Лабораторная работа №1	группа 05	2022
Построение логических схем в среде моделирования	Москаленк	о Т.Д.

Цель работы: моделирование логических схем на элементах с памятью.

Инструментарий и требования к работе: работа выполняется в среде моделирования Logisim evolution. Ссылка на скачивание

Счётчик

Вариант Асинхронный суммирующий счетчик. Модуль 17 Описание В работе представлен асинхронный суммирующий счётчик. Счётчик — это схема, которая подсчитывает количество входных импульсов. Суммирующий означает, что каждый импульс прибавляет к результату 1. Асинхронный значит, что вычисление происходит не одновременно, а последовательно от разряда к разряду.

Для работы нам потребовались RS, D и 'reset-T' триггеры, счётчик по модулю 32 и модуль, который проверяет то, что входное число равно 17.

 $RS_trigger$

Ниже представлена таблица истинности для RS триггера

R	S	Q
0	0	сохраняем значение
0	1	1
1	0	0
1	1	запрещаем такой вход

Таблица 1: Таблица истинности RS триггера.

Ниже представлена реализация

Рис. 1: Реализация RS триггера

$D_{trigger}$

Ниже представлена таблица истинности для D триггера

D	С	Q
0	0	сохраняем значение
0	1	0
1	0	сохраняем значение
1	1	1

Таблица 2: Таблица истинности D триггера.

Ниже представлена реализация

Рис. 2: Реализация D триггера

Reset-T trigger

Теперь определим новый элемент: reset-T триггер. Это элемент с двумя входами Т и R, который можно назвать "счётчик по модулю два с кнопкой сброс". Из второго названия понятно, что он должен делать. Данный прибор выдаёт на выходе количество раз, которое элемент T становился единичкой по модулю 2. Но если в любой момент подать сигнал на вход R, прибор обнулит выход (сбросит счётчик). Результат увеличивается, когда T меняется с 0 на 1.

Ниже представлена таблица истинности для reset-T триггера

Τ	R	Q
0	0	сохраняем значение
1	0	инвертируем значение
0	1	0
1	1	0

Таблица 3: Таблица истинности reset-T триггера.

Реализован этот элемент через 2 последовательных D триггера с противоположной синхронизацией. За один тик (изменение входа $T \ 0 \to 1 \to 0$) первый D триггер запоминает противоположный выход второго, а второй запоминает выход первого (в итоге происходит та самая инверсия). Данная реализация без R-входа находится во вкладке $T_trigger$.

Рис. 3: Реализация Т триггера

Ниже представлена реализация

Далее мы хотим, чтобы при R=0 схема не изменилась, а при R=1 оба D триггера в схеме стали давать на выходе 0. Сделаем это таким образом. Перед каждым входом поставим логическое ИЛИ, а перед каждым D входом логическое И. Провода, которые вели к этим входам подведём к первым входам соответствующих логических элементов. В качестве второго входа компонента ИЛИ будет R, а в качестве второго входа И будет R. Тогда при R=0 схема не изменилась так как $R \land a=a, R \lor a=a$. А при R=1 на входы к обоим R=1 триггерам поступит значения R=10 и они оба на выходе дадут R=11. Данная реализация представлена в схеме R=11.

Рис. 4: Реализация reset-T триггера

Модуль, который проверяет то, что входное число равно 17 это логическое И, которое по 5 входным битам (записи числа в двоичной системе с 5ю знаками) выдаст 1 только если из входных битов получается число 17. Реализация в схеме is 17.

Рис. 5: Реализация із 17

counter 32

Это асинхронный суммирующий счётчик по модулю 32. Его можно понимать, как reset-T триггер, у которого модуль вычисления равен 32. То есть этот элемент имеет 2 входа i и R. На выходе он выдаёт 5 битов — количество раз, которое изменили вход i с 0 на 1 по модулю 32 в двоичной системе счисления. Но так же как и в reset-T триггере у него есть вход R, который обнуляет все внутренние reset-T триггеры.

Работает он таким образом. Мы последовательно подключаем несколько reset-T триггеров, вход T следующего соединён с отрицанием выхода предыдущего.

i	0	1	0	1			
\overline{Q}	1	0	0	1			

Таблица 4: Вывод самого левого reset_Т триггера в при 4 первых значениях бита i

Таблица 4 указывает на то, что за 2 перехода с 0 на 1 у нас произойдёт всего 1 переход с 0 на 1 на отрицании выхода. Это значит, что у нас период смены 0 на 1 уменьшается в 2 раза, а следовательно этот выход можно использовать как вход в следующем reset-T триггере. тем самым, каждый раз, когда у нас будет Q становиться 0, \overline{Q} будет становиться единицей и в новом reset-T триггере у нас будет симулироваться "переход через десяток". Вход R подсоединён ко всем R-входам reset-T триггеров.

Реализация в схеме counter_32.

Puc. 6: Реализация counter_32

counter 17

Объединим 2 предыдущие схемы таким образом, как это сделано в схеме main. Тогда, как только counter_32 выдаст значение 17, модуль is_17 отправит сигнал сброса и сбросит счётчик до 0. Тем самым мы реализовали первую часть лабораторной.

Находится в схеме main.

Рис. 7: Реализация counter_17

Временная диаграмма представлена рисунком ниже

Название сигна	Значение сигнала	0 ns	20),0 µs	40,0	μs	60,0	μs	80,0	μs	100),0 µs	120,	0 μs	140	0 μs	160,0	μs	180,0	μs	200,	ρs	220,0
r t	0	0 1	0 1 0) 1 0	1 0	1 0	$\int 1 \int 0$	1 0	1 0	1 0	1 0	$\int 1 \setminus 0$	1 0	1 0	1 0	1 0	1 0	1 0/1	ī\o∫	1 0	1 0	1 0	1 0
● b0	1	0 1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	0	1	L \	0	1	0	1
● b1	1	0	1		0		1		0		1		0		1		0			1		0	
● b2	0	0			1				0				1				0					1	
b3	1	0							1								0						
● b4	0	0															1	0					

Рис. 8: Временная диаграмма

Регистр сдвига с линейной обратной связью.

Вариант Конфигурация Галуа. (12, 11, 8, 6).

Описание В работе представлен регистр сдвига с линейной обратной связью в конфигурации Галуа. Регистр сдвига — это устройство, которое осуществляет сдвиг цифрового слова, которое дано на вход, по цепочке триггеров. Линейная обратная связь означает, что некоторые внутренние триггеры линейно изменятся в зависимости от выхода регистра сдвига.

Для реализации нам потребовались RS и D триггером из предыдущей части а также асинхронный D триггер.

D async

Это асинхронный D триггер. Его суть в том, что при синхронизации 1 он «работает на вход», а при изменении синхронизации с 1 на 0 запоминает значение на входе и выдаёт его на выходе "работает на выход". Он нужен для того, чтобы за один такт бит информации распространился ровно на один шаг вперёд. (используя обычные D триггеры при синхронизации всё резко станет либо 1, либо 0).

Реализация в схеме D_async

Puc. 9: Реализация D_async

LFSR

Регистр сдвига с линейной обратной связью. Он хранит последовательность из 12 битов и каждый тик он сдвигает эту последовательность на один вправо по циклу, а самый последний бит каждый тик ксорит с выделенными в конфигурации (11,8,6). Реализован с помощью асинхронных D триггеров, которые соединены последовательно. Выходным битом является самый последний, который выдаёт псевдослучайную последовательность. Чтобы настраивать входные данные добавлен контакт и оператор XOR.

Peaлизация в схеме main

Рис. 10: Реализация LFSR