Arquitetura e Organização de Computadores I

Abstração da Máquina de Von Neumann

Prof. Pedro Frosi Rosa, PhD Professor Titular

Faculdade de Ciência da Computação Universidade Federal de Uberlândia

Abstração da Máquina de Von Neumann

Estrutura do Computador IAS

ALU - Arithmetic-Logic Unit

Módulos do IAS

- Unidade de Lógica-Aritmética
 - AC: Accumulator
 - MQ: Multiplying/Quotient
 - MBR: Memory Buffer Register
- Unidade de Controle
 - PC: Program Counter
 - IR: Instruction Register
 - IBR: Instruction Buffer Register
 - MAR: Memory Address Register

Ciclo de Fetch do IAS

Exemplo de Instruções do IAS

Tipo	OpCode	Simbolic
DataTransfer	00001010	LOAD MQ
	00001001	LOAD MQ,M(X)
	00100001	STOR M(X)
Unconditional Branch	00001101	JUMP M(X)
Conditional Branch	00001111	JUMP+ M(X)
Arithmetic	00000101	ADD M(X)
	00001011	MUL M(X)
	00010100	LSH
	00010101	RSH

Terceira Geração: Circuitos Integrados

- Um único transistor é dito um componente discreto (e capacitores, resistores, etc.)
- As décadas de 50/60 foram marcadas por equipamentos baseados em componentes discretos (segunda geração)
- Começaram a aparecer problemas quando número destes componentes atingiu a casa de 10.000
- A década de 60 foi marcada pelo inicio da era da micro-eletrônica

Microeletrônica

- Elementos básicos devem prover funções:
 - armazenar;
 - mover;
 - processar; e,
 - controlar.
- Elementos básicos são contruídos a partir de elementos fundamentais

Microeletrônica: elementos fundamentais

Relação entre Wafer, Chip e Gate

Evolução do Microprocessadores Intel

Chip	8286	8386	8486	Pentiun	P6	P7
Inicio Projeto	1978	1982	1986	1989	1990	1993
Mercado	1983	1986	1990	1994	1996	1998
Barramento Endereço	16	32	32	32	32	32
Barramento de Dados	16	32	32	32	32	32
Número de Flags	9	8	8	8	8	8
No. de Registradores	8	8	16	13	13	13
Número Transistors	.13M	.28M	1.2M	3.1M	5.5M	10+M
MIPS	1	5	20	100	250	500

Performance Balance

Tendências no uso de DRAM

Power PC

Modelos PowerPC

Membros da família PowerPC

- Família PowerPC introduziu 4 membros:
 - 601: trouxe a arquitetura PowerPC para o mercado (ASAP) com palavra de 32bits;
 - 603: para desktop e laptops, também com 32bits, mas com custo inferior ao 601;
 - 604: para desktop e low-end servers 32bits mas com arquitetura superscalar;
 - 620: para high-end servers 64bits, incluindo registradores, vias, etc., com avançada arquitetura superscalar; e,
 - − RS64: high-end servers − 256 bits, superscalar.