Московский физико-технический институт (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Отчет о выполнении лабораторной работы №1.3.1(2)

Определение модуля юнга и модуля сдвига

Выполнил студент группы Б03-405 Тимохин Даниил

1. Аннотация

В данной работе исследовалась зависимость упругих деформаций от внешних факторов. Находятся модуль Юнга и модуль сдвига материалов, из которых изготовлены экспериментальных установок. Проверяется теоретические зависимости деформаций от внешних факторов.

2. Теоретическая справка

2.1.Измерение модуля Юнга (Эксперимент 1)

По закону Гука зависимость приложенной силы растяжения

$$\sigma = E \cdot \frac{\Delta l}{l} \tag{1}$$

$$F = S \cdot \sigma \tag{2}$$

Измерения проводились на установке Лермантова(рис 1). Но в нашей вметсо трубы использовался лазер. Зная l_{us} - расстояние от зеркала до шкалы, а также зная, что изменение угола между направлением лазер-заеркало и зеркало-"прекция на шкале"будет в два раза больше угла между горизонтом и треугольником, уприающимся в цилиндр, получим

$$\Delta l = r_{mpeye} \cdot \sin \frac{\arctan \frac{\Delta x}{l_{uus}}}{2} \tag{3}$$

Из этого получаем, что $\epsilon_{\Delta l} \approx \sqrt{\epsilon_{\Delta x}^2 + \epsilon_{\Delta l_{us}}^2}$

Сама установка сделана так, чтобы кронштейн K не влиял на **Рис. 1.** Установка измерения. Поэтому грузы висят на конце кронштейна, где за- Лермантова креплен исследуемый образец, чтобы его деформация оставалаь постоянной вне зависмости от того, какая сила приложена к исследуемомоу образцу.

2.2.Измерение модуля сдвига в динамике (Эксперимент 2)

Из формулы вращательного движения

$$I\frac{d^2\varphi}{dt^2} = -M\tag{4}$$

М - модуль момента сил, которыц определяется по формуле $M=f\varphi.$ Тогда получаем каноническое уравнение колебаний.

$$\frac{d^2\varphi}{dt^2} + \frac{f}{I}\varphi = 0 \tag{5}$$

Тогда $\omega^2 = \frac{f}{I}$ и период колебаний связан с моментом инерции и модулем кручения по формуле

$$T = 2\pi \sqrt{\frac{I}{f}} \tag{6}$$

Где f - модуль кручения, который вычисляется $f = \frac{\pi R^4 G}{2l}$ (то есть зависит от геометрических параметров объекта).

Рис. 2. Крутильный маятник маятник

2.3.Измерение модуля сдвига в статике (Эксперимент 3)

Эта установка проще, чем предыдущая. Здесь момент сил создаётся за счёт подвешанных грузов. С обоих сторон необходимо повесить одинаковые грузы, чтобы момент сил был равномерным и не возникла поступательная составляющая.

Тогда $M=2l_{\mathit{nneu}}mn$ и аналогично предыдущему опыту $\varphi\cdot f=M.$

В данном опыте необходимо будет проверить, будет ли у нас линейная зависимость между момнетом силы и углом закручивания нижней грани.

Важное уточнение - вместо зеркала находится лазер, поэтому

$$\varphi = \frac{x}{l_{mu}},\tag{7}$$

где l_{nu} - расстояние от лазера до шкалы.

3 установки Линейка Счётчик колебаний для второй Набор грузов для тртей установки Штангенциркуль и микрометр

4.1.Эксперимент 1

Сначала измерим необходимые параметры.

$$l_{uu3} = 1.488 \text{ M}$$

$$l_{ниm} = 1.76 \text{ м}$$

$$r_{mpeys} = 0.013$$
 м

d=0.00073 м - диаметр проволки

Из методички мы получаем, что максималаьная нагрузка для неупругих деформаций $\approx 11~{\rm kr}.$

В эксперименте снимем зависимость показаний на линйке от грущов, подвешанных на О.

Далее в обработке будем пользоваться $\Delta x = x - x_0$ и m - масса, которую мы положили на O. Тогда пользуямь формулами 1-2.

$$\Delta l = r_{mpeye} \cdot \sin \frac{\arctan \frac{\Delta x}{l_{us}}}{2} \approx r_{mpeye} \cdot \frac{\Delta x}{2l_{us}}$$

$$mg = ES \frac{\Delta l}{l_{num}}$$
(8)

Тогда у нас должна получиться линейная зависимость от Δx , но для большей точности переведём по общей вормуле в Δl .

Получаем, что при аппроксимации прямой зависимости mg от $\Delta x \ k = \frac{E\pi d^2}{4l}$ По результатам аппроксимации получим $k = 44098 \pm 336 \ \frac{H}{M}$ (рис. 4)

Так как $k \gg b$, то мы получаем, что наша линейная теория теория верна в упругих деформациях.

И тогда получаем, что $E=185\pm 2 \varGamma \Pi a$, что близко к модулю юнга стали.

ę	
Б 0 Н	С
	Д
	5 5 5 E
	, Å.
	Ü

Рис. 3. Установка

тг	v cM
т, г	X, CM
0	26
245.8	27.3
491.9	28.85
737.4	29.9
982.9	31.1
1228.5	32.2
1473.7	33.45
1719.4	35
1965	36.15
2211.1	37.5
2456.8	38.75
2211.1	37.4
1965	36
1719.4	35
1473.7	33.7
1228.5	32.4
982.9	31
737.4	30
491.9	29
245	27.4
0	26.1

Рис. 4. Аппроксимация прямой y = kx + b зависимости $mg(\Delta l)$

4.2.Эксперимент 2

Будем постепенно попарно двигать грузуики для увеличения момента инерции. Тогда формула момента инерции будет выглядеть так

$$I = m_1 \cdot (r_1 - r_g/2)^2 + m_2 \cdot (r_1 + r_g/2)^2 + m_3 \cdot (r_2 - r_g/2)^2 + m_4 \cdot (r_2 + r_g/2)^2, \tag{9}$$

где r_1 - расстояние до первой пары и r_2 - расстояние до второй пары.

 $r_g{=}0.04$ м, $m_1{=}0.2041$ кг, $m_2{=}0.2025$ кг, $m_3{=}0.2044$ кг, $m_4{=}0.2049$ кг, $R{=}0.00078$ м, $l{=}1.734$ м.

При этом, так как зависимость через корень, то линейной будет зависимость $T^2(I)$. При этом $k=\frac{4\pi^2}{f}$ и так как $f=\frac{\pi R^4 G}{2l}$, то $G=\frac{2lf}{\pi R^4}=\frac{8l\pi}{kR^4}$

Получаем $k=1717\pm 9~\frac{\kappa z\cdot m^2}{c^2}$ (рис 5) и тогда $G=68.6\pm 0.4~\Gamma\Pi a$, что находится между медью и сталью, а значит скорее всего это сплав меди и стали.

Рис. 5. Аппроксимация прямой y = kx + b зависимости $T^2(I)$

4.3.Эксперимент 3

Из теории для этого эксперимента получим, что нам необходимо исследовать зависимость $\Delta \varphi(\Delta m)$. При этом

Находим угол сдвига

$$\Delta \varphi = \frac{\Delta x}{l_{nu}} \tag{10}$$

Теоретическая зависимость

$$\Delta \varphi = \frac{2\Delta mgl_{nneu}}{f} \tag{11}$$

 $l_{\textit{плеч}}{=}0.051$ м, $l_{\textit{ли}}{=}1.435$ м, $R{=}0.0025$ м, $l{=}1.328$ м. Получим $k=0.272\pm0,002$ $\frac{1}{H{*}_*{M}}$ (рис 5), $f=\frac{1}{k}$ из чего аналогично второму эксперименту получаем $G=79.5{\pm}0.5$ $\Gamma\Pi a$, что очень близко к значению стали.

Δm , гр
0
100
200
250
300
350
400
450
400
350
300
250
200
100
0

Рис. 6. Аппроксимация прямой y = kx + b зависимости $\Delta \varphi(\Delta m)$

5. Обсуждение результатов и выводы

В ходе выполнения работы мы подтвердили выполнение законов терии упругости. И то, что упругие деформации обратимы.

Были определены по модулю юнга и модулю сдвига материалы из которого были сделаны образцы.

Данные были полученны с хорошей точностью, что говорит о том, что на протяжении эксперимента мы не достигли предела уругих деформаций. Также об этом свидетельствует то, что данные полученные при обратном ходе совпадают с данными прямого хода измерений.