Минимальная поверхность вращения

Руслан Назирович Мокаев

Математико-механический факультет, Санкт-Петербургский государственный университет

Санкт-Петербург, 28.11.2024

Постановка задачи

Кривая соединяет точки (-a,A) и (a,A). Необходимо найти кривую, порождающую поверхность вращения наименьшей площади.

$$J(x) = 2\pi \int_{-a}^{a} x\sqrt{1 + (x')^2} dt \to \inf$$
$$x(-a) = x(a) = A.$$
$$U = \left\{ (t, x, y) \mid x > 0 \right\}.$$

В наших обозначениях: $F=x\sqrt{1+(x')^2}$, $F'_{x'}=rac{xx'}{\sqrt{1+(x')^2}}$.

Уравнение Эйлера $F - x'F'_{x'} = const$:

$$x\sqrt{1+(x')^2} - x'\frac{xx'}{\sqrt{1+(x')^2}} = \lambda \Leftrightarrow x = \lambda\sqrt{1+(x')^2}, \lambda > 0.$$

 $x\equiv \lambda$ — решение, однако оно нас не интересует, т.к. производная решения из-за понижения порядка должна обращаться в ноль лишь в конечном числе точек, но x'=0.

Гиперболическая геометрия

$$\sinh t = \frac{e^t - e^{-t}}{2}, \cosh t = \frac{e^t + e^{-t}}{2}, (\sinh t)' = \cosh t, (\cosh t)' = \sinh t.$$

$$\cosh^2 t - \sinh^2 t = 1, 2 \sinh t \cosh t = \sinh 2t, 2 \cosh^2 t = 1 + \cosh 2t,$$

$$\coth t = \frac{\cosh t}{\sinh t} = \frac{e^t + e^{-t}}{e^t - e^{-t}} = \frac{e^{2t} + 1}{e^{2t} - 1} = 1 + \frac{2}{e^{2t} - 1}.$$

Подставим $x'(t) = \sinh z(t)$:

$$x(t) = \lambda \sqrt{1 + (x')^2} = \lambda \sqrt{1 + \sinh^2 z(t)} = \lambda \sqrt{\cosh^2 z(t)} = \lambda \cosh z(t).$$

Дифференцируем: $\sinh z(t) = \lambda z' \sinh z(t) \Rightarrow z' = \frac{1}{\lambda} \Rightarrow z = \frac{t+c}{\lambda}$.

Получается двухпараметрическое семейство экстремалей:

$$x(t) = \lambda \cosh \frac{t+c}{\lambda}.$$

Из краевых условий: c=0. Тогда $x(t)=\lambda \cosh \frac{t}{\lambda}$ и $\lambda \cosh \frac{a}{\lambda}=A$.

В зависимости от $\frac{A}{a}$ уравнение может иметь 0,1 или 2 решения.

$$\frac{\lambda}{a}\cosh\frac{a}{\lambda} = \frac{A}{a}, \theta := \frac{a}{\lambda} \Rightarrow \phi(\theta) = \frac{\cosh\theta}{\theta} = \frac{A}{a}.$$
$$\phi'(\theta) = \frac{\theta \sinh\theta - \cosh\theta}{\theta^2} = \frac{\sinh\theta}{\theta^2}(\theta - \coth\theta).$$

Обозначим за корень $heta_0$. Из графика видно, что $heta_0$ единственно и $heta_0>1$.

Заметим, что $\phi'(\theta) < 0$, $\, \theta < \theta_0 \,$ и $\, \phi'(\theta) > 0$, $\, \theta > \theta_0 .$ Построим график

$$\phi(\theta_0) = \frac{\cosh \theta_0}{\theta_0} = \frac{\cosh \theta_0}{\coth \theta_0} = \sinh \theta_0.$$

- ▶ Если $\sinh\theta_0 > \frac{A}{a}$, то решений уравнения $\phi(\theta) = \frac{A}{a}$ не существует;
- ightharpoonup Если $\sinh heta_0 = rac{A}{a}$, то решение существует и единственно $heta = heta_0$;
- lacktriangle Если $\sinh heta_0 < rac{A}{a}$, то существует два решения $0 < heta_1 < heta_2$; $\lambda_1 > \lambda_2 > 0$.

Две стационарные кривые $x_1(t) = \lambda_1 \cosh \frac{t}{\lambda_1}$ и $x_2(t) = \lambda_2 \cosh \frac{t}{\lambda_2}$. Докажем, что $J(x_1) < J(x_2)$.

$$\begin{split} J(x_k) &= 2\pi \int_{-a}^a x_k \sqrt{1 + (x_k')^2} dt = 2\pi \int_{-a}^a \lambda_k \cosh^2 \frac{t}{\lambda_k} dt = \\ &= 2\pi \lambda_k \int_0^a \left(1 + \cosh \frac{2t}{\lambda_k} \right) dt = 2\pi \lambda_k \left(a + \frac{\lambda_k}{2} \sinh \frac{2a}{\lambda_k} \right) = \\ &= 2\pi (\lambda_k^2 \sinh \theta_k \cosh \theta_k + a\lambda_k). \end{split}$$

Вынесем a^2 за скобку и получим:

$$2\pi \left(\frac{\cosh^2 \theta_k}{\theta_k^2} \tanh \theta_k + \frac{1}{\theta_k}\right) a^2 = 2\pi a^2 \left(\left(\frac{A}{a}\right)^2 \tanh \theta_k + \frac{1}{\theta_k}\right).$$

Определим функцию $\psi(\theta)\coloneqq \left(\frac{A}{a}\right)^2\tanh\theta+\frac{1}{\theta},\ \theta>0.$ Ее производная:

$$\psi'(\theta) = \left(\frac{A}{a}\right)^2 \frac{1}{\cosh^2 \theta} - \frac{1}{\theta^2} = \frac{1}{\cosh^2 \theta} \left[\left(\frac{A}{a}\right)^2 - \frac{\cosh^2 \theta}{\theta^2} \right].$$

Верно $\psi'(\theta_1)=\psi'(\theta_2)=0$ и $\phi(\theta)<\frac{A}{a}$ при $\theta\in(\theta_1,\theta_2)$;

Отсюда следует, что $\psi'(\theta) > 0$ при $\theta \in (\theta_1, \theta_2)$.

Тогда $\psi(\theta_1) < \psi(\theta_2)$. Следовательно, $J(x_1) < J(x_2)$.