Laboratory 4

Introduction to Artificial Intelligence

Document Classification

Ernesto Vieira Manzanera. Student id: 251663

1. Overview

This paper aims to describe the process of setting up the experiments oriented to analyse two trivial document classification algorithms: Naïve Bayes Classification and Decision Trees Classification. The set of documents used for training and performance testing are obtained from the 20 News Groups, and the categories science, baseball, politics.misc, medicine and mac.hardware have been chosen.

2. Text representation and feature selection

In order to represent the documents in a format which is accepted by weka, the following process is carried out:

- Header, footer and quoting elimination from the texts, using the remove parameter in the 20 News Groups fetching function.
- Elimination of escape characters (\n, \t, \r), and non-informative characters . () 's / , == _ _ * > < , ; ? ¿ `` # ^ | -: : ! ; " % { } $^{\rm o}$
- Splitting of documents in words.
- Filtering of words to avoid unsupported elements: '', ', ', ', '\x0c'.
- Converting each document to an array of integers representing the occurrence of each word in the text.

Afterwards, an evaluation of each term in terms of each category is performed based on three methods, each of them defining an evaluation function A(t,c) where t is a term and c is a class. Three methods have been tested:

Document Frequency:

Assigns a value to each term which represents the number of documents in a class c that contain t.

Collection Frequency:

Assigns a value to each term which represents the number of occurrences of the term t in the documents belonging to c.

Mutual Information:

Assigns a value to each term t in terms of a class c based on the statistical dependence between those two. The Mutual Information index is defined as follows¹:

¹ Introduction to Information Retrieval, Christopher D., Manning Prabhakar, Raghavan Hinrich Schütze, Cambridge

$$I(U;C) = \sum_{e_t \in \{1,0\}} \sum_{e_c \in \{1,0\}} P(U = e_t, C = e_c) \log_2 \frac{P(U = e_t, C = e_c)}{P(U = e_t)P(C = e_c)}$$

However, for implementation purposes, the expression above is rewritten in the way:

$$I(U;C) = \frac{N_{11}}{N} \log_2 \frac{NN_{11}}{N_1.N._1} + \frac{N_{01}}{N} \log_2 \frac{NN_{01}}{N_0.N._1} + \frac{N_{10}}{N} \log_2 \frac{NN_{10}}{N_1.N._0} + \frac{N_{00}}{N} \log_2 \frac{NN_{00}}{N_0.N._0}$$

This feature selection method measures the degree of independence between the term and the class, that is to say, to what extent we can infer knowledge about one variable knowing a fact from the other. If two variables are completely independent from each other, the expression inside the logarithmic part will become 1 as the numerator will tend to show the behaviour of the denominator (independent events), which will make the logarithm 0.

These last functions are implemented with the methods createDocumentFrequency, createCollectionFrequency and createMutualInformation respectively, and the three accept the vectorised texts and a list of categories, and output a term ranking for each class based on the above explained methods.

Posteriorly, the function chooseVocab(vocab, k) receives a class-term ranking object and a number of terms k to be chosen, and outputs a vocabulary of k words that are most fitted in terms of the previous evaluation.

Lastly, the function createARFF receives the chosen vocabulary and the vectorised texts, and creates a .arff file that is readable by Weka. This function can be set to represent each term in the text with a dichotomous variable (0 or 1) representing the existence or absence of the term in the document, or allowing in to have more values, representing the number of occurrences of the term in the document.

The difference between the functions can be observed easily if we check the terms chosen for each class.

The Figure below shows the first terms chosen by the Document Frequency (2) and Collection Frequency (1) ranker

the	of	to	and	а	in	is	that	i	it	for	this	are	you	be	with	not	have	or	on
5164.0	3276.0	2876.0	2635.0	2482.0	1959.0	1898.0	1521.0	1518.0	1457.0	1084.0	848.0	811.0	786.0	780.0	773.0	724.0	698.0	639.0	629.0
522.0	501.0	477.0	471.0	467.0	459.0	415.0	402.0	395.0	356.0	314.0	299.0	289.0	289.0	284.0	282.0	279.0	268.0	264.0	253.0

The tables below show the terms chosen by the Mutual Information Selector for each class:

sci.ı	med
gordon	1.1681
shameful	1.1642
intellect	1.1631
surrender	1.1623
banks	1.1608
disease	1.1574
doctor	1.1535
medical	1149
patients	1145
soon	1.1414
treatment	1.1384
medicine	1.1378
patient	1.1361
diet	1.1361
symptoms	1.1313
blood	1.1312
she	1.13
pain	1.13
syndrome	1.1298
food	1.1289

politi	cs.misc
clinton	1.6156
government	1.615
tax	1.6059
state	1.6045
people	1.6041
law	1.6031
president	1.6018
crime	1.6002
economic	1.5993
rights	1.5978
bush	1.5973
congress	1.5968
laws	1.5965
we	1.5965
taxes	1.5964
deficit	1.5946
economy	1.5938
homosexuals	1.5937
federal	1.593
house	1.5929

sci.space				
space	1.2462			
nasa	1.1832			
launch	1.1663			
moon	1.1581			
earth	1.152			
flight	1.1393			
satellite	1.136			
mission	1.1355			
station	1.132			
commercial	1.1316			
mars	1.1312			
project	1.1311			
launched	1.1302			
rocket	1.1302			
ames	1.129			
astronomy	1.1281			
sun	1.1274			
vehicle	1.1273			
exploration	1.1271			
apollo	1.1264			

mac.hardware				
mac	1.251			
apple	1.2425			
drive	1.2063			
video	1.1917			
he	1.1901			
ram	1.1885			
monitor	1.1873			
card	1.1866			
his	1.1857			
thanks	1.1839			
disk	1.1836			
was	1.1833			
chip	1.1819			
software	1.1798			
memory	1.1796			
upgrade	1.1782			
se	1.1779			
slot	1.1778			
who	1.1766			
modem	1.1765			

baseball	1.1661
game	1.1639
games	1.1597
season	1.1544
team	1.1499
players	1.1467
league	1.1459
pitching	1.1421
he	1.1349
runs	1.1326
teams	1.1324
player	1.1323
hit	1.1311
win	1.1305
mets	1.1266
year	1.1259
fans	1.1226
it	1.122
his	1.1219
sox	1.121

3. Naïve Bayes Classification

Bayes-based classification algorithms are based on the evidence-based knowledge relation provided by Bayes' Theorem. Given a set of documents \mathbb{X} , and a set of classes \mathbb{C} , text classification algorithms' goal is to find a function $\gamma: \mathbb{X} \to \mathbb{C}$ as a result of the application of a Learning Method to a training set $\mathbb{D} = \{\langle d, c \rangle, \langle d, c \rangle \in \mathbb{X} \times \mathbb{C}\}$:

$$\Gamma(\mathbb{D}) = \gamma$$

In this case, the method is based on finding the class that maximises the conditional probability of a class being a document's class:

$$argmax_{c \in \mathbb{C}} \ P(c \mid d) = argmax_{c \in \mathbb{C}} \ \frac{P(c) \ P(d \mid c)}{P(d)} = argmax_{c \in \mathbb{C}} \ P(c) \ P(d \mid c)$$

As every document d can be represented as a sequence of terms $\langle t_1 \dots t_n \rangle$, the previous expression can be rewritten to be expressed in terms of those terms. Furthermore, Naïve Bayes is based on the **Assumption of Conditional Independence**, by which the existence of a term is not determined by the other terms. Thus, the Bayes method can be expressed:

$$P(d \mid c) = P(\langle t_1 \dots t_n \rangle \mid c) = \prod P(t_k \mid c)$$

$$argmax_{c \in \mathbb{C}} \ P(c) \ P(d \mid c) = argmax_{c \in \mathbb{C}} \ P(c) \ \prod P(t_k \mid c) = argmax_{c \in \mathbb{C}} \ \log(P(c)) + \sum \log(P(t_k \mid c))$$

Lastly, Bayes' method relies on one more assumption: the **Assumption of Positional Independence**, by which the position of the term in the text does not affect the probability of it belonging to a specific class.

Experiments on the Bayes' model are carried out with the NaiveBayes classifier implemented in Weka software. In order to perform the tests, k-fold cross-validating in included. The effect of k's choice in the classifier's performance is presented in the following figures:

5000 words, Collection Frequency Feature Selection, RawNaiveBayes						
k = 3	Correctly Classified Instances	1540	54.4747 %			
	Incorrectly Classified Instances	1287	45.5253 %			
k = 5	Correctly Classified Instances	1581	55.925 %			
	Incorrectly Classified Instances	1246	44.075 %			
k = 7	Correctly Classified Instances	1587	56.1372 %			
	Incorrectly Classified Instances	1240	43.8628 %			
k = 10	Correctly Classified Instances	1605	56.774 %			
	Incorrectly Classified Instances	1222	43.226 %			

k = 13	Correctly Classified Instances	1608	56.8801 %
	Incorrectly Classified Instances	1219	43.1199 %
k = 15	Correctly Classified Instances	1588	56.1726 %
	Incorrectly Classified Instances	1239	43.8274 %
k = 20	Correctly Classified Instances	1608	56.8801 %
	Incorrectly Classified Instances	1219	43.1199 %

The previous test where made on a 1000 words feature set, where each feature represents the amount of repetitions of the word in the document. As we can see, the accuracy of the classifier raises up when using higher number of folds. However, from k = 10-13 folds, the behaviour starts declining, but no significantly. Experimentally, it has been showed that the k value for cross validation should be around 10 folds.

The number of words of the training set can also be decisive when performing training. This time, Multinomial Bayes Classifier has been used with the Mutual Information feature selection.

1000 words (MNB)	Correctly Classified Instances	1633	57.7644 %
	Incorrectly Classified Instances	1194	42.2356 %
2500 words (MNB)	Correctly Classified Instances	1713	60.5943 %
	Incorrectly Classified Instances	1114	39.4057 %
6500 words(MNB)	Correctly Classified Instances	2305	81.5352 %
	Incorrectly Classified Instances	522	18.4648 %
10000 words (MNB)	Correctly Classified Instances	2168	76.6891 %
	Incorrectly Classified Instances	659	23.3109 %

As we can see, the number of words affects positively on the performance of the algorithm up to a certain threshold, beyond which the quality start declining. This could be due to the existence of more variability and more variety of terms that confuses the algorithm.

Feature selection also plays a very important role when it comes to achieve a high quality generalisation of the documents. The three feature selection methods previously proposed are tested with a vocabulary size of 10000 words in a multinomial Bayes Classifier, obtaining the following results:

Mutual	Correctly Classified Instances	2327	82.3134 %
Information	Incorrectly Classified Instances	500	17.6866 %
Collection	Correctly Classified Instances	2471	87.4071 %
Frequency	Incorrectly Classified Instances	356	12.5929 %
Document	Correctly Classified Instances	2477	87.6194 %
Frequency	Incorrectly Classified Instances	350	12.3806 %

Learning Curve

For NaiveBayes Mutinomial Classifier, the learning curve depending on the amount of training data is the following:

As we can see, the multinomial Bayes Classifier performs highly better than the simple NaiveBayes. This is due to the nature of these two classifiers. Whereas a Bernoulli NaiveClassifier only takes into account if a specific features takes place or not, multinomial adds extra information by considering how many that feature takes place. However, dummy words with no meaning, and which appear more often in the whole dataset lead the classifier to wrong conclusions and generalizations.

When it comes to feature selection, we observe that although Mutual Information selection provides terms that concisely determine the classes, the overall performance is worse. That could be due to the fact that certain array of characters appear in few documents (which is translated in high dependance with the class), but does does not genuinely give any information about the target class. One way of overcoming the issue could be by narrowing the selected vocabulary while assuring that the the selected words are highly representative, eliminating accidental strings of characters that although rare, do not allow us to make any inference of the class.

Regarding to k-cross fold-validation technique, it is common in literature to find a recommended value of k=10. Empirically we have observed some evidence that supports it, as the overall performance of the classifier increased up to k=10-13. However, if we increase k to a higher number, the division sets are smaller and might lead to wrong generalizations.

4. Decision Tree Classification

Decision tree classification models use decision tree structures in order to assign a class based on a series of inputs. In the tree we can distinguish three different elements:

- Leaf nodes: represents a class upon which the decision its stablished.
- Non-leaf nodes: represents an attribute.
- Branches: represent a single value for the father node.

At each non-leaf node, the attribute corresponding to the node is decided based on the classification features of the available attributes.

Weka's implementation of C4.5 algorithm can be found under the name J48. At each tree level, the algorithm chooses the attribute that divides the data most efficiently. For such goal, C4.5 uses the concept of Information Gain, which is defined as the difference of entropy of a given dataset as a result of a transformation. As lower entropies yield more information about the data, at each step entropy minimisation is desired in order to favour clustering. Information gain of a document set for an attribute a is defined as:

$$IG(S, a) = E(S) - \sum_{v \in Values(a)} \frac{|S_v|}{|S|} Entropy(S_v)$$

Where the first term is the entropy of the whole document and the second is the normalised entropy of the documents conditioned to the appearance of a.

J48 allows the user to classify a training set using the C4.5 Algorithm, while establishing different values for its variables:

- confidenceFactor: determines the error threshold while pruning the tree.
- binarySplits: set True for building binary trees, or False otherwise.
- minNumOb: the minimum number of objects at each leaf.
- numFolds: determines the size of the pruning set.
- SubtreeRaising: whether to use os nor subtree raising operation.
- usePruning: whether to use pruning or not.
- useLaplace: use Laplace smoothing.

$5000 \; \mathrm{words.} \; \mathrm{Confidence} = 0.25$					
Pruned, Minimum 2,	Correctly Classified Instances	1751	61.9385 %		
No_subtree_raising.	Incorrectly Classified Instances	1076	38.0615 %		
Pruned, Minimum 2, No_subtree_raising, Laplace_smoothing	Correctly Classified Instances	1748	61.8323 %		
	Incorrectly Classified Instances	1079	38.1677 %		
Not_pruned, Minimum 2, Subtree_raising, Laplace smoothing.	Correctly Classified Instances Incorrectly Classified Instances	1737 1090	61.4432 % 38.5568 %		
Pruned, Minimum 2, No_subtree_raising, Laplace_smoothing, 5 folds	Correctly Classified Instances	1737	61.4432 %		
	Incorrectly Classified Instances	1090	38.5568 %		
Pruned, Minimum 8, subtree raising, Laplace smoothing, 7	Correctly Classified Instances	1750	61.9031 %		
	Incorrectly Classified Instances	1077	38.0969 %		

When the SubtreeRaising option is set off, the size of tree quickly escalates. We observe that we get a tree size of 711, and a number of leaves of 356. However, the overcall quality of the algorithm is kept the same. Moreover, when pruning is not chosen, the classification

takes considerably more time, but the performance is barely affected. We can conclude that in terms of quality, the pruning of the tree does not yield much better results.

Following, analysis of the number of chosen words and selection method is included. Other parameters are set to the default configuration. The first table runs analysis allowing more than two branches per node, making full use of the multinomial representation of the text. The second table shows the performance of a J48 algorithm with binary branching.

Binary Splitting					
250 words, Mutual Information Selection.	Correctly Classified Instances	1778	62.8935 %		
	Incorrectly Classified Instances	1049	37.1065 %		
1000 words, Mutual Information Selection.	Correctly Classified Instances	1769	62.5752 %		
	Incorrectly Classified Instances	1058	37.4248 %		
1000 words, Collection	Correctly Classified Instances	1789	63.2826 %		
Frequency Selection.	Incorrectly Classified Instances	1038	36.7174 %		
1000 words, Document	Correctly Classified Instances	1788	63.2473 %		
Frequency Selection.	Incorrectly Classified Instances	1039	36.7527 %		
5000 words, Document	Correctly Classified Instances	1794	63.4595 %		
Frequency Selection.	Incorrectly Classified Instances	1033	36.5405 %		

Non-Binary Splitting			
5000 words, Collection	Correctly Classified Instances	1728	61.1249 %
Frequency Selection.	Incorrectly Classified Instances	1099	38.8751 %
1000 words, Collection	Correctly Classified Instances	1767	62.5044 %
Frequency Selection.	Incorrectly Classified Instances	1060	37.4956 %
1000 words, Mutual Information Selection.	Correctly Classified Instances	1768	62.5398 %
	Incorrectly Classified Instances	1059	37.4602 %
500 words, Mutual	Correctly Classified Instances	1789	63.2826 %
Information Selection.	Incorrectly Classified Instances	1038	36.7174 %
250 words, Mutual	Correctly Classified Instances	1778	62.8935 %
Information Selection.	Incorrectly Classified Instances	1049	37.1065 %

Lastly, feature selection methods were implemented in order to detect the most important words when it comes to class definition. We observe that those words are naturally found by the algorithm, as we can see that the top nodes include the attributes with higher raking values.

Information Gain

356 orbit 352 space 348 skepticism 347 chastity 347 n3jxp 346 geb@cadredsl pittedu 341 apple 0.34 nasa 334 shuttle 332 shameful 329 season 322 surrender 0.32 quadra 319 launch 318 intellect 316 lunar 311 senate 313 braves 311 simms 0.31 spacecraft 309 pitching 303 lc 302 disease		
348 skepticism 347 chastity 346 geb@cadredsl pittedu 341 apple 0.34 nasa 332 shameful 329 season 322 surrender 0.32 quadra 319 launch 318 intellect 316 lunar 311 senate 313 braves 311 simms 0.31 spacecraft 309 pitching 303 Ic	356	orbit
347 chastity 347 n3jxp 346 geb@cadredsl pittedu 341 apple 0.34 nasa 334 shuttle 332 shameful 329 season 323 scsi 322 surrender 0.32 quadra 319 launch 318 intellect 316 lunar 314 senate 313 braves 311 simms 0.31 spacecraft 309 pitching 308 crime 303 lc	352	space
347 n3jxp 346 geb@cadredsl pittedu 341 apple 0.34 nasa 334 shuttle 332 shameful 329 season 322 surrender 0.32 quadra 319 launch 318 intellect 316 lunar 314 senate 313 braves 311 simms 0.31 spacecraft 309 pitching 308 crime 303 Ic	348	skepticism
346 geb@cadredsl pittedu 341 apple 0.34 nasa 334 shuttle 332 shameful 329 season 322 surrender 0.32 quadra 319 launch 318 intellect 316 lunar 314 senate 313 braves 311 simms 0.31 spacecraft 309 pitching 308 crime 303 Ic	347	chastity
pittedu 341 apple 0.34 nasa 334 shuttle 332 shameful 329 season 323 scsi 322 surrender 0.32 quadra 319 launch 318 intellect 316 lunar 314 senate 313 braves 311 simms 0.31 spacecraft 309 pitching 308 crime 303 lc	347	n3jxp
0.34 nasa 334 shuttle 332 shameful 329 season 323 scsi 322 surrender 0.32 quadra 319 launch 318 intellect 316 lunar 314 senate 313 braves 311 simms 0.31 spacecraft 309 pitching 308 crime 303 Ic	346	
334 shuttle 332 shameful 329 season 323 scsi 322 surrender 0.32 quadra 319 launch 318 intellect 316 lunar 314 senate 313 braves 311 simms 0.31 spacecraft 309 pitching 308 crime 303 lc	341	apple
332 shameful 329 season 323 scsi 322 surrender 0.32 quadra 319 launch 318 intellect 316 lunar 314 senate 313 braves 311 simms 0.31 spacecraft 309 pitching 308 crime 303 lc	0.34	nasa
329 season 323 scsi 322 surrender 0.32 quadra 319 launch 318 intellect 316 lunar 314 senate 313 braves 311 simms 0.31 spacecraft 309 pitching 308 crime 303 lc	334	shuttle
323 scsi 322 surrender 0.32 quadra 319 launch 318 intellect 316 lunar 314 senate 313 braves 311 simms 0.31 spacecraft 309 pitching 308 crime 303 lc	332	shameful
322 surrender 0.32 quadra 319 launch 318 intellect 316 lunar 314 senate 313 braves 311 simms 0.31 spacecraft 309 pitching 308 crime 303 lc	329	season
0.32 quadra 319 launch 318 intellect 316 lunar 314 senate 313 braves 311 simms 0.31 spacecraft 309 pitching 308 crime 303 lc	323	scsi
319	322	surrender
318 intellect 316 lunar 314 senate 313 braves 311 simms 0.31 spacecraft 309 pitching 308 crime 303 lc	0.32	quadra
316	319	launch
314 senate 313 braves 311 simms 0.31 spacecraft 309 pitching 308 crime 303 Ic	318	intellect
313 braves 311 simms 0.31 spacecraft 309 pitching 308 crime 303 lc	316	lunar
311 simms 0.31 spacecraft 309 pitching 308 crime 303 Ic	314	senate
0.31 spacecraft 309 pitching 308 crime 303 lc	313	braves
309 pitching 308 crime 303 lc	311	simms
308 crime 303 lc	0.31	spacecraft
303 Ic	309	pitching
	308	crime
302 disease	303	Ic
	302	disease

Correlation

0.1314	skepticism
0.1305	chastity
0.1305	n3jxp
0.1295	geb@cadredslpitte du
0.1283	shameful
0.1277	intellect
0.1271	surrender
0.1161	banks
0.1105	apple
0.1013	team
0.0949	quadra
0.0946	season
0.0945	pitching
0.0939	space
0.0916	players
0.0877	clinton
0.0875	braves
0.0841	player
0.0839	treatment
0.0824	mets
0.0821	orbit
0.0817	medicine
0.0797	disease
0.0795	nasa
0.0793	simms

Chi-squared

673.4904	space
423.2425	apple
353.5819	nasa
310.1599	orbit
287.1046	banks
285.6627	skepticism
281.9138	season
281.7001	пЗјхр
281.7001	chastity
277.7404	geb@cadredslpitted u
277.2582	team
272.0817	shameful
271.0674	launch
270.4633	intellect
266.7156	surrender
247.3377	clinton
245.5313	disease
241.3684	players
238.8091	shuttle
216.3159	medical
211.686	pitching
198.0531	scsi
190.7341	tax
189.9941	quadra
189.4351	patients

We can observe that the J48 algorithm finds the terms that most partitions the document set. The two figures above show the tree from the root node, and the first level of classification. If we analyse the terms that have been chosen to be as first nodes, we notice that they are no trivial, and in terms of meaning, they do provide information about the target class. Furthermore, we can see that those terms are included in the first 20 terms selected by the Mutual Information Ranker algorithm that was presented in the second point.

If we now go deep in the tree, we observe that the decision attributes now become more abstract and meaningless, as they cannot define a class by its own meaning. An example os such phenomenon is shown in the next Figure:

Here, we observe how the words for, be and I are used to distinguish between classes, but in fact the carry no information whatsoever.

If we now run the same algorithm with the same settings over a multinomial representation of the texts we obtain the results:

Correctly Classified Instances Incorrectly Classified Instances Number of Leaves : 105	1584 1243	56.0311 % 43.9689 %	
Size of the tree: 209			

We can see that the results worsen although more information is provided (i.e the number of occurrences of the term in the document). However, figures like the one above shows that this information is frequently used in words that carry no meaning, and thus the improvement is no noticeable. What is more, although the binarySplits is set of off, the tree never yields more than two children for one node, which can be interpreted as the algorithm finding no useful information in the discretisation of values higher than 1.

5. Random Tree Classifier

Another algorithm that could be studied is Random Tree Classifier. This learning method is based on creating a set of n trees which model a section of the training data. Although the single performance of a single tree can be cuestionable, the final decision is made based on the partial decisions of each tree, as a result of a divide and conquer problem.

Random Tree Classifier is run with a feature set of 10000 words, applying a 10-fold cross validation, with 100 trees generated in the forest. The performance, compared to the basic Decision tree, is highly better.

Correctly Classified Instances	2126	75.2034 %	
Incorrectly Classified Instances	701	24.7966 %	
incorrectly classified instances	701	2417300 0	

With a tree number of 50 trees, the performance is as follow:

Correctly Classified Instances	2043	72.2674 %	
Incorrectly Classified Instances	784	27.7326 %	

If we decrease the number of generated trees to 10 trees

Correctly Classified Instances	1524	53.9087 %	
Incorrectly Classified Instances	1303	46.0913 %	

6. Model Overfitting

During the experiments, three methods of feature selection have been presented in order to validate the models with different degrees of specific vocabulary. For the methods of

Document Frequency and Collection Frequency, it can be observed that very common terms like "is", "for", "to", "he", "she", etc, that carry almost no meaning have been included. The presence of those terms has been overcame by the algorithms as they have been able to generalise the classes up to a considerable performance (in some example 88% of accuracy).

However, the Mutual Information Selection method, although gave very concise vocabulary, obtained less accuracy when k-cross validation was performed. Instead of the 20 words lists that were presented previously, the algorithms was inputted with an average of 1000 words representative of the each class. Overviewing that list, we come accross many numerical values that are set as attributes, which can mislead the classifier provoking overfitting. Although numerical values are very specific of the documents, and can help to determine the class, they are not good for generalisation of the documents as they provide out-of-context information.

Typos and word modifications are not well generalised by the algorithms either, as we can see in the 20 chosen terms list for baseball category. The terms "player" and "players" are selected by the feature selection, but do not add much help in the decision-making process.

7. Model Choosing

We have observed the performance of two classification methods on a specific set of tests. Yielded results suggest that Naïve Bayes Classifier achieves higher accuracy percentages than Decision Trees. Furthermore, when it comes to knowledge representation, multinomial version of Bayes Classifier outputs considerably better results.

When it comes to feature selection, a greedy selection was implemented with the createMutualInformation function, which provided specific terms that supported classification process. At the same time, feature selection with Weka tools yielded similar words to the one selected by the Mutual Information technique.

Finally, it order to validate our models, k-cross validation has been carried out in all the experiments. This method can help to detect overfitting, and the value k has been empirically showed to be recommendable around 10-13.