

## Chomsky-Schützenberger theorem

Canonical name ChomskySchutzenbergerTheorem

Date of creation 2013-03-22 18:55:40 Last modified on 2013-03-22 18:55:40

Owner CWoo (3771) Last modified by CWoo (3771)

Numerical id 5

Author CWoo (3771)
Entry type Theorem
Classification msc 68Q42
Classification msc 68Q45

An important characterization of context-free languages is captured in what is known as the Chomsky-Schützenberger theorem. It shows the intimate connection between context-free and parenthesis languages.

**Theorem 1** (Chomsky-Schützenberger). A langauge L over an alphabet  $\Sigma$  is context-free iff for some  $n \geq 0$ , there there is a homomorphism  $h: \Sigma_n^* \to \Sigma^*$  such that

$$L = h(\mathbf{Paren}_n \cap R),$$

where  $\mathbf{Paren}_n$  is the parenthesis language over  $\Sigma_n$ , and R is a regular language (over  $\Sigma_n$ ).

Note that the "if" part is the trivial consequence of the following facts: parenthesis languages are context-free; any homomorphic image of a context-free language is context-free; any intersection of a context-free language with a regular language is context-free.

## References

- [1] N. Chomsky, M.P. Schützenberger, The Algebraic Theory of Context-Free Languages, Computer Programming and Formal Systems, North-Holland, Amsterdam (1963).
- [2] D. C. Kozen, Automata and Computability, Springer, New York (1997).