Question 6

- a) Applying the M/M/1 delay formula to router B where the average service time $=\frac{1}{\mu_B}=\frac{L}{R_{AB}}$, we get $T_{BA}=\frac{1}{\mu_B-\lambda_{all}}$.
 - Similarly, applying the M/M/1 delay formula to router A where the average service time $=\frac{1}{\mu_A}=\frac{L}{R_{AS}}$, we get $T_{AS}=\frac{1}{\mu_A-\lambda_{all}}$.
 - Thus, our model approximates $T_{response}$ as

$$T_{response} = T_{serve} + \frac{1}{\mu_B - \lambda_{all}} + \frac{1}{\mu_A - \lambda_{all}}$$

- **b)** Assuming that L=850000 bits, $\lambda_{all}=16$ requests/sec, $T_{serve}=3$ sec, $R_{SA}=100$ Mbps, and $R_{AB}=15$ Mbps, we get the following approximate values:
 - $\mu_B = 17.647, T_{BA} = 0.607 \text{ sec}$
 - $\mu_A = 117.65, T_{AS} = 0.01 \text{ sec}$
 - $T_{response} = 3 + 0.607 + 0.01 = 3.617 \text{ sec}$
- c) After installing the cache server, on average 60% of the requests are served from the server, and 40% of the requests are served from the Internet servers. Thus,

$$T_{response} = 0.6 \times T_{response_internal} + 0.4 \times T_{response_internet}.$$

where

- $T_{response_internal} = \frac{L}{R_{AS}}$ (this term may be ignored)
- $T_{response_internet} = T_{serve} + \frac{1}{\mu_B 0.4\lambda_{all}} + \frac{1}{\mu_A 0.4\lambda_{all}}$
- d) Assuming the parameter settings in part (b), we get the following approximate values:
 - $T_{response_internal} = 8.5 \text{ msec}$
 - $T_{response_internet} = 3.089 \text{ sec}$
 - $T_{response} = 0.6 \times 0.0085 + 0.4 \times 3.089 = 1.24 \text{ sec}$