# Variance-Reduction Methods: SGD(+SWA) vs Nesterov vs SVRG

Author: Shtykov Pavel

**Problem:** SGD does not converge to the minimum, but instead oscillates around it.



**Fig. 2.** Level set plot of 2D logistic regression with the iterates of SGD (left) and SAG (right) with constant stepsize. The green star is the  $x_*$  solution.

The authors of the paper review and criticize common solutions to this problem:

- Scheduling LR but it is difficult to tune
- Momentum but it does not converge to the full gradient whatever
- Mini-batching but the cost of this iteration increases proportionally to the batch size.

#### Authors' Solution: Variance Reduction Methods

Let's use estimate  $g_k \in \mathbb{R}^d$  gradient such that  $g_k \approx \nabla f(x_k)$ .

Then iteration step looks like:  $x_{k+1} = x_k - \gamma g_k$ ,

To make such algorithm converge with a *constant step size*, we need to ensure that the variance of our gradient estimate  $g_k$  converges to zero (VR-property):

$$\mathbf{E}\left[\left\|g_k - \nabla f(x_k)\right\|^2\right] \quad \underset{k \to \infty}{\longrightarrow} \quad 0,$$

## Ideal (unreal) VR-method: SGD\*

Algorithm: 
$$x_{k+1} = x_k - \gamma \left( \nabla f_{i_k}(x_k) - \nabla f_{i_k}(x_\star) \right),$$

This algorithm is unreal because we don't know  $\nabla f_i(x_*)$ , but we can think that real VR-methods is "approximation" of  $SGD_*$ .

Of course it satisfies main VR-property:

$$\mathbf{E}\left[\left\|g_{k} - \nabla f(x_{k})\right\|^{2}\right] = \mathbf{E}\left[\left\|\nabla f_{i}(x_{k}) - \nabla f_{i}(x_{\star}) - \nabla f(x_{k})\right\|^{2}\right]$$

$$\leq \mathbf{E}\left[\left\|\nabla f_{i}(x_{k}) - \nabla f_{i}(x_{\star})\right\|^{2}\right],$$

#### SVRG: Stochastic Variance-Reduced Gradient method

- 1: **Parameters** stepsize  $\gamma > 0$
- 2: Initialization  $\bar{x}_0 = x_0 \in \mathbb{R}^d$
- 3: **for**  $s = 1, 2, \dots$  **do**
- 4: Compute and store  $\nabla f(\bar{x}_{s-1})$
- 5:  $x_0 = \bar{x}_{s-1}$
- 6: Choose the number of inner-loop iterations t
- 7: **for** k = 0, 1, ..., t 1 **do**
- 8: Sample  $i_k \in \{1, ..., n\}$
- 9:  $g_k = \nabla f_{i_k}(x_k) \nabla f_{i_k}(\bar{x}_{s-1}) + \nabla f(\bar{x}_{s-1})$
- $x_{k+1} = x_k \gamma g_k$
- 11:  $\bar{x}_s = x_t$ .

### **Properties of SVRG:**

- Requires only  $\mathcal{O}(d)$  memory, less that other VR methods
- Has iteration complexity  $\mathcal{O}((\kappa_{\max} + n)\log(1/\varepsilon))$ , similar to other VR methods
- Gradient estimate  $g_k$  is bounded:

$$\mathbf{E}\left[\|g_k - \nabla f(x_k)\|^2\right] \leq \mathbf{E}\left[\|\nabla f_i(x_k) - \nabla f_i(\bar{x})\|^2\right]$$
$$\leq L_{\max}^2 \|x_k - \bar{x}\|^2,$$

For a more interesting baseline, I try to used SWA for SGD



I **implemented the SVRG algorithm** in Python and compared it on synthetic data with **SGD** and **Nesterov GD**. I also tested **SWA for SGD**.







## Real Data: Student Depression Dataset

- Binary classification, 27k samples, 18 features (categorical & numerical)
- Basic preprocessing: drop NaNs, One-Hot encoded, standard scaled
- Set same LR and number of iterations for each method

#### **ROC-AUC Score on test set for methods:**

| SGD   | SGD + SWA | Nesterov | SVRG  |
|-------|-----------|----------|-------|
| 0.731 | 0.900     | 0.920    | 0.917 |