BLIND OPENING AND CLOSING CONTROL DEVICE

Patent Number:

JP4363495

Publication date:

1992-12-16

Inventor(s):

TAKABA YOSHIAKI

Applicant(s):

MITSUI CONSTR CO LTD

Requested Patent:

I JP4363495

Application Number: JP19910167824 19910611

Priority Number(s):

IPC Classification:

E06B9/264

EC Classification:

Equivalents:

JP2640997B2

Abstract

PURPOSE:To automatically open and close a blind in accordance with an outdoor weather condition. CONSTITUTION: A blind 2 provided in a window or the like may be opened and closed by a motor driven opening and closing mechanism 3 which is driven by a control circuit 7. The control circuit 7 samples a detection signal from a light sensor for detecting outdoor sunlight or the like, by means of a first timer Ta when the blind is opened, and samples for predetermined time intervals by means of a second timer Tb after the control circuit determines that the outdoor is in a fine weather condition in accordance with the detection signal so as to deliver a closing signal to the opening and closing mechanism 3. With this arrangement, the blind 2 is automatically opened and closed in accordance with a present status of the outdoor, thereby it is possible to prevent repetitions of opening and closing of the blind due to an intermediate value between the opening and closing values.

Data supplied from the esp@cenet database - 12

TOP

(19)日本国特許庁 (JP) (12) 公開特許公報 (A)

FI

(11)特許出願公開番号

特開平4-363495

(43)公開日 平成4年(1992)12月16日

(51) Int.Cl.⁵

識別記号 广内 亞理番号

技術表示簡所

E 0 6 B 9/264 C 9128-2E

審査請求 未請求 請求項の数1(全 7 頁)

(21)出願番号

特頤平3-167824

(22)出願日

平成3年(1991)6月11日

(71)出願人 000174943

三井建設株式会社

東京都千代田区岩本町3丁目10番1号

(72) 発明者 應羽 良明

東京都千代田区岩本町三丁目10番1号三井

建設株式会社内

(74)代理人 弁理士 藤原 宏之 (外1名)

(54) 【発明の名称】 プラインドの開閉制御装置

(57)【要約】

屋外の天候の状況に応じてプラインドを自動 開閉できるようにしたプラインドの開閉制御装置を提供 すること。

窓等にプラインド2を設置し、これらプライ ンド2を、電動式の開閉機構3で開閉可能としてある。 この開閉機构3は、制御回路7により駆動される。制御 回路では、屋外の太陽光等を検出する光センサイからの 検出信号を、ブラインドが開いた状態のときには第一の タイマーTaにより常時サンプリングを行い、前記検出 信号により屋外が晴れた状態と判定されて開閉機構3に 閉駆動信号を与えた後には、第二のタイマーTbによる 一定時間間隔でサンプリングを行うようにした。 これに より、屋外の現状に応じて光センサブラインド2は、自 勁的に開閉されるとともに、開閉中間値での光センサブ ラインド2の開閉の繰り返しも無くなる。

1

【特許請求の範囲】

【前求項1】 窓等に設置されたプラインドと、前記プ ラインドを開閉動する開閉機構と、屋外の太陽光を検出 する光センサと、第一のタイマー及び第二のタイマーを 備え、前記プラインドが開いた状態のときには第一のタ イマーにより常時光センサからの検出信号のサンプリン グを行い、前記検出信号により開閉機構に閉倒御信号を 与えた後には、前配第二のタイマーにより一定時間間隔 で前記光センサからの検出信号のサンプリングを行う制 御回路とを具備したことを特徴とするプラインドの開閉 制御装置。

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、光センサによりプライ ンドを自動的に開閉可能としたブラインドの開閉制御装 凹に関する。

[0002]

【従来の技術】プラインドは、窓部分に設置され、直射 日光が室内に入らないようにするための装置であり、一 般的な使用状態では間接光(輻射光)をできるだけ室内 に取り入れ、かつ外部への視線をできるだけ妨げないよ うにすることが望ましい。したがって、太陽の位置や天 候等屋外の状況に応じてブラインドを適性に開閉する必 要がある。しかしながら、このようなブラインドの開閉 を手助でおこなうことは面倒であり、またビル等にブラ インドを設置した場合等には手動でプラインドの開閉を 行うことは現実的でない。

【0003】そこで、現在では太陽光を検知し、その光 **風に応じてブラインドを自動的に開閉する装置が種々提** 供されている。このプラインドの開閉制御装置は、プラ 30 インドを開閉動する開閉機構と、屋外の太陽光を検出す る光センサと、この光センサからの検出信号に応じて前 記開閉機构にブラインドの開閉制御信号を与える制御回 路とを備えたものが一般的である。

【0004】そして、このプラインドの開閉制御装置に よれば、直射日光が検出されると、何御回路は、光セン サからの検出信号を基に開閉機構に全閉指令を出してブ ラインドを全閉する。また、曇り等になったときに、何 御回路は、前記光センサからの検出信号を基に開閉機构 る。この際に、制御回路には、タイマーが設置されてい て、光量が開閉の中間値となってプラインドが開閉を繰 り返してばたつくことを防止するため、例えば30分乃至 1時間間隔等の一定時間毎に光センサからの検出信号を サンプリングして開閉の判断をしている。

[0005]

【発明が解決しようとする課題】しかしながら、上述し たようなプラインドの開閉制御装置にあっては、図5に 示すように、例えば時刻 t1 まで曇り、時刻 t1 ~ t2

れであって、かつ判定サンプリングが一定時間間隔 t1 ,0, t11, t12, …で行われるような場合に、判定サン プリング (時刻 t 10) で曇りだったので一旦プラインド を開くと、次の判定サンプリング (時刻 t 11) まで判定 を行わないので、この間に天候が曇りから暗れに変わっ てもプラインドの開閉を行わないからプラインドの役目 をしない。

【0006】同様に、上記プラインドの開閉制御装置に あっては、図5に示すように、判定サンプリング(時刻 t12) で晴れと判定されて一旦プラインドを閉じると、 次の判定サンプリング (時刻 t 13) まで判定を行わない ので、この間に曇り、晴れと変わってもプラインドの閉 閉を行わないからプラインドの役目をしない。さらに は、時刻 t 1 以前に判定サンプリングを行ったとする と、曇りなのでプラインドが閉となり、次のサンプリン グが時刻 t 2 と t 3 との間に行われたような場合には、 また曇りなのでプラインドは開状態を保ち、その前後に 晴れの時間が長く続いていてもブラインドの開閉がなさ ・れないため、一層不合理な結果となる。

【0007】このように上述したプラインドの開閉制御 装置では、一定間隔でしか閉閉の判断をしないので、こ の期間中に天候の変化があってもブラインドが開閉せず に現実とあわないという欠点が生じていた。そこで、本 発明の目的は、屋外の天候の状況に応じてプラインドを 自助開閉できるようにしたブラインドの開閉制御装置を 提供することにある。

[00008]

【課題を解決するための手段】本発明のプラインドの開 閉制御装置は、窓等に設置されたブラインドと、前記プ ラインドを開閉動する開閉機構と、屋外の太陽光等を検 出する光センサと、第一のタイマー及び第二のタイマー を備え、ブラインドが開いた状態のときには第一のタイ マーにより常時光センサからの検出信号のサンプリング を行い、前記検出信号により開閉機構に閉制御信号を与 えた後には、前記第二のタイマーによる一定時間問隔で 前記光センサからの検出信号のサンプリングを行う制御 回路とを具備したことを特徴とするものである。

[0009]

【作用】上記构成によれば、プラインドを開から閉へ動 に全開指令を出してプラインドを全開するようにしてあ 40 作させるサンプリングは第一のタイマーによる時間間隔 で常時行うにようにし、一旦プラインドを閉じた時点か らは第二のタイマーにより一定間隔毎に開動作へのサン プリングをし、開判定となるまでは第二のタイマーによ る時間間隔でサンプリングを行うようにしたので、屋外 の現状に適合してブラインドを開閉制御できる。

[0010]

【実施例】以下、本発明について図示の実施例に基づい て説明する。図2は、本発明のプラインドの開閉制御装 置の実施例が適用されるプラインド回りを示す図であ まで晴れ、時刻 t 2 ~ t 3 まで曇り、時刻 t 3 以降が暗 50 る。図 2 において、窓 1 には、ガラス G の屋外側にブラ

.3

インド2が開閉可能に設けられている。前記プラインド2は開閉機构3を有しており、窓枠内等に設置された開閉機構3によりプラインド2の羽根の開閉ができるようになっている。窓1の上部に直射日光を検出する光センサ4が設置してある。

【0011】図1は、本発明に係るプラインドの開閉側御装置の実施例の原理的構成を示すプロック図である。図1において、光センサイは、日光を検出し、その日光の強さに応じた検出信号を出力する。このような光センサイは制御回路7に接続されており、それら検出信号を制御回路7に入力するようにしてある。制御回路7は、図示しないが、例えば前配各検出信号の増幅、フイルタリング等の処理をする前処理回路、AD変換器、ワンチップCPU等からなる。

【0012】また、上記制御回路7は、第一のタイマーTa及び第二のタイマーTbを備えており、この第一のタイマーTaは、常時(例えば1秒毎)、光センサ4からの検出信号をサンプリングをするために使用され、かつ第二のタイマーTbはブラインド2を閉じた際にスタートし、一定時間(例えば30分~1時間)毎に光セン 20サ4からの検出信号をサンプリングするために使用されている。この制御回路7は、また、開閉機構3に接続されており、制御回路7により開閉機構3を駆動制御する。

【0013】上述した実施例の作用を説明する。図3 は、本発明の動作を説明するためのタイミングチャート である。図4は、本発明の実施例の作用を説明するため のフローチャートである。なお、図4に示すフローチャ ートの動作は、制御回路7のワンチップCPUで実行さ れる。まず、プラインドの開閉制御装置の勁作を開始さ せると、初期設定がなされる。ここで、制御回路7は、 光センサ4からの検出信号に取り合えず関係なくプライ ンド2を全開とする指令を開閉機構3に出力する(図4 のステップS100)。そして、制御回路7は、全開指令を 出したので、その状態を後に知るために、フラッグFを "0"とする (ステップS101)。 ついで、制御回路 7 は、その内部に設けてあるタイマーTa, Tbをリセッ トし、タイマーTaをスタートさせる(ステップS10 2)。ここで、このタイマーTaは、常時サンプリング できるように、例えば1秒間隔でサンプリング指示をだ 40 せるようになっている。

【0014】さて、図3に示すように、例えば時刻t31まで曇り、時刻t31~t32まで晴れ、時刻t32~t33まで曇り、時刻t33以降が晴れであった場合に、上記初期設定が行われたとする。まず、時刻t31まで曇りであったので、制御回路7では、タイマーTaが一定時間(1秒)経過したかを判定して時間tn1に達すると(ステップS103)、光センサ4からの検出信号を取り込む(ステップS104)。

【0015】そして、制御回路7では、フラッグFが 50 るサンプリングを常時行うにようにし、閉じた時点から

"0"であるので (ステップS105)、ブラインド2を閉じる光量かを判定する (ステップS106)。この場合、光マンサ4から制御回路7に取り込んだ検出信号が閉じる光量となるので (ステップS106)、制御回路7から開閉機桁3に対して閉制御信号が出力される (ステップS107)。これにより、ブラインド2が閉じることになる。

【0016】ついで、制御回路7は、フラッグFに "1"を立て (ステップS108) 、タイマーTbをスター トさせる (ステップS109)。ここで、制御回路7では、 タイマーTbが所定の時間(例えば、スタートから30 分~60分) に達したかを判定し (ステップS110)、達 したときにタイマーTbをリセットして(ステップS11 1)、光センサ4からの検出信号を取り込む(サンプリ ングする) (ステップS104) . そして、制御回路7は、 フラッグFが"1"であるので (ステップ\$105) 、光セ ンサイからの検出信号が全開となる光母かを判断する (ステップS112) . この判断時点(時間 t n2) では、こ の実施例では、時刻 t 32~ t 33の間にあって当該期間は 曇りであるので、光量が開く量であり(ステップS11 2) 、制御回路7から開閉機構3に開制御信号が出力さ れ (ステップS113) 、フラッグFに"O"を立て(ステ ップS114)、タイマーTa, Tbのリセットとタイマー Taのスタート処理に移行する (ステップS102) 。これ により、ブラインド2は、 開くことになる。

【0017】次に、タイマーTaの時刻 t n3では、図3の時刻 t 32~ t 33の間にあって曇りであるので、制御回路 7 は、ステップ\$103~\$106の処理をし、プラインド2を開いたままにしておく。さらに、タイマーTaの時刻 t n4では、図3の時刻 t 33~の間にあって晴れであるので、制御回路 7 は、ステップ\$103~\$106の処理をした後、開閉機桁3に閉制御信号を出力して(ステップ\$107~\$111の処理をする。また、タイマーTbの時刻 t n5に達すると(ステップ\$111)、制御回路 7 は、再びステップ\$104、\$105、\$112の処理をするが、図3の時刻 t 33~で晴れているので、光量の判定(ステップ\$103)の後にステップ\$109の処理に移行する。

【0018】このように上記実施例では、ブラインド2を開から閉へ動作させるサンプリングはタイマーTaを使用して常時(例えば1秒毎に)行うにようにし、ブラインド2の閉じた時点からはタイマーTbを使用して一定間隔毎(例えば30分~60分毎)に開動作へのサンプリングをし、当該判断時点で開判定となるまではブラインド2を閉じたままにしておくものである。なお、上記実施例では、横型のブラインドで説明したが、縦型でも同様に適用できる。

[0019]

【発明の効果】以上説明したように本発明のプラインドの開閉制御装置では、プラインドを開から閉へ動作させるサンプリングを登時行うにようにし、関じた時点から

5

一定間隔毎に閉動作へのサンプリングをし、その閉判定となるまで当該時間間隔でサンプリングを行うようにしたので、屋外の現状に適合したプラインドの開閉を自動的に行うことができる効果がある。

【図面の簡単な説明】

【図1】本発明のプラインドの開閉制御装置の実施例を示すプロック図である。

【図2】本発明の実施例のプラインド部分を示す図である。

【図3】本発明の助作を説明するための図である。

【図4】本発明の動作を説明するためのフローチャート

である。

、【図 5】 従来のプラインドの開閉制御装置の助作例を脱、 明するための図である。

【符号の説明】

- 1 窓
- 2 ブラインド
- 3 開閉機构
- 4 光センサ
- 7 制御回路

10 Ta (第一の) タイマー

Tb (第二の) タイマー

【図1】

[図2]

[図3]

[図4]

【手統補正铅】

【提出日】平成4年6月3日

【手燒補正1】

【補正対象替類名】明細替

【補正対象項目名】全文

【補正方法】変更

【補正内容】

【書類名】 明細書

【発明の名称】 プラインドの開閉制御装置

【特許請求の範囲】

【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、光センサによりプラインドを自動的に開閉可能としたプラインドの開閉制御装置に関する。

[0002]

【従来の技術】ブラインドは、窓部分に設置され、直射日光が室内に入らないようにするための装置であり、一般的な使用状態では間接光(輻射光)をできるだけ室内に取り入れ、かつ外部への視線をできるだけ妨げないようにすることが望ましい。したがって、太陽の位置や天候等屋外の状況に応じてブラインドを適性に開閉する必要がある。しかしながら、このようなブラインドの開閉を手動でおこなうことは面倒であり、またビル等にブラインドを設置した場合等には手動でブラインドの開閉を行うことは現実的でない。

【0003】そこで、現在では太陽光を検知し、その光 量に応じてプラインドを自動的に開閉する装置が種々提 供されている。このプラインドの開閉制御装置は、プラ インドを開閉動する開閉機構と、屋外の太陽光を検出する光センサと、この光センサからの検出信号に応じて前 記開閉機構にプラインドの開閉制御信号を与える制御回 路とを備えたものが一般的である。

[0004] そして、このブラインドの開閉制御装置によれば、直射日光が検出されると、制御回路は、光センサからの検出信号を基に開閉機構に全閉指令を出してブラインドを全閉する。また、曇り等になったときに、制御回路は、前記光センサからの検出信号を基に開閉機構に全開指令を出してブラインドを全開するようにしてある。この際に、制御回路には、タイマーが設置されていて、光量が開閉の中間値となってブラインドが開閉を繰り返してばたつくことを防止するため、例えば30分乃至1時間間隔等の一定時間毎に光センサからの検出信号をサンブリングして開閉の判断をしている。

[0005]

_ **`\$`** 4

【発明が解決しようとする課題】しかしながら、上述したようなプラインドの開閉制御装置にあっては、図5に示すように、例えば時刻 t 1 まで曇り、時刻 t 1~ t 2 まで暗れ、時刻 t 2~ t 3 まで曇り、時刻 t 3 以降が暗れであって、かつ判定サンプリングが一定時間間隔 t 10, t 11, t 12, …で行われるような場合に、判定サンプリング(時刻 t 10)で曇りだったので一旦プラインドを開くと、次の判定サンプリング(時刻 t 11)まで判定を行わないので、この間に天候が曇りから晴れに変わってもプラインドの別別を行わないからプラインドの役目をしない。

【0006】同様に、上記プラインドの開閉制御装置にあっては、図5に示すように、判定サンプリング(時刻 t 1 2)で晴れと判定されて一旦プラインドを閉じると、次の判定サンプリング(時刻 t 1 3)まで判定を行わないので、この間に盛り、晴れと変わってもプラインドの開閉を行わないからブラインドの役目をしない。さらには、時刻 t 1 以前に判定サンプリングを行つたとすると、曇りなのでプラインドが開となり、次のサンプリングが時刻 t 2 と t 3 との間に行われたような場合には、また曇りなのでプラインドは開状態を保ち、その前後に晴れの時間が良く続いていてもプラインドの開閉がなされないため、一層不合理な結果となる。

【0007】このように上述したブラインドの開閉制御 装置では、一定間隔でしか開閉の判断をしないので、この期間中に天候の変化があってもブラインドが開閉せず に現実とあわないという欠点が生じていた。そこで、本 発明の目的は、屋外の天候の状況に応じてブラインドを 自動開閉できるようにしたブラインドの開閉制御装置を 提供することにある。

[8000]

【課題を解決するための手段】本発明のブラインドの開 閉制御装置は、窓等に設置されたブラインドと、前記ブ ラインドを開閉動する開閉機桁と、屋外の太陽光等を検 出する光センサと、第一のタイマー及び第二のタイマー、を備え、ブラインドが開いた状態のときには第一のタイマーにより常時光センサからの検出信号のサンプリングを行い、前記検出信号により開閉機構に閉制御信号を与えた後には、前記第二のタイマーによる一定時間間隔で前記光センサからの検出信号のサンプリングを行う制御回路とを具備したことを特徴とするものである。

[0009]

【作用】上記梢成によれば、プラインドを開から閉へ動作させるサンプリングは第一のタイマーによる時間間隔で常時行うにようにし、一旦プラインドを閉じた時点からは第二のタイマーにより一定間隔毎に開動作へのサンプリングをし、開判定となるまでは第二のタイマーによる時間間隔でサンプリングを行うようにしたので、屋外の現状に適合してプラインドを開閉制御できる。

[0010]

【実施例】以下、本発明について図示の実施例に基づいて説明する。図2は、本発明のプラインドの開閉制御装置の実施例が適用されるプラインド回りを示す図である。本実施例では図2において、窓1には、ガラスGの屋外側にプラインド2が開閉可能に設けられている。前記プラインド2は開閉機構3を有しており、窓枠内等に設置された開閉機構3によりプラインド2の羽根の開閉ができるようになっている。窓1の上部に直射口光を検出する光センサ4が設置してある。

【0011】図1は、本発明に係るプラインドの開閉制御装置の実施例の原理的構成を示すプロック図である。図1において、光センサ4は、日光を検出し、その日光の強さに応じた検出信号を出力する。このような光センサ4は制御回路7に接続されており、それら検出信号を制御回路7に入力するようにしてある。制御回路7は、図示しないが、例えば前配各検出信号の増幅、フイルタリング等の処理をする前処理回路、AD変換器、ワンチップCPU等からなる。

【0012】また、上記制御回路7は、第一のタイマーTa及び第二のタイマーTbを備えており、この第一のタイマーTaは、常時(例えば1秒毎)、光センサ4からの検出信号をサンプリングをするために使用され、かつ第二のタイマーTbはブラインド2を閉じた際にスタートし、一定時間(例えば30分~1時間)毎に光センサ4からの検出信号をサンプリングするために使用されている。この制御回路7は、また、開閉機構3に接続されており、制御回路7により開閉機構3を駆動制御する。

【0013】上述した実施例の作用を説明する。図3は、本発明の動作を説明するためのタイミングチャートである。図4は、本発明の実施例の作用を説明するためのフローチャートである。なお、図4に示すフローチャートの動作は、制御回路7のワンチップCPUで実行される。まず、プラインドの開閉制御装置の動作を開始さ

せると、初期設定がなされる。ここで、制御回路 7 は、 光センサ 4 からの検出信号に取り合えず関係なくプラインド 2 を全開とする指令を開閉機構 3 に出力する(図 4 のステップ S 1 0 0)。そして、制御回路 7 は、全開指令を出したので、その状態を後に知るために、フラッグ Fを"0"とする(ステップ S 1 0 1)。ついで、制御回路 7 は、その内部に設けてあるタイマーT a、T bをリセットし、タイマーT aをスタートさせる(ステップ S 1 0 2)。ここで、このタイマーT a は、常時サンプリングできるように、例えば 1 秒間隔でサンプリング指示をだせるようになっている。

. 5 6

【0014】さて、図3に示すように、例えば時刻t31まで録り、時刻t31~t32まで晴れ、時刻t32~t33まで曇り、時刻t33以降が晴れであった場合に、上記初期設定が行われたとする。まず、時刻t31まで曇りであったので、制御回路7では、タイマーTaが一定時間(1秒)経過したかを判定して時間tn1に達すると(ステップS103)、光センサ4からの検出信号を取り込む(ステップS104)。

【0015】そして、制御回路7では、フラッグ下が"0"であるので(ステップS105)、ブラインド2を閉じる光量かを判定する(ステップS106)。この場合、光センサ4から制御回路7に取り込んだ検出信号が閉じる光量となるので(ステップS106)、制御回路7から開閉機構3に対して閉制御信号が出力される(ステップS107)。これにより、ブラインド2が閉じることになる。

【0016】ついで、制御回路7は、フラッグ下に "1"を立て(ステップS108)、タイマーTbをス タートさせる(ステップS109)。ここで、制御回路 7では、タイマーTbが所定の時間 (例えば、スタート から30分~60分)に達したかを判定し(ステップS 110)、達したときにタイマーTbをリセットして (ステップS111)、光センサイからの検出信号を取 り込む(サンプリングする)(ステップS104)。そ して、飼御回路7は、フラッグFが"1"であるので (ステップS105)、光センサ4からの検出信号が全 聞となる光量かを判断する(ステップS112)。この 判断時点(時間 t n 2)では、この実施例では、時刻 t 32~t33の間にあって当該期間は曇りであるので、 光景が開く量であり(ステップS112)、制御回路7 から開閉機構3に開制御信号が出力され(ステップS1 13)、フラッグFに"0"を立て(ステップS11 4)、タイマーTa, TbのリセットとタイマーTaの スタート処理に移行する (ステップS102)。これに より、プラインド2は、囲くことになる。

【0017】次に、タイマーTaの時刻 tn3では、図3の時刻 t32~t33の間にあって曇りであるので、制御回路 7 は、ステップS103~S106の処理をし、プラインド2を開いたままにしておく。さらに、<math>タ イマーTaの時刻 t n 4では、図3の時刻 t 3 3の後であって暗れであるので、制御回路7は、ステップS 1 0 1 3~S 1 0 6の処理をした後、開閉機構3に閉制御信号を出力して(ステップS 1 0 7)、プラインド2を閉じ、以後ステップS 1 0 7~S 1 1 1 の処理をする。また、タイマーTbの時刻 t n 5に達すると(ステップS 1 1 1)、制御回路7は、再びステップS 1 0 4、S 1 0 5、S 1 1 2の処理をするが、図3の時刻 t 3 3~で暗れているので、光量の判定(ステップS 1 0 3)の後にステップS 1 0 9の処理に移行する。

【0018】このように上記実施例では、ブラインド2を開から閉へ助作させるサンブリングはタイマーTaを使用して常時(例えば1秒毎に)行うにようにし、ブラインド2の閉じた時点からはタイマーTbを使用して一定間隔毎(例えば30分~60分毎)に開動作へのサンブリングをし、当該判断時点で開判定となるまではブラインド2を閉じたままにしておくものである。なお、上記実施例では、横型のブラインド2で説明したが、縦型でも同様に適用できる。また、上記実施例ではブラインド2を室外側に設置した例を示したが、ブラインド2を室内側に設置しても同様の作用効果を奏し得る等、本発明の要旨を逸脱しない範囲内で種々の変形例が可能なことは云うまでもない。

[0019]

【発明の効果】以上説明したように本発明のブラインドの開閉制御装置では、ブラインドを開から閉へ動作させるサンブリングを常時行うにようにし、閉じた時点から一定間隔毎に開動作へのサンブリングをし、その開判定となるまで当該時間間隔でサンブリングを行うようにしたので、屋外の現状に適合したブラインドの開閉を自動的に行うことができる効果がある。

【図面の簡単な説明】

【図1】本発明のプラインドの開閉制御装置の実施例を示すプロック図である。

. 【図2】本発明の実施例のブラインド部分を示す図である。.

【図3】本発明の動作を説明するための図である。

【図1】本発明の動作を説明するためのフローチャートである。

【図 5】 従来のプラインドの開閉制御装置の勁作例を説明するための図である。

【符号の説明】

- 1 窓
- 2 ブラインド
- 3 開閉機構
- 4 光センサ
- 7 制御回路
- Ta (第一の) タイマー
- Tb (第二の) タイマー