LL(k) Grammars

Adding Lookahead

- Goal: Resolve the nondeterminism of NTAs without using backtracking by allowing the automaton to take the next $k \in \mathbb{N}$ input symbols into account when doing an expansion
- This is called a *lookahead* of *k* input symbols
- Requires that we give the NTA more information.

For the CFG

$$S \rightarrow A \mid B$$
 (1, 2)
 $A \rightarrow b$ (3)
 $B \rightarrow Cd$ (4)
 $C \rightarrow a$ (5)

the automaton needs to know that

- expanding S to A only makes sense if the next input symbol is b
- expanding S to B only makes sense if the next input symbol is a
- In that way, parsing the input ab becomes deterministic
- Fortunately, that information is already in the CFG!

$first_k$ set

■ For $G = <\Sigma, N, P, S>$, the $first_k$ set of $\alpha \in (N \cup \Sigma)^*$ is given by:

$$first_k(\alpha) = \{ v \in \Sigma^k | \exists w \in \Sigma^* : \alpha \Rightarrow^* vw \} \cup \{ v \in \Sigma^{< k} | \alpha \Rightarrow^* v \}$$

Example: For the CFE

$$S \rightarrow aSb \mid \varepsilon$$

we have

$$first_1(ab) = \{a\}$$

$$first_2(ab) = \{ab\}$$

$$first_2(a) = \{a\}$$

$$first_1(S) = \{\varepsilon, a\}$$

$$first_2(S) = \{\varepsilon, ab, aa\}$$

$$first_3(S) = \{\varepsilon, ab, aab, aaa\}$$

$$first_3(Sa) = \{a, aba, aab, aaa\}$$

• Note that $|first_k(\alpha)| = 1$ for $\alpha \in \Sigma^*$

LL(k) Grammar

- LL(k) = "reading input from Left to right with k-lookahead and Leftmost derivation"
- The CFE $G = < \Sigma, N, P, S >$ is an LL(k) grammar for a given $k \in \mathbb{N}$ if for all leftmost derivations of the form

$$S \Rightarrow_{l}^{*} wA\alpha \begin{cases} \Rightarrow_{l} w\beta\alpha \Rightarrow_{l}^{*} wx \\ \Rightarrow_{l} w\gamma\alpha \Rightarrow_{l}^{*} wy \end{cases} \text{ such that } \beta \neq \gamma$$

it follows that $first_k(x) \neq first_k(y)$

- This means that in an LL(k) grammar different productions x and y do not have the same k-lookahead
- This is interesting because it means that the decision to expand $A \to \beta$ or $A \to \gamma$ is determined by the next k symbols following w
- Problem: If we want to verify whether G is a LL(k) do we have to verify all possible productions $\beta \alpha \Rightarrow_l^* x$ and $\gamma \alpha \Rightarrow_l^* y$? (there could be an infinite number)

LL(k) Grammar, part 2

- There is a useful lemma that we will not prove here:
- $G = < \Sigma, N, P, S >$ is an LL(k) grammar if and only if for all leftmost derivations of the form

$$S \Rightarrow_{l}^{*} wA\alpha \begin{cases} \Rightarrow_{l} w\beta\alpha \Rightarrow_{l}^{*} wx \\ \Rightarrow_{l} w\gamma\alpha \Rightarrow_{l}^{*} wy \end{cases} \text{ such that } \beta \neq \gamma$$

it follows that $first_k(\beta \alpha) \cap first_k(\gamma \alpha) = \emptyset$

■ This means that $A \to \beta$ or $A \to \gamma$ is determined by the $first_k$ sets of $\beta\alpha$ and $\gamma\alpha$

Example with k = 1 lookahead

CFG

$$S \rightarrow A \mid B$$
 (1, 2)
 $A \rightarrow b$ (3)
 $B \rightarrow Cd$ (4)
 $C \rightarrow a$ (5)

- Initial state (ad, S, ε) of NTA for input ad
- Should we use rule 1 or rule 2?
 - $first_1(A) = \{b\}$
 - $first_1(B) = \{a\}$
- Because the next input symbol is a, we know that rule 2 is the correct one. Next state will be (ad, B, 2)