Лабораторна робота

Розгалуження

У звіті лабораторної роботи скласти блок-схеми алгоритмів і написати програми мовою Python із застосуванням умовного оператора **if** для розв'язання завдань, поданих у табл. 3.1 ... 3.3 відповідно до індивідуального варіанта.

Таблиця 3.1 Індивідуальні завдання базового рівня складності

№ вар.	Функція	№ вар.	Функція
1	$Y = \begin{cases} x^2 + 1 & \text{3a } x < 0; \\ x^2 - 1 & \text{3a } 0 \le x < 2; \\ x & \text{3a } x \ge 2 \end{cases}$	2	$Y = \begin{cases} 2x + 2 & \text{3a } x < -3; \\ 2x - 2 & \text{3a } -3 \le x \le 0; \\ x^2 & \text{3a } x > 0 \end{cases}$
3	$Y = \begin{cases} 6x + 8 & \text{3a} x \le -5; \\ x - 2 & \text{3a} -5 < x \le 3; \\ 2x^2 & \text{3a} x > 3 \end{cases}$	4	$Y = \begin{cases} 2x - 1 & \text{3a } x \le -4; \\ x^2 + 2 & \text{3a } -4 < x \le 5; \\ x + 3 & \text{3a } x > 5 \end{cases}$
5	$Y = \begin{cases} 6x^3 - 8 & \text{3a} x \le -8; \\ x^3 - 8 & \text{3a} -8 < x < 0; \\ 2x^2 & \text{3a} x \ge 0 \end{cases}$	6	$Y = \begin{cases} 2x^3 + 3x & \text{3a} & x \le -1; \\ x^2 - 4 & \text{3a} - 1 < x < 0; \\ x^3 & \text{3a} & x \ge 0 \end{cases}$
7	$Y = \begin{cases} 4x^2 + 2x & \text{3a } x \le -12; \\ 2x^2 + 2x & \text{3a } -12 < x < 3; \\ x + 1 & \text{3a } x \ge 3 \end{cases}$	8	$Y = \begin{cases} x^3 - 1 & \text{3a} & x \le -4; \\ 2x - 1 & \text{3a} & -4 < x \le 3; \\ 3x^3 & \text{3a} & x > 3 \end{cases}$
9	$Y = \begin{cases} 4x+3 & \text{3a } x \le -2; \\ 2x^2 - 4 & \text{3a } -2 < x < 4; \\ x^2 - 2 & \text{3a } x \ge 4 \end{cases}$	10	$Y = \begin{cases} 2x+4 & \text{3a } x \le -1; \\ x-4 & \text{3a } -1 < x < 0; \\ x^3+4 & \text{3a } x \ge 0 \end{cases}$
	$Y = \begin{cases} 4x^2 + 2x & \text{3a} & x < -2; \\ 2x - 1 & \text{3a} & -2 \le x < 3; \\ x^3 + 3 & \text{3a} & x \ge 3 \end{cases}$	12	$Y = \begin{cases} 3x^2 + 2x & \text{3a} x < -3; \\ 2x + 1 & \text{3a} -3 \le x < 8; \\ 3x & \text{3a} x \ge 8 \end{cases}$
13	$Y = \begin{cases} 4x + 2x & \text{3a} x \le -4; \\ x - 2x & \text{3a} -4 < x < 2; \\ x + 2 & \text{3a} x \ge 2 \end{cases}$	14	$Y = \begin{cases} 27x + 3 & \text{3a} x \le -6 \\ x^3 - 1 & \text{3a} -6 < x < 3 \\ x^2 + 1 & \text{3a} x \ge 3 \end{cases}$

15	$Y = \begin{cases} x^3 + 2x^2 & \text{3a} x \le -2; \\ x^2 - 1 & \text{3a} -2 < x < 3; \\ 2x + 2 & \text{3a} x \ge 3 \end{cases}$	16	$Y = \begin{cases} 4x^3 + 2x & \text{3a} x < -4; \\ 2x - 5 & \text{3a} -4 \le x < 4; \\ x - 3 & \text{3a} x \ge 4 \end{cases}$
17	$Y = \begin{cases} 6x^2 + 2x & \text{3a} x \le -6; \\ 2x - 6 & \text{3a} -6 < x < 4; \\ 6x + 1 & \text{3a} x \ge 4 \end{cases}$		$Y = \begin{cases} 27x^2 + 1 & \text{3a } x \le -3; \\ x - 2 & \text{3a } -3 < x < 5; \\ 3x + 1 & \text{3a } x \ge 5 \end{cases}$
19	$Y = \begin{cases} 8x^3 + 2 & \text{3a} x \le -1; \\ x^2 - 1 & \text{3a} -1 < x < 1; \\ x + 1 & \text{3a} x \ge 1 \end{cases}$	20	$Y = \begin{cases} 21 - x & \text{3a} & x \le -7; \\ x^2 + 3 & \text{3a} & -7 < x < 4; \\ x^2 - 3 & \text{3a} & x \ge 4 \end{cases}$
21	$Y = \begin{cases} 2x^2 + 3 & \text{3a} x < -2; \\ x^3 - 6 & \text{3a} -2 \le x < 0; \\ 2(x+1) & \text{3a} x \ge 0 \end{cases}$	22	$Y = \begin{cases} 4x^3 + 4 & \text{3a } x \le -2; \\ 3x - 3 & \text{3a } -2 < x \le 3; \\ 2x_2 + 2 & \text{3a } x > 3 \end{cases}$
23	$Y = \begin{cases} x^3 + 2x & \text{3a} x \le -3; \\ 2x - 1 & \text{3a} -3 < x \le 8; \\ x^2 + 1 & \text{3a} x > 8 \end{cases}$	24	$Y = \begin{cases} 25x+1 & \text{3a} & x \le -2; \\ x^3 - 25 & \text{3a} & -2 < x < 4; \\ 24x+x^2 & \text{3a} & x \ge 4 \end{cases}$

Таблиця 3.2 Індивідуальні завдання середнього рівня складності

№ вар.	Функція	№ вар.	Функція
1	$y = \begin{cases} a^3 + \arcsin(\cos^3 bx) & \text{за} x \le a; \\ \sqrt{(a+bx)-2} + \sin x & \text{за} a < x < b; \\ \lg^2(a+bx+z) & \text{за} x \ge b, \end{cases}$ де $a = 2.5; \ b = 3.5; \ z = \sin(bx)$	2	$y = \begin{cases} a^{2b}x^2 + \sqrt{b^4 + 2.7} & \text{за } x < 0.7; \\ \arctan(3^x - px) & \text{за } x = 0.7; \\ \sqrt[3]{\ln a - px + 4.3} & \text{за } x > 0.7, \end{cases}$ де $a = 0.54; b = 0.34; p = ax + b$
3	$y = \begin{cases} (a+z)\cos^2(bx+x^3) & \text{за} & x < a; \\ a\ln(zx) + \sin^2(b^2) & \text{за} & a \le x \le b; \\ \sqrt[3]{0.3b} + \sqrt{ (a-z^2) } & \text{за} & x > b, \end{cases}$ де $a = 0.1; b = 3.25; z = \cos^2(x)$	4	$y = \begin{cases} \cot(x^2 e^{3k}) + \ln rx & \text{за} x = rs; \\ \sqrt[5]{x^2} + \sqrt{ \sin k } & \text{за} x > rs; \\ \tan(kx + \tan(x)) & \text{за} x < rs, \end{cases}$ де $r = 2.4$; $s = 5$; $k = 0.5$
5	$y = \begin{cases} \frac{(2a+1)^2}{3.71 - x^2} & \text{за} z > -0.5; \\ \sin^3 \sqrt{bz} - ax & \text{за} -0.5 \le z \le 10^{-3}; \\ \frac{\text{tg}(z+x) - e^x}{3.5abx} & \text{за} z > 10^{-3}, \end{cases}$ де $a = 0.3; \ b = 0.7; \ z = \cos(x+2)$	6	$y = \begin{cases} e^{ax} + f \cos^5 bx & \text{за } x \le a; \\ \cos^2 \sqrt{bx} - \ln(fx) \text{ за } a < x \le b^2; \\ \cos^2(a + bfx) & \text{за } x > b^2, \end{cases}$ де $a = 1.5; b = 1.44; f = \sqrt{bx}$

$$\begin{array}{c} 7 \\ y = \begin{cases} a\cos^2 x + b\sin^2 zx & 3a \ x \le a; \\ \ln(ax - b) + z^2 & 3a \ x > 4.5b; \\ \ln(ax - b) + z^2 & 3a \ x > 4.5b; \\ \ln(ax - b) + z^2 & 3a \ x > 4.5b; \\ \ln(ax - b) + z^2 & 3a \ x > 4.5b; \\ \ln(ax - b) + z^2 & 3a \ x > 4.5b; \\ \ln(ax - b) + z^2 & 3a \ x > 4.5b; \\ \ln(ax - b) + z^2 & 3a \ x > 4.5b; \\ \ln(ax - b) + z^2 & 3a \ x > 4.5b; \\ \ln(ax - b) + z^2 & 3a \ x > 4.5b; \\ \ln(ax - b) + z^2 & 3a \ x > 4.5b; \\ \ln(ax - b) + z^2 & 3a \ x > 4.5b; \\ \ln(ax - b) + z^2 & 3a \ x > 4.5b; \\ \ln(ax - b) + z^2 & 3a \ x > 4.5b; \\ \ln(ax - b) + z^2 & 3a \ x > b > x; \\ \ln(ax - b) + z^2 & 3a \ x > b > x; \\ \ln(ax - b) + z^2 & 3a \ x > b > x; \\ \ln(ax - b) + z^2 & 3a \ x > b > x; \\ \ln(ax - b) + z^2 & 3a \ x > b > x > b; \\ \ln(ax - b) + z^2 & 3a \ x > b; \\ \ln(ax - b) + z^2 & 3a \ x > b; \\ \ln(ax - b) +$$

	індивідуальні завдання високого рівня складності
№ вар.	Завдання
1	Ввести два числа і визначити, що більше: сума квадратів чи квадрат суми
	цих чисел. Відповідь вивести у вигляді повідомлення
2	Ввести значення кута в радіанах і визначити, що більше: значення синуса чи косинуса цього кута. Відповідь вивести у вигляді повідомлення
3	Ввести три числа і визначити серед них середнє за значенням
4	Ввести три числа і визначити серед них найменше
5	Ввести координати точки $B(x$ та $y)$ і визначити: чи належить ця точка кривій $f(x) = 6x^7 - 4.5x^5 + 4x^2$ з допустимою похибкою eps = 10^{-3}
	(тобто $ f(x) - y < \text{eps}$)
6	Ввести координати точок $A(x_0, y_0)$ і $B(x_1, y_1)$ і визначити яка з цих точок –
	А чи В – ϵ найбільш віддалена від початку координат (O(0,0)). Відповідь вивести у вигляді повідомлення
7	Ввести значення трьох сторін трикутника a, b та c і визначити, чи ϵ цей
	трикутник прямокутним. Відповідь вивести у вигляді повідомлення
8	Ввести три числа і додатні з них піднести до квадрата, а від'ємні залишити без змін
0	
9	Ввести координати точки $A(x \text{ та } y)$ і визначити: в якій чверті лежить ця точка. Відповідь вивести у вигляді повідомлення
10	Ввести координати точки x і y та визначити, чи лежить ця точка всередині
	кола з радіусом R . Центром кола є початок координат. Відповідь вивести
	у вигляді повідомлення

11	Ввести три цілих числа (довжини сторін трикутника) і визначити,	
	чи можна побудувати за цими числами трикутник	
12	Ввести значення сторони квадрата A та радіус кола R і визначити, площа	
	якої з цих фігур ϵ більше. Відповідь вивести у вигляді повідомлення	
13	Ввести значення трьох сторін двох трикутників — $a1,b1,c1$ і $a2,b2,c2$. Визна-	
	чити, площа якого з них є більше. Відповідь вивести у вигляді повідомлення	
14	Ввести координати точки B (x та y) і визначити: чи належить ця точка	
	кривій $f(x) = 6\cos^2 x - 0.25x^5 + 3.2x^2 - 2.7$ з припустимою похибкою	
	$eps = 10^{-3}$ (тобто $ f(x) - y < eps$). Відповідь вивести у вигляді повідомлення	
15	Ввести три числа і додатні з них піднести до куба, а від'ємні – замінити на 0	
16	Ввести значення трьох сторін трикутника а, b, і с. Найменша зі сторін три-	
	кутника ϵ стороною квадрата. Визначити, площа якої з цих фігур ϵ більша	
17	Ввести координати точки $A(x \text{ та } y)$ і визначити, чи належить ця точка до	
	першої чверті. Відповідь вивести у вигляді повідомлення	
18	Ввести три числа і вивести числа за модулем, більші за середнє арифметичне	

19	Ввести радіанну міру кута і визначити більше зі значень тангенса або котангенса цього кута. Відповідь вивести у вигляді повідомлення
20	Ввести координати точки $Q(x \text{ та } y)$ і визначити, чи лежить ця точка на кривій $f(x) = 7 \text{tg}^2 x - 0.31 x^3 + 3.2 x^2 - e^x$ з припустимою похибкою eps = 10^{-3} (тобто $ f(x) - y < \text{eps}$). Відповідь вивести у вигляді повідомлення
21	Ввести три числа і визначити найбільше з них
22	Ввести два числа і визначити, що є більше: різниця квадратів чи модуль квадрата різниці цих чисел. Відповідь вивести у вигляді повідомлення
23	Ввести координати точок $A(x_0, y_0)$ та $B(x_1, y_1)$ і визначити, яка з точок — A чи B — найменш віддалена від початку координат $O(0,0)$. Відповідь вивести у вигляді повідомлення
24	Ввести координати точки $A(x \text{ та } y)$ і визначити, чи лежить ця точка всередині тора, утвореного колами із радіусами r і R із центром у точці $O(0,0)$