Ejercicio 1.

Sean las hileras x = ct, y = ab. Calcular

a) x¹

e) x^R y

b) x²

f) $y^R x^R$

c) x^3

g) $x^Rv^2v^R$

 $d) x^{R}$

h) $x^2 y^3$

Ejercicio 2.

Sean $L_1 = \{ a^n b^{2k} / n \ge 0 \text{ y k} \ge n \}$ $L_2 = \{ 0^m 1^n / m \text{ impar y n par, 6 m par y n par } \}$ Determinar para cada una de las siguientes cadenas si \in 0 \notin al lenguaje indicado.

a) a b⁴L₁

e) 0³ 1³.....L₂

i) 14..... L₂

b) a bL₁

f) $0^4 1^8$L₂

j) $0^3 1^6 a^3 b^8 \dots L_1 \bullet L_2$

c) λ L₁

g) 0³ 1²....L₂

k) $a^6 b^8 0^4 \dots L_1 \bullet L_2$

d) a⁵L₁

h) 09.....L₂

l) 1 a b^4 $L_2 \bullet L_1$

Ejercicio 3.

Para cada uno de los siguientes lenguajes, dar al menos 3 cadenas de distinta longitud:

a) L = { $a^k b^k / k \ge 0$ }

b) L = { $a^k b^k / k \ge 1$ }

c) L = { $a^k b^j / k \ge 0, j \ge 1$ }

d) L = { $a^k b^j / k \ge 1, j \ge 0$ }

e) L = { $x / x \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}^* y x es un número par}$

f) L = $\{x / x \in \{a, b, c, d\}^* \ y \ x \text{ contiene la subcadena ab } y \ x \text{ no contiene la subcadena bc}\}$

g) L = $\{x^{2k+1} / x \in \{a, b, c\}^* \text{ y la longitud de } x \text{ es múltiplo de } 4 \text{ y } x \text{ termina en bb y } k \ge 0\}$

h) L = $\{m^R / m \in \{0,1\}^* \text{ y m forma un número binario par}\}$

Ejercicio 4.

Sean
$$\Sigma_1$$
 y Σ_2 alfabetos, Σ_1 = { a, b} y Σ_2 = { a, b, c}, y L_1 , L_2 y L_3 lenguajes L_1 = { $a^i b^j / i \ge 1$, $j \ge 1$ } L_2 = { $b^i c^j / i \ge j \ge 1$ } L_3 = { $a^i b^j c^i / i \ge 1$, $j \ge 1$ }

Determinar si cada una de las siguientes afirmaciones es verdadera o falsa.

- a) L_1 es un lenguaje sobre Σ_1 .
- b) L₂ es un lenguaje sobre $\Sigma_1 \cup \Sigma_2$.
- c) L₂ es un lenguaje sobre $\Sigma_1 \cap \Sigma_2$.
- d) L₃ es un lenguaje sobre $\Sigma_1 \cup \Sigma_2$.
- e) L₃ es un lenguaje sobre $\Sigma_1 \cap \Sigma_2$.
- f) L₁ es un lenguaje sobre Σ_1 Σ_2 .
- g) $L_1 \cup L_2$ es un lenguaje sobre Σ_1 .
- h) $L_1 \cup L_2$ es un lenguaje sobre $\Sigma_1 \cap \Sigma_2$.

i) L_1 - L_2 es un lenguaje sobre Σ_1 .

Práctica 1

Ejercicio 5.

Definir por comprensión los siguientes lenguajes:

```
L_1 = \{ ab, aabb, aaabbb, aaaabbbb, , \dots \}
```

 $L_2 = \{ aab, aaaabb, aaaaaaabbb, aaaaaaaabbbb, \}$

Ejercicio 6.

```
Sean L_1=\{\lambda\}, L_2=\{aa, ab, bb\}, L_3=\{\lambda, aa, bb\} y L_4=\emptyset, definidos sobre \Sigma=\{a,b\}.
Obtener a) L_1\cup L_2, b) L_1\cup L_3, c) L_1\cup L_4, d) L_1\cap L_2, e) L_2\cap L_3, f) L_3\cap L_4, g) L_1\cap L_4
```

Ejercicio 7.

En cada caso dar, si es posible, un lenguaje L (que no sea vacío) que satisfaga la condición correspondiente:

- a) $\{a^k b^{2n} c^n / n, k > 0 \} \subset L$, para L lenguaje finito
- b) $\{a^k b^{2n} c^n / n, k > 0 \} \subset L$, para L lenguaje infinito
- c) $L \subset \{a^n b^n c^k / k > 0 \text{ y } n > k\}$, para L lenguaje finito
- d) $L \subset \{a^n b^n c^k / k > 0 \text{ y } n > k\}$, para L lenguaje infinito

Ejercicio 8.

Describir, si es posible mediante un único conjunto, las siguientes operaciones:

- a) $\{a^k b^n d^{k+n} g^i h^s / k, n, i, s \ge 0 \ v \ i \ne s\} \cup \{a^k b^n d^{k+n} g^i h^s / k, n, i, s \ge 0 \ v \ i = s\}$
- b) $\{a^k b^n d^{k+n} g^i h^s / k, n, i, s \ge 0 \ y \ i \ne s\} \cap \{a^k b^n d^{k+n} g^i h^s / k, n, i, s \ge 0 \ y \ i = s\}$
- c) $\{a^n b^{2k} / n, k \ge 0\} \cap \{a^{2n+1} b^k / n, k \ge 0\}$
- d) $\{a^n b^{2k} / n, k \ge 0\} \cup \{a^{2n+1} b^k / n, k \ge 0\}$
- e) $\{a^n b^{2k} / n, k \ge 0\} \{a^{2n+1} b^k / n, k \ge 0\}$

Ejercicio 9.

Dado el siguiente lenguaje:

$$L=\{\lambda, a\},\$$

- a) Obtener L^n para n = 0, 1, 2 y 3.
- b) Cuántos elementos tiene Lⁿ para un n arbitrario?

Ejercicio 10.

Sea $\Sigma = \{1\}.$

a) ¿Es posible decir que para todo número natural n hay alguna palabra $w \in \Sigma^*$ para la cual |w| = n?

2

- b) Si w es una cadena de Σ^* para la cual |w| = n, es única?
- c) Qué ocurriría si $\Sigma = \{1,2\}$?

Ejercicio 11.

Decidir si dado $\Sigma = \{a, b\}$ vale :

$$\lambda {\in} \Sigma, \ \lambda {\subseteq} \Sigma, \ \lambda {\in} \Sigma^+, \ \lambda {\in} \Sigma^*, \ \Sigma^0 \ = \left\{\, \lambda \,\right\}, \ \Sigma^0 \ = \ \lambda$$

Práctica 1