ИНСТИТУТ ТРАНСПОРТА И СВЯЗИ

ФАКУЛЬТЕТ КОМПЬЮТЕРНЫХ НАУК И ТЕЛЕКОММУНИКАЦИЙ

ДОМАШНИЕ РАБОТЫ

по дисциплине

"Численные Методы"

Выполнил: Николай Соснин

Студ. код: 59689, Группа: 4601BV

Преподаватель: А.В.Граковский

Рига

2019

СОДЕРЖАНИЕ

СОДЕРЖАНИЕ2
Домашняя работа номер 1. Решение системы линейных уравнений методом
исключения Гаусса
Домашняя работа номер 2. Методы приближения функции. Интерполяция и
аппроксимация5
Домашняя работа номер 3. Методы численного интегрирования и
дифференцирования функции8
Домашняя работа номер 4. Решение нелинейного уравнения
Домашняя работа номер 5. Решение линейного дифференциального уравнения 2-го
порядка
Домашняя работа номер 6. Решение системы нелинейных уравнений в среде MatLab.
Домашняя работа номер 7. Минимизация функции методом линейного
программирования среде MatLab

Домашняя работа номер 1. Решение системы линейных уравнений методом исключения Гаусса.

Решить систему линейных уравнений 3-го порядка методом исключения Гаусса.

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 = b_1 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 = b_2 \\ a_{31}x_1 + a_{32}x_2 + a_{33}x_3 = b_3 \end{cases}$$

где

$$a_{11} = N_g$$
 $a_{12} = -3$ $a_{13} = 4$ $b_1 = 3$ $a_{21} = -3$ $a_{22} = 8 + 10 - N_s$ $a_{23} = 1$ $b_2 = 1 - N_s - 20$ $a_{31} = N_g + 1$ $a_{32} = N_s - 10$ $a_{33} = N_s - N_g$ $b_3 = 0$

$$N_g = 23$$
, $N_s = 15$

$$\begin{cases}
27x_1 - 3x_2 + 4x_3 = 3 \\
-3x_1 + 3x_2 + x_3 = -34 \\
24x_1 - 5x_2 - 8x_3 = 0
\end{cases}$$

Ошибка исходных данных

Решение.

Исходная матрица коэффициентов и свободных членов, после подстановки переменных.

$$A_0 = \begin{bmatrix} 27 & -3 & 4 & 3 \\ -3 & 3 & 1 & -34 \\ 24 & -5 & -8 & 0 \end{bmatrix}$$

Коэффициент для обнуления элемента a_{21} будет $k_1 = -a_{21}/a_{11} = -(-3)/27$. Домножаем первую строку на этот коэффициент и прибавляем результат ко второй строке.

$$A_1 = \begin{bmatrix} 27 & -3 & 4 & 3 \\ 0 & -2.667 & 1.444 & -33.667 \\ 24 & -5 & -8 & 0 \end{bmatrix}$$

Коэффициент для обнуления элемента a_{31} будет $k_2 = -a_{31}/a_{11} = -24/27$. Домножаем первую строку на этот коэффициент и прибавляем результат к третьей строке.

$$A_1 = \begin{bmatrix} 27 & -3 & 4 & 3 \\ 0 & -2.667 & 1.444 & -33.667 \\ 0 & -2.333 & -11.556 & -2.667 \end{bmatrix}$$

Коэффициент для обнуления элемента a_{32} будет $k_3 = -\frac{a_{32}}{a_{22}} = -(-2.333)/(-2.667)$. Домножаем вторую строку на этот коэффициент и прибавляем результат к третьей строке.

$$A_1 = \begin{bmatrix} 27 & -3 & 4 & 3 \\ 0 & -2.667 & 1.444 & -33.667 \\ 0 & 0 & -10.293 & -32.118 \end{bmatrix}$$

Из приведенной к такому виду матрицы находим x_1, x_2, x_3 .

$$x_3 = \frac{b_3}{a_{33}} = 3.120$$

$$x_2 = \frac{b_2 - a_{23} * x_3}{a_{22}} = -14.308$$

$$x_1 = \frac{b_1 - a_{13} * x_2 - b_2 - a_{23} * x_3}{a_{11}} = -1.941$$

Проверка.

Подставим значения x_1 , x_2 , x_3 в исходную систему уравнений.

$$\begin{cases} 27*(-1.941) - 3*(-14.308) + 4*3.120 = 2.997 \\ -3*(-1.941) + 3*(-14.308) + 1*3.120 = -33.981 \\ 24*(-1.941) - 5*(-14.308) - 8*3.120 = -0.004 \end{cases}$$

Невязка.

$$\Delta b_1 = |3 - 2.997| = 0.003$$

$$\Delta b_2 = |-34 - (-33.981)| = 0.019$$

$$\Delta b_3 = |0 - (-0.004)| = 0.004$$

$$\sigma(b_1) = \frac{0.003}{3} * 100\% = 0.1$$

$$\sigma(b_2) = \frac{0.019}{-34} * 100\% = -0.056$$

$$\sigma(b_3) = |0.004 - 0| = 0.004$$

Домашняя работа номер 2. Методы приближения функции. Интерполяция и аппроксимация.

Задана функция одной переменной у(х) в виде таблицы значений:

X	-1	23	6	10
y(x)	1	10	8	-2

- Интерполировать функцию y(x) полиномом Лагранжа 3-го порядка $L_3(x)$. Выполнить проверку правильности интерполяции по всем точкам.
- Интерполировать функцию y(x) полиномом Ньютона 3-го порядка $N_3(x)$.
- Аппроксимировать функцию по методу наименьших квадратов полиномом 2-го порядка $\varphi_2(x)$.
- Построить графики интерполяции $L_3(x)$ и аппроксимации $\varphi_2(x)$ на одном рисунке в интервале $x \in [x_{\min}, x_{\max}]$ из таблицы и отметить на поле графика заданные табличные точки.

Решение.

Интерполяция функции полиномом Лагранжа 3-го порядка

Локальные полиномы Лагранжа.

$$l_0 = \frac{(x-23)(x-6)(x-10)}{(-1-23)(-1-6)(-1-10)}$$

$$l_1 = \frac{(x+1)(x-6)(x-10)}{(23+1)(23-6)(23-10)}$$

$$l_2 = \frac{(x+1)(x-23)(x-10)}{(6+1)(6-23)(6-10)}$$

$$l_3 = \frac{(x+1)(x-23)(x-6)}{(10+1)(1-23)(10-6)}$$

Итоговый полином Лагранжа.

$$L_3(x) = \frac{421x^3}{19448} - \frac{12503x^2}{19448} + \frac{8614x}{2431} + \frac{25321}{4862} \approx \mathbf{0.02164}x^3 - \mathbf{0.64289}x^2 + \mathbf{3.54339}x + \mathbf{5.20793}$$

Проверка.

$$0.02164 * (-1)^3 - 0.64289 * (-1)^2 + 3.54339 * (-1) + 5.20793 = 1.00001$$

 $0.02164 * 23^3 - 0.64289 * 23^2 + 3.54339 * 23 + 5.20793 = 9.91097$
 $0.02164 * 6^3 - 0.64289 * 6^2 + 3.54339 * 6 + 5.20793 = 7.99847$

$$0.02164 * 10^3 - 0.64289 * 10^2 + 3.54339 * 10 + 5.20793 = -2.00716$$

Интерполяция функции полиномом Ньютона 3-го порядка

Разделённые разности.

х	у	Δy	$\Delta^2 y$	$\Delta^3 y$
-1	1	0.375	-0.03676	0.02164
23	10	0.11764	0.20135	
6	8	-2.5		
10	-2		-	

Итоговый полином Ньютона.

$$N_3(x) = 1 + 0.375(x+1) - 0.03676(x+1)(x-23) + 0.02164(x+1)(x-23)(x-6)$$

$$N_3(x) = 0.02164 * x^3 - 0.64268 * x^2 + 3.54248 * x + 5.2068$$

Проверка.

$$0.02164 * (-1)^3 - 0.64268 * (-1)^2 + 3.54248 * (-1) + 5.2068 = 1$$

 $0.02164 * 23^3 - 0.64268 * 23^2 + 3.54248 * 23 + 5.2068 = 9.99999$
 $0.02164 * 6^3 - 0.64268 * 6^2 + 3.54248 * 6 + 5.2068 = 7.99943$
 $0.02164 * 10^3 - 0.64268 * 10^2 + 3.54248 * 10 + 5.2068 = -1.99640$

Аппроксимация функции по МНК полиномом 2-го порядка

Функция базиса.

$$\varphi_2(x) = a_0 + a_1 x + a_2 x^2$$

Система уравнений для вычисления коэффициентов.

$$\begin{cases} a_0 * n + a_1 * \sum_{i=0}^{n} x_i + a_2 * \sum_{i=0}^{n} x_i^2 = \sum_{i=0}^{n} y_i \\ a_0 * \sum_{i=0}^{n} x_i + a_1 * \sum_{i=0}^{n} x_i^2 + a_2 * \sum_{i=0}^{n} x_i^3 = \sum_{i=0}^{n} x_i * y_i \\ a_0 * \sum_{i=0}^{n} x_i^2 + a_1 * \sum_{i=0}^{n} x_i^3 + a_2 * \sum_{i=0}^{n} x_i^4 = \sum_{i=0}^{n} x_i^2 * y_i \end{cases}$$

$$\begin{cases} 4a_0 + 38a_1 + 666a_2 = 17 \\ 38a_0 + 666a_1 + 13382a_2 = 257 \\ 666a_0 + 13382a_1 + 291138a_2 = 5379 \end{cases}$$

$$a_0 = 2.33502$$

$$a_1 = -0.14720$$

$$a_2 = 0.01990$$

Итоговый полином.

$$\varphi_2(x) = 2.33502 - 0.14720x + 0.01990x^2$$

Графики интерполяции Лагранжа и аппроксимации по МНК

Домашняя работа номер 3. Методы численного интегрирования и дифференцирования функции.

Задана функция одной переменной f(x) и границы интервала a и b:

$$f(x) = \frac{\sqrt{(4 - x^2)}}{x} \qquad a = 0.2 \qquad b = 1$$

- 1. Вычислить определённый интеграл $I = \int_a^b f(x) dx$ на интервале [a,b], разделяя интервал на n=5 частей с шагом h=(b-a)/n:
 - Методом прямоугольников;
 - Методом трапеций;
 - Методом Симпсона;
 - С помощью квадратурной формулы Гаусса 3-го порядка.
- 2. Сравнить полученные результаты
- 3. Вычислить производную по методу центральных разностей f`(x) и интеграл с переменным верхним пределом $F(x) = \int_a^x f(x) dx$ по методу трапеций, выбирая шаг h. Результаты занести в таблицу
- 4. Выбрав соответствующие масштабы, построить графики функций f(x), f(x) и F(x) на одном рисунке в интервале $x \in [a, b]$

Решение.

i	X	f(x)	м-д прямоугольников	м-д трапеций	м-д Симпсона	f'(x)	F(x)
0	0.2	9 949	1.989				0
1	0.36	5 <mark>.46</mark> 5	1.592	1.233	0.947	-19.487	1.233
2	0.52	3.714	0.874	0.734	0.616	-8.434	1.967
3	0.68	2.766	0.594	0.518	0.452	-4.853	2.485
4	0.84	2.161	0.443	0.394	0.35	-3.231	2.879
5	1	1.732	0.346	1.771	2.0287		4.65
			5.838	4.65	4.3937		4.65

Ошибки вычислений

Полином Лежандра:

$$P_0(t) = 1 P_1(t) = t P_2(t) = \frac{5t*t-1*1}{1+1} = \frac{3t^2-1}{2} P_3(t) = \frac{5t*\frac{3t^2-1}{2}-2t}{3} = 2.5t^3 - 1.5t$$

$$t_1 = 0 t_2 = -0.77 t_3 = 0.77$$

$$P_3' = 7.5t^2 - 1.5$$

$$C_i = \frac{2}{(1 - t^2) * (P'_k(t_i))^2}$$

$$C_{1} = \frac{2}{2.25} \qquad C_{2} = C_{3} = \frac{2}{3.5349}$$

$$x = \frac{a+b}{2} + \frac{b-a}{2} * t$$

$$x_{1} = \mathbf{0.6} \qquad x_{2} = \mathbf{0.292} \qquad x_{3} = \mathbf{0.908}$$

$$I = \left(C_{1}f(x_{1}) + C_{2}f(x_{2}) + C_{3}f(x_{3})\right) * \frac{b-a}{2}$$

$$I = \left(\frac{2}{2.25}f(0.6) + \frac{2}{3.5349}f(0.292) + \frac{2}{3.5349}f(0.908)\right) 0.4 = 1.1306 + 1.5335 + 0.4442 = \mathbf{3.108}$$

Из описанного выше видно, что все 4 метода дают разные результаты вычисления определённого интеграла. В силу того, что, для использования метода Симпсона, в отличие от методов прямоугольников и трапеций, требуются 3 точки, это позволяет получить более точный результат. Однако наивысшую точность обеспечивает Квадратура Гаусса.

Графики функций.

Домашняя работа номер 4. Решение нелинейного уравнения.

Решить нелинейное уравнение — четырьмя различными методами:

- 1. Методом бисекции;
- 2. Методом хорд;
- 3. Методом Ньютона;
- 4. Методом простых итераций (последовательных приближений).

Выполнить по 6 итераций каждым методом, сравнить погрешность вычислений.

Решение.

Приведя уравнение к каноническому виду, оно примет следующий вид:

График функционального уравнения

Будет выглядеть следующим образом:

Рассмотрим интервал [0,05; 0.1].

1. Метод бисекции: начальное приближение $x_0 = \frac{a+b}{2}$, погрешность $e = |x_i - x_{i-1}|$

	м-д бисекции						
	a	f(a)	b	f(b)	xi	f(xi)	e
1	0.05	16.9875	0.01	-3.025	0.075	3.6479	-
2	0.075	3.6479	0.01	-3.025	0.0875	-0.1647	0.0125
3	0.075	3.6479	0.0875	-0.1647	0.0813	1.5799	0.0619
4	0.0813	1.5799	0.0875	-0.1647	0.0844	0.6756	0.0031
5	0.0844	0.6756	0.0875	-0.1647	0.0859	0.2614	0.0015
6	0.0859	0.2614	0.0875	-0.1647	0.0867	0.0464	0.0008

2. Метод Хорд: начальное приближение $x_0 = b - \frac{b-a}{f(b)-f(a)} f(b)$, погрешность $e = |x_i - x_{i-1}|$

	м-д хорд						
	a	f(a)	b	f(b)	xi	f(xi)	e
1	0.05	16.9875	0.1	-3.025	0.9244	-21.0814	-
2	0.05	16.9875	0.9244	-21.0814	0.4402	-18.568	0.4842
3	0.05	16.9875	0.4402	-18.568	0.2364	-14.5991	0.2038
4	0.05	16.9875	0.2364	-14.5991	0.1502	-9.722	0.0862
5	0.05	16.9875	0.1502	-9.722	0.1137	-5.4383	0.0365
6	0.05	16.9875	0.1137	-5.4383	0.0982	-2.6579	0.0155

3. Метод Ньютона: начальное приближение $x_0 = \frac{a+b}{2}$, погрешность $e = |x_i - x_{i-1}|$

	м-д Ньютона							
	xi	f(xi)	f(xi)	xi+1	e			
1	0.075	3.64791	-355.8058195	0.085253	0.010253			
2	0.085253	0.438391	-275.4294353	0.086844	0.001592			
3	0.086844	0.008027	-265.4350175	0.086874	3.02E-05			
4	0.086874	2.79E-06	-265.2504185	0.086874	1.05E-08			
5	0.086874	3.38E-13	-265.2503543	0.086874	1.28E-15			
6	0.086874	0	-265.2503543	0.086874	0			

4. Метод простых итераций: начальное приближение $x_0 = \frac{a+b}{2}$, погрешность $e = |x_i - x_{i-1}|$.

В методе был использован коэффициент коррекции $\underline{k=0.001}$ удовлетворяющий условию: |1+kf'(x)|<1

	м-д простых итераций						
	xi	xi+1	e				
1	0.075	0.078648	0.003648				
2	0.078648	0.081058	0.00241				
3	0.081058	0.082711	0.001653				
4	0.082711	0.083871	0.00116				
5	0.083871	0.084696	0.000825				
6	0.084696	0.085289	0.000593				

Покажите выбор k

Сравнение.

Лучше всего себя показал метод Ньютона. С его помощью удалось найти корень, с маленькой погрешностью, всего за несколько итераций. Уже после 3 итерации погрешность данного метода имела 5-ый порядок, другие рассмотренные методы не достигли такой точности даже за 6 итераций.

Домашняя работа номер 5. Решение линейного дифференциального уравнения 2-го порядка.

Решить линейное дифференциальное уравнение второго порядка с постоянными коэффициентами: y''(t) + 5y'(t) + 15y(t) = 23, y(0) = 5, y'(0) = 10.

Задачу решить численным методом Рунге-Кутта 4-го порядка. Построить график решения.

Решение.

$$\begin{split} p^2 + 5p + 15 &= 0 \\ D &= -35 \qquad \sqrt{D} = j5.92 \qquad p_{1/2} = \frac{-5 \pm j5.92}{2} = -2.5 \pm j2.96 \\ T &= 5 * \frac{1}{2.5} = 2 \\ \begin{cases} y'(t) &= z(t) \\ z'(t) &= 23 - 5z(t) - 15y(t) \end{cases} \qquad y(0) = 5; \ z(0) = y'(0) = 10 \end{split}$$

Создаём файл Pdu2.m, где задаём функцию:

$$function y = Pdu2(t, x)$$

$$y = [x(2); 23-5*x(2)-15*x(1)];$$

Из командного окна набираем:

$$[t, x] = ode23('Pdu23', [0\ 2], [5\ 10]);$$

plot(t, x), grid on

Домашняя работа номер 6. Решение системы нелинейных уравнений в среде MatLab.

III-1. Начальные условия $x_0 = [1 \ 1 \ 1]$

$$\begin{cases} 2x_1 - x_2 + x_3^3 - e^{-x_3} = 0\\ -x_1 * x_3 + 2x_2 - e^{-x_2} = 0\\ 3x_2 - x_3 * x_1 - 2e^{-x_1} = 0 \end{cases}$$

Решение.

Создаём файл fun.m, где задаём пользовательскую функцию (систему данную для решения):

function F = fun(x)

 $F = [2*x(1)-x(2)+x(3)^3-exp(-x(3)); -x(1)*x(3)+2*x(2)-exp(-x(2)); 3*x(2)-x(3)*x(1)-2*exp(-x(2))];$

Из командного окна набираем:

 $x0 = [1\ 1\ 1];$ %задаём начальные условия

x = fsolve(fun', x0)

Результат: x = 0.63098 0.38088 0.12443

Домашняя работа номер 7. Минимизация функции методом линейного программирования среде MatLab.

VII-8. Найти минимум целевой функции F(x,y) = 3x + 2y при указанных ограничениях $x + y \le 11; x + 2y \ge 11; 2x + y \ge 11 (x \ge 0; y \ge 0)$

Решение.

Задаём целевую функцию F в виде столбца: $F = [3\ 2]$ ';

Задаём матрицу ограничений A: $A = [1 \ 1; -1 \ -2; -2 \ -1; -1 \ 0; \ 0 \ -1];$

Задаём вектор столбец В: B = [11; -11; -11; 0; 0];

Применяем встроенную функцию: x = linprog(F, A, B)

Результат: $x = 3.6667 \ 3.6667$

Поясните принцип! Как выполнено условие x>=0,y>=0?

Исправления

Задание 1.

$$\begin{cases}
27x_1 - 3x_2 + 4x_3 = 3 \\
-3x_1 + 8x_2 + x_3 = 1 \\
5x_2 + 15x_3 = 0
\end{cases}$$

Решение.

Исходная матрица коэффициентов и свободных членов, после подстановки переменных.

$$A_0 = \begin{bmatrix} 27 & -3 & 4 & | 3 \\ -3 & 4 & 1 & | 1 \\ 0 & 5 & 15 & | 0 \end{bmatrix}$$
 ОПЯТЬ НЕВНИМАТЕЛЬНОСТЬ?

Коэффициент для обнуления элемента a_{21} будет $k_1 = -a_{21}/a_{11} = -(-3)/27$. Домножаем первую строку на этот коэффициент и прибавляем результат ко второй строке.

$$A_1 = \begin{bmatrix} 27 & -3 & 4 & 3 \\ 0 & 7.6667 & 1.4444 & 1.3333 \\ 0 & 5 & 15 & 0 \end{bmatrix}$$

Обнуление элемента аз не требуется, т.к. он уже равен нулю.

Коэффициент для обнуления элемента a_{32} будет $k_3 = -\frac{a_{32}}{a_{22}} = -(-2.333)/(-2.667)$. Домножаем вторую строку на этот коэффициент и прибавляем результат к третьей строке.

$$A_3 = \begin{bmatrix} 27 & -3 & 4 & 3 \\ 0 & 7.6667 & 1.4444 & 1.4444 \\ 0 & 0 & 14.0579 & -0.8696 \end{bmatrix}$$

Из приведенной к такому виду матрицы находим x_1, x_2, x_3 .

$$x_{3} = \frac{b_{3}}{a_{33}} = -0.0619$$

$$x_{2} = \frac{b_{2} - a_{23} * x_{3}}{a_{22}} = 0.1856$$

$$x_{1} = \frac{b_{1} - a_{13} * x_{2} - b_{2} - a_{23} * x_{3}}{a_{11}} = 0.1409$$

Проверка.

Подставим значения x_1 , x_2 , x_3 в исходную систему уравнений.

$$\begin{cases} 27*(0.1409) - 3*(0.1856) + 4*(-0.0619) = 2.9999 \\ -3*(0.1409) + 8*(0.1856) + 1*(-0.0619) = 1.0002 \\ 0*(0.1409) + 5*(0.1856) + 15*(-0.0619) = -0.0005 \end{cases}$$

Невязка.

$$\Delta b_1 = |3 - 2.9999| = 0.0001$$

$$\Delta b_2 = |1 - 1.0002| = 0.0002$$

$$\Delta b_3 = |0 - (-0.0005)| = 0.0005$$

$$\sigma(b_1) = \frac{0.0001}{3} * 100 = 0.0033$$

$$\sigma(b_2) = \frac{0.0002}{1} * 100 = 0.02$$

$$\sigma(b_3) = |0.0005 - 0| = 0.0005$$

Задание 3.

1.
$$f(0.36) = \frac{\sqrt{4-0.36^2}}{0.36} = \frac{\sqrt{3.8704}}{0.36} = \frac{1.9673}{0.36} = 5.4647 \approx 5.465$$

2. $f(0.52) = \frac{\sqrt{4-0.52^2}}{0.52} = \frac{\sqrt{3.7296}}{0.52} = \frac{1.9312}{0.52} = 3.7138 \approx 3.714$
3. $f(0.68) = \frac{\sqrt{4-0.68^2}}{0.68} = \frac{\sqrt{3.5376}}{0.68} = \frac{1.8809}{0.68} = 2.766$
4. $f(0.84) = \frac{\sqrt{4-0.84^2}}{0.84} = \frac{\sqrt{3.2944}}{0.84} = \frac{1.815}{0.84} = 2.1607 \approx 2.161$
5. $f(1) = \frac{\sqrt{4-1^2}}{1} = \frac{\sqrt{3}}{1} = \frac{1.7321}{1} = 1.7321 \approx 1.732$

Из представленного выше видно, что в изначальных вычислениях ошибки нету, соответственно и представленный график тоже является правильным.

Или я неправильно понял Ваше замечание...

Моя ошибка, Вы правы

Задание 4.

Метод Хорд

$$x=b-rac{b-a}{f(b)-f(a)}f(b)$$
 , погрешность $e=|x_i-x_{i-1}|$

	м-д хорд						
	а	f(a)	b	f(b)	xi	f(xi)	е
1	0.05	16.9875	0.1	-3.025	0.0924	-1.388	-
2	0.05	16.9875	0.0924	-1.388	0.0892	-0.6099	0.003206
3	0.05	16.9875	0.0892	-0.6099	0.0879	-0.2627	0.00136
4	0.05	16.9875	0.0879	-0.2627	0.0873	-0.1122	0.000577
5	0.05	16.9875	0.0873	-0.1122	0.0871	-0.0477	0.000245
6	0.05	16.9875	0.0871	-0.0477	0.087	-0.0203	0.000104

Метод простых итераций

начальное приближение $x_0 = \frac{a+b}{2} = 0.075$, погрешность $e = |x_i - x_{i-1}|$.

Для сходимости метода необходимо использовать коэффициент коррекции k.

$$k = -\frac{2}{f'(0.075)} = 0.0056$$

Проверка условия |1 + k * f'(x)| < 0:

$$|1 + 0.0056 * f'(0.075)| = 0.9925$$

Условие выполняется т.к. 0.9925<1

	м-д простых итераций							
	хi	xi+1	е					
1	0.075	0.0954	0.020428					
2	0.0954	0.0839	0.011568					
3	0.0839	0.0885	0.004638					
4	0.0885	0.0861	0.002368					
5	0.0861	0.0872	0.001115					
6	0.0872	0.0867	0.000548					

Задание 7.

VII-8. Найти минимум целевой функции F(x,y)=3x+2y при указанных ограничениях $x+y\leq 11; x+2y\geq 11; 2x+y\geq 11$ ($x\geq 0; y\geq 0$)

Решение.

Приведём указанные ограничения к системе вида $AX \leq B$:

$$\begin{cases} x+y \le 11 \\ -x-2y \le -11 \\ -2x-y \le -11 \\ -x \le 0 \\ -y \le 0 \end{cases}$$

Задаём целевую функцию F в виде столбца: $F = [3\ 2]$;

Задаём матрицу ограничений А: $A = [1 \ 1; -1 \ -2; -2 \ -1; -1 \ 0; \ 0 \ -1];$

Задаём вектор столбец В: B = [11; -11; -11; 0; 0];

Применяем встроенную функцию: x = linprog(F, A, B)

Результат: $x = 3.6667 \ 3.6667$

