CHAPTER

Trigonometric Functions & Equations

Section-A

JEE Advanced/ IIT-JEE

Fill in the Blanks

Suppose $\sin^3 x \sin 3x = \sum_{m=0}^{n} C_m \cos mx$ is an identity in x,

where C_0, C_1, \dots, C_n are constants, and $C_n \neq 0$. then the value of *n* is _____

The solution set of the system of equations $x + y = \frac{2\pi}{3}$,

 $\cos x + \cos y = \frac{3}{2}$, where x and y are real, is _____.

(1987 - 2 Marks)

- The set of all x in the interval $[0, \pi]$ for which $2\sin^2 x 3$ $\sin x + 1 \ge 0$, is _____. (1987 - 2 Marks)
- The sides of a triangle inscribed in a given circle subtend 4. angles α , β and γ at the centre. The minimum value

of the arithmetic mean of $\cos \left(\alpha + \frac{\pi}{2}\right)$, $\cos \left(\beta + \frac{\pi}{2}\right)$ and

 $\cos\left(\gamma + \frac{\pi}{2}\right)$ is equal to _____ (1987 - 2 Marks)

5. The value of

 $\sin\frac{\pi}{14}\sin\frac{3\pi}{14}\sin\frac{5\pi}{14}\sin\frac{7\pi}{14}\sin\frac{9\pi}{14}\sin\frac{11\pi}{14}\sin\frac{13\pi}{14}$ is equal

- If $K = \sin(\pi/18)\sin(5\pi/18)\sin(7\pi/18)$, then the 6. numerical value of K is _____. (1993 - 2 Marks)
- If A > 0, B > 0 and $A + B = \pi/3$, then the maximum value of $\tan A \tan B$ is (1993 - 2 Marks)
- General value of θ satisfying the equation $\tan^2 \theta + \sec 2 \theta = 1$ is . (1996 - 1 Mark)
- The real roots of the equation $\cos^7 x + \sin^4 x = 1$ in the interval $(-\pi, \pi)$ are ..., ..., and _____. (1997 - 2 Marks)

True / False

If $\tan A = (1 - \cos B) / \sin B$, then $\tan 2A = \tan B$.

(1983 - 1 Mark)

There exists a value of θ between 0 and 2π that satisfies the equation $\sin^4 \theta - 2\sin^2 \theta - 1 = 0$. (1984 - 1 Mark)

MCQs with One Correct Answer

- If $\tan\theta = -\frac{4}{3}$, then $\sin\theta$ is (1979)
 - (a) $-\frac{4}{5}$ but not $\frac{4}{5}$ (b) $-\frac{4}{5}$ or $\frac{4}{5}$
 - (c) $\frac{4}{5}$ but not $-\frac{4}{5}$ (d) None of these.
- (1979)
- (a) $\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} + \tan \frac{\gamma}{2} = \tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$
- (b) $\tan \frac{\alpha}{2} \tan \frac{\beta}{2} + \tan \frac{\beta}{2} \tan \frac{\gamma}{2} + \tan \frac{\gamma}{2} \tan \frac{\alpha}{2} = 1$
- (c) $\tan \frac{\alpha}{2} + \tan \frac{\beta}{2} + \tan \frac{\gamma}{2} = -\tan \frac{\alpha}{2} \tan \frac{\beta}{2} \tan \frac{\gamma}{2}$
- Given $A = \sin^2 \theta + \cos^4 \theta$ then for all real values of θ
 - (a) $1 \le A \le 2$
- (b) $\frac{3}{4} \le A \le 1$ (1980)
- (c) $\frac{13}{16} \le A \le 1$ (d) $\frac{3}{4} \le A \le \frac{13}{16}$
- The equation $2\cos^2 \frac{x}{2}\sin^2 x = x^2 + x^{-2}$; $0 < x \le \frac{\pi}{2}$ has
- (b) one real solution
- (c) more than one solution (d) none of these (1980) The general solution of the trigonometric equation $\sin x + \cos x$
- x = 1 is given by: (1981 - 2 Marks)
 - (a) $x = 2n\pi$; $n=0, \pm 1, \pm 2...$
 - (b) $x = 2n\pi + \pi/2$; $n = 0, \pm 1, \pm 2...$
 - (c) $x = n\pi + (-1)^n \frac{\pi}{4} \frac{\pi}{4}$ (d) none of these $n=0, \pm 1, \pm 2...$

- The value of the expression $\sqrt{3} \cos ec \ 20^{\circ} \sec \ 20^{\circ}$ is 6. (1988 - 2 Marks)
 - (a) 2

(b) $2 \sin 20^{\circ} / \sin 40^{\circ}$

(c) 4

- (d) 4 sin 20°/sin 40°
- 7. The general solution of $\sin x - 3 \sin 2x + \sin 3x = \cos x - 3 \cos 2x + \cos 3x \text{ is}$ (1989 - 2 Marks)
 - (a) $n\pi + \frac{\pi}{2}$
- (c) $(-1)^n \frac{n\pi}{2} + \frac{\pi}{8}$ (d) $2n\pi + \cos^{-1} \frac{3}{2}$
- The equation $(\cos p 1)x^2 + (\cos p)x + \sin p = 0$ In the variable x, has real roots. Then p can take any value in (1990 - 2 Marks)
 - (a) $(0,2\pi)$ (b) $(-\pi,0)$ (c) $\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$ (d) $(0,\pi)$
- Number of solutions of the equation $\tan x + \sec x = 2\cos x$ lying in the interval $[0, 2\pi]$ is:
- (b) 1

- 10. Let $0 < x < \frac{\pi}{4}$ then $(\sec 2x \tan 2x)$ equals (1994)
 - (a) $\tan\left(x \frac{\pi}{4}\right)$ (b) $\tan\left(\frac{\pi}{4} x\right)$
 - (c) $\tan\left(x+\frac{\pi}{4}\right)$
- (d) $\tan^2\left(x+\frac{\pi}{4}\right)$
- 11. Let n be a positive integer such that

$$\sin\frac{\pi}{2n} + \cos\frac{\pi}{2n} = \frac{\sqrt{n}}{2} . \text{ Then}$$
 (1994)

- (a) $6 \le n \le 8$
- (b) $4 < n \le 8$
- (c) $4 \le n \le 8$
- (d) 4 < n < 8
- 12. If ω is an imaginary cube root of unity then the value of

$$\sin\left\{(\omega^{10} + \omega^{23})\pi - \frac{\pi}{4}\right\}$$
 is (1994)

- (a) $-\frac{\sqrt{3}}{2}$ (b) $-\frac{1}{\sqrt{2}}$ (c) $\frac{1}{\sqrt{2}}$ (d) $\frac{\sqrt{3}}{2}$
- 13. $3(\sin x \cos x)^4 + 6(\sin x + \cos x)^2 + 4(\sin^6 x + \cos^6 x) =$ (1995S)
 - (a) 11
- (b) 12
- (c) 13
- (d) 14
- 14. The general values of θ satisfying the equation $2\sin^2\theta - 3\sin\theta - 2 = 0$ is (1995S)
 - (a) $n\pi + (-1)^n \pi / 6$
- (b) $n\pi + (-1)^n \pi / 2$
- (c) $n\pi + (-1)^n 5\pi/6$ (d) $n\pi + (-1)^n 7\pi/6$

- 15. $\sec^2 \theta = \frac{4xy}{(x+y)^2}$ is true if and only if (1996 1 Mark)
 - (a) $x+y\neq 0$
- (b) $x = y, x \neq 0$
- (c) x = y
- (d) $x \neq 0, y \neq 0$
- 16. In a triangle PQR, $\angle R = \pi/2$. If $\tan (P/2)$ and $\tan (Q/2)$ are the roots of the equation $ax^2 + bx + c = 0$ ($a \ne 0$) then.

(1999 - 2 Marks)

(2000S)

- (a) a + b = c
- (b) b + c = a
- (c) a + c = b
- (d) b=c
- 17. Let $f(\theta) = \sin\theta(\sin\theta + \sin 3\theta)$. Then $f(\theta)$ is
 - (a) ≥ 0 only when $\theta \geq 0$ (b) ≤ 0 for all real θ
 - (c) ≥ 0 for all real θ
- (d) ≤ 0 only when $\theta \leq 0$
- $\sin x \cos x \cos x$ $\cos x$ $\sin x$ $\cos x$ The number of distinct real roots of $\cos x \cos x$ $\sin x$
 - = 0 in the interval $-\frac{\pi}{4} \le x \le \frac{\pi}{4}$ is (2001S)
- The maximum value of $(\cos \alpha_1).(\cos \alpha_2)...(\cos \alpha_n)$, under the restrictions

$$0 \le \alpha_1, \alpha_2, ..., \alpha_n \le \frac{\pi}{2}$$
 and $(\cot \alpha_1).(\cot \alpha_2)...(\cot \alpha_n) = 1$ is

(2001S)

- (a) $1/2^{n/2}$ (b) $1/2^n$
- (c) 1/2n
- (d) 1
- If $\alpha + \beta = \pi/2$ and $\beta + \gamma = \alpha$, then tan α equals (2001S)
 - (a) $2(\tan\beta + \tan\gamma)$
- (b) $\tan \beta + \tan \gamma$
- (c) $\tan \beta + 2 \tan \gamma$
- (d) $2\tan\beta + \tan\gamma$
- The number of integral values of k for which the equation 7 $\cos x + 5 \sin x = 2k + 1$ has a solution is (2002S)
- (b) 8
- (c) 10
- 22. Given both θ and ϕ are acute angles and $\sin \theta = \frac{1}{2}$,

$$\cos \phi = \frac{1}{3}$$
, then the value of $\theta + \phi$ belongs to (2004S)

- (a) $\left(\frac{\pi}{3}, \frac{\pi}{2}\right]$
- (b) $\left(\frac{\pi}{2}, \frac{2\pi}{3}\right)$
- (d) $\left(\frac{5\pi}{6},\pi\right]$
- $\cos(\alpha \beta) = 1$ and $\cos(\alpha + \beta) = 1/e$ where $\alpha, \beta \in [-\pi, \pi]$. Pairs of α , β which satisfy both the equations is/are (2005S)
 - (b) 1
- (c) 2
- The values of $\theta \in (0, 2\pi)$ for which $2\sin^2\theta 5\sin\theta + 2 > 0$, (2006 - 3M, -1)

(a)
$$\left(0, \frac{\pi}{6}\right) \cup \left(\frac{5\pi}{6}, 2\pi\right)$$
 (b)

(b)
$$\left(\frac{\pi}{8}, \frac{5\pi}{6}\right)$$

(c)
$$\left(0, \frac{\pi}{8}\right) \cup \left(\frac{\pi}{6}, \frac{5\pi}{6}\right)$$
 (d) $\left(\frac{41\pi}{48}, \pi\right)$

(d)
$$\left(\frac{41\pi}{48}, \frac{41\pi}{48}\right)$$

25. Let $\theta \in \left(0, \frac{\pi}{4}\right)$ and $t_1 = (\tan \theta)^{\tan \theta}$, $t_2 = (\tan \theta)^{\cot \theta}$,

 $t_3 = (\cot \theta)^{\tan \theta}$ and $t_4 = (\cot \theta)^{\cot \theta}$, then (2006 - 3M, -1)

- (a) $t_1 > t_2 > t_3 > t_4$ (c) $t_3 > t_1 > t_2 > t_4$

- (b) $t_4 > t_3 > t_1 > t_2$ (d) $t_2 > t_3 > t_1 > t_4$
- The number of solutions of the pair of equations $2\sin^2\theta - \cos^2\theta = 0$ $2\cos^2\theta - 3\sin\theta = 0$
 - in the interval $[0, 2\pi]$ is

(2007 - 3 Marks)

- (a) zero (b) one
- (c) two
- (d) four 27. For $x \in (0,\pi)$, the equation $\sin x + 2\sin 2x - \sin 3x = 3$ has

(JEE Adv. 2014)

- infinitely many solutions (a)
- (b) three solutions
- (c) one solution
- (d) no solution
- 28. Let $S = \left\{ x \in (-\pi, \pi) : x \neq 0, \pm \frac{\pi}{2} \right\}$. The sum of all distinct

solutions of the equation $\sqrt{3}$ sec x + cosec x + 2(tan x - $\cot x$) = 0 in the set S is equal to (JEE Adv. 2016)

(c) 0

- 29. The value of $\sum_{k=1}^{13} \frac{1}{\sin\left(\frac{\pi}{4} + \frac{(k-1)\pi}{6}\right) \sin\left(\frac{\pi}{4} + \frac{k\pi}{6}\right)}$ is equal

to

(JEE Adv. 2016)

- (b) $2(3-\sqrt{3})$
- (d) $2(2-\sqrt{3})$

MCQs with One or More than One Correct

- $\left(1+\cos\frac{\pi}{8}\right)\left(1+\cos\frac{3\pi}{8}\right)\left(1+\cos\frac{5\pi}{8}\right)\left(1+\cos\frac{7\pi}{8}\right) \text{ is equal}$ (1984 - 3 Marks)

(b) $\cos \frac{\pi}{2}$

- (d) $\frac{1+\sqrt{2}}{2\sqrt{2}}$
- The expression $3 \left| \sin^4 \left(\frac{3\pi}{2} \alpha \right) + \sin^4 (3\pi + \alpha) \right| -$

 $2 \sin^6 \left(\frac{\pi}{2} + \alpha \right) + \sin^6 (5\pi - \alpha)$ is equal to

(1986 - 2 Marks)

(a) 0

(b) 1

(c) 3

- (d) $\sin 4\alpha + \cos 6\alpha$
- (e) none of these
- The number of all possible triplets (a_1, a_2, a_3) such that $a_1 +$ (1987 - 2 Marks) $a_2 \cos(2x) + a_3 \sin^2(x) = 0$ for all x is
 - (a) zero (b) one
- (c) three
- (d) infinite (e) none
- The values of θ lying between $\theta = 0$ and $\theta = \pi/2$ and satisfying the equation (1988 - 2 Marks)

$$\begin{vmatrix} 1+\sin^2\theta & \cos^2\theta & 4\sin 4\theta \\ \sin^2\theta & 1+\cos^2\theta & 4\sin 4\theta \\ \sin^2\theta & \cos^2\theta & 1+4\sin 4\theta \end{vmatrix} = 0 \text{ are}$$

- (a) $7\pi/24$ (b) $5\pi/24$ (c) $11\pi/24$ (d) $\pi/24$.
- Let $2\sin^2 x + 3\sin x 2 > 0$ and $x^2 x 2 < 0$ (x is measured in radians). Then x lies in the interval

 - (a) $\left(\frac{\pi}{6}, \frac{5\pi}{6}\right)$ (b) $\left(-1, \frac{5\pi}{6}\right)$
 - (c) (-1,2)
- (d) $\left(\frac{\pi}{6}, 2\right)$
- 6. The minimum value of the expression $\sin \alpha + \sin \beta + \sin \gamma$, where α , β , γ are real numbers satisfying $\alpha + \beta + \gamma = \pi$ is
 - (a) positive
- (b) zero

- (c) negative
- (d) -3
- The number of values of x in the interval $[0, 5\pi]$ satisfying the equation $3 \sin^2 x - 7 \sin x + 2 = 0$ is (1998 - 2 Marks) (b) 5 (c) 6 (d) 10
- Which of the following number(s) is/are rational? 8.

(1998 - 2 Marks)

- (a) sin 15°
- (b) cos 15°
- (c) sin 15° cos 15°
- (d) $\sin 15^{\circ} \cos 75^{\circ}$
- For a positive integer n, let
- (1999 3 Marks)

$$f_n(\theta) = \left(\tan\frac{\theta}{2}\right) (1 + \sec\theta) (1 + \sec 2\theta) (1 + \sec 4\theta) \dots (1 + \sec 2^n \theta)$$

Then

- (a) $f_2\left(\frac{\pi}{16}\right) = 1$ (b) $f_3\left(\frac{\pi}{32}\right) = 1$
- (c) $f_4\left(\frac{\pi}{64}\right) = 1$
- (d) $f_5\left(\frac{\pi}{128}\right) = 1$
- 10. If $\frac{\sin^4 x}{2} + \frac{\cos^4 x}{3} = \frac{1}{5}$, then
- (2009)

- (a) $\tan^2 x = \frac{2}{3}$ (b) $\frac{\sin^8 x}{8} + \frac{\cos^8 x}{27} = \frac{1}{125}$
- (c) $\tan^2 x = \frac{1}{3}$ (d) $\frac{\sin^8 x}{8} + \frac{\cos^8 x}{27} = \frac{2}{125}$

3P_3480

11. For $0 < \theta < \frac{\pi}{2}$, the solution (s) of

$$\sum_{m=1}^{6} \csc\left(\theta + \frac{(m-I)\pi}{4}\right) \csc\left(\theta + \frac{m\pi}{4}\right) = 4\sqrt{2}$$

is (are)

(a)
$$\frac{\pi}{4}$$
 (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{12}$ (d) $\frac{5\pi}{12}$

12. Let θ , $\varphi \in [0, 2\pi]$ be such that $2 \cos\theta (1 - \sin \varphi) = \sin^2\theta$ $\left(\tan\frac{\theta}{2} + \cot\frac{\theta}{2}\right)\cos\varphi - 1, \tan(2\pi - \theta) > 0$ and

$$-1 < \sin \theta < -\frac{\sqrt{3}}{2}$$
, then φ cannot satisfy (2012)

(a)
$$0 < \varphi < \frac{\pi}{2}$$

(a)
$$0 < \varphi < \frac{\pi}{2}$$
 (b) $\frac{\pi}{2} < \varphi < \frac{4\pi}{3}$

(c)
$$\frac{4\pi}{3} < \phi < \frac{3\pi}{2}$$
 (d) $\frac{3\pi}{2} < \phi < 2\pi$

$$(d) \quad \frac{3\pi}{2} < \phi < 2\pi$$

The number of points in $(-\infty \infty)$, for which $x^2 - x \sin x - \cos x = 0$, is (JEE Adv. 2013) (b) 4 (c) 2 (d) 0

14. Let $f(x) = x \sin \pi x$, x > 0. Then for all natural numbers n, f'(x) (JEE Adv. 2013)

- (a) A unique point in the interval $\left(n, n + \frac{1}{2}\right)$
- (b) A unique point in the interval $\left(n + \frac{1}{2}, n + 1\right)$
- (c) A unique point in the interval (n, n+1)
- Two points in the interval (n, n + 1)

E Subjective Problems

- If $\tan \alpha = \frac{m}{m+1}$ and $\tan \beta = \frac{1}{2m+1}$, find the possible values of $(\alpha + \beta)$.
- (a) Draw the graph of $y = \frac{1}{\sqrt{2}} (\sin x + \cos x)$ from $x = -\frac{\pi}{2}$ to $x=\frac{\pi}{2}$.

(b) If $\cos (\alpha + \beta) = \frac{4}{5}$, $\sin (\alpha - \beta) = \frac{5}{13}$, and α , β lies between 0 and $\frac{\pi}{4}$, find tan2 α . (1979)

Given $\alpha + \beta - \gamma = \pi$, prove that $\sin^2\alpha + \sin^2\beta - \sin^2\gamma = 2\sin\alpha\sin\beta\cos\gamma$ (1980)

Given $A = \left\{ x : \frac{\pi}{6} \le x \le \frac{\pi}{3} \right\}$ and $f(x) = \cos x - x (1+x)$; find f(A). (1980)

For all θ in $[0, \pi/2]$ show that, $\cos(\sin \theta) \ge \sin(\cos \theta)$. (1981 - 4 Marks) 6. Without using tables, prove that

$$(\sin 12^\circ) (\sin 48^\circ) (\sin 54^\circ) = \frac{1}{8}.$$
 (1982 - 2 Marks)

Show that $16\cos\left(\frac{2\pi}{15}\right)\cos\left(\frac{4\pi}{15}\right)\cos\left(\frac{8\pi}{15}\right)\cos\left(\frac{16\pi}{15}\right) = 1$

Find all the solution of $4\cos^2 x \sin x - 2\sin^2 x = 3\sin x$ 8. (1983 - 2 Marks)

Find the values of $x \in (-\pi, +\pi)$ which satisfy the equation $8^{(1+|\cos x|+|\cos^2 x|+|\cos^3 x|+....)} = 4^3$ (1984 - 2 Marks)

Prove that $\tan \alpha + 2 \tan 2 \alpha + 4 \tan 4 \alpha + 8 \cot 8 \alpha = \cot \alpha$ (1988 - 2 Marks)

ABC is a triangle such that

$$\sin(2A+B) = \sin(C-A) = -\sin(B+2C) = \frac{1}{2}$$

If A, B and C are in arithmetic progression, determine the (1990 - 5 Marks) values of A, B and C.

If exp $\{(\sin^2 x + \sin^4 x + \sin^6 x + \dots \infty) \text{ In } 2\}$ satisfies the equation $x^2 - 9x + 8 = 0$, find the value of $\frac{\cos x}{\cos x + \sin x}, 0 < x < \frac{\pi}{2}.$ (1991 - 4 Marks)

13. Show that the value of $\frac{\tan x}{\tan 3x}$, wherever defined never lies

between
$$\frac{1}{3}$$
 and 3. (1992 - 4 Marks)

Determine the smallest positive value of x (in degrees) for 14.

$$\tan(x+100^\circ) = \tan(x+50^\circ)\tan(x)\tan(x-50^\circ).$$
(1993 - 5 Marks)

Find the smallest positive number p for which the equation cos(p sin x) = sin(pcos x) has a solution $x \in [0,2\pi]$.

(1995 - 5 Marks)

16. Find all values of θ in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ satisfying the

equation
$$(1 - \tan \theta)(1 + \tan \theta) \sec^2 \theta + 2^{\tan^2 \theta} = 0.$$
 (1996 - 2 Marks)

17. Prove that the values of the function $\frac{\sin x \cos 3x}{\sin 3x \cos x}$ do not lie

between
$$\frac{1}{3}$$
 and 3 for any real x. (1997 - 5 Marks)

18. Prove that $\sum_{k=1}^{n-1} (n-k) \cos \frac{2k\pi}{n} = -\frac{n}{2}$, where $n \ge 3$ is an

19. In any triangle ABC, prove that (2000 - 3 Marks) $\cot\frac{A}{2} + \cot\frac{B}{2} + \cot\frac{C}{2} = \cot\frac{A}{2}\cot\frac{B}{2}\cot\frac{C}{2}$

Find the range of values of t for which $2 \sin t = \frac{1 - 2x + 5x^2}{3x^2 - 2x - 1}$,

$$t \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]. \tag{2005 - 2 Marks}$$

F Match the Following

DIRECTIONS (Q. 1): Each question contains statements given in two columns, which have to be matched. The statements in Column-I are labelled A, B, C and D, while the statements in Column-II are labelled p, q, r, s and t. Any given statement in Column-I can have correct matching with ONE OR MORE statement(s) in Column-II. The appropriate bubbles corresponding to the answers to these questions have to be darkened as illustrated in the following example:

If the correct matches are A-p, s and t; B-q and r; C-p and q; and D-s then the correct darkening of bubbles will look like the given.

1. In this questions there are entries in columns 1 and 2. Each entry in column 1 is related to exactly one entry in column 2. Write the correct letter from column 2 against the entry number in column 1 in your answer book.

 $\frac{\sin 3\alpha}{\cos 2\alpha}$ is

(1992 - 2 Marks)

Column I

- (A) positive
- (B) negative

Column II

$$(p) \quad \left(\frac{13\pi}{48}, \frac{14\pi}{48}\right)$$

(q)
$$\left(\frac{14\pi}{48}, \frac{18\pi}{48}\right)$$

(r)
$$\left(\frac{18\pi}{48}, \frac{23\pi}{48}\right)$$

(s)
$$\left(\theta, \frac{\pi}{2}\right)$$

I Integer Value Correct Type

1. The number of all possible values of θ where $0 < \theta < \pi$, for which the system of equations

$$(y+z)\cos 3\theta = (xyz)\sin 3\theta$$

$$x\sin 3\theta = \frac{2\cos 3\theta}{v} + \frac{2\sin 3\theta}{z}$$

 $(xyz)\sin 3\theta = (y+2z)\cos 3\theta + y\sin 3\theta$

have a solution (x_0, y_0, z_0) with $y_0 z_0 \neq 0$, is (2010)

2. The number of values of θ in the interval, $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such

that $\theta \neq \frac{n\pi}{5}$ for n = 0, $\pm 1, \pm 2$ and $\tan \theta = \cot 5\theta$ as well as

$$\sin 2\theta = \cos 4\theta \text{ is} \tag{2010}$$

3. The maximum value of the expression

$$\frac{1}{\sin^2\theta + 3\sin\theta\cos\theta + 5\cos^2\theta}$$
 is (2010)

4. Two parallel chords of a circle of radius 2 are at a distance $\sqrt{3}+1$ apart. If the chords subtend at the center, angles of

$$\frac{\pi}{k}$$
 and $\frac{2\pi}{k}$, where $k > 0$, then the value of $[k]$ is (2010)

[Note: [k]] denotes the largest integer less than or equal to k] The positive integer value of n > 3 satisfying the equation

$$\frac{1}{\sin\left(\frac{\pi}{n}\right)} = \frac{1}{\sin\left(\frac{2\pi}{n}\right)} + \frac{1}{\sin\left(\frac{3\pi}{n}\right)} \text{ is}$$
 (2011)

The number of distinct solutions of the equation

$$\frac{5}{4}\cos^2 2x + \cos^4 x + \sin^4 x + \cos^6 x + \sin^6 x = 2$$

in the interval $[0, 2\pi]$ is

(JEE Adv. 2015)

Section-B **1EE Main / AIEEE**

1.	The period of $\sin^2 \theta$ is
----	----------------------------------

[2002]

- (a) π^2
- (b) π
- (c) 2π
- (d) $\pi/2$
- 2. The number of solution of $\tan x + \sec x = 2\cos x$ in $[0, 2\pi)$ is [2002]
 - (a) 2
- (b) 3
- (c) 0
- (d) 1
- 3. Which one is not periodic

[2002]

- (a) $|\sin 3x| + \sin^2 x$
- (b) $\cos \sqrt{x} + \cos^2 x$
- (c) $\cos 4x + \tan^2 x$
- (d) $\cos 2x + \sin x$
- Let α, β be such that $\pi < \alpha \beta < 3\pi$.

If $\sin \alpha + \sin \beta = -\frac{21}{65}$ and $\cos \alpha + \cos \beta = -\frac{27}{65}$, then the

value of $\cos \frac{\alpha - \beta}{2}$

[2004]

- (b) $\frac{3}{\sqrt{130}}$
- (d) $-\frac{3}{\sqrt{120}}$
- If $u = \sqrt{a^2 \cos^2 \theta + b^2 \sin^2 \theta + \sqrt{a^2 \sin^2 \theta + b^2 \cos^2 \theta}}$ then the difference between the maximum and minimum values of u^2 is given by
 - (a) $(a-b)^2$
- (b) $2\sqrt{a^2+b^2}$
- (c) $(a+b)^2$
- (d) $2(a^2+b^2)$
- A line makes the same angle θ , with each of the x and z axis. If the angle β , which it makes with y-axis, is such that $\sin^2 \beta = 3\sin^2 \theta$, then $\cos^2 \theta$ equals
- (a) $\frac{2}{5}$ (b) $\frac{1}{5}$ (c) $\frac{3}{5}$
- The number of values of x in the interval $[0,3\pi]$ satisfying the equation $2\sin^2 x + 5\sin x - 3 = 0$ is [2006]
- (b) 6
- (c) 1
- (d) 2
- If $0 < x < \pi$ and $\cos x + \sin x = \frac{1}{2}$, then $\tan x$ is [2006]
 - (a) $\frac{(1-\sqrt{7})}{4}$
- (b) $\frac{(4-\sqrt{7})}{2}$
- (c) $-\frac{(4+\sqrt{7})}{}$
- (d) $\frac{(1+\sqrt{7})}{4}$
- Let A and B denote the statements 9.
 - $A : \cos \alpha + \cos \beta + \cos \gamma = 0$
 - \mathbf{B} : $\sin \alpha + \sin \beta + \sin \gamma = 0$

- If $\cos(\beta \gamma) + \cos(\gamma \alpha) + \cos(\alpha \beta) = -\frac{3}{2}$, then: [2009]
- (a) A is false and B is true (b) both A and B are true
- (c) both A and B are false (d) A is true and B is false
- 10. Let $\cos(\alpha + \beta) = \frac{4}{5}$ and $\sin(\alpha \beta) = \frac{5}{12}$, where
 - $0 \le \alpha, \beta \le \frac{\pi}{4}$. Then $\tan 2\alpha =$

[2010]

- (a) $\frac{56}{33}$ (b) $\frac{19}{12}$ (c) $\frac{20}{7}$ (d) If $A = \sin^2 x + \cos^4 x$, then for all real x:
 - (a) $\frac{13}{16} \le A \le 1$
- (b) $1 \le A \le 2$
- (c) $\frac{3}{4} \le A \le \frac{13}{16}$
- (d) $\frac{3}{4} \le A \le 1$
- 12. In a $\triangle PQR$, If 3 sin $P + 4 \cos Q = 6$ and 4 sin Q + 3 $\cos P = 1$, then the angle R is equal to:
 - (a) $\frac{5\pi}{6}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{4}$

- ABCD is a trapezium such that AB and CD are parallel and BC \perp CD. If \angle ADB = θ , BC = p and CD = q, then AB is equal to:
 - (a) $\frac{(p^2+q^2)\sin\theta}{p\cos\theta+a\sin\theta}$ (b) $\frac{p^2+q^2\cos\theta}{p\cos\theta+a\sin\theta}$

 - (c) $\frac{p^2 + q^2}{p^2 \cos \theta + q^2 \sin \theta}$ (d) $\frac{(p^2 + q^2) \sin \theta}{(p \cos \theta + q \sin \theta)^2}$
- 14. The expression $\frac{\tan A}{1-\cot A} + \frac{\cot A}{1-\tan A}$ can be written as:

[JEE M 2013]

- (a) $\sin A \cos A + 1$
- (b) secA cosecA + 1
- (c) tanA + cotA
- (d) secA + cosecA
- 15. Let $f_k(x) = \frac{1}{L} (\sin^k x + \cos^k x)$ where $x \in R$ and $k \ge 1$.

Then $f_4(x) - f_6(x)$ equals

[JEE M 2014]

- (a) $\frac{1}{4}$ (b) $\frac{1}{12}$ (c) $\frac{1}{6}$

- 16. If $0 \le x < 2\pi$, then the number of real values of x, which satisfy the equation $\cos x + \cos 2x + \cos 3x + \cos 4x = 0$ is: [JEE M 2016]
 - (a) 7

(b) 9

- (c) 3
- (d) 5