

10 / 525932

25 FEB 2005

**Patent Office
Canberra**

REC'D 17 SEP 2003

WIPO PCT

I, JONNE YABSLEY, TEAM LEADER EXAMINATION SUPPORT AND SALES hereby certify that annexed is a true copy of the Provisional specification in connection with Application No. 2002951096 for a patent by THE UNIVERSITY OF QUEENSLAND as filed on 30 August 2002.

BEST AVAILABLE COPY

WITNESS my hand this
Eighth day of September 2003

JONNE YABSLEY
TEAM LEADER EXAMINATION
SUPPORT AND SALES

**PRIORITY
DOCUMENT**

SUBMITTED OR TRANSMITTED IN
COMPLIANCE WITH RULE 17.1(a) OR (b)

This invention relates to an improved phased array coil for magnetic resonance imaging. In particular, the invention is directed to a coil structure which provides improved sensitivity closer to the centre of the object undergoing imaging.

5

BACKGROUND TO THE INVENTION

In magnetic resonance imaging (MRI) applications, a patient is placed in a strong and homogeneous static magnetic field, causing the otherwise randomly oriented magnetic moments of the protons, in water molecules within the body, to precess around the direction of the applied field. The part of the body in the homogeneous region of the magnet is then irradiated with radio-frequency (RF) energy, causing some of the protons to change their spin orientation. This has the effect of nutating the net magnetization, which was directed with the static magnetic field prior to RF application, and thereby causing a component of the magnetization to be transverse to the applied static field. This precessing magnetization induces measurable signal in a receiver coil tuned to the frequency of precession (The Larmor frequency). This is the magnetic resonance (MR) signal. The useful RF components are those generated in a plane at 90 degrees to the direction of the static magnetic field.

The same coil structure that generates the RF field can be used to receive the MR signal or a separate receiver coil place close to the patient may be used. In either case the coils are tuned to the Larmor precessional frequency ω_0 where $\omega_0 = \gamma B_0$ and γ is the gyromagnetic ratio for a specific nuclide and B_0 is the applied static magnetic field.

Conventionally, when imaging the thorax, a whole body radio frequency coil is used in both transmit and receive modes to enable full coverage of the anatomy. By distinction, when imaging the head, neck, knee or other extremity, local coils are often used as receivers in conjunction with whole-body transmitter coils. Placing the local coil close to the imaged region improves the signal-to-noise ratio and therefore the spatial resolution as well as limiting the field of view. In some procedures, local coils are used for both transmission and reception.

In some cases a plurality of RF receiver coils comprising an NMR phased array are used to enable MR signals from multiple regions in the body to be acquired at the same time (see for example US patent no. 4,825,162). In this manner parallel imaging methods may be used to advantage in tailoring the region of interest and/or reducing scan times for comparable resolution to single receiver systems. Popular parallel imaging methods include "SMASH" (DK Sodikson and WF Manning, "Simultaneoaus acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency arrays," Magn. Reson. Med. 38:591-603, 1997) and "SENSE" (KP 5
Pruessmann, M. Weigner, MB Scheidegger and P. Boesinger, "SENSE:
10 sensitivity encoding for fast MRI," Magn. Reson. Med. 42; 952-962, 1999).

In prior art phased array coils, the multiple receiver coils are placed either overlapping or adjacent to either other in a plane, or can be wrapped circumferentially around a cylinder or similar shape. They are wrapped in a serial fashion, that is one coil after the other (see for example, JR Porter, SM Wright and A Reykowski, "16-element phased array head coil," Magn. Reson. Med. 40: 272-279, 1998). While these coils have been effective in producing complete images of an anatomical region such as the brain, by combining signals from each of the array elements, it is a characteristic of all such prior art coil arrangements that the point of maximum sensitivity of each element is superficial to the anatomy under study. Often the area of diagnostic interest, in the head, for example, may be located away from the surface, deeper in the brain.

It is an object of the invention to provide an improved phased array coil structure in which each element has its maximum sensitivity close to the centre of the object under study.

It is a further object of the invention to provide a rotary phased array radiofrequency structure.

30

BRIEF SUMMARY OF THE INVENTION

In one broad form, the invention provides a phased array coil structure having a plurality of coil elements, the coil elements in the array being similar to each other but rotated from each other around an axis.

Typically, the coil elements are arranged generally in respective diametric planes of a cylinder, and spaced angularly around the axis of the cylinder. Preferably, the elements are spaced equally.

Each coil element typically comprises spaced main conductors extending axially along the circumference of the cylinder, and connection conductors connecting like ends of the main conductors. For practical purposes, the connection conductors at one or both ends of the coil element may be positioned around the circumference of the cylinder to provide access to within the cylinder.

In one embodiment of the invention, each element is a receiver coil individually connected to a pre-amplifier and receiver channel and actively decoupled from a larger volume transmitter coil. Signals from each of the elements are later combined to form a composite image. In another embodiment of the invention, each element is used for both transmission of RF energy and reception of the magnetic resonance signal. In a still further embodiment, selected elements may be used for transmission and different elements for reception, the selection of said transmission and reception elements may change desirably during an imaging sequence.

Said rotary phased array structures may be used to advantage in routine imaging sequences or with imaging sequences that sample the imaging region using rotary "k-space" techniques, such as back-projection or Propeller (J.G. Pipe, "Turboprop - an improved Propeller Sequence for Diffusion Weighted MRI" *Proc. Intl. Soc. Magn. Reson. Med.* **10**, 435 (2002)) sequences and, in these circumstances, are particularly advantageous for the imaging of short T₂ relaxation constant materials.

These and other objects of the present invention will become apparent upon reading the following detailed description and when considered in conjunction with the drawings.

30 BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows prior art phased array coil elements with other circuitry in cylindrical form.

FIG. 2 shows the sensitivity profile of a single prior art array element, with the circular coil centre being located at X=Y=0.

FIG. 3 is a schematic diagram illustrating a two element rotary array

5 FIG. 4 is a schematic diagram illustrating a four element rotary array.

FIG. 5 is a schematic diagram illustrating the general connectivity of the rotary phased array when used for parallel imaging.

10 FIG. 6 is a schematic diagram illustrating a rotary phased array structured for head imaging

FIG. 7 is a schematic diagram illustrating a rotary phased array with complete cylindrical access.

15 FIG. 8 is a series of images of a silicon oil cylindrical phantom, acquired using a prototype rotary array coil. The image at the top left is the sum-of-squares image combination of the images from the 4 elements (other images).

DETAILED DESCRIPTION OF THE INVENTION

Referring to FIG 1, there is shown a prior art MRI phased array
20 general coil layout, in which the coil elements are placed adjacent or partially overlapping around the outside of a cylinder (not shown) or similar shaped former. That is, the coil elements are located on the circumferential surface of a cylinder. As is routine in the prior art, a single large resonator, external to the array transmits radiofrequency energy to a patient undergoing an MRI
25 scan within the array. Each element of the array acts as a receiver coil, and all coils generally receive signal simultaneous, thereby enabling parallel acquisition of signals from regions within the cylinder.

As is known in the art (see for example P. Roemer, W.A. Edelstein, C.E. Hayes, S.P. Souza and O.M. Mueller, "The NMR Phased Array," *Magn. Reson. Med.* 16, 192-225 (1990)) the interaction between the coils may be reduced by: overlapping the coils in a prescribed manner, connecting low-impedance pre-amplifiers to each coil and/or having a common conductor containing a predefined capacitor; or a combination of

these three methods. A typical sensitivity profile of a single element is shown in Figure 2, where it is clear that the region of high sensitivity is close to the plane of the coil and falls away rapidly away from the coil plane.

In the present invention, each of the elements of the array forms
5 a circuit which has a plane of maximum sensitivity that generally contains the axis of the cylinder. That is, the plane of each element cuts radially or diametrically through the cylinder rather than wrapping circumferentially around it, as in the prior art. This is advantageous in that the region of maximum sensitivity is central rather than peripheral to the object being
10 imaged. This is often preferable in a diagnostic sense.

FIG. 3 illustrates conceptually or schematically, the orientation of a 2-element rotary or angular array. In one embodiment of the invention, in an N-element array, each coil element is rotated or angled from the nearest element by $180/(N)$ degrees, i.e. they are spaced equi-angularly around the
15 cylinder. For example, elements 10 and 11 are separated by 90 degrees. FIG. 4 shows an example of a 4-element array, in which each of the coil elements 10,11,12 and 13 are separated from the nearest element by 45 degrees. It is to be understood that the invention also encompasses the use of unequal angular spacing of the elements.

20 Each of the elements of the array are tuned to the appropriate Larmor precessional frequency and, in a preferred embodiment, are connected to separate preamplifiers and receiver channels, so that each of the elements can acquire signal simultaneously, as is illustrated in the schematic block diagram of FIG. 5.

25 In another embodiment of the invention, one of the coil elements of the array acts as a transmitter element and all others as receiver elements. Alternately, each of the elements may act as both transmitter and receiver.

30 In a further embodiment a selected pair of orthogonal coil elements (elements 10 and 12 in FIG 4, for example) act as a transmitter receiver pair, where one element transmits, say element 10 and the other (element 12) receives, with all other elements inactive. Then, sequentially, the next rotary orthogonal pair act as transmitter/receiver (elements 11 and 13) and so on through the set of N elements.

When employed as transmitter coils, each element can be driven with a different amplitude and phased radiofrequency pulse, so as, for example, to generate circularly polarized transmission radiofrequency fields. Such tailoring of radiofrequency drives is also useful in high frequency applications to correct for the propagation distortions caused by the dielectric and conductive nature of human tissue. By appropriately driving the rotary elements these non-symmetric effects can be largely compensated, resulting in images that give a more accurate representation of the patient's anatomy.

The rotary progression or acquisition in this manner can be closely linked to MRI imaging techniques. In these sequences, the way in which the imaging gradients are used to scan the imaging region is angular or rotary rather than rectilinear in so-called "k-space" (see, for example, P.T. Callaghan, *Principles of Magnetic Resonance Microscopy*, Oxford University Press, 1994). Such imaging methods that sample imaging space in a rotary manner include back-projection imaging methods, "propeller" sequences and some variants of spiral imaging (C.H. Meyer, B.S. Hu, D.G. Nishimura, A. Macovski, "fast spiral coronary artery imaging" *Magn. Reson. Med.* **28**, 202-213, 1992).

While not limited to use with these sequences, the rotary phased array is advantageous in speeding up these types of imaging protocols.

While FIGs 3-5 illustrate the general principles of the rotary array of this invention, the coil structures need to allow patient access to be useful in practice. The conductors of each element parallel with the z-axis and positioned on the periphery of the cylinder are called the main conductors of each coil element and the other two conductors which connect these main conductors and complete the coil element are called connection conductors. In one embodiment of the present invention, the connection conductors of each coil element at one of the ends of the structure (ie, the planes orthogonal to the z-axis at the furtherest extents of the array being the top and bottom ends), say the bottom end, are placed around the circumference of the cylinder. This allows complete access at one end and is, for example, a structure useful for head imaging. FIG. 6 illustrates this structure schematically. In this example, switch points A and B may be alternately

connected to points 2&4 then 1&3, or each of the elements may be permanently connected to separate pre-amplifiers and receiver channels.

In an alternative embodiment, the connection conductors of all coil elements are positioned around the circumference of the cylinder at both 5 the top and bottom ends of the array, thus allowing complete cylindrical access to the patient. FIG 7 shows this general architecture.

Positioning the connection conductors around the periphery should not affect the field unduly. The transverse field is the useful RF field for MRI applications, and since this is generated primarily by conductors running 10 parallel to the main axis (ie the main conductors), the strongest field is in the middle of the cylinder if the main conductors are diametrically opposite each other on the periphery of the cylinder.

Typically in prior art elements, any overlap between adjacent coils is small - just enough to minimize mutual inductance. In the prior art, 15 when there are just 2 elements, they are wrapped around the periphery. So the main conductors of one element are close or adjacent to the main conductors in the other element. In the invention, they would still be 90 degrees apart. Furthermore, as the number of elements increases, in prior art coils the maximum sensitivity moves closer to the periphery of the cylinder. 20 On the other hand, with the coil arrangement of the invention, as the number of elements increases, maximum sensitivity remains near the centre of the cylinder.

To demonstrate a preferred embodiment of the present invention, a 4-element transmit/receive rotary array was constructed around a 25 cylinder of diameter 64mm and length 110mm. Each element was tuned and matched to operate simultaneously at 85 MHz (corresponding to ^1H Magnetic Resonances at 2 Tesla field strength) and decoupled from each other.

FIG 8 shows the Transmit/Receive images from each of the 4 rotary elements in turn and a sum-of-squares combined image which 30 demonstrates a high uniformity of signal across the imaging region, particularly in the central region as desired.

The foregoing describes only some embodiments of the invention, and it will be understood by those skilled in the art that various

changes in form and detail may be made without departing from the spirit and scope of this invention.

FIG. 1

FIG 2

FIG 3

FIG 4

FIG 5

FIG 6

FIG 7

combined image

FIG 8

A U S T R A L I A

Patents Act 1990

PATENT REQUEST : PROVISIONAL APPLICATION

We, being the person identified below as the Applicant, request the grant of a patent for an invention described in the accompanying provisional specification.

Full application details follow:

[71] **Applicant:**

International Flower Developments Pty Ltd

of

16 Gipps Street, Collingwood, Victoria, 3066, Australia

[54] **Invention Title:**

“Genetic sequences and uses therefor”

[72] **Name(s) of actual inventor(s):**

[74] **Address for service in Australia:**

DAVIES COLLISON CAVE, Patent Attorneys, of Level 3, 303 Coronation Drive,
Milton, Queensland, 406, Australia

A member of the firm of DAVIES COLLISON CAVE
for and on behalf of the Applicant

30 August, 2002

Regulation 3.2

International Flower Developments Pty Ltd

A U S T R A L I A

Patents Act 1990

PROVISIONAL SPECIFICATION

for the invention entitled:

“Genetic sequences and uses therefor”

The invention is described in the following statement:

GENETIC SEQUENCES AND USES THEREFOR

FIELD OF THE INVENTION

The present invention relates generally to a genetic sequence encoding a polypeptide having an improved flavonoid 3', 5'-hydroxylating activity and the use of the genetic sequence and/or its corresponding polypeptide thereof. More particularly, the improved flavonoid 3', 5'-hydroxylase (F3'5'H) has the ability to modulate DHK metabolism as well as the metabolism of other substrates such as DHQ, naringenin and eriodictyol. Even more particularly the improved flavonoid 3', 5'-hydroxylase (hereinafter referred to as improved F3'5'H) of the present invention is isolated from pansy, salvia or sollya. Even yet more particularly, the present invention provides a genetic sequence encoding a polypeptide having improved F3'5'H activity when expressed in rose, gerbera or botanically related plants. The instant invention further relates to antisense and sense molecules corresponding to all or part of the subject genetic sequence as well as genetically modified plants as well as cut flowers, parts and reproductive tissue from such plants.

BACKGROUND OF THE INVENTION

Reference to any prior art in this specification is not, and should not be taken as, an acknowledgment or any form of suggestion that this prior art forms part of the common general knowledge in any country.

The flower or ornamental plant industry strives to develop new and different varieties of flowers and/or plants. An effective way to create such novel varieties is through the manipulation of flower colour. Classical breeding techniques have been used with some success to produce a wide range of colours for almost all of the commercial varieties of flowers and/or plants available today. This approach has been limited, however, by the constraints of a particular species' gene pool and for this reason it is rare for a single species to have the full spectrum of coloured varieties. For example, the development of novel coloured varieties of plants or plant parts such as flowers, foliage and stems would

offer a significant opportunity in both the cut flower and ornamental markets. In the flower or ornamental plant industry, the development of novel coloured varieties of major flowering species such as rose, chrysanthemum, tulip, lily, carnation, gerbera, orchid, lisianthus, begonia, torenia, geranium, petunia, nierembergia, pelargonium, impatiens and cyclamen would be of great interest. A more specific example would be the development of a blue rose or gerbera for the cut flower market.

In addition, the development of novel coloured varieties of plant parts such as vegetables, fruits and seeds would offer significant opportunities in agriculture. For example, novel coloured seeds would be useful as proprietary tags for plants. Furthermore modifications to flavonoids common to berries including grapes and their juices including wine have the potential to impart altered style characteristics of value to such fruit and byproduct industries.

Flower colour is predominantly due to three types of pigment: flavonoids, carotenoids and betalains. Of the three, the flavonoids are the most common and contribute a range of colours from yellow to red to blue. The flavonoid molecules that make the major contribution to flower colour are the anthocyanins, which are glycosylated derivatives of cyanidin and its methylated derivative peonidin, delphinidin and its methylated derivatives petunidin and malvidin and pelargonidin. Anthocyanins are localised in the vacuole of the epidermal cells of petals or the vacuole of the sub epidermal cells of leaves.

The flavonoid pigments are secondary metabolites of the phenylpropanoid pathway. The biosynthetic pathway for the flavonoid pigments (flavonoid pathway) is well established, (Holton and Cornish, *Plant Cell* 7: 1071-1083, 1995; Mol *et al.*, *Trends Plant Sci.* 3: 212-217, 1998; Winkel-Shirley, *Plant Physiol.* 126: 485-493, 2001a; and Winkel-Shirley, *Plant Physiol.* 127: 1399-1404, 2001b) and is shown in Figures 1a and b. Three reactions and enzymes are involved in the conversion of phenylalanine to *p*-coumaroyl-CoA, one of the first key substrates in the flavonoid pathway. The enzymes are phenylalanine ammonia-lyase (PAL), cinnamate 4-hydroxylase (C4H) and 4-coumarate: CoA ligase (4CL). The first committed step in the pathway involves the condensation of three molecules of

malonyl-CoA (provided by the action of acetyl CoA carboxylase (ACC) on acetyl CoA and CO₂) with one molecule of *p*-coumaroyl-CoA. This reaction is catalysed by the enzyme chalcone synthase (CHS). The product of this reaction, 2',4,4',6', tetrahydroxy-chalcone, is normally rapidly isomerised by the enzyme chalcone flavanone isomerase (CHI) to produce naringenin. Naringenin is subsequently hydroxylated at the 3 position of the central ring by flavanone 3-hydroxylase (F3H) to produce dihydrokaempferol (DHK).

The pattern of hydroxylation of the B-ring of dihydrokaempferol (DHK) plays a key role in determining petal colour. The B-ring can be hydroxylated at either the 3', or both the 3' and 5' positions, to produce dihydroquercetin (DHQ) or dihydromyricetin (DHM), respectively. Two key enzymes involved in this part of the pathway are flavonoid 3'-hydroxylase and flavonoid 3', 5'-hydroxylase, both of the cytochrome P450 class of enzymes. Cytochrome P450 enzymes are widespread in nature and genes have been isolated and sequenced from vertebrates, insects, yeasts, fungi, bacteria and plants.

Flavonoid 3'-hydroxylase (F3'H) generally acts on DHK to produce DHQ and on naringenin to produce eriodictyol. Reduction and glycosylation of DHQ produces the cyanidin-glycoside based pigments which, in many plant species (for example *Rosa* spp., *Dianthus* spp. and *chrysanthemum*), contribute to red and pink flower colour.

Flavonoid 3', 5'-hydroxylase (F3'5'H) generally acts on DHK and DHQ to produce DHM and on naringenin and eriodictyol to produce pentahydroxyflavanone. Reduction and glycosylation of DHM produces the delphinidin-glycoside based pigments which, in many plant species (for example *Petunia* spp., *Viola* spp., *Lisianthus* spp., *Gentiana* spp., *Sollya* spp., *Salvia* spp., *Clitoria* spp., *Kennedia* spp., *Campanula* spp., *Lavandula* spp., *Verbena* spp., *Torenia* spp., *Delphinium* spp., *Solanum* spp., *Cineraria* spp., *Vitis* spp., *Babiana stricta*, *Pinus* spp., *Picea* spp., *Larix* spp., *Phaseolus* spp., *Vaccinium* spp., *Cyclamen* spp., *Iris* spp., *Pelargonium* sp., Liparieae, *Geranium* spp., *Pisum* spp., *Lathyrus* spp., *Catharanthus* spp., *Malvia* spp., *Mucuna* spp., *Vicia* spp., *Saintpaulia* spp., *Lagerstroemia* spp., *Tibouchina* spp., *Plumbago* spp., *Hypocalyptus* spp., *Rhododendron* spp., *Linum* spp., *Macroptilium* spp., *Hibiscus* spp., *Hydrangea* spp., *Cymbidium* spp., *Millettia* spp.,

Hedysarum spp., *Lespedeza spp.*, *Asparagus spp.* *Antigonon spp.*, *Pisum spp.*, *Freesia spp.*, *Brunella spp.*, *Clarkia spp.*, etc.), contribute to purple and blue flower colour. Many plant species such as roses, gerberas, chrysanthemums and carnations (excluding genetically modified carnations described in International Patent Application No. PCT/AU96/00296), do not produce delphinidin-based pigments because they lack a F3'5'H activity.

The next step in the pathway, leading to the production of the coloured anthocyanins from the dihydroflavonols (DHK, DHQ, DHM), involves dihydroflavonol-4-reductase (DFR) leading to the production of the leucoanthocyanidins. The leucoanthocyanidins are subsequently converted to the anthocyanidins, pelargonidin, cyanidin and delphinidin. These flavonoid molecules are unstable under normal physiological conditions and glycosylation at the 3-position, through the action of glycosyltransferases, stabilises the anthocyanidin molecule thus allowing accumulation of the anthocyanins. In general, the glycosyltransferases transfer the sugar moieties from UDP sugars to the flavonoid molecules and show high specificities for the position of glycosylation and relatively low specificities for the acceptor substrates (Seitz and Hinderer, Anthocyanins. In: *Cell Culture and Somatic Cell Genetics of Plants*. Constabel, F. and Vasil, I.K. (eds.), Academic Press, New York, USA, 5: 49-76, 1988). Anthocyanins can occur as 3-monosides, 3-biosides and 3-triosides as well as 3, 5-diglycosides and 3, 7-diglycosides associated with the sugars glucose, galactose, rhamnose, arabinose and xylose (Strack and Wray, In: *The Flavonoids - Advances in Research since 1986*. Harborne, J.B. (ed), Chapman and Hall, London, UK, 1-22, 1993).

Glycosyltransferases involved in the stabilisation of the anthocyanidin molecule include UDP glucose: flavonoid 3-glucosyltransferase (3GT), which transfers a glucose moiety from UDP glucose to the 3-O-position of the anthocyanidin molecule to produce anthocyanidin 3-O-glucoside.

In petunia and pansy (amongst others), anthocyanidin 3-O-glucoside are generally glycosylated by another glycosyltransferase, UDP rhamnose: anthocyanidin 3-glucoside

rhamnosyltransferase (3RT), which adds a rhamnose group to the 3-O-bound glucose of the anthocyanin molecule to produce the anthocyanidin 3-rutinosides, and once acylated, can be further modified by UDP: glucose anthocyanin 5 glucosyltransferase (5GT). However, in roses (amongst others), the anthocyanidin 3-O-glucosides are generally glycosylated by another glycosyltransferase, UDP: glucose anthocyanin 5 glucosyltransferase (5GT) to produce anthocyanindin 3, 5 diglucosides.

Many anthocyanidin glycosides exist in the form of acylated derivatives. The acyl groups that modify the anthocyanidin glycosides can be divided into 2 major classes based upon their structure. The aliphatic acyl groups include malonic acid or succinic acid and the aromatic class include the hydroxy cinnamic acids such as *p*-coumaric acid, caffeic acid and ferulic acid and the benzoic acids such as *p*-hydroxybenzoic acid.

Methylation at the 3' and 5' positions of the B-ring of anthocyanidin glycosides can also occur. Methylation of cyanidin-based pigments leads to the production of peonidin. Methylation of the 3' position of delphinidin-based pigments results in the production of petunidin, whilst methylation of the 3' and 5' positions results in malvidin production.

In addition to the above modifications, pH of the vacuole or compartment where pigments are localised and copigmentation with other flavonoids such as flavonols and flavones can affect petal colour. Flavonols and flavones can also be aromatically acylated (Brouillard and Dangles, In: *The Flavonoids -Advances in Research since 1986*. Harborne, J.B. (ed), Chapman and Hall, London, UK, 1-22, 1993).

The ability to control F3'5'H activity, or other enzymes involved in the flavonoid pathway, in flowering plants would provide a means to manipulate colour of plant parts such as petals, fruit, leaves, sepals, seeds etc. Different coloured versions of a single cultivar could thereby be generated and in some instances a single species would be able to produce a broader spectrum of colours.

Two nucleotide sequences (referred to herein as SEQ ID NO:1 and SEQ ID NO:3) encoding petunia F3'5'HS have been cloned (see International Patent Application No. PCT/AU92/00334 and Holton *et al.*, 1993, *supra*). Although these sequences were efficient in modulating 3', 5' hydroxylation of flavonoids in petunia (see International Patent Application No. PCT/AU92/00334 and Holton *et al.*, 1993, *supra*), tobacco (see International Patent Application No. PCT/AU92/00334) and carnations (see International Patent Application No. PCT/AU96/00296), they were surprisingly unable to synthesize 3', 5'-hydroxylated flavonoids in roses. There is a need, therefore, to identify further genetic sequences encoding F3'5'HS which efficiently modulate 3'5' hydroxylation of flavonoids such as anthocyanins in roses and other key commercial plant species.

In accordance with the present invention, genetic sequences encoding improved F3'5'H have been identified and cloned from a number of species other than petunia. The recombinant genetic sequences of the present invention permit the modulation of expression of genes encoding this enzyme by, for example, *de novo* expression, over-expression, suppression, antisense inhibition and ribozyme activity. The ability to control F3'5'H synthesis in plants and more specifically in roses permits modulation of the composition of individual anthocyanins as well as alteration of relative levels of flavonols and anthocyanins, thereby enabling the manipulation of colour of plants such as petals, leaves, seeds, sepals, fruits etc.

Accordingly, one aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding a F3'5'H or a derivative thereof wherein said F3'5'H or its derivative is capable of more efficient conversion of DHK to DHM in roses (and other species of commercial importance) than is the F3'5'H encoded by the nucleotide sequence set forth in SEQ ID NO:1 and SEQ ID NO:3.

Efficiency as used herein relates to the capability of the F3'5'H enzyme to convert its substrate DHK or DHQ into DHM in a rose cell (or plant cell of commercial importance). This provides the plant with a substrate (DHM) for other enzymes of the flavonoid pathway able to further modify this molecule, via, for example, glycosylation, acylation

and rhamnosylation, to produce various anthocyanins which contribute to the production of a range of colours. The modulation of 3', 5'-hydroxylated anthocyanins in rose is thereby enabled. Efficiency is conveniently assessed by one or more parameters selected from: extent of transcription, as determined by the amount of mRNA produced; extent of translation of mRNA, as determined by the amount of translation product produced; extent of enzyme activity as determined by the production of anthocyanin derivatives of DHQ or DHM; the extent of effect on flower colour.

In work leading up to the present invention, the inventors surprisingly discovered combinations of promoter and *F3'5'H* gene sequences that were functional in carnation and petunia were not always functional in rose. Surprisingly only a non-obvious subset of promoter and *F3'5'H* gene sequence combinations proved to lead to 3'5'-hydroxylated flavonoids in rose flowers. These included *F3'5'H* sequences isolated from *Viola spp.*, *Salvia spp.* and *Sollya spp.* Further to this the *Viola F3'5'H* (or pansy *F3'5'H*) sequences were found to result in the highest accumulation of 3'5'-hydroxylated flavonoids in rose. The novel promoter and *F3'5'H* gene sequence combinations can be employed *inter alia* to modulate the color or flavour or other characteristics of plants or plant parts such as flowers, fruits, nuts, roots, stems, leaves or seeds. Thus, the present invention represents a new approach to developing plant varieties having altered color characteristics. Other uses include, for example, the production of novel extracts of *F3'5'H* transformed plants wherein the extract has use, for example, as a flavouring or food additive or health product or beverage or juice or coloring. Beverages may include but are not limited to wines, spirits, teas, coffee, milk and dairy products.

SUMMARY OF THE INVENTION

Throughout this specification, unless the context requires otherwise, the word "comprise", or variations such as "comprises" or "comprising", will be understood to imply the inclusion of a stated element or integer or group of elements or integers but not the exclusion of any other element or integer or group of elements or integers.

Nucleotide and amino acid sequences are referred to by a sequence identifier number (SEQ ID NO:). The SEQ ID NOs: correspond numerically to the sequence identifiers <400>1 (SEQ ID NO:1), <400>2 (SEQ ID NO:2), etc.

One aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding, or complementary to a sequence encoding pansy F3'5'H, salvia F3'5'H or sollya F3'5'H or a functional derivative of the enzyme.

A further aspect of the present invention is directed to an isolated nucleic acid molecule comprising a sequence of nucleotides encoding, or complementary to a sequence encoding pansy F3'5'H, salvia F3'5'H or sollya F3'5'H or a functional mutant, derivative, part, fragment, homologue or analogue of pansy F3'5'H, salvia F3'5'H or sollya F3'5'H.

Another aspect of the present invention provides a nucleic acid molecule comprising a nucleotide sequence or complementary nucleotide sequence substantially as set forth in SEQ ID NO: 9 or SEQ ID NO: 11 or SEQ ID NO: 13 or SEQ ID NO: 15 or SEQ ID NO: 17 or having at least about 50% similarity thereto or capable of hybridizing to the sequence set forth in SEQ ID NO: 9 or SEQ ID NO: 11 or SEQ ID NO: 13 or SEQ ID NO: 15 or SEQ ID NO: 17 under low stringency conditions.

Still another aspect of the present invention provides an isolated nucleic acid molecule comprising a nucleotide sequence or complementary nucleotide sequence substantially as set forth in SEQ ID NO: 9 or SEQ ID NO: 11 or SEQ ID NO: 13 or SEQ ID NO: 15 or SEQ ID NO: 17 or having at least about 50% similarity thereto or capable of hybridising to

the sequence set forth in SEQ ID NO: 9 or SEQ ID NO: 11 or SEQ ID NO: 13 or SEQ ID NO: 15 or SEQ ID NO: 17 or complementary strands of either under low stringency conditions, wherein said nucleotide sequence encodes a polypeptide having F3'5'H activity.

Still a further aspect of the present invention provides a nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding an amino acid sequence substantially as set forth in SEQ ID NO: 10 or SEQ ID NO: 12 or SEQ ID NO: 14 or SEQ ID NO: 16 or SEQ ID NO: 18 or an amino acid sequence having at least about 50% similarity thereto.

Even still another aspect of the present invention provides an oligonucleotide of 5-50 nucleotides having substantial similarity or complementarity to a part or region of a molecule with a nucleotide sequence set forth in SEQ ID NO: 9 or SEQ ID NO: 11 or SEQ ID NO: 13 or SEQ ID NO: 15 or SEQ ID NO: 17 or a complementary form thereof.

A further aspect of the present invention provides a method for producing a transgenic flowering plant capable of synthesizing an improved F3'5'H said method comprising stably transforming a cell of a suitable plant with a nucleic acid sequence which comprises a sequence of nucleotides encoding said improved F3'5'H under conditions permitting the eventual expression of said nucleic acid sequence, regenerating a transgenic plant from the cell and growing said transgenic plant for a time and under conditions sufficient to permit the expression of the nucleic acid sequence. The transgenic plant may thereby produce non-indigenous improved F3'5'H at elevated levels relative to the amount expressed in a comparable non-transgenic plant.

Another aspect of the present invention contemplates a method for producing a transgenic plant with reduced indigenous or existing F3'5'H activity, said method comprising stably transforming a cell of a suitable plant with a nucleic acid molecule which comprises a sequence of nucleotides encoding or complementary to a sequence encoding an F3'5'H activity, regenerating a transgenic plant from the cell and where necessary growing said transgenic plant under conditions sufficient to permit the expression of the nucleic acid.

Yet another aspect of the present invention contemplates a method for producing a genetically modified plant with reduced indigenous or existing F3'5'H activity, said method comprising altering the F3'5'H gene through modification of the indigenous sequences *via* homologous recombination from an appropriately altered F3'5'H gene or derivative or part thereof introduced into the plant cell, and regenerating the genetically modified plant from the cell.

Still another aspect of the present invention contemplates a method for producing a transgenic flowering plant exhibiting altered inflorescence properties, said method comprising stably transforming a cell of a suitable plant with a nucleic acid sequence of the present invention, regenerating a transgenic plant from the cell and growing said transgenic plant for a time and under conditions sufficient to permit the expression of the nucleic acid sequence.

Still a further aspect of the present invention contemplates a method for producing a flowering plant exhibiting altered inflorescence properties, said method comprising alteration of the F3'5'H gene through modification of the indigenous sequences *via* homologous recombination from an appropriately altered F3'5'H gene or derivative or part thereof introduced into the plant cell, and regenerating the genetically modified plant from the cell.

Even yet another aspect of the present invention extends to a method for producing a transgenic plant capable of expressing a recombinant gene encoding a F3'5'H or part thereof or which carries a nucleic acid sequence which is substantially complementary to all or a part of a mRNA molecule optionally transcribable where required to effect regulation of a F3'5'H, said method comprising stably transforming a cell of a suitable plant with the isolated nucleic acid molecule comprising a sequence of nucleotides encoding, or complementary to a sequence encoding, a F3'5'H, where necessary under conditions permitting the eventual expression of said isolated nucleic acid molecule, and regenerating a transgenic plant from the cell.

Even still another aspect of the present invention extends to all transgenic plants or parts of transgenic plants or progeny of the transgenic plants containing all or part of the nucleic acid sequences of the present invention, or antisense forms thereof and/or any homologues or related forms thereof and, in particular, those transgenic plants which exhibit altered inflorescence properties.

Even still another aspect of the present invention extends to all transgenic plants or parts of transgenic plants or progeny of the transgenic plants containing all or part of the nucleic acid sequences of the present invention, or antisense forms thereof and/or any homologues or related forms thereof and, in particular, those transgenic plants which exhibit altered aerial parts of the plant such as sepal, bract, petiole, peduncle, ovaries, anthers or stem properties.

Another aspect of the present invention contemplates the use of the extracts from transgenic plants or plant parts transgenic plants or progeny of the transgenic plants containing all or part of the nucleic acid sequences of the present invention and, in particular, the extracts from those transgenic plants when used as a flavouring or food additive or health product or beverage or juice or coloring.

A further aspect of the present invention is directed to recombinant forms of improved F3'5'H.

Another aspect of the present invention contemplates the use of the genetic sequences described herein in the manufacture of a genetic construct capable of expressing an improved F3'5'H or down-regulating an indigenous F3'5'H enzyme in a plant.

Yet another aspect of the present invention is directed to a prokaryotic or eukaryotic organism carrying a genetic sequence encoding an improved F3'5'H extrachromosomally in plasmid form.

- 12 -

Still another aspect of the present invention extends to a recombinant polypeptide comprising a sequence of amino acids substantially as set forth in SEQ ID NO: 10 or SEQ ID NO: 12 or SEQ ID NO: 14 or SEQ ID NO: 16 or SEQ ID NO: 18 or an amino acid sequence having at least about 50% similarity to SEQ ID NO: 10 or SEQ ID NO: 12 or SEQ ID NO: 14 or SEQ ID NO: 16 or SEQ ID NO: 18 or a derivative of said polypeptide.

BRIEF DESCRIPTION OF THE FIGURES

Figures 1a and 1b are schematic representations of the biosynthesis pathway for the flavonoid pigments. Figure 1a illustrates the general production of the anthocyanidin 3-glucosides that occur in most plants that produce anthocyanins. Figure 1b represents further modifications of anthocyanins that occur in petunia. Enzymes involved in the pathway have been indicated as follows: PAL = Phenylalanine ammonia-lyase; C4H = Cinnamate 4-hydroxylase; 4CL = 4-coumarate: CoA ligase; CHS = Chalcone synthase; CHI = Chalcone flavanone isomerase; F3H = Flavanone 3-hydroxylase; DFR = Dihydroflavonol-4-reductase; ANS = Anthocyanidin synthase, 3GT = UDP-glucose: flavonoid 3-O-glucosyltransferase; 3RT = UDP rhamnose: anthocyanidin 3-glucoside rhamnosyltransferase, AR-AT = Anthocyanidin-rutinoside acyltransferase, 5GT = Anthocyanin 5-glucosyltransferase; 3' OMT = Anthocyanin 3' O-methyltransferase, 3'5' OMT = Anthocyanin 3', 5' O-methyltransferase. Other abbreviations include: DHK = dihydrokaempferol, DHQ = dihydroquercetin, DHM = dihydromyricetin,

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

In accordance with the present invention, genetic sequences encoding improved F3'5'H have been identified, cloned and assessed. The recombinant genetic sequences of the present invention permit the modulation of expression of genes encoding this enzyme by, for example, *de novo* expression, over-expression, suppression, antisense inhibition and ribozyme activity. The ability to control F3'5'H synthesis in plants permits modulation of the composition of individual anthocyanins as well as alteration of relative levels of flavonols and anthocyanins, thereby enabling the manipulation of petal colour. Moreover, the present invention extends to plants and reproductive or vegetative parts thereof including flowers, seeds, vegetables, leaves, stems, etc., and more particularly, ornamental transgenic plants. The term transgenic also includes progeny plants from the primary transgenic plants.

Accordingly, one aspect of the present invention provides an isolated nucleic acid molecule comprising a sequence of nucleotides encoding, or complementary to a sequence encoding an improved F3'5'H or a functional derivative of the enzyme.

The present invention is described and exemplified herein by reference to the identification, cloning and manipulation of genetic sequences encoding an improved F3'5'H which, up to the present time, is a particularly convenient and useful F3'5'H enzyme for the practice of the invention herein disclosed. This is done, however, with the understanding that the present invention extends to all novel improved F3'5'H-like enzymes and their functional derivatives.

For convenience and by way of short hand notation only, reference herein to an improved F3'5'H enzyme includes F3'5'H acting on DHK as well as DHQ. Preferably, the improved F3'5'H enzyme is a pansy, salvia or sollya F3'5'H. The improved F3'5'H enzyme may also be considered to include a polypeptide or protein having an improved F3'5'H activity or F3'5'H-like activity. The latter encompasses derivatives having altered F3'5'H activities.

A preferred aspect of the present invention, therefore, is directed to an isolated nucleic acid molecule comprising a sequence of nucleotides encoding, or complementary to a sequence encoding an improved or a functional mutant, derivative, part, fragment, homologue or analogue of an improved F3'5'H.

By the term "nucleic acid molecule" is meant a genetic sequence in a non-naturally occurring condition. Generally, this means isolated away from its natural state or synthesized or derived in a non-naturally-occurring environment. More specifically, it includes nucleic acid molecules formed or maintained *in vitro*, including genomic DNA fragments recombinant or synthetic molecules and nucleic acids in combination with heterologous nucleic acids. It also extends to the genomic DNA or cDNA or part thereof encoding improved F3'5'H or a part thereof in reverse orientation relative to its own or another promoter. It further extends to naturally occurring sequences following at least a partial purification relative to other nucleic acid sequences.

The term genetic sequences is used herein in its most general sense and encompasses any contiguous series of nucleotide bases specifying directly, or *via* a complementary series of bases, a sequence of amino acids in an improved F3'5'H enzyme. Such a sequence of amino acids may constitute a full-length F3'5'H such as is set forth in SEQ ID NO: 10 or SEQ ID NO: 12 or SEQ ID NO: 14 or SEQ ID NO: 16 or SEQ ID NO: 18 or an active truncated form thereof or may correspond to a particular region such as an N-terminal, C-terminal or internal portion of the enzyme. A genetic sequence may also be referred to as a sequence of nucleotides or a nucleotide sequence and include a recombinant fusion of two or more sequences.

In accordance with the above aspects of the present invention there is provided a nucleic acid molecule comprising a nucleotide sequence or complementary nucleotide sequence substantially as set forth in SEQ ID NO: 9 or SEQ ID NO: 11 or SEQ ID NO: 13 or SEQ ID NO: 15 or SEQ ID NO: 17 or having at least about 50% similarity thereto or capable of hybridizing to the sequence set forth in SEQ ID NO: 9 or SEQ ID NO: 11 or SEQ ID NO: 13 or SEQ ID NO: 15 or SEQ ID NO: 17 under low stringency conditions.

Alternative percentage similarity encompassed by the present invention include at least about 60% or at least about 70% or at least about 80% or at least about 90% or above, such as about 95% or about 96% or about 97% or about 98% or about 99%.

In a particularly preferred embodiment, there is provided an isolated nucleic acid molecule comprising a nucleotide sequence or complementary nucleotide sequence substantially as set forth in SEQ ID NO: 9 or SEQ ID NO: 11 or SEQ ID NO: 13 or SEQ ID NO: 15 or SEQ ID NO: 17 or having at least about 50% similarity thereto or capable of hybridising to the sequence set forth in SEQ ID NO: 1 or SEQ ID NO: 3 or complementary strands of either under low stringency conditions, wherein said nucleotide sequence encodes a polypeptide having an improved F3'5'H activity.

For the purposes of determining the level of stringency to define nucleic acid molecules capable of hybridizing to SEQ ID NO: 9 or SEQ ID NO: 11 or SEQ ID NO: 13 or SEQ ID NO: 15 or SEQ ID NO: 17 reference herein to a low stringency includes and encompasses from at least about 0% to at least about 15% v/v formamide and from at least about 1M to at least about 2 M salt for hybridization, and at least about 1 M to at least about 2 M salt for washing conditions. Generally, low stringency is from about 25-30°C to about 42°C. The temperature may be altered and higher temperatures used to replace the inclusion of formamide and/or to give alternative stringency conditions. Alternative stringency conditions may be applied where necessary, such as medium stringency, which includes and encompasses from at least about 16% v/v to at least about 30% v/v formamide and from at least about 0.5M to at least about 0.9M salt for hybridization, and at least about 0.5M to at least about 0.9M salt for washing conditions, or high stringency, which includes and encompasses from at least about 31% v/v to at least about 50% v/v formamide and from at least about 0.01M to at least about 0.15M salt for hybridization, and at least about 0.01 M to at least about 0.15M salt for washing conditions. In general, washing is carried out $T_m = 69.3 + 0.41 (G+C)\%$ (Marmur and Doty, 1962). However, the T_m of a duplex DNA decreases by 1°C with every increase of 1% in the number of mismatch base pairs (Bonner and Laskey, 1974). Formamide is optional in these hybridization conditions.

Accordingly, particularly preferred levels of stringency are defined as follows: low stringency is 6 x SSC buffer, 1.0% w/v SDS at 25-42°C; a moderate stringency is 2 x SSC buffer, 1.0% w/v SDS at a temperature in the range 20°C to 65°C; high stringency is 0.1 x SSC buffer, 0.1% w/v SDS at a temperature of at least 65°C.

Another aspect of the present invention provides a nucleic acid molecule comprising a sequence of nucleotides encoding or complementary to a sequence encoding an amino acid sequence substantially as set forth in SEQ ID NO: 10 or SEQ ID NO: 12 or SEQ ID NO: 14 or SEQ ID NO: 16 or SEQ ID NO: 18 or an amino acid sequence having at least about 50% similarity thereto.

The term similarity as used herein includes exact identity between compared sequences at the nucleotide or amino acid level. Where there is non-identity at the nucleotide level, similarity includes differences between sequences which result in different amino acids that are nevertheless related to each other at the structural, functional, biochemical and/or conformational levels. Where there is non-identity at the amino acid level, similarity includes amino acids that are nevertheless related to each other at the structural, functional, biochemical and/or conformational levels. In a particularly preferred embodiment, nucleotide and sequence comparisons are made at the level of identity rather than similarity.

Terms used to describe sequence relationships between two or more polynucleotides or polypeptides include "reference sequence", "comparison window", "sequence similarity", "sequence identity", "percentage of sequence similarity", "percentage of sequence identity", "substantially similar" and "substantial identity". A "reference sequence" is at least 12 but frequently 15 to 18 and often at least 25 or above, such as 30 monomer units, inclusive of nucleotides and amino acid residues, in length. Because two polynucleotides may each comprise (1) a sequence (i.e. only a portion of the complete polynucleotide sequence) that is similar between the two polynucleotides, and (2) a sequence that is divergent between the two polynucleotides, sequence comparisons between two (or more) polynucleotides are typically performed by comparing sequences of the two

polynucleotides over a "comparison window" to identify and compare local regions of sequence similarity. A "comparison window" refers to a conceptual segment of typically 12 contiguous residues that is compared to a reference sequence. The comparison window may comprise additions or deletions (i.e. gaps) of about 20% or less as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. Optimal alignment of sequences for aligning a comparison window may be conducted by computerized implementations of algorithms (GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package Release 7.0, Genetics Computer Group, 575 Science Drive Madison, WI, USA) or by inspection and the best alignment (i.e. resulting in the highest percentage homology over the comparison window) generated by any of the various methods selected. Reference also may be made to the BLAST family of programs as, for example, disclosed by Altschul *et al.* (1997). A detailed discussion of sequence analysis can be found in Unit 19.3 of Ausubel *et al.* (1998).

The terms "sequence similarity" and "sequence identity" as used herein refers to the extent that sequences are identical or functionally or structurally similar on a nucleotide-by-nucleotide basis or an amino acid-by-amino acid basis over a window of comparison. Thus, a "percentage of sequence identity", for example, is calculated by comparing two optimally aligned sequences over the window of comparison, determining the number of positions at which the identical nucleic acid base (e.g. A, T, C, G, I) or the identical amino acid residue (e.g. Ala, Pro, Ser, Thr, Gly, Val, Leu, Ile, Phe, Tyr, Trp, Lys, Arg, His, Asp, Glu, Asn, Gln, Cys and Met) occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison (i.e., the window size), and multiplying the result by 100 to yield the percentage of sequence identity. For the purposes of the present invention, "sequence identity" will be understood to mean the "match percentage" calculated by the DNASIS computer program (Version 2.5 for windows; available from Hitachi Software engineering Co., Ltd., South San Francisco, California, USA) using standard defaults as used in the reference manual accompanying the software. Similar comments apply in relation to sequence similarity.

The nucleic acid sequences contemplated herein also encompass oligonucleotides useful as genetic probes for amplification reactions or as antisense or sense molecules capable of regulating expression of the corresponding gene in a plant. An antisense molecule as used herein may also encompass a genetic construct comprising the structural genomic or cDNA gene or part thereof in reverse orientation relative to its or another promoter. It may also encompass a homologous genetic sequence. An antisense or sense molecule may also be directed to terminal or internal portions of the gene encoding a polypeptide having an improved F3'5'H activity or to combinations of the above such that the expression of the gene is reduced or eliminated.

With respect to this aspect of the invention, there is provided an oligonucleotide of 5-50 nucleotides having substantial similarity or complementarity to a part or region of a molecule with a nucleotide sequence set forth in SEQ ID NO: 9 or SEQ ID NO: 11 or SEQ ID NO: 13 or SEQ ID NO: 15 or SEQ ID NO: 17 or a complementary form thereof. By substantial similarity or complementarity in this context is meant a hybridizable similarity under low, alternatively and preferably medium and alternatively and most preferably high stringency conditions specific for oligonucleotide hybridization (Sambrook *et al.*, 1989). Such an oligonucleotide is useful, for example, in screening for improved F3'5'H genetic sequences from various sources or for monitoring an introduced genetic sequence in a transgenic plant. The preferred oligonucleotide is directed to a conserved improved F3'5'H genetic sequence or a sequence conserved within a plant genus, plant species and/or plant variety.

In one aspect of the present invention, the oligonucleotide corresponds to the 5' or the 3' end of the improved F3'5'H genetic sequences. For convenience, the 5' end is considered herein to define a region substantially between the start codon of the structural gene to a centre portion of the gene, and the 3' end is considered herein to define a region substantially between the centre portion of the gene and the terminating codon of the structural gene. It is clear, therefore, that oligonucleotides or probes may hybridize to the 5' end or the 3' end or to a region common to both the 5' and the 3' ends. The present invention extends to all such probes.

In one embodiment, the nucleic acid sequence encoding an improved F3'5'H or various functional derivatives thereof is used to reduce the level of an endogenous an improved F3'5'H (e.g. via co-suppression) or other transcriptional gene silencing (PTGS) processes including RNAi or alternatively the nucleic acid sequence encoding this enzyme or various derivatives or parts thereof is used in the antisense orientation to reduce the level of an improved F3'5'H. The use of sense strands, double or partially single stranded such as constructs with hairpin loops is particularly useful in inducing a PTGS response. In a further alternative, ribozymes could be used to inactivate target nucleic acid sequences.

Still a further embodiment encompasses post-transcriptional inhibition to reduce translation into polypeptide material.

Reference herein to the altering of an improved F3'5'H activity relates to an elevation or reduction in activity of up to 30% or more preferably of 30-50%, or even more preferably 50-75% or still more preferably 75% or greater above or below the normal endogenous or existing levels of activity. Such elevation or reduction may be referred to as modulation of an improved F3'5'H enzyme activity. Generally, modulation is at the level of transcription or translation of improved F3'5'H genetic sequences.

The nucleic acids of the present invention may be a ribonucleic acid or deoxyribonucleic acids, single or double stranded and linear or covalently closed circular molecules. Preferably, the nucleic acid molecule is cDNA. The present invention also extends to other nucleic acid molecules which hybridize under low, preferably under medium and most preferably under high stringency conditions with the nucleic acid molecules of the present invention and in particular to the sequence of nucleotides set forth in SEQ ID NO: 9 or SEQ ID NO: 11 or SEQ ID NO: 13 or SEQ ID NO: 15 or SEQ ID NO: 17 or a part or region thereof. In its most preferred embodiment, the present invention extends to a nucleic acid molecule having a nucleotide sequence set forth in SEQ ID NO: 9 or SEQ ID NO: 11 or SEQ ID NO: 13 or SEQ ID NO: 15 or SEQ ID NO: 17 or to a molecule having at least 40%, more preferably at least 45%, even more preferably at least 55%, still more

preferably at least 65%-70%, and yet even more preferably greater than 85% similarity at the level of nucleotide or amino acid sequence to at least one or more regions of the sequence set forth in SEQ ID NO: 9 or SEQ ID NO: 11 or SEQ ID NO: 13 or SEQ ID NO: 15 or SEQ ID NO: 17 and wherein the nucleic acid encodes or is complementary to a sequence which encodes an enzyme having an improved F3'5'H activity. It should be noted, however, that nucleotide or amino acid sequences may have similarities below the above given percentages and yet still encode an improved F3'5'H activity and such molecules may still be considered in the scope of the present invention where they have regions of sequence conservation. The present invention further extends to nucleic acid molecules in the form of oligonucleotide primers or probes capable of hybridizing to a portion of the nucleic acid molecules contemplated above, and in particular those set forth in SEQ ID NO: 9 or SEQ ID NO: 11 or SEQ ID NO: 13 or SEQ ID NO: 15 or SEQ ID NO: 17, under low, preferably under medium and most preferably under high stringency conditions. Preferably the portion corresponds to the 5' or the 3' end of the gene. For convenience the 5' end is considered herein to define a region substantially between the start codon of the structural genetic sequence to a centre portion of the gene, and the 3' end is considered herein to define a region substantially between the centre portion of the gene and the terminating codon of the structural genetic sequence. It is clear, therefore, that oligonucleotides or probes may hybridize to the 5' end or the 3' end or to a region common to both the 5' and the 3' ends. The present invention extends to all such probes.

The term gene is used in its broadest sense and includes cDNA corresponding to the exons of a gene. Accordingly, reference herein to a gene is to be taken to include:-

- (i) a classical genomic gene consisting of transcriptional and/or translational regulatory sequences and/or a coding region and/or non-translated sequences (i.e. introns, 5'- and 3'- untranslated sequences); or
- (ii) mRNA or cDNA corresponding to the coding regions (i.e. exons) and 5'- and 3'- untranslated sequences of the gene.

The term gene is also used to describe synthetic or fusion molecules encoding all or part of an expression product. In particular embodiments, the term nucleic acid molecule and gene may be used interchangeably.

The nucleic acid or its complementary form may encode the full-length enzyme or a part or derivative thereof. By "derivative" is meant any single or multiple amino acid substitutions, deletions, and/or additions relative to the naturally occurring enzyme and which retains an improved F3'5'H activity. In this regard, the nucleic acid includes the naturally occurring nucleotide sequence encoding an improved F3'5'H or may contain single or multiple nucleotide substitutions, deletions and/or additions to said naturally occurring sequence. The nucleic acid of the present invention or its complementary form may also encode a "part" of the improved F3'5'H, whether active or inactive, and such a nucleic acid molecule may be useful as an oligonucleotide probe, primer for polymerase chain reactions or in various mutagenic techniques, or for the generation of antisense molecules.

Reference herein to a "part" of a nucleic acid molecule, nucleotide sequence or amino acid sequence, preferably relates to a molecule which contains at least about 10 contiguous nucleotides or five contiguous amino acids, as appropriate.

Amino acid insertional derivatives of the improved F3'5'H of the present invention include amino and/or carboxyl terminal fusions as well as intra-sequence insertions of single or multiple amino acids. Insertional amino acid sequence variants are those in which one or more amino acid residues are introduced into a predetermined site in the protein although random insertion is also possible with suitable screening of the resulting product. Deletional variants are characterized by the removal of one or more amino acids from the sequence. Substitutional amino acid variants are those in which at least one residue in the sequence has been removed and a different residue inserted in its place. Typical substitutions are those made in accordance with TABLE 1.

TABLE 1 Suitable residues for amino acid substitutions

Original residue	Exemplary substitutions
Ala	Ser
Arg	Lys
Asn	Gln; His
Asp	Glu
Cys	Ser
Gln	Asn; Glu
Glu	Asp
Gly	Pro
His	Asn; Gln
Ile	Leu; Val
Leu	Ile; Val
Lys	Arg; Gln; Glu
Met	Leu; Ile; Val
Phe	Met; Leu; Tyr
Ser	Thr
Thr	Ser
Trp	Tyr
Tyr	Trp; Phe
Val	Ile; Leu; Met

Where the improved F3'5'H is derivatized by amino acid substitution, the amino acids are generally replaced by other amino acids having like properties, such as hydrophobicity, hydrophilicity, electronegativity, bulky side chains and the like. Amino acid substitutions are typically of single residues. Amino acid insertions will usually be in the order of about 1-10 amino acid residues and deletions will range from about 1-20 residues. Preferably,

deletions or insertions are made in adjacent pairs, i.e. a deletion of two residues or insertion of two residues.

The amino acid variants referred to above may readily be made using peptide synthetic techniques well known in the art, such as solid phase peptide synthesis (Merrifield, 1964) and the like, or by recombinant DNA manipulations. Techniques for making substitution mutations at predetermined sites in DNA having known or partially known sequence are well known and include, for example, M13 mutagenesis. The manipulation of DNA sequence to produce variant proteins which manifest as substitutional, insertional or deletional variants are conveniently described, for example, in Sambrook *et al.* (1989).

Other examples of recombinant or synthetic mutants and derivatives of the improved F3'5'H enzyme of the present invention include single or multiple substitutions, deletions and/or additions of any molecule associated with the enzyme such as carbohydrates, lipids and/or proteins or polypeptides.

The terms "analogues" and "derivatives" also extend to any functional chemical equivalent of an improved F3'5'H and also to any amino acid derivative described above. For convenience, reference to improved F3'5'H herein includes reference to any functional mutant, derivative, part, fragment, homologue or analogue thereof.

The present invention is exemplified using nucleic acid sequences derived from pansy, salvia or sollya since this represents the most convenient and preferred source of material to date. However, one skilled in the art will immediately appreciate that similar sequences can be isolated from any number of sources such as other plants or certain microorganisms. All such nucleic acid sequences encoding directly or indirectly an improved F3'5'H are encompassed by the present invention regardless of their source. Examples of other suitable sources of genes encoding improved F3'5'H include, but are not limited to *Vitis spp.*, *Babiana stricta*, *Pinus spp.*, *Picea spp.*, *Larix spp.*, *Phaseolus spp.*, *Vaccinium spp.*, *Cyclamen spp.*, *Iris spp.*, *Pelargonium spp.*, Liparieae, *Geranium spp.*, *Pisum spp.*,

Lathyrus spp., Clitoria spp., Catharanthus spp., Malva spp., Mucuna spp., Vicia spp., Saintpaulia spp., Lagerstroemia spp., Tibouchina spp., Plumbago spp., Hypocalyptus spp., Rhododendron spp., Linum spp., Macroptilium spp., Hibiscus spp., Hydrangea spp., Cymbidium spp., Millettia spp., Hedysarum spp., Lespedeza spp., Asparagus spp. Antigonon spp., Freesia spp., Brunella spp., Clarkia spp., etc.

In accordance with the present invention, a nucleic acid sequence encoding an improved F3'5'H may be introduced into and expressed in a transgenic plant in either orientation thereby providing a means either to convert suitable substrates, if synthesized in the plant cell, ultimately into DHM, or alternatively to inhibit such conversion of metabolites by reducing or eliminating endogenous or existing improved F3'5'H activity. The production of these 3'5'-hydroxylated substrates will subsequently be converted to delphinidin-based pigments that will modify petal colour and may contribute to the production of a bluer colour. Expression of the nucleic acid sequence in the plant may be constitutive, inducible or developmental and may also be tissue-specific. The word expression is used in its broadest sense to include production of RNA or of both RNA and protein. It also extends to partial expression of a nucleic acid molecule.

According to this aspect of the present invention, there is provided a method for producing a transgenic flowering plant capable of synthesizing an improved F3'5'H, said method comprising stably transforming a cell of a suitable plant with a nucleic acid sequence which comprises a sequence of nucleotides encoding said improved F3'5'H under conditions permitting the eventual expression of said nucleic acid sequence, regenerating a transgenic plant from the cell and growing said transgenic plant for a time and under conditions sufficient to permit the expression of the nucleic acid sequence. The transgenic plant may thereby produce non-indigenous improved F3'5'H at elevated levels relative to the amount expressed in a comparable non-transgenic plant.

Another aspect of the present invention contemplates a method for producing a transgenic plant with reduced indigenous or existing 3',5'-hydroxylase activity, said method comprising stably transforming a cell of a suitable plant with a nucleic acid molecule

which comprises a sequence of nucleotides encoding or complementary to a sequence encoding an improved F3'5'H activity, regenerating a transgenic plant from the cell and where necessary growing said transgenic plant under conditions sufficient to permit the expression of the nucleic acid.

Yet another aspect of the present invention contemplates a method for producing a genetically modified plant with reduced indigenous or existing F3'5'H activity, said method comprising altering the *F3'5'H* gene through modification of the indigenous sequences via homologous recombination from an appropriately altered improved *F3'5'H* gene or derivative or part thereof introduced into the plant cell, and regenerating the genetically modified plant from the cell.

As used herein an "indigenous" enzyme is one, which is native to or naturally expressed in a particular cell. A "non-indigenous" enzyme is an enzyme not native to the cell but expressed through the introduction of genetic material into a plant cell; for example, through a transgene. An "endogenous" enzyme is an enzyme produced by a cell but which may or may not be indigenous to that cell.

In a preferred embodiment, the present invention contemplates a method for producing a transgenic flowering plant exhibiting altered inflorescence properties, said method comprising stably transforming a cell of a suitable plant with a nucleic acid sequence of the present invention, regenerating a transgenic plant from the cell and growing said transgenic plant for a time and under conditions sufficient to permit the expression of the nucleic acid sequence.

Alternatively, said method may comprise stably transforming a cell of a suitable plant with a nucleic acid sequence of the present invention or its complementary sequence, regenerating a transgenic plant from the cell and growing said transgenic plant for a time and under conditions sufficient to alter the level of activity of the indigenous or existing F3'5'H. Preferably the altered level would be less than the indigenous or existing level of F3'5'H activity in a comparable non-transgenic plant. Without wishing to limit the present

invention, one theory of mode of action is that reduction of the indigenous F3'5'H activity requires the expression of the introduced nucleic acid sequence or its complementary sequence. However, expression of the introduced genetic sequence or its complement may not be required to achieve the desired effect: namely, a flowering plant exhibiting altered inflorescence properties.

In a related embodiment, the present invention contemplates a method for producing a flowering plant exhibiting altered inflorescence properties, said method comprising alteration of the 3',5'-hydroxylase gene through modification of the indigenous sequences via homologous recombination from an appropriately altered improved *F3'5'H* gene or derivative or part thereof introduced into the plant cell, and regenerating the genetically modified plant from the cell.

Preferably, the altered inflorescence includes the production of different shades of blue or red flowers or other colours, depending on the genotype and physiological conditions of the recipient plant.

Accordingly, the present invention extends to a method for producing a transgenic plant capable of expressing a recombinant gene encoding an improved F3'5'H or part thereof or which carries a nucleic acid sequence which is substantially complementary to all or a part of a mRNA molecule optionally transcribable where required to effect regulation of an improved F3'5'H, said method comprising stably transforming a cell of a suitable plant with the isolated nucleic acid molecule comprising a sequence of nucleotides encoding, or complementary to a sequence encoding, an improved F3'5'H, where necessary under conditions permitting the eventual expression of said isolated nucleic acid molecule, and regenerating a transgenic plant from the cell. By suitable plant is meant a plant capable of producing DHK and possessing the appropriate physiological properties required for the development of the colour desired.

One skilled in the art will immediately recognise the variations applicable to the methods of the present invention, such as increasing or decreasing the expression of the enzyme

naturally present in a target plant leading to differing shades of colours such as different shades of blue, purple or red.

The present invention, therefore, extends to all transgenic plants or parts of transgenic plants or progeny of the transgenic plants containing all or part of the nucleic acid sequences of the present invention, or antisense forms thereof and/or any homologues or related forms thereof and, in particular, those transgenic plants which exhibit altered inflorescence properties. The transgenic plants may contain an introduced nucleic acid molecule comprising a nucleotide sequence encoding or complementary to a sequence encoding an improved F3'5'H. Generally, the nucleic acid would be stably introduced into the plant genome, although the present invention also extends to the introduction of an improved *F3'5'H* nucleotide sequence within an autonomously-replicating nucleic acid sequence such as a DNA or RNA virus capable of replicating within the plant cell. The invention also extends to seeds from such transgenic plants. Such seeds, especially if coloured, are useful as proprietary tags for plants. Any and all methods for introducing genetic material into plant cells are encompassed by the present invention.

Another aspect of the present invention contemplates the use of the extracts from transgenic plants or plant parts of transgenic plants or progeny of the transgenic plants containing all or part of the nucleic acid sequences of the present invention and, in particular, the extracts from those transgenic plants when used as a flavouring or food additive or health product or beverage or juice or colouring.

Plant parts contemplated by the present invention includes, but is not limited to flowers, fruits, nuts, roots, stems, leaves or seeds.

The extracts of the present invention may be derived from the plants or plant part in a number of different ways including chemical extraction or heat extraction or filtration or squeezing or pulverisation.

The plant, plant part or extract can be utilized in any number of different ways such as for the production of a flavouring (e.g. a food essence), a food additive (e.g. a stabilizer, a colourant) a health product (e.g. an antioxidant, a tablet) a beverage (e.g. wine, spirit, tea) or a juice (e.g. fruit juice) or colouring (e.g. food colouring, fabric colouring, dye, paint).

A further aspect of the present invention is directed to recombinant forms of improved F3'5'H. The recombinant forms of the enzyme will provide a source of material for research to develop, for example, more active enzymes and may be useful in developing *in vitro* systems for production of coloured compounds.

Still a further aspect of the present invention contemplates the use of the genetic sequences described herein in the manufacture of a genetic construct capable of expressing an improved F3'5'H or down-regulating an indigenous F3'5'H enzyme in a plant.

Another aspect of the present invention is directed to a prokaryotic or eukaryotic organism carrying a genetic sequence encoding an improved F3'5'H extrachromosomally in plasmid form.

The present invention further extends to a recombinant polypeptide comprising a sequence of amino acids substantially as set forth in SEQ ID NO: 10 or SEQ ID NO: 12 or SEQ ID NO: 14 or SEQ ID NO: 16 or SEQ ID NO: 18 or an amino acid sequence having at least about 50% similarity to SEQ ID NO: 10 or SEQ ID NO: 12 or SEQ ID NO: 14 or SEQ ID NO: 16 or SEQ ID NO: 18 or a derivative of said polypeptide.

A "recombinant polypeptide" means a polypeptide encoded by a nucleotide sequence introduced into a cell directly or indirectly by human intervention or into a parent or other relative or precursor of the cell. A recombinant polypeptide may also be made using cell-free, *in vitro* transcription systems. The term "recombinant polypeptide" includes an isolated polypeptide or when present in a cell or cell preparation. It may also be in a plant or parts of a plant regenerated from a cell which produces said polypeptide.

- 30 -

A "polypeptide" includes a peptide or protein and is encompassed by the term "enzyme".

The recombinant polypeptide may also be a fusion molecule comprising two or more heterologous amino acid sequences.

A summary of sequence identifiers is provided herewith (Table 2).

TABLE 2 SUMMARY OF SEQUENCE IDENTIFIERS

SEQ ID NO:	Name	Description
1	petunia <i>F3'5'H Hf1</i> .nt	petunia <i>F3'5'H</i> cDNA nucleotide seq (<i>Hf1</i>)
2	petunia <i>F3'5'H Hf1</i> .aa	translation of petunia <i>F3'5'H</i> (<i>Hf1</i>) seq
3	petunia <i>F3'5'H Hf2</i> .nt	petunia <i>F3'5'H</i> cDNA nucleotide seq (<i>Hf2</i>)
4	petunia <i>F3'5'H Hf2</i> .aa	translation of petunia <i>F3'5'H</i> (<i>Hf2</i>) seq
5	RoseCHS promoter	nucleotide sequence of rose chalcone synthase promoter fragment
6	D8 oligo#2	oligonucleotide to petunia PLTP (D8) gene
7	D8 oligo #4	oligonucleotide to petunia PLTP (D8) gene
8	chrysanCHSATG	oligonucleotide (#583) to chrysanthemum CHS promoter
9	BP#18.nt	pansy <i>F3'5'H</i> cDNA nucleotide seq (BP#18)
10	BP#18.aa	translation of pansy <i>F3'5'H</i> (BP#18) seq
11	BP#40.nt	pansy <i>F3'5'H</i> cDNA nucleotide seq (BP#40)
12	BP#40.aa	translation of pansy <i>F3'5'H</i> (BP#40) seq
13	Sal#2.nt	salvia <i>F3'5'H</i> cDNA nucleotide seq (Sal#2)
14	Sal#2.aa	translation of salvia <i>F3'5'H</i> (Sal#2) seq
15	Sal#47.nt	salvia <i>F3'5'H</i> cDNA nucleotide seq (Sal#47)
16	Sal#47.aa	translation of salvia <i>F3'5'H</i> (Sal#47) seq
17	Solla#5.nt	sollya <i>F3'5'H</i> cDNA nucleotide seq (Solla#5)
18	Solla#5.aa	translation of sollya <i>F3'5'H</i> (Solla#5) seq

SEQ ID NO:	Name	Description
19	FLS-Nco	oligonucleotide
20	BpeaHF2.nt	butterfly pea <i>F3'5'H</i> cDNA nucleotide seq
21	BpeaHF2.aa	translation of butterfly pea <i>F3'5'H</i> seq
22	Gen#48.nt	gentian <i>F3'5'H</i> cDNA nucleotide seq (Gen#48)
23	Gen#48.aa	translation of gentian <i>F3'5'H</i> (Gen#48) seq
24	PetD8 5'	nucleotide sequence of OGB2.6 promoter fragment (petunia PLTP promoter)

The present invention is further described by the following non-limiting Examples.

EXAMPLE 1

General methods

In general, the methods followed were as described in Sambrook *et al.* (*Molecular Cloning: A Laboratory Manual*. (2nd edition), Cold Spring Harbor Laboratory Press, USA, 1989) or Plant Molecular Biology Manual (2nd edition), Gelvin and Schilperoort (eds), Kluwer Academic Publisher, The Netherlands, 1994 or Plant Molecular Biology Labfax, Croy (ed), Bios scientific Publishers, Oxford, UK, 1993.

The cloning vectors pBluescript and PCR script were obtained from Stratagene, USA. pCR7 2.1 was obtained from Invitrogen, USA.

E. coli transformation

The *Escherichia coli* strains used were:

DH5 α

supE44, \square (lacZYA-ArgF)U169, (ϕ 80lacZ \square M15), hsdR17(r_k^- , m_k^+), recA1, endA1, gyrA96, thi-1, relA1, deoR. (Hanahan, *J. Mol. Biol.* 166: 557 1983)

XL1-Blue

supE44, hsdR17(r_k^- , m_k^+), recA1, endA1, gyrA96, thi-1, relA1, lac r , [F'proAB, lacI q , lacZ Δ M15, Tn10(tet R)] (Bullock *et al.*, *Biotechniques* 5: 376, 1987).

BL21-CodonPlus-RIL strain

ompT hsdS(rB- mB-) dcm+ Tet r gal endA Hte [argU ileY leuW Cam r]

M15 *E. coli* is derived from *E. coli* K12 and has the phenotype Nal s , Str s , Rif s , Thi r , Ara r , Gal r , Mtl r , F r , RecA r , Uvr r , Lon r .

Transformation of the *E. coli* strains was performed according to the method of Inoue *et al.*, (*Gene* 96: 23-28, 1990).

Agrobacterium tumefaciens strains and transformations

The disarmed *Agrobacterium tumefaciens* strain used was AGL0 (Lazo *et al.* *Bio/technology* 9: 963-967, 1991).

Plasmid DNA was introduced into the *Agrobacterium tumefaciens* strain AGL0 by adding 5 µg of plasmid DNA to 100 µL of competent AGL0 cells prepared by inoculating a 50 mL LB culture (Sambrook *et al.*, 1989, *supra*) and incubation for 16 hours with shaking at 28°C. The cells were then pelleted and resuspended in 0.5mL of 85% (v/v) 100mM CaCl₂/15% (v/v) glycerol. The DNA-*Agrobacterium* mixture was frozen by incubation in liquid N₂ for 2 minutes and then allowed to thaw by incubation at 37°C for 5 minutes. The DNA/bacterial mix was then placed on ice for a further 10 minutes. The cells were then mixed with 1mL of LB (Sambrook *et al.*, 1989 *supra*) media and incubated with shaking for 16 hours at 28°C. Cells of *A. tumefaciens* carrying the plasmid were selected on LB agar plates containing appropriate antibiotics such as 50 µg/mL tetracycline or 100 µg/mL gentamycin. The confirmation of the plasmid in *A. tumefaciens* was done by restriction endonuclease mapping of DNA isolated from the antibiotic-resistant transformants.

DNA ligations

DNA ligations were carried out using the Amersham Ligation Kit or Promega Ligation Kit according to procedures recommended by the manufacturer.

Isolation and purification of DNA fragments

Fragments were generally isolated on a 1% (w/v) agarose gel and purified using the QIAEX II Gel Extraction kit (Qiagen) or Bresaclean Kit (Bresatec, Australia) following procedures recommended by the manufacturer.

Repair of overhanging ends after restriction endonuclease digestion

Overhanging 5' ends were repaired using DNA polymerase (Klenow fragment) according to standard protocols (Sambrook *et al.*, 1989 *supra*). Overhanging 3' ends were repaired using T4 DNA polymerase according to standard protocols (Sambrook *et al.*, 1989 *supra*).

Removal of phosphoryl groups from nucleic acids

Shrimp alkaline phosphatase (SAP) (USB) was typically used to remove phosphoryl groups from cloning vectors to prevent re-circularization according to the manufacturer's recommendations.

Polymerase Chain Reaction (PCR)

Unless otherwise specified, PCR conditions using plasmid DNA as template included using 2ng of plasmid DNA, 100ng of each primer, 2 µL 10 mM dNTP mix, 5 µL 10 x Taq DNA DNA polymerase buffer, 0.5 µL Taq DNA Polymerase in a total volume of 50 µL. Cycling conditions comprised an initial denaturation step of 5 min at 94°C, followed by 35 cycles of 94°C for 20 sec, 50°C for 30 sec and 72°C for 1 min with a final treatment at 72°C for 10 min before storage at 4°C.

PCRs were performed in a Perkin Elmer GeneAmp PCR System 9600.

³²P-Labeling of DNA Probes

DNA fragments (50 to 100 ng) were radioactively labelled with 50 µCi of [α -³²P]-dCTP using a Gigaprime kit (Geneworks). Unincorporated [α -³²P]-dCTP was removed by chromatography on Sephadex G-50 (Fine) columns or Microbiospin P-30 Tris chromatography columns (BioRad).

Plasmid Isolation

Single colonies were analyzed for inserts by inoculating LB broth (Sambrook *et al.*, 1989, *supra*) with appropriate antibiotic selection (e.g. 100 µg/mL ampicillin or 10 to 50 µg/mL tetracycline etc.) and incubating the liquid culture at 37°C (for *E. coli*) or 29°C (for *A. tumefaciens*) for ~16 hours with shaking. Plasmid DNA was purified using the alkali-lysis procedure (Sambrook *et al.*, 1989, *supra*) or using The WizardPlus SV minipreps DNA

purification system (Promega) or Qiagen Plasmid Mini Kit (Qiagen). Once the presence of an insert had been determined, larger amounts of plasmid DNA were prepared from 50 mL overnight cultures using the alkali-lysis procedure (Sambrook *et al.*, 1989, *supra*) or QIAfilter Plasmid Midi kit (Qiagen) and following conditions recommended by the manufacturer.

DNA Sequence Analysis

DNA sequencing was performed using the PRISM (trademark) Ready Reaction Dye Primer Cycle Sequencing Kits from Applied Biosystems. The protocols supplied by the manufacturer were followed. The cycle sequencing reactions were performed using a Perkin Elmer PCR machine (GeneAmp PCR System 9600). Sequencing runs were generally performed by the Australian Genome Research Facility at The Walter and Eliza Hall Institute of Medical Research (Melbourne, Australia) or in-house on an automated 373A DNA sequencer (Applied Biosystems).

Homology searches against Genbank, SWISS-PROT and EMBL databases were performed using the FASTA and TFASTA programs (Pearson and Lipman, 1988) or BLAST programs (Altschul *et al.*, *J. Mol. Biol.* 215(3): 403-410, 1990). Percentage sequence similarities were obtained using LALIGN program (Huang and Miller, *Adv. Appl. Math.* 12: 373-381, 1991) using default settings.

Multiple sequence alignments were produced using ClustalW (Thompson *et al.*, *Nucleic Acids Research* 22: 4673-4680, 1994) using default settings.

EXAMPLE 2

Plant transformations

Petunia hybrida transformations (Sw63 x Skr4)

As described in Holton *et al.* (*Nature*, 366: 276-279, 1993) by any other method well known in the art.

Rosa hybrida transformations

As described in US542,841 (PCT/US91/04412) or Robinson and Firoozabady (*Scientia Horticulturae*, 55: 83-99, 1993), Rout *et al.* (*Scientia Horticulturae*, 81: 201-238, 1999) or Marchant *et al.* (*Molecular Breeding* 4: 187-194, 1998) or by any other method well known in the art.

Cuttings of *Rosa hybrida* were generally obtained from Van Wyk and Son Flower Supply, Victoria.

Dianthus caryophyllus transformations

International Patent Application Number PCT/US92/02612 (carnation transformation). As described in PCT/AU96/00296 (Violet carnation), Lu *et al.* (*Bio/Technology* 9: 864-868, 1991), Robinson and Firoozabady (1993, *supra*) or by any other method well known in the art.

Cuttings of *Dianthus caryophyllus* cv. Kortina Chanel or Monte Lisa were obtained from Van Wyk and Son Flower Supply, Victoria.

EXAMPLE 3

Transgenic Analysis

Colour coding

The Royal Horticultural Society's Colour Chart (Kew, UK) was used to provide a description of observed colour. They provide an alternative means by which to describe the colour phenotypes observed. The designated numbers, however, should be taken only as a guide to the perceived colours and should not be regarded as limiting the possible colours which may be obtained.

TLC and HPLC analysis

Generally as described in Brugliera *et al.* (*Plant J.* 5, 81-92, 1994).

Extraction of anthocyanidins

Prior to HPLC analysis, the anthocyanin and flavonol molecules present in petal and stamen extracts were acid hydrolysed to remove glycosyl moieties from the anthocyanidin or flavonol core. Anthocyanidin and flavonol standards were used to help identify the compounds present in the floral extracts.

Anthocyanidins in the reaction mixture were analysed by HPLC via gradient elution using gradient conditions of 50% B to 60% B over 10 minutes, then 60% B for 10 minutes and finally 60% B to 100% B over 5 minutes where solvent A consisted of TFA: H₂O (5:995) and solvent B consisted of acetonitrile: TFA: H₂O (500:5:495). An Asahi Pac ODP-50 cartridge column (250 mm x 4.6 mm ID) was used for the reversed phase chromatographic separations. The flow rate was 1 mL/min and the temperature was 40°C. The detection of the anthocyanidin compounds was carried out using a Shimadzu SPD-M6A three dimensional detector at 400-650 nm.

The anthocyanidin peaks were identified by reference to known standards, viz: delphinidin, petunidin, malvidin, cyanidin and peonidin

Stages of flower development

Petunia

Flowers of *Petunia hybrida* cv. Skr4 x Sw63 were generally harvested prior to anther dehiscence at the stage of maximum pigment accumulation.

Carnation

Dianthus caryophyllus flowers were harvested at developmental stages defined as follows:

- Stage 1: Closed bud, petals not visible.
- Stage 2: Flower buds opening: tips of petals visible.
- Stage 3: Tips of nearly all petals exposed. "Paint-brush stage".
- Stage 4: Outer petals at 45° angle to stem.

- 38 -

Stage 5: Flower fully open.

Rose

Stages of *Rosa hybrida* flower development were defined as follows:

Stage 1: Unpigmented, tightly closed bud (10-12 mm high; 5 mm wide).

Stage 2: Pigmented, tightly closed bud (15 mm high ; 9 mm wide).

Stage 3: Pigmented, closed bud; sepals just beginning to open (20-25 mm high; 13-15 mm wide)

Stage 4: Flower bud beginning to open; petals heavily pigmented; sepals have separated (bud is 25-30 mm high and 18 mm wide).

Stage 5: Sepals completely unfolded; some curling. Petals are heavily pigmented and unfolding (bud is 30-33 mm high and 20 mm wide).

Anthocyanin/flavonol measurements by spectrophotometric measurements

Approximately 200mg of fresh petal tissue was added to 2 mL of methanol/1% (v/v) HCl and incubated for ~16 hours at 4°C. A 1 in 20 dilution (e.g. 50µL made to 1000µL) was then made and the absorbance at 350nm and 530nm was recorded.

The approximate flavonols and anthocyanin amounts (nmoles/gram) were then calculated according to the following formulae:

Anthocyanin content

$$\frac{(A_{530} / 34,000) \times \text{Volume of extraction buffer (mL)} \times \text{dilution factor} \times 10^6}{\text{mass of petal tissue (grams)}}$$

Flavonol content

$$\frac{(A_{350} / 14,300) \times \text{Volume of extraction buffer (mL)} \times \text{dilution factor} \times 10^6}{\text{mass of petal tissue (grams)}}$$

Northern analysis

Total RNA was isolated from petals or leaves using a Plant RNAeasy kit (QIAGEN) following procedures recommended by the manufacturer. For rose samples 1% (w/v) PVP was added to the extraction buffer.

RNA samples (5 µg) were electrophoresed through 2.2 M formaldehyde/1.2% w/v agarose gels using running buffer containing 40 mM morpholinopropanesulphonic acid (pH 7.0), 5 mM sodium acetate, 0.1 mM EDTA (pH 8.0). The RNA was transferred to Hybond-N membrane filters (Amersham) as described by the manufacturer.

RNA blots were probed with ³²P-labelled fragments. Prehybridization (1 hour at 42°C) and hybridization (16 hours at 42°C) of the membrane filters were carried out in 50% v/v formamide, 1 M NaCl, 1% w/v SDS, 10% w/v dextran sulphate. The membrane filters were generally washed in 2 x SSC, 1% w/v SDS at 65°C for between 1 to 2 hours and then 0.2 x SSC, 1% w/v SDS at 65°C for between 0.5 to 1 hour. Membrane filters were generally exposed to Kodak XAR film with an intensifying screen at -70°C for 22 hours.

EXAMPLE 4

Introduction of chimaeric petunia F3'5'H genes into rose

As described in the introduction, the pattern of hydroxylation of the B-ring of the anthocyanidin molecule plays a key role in determining petal colour. The production of the dihydroflavonol DHM, leads to the production of the purple/blue delphinidin-based pigments in plants such as petunia. The absence of the F3'5'H activity has been correlated with the absence of blue flowers in many plant species such as *Rosa*, *Gerbera*, *Antirrhinum*, *Dianthus* and *Dendranthema*.

Based on success in producing delphinidin-based pigments in a mutant petunia line (Holton *et al.*, 1993a *supra* and International Patent Application PCT/AU92/00334), in tobacco flowers (International Patent Application PCT/AU92/00334) and in carnation

flowers (International Patent Application PCT/AU96/00296), chimaeric petunia *F3'5'H* genes were also introduced into roses in order to produce novel delphinidin-based pigments and modify flower colour.

Preparation of chimaeric petunia *F3'5'H* gene constructs

TABLE 3 Abbreviations used in construct preparations

Abbreviation	Description
<i>AmCHS 5'</i>	1.2kb promoter fragment from the <i>Antirrhinum majus</i> CHS gene (Sommer and Saedler, <i>Mol Gen. Gent.</i> , 202: 429-434, 1986)
<i>CaMV 35S</i>	~0.2 kb incorporating <i>Bgl</i> II fragment containing the promoter region from the Cauliflower Mosaic Virus 35S gene (<i>CaMV 35S</i>) (Franck <i>et al.</i> , <i>Cell</i> 21: 285-294, 1980, Guilley <i>et al.</i> , <i>Cell</i> , 30: 763-773. 1982)
<i>chrysCHS 5'</i>	promoter region from a chalcone synthase gene from chrysanthemum
<i>GUS</i>	β -glucuronidase coding sequence (Jefferson, <i>et al.</i> , <i>EMBO J.</i> 6: 3901-3907, 1987)
<i>Mac</i>	Hybrid promoter consisting of the promoter from the <i>mas</i> gene and a <i>CaMV 35S</i> enhancer region (Comai <i>et al.</i> , <i>Plant Mol. Biol.</i> 15: 373-381, 1990)
<i>mas/35S</i>	Hybrid promoter consisting of promoter region from <i>CaMV 35S</i> gene with enhancing elements from the promoter of mannopine synthase gene of <i>Agrobacterium tumefaciens</i> (Klee <i>et al.</i> , 1985, <i>supra</i>)
<i>mas 5'</i>	Promoter region from mannopine synthase gene of <i>A. tumefaciens</i>
<i>mas 3'</i>	Terminator region from mannopine synthase gene of <i>A. tumefaciens</i>
<i>nos 5'</i>	Promoter region from nopaline synthase gene of <i>A. tumefaciens</i> (Depicker, A. <i>et al.</i> , <i>J Mol. and Appl. Genetics</i> , 1: 561-573, 1982)
<i>nos 3'</i>	Terminator region from nopaline synthase gene of <i>A. tumefaciens</i> (Depicker, A. <i>et al.</i> , 1982, <i>supra</i>)

Abbreviation	Description
<i>nptII</i>	Kanamycin-resistance gene (encodes neomycin phosphotransferase which deactivates aminoglycoside antibiotics such as kanamycin, neomycin and G418)
<i>ocs 3'</i>	Terminator region from octopine synthase gene of <i>A. tumefaciens</i> (described in Klee <i>et al.</i> , <i>Bio/Technology</i> 3: 637-642, 1985)
<i>petD8 5'</i>	~3.2kb promoter region from phospholipid transfer protein gene (D8) of <i>Petunia hybrida</i> (Holton, Isolation and characterisation of petal specific genes from <i>Petunia hybrida</i> . PhD thesis, University of Melbourne, Australia, 1992) (SEQ ID NO: 24)
<i>petD8 3'</i>	terminator region from phospholipid transfer protein gene (D8) of <i>Petunia hybrida</i> cv. OGB (Holton, 1992, <i>supra</i>)
<i>long petFLS 5'</i>	~4.0kb fragment containing the promoter region from flavonol synthase gene of <i>P. hybrida</i>
<i>short petFLS 5'</i>	~2.2kb fragment containing the promoter region from flavonol synthase gene of <i>P. hybrida</i>
<i>petFLS 3'</i>	~0.95kb fragment containing the terminator region from flavonol synthase gene of <i>P. hybrida</i>
<i>petHf1</i>	Petunia Hf1 cDNA clone (Holton <i>et al.</i> , 1993, <i>supra</i>) (SEQ ID NO: 1)
<i>petHf2</i>	Petunia Hf2 cDNA clone (Holton <i>et al.</i> , 1993, <i>supra</i>) (SEQ ID NO: 3)
<i>petRT 5'</i>	Promoter region of an anthocyanidin-3-glucoside rhamnosyltransferase from <i>P. hybrida</i> (Brugliera, Characterization of floral specific genes isolated from <i>Petunia hybrida</i> . RMIT, Australia. PhD thesis, 1994)
<i>petRt 3'</i>	Terminator region of a anthocyanidin-3-glucoside rhamnosyltransferase (3RT) gene from <i>P. hybrida</i> (Brugliera, 1994, <i>supra</i>)
<i>RoseCHS 5'</i>	~2.8kb fragment containing the promoter region from chalcone synthase gene (CHS) of <i>Rosa hybrida</i> (SEQ ID: 5)

Abbreviation	Description
<i>SuRB</i>	Chlorsulfuron-resistance gene (encodes Acetolactate Synthase) with its own terminator from <i>Nicotiana tabacum</i> (Lee <i>et al.</i> , <i>EMBO J.</i> 7: 1241-1248, 1988)

Binary vector constructs containing petunia *F3'5'H* cDNA fragments under the control of various promoters were prepared (Table 4).

Table 4 Summary of chimaeric petunia *F3'5'H* gene cassettes contained in binary vector constructs used in the transformation of roses, carnations and petunias (see Table 3 for an explanation of abbreviations).

Plasmid	<i>F3'5'H</i> cassette	Selectable marker
pCGP1452	<i>AmCHS 5': petHf1: petD8 3'</i>	<i>CaMV 35S: SuRB</i>
pCGP1453	<i>Mac: petHf1: mas 3'</i>	<i>CaMV 35S: SuRB</i>
pCGP1457	<i>petD8 5': petHf1: petD8 3'</i>	<i>CaMV 35S: SuRB</i>
pCGP1461	<i>short petFLS 5': petHf1: petFLS 3'</i>	<i>CaMV 35S: SuRB</i>
pCGP1616	<i>petRT 5': petHf1: nos 3'</i>	<i>CaMV 35S: SuRB</i>
pCGP1638	<i>CaMV 35S: petHf1: ocs 3'</i>	<i>CaMV 35S: SuRB</i>
pCGP1623	<i>mas 35S: petHf1: ocs 3'</i>	<i>CaMV 35S: SuRB</i>
pCGP1860	<i>RoseCHS 5': petHf1: nos 3'</i>	<i>CaMV 35S: SuRB</i>
pCGP2123	<i>CaMV 35S: petHf2: ocs 3'</i>	<i>CaMV 35S: SuRB</i>

Isolation of petunia *F3'5'H* cDNA clones (*Hf1* and *Hf2*)

The isolation and characterisation of cDNA clones of petunia *F3'5'H* (*Hf1* and *Hf2* contained in pCGP601 and pCGP175 respectively) (SEQ ID NO: 1 and SEQ ID NO: 3, respectivley) have been described in International Patent Application PCT/AU92/00334 and Holton *et al.* (1993, *supra*).

Construction of pCGP1452 (AmCHS 5': Hf1: petD8 3'binary)

The plasmid pCGP1452 contains a chimaeric petunia *F3'5'H* (*Hf1*) gene under the control of a promoter fragment from the *Antirrhinum majus* chalcone synthase gene (*CHS*) (Sommer and Saedler, 1986, *supra*) with a terminator fragment from the petunia phospholipid transfer protein (PLTP) gene (*petD8 3'*) (Holton, 1992, *supra*). The chimaeric petunia *F3'5'H* cassette is in a tandem orientation with respect to the *CaMV 35S: SuRB* gene of the Ti binary vector, pWTT2132 (DNA Plant Technologies, USA = DNAP).

The Ti binary vector pWTT2132

The Ti binary vector plasmid pWTT2132 (DNAP) contains a chimaeric gene comprised of a *CaMV 35S* promoter sequence (Franck *et al.*, 1980, *supra*), ligated with the coding region and terminator sequence for acetolactate synthase (ALS) gene from the *SuRB* locus of tobacco (Lee *et al.*, 1988, *supra*). An ~60bp 5' untranslated leader sequence from the petunia chlorophyll a/b binding protein gene (Cab 22 gene) (Harpster *et al.*, MGG, 212: 182-190, 1988) is included between the *CaMV 35S* promoter fragment and the *SuRB* sequence.

Construction of pCGP725 (AmCHS 5': Hf1: petD8 3' in pBluescript)

A chimaeric petunia *F3'5'H* gene under the control *Antirrhinum majus CHS* (*AmCHS 5'*) promoter with a petunia PLTP terminator (*petD8 3'*) was constructed by cloning the 1.6kb *BclI/FspI* petunia *F3'5'H* (*Hf1*) fragment from pCGP602 (Holton *et al.*, 1993, *supra*) between a 1.2kb *Antirrhinum majus CHS* gene fragment 5' to the site of translation initiation (Sommer and Saedler, 1986, *supra*) and a 0.7kb *SmaI/XhoI* PLTP fragment (*petD8 3'*) from pCGP13-Bam (Holton, 1992, *supra*), 3' to the deduced stop codon. The resulting plasmids in a pBluescript II KS (Stratagene, USA) backbone vector were designated pCGP725 and pCGP726 (the only difference between each being the orientation of the expression cassette with respect to the *lacZ* region).

Construction of pCGP485 and pCGP1452 (AmCHS 5': Hf1: petD8 3'binary vectors)

The chimaeric *F3'5'H* gene from pCGP725 was cloned into the Ti binary vector pCGN1547 containing an *nptII* selectable marker gene cassette (McBride and Summerfelt *Plant Molecular Biology* 14: 269-276, 1990) to create pCGP485. A 3.5kb fragment containing the *AmCHS 5': HflI: petD8 3'* cassette was released upon digestion of pCGP485 with the restriction endonuclease *PstI*. The overhanging ends were repaired and the purified 3.5kb fragment was ligated with *SmaI* ends of the Ti binary vector, pWTT2132 (DNAP). Correct insertion of the fragment in a tandem orientation with respect to the *CaMV 35S: SuRB* selectable marker gene cassette was established by restriction endonuclease analysis of plasmid DNA isolated from tetracycline-resistant transformants. The plasmid was designated as pCGP1452.

Plant transformation with pCGP1452

The T-DNA contained in the binary vector plasmid pCGP1452 was introduced into rose, carnation and petunia via *Agrobacterium*-mediated transformation.

Construction of pCGP1453 (*Mac: HflI: mas 3'* binary)

The plasmid pCGP1453 contains a chimaeric petunia *F3'5'H* (*HflI*) gene under the control of a *Mac* promoter (Comai *et al.*, *Plant Mol. Biol.* 15: 373-381, 1990) with a terminator fragment from the mannopine synthase gene of *Agrobacterium* (*mas 3'*). The chimaeric petunia *F3'5'H* cassette is in a tandem orientation with respect to the *CaMV 35S: SuRB* selectable marker gene cassette of the Ti binary vector, pWTT2132 (DNAP).

A 3.9kb fragment containing the *Mac: HflI: mas 3'* cassette was released from the plasmid pCGP628 (described in PCT/AU94/00265) upon digestion with the restriction endonuclease *PstI*. The overhanging ends were repaired and the purified fragment was ligated with *SmaI* ends of pWTT2132 (DNAP). Correct insertion of the fragment in a tandem orientation with respect to the *CaMV 35S: SuRB* selectable marker gene cassette was established by restriction endonuclease analysis of plasmid DNA isolated from tetracycline-resistant transformants. The plasmid was designated as pCGP1453.

Plant transformation with pCGP1453

The T-DNA contained in the binary vector plasmid pCGP1453 was introduced into rose, carnation and petunia via *Agrobacterium*-mediated transformation.

Construction of pCGP1457 (petD8 5': Hf1: pet D8 3' binary vector)

The plasmid pCGP1457 contains a chimaeric petunia *F3'5'H* (*Hf1*) gene under the control of a promoter fragment from the petunia *PLTP* gene (*petD8 5'*) with a terminator fragment from the petunia *PLTP* gene (*petD8 3'*). The chimaeric petunia *F3'5'H* cassette is in a tandem orientation with respect to the *CaMV 35S: SuRB* gene of the Ti binary vector, pWTT2132 (DNAP).

Isolation of petunia D8 genomic clone

Preparation of P. hybrida cv. OGB (Old Glory Blue) genomic library in λ2001

A genomic DNA library was constructed from *Petunia hybrida* cv. OGB DNA in the vector λ2001 (Karn *et al.*, *Gene* 32: 217-224, 1984) using a *Sau3A* partial digestion of the genomic DNA as described in Holton, 1992 (*supra*). Screening of the OGB genomic library for the petunia D8 gene was as described in Holton, 1992 (*supra*).

Isolation of D8 genomic clone OGB2.6

PCR was performed in order to find a non-mutant genomic clone representing D8. Oligo #2 (5' to 3' GTTCTCGAGGAAAGATAATACAAT) (SEQ ID NO: 6) and Oligo #4 (5' to 3' CAAGATCGTAGGACTGCATG) (SEQ ID NO: 7) were used to amplify D8 gene fragments, across the intron region, using 4μL of phage suspension from the clones isolated from the primary screening of the OGB genomic library. The reactions were carried out in a total volume of 50μL containing 1 x Amplification buffer (Cetus), 0.2mM dNTP mix, <1μg of template DNA, 50pmoles of each primer and 0.25μL of Taq polymerase (5 units/μL - Cetus). The reaction mixtures were overlaid with 30μL of mineral oil and temperature cycled using a Gene Machine (Innovonics). The reactions were cycled 30 times using the following conditions: 94°C for 1 minute, 55°C for 50 seconds, 72°C for 2 minutes. One quarter of each PCR reaction was run on an agarose gel using TAE running buffer.

Three clones, λ OGB-2.4, λ OGB-2.5, and λ OGB-2.6, gave fragments of approximately 1 kb whereas the mutant clone, λ OGB-3.2 (described in Holton, 1992, *supra*), had produced a product of 1.25 kb. The λ OGB-2.6 clone was chosen for further analysis.

pCGP382

The genomic clone, λ OGB-2.6, contained a single 3.9 kb *Xba*I fragment that hybridized with the D8 cDNA. This *Xba*I fragment was isolated and purified and ligated with the *Xba*I ends of pBluescriptII KS- (Stratagene, USA). Restriction mapping of this clone revealed an internal *Pst*I site 350 bp from the 3' end. However, the mutant clone, pCGP13, had an internal *Pst*I near the ATG of the coding region (approximately 1.5 kb from its 3' end). The difference in the position of the *Pst*I site in both clones suggested that the λ OGB-2.6 *Xba*I fragment did not contain the whole genomic sequence of D8. A Southern blot was performed on *Pst*I digested λ OGB-2.6 DNA, and a fragment of 2.7 kb was found to hybridize with the D8 cDNA. Restriction endonuclease mapping confirmed that this fragment contained the 3' coding region and flanking sequences.

In order to obtain a fragment containing the whole D8 genomic sequence, a number of cloning steps were undertaken. The λ OGB-2.6 *Pst*I fragment of 2.7 kb was purified and ligated with *Pst*I ends of pBluescriptII KS- (Stratagene, USA). The resultant clone was digested with *Xba*I to remove the 350 bp *Pst*I/*Xba*I fragment. This fragment was replaced by the 3.9 kb *Xba*I fragment from λ OGB-2.6 to produce the plasmid pCGP382.

A 3.2kb fragment containing the promoter region from the *D8 2.6* gene in pCGP382 was released upon digestion with the restriction endonucleases *Hin*DIII and *Nco*I. The fragment was purified and ligated with the 4.8kb *Nco*I/*Hin*DIII fragment of pJB1 (Bodeau, Molecular and genetic regulation of Bronze-2 and other maize anthocyanin genes. Dissertation, Stanford University, USA, 1994) to produce pCGP1101 containing a *petD85': GUS: nos 3'* cassette.

A 1.6kb petunia *Hf7* fragment was released from the plasmid pCGP602 (Holton *et al.*, 1993a, *supra*) (SEQ ID NO: 1) upon digestion with the restriction endonucleases *Bsp*HI

and *Bam*HI. The fragment was purified and ligated with the 6.2kb *Nco*I/*Bam*HI fragment of pCGP1101 to produce pCGP1102 containing a *petD8 5': HfI: nos 3'* expression cassette.

A 0.75kb *Bam*HI *petD8 3'* fragment (Holton, 1992, *supra*) was purified from the plasmid pCGP13□*Bam*HI and ligated with *Bam*HI/*Bgl*II ends of pCGP1102 to produce the plasmid pCGP1107 containing a *petD8 5': HfI: petD8 3'* expression cassette.

The plasmid pCGP1107 was firstly linearised upon digestion with the restriction endonuclease *Xba*I. The overhanging ends were repaired and then the 5.3kb fragment containing the *petD8 5': HfI: petD8 3'* expression cassette was released upon digestion with the restriction endonuclease *Pst*I. The fragment was purified and ligated with *Sma*I/*Pst*I ends of the binary vector pWTT2132 (DNAP). Correct insertion of the fragment in a tandem orientation with respect to the *CaMV 35S: SuRB* selectable marker gene cassette was established by restriction endonuclease analysis of plasmid DNA isolated from tetracycline-resistant transformants. The plasmid was designated as pCGP1457.

Plant transformation with pCGP1457

The T-DNA contained in the binary vector plasmid pCGP1457 was introduced into rose, carnation and petunia via *Agrobacterium*-mediated transformation.

Construction of pCGP1461 (short *petFLS 5': HfI: pet FLS 3'* binary vector)

The plasmid pCGP1461 contains a chimaeric petunia *F3'5'H* (*HfI*) gene under the control of a promoter fragment from the petunia flavonol synthase (*FLS*) gene (*short petFLS 5'*) with a terminator fragment from the petunia *FLS* gene (*petFLS 3'*). The chimaeric petunia *F3'5'H* cassette is in a tandem orientation with respect to the *CaMV 35S: SuRB* gene of the Ti binary vector, pWTT2132.

Isolation of petunia *FLS* gene

Preparation of *P. hybrida* cv. *Th7* genomic library

A *P. hybrida* cv. Th7 genomic library was prepared according to Sambrook *et al.* (1989) using a *Sau3A* partial digestion of the genomic DNA. The partially digested DNA was cloned into EMBL-3 lambda vector (Stratagene, USA).

The Th7 genomic DNA library was screened with ^{32}P -labelled fragments of a petunia *FLS* cDNA clone (Holton *et al.*, *Plant J.* 4, 1003-1010, 1993b) using high stringency conditions.

Two genomic clones (*FLS2* and *FLS3*) were chosen for further analysis and found to contain sequences upstream of the putative initiating methionine of the petunia *FLS* coding region with *FLS2* containing a longer promoter region than *FLS3*.

A 6kb fragment was released upon digestion of the genomic clone *FLS2* with the restriction endonuclease *XhoI*. The fragment containing the short petunia *FLS* gene was purified and ligated with *XhoI* ends of pBluescript SK (Stratagene, USA). Correct insertion of the fragment was established by restriction endonuclease analysis of DNA isolated from ampicillin-resistant transformants. The resulting plasmid was designated as pCGP486.

A 9kb fragment was released upon digestion of the genomic clone *FLS3* with the restriction endonuclease *XhoI*. The fragment containing the petunia *FLS* gene was purified and ligated with *XhoI* ends of pBluescript SK (Stratagene, USA). Correct insertion of the fragment was established by restriction endonuclease analysis of DNA isolated from ampicillin-resistant transformants. The resulting plasmid was designated as pCGP487.

A 2.2 kb petunia *FLS* promoter fragment upstream from the putative translational initiation site was released from the plasmid pCGP487 upon digestion with the restriction endonucleases *XhoI* and *PstI*. The fragment generated was purified and ligated with *XhoI/PstI* ends of pBluescript II KS+ (Stratagene, USA). Correct insertion of the fragment was established by restriction endonuclease analysis of DNA isolated from ampicillin-resistant transformants. The resulting plasmid was designated as pCGP717.

A 0.95 kb petunia *FLS* terminator fragment downstream from the putative translational stop site was released from the plasmid pCGP487 upon digestion with the restriction endonucleases *Hind*III and *Sac*I. The fragment generated was purified and ligated with *Hind*III/*Sac*I ends of pBluescript II KS+ (Stratagene, USA). Correct insertion of the fragment was established by restriction endonuclease analysis of DNA isolated from ampicillin-resistant transformants. The resulting plasmid was designated as pCGP716.

Construction of pCGP493 (short petFLS 5':petFLS3' expression cassette)

A 1.8kb fragment containing the short petunia *FLS* promoter fragment was amplified by PCR using the plasmid pCGP717 as template and the T3 primer (Stratagene, USA) and an FLS-*Nco* primer (5' AAA ATC GAT ACC ATG GTC TTT TCT TTG TCT ATA C 3') (SEQ ID NO: 19). The PCR product was digested with the restriction endonucleases *Xba*I and *Cla*I and the purified fragment was ligated with *Xba*I/*Cla*I ends of pCGP716. Correct insertion of the fragment was established by restriction endonuclease analysis of DNA isolated from ampicillin-resistant transformants. The resulting plasmid was designated as pCGP493.

Construction of pCGP497 (short petFLS 5': HfI: petFLS3' expression cassette)

The petunia *F3'5'H* (*HfI*) cDNA clone was released from the plasmid pCGP601 (described above) upon digestion with the restriction endonucleases *Bsp*HI and *Fsp*I. The *Bsp*HI recognition sequence encompasses the putative translation initiating codon and the *Fsp*I recognition sequence commences 2 bp downstream from the stop codon. The *HfI* fragment generated was purified and ligated with *Cla*I (repaired ends)/*Nco*I ends of the plasmid pCGP493. Correct insertion of the fragment was established by restriction endonuclease analysis of DNA isolated from ampicillin-resistant transformants. The resulting plasmid was designated as pCGP497.

Construction of pCGP1461 (short petFLS 5': HfI: petFLS3' binary vector)

The plasmid pCGP497 was linearised upon digestion with the restriction endonuclease *Sac*I. The overhanging ends were repaired and a 4.35kb fragment containing the *short petFLS 5': HfI: petFLS3'* gene expression cassette was released upon digestion with the

restriction endonuclease *Kpn*I. The fragment generated was purified and ligated with *Pst*I (ends repaired)/*Kpn*I ends of the Ti binary vector pWTT2132 (DNAP). Correct insertion of the fragment in a tandem orientation with respect to the *CaMV 35S: SuRB* selectable marker gene cassette of pWTT2132 was established by restriction endonuclease analysis of plasmid DNA isolated from tetracycline-resistant transformants. The resulting plasmid was designated as pCGP1461.

Plant transformation with pCGP1461

The T-DNA contained in the binary vector plasmid pCGP1461 was introduced into rose, carnation and petunia via *Agrobacterium*-mediated transformation.

Construction of pCGP1616 (petRT 5': HfI: nos 3' binary vector)

The plasmid pCGP1616 contains a chimaeric petunia *F3'5'H* (*HfI*) gene under the control of a promoter fragment from the *P. hybrida* 3RT gene (*petRT 5'*) (Brugliera, 1994, *supra*) with a terminator fragment from the nopaline synthase gene (*nos 3'*) of *Agrobacterium* (Depicker, A. *et al.*, *J Mol. and Appl. Genetics*, 1: 561-573, 1982). The chimaeric petunia *F3'5'H* cassette is in a tandem orientation with respect to the *CaMV 35S: SuRB* gene of the Ti binary vector, pWTT2132 (DNAP).

P. hybrida cv. Th7 genomic DNA library construction in EMBL3

A *Petunia hybrida* cv. Th7 genomic library was prepared according to Sambrook *et al.* (1989) using a *Sau3A* partial digestion of the genomic DNA. The partially digested DNA was cloned into EMBL-3 lambda vector (Stratagene, USA). Screening of the Th7 genomic library for the petunia 3RT gene was as described in Brugliera, 1994, *supra*).

A 3kb fragment containing the *petRT 5': HfI: nos 3'* cassette was released from the plasmid pCGP846 (described in Brugliera, 1994, *supra*) upon digestion with the restriction endonucleases *Pst*I and *Bam*HI. The purified fragment was ligated with *Pst*I/*Bam*HI ends of pWTT2132 (DNAP). Correct insertion of the fragment in a tandem orientation with respect to the *CaMV 35S: SuRB* selectable marker gene cassette was established by

restriction endonuclease analysis of plasmid DNA isolated from tetracycline-resistant transformants. The plasmid was designated as pCGP1616.

Plant transformation with pCGP1616

The T-DNA contained in the binary vector plasmid pCGP1616 was introduced into rose, carnation and petunia via *Agrobacterium*-mediated transformation.

Construction of pCGP1623 (mas/35S: HfI: ocs 3')

The plasmid pCGP1623 contains a chimaeric petunia *F3'5'H* (*HfI*) gene under the control of the expression cassette contained in pKIWI101 (Klee *et al.*, 1985, *supra*) consisting of a promoter fragment from the cauliflower mosaic virus 35S gene (*CaMV 35S*) with an enhancing sequence from the promoter of the mannopine synthase gene (*mas*) of *Agrobacterium* and a terminator fragment from the octopine synthase gene of *Agrobacterium* (*ocs 3'*). The chimaeric petunia *F3'5'H* cassette is in a tandem orientation with respect to the *CaMV 35S: SuRB* gene of the Ti binary vector, pWTT2132 (DNAP).

The ~1.6kb fragment of the petunia *F3'5'H HfI* cDNA clone contained in the plasmid pCGP1603 was released upon digestion with the restriction endonucleases *Bsp*HI and *Sma*I. The *HfI* fragment was purified and ligated with a ~5.9 kb *Nco*I/*Eco*RI (repaired ends) fragment of pKIWI101 (Klee *et al.*, 1985, *supra*) to produce the plasmid pCGP1619. A partial digest of the plasmid pCGP1619 with the restriction endonuclease *Xba*I released a 4.9 kb fragment containing the *mas/35S: HfI: ocs 3'* expression cassette. The fragment was purified and ligated with *Sal*I ends of pWTT2132 (DNAP). Correct insertion of the fragment in a tandem orientation with respect to the *CaMV 35S: SuRB* selectable marker gene cassette was established by restriction endonuclease analysis of plasmid DNA isolated from tetracycline-resistant transformants. The plasmid was designated as pCGP1623.

Plant transformation with pCGP1623

The T-DNA contained in the binary vector plasmid pCGP1623 was introduced into rose, carnation and petunia via *Agrobacterium*-mediated transformation.

Construction of pCGP1638 (CaMV 35S: Hf1: ocs 3' binary vector)

The plasmid pCGP1638 contains a chimaeric petunia *F3'5'H* (*Hf1*) gene under the control of a *CaMV 35S* promoter (*CaMV 35S*) with an octopine synthase terminator (*ocs 3'*). A ~60bp 5' untranslated leader sequence from the petunia chlorophyll a/b binding protein gene (*Cab 22* gene) (Harpster *et al.*, 1988, *supra*) is included between the *CaMV 35S* promoter fragment and the *Hf1* cDNA clone. The chimaeric petunia *F3'5'H* cassette is in a tandem orientation with respect to the *CaMV 35S: SuRB* selectable marker gene cassette of the Ti binary vector, pWTT2132.

Plant transformation with pCGP1638

The T-DNA contained in the binary vector plasmid pCGP1638 was introduced into rose, carnation and petunia via *Agrobacterium*-mediated transformation.

Construction of pCGP1860 (RoseCHS 5': Hf1: nos 3' binary vector)

The plasmid pCGP1860 contains a chimaeric petunia *F3'5'H* (*Hf1*) gene under the control of a promoter fragment from the chalcone synthase gene of *Rosa hybrida* (*RoseCHS 5'*) with a terminator fragment from the nopaline synthase gene of *Agrobacterium* (*nos 3'*). The chimaeric petunia *F3'5'H* cassette is in a tandem orientation with respect to the *CaMV 35S: SuRB* selectable marker gene cassette of the Ti binary vector, pWTT2132 (DNAP).

Isolation of Rose CHS promoter

A rose genomic DNA library was prepared from genomic DNA isolated from young leaves of *Rosa hybrida* cv. Kardinal.

The Kardinal genomic DNA library was screened with ^{32}P -labelled fragment of rose *CHS* cDNA clone contained in the plasmid pCGP634. The rose *CHS* cDNA clone was isolated by screening of a petal cDNA library prepared from RNA isolated from petals of *Rosa hybrida* cv Kardinal (Tanaka *et al.*, *Plant Cell Physiol.*, 36: 1023-1031, 1995) using a petunia *CHS* cDNA fragment as probe (clone *IF11* contained in pCGP701, described in

Brugliera *et al.*, *Plant J.* 5, 81-92, 1994). Conditions are as described in Tanaka *et al.*, 1995 (*supra*).

A rose genomic clone (*roseCHS20*) was chosen for further analysis and found to contain ~6.4kb of sequence upstream of the putative initiating methionine of the rose *CHS* coding region.

An ~6.4kb fragment upstream from the translational initiation site was cloned into pBluescript KS (-) (Statagene) and the plasmid was designated as pCGP1114.

The plasmid pCGP1114 was digested with the restriction endonucleases *Hind*III and *Eco*RV to release a 2.7-3.0kb fragment which was purified and ligated with the *Hind*III/*Sma*I ends of pUC19 (NEW ENGLAND BIOLABS). Correct insertion of the rose *CHS* promoter fragment was established by restriction endonuclease analysis of DNA isolated from ampicillin-resistant transformants. The resulting plasmid was designated as pCGP1116. The DNA sequence of the rose *CHS* promoter fragment was determined using pCGP1116 as template (SEQ ID NO: 5).

Construction of pCGP197 (RoseCHS 5': GUS : nos 3' in pUC18 backbone)

An ~3.0kb fragment containing the rose chalcone synthase promoter (*RoseCHS 5'*) was released from the plasmid pCGP1116 upon digestion with the restriction endonucleases *Hind*III and *Asp*718. The fragment was purified and ligated with a *Hind*II/*Asp*718 fragment from pJB1 (Bodeau, 1994, *supra*) containing the vector backbone, β -glucuronidase (*GUS*) and *nos 3'* fragments. Correct insertion of the rose *CHS* promoter fragment upstream of the *GUS* coding sequence was established by restriction endonuclease analysis of DNA isolated from ampicillin-resistant transformants. The resulting plasmid was designated as pCGP197.

Construction of pCGP1303 (HfI in pUC19 backbone)

The petunia *F3'5'H* cDNA clone contained in the plasmid pCGP601 (a homologue of the *F3'5'H* contained in pCGP602 described in Holton *et al.*, 1993a *supra*) included 64 bp of 5'

untranslated sequence and 141 bp of 3' untranslated sequence including 16bp of the poly A tail. The plasmid pCGP601 was firstly linearised by digestion with the restriction endonuclease *Bsp*HI. The ends were repaired and the *Hf1* cDNA clone was released upon digestion with the restriction endonuclease *Fsp*I. The *Bsp*HI recognition sequence encompasses the putative translation initiating codon and the *Fsp*I recognition sequence commences 2 bp downstream from the stop codon. The 1.8kb fragment containing the *Hf1* cDNA clone was purified and ligated with repaired *Eco*RI ends of pUC19 (New England Biolabs). Correct insertion of the fragment was established by restriction endonuclease analysis of DNA isolated from ampicillin-resistant transformants. The resulting plasmid was designated as pCGP1303.

Construction of pCGP200 (RoseCHS 5': Hf1: nos 3' in pUC18 backbone)

A 1.8kb fragment containing the petunia *F3'5'H* (*Hf1*) fragment was released from the plasmid pCGP1303 upon digestion with the restriction endonucleases *Bsp*HI and *Sac*I. The *Hf1* fragment was purified and ligated with *Nco*I/*Sac*I ends of pCGP197. Correct insertion of the *Hf1* fragment between the rose *CHS* promoter and *nos 3'* fragments was established by restriction endonuclease analysis of DNA isolated from ampicillin-resistant transformants. The resulting plasmid was designated as pCGP200.

Construction of pCGP1860 (RoseCHS 5': Hf1: nos 3' in a binary vector)

An ~4.9kb fragment containing the *RoseCHS 5': Hf1: nos 3'* cassette was released from the plasmid pCGP200 upon digestion with the restriction endonuclease *Bgl*II. The fragment was purified and ligated with *Bam*HI ends of the Ti binary vector, pWTT2132 (DNAP). Correct insertion of the fragment in a tandem orientation with respect to the *CaMV 35S: SuRB* selectable marker gene cassette of pWTT2132 was established by restriction endonuclease analysis of plasmid DNA isolated from tetracycline-resistant transformants. The resulting plasmid was designated as pCGP1860.

Plant transformation with pCGP1860

The T-DNA contained in the binary vector plasmid pCGP1860 was introduced into rose, carnation and petunia via *Agrobacterium*-mediated transformation.

Construction of pCGP2123 (CaMV 35S: Hf2: ocs 3' binary vector)

The plasmid pCGP2123 contains a chimaeric petunia *F3'5'H* (*Hf2*) gene under the control of a CaMV35S promoter with a terminator fragment from the octopine synthase gene of *Agrobacterium* (*ocs 3'*). The chimaeric petunia *F3'5'H* cassette is in a tandem orientation with respect to the *CaMV 35S: SuRB* selectable marker gene cassette of the Ti binary vector, pCGP1988.

Construction of pCGP1988 (a derivative of the Ti binary vector, pWTT2132)

The binary vector pCGP1988 is based on Ti binary vector pWTT2132 (DNAP) but contains the multi-cloning site from pNEB193 (New England Biolabs). The plasmid pNEB193 was firstly linearised by digestion with the restriction endonuclease *EcoRI*. The overhanging ends were repaired and the multi-cloning fragment was released upon digestion with the restriction endonuclease *PstI*. The fragment was purified and ligated with *SalI* (ends repaired)/*PstI* ends of the Ti binary vector pWTT2132 (DNAP). Correct insertion of the multi-cloning fragment into pWTT2132 was established by restriction endonuclease analysis of plasmid DNA isolated from tetracycline-resistant transformants. The resulting plasmid was designated as pCGP1988.

Construction of pCGP2000 (CaMV 35S promoter fragment in pBluescript)

The plasmid pCGP2000 was an intermediate plasmid containing the cauliflower mosaic virus (CaMV) 35S promoter fragment in a pBluescript SK (Stratagene, USA) backbone. The *CaMV 35S* promoter fragment from pKIW101 (Klee *et al.*, 1985, *supra*) was released upon digestion with the restriction endonucleases *XbaI* and *PstI*. The ~0.35kb fragment generated was purified and ligated with *XbaI/PstI* ends of the vector pBluescript SK. Correct insertion of the fragment was established by restriction endonuclease analysis of plasmid DNA isolated from ampicillin-resistant transformants. The plasmid was designated as pCGP2000.

Construction of pCGP2105 (CaMV 35S 5' and ocs 3' fragments in pBluescript)

The plasmid pCGP2105 contained a *CaMV 35S* promoter fragment along with a terminator fragment from the octopine synthase gene of *Agrobacterium* (*ocs 3'*) both from pKIWI101 (Klee *et al.*, 1985, *supra*).

The *ocs 3'* fragment from pKIWI101 (Klee *et al.*, 1985, *supra*) was isolated by firstly digesting the plasmid pKIWI101 with the restriction endonuclease *EcoRI*, followed by repair of the overhanging ends, and finally by digestion with the restriction endonuclease *XbaI* to release a 1.6kb fragment. This fragment was then ligated with *HincII/XbaI* ends of pCGP2000. Correct insertion of the fragment was established by restriction endonuclease analysis of plasmid DNA isolated from ampicillin-resistant transformants. The plasmid was designated pCGP2105.

Construction of pCGP2109 (CaMV 35S: Hf2: ocs 3' cassette in pBluescript)

The plasmid pCGP2109 contained the *CaMV 35S: Hf2: ocs 3'* cassette in a pBluescript backbone.

The 1.8kb petunia *F3'S'H Hf2* cDNA clone was released from pCGP175 (Holton *et al.*, 1993a *supra*) upon digestion with the restriction endonucleases *XbaI* and *SspI*. The overhanging ends were repaired and the purified fragment was ligated with *PstI* (ends repaired)/*EcoRV* ends of pCGP2105 (described above). Correct insertion of the fragment was established by restriction endonuclease analysis of plasmid DNA isolated from ampicillin-resistant transformants. The plasmid was designated pCGP2109.

Construction of pCGP2123 (CaMV 35S: Hf2: ocs 3' cassette binary vector)

The *CaMV 35S: Hf2: ocs 3'* cassette was released from pCGP2109 upon digestion with the restriction endonucleases *Asp718* and *XbaI*. The overhanging ends were repaired and the resultant ~3.8kb fragment was purified and ligated with repaired ends of *Asp718* of the Ti binary vector, pCGP1988. Correct insertion of the fragment in a tandem orientation with respect to the *CaMV 35S: SuRB* selectable marker gene cassette was established by

- 57 -

restriction endonuclease analysis of plasmid DNA isolated from tetracycline-resistant transformants. The plasmid was designated as pCGP2123.

Plant transformation with pCGP2123

The T-DNA contained in the binary vector plasmid pCGP2123 was introduced into rose, carnation and petunia via *Agrobacterium*-mediated transformation.

EXAMPLE 5

Analysis of transgenic roses

Although over 250 transgenic Kardinal roses were produced (Table 5) none produced flowers with a change in colour. TLC and/or HPLC analysis failed to detect accumulation of any delphinidin pigments. Subsequent Northern analysis on RNA isolated from petal tissue of these transgenic roses revealed either no detectable intact petunia *F3'5'H* (*Hf1* or *Hf2*) transcripts, or in some cases (see footnotes), degraded transcripts. Hybridization of the same membranes with the selectable marker gene cassette (*SuRB*) or with an endogenous rose *CHS* cDNA probe revealed discrete hybridizing transcripts suggesting that the total RNA isolated was intact and confirming the transgenic nature of the lines.

Table 5: Results of transgenic analysis of rose petals transformed with the T-DNA from various petunia *F3'5'H* (*Hf1* or *Hf2*) gene expression cassettes.

Plasmid	<i>F3'5'H</i> cassette	Transgenics	Delphinidin	Northern
pCGP145 2	<i>AmCHS 5': petHf1: petD8 3'</i>	34	0/28	0/34 ¹
pCGP145 3	<i>Mac: petHf1: mas 3'</i>	16	0/14	0/13 ²
pCGP145 7	<i>petD8 5': petHf1: petD8 3'</i>	11	0/11	0/11

Plasmid	F3'5'H cassette	Transgenics	Delphinidi n	Northern
pCGP146 1	short <i>petFLS</i> 5': <i>petHf1:</i> <i>petFLS</i> 3'	11	0/11	0/11
pCGP161 6	<i>petRT</i> 5': <i>petHf1:</i> <i>nos</i> 3'	4	0/4	0/4
pCGP162 3	<i>mas/35S:</i> <i>petHf1:</i> <i>ocs</i> 3'	27	0/20	0/12 ³
pCGP163 8	<i>CaMV 35S:</i> <i>petHf1:</i> <i>ocs</i> 3'	22	0/14	0/14
pCGP186 0	<i>RoseCHS</i> 5': <i>petHf1:</i> <i>nos</i> 3'	15	0/13	0/13
pCGP212 3	<i>CaMV 35S:</i> <i>petHf2:</i> <i>ocs</i> 3'	40	0/26	0/10

Transgenics = number of transgenics produced

Delphinidin = number of transgenic lines with accumulating delphinidin (by TLC or HPLC)/total number of events analysed Northern = number of transgenic lines with detectable intact Hf1 or Hf2 transcripts/total numer of events analysed

¹ Degraded transcripts were detected in 5 of the 34 analysed

² Degraded transcripts were detected in 8 of the 13 analysed

³ Degraded transcripts were detected in 8 of the 12 analysed

EXAMPLE 6

Evaluation of promoters in roses

Development of GUS gene expression cassettes.

From the results obtained with *Hf1* and *Hf2* constructs (detailed above) (Table 5) it was unclear which expression cassettes were functional in rose petals. Therefore a number of promoters were linked to the β -glucuronidase reporter gene (*GUS*) (Jefferson *et al.*, 1987,

supra) and introduced into roses in an attempt to identify expression cassettes that function well in rose flowers.

A summary of the promoters evaluated and transcript levels obtained is given in Table 6.

Table 6: List of *GUS* chimaeric gene expression cassettes evaluated in roses

Construct number	Expression cassette	Selectable marker gene cassette	Backbone
pCGP130 7	<i>petD8 5': GUS: petD8 3'</i>	<i>mas 5': nptII : mas 3'</i>	pCGN154 8
pCGP150 6	<i>long petFLS 5': GUS: petFLS 3'</i>	<i>nos 5': nptII: nos 3'</i>	pBIN19
pCGP162 6	<i>chrysCHS 5': GUS: petRT 3'</i>	<i>CaMV 35S: SuRB</i>	pWTT213 2
pCGP164 1	<i>petRT 5': GUS: petRT 3'</i>	<i>CaMV 35S: SuRB</i>	pWTT213 2
pCGP186 1	<i>RoseCHS 5': GUS: nos 3'</i>	<i>CaMV 35S: SuRB</i>	pWTT213 2
pCGP195 3	<i>AmCHS 5': GUS: petD8 3'</i>	<i>CaMV 35S: SuRB</i>	pWTT213 2
pWTT208 4	<i>CaMV 35S: GUS: ocs 3'</i>	<i>CaMV 35S: SuRB</i>	pWTT213 2

Construction of pCGP1307 (petD8 5': GUS: petD8 3' binary vector)

The plasmid pCGP1307 contains a chimaeric *GUS* gene under the control of a promoter and terminator fragment from the petunia *PLTP* gene (*petD8 5'* and *petD8 3'*, respectively). The chimaeric *GUS* reporter gene cassette is in a tandem orientation with respect to the *mas 5': nptII: mas 3'* selectable marker gene cassette of the Ti binary vector pCGN1548 (McBride and Summerfelt, 1990, *supra*).

The *nos* 3' fragment from pCGP1101 (see Example 4) was replaced with the 0.75kb *petD8* 3' fragment (Holton, 1992, *supra*) to produce the plasmid pCGP1106 containing a *petD8* 5': *GUS*: *petD8* 3' expression cassette.

The 5.3kb fragment containing the *petD8* 5': *GUS*: *petD8* 3' expression cassette was released from the plasmid pCGP1106 upon digestion with the restriction endonucleases *Hin*DIII and *Pst*I. The fragment was purified and ligated with *Hin*DIII/*Pst*I ends of the Ti binary vector, pCGN1548. Correct insertion of the fragment was established by restriction endonuclease analysis of DNA isolated from gentamycin-resistant transformants. The resulting plasmid was designated as pCGP1307.

Plant transformation with pCGP1307

The T-DNA contained in the binary vector plasmid pCGP1307 was introduced into rose via *Agrobacterium*-mediated transformation.

Construction of pCGP1506 (long *petFLS* 5': *GUS*: *petFLS* 3' binary vector)

The plasmid pCGP1506 contains a chimaeric *GUS* gene under the control of promoter and terminator fragments from the petunia flavonol synthase gene (*petFLS* 5' and *petFLS* 3', respectively). The chimaeric *GUS* reporter gene cassette is in a tandem orientation with respect to the *nos* 5': *nptII*: *nos* 3' selectable marker gene cassette of the Ti binary vector pBIN19 (Bevan, *Nucleic Acids Res*, 12: 8711-8721, 1984).

A 4kb long petunia *FLS* promoter fragment upstream from the putative translational initiation site was released from the plasmid pCGP486 (described in Example 4) upon digestion with the restriction endonucleases *Xba*I and *Pst*I. The fragment generated was purified and ligated with *Xba*I/*Pst*I ends of pBluescript II KS+ (Stratagene, USA). Correct insertion of the fragment was established by restriction endonuclease analysis of DNA isolated from ampicillin-resistant transformants. The resulting plasmid was designated as pCGP715.

Construction of pCGP494 (long petFLS 5':petFLS3' expression cassette)

A 4.0kb fragment containing the long petunia *FLS* promoter fragment was amplified by PCR using the plasmid pCGP715 as template and the T3 primer (Stratagene, USA) and an *FLS-Nco* primer (5' AAA ATC GAT ACC ATG GTC TTT TTT TCT TTG TCT ATA C 3') (SEQ ID NO: 19). The PCR product was digested with the restriction endonucleases *Xba*I and *Cla*I and the purified fragment was ligated with *Xba*I/*Cla*I ends of pCGP716. Correct insertion of the fragment was established by restriction endonuclease analysis of DNA isolated from ampicillin-resistant transformants. The resulting plasmid was designated as pCGP494.

Construction of pCGP496 (long petFLS 5': GUS: petFLS3' expression cassette)

The *GUS* coding sequence from the plasmid pJB1 (Bodeau, 1994, *supra*) was released upon digestion with the restriction endonucleases *Nco*I and *Sma*I. The *GUS* fragment generated was purified and ligated with *Cla*I (repaired ends)/*Nco*I ends of the plasmid pCGP494. Correct insertion of the fragment was established by restriction endonuclease analysis of DNA isolated from ampicillin-resistant transformants. The resulting plasmid was designated as pCGP496.

Construction of pCGP1506 (long petFLS 5': GUS: petFLS3' binary vector)

The plasmid pCGP496 was firstly linearised upon digestion with the restriction endonuclease *Xba*I. The overhanging ends were repaired and a 6.7 kb fragment containing the *long petFLS 5': GUS: petFLS3'* gene expression cassette was released upon digestion with the restriction endonuclease *Sac*I. The fragment generated was purified and ligated with *Bam*H I(repaired ends)/*Sac*I ends of the Ti binary vector pBIN19. Correct insertion of the fragment in a tandem orientation with respect to the *nos 5': nptII: nos 3'* selectable marker gene cassette was established by restriction endonuclease analysis of plasmid DNA isolated from kanamycin-resistant transformants. The resulting plasmid was designated as pCGP1506.

Plant transformation with pCGP1506

The T-DNA contained in the binary vector plasmid pCGP1506 was introduced into rose via *Agrobacterium*-mediated transformation.

Construction of pCGP1626 (chrysCHS 5': GUS: petRT 3' binary vector)

The plasmid pCGP1626 contains a chimaeric *GUS* gene under the control of promoter fragment from the chalcone synthase gene of chrysanthemum (*chrysCHS 5'*) and a terminator fragment from the 3RT gene of petunia (*petRT 3'*) (Brugliera, 1994, *supra*). The chimaeric *GUS* reporter gene cassette is in a tandem orientation with respect to the *CaMV 35S: SuRB* selectable marker gene cassette of the Ti binary vector pWTT2132 (DNAP).

Isolation of chrysanthemum CHS promoter

A chrysanthemum genomic DNA library was prepared from genomic DNA isolated from young leaf material of the chrysanthemum cv Hero.

The chrysanthemum genomic DNA library was screened with ³²P-labelled fragments of a chrysanthemum *CHS* cDNA clone (contained in the plasmid pCGP856) using high stringency conditions. The plasmid pCGP856 contains a 1.5kb cDNA clone of *CHS* isolated from a petal cDNA library prepared from RNA isolated from the chrysanthemum cv. Dark Pink Pom Pom.

A genomic clone (*CHS5*) was chosen for further analysis and found to contain ~3kb of sequence upstream of the putative initiating methionine of the chrysanthemum *CHS* coding region.

A 4kb fragment was released upon digestion of the genomic clone *CHS5* with the restriction endonuclease *Hind*III. The fragment containing the chrysanthemum *CHS* promoter was purified and ligated with *Hind*III ends of pBluescript SK (Stratagene, USA). Correct insertion of the fragment was established by restriction endonuclease analysis of

- 63 -

DNA isolated from ampicillin-resistant transformants. The resulting plasmid was designated as pCGP1316.

A 2.6kb chrysanthemum *CHS* promoter fragment upstream from the putative translational initiation site was amplified by PCR using pCGP1316 as template and primers "chrysanthemumCHSATG" (SEQ ID: 8) and the M13 reverse primer (Stratagene, USA). Primer "chrysanthemumCHSATG" incorporated an *Nco*I restriction endonuclease recognition sequence at the putative translation initiation point for ease of cloning. The PCR fragment was purified and ligated with *Eco*RV (dT-tailed) ends of pBluscript KS (Holton and Graham *Nuc. Acids. Res.* 19: 1156, 1990). Correct insertion of the fragment was established by restriction endonuclease analysis of DNA isolated from ampicillin-resistant transformants. The resulting plasmid was designated as pCGP1620.

Construction of pCGP1622 (chrysCHS 5': GUS: nos 3' in pUC backbone)

A ~2.5 kb fragment containing the chrysanthemum *CHS* promoter was released from the plasmid pCGP1620 upon digestion with the restriction endonucleases *Nco*I and *Pst*I. The fragment was purified and ligated with a 4.8kb *Nco*I/*Pst*I fragment of pJB1 (Bodeau, 1994, *supra*) containing the backbone vector with the *GUS* and *nos 3'* fragments. Correct insertion of the fragment was established by restriction endonuclease analysis of DNA isolated from ampicillin-resistant transformants. The resulting plasmid was designated as pCGP1622.

Construction of pCGP1626 (chrysCHS 5': GUS: nos 3' in binary vector)

A ~4.6kb fragment containing the *chrysCHS 5': GUS: nos 3'* cassette was released from the plasmid pCGP1622 upon digestion with the restriction endonucleases *Pst*I and *Bgl*II. The fragment was purified and ligated with *Pst*I/*Bam*HI ends of the Ti binary vector pWTT2132 (DNAP). Correct insertion of the cassette in a tandem orientation with respect to the *CaMV 35S: SuRB* selectable marker gene cassette was established by restriction endonuclease analysis of DNA isolated from tetracycline-resistant transformants. The resulting plasmid was designated as pCGP1626.

Plant transformation with pCGP1626

The T-DNA contained in the binary vector plasmid pCGP1626 was introduced into rose via *Agrobacterium*-mediated transformation.

Construction of pCGP1641 (petRT 5': GUS: petRT 3' binary vector)

The plasmid pCGP1641 contains a chimaeric *GUS* gene under the control of a petunia *3RT* promoter (*petRT 5'*) covering 1.1kb upstream from the putative *3RT* translation initiation codon with a petunia *3RT* terminator (*petRT 3'*) covering 2.5 kb downstream from the *3RT* stop codon. The chimaeric *GUS* cassette is in a tandem orientation with respect to the *CaMV 3SS: SuRB* selectable marker gene cassette of the Ti binary vector, pWTT2132 (DNAP).

Isolation of petunia 3RT gene

The isolation of the petunia *3RT* gene corresponding to the *Rt* locus of *P. hybrida* has been described in Brugliera, 1994, *supra*.

Construction of pCGP1625 (CaMV 3SS: GUS: petRT 3' cassette)

The intermediate plasmid pCGP1625 contains a *CaMV 3SS: GUS: petRT 3'* cassette in a pUC backbone. The 2.5kb fragment containing a *petRT* terminator sequences was released from the plasmid pCGP1610 (described in Brugliera, 1994, *supra*) upon digestion with the restriction endonucleases *Bam*HI and *Sac*I. The fragment was purified and ligated with the *Bgl*II/*Sac*I 4.9kb fragment of pJB1 (Bodeau, 1994, *supra*) containing the vector backbone and the *CaMV 3SS* promoter and *GUS* fragments. Correct insertion of the petunia *3RT* terminator fragment downstream of the *GUS* fragment was established by restriction endonuclease analysis of DNA isolated from ampicillin-resistant transformants. The resulting plasmid was designated as pCGP1625.

Construction of pCGP1628 (petRT 5': GUS: petRT 3' cassette)

A 1.1 kb *petRT* promoter fragment was released from the plasmid pCGP1611 (described in Brugliera, 1994, *supra*) upon digestion with the restriction endonucleases *Nco*I and *Pst*I. The purified fragment was ligated with *Nco*I/*Pst*I ends of the 7kb fragment of pCGP1625

- 65 -

containing the vector backbone and the *GUS* and *petRT 3'* fragments. Correct insertion of the *petRT* promoter fragment upstream of the *GUS* fragment was established by restriction endonuclease analysis of DNA isolated from ampicillin-resistant transformants. The resulting plasmid was designated as pCGP1628.

Construction of pCGP1641 (petRT 5': GUS: petRT 3' binary vector)

A 5.4kb fragment containing the *petRT 5': GUS: petRT 3'* cassette was released from pCGP1628 upon digestion with the restriction endonuclease *PstI*. The fragment was purified and ligated with *PstI* ends of the binary vector pWTT2132 (DNAP). Correct insertion of the fragment in a tandem orientation with respect to the *CaMV 35S: SuRB* selectable marker gene cassette was established by restriction endonuclease analysis of plasmid DNA isolated from tetracycline-resistant transformants. The resulting plasmid was designated as pCGP1641.

Plant transformation with pCGP1641

The T-DNA contained in the binary vector plasmid pCGP1641 was introduced into rose via *Agrobacterium*-mediated transformation.

Construction of pCGP1861 (RoseCHS 5': GUS: nos 3' binary vector)

The plasmid pCGP1861 contains a chimaeric *GUS* gene under the control of a promoter fragment from the *CHS* gene of *R. hybrida* (*RoseCHS 5'*) with a terminator fragment from the *nos* gene of *Agrobacterium* (*nos 3'*). The chimaeric *GUS* reporter gene cassette is in a tandem orientation with respect to the *CaMV 35S: SuRB* selectable marker gene cassette of the Ti binary vector, pWTT2132.

An ~5kb fragment containing the *RoseCHS 5': GUS: nos 3'* cassette was released from pCGP197 (described in Example 4) upon digestion with the restriction endonuclease *BglII*. The fragment was purified and ligated with *BamHI* ends of the Ti binary vector, pWTT2132 (DNAP). Correct insertion of the fragment in a tandem orientation with respect to the *CaMV 35S: SuRB* selectable marker gene cassette was established by restriction

endonuclease analysis of plasmid DNA isolated from tetracycline-resistant transformants. The resulting plasmid was designated as pCGP1861.

Plant transformation with pCGP1861

The T-DNA contained in the binary vector plasmid pCGP1861 was introduced into rose via *Agrobacterium*-mediated transformation.

Construction of pCGP1953 (AmCHS 5': GUS: petD8 3' binary vector)

The plasmid pCGP1953 contains a chimaeric *GUS* gene under the control of a promoter fragment from the *CHS* gene of *Antirrhinum majus* (*AmCHS 5'*) with a petunia *PLTP* terminator (*petD8 3'*). The chimaeric *GUS* reporter gene cassette is in a tandem orientation with respect to the *CaMV 35S: SuRB* selectable marker gene cassette of the Ti binary vector, pWTT2132 (DNAP).

The plasmid pJB1 (Bodeau, 1994, *supra*) was linearised with the restriction endonuclease *NcoI*. The overhanging ends were repaired and the 1.8kb *GUS* fragment was released upon digestion with *BamHI*. The *GUS* fragment was purified and was ligated with the 5kb *XbaI*(ends repaired)/*BamHI* fragment of pCGP726 containing the pBluescript backbone vector and the *AmCHS 5'* and *petD8 3'* fragments (described in Example 4). Correct insertion of the *GUS* fragment between the *AmCHS 5'* and *petD8 3'* fragments was established by restriction endonuclease analysis of plasmid DNA isolated from ampicillin-resistant transformants. The plasmid was designated as pCGP1952.

A 3.8 kb fragment containing the *AmCHS 5': GUS: petD8 3'* expression cassette was released from the plasmid pCGP1952 upon digestion with the restriction endonucleases *EagI* and *PstI*. The overhanging ends were repaired and the purified fragment was ligated with the repaired ends of an *Asp718* digested pWTT2312 Ti binary vector. Correct insertion of the fragment in a tandem orientation with respect to the *CaMV 35S: SuRB* selectable marker gene cassette was established by restriction endonuclease analysis of plasmid DNA isolated from tetracycline-resistant transformants. The plasmid was designated as pCGP1953.

Plant transformation with pCGP1953

The T-DNA contained in the binary vector plasmid pCGP1953 was introduced into rose via *Agrobacterium*-mediated transformation.

Construction of pWTT2084 (CaMV 35S: GUS: ocs 3' binary vector)

The plasmid pWTT2084 (DNAP) contains a chimaeric *GUS* gene under the control of a *CaMV 35S* promoter (*CaMV 35S*) with an octopine synthase terminator (*ocs 3'*). An ~60bp 5' untranslated leader sequence from the petunia chlorophyll a/b binding protein gene (*Cab 22* gene) (Harpster *et al.*, 1988, *supra*) is included between the *CaMV 35S* promoter fragment and the *GUS* clone. The chimaeric *GUS* cassette is in a tandem orientation with respect to the *CaMV 35S: SuRB* selectable marker gene cassette of the Ti binary vector, pWTT2132.

Plant transformation with pWTT2084

The T-DNA contained in the binary vector plasmid pWTT2084 was introduced into rose via *Agrobacterium*-mediated transformation.

Transgenic analysis of roses transformed with GUS expression cassettes

Northern analysis was performed on RNA isolated from petals of developmental stages 3 and 4 of transgenic Kardinal roses transformed with the T-DNA of various *GUS* expression cassettes. The relative levels of *GUS* transcripts accumulating in the rose petals were recorded (see Table 7).

Table 7: Summary of Northern analysis on transgenic Kardinal rose flowers (open bud stage) containing *GUS* constructs.

Construct number	<i>GUS</i> reporter cassette	gene	Selectable marker cassette	gene	<i>GUS</i> transcript levels
pCGP130 7	<i>petD8</i> 5': <i>GUS</i> : <i>petD8</i> 3' : <i>mas</i> 3'	<i>mas</i>	5': : <i>mas</i> 3'	<i>nptII</i>	-
pCGP150 6	<i>petFLS</i> 5': <i>GUS</i> : <i>petFLS</i>	<i>nos</i> 5':	<i>nptII</i> : <i>nos</i> 3'	<i>nptII</i> : <i>nos</i> 3'	-
pCGP162 6	<i>chrysCHS</i> 5': <i>GUS</i> : <i>petRT</i> 3'			<i>CaMV 35S</i> : <i>SuRB</i>	++ to +++
pCGP164 1	<i>petRT</i> 5': <i>GUS</i> : <i>petRT</i> 3'			<i>CaMV 35S</i> : <i>SuRB</i>	-
pCGP186 1	<i>RoseCHS</i> 5': <i>GUS</i> : <i>nos</i> 3'			<i>CaMV 35S</i> : <i>SuRB</i>	++++
pCGP195 3	<i>AmCHS</i> 5': <i>GUS</i> : <i>petD8</i> 3'			<i>CaMV 35S</i> : <i>SuRB</i>	-
pWTT208 4	<i>CaMV 35S</i> : <i>GUS</i> : <i>ocs</i> 3'			<i>CaMV 35S</i> : <i>SuRB</i>	+++++

- = no transcripts detected, + to ++++ = very low to very high levels of transcript detected

Based on the above results (Table 7), the *CaMV 35S* and Rose *CHS* promoters appear to promote relatively high levels of transcription in rose petals. The chrysanthemum *CHS* promoter appears to also lead to high transcript levels but not as high as those achieved using *CaMV 35S* or Rose *CHS* promoters. Surprisingly antirrhinum (snapdragon) *CHS*, petunia *3RT*, petunia *FLS* and petunia *PLTP* (D8) promoters did not appear to function in rose petals with no detectable *GUS* transcripts accumulating using expression cassettes incorporating these promoters. These promoters had previously been proven to function

well in carnation and petunia. The result obtained with the antirrhinum *CHS* promoter linked to *GUS* was more surprising as the *CHS* promoters from two other species (rose and chrysanthemum) appeared to function relatively well in roses. The antirrhinum *CHS* promoter had also been successfully used in conjunction with petunia F3'5'H (*Hf1*) to produce the novel violet coloured-carnations Florigene Moondust (see International Patent Application PCT/AU96/00296).

These results also provided further evidence to suggest that the petunia *Hf1* and *Hf2* sequences were unstable in roses as constructs containing these sequences ligated to the *CaMV 35S*, *Mac*, rose *CHS* and chrysanthemum *CHS* promoters did not lead to intact *Hf1* or *Hf2* transcripts in roses.

Analysis of the petunia F3'5'H nucleotide sequences (*Hf1* and *Hf2*) did not reveal any instability sequences (Johnson *et al.*, *In A look beyond transcription*, ASPP, USA, Bailey-Serres and Gallie, eds, 1998), intron: exon splice junctions (Brendel *et al.*, *In A look beyond transcription*, ASPP, USA, Bailey-Serres and Gallie, eds, 1998), or any autocatalytic or degradation trigger sequences reported in the scientific literature to date (*In A look beyond transcription*, ASPP, USA, Bailey-Serres and Gallie, eds, 1998).

Since it was not obvious why the petunia F3'5'H sequences were unstable in roses but stable in carnation, petunia or tobacco a number of F3'5'H sequences were isolated across a range of families in an attempt to demonstrate delphinidin production in roses through synthesis of stable F3'5'H transcripts and F3'5'H activity.

EXAMPLE 8

Isolation of F3'5'H sequences from species other than petunia

Construction of petal cDNA libraries

Petal cDNA libraries were prepared from RNA isolated from petals from bud to opened flower stages from various species of plants described in Table 8. *Rosa hybrida* is classified in the family Rosaceae, Order Rosales, Subclass Rosidae and so species that

produced delphinidin-based pigments and so contained a functional F3'5'H and belonged to the Subclass Rosidae were selected. *Petunia hybrida* is classified in the Family Solanaceae, Order Solanales, Subclass Asteridae and so species from the Subclass Asteridae that produced delphinidin-based pigments were also selected.

Table 8: List of flowers from which cDNA libraries were prepared.

Flower	Species	Family	Order	Subclass
gentian	<i>Gentiana spp.</i>	Gentianaceae	Gentianales	Asteridae
pansy	<i>Viola spp.</i>	Violaceae	Malpighiales	Rosidae
salvia	<i>Salvia spp.</i>	Labiatae	Lamiales	Asteridae
sollya	<i>Sollya spp.</i>	Pittosporacea e	Apiales	Asteridae
kennedia	<i>Kennedia spp.</i>	Leguminosae	Fabales	Rosidae
butterfly pea	<i>Clitoria ternatea</i>	Leguminosae	Fabales	Rosidae

Information obtained from (National Center for Biotechnology Information (NCBI) website (<http://www.ncbi.nlm.nih.gov/>) under Taxonomy browser (TaxBrowser) (<http://www.ncbi.nlm.nih.gov/Taxonomy/taxonomyhome.html/>)).

Unless otherwise described total RNA was isolated from the petal tissue of purple/blue flowers using the method of Turpen and Griffith (*BioTechniques* 4: 11-15, 1986). Poly(A)⁺ RNA was selected from the total RNA, using oligotex-dTTM (Qiagen) or by three cycles of oligo-dT cellulose chromatography (Aviv and Leder, *Proc. Natl. Acad. Sci. USA* 69: 1408, 1972).

In general a lambda ZAPII/ Gigapack II Cloning kit (Stratagene, USA) (Short *et al.*, *Nucl. Acids Res.* 16: 7583-7600) was used to construct directional petal cDNA libraries in λZAPII using around 5 µg of poly(A)⁺ RNA isolated from petal as template. The total number of recombinants obtained was generally in the order of 1 × 10⁵ to 1 × 10⁶.

After transfecting XL1-Blue MRF' cells, the packaged cDNA mixtures were plated at around 50,000 pfu per 15 cm diameter plate. The plates were incubated at 37°C for 8 hours, and the phage were eluted in 100 mM NaCl, 8 mM MgSO₄, 50 mM Tris-HCl pH 8.0, 0.01% (w/v) gelatin (Phage Storage Buffer (PSB)) (Sambrook *et al.*, 1989, *supra*). Chloroform was added and the phages stored at 4°C as amplified libraries.

In general around 100,000 pfu of the amplified libraries were plated onto NZY plates (Sambrook *et al.*, 1989, *supra*) at a density of around 10,000 pfu per 15 cm plate after transfecting XL1-Blue MRF' cells, and incubated at 37°C for 8 hours. After incubation at 4°C overnight, duplicate lifts were taken onto Colony/Plaque Screen™ filters (DuPont) and treated as recommended by the manufacturer.

Plasmid Isolation

Helper phage R408 (Stratagene, USA) was used to excise pBluescript phagemids containing cDNA inserts from amplified λZAPII or λZAP cDNA libraries using methods described by the manufacturer.

Screening of petal cDNA Libraries

Prior to hybridization, duplicate plaque lifts were washed in prewashing solution (50 mM Tris-HCl pH7.5, 1 M NaCl, 1 mM EDTA, 0.1% (w/v) sarcosine) at 65°C for 30 minutes; followed by washing in 0.4 M sodium hydroxide at 65°C for 30 minutes; then washed in a solution of 0.2 M Tris-HCl pH 8.0, 0.1 x SSC, 0.1% (w/v) SDS at 65°C for 30 minutes and finally rinsed in 2 x SSC, 1.0% (w/v) SDS.

The membrane lifts from the petal cDNA libraries were hybridised with ³²P-labelled fragments of a 1.6 kb *Bsp*H/I/*Fsp*I fragment from pCGP602 containing the petunia *F3'5'H HfI* cDNA clone (Holton *et al.*, 1993, *supra*).

Hybridization conditions included a prehybridization step in 10% (v/v) formamide, 1 M NaCl, 10% (w/v) dextran sulphate, 1% (w/v) SDS at 42°C for at least 1 hour. The ³²P-labelled fragments (each at 1x10⁶cpm/mL) were then added to the hybridization solution

and hybridization was continued at 42°C for a further 16 hours. The filters were then washed in 2 x SSC, 1% (w/v) SDS at 42°C for 2 x 1 hour and exposed to Kodak XAR film with an intensifying screen at -70°C for 16 hours.

Strongly hybridizing plaques were picked into PSB (Sambrook *et al.*, 1989, *supra*) and rescreened to isolate purified plaques, using the plating and hybridization conditions as described for the initial screening of the cDNA library. The plasmids contained in the λZAPII or λZAP bacteriophage vectors were rescued and sequence data was generated from the 3' and 5' ends of the cDNA inserts. New *F3'5'H* cDNA clones were identified based on sequence similarity to the petunia *Hf1* cDNA clone.

The cDNA clones isolated were given plasmid designation numbers as described in Table 9.

Table 9: Plasmid numbers and SEQ ID NO. of *F3'5'H* cDNA clones isolated from various species

Species	Clone	Plasmid number	SEQ NO.	ID
Viola spp.	BP#18	pCGP1959	9	
Viola spp.	BP#40	pCGP1961	11	
Salvia spp.	Sal#2	pCGP1995	13	
Salvia spp.	Sal#47	pCGP1999	15	
Sollya spp.	Soll#5	pCGP2110	17	
Kennedia	Kenn#31	pCGP2231	-	
Butterfly	BpeaHF	pBHF2 or 4	20	
Pea	2			
Gentian	Gen#48	pG48	22	

Isolation of F3'5'H cDNA clones from petals of *Viola* spp.

Total RNA and poly (A)⁺ RNA was isolated from petals of young buds of *Viola* spp. cultivar black pansy as described above. A petal cDNA library was constructed using lambda ZAPII/ Gigapack II Cloning kit (Stratagene, USA) and screened as described above. Two full-length pansy *F3'5'H* cDNA clones (*BP#18* (SEQ ID NO: 9) in pCGP1959 and *BP#40* (SEQ ID NO: 11) in pCGP1961) were identified by sequence similarity to the petunia *Hf1* cDNA clone (SEQ ID NO: 1). The *BP#18* and *BP#40* shared 82% identity at the nucleotide level. Comparison of the nucleotide sequence of pansy *F3'5'H* clones (*BP#18* and *BP#40*) with that of the petunia *F3'5'H* revealed around 60% identity to the petunia *Hf1* clone and 62% identity to the petunia *Hf2* clone.

Construction of binary vectors, pCGP1972 and pCGP1973

(*AmCHS 5'*: pansy*F3'5'H* #18 or #40: *petD8 3'*)

The plasmids pCGP1972 and pCGP1973 contain the pansy *F3'5'H* cDNA clone (*BP#18* and *BP#40*, respectively) between an *A. majus* (snapdragon) *CHS* promoter fragment (*AmCHS 5'*) and a petunia *PLTP* terminator fragment (*petD8 3'*). The chimaeric *F3'5'H* genes are in tandem with respect to the *CaMV 35S: SuRB* selectable marker gene cassette of the Ti binary vector, pWTT2132 (DNAP).

The petunia *F3'5'H* (*Hf1*) cDNA clone in pCGP725 was replaced with the pansy *F3'5'H* *BP#18* or *BP#40* cDNA clone to produce pCGP1970 and pCGP1971 respectively. The *AmCHS 5'*: pansy *F3'5'H*: *petD8 3'* cassette was then isolated from pCGP1970 or pCGP1971 by firstly digesting with the restriction endonuclease *NotI*. The ends of the linearised plasmid were repaired and then the chimaeric *F3'5'H* genes were released upon digestion with the restriction endonuclease *EcoRV*. The purified fragments were then ligated with *Asp718* repaired ends of the Ti binary vector pWTT2132 (DNAP). Correct insertion of the fragment was established by restriction endonuclease analysis of plasmid DNA isolated from tetracycline-resistant transformants. The resulting plasmids were designated pCGP1972 and pCGP1973, respectively.

Carnation and petunia transformation with pCGP1972 and 1973

The T-DNAs contained in the binary vector plasmids pCGP1972 and pCGP1973 were introduced separately into *Dianthus caryophyllus* cultivars Kortina Chanel and Monte Lisa and *Petunia hybrida* cv. Skr4 x Sw63 via *Agrobacterium*-mediated transformation.

Construction of binary vectors, pCGP1967 and pCGP1969

(*CaMV 35S: pansy F3'5'H: ocs 3'*)

The binary vectors pCGP1967 and pCGP1969 contain chimaeric *CaMV 35S: pansy F3'5'H: ocs 3'* genes in tandem with respect to the *CaMV 35S: SuRB* selectable marker gene cassette of the Ti binary vector, pWTT2132 (DNAP).

The plasmids pCGP1959 and pCGP1961 were firstly linearised upon digestion with the restriction endonuclease *Kpn*I. The overhanging *Kpn*I ends were repaired and the pansy *F3'5'H* cDNA clones, BP#18 and BP#40, were released upon digestion with the restriction endonuclease *Pst*I. The ~1.7kb fragments generated were ligated with an ~5.9kb *Eco*RI (repaired ends)/*Pst*I fragment of pKIWI101 (Klee *et al.*, 1985, *supra*). Correct insertion of each fragment was established by restriction endonuclease analysis of plasmid DNA isolated from ampicillin-resistant transformants. The resulting plasmids were designated pCGP1965 and pCGP1966, respectively.

The plasmids pCGP1965 and pCGP1966 were firstly partially digested with the restriction endonuclease *Xho*I. The resulting overhanging 5' ends were repaired and then the fragments were further digested with the restriction endonuclease *Xba*I. The 3.6kb fragments containing the *CaMV 35S: pansy F3'5'H: ocs 3'* chimaeric genes were isolated and ligated with *Asp*718 repaired ends of pWTT2132. Correct insertion of each fragment was established by restriction endonuclease analysis of plasmid DNA isolated from tetracycline-resistant transformants. The resulting plasmids were designated pCGP1967 and pCGP1969, respectively.

Rose transformation

The T-DNAs contained in the binary vector plasmids pCGP1967 and pCGP1969 were introduced separately into *Rosa hybrida* cv. Kardinal and Soft Promise via *Agrobacterium*-mediated transformation. The T-DNA contained in the binary vector plasmids pCGP1969 was also introduced into *Rosa hybrida* cv. Pamela and Medeo via *Agrobacterium*-mediated transformation.

Isolation of a F3'5'H cDNA clone from petals of Salvia spp.

Total RNA and poly (A)⁺ RNA was isolated from young petal buds of *Salvia spp.* (bought from a nursery) as described above. A petal cDNA library was constructed using lambda ZAPII/ Gigapack II Cloning kit (Stratagene, USA). Two full-length salvia *F3'5'H* cDNA clones (*Sal#2* (SEQ ID NO:13) in pCGP1995 and *Sal#47* (SEQ ID NO:15) in pCGP1999) were identified by sequence similarity with the petunia *Hf1* cDNA clone. The *Sal#2* and *Sal#47* shared 95% identity at the nucleotide level. Comparison of the nucleotide sequence of salvia *F3'5'H* clones (*Sal#2* and *Sal#47*) with that of the petunia *F3'5'H* revealed around 57% identity to the petunia *Hf1* clone and 58% identity to the petunia *Hf2* clone.

Construction of binary vectors, pCGP2121 and pCGP2122

(*AmCHS 5'*: *Salvia F3'5'H #2 or #47*: *petD8 3'*)

The plasmids pCGP2121 and pCGP2122 contain the salvia *F3'5'H* cDNA clones (*Sal#2* and *Sal#47*, respectively) between a snapdragon *CHS* promoter fragment (*AmCHS 5'*) and a petunia *PLTP* terminator fragment (*petD8 3'*) in tandem with the *CaMV 35S: SuRB* selectable marker gene cassette of the Ti binary vector pWTT2132 (DNAP).

The petunia *F3'5'H* (*Hf1*) cDNA clone in pCGP725 (described in Example 4) was replaced with the salvia *F3'5'H* #2 or #47 cDNA clones to produce pCGP2116 and pCGP2117, respectively. The *AmCHS 5': salvia F3'5'H: petD8 3'* cassette was then isolated from pCGP2116 or pCGP2117 by firstly digesting with the restriction endonuclease *NorI*. The ends of the linearised plasmid were repaired and then the chimaeric *F3'5'H* gene cassettes were released upon digestion with the restriction endonuclease *EcoRV*. The purified fragments were then ligated with *Asp718* repaired ends of the Ti binary vector pCGP1988

(described in Example 4). Correct insertion of each fragment was established by restriction endonuclease analysis of plasmid DNA isolated from tetracycline-resistant transformants. The resulting plasmids were designated pCGP2121 and pCGP2122, respectively.

Carnation and petunia transformation with pCGP2121 and pCGP2122

The T-DNAs contained in the binary vector plasmids pCGP2121 and pCGP2122 were introduced separately into *Dianthus caryophyllus* cultivars Kortina Chanel and Monte Lisa and *Petunia hybrida* cv. Skr4 x Sw63 via *Agrobacterium*-mediated transformation.

Construction of binary vectors, pCGP2120 and pCGP2119

(CaMV 35S: salvia F3'5'H: ocs 3')

The binary vectors pCGP2119 and pCGP2120 contain chimaeric *CaMV 35S: salvia F3'5'H: ocs 3'* gene cassettes in tandem with the *CaMV 35S: SuRB* selectable marker gene cassette of the Ti binary vector pCGP1988.

The plasmids pCGP1995 and pCGP1999 were firstly linearised upon digestion with the restriction endonuclease *Xba*I. The overhanging *Xba*I ends were repaired and then the *salvia F3'5'H* cDNA clones *Sal*#2 or *Sal*#47 were released upon digestion with the restriction endonuclease *Eco*RI. In the case of pCGP1995 a partial digest with *Eco*RI was undertaken. The ~1.7kb fragments were ligated with the *Clal* (repaired ends)/*Eco*RI ends of pCGP2105. Correct insertion of each fragment was established by restriction endonuclease analysis of plasmid DNA isolated from ampicillin-resistant transformants. The resulting plasmids were designated pCGP2112 and pCGP2111, respectively.

The plasmids pCGP2112 and pCGP2111 were firstly linearised with the restriction endonuclease *Xba*I. The resulting overhanging 5' ends were repaired and then the fragments were further digested with the restriction endonuclease *Xba*I. The 3.6kb fragments containing the *CaMV 35S: salvia F3'5'H: ocs 3'* chimaeric genes were isolated and ligated with *Asp718* repaired ends of the Ti binary vector, pCGP1988 (described in Example 4). Correct insertion of each fragment was established by restriction

endonuclease analysis of plasmid DNA isolated from tetracycline-resistant transformants. The resulting plasmids were designated pCGP2120 and pCGP2119, respectively.

Rose transformation with pCGP2120 and pCGP2119.

The T-DNA contained in the binary vector plasmids pCGP2120 and pCGP2119 were introduced separately into *Rosa hybrida* cv. Kardinal via *Agrobacterium*-mediated transformation.

Isolation of a F3'5'H cDNA clone from petals of Sollya spp.

Total RNA and poly (A)⁺ RNA was isolated from young petal buds of *Sollya* spp. (bought from a nursery) as described above. A petal cDNA library was constructed using lambda ZAPII/ Gigapack II Cloning kit (Stratagene, USA). One full-length *Sollya F3'5'H* cDNA clone (Soli#5 (SEQ ID NO:17) in pCGP2110) was identified by sequence similarity to the petunia *Hf1* cDNA clone. Comparison of the nucleotide sequence of *sollya F3'5'H* clones with that of the petunia *F3'5'H* revealed around 48% identity to the petunia *Hf1* clone and 52% identity to the petunia *Hf2* clone.

Construction of binary vector, pCGP2130 (AmCHS 5': Sollya F3'5'H: petD8 3')

The plasmid pCGP2121 contains the *sollya F3'5'H Soli#5* cDNA clone between a snapdragon *CHS* promoter fragment (*AmCHS 5'*) and a petunia *PLTP* terminator fragment (*petD8 3'*) in a tandem orientation with respect to the *CaMV 35S: SuRB* selectable marker gene cassette of the Ti binary vector pCGP1988.

The petunia *F3'5'H (Hf1)* cDNA clone in pCGP725 (described in Example 4) was replaced with the *sollya F3'5'H* cDNA clone to produce pCGP2128. The *AmCHS 5': sollya F3'5'H: petD8 3'* gene cassette was then isolated from pCGP2128 by firstly digesting with the restriction endonuclease *NotI*. The ends of the linearised plasmid were repaired and then the chimaeric *F3'5'H* gene was released upon digestion with the restriction endonuclease *EcoRV*. The purified fragment was then ligated with *Asp718* (repaired ends) of the Ti binary vector pCGP1988 (described in Example 4). Correct insertion of the fragment was

established by restriction endonuclease analysis of plasmid DNA isolated from tetracycline-resistant transformants. The resulting plasmid was designated pCGP2130.

Carnation and petunia transformation with pCGP2130

The T-DNA contained in the binary vector plasmid pCGP2130 was introduced into *Dianthus caryophyllus* cultivars Kortina Chanel and Monte Lisa and *Petunia hybrida* cv. Skr4 x Sw63 via *Agrobacterium*-mediated transformation.

Construction of binary vectors, pCGP2131 (CaMV 35S: sollya F3'5'H: ocs 3')

The binary vector pCGP2131 contains a chimaeric *CaMV 35S: sollya F3'5'H: ocs 3'* gene in tandem with the *CaMV 35S: SuRB* selectable marker gene cassette of the Ti binary vector pCGP1988.

The plasmid pCGP2110 was firstly linearised upon digestion with the restriction endonuclease *Asp718*. The overhanging ends were repaired and then the *sollya F3'5'H* cDNA clone was released upon digestion with the restriction endonuclease *PstI*. The ~1.7kb fragment was ligated with the *EcoRV/PstI* ends of pCGP2105. Correct insertion of the fragment was established by restriction endonuclease analysis of plasmid DNA isolated from ampicillin-resistant transformants. The resulting plasmid was designated pCGP2129.

A 3.6kb fragment containing the *CaMV 35S: sollya F3'5'H: ocs 3'* chimaeric gene was released upon digestion with the restriction endonucleases *Asp718* and *XbaI*. The overhanging ends were repaired and the purified fragment was ligated with the *Asp718* repaired ends of the Ti binary vector, pCGP1988. Correct insertion of the fragment was established by restriction endonuclease analysis of plasmid DNA isolated from tetracycline-resistant transformants. The resulting plasmid was designated pCGP2131.

Rose transformation with pCGP2131

The T-DNA contained in the binary vector plasmid pCGP2131 was introduced into *Rosa hybrida* cv. Kardinal via *Agrobacterium*-mediated transformation.

Isolation of a F3'5'H cDNA clone from petals of *Kennedia* spp.

Total RNA and poly (A)⁺ RNA was isolated from young petal buds of *Kennedia* spp. (bought from a nursery) as described above. A petal cDNA library was constructed using lambda ZAPII/ Gigapack II Cloning kit (Stratagene, USA). One full-length kennedia F3'5'H cDNA clone (*Kenn#31* in pCGP2231) was identified by sequence similarity to the petunia *Hf1* cDNA clone.

Construction of binary vector, pCGP2256 (AmCHS 5': kennedia F3'5'H: petD8 3')

The plasmid pCGP2156 contains the kennedia F3'5'H (*Kenn#31*) cDNA clone between a snapdragon *CHS* promoter fragment (*AmCHS 5'*) and a petunia *PLTP* terminator fragment (*petD8 3'*) in tandem with the *CaMV 35S: SuRB* selectable marker gene cassette of the Ti binary vector pCGP1988.

The petunia F3'5'H (*Hf1*) cDNA clone in pCGP725 (described in Example 4) was replaced with the kennedia F3'5'H (*Kenn#31*) cDNA clone to produce pCGP2242. The *AmCHS 5': kennedia F3'5'H: petD8 3'* cassette was then isolated from pCGP2242 by digesting with the restriction endonucleases *NotI* and *EcoRI*. The ends were repaired and the purified fragment was then ligated with *Asp718* repaired ends of the Ti binary vector pCGP1988 (described in Example 4). Correct insertion of the fragment was established by restriction endonuclease analysis of plasmid DNA isolated from tetracycline-resistant transformants. The resulting plasmid was designated pCGP2256.

Petunia transformation with pCGP2256

The T-DNA contained in the binary vector plasmid pCGP2256 was introduced into *Petunia hybrida* cv. Skr4 x Sw63 via *Agrobacterium*-mediated transformation.

Construction of binary vectors, pCGP2252
(CaMV 35S: kennedia F3'5'H: ocs 3')

- 80 -

The binary vector pCGP2252 contains a chimaeric *CaMV 35S: kennedia F3'5'H: ocs 3'* gene in tandem with the *CaMV 35S: SuRB* selectable marker cassette of the Ti binary vector pCGP1988.

The plasmid pCGP2231 was firstly linearised upon digestion with the restriction endonuclease *Xba*I. The overhanging ends were repaired and then the kennedia *F3'5'H* cDNA clone was released upon digestion with the restriction endonuclease *Pst*I. The ~1.7kb fragment was ligated with the *Clal* (repaired ends)/*Pst*I ends of pCGP2105. Correct insertion of the fragment was established by restriction endonuclease analysis of plasmid DNA isolated from ampicillin-resistant transformants. The resulting plasmid was designated pCGP2236.

A 3.6kb fragment containing the *CaMV 35S: kennedia F3'5'H: ocs 3'* chimaeric gene cassette was released from the plasmid pCGP2236 upon digestion with the restriction endonucleases *Xba*I and *Not*I. The overhanging ends were repaired and the purified fragment was ligated with *Asp718* repaired ends of the Ti binary vector, pCGP1988. Correct insertion of the fragment was established by restriction endonuclease analysis of plasmid DNA isolated from tetracycline-resistant transformants. The resulting plasmid was designated pCGP2252.

Rose transformation with pCGP2252

The T-DNA contained in the binary vector plasmid pCGP2252 was introduced into *Rosa hybrida* cv. Kardinal via *Agrobacterium*-mediated transformation.

Isolation of a *F3'5'H* cDNA clone from petals of *Clitoria ternatea* (butterfly pea).

Construction of butterfly pea petal cDNA library

A blue variety of *Clitoria ternatea* (butterfly pea, the seeds were kindly provided by Osaka Botanical Garden) was grown in a field in Osaka. Total RNA of fresh and pigmented petals at a pre-anthesis stage was prepared as mentioned above. PolyA⁺ RNA was prepared using Oligotex (Takara) according to the manufacturer's recommendation. A petal cDNA

library of butterfly pea was constructed from the polyA⁺ RNA using a directional \square ZAP-cDNA synthesis kit (Stratagene, USA) following the manufacturer's protocols.

Screening of butterfly pea cDNA library for a F3'5'H cDNA clone

The butterfly pea petal cDNA library was screened with DIG-labelled petunia *Hf1* cDNA clone as described previously (Tanaka *et al.* Plant Cell Physiol. 1996,37:711-716). Two cDNA clones that showed high similarity to *Hf1* were identified. The plasmid containing the longest cDNA clone was designated pBHF2 and the cDNA clone was sequenced (SEQ ID NO: 20). Alignment between the deduced amino acid sequences of the butterfly pea *F3'5'H* clone and the petunia *Hf1* clone revealed that the butterfly pea *F3'5'H* cDNA (contained in pBHF2) did not represent a full-length cDNA and lacked first 2 bases of the putative initiation codon. These two bases along with a *Bam*HI restriction endonuclease recognition site were added to the cDNA clone using PCR and a synthetic primer, 5'-GGGATCCAACAATGTTCCCTTAAGAGAAAT-3' [SEQ ID NO:25] as described previously (Yonekura-Sakakibara *et al.* Plant Cell Physiol. 2000, 41:495-502). The resultant fragment was digested with the restriction endonucleases *Bam*HI and *Pst*I and the subsequent DNA fragment of about 200 bp was recovered. The DNA fragment was ligated with a 3.3 kb fragment of *Bam*HI/*Eco*RI digested pBHF2 to yield pBHF2F. The DNA sequence was confirmed to exclude errors made during PCR.

Comparison of the nucleotide sequence of butterfly pea *F3'5'H* clone with that of the petunia *F3'5'H* revealed around 59% identity to the petunia *Hf1* clone and 62% identity to the petunia *Hf2* clone.

Construction of binary vector, pCGP2135 (AmCHS 5': butterfly pea F3'5'H: petD8 3')

The plasmid pCGP2156 contains the butterfly pea *F3'5'H* cDNA clone between a snapdragon *CHS* promoter fragment (*AmCHS 5'*) and a petunia *PLTP* terminator fragment (*petD8 3'*) in tandem with the *CaMV 35S: SuRB* selectable marker gene cassette of the Ti binary vector pCGP1988.

The petunia *F3'5'H (HfI)* cDNA clone in pCGP725 (described in Example 4) was replaced with the butterfly pea *F3'5'H* cDNA clone to produce pCGP2133. The *AmCHS 5': butterfly pea F3'5'H: petD8 3'* cassette was then isolated from pCGP2133 by firstly digesting with the restriction endonuclease *NotI*. The ends of the linearised plasmid were repaired and then the chimaeric *F3'5'H* gene was released upon digestion with the restriction endonuclease *EcoRV*. The purified fragment was then ligated with *Asp718* repaired ends of the Ti binary vector pCGP1988 (described in Example 4). Correct insertion of the fragment was established by restriction endonuclease analysis of plasmid DNA isolated from tetracycline-resistant transformants. The resulting plasmid was designated pCGP2135.

Carnation and petunia transformation with pCGP2135

The T-DNA contained in the binary vector plasmid pCGP2135 was introduced into *Dianthus caryophyllus* cultivars Kortina Chanel and Monte Lisa and *Petunia hybrida* cv. Skr4 x Sw63 via *Agrobacterium*-mediated transformation.

Construction of the binary vector, pBEBHF2 (CaMV 35S: Butterfly pea F3'5'H: nos 3')

The Ti binary vector, pBE2113-GUS contains a *GUS* coding region between an enhanced *CaMV 35S* promoter and *nos* terminator (Mitsuhara *et al.*, *Plant Cell Physiol.* 37, 49-59, 1996). The plasmid pBE2113-GUS was digested with the restriction endonuclease *SacI*. The overhanging ends were repaired and then ligated with a *SalI* linker to yield pBE2113-GUSs. The 1.8 kb *BamHI-XbaI* fragment from pBHF2F was ligated with *BamHI-SalI* digested pBE2113-GUSs to create pBEBHF2.

Rose transformation with pBEBHF

The T-DNA contained in the binary vector plasmid pBEBHF was introduced into *Rosa hybrida* cultivar Lavande via *Agrobacterium*-mediated transformation.

Construction of binary vectors, pCGP2134 (CaMV 35S: butterfly pea F3'5'H: ocs 3')

The binary vector pCGP2134 contains a chimaeric *CaMV 35S: butterfly pea F3'5'H: ocs 3'* gene cassette in a tandem orientation with the *CaMV 35S: SuRB* selectable marker gene cassette of the Ti binary vector pCGP1988.

The butterfly pea *F3'5'H* cDNA clone was released upon digestion of the plasmid pBHF53 with the restriction endonucleases *Xho*I and *Bam*HI. The overhanging ends were repaired and the ~1.7kb fragment was ligated with the *Pst*I (repaired ends)/*Eco*RV ends of pCGP2105 (described in Example 4). Correct insertion of the fragment was established by restriction endonuclease analysis of plasmid DNA isolated from ampicillin-resistant transformants. The resulting plasmid was designated pCGP2132.

A 3.6kb fragment containing the *CaMV 35S: butterfly pea F3'5'H: ocs 3'* chimaeric gene cassette was released upon digestion with the restriction endonucleases *Xho*I and *Xba*I . The overhanging ends were repaired and the purified fragment was ligated with *Asp*718 repaired ends of the Ti binary vector, pCGP1988 (described in Example 4). Correct insertion of the fragment was established by restriction endonuclease analysis of plasmid DNA isolated from tetracycline-resistant transformants. The resulting plasmid was designated pCGP2134.

Rose transformation with pCGP2134

The T-DNA contained in the binary vector plasmid pCGP2134 was introduced into *Rosa hybrida* cv. Kardinal via *Agrobacterium*-mediated transformation.

Isolation of a *F3'5'H* cDNA clone from petals of *Gentiana triflora* (gentian).

Construction and screening of a gentian petal cDNA library

The isolation of a gentian cDNA encoding *F3'5'H* has been described previously (Tanaka *et al.* Plant Cell Physiol. 1996, 37:711-716). Comparison of the nucleotide sequence of the gentian *F3'5'H* clone (*Gen#48*) (SEQ ID NO:22) with that of the petunia *F3'5'H* revealed around 61% identity to the petunia *Hf1* clone and 64% identity to the petunia *Hf2* clone.

Construction of binary vector, pCGP1498 (AmCHS 5': gentian F3'5'H: petD8 3')

The plasmid pCGP2121 contains the gentian *F3'5'H* (*Gen#48*) cDNA clone between a snapdragon *CHS* promoter fragment (*AmCHS 5'*) and a petunia *PLTP* terminator fragment (*petD8 3'*) in tandem with the *CaMV 35S: SuRB* selectable marker gene cassette of the Ti binary vector pWTT2132.

The petunia *F3'5'H* (*Hf1*) cDNA clone in pCGP725 (described in Example 4) was replaced with the gentian *F3'5'H* (*Gen#48*) cDNA clone to produce pCGP1496. The *AmCHS 5': gentian F3'5'H: petD8 3'* cassette was then isolated from pCGP1496 by firstly digesting with the restriction endonuclease *NotI*. The overhanging ends of the linearised plasmid were repaired and then the chimaeric *F3'5'H* gene was released upon digestion with the restriction endonuclease *EcoRV*. The purified fragment was then ligated with *Asp718* repaired ends of the Ti binary vector pWTT2132. Correct insertion of the fragment was established by restriction endonuclease analysis of plasmid DNA isolated from tetracycline-resistant transformants. The resulting plasmid was designated pCGP1498.

Carnation and petunia transformation with pCGP1498

The T-DNA contained in the binary vector plasmid pCGP1498 was introduced into *Dianthus caryophyllus* cultivars Kortina Chanel and Monte Lisa and *Petunia hybrida* cv. Skr4 x Sw63 via *Agrobacterium*-mediated transformation.

Construction of the binary vector, pBEGHF48 (CaMV 35S: gentian F3'5'H: nos 3')

The gentian *F3'5'H* cDNA clone was released by digestion of the plasmid pG48 with the restriction endonucleases *BamHI* and *XhoI*. The resulting 1.8 kb DNA fragment was isolated and ligated with *BamHI/SalI* digested pBE2113-GUSs (Mitsuhara *et al.*, 1996, *supra*) to create pBEGHF48.

Rose transformation with pBEGHF48

The T-DNA contained in the binary vector plasmid pBEGHF48 was introduced into *Rosa hybrida* cv. Lavande via *Agrobacterium*-mediated transformation.

Construction of binary vectors, pCGP1982 (CaMV 35S: gentian F3'5'H: ocs 3')

The binary vector pCGP1982 contains a chimaeric *CaMV 35S: gentian F3'5'H: ocs 3'* gene cassette in tandem with the *CaMV 35S: SuRB* selectable marker gene cassette of the Ti binary vector pWTT2132.

The plasmid pG48 was firstly linearised upon digestion with the restriction endonuclease *Asp718*. The overhanging ends were repaired and then the gentian *F3'5'H* cDNA clone (*Gen#48*) was released upon digestion with the restriction endonuclease *BamHI*. The ~1.7kb fragment was ligated with the 5.95kb *EcoRI* (repaired ends)/*BamHI* fragment of pKIWI101 (Klee *et al.*, 1985, *supra*). Correct insertion of the fragment was established by restriction endonuclease analysis of plasmid DNA isolated from ampicillin-resistant transformants. The resulting plasmid was designated pCGP1981.

A 3.6kb fragment containing the *CaMV 35S: gentian F3'5'H: ocs 3'* chimaeric gene cassette was released upon digestion with the restriction endonucleases *XhoI* and *XbaI*. The overhanging ends were repaired and the purified fragment was ligated with repaired ends of *Asp718* digested Ti binary vector, pWTT2132. Correct insertion of the fragment was established by restriction endonuclease analysis of plasmid DNA isolated from tetracycline-resistant transformants. The resulting plasmid was designated pCGP1982.

Rose transformation with pCGP1982

The T-DNA contained in the binary vector plasmid pCGP1982 was introduced into *Rosa hybrida* cv. Kardinal via *Agrobacterium*-mediated transformation.

EXAMPLE 9

Analysis of transgenic carnation, petunia and rose

Transgenic analysis of events transformed with the T-DNA of binary vectors described in Example 9 included detection of F3'5'H activity via the presence of the 3'5'-hydroxylated

anthocyanidin, delphinidin or in the case of petunia, its derivatives such as malvidin, and detection of intact transcripts of the introduced F3'5'H (see Tables 10, 11 and 12).

CARNATION

Table 10: Results of levels of delphinidin produced in transgenic carnations using various F3'5'H gene expression cassettes (*AmCHS 5': F3'5'H: petD8 3'*).

F3'5'H clone	pCGP	Cv.	#tg	TLC +	HPL C +	Highest % del	Av. % del	Norther n +
Salvia#2	2121	KC	22	2/16	3/4	12.5%	7%	nd
	2121	ML	21	17/18	9/9	76%	57%	14/15
Salvia#47	2122	KC	23	6/12	8/8	29%	12%	nd
	2122	ML	25	21/22	17/17	88%	56%	12/14
Sollya	2130	KC	30	22/27	17/17	35%	11%	nd
	2130	ML	23	14/15	14/14	76%	49%	13/14
Butterfly pea	2135	KC	22	0/16	0/1	nd	nd	nd
	2135	ML	24	19/20	13/13	23%	10%	14/14
Gentian	1498	KC	22	0/14	nd	nd	nd	7/8
	1498	ML	2	2/2	1/1			1/2
pansy	1972	KC	26	18/20	12/12	14%	9%	19/19
BP#18	1972	ML	21	15/16	8/8	80%	66%	14/16
pansy	1973	KC	26	11/15	7/8	18%	8%	13/17
BP#40	1973	ML	33	19/22	20/20	72%	52%	12/15
petunia Hf1	1452	KC	104	41/64		3.5%	1.3%	15/17
	1452	ML	48	39/41	26/26	75%	30%	12/13
petunia Hf2	1524	ML	27	18/19	17/17	81%	41%	12/14

Cv. = cultivar, KC = Kortina Chanel (cyanidin line), ML = Monte Lisa (pelargonidin line)

#tg = # of transgenics produced

TLC + = number of individual events that accumulated detectable delphinidin (as determined by TLC) / the number of individual events analysed

HPLC + = number of individual events that accumulated detectable delphinidin (as determined by HPLC) / the number of individual events analysed

Highest % del = Highest % delphinidin recorded for the population.

Av % del = average % delphinidin detected in population.

Northern = number of individual events with detectable *F3'5'H* transcripts / the number analysed

Kortina Chanel produces pink coloured flowers that normally accumulate cyanidin-based anthocyanins. This cultivar therefore contains a functional carnation *F3'H* and DFR activity that the introduced *F3'5'H* would need to compete with for substrate. Monte Lisa produces brick red coloured flowers that normally accumulate pelargonidin. This cultivar is thought to lack a fully functional *F3'H* activity and contain a DFR that is capable of acting on DHK and thus the introduced *F3'5'H* would only be required to compete with the endogenous DFR for substrate.

The results suggest that all of the *F3'5'H* sequences tested (petunia *Hf1*, petunia *Hf2*, *Salvia Sal#2*, *Salvia Sal#47*, Sollya *Sol#5*, Butterfly pea *BpeaHF2*, pansy *BP#18*, pansy *BP#40* and Gentian *Gen#48*) were functional in carnation and resulted in the production of novel delphinidin-based pigments in carnation flowers.

PETUNIATable 11: Results of analysis of transgenic *P. hybrida* cv Skr4 x Sw63 using various *F3'5'H* gene expression cassettes (*AmCHS 5'*: *F3'5'H*: *petD8 3'*).

<i>F3'5'H</i>	pCGP	# tg	TLC +	Col	↑ A/c	Best	Av.	Norther n+	Best colour
Gentian	1498	22	3/5	18/20	nd			6/6	72B/78 A
Butterfly pea	2135	24	18/20	22/24	23/24	4427	2397		74A/78 A
Kennedi a	2256	24	22/24	22/24	22/24	4212	2592	nd	74A/78 A
Salvia2	2121	24	21/24	21/24	21/24	2471	1730		78A
Salvia47	2122	19	17/19	16/19	16/19	2634	1755		78A/80 A
Sollya	2130	22	14/16	13/16	13/16	3446	1565		78A
pansy 18	1972	22	nd	20/22	nd			9/9	74A/B
pansy 40	1973	19	8/8	18/19	18/20	2583	1556		74/78A
petunia Hf1	484	16	nd	9/16	8/15	2683	1250		74A/B
petunia Hf2	1524	20	nd	18/20	8/8	4578	2357	8/8	74A/B
control						144- 250			75C

#tg = # of transgenics produced

TLC + = number of individual events that accumulated detectable malvidin (above the Skr4 x Sw63 background) (as determined by TLC) / the number of individual events analysed

Col = number of individual events that had a change in phenotype/ number examined

↑ A/c = number of individual events that had an increased level of anthocyanins as measured by spectrophotometric analysis / the number of individual events analysed (in µmoles/g)

Best = the highest anthocyanin amount found in an individual event (in µmoles/g)

Av = the average anthocyanin levels detected (in µmoles/g).

Northern = number of individual events with detectable *F3'5'H* transcripts over the number analysed

Best colour = most intense colour recorded for the transgenic population.

Introduction of the *F3'5'H* cDNA clones into Skr4 x SW63 led to a dramatic flower colour change from pale lilac to purple and to the production of malvidin in the petals. Malvidin is the methylated derivative of the 3'5'-hydroxylated pigment, delphinidin (Figures 1a and 1b). Only a small amount of malvidin is normally detected in the non-transgenic Skr4 x SW63 control. Although Skr4 x SW63 is homozygous recessive for both the *Hf1* and *Hf2* genes, these mutations do not completely block production of *F3'5'H* (see US Patent Number 5,349,125) and low levels of malvidin are produced to give the petal limb a pale lilac colour.

The results suggest that all of the *F3'5'H* sequences tested (petunia *Hf1*, petunia *Hf2*, Salvia *Sal#2*, Salvia *Sal#47*, Sollya *Sol#5*, Butterfly pea *BpeaHF2*, pansy *BP#18*, pansy *BP#40*, Gentian *Gen#48*, Kennedia *Kenn#31*) were functional in petunia and resulted in the complementation of the *Hf1* or *Hf2* mutation in the Skr4 x SW63 petunia line (see Holton *et al.*, 1993, *supra*).

ROSETable 12: Results of levels of delphinidin produced in transgenic roses using various *F3'5'H* gene expression cassettes (*CaMV 35S: F3'5'H: ocs 3'*).

<i>F3'5'H</i>	pCGP	Cult	#tg	TLC +	HPL C +	Highest % del	Av. % del	Norther n +
Salvia2	2120	Kard	30	18/20	21/21	12%	5%	18/18
Salvia47	2119	Kard	22	11/16	9/9	7.1%	2%	12/15
Sollya	2131	Kard	27	0/23	2/2	1%	0.5%	6/6
Butterfly pea	2134	Kard	29	0/15				0/9
	pBEBF	Lav				0%	0%	
Gentian	1482	Kard	27	0/23				0/23
	pBEGH 1	Lav				0%	0%	
pansy BP18	1967	Kard	56	30/33	33/34	58%	12%	21/21
	1967	SP	36	21/24	18/18	65%	35%	16/21
pansy BP40	1969	Kard	22	15/15	15/15	24%	9%	16/16
	1969	SP	37	17/17	16/17	80%	54%	11/13
	1969	Medeo	23	5/6	5/5	94%	91%	9/9
	1969	Pamel a	15		4/4	90%	67%	1/1
Petunia <i>Hf1</i>	1638	Kard	22	0/21				1/17?
	1392	Lav				0%	0%	
Petunia <i>Hf2</i>	2123	Kard	41	1/27?	1/1?	nd	nd	0/10

Cult = cultivar, Kard = Kardinal, SP = Soft Promise, Lav = Lavande

#tg = # of transgenics produced

TLC + = number of individual events that accumulated detectable delphinidin (as determined by TLC) over the number of individual events analysed

HPLC + = number of individual events that accumulated detectable delphinidin (as determined by HPLC) over the number of individual events analysed

Northern = number of individual events with detectable F3'5'H transcripts over the number analysed

The cultivar Kardinal produces red coloured flowers that normally accumulate cyanidin-based anthocyanins. This cultivar therefore contains functional rose F3'H and DFR activities that the introduced F3'5'H would need to compete with for substrate. The cultivar Soft Promise produces apricot coloured flowers that normally accumulate pelargonidin. This cultivar is thought to lack a fully functional rose F3'H activity and contain a DFR that is capable of acting on DHK and thus the introduced F3'5'H would only be required to compete with the endogenous rose DFR for substrate.

The results suggest surprisingly that not all of the *F3'5'H* sequences assessed (petunia *Hf1*, petunia *Hf2*, Salvia *Sal#2*, Salvia *Sal#47*, Sollya *Sol#5*, Butterfly pea *BpeaHF2*, pansy *BP#18*, pansy *BP#40*, Gentian *Gen#48*, Kennedia *Kenn#31*) were functional in rose. In fact transcripts of the introduced *F3'5'H* clones isolated from Butterfly pea, gentian, petunia *Hf1* and petunia *Hf2* failed to accumulate in rose petals. Only *F3'5'H* transcripts from pansy, salvia, kennedia and sollya accumulated in rose petals. However although Kennedia *F3'5'H* transcripts did accumulate in rose petals, there was either no accumulation of the enzyme or the enzyme produced was either not functional or was unable to compete with the endogenous rose F3'H and DFR enzymes to allow for the production of delphinidin pigments. Only the *F3'5'H* clones from salvia (*Sal#2* and *Sal#47*), pansy (*BP#18* and *BP#40*) and Sollya (*Sol#5*) resulted in the production of delphinidin based pigments in rose petals. Based on the relative percentages of delphinidin produced in rose petals, the *F3'5'H* clones from pansy (*BP#18* and *BP#40*) were revealed to be the most effective of those assessed at producing delphinidin in rose petals.

As described in the introduction, copigmentation with other flavonoids, further modification of the anthocyanidin molecule and the pH of the vacuole impact on the colour produced by anthocyanins. Therefore selection of rose cultivars with relatively high levels of flavonols and relatively high vacuolar pH would result in bluer flower colours upon production of delphinidin pigments.

The rose cultivar Medeo generally produces cream-coloured to pale apricot flowers (RHSCC 158C to 159A). HPLC analysis of the anthocyanidins and flavonols accumulating in Medeo rose petals revealed that the petals accumulate high levels of flavonols (2.32mg/g kaempferol, 0.03mg/g quercetin) and very low levels of anthocyanins (0.004mg/g cyanidin, 0.004mg/g pelargonidin). The estimated vacuolar pH of Medeo petals is around 4.6.

The rose cultivar Pamela produces white to very pale pink coloured flowers. It similarly accumulates low levels of anthocyanin and relatively high levels of flavonols.

The T-DNA contained in the construct pCGP1969 incorporating the pansy *F3'5'H* clone, *BP#40*, was also introduced into the rose cultivars Medeo and Pamela resulting in the production of over 90% delphinidin in these roses and leading to a dramatic colour change and novel coloured flowers. The most dramatic colour change in transgenic Medeo flowers was to a purple/violet colour of RHSCC 70b, 70c, 80c, 186b. The most dramatic colour change in transgenic Pamela flowers was to a purple/violet colour of RHSCC 71c, 60c, 71a, 80b.

In conclusion, two unexpected findings were revealed when gene sequences that had been proven to lead to functionality in petunia and carnation were introduced into roses.

The first was that it was not obvious which promoters would be effective in rose. Promoter cassettes that had been tested in carnation and petunia did not lead to accumulation of detectable transcripts in rose. Of the promoters tested in rose, only *CaMV 35S*, *RoseCHS*

5', ChrysCHS 5', mas 5' and nos 5' promoters led to intact and detectable GUS or nptII or SuRB transcript accumulation in rose.

Secondly the petunia *F3'5'H Hf1* (and *Hf2*) sequences that had resulted in novel colour production in carnation and also proven to lead to synthesis of a functional enzyme in petunia did not lead to transcript accumulation in rose petals. In fact there was either no accumulation of detectable transcript or the transcripts that were detected were degraded and were seen as a smear or "blob" on RNA blots indicating the presence of low MW heterologous hybridizing RNA. Therefore in order to find a *F3'5'H* sequence that would accumulate in rose and lead to a functional enzyme, a number of *F3'5'H* sequences were isolated. Again it was not obvious which sequence would lead to an active enzyme in rose petals. All of the *F3'5'H* sequences isolated were tested for functionality in carnation and/or petunia and lead to accumulation of intact transcripts and production of a functional *F3'5'H* activity. However only *F3'5'H* sequences from pansy (*BP#18* and *BP#40*), salvia (*Sal#2* and *Sal#47*) and sollya (*Soll#5*) resulted in accumulation of intact transcripts and production of a functional enzyme in rose as measured by the synthesis of delphinidin.

Table 13 shows a summary of the results obtained when assessing *F3'5'H* sequences from various species in petunia, carnation and rose.

Table 13: Summary of effectiveness of the *F3'5'H* sequences in petunia, carnation and rose

<i>F3'5'H</i>	Petunia		Carnation		Rose	
	Mal	RNA	Del	RNA	Del	RNA
Kennedia (<i>Kenn#31</i>)	+	<i>nd</i>	<i>nd</i>	<i>nd</i>	-	+
Gentian (<i>Gen#48</i>)	+	+	+	+	-	-
Salvia (<i>Sal#2</i>)	+	<i>nd</i>	+	+	+	+
Salvia (<i>Sal#47</i>)	+	<i>nd</i>	+	+	+	+
Sollya (<i>Sol#5</i>)	+	<i>nd</i>	+	+	+	+
Butterfly pea	+	<i>nd</i>	+	+	-	-
Pansy (<i>BP#18</i>)	+	+	+	+	+	+
Pansy (<i>BP#40</i>)	+	<i>nd</i>	+	+	+	+
Petunia (<i>Hf1</i>)	+	+	+	+	-	-
Petunia (<i>Hf2</i>)	+	+	+	+	-	-

nd = not done

Mal = malvidin detected by TLC, Del = delphinidin detected by TLC or HPLC

EXAMPLE 10

Use of pansy F3'5'H sequences in species other than rose

From the examples above it was clear that the pansy *F3'5'H* sequences, *BP#18* and *BP#40*, resulted in functional *F3'5'H* activity and lead to the production of high levels of delphinidin in roses and carnations.

The T-DNA from Ti binary construct pCGP1969 (described in Example 8) containing the chimaeric *CaMV 35S: pansy BP#40 F3'5'H: ocs 3'* gene expression cassette was introduced into the gerbera cultivar Boogie via *Agrobacterium*-mediated transformation, to test the functionality of the pansy *F3'5'H* sequence in gerbera.

Of 6 events produced to date, 1 (#23407) has produced flowers with a dramatic colour change (RHSCC 70c) compared to the control flower colour (RHSCC 38a, 38c).

The colour change of the petals of the transgenic gerbera has been correlated with the presence of delphinidin as detected by TLC.

Those skilled in the art will appreciate that the invention described herein is susceptible to variations and modifications other than those specifically described. It is to be understood that the invention includes all such variations and modifications. The invention also includes all of the steps, features, compositions and compounds referred to or indicated in this specification, individually or collectively, and any and all combinations of any two or more of said steps or features.

- 96 -

SEQUENCE LISTING

<110> International Flower Developments Pty Ltd

<120> Genetic sequences and uses therefor

<130> 2564093/EJH

<140> not yet available

<141> 2002-08-30

<160> 25

<170> PatentIn version 3.1

<210> 1

<211> 1812

<212> DNA

<213> petunia

<400> 1
ctttctacta gctacttcgt tatatatatg taaaattgtg actttgaaaa tcatttaat 60
tatcataagg ttcattttat cttgatcaaa atatttactt cgcccatata cgtttcctt 120
tagtcatgat gctacttaact gagcttggtg cagcaacttc aatctttcta atagcacaca 180
taatcatttc aactcttatt tcaaaaacta ccggccggca tctaccgccc gggccaagag 240
ggtggccgggt gatcgagca cttccacttt taggagccat gccacatgtt tccttagcta 300
aatggcaaa aaaatatgga gcaatcatgt atctcaaagt tggAACATGT ggcattggcag 360
ttgcttctac ccctgatgct gctaaagcat tcttgaaaac acttgatatac aacttctcca 420
atcgccacc taatcgaggc gcaactcaact tagcttataa tgctcaagac atggttttg 480
cacattatgg accacgatgg aagttgctaa ggaaattaag caacttgcattt atgcttagggg 540
gaaaagcctt agagaattgg gcaaatttttc gtgccaatga gctagggcac atgctaaaat 600
caatgtccga tatgagtcga gagggccaga gggttgtggc ggcggagatg ttgacatttg 660
ccatggccaa tatgatcgga caagtgtatgc taagcaaaag agtatttgcata gataaagggt 720
ttgaggtaaa tgaatttaag gacatggttg tagagttat gacaatagca gggattttca 780
acattgggtga ttttatttcct tggtagctt ggatggattt acaaggata gaaaaacgaa 840
tgaaacgttt acataagaag tttgatgctt tattgacaaa gatgtttgat gaacacaag 900
caactaccta tgaacgtaaag gggaaaccag attttcttga tgggtttatg gaaaatgggg 960
acaatttctga aggagaaaga ctcagtgacaa ccaacatcaa agcacttttgc tggatattgt 1020
tcacagctgg tacggacact tcttcttagtg caatagaatg ggcacttgca gaaatgtatga 1080

- 97 -

agaaccctgc cattttgaaa aaagcacaag cagaaatgga tcaagtcatt ggaagaaata	1140
ggcgtttact cgaatccgat atcccaaata tcccttacct ccgagcaatt tgcaaagaaa	1200
catttcgaaa acacccttct acaccattaa atcttcttag gatctcgaac gaaccatgca	1260
tagtcgatgg ttattacata ccaaaaaaca ctaggcttag tgttaacata tgggcaattg	1320
gaagagatcc ccaagtttg gaaaatccac tagagttaa tcccgaaaga ttcttgagtg	1380
gaagaaaactc caagattgat cctcgaggga acgatttga attgatacca tttggtgctg	1440
gacgaagaat ttgtcagga acaagaatgg gaattgtaat ggtggatat atattagaa	1500
ctttggttca ttcatttgat tgaaaattac caagtgaagt tattgagttg aatatggaag	1560
aagcttttgg cttagcttg cagaaagctg tccctcttga agctatggtt actccaaggt	1620
tacaatttgg tgtttatgta ccatagctat agatgtgtat tgtgtataa ttgcgcatgt	1680
tgttggttgt agcatgagat attaaaagga gtacatgaag cgcattgcat gagtttaact	1740
tgtagctcct taatatttta ggtattttc aattaataag ttcttgggg ttgggtaaaa	1800
aaaaaaaaaa aa	1812

<210> 2
<211> 506
<212> PRT
<213> petunia

<400> 2

Met Met Leu Leu Thr Glu Leu Gly Ala Ala Thr Ser Ile Phe Leu Ile
1 5 10 15

Ala His Ile Ile Ile Ser Thr Leu Ile Ser Lys Thr Thr Gly Arg His
20 25 30

Leu Pro Pro Gly Pro Arg Gly Trp Pro Val Ile Gly Ala Leu Pro Leu
35 40 45

Leu Gly Ala Met Pro His Val Ser Leu Ala Lys Met Ala Lys Lys Tyr
50 55 60

Gly Ala Ile Met Tyr Leu Lys Val Gly Thr Cys Gly Met Ala Val Ala
65 70 75 80

Ser Thr Pro Asp Ala Ala Lys Ala Phe Leu Lys Thr Leu Asp Ile Asn
85 90 95

- 98 -

Phe Ser Asn Arg Pro Pro Asn Ala Gly Ala Thr His Leu Ala Tyr Asn
100 105 110

Ala Gln Asp Met Val Phe Ala His Tyr Gly Pro Arg Trp Lys Leu Leu
115 120 125

Arg Lys Leu Ser Asn Leu His Met Leu Gly Gly Lys Ala Leu Glu Asn
130 135 140

Trp Ala Asn Val Arg Ala Asn Glu Leu Gly His Met Leu Lys Ser Met
145 150 155 160

Ser Asp Met Ser Arg Glu Gly Gln Arg Val Val Val Ala Glu Met Leu
165 170 175

Thr Phe Ala Met Ala Asn Met Ile Gly Gln Val Met Leu Ser Lys Arg
180 185 190

Val Phe Val Asp Lys Gly Val Glu Val Asn Glu Phe Lys Asp Met Val
195 200 205

Val Glu Leu Met Thr Ile Ala Gly Tyr Phe Asn Ile Gly Asp Phe Ile
210 215 220

Pro Cys Leu Ala Trp Met Asp Leu Gln Gly Ile Glu Lys Arg Met Lys
225 230 235 240

Arg Leu His Lys Lys Phe Asp Ala Leu Leu Thr Lys Met Phe Asp Glu
245 250 255

His Lys Ala Thr Thr Tyr Glu Arg Lys Gly Lys Pro Asp Phe Leu Asp
260 265 270

Val Val Met Glu Asn Gly Asp Asn Ser Glu Gly Glu Arg Leu Ser Thr
275 280 285

Thr Asn Ile Lys Ala Leu Leu Asn Leu Phe Thr Ala Gly Thr Asp
290 295 300

Thr Ser Ser Ser Ala Ile Glu Trp Ala Leu Ala Glu Met Met Lys Asn
305 310 315 320

- 99 -

Pro Ala Ile Leu Lys Lys Ala Gln Ala Glu Met Asp Gln Val Ile Gly
325 330 335

Arg Asn Arg Arg Leu Leu Glu Ser Asp Ile Pro Asn Leu Pro Tyr Leu
340 345 350

Arg Ala Ile Cys Lys Glu Thr Phe Arg Lys His Pro Ser Thr Pro Leu
355 360 365

Asn Leu Pro Arg Ile Ser Asn Glu Pro Cys Ile Val Asp Gly Tyr Tyr
370 375 380

Ile Pro Lys Asn Thr Arg Leu Ser Val Asn Ile Trp Ala Ile Gly Arg
385 390 400

Asp Pro Gln Val Trp Glu Asn Pro Leu Glu Phe Asn Pro Glu Arg Phe
405 410 415

Leu Ser Gly Arg Asn Ser Lys Ile Asp Pro Arg Gly Asn Asp Phe Glu
420 425 430

Leu Ile Pro Phe Gly Ala Gly Arg Arg Ile Cys Ala Gly Thr Arg Met
435 440 445

Gly Ile Val Met Val Glu Tyr Ile Leu Gly Thr Leu Val His Ser Phe
450 455 460

Asp Trp Lys Leu Pro Ser Glu Val Ile Glu Leu Asn Met Glu Glu Ala
465 470 475 480

Phe Gly Leu Ala Leu Gln Lys Ala Val Pro Leu Glu Ala Met Val Thr
485 490 495

Pro Arg Leu Gln Leu Asp Val Tyr Val Pro
500 505

<210> 3
<211> 1741
<212> DNA
<213> petunia

<400> 3
ttgaatccag ctctatctgg ctttagacaa tggtgctact tagtgagctt gctgcagcaa 60
ccttaatctt tctaacaaca catatcttca tttcaactct tctttctata actaacggcc 120

- 100 -

- 101 -

<210> 4
<211> 508
<212> PRT
<213> petunia

<400> 4

Met Val Leu Leu Ser Glu Leu Ala Ala Ala Thr Leu Ile Phe Leu Thr
1 5 10 15

Thr His Ile Phe Ile Ser Thr Leu Leu Ser Ile Thr Asn Gly Arg Arg
20 25 30

Leu Pro Pro Gly Pro Arg Gly Trp Pro Val Ile Gly Ala Leu Pro Leu
35 40 45

Leu Gly Ala Met Pro His Val Ser Leu Ala Lys Met Ala Lys Lys Tyr
50 55 60

Gly Ala Ile Met Tyr Leu Lys Val Gly Thr Cys Gly Met Val Val Ala
65 70 75 80

Ser Thr Pro Asp Ala Ala Lys Ala Phe Leu Lys Thr Leu Asp Leu Asn
85 90 95

Phe Ser Asn Arg Pro Pro Asn Ala Gly Ala Thr His Leu Ala Tyr Gly
100 105 110

Ala Gln Asp Met Val Phe Ala His Tyr Gly Pro Arg Trp Lys Leu Leu
115 120 125

Arg Lys Leu Ser Asn Leu His Met Leu Gly Gly Lys Ala Leu Glu Asn
130 135 140

Trp Ala Asn Val Arg Ala Asn Glu Leu Gly His Met Leu Lys Ser Met
145 150 155 160

Phe Asp Met Ser Arg Glu Gly Glu Arg Val Val Val Ala Glu Met Leu
165 170 175

Thr Phe Ala Met Ala Asn Met Ile Gly Gln Val Ile Leu Ser Lys Arg
180 185 190

Val Phe Val Asn Lys Gly Val Glu Val Asn Glu Phe Lys Asp Met Val

- 102 -

195

200

205

Val Glu Leu Met Thr Thr Ala Gly Tyr Phe Asn Ile Gly Asp Phe Ile
210 215 220

Pro Cys Leu Ala Trp Met Asp Leu Gln Gly Ile Glu Lys Gly Met Lys
225 230 235 240

Arg Leu His Lys Lys Phe Asp Ala Leu Leu Thr Lys Met Phe Asp Glu
245 250 255

His Lys Ala Thr Ser Tyr Glu Arg Lys Gly Lys Pro Asp Phe Leu Asp
260 265 270

Cys Val Met Glu Asn Arg Asp Asn Ser Glu Gly Glu Arg Leu Ser Thr
275 280 285

Thr Asn Ile Lys Ala Leu Leu Asn Leu Phe Thr Ala Gly Thr Asp
290 295 300

Thr Ser Ser Ser Ala Ile Glu Trp Ala Leu Ala Glu Met Met Lys Asn
305 310 315 320

Pro Ala Ile Leu Lys Lys Ala Gln Gly Glu Met Asp Gln Val Ile Gly
325 330 335

Asn Asn Arg Arg Leu Leu Glu Ser Asp Ile Pro Asn Leu Pro Tyr Leu
340 345 350

Arg Ala Ile Cys Lys Glu Thr Phe Arg Lys His Pro Ser Thr Pro Leu
355 360 365

Asn Leu Pro Arg Ile Ser Asn Glu Pro Cys Ile Val Asp Gly Tyr Tyr
370 375 380

Ile Pro Lys Asn Thr Arg Leu Ser Val Asn Ile Trp Ala Ile Gly Arg
385 390 395 400

Asp Pro Glu Val Trp Glu Asn Pro Leu Glu Phe Tyr Pro Glu Arg Phe
405 410 415

Leu Ser Gly Arg Asn Ser Lys Ile Asp Pro Arg Gly Asn Asp Phe Glu
420 425 430

- 103 -

Leu Ile Pro Phe Gly Ala Gly Arg Arg Ile Cys Ala Gly Thr Arg Met
435 440 445

Gly Ile Val Met Val Glu Tyr Ile Leu Gly Thr Leu Val His Ser Phe
450 455 460

Asp Trp Lys Leu Pro Ser Glu Val Ile Glu Leu Asn Met Glu Glu Ala
465 470 475 480

Phe Gly Leu Ala Leu Gln Lys Ala Val Pro Leu Glu Ala Met Val Thr
485 490 495

Pro Arg Leu Pro Ile Asp Val Tyr Ala Pro Leu Ala
500 505

<210> 5
<211> 2934
<212> DNA
<213> rose promoter

<400> 5
gaattcggc tcggtaacca tctcgagaa gggtcgagag aagatcaaaa tggggaggaa 60
caaggatgga atgagcagtt tttgttgcgt tacaatagca aagcaaaaat gttagaatat 120
aatggtctga gaaaaggggt tgtatatacatggaaaag gagtttgaga agggaaagcga 180
gaggtgggta gctggggat cacgtgcctg cccaaattacc ttgttagaaa ccccccggcaa 240
atggcacgtg catcggtac gttttttgt ggtgtgtttt gccgatcaaa atccgcatga 300
tttggaatgc gtttgttctc tcgttttacc taccaaacaa agcgcacaaaa atatcgctt 360
tttttttttca tttaattca aacttgaatt tgatagagca acagtaccat acctccgtt 420
cacatttatt tacaaaccaa aatgtggaca aagacataac cataatcaaa ctctatatat 480
tcaaacatgg tttagactgga tgaaaagaat ctatgttgcgt agatgtgatt caagtattac 540
tattattaag tgagtttat tcatttaaga atacgatcat atttaatatt tacaccgtt 600
taaatttact cgaattgaaa gataattaat tataggtttt aatggcttaa ttgtcatcaa 660
taacagataa tgaaagttt ccaatttttc tataaaaaaa aatagaaaaaa aaaacaaaaaa 720
caaaaaatga agtcattta attttaaaaaa aatcaataca aaaaagacaa aacaaaacaa 780
aaaacaaaaaa atatcatcaa attgactatt atcagttta tttggcgtg gtaggttagac 840
agagtgacac atattataga taaaataat aatatagatg agctaattaa gcaagagctg 900

ccataaaataa agatgataga cttaggtgag aagagtgg tttatttcta tgggaagaag	960
aaaaaaaagag aggtggtagc tgcaatgcata ggggttcata ctctcatata cctcaactac	1020
caaatgcctt gcccttcata gttctcacct tcataaactt ttctgagctt cagtacaact	1080
gtataaaaaag acacaagtat gcctctacga gtacaattat ttatagcaat catgtcccat	1140
gagctaaatc agaaaatgaa ggctattata tagtttggaa attattctat gcaccgacgg	1200
tgttaactgac ccaacatTTta taagatgatc tcaactttt atatttataa ttaatatttt	1260
tattaataac ctaagagtgt atttaatata atctaacaat ccatttatgt cggtgcaaat	1320
acacgtcggt gcactgaact attagttctt tttggacaa gagccaattt ggggttcaac	1380
tcttcctttt atttctttaa agatgatcaa atgatttac ttcacccctt atggtgactc	1440
gaactcatga ctgcgtacat aggttagtgg tgctcgaattt gtgggttcaa ctcttcttcc	1500
tagctgtgtt taatgcgaga gacacgattt gttgtacaa tacgtttggg tctgtgaccg	1560
atattttggg tggtagccga gtgtcacaat aattggatga acaaatgatc gcaaatttgt	1620
attataaattt atggaagatg ggttcgagtt tgggtttagg tttgagttaa ctccccaaaca	1680
aacatcgctg ccagaggtgg aggacaaaca taaaggctat gagcattttc aattcacttg	1740
tggagctatg aaaatttgcacc tgcggtaaaa ccgttagagct ttccattcttta gccaattact	1800
ttcacccat agacctgatt ttgttatata caaaatgtca agatgcgtaa agttaaagaa	1860
tagaagaatc cctgaagtga tatgccaccc acatgcatac cagttgagca ttgaagaatt	1920
cagagactcc tcaaaatatg cagccagttt tctctgaattt ggttcatgag tactaaagca	1980
cggcaaaaac acacgatgtt acacgacca ttcttgcata gacaaattta tgtacagact	2040
aacaaagtta ttaacacaga agctatcaaa tgagacttgc agcaaaaagtc tcatggctat	2100
ttgatgtttc acactgcaga ttgcacccc atgtgctca aggttctgtt acactatagt	2160
aatccatatac cacagaaaaaa ttaccatcag gagtaggacc aaccggctcc cgatcttcca	2220
ccaaaatcaa gctagactcc tcaccaaccg ggggcacatc atcaatttgc ctcacacaag	2280
gtgcttcagt cattgattcc ggcgattcag acaaaaggc tgcaagagaa caagtggcac	2340
tgcaactttc aagagaagta aatttcacat ccaacactgg aatttcaaaa tccaccacag	2400
aagaagcacg tgagaattca aggatattct tcacaaacatc tttgtcagaa ttcttcttctg	2460
tcacttcctt cgcacgtctg tcagaattct cttctgtcac ttcccttgc ttagcatcat	2520
cctgagtgtt attaaatcca tcatcagtctt cattttgagg caccccgttt ggaatatcag	2580

- 105 -

ttttatcagg gttggcaatg ttgctcatct cagtgtatgc tactccattc tcaatcttt 2640
ctgttatctg acaaaaatca gttcgagcca tgccatgatt agccagatca actgcattct 2700
caccgctctt accatcaggt ttgtcttctt cactgcctc atgacactcg tgctgeacat 2760
gaattccgtc tagtttaaca gagtgctcat cattagatct ttcaacattc tcctcaactat 2820
atgaagaaat tctggataaa tcagcaagtg aatcttcac attttgtatc ccatcagatt 2880
catcaaagca catggatggc tctgtcccta tttcttcaac tcttgctgaa gttt 2934

<210> 6
<211> 24
<212> DNA
<213> oligo

<400> 6
gttctcgagg aaagataata caat

24

<210> 7
<211> 20
<212> DNA
<213> oligo

<400> 7
caagatcgta ggactgcattg

20

<210> 8
<211> 20
<212> DNA
<213> chrysanCHSATG

<400> 8
gttaaggaag ccatgggtgt

20

<210> 9
<211> 1648
<212> DNA
<213> bp

<400> 9
agccaatatg gcaattccag tcactgacct tgctgtcgcg gttatccttt tcttgatcac 60
tcgttcccta gttcggttctc ttttcaagaa accaaccgga ccgctcccgc cgggtccttc 120
aggctggccc ttgggtggcg cgctccctct cctaggcgcc atgcctcactg tcacactagc 180
caacctcgct aaaaaatacg gtcccgatcat gtacctaata atgggcacgt gcgacatgtt 240
ggtcgcgtcc actccccact cggctcgagc ctccctcaaa accctagacc tcaacttctc 300
cgaccgcggc cccaaacgcgg gcggccaccca tttggcgtac ggccgcagg acttggtctt 360

- 106 -

cgcgaagtac	ggtccaaagg	t ggaagaccct	aagaaaattg	agcaac	c tcc	acatgctagg	420		
cgggaaggcg	ctggacgatt	gggctcacgt	gagggcta	ac gagctagg	cc acatgcttaa	480			
cgc	catgtgc	gaggcgagcc	ggtgcggaga	gcccgtgg	tgctcacgt	540			
cgc	catggcc	aacatgate	gtcaagtgtat	actgagtcgg	tcaccaaagg	600			
gacagagtcg	aacgagttca	aagatatgg	gtcgagttg	atgacttccg	cgggtat	660			
caacattgg	gacttca	atac	cgtcgattgc	ttggatggat	tcgagcagg	720			
gatgaagaaa	ttgcacacga	aattcgatgt	tttgttgcg	aagatgtga	aggagcacag	780			
agcgacgagt	catgagcgcg	aaggaaatc	ggat	ttc	tcgaaagaatg	840			
c	gagaataca	aatggcgaga	agcttaatgt	taccaacgtc	aaagctgtcc	tcttgaactt	900		
attcacggcg	ggtacggaca	catcttcaag	cataatcgaa	tggcg	ccgaaatgtat	960			
gaagaatccg	acgatcttaa	aaaagaccca	agaagagatg	gatcgagtca	tcgg	tcgcga	1020		
tcggagattt	ctcgaatccg	acgtttcgaa	actcccgtat	ttacaagcc	tagcgaa	1080			
aacatatcgt	aaacacccat	cgacac	cctct	aaac	ctgccc	aggattgcga	1140		
tgaagttgat	ggctactaca	tccccaaaga	cacgagg	ctt	agcgtcaaca	tttggcgat	1200		
cgg	tcgggac	ccaagtgtt	gggagaatcc	atcggagttc	tcgc	ctgaaa	gattcttgc	1260	
tgaggagaat	gggaagatca	gtccaggcgg	gaatgat	ttt	gagctgattc	cg	tttggagc	1320	
agggaggaga	at	tttgc	tg	ggacaaggat	gg	aatgg	tc	tttgg	1380
cactttgg	tc	attttttt	tg	tttggaaatt	accaatgg	gtc	actg	gaga	1440
tgagagttt	gg	cttgcgt	tg	caaaaggc	cgt	cc	tgc	tacgg	1500
attggccca	agcgcgtac	ttat	atg	ggcgtac	tc	ag	tc	cacg	1560
gggtgtgtt	tatctgtaat	ttttaatatt	ataaagttc	taat	tttgc	tttat	gt	tttatgtt	1620
attatgagtt	aaaaaaa	aaaaaaa	aaaaaaa	aaaaaaa	aaaaaaa	aaaaaaa	aaaaaaa	aaaaaaa	1648

<210> 10
<211> 506
<212> PRT
<213> bp

<400> 10

Met Ala Ile Pro Val Thr Asp Leu Ala Val Ala Val Ile Leu Phe Leu
1 5 10 15

- 107 -

Ile Thr Arg Phe Leu Val Arg Ser Leu Phe Lys Lys Pro Thr Gly Pro
20 25 30

Leu Pro Pro Gly Pro Ser Gly Trp Pro Leu Val Gly Ala Leu Pro Leu
35 40 45

Leu Gly Ala Met Pro His Val Thr Leu Ala Asn Leu Ala Lys Lys Tyr
50 55 60

Gly Pro Ile Met Tyr Leu Lys Met Gly Thr Cys Asp Met Val Val Ala
65 70 75 80

Ser Thr Pro Asp Ser Ala Arg Ala Phe Leu Lys Thr Leu Asp Leu Asn
85 90 95

Phe Ser Asp Arg Pro Pro Asn Ala Gly Ala Thr His Leu Ala Tyr Gly
100 105 110

Ala Gln Asp Leu Val Phe Ala Lys Tyr Gly Pro Arg Trp Lys Thr Leu
115 120 125

Arg Lys Leu Ser Asn Leu His Met Leu Gly Gly Lys Ala Leu Asp Asp
130 135 140

Trp Ala His Val Arg Ala Asn Glu Leu Gly His Met Leu Asn Ala Met
145 150 155 160

Cys Glu Ala Ser Arg Cys Gly Glu Pro Val Val Leu Ala Glu Met Leu
165 170 175

Thr Tyr Ala Met Ala Asn Met Ile Gly Gln Val Ile Leu Ser Arg Arg
180 185 190

Val Phe Val Thr Lys Gly Thr Glu Ser Asn Glu Phe Lys Asp Met Val
195 200 205

Val Glu Leu Met Thr Ser Ala Gly Tyr Phe Asn Ile Gly Asp Phe Ile
210 215 220

Pro Ser Ile Ala Trp Met Asp Leu Gln Gly Ile Glu Arg Gly Met Lys
225 230 235 240

Lys Leu His Thr Lys Phe Asp Val Leu Leu Thr Lys Met Met Lys Glu

- 108 -

245

250

255

His Arg Ala Thr Ser His Glu Arg Glu Gly Lys Ser Asp Phe Leu Asp
260 265 270

Val Leu Leu Glu Glu Cys Glu Asn Thr Asn Gly Glu Lys Leu Asn Val
275 280 285

Thr Asn Val Lys Ala Val Leu Leu Asn Leu Phe Thr Ala Gly Thr Asp
290 295 300

Thr Ser Ser Ser Ile Ile Glu Trp Ala Leu Thr Glu Met Met Lys Asn
305 310 315 320

Pro Thr Ile Leu Lys Lys Thr Gln Glu Glu Met Asp Arg Val Ile Gly
325 330 335

Arg Asp Arg Arg Leu Leu Glu Ser Asp Val Ser Lys Leu Pro Tyr Leu
340 345 350

Gln Ala Ile Ala Lys Glu Thr Tyr Arg Lys His Pro Ser Thr Pro Leu
355 360 365

Asn Leu Pro Arg Ile Ala Ile Gln Ala Cys Glu Val Asp Gly Tyr Tyr
370 375 380

Ile Pro Lys Asp Thr Arg Leu Ser Val Asn Ile Trp Ala Ile Gly Arg
385 390 395 400

Asp Pro Ser Val Trp Glu Asn Pro Ser Glu Phe Ser Pro Glu Arg Phe
405 410 415

Leu Ser Glu Glu Asn Gly Lys Ile Ser Pro Gly Gly Asn Asp Phe Glu
420 425 430

Leu Ile Pro Phe Gly Ala Gly Arg Arg Ile Cys Ala Gly Thr Arg Met
435 440 445

Gly Met Val Leu Val Ser Tyr Ile Leu Gly Thr Leu Val His Ser Phe
450 455 460

Asp Trp Lys Leu Pro Asn Gly Val Ser Glu Ile Asn Met Asp Glu Ser
465 470 475 480

- 109 -

Phe Gly Leu Ala Leu Gln Lys Ala Val Pro Leu Ser Ala Thr Val Ser
485 490 495

Pro Arg Leu Ala Pro Ser Ala Tyr Val Ile
500 505

<210> 11
<211> 1781
<212> DNA
<213> bp

<220>
<221> misc_feature
<222> (306)..(306)
<223> n = any nucleotide

<400> 11	60
gacaacatgg caattctagt caccgacttc gttgtcgccgg ctataatttt cttgatca	60
cgggttcttag ttcgttctct tttcaagaaa ccaacccgac cgctcccccc gggtcctctc	120
ggttggccct tggtgggcgc cctccctctc ctaggcgcca tgcc tacgt cgca	180
aaactcgcta agaagtatgg tccgatcatg cacctaaaaa tgggcacgtg cgacatgg	240
gtcgcgtcca ccccccagtc ggctcgagcc ttccctaaaaa cgctagacct caacttctcc	300
aaccgnccac ccaacgcggg cgcatccac ctagcgtacg gcgcgcagga cttagtc	360
gccaagtacg gtccgagggtg gaagacttta agaaaattga gcaacctcca catgctaggc	420
ggaaaggcgt tggatgattg ggcaa atgtg agggtcacccg agctaggcca catgctt	480
gccatgtgcg aggcgagccg gtgcggggag cccgtggtgc tggccgagat gtcacgtac	540
gccatggcga acatgatcgg tcaagtgata ctcagccggc gcgtgttcgt gaccaagg	600
accgagtcta acgagttcaa agacatggtg gtcgagttga tgacgtccgc cgggtacttc	660
aacatcggtg acttcataacc ctcgatcgct tggatggatt tgcaaggat cgagcgagg	720
atgaagaagc tgcacacgaa gtttgatgtg ttattgacga agatggtaaa ggagcataga	780
gcgacgagtc atgagcgcaa agggaggca gatccctcg acgttctctt ggaagaatgc	840
gacaatacaa atggggagaa gcttagtatt accaatatca aagctgtcct tttgaatcta	900
ttcacggcgg gcacggacac atcttcgagc ataatcgaat gggcgtaac ggagatgatc	960
aagaatccga cgatctaaa aaaggcgcaa gaggagatgg atcgagtcgat cggtcgtat	1020
cggaggctgc tcgaatcgga catatcgagc ctccgtacc tacaagccat tgctaaagaa	1080

- 110 -

acgtatcgca aacacccgtc gacgcctctc aacttgcgat ccaagcatgt	1140
gaagttgatg gctactacat ccctaaggac gcgaggctta gcgtgaacat ttggcgatc	1200
ggtcgggacc cgaatgttg ggagaatccg ttggagttct tgccggaaag attcttgtct	1260
gaagagaatg ggaagatcaa tcccggtggg aatgattta agctgattcc gtttggagcc	1320
gggaggagaa tttgtgcggg gacaaggatg ggaatggtcc ttgttaagtta tattttggc	1380
actttggtcc attctttga ttggaaatta ccaaattggt tcgctgagct taatatggat	1440
gaaaagtttg ggcttgcatt gcaaaaggcc gtgccgtct cggccttggc cagccccacgg	1500
ttggcctcaa acccgtacgc aacctgagct aatgggctgg gcctagttt gtggccctta	1560
atttagagac ttttgtttt taaggtgtgt actttattaa ttgggtgctt aaatgtgtgt	1620
tttaatttgt atttatggtt aattatgact ttattgtata attatttatt ttcccttct	1680
gggtatttta tccatttaat ttttcttag aattatgatc atagttatca gaataaaatt	1740
gaaaataatg aatcgaaaaa aaaaaaaaaa aaaaaaaaaa a	1781

<210> 12
<211> 506
<212> PRT
<213> bp

<400> 12

Met Ala Ile Leu Val Thr Asp Phe Val Val Ala Ala Ile Ile Phe Leu
1 5 10 15

Ile Thr Arg Phe Leu Val Arg Ser Leu Phe Lys Lys Pro Thr Arg Pro
20 25 30

Leu Pro Pro Gly Pro Leu Gly Trp Pro Leu Val Gly Ala Leu Pro Leu
35 40 45

Leu Gly Ala Met Pro His Val Ala Leu Ala Lys Leu Ala Lys Lys Tyr
50 55 60

Gly Pro Ile Met His Leu Lys Met Gly Thr Cys Asp Met Val Val Ala
65 70 75 80

Ser Thr Pro Glu Ser Ala Arg Ala Phe Leu Lys Thr Leu Asp Leu Asn
85 90 95

- 111 -

Phe Ser Asn Arg Pro Pro Asn Ala Gly Ala Ser His Leu Ala Tyr Gly
100 105 110

Ala Gln Asp Leu Val Phe Ala Lys Tyr Gly Pro Arg Trp Lys Thr Leu
115 120 125

Arg Lys Leu Ser Asn Leu His Met Leu Gly Gly Lys Ala Leu Asp Asp
130 135 140

Trp Ala Asn Val Arg Val Thr Glu Leu Gly His Met Leu Lys Ala Met
145 150 155 160

Cys Glu Ala Ser Arg Cys Gly Glu Pro Val Val Leu Ala Glu Met Leu
165 170 175

Thr Tyr Ala Met Ala Asn Met Ile Gly Gln Val Ile Leu Ser Arg Arg
180 185 190

Val Phe Val Thr Lys Gly Thr Glu Ser Asn Glu Phe Lys Asp Met Val
195 200 205

Val Glu Leu Met Thr Ser Ala Gly Tyr Phe Asn Ile Gly Asp Phe Ile
210 215 220

Pro Ser Ile Ala Trp Met Asp Leu Gln Gly Ile Glu Arg Gly Met Lys
225 230 235 240

Lys Leu His Thr Lys Phe Asp Val Leu Leu Thr Lys Met Val Lys Glu
245 250 255

His Arg Ala Thr Ser His Glu Arg Lys Gly Lys Ala Asp Phe Leu Asp
260 265 270

Val Leu Leu Glu Glu Cys Asp Asn Thr Asn Gly Glu Lys Leu Ser Ile
275 280 285

Thr Asn Ile Lys Ala Val Leu Leu Asn Leu Phe Thr Ala Gly Thr Asp
290 295 300

Thr Ser Ser Ser Ile Ile Glu Trp Ala Leu Thr Glu Met Ile Lys Asn
305 310 315 320

Pro Thr Ile Leu Lys Lys Ala Gln Glu Glu Met Asp Arg Val Ile Gly

- 112 -

325

330

335

Arg Asp Arg Arg Leu Leu Glu Ser Asp Ile Ser Ser Leu Pro Tyr Leu
340 345 350

Gln Ala Ile Ala Lys Glu Thr Tyr Arg Lys His Pro Ser Thr Pro Leu
355 360 365

Asn Leu Pro Arg Ile Ala Ile Gln Ala Cys Glu Val Asp Gly Tyr Tyr
370 375 380

Ile Pro Lys Asp Ala Arg Leu Ser Val Asn Ile Trp Ala Ile Gly Arg
385 390 395 400

Asp Pro Asn Val Trp Glu Asn Pro Leu Glu Phe Leu Pro Glu Arg Phe
405 410 415

Leu Ser Glu Glu Asn Gly Lys Ile Asn Pro Gly Gly Asn Asp Phe Lys
420 425 430

Leu Ile Pro Phe Gly Ala Gly Arg Arg Ile Cys Ala Gly Thr Arg Met
435 440 445

Gly Met Val Leu Val Ser Tyr Ile Leu Gly Thr Leu Val His Ser Phe
450 455 460

Asp Trp Lys Leu Pro Asn Gly Val Ala Glu Leu Asn Met Asp Glu Ser
465 470 475 480

Phe Gly Leu Ala Leu Gln Lys Ala Val Pro Leu Ser Ala Leu Val Ser
485 490 495

Pro Arg Leu Ala Ser Asn Pro Tyr Ala Thr
500 505

<210> 13
<211> 1659
<212> DNA
<213> salvia

<400> 13
catggaaagcc caagaaaata ttttgttat tgcttagggca ctttgttagt catccttact 60
ctacattttg atccgtatgt ttatctcaaattgagcacc accggccacc ctctgcccc 120

ggggccgagg ggctttctag tgggtggcgc cttcccttg ctgggcgaca tgccacatgt 180
cgccctagca aaaatggcca aaacttacgg cccgatcatg tacttgaaaa tgggcacagt 240
cgcatggtc gtggcgtcca cgccagacgc ggccggggcg ttccctaaaaa cccacgcacgc 300
taatttctcg aaccggccgg tcaacgcggg tgccaccatc ctggcataca atgcccagga 360
catggtgttt gccccgtacg gccccaaatg gagactgctg aggaagctga gcagtcctcca 420
catgctgggg agcaaggccc tggaggagtg ggctgacgtc cggacctcgg aggtggggca 480
catgctggcg gcgatgcacg aggccagccg cctggcggag gccgtgggt tgccggagat 540
gctggtgtac gcgacggcga acatgatcgg gcaggtgata ttgagccgga gagttttcg 600
gacgaaaaggg aaggagatga atgaattcaa gaaaaatggtg gtggagctca tgaccacagc 660
tggctatttc aacattggtg atttcattcc atggcttgct tggatggatt tgcagggat 720
tgagagaggg atgaagaaac tgcacaagaa gtgggaccgc ttgatcggtt agatgctgg 780
tgatcgattt aatcaacact acaaacgcaa cgacaagcca gatcttcttg attctctttt 840
ggcaaatcat gatgatgaga gtaaggatga tgatgaggat tgcaagctca ccaccaccaa 900
tattaagcc ctttactga atttatttac tgcagggaca gacacatgt cgagcataat 960
agaatggca ttagcggaga tgatcaagaa tccaaagcatc caaaaaaggg ctcaccaaga 1020
gatggacaga gtcatcgga gagagcggcg tttgctcgaa tccgacatcc caaatctgcc 1080
atacctcaaa gccatatgca aagaggcata cggaaaacac cttccacgc cactaaacct 1140
gcctcgatc tccacggatg catgcgttgt cgatggatc cacatccca agaacacgag 1200
gttgagcgtc aacatctggg ccataggccg agatcccgcac gtttgggaga atccccttga 1260
cttcaaccct gacagggtta tgtcagggtt gcaggggatt gagccggag ggaatcactt 1320
cgagctcatt cccttgggg cggggcgcag gatctgcgc ggcagcagaa tggggattgt 1380
aatagtgag tatttgctgg cgacacttgt gcactcttc gaatgggatt tgccggccgg 1440
ctcagcggag atggacatgg aggaggtgtt cgggctggcc ttgcagaaag ctgtaccact 1500
tgctgctagg ctcactccta ggttgccttc acattgctat gcacccctt ctatttaatt 1560
tgcataattta catatgttgtt gttacattga gccttgcattt atgttgcatac caacctatct 1620
tataacttgtt gcatgaaatt gaaaaaaaaaaaaaaa 1659

<210> 14
<211> 520
<212> PRT
<213> *salvia*

- 114 -

<400> 14

Gly Thr Ser Met Glu Ala Gln Glu Asn Met Leu Leu Ile Ala Arg Ala
1 5 10 15

Leu Val Val Ala Ser Leu Leu Tyr Ile Leu Ile Arg Met Phe Ile Ser
20 25 30

Lys Leu Ser Thr Thr Gly His Pro Leu Pro Pro Gly Pro Arg Gly Phe
35 40 45

Leu Val Val Gly Ser Leu Pro Leu Leu Gly Asp Met Pro His Val Ala
50 55 60

Leu Ala Lys Met Ala Lys Thr Tyr Gly Pro Ile Met Tyr Leu Lys Met
65 70 75 80

Gly Thr Val Gly Met Val Val Ala Ser Thr Pro Asp Ala Ala Arg Ala
85 90 95

Phe Leu Lys Thr His Asp Ala Asn Phe Ser Asn Arg Pro Val Asn Ala
100 105 110

Gly Ala Thr Ile Leu Ala Tyr Asn Ala Gln Asp Met Val Phe Ala Pro
115 120 125

Tyr Gly Pro Lys Trp Arg Leu Leu Arg Lys Leu Ser Ser Leu His Met
130 135 140

Leu Gly Ser Lys Ala Leu Glu Glu Trp Ala Asp Val Arg Thr Ser Glu
145 150 155 160

Val Gly His Met Leu Ala Ala Met His Glu Ala Ser Arg Leu Gly Glu
165 170 175

Ala Val Gly Leu Pro Glu Met Leu Val Tyr Ala Thr Ala Asn Met Ile
180 185 190

Gly Gln Val Ile Leu Ser Arg Arg Val Phe Val Thr Lys Gly Lys Glu
195 200 205

Met Asn Glu Phe Lys Glu Met Val Val Glu Leu Met Thr Thr Ala Gly
210 215 220

- 115 -

Tyr Phe Asn Ile Gly Asp Phe Ile Pro Trp Leu Ala Trp Met Asp Leu
225 230 235 240

Gln Gly Ile Glu Arg Gly Met Lys Lys Leu His Lys Lys Trp Asp Arg
245 250 255

Leu Ile Gly Lys Met Leu Asp Asp Arg Leu Lys Ser Thr Tyr Lys Arg
260 265 270

Asn Asp Lys Pro Asp Leu Leu Asp Ser Leu Leu Ala Asn His Asp Asp
275 280 285

Glu Ser Lys Asp Asp Asp Glu Asp Cys Lys Leu Thr Thr Thr Asn Ile
290 295 300

Lys Ala Leu Leu Leu Asn Leu Phe Thr Ala Gly Thr Asp Thr Ser Ser
305 310 315 320

Ser Ile Ile Glu Trp Ala Leu Ala Glu Met Ile Lys Asn Pro Ser Ile
325 330 335

Gln Lys Arg Ala His Gln Glu Met Asp Arg Val Ile Gly Arg Glu Arg
340 345 350

Arg Leu Leu Glu Ser Asp Ile Pro Asn Leu Pro Tyr Leu Lys Ala Ile
355 360 365

Cys Lys Glu Ala Tyr Arg Lys His Pro Ser Thr Pro Leu Asn Leu Pro
370 375 380

Arg Ile Ser Thr Asp Ala Cys Val Val Asp Gly Tyr His Ile Pro Lys
385 390 395 400

Asn Thr Arg Leu Ser Val Asn Ile Trp Ala Ile Gly Arg Asp Pro Asp
405 410 415

Val Trp Glu Asn Pro Leu Asp Phe Asn Pro Asp Arg Phe Met Ser Gly
420 425 430

Leu Gln Gly Ile Glu Pro Gly Gly Asn His Phe Glu Leu Ile Pro Phe
435 440 445

- 116 -

Gly Ala Gly Arg Arg Ile Cys Ala Gly Ser Arg Met Gly Ile Val Ile
450 455 460

Val Glu Tyr Leu Leu Ala Thr Leu Val His Ser Phe Glu Trp Asp Leu
465 470 475 480

Pro Ala Gly Ser Ala Glu Met Asp Met Glu Glu Val Phe Gly Leu Ala
485 490 495

Leu Gln Lys Ala Val Pro Leu Ala Ala Arg Leu Thr Pro Arg Leu Pro
500 505 510

Ser His Cys Tyr Ala Pro Pro Ser
515 520

<210> 15
<211> 1617
<212> DNA
<213> saliva

<400> 15
agatagtaag catggaagcc caagaaaata tgggttgtat tgctaggca cttgtttag 60
catccttact ctacattttg atccgtatgt ttatctcaaattgagcacc ccggccacc 120
ctctcccccc gggcccgagg ggcttccag tggggctc cttcccttg ctggcgaca 180
tgccacatgt tgccctagca aaaatggcca aaacttatgg cccgatcatg tacttggaaaa 240
tgggcacagt cggcatggtc gtggcgcca cgccagacgc ggccggcg ttcctaaaaaa 300
cccaggacgc taatttctct aaccggccgg tcaacgcggg tgccaccatc ctggcataca 360
atgcccagga catgggtttt gccccgtacg gccccaaatg gagattgctg aggaagctga 420
gcagtctcca catgctgggg agcaaggccc tggaggagtg ggccgacgac cggacctcg 480
aggtggggca catgctggcg gcatgcacg aggccagccg cctggacgag gccgtgggt 540
tgccggagat gctgggtac gcacggcga acatgatcg gaaggtgata ttgagccgga 600
gagttttcgat gacgaaaggg aaggagatga atgagttcaa gaaaatggtg gtggagctca 660
tgaccacagc tggctatttc aacattggtg attcattcc atggcttgc tggatggatt 720
tgcaggggat tgagagaggg atgaagaaac tgcacaagaa gtgggaccgc ttgatcgta 780
agatgctgga tgatcgattt aaatcaacct acaaacgcaa cgacaagccaa gatcttctt 840
attctctctt ggcaaatcat gatgatgaga gtaaggatga tgatgaggat tgcaagctca 900

- 117 -

ccaccaccaa tattaaagcc cttttactga atttatttac tgcagggaca gacacatcgt	960
cgagcataat agaatggca ctagcggaga tgatcaagaa tccaaggcatc caaaaaaggg	1020
ctcaccaaga gatggacaga gtcatcgaaa gagagcggcg tttgctcgaa tccgacatcc	1080
caaattctgcc atacctcaaa gccatatgca aagaggcata ccgaaaacac cttccacgc	1140
cactaacct gcctcggtc tccacggatg catgcgtcgt cgatggctac cacatcccc	1200
agaacacgag gttgagcgtc aacatctggg ccataggccg agatcccac gtttggaga	1260
atccccttga cttcaaccct gacaggtttta tgtcagggtt gcagggatt gagccggag	1320
ggaatcactt cgagctcatt ccctttgggg cggggcgcag gatctgcgcc ggcagcagaa	1380
tggggattgt aatagtggag tatttgcgg cgacactcgt gcaactttc gaatggatt	1440
tgccagccgg ctcagcggag atggacatgg aggaggtgtt cgggctggcc ttgcagaaag	1500
ctgtaccact tgctgcgtt ctcactccta gttgccttc acattgctat gcacccctt	1560
ctatttaatt tgcataatttataatgttgtt gttacatttga aaaaaaaaaa aaaaaaaaa	1617

<210> 16
<211> 518
<212> PRT
<213> salvia

<400> 16

Met Glu Ala Gln Glu Asn Met Leu Leu Ile Ala Arg Ala Leu Val Val			
1	5	10	15

Ala Ser Leu Leu Tyr Ile Leu Ile Arg Met Phe Ile Ser Lys Leu Ser		
20	25	30

Thr Pro Gly His Pro Leu Pro Pro Gly Pro Arg Gly Phe Pro Val Val		
35	40	45

Gly Ser Leu Pro Leu Leu Gly Asp Met Pro His Val Ala Leu Ala Lys		
50	55	60

Met Ala Lys Thr Tyr Gly Pro Ile Met Tyr Leu Lys Met Gly Thr Val			
65	70	75	80

Gly Met Val Val Ala Ser Thr Pro Asp Ala Ala Arg Ala Phe Leu Lys		
85	90	95

Thr Gln Asp Ala Asn Phe Ser Asn Arg Pro Val Asn Ala Gly Ala Thr

- 118 -

100

105

110

Ile Leu Ala Tyr Asn Ala Gln Asp Met Val Phe Ala Pro Tyr Gly Pro
115 120 125

Lys Trp Arg Leu Leu Arg Lys Leu Ser Ser Leu His Met Leu Gly Ser
130 135 140

Lys Ala Leu Glu Glu Trp Ala Asp Val Arg Thr Ser Glu Val Gly His
145 150 155 160

Met Leu Ala Ala Met His Glu Ala Ser Arg Leu Asp Glu Ala Val Gly
165 170 175

Leu Pro Glu Met Leu Val Tyr Ala Thr Ala Asn Met Ile Gly Lys Val
180 185 190

Ile Leu Ser Arg Arg Val Phe Val Thr Lys Gly Lys Glu Met Asn Glu
195 200 205

Phe Lys Glu Met Val Val Glu Leu Met Thr Thr Ala Gly Tyr Phe Asn
210 215 220

Ile Gly Asp Phe Ile Pro Trp Leu Ala Trp Met Asp Leu Gln Gly Ile
225 230 235 240

Glu Arg Gly Met Lys Lys Leu His Lys Lys Trp Asp Arg Leu Ile Gly
245 250 255

Lys Met Leu Asp Asp Arg Leu Lys Ser Thr Tyr Lys Arg Asn Asp Lys
260 265 270

Pro Asp Leu Leu Asp Ser Leu Leu Ala Asn His Asp Asp Glu Ser Lys
275 280 285

Asp Asp Asp Glu Asp Cys Lys Leu Thr Thr Thr Asn Ile Lys Ala Leu
290 295 300

Leu Leu Asn Leu Phe Thr Ala Gly Thr Asp Thr Ser Ser Ser Ile Ile
305 310 315 320

Glu Trp Ala Leu Ala Glu Met Ile Lys Asn Pro Ser Ile Gln Lys Arg
325 330 335

- 119 -

Ala His Gln Glu Met Asp Arg Val Ile Gly Arg Glu Arg Arg Leu Leu
340 345 350

Glu Ser Asp Ile Pro Asn Leu Pro Tyr Leu Lys Ala Ile Cys Lys Glu
355 360 365

Ala Tyr Arg Lys His Pro Ser Thr Pro Leu Asn Leu Pro Arg Ile Ser
370 375 380

Thr Asp Ala Cys Val Val Asp Gly Tyr His Ile Pro Lys Asn Thr Arg
385 390 395 400

Leu Ser Val Asn Ile Trp Ala Ile Gly Arg Asp Pro Asp Val Trp Glu
405 410 415

Asn Pro Leu Asp Phe Asn Pro Asp Arg Phe Met Ser Gly Leu Gln Gly
420 425 430

Ile Glu Pro Gly Gly Asn His Phe Glu Leu Ile Pro Phe Gly Ala Gly
435 440 445

Arg Arg Ile Cys Ala Gly Ser Arg Met Gly Ile Val Ile Val Glu Tyr
450 455 460

Leu Leu Ala Thr Leu Val His Ser Phe Glu Trp Asp Leu Pro Ala Gly
465 470 475 480

Ser Ala Glu Met Asp Met Glu Glu Val Phe Gly Leu Ala Leu Gln Lys
485 490 495

Ala Val Pro Leu Ala Ala Arg Leu Thr Pro Arg Leu Pro Ser His Cys
500 505 510

Tyr Ala Pro Pro Ser Ile
515

<210> 17
<211> 1730
<212> DNA
<213> sollya

<220>
<221> misc_feature

- 120 -

<222> (1372)..(1372)
<223> n = any nucleotide

<400> 17

gatggctact accttagaat tcattctatg cttcaccatt actgcacttc	ctttctata	60
ttgcatactt aacatgcgca tcctccttaa ccgtcaccccg aggtca	cactcc caccagg	tcc 120
aagaccatgg cctattgttag gaaaacccc accacccgg accaagccac	accactccat	180
agctgccatg gctcgaaat acgggtccct cctgcaccc tcgatggca	tcgtgcacgt	240
ggtggttgc gcctctgctg atgtggggc acagttctt aagaatgtg	ccaacttctc	300
tagccggcca ccgaattctg gtgctaagca tatggcttat aactatcacg	acatgggtt	360
tgcaccctac ggtccaaagggt ggccatgtt gagaaaaatt tgccttc	atatattctc	420
cgcataaggct ctcgatgatt ttcatcgctg cggtgaggag gaggttgc	ca tactcgag	480
gaccctagca cacgcaggcc aaaagccggt gaatttgggg cagttttct	ctacgtgtaa	540
tgctaattgcg ctatcagtgc tgatgctagg caggaggtt ttcagcacag	aagttgattc	600
aaaagcatat gatttcaaacc aaatgggtt ggagctgtt actctagccg	gtgagttt	660
cgtcagtgtt ttcatccccac ccctcgagtg gctagacttg caaggcgtgg	cagcgaaaat	720
gaagaacgtg cacaatcgat tcgatgcgtt tctgaatgtat attttggagg	agcataagct	780
gaaaacttaat aatagtggac atggggaca aaaaacatatg gacttggat	gtacgttgt	840
tttgcttaag gatgatgctg atagtgggg aggaaaactc actgatactg	aaatcaaagc	900
gctgctttt aatttggggat ctgctggac ggacacttca tccagcacaa	tagaatgggt	960
tatagctgag cttatacgca atcctaaaat cttagccaa gcccaaagag	agttggactt	1020
ggtggttggt ccaaatacgat ttgttaacggaa ttggaccc tc aaacaattaa	cctacctaca	1080
agccatcgatc aaagaaaacct ttggctaca tcctgctacc ccactttcac	ttccacggat	1140
cgcaaccgaa agctgtgaaa tcaacgggtt ttacattcca aagggtcaaa	cacttctcg	1200
taacatatgg gccataggcc gtatccaaa cacttgggtt gaaccattgg	tattccgacc	1260
tgaacgattc ttatcgatg gtgaaagtcc taatgttgcgtt gtaattttga	1320	
attgataccat tttggggcg ggcgaagaat ttgtgctggg atgaacttttgnctacgc	1380	
ggtccagttt gttactgcaaa cgttaattca tgcatttaac tggagttgc	cagaaggaa	1440
atggccagaa aatatgaata tggaggaaga ctatggatt agcttgcaac	ggacagtgc	1500
attagttgtt catccaaagc ccagactaga ccatgaagtt tattcgtccc	atggagttgt	1560

- 121 -

aaaactgagta cattcatgaa ctgacccaga agctgtcaga tgcgtctta tattgcctta 1620
tgcgtgcga cccttggtg tttttatgt attgtttgt acaagggtga agcccggtcg 1680
gcgcatggac aattttataa gtttatataa ataaaaaaaaaaaaaaa 1730

<210> 18
<211> 521
<212> PRT
<213> sollya

<400> 18

Met Ala Thr Thr Leu Glu Phe Ile Leu Cys Phe Thr Ile Thr Ala Leu
1 5 10 15

Pro Phe Leu Tyr Cys Ile Leu Asn Met Arg Ile Leu Leu Asn Arg His
20 25 30

Pro Arg Ser Leu Pro Pro Gly Pro Arg Pro Trp Pro Ile Val Gly Asn
35 40 45

Leu Pro His Leu Gly Thr Lys Pro His His Ser Ile Ala Ala Met Ala
50 55 60

Arg Lys Tyr Gly Pro Leu Leu His Leu Arg Met Gly Ile Val His Val
65 70 75 80

Val Val Ala Ala Ser Ala Asp Val Ala Ala Gln Phe Leu Lys Asn Asp
85 90 95

Ala Asn Phe Ser Ser Arg Pro Pro Asn Ser Gly Ala Lys His Met Ala
100 105 110

Tyr Asn Tyr His Asp Met Val Phe Ala Pro Tyr Gly Pro Arg Trp Arg
115 120 125

Met Leu Arg Lys Ile Cys Ala Leu His Ile Phe Ser Ala Lys Ala Leu
130 135 140

Asp Asp Phe His Arg Val Arg Glu Glu Glu Val Ala Ile Leu Ala Arg
145 150 155 160

Thr Leu Ala His Ala Gly Gln Lys Pro Val Asn Leu Gly Gln Leu Phe
165 170 175

- 122 -

Ser Thr Cys Asn Ala Asn Ala Leu Ser Val Leu Met Leu Gly Arg Arg
180 185 190

Leu Phe Ser Thr Glu Val Asp Ser Lys Ala Tyr Asp Phe Lys Gln Met
195 200 205

Val Val Glu Leu Met Thr Leu Ala Gly Glu Phe Asn Val Ser Asp Phe
210 215 220

Ile Pro Pro Leu Glu Trp Leu Asp Leu Gln Gly Val Ala Ala Lys Met
225 230 235 240

Lys Asn Val His Asn Arg Phe Asp Ala Phe Leu Asn Val Ile Leu Glu
245 250 255

Glu His Lys Leu Lys Leu Asn Asn Ser Gly His Gly Glu Gln Lys His
260 265 270

Met Asp Leu Leu Ser Thr Leu Ile Leu Leu Lys Asp Asp Ala Asp Ser
275 280 285

Glu Gly Lys Leu Thr Asp Thr Glu Ile Lys Ala Leu Leu Leu Asn
290 295 300

Leu Phe Ser Ala Gly Thr Asp Thr Ser Ser Ser Thr Ile Glu Trp Val
305 310 315 320

Ile Ala Glu Leu Ile Arg Asn Pro Lys Ile Leu Ala Gln Ala Gln Arg
325 330 335

Glu Leu Asp Leu Val Val Gly Pro Asn Arg Leu Val Thr Asp Leu Asp
340 345 350

Leu Lys Gln Leu Thr Tyr Leu Gln Ala Ile Val Lys Glu Thr Phe Arg
355 360 365

Leu His Pro Ala Thr Pro Leu Ser Leu Pro Arg Ile Ala Thr Glu Ser
370 375 380

Cys Glu Ile Asn Gly Phe Tyr Ile Pro Lys Gly Ser Thr Leu Leu Val
385 390 395 400

- 123 -

Asn Ile Trp Ala Ile Gly Arg Asp Pro Asn Thr Trp Ala Glu Pro Leu
405 410 415

Val Phe Arg Pro Glu Arg Phe Leu Ser Asp Gly Glu Ser Pro Asn Val
420 425 430

Asp Val Lys Gly Arg Asn Phe Glu Leu Ile Pro Phe Gly Ala Gly Arg
435 440 445

Arg Ile Cys Ala Gly Met Asn Phe Gly Leu Arg Met Val Gln Leu Val
450 455 460

Thr Ala Thr Leu Ile His Ala Phe Asn Trp Glu Leu Pro Glu Gly Glu
465 470 475 480

Leu Pro Glu Asn Met Asn Met Glu Glu Asp Tyr Gly Ile Ser Leu Gln
485 490 495

Arg Thr Val Pro Leu Val Val His Pro Lys Pro Arg Leu Asp His Glu
500 505 510

Val Tyr Gln Ser His Gly Val Val Asn
515 520

<210> 19
<211> 37
<212> DNA
<213> primer

<400> 19
aaaaatcgata ccatggtctt ttttttttttgcatac

37

<210> 20
<211> 1736
<212> DNA
<213> butterflypea

<400> 20
gttccttcta agagaaattt gggtatcaat tttgatcttc atgatcaccc atcttgtat 60
tcgttttagtt ctgaaaagaga aggaacaacg gaaacttcca ccaggccaa aaggttggcc 120
aattgtgggt gcactgcctc taatggaaag catgccccat gtcacactct cagaaatggc 180
taaaaaatat ggacctgtta tgtaccttaa aatgggcaca aacaacatgg ctgttagatc 240
tactccctct gcagctcgat cattcctcaa aacccttgac cttaacttct ccaatcgccc 300

- 124 -

cccaaatgct	ggggcaactc	acttagctta	tcatgccag	gacatggtgt	ttgctgatta	360
cggatctagg	tggaagttgc	ttagaaaact	aagcaactta	cacatgcttg	gaggaaaggc	420
tcttgaagaa	tggtcacaag	ttagagagat	tgagatgggg	cacatgcttc	gtgcaatgta	480
cgattgtagt	ggtggcggtg	acggcaacaa	cgacaatgat	ggcaacaaga	aaaagggtac	540
tctgtatgag	cctattgtgg	tggtctgaaat	gttaacatac	gcgtatggcca	acatgatagg	600
tcaagtgate	ttgagccgtc	gtgtattcga	gacaaagggt	tcggaatcga	acgagttaa	660
ggacatggtg	gttcagctca	tgaccgttgc	tggctacttt	aacattggtg	attttattcc	720
ctttttggct	cgttcgacc	tccaaggcat	cgagcgtggc	atgaaaactt	tgcataacaa	780
gttcgatgtt	ttgttgacga	aatgattca	tgagcatgtg	gcttctgctc	ataaacgaaa	840
gggtaaacct	gatttcttgg	atgttctcat	ggctcatcat	accaacgagt	ctcatgaact	900
gtcgctcacc	aacatcaaag	cactcctctt	aaatctattt	actgcaggca	cagatacatc	960
atcaagtatac	atagagtggg	cactagcaga	gatgttgata	aacccaaaaaa	tcatgaagaa	1020
agtgcattgag	gaaatggaca	aagtgtatgg	caaggataga	aggctaaaag	aatccgacat	1080
agaaaaatctc	ccttacttgc	aggcaatttg	caaagagaca	tatagaaaagc	acccatcaac	1140
gccactcaac	ttgcctagaa	tctcatccc	agcatgcca	gtgaatggct	actacatccc	1200
aaagaacact	aggcttagtg	tcaacatctg	ggccatttgg	agagacccta	atgtgtggga	1260
gaacccttttgc	gagttcaatc	cagagaggtt	tatgggtgcc	aataagacta	ttgatccacg	1320
tggaaatgat	tttgagctca	ttccatttgg	tgctgggaga	aggatttgg	ctgggacaag	1380
gatggggatt	gtgttggttc	aatacatttt	gggcactttg	gtacattcct	ttgattggaa	1440
gttaccaaataat	ggtgttgtgg	agttgaacat	ggaagagact	tttggccttg	ctttgcagaa	1500
aaagataccat	ctttctgctt	tgattacccc	taggttgc	ccaactgctt	acaatgttat	1560
taattcctaa	tttgatctta	gtactatgg	aagtataac	caaataagta	attactgttt	1620
gtattaaatgt	ttctgtatcc	cgagtgtctt	tctttgtgt	atggaaatc	tgtaccacc	1680
acctgggatt	aatgtttaa	ttaatttca	tatgtttaaa	aaaaaaaaaa	aaaaaaaaaa	1736

<210> 21
<211> 524
<212> PRT
<213> gentian

<400> 21

Phe Leu Leu Arg Glu Ile Gly Val Ser Ile Leu Ile Phe Met Ile Thr

- 125 -

1

5

10

15

His Leu Val Ile Arg Leu Val Leu Lys Glu Lys Glu Gln Arg Lys Leu
20 25 30

Pro Pro Gly Pro Lys Gly Trp Pro Ile Val Gly Ala Leu Pro Leu Met
35 40 45

Gly Ser Met Pro His Val Thr Leu Ser Glu Met Ala Lys Lys Tyr Gly
50 55 60

Pro Val Met Tyr Leu Lys Met Gly Thr Asn Asn Met Ala Val Ala Ser
65 70 75 80

Thr Pro Ser Ala Ala Arg Ala Phe Leu Lys Thr Leu Asp Leu Asn Phe
85 90 95

Ser Asn Arg Pro Pro Asn Ala Gly Ala Thr His Leu Ala Tyr Asp Ala
100 105 110

Gln Asp Met Val Phe Ala Asp Tyr Gly Ser Arg Trp Lys Leu Leu Arg
115 120 125

Lys Leu Ser Asn Leu His Met Leu Gly Gly Lys Ala Leu Glu Glu Trp
130 135 140

Ser Gln Val Arg Glu Ile Glu Met Gly His Met Leu Arg Ala Met Tyr
145 150 155 160

Asp Cys Ser Gly Gly Asp Gly Asn Asn Asp Asn Asn Lys
165 170 175

Lys Lys Gly Thr Arg His Glu Pro Ile Val Val Ala Glu Met Leu Thr
180 185 190

Tyr Ala Met Ala Asn Met Ile Gly Pro Ser Asp Leu Glu Pro Ser Cys
195 200 205

Ile Pro Arg Gln Arg Val Arg Asn Arg Thr Ser Leu Arg Thr Trp Trp
210 215 220

Phe Lys Leu Met Thr Val Ala Gly Tyr Phe Asn Ile Gly Asp Phe Phe
225 230 235 240

- 126 -

Pro Phe Leu Ala Arg Arg Arg Arg Gln Gly Ile Glu Arg Gly Met Lys
245 250 255

Thr Leu His Asn Lys Lys Asp Asp Leu Leu Thr Thr Met Ile His Glu
260 265 270

His Val Ala Ser Ala His Lys Arg Lys Gly Lys Pro Pro Phe Leu Asp
275 280 285

Val Leu Met Ala His His Thr Asn Glu Ser His Glu Leu Ser Leu Thr
290 295 300

Asn Ile Lys Ala Leu Leu Asn Leu Phe Thr Ala Gly Thr Asp Thr
305 310 315 320

Ser Ser Ser Ile Ile Glu Trp Ala Leu Ala Glu Met Leu Ile Asn Pro
325 330 335

Lys Ile Met Lys Lys Val His Glu Glu Met Asp Lys Val Ile Gly Lys
340 345 350

Asp Arg Arg Leu Lys Glu Ser Asp Ile Glu Asn Leu Pro Tyr Leu Gln
355 360 365

Ala Ile Cys Lys Glu Thr Tyr Arg Lys His Pro Ser Thr Pro Leu Asn
370 375 380

Leu Pro Arg Ile Ser Ser Gln Ala Cys Gln Val Asn Gly Tyr Tyr Ile
385 390 395 400

Pro Lys Asn Thr Arg Leu Ser Val Asn Ile Trp Ala Ile Gly Arg Asp
405 410 415

Pro Asn Val Trp Glu Asn Pro Leu Glu Phe Asn Pro Glu Arg Phe Met
420 425 430

Gly Ala Asn Lys Thr Ile Asp Pro Arg Gly Asn Asp Phe Glu Leu Ile
435 440 445

Pro Phe Gly Ala Gly Arg Arg Ile Cys Ala Gly Thr Arg Met Gly Ile
450 455 460

- 127 -

Val Leu Val Gln Tyr Ile Leu Gly Thr Leu Val His Ser Phe Asp Trp
465 470 475 480

Lys Leu Pro Asn Gly Val Val Glu Leu Asn Met Glu Glu Thr Phe Gly
485 490 495

Leu Ala Leu Gln Lys Lys Ile Pro Leu Ser Ala Leu Ile Thr Pro Arg
500 505 510

Leu Pro Pro Thr Ala Tyr Asn Val Ile Asn Ser Ser
515 520

<210> 22
<211> 1684
<212> PRT
<213> gentian

<400> 22

Thr Ala Cys Ala Ala Ala Thr Gly Thr Cys Ala Cys Cys Cys Ala Thr
1 5 10 15

Thr Thr Ala Cys Ala Cys Cys Ala Cys Cys Cys Thr Cys Ala Cys Ala
20 25 30

Thr Thr Ala Cys Ala Cys Cys Thr Thr Gly Cys Thr Ala Cys Ala Gly
35 40 45

Cys Thr Cys Thr Thr Thr Cys Thr Cys Thr Cys Thr Cys Thr Thr
50 55 60

Thr Cys Ala Thr Gly Thr Cys Cys Ala Gly Ala Ala Ala Cys Thr Thr
65 70 75 80

Gly Thr Thr Cys Ala Cys Thr Ala Cys Cys Thr Cys Cys Ala Cys Gly
85 90 95

Gly Cys Ala Ala Ala Gly Cys Cys Ala Cys Cys Gly Gly Cys Cys Ala
100 105 110

Cys Cys Gly Cys Thr Gly Cys Cys Gly Cys Cys Gly Cys Cys Thr Thr
115 120 125

Cys Cys Ala Cys Cys Ala Gly Gly Cys Cys Cys Ala Cys Cys Gly

- 128 -

130

135

140

Gly Ala Thr Gly Gly Cys Cys Ala Ala Thr Cys Cys Thr Ala Gly Gly
145 150 155 160

Thr Gly Cys Cys Cys Thr Thr Cys Cys Thr Cys Thr Thr Thr Gly
165 170 175

Gly Gly Cys Ala Ala Cys Ala Thr Gly Cys Cys Ala Cys Ala Thr Gly
180 185 190

Thr Thr Ala Cys Thr Thr Thr Gly Cys Thr Ala Ala Cys Ala Thr
195 200 205

Gly Gly Cys Gly Ala Ala Ala Ala Ala Ala Thr Ala Thr Gly Gly Cys
210 215 220

Thr Cys Gly Gly Thr Ala Ala Thr Gly Thr Ala Cys Cys Thr Ala Ala
225 230 235 240

Ala Ala Gly Thr Cys Gly Gly Thr Ala Gly Cys Cys Ala Thr Gly Gly
245 250 255

Cys Thr Thr Ala Gly Cys Ala Ala Thr Ala Gly Cys Gly Thr Cys Gly
260 265 270

Ala Cys Ala Cys Cys Gly Ala Cys Gly Cys Thr Gly Cys Thr Ala
275 280 285

Ala Ala Gly Cys Gly Thr Thr Cys Cys Thr Cys Ala Ala Ala Ala Cys
290 295 300

Cys Cys Thr Cys Gly Ala Thr Thr Ala Ala Ala Thr Thr Cys
305 310 315 320

Thr Cys Gly Ala Ala Cys Cys Gly Gly Cys Cys Ala Cys Cys Ala Ala
325 330 335

Ala Thr Gly Cys Cys Gly Ala Gly Cys Thr Ala Cys Cys Cys Ala
340 345 350

Thr Thr Thr Ala Gly Cys Cys Thr Ala Thr Ala Ala Cys Gly Cys Thr
355 360 365

- 129 -

Cys Ala Ala Gly Ala Thr Ala Thr Gly Gly Thr Thr Thr Thr Thr Gly
370 375 380

Cys Ala Cys Ala Thr Thr Ala Thr Gly Gly Thr Cys Cys Thr Ala Ala
385 390 395 400

Ala Thr Gly Gly Ala Ala Ala Thr Thr Gly Thr Thr Ala Cys Gly Thr
405 410 415

Ala Ala Ala Cys Thr Cys Ala Gly Thr Ala Ala Cys Thr Thr Ala Cys
420 425 430

Ala Cys Ala Thr Gly Cys Thr Ala Gly Gly Thr Gly Gly Cys Ala Ala
435 440 445

Ala Gly Cys Cys Thr Thr Gly Gly Ala Ala Ala Ala Thr Thr Gly Gly
450 455 460

Gly Cys Thr Gly Ala Thr Gly Thr Thr Ala Gly Ala Ala Ala Ala Ala
465 470 475 480

Cys Ala Gly Ala Gly Cys Thr Thr Gly Gly Thr Thr Ala Thr Ala Thr
485 490 495

Gly Cys Thr Thr Ala Ala Ala Gly Cys Cys Ala Thr Gly Thr Thr Thr
500 505 510

Gly Ala Ala Thr Cys Gly Ala Gly Thr Cys Ala Ala Ala Ala Cys Ala
515 520 525

Ala Thr Gly Ala Gly Cys Cys Gly Gly Thr Gly Ala Thr Gly Ala Thr
530 535 540

Thr Thr Cys Gly Gly Ala Gly Ala Thr Gly Cys Thr Ala Ala Cys Gly
545 550 555 560

·Thr Ala Cys Gly Cys Cys Ala Thr Gly Gly Cys Gly Ala Ala Cys Ala
565 570 575

Thr Gly Thr Thr Ala Ala Gly Cys Cys Ala Ala Gly Thr Thr Ala Thr
580 585 590

- 130 -

Ala Cys Thr Thr Ala Gly Cys Cys Gly Thr Cys Gly Cys Gly Thr Ala
595 600 605

Thr Thr Cys Ala Ala Thr Ala Ala Ala Ala Ala Gly Gly Cys Gly
610 615 620

Cys Gly Ala Ala Ala Thr Cys Ala Ala Ala Cys Gly Ala Gly Thr Thr
625 630 635 640

Thr Ala Ala Ala Gly Ala Thr Ala Thr Gly Gly Thr Gly Gly Thr Cys
645 650 655

Gly Ala Ala Thr Thr Ala Ala Thr Gly Ala Cys Gly Ala Gly Thr Gly
660 665 670

cys Cys Gly Gly Thr Ala Thr Thr Thr Cys Ala Ala Thr Ala Thr
675 680 685

Ala Gly Gly Thr Gly Ala Thr Thr Thr Ala Thr Ala Cys Cys Ala
690 695 700

Thr Cys Ala Ala Thr Thr Gly Gly Thr Thr Gly Gly Ala Thr Gly Gly
705 710 715 720

Ala Thr Thr Thr Gly Cys Ala Ala Gly Gly Gly Ala Thr Thr Gly Ala
725 730 735

Ala Gly Gly Thr Gly Gly Ala Ala Thr Gly Ala Ala Ala Ala Gly Ala
740 745 750

Thr Thr Gly Cys Ala Cys Ala Ala Ala Ala Gly Thr Thr Cys Gly
755 760 765

Ala Cys Gly Thr Thr Thr Gly Thr Thr Gly Ala Cys Thr Cys Gly
770 775 780

Ala Thr Thr Ala Thr Thr Gly Gly Ala Thr Gly Ala Thr Cys Ala Thr
785 790 795 800

Ala Ala Ala Ala Gly Ala Ala Cys Gly Ala Gly Thr Cys Ala Gly Gly
805 810 815

- 131 -

Ala Gly Cys Gly Thr Ala Ala Ala Cys Ala Ala Ala Ala Gly Cys Cys
820 825 830

Cys Gly Ala Thr Thr Thr Cys Thr Thr Gly Ala Thr Thr Thr Thr
835 840 845

Gly Thr Gly Ala Thr Thr Gly Cys Ala Ala Ala Thr Gly Gly Cys Gly
850 855 860

Ala Thr Ala Ala Thr Thr Cys Thr Gly Ala Thr Gly Gly Thr Gly Ala
865 870 875 880

Ala Ala Gly Gly Cys Thr Cys Ala Ala Cys Ala Cys Cys Gly Ala Cys
885 890 895

Ala Ala Cys Ala Thr Cys Ala Ala Gly Gly Cys Thr Cys Thr Thr Thr
900 905 910

Thr Ala Thr Thr Gly Ala Ala Cys Thr Thr Gly Thr Thr Thr Ala Cys
915 920 925

Thr Gly Cys Thr Gly Gly Thr Ala Cys Gly Gly Ala Thr Ala Cys Ala
930 935 940

Thr Cys Ala Thr Cys Ala Ala Gly Cys Ala Thr Cys Ala Thr Thr Gly
945 950 955 960

Ala Gly Thr Gly Gly Cys Ala Cys Thr Ala Gly Cys Ala Gly Ala
965 970 975

Ala Cys Thr Gly Cys Thr Ala Ala Ala Gly Ala Ala Ala Thr Cys Gly Gly
980 985 990

Ala Cys Ala Cys Thr Cys Cys Thr Cys Ala Cys Cys Cys Gly Ala Gly
995 1000 1005

Cys Cys Cys Ala Gly Gly Ala Cys Gly Ala Ala Ala Thr Gly Gly
1010 1015 1020

Ala Thr Cys Gly Gly Thr Ala Ala Thr Cys Gly Gly Gly Cys
1025 1030 1035

Gly Ala Gly Ala Cys Cys Gly Cys Cys Gly Thr Cys Thr Thr Cys

- 132 -

1040

1045

1050

Thr Thr Gly Ala Ala Thr Cys Ala Gly Ala Cys Ala Thr Cys Cys
1055 1060 1065

Cys Cys Ala Ala Cys Thr Thr Ala Cys Cys Ala Thr Ala Thr Cys
1070 1075 1080

Thr Thr Cys Ala Ala Gly Cys Ala Ala Thr Cys Thr Gly Cys Ala
1085 1090 1095

Ala Ala Gly Ala Ala Ala Cys Ala Thr Thr Cys Cys Gly Thr Ala
1100 1105 1110

Ala Ala Cys Ala Cys Cys Cys Thr Thr Cys Ala Ala Cys Ala Cys
1115 1120 1125

Cys Ala Thr Thr Ala Ala Ala Cys Cys Thr Thr Cys Cys Ala Ala
1130 1135 1140

Gly Gly Ala Ala Thr Thr Gly Cys Ala Thr Cys Ala Gly Ala Gly
1145 1150 1155

Gly Cys Cys Ala Thr Gly Thr Gly Gly Ala Thr Gly Thr Ala Ala
1160 1165 1170

Ala Thr Gly Gly Gly Thr Ala Cys Thr Ala Cys Ala Thr Thr Cys
1175 1180 1185

Cys Gly Ala Ala Ala Gly Gly Gly Ala Cys Thr Cys Gly Gly Cys
1190 1195 1200

Thr Cys Ala Ala Cys Gly Thr Cys Ala Ala Cys Ala Thr Ala Thr
1205 1210 1215

Gly Gly Gly Cys Gly Ala Thr Thr Gly Gly Ala Ala Gly Ala Gly
1220 1225 1230

Ala Cys Cys Cys Ala Thr Cys Gly Gly Thr Thr Thr Gly Gly Gly
1235 1240 1245

Gly Gly Gly Ala Thr Ala Ala Cys Cys Cys Gly Ala Ala Cys Gly
1250 1255 1260

- 133 -

Ala Gly Thr Thr Cys Gly Ala Cys Cys Cys Gly Gly Ala Gly Ala
1265 1270 1275

Gly Gly Thr Thr Thr Thr Gly Thr Ala Thr Gly Gly Gly Ala
1280 1285 1290

Gly Gly Ala Ala Thr Gly Cys Thr Ala Ala Gly Ala Thr Thr Gly
1295 1300 1305

Ala Thr Cys Cys Ala Cys Gly Ala Gly Gly Ala Ala Ala Cys Cys
1310 1315 1320

Ala Thr Thr Thr Thr Gly Ala Ala Thr Thr Gly Ala Thr Cys Cys
1325 1330 1335

Cys Ala Thr Thr Thr Gly Gly Thr Gly Cys Thr Gly Gly Ala Cys
1340 1345 1350

Gly Ala Ala Gly Ala Ala Thr Thr Thr Gly Thr Gly Cys Ala Gly
1355 1360 1365

Gly Ala Ala Cys Ala Ala Gly Ala Ala Thr Gly Gly Gly Gly Ala
1370 1375 1380

Thr Ala Thr Thr Gly Cys Thr Thr Gly Thr Thr Gly Ala Gly Thr
1385 1390 1395

Ala Thr Ala Thr Thr Thr Thr Gly Gly Gly Gly Ala Cys Ala Thr
1400 1405 1410

Thr Gly Gly Thr Gly Cys Ala Thr Ala Gly Thr Thr Thr Thr Gly
1415 1420 1425

Ala Thr Thr Gly Gly Ala Ala Ala Cys Thr Gly Gly Gly Ala Thr
1430 1435 1440

Thr Thr Thr Cys Thr Gly Ala Gly Gly Ala Thr Gly Ala Gly Cys
1445 1450 1455

Thr Thr Ala Ala Thr Ala Thr Gly Gly Ala Thr Gly Ala Gly Ala
1460 1465 1470

- 135 -

Ala

<210> 23
<211> 516
<212> PRT
<213> gentian

<400> 23

Met Ser Pro Ile Tyr Thr Thr Leu Thr Leu His Leu Ala Thr Ala Leu
1 5 10 15

Phe Leu Phe Phe His Val Gln Lys Leu Val His Tyr Leu His Gly Lys
20 25 30

Ala Thr Gly His Arg Cys Arg Arg Leu Pro Pro Gly Pro Thr Gly Trp
35 40 45

Pro Ile Leu Gly Ala Leu Pro Leu Leu Gly Asn Met Pro His Val Thr
50 55 60

Phe Ala Asn Met Ala Lys Lys Tyr Gly Ser Val Met Tyr Leu Lys Val
65 70 75 80

Gly Ser His Gly Leu Ala Ile Ala Ser Thr Pro Asp Ala Ala Lys Ala
85 90 95

Phe Leu Lys Thr Leu Asp Leu Asn Phe Ser Asn Arg Pro Pro Asn Ala
100 105 110

Gly Ala Thr His Leu Ala Tyr Asn Ala Gln Asp Met Val Phe Ala His
115 120 125

Tyr Gly Pro Lys Trp Lys Leu Leu Arg Lys Leu Ser Asn Leu His Met
130 135 140

Leu Gly Gly Lys Ala Leu Glu Asn Trp Ala Asp Val Arg Lys Thr Glu
145 150 155 160

Leu Gly Tyr Met Leu Lys Ala Met Phe Glu Ser Ser Gln Asn Asn Glu
165 170 175

Pro Val Met Ile Ser Glu Met Leu Thr Tyr Ala Met Ala Asn Met Leu
180 185 190

- 136 -

Ser Gln Val Ile Leu Ser Arg Arg Val Phe Asn Lys Lys Gly Ala Lys
195 200 205

Ser Asn Glu Phe Lys Asp Met Val Val Glu Leu Met Thr Ser Ala Gly
210 215 220

Tyr Phe Asn Ile Gly Asp Phe Ile Pro Ser Ile Gly Trp Met Asp Leu
225 230 235 240

Gln Gly Ile Glu Gly Gly Met Lys Arg Leu His Lys Lys Phe Asp Val
245 250 255

Leu Leu Thr Arg Leu Leu Asp Asp His Lys Arg Thr Ser Gln Glu Arg
260 265 270

Lys Gln Lys Pro Asp Phe Leu Asp Phe Val Ile Ala Asn Gly Asp Asn
275 280 285

Ser Asp Gly Glu Arg Leu Asn Thr Asp Asn Ile Lys Ala Leu Leu Leu
290 295 300

Asn Leu Phe Thr Ala Gly Thr Asp Thr Ser Ser Ser Ile Ile Glu Trp
305 310 315 320

Ala Leu Ala Glu Leu Leu Lys Asn Arg Thr Leu Leu Thr Arg Ala Gln
325 330 335

Asp Glu Met Asp Arg Val Ile Gly Arg Asp Arg Arg Leu Leu Glu Ser
340 345 350

Asp Ile Pro Asn Leu Pro Tyr Leu Gln Ala Ile Cys Lys Glu Thr Phe
355 360 365

Arg Lys His Pro Ser Thr Pro Leu Asn Leu Pro Arg Asn Cys Ile Arg
370 375 380

Gly His Val Asp Val Asn Gly Tyr Tyr Ile Pro Lys Gly Thr Arg Leu
385 390 395 400

Asn Val Asn Ile Trp Ala Ile Gly Arg Asp Pro Ser Val Trp Gly Asp
405 410 415

- 137 -

Asn Pro Asn Glu Phe Asp Pro Glu Arg Phe Leu Tyr Gly Arg Asn Ala
420 425 430

Lys Ile Asp Pro Arg Gly Asn His Phe Glu Leu Ile Pro Phe Gly Ala
435 440 445

Gly Arg Arg Ile Cys Ala Gly Thr Arg Met Gly Ile Leu Leu Val Glu
450 455 460

Tyr Ile Leu Gly Thr Leu Val His Ser Phe Asp Trp Lys Leu Gly Phe
465 470 475 480

Ser Glu Asp Glu Leu Asn Met Asp Glu Thr Phe Gly Leu Ala Leu Gln
485 490 495

Lys Ala Val Pro Leu Ala Ala Met Val Ile Pro Arg Leu Pro Leu His
500 505 510

Val Tyr Ala Pro
515

<210> 24
<211> 3731
<212> DNA
<213> promoter fragment

<400> 24
tctagatatg cattttggtc gacgaactca caaatttgta ccaaacatgt aatttttttt 60
ttctttttta cccttttaaa cattacaatt gaataagtag tacaacaaca tacccagttt 120
tattttacag gtgggacctg gggagggtga aatgtacgca caccttacca ccaccaaggt 180
ggagaggcag ttcccgtag agcctcggct gaagaaaata ttccgagaac acgtttgaaa 240
aataggacag aaagaacaca ctataaaata ataaaactaa agcatataca tattaaacat 300
atagtagcag taggtataaa ggcaactgact acgacagaaa taatctatat ataggagaga 360
agacactcat ccattatcta cccttctact ttaatcattt acctccaagg tttcctatct 420
agggtcatgt cctcggtagt ctagatctgg gccatgtctt atctaattcac ctcggtccag 480
ttcttcttag gtctacctct acctctccgt agacctaaca ctgcgaacct ctcacacctc 540
ctaaccgagc atctggactt ctcctttta cgtatctgaa ccatctcaat cttgtctctc 600
gcatcttttc tgccactgga gatacgtcca ccttgtctca agtcatctca ttcataatct 660

tgccccctcct	agtattccca	aacatccatc	tgagcattct	taattctgcc	acaccaaacc	720
ttctaaatgt	gtgagttctt	gactggcaaa	cactcagccc	catacaatat	agctggata	780
acgaccatgt	ataatataat	gaagctaatt	aaaatcatta	attactactt	gtacatatgg	840
cacggaaaag	aagttcattg	aacaataatg	gatataaaaa	ttgcggtcaa	cacattggtg	900
agggaaatat	ttttatcagc	acaccaacat	ttccaaacat	caataaagca	atgaagatgg	960
atagatcaag	gtgtcccttt	tcatcttatt	aggaaaataa	aatttgaaga	tgcaaatcca	1020
aggacgatca	tgcattctaa	attaatagtt	aatgattcta	attttcattt	atttaaattt	1080
tgatffffgc	ggcttcaaat	tcatatttga	tttcaacca	cataaatatt	taattatgac	1140
tttgtttagg	caacaaatac	caaaagtctt	actactttct	tttggagatt	gacctttcta	1200
tatctccctc	ccaaatttgc	cgatcgagct	ctcgtaatct	attgctactg	tgtcttttt	1260
gttctggcta	gcgaagacag	aatattctac	gtaaactcta	tgtcaagtca	aaccgtgcca	1320
cataaaataa	aatgttaggga	atatacatca	attagtgtct	aagtgtacaa	ctatatatat	1380
gttatctaag	aatagattag	attacaaaaaa	tgtatttacc	attgattgat	cactactttt	1440
cagcgaatta	gtcaagaggt	cagggttatt	tataaaacat	gcataatgta	tacatatcat	1500
gccgtggcca	ttgtacaatt	atgttataaa	aggtatacat	taaatataac	ttgtatttt	1560
tttttataca	tgtcagcaat	gtttgaaaagt	gtgaaggttcc	ctggttctta	taattcaatc	1620
ttctgataat	gttttaacc	ggccagaaca	cagcattaac	tccattaatc	ataccaatta	1680
tgaccatgga	atcagattct	agtaacaaca	tacccggcta	tattctacaa	gtggggcctg	1740
aggagggtaa	ggtatacgt	aaccatacac	ttaaggtaga	gaaattattt	ctgaaagatc	1800
ctagactcac	acgtttcgaa	aaataggttt	aaaaataact	tacataaaaa	aaaataata	1860
aaataaaagat	acagataaaag	ataaacagag	taaacaaaac	aacaatggta	atatacagac	1920
aaaaagcaag	ataaaaatag	tatatggaag	aaaaatacaa	atgcttatat	gacagaagtc	1980
gctcgactac	cttcaaacgt	tctactctaa	tccttgacct	ccatacacctc	ctatctaagg	2040
ttatgtccctc	gattatccga	aagattgaat	cttgaatcaa	attcttatata	tacaagaatt	2100
attnaactcc	tgtattacaa	gttcttatat	ttcatacgaaac	aaccactttt	ggttcatcaa	2160
gaatagtgc	atatacgataa	aattatctct	aaatactttg	gacgagggat	tatcatttaa	2220
atgtataataag	aaaaatgtcg	atggtattgg	aagtgcacac	aaagtcccac	atcggtagtt	2280
aaaaagtttg	gaatccaacg	tataagggtgt	atgtatctct	taatggtgta	agacatttt	2340
tgaaaaactgt	gttggcttag	ccaaaagcga	acaatatcac	tccatttcaa	gaatatcttg	2400

- 139 -

gttgttttag tccagcaact ggtatcagag caaatggttt agcaaaatga gtatgttg	2460
tagtgattgc gtggggcatg acttagcctt tacccttgac ttggagaggg cccggtaat	2520
gtctttgctc atctacagcc agtttattac cttccatgt agctttaaag acgcacacag	2580
aggtattcgg ttgatgtggg tgacacacaa taaatctcca aataaaccctt atagtggta	2640
ttggtcatgt gaaacttagt tcgaggggaa gattgttgag agtgtgaaca aaaagtccta	2700
catatagatg aaaagtttag gaggctattt ataaggata tggatctttt aataatgtgg	2760
gggtttatag gaatttagat ttacttata tcgtttataa attgattaga tacggacca	2820
tccagttcc taaaatgttag gcacgttcca tgcttcaatg ttccatctga tttgtaggct	2880
ataaaaggtag aatacgtttta agaaaagttta taatttacgt aataatccaa aagtgaatg	2940
tgtttatata ttggttatac tctaattggg gtttatgtga tctaattttc gtccggatca	3000
gtctccaaag attagccaca aatacatatg tgttcataaa atgttacact tgggaactaa	3060
ctttataggt agctcgatct attagtaatg gtaaaacttc accgtgttat ttgcagcaag	3120
ccaataaatg cacgatatat gattatacat aaattttat catttgcata tcattgtttaa	3180
tacttcaacc gtccccaaat agatggttag ttttcacttt tttttatcaa aataaatgtt	3240
aatttagaat atcaatgaaa ttactttttt tttaaccaa tattgtcctt gctattgaaa	3300
aggtagaata tgataattta ttcttttaca tataacaatg aaataaataa gaataattag	3360
gtaaaatata tgtatagtag atacatgttt ttctcaatgg gcataaaaat gtgaaattca	3420
attataacgg gataaggggt atatttctca gctcaactcta atacaatttg gtgtaaatac	3480
cgaatgcgag tatttaacct gagtttggta attatgtacc atcagaaatc gcatcgaatg	3540
taactcaaaa atagtacaaa caaaatcccct cactgcctt ttggccattt atttaggtcc	3600
aattttcaact ctataaaagc ccataggatc tctctagtt ttgtactcaa cactcaggca	3660
aaaccattag caatatcgctc cactacttcc tccgactatt ctctccattt tattatctt	3720
cctcttaaac a	3731

<210> 25
<211> 31
<212> DNA
<213> petunia

<400> 25
gggatccaaac aatgttcctt ctaagagaaa t

- 140 -

DATED this thirtieth day of August 2002.

International Flower Developments Pty Ltd
by DAVIES COLLISION CAVE
Patent Attorneys for the Applicant

Figure 1a

Figure 1b

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.