

CS231 Data Structure-II

DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING

Data Structure-II 3-4-2-2

Examination scheme: Marks-50 [Continuous Assessment] Course Objectives:

- 1. To study algorithms related to trees and graphs.
- 2. To understand the concept of symbol table.
- 3. To realize appropriate data structures to solve problems in various domains.

Course Outcomes:

- 1. To select appropriate data structures in problem solving
- 2. To implement various algorithms related to trees and graphs
- 3. To demonstrate the use of trees for symbol table implementation.

Graph

Graph- Basic Terminology, Storage representation: Adjacency matrix, Adjacency list, Creation of Graph and Traversals,

Minimum spanning Tree- Prim's and Kruskal's Algorithms, Dikjtra's Single source shortest path, Topological sorting

Graph

- ☐ Basic Terminology
- ☐ Storage representation
- ☐ Creation of graph and traversals
- ☐ Minimum spanning tree
- ☐ Topological sorting

Graph Applications

Social Network

Basic Hypertext

Hypertext

Computer Network

Circuits

Definition

- ☐ A graph G consists of two sets
 - a finite, nonempty set of vertices V(G)
 - a finite, possible empty set of edges E(G)
 - G(V,E) represents a graph

Graph G1

Vertex Set: $V(G_1) = \{0,1,2,3\}$

Edge Set:

Graph G2

Vertex Set:

 $V(G2)=\{0,1,2\}$

Edge Set:

Directed and Undirected Graph

- An undirected graph is one in which the pair of vertices in a edge is unordered, (v0, v1) = (v1, v0)
- \Box A directed graph is one in which each edge is a directed pair of vertices, $\langle v0, v1 \rangle != \langle v1, v0 \rangle$

Undirected Graph

Directed Graph

Degree

- ☐ The degree of a vertex is the number of edges incident to that vertex.
- ☐ For directed graph,
 - the in-degree of a vertex v is the number of edges that have v as the head
 - the out-degree of a vertex v is the number of edges that have v as the tail
 - if di is the degree of a vertex i in a graph G with n vertices and e edges, the number of edges is

$$e = (\sum_{i=0}^{n-1} d_i)/2$$

Example for Degree

Undirected Graph: G1

Directed Graph: G3

Adjacent and Incident

- ☐ If (v0, v1) is an edge in an undirected graph,
 - for v0 and v1 are adjacent
 - The edge (v0, v1) is incident on vertices v0 and v1

- ☐ If <v0, v1> is an edge in a directed graph
 - v0 is adjacent to v1, and v1 is adjacent from v0
 - The edge $\langle v0, v1 \rangle$ is incident on v0 and v1

Complete graph

☐ A complete graph is a graph that has the maximum number of edges

• for undirected graph with n vertices, the maximum number of edges is n(n-1)/2

• for directed graph with n vertices, the maximum number of edges is n(n-1)

Examples for Graph

No. of edges (complete undirected graph): n(n-1)/2 No. of edges (complete directed graph): n(n-1)

Complete Graph

(a) Complete directed graph.

(b) Complete undirected graph.

Subgraph and Path

 \Box A subgraph of G is a graph G' such that V(G') is a subset of V(G) and E(G') is a subset of E(G)

 \Box A path from vertex v_p to vertex v_q in a graph G, is a sequence of vertices, $v_p, v_{i1}, v_{i2}, ..., v_{in}, v_q$, such that $(v_p, v_{i1}), (v_{i1}, v_{i2}), ..., (v_{in}, v_q)$ are edges in an undirected graph

☐ The length of a path is the number of edges on it

Example for Subgraph

Simple path and cycle

- ☐ A simple path is a path in which all vertices, except possibly the first and the last, are distinct
- □ In an undirected graph G, two vertices, v0 and v1, are connected if there is a path in G from v0 to v1
- □ A cycle is a simple path in which the first and the last vertices are the same
- ☐ An undirected graph is connected if, for every pair of distinct vertices vi, vj, there is a path from vi to vj

Examples for Graph

Connected Graphs: G₁ & G₂

Graph G₄: (not connected)

CHAPTEN 0 10

Connected Component

- □ A connected component of an undirected graph is a maximal connected subgraph.
- ☐ A tree is a graph that is connected and acyclic.
- ☐ A directed graph is strongly connected if there is a directed path from vi to vj and also from vj to vi.
- ☐ A strongly connected component is a maximal subgraph that is strongly connected.

Example for Connected Component

Two Connected Components for Graphs G₄: H₁ and H₂

Example for Strongly Connected Component

G₃ (Not strongly connected)

Strongly connected components of G₃

Graph Representation

- ☐ Adjacency Matrix
- ☐ Adjacency Lists

Adjacency Matrix

- \Box Let G=(V,E) be a graph with n vertices.
- □ The adjacency matrix of G is a two-dimensional n by n array, say adj_mat
 - If the edge (vi, vj) is in E(G), adj_mat[i][j]=1
 - If there is no such edge in E(G), adj_mat[i][j]=0
- The adjacency matrix for an undirected graph is symmetric; the adjacency matrix for a digraph need not be symmetric

Adjacency Matrix

Graph G1

Adjacency Matrix for Graph G1

Adjacency Matrix for Graph G₂

Merits: Adjacency Matrix

- From the adjacency matrix, to determine the connection of vertices is easy
- The degree of a vertex is $\sum_{j=0}^{n-1} adj_mat[i][j]$
- □ For a digraph, the row sum is the out_degree, while the column sum is the in_degree

$$ind(vi) = \sum_{j=0}^{n-1} A[j,i]$$
 $outd(vi) = \sum_{j=0}^{n-1} A[i,j]$

Adjacency Lists


```
class Gnode
  { int vertex;
    node *next;
   friend class Graph;
  class Graph
private:
        Gnode *Head[20];
        int n;
public:
        Graph()
                 create head nodes for n vertices
```


Adjacency List for Graph G₁

Adjacency List: Interesting Operations

- degree of a vertex in an undirected graph

 No. of nodes in adjacency list
- ■No. of edges in a graph determined in O(n+e)
- out-degree of a vertex in a directed graph
 No. of nodes in its adjacency list
- in-degree of a vertex in a directed graph traverse the whole data structure

```
Allocate memory for curr node;
graph()
                                                                          curr->vertex=v;
 Accept no of vertices;
                                                                          temp->next=curr;
 for i=0 to n-1
   {Allocate a memory for head[i] node (array)
                                                                          temp=temp->next;
   head[i]->vertex=i; }
                                                                         accept the choice;
create()
                                                                       }while(ans=='y'||ans=='Y');
 for i=0 to n-1
  temp=head[i];
  do
   Accept adjacent vertex v;
   if(v==i)
      Print Self loop are not allowed;
   else
```


Graph Traversal

- □ Depth First Traversal
- ☐ Breadth First Traversal

Depth First Traversal (Recursive)

```
Algorithm DFS()
 //initially no vertex will be visited
      for(int i=0;i<n;i++)
             visited[i]=0;
//start search at vertex v
    accept starting vertex
      DFS(v);
```

```
Algorithm DFS(int v)

print v;
visited[v]=1;
for(each vertex w adjacent to v)
if(!visited[w])
DFS(w);
```


Depth First Search Traversal

Task: Conduct a depth-first search of the graph starting with node D

Depth First SearchTraversal

The DFT of nodes in graph:

D

Visited Array

Visit D

The DFT of nodes in graph:

D

Visited Array

Consider nodes adjacent to D, decide to visit C first (Rule: visit adjacent nodes in alphabetical order or in order of the adjacancy list)

The DFT of nodes in graph:

D, C

Visited Array

Visit C

The DFT of nodes in graph:

D, C

Visited Array

No nodes adjacent to C; cannot continue

□ backtrack, i.e., pop stack and restore previous state

The DFT of nodes in graph:

D, C

Visited Array

Back to D – C has been visited, decide to visit E next

The DFT of nodes in graph:

D, C, E

Visited Array

Back to D – C has been visited, decide to visit E next

The DFT of nodes in graph:

D, C, E

Visited Array

Only G is adjacent to E

The DFT of nodes in graph:

D, C, E, G

Visited Array

A	
В	
C	1
D	1
Е	1
F	
G	1
Н	

Visit G

The DFT of nodes in graph:

D, C, E, G

Visited Array

Nodes D and H are adjacent to G. D has already been visited. Decide to visit H.

The DFT of nodes in graph:

D, C, E, G, H

Visited Array

A	
В	
C	1
D	1
E	1
F	
G	1
Н	1

Visit H

The DFT of nodes in graph:

D, C, E, G, H

Visited Array

Nodes A and B are adjacent to F. Decide to visit A next.

The DFT of nodes in graph:

D, C, E, G, H, A

Visited Array

A	1
В	
C	1
D	1
Е	1
F	
G	1
Н	1

Visit A

The DFT of nodes in graph:

D, C, E, G, H, A

Visited Array

A	1	
В		
C	1	A
D	1	Н
E	1	C
F		
G	1	E
Н	1	Γ

Only Node B is adjacent to A. Decide to visit B next.

The DFT of nodes in graph:

D, C, E, G, H, A, B

Visited Array

A	1
В	1
C	1
D	1
Е	1
F	
G	1
Н	1

Visit B

The DFT of nodes in graph:

D, C, E, G, H, A, B

Visited Array

A	1
В	1
C	1
D	1
Е	1
F	
G	1
Н	1

A H G E D

No unvisited nodes adjacent to B. Backtrack (pop the stack).

The DFT of nodes in graph:

D, C, E, G, H, A, B

Visited Array

No unvisited nodes adjacent to A. Backtrack (pop the stack).

The DFT of nodes in graph:

D, C, E, G, H, A, B

Visited Array

No unvisited nodes adjacent to H. Backtrack (pop the stack).

The DFT of nodes in graph:

D, C, E, G, H, A, B

Visited Array

No unvisited nodes adjacent to G. Backtrack (pop the stack).

The DFT of nodes in graph:

D, C, E, G, H, A, B

Visited Array

No unvisited nodes adjacent to E. Backtrack (pop the stack).

The DFT of nodes in graph:

D, C, E, G, H, A, B

Visited Array

F is unvisited and is adjacent to D. Decide to visit F next.

The DFT of nodes in graph:

D, C, E, G, H, A, B, F

Visited Array

A	1
В	1
C	1
D	1
E	1
F	1
G	1
Н	1

Visit F

The DFT of nodes in graph:

D, C, E, G, H, A, B, F

Visited Array

No unvisited nodes adjacent to F. Backtrack.

The order nodes are visited:

D, C, E, G, H, A, B, F

Visited Array

No unvisited nodes adjacent to D. Backtrack.

The DFT of nodes in graph:

D, C, E, G, H, A, B, F

Visited Array

Stack is empty. Depth-first traversal is done.

Depth First Traversal (Non-recursive)

```
Algorithm DFS(int v)
 for all vertices of graph
      visited[i]=0;
  push(v);
  visited[v]=1;
  do
    v=pop();
    print(v);
    for(each vertex w adjacent to v)
         if(!visited[w])
           { push(w); visited[w]=1;}
 } //end for
 } while(stack not empty)
 } //end dfs
```


Graph G1

Find DFT for given graph G1 starting at vertex 0

Home Assignment

Algorithm BFS(int v) { $for(inti=0;i \le n;i++)$ visited[i]=0;Queue q; q.insert(v); while(!q.IsEmpty()) v=q.Delete(v);for(all vertices w adjacent to v) *if(!vsited[w])* q.insert(w); *visited[w]=true;*

Enqueued Array

How is this accomplished? Simply replace the stack with a queue! Rules: (1) Maintain an *enqueued* array. (2) Visit node when *dequeued*.

Nodes visited:

Enqueued Array

Enqueue D. Notice, D not yet visited.

Nodes visited: D

Enqueued Array

 $Q \square C \square E \square F$

Dequeue D. Visit D. Enqueue unenqueued nodes adjacent to D.

Nodes visited: D, C

Enqueued Array

 $Q \square E \square F$

Dequeue C. Visit C. Enqueue unenqueued nodes adjacent to C.

Nodes visited: D, C, E

Enqueued Array

 $Q \square F \square G$

Dequeue E. Visit E. Enqueue unenqueued nodes adjacent to E.

Nodes visited: D, C, E, F

Enqueued Array

 $\mathbf{O} \square \mathbf{G}$

Dequeue F. Visit F. Enqueue unenqueued nodes adjacent to F.

Nodes visited: D, C, E, F, G

Enqueued Array

 $O \square H$

Dequeue G. Visit G. Enqueue unenqueued nodes adjacent to G.

Nodes visited: D, C, E, F, G, H

Enqueued Array

 $Q \square A \square B$

Dequeue H. Visit H. Enqueue unenqueued nodes adjacent to H.

Enqueued Array

		_
A		
В	1	(
С		
D		
Е		
F		
G		
Н		

 $Q \square B$

Nodes visited: D, C, E, F, G, H, A

Dequeue A. Visit A. Enqueue unenqueued nodes adjacent to A.

Enqueued Array

A	
В	1
С	1
D	1
Е	V
F	V
G	V
Н	V

Q empty

Nodes visited: D, C, E, F, G, H, A, B

Dequeue B. Visit B. Enqueue unenqueued nodes adjacent to B.

Enqueued Array

A	1
В	
С	1
D	1
Е	1
F	1
G	
Н	1

Q empty

Nodes visited: D, C, E, F, G, H, A, B

Q empty. Algorithm done.

Graph G1

Find BFT for given graph G1 starting at vertex 0

Spanning Trees

- ☐ A spanning tree is any tree that consists solely of edges in G and that includes all the vertices
- \Box A spanning tree is a minimal subgraph, G', of G such that V(G')=V(G) and G' is connected.
- \Box E(G): T (tree edges) + N (nontree edges)

where T: set of edges used during search

N: set of remaining edges

- ☐ Either dfs or bfs can be used to create a spanning tree
 - When dfs is used, the resulting spanning tree is known as a depth first spanning tree
 - When bfs is used, the resulting spanning tree is known as a breadth first spanning tree

Examples of Spanning Trees

Graph G1

Possible spanning trees

DFS VS BFS Spanning Trees

Graph

DFS Spanning Tree

BFS Spanning Tree

Minimum Spanning Tree

- □ The cost of a spanning tree of a weighted undirected graph is the sum of the costs of the edges in the spanning tree
- ☐ A minimum cost spanning tree is a spanning tree of least cost
- ☐ Two different algorithms can be used
 - Kruskal
 - Prim

Select n-1 edges from a weighted graph of n vertices with minimum cost.

Minimum Spanning Tree

- ☐ Applications of MST in Network design
 - Telephone
 - Electrical
 - TV cable
 - Computer
 - road

Greedy Strategy

- An optimal solution is constructed in stages
- ☐ At each stage, the best decision is made at this time
- Since this decision cannot be changed later, we make sure that the decision will result in a feasible solution
- Typically, the selection of an item at each stage is based on a least cost or a highest profit criterion

- □ Build a minimum cost spanning tree T by adding edges to T one at a time
- Select the edges for inclusion in T in nondecreasing order of the cost
- ☐ An edge is added to T if it does not form a cycle
- □ Since G is connected and has n > 0 vertices, exactly n-1 edges will be selected


```
T= \{\};
while (T contains less than n-1 edges
       && E is not empty)
  choose a least cost edge (v,w) from E;
 delete (v,w) from E;
  if ((v,w) does not create a cycle in T)
    add (v,w) to T
 else
     discard (v,w);
if (T contains fewer than n-1 edges)
  printf("No spanning tree\n");
```


Consider an undirected, weight graph

Sort the edges by increasing edge weight

edge	d_v	
(D,E)	1	
(D,G)	2	
(E,G)	3	
(C,D)	3	
(G,H)	3	
(C,F)	3	
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	√
(D,G)	2	
(E,G)	3	
(C,D)	3	
(G,H)	3	
(C,F)	3	
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	$\sqrt{}$
(D,G)	2	V
(E,G)	3	
(C,D)	3	
(G,H)	3	
(C,F)	3	
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	
(D,G)	2	√ √
(E,G)	3	χ
(C,D)	3	
(G,H)	3	
(C,F)	3	
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Accepting edge (E,G) would create a cycle

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	\checkmark
(D,G)	2	√
(E,G)	3	χ
(C,D)	3	√
(G,H)	3	
(C,F)	3	
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	$\sqrt{}$
(D,G)	2	
(E,G)	3	χ
(C,D)	3	V
(G,H)	3	V
(C,F)	3	
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	$\sqrt{}$
(D,G)	2	
(E,G)	3	χ
(C,D)	3	
(G,H)	3	$\sqrt{}$
(C,F)	3	
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	$\sqrt{}$
(D,G)	2	√
(E,G)	3	χ
(C,D)	3	V
(G,H)	3	√
(C,F)	3	V
(B,C)	4	

edge	d_v	
(B,E)	4	
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	V
(D,G)	2	V
(E,G)	3	χ
(C,D)	3	V
(G,H)	3	V
(C,F)	3	V
(B,C)	4	

edge	d_v	
(B,E)	4	χ
(B,F)	4	
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	
(D,G)	2	
(E,G)	3	χ
(C,D)	3	
(G,H)	3	\checkmark
(C,F)	3	
(B,C)	4	

edge	d_v	
(B,E)	4	χ
(B,F)	4	χ
(B,H)	4	
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	
(D,G)	2	$\sqrt{}$
(E,G)	3	χ
(C,D)	3	$\sqrt{}$
(G,H)	3	$\sqrt{}$
(C,F)	3	
(B,C)	4	

edge	d_v	
(B,E)	4	χ
(B,F)	4	χ
(B,H)	4	χ
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	$\sqrt{}$
(D,G)	2	$\sqrt{}$
(E,G)	3	χ
(C,D)	3	$\sqrt{}$
(G,H)	3	$\sqrt{}$
(C,F)	3	√
(B,C)	4	√

edge	d_v	
(B,E)	4	χ
(B,F)	4	χ
(B,H)	4	χ
(A,H)	5	
(D,F)	6	
(A,B)	8	
(A,F)	10	

Select first |V|-1 edges which do not generate a cycle

edge	d_v	
(D,E)	1	\checkmark
(D,G)	2	√
(E,G)	3	χ
(C,D)	3	√
(G,H)	3	√
(C,F)	3	
(B,C)	4	

edge	d_v		
(B,E)	4	χ	
(B,F)	4	χ	
(B,H)	4	χ	
(A,H)	5	V	
(D,F)	6)
(A,B)	8		not considered
(A,F)	10		

Done

Total Cost =
$$\sum d_v = 21$$

Analysis of Kruskal's Algorithm

Running Time = $O(m \log n)$ (m = edges, n = nodes)

Testing if an edge creates a cycle can be slow unless a complicated data structure called a "union-find" structure is used.

It usually only has to check a small fraction of the edges, but in some cases (like if there was a vertex connected to the graph by only one edge and it was the longest edge) it would have to check all the edges.

This algorithm works best, of course, if the number of edges is kept to a minimum.

```
//Assume G has at least one vertex
TV=\{0\}; //start with vertex 0 and no edges
for (T=Ø; T contains less than n-1 edges; add(u,v) to T)
 let (u,v) be a least cost edge such that u \in TV and v \notin TV;
 if (there is no such edge ) break;
 add v to TV;
if (T contains fewer than n-1 edges)
cout << "No spanning tree\n";
```


Initialize array

	K	d_v	p_{v}
A	F	8	1
В	F	8	
C	F	8	
D	F	8	1
E	F	8	1
F	F	8	1
G	F	8	_
Н	F	8	_

Start with any node, say D

	K	d_v	p_{v}
A			
В			
C			
D	T	0	_
E			
F			
G			
Н			

Update distances of adjacent, unselected nodes

	K	d_v	p_{v}
A			
В			
C		3	D
D	Т	0	_
E		25	D
F		18	D
G		2	D
Н			

Select node with minimum distance

	K	d_v	p_{v}
A			
В			
C		3	D
D	Т	0	
E		25	D
F		18	D
G	T	2	D
Н			

Update distances of adjacent, unselected nodes

	K	d_v	p_{v}
A			
В			
C		3	D
D	Т	0	
E		7	G
F		18	D
G	Т	2	D
Н		3	G

Select node with minimum distance

	K	d_v	p_{v}
A			
В			
C	T	3	D
D	Т	0	
E		7	G
F		18	D
G	T	2	D
Н		3	G

Update distances of adjacent, unselected nodes

	K	d_v	p_{v}
A			
В		4	C
С	Т	3	D
D	Т	0	
E		7	G
F		3	C
G	Т	2	D
Н		3	G

Select node with minimum distance

	K	d_v	p_{v}
A			
В		4	С
C	Т	3	D
D	Т	0	
E		7	G
F	T	3	C
G	Т	2	D
Н		3	G

Update distances of adjacent, unselected nodes

	K	d_v	p_v
A		10	F
В		4	C
C	Т	3	D
D	Т	0	_
E		2	F
F	Т	3	C
G	Т	2	D
Н		3	G

Select node with minimum distance

	K	d_v	p_{v}
A		10	F
В		4	С
C	Т	3	D
D	Т	0	
E	T	2	F
F	T	3	C
G	T	2	D
Н		3	G

Update distances of adjacent, unselected nodes

	K	d_v	p_{v}
A		10	F
В		4	С
C	Т	3	D
D	Т	0	
E	Т	2	F
F	Т	3	С
G	Т	2	D
Н		3	G

Table entries unchanged

Select node with minimum distance

	K	d_v	p_{v}
A		10	F
В		4	C
C	T	3	D
D	T	0	_
E	Т	2	F
F	T	3	C
G	Т	2	D
Н	T	3	G

Update distances of adjacent, unselected nodes

	K	d_v	p_{v}
A		4	Н
В		4	С
C	T	3	D
D	T	0	
E	Т	2	F
F	T	3	C
G	T	2	D
Н	T	3	G

Select node with minimum distance

	K	d_v	p_{v}
A	T	4	Н
В		4	С
C	Т	3	D
D	Т	0	
E	Т	2	F
F	Т	3	С
G	Т	2	D
Н	Т	3	G

Prim's Algorithm

Update distances of adjacent, unselected nodes

	K	d_v	p_{v}
A	Т	4	Н
В		4	С
C	T	3	D
D	Т	0	_
E	Т	2	F
F	Т	3	С
G	Т	2	D
Н	T	3	G

Table entries unchanged

Prim's Algorithm

Select node with minimum distance

	K	d_v	p_{v}
A	Т	4	Н
В	T	4	C
C	Т	3	D
D	Т	0	_
E	Т	2	F
F	Т	3	C
G	Т	2	D
Н	Т	3	G

Prim's Algorithm

Cost of Minimum Spanning Tree = $\sum d_v = 21$

	K	d_v	p_{v}
A	T	4	Н
В	Т	4	С
C	Т	3	D
D	T	0	_
E	Т	2	F
F	Т	3	C
G	Т	2	D
Н	T	3	G

Done

Analysis of Prim's Algorithm

- \square Run time will be $O(n^2)$.
- Unlike Kruskal's, it doesn't need to see all of the graph at once. It can deal with it one piece at a time. It also doesn't need to worry if adding an edge will create a cycle since this algorithm deals primarily with the nodes, and not the edges.
- □ For this algorithm the number of nodes needs to be kept to a minimum in addition to the number of edges. For small graphs, the edges matter more, while for large graphs the number of nodes matters more.

Home Assignment

Find MST for given Graph G1 using Prim's and Kruskal Algorithm

Comparison Prim's and Kruskal's Algorithm

☐ Kruskal's has better running times if the number of edges is low, while Prim's has a better running time if both the number of edges and the number of nodes are low.

□ So, of course, the best algorithm depends on the graph and if you want to bear the cost of complex data structures.

Shortest Path Problems

- ☐ Directed weighted graph.
- ☐ Path length is sum of weights of edges on path.
- ☐ The vertex at which the path begins is the source vertex.
- ☐ The vertex at which the path ends is the destination vertex.

Shortest Path Problems

- ☐ Single source single destination.
- ☐ Single source all destinations.
- ☐ All pairs (every vertex is a source and destination).

- ☐ Finds Single source all destination shortest paths
- Uses Greedy Method
- ☐ No negative weights are allowed
- Application
 - Routing protocols in computer networks
 - Google Maps and many more..

Google Maps

Routing Protocols

shortest paths from v_0 (Single source) to all destinations

	<u>Path</u>	Length
1)	$v_0^{}v_2^{}$	10
2)	$v_0^{}v_2^{}v_3^{}$	25
3)	$v_0^{}v_2^{}v_3^{}v_1^{}$	45
4)	$v_0^{}v_4^{}$	45
	(b)	


```
void shortestPath(int v,int g[][],int
   n,int dist[])
    for (i=0;i<n;i++)
        s[i] = 0;
        dist[i]=g[v][i];
    //put v into s
    s[v] = 1;
    dist[v] = 0;
```

```
for(j=2;j<n; j++)
    //choose u from among those vertices not in s
     such that dist[u] is minimum;
   s[u] = 1;
   for each(w adjacent to u with s[w] = 0)
     if(dist[w] > dist[u]+g[u][w])
           dist[w] = dist[u]+cost[u][w];
```


Algorithm

MIT-WPU

Algorithm

Algorithm

"	Path	Length 0	
	<u>1</u> → <u>3</u>	2	
	1 3	→ 5	
	1 2	6	
	1 3	→ 5 → 4 9	
	<u>1</u> → <u>3</u> —	→ 6 10	[1] [2] [3] [4] [5] [6] [7] 0 6 2 9 5 10 11
	<u>1</u> → <u>3</u>	→ 6 → 7 11	- 1 1 5 3 6

Analysis of Dijkstra Algorithm

- \square O(n) to select next destination vertex.
- O(out-degree) to update d() and p() values when adjacency lists are used.
- \square O(n) to update d() and p() values when adjacency matrix is used.
- ☐ Selection and update done once for each vertex to which a shortest path is found.
- \square Total time is $O(n^2 + e) = O(n^2)$.

Home Assignment

Find shortest paths from v_0 to all destinations

Topological sort

- □ We have a set of tasks and a set of dependencies (precedence constraints) of form "task A must be done before task B"
- ☐ Topological sort: An ordering of the tasks that conforms with the given dependencies
- ☐ Goal: Find a topological sort of the tasks or decide that there is no such ordering

Topological sort

☐ Applications

- Assembly lines in industries
- Courses arrangement in schools
- Life related applications: Dressing order

Topological sort

```
void topological_sort()
for (i = 0; i < n; i++) {
   if every vertex has a predecessor {
     fprintf(stderr, "Network has a cycle. \n ");
     exit(1);
    pick a vertex v that has no predecessors;
    output v;
    delete v and all edges leading out of v from the network;
```


A job consists of 10 tasks with the following precedence rules:

Must start with 7, 5, 4 or 9.

Task 1 must follow 7.

Tasks 3 & 6 must follow both 7 & 5.

8 must follow 6 & 4.

2 must follow 4.

10 must follow 2.

Make a directed graph and then do DFS.

Tasks shown as a directed graph.

Topological Sort using DFS

To create a topological sort from a DAG

- 1- Final linked list is empty
- 2-Run DFS
- 3- When a node becomes black (finishes) insert it to the top of a linked list

Tasks shown as a directed graph.

27 March 2019 DATA STRUCTURE-II 158

www.csie.ntu.edu.tw/~ds/ppt/ch6/chapter6.PPT

https://people.cs.clemson.edu/~pargas/courses/cs212/.../ppt/2 1DepthFirstSearch.ppt

https://people.cs.clemson.edu/~pargas/courses/cs212/.../ppt/2 1BreadthFirstSearch.ppt

http://www.serc.iisc.ernet.in/~viren/Courses/2009/SE286/Graph_Dijkstra_Prim_Kruskal.ppt

27 March 2019 DATA STRUCTURE-II 159