# A crash course on relational database design

**Professor Hossein Saiedian** 

**EECS 348: Software Engineering** 

Fall 2023



## **DBMS** and a database



- A DBMS is a set of programs
- DBMS contains information about a particular enterprise
  - Collection of interrelated data
  - Set of programs to access the data
  - Provides an environment that is both convenient and efficient to use
- Database systems are used to manage collections of data that are
  - Relatively large
  - Accessed by multiple users and applications, often at the same time

# A simplified architecture for a DBMS





## A simplified architecture for a Database





## Example of a database



A UNIVERSITY environment or mini-world

| Some mini-world entities | Some mini-world relationships      |
|--------------------------|------------------------------------|
| STUDENTS                 | SECTIONs are of specific COURSEs   |
| COURSEs                  | STUDENTs take SECTIONs             |
| SECTIONs (or COURSEs)    | COURSEs have prerequisite COURSEs  |
| DEPARTMENTS              | INSTRUCTORs teach SECTIONs         |
| INSTRUCTORs              | COURSEs are offered by DEPARTMENTs |
|                          | STUDENTs major in DEPARTMENTs      |

 Note: The above entities and relationships are typically expressed in a conceptual data model, such as the UML class diagram or the entity-relationship (ER) model

# **Example of a database**



#### COURSE

| Course_name               | Course_number | Credit_hours | Department |
|---------------------------|---------------|--------------|------------|
| Intro to Computer Science | CS1310        | 4            | CS         |
| Data Structures           | CS3320        | 4            | CS         |
| Discrete Mathematics      | MATH2410      | 3            | MATH       |
| Database                  | CS3380        | 3            | CS         |

#### **SECTION**

| Section_identifier | Course_number | Semester | Year | Instructor |
|--------------------|---------------|----------|------|------------|
| 85                 | MATH2410      | Fall     | 04   | King       |
| 92                 | CS1310        | Fall     | 04   | Anderson   |
| 102                | CS3320        | Spring   | 05   | Knuth      |
| 112                | MATH2410      | Fall     | 05   | Chang      |
| 119                | CS1310        | Fall     | 05   | Anderson   |
| 135                | CS3380        | Fall     | 05   | Stone      |

#### GRADE\_REPORT

| Student_number | Section_identifier | Grade |
|----------------|--------------------|-------|
| 17             | 112                | В     |
| 17             | 119                | С     |
| 8              | 85                 | А     |
| 8              | 92                 | Α     |
| 8              | 102                | В     |
| 8              | 135                | Α     |

#### **PREREQUISITE**

| Course_number | Prerequisite_number |
|---------------|---------------------|
| CS3380        | CS3320              |
| CS3380        | MATH2410            |
| CS3320        | CS1310              |

Table Name

Column

Row  $A_1 \quad \dots \quad A_n$ Row  $a_{1,1} \quad \dots \quad a_{1,n} \leftarrow$ Table Entry  $\vdots \quad \vdots \quad \vdots$ Row  $a_{m,1} \quad \dots \quad a_{m,n}$ 

## The relational model





E.F. "Ted" Codd



## Database languages



- Data Definition Language (DDL)
  - Used by the DBA and database designers to specify the conceptual schema of a database; to define views
- Data Manipulation Language (DML)
  - Used to specify database retrievals and updates
  - DML commands can be embedded in a general-purpose programming language (e.g., C++)

## **DBMS** interfaces



- Stand-alone query language interfaces (e.g., SQL)
- Programmer interfaces for embedding DML in a PL
- User-friendly interfaces (menu-based, forms-based)
- Natural language: requests in written English
- Combinations of the above

# Overview of the DB design process





## A sample database application



The company is organized into *departments*. Each department has a unique name, a unique number, and a particular employee who manages the department. We keep track of the start date when that employee began managing the department. A department may have several locations.

A department controls a number of **projects**, each of which has a unique name, a unique number, and a single location.

The database will store each *employee's* name, Social Security number, address, salary, sex (gender), and birth date. An employee is assigned to one department, but may work on several projects, which are not necessarily controlled by the same department. It is required to keep track of the current number of hours per week that an employee works on each project, as well as the direct supervisor of each employee (who is another employee).

The database will keep track of the *dependents* of each employee for insurance purposes, including each dependent's first name, sex, birth date, and relationship to the employee.

## **Conceptual modeling (UML)**





# Overview of the DB design process





## The relational model



- A relation is a mathematical concept based on the ideas of sets
- The model was first proposed by Dr. E. F. Codd of IBM Research in 1970 in the following paper:
  - "A Relational Model for Large Shared Data Banks,"
     Communications of the ACM, June 1970
- Dr. Codd received the ACM Turing Award

# Company relational database





## **SQL language**



- Structured Query Language
- SQL language: considered one of the major reasons for the commercial success of relational databases
- A comprehensive language: Data definition, schema definition, data manipulation, transaction control, indexing, security specification active databases, ...
- Variations in existing RDBMS systems
- Base relation and virtual relations (views)

# Overview of the DB design process





# Company relational database



#### **EMPLOYEE**

| Fname    | Minit | Lname   | <u>Ssn</u> | Bdate      | Address                  | Sex | Salary | Super_ssn | Dno |
|----------|-------|---------|------------|------------|--------------------------|-----|--------|-----------|-----|
| John     | В     | Smith   | 123456789  | 1965-01-09 | 731 Fondren, Houston, TX | М   | 30000  | 333445555 | 5   |
| Franklin | Т     | Wong    | 333445555  | 1955-12-08 | 638 Voss, Houston, TX    | М   | 40000  | 888665555 | 5   |
| Alicia   | J     | Zelaya  | 999887777  | 1968-01-19 | 3321 Castle, Spring, TX  | F   | 25000  | 987654321 | 4   |
| Jennifer | S     | Wallace | 987654321  | 1941-06-20 | 291 Berry, Bellaire, TX  | F   | 43000  | 888665555 | 4   |
| Ramesh   | K     | Narayan | 666884444  | 1962-09-15 | 975 Fire Oak, Humble, TX | М   | 38000  | 333445555 | 5   |
| Joyce    | Α     | English | 453453453  | 1972-07-31 | 5631 Rice, Houston, TX   | F   | 25000  | 333445555 | 5   |
| Ahmad    | V     | Jabbar  | 987987987  | 1969-03-29 | 980 Dallas, Houston, TX  | М   | 25000  | 987654321 | 4   |
| James    | Е     | Borg    | 888665555  | 1937-11-10 | 450 Stone, Houston, TX   | М   | 55000  | NULL      | 1   |

#### **DEPARTMENT**

| Dname          | <u>Dnumber</u> | Mgr_ssn   | Mgr_start_date |
|----------------|----------------|-----------|----------------|
| Research       | 5              | 333445555 | 1988-05-22     |
| Administration | 4              | 987654321 | 1995-01-01     |
| Headquarters   | 1              | 888665555 | 1981-06-19     |

#### **DEPT\_LOCATIONS**

| <u>Dnumber</u> | Dlocation |
|----------------|-----------|
| 1              | Houston   |
| 4              | Stafford  |
| 5              | Bellaire  |
| 5              | Sugarland |
| 5              | Houston   |

# Company relational database



#### WORKS\_ON

| _         |            |       |
|-----------|------------|-------|
| Essn      | <u>Pno</u> | Hours |
| 123456789 | 1          | 32.5  |
| 123456789 | 2          | 7.5   |
| 666884444 | 3          | 40.0  |
| 453453453 | 1          | 20.0  |
| 453453453 | 2          | 20.0  |
| 333445555 | 2          | 10.0  |
| 333445555 | 3          | 10.0  |
| 333445555 | 10         | 10.0  |
| 333445555 | 20         | 10.0  |
| 999887777 | 30         | 30.0  |
| 999887777 | 10         | 10.0  |
| 987987987 | 10         | 35.0  |
| 987987987 | 30         | 5.0   |
| 987654321 | 30         | 20.0  |
| 987654321 | 20         | 15.0  |
| 888665555 | 20         | NULL  |
| 10        |            |       |

#### **PROJECT**

| Pname           | Pnumber | Plocation | Dnum |
|-----------------|---------|-----------|------|
| ProductX        | 1       | Bellaire  | 5    |
| ProductY        | 2       | Sugarland | 5    |
| ProductZ        | 3       | Houston   | 5    |
| Computerization | 10      | Stafford  | 4    |
| Reorganization  | 20      | Houston   | 1    |
| Newbenefits     | 30      | Stafford  | 4    |

#### **DEPENDENT**

| Essn      | Dependent_name | Sex | Bdate      | Relationship |
|-----------|----------------|-----|------------|--------------|
| 333445555 | Alice          | F   | 1986-04-05 | Daughter     |
| 333445555 | Theodore       | М   | 1983-10-25 | Son          |
| 333445555 | Joy            | F   | 1958-05-03 | Spouse       |
| 987654321 | Abner          | М   | 1942-02-28 | Spouse       |
| 123456789 | Michael        | М   | 1988-01-04 | Son          |
| 123456789 | Alice          | F   | 1988-12-30 | Daughter     |
| 123456789 | Elizabeth      | F   | 1967-05-05 | Spouse       |

## An example of CREATE statement



#### **CREATE TABLE PROJECT**

```
( Pname VARCHAR(15) NOT NULL, Pnumber INT NOT NULL, Plocation VARCHAR(15), INT NOT NULL, PRIMARY KEY (Pnumber), UNIQUE (Pname), FOREIGN KEY (Dnum) REFERENCES DEPARTMENT(Dnumber));
```

- Basic data types
  - Numeric: INTEGER, INT, REAL, FLOAT
  - Character string (fixed length): CHAR (n)
  - Varying length: VARCHAR (n)
  - BOOLEN
  - DATE

**–** ...

## Insert data into the tables



- **INSERT** inserts a tuple (row) in a relation (table)
- Attribute values should be listed in the same order as were specified in the CREATE TABLE command
- Examples

```
VALUES EMPLOYEE ('Richard', 'K', 'Marini', '653298653', '1962-12-30', '98 Oak Forest, Katy, TX', 'M', 37000, '653298653', 4 );
```

INSERT INTO WORKS\_ON\_INFO (Emp\_name, Proj\_name,

Hours\_per\_week )

SELECT E.Lname, P.Pname, W.Hours

FROM PROJECT P, WORKS\_ON W, EMPLOYEE E

WHERE P.Pnumber=W.Pno AND W.Essn=E.Ssn;

## Other data/table commands



 Update: Used to modify attribute values of one or more selected tuples

UPDATE PROJECT

SET PLOCATION = 'Bellaire', DNUM = 5

WHERE PNUMBER=10

Delete: Removes tuples from a relation

DELETE FROM EMPLOYEE

WHERE Lname='Brown';

## **SQL** data manipulation



- The ubiquitous SELECT construct forms the core of the SQL DML query language
- **SELECT** embodies the principal data language operations
  - Iteration over rows of (multiple) tables, filtering based on predicates
  - Computation over column values (expression evaluation), construction of literal tables
  - Grouping of rows and aggregation of all (or groups of) values in a column

And lots more ...

# **SQL: SELECT**



SELECT ... 3

FROM ... 1

WHEN ... 2



Data flow through a SQL SELECT-FROM-WHERE block

# SQL grouping and aggregation





# Referencing attributes



- In general, attributes are referenced as R.A where R is a tuple variable and A is an attribute
- When there is no ambiguity, the tuple variable may be deleted

**SELECT** S.lastname F.lastname gpa **FROM** Students S, Faculty F

**WHERE** S.lastname = 'Idena';

# SQL: grouping and aggregation



The HAVING and ORDER clauses; very useful in DS queries

SELECT Major, AVERAGE(GPA)
FROM STUDENT
WHERE ExpGraduateYr = "2024"
GROUP BY Major
HAVING AVERAGE(GPA) >= 3.0
ORDER BY Major;



Queries 9 and 10. Select all EMPLOYEE Ssns (Q9) and all combinations of EMPLOYEE Ssn and DEPARTMENT Dname (Q10) in the database.

Q9: SELECT Ssn

FROM EMPLOYEE;

Q10: SELECT Ssn, Dname

FROM EMPLOYEE, DEPARTMENT;

Q1C: SELECT \*

FROM EMPLOYEE

WHERE Dno=5;

Q1D: SELECT \*

FROM EMPLOYEE, DEPARTMENT

WHERE Dname='Research' AND Dno=Dnumber;

Q10A: SELECT \*

FROM EMPLOYEE, DEPARTMENT;



**Query 4.** Make a list of all project numbers for projects that involve an employee whose last name is 'Smith', either as a worker or as a manager of the department that controls the project.

Q4A: (SELECT DISTINCT Pnumber

FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE Dnum=Dnumber AND Mgr\_ssn=Ssn

AND Lname='Smith')

UNION

SELECT DISTINCT Pnumber

FROM PROJECT, WORKS\_ON, EMPLOYEE

WHERE Pnumber=Pno AND Essn=Ssn

AND Lname='Smith');

Query 18. Retrieve the names of all employees who do not have supervisors.

Q18: SELECT Fname, Lname

FROM EMPLOYEE

WHERE Super\_ssn IS NULL;



Make a list of all project numbers for projects that involve employee Smith either as worker or as a manager of the department that controls the project

Q4A: SELECT DISTINCT Pnumber

FROM PROJECT
WHERE Pnumber IN

( SELECT Pnumber

FROM PROJECT, DEPARTMENT, EMPLOYEE

WHERE Dnum=Dnumber AND

Mgr\_ssn=Ssn AND Lname='Smith')

OR

Pnumber IN

( SELECT Pno

FROM WORKS\_ON, EMPLOYEE

WHERE Essn=Ssn AND Lname='Smith');



**Query 16.** Retrieve the name of each employee who has a dependent with the same first name and is the same sex as the employee.

Q16: SELECT E.Fname, E.Lname

FROM EMPLOYEE AS E

WHERE E.Ssn IN ( SELECT Essn

FROM DEPENDENT AS D

WHERE E.Fname=D.Dependent\_name

AND E.Sex=D.Sex );

List the managers who have at least one dependent

SELECT Fname, Lname

FROM Employee

WHERE **EXISTS** (SELECT \*

FROM DEPENDENT WHERE Ssn= Essn)

AND **EXISTS** (SELECT \*

FROM Department

WHERE Ssn= Mgr\_Ssn)

## **Summary**



- Functions of database systems
  - Persistence
  - Physical and logical data independence
  - High data safety and availability (backup & recovery)
  - Integrity enforcement
  - View management
  - Security via data access control
- SQL: A comprehensive language for relational databases
  - Constructs for data definition, data manipulation, queries, updates, constraint specification, and view definition

## Sources



- Elmasri and Navathe, *Fundamentals of Database Systems*, 7<sup>th</sup> Edition, Pearson, 2016
- Silberschatz, Korth , and Sudarshan, *Database System Concepts*, 7<sup>th</sup> Edition, McGraw-Hill, 2019
- Prof. Dr. Torsten Grust, Lecture Notes on Foundations of Databases, 2011