

planetmath.org

Math for the people, by the people.

composition preserves chain condition

 ${\bf Canonical\ name} \quad {\bf Composition Preserves Chain Condition}$

Date of creation 2013-03-22 12:54:40 Last modified on 2013-03-22 12:54:40

Owner Henry (455) Last modified by Henry (455)

Numerical id 5

Author Henry (455)
Entry type Result
Classification msc 03E40
Classification msc 03E35

Let κ be a regular cardinal. Let P be a forcing notion satisfying the κ chain condition. Let \hat{Q} be a P-name such that $\Vdash_P \hat{Q}$ is a forcing notion satisfying the κ chain condition. Then P*Q satisfies the κ chain condition.

Proof:

Outline

We prove that there is some p such that any generic subset of P including p also includes κ of the p_i . Then, since Q[G] satisfies the κ chain condition, two of the corresponding \hat{q}_i must be compatible. Then, since G is directed, there is some p stronger than any of these which forces this to be true, and therefore makes two elements of S compatible.

Let
$$S = \langle p_i, \hat{q}_i \rangle_{i < \kappa} \subseteq P * Q$$
.

Claim: There is some $p \in P$ such that $p \Vdash |\{i \mid p_i \in \hat{G}\}| = \kappa$

(Note:
$$\hat{G} = \{ \langle p, p \rangle \mid p \in P \}$$
, hence $\hat{G}[G] = G$)

If no p forces this then every p forces that it is not true, and therefore $\Vdash_P |\{i \mid p_i \in G\}| \leq \kappa$. Since κ is regular, this means that for any generic $G \subseteq P$, $\{i \mid p_i \in G\}$ is bounded. For each G, let f(G) be the least α such that $\beta < \alpha$ implies that there is some $\gamma > \beta$ such that $p_{\gamma} \in G$. Define $B = \{\alpha \mid \alpha = f(G)\}$ for some G.

Claim: $|B| < \kappa$

If $\alpha \in B$ then there is some $p_{\alpha} \in P$ such that $p \Vdash f(\hat{G}) = \alpha$, and if $\alpha, \beta \in B$ then p_{α} must be incompatible with p_{β} . Since P satisfies the κ chain condition, it follows that $|B| < \kappa$.

Since κ is regular, $\alpha = \text{sub}(B) < \kappa$. But obviously $p_{\alpha+1} \Vdash p_{\alpha+1} \in \hat{G}$. This is a contradiction, so we conclude that there must be some p such that $p \Vdash |\{i \mid p_i \in \hat{G}\}| = \kappa$.

If $G \subseteq P$ is any generic subset containing p then $A = \{\hat{q}_i[G] \mid p_i \in G\}$ must have cardinality κ . Since Q[G] satisfies the κ chain condition, there exist $i, j < \kappa$ such that $p_i, p_j \in G$ and there is some $\hat{q}[G] \in Q[G]$ such that

 $\hat{q}[G] \leq \hat{q}_i[G], \hat{q}_j[G]$. Then since G is directed, there is some $p' \in G$ such that $p' \leq p_i, p_j, p$ and $p' \Vdash \hat{q}[G] \leq \hat{q}_1[G], \hat{q}_2[G]$. So $\langle p', \hat{q} \rangle \leq \langle p_i, \hat{q}_i \rangle, \langle p_j, \hat{q}_j \rangle$.