8-Bit Counter SN54/74LS461A

746S461A

Features/Benefits

- 8-bit counter for microprogram-counter, DMA-controller and general-purpose counting applications
- 8 bits match byte boundaries
- · Bus-structured pinout
- 24-pin SKINNYDIP® saves space
- Three-state outputs drive bus lines
- Low-current PNP inputs reduce loading
- Expandable in 8-bit increments

Description

The 'LS461A is an 8-bit synchronous counter with parallel load, clear, and hold capability. Two function select inputs (I0, I1) provide one of four operations which occur synchronously on the rising edge of the clock (CK).

The LOAD operation loads the inputs (D7-D0) into the output register (Q7-Q0). The CLEAR operation resets the output register to all LOWs. The HOLD operation holds the previous value regardless of clock transitions. The INCREMENT operation adds one to the output register when the carry-in input is TRUE ($\overline{\text{CI}}$ = LOW), otherwise the operation is a HOLD. The carry-out ($\overline{\text{CO}}$) is TRUE ($\overline{\text{CO}}$ = LOW) when the output register (Q7-Qn) is all HIGHs, otherwise FALSE ($\overline{\text{CO}}$ = HIGH).

The data output pins are enabled when \overline{OE} is LOW, and disabled (HI-Z) when \overline{OE} is HIGH. The output drivers will sink the 24 mA required for many bus interface standards.

Two or more 'LS461A 8-bit counters may be cascaded to provide larger counters. The operation codes were chosen such that when I1 is HIGH, I0 may be used to select between LOAD and INCREMENT as in a program counter (JUMP/INCREMENT).

Ordering Information

PART NUMBER	PACKAGE	TEMPERATURE
SN54LS461A	JS, W, 28L	Mil
SN74LS461A	NS, JS	Com

Logic Symbol

Function Table

ŌĒ	СК	11	10	CI	D7-D0	Q7-Q0 OPERATIO	
Н	*	*	*	*	*	Z	HI-Z⁺
L	1	L	L	x	Х	L	CLEAR
L	1	L	Н	Х	Х	Q	HOLD
L	t	Н	L	X	D	D	LOAD
L	1	Н	Н	Н	Х	Q	HOLD
L	1	Н	Н	L	Х	Q plus 1	INCREMENT

^{*} When OE is HIGH, the three-state outputs are disabled to the high-impedance states; however, sequential operation of the counter is not affected.

Logic Diagram

8-Bit Counter

Absolute Maximum Ratings

Supply voltage VCC	7 V
Input voltage	5 V
Off-state output voltage	5 V
Storage temperature -65° to +150°	l° C
Off-state output voltage65° to +150' Storage temperature65° to +150'	°С

Operating Conditions

SYMBOL		1	IILITAI TYP†			MMER(UNIT	
Vcc	Supply voltage	4.5	5	5.5 125*	4.75 0	5	5.25 75	°C	
TA	Operating free-air temperature		-55						
- / -		Low	35	15		25	15		
t _w	Width of clock	High	20	7		15	7		ns
t _{su}	Setup time		40	20		30	20		
th	Hold time		0	-15		0	-15		ns

^{*} Case temperature

Electrical Characteristics Over Operating Conditions

SYMBOL	PARAMETER	TEST CONDITIONS				TYP†	MAX	UNIT
V _{IL} **	Low-level input voltage						0.8	V
VIH**	High-level input voltage				2			V
VIC	Input clamp voltage	V _{CC} = MIN	lj = -18 mA			-0.8	-1.5	V
l _{IL}	Low-level input current	VCC = MAX	V ₁ = 0.4 V			-0.02	0.25	mA
IН	High-level input current	VCC = MAX	V _I = 2.4 V		<u> </u>		25	μΑ
<u> </u>	Maximum input current	V _{CC} = MAX	V _I = 5.5 V				1	mA
-	Low-level output voltage	V _{CC} = MIN V _{IL} = 0.8 V V _{IH} = 2 V	Mil	I _{OL} = 12 mA		0.3	0.5	V
VOL			Com	I _{OL} = 24 mA				
		VCC = MIN	Mil	I _{OH} = -2 mA	2.4	2.8		V
Vон	High-level output voltage	V _{IL} = 0.8 V V _{IH} = 2 V	Com	1 _{OH} = -3.2 mA				
lOZL.		V _{CC} = MAX V _{IL} = 0.8 V V _{IH} = 2 V		V _O = 0.4 V			-100	μА
lozh	Off-state output current			VO = 2.4 V			100	μπ
los	Output short-circuit current*	V _{CC} = 5.0 V		VO = 0 V	-30	-70	-130	mA
ICC	Supply current	VCC = MAX				140	180	mA

^{*} No more than one output should be shorted at a time and duration of the short-circuit should not exceed one second.

Switching Characteristics Over Operating Conditions

SYMBOL	PARAMETER	TEST CONDITIONS (See Test Load/Waveforms)	MILITAR MIN TYP†	Y MAX	COMMERC MIN TYP†		UNIT
fMAX	Maximum clock frequency*	Commercial	16.6		25		MHz
tPD	CI to CO delay	$R_1 = 200 \Omega$	15	35	15	25	ns
tCLK	Clock to Q	$R_2 = 390 \Omega$	10	25	10	15	ns
tPD	Clock to CO	Military	25	60	25	40	ns
tPZX	Output enable delay	R_1 = 390 Ω	11	25	11	20	ns
tPXZ	Output disable delay	R ₂ = 750 Ω	10	25	10	20	ns

^{*}f_{MAX} is derived from: 1/MAX [(t_{su} + t_h), t_w (Low) + t_w (High), t_{CLK}].

Test Load

* The "Test Point" is driven by the outputs undertest, and observed by instrumentation

Notes: 1. t_{PD} is tested with switch S₁ closed, C_L = 50 pF and measured at 1.5 V output level.

2. tpZX is measured at the 1.5 V output level with C_L = 50 pF. S₁ is open for high impedance to "1" test, and closed for high impedance to "0" test.

3. t_{PXZ} is tested with C_L = 5 pF. S_1 is open for "1" to high impedance test, measured at V_{OH} =0.5 V output level: S_1 is closed for "0" to high impedance test measured at V_{OL} +0.5 V output level.

^{**}V_{IL} and V_{IH} parameters are, in effect, input conditions of D.C. and functional output † All typical values are at V_{CC} = 5 V, T_A = 25°C. tests are not directly tested. V_{IL} is specified at ≤0.8 V and V_{IH} is specified at ≥2.0 V.

7

Application

16-Bit Counter

