Ensembles et applications

Ensembles

▶ 1 Calcul algébrique avec des ensembles

Soit A, B et C trois parties d'un ensemble E. Démontrer que

$$A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C).$$

▶ 2 Trace d'une partition

Soit $n\in\mathbb{N}$ et A_1,A_2,\ldots,A_n des parties d'un ensemble E. On suppose que ces parties sont deux-à-deux disjointes et que leur réunion vaut E.

1) Soit *B* une partie quelconque de *E*. On pose $A'_k = A_k \cap B$ pour tout $k \in [1, n]$.

Montrez que les parties A_k' sont deux-à-deux disjointes et calculer leur réunion.

- 2) Illustrer par un schéma.
- ▷ 3 Calcul algébrique avec des ensembles II

Soit X et Y deux parties d'un ensemble Z.

1) Représenter sur un schéma l'ensemble

$$(X \cap Y) \cup (X \cap \overline{Y}) \cup (\overline{X} \cap Y) \cup (\overline{X} \cap \overline{Y}).$$

2) Simplifier son écriture.

▶ 4 Pour s'exercer à raisonner rigoureusement

Soit A et B deux parties d'un ensemble E. Montrer **soigneu-sement** les équivalences suivantes :

$$A \subset B \iff A \cap B = A \iff A \cup B = B.$$

► 5 Une égalité par double inclusion

Soit X, Y, Z trois parties de E. On souhaite montrer que

$$(X \cup Y) \cap (Y \cup Z) \cap (Z \cup \overline{X}) = (X \cup Y) \cap (Z \cup \overline{X}).$$

- Démontrer qu'entre ces deux ensembles, une inclusion est évidente.
- 2) Démontrer l'autre inclusion.

► 6 Démontrer une égalité par deux approches

Soit A, B et C trois parties d'un ensemble E. On suppose que $A \cup B = A \cup C$ et que $A \cap B = A \cap C$.

- 1) Démontrer que $B \subset C$ puis que B = C.
- **2)** Démontrer successivement que $B = B \cup (A \cap B)$, que $B = (A \cup B) \cap (B \cup C)$, que $B = C \cup (A \cap B)$ et enfin que B = C.

▶ 7 Là encore, la rigueur est de mise

Soit A, B, C trois parties d'un ensemble E. Montrer que :

$$A \cup B = A \cap B \implies A = B$$
.

▶ 8

Soit A et B deux sous-ensembles d'un ensemble E. Montrer que

$$A \setminus B = B \setminus A \iff A = B.$$

▶ 9 Fonctions indicatrices et opérations sur les ensembles

Soit A et B deux parties de E.

- **1)** Montrer que : $1_{\overline{A}} = 1 1(A)$.
- **2)** Montrer que : $\mathbb{1}_{A \cap B} = \mathbb{1}_A \cdot \mathbb{1}_B$.
- **3)** Montrer que : $1_{A \setminus B} = 1_A \cdot (1 1_B)$.
- **4)** Montrer que : $1_{A \cup B} = 1_A + 1_B 1_{A \cap B}$.

Image directe, image réciproque

► 10 | Propriétés de l'image directe

Soit $f: E \to F$, A et B deux parties de E.

- 1) Établir que $f(A \cup B) = f(A) \cup f(B)$. (on reviendra aux définitions et on procédera par double inclusion)
- **2)** Démontrer ensuite que $f(A \cap B) \subset f(A) \cap f(B)$.
- **3)** Montrer que si f est injective, cette dernière inclusion est une égalité. Trouver un exemple de fonction non injective et d'ensembles A et B pour lesquels cette inclusion est stricte.

▶ 11

Soit E et F deux ensembles, $f: E \rightarrow F$ une application, A une partie de E et B une partie de F.

- 1) Montrer que $f(f^{-1}(B)) \subset B$. Construire un exemple où cette inclusion est stricte. Montrer que cette inclusion est toujours une égalité lorsque f est surjective.
- 2) Montrer que $A \subset f^{-1}(f(A))$. Construire un exemple où cette inclusion est stricte. Montrer que cette inclusion est toujours une égalité lorsque f est injective.

Applications injectives, surjectives, bijectives

⊳ 12

Soit f et g les applications de IN dans IN définies par

$$\forall n \in \mathbb{N}, \quad f(n) = n+1 \quad \text{et} \quad g(n) = \begin{cases} 0 & \text{si } n = 0, \\ n-1 & \text{si } n \geqslant 1. \end{cases}$$

- 1) Étudier l'injectivité et la surjectivité de chacune de ces applications.
- 2) Proposer des applications \tilde{f} et \tilde{g} ayant les mêmes règles d'association que f et g et qui soient bijectives.
- **3)** Calculer $g \circ f$ et $f \circ g$.

► 13 Une bijection de IR² dans IR²

Soit
$$f: \mathbb{R}^2 \longrightarrow \mathbb{R}^2$$

$$(x, y) \longmapsto (2x + y, x - y).$$

Démontrer que f est bijective et préciser sa bijection réciproque f^{-1} .

Soit f l'application de \mathbb{Z}^2 dans \mathbb{R} définie par

$$\forall (p,q) \in \mathbb{Z}^2, \quad f(p,q) = p + q\sqrt{2}.$$

- 1) Démontrer que f est injective (on pourra procéder par l'absurde; on rappelle que $\sqrt{2} \notin \mathbb{Q}$).
- 2) Démontrer que f n'est pas surjective.

▶ 15

Dire en justifiant si les applications suivantes sont injectives, surjectives, bijectives. Après cela, modifier si nécessaire les ensembles de départ ou d'arrivée pour les transformer en bijections.

$$1) f: \mathbb{N} \longrightarrow \mathbb{N}$$

1)
$$f: \mathbb{N} \longrightarrow \mathbb{N}$$
 4) $f: \left[-\frac{\pi}{4}, \frac{3\pi}{4}\right] \longrightarrow [-1, 1]$

$$x \longmapsto 2x$$

$$x \longmapsto \cos(x)$$

$$2) f: \mathbb{R} \longrightarrow \mathbb{R}.$$

2)
$$f: \mathbb{R} \longrightarrow \mathbb{R}_{+}$$
 5) $f: \mathbb{R} \times \mathbb{R}_{+}^{*} \longrightarrow \mathbb{R}_{+}^{*} \times \mathbb{R}$

$$x \longmapsto x^2 - 2x + 4$$
 $(x, y) \longmapsto (e^x, x + \ln(y))$

3)
$$f: \mathbb{R} \longrightarrow \mathbb{R}_+$$
 6) $f: \mathbb{C} \longrightarrow \mathbb{C}$

$$x \longmapsto |x+2|$$
 $z \longmapsto e^z$

$$z \longmapsto e^{z}$$

▶ 16

Considérons les ensembles $\Pi = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$ et $D = \{ z \in \mathbb{C} / |z| < 1 \}.$

- 1) Représenter ces deux ensembles dans le plan complexe.
- **2)** Montrer que l'application

$$f: \left\{ \begin{array}{l} \Pi \longrightarrow D \\ z \longmapsto \frac{z-i}{z+i} \end{array} \right.$$

est bien définie.

(vous justifierez que, pour tout $z \in \Pi$, f(z) existe et appartient à D).

3) Montrer que f est une bijection.

▶ 17

Soit E, F et G trois ensembles, $f: E \to F$ et $g: F \to G$ deux applications.

- 1) Montrer les implications suivantes :
 - **a.** $g \circ f$ injective $\Longrightarrow f$ injective;
 - **b.** $g \circ f$ surjective $\Longrightarrow g$ surjective.
- 2) Soit $f: \mathbb{R} \to \mathbb{R}$ définie par

$$f(x) = \begin{cases} x & \text{si } x \in \mathbb{Q}, \\ 1 - x & \text{si } x \notin \mathbb{Q}. \end{cases}$$

- **a.** Démontrer que $f \circ f = \mathrm{Id}_{\mathbb{R}}$.
- **b.** En déduire que f est bijective et préciser f^{-1} .

▶ 18

Soit E, F et G trois ensembles, $f: E \to F$ et $g: E \to G$ deux applications. On considère

$$h: E \longrightarrow F \times G$$

 $x \longmapsto (f(x), g(x)).$

- 1) Montrer que si f est injective ou si g est injective, alors h est injective.
- 2) Montrer que si h est surjective, alors f et g le sont.
- 3) Les réciproques sont-elles vraies?

▶ 19

Soit E, F, G et H quatre ensembles et trois applications $f: E \to F$, $g: F \to G$ et $h: G \to H$.

Prouver que $g \circ f$ et $h \circ g$ sont bijectives si et seulement si f, g et h sont toutes les trois bijectives.