Devoir à la maison no 1

À rendre le lundi 15 septembre 2025

Ce premier devoir maison est (partiellement) commun aux groupes MPI et MPI*. Il est constitué de deux petits problèmes et de deux exercices supplémentaires pour les étudiants MPI*.

I. Problème: Supplémentaire commun à deux sous-espaces

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$. On se donne A et B deux sous-espaces vectoriels de E et on cherche à prouver l'existence d'un sous-espace vectoriel C, tel que :

$$E = A \oplus C = B \oplus C$$
.

1. Montrer que si C existe, on a nécessairement $\dim(A) = \dim(B)$.

Dans la suite de cette étude, on suppose $\dim(A) = \dim(B)$ et on va montrer qu'un tel sous-espace vectoriel C existe.

2. Résoudre le problème lorsque A = B.

Dans toute la suite, on suppose $A \neq B$.

- 3. On étudie pour commencer le cas où A et B sont de dimension n-1 (ce sont des hyperplans).
 - a) Justifier l'existence de vecteurs $u \in A$ et $v \in B$ tels que $u \notin B$ et $v \notin A$.
 - b) Montrer que le vecteur w = u + v n'est pas dans $A \cup B$.
 - c) Vérifier que C = vect(w) est solution du problème posé.
- **4.** On revient au cas général, où on suppose seulement $\dim(A) = \dim(B)$ et $A \neq B$.
 - a) Justifier l'existence d'un sous-espace vectoriel $A' \neq \{0\}$, tel que $(A \cap B) \oplus A' = A$. De manière symétrique, on introduit B', tel que $(A \cap B) \oplus B' = B$.
 - b) Montrer que $A' \cap B' = \{0\}$ et que $\dim(A') = \dim(B') \ge 1$. Dans la suite, on pose $p = \dim(A') = \dim(B')$. On considère (e_1, \ldots, e_p) et (f_1, \ldots, f_p) des bases de A' et B' respectivement.
 - c) Montrer que la famille (g_1, \ldots, g_p) , définie par $g_i = e_i + f_i$ pour $i \in [1, p]$, est libre. Quelle est la dimension de $G = \text{vect}(g_1, \ldots, g_p)$?
 - **d)** Montrer que $A \cap G = B \cap G = \{0\}$ et que $A + B = A \oplus G = B \oplus G$.
 - e) Soit H un supplémentaire de A+B. Montrer que la somme G+H est directe et que $C=G\oplus H$ est un supplémentaire commun à A et à B.

II. Problème: Pseudo-inverse d'une matrice

Dans ce problème \mathbb{K} désigne le corps \mathbb{R} ou \mathbb{C} , n un entier strictement positif, $\mathcal{M}_n(\mathbb{K})$ l'espace vectoriel des matrices carré à n lignes et n colonnes, et $GL_n(\mathbb{K})$ le groupe des matrices inversibles.

Soit $A \in \mathcal{M}_n(\mathbb{K})$. Une matrice $A' \in \mathcal{M}_n(\mathbb{K})$ est appelée un pseudo-inverse de A lorsque les trois propriétés suivantes sont satisfaites :

(1)
$$AA' = A'A$$
; (2) $A = AA'A$; (3) $A' = A'AA'$.

On note a l'endomorphisme canoniquement associé à A, c'est-à-dire l'endomorphisme de \mathbb{K}^n dont A est la matrice dans la base canonique de \mathbb{K}^n .

- 1. Montrer que l'existence d'un pseudo-inverse de A implique que $rg(a) = rg(a^2)$.
- 2. Réciproquement, on suppose que $rg(a) = rg(a^2)$. On note r cet entier.
 - a) Montrer que l'image et le noyau de a sont supplémentaires : $\operatorname{Im}(a) \oplus \operatorname{Ker}(a) = \mathbb{K}^n$.
 - **b)** En déduire qu'il existe $B \in GL_r(\mathbb{K})$ et $W \in GL_n(\mathbb{K})$ telles que $A = W\begin{pmatrix} B & (0) \\ (0) & (0) \end{pmatrix}W^{-1}$.
 - c) Montrer enfin que A admet au moins un pseudo-inverse.
- 3. Considérons maintenant un pseudo-inverse A' quelconque de A et notons a' l'endomorphisme canoniquement associé.
 - a) Montrer que Ker(a) et Im(a) sont stables par a'
 - **b)** En déduire qu'il existe $D \in \mathcal{M}_r(\mathbb{K})$ telle que $A' = W\begin{pmatrix} D & (0) \\ (0) & (0) \end{pmatrix} W^{-1}$.
 - c) Montrer que aa' est un projecteur dont on précisera le noyau et l'image en fonction de a, et préciser ce que vaut $W^{-1}AA'W$.
 - \mathbf{d}) En déduire que A admet au plus un pseudo-inverse.

Exercice 1. (MPI*)

Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \ge 1$, \mathcal{B} une base de E, et soit $u \in \mathcal{L}(E)$. Pour $(x_1, \ldots, x_n) \in E$, on pose :

$$f(x_1, \dots, x_n) = \sum_{i=1}^n \det_{\mathcal{B}}(x_1, \dots, x_{i-1}, u(x_i), x_{i+1}, \dots, x_n)$$

Montrer que f est n-linéaire alternée, puis que $f = \operatorname{tr}(u) \det_{\mathcal{B}}$

Exercice 2. (MPI*)

Soit E un \mathbb{K} -espace vectoriel de dimension finie n et soit $f \in \mathcal{L}(E)$. Montrer que f est un projecteur si, et seulement si, $\operatorname{rg}(f) + \operatorname{rg}(f - Id) = n$.

Un corrigé

I. Problème: Supplémentaire commun à deux sous-espaces

- 1. Si C existe, on a $n = \dim(E) = \dim(A \oplus C) = \dim(B \oplus C)$. Les deux sommes étant directes, cette égalité se réécrit $\dim(A) + \dim(C) = \dim(B) + \dim(C)$ d'où nécessairement $\dim(A) = \dim(B)$. pace vectoriel C existe.
- 2. Si A = B, il suffit d'invoquer l'existence d'un supplémentaire de A (car E est de dimension finie), qui sera bien sûr aussi un supplémentaire de B.
- **3.** On étudie pour commencer le cas où A et B sont de dimension n-1 (ce sont des hyperplans).
 - a) Si l'un des deux sous-espaces A et B était contenu dans l'autre, on aurait A=B à cause de l'égalité des dimensions. C'est exclu par hypothèse. Ainsi on peut trouver à la fois $u \in A$ avec $u \notin B$ et $v \in B$ avec $v \notin A$.
 - b) Il s'agit de montrer que w n'est ni dans A, ni dans B. Par l'absurde, si $w \in A$, alors $v = w u \in A$ car $u \in A$. De même, si $w \in B$, alors $u = w v \in B$ car $v \in B$. On obtient dans les deux cas une contradiction.
 - c) Soit $x \in A \cap C$. De $x \in C$ on déduit l'existence de $\lambda \in \mathbb{K}$ tel que $x = \lambda w$. Si $\lambda \neq 0$, on déduit de $x \in A$ que $w = \frac{1}{\lambda}x \in A$, contrairement au résultat de la question **3.b**). Ainsi, $\lambda = 0$ et x = 0. On a donc montré que la somme A + C est directe. On a alors $\dim(A \oplus C) = \dim A + \dim C = n 1 + 1 = \dim(E)$, d'où $A \oplus C = E$.

Par symétrie des rôles joués par A et B, on a aussi $B \oplus C = E$, et C = vect(w) répond donc bien au problème posé.

- **4.** On revient au cas général, où on suppose seulement $\dim(A) = \dim(B)$ et $A \neq B$.
 - a) $A \cap B$ est un sous-espace vectoriel de A, qui est un \mathbb{K} -espace vectoriel de dimension finie non nulle. L'inclusion est même stricte : l'égalité $A \cap B = A$, équivalente à l'inclusion $A \subset B$, impliquerait en effet A = B en vertu de l'égalité des dimensions, ce qui est exclu par hypothèse. $A \cap B$ admet donc un supplémentaire dans A, non réduit à $\{0\}$.
 - b) Soit $x \in A' \cap B'$. Puisque $A' \subset A$ et $B' \subset B$, on a également $x \in A \cap B$. On a donc $x \in (A \cap B) \cap A'$, ce qui prouve x = 0 puisque la somme $(A \cap B) + A'$ est directe. En terme de dimension, les sommes étant directes on a :

$$\dim A = \dim (A' \oplus (A \cap B)) = \dim A' + \dim(A \cap B),$$

$$\dim B = \dim (B' \oplus (A \cap B)) = \dim B' + \dim(A \cap B).$$

L'égalité $\dim A = \dim B$ entraine donc $\dim A' = \dim B'$, avec bien sûr $p = \dim A' \ge 1$ puisque $A' \ne \{0\}$.

c) Soient $\lambda_1,\ldots,\lambda_p\in\mathbb{K}$ tels que $\sum_{i=1}^p\lambda_ig_i=0$. Cette égalité se réécrit, par réarrangement des termes :

$$\sum_{i=1}^{p} \lambda_i e_i + \sum_{i=1}^{p} \lambda_i f_i = 0.$$

Il s'agit de la décomposition de 0 sur la somme directe $A' \oplus B'$. Chaque terme est donc nul :

$$\sum_{i=1}^{p} \lambda_i e_i = \sum_{i=1}^{p} \lambda_i f_i = 0, \text{ d'où l'on tire } \lambda_1 = \dots = \lambda_p = 0, \text{ car la famille } (e_1, \dots e_p) \text{ est libre.}$$

On a montré ainsi que la famille (g_1, \ldots, g_p) est libre. Elle est donc une base du sous-espace $G = \text{vect}(g_1, \ldots, g_p)$ qu'elle engendre : $\dim(G) = p$.

d) Soit $x \in A \cap G$. Écrivons en particulier

$$x = \sum_{i=1}^{p} \lambda_i g_i = \sum_{i=1}^{p} \lambda_i e_i + \sum_{i=1}^{p} \lambda_i f_i = u + v,$$

avec $u \in A'$ et $v \in B'$. On a alors $v = x - u \in A$ car $x \in A$ et $u \in A' \subset A$. Mais on a aussi $v \in B' \subset B$. Ainsi, $v \in (A \cap B) \cap B' = \{0\}$ puisque la somme $A \cap B + B'$ est directe. D'où $v = \sum_{i=1}^{n} \lambda_i f_i = 0$, ce qui implique $\lambda_1 = \ldots = \lambda_p = 0$, et enfin x = 0.

La somme A+G est donc directe. On termine en raisonnant sur les dimensions :

$$\dim(A \oplus G) = \dim A + p = \dim A + \dim B - \dim(A \cap B) = \dim(A + B),$$

l'avant dernière égalité résultant de ce que $B = B' \oplus (A \cap B)$, et la dernière de la formule de Grassman.

Puisque $G \subset A + B$, on a $A \oplus G \subset A + B$. Mais l'égalité des dimensions que l'on vient d'établir prouve $A \oplus G = A + B$.

A et B jouant un rôle totalement symétrique dans la preuve que l'on vient d'achever, on a également $B \oplus G = A + B$.

e) A + B est un sous-espace vectoriel E qui est de dimension finie, et admet donc bien un supplémentaire H. A + B et H sont donc en particulier en somme directe, et donc G et H également puisque $G \subset A + B$. On a ainsi :

$$E = (A + B) \oplus H = (A \oplus G) \oplus H = A \oplus (G \oplus H)$$

On obtient de même :

$$E = (B \oplus G) \oplus H = B \oplus (G \oplus H)$$

Le sous-espace $C = G \oplus H$ est donc bien un supplémentaire commun à A et B.

(On a utilisé le fait que la somme directe est "associative", ce qui se vérifie facilement)

II. Problème: Pseudo-inverse d'une matrice

1. Soit $A' \in \mathcal{M}_n(\mathbb{K})$ un pseudo-inverse de A. Commençons par remarquer qu'en combinant les propriétés (1) et (2), on a l'égalité $A = A^2A'$.

En notant a' l'endomorphisme canoniquement associé à A', cette égalité traduit que $a=a^2a'$. En particulier $\text{Im}(a)=\text{Im}(a^2a')\subset \text{Im}(a^2)$.

L'inclusion réciproque $\operatorname{Im}(a^2) \subset \operatorname{Im}(a)$ étant toujours vraie, il y a égalité des images, et en particulier de leur dimension : $\operatorname{rg}(a) = \operatorname{rg}(a^2)$.

- 2. Réciproquement, on suppose maintenant que $rg(a) = rg(a^2)$. On note r cet entier.
 - a) Le théorème du rang imposant dim (Ker(a)) + dim (Im(a)) = dim (\mathbb{K}^n) , il suffit de montrer que la somme Im(a) + Ker(a) est directe, ou bien qu'elle est égale à E. Détaillons les deux possibilités.

- Le théorème du rang donne dim $(\operatorname{Ker}(a)) + \operatorname{rg}(a) = n = \dim (\operatorname{Ker}(a^2)) + \operatorname{rg}(a^2)$ et on en déduit dim $(\operatorname{Ker}(a)) = \dim (\operatorname{Ker}(a^2))$. Puisque l'inclusion $\operatorname{Ker}(a) \subset \operatorname{Ker}(a^2)$ est toujours vraie (facile), l'égalité des dimensions permet de conclure quant à l'égalité des noyaux.
 - Soit maintenant $y \in \text{Im}(a) \cap \text{Ker}(a)$. D'une part il existe $x \in \mathbb{K}^n$ tel que a(x) = y. D'autre part $a(y) = a^2(x) = 0$. On a donc $x \in \text{Ker}(a^2) = \text{Ker}(a)$, ce qui par définition signifie y = a(x) = 0. Conclusion : la somme Im(a) + Ker(a) est directe.
- Soit $y \in E$. Comme on a toujours $\operatorname{Im}(a^2) \subset \operatorname{Im}(a)$, là encore l'égalité des dimensions entraine l'égalité des images. On a ainsi $a(y) \in \operatorname{Im}(a) = \operatorname{Im}(a^2)$. Il existe donc $x \in \mathbb{K}^n$ tel que $a(y) = a^2(x)$. Cette égalité se réécrit par linéarité a(y a(x)) = 0, ce qui signifie $y a(x) \in \operatorname{Ker}(a)$. y = a(x) + y a(x) est ainsi une décomposition permettant de conclure : $E = \operatorname{Im}(a) + \operatorname{Ker}(a)$.
- b) Considérons une base \mathcal{B} de \mathbb{K}^n adaptée à la décomposition $E = \operatorname{Im}(a) \oplus \operatorname{Ker}(a)$. $\operatorname{Im}(a)$ étant stable par a, la matrice de a dans \mathcal{B} s'écrit bien $\begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix}$. B est ici la matrice de l'endomorphisme induit par a sur $\operatorname{Im}(a)$, qui réalise un isomorphisme d'après un théorème fondamental $(\operatorname{Im}(a)$ est un supplémentaire du noyau de a). B est donc bien une matrice inversible d'ordre r, dimension de $\operatorname{Im}(a)$. En notant $W \in \operatorname{GL}_n(\mathbb{K})$ la matrice de passage de la base canonique à la base \mathcal{B} , on a bien la relation de similitude demandée.
- c) On vérifie aisément qu'en posant $A' = W \begin{pmatrix} B^{-1} & 0 \\ 0 & 0 \end{pmatrix} W^{-1}$, les trois conditions (1), (2) et (3) sont vérifiées. L'idée pour en arriver là est la suivante : B étant inversible, il est évident qu'elle admet B^{-1} comme pseudo-inverse. En appliquant la formule du produit par blocs, on voit alors facilement que $\begin{pmatrix} B^{-1} & 0 \\ 0 & 0 \end{pmatrix}$ est un pseudo-inverse de $\begin{pmatrix} B & 0 \\ 0 & 0 \end{pmatrix}$. Cela veut exactement dire que A' est un pseudo-inverse de A, en "regardant" A et A' dans une autre base (la base B évoquée précédemment).
- 3. Considérons maintenant un pseudo-inverse A' quelconque de A et notons a' l'endomorphisme canoniquement associé.
 - a) Il s'agit d'un résultat classique compte-tenu du fait que a et a' commutent.
 Si x ∈ Ker(a), a(x) = 0, donc a(a'(x)) = (aa')(x) = (a'a)(x) = a'(a(x)) = a'(0) = 0, i.e. a'(x) ∈ Ker(a). Ker(a) est donc stable par a'.
 Soit maintenant y ∈ Im(a). Il existe x ∈ Kⁿ tel que y = a(x). On a alors a'(y) = (a'a)(x) = (aa')(x) = a(a'(x)). a'(x) est donc un antécédent de a'(y) par a, ce qui indique que a'(x) ∈ Im(a). Im(a) est donc stable par a'.
 - b) Considérons la matrice de a' dans la base \mathcal{B} introduite à la question **2.b**. Cette base étant adaptée à la décomposition $E = \operatorname{Im}(a) \oplus \operatorname{Ker}(a)$, la stabilité de ces deux sous-espace par a' indique que cette matrice peut s'écrire par blocs $\begin{pmatrix} D & 0 \\ 0 & C \end{pmatrix}$, avec $D \in \mathcal{M}_r(\mathbb{K})$. On a donc l'égalité $A' = W \begin{pmatrix} D & 0 \\ 0 & C \end{pmatrix} W^{-1}$.
 - Il suffit de prouver C=0 pour conclure. Cette matrice de $\mathcal{M}_{n-r}(\mathbb{K})$ représente l'endomorphisme induit par a' sur $\operatorname{Ker}(a)$. Or si $x\in\operatorname{Ker}(a)$, on a, d'après les relations (1) et (3): $a'(x)=(a'aa')(x)=(a'^2a)(x)=a'^2(0)=0$.
 - c) p = aa' est un endomorphisme qui vérifie $p^2 = (aa')(aa') = (aa'a)a' = aa' = p$ d'après la relation (2). p est donc un projecteur. Montrons qu'il a le même noyau et la même image que a. On a déjà très clairement $\operatorname{Ker}(a) \subset \operatorname{Ker}(a'a) = \operatorname{Ker}(aa')$ et $\operatorname{Im}(aa') \subset \operatorname{Im}(a)$.

D'autre part si $x \in \text{Ker}(aa')$, on a a(x) = (aa'a)(x) = a((aa')(x)) = a(0) = 0. L'égalité Ker(aa') = Ker(a) est ainsi prouvée, de même que Im(aa') = Im(a) grâce au théorème du rang.

La base \mathcal{B} est donc adaptée à la décomposition $\operatorname{Im}(p) \oplus \operatorname{Ker}(p)$. Dans cette base, p = aa' est diagonale, et s'écrit ainsi $\begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}$. C'est précisément ce que vaut la matrice $W^{-1}AA'W$.

d) En notant B comme dans la question $\mathbf{2.b}$, on a la relation $BD = DB = I_r$. D est donc nécessairement la matrice inverse de B. Sous réserve d'existence, un pseudo-inverse A' s'écrit donc comme à la question $\mathbf{3.a}$, avec D et W uniquement déterminées par A (il s'agit bien sûr de la même expression que nous avons proposé à la question $\mathbf{2.c}$). Le pseudo-inverse est donc unique.

On a montré dans ce problème que A admet un pseudo-inverse si, et seulement si $rg(A) = rg(A^2)$, et que ce pseudo-inverse est alors unique.

Exercice 1. (MPI*)

La n-linéarité résulte immédiatement de la n-linéarité du déterminant et de la linéarité de u. Pour le caractère alterné, fixons $j,k \in [\![1,n]\!]$, avec j < k et considérons $(x_1,\ldots,x_n) \in E^n$ tel que $x_j = x_k = x$. Comme la forme n-linéaire $\det_{\mathcal{B}}$ est elle-même alternée, on a :

$$(x_1, \dots, x_n) = \det_{\mathcal{B}}(\dots, u(x_j), \dots, x_k, \dots) + \det_{\mathcal{B}}(\dots, x_j, \dots, u(x_k), \dots)$$

$$= \det_{\mathcal{B}}(\dots, u(x), \dots, x, \dots) + \det_{\mathcal{B}}(\dots, x, \dots, u(x), \dots)$$

$$= \det_{\mathcal{B}}(\dots, u(x), \dots, x, \dots) - \det_{\mathcal{B}}(\dots, u(x), \dots, x, \dots)$$

$$= 0$$

La forme n-linéaire f est donc également alternée.

Rappelons maintenant que l'espace des forme n-linéaires alternées sur E est de dimension 1, de sorte qu'il existe $\lambda \in \mathbb{K}$ tel que $f = \lambda \det_{\mathcal{B}}$, et en particulier $f(\mathcal{B}) = \lambda \det_{\mathcal{B}}(\mathcal{B}) = \lambda$. En notant $\mathcal{B} = (e_1, \ldots, e_n)$, on a alors

$$\lambda = \det_{\mathcal{B}}(e_1, \dots, e_{i-1}, u(e_i), e_{i+1}, \dots, x_n) = \operatorname{tr}(u)$$

Exercice 2. (MPI*)

Grâce au théorème du rang, la condition $\operatorname{rg}(f) + \operatorname{rg}(f - Id) = n$ est équivalente à $\dim(\ker(f)) + \dim(\ker(f - Id)) = n$. Or $\ker(f)$ et $\ker(f - Id)$ sont en somme directe, donc cette condition est encore équivalente à $\ker(f) \oplus \ker(f - Id) = E$, ce qui caractérise le fait que f est un projecteur.