IMO 第一天平面几何题

在三角形 ABC 中, 点 A_1 在边 BC 上, 点 B_1 在边 AC 上. 点 P 和点 Q 分别在线段 AA_1 , BB_1 上, 满足 PQ 与 AB 平行. 设 P_1 是直线 PB_1 上一点, 满足 B_1 在线段 PP_1 上(不含端点)且 $\angle PP_1C = \angle BAC$,类似地在直线 QA_1 上定义点 Q_1 ,使得 A_1 在线段 QQ_1 上(不含端点),且 $\angle CQ_1Q = \angle CBA$. 证明: P,Q,P_1,Q_1 四点共圆.

IMO 第二天平面几何题

在锐角三角形 ABC 中, I 是内心, $AB \neq AC$. 三角形 ABC 的内切圆 ω 与边 BC, CA 和 AB 分别相切于点 D, E 和 F, 过点 D 且垂直于 EF 的直 线与 ω 的另一交点为 R, 直线 AR 与 ω 的令以交点为 P, 三角形 PCE 和 三角形 PBF 的外接圆交于另一点 Q. 证明: 直线 DI 和 PQ 的交点在过点 A 且垂直于 AI 的直线上.

