Черновик

Блокиратор записи для дисков с интерфейсом SATA –

Заметки

Оглавление

SATA-повторитель (теория)	3
SATA-повторитель (практика)	4
Итог	6

SATA-повторитель (теория)

SATA-повторитель – это устройство, прозрачно передающее данные между хостом (PC) и девайсом (HDD) через интерфейс SATA. Идеальный SATA-повторитель PC и HDD воспринимают как обычный SATA-кабель.

Аппаратный блокиратор записи данных на диск с интерфейсом SATA – это идеальный SATA-повторитель, снабженный логикой, ограничивающей передачу запрещенных команд от PC к HDD. Т.к. для работы этой логики необходимо иметь возможность управления потоком данных, то SATA-повторитель должен работать на канальном или более высоком уровне протокола SATA. Схема взаимодействия PC и HDD через SATA-повторитель показана на рис.1.

Рис. 1 Схема взаимодействия РС и HDD через с SATA-повторитель

Логика работы такого устройства напоминает логику работы SATA-мультиплексора (SATA Multiplier), которая подробно описана в последних спецификациях на Serial ATA.

SATA-повторитель (практика)

Для реализации простейшего SATA-повторителя использовался отладочный набор фирмы Trenz Electronic на базе FPGA Artix-7 XC7A35T-2CSG325I. Состав набора:

- TE0714-02-35-2I¹ (Artix Micromodule A35 with Xilinx XC7A35T-2CSG325I)
- TEBB0714-01² (Simple Base for TE0714)
- TE0790-02³ (XMOD FTDI JTAG Adapter Xilinx compatible)

Для программирования логики работы устройства использовалась среда Vivado Design Suite - HLx Editions - 2017.2^4 .

Структурная схема реализованного SATA-повторителя показана на рис.2.

Рис.2 Структурная схема SATA-повторителя на базе отладочной платы TE0714-02-35-2I

Изображение реализованного SATA-повторителя показано на рис.3.

Рис.3 Изображение SATA-повторителя на базе отладочной платы TE0714-02-35-2I, подключенного к HDD с одной стороны, и к PC (через USB-SATA адаптер), с другой стороны.

 $^{^{1} \, \}underline{\text{https://shop.trenz-electronic.de/en/TE0714-02-35-2I-Artix-Micromodule-A35-with-Xilinx-XC7A35T-2CSG325I-speedgrade-2I}$

² https://shop.trenz-electronic.de/en/TEBB0714-01-Simple-Base-for-TE0714

 $^{^{3} \}underline{\text{https://shop.trenz-electronic.de/en/TE0790-02-XMOD-FTDI-JTAG-Adapter-Xilinx-compatible}}$

⁴ https://www.xilinx.com/content/xilinx/en/downloadNav/vivado-design-tools/2017-2.html

Скорость ввода-вывода данных с HDD через SATA-повторитель уменьшается. Результаты сравнения скорости ввода-вывода показаны на рис.4. Во время тестов диск подключался к ПК через USB2.0-SATA адаптер, из-за чего абсолютные скорости ввода-вывода были ограничены пропускной способностью интерфейса USB2.0. Тем не менее, величина относительного падения пропускной способности в случае использования текущей версии SATA-повторителя, может считаться допустимой.

Рис.4 Сравнение скорости ввода-вывода данных с HDD. слева: [PC] – [USB2.0-to-SATA-адаптер] – [SATA-повторитель] – [HDD], справа: [PC] – [USB2.0-to-SATA-адаптер] – [HDD]

Из-за неполной (около 40 %) реализации физического (Phy) уровня, разработанный SATA-повторитель работает только на скорости 1.5 Гт/с. Канальный (Link) уровень большей частью реализован (около 70 %). Отсутствие некоторых функций не создает серьезных ограничений для работы устройства. Учитывая степень реализации проекта и количество занятого в FPGA пространства под этот проект (9 % наиболее используемых логических элементов LUT) можно предположить, что ресурса используемой FPGA достаточно для создания более завершенного SATA-повторителя, и на его основе – блокиратора записи данных.

Resource	Utilization	Available	Utilization %
LUT	1886	20800	9.07
LUTRAM	9	9600	0.09
FF	1592	41600	3.83
BRAM	1	50	2.00
DSP	4	90	4.44
IO	3	150	2.00
GT	2	4	50.00
BUFG	7	32	21.88
MMCM	2	5	40.00

Рис.5 Ресурсы FPGA XC7A35T-2CSG325I, занятые под логику работы SATA-повторителя.

Итог

В итоге, имеем устройство, на базе которого можно создавать блокиратор записи. Параллельно с этим, можно дорабатывать физический и канальный уровни, делая их максимально соответствующими спецификации на протокол.