Research Report, October 2020

Title: An almost perfectly predictable Δ_2^0 - sequence with no optimal predictor

Author: Dariusz Kalociński, Institute of Computer Science, Polish Academy of Sciences

Abstract

In [2] it was shown that there exists a sequence, recursive in 0'', which can be predicted with arbitrarily small asymptotic error but for which no predictor is optimal. Here, we consider the question of how complex such a sequence might be. We demonstrate that the complexity can be lifted to 0'. Further questions are posed, in particular: can such a sequence be c.e.?

Let $A\subseteq\mathbb{N}$. Define $\rho_n(A):=\frac{|A\lceil n|}{n+1}$, where $A\lceil n=\chi_A\upharpoonright [0,n], \overline{\rho}(A)=\limsup_{n\to\infty}\rho_n(A)$, $\underline{\rho}(A)=\liminf_{n\to\infty}\rho_n(A)$ and $\rho(A):=\lim_{n\to\infty}\rho_n(A)$, if this limit exists. We say that sets $A,B\subseteq\mathbb{N}$ are generically similar if $\rho(A\triangle B)=0$. A proper predictor is a total computable function from $2^{<\omega}$ to $\{0,1\}$. If f is a predictor and $A\subseteq\mathbb{N}$, let $fA:=\{n:f(A\lceil n-1)=1\}$ (assuming that $A\lceil -1=\chi_A \upharpoonright [0,-1]=\chi_A\upharpoonright\emptyset=\emptyset$). We say that a proper predictor f is optimal for f if f if f is an analysis of f in f if f is an analysis of f is an analysis of f in f if f is an analysis of f in f in f is an analysis of f in f in

Theorem 1 ([2]). There exists a set $A \subseteq \mathbb{N}$ such that:

- 1. For every proper predictor f, it is not the case that $\rho(A \triangle fA) = 0$.
- 2. There exists an infinite sequence of proper predictors f_0, f_1, \ldots such that $\lim_t \rho(A \triangle f_t A) = 0$.

The construction used in [2] requires 0'' as an oracle (one reason for this is that the enumeration of proper predictors is of such complexity). Here we show that the construction can be lifted to 0' which is much more interesting because sets $\leq 0'$ posses recursive approximations (in particular, the famous Chaitin constant belongs to 0').

Theorem 2. There exists a set $A \subseteq \mathbb{N}$ such that:

- 1. For every proper predictor f, it is not the case that $\rho(A \triangle fA) = 0$.
- 2. There exists an infinite sequence of proper predictors f_0, f_1, \ldots such that $\lim_t \rho(A \triangle f_t A) = 0$.
- 3. $A \leq 0'$.

Proof. Construction. Let ϕ_0, ϕ_1, \ldots be a canonical enumeration of all partial recursive functions from $2^{<\omega}$ to $\{0,1\}$. Without loss of generality, we can assume that ϕ_0 is a proper predictor. Let $R_n = \{m: 2^k | \wedge 2^{k+1} / m\}$ [1]. The construction proceeds in stages $s = 0, 1, \ldots$

Stage 0. $\alpha_0 = 0$. Let $i_0 : \mathbb{N} \to \mathbb{N}$ be the identity function.

Stage s+1. Let n be such that $s+1 \in R_n$. If $\phi_{i_s(n)}(\beta) \downarrow$ for all β of length $\leq s+1$, set $\alpha_{s+1} = \alpha_s(1-\phi_{i_s(n)}(\alpha_s))$. Otherwise (i.e., if $\phi_{i_s(n)}(\beta) \uparrow$ for some β of length $\leq s+1$), set $\alpha_{s+1} := \alpha_s(1-\phi_0(\alpha_s))$ and $i_{s+1}(n) := 0$.

We set $A = \bigcup_{s=0}^{\infty} \alpha_s$. **Verification.** The idea of the construction is similar to the one from [2]. Each ϕ_k is assigned numbers from R_k which is a set of density $2^{-(k+1)}$. If ϕ_k is a proper predictor, then the construction makes ϕ_k to fail on R_k , just as it was in [2].

The main difference lies in cases where ϕ_k is not a proper predictor. Then at some stage t+1 we have $t+1 \in R_k$, i(n) = k and $\phi_k(\beta) \uparrow$ for some β of length $\leq t+1$ (simply put: we discover that ϕ_k is not total). In that case ϕ_k is not assigned to elements from R_k anymore. Instead, ϕ_0 is. Since up to stage t+1 at most finitely many elements from R_k have been handled, the construction makes ϕ_0 to fail on the rest of the elements from R_k . Hence $\rho(A \cap R_k \triangle \phi_0 A \cap R_k) = \rho(R_k)$.

The contents of the proof from [2] remain virtually unchanged, except that h_0 , X are replaced by ϕ_0 , A, respectively. Moreover, instead of finding appropriate h_i 's, ϕ_i 's are to be found. Let us briefly recall that we show that there exists a proper predictor g such that $\rho(A \triangle gA) = \frac{1}{2}$. For each predictor f such that $\rho(A \triangle fA)$ is defined, we show that there exists a proper predictor f' such that $\rho(A \triangle fA) > \rho(A \triangle f'A)$.

Finally, we show that there exist predictors f_0, f_1, \ldots such that $\lim_n \rho(A \triangle f_n A) = 0$. This is done as follows. We set $f_0 = g$ (see paragraph above). Suppose f_n is defined. Let $e = \lim_s i_s(n)$ (note that e = n or e = 0). Define $f_{n+1}(x) = f_n(x)$ if $|x| \notin R_n$ and $f_{n+1}(x) = 1 - \phi_e(x)$ if $|x| \in R_n$. This makes $\rho(A \triangle f_{n+1}) = \rho(A \triangle f_n A) - \rho(R_n)$. Since $\rho(A \triangle f_0 A) = \frac{1}{2}$ and $\sum_{i=1}^{\infty} \rho(R_i) = \frac{1}{2}$, we clearly have $\lim_n \rho(A \triangle f_n A) = 0$.

By the limit lemma [4, 3], the set A from the above theorem is Δ_2^0 .

It is not known whether there exists a computably enumerable sequence satisfying all the properties listed in Theorem 2.

References

- [1] Carl G. Jockusch and Paul E. Schupp. Generic computability, Turing degrees, and asymptotic density. *Journal of the London Mathematical Society*, 85(2):472–490, 2012.
- [2] Dariusz Kalociński and Tomasz Steifer. On unstable and unoptimal prediction. *Mathematical Logic Quarterly*, 65(2):218–227, 2019. _eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/malq.201800085.
- [3] Hilary Putnam. Trial and Error Predicates and the Solution to a Problem of Mostowski. *The Journal of Symbolic Logic*, 30(1):49–57, 1965.
- [4] Joseph R Shoenfield. On degrees of unsolvability. *Annals of mathematics*, 69:644–653, 1959.