数学講究 XB レポート Gromov-Hausdorff 距離が距離であることの証明

05-220542 Keiji Yahata 本レポートでは Gromov-Hausdorff 距離が距離であることの証明を与える。まず Gromov-Hausdorff 距離の定義を行う。

命題-定義 1.1 (Gromov-Hausdorff 距離). コンパクト距離空間の同型類全体の集合を CMet と書く。ただし「同型」とは等長同型 \cong の意味である。このとき、CMet 上の 2 変数関数 d_{GH} : CMet \times CMet \to [0, + ∞] であって次をみたすものがただひとつ存在する:

• 各 $X, Y \in CMet$ に対し、代表元 $X \in X, Y \in Y$ をひとつずつ選ぶと

$$d_{GH}(X, \mathcal{Y}) = \inf\{\varepsilon \in \mathbb{R}_{>0} \mid \exists d : \text{ metric on } X \sqcup Y \text{ s.t. } d|_X = d_X, \ d|_Y = d_Y,$$

$$\forall x \in X, \ \exists y \in Y, \ d(x, y) < \varepsilon,$$

$$\forall y \in Y, \ \exists x \in X, \ d(x, y) < \varepsilon\}$$

$$(1.1)$$

が成り立つ。ただし d_X, d_Y はそれぞれ X, Y に定まっている距離である。

 d_{GH} を **Gromov-Hausdorff** 距離という。

証明 用語および記法の準備として、正実数 $\varepsilon \in \mathbb{R}_{>0}$ とコンパクト距離空間 X,Y に対し、 $X \sqcup Y$ 上の距離 d に関する条件

$$\begin{cases}
d|_{X} = d_{X}, & d|_{Y} = d_{Y} \\
\forall x \in X, \exists y \in Y, d(x, y) < \varepsilon \\
\forall y \in Y, \exists x \in X, d(x, y) < \varepsilon
\end{cases}$$
(1.2)

を条件 $P(\varepsilon, X, Y)$ と呼ぶことにし、集合 $A_{X,Y} \subset \mathbb{R}_{>0}$ を

$$A_{XY} := \{ \varepsilon \in \mathbb{R}_{>0} \mid X \sqcup Y \perp \mathcal{O}$$
 距離 d で条件 $P(\varepsilon, X, Y)$ をみたすものが存在する \ (1.3)

と定める。すると式 (1.1) の右辺は $\inf A_{X,Y}$ と表せることに注意しておく。

 d_{GH} を式 (1.1) で定義するために、まず well-defined 性を示す。すなわち、 $X, Y \in \text{CMet}$ を任意とし、 $\inf A_{X,Y}$ の値は代表元の選び方によらないことを示す。そのためには、X, Y の任意の代表元 $X, X' \in X$, $Y, Y' \in Y$ に対し $A_{X,Y} = A_{X',Y'}$ が成り立つことをいえば十分である。さらに $X, Y \in X', Y'$ の立場を入れ替えても同様の議論が成り立つから、 $A_{X,Y} \subset A_{X',Y'}$ を示せばよい。そこで $\varepsilon \in A_{X,Y}$ を任意とする。すると $A_{X,Y}$ の定義より、 $X \sqcup Y$ 上の距離 d であって条件 $P(\varepsilon, X, Y)$ をみたすものが存在する。目標である $\varepsilon \in A_{X',Y'}$ を示すためには、 $X' \sqcup Y'$ 上の距離 d' であって条件 $P(\varepsilon, X', Y')$ をみたすものを構成すればよい。

<u>Step 1: 距離 d' の構成</u> 等長同型写像 $f: X \cong X', g: Y \cong Y'$ をひとつずつ選び、写像 $d': (X' \sqcup Y') \times (X' \sqcup Y') \to [0, +\infty)$ を $d'(s', t') := d((f \sqcup g)^{-1}(s'), (f \sqcup g)^{-1}(t'))$ で定める。すると、d が $X \sqcup Y \bot$ の距離であることから d' は正値性、対称性、三角不等式をみたし、さらに $f \sqcup g$ が $X \sqcup Y \to X' \sqcup Y'$ の全単射であることから、d' は非退化性もみたす。したがって d' は $X' \sqcup Y'$ 上の距離となる。

Step 2: 距離 d' が条件 $P(\varepsilon, X', Y')$ をみたすこと $d'|_{X'} = d_{X'}$ であることは、各 $s', t' \in X'$ に対し

$$d'|_{X'}(s',t') = d((f \sqcup g)^{-1}(s'), (f \sqcup g)^{-1}(t'))$$
(1.4)

$$= d(f^{-1}(s'), f^{-1}(t')) \qquad (: s', t' \in X')$$
(1.5)

$$=d_X(f^{-1}(s'),f^{-1}(t')) \qquad (\because d|_X=d_X,\ f^{-1}(s'),f^{-1}(t')\in X) \tag{1.6}$$

$$=d_{X'}(s',t')$$
 (:: f は等長同型写像) (1.7)

数学講究 XB レポート 05-220542 Keiji Yahata

となることより従う。 $d'|_{Y'}=d_{Y'}$ についても同様である。さらに「 $\forall x'\in X',\ \exists y'\in Y',\ d'(x',y')<\varepsilon$ 」について、各 $x'\in X'$ に対し、 $f^{-1}(x')\in X$ ゆえにある $y\in Y$ が存在して $d(f^{-1}(x'),y)<\varepsilon$ となるから、 $y'\coloneqq g(y)\in Y'$ とおけば

$$d'(x', y') = d((f \sqcup g)^{-1}(x'), (f \sqcup g)^{-1}(y'))$$
(1.8)

$$= d(f^{-1}(x'), g^{-1}(y')) \qquad (\because x' \in X', y' \in Y')$$
(1.9)

$$= d(f^{-1}(x'), y) (1.10)$$

$$< \varepsilon$$
 (1.11)

が成り立つ。「 $\forall y' \in Y'$, $\exists x' \in X'$, $d'(x', y') < \varepsilon$ 」についても同様である。

以上で $\varepsilon \in A_{X',Y'}$ がいえた。したがって $A_{X,Y} \subset A_{X',Y'}$ ひいては $A_{X,Y} = A_{X',Y'}$ が示され、 $\inf A_{X,Y}$ の値は代表元の選び方によらないことが示された。

Gromov-Hausdorff 距離が距離であることを示す。

定理 1.2 (Gromov-Hausdorff 距離は距離). Gromov-Hausdorff 距離 d_{GH} は CMet 上の距離である。

この定理の証明はいくつかの補題に分けて行う。まず三角不等式を示す。

補題 1.3. d_{GH} は三角不等式をみたす。

証明 $X, Y, Z \in M$ とし、 $a := d_{GH}(X, Z)$, $b := d_{GH}(X, Y)$, $c := d_{GH}(Y, Z)$ とおく。示すべき不等式は $a \le b + c$ である。 $b = \infty$ または $c = \infty$ の場合は明らかだから、 $b, c < \infty$ の場合を考える。

 $Y = \emptyset$ の場合は $b, c < \infty$ より $X = \emptyset$, $Z = \emptyset$ となるから、a = b = c = 0 となり証明は終わる。

以降 $Y \neq \emptyset$ の場合を考える。すると $a \leq b+c$ を示すためには、任意の s > b, t > c に対し $a \leq s+t$ が成り立つことを示せばよく、そのためには X, Y, Z の代表元 X, Y, Z をひとつずつ選んで $s+t \in A_{X,Z}$ を示せばよい $(A_{X,Z}$ は (1.3) で定義したもの)。そこで、 $X \sqcup Z$ 上の距離 $d_{X \sqcup Z}$ であって条件 P(s+t,X,Z) をみたすものを構成することを考える。

Step 1: $d_{X \sqcup Z}$ の構成 いま s > b, t > c ゆえに $s \in A_{X,Y}$, $t \in A_{Y,Z}$ だから、 $X \sqcup Y$ 上の距離 $d_{X \sqcup Y}$ であって 条件 P(s,X,Y) をみたすものと、 $Y \sqcup Z$ 上の距離 $d_{Y \sqcup Z}$ であって条件 P(t,Y,Z) をみたすものがそれぞれ存在する。これらを用いて写像 $d_{X \sqcup Z}$: $(X \sqcup Z) \times (X \sqcup Z) \to [0,+\infty)$ を

$$d_{X \sqcup Z}(x, x') \coloneqq d_{X \sqcup Y}(x, x') \qquad (x, x' \in X) \tag{1.12}$$

$$d_{X \sqcup Z}(z, z') \coloneqq d_{Y \sqcup Z}(z, z') \qquad (z, z' \in Z) \tag{1.13}$$

$$d_{X \sqcup Z}(x,z) \coloneqq d_{X \sqcup Z}(z,x) \coloneqq \inf_{y \in Y} \left\{ d_{X \sqcup Y}(x,y) + d_{Y \sqcup Z}(y,z) \right\} \qquad (x \in X, \ z \in Z) \tag{1.14}$$

と定義する。

<u>Step 2: $d_{X \cup Z}$ が距離であること</u> $d_{X \cup Z}$ は定義から明らかに正値性、非退化性、対称律をみたすから、あとは三角不等式の成立を確かめればよい。 $x, x' \in X, z \in Z$ として、経路 $x \leadsto z \leadsto x'$ に沿った距離の和は

$$d_{X \sqcup Z}(x, z) + d_{X \sqcup Z}(z, x') = \inf_{y \in Y} \left\{ d_{X \sqcup Y}(x, y) + d_{Y \sqcup Z}(y, z) \right\} + \inf_{y' \in Y} \left\{ d_{Y \sqcup Z}(z, y') + d_{X \sqcup Y}(y', x') \right\}$$
(1.15)

$$= \inf_{y,y' \in Y} \{ d_{X \sqcup Y}(x,y) + d_{Y \sqcup Z}(y,z) + d_{Y \sqcup Z}(z,y') + d_{X \sqcup Y}(y',x') \}$$
 (1.16)

$$\geq \inf_{y,y'\in Y} \{ d_{X\sqcup Y}(x,y) + d_{Y\sqcup Z}(y,y') + d_{X\sqcup Y}(y',x') \}$$
 (1.17)

$$= \inf_{y,y' \in Y} \{ d_{X \sqcup Y}(x,y) + d_{X \sqcup Y}(y,y') + d_{X \sqcup Y}(y',x') \}$$
(1.18)

$$\geq d_{X \sqcup Y}(x, x') \tag{1.19}$$

より三角不等式をみたす。経路 $x \rightsquigarrow x' \rightsquigarrow z$ に沿った距離の和は

$$d_{X \sqcup Z}(x, x') + d_{X \sqcup Z}(x', z) = d_{X \sqcup Y}(x, x') + \inf_{y \in Y} \left\{ d_{X \sqcup Y}(x', y) + d_{Y \sqcup Z}(y, z) \right\}$$
(1.20)

$$= \inf_{y \in Y} \left\{ d_{X \sqcup Y}(x, x') + d_{X \sqcup Y}(x', y) + d_{Y \sqcup Z}(y, z) \right\}$$
 (1.21)

$$\geq \inf_{y \in Y} \{ d_{X \sqcup Y}(x, y) + d_{Y \sqcup Z}(y, z) \}$$
 (1.22)

$$=d_{X \sqcup Z}(x,z) \tag{1.23}$$

より三角不等式をみたす。他の経路についても同様にして三角不等式をみたすことがわかる。したがって $d_{X \sqcup Z}$ は $X \sqcup Z$ 上の距離である。

Step 3: $d_{X \sqcup Z}$ が P(s+t,X,Z) をみたすこと $d_{X \sqcup Z}|_X = d_X$, $d_{X \sqcup Z}|_Z = d_Z$ は定義より明らかである。つぎ に「 $\forall x \in X$, $\exists z \in Z$, $d_{X \sqcup Z}(x,z) < s+t$ 」を示す。そこで $x \in X$ を任意とする。すると $d_{X \sqcup Y}$ が P(s,X,Y) をみ たすことから、ある $y \in Y$ が存在して $d_{X \sqcup Y}(x,y) < s$ となる。一方 $d_{Y \sqcup Z}$ が P(t,Y,Z) をみたすことから、ある $z \in Z$ が存在して $d_{Y \sqcup Z}(y,z) < t$ となる。したがって

$$d_{X \sqcup Z}(x, z) \le d_{X \sqcup Y}(x, y) + d_{Y \sqcup Z}(y, z) < s + t \tag{1.24}$$

が成り立つ。同様にして「 $\forall z \in Z$, $\exists x \in X$, $d_{X \sqcup Z}(x,z) < s+t$ 」も示される。したがって $d_{X \sqcup Z}$ は P(s+t,X,Z) をみたす。

以上より
$$s+t \in A_{X,Z}$$
 が示された。したがって d_{GH} は三角不等式をみたす。

非退化性の一方を示す。

補題 1.4. $X = \mathcal{Y} \implies d_{GH}(X, \mathcal{Y}) = 0$ が成り立つ。

証明 X = Y とする。 $d_{GH}(X, Y) = 0$ を示すには、X, Y の代表元 X, Y をひとつずつ選んで、すべての $n \in \mathbb{Z}_{\geq 1}$ に対し $\frac{1}{n} \in A_{X,Y}$ が成り立つことをいえば十分である $(A_{X,Y}$ は (1.3) で定義したもの)。そのためには、 $X \sqcup Y$ 上の距離 $d_{X \sqcup Y}$ であって条件 $P(\frac{1}{n}, X, Y)$ をみたすものを構成すればよい。そこで、写像 $d_{X \sqcup Y}: (X \sqcup Y) \times (X \sqcup Y) \to [0, +\infty)$ を次のように定める。まず X = Y より $X \cong Y$ であるから、等長同型写像 $f: X \xrightarrow{\sim} Y$ をひとつ選ぶことができる。これを用いて

$$d_{X \sqcup Y}(x, x') := d_X(x, x') \qquad (x, x' \in X) \tag{1.25}$$

$$d_{X \sqcup Y}(y, y') := d_Y(y, y') \qquad (y, y' \in Y) \tag{1.26}$$

$$d_{X \sqcup Y}(x, y) := d_{X \sqcup Y}(y, x) := d_Y(f(x), y) + \frac{1}{2n} \qquad (x \in X, \ y \in Y)$$
 (1.27)

と定める。すると $d_{X\sqcup Y}$ は明らかに正値性、非退化性、対称律、三角不等式をみたし、 $X\sqcup Y$ 上の距離となる。 $d_{X\sqcup Y}$ が条件 $P(\frac{1}{n},X,Y)$ をみたすことを確かめる。まず $d_{X\sqcup Y}|_X=d_X$, $d_{X\sqcup Y}|_Y=d_Y$ は定義より明らかであ

る。つぎに「 $\forall x \in X$, $\exists y \in Y$, $d_{X \sqcup Y}(x,y) < \frac{1}{n}$ 」を示す。各 $x \in X$ に対し、y := f(x) とおけば

$$d_{X \sqcup Y}(x, y) = d_Y(f(x), y) + \frac{1}{2n}$$
(1.28)

$$= d_X(x,x) + \frac{1}{2n} \qquad (∵ f は等長)$$
 (1.29)

$$<\frac{1}{n}\tag{1.30}$$

が成り立つ。最後に「 $\forall y \in Y$, $\exists x \in X$, $d_{X \sqcup Y}(x,y) < \frac{1}{n}$ 」を示す。各 $y \in Y$ に対し、 $x \coloneqq f^{-1}(y)$ とおけば (ここで f が逆写像を持つことを用いた)

$$d_{X \sqcup Y}(x, y) = d_Y(f(x), y) + \frac{1}{2n}$$
(1.31)

$$= d_Y(y,y) + \frac{1}{2n} \qquad (∵ f は等長)$$
 (1.32)

$$<\frac{1}{n}\tag{1.33}$$

が成り立つ。したがって $d_{X \sqcup Y}$ は条件 $P(\frac{1}{n}, X, Y)$ をみたす。

以上より、すべての $n\in\mathbb{Z}_{\geq 1}$ に対し $\frac{1}{n}\in A_{X,Y}$ が成り立つことがわかった。したがって $d_{\mathrm{GH}}(X,\mathcal{Y})=\inf A_{X,Y}=0$ である。

非退化性のもう一方を示すため、次の補題を用意しておく。

補題 1.5. $d_{GH}(X, Y) = 0$ とする。このとき、各 $n \in \mathbb{Z}_{\geq 1}$ に対し、ある写像 $f_n \colon X \to Y$ であって次をみたすもの が存在する:

- (1) すべての $x, x' \in X$ に対し $|d_X(x, x') d_Y(f_n(x), f_n(x'))| < \frac{1}{n}$ が成り立つ。
- (2) $Y = \overline{B}_{\frac{1}{n}}(f_n(X))$ が成り立つ。ただし $\overline{B}_{\frac{1}{n}}(\cdot)$ は $\frac{1}{n}$ -閉近傍を表す。

証明 $n \in \mathbb{Z}_{\geq 1}$ とし、写像 f_n の構成を行う。まず $d_{GH}(X, y) = 0$ より、 $X \sqcup Y$ 上の距離 $d_{X \sqcup Y}$ であって条件 $P(\frac{1}{2n}, X, Y)$ をみたすものが存在する。これを用いて、各 $x \in X$ に対し、 $d_{X \sqcup Y}(x, y) < \frac{1}{2n}$ をみたす $y \in Y$ をひとつ選んで $f_n(x) := y$ と定める。すると、各 $x, x' \in X$ に対して

$$|d_X(x, x') - d_Y(f_n(x), f_n(x'))| \tag{1.34}$$

$$= |d_{X \sqcup Y}(x, x') - d_{X \sqcup Y}(f_n(x), f_n(x'))| \tag{1.35}$$

$$= |d_{X \sqcup Y}(x, x') - d_{X \sqcup Y}(x, f_n(x')) + d_{X \sqcup Y}(f_n(x), f_n(x')) - d_{X \sqcup Y}(x, f_n(x'))|$$
(1.36)

$$\leq |d_{X \sqcup Y}(x, x') - d_{X \sqcup Y}(x, f_n(x'))| + |d_{X \sqcup Y}(f_n(x), f_n(x')) - d_{X \sqcup Y}(x, f_n(x'))| \tag{1.37}$$

$$\leq d_{X \sqcup Y}(x', f_n(x')) + d_{X \sqcup Y}(f_n(x), x) \tag{1.38}$$

$$<\frac{1}{2n} + \frac{1}{2n} \tag{1.39}$$

$$=\frac{1}{n}\tag{1.40}$$

が成り立つ。これで(1)がいえた。

また、各 $y \in Y$ に対し、 $d_{X \sqcup Y}(x,y) < \frac{1}{2n}$ をみたす $x \in X$ をひとつ選ぶことができ、

$$d_{Y}(y, f_{n}(x)) = d_{X \sqcup Y}(y, f_{n}(x)) \tag{1.41}$$

$$\leq d_{X \sqcup Y}(y, x) + d_{X \sqcup Y}(x, f_n(x)) \tag{1.42}$$

$$\leq \frac{1}{2n} + \frac{1}{2n} \tag{1.43}$$

$$=\frac{1}{n}\tag{1.44}$$

が成り立つ。これで (2) がいえた。 したがってこの f_n が求める写像である。

補題 1.6. $d_{GH}(X, \mathcal{Y}) = 0 \implies X = \mathcal{Y}$ が成り立つ。

証明 補題を示すためには、 $d_{GH}(X, y) = 0$ とし、X, y の代表元 X, Y をひとつずつ選んで等長同型写像 $f: X \xrightarrow{\sim} Y$ を構成すればよい。そこで、補題 1.5 の f_n たちを用いて求める等長同型写像 f を構成する。いま X はコンパクト距離空間だからとくに可分である。すなわち、X のある稠密部分集合であって高々加算なも のが存在する。そのひとつを選んで $\{x_k \in X \mid k \in \mathbb{N}\}$ とおく。さらに Y はコンパクト距離空間だから、任意 の $k \in \mathbb{N}$ に対し、Y の点列 $(f_n(x_k))_{n \in \mathbb{N}}$ は収束部分列を持つ。したがって対角線論法により、関数列 $(f_n)_{n \in \mathbb{N}}$ の ある部分列 $(f_{n(j)})_{j \in \mathbb{N}}$ が存在して、任意の $k \in \mathbb{N}$ に対し、 $(f_{n(j)}(x_k))_{j \in \mathbb{N}}$ は Y 内の点に収束する。このことを用いて写像 $f: \{x_k \in X \mid k \in \mathbb{N}\} \to Y$ を $f(x_k) \coloneqq \lim_{j \to \infty} f_{n(j)}(x_k)$ ($k \in \mathbb{N}$) と定める。すると f は距離空間 $f_n(x_k)$ の 一様連続写像だから、 $f_n(x_k)$ に対し、 $f_n(x_k)$ に存在する。このとき、補題 $f_n(x_k)$ に $f_n(x_k)$ に対しなるから、等長同型写像である。よって $f_n(x_k)$ に $f_n(x_k$

最後に目標の定理を証明する。

定理 1.2 の証明. d_{GH} が CMet 上の距離であることを示すには、正値性、非退化性、対称律、三角不等式を示せばよい。正値性と対称律は d_{GH} の定義から明らかである。また、三角不等式と非退化性は補題 1.3, 1.4, 1.6 で示した。したがって d_{GH} は CMet 上の距離である。