Technische Universität München

Physik Department

Pablo Cova Fariña, Claudia Nagel

Übungen zum Ferienkurs Ferienkurs Lineare Algebra für Physiker WiSe 2017/18 Probeklausur

Aufgabe 1: Wahr oder falsch? (9 Punkte)

Sind die folgenden Aussagen wahr oder falsch? Eine Begründung ist nicht notwendig. Jede korrekte Antwort gibt 1 Punkt, nicht beantwortete Fragen geben 0 Punkte und jede inkorrekte Antwort gibt -1 Punkte. Insgesamt erhalten Sie auf diese Aufgabe jedoch mindestens 0 Punkte.

(a) Wenn
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$$
 \cdot $\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix}$ = $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ gilt, dann auch $\begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \\ b_{31} & b_{32} \end{pmatrix}$ \cdot $\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$ = $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

- (b) (\mathbb{Z}, \cdot) ist eine Gruppe.
- (c) Sei $\phi: V \to V$ eine lineare Abbildung. Dann gilt: $0 \in \ker(\phi) \cap \operatorname{im}(\phi)$
- (d) Sei V ein Vektorraum, U_1, U_2 Untervektorräume. Dann ist $U_1 \cup U_2$ ist ein UVR.
- (e) Für alle Matrizen $A \in K^{n \times n}$ gilt: $\det(-A) = -\det(A)$
- (f) Für alle Matrizen $A, B \in K^{n \times n}$ gilt: $\det(A) + \det(B) = \det(A + B)$

(g) Sei
$$V = \mathbb{R}^3$$
 und $A = \begin{pmatrix} -5 & 2 & 3 \\ 2 & -3 & 1 \\ 3 & 1 & 0 \end{pmatrix}$. Dann ist $\langle v, w \rangle_A = v^\top A w$ ein Skalarprodukt.

- (h) Spiegelungen im \mathbb{R}^2 haben Determinante -1.
- (i) Eine Matrix, die nicht invertierbar ist, ist nilpotent.

Lösung:

(a) falsch:
$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$$
 \cdot $\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ = $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, aber $\begin{pmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{pmatrix}$ \cdot $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$ = $\begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$

- (b) falsch. (\mathbb{Z}, \cdot) ist keine Gruppe, da kein Element außer +1 und -1 ein multiplikatives Inverses hat.
- (c) wahr, denn der Kern und das Bild sind beides Untervektorräume von V und enthalten daher beide den Nullvektor von V.

- (d) falsch. Die Vereinigungsmenge von zwei Untervektorräumen (z.B. der x- und der y-Achse) ist i.A. kein Untervektorraum.
- (e) falsch. Es gilt $\det(\lambda A) = \lambda^n A$, wobei n die Dimension der Matrix ist. Für gerade Dimension n gilt die Aussage also nicht.
- (f) falsch. Seien zum Beispiel A und B beide invertierbar und es gelte B=-A. Dann ist $\det(A)\neq 0, \det(B)\neq 0$, aber $\det(A+B)=0$
- (g) falsch. Betrachte z.B. $e_1 = (1, 0, 0)^{\mathsf{T}}$. Es gilt:

$$\langle e_1, e_1 \rangle_A = -5 < 0$$

Also ist die positive Definitheit verletzt.

- (h) wahr.
- (i) falsch. Betrachte z.B. $A = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$. Diese ist nicht invertierbar, doch $A^n \neq 0 \quad \forall n \in \mathbb{N}$.

Aufgabe 2: Determinante (8 Punkte)

Gegeben sei die Matrix:

$$A = \begin{pmatrix} 0 & \cdots & 0 & -\alpha_0 \\ 1 & 0 & \cdots & 0 & -\alpha_1 \\ 0 & 1 & \ddots & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & 1 & -\alpha_{n-1} \end{pmatrix} \in K^{n \times n}$$

Zeigen sie:

$$\det(A - tI_n) = (-1)^n (t^n + \alpha_{n-1}t^{n-1} + \dots + \alpha_1t + \alpha_0)$$

mit $t \in K$.

Lösung

$$A - tI_n = \begin{pmatrix} -t & \cdots & 0 & -\alpha_0 \\ 1 & -t & \cdots & 0 & -\alpha_1 \\ 0 & 1 & \ddots & & \vdots \\ \vdots & & \ddots & -t \\ 0 & \cdots & 0 & 1 & -\alpha_{n-1} - t \end{pmatrix} \in K^{n \times n}$$

Wir entwickeln nach der letzten Spalte:

$$\det(A - tI_n) = (-\alpha_0)(-1)^{n+1} \begin{vmatrix} 1 & -t & \cdots & 0 \\ 0 & 1 & \ddots \\ \vdots & \ddots & -t \\ 0 & \cdots & 0 & 1 \end{vmatrix} + (-\alpha_1)(-1)^{n+2} \begin{vmatrix} -t & \cdots & 0 \\ 0 & 1 & \ddots \\ \vdots & \ddots & -t \\ 0 & \cdots & 0 & 1 \end{vmatrix}$$

$$+ \cdots + (\alpha_{n-1} - t)(-1)^{n+n} \begin{vmatrix} -t & \cdots & 0 \\ 1 & -t & \cdots & 0 \\ 0 & 1 & \ddots \\ \vdots & & \ddots & -t \end{vmatrix} = (-1)^n (\alpha_0 + \alpha_1 t + \cdots + \alpha_{n-1} t^{n-1} + t^n)$$

Der Beweis kann auch eleganter mit vollständiger Induktion durchgeführt werden.

Aufgabe 3: Gruppen (6 Punkte)

Sei

$$U := \left\{ \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \in \mathbb{R}^{2 \times 2} | x \in \mathbb{R} \right\}.$$

Zeigen Sie:

- (a) $\forall A, B \in U$ gilt $A \cdot B \in U$, wobei · die gewöhnliche Matrixmultiplikation ist.
- (b) (U, \cdot) ist eine abelsche Gruppe.

Hinweis: Dass die Matrixmultiplikation assoziativ ist, darf ohne Beweis verwendet werden.

Lösung:

(a) Seien

$$A := \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \in U, B := \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix}.$$

Dann gilt:

$$A \cdot B = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & y+x \\ 0 & 1 \end{pmatrix} \in U, \text{ da } y+x \in \mathbb{R}$$

(b)(G1) Assoziativität ist erfüllt, da die Matrixmultiplikation assoziativ ist.

(G2)
$$I_2 = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in U \text{ und } I_2 \cdot A = A \cdot I_2 = A \quad \forall A \in U.$$

Also gibt es ein neutrales Element in U.

(G3) Mithilfe der (a) sehen wir, dass

$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & -x \\ 0 & 1 \end{pmatrix}, \text{ denn}$$

$$\begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & -x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & -x+x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

(G4) Die Kommutativität folgt aus:

$$A \cdot B = \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & y+x \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & x+y \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & y \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & x \\ 0 & 1 \end{pmatrix} = B \cdot A$$

Aufgabe 4: Fixpunkt (9 Punkte)

Für eine lineare Abbildung $F:V\to V$ ist die Menge Fix(F) der Fixpunkte von F definiert durch:

$$Fix(F) := \{ v \in V : F(v) = v \}.$$

- (a) Zeigen Sie, dass $Fix(F) \subset V$ ein Untervektorraum ist.
- (b) Seien die lineare Abbildung $F: V \to V$ definiert durch

(i)
$$F: \mathbb{R}^3 \to \mathbb{R}^3, x \mapsto \begin{pmatrix} 1 & 2 & 2 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{pmatrix} \cdot x,$$

- (ii) $F: \mathbb{R}[t] \to \mathbb{R}[t], P \mapsto P',$
- (iii) $F: Abb(\mathbb{R}, \mathbb{R}) \to Abb(\mathbb{R}, \mathbb{R})$

Bestimmen Sie jeweils eine Basis von Fix(F).

Lösung

- (a) Wir überprüfen die Axiome der Untervektorräume:
- UVR 1) Da für lineare Abbildungen stets gilt, dass F(0) = 0 ist, ist $0 \in Fix(F)$, also $Fix(F) \neq \emptyset$.
- UVR 2) Seien $v, w \in Fix(F)$. Dann gilt:

$$F(v+w) = F(v) + F(w) = F(v) + F(w) = F(v) + F(w)$$

Also ist auch $v + w \in Fix(F)$.

UVR 3) Sei $v \in Fix(F)$, $\lambda \in K$. Dann gilt:

$$F(\lambda v) = K_{\text{linear}} \lambda F(v) = K_{\text{v, }w \in \text{Fix}(F)} \lambda v$$

Also ist auch $\lambda v \in \text{Fix}(F)$.

(b) (i) Wir suchen die Lösung des Gleichungssystems

$$\left(\begin{array}{ccc} 1 & 2 & 2 \\ 0 & 1 & 0 \\ 3 & 0 & 1 \end{array}\right) \cdot x = x$$

$$\Rightarrow x_1 + 2x_2 + 2x_3 = x_1$$
$$x_2 = x_2$$
$$3x_1 + x_3 = x_3$$

$$\Rightarrow \begin{pmatrix} 0 & 2 & 2 & 0 \\ 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 \end{pmatrix} \rightarrow x_1 = 0, x_2 = \lambda, x_3 = -\lambda$$

Eine Basis von Fix(F) ist also gegeben durch: $B = \left\{ \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} \right\}$.

- (ii) Wir suchen alle Polynome, bei denen P'=P gilt. Für $\deg(P)>0$ gilt $\deg(P')=\deg(P)-1$, also $F(P)\neq P$. Nur für das Nullpolynom gilt 0'=0, also ist hier $\operatorname{Fix}(F)=\{0\}$. Die Basis ist also die leere Menge: $B=\emptyset$.
- (iii) Wir suchen alle Abbildungen, wo f' = f gilt. Die Lösung dieser Differentialgleichung ist gegeben durch $f = \lambda \exp(x), \lambda \in \mathbb{R}$. So gilt $\text{Fix}(F) = \langle \exp(x) \rangle$ und $B = \{\exp(x)\}$.

Aufgabe 5: Darstellungsmatrix und Eigenwerte (10 Punkte)

Gegeben sei die lineare Abbildung $\varphi : \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$;

$$\varphi\left(\left(\begin{array}{cc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}\right)\right) = \left(\begin{array}{cc} a_{11} - a_{12} & a_{12} + a_{21} \\ a_{21} + a_{22} & a_{22} - a_{11} \end{array}\right)$$

(a) Finden Sie die zugehörige Darstellungsmatrix $D_B(\varphi)$ bezüglich der kanonischen Standardbasis des $\mathbb{R}^{2\times 2}$.

Hinweis: Die kanonische Standardbasis des $\mathbb{R}^{2\times 2}$ *lautet:*

$$B = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\}$$

- (b) Berechnen Sie aus der Darstellungsmatrix das zugehörige charakteristische Polynom. Zeigen Sie, dass $\lambda = 0$ und $\lambda = 2$ Eigenwerte von $D_B(\varphi)$ sind.
- (c) Nach Abspalten der ersten beiden Nullstellen nimmt das charakteristische Polynom die Form: $\chi = \lambda(\lambda 2)(\lambda^2 2\lambda + 2)$. Ist die Matrix über \mathbb{R} diagonalisierbar? Und über \mathbb{C} ? Begründen Sie ihre Antwort.

Lösung

(a) Es gilt:

$$\varphi(b_1) = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \varphi(b_2) = \begin{pmatrix} -1 & 1 \\ 0 & 0 \end{pmatrix}, \varphi(b_3) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \varphi(b_4) = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$$

Das ergibt für die Darstallungsmatrix:

$$D_B(\varphi) = \begin{pmatrix} 1 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \\ -1 & 0 & 0 & 1 \end{pmatrix}$$

(b)
$$\chi_{D_B(\varphi)} = \begin{vmatrix} 1 - \lambda & -1 & 0 & 0 \\ 0 & 1 - \lambda & 1 & 0 \\ 0 & 0 & 1 - \lambda & 1 \\ -1 & 0 & 0 & 1 - \lambda \end{vmatrix}$$
$$= (1 - \lambda) \cdot (-1)^{1+1} \cdot \begin{vmatrix} 1 - \lambda & 1 & 0 \\ 0 & 1 - \lambda & 1 \\ 0 & 0 & 1 - \lambda \end{vmatrix} + (-1) \cdot (-1)^{1+2} \cdot \begin{vmatrix} 0 & 1 & 0 \\ 0 & 1 - \lambda & 1 \\ -1 & 0 & 1 - \lambda \end{vmatrix}$$
$$= (1 - \lambda)^4 - 1$$

Wobei hier nach der ersten Zeile entwickelt wurde.

(c) Das charakteristische Polynom besitzt zunächst die Nullstellen 0 und 2. Nach Abspalten gilt $\chi = \lambda(\lambda-2)(\lambda^2-2\lambda+2)$. Die Gleichung $\lambda^2-2\lambda+2=0$ lässt sich mit Hilfe der p-q-Formel (oder änhliche Formeln) berechnen, die Nullstellen sind 1+i und 1-i. Da beide Nullstellen nicht reell sind, ist die Matrix über $\mathbb R$ nicht diagonalisierbar. Über $\mathbb C$ besitzt die Matrix 4 unterschiedliche Eigenwerte mit algebraischer Vielfachheit 1. Die Matrix ist deswegen über $\mathbb C$ diagonalisierbar.

Determinanten und Invertieren (8 Punkte) Aufgabe 6:

(a) Gegeben sei die Matrix

$$A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 1 & 1 & 2 \end{pmatrix}$$

Berechnen Sie: $\det(A)$, $\det(AA^{\top})$, $(\det(AA^{\top})^{-1})$, A^{-1}

Geben Sie die Inverse der Matrizen B und C an: (b)

$$B = \begin{pmatrix} 3 & 2+3i \\ 2-3i & 4 \end{pmatrix} \text{ und } C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 3 & 0 \\ 0 & 3 & 5 & 0 \\ 0 & 0 & 0 & 4 \end{pmatrix}$$

Lösung:

 $\det(A) = 2^3 = 8.$ (a)

$$\det(AA^{\top}) = \det(A)\det(A^{\top}) = \det(A)\det(A) = 64$$
$$\det((AA^{\top})^{-1}) = \frac{1}{\det(AA^{\top})} = \frac{1}{64}$$
$$A^{-1} = \begin{pmatrix} \frac{1}{2} & 0 & 0\\ -\frac{1}{4} & \frac{1}{2} & 0\\ -\frac{1}{8} & -\frac{1}{4} & \frac{1}{2} \end{pmatrix}$$

(b) Man kann diese Aufgabe lösen, indem man Gauß verwendet oder die Formel für 2x2-Matrizen: $B^{-1} = \frac{1}{ad-bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} = \begin{pmatrix} -4 & 2+3i \\ 2-3i & -3 \end{pmatrix}$

C kann man ebenfalls mit Gauss invertieren oder man nutzt die Blockstruktur der Matrix aus und invertiert blockweise und erhält: $C = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 5 & -3 & 0 \\ 0 & 3 & 2 & 0 \\ 0 & 0 & 0 & \frac{1}{2} \end{pmatrix}$

nd invertiert blockweise und erhält:
$$C = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 3 & 2 & 0 \\ 0 & 0 & 0 & \frac{1}{4} \end{bmatrix}$$