1. Packet Format

The packet should be a binary blob, no encoding is necessary. The reason that encoding should be removed is that it results in a packet substantially larger than is necessary which in some operating systems results in dropped sections of packets.

We have found from various tests that we can reliably receive 31 bytes on most systems. The previous packet was 54 bytes, we lost half of most packets on some systems. This is not app related, several other users who have developed their own BLE implementations have confirmed this.

Therefore, we propose to make a shorter packet, to improve reception reliability on most systems.

The packet below is 19 bytes, which is substantially shorter than the previous format. The actual data format is identical, except for the way serial number is formatted. Each digit 0-9 of the serial number is stored separately.

				Bits								
C Struct	Byte #			b7	b6	b5	b4	b3	b2	b1	b0	
Start	0	Start COMMAND		0xF2								
Serial	1	Serial B3		Year (4 0)								
	2	Serial B2		Month (1 0)				Serial Number Digit 4				
	3	Serial B1		Serial Number Digit 3				Serial Number Digit 2				
	4	Serial B0		Serial Number Digit 1				Serial Number Digit 0				
MainMode	5		MODE	0	0	0	0 ~ 24 (0x	00 ~ 0x18)				
MainRange	6	MAIN	RANGE	OFL	+/-	0	0	RANGE (C	ANGE (0 ~ 6)			
MainValue	7	LCD	Value_H	High Byte								
	8		Value_L	Low Byte								
SubMode	9	MODE 100~199, 0~24										
SubRange	10	SUB LCD	RANGE	OFL	+/-	k	Hz	0	Point(0~4)			
SubValue	11		Value_H	High Byte								
	12		Value_L	Low Byte								
BarStatus	13	BAR LCD	STATUS	0	0	0	USE	0~150	+/-	1000 / 500)	
BarValue	14	DAIL LCD	VALUE	0	0	0	BAR GRAF	'H 0 ~ 25				
IconStatus1	15		STATUS1	0	1KHz	1ms	DC + AC	AUTO APO BA		BAT		
IconStatus2	16	ICON LCD		0	ВТ	∠	REL	EL dBm MIN/MAX				
IconStatus3	17		STATUS3	0	TEST	MEM	·	A-HOLD	AC DO		DC	
Checksum	18 Checksum		XOR of bytes 0 17									

An example of how to send the data can be seen on the next page.

Apart from encoding all the fields are identical to the implementation prior to this change.

The inactive sections (See page 4) of the packet should also be dropped.

2. Packet Data Structure

```
union Packet
       struct
       {
              u8
                     Start;
              // Serial Bytes (all 4)
              u32
                     Serial;
              //Main Bytes
              u8
                     MainMode,
                     MainRange;
              u16
                     MainValue;
              //Sub Bytes
              u8
                     SubMode,
                     SubRange;
                     SubValue;
              u16
              //Bargraph
                     BarStatus,
                     BarValue;
              //Icons
                     IconStatus1,
                     IconStatus2,
                     IconStatus3;
              //XOR Bitwise checksum
              u8
                     Checksum;
       };
       u8 Bytes[19u];
};
void BLESendBytes(u8 * const pBytes, u16 const pCount)
       //Put your code here to send x bytes...
}
void SendPacket(Packet * const pInput)
       constexpr u8 bytes = 19u;
       u8 checksum = 0u;
       for (unsigned i = 0u; i < bytes; ++i)</pre>
              checksum ^= pInput->Bytes[i];
       pInput->Checksum = checksum;
       BLESendBytes(pInput->Bytes, bytes);
}
```

3. Usage Example

```
//To use it....
Packet data;
//Same format of the bytes as before except not
// Output as a binary blob not serial
            = 0xf2;
= 0xffff;
data.Start
data.Serial
//Main LCD section
//Sub LCD section
//Bargraph LCD section
data.BarStatus = 0x12;
data.BarValue
                  = 12;
//Icon LCD section
data.IconStatus1 = 0x12;
data.IconStatus2 = 0x12;
data.IconStatus3 = 0x12;
//Checksum is calculated in send function
SendPacket( &data );
```