

resumo prova 3

dependências funcionais são ruins → deve-se melhorar criando outra tabela

• 1 FN

- ⇒ Todas as colunas devem conter apenas valores atômicos (cada coluna só pode conter 1 valor para cada linha da tabela)
 - → Não pode conter atributo composto;
 - → Não pode conter atributo multi-valorado;
 - → Não pode conter conjuntos de atributos repetidos descrevendo a mesma categoria.
 - ATRIBUTO MULTIVALORADO

EXEMPLOS DE 'TABELAS' IMPLEMENTADA SEM ESTAR NA 1FN E SOLUÇÕES

- Exemplo de relação que NÃO está na 1FN
- Suponha a relação:
 - PessoaCurso(Nome, Cidade, ID, (Curso)*)
 - O asterisco (*) significa que cada Pessoa terá um grupo de Cursos

Nome	Cidade	ID	Cursos		
Artur	São Paulo	999	Programador		
Ana	Londrina	777	Operador, programador		
Carlos	Araruna	888	Analista, programador, operador		
Paulo	Maringá	555	Operador, analista		

O atributo Cursos contém valores não atômicos

→ PARA COLOCAR A TABELA NA 1FN, CRIA-SE UMA TABELA DE CURSOS SE RELACIONANDO CM O ID DE TAL PESSOA

- Pessoa (Nome, Cidade, <u>ID</u>)
- PessoaCurso(<u>ID</u>, <u>Curso</u>)

Nome	Cidade	ID	
Artur	São Paulo	999	
Ana	Londrina	777	
Carlos	Araruna	888	
Paulo	Maringá	555	

ID	Curso
999	Programador
777	Operador
777	Programador
888	Analista
888	Programador
888	Operador
555	Operador
555	Analista

- ATRIBUTO COMPOSTO
 - EXEMPLO: ENDEREÇO → é dividido em logradouro, nome, bairro, numero, complemento, cidade, CEP, etc.

• 2 FN

- ⇒ A TABELA DEVE ESTAR NA 1 FN;
- ⇒ ATRIBUTOS NÃO-CHAVES DEVEM SER TOTALMENTE DEPENDENTE DA CHAVE PRIMÁRIA (em resumo, para estar na 2FN, não deve existir dependência parcial).
 - Exemplo de relação que NÃO está na 2FN
 - Analise a relação, Pedido(NomeFornecedor, CodPeça, Cidade, Quantidade) em que:
 - {NomeFornecedor, CodPeça} é a chave primária
 - {NomeFornecedor} → {Cidade}

NomeFornecedor	CodPeça	Cidade	Quantidade
Empresa A	1	Maringá	100
Empresa A	2	Maringá	200
Empresa A	3	Maringá	300
Empresa B	1	Londrina	400
Empresa B	3	Londrina	500

ANOMALIAS ENCONTRADAS NA TABELA ACIMA:

- Inserção: Não é possível inserir um fornecedor sem que ele forneça alguma peça (peça faz parte da chave).
- Eliminação: Se, por exemplo, a empresa B deixar de fornecer as peças
 1 e 3, a informação sobre a cidade desse fornecedor será perdida.
- Modificação: Supondo que um fornecedor muda de cidade. Atualizar R significa atualizar todas as tuplas desse fornecedor.

→ TABELA ARRANJADA PARA A 2 FN

- Pedido(NomeFornecedor, CodPeça, Quantidade)
- Fornecedor (<u>NomeFornecedor</u>, Cidade)

CodPeça NomeFornecedor Quantidade Empresa A 100 1 2 200 Empresa A 3 Empresa A 300 Empresa B 1 400 3 500 Empresa B

NomeFornecedor	Cidade
Empresa A	Maringá
Empresa B	Londrina

• 3 FN

- ⇒ A TABELA DEVE ESTAR NA 2 FN:
- ⇒ UM ATRIBUTO NÃO-CHAVE NÃO DEVE DEPENDER DE OUTRO ATRIBUTO NÃO-CHAVE:
 - → NÃO PODE EXISTIR DEPENDÊNCIA TRANSITIVA.

- Exemplo de relação que NÃO está na 3FN
- Analise a relação, Nota(<u>NumNota</u>, CodCliente, NomeCliente, CidadeCliente) em que:
 - {NumNota} é a chave primária
 - {CodCliente} → NomeCliente
 - {CodCliente} → {CidadeCliente}
 - Logo:
 - {CodCliente} → {NomeCliente, CidadeCliente}
 - E transitivamente:
 - {NumNota} → {NomeCliente, CidadeCliente}

→ ARRANJANDO A TABELA PARA ESTAR NA 3 FN:

- Cliente(<u>CodCliente</u>, NomeCliente CidadeCliente)
- Nota(NumNota, CodCliente)

CodCliente	NomeCliente	CidadeCliente Curitiba		
1	Måria			
2	Ana	Londrina		
3	João	Maringá		

NumNota	CodCliente		
1	1		
2	2		
3	2		
4	3		
5	3		

• EXERCICIOS

• ELE DISSE Q ESSE VAI SER IGUAL DA PROVA

- Indique em forma normal a relação de se encontra e normalize para a 3FN:
- Arq-Alunos(CodAl, NomeAl, (CodCurso, Ingresso, (CodDisc, SemDisCursada, Nota)))

CodAl	NomeAl	CodCurso	Ingresso	CodDisc	SemDisCursada	Nota
1 Maria		1	2010-2	1	2010-1	6.0
	X4			2	2010-2	7.0
	Maria	2	2011-1	3	2011-1	8.0
			2011-1	4	2011-1	6.0

SOLUÇÃO:

CodAl PK

NomeAl

CodCurso

Ingresso

CodDisc

SemDisCursada

Nota

*analisar o que não é atômico (a partir de CodCurso)

ALUNO

CodAl (PK),

NomeAl

CURSO_ALUNO

CodAl (FK) (PK),

CodCurso (PK),

Ingresso,

PRIMARY KEY (CodAl, CodCurso),

FOREIGN KEY(CodAI) REFERENCES ALUNO(CodAI)

CURSO_ALUNO_DISCIPLINA

CodAI,

CodCurso,

CodDisc,

SemDisCursada,

Nota,

FOREIGN KEY(CodAI, CodCurso) REFERENCES CURSO_ALUNO(CodAI, CodCurso),

PRIMARY KEY(CodAl, CodCurso, CodDisc)

• EXERCICIO 2

- Indique em forma normal a relação de se encontra e normalize para a 3FN:
- ProjEmp(CodProj, CodEmp, Nome, Cat, Sal, DataIni, TempAI)
 - {CodProj, CodEmp} é a chave primária
 - {CodProj, CodEmp} → { DataIni, TempAI }
 - {CodEmp} → { Nome, Cat, Sal }
 - {Cat} → { Sal }

CodProj	CodEmp	Nome	Cat	Sal	Datalni	TempAl
LSC001	2146	João	A1	4	01/11/91	24
LSC001	3145	Sílvio	A2	4	02/10/91	24
LSC001	6126	José	B1	9	03/10/92	18
LSC001	1214	Carlos	A2	4	04/10/92	18
LSC001	8191	Mário	A1	4	01/11/92	12
PAG02	8191	Mário	A1	.4	01/05/93	12
PAG02	4112	João	A2	. 4	04/01/91	24
PAG02	6126	José	B1	9	01/11/92	12

SOLUÇÃO:

CodProj PK

CodEmp

Nome

Cat

Sal

Datalni

TempAl

***A TABELA JA SE ENCONTRA NA 1FN, POIS NÃO HÁ ATRIBUTOS COMPOSTOS OU MULTIVALORADOS, LOGO:

***ESTÁ NA 2FN? NÃO, HÁ DEPENDENCIAS PARCIAIS. (já arruma as dependências transitivas junto para estar na 3FN)

```
SALARIO_EMP

Cat PK,
Sal

EMPREGADO

CodEmp PK,
Nome,
Cat,
FOREIGN KEY(Cat) REFERENCES SALARIO_EM(Cat)

PROJ_EMP

CodProj,
CodEmp,
Datalni,
TempAl,
PRIMARY KEY (CodProj, CodEmp)

FOREIGN KEY (CodEmp) REFERENCES EMPREGADO(CodEmp)
```

• EXERCICIO 3

1) Analise o histórico de um dos alunos de uma faculdade e aplique passo a passo as 3 formas normais cabíveis:

Universidade Tecnológica Federal do Paraná

Curso: Bacharelado em Ciência da Computação

Código do Curso: 33

Nome do Aluno: João da Silva

Matricula: 74439 Status: Regular

Histórico

THIS COLOR						
DISCIPLINA	PROFESSOR	NOTA	FALTAS	SITUAÇÃO		
Banco de Dados 1 (BCC33E)	Reginaldo Ré (344)	8,9	19	Aprovado		
Banco de Dados 2 (BCC34E)	André Schwerz (477)	6,0	10	Aprovado		
Progr. de Aplicativos (BCC33F)	Rafael Liberato (494)	4,8	20	Reprovado		

SOLUÇÃO:

***NAO ESTA NA 1FN → ATRIBUTOS COMPOSTOS E MULTIVALORADOS

ALUNO

Matricula_A PK,

Nome_A,

Status_A,

Cod_C,

Nome_C,

HISTORICO

Matricula_A PK FK,

Cod_D PK

Nome_D,

Nome_P,

Cod_P,

Nota_A_D,

Falta_A_D,

Situacao_A_D

***AGORA ESTÁ NA 1FN

***NÃO ESTÁ NA 2FN > DEPENDÊNCIAS PARCIAIS

```
ALUNO
  Matricula_A PK,
  Nome_A,
  Status_A,
  Cod_C,
  Nome_C,
DISCIPLINA
  Cod_D PK,
  Nome_D,
  Cod_P,
  Nome_P
HISTORICO
  Matricula_A FK,
  Cod_D FK,
  Nota_A_D,
  Falta_A_D,
```

***3FN? não, dependencia transitiva

PK (Matricula_A, Cod_D)

```
CURSO
  Cod_C PK,
  Nome_C
ALUNO
  Matricula_A PK,
```

Situacao_A_D

```
Nome_A,
  Status_A,
  Cod_C FK,
PROFESSOR
  Cod_P PK,
  Nome_P
DISCIPLINA
  Cod_D PK,
  Nome_D,
  Cod_P FK,
HISTORICO
  Matricula_A FK,
  Cod_D FK,
  Nota_A_D,
  Falta_A_D,
  Situacao_A_D
  PK (Matricula_A, Cod_D)
```

LISTA 2 - (FN)

```
EXERCICIO 1
VENDEDOR(nro_vend, nome_vend, sexo_vend, {CLIENTE(nro_cli,nome_cli,end_cli)})
•nro_vend → {nome_vend, sexo_vend}
•nro_cli → {nome_cli,end_cli}
•Por fim, observe que um vendedor pode atender diversos clientes, e um cliente pode ser
atendido por diversos vendedores.
Descreva as relações na 1FN, 2FN, 3FN e BCNF
1FN? não, há atributos multivalorados
VENDEDOR
 nro_vend PK
  nome_vend
  sexo_vend
VENDEDOR_CLIENTE
  nro_vend
  nro_cli
 nome_cli
 end_cli
  PRIMARY KEY (nro_vend, nro cli)
  FOREIGN KEY (nro_vend) referencia VENDEDOR(nro_vend)
```

```
2FN? não, há dependencia parciais
VENDEDOR
 nro_vend PK
 nome_vend
 sexo_vend
CLIENTE
  nro_cli PK
 nome_cli
 end_cli
VENDEDOR_CLIENTE
  nro_vend
 nro_cli
 PRIMARY KEY (nro_vend, nro cli)
  FOREIGN KEY (nro_vend) referencia VENDEDOR(nro_vend)
  FOREIGN KEY (nro_cli) referencia CLIENTE(nro_cli)
3FN? sim, não há dependencias transitivas
                                  EXERCICIO 2
ALUNO(nro_aluno, cod_depto, nome_depto, sigla_depto, cod_orient, nome_orient,
      fone_orient, cod_curso)
•cod_depto -> {nome_depto, sigla_depto}
•cod_orient -> {nome_orient, fone_orient}
•nro_aluno -> {cod_depto, cod_orient, cod_curso}
•um aluno somente pode estar associado a um departamento
•um aluno cursa apenas um único curso
ulletum aluno somente pode ser orientado por um único orientador
Descreva as relações na 1FN, 2FN, 3FN e BCNF
1FN? sim, não há atributos compostos ou multivalorados.
2FN? sim, não dependências parciais.
3FN? não, há dependências transitivas
DEPARTAMENTO
 cod depto PK
  nome_depto
  sigla_depto
ORIENTADOR
  cod_orient PK
  nome_orient
  fone_orient
ALUNO
  nro_aluno (PK)
 cod_depto (FK)
 cod_orient (FK)
  cod_curso
```

```
EXERCICIO 3
EMPRESA(cod_empresa, nome_empresa, end_empresa, nome_fundador, nacionalidade_fundador,
        {FILIAL(filial_nro, filial_local, filial_data_abertura)})
•cod_empresa → {nome_empresa,end_empresa,nome_fundador}
•nome_fundador → nacionalidade_fundador
•{cod_empresa,filial_nro} → {filial_local,filial_data_abertura}
•Uma empresa somente pode ter sido fundada por um único fundador
Descreva as relações na 1FN, 2FN, 3FN e BCNF
1FN? não, há atributos multivalorados
EMPRESA
 cod_empresa PK
 nome_empresa
 end_empresa
 nome_fundador
  nacionalidade_fundador
EMPRESA_FILIAL
  cod_empresa FK
  filial_nro
  filial_local
  filial_data_abertura
  PRIMARY KEY(cod_empresa, filial_nro)
2FN? sim, não há dependência parcial
3FN? não, há dependência transitiva em EMPRESA
FUNDADOR
  nome_fundador PK
  nacionalidade_fundador
EMPRESA
 cod_empresa PK
  nome_empresa
  end_empresa
 nome_fundador FK
EMPRESA FILIAL
  cod empresa FK
  filial_nro
  filial_local
  filial_data_abertura
  PRIMARY KEY(cod_empresa, filial_nro)
```