Práctica 1

Análisis de eficiencia de algoritmos

Maria Jesús López Salmerón Nazaret Román Guerrero Laura Hernández Muñoz José Baena Cobos Carlos Sánchez Páez

14 de marzo de 2018

Script individual

```
#!/bin/bash
if [ $# -eq 3 ]
then
        i="0"
        output="out"
        tam=$2
        #Primer argumento: programa a ejecutar
        #Segundo argumento: tamaño inicial
        #Tercer argumento : incremento
        while [ $i -lt 25 ]
        do
                 ./$1 $tam >> $1.out
                i=$[$i+1]
                tam=$[$tam+$3]
        done
else
        echo "Error de argumentos"
fi
```

Script conjunto

```
#!/bin/bash
echo "Ejecutando burbuja..."
./individual.sh burbuja 1000 1000
echo "Ejecutando insercion..."
./individual.sh insercion 1000 1000
echo "Ejecutando seleccion..."
./individual.sh selection 1000 1000
echo "Ejecutando mergesort..."
./individual.sh mergesort 1000000 500000
echo "Ejecutando quicksort..."
./individual.sh quicksort 1000000 500000
echo "Ejecutando heapsort..."
./individual.sh heapsort 1000000 500000
echo "Ejecutando hanoi..."
./individual.sh hanoi 10 1
echo "Ejecutando floyd..."
./individual.sh floyd 100 100
```

Makefile

```
DDC=doc
SRC=src
OUT=out
BIN=src
all: todos
todos : burbuja floyd hanoi heapsort insercion mergesort quicksort seleccion
        cd $(SRC) : ./todos.sh
burbuja :
        g++ -o ./$(BIN)/burbuja ./$(SRC)/burbuja.cpp
floyd :
       g++ -o ./$(BIN)/floyd ./$(SRC)/floyd.cpp
hanoi :
        g++ -o ./$(BIN)/hanoi ./$(SRC)/hanoi.cpp
heapsort :
        g++ -o ./$(BIN)/heapsort ./$(SRC)/heapsort.cpp
insercion :
        g++ -o ./$(BIN)/insercion ./$(SRC)/insercion.cpp
mergesort :
        g++ -o ./$(BIN)/mergesort ./$(SRC)/mergesort.cpp
quicksort :
        g++ -o ./$(BIN)/quicksort ./$(SRC)/quicksort.cpp
seleccion :
        g++ -o ./$(BIN)/seleccion ./$(SRC)/seleccion.cpp
```

Modificación de código fuente

```
clock_t tantes;
clock_t tdespues;
tantes = clock();
algoritmo_en_cuestion(T, n);
tdespues = clock();
cout << ((double)(tdespues - tantes))
/ CLOCKS_PER_SEC << endl;</pre>
```

Tamaños de problema

Algoritmo	Eficiencia	Tamaño inicial	Incremento
Burbuja	$O(n^2)$	1000	1000
Inserción	$O(n^2)$	1000	1000
Selección	$O(n^2)$	1000	1000
Mergesort	$O(n \cdot log(n))$	1.000.000	500.000
Quicksort	$O(n \cdot log(n))$	1.000.000	500.000
Heapsort	$O(n \cdot log(n))$	1.000.000	500.000
Floyd	$O(n^3)$	100	100
Hanoi	$O(2^n)$	10	1

Algoritmo burbuja

Algoritmo de inserción

Algoritmo de selección

Algoritmo de Floyd

Algoritmo mergesort

Algoritmo quicksort

Algoritmo heapsort

Algoritmo Hanoi

Variación de la eficiencia empírica

Principio de Invarianza

La eficiencia empírica varía al cambiar de plataforma, lenguaje, etc. como mucho en una constante.

Comparación entre algoritmos de ordenación

Comparación entre algoritmos de ordenación (zoom)

Blocks

Block Title

You can also highlight sections of your presentation in a block, with it's own title

Theorem

There are separate environments for theorems, examples, definitions and proofs.

Example

Here is an example of an example block.