MTH420 PROBLEM SET 9

- (1) Take $f, g \in F[[X]]$ (the algebra of formal power series). Prove that fg = 0 implies either f or g is 0.
- (2) Take $a, b \in F$ with $a \neq 0$. Prove that $\{(ax + b)^n : n \text{ a non-negative integer}\}$. Is a basis of F[x].
- (3) Let $A = \begin{bmatrix} 2 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 3 & 0 \\ 0 & 0 & 0 & 0 & 3 \end{bmatrix}$.
 - (a) Find the polynomials p_1, p_2, p_3 such that $p_i(j) = \delta_{i,j}$.
 - (b) Compute $p_i(A)$ for each i.
- (4) Suppose that $L: F[x] \to F$ is an F-algebra homomorphism. (That is, it's not only linear, but also satisfies L(fg) = L(f)L(g) for all $f, g \in F[x]$. Prove that L is either 0, or the evaluation functions e_t given by $e_t(f) = f(t)$, for some $t \in F$.
- (5) Which of the following subsets of $\mathbb{Q}[x]$ are ideals? Justify your answers.
 - (a) The set of all elements of even degree.
 - (b) The set of all elements of degree > 5.
 - (c) The set of all elements of degree < 5.
 - (d) The set of all elements f such that f(1) = 0.
 - (e) The set of all elements f such that f(0) = 1.
 - (f) The set of all elements f such that f(0) = f(1) = 0.
 - (g) The set of all elements f such that f(0) = f(1).
 - (h) The image of the linear operator T defined by

$$T\left(\sum_{i=0}^{n} c_i x^i\right) = \sum_{i=0}^{n} \frac{c_i}{i+1} x^{i+1}.$$

(i) The set of all elements f such that $f\left(\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}\right) = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$.