Cheminformatics in Python [Part 1.3] Predicting Solubility of Molecules using PyCaret | Data Science Project

In this Jupyter notebook, I will continue the cheminformatics by simplifying this notebook via the use of the low-code ML library PyCaret.

1. Install PyCaret

```
! pip install pycaret
Collecting pycaret
      Downloading pycaret-2.3.6-py3-none-any.whl (301 kB)
                          301 kB 5.2 MB/s
    Collecting pyod
      Downloading pyod-0.9.7.tar.gz (114 kB)
                                 114 kB 51.9 MB/s
    Collecting kmodes>=0.10.1
      Downloading kmodes-0.11.1-py2.py3-none-any.whl (19 kB)
    Requirement already satisfied: textblob in /usr/local/lib/python3.7/dist-packages
    Requirement already satisfied: pyyaml<6.0.0 in /usr/local/lib/python3.7/dist-packa
    Requirement already satisfied: yellowbrick>=1.0.1 in /usr/local/lib/python3.7/dist
    Collecting pyLDAvis
      Downloading pyLDAvis-3.3.1.tar.gz (1.7 MB)
                                  1.7 MB 43.9 MB/s
      Installing build dependencies ... done
      Getting requirements to build wheel ... done
      Installing backend dependencies ... done
        Preparing wheel metadata ... done
    Collecting mlxtend>=0.17.0
      Downloading mlxtend-0.19.0-py2.py3-none-any.whl (1.3 MB)
                                        1.3 MB 60.0 MB/s
    Collecting scikit-learn==0.23.2
      Downloading scikit learn-0.23.2-cp37-cp37m-manylinux1 x86 64.whl (6.8 MB)
                               6.8 MB 47.2 MB/s
    Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-package
    Collecting umap-learn
      Downloading umap-learn-0.5.2.tar.gz (86 kB)
                                | 86 kB 7.0 MB/s
    Requirement already satisfied: seaborn in /usr/local/lib/python3.7/dist-packages (
    Collecting mlflow
      Downloading mlflow-1.23.1-py3-none-any.whl (15.6 MB)
                                      15.6 MB 41.7 MB/s
    Collecting Boruta
      Downloading Boruta-0.3-py3-none-any.whl (56 kB)
                                         | 56 kB 4.8 MB/s
    Collecting lightgbm>=2.3.1
      Downloading lightgbm-3.3.2-py3-none-manylinux1_x86_64.whl (2.0 MB)
                                         2.0 MB 45.3 MB/s
    Requirement already satisfied: wordcloud in /usr/local/lib/python3.7/dist-packages
    Collecting scikit-plot
      Downloading scikit_plot-0.3.7-py3-none-any.whl (33 kB)
    Requirement already satisfied: nltk in /usr/local/lib/python3.7/dist-packages (fro
    Requirement already satisfied: IPython in /usr/local/lib/python3.7/dist-packages (
    Requirement already satisfied: scipy<=1.5.4 in /usr/local/lib/python3.7/dist-packa
```

```
Collecting imbalanced_learn==0.7.0

Downloading imbalanced_learn-0.7.0-py3-none-any.whl (167 kB)

| 167 kB 85.5 MB/s

Requirement already satisfied: plotly>=4.4.1 in /usr/local/lib/python3.7/dist-pack
Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (f
Requirement already satisfied: cufflinks>=0.17.0 in /usr/local/lib/python3.7/dist-
Requirement already satisfied: spacy<2.4.0 in /usr/local/lib/python3.7/dist-packag

Collecting pandas-profiling>=2.8.0

Downloading pandas_profiling-3.1.0-py2.py3-none-any.whl (261 kB)

| 261 kB 75.9 MB/s

Requirement already satisfied: gensim<4.0.0 in /usr/local/lib/python3.7/dist-packag

Requirement already satisfied: ipywidgets in /usr/local/lib/python3.7/dist-package

Requirement already satisfied: joblib in /usr/local/lib/python3.7/dist-packages (f
```

2. Read in dataset

import pandas as pd

delaney_with_descriptors_url = 'https://raw.githubusercontent.com/dataprofessor/data/maste
dataset = pd.read_csv(delaney_with_descriptors_url)

dataset

	MolLogP	MolWt	NumRotatableBonds	AromaticProportion	logS
0	2.59540	167.850	0.0	0.000000	-2.180
1	2.37650	133.405	0.0	0.000000	-2.000
2	2.59380	167.850	1.0	0.000000	-1.740
3	2.02890	133.405	1.0	0.000000	-1.480
4	2.91890	187.375	1.0	0.000000	-3.040
1139	1.98820	287.343	8.0	0.000000	1.144
1140	3.42130	286.114	2.0	0.333333	-4.925
1141	3.60960	308.333	4.0	0.695652	-3.893
1142	2.56214	354.815	3.0	0.521739	-3.790
1143	2.02164	179.219	1.0	0.461538	-2.581

1144 rows × 5 columns

3. Model Building

3.1 Model Setup

from pycaret.regression import *

/usr/local/lib/python3.7/dist-packages/distributed/config.py:20: YAMLLoadWarning: cal
 defaults = yaml.load(f)

→

model = setup(data = dataset, target = 'logS', train_size=0.8, silent=True)

	Description	Value
0	session_id	172
1	Target	logS
2	Original Data	(1144, 5)

3.2. Model Comparison

Numeric Features

Subsequent blocks of codes, here I will be using the training set (the 80% subset) for model building

compare_models()

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE			
et	Extra Trees Regressor	0.5059	0.4887	0.6909	0.8861	0.1970	0.4637			
rf	Random Forest Regressor	0.5196	0.5107	0.7076	0.8809	0.1995	0.4839			
lightgbm	Light Gradient Boosting Machine	0.5454	0.5422	0.7287	0.8742	0.2062	0.5043			
gbr	Gradient Boosting Regressor	0.5694	0.5505	0.7360	0.8713	0.2074	0.5092			
ada	AdaBoost Regressor	0.6790	0.7454	0.8560	0.8264	0.2395	0.6042			
dt	Decision Tree Regressor	0.6546	0.8740	0.9310	0.7908	0.2586	0.6321			
br	Bayesian Ridge	0.7771	1.0217	1.0059	0.7567	0.2873	0.8652			
ridge	Ridge Regression	0.7767	1.0219	1.0060	0.7566	0.2876	0.8646			
lar	Least Angle Regression	0.7766	1.0220	1.0061	0.7566	0.2876	0.8645			
lr	Linear Regression	0.7766	1.0220	1.0061	0.7566	0.2876	0.8645			
huber	Huber Regressor	0.7740	1.0265	1.0083	0.7554	0.2864	0.8157			
en	Elastic Net	0.8499	1.2214	1.0999	0.7140	0.2895	0.9379			
lasso	Lasso Regression	0.9013	1.3810	1.1694	0.6775	0.2993	1.0137			
omp	Orthogonal Matching Pursuit	0.9126	1.3978	1.1742	0.6641	0.3559	1.2094			
knn	K Neighbors Regressor	0.9182	1.6377	1.2698	0.6196	0.3190	0.8813			
par	Passive Aggressive Regressor	1.2775	2.6631	1.5614	0.3524	0.3925	0.9305			
llar	Lasso Least Angle Regression	1.6487	4.3733	2.0796	-0.0124	0.5223	2.2574			
dummy	Dummy Regressor	1.6487	4.3733	2.0796	-0.0124	0.5223	2.2574			
ExtraTrees	ExtraTreesRegressor(bootstrap=False, ccp_alpha=0.0, criterion='mse', max depth=None, max features='auto', max leaf nodes=None,									

max_depth=None, max_features='auto', max_leaf_nodes=None, max_samples=None, min_impurity_decrease=0.0, min_impurity_split=None, min_samples_leaf=1, min_samples_split=2, min_weight_fraction_leaf=0.0, n_estimators=100, n_jobs=-1, oob_score=False, random_state=172, verbose=0, warm_start=False)

DCA Mathad $https://colab.research.google.com/drive/1c7_vwZIA48A6KACBjqSSxoyMGeZzMqhd\#printMode=true$

3.3. Model Creation

et = create_model('et')

	MAE	MSE	RMSE	R2	RMSLE	MAPE
0	0.4820	0.4334	0.6583	0.8793	0.1748	0.2359
1	0.4798	0.3620	0.6017	0.8977	0.2003	0.5676
2	0.5642	0.5649	0.7516	0.8580	0.2154	0.3474
3	0.5531	0.6503	0.8064	0.8849	0.2274	0.8153
4	0.5921	0.6924	0.8321	0.8849	0.2241	0.4793
5	0.4324	0.3232	0.5685	0.9184	0.1445	0.2563
6	0.4154	0.2832	0.5321	0.9105	0.1556	0.2966
7	0.6056	0.6470	0.8044	0.8235	0.2442	0.4453
8	0.4950	0.5781	0.7604	0.8749	0.2213	1.0027
9	0.4393	0.3520	0.5933	0.9293	0.1621	0.1911
Mean	0.5059	0.4887	0.6909	0.8861	0.1970	0.4637
SD	0.0651	0.1463	0.1065	0.0292	0.0332	0.2522

3.4. Model Tuning

The learning parameters are subjected to optimization at this phase. Here, I will use 50 iterations for the optimization process and the fitness function is the Mean Absolute Error (MAE) which is the performance metric used to judge at which learning parameter setting are optimal

tuned_et = tune_model(et, n_iter=50, optimize='mae')

	MAE	MSE	RMSE	R2	RMSLE	MAPE
0	0.5116	0.4227	0.6501	0.8823	0.1871	0.3067
1	0.5726	0.4960	0.7043	0.8599	0.2116	0.9975
2	0.5941	0.5592	0.7478	0.8595	0.2170	0.3657

print(tuned_et)

4. Model Analysis

4.1. Plot Models

In this tutorial, I will perform regression.

Residuals plot

plot_model(et, 'residuals')

Prediction Error Plot

```
plot_model(et, 'error')
```


Cooks Distance Plot

plot_model(et, 'cooks')

Recursive Feature Selection

plot_model(et, 'rfe')

plot_model(et, 'learning')

Validation Curve

plot_model(et, 'vc')

plot_model(et, 'manifold')

Feature Importance

plot_model(et, 'feature')

Model Hyperparameter

The hyperparameter of the learning model is displayed using the parameter argument in inside the plot_model() function.

plot_model(et, 'parameter')

	Parameters
bootstrap	False
ccp_alpha	0.0
criterion	mse
max_depth	None
max_features	auto
max_leaf_nodes	None
max_samples	None
min_impurity_decrease	0.0
min_impurity_split	None
min_samples_leaf	1
min_samples_split	2
min_weight_fraction_leaf	0.0
n_estimators	100
n_jobs	-1
oob_score	False
random_state	172
verbose	0
warm_start	False

Here, the hyperparameter of the tuned model is displayed below.

plot_model(tuned_et, 'parameter')

	Parameters
bootstrap	True
ccp_alpha	0.0
criterion	mse
max_depth	9
max_features	1.0
max_leaf_nodes	None
max_samples	None
min_impurity_decrease	0.002
min_impurity_split	None
min_samples_leaf	2
min_samples_split	7
min_weight_fraction_leaf	0.0
n_estimators	240
n_jobs	-1
oob_score	False
random_state	172
verbose	0
warm_start	False

Show all plots

The evaulate_model() diplays all available plots here.

evaluate_model(tuned_et)

Plot Type:	Hyperparameters	Residuals	Prediction Error	Cooks Distar
	Feature Selection	Learning Curve	Manifold Learning	Validation Cu
	Feature Importance	Feature Importance	Decision Tree	Interactive Res

	Parameters
bootstrap	True
ccp_alpha	0.0
criterion	mse
max_depth	9
max_features	1.0
max_leaf_nodes	None
max_samples	None
min_impurity_decrease	0.002
min_impurity_split	None
min_samples_leaf	2

4.2. Model Interpretain

The interpret_model() function of Pycaret leverages the use of the SHAP library to produce stunning plots for depicting the *SHapley additive exPlanations (SHAP)* values that was originally proposed by Lundberg and Lee in 2016. In a nutshell, SHAP plots adds interpretability to constructed models so that the contribution of each features to the prediction can be elucidated.

Summary plot

```
Falsa
           warm etart
! pip install shap
    Collecting shap
      Downloading shap-0.40.0-cp37-cp37m-manylinux2010_x86_64.whl (564 kB)
                           564 kB 5.0 MB/s
    Requirement already satisfied: tqdm>4.25.0 in /usr/local/lib/python3.7/dist-packages
    Requirement already satisfied: cloudpickle in /usr/local/lib/python3.7/dist-packages
    Requirement already satisfied: scikit-learn in /usr/local/lib/python3.7/dist-packages
    Collecting slicer==0.0.7
      Downloading slicer-0.0.7-py3-none-any.whl (14 kB)
    Requirement already satisfied: packaging>20.9 in /usr/local/lib/python3.7/dist-packag
    Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-packages (from
    Requirement already satisfied: numba in /usr/local/lib/python3.7/dist-packages (from
    Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from
    Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from
    Requirement already satisfied: pyparsing!=3.0.5,>=2.0.2 in /usr/local/lib/python3.7/c
    Requirement already satisfied: llvmlite<0.35,>=0.34.0.dev0 in /usr/local/lib/python3
     Requirement already satisfied: setuptools in /usr/local/lib/python3.7/dist-packages (
     Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python3.7/dis
    Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-packages
```

Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packages (fr Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3.7/dist-Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-packages

Installing collected packages: slicer, shap
Successfully installed shap-0.40.0 slicer-0.0.7

interpret_model(et)

Correlation Plot

interpret_model(et, plot='correlation')

Reason Plot at Observation Level

interpret_model(et, plot='reason', observation=10)

6.6. External Testing

We will now apply the trained model (build with 80% subset) to evaulate on the so-called **"hold-out"** testing set (the 20% subset) that serves as the unseen data.

prediction_holdout=predict_model(et)

	Model	MAE	MSE	RMSE	R2	RMSLE	MAPE
0	Extra Trees Regressor	0.5208	0.6193	0.787	0.8618	0.2168	1.1997

prediction_holdout.head()

	MolLogP	MolWt	NumRotatableBonds	AromaticProportion	logS	Label
0	1.85272	209.292999	5.0	0.400000	-3.028	-2.38132
1	1.75940	90.191002	2.0	0.000000	-1.340	-2.08080
2	1.33860	588.562012	5.0	0.285714	-3.571	-3.51642
3	6.62060	326.437012	1.0	0.705882	-7.320	-7.32000
4	1.82980	169.992996	0.0	0.000000	-2.090	-1.97185