Додаток 1

Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського" Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи № 4 з дисципліни «Алгоритми та структури даних-1. Основи алгоритмізації»

«Дослідження арифметичних циклічних алгоритмів» Варіант <u>26</u>

Виконав студент	ІП-13 Паламарчук Олександр Олександрович
•	(шифр, прізвище, ім'я, по батькові)
Перевірила	Вечерковська Анастасія Сергіївна (прізвище, ім'я, по батькові)

Лабораторна робота 4

Дослідження арифметичних циклічних алгоритмів

Мета - дослідити особливості роботи арифметичних циклів та набути практичних навичок їх використання під час складання програмних специфікацій.

Варіант 26

Для заданного натурального числа n обчислити $\sum_{i=1}^{n} (a_i - b_i)^2$ де,

$$a_i = egin{cases} i, & \textit{якщо } i - \textit{непарнe} \\ & i \slash 2, \textit{інакшe} \end{cases}. \ b_i = egin{cases} i^2, & \textit{якщо } i - \textit{непарнe} \\ & i + 7, \textit{інакшe} \end{cases}.$$

◆ Постановка задачі

Вхідним даним є натуральне число n, за допомогою формули $\sum_{i=1}^{n} (a_i - b_i)^2$ обчислити суму елементів. Вивести отриманий результат.

◆ Побудова математичної моделі

Складемо таблицю змінних

Змінна	Tun	Призначення
Задане число <i>п</i>	Натуральне	Початкове дане
Елемент суми <i>а</i>	Ціле	Проміжкове значення
Елемент суми b	Ціле	Проміжкове значення
Сума всіх члленів Sum	Ціле	Кінцеве дане

Складемо таблицю функцій

Назва	Синтаксис	Onuc
pow	pow(a,b)	Піднесення числа а до степеня в

Складемо таблицю операцій

Назва операція	Синтаксис	Призначення
Ділення з остачею	mod	Ділення з відкиданням цілої частини

♦ Розв'язання

Програмні специфікації запишемо у псевдокоді та графічній формі у вигляді блоксхеми.

```
Крок 1. Визначимо основні дії.
```

Крок 2. Перевірка початкового даного.

Крок 3. Ініціалізація Ѕит.

Крок 4. Визначення значень a і b.

Крок 5. Обчислення суми.

◆ Псевдокод алгоритму

Крок 1.

Початок

Введення п.

Перевірка початкового даного.

Ініціалізація *Sum*.

Визначення значень a і b.

Обчислення суми.

Виведення Ѕит.

Кінець

Крок 2.

Початок

Введення *п*.

якщо n > 0

T0

Ініціалізація Ѕит.

Визначення значень a і b.

Обчислення суми.

інакше

все якщо

Виведення Ѕит.

Кінець

```
Крок 3.
```

```
Початок
```

```
Введення и.
      якщо n > 0
       T0
          Sum = 0
          Визначення значень а і b.
          Обчислення суми.
      інакше
      все якщо
     Виведення Ѕит.
Кінець
Крок 4.
Початок
      Введення п.
     якщо n > 0
       T0
          Sum = 0
          повторити
            для i від 1 до n включно
             якщо i \mod 2 == 0
               TO
                a = i / 2
                \boldsymbol{b} = \boldsymbol{i} + 7
             Інакше
                a = i
                b = pow(i, 2)
             все якщо
             Обчислення суми.
```

все повторити

інакше

```
все якщо
```

Виведення *Sum*.

Кінець

Крок 5.

Початок

```
Введення п.
```

якщо n > 0

T0

$$Sum = 0$$

повторити

для i від 1 до n включно

якщо $i \mod 2 == 0$

TO

$$a = i / 2$$

$$\boldsymbol{b} = \boldsymbol{i} + 7$$

Інакше

$$a = i$$

$$b = pow(i, 2)$$

все якщо

$$Sum = Sum + pow((a-b), 2)$$

все повторити

інакше

все якщо

Виведення **Sum**.

Кінець

◆ Блок-схема алгоритма

♦ Випробовування алгоритму

Випробовування №1

Блок	Дія
	Початок
1	Введення: 2
2	2 > 0 (true)
3	Sum = 0
4	i = 1
5	$1 \bmod 2 == 0 \text{ (false)}$
6	a = 1
7	b = 1
8	Sum = 0
9	i = 2
10	2 mod 2 == 0 (true)
11	a = 1
12	b = 9
13	Sum = 64
14	Виведення: 64
	Кінець

Випробовування №2

Блок	Дія
	Початок
1	Введення: 3
2	3 > 0 (true)
3	Sum = 0
4	i = 1
5	$1 \mod 2 == 0 \text{ (false)}$
6	a = 1
7	b = 1
8	Sum = 0

9	i = 2
10	$2 \bmod 2 == 0 \text{ (true)}$
11	a = 1
12	b = 9
13	Sum = 64
14	i = 3
15	$3 \mod 2 == 0 \text{ (false)}$
16	a=3
17	b = 9
18	Sum = 100
19	Виведення: 100
	Кінець

♦ Висновок

На лабораторній роботі було декомпозовано задачу на такі етапи: перевірка початкового даного, *і*ніціалізація *Sum*, визначення значень *a* і *b*, обчислення суми і виведення результату. Було досліджено особливості роботи арифметичних циклів та набуто практичних навичок їх використання під час складання програмних специфікацій.