Assignment 4 README

NOTE: Running ns3 simulation requires **python2**, while the analysis scripts use **python3**. Please ensure both are available on the system.

Setup of ns3

Download ns3 3.28.1: https://www.nsnam.org/release/ns-allinone-3.28.1.tar.bz2

Build ns3 by following these instructions https://www.nsnam.org/docs/release/3.28/tutorial/single <a href="https://www.nsnam.org/docs/release/3.28/tutorial/single <a href="https://www.nsnam.org/docs/release/3

In the ns-3.28.1 directory in the file waf, change the first line to #!/usr/bin/env python2 to ensure it is run using python2.

Compiling simulation.cc

Modify simulation.cc by changing line 37 to "0","256", "512","1000" to run experiment for different RTS Thresholds

Copy the simulation.cc file into ns-allinone-3.28.1/ns-3.28.1/scratch/

Now in the ns-3.28.1 directory run the following commands:

```
./waf --run scratch/simulation
```

Analysis

Now there will be 4 files produced in this directory itself:

- 1. Westwood_256.xml (for threshold=256 we have named this .xml see line 206)
- 2. AccessPoint-1-0.pcap
- 3. Station-0-0.pcap
- 4. Station-2-0.pcap

Analysing .xml

All relevant files are in xmls folder. or you can find them by below instructions:

Copy the following file <code>ns-3.28.1/src/flow-monitor/examples/flowmon-parse-results.py</code> and .xml file produced above, into a common directory

Run

```
python2 flowmon-parse-results.py Westwood_256.xml
```

You can see the output on terminal now

Note: Please ensure both python2 and python3 are installed on your system. The ns3 core uses python2 whilst the packet analysis is done using python3.

Analysing .pcap

Scripts are in scripts/data folder in submission

in that folder make a folder named exactly assignment-4-data and 4 subfolders named: "0","256", "512","1000". Copy the pcaps in each subfolder. [Or see note below]

The scripts will be run using python3. We will also need to install dpkt package.

```
pip install dpkt
```

Now to run the scripts:

```
python3 gen_ack.py
python3 gen_cts.py
python3 gen_rts.py
python3 gen_tcp_ack_seg.py
```

Now they will produce .txt files which will have labelled data.

Paste the text file data into graph scripts located in scripts/graph folder

```
python3 graph_ack.py
python3 graph_cts.py
python3 graph_tcp_ack.py
python3 graph_tcp_seg.py
```

Hence we get output of graphs, you can export them in any image or pdf format.

We have done the above process and saved the txt files and graphs in /data and /graphs folder in our submission.

Note: The pcap files are 1.2 GB in size per experiment so they are uploaded here: <a href="https://iitgoffice-my.sharepoint.com/personal/atrivedi-iitg_ac_in/_layouts/15/onedrive.aspx?id=%2Fpersonal%2Fatrivedi%5Fiitg%5Fac%5Fin%2FDocuments%2Fcs342%2Fassign4%2Fdata

All the outputs and graphs are mentioned in report as well.