Interfejs Audio-SDM

Wymagania funkcjonalne

Projekt zakłada stworzenie bloku cyfrowego, który realizuje funkcje przetwarzania sygnałów audio na dwóch niezależnych interfejsach. Moduł ten będzie wyposażony w interfejsy wejściowe i wyjściowe: audio (16-bit, 44.1 kHz) oraz SDM (1-bit, 2.8224 MHz). Kluczowymi komponentami są modulator Sigma-Delta pierwszego rzędu, który przekształca dane z interfejsu audio na strumień SDM, oraz decymator, który odwrotnie przekształca dane SDM na format audio za pomocą filtrów grzebieniowych i dolnoprzepustowego.

Zaawansowane funkcje bloku obejmują konfigurowalną strukturę modulatora Sigma-Delta (zmienny rząd i liczba bitów wyjściowych), obsługę asynchronicznych zegarów na interfejsach oraz implementację dolnoprzepustowego filtru IIR z możliwością wyboru różnych struktur. Moduł zaprojektowany będzie z myślą o wysokiej precyzji przetwarzania sygnału oraz elastyczności w dostosowaniu do różnych zastosowań.

Moduł na najwyższym poziomie hierarchii

Moduł zawiera 2 niezależne interfejsy wejściowe i wyjściowe:

- interfejs audio (clk: 44.1KHz, dane 16-bitowe, sygnał Data Valid)
- interfejs SDM (taktowanie: 2,8224 MHz, dane 1-bitowe, sygnał Data Valid)

Moduł umożliwia wybór rzędu modulatora poprzez parametr DAC_ORDER, a także wybór filtra decymacyjnego poprzez parametr ADC_TYPE – filtr uśredniający (ADC_TYPE == 0), lub filtr na podstawie artykułu tj. filtr grzebieniowy połączony z filtrem FIR (ADC_TYPE == 1).

Rys. 1 Schemat modułu na najwyższym poziomie hierarchii

Parametr/Port	Jednostka/szerokość bitowa	Uwagi
DAC_ORDER	-	Wybór rzędu modulatora (1
		albo 2)
ADC_TYPE	-	Wybór filtra
		decymacyjnego: filtr
		uśredniający (0), filtr
		grzebieniowy + FIR (1)
clk	Hz	Sygnał zegarowy układu
		(taktowanie 2.8224MHz)
rst_n	1-bit	Sygnał restartujący układ
		(aktywny stan niski)
audio_in	16-bit	Wejście audio w formacie
		fixed point Q15 taktowane
		44.1kHz
valid_in_dac	1-bit	Sygnał walidacyjny danych
		wejściowych audio.
sdm_out	1-bit	Wyjście Sigma-Delta
		taktowane 2.8224MHz
valid_out_dac	1-bit	Sygnał walidacyjny danych
		wyjściowych SDM
sdm_in	1-bit	Wejście Sigma-Delta
		taktowane 2.8224MHz
valid_in_adc	1-bit	Sygnał walidacyjny danych
		wejściowych SDM

audio_out	16-bit	Wyjście audio w formacie
		fixed point Q15 taktowane
		44.1kHz
valid_out_adc	1-bit	Sygnał walidacyjny danych
		wyjściowych audio.

Modulator Sigma-Delta pierwszego rzędu

Moduł modulatora sigma-delta pierwszego rzędu został opisany według schematu przedstawionego na Rys. 2

Rys. 2 Schemat blokowy modulatora Sigma-Delta pierwszego rzędu Układ po syntezie przedstawiono na Rys. 3

Rys. 3 Schemat modulatora SDM pierwszego rzędu po syntezie

Parametr/Port	Jednostka/szerokość bitowa	Uwagi

DAC_BW	16	Szerokość bitowa
		modulatora sigma-delta
clk	Hz	Sygnał zegarowy układu
		(taktowanie 2.8224MHz)
rst_n	1-bit	Sygnał restartujący układ
		(aktywny stan niski)
din	16-bit	Wejście audio w formacie
		fixed point Q15 taktowane
		44.1kHz
valid_in	1-bit	Sygnał walidacyjny danych
		wejściowych audio.
dout	1-bit	Wyjście Sigma-Delta
		taktowane 2.8224MHz
valid_out	1-bit	Sygnał walidacyjny danych
		wyjściowych SDM

Modulator Sigma-Delta drugiego rzędu

Moduł modulatora sigma-delta pierwszego rzędu został opisany według schematu przedstawionego na Rys. 4

Rys. 4 Schemat blokowy modulatora Sigma-Delta drugiego rzędu

Układ po syntezie przedstawiono na Rys. 5

Rys. 5 Schemat modulatora SDM drugiego rzędu po syntezie

Parametr/Port	Jednostka/szerokość bitowa	Uwagi
DAC_BW	16	Szerokość bitowa
		modulatora sigma-delta
OSR	6	Wartość nadpróbkowania w
		formacie 2^N (N=6)
clk	Hz	Sygnał zegarowy układu
		(taktowanie 2.8224MHz)
rst_n	1-bit	Sygnał restartujący układ
		(aktywny stan niski)
din	16-bit	Wejście audio w formacie
		fixed point Q15 taktowane
		44.1kHz
valid_in	1-bit	Sygnał walidacyjny danych
		wejściowych audio.
dout	1-bit	Wyjście Sigma-Delta
		taktowane 2.8224MHz
valid_out	1-bit	Sygnał walidacyjny danych
		wyjściowych SDM

Demodulator Sigma-Delta

Ogólna postać demodulatora wygląda następująco:

- 1. Mapowanie wartości sygnału SDM na format fixed point Q15
 - a) Stan niski sygnału sigma-delta odpowiada wartości audio ok. -1 (w formacie Q15 przypisano wartość 0x8001)

- b) Stan wysoki sygnału sigma-delta odpowiada wartości audio ok. 1 (w formacie Q15 przypisano wartość 0x7FFF)
- 2. Filtracja sygnału filtrem dolnoprzepustowym
- 3. Decymacja 64-krotna

Moduł ten jest szkieletem realizacji według wyżej wymienionego ogólnego schematu konwersji sygnału SDM do postaci Audio.

Parametr/Port	Jednostka/szerokość bitowa	Uwagi
clk	Hz	Sygnał zegarowy układu
		(taktowanie 2.8224MHz)
rst_n	1-bit	Sygnał restartujący układ
		(aktywny stan niski)
din	1-bit	Wejście Sigma-Delta
		taktowane 2.8224MHz
valid_in	1-bit	Sygnał walidacyjny danych
		wejściowych SDM
dout	16-bit	Wyjście audio w formacie
		fixed point Q15 taktowane
		44.1kHz
valid_out	1-bit	Sygnał walidacyjny danych
		wyjściowych audio

Filtr uśredniający

Najprostszym sposobem na efektywną filtrację sygnału SDM jest wykorzystanie filtra uśredniającego. Filtr ten oblicza średnią z poprzednich próbek. Zauważono, że do najefektywniejszej realizacji wystarczy wykorzystać filtry z wejściem aktywującym sygnał zegarowy i z sygnałem informującym o gotowym wyniku co 2 cykle zegara – wtedy poza obliczeniem średniej z aktualnej i poprzedniej próbki jednocześnie dwukrotnie decymowany jest sygnał. Kaskadowe połączenie 6 takich filtrów (Rys. 7) pozwala uzyskać średnią z 64 próbek oraz zakładaną 64-krotną decymację sygnału.

Schemat opisanego układu po syntezie przedstawiono na Rys. 6

Rys. 6 Schemat filtra uśredniającego 2 próbki po syntezie

Parametr/Port	Jednostka/szerokość bitowa	Uwagi
clk	Hz	Sygnał zegarowy układu
		(taktowanie 2.8224MHz)
rst_n	1-bit	Sygnał restartujący układ
		(aktywny stan niski)
data_in	16-bit	Wejście sygnału w formacie
		fixed point Q15
ce	1-bit	Wejście aktywujące sygnał
		zegarowy
avg	16-bit	Wyjście sygnału w formacie
		fixed point Q15
rdy	1-bit	Wyjście informujące o
		gotowym wyniku co 2
		aktywny cykl sygnału
		zegarowego

Rys. 7 Kaskadowe połączenie filtrów uśredniających

Filtr grzebieniowy z decymacją

Filtr, który działa według schematu na Rys. 8. Jest pierwszym etapem filtracji według artykułu. Decymuje sygnał 16-krotnie.

Rys. 8 Schemat działania modułu

Schemat układu przedstawiono na Rys. 9

Rys. 9 Schemat filtru grzebieniowego z decymacją

Parametr/Port	Jednostka/szerokość bitowa	Uwagi
DECIMATION_FACTOR	-	Współczynnik decymacji
		(16)
clk	Hz	Sygnał zegarowy układu
		(taktowanie 2.8224MHz)
rst_n	1-bit	Sygnał restartujący układ
		(aktywny stan niski)
din	16-bit	Wyjście w formacie fixed
		point Q15
valid_in	1-bit	Sygnał walidacyjny danych
		wejściowych
dout	16-bit	Wyjście zdecymowane w
		formacie fixed point Q15
valid_out	1-bit	Sygnał walidacyjny danych
		wyjściowych

Filtr FIR z decymacją

Filtr o skończonej odpowiedzi impulsowej stanowi drugi etap filtracji sygnału SDM w celu konwersji do sygnału audio. Sygnał jest najpierw filtrowany, a następnie decymowany. Filtr decymuje sygnał 4-krotnie.

Schemat układu przedstawiono na Rys. 10

Rys. 10 Schemat filtru FIR z decymacją

Parametr/Port	Jednostka/szerokość bitowa	Uwagi
COEFF_WIDTH	-	Liczba bitów
		współczynników (16 bitów)
DATA_WIDTH	-	Liczba bitów danych (16
		bitów)
TAPS	-	Liczba współczynników (17)
DECIMATION_FACTOR	-	Współczynnik decymacji (4)

clk	Hz	Sygnał zegarowy układu
		(taktowanie 2.8224MHz)
rst_n	1-bit	Sygnał restartujący układ
		(aktywny stan niski)
din	16-bit	Wyjście w formacie fixed
		point Q15
valid_in	1-bit	Sygnał walidacyjny danych
		wejściowych
dout	16-bit	Wyjście zdecymowane w
		formacie fixed point Q15
valid_out	1-bit	Sygnał walidacyjny danych
		wyjściowych