

Europäisches Patentamt

European Patent Office

Office européen des brevets

REC'D 10 MAR 2003

WIPO

PCT

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein. The attached documents are exact copies of the European patent application described on the following page, as originally filed.

Les documents fixés à cette attestation sont conformes à la version initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr. Patent application No. Demande de brevet n°

02003811.3

PRIORITY
DOCUMENT
SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

BEST AVAILABLE COPY

Europäisches **Patentamt**

European **Patent Office**

Office européen des brevets

Blatt 2 der Bescheinigung Sheet 2 of the certificate Page 2 de l'attestation

Anmeldung Nr.:

02003811.3 .

Anmeldetag:

Date of filing: Date de dépôt:

20/02/02

Application no.: Demande n*:

Anmelder: Applicant(s): Demandeur(s):

ALTANA Pharma AG

78467 Konstanz

GERMANY

Bezeichnung der Erfindung: Title of the invention:

Titre de l'invention:

Orale darreichungsform enthaltend einen PDE-4 hemmer als wirkstoff und polyvinylpyrrolidone als Hilfstoff

In Anspruch genommene Prioriäl(en) / Priority(les) claimed / Priorité(s) revendiquée(s)

Staat:

Tag:

Aldenzeichen:

State: Páys:

Date: Date: File no. Numéro de dépôt:

Internationale Patentklassifikation: International Patent classification: Classification internationale des brevets:

A61K45/06, A61K9/20, A61K31/166, A61K31/44, A61P11/06

Am Anmeldetag benannte Vertragstaaten: Contracting states designated at date of filing: Etats contractants désignés lors du depôt:

AT/BE/CH/CY/DE/DK/ES/FI/FR/GB/GR/IE/IT/LI/LU/MC/NL/PT/SE/TR

Bemerkungen: Remarks: Remarques:

> Der Name des Anmelders lautete zum Zeitpunkt der Einreichung der Anmeldung: Byk Gulden Lomberg Chemische Fabrik Gmbh.

Die Eintragung der geänderten Daten ist mit Wirkung vom 12.07.02 erfolgt. URSPRUNGLICHE BEZEICHNUNG DER ANMELDUNG: SIEHE BITTE SEITE 1 DER BESCHREIBUNG.

EPA/EPO/OEB Form

1012

- 11.00

NR.674

-1-

Darreichungsform enthaltend PDE 4-Hemmer als Wirkstoff

Technisches Gebiet

Die vorliegende Erfindung betrifft das Gebiet der pharmazeutischen Technologie und beschreibt eine Darreichungsform zur oralen Verabreichung eines PDE 4-Hemmers als Wirkstoff in Tabletten- oder Pelletform zur Behandlung von Krankheiten wie Asthma oder Atemwegsobstruktionen. Weiterhin betrifft die Erfindung auch Verfahren zur Herstellung der Darreichungsform.

Stand der Technik

Zyklisch-Nukleotid Phosphodiesterase (PDE) Inhibitoren (und zwar des Typs 4) sind derzelt von besonderem Interesse als eine neue Generation von Wirkstoffen zur Behandlung von entzündlichen Erkrankungen, insbesondere Erkrankungen der Atemwege wie Asthma oder Atemwegsobstruktionen (wie z.B. COPD = Chronic Obstructive Pulmonary Disease). Eine Reihe von PDE 4-Hemmern befindet sich derzeit in fortgeschrittenen klinischen Prüfungen.

In der WO00/50011 und der WO01/32165, die Darrelchungsformen mit kontrollierter bzw. retardierter Abgabe eines PDE 4-Hemmers betreffen, wird darauf hingewiesen, dass sich bei der Abgabe von bestimmten PDE 4-Hemmern wie Ariflo® (INN: Cilomilast) in höheren Dosierungen unerwünschte ZNS Nebenwirkungen manifestieren können. Diese Gefahr sehen die WO00/50011 und WO01/32165 insbesondere bei Darreichungsformen mit sofortiger Freisetzung (Immediate Release Dosage Form) des Wirkstoffs und schlägt deshalb vor, den PDE 4-Hemmer Ariflo® (INN: Cilomilast) in Darreichungsformen mit kontrollierter bzw. retardierter Freiselzung zu verabfolgen.

In der US 5,286,494 wird eine Darreichungsform mit kontrollierter bzw. retardierter Freisetzung für den schwerlöslichen PDE 4-Hemmer Rolipram vorgeschlagen. Die Herstellung von Darreichungsformen mit kontrolllerter bzw. retardierter Freisetzung von schwer löslichen Wirkstoffen kann jedoch technisch kompliziert sein, worauf beispielsweise in der US 5,286,494 hingewiesen wird.

Wirkstoffe aus der Klasse der PDE 4-Hemmer können je nach chemischer Struktur eine geringe Löslichkelt in Wasser bzw. wässrigen Systemen aufweisen. So wird für den in der WO95/01338 beschriebenen PDE 4-Hemmer N-(3,5-Dichlorpyrld-4-yl)-3-cyclopropylmethoxy-4-difluormethoxy-benzamid (INN; Roflumijast) nur eine Wasserlöslichkeit von 0,53 mg/l bei 21°C beobachtet. Die Bioverfügbarkeit elnes Arzneistoffes hängt wesentlich von der Freisetzung des Arzneistoffes aus der Arzneiform ab. Je

5.10/36

1029EPORD01 020

-2-

schneller der Arzneistoff aus der Formullerung freigesetzt und aufgelöst wird, desto schneller kann er absorbjert werden. Bei in Wasser schwerlöslichen Arznelatoffen wird die Bioverfügbarkeit also häufig durch die Löslichkeit bzw. Lösungsgeschwindigkeit begrenzt. Die Herstellung geeigneter Darrelchungsformen gestaltet sich dadurch sehr problematisch.

Beschreibung der Erfindung

Aufgabe der vorliegenden Erfindung ist es, eine Darreichungsform für die orale Verabreichung von schwerlöslichen PDE 4-Hemmern bereitzustellen, die ohne großen technischen Aufwand hergestellt werden kann, die der geringen Löslichkeit des schwerlöslichen PDE 4-Hemmers Rechnung trägt und mit der eine schnelle, akzeptable Bioverfügbarkeit des schwerföslichen PDE 4-Hemmers erhalten wird, so dass Serumspiegel erreicht werden, die benötigt werden, um rasch die gewünschte pharmakologische Wirkung zu erhalten, ohne dass sich Nebenwirkungen manifestieren.

Überraschenderweise wurde nun gefunden, dass diese Aufgabe gelöst werden kann durch eine Darreichungsform zur oralen Verabreichung eines schwerlöslichen PDE 4-Hemmers, wobei als Bindemittel für die Darreichungsform Polyvinylpyrrolidon (PVP) eingesetzt wird. Im Vergleich zu Darreichungsformen bei denen kein PVP als Bindemittel eingesetzt wird, zelgt die erfindungsgemäße Darreichungsform deutlich verbesserte pharmakokinetische Eigenschaften. So wird Insbesondere im Hinblick auf die Bioverfügbarkeit das schwerlöslichen PDE 4-Hemmers mit den erfindungsgemäßen Darreichungsformen in Vergleich zu Darrelchungsformen ohne PVP eine schnellere Resorption und damit schnellerer Eintritt der pharmakologischen Wirkung beobachtet. Bei der erfindungsgemäßen oralen Darreichungsform handelt es sich vorzugsweise um eine feste Darreichungsform in Tabletten- oder Pelletform. Bevorzugt handelt es sich um eine feste, orale Darreichungsform mit sofortiger Freisetzung des Wirkstoffs (Immediate Release Solid Oral Dosage Form).

Gegenstand der Erfindung ist daher eine Darreichungsform in Tabletten- oder Pelletform zur oralen Verabreichung eines schwerlöslichen PDE 4-Hemmers, enthaltend den schwerlöslichen PDE 4-Hemmer zusammen mit Polyvinylpyrrolidon als Bindemittel sowie ein oder mehrere weitere geeignete pharmazeutische Hilfsstoffe.

Bei dem schwerlöslichen PDE 4-Hemmer handelt sich erfindungsgemäß bevorzugt um eine Verbindung aus der Gruppe der Verbindungen der Formel I

- 3 -

$$R1$$
 $R2$
 $R3$
 $R5$

worin entweder

R1 3-7C-Cycloalkoxy, 3-7C-Cycloalkylmethoxy oder Benzyloxy und

R2 ganz oder teilweise durch Fluor substituiertes 1-4C-Alkoxy,

oder

R1 ganz oder teilweise durch Fluor substituiertes 1-4C-Alkoxy und

R2 3-7G-Cycloalkylmethoxy oder Benzyloxy bedeutet,

und

R3 Phenyl, Pyridyl, durch R31, R32 und R33 substituiertes Phenyl oder durch R34, R35, R36 und R37 substituiertes Pyridyl bedeutet, wobel

- R31 Hydroxy, Halogen, Cyano, Carboxyl, Trifluormethyl, 1-4C-Alkyl, 1-4C-Alkoxy, 1-4C-Alkoxycarbonyl, 1-4C-Alkylcarbonyl, 1-4C-Alkylcarbonyloxy, Amino, Mono- oder Di-1-4C-alkylamino oder 1-4C-Alkylcarbonylamino,
- R32 Wasserstoff, Hydroxy, Halogen, Amino, Trifluormethyl, 1-4C-Alkyl oder 1-4C-Alkoxy,
- R33 Wasserstoff, Halogen, 1-4C-Alkyl oder 1-4C-Alkoxy,
- R34 Hydroxy, Halogen, Cyano, Carboxyl, 1-4C-Alkyl, 1-4C-Alkoxy, 1-4C-Alkoxycarbonyl oder Amino,
- R35 Wasserstoff, Halogen, Amino oder 1-4C-Alkyl,
- R36 Wasserstoff oder Halogen und
- R37 Wasserstoff oder Halogen bedeutet,

die Salze dieser Verbindungen sowie die N-Oxide der Pyridine und deren Salze.

3-7C-Cycloalkoxy steht beispielswelse für Cyclopropyloxy, Cyclobutyloxy, Cyclopentyloxy, Cyclohexyloxy und Cycloheptyloxy, wovon Cyclopropyloxy. Cyclobutyloxy und Cyclopentyloxy bevorzugt sind.

3-7C-Cycloalkylmethoxy steht beispielsweise für Cyclopropylmethoxy, Cyclobutylmethoxy, Cyclobutylmethoxy, Cyclobutylmethoxy, Cyclobutylmethoxy und Cyclopentylmethoxy wavon Cyclopropylmethoxy, Cyclobutylmethoxy und Cyclopentylmethoxy bevorzugt sind.

Als ganz oder teilweise durch Fluor substituiertes 1-4C-Alkoxy selen beispielsweise der 1,2,2-Trifluorethoxy, der 2,2,3,3,3-Pentafluorpropoxy-, der Perfluorethoxy- und insbesondere der 1,1,2,2-Tetrafluorethoxy-, der Trifluormethoxy-, der 2,2,2-Trifluorethoxy- und der Difluormethoxyrest genannt.

Halogen Im Sinne der vorliegenden Erfindung ist Brom, Chlor und Fluor.

1-4C-Alkyl steht für geradkettige oder verzweigte Alkylreste mit 1 bis 4 Kohlenstoffatomen. Belsplels-weise seien genannt der Butyl-, iso-Butyl-, sec.-Butyl-, tert.-Butyl-, Propyl-, Isopropyl-, Ethyl- und der Methylrest.

1-4C-Alkoxy steht für einen Rest, der neben dem Sauerstoffatom einen der vorstehend genannten 1-4C-Alkylreste enthält, Beispielsweise selen der Methoxy- und der Ethoxyrest genannt.

1-4C-Alkoxycarbonyl steht für eine Carbonylgruppe, an die einer der vorstehend genannten 1-4C-Alkoxyreste gebunden ist, Beispielsweise selen der Methoxycarbonyl- (CH₃O-CO-) und der Ethoxycarbonylrest (CH₃CH₂O-CO-) genannt.

1-4C-Alkylcarbonyl steht für eine Carbonylgruppe, an die einer der vorstehend genannten 1-4C-Alkylreste gebunden ist. Beispielsweise sei der Acetylrest (CH3CO-) genannt.

1-4C-Alkylcarbonyloxyreste enthalten neben dem Sauerstoffatom einen der vorstehend genannten 1-4C-Alkylcarbonylreste. Beispleisweise sei der Acetoxyrest (CH₃CO-O-) genannt.

Als Mono- oder Di-1-4C-alkylaminoreste seien beispielsweise der Methylamino-, der Dimethylaminound der Diethylaminorest genannt.

Als 1-4C-Alkylcarbonylaminorest sei beispielsweise der Acetylamidorest (-NH-CO-CH3) genannt.

Als belspielhafte, durch R31. R32 und R33 substitulerte Phenylreste seien die Reste 2-Acetylphenyl, 2-Aminophenyl, 2-Bromphenyl, 2-Chlorphenyl, 2,3-Dichlorphenyl, 2,4-Dichlorphenyl, 4-Diethylamino-2-methylphenyl, 4-Brom-2-trifluormethylphenyl, 2-Carboxy-5-chlorphenyl, 3,5-Dichlor-2-hydroxyphenyl, 2-Brom-4-carboxy-5-hydroxyphenyl, 2,6-Dichlorphenyl, 2,5-Dichlorphenyl, 2,4-6-Trichlorphenyl, 2,4-G-Trifluorphenyl, 2-Cyanphenyl, 4-Cyan-2-fluorphenyl, 2-Fluorphenyl, 2,4-Difluorphenyl, 2-G-Difluorphenyl, 2-Chlor-8-fluorphenyl, 2-Hydroxy-4-methoxyphenyl, 2-Hydroxyphenyl, 2-Methoxyphenyl, 2,3-Dimethoxyphenyl, 2,4-Dimethoxyphenyl, 2,6-Dimethoxyphenyl, 2-Chlor-6-methylphenyl, 2,4-Dimethylphenyl, 2,6-Dimethylphenyl, 2-Chlor-6-methylphenyl, 2,4-Dimethylphenyl,

2,6-Dimethylphenyl, 2,3-Dimethylphenyl, 2-Methoxycarbonylphenyl, 2-Trifluormethylphenyl, 2,6-Dichlor-4-methoxyphenyl, 2,6-Dichlor-4-cyanphenyl, 2,6-Dichlor-4-aminophenyl, 2,6-Dichlor-4-methoxycarbonylphenyl, 4-Acetylamino-2,6-dichlorphenyl und 2,6-Dichlor-4-ethoxycarbonylphenyl genannt.

Als beispielhafte, durch R34, R35, R36 und R37 substituierte Pyridyireste selen die Reste 3,5-Dichlorpyrid-4-yl, 2,6-Diaminopyrid-3-yl, 4-Aminopyrid-3-yl, 3-Methylpyrid-2-yl, 4-Methylpyrid-2-yl, 5-Hydroxypyrid-2-yl, 4-Chlorpyrid-3-yl, 3-Chlorpyrid-4-yl, 2-Chlorpyrid-3-yl, 2,3,5,6-Tetrafluorpyrid-4-yl, 3,5-Dichlor-2,6-difluorpyrid-4-yl, 3,5-Dibrompyrid-2-yl, 3,5-Dibrompyrid-4-yl, 3,5-Dichlorpyrid-4-yl, 2,6-Dichlorpyrid-3-yl, 3,5-Dimethylpyrid-4-yl, 3-Chlor2,5,6-trifluorpyrid-4-yl und 2,3,5-Trifluorpyrid-4-yl genannt.

Als Salze kommen für Verbindungen der Formel I - je nach Substitution - alle Säureadditionssalze aber insbesondere alle Salze mit Basen in Betracht. Besonders erwähnt seien die pharmakologisch verträglichen Salze der in der Galenik üblicherweise verwendeten anorganischen und organischen Säuren und Basen. Pharmakologisch unverträgliche Salze, die beispielsweise bei der Herstellung der erfindungsgemäßen Verbindungen im industriellen Maßstab als Verfahrensprodukte zunächst anfallen können, werden durch dem Fachmann bekannte Verfahren in pharmakologisch verträgliche Salze übergeführt. Als solche eignen sich einerseits wasserlösliche und wasserunlösliche Säureadditionssalze mit Säuren wie beispielsweise Salzsäure, Bromwasserstoffsäure, Phosphorsäure, D-Gluconsäure, Essigsäure, Zitronensäure, Schwefelsäure. Salpetersäure, 2-(4-Hydroxybenzoyl)-benzoesäure, Buttersäure, Sulfosalicylsäure, Maleinsäure, Laurinsäure, Äpfelsäure, Fumarsäure, Bernsteinsäure, Oxalsäure, Weinsäure, Embonsäure, Stearinsäure, Toluolsulfonsäure, Methansulfonsäure oder 3-Hydroxy2-naphtoesäure, wobei die Säuren bei der Salzherstellung je nachdem, ob es sich um eine ein- oder mehrbasige Säure handelt und je nachdem, weiches Salz gewünscht wird - im äquimolaren oder einem davon abwelchenden Mengenverhältnis eingesetzt werden.

Andererselts kommen vor allem auch Salze mit Basen in Betracht. Als Beisplele für basische Salze seien Lithium-, Natrium-, Kalium-, Calcium-, Aluminium-, Magnesium-, Titan-, Ammonium-, Meglumin-oder Guanidiniumsalze erwähnt, wobei auch hier bei der Salzherstellung die Basen im äquimolaren oder einem davon abweichenden Mengenverhältnis eingesetzt werden.

Hervorzuhebende Verbindungen der Formel I sind solche, in denen entweder

- R1 3-5C-Cycloalkoxy, 3-5C-Cycloalkylmethoxy oder Benzyloxy und
- R2 ganz oder teilweise durch Fluor substutuiertes 1-4C-Alkoxy, oder
- R1 ganz oder teilweise durch Fluor substituiertes 1-4C-Alkoxy und

3-5C-Cycloalkylmethoxy oder Benzyloxy bedeutet

und

- R3 Phenyl, Pyridyl, durch R31, R32 und R33 substitulertes Phenyl oder durch R34, R35, R36 und R37 substituiertes Pyridyl bedeutet, wobei
 - Halogen, Cyano, Carboxyl, 1-4C-Alkyl, 1-4C-Alkoxy oder 1-4C-Alkoxycarbonyl,
 - R32 Wasserstoff, Halogen, 1-4C-Alkyl oder 1-4C-Alkoxy,
 - R33 Wasserstoff, Halogen, 1-4C-Alkyl oder 1-4C-Alkoxy,
 - R34 Halogen oder 1-4C-Alkyl,
 - R35 Wasserstoff oder Halogen,
 - R36 Wasserstoff oder Halogen und
 - Wasserstoff oder Halogen bedeutet,

die Salze dieser Verbindungen sowie die N-Oxlde der Pyridine und deren Salze.

Besonderes hervorzuhebende Verbindungen der Formel I sind solche, in denen entweder

- 3-5C-Cycloalkoxy, 3-5C-Cycloalkylmethoxy oder Benzyloxy und
- R2 ganz oder teilweise durch Fluor substitujertes 1-4C-Alkoxy, oder
- R1 ganz oder teilweise durch Fluor substituiertes 1-4C-Alkoxy und
- 3-5C-Cycloalkylmethoxy oder Benzxyloxy bedeutet und
- R3 2-Bromphenyl, 2,6-Dichlor-4-ethoxycarbonylphenyl, 2,6-Dimethoxyphenyl, 4-Cyano-2-fluorphenyi, 2,4,6-Trifluorphenyi, 2-Chlor-6-methylphenyi, 2,6-Dimethylphenyi, 2,6-Difluorphenyi, 2,6-Dichlorphenyl, 3,5-Dlchlorpyrid-4-yl, 3-Methylpyrid-2-yl, 2-Chlorpyrid-3-yl, 3,5-Dibrompyrid-2-yl, 2,3,5,6-Tetrafluorpyrid-4-yl, 3-Chlor-2,5,6-trifluorpyrid-4-yl, 3,5-Dichlor2,6-difluorpyrid-4-yl oder 2,6-Dichlorpyrid-3-yl bedeutet.

die Salze dieser Verbindungen sowie die N-Oxide der Pyridine und deren Salze.

Bevorzugte Verbindungen der Formel I sind solche, in denen

- R1 Difluormethoxy,
- R2 Cyclopropylmethoxy und
- 2-Bromphenyl, 2,6-Dichlor-4-ethoxycarbonylphenyl, 2,6-Dimethoxyphenyl, 4-Cyano-2-fluorphenyl, 2,4,6-Trifluorphenyl, 2-Chlor-6-methylphenyl, 2,6-Dimethylphenyl, 2,6-Difluorphenyl, 2.6-Dichlorphenyl, 3,5-Dichlorpyrid-4-yl, 3-Methylpyrid-2-yl, 2-Chlorpyrid-3-yl, 3,5-Dibrompyrid-2-yl, 2,3,5,6-Tetrafluorpyrid-4-yl, 3-Chlor-2.5,6-trifluorpyrid-4-yl, 3,5-Dichlor2,6-difluorpyrid-4-yl oder 2,6-Dichlorpyrid-3-yl bedeutet,

die Salze dieser Verbindungen sowie die N-Oxide der Pyridine und deren Salze.

-7-

Besonders bevorzugte Verbindung der Formel I sind solche, worin

R1 Difluormethoxy,

R2 Cyclopropylmethoxy und

R3 3,5-Dichlorpyrid-4-yl bedeutet,

die Salze dieser Verbindung sowie das N-Oxid des Pyridins und dessen Salze,

Diese Verbindung hat den chemischen Namen N-(3,5-Dichlorpyrid-4-yl)-3-cyclopropylmethoxy-4-di-fluormethoxy-benzamid (INN; Roflumilast).

Bevorzugt handelt es sich bei dem schwerlöslichen PDE 4-Hemmer um einen PDE 4-Hemmer mit einer Wasserlöslichkeit von kleiner oder gleich 100 Milligramm/Liter, insbesondere bevorzugt mit einer Wasserlöslichkeit von kleiner oder gleich 1 Milligramm/Liter, bei einer Temperatur von 15 bls 25°C, insbesondere bei 21° C handelt. Besonders bevorzugt handelt es dabei um eine Verbindung der Formel I.

Die oben genannten Verbindungen der Formel i und die Verwendung dieser Verbindungen als Phosphodiesterase (PDE) 4-Hemmer sind in der internationalen Patentanmeldung WO95/01338 beschrieben.

Weitere geeignete pharmazeutische Hilfsstoffe, die in der erfindungsgemäßen Darreichungsform zum Einsatz kommen können, sind pharmazeutische Hilfsstoffe wie Füllstoffe, zusätzliche Bindemittel, Tablettensprengmittel oder auch Gleit- und Trennmittel.

Erfindungsgemäß handelt es sich bei dem eingesetzten Polyvinylpyrrolldon (PVP) insbesondere um ein wasserlösliches PVP mit einem mittleren Molekulargewicht größer 2000, bevorzugt größer 20000. Beispielhaft genannt sei Kollidon 12 PF (Molekulargewicht 2000-3000), Kollidon 17 PF (Molekulargewicht 7000-11000), Kollidon 25 (Molekulargewicht 28000-34000), Kollidon 30 (Molekulargewicht 44000-54000), Kollidon 90 F (Molekulargewicht 1000000-1500000). Bevorzugt genannt sei PVP mit höherem Molekulargewicht wie beispielsweise Kollidon 25, Kollidon 30, und Kollidon 90 F.

Gewünschtenfalls können zusätzlich zu PVP weitere Bindemittel wie Polyvinylacetat (z.B. Kollidon® VA 64), Gelatine, Maisstärkekleister, vorgequollene Stärken (Starch 1500). Hydroxypropylmethylcellulose (HPMC) oder Hydroxypropylcellulose (L-HPC) zum Einsatz kommen.

Erfindungsgemäß geeignete Füllstoffe sind Füllstoffe wie Calciumcarbonat (z.B. MagGran® CC oder Destab® 95) und Natriumcarbonat, Zuckeralkohole wie Mannit (z.B. Perlitol® oder Parteck® M), Sorbit

(z,B. Karion®), Xylit oder Maltitol, Stärken wie Maisstärke, Kartoffelstärke und Welzenstärke, Mikrokristalline Zellulose. Saccharlde wie Glucose, Lactose (z.B. Lactose Monohydrat), Levulose, Saccharose und Dextrose. Gewünschtenfalls können auch Gemische davon zum Einsatz kommen. Bevorzugt genannt sei Maisstärke, Mikrokristalline Zellulose und Lactose.

Als geeignete Gleit- und Trennmittel seien beispielsweise genannt Natriumstearylfumaret, Magnesiumstearat, Calciumstearat, Stearinsäure. Talkum und hochdisperses Siliziumdioxid (Aerosil).

Erfindungsgemäß geeignete Sprengmittel sind insbesondere unlösliches Polyvinylpyrrolidon (unlösliches PVP, Crosspovldone), Carboxymethylstärke-Natrium [= Sodium Starch Glycollate], Natriumcarboxymethylcellulose, Alginsäure sowie Stärken, die die Funktion eines Sprengmittels erfüllen können (z.B. Starch 1500).

Der Anteil (in Gewichtsprozent bezogen auf die fertige Darreichungsform) an PDE 4-Hemmer in der erfindungsgemäßen Darreichungsform beträgt je nach Art des PDE 4-Hemmers in der Regel 0.01 bis 50 Gew.-%. Bevorzugt beträgt der Anteil an PDE 4-Hemmer bis zu 20 Gew.-%.

Der Anteil (In Gewichtsprozent bezogen auf die fertige Darreichungsform) an Bindemittel (PVP und gegebenenfalls weitere Bindemittel) kann erfindungsgemäß bevorzugt 0,5 bis 20 Gew.-% betregen. Bevorzugt beträgt der Anteil an PVP 1 bis 5 Gew.-%, besonders bevorzugt 2 bis 3 Gew.-%.

Der Anteil (in Gewichtsprozent bezogen auf die fertige Darreichungsform) an Füllstoff in der erfindungsgemäßen Tablette beträgt vorteilhafterweise 40 bis 99 Gew.-%. Bevorzugt beträgt der Anteil an Füllstoff 60 bis 97 Gew.-%.

Der Anteil (in Gewichtsprozent bezogen auf die fertige Darreichungsform) an Sprengmittel in der rasch zerfallenden Tablette kann in der Regel bis zu 35 Gew,-% betragen. Bevorzugt beträgt der Anteil an Sprengmittel 2 bis 20 Gew.-%. Besonders bevorzugt beträgt der Anteil an Sprengmittel 5 bis 10 Gew.-%.

Der Anteil (in Gewichtsprozent bezogen auf die fertige Darreichungsform) an Gleit- oder Trennmittel in der rasch zerfallenden Tablette beträgt in der Regel 0,1 bis 5 Gew.-%. Bevorzugt beträgt der Anteil an Gleit- oder Trennmittel 0,3 bis 3 Gew.-%. Besonders bevorzugt beträgt der Anteil an Gleit- oder Trennmittel 0,5 bis 2 Gew.-%.

In einer bevorzugten Ausgestaltung der Erfindung handelt es sich bei der Darreichungsform um eine Tablette. Bevorzugt enthält die Tablette neben dem schwerlöslichen PDE 4-Hemmer und PVP als

weitere pharmazeutische Hilfsstoffe mindestens einen Füllstoff und mindestens ein Gleit- oder Trennmittel.

Die Herstellung der erfindungsgemäßen Arznelmittelzubereitung kann mittels dem Fachmann bekannter Verfahren zur Herstellung von Tabletten und Pellets erfolgen.

In einer Ausgestaltung der Erfindung erfolgt die Herstellung der erfindungsgemäßen Arzneiform durch Herstellung einer festen Lösung des schwerlöslichen PDE 4-Hemmers im Bindemittel PVP als Trägerstoff. Dies kann beispielsweise durch die Lösungsmittelmethode erfolgen, bei der PVP, der PDE 4-Hemmer und ggf. weitere phermazeutische Hilfsstoffe in einem geeigneten Lösungsmittel gelöst werden und das Lösungsmittel anschließend durch Sprühtrocknung, normale Trocknung. Vakuumtrocknung oder Gefriertrocknung wieder entfernt wird. Überraschenderweise wurde gefunden, dass die Herstellung der festen Lösung auch nach der Mischmethode erfolgen kann, bei der ein schwerlöslicher PDE 4-Hemmer und ggf. weitere pharmazeutische Hilfsstoffe zusammen mit PVP intensiv gemischt werden.

Welterer Gegenstand der Erfindung ist auch eine feste Lösung eines schwerlöslichen PDE 4-Hemmers im Bindemittel PVP als Trägerstoff. Erfindungsgemäß wird unter fester Lösung des PDE 4-Hemmers im Bindemittel PVP als Trägerstoff eine feste Lösung mit amorphem Aufbau verstanden bei der der PDE 4-Hemmer im Trägermaterial molekulardispers aufgenommen ist.

Im Falle der Welterverarbeitung einer festen Lösung zu Tabletten oder Pellets kann die feste Lösung als Wirkstoffkomponente gemeinsam mit den Füllstoff-, Bindemittel-, Sprengmittel- und Gleitmittelkomponenten nach den dem Fachmann geläufigen Herstellverfahren zu den erfindungsgemäßen oralen Darreichungsformen verarbeitet werden.

Gegenstand der Erfindung ist daher auch ein Verfahren zur Herstellung einer Darreichungsform in Tabletten- oder Pelletform zur oralen Verabreichung eines PDE 4-Hemmers umfassend die Schritte:

(a) Herstellen einer Wirkstoffzubereitung in Form einer festen Lösung des schwerlöslichen PDE 4-Hemmers in PVP, (b) Herstellung einer Mischung aus Wirkstoffzubereitung und pharmazeutischen Hilfsstoffen und (c) Granulieren der unter (b) erhaltenen Mischung mit einer wässrigen Lösung von PVP.

Im Falle von erfindungsgemäßen Darreichungsformen in Form von Tabletten können die nach (c) erhaltenen Granulate nach Trocknen und Mischen mit Gleit- oder Trennmitteln auf einer Tablettenpresse verpresst werden. Im Falle von erfindungsgemäßen Darreichungsformen in Form von Pellets können die nach (c) erhaltenen feuchten Granulate nach dem Extruder-Runder Verfahren zu geeigneten Pel-

- 10 -

lets verarbeitet werden. Alternativ können Dispersionen/Suspensionen einer Wirkstoffzubereitung in Form einer festen Lösung des schwerlöslichen PDE 4-Hemmers in PVP in einem geeigneten Lösungsmittel auf pelletartige Träger (z.B. Nonpareils oder HPMC-haltige Pellets) aufgetragen werden.

In einer anderen bevorzugten Ausgestaltung der Erfindung erfolgt die Herstellung der erfindungsgemäßen Darreichungsform durch Granulieren einer Mischung aus Wirkstoff und pharmazeutischen Hilfsstoffen mit einer wässrigen PVP-Lösung, Trocknen des Granulats, und gewünschtenfalls Zumischen weiterer pharmazeutischer Hilfsstoffe. Nach dem Granulieren erhaltene feuchte Zubereitungen können nun zu Pellets weiterverarbeitet werden und dann in Kapseln abgefüllt werden. Getrocknete Granulate können -gewünschtenfalls nach Zumischen weiterer pharmazeutischer Hilfsstoffe- nach Mischen mit einem Trennmittel auf einer Tablettenpresse verpresst werden. Vorzugsweise erfolgt das Granulieren in einem Wirbelschlichtgranulator unter geeigneten Bedingungen, Dabei kann der Wirkstoff gewünschtenfalls den anderen pharmazeutischen Hilfsstoffen in Form einer Verreibung mit einem pharmazeutischen Hilfsstoff (Insbesondere einem Füllstoff) zugemischt werden. Dies ist insbesondere bsvorzugt, wenn der Wirkstoff zu weniger als 5 Gew.% in der Darreichungsform enthalten ist. Eine solche Verreibung kann üblicherweise durch Vermahlen des Wirkstoffs mit einem pharmazeutischen Hilfsstoff (insbesondere einem Füllstoff) erhalten werden.

Gegenstand der Erfindung ist daher auch ein Verfahren zur Herstellung einer Darreichungsform in Tabletten- oder Pelletform zur oralen Verahreichung eines PDE 4-Hemmers umfassend die Schritte;

- (a) Herstellung einer Mischung aus Wirkstoff und pharmazeutischen Hilfsstoffen und
- (b) Granulieren der unter (a) erhaltenen Mischung mit einer wässrigen Lösung von PVP.

Besonders bevorzugt erfolgt die Herstellung der erfindungsgemäßen Darreichungsform durch Granulieren einer Mischung aus

- (a) schwerlöslichem PDE 4-Hemmer oder einer Verreibung des schwerlöslichen PDE 4-Hemmer mit Meisstärke.
- (b) Maisstärke und
- (c) Lactose-Monohydrat

mit einer wässrigen PVP-Lösung, Trocknen des Granulats, Mischen des Granulats mit einem Trennmittel und Verpressen auf einer Tablettenpresse. Besonders bevorzugt handelt es sich dabei bei dem schwerlöslichen PDE 4-Hemmer um Roflumilast, die Salze davon, das N-Oxid des Pyridins und dessen Salze.

Alternativ erfolgt die Herstellung der erfindungsgemäßen Darreichungsform besonders bevorzugt durch Granulieren einer Mischung aus

- (a) schwarföslichem PDE 4-Hemmer oder einer Verrelbung des schwerföslichen PDE 4-Hemmer mit Maisstärke.
- (b) Maisstärke.
- (c) Mikrokristalliner Zellulose und
- (d) Natriumcarboxymethylstärke

mit einer wässrigen PVP-Lösung, Trocknen des Granulats, Mischen des Granulats mit einem Trennmittel und Verpressen auf einer Tablettenpresse. Besonders bevorzugt handelt es sich dabei bei dem schwerlöslichen PDE 4-Hemmer um Roflumilast, die Salze davon, das N-Oxid des Pyridins und dessen Salze.

In einer weiteren bevorzugten Ausgestaltung der Erfindung erfolgt die Herstellung der erfindungsgemäßen Darreichungsform durch Granulieren einer Mischung aus pharmazeutischen Hilfsstoffen mit einer Suspension des Wirkstoffs in einer wässrigen PVP-Lösung, Trocknen des Granulats und gewünschtenfalls Zumischen weiterer pharmazeutischer Hilfsstoffe. Die so erhaltenen Zubereitungen können nun nach Mischen mit einem Trennmittel auf einer Tablettenpresse verpresst werden. Vorzugsweise erfolgt das Granulieren in einem Wirbelschichtgranulator unter geeigneten Bedingungen.

Gegenstand der Erfindung ist daher auch ein Verfahren zur Herstellung einer Darreichungsform in Tabletten- oder Pelletform zur oralen Verabreichung eines PDE 4-Hemmers umfassend die Schritte:

- (a) Herstellung einer Mischung aus pharmazeutischen Hilfsstoffen und
- (b) Granulieren der unter (a) erhaltenen Mischung mit einer Suspension des Wirkstoffs in einer wässrigen Lösung von PVP.

Besonders bevorzugt erfolgt die Herstellung der erfindungsgemäßen Darreichungsform durch Granulieren einer Mischung aus Maisstärke und Lactose-Monohydrat mit einer Suspension des schwerlöslichem PDE 4-Hemmer in einer wässrigen Lösung aus PVP, Trocknen des Granulats, Mischen des Granulats mit einem Trennmittel und Verpressen auf einer Tablettenpresse.

Überraschenderweise wurde gefunden, dass erfindungsgemäße Darreichungsformen, bei deren Herstellung physikalische Mischungen bzw. Verreibungen des schwerlöslichen PDE 4-Hemmer mit einem Füllstoff eingesetzt werden (z.B. durch Mahlung, Intensivmischung oder Extrusion) und anschließend mit wässrigen PVP Lösungen granuliert wird oder bei deren Herstellung Granuliersuspensionen aus

PDE 4-Hemmem in wässrigen PVP Lösungen eingesetzt werden, ähnliche vorteilhafte Eigenschaften hinsichtlich der Bloverfügbarkeit des schwerlöslichen PDE 4-Hemmers aufweisen, wie Darreichungsformen bei deren Herstellung zuerst feste Lösungen aus PVP und PDE 4-Hemmer hergestellt werden. Dies lässt darauf schließen, dass es bei der Herstellung der erfindungsgemäßen Darreichungsformen basierend auf physikalischen Mischungen bzw. Verreibungen des schwerlöslichen PDE 4-Hemmer mit einem Füllstoff die anschließend mit wässrigen PVP Lösungen granuliert werden oder bei deren Herstellung Granuliersuspensionen aus PDE 4-Hemmern in wässrigen PVP Lösungen eingesetzt werden überraschenderweise zu Wechselwirkungen zwischen PVP und schwerlöslichem PDE 4-Hemmer kommt, wie sie in der festen Lösung aus PVP und PDE 4-Hemmer auftreten. Bei der Herstellung der erfindungsgemäßen Darreichungsformen ist es daher auch möglich auf die technisch aufwendigere Variante der Herstellung einer festen Lösung nach der Lösungsmittelmethode zu verzichten.

Figurenbeschreibung

Figur 1 zeigt den zeltlichen Verlauf der mittleren Serumkonzentration von Roflumilast nach oraler Verabreichung von 0.5 mg (2 Tabletten mit jeweils 0.25 mg) Roflumilast von erfindungsgemäßen Darreichungsformen in Vergleich zu einer Darreichungsform die kein PVP enthält.

Nachfolgend wird die Herstellung von erfindungsgemäßen Tabletten und Zubereitungen beispielhaft beschrieben. Die nachfolgenden Beispiele erläutem die Erfindung näher, ohne sie einzuschränken.

Beispiele

Herstellung der erfindungsgemäßen Tabletten

Beispiel A

Einwaage bezogen auf eine Tablette enthaltend 0,1 mg Roflumilast

	Summe	65,100 mg
5.	Magnesiumstearat (pflanzlich)	0,650 mg
4.	Polyvidon K90	, 1,300 mg
З.	Maisstärke	13,390 mg
2.	Lactose-Monohydrat	49,660 mg
1.	Roflumilast (mikronislert)	0,100 mg

Herstellung: (1) wird mit einem Teil von (3) gemischt und in einer Mörser-Mühle eine Verreibung hergestellt. Die Verreibung wird zusammen mit (2) und der restlichen Menge von (3) in den Produktbehälter einer Wirbelschichtgranulieranlage gegeben und eine 5%-ige Granullerlösung aus (4) in gereinigtem Wasser unter geeigneten Bedingungen aufgesprüht und getrocknet. Zum Granulat wird (5) zugegeben, gemischt und die so erhaltene Mischung auf einer Tablettenpresse zu Tabletten mit einem Durchschnittsgewicht von 65,1 mg verpresst.

Beispiel B

Einwaage bezogen auf eine Tablette enthalten 0,125 mg Roflumilast

	Summe	65,125 mg
5,	Magnesiumstearat (pflanzlich)	0,650 mg
4.	Polyvidon K90	1,300 mg
3.	Maisstärke	13,390 mg
2.	Lactose-Monohydrat	49,660 mg
1.	Roflumilast	0,125 mg

Herstellung: (1) wird mit einem Tell von (3) gemischt und in einer Mörser-Mühle eine Verreibung hergestellt. Die Verreibung wird zusammen mit (2) und der restlichen Menge von (3) in den Produktbehälter

- 14 -

einer Wirbelschichtgranulieranlage gegeben und eine 5%-ige Granulierlösung aus (4) in gereinigtem Wasser unter geeigneten Bedingungen aufgesprüht und getrocknet. Zum Granulat wird (5) zugegeben, gemischt und die so erhaltene Mischung auf einer Tablettenpresse zu Tabletten mit einem Durchschnittsgewicht von 65,125 mg verpresst.

Beispiel C

Einwaage bezogen auf eine Tablette enthalten 0,25 mg Roflumilast

Roflumilast	0,250 mg
Mikrokristalline Zellulose	33,900 mg
Maisstärke	2,500 mg
Pojyvidon K90	2,250 mg
•	20,000 mg
	0,600 mg
Summe	59,500 mg
	Mikrokristalline Zellulose Maisstärke Polyvidon K90 Natriumcarboxymethylstärke (Typ A) Magnesiumstearat (pflanzlich)

Herstellung: (1) wird mit einem Teil von (3) gemischt und in einer Mörser-Mühle eine Verreibung hergestellt. Die Verreibung wird zusammen mit (2), (5) und der restlichen Menge von (3) in den Produktbehälter einer Wirbelschichtgranulieranlage gegeben und eine 5%-ige Granullerlösung aus (4) in gereinigtem Wasser unter geeigneten Bedingungen aufgesprüht und getrocknet. Zum Granulat wird (5) zugegeben, gemischt und die so erhaltene Mischung auf einer Tablettenpresse zu Tabletten mit einem Durchschnittsgewicht von 59,5 mg verpresst.

Beispiel D

Einwaage bezogen auf eine Tablette enthalten 0,25 mg Roflumliast

1.	Roflumilast	0,250 mg
2,	Lactose-Monohydrat :	49,660 mg
3.	Maisstärke	13,390 mg
4.	Polyvidon K90	1,300 mg
5.	Magnesiumstearat (pflanzlich)	0,650 mg
	Summe	65,250 mg

Herstellung: (1) wird mit einem Tell von (3) gemischt und in einer Mörser-Mühle eine Verreibung hergestellt. Die Verreibung wird zusammen mit (2) und der restlichen Menge von (3) in den Produktbehälter einer Wirbelschichtgranulieranlage gegeben und eine 5%-ige Granulierlösung aus (4) in gereinigtem

- 15 *-*

Wasser unter geeigneten Bedingungen aufgesprüht und getrocknet. Zum Granulat wird (5) zugegeben, gemischt und die so erhaltene Mischung auf einer Tablettenpresse zu Tabletten mit einem Durchschnittsgewicht von 65,25 mg verpresst.

Beispiel E

Einwaage bezogen auf eine Tablette enthalten 0,5 mg Roflumilast

1.	Roflumilast	0.500 mg
2.	Lactose-Monohydrat	49,660 mg
3.	Maisstärke	13,390 mg
4.	Polyvidon K90	1,300 mg
5.	Magnesiumstearat (pflanzlich)	0,650 mg
	Summe	65,50 0 mg

Herstellung: (1) wird mit einem Tell von (3) gemischt und in einer Mörser-Mühle eine Verreibung hergestellt. Die Verreibung wird zusammen mit (2) und der restlichen Menge von (3) in den Produktbehälter einer Wirbelschichtgranulleranlage gegeben und eine 5%-ige Granulierlösung aus (4) in gereinigtem Wasser unter geeigneten Bedingungen aufgesprüht und getrocknet. Zum Granulat wird (5) zugegeben, gemischt und die so erhaltene Mischung auf einer Tablettenpresse zu Tabletten mit einem Durchschnittsgewicht von 65,500 mg verpresst.

Beispiel F

Einwaage bezogen auf eine Tablette enthalten 0,5 mg Roflumilast

1.	Roflumilast	0,500 mg
2.	Lactose-Monohydrat	99,320 mg
З.	Maisstärke	26,780 mg
4.	Polyvidon K90	2,600 mg
5.	Magnesiumstearat (pflanzlich)	1,300 mg
	Summe	130,500 mg

Herstellung: (1) wird mit einem Teil von (3) gemischt und in einer Mörser-Mühle eine Verreibung hergestellt. Die Verreibung wird zusammen mit (2) und der restlichen Menge von (3) in den Produktbehälter einer Wirbelschichtgranulieranlage gegeben und eine 5%-ige Granulienösung aus (4) in gereinigtem Wasser unter geeigneten Bedingungen aufgesprüht und getrocknet. Zum Granulat wird (5) zugegeben,

- 16 -

gemischt und die so erhaltene Mischung auf einer Tablettenpresse zu Tabletten mit einem Durchschnittsgewicht von 130,5 mg verpresst.

Beispiel G

Einwaage bezogen auf eine Tablette enthalten 2,5 mg Roflumilast

	Summe	61,750 mg
5.	Magnesiumstearat (pflanzlich)	0,600 mg
5.	Natriumcarboxymethylstärke (Typ A)	20,000 mg
·4,	Polyvidon K90	2,250 mg
3.	Maisstärke	2,500 mg
2.	Mikrokristalline Zellulose	33,900 mg
1.	Roflumilast	2,500 mg

Herstellung: (1) wird mit einem Tell von (3) gemischt und in einer Mörser-Mühle eine Verreibung hergestellt. Die Verreibung wird zusammen mit (2), (5) und der restlichen Menge von (3) in den Produktbehälter einer Wirbelschichtgranulieranlage gegeben und eine 5%-ige Granulierlösung aus (4) in gereinigtem Wasser unter geeigneten Bedingungen aufgesprüht und getrocknet. Zum Granulat wird (5) zugegeben, gemischt und die so erhaltene Mischung auf einer Tablettenpresse zu Tabletten mit einem Durchschnittsgewicht von 61,75 mg verpresst.

Belspiel H

Herstellung von Tabletten enthaltend 0,1 mg Roflumilast als Wirkstoff (Einwaage für eine Charge von 70000 Tabletten)

1.	Roflumilast (mikronisiert)	7,000 g
2.	Lactose-Monohydrat	3476,200 g
3,	Maisstärke	937,300 g
4.	Polyvidon K90	91,000 g
5,	Magnesiumstearat (pflanzlich)	45,500 g
Summe		4557,000 g

Herstellung: (1) wird mit 70 g von (3) gemischt und in einer Mörser-Mühls eine Verreibung hergestellt. Die Verreibung wird zusammen mit (2) und der restlichen Menge von (3) in den Produktbehälter einer Wirbelschichtgranulieranlage gegeben und eine 5%-ige Granulierlösung aus (4) in gereinigtem Wasser aufgesprüht. (Sprühdruck: 3 bar; Produkttemperatur: 28 - 33° C; Luftmenge im ersten Drittel des

- 17 -

Sprühprozesses:100 m³/h; Luftmenge im weiteren Verlauf des Sprühprozesses:150 m³/h; Zulufttemperatur: 40 - 70° C; Sprührate: 30 - 40 g/min.). Nach Sprühende wird bis zum Erreichen einer Produkttemperatur von 34° C nachgetrocknet. Das Granulat wird durch ein Edelstahlsleb der lichten Maschenweite 0,8 mm gegeben, die relative Oberflächenfeuchte gemessen und auf einen Wert im Bereich 20-50 % eingestellt. Zum Granulat wird (5) zugegeben, gemischt und die so erhaltene Mischung auf einer Tablettenpresse zu Tabletten mit einem Durchschnittsgewicht von 65,1 mg verpresst.

Beispiel I

Herstellung von Tabletten enthaltend 0,25 mg Roflumilast als Wirkstoff (Einwaage für eine Charge von 70000 Tabletten)

1.	Roflumliast (mikronislert)	35,000 g
2.	Lactose-Monohydrat	3476,200 g
3,	Majsstärke	937,300 g
4.	Polyvidon K90	91,000 g
5.	Magnesiumstearat (pflanzlich)	45,500 g
Summe		4585,000 g

Herstellung: 19,25 g (1) wird mit 192,5 g von (3) gemischt und in einer Mörser-Mühle eine Verreibung hergestellt. Die Verreibung wird zusammen mit (2) und der restlichen Menge von (3) in den Produktbehälter eines Wirbelschichtgranulieranlage gegeben und eine 5%-lge Granulierlösung aus (4) in gereinigtem Wasser aufgesprüht. (Sprühdruck: 3 bar, Produkttemperatur: 28 - 33° C; Luftmenge im ersten Drittel des Sprühprozesses:100 m³/h; Luftmenge im weiteren Verlauf des Sprühprozesses:150 m³/h; Zulufttemperatur: 40 - 70° C; Sprührate: 30 - 40 g/min.). Nach Sprühende wird bis zum Erreichen einer Produkttemperatur von 34° C nachgetrocknet. Das Granulat wird durch ein Edelstahlsieb der lichten Maschenweite 0,8 mm gegeben, die relative Oberflächenfeuchte gemessen und auf einen Wert im Bereich 20 - 50 % eingestellt. Zum Granulat wird (5) zugegeben, gemischt und die so erhaltene Mischung auf einer Tablettenpresse zu Tabletten mit einem Durchschnittsgewicht von 65,5 mg verpresst.

- 18 -

Beispiel J

Herstellung von Tabletten enthaltend 0,1 mg Roflumilast als Wirkstoff (Elnwaage für eine Charge von 70000 Tabletten)

1.	Roflumilast (mikronisiert)	7,000 g
2.	Lactose-Monohydrat	3476,200 g
3,	Maisslärke	937,300 g
4.	Polyvidon K90	91,000 g
5,	Magnesiumstearat (pflanzlich)	45,500 g
Summe		4557,000 g

Herstellung: (1) wird mit einer Granullerlösung aus (4) in gereinigtem Wasser homogen suspendiert. (2) und (3) werden in den Produktbehälter einer geeigneten Wirbelschichtgranulieranlage gegeben mit der vorstehend beschriebenen Granuliersuspension granuliert und anschließend getrocknet. Zum Granulat wird (5) zugegeben, gemischt und die so erhaltene Mischung auf einer Tablettenpresse zu Tabletten mit einem Durchschnittsgewicht von 65,1 mg verpresst.

Beispiel K

Herstellung von Tabletten enthaltend 0,25 mg Roflumllast als Wirkstoff (Einwaage für eine Charge von 70000 Tabletten)

1.	Roflumilast (mikronisiert)	35,000 g
2.	Lactose-Monohydrat	3476,200 g
3.	Maisstärke	937,300 g
4.	Polyvidon K90	91,000 g
5.	Magnesiumstearat (pflanzlich)	45,500 g
Summe		4585,000 g

Herstellung: (1) wird mit einer Granulierlösung aus (4) in gereinigtem Wasser homogen suspendiert, (2) und (3) werden in den Produktbehälter einer geeigneten Wirbelschichtgranulieranlage gegeben mit der vorstehend beschriebenen Granuliersuspension granuliert und anschließend getrocknet. Zum Granulat wird (5) zugegeben, gemischt und die so erhaltene Mischung auf einer Tablettenpresse zu Tabletten mit einem Durchschnittsgewicht von 65,25 mg verpresst.

- 19 -

Beisplel L

Einwaage bezogen auf eine Tablette enthaltend 0,25 mg Roflumilast

1,	Roflumilast	0,250 mg
2.	Lactose-Monohydrat	49,660 mg
3.	Kartoffelstärke	10,000 mg
4.	Malsstärke	3,590 mg
5.	PVP 25	1,500 mg
6.	Magnesiumstearat (pflanzlich)	0,650 mg
	Summe	65,650 mg

Herstellung: Aus (4) und Wasser wird eine Dispersion hergestellt in der (1) homogen suspendiert wird. (5) wird in Wasser gelöst und der Dispersion zugegeben. (2) und (3) werden in einer geeigneten Wirbelschichtgranulieranlage mit der Dispersion unter geeigneten Bedingungen granuliert. Zu dieser Mischung wird (6) zugegeben, gemischt und die so erhaltene Mischung auf einer Tablettenpresse zu Tabletten mit einem Durchschnittsgewicht von 65,650 mg verpresst.

Beispiel M

Einwaage bezogen auf eine Tablette enthalten 0,25 mg Roflumilast

1.	Roflumilast	0,250 mg
2.	Lactose-Monohydrat	49,660 mg
3 .	Maisstärke	13,390 mg
4.	Polyvidon K90	1,300 mg
5.	Gelatine	1,300 mg
6.	Magnesiumstearat (pflanzlich)	0,650 mg
	Summe	66,550 mg

Herstellung: (1) wird mit einem Tell von (3) gemischt und in einer Mörser-Mühle eine Verreibung hergestellt. Die Verreibung wird zusammen mit (2) und der restlichen Menge von (3) in den Produktbehälter einer Wirbelschichtgranulleranlage gegeben und eine 5%-ige Granulierlösung aus (4) und (5) in gereinigtem Wasser unter geeigneten Bedingungen aufgesprüht und getrocknet. Zum Granulat wird (6) zugegeben, gamischt und die so erhaltene Mischung auf einer Tablettenpresse zu Tabletten mit einem Durchschnittsgewicht von 66,55 mg verpresst.

Physikalische Untersuchungen und Vergleichsversuche mit Darreichungsformen in denen kein PVP als Bindemittel verwendet wurde

Beispiel N

Ergebnis: 7.08 Minuten.

Für eine Beispiel D entsprechende Dameichungsform wurde die Zerfallszeit und die Wirkstofffreisetzung bestimmt.

Zerfallszeit: Die Zerfallszeit wurde mittels Zerfallstester nach der im Europäischen Arzneibuch (European Pharmacopoela) beschriebenen Methode bestimmt.

Wirkstofffreisetzung: Die Wirkstofffreisetzung wurde gemäß US Pharmacopoeia (USP XXV; apparatus 2) bestimmt.

Ergebnis nach 15 Minuten sind 78% des Wirkstoffs freigesetzt, nach 60 Minuten wird eine quantitative Freisetzung beobachtet.

Beispiel O

Herstellung einer Darreichungsform enthaltend Roflumilast in der kein PVP verwendet wird:

Einwaage bezogen auf eine Tablette enthaltend 0,25 mg Roflumllast

1.	Roflumilast	0,250 mg
2.	Lactose-Monohydrat	70,300 mg
3.	Kartoffelstärke	19.475 mg
4,	Maisstärke	3,563 mg
5.	Natriumcarboxymathylstärke (Typ A)	1,900 mg
6.	Magnesiumstearat (pflanzlich)	0, 950 mg
	Summe	96,438 mg

Herstellung: Aus (4) und Wasser wird eine Dispersion hergestellt in der (1) homogen suspendiert wird. (2) und (3) werden in einer geeigneten Wirbelschichtgranulieranlage mit der Dispersion unter geeigneten Bedingungen granuliert. (5) wird zum trockenen Granulat gegeben und eine homogene Mischung hergestellt. Zu dieser Mischung wird (5) zugegeben, gemischt und die so erhaltene Mischung auf einer Tablettenpresse zu Tabletten mit einem Durchschnittsgewicht von 96,438 mg verpresst.

Vergleichsstudie

Design: 24 Probanden, 3-period change over, randomized; Dosis jeweils 0.5 mg (2 Tabletten mit jeweils 0.25 mg Roflumilast). Die Serumkonzentration von Roflumilast nach oraler Verabreichung von 0.5 mg (2 Tabletten mit jeweils 0.25 mg) Roflumilast wurde für folgende Darreichungsformen untersucht:

Mit PVP als Bindemittel:

Tablette entsprechend Beispiel D nachfolgend als "Treatment A" bezeichnet. Tablette entsprechend Beispiel K nachfolgend als "Treatment B" bezeichnet.

Ohne PVP als Bindemittel:

Tablette entsprechend Beispiel O nachfolgend als "Treatment C" bezeichnet.

Die Ergebnisse sind in Figur 1 dargestellt. Für die Darreichungsformen mit PVP als Bindemittel werden im Vergleich zur Darreichungsform ohne PVP nach oraler Verabreichung deutlich schneller höhere Serumsplegel beobachtet. Die Geschwindigkeit der Resorption ist damit für die erfindungsgernäßen Darreichungsformen deutlich erhöht.

Gewerbliche Anwendbarkeit

Die erfindungsgemäßen Darreichungsformen können zur Behandlung und Verhütung all der Krankheiten eingesetzt werden, die durch die Anwendung von PDE 4-Hemmern als therapierbar bzw. vermeldbar gelten. Selektive Zyklisch-Nukleotid Phosphodiesterase (PDE) Inhibitoren (und zwar des Typs 4) eignen sich einerseits als Bronchialtherapeutika (zur Behandlung von Atemwegsobstruktionen aufgrund ihrer dilatierenden aber auch aufgrund ihrer atemfrequenz- bzw. atemantriebssteigernden Wirkung) und zur Behebung von erektiler Dysfunktion aufgrund der gefäßdilatierenden Wirkung, andererseits jedoch vor allem zur Behandlung von Erkrankungen, insbesondere entzündlicher Natur, z.B. der Atemwege (Asthma-Prophylaxe), der Haut, des zentralen Nervensystems, des Darms, der Augen und der Gelenke, die vermittelt werden durch Mediatoren, wie Histamin, PAF (Plättchen-aktivierender Faktor), Arachidonsäure-Abkömmlinge wie Leukotriene und Prostaglandine, Zytokine, Interleukine, Chemokine, alpha-, beta- und gamma-Interferon, Tumomekrosisfaktor (TNF) oder Sauerstoff-Radikale und Proteasen. Die erfindungsgemäßen Arzneimittelzubereitungen können daher in der Human- und Veterinärmedizin beispielsweise zur Behandlung und Prophylaxe folgender Krankhelten verwendet werden: Akute und chronische (insbesondere entzündliche und allergeninduzierte) Atemwegserkrankungen verschiedener Genese (Bronchitis, allergische Bronchitis, Asthma bronchiale, COPD); Dermatosen (vor allem proliferativer, entzündlicher und allergischer Art) wie belspielsweise Psoriasis (vulgaris), toxisches und allergisches Kontaktekzem, atopisches Ekzem, seborrhoisches Ekzem, Lichen simplex, Sonnenbrand, Pruritus im Genitoanalbereich, Alopecia areata, hypertrophe Narben, diskoider Lupus erythematodes, follikuläre und flächenhafte Pyodermien, endogene und exogene Akne, Akne rosacea sowie andere proliferative, entzündliche und allergische Hauterkrankungen; Erkrankungen, die auf einer überhöhten Freisetzung von TNF und Leukotrienen beruhen, so z.B. Erkrankungen aus dem Formenkreis der Arthritis (Rheumatoide Arthritis, Rheumatoide Spondylitis, Osteoarthritis und andere arthritische Zustände), Erkrankungen des Immunsystems (AIDS, Multiple Sklerose), Erscheinungsformen des Schocks [septischer Schock, Endotoxinschock, gram-negative Sepsis, Toxisches Schock-Syndrom und das ARDS (adult respiratory distress syndrom)] sowie generalisierte Entzündungen im Magen-Darm Bereich (Morbus Crohn und Colitis ulcerosa); Erkrankungen, die auf allergischen und/oder chronischen, immunologischen Fehlreaktionen im Bereich der oberen Atemwege (Rachenraum. Nase) und der angrenzenden Regionen (Nasennebenhöhlen, Augen) beruhen, wie beispielsweise allergische Rhinitis/Sinusitis, chronische Rhinitis/Sinusitis, allergische Conjunctivitis sowie Nasenpolypen; aber auch Erkrankungen des Herzens, die durch PDE-Hemmstoffe behandelt werden können, wie belspleisweise Herzinsuffizienz, oder Erkrankungen, die aufgrund der gewebsreiaxierenden Wirkung der PDE-Hemmstoffe behandelt werden können, wie beispielsweise erektile Dysfunktion oder Koliken der Nieren und der Hamleiter im Zusammenhang mit Nierenstelnen; oder auch Erkrankungen des ZNS, wie beispielsweise Depressionen oder arteriosklerotische Demenz.

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Behandlung von Säugetieren einschließlich Menschen, die an einer der oben genannten Krankheiten erkrankt sind. Das Verfahren ist dadurch gekennzeichnet, dass dem erkrankten Säugetier eine therapeutisch wirksame und pharmakologisch verträgliche Menge eines PDE 4-Hemmers verabreicht wird, wobei der PDE 4-Hemmer in einer erfindungsgemäßen Darreichungsform vorliegt, Bevorzugt handelt es sich bei der Krankheit um Asthma oder Atemwegsobstruktionen, insbesondere um COPD (= Chronic Obstructive Pulmonary Disease)

Die erfindungsgemäßen Darreichungsformen enthalten den PDE-4-Hemmer in der für die Behandlung der jeweiligen Krankheit üblichen Dosis. Die Dosierung des Wirkstoffs erfolgt in der für PDE-Hemmstoffe üblichen Größenordnung, wobei die Tagesdosis in einer oder mit mehren Dosierungseinheiten verabreicht werden können. Die übliche Dosis bei systemischer Therapie (p. c.) liegt zwischen 0.001 mg und 3 mg pro Kilogramm und Tag. Erfindungsgemäß bevorzugte Darreichungsformen enthalten von 0.01 mg bis 5 mg Roflumilast, bevorzugt von 0,05 mg bis 2,5 mg, besonders bevorzugt 0,1 mg bis 0,5 mg Roflumilast pro Dosierungseinhelt. Beispielhafte erfindungsgemäße Arznelmittelzubereitungen enthalten 0,1 mg, 0,125 mg, 0,25 mg und 0,5 mg Roflumliast pro Dosierungseinheit. Üblicherweise wird eine oder mehrere erfindungsgemäße Dosierungseinheit einmal täglich verabreicht, Gewünschtenfalls können eine oder mehrere erindungsgemäße Dosjerungseinheiten auch mehr als einmal täglich verabreicht werden.

F___ = 100 D NO1

* 1 • OO /OO /OOOO 1E • DO

Patentansprüche

- Darreichungsform in Tabletten- oder Pelletform zur oralen Verabreichung eines schwerlöslichen PDE 4-Hemmers, enthaltend den schwerlöslichen PDE 4-Hemmer zusammen mit Polyvinylpyrrolidon als Bindemittel sowie ein oder mehrere weitere geeignete pharmazeutische Hilfsstoffe.
- Darreichungsform nach Anspruch 1, wobei es bei den pharmazeutischen Hilfsstoffe um Hilfsstoffe aus der Gruppe Füllstoffe, Bindemittel und Gleit- oder Trennmittel handelt.
- Darreichungsform nach Anspruch 1, wobei es sich um eine feste, orale Darreichungsform mit sofortiger Wirkstofffreisetzung (Immediate Release Solid Oral Dosage Form) handelt.
- Darreichungsform nach Anspruch 1, wobel es sich um eine Tablette handelt.
- Darreichungsform nach Anspruch 1, wobei es sich bei dem schwerlöslichen PDE 4-Hemmer um eine Verbindung mit einer Wasserlöslichkeit von kleiner oder gleich 100 Milligramm/Liter bei einer Temperatur von 15 bis 25°C handelt.
- 6. Darreichungsform nach Anspruch 1, wobel es sich bel dem PDE 4-Hemmer um eine Verbindung ausgewählt aus der Gruppe der Verbindungen der Formel!

$$R1$$
 $R2$
 H
 $R3$
 $R3$

handelt, worin entweder

R1 3-7C-Cycloalkoxy, 3-7C-Cycloalkylmethoxy oder Benzyloxy und

R2 ganz oder teilweise durch Fluor substituiertes 1-4C-Alkoxy, oder

R1 ganz oder teilweise durch Fluor substitujertes 1-4C-Alkoxy und

R2 3-7C-Cycloalkylmethoxy oder Benzyloxy bedeutet,

- . .100 11 020

und

- R3 Phenyl, Pyridyl, durch R31, R32 und R33 substituiertes Phenyl oder durch R34, R35, R35 und R37 substituiertes Pyridyl bedeutet, wobei
 - R31 Hydroxy, Halogen, Cyano, Carboxyl, Trifluormethyl, 1-4C-Alkyl, 1-4C-Alkoxy, 1-4C-Alkoxycarbonyl, 1-4C-Alkylcarbonyl, 1-4C-Alkylcarbonyloxy, Amino, Mono-oder Di-1-4C-alkylamino oder 1-4C-Alkylcarbonylamino,
 - R32 Wasserstoff, Hydroxy, Halogen, Amino, Trifluormethyl, 1-4C-Alkyl oder 1-4C-Alkoxy,
 - R33 Wasserstoff, Halogen, 1-4C-Alkyl oder 1-4C-Alkoxy,
 - R34 Hydroxy, Halogen, Cyano, Carboxyl, 1-4C-Alkyl, 1-4C-Alkoxy, 1-4C-Alkoxycarbonyl oder Amino,
 - R35 Wasserstoff, Halogen, Amino oder 1-4C-Alkyl,
 - R36 Wasserstoff oder Halogen und
 - R37 Wasserstoff oder Halogen bedeutet,

die Salze dieser Verbindungen sowie die N-Oxide der Pyridine und deren Salze.

- 7. Darreichungsform nach Anspruch 4, wobei es sich um eine Verbindung der Formel I handelt worin
- R1 Difluormethoxy.
- R2 Cyclopropylmethoxy und
- R3 3,5-Dichlorpyrid-4-yl bedeutet,
- dle Salze dieser Verbindung sowie das N-Oxid des Pyridins und dessen Salze.
- 8. Verfahren zur Herstellung einer Darreichungsform nach Anspruch 1, umfassend die Schritte: (a) Herstellung einer Mischung aus PDE 4-Hemmer und pharmazeutischen Hilfsstoffen und (b) Granulieren der unter (a) erhaltenen Mischung mit einer wässnigen Lösung von PVP.
- 9. Verfahren zur Herstellung einer Darreichungsform nach Anspruch 1 umfassend die Schritte:
- (a) Herstellung einer Mischung aus pharmazeutischen Hilfsstoffen und
- (b) Granulieren der unter (a) erhaltenen Mischung mit einer Suspension des Wirkstoffs in einer wässrigen L\u00e4sung von PVP,
- 10. Verfahren zur Herstellung einer Darreichungsform nach Anspruch 1, umfassend die Herstellung einer festen Lösung aus PVP und schwerlöslichem PDE 4-Hemmer.

E-01 -- : 1+00 /00 /0000 1E+01

F / -100 D 000

- 26 -

11. Verfahren zur Behandlung oder Prophylaxe einer Krankheit die durch PDE-4 Hemmer als behandelber bzw. vermeldbar gelten, dadurch gekennzelchnet, dass eine Darrelchungsform gemäß Anspruch 1 verabreicht wird.

- / 100 D 00A

- 27 -

Zusammenfassung

Es werden Darreichungsformen zur oralen Verabreichung eines schwertöslichen PDE 4-Hemmers beschrieben. Sie enthalten PVP als Bindemittel.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:		
	BLACK BORDERS	
	\square image cut off at top, bottom or sides	
	FADED TEXT OR DRAWING	
	BLURRED OR ILLEGIBLE TEXT OR DRAWING	
	☐ SKEWED/SLANTED IMAGES	
	☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS	
	☐ GRAY SCALE DOCUMENTS	
	☐ LINES OR MARKS ON ORIGINAL DOCUMENT	
	☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY	
	Остить	

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.