Linear Algebra 2 – Practicals

Lukas Prokop

summer term 2016

Contents

1	Exercise 1	2
2	Exercise 3	3
3	Exercise 2	3
4	Exercise 4	4
5	Exercise 5	5
6	Exercise 6	6
7	Exercise 8	7
8	Exercise 9	8

1 Exercise 1

Exercise 1. Determine the matrix representation of the linear map

$$f: \mathbb{R}_1[x] \to \mathbb{R}_2[x]$$

$$p(x) \mapsto (x-1) \cdot p(x)$$

in regards of bases $B = \{1 - x, 1 + x\} \subseteq \mathbb{R}_1[x]$ and $C = \{1, 1 + x, 1 + x + x^2\} \subseteq \mathbb{R}^2[x]$.

$$f: \mathbb{R}_{1}[x] \to \mathbb{R}_{2}[x]$$

$$f: p(x) \mapsto (x-1)p(x)$$

$$B = \{1 - x, 1 + x\} =: \{b_{1}, b_{2}\}$$

$$C = \{1, 1 + x, 1 + x + x^{2}\} =: \{c_{1}, c_{2}, c_{3}\}$$

Find $A \in \mathbb{K}^{3 \times 2} =: M_C^B(f)$.

$$\forall v \in \mathbb{R}_1 : f(v) = w : \Phi_C(w) = A\Phi_B(v)$$

$$f(b_1) = (1 - x)(x - 1) = -x^2 + 2x - 1$$
$$f(b_2) = (x - 1)(x + 1) = x^2 - 1$$

$$\Phi_C(f(b_1))$$

Coefficient comparison:

$$-x^{2} + 2x - 1 = \lambda_{1} \cdot 1 + \lambda_{2}(1+x) + \lambda_{3}(1+x+x^{2})$$

$$x^{2} : \lambda_{3} = -1$$

$$x^{1} : 2 = \lambda_{2} + \lambda_{3} \Rightarrow \lambda_{2} = 3$$

$$x^{0} : -1 = \lambda_{1} + \lambda_{2} + \lambda_{3} \Rightarrow \lambda_{1} = -3$$

$$\Phi_{C}(f(b_{1})) = \begin{pmatrix} 3\\3\\1 \end{pmatrix}$$

$$\Phi_{C}(f(b_{2})) : x^{2} = 1 = \lambda_{1} \cdot 1 + \lambda_{2}(1+x) + \lambda_{3}(1+x+x^{2})$$

$$x^{2} : \lambda_{3} = 1$$

$$x^{1} : \lambda_{2} + \lambda_{3} = 0 \Rightarrow \lambda_{2} = -1$$

$$x^{0} : -1 = \lambda_{1} + \lambda_{2} + \lambda_{3}$$

$$-1 = \lambda_{1} - 1 + 1$$

$$-1 = \lambda_{1}$$

$$\Phi_C(f(b_2)) = \begin{pmatrix} -1\\-1\\1 \end{pmatrix}$$

$$A = \begin{pmatrix} -3 & -1 \\ 3 & -1 \\ 1 & 1 \end{pmatrix}$$

2 Exercise 3

Exercise 2. Let A_1, A_2, \ldots, A_k be quadratic $n \times n$ matrices over the field \mathbb{K} . Show that the product $A_1 A_2 \ldots A_k$ is invertible if and only if all A_i are invertible.

All A_i are invertible, then $\prod A_i$ is invertible.

A, B invertible, then AB is invertible and $(AB)^{-1} = B^{-1}A^{-1}$. Generalize by induction.

If $\prod A_i$ is invertible, then all A_i are invertible.

Sidenote: We know that $rank(A) = n - \dim kernel(A)$.

k = 1 trivial

k=2 A_1A_2 is invertible. Let $C=(A_1A_2)^{-1}$. Then $CA_1A_2=I_n$. Let $x\in \mathrm{kernel}(A_2)\Rightarrow A_2x=0\Rightarrow\underbrace{CA_1}_{I_n}A_2x=CA_10=0$.

 $kernel(A_2) = 0 \Rightarrow rank(A_2) = n - 0 : n \Rightarrow A_2$ invertible

$$A_1 = \underbrace{A_1 A_2}_{\text{invertible}} \cdot \underbrace{A_2^{-1}}_{\text{invertible}}$$

 $k \to k+1$ Let $A_1 \dots A_{k+1}$ is invertible $\Rightarrow (A_1, \dots, A_k)A_{k+1}$ is invertible $\stackrel{k=2}{\Longrightarrow} A_1, \dots, A_k$ is invertible, A_{k+1} invertible.

Remark: $A, B \in \mathbb{K}^{n \times n}$. B is inverse of A

$$\Leftrightarrow AB = I = BA \Leftrightarrow AB = I \Leftrightarrow BA = I$$

3 Exercise 2

Exercise 3. Let V be a vector space and $f:V\to \mathbb{V}$ is a nilpotent linear map, hence there exists some $k\in\mathbb{N}$ such that $f^k=0$.

3.1 Part a

Exercise 4. Show that $id_V - f$ is invertible with $(id_V - f)^{-1} = id_V + f + f^2 + \ldots + f^{k-1}$.

Show that: $(id_v - f)^{-1} = \sum_{i=0}^{k-1} f^i$.

$$(\mathrm{id}_V - f) \circ \left(\sum_{i=0}^{k-1} f^i\right) = \mathrm{id}_V \circ \sum_{i=0}^{k-1} f^i - f \circ \sum_{i=0}^{k-1} f^i - \sum_{i=0}^{k-1} f^{i+1} = f^0 + \sum_{i=1}^{k-1} f^i - \sum_{i=1}^{k-1} f^i - f^k = \mathrm{id}_V - 0 = \mathrm{id}_V$$

3

and $\left(\sum_{i=0}^{k-1} f^i\right) \circ (\mathrm{id}_V - f)$ analogously.

3.2 Part b

Exercise 5. Use part a) to determine the inverse of the matrix

$$\begin{pmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

 \Rightarrow f nilpotent.

4 Exercise 4

4.1 Part a

Exercise 6. Let A be an invertible $n \times n$ matrix over a field \mathbb{K} and u, v are column vectors (hence $n \times 1$

matrices), such that $\sigma 1 + v^t A^{-1} u \neq 0$. Show that $(A + uv^t)$ is invertible and that

$$(A + uv^{t})^{-1} = A^{-1} - \frac{1}{\sigma} A^{-1} uv^{t} A^{-1}$$

4.2 Part b

Exercise 7. Apply this formula to determine the inverse of the matrix

$$A = \begin{pmatrix} 5 & 3 & 0 & 1 \\ 3 & 2 & 0 & 0 \\ 0 & 0 & 2 & 3 \\ 0 & 0 & 3 & 5 \end{pmatrix}$$

A is invertible, because it is a block matrix 1 .

$$A^{-1} = \begin{pmatrix} 2 & -3 & 0 & 0 \\ -3 & 5 & 0 & 0 \\ 0 & 0 & 5 & -3 \\ 0 & 0 & -3 & 2 \end{pmatrix}$$

$$\sigma = 1 + \begin{pmatrix} 0 & 0 & 0 & 1 \end{pmatrix} A^{-1} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} = 1 + 0 \neq 0$$

$$\Rightarrow B^{-1} = A^{-1} - A^{-1} \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 1 \end{pmatrix} A^{-1} = \begin{pmatrix} 2 & -3 & 6 & -4 \\ -3 & 5 & -9 & 6 \\ 0 & 0 & 5 & -3 \\ 0 & 0 & -3 & 2 \end{pmatrix}$$

5 Exercise 5

Exercise 8. Show that the linear maps $f, g, h : \mathbb{R}^2 \to \mathbb{R}^2$ defined as

$$f:(x_1,x_2)\mapsto (x_1+x_2,x_1-x_2)$$
 $g:(x_1,x_2)\mapsto (x_1+x_2,x_1+x_2)$ $h:(x_1,x_2)\mapsto (x_2,x_1)$

are linear independent, if they are considered as elements of the vector space $\text{Hom}(\mathbb{R}^2,\mathbb{R}^2)$ of all maps from \mathbb{R}^2 to \mathbb{R}^2 .

Let $\lambda_1, \lambda_2, \lambda_3 \in \mathbb{R}$. Show that

$$\lambda_1 f + \lambda_2 g + \lambda_3 h = 0 \stackrel{!}{=} \lambda_1 = \lambda_2 = \lambda_3 = 0$$

¹That's why chose A and S that way

$$f: x \mapsto Ax$$
 $A_f = \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix}$ $A_g = \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}$ $A_n = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Is an isomorphism, $\operatorname{Hom}(\mathbb{R}^2, \mathbb{R}^2) \to \mathbb{R}^{2 \times 2}$ with $f \mapsto A_f$.

$$\lambda_1 \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} + \lambda_2 \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} + \lambda_3 \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ -1 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 2 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$\Rightarrow \lambda = 0 \forall i \in \{1, 2, 3\}$$

Exercise 6 6

Exercise 9. Let V be a vector space with dim $V = n < \infty$ and $U \subseteq V$ is a subspace with dim U = m.

1. Show that

$$U^{\perp} = \{ v^* \in V^* \mid U \subseteq \text{kernel}(v^*) \}$$

is a subspace of V^* .

2. Determine dim U^{\perp} .

3. Is $\{v^* \in V^* \mid U = \text{kernel } v^*\}$ also a subspace?

 U^{\perp} is called orthogonal space or annihilation of U.

1.

$$U^{\perp} = \{ v^* \in V^* \mid U \subseteq \text{kernel}(v^*) \}$$

 $v^* \in \text{Hom}(V, \mathbb{K}).$

$$\operatorname{kernel}(v^*) = \{x \in V \mid v^*(x) = 0\} \supseteq U \Leftrightarrow \forall x \in U : v^*(x) = 0$$

 U^{\perp} is nonempty

The constant zero-function $u: V \to \mathbb{K}$ with $x \mapsto 0 \in U^{\perp}$ exists. Hence $U^{\perp} \neq \emptyset$.

Additivity: $\bigwedge_{\mathbf{u}_1,\mathbf{u}_2\in\mathbf{U}^{\perp}}\mathbf{u}_1+\mathbf{u}_2\in\mathbf{U}^{\perp}$

Let $u_1, u_2 \in \tilde{U}^{\perp}$ be linear. Let $x \in U$.

$$(u_1 + u_2)(x) = \underbrace{u_1(x)}_{\in II^{\perp}} + \underbrace{u_2(x)}_{\in II^{\perp}} = 0 + 0 = 0$$

 $\begin{array}{ll} \textbf{Multiplication:} \ \bigwedge_{\lambda \in \mathbb{K}} \bigwedge_{\mathbf{u} \in \mathbf{U}^{\perp}} \lambda \cdot \mathbf{u} \in \mathbf{U}^{\perp} \\ \text{Let } \lambda \in \mathbb{K}, \ u \in U^{\perp} \ \text{and} \ x \in U. \end{array}$

$$(\lambda \cdot u)(x) = \lambda \cdot \underbrace{u(x)}_{\in U^{\perp}} \Rightarrow \lambda \cdot 0 = 0$$

2.

$$\dim V = n$$
 $\dim V^* = n$ $\dim U = m$

U is subspace of *V*, so $m \le n$.

$$k := \dim U^{\perp} \le n = \dim V^*$$

Let (u_1, \ldots, u_m) be basis of U.

We apply the basis extension theorem: Let $(u_1, \ldots, u_m, u_{m+1}, \ldots, u_n)$ be a basis of V.

Let (v_1^*, \ldots, v_n^*) the dual basis to (v_1, \ldots, v_n) to V^* . Hence

$$v_1^*(v_j) = \delta_{ij} = \begin{cases} 1 & i = j \\ 0 & i \neq j \end{cases}$$

Claim: $U^{\perp} = L(\{v_{m+1}^*, \dots, v_n^*\}) \Rightarrow (v_{m+1}^*, \dots, v_n^*)$ is basis of $U^{\perp} \Rightarrow \dim U^{\perp} = n - m$. Let $v \in V^*$ be arbitrary, $v = \lambda_1 v_1^* + \dots + \lambda_n v_n^*$.

$$v \in U^{\perp} \Leftrightarrow \forall x \in U : v(x) = 0 \Leftrightarrow v|_{U} = 0 \xrightarrow{(u_{1}, \dots, u_{m}) \text{ is basis of } U} v(u_{i}) = 0 \quad i = 1, \dots, m$$

$$\Leftrightarrow \forall i \in \{1, \dots, m\} \ (\lambda_{1}v_{1}^{*} + \dots + \lambda_{n}v_{n}^{*})(v_{i}) = 0$$

$$\Leftrightarrow \forall i \in \{1, \dots, m\} \ v_{1}v_{1}^{*}(v_{i}) + \dots + \lambda_{n}v_{n}^{*}(v_{i}) = 0$$

$$\Leftrightarrow v^{k} \in L(v_{m+1}^{*}, \dots, v_{n}^{*})$$

$$\Leftrightarrow \forall i \in \{1, \dots, m\} \ \lambda_{i} = 0$$

$$\pi: V \to V/U$$

$$x \mapsto v + U$$

$$\pi^{t}: (V/U)^{*} \to V^{*}$$

$$w \to w \circ \pi$$

 π surjective, then π^t is injective and

$$\operatorname{image}(\pi^t) = U^t \Rightarrow V_{II}^{\quad k} \to U^{\perp}$$

3. Is $\{v^* \in V^* \mid U = \text{kernel } v^*\}$ also a subspace?

Counterexample: Let $u = \{0\}$ and $V \neq \{0\}$.

$$kernel(v^*) = \{x \in V \mid x^*(x) = 0\} = \{0\} = U$$

If it is a subspace, then the constant null function (which is the zero element of this set) must be contained. This is a contradiction to "only x = 0 maps to 0".

7 Exercise 8

Exercise 10. Let $\mathbb{R}[x]$ be the vector space of real polynomials. Show that the dimension of the dual space $\mathbb{R}[x]^*$ is overcountable.

Hint: Show that linear functionals $(\delta_t)_{t\in\mathbb{R}}$ defined as $\langle \delta_t, p(x) \rangle = p(t)$ (function application) is linear independent.

"In welchem Vektorraum leben wir?" (Florian Kainrath)

 δ_t are linear maps.

$$\forall p \in \mathbb{R}[x] : \sum_{i=1}^{n} \lambda_t \delta_{t_i}(p(x)) = 0 \Rightarrow \lambda_i = 0 \forall i \in \{1, \dots, n\}$$

$$\forall p \in \mathbb{R}[x] : \sum_{i=1}^{n} \lambda_t p(t_i) = 0 \Rightarrow \lambda_i = 0$$

Consider the polynomial $(x - t_1)(x - t_2) \dots (x - \hat{t}_j)(x - t_{j+1}) \dots (x - t_n) = p(x)$.

$$\Rightarrow \sum_{i=1}^{n} \lambda_{i} p_{j}(t_{i}) = 0 \Leftrightarrow \lambda_{j} p_{j}(t_{j}) = 0 = \lambda_{j} = 0$$

8 Exercise 9

Exercise 11. Let $f \in \text{Hom}(V, W)$ be a linear map between two finite-fimensional vector spaces with bases $B \subseteq V$ and $C \subseteq W$. Show that the matrix representation of the transposed map

$$f^t: W^* \to V^*$$

$$w^* \mapsto w^* \circ f$$

in regards of the dual basis C^* and B^* has the matrix representation

$$\Phi_{B^*}^{C^*}(f^t) = \Phi_C^B(f)^t$$

Show that $f \in \text{Hom}(V, W)$ and $B = (b_1, \dots, b_m)$ is basis of V with dual basis $B^* = (b_1^*, \dots, b_m^*)$. $C = (c_1, \dots, c_n)$ is basis of W with dual basis $C^* = (c_1^*, \dots, c_n^*)$.

$$\Phi_{B^*}^{C^*}(f^t) = \Phi_C^B(f)^t$$

$$A := \Phi_C^B(f)$$

 $\Phi_{B^*}^{C^*}(f^t) = P = A^t \forall i \in \{1, \dots, n\} \ j \in \{1, \dots, m\} \text{ and } a_{ij} = p_{ji}. \ A \in \mathbb{K}^{n \times m} \text{ and } P \in \mathbb{K}^{m \times n}.$

$$(a_{ij}) = A = \Phi_C^B(f) \Leftrightarrow \forall j \in \{1, \dots, m\}$$

$$\Phi_C(f(b_j)) = A\Phi_B(b_j) = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{nj} \end{pmatrix} \Leftrightarrow A = \begin{pmatrix} a_{1j} \\ \vdots \\ a_{nj} \end{pmatrix} \Phi_C^{-1}$$

$$f(b_j) = \sum_{i=1}^n a_{ij}c_i \qquad \forall j \in \{1, \dots, m\}$$

$$(p_{ij}) = p = \Phi_{B^*}^{C^*}(f^t) \Leftrightarrow f^t(c_j^*) = \sum_{i=1}^m p_{ij} b_i^* \forall j \in \{1, \dots, n\}$$

$$\Leftrightarrow f^{t}(c_{j}^{*}) \text{ with } j \in \{1, \dots, n\} = \sum_{i=1}^{m} p_{ij} b_{i}^{*} \stackrel{w}{\Leftrightarrow} c_{i} \circ f = \sum_{i=1}^{m} p_{ij} b_{i}^{*} \forall j \in \{1, \dots, n\}$$

Show that $a_{kj} = p_{ik}$ with $k \in \{1, ..., n\}, j \in \{1, ..., m\}$.

$$a_{kj} = C_k^* \left(\sum_{i=1}^n a_{ij} c_i \right) = c_k^* \left(f(b_j) \right) = \left(f^t(c_k^*)(b_j) \right) = \left(\sum_{i=1}^m p_{ik} b_i^* \right) (b_i) = p_{jk}$$