The Mean Value Theorem

The **mean value theorem** (MVT): Let f(x) be differentiable. For **some** z in [x, x + h]:

$$f'(z) = \frac{f(x+h) - f(x)}{h}.$$

This is *intuitively* clear from:

We can **rewrite** the MV formula as:

$$f(x+h) = f(x) + hf'(z).$$

A generalization if f is **twice** differentiable is

$$f(x+h) = f(x) + hf'(x) + {\sum_{z=0}^{n}} (z),$$

for some z in [x, x + h].

Taylor Series

Taylor's Theorem: Let f have continuous derivative of order $0, 1, \ldots, (n+1)$, then

$$f(x+h) = \sum_{k=0}^{n} \frac{f^{(k)}(x)}{k!} h^{k} + E_{n+1},$$

where the error (remainder) $E_{n+1} = \frac{f^{(n+1)}(z)}{(n+1)!} h^{n+1}, z \in [x, x+h].$

Taylor series. If f has **infinitely** many derivatives,

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2!}f''(x) + \frac{h^3}{3!}f'''(x) + \cdots,$$

where we assume $\lim_{n\to\infty} E_{n+1} = 0$.

Example. $f(x) = \sin x$:

$$\sin(x+h) = \sin(x) + h\sin'(x) + \frac{h^2}{2!}\sin''(x) + \frac{h^3}{3!}\sin'''(x) + \frac{h^4}{4!}\sin''''(x) + \cdots,$$

Letting x = 0, we get

$$\sin(h) = h - \frac{h^3}{3!} + \frac{h^5}{5!} - \cdots$$

Numerical Approximation to f'(x)

If h is **small**, f'(x) is nearly the **slope** of the line through (x, f(x)) and (x + h, f(x + h)). We write

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$

the **forward difference** approximation.

How good is this approximation? Using the truncated Taylor series:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(z),$$

we get

$$\frac{f(x+h) - f(x)}{h} - f'(x) = \frac{h}{2}f''(z),$$

the discretization error: the difference between what we want and our approximation. Using the discretization size h. We say the discretization error is O(h).

Computing the Approximation to f'(x)

We want to approximate the <u>deriv</u> of $f(x) = \sin(x)$ at x = 1. Knowing $\sin'(x) = \cos(x)$, we can compute the **exact** discretization error. The program uses **double precision**, and displays

$$(\sin(x+h) - \sin(x))/h,$$

with the **error**, for h from 0.1 to 10^{-20} .

Convergence of Approximation

```
h
        exact
                     approx
                                  error
e-03 5.403023e-01 5.398815e-01 -4.20825e-04
e-04 5.403023e-01 5.402602e-01 -4.20744e-05
e-05 5.403023e-01 5.402981e-01 -4.20736e-06
e-06 5.403023e-01 5.403019e-01 -4.20746e-07
e-07 5.403023e-01 5.403023e-01 -4.18276e-08
e-08 5.403023e-01 5.403023e-01 -2.96988e-09
e-09 5.403023e-01 5.403024e-01 5.25412e-08
e-10 5.403023e-01 5.403022e-01 -5.84810e-08
e-11 5.403023e-01 5.403011e-01 -1.16870e-06
e-12 5.403023e-01 5.403455e-01 4.32402e-05
e-13 5.403023e-01 5.395684e-01 -7.33915e-04
e-14 5.403023e-01 5.440093e-01
                                3.70697e-03
e-15 5.403023e-01 5.551115e-01
                               1.48092e-02
e-16 5.403023e-01 0.000000e+00 -5.40302e-01
```

Discretization error reduced by ~ 10 when h is reduced by 10, so the error is O(h). But when h gets **too** small, the approximation starts to get **worse!** Q: Why?

Explanation of Accuracy Loss

If x = 1, and $h < \epsilon/2 \approx 10^{-16}$ the machine epsilon, x + h has the same numerical value as x, and so f(x + h) and f(x) cancel to give 0: the answer has no digits of precision.

When h is a **little** bigger than ϵ , the values **partially cancel**. e.g. suppose that the <u>first 10 digits</u> of f(x+h) and f(x) are the same. Then, even though $\sin(x+h)$ and $\sin(x)$ are **accurate to 16 digits**, the **difference** has only **6 accurate digits**

In summary, using h too big means a big discretization error, while using h too small means a big cancellation error. For the function $f(x) = \sin(x)$, for example, at x = 1, the best choice of h is about 10^{-8} , or $\sim \sqrt{\epsilon}$.

<u>Numerical cancellation</u>, which results when subtraction of **nearly equal values** occurs, should always be avoided when possible.

Numerical Cancellation

One of the main causes for deterioration in precision is numerical cancellation.

Suppose x and y are exact values of two numbers and $x \neq y$. But in many situations we may only have the approximate values

$$\hat{x} = x(1 + \delta_x), \qquad \hat{y} = y(1 + \delta_y),$$

where δ_x and δ_y are the ralative errors in \hat{x} and \hat{y} , respectively. These values may be obtained from some computations or physical experiments. Suppose we want to compute x - y. But we can only compute $\hat{x} - \hat{y}$. Is it a good approximation of x - y? Let us look at the relative error:

$$\left| \frac{(\hat{x} - \hat{y}) - (x - y)}{x - y} \right| = \left| \frac{x \delta_x - y \delta_y}{x - y} \right| \le \frac{|x|}{|x - y|} |\delta_x| + \frac{|y|}{|x - y|} |\delta_y| \le \max\{|\delta_x|, |\delta_y|\} \frac{|x| + |y|}{|x - y|}.$$

This suggests when $|x-y| \ll |x| + |y|$, it is possible that the relative error may be very large. Here the rounding error in computing $\hat{x} - \hat{y}$ was not considered for simplicity.

More accurate numerical differentiation

As h decreases, the line through

(x-h, f(x-h)) and (x+h, f(x+h)) gives a **better approximation** to the **slope of the tangent** to f at x than the line through (x, f(x)) and (x+h, f(x+h)).

This observation leads to the approximation:

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h},$$

the **central difference** formula.

Analyzing Central Difference Formula

From the truncated Taylor series:

$$f(x+h) = f(x) + hf'(x) + \frac{h^2}{2}f''(x) + \frac{h^3}{6}f'''(z_1),$$

with z_1 between x and x + h. But also

$$f(x-h) = f(x) - hf'(x) + \frac{h^2}{2}f''(x) - \frac{h^3}{6}f'''(z_2),$$

with z_2 between x and x - h.

Subtracting the 2nd from the 1st:

$$\frac{f(x+h) - f(x-h)}{2h} = f'(x) + \frac{h^2}{12}(f'''(z_1) + f'''(z_2))$$

So the discretization error is

$$\frac{h^2}{12}(f'''(z_1) + f'''(z_2)),$$

which is $O(h^2)$ instead of O(h). When h is small enough, $O(h^2)$ will be (much) smaller than O(h).