Chapter 18 Paging: Introduction

- · Paging chops up space into fixed size pieces.
 - · Each fixed size piece is called a page.
 - Physical memory is an array of fixed sized slots called a page frames.

18.1 Overview

- · Paging has advantages over previous approaches.
 - flexibility
 - with fully developed paging the system will be able to support an address space effectively.
 - There is no assumption about the stack and heap or the direction of growth.
 - Simplicity
 - When placing a process in memory the OS simply grabs the first free pages required to fit the address space.
 - To record where each virtual page of the address space is stored the OS keeps a per-process page table.
 - The page table provides address translation.
 - Page tables are per process data structures.

18.2 Page Table Storage

- Page tables can get large.
 - much larger than segment tables or base/bound pairs.
- The page table for each process is stored in memory.

18.3 Whats in The Page Table

- The page is a data structure that is used to map virtual addresses to physical addresses.
- Linear page tables are just arrays.
 - The OS indexes the array by the virtual page number (VPN).
 - Looks up the page table entry (PTE) to find the physical fram number (PFN)
- Contents of the PTE
 - There are a number of different bits to understand:
 - Valid bit indicates if a translation is valid.
 - Protection bit indicates if the page can be read, written, or executed from.
 - Present bit indicates if the page is in physical memory or on disk.
 - Dirty bit indicates if a page has been modified since being brought into memory.
 - Reference bit indicates if the page has been accessed.
 - used during page replacement.

18.4 Paging: Also too Slow

Pages tables can slow things down.