

- The weight of an object can be considered as a continuous random variable.
- The Gaussian distribution would be a reasonable choice, except for the fact that weight can never be less than zero. Nevertheless, we'll use the Gaussian distribution to model weight.
- Each object category has its own Gaussian distribution:

Category	Mean μ	Variance σ^2
Cardboard	20	10
Paper	5	5
Can	15	5
Scrap metal	150	100
Bottle	300	200

Cardboard:

- Distribution centered at $\mu = 20$.
- Very narrow distribution.
- Notice truncation at zero.

- The weight of an object can be considered as a continuous random variable.
- The Gaussian distribution would be a reasonable choice, except for the fact that weight can never be less than zero. Nevertheless, we'll use the Gaussian distribution to model weight.
- Each object category has its own Gaussian distribution:

Category	Mean μ	Variance σ^2
Cardboard	20	10
Paper	5	5
Can	15	5
Scrap metal	150	100
Bottle	300	200

Paper:

- Distribution centered at $\mu = 5$.
- *Very* narrow distribution.
- Notice truncation at zero.

- The weight of an object can be considered as a continuous random variable.
- The Gaussian distribution would be a reasonable choice, except for the fact that weight can never be less than zero. Nevertheless, we'll use the Gaussian distribution to model weight.
- Each object category has its own Gaussian distribution:

Category	Mean μ	Variance σ^2
Cardboard	20	10
Paper	5	5
Can	15	5
Scrap metal	150	100
Bottle	300	200

Can:

- Distribution centered at $\mu=15$. 0.06
- Very narrow distribution.
- Notice truncation at zero doesn't really chop off much probability mass.

- The weight of an object can be considered as a continuous random variable.
- The Gaussian distribution would be a reasonable choice, except for the fact that weight can never be less than zero. Nevertheless, we'll use the Gaussian distribution to model weight.
- Each object category has its own Gaussian distribution:

Category	Mean μ	Variance σ^2
Cardboard	20	10
Paper	5	5
Can	15	5
Scrap metal	150	100
Bottle	300	200

Scrap Metal:

- Distribution centered at $\mu = 150$. 0.003
- Wide distribution.
- Notice truncation at zero chops off significant probability mass.

- The weight of an object can be considered as a continuous random variable.
- The Gaussian distribution would be a reasonable choice, except for the fact that weight can never be less than zero. Nevertheless, we'll use the Gaussian distribution to model weight.
- Each object category has its own Gaussian distribution:

Category	Mean μ	Variance σ^2
Cardboard	20	10
Paper	5	5
Can	15	5
Scrap metal	150	100
Bottle	300	200

Bottle:

- Distribution centered at $\mu = 300$.
- Wide distribution.
- Notice truncation at zero doesn't exclude much probability mass.
- Truncation on the right is merely an artifact of the display. This pdf continues all the way to $+\infty$.

Conditional distributions

 Instead of thinking about five individual pdfs for the different objects, we can think of weight as a random variable characterized by conditional probability distributions:

Category	Mean μ	Variance σ^2
Cardboard	20	10
Paper	5	5
Can	15	5
Scrap metal	150	100
Bottle	300	200

Category (C)	$f_{W C}(W C)$
Cardboard	N(20, 10)
Paper	N(5,5)
Can	<i>N</i> (15, 5)
Scrap metal	<i>N</i> (150, 100)
Bottle	<i>N</i> (300, 200)

$$f_{X|C}(x|C = Scrap\ Metal) = \frac{1}{10\sqrt{2\pi}}e^{-\frac{(x-150)^2}{200}}$$

Simulation by sampling

- We can simulate the sensor readings that will occur during operation of our trash sorting robot.
- The idea is a simple extension of the sampling algorithm we developed earlier
 - 1. Generate a sample category $c \sim P(C)$ using probabilistic sampling
 - 2. Generate a sample sensor value by sampling the conditional distribution $s \sim f_{X|C}(x|C=c)$, where $f_{X|C}$ is the conditional density (or pmf) associated to the desired sensor.

