

STATISTICAL THINKING IN PYTHON II

Generating bootstrap replicates

Michelson's speed of light measurements


```
Data:
```

```
[23.3, 27.1, 24.3, 25.3, 26.0]
```

Mean = 25.2

Resampled data:

, , , , , ,


```
Data:
```

```
[23.3, , 24.3, 25.3, 26.0] Mean = 25.2
```

```
[27.1,
```



```
Data:
```

```
[23.3, 27.1, 24.3, 25.3, 26.0]
```

Mean = 25.2

```
[27.1,
```


Data:

```
[23.3, 27.1, 24.3, 25.3, 26.0]
```

Mean = 25.2

Data:

```
[23.3, 27.1, 24.3, 25.7, 26.0] Mean = 25.2
```

```
[27.1, 26.0, 23.3, 25.7, 23.3]
Mean = 25.08
```


Mean of resampled Michelson measurements

Bootstrapping

The use of resampled data to perform statistical inference

Bootstrap sample

A resampled array of the data

Bootstrap replicate

A statistic computed from a resampled array

Resampling engine: np.random.choice()

```
In [1]: import numpy as np
In [2]: np.random.choice([1,2,3,4,5], size=5)
Out[2]: array([5, 3, 5, 5, 2])
```


Computing a bootstrap replicate

STATISTICAL THINKING IN PYTHON II

Let's practice!

STATISTICAL THINKING WITH PYTHON II

Bootstrap confidence intervals

Bootstrap replicate function

```
In [1]: def bootstrap_replicate_1d(data, func):
           """Generate bootstrap replicate of 1D data."""
   ...: bs_sample = np.random.choice(data, len(data))
   ...: return func(bs_sample)
In [2]: bootstrap_replicate_1d(michelson_speed_of_light, np.mean)
Out[2]: 299859.2000000001
In [3]: bootstrap_replicate_1d(michelson_speed_of_light, np.mean)
Out[3]: 299855.7000000001
In [4]: bootstrap_replicate_1d(michelson_speed_of_light, np.mean)
Out[4]: 299850.2999999999
```


Many bootstrap replicates

Plotting a histogram of bootstrap replicates

```
In [1]: _ = plt.hist(bs_replicates, bins=30, normed=True)
In [2]: _ = plt.xlabel('mean speed of light (km/s)')
In [3]: _ = plt.ylabel('PDF')
In [4]: plt.show()
```


Bootstrap estimate of the mean

Confidence interval of a statistic

 If we repeated measurements over and over again, p% of the observed values would lie within the p% confidence interval.

Bootstrap confidence interval

```
In [1]: conf_int = np.percentile(bs_replicates, [2.5, 97.5])
Out[1]: array([ 299837., 299868.])
```


STATISTICAL THINKING WITH PYTHON II

Let's practice!

STATISTICAL THINKING IN PYTHON II

Pairs bootstrap

Nonparametric inference

 Make no assumptions about the model or probability distribution underlying the data

2008 US swing state election results

Pairs bootstrap for linear regression

- Resample data in pairs
- Compute slope and intercept from resampled data
- Each slope and intercept is a bootstrap replicate
- Compute confidence intervals from percentiles of bootstrap replicates

Generating a pairs bootstrap sample

```
In [1]: np.arange(7)
Out[1]: array([0, 1, 2, 3, 4, 5, 6])
In [1]: inds = np.arange(len(total_votes))
In [2]: bs_inds = np.random.choice(inds, len(inds))
In [3]: bs_total_votes = total_votes[bs_inds]
In [4]: bs_dem_share = dem_share[bs_inds]
```


Computing a pairs bootstrap replicate

2008 US swing state election results

STATISTICAL THINKING IN PYTHON II

Let's practice!