Cauchy-Goursat Theorem

Simply and Multiply Connected Domains

- A **domain** is an open connected set in the complex plane.
- A domain D is simply connected if every simple closed contour C lying entirely in D can be shrunk to a point without leaving D.

Example: The entire complex plane is a simply connected domain. The annulus defined by 1 < |z| < 2 is not simply connected.

- A domain that is not simply connected is called a multiply connected domain.
 - A domain with one "hole" is doubly connected;
 - A domain with two "holes" **triply connected**, and so on.

Example: The open disk |z| < 2 is a simply connected domain. The open circular annulus 1 < |z| < 2 is doubly connected.

Cauchy's Theorem

Cauchy's Theorem (1825)

Suppose that a function f is analytic in a simply connected domain D and that f' is continuous in D. Then, for every simple closed contour C in D,

$$\oint_C f(z)dz = 0.$$

• We apply Green's theorem and the Cauchy-Riemann equations. Recall from calculus that, if C is a positively oriented, piecewise smooth, simple closed curve forming the boundary of a region R within D, and if the real-valued functions P(x,y) and Q(x,y) along with their first-order partial derivatives are continuous on a domain that contains C and R, then $\oint_C Pdx + Qdy = \iint_R (\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}) dA$. Since f' is continuous throughout D, the real and imaginary parts of f(z) = u + iv and their first partial derivatives are continuous throughout D.

Proof of Cauchy's Theorem

We have by Green's Theorem

$$\oint_C Pdx + Qdy = \iint_R \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) dA.$$

By continuity of u, v and their first partial derivatives, $\oint_C f(z)dz = \oint_C u(x,y)dx - v(x,y)dy + i\oint_C v(x,y)dx + u(x,y)dy = \iint_R \left(-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y}\right)dA + i\iint_R \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}\right)dA.$ f being analytic in D, u and v satisfy the Cauchy-Riemann equations: $\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \ \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}.$ Therefore,

$$\oint_C f(z)dz = \iint_R \left(-\frac{\partial v}{\partial x} + \frac{\partial v}{\partial x}\right) dA + i \iint_R \left(\frac{\partial v}{\partial y} - \frac{\partial v}{\partial y}\right) dA
= 0.$$

The Cauchy-Goursat Theorem

 Edouard Goursat proved in 1883 that the assumption of continuity of f' is not necessary to reach the conclusion of Cauchy's theorem:

Cauchy-Goursat Theorem

Suppose that a function f is analytic in a simply connected domain D. Then, for every simple closed contour C in D,

$$\oint_C f(z)dz = 0.$$

• Since the interior of a simple closed contour is a simply connected domain, the Cauchy-Goursat theorem can also be stated as:

If f is analytic at all points within and on a simple closed contour C, then $\oint_C f(z)dz = 0$.

Applying the Cauchy-Goursat Theorem I

• Evaluate $\oint_C e^z dz$, where the contour C is shown below.

 $f(z)=e^z$ is entire. Thus, it is analytic at all points within and on the simple closed contour C. It follows from the Cauchy-Goursat theorem that $\oint_C e^z dz = 0$.

- We have $\oint_C e^z dz = 0$, for any simple closed contour in the complex plane.
- Moreover, for any simple closed contour C and any entire function f, such as $f(z) = \sin z$, $f(z) = \cos z$, and $p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$, $n = 0, 1, 2, \ldots$, we also have

$$\oint_C \sin z dz = 0, \ \oint_C \cos z dz = 0, \ \oint_C p(z) dz = 0, \ \text{etc.}$$

Applying the Cauchy-Goursat Theorem II

• Evaluate $\oint_C \frac{1}{z^2} dz$, where C is the ellipse $(x-2)^2 + \frac{1}{4}(y-5)^2 = 1$. The rational function $f(z) = \frac{1}{z^2}$ is analytic everywhere except at z = 0. But z = 0 is not a point interior to or on the simple closed elliptical contour C.

Thus, again by the Cauchy-Goursat Theorem, we get

$$\oint_C \frac{1}{z^2} dz = 0$$

Cauchy-Goursat Theorem for Multiply Connected Domains

- If f is analytic in a multiply connected domain D, then we cannot conclude that $\oint_C f(z)dz = 0$, for every simple closed contour C in D.
- Suppose that D is a doubly connected domain and C and C_1 are simple closed contours placed as follows:

Suppose, also, that f is analytic on each contour and at each point interior to C but exterior to C_1 .

By introducing the crosscut AB, the region bounded between the curves is now simply connected. So: $\oint_C f(z)dz + \int_{AB} f(z)dz + \oint_{-C_1} f(z)dz + \int_{-AB} f(z)dz = 0$ or $\oint_C f(z)dz = \oint_{C_1} f(z)dz$.

- This is sometimes called the **principle of deformation of contours**.
- It allows evaluation of an integral over a complicated simple closed contour C by replacing C with a more convenient contour C_1 .

Applying Deformation of Contours

• Evaluate $\oint_C \frac{1}{z-i} dz$, where C is the black contour:

We choose the more convenient circular contour C_1 drawn in blue. By taking the radius of the circle to be r=1, we are guaranteed that C_1 lies within C. C_1 is the circle |z - i| = 1. It can be parametrized by

$$z=i+e^{it},\ 0\leq t\leq 2\pi.$$

From $z - i = e^{it}$ and $dz = ie^{it}dt$, we get:

$$\oint_C \frac{1}{z-i} dz = \oint_{C_1} \frac{1}{z-i} dz = \int_0^{2\pi} \frac{ie^{it}}{e^{it}} dt$$
$$= i \int_0^{2\pi} dt = 2\pi i.$$

A Generalization

• This result can be generalized: If z_0 is any constant complex number interior to any simple closed contour C, and n an integer, we have

$$\oint_C \frac{1}{(z-z_0)^n} dz = \begin{cases} 2\pi i, & \text{if } n=1\\ 0, & \text{if } n \neq 1 \end{cases}.$$

- That the integral is zero when $n \neq 1$ follows only partially from the Cauchy-Goursat theorem.
 - When n=0 or negative, $\frac{1}{(z-z_0)^n}$ is a polynomial and therefore entire. Then, clearly, $\oint_C \frac{1}{(z-z_0)^n} dz = 0$.
 - It is not very difficult to see that the integral is still zero when *n* is a positive integer different from 1.
- Analyticity of the function f at all points within and on a simple closed contour C is sufficient to guarantee that $\oint_C f(z)dz = 0$.
- This result emphasizes that analyticity is not necessary, i.e., it can happen that $\oint_C f(z)dz = 0$ without f being analytic within C. Example: If C is the circle |z| = 1, then $\oint_C \frac{1}{z^2} dz = 0$, but $f(z) = \frac{1}{z^2}$ is not analytic at z = 0 within C.

Applying the Formula for the Integral of $1/(z-z_0)^n$

• Evaluate $\oint_C \frac{5z+7}{z^2+2z-3} dz$, where C is circle |z-2|=2.

The denominator factors as $z^2 + 2z - 3 = (z - 1)(z + 3)$. Thus, the integrand fails to be analytic at z = 1 and z = -3.

Of these two points, only z=1 lies within the contour C, which is a circle centered at z=2 of radius r=2. By partial fractions

$$\frac{5z+7}{z^2+2z-3} = \frac{3}{z-1} + \frac{2}{z+3}.$$

Hence, $\oint_C \frac{5z+7}{z^2+2z-3} dz = 3 \oint_C \frac{1}{z-1} dz + 2 \oint_C \frac{1}{z+3} dz$. The first integral has the value $2\pi i$, whereas the value of the second integral is 0 by the Cauchy-Goursat theorem. Hence,

$$\oint_C \frac{5z+7}{z^2+2z-3} dz = 3(2\pi i) + 2(0) = 6\pi i.$$

Cauchy-Goursat Theorem: Multiply Connnected Domains

• If C, C_1 , and C_2 are simple closed contours as shown below

and f is analytic on each of the three contours as well as at each point interior to C but exterior to both C_1 and C_2 ,

then by introducing crosscuts between C_1 and C and between C_2 and C, we get $\oint_C f(z)dz + \oint_{-C_1} f(z)dz + \oint_{-C_2} f(z)dz = 0$, whence $\oint_C f(z)dz = \oint_{C_1} f(z)dz + \oint_{C_2} f(z)dz$.

Cauchy-Goursat Theorem for Multiply Connnected Domains

Suppose C, C_1, \ldots, C_n are simple closed curves with a positive orientation, such that C_1, C_2, \ldots, C_n are interior to C, but the regions interior to each C_k , $k = 1, 2, \ldots, n$, have no points in common. If f is analytic on each contour and at each point interior to C but exterior to all the C_k , $k = 1, 2, \ldots, n$, then $\oint_C f(z)dz = \sum_{k=1}^n \oint_{C_k} f(z)dz$.

Integrals in Multiply Connected Domains

• Evaluate $\oint_C \frac{1}{z^2+1} dz$, where C is the circle |z| = 4.

The denominator of the integrand factors as $z^2+1=(z-i)(z+i)$. So, the integrand $\frac{1}{z^2+1}$ is not analytic at z=i and at z=-i. Both points lie within C. Using partial fractions, $\frac{1}{z^2+1}=\frac{1}{2i}\frac{1}{z-i}-\frac{1}{2i}\frac{1}{z+i}$. whence $\oint_C \frac{1}{z^2+1}dz=\frac{1}{2i}\oint_C \left(\frac{1}{z-i}-\frac{1}{z+i}\right)dz$.

Surround z=i and z=-i by circular contours C_1 and C_2 , respectively, that lie entirely within C. The choice $|z-i|=\frac{1}{2}$ for C_1 and $|z+i|=\frac{1}{2}$ for C_2 will suffice. We have $\oint_C \frac{1}{z^2+1} dz =$

$$\frac{1}{2i} \oint_{C_1} \left(\frac{1}{z-i} - \frac{1}{z+i} \right) dz + \frac{1}{2i} \oint_{C_2} \left(\frac{1}{z-i} - \frac{1}{z+i} \right) dz = \frac{1}{2i} \oint_{C_1} \frac{1}{z-i} dz - \frac{1}{2i} \oint_{C_1} \frac{1}{z+i} dz + \frac{1}{2i} \oint_{C_2} \frac{1}{z-i} dz - \frac{1}{2i} \oint_{C_2} \frac{1}{z+i} dz = \frac{1}{2i} 2\pi i - 0 + 0 - \frac{1}{2i} 2\pi i = 0.$$

Non-Simple Closed Contours

- Throughout the foregoing discussion we assumed that *C* was a simple closed contour, in other words, *C* did not intersect itself.
- It can be shown that the Cauchy-Goursat theorem is valid for any closed contour *C* in a simply connected domain *D*.
- For a contour C that is closed but not simple,
 if f is analytic in D, then

$$\oint_C f(z)dz = 0.$$

Integration in the Complex Plane Independence of Path

Independence of Path

Path Independence

Definition (Independence of the Path)

Let z_0 and z_1 be points in a domain D. A contour integral $\int_C f(z)dz$ is said to be **independent of the path** if its value is the same for all contours C in D with initial point z_0 and terminal point z_1 .

- The Cauchy-Goursat theorem holds for closed contours, not just simple closed contours, in a simply connected domain D.
- Suppose that C and C_1 are two contours lying entirely in a simply connected domain D and both with initial point z_0 and terminal point z_1 . C joined with $-C_1$ forms a closed contour. Thus, if f is analytic in D, $\int_C f(z)dz + \int_{-C_1} f(z)dz = 0$. Therefore, $\int_C f(z)dz = \int_{C_1} f(z)dz$.

Theorem (Analyticity Implies Path Independence)

Suppose that a function f is analytic in a simply connected domain D and C is any contour in D. Then $\int_C f(z)dz$ is independent of the path C.

Choosing a Different Path

• Evaluate $\int_C 2zdz$, where *C* is the contour shown in blue.

The function f(z)=2z is entire. By the theorem, we can replace the piecewise smooth path C by any convenient contour C_1 joining $z_0=-1$ and $z_1=-1+i$. We choose the contour C_1 to be the vertical line segment $x=-1, 0 \le y \le 1$.

Since z = -1 + iy, dz = idy. Therefore,

$$\int_{C} 2zdz = \int_{C_{1}} 2zdz
= \int_{0}^{1} 2(-1+iy)idy
= \int_{0}^{1} (-2i-2y)dy
= (-2iy-y^{2})\Big|_{0}^{1}
= -1-2i.$$

Antiderivatives

• A contour integral $\int_C f(z)dz$ that is independent of the path C is usually written $\int_{z_0}^{z_1} f(z)dz$, where z_0 and z_1 are the initial and terminal points of C.

Definition (Antiderivative)

Suppose that a function f is continuous on a domain D. If there exists a function F such that F'(z) = f(z), for each z in D, then F is called an **antiderivative** of f.

Example: The function $F(z) = -\cos z$ is an antiderivative of $f(z) = \sin z$ since $F'(z) = \sin z$.

- The most general antiderivative, or **indefinite integral**, of a function f(z) is written $\int f(z)dz = F(z) + C$, where F'(z) = f(z) and C is some complex constant.
- Differentiability implies continuity, whence, since an antiderivative F
 of a function f has a derivative at each point in a domain D, it is
 necessarily analytic and hence continuous at each point in D.

Fundamental Theorem for Contour Integrals

Fundamental Theorem for Contour Integrals

Suppose that a function f is continuous on a domain D and F is an antiderivative of f in D. Then, for any contour C in D with initial point z_0 and terminal point z_1 ,

$$\int_C f(z)dz = F(z_1) - F(z_0).$$

• We prove the FTCI in the case when C is a smooth curve parametrized by z=z(t), $a \le t \le b$. The initial and terminal points on C are $z(a)=z_0$ and $z(b)=z_1$. Since F'(z)=f(z), for all z in D,

$$\int_{C} f(z)dz = \int_{a}^{b} f(z(t))z'(t)dt = \int_{a}^{b} F'(z(t))z'(t)dt
= \int_{a}^{b} \frac{d}{dt}F(z(t))dt = F(z(t))|_{a}^{b}
= F(z(b)) - F(z(a))
= F(z_{1}) - F(z_{0}).$$

Applying the Fundamental Theorem I

• The integral $\int_C 2zdz$, where C is shown

is independent of the path. Since f(z) = 2z is an entire function, it is continuous. Moreover, $F(z) = z^2$ is an antiderivative of f since F'(z) = 2z = f(z). Hence, by the Fundamental Theorem, we have

$$\int_{-1}^{-1+i} 2z dz = z^{2} \Big|_{-1}^{-1+i}$$

$$= (-1+i)^{2} - (-1)^{2}$$

$$= -1-2i.$$

Applying the Fundamental Theorem II

• Evaluate $\int_C \cos z dz$, where C is any contour with initial point $z_0 = 0$ and terminal point $z_1 = 2 + i$.

 $F(z) = \sin z$ is an antiderivative of $f(z) = \cos z$, since $F'(z) = \cos z = f(z)$. Therefore, by the Fundamental Theorem, we have

$$\int_C \cos z dz = \int_0^{2+i} \cos z dz$$

$$= \sin z \Big|_0^{2+i}$$

$$= \sin (2+i) - \sin 0$$

$$= \sin (2+i).$$

Some Conclusions

- Observe that if the contour C is closed, then $z_0=z_1$ and, consequently, $\oint_C f(z)dz=F(z_1)-F(z_0)=0$.
- Since the value of $\int_C f(z)dz$ depends only on the points z_0 and z_1 , this value is the same for any contour C in D connecting these points:

If a continuous function f has an antiderivative F in D, then $\int_C f(z)dz$ is independent of the path.

• Moreover, we have a sufficient condition:

If f is continuous and $\int_C f(z)dz$ is independent of the path C in a domain D, then f has an antiderivative everywhere in D.

• Assume f is continuous and $\int_C f(z)dz$ is independent of the path in a domain D and that F is a function defined by $F(z) = \int_{z_0}^z f(s)ds$, where s denotes a complex variable, z_0 is a fixed point in D, and z represents any point in D. We wish to show that F'(z) = f(z), i.e., that $F(z) = \int_{z_0}^z f(s)ds$ is an antiderivative of f in D.

$F(z) = \int_{z_0}^{z} f(s) ds$ is an Antiderivative of f in D

We have

$$F(z+\Delta z)-F(z)=\int_{z_0}^{z+\Delta z}f(s)ds-\int_{z_0}^zf(s)ds=\int_z^{z+\Delta z}f(s)ds.$$
 Because D is a domain, we can choose Δz so that $z+\Delta z$ is in D . Moreover, z and $z+\Delta z$ can be joined by a straight segment. With z fixed, we can write $f(z)\Delta z=f(z)\int_z^{z+\Delta z}ds=\int_z^{z+\Delta z}f(z)ds$ or $f(z)=\frac{1}{\Delta z}\int_z^{z+\Delta z}f(z)ds.$ Therefore, we have
$$\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)=\frac{1}{\Delta z}\int_z^{z+\Delta z}\left[f(s)-f(z)\right]ds.$$
 Since f is continuous at the point z , for any $\varepsilon>0$, there exists a $\delta>0$, so that
$$|f(s)-f(z)|<\varepsilon \text{ whenever }|s-z|<\delta.$$
 Consequently, if we choose Δz so that
$$|\Delta z|<\delta, \text{ it follows from the ML-inequality, that } \left|\frac{F(z+\Delta z)-F(z)}{\Delta z}-f(z)\right|=\left|\frac{1}{\Delta z}\int_z^{z+\Delta z}\left[f(s)-f(z)\right]ds\right|=\left|\frac{1}{\Delta z}|\int_z^{z+\Delta z}\left[f(s)-f(z)\right]ds\right|\leq \left|\frac{1}{\Delta z}|\varepsilon|\Delta z\right|=\varepsilon.$$
 Hence,
$$\lim_{\Delta z\to0}\frac{F(z+\Delta z)-F(z)}{\Delta z}=f(z) \text{ or } F'(z)=f(z).$$

Existence of Antiderivative

 If f is an analytic function in a simply connected domain D, it is continuous throughout D. This implies, by the Path Independence Theorem, that path independence holds for f in D. Therefore,

Theorem (Existence of Antiderivative)

Suppose that a function f is analytic in a simply connected domain D. Then f has an antiderivative in D, i.e., there exists a function F such that F'(z) = f(z), for all z in D.

• We have seen that, for |z| > 0, $-\pi < \arg(z) < \pi$, $\frac{1}{z}$ is the derivative of Lnz. Thus, under some circumstances Lnz is an antiderivative of $\frac{1}{z}$, but one must be careful! If D is the entire complex plane without the origin, $\frac{1}{z}$ is analytic in this multiply connected domain. If C is any simple closed contour containing the origin, it does not follow that $\oint_C \frac{1}{z} dz = 0$. In this case, Lnz is not an antiderivative of $\frac{1}{z}$ in D since Lnz is not analytic in D (Lnz fails to be analytic on the non-positive real axis).

Using the Logarithmic Function

• Evaluate $\int_C \frac{1}{z} dz$, where C is the contour shown:

Suppose that D is the simply connected domain defined by x>0, y>0, i.e., the first quadrant. In this case, $\operatorname{Ln} z$ is an antiderivative of $\frac{1}{z}$ since both these functions are analytic in D.

Therefore,

$$\int_C \frac{1}{z} dz = \int_3^{2i} \frac{1}{z} dz = |\operatorname{Ln} z|_3^{2i} = \operatorname{Ln}(2i) - \operatorname{Ln} 3.$$

Recall $Ln(2i) = \log_e 2 + \frac{\pi}{2}i$ and $Ln3 = \log_e 3$. Hence, $\int_C \frac{1}{z} dz = \log_e 2 + \frac{\pi}{2}i - \log_e 3 = \log_e \frac{2}{3} + \frac{\pi}{2}i$.

Using an Antiderivative of $z^{-1/2}$

• Evaluate $\int_C \frac{1}{z^{1/2}} dz$, where C is the line segment between $z_0 = i$ and $z_1 = 9$.

We take $f_1(z)=z^{1/2}$ to be the principal branch of the square root function. In the domain |z|>0, $-\pi<\arg(z)<\pi$, the function $\frac{1}{f_1(z)}=\frac{1}{z^{1/2}}=z^{-1/2}$ is analytic and possesses the antiderivative $F(z)=2z^{1/2}$. Hence,

$$\int_{C} \frac{1}{z^{1/2}} dz = \int_{i}^{9} \frac{1}{z^{1/2}} dz$$

$$= 2z^{1/2} \Big|_{i}^{9}$$

$$= 2[3 - (\frac{\sqrt{2}}{2} + i\frac{\sqrt{2}}{2})]$$

$$= (6 - \sqrt{2}) - i\sqrt{2}.$$

Integration-By-Parts

 In calculus indefinite integrals of certain kinds can be evaluated by integration by parts:

$$\int f(x)g'(x)dx = f(x)g(x) - \int g(x)f'(x)dx.$$

More compactly, $\int u dv = uv - \int v du$.

ullet Suppose f and g are analytic in a simply connected domain D. Then

$$\int f(z)g'(z)dz = f(z)g(z) - \int g(z)f'(z)dz.$$

 In addition, if z₀ and z₁ are the initial and terminal points of a contour C lying entirely in D, then

$$\int_{z_0}^{z_1} f(z)g'(z)dz = f(z)g(z)|_{z_0}^{z_1} - \int_{z_0}^{z_1} g(z)f'(z)dz.$$

The Mean Value Theorem for Definite Integrals

• The **Mean Value Theorem for Definite Integrals**: If f is a real function continuous on the closed interval [a, b], then there exists a number c in the open interval (a, b), such that

$$\int_a^b f(x)dx = f(c)(b-a).$$

- Let f be a complex function analytic in a simply connected domain D. Then, f is continuous at every point on a contour C in D with initial point z₀ and terminal point z₁.
 - Unfortunately, no analog of the Mean Value Theorem exists for the contour integral $\int_{z_0}^{z_1} f(z)dz$.

Cauchy's Integral Formulas

Cauchy's First Formula

- If f is analytic in a simply connected domain D and z_0 is a point in D, the quotient $\frac{f(z)}{z-z_0}$ is not defined at z_0 and, hence, is not analytic in D.
- Therefore, we cannot conclude that the integral of $\frac{f(z)}{z-z_0}$ around a simple closed contour C that contains z_0 is zero.
- Indeed, the integral of $\frac{f(z)}{z-z_0}$ around C has the value $2\pi i f(z_0)$.

Theorem (Cauchy's Integral Formula)

Suppose that f is analytic in a simply connected domain D and C is any simple closed contour lying entirely within D. Then, for any point z_0 within C,

1 $f = f(z_0)$

 $f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z - z_0} dz.$

• Let D be a simply connected domain, C a simple closed contour in D, and z_0 an interior point of C. In addition, let C_1 be a circle centered at z_0 with radius small enough so that C_1 lies within the interior of C. By the principle of deformation of contours, $\oint_C \frac{f(z)}{z-z_0} dz = \oint_{C_1} \frac{f(z)}{z-z_0} dz$.

• From $\oint_C \frac{f(z)}{z-z_0} dz = \oint_{C_1} \frac{f(z)}{z-z_0} dz$, we get by adding and subtracting $f(z_0)$ in the numerator: $\oint_C \frac{f(z)}{z-z_0} dz = \oint_{C_1} \frac{f(z_0)-f(z_0)+f(z)}{z-z_0} dz = \oint_{C_1} \frac{f(z_0)-f(z_0)+f(z)}{z-z_0} dz$ $f(z_0) \oint_{C_1} \frac{1}{z-z_0} dz + \oint_{C_1} \frac{f(z)-f(z_0)}{z-z_0} dz$. We know that $\oint_{C_1} \frac{1}{z-z_0} dz = 2\pi i$, whence $\oint_C \frac{f(z)}{z-z_0} dz = 2\pi i f(z_0) + \oint_{C_1} \frac{f(z)-f(z_0)}{z-z_0} dz$. Since f is continuous at z_0 , for any $\varepsilon > 0$, there exists a $\delta > 0$, such that $|f(z) - f(z_0)| < \varepsilon$, whenever $|z - z_0| < \delta$. In particular, if we choose C_1 to be $|z-z_0|=\frac{1}{2}\delta<\delta$, then by the *ML*-inequality, $\left| \oint_{C_1} \frac{f(z) - f(z_0)}{z - z_0} dz \right| \le \frac{\varepsilon}{\delta/2} 2\pi \frac{\delta}{2} = 2\pi \varepsilon$. Thus, the absolute value of the integral can be made arbitrarily small by taking the radius of the circle C_1 to be sufficiently small. This implies that the integral is 0. We conclude that $\oint_C \frac{f(z)}{z-z_0} dz = 2\pi i f(z_0)$.

Using Cauchy's Integral Formula

- Cauchy's integral formula shows that the values of an analytic function f at points z₀ inside a simple closed contour C are determined by the values of f on the contour C.
- Since we often work problems without a simply connected domain explicitly defined, a more practical restatement is:

If f is analytic at all points within and on a simple closed contour C, and z_0 is any point interior to C, then $f(z_0) = \frac{1}{2\pi i} \oint_C \frac{f(z)}{z-z_0} dz$.

• Example: Evaluate $\oint_C \frac{z^2-4z+4}{z+i} dz$, where C is the circle |z|=2. We identify $f(z)=z^2-4z+4$ and $z_0=-i$ as a point within the circle C. Next, we observe that f is analytic at all points within and on the contour C. Thus, by the Cauchy integral formula, $\oint_C \frac{z^2-4z+4}{z+i} dz = 2\pi i f(-i) = 2\pi i (3+4i) = \pi(-8+6i)$.

Another Application of Cauchys Integral Formula

• Evaluate $\oint_C \frac{z}{z^2+9} dz$, where C is the circle |z-2i|=4.

By factoring the denominator as $z^2 + 9 = (z - 3i)(z + 3i)$, we see that 3i is the only point within the closed contour C at which the integrand fails to be analytic. By rewriting the integrand as $\frac{z}{z^2 + 9} = \frac{\frac{z}{z + 3i}}{z - 3i}$, we identify $f(z) = \frac{z}{z + 3i}$

The function f is analytic at all points within and on the contour C. Hence, by Cauchy's integral formula

$$\oint_C \frac{z}{z^2 + 9} dz = \oint_C \frac{\frac{z}{z + 3i}}{z - 3i} dz = 2\pi i f(3i) = 2\pi i \frac{3i}{6i} = \pi i.$$

Cauchy's Second Formula

• We prove that the values of the derivatives $f^{(n)}(z_0)$, n = 1, 2, 3, ... of an analytic function are also given by an integral formula.

Theorem (Cauchy's Integral Formula for Derivatives)

 $f^{(n)}(z_0) = \frac{n!}{2\pi i} \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz.$

Partial Proof (for n=1): By the definition of the derivative and Cauchy's Integral Formula, $f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \lim_{\Delta z \to 0} \frac{1}{2\pi i \Delta z} \left[\oint_C \frac{f(z)}{z - (z_0 + \Delta z)} dz - \oint_C \frac{f(z)}{z - z_0} dz \right] = \lim_{\Delta z \to 0} \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0 - \Delta z)(z - z_0)} dz.$

Prof of Cauchy's Second Formula for n = 1

- We work out some preliminaries:
 - Continuity of f on the contour C guarantees that f is bounded, i.e., there exists real number M, such that $|f(z)| \leq M$, for all points z on C.
 - In addition, let L be the length of C and let δ denote the shortest distance between points on C and the point z_0 . Thus, for all points z on C, we have $|z-z_0| \geq \delta$, or $\frac{1}{|z-z_0|^2} \leq \frac{1}{\delta^2}$.
 - Furthermore, if we choose $|\Delta z| \leq \frac{1}{2}\delta$, then $|z z_0 \Delta z| \geq ||z z_0| |\Delta z|| \geq \delta |\Delta z| \geq \frac{1}{2}\delta$, whence $\frac{1}{|z z_0 \Delta z|} \leq \frac{2}{\delta}$.

Now,
$$\left| \oint_C \frac{f(z)}{(z-z_0)^2} dz - \oint_C \frac{f(z)}{(z-z_0-\Delta z)(z-z_0)} dz \right| = \left| \oint_C \frac{-\Delta z f(z)}{(z-z_0-\Delta z)(z-z_0)^2} dz \right| \le \frac{2ML|\Delta z|}{\delta^3}$$
. The last expression approaches zero as $\Delta z \to 0$, whence

$$f'(z_0) = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta z) - f(z_0)}{\Delta z} = \frac{1}{2\pi i} \oint_C \frac{f(z)}{(z - z_0)^2} dz.$$

Using Cauchy's Integral Formula for Derivatives

• Evaluate $\oint_C \frac{z+1}{z^4+2iz^3}dz$, where C is the circle |z|=1. Inspection of the integrand shows that it is not analytic at z=0 and z=-2i, but only z=0 lies within the closed contour. By writing the integrand as $\frac{z+1}{z^4+2iz^3}=\frac{\frac{z+1}{z+2i}}{z^3}$ we can identify, $z_0=0$, $z_0=0$, and $z_0=0$ whence $z_0=0$ and $z_0=0$

$$\oint_C \frac{z+1}{z^4+4z^3} dz = \frac{2\pi i}{2!} f''(0)$$

$$= \frac{2\pi i}{2!} \frac{2i-1}{4i}$$

$$= -\frac{\pi}{4} + \frac{\pi}{2}i.$$

Another Application of the Integral Formula for Derivatives

• Evaluate $\oint_C \frac{z^3+3}{z(z-i)^2} dz$, where C is the figure-eight contour shown below:

Although C is not a simple closed contour, we can

think of it as the union of two simple closed contours C_1 and C_2 . We write $\oint_C \frac{z^3+3}{z(z-i)^2} dz = \oint_{C_1} \frac{z^3+3}{z(z-i)^2} dz + \oint_{C_2} \frac{z^3+3}{z(z-i)^2} dz = -\oint_{-C_1} \frac{z^3+3}{z} dz + \oint_{C_2} \frac{z^3+3}{(z-i)^2} dz = -I_1 + I_2.$

•
$$I_1 = \oint_{-C_1} \frac{z^3 + 3}{(z - i)^2} dz = 2\pi i f(0) = 2\pi i (-3) = -6\pi i.$$

• For
$$I_2$$
, $f(z) = \frac{z^3+3}{z}$, whence $f'(z) = \frac{2z^3-3}{z^2}$, and $f'(i) = 3+2i$. Thus,
$$I_2 = \oint_{C_2} \frac{z^3+3}{(z-i)^2} dz = \frac{2\pi i}{1!} f'(i) = 2\pi i (3+2i) = -4\pi + 6\pi i.$$

Finally,
$$\oint_C \frac{z^3+3}{z(z-i)^2} dz = -I_1 + I_2 = 6\pi i + (-4\pi + 6\pi i) = -4\pi + 12\pi i$$
.

Integration in the Complex Plane Consequences of the Integral Formulas

Consequences of the Integral Formulas

The Derivatives of an Analytic Function are Analytic

Theorem (Derivative of an Analytic Function Is Analytic)

Suppose that f is analytic in a simply connected domain D. Then f possesses derivatives of all orders at every point z in D. The derivatives f', f'', f''', \ldots are analytic functions in D.

• If f(z) = u(x,y) + iv(x,y) is analytic in a simply connected domain D, its derivatives of all orders exist at any point z in D. Thus, f', f'', f''', . . . are continuous. From

$$f'(z) = \frac{\partial u}{\partial x} + i \frac{\partial v}{\partial x} = \frac{\partial v}{\partial y} - i \frac{\partial u}{\partial y},$$

$$f''(z) = \frac{\partial^2 u}{\partial x^2} + i \frac{\partial^2 v}{\partial x^2} = \frac{\partial^2 v}{\partial y \partial x} - i \frac{\partial^2 u}{\partial y \partial x}$$

$$\vdots$$

we can also conclude that the real functions u and v have continuous partial derivatives of all orders at a point of analyticity.

Cauchy's Inequality

Theorem (Cauchy's Inequality)

Suppose that f is analytic in a simply connected domain D and C is a circle defined by $|z-z_0|=r$ that lies entirely in D. If $|f(z)|\leq M$, for all points z on C, then n!M

 $|f^{(n)}(z_0)|\leq \frac{n!\,M}{r^n}.$

• From the hypothesis, $\left|\frac{f(z)}{(z-z_0)^{n+1}}\right| = \frac{|f(z)|}{r^{n+1}} \le \frac{M}{r^{n+1}}$. Thus, by Cauchy's Formula for Derivatives and the ML-inequality,

$$|f^{(n)}(z_0)| = \frac{n!}{2\pi} \left| \oint_C \frac{f(z)}{(z-z_0)^{n+1}} dz \right| \leq \frac{n!}{2\pi} \frac{M}{r^{n+1}} 2\pi r = \frac{n!M}{r^n}.$$

• The number M depends on the circle $|z-z_0|=r$. But, if n=0, then $M \ge |f(z_0)|$, for any circle C centered at z_0 , as long as C lies within D. Thus, an upper bound M of |f(z)| on C cannot be smaller than $|f(z_0)|$.

Liouville's Theorem

- Although the next result is known as "Liouville's Theorem", it was probably first proved by Cauchy.
- The gist of the theorem is that an entire function f, one that is analytic for all z, cannot be bounded unless f itself is a constant:

Theorem (Liouville's Theorem)

The only bounded entire functions are constants.

• Suppose f is an entire bounded function, i.e., $|f(z)| \leq M$, for all z. Then, for any point z_0 , by Cauchy's Inequality, $|f'(z_0)| \leq \frac{M}{r}$. By making r arbitrarily large we can make $|f'(z_0)|$ as small as we wish. This means $f'(z_0) = 0$, for all points z_0 in the complex plane. Hence, by a preceding theorem, f must be a constant.

Fundamental Theorem of Algebra

• Liouville's Theorem enables us to establish the celebrated

Fundamental Theorem of Algebra

If p(z) is a nonconstant polynomial, then the equation p(z) = 0 has at least one root.

• Suppose that the polynomial $p(z) = a_n z^n + a_{n-1} z^{n-1} + \cdots + a_1 z + a_0$, n > 0, is not 0 for any complex number z. This implies that the reciprocal of p, $f(z) = \frac{1}{p(z)}$, is an entire function. Now

$$|f(z)| = \frac{1}{|a_n z^n + a_{n-1} z^{n-1} + \dots + a_1 z + a_0|}$$

$$= \frac{1}{|z|^n |a_n + \frac{a_{n-1}}{z} + \dots + \frac{a_1}{z^{n-1}} + \frac{a_0}{z^n}|}.$$

Thus, $|f(z)| \to 0$ as $|z| \to \infty$. So the function f must be bounded for finite z. By Liouville's Theorem, f is a constant. Hence, p is a constant. But this contradicts p not being a constant polynomial. Therefore, there must exist at least one z for which p(z) = 0.

Morera's Theorem

 Morera's theorem, which gives a sufficient condition for analyticity, is often taken to be the converse of the Cauchy-Goursat Theorem:

Theorem (Morera's Theorem)

If f is continuous in a simply connected domain D and if $\oint_C f(z)dz = 0$, for every closed contour C in D, then f is analytic in D.

By the hypotheses of continuity of f and $\oint_C f(z)dz = 0$, for every closed contour C in D, we conclude that $\int_C f(z)dz$ is independent of the path. Then, the function F, defined by $F(z) = \int_{z_0}^z f(s)ds$ (where s denotes a complex variable, z_0 is a fixed point in D, and z any point in D) is an antiderivative of f, i.e., F'(z) = f(z). Hence, F is analytic in D. In addition, F'(z) is analytic in view of the analyticity of the derivative of any analytic function. Since f(z) = F'(z), we see that f is analytic in D.