Exempel 0.0.1 (Visa att $\sqrt{1+x} \leq 1 + \frac{x}{2}$ för x > 0 (Typiskt tentatal))

 $\mathbf{OBS} \text{:}$ Medelvärdesatsen säger med $f(x) = \sqrt{x}$:

$$f(x+1) - f(1) = f'(c)x, \ c \in (1, 1+x) \iff f(x+1) = f(1) + xf'(c)$$

foch f'kan skrivas om enligt dess definition för att få följande om $f'(x) = -\frac{1}{2\sqrt{x}}$:

$$\sqrt{x+1} = 1 + x \frac{1}{2} \frac{1}{\sqrt{c}} \le 1 + \frac{x}{2}$$

Vi vet också att $c>1 \implies \frac{1}{\sqrt{c}} \leq 1.$

V.S.B