## Material Teórico - Módulo de CONJUNTOS

# Conjuntos Numéricos - Parte 03

## 9o Ano

Autor: Prof. Francisco Bruno Holanda Autor: Prof. Antônio Caminha Muniz Neto

15 de fevereiro de 2020



## 1 Todos os números são racionais?

Os gregos acreditavam que os números racionais eram suficientes para lidar com qualquer tipo de problema matemático. De certa forma, acreditava-se que os racionais "ocupavam" toda a reta numérica.

Porém, com a descoberta do teorema de Pitágoras, os matemáticos antigos começaram a dar certa atenção a números que eram raízes quadradas de racionais que não eram quadrados perfeitos. Por exemplo, ao construirmos um quadrado lado 1 sobre o segmento com extremidades nos pontos 0 e 1 da reta numérica, sua diagonal irá medir  $\sqrt{2}$ . Usando um compasso centrado em 0, podemos transportar essa diagonal e marcar sobre a reta o ponto que representa  $\sqrt{2}$ .



Figura 1: Construção da representação geométrica de  $\sqrt{2}$ na reta numérica

Como dissemos, os antigos matemáticos gregos acreditavam que todos os números eram racionais; em particular,  $\sqrt{2}$  também deveria ser racional. Porém, ainda nos tempos antigos provou-se o seguinte resultado:

**Teorema 1.** Não existem inteiros a e b tais que  $\sqrt{2} = \frac{a}{b}$ .

**Prova.** Suponha que  $\sqrt{2}$  seja racional, isto é, que existam inteiros não nulos a,b tais que  $\sqrt{2}=\frac{a}{b}$ . Suponha, ainda, que  $\frac{a}{b}$  é irredutível. Elevando-se ao quadrado os dois lados dessa igualdade, obtemos  $\frac{a^2}{b^2}=2$  ou, o que é o mesmo,

$$a^2 = 2b^2$$
.

A partir da última igualdade acima, deduzimos que  $a^2$  é um número par (pois o lado direito é par); logo, a também deve ser par. Assim, existe um inteiro n tal que a=2n. Substituindo a=2n em  $a^2=2b^2$ , ficamos com  $4n^2=2b^2$ . Simplificando, chegamos a

$$2n^2 = b^2$$
.

Usando um raciocínio análogo ao do parágrafo anterior, observe que  $b^2$  também é um número par; consequentemente, b também é par. Assim, existe um inteiro m tal que b=2m. Mas, sendo este o caso, a fração  $\frac{a}{b}=\frac{2n}{2m}$ 

seria redutível. Isto contradiz a suposição que fizemos inicialmente, de que ela fosse irredutível. Portanto,  $\sqrt{2}$  não é racional.

Essa demonstração tem um significado matemático histórico: pela primeira vez demonstrou-se que um número poderia não ser racional. Consequentemente, o conjunto dos racionais não poderia representar todos os números, ou seja, se apenas os números racionais fossem posicionados na reta numérica, sobrariam "espaços vazios". Assim, seria necessário expandir o conceito de número para além dos racionais, preenchendo os vazios deixados na reta numérica. É nesse processo que surgem o **números reais**.

**Definição 2.** Um número real que não é racional é chamado de **irracional**. O conjunto dos números irracionais é dado por  $\mathbb{R} \setminus \mathbb{Q}$ .

**Observação 3.** Note que  $\sqrt{2} = \frac{2\sqrt{2}}{2}$ . Porém, essa identidade não classifica o número  $\sqrt{2}$  como racional uma vez que o numerador da fração  $\frac{2\sqrt{2}}{2}$  não é inteiro, e os números racionais são aqueles que podem ser expressos como divisão de inteiros, sendo o denominador não nulo.

# 2 Representação decimal de números irracionais

No módulo anterior, aprendemos que os números racionais possuem representações no formato fracionário e na base decimal que podem ser finitas ou infinitas. No caso de representações infinitas, estas são sempre periódicas após certo número de casas à direita da vírgula.

Por outro lado, na seção anterior, demonstramos que existem números (como  $\sqrt{2}$ ) que não possuem representação fracionária. Porém, esse fato não implica que os números irracionais não possuam representação decimal.

Nessa seção iremos explorar a representação decimal dos números irracionais e faremos isso partindo do seguinte experimento:

**Exercício 4.** Usando uma calculadora com a opção de raiz quadrada, calcule o valor de  $\sqrt{2}$ .

Após realizar a operação, no visor da calculadora aparecerá um número que é aproximadamente igual a

(O número de casas decimais irá depender das configurações de sua calculadora.)

É importante mencionar que número que apareceu no visor não é a representação de  $\sqrt{2}$  na base decimal. De fato, 1,414213562 é um número racional, que, por conseguinte, pode ser expresso como divisão de dois inteiros:

$$1,414213562 = \frac{1414213562}{1000000000}.$$

Este número é apenas uma aproximação do número  $\sqrt{2}$ , e essa aproximação pode ser melhorada<sup>1</sup> escolhendo-se racionais com maior número de casas decimais após a vírgula.

Uma aproximação de  $\sqrt{2}$  com mais casas decimais é

 $\sqrt{2} \cong 1,41421356237309504880168872420969807$ 

#### 856967187537694807317667973799.

Usando programas de computador (algoritmos) podemos chegar a aproximações de  $\sqrt{2}$  com quantas casas decimais desejarmos. Aprenderemos agora um desses algoritmos, que, apesar de não ser muito eficiente e preciso, possui um apelo visual que favorece a compreensão do método.

Retomando a figura 1 e expandindo-a para incluir o número 2 na reta numérica, obtendo a seguinte figura:



A partir dela, percebemos que  $\sqrt{2}$  está entre 1 e 2, fato que podemos escrever como

$$1 < \sqrt{2} < 2$$
.

Assim, podemos escrever  $\sqrt{2} \cong 1$  como uma primeira aproximação para  $\sqrt{2}$ . Podemos melhorar essa aproximação dividindo o intervalo entre 1 e 2 em dez partes iguais, o que pode ser ilustrado visualmente como a seguir.



Note que  $\sqrt{2}$  está entre as frações  $\frac{14}{10}$  e  $\frac{15}{10}$ . Em outros termos,

$$\frac{14}{10} < \sqrt{2} < \frac{15}{10}.$$

Assim, obtemos  $\sqrt{2}\cong 1,4$  como uma segunda aproximação para  $\sqrt{2}.$ 

Repetindo o processo, desta vez subdividindo o intervalo com extremidades em  $\frac{14}{10}$  e  $\frac{15}{10}$  em dez subintervalos iguais, chegaríamos à seguinte figura (ampliada):



Note que  $\sqrt{2}$  está entre as frações  $\frac{141}{100}$  e  $\frac{142}{100}$ . Em outros termos.

$$\frac{141}{100} < \sqrt{2} < \frac{142}{100}.$$

Assim, obtemos  $\sqrt{2}\cong 1{,}41$  como uma terceira aproximação para  $\sqrt{2}$ .

Note que na n-ésima aplicação do algoritmo, obtemos uma aproximação uma aproximação para  $\sqrt{2}$  com n algarismos à direita da vírgula, na representação decimal.

### 3 Intervalos reais

Intuitivamente, o conjunto  $\mathbb{R}$  dos números reais é formado por todos os números que podem ser representados na reta numérica. Concentraremos nossa atenção em um tipo especial de subconjunto de  $\mathbb{R}$ , os **intervalos**, os quais podem ser limitados ou ilimitados.

Existem quatro tipos de intervalos limitados reais:

I. Um intervalo I é **fechado** se existem reais a e b tais que  $I = \{x \mid a \leq x \leq b\}$ . Este intervalo pode ser representado através da notação simplificada I = [a, b] ou ilustrado como na figura abaixo:



II. Um intervalo I é **aberto** se existem reais a e b tais que  $I = \{x \mid a < x < b\}$ . Este intervalo pode ser representado através da notação simplificada I = (a,b) ou ilustrado como segue:



III. Um intervalo I é **aberto à esquerda e fechado à direita** se existem reais a e b tais que  $I = \{x \mid a < x \le b\}$ . Este intervalo pode ser representado através da notação simplificada I = (a, b] ou, ainda, ilustrado como:



IV. Um intervalo I é **fechado à esquerda e aberto à direita** se existem reais a e b tais que  $I = \{x \mid a \leq x < b\}$ . Este intervalo pode ser representado através da notação simplificada I = [a, b) ou ilustrado como:

 $<sup>^1\</sup>mathrm{Quando}$ dizemos que uma aproximação pode ser melhorada, em termos mais rigorosos estamos dizendo que é possível encontrar um outro número racional, ainda mais próximo de  $\sqrt{2}.$ 



Nas figuras acima, observe que utilizamos um círculo sem preenchimento para representar na reta um ponto que não pertence a um conjunto, ao passo que utilizamos um círculo com preenchimento para representar na reta um ponto que pertence a um conjunto.

Também há quatro tipos de intervalos ilimitados reais:

I. Um intervalo I é fechado e ilimitado à direita se existe um real a tal que  $I = \{x \mid a \leq x\}$ . Este intervalo pode ser representado através da notação simplificada I = $[a, +\infty)$ , sendo ilustrado como:



II. Um intervalo I é aberto e ilimitado à direita se existe um real a tal que  $I = \{x \mid a < x\}$ . Este intervalo pode ser representado através da notação simplificada I = $(a, +\infty)$  ou ilustrado como:



III. Um intervalo I é fechado e ilimitado à esquerda se existe um real a tal que  $I = \{x \mid a \ge x\}$ . Este intervalo pode ser representado através da notação simplificada I = $(-\infty, a]$  ou ilustrado como:



IV. Um intervalo I é aberto e ilimitado à esquerda se existe um real a tal que  $I = \{x \mid a > x\}$ . Este intervalo pode ser representado através da notação simplificada I= $(-\infty, a)$  ou ilustrado como:



Perceba que podemos aplicar a intervalos as operações de conjuntos aprendidas nas aulas anteriores, uma vez que os intervalos são subconjuntos de  $\mathbb{R}$ . Vejamos um exemplo nesse sentido:

**Exemplo 5.** Se 
$$A = [1,3]$$
 e  $B = (2,4)$ , então  $A \cup B = [1,4)$ ,  $A \cap B = (2,3]$ ,  $A - B = [1,2]$  e  $B - A = (3,4)$ .

Também é importante destacar alguns intervalos notáveis de  $\mathbb{R}$ :

#### Conjunto

 $\mathbb{R}^* = \{ x \in \mathbb{R} \mid x \neq 0 \}$ 

 $\mathbb{R}_+^* = \{ x \in \mathbb{R} \mid x > 0 \}$ 

 $\mathbb{R}_{-}^* = \{ x \in \mathbb{R} \mid x < 0 \}$ 

 $\mathbb{R}_+ = \{ x \in \mathbb{R} \mid x \ge 0 \}$ 

 $\mathbb{R}_{-} = \{ x \in \mathbb{R} \mid x \le 0 \}$ 

#### Descrição

Conjunto dos reais não nulos.

Conjunto dos reais positivos. Conjunto dos reais negativos.

Conjunto dos reais não-negativos.

Conjunto dos reais não-positivos.

A partir da interseção desses intervalos com os conjuntos  $\mathbb{Z}$  e  $\mathbb{Q}$ , podemos construir outros subconjuntos notáveis utilizando os símbolos \*, + e - de forma análoga. Por exemplo,  $\mathbb{Z}_+ = \mathbb{R}_+ \cap \mathbb{Z}$  é o conjunto dos inteiros não-negativos. Outro exemplo é  $\mathbb{Q}_{-}^{*} = \mathbb{R}_{-}^{*} \cap \mathbb{Q}$ , que representa o conjunto dos racionais negativos.

Por fim, veja que podemos representar a relação de hierarquia entre os conjuntos  $\mathbb{N}$ ,  $\mathbb{Z}$ ,  $\mathbb{Q}$  e  $\mathbb{R}$  utilizando diagramas de Venn. Note ainda que o conjunto dos irracionais é dado por  $\mathbb{R} - \mathbb{Q}$ .

**Exercício 6** (UECE-adaptado).  $Sejam \mathbb{Z}$  o conjunto dosnúmeros inteiros.

$$I = \left\{ x \in \mathbb{Z} \mid 0 \le \frac{x+4}{2} \le 8 \right\}$$

$$J = \{x \in \mathbb{Z} \mid (x-2)^2 \ge 4\}.$$

O número de elementos do conjunto  $I \cap J$  é:

- (a) 8.
- (b) 9.
- (c) 12.
- (d) 14.

**Solução.** Observe que um inteiro x pertence a I se, e só se,  $0 \le x + 4 \le 16$ , isto é,  $-4 \le x \le 12$ . Assim,

$$I = \{-4, -3, -2, \dots, 10, 11, 12\}.$$

Da mesma forma, J é o conjunto dos inteiros x tais que  $|x-2| \ge 2$  ou, ainda,  $x-2 \ge 2$  ou  $x-2 \le -2$ . Portanto,  $x \ge 4$  ou  $x \le 0$ , de forma que

$$J = \{\dots, -2, -1, 0\} \cup \{4, 5, 6, \dots\}.$$

Agora, é imediato que

$$I \cap J = \{-4, -3, -2, -1, -0\} \cup \{4, 5, \dots, 11, 12\},\$$

de forma que  $|I \cap J| = 14$ . A resposta correta é (d). 

**Exercício 7** (PUC-MG).  $Se\ A = (-2, 3]\ e\ B = [0, 5],\ então$ os números inteiros que estão em  $B \setminus A$  são:

- (a) -1 e 0.
- $(b) \ 0 \ e \ 1.$

- $(c) \ 4 \ e \ 5.$
- (d) 3, 4 e 5.
- (e) 0, 1, 2 e 3.

**Solução.** Comece observando que  $B \setminus A = [0,5] \setminus (-,2,3]$ . Marcando A e B geometricamente, vê-se facilmente que  $B \setminus A = (3,5]$ . Portanto, o inteiros que pertencem a  $B \setminus A$  são somente 4 e 5. A resposta correta é (c).

## 4 Sugestões ao professor

Recomendamos dois encontros de 50 minutos cada para apresentar o conteúdo deste material. No primeiro, apresente o conjunto dos números racionais e, no segundo, o conjunto dos números reais. Note que estes temas são de fundamental importância em grande parte dos assuntos relativos à Matemática escolar. Por este motivo, esteja atento às dificuldades operacionais e de entendimento dos alunos. Se necessário, evite avançar no conteúdo até que essas dificuldades sejam superadas.

Lembre seus alunos de que um número racional é todo aquele que pode ser representado por uma fração cujos numerador e denominador são ambos inteiros. Assim, se um número é escrito como uma fração de termos que não inteiros, este número não é necessariamente racional. Este é um erro comum entre os alunos; por isso, vale a pena utilizar algum tempo para revisar este conceito.

As operações de conjunto envolvendo intervalos são especialmente úteis para resolvermos inequações com funções racionais. Se a turma for avançada, o professor também pode comentar superficialmente sobre o conjunto dos números complexos, como curiosidade.