姓名	座位号	
/ L H		

(在此卷上答题无效)

绝密★启用前

安徽省示范高中培优联盟 2022 年秋季联赛(高三)

本试券分第Ⅰ券(选择题)和第Ⅱ券(非选择题)两部分,第Ⅰ券第Ⅰ至第3页,第Ⅱ券第4至 第 6 页。全卷满分 150 分, 考试时间 120 分钟。

老生注意事项:

- 1. 答题前, 条必在试题券, 答题卡规定的地方填写自己的姓名, 座位号, 并认直核对答题卡 上所粘贴的条形码中姓名, 座位号与本人姓名, 座位号是否一致,
- 2. 答第 T 卷时,每小题洗出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑。如需 改动,用橡皮擦干净后,再洗涂其他答案标号,写在本试卷上无效。
- 3. 答第Ⅱ卷时,必须使用 0.5 毫米的黑色墨水签字笔在答题卡上书写,要求字体工整、笔迹 清晰。作图题可先用铅笔在答题卡规定的位置绘出,确认后再用 0.5 毫米的黑色墨水签 字笔描清楚。必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试 题卷、草稿纸上答题无效。
- 4. 考试结束,务必将试题卷和答题卡一并上交。

第 Ⅰ 卷 (选择题 共 60 分)

- 一、选择题(本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项符合题目 要求。)
- 1. 已知集合 $A = \{x \in \mathbf{Z} \mid -2 \le x < 3\}, B = \{x \mid y = \sqrt{1 \ln x}\}, M A \cap B = 1$

A.
$$\{-2, -1, 0, 1, 2\}$$

B. {1,2}

 $C. \lceil -2, e \rceil$

- D. (0,e]
- 2. 复数 $z = i^{2022} + \frac{|3+4i|}{3+4i}$,则 z 共轭复数 \bar{z} 的虚部为

Λ	4.	
Α.	— <u>—</u> 1	

B.
$$-\frac{4}{5}$$
 C. $\frac{4}{5}$ i

C.
$$\frac{4}{5}i$$

3. 在古代, 斗笠作为挡雨遮阳的器具, 用竹篾夹油纸或竹叶棕丝等编织而成, 其 形状可以看成一个圆锥体,在《诗经》有"何蓑何笠"的句子,说明它很早就为 人所用 已知某款斗笠加图所示,它的母线长为2√2,侧面展开图是一个半圆,

第3题图

则该斗笠的底面半径为

B. $4\sqrt{2}$ C. $\sqrt{2}$

4. 已知数列 $\{a_n\}$ 的前n项和为 n^2+n ,数列 $\{b_n\}$ 满足 $a_n=2\log_2 b_n$,设数列 $\{a_n\}$ 中不在数列 $\{b_n\}$ 中 的项按从小到大的顺序构成数列 $\{c_n\}$,则数列 $\{c_n\}$ 的前 50 项和为

A 3017

B 3018

C. 3065

D 3066

5. 已知 α, β 为锐角, $\tan \alpha = 3$, $\cos(\alpha + \beta) = -\frac{3}{5}$, 则 $\tan(\alpha - \beta)$ 的值为

A.
$$\frac{7}{12}$$

A.
$$\frac{7}{12}$$
 B. $-\frac{7}{12}$ C. $\frac{7}{24}$

C.
$$\frac{7}{24}$$

$$-\frac{7}{24}$$

6. 已知定义域为 R 的偶函数 f(x) 的图象是连续不断的曲线,且 f(x+2) + f(x) = f(1), f(x)在[0,2] 上单调递增,则 f(x) 在区间[-100,100] 上的零点个数为

A 100

B. 102

C 200

D 202

7. 将函数 $f(x) = \sin\left(2x + \frac{\pi}{6}\right)$ 图象向左平移 $\frac{\pi}{6}$ 个单位长度,再将其图象上所有点的横坐标变为

原来的 $\frac{1}{\omega}(\omega > 0)$ 倍,得到函数 g(x) 的图象. 若函数 g(x) 在区间 $\left[-\frac{\pi}{4}, \frac{\pi}{4}\right]$ 上恰有 8 个零点,

则ω的取值范围为

- A. $\lceil 7,9 \rceil$ B. $\lceil 7,9 \rangle$ C. $\lceil 5,7 \rceil$ D. $\lceil 5,7 \rangle$

- **8.** 已知函数 $f(x) = x^5 + a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$ 的 5 个零点分别为 1,2,3,4,5,则 a_3 的 值为
- A. 14
- B. 24
- C. 60

- D. 85
- 二、选择题(本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。 全部选对的得 5 分, 部分选对的得 2 分, 有选错的得 0 分。)
- 9. 下图是中华人共和国国家统计局发布的 2012 年至 2021 年居民人均可支配收入(单位:元) 的 变化情况,则

- A. 2012 年至 2021 年,人均年收入逐年上升
- B. 这 10 年居民人均年收入的平均数超过 23821
- C. 这 10 年居民人均年收入的极差为 18608
- D. 这 10 年居民人均年收入的 80% 分位数为 30733
- 10. 已知抛物线 $C: y^2 = 2px(p > 0)$ 的焦点为 F,点 A,B 在抛物线 C 上,且 A,B 都在 x 轴的上方,

 $\angle OFB = 2 \angle OFA = \frac{2\pi}{3}(O$ 为坐标原点),记 $\triangle OFB$, $\triangle OFA$ 的面积分别为 S_1 , S_2 ,则

A. 直线 AB 的斜率为 $\frac{\sqrt{3}}{3}$

B. 直线 AB 的斜率为 $\frac{\sqrt{3}}{2}$

C.
$$S_1 - S_2 = \frac{\sqrt{3}p^2}{6}$$

D.
$$S_1 - S_2 = \frac{p^2}{3}$$

- 11. 在棱长为 2 的正方体 $ABCD A_1B_1C_1D_1$ 中,点 P 在线段 B_1C 上运动,则
 - A. 三棱锥 $P A_1 C_1 D$ 的体积为定值 $\frac{4\sqrt{3}}{3}$
 - B. PB + PD 的最小值为 $2 + \sqrt{3}$
 - $C. \angle BPD_1 \geqslant 90^{\circ}$
 - D. 直线 AP 与 A_1D 所成角的取值范围是 $\left[\frac{\pi}{3}, \frac{\pi}{2}\right]$
- 12. 已知函数 $f(x) = x \ln x$, $g(x) = e^x x$, 若存在 x_1 , x_2 , 使得 $f(x_1) = g(x_2) = t$ 成立,则

A. $t \geqslant 1$

- B. $x_1 x_2$ 的最小值为 1
- C. 当 $0 < x_1 < 1, x_2 < 0$ 时, $x_1 x_2$ 的取值范围为[$-e, +\infty$)
- D. 当 $x_1 > 1, x_2 > 0$ 时, $\frac{tx_2}{x_1} x_2$ 的最小值为 $-\frac{4}{e^2}$

(在此卷上答题无效)

第 Ⅱ 卷(非选择题 共90分)

考生注意事项:

请用 0.5 毫米黑色墨水签字笔在答题卡上作答,在试题卷上答题无效。

- 三、填空题(本题共4小题,每小题5分,共20分。)
- **13.** 已知向量 $a \cdot b$ 满足 |a| = 2 |b|, 目 $2 |a-b| = \sqrt{3} |a|$, 则 a = b 的夹角为
- 件,并测量其尺寸(单位: cm). 根据长期生产经验,可以认为这条生产线正常状态下生产的零件尺寸服从正态分布 $N(20,2^2)$,则可估计所抽取的 1000 个零件中尺寸高于 24 的个数大约为______.

 (附:若随机变量 ε 服从正态分布 $N(\mu,\sigma^2)$,则 $P(\mu-\sigma \leqslant \varepsilon \leqslant \mu+\sigma) \approx 0.6827$, $P(\mu-2\sigma \leqslant \varepsilon \leqslant \mu+\sigma) \approx 0.6827$

14. 为了监控某种零件的一条生产线的生产过程, 检验员每天从该生产线上随机抽取 1000 个零

 $\leq \mu + 2\sigma$) $\approx 0.9545.$) **15.** 已知 a > 1, b > 1 时,不等式 $be^a - na \ln b \geqslant 0$ 恒成立,则 n 的最大值是

16. 设双曲线 $C: \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 (a > 0, b > 0)$ 的左、右焦点分别为 F_1, F_2 ,点 A 在双曲线的右支上,且直线 AF_2 的倾斜角为 60° , $\triangle AF_1F_2$ 的内切圆半径为 $\sqrt{3}a$,则双曲线 C 的离心率为

四、解答题(本题共6小题,共70分。解答应写出必要的文字说明、证明过程或演算步骤。)

17. (10分)

在 $\triangle ABC$ 中,角 A,B,C 所对的边分别为 a,b,c,满足 $\sqrt{2}b\cos C = \sqrt{2}a - c$.

- (1) 求角 B:
- (2) 若 $\cos C = \frac{3}{5}$, $\overrightarrow{BD} = 4 \overrightarrow{DC}$, $\triangle ABD$ 的面积为 $\frac{7}{5}$,求 c 的值.

18. (12分)

某校为了庆祝二十大的胜利召开,决定举办"学党史·铭初心"党史知识竞赛. 高三年级为此举办了一场选拔赛,选拔赛分为初赛和决赛,初赛通过后才能参加决赛,决赛通过后将代表年级参加学校比赛. 已知甲、乙、丙 3 位同学通过初赛的概率均为 $\frac{2}{3}$,通过初赛后再通过决赛的

概率依次为 $\frac{1}{2}$, $\frac{1}{2}$, $\frac{3}{4}$,假设他们之间通过与否互不影响.

- (1) 求 3 人中至少有 1 人通 讨 初 赛 的 概 率:
- (2) 从甲、乙、丙 3 位同学中随机抽取一名,求他通过决赛的概率;
- (3) 设这 3 人中通过决赛的人数为 ε ,求 ε 的分布列及期望.

19. (12分)

如图,直角梯形 ABCD 中,CD=2AB=2BC, $AB \perp BC$,AB//CD,点 E为CD 的中点, $\triangle ADE$ 沿着 AE 翻折至 $\triangle APE$,点 M 为 PC 的中点,点 N 在线段 BC 上.

- (1) 证明:平面 *EMN* | 平面 *PBC*;
- (2) 若平面 $PAE \perp$ 平面 ABCE, 平面 EMN 与平面 PAB 所成的锐二面角为 30° , 求 $\frac{BN}{BC}$ 的值.

20. (12分)

已知数列 $\{a_n\}$ 满足 $a_{n+2}=a_{n+1}+2a_n$, $a_1=1$, $a_2=2$.

- (1) 求证:数列 $\{a_{n+1} + a_n\}$ 为等比数列;
- (2) 求数列 $\{a_n\}$ 的前 n 项和 S_n .

21. (12 分)

如图所示,A,B 为椭圆 $E: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 (a > b > 0)$ 的左、右顶点,焦距长为 $2\sqrt{3}$,点P 在椭圆

 $E \perp$,直线 PA,PB 的斜率之积为 $-\frac{1}{4}$.

- (1) 求椭圆 E 的方程:
- (2) 已知 O 为坐标原点,点 C(-2,2),直线 PC 交椭圆 E 于点 M(M,P 不重合),直线 BM,OC 交于点 G. 求证:直线 AP,AG 的斜率之积为定值,并求出该定值.

第 21 题图

22. (12分)

已知函数 $f(x) = e^x - 1 - x - ax^2, x \ge 0$,且 $f(x) \ge 0$ 恒成立.

- (1) 求实数 a 的最大值;
- (2) 证明: $f(x) + x\sin x \ge 0$. (参考数据: $e^{x} = 23.1$)