Master's Exam in Real Analysis May 2018

Part 1: Problems 1-7 Do six problems in Part 1.

- 1. A real number x is called an algebraic number if x is the root of a polynomial with integer coefficients. Prove that the set of algebraic numbers is countable.
- 2. (a) Prove that any uncountable set $S \subset \mathbb{R}^n$ has a limit point.
 - (b) Let \mathbb{N} be the set of natural numbers. Prove that the power set $\mathcal{P}(\mathbb{N})$ of \mathbb{N} is uncountable.
- 3. Let (X, d_X) , (Y, d_Y) be metric spaces and $f: X \to Y$ be continuous. Assume that X is connected, prove that f(X) is connected.
- 4. Prove that compact subsets of metric spaces are closed and bounded. Is the converse true? Justify your answer.
- 5. Suppose that $x_n, y_n \ge 0$ for all n. Prove that

$$\limsup_{n \to \infty} (x_n y_n) \le (\limsup_{n \to \infty} x_n) (\limsup_{n \to \infty} y_n),$$

provided that the product on the right is not of the form $0 \cdot \infty$. Give an example for which the inequality is strict.

6. (a) Let $\{x_n\}$ be a real sequence. Suppose that there is an a>1 such that

$$|x_{n+1} - x_n| \le a^{-n},$$

for all $n \in \mathbb{N}$. Prove that $x_n \to x$ for some $x \in \mathbb{R}$.

(b) Let a and b be two distinct real numbers. Let $\{x_n\}$ be a sequence defined in the following:

$$x_0 = a, x_1 = b, x_n = \frac{x_{n-1} + x_{n-2}}{2}$$
 for $n \ge 2$.

Determine whether the sequence $\{x_n\}$ converges. Find the limit if it converges.

- 7. Let $\sum_{n=1}^{\infty} a_n$ be a series of real numbers.
 - (a) Suppose that $\sum_{n=1}^{\infty} a_n$ converges. Prove that

$$\lim_{n \to \infty} \frac{a_1 + 2a_2 + \ldots + na_n}{n} = 0.$$

(b) Assume that $\sum_{n=1}^{\infty} a_n$ is absolutely convergent. Prove that $\sum_{n=1}^{\infty} a_n$ converges. Is the converse true. Justify your answer.

Part 2: Problems 8-14 Do six problems in Part 2

8. (a) Suppose that $f:[0,1]\to\mathbb{R}$ is continuous with f(0)=f(1). Prove that for each $n\in\mathbb{N}$, there exists an $x\in[0,1]$ such that

$$f(x) = f\left(x + \frac{1}{n}\right).$$

(b) Let $f:(a,b)\to\mathbb{R}$ be differentiable on (a,b) with $|f'(x)|\leq M$ for $x\in(a,b)$ and some $M\geq0$. Prove that

$$\lim_{x \to b^{-}} f(x),$$

exists.

9. Let f be defined as follows:

$$f(x) = \begin{cases} e^{-\frac{1}{x^2}} & : x \neq 0 \\ 0 & : x = 0. \end{cases}$$

Prove that f is infinitely differentiable at 0 with $f^{(n)}(0) = 0$ for all $n \in \mathbb{N}$.

10. Let f be a bounded function on [-1,1] and let

$$\alpha(x) = \begin{cases} 0, & \text{if } x \le 0 \\ 2, & \text{if } 0 < x. \end{cases}$$

Prove that $f \in \mathcal{R}(\alpha)$ on [-1,1] if and only if f(0+) = f(0). Compute the integral $\int_{-1}^{1} f \, d\alpha$ when $f \in \mathcal{R}(\alpha)$.

11. (a) Suppose that f is a continuous, and nonnegative function on the interval [0,1]. Let $M = \sup\{f(x) : x \in [0,1]\}$. Prove that

$$\lim_{n \to \infty} \left[\int_0^1 f(t)^n dt \right]^{\frac{1}{n}} = M.$$

(b) Let f be continuous on [a, b] such that

$$\int_{a}^{x} f(t)dt = \int_{x}^{b} f(t)dt, \forall x \in [a, b].$$

Prove that f(x) = 0 on [a, b].

- 12. Suppose that $\{f_k\}$ is a sequence of continuous functions on [a,b]. Suppose also that $f_k \to f(x)$ pointwise on [a,b] where f is a continuous function and for each $x \in [a,b]$ the sequence $f_n(x) \leq f_{n+1}(x)$, $n = 1,2,3,\ldots$ Prove **directly** that $f_n \to f$ uniformly on [a,b].
- 13. Suppose that $f_n(x)$ is differentiable on [a,b] for $n \ge 1$ with $|f'_n(x)| \le M$, $x \in [a.b]$ and some M > 0. If $f_n(x)$ converges to f(x) pointwise on [a,b], prove that $f_n(x)$ converges to f(x) uniformly on [a,b].
- 14. Show that the series $\sum_{k=1}^{\infty} \frac{kx}{1+k^4x^2}$ converges uniformly on $[a,\infty)$ for a>0, but does not converge uniformly on $(0,\infty)$.

2