This Page Is Inserted by IFW Operations and is not a part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

BLACK BORDERS

- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

EUROPÄISCHE PATENTANMELDUNG

- (43) Veröffentlichungstag: 12.06.1996 Patentblatt 1996/24
- (51) Int CLF: **C08F 283/00**, **C**08F 291/00, A61K 6/083

- (21) Anmeldenummer: 95250279.7
- (22) Anmeldetag: 17.11.1995

(12)

- (84) Benannte Vertragsstaaten: AT CH DE FR GB IT LI SE
- (30) Prioritat 08.12.1994 DE 4443702
- (71) Anmelder: IVOCLAR AG FL-9494 Schaan (LI)
- (72) Erfinder.
 Rheinberger, Volker
 FL-9490 Vaduz (LI)

- Moszner, Norbert FL-9492 Eschen (LI)
- Völkel, Thomas
 D-88131 Lindau (DE)
 Burtscher, Peter
- A-6714 Nütziders (AT)
- (74) Verreter: UEXKŪLL & STOLBERG
 Patentanwälte
 Beselerstrasse 4
 22607 Hamburg (DE)
- (54) Feinkömige unter Druck oder Scherbeanspruchung fliessfähige polymerisierbare Zusammensetzungen
- (57) Es wird eine kömige, polymerisierbare Zusammensetzung beschrieben, die mindestens ein polymerisierbares Monomer und/oder Oligomer sowie einen Polymerisationsinitiator und ggt. einen Beschleuniger sowie mindestens 70 Gew.-% Füllstoff und zusätzlich

0,5 bis 28 Gew.-% Dendrimer enthält und die bei Druckund/oder Scherbeanspruchung fließfähig wird. Die Zusammensetzung läßt sich ähnlich wie Amalgam stopfen und eignet sich besonders als Dentalmaterial oder zur Herstellung eines Dentalmaterials.

Printed by Josse, 75001 PARIS (FR)

Verwendung von 0,3 Gew.-% Campherchinon und 0,5 Gew. % CEMA, bezogen auf die Gesamtzusammensetzung, als Photoinitiatorsystem.

Als Initiatoren für die Kaltpolymerisation können Radikale liefemde Systeme, zum Beispiel Benzoyl- oder Laurylperoxid zusammen mit Aminen, vorzugsweise N.N-Dimethyl-sym.-xylidin oder N,N-Dimethyl-p-toluidin eingesetzt wer10

15

20

30

35

50

55

EP 0 716 103 A2

- Polymensierbare Zusammensetzung nach Anspruch 3, dadurch gekennzeichner, daß das Dendrimer Meth (acryl)-, Allyl-, Styryl-, Vinyl-, Vinyloxy- und/oder Vinylamin-Endgruppen aufweist.
- Polymerisierbare Zusammensetzung nach einem der Ansprüche 1 bis 4. dadurch gekennzeichnet, daß sie als polymerisierbares Monomer und/oder Oligomer ein oder mehrere mono- oder polyfunktionelle Methacrylate enthält.
 - 6. Polymerisierbare Zusammensetzung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß sie 0,5 bis 28 Gew.-% mindestens eines polymerisierbaren Monomers und/oder Oligomers enthält.
- 7. Polymensierbare Zusammensetzung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß sie als Füllstoff amorphe, pyrogene und/oder gefällte Kieselsäure mit einer BET-Oberfläche von 30 bis 300 m²/g, Zinkoxid (ZnO), röntgenopakes Glas, Bariumsulfat, Ytterbiumfluorid und/oder amorphe, kugelförmige Teilchen aus Siliciumdloxid mit bis zu 20 Mol-% mindestens eines Oxids eines Elements der Gruppen I, II, III und IV des Periodensystems mit einem Brechungsindex von 1,50 bis 1,58 und mit einer durchschnittlichen Primärteilchengröße von 0,1 bis 1,0 um enthält.
- 8. Polymerisierbare Zusammensetzung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß sie bis zu 92 Gewi-% Füllstoff enthält.
- Polymerisierbare Zusammensetzung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß sie als Initiator für die Photopolymerisation Benzophenon, Benzoin, ein Derivat von diesen oder ein α-Diketon und/oder als Initiator für die Kaltpolymerisation Benzoyl- oder Laurylperoxid zusammen mit einem Amin enthält.
- 25 10. Polymerisierbare Zusammensetzung nach Anspruch 9. dadurch gekennzeichnet, daß sie ein α-Diketon und zusätzlich ein Amin enthält.
 - 11. Dentalmaterial, welches ein Gehalt an der polymensierbaren Zusammensetzung gemäß einem der Ansprüche 1 bis 10 aufweist.
 - 12. Verwendung der polymerisierbaren Zusammensetzung gemäß einem der Ansprüche 1 bis 10 als Dentalmaterial, Komponente eines Dentalmaterials oder zur Herstellung eines Dentalmaterials.

den.

10

15

20

30

35

Die Funktion des Aminbeschleunigers kann vorzugsweise auch durch aminogruppenhaltige Dendrimere übernommen werden.

Eine besonders bevorzugte Zusammensetzungen enthält:

Gew%	Komponente		
18,3	Monomermischung aus:		
	Bisphenol-A-glycidylmethacrylat (39,2 Gew%	h.	
	Urethandimethacrylat aus 2-Hydroxyethylmeth		diisomaaat.1
	(20 Gew%);		· ·
	Triethylenglycoldimethacrylat (20 Gew%);		
	Dendrimer (20 Gew%);	:	
Ī	Campherchinon (0,3 Gew%);		
	CEMA (0,5 Gew%);		
67.2	silanisiertes, feindisperses Siliciumdioxid;	<u>:</u>	
14.5	Ytterbiumfluorid		

Nach dem Mischen der Komponenten wird die Masse im Kneter durch Anlegen eines Vakuums entlüftet. Der Druck während des Entlüftens beträgt vorzugsweise 5 bis 20 mbar. Hierbei kommt es zur Ausbildung einer körnigen, trocken erscheinenden Masse, die jedoch bei Druck- oder Scherbeanspruchung wieder pastenartig und fließfähig wird und sich so bequem mit der Hand, ggf. unter Zuhilfenahme geeigneter Instrumente, wie z.B. einem Spatel, in Formen einpassen läßt, wo sie anschließend ausgehärtet wird. Die erfindungsgemäßen Zusammensetzungen erlauben so das vollständige und paßgenaue Ausfüllen auch kleiner Defekte und Lücken und eignen sich besonders als Dentalmaterialien oder Komponente von Dentalmaterialien, wie Zahnfüllmassen, oder zur Herstellung von Dentalmaterialien beispielsweise für Inlays/Onlays, Kronen, Brücken und Zähne.

Die Emiedrigung der Viskosität der erfindungsgemäßen Zusammensetzungen ist wahrscheinlich darauf zurückzuführen, daß die Dendrimere unter Druck- oder Scherbelastung das während des Entlüftens in die Dendrimerhohlräume aufgenommene Monomer und/oder Oligomer quasi wie ein molekularer Schwamm wieder abgeben, so daß die kömige Zusammensetzung zu einer homogenen formbaren Masse wird. Ein besonderer Vorzug der erfindungsgemäßen Zusammensetzungen ist darin zu sehen, daß sie sich ähnlich wie Amalgam stopfen lassen, wodurch ihre Handhabbarkeit ("handling") wesentlich vereinfacht wird.

Die Härtung der erfindungsgemäßen Zusammensetzung erfolgt vorzugsweise durch radikalische Polymerisation. Diese wird vorzugsweise thermisch oder photochemisch initijert. Die Vernetzungsdichte und die Materialeigenschaften der gehärteten Masse können dabei durch die Struktur des verwendeten Dendrimeren und/oder durch die Art des verwendeten Monomeren variiert werden. So läßt sich beispielsweise durch die Verwendung von weniger flexiblen Monomeren und/ oder Dendrimeren der E-Modul der ausgehärteten Materialien erhöhen. Bei Einsatz von flexiblen Monomer- und/oder Dendrimerkomponenten werden Materialien mit höherer Dehnung, beispielsweise für provisorische Füllungen erhalten. Im folgenden wird die Erfindung anhand von Ausführungsbeispielen näher erfäutert.

<u>Beispiele</u>

Beispiel 1:

Modifizierung von DAB(PA)32 mit AEMA

3,51 g (1 mmol) Dendrimer DAB(PA)₃₂ (Fa. DSM, Dendrimer auf Polyethyleniminbasis mit 32 Aminoendgruppen, Initiator: 1,4-Diaminobutan (DAB)) in 5 ml Methanol werden bei ca. 8°C unter Lichtausschluß tropfenweise mit 10,61 g (58 mmol) AEMA (vgl. J. Luchtenberg, H. Ritter, *Macromol. Rapid. Commun.* 15 (1994) 81) in 5 ml Methanol versetzt. Das Gemisch wird eine Stunde bei Raumtemperatur und 24 Stunden bei 60°C gerührt, und anschließend wird das Methanol im Vakuum abgedampft. Es werden 14,6 g (95% Ausbeute; diese und die folgenden Ausbeuten beziehen sich auf die Dendrimereinwaage) einer klaren Flüssigkeit erhalten.

1H-NMR (ppm, CDCl₃, 90 MHz):

1.6 (m, CH₂CH₂CH₂), 1,9 (s,CH₃ Methacryl), 2.3 - 2.5 (CH₂-N), 2.7 (breites t, CH₂CH₂CO₂,3.6 und 4,3.(O-CH₂CH₂-O),5,6 und 6,1 (2s,=CH₂).

13C-NMR (ppm, CDCl3; 75 MHz):

24,24 (a); 51,82 (b); 51,41 (c); 32,25 (d); 49,04 (e); 61,00 (t); 66,26 (g); 167,61(h); 61,95 (i), 62,32 (j); 172,82(k); 135,91 (l); 125,91(m); 18,19(n).

IR (Film, cm⁻¹):

2952 (C-H), 1724 (C=O).

Anhand von Konzentrationsreihen in Chlorotorm wird der Mark-Houwink-Koeffizient des modifizierten Dendrimers mittels eines Übelohde-Viskosimeters bestimmt. Der experimentelle Wert von c=0,211 kommt dem theoretischen Wert 0 für eine Kugelform der Makromoleküle in Lösung sehr nahe.

Beispiel 2:

20

25

30

35

Modifizierung von DAB(PA) 16 mit AEMA

15,46 g (0,02 mmol) DAG(PA)₁₆ (Fa. DSM, Dendrimer auf Polyethyleniminbasis mit 16 Aminoendgruppen) werden analog zu Beispiel 1 mit 58,94 (0,32 mol) AEMA umgesetzt. Es werden 77g (99%) einer klaren Flüssigkeit erhalten.

Beispiel 3:

Modifizierung von DAB(PA)64 mit AEMA

21,51 g (3 mmol) DAB(PA)₆₄ (Fa. DSM, Dendrimer auf Polyethyleniminbasis mit 64 Aminoendgruppen) werden analog zu Beispiel 1 mit 63,66 g (384 mmol) AEMA umgesetzt. Es werden 83,4g (90%) einer klaren Flüssigkeit erhalten.

Beispiel 4:

Modifizierung von DAB(PA)32 mit Allylacrylat

10,54 g (3 mmol) DAB(PA)₂₂ (Fa. DSM, Dendrimer auf Polyethyleniminbasis mit 32 Aminoendgruppen) werden analog zu Beispiel 1 mit 21,53 g (192 mmol) Allylacrylat in 5 ml Methylenchlorid umgesetzt. Nach Abdampten des Lösungsmittels werden 28,7g (90%) einer öligen Flüssigkeit erhalten.

TH-NMR (ppm, CDCI₃, 90 MHz):

4,57 d (OCH₂CH=), 5,8 m (CH=), 5,3 m (=CH₂). ¹³C-NMR (ppm, CDCl₃, 75 MHz); 49,2 (a), 51,5 (b), 172,1 und 172,8 (c), 65,0 (d), 118,1 (e), 132,4 (f).

2948 (C-H), 1740 (C=O).

Beispiel 5

Modifizierung von DAB(PA)32 mit AEMA und Ethylacrylat

10,54 g (3 mmol) DAB(PA)₃₂ (Fa. DSM) in 10 ml Methenol werden bei ca. 8°C unter Lichtausschluß tropfenweise mit einer Mischung aus 8,84g (48 mmol) AEMA und 14,24 g (144 mmol) Ethylacrylat in 5 ml Methanol versetzt (Molverhältnis AEMA: Ethylacrylat 1:3). Die Mischung wird eine Stunde bei Raumtemperatur und 24;Stunden bei 60°C gerühnt, und anschließend wird das Methanol im Vakuum abgedampit. Es werden 33,5 g (99%) einer klaren Flüssigkeit erhalten.

TH-NMR (ppm, CDCI, 90 MHz):

1.3 (t, CH₃ Ethyl); 1.7 (m, CH₂CH₂CH₂); 2.0 (s, CH₃ Methacryl) 2.4-2.5 (CH₂-N); 2.8 (breites t, CH₂CH₂CO₂); 3.7 und 4.4 (O-CH₂CH₂O) 4.2 (q, O-CH₂CH₃); 5.7 und 6.3; (=CH₂).

IR (Film, cm⁻¹):

2952 (C-H), 1722(C=O), 1636(C=C), 1298, 1162(C-O).

13C-NMR (ppm, in CDCl₃, 75 MHz)

49.2 (a), 51,5 (b), 172,1 und 172,8 (c), 65,0 (d), 118,1 (e), 132,4 (f), 51,8 (g).

5 Belspiel 6

5

10

Modizierung von DAB(PA)64 mit AEMA und Trimethylsilylethylacrylat

10.75 g (1,5 mmol) DAB (PA)₆₄ (Fa. DSM, Dendrimer der 5. Generation auf Polyethyleniminbasis mit 64 Aminoendgruppen) in 5 ml Methanol werden tropfenweise mit einer Lösung von 7,07 g (38,4 mmol) AEMA und 26,47 g (153,6 mmol) 2-Trimethylsilylethylacrylat in 5 ml Methanol bei 8°C unter Lichtausschluß versetzt. Die Mischung wird 1 Stunde bei 8°C und 24 Stunden bei 60°C gerührt und anschließend wird das Reaktionsgemisch im Wasserstrahlvakuum bis zur Gewichtskonstanz eingeengt. Es werden 38,2g (86%) einer zähen Flüssigkeit erhalten.

30

25

20

IR (KBr, cm-1):

3353 (N-H), 2949 (C-H), 1731 (C=O).

¹H-NMR (ppm, CDCl₃, 90 MHz):

5,7 und 6,2 (2s, CH₂=), 4,1 (qu, OCH₂CH₃), 2,0 (s, CH₃ Methacr.), 1,2 (t, CH₂CH₃).

13C.NMR (ppm, CDCl₃, 75 MHz):

172,4 (C=O, Ethylacrylat), 167,3 (C=O, Methacrylat),

158,3 (C=O, Harnstoff), 136,3 und

125.6 (C=CH₂).

Beisplel 7:

Modifizierung von DAB(PA)₈ mit 2-isocyanatoethylmethylacrylat (IEM)

5,41 g (7 mmol) DAB(PA)₈ (Fa. DSM, Dendrimer auf Polyethyleniminbasis mit 8 Aminoendgruppen) in 10 ml Methylenchlorid werden bei 8°C unter Lichtausschluß tropfenweise mit 8,41g (84 mmol) Ethylacrylat in 10 ml Methylenchlorid versetzt. Die Lösung wird eine Stunde bei 8 bis 10°C und 24 Stunden bei 50°C gerührt. Anschließend wird die Mischung bei 18 bis 22°C tropfenweise mit 4,34g (28 mmol) IEM (Polyscience) versetzt. Die Mischung wird für 5 Tage bei Raumtemperatur gerührt, und anschließend wird das Lösungsmittel im Vakuum abgedampft. Es werden 17 g (94%) einer klaren, viskosen Flüssigkeit erhalten.

Beispiel 8:

50

55

Umsetzung von DAB(PA)_R mit Stearylacrylat

5,9 g (7,6 mmol) DAB(PA)₈ (Fa. DSM) in 10 ml Methylenchlorid werden bei 40°C zu 19,8 g (60 mmol) Stearylacrylat, das nach den üblichen Syntheseverfahren aus Stearylalkohol und Acrylsäurechlorid zugänglich ist, in 10 ml Methylenchlorid getropft. Die Mischung wird 24 Stunden bei 46 bis 48°C gerührt, und anschließend wird das Lösungsmittel im Vakuurn abgedampft. Das Gefäß wird mit trockener Luft belüftet. Es werden 24,5g (95%) eines wachsähnlichen

De Trey Dentsply

Feststoffs erhalten (Fp.: 51 - 52°C).
IR (KBr, cm⁻¹):
2916, 2850 (C-H), 1735 (C=O).

¹H-NMR (ppm. CDCl₃, 90 MHz):
1,3 - 1,5 (m, CH₂ der Stearyl-Kette), 1,0 (t, CH₃).

¹³C-NMR (ppm, CDCl₃, 75 MHz):
172,7(C=O)

Beispiel 9:

70

20

Umsetzung von DAB(PA)32 mit 2,2,3,4,4,4-Hexsfluorbutylscrylat und AEMA

5,27g (1,5 mmol) DAB(PA)₃₂ (Fa. DSM) in 10 ml Methanol werden bei 8 bis 10°C tropfenweise mit einer Mischung aus 8,84 g (48 mmol) AEMA und 11,33 (48 mmol) 2,2,3,4,4,4-Hexafluorbutylacrylat (Fluorochem) in 10 ml Methanol versetzt. Die Lösung wird für eine Stunde bei 8 bis 10°C und für 24 Stunden bei 40°C gerührt. Anschließend wird das Reaktionsgemisch bei 30°C im Wasserstrahlvakuum bis zur Gewichtskonstanz eingeengt. Es werden 20,6g (81%) einer klaren, viskosen Flüssigkeit erhalten.

IR (KBr, cm⁻¹): 2953, 2816 (C-H), 1736 (C=O). ¹H-NMR (ppm, CDCl₃: 90 MHz): 4,6 (s, CHF), 3,8 (s, O-CH₂-CF₂). ¹SC-NMR (ppm, CDCl₃, 75 MHz): 172.7 (C=O).

30 Beispiel 10:

Homopolymerisation des modifizierten Dendrimeren aus Beispiel 1

Das Dendrimer gemäß Beispiel 1 wird unter Rühren mit einem Gewichtsprozent 2,2-Azo-bis-(2-methyl-propionsäurenitril) (AIBN) versetzt und so lange gerührt, bis eine homogene Lösung erhalten wird. Die Polymerisation wird mittels Differential Scanning Calorimetry (DSC) von 20 bis 170°C (Aufheizgeschwindigkeit: 10°C/min) verfolgt.

Ergebnisse:	Polymerisationsenthalpie:	49,8 kJ/mol
'	Tg(Glasübergangstemperatur, Polymer):	-38,6°C
1	Polymensationsschrumptung:	7,3%
	(aus Dichternessungen)	· ·

Beispiel 11:

50

Homopolymerisation des modifizierten Dendrimeren aus Beispiel 3

Das modifizierte Dendrimer aus Beispiel 3 wird unter Rühren mit 1 Gew.% AIBN versetzt und so lange gerührt, bis eine homogene Lösung erhalten wird. Die Polymerisation wird mittels DSC verfolgt.

Ergebnisse:	Polymerisationsenthalpie:	55,1kJ/ mol
	Tg(Polymer):	40,9°C
	Polymerisationsschrumpfung:	7,8%
	(aus Dichtemessungen)	

Belspiel 12:

Herstellung von feinkörnigen Massen

39,2 Gew.% Bis-Phenol-A-glycidylmethacrylat, 20 Gew.% Urethandimethacrylat (aus 2,2,4-Trimethylhexamethylendiisocyanat und Hydroxyethylmethacrylat), 20 Gew.% Triethylenglykoldimethacrylat, 20 Gew.% modifiziertes Dendrimer gemäß Beispiel 2, 0,30 Gew.% Campherchinon und 0,50 Gew.% Cyanoethylmethylanilin (CEMA) werden in einer Knetmaschine (Fa. Linden) gemischt. 20 g dieser Monomermischung werden solange portionsweise mit silanisiertem Sphärosil (PALFIQUE-S FILLER der Firma Tokuyama Soda, Japan) als Füllmittel versetzt, bis die Mischung Pastenkonsistenz aufweist (etwa 4-fache Gewichtsmenge der Monomermischung). Beim anschließenden Anlegen eines Vakuums (15 mbar) trocknet die Paste innerhalb weniger Sekunden und es entsteht ein feinkömiges Gemisch.

Beisplel 13:

15

25

30

35

55

Analog Beispiel 12 wird eine feinkömige Masse unter Verwendung von 20% modifiziertem Dendrimer gernäß Beispiel 1 und eines Gemischs aus silanisiertem feindispersen Siliciumdioxid und Ytterbium-Fluorid im Verhältnis von 67,3 zu 13,6 als Füllstoff hergestellt. Die Masse weist folgende Zusammensetzung auf: 18,33 Gew.% Monomergemisch (bestehend aus 39,2 Gew.% Bisphenol-A-Glycidylmethacrylat, 20 Gew.% Urethandimethacrylat (aus 2,2,4-Trimethylhexamethylendiisocyanat und Hydroxyethylmethacrylat), 20 Gew.% Triethylenglykoldimethacrylat, 20 Gew.% modifiziertes Dendrimer, 0,30 Campherchinon und 0,50 Gew.% CEMA), 67,12 Gew.% silanisiertes fein disperses Silicium-dioxid (Aerosil OX 50, Degussa AG), 14,55 Gew.% Ytterbiumfluorid. Der Dendrimergehalt der Gesamtmasse beträgt 7,2 Gew.%.

Beispiel 14:

Analog Beispiel 13 wird eine feinkömige Masse unter Verwandung von 20 Gew.% des Dendrimers gemäß Beispiel 3 hergestellt. Die Zusammensetzung der Masse entspricht der aus Beispiel 13.

Beispiel 15:

Analog Beispiel 14 wird eine feinkömige Masse jedoch ohne CEMA hergestellt, wobei im Vergleich zu Beispiel 14 als Ausgleich 0,5 Gew.-% Bisphenol-A-glycidylmethacrylat mehr verwendet werden.

Beispiel 16 (Vergleichsbeispiel):

Analog Beispiel 14 wird eine fließfähige Masse ohne Dendrimer und ohne CEMA mit folgender Zusammensetzung hergestellt: 40,7 Gew.-% Bisphenol-A-glycidylmethacrylat, 39 Gew.-% Urethandimethacrylat aus 2-Hydroxyethylmethacrylat und 2;2,4-Trimethylhexamethylendiisocyanat-1,6, 20 Gew.-% Triethylenglycoldimethacrylat und 0,3 Gew.-% Campherchinon.

Beispiel 17:

Lichthärtung von körnigen Dendrimer-Kompositmassen

Das feinkörnige Komposit aus Beispiel 12 wird von Hand in Prüfkörperformen (2,5 mm x 2,0 mm x 2,0 mm) gepreßt, und die Prüfkörper werden anschließend gehärtet.

Nach der Härtung werden die Prüfkörper den Formen entnommen und einer 24stündigen Wasseranlagerung bei 37°C unterzogen (gemäß ISO-Norm 4049 (1988): Dentistry resin-based filling materials).

Die gehärteten Prüfkörper wurden anschließend auf Ihre mechanischen Eigenschaften hin untersucht. Die Ergebnisse sowie die zur Härtung gewählten Bedingungen sind in den Tabellen I und II zusammengefaßt.

Tabelle I

Mechanische Eigenschaften¹⁾ von Dentalkompositmassen gem. den Beispielen 13 und 14 Kompositmasse gem. Beispiel 14 Kompositmasse gem. Beispiel 13 Biegefestigkeit (N/mm²) nach 59±7 51±7 Behandlung A Biege-E-Modul (N/mm²) nach 5700±500 5200±600 Behandlung A Biegefestigkeit (Nmm²) nach 101±12 96±19 Behandlung B Biege-E-Modul (N/mm²) nach 12000±2000 9400±1100 Behandlung B Druckfestigkeit (Nmm²) nach 176±28 205±35 Behandlung C

Behandlung A:

2 × 60 Sek. Bestrahlung mit einer Heliolux®-GTE-Lampe (Vivadent)

Behandlung C:

5

10

25

40

45

50

55

2 × 2 Sek. Bestrahlung mit einer Heliolux®-GTE-Lampe, 5 Min. Nachhärtung durch Belichtung mit einem Spectramat® (Ivoclar AG) bei gleichzeitiger Erwärmung auf 70°C.

Behandlung C:

3 × 60 Sek. Bestrahlung mit einer Heliotux®-GTE-Lampe

Tabelle II

·•	Kompositmasse gem. Beispiel 16 (Vergleich)	Kompositmasse gem. Beispiel 15 (Erfindung)	
Durchhärtungstiefe ¹⁾	4,6 mm	> 6 mm	
Lichtempfindlichkeit ¹)	125 sec	57 sec	
Biegefestigkeit/Biege-E-Modul ^{1,3)}	66±6 N/mm² 2400±200 N/mm²	43±6 N/mm² 2400±330 N/mm²	
Durchhärtungstlefe ²⁾	3,4 mm	5,4 mm	
Lichtempfindlichkeit ²⁾	125 sec	70 sec	
Biegefestigkeit/Biege-E-Modul2.3)	19±2 N/mm² < 500 N/mm²	32±11 N/mm² 250 N/mm²	

¹⁾ ohno zusätzlichen Farostoff

Patentansprüche

- Kömige, polymerisierbare Zusammensetzung, die mindestens ein polymerisierbares Monomer und/oder Oligorner sowie einen Polymerisationsinitiator und ggf. einen Beschleuniger und mindestens einen Füllstöff enthält, dadurch gekennzeichnet, daß sie mindestens 70 Gew.-% Füllstoff und zusätzlich 0,5 bis 28 Gew.-% Dendrimer enthält und bei Druck- und/oder Scherbeanspruchung fließlähig wird.
- Polymerisierbare Zusammensetzung nach Anspruch 1, dadurch gekennzeichnet, daß das Dendrimer ein Propylenimin-, Polyether-/Polythioether-, Polyester-, Polyphenylenamid- und/-oder Polyphenylenester-Dendrimer ist.
- 3. Polymerisierbare Zusammensetzung nach Anspruch 1 oder 2, dedurch gekennzeichnet, daß das Dendrimer polymensationsfähige Endgruppen aufweist.

¹⁾ Bestimmt nach der ISO-Norm 4049 (1988)

²⁾ singefärbt nach der Zahnfarbe 310 des Chromasscop® Schilbsels, elfektiver Particloffgehalt: 0,03 Gew.-%

³⁾ bestimmt nach der ISO-Norm 4049 (1988)