

Survey of Scientific Computing (SciComp 301)

Dave Biersach
Brookhaven National
Laboratory
dbiersach@bnl.gov

Session 23
Difference Tables,
Least Squares

Session Goals

- Determine the underlying **generator** for a sequence of integers (the **functional equation**)
 - Fit a quadratic curve to a set of observations to interpolate the resulting values that lie between those observations
 - Understand how to create difference tables in the open source (and free) LibreOffice Calc spreadsheet program
 - Appreciate % relative error as a measure of the goodness of fit between a model and the experimental data
- Fit a curve using the Method of Least Squares
 - Derive the least squares equations using partial derivatives to calculate the coefficients of a quadratic model

Difference Tables – The Big Picture

- A difference table calculates the delta between successive values (in the range) of a given function
- For every higher power of the independent variable (in the domain) we add another difference column
- Difference column #2 is the gap between successive values of difference column #1, etc.
- We keep adding difference columns until the value in the rightmost column is the same for every row – this is called achieving a steady state

Difference Tables – The Big Picture

Creating a Spreadsheet

- A spreadsheet is a flexible computing tool that allows you to enter data and write formulas to operate on that data
- Everything is based on the concept of a "cell" that has a unique column (letter) and row (number) address
- A formula entered in one cell can reference data in one or more other cells by using cell addresses, or by using a <u>range</u> of cell addresses
- When source data cells are updated, the spreadsheet automatically recalculates all dependent formula cells
- Graphs can be created to depict the values in cells

Creating a Spreadsheet

Lab 1 - Creating a Spreadsheet

Changing a Cell's Number Format

To check a formula cell, press **F2** to edit the formula – color coding then identifies the cells

To enter a formula cell, press +, then use the arrow keys to select the source data cells.

Press ENTER when done with the formula

To copy a formula to other cells, highlight the source cell, press "Control + C" to copy, then use SHIFT + arrow keys to highlight a destination range, and then press ENTER to paste the formula

Create the **Diff 1** column using the difference between the left-adjacent cell and the cell above that one, then copy that formula down the remaining cells in the **Diff 1** column.

Lab 1 – **Quadratic** Difference Table

Lab 1 – Quadratic Difference Table

Lab 1 – Cubic and Quartic Tables

Difference Tables – The Big Picture

- A difference table calculates the delta between successive values (in the range) of a given function
- For every higher power of the independent variable (in the domain) we add another difference column
- Difference column #2 is the gap between successive values of difference column #1, etc.
- We keep adding difference columns until the value in the rightmost column is the same for every row – this is called achieving a steady state
- The cubic table needed 3 difference columns the quartic table needed 4 difference columns to achieve steady state

Difference Tables – The Big Picture

Difference Tables – What They Reveal

		Steady
		Difference
Constant	y = 1	0
Linear	y = x	1
Quadratic	$y = x^2$	2
Cubic	$y = x^3$	6
Quartic	$y = x^4$	24

Expected Steady Difference for $(1)x^n = n!$

$$(1)x^4 = 4! = 4 \times 3 \times 2 \times 1 = 24$$

Difference Tables – What They Reveal

- If we believe a given a set of observations obeys an unknown general power law, we can use difference tables to systematically reveal this hidden functional generator
- We start by "guessing" the highest power of x that would likely be in the underlying generator
- We compare the expected steady state values for each power of x with the our observed values
- As we determine the coefficient for each decreasing power of x, we begin to expose (one term at a time) the underlying functional equation that generated the original sequence

Lab 2

- Find an equation to generate this sequence: 5, 14, 27, 44,
 65, 90, 119, 152 ...
- We will guess this data set is generated by a quadratic formula: $y = ax^2 + bx + c$
- We have to figure out the values for a, b, c
- We create a series of difference tables, working <u>backwards</u>, starting with a <u>quadratic</u> table, then a <u>linear</u> table, and then a <u>constant</u> table (if necessary)
- We stop when our model produces values that match our observations to the desired level of accuracy

Lab 2 – Create a new Spreadsheet

Lab 2 – Quadratic Difference Table

Calculating the Mean Steady Difference

Calculating the Coefficient of each Term

2	Quadratic	y=x^2		
3	x	у	Diff 1	Diff 2
4	1	5		
5	2	14	9	
6	3	27	13	4
7	4	44	17	4
8	5	65	21	4
9	6	90	25	4
10	7	119	29	4
11	8	152	33	4
12			mean:	4
13				A

- The $y = (1)x^2$ table had an expected steady difference of 2
- But in our sequence we found a steady difference <u>mean</u> of 4
- This means the coefficient for the x^2 term is $a = \frac{4}{2} = 2$
- So now we know the generator is $y \approx 2x^2$

Delta = Observed - Expected

				7
y_{ohs}	=	given	val	lues
7 005				

•
$$y_{est} = 2x^2$$

$$\bullet \ \Delta = y_{obs} - y_{est}$$

15	Linear	y=x				
16	x	y Obs		delta	Diff 1	
17	1	5	2	=+B17-C17 4		
18	2	14				
19	3	27				
20	4	44				
21	5	65				
21 22	6	90				
23	7	119				
24	8	152				
25						

15	Linear	y=x			
16	x	y Obs	y Est	delta	Diff 1
17	1	5	2	3	
18	2	14	8	6	=+D18-D17
19	3	27	18	9	
20	4	44	32	12	
21	5	65	50	15	
22	6	90	72	18	
23	7	119	98	21	
24	8	152	128	24	
25					

Add the **Diff 1**column and
formula, then copy
that down all rows

Delta = Observed - Expected

15 Lir	near	y=x				
16	x	y Obs	y Est	delta	Diff 1	
17	1	5	2	3	*	
18	2	14	8	6	3	
19	3	27	18	9	3	
20	4	44	32	12	← 3	
21	5	65	50	15	3	
22	6	90	72	18	3	
23	7	119	98	21	3	
24	8	152	128	24	3	
25				mean:	=+AVERAGE	(E18:E24)
26						

- $y_{obs} = given \ values$
- $y_{est} = 2x^2$
- $\Delta = y_{obs} y_{est}$
- Observed <u>mean</u> steady value = 3
- Expected linear steady value = 1

$$\bullet :: b = \frac{3}{1} = 3$$

• Generator is now $y \approx 2x^2 + 3x$

Create a new table called Complete

% Relative Error

28	Complete	y=2*x^2+3*x		
29	x	y Obs	y Est	% Err
30	1	5	=+2*A30^2+3	*A30
31	2	14	14	0.00%
32	3	27	27	0.00%
33	4	44	44	0.00%
34	5	65	65	0.00%
35	6	90	90	0.00%
36	7	119	119	0.00%
37	8	152	152	0.00%
38				

- ABS = Absolute Value
- $\%_{err} = \left| \frac{(y_{obs} y_{est})}{y_{obs}} \right|$
- 0% error = perfect fit
- $y = 2x^2 + 3x$

 $2x^2 + 3x$ generates 5, 14, 27, 44, 65, 90, 119, 152 ...

28	Complete	y=2*x^2+3*x			
29	x	y Obs	y Est	% Err	
30	1	5	5	=+(B30-C30)/I	B30
31	2	14	14	0.00%	
32	3	27	27	0.00%	
33	4	44	44	0.00%	
34	5	65	65	0.00%	
35	6	90	90	0.00%	
36	7	119	119	0.00%	
37	8	152	152	0.00%	
38					

Lab 3

- Create a new Lab 3 spreadsheet and generate the difference tables to find the underlying equation that generate this sequence: **36**, **103**, **244**, **489**, **868**, **1411**, **2148**, **3109**, **4324**...
- Hint: This data set is generated by a cubic formula:

$$y = ax^3 + bx^2 + cx + d$$

- You have to figure out the values for a, b, c, d
- Create difference tables, starting with a cubic, then quadratic, then linear, then constant table (if necessary)
- Stop when your model produces values that match our observations with 0% relative error
- Create a new worksheet named Lab 3.ods

Lab 3 – **Cubic** Difference Table

	A	В	С	D	E	
1	Cubic	y=x^3				
2	x	y Obs	Diff 1	Diff 2	Diff 3	
3	1	36				
4	2	103	67			
5	3	244	141	74		
6	4	489	245	104	30	
7	5	868	379	134	30	
8	6	1411	543	164	30	
9	7	2148	737	194	30	
10	8	3109	961	224	30	
11	9	4324	1215	254	30	
12				mean:	30	
13			1			

		Steady
		Difference
Constant	y = 1	0
Linear	y = x	1
Quadratic	$y = x^2$	2
Cubic	$y = x^3$	6
Quartic	$y = x^4$	\

Create a new table called **Cubic** (calculate *all three* Diff columns)

Expected difference for a cubic = 6, while observed steady diff $\underline{\text{mean}} = 30$, so coefficient of x^3 must be

$$\frac{30}{6} = 5$$

So far ...
$$y = 5x^3$$

Lab 3 – Quadratic Difference Table

Lab 3 – **Quadratic** Difference Table

	А	В	С	D	Е	F
1		y=x^3			_	
2	×		Diff 1	Diff 2	Diff 3	
3	1	_	~~-		~~	
4	2		67			
5	3		141	74		
6	4		245	104	30	
7	5		379	134	30	
8	6		543	164	30	
9	7		737	194	30	
10	8	3109	961	224	30	
11	9	4324	1215	254	30	
12				mean:	30	
13						
14	Quadratic	y=x^2				
15	x	y Obs	y Est	delta	Diff 1	Diff 2
16	1	36	=+5*A16^3	31		
17	2		40	63	32	
18	3	244	135	109	46	14
19	4	489	320	169	60	14
20	5		625	243	74	14
21	6	1411	1080	331	88	14
22	7	2148	1715	433	102	14
23	8	3109	2560	549	116	14
24	9	4324	3645	679	130	14
25					mean:	14
26					,	

		Steady
		Difference
Constant	y = 1	0
Linear	y = x	1
Quadratic	$y = x^2$	2
Cubic	$y = x^3$	\wedge
Quartic	$y = x^4$	
		$\overline{}$

Expected difference for a quadratic = 2, while observed steady diff $\underline{\text{mean}} = 14$, so coefficient of x^2 must be $\frac{14}{x^2} = 7$

Now so far ... $y \approx 5x^3 + 7x^2$

Lab 3 – **Linear** Difference Table

Remember to add the new quadratic term to the **estimated y** function

27	Linear	y=x			
28	х	y Obs	y E t	delta	Diff 1
29	1	36	=+5*A29^3+7	*A29^2	
30	2	103	68	35	11
31	3	244	198	46	11
32	4	489	432	57	11
33	5	868	800	68	11
34	6	1411	1332	79	11
35	7	2148	2058	90	11
36	8	3109	3008	101	11
37	9	4324	4212	112	11
38				mean:	11
39					

		Steady
		Difference
Constant	y = 1	0
Linear	y = x	1
Quadratic	$y = x^2$	Ą
Cubic	$y = x^3$	
Quartic	$y = x^4$	
		/ \
		/

Steady difference for **linear** = 1, while observed steady diff $\underline{\text{mean}}$ = 11, so coefficient of x must be

$$\frac{11}{1} = 11$$

Now so far ... $y \approx 5x^3 + 7x^2 + 11x$

Lab 3 – **Constant** Difference Table

40	Constant	y=c			
41	>	y Obs	y Est	delta	
42	1	36	23	13	
43	2	103	90	13	
44	3	244	231	13	
45	4		476	13	
46	5	868	855	13	
47		1411	1398	13	
48	7	2148	2135	13	
49	8	3109	3096	13	
50	9	4324	4311	13	
51			mean:	13	
52					
53	Complete				
54	>				
55	1	36	=+5*A55^3+7	*A55^2+11*A5	5+13
56	2	103	103	0.00%	
57	3	244	244	0.00%	
58	4		489	0.00%	
59		868	868	0.00%	
60	(1411	1411	0.00%	
61	7	2148	2148	0.00%	
62	8	3109	3109	0.00%	
63	9	4324	4324	0.00%	
64					

If the delta values are all the same, then that value is the final **constant** term

Functional Equation

$$y = 5x^3 + 7x^2 + 11x + 13$$

with $x \in \mathbb{Z}^+$

Generates the sequence: **36**, **103**, **244**, **489**, **868**, **1411**, **2148**, **3109**, **4324**...

Elapsed Time	Observed
(10 mins each)	Counter
1	205
2	430
3	677
4	945
5	1233
6	1542
7	1872
8	2224

Lab 4

- This case study will use data from an experiment that measured the counter on a tape machine vs. the elapsed time the tape was played
- Ideally there would be a linear relationship between these two variables
- But due to the constantly changing circumference of a tape reel as it is played, the relationship is non-linear

Elapsed Time	Observed
(10 mins each)	Counter
1	205
2	430
3	677
4	945
5	1233
6	1542
7	1872
8	2224

Lab 4

- Find an equation to model the tape counter as a function of playing time
 - X is the number of 10 minute blocks the tape has been playing from the beginning (1...8)
 - **Y** is the counter on the tape player (linear feet)
- With a precise model we can answer this question:

Where should we stop the tape to be exactly <u>65</u> minutes into the recording? (x = 6.5)

Lab 4

Elapsed Time	Observed
(10 mins each)	Counter
1	205
2	430
3	677
4	945
5	1233
6	1542
7	1872
8	2224

Lab 4 – Difference Tables

1	Quadratic	y=x^2		
2	x	y Obs	Diff 1	Diff 2
3	1	205		
4	2	430	225	
5	3	677	247	22
6	4	945	268	21
7	5	1233	288	20
8	6	1542	309	21
9	7	1872	330	21
10	8	2224	352	22
11			mean:	21.1667
10				

13	Linear	y=x			
14	x	y Obs	y Est	delta	Diff 1
15	1	205	10.5833	194.4167	
16	2	430	42.3333	387.6667	193.2500
17	3	677	95.2500	581.7500	194.0833
18	4	945	169.3333	775.6667	193.9167
19	5	1233	264.5833	968.4167	192.7500
20	6	1542	381.0000	1,161.0000	192.5833
21	7	1872	518.5833	1,353.4167	192.4167
22	8	2224	677.3333	1,546.6667	193.2500
23				mean:	193.1786
24					

25	Constant	y=c		
26	x	y Obs	y Est	delta
27	1	205	203.7619	1.2381
28	2	430	428.6905	1.3095
29	3	677	674.7857	2.2143
30	4	945	942.0476	2.9524
31	5	1233	1,230.4762	2.5238
32	6	1542	1,540.0714	1.9286
33	7	1872	1,870.8333	1.1667
34	8	2224	2,222.7619	1.2381
35			mean:	1.8214
36				

38	Complete			
39	x	y Obs	y Est	% Err
40	1	205	205.5833	-0.2846%
41	2	430	430.5119	-0.1190%
42	3	677	676.6071	0.0580%
43	4	945	943.8690	0.1197%
44	5	1233	1,232.2976	0.0570%
45	6	1542	1,541.8929	0.0069%
46	7	1872	1,872.6548	-0.0350%
47	8	2224	2,224.5833	-0.0262%
40				

 $y_{est} = 10.5833x^2 + 193.1786x + 1.8214$

Lab 4 – Model Predictions

- Developed by Gauss, least squares finds the coefficients of a polynomial of a given degree that approximates a set of observations with minimal variance from the data
- The modeler selects a curve whose general shape matches the trend of the data
- The partial derivatives of the chosen polynomial are then determined, leading to a system of *linear* equations that can be solved using matrices and Cramer's Rule
- The coefficients of each term of the model polynomial are then determined, allowing us to estimate the unknown function value at any point within the given domain

Elapsed Time	Observed
(10 mins each)	Counter
1	205
2	430
3	677
4	945
5	1233
6	1542
7	1872
8	2224

$$Assume y = ax^2 + bx + c$$

Minimize
$$S = \sum_{i=1}^{n} [y_i - (ax_i^2 + bx_i + c)]^2$$

$$(y - ax^2 - bx - c)(y - ax^2 - bx - c)$$

$$y^{2} - ax^{2}y - bxy - cy$$
 $-ax^{2}y$ $+ a^{2}x^{4} + abx^{3} + acx^{2}$
 $-bxy$ $+ abx^{3}$ $+ b^{2}x^{2} + bcx$
 $-cy$ $+ acx^{2}$ $+ bcx + c^{2}$

$$S = y^2 - 2ax^2y - 2bxy - 2cy + a^2x^4 + 2abx^3 + 2acx^2 + b^2x^2 + 2bcx + c^2$$

Note: we will set aside the summation operator for now...

Minimize
$$S = \sum_{i=1}^{n} [y_i - (ax_i^2 + bx_i + c)]^2$$

$$S = y^2 - 2ax^2y - 2bxy - 2cy + a^2x^4 + 2abx^3 + 2acx^2 + b^2x^2 + 2bcx + c^2$$

For S to have a minimum, these partial derivatives must exist:

$$\frac{\partial S}{\partial a} = 0, \frac{\partial S}{\partial b} = 0, \frac{\partial S}{\partial c} = 0$$

$$\frac{\partial S}{\partial a} = -2x^2y + 2ax^4 + 2bx^3 + 2cx^2 = 0$$

$$\frac{\partial S}{\partial b} = -2xy + 2ax^3 + 2bx^2 + 2cx = 0$$

$$\frac{\partial S}{\partial c} = -2y + 2ax^2 + 2bx + 2c = 0$$

Minimize
$$S = \sum_{i=1}^{n} \left[y_i - \left(ax_i^2 + bx_i + c \right) \right]^2$$

Divide through by the **GCD** of all terms

Move all terms <u>not</u> containing a, b, or c to the **RHS**

$$\frac{\partial S}{\partial a} = -2x^2y + 2ax^4 + 2bx^3 + 2cx^2 = 0$$
$$(x^4)a + (x^3)b + (x^2)c = x^2y$$

$$\frac{\partial S}{\partial b} = -2xy + 2ax^3 + 2bx^2 + 2cx = 0$$
$$(x^3)a + (x^2)b + (x)c = xy$$

$$\frac{\partial S}{\partial c} = -2y + 2ax^2 + 2bx + 2c = 0$$
$$(x^2)a + (x)b + c = y$$

Minimize
$$S = \sum_{i=1}^{n} [y_i - (ax_i^2 + bx_i + c)]^2$$

$$\sum_{i=1}^{n} (1)c = (n)c - 1$$

Reintroduce the \sum operators

But these
∑ values are
just sums of
the known
(observed)
values!

$$\sum_{i=1}^{n} (1)c = (n)c - \frac{1}{2} \left(\sum_{i=1}^{n} x_i^4 \right) a + \left(\sum_{i=1}^{n} x_i^2 \right) b + \left(\sum_{i=1}^{n} x_i^2 y_i \right)$$

$$\left(\sum_{i=1}^{n} x_i^4 \right) a + \left(\sum_{i=1}^{n} x_i^2 \right) b + \left(\sum_{i=1}^{n} x_i^2 y_i \right)$$

$$\left(\sum_{i=1}^{n} x_i^2 \right) a + \left(\sum_{i=1}^{n} x_i^2 \right) b + \left(\sum_{i=1}^{n} x_i^2 y_i \right)$$

$$\left(\sum_{i=1}^{n} x_i^2 \right) a + \left(\sum_{i=1}^{n} x_i^2 \right) b + \left(\sum_{i=1}^{n} x_i^2 y_i \right)$$

$$\left(\sum_{i=1}^{n} x_i^2 \right) a + \left(\sum_{i=1}^{n} x_i^2 \right) b + \left(\sum_{i=1}^{n} x_i^2 y_i \right)$$

$$\left(\sum_{i=1}^{n} x_i^2 \right) a + \left(\sum_{i=1}^{n} x_i^2 \right) b + \left(\sum_{i=1}^{n} x_i^2 y_i \right)$$

Pretend all the \sum values where just some numbers....

Minimize
$$S = \sum_{i=1}^{n} [y_i - (ax_i^2 + bx_i + c)]^2$$

This is a system of 3 linear equations and 3 unknowns!

$$(4)a + (5)b + (-2)c = (-14)$$

$$(7)a + (-1)b + (2)c = (42)$$

$$(3)a + (1)b + (4)c = (28)$$

Minimize
$$S = \sum_{i=1}^{n} [y_i - (ax_i^2 + bx_i + c)]^2$$

This is a system of 3 linear equations and 3 unknowns!

$$\left(\sum x_i^4\right)a + \left(\sum x_i^3\right)b + \left(\sum x_i^2\right)c = \left(\sum x_i^2 y_i\right)$$

$$\left(\sum x_i^3\right)a + \left(\sum x_i^2\right)b + \left(\sum x_i\right)c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^2\right)a + \left(\sum x_i\right)b + (n)c = \left(\sum y_i\right)$$

See Session 10:

Coefficient Matrix

Value Vector

Minimize
$$S = \sum_{i=1}^{n} [y_i - (ax_i^2 + bx_i + c)]^2$$

$$\left(\sum x_i^4\right) a + \left(\sum x_i^3\right) b + \left(\sum x_i^2\right) c = \left(\sum x_i^2 y_i\right)$$

$$\left(\sum x_i^4\right) a + \left(\sum x_i^3\right) b + \left(\sum x_i\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^2\right) b + \left(\sum x_i\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) b + \left(\sum x_i\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) b + \left(\sum x_i\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) b + \left(\sum x_i\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) b + \left(\sum x_i^3\right) b + \left(\sum x_i^3\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) b + \left(\sum x_i^3\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) b + \left(\sum x_i^3\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) b + \left(\sum x_i^3\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) b + \left(\sum x_i^3\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) b + \left(\sum x_i^3\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i^3\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i y_i\right) c = \left(\sum x_i y_i\right)$$

$$\left(\sum x_i^3\right) a + \left(\sum x_i y_i\right) c = \left(\sum x_i y_i\right) c = \left(\sum x_i y_i\right) c$$

$$\left(\sum x_i y_i\right) c = \left(\sum x_i y_i\right) c = \left(\sum x_i y_i\right) c$$

$$\left(\sum x_i y_i\right) c = \left(\sum x_i y_i\right) c = \left$$

We have **8** sample points in the **Lab 5** data set

```
double a = detA / detCoeff;
                                y = ax^2 + bx + c
double b = detB / detCoeff;
double c = detC / detCoeff;
cout << "a = " << setw(10) << a << endl:
cout << "b = " << setw(10) << b << endl;
cout << "c = " << setw(10) << c << endl:</pre>
cout << endl:
cout << "Actual vs. Estimate" << endl;</pre>
cout << setw(6) << "X";
cout << setw(12) << "Act";</pre>
cout << setw(12) << "Est";
cout << setw(10) << "% Err";</pre>
cout << endl;
for (int i{}; i < 8; ++i)
    double vp = a * pow(vecX[i
                                            vecX[i] + c;
    double err = abs(vecY[i] - yp)
    cout << setw(6) << i;
    cout << setw(12) << vecY[i];</pre>
    cout << setw(12) << vp;
    cout << setw(10) << err * 100 << " %";
    cout << endl;
```

yp = y predicted
"the estimated y value"

Elapsed Time	Observed	Estimated
(10 mins each)	Counter	Counter
1	205	204.8333
2	430	430.4524
3	677	677.0000
4	945	944.4762
5	1233	1232.8810
6	1542	1542.2143
7	1872	1872.4762
8	2224	2223.6667

Verify Lab 5 - Method of Least Squares

via Difference Tables

via Least Squares

The **method of least squares** guarantees the <u>best</u> possible fit between the observed data and the polynomial form chosen to model the data

Now you know...

- Model fitting starts by assuming the degree of an appropriate curve that reasonably matches the data
- How to create difference tables for constant, linear, quadratic, cubic, and quartic terms along with their expected average
- Gauss's Method of Least Squares refers to shaping the approximating curve to minimize the total deviations between the observed data and points on that curve
 - The function to minimize must be expanded, and then partial derivatives must be found for each coefficient of the curve
 - Matrix algebra (Cramer's Rule) can then solve for the coefficients
- The % relative error measures the "goodness of fit" of a model to experimental observations