Problema de Roteamento de Veículos(PRV)

David Silva Fernandes

Universidade Federal de Ouro Preto Departamendo da Computação

Dezembro de 2017

Descrição do Problema

 Consiste no atendimento de um conjunto de consumidores por intermédio de uma frota de veículos, que partem de um ou mais pontos denominados depósitos

Como representar uma Solução

 Suponha que existam 8 vértices a serem atendidos e 3 veículos disponíveis. Uma solução seria

```
- S = (0687039510420), onde
```

- (06470), (03510) e (0420) são as rotas

Estrutura de Vizinhança

Para S = (0687039510420), tome a
rota (039510)

Troca Intra-rota

(039510) > (019530)

Estrutura de Vizinhança (cont.)

Para S = (0687039510420), tome as
rotas (06870) e (0420)

Troca Inter-rota

(06870)(0420)>(04870)(0620)

Estrutura de Vizinhança (cont.)

Para S = (0687039510420), tome as rotas (06870) e (0420)

Troca de rota

(06870)(0420)>(0870)(06420)

Função Objetivo

• É o somatório de todas as distâncias percorridas pelo veículo

Demonstração

	0	1	2	3	4
0	0	3	4	5	6
1	3	0	9	8	7
2	4	9	0	1	2
3	5	8	1	0	9
4	6	7	1	9	0

•
$$S_0 = (0 \ 4 \ 1 \ 0 \ 3 \ 2 \ 0)$$
 $f_0 = 6 + 7 + 3 + 5 + 8 + 4 = 33$

•
$$S_1 = (0410230)$$
 $f_1 = 6+7+3+4+1+5=26$

•
$$S_2 = (0420310)$$
 $f_2 = 6+2+4+5+8+3=28$

•
$$S_3 = (0 4 0 2 3 1 0)$$
 $f_3 = 6 + 6 + 4 + 1 + 5 + 3 = 25$

Solução

GRASP

```
Enquanto (condição de parada não for satisfeita), faça solução = crie aleatoriamente uma solução de forma construtiva(); solução = busca local(solução); se solução é a melhor solução até então conhecida então grave(solução); fim se Fim Enquanto
```

Obrigado