13장 Principal Component Regression

CONTENTS

- 13.1 서론
- 13.2 주성분분석 소개
- 13.3 주성분회귀

13.1 서론

- 주성분회귀는 주성분분석에 기초한 회귀분석 기법이다. 주성분회귀에서는, 반응변수를 직접 설명변수에 회귀하는 대신, 설명변수들의 주성분들을 회귀변수로 사용한다. 통상적으로 전체 주성분들의 부분집합(일부분)을 회귀변수로 사용하며, 이 과정은 주성분회귀를 일종의 정칙화 (regularized) 절차로 이해되도록 한다.
- 주성분회귀는 다중공선성에 대한 해결책으로 주로 이용된다. 주성분회귀는 회귀 단계에서 작은 변동을 가지는 주성분들을 제외시킴으로써 이러한 문제를 적절히 다룰 수 있다. 또한, 주성분의 일부만을 회귀에 사용함으로써 차원축소와 함께, 추정해야할 모수의 수를 줄여준다.
- 이 사실은 고차원의 자료에 특히 유용하게 사용될 수 있다. 회귀변수로 사용될 주성분의 적절
 한 선택을 통해, 주성분회귀는 반응변수에 대한 효과적인 예측을 가능하게 한다.

13.2 주성분분석 소개

- 주성분분석(principal component analysis, 이하 PCA)은 직교변환을 통해 서로 상관된 변수들의 관측치들을 선형적으로 무상관 된 변수(이를 주성분이라 함)값으로 변환시키는 통계적 방법이다. 주성분의 수는 원 변수의 수와 작거나 같다.
- 이 변환은 다음과 같은 방법으로 정의된다. 제1주성분은 가장 큰 분산을 가지도록(즉, 데이터가 가진 변동을 최대한 많이 설명하도록) 정해지며, 이후의 주성분은 차례대로 앞선 주성분과는 직 교하면서 가능한 최대 분산을 가지도록 정해진다. 결과 벡터는 무상관의 직교 기저 집합이 된다.
 PCA는 원 변수들의 상대 척도에 민감하다.

13.2 주성분분석 소개

PCA는 탐색적 자료 분석과 예측모델링 방법으로 주로 사용된다. PCA는 고유차 기반의 다변량 분석 가운데 가장 단순한 방법으로, 고차원의 다변량 자료를 저차원의 공간에 사영한다. 이는 처음 몇 개의 주성분만을 사용함으로써 변환된 자료의 차원을 줄이는 방법을 사용한다.

- 주성분회귀(Principal Component Regression, 이하 PCR)는 다중공선성이 존재하는 자료에 대한 다중회귀분석법이다. 다중공선성이 존재할 때, 최소제곱추정량(치)는 불편성은 만족하나 분산이 매우 커지게 되어 실제 값으로부터 멀리 떨어질 수 있다. 능형회귀와 마찬가지로 약간의 편향(bias)을 추가함으로써, PCR은 표준오차를 감소시킨다.
- 능형회귀에서와 같이 PCR에서도 자료의 표준화가 요구된다(독립, 반응변수 모두). 아래의 표현에서 X 와 y 는 모두 표준화 된 것으로 정의한다.
- PCR은 다중회귀와 주성분분석의 단순한 확장으로 그 절차는 다음의 [그림 13.1]과 같다. 첫 단계는 원 자료로부터 주성분(또는 (인자) 점수)을 계산한다. 중요한(선택된) 주성분 자료를 예측 변수로 하여 반응변수(^y)와의 다중회귀를 수행한다. 주성분 변수들은 서로 직교(무상관)하므로, 다중공선성의 문제가 해결되어 다중회귀분석(OLS 추정)이 가능하다.

[그림 13.1] 주성분회귀의 수행원리

● PCR 회귀의 수행(모수 추정) 절차를 정리하면 다음의 [그림 13.2]와 같다.

[단계 1] 원자료 X에 대해 주성분분석(PCA)을 실시 [단계 2] 직교 주성분점수를 독립변수로 하여 다중회귀(MLR)를 적합

[그림 13.2] 주성분회귀의 모수추정 절차

- PCR의 특징을 소개하면 다음과 같다.
 - (i) PCR에서 가장 중요한 점은 PCA에서와 마찬가지로 적절한 고유벡터를 선택하는 문제이다. 이 과정은 PCA에서와 동일하다.
 - (ii) PCR의 가정은 통상적인 다중선형회귀의 가정(선형성, 상수분산(no outliers)과 독립성)과 유사하나, PCR은 신뢰구간을 제공하지 않으므로 정규성의 가정은 불필요하다.
 - (iii) 다중공선성이 존재하는 경우 뿐 아니라 변수의 수가 자료의 수보다 많은 경우에도 적용될 수 있다.

예제 1

gasolin{pls} 자료에 대해 주성분회귀를 수행한다.

```
> library(pls)
> data(gasoline)
> str(gasoline)
'data.frame': 60 obs. of 2 variables:
$ octane: num 85.3 85.2 88.5 83.4 87.9 ...
$ NIR : AsIs [1:60, 1:401] -0.0502 -0.0442 -0.0469 -0.0467 -
0.0509 ...
..- attr(*, "dimnames")=List of 2
....$ : chr "1" "2" "3" "4" ...
....$ : chr "900 nm" "902 nm" "904 nm" "906 nm" ...
```

자료 설명

gasoline 자료는 60 개의 가솔린 표본의 근적외선(NIR) 스펙트럼과 옥탄가(옥탄)의 자료이다. 각 NIR 스펙트럼은 $900\sim1700$ nm 범위에서 2nm 간격으로 총 401 개의 파장 길이에서 측정되었다. 가솔린(60×1)을 반응변수로, NIR(60×401)을 예측변수로 하는 회귀모형을 적합하고자한다. 예측변수의 수가 401 개로 관측된 자료(60 개)에 비해 매우 크다.

● 다음의[그림 13.3]은 자료의 이해를 돕기 위한 그림이다.

[그림 13.3] gasoline 자료

```
> ## 훈련용 자료와 검증용 자료 생성
> gasTrain <- gasoline[1:50,]</pre>
> gasTest <- gasoline[51:60,]</pre>
> ## 주성분회귀 수행: pcr{pls} 함수 이용
> gas1 <- pcr(octane ~ NIR, ncomp=10, data=gasTrain,</pre>
              validation="L00")
> summary(gas1)
Data: X dimension: 50 401
       Y dimension: 50 1
Fit method: svdpc
Number of components considered: 10
                                  (...)
```

```
(...)
VALIDATION: RMSEP
Cross-validated using 50 leave-one-out segments.
      (Intercept) 1 comps 2 comps 3 comps 4 comps 5 comps
          1.545 1.472 1.483 0.2894
CV
                                         0.2522
                                                  0.2622
adjCV
          1.545
                  1.471 1.482 0.2879
                                         0.2518
                                                  0.2618
     6 comps 7 comps 8 comps 9 comps 10 comps
CV
     0.2681 0.2386
                       0.2328 0.2416
                                        0.2423
adjCV 0.2677 0.2373 0.2323 0.2411 0.2415
TRAINING: % variance explained
      1 comps
             2 comps 3 comps 4 comps 5 comps
        79.86 88.12 93.54 96.54
                                      97.74
Χ
octane
       16.99 21.36 97.00 97.71
                                      97.73
      6 comps 7 comps 8 comps 9 comps 10 comps
Χ
        98.38 98.75 99.06
                              99.28
                                      99.42
octane
      97.77 98.47 98.54 98.62
                                      98.83
```

> plot(RMSEP(gas1), legendpos="topright")

해석

LOO(leave-one-out) 방법으로 RMSEP(제곱근평균제곱예측오차)를 구해본 결과 주성분의 수는 3이 적당한 것으로 보인다.

- > ## 3개의 주성분을 이용하여 PCR을 수행한 결과
- > plot(gas1, ncomp=3, asp=1, line=TRUE)

octane, 3 comps, validation

> plot(gas1, plottype="scores", comps=1:3)


```
> explvar(gas1)
   Comp 1   Comp 2   Comp 3   Comp 4   Comp 5
79.8586603  8.2639500  5.4171903  3.0034945  1.1963215
   Comp 6   Comp 7   Comp 8   Comp 9   Comp 10
   0.6397503  0.3691514  0.3127762  0.2171267  0.1417888
```

```
> ## 주성분의 수에 따른 RMSEP
> RMSEP(gas1, newdata=gasTest)
(Intercept)
               1 comps
                            2 comps
                                        3 comps
                                                     4 comps
                                                                 5 comps
    1.5369
               1.3226
                             1.2568
                                         0.4634
                                                      0.2241
                                                                  0.2283
   6 comps
               7 comps
                            8 comps
                                        9 comps
                                                    10 comps
    0.2600
                0.2795
                             0.2434
                                         0.2290
                                                      0.2881
```

- P의 {pls} 패키지에서는 PCR 분석에 사용되는 다양한 함수를 제공한다. 몇 가지를 소개하면 다음과 같다. R의 {chemometrics} 패키지도 PCR을 비롯한 다양한 다변량 분석을 제공한다.
- validationplot() : 성분의 수에 따른 타당성(validation) 통계량(RMSEP, MSEP 또는 \mathbb{R}^2 등)을 그려준다.
- predplot() : 측정값에 대한 적합모형의 예측값을 그려준다.
- coefplot() : PCR과 PLSR 모형(mvr 객체)의 회귀계수를 그려준다.
- scoreplot() : 점수(scores), 부하량(loadings)과 상관부하량(correlation loadings)을 그려준다.
- loadingplot() : scoreplot()과 유사하다.

- PCR의 장점과 단점을 요약하면 다음과 같다.
- PCR 분석의 장점
 - (i) 차원축소
 - (ii) 예측변수 간의 다중공선성 제거
 - (iii) 과적합의 완화: 반응변수와 관련된 대부분의 변동과 정보가 주성분에 압축되어 있고, 적은 수의 모수 추정을 통해 과적합의 위험을 줄일 수 있다.
- PCR 분석의 단점
 - (i) 변수선택 기능을 가지지 않으며, 예측변수의 영향을 파악하기 어렵다.
 - (ii) 주성분의 생성과정에 반응변수가 고려되지 않으므로(비지도 학습), 반응변수의 예측을 위한 최선의 방법이라 할 수는 없다.