תרגיל 8 באלגברה לינארית ב'

. לאורך כל התרגיל ${\it V}$ הינו מרחב מכפלה פנימית סוף מימדי

- .KerT אופרטור לינארי על V. הראה כי תמונת T^* הינה המשלים האורתוגנלי של .1
- $\langle A,B \rangle = tr(AB^*)$ מעל המרוכבים עם המכפלה הפנימית nxn מעל מרחב מרחב V יהי P מטריצות הפיכה ב $T_P(A)=P^{-1}AP$ ע"י ע"י ע"י ונגדיר אופרטור על $T_P(A)=T_P(A)$. מצא את האופרטור הצמוד ל
 - $E^*E=EE^*$ שהינו הטלה. הוכח כי E הרמיטי אמ"ם V שהינו על E
- המרחב הניצב W' יהי W תת מרחב של W'. נרשום V=W+W' נרשום V נרשום W יהי $W\in W,w'\in W'$ כאשר $w+w'=v\in V$ ע"י על W הפועל על W הפועל על $W+w'=v\in V$ הפועל על W הפועל על W הפועל על W הפועל על W
 - . הוכח כי U אוניטרי והרמיטי. a
- עפ"י U עפ"י עבור $V=R^3$ עפ"י עבור את המטריצה W עפ"י .b המטריצה הסטנדרטית.
 - מרחב L(V) זוג ממ"פ מאותו מימד. יהי U איזומורפיזם מV ל V. יהי .5 האופרטורים הלינאריים מV לV. הראה כי
 - L(W)ל בי הראה כי ההעתקה $T \to UTU^{-1}$ הינה איזומורפיזם מ
 - $T \in L(V)$ לכל $trace(UTU^{-1}) = trace(T)$.b
 - $(UTU^{-1})^* = UT^*U^{-1}$.c
- ת באופן דומה את באופן $\langle T_1,T_2\rangle=trace(T_1T_2^*)$ במכפלה הפנימית במכפלה לוערים. d במכפלה במכפלה איזומורפיזם של מרחבי מכפלה פנימית במכפלה איזומורפיזם של מרחבי מכפלה פנימית (אופרטור אוניטרי).