Semestrální zkouška ISS, řádný termín, 10.1.2018, skupina A

Login: Příjmení a jméno: Podpis: Podpis: $(\tilde{c}iteln\check{e}!)$ Po $(\tilde{c}iteln)$ Po $(\tilde{c}iteln)$ Po $(\tilde{c}iteln)$ Po $(\tilde{c}iteln)$ Po $(\tilde{c}iteln)$ Po $(\tilde{c}iteln)$
Příklad 1 Ctyrty koeficient Fourierovy rady periodického signalu se spojitym casem $x(t)$ je
$c_{x,4}=1+j$. Určete tentýž koeficient posunutého signálu $y(t)=x(t-\frac{1}{16}\mu s)$, víte-li, že základní frekvence periodického signálu je $f_1=1$ MHz. $\frac{1}{2}(2\pi s)=\frac{1}{16}(2\pi s)=1$
$c_{y,4} = (1+j)(-j) = -j - (-1) = 1$
Příklad 2 Signál se spojitým časem je dán jako: $x(t) = \begin{cases} 10 & \text{pro } -1\text{s} \leq t \leq 1\text{s} \\ 0 & \text{jinde} \end{cases}$
vypoctete jeno spektralni runkci $X(j\omega)$ a nakresiete jeji modulovou i argumentovou čast (do dvou obrazku pod sebou). Vyznačte důležité hodnoty na ose ω i na svislých osách.
$X(j\omega) = DN \sin(\frac{n^2\omega}{2}) = 10.2 \sin(\frac{n^2\omega}{2}) = 20 \sin(\omega)$
prichopy nulver: W= T - T - T
Příklad 3 Nakreslete výsledek konvoluce dvou signálů se spojitým časem: $y(t) = x_1(t) \star x_2(t)$.
$x_1(t) = \begin{cases} t+1 & \text{pro } -1 \le t \le 0 \\ -t+1 & \text{pro } 0 < t \le 1 \\ 0 & \text{jinde} \end{cases}$ $\delta(t) \text{ expression Diraces we impuls}$ $\delta(t) \text{ expression Diraces we impuls}$
$\delta(t)$ označuje Diracův impuls.
$y(\xi)$ -1 1 1 1 1 1 1 1 1 1
$-\frac{1}{2}$
Příklad 4 Popište princip fungování anti-aliasingového filtru při vzorkování.
Příklad 4 Popište princip fungování anti-aliasingového filtru při vzorkování. Dolm' proprist pro odříkam' frevluce pre Sahey, cich †5/2 ltere by se drhy aliasinga "prellopily" do intervolu (00 +5/2) a micily provodní spectrum.
Dolin' propriet pro odteram frevener presamey, eids
Dolin' propust pro odtlikam' frevener pre Saney, erd $f_{5/2}$ litere by Se drivy ali'asinger "preliopily" blo intervalue (outs/2) a micily provodim' Spectrum. (rebo jalakoli jina l'Ozermna alpoved) Příklad 5 Vzorek signálu s diskretním časem je: $x[17] = 4$. Napište a/nebo nakreslete, jak bude tento vzorek přispívat do ideálně rekonstruovaného signálu se spojitým časem. Víte, že vzorkovací frekvence $F_{s} = 8000$ Hz. Pomůcka: rekonstrukční funkce "spouštěná" každým vzorkem je kardinální sinus. Musíte
Dolin' propust pro odřížamí frevluer pre Sahey, erd $f_s/2$ které by se oblu oblasným mellom ky blo intervolu $(ov f_s/2)$ a mici ly provod mí spectrum. (albo jalakoli jiva rozemba odpoved) Příklad 5 Vzorek signálu s diskretním časem je: $x[17] = 4$. Napište a/nebo nakreslete, jak bude tento vzorek přispívat do ideálně rekonstruovaného signálu se spojitým časem. Víte, že vzorkovací frekvence $F_s = 8000$ Hz. Pomůcka: rekonstrukční funkce "spouštěná" každým vzorkem je kardinální sinus. Musíte ho správně natáhnout a umístit na časové ose a vynásobit hodnotou vzorku.
Dolin' propust pro odtlikam frevluer pre Saney, end $f_{3/2}$ litere by Se drivy ali'as inga "prelio m'y blo inthivola (00/5/2) a mic'ily provod m' Spectrum. (nebo jalakoli jina l'Ozamna alpoved) Příklad 5 Vzorek signálu s diskretním časem je: $x[17] = 4$. Napište a/nebo nakreslete, jak bude tento vzorek přispívat do ideálně rekonstruovaného signálu se spojitým časem. Víte, že vzorkovací frekvence $F_{s} = 8000$ Hz. Pomůcka: rekonstrukční funkce "spouštěná" každým vzorkem je kardinální sinus. Musíte

Určete hodnotu DTFT na zadané normované kruhové frekvenci nebo napište jasně "nejde to": Symel nicha podle (* * (*) = * (*) * a * (*) * a * (*) * (
$\omega = 2.1\pi \text{ rad.} \left(\tilde{X}(e^{j\omega}) = \text{ fo. Same} \right) = 5 + 2$
Příklad 7 Systém se spojitým časem má impulsní odezvu $h(t)$. Napište, jaké podmínky musí splňovat $h(t)$ stabilního a kauzálního systému se spojitým časem. Lauzalife: $h(t) = 0$ for $t < 0$
kauzalita: $h(t) = 0$ pro $t < 0$ $\leq tabilita: \int h(t) = c = caucine cisho, he is$
o a/webo h(t) pro t -> so kon woguje
Příklad 8 Převeďte diferenciální rovnici systému se spojitým časem $\frac{d^2x(t)}{dt^2} + 0.5\frac{dx(t)}{dt} + 0.4x(t) = \frac{d^2y(t)}{dt^2} - 0.2\frac{dy(t)}{dt} - 0.1y(t)$ na přenosovou funkci.
$X(s)s^{2} + 0.5X(s).s + 0.4X(s) = X(s)s^{2} + 0.2X(s).s - 0.1X(s)$
$\frac{\langle S S^2 + 0, fs + 0, f \rangle}{\langle S S^2 + 0, fs + 0, f \rangle} = \langle S S S S S S S S S S $
Příklad 9 Přenosová funkce systému se spojitým časem je: $H(s) = \frac{s}{s+1}$. Nakreslete přibližný průběh modulu frekvenční charakteristiky tohoto systému $ H(j\omega) $ pro kladné frekvence ω . Přesně určete hodnoty modulu pro $\omega = 0$ rad/s a pro $\omega = \infty$ rad/s. $ H(j\omega) = della modrello vlate v$
-1 Viz pres my vysledele
Příklad 10 Dokažte, že pro periodický signál s diskrétním časem $\tilde{x}[n]$ s periodou N vzorků jsou koeficienty Diskrétní Fourierovy řady (DFŘ) také periodické s periodou N koeficientů. Pomůcka: použijte definiční vzorec DFŘ: $\tilde{X}[k] = \sum_{n=0}^{N-1} \tilde{x}[n]e^{-j\frac{2\pi}{N}kn}$
$\begin{aligned} & \left \left \left \left \left \left \left \left \right \right \right \right \right \right \leq \left $
XILT El cislo

 \mathbf{P} říklad 6 Hodnota Fourierovy transformace s diskrétním časem (DTFT) reálného signálu x[n] pro

normovanou kruhovou frekvenci $\omega = 0.1\pi$ rad je $\tilde{X}(e^{j0.1\pi}) = 5 + 2j$.

1.5

 \mathbf{P} říklad 16 Na obrázku je signál o délce N=200 vzorků ovlivněný šumem. Odhadněte zadaný autokorelační koeficient. Použijte standardní vychýlený odhad: $\hat{R}_{vych}[k] = \frac{1}{N} \sum_{n=0}^{N-1} x[n]x[n+k]$.

Naměřené hodnoty stacionárního náhodného signálu $\xi[n]$ jsou rovnoměrně rozděleny v in-

tervalu -6 až 6. Určete hodnotu distribuční funkce F(x) pro zadané x

F(5) = ...

18 Na Ω 4000 Příklad realizacích náhodného procesu byla naměřena tabulka (sdružený histogram) hodnot mezi časy n_1 a Spočítejte korelační koeficient $R[n_1, n_2]$. Pomůcka: Jako reprezentativní hodnoty x_1 a x_2 při numerickém výpočtu integrálu $R[n_1, n_2] = \int_{-\infty}^{+\infty} \int_{-\infty}^{+\infty} x_1 x_2 p(x_1, x_2, n_1, n_2) dx_1 dx_2$ použijte středy intervalů v tabulce.

	intervaly						
	x_1	[-20, -10)] [-1	0,20] [0,10]	[10, 20]]_
	[10, 20]	0		0	0	270	
	[0, 10]	- 0	0 2310	360	10000	0	
•	[-10, 0]	- 0 [Q 251(000 0	10000	0	
307	[-20, -10]	0		0	,0	0	
	121	0 / 1	000		ho 10.	11	Z

pri integraci se musi opet

Nakreslete, jaký bude výsledek operace 2D filtrovárí $g[k, l] = x[k, l] \star h[k, l]$. Vstup x[k, l] je Příklad 19 na obrázku. Výsledek nakreslete do nového obrázku nebo popište. Konvoluční jádro (nebo také 2D filtr,

nebo maska) h[k,l] je čtvercové o velikosti 5×5 , všechny hodnoty jsou rovny $\frac{1}{25}$.

Příklad 20 Obrázek o rozměrech 100 × 100 je celý černý (pouze hodnoty nula), jen 2 pixely jsou bílé: x[0,0] = x[50,50] = 1. Určete zadanou hodnotu jeho 2D diskrétní Fourierovy transformace (2D-DFT).