414-

Eq 9- g
$$(x_{+}|x_{+-1}) = N(x_{+}; \sqrt{\alpha_{+}} x_{+-1}, (1-\alpha_{+}) I)$$
, $\alpha_{+} > 0$
 $\lambda = \lambda_{+} = \varepsilon \Rightarrow N \times \infty$

So, we can wist $x_{+} = \sqrt{\alpha_{+}} x_{+-1} + \sqrt{1-\alpha_{+}} \varepsilon_{+}$

At $t = 1$
 $x_{+} = \sqrt{x_{+}} x_{+} + \sqrt{1-\alpha_{+}} \varepsilon_{+}$
 $x_{+} = \sqrt{x_{+}} x_{+} + \sqrt{1-\alpha_{+}} \varepsilon_{+}$
 $x_{+} = \sqrt{x_{+}} x_{+} + \sqrt{x_{+}} x_{+} + \sqrt{1-x_{+}} \varepsilon_{+}$
 $x_{+} = \sqrt{x_{+}} (\sqrt{x_{+}} x_{+} + \sqrt{x_{+}} (1-\alpha_{+}) \varepsilon_{+}) + \sqrt{1-x_{+}} \varepsilon_{+}$

And Ruft on going till t .

So, $x_{+} = \sqrt{x_{+}} x_{+} + \sqrt{x_{+}} x_{+} + \sqrt{x_{+}} (1-\alpha_{+}) \varepsilon_{+} + \sqrt{1-x_{+}} \varepsilon_{+}$
 $x_{+} = \sqrt{x_{+}} x_{+} + \sqrt{x_{+}} x_{+} + \sqrt{x_{+}} (1-\alpha_{+}) \varepsilon_{+} + \sqrt{1-x_{+}} \varepsilon_{+}$
 $x_{+} = \sqrt{x_{+}} x_{+} + \sqrt{x_{+}} x_{+} + \sqrt{x_{+}} x_{+} + \sqrt{x_{+}} x_{+} + \sqrt{x_{+}} x_{+}$

Final $x_{+} = x_{+} + x_{+}$