Electric Charge The strength of a particle's electrical interaction with objects around it depends on its **electric charge**, which can be either positive or negative. Charges with the same sign repel each other, and charges with opposite signs attract each other. An object with equal amounts of the two kinds of charge is electrically neutral, whereas one with an imbalance is electrically charged.

Conductors are materials in which a significant number of charged particles (electrons in metals) are free to move. The charged particles in **nonconductors**, or **insulators**, are not free to move

The Coulomb and Ampere The SI unit of charge is the **coulomb** (C). It is defined in terms of the unit of current, the ampere (A), as the charge passing a particular point in 1 second when there is a current of 1 ampere at that point:

$$1 C = (1 A)(1 s).$$

This is based on the relation between current i and the rate dq/dt at which charge passes a point:

$$i = \frac{dq}{dt}$$
 (electric current). (21-3)

Coulomb's Law Coulomb's law describes the **electrostatic** force between small (point) electric charges q_1 and q_2 at rest (or

Electric Field To explain the electrostatic force between two charges, we assume that each charge sets up an electric field in the space around it. The force acting on each charge is then due to the electric field set up at its location by the other charge.

Definition of Electric Field The *electric field* \vec{E} at any point is defined in terms of the electrostatic force \vec{F} that would be exerted on a positive test charge q_0 placed there:

$$\vec{E} = \frac{\vec{F}}{q_0}.$$
 (22-1)

Electric Field Lines *Electric field lines* provide a means for visualizing the direction and magnitude of electric fields. The electric field vector at any point is tangent to a field line through that point. The density of field lines in any region is proportional to the magnitude of the electric field in that region. Field lines originate on positive charges and terminate on negative charges.

nearly at rest) and separated by a distance r:

$$F = \frac{1}{4\pi\varepsilon_0} \frac{|q_1||q_2|}{r^2}$$
 (Coulomb's law). (21-4)

Here $\varepsilon_0=8.85\times 10^{-12}~{\rm C^2/N\cdot m^2}$ is the **permittivity constant**, and $1/4\pi\varepsilon_0=k=8.99\times 10^9~{\rm N\cdot m^2/C^2}$.

The force of attraction or repulsion between point charges at rest acts along the line joining the two charges. If more than two charges are present, Eq. 21-4 holds for each pair of charges. The net force on each charge is then found, using the superposition principle, as the vector sum of the forces exerted on the charge by all the others.

The two shell theorems for electrostatics are

A shell of uniform charge attracts or repels a charged particle that is outside the shell as if all the shell's charge were concentrated at its center.

If a charged particle is located inside a shell of uniform charge, there is no net electrostatic force on the particle from the shell.

The Elementary Charge Electric charge is **quantized:** any charge can be written as ne, where n is a positive or negative integer and e is a constant of nature called the **elementary charge** ($\approx 1.602 \times 10^{-19}$ C). Electric charge is **conserved:** the net charge of any isolated system cannot change.

Field Due to a Point Charge The magnitude of the electric field \vec{E} set up by a point charge q at a distance r from the charge is

$$\vec{E} = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \hat{\mathbf{r}}$$
 (22-3)

The direction of \vec{E} is away from the point charge if the charge is positive and toward it if the charge is negative.

Field Due to an Electric Dipole An *electric dipole* consists of two particles with charges of equal magnitude q but opposite sign, separated by a small distance d. Their **electric dipole moment** \vec{p} has magnitude qd and points from the negative charge to the positive charge. The magnitude of the electric field set up by the dipole at a distant point on the dipole axis (which runs through both charges) is

$$E = \frac{1}{2\pi\varepsilon_0} \frac{p}{z^3},\tag{22-9}$$

where z is the distance between the point and the center of the dipole.

Field Due to a Continuous Charge Distribution The electric field due to a *continuous charge distribution* is found by treating charge elements as point charges and then summing, via integration, the electric field vectors produced by all the charge elements to find the net vector.

Force on a Point Charge in an Electric Field When a point charge q is placed in an external electric field \vec{E} , the electrostatic force \vec{F} that acts on the point charge is

$$\vec{F} = q\vec{E}.\tag{22-28}$$

Force \vec{F} has the same direction as \vec{E} if q is positive and the opposite direction if q is negative.

Dipole in an Electric Field When an electric dipole of dipole moment \vec{p} is placed in an electric field \vec{E} , the field exerts a torque $\vec{\tau}$ on the dipole:

$$\vec{\tau} = \vec{p} \times \vec{E}. \tag{22-34}$$

The dipole has a potential energy $\it U$ associated with its orientation in the field:

$$U = -\vec{p} \cdot \vec{E}. \tag{22-38}$$

This potential energy is defined to be zero when \vec{p} is perpendicular to \vec{E} ; it is least (U=-pE) when \vec{p} is aligned with \vec{E} and greatest (U=pE) when \vec{p} is directed opposite \vec{E} .

Gauss' Law Gauss' law and Coulomb's law are different ways of describing the relation between charge and electric field in static situations. Gauss' law is

$$\varepsilon_0 \Phi = q_{\rm enc}$$
 (Gauss' law), (23-6)

in which $q_{\rm enc}$ is the net charge inside an imaginary closed surface (a $Gaussian\ surface$) and Φ is the net flux of the electric field through the surface:

$$\Phi = \oint \vec{E} \cdot d\vec{A} \qquad \begin{array}{ll} \text{(electric flux through a} \\ \text{Gaussian surface)}. \end{array} \tag{23-4}$$

Coulomb's law can be derived from Gauss' law.

Applications of Gauss' Law Using Gauss' law and, in some cases, symmetry arguments, we can derive several important results in electrostatic situations. Among these are:

- An excess charge on an isolated conductor is located entirely on the outer surface of the conductor.
- 2. The external electric field near the *surface of a charged conductor* is perpendicular to the surface and has magnitude

$$E = \frac{\sigma}{\varepsilon_0}$$
 (conducting surface). (23-11)

Within the conductor, E = 0.

3. The electric field at any point due to an infinite *line of charge* with uniform linear charge density λ is perpendicular to the line of charge and has magnitude

Electric Potential Energy The change ΔU in the electric potential energy U of a point charge as the charge moves from an initial point i to a final point f in an electric field is

$$\Delta U = U_f - U_i = -W, \tag{24-1}$$

where W is the work done by the electrostatic force (due to the external electric field) on the point charge during the move from i to f. If the potential energy is defined to be zero at infinity, the **electric potential energy** U of the point charge at a particular point is

$$U = -W_{\infty}. (24-2)$$

Here W_{∞} is the work done by the electrostatic force on the point charge as the charge moves from infinity to the particular point.

Electric Potential Difference and Electric Potential We define the **potential difference** ΔV between two points i and f in an electric field as

$$\Delta V = V_f - V_i = -\frac{W}{q},\tag{24-7}$$

where q is the charge of a particle on which work W is done by the electric field as the particle moves from point i to point f. The **potential** at a point is defined as

$$V = -\frac{W_{\infty}}{a}. (24-8)$$

Here W_{∞} is the work done on the particle by the electric field as the particle moves in from infinity to the point. The SI unit of potential is the *volt*: 1 volt = 1 joule per coulomb.

Potential and potential difference can also be written in terms of the electric potential energy U of a particle of charge q in an electric field:

$$E = \frac{\lambda}{2\pi\varepsilon_0 r}$$
 (line of charge), (23-12)

where r is the perpendicular distance from the line of charge to the point.

4. The electric field due to an infinite nonconducting sheet with uniform surface charge density σ is perpendicular to the plane of the sheet and has magnitude

$$E = \frac{\sigma}{2\varepsilon_0}$$
 (sheet of charge). (23-13)

5. The electric field *outside a spherical shell of charge* with radius R and total charge q is directed radially and has magnitude

$$E = \frac{1}{4\pi\varepsilon_0} \frac{q}{r^2} \qquad \text{(spherical shell, for } r \ge R\text{)}. \tag{23-15}$$

Here r is the distance from the center of the shell to the point at which E is measured. (The charge behaves, for external points, as if it were all located at the center of the sphere.) The field *inside* a uniform spherical shell of charge is exactly zero:

$$E = 0$$
 (spherical shell, for $r < R$). (23-16)

6. The electric field inside a uniform sphere of charge is directed radially and has magnitude

$$E = \left(\frac{q}{4\pi\varepsilon_0 R^3}\right) r. \tag{23-20}$$

Potential Due to Point Charges The electric potential due to a single point charge at a distance r from that point charge is

$$V = \frac{1}{4\pi\varepsilon_0} \frac{q}{r} \,, \tag{24-26}$$

where V has the same sign as q. The potential due to a collection of point charges is

$$V = \sum_{i=1}^{n} V_i = \frac{1}{4\pi\varepsilon_0} \sum_{i=1}^{n} \frac{q_i}{r_i}.$$
 (24-27)

Potential Due to an Electric Dipole At a distance r from an electric dipole with dipole moment magnitude p=qd, the electric potential of the dipole is

$$V = \frac{1}{4\pi\varepsilon_0} \frac{p\cos\theta}{r^2} \tag{24-30}$$

for $r \gg d$; the angle θ is defined in Fig. 24-10.

Potential Due to a Continuous Charge Distribution For a continuous distribution of charge, Eq. 24-27 becomes

$$V = \frac{1}{4\pi\varepsilon_0} \int \frac{dq}{r} \,, \tag{24-32}$$

in which the integral is taken over the entire distribution.

Calculating \vec{E} from V The component of \vec{E} in any direction is the negative of the rate at which the potential changes with distance in that direction:

$$E_s = -\frac{\partial V}{\partial s}. (24-40)$$

The x, y, and z components of \vec{E} may be found from

$$E_{x} = -\frac{\partial V}{\partial x}; \qquad E_{y} = -\frac{\partial V}{\partial y}; \qquad E_{z} = -\frac{\partial V}{\partial z}.$$
 (24-41)

$$V = \frac{U}{q},\tag{24-5}$$

$$\Delta V = V_f - V_i = \frac{U_f}{q} - \frac{U_i}{q} = \frac{\Delta U}{q}. \tag{24-6}$$

Equipotential Surfaces The points on an **equipotential surface** all have the same electric potential. The work done on a test charge in moving it from one such surface to another is independent of the locations of the initial and final points on these surfaces and of the path that joins the points. The electric field \vec{E} is always directed perpendicularly to corresponding equipotential surfaces.

Finding V from \vec{E} The electric potential difference between two points i and f is

$$V_f - V_i = -\int_i^f \vec{E} \cdot d\vec{s}, \qquad (24-18)$$

where the integral is taken over any path connecting the points. If the integration is difficult along any particular path, we can choose a different path along which the integration might be easier. If we choose $V_i = 0$, we have, for the potential at a particular point,

$$V = -\int_{i}^{f} \vec{E} \cdot d\vec{s}. \tag{24-19}$$

Capacitor; Capacitance A **capacitor** consists of two isolated conductors (the *plates*) with charges +q and -q. Its **capacitance** C is defined from q = CV, (25-1)

where V is the potential difference between the plates.

Determining Capacitance We generally determine the capacitance of a particular capacitor configuration by (1) assuming a charge q to have been placed on the plates, (2) finding the electric field \vec{E} due to this charge, (3) evaluating the potential difference V, and (4) calculating C from Eq. 25-1. Some specific results are the following:

A parallel-plate capacitor with flat parallel plates of area A and spacing d has capacitance

$$C = \frac{\varepsilon_0 A}{d}.$$
 (25-9)

A cylindrical capacitor (two long coaxial cylinders) of length L and radii a and b has capacitance

$$C = 2\pi\varepsilon_0 \frac{L}{\ln(b/a)}.$$
 (25-14)

A spherical capacitor with concentric spherical plates of radii a and b has capacitance

$$C = 4\pi\varepsilon_0 \frac{ab}{b-a}. (25-17)$$

An isolated sphere of radius R has capacitance

$$C = 4\pi\varepsilon_0 R. \tag{25-18}$$

Capacitors in Parallel and in Series The equivalent capacitances $C_{\rm eq}$ of combinations of individual capacitors connected in parallel and in series can be found from

$$C_{\text{eq}} = \sum_{j=1}^{n} C_j$$
 (*n* capacitors in parallel) (25-19)

and $\frac{1}{C_{\text{eq}}} = \sum_{i=1}^{n} \frac{1}{C_{i}}$ (n capacitors in series). (25-20)

When \vec{E} is uniform, Eq. 24-40 reduces to

$$E = -\frac{\Delta V}{\Delta s}, \qquad (24-42)$$

where s is perpendicular to the equipotential surfaces. The electric field is zero parallel to an equipotential surface.

Electric Potential Energy of a System of Point Charges

The electric potential energy of a system of point charges is equal to the work needed to assemble the system with the charges initially at rest and infinitely distant from each other. For two charges at separation r,

$$U = W = \frac{1}{4\pi\varepsilon_0} \frac{q_1 q_2}{r}.$$
 (24-43)

Potential of a Charged Conductor An excess charge placed on a conductor will, in the equilibrium state, be located entirely on the outer surface of the conductor. The charge will distribute itself so that the following occur: (1) The entire conductor, including interior points, is at a uniform potential. (2) At every internal point, the electric field due to the charge cancels the external electric field that otherwise would have been there. (3) The net electric field at every point on the surface is perpendicular to the surface.

Equivalent capacitances can be used to calculate the capacitances of more complicated series – parallel combinations.

Potential Energy and Energy Density The electric potential energy U of a charged capacitor,

$$U = \frac{q^2}{2C} = \frac{1}{2}CV^2, \tag{25-21, 25-22}$$

is equal to the work required to charge the capacitor. This energy can be associated with the capacitor's electric field \vec{E} . By extension we can associate stored energy with any electric field. In vacuum, the **energy density** u, or potential energy per unit volume, within an electric field of magnitude E is given by

$$u = \frac{1}{2}\varepsilon_0 E^2. \tag{25-25}$$

Capacitance with a Dielectric If the space between the plates of a capacitor is completely filled with a dielectric material, the capacitance C is increased by a factor κ , called the **dielectric constant**, which is characteristic of the material. In a region that is completely filled by a dielectric, all electrostatic equations containing ε_0 must be modified by replacing ε_0 with $\kappa\varepsilon_0$.

The effects of adding a dielectric can be understood physically in terms of the action of an electric field on the permanent or induced electric dipoles in the dielectric slab. The result is the formation of induced charges on the surfaces of the dielectric, which results in a weakening of the field within the dielectric for a given amount of free charge on the plates.

Gauss' Law with a Dielectric When a dielectric is present, Gauss' law may be generalized to

$$\varepsilon_0 \oint \kappa \vec{E} \cdot d\vec{A} = q. \tag{25-36}$$

Here q is the free charge; any induced surface charge is accounted for by including the dielectric constant κ inside the integral.

Current An electric current i in a conductor is defined by

$$i = \frac{dq}{dt}.$$
 (26-1)

Here dq is the amount of (positive) charge that passes in time dt through a hypothetical surface that cuts across the conductor. By convention, the direction of electric current is taken as the direction in which positive charge carriers would move. The SI unit of electric current is the **ampere** (A): 1 A = 1 C/s.

Current Density Current (a scalar) is related to **current density** \vec{J} (a vector) by

 $i = \int \vec{J} \cdot d\vec{A},\tag{26-4}$

where $d\vec{A}$ is a vector perpendicular to a surface element of area dA and the integral is taken over any surface cutting across the conductor. \vec{J} has the same direction as the velocity of the moving charges if they are positive and the opposite direction if they are negative.

Drift Speed of the Charge Carriers When an electric field \vec{E} is established in a conductor, the charge carriers (assumed positive) acquire a **drift speed** v_d in the direction of \vec{E} ; the velocity \vec{v}_d is related to the current density by

$$\vec{J} = (ne)\vec{v}_d, \tag{26-7}$$

where ne is the carrier charge density.

Resistance of a Conductor The resistance R of a conductor is defined as

 $R = \frac{V}{i} \qquad \text{(definition of } R\text{)},\tag{26-8}$

where V is the potential difference across the conductor and i is the current. The SI unit of resistance is the **ohm** (Ω) : 1 $\Omega=1$ V/A. Similar equations define the **resistivity** ρ and **conductivity** σ of a material:

$$\rho = \frac{1}{\sigma} = \frac{E}{J} \qquad \text{(definitions of } \rho \text{ and } \sigma\text{)}, \tag{26-12,26-10}$$

where E is the magnitude of the applied electric field. The SI unit of resistivity is the ohm-meter $(\Omega \cdot m)$. Equation 26-10 corresponds to the vector equation

$$\vec{E} = \rho \vec{J}. \tag{26-11}$$

The resistance R of a conducting wire of length L and uniform cross section is

 $R = \rho \frac{L}{A},\tag{26-16}$

where A is the cross-sectional area.

Emf An **emf device** does work on charges to maintain a potential difference between its output terminals. If dW is the work the device does to force positive charge dq from the negative to the positive terminal, then the **emf** (work per unit charge) of the device is

$$\mathscr{E} = \frac{dW}{dq} \qquad \text{(definition of \mathscr{E})}. \tag{27-1}$$

The volt is the SI unit of emf as well as of potential difference. An **ideal emf device** is one that lacks any internal resistance. The potential difference between its terminals is equal to the emf. A **real emf device** has internal resistance. The potential difference between its terminals is equal to the emf only if there is no current through the device.

Analyzing Circuits The change in potential in traversing a resistance R in the direction of the current is -iR; in the opposite direction it is +iR (resistance rule). The change in potential in traversing an ideal emf device in the direction of the emf arrow is +%; in the opposite direction it is -% (emf rule). Conservation of energy leads to the loop rule:

Change of \rho with Temperature The resistivity ρ for most materials changes with temperature. For many materials, including metals, the relation between ρ and temperature T is approximated by the equation

 $\rho - \rho_0 = \rho_0 \alpha (T - T_0). \tag{26-17}$

Here T_0 is a reference temperature, ρ_0 is the resistivity at T_0 , and α is the temperature coefficient of resistivity for the material.

Ohm's Law A given device (conductor, resistor, or any other electrical device) obeys Ohm's law if its resistance R, defined by Eq. 26-8 as V/i, is independent of the applied potential difference V. A given material obeys Ohm's law if its resistivity, defined by Eq. 26-10, is independent of the magnitude and direction of the applied electric field \vec{E} .

Resistivity of a Metal By assuming that the conduction electrons in a metal are free to move like the molecules of a gas, it is possible to derive an expression for the resistivity of a metal:

$$\rho = \frac{m}{e^2 n \tau}.\tag{26-22}$$

Here n is the number of free electrons per unit volume and τ is the mean time between the collisions of an electron with the atoms of the metal. We can explain why metals obey Ohm's law by pointing out that τ is essentially independent of the magnitude E of any electric field applied to a metal.

Power The power P, or rate of energy transfer, in an electrical device across which a potential difference V is maintained is

$$P = iV$$
 (rate of electrical energy transfer). (26-26)

Resistive Dissipation If the device is a resistor, we can write Eq. 26-26 as

$$P = i^2 R = \frac{V^2}{R}$$
 (resistive dissipation). (26-27, 26-28)

In a resistor, electric potential energy is converted to internal thermal energy via collisions between charge carriers and atoms.

Semiconductors Semiconductors are materials that have few conduction electrons but can become conductors when they are doped with other atoms that contribute free electrons

Superconductors Superconductors are materials that lose all electrical resistance at low temperatures. Recent research has discovered materials that are superconducting at surprisingly high temperatures.

Loop Rule. The algebraic sum of the changes in potential encountered in a complete traversal of any loop of a circuit must be zero.

Conservation of charge gives us the junction rule:

Junction Rule. The sum of the currents entering any junction must be equal to the sum of the currents leaving that junction.

Single-Loop Circuits The current in a single-loop circuit containing a single resistance R and an emf device with emf $\mathscr E$ and internal resistance r is

 $i = \frac{\mathscr{E}}{R + r},\tag{27-4}$

which reduces to $i = \mathcal{E}/R$ for an ideal emf device with r = 0.

Power When a real battery of emf \mathscr{E} and internal resistance r does work on the charge carriers in a current i through the battery, the rate P of energy transfer to the charge carriers is

$$P = iV, (27-14)$$

where V is the potential across the terminals of the battery. The rate

 P_r at which energy is dissipated as thermal energy in the battery is

$$P_r = i^2 r$$
. (27-16)

The rate $P_{\rm emf}$ at which the chemical energy in the battery changes is

$$P_{\rm emf} = i\mathscr{E}. \tag{27-17}$$

Series Resistances When resistances are in **series**, they have the same current. The equivalent resistance that can replace a series combination of resistances is

$$R_{\rm eq} = \sum_{j=1}^{n} R_j$$
 (*n* resistances in series). (27-7)

Parallel Resistances When resistances are in **parallel**, they have the same potential difference. The equivalent resistance that can replace a parallel combination of resistances is given by

$$\frac{1}{R_{\text{eq}}} = \sum_{i=1}^{n} \frac{1}{R_i} \qquad (n \text{ resistances in parallel}). \tag{27-24}$$

Magnetic Field \vec{B} A magnetic field \vec{B} is defined in terms of the force \vec{F}_B acting on a test particle with charge q moving through the field with velocity \vec{v} :

$$\vec{F}_{R} = q\vec{v} \times \vec{B}. \tag{28-2}$$

The SI unit for \vec{B} is the **tesla** (T): 1 T = 1 N/(A·m) = 10^4 gauss.

The Hall Effect When a conducting strip carrying a current i is placed in a uniform magnetic field \vec{B} , some charge carriers (with charge e) build up on one side of the conductor, creating a potential difference V across the strip. The polarities of the sides indicate the sign of the charge carriers.

A Charged Particle Circulating in a Magnetic Field A charged particle with mass m and charge magnitude |q| moving with velocity \vec{v} perpendicular to a uniform magnetic field \vec{B} will travel in a circle. Applying Newton's second law to the circular motion yields

$$|q|vB = \frac{mv^2}{r},\tag{28-15}$$

from which we find the radius r of the circle to be

$$r = \frac{mv}{|q|B}. (28-16)$$

The frequency of revolution f, the angular frequency ω , and the period of the motion T are given by

$$f = \frac{\omega}{2\pi} = \frac{1}{T} = \frac{|q|B}{2\pi m}.$$
 (28-19,28-18,28-17)

RC Circuits When an emf \mathscr{E} is applied to a resistance R and capacitance C in series, as in Fig. 27-15 with the switch at a, the charge on the capacitor increases according to

$$q = C\mathscr{E}(1 - e^{-t/RC})$$
 (charging a capacitor), (27-33)

in which $C\mathscr{E}=q_0$ is the equilibrium (final) charge and $RC=\tau$ is the **capacitive time constant** of the circuit. During the charging, the current is

$$i = \frac{dq}{dt} = \left(\frac{\mathscr{E}}{R}\right)e^{-t/RC}$$
 (charging a capacitor). (27-34)

When a capacitor discharges through a resistance R, the charge on the capacitor decays according to

$$q = q_0 e^{-t/RC}$$
 (discharging a capacitor). (27-39)

During the discharging, the current is

$$i = \frac{dq}{dt} = -\left(\frac{q_0}{RC}\right)e^{-t/RC}$$
 (discharging a capacitor). (27-40)

Magnetic Force on a Current-Carrying Wire A straight wire carrying a current *i* in a uniform magnetic field experiences a sideways force

$$\vec{F}_{R} = i\vec{L} \times \vec{B}. \tag{28-26}$$

The force acting on a current element $i d\vec{L}$ in a magnetic field is

$$d\vec{F}_{R} = i \, d\vec{L} \times \vec{B}. \tag{28-28}$$

The direction of the length vector \vec{L} or $d\vec{L}$ is that of the current *i*.

Torque on a Current-Carrying Coil A coil (of area A and N turns, carrying current i) in a uniform magnetic field \vec{B} will experience a torque $\vec{\tau}$ given by

$$\vec{\tau} = \vec{\mu} \times \vec{B}. \tag{28-37}$$

Here $\vec{\mu}$ is the **magnetic dipole moment** of the coil, with magnitude $\mu = NiA$ and direction given by the right-hand rule.

Orientation Energy of a Magnetic Dipole The orientaion energy of a magnetic dipole in a magnetic field is

$$U(\theta) = -\vec{\mu} \cdot \vec{B}. \tag{28-38}$$

If an external agent rotates a magnetic dipole from an initial orientation θ_i to some other orientation θ_f and the dipole is stationary both initially and finally, the work W_a done on the dipole by the agent is

$$W_a = \Delta U = U_f - U_i. \tag{28-39}$$

Cross \vec{v} into \vec{B} to get the new vector $\vec{v} \times \vec{B}$.

Force on positive

Force on negative

(c)

(d)

(e)

The Biot–Savart Law The magnetic field set up by a current-carrying conductor can be found from the $Biot-Savart\ law$. This law asserts that the contribution $d\vec{B}$ to the field produced by a current-length element $i\ d\vec{s}$ at a point P located a distance r from the current element is

$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{i d\vec{s} \times \hat{\mathbf{r}}}{r^2}$$
 (Biot–Savart law). (29-3)

Here $\hat{\mathbf{r}}$ is a unit vector that points from the element toward P. The quantity μ_0 , called the permeability constant, has the value

$$4\pi \times 10^{-7} \,\mathrm{T} \cdot \mathrm{m/A} \approx 1.26 \times 10^{-6} \,\mathrm{T} \cdot \mathrm{m/A}.$$

Magnetic Field of a Long Straight Wire For a long straight wire carrying a current *i*, the Biot–Savart law gives, for the magnitude of the magnetic field at a perpendicular distance *R* from the wire.

$$B = \frac{\mu_0 i}{2\pi R}$$
 (long straight wire). (29-4)

Magnetic Field of a Circular Arc The magnitude of the magnetic field at the center of a circular arc, of radius R and central angle ϕ (in radians), carrying current i, is

$$B = \frac{\mu_0 i\phi}{4\pi R}$$
 (at center of circular arc). (29-9)

Force Between Parallel Currents Parallel wires carrying currents in the same direction attract each other, whereas parallel wires carrying currents in opposite directions repel each other. The magnitude of the force on a length L of either wire is

$$F_{ba} = i_b L B_a \sin 90^\circ = \frac{\mu_0 L i_a i_b}{2\pi d},$$
 (29-13)

Magnetic Flux The magnetic flux Φ_B through an area A in a magnetic field \vec{B} is defined as

$$\Phi_B = \int \vec{B} \cdot d\vec{A}, \qquad (30-1)$$

where the integral is taken over the area. The SI unit of magnetic flux is the weber, where 1 Wb = 1 T·m². If \vec{B} is perpendicular to the area and uniform over it, Eq. 30-1 becomes

$$\Phi_B = BA \qquad (\vec{B} \perp A, \vec{B} \text{ uniform}).$$
(30-2)

Faraday's Law of Induction If the magnetic flux Φ_B through an area bounded by a closed conducting loop changes with time, a current and an emf are produced in the loop; this process is called *induction*. The induced emf is

$$\mathscr{E} = -\frac{d\Phi_B}{dt} \qquad \text{(Faraday's law)}. \tag{30-4}$$

If the loop is replaced by a closely packed coil of N turns, the induced emf is

$$\mathscr{E} = -N \frac{d\Phi_B}{dt}.$$
 (30-5)

Lenz's Law An induced current has a direction such that the magnetic field *due to the current* opposes the change in the magnetic flux that induces the current. The induced emf has the same direction as the induced current.

Emf and the Induced Electric Field An emf is induced by a changing magnetic flux even if the loop through which the flux is changing is not a physical conductor but an imaginary line. The changing magnetic field induces an electric field \vec{E} at every point of such a loop; the induced emf is related to \vec{E} by

$$\mathscr{E} = \oint \vec{E} \cdot d\vec{s},\tag{30-19}$$

where the integration is taken around the loop. From Eq. 30-19 we can write Faraday's law in its most general form,

where d is the wire separation, and i_a and i_b are the currents in the wires

Ampere's Law Ampere's law states that

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 i_{\text{enc}} \quad \text{(Ampere's law)}. \tag{29-14}$$

The line integral in this equation is evaluated around a closed loop called an *Amperian loop*. The current *i* on the right side is the *net* current encircled by the loop. For some current distributions, Eq. 29-14 is easier to use than Eq. 29-3 to calculate the magnetic field due to the currents.

Fields of a Solenoid and a Toroid Inside a long solenoid carrying current i, at points not near its ends, the magnitude B of the magnetic field is

$$B = \mu_0 in$$
 (ideal solenoid), (29-23)

where n is the number of turns per unit length. At a point inside a *toroid*, the magnitude B of the magnetic field is

$$B = \frac{\mu_0 iN}{2\pi} \frac{1}{r} \qquad \text{(toroid)}, \tag{29-24}$$

where r is the distance from the center of the toroid to the point.

Field of a Magnetic Dipole The magnetic field produced by a current-carrying coil, which is a *magnetic dipole*, at a point P located a distance z along the coil's perpendicular central axis is parallel to the axis and is given by

$$\vec{B}(z) = \frac{\mu_0}{2\pi} \frac{\vec{\mu}}{z^3},\tag{29-27}$$

where $\vec{\mu}$ is the dipole moment of the coil. This equation applies only when z is much greater than the dimensions of the coil.

The SI unit of inductance is the **henry** (H), where 1 henry = 1 H = 1 T·m²/A. The inductance per unit length near the middle of a long solenoid of cross-sectional area A and n turns per unit length is

$$\frac{L}{I} = \mu_0 n^2 A \qquad \text{(solenoid)}. \tag{30-31}$$

Self-Induction If a current *i* in a coil changes with time, an emf is induced in the coil. This self-induced emf is

$$\mathscr{E}_L = -L \frac{di}{dt}. (30-35)$$

The direction of \mathcal{C}_L is found from Lenz's law: The self-induced emfacts to oppose the change that produces it.

Series *RL* **Circuits** If a constant emf $\mathscr E$ is introduced into a single-loop circuit containing a resistance R and an inductance L, the current rises to an equilibrium value of $\mathscr E/R$ according to

$$i = \frac{\mathscr{E}}{R} \left(1 - e^{-t/\tau_L} \right)$$
 (rise of current). (30-41)

Here τ_L (= L/R) governs the rate of rise of the current and is called the **inductive time constant** of the circuit. When the source of constant emf is removed, the current decays from a value i_0 according to

$$i = i_0 e^{-t/\tau_L}$$
 (decay of current). (30-45)

Magnetic Energy If an inductor L carries a current i, the inductor's magnetic field stores an energy given by

$$U_B = \frac{1}{2}Li^2$$
 (magnetic energy). (30-49)

If B is the magnitude of a magnetic field at any point (in an inductor or anywhere else), the density of stored magnetic energy at that point is

$$u_B = \frac{B^2}{2\mu_0}$$
 (magnetic energy density). (30-55)

LC Energy Transfers In an oscillating LC circuit, energy is shuttled periodically between the electric field of the capacitor and the magnetic field of the inductor; instantaneous values of the two forms of energy are

$$U_E = \frac{q^2}{2C}$$
 and $U_B = \frac{Li^2}{2}$, (31-1,31-2)

where q is the instantaneous charge on the capacitor and i is the instantaneous current through the inductor. The total energy $U (= U_E + U_B)$ remains constant.

LC Charge and Current Oscillations The principle of conservation of energy leads to

$$L\frac{d^2q}{dt^2} + \frac{1}{C}q = 0 \qquad (LC \text{ oscillations})$$
 (31-11)

as the differential equation of LC oscillations (with no resistance). The solution of Eq. 31-11 is

$$q = Q\cos(\omega t + \phi)$$
 (charge), (31-12)

in which Q is the *charge amplitude* (maximum charge on the capacitor) and the angular frequency ω of the oscillations is

$$\omega = \frac{1}{\sqrt{LC}}. (31-4)$$

The phase constant ϕ in Eq. 31-12 is determined by the initial conditions (at t = 0) of the system.

The current i in the system at any time t is

$$i = -\omega Q \sin(\omega t + \phi)$$
 (current), (31-13)

in which ωQ is the current amplitude I.

Damped Oscillations Oscillations in an LC circuit are damped when a dissipative element R is also present in the circuit. Then

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{1}{C}q = 0 \qquad (RLC \text{ circuit}). \tag{31-24}$$

The solution of this differential equation is

$$q = Qe^{-Rt/2L}\cos(\omega't + \phi), \tag{31-25}$$

where

$$\omega' = \sqrt{\omega^2 - (R/2L)^2}. (31-26)$$

We consider only situations with small R and thus small damping; then $\omega' \approx \omega$.

Alternating Currents; Forced Oscillations A series RLC circuit may be set into forced oscillation at a driving angular frequency ω_d by an external alternating emf

$$\mathscr{E} = \mathscr{E}_m \sin \omega_d t. \tag{31-28}$$

The current driven in the circuit is

$$i = I\sin(\omega_d t - \phi),\tag{31-29}$$

where ϕ is the phase constant of the current.

Resonance The current amplitude I in a series RLC circuit driven by a sinusoidal external emf is a maximum $(I = \mathcal{E}_m/R)$ when the driving angular frequency ω_d equals the natural angular frequency ω of the circuit (that is, at *resonance*). Then $X_C = X_L$, $\phi = 0$, and the current is in phase with the emf.

Single Circuit Elements The alternating potential difference across a resistor has amplitude $V_R = IR$; the current is in phase with the potential difference.

For a capacitor, $V_C = IX_C$, in which $X_C = 1/\omega_a C$ is the capacitive reactance; the current here leads the potential difference by 90° ($\phi = -90^\circ = -\pi/2$ rad).

For an *inductor*, $V_L = IX_L$, in which $X_L = \omega_d L$ is the **inductive reactance**; the current here lags the potential difference by 90° $(\phi = +90^\circ = +\pi/2 \text{ rad})$.

Series *RLC* **Circuits** For a series *RLC* circuit with an alternating external emf given by Eq. 31-28 and a resulting alternating current given by Eq. 31-29,

$$I = \frac{\mathscr{E}_m}{\sqrt{R^2 + (X_L - X_C)^2}}$$

$$= \frac{\mathscr{E}_m}{\sqrt{R^2 + (\omega_d L - 1/\omega_d C)^2}}$$
(current amplitude) (31-60, 31-63)

and
$$\tan \phi = \frac{X_L - X_C}{R}$$
 (phase constant). (31-65)

Defining the impedance Z of the circuit as

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$
 (impedance) (31-61)

allows us to write Eq. 31-60 as $I = \mathcal{E}_m/Z$.

Source: Fundamentals of Physics, 9th Edition Halliday & Resnick & Walker

GOOD LUCK!