5 Asp Trp Lys Asn Asn Pro Leu Phe Val Asn Leu Asn Asn Glu Leu Thr 70 Val Glu Glu Gln Val Glu Ile Arg Ser Gly Phe Leu Ala Ala Arg Ala 85 90 Gln Leu Pro Val Met Val Ile Val Thr Pro Gln Xaa Arg Lys Asn Ser 105

Val Trp Thr Gln Asp Gly Pro Ser Ala Gln Ile Leu Gln Gln Leu Val 120 Val Leu Ala Ala Glu Xaa Leu Pro Met Leu Xaa Xaa Gln Leu Met Asp 140 135 Pro Arg Gly Pro Gly Asp Ile Arg Thr Xaa Phe Arg Pro Pro Leu Asp 150 155 Ile Tyr Asp Val Leu Ile Arg Leu Ser Pro Arg His Ile Pro Arg His 170 175 Arg Gln Ala Val Asp Ser Pro Ala Ala Ser Phe Cys Arg Gly Leu Leu 185 190 180 Ser Gln Pro Gly Pro Ser Ser Leu Met Pro Val Leu Gly Xaa Asp Pro 205 195 200 Pro Gln Leu Tyr Leu Thr Gln Leu Xaa Glu Ala Phe Gly Asp Leu Ala 220 215 Leu Phe Phe Tyr Asp Gln His Gly Glu Val Ile Gly Val Leu Trp 230 235 Lys Pro Thr Ser Phe Gln Pro Gln Pro Phe Lys Ala Ser Ser Thr Lys 250 245 Gly Arg Met Val Met Ser Arg Gly Glu Leu Val Met Val Pro Asn 265 Val Glu Ala Ile Leu Glu Asp Phe Ala Val Leu Gly Glu Gly Leu Val 280 285 Gln Thr Val Glu Ala Arg Ser Glu Arg Trp Thr Val 295

<211> 65 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -19..-1 <400> 420 Met Gly Gly Ile Trp Asn Ala Leu Ser Met Ser Ser Phe Ser Phe His -15 -10 Ser Ser Ser Cys Ser Ala Leu Ser Ala Lys Ser Leu Leu Ser Arg His 10 His Ile Leu Gln Gln Phe Leu Val Arg Lys Ser Val Pro Leu Glu Asn 20 25 Ala Ser Leu Pro Phe Pro His Leu Gly Ser Ser Leu Phe Lys Ile Val 35 30 40 Gly

<210> 421 <211> 57 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -30..-1

<210> 420

Met Pro Thr Gly Lys Gln Leu Ala Asp Ile Gly Tyr Lys Thr Phe Ser -30 -25 -20 -15
Thr Ser Met Met Leu Leu Thr Val Tyr Gly Gly Tyr Leu Cys Ser Val

-5 -10 Arg Val Tyr His Tyr Phe Gln Trp Arg Arg Ala Gln Arg Gln Ala Ala 10 Glu Glu Gln Lys Xaa Ser Gly Ile Met <210> 422 <211> 85 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -17..-1 <400> 422 Met Lys Lys Val Leu Leu Leu Ile Thr Ala Ile Leu Ala Val Ala Val -15 -10 Gly Phe Pro Val Ser Gln Asp Gln Glu Arg Glu Lys Arg Ser Ile Ser 5 10 1 Asp Ser Asp Glu Leu Ala Ser Gly Kaa Phe Val Phe Pro Tyr Pro Tyr 25 20 Pro Phe Arg Pro Leu Pro Pro Ile Pro Phe Pro Arg Phe Pro Trp Phe 40 Arg Arg Asn Phe Pro Ile Pro Ile Pro Glu Ser Ala Pro Thr Thr Pro 55 Leu Pro Ser Glu Lys 65 <210> 423 <211> 85 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -17..-1 <400> 423 Met Lys Lys Val Leu Leu Leu Ile Thr Ala Ile Leu Ala Val Ala Val -15 Gly Phe Pro Val Ser Gln Asp Xaa Glu Arg Glu Lys Arg Ser Ile Ser 10 Asp Ser Asp Glu Leu Ala Ser Gly Phe Phe Val Phe Pro Tyr Pro Tyr 25 Pro Phe Arg Pro Leu Pro Pro Ile Pro Phe Pro Arg Phe Pro Trp Phe 40 Arg Arg Asn Phe Pro Ile Pro Ile Pro Glu Ser Ala Pro Thr Thr Pro 50 55 Leu Pro Ser Glu Lys 65 <210> 424 <211> 69 <212> PRT

<213> Homo sapiens

```
<220>
<221> SIGNAL
<222> -29..-1
<400> 424
Met Thr Cys Arg Gly Ser Cys Ser Tyr Ala Thr Arg Arg Ser Pro Ser
                  -20 -15
Glu Leu Ser Leu Leu Pro Ser Ser Leu Trp Val Leu Ala Thr Ser Ser
              -5 1
Pro Thr Ile Thr Ile Ala Leu Ala Met Ala Ala Gly Asn Leu Cys Pro
          10 15
Leu Pro Ser Ser Xaa Arg Xaa Lys Arg Arg Trp Cys Gln Ala Xaa Gln
                       30
     25
Gln Xaa Ala Leu Leu
         40
<210> 425
<211> 122
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -56..-1
Met Val Pro Trp Pro Arg Gly Lys Val Lys Thr Ala Pro Ile Pro Ile
                       -45
-55 -50
Ser Arg Phe Pro Phe Leu Pro Thr His Asp Pro Pro Thr Pro Ala His
            -35 -30 -25
Trp Ser Pro Ala Ser His Gln Gln Phe Lys His Xaa Ser Pro Leu Leu
                         -15 -10
            -20
Thr Leu Ala Leu Leu Gly Gln Cys Ser Leu Phe Xaa Asn Leu Arg Lys
        -5 1 5
Lys Leu Ala Gly Gln Lys Ala Lys Lys Leu Pro Ser Phe Ser Ser Leu
      15
Pro Leu Thr Leu Trp Pro Leu Thr Pro Gln Phe Ala Glu Leu Thr Thr
25 30 35
Val Ala Gln Lys Lys Leu Arg Trp Ser Gly Thr Leu Gly Trp Gly Pro
          45
Val Pro Ser Trp Val Gln Phe Phe Leu Gly
        60
<210> 426
<211> 41
<212> PRT
<213> Homo sapiens
<220>
```

Arg Cys Ser Gly Ser Pro Leu Pro Leu 5 10

<210> 427
<211> 50
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -36..-1
<400> 427

Met Ala Pro His Thr Ala Ser Phe Gly Val Cys Pro Leu Leu Ser Val
-35 . -30 -25

Thr Arg Val Val Ala Thr Glu His Trp Leu Phe Leu Ala Ser Leu Ser
-20 -15 -10 -5

Gly Ile Lys Thr Tyr Gln Ser Tyr Ile Ser Val Phe Cys Lys Val Thr 1 5 10

Leu Ile

<210> 428 <211> 136 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -18..-1

<400> 428

Met Asp Ser Leu Arg Lys Met Leu Ile Ser Val Ala Met Leu Gly Ala -5 -10 -15 Xaa Ala Gly Val Gly Tyr Ala Leu Leu Val Ile Val Thr Pro Gly Glu 5 10 Arg Arg Lys Gln Glu Met Leu Lys Glu Met Pro Leu Gln Asp Pro Arg 20 25 Ser Arg Glu Glu Ala Ala Arg Thr Gln Gln Leu Leu Leu Ala Thr Leu 35 40 Gln Glu Ala Ala Thr Thr Gln Glu Asn Val Ala Trp Arg Lys Asn Trp 55 50 Met Val Gly Gly Glu Gly Gly Ala Thr Gly Xaa His Arg Glu Thr Gly 70 75 Leu Ala Ser Val Gly Ala Gly Pro Trp Leu Gly Arg Arg Asn Pro Arg 90 85 Gln Leu Ser Pro Ser Trp Ala Xaa Arg Lys Ile Arg Xaa Glu Asn Xaa 100 105 Met Pro Gly Leu Ser Gly Val Leu

<210> 429 <211> 194 <212> PRT <213> Homo sapiens

115

<220>

WO 99/31236 ~316- PCT/IB98/02122

<221> SIGNAL <222> -65..-1 <400> 429 Met Gln Asp Ala Pro Leu Ser Cys Leu Ser Pro Thr Lys Trp Ser Ser -60 -55 Val Ser Ser Ala Asp Ser Thr Glu Lys Ser Ala Ser Ala Ala Gly Thr -45 -40 Arg Asn Leu Pro Phe Gln Phe Cys Leu Arg Gln Ala Leu Arg Met Lys -25 -30 Ala Ala Gly Ile Leu Thr Leu Ile Gly Cys Leu Val Thr Gly Val Glu -15 -10 Ser Lys Ile Tyr Thr Arg Cys Lys Leu Ala Lys Ile Phe Ser Arg Ala 10 Gly Leu Asp Asn Xaa Arg Gly Phe Ser Leu Gly Asn Trp Ile Cys Met Ala Tyr Tyr Glu Ser Gly Tyr Asn Thr Thr Ala Gln Thr Val Leu Asp Asp Gly Ser Ile Asp Tyr Gly Ile Phe Gln Ile Asn Ser Phe Ala Trp 55 Cys Arg Arg Gly Lys Leu Lys Glu Asn Asn His Cys His Val Ala Cys 70 75 Ser Ala Leu Xaa Thr Asp Asp Leu Thr Asp Ala Ile Ile Cys Ala Xaa 90 85 Lys Ile Val Lys Glu Thr Gln Gly Met Asn Tyr Trp Gln Gly Trp Lys 100 105 Lys His Cys Glu Gly Arg Asp Leu Ser Xaa Trp Lys Lys Gly Cys Glu Val Ser <210> 430 <211> 141 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -69..-1 <400> 430 Met Thr Ser Gln Pro Val Pro Asn Glu Thr Ile Ile Val Leu Pro Ser -60 -65 Asn Val Ile Asn Phe Ser Gln Ala Glu Lys Pro Glu Pro Thr Asn Gln -45 Gly Gln Asp Ser Leu Lys Lys His Leu His Ala Glu Ile Lys Val Ile -25 -35 -30 Gly Thr Ile Gln Ile Leu Cys Gly Met Met Val Leu Ser Leu Gly Ile -15 -10 Ile Leu Ala Ser Ala Ser Phe Ser Pro Asn Phe Thr Gln Val Thr Ser 1 5 Thr Leu Leu Asn Ser Ala Tyr Pro Phe Ile Gly Pro Phe Phe Val Xaa

Lys Xaa Ser Glu Glu Gly Arg Met Gly Gln Xaa Gly Glu Glu Xaa Xaa 30 35 40
Asn Ser Leu Asn Phe Pro Xaa Ala Ser Leu Leu Xaa Leu Ile Cys Gln

45 50 55 Xaa Gln Gly Phe Asn Gly Glu Ser Cys Ser Pro Val Gly

```
<210> 431
<211> 248
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -69..-1
<400> 431
Met Thr Ser Gln Pro Val Pro Asn Glu Thr Ile Ile Val Leu Pro Ser
              -65
                                -60
Asn Val Ile Asn Phe Ser Gln Ala Glu Lys Pro Glu Pro Thr Asn Gln
                  -45
         -50
Gly Gln Asp Ser Leu Lys Lys His Leu His Ala Glu Xaa Lys Val Ile
      -35 -30
                                  -25
Gly Thr Ile Gln Ile Leu Cys Gly Met Met Val Leu Ser Leu Gly Ile
                   -15
                              -10
Ile Leu Ala Ser Ala Ser Phe Ser Pro Asn Phe Thr Gln Val Thr Ser
                 1
Thr Leu Leu Asn Ser Ala Tyr Pro Phe Ile Gly Pro Phe Phe Phe Ile
                             20
Ile Ser Gly Ser Leu Ser Ile Ala Thr Lys Lys Arg Leu Thr Asn Leu
    30
                         35
Leu Val His Thr Thr Leu Val Gly Ser Ile Leu Ser Ala Leu Ser Ala
                     50
Leu Val Gly Phe Ile Xaa Leu Ser Val Lys Gln Ala Thr Leu Asn Pro
                 65
                                    70
Ala Ser Leu Xaa Cys Glu Leu Xaa Lys Asn Asn Ile Pro Thr Xaa Xaa
              80
                                85
Tyr Val Xaa Tyr Phe Tyr His Asp Ser Leu Tyr Thr Thr Asp Xaa Tyr
                            100
         95
Thr Ala Lys Ala Xaa Leu Ala Gly Thr Leu Ser Leu Met Leu Ile Cys
      110
                        115
Thr Leu Leu Glu Phe Cys Xaa Xaa Val Leu Thr Ala Val Leu Arg Trp
                     130
Lys Gln Ala Tyr Ser Asp Phe Pro Gly Ser Val Leu Phe Leu Pro Xaa
               145
                        150
Ser Tyr Ile Gly Asn Ser Gly Met Ser Ser Lys Met Thr His Asp Cys
Gly Tyr Glu Glu Leu Leu Thr Ser
          175
<210> 432
```

Phe

<210> 433
<211> 86
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -14..-1
<400> 433
Met Val Ala Leu Asi

 Met Val Ala Leu Asn Leu Ile Leu Val Pro Cys Cys Ala Ala Trp Cys

 -10
 -5
 1

 Asp Pro Arg Arg Ile His Ser Gln Asp Asp Val Leu Arg Ser Ser Ala
 10
 15

 Ala Asp Thr Gly Ser Ala Met Gln Arg Arg Glu Ala Trp Ala Gly Trp
 20
 25
 30

 Arg Arg Ser Gln Pro Phe Ser Val Gly Leu Pro Ser Ala Glu Arg Leu
 35
 50

 Glu Asn Gln Pro Gly Lys Leu Ser Trp Arg Ser Leu Val Gly Glu Gly
 55
 60
 65

 His Arg Ile Cys Asp Leu

<210> 434 <211> 144 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -58..-1

70

Ala Ser Arg Lys His Cys Cys Cys Cys Ser Trp Gly Trp Ala Arg Ser

65

80

60

<210> 435 <211> 121

<212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -16..-1 <400> 435 Met Glu Arg Leu Val Leu Thr Leu Cys Thr Leu Pro Leu Ala Val Ala -10 Ser Ala Gly Cys Ala Thr Thr Pro Ala Arg Asn Leu Ser Cys Tyr Gln 10 Cys Phe Lys Val Ser Ser Trp Thr Glu Cys Pro Pro Thr Trp Cys Ser 20 25 Pro Leu Asp Gln Val Cys Ile Ser Asn Glu Val Val Val Ser Phe Ser 40 Glu Ser Pro Pro Gly Arg Gly Xaa Val Pro Xaa Ala Gly Glu Xaa Pro Val Pro Pro Pro Leu Xaa Asp Leu Xaa Met Thr Pro Arg Xaa Xaa Arg . Ala Trp Gly Pro Val Gly Pro Lys Val Pro Pro Ala Val Ser Pro Ala 85 90 Leu Gly Ser Gly Glu His Pro Xaa Xaa 100

<210> 436 <211> 162 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -16..-1

<400> 436 Met Glu Arg Leu Val Leu Thr Leu Cys Thr Leu Pro Leu Ala Val Ala -10 Ser Ala Gly Cys Ala Thr Thr Pro Ala Arg Asn Leu Ser Cys Tyr Gln 10 5 Cys Phe Lys Val Ser Ser Trp Thr Glu Cys Pro Pro Thr Trp Cys Ser 25 Pro Leu Asp Gln Val Cys Ile Ser Asn Glu Val Val Val Ser Phe Lys 40 Trp Ser Val Arg Val Leu Leu Ser Lys Arg Cys Ala Pro Arg Cys Pro 60 55 Asn Asp Asn Met Xaa Phe Glu Trp Ser Pro Ala Pro Met Val Gln Gly 70 75 Val Ile Thr Arg Arg Cys Cys Ser Trp Ala Leu Cys Asn Arg Ala Leu 85 90 Thr Pro Gln Glu Gly Arg Trp Ala Leu Xaa Gly Gly Leu Leu Leu Gln 105 Asp Pro Ser Arg Gly Xaa Lys Thr Trp Val Arg Pro Gln Leu Gly Leu 120 125 Pro Leu Cys Leu Pro Xaa Ser Asn Pro Leu Cys Pro Xaa Glu Thr Gln 130 135 Glu Gly 145

```
<210> 437
  <211> 110
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> SIGNAL
 <222> -20..-1
 <400> 437
 Met Xaa Leu Met Val Leu Val Phe Thr Ile Gly Leu Thr Leu Leu Leu
 -20 -15
                                    -10
 Gly Xaa Gln Ala Met Pro Ala Asn Arg Leu Ser Cys Tyr Arg Lys Ile
                                               10
 Leu Lys Asp His Asn Cys His Asn Leu Pro Glu Gly Val Ala Asp Leu
                           20
 Thr Gln Ile Asp Val Asn Val Gln Asp His Phe Trp Asp Gly Lys Gly
                       35
                                 40
 Cys Glu Met Ile Cys Tyr Cys Asn Phe Lys Arg Ile Ala Leu Leu Pro
                            55
                    50
. Lys Arg Arg Phe Leu Trp Thr Lys Asp Leu Phe Arg Asp Ser Leu Gln
 Gln Ser Met Arg Ile Phe Met Tyr Ser Gly Glu His His Ser
            80
                               85
 <210> 438
 <211> 71
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> SIGNAL
 <222> -15..-1
 Met Lys Leu Leu Thr His Asn Leu Leu Ser Ser His Val Arg Gly Val
                  -10
                                      -5
 Gly Ser Arg Gly Phe Pro Leu Arg Leu Gln Ala Thr Glu Val Arg Ile
                               10
 Cys Pro Val Glu Phe Asn Pro Asn Phe Val Ala Arg Met Ile Pro Lys
                           25
 Val Glu Trp Ser Ala Phe Leu Glu Ala Xaa Asp Asn Leu Arg Leu Ile
 Gln Val Pro Arg Arg Ala Gly
 50
 <210> 439
 <211> 99
 <212> PRT
 <213> Homo sapiens
 <220>
 <221> SIGNAL
 <222> -24..-1
```

Met Lys Ser Ala Lys Leu Gly Phe Leu Leu Arg Phe Phe Ile Phe Cys

-15

<400> 439

-20

<210> 440
<211> 169
<212> PRT
<213> Homo sapiens

<220>
<221> SIGNAL
<222> -25..-1

<400> 440

140

Met Arg Lys Pro Ala Ala Gly Phe Leu Pro Ser Leu Leu Lys Val Leu -20 -15 Leu Leu Pro Leu Ala Pro Ala Ala Ala Gln Asp Ser Thr Gln Ala Ser Thr Pro Gly Ser Pro Leu Ser Pro Thr Glu Tyr Gln Arg Phe Phe Ala 15 Leu Leu Thr Pro Thr Trp Lys Ala Glu Thr Thr Cys Arg Leu Arg Ala Thr His Gly Cys Arg Asn Pro Thr Leu Val Gln Leu Asp Gln Tyr Glu 50 Asn His Gly Leu Val Pro Asp Gly Ala Val Cys Ser Asn Leu Pro Tyr 65 Ala Ser Trp Phe Glu Ser Phe Cys Gln Phe Thr His Tyr Arg Cys Ser 80 Asn His Val Tyr Tyr Ala Lys Arg Val Leu Cys Ser Gln Pro Val Ser Ile Leu Ser Pro Asn Thr Leu Lys Glu Ile Glu Xaa Ser Ala Glu Val 110 115 Ser Pro Thr Thr Asp Asp Leu Pro His Leu Thr Pro Leu His Ser Asp 125 130 Arg Thr Pro Asp Leu Pro Ala Leu Ala

Ala Asp Cys Gly Thr Ile Leu Leu Gln Asp Lys Gln Arg Lys Ile Tyr -55 -50 Cys Val Ala Cys Gln Glu Leu Asp Ser Asp Val Asp Lys Asp Asn Pro -40 -35 Ala Leu Asn Ala Gln Ala Ala Leu Ser Gln Ala Arg Glu His Gln Leu -25 -20 Ala Ser Ala Ser Glu Leu Pro Leu Gly Ser Arg Pro Ala Pro Gln Pro -10 -5 Pro Val Pro Arg Pro Glu His Cys Glu Gly Ala Ala Ala Gly Leu Lys 10 15 20 Ala Ala Gln Gly Pro Pro Ala Pro Ala Val Pro Pro Asn Thr Xaa Val 30 25 Met Ala Cys Thr Gln Thr Ala Leu Leu Gln Lys Leu Thr Trp Ala Ser 45 Ala Glu Leu Gly Ser Xaa Thr Ser Xaa Gly Lys Xaa Ala Ser Ser Cys 60 Val Ala Leu Ser Ala His Val Arg Arg Pro Cys Ala Ala Cys Ser Ser 75 Tyr Ser Thr Lys Arg Ser Pro

<210> 442 <211> 70 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -15..-1

 Met Ile Leu Cys
 Phe Leu Leu Pro His His Arg Leu Gln Glu Ala Arg

 -15
 -10
 -5
 1

 Gln Ile Gln Val Leu Lys
 Met Leu Pro Arg Glu Lys Leu Arg Arg Arg
 15

 Glu Glu Arg Lys Gln Ile Asn Gly Lys Lys Xaa Arg Thr Lys Tyr Glu
 20
 25

 Thr Pro Arg Lys Xaa Xaa Gly Lys Lys Gly Gly Asn Xaa Xaa Xaa Xaa
 35
 40

 Xaa Leu Ser Lys Arg Asp
 55

<210> 443
<211> 381
<212> PRT
<213> Homo sapiens

<220>
<221> SIGNAL
<222> -33..-1

<400> 443
Met Ser Trp Thr Val Pro Val Val Arg Ala Ser Gln Arg Val Ser Ser
-20

Val Gly Ala Asn Xaa Leu Cys Leu Gly Met Ala Leu Cys Pro Arg Gln
-15 -10 -5

Ala Thr Arg Ile Pro Leu Asn Gly Thr Trp Leu Phe Thr Pro Val Ser

WO 99/31236 -323 - PCT/IB98/02122 -

```
Lys Met Ala Thr Val Lys Ser Glu Leu Ile Glu Arg Phe Thr Ser Glu
                                    25
 Lys Pro Val His His Ser Lys Val Ser Ile Ile Gly Thr Gly Ser Val
             35
                               40
 Gly Met Ala Cys Ala Ile Ser Ile Leu Leu Lys Gly Leu Ser Asp Glu
                            55
 Leu Ala Leu Val Asp Leu Asp Glu Xaa Lys Leu Lys Gly Glu Thr Met
                        70
 Asp Leu Gln His Gly Ser Pro Phe Thr Lys Met Pro Asn Ile Val Cys
                    85
 Ser Lys Xaa Tyr Phe Val Thr Ala Asn Ser Asn Leu Val Ile Ile Thr
                                   105
                 100
 Ala Gly Ala Arg Gln Xaa Lys Gly Glu Thr Arg Leu Asn Leu Xaa Gln
             115
                                120
 Arg Asn Val Ala Ile Phe Lys Leu Met Ile Ser Ser Ile Val Gln Tyr
         130
                            135
 Ser Pro His Cys Lys Leu Ile Ile Val Ser Asn Pro Val Asp Ile Leu
                        150
                                          155
 Thr Tyr Val Ala Trp Lys Leu Ser Ala Phe Pro Lys Asn Arg Ile Ile
                    165
                                       170
. Gly Ser Gly Cys Asn Leu Ile Xaa Ala Arg Phe Arg Phe Leu Ile Gly
                                   185
                180
 Gln Lys Leu Gly Ile His Ser Glu Ser Cys His Gly Trp Ile Leu Gly
            195
                               200
 Glu His Gly Asp Ser Ser Val Pro Val Trp Ser Gly Val Asn Ile Ala
                           215
 Gly Val Pro Leu Lys Asp Leu Asn Ser Asp Ile Gly Thr Asp Lys Asp
             230
 Pro Glu Gln Trp Lys Asn Val His Lys Glu Val Thr Ala Thr Ala Tyr
                   245
                                      250
 Glu Ile Ile Lys Met Lys Gly Tyr Thr Ser Trp Ala Ile Gly Leu Ser
                260
                                   265
 Val Ala Asp Leu Thr Glu Ser Ile Leu Lys Asn Leu Arg Arg Ile His
            275
                               280
 Pro Val Ser Thr Ile Thr Lys Gly Leu Tyr Gly Ile Xaa Glu Glu Val
                           295
                                              300
 Phe Leu Ser Ile Pro Cys Ile Leu Gly Glu Asn Gly Ile Thr Asn Leu
                       310
                                          315
 Ile Lys Ile Lys Leu Thr Pro Glu Glu Glu Ala His Leu Lys Lys Ser
                 325
                                      330
 Ala Lys Thr Leu Trp Glu Ile Gln Asn Lys Leu Lys Leu
```

<210> 445 <211> 50 <212> PRT

```
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -37..-1
<400> 445
Met Val Leu Thr Thr Leu Pro Leu Pro Ser Ala Asn Ser Pro Val Asn
                                            -25
               -30
Met Pro Thr Thr Gly Pro Asn Ser Leu Ser Tyr Ala Ser Ser Ala Leu
 -20
                   -15
                              -10
Ser Pro Cys Leu Thr Ala Pro Lys Ser Pro Arg Leu Ala Met Met Pro
                              5
-5
               1
Asp Asn
<210> 446
<211> 51
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -26..-1
<400> 446
Met Thr Pro Trp Cys Leu Ala Cys Leu Gly Arg Arg Pro Leu Ala Ser
                -20
                                        -15
Leu Gln Trp Ser Leu Thr Leu Ala Trp Cys Gly Ser Gly Ser His Trp
                -5
                                    1
Thr Glu Arg Pro Xaa Gln Xaa Ser Pro Trp Xaa Ser Leu Ser Ala Thr
          10
Thr Arg Gly
      25
<210> 447
<211> 242
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -30..-1
Met Gly Glu Ala Ser Pro Pro Ala Pro Ala Arg Arg His Leu Leu Val
                  -25
                                     -20
Leu Leu Leu Leu Ser Thr Leu Val Ile Pro Ser Ala Ala Ala Pro
               -10
                                 - 5
Ile His Asp Ala Asp Ala Gln Glu Ser Ser Leu Gly Leu Thr Gly Leu
                         10
                                             15
Gln Ser Leu Leu Gln Gly Phe Ser Arg Leu Phe Leu Lys Gly Asn Leu
                     25
                                      30
Leu Arg Gly Ile Asp Ser Leu Phe Ser Ala Pro Met Asp Phe Arg Gly
```

40 45 Leu Pro Gly Asn Tyr His Lys Glu Glu Asn Gln Glu His Gln Leu Gly 55 60 Asn Asn Thr Leu Ser Ser His Leu Gln Ile Asp Lys Met Thr Asp Asn 75 Lys Thr Gly Glu Val Leu Ile Ser Glu Asn Val Val Ala Ser Ile Gln 90 Pro Xaa Glu Gly Xaa Phe Glu Gly Asp Leu Lys Val Pro Arg Met Glu 105 110 Glu Lys Glu Ala Leu Val Pro Xaa Gln Lys Ala Thr Asp Ser Phe His 120 125 Thr Glu Leu His Pro Arg Val Ala Phe Trp Ile Ile Lys Leu Pro Arg 135 140 Arg Arg Ser His Gln Asp Ala Leu Glu Gly Gly His Trp Leu Xaa Glu 155 Lys Arg His Arg Leu Gln Ala Ile Arg Asp Gly Leu Arg Lys Gly Thr 170 175 His Lys Asp Xaa Leu Xaa Xaa Gly Thr Glu Ser Ser His Ser Arg 185 190 Leu Ser Pro Arg Lys Xaa His Leu Leu Tyr Ile Leu Xaa Pro Ser Arg . 195 200 205 Gln Leu

<210> 448
<211> 154
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -60..-1

<400> 448

Met Gly Ser Lys Cys Cys Lys Gly Gly Pro Asp Glu Asp Ala Val Glu ~50 -55 Arg Gln Arg Arg Gln Lys Leu Leu Leu Ala Gln Leu His His Arg Lys -40 -35 Arg Val Lys Ala Ala Gly Gln Ile Gln Ala Trp Trp Arg Gly Val Leu -15 -25 -20 Val Arg Arg Thr Leu Leu Val Ala Ala Leu Arg Ala Trp Met Ile Gln -10 -5 Cys Trp Trp Arg Thr Leu Val Gln Arg Arg Ile Arg Gln Arg Arg Gln 10 15 Ala Leu Leu Gly Val Tyr Val Ile Gln Glu Gln Ala Ala Val Lys Leu 30 Gln Ser Cys Ile Arg Met Trp Gln Cys Arg Gln Cys Tyr Arg Gln Met 45 Cys Asn Ala Leu Cys Leu Phe Gln Val Pro Lys Ser Ser Leu Ala Phe 60 Gln Thr Asp Gly Phe Leu Gln Val Gln Tyr Ala Ile Pro Ser Lys Gln 75 Pro Glu Phe His Ile Glu Ile Leu Ser Ile

<210> 449 <211> 89 <212> PRT <213> Homo sapiens

```
<220>
<221> SIGNAL
<222> -61..-1
<400> 449
Met Asn Ala Ala Ile Asn Thr Gly Pro Ala Pro Ala Val Thr Lys Thr
                  -55
                            · -50
Glu Thr Glu Val Gln Asn Pro Asp Val Leu Trp Asp Leu Asp Ile Pro
                -40
                     -35
Glu Ala Arg Ser His Ala Asp Gln Asp Ser Asn Pro Lys Ala Glu Ala
             -25 -20 -15
Leu Leu Pro Cys Asn Leu His Cys Ser Trp Leu His Ser Ser Pro Arg
      -10 -5 1
Pro Asp Pro His Ser His Phe Pro Ser Xaa Arg Arg Cys Pro Leu Pro
 5 10
His Pro Cys Ala Thr Tyr Pro Pro Xaa
              25
<210> 450
<211> 73
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -26..-1
<400> 450
Met Arg Met Ser Leu Ala Gln Arg Val Leu Leu Thr Trp Leu Phe Thr
             -20
                                     -15
Leu Leu Phe Leu Ile Met Leu Val Leu Lys Leu Asp Glu Lys Ala Pro
              - 5
                                 1
Trp Asn Trp Phe Leu Ile Phe Ile Pro Val Trp Ile Phe Asp Thr Ile
         10
                         15
Leu Leu Val Leu Leu Ile Val Lys Met Ala Gly Arg Cys Lys Ser Gly
                       30
Phe Asp Leu Asp Met Asp His Thr Ile
  40
<210> 451
<211> 54
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -34..-1
<400> 451
Met Ile Pro Leu Ile Ser His Leu Ala Glu Ala Ala Pro Pro Thr Ser
                    -25 -20
         -30
Trp Ser Leu Ile Ser Ser Val Leu Asn Val Gly His Leu Leu Phe Ser
       -15
                     -10
Ser Ala Cys Ser Val Ser Leu Glu Ala Leu Ser Thr Arg Asn Ile Lys
Ala Ile Ile Leu Met Lys
```

```
<210> 452
<211> 121
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -38..-1
<400> 452
Met Glu Ser Pro Gln Leu His Cys Ile Leu Asn Ser Asn Ser Val Ala
                            -30
        -35
Cys Ser Phe Ala Val Gly Ala Gly Phe Leu Ala Phe Leu Ser Cys Leu
                         -15
                                  -10
Ala Phe Leu Val Leu Asp Thr Gln Glu Thr Arg Ile Ala Gly Thr Arg
                     1
Phe Lys Thr Ala Phe Gln Leu Leu Asp Phe Ile Leu Ala Val Leu Trp
             15
                                20
Ala Val Val Trp Phe Met Gly Phe Cys Phe Leu Ala Asn Gln Trp Gln
                            35
His Ser Pro Pro Lys Glu Xaa Leu Leu Gly Ser Ser Ser Ala Gln Ala
                         50
Ala Ile Gly Xaa His Leu Leu Leu His Pro Cys Leu Asp Ile Pro Xaa
                  65
Leu Pro Gly Xaa Pro Gly Pro Pro Lys
           80
<210> 453
<211> 166
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -37..-1
<400> 453
Met Ser Thr Val Gly Leu Phe His Phe Pro Thr Pro Leu Thr Arg Ile
             -30 -25
Cys Pro Ala Pro Trp Gly Leu Arg Leu Trp Glu Lys Leu Thr Leu Leu
                     -15
                             -10
Ser Pro Gly Ile Ala Val Thr Pro Val Gln Met Ala Gly Lys Lys Asp
              1 5
Tyr Pro Ala Leu Leu Ser Leu Asp Glu Asn Glu Leu Glu Glu Gln Phe
                20
Val Lys Gly His Gly Pro Gly Gly Gln Ala Thr Asn Lys Thr Ser Asn
                        35
Cys Val Val Leu Lys Xaa Ile Pro Ser Gly Ile Val Val Lys Cys His
                  50
Gln Thr Arg Ser Val Asp Gln Asn Arg Lys Leu Ala Arg Lys Ile Leu
                                   70
               65
Gln Glu Lys Val Xaa Val Phe Tyr Asn Gly Glu Asn Ser Pro Val His
                                85
```

Lys Glu Lys Arg Glu Ala Ala Lys Lys Gln Glu Arg Lys Lys Arg

Ala Lys Glu Thr Leu Glu Lys Lys Xaa Leu Leu Lys Xaa Leu Trp Glu
110 115 120

Ser Ser Lys Lys Val His 125

<210> 454 <211> 180 <212> PRT <213> Homo sapiens <220>

<221> SIGNAL <222> -26..-1

<400> 454

Met Gly Ile Gln Thr Ser Pro Val Leu Leu Ala Ser Leu Gly Val Gly ~20 Leu Val Thr Leu Leu Gly Leu Ala Val Gly Ser Tyr Leu Val Arg Arg - 5 Ser Arg Arg Pro Gln Val Thr Leu Leu Asp Pro Asn Glu Lys Tyr Leu 15 Leu Arg Leu Leu Asp Lys Thr Thr Val Ser His Asn Thr Lys Arg Phe 30 Arg Phe Ala Leu Pro Thr Ala His His Thr Leu Gly Leu Pro Val Gly 45 Lys His Ile Tyr Leu Ser Thr Arg Ile Asp Gly Ser Leu Val Ile Arg 60 65 Pro Tyr Thr Pro Val Thr Ser Asp Glu Asp Gln Gly Tyr Val Asp Leu 75 Val Xaa Lys Val Tyr Leu Lys Gly Val His Pro Lys Phe Pro Glu Gly 95 Gly Lys Met Ser Xaa Tyr Leu Asp Xaa Leu Lys Val Gly Asp Xaa Val 110 Glu Phe Xaa Gly Pro Ser Gly Leu Leu Thr Tyr Thr Gly Lys Gly His 125 Phe Asn Ile Gln Pro Asn Lys Asn Leu His Gln Asn Pro Glu Trp Arg Arg Asn Trp Glu

<210> 455 <211> 91 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -64..-1

<400> 455

20

25

```
<210> 456
<211> 257
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -23..-1
<400> 456
Met Arg Arg Ile Ser Leu Thr Ser Ser Pro Val Arg Leu Leu Xaa
                          -15
Leu Leu Leu Leu Ile Ala Leu Glu Ile Met Val Gly Gly His Ser
Leu Cys Phe Asn Phe Thr Ile Lys Ser Leu Ser Arg Pro Gly Gln Pro
                  15
Trp Cys Glu Ala His Val Phe Leu Asn Lys Asn Leu Phe Leu Gln Tyr
              30
                                35
Asn Ser Asp Asn Asn Met Val Lys Pro Leu Gly Leu Leu Gly Lys Lys
                            50
Val Tyr Ala Thr Ser Thr Trp Gly Glu Leu Thr Gln Thr Leu Gly Glu
                         65
Val Gly Arg Asp Leu Arg Met Leu Leu Cys Asp Ile Lys Pro Gln Ile
                     80
Lys Thr Ser Asp Pro Ser Thr Leu Gln Val Xaa Xaa Phe Cys Gln Arg
                 95
                                   100
Glu Ala Glu Arg Cys Thr Gly Ala Ser Trp Gln Phe Ala Thr Asn Gly
             110
                               115
Glu Lys Ser Leu Leu Phe Asp Ala Met Asn Met Thr Trp Thr Val Ile
         125
                            130
Asn His Glu Ala Ser Xaa Ile Lys Glu Thr Trp Lys Lys Asp Arg Xaa
                        145
Leu Glu Xaa Tyr Phe Arg Lys Leu Ser Lys Gly Asp Cys Asp His Trp
                    160
Leu Arg Glu Phe Leu Gly His Trp Glu Ala Met Pro Xaa Pro Xaa Val
       175
                            180 185
Ser Pro Xaa Asn Ala Ser Xaa Ile His Trp Ser Ser Xaa Leu Pro
                             195 200
             190
Xaa Xaa Trp Ile Ile Leu Gly Ala Phe Ile Leu Leu Xaa Leu Met Gly
```

<210> 457 <211> 193 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -60..-1

<400> 457

Xaa

Met Cys Pro Ser Leu Glu Glu Ala Pro Ser Val Lys Gly Thr Leu Pro -60 -55 -50 -45

Ile Val Leu Ile Cys Val Trp Trp Gln Asn Gly Xaa Xaa Ser Thr Xaa 220 225 230

Cys Ser Gly Gln Gln Pro Phe Pro Phe Gly Ala Ser Asn Ile Pro -35 -40 Leu Leu Cly Arg Ser Arg Lys Val Ala Arg Gly Ala Pro Val Leu -20 Trp Pro Phe Leu Thr Trp Ile Asn Pro Ala Leu Ser Ile Cys Asp Pro -10 -5 Leu Gly Ser Cys Gly Trp Xaa Cys His Thr Ala Gln Val Pro Ala Pro 10 15[.] Leu Gln Leu Pro Thr Ala Cys Pro Pro Leu Pro His Gly Thr Arg Ala 25 30 Val Gly Pro Thr Pro Gly Leu Leu Pro Glu Ala Ala Pro Xaa Thr 45 40 Xaa Gly Ala Leu Ser Ser Arg Ser Arg His Trp Ser Cys Ser Ile Val 60 Xaa Cys Leu His Leu His Xaa Leu Leu Ser Val Glu Thr Arg Xaa Phe 75 Xaa Lys His Leu Leu Val Leu Leu Val Ala Val Ala His Ser Val Leu 90 95 Glu Pro Pro Ala Leu Val Pro Asn Val Gln Cys Glu Met Cys Thr His 115 105 110 Ser Gly Pro Arg Asp Leu Glu Ala Ala Val Val Ser Pro Ala Pro Trp 120 125 Glu

<210> 458
<211> 107
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL

<400> 458

<222> -28..-1

 Met Val Leu
 Thr Leu
 Gly
 Glu
 Ser
 Trp
 Pro
 Val
 Leu
 Val
 Gly
 Arg
 Arg
 Arg
 Arg
 Ala
 Ala
 Asp
 Gly
 Ser
 Asp
 Gly
 Ser
 His
 Asp
 Ser
 Asp
 Gly
 Ser
 His
 Asp
 Ser
 Asp
 Gly
 Ser
 His
 Asp
 Ser
 Trp
 Pro
 Trp
 Leu
 Ser
 Gly
 Trp
 Ile
 Ser
 Ile
 Leu
 Ser
 Gly
 Trp
 Ile
 Ile
 Ser
 Ile
 <210> 459
<211> 121
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -13..-1

<400> 459 Met Leu Val Leu Arg Ser Ala Leu Thr Arg Ala Leu Ala Ser Arg Thr -5 . Leu Ala Pro Gln Met Cys Ser Ser Phe Ala Thr Gly Pro Arg Gln Tyr 10 15 Asp Gly Ile Phe Tyr Glu Phe Arg Ser Tyr Tyr Leu Lys Pro Ser Lys 25 30 Met Asn Glu Phe Leu Glu Asn Phe Glu Lys Asn Ala Gln Leu Arg Thr 40 45 Ala His Ser Glu Leu Val Gly Tyr Trp Ser Val Xaa Phe Gly Gly Arg 60 Met Xaa Thr Val Phe His Ile Trp Lys Tyr Asp Asn Phe Ala His Arg 75 Thr Glu Phe Gln Lys Ala Leu Ala Lys Asp Lys Glu Trp Gln Glu Gln Phe Leu Ile Pro Asn Leu Ala Leu Asn

<210> 460 <211> 44 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -17..-1 <400> 460

Met Lys Val Gly Val Leu Trp Leu Ile Ser Phe Phe Thr Phe Thr Asp
-15 -10 -5

Gly His Gly Gly Phe Leu Gly Val Ser Trp Cys Tyr Val Ser Tyr Leu
1 5 - 10 15

Phe Ser Thr Asn Ser Pro Leu Ser Phe Arg Arg Ile
20 25

<210> 461 <211> 109 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -13..-1

<400> 461 Met Cys Leu Leu Thr Ala Leu Val Thr Gln Val Ile Ser Leu Arg Lys -5 Asn Ala Glu Arg Thr Cys Leu Cys Lys Arg Arg Trp Pro Trp Xaa Pro 10 15 Ser Pro Arg Ile Tyr Cys Ser Ser Thr Pro Cys Asp Ser Lys Phe Pro 25 30 Thr Val Tyr Ser Ser Ala Pro Phe His Ala Pro Leu Pro Val Gln Asn 40 45 Ser Leu Trp Gly His Pro Leu His Gly Cys Ser Trp Gln Cys His His 60 Pro Gln Gly Gln Asn Leu Gln Pro Ala Ser Leu Xaa Thr His Leu Ser Lys Pro Lys Arg His Phe Xaa Lys Lys Xaa Cys Gln Ala

WO 99/31236 -332- PCT/IB98/02122

90 95

<211> 143 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -41..-1 <400> 462 Met Ala Thr Ala Thr Glu Gln Trp Val Leu Val Glu Met Val Gln Ala -35 Leu Tyr Glu Ala Pro Ala Tyr His Leu Ile Leu Glu Gly Ile Leu Ile -20 -15 Leu Trp Ile Ile Arg Leu Leu Phe Ser Lys Thr Tyr Lys Leu Gln Glu 1 5 Arg Ser Asp Leu Thr Val Lys Glu Lys Glu Glu Leu Ile Glu Glu Trp 15 Gln Pro Glu Pro Leu Val Pro Pro Val Pro Lys Asp His Pro Ala Leu 30 Asn Tyr Asn Ile Val Ser Gly Pro Pro Ser His Lys Thr Val Val Asn Gly Lys Glu Cys Ile Asn Phe Ala Ser Phe Asn Phe Leu Gly Leu Leu 60 65 Asp Asn Pro Arg Val Lys Ala Ala Ala Leu Ala Ser Leu Lys Lys Tyr 80 Gly Val Gly Thr Cys Gly Pro Cys Gly Phe Tyr Gly Thr Phe Glu 95

<210> 463

<210> 462

<211> 232

<212> PRT

<213> Homo sapiens

<220>

<221> SIGNAL

<222> -30..-1

<400> 463

Met Ala Ala Thr Ser Gly Thr Asp Glu Pro Val Ser Gly Glu Leu Val
-30 -25 -20 -15

Ser Val Ala His Ala Leu Ser Leu Pro Ala Glu Ser Tyr Gly Asn Xaa
-10 -5 1

Xaa Asp Ile Glu Met Ala Trp Ala Met Arg Ala Met Gln His Ala Glu
5 10 15

Val Tyr Tyr Lys Leu Ile Ser Ser Val Asp Pro Gln Phe Leu Lys Leu 20 25 30

Thr Lys Val Asp Asp Gln Ile Tyr Ser Glu Phe Arg Lys Asn Phe Glu 35 40 45 50

Thr Leu Arg Ile Asp Val Leu Xaa Pro Glu Xaa Leu Lys Ser Glu Ser

55 60 65
Ala Lys Glu Pro Pro Gly Tyr Asn Ser Leu Pro Leu Lys Leu Leu Gly
70 75 80

Thr Gly Lys Ala Ile Thr Lys Leu Phe Ile Ser Val Phe Arg Thr Lys 85 90 95

Lys Glu Arg Lys Glu Ser Thr Met Glu Glu Lys Lys Glu Leu Thr Val

```
105
                                110
  100
Glu Lys Lys Arg Thr Pro Arg Met Glu Glu Arg Lys Glu Leu Ile Val
                    125 130
115 120
Glu Lys Lys Lys Arg Lys Glu Ser Thr Glu Lys Thr Lys Leu Thr Lys
           135 140
                                  145
Glu Glu Lys Lys Gly Lys Lys Leu Thr Lys Lys Ser Thr Lys Val Val
       150
               155
Lys Lys Leu Cys Lys Val Tyr Arg Glu Gln His Ser Arg Ser Tyr Asp
            170
                             175
Ser Ile Glu Thr Thr Ser Thr Thr Val Leu Leu Ala Gln Thr Pro Leu
            185
                            190
Val Lys Cys Lys Phe Leu Tyr Asn
195
            200
<210> 464
```

<210> 464
<211> 61
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -21..-1
<400> 464
Met Thr Phe Arg His Gln Asp Asn Ser Leu Met Phe Phe Ser Met Met

-20
Ala Thr Cys Thr Ser Asn Val Gly Phe Thr His Thr Thr Met Asn Cys
-5
1
Ser Leu Thr Ser Pro Val Asp Phe Lys Asp Leu Leu Arg Val Leu Leu
15
20
25
Ile Lys Phe Gly Tyr Asp Arg Lys Ser Thr Ile Lys Ser
30
35
40

<210> 466 <211> 215 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -54..-1

<400> 466

Met Asn Xaa Tyr Ala Ser Pro Phe Asn Xaa Gln Leu Xaa Tyr Leu Xaa -50 -45 Leu Ser Arg Phe Glu Cys Val His Arg Asp Gly Arg Val Ile Thr Leu -35 -30 -25 Ser Tyr Gln Glu Gln Glu Leu Gln Asp Phe Leu Leu Ser Gln Met Ser -20 -15 -10 Gln His Gln Val His Ala Val Gln Gln Leu Ala Lys Val Met Gly Trp -5 1 Gln Val Leu Ser Phe Ser Asn His Val Gly Leu Gly Pro Ile Glu Ser 15 20 Xaa Gly Asn Ala Ser Ala Ile Thr Val Ala Pro Gln Val Val Thr Met 35 30 Leu Phe Gln Phe Val Met Asp Leu Lys Val Ala Ala Arg Leu Trp Phe Ser Phe Leu Val Thr Asn Val Lys Thr Phe Gln Lys Val Met Phe Tyr 65 Lys Ile Thr Asn Gly Val Ile Phe Val Gly His Ser Lys Lys Phe Ser 80 Gly Ile Lys Trp Lys Val Xaa Ile Leu Phe Ile Lys Trp Xaa Cys Leu 95 100 Cys Leu His Leu Ala Leu Val Tyr Tyr Asp Phe Phe Gln Met Phe Pro 110 115 Lys Xaa Val Ser Xaa Asn Phe Asp Leu Lys Cys Leu Gln Ile Asn Tyr 130 135 125 Lys His Lys Glu Glu Ile Thr Ser Lys Arg Val Leu Phe Leu Lys Ile 145 Ile Ile Arg Lys Cys Phe Ile

<210> 467 <211> 27 <212> PRT <213> Homo sapiens <220> <221> SIGNAL

<222> -17..-1

<400> 467

Met Val Val His Leu Leu Tyr Ala His Leu Ser Phe Thr Ser Lys Arg -10

Ala Val Val Met Leu Lys Leu Glu Ile Thr Phe 5

<210> 468 <211> 85

<212> PRT

<213> Homo sapiens

<220>

<221> SIGNAL

<222> -24..-1

<400> 468

Met Cys Ser His Ala Ser Met Ser Phe His Thr Leu Phe His Leu Leu -10

Phe Leu Pro His Tyr Ile Glu Thr Phe Lys Pro Gln Ser Lys His Cys

Phe Phe Trp Ile Ala Ala Phe Leu Thr Ser Leu Leu Thr Pro Gln Ser

10

Leu Gln Gly Phe His Ser Ser Leu Cys Ala Leu Arg Ser Gln His Phe
25

Pro Ser Thr Cys Asn Cys Phe Cys Tyr Leu Thr Ile Ile Ala Leu Xaa
45

Tyr Trp Asp Asn Leu
60

<210> 469 <211> 51 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -16..-1 <400> 469 Met Leu Arg Ile Ala Leu Thr Leu Ile Pro Ser Met Leu Ser Arg Ala -10 -5 Ala Gly Trp Cys Trp Tyr Lys Glu Pro Thr Gln Gln Phe Ser Tyr Leu 10 Cys Leu Pro Cys Leu Ser Trp Asn Lys Lys Gly Asn Val Leu Gln Leu 25 20 Pro Asn Phe 35

<210> 470 <211> 67 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -43..-1 <400> 470 Met Thr Pro Gln Tyr Leu Pro His Gly Gly Lys Tyr Gln Val Leu Gly -35 -40 Asp Tyr Ser Leu Ala Val Val Phe Pro Leu His Phe Ser Asp Leu Ile -25 -20 -15 Ser Val Leu Tyr Leu Ile Pro Lys Thr Leu Thr Thr Asn Thr Ala Val -5 1 Lys His Ser Ile Gln Lys Asn Cys Met Xaa Leu Val Leu Gly Lys Leu

15

<210> 471

Leu Ser Gln

<211> 63 <212> PRT

<213> Homo sapiens

```
<220>
<221> SIGNAL
<222> -15..-1
<400> 471
Met Gly Ile Leu Ser Thr Val Thr Ala Leu Thr Phe Ala Arg Ala Leu
      -10
                          -5
Asp Gly Cys Arg Asn Gly Ile Ala His Pro Ala Ser Glu Lys His Arg
                          10
Leu Glu Lys Cys Arg Glu Leu Glu Ser Ser His Ser Ala Pro Gly Ser
             25
Thr Gln His Arg Arg Lys Thr Thr Arg Arg Asn Tyr Ser Ser Ala
  35 40
<210> 472
<211> 179
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -58..-1
<400> 472
Met Ser Thr Gly Gln Leu Tyr Arg Met Glu Asp Ile Gly Arg Phe His
               -50
Ser Gln Gln Pro Gly Ser Leu Thr Pro Ser Ser Pro Thr Val Gly Glu
            -35
                              -30
Ile Ile Tyr Asn Asn Thr Arg Asn Thr Leu Gly Trp Ile Gly Gly Ile
  -25 -20 -15
Leu Met Gly Ser Phe Gln Gly Thr Ile Ala Gly Gln Gly Thr Gly Ala
-10 -5
                              1
Thr Ser Ile Ser Glu Leu Cys Lys Gly Gln Glu Leu Glu Pro Ser Gly
   10 15
Ala Gly Leu Thr Val Ala Pro Pro Gln Ala Val Ser Leu Gln Gly Ile
             30
Tyr Thr Leu Pro Trp Leu Leu Gln Leu Phe His Ser Thr Ala Leu Xaa
                  45
Xaa Xaa Gln Gln Pro Asn Gly Ser Leu Ser Leu Asn Ile Ser Ser Ser
                60
                                65
His Ala Pro Xaa Pro Xaa Thr Cys Thr Leu Glu Pro Gly Val Asp Pro
                           80
Thr Arg Xaa Val Cys Ile Asn Pro His Pro Pro Pro Ile Leu Lys
       90 95
Xaa Pro Leu Ser Pro Tyr Pro Lys Pro Gln Leu Gly Thr His Ala Gly
              110
Gln Val Asn
  120
```

<210> 473 <211> 238 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -71..-1 WO 99/31236 -337- PCT/IB98/02122

```
<400> 473
Met Xaa Xaa Phe Thr Asp Pro Ser Ser Val Asn Glu Lys Lys Arg Arg
              -65
Glu Arg Glu Glu Arg Gln Asn Ile Val Leu Trp Arg Gln Pro Leu Ile
                 -50
                                   -45
Thr Leu Gln Tyr Phe Ser Leu Glu Ile Leu Val Ile Leu Lys Glu Trp
              -35
                                -30
Thr Ser Lys Leu Trp His Arg Gln Ser Ile Val Val Ser Phe Leu Leu
          -20
                          -15
Leu Leu Ala Gly Leu Ile Ala Thr Tyr Tyr Val Glu Gly Val His Gln
                        1
Gln Tyr Val Gln Arg Ile Glu Lys Gln Phe Leu Leu Tyr Ala Tyr Trp
                                  20
Ile Gly Leu Gly Ile Leu Ser Ser Val Gly Leu Gly Thr Gly Leu His
Thr Phe Leu Leu Tyr Leu Gly Pro His Ile Ala Ser Val Thr Leu Ala
Ala Tyr Glu Cys Asn Ser Val Asn Phe Pro Glu Pro Pro Tyr Pro Asp
Gln Ile Ile Cys Pro Asp Glu Glu Gly Thr Glu Gly Thr Ile Ser Leu
                    80
Trp Ser Ile Ile Ser Lys Val Arg Ile Glu Ala Cys Met Trp Gly Ile
          95 100
Gly Thr Ala Ile Gly Glu Leu Pro Pro Tyr Phe Met Ala Arg Ala Ala
             110 115 120
Arg Leu Ser Gly Ala Glu Pro Asp Asp Glu Glu Tyr Gln Glu Phe Glu
        125 130 135
Glu Met Leu Glu His Ala Glu Ser Ala Gln Val Arg Thr Val Gly Ile
                        145
Glu Asn Arg Thr Leu Tyr Phe Phe Leu Lys Arg Leu Leu Arg
```

<210> 474 <211> 178 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -37..-1

<400> 474

Met Glu Arg Gln Ser Arg Val Met Ser Glu Lys Asp Glu Tyr Gln Phe -30 -25 Gln His Gln Gly Ala Val Glu Leu Leu Val Phe Asn Phe Leu Leu Ile -10 -15 Leu Thr Ile Leu Thr Ile Trp Leu Phe Lys Asn His Arg Phe Arg Phe 5 Leu His Glu Thr Gly Gly Ala Met Val Tyr Gly Leu Xaa Met Gly Leu 20 Ile Leu Xaa Tyr Ala Thr Ala Pro Thr Asp Ile Glu Ser Gly Xaa Val 35 Tyr Asp Cys Val Lys Leu Thr Phe Ser Pro Ser Thr Leu Leu Val Asn 55 Ile Thr Asp Gln Val Tyr Glu Tyr Lys Tyr Lys Arg Glu Ile Ser Gln 70 His Xaa Ile Asn Pro His Xaa Gly Asn Ala Ile Leu Glu Lys Met Thr Phe Asp Pro Xaa Ile Phe Phe Asn Val Leu Leu Pro Pro Ile Ile Phe

WO 99/31236 -338- PCT/IB98/02122 -

```
100
His Ala Gly Tyr Ser Leu Lys Lys Arg His Phe Phe Gln Asn Leu Gly
 110 115 120
Ser Ile Leu Thr Tyr Ala Phe Leu Gly Thr Ala Ile Ser Cys Ile Val
125 130
Ile Gly
140
<210> 475
<211> 96
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -21..-1
<400> 475
Met Ser Met Gln Phe Leu Phe Lys Met Val Ala Leu Cys Cys Leu
-20 -15
Trp Lys Ile Ser Gly Cys Glu Glu Val Pro Leu Thr Tyr Asn Leu Leu
-5
               1
Lys Cys Leu Leu Asp Lys Ala His Cys Val Leu Leu Thr Pro Cys Gly
                20
Tyr Ile Phe Ser Leu Ile Ser Pro Glu Ile Leu Lys Leu Thr Leu Ile
            35
Thr Leu Xaa Ile Leu Leu Ile Leu Lys Asn Leu His Leu Leu Trp Leu
45 50
Thr Val Ser Ser Xaa Cys Val His Arg Ser Ser Ala Arg Lys Glu Lys
60 65
                    70
<210> 476
<211> 41
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -24..-1
<400> 476
Met His Thr Phe Ala Asn Asp Arg Gly Leu Tyr Arg Ile Leu Leu Leu
          -20 -15 -10
His Phe Tyr Cys Leu Leu Arg Ser Ser Glu Tyr Ile Leu Gly Tyr Lys
                              5
      -5 1
Val Leu Gly Val Phe Phe Pro Ile Leu
 10
             15
<210> 477
<211> 113
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -27..-1
```

WO 99/31236 -339- PCT/IB98/02122 ·

<400> 477 Met Arg Xaa Lys Trp Lys Met Gly Gly Met Lys Tyr Ile Phe Ser Leu -20 Leu Phe Phe Leu Leu Glu Gly Gly Xaa Thr Glu Gln Val Xaa His Ser Glu Thr Tyr Cys Met Phe Gln Asp Lys Lys Tyr Arg Val Gly Glu 15 Arg Trp His Pro Tyr Leu Glu Pro Tyr Gly Leu Val Tyr Cys Val Asn 30 Cys Ile Cys Ser Glu Asn Gly Asn Val Leu Cys Ser Arg Val Arg Cys 45 50 Pro Asn Val His Cys Leu Ser Pro Val His Ile Pro His Leu Cys Cys 60 Pro Arg Cys Pro Glu Asp Ser Leu Pro Pro Val Asn Asn Xaa Val Thr 75 80 Ser

<210> 478 <211> 250 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -18..-1

<400> 478

Met Arg Ile Leu Gln Leu Ile Leu Leu Ala Leu Ala Thr Gly Leu Val -15 -10 -5 Gly Gly Glu Thr Arg Ile Ile Lys Gly Phe Glu Cys Lys Pro His Ser Gln Pro Trp Gln Ala Ala Leu Phe Glu Lys Thr Arg Leu Leu Cys Gly 20 25 Ala Thr Leu Ile Ala Pro Arg Trp Leu Leu Thr Ala Ala His Cys Leu 40 Lys Pro Arg Tyr Ile Xaa His Leu Gly Gln His Asn Leu Gln Lys Glu Glu Gly Cys Glu Gln Thr Arg Thr Ala Thr Glu Ser Phe Pro His Pro 70 Gly Phe Asn Asn Ser Leu Pro Asn Lys Asp Xaa Xaa Asn Asp Ile Met 80 85 90 Leu Val Xaa Met Xaa Ser Pro Val Ser Ile Thr Trp Ala Val Arg Pro 100 105 Leu Thr Leu Ser Ser Arg Cys Val Thr Ala Gly Thr Ser Cys Leu Ile 115 120 125 Ser Gly Trp Gly Ser Thr Ser Ser Pro Gln Leu Arg Leu Pro His Thr 130 135 140 Leu Arg Cys Ala Asn Ile Thr Ile Ile Glu His Gln Lys Cys Glu Asn 150 155 Ala Tyr Pro Gly Asn Ile Thr Asp Thr Met Val Cys Ala Ser Val Gln 170 160 165 Glu Gly Gly Lys Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val 180 185 Cys Asn Gln Ser Leu Gln Gly Ile Ile Ser Trp Gly Gln Asp Pro Cys 195 200 Ala Ile Thr Arg Lys Pro Gly Val Tyr Thr Lys Val Cys Lys Tyr Val 210 215 Asp Trp Ile Gln Glu Thr Met Lys Asn Asn

WO 99/31236 -340 - PCT/IB98/02122 -

```
<210> 479
<211> 151
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -21..-1
<400> 479
Met Ala Ala Ser Thr Ser Met Val Pro Val Ala Val Thr Ala Ala Val
                   ~15
                                         -10
Ala Pro Val Leu Ser Ile Asn Ser Asp Phe Ser Asp Leu Arg Glu Ile
                 1
Lys Lys Gln Leu Leu Leu Ile Ala Gly Leu Thr Arg Glu Arg Gly Leu
                             20
Leu His Ser Ser Lys Trp Ser Ala Glu Leu Ala Phe Ser Leu Pro Ala
                         35
Leu Pro Leu Ala Glu Leu Gln Pro Pro Pro Pro Ile Thr Glu Glu Asp
                     50
Ala Gln Asp Met Asp Ala Tyr Thr Leu Ala Lys Ala Tyr Phe Asp Val
                65
Lys Glu Tyr Asp Arg Ala Ala His Phe Leu His Gly Cys Asn Ala Arg
             80
                                85
Lys Ala Tyr Phe Leu Tyr Met Tyr Ser Arg Tyr Leu Val Arg Ala Ile
                                     105
                            100
Leu Lys Cys His Ser Ala Phe Ser Glu Thr Ser Ile Phe Arg Thr Asn
      110
              115
Gly Lys Val Lys Ser Phe Lys
                     130
<210> 480
<211> 239
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -25..-1
<400> 480
Met Pro Arg Lys Arg Lys Cys Asp Leu Arg Ala Val Arg Val Gly Leu
                        -15
                  -20
Leu Leu Gly Gly Gly Val Tyr Gly Ser Arg Phe Arg Phe Thr Phe
              -5
                                 1
Pro Gly Cys Arg Ala Leu Ser Pro Trp Arg Val Arg Xaa Gln Arg Arg
                       15
Arg Cys Glu Met Ser Thr Met Phe Ala Asp Thr Leu Leu Ile Val Phe
                      30
Ile Ser Val Cys Thr Ala Leu Leu Ala Glu Gly Ile Thr Trp Val Leu
                 45
                                    50
Val Tyr Arg Thr Asp Lys Tyr Lys Arg Leu Lys Ala Glu Val Glu Lys
                      65
Gln Ser Lys Lys Leu Glu Lys Lys Lys Glu Thr Ile Thr Glu Ser Ala
                            80
Gly Arg Gln Cln Lys Lys Ile Glu Arg Xaa Xaa Xaa Leu Xaa
```

Asn Asn Asn Arg Asp Leu Ser Met Val Arg Met Lys Ser Met Phe Ala 105 110 115 Ile Gly Phe Cys Phe Thr Ala Leu Met Gly Met Phe Asn Ser Ile Phe 125 130 Asp Gly Arg Val Val Ala Lys Leu Pro Phe Thr Pro Leu Ser Xaa Xaa 140 145 Xaa Gly Leu Ser His Arg Asn Leu Leu Gly Asp Asp Thr Thr Asp Cys 155 160 Ser Phe Ile Phe Leu Xaa Ile Leu Cys Thr Met Ser Ile Arg Gln Asn 175 Ile Gln Lys Ile Leu Gly Leu Ala Pro Ser Arg Ala Ala Thr Lys Gln 190 Ala Gly Gly Phe Leu Gly Pro Pro Pro Ser Gly Lys Phe Ser 205

<210> 481 <211> 208 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -92..-1

<400> 481 Met Arg Glu Pro Gln Lys Arg Thr Ala Thr Ile Ala Lys Xaa Xaa Ala Xaa Glu Gly Leu Arg Asp Pro Tyr Gly Arg Leu Cys Gly Ser Glu His -70 -65 Pro Arg Arg Pro Pro Glu Arg Pro Glu Glu Asp Pro Ser Thr Pro Glu -55 -50 Glu Ala Ser Thr Thr Pro Glu Glu Ala Ser Ser Thr Ala Gln Ala Gln -40 -35 -30 Lys Pro Ser Val Pro Arg Ser Asn Phe Gln Gly Thr Lys Lys Ser Leu -25 -20 -15 Leu Met Ser Ile Leu Ala Leu Ile Phe Ile Met Gly Asn Ser Ala Lys -10 -5 Glu Ala Leu Val Trp Lys Val Leu Gly Lys Leu Gly Met Gln Pro Gly 10 15 Arg Xaa His Ser Ile Phe Gly Asp Pro Lys Lys Ile Val Thr Glu Xaa 30 Phe Val Arg Arg Gly Tyr Leu Ile Tyr Xaa Pro Val Pro Arg Xaa Ser 45 Pro Val Glu Tyr Xaa Phe Phe Trp Gly Pro Arg Ala His Val Glu Ser 60 Ser Xaa Leu Lys Xaa Xaa His Phe Val Ala Arg Val Arg Asn Arg Cys Ser Lys Asp Trp Pro Cys Asn Tyr Asp Trp Asp Ser Asp Asp Asp Ala 90 95 Glu Val Glu Ala Ile Leu Asn Ser Gly Ala Xaa Gly Tyr Ser Ala Pro 105 110

<210> 482 <211> 86

<211> 86

<212> PRT

<213> Homo sapiens

<220>

<221> SIGNAL <222> -39..-1

<400> 482

Met Asn Val Gly Thr Ala His Xaa Xaa Val Asn Pro Asn Thr Arg Val
-35
-30
-25
Met Asn Ser Arg Gly Ile Trp Leu Ser Tyr Val Leu Ala Ile Gly Leu

Met Asn Ser Arg Gly Ile Trp Leu Ser Tyr Val Leu Ala Ile Gly Leu
-20 -15 -10

Leu His Ile Val Leu Leu Ser Ile Pro Phe Val Ser Val Pro Val Val -5 5

Trp Thr Leu Thr Asn Leu Ile His Asn Met Gly Met Tyr Ile Phe Leu 10 20 25 His Thr Val Lys Gly Thr Pro Phe Glu Thr Pro Asp Gln Gly Lys Ala

His Thr Val Lys Gly Thr Pro Phe Glu Thr Pro Asp Gln Gly Lys Ala
30 35 40

Arg Leu Leu Thr His Trp 45

<210> 483

<211> 40

<212> PRT

<213> Homo sapiens

<220'>

<221> SIGNAL

<222> -27..-1

<400> 483

Met Arg Thr Leu Phe Gly Ala Val Arg Ala Pro Phe Ser Ser Leu Thr -25 -20 -15

Leu Leu Leu Ile Thr Pro Ser Pro Ser Pro Leu Leu Phe Asp Arg Gly
-10 -5 1 5

Leu Ser Leu Arg Ser Ala Met Ser

10

<210> 484

<211> 65

<212> PRT

<213> Homo sapiens

<220>

<221> SIGNAL

<222> -16..-1

<400> 484

Met Leu Gly Phe Phe Leu Phe Leu Ser Phe Val Leu Met Tyr Asp Gly
-15 -5

Leu Arg Leu Phe Gly Ile Leu Ser Thr Cys Arg Val His His Thr Met 1 5 10 15

Asn Gln Phe Leu Ile Asp Ile Ser Ser Phe Thr Ser Arg Val Lys Lys 20 25 30

Lys Ile Phe Leu Phe Tyr Ala Phe Xaa Gly Cys Xaa Phe Gln Ser Ala

Thr

<210> 485

<211> 130

WO 99/31236 -343 - PCT/IB98/02122 -

```
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -55..-1
<400> 485
Met Ala Met Trp Asn Arg Pro Xaa Xaa Leu Pro Gln Gln Pro Leu
                      -45
          -50
Xaa Ala Glu Pro Thr Ala Glu Gly Glu Pro His Leu Pro Thr Gly Arg
                               -30
             -35
Xaa Xaa Thr Glu Ala Asn Arg Phe Ala Tyr Ala Ala Leu Cys Gly Ile
                        -15
       -20
Ser Leu Ser Gln Leu Phe Pro Glu Pro Glu His Ser Ser Phe Cys Thr
           1
Glu Phe Met Ala Gly Leu Val Xaa Trp Leu Glu Leu Ser Glu Ala Val
                                  20
              15
Leu Pro Thr Met Thr Ala Phe Ala Ser Gly Leu Gly Gly Glu Gly Xaa
             30
Xaa Cys Val Cys Ser Asn Phe Thr Glu Gly Pro His Leu Glu Gly Arg
                  50
Pro Asp Gly Asp His Ser Gly Pro Ser Glu Leu Leu Thr Gln Gly Trp
               65
Ala Leu
  75
<210> 486
<211> 209
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -84..-1
<400> 486
Met Val Asn Phe Pro Gln Lys Ile Ala Gly Glu Leu Tyr Gly Pro Leu
                               -75
Met Leu Val Phe Thr Leu Val Ala Ile Leu Leu His Gly Met Lys Thr
                           -60
Ser Asp Thr Ile Ile Arg Glu Gly Thr Leu Met Gly Thr Ala Ile Gly
                        -45
Thr Cys Phe Gly Tyr Trp Leu Gly Val Ser Ser Phe Ile Tyr Phe Leu
                            -25
                    -30
Ala Tyr Leu Cys Asn Ala Gln Ile Thr Met Leu Gln Met Leu Ala Leu
-20 -15 -10
Leu Gly Tyr Gly Leu Phe Gly His Cys Ile Val Leu Phe Ile Thr Tyr
                           5
Asn Ile His Leu Arg Ala Leu Phe Tyr Leu Phe Trp Leu Leu Val Gly
                       20
Gly Leu Ser Thr Leu Arg Met Val Ala Val Leu Val Ser Arg Thr Val
                    35
Gly Pro Thr Xaa Arg Xaa Leu Leu Cys Gly Thr Leu Ala Ala Leu His
                 50
45
Met Leu Phe Leu Leu Tyr Leu His Phe Ala Tyr His Lys Xaa Val Xaa
            65
Gly Ile Leu Asp Thr Leu Glu Gly Pro Asn Ile Pro Pro Ile Gln Arg
```

Val Pro Arg Asp Ile Pro Ala Met Leu Pro Ala Ala Arg Leu Pro Thr

```
100
                                          105
Thr Val Leu Asn Ala Thr Ala Lys Ala Val Ala Val Thr Leu Gln Ser
            115
                              120
125
<210> 487
<211> 36
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -17..-1
<400> 487
Met Gly Trp Gln Arg Trp Trp Cys Phe His Leu Gln Ala Glu Ala Ser
    -15 -10
                                   -5
Ala His Pro Pro Gln Gly Leu Gln Ala Gln Phe Ser Cys Cys Pro Trp
                                10
Val Gly Ile Cys
<210> 488
<211> 44
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -29..-1
<400> 488
Met Met Ser Ser Glu Leu Arg Arg Asn Pro His Phe Leu Lys Ser Asn
         -25 -20 -15
Leu Phe Leu Gln Leu Leu Val Ser His Glu Ile Val Cys Ala Thr Glu
        -10
                           -5
Thr Val Thr Thr Asn Phe Leu Arg His Glu Lys Ala
<210> 489
<211> 163
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -52..-1
<400> 489
Met Glu His Tyr Arg Lys Ala Gly Ser Val Glu Leu Pro Ala Pro Ser
               ~45
Pro Met Pro Gln Leu Pro Pro Asp Thr Leu Glu Met Arg Val Arg Asp
 -35 -30
Gly Ser Lys Ile Arg Asn Leu Leu Gly Leu Ala Leu Gly Arg Leu Glu
        -15
                          -10
```

Gly Gly Ser Ala Arg His Val Val Phe Ser Gly Ser Gly Arg Ala Ala

<211> 218 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -50..-1 <400> 491 Met His His Gly Leu Thr Pro Leu Leu Gly Val His Glu Gln Lys -45 -40 Gln Gln Val Val Lys Phe Leu Ile Lys Lys Lys Ala Asn Leu Asn Ala -25 -30 Leu Asp Arg Tyr Gly Arg Thr Ala Leu Ile Leu Ala Val Cys Cys Gly -15 -10 Ser Ala Ser Ile Val Ser Leu Leu Glu Gln Asn Ile Asp Val Ser Ser Gln Asp Leu Ser Gly Gln Thr Ala Lys Lys Tyr Ala Val Ser Ser 20 25 Arg His Asn Val Ile Cys Gln Leu Leu Ser Asp Tyr Lys Xaa Lys Gln 40 Xaa Leu Lys Val Ser Ser Glu Asn Ser Asn Pro Xaa Gln Asp Leu Lys

<210> 491

55 50 Leu Thr Ser Glu Glu Glu Ser Gln Arg Leu Lys Gly Ser Glu Asn Ser 70 Gln Pro Glu Glu Met Ser Gln Glu Pro Glu Ile Asn Xaa Gly Gly Asp 85 90 Arg Lys Val Glu Xaa Xaa Met Lys Lys His Gly Ser Xaa His Met Gly 100 105 Phe Pro Xaa Asn Leu Xaa Asn Gly Ala Thr Ala Asp Asn Gly Asp 115 120 Gly Leu Ile Pro Pro Xaa Lys Xaa Xaa Thr Pro Glu Ser Xaa Gln Phe 130 135 Pro Asp Thr Glu Asn Glu Gln Tyr His Arg Asp Phe Ser Gly His Pro 145 150 Xaa Phe Pro Thr Thr Leu Pro Ile Lys Gln 165 160

<210> 492 <211> 216 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -15..-1

<400> 492°

Met Val Cys Val Leu Val Leu Ala Ala Ala Gly Ala Val Ala Val -15 -10 -5 Phe Leu Ile Leu Arg Ile Trp Val Val Leu Arg Ser Met Asp Val Thr 10 Pro Arg Glu Ser Leu Ser Ile Leu Val Val Ala Gly Ser Gly Gly His 25 Thr Thr Glu Ile Leu Arg Leu Leu Gly Ser Leu Ser Asn Ala Tyr Ser 40 45 Pro Arg His Tyr Val Ile Ala Asp Thr Asp Glu Met Ser Ala Asn Lys 60 65 55 Ile Asn Ser Phe Glu Leu Xaa Arg Xaa Asp Arg Xaa Pro Ser Asn Met 75 Xaa Thr Lys Tyr Tyr Ile His Arg Ile Pro Xaa Ser Arg Glu Val Gln 90 Gln Ser Trp Pro Ser Thr Val Xaa Thr Thr Leu His Ser Met Trp Leu 100 105 110 Ser Xaa Pro Leu Ile His Arg Val Lys Pro Xaa Leu Val Leu Cys Asn 120 Gly Pro Gly Thr Cys Val Pro Ile Cys Val Ser Ala Leu Leu Gly 135 130 140 145 Ile Leu Gly Ile Lys Lys Val Ile Ile Val Tyr Val Glu Ser Ile Cys 150 155 Arg Val Lys Thr Leu Ser Met Ser Gly Lys Ile Leu Phe His Leu Ser 170 Asn Tyr Phe Ile Val Gln Trp Pro Ala Leu Lys Glu Lys Tyr Pro Lys 185 190 Ser Val Tyr Leu Gly Arg Ile Val 200

<210> 493 <211> 134 <212> PRT

```
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -19..-1
<400> 493
Met Pro Leu Gly Ala Arg Ile Leu Phe His Gly Val Phe Tyr Ala Gly
                                    -10
Gly Phe Ala Ile Val Tyr Tyr Leu Ile Gln Lys Phe His Ser Arg Thr
                                                10
Leu Tyr Tyr Lys Leu Ala Val Glu Gln Leu Gln Xaa His Pro Glu Ala
                       20
Gln Glu Ala Leu Gly Pro Pro Leu Asn Ile His Tyr Leu Lys Leu Ile
                    35
                                       40
Asp Arg Glu Asn Phe Val Asp Ile Val Xaa Ala Lys Leu Lys Ile Pro
          . 50
                                   55
Val Ser Gly Ser Lys Ser Glu Gly Leu Leu Tyr Val His Ser Ser Arg
                                70
Gly Gly Pro Phe Gln Arg Trp His Leu Asp Glu Val Phe Leu Glu Leu
                           85
Lys Asp Gly Gln Gln Ile Pro Val Phe Lys Leu Ser Gly Glu Asn Gly
                       100
Asp Glu Val Lys Lys Glu
<210> 494
<211> 85
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -16..-1
<400> 494
Met Ala Val Thr Ala Leu Ala Ala Xaa Thr Trp Leu Gly Val Trp Gly
                       -10
Val Arg Thr Met Gln Ala Arg Gly Phe Gly Ser Asp Gln Ser Glu Asn
1
Val Asp Arg Gly Ala Gly Ser Ile Arg Glu Ala Gly Gly Ala Phe Gly
                               25
Lys Arg Glu Gln Ala Glu Glu Glu Arg Tyr Phe Arg Ala Gln Ser Thr
Glu Gln Leu Ala Xaa Leu Lys Lys Xaa His Glu Glu Glu Ile Val His
                      55
His Arg Glu Gly Asp
65
<210> 495
<211> 292
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -29..-1
```

<400> 495 Met His Gly Leu Leu His Tyr Leu Phe His Thr Arq Asn His Thr Phe -20 Ile Val Leu His Leu Val Leu Gln Gly Met Val Tyr Thr Glu Tyr Thr -10 Trp Glu Val Phe Gly Tyr Cys Gln Glu Leu Glu Leu Ser Leu His Tyr 10 Leu Leu Pro Tyr Leu Leu Gly Val Asn Leu Phe Phe Thr 25 Leu Thr Cys Gly Thr Asn Pro Gly Ile Ile Thr Lys Ala Asn Glu Leu 40 45 Leu Phe Leu His Val Tyr Glu Phe Asp Glu Xaa Met Phe Pro Lys Asn 60 Val Arg Cys Ser Thr Cys Asp Leu Arg Lys Pro Ala Arg Ser Xaa His 75 Cys Xaa Val Cys Asn Trp Cys Val His Arg Phe Xaa His His Cys Val 90 Trp Val Asn Asn Cys Ile Gly Ala Trp Asn Ile Arg Xaa Phe Leu Ile 105 110 Tyr Val Leu Thr Leu Thr Ala Ser Ala Ala Thr Val Ala Ile Val Ser 125 Thr Thr Phe Leu Val His Leu Val Val Met Ser Asp Leu Tyr Gln Glu 135 140 Thr Tyr Ile Asp Asp Leu Gly His Leu His Val Met Asp Thr Val Phe 155 160 Leu Ile Gln Tyr Leu Phe Leu Thr Phe Pro Arg Ile Val Phe Met Leu 170 175 Gly Phe Val Val Leu Xaa Phe Leu Leu Gly Gly Tyr Leu Leu Phe 185 190 Val Leu Tyr Leu Ala Ala Thr Asn Gln Thr Thr Asn Glu Trp Tyr Arg 200 205 210 Xaa Asp Trp Ala Trp Cys Gln Arg Cys Pro Leu Val Ala Trp Pro Pro 220 Ser Ala Glu Pro Gln Val His Arg Asn Ile His Ser His Gly Leu Arg 235 Xaa Asn Leu Gln Glu Ile Phe Leu Pro Ala Phe Pro Cys His Glu Arg 250 Lys Lys Gln Glu 260

<210> 496 <211> 122 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -56..-1

 Phe
 Cys
 Ala
 Ser
 Phe
 Pro
 Ser
 Gly
 Xaa
 Leu
 Ser
 Pro
 Pro
 Leu

 25
 30
 50
 35
 55
 40

 Pro
 Gly
 Leu
 Pro
 Leu
 Pro
 Ser
 Val
 Phe
 Tyr
 Ser
 Cys
 Gly

 Ala
 His
 Pro
 Lys
 Val
 Leu
 Lys
 Val
 Ala
 Leu

 60
 60
 65
 65
 65
 65
 60
 60
 60

<210> 498
<211> 99
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -13...1
<400> 498

<210> 497

Met His Leu Leu Ser Asn Trp Ala Asn Pro Ala Ser Ser Arg Arg Pro -5 -10 Ser Met Ala Ala Ser Gly Thr Ser Trp Ile Ser Ser Thr Leu Ala His 10 15 Ser Leu Ser Leu Arg Asp Val Ser Glu Arg Leu Cys Ser Cys Trp Arg 30 Thr Ile Ser Met Gly Pro Cys Ala Arg Gly Ser Pro Met Asn Ser Ser 40 45 Gly Val His Arg Lys Ser Ser Arg Leu Phe Tyr Ile Arg Thr Pro Met Arg Arg Ser Ser Cys His Leu Glu Cys Xaa Val Ile Phe Leu Leu Gly 75 Arg Gln Leu 85

<210> 499 <211> 99 <212> PRT <213> Homo sapiens <220>
<221> SIGNAL
<222> -13..-1

<400> 499 Met His Leu Leu Ser Asn Trp Ala Asn Pro Ala Ser Ser Arg Arg Pro - 5 -10 Ser Met Ala Ala Ser Gly Thr Ser Trp Ile Ser Ser Thr Leu Ala His 15 Ser Leu Ser Leu Arg Asp Val Ser Glu Arg Leu Cys Ser Cys Trp Arg 25 30 Thr Ile Ser Met Gly Pro Cys Ala Arg Gly Ser Pro Met Asn Ser Ser 40 45 Gly Val His Arg Lys Ser Ser Arg Leu Phe Tyr Ile Arg Thr Pro Met 55 60 Arg Arg Ser Ser Cys His Leu Xaa Cys Gln Val Ile Phe Leu Leu Gly 75 70 Arg Gln Leu

<210> 500 <211> 108 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -25..-1

<400> 500

85

Met Ser Leu Thr Ser Ser Ser Ser Val Arg Val Glu Trp Ile Ala Ala -15 -25 -20 Val Thr Ile Ala Ala Gly Thr Ala Ala Ile Gly Tyr Leu Ala Tyr Lys -5 1 Arg Phe Tyr Val Lys Asp His Arg Asn Lys Ala Met Ile Asn Leu His 15 10 Ile Gln Lys Asp Asn Pro Lys Ile Val His Ala Phe Asp Met Glu Asp 30 Leu Gly Asp Lys Ala Val Tyr Cys Arg Cys Trp Arg Ser Lys Lys Phe 45 Pro Phe Cys Asp Gly Ala His Thr Lys His Asn Glu Glu Thr Gly Asp 65 Asn Val Gly Pro Leu Ile Ile Lys Lys Glu Thr

80

<210> 501 <211> 183 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -15..-1 <400> 501

Met Glu Ala Met Trp Leu Leu Cys Val Ala Leu Ala Val Leu Ala Trp
-15
-10
-5
1
Gly Phe Leu Trp Val Trp Asp Ser Ser Glu Arg Met Lys Ser Arg Glu

10 Gln Gly Arg Arg Leu Gly Ala Glu Ser Arg Thr Leu Leu Val Ile Ala 25 . 30 His Pro Asp Asp Glu Ala Met Phe Phe Ala Pro Thr Val Leu Gly Leu 40 45 Ala Arg Leu Arg His Trp Val Tyr Leu Leu Cys Phe Ser Ala Gly Asn 55 . 60 Tyr Tyr Asn Gln Gly Glu Thr Arg Lys Lys Glu Leu Leu Gln Ser Cys 75 70 Asp Val Leu Gly Ile Pro Leu Ser Ser Val Met Ile Ile Asp Asn Arg 90 Asp Phe Pro Xaa Asp Pro Gly Met Gln Trp Asp Thr Xaa His Val Ala 105 Xaa Val Leu Leu Gln His Ile Glu Val Asn Gly Ile Asn Leu Val Val 120 125 Thr Phe Asp Ala Gly Gly Xaa Ser Gly His Ser Asn His Ile Ala Leu 135 140 Tyr Ala Ala Val Arg Lys Leu Glu Gly Gln Ile Cys Lys Pro Cys Gly 150 155 Thr Gly Gln Asp Phe Lys Glu 165

<210> 502 <211> 98 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -15..-1

Met Leu Lys Lys Tyr Ser His His Arg Asn Ile Ala Thr Tyr Tyr Gly -35 -30 Ala Phe Ile Lys Lys Asn Pro Pro Gly Met Asp Asp Gln Leu Trp Leu -15 -20 Val Met Glu Phe Cys Gly Ala Gly Ser Val Thr Asp Leu Ile Lys Asn -5 1 Thr Lys Gly Asn Thr Leu Lys Glu Glu Trp Ile Ala Tyr Ile Cys Xaa 15 20 Glu Ile Leu Arg Gly Leu Xaa His Leu His Gln His Lys Val Ile His 30 35 Arg Xaa Ile Lys Gly Gln Asn Val Leu Leu Thr Glu Asn Ala Glu Val 50 4.5 Lys Leu Val Asp Phe Gly Xaa Xaa Ala Gln Leu Asp Arg Thr Val Gly 60 65 Arg Xaa Asn Thr Phe Ile Gly Thr Pro Tyr Trp Met Ala Pro Xaa Val 80 75 Ile Ala Cys Asp Glu Asn Pro Xaa Ala Thr Tyr Asp Phe Lys Xaa Asp 95 100 Leu Trp Ser Leu Gly Ile Thr Ala Ile Glu Met Ala Glu Gly Leu Pro 110 Leu Ser Val Thr Cys Thr Pro

<210> 504 <211> 140 <212> PRT <213> Homo sapiens <220> <221> SIGNAL

<400> 504

<222> -14..-1

Met Phe Leu Thr Ala Leu Leu Trp Arg Gly Arg Ile Pro Gly Arg Gln Trp Ile Gly Lys His Arg Arg Pro Arg Phe Val Ser Leu Arg Ala Lys 10 Gln Asn Met Ile Arg Arg Leu Glu Ile Glu Ala Glu Asn His Tyr Trp 25 Leu Ser Met Pro Tyr Met Thr Arg Glu Gln Glu Arg Gly His Ala Ala 40 45 Leu Arg Arg Arg Glu Ala Phe Glu Ala Ile Lys Ala Ala Ala Thr Ser 60 Lys Phe Pro Pro His Arg Phe Ile Ala Asp Gln Leu Asp His Leu Asn 75 Xaa His Gln Glu Met Val Leu Ile Leu Ser Arg His Pro Trp Ile Leu 90 Trp Ile Thr Glu Leu Thr Ile Phe Thr Trp Ser Gly Leu Lys Asn Cys 105 Ser Leu Cys Glu Asn Glu Leu Trp Thr Ser Leu Tyr

<210> 505 <211> 59 <212> PRT <213> Homo sapiens <221> SIGNAL <222> -14..-1 <400> 505 Met Ala Ala Leu Val Thr Val Leu Phe Thr Gly Val Arg Arg Leu His -10 -5 Cys Ser Ala Xaa Leu Gly Arg Ala Ala Ser Gly Xaa Tyr Ser Arg Asn 10 1.5 Trp Leu Pro Thr Pro Pro Ala Thr Gly Pro Leu Pro Ser Ser Gln Thr 25 Gly His Met Arg Met Ala Ala Leu Leu Pro Gln 40 <210> 506 <211> 101 . <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -36..-1

<400> 506

Met Gly Pro Tyr Asn Val Ala Val Pro Ser Asp Val Ser His Ala Arg -30 Phe Tyr Phe Leu Phe His Arg Pro Leu Arg Leu Leu Asn Leu Leu Ile -15 -10 Leu Ile Glu Gly Ser Val Val Phe Tyr Gln Leu Tyr Ser Leu Leu Arg 10 1 Ser Glu Lys Trp Asn His Thr Leu Ser Met Ala Leu Ile Leu Phe Cys 20 25 15 Asn Tyr Tyr Val Leu Phe Lys Leu Leu Arg Asp Arg Xaa Xaa Leu Gly 35 40 Arg Ala Tyr Ser Tyr Pro Leu Asn Ser Tyr Glu Leu Lys Ala Asn Xaa 55

Ala Ala Ser Xaa Gln

65

<210> 507 <211> 341 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -55..-1 <400> 507 Met Arg Lys Val Val

 Met Arg Lys
 Val Val Leu
 Ile Thr Gly Ala Ser Ser Gly Ile Gly Leu
 -50
 -45
 -45
 -40
 -40

 Ala Leu Cys
 Lys
 Arg Leu Leu Leu Ala Glu Asp Asp Glu Leu His Leu Cys
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25
 -25</td

Phe Gln Arg Leu Asp Cys Ile Tyr Leu Asn Ala Gly Ile Met Pro Asn 35 Pro Gln Leu Asn Ile Lys Ala Leu Phe Phe Gly Leu Phe Ser Arg Lys 50 Val Ile His Met Phe Ser Thr Ala Glu Gly Leu Leu Thr Gln Gly Asp 65 Lys Ile Thr Ala Asp Gly Leu Gln Glu Val Phe Glu Thr Asn Val Phe 85 80 Gly His Phe Ile Leu Ile Arg Glu Leu Glu Pro Leu Leu Cys His Ser 95 100 90 Asp Asn Pro Ser Gln Leu Ile Trp Thr Ser Ser Arg Ser Ala Arg Lys 115 110 Ser Asn Phe Ser Leu Glu Asp Phe Gln His Ser Lys Gly Lys Glu Pro 125 130 Tyr Ser Ser Ser Lys Tyr Ala Thr Asp Leu Leu Ser Val Ala Leu Asn 145 150 Arg Asn Phe Asn Gln Gln Gly Leu Tyr Ser Asn Val Ala Cys Pro Gly 160 165 Thr Ala Leu Thr Asn Leu Thr Tyr Gly Ile Leu Pro Pro Phe Ile Trp 175 180 Thr Leu Leu Met Pro Ala Ile Leu Leu Leu Arg Phe Phe Ala Asn Ala 195 190 Phe Thr Leu Thr Pro Tyr Asn Gly Thr Glu Ala Leu Val Trp Leu Phe 210 215 205 His Gln Lys Pro Glu Ser Leu Asn Pro Leu Ile Lys Tyr Leu Ser Ala 225 230 Thr Thr Gly Phe Gly Arg Asn Tyr Ile Met Thr Gln Lys Met Asp Leu 240 245 Asp Glu Asp Thr Ala Glu Lys Phe Tyr Gln Lys Leu Leu Glu Leu Glu 255 260 Lys His Ile Arg Val Thr Ile Gln Lys Thr Asp Asn Gln Ala Arg Leu 275 270 Ser Gly Ser Cys Leu 285

<210> 508 <211> 108 <212> PRT <213> Homo sapiens <220> <221> SIGNAL

<400> 508

<222> -42..-1

Met His Ile Leu Gln Leu Leu Thr Thr Val Asp Asp Gly Ile Gln Ala -35 Ile Val His Cys Pro Asp Thr Gly Lys Asp Ile Trp Asn Leu Leu Phe -20 -15 Asp Leu Val Cys His Glu Phe Cys Gln Ser Asp Asp Pro Ala Ile Ile - 5 Leu Gln Xaa Gln Lys Thr Val Leu Ala Ser Val Phe Ser Val Leu Ser 15 20 10 Ala Ile Tyr Ala Ser Gln Thr Glu Gln Xaa Tyr Leu Lys Ile Xaa Lys 35 30 Gly Asp Gly Gly Ser Gly Ser Lys Gly Arg Pro Xaa Xaa Gln Thr Glu 45 Xaa Phe Leu Cys Ile Ser Lys Pro Ser Ser Phe Leu 60

```
<210> 509
<211> 80
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -26..-1
<400> 509
Met Glu Glu Ile Ser Ser Pro Leu Val Glu Phe Val Lys Val Leu Cys
                  -20
                                          -15
Thr Asn Gln Val Leu Ile Thr Ala Arg Ala Val Pro Thr Lys Lys Ala
                  -5
                                     1
Ser Val Arg Cys Val Glu Lys Arg Phe Trp Ile Pro Lys Thr Thr Ser
                              15
       10
Lys His Leu Ser Arg Cys Ile Asp Gly Ile Ser Gly Phe Leu Asn Asp
                       30
Phe Thr Phe Cys Leu Glu Phe Ser Arg His Arg Cys Gln Leu Thr Glu
                      45
<210> 510
<211> 158
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -44..-1
<400> 510
Met Ala Gly Phe Leu Asp Asn Phe Arg Trp Pro Glu Cys Glu Cys Ile
              -40
                                   -35
Asp Trp Ser Glu Arg Arg Asn Ala Val Ala Ser Val Val Ala Gly Ile
```

-20 -25 Leu Phe Phe Thr Gly Trp Trp Ile Met Ile Asp Ala Ala Val Val Tyr -5 Pro Lys Pro Glu Gln Leu Asn His Ala Phe His Thr Cys Gly Val Phe 10 15 Ser Thr Leu Ala Phe Phe Met Ile Asn Ala Val Ser Asn Ala Gln Val 30 25 Arg Gly Asp Ser Tyr Glu Ser Gly Cys Leu Gly Arg Thr Gly Ala Arg 45 Val Trp Leu Phe Ile Gly Phe Met Leu Met Phe Gly Ser Leu Ile Ala Ser Met Trp Ile Leu Phe Gly Ala Tyr Val Thr Gln Asn Thr Asp Val Tyr Pro Gly Leu Ala Val Phe Phe Gln Asn Ala Leu Ile Phe Phe Ser Thr Leu Ile Tyr Lys Phe Gly Arg Thr Glu Glu Leu Trp Thr

<210> 511 <211> 130 <212> PRT <213> Homo sapiens <220> <221> SIGNAL <222> -28..-1

<400> 511

Met Asn Trp Glu Leu Leu Trp Leu Leu Val Leu Cys Ala Leu Leu -25 -20 Leu Leu Leu Val Gln Leu Leu Arg Phe Leu Arg Ala Asp Gly Asp Leu -5 Thr Leu Leu Trp Ala Glu Trp Gln Gly Arg Arg Pro Glu Trp Glu Leu Thr Asp Met Val Val Trp Val Thr Gly Ala Ser Ser Gly Ile Gly Glu 25 30 Glu Leu Ala Tyr Gln Leu Ser Lys Leu Gly Val Ser Leu Val Leu Ser 40 45 Ala Arg Arg Val His Glu Leu Glu Arg Val Lys Arg Arg Cys Leu Glu 60 Asn Gly Asn Leu Lys Glu Lys Asp Ile Leu Val Leu Pro Leu Asp Leu 75 80 Thr Asp Thr Gly Ser His Glu Ser Gly Tyr Gln Ser Cys Ser Pro Gly Ile Trp

<210> 512 <211> 199 <212> PRT <213> Homo sapiens <220> <221> SIGNAL

<400> 512

<222> -62..-1

Met Ser Gln Arg Ser Leu Cys Met Asp Thr Ser Leu Asp Val Tyr Arg -55 Xaa Leu Ile Glu Leu Asn Tyr Leu Gly Thr Val Ser Leu Thr Lys Cys -40 -35 Val Leu Pro His Met Ile Glu Arg Lys Gln Gly Lys Ile Val Thr Val ~25 -20 Asn Ser Ile Leu Gly Ile Ile Ser Val Pro Leu Ser Ile Gly Tyr Cys -5 Ala Ser Lys His Ala Leu Arg Gly Phe Phe Asn Gly Leu Arg Thr Glu Leu Ala Thr Tyr Pro Gly Ile Ile Val Ser Asn Ile Cys Pro Gly Pro 25 Val Gln Ser Asn Ile Val Glu Asn Ser Leu Ala Gly Glu Val Thr Lys

40 45 Thr Ile Gly Asn Asn Gly Asn Gln Ser His Lys Met Thr Thr Ser Arg 60 Cys Val Arg Leu Met Leu Ile Ser Met Ala Asn Asp Leu Lys Glu Val 70 75

Trp Ile Ser Glu Gln Pro Phe Leu Leu Val Thr Tyr Leu Trp Gln Tyr 85 90

Met Pro Thr Trp Ala Trp Trp Ile Thr Asn Lys Met Gly Lys Lys Arg 105 110

Ile Glu Asn Phe Lys Ser Gly Val Asp Ala Xaa Ser Ser Tyr Phe Lys 125 120

Ile Phe Lys Thr Lys His Asp

135

```
<210> 513
<211> 180
<212> PRT
<213> Homo sapiens
<220>
<221> SIGNAL
<222> -25..-1
Met Asn Thr Val Leu Ser Arg Ala Asn Ser Leu Phe Ala Phe Ser Leu
                   -20
                                      -15
Ser Val Met Ala Ala Leu Thr Phe Gly Cys Phe Ile Xaa Thr Ala Phe
       · -5
Lys Asp Arg Ser Val Pro Val Arg Leu His Val Ser Arg Ile Met Leu
                          15
Lys Asn Val Glu Asp Phe Thr Gly Pro Arg Glu Arg Ser Asp Leu Gly
                      30
Phe Ile Thr Phe Asp Ile Thr Ala Asp Leu Glu Asn Ile Phe Asp Trp
                  45
                                     50
Asn Val Lys Gln Leu Phe Leu Tyr Leu Ser Ala Glu Tyr Ser Thr Lys
              60
                                 65
Asn Asn Ala Leu Asn Gln Xaa Val Leu Trp Asp Lys Ile Val Leu Arg
                             80
Gly Asp Asn Pro Lys Leu Leu Leu Lys Asp Met Lys Thr Lys Tyr Phe
                          95
Phe Phe Asp Asp Gly Asn Gly Leu Xaa Gly Asn Arg Asn Val Thr Leu
                   110
                                        115
Thr Leu Ser Trp Asn Val Val Pro Asn Ala Gly Ile Leu Pro Leu Val
       125
                         130
Thr Gly Ser Gly His Val Ser Val Pro Phe Pro Asp Thr Tyr Glu Ile
                         145
Thr Lys Ser Tyr
          155
<210> 514
<211> 120
<212> PRT
<213> Bos taurus
<400> 514
Met Met Thr Gly Arg Gln Gly Arg Ala Thr Phe Gln Phe Leu Pro Asp
                      10
Glu Ala Arg Ser Leu Pro Pro Pro Lys Leu Thr Asp Pro Arg Leu Ala
Phe Val Gly Phe Leu Gly Tyr Cys Ser Gly Leu Ile Asp Asn Ala Ile
Arg Arg Arg Pro Val Leu Leu Ala Gly Leu His Arg Gln Leu Leu Tyr
Ile Thr Ser Phe Val Phe Val Gly Tyr Tyr Leu Leu Lys Arg Gln Asp
                  70
Tyr Met Tyr Ala Val Arg Asp His Asp Met Phe Ser Tyr Ile Lys Ser
                                 90
```

His Pro Glu Asp Phe Pro Glu Lys Asp Lys Lys Thr Tyr Gly Glu Val

110

100 105

Phe Glu Glu Phe His Pro Val Arg

115

WO 99/31236 -358- PCT/IB98/02122 -

```
<210> 515
<211> 1082
<212> DNA
<213> Homo sapiens
<400> 515
gatcccagac ctcggcttgc agtagtgtta gactgaagat aaagtaagtg ctgtttgggc
                                                                  60
                                                                  120
taacaggatc tectettgca gtetgcagec caggacgetg attecageag cgcettaccg
cgcagcccga agattcacta tggtgaaaat cgccttcaat acccctaccg ccgtgcaaaa
                                                                  180
ggaggaggcg cggcaagacg tggaggccct cctgagccgc acggtcagaa ctcagatact
                                                                  240
gaccggcaag gagetecgag ttgccaccca ggaaaaaagag ggeteetetg ggagatgtat
                                                                  300
gettactete ttaggeettt catteatett ggeaggaett attgttggtg gageetgeat
                                                                  360
ttacaagtac ttcatgccca agagcaccat ttaccgtgga gagatgtgct tttttgattc
                                                                  420
                                                                  480
tgaggatect geaaatteee ttegtggagg agageetaae tteetgeetg tgaetgagga
                                                                  540
ggctgacatt cgtgaggatg acaacattgc aatcattgat gtgcctgtcc ccagtttctc
                                                                  600
tgatagtgac cctgcagcaa ttattcatga ctttgaaaaag ggaatgactg cttacctgga
                                                                  660
cttgttgctg gggaactgct atctgatgcc cctcaatact tctattgtta tgcctccaaa
aaatctggta gagctctttg gcaaactggc gagtggcaga tatctgcctc aaacttatgt
                                                                  720
                                                                  780
ggttcgagaa gacctagttg ctgtggagga aattcgtgat gttagtaacc ttggcatctt
                                                                  840
tatttaccaa ctttgcaata acagaaagtc cttccgcctt cgtcgcagag acctcttgct
                                                                 900
gggtttcaac aaacgtgcca ttgataaatg ctggaagatt agacacttcc ccaacgaatt
                                                                 960
tattgttgag accaagatct gtcaagagta agaggcaaca gatagagtgt ccttggtaat
aagaagtcag agatttacaa tatgacttta acattaaggt ttatgggata ctcaagatat
                                                                 1020
                                                                 1080
1082
<210> 516
<211> 559
<212> DNA
<213> Homo sapiens
<400> 516
ctgctccagc gctgacgccg agccatggcg gacgaggagc ttgaggcgct gaggagacag
                                                                  60
aggetggeeg agetgeagge caaacaeggg gateetggtg atgeggeeca acaggaagea
                                                                 120
aagcacaggg aagcagaaat gagaaacagt atcttagccc aagttctgga tcagtcggcc
                                                                 180
                                                                 240
cgggccaggt taagtaactt agcacttgta aagcctgaaa aaactaaagc agtagagaat
                                                                 300
taccttatac agatggcaag atatggacaa ctaagtgaga aggtatcaga acaaggttta
atagaaatcc ttaaaaaagt aagccaacaa acagaaaaga caacaacagt gaaattcaac
                                                                 360
agaagaaaag taatggactc tgatgaagat gacgattatt gaactacaag tgctcacaga
                                                                 420
                                                                 480
ctagaactta acggaacaag tctaggacag aagttaagat ctgattattt actttgttta
                                                                 540
aaaaaaaaa aaaaaaaaa
                                                                 559
<210> 517
<211> 110
<212> PRT
<213> Homo sapiens
<400> 517
Met Phe Cys Pro Leu Lys Leu Ile Leu Leu Pro Val Leu Leu Asp Tyr
1
                                  10
Ser Leu Gly Leu Asn Asp Leu Asn Val Ser Pro Pro Glu Leu Thr Val
                              25
His Val Gly Asp Ser Ala Leu Met Gly Cys Val Phe Gln Ser Thr Glu
```

WO 99/31236 -359- PCT/IB98/02122 -

<210> 518 <211> 4544 <212> DNA <213> Homo sapiens

<400> 518

ccgagaaggg cttcaggacg cgggaggcgc acttgcttca agtcgcgggc gtgggaacgg 60 120 ggttgcaaaa cggggccttt ttatccgggc ttgcttccgg cgtcatggct caaagggcct tcccgaatcc ttatgctgat tataacaaat ccctggccga aggctacttt gatgctgccg 180 ggaggctgac tcctgagttc tcacaacgct tgaccaataa gattcgggag cttcttcagc 240 aaatggagag aggcctgaaa tcagcagacc ctcgggatgg caccggttac actggctggg 300 caggtattgc tgtgctttac ttacatcttt atgatgtatt tggggaccct gcctacctac 360 agttagcaca tggctatgta aagcaaagtc tgaactgctt aaccaagcgc tccatcacct 420 tcctttgtgg ggatgcaggc cccctggcag tggccgctgt gctatatcac aagatgaaca 480 atgagaagca ggcagaagat tgcatcacac ggctaattca cctaaataag attgatcctc 540 atgctccaaa tgaaatgctc tatgggcgaa taggctacat ctatgctctt ctttttgtca 600 ataagaactt tggagtggaa aagatteete aaageeatat teageagatt tgtgaaacaa 660 ttttaacctc tggagaaaac ctagctagga agagaaactt.cacggcaaag tctccactga 720 tgtatgaatg gtaccaggaa tattatgtag gggctgctca tggcctggct ggaatttatt 780 actacctgat gcagcccagc cttcaagtga gccaagggaa gttacatagt ttggtcaagc 840 900 ccagtgtaga ctacgtctgc cagctgaaat tcccttctgg caattaccct ccatgtatag 960 gtgataatcg agatctgctt gtccattggt gccatggcgc ccctggggta atctacatgc 1020 tcatccaggc ctataaggta ttcagagagg aaaagtatct ctgtgatgcc tatcagtgtg 1080 ctgatgtgat ctggcaatat gggttgctga agaagggata tgggctgtgc cacggttctg cagggaatgc ctatgccttc ctgacactct acaacctcac acaggacatg aagtacctgt 1140 atagggcctg taagtttgct gaatggtgct tagagtatgg agaacatgga tgcagaacac 1200 cagacacccc tttctctctc tttgaaggaa tggctggaac aatatatttc ctggctgacc 1260 tgctagtccc cacaaaagcc aggttccctg catttgaact ctgaaaggat agcatgccac 1320 ctgcaactca ctgcatgacc ctttctgtat attcaaaccc aagctaagtg cttccgttgc 1380 tttccaagga aacaaagagt caaactgtgg acttgatttt gttagctttt ttcagaattt 1440 1500 atctttcatt cagttccctt ccattatcat ttacttttac ttagaagtat ccaaggaagt cttttaactt taatttccat ttcttcctaa agggagagtg agtgatatgt acagtgtttt 1560 gagattgtat acatatattc cagaacttgg aggaaatctt atttaagttt atgaatataa 1620 ccatctgtta ctgttctaaa aatgtttaaa agaaactcaa tacagataaa gataaatatg 1680 tgactattat tgggtattac acttcacttc tetttaatat ttttceteca actggaggge 1740 1800 agacaatttt ctgacttgct tttctctagg tggttcattt tgaaagggga cagaaatata 1860 actaaatgct tccaggagaa aaattccaag agttacaatc tggacttggt acctaaatat cattttttaa attcttgatg cctatttgga ctagaggtaa acatactttc agattggcct 1920 1980 gtttttgtcg gtaaggcata cagcettcag aagccaacat ttttaatcaa aaacttataa 2040 aacatgatga tcattgtgaa aattctgagt tgaaggttag tttaagataa gctaacaata acagtotgtg ttttctctaa aataatotga gttttttgga actotttatt taaatatgtg 2100 2160 tgtttttcag tattcaaata agatcaggaa gccaattttc tatgtatgaa tatgctttaa cctaggattt cagtccactc tgactgactt tctaaacttt aacttgggtt tttacagtga 2220 ctatgcatta gtgctgactc tttggtataa gccataaaat attttccttc ctatcaattt 2280 atotgaactt tggtotttto actaaattgt acagtattot acttotgttt aaaaagggga 2340 2400 gatgagaaag ggaatactat ctaaccaata acttgaacaa aaacactaaa ctaagcattt aatagaaatg ctttttattg aggaggtatt atccagagtt catgcttaga acaaatgcat 2460 2520 ctttgcgtat cctagactta acaattcatc agtttctgag accacagaat caggttttcc 2580 gtagtagata aagactetet ggtgetteaa attetgttea agtgttttga eteateaget totactottt ctattactgc ctttgcctgg cttgttttgt ctctttgcaa ctgattttgc 2640 aaaaaaaaat tgtagcttta aaataacagg gtctaagtat tttaaatgtg cctatttcac 2700

2760 agctctcttg gtcacaaaaa catgctattt ttattggaac ttcaaaccaa atccccactg 2820 agtgtgtact ggttcctgca ggtagcagtc tcctattatc tcctgtttag caccaaaaga 2880 gctaatatta ttggaaactg accttttaaa ggccactggc agtaggattt aaaaagcagc 2940 ccactgctca gtttccagga tcagcttcct ccttctgtca cttgtgtaag ttggcactac cttgtgcctc tcagattgct gaagtgctgc tggtaagcat gtgcatgctc tgcctttctt 3000 gtgaaagttt tcaatcagcg atatcagcac ttacagtaag aagtaaaagt agtgcacagc 3060 aaagctaatt tgcctttgcc tggggtgttc agcttgaaag aataaagctc atttggttta 3120 3180 gttaaatgtc ttactctact gtgcctatgc ttttagctgc gttactaagc aagggaaaaa taacagtttc tctgagccag agaagacttg atcacagttc tccaagcatc gtgatagcaa 3300 tgcttaaccc caggaagatt tcaaggcagg gagaagaaca tttcaaataa gattcttgtt 3360 aacccattta tgcctagtgt tccattattg gaatgctaag cttgtgggag tcatttacat 3420 cctactgctc anagtcattg ccanggtctg atttttcaca cananattg canceccag 3480 cataaatggg ttagctactg tcatcagtta gcaaattcat ccacacaaac acaattagag tttggttttt ttttaagctt ttcaaaactt actaaactgg cacaatttta tatgtatgct 3540 atttgttgta tttatgctta agagcaaaaa agttttgatg ggattttaaa ttcagcaaag 3600 3660 cctacaacgc tgagacaatc ccctaacaac atggtagtaa ctaaagaaac ttttatacta 3720 ggcttcttag ttttaaaagg aagtggcatc attgtttcag ttctagtttg tatttttctc 3780 tcagatattt ttcttcttta aaaatctttc ccagaagttg gttcctagaa aactcaatac 3840 catcatctct tatctctata cagggactag gtaataaaac cttcaaaggt tgtcaaaggt 3900 catcaagcag tgttcattta tcctgtcaca tgtttctgtt tctatagtaa tttagaaatt 3960 gcaaatagtt aacttttcat catgtaaaaa gttaacatta tcctatttcc atagatacca 4020 tggacggcgg tgtggcctga gttgtcagtc tttaatcctg agtcatgtgg ctctcttttc atctttgatg tcagttccaa ttatttggca tcaaaaacct tcatggtagg tagagtttta 4080 ggtaaaagtg gatctagggt tactttcttt attaacattt cctaaataac tgaattgaga 4140 gacatactet getactatgt ceteaggtta attititgtet gatettacga tgecetgeet 4200 4260 tttactagct actttagaaa tagaaaatgt gaagagtgac tatttacatg tatactcctt tggctgctag aactcatctg tagtccttta ttatttacac tgaattccaa tttcatttct 4320 4380 cttccgctaa gtaagagcac ctcattcctg tgttttctct actattgagc tgtagacgaa 4440 ctgtttctct aattataaag caaactgttt gggatattca gggaaactac cccaatgtta 4500 tgttgtcatt taatgggaaa ggctgggatc atatgtattt ctatgttctg taaagtattt 4544 gacttactag ttctcaataa aattttatta ggactataaa aaaa

<210> 519 <211> 1779 <212> DNA

<213> Mus musculus

<400> 519

ggtccggaat tcccgggtcg acccacgcgt ccgctggcct tgggcgcaga ccccggccgg tecegggget geetetttaa gggaggggt ggageegega gteaggegeg aggageteea 120 gaaatettga ggecagagee eegcaeeteg gegeageeat gagtgeggag gtgaaggtga cagggcagaa ccaagagcag tttctgctcc ttgccaagtc ggctaagggg gcggcactgg ccacactcat ccaccaggtg ctggaggccc ctggtgtcta cgtgtttggg gaactgctgg 300 360 atatgcctaa tgttagagag ctggcagaaa gcgactttgc ctccaccttc cggctgctca 420 cagtgtttgc ctatgggacc tatgcggact acttagctga agccaggaat ctcccccac 480 tgactgacgc acagaagaat aagcttcgac atctgtcagt tgtcactctg gctgccaaag 540 tcaagtgtat cccatatgca gtgttgctgg aggcccttgc ccttcgaaac gtgcgccagc tggaagacct tgtgatcgag gctgtgtatg ctgatgtcct tcgtggctct ctggaccagc 600 660 gcaatcagcg gctagaggtt gattacagca tcgggcggga catccagcgc caggacctca 720 gtgccatcgc ccagaccctg caagagtggt gcgtgggctg tgaggttgtg ttgtcgggca tegaagagea ggteageegt gecaaceage acaaggagea geagetggge etgaageage 780 agatcgaaag tgaggttgcc aaccttaaga aaaccattaa agttacgaca gcagctgctg 840 900 ctgcagccac ctcccaggat cctgagcaac acctgacaga gctgagagaa ccagcttctg 960 gcaccaacca gcgccagccc agcaagaaag cctccaaggg caagggactc cgagggagcg 1020 ccaagatttg gtccaagtcg aactgaaagg acttgtttct tccctgggaa tgtggggtcc 1080 cagetgeeta cetgeetace cettaggagt cetcagagee tteetgtgee cetggecage 1140 tgataatgct agttcattac ttttcatctc ctccaccccc aagcataagc cacacctct 1200 gtagggagga ggccagtgca ggtcatgttc tgttggtacc tcttatgtgt tccatgctct 1260 tecccageae gettgetete ategttttte egeactgtgt etgeccatta eccetgteat 1320 tgagcaggtt ggcagtccta tggagggtgc tggctcttaa ccacccacac ctacccctgc

atqcctaatc	tgcagttcct	cctcctccc	ttgcctagtg	ggctgcatct	gaaaagccat	1380
_					ctgctaccct	1440
	ggacattttc					1500
ctcatctcct	tgggcctggg	gatactgctg	cttcagtgac	cccagagcct	gagaacagct	1560
	tgttaagaaa					1620
	gatttatatc					1680
tattaaaaat	aaaaaatata	tatgaatagg	tctatatata	ttgacacatg	acacagaaat	1740
aaatgtatga	gaaatgtatg	tacaaaaaaa	aaaaaaaa			1779

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:				
BLACK BORDERS				
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES				
☐ FADED TEXT OR DRAWING				
☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING				
☐ SKEWED/SLANTED IMAGES				
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS				
☐ GRAY SCALE DOCUMENTS				
☐ LINES OR MARKS ON ORIGINAL DOCUMENT				
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY				
П отнер.				

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.