

Márcio C. F. Macedo (UFBA – Brazil) Antônio L. Apolinário Jr. (UFBA – Brazil)

PGCOMP (UFBA - Brazil)

AGENDA

- Introduction;
- Revectorization-Based Shadow Mapping;
- Revectorization-Based Accurate Soft Shadows;
- Results and Discussion;
- Conclusion and Future Work;

Introduction

CONTEXT

• Rendering Equation:

[Williams1978] – L. Williams. "Casting Curved Shadows on Curved Surfaces". Proceedings of the SIGGRAPH, 1978.

CONTEXT

• Accurate Shadow Rendering:

2**88 samples 378672500**s

25 samples – 80 ms

REVECTORIZATION-BASED SHADOW MAPPING

REVECTORIZATION-BASED SHADOW MAPPING

• Shadow Revectorization [Macedo2016]:

7

REVECTORIZATION-BASED SHADOW MAPPING

• Revectorization Pipeline [Macedo2016]:

8

REVECTORIZATION-BASED SHADOW MAPPING

• Visual Quality:

REVECTORIZATION-BASED ACCURATE SOFT SHADOWS

o Step 1 − Light Source Sampling:

• Step 2 – Shadow Map Rendering [Williams1978]:

12

• Step 3 – Discontinuity Map Rendering [Macedo2016]:

[Macedo2016] – M. Macedo, A. Apolinário. "Revectorization-Based Shadow Mapping". Proceedings of Graphics Interface, 2016.

o Step 4 − Shadow Evaluation:

◦ Step 5 – Discontinuity Evaluation:

o Step 6 − Banding Artifact Detection:

∘ Step 7 – Light Source Refinement:

◦ Step 8 – Final Rendering:

RESULTS AND DISCUSSION

EXPERIMENTAL SETUP

- o For all tests, we used an Intel® Core™ i7-3770K CPU @3.50Ghz, 8GB RAM, NVIDIA GeForce GTX Titan X;
- We compare our approach with:
 - Uniform sampling of the area light source:
 - 289 samples;
 - Adaptive sampling proposed by [Schwarzler2012];
 - Percentage-Closer Soft Shadows [Fernando2005];
 - Moment Soft Shadow Mapping [Peters2016];

[Schwarzler2012] – M. Schwarzler et al. "Fast Accurate Soft Shadows with Adaptive Light Source Sampling". Proceedings of the VMV, 2012.

20

VISUAL QUALITY

VISUAL QUALITY

• Large Penumbra Sizes:

Percentage-Closer Soft Shadows

Our approach

VISUAL QUALITY

• Subsampling Artifacts:

Shadow Map Resolution: 512 x 512

Shadow Map Resolution: 1024 x 1024

RENDERING TIME

• Shadow Map Resolution:

		Shadow Map Resolution		
Model	Method	512^2	1024^2	2048^2
Armadillo	Uniform S.	$350\mathrm{ms}$	$360\mathrm{ms}$	$380\mathrm{ms}$
	Adaptive S.	$175~\mathrm{ms}$	$100~\mathrm{ms}$	95 ms
	RB Adaptive S.	$95~\mathrm{ms}$	$80~\mathrm{ms}$	$80\mathrm{ms}$
	PCSS	$5.3~\mathrm{ms}$	$5.4~\mathrm{ms}$	5.5 ms
	MSSM	$4.0~\mathrm{ms}$	$5.8~\mathrm{ms}$	7.1 ms
YeahRight	Uniform S.	1.4s	1.4s	1.4 s
	Adaptive S.	1.5 s	$770\mathrm{ms}$	950 ms
	RB Adaptive S.	$340~\mathrm{ms}$	$495~\mathrm{ms}$	$620\mathrm{ms}$
	PCSS	$11.2~\mathrm{ms}$	$11.3 \mathrm{\ ms}$	11.7 ms
	MSSM	$10.8~\mathrm{ms}$	$11.0~\mathrm{ms}$	11.1 ms
QuadBot	Uniform S.	$800\mathrm{ms}$	$820\mathrm{ms}$	830 ms
	Adaptive S.	$950\mathrm{ms}$	$840\mathrm{ms}$	610 ms
	RB Adaptive S.	$380\mathrm{ms}$	$385~\mathrm{ms}$	$400~\mathrm{ms}$
	PCSS	$7.4~\mathrm{ms}$	$7.5~\mathrm{ms}$	7.6 ms
	MSSM	6.4 ms	8 ms	9.2 ms

RENDERING TIME

• Viewport/Output Resolution:

		Output Resolution		
Model	Method	SD	HD	Full HD
Armadillo	Uniform S.	$360 \mathrm{ms}$	$360 \mathrm{ms}$	360 ms
	Adaptive S.	$50~\mathrm{ms}$	$100~\mathrm{ms}$	$270 \mathrm{ms}$
	RB Adaptive S.	$70~\mathrm{ms}$	$80\mathrm{ms}$	$250 \mathrm{ms}$
	PCSS	$3.7~\mathrm{ms}$	$5.4~\mathrm{ms}$	8.1 ms
	MSSM	$5.4 \mathrm{\ ms}$	$5.8~\mathrm{ms}$	6.6 ms
YeahRight	Uniform S.	1.4 s	1.4 s	1.4 s
	Adaptive S.	$280\mathrm{ms}$	$770\mathrm{ms}$	1.6 s
	RB Adaptive S.	$180\mathrm{ms}$	$495 \mathrm{ms}$	$850\mathrm{ms}$
	PCSS	$10~\mathrm{ms}$	$11.3 \mathrm{\ ms}$	14.4 ms
	MSSM	$10.0 \mathrm{\ ms}$	$11.0 \mathrm{\ ms}$	12.6 ms
QuadBot	Uniform S.	$800~\mathrm{ms}$	$820~\mathrm{ms}$	830 ms
	Adaptive S.	$220~\mathrm{ms}$	$840~\mathrm{ms}$	1 s
	RB Adaptive S.	$130\mathrm{ms}$	$385~\mathrm{ms}$	$680\mathrm{ms}$
	PCSS	6 ms	$7.5~\mathrm{ms}$	10.2 ms
	MSSM	$7.5~\mathrm{ms}$	8 ms	8.6 ms

CONCLUSION AND FUTURE WORK

FINAL CONSIDERATIONS

• Conclusion:

- Our technique produces temporally coherent accurate soft shadows;
- Our technique produces accurate soft shadows at interactive speed;

• Future Work:

- Extend the approach for textured and non-planar area light sources;
- Speed-up the accurate soft shadow computation:
 - View-Independent Rasterization [Marrs2017];

ACKNOWLEDGMENTS

- We are grateful to:
 - NVIDIA Corporation for providing the NVIDIA GeForce GTX Titan X through the GPU Education Center program;
 - CAPES for financial support;

Thank You!

Márcio C. F. Macedo (marciocfmacedo@gmail.com) Antônio L. Apolinário Jr. (apolinario@dcc.ufba.br)