Doble Titulación. Álgebra Lineal. Marzo 2017

1). (2 puntos).

Sea $f: V \to W$ una aplicación lineal entre espacios vectoriales sobre K. Demostrar que f es inyectiva si y sólo si siempre que $\{v_1, \cdots, v_k\}$ es un conjunto de vectores linealmente independientes de V, su imagen $\{f(v_1), \cdots, f(v_k)\}$ es un conjunto de vectores linealmente independientes de W.

2). (4 puntos).

En el espacio vectorial \mathcal{P}_3 de polinomios de grado ≤ 3 se consideran los vectores

$$v_1 = 1 + x^2$$
, $v_2 = 1 - x^2$, $v_3 = x + x^3$

Se pide

i) (1 punto). Sea $v_4 = x$. Demostrar que $\{v_1, v_2, v_3, v_4\}$ es una base de \mathcal{P}_3 .

ii) (1 punto). Sea F el subespacio generado por $\{v_1, v_2, v_3\}$. Dar una base de \mathcal{P}_3/F .

ii) (2 puntos). Sea $v = 1 + x + x^2 + x^3$. Calcular las coordenadas de los vectores [v] y $[v + v_2]$ respecto de la base hallada en el apartado anterior.

3. (4 puntos).

Consideremos la aplicación lineal $f: \mathbb{R}^4 \to \mathbb{R}^4$ definida por

$$f(x, y, z, t) = (2x, 4y, -x + 3y, x + y)$$

(i) (2 puntos). Encontrar bases de Kerf y de Imf = imagen de f.

ii) (1 punto). Hallar la dimensión y encontrar una base del subespacio $Kerf + Imf \subset \mathbb{R}^4$.

iii) (1 punto). Decidir si la suma anterior es o no directa.