Теория по тригонометрии от «Школково»

Содержание

1	Баз	овые тригонометрические факты	2
	1.1	Тригонометрия в прямоугольном треугольнике	2
	1.2	Табличные значения тригонометрических функций	2
	1.3	Тригонометрическая окружность	3
	1.4	Знаки тригонометрических функций	4
	1.5	Четность/нечетность тригонометрических функций	4
	1.6	Формулы приведения	5
	1.7	Наиболее распространенные тригонометрические формулы	7
		1.7.1 Основные тождества	7
		1.7.2 Формулы сложения углов	7
		1.7.3 Формулы двойного и тройного углов	7
		1.7.4 Формулы понижения степени	7
		1.7.5 Формулы произведения функций	7
		1.7.6 Формулы суммы/разности функций	8
		1.7.7 Выражение синуса и косинуса через тангенс половинного угла	8
		1.7.8 Формулы вспомогательного аргумента	8
	1.8	Элементарные тригонометрические уравнения	8
2	Вид	цы тригонометрических уравнений	9
	2.1	Квадратные тригонометрические уравнения	9
	2.2	Кубические тригонометрические уравнения	10
	2.3	Однородные тригонометрические уравнения второй степени	10
	2.4	Однородные тригонометрические уравнения первой степени	11
	2.5	Неоднородные тригонометрические уравнения первой степени	12
	2.6	Формулы сокращенного умножения в тригонометрическом варианте	12
3	Отб	ор корней	13
	3.1	Геометрический способ (по окружности)	13
	3.2	Вычислительный способ	13
	3.3	Алгебраический способ (двойное неравенство)	14

1 Базовые тригонометрические факты

1.1 Тригонометрия в прямоугольном треугольнике

Пусть есть прямоугольный треугольник с катетами a и b и гипотенузой c. Пусть острый угол между сторонами b и c равен α . Тогда

Даже из таких соотношений можно вывести несколько формул:

$$\operatorname{tg} \alpha = \frac{a}{b} = \frac{1}{\frac{b}{a}} = \frac{1}{\operatorname{ctg} \alpha};$$

$$\operatorname{tg} \alpha \cdot \operatorname{ctg} \alpha = \frac{a}{b} \cdot \frac{b}{a} = 1.$$

Наш треугольник — прямоугольный, значит, в нем верна теорема Пифагора:

Тогда можем вывести основное тригонометрическое тождество:

$$\sin^2\alpha + \cos^2\alpha = \frac{a^2}{c^2} + \frac{b^2}{c^2} = \frac{a^2 + b^2}{c^2} = \frac{c^2}{c^2} = 1.$$

Данное тождество очень полезно, так как фактически это «бесплатное» уравнение. С помощью него мы по синусу можем найти косинус и наоборот.

1.2 Табличные значения тригонометрических функций

Таблица синусов, косинусов, тангенсов и котангенсов углов из первой четверти:

	0 (0°)	$\frac{\pi}{6}$ (30°)	$\frac{\pi}{4}$ (45°)	$\frac{\pi}{3}$ (60°)	$\frac{\pi}{2} \ (90^{\circ})$
sin	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1
cos	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0
tg	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	∞
ctg	∞	$\sqrt{3}$	1	$\frac{\sqrt{3}}{3}$	0

Табличные значения тангенса и котангенса легко можно вывести из значений sin и cos, например,

$$tg\frac{\pi}{6} = \frac{\sin\frac{\pi}{6}}{\cos\frac{\pi}{6}} = \frac{\frac{1}{2}}{\frac{\sqrt{3}}{2}} = \frac{1}{\sqrt{3}}.$$

Табличные значения синуса и косинуса можно вывести из прямоугольного треугольника. Например, Вы забыли, чему равен $\cos\frac{\pi}{6}$.

Мы знаем, что в прямоугольном треугольнике с углом 30° отношение противолежащего катета к гипотенузе равно 1:2, значит,

$$\sin\frac{\pi}{6} = \frac{x}{2x} = \frac{1}{2}.$$

По теореме Пифагора второй катет равен

$$\sqrt{(2x)^2 - x^2} = \sqrt{4x^2 - x^2} = \sqrt{3x^2} = x\sqrt{3}.$$

Тогда

$$\cos\frac{\pi}{6} = \frac{x\sqrt{3}}{2x} = \frac{\sqrt{3}}{2}.$$

1.3 Тригонометрическая окружность

Возьмем окружность в центром в точке O(0;0) и радиусом R=1. Тогда длина этой окружности будет равна $L=2\pi R=2\pi$. Таким образом, мы получили связь угла 360° с длиной окружности 2π .

Выберем произвольную точку B на окружности. Пусть угол между OB и положительным направлением оси абсцисс равен α . Тогда точка B имеет координаты $(\cos \alpha; \sin \alpha)$.

$$-1 \leqslant \sin \alpha \leqslant 1, \quad -1 \leqslant \cos \alpha \leqslant 1$$

Так как синус и косинус — координаты точек на единичной окружности, то получаем ограничения:

1.4 Знаки тригонометрических функций

Оси делят нашу окружность на четыре четверти:

Таблица знаков тригонометрических функций в соответствующих четвертях:

	I	II	III	IV
sin	+	+	_	_
cos	+	_	_	+
tg	+	_	+	_
ctg	+	_	+	_

1.5 Четность/нечетность тригонометрических функций

Откладывать углы от оси абсцисс мы можем как в положительном направлении (против часовой стрелки), так и в отрицательном (по часовой стрелке). Давайте отложим угол $\frac{\pi}{6}$ в обоих направлениях.

Тогда получим равнобедренный треугольник, в котором биссектриса является медианой, следовательно,

$$\sin\left(-\frac{\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right), \quad \cos\left(-\frac{\pi}{6}\right) = \cos\left(\frac{\pi}{6}\right)$$

Таким образом, синус — нечетная функция, а косинус — четная, то есть

$$\sin(-\alpha) = -\sin\alpha, \quad \cos(-\alpha) = \cos\alpha$$

$0 \neq 2\pi$

У детей часто возникает вопрос о том, почему одну и ту же точку мы иногда называем 0, а иногда 2π . Дело в том, что если мы отложим от точки 0 угол, равный 2π , то есть равный 360° , мы снова попадем в ту же точку, так как пройдем всю окружность.

Эту конструкцию можно представить как спираль: если мы будем смотреть на нее сбоку, то увидим, что когда мы прибавляем 2π , мы поднимаемся на уровень выше. Если будем смотреть сверху, то при прибавлении 2π мы обойдем всю окружность и вернемся в ту же точку.

1.6 Формулы приведения

Пользуясь периодичностью функций sin и cos, мы можем упрощать их аргументы по следующим формулам:

$$\sin(\pi - \alpha) = \sin \alpha \qquad \cos(\pi - \alpha) = -\cos \alpha$$

$$\sin(\pi + \alpha) = -\sin \alpha \qquad \cos(\pi + \alpha) = -\cos \alpha$$

$$\sin(2\pi \pm \alpha) = \pm \sin \alpha \qquad \cos(2\pi \pm \alpha) = \cos \alpha$$

$$\sin\left(\frac{\pi}{2} \pm \alpha\right) = \cos \alpha \qquad \cos\left(\frac{\pi}{2} \pm \alpha\right) = \mp \sin \alpha$$

Вычислим $\sin\left(\frac{\pi}{2}+\frac{\pi}{6}\right)$. Отметим на окужности $\frac{\pi}{2}+\frac{\pi}{6}$ и $\frac{\pi}{6}$. Опустим из точек $\frac{\pi}{2}+\frac{\pi}{6}$ и $\frac{\pi}{6}$ перпендикуляры на оси ординат и абсцисс соответственно. Заметим, что мы получили два равных прямоугольных треугольника. Следовательно, их катеты равны, то есть равны координаты по оси ординат точки $\frac{\pi}{2}+\frac{\pi}{6}$ и по оси абсцисс точки $\frac{\pi}{6}$. Значит, $\sin\left(\frac{\pi}{2}+\frac{\pi}{6}\right)=\cos\frac{\pi}{6}$.

Таким образом, мы доказали одну из формул приведения. Все формулы приведения мы доказывать не будем, каждую из них Вы сами можете доказать аналогичным способом.

Обобщенный алгоритм действий для упрощения аргумента.

Теперь рассмотрим алгоритм использования формулы приведения. Пусть нам дан $\sin \frac{31\pi}{6}$.

1. Надо привести аргумент к удобному виду, то есть выделить часть, которая «делится» на $\frac{\pi}{2}$. Итак,

$$\sin\frac{31\pi}{6} = \sin\left(5\pi + \frac{\pi}{6}\right).$$

2. Рассматриваем выделенную часть аргумента. Если соответствующий ей угол попадает в точку, отмеченную как «ДА» на единичной окружности, то нужно поменять функцию, если в точку « $\rm HET$ » — функция сохранится.

При этом надо помнить, что функции меняются так:

$$\sin \longleftrightarrow \cos$$
 $tg \longleftrightarrow ctg$

Мы выделили часть, равную 5π . Очевидно, что 5π попадает в «НЕТ». Значит, итоговая функция будет синусом, как и исходная.

3. Знак функции будет такой же, как у **исходной** функции с исходным аргументом, его тоже легко определяем на круге.

Таким образом, знак итоговой функции будет равен знаку $\sin\left(5\pi + \frac{\pi}{6}\right) = \sin\left(\pi + \frac{\pi}{6}\right)$, то есть минусу. Значит,

$$\sin\frac{31\pi}{6} = \sin\left(5\pi + \frac{\pi}{6}\right) = -\sin\left(\frac{\pi}{6}\right) = -\frac{1}{2}.$$

1.7 Наиболее распространенные тригонометрические формулы

1.7.1 Основные тождества

$\sin^2 \alpha + \cos^2 \alpha = 1$	$tg \alpha \cdot ctg \alpha = 1$	
	$(\sin \alpha \neq 0, \cos \alpha \neq 0)$	
$tg \alpha = \frac{\sin \alpha}{\cos \alpha}$	$\operatorname{ctg}\alpha = \frac{\cos\alpha}{\sin\alpha}$	
$1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$	$1 + \operatorname{ctg}^2 \alpha = \frac{1}{\sin^2 \alpha}$	
$(\cos \alpha \neq 0)$	$(\sin \alpha \neq 0)$	

1.7.2 Формулы сложения углов

$\sin(\alpha \pm \beta) = \sin\alpha \cdot \cos\beta \pm \sin\beta \cdot \cos\alpha$	$\cos(\alpha \pm \beta) = \cos\alpha \cdot \cos\beta \mp \sin\alpha \cdot \sin\beta$
$\operatorname{tg}(\alpha \pm \beta) = \frac{\operatorname{tg}\alpha \pm \operatorname{tg}\beta}{1 \mp \operatorname{tg}\alpha \cdot \operatorname{tg}\beta},$	$\operatorname{ctg}(\alpha \pm \beta) = \frac{\operatorname{ctg} \beta \cdot \operatorname{ctg} \alpha \mp 1}{\operatorname{ctg} \beta \pm \operatorname{ctg} \alpha},$
$\cos \alpha \cos \beta \neq 0, \cos (\alpha \pm \beta) \neq 0$	$\sin \alpha \sin \beta \neq 0, \sin (\alpha \pm \beta) \neq 0$

1.7.3 Формулы двойного и тройного углов

1.7.4 Формулы понижения степени

$$\sin^2 \alpha = \frac{1 - \cos 2\alpha}{2} \qquad \cos^2 \alpha = \frac{1 + \cos 2\alpha}{2}$$

1.7.5 Формулы произведения функций

$$\sin \alpha \sin \beta = \frac{1}{2} \left(\cos(\alpha - \beta) - \cos(\alpha + \beta) \right)$$
$$\cos \alpha \cos \beta = \frac{1}{2} \left(\cos(\alpha - \beta) + \cos(\alpha + \beta) \right)$$
$$\sin \alpha \cos \beta = \frac{1}{2} \left(\sin(\alpha - \beta) + \sin(\alpha + \beta) \right)$$

1.7.6 Формулы суммы/разности функций

$$\begin{vmatrix} \sin \alpha + \sin \beta = 2 \sin \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} \\ \cos \alpha + \cos \beta = 2 \cos \frac{\alpha + \beta}{2} \cos \frac{\alpha - \beta}{2} \\ \cos \alpha + \cos \beta = \frac{\sin(\alpha \pm \beta)}{2} \cos \frac{\alpha - \beta}{2} \\ \cot \alpha \pm \cot \beta = \frac{\sin(\alpha \pm \beta)}{\cos \alpha \cos \beta}, \cos \alpha \cos \beta \neq 0 \end{vmatrix} \cot \beta = \frac{\sin(\alpha \pm \beta)}{\sin \alpha \sin \beta}, \sin \alpha \sin \beta \neq 0$$

1.7.7 Выражение синуса и косинуса через тангенс половинного угла

$$\sin 2\alpha = \frac{2 \operatorname{tg} \alpha}{1 + \operatorname{tg}^2 \alpha}, \ \cos \alpha \neq 0$$
 $\cos 2\alpha = \frac{1 - \operatorname{tg}^2 \alpha}{1 + \operatorname{tg}^2 \alpha}, \ \cos \alpha \neq 0$

1.7.8 Формулы вспомогательного аргумента

$$\sin \alpha \pm \cos \alpha = \sqrt{2} \cdot \sin \left(\alpha \pm \frac{\pi}{4}\right)$$

$$\sqrt{3} \sin \alpha \pm \cos \alpha = 2 \sin \left(\alpha \pm \frac{\pi}{6}\right)$$

$$\sin \alpha \pm \sqrt{3} \cos \alpha = 2 \sin \left(\alpha \pm \frac{\pi}{3}\right)$$

$$a \sin x + b \cos x = \sin(x + \varphi)\sqrt{a^2 + b^2},$$

$$\cos \varphi = \frac{a}{\sqrt{a^2 + b^2}}, \sin \varphi = \frac{b}{\sqrt{a^2 + b^2}}$$

1.8 Элементарные тригонометрические уравнения

Стандартные (простейшие) тригонометричекие уравнения — это уравнения вида

$$\sin x = a$$
, $\cos x = a$, $\tan x = b$, $\cot x = b$,

которые имеют смысл при $-1 \leqslant a \leqslant 1, b \in \mathbb{R}$.

Их решения в общем случае выглядят следующим образом:

Уравнение	Ограничения	Решение
$\sin x = a$	$-1 \leqslant a \leqslant 1$	$\begin{bmatrix} x = \arcsin a + 2\pi k \\ x = \pi - \arcsin a + 2\pi k \end{bmatrix}, \ k \in \mathbb{Z}$
$\cos x = a$	$-1 \leqslant a \leqslant 1$	$x = \pm \arccos a + 2\pi k, \ k \in \mathbb{Z}$
tg x = b	$b\in\mathbb{R}$	$x = \operatorname{arctg} b + \pi k, \ k \in \mathbb{Z}$
$\operatorname{ctg} x = b$	$b\in\mathbb{R}$	$x = \operatorname{arcctg} b + \pi k, \ k \in \mathbb{Z}$

2 Виды тригонометрических уравнений

2.1 Квадратные тригонометрические уравнения

Если после преобразования уравнение приняло следующий вид:

$$af^2(x) + bf(x) + c = 0,$$

где $a \neq 0$, f(x) — одна из функций $\sin x$, $\cos x$, $\operatorname{tg} x$, $\operatorname{ctg} x$, то такое уравнение с помощью замены f(x) = t сводится к квадратному уравнению. Часто при решении таких уравнений используются основные тождества и формулы двойного угла.

1. Решите уравнение $5\sin 2x = \cos 4x - 3$.

Решение

С помощью формулы двойного угла для косинуса $\cos 2\alpha = 1 - 2\sin^2 \alpha$ имеем:

$$\cos 4x = 1 - 2\sin^2 2x.$$

Сделаем эту подстановку и получим:

$$5\sin 2x = 1 - 2\sin^2 2x - 3;$$
$$2\sin^2 2x + 5\sin 2x + 2 = 0.$$

Сделаем замену $t = \sin 2x$. Так как область значений синуса — это [-1;1], то $t \in [-1;1]$. Получим уравнение:

$$2t^{2} + 5t + 2 = 0;$$
$$2(t+2)\left(t + \frac{1}{2}\right) = 0.$$

Тогда $t_1=-2$, и $t_2=-\frac{1}{2}$ — корни данного уравнения. Таким образом, корень t_1 не подходит. Сделаем обратную замену:

$$\sin 2x = -\frac{1}{2}$$
 \Rightarrow
$$\begin{cases} x_1 = -\frac{\pi}{12} + \pi k \\ x_2 = -\frac{5\pi}{12} + \pi k \end{cases}, k \in \mathbb{Z}.$$

2. Решите уравнение $\operatorname{tg} x + 3\operatorname{ctg} x + 4 = 0$.

Решение

Так как $\operatorname{tg} x \cdot \operatorname{ctg} x = 1$, то $\operatorname{ctg} x = \frac{1}{\operatorname{tg} x}$. Сделаем замену $\operatorname{tg} x = t$. Так как область значений тангенса $\operatorname{tg} x \in \mathbb{R}$, то $t \in \mathbb{R}$. Получим уравнение:

$$t + \frac{3}{t} + 4 = 0 \quad \Leftrightarrow \quad \frac{t^2 + 4t + 3}{t} = 0 \quad \Leftrightarrow \quad \frac{(t+3)(t+1)}{t} = 0.$$

Дробь равна нулю, когда числитель равен нулю, а знаменатель отличен от нуля. Таким образом:

$$\begin{cases} (t+3)(t+1) = 0 \\ t \neq 0 \end{cases} \Rightarrow \begin{bmatrix} t_1 = -3 \\ t_2 = -1 \end{cases}$$

Сделаем обратную замену:

$$\begin{bmatrix} \operatorname{tg} x = -3 \\ \operatorname{tg} x = -1 \end{bmatrix} \Leftrightarrow \begin{bmatrix} x = -\operatorname{arctg} 3 + \pi k \\ x = -\frac{\pi}{4} + \pi k \end{bmatrix}, \ k \in \mathbb{Z}.$$

2.2 Кубические тригонометрические уравнения

Если после преобразования уравнение приняло следующий вид:

$$af^{3}(x) + bf^{2}(x) + cf(x) + d = 0,$$

где $a \neq 0$, f(x) — одна из функций $\sin x$, $\cos x$, $\operatorname{tg} x$, $\operatorname{ctg} x$, то такое уравнение с помощью замены f(x) = t сводится к кубическому уравнению.

Часто при решении таких уравнений в дополнение к предыдущим формулам используются формулы тройного угла.

3. Решите уравнение $11\cos 2x - 3 = 3\sin 3x - 11\sin x$.

Решение

При помощи формул $\sin 3x = 3\sin x - 4\sin^3 x$ и $\cos 2x = 1 - 2\sin^2 x$ данное уравнение можно свести к уравнению только с $\sin x$:

$$11\cos 2x - 3 = 3\sin 3x - 11\sin x;$$

$$11\left(1 - 2\sin^2 x\right) - 3 - 3\left(3\sin x - 4\sin^3 x\right) + 11\sin x = 0;$$

$$11 - 22\sin^2 x - 3 - 9\sin x + 12\sin^3 x + 11\sin x = 0;$$

$$12\sin^3 x - 22\sin^2 x + 2\sin x + 8 = 0;$$

$$6\sin^3 x - 11\sin^2 x + \sin x + 4 = 0.$$

Сделаем замену $\sin x = t, t \in [-1; 1]$:

$$6t^3 - 11t^2 + t + 4 = 0.$$

Подбором находим, что один из корней равен $t_1 = 1$. Выполнив деление в столбик многочлена $6t^3 - 11t^2 + t + 4$ на t - 1, получим:

$$(t-1)(2t+1)(3t-4) = 0.$$

Корнями являются $t_1=1, t_2=-\frac{1}{2}, t_3=\frac{4}{3}.$

Таким образом, корень t_3 не подходит. Сделаем обратную замену:

$$\begin{bmatrix} \sin x = 1 \\ \sin x = -\frac{1}{2} \end{bmatrix} \Rightarrow \begin{bmatrix} x = \frac{\pi}{2} + 2\pi k \\ x = -\frac{\pi}{6} + 2\pi k \end{bmatrix}, \ k \in \mathbb{Z}.$$

$$x = -\frac{5\pi}{6} + 2\pi k$$

2.3 Однородные тригонометрические уравнения второй степени

Пусть после преобразования уравнение приняло следующий вид:

$$a\sin^2 x + b\sin x\cos x + c\cos^2 x = 0$$
, где $a \neq 0$, $c \neq 0$.

Заметим, что в данном уравнении **никогда** не являются решениями те значения x, при которых $\cos x = 0$ или $\sin x = 0$. Действительно, если $\cos x = 0$, то, подставив вместо косинуса ноль в уравнение, получим: $a \sin^2 x = 0$, откуда следует, что и $\sin x = 0$. Но это противоречит основному тригонометрическому тождеству, так как оно говорит о том, что если $\cos x = 0$, то $\sin x = \pm 1$.

Аналогично и $\sin x = 0$ не является решением такого уравнения.

Значит, данное уравнение можно делить на $\cos^2 x$ или на $\sin^2 x$. Разделим, например, на $\cos^2 x$:

$$a \frac{\sin^2 x}{\cos^2 x} + b \frac{\sin x \cos x}{\cos^2 x} + c \frac{\cos^2 x}{\cos^2 x} = 0 \quad \Leftrightarrow \quad a \operatorname{tg}^2 x + b \operatorname{tg} x + c = 0.$$

Таким образом, данное уравнение при помощи деления на $\cos^2 x$ и замены $t=\operatorname{tg} x$ сводится к квадратному уравнению:

$$at^2 + bt + c = 0.$$

способ решения которого нам известен.

Уравнения вида

$$a\sin^2 x + b\sin x\cos x + c\cos^2 x = d,$$

где $a \neq 0$, $c \neq 0$, с легкостью сводятся к уравнению предыдущего вида с помощью использования основного тригонометрического тождества:

$$d = d \cdot 1 = d \cdot (\sin^2 x + \cos^2 x).$$

4. Решите уравнение $2\sin^2 x + 3\sin x \cos x = 3\cos^2 x + 1$.

Решение

Подставим вместо 1 выражение $\sin^2 x + \cos^2 x$ и получим:

$$2\sin^{2} x + 3\sin x \cos x = 3\cos^{2} x + \sin^{2} x + \cos^{2} x;$$

$$\sin^{2} x + 3\sin x \cos x - 4\cos^{2} x = 0.$$

Разделим полученное уравнение на $\cos^2 x$:

$$tg^2 x + 3tg x - 4 = 0$$

и сделаем замену $t=\operatorname{tg} x,\,t\in\mathbb{R}.$ Уравнение примет вид:

$$t^2 + 3t - 4 = 0 \Leftrightarrow (t-1)(t+4) = 0.$$

Корнями являются $t_1 = -4$, $t_2 = 1$. Сделаем обратную замену:

$$\begin{bmatrix} \operatorname{tg} x = 1 \\ \operatorname{tg} x = -4 \end{bmatrix} \Rightarrow \begin{bmatrix} x = \frac{\pi}{4} + \pi k \\ x = -\operatorname{arctg} 4 + \pi k \end{bmatrix}, \ k \in \mathbb{Z}.$$

2.4 Однородные тригонометрические уравнения первой степени

Пусть после преобразования уравнение приняло следующий вид:

$$a \sin x + b \cos x = 0$$
, где $a \neq 0$, $b \neq 0$.

Заметим, что в данном уравнении никогда не являются решениями те значения x, при которых $\cos x = 0$ или $\sin x = 0$. Действительно, если $\cos x = 0$, то, подставив вместо косинуса ноль в уравнение, получим: $a \sin x = 0$, откуда следует, что и $\sin x = 0$. Но это противоречит основному тригонометрическому тождеству, так как оно говорит о том, что если $\cos x = 0$, то $\sin x = \pm 1$.

Аналогично и $\sin x = 0$ не является решением такого уравнения.

Значит, данное уравнение можно делить на $\cos x$ или на $\sin x$.

Разделим, например, на $\cos x$:

$$a \frac{\sin x}{\cos x} + b \frac{\cos x}{\cos x} = 0,$$

откуда имеем

$$a \operatorname{tg} x + b = 0 \quad \Rightarrow \quad \operatorname{tg} x = -\frac{b}{a}.$$

5. Решите уравнение $\sin x + \cos x = 0$.

Решение

Разделим правую и левую части уравнения на $\sin x$:

$$1 + \operatorname{ctg} x = 0 \quad \Rightarrow \quad \operatorname{ctg} x = -1 \quad \Rightarrow \quad x = -\frac{\pi}{4} + \pi k, \ k \in \mathbb{Z}.$$

2.5 Неоднородные тригонометрические уравнения первой степени

Пусть после преобразования уравнение приняло следующий вид:

$$a \sin x + b \cos x = c$$
, где $a \neq 0$, $b \neq 0$, $c \neq 0$.

Рассмотрим способ решения при помощи формулы вспомогательного аргумента.

$$a\sin x + b\cos x = \sin(x+\varphi)\sqrt{a^2+b^2}$$
, где $\cos \varphi = \frac{a}{\sqrt{a^2+b^2}}$

Для использования данной формулы нам понадобятся формулы сложения углов.

6. Решите уравнение $\sin 2x - \sqrt{3}\cos 2x = -1$.

Решение

Так как мы решаем уравнение, то можно не преобразовывать левую часть, а просто разделить обе части уравнения на $\sqrt{1^2 + \left(-\sqrt{3}\right)^2} = 2$:

$$\frac{1}{2}\sin 2x - \frac{\sqrt{3}}{2}\cos 2x = -\frac{1}{2}.$$

Заметим, что числа $\frac{1}{2}$ и $\frac{\sqrt{3}}{2}$ получились табличные. Можно, например, взять $\frac{1}{2} = \cos \frac{\pi}{3}$, $\frac{\sqrt{3}}{2} = \sin \frac{\pi}{3}$. Тогда уравнение примет вид:

$$\sin 2x \cos \frac{\pi}{3} - \sin \frac{\pi}{3} \cos 2x = -\frac{1}{2} \quad \Rightarrow \quad \sin \left(2x - \frac{\pi}{3}\right) = -\frac{1}{2}.$$

Решениями данного уравнения являются:

$$\begin{bmatrix} 2x - \frac{\pi}{3} = -\frac{\pi}{6} + 2\pi k \\ 2x - \frac{\pi}{3} = -\frac{5\pi}{6} + 2\pi k \end{bmatrix} \Rightarrow \begin{bmatrix} x = \frac{\pi}{12} + \pi k \\ x = -\frac{\pi}{4} + \pi k \end{bmatrix}, k \in \mathbb{Z}.$$

2.6 Формулы сокращенного умножения в тригонометрическом варианте

Квадрат суммы или разности:

$$(\sin x \pm \cos x)^2 = \sin^2 x \pm 2\sin x \cos x + \cos^2 x = (\sin^2 x + \cos^2 x) \pm 2\sin x \cos x = 1 \pm \sin 2x.$$

Разность квадратов:

$$(\cos x - \sin x)(\cos x + \sin x) = \cos^2 x - \sin^2 x = \cos 2x.$$

Сумма или разность кубов:

$$\sin^3 x \pm \cos^3 x = (\sin x \pm \cos x) \left(\sin^2 x \mp \sin x \cos x + \cos^2 x\right) = (\sin x \pm \cos x) (1 \mp \sin x \cos x).$$

Куб суммы или разности:

$$(\sin x \pm \cos x)^3 = (\sin x \pm \cos x)(\sin x \pm \cos x)^2 = (\sin x \pm \cos x)(1 \pm \sin 2x).$$

3 Отбор корней

3.1 Геометрический способ (по окружности)

Этот способ заключается в том, что мы отмечаем решения всех уравнений (неравенств) на единичной окружности и пересекаем (объединяем) их.

7. Найдите корни уравнения $\sin x = -\frac{1}{2}$, если $\cos x \neq \frac{\sqrt{3}}{2}$.

Решение

В данном случае необходимо пересечь решения первого уравнения с решением второго уравнения. Решением первого уравнения являются

$$x_1 = -\frac{\pi}{6} + 2\pi k, \ x_2 = -\frac{5\pi}{6} + 2\pi k, \ k \in \mathbb{Z}.$$

Решением второго уравнения являются

$$x \neq \pm \frac{\pi}{6} + 2\pi k, \ k \in \mathbb{Z}.$$

Отметим эти точки на окружности:

Видим, что из двух серий, удовлетворяющих первому уравнению, серия $x=-\frac{\pi}{6}+2\pi k$ не подходит. Следовательно, ответом будет только $x=-\frac{5\pi}{6}+2\pi k,\,k\in\mathbb{Z}.$

3.2 Вычислительный способ

Этот способ заключается в подстановке решений уравнения (системы) в имеющиеся ограничения. Для данного способа будут полезны некоторые частные случаи формул приведения:

$$\sin(\alpha + \pi n) = \begin{cases} \sin \alpha, & \text{при четном } n \\ -\sin \alpha, & \text{при нечетном } n \end{cases}$$

$$\cos(\alpha + \pi n) = \begin{cases} \cos \alpha, & \text{при четном } n \\ -\cos \alpha, & \text{при нечетном } n \end{cases}$$

$$\tan(\alpha + \pi n) = \tan(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot(\alpha + \pi n) = \cot(\alpha + \pi n)$$

$$\cot($$

 $\operatorname{ctg}\left(\alpha + \frac{\pi}{2}\right) = -\operatorname{tg}\alpha$

8. Решите систему

$$\begin{cases} \cos x = \frac{1}{2} \\ \sin x + \cos x > 0 \end{cases}$$

Решением уравнения являются

$$x_1 = \frac{\pi}{3} + 2\pi k, \ x_2 = -\frac{\pi}{3} + 2\pi k, \ k \in \mathbb{Z}.$$

Подставим в неравенство $\sin x + \cos x > 0$ по очереди оба корня:

$$\sin x_1 + \cos x_1 = \frac{\sqrt{3}}{2} + \frac{1}{2} > 0,$$

следовательно, корень x_1 нам подходит;

$$\sin x_2 + \cos x_2 = -\frac{\sqrt{3}}{2} + \frac{1}{2} < 0,$$

следовательно, корень x_2 нам не подходит.

Таким образом, решением системы являются только

$$x = \frac{\pi}{3} + 2\pi k, \ k \in \mathbb{Z}.$$

3.3 Алгебраический способ (двойное неравенство)

Решение

Решением уравнения являются

$$x_1 = \frac{\pi}{4} + 2\pi k, \ x_2 = \frac{3\pi}{4} + 2\pi k, \ k \in \mathbb{Z}.$$

Для того, чтобы отобрать корни, решим два неравенства: $0\leqslant x_1\leqslant \pi$ и $0\leqslant x_2\leqslant \pi$:

$$0 \leqslant \frac{\pi}{4} + 2\pi k \leqslant \pi \quad \Leftrightarrow \quad -\frac{1}{8} \leqslant k \leqslant \frac{3}{8}.$$

Таким образом, единственное целое значение k, удовлетворяющее этому неравенству, это k=0. При этом k $x_1=\frac{\pi}{4}$ — входит в отрезок $[0;\pi]$.

Аналогично решаем неравенство $0 \leqslant x_2 \leqslant \pi$ и получаем, что k=0 и $x_2=\frac{3\pi}{4}$.

