

PRUEBA PARCIAL – OCTUBRE 2016 102712 Señales y Sistemas Discretos

Profesores: Gonzalo Seco Granados, José A. Del Peral

Instrucciones: 120 minutos. Ponga el nombre y el NIU en todas las hojas. Entregue cada cuestión en una hoja o cara diferente y ordenadas.

Cuestión 1

Considere el sistema LTI con respuesta impulsional

$$h[n] = \left(\frac{j}{2}\right)^n u[n].$$

Determine la respuesta en régimen permanente (o sea, para valores de n muy grandes) a la entrada $x[n] = \cos(\pi n)u[n]$.

Cuestión 2

Considere el sistema LTI descrito por la ecuación

$$y[n] = 0.2y[n-1] + x[n].$$

Calcule su respuesta impulsional, su respuesta frecuencial y la respuesta a la entrada $x[n]=e^{j2\pi\frac{1}{8}n}+e^{-j2\pi\frac{1}{10}n}$.

Cuestión 3

Un sistema tiene respuesta impulsional

$$h[n] = a^n u[n], \quad \text{con } |a| < 1.$$

Calcule su respuesta al escalón x[n] = u[n].

Cuestión 4

Se dispone del siguiente sistema:

Se utiliza el filtro $h[n] = \delta[n] + \delta[n-1]$.

La entrada es la señal $x[n] = \{\underline{1}, 2, -4, 5, -1, 6, 7, 8\}$, donde la muestra subrayada corresponde a n = 0. Calcule la salida y[n] del sistema.

Cuestión 5

Se dispone del siguiente sistema:

La transformada de Fourier de la señal de entrada tiene la siguiente forma:

El filtro paso bajo del final de la cadena es ideal y puede tener el ancho de banda que se desee. ¿Cuál es el valor máximo de M para el cual es posible hacer que y[n] sea igual a x[n]?

Cuestión 6

Sea x[n] una señal de energía finita. Su autocorrelación se denota como $r_{xx}[n]$ y su densidad espectral de energía como $S_{xx}(e^{j2\pi f})$.

La señal y[n] es el resultado de modular x[n] a frecuencia f_0 , o sea

$$y[n] = x[n]e^{j2\pi f_0 n}.$$

Exprese $r_{yy}[n]$ en función de $r_{xx}[n]$.

Exprese $S_{yy}(e^{j2\pi f})$ en función de $S_{xx}(e^{j2\pi f})$.

Cuestión 7

Calcule la DFT de N=8 puntos de un pulso rectangular de 4 muestras, o sea, de la señal $x[n]=\{1,1,1,1\}$.

Cuestión 8

Calcule convolución circular de N=8 puntos entre las secuencias $x[n]=\{\underline{1},1,1,1\}$ y $y[n]=\{\underline{1},2,3,4,-1,-1,0,3\}$.

Cuestión 9

Considere los siguientes sistemas, donde el bloque $T\{\ \}$ realiza la inversión temporal, como se indica en la figura.

Sistema 1
$$x[n] \longrightarrow h_1[n] = \delta[n-5] \longrightarrow T\{ \} \longrightarrow h_2[n] = \delta[n-1] \longrightarrow h_2[n] \longrightarrow h_2$$

Sistema 2
$$x[n]$$
 $T\{$ $\}$ $h_3[n] = \delta[n-M]$ $y_2[n]$

¿Para qué valor de M el segundo sistema da exactamente la misma salida que el primero? Exprese $Y_1(e^{j2\pi f})$ en función de $X(e^{j2\pi f})$.

Cuestión 10

Determine si el siguiente sistema

$$T\{x[n]\} = n \ x[n]$$

es estable. Y causal? Lineal? Invariante?

$$x [u] = \omega([i]n) u[u] = (-1)^{n} u[u]$$

$$x [u] = \omega([i]n) u[u] = (-1)^{n} u[u]$$

$$y [u] = x [u] * h[u] = \sum_{k=0}^{\infty} (J/2)^{k} (-1)^{n-k} = (-1)^{n} \sum_{k=0}^{\infty} (-J/2)^{k} = (-1)^{n} \sum_{k=0}^{\infty} (-J/2)^{k} = (-1)^{n} \frac{J}{1 + J/2}$$

$$u my scarde$$

Par- n my grande, xtal se comparte como un tono de duració i-firite J x obtiene la respecte del sutero en répline permanente sinusoridal

$$H(e^{j2\pi i}) = \sum_{n=0}^{\infty} (j_2)^n e^{-j2\pi i j_n} = \frac{1}{1-j_2 e^{j2\pi i j_n}}$$

CVESTION 2

$$y [n] = o'2 y [u-1] + x [u]$$
So $x [u] = \delta[u] \Rightarrow y [v] = 1$

$$y [u] = o'2$$

$$y [u] = o'2$$

$$y [u] = o'2^{u} u [u]$$

$$h [u] = o'2 h [u-1] + \delta[u]$$

$$h \, \overline{Lu} = 0!2 \, h \, \overline{Lu} - \overline{1} + \delta \, \overline{Lu} \, \overline{1}$$

$$\int \overline{Irrus} \, roundo \, de \, \overline{fornie}$$

$$H(e^{i2\overline{1}f}) = 0!2 \, e^{i2\overline{1}f} \, H(e^{i2\overline{1}f}) + 1$$

$$H(e^{i2\overline{1}f}) = 0!2 \, e^{i2\overline{1}f} \, \overline{1}$$

$$H(e^{i2\overline{1}f}) = 0!2 \, e^{i2\overline{1}f}$$

$$x = e^{\frac{1-02e}{4}}$$
 $+ e^{\frac{1-02e}{4}}$
 $+$

$$y = h = 1 - a^{n} + x = 1 -$$

$$x tu = \frac{1}{1} \frac{1}{2} \frac{1}{$$

Si en el disermado no se produce alicring, la sual soliginal se puede remperar mediante la interpolació.

puede remperar mediante la interpolació.

Vamos a ver para pe' valor de 17 se engiles a producir alianing.

El primer paro para calcular el espectro de la suial diesurado es repetir el espectro en mi/hplu de 1/n.

M=2

01 012 014 1/2 016

No hay alrange.

M=4

distorsin

CUESTION 6

(yy Tu] =
$$y tu$$
) $\times y^* tu$] = $\sum_{k=-\infty}^{+\infty} y tu + k y^* tu$] =

$$= \sum_{k=-\infty}^{+\infty} x tu = \sum_{k=-\infty}^{+\infty} y tu + k y^* tu = \sum_{k=-\infty}^{+\infty} x tu$$

$$\chi(x) = \sum_{n=0}^{3} e^{-\frac{1}{2}\pi kn}$$

$$X[0] = 4$$
 $J'''_{4} - J'''_{2}$
 $J'''_{4} = \frac{2}{1 - e^{-1}} = \frac{2}{1 - e^{-1}} = \frac{2}{1 - e^{-1}}$
 $X[1] = 1 + e$
 $J'''_{4} = \frac{2}{1 - e^{-1}} = \frac{2}{1 - e^{-1}}$

$$X[1] = 1 + e + e + e + e = \frac{1 - e}{1 - e^{-\frac{1}{3}\sqrt{13}}} = \frac{2}{1 - e^{-\frac{1}{3}\sqrt{13}}}$$
 $X[3] = 1 + e + e + e = \frac{1 - e}{1 - e^{-\frac{1}{3}\sqrt{13}}} = \frac{2}{1 - e^{-\frac{1}{3}\sqrt{13}}}$

$$\chi[3] = 1 + e + e + e = \frac{1}{-1\pi^{3/4}} = \frac{1}{1-e^{-1\pi^{3/4}}}$$

$$X[5] = \frac{2}{|-e^{-\frac{1}{5}\pi/4}|} = \frac{2}{|-e^{+\frac{3\pi}{4}}|} = \frac{2}{|-e^{+\frac{3\pi}{4}}|}$$

$$X(7) = \frac{2}{1 - e^{-\frac{1}{17}}} = x^{*}Li$$

Se puede comprober con tratab havierdo: CCONV(x, y)

m=-10-4

_n= m+4

y [u] = Tdx [u] /= nx [u]

- · No entable. Auge /x [n]/ck, Vn, T/x [u]/ puede oucos
- · Causal. J [u] solo depende de la entrade actual, no de entrades futuras.
- Tgax, [u] +axx2[u] \= a, Tdx, [u] \+axTdx2[u] >
- · No invariente

Tdx [u-M] = nx[u-M] $y Tu-M7 = (n-M) \times Zu-M7$