# 实验报告 共源放大电路设计、仿真与实现

电子信息与通信学院 提高 2301 班 张禹阳 U202314270

2025年4月26日





# 目录

| 6 | 实验小结        | 8 |
|---|-------------|---|
|   | 5.2 第二档频率范围 | 6 |
|   | 5.1 第一档频率范围 | 6 |
| 5 |             | 6 |
| 4 | 实验原理        | 3 |
| 3 | 实验任务        | 2 |
| 2 | 实验元器件       | 2 |
| 1 | 实验目的        | 2 |

## 1 实验目的

- 集成运放性能指标含义
- 集成运放使用方法与注意事项
- 函数发生器设计方法与测试技术
- 两级电路的级联与调试方法

## 2 实验元器件

| 名称    | 型号/参数        | 数量 |
|-------|--------------|----|
| 运算放大器 | NE5532       | 1  |
|       | $1 \mu F$    | 1  |
| 电容    | $0.1 \mu F$  | 1  |
|       | 470pF        | 1  |
| 电阻    | 10 <b>kΩ</b> | 2  |
| 七四    | 1kΩ          | 3  |
| 电位器   | W104         | 1  |
| 电压缩   | W504         | 1  |

## 3 实验任务

已知条件:运放 NE5532 一只。 性能指标要求:

- 频率范围:100Hz ~ 1kHz, 1kHz ~ 10kHz;
- 输出电压: 方波  $V_{pp} \le 24$ V, 三角波  $V_{pp} = 6$ V;
- 波形特性: 方波  $t_r < 30 \mu s (1 \text{kHz}, 最大输出时) 三角波 <math>\gamma_\Delta < 2\%$ 注意事项:
- 1. 组装电路前须对所有电阻逐一测量,作好记录。

2. 集成运算放大器的各个管脚不要接错,尤其是正、负电源不能接反,否则极易损坏芯片。

#### 装调步骤:

- 1. 由于比较器  $A_1$  与积分器  $A_2$  组成正反馈闭环电路,同时输出方波与三角波,故这两个单元电路需同时安装。
- 2. 注意: 在安装电位器  $RP_1$  与  $RP_2$  之前,先将其调整到设计值,否则电路可能会不起振。
- 3. 如果电路接线正确,则在接通电源后, $A_1$  的输出  $v_{o1}$  为方波, $A_2$  的输出  $v_{o2}$  为三角波。
- 4. 在频率较低时, 微调 RP<sub>1</sub>, 使三角波输出幅度满足设计指标要求。
- 5. 再调节 RP<sub>2</sub>,则输出频率连续可变。

## 4 实验原理

下图所示的电路能自动产生方波-三角波,图中虚线右边是积分器  $(A_2)$ ,虚线左边是同相输入的迟滞电压比较器  $(A_1)$ ,其中  $C_1$  称为加速电容,可加速比较器的翻转。电路的工作原理分析如下:



图 1: 原理图

若 a 点断开,比较器  $A_1$  的反相端接基准电压,即  $V_-=0$ ,同相端接输入电压  $v_{\rm ia}$ ; 比较器输出  $v_{\rm ol}$  的高电平  $v_{\rm OH}$  接近于正电源电压  $+v_{\rm cc}$ ,低电平  $v_{\rm OL}$  接近于负电源电压- $V_{\rm EE}$  (通常  $|+V_{CC}|=|-V_{EE}|$ )。根据叠加原理,得到:

$$V_{+} = \frac{R_2}{R_2 + R_3 + RP_1} V_{o1} + \frac{R_3 + RP_1}{R_2 + R_3 + RP_1} V_{ia}$$
 (1)

式中, RP<sub>1</sub> 指电位器的调整值 (以下同)。

通常将比较器的输出电压  $v_{ol}$  从一个电平跳变到另一个电平时对应的输入电压称为门限电压。将比较器翻转时对应的条件  $V_{+}=V_{-}=0$  代入式 (4.5.1), 得到

$$V_{ia} = \frac{-R_2}{R_3 + RP_1} V_{ol} \tag{2}$$

设  $V_{\text{ol}} = V_{\text{OH}} = +V_{\text{CC}}$ ,代入式 (4.5.2) 得到一个较小值,即比较器翻转的下门限电平

$$V_{\rm T} = V_{\rm ia} = \frac{-R_2}{R_3 + RP_1} V_{\rm OH} = \frac{-R_2}{R_3 + RP_1} V_{\rm CC}$$
 (3)

设  $V_{\text{ol}} = V_{\text{OL}} = -V_{\text{EE}} = -V_{\text{CC}}$ ,代入式 (4.5.2) 得到一个较大值,即比较器翻转的上门限电平

$$V_{\text{T+}} = V_{\text{ia+}} = \frac{-R_2}{R_3 + \text{RP}_1} V_{\text{OL}} = \frac{R_2}{R_3 + \text{RP}_1} V_{\text{CC}}$$
(4)

比较器的门限宽度或回差电压为

$$\Delta V_{\rm T} = V_{\rm T+} - V_{\rm T-} = 2 \times \frac{R_2}{R_3 + RP_1} V_{\rm CC} \tag{5}$$

比较器的电压传输特性如图 2(a) 所示。当  $v_{ia}$  为往复跨越上、下门限电平的电压波形时,则  $v_{ol}$  不断在高、低电平之间跳变,即输出一串方波。 $C_1$  在  $v_{ol}$  跳变瞬间可看作短路,使门限迅速改变,即运放  $A_1$  的  $v_+$  和 v 之差迅速增大,从而加速输出的翻转。 $C_1$  在  $v_{ol}$  保持高电平或低电平期间则可看作开路。



(a) 比较器电压传输特性



(b) 方波-三角波

a 点断开后,运放  $A_2$  与  $R_4$ 、 $RP_2$ 、 $C_2$  及  $R_5$  组成反相积分器,若积分器的输入信号  $v_{\rm ol}$  为方波,则输出电压等于电容两端的电压,即

$$v_{02} = -v_{C2} = -\frac{1}{C_2} \int \frac{v_{ol}}{(R_4 + RP_2)} dt = -\frac{1}{C_2} \int_{t_0}^{t_1} \frac{v_{ol}}{(R_4 + RP_2)} dt - v_{C2}(t_0)$$

$$= -\frac{v_{ol}}{(R_4 + RP_2)C_2} (t_1 - t_0) + v_{02}(t_0)$$
(6)

式中, $v_{C2}(t_0)$  是  $t_0$  时刻电容两端的初始电压值, $v_{o2}(t_0)$  是  $t_0$  时刻电路的输出电压,且有  $v_{o2}(t_0) = -v_{C2}(t_0)$ 。

当  $v_{01} = +V_{CC}$  时,则

$$v_{o2} = -\frac{V_{\text{CC}}}{(R_4 + \text{RP}_2)C_2} (t_1 - t_0) + v_{02}(t_0)$$
(7)

当  $v_{01} = +V_{CC}$  时,则

$$v_{02} = \frac{V_{\text{CC}}}{(R_4 + \text{RP}_2)C_2} (t_1 - t_0) + v_{02}(t_0)$$
(8)

可见,当积分器的输入为方波时,输出是一个下降速率与上升速率相等的三角波,其波形关系如图 2(b) 所示。

a 点闭合,即比较器与积分器首尾相连,形成闭环电路,只要积分器的输出电压  $v_{02}$  达到比较器的门限电平,使得比较器的输出状态发生改变,则该电路就能自动产生方波-三角波。

由图 4.5.4 所示的波形可知,输出三角波的峰-峰值就是比较器的门限宽度,即

$$V_{o2pp} = \Delta V_{T} = \frac{2R_{2}}{R_{2} + RP_{1}} V_{CC}$$
 (9)

积分电路的输出电压  $v_{oz}$  从  $v_{T-}$  上升到  $v_{T+}$  所需的时间是振荡周期的一半,即在 T/2 时间内  $v_{o2}$  的变化量等于  $V_{o2pp}$ 。根据式 (4.5.8) 得到电路的振荡周期为

$$T = \frac{4R_2(R_4 + RP_2)C_2}{R_3 + RP_1} \tag{10}$$

方波-三角波的频率为

$$f = \frac{1}{4(R_4 + RP_2)C_2} \cdot \frac{R_3 + RP_1}{R_2} \tag{11}$$

由式 (4.5.9) 及式 (4.5.11) 可以得出以下结论:

- (1) 方波的输出幅度约等于电源电压  $+v_{cC}$ ,三角波的输出幅度与电阻  $R_2$  与  $(R_3+RP_1)$  的比值有关,且小于电源电压  $+v_{\epsilon C}$ 。电位器  $RP_1$  可实现三角波幅度微调,但会影响方波-三角波的频率。
- (2) 电位器  $RP_2$  在调整输出信号的频率时,不会影响三角波输出电压的幅度。因此应先调整电位器  $RP_1$ ,使输出三角波的电压幅值达到所要求的值,然后再调整电位器  $RP_2$ ,使输出频率满足要求。若要求输出频率范围较宽,可取不同的  $C_2$  来改变频率的范围,用  $RP_2$  实现频率微调。

## 5 实验过程

安装电路前,测量得到各电阻实际值如下:

| $R_1$                    | $R_2$         | $R_3$         | $R_4$         | $R_5$           |
|--------------------------|---------------|---------------|---------------|-----------------|
| $9.873~\mathrm{k}\Omega$ | $972.2\Omega$ | $986.1\Omega$ | $979.4\Omega$ | 9.831k <b>Ω</b> |

#### 5.1 第一档频率范围

选取的电容为  $C_2 = 1\mu F$ ,调节  $\mathrm{RP}_1 \cong 3.014 \ \mathrm{k}\Omega$  不变,再调节  $\mathrm{RP}_2$ ,得到上、下限 频率对应的各项指标如下表格:

|    | 方波频率                 | 方波峰峰值 | 三角波峰峰值 | 方波上升时间  |
|----|----------------------|-------|--------|---------|
| 上限 | $1.003 \mathrm{kHz}$ | 20.40 | 6.000  | 11.12μs |
| 下限 | 100.4Hz              | 20.80 | 6.200  | 23.12μs |

调节  $RP_2$  至 1.012  $k\Omega$ , 得到的方波和三角波波形如下:

根据实际测量得到的电阻值计算频率和三角波峰峰值的理论值,并与实际值比较,结果如下表格:

|        | 理论值                 | 实际值                 | 相对误差   |
|--------|---------------------|---------------------|--------|
| 频率     | $516.5 \mathrm{Hz}$ | $459.2 \mathrm{Hz}$ | 11.1 % |
| 三角波峰峰值 | 5.833V              | 6.000V              | 2.86 % |

#### 5.2 第二档频率范围

选取的电容为  $C_2 = 0.1 \mu F$ ,调节  $RP_1$  至  $3.014 k\Omega$  不变,再调节  $RP_2$ ,得到上、下限频率对应的各项指标如下表格:



图 2: 第一档频率范围典型波形



图 3: 第二档频率范围典型波形

|    | 方波频率     | 方波峰峰值  | 三角波峰峰值 | 方波上升时间        |
|----|----------|--------|--------|---------------|
| 上限 | 10.27kHz | 19.80V | 5.900V | $7.860 \mu s$ |
| 下限 | 1.013Hz  | 20.00V | 6.000V | 8.204μs       |

调节  $RP_2$  至  $1.012 k\Omega$ , 得到的方波和三角波波形如下:

根据实际测量得到的电阻值计算频率和三角波峰峰值的理论值,并与实际值比较,结 果如下表格:

|        | 理论值                  | 实际值                  | 相对误差   |
|--------|----------------------|----------------------|--------|
| 频率     | $5.165 \mathrm{kHz}$ | $7.455 \mathrm{kHz}$ | 44.6 % |
| 三角波峰峰值 | 5.833V               | 6.000V               | 2.86 % |

## 6 实验小结

本次实验电路我搭建得比较快,但一开始  $RP_2$  选用的是 W103,导致在调节第二档 频率时无法调到 1kHz 及以下,后面发现  $RP_2$  选得太小了,改用为 W504 后便可以顺利 调节了。