Tutorial Sheet No. 05

Course: B.Tech. (CSE, IT, ECE, EEE, ME, CE, FT)

Year & Semester: I / II

Subject & Code: Mathematics - II (BAS - 203) Unit & Topic: II / Beta and Gamma Functions

Prepared By: Dr. Manoj Kumar Gupta, Assistant Professor

1. Evaluate the following functions:

[Ans.:
$$\frac{15}{9}\sqrt{\pi}$$
]

(a)
$$\Gamma(3.5)$$
 [Ans.: $\frac{15}{8}\sqrt{\pi}$] (b) $\Gamma(4.5)$ [Ans.: $\frac{105}{16}\sqrt{\pi}$

(c)
$$\beta(1.5, 2.5)$$
 [Ans.: $\frac{\pi}{16}$]

(d)
$$\frac{\Gamma(5/2)}{\Gamma(1/2)}$$
 [Ans.: $\frac{3}{4}$]

[Ans.:
$$\frac{3}{4}$$
]

(e)
$$\frac{\Gamma(6)}{2\Gamma(3)}$$
 [Ans.:30]

(f)
$$\Gamma(1/4)$$
. $\Gamma(3/4)$ [Ans.: $\frac{\pi}{\sqrt{2}}$]

[Ans.:
$$\frac{\pi}{\sqrt{2}}$$
]

(g)
$$\int_0^{\pi/2} \sqrt{\tan \theta} \, d\theta$$
.

[Ans.:
$$\frac{2\sqrt{2}}{\pi}$$
]

2. Evaluate the following definite integrals:

(i)
$$\int_0^1 x^5 (1-x^3)^{10} dx$$

[Ans.:
$$\frac{1}{396}$$
]

(i)
$$\int_0^1 x^5 (1-x^3)^{10} dx$$
 [Ans.: $\frac{1}{396}$] (ii) $\int_0^1 x^3 (1-\sqrt{x})^5 dx$ [Ans.: $\frac{1}{5148}$]

$$\text{(iii) } \int_0^\infty \frac{x^3}{(1+x)^9} dx$$

[Ans.:
$$\frac{1}{280}$$
]

(iv)
$$\int_0^\infty \frac{x^c}{c^x} dx$$

[Ans.:
$$\frac{1}{280}$$
] (iv) $\int_0^\infty \frac{x^c}{c^x} dx$ [Ans.: $\frac{\Gamma(c+1)}{(\log c)^{c+1}}$]

(v)
$$\int_0^\infty \frac{e^{-st}}{\sqrt{t}} dt$$

(v)
$$\int_{0}^{\infty} \frac{e^{-st}}{\sqrt{t}} dt$$
 [Ans.: $\sqrt{\frac{\pi}{s}}, s > 0$] (vi) $\int_{0}^{\infty} 4x^{4} e^{-x^{4}} dx$ [Ans.: $\Gamma(\frac{5}{4})$]

(vi)
$$\int_0^\infty 4x^4 e^{-x^4} dx$$

[Ans.:
$$\Gamma(\frac{5}{4})$$
]

(vii)
$$\int_0^\infty x^3 e^{-x} dx$$

[Ans.:6] (viii)
$$\int_0^6 x^6 e^{-2x} dx$$
 [Ans.: $\frac{45}{8}$]

[Ans.:
$$\frac{45}{8}$$
]

(ix)
$$\int_0^\infty e^{-x^2} dx$$

[Ans.:
$$\frac{\sqrt{\pi}}{2}$$
]

(ix)
$$\int_0^\infty e^{-x^2} dx$$
 [Ans.: $\frac{\sqrt{\pi}}{2}$] (x) $\int_0^\infty \sqrt{x} e^{-x^3} dx$ [Ans.: $\frac{\sqrt{\pi}}{3}$]

[Ans.:
$$\frac{\sqrt{\pi}}{3}$$
]

3. Show that

(i)
$$\int_0^1 x^{n-1} \left(\log \frac{1}{x} \right)^{m-1} dx = \frac{\Gamma(m)}{n^m}; m, n > 0.$$

(ii)
$$\int_0^2 \frac{x^2}{\sqrt{1-x^3}} dx = \frac{2}{3}$$

(iii)
$$\int_0^\infty \frac{x^2}{1+x^4} dx = \frac{\pi}{2\sqrt{2}}$$

(iv)
$$\beta(p,q) = \beta(p+1,q) + \beta(p,q+1)$$

(v)
$$\frac{\beta(m+1,n)}{m} = \frac{\beta(m,n+1)}{n} = \frac{\beta(m,n)}{m+n}$$