5.1 Definición y propiedades básicas

Como se observó en el capítulo anterior, los conjuntos \mathbb{R}^2 (vectores en el plano) y \mathbb{R}^3 (vectores en el espacio) cuentan con diversas propiedades peculiares. Se pueden sumar dos vectores en \mathbb{R}^2 y obtener otro vector en \mathbb{R}^2 . En la suma, los vectores en \mathbb{R}^2 obedecen las leyes conmutativa y asociativa. Si $\mathbf{x} \in \mathbb{R}^2$, entonces $\mathbf{x} + \mathbf{0} = \mathbf{x}$ y $\mathbf{x} + (-\mathbf{x}) = \mathbf{0}$. Se pueden multiplicar vectores en \mathbb{R}^2 por escalares y obtener las leyes distributivas. En \mathbb{R}^3 se cumplen las mismas propiedades.

Espacios vectoriales

Los conjuntos \mathbb{R}^2 y \mathbb{R}^3 junto con las operaciones de suma de vectores y multiplicación por un escalar se denominan **espacios vectoriales**. Se puede decir, de forma intuitiva, que un espacio vectorial es un conjunto de objetos con dos operaciones que obedecen las reglas que acaban de escribirse.

En el presente capítulo habrá un cambio, en apariencia grande, del mundo concreto de la solución de ecuaciones y del manejo sencillo de los vectores que se visualizan, al mundo abstracto de los espacios vectoriales arbitrarios. Existe una ventaja en este cambio. Una vez que, en términos generales, se establecen los hechos sobre los espacios vectoriales, se pueden aplicar estos hechos a *todos* los espacios de esta naturaleza. De otro modo, tendría que probarse cada hecho una y otra vez para cada nuevo espacio vectorial que nos encontráramos (y existe un sinfín de ellos). Pero como se verá más adelante, muchos de los teoremas abstractos que se demostrarán, en términos reales no son más difíciles que los que ya se han estudiado.

D

Definición 5.1.1

Espacio vectorial real

Un espacio vectorial real V es un conjunto de objetos, denominados vectores, junto con dos operaciones binarias llamadas suma y multiplicación por un escalar, y que satisfacen los diez axiomas enumerados en el siguiente recuadro.

Notación. Si x y y están en V y si α es un número real, entonces la suma se escribe como $\mathbf{x} + \mathbf{y}$ y el producto escalar de α y x como α x.

Antes de presentar la lista de las propiedades que satisfacen los vectores en un espacio vectorial deben mencionarse dos asuntos de importancia. En primer lugar, mientras que puede ser útil pensar en \mathbb{R}^2 o \mathbb{R}^3 al manejar un espacio vectorial, con frecuencia ocurre que el espacio vectorial parece ser muy diferente a estos cómodos espacios (en breve tocaremos este tema). En segunda instancia, la definición 5.1.1 ofrece una definición de un espacio vectorial *real*. La palabra "real" significa que los escalares que se usan son números reales. Sería igualmente sencillo definir un espacio vectorial *complejo* utilizando números complejos en lugar de reales. Este libro está dedicado principalmente a espacios vectoriales reales, pero las generalizaciones a otros conjuntos de escalares presentan muy poca dificultad.

Axiomas de un espacio vectorial

Nota. Los primeros cinco axiomas se utilizan para definir a un grupo abeliano, y los axiomas vi) al x) describen la interacción de los escalares y los vectores mediante la operación binaria de un escalar y un vector.

- i) Si $x \in V$ y $y \in V$, entonces $x + y \in V$ (cerradura bajo la suma).
- ii) Para todo x, y y z en V, (x + y) + z = x + (y + z)

(ley asociativa de la suma de vectores).