TEST REPORT

Reference No. : WTF19S04019935-1W

FCC ID : YMA-ID-V5

Applicant.....: Idea International Group(Hong Kong)Co.,Ltd

Address...... 5th Blk, Huafeng Technology Park, Tangwei, Fuyong Town, Bao'an

District, Shenzhen, China

Manufacturer : Shenzhen E-Tech Digital Technology Co.,Ltd

Address..... FL5, BLDG5, HuaFeng Technology Park, Tangwei, Fuhai Street, Bao

An District, Shenzhen, Guangdong, China

Product.....: Instant Translator

Model(s). : ID-V5

Brand Name: N/A

Standards.....: FCC CFR47 Part 15.247: 2017

Date of Receipt sample : 2019-04-03

Date of Test: 2019-04-04 to 2019-04-11

Date of Issue : 2019-04-12

Test Result.....: Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company. The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen, Guangdong, China

Tel:+86-755-83551033 Fax:+86-755-83552400

Compiled by:

Ford Wang / Project Engineer

Philo Zhong / Manager

pproved by:

Reference No.: WTF19S04019935-1W Page 2 of 52

2 Laboratories Introduction

Waltek Services (Shenzhen) Co., Ltd is a professional third-party testing and certification laboratory with multi-year product testing and certification experience, established strictly in accordance with ISO/IEC 17025 requirements, and accredited by ILAC (International Laboratory Accreditation Cooperation) member. A2LA (American Association for Laboratory Accreditation, the certification number is 4243.01) of USA, CNAS (China National Accreditation Service for Conformity Assessment, the registration number is L3110) of China. Meanwhile, Waltek has got recognition as registration and accreditation laboratory from EMSD (Electrical and Mechanical Services Department), and American Energy star, FCC (The Federal Communications Commission), CEC (California energy efficiency), ISED (Innovation, Science and Economic Development Canada). It's the strategic partner and data recognition laboratory of international authoritative organizations, such as Intertek (ETL-SEMKO), TÜV Rheinland, TÜV SÜD, etc.

Waltek Services (Shenzhen) Co., Ltd is one of the largest and the most comprehensive third party testing laboratory in China. Our test capability covered four large fields: safety test. Electro Magnetic Compatibility (EMC), and energy performance, wireless radio. As a professional, comprehensive, justice international test organization, we still keep the scientific and rigorous work attitude to help each client satisfy the international standards and assist their product enter into globe market smoothly.

Reference No.: WTF19S04019935-1W Page 3 of 52

Test Facility:

A. Accreditations for Conformity Assessment (International)

Country/Region	Scope Covered By	Scope	Note
USA		FCC ID \ DOC \ VOC	1
Canada		IC ID \ VOC	2
Japan		MIC-T \ MIC-R	-
Europe		EMCD \ RED	-
Taiwan	100/150 47005	NCC	-
Hong Kong	ISO/IEC 17025	OFCA	-
Australia		RCM	-
India		WPC	-
Thailand		NTC	-
Singapore		IDA	-

Note:

- 1. FCC Designation No.: CN1201. Test Firm Registration No.: 523476.
- 2. ISED CAB identifier: CN0013

B. TCBs and Notify Bodies Recognized Testing Laboratory.

Recognized Testing Laboratory of	Notify body number	
TUV Rheinland		
Intertek		
TUV SUD	Optional.	
SGS		
Phoenix Testlab GmbH	0700	
Element Materials Technology Warwick Ltd	0891	
Timco Engineering, Inc.	1177	
Eurofins Product Service GmbH	0681	

Reference No.: WTF19S04019935-1W

3 Contents

		Page
1	COVER PAGE	1
2	LABORATORIES INTRODUCTION	2
3	CONTENTS	4
4	REVISION HISTORY	6
5	GENERAL INFORMATION	7
	5.1 GENERAL DESCRIPTION OF E.U.T.	7
	5.2 DETAILS OF E.U.T. 5.3 CHANNEL LIST	
	5.4 TEST MODE	
6	TEST SUMMARY	
7	EQUIPMENT USED DURING TEST	
	7.1 EQUIPMENTS LIST	
	7.2 DESCRIPTION OF SUPPORT UNITS	
	7.3 MEASUREMENT UNCERTAINTY	
8	RADIATED SPURIOUS EMISSIONS	
	8.1 EUT OPERATION	12
	8.2 TEST SETUP	
	8.3 SPECTRUM ANALYZER SETUP	
	8.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	
	8.6 SUMMARY OF TEST RESULTS	
9	CONDUCTED SPURIOUS EMISSIONS	
	9.1 TEST PROCEDURE	
10	9.2 TEST RESULT BAND EDGE MEASUREMENT	
10	10.1 Test Procedure	
	10.1 TEST ROCEBOKE	
11	20 DB BANDWIDTH MEASUREMENT	31
	11.1 TEST PROCEDURE	
	11.2 TEST RESULT	
12	MAXIMUM PEAK OUTPUT POWER	
	12.1 TEST PROCEDURE	
13	HOPPING CHANNEL SEPARATION	
13	13.1 Test Procedure	
	13.2 TEST RESULT	
14	NUMBER OF HOPPING FREQUENCY	43
	14.1 TEST PROCEDURE	
	14.2 TEST RESULT	
15	DWELL TIME	
	15.1 Test Procedure	45

Reference No.: WTF19S04019935-1W Page 5 of 52

	15.2 Test Result	45
16	ANTENNA REQUIREMENT	50
17	RF EXPOSURE	51
18	PHOTOGRAPHS OF TEST SETUP AND EUT.	52

Reference No.: WTF19S04019935-1W Page 6 of 52

4 Revision History

Test report No.	Date of Receipt sample	Date of Test	Date of Issue	Purpose	Comment	Approved
WTF19S04019 935-1W	2019-04-03	2019-04-04 to 2019-04- 11	2019-04-12	original	ı	Valid

Reference No.: WTF19S04019935-1W Page 7 of 52

5 General Information

5.1 General Description of E.U.T.

Product: Instant Translator

Model(s): ID-V5
Model Description: N/A

Bluetooth Version: Bluetooth v4.0 with BLE

Hardware Version: V5-6905B-V2.0

Software Version: PING: V5_AC6905B_4M_HW0.00_SW001_(V5)_4BAB

5.2 Details of E.U.T.

Operation Frequency: 2402~2480MHz

Max. RF output power: 3.81dBm

Type of Modulation: GFSK, Pi/4 DQPSK

Antenna installation: PCB printed antenna

Antenna Gain: -0.58dBi

Ratings: DC 3.7V, 800mAh from battery

Reference No.: WTF19S04019935-1W Page 8 of 52

5.3 Channel List

Normal

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
0	2402	1	2403	2	2404	3	2405
4	2406	5	2407	6	2408	7	2409
8	2410	9	2411	10	2412	11	2413
12	2414	13	2415	14	2416	15	2417
16	2418	17	2419	18	2420	19	2421
20	2422	21	2423	22	2424	23	2425
24	2426	25	2427	26	2428	27	2429
28	2430	29	2431	30	2432	31	2433
32	2434	33	2435	34	2436	35	2437
36	2438	37	2439	38	2440	39	2441
40	2442	41	2443	42	2444	43	2445
44	2446	45	2447	46	2448	47	2449
48	2450	49	2451	50	2452	51	2453
52	2454	53	2455	54	2456	55	2457
56	2458	57	2459	58	2460	59	2461
60	2462	61	2463	62	2464	63	2465
64	2466	65	2467	66	2468	67	2469
68	2470	69	2471	70	2472	71	2473
72	2474	73	2475	74	2476	75	2477
76	2478	77	2479	78	2480	-	-

5.4 Test Mode

All test mode(s) and condition(s) mentioned were considered and evaluated respectively by performing full tests; the worst data were recorded and reported.

Test mode	Low channel	Middle channel	High channel
Transmitting	2402MHz	2441MHz	2480MHz

Reference No.: WTF19S04019935-1W Page 9 of 52

6 Test Summary

Test Items	Test Requirement	Result
	15.205(a)	
Radiated Spurious Emissions	15.209	PASS
	15.247(d)	
Conducted Spurious emissions	15.247(d)	NA
Dond odgo	15.247(d)	PASS
Band edge	15.205(a)	PASS
Conducted Emission	15.207	PASS
20dB Bandwidth	15.247(a)(1)	PASS
Maximum Peak Output Power	15.247(b)(1)	PASS
Frequency Separation	15.247(a)(1)	PASS
Number of Hopping Frequency	15.247(a)(1)(iii)	PASS
Dwell time	15.247(a)(1)(iii)	PASS
Antenna Requirement	15.203	Complies
Maximum Permissible Exposure	2.4004	DACC
(Exposure of Humans to RF Fields)	2.1091	PASS

7 Equipment Used during Test

7.1 Equipments List

Conducted Emissions Test Site 1#						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	100947	2018-09-12	2019-09-11
2.	LISN	R&S	ENV216	101215	2018-09-12	2019-09-11
3.	Cable	Тор	TYPE16(3.5M)	-	2018-09-12	2019-09-11
Condu	cted Emissions Test	Site 2#				
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	101155	2018-09-12	2019-09-11
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	2018-09-12	2019-09-11
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	2018-09-12	2019-09-11
4.	Cable	LARGE	RF300	-	2018-09-12	2019-09-11
3m Ser	mi-anechoic Chamber	for Radiation Emis	ssions Test site	1#		
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1	Spectrum Analyzer	R&S	FSP	100091	2018-04-29	2019-04-28
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	-	2019-04-09	2020-04-08
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	2019-04-09	2020-04-08
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	-	2018-09-12	2019-09-11
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	2019-04-09	2020-04-08
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	2019-04-09	2020-04-08
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	2018-04-13	2019-04-12
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	2018-04-13	2019-04-12
3m Ser	3m Semi-anechoic Chamber for Radiation Emissions Test site 2#					
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1	Test Receiver	R&S	ESCI	101296	2018-04-13	2019-04-12
2	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	2019-04-09	2020-04-08
3	Amplifier	Compliance pirection systems inc	PAP-0203	22024	2018-04-13	2019-04-12
4	Cable	HUBER+SUHNER	CBL2	525178	2018-04-13	2019-04-12

Waltek Services (Shenzhen) Co.,Ltd.

http://www.waltek.com.cn

RF Coi	RF Conducted Testing						
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date	
1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	2018-09-12	2019-09-11	
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	2018-09-12	2019-09-11	
3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	2018-09-12	2019-09-11	

7.2 Description of Support Units

Equipment	pment Manufacturer Model No.		Series No.	
1	1	1	1	

7.3 Measurement Uncertainty

Parameter	Uncertainty	
Conducted Emission	± 3.64 dB(AC mains 150KHz~30MHz)	
Radiated Spurious Emissions	± 5.08 dB (Bilog antenna 30M~1000MHz)	
	± 4.99 dB (Horn antenna 1000M~25000MHz)	
Radio Frequency	± 1 x 10 ⁻⁷ Hz	
RF Power	± 0.42 dB	
Dwell time	1.0%	
Conducted Spurious Emissions	± 2.76 dB (9kHz~26500MHz)	
Confidence interval: 95%. Confidence factor:k=2		

7.4 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

Reference No.: WTF19S04019935-1W Page 12 of 52

8 Radiated Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.205 &15.209 & 15.247

Test Method: ANSI C63.10: 2013

Test Result: PASS
Measurement Distance: 3m

Limit:

Field Strength		ngth	Field Strength Limit at 3m Measuremen				
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m			
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80			
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40			
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40			
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾			
88 ~ 216	150	3	150	20log ⁽¹⁵⁰⁾			
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾			
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾			

8.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C
Humidity: 51.1 % RH
Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in TX Transmitting mode, the test data were shown in the report.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10: 2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

Anechoic 3m Chamber bore-sight antenna Antenna Elevation Varies From 1 to 4 m Turn Table From 0° to 360° 3m **EUT** 1.5m Turn Table Absorbers PC Spectrum AMP Combining System Network Analyzer

The test setup for emission measurement above 1 GHz.

8.3 Spectrum Analyzer Setup

Below 30MHz		
	Sweep Speed	. Auto
	IF Bandwidth	.10kHz
	Video Bandwidth	.10kHz
	Resolution Bandwidth	.10kHz
30MHz ~ 1GHz	Z	
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.100kHz
	Video Bandwidth	.300kHz
Above 1GHz		
	Sweep Speed	. Auto
	Detector	.PK
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.3MHz
	Detector	.Ave.
	Resolution Bandwidth	.1MHz
	Video Bandwidth	.10Hz

Reference No.: WTF19S04019935-1W Page 15 of 52

8.4 Test Procedure

1. The EUT is placed on a turntable, which is 0.8m above ground plane for below 1GHz and 1.5m for above 1GHz.

- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions. The spectrum was investigated from the lowest radio frequency signal generated in the device, without going below 9 kHz, up to the tenth harmonic of the highest fundamental frequency or to 40 GHz, whichever is lower.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are tested under 3-axes(X,Y,Z) position(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand), After pre-test, It was found that the worse radiation emission was get at the Z position. So the data shown was the Z position only.

8.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. – Limit

8.6 Summary of Test Results

Test Frequency: 9KHz~30MHz

Remark: only the worst data (GFSK modulation Low channel mode) were recorded.

Frequency	Measurement results dBµV @3m	Detector PK/QP	Correct factor dB/m	Extrapolatio n factor dB	Measurement results (calculated) dBµV/m @30m	Limits dBµV/m @30m	Margi n dB
(MHz)	Measurement results	Detector	Correct factor	Extrapolatio n factor	Measurement results (calculated)	Limits	Margi n
6.021	25.30	QP	21.84	40.00	7.14	29.54	-22.40
15.730	25.18	QP	21.35	40.00	6.53	29.54	-23.01
25.680	24.85	QP	20.67	40.00	5.52	29.54	-24.02

Test Frequency: 30MHz ~ 18GHz

Remark: only the worst data (GFSK modulation mode) were recorded.

Receiver		Receiver	Turn	RX An	tenna	Corrected	Corrected		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GI	SK Low	Channel				
268.32	37.50	QP	172	1.2	Н	-13.35	24.15	46.00	-21.85
268.32	41.98	QP	71	1.9	V	-13.35	28.63	46.00	-17.37
4804.00	45.83	PK	191	1.1	V	-1.06	44.77	74.00	-29.23
4804.00	43.65	Ave	191	1.1	V	-1.06	42.59	54.00	-11.41
7206.00	39.82	PK	194	1.1	Н	1.33	41.15	74.00	-32.85
7206.00	35.61	Ave	194	1.1	Н	1.33	36.94	54.00	-17.06
2320.58	45.76	PK	113	2.0	V	-13.19	32.57	74.00	-41.43
2320.58	38.91	Ave	113	2.0	V	-13.19	25.72	54.00	-28.28
2375.46	42.37	PK	282	1.7	Н	-13.14	29.23	74.00	-44.77
2375.46	36.78	Ave	282	1.7	Н	-13.14	23.64	54.00	-30.36
2497.26	42.75	PK	56	1.1	V	-13.08	29.67	74.00	-44.33
2497.26	36.84	Ave	56	1.1	V	-13.08	23.76	54.00	-30.24

	Receiver		Turn	RX An	tenna	Corrected	Corrected		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GF	SK Middle	Channe	el			
268.32	37.26	QP	249	1.3	Н	-13.35	23.91	46.00	-22.09
268.32	41.33	QP	9	1.0	V	-13.35	27.98	46.00	-18.02
4882.00	45.48	PK	289	1.2	V	-0.62	44.86	74.00	-29.14
4882.00	42.21	Ave	289	1.2	V	-0.62	41.59	54.00	-12.41
7323.00	39.66	PK	225	1.7	Н	2.21	41.87	74.00	-32.13
7323.00	34.92	Ave	225	1.7	Н	2.21	37.13	54.00	-16.87
2322.22	46.06	PK	220	1.9	V	-13.19	32.87	74.00	-41.13
2322.22	39.83	Ave	220	1.9	V	-13.19	26.64	54.00	-27.36
2362.46	44.94	PK	343	2.0	Н	-13.14	31.80	74.00	-42.20
2362.46	36.62	Ave	343	2.0	Н	-13.14	23.48	54.00	-30.52
2495.98	44.66	PK	95	1.1	V	-13.08	31.58	74.00	-42.42
2495.98	38.56	Ave	95	1.1	V	-13.08	25.48	54.00	-28.52

	Receiver		Turn	RX An	tenna	Corrected	Corrected		
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
			GF	SK High	Channel	<u> </u>			
268.32	35.77	QP	220	1.4	Н	-13.35	22.42	46.00	-23.58
268.32	42.50	QP	290	1.5	V	-13.35	29.15	46.00	-16.85
4960.00	44.03	PK	154	1.1	V	-0.24	43.79	74.00	-30.21
4960.00	40.80	Ave	154	1.1	V	-0.24	40.56	54.00	-13.44
7440.00	40.69	PK	315	1.8	Н	2.84	43.53	74.00	-30.47
7440.00	35.88	Ave	315	1.8	Н	2.84	38.72	54.00	-15.28
2332.87	45.38	PK	180	1.5	V	-13.19	32.19	74.00	-41.81
2332.87	38.34	Ave	180	1.5	V	-13.19	25.15	54.00	-28.85
2371.19	44.52	PK	6	2.0	Н	-13.14	31.38	74.00	-42.62
2371.19	38.80	Ave	6	2.0	Н	-13.14	25.66	54.00	-28.34
2494.06	43.47	PK	318	1.4	V	-13.08	30.39	74.00	-43.61
2494.06	37.98	Ave	318	1.4	V	-13.08	24.90	54.00	-29.10

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not recorded

Reference No.: WTF19S04019935-1W Page 19 of 52

9 Conducted Spurious Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10: 2013

Test Result: PASS

Limit:

In any 100 kHz bandwidth outside the frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in Section 15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see Section 15.205(c)).

9.1 Test Procedure

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;
- 2. Set the spectrum analyzer:

Blow 30MHz:

RBW = 30kHz, VBW = 100kHz, Sweep = auto

Detector function = peak, Trace = max hold

9.2 Test Result

9KHz - 30MHz GFSK

2.9991 MHz/

Stop 30 MHz

Date: 12.APR.2019 05:43:04

Start 9 kHz

Date: 12.APR.2019 05:43:17

Date: 12.APR.2019 05:43:31

Pi/4DQPSK

Date: 12.APR.2019 05:44:05

Date: 12.APR.2019 05:43:46

Date: 12.APR.2019 05:44:21

30MHz - 25GHz

GFSK Low Channel

Date: 12.APR.2019 05:48:25

GFSK Middle Channel

Date: 12.APR.2019 05:50:19

GFSK High Channel

Date: 12.APR.2019 05:51:27

Pi/4 DQPSK Low Channel

Date: 12.APR.2019 05:54:00

Pi/4 DQPSK Middle Channel

Date: 12.APR.2019 05:52:59

Pi/4 DQPSK High Channel

Date: 12.APR.2019 05:52:19

Reference No.: WTF19S04019935-1W Page 26 of 52

10 Band Edge Measurement

Test Requirement: Section 15.247(d) In addition, radiated emissions which fall in the

restricted bands. as defined in Section 15.205(a), must also comply with the radiated emission limits specified in Section 15.209(a) (see

Section 15.205(c)).

Test Method: ANSI C63.10: 2013

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits

specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

10.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz, Sweep = auto
 Detector function = peak, Trace = max hold

10.2 Test Result

Date: 9.APR.2019 20:20:44

Date: 9.APR.2019 20:26:12

Date: 12.APR.2019 04:16:13

Date: 12.APR.2019 04:24:53

Date: 9.APR.2019 20:22:54

Date: 9.APR.2019 20:24:31

Date: 12.APR.2019 04:19:38

Date: 12.APR.2019 04:22:42

Reference No.: WTF19S04019935-1W Page 31 of 52

11 20 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10: 2013

Test Mode: Test in fixing operating frequency at low, Middle, high channel.

11.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 30kHz, VBW = 100kHz

11.2 Test Result

Modulation	Test Channel	Bandwidth(MHz)
GFSK	Low	0.918
GFSK	Middle	0.918
GFSK	High	0.912
Pi/4 DQPSK	Low	1.224
Pi/4 DQPSK	Middle	1.224
Pi/4 DQPSK	High	1.224

Test plots

GFSK Low Channel

Date: 9.APR.2019 20:12:06

GFSK Middle Channel

Date: 9.APR.2019 20:10:36

Date: 9.APR.2019 20:09:07

Date: 9.APR.2019 20:01:37

Date: 9.APR.2019 20:03:58

Date: 9.APR.2019 20:06:50

Reference No.: WTF19S04019935-1W Page 35 of 52

12 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10: 2013

Test Limit: Regulation 15.247 (a)(1), For frequency hopping systems

operating in the 2400-2483.5 MHz band by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.: 1 watt. For all other frequency hopping systems in the 2400-2483.5 MHz band that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel,

whichever is greater: 0.125 watts...

Test mode: Test in fixing frequency transmitting mode.

12.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 3MHz. VBW = 3MHz. Sweep = auto; Detector Function = Peak.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.///

12.2 Test Result

Modulation	Test Channel	Output Power (dBm)	Limit (dBm)
GFSK	Low	2.70	30
GFSK	Middle	2.43	30
GFSK	High	2.09	30
Pi/4 DQPSK	Low	3.81	21
Pi/4 DQPSK	Middle	3.56	21
Pi/4 DQPSK	High	3.38	21

Test plots

GFSK Low Channel

Date: 9.APR.2019 19:55:24

GFSK Middle Channel

Date: 9.APR.2019 19:55:58

Date: 9.APR.2019 19:56:24

Date: 9.APR.2019 19:58:29

Date: 9.APR.2019 19:57:53

Date: 9.APR.2019 19:57:25

Reference No.: WTF19S04019935-1W Page 39 of 52

13 Hopping Channel Separation

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10: 2013

Test Limit: Regulation 15.247(a)(1) Frequency hopping systems shall have

hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the

systems operate with an output power no greater than 0.125W.

Test Mode: Test in hopping transmitting operating mode.

13.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set the spectrum analyzer: RBW = 30kHz. VBW = 100kHz , Span = 3.0MHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

13.2 Test Result

Modulation	Test Channel	Separation (MHz)	Limit(MHz)	Result
GFSK	Low	1.000	0.918	PASS
GFSK	Middle	1.000	0.918	PASS
GFSK	High	1.000	0.912	PASS
Pi/4 DQPSK	Low	1.000	0.816	PASS
Pi/4 DQPSK	Pi/4 DQPSK Middle		0.816	PASS
Pi/4 DQPSK	High	1.000	0.816	PASS

Test plots

Date: 9.APR.2019 20:29:45

Center 2.4025 GHz

Date: 9.APR.2019 20:38:08

Date: 9.APR.2019 20:39:54

Date: 9.APR.2019 20:32:12

Date: 9.APR.2019 20:34:54

Date: 9.APR.2019 20:41:19

Reference No.: WTF19S04019935-1W Page 43 of 52

14 Number of Hopping Frequency

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10: 2013

Test Limit: Regulation 15.247 (a)(1)(iii) Frequency hopping systems in the

2400-2483.5 MHz band shall use at least 15 channels.

Test Mode: Test in hopping transmitting operating mode.

14.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- Set the spectrum analyzer: RBW = 100kHz. VBW = 300kHz. Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. It may prove necessary to break the span up to sections. in order to clearly show all of the hopping frequencies. The limit is specified in one of the subparagraphs of this Section.
- 4. Set the spectrum analyzer: Start Frequency = 2.4GHz, Stop Frequency = 2.4835GHz. Sweep=auto;

14.2 Test Result

Test Plots:

79 Channels in total

Date: 9.APR.2019 21:22:30

Date: 9.APR.2019 21:12:33

Reference No.: WTF19S04019935-1W Page 45 of 52

15 Dwell Time

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: ANSI C63.10: 2013

Test Limit: Regulation 15.247(a)(1)(iii) Frequency hopping systems in

the 2400-2483.5 MHz band shall use at least 15 channels. The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed. Frequency hopping systems may avoid or suppress transmissions on a particular hopping frequency provided that a minimum of 15 channels are

used.

Test Mode: Test in hopping transmitting operating mode.

15.1 Test Procedure

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.

- 2. Set spectrum analyzer span = 0. Centred on a hopping channel;
- 3. Set RBW = 1MHz and VBW = 3MHz.Sweep = as necessary to capture the entire dwell time per hopping channel. Set the EUT for DH5, DH3 and DH1 packet transmitting.
- 4. Use the marker-delta function to determine the dwell time. If this value varies with different modes of operation (e.g., data rate, modulation format, etc.), repeat this test for each variation. The limit is specified in one of the subparagraphs of this Section. Submit this plot(s).

15.2 Test Result

DH5 Packet permit maximum 1600 / 79 / 6 hops per second in each channel (5 time slots RX, 1 time slot TX).

DH3 Packet permit maximum 1600 / 79 / 4 hops per second in each channel (3 time slots RX, 1 time slot TX).

DH1 Packet permit maximum 1600 / 79 /2 hops per second in each channel (1 time slot RX, 1 time slot TX). So, the Dwell Time can be calculated as follows:

Data Packet	Dwell Time(s)			
DH5	1600/79/6*0.4*79*(MkrDelta)/1000			
DH3	1600/79/4*0.4*79*(MkrDelta)/1000			
DH1	1600/79/2*0.4*79*(MkrDelta)/1000			
Remark: Mkr Delta is once pulse time.				

Modulation	Data Packet	Channel	pulse time(ms)	Dwell Time(s)	Limits(s)
GFSK	DH5	Low	2.920	0.311	0.4
		middle	2.920	0.311	0.4
		High	2.920	0.311	0.4
Pi/4DQPSK	DH5	Low	2.920	0.311	0.4
		middle	2.920	0.311	0.4
		High	2.920	0.311	0.4

Remark: Only the worst-case mode DH5 is recorded.

Date: 9.APR.2019 20:52:25

Date: 9.APR.2019 20:51:33

Date: 9.APR.2019 20:51:06

Date: 9.APR.2019 20:53:37

Date: 9.APR.2019 20:54:01

Date: 9.APR.2019 20:54:30

16 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has an integrated antenna, fulfil the requirement of this section.

Reference No.: WTF19S04019935-1W Page 51 of 52

17 RF Exposure

Remark: refer to MPE test report: WTF19S04019935-3W.

Reference No.: WTF19S04019935-1W Page 52 of 52

18 Photographs of test setup and EUT.

Note: Please refer to appendix: WTF19S04019935W_Photo.

====End of Report=====