F. Blade Element Momentum Theory (BEM)

APPROACH _ USE STREAM TUBES TO AMALYZE BLADE FORCE

· N ANNULAR EXEMINES OF RADIAL EXTENT OF

· BOUNDARIES OF EXEMINES ALE STREAMLINES

FOR EACH ANNULAR EXEMENT, ASSUME

26E (1. ANNULAR EXEMINES ALE INDOPENDENT

LARGE 1. AUNULAR ETEMENTS ARE INDEPENDENT

2. FORCES From BLADES ON From 15 CONSTANT

IN EACH ANNUAR EXEMENT $A_2=A_3$ A_4

ASSUMPTIONS TO ADDRESS AVAILABLE $A_2=A_3$ A_4 $A_2=A_3$ A_4 $A_2=A_3$ A_4 A_4 $A_2=A_3$ A_4 A_4

F. Blade Element Momentum Theory (BEM)

- F. Blade Element Momentum Theory (BEM)
 - 1. Equations

DERIVED

1. Equations
$$dT = \frac{1}{2}\rho(u_{x,1}^2 - u_{x,4}^2)dA + \text{Momentum Between}$$
 Equations
$$dT = \frac{1}{2}\rho(u_{x,1}^2 - u_{x,4}^2)dA + \text{Momentum Between}$$

$$dT = \frac{1}{2}\rho u_{x,1}^2 4a(1-a)2\pi r dr \quad \text{OSE Defections of }$$

$$dT = \frac{1}{2}\rho u_{x,1}^2 4a(1-a)2\pi r dr \quad \text{OSE Defections of }$$

 $dT_x = \rho r u_{\theta,3} u_{x,3} dA \qquad \text{Ansume monormal definition}$ $dT_x = \frac{1}{2} \rho u_{x,1} \Omega r^2 4 a' (1-a) 2 \pi r dr \qquad \text{USE DEFINITION}$

- F. Blade Element Momentum Theory (BEM)
 - 1. Equations

$$\alpha = \phi - \theta_p$$

Since Geometry
$$\alpha = \phi - \theta_p$$

$$\tan \phi = \frac{V}{U} = \frac{(1-a)u_{1,x}}{(1+a')\Omega r}$$

LIFT & DRAG DEFINITIONS

$$L = \frac{1}{2}\rho W^2 cC_L$$

$$D = \frac{1}{2}\rho W^2 cC_D$$

- F. Blade Element Momentum Theory (BEM)
 - 1. Equations

F. Blade Element Momentum Theory (BEM)

USE DEFINITIONS

1. Equations

1. Equations where the mulls catelburn to
$$dT = BF_N dr$$
 thust the terms of $dT = \frac{1}{2} \rho \frac{u_{1,x}^2 (1-a)^2}{\sin^2(\phi)} cC_N B dr$

$$dT_x = rBF_T dr$$

$$dT_x = \frac{1}{2}\rho r \frac{u_{1,x}(1-a)\Omega r(1+a')}{\sin(\phi)\cos(\phi)} cC_T B dr$$

$$a = \left(1 + \frac{4\sin^2(\phi)}{\sigma C_N}\right)^{-1}$$

$$a' = \left(\frac{4\sin(\phi)\cos(\phi)}{\sigma C_T}\right)^{-1}$$

$$c = \left(\frac{4\sin(\phi)\cos(\phi)}{\sigma C_T}\right)^{-1}$$

$$a' = \left(\frac{4\sin(\phi)\cos(\phi)}{\sigma C_T}\right)^{\frac{1}{2}} - 1$$

THERE IN DUC THE FACTOR

- F. Blade Element Momentum Theory (BEM)
 - 2. Implementation

FIRST, SPLIT BLADE INTO N REZIONS OF RADIAL EXTENT BY

FOR EXCH AUNULUR ELFMENT

1. GUESS THE INDUCTION FRETOKS Q & Q!

2. COMPUTE FLOW ANGLE OF ATTACK &

3. COMPUTE LOCAL MISCLE OF ATTACK &

4. DETERMINE (L(L) & (6) USING

ALFOIL PROPERTIES

5. DETERMINE CN & CT FROM CLAS

6. CALCUMETE Q & Q!

7. CALCUMETE TO \$ FT. TROW CN & CT

RESUT FUCT:) & FECT:)

CAN DETERMINE POWER, THRUST, SHAFT TORGUE, ROOT

- F. Blade Element Momentum Theory (BEM)
 - 3. Corrections

a. Prandtl's Tip Loss Factor - Accounts For Tip Effects

As NEW AS FINITE # OF

BUDES

$$F = \frac{1}{4} \cos^{-1}(e^{-f})$$

$$f = \frac{1}{2} \cos^{-1}(e^{-f})$$

$$A = \left(\frac{4F \sin \phi \cos \phi}{\sigma \cos \phi}\right)$$

$$A = \left(\frac{4F \sin \phi \cos \phi}{\sigma \cos \phi}\right)$$

b. Glauert's Correction for High Values of a Rezme 4 >0.5