Assignment-I

1. The ratio of population of two energy levels out of which one corresponds to metastable state is 1.059×10^{-30} . Find the wavelength of light emitted at 330K.

$$\frac{N_2}{N_1} = 1.059 \times 10^{-30}$$
, T=330K, λ =?

Constants $h=6.63 \times 10^{-34} Js$, $K=1.38 \times 10^{-23} J/K$, $C=3 \times 10^8 m/s$

Using the relation for Boltzmann's factor

$$\frac{N_2}{N_1} = e \frac{-hv}{kT} = e \frac{-hc}{\lambda kT}$$
; $\lambda = 632.8$ nm.

- 2. Calculate the ratio of
 - i) Einstein Coefficients,
 - ii) Stimulated to spontaneous emissions, for a system at 300K in which radiations of wavelength 1.39μm are emitted.

$$\frac{A_{21}}{B_{21}} = \frac{8\pi h \, v^3}{c^3} = \frac{8\pi h}{\lambda^3} = 6.2 \, x 10^{-15}$$

Since B₁₂ = B₂₁ we can write $\frac{A_{21}}{B_{21}} = 6.2 \times 10^{-15}$

We have

Rate of stimulated emission/Rate of spontaneous emission= $\frac{B_{12}N_2U_v}{A_{21}N_2} = \frac{B_{21}}{A_{21}}U_v$

But
$$U_{v} = \frac{8\pi h v^{3}}{c^{3}} \left[\frac{1}{e^{\frac{hv}{kT}} - 1} \right] \xrightarrow{\underline{Uv}} \frac{A_{21}}{B_{21}} \left[\frac{1}{e^{\frac{hv}{kT}} - 1} \right]$$

Therefore rate of stimulated emission/rate of spontaneous emission= $\frac{B_{21}}{A_{21}} \times \frac{A_{21}}{B_{21}} \left[\frac{1}{e^{\frac{h\nu}{kT}} - 1} \right]$

$$= \left[\frac{1}{e^{\frac{hv}{kT}} - 1} \right] = 10^{-15}$$

3. Calculate on the basis of Einstein's theory, the number of photons emitted per second by a He-Ne laser source emitting light of wavelength 6328A° with an optical power of 10mW.

$$P = \frac{E}{t} = \frac{n\Delta E}{t} = \frac{nhc}{\Delta \lambda t}$$
Hence
$$\frac{n}{t} = \frac{P\Delta \lambda}{hc}$$

$$= 3.182 \times 10^{16}$$

Calculate the number of photons, from green light of mercury ($\Lambda = 4961 \text{ Å}$), required to do one joule of work. Ans: N = 2.4961×10¹⁸/m³.

Calculate the ratio of population densities of upper and lower energy level; assume that the material is in thermal equilibrium. It is given that the wavelength separation between the energy levels is $1\mu m$ at a temperature of 295K. **Ans:** 6.21x10⁻²²

Consider a lower energy level situated at an energy 3.97×10^{-21} J from the ground state. There are no other energy levels nearby. Determine the fraction of the population found in this level compared to the ground state population at a temperature of 300 K. Ans: Thus 38% of the population is in the lower energy level.

Calculate on the basis of Einstein's theory, the number of photons emitted per second by an He-Ne laser source emitting light of 6328 Å wavelength with an optical power of 10mW. Answer: 3.183×10^{16}

A laser medium at thermal equilibrium temperature of 300K has two energy levels with a wavelength separation of $1\mu m$. Find the ratio of population densities in the two energy levels. Answer: 1.46×10^{-21}

The ratio of population of two energy levels is 1.059×10^{-30} . Find the wavelength of light emitted at 300K. **Answer: 696 nm**

Using Einstein's theory, show that in the optical region say, at λ = 5000 Å and T= 300, the amplification is not possible. **Answer: 2.03 x 10**⁻⁴²

Find the ratio of the two energy levels in a laser if the transition between them produces light of 694.3 nm, wavelength assuming the ambient temperature at 27° C. **Answer: 9.208 x 10^{-31}**

A He-Ne laser is emitting a laser beam with an average power of 4.5 mW. Find the number of photons emitted per second by the laser. The wavelength of the emitted radiation is 632.8 nm. Answer: 1.42×10^{-16}

A pulse from laser with 1 mW power lasts for 10 nS. If the number of photons emitted per second is 3.491×10^7 , calculate the wavelength of laser. **Answer: 6942 Å**