Introduction to Multiple Regression

Keegan Korthauer

Department of Statistics

UW Madison

SLR Diagnostics Summary

Multiple Linear Regression (MLR)

- SLR: models the relationship between a response variable (y) with a single predictor (x)
- When the response variable (y) actually depends on several factors $(x_1, x_2, ..., x_p)$ we can use a **multiple linear** regression model
- Many of the ideas and general concepts we learned for SLR are also applicable for MLR
 - Sums of squares
 - Assumptions 1 through 4 on the errors
 - Interpretation of coefficients
 - Diagnostics, etc...

Basic MLR Model

- Dependent continuous variable y
- p independent continuous variables $x_1, x_2, ..., x_p$
- n observations: ordered pairs (y_i, x_{1i}, x_{2i},..., x_{pi})

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + ... + \beta_p x_{pi} + \varepsilon_i$$

Predicted y_i for a set of x_{1i}, x_{2i},..., x_{pi}:

$$\hat{y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1} x_{1i} + \dots + \hat{\beta}_{p} x_{pi}$$

Variations on the MLR Model

- Polynomial regression model
 - Dependent continuous variable y
 - p degrees of one independent variable x
 - n observations: ordered pairs (y_i, x_i)

$$y_i = \beta_0 + \beta_1 x_i + \beta_2 x_i^2 + \dots + \beta_p x_i^p + \varepsilon_i$$

- Quadratic model of two independent variables
 - Dependent continuous variable y
 - 2 degrees of two independent variables x_1 and x_2

- n observations: ordered pairs (y_i, x_{1i}, x_{2i})

$$y_i = \beta_0 + \beta_1 x_{1i} + \beta_2 x_{2i} + \beta_3 x_{1i} x_{2i} + \beta_4 x_{1i}^2 + \beta_5 x_{2i}^2 + \varepsilon_i$$

Interaction

Least Squares Coefficients

- Minimize the sum of squared residuals (SSE) to obtain coefficient point estimates $\hat{\beta}_0, \hat{\beta}_1, ..., \hat{\beta}_p$
 - Analogous to SLR, involves taking p+1 partial derivatives, setting them equal to zero, and solving a system of p+1 equations...
 - OR a much more elegant expression using linear algebra...
 - But we'll rely on R to calculate the values for us
- SSE is still the sum of squared differences between observed y and predicted ŷ – no longer can visualize in 2D

$$e_i = y_i - \hat{y}_i = y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{1i} - \dots - \hat{\beta}_p x_{pi}$$

$$SSE = \sum_{i=1}^{n} e_i^2$$

Next

- More on Multiple Linear Regression
 - Interpreting Coefficients
 - Obtaining Estimates
 - Performing Inference
 - Diagnostics