```
In [18]:
             #Q1
             import matplotlib.pyplot as plt
           2
             year= [2010, 2020, 2030, 2040, 2050, 2060, 2070, 2080, 2090, 2100]
             pop = ["5B", "10B", "15B", "20B", "25B", "30B", "35B", "40B", "45B", "50B"]
             plt.title("Population Inflamation with Time")
           5
             plt.xlabel("Years")
             plt.ylabel("Population")
           7
             plt.plot(year, pop)
             plt.show()
           9
             print("Population of World in Year:", year[-1],"will be", pop[-1],"(Billion)
          10
```


Population of World in Year: 2100 will be 50B (Billion)

```
In [2]:
          1
             #Q2
          2
             year= [1994,1995,1998,2000]
          3
             pop=[2.59,3.69,5.33,6.77]
            plt.xlabel("Year")
            plt.ylabel("Poputlation")
          5
            plt.title("Population Inflamation with Time")
          7
             plt.scatter(year,pop)
            plt.show()
          8
          9
```



```
In [3]:
          1
            #Q3
          2
             import matplotlib.pyplot as plt
          3
            import pandas as pd
            df=pd.read_csv('http://assets.datacamp.com/course/intermediate_python/gapmin
          5
            print(df)
          6
             gdp_cap = list(df.gdp_cap)
          7
            life_exp = list(df.life_exp)
          8
             print("Last Item GDP (Zimbabwe):", gdp_cap[-1], "Last Item Life_Exp (Zimbabw
          9
         10
            plt.xlabel("GDP Cap")
         11
            plt.ylabel("Life Exp")
         12
            plt.title("Proffessor Hans Rosling Research")
         13
            plt.plot(gdp_cap, life_exp)
         14
            plt.show()
         15
         16
            plt.clf()
         17
```

	country	year	population	cont	life_exp	gdp_cap
11	Afghanistan	2007	31889923.0	Asia	43.828	974.580338
23	Albania	2007	3600523.0	Europe	76.423	5937.029526
35	Algeria	2007	33333216.0	Africa	72.301	6223.367465
47	Angola	2007	12420476.0	Africa	42.731	4797.231267
59	Argentina	2007	40301927.0	Americas	75.320	12779.379640
	• • •		• • •	• • •	• • •	• • •
1655	Vietnam	2007	85262356.0	Asia	74.249	2441.576404
1667	West Bank and Gaza	2007	4018332.0	Asia	73.422	3025.349798
1679	Yemen, Rep.	2007	22211743.0	Asia	62.698	2280.769906
1691	Zambia	2007	11746035.0	Africa	42.384	1271.211593
1703	Zimbabwe	2007	12311143.0	Africa	43.487	469.709298

[142 rows x 6 columns]
Last Item GDP (Zimbabwe): 469.70929810000007 Last Item Life_Exp (Zimbabwe): 43.
487

<Figure size 432x288 with 0 Axes>


```
In [5]:
          1
             #Q5
          2
             import matplotlib.pyplot as plt
          3
             prices = [1567, 7170, 7780, 9990, 4140, 1360, 3115, 1127, 6610, 1340, 3155,
                       7099, 5885, 9989, 4353, 4221, 2400, 4521]
          4
          5
             plt.title('Prices Graph')
          6
            plt.xlabel("Prices")
             plt.ylabel("Sr.No")
          7
             plt.hist(prices, bins=5)
          9
             plt.show()
         10
            plt.title('Prices Graph')
         11
            plt.xlabel("Prices")
         12
            plt.ylabel("Sr.No")
         13
             plt.hist(prices, bins=20)
         14
            plt.show()
         15
         16
            print("Second Histogroam is better and Observational")
         17
```


Second Histogroam is better and Observational

```
In [6]:
          1
            #Q6
          2
            year= [1994,1995,1998,2000]
            pop=[2.59,3.69,5.33,6.77]
          3
            plt.xlabel("Year")
            plt.ylabel("Poputlation")
          5
            plt.title("18-NTU-CS-1191")
            plt.scatter(year,pop)
          7
          8
            plt.show()
          9
            import matplotlib.pyplot as plt
         10
            import pandas as pd
         11
            df=pd.read_csv('http://assets.datacamp.com/course/intermediate_python/gapmin
         12
         13 print(df)
            gdp_cap = list(df.gdp_cap)
         14
            life exp = list(df.life exp)
         15
         16
            print("Last Item GDP (Zimbabwe):", gdp_cap[-1], "Last Item Life_Exp (Zimbabw
         17
         18
            plt.xlabel("Gross Domestic Product (GDP Cap)")
         19
         20 plt.ylabel("Life Expectations")
            plt.title("18-NTU-CS-1191")
         21
         22 plt.plot(gdp_cap, life_exp)
         23 plt.show()
            plt.clf()
         24
         25
         26
```


	country	year	population	cont	life_exp	gdp_cap
11	Afghanistan	2007	31889923.0	Asia	43.828	974.580338
23	Albania	2007	3600523.0	Europe	76.423	5937.029526
35	Algeria	2007	33333216.0	Africa	72.301	6223.367465
47	Angola	2007	12420476.0	Africa	42.731	4797.231267
59	Argentina	2007	40301927.0	Americas	75.320	12779.379640
	• • •		• • •	• • •	• • •	• • •
1655	Vietnam	2007	85262356.0	Asia	74.249	2441.576404
1667	West Bank and Gaza	2007	4018332.0	Asia	73.422	3025.349798

```
Yemen, Rep.
                         2007 22211743.0
                                                Asia
                                                        62.698
                                                                 2280.769906
1679
1691
                  Zambia
                         2007
                               11746035.0
                                              Africa
                                                        42.384
                                                                 1271.211593
1703
                Zimbabwe 2007 12311143.0
                                              Africa
                                                        43.487
                                                                  469.709298
```

```
[142 rows x 6 columns]
Last Item GDP (Zimbabwe): 469.70929810000007 Last Item Life_Exp (Zimbabwe): 43.
487
```


<Figure size 432x288 with 0 Axes>

Looking around in the kitchen. big place!

looking around elsewhere.

pretty small

```
In [10]:
           1
              #09
           2
              room = 'bed'
              if room == "kit" :
           3
                  print("looking around in the kitchen.")
           4
           5
              elif room == "bed":
                  print("looking around in the bedroom.")
           6
           7
              else :
                  print("looking around elsewhere.")
           8
           9
          10
          11
```

looking around in the bedroom.

```
In [11]:
           1
              #Q9(B)
           2
              area = 14
              if area > 15 :
           3
           4
                  print("big place!")
              elif area > 10:
           5
           6
                  print("medium size, nice!")
           7
              else :
                  print("pretty small.")
           8
           9
          10
```

medium size, nice!

	Unnamed: 0	cars_per_cap	country	drives_right
0	US	809	United States	True
1	AUS	731	Australia	False
2	JAP	588	Japan	False
3	IN	18	India	False
4	RU	200	Russia	True
5	MOR	70	Morocco	True
6	EG	45	Egypt	True

```
In [13]:
           1
              #Q11
           2
              import pandas as pd
           3 dataset = pd.read_csv("cars.csv", index_col = 0)
           4 cars=pd.DataFrame(dataset)
             print(cars)
              cars_per_cap
                                   country drives_right
         US
                        809 United States
                                                    True
         AUS
                        731
                                 Australia
                                                    False
         JAP
                        588
                                     Japan
                                                    False
                                                    False
         IN
                         18
                                     India
         RU
                        200
                                    Russia
                                                     True
         MOR
                         70
                                   Morocco
                                                    True
                         45
         EG
                                     Egypt
                                                     True
In [14]:
              #Q12(A)
           2 import pandas as pd
           3 dataset = pd.read_csv("cars.csv", index_col = 0)
             cars=pd.DataFrame(dataset)
              cars['cars per cap']
Out[14]: US
                 809
         AUS
                 731
         JAP
                 588
         ΙN
                 18
         RU
                 200
         MOR
                  70
                  45
         EG
         Name: cars_per_cap, dtype: int64
In [17]:
             #Q12(B)
           2 import pandas as pd
           3 dataset = pd.read_csv("cars.csv", index_col = 0)
           4 cars=pd.DataFrame(dataset)
              cars[['cars_per_cap']]
Out[17]:
               cars_per_cap
            US
                       809
          AUS
                       731
           JAP
                       588
            IN
                        18
           RU
                       200
```

70 45

MOR

EG

Out[19]:

	cars_per_cap	country	drives_right
RU	200	Russia	True
AUS	731	Australia	False

Out[20]:

```
JAP 588 Japan False
```

Out[21]:

	cars_per_cap	country	drives_right
AUS	731	Australia	False
EG	45	Eavpt	True

Out[22]:

```
        IN
        18
        India

        RU
        200
        Russia
```

```
In [23]:  #Q14(B)
2  import pandas as pd
3  dataset = pd.read_csv("cars.csv", index_col = 0)
4  cars.loc['MOR', 'drives_right']
5  cars.loc[['RU', 'MOR'], ['country', 'drives_right']]
6
```

Out[23]:

	country	drives_right
RU	Russia	True
MOR	Morocco	True

```
In [24]:
           1
             #Q15
             import matplotlib.pyplot as plt
           2
             import importlib
           3
             importlib.reload(plt)
             import pandas as pd
           5
           6
             plt.clf()
           7
             df = pd.read_csv('http://assets.datacamp.com/course/intermediate_python/gapm
             gdp_cap = list(df.gdp_cap)
           9
             life_exp = list(df.life_exp)
          10
          11 # Basic scatter plot, log scale
             plt.scatter(gdp_cap, life_exp)
          12
          13
             plt.xscale('log')
          14
             # Strings
          15
          16
             plt.xlabel('GDP per Capita [in USD]')
             plt.ylabel('Life Expectancy [in years]')
          17
          18
             plt.title('World Development in 2007')
          19
```

Out[24]: Text(0.5, 1.0, 'World Development in 2007')

