

Pedro Venda (A045464) Carolina Fernandes (A044897)

Introdução

Com o avanço das tecnologias de informação, a geração e recolha de dados tornaram-se constantes em praticamente todas as áreas. Neste cenário, a análise de grandes volumes de dados tornou-se essencial para extrair conhecimento útil, apoiar decisões e otimizar processos. A mineração de dados (Data Mining) surge como uma ferramenta fundamental para transformar dados brutos em informação relevante, com impacto real em contextos tão diversos como os negócios, a ciência ou a saúde.

Neste contexto, a área de Data Mining desempenha um papel crucial ao aplicar técnicas estatísticas e computacionais para identificar padrões relevantes em bases de dados complexas.

CRISP-DM

A metodologia CRISP-DM (Cross Industry Standard Process for Data Mining) surge como um padrão amplamente consolidado e utilizado na condução de projetos desta natureza. Esta metodologia estrutura o processo de mineração de dados em seis fases bem definidas:

- 1. Compreensão do Negócio (Business Understanding):
- definição do problema do ponto de vista do domínio da aplicação;
- **2. Compreensão dos Dados (Data Understanding):** exploração e caracterização do conjunto de dados;
 - 3. Preparação dos Dados (Data Preparation):

limpeza e transformação dos dados para torná-los adequados à modelação;

4. Modelação (Modeling):

aplicar algoritmos de aprendizagem automática;

5. Avaliação (Evaluation):

verificar se os modelos obtidos cumprem os objetivos definidos;

6. Implementação (Deployment):

entregar os resultados de forma útil para o utilizador final.

Business Understanding

Incidindo agora no âmbito deste projeto, será utilizado o dataset Dermatology. Este conjunto tem como objetivo de apoiar o diagnóstico diferencial de doenças dermatológicas, em específico do grupo erythemato-squamous, incluindo diferentes patologias

A realização de um diagnóstico destas doenças representa um desafio clínico, uma vez que estes partilham sintomas clínicos e características histopatológicas muito semelhantes. Esta semelhança dificulta a distinção precisa entre as diferentes patologias, levando, muitas vezes, à necessidade de exames como biópsias.

No entanto, mesmo com estes exames, nem sempre é possível obter um diagnóstico inequívoco, devido à sobreposição de padrões microscópicos. Além disso, os sintomas podem variar ao longo do tempo, o que aumenta ainda mais a complexidade do processo diagnóstico.

Dada esta realidade, é evidente a necessidade de desenvolver ferramentas auxiliares que apoiem os profissionais de saúde no processo diagnóstico. A mineração de dados apresenta-se como uma abordagem promissora neste sentido.

Data Understanding

O dataset utilizado é composto por **366 instâncias** (registos) e por **34 atributos descritivos**, aos quais se junta um **atributo de classe (label)** que representa o diagnóstico final da doença dermatológica.

Estes dividem-se em três grandes grupos:

- Atributos clínicos (1 a 11)
- Atributos histopatológicos (12 a 33)
- Atributo contínuo: idade (atributo 34)

Data Understanding

Características dos Atributos:

- Atributos 1 a 33: valores de 0 a 3
- Atributo 11: binário (0 ou 1)
- Atributo 34 (idade): valor contínuo, com valores ausentes e um valor a 0 (a tratar na fase de Data Preparation)

Data Preparation

Tratamento de Valores em Falta ou Nulos

- Neste Passo alteramos O **valor 0** no atributo idade foi substituído manualmente pela média (~40 anos).
- Os **Valores "?"** em idade foram identificados e substituídos pela média (~40 anos), usando os operadores Declare Missing Values e Replace Missing Value

Declare Missing Values

Declare Missing Values - image

Replace Missing Values

Replace Missing Values - Image

Conversao de Tipo de Dados

Foi ainda necessário fazer a conversão do atributo idade que se encontrava em formato de texto (polinomial), o que poderia causar erros na análise. Para garantir que a idade fosse tratada corretamente como um valor numérico, foi utilizado o operador Parse Numbers, que converteu todos os valores do atributo para formato numérico.

Design - Image

Modeling

Entrando agora na fase da modelação e aplicaçao da tecnica de classificação iremos utilizar um **Algoritmo C4.5 (Decision Tree)** e no Rapid Miner este será feito com recurso a diffrentes **critérios de divisão de dados (gain_ratio, information_gain, gini_index e accuracy)** e utilizando os restantes parametros como default.

Alteração da Role do Atributo "LABEL"

De forma a iniciar a fase de modelação e antes de Iniciar o Desenvolvimento da Árvore de decisão propriamente dita foi necessario defenir umattribute no caso class label como role label através do operador **Set Role**

Design - Image

Set Role

• A alteração da Role para label fica marcado pela cor verde na coluna do atributo

Row No.	age
1	55
2	8
3	26
4	40
5	45

Set Role - Image

Algoritmo C4.5

O algoritmo C4.5 consiste num algoritmo de decision tree (árvore de decisão), desenvolvido por Ross Quinlan, amplamente utilizado em tarefas de classificação.

A construção da árvore é realizada de forma recursiva, selecionando a cada divisão o atributo mais informativo com base em critérios como gain ratio, information gain, gini index ou accuracy.

Uma das principais vantagens do C4.5 é a sua capacidade de lidar com atributos contínuos e discretos, bem como com valores em falta. Além disso, o algoritmo aplica técnicas de pruning (poda) para reduzir o sobreajuste e melhorar a capacidade de generalização do modelo.

O resultado final é uma árvore de decisão robusta, precisa e de fácil interpretação, adequada para a classificação de novos dados.

Modeling Criterios de Divisão de Dados

Defenição:

O Gain Ratio é uma modificação do critério de Information Gain, que visa penalizar atributos com muitos valores possíveis. Isso ajuda a evitar que o modelo favoreça atributos com muitos valores, mas que podem não ser os melhores para a classificação. Ele é calculado dividindo o ganho de informação pelo Split Info (informação sobre a divisão do atributo)

Fórmula:

$$Gain_Ratio = \frac{Information_Gain}{Split_Info}$$

Gain_Ratio - Decision Tree

Gain_Ratio - Otput Code

```
Tree
elanin incontinence > 0.500: 3 {2=0, 1=0, 3=70, 5=0, 4=0, 6=0}
elanin incontinence ≤ 0.500
   polygonal papules > 0.500: 3 {2=0, 1=0, 3=2, 5=0, 4=0, 6=0}
   polygonal papules ≤ 0.500
       fibrosis of the papillary dermis > 0.500: 5 {2=0, 1=0, 3=0, 5=52, 4=0, 6=0}
       fibrosis of the papillary dermis ≤ 0.500
            perifollicular parakeratosis > 0.500: 6 {2=1, 1=0, 3=0, 5=0, 4=0, 6=20}
            perifollicular parakeratosis ≤ 0.500
                clubbing of the rete ridges > 0.500: 1 {2=0, 1=109, 3=0, 5=0, 4=0, 6=0}
                clubbing of the rete ridges ≤ 0.500
                    thinning of the suprapapillary epidermis > 1.500: 1 {2=0, 1=3, 3=0, 5=0, 4=0, 6=0}
                    thinning of the suprapapillary epidermis ≤ 1.500
                        koebner phenomenon > 0.500
                            PNL infiltrate > 0.500
                                erythema > 1.500: 2 {2=1, 1=0, 3=0, 5=0, 4=1, 6=0}
                                erythema \leq 1.500: 4 {2=0, 1=0, 3=0, 5=0, 4=3, 6=0}
                            PNL infiltrate ≤ 0.500: 4 {2=0, 1=0, 3=0, 5=0, 4=36, 6=0}
                        koebner phenomenon ≤ 0.500
                            disappearance of the granular layer > 0.500: 4 {2=0, 1=0, 3=0, 5=0, 4=6, 6=0}
                            disappearance of the granular layer ≤ 0.500: 2 {2=59, 1=0, 3=0, 5=0, 4=3, 6=0}
```

Home

Introduction

Content

Conclusion

Análise

Percurso:

- Raiz: melanin incontinence
- Se o valor for menor ou igual a 0.5, avança na análise.
- Passa por polygonal papules e fibrosis of the papillary dermis atributos histopatológicos e clínicos relevantes.
- Segue por:
 - perifollicular parakeratosis
 - clubbing of the rete ridges
 - thinning of the suprapapillary epidermis
 - koebner phenomenon
- Termina com:
 - PNL infiltrate
 - erythema
 - disappearance of the granular layer

Conclusões:

- As classes terminais (2, 4, 6...) representam diferentes diagnósticos dermatológicos.
 - o Classe **2 (azul)** → pode indicar uma forma leve ou intermediária de dermatose.
 - o Classe **6 (vermelho)** → possível condição inflamatória mais grave.
- A árvore evidencia como a combinação de alterações histológicas com fenómenos clínicos (como o fenómeno de Koebner) permite distinguir eficazmente entre diferentes diagnósticos.

Information_Gain

Defenição:

O Information Gain (IG) é uma métrica que calcula a redução na incerteza (ou entropia) do sistema após uma divisão. Ele é baseado na teoria da informação e mede o quanto um atributo ajuda a reduzir a incerteza sobre a classe ou variável alvo. Quanto maior o ganho de informação, mais eficaz é o atributo na divisão dos dados.

Fórmula:

Information_Gain = Entropy(D) -
$$\sum \left(\frac{|D_v|}{|D|} \times Entropy(D_v)\right)$$

Onde:

- D é o conjunto de dados.
- D_v são os subconjuntos criados pela divisão.
- Entropy é uma medida da impureza dos dados.

Information_Gain - Decision Tree

Information_Gain - Otput Code

```
Tree
elongation of the rete ridges > 0.500
    fibrosis of the papillary dermis > 0.500: 5 {2=0, 1=0, 3=0, 5=47, 4=0, 6=0}
    fibrosis of the papillary dermis ≤ 0.500
       spongiosis > 0.500: 2 {2=7, 1=0, 3=0, 5=0, 4=0, 6=1}
        spongiosis \leq 0.500: 1 {2=0, 1=112, 3=0, 5=0, 4=0, 6=1}
elongation of the rete ridges ≤ 0.500
    band-like infiltrate > 1.500: 3 {2=1, 1=0, 3=72, 5=0, 4=0, 6=0}
    band-like infiltrate ≤ 1.500
        koebner phenomenon > 0.500
            PNL infiltrate > 0.500
                erythema > 1.500: 2 {2=1, 1=0, 3=0, 5=0, 4=1, 6=0}
                erythema \leq 1.500: 4 {2=0, 1=0, 3=0, 5=0, 4=3, 6=0}
            PNL infiltrate \leq 0.500: 4 {2=0, 1=0, 3=0, 5=0, 4=36, 6=0}
        koebner phenomenon ≤ 0.500
            perifollicular parakeratosis > 0.500: 6 {2=1, 1=0, 3=0, 5=0, 4=0, 6=18}
            perifollicular parakeratosis ≤ 0.500
                fibrosis of the papillary dermis > 0.500: 5 {2=0, 1=0, 3=0, 5=5, 4=0, 6=0}
                fibrosis of the papillary dermis ≤ 0.500
                    disappearance of the granular layer > 0.500: 4 {2=0, 1=0, 3=0, 5=0, 4=6, 6=0}
                    disappearance of the granular layer \leq 0.500: 2 {2=51, 1=0, 3=0, 5=0, 4=3, 6=0}
```

Análise

Percurso:

- Raiz: fibrosis of the papillary dermis
 - Se presente, analisa-se spongiosis (separação celular na epiderme), levando às classes 2 ou 1 conforme a intensidade.
 - Caso ausente, segue para:
 - elongation of the rete ridges
 - band-like infiltrate
 - koebner phenomenon
- Continua por:
 - PNL infiltrate + erythema
 - o perifollicular parakeratosis, fibrosis (novamente), e disappearance of the granular layer

Conclusões:

- Lesões estruturais profundas (como a fibrose) revelam-se essenciais para o diagnóstico.
- A árvore reutiliza atributos em diferentes caminhos, sugerindo que os mesmos sinais podem indicar doenças distintas, consoante o contexto.
 - Classe 4 (amarelo) é prevalente.
 - Classe 6 surge com infiltrado PNL mas sem eritema, podendo apontar para uma doença menos vascular/inflamatória.

Defenição:

O Gini Index é uma métrica de impureza que mede a desigualdade nas classes dentro de um nó. Ele é utilizado principalmente em árvores de decisão como o algoritmo CART (Classification and Regression Tree). O índice de Gini calcula a probabilidade de uma amostra ser classificada incorretamente se ela fosse rotulada aleatoriamente.

Fórmula:

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2$$

Onde:

- p_i é a probabilidade de um item ser classificado na classe i.
- m é o número de classes.

Gini_Index - Decision Tree

Gini_Index - Otput Code

```
Q
Tree
thinning of the suprapapillary epidermis > 0.500: 1 {2=1, 1=108, 3=0, 5=1, 4=0, 6=0}
thinning of the suprapapillary epidermis ≤ 0.500
    vacuolisation and damage of basal layer > 0.500: 3 {2=0, 1=0, 3=71, 5=0, 4=0, 6=0}
    vacuolisation and damage of basal layer ≤ 0.500
        fibrosis of the papillary dermis > 0.500: 5 {2=0, 1=0, 3=1, 5=51, 4=0, 6=0}
        fibrosis of the papillary dermis ≤ 0.500
            koebner phenomenon > 0.500
                PNL infiltrate > 0.500
                    erythema > 1.500: 2 {2=1, 1=0, 3=0, 5=0, 4=1, 6=0}
                    erythema \leq 1.500: 4 {2=0, 1=0, 3=0, 5=0, 4=3, 6=0}
                PNL infiltrate \leq 0.500: 4 {2=0, 1=0, 3=0, 5=0, 4=36, 6=0}
            koebner phenomenon ≤ 0.500
                follicular papules > 0.500: 6 {2=1, 1=0, 3=0, 5=0, 4=0, 6=20}
                follicular papules ≤ 0.500
                    disappearance of the granular layer > 0.500
                        knee and elbow involvement > 1: 1 \{2=0, 1=3, 3=0, 5=0, 4=0, 6=0\}
                        knee and elbow involvement \leq 1: 4 {2=0, 1=0, 3=0, 5=0, 4=6, 6=0}
                    disappearance of the granular layer ≤ 0.500: 2 {2=58, 1=1, 3=0, 5=0, 4=3, 6=0}
```

Análise

Percurso:

- Raiz: thinning of the suprapapillary epidermis (atrofia epitelial)
- Em seguida:
 - vacuolisation and damage of basal layer
 - fibrosis of the papillary dermis
 - koebner phenomenon
- Divide-se em dois ramos:
 - PNL infiltrate + erythema
 - o follicular papules + disappearance of the granular layer + knee and elbow involvement

Conclusões:

- A árvore contrapõe resposta inflamatória generalizada (infiltrado + eritema) com sinais cutâneos localizados (joelhos/cotovelos).
 - Classe 1 → poucos sinais → forma benigna.
 - Classe 4 → infiltrado + eritema → doença inflamatória típica.
 - Classe 2 (azul) → alterações estruturais com poucos sinais clínicos → diagnóstico diferencial possível.

Accuracy

Defenição:

A Accuracy é a taxa de acerto de um modelo, ou seja, a proporção de previsões corretas em relação ao total de previsões feitas. Ela mede a capacidade do modelo de prever corretamente as instâncias de dados.

Fórmula:

$$Accuracy = \frac{N_{correct}}{N_{total}}$$

Accuracy - Decision Tree

Accuracy - Otput Code

```
Tree
elongation of the rete ridges > 0.500
   fibrosis of the papillary dermis > 0.500: 5 {2=0, 1=0, 3=0, 5=47, 4=0, 6=0}
   fibrosis of the papillary dermis ≤ 0.500
        spongiosis > 0.500: 2 {2=7, 1=0, 3=0, 5=0, 4=0, 6=1}
       spongiosis \leq 0.500: 1 {2=0, 1=112, 3=0, 5=0, 4=0, 6=1}
elongation of the rete ridges ≤ 0.500
    vacuolisation and damage of basal layer > 0.500: 3 {2=0, 1=0, 3=71, 5=0, 4=0, 6=0}
   vacuolisation and damage of basal layer ≤ 0.500
        koebner phenomenon > 0.500: 4 {2=1, 1=0, 3=1, 5=0, 4=40, 6=0}
        koebner phenomenon ≤ 0.500
            follicular papules > 0.500: 6 {2=1, 1=0, 3=0, 5=1, 4=0, 6=18}
            follicular papules ≤ 0.500
                disappearance of the granular layer > 0.500: 4 {2=0, 1=0, 3=0, 5=0, 4=6, 6=0}
                disappearance of the granular layer ≤ 0.500
                    fibrosis of the papillary dermis > 1: 5 {2=0, 1=0, 3=0, 5=4, 4=0, 6=0}
                    fibrosis of the papillary dermis \leq 1: 2 {2=52, 1=0, 3=0, 5=0, 4=3, 6=0}
```

Análise

Percurso:

- Inicia-se com fibrosis of the papillary dermis (como na Árvore 2).
- Depois segue:
 - elongation of the rete ridges
 - vacuolisation and damage of basal layer
 - koebner phenomenon
 - follicular papules
- Prossegue com:
 - disappearance of the granular layer
 - o repetição de **fibrosis**
 - ∘ e finalmente, análise de **atributo quantitativo ≤ 1**

Conclusões:

- Semelhante à Árvore 3, mas com maior foco em alterações estruturais do que em fenómenos clínicos.
 - ∘ Classe 5 aparece em ramos com múltiplas alterações histológicas → diagnóstico mais avançado.
 - Classe 2 surge em cenários com poucos marcadores clínicos, sugerindo formas menos visíveis ou subclínicas da doença.

Evaluation

Por ultimo na Fase de Avaliação fase vamos analisar as performances obtidas de cada uma das árvores obtidas. Nesta Vamos Utlizar o Operador **Cross Validation** com k folds 10 para a validação) este divide se em duas partes Training Onde é utilizado o operador do Algoritmo C4.5 **Decision Tree** e a escolha dos criterios de divisão de dados (gain_ratio, information_gain, gini_index eaccuracy) e uma parte de Testing onde serão utilizados os operadores de **Apply Model** e **Performance Classification** utilizando os criterios de **Acuracy Classification** error e **Root Mean Squared Error**

Cross Validation

Cross Validation - Training

Na Parte do Training apenas temos de inserir o Operador **Decision Tree** e Selecionar o metodo de Divisão de Dados Pretendido

Cross Validation - Testing

root_mean_squared_error

root_mean_squared_error: 0.294 +/- 0.237 (micro average: 0.370 +/- 0.000)

accuracy: 85.20% +/- 18.92% (micro average: 85.25%)

	true 2	true 1	true 3	true 5	true 4	true 6	class precision
pred. 2	41	1	0	0	3	0	91.11%
pred. 1	17	111	3	5	15	3	72.08%
pred. 3	1	0	65	0	0	0	98.48%
pred. 5	0	0	1	47	0	0	97.92%
pred. 4	1	0	3	0	31	0	88.57%
pred. 6	1	0	0	0	0	17	94.44%
class recall	67.21%	99.11%	90.28%	90.38%	63.27%	85.00%	

Root Mean Squared Error

Accuracy

true 2 true 1 true 3 true 5 true 4 true 6 class precision pred. 2 41 1 0 0 3 0 91.11% pred. 1 17 111 3 5 15 3 72.08% pred. 3 1 0 65 0 0 0 98.48% pred. 5 0 0 1 47 0 0 97.92% pred. 4 1 0 3 0 31 0 88.57%	classification_error: 14.80% +/- 18.92% (micro average: 14.75%)							
pred. 1 17 111 3 5 15 3 72.08% pred. 3 1 0 65 0 0 0 98.48% pred. 5 0 0 1 47 0 0 97.92%		true 2	true 1	true 3	true 5	true 4	true 6	class precision
pred. 3 1 0 65 0 0 0 98.48% pred. 5 0 1 1 47 0 0 97.92%	pred. 2	41	1	0	0	3	0	91.11%
pred. 5 0 0 1 1 47 0 0 97.92%	pred. 1	17	111	3	5	15	3	72.08%
	pred. 3	1	0	65	0	0	0	98.48%
pred. 4 1 0 3 0 31 0 88.57%	pred. 5	0	0	1	47	0	0	97.92%
	pred. 4	1	0	3	0	31	0	88.57%
pred. 6 1 0 0 0 0 17 94.44%	pred. 6	1	0	0	0	0	17	94.44%
class recall 67.21% 99.11% 90.28% 90.38% 63.27% 85.00%	class recall	67.21%	99.11%	90.28%	90.38%	63.27%	85.00%	

Classification Error

Gain Ratio

Output

```
PerformanceVector
PerformanceVector:
accuracy: 85.20% +/- 18.92% (micro average: 85.25%)
ConfusionMatrix:
True:
                                               6
        41
2:
               1
                                               0
        17
               111
                       3
                                       15
                                               3
1:
                       65
3:
               0
5:
                                       31
                        3
                                               0
6:
        1
                0
                        0
                               0
                                       0
                                               17
classification_error: 14.80% +/- 18.92% (micro average: 14.75%)
ConfusionMatrix:
      2
                                               6
True:
               1
        41
2:
               1
        17
1:
               111
                        3
                       65
3:
                                               0
                                               0
5:
4:
                0
                        3
                                       31
                                               0
                                               17
6:
        1
                0
                        0
                               0
                                       0
root_mean_squared_error: 0.294 +/- 0.237 (micro average: 0.370 +/- 0.000)
```

Information Gain

Resultados - Information Gain

root_mean_squared_error

root mean squared error: 0.182 +/- 0.095 (micro average: 0.202 +/- 0.000)

accuracy: 95.89% +/- 3.50% (micro average: 95.90%)

,								
	true 2	true 1	true 3	true 5	true 4	true 6	class precision	
pred. 2	56	0	0	0	3	3	90.32%	
pred. 1	2	112	0	0	0	1	97.39%	
pred. 3	1	0	70	0	0	0	98.59%	
pred. 5	0	0	0	51	0	0	100.00%	
pred. 4	1	0	2	0	46	0	93.88%	
pred. 6	1	0	0	1	0	16	88.89%	
class recall	91.80%	100.00%	97.22%	98.08%	93.88%	80.00%		

Root Mean Squared Error

Accuracy

classification_error: 4.11% +/- 3.50% (micro average: 4.10%) true 3 true 5 true 2 true 1 true 4 true 6 class precision 90.32% pred. 2 112 97.39% pred. 1 pred. 3 98.59% pred. 5 51 100.00% pred. 4 0 93.88% pred. 6 88.89% 97.22% class recall 91.80% 100.00% 98.08% 93.88% 80.00%

37

Information Gain

Output

```
PerformanceVector
PerformanceVector:
accuracy: 95.89% +/- 3.50% (micro average: 95.90%)
ConfusionMatrix:
     2
True:
               0
1:
               112
3:
5:
4:
                                       46
        1
                               1
                                       0
                                               16
classification_error: 4.11% +/- 3.50% (micro average: 4.10%)
ConfusionMatrix:
True:
2:
1:
               112
               0
                               0
3:
               0
5:
                               51
                                       0
                                       46
4:
                                               16
6:
root_mean_squared_error: 0.182 +/- 0.095 (micro average: 0.202 +/- 0.000)
```


root_mean_squared_error

root_mean_squared_error: 0.203 +/- 0.087 (micro average: 0.219 +/- 0.000)

accuracy: 95.08% +/- 3.59°	accuracy: 95.08% +/- 3.59% (micro average: 95.08%)							
	true 2	true 1	true 3	true 5	true 4	true 6	class precision	
pred. 2	55	0	0	0	3	0	94.83%	
pred. 1	1	110	0	1	0	1	97.35%	
pred. 3	1	0	67	0	0	0	98.53%	
pred. 5	0	0	1	51	0	0	98.08%	
pred. 4	2	2	4	0	46	0	85.19%	
pred. 6	2	0	0	0	0	19	90.48%	
class recall	90.16%	98.21%	93.06%	98.08%	93.88%	95.00%		

Root Mean Squared Error

Accuracy

classification_error: 4.92% +/- 3.59% (micro average: 4.92%) true 5 true 2 true 1 true 3 true 6 class precision 3 94.83% pred. 2 pred. 1 97.35% 110 0 67 0 98.53% pred. 3 98.08% pred. 5 pred. 4 85.19% 0 90.48% pred. 6 90.16% 98.21% 93.06% 98.08% 93.88% 95.00% class recall

39

Classification Error

Gini Index Output

```
PerformanceVector
PerformanceVector:
accuracy: 95.08% +/- 3.59% (micro average: 95.08%)
ConfusionMatrix:
True:
       55
2:
               110
1:
3:
                                51
5:
                                        46
4:
                        0
                                                19
classification_error: 4.92% +/- 3.59% (micro average: 4.92%)
ConfusionMatrix:
True:
2:
       55
                0
                                0
1:
                110
                                1
                        67
                                0
                                                0
3:
                                                0
                                51
5:
                                        46
                                                0
4:
                                                19
        2
                        0
                                0
6:
root_mean_squared_error: 0.203 +/- 0.087 (micro average: 0.219 +/- 0.000)
```

Home

Introduction

Content

Conclusion

root_mean_squared_error

root mean squared error: 0.207 +/- 0.088 (micro average: 0.222 +/- 0.000)

Root Mean Squared Error

accuracy: 95.06% +/- 3.85% (micro average: 95.08%)								
	true 2	true 1	true 3	true 5	true 4	true 6		
pred. 2	55	0	0	0	3	1		
pred. 1	2	112	0	0	0	1		
pred. 3	1	0	66	0	0	0		
pred. 5	0	0	0	51	0	0		
pred. 4	1	0	6	0	46	0		
pred. 6	2	0	0	1	0	18		
class recall	90.16%	100.00%	91.67%	98.08%	93.88%	90.00%		

Accuracy

classification_error: 4.94% +/- 3.85% (micro average: 4.92%)								
	true 2	true 1	true 3	true 5	true 4	true 6		
pred. 2	55	0	0	0	3	1		
pred. 1	2	112	0	0	0	1		
pred. 3	1	0	66	0	0	0		
pred. 5	0	0	0	51	0	0		
pred. 4	1	0	6	0	46	0		
pred. 6	2	0	0	1	0	18		
class recall	90.16%	100.00%	91.67%	98.08%	93.88%	90.00%		

Accuracy Output

```
PerformanceVector
PerformanceVector:
accuracy: 95.06% +/- 3.85% (micro average: 95.08%)
ConfusionMatrix:
True:
                                               6
                                               1
       55
               0
       2
               112
                                               1
               0
                                               0
                                               0
                                               0
                                               18
               0
                               1
classification_error: 4.94% +/- 3.85% (micro average: 4.92%)
ConfusionMatrix:
       2
True:
               1
                                               6
       55
2:
               0
                                               1
       2
                                               1
1:
               112
                       0
3:
               0
                                               0
5:
               0
               0
4:
                                               0
                                               18
6:
       2
               0
                               1
                                       0
root_mean_squared_error: 0.207 +/- 0.088 (micro average: 0.222 +/- 0.000)
```

Comparação de Resultados

Critério	Accuracy (%)	Classification Error (%)	RMSE
gain_ratio	85.20 ± 18.92	14.80 ± 18.92	0.294
information_gain	95.89 ± 3.50	4.11 ± 3.50	0.182
gini_index	95.08 ± 3.59	4.92 ± 3.59	0.203
accuracy (critério)	95.06 ± 3.85	4.94 ± 3.85	0.207

Conclusão

Após a aplicação integral da metodologia CRISP-DM — desde a compreensão do problema e dos dados, passando pela preparação dos dados, até à fase de modelação com o algoritmo C4.5 — avaliámos quatro critérios de divisão para a construção da árvore de decisão sobre o dataset Dermatology: gain ratio, information gain, gini index e accuracy.

Os resultados obtidos mostraram que o critério information gain proporcionou o melhor desempenho global, atingindo uma accuracy de 95,89%, o menor erro de classificação (4,11%) e o menor RMSE (0,182). Estes valores refletem uma elevada capacidade de generalização do modelo e uma separação eficaz entre as diferentes classes dermatológicas.

Com base nesta análise, concluímos que o melhor modelo foi gerado com o critério information gain, sendo este o mais adequado para a tarefa de classificação em causa. Verificámos que a escolha apropriada do critério de divisão foi determinante para maximizar o desempenho preditivo da árvore de decisão, reforçando o seu potencial de aplicação em contextos médicos, nomeadamente no apoio ao diagnóstico dermatológico.

