PAT-NO: JP404312387A

DOCUMENT-IDENTIFIER: JP 04312387 A

TITLE: SWITCHING APPARATUS FOR ROTATIONAL DIRECTION

OF DC

BRUSHLESS MOTOR

PUBN-DATE: November 4, 1992

INVENTOR-INFORMATION:

NAME

TAKANO, TOSHIO SAITO, MORIHIRO

ASSIGNEE-INFORMATION:

NAME COUNTRY

NIPPON SIGNAL CO LTD: THE N/A
NIPPON ELECTRIC IND CO LTD N/A

APPL-NO: JP03077625

APPL-DATE: April 10, 1991

INT-CL (IPC): H02P006/02, B61L029/16

US-CL-CURRENT: 318/254

ABSTRACT:

PURPOSE: To provide the highly reliable rotational direction switching

apparatus for a DC brushless motor with a simple construction.

CONSTITUTION: If a power supply switch 5 is positioned as shown in the

Figure, a power is supplied to a non-inverter array 2 and the array 2 is put

into an operating state and the power is not supplied to an inverter array 3

which is not in an operating state. The respective non-inverters 2-1, 2-2 and

2-3 receive positive voltages from a position detector 1 to output 'high'

signals and receive negative voltages from the position detector 1 to

output

'low' signals and a rotor (not shown in the Figures) is made to rotate in a

normal direction. If the power supply switch 5 is switched to the position of

the inverter array 3 side, the power is supplied to the inverter array 3 and

the array 3 is put into an operating state and the power is not supplied to the

non-inverter array 2 which is put into a non-operating state. The respective

inverters 3-1, 3-2 and 3-3 receive the positive voltages from the position

detector 1 to output 'low' signals and receive the negative voltages to output

'high' signals. Therefore, a logic status for an inverter transistor circuit 9

(not shown) is reversed and the rotor is made to rotate in a reverse direction.

COPYRIGHT: (C) 1992, JPO& Japio

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号

特開平4-312387

(43)公開日 平成4年(1992)11月4日

(51) Int.Cl.5

識別記号

庁内整理番号

FΙ

技術表示箇所

H 0 2 P 6/02 B 6 1 L 29/16 3 7 1 M 8527-5H

6821-5H

審査請求 未請求 請求項の数2(全 5 頁)

(21)出願番号

特願平3-77625

(22)出願日

平成3年(1991)4月10日

(71)出願人 000004651

日本信号株式会社

東京都千代田区丸の内3丁目3番1号

(71)出願人 000004248

日本電気精器株式会社

東京都台東区上野1丁目10番12号

(72)発明者 高野 利男

埼玉県浦和市上木崎1丁目13番8号 日本

信号株式会社与野事業所内

(72)発明者 斉藤 守弘

東京都台東区上野1丁目10番12号 日本電

気精器株式会社内

(74)代理人 弁理士 丹羽 宏之 (外1名)

(54) 【発明の名称】 DCプラシレスモータの回転方向切換装置

(57)【要約】

【目的】 簡単な構成で信頼性の高い、DCブラシレス モータの回転方向切換装置を提供する。

【構成】 電源供給スイッチ5を図示位置にすると、ノン・インパータアレイ2は電源供給が行われて動作状態となり、インパータアレイ3は電源供給が行われず不動作状態となる。ノン・インパータアレイ2の各ノン・インパータ2-1、2-2、2-3は、位置検出器1の正電圧を受けて"ハイ"を出力し、負電圧を受けて"ロー"を出力し、不図示のロータは正転する。電源供給スイッチ5をインパータアレイ3側に切り換えると、インパータアレイ3は電源供給が行われて動作状態となり、ノン・インパータアレイ2は電源供給が行われず不動作状態となる。インパータアレイ3の各インパータ3-1、3-2、3-3は、位置検出器1の正電圧を受けて"ハイ"を出力するので、不図示のインパータトランジスタ回路9への論理状態が反転し、ロータは逆転する。

位置検工器またで回転が右切換は畳の回路図

【特許請求の範囲】

【請求項1】 位置検出器側から信号を受けて信号の論 理状態を変えることなく後段のモータ駆動回路側へ信号 を送出する第1の論理回路アレイと、位置検出器側から 信号を受けて信号の論理状態を反転して後段のモータ駅 動回路側へ信号を送出する第2の論理回路アレイと、前 記第1の論理回路アレイと前記第2の論理回路アレイに 選択的に電源供給を行う電源供給手段とを備えたことを 特徴とするDCブラシレスモータの回転方向切換装置。

【請求項2】 電源供給手段は電磁リレーであり、該電 10 磁リレーのプレーク接点側へ電源供給したとき、遮断桿 が遮断制御されることを特徴とする請求項1記載のDC ブラシレスモータの回転方向切換装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、踏切遮断機等に用いら れる、DCプラシレスモータの回転方向切換装置に関す る。

[0002]

【従来の技術】従来、踏切遮断機等に用いるDCプラシ 20 レスモータの回転方向の切り換えは、位置検出器の出力 側でリレー接点により論理回路の信号路を切り換え論理 状態を反転することにより行っている。例えば位置検出 器の出力が3個あるときは、図4の構成で論理回路の信 号路を切り換えている。図において、1-1, 1-2, 1-3は位置検出器、11-1, 11-2, 11-3は 回転方向設定部、12-1-a, 12-2-a, 12-3-aは電磁リレー(切換用リレー)12のメーク接 点、12-1-b, 12-2-b, 12-3-bは電磁 -1,11-2,11-3において、実線は、不図示の 遮断機本体の左側に遮断桿を設ける場合の結線を示し、 破線は遮断機本体の右側に遮断桿を設ける場合の結線を 示す。

【0003】図示の状態は、遮断機本体の左側に遮断桿 が設けられていて、遮断桿が開放制御を行う場合を示 す。電磁リレー12の付勢をやめるとその可動接点はプ レーク接点12-1-b, 12-2-b, 12-3-b **側に切り換わり、位置検出器1-1, 1-2, 1-3の** 出力はインバータ3-1, 3-2, 3-3を介して出力 40 されるので、論理状態が反転しDCプラシレスモータの 回転方向も反転して遮断桿の遮断制御が行われる。

【0004】電磁リレーは、故障時にプレーク接点がオ ンになる確率が極めて高いので、図示のように、プレー ク接点で遮断桿の遮断制御を行うように構成することに より、電磁リレー12の故障時にはDCプラシレスモー 夕は遮断桿を遮断制御する可能性が高くなり、フェール セーフが実現できる。

[0005]

ーは他の半導体スイッチに比べて形状が大きく、鉄道信 号用として、高信頼性を要求されることからコストも高 くなるという欠点があった。

【0006】よって、前述の従来例のように、多数の接 点で論理回路の信号路を切り換えるDCプラシレスモー 夕の回転方向切換装置は、小形化及び信頼性の点で問題 がある。

【0007】本発明はこの問題を解消するためなされた もので、小形で信頼性の高い、DCプラシレスモータの 回転方向切換装置を提供することを目的とする。

[0008]

【課題を解決するための手段】本発明では、前記目的を **遠成するため論理回路の電源を切り換えるもので、詳し** くはDCプラシレスモータの回転方向切換装置を次の (1), (2) のとおりに構成するものである。

【0009】 (1) 位置検出器側から信号を受けて信号 の論理状態を変えることなく後段のモータ駆動回路側へ 信号を送出する第1の論理回路アレイと、位置検出器側 から信号を受けて信号の論理状態を反転して後段のモー タ駆動回路側へ信号を送出する第2の論理回路アレイ と、前記第1の論理回路アレイと前記第2の論理回路ア レイに選択的に電源供給を行う電源供給手段とを備えた プラシレスモータの回転方向切換装置。

【0010】(2)電源供給手段は電磁リレーであり、 該電磁リレーのブレーク接点側へ電源供給したとき、遮 断桿が遮断制御される前記(1)記載のDCプラシレス モータの回転方向切換装置。

[0011]

【作用】前記(1), (2)の構成により、第1の論理 リレー 12のブレーク接点である。回転方向設定部 1130 回路アレイと第 2の論理回路アレイのうち、電源供給の あった側のアレイが、位置検出器側の論理状態をそのま ま、または論理状態を反転して後段のモータ駆動回路側 へ送出する。

[0012]

【実施例】以下本発明を実施例により詳しく説明する。 図1. 図2は、本発明の一実施例である"遮断桿駆動用 DCプラシレスモータの回転方向切換装置"およびその 周辺装置の回路図であり、図3はその動作説明図であ

【0013】図1において、1-1, 1-2, 1-3 は、ホール索子と増幅器を一体にしたホールICで、同 期モータ10のステータに配置され位置検出器1を構成 している。

【0014】2は、電源が共通になっている3個のノン ・インパー92-1, 2-2, 2-3からなるノン・イ ンパータ(第1の論理回路に相当)アレイであり、ノン インパータ2-1, 2-2, 2-3の入力側はホール IC1-1, 1-2, 1-3の出力側にそれぞれ接続さ れ、出力側はダイオードを介して夫々抵抗4-1,4-【発明が解決しようとする課題】ところが、切換用リレ502,4-3に接続されている。2-4,2-5,2-6

は逆電流阻止用ダイオードである。

【0015】3は、電源が共通になっている3個のイン パー93-1, 3-2, 3-3からなるインパータ(第 2の論理回路に相当)アレイであり、インパータ3-1, 3-2, 3-3の入力側はホールIC1-1, 1-2, 1-3の出力側に夫々接続され、出力側はダイオー ドを介して夫々抵抗4-1, 4-2, 4-3に接続され ている。3-4, 3-5, 3-6は逆電流阻止用ダイオ ードである。

ンパータアレイ3に選択的に電源供給を行う電源供給ス イッチである電磁リレーであり、5-aはそのメーク接 点、5-bはプレーク接点である。11は回転方向設定 部で、実線は不図示の遮断機本体の左側に遮断桿を設け る場合の結線を示し、破線は遮断機本体の右側に遮断桿 を設ける場合の結線を示す。6-1, 6-2, 6-3は 信号の論理状態を反転するインパータである。

【0017】以上の2,3,4,5,6,11は回転方 向切換装置を構成している。

【0018】図1は、ノン・インバータアレイ2に電源 20 供給が行われている状態即ち正転側に切り換えられ遮断 桿が開放制御されている状態を示す。位置検出器1の出 力端には、図3(a)に示す波形の電圧が発生してい る。

【0019】図2において、7-1~7-6は、回転方 向切換装置の出力を受けて夫々120°幅の駆動信号を 生成するアンドゲートであり、これらは分配回路7を構 成している。

【0020】UP、VP、WPは、夫々ダイオードを逆 は夫々ダイオードを逆並列接続したFET(電界効果ト ランジスタ) であり、これらNPNトランジスタ, FE Tは3相ブリッジ接続のインパータトランジスタ回路9 を構成している。

[0021] 8は、アンドゲート7-1, 7-2, 7-3の出力を受けてトランジスタUP, VP, WPに失々 ベース電流を供給する増幅器アレイである。

【0022】インパータトランジスタ回路9の出力端 U, V, Wには同期モータ10の不図示のステータコイ ルが接続される。ロータは永久磁石で構成されている。

【0023】なお、図2における分配回路7の信号は、 図1の回転方向切換装置が正転側に切り換えられている ときの状態を示し、アンドゲート7-1~7-6の入力 側は、回転方向切換装置の出力側の、対応する符号の個 所に接続されている。

【0024】以下図3を参照し動作を説明する。電源供 給スイッチ5を図1に示す正転側にすると、ノン・イン バータアレイ 2 は電源供給が行われ動作する。インパー タアレイ3は電源供給がないので動作せず、その出力は グランド電位となり、ダイオード3-4,3-5,3-50

6によって実質的に他の回路から切り離される。

は、位置検出器1の出力が正電圧のとき"ハイ"を出力 し、負電圧のとき"ロー"を出力する。よって、分配回 路7のアンドゲート7-1~7-6は、図3 (b) の実 線に示す期間"ハイ"の信号を生成し、同期モータ10 は正転し、不図示の遮断桿は開放制御される。

【0026】電源供給スイッチ5をインパータアレイ3 側に切り換えると、インパータアレイ3は動作状態にな 【0016】5は、ノン・インパータアレイ2およびイ 10 り、ノン・インバータアレイ2側は、不動作状態となり ダイオード2-4,2-5,2-6により実質的に他の 回路から切り離される。

> [0027] インパータ3-1, 3-2, 3-3は、位 置検出器1の出力が正電圧のとき、"ロー"を出力し、 負電圧のとき"ハイ"を出力する。よって、回転方向切 換装置の出力および分配回路7の出力の論理状態は、図 1, 図2に示す状態から反転し、アンドゲート7-1~ 7-6は、図3 (c) の実線に示す期間 "ハイ" 信号を 生成する。

【0028】このため、例えばトランジスタUP、VN がオンしているとき、電源供給スイッチ5を切り換えた とすると、トランジスタUP,VNがオフし、トランジ スタVP,UNがオンするようになり(図3参照)、ス テータコイルの電流の向きが反転し、ロータにかかるト ルクの向きが反転して逆転するようになり、遮断桿は遮 断制御される。

【0029】このように本実施例では、1個の切換スイ ッチで電源供給を切り換え、正逆転の切り換えを行って いる。よって従来例より接点数が減り、かつ接点を充分 並列接続したNPNトランジスタで、UN、VN、WN 30 電流が流れている状態で用いていて接点の表面状態にあ まり左右されないので、信頼性が高い。

> 【0030】また、万一、接点が接触不良となった場 合、ノンインパータアレイ2及びインパータアレイ3、 両方に電源が供給されなくなるのでその出力は "L" 固 定となり、従って分配回路7の出力もすべて"L"固定 となり、インバータトランジスタ回路9のトランジスタ はすべてオフする。その結果、ロータがフリーの状態と なる。

【0031】また、電磁リレー5が故障でプレーク接点 40 5-bがオンとなった場合、従来例と同様に、遮断桿が 遮断制御されフェールセーフが実現できる。

【0032】なお、実施例では、電磁リレーで電源供給 を切り換えているが、本発明はこれに限定されるもので はなく、例えば手動スイッチによる切り換え、或はピン コネクタの差しかえといった形で実施することができ

【0033】またノン・インパータアレイ、インパータ アレイは、ICに限らず個別の来子より構成する形で実 施することができる。

【0034】また、ノン・インパータを2個直列接続し

これに更にインバータを直列接続して"インバータ"を 構成するといった適宜の手法で、ノン・インパータアレ イ、インパータアレイを構成する形で実施することがで きる。

[0035]

【発明の効果】以上説明したように、本発明によれば、 小形で信頼性の高い、DCプラシレスモータの回転方向 切換装置を提供することができる。また、万一、切換ス イッチが故障しても予測外の動作をすることがなく、踏 切遮断機等に用いたとき、遮断桿は自重下降をし、或は 10 3 インパータアレイ 遮断制御されるので、フェールセーフを容易に実現でき る。

【図1】

心置検工器为了心叵图力和切块块器の回路图

【図面の簡単な説明】

【図1】 位置検出器および回転方向切換装置の回路図

6

【図2】 分配回路およびインパータトランジスタ回路

の回路図

【図3】 実施例の動作説明図

【図4】 従来例の回路図

【符号の説明】

- 1 位置検出器
- 2 ノン・インパータアレイ
- - 9 インバータトランジスタイ回路

[図2]

分配回路おびベイバータトランジスタ回路の回路区

[図4]

作来例の回路図

【図3】

