ОБРАБОТКА И РАСПОЗНАВАНИЕ ИЗОБРАЖЕНИЙ

Леонид Моисеевич Местецкий профессор

кафедра математических методов прогнозирования ВМК МГУ

кафедра интеллектуальных систем МФТИ

МОРФОЛОГИЧЕСКИЕ ОПЕРАЦИИ НАД ИЗОБРАЖЕНИЯМИ

- 1. Назначение
- 2. Базовые операции
- 3. Составные операции
 - 4. Примеры

Назначение

Фильтрация шума:

Мелкие объекты

Отверстия

Изоляция объектов

Пример

- Полутоновое изображение
- Бинаризация
- Морфологические преобразования

Множества и операции

 Z^2 - целочисленная решётка в R^2 $A \cup B$ - объединение, $A \cap B$ - пересечение, $A^c = \{ w \mid w \notin A \}$ - дополнение, $A \setminus B = \{ w \mid w \in A, w \notin B \} = A \cap B^c$ - разность, $\hat{B} = \{ w \mid w = -b, b \in B \}$ - центральное отражение, $(A)_{z} = \{c \mid c = a + z, a \in A\}$ - параллельный перенос на z.

Дилатация

Приводит к расширению изображения.

Пусть
$$A, B \subset \mathbb{Z}^2$$

B - структурообразующее множество (примитив) дилатации,

 \hat{B} - центральное отражение B относительно точки - начала координат (центр B)

$$(\hat{B})_z$$
 - сдвиг центра в точку z

$$A \oplus B = \left\{ z \mid (\hat{B})_z \cap A \neq \emptyset \right\}$$

Дилатация

Пример дилатации

1	1	1
1	1	1
1	1	1

Примитив дилатации

- Объекты увеличиваются, отверстия уменьшаются
- Острые углы сохраняются

Пример дилатации

		1	1	1		
	1	1	1	1	1	
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1 1	1	1	1	1	1	1
	1	1	1	1		
		1	1	1		

Примитив: диск => сглаживает углы

Эрозия

Приводит к сжатию (утончению) объектов изображения.

Пусть $A, B \subset \mathbb{Z}^2$

B - структурообразующее множество (примитив) дилатации, $(B)_z$ - сдвиг центра B в точку z

$$A \ominus B = \left\{ z \mid (B)_z \subseteq A \right\}$$

$$\frac{d}{d}$$

$$\frac{d/4}{B = B}$$

3d/4

 $A \ominus B$

Эрозия

Двойственность операций дилатации и эрозии

$$(A \ominus B)^c = A^c \oplus \hat{B}$$

Пример эрозии

1	1	1
1	1	1
1	1	1

Примитив дилатации

• Объекты уменьшаются

Пример эрозии

		1	1	1		
	1	1	1	1	1	
1	1	1	1	1	1	1
1	1	1	1	1	1	1
1	1	1	1	1	1	1
	1	1	1	1	1	
		1	1	1		

Примитив: диск => удаляет мелкие объекты

Пример - подсчёт монет

Сложность задачи – монеты касаются друг друга Решение: бинаризация и эрозия разделяют монеты

Составные операции

- Размыкание (открытие)
- Замыкание
- Выделение границ
- Выделение связных компонент
- Заполнение областей
- Выпуклая оболочка

Размыкание (Открытие)

- Сглаживает контуры объекта
- Обрывает узкие перешейки
- Ликвидирует выступы небольшой ширины
- Удаляет мелкие объекты

$$A \circ B = (A \ominus B) \oplus B$$

Пример размыкания

Структурирующий элемент - примитив

1	1	1
1	1	1
1	1	1

Эрозия

Дилатация

Пример размыкания

Примитив 3×9

Пример размыкания

- Использование большого структурирующего элемента, который помещается внутри искомого объекта
- Используем диск диаметром в 11 точек (объекты темные)

Замыкание

- Сглаживает контуры объекта
- Заливает узкие разрывы и длинные углубления малой ширины
- Ликвидирует небольшие отверстия
- Заполняет промежутки контура

$$A \bullet B = (A \oplus B) \ominus B$$

Пример замыкания

• Структурирующий элемент -

Пример замыкания

- Операция замыкания диском диаметром 22 точки
- Удаляются мелкие объекты (объект белый)

Пример замыкания

Улучшение сегментации:

- Бинаризация
- Замыкание диском 20 точек

Выделение границ

- Дилатация исходного изображения
- Вычитаниє $C = A \oplus B \cap A$ ходного изображения

Выделение связных компонент

А – множество

 $Y, Y \subset A$ – связная компонента,

р, р ∈ Y – точка в Y

Рекуррентная процедура:

$$X_0 = \{p\}$$

 $X_k = (X_{k-1} \oplus B) \cap A, \ k = 1,2,...$

B — подходящий примитив, например, квадрат 3×3 для 8-связности.

Условие останова: $X_k = X_{k-1}$

Результат: $Y = X_k$

Алгоритм выделения связных компонент

Заполнение областей

А – исходное множество, состоящее из граничных точек области, образующих 8-связный замкнутый путь

р – точка внутри границы

Рекуррентная процедура:

$$X_0 = \{p\}$$

 $X_k = (X_{k-1} \oplus B) \cap A^c, \ k = 1,2,...$

B — примитив, например, крестик 3×3 для 4-связности.

Условие останова: $X_k = X_{k-1}$

Результат: $A \cup X_0 \cup X_1 \cup ... \cup X_k$

«Условная дилатация» с контролем A^c

Пример заполнения области

