Тема I: Векторная алгебра

§1.4. Векторное произведение векторов

Б.М.Верников М.В.Волков

Уральский федеральный университет Институт естественных наук и математики кафедра алгебры и фундаментальной информатики

2021/2022 учебный год

Ориентация тройки векторов

Определение

Упорядоченная тройка некомпланарных векторов $(\vec{u}, \vec{v}, \vec{w})$ называется правой, если из конца вектора \vec{w} поворот от \vec{u} к \vec{v} по наименьшему углу выглядит происходящим против часовой стрелки, и левой — в противном случае. Правую тройку векторов называют также положительно ориентированной, а левую — отрицательно ориентированной.

• Термины «правая» и «левая» для троек векторов имеют «антропное» происхождение: если смотреть с конца большого пальца на поворот от указательного пальца к среднему, то на правой руке этот поворот будет происходить против часовой стрелки, а на левой – по часовой стрелке.

Ориентация тройки векторов (2)

На рисунке тройка $(\vec{u}, \vec{v}, \vec{w})$ является правой, а тройка $(\vec{x}, \vec{y}, \vec{z})$ – левой (имеется в виду, что вектора \vec{u} , \vec{v} и \vec{x} , \vec{y} расположены в горизонтальной плоскости, а вектора \vec{w} и \vec{z} направлены вверх).

Несложно убедиться в том, что перестановка двух соседних векторов в тройке меняет ее ориентацию на противоположную, а циклическая перестановка не меняет. (Циклическая перестановка — это переход от тройки $(\vec{u}, \vec{v}, \vec{w})$ к тройке $(\vec{w}, \vec{u}, \vec{v})$ или к тройке $(\vec{v}, \vec{w}, \vec{u})$.)

Определение векторного произведения векторов

Определение

Векторным произведением неколлинеарных векторов \vec{a} и \vec{b} называется вектор \vec{c} такой, что:

- 1) $|\vec{c}| = |\vec{a}| \cdot |\vec{b}| \cdot \sin(\vec{a}, \vec{b})$, т.е. длина векторного произведения неколлинеарных векторов равна площади параллелограмма, построенного на этих векторах,
- 2) вектор \vec{c} ортогонален к векторам \vec{a} и \vec{b} ,
- 3) тройка векторов $(\vec{a}, \vec{b}, \vec{c})$ правая.

Векторное произведение коллинеарных векторов по определению равно нулевому вектору. Векторное произведение векторов \vec{a} и \vec{b} обозначается через $\vec{a} \times \vec{b}$ или $[\vec{a}, \vec{b}]$.

Пункт 2) из определения векторного произведения определяет прямую, вдоль которой направлен вектор $\vec{a} \times \vec{b}$ (это прямая, перпендикулярная к плоскости векторов \vec{a} и \vec{b}), но не указывает, в какую сторону вдоль этой прямой направлен этот вектор. Для того, чтобы однозначно указать направление вектора $\vec{a} \times \vec{b}$, и нужен пункт 3) определения.

Пример: векторные произведения векторов правого ортонормированного базиса

Пусть $(\vec{e}_1, \vec{e}_2, \vec{e}_3)$ – правый ортонормированный базис пространства, т.е. ортонормированный базис, являющийся правой тройкой векторов:

Тогда

$$\vec{e}_1\times\vec{e}_2=\vec{e}_3,\quad \vec{e}_1\times\vec{e}_3=-\vec{e}_2\quad \text{if}\quad \vec{e}_2\times\vec{e}_3=\vec{e}_1.$$

Первое равенство вытекает из того, что $\vec{e}_3 \perp \vec{e}_1$, $\vec{e}_3 \perp \vec{e}_2$, тройка $(\vec{e}_1,\vec{e}_2,\vec{e}_3)$ – правая и

$$|\vec{e}_1| \cdot |\vec{e}_2| \cdot \sin(\widehat{\vec{e}_1}, \widehat{\vec{e}_2}) = 1 \cdot 1 \cdot \sin\frac{\pi}{2} = 1 = |\vec{e}_3|.$$

Два других равенства проверяются аналогично, надо только учесть, что тройка $(\vec{e}_1, \vec{e}_3, \vec{e}_2)$ – левая, а тройка $(\vec{e}_2, \vec{e}_3, \vec{e}_1)$ – правая.

Свойства векторного умножения

Свойства векторного умножения

Если \vec{a}, \vec{b} и \vec{c} — произвольные вектора, а t — произвольное число, то:

- 1) $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$ (антикоммутативность);
- 2) $(t\vec{a}) \times \vec{b} = \vec{a} \times (t\vec{b}) = t(\vec{a} \times \vec{b});$
- 3) $(\vec{a} + \vec{b}) \times \vec{c} = \vec{a} \times \vec{c} + \vec{b} \times \vec{c}$ (дистрибутивность относительно сложения векторов по первому аргументу);
- 4) $\vec{a} \times (\vec{b} + \vec{c}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$ (дистрибутивность относительно сложения векторов по второму аргументу).
 - Из свойств сложения и векторного умножения векторов видно, что множество всех векторов с этими двумя операциями является кольцом. Это кольцо некоммутативно и неассоциативно. (Оно принадлежит классу так называемых колец Ли). Это единственный пример неассоциативного кольца, возникающий в нашем курсе.

Свойства 1) и 4) будут доказаны на следующем слайде, а свойства 2) и 3) — в следующем параграфе.

Свойства векторного умножения (доказательство)

Доказательство свойства 1). Если $\vec{a} \parallel \vec{b}$, то $\vec{a} \times \vec{b} = \vec{0}$ и $\vec{b} \times \vec{a} = \vec{0}$, откуда $\vec{a} \times \vec{b} = -(\vec{b} \times \vec{a})$. Пусть $\vec{a} \not\parallel \vec{b}$. Поскольку $\sin(\widehat{a}, \widehat{b}) = \sin(\widehat{b}, \widehat{a})$, имеем

$$|\,\vec{a}\times\vec{b}\,|=|\,\vec{a}\,|\cdot|\,\vec{b}\,|\cdot\sin(\widehat{\vec{a},\vec{b}}\,)=|\,\vec{b}\,|\cdot|\,\vec{a}\,|\cdot\sin(\widehat{\vec{b},\vec{a}}\,)=|\,\vec{b}\times\vec{a}\,|.$$

Как $\vec{a} \times \vec{b}$, так и $\vec{b} \times \vec{a}$ ортогональны векторам \vec{a} и \vec{b} , откуда $\vec{a} \times \vec{b} \parallel \vec{b} \times \vec{a}$. Тройка $(\vec{a}, \vec{b}, \vec{a} \times \vec{b})$ правая (по определению векторного произведения), а потому тройка $(\vec{b}, \vec{a}, \vec{a} \times \vec{b})$) левая (перестановка соседних векторов меняет ориентацию тройки). Поскольку тройка $(\vec{b}, \vec{a}, \vec{b} \times \vec{a})$ — правая, видим, что $\vec{a} \times \vec{b} \uparrow \downarrow \vec{b} \times \vec{a}$. Итак, $\vec{a} \times \vec{b}$ и $\vec{b} \times \vec{a}$ — обратно коллинеарные вектора одинаковой длины, т.е. противоположные вектора.

Свойство 4) следует из свойств 1) и 3). В самом деле,

$$\vec{a} \times (\vec{b} + \vec{c}) = -(\vec{b} + \vec{c}) \times \vec{a} = -(\vec{b} \times \vec{a} + \vec{c} \times \vec{a}) = -(\vec{b} \times \vec{a}) - (\vec{c} \times \vec{a}) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}.$$

Вычисление векторного произведения в координатах (в произвольном базисе)

Пусть $(\vec{e}_1,\vec{e}_2,\vec{e}_3)$ – некоторый базис, а (x_1,x_2,x_3) и (y_1,y_2,y_3) – координаты векторов \vec{x} и \vec{y} в этом базисе соответственно. Применяя свойства 2)–4) векторного умножения, имеем

$$\begin{split} \vec{x} \times \vec{y} &= (x_1 \vec{e}_1 + x_2 \vec{e}_2 + x_3 \vec{e}_3) \times (y_1 \vec{e}_1 + y_2 \vec{e}_2 + y_3 \vec{e}_3) = \\ &= (x_1 y_1) \cdot \vec{e}_1 \times \vec{e}_1 + (x_1 y_2) \cdot \vec{e}_1 \times \vec{e}_2 + (x_1 y_3) \cdot \vec{e}_1 \times \vec{e}_3 + \\ &+ (x_2 y_1) \cdot \vec{e}_2 \times \vec{e}_1 + (x_2 y_2) \cdot \vec{e}_2 \times \vec{e}_2 + (x_2 y_3) \cdot \vec{e}_2 \times \vec{e}_3 + \\ &+ (x_3 y_1) \cdot \vec{e}_3 \times \vec{e}_1 + (x_3 y_2) \cdot \vec{e}_3 \times \vec{e}_2 + (x_3 y_3) \cdot \vec{e}_3 \times \vec{e}_3. \end{split}$$

Используя антикоммутативность векторного умножения, можно переписать это равенство в виде

$$\vec{x} \times \vec{y} = (x_1 y_2 - x_2 y_1) \cdot \vec{e}_1 \times \vec{e}_2 + (x_1 y_3 - x_3 y_1) \cdot \vec{e}_1 \times \vec{e}_3 + (x_2 y_3 - x_3 y_2) \cdot \vec{e}_2 \times \vec{e}_3.$$

Как и в случае со скалярным произведением, эта формула не позволяет вычислить векторное произведение без знания «таблицы умножения» базисных векторов.

Вычисление векторного произведения в координатах (в правом ортонормированном базисе)

Предположим теперь, что $(\vec{e}_1,\vec{e}_2,\vec{e}_3)$ – правый ортонормированный базис. Тогда

$$\vec{e}_1\times\vec{e}_2=\vec{e}_3,\quad \vec{e}_1\times\vec{e}_3=-\vec{e}_2\quad \text{if}\quad \vec{e}_2\times\vec{e}_3=\vec{e}_1$$

и формула

$$\vec{x} \times \vec{y} = (x_1 y_2 - x_2 y_1) \cdot \vec{e}_1 \times \vec{e}_2 + (x_1 y_3 - x_3 y_1) \cdot \vec{e}_1 \times \vec{e}_3 + (x_2 y_3 - x_3 y_2) \cdot \vec{e}_2 \times \vec{e}_3.$$

приобретает вид

$$\vec{x} \times \vec{y} = (x_2y_3 - x_3y_2)\vec{e}_1 - (x_1y_3 - x_3y_1)\vec{e}_2 + (x_1y_2 - x_2y_1)\vec{e}_3.$$

Правую часть этого равенства удобно представлять как результат разложения по первой строке символического определителя

$$\begin{vmatrix} \vec{e}_1 & \vec{e}_2 & \vec{e}_3 \\ x_1 & x_2 & x_3 \\ y_1 & y_2 & y_3 \end{vmatrix} = \begin{vmatrix} x_2 & x_3 \\ y_2 & y_3 \end{vmatrix} \vec{e}_1 - \begin{vmatrix} x_1 & x_3 \\ y_1 & y_3 \end{vmatrix} \vec{e}_2 + \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix} \vec{e}_3.$$

С учетом этой договоренности имеем

$$ec{x} imes ec{y} = egin{array}{ccc} ec{e}_1 & ec{e}_2 & ec{e}_3 \ x_1 & x_2 & x_3 \ y_1 & y_2 & y_3 \ \end{array}.$$

Приложения векторного произведения

Пусть $(\vec{b}_1,\vec{b}_2,\vec{b}_3)$ — правый ортонормированный базис, а (x_1,x_2,x_3) и (y_1,y_2,y_3) — координаты векторов \vec{x} и \vec{y} в этом базисе соответственно. Используя векторное произведение, можно вычислить площадь S параллелограмма, построенного на векторах \vec{x} и \vec{y} :

$$S = \sqrt{(x_2y_3 - x_3y_2)^2 + (x_1y_3 - x_3y_1)^2 + (x_1y_2 - x_2y_1)^2};$$

Пусть даны координаты (x_1,x_2) и (y_1,y_2) неколлинеарных векторов \vec{x} и соответственно \vec{y} в ортонормированном базисе (\vec{e}_1,\vec{e}_2) той плоскости, где лежат \vec{x} и \vec{y} . Возьмем $\vec{e}_3:=\vec{e}_1\times\vec{e}_2$; тогда $(\vec{e}_1,\vec{e}_2,\vec{e}_3)$ — правый ортонормированный базис пространства, в котором вектора \vec{x} и \vec{y} имеют координаты $(x_1,x_2,0)$ и $(y_1,y_2,0)$ соответственно. Подставляя эти координаты в формулу для S, получаем

$$S = \sqrt{(x_1y_2 - x_2y_1)^2} = \text{abs} \begin{vmatrix} x_1 & x_2 \\ y_1 & y_2 \end{vmatrix}$$

(символом abs мы обозначили абсолютную величину определителя). Заключаем, что геометрический смысл определителя 2-го порядка – *ориентированная площадь* параллелограма.