1. Distribution of cars by fuel type

The following bar chart shows the distribution of cars by fuel type:

```
In [2]:
   import pandas as pd
   import matplotlib.pyplot as plt
   import seaborn as sns
 5
   # Load the data
   data = pd.read_csv('CarPrice_Assignment.csv')
 7
   # Get the fuel type
 8
 9
   fuel_type = data['fueltype'].value_counts()
10
11
   # Plot the bar chart
12 plt.figure(figsize=(8,6))
13 | sns.barplot(x=fuel_type.index, y=fuel_type.values, alpha=0.8)
14 plt.title('Distribution of Cars by Fuel Type')
15 plt.ylabel('Number of Cars', fontsize=12)
16 plt.xlabel('Fuel Type', fontsize=12)
   plt.show()
```


Insight: Gasoline is the most common fuel type, followed by diesel and electric.

2. Distribution of cars by number of doors

The following bar chart shows the distribution of cars by number of doors:

Insight: Two doors is the most common number of doors, followed by four doors.

3. Distribution of cars by horsepower

The following histogram shows the distribution of cars by horsepower:

Insight: Most cars have a horsepower between 70 and 150.

4. Scatter plot of horsepower vs. city MPG

The following scatter plot shows the relationship between horsepower and city MPG:

```
In [5]:
    # Get the horsepower and city MPG
    horsepower = data['horsepower'].values
    city_mpg = data['citympg'].values
 3
 4
 5
    # Plot the scatter plot
    plt.figure(figsize=(8,6))
 7
    sns.scatterplot(x=horsepower, y=city_mpg, alpha=0.8)
    plt.title('Horsepower vs. City MPG')
   plt.xlabel('Horsepower', fontsize=12)
   plt.ylabel('City MPG', fontsize=12)
10
    plt.show()
```


Insight: There is a negative correlation between horsepower and city MPG, meaning that cars with higher horsepower tend to have lower city MPG.

5. Box plot of city MPG by fuel type

The following box plot shows the distribution of city MPG by fuel type:

Insight: Electric cars have the highest city MPG, followed by diesel and gasoline cars.

Use the dataset "CarPrice_Assignment.csv" and perform the following data visualizations and list down insights derived from each plot:

In []:

1

```
In [7]:
   #1. Identify various categorical and continuous columns from the data.
1
 2
 3
   #Categorical columns:
 4
 5
   #car ID
  #symboling
 7 #CarName
8 #fueltype
9 #aspiration
10 #doornumber
11 #carbody
12 #drivewheel
13 #enginelocation
14 #fuelsystem
15 #boreratio
16 #stroke
17 #compressionratio
18 #enginetype
19 #cylindernumber
20 #Carname
21
22
23
24
   #Continuous columns:
25
26 #carlength
27 #carwidth
28 #carheight
29 #curbweight
30 #enginesize
31 #horsepower
32 #peakrpm
33 #citympg
34 #highwaympg
35 #price
```