Trattabilità e Intrattabilità

Automi e Linguaggi Formali

LT in Informatica a.a. 2018/2019

Giochiamo a Domino[1]

Disponete in fila le tessere del domino che vi sono state consegnate:

1 in modo da usare tutte le tessere

Giochiamo a Domino[1]

Disponete in fila le tessere del domino che vi sono state consegnate:

1 in modo da usare tutte le tessere

Giochiamo a Domino[1]

Disponete in fila le tessere del domino che vi sono state consegnate:

1 in modo da usare tutte le tessere

Domanda:

È un problema facile o difficile da risolvere?

Come mostrare che un problema è facile?

Definizione

Un problema è trattabile (facile) se esiste un algoritmo efficiente per risolverlo.

- Gli algoritmi efficienti sono algoritmi con complessità polinomiale:
 - il loro tempo di esecuzione è $O(n^k)$ per qualche costante k.
- Avere complessità polinomiale è una condizione minima per considerare un algoritmo efficiente
- Un algoritmo con complessità più che polinomiale (p.es. esponenziale) è un algoritmo non efficiente perché non è scalabile.

Mostriamo che Domino[1] è trattabile

Obiettivo

Trovare un algoritmo polinomiale per Domino[1]

- Formulazione del problema in termini di input e output trattabili da un calcolatore
- 2 Definizione dell'algoritmo
- 3 Analisi di complessità dell'algoritmo

Dalle tessere al grafo

Definition (Grafo)

Un grafo (non orientato) G è una coppia (V, E) dove:

- $V = \{v_1, v_2, \dots, v_n\}$ è un insieme finito e non vuoto di vertici;
- $E \subseteq \{\{u,v\} \mid u,v \in V\}$ è un insieme di coppie non ordinate, ognuna delle quali corrisponde ad un arco del grafo.

Dalle tessere al grafo

Definition (Grafo)

Un grafo (non orientato) G è una coppia (V, E) dove:

- $V = \{v_1, v_2, \dots, v_n\}$ è un insieme finito e non vuoto di vertici;
- $E \subseteq \{\{u,v\} \mid u,v \in V\}$ è un insieme di coppie non ordinate, ognuna delle quali corrisponde ad un arco del grafo.

Grafo del domino

- Vertici: i numeri che si trovano sulle tessere
 - $V = { \cdot, \cdot, \cdot, \cdot, \cdot }$
- Archi: le tessere del domino
 - $\blacksquare \ E = \{\underbrace{\text{`...}}, \underbrace{\text{...}}, \underbrace{\text{...}}, \underbrace{\text{...}}, \underbrace{\text{...}}\}$

Domino[1] è un problema su grafi!

Domino[1]: allineare tutte le tessere del domino

Cammino Euleriano: trovare un percorso nel grafo che attraversa tutti gli archi una sola volta

- Il problema del cammino Euleriano è un problema classico di teoria dei grafi
- Esistono algoritmi polinomiali per risolverlo

Algoritmo di Fleury

- Scegliere un vertice con grado dispari (un vertice qualsiasi se tutti pari)
- 2 Scegliere un arco tale che sua cancellazione non sconnetta il grafo
- 3 Passare al vertice nell'altra estremità dell'arco scelto
- 4 Cancellare l'arco dal grafo
- **5** Ripetere i tre passi precedenti finche non eliminate tutti gli archi

Complessità

Su un grafo con n archi, l'algoritmo di Fleury impiega tempo $O(n^2)$

Giochiamo a domino[2]

Disponete in fila le tessere del domino che vi sono state consegnate:

2 in modo che ogni numero compaia esattamente due volte (potete usare meno tessere di quelle che avete).

Giochiamo a domino[2]

Disponete in fila le tessere del domino che vi sono state consegnate:

in modo che ogni numero compaia esattamente due volte (potete usare meno tessere di quelle che avete).

Giochiamo a domino[2]

Disponete in fila le tessere del domino che vi sono state consegnate:

2 in modo che ogni numero compaia esattamente due volte (potete usare meno tessere di quelle che avete).

Domanda:

È un problema facile o difficile da risolvere?

Domino[2] è un problema su grafi!

Domino[2]: trovare un allineamento dove ogni numero compare esattamente due volte

Circuito Hamiltoniano: trovare un ciclo nel grafo che attraversa tutti i vertici una sola volta

- Il problema del circuito Hamiltoniano è un problema classico di teoria dei grafi
- Un algoritmo polinomiale per risolverlo non è mai stato trovato
- Se qualcuno mi dà una possibile soluzione, è facile verificare se è corretta

Calendario

Ultima settimana di lezione:

- Oggi, lunedì 27 maggio 12:30–14:30
- Domani, martedì 28 maggio 12:30–14:30
- Venerdì 31 maggio 12:30–14:30

Secondo compitino:

- Venerdì 7 giugno, ore 12:30
- iscrizione su uniweb fino a mercoledì 5 giugno
- aperto a tutti
- su due aule: LuM250 e P200
- distribuzione tra le aule: sul moodle, il giorno prima della prova

Problemi trattabili e problemi intrattabili

- I problemi per i quali esiste un algoritmo polinomiale vengono considerati trattabili
- quelli che richiedono un algoritmo più che polinomiale sono detti intrattabili.
- Sappiamo che ci sono problemi che non possono essere risolti da nessun algoritmo:
 - "Halting Problem" di Turing
- Ci sono problemi che richiedono un tempo esponenziale:
 - il gioco della Torre di Hanoi

Problemi trattabili e problemi intrattabili

- I problemi per i quali esiste un algoritmo polinomiale vengono considerati trattabili
- quelli che richiedono un algoritmo più che polinomiale sono detti intrattabili.
- Sappiamo che ci sono problemi che non possono essere risolti da nessun algoritmo:
 - "Halting Problem" di Turing
- Ci sono problemi che richiedono un tempo esponenziale:
 - il gioco della Torre di Hanoi

Stabilire con precisione qual'è il confine tra problemi trattabili ed intrattabili è piuttosto difficile

P vs NP

Facili da risolvere

Facili da verificare

P vs NP

	Р
Facili da risolvere	\checkmark
Facili da verificare	\checkmark
Esempi	Domino[1], Euler, ordinamento,

P vs NP

	Р	NP
Facili da risolvere	\checkmark	?
Facili da verificare	\checkmark	\checkmark
Esempi	Domino[1], Euler, ordinamento,	Domino[2], Hamilton, Sudoku, Protein folding, Crittografia,

Pair/Share

- A coppie: risolvete l'esercizio che vi viene consegnato
- A gruppi di quattro: confrontate le soluzioni