Divergenza delle serie perturbative

Laurendo Manuel Deodato *Relatore* Claudio Bonati

Università di Pisa

Particella 1D in potenziale

$$\hat{V} = \frac{1}{2}\hat{x}^2 + \frac{1}{2}g\hat{x}^4$$

Particella 1D in potenziale

$$\hat{V} = \frac{1}{2}\hat{x}^2 + \frac{1}{2}g\hat{x}^4$$

Perturbativamente, le energie del fondamentale sono della forma $E=1/2+\sum g^n E_n$ e le funzioni d'onda degli stati eccitati si scrivono come $B(x)e^{-x^2/2}$.

Particella 1D in potenziale

$$\hat{V} = \frac{1}{2}\hat{x}^2 + \frac{1}{2}g\hat{x}^4$$

Perturbativamente, le energie del fondamentale sono della forma $E=1/2+\sum g^nE_n$ e le funzioni d'onda degli stati eccitati si scrivono come $B(x)e^{-x^2/2}$. Se $|n\rangle$, $|m\rangle$ sono due autostati di \hat{H}_0 :

$$\langle n|\hat{x}^4|m\rangle \neq 0 \iff \begin{cases} \Delta n = |n-m| \leq 4\\ \pi_n = \pi_m \end{cases}$$

Particella 1D in potenziale

$$\hat{V} = \frac{1}{2}\hat{x}^2 + \frac{1}{2}g\hat{x}^4$$

Perturbativamente, le energie del fondamentale sono della forma $E=1/2+\sum g^nE_n$ e le funzioni d'onda degli stati eccitati si scrivono come $B(x)e^{-x^2/2}$. Se $|n\rangle$, $|m\rangle$ sono due autostati di \hat{H}_0 :

$$\langle n|\hat{x}^4|m\rangle \neq 0 \iff \begin{cases} \Delta n = |n-m| \leq 4\\ \pi_n = \pi_m \end{cases}$$

Si parte dal fondamentale, quindi $m \le 4$ e $\pi_m = +1$; il polinomio B(x) si può scrivere come:

Particella 1D in potenziale

$$\hat{V} = \frac{1}{2}\hat{x}^2 + \frac{1}{2}g\hat{x}^4$$

Perturbativamente, le energie del fondamentale sono della forma $E=1/2+\sum g^nE_n$ e le funzioni d'onda degli stati eccitati si scrivono come $B(x)e^{-x^2/2}$. Se $|n\rangle$, $|m\rangle$ sono due autostati di \hat{H}_0 :

$$\langle n|\hat{x}^4|m\rangle \neq 0 \iff \begin{cases} \Delta n = |n-m| \leq 4\\ \pi_n = \pi_m \end{cases}$$

Si parte dal fondamentale, quindi $m \le 4$ e $\pi_m = +1$; il polinomio B(x) si può scrivere come:

$$B(x) = \sum_{k=0}^{+\infty} g^k B_k(x) \qquad B_k(x) = \sum_{j=0}^{2k} A_{k,j} x^{2j}$$

con $B_k(0) = 1$ come scelta di normalizzazione $\Rightarrow A_{k,0} = 1$.

Particella 1D in potenziale

$$\hat{V} = \frac{1}{2}\hat{x}^2 + \frac{1}{2}g\hat{x}^4$$

Perturbativamente, le energie del fondamentale sono della forma $E=1/2+\sum g^nE_n$ e le funzioni d'onda degli stati eccitati si scrivono come $B(x)e^{-x^2/2}$. Se $|n\rangle$, $|m\rangle$ sono due autostati di \hat{H}_0 :

$$\langle n|\hat{x}^4|m\rangle \neq 0 \iff \begin{cases} \Delta n = |n-m| \leq 4\\ \pi_n = \pi_m \end{cases}$$

Si parte dal fondamentale, quindi $m \le 4$ e $\pi_m = +1$; il polinomio B(x) si può scrivere come:

$$B(x) = \sum_{k=0}^{+\infty} g^k B_k(x) \qquad B_k(x) = \sum_{j=0}^{2k} A_{k,j} x^{2j}$$

con $B_k(0) = 1$ come scelta di normalizzazione $\Rightarrow A_{k,0} = 1$.Inserendo nell'equazione di Schrödinger, si trovano le seguenti relazioni ricorsive per determinare le energie:

$$E_k = -2A_{k,1} - \sum_{s=1}^{k-1} E_s; \ A_{k,j} = \frac{1}{4j} \left[(2j+2)(2j+1)A_{k,j+1} - A_{k-1,j-2} + \sum_{s=1}^{k-1} E_s A_{k-s,j} \right]$$

Tramite calcolo numerico, si vede che queste sono divergenti con $E_n \sim n!$.

Università di Pisa

Divergenza \Rightarrow non analiticità di E(g) in un intorno di g = 0.

Divergenza \Rightarrow non analiticità di E(g) in un intorno di g = 0.

Per g < 0, il potenziale è

$$V = \frac{1}{2}x^2 - \frac{1}{2}|g|x^4$$

Divergenza \Rightarrow non analiticità di E(g) in un intorno di g = 0.

Per g < 0, il potenziale è

$$V = \frac{1}{2}x^2 - \frac{1}{2}|g|x^4$$

Per g < 0, la particella si trova in una buca di potenziale \rightarrow per effetto tunnel vi può fuoriuscire e liberarsi.

Questo non è descrivibile perturbativamente.

Divergenza \Rightarrow non analiticità di E(g) in un intorno di g = 0.

Per g < 0, il potenziale è

$$V = \frac{1}{2}x^2 - \frac{1}{2}|g|x^4$$

Per g < 0, la particella si trova in una buca @ di potenziale \rightarrow per effetto tunnel vi può fuoriuscire e liberarsi.

Questo non è descrivibile perturbativamente.

Per evidenziare la divergenza, si considera la trasformazione unitaria $\hat{U}(\lambda)\psi(x)=\lambda^{1/2}\psi(\lambda x)$ che, su $\hat{H}(\alpha,g)=\hat{\rho}^2/2+\alpha\hat{x}^2/2+g\hat{x}^4/2$, agisce come:

Divergenza \Rightarrow non analiticità di E(g) in un intorno di g = 0.

Per g < 0, il potenziale è

$$V = \frac{1}{2}x^2 - \frac{1}{2}|g|x^4$$

Per g < 0, la particella si trova in una buca @ di potenziale \rightarrow per effetto tunnel vi può fuoriuscire e liberarsi.

Questo non è descrivibile perturbativamente.

Per evidenziare la divergenza, si considera la trasformazione unitaria $\hat{U}(\lambda)\psi(x)=\lambda^{1/2}\psi(\lambda x)$ che, su $\hat{H}(\alpha,g)=\hat{p}^2/2+\alpha\hat{x}^2/2+g\hat{x}^4/2$, agisce come:

$$\hat{U}(\lambda)\hat{H}(\alpha,g)\hat{U}(\lambda^{-1}) = \lambda^{-2}\hat{H}(\alpha\lambda^4,g\lambda^6)$$

Divergenza \Rightarrow non analiticità di E(g) in un intorno di g = 0.

Per g < 0, il potenziale è

$$V = \frac{1}{2}x^2 - \frac{1}{2}|g|x^4$$

Per g < 0, la particella si trova in una buca @ di potenziale \rightarrow per effetto tunnel vi può fuoriuscire e liberarsi.

Questo non è descrivibile perturbativamente.

Per evidenziare la divergenza, si considera la trasformazione unitaria $\hat{U}(\lambda)\psi(x)=\lambda^{1/2}\psi(\lambda x)$ che, su $\hat{H}(\alpha,g)=\hat{p}^2/2+\alpha\hat{x}^2/2+g\hat{x}^4/2$, agisce come:

$$\hat{U}(\lambda)\hat{H}(\alpha,g)\hat{U}(\lambda^{-1}) = \lambda^{-2}\hat{H}(\alpha\lambda^4,g\lambda^6)$$

Quindi, per $\lambda = g^{-1/6}$:

Divergenza \Rightarrow non analiticità di E(g) in un intorno di g = 0.

Per g < 0, il potenziale è

$$V = \frac{1}{2}x^2 - \frac{1}{2}|g|x^4$$

Per g < 0, la particella si trova in una buca @ di potenziale \rightarrow per effetto tunnel vi può fuoriuscire e liberarsi.

Questo non è descrivibile perturbativamente.

Per evidenziare la divergenza, si considera la trasformazione unitaria $\hat{U}(\lambda)\psi(x)=\lambda^{1/2}\psi(\lambda x)$ che, su $\hat{H}(\alpha,g)=\hat{\rho}^2/2+\alpha\hat{x}^2/2+g\hat{x}^4/2$, agisce come:

$$\hat{U}(\lambda)\hat{H}(\alpha,g)\hat{U}(\lambda^{-1}) = \lambda^{-2}\hat{H}(\alpha\lambda^4,g\lambda^6)$$

Quindi, per $\lambda = g^{-1/6}$:

$$E_n(1,g) = g^{1/3} E_n(g^{-2/3},1) \implies E_n(g) = g^{1/3} \sum_k a_k g^{-2k/3} \sim g^{1/3}$$

 $D(\hat{H})\subset L^2$ è caratterizzato dalle funzioni che rendono \hat{H} Hermitiano; in particolare, il valore medio del potenziale deve esistere.

 $D(\hat{H})\subset L^2$ è caratterizzato dalle funzioni che rendono \hat{H} Hermitiano; in particolare, il valore medio del potenziale deve esistere.Se $\psi\sim 1/x^2$:

$$\int dx \ |\psi(x)|^2 x^2 < \infty \qquad \qquad \int dx \ |\psi(x)|^2 x^4 \sim \int dx \ \frac{1}{x^4} x^4 \to \infty$$

 $D(\hat{H})\subset L^2$ è caratterizzato dalle funzioni che rendono \hat{H} Hermitiano; in particolare, il valore medio del potenziale deve esistere.Se $\psi\sim 1/x^2$:

$$\int \, dx \ |\psi(x)|^2 x^2 < \infty \qquad \qquad \int \, dx \ |\psi(x)|^2 x^4 \sim \int \, dx \ \frac{1}{x^4} x^4 \to \infty$$

Allora $\psi \in D(\hat{H}_0), \ \psi \notin D(\hat{H})$ perché il valore medio del potenziale perturbato diverge.

 $D(\hat{H})\subset L^2$ è caratterizzato dalle funzioni che rendono \hat{H} Hermitiano; in particolare, il valore medio del potenziale deve esistere.Se $\psi\sim 1/x^2$:

$$\int \, dx \ |\psi(x)|^2 x^2 < \infty \qquad \qquad \int \, dx \ |\psi(x)|^2 x^4 \sim \int \, dx \ \frac{1}{x^4} x^4 \to \infty$$

Allora $\psi \in D(\hat{H}_0)$, $\psi \notin D(\hat{H})$ perché il valore medio del potenziale perturbato diverge. \Rightarrow Per quanto g sia piccolo, la perturbazione non può mai essere considerata tale.

 $D(\hat{H})\subset L^2$ è caratterizzato dalle funzioni che rendono \hat{H} Hermitiano; in particolare, il valore medio del potenziale deve esistere.Se $\psi\sim 1/x^2$:

$$\int \, dx \ |\psi(x)|^2 x^2 < \infty \qquad \qquad \int \, dx \ |\psi(x)|^2 x^4 \sim \int \, dx \ \frac{1}{x^4} x^4 \to \infty$$

Allora $\psi \in D(\hat{H}_0)$, $\psi \notin D(\hat{H})$ perché il valore medio del potenziale perturbato diverge. \Rightarrow Per quanto g sia piccolo, la perturbazione non può mai essere considerata tale. Questo si generalizza nel seguente.

Teorema (Teorema di Kato-Rellich)

Sia $\hat{H}(g)$ una famiglia di operatori con $g \in S \subset \mathbb{C}$ tale che:

 $D(\hat{H}) \subset L^2$ è caratterizzato dalle funzioni che rendono \hat{H} Hermitiano; in particolare, il valore medio del potenziale deve esistere.Se $\psi \sim 1/x^2$:

$$\int \, dx \ |\psi(x)|^2 x^2 < \infty \qquad \qquad \int \, dx \ |\psi(x)|^2 x^4 \sim \int \, dx \ \frac{1}{x^4} x^4 \to \infty$$

Allora $\psi \in D(\hat{H}_0)$, $\psi \notin D(\hat{H})$ perché il valore medio del potenziale perturbato diverge. \Rightarrow Per quanto g sia piccolo, la perturbazione non può mai essere considerata tale. Questo si generalizza nel seguente.

Teorema (Teorema di Kato-Rellich)

Sia $\hat{H}(g)$ una famiglia di operatori con $g \in S \subset \mathbb{C}$ tale che:

1 $D(\hat{H}(g))$ è indipendente da g;

 $D(\hat{H})\subset L^2$ è caratterizzato dalle funzioni che rendono \hat{H} Hermitiano; in particolare, il valore medio del potenziale deve esistere.Se $\psi\sim 1/x^2$:

$$\int \, dx \ |\psi(x)|^2 x^2 < \infty \qquad \qquad \int \, dx \ |\psi(x)|^2 x^4 \sim \int \, dx \ \frac{1}{x^4} x^4 \to \infty$$

Allora $\psi \in D(\hat{H}_0)$, $\psi \notin D(\hat{H})$ perché il valore medio del potenziale perturbato diverge. \Rightarrow Per quanto g sia piccolo, la perturbazione non può mai essere considerata tale. Questo si generalizza nel seguente.

Teorema (Teorema di Kato-Rellich)

Sia $\hat{H}(g)$ una famiglia di operatori con $g \in S \subset \mathbb{C}$ tale che:

- **1** $D(\hat{H}(g))$ è indipendente da g;
- ② $\forall \psi \in D(\hat{H}(g))$, la funzione $\langle \psi | \hat{H}(g) | \psi \rangle$ è analitica per $g \in S$.

 $D(\hat{H}) \subset L^2$ è caratterizzato dalle funzioni che rendono \hat{H} Hermitiano; in particolare, il valore medio del potenziale deve esistere.Se $\psi \sim 1/x^2$:

$$\int dx \ |\psi(x)|^2 x^2 < \infty \qquad \qquad \int dx \ |\psi(x)|^2 x^4 \sim \int dx \ \frac{1}{x^4} x^4 \to \infty$$

Allora $\psi \in D(\hat{H}_0)$, $\psi \notin D(\hat{H})$ perché il valore medio del potenziale perturbato diverge. \Rightarrow Per quanto g sia piccolo, la perturbazione non può mai essere considerata tale. Questo si generalizza nel seguente.

Teorema (Teorema di Kato-Rellich)

Sia $\hat{H}(g)$ una famiglia di operatori con $g \in S \subset \mathbb{C}$ tale che:

- 1 $D(\hat{H}(g))$ è indipendente da g;
- 2 $\forall \psi \in D(\hat{H}(g))$, la funzione $\langle \psi | \hat{H}(g) | \psi \rangle$ è analitica per $g \in S$.

Allora $\forall g_0 \in S, \forall E(g_0)$ autovalore isolato di $\hat{H}(g_0)$, esiste un intorno I_{g_0} tale che $\hat{H}(g)$ ha un unico autovalore isolato E(g); in questo intorno, E(g) è analitica e esiste ψ_g anch'essa analitica e tale che $\hat{H}(g)\psi_g = E(g)\psi_g$.

Teorema (Teorema di Kato)

Siano a, $b \in \mathbb{R}$ tali che $\forall \psi \in D(\hat{H}_0) \cap D(\hat{V})$, cioè $\forall \psi \in D(\hat{H})$:

Teorema (Teorema di Kato)

Siano a,
$$b \in \mathbb{R}$$
 tali che $\forall \psi \in D(\hat{H}_0) \cap D(\hat{V})$, cioè $\forall \psi \in D(\hat{H})$:

$$\|\hat{V}\psi\| \leq a\|\hat{H}_0\psi\| + b\|\psi\|$$

Teorema (Teorema di Kato)

Siano a,
$$b \in \mathbb{R}$$
 tali che $\forall \psi \in D(\hat{H}_0) \cap D(\hat{V})$, cioè $\forall \psi \in D(\hat{H})$:

$$\|\hat{V}\psi\| \le a\|\hat{H}_0\psi\| + b\|\psi\|$$

Per l'oscillatore con $\hat{V}=\frac{1}{2}\hat{x}^2+\frac{1}{2}g\hat{x}^4$ non è verificato il punto (1) del teorema di Kato-Rellich \longrightarrow il dominio dipende da g.