

Optocoupler with Phototransistor Output

Description

The CNY17 series consists of a phototransistor optically coupled to a gallium arsenide infrared-emitting diode in a 6-lead plastic dual inline package.

The elements are mounted on one leadframe using a **coplanar technique**, providing a fixed distance between input and output for highest safety requirements.

Circuits for safe protective separation against electrical shock according to safety class II (reinforced isolation):

- For appl. class I IV at mains voltage ≤ 300 V
- For appl. class I III at mains voltage ≤ 600 V according to VDE 0884, table 2, suitable for:

Switch-mode power supplies, line receiver, computer peripheral interface, microprocessor system interface.

These couplers perform safety functions according to the following equipment standards:

VDE 0884

Optocoupler for electrical safety requirements

• IEC 950/EN 60950

Office machines (applied for reinforced isolation for mains voltage \leq 400 V_{RMS})

VDE 0804

Telecommunication apparatus and data processing

• IEC 65 Safety for mains-operated electronic and related household apparatus

Order Instruction

Ordering Code	CTR Ranking	Remarks
CNY17-1/ CNY17G-1 ¹⁾	40 to 80%	
CNY17-2/ CNY17G-2 ¹⁾	63 to 125%	
CNY17-3/ CNY17G-3 ¹⁾	100 to 200%	
CNY17-4/ CNY17G-4 ¹⁾	160 to 320%	
1) G = Leadform 10.16 mm; G is		

VISHAY

Vishay Telefunken

Features

Approvals:

- BSI: BS EN 41003, BS EN 60095 (BS 415), BS EN 60950 (BS 7002), Certificate number 7081 and 7402
- FIMKO (SETI): EN 60950, Certificate number 12399
- Underwriters Laboratory (UL) 1577 recognized, file number E-76222
- VDE 0884, Certificate number 94778

VDE 0884 related features:

- Rated impulse voltage (transient overvoltage) V_{IOTM} = 6 kV peak
- Isolation test voltage (partial discharge test voltage) V_{pd} = 1.6 kV
- Rated isolation voltage (RMS includes DC)
 V_{IOWM} = 600 V_{RMS} (848 V peak)

- Rated recurring peak voltage (repetitive)
 V_{IORM} = 600 V_{RMS}
- Creepage current resistance according to VDE 0303/IEC 112
 Comparative Tracking Index: CTI = 275
- Thickness through insulation ≥ 0.75 mm

General features:

- Isolation materials according to UL94-VO
- Pollution degree 2 (DIN/VDE 0110 part 1 resp. IEC 664)
- Climatic classification 55/100/21 (IEC 68 part 1)
- Special construction:
 Therefore, extra low coupling capacity of typical 0.3 pF, high Common Mode Rejection
- CTR offered in 4 groups
- Low temperature coefficient of CTR
- Coupling System A

Input (Emitter)

Parameter	Test Conditions	Symbol	Value	Unit
Reverse voltage		V_{R}	5	V
Forward current		I _F	60	mA
Forward surge current	t _p ≤ 10 μs	I _{FSM}	3	Α
Power dissipation	T _{amb} ≤ 25°C	PV	100	mW
Junction temperature		Ti	125	°C

Output (Detector)

Parameter	Test Conditions	Symbol	Value	Unit
Collector emitter voltage		V_{CEO}	32	V
Emitter collector voltage		V _{ECO}	7	V
Collector current		I _C	50	mA
Collector peak current	$t_p/T = 0.5, t_p \le 10 \text{ ms}$	I _{CM}	100	mA
Power dissipation	T _{amb} ≤ 25°C	P _V	150	mW
Junction temperature		Tj	125	°C

Coupler

Parameter	Test Conditions	Symbol	Value	Unit
Isolation test voltage (RMS)		V _{IO}	3.75	kV
Total power dissipation	T _{amb} ≤ 25°C	P _{tot}	250	mW
Ambient temperature range		T _{amb}	-55 to +100	°C
Storage temperature range		T _{stg}	-55 to +125	°C
Soldering temperature	2 mm from case, t ≤ 10 s	T _{sd}	260	°C

CNY17 Series

Vishay Telefunken

Electrical Characteristics $(T_{amb} = 25^{\circ}C)$

Input (Emitter)

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Forward voltage	I _F = 50 mA	V_{F}		1.25	1.6	V
Junction capacitance	$V_R = 0$, $f = 1$ MHz	Ci		50		pF

Output (Detector)

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Collector emitter voltage	I _C = 1 mA	V _{CEO}	32			V
Emitter collector voltage	I _E = 100 μA	V _{ECO}	7			V
Collector emitter cut-off	$V_{CE} = 10 \text{ V}, I_f = 0$	I _{CEO}		10	100	nA
current						

Coupler

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
AC isolation test voltage (RMS)	f = 50 Hz, t = 1 s	V _{IO}	3.75			\
Collector emitter saturation voltage	$I_F = 10 \text{ mA}, I_C = 1 \text{ mA}$	V _{CEsat}			0.3	٧
Cut-off frequency	V_{CE} = 5 V, I_F = 10 mA, R_L = 100 Ω	f _c		110		kHz
Coupling capacitance	f = 1 MHz	c _k		0.3		pF

Current Transfer Ratio (CTR)

Parameter	Test Conditions	Туре	Symbol	Min.	Тур.	Max.	Unit
I _C /I _F	$V_{CE} = 5 \text{ V}, I_{F} = 10 \text{ mA}$	CNY17(G)-1	CTR	0.4		0.8	
		CNY17(G)-2	CTR	0.63		1.25	
		CNY17(G)-3	CTR	1.0		2.0	
		CNY17(G)-4	CTR	1.6		3.2	
	$V_{CE} = 5 \text{ V}, I_{F} = 1 \text{ mA}$	CNY17(G)-1	CTR	0.13			
		CNY17(G)-2	CTR	0.22			
		CNY17(G)-3	CTR	0.34			
		CNY17(G)-4	CTR	0.56			

Maximum Safety Ratings (according to VDE 0884) see figure 1

This device is used for protective separation against electrical shock only within the maximum safety ratings. This must be ensured by using protective circuits in the applications.

Input (Emitter)

Parameters	Test Conditions	Symbol	Value	Unit
Forward current		l _{si}	130	mA

Output (Detector)

Parameters	Test Conditions	Symbol	Value	Unit
Power dissipation	T _{amb} ≤ 25 °C	P_{si}	265	mW

Coupler

Parameters	Test Conditions	Symbol	Value	Unit
Rated impulse voltage		V_{IOTM}	6	kV
Safety temperature		T _{si}	150	Ô

Insulation Rated Parameters (according to VDE 0884)

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Unit
Partial discharge test voltage – Routine test	100%, t _{test} = 1 s	V_{pd}	1.6			kV
Partial discharge test voltage –		V_{IOTM}	6			kV
Lot test (sample test)	(see figure 2)	V_{pd}	1.3			kV
Insulation resistance	V _{IO} = 500 V	R _{IO}	10 ¹²			Ω
	$V_{IO} = 500 \text{ V},$ $T_{amb} = 100 ^{\circ}\text{C}$	R _{IO}	10 ¹¹			Ω
	$T_{amb} = 100$ °C					
	$V_{IO} = 500 \text{ V},$	R _{IO}	10 ⁹			Ω
	T _{amb} = 150°C					
	(construction test only)					

Figure 2. Test pulse diagram for sample test according to DIN VDE 0884

Switching Characteristics

Parameter	Test Conditions	Symbol	Тур.	Unit
Delay time	$V_S = 5 \text{ V}, I_C = 5 \text{ mA}, R_L = 100 \Omega \text{ (see figure 3)}$	t _d	4.0	μs
Rise time		t _r	7.0	μs
Fall time		t _f	6.7	μs
Storage time		ts	0.3	μs
Turn-on time		t _{on}	11.0	μs
Turn-off time		t _{off}	7.0	μs
Turn-on time	$V_S = 5 \text{ V}, I_F = 10 \text{ mA}, R_L = 1 \text{ k}\Omega \text{ (see figure 4)}$	t _{on}	25	μs
Turn-off time		t _{off}	42.5	μs

Figure 3. Test circuit, non-saturated operation

Figure 4. Test circuit, saturated operation

Figure 5. Switching times

Typical Characteristics (T_{amb} = 25°C, unless otherwise specified)

Figure 6. Total Power Dissipation vs.
Ambient Temperature

Figure 7. Forward Current vs. Forward Voltage

Figure 8. Relative Current Transfer Ratio vs.
Ambient Temperature

Figure 9. Collector Dark Current vs. Ambient Temperature

Figure 10. Collector Base Current vs. Forward Current

Figure 11. Collector Current vs. Forward Current

Figure 12. Collector Current vs. Collector Emitter Voltage

Figure 13. Collector Emitter Saturation Voltage vs. Collector Current

Figure 14. DC Current Gain vs. Collector Current

Figure 15. Current Transfer Ratio vs. Forward Current

Figure 16. Turn on / off Time vs. Forward Current

Figure 17. Turn on / off Time vs. Collector Current

Figure 18. Marking example

Dimensions of CNY17G in mm

Dimensions of CNY17 in mm

