Problem set 2.: Basic concepts of binary relations and composition of binary relations

Basic concepts of binary relations

Question 1.

Let $A = \{1, 2, 3, 4\}$ and $B = \{5, 6, 7, 8, 9\}$. Consider the following binary relation $\rho \subseteq A \times B$: $\rho = \{(1, 5), (1, 6), (1, 7), (3, 6), (3, 9), (4, 5), (4, 7), (4, 9)\}$.

- (a) Find the domain and the range of ρ .
- (b) Represent ρ on an arrow diagram.
- (c) Let $H_1 = \{1, 2, 3\}$ and $H_2 = \{4\}$. Determine the restrictions $\rho|_{H_1}$ and $\rho|_{H_2}$ of ρ to sets H_1 and H_2 , respectively.
- (d) Find the inverse ρ^{-1} of ρ .

Question 2.

Define $\rho \subseteq \mathbb{Z} \times \mathbb{Z}$ as $\rho = \{(a,b) \in \mathbb{Z} \times \mathbb{Z} \mid a = 2b\}$. Determine the domain, range and inverse of ρ .

Question 3.

Determine the image and the inverse image of the set $\{0\}$ under the relation $R = \{(x,y) \in \mathbb{R} \times \mathbb{R} \mid y^2 = 2 - x - x^2\}$. Describe those subsets A of \mathbb{R} for which R(A) contains only one element. Describe those subsets A of \mathbb{R} for which $R^{-1}(A)$ contains only one element.

Composition of binary relations

Question 4.

Let $A = \{1, 2, 3\}, B = \{a, b, c, d, e, f\}, C = \{2, 4, 6, 8\}$ and define $R \subseteq A \times B$ and $S \subseteq B \times C$ as follows: $R = \{(1, a), (1, b), (2, c), (2, f), (3, d), (3, e), (3, f)\}$ and $S = \{(a, 2), (a, 4), (c, 6), (c, 8), (d, 2), (d, 4), (d, 6), (f, 8)\}$. Find the composition $S \circ R$.

Question 5.

Let $A = \{1, 2, 3, 4, 5, 6, 7, 8\}$; $S, R \subseteq A \times A$. In each of the following cases determine the composition $S \circ R$.

- (a) $R = \{(1,2), (1,3), (2,2), (3,3), (3,4), (4,1)\}$ and $S = \{(1,6), (2,3), (2,4), (3,1)\}$
- (b) $R = \{(1,3), (1,4), (2,2), (2,4), (3,5), (5,6), (6,7)\}$ and $S = \{(1,2), (1,4), (2,3), (3,1), (3,2), (4,2), (4,6), (5,6), (7,2)\}$
- (c) $R = \{(2,2), (2,4), (3,1), (3,4), (4,4), (5,3)\}$ and $S = \{(2,6), (3,7), (5,1), (5,6), (5,8), (6,2), (7,7)\}$
- (d) $R = \{(6,1), (6,2), (7,3), (8,7)\}\$ és $S = \{(1,2), (1,3), (1,4), (1,5), (1,6), (2,2), (2,3), (2,4), (2,5), (2,6), (2,7), (3,1), (3,2), (3,3), (3,4), (4,1), (4,2), (4,3), (4,4), (5,1), (5,3), (5,5), (7,1), (7,2)\}$

Is the composition of relations a commutative operation? Hint: Determine for example the composition $R \circ S$ in case (a).

Question 6.

Let $R, S \subseteq \mathbb{R} \times \mathbb{R}$. In each of the following cases determine the compositions $S \circ R$ and $R \circ S$.

- (a) $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid 4x = y^2 + 6\} \text{ and } S = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x 1 = y\}$
- (b) $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x = 2y\}$ and $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid y = x^3\}$
- (c) $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid \frac{1}{x} = y^2\}$ and $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid \sqrt{x 2} = 3y\}$ (d) $R = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^2 6x + 5 = y\}$ and $S = \{(x, y) \in \mathbb{R} \times \mathbb{R} \mid x^2 = y \land 2y = x\}$

Harder and optional questions

Question 7.

Let $f \subseteq A \times A$ be a binary relation. Prove that $f = f^{-1}$ is true if and only if $f \subseteq f^{-1}$ holds.

Question 8.

Consider the following relations:

$$\rho = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid |x-y| \le 3\}, \ \varphi = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid 6x-1 = 4y+5\}, \ \lambda = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid 4 \mid 2x+3y\}, \ \alpha = \{(x,y) \in \mathbb{Z} \times \mathbb{Z} \mid 1,5x-1,5 \le y\}$$

Determine the compositions below.

$$\rho \circ \varphi \qquad \qquad \varphi \circ \lambda \qquad \qquad \varphi^3 \qquad \qquad \alpha \circ \rho \qquad \qquad \rho \circ \alpha$$