

# Saluran Nir Rugi

#### Transmisi Daya Listrik

Novalio Daratha, Tuesday, 21 April 2020

### Saluran nir-rugi (lossless line)

#### **Daftar topik**

- 1. Surge impedance
- 2. ABCD parameters
- 3. Equivalent  $\pi$  circuit
- 4. Wavelength
- 5. Surge impedance loading
- 6. Voltage profile
- 7. Steady state limits

#### Surge Impedance

#### Impedansi surja

• Untuk sebuah saluran nir rugi, R = 0 dan G = 0.

• Impedansi surja 
$$Z_c = \sqrt{\frac{z}{y}} = \sqrt{\frac{L}{C}} \Omega$$

• Konstanta propagasi 
$$\gamma = \sqrt{zy} = j\omega\sqrt{LC} = j\beta \ m^{-1}$$

• 
$$\beta = \omega \sqrt{LC}$$

#### **ABCD Parameters**

• 
$$A = D = \cosh(\beta x)$$

• 
$$B = j\sqrt{\frac{L}{C}}\sin(\beta x) \Omega$$

$$C = \frac{j \sin(\beta x)}{\sqrt{\frac{L}{C}}} S$$

#### Equivalent $\pi$ circuit



#### Wavelength

$$\lambda = \frac{c}{f} = \frac{3 \times 10^8}{50} = 6 \times 10^6 \, m = 6000 \, km$$

### Surge Impedance Loading (SIL)

• SIL is power consumed by a load whose impedance equals  $Z_c$ . Beban impedansi surja adalah daya yang dipakai oleh sebuah beban yang impedansinya sama dengan  $Z_c$ .

• 
$$SIL = \frac{V_{rated}^2}{Z_c}$$



### Voltage Profiles

 Voltage profiles of an uncompensated lossless line with fixed sendingend voltage for line lengths up to a quarter wavelength



#### Steady State Limits

• 
$$P = \frac{V_S V_R}{X'} \sin \delta$$
• 
$$P_{max} = \frac{V_S V_R}{X'} = \frac{V_{Sp.u.} V_{Rp.u.}(SIL)}{\sinh(\frac{2\pi l}{\lambda})}$$

### Quiz 1

| 5.12 | For a lossless line, the surge stant is pure imaginary.  (a) True                                                                                | impedance is purely resistive and the propagation con-<br>(b) False |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 5.13 | For equivalent $\pi$ circuits of lossless lines, the $A$ and $D$ parameters are pure whereas $B$ and $C$ parameters are pure Fill in the Blanks. |                                                                     |
| 5.14 | In equivalent $\pi$ circuits of lemma. Fill in the Blanks                                                                                        | ossless lines, $Z'$ is pure, and $Y'$ is pure s.                    |
| 5.15 | Typical power-line lengths are (a) True                                                                                                          | only a small fraction of the 60-Hz wavelength. (b) False            |
| 5.16 | The velocity of propagation of voltage and current waves along a lossless overhead line is the same as speed of light.  (a) True  (b) False      |                                                                     |

#### Quiz 2

5.17 Surge Impedance Loading (SIL) is the power delivered by a lossless line to a load resistance equal to \_\_\_\_\_\_. Fill in the Blank.
5.18 For a lossless line, at SIL, the voltage profile is \_\_\_\_\_\_, and the real power delivered, in terms of rated line voltage V and surge impedance Z<sub>C</sub>, is given by \_\_\_\_\_. Fill in the Blanks.
5.19 The maximum power that a lossless line can deliver, in terms of the voltage magnitudes V<sub>S</sub> and V<sub>R</sub> (in volts) at the ends of the line held constant, and the series reactance X' of the corresponding equivalent π circuit, is given by \_\_\_\_\_\_, in Watts. Fill in the Blank.

#### Quiz 3

- 5.26 A 300-km, 500-kV, 60-Hz three-phase uncompensated line has a positive-sequence series reactance  $x = 0.34 \,\Omega/\text{km}$  and a positive-sequence shunt admittance  $y = j4.5 \times 10^{-6} \,\text{S/km}$ . Neglecting losses, calculate: (a)  $Z_c$ , (b)  $(\gamma l)$ , (c) the *ABCD* parameters, (d) the wavelength  $\lambda$  of the line, in kilometers, and (e) the surge impedance loading in MW.
- **5.27** Determine the equivalent  $\pi$  circuit for the line in Problem 5.26.
- Rated line voltage is applied to the sending end of the line in Problem 5.26. Calculate the receiving-end voltage when the receiving end is terminated by (a) an open circuit, (b) the surge impedance of the line, and (c) one-half of the surge impedance. (d) Also calculate the theoretical maximum real power that the line can deliver when rated voltage is applied to both ends of the line.



## Terima kasih