

Plan

Introduction

- I. Principe du laser
- II. Effets thermique sur une plaque métallique
 - 1. Processus d'ablation
 - 2. Modélisation
 - 3. Résolution analytique
 - 4. Résolution numérique

Conclusion

Contributions

- Prise de contact avec des usines et laboratoires en Tunisie
- Rencontre avec un physicien, créateur de la start-up Laboratoire Laser Afrique, travaillant le laser.
- Implémentation de codes python traduisant la diffusion de chaleur dans de l'aluminium.
- Implémentation d'un code python permettant de visualiser la résolution analytique de l'équation de la chaleur par transformée de Fourier.

Introduction

I) Principe du laser

Emission stimulée

Inversion de population

<u>Un système à 3 niveaux</u>:

- Etat fondamentale E_f
- 2 états excités E_1 et E_2 avec $E_1 < E_2$

Milieu actif

Cavité optique

apport d'énergie
(pour inversion de population)
miroir
miroir
semi-réfléchissant
milieu actif
faisceau LASER

Principe de génération d'impulsions ultra-brèves: amplification à dérives de fréquences

II. Effets thermiques sur une plaque métallique

1) Processus d'ablation

- Dépend des propriétés du métal (conductivité), de la fluence et de la puissance du laser
- Cassure des structures du réseau
- Apparition d'une **ZAT**

Représentation qualitative de la profondeur d'ablation selon la fluence du laser

Laser Nd:Yag (ns)	3,1 μm
Laser Ti:saphir (fs)	0,22 μm

ZAT sur une plaque d'aluminium après 1 impulsion

2) Modélisation

Hypothèses:

Loi de Fourier: $\vec{j} = -\lambda \overrightarrow{grad}T$

Equation de la chaleur: $ho c rac{\partial T}{\partial t} = - div ec{j}$

On considère l'influence de l'air comme négligeable sur l'évolution de la température

Pas de pertes par conduction et de convection

 $D=\lambda/\rho c$, avec λ le coefficient de conductivité thermique, c la capacité thermique et ρ la masse volumique.

$$ho c rac{\partial T}{\partial t} = div(\lambda g r a d T)$$
 $ho c rac{\partial T}{\partial t} = \lambda (rac{\partial^2 T}{\partial x^2} + rac{\partial^2 T}{\partial y^2} + rac{\partial^2 T}{\partial z^2})$
 $ho c rac{\partial T}{\partial t} = D \triangle T \quad (*)$

Matériau	λ (W.m ⁻¹ .K ⁻¹)	ρ (J.kg ⁻¹ .K ⁻¹)	c (kg.m ⁻³)	D (m ² .s ⁻¹)	T(°C) de fusion	T(°C) d' évaporation
Aluminium	238	900	270	9,794.10 ⁻⁵	660,32	2056

Résolution analytique

On résout l'équation de la chaleur en considérant les paramètres constants et un chauffage unidimensionnelle.

On applique à l'équation (*) une transformée de Fourier (T.F) et son inverse avec $\tilde{f}(k) = \frac{1}{\sqrt{2\pi}} \int_{-\infty}^{\infty} f(x)e^{-ikx}dx$ Avec pour condition initiale une impulsion de Dirac $T(x,0)=\delta(x)$:

$$rac{\partial T}{\partial t} = D rac{\partial^2 T}{\partial x^2} \;\;
ightharpoonup \widetilde{T}(k,t) = rac{1}{\sqrt{2\pi}} e^{-Dk^2 t} \;\;
ightharpoonup \;\; T(x,t) = rac{1}{2\sqrt{\pi D t}} e^{rac{-x^2}{4D t}}$$

Ne représente pas vraiment un phénomène physique, on utilise alors une gaussienne comme condition initiale:

$$\widetilde{T}(k,t) = \sqrt{\sigma}e^{rac{-k^2\sigma}{2}}e^{-Dk^2t}
ightharpoonup \left[T(x,t) = rac{\sqrt{2\sigma}}{\sqrt{4Dt+2\sigma}}e^{rac{-x^2}{4Dt+2\sigma}}
ight]$$

Conditions initiales et aux limites :

-
$$T(0,t)=0$$
 $\forall t$

-
$$T(0,t)=0$$
 $\forall t$
- $T(\infty,t)=0$ $\forall t$
- $T(x,0) = \frac{e^-x^2}{2}$ $\forall x$

$$T(x,0) = \frac{e^- x^2}{2\sigma} \qquad \forall x$$

Forme temporelle de l'impulsion femtoseconde (200 fs)

T (°C)

T (°C)

Visualisation de la solution avec Python

Résolution numérique

On résout l'équation de la chaleur à 2 dimensions en utilisant la méthode des différences finies.

On définit d'abord les pas x_i , y_i et t_k : $x_i = x_0 + i \triangle x$, $y_i = y_0 + j \triangle y$, $t_k = t_0 + k \triangle t$

On détermine ensuite $\frac{\partial T}{\partial t}$, $\frac{\partial^2 T}{\partial u^2} e t \frac{\partial^2 T}{\partial u^2}$ en appliquant Taylor respectivement à l'ordre 1 en

 t_k et à l'ordre 2 en x_i et y_i . On pose $T_{i,j}^k = T(x,y,k)$.

$$T(x_i + \triangle x, y_j, t_k) = T(x_i) + \triangle x \frac{\partial T}{\partial x} + \frac{\triangle x^2}{2} \frac{\partial^2 T}{\partial x^2} + O(\Delta x^3)$$
 $T(x_i - \triangle x, y_j, t_k) = T(x_i) - \triangle x \frac{\partial T}{\partial x} + \frac{\triangle x^2}{2} \frac{\partial^2 T}{\partial x^2} + O(\Delta x^3)$ $T(x_i - \triangle x, y_j, t_k) = T(x_i) - \triangle x \frac{\partial T}{\partial x} + \frac{\triangle x^2}{2} \frac{\partial^2 T}{\partial x^2} + O(\Delta x^3)$

De la même manière on a

$$rac{\partial^2 T}{\partial x^2} \simeq rac{T_{i+1,j}^k + T_{i-1,j}^k - 2T_{i,j}^k}{ riangle x^2}$$

$$rac{\partial^2 T}{\partial y^2} \simeq rac{T_{i,j+1}^k + T_{i,j-1}^k - 2T_{i,j}^k}{ riangle y^2}$$

$$T(x_i,y_j,t_k+ riangle t)=T(x_i,y_j,t_k)+ riangle trac{\partial T}{\partial t}+O(riangle t^2) \hspace{0.5cm}
ightharpoonup \left|rac{\partial T}{\partial t}\simeqrac{T_{i,j}^{k+1}-T_{i,j}^k}{ riangle t}
ight|$$

On remplace ensuite dans l'équation (*)

$$rac{T_{i,j}^{k+1} - T_{i,j}^k}{ riangle t} = D(rac{T_{i+1,j}^k + T_{i-1,j}^k - 2T_{i,j}^k}{ riangle x^2} + rac{T_{i,j+1}^k + T_{i,j-1}^k - 2T_{i,j}^k}{ riangle y^2})$$

Conclusion