29. a.	Prove the following identities (i) $HxH = Z$	12	,	2	
	(ii) $HzH = X$				
	(OR)				
b.	Manipulate the matrix representation of SWAP and Hadamard gate from its outer product form (truth table is must).	12	4	2	2
30. a.	Explain in detail about oracle phase kick hack.	12	2	3	2
	(OR)				
b.	Construct Deustch algorithm for value $n = 1$.	12	4	3	4
31. a.	Summarize quantum teleportation and its significance on applications.	12	3	4	4
	(OR)		2		
b.	Illustrate the amplitude amplification used for unstructured database search in quantum computing.	12	3	4	2
32. a.	Categorize the different physical realizations of qubit.	12	4	5	4
	(OR)				
b.	Formulate the need of quantum supremacy and NISQ era through different applications.	12	3	Š	2

					-			
Reg. No.								
1405								

B.Tech. DEGREE EXAMINATION, MAY 2023 Fifth & Sixth Semester

18CSE310J – QUANTUM COMPUTATION
(For the candidates admitted during the academic year 2018-2019 to 2021-2022)

Note: (i) (ii)		Part - A should be answered in OMR she over to hall invigilator at the end of 40 th min Part - B & Part - C should be answered in	et w nute	rithin first 40 minutes and OMR she		d be	han	ded
Time	: 3.	hours			Max. N	/Iark	s: 1	00
		$PART - A (20 \times 1 = 2)$		•	Marks	BL	CO	PO
		Answer ALL Que	est10	ons	1	1	1	1
	1,	Pauli matrices are not	n)	TT. '		•	ī	-
				Unitary				
		(C) Invertible (D)	Non diagonalizable				
	2	The time evolution of quantum state in	aua	antum mechanics is governed by	1	1	1	1
	۷.			Heisenberg equation of motion				
				Heat equation				
5.		(c) name of any control (c)	_ /	1	υ,			
	3.	Trace of a matrix is			1	1	1	1
æ	٥.		B)	Inner product of its eiger vectors	1			
		(C) Negative of the sum of its (eigen values	D)	Sum of its eigen values		200		
	4.	According to postulates of quantum physical observables in quantum mechanisms			g 1	2	1	1
		(A) Unitary (B)	Symmetric				
		(C) Orthogonal ((D)	Hermitian		¥3		
	5.	For $ \psi\rangle = \cos\left(\frac{\theta}{2}\right) 0\rangle + e^{i\phi}\sin\left(\frac{\theta}{2}\right) 1\rangle$ (whe	ere $0 \le \theta \le \pi$ and $0 \le \theta \le 2\pi$). I	1	3	2	2
		is used to represent any two dimension						
		$\theta = \frac{\pi}{2}, \phi = 0$, which state it represents.		i e				
		$(A) 0\rangle \qquad ($	(B)	$\left \frac{\pi}{2}\right\rangle$				
		$(C)^{\frac{1}{2}}\left +\right\rangle $	(D)	181				
	6.		(B) (D)	Universal Non unitary	1	1	2	1

	(C) Z gate		Y gate U gate	1	2	-			18.	Which part of VQE is done by the classical machine? (A) Evaluating the cost function (B) Creating the ansatz (C) Creating the density matrix (D) Optimization of the cost function	1	2	5	2
	((B) (D)	1 7	1	2	2	2		19.	Algorithm which is a threat to RSA cryptosystems. (A) Grover (B) Shor	1	1	5	1
8	9. F	For same input size 'n' which of these A) O(1)	has h	nighest run time complexity?	1	2	3	2		20.	 (C) Simon (D) Deutsch What technique is necessary to achieve fault tolerant quantum computing? (A) Quantum Fourier transform (B) Quantum error correction (C) Quantum phase estimation (D) Quantum eigen solver 	1	1	5	2
1	0. N	Number of queries used by Deutsch al A) 1/2		hm is	1	1	3	2 - 3	10			Marks	BL	со	PO
			(D) .							21.	Let	4	3	1	2
1	. (Quantum cost is defined as A) Number of qubits needed to build the circuit C) Number of primitive gates needed to create the circuit 	(D)	operation on circuit	1	2	3	2			$ \phi\rangle = \begin{bmatrix} 2\\6i \end{bmatrix}$ $ \psi\rangle = \begin{bmatrix} 3\\4 \end{bmatrix}$				
1	2. (Classical query complexity of finding	g whe	ther the function is balanced or	1	2	3	2		1.00	Construct the outer product and tensor product.				
	c	constant, for a string size 'n'							·	22.	Explain BRA-KET notations.	4	2	1	2
		C) <u>1</u>		$2^{n-1} + 1$ $2^n + 1$						23.	Formulate the matrix representation of CNOT gate.	4	4	2	2
1	(.		(B)	called Amplitude amplification Phase finding	1	1	4	1		24.	Predict the state produced by the following quantum circuit. $\begin{array}{c c} 10 \\ \hline 10 \\ \hline \end{array}$	4	3	3	2
1		No cloning theorem states that			1	i	4	1							
	(,	A) There exists no universal copier for quantum states		There exists a universal copier for quantum states						25.	Discuss about quantum amplitude estimation.	4	2	4	2
•	(C) There exists no gate which can copy orthogonal states	(D)	There exists gate which can copy orthogonal states						26.	List all the single qubit gates.	4	2	2	1
1		Grover's algorithm's query complexit	ty for	searching special item in a set	1	2	4	2		27.	Review any one use case in finance domain with quantum advantage.	4	4	5	2
	(.	A) O (N)_	(B) (D) (O (N/2) O (1)							$PART - C (5 \times 12 = 60 \text{ Marks})$ Answer ALL Questions	Marks	BL I	CO	PO
1		Amplitude amplification includes	(D)	Annihim dice and day	1	1	4	1		28. a.	Compute the Eigen values and eigen vectors of Pauli matrix 'X' and 'Z'.	12	3	1	2
	Ц	A) Applying oracle and then diffuserC) Appling oracle	(Applying diffuser and then oracle Applying diffuser		*			x	b.i.	(OR) Distinguish between classical system and quantum system.	6	3	1	2
1	(.	•		BB84	1	2	5	2		ii.	Explain Bell states with circuit diagram.	6	2	1	2

Page 3 of 4

31MF5&6-18CSE310J

31MF5&6-18CSE310J

Page 2 of 4