Zusammenfassung Heft 3 ANA

Ida Hönigmann

12. Januar 2021

1 Metrische Räume

Definition 1.1. $< M, d > \dots$ metrischer Raum, $\epsilon \in \mathbb{R}$, $\epsilon > 0$, $x \in M$

 $U_{\epsilon}(x) \coloneqq \{y \in M : d(x,y) < \epsilon\}$ heißt die offene ϵ -Kugel um x.

 $U_{\epsilon}(x) \coloneqq \{y \in M : d(x,y) \le \epsilon\}$ heißt die abgeschlossene ϵ -Kugel um x.

Bemerkung. $(x_n)_{n\in\mathbb{N}}$... Folge in M, $x\in M$ $\lim_{n\to\infty} x_n = x \Leftrightarrow \forall \epsilon > 0 \exists N \in \mathbb{N} \{x_n : n \geq N\} \subseteq U_{\epsilon}(x)$

Definition 1.2. < M, d > ... metrischer Raum $O(\subseteq M)$ heißt offen, falls $\forall x \in O \exists \epsilon > 0 : U_{\epsilon}(x) \subseteq O$

Lemma 1.1. $< M, d > \dots$ metrischer Raum

- $n \in \mathbb{N}, O_1, ..., O_n \subseteq M$... offen $\implies \bigcap_{j=1}^n O_j$... offen
- O_i , $i \in I$... offene Teilmengen von $M \implies \bigcup_{i \in I} O_i$... offen

Definition 1.3. $< M, d > \dots$ metrischer Raum, $E \subseteq M$

- $x \in M$ heißt Häufungspunkt von E, falls $\forall \epsilon > 0 : (E \setminus \{x\}) \cap U_{\epsilon}(x) \neq \emptyset$
- $x \in E$ heißt isolierter Punkt von E, falls $\exists \epsilon > 0 : E \cap U_{\epsilon}(x) = \{x\}$
- E heißt abgeschlossen, falls alle Häufungspunkte von E in E enthalten sind.

Bemerkung. $E \subseteq M$, $x \in M$, dann trifft genau eine der folgenden Aussagen zu:

- $x \in E$ und ist isolierter Punkt
- $x \in E$ und ist Häufungspunkt
- $x \notin E$ und x ist Häufungspunkt von E
- $x \notin E$ und ist kein Häufungspunkt von E

Definition 1.4. $E \subseteq M$

c(E) heißt Abschluss von E, wenn $c(E) = \{x \in M : (x \in E) \lor (x \notin E \land x \text{ ist Häufungspunkt von } E)\}.$

Lemma 1.2. Eigenschaften von c(E):

- $E \subseteq c(E)$
- $c(E) = E \cup HP(E)$
- $E = c(E) \Leftrightarrow E \text{ ist abgeschlossen}$
- $E \subseteq F \implies c(E) \subseteq c(F)$
- $x \in c(E) \Leftrightarrow \forall \epsilon > 0 \exists y \in E : d(x,y) < \epsilon \Leftrightarrow \forall \epsilon > 0 : E \cap U_{\epsilon}(x) \neq \emptyset$
- \bullet c(c(E)) = c(E)
- $x \in HP(E) \forall \epsilon > 0 : (e \setminus \{x\}) \cap U_{\epsilon}(x) \text{ hat } \infty \text{ viele}$ Punkte.

Bemerkung. $E \subseteq M$, $|E| < \infty \implies HP(E) = \emptyset$

Lemma 1.3. $E \subseteq M, < M, d > \dots$ metrischer Raum, $x \in M$

- $x \in HP(E) \Leftrightarrow \exists Folge (x_n)_{n \in \mathbb{N}} aus E \setminus \{x\} mit$ $\lim_{n \to \infty} = x$
- $x \in c(E) \Leftrightarrow \exists Folge(x_n)_{n \in \mathbb{N}} aus E mit \lim_{n \to \infty} = x$

Lemma 1.4. $< M, d > \dots$ metrischer Raum, $A \subseteq M$ Dann sind folgende Aussagen äquivalent:

- A ist abgeschlossen
- Falls (x_n) .. Folge aus A mit Grenzwert in M, so liegt der Grenzwert in A.
- A^C ... Komplement von A ist offen

Lemma 1.5. $\langle M, d \rangle$... metrischer Raum

- $A_1, ... A_n$... abgeschlossene Teilmengen von $M \Longrightarrow \bigcup_{i=1}^n A_i$ abgeschlossen
- $A_i, i \in I$... abgeschlossene Teilmengen von $M \Longrightarrow \bigcap_{i \in I}$ abgeschlossen

Definition 1.5. $\lim_{n\to\infty} x_n = x \implies x \text{ ist einziger}$ $H\ddot{a}ufungspunkt von (x_n).$

 $(x_{j(n)})$ Teilfolge von $(x_n) \implies HP((x_j)) \subseteq HP((x_n))$

Lemma 1.6. (x_n) ... Folge in \mathbb{R} , beschränkt

- $\lim_{n \to \infty} \inf(x_n)$ ist kleinster Häufungspunkt von (x_n) .
- $\lim_{n\to\infty} \sup(x_n)$ ist größter Häufungspunkt von (x_n) .
- (x_n) hat mindestens einen Häufungspunkt in \mathbb{R} .
- (x_n) ist konvergent \Leftrightarrow (x_n) hat genau einen Häufungspunkt.

Satz 1.7. Satz von Bolzano-Weierstraß:

 (x_n) ... beschränkte Folge in \mathbb{R}^p

 $\implies (x_n)$ hat einen Häufungspunkt in \mathbb{R}^p

Definition 1.6. $K \subset M$ heißt kompakt, falls $\forall (x_n)$ in $K : (x_n)$ hat einen Häufungspunkt in K.

Lemma 1.8. $K \subseteq M$... kompakt. Dann gelten folgende Aussagen:

- K ist abgeschlossen
- $F \subseteq M$ ist abgeschlossen $\land F \subseteq K \implies F$ ist kompakt.

• K ist beschränkt.

Bemerkung. $K \subset \mathbb{R}^p$ ist kompakt $\Leftrightarrow K$ ist abgeschlossen und beschränkt.

Lemma 1.9. M... metrischer Raum, (x_n) ... Folge in M, $x \in M$

- $\lim_{\substack{n \to \infty \\ H\ddot{a}ufungspunkt\ von\ x_i}} x_n = x \Leftrightarrow \forall Teilfolge\ (x_j): x ist$
- $\{x_n : n \in \mathbb{N}\} \subseteq K, K \dots \text{ kompakt. Dann ist } \lim_{\substack{n \to \infty \\ (x_n)}} x_n = x \Leftrightarrow x \text{ ist einziger H\"{a}ufungspunkt von } (x_n).$

1.1 Gerichtete Mengen und Netze

Definition 1.7. (I, \leq) heißt gerichtete Menge, falls $I \neq \emptyset$ und falls folgende Eigenschaften gelten:

- $\bullet \le ist \ reflexiv$
 - $\bullet \le ist \ transitiv$
 - $\leq ist\ gerichtet\$