MATH 4310 Lecture Notes (Dylan Tom)

Introduction & Fields

Question: How do we determine the page order for a mini "google"?

- 1. (Simple Approach) Determine the importance by the number of back links (we expect page 3 should be the top*)
- 2. (Weighted Approach) Back links from "important" pages should weigh more. Let the "score" of a page be the sum of the scores of its back links.
- 3. Prevent undue influence by one page linking to too many other pages. If page j contains n_j links, one of which is page k, then boost the score of page k by $\frac{x_j}{n_j}$ where x_j is the score of page j

In our example,

$$x_1 = \frac{1}{1}x_3 + \frac{1}{2}x_4$$

$$x_2 = \frac{1}{3}x_1$$

$$x_3 = \frac{1}{3}x_1 + \frac{1}{2}x_2 + \frac{1}{2}x_4$$

$$x_4 = \frac{1}{3}x_1 + \frac{1}{2}x_2$$

Answer: $x_1 = \frac{12}{31}$ $x_2 = \frac{4}{31}$ $x_3 = \frac{9}{31}$ $x_4 = \frac{6}{31}$

*We have shown that page 1 should be ranked higher than 3, so our intuition wasn't correct.

Question: What are some properties of the set of real numbers with addition and multiplication?

1

- 1. There is a $0 \in S$ such that 0 + a = a for all $a \in S$
- 2. There is a $1 \in S$ such that $1 \cdot a = a$ for all $a \in S$
- 3. commutativity, associativity, distributivity
- 4. There exists a $(-a) \in S$ such that a + (-a) = 0 for all $a \in S$

- 5. There exists a $a^{-1} \in S$ such that $aa^{-1} = 1$ for all $a \in S$
- 6. a b = a + (-b) and $\frac{a}{b} = a \cdot b^{-1}$

Question: What sets have these properties?

$$\mathbb{R}, \mathbb{Q}, \mathbb{C}, \mathbb{F}_p = \mathbb{Z}/p$$

Question: What sets do not satisfy these properties?

$$\mathbb{Z}, \mathbb{N}, \mathbb{M}_{2 \times 2}$$

Definition. A field, \mathbb{F} , is a set on which addition (+) and multiplication (·) are defined so that the following properties hold for all $a, b, c \in \mathbb{F}$.

- 1. a + b = b + a $a \cdot b = b \cdot a$ (commutativity)
- 2. (a+b)+c=a+(b+c) $(a\cdot b)\cdot c=a\cdot (b\cdot c)$ (associativity)
- 3. There exists distinct elements 0, 1 such that 0 + a = a and $1 \cdot a = a$ (identity)
- 4. There exists $c, d \in \mathbb{F}$ such that a + c = 0 and bd = 1 where $d \neq 0$ (invertibility). Define c = -a and $d = b^{-1}$ (see uniqueness below)
- 5. $a \cdot (b+c) = (a \cdot b) + (a \cdot c)$ (distributivity)

Example: Some fields are $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{F} = \{a + b\sqrt{2} | a, b \in \mathbb{Q}\}, \mathbb{F}_2 = \{0, 1\}$

Example: Cancellation Laws

1. $a+b=a+c \Rightarrow b=c$

Proof. Let's assume a+b=a+c. By (4), there is some x such that x+a=0. Now x+(a+b)=x+(a+c). By (2), $(x+a)+b=(x+a)+c \Rightarrow 0+b=0+c$. By (3), b=c. \Box

2. $a \cdot b = a \cdot c$ and $a \neq 0 \Rightarrow b = c$

Proof. Let's assume $a \cdot b = a \cdot c$ and $a \neq 0$. By (4), there is some x such that ax = 1. Now x(ab) = x(ac). By (2), $(xa)b = (xa)c \Rightarrow 1b = 1c$. By (3), b = c.

Example: Uniqueness of 0, 1, additive inverse, and multiplicative inverse

Proof. (multiplicative inverse) Given $b \neq 0$, let d and d' satisfy $b \cdot d = 1$ and $b \cdot d' = 1$. Then, $b \cdot d = b \cdot d'$. So, d = d' (by cancellation). Similarly, for others.

Example: Some more properties of fields

1. $a \cdot 0 = 0$

Proof.
$$(a \cdot 0) + 0 = a \cdot 0 = a \cdot (0 + 0) = a \cdot 0 + a \cdot 0 \Rightarrow 0 = a \cdot 0$$

2. $(-a) \cdot b = a \cdot (-b) = -(a \cdot b)$

Proof.
$$[(-a) \cdot b] + [a \cdot b] = b \cdot (a + (-a)) = b \cdot 0 = 0$$

 $[a \cdot (-b)] + [a \cdot b] = a \cdot (b + (-b)) = a \cdot 0 = 0$

3. $(-a) \cdot (-b) = a \cdot b$

Proof.
$$(-a) \cdot (-b) = -[a \cdot (-b)] = -[-(a \cdot b)] = a \cdot b$$

Properties of Relations:

1. Reflexive: $\forall a \in S, a \sim a$

2. Symmetric: $\forall a, b \in S$, if $a \sim b$, then $b \sim a$

3. Transitive: $\forall a, b, c \in S$, if $a \sim b$ and $b \sim c$, then $a \sim c$

An equivalence relation satisfies all 3 of these properties

Example: Define $S = \{\text{all humans}\}$. $a \sim b$ if a and b share a parent. It is reflexive, symmetric, but not transitive.

Definition. The class of a is all elements related to a, denoted by [a]. There can be no intersection between two classes.

Example: Define $S = \mathbb{Z}$. $a \sim b$ if a - b is even. This is an equivalence relation. We can partition \mathbb{Z} into even and odd, [0] and [1]. We call this $\mathbb{Z}_2 = \mathbb{F}_2$.

In general, fix $d \geq 1$. Define $a \sim b$ if a - b is divisible by d. In \mathbb{Z}_d ,

1. $[a] + [b] = [(a+b) \mod d]$

 $2. \ [a] \cdot [b] = [(a \cdot b) \mod d]$

Question: When is \mathbb{Z}_d a field? Only if d is prime.

Vector Spaces

Definition. Let \mathbb{F} be a field. A vector (linear) space, V over \mathbb{F} is a set with two operations, addition $(+): V \times V \to V$ and scalar multiplication $(\cdot): \mathbb{F} \times V \to V$. For all vectors, $\mathbf{x}, \mathbf{y}, \mathbf{z} \in V$ and $a, b \in \mathbb{F}$.

 $\bullet \ \mathbf{x} + \mathbf{y} = \mathbf{y} + \mathbf{x}$

• There is a 1 such that $1 \cdot \mathbf{x} = \mathbf{x}$

 $\bullet \ \mathbf{x} + (\mathbf{y} + \mathbf{z}) = (\mathbf{x} + \mathbf{y}) + \mathbf{z}$

• $(ab)\mathbf{x} = a(b\mathbf{x})$

• There is a 0 such that $0 + \mathbf{x} = \mathbf{x}$

• $a \cdot (\mathbf{x} + \mathbf{y}) = (a \cdot \mathbf{x}) + (a \cdot \mathbf{y})$

• There is a **y** such that $\mathbf{x} + \mathbf{y} = 0$

• $(a+b)\mathbf{x} + a\mathbf{x} + b\mathbf{x}$

Question: Are the following vector spaces?

- 1. $D(\mathbb{R}, \mathbb{R})$, the set of all differentiable functions, $f : \mathbb{R} \to \mathbb{R}$ Yes, we can show that this set is closed under addition and scalar multiplication.
- 2. S, the set of all polynomials of degree n with coefficients over the field, \mathbb{F} No, take $p(x) = x^n$ and $q(x) = -x^n$ so p(x) + q(x) = 0, which is not a polynomial of degree n. It is not closed under addition. **Be careful**, polynomials of degree less than or equal to n form a vector space.

Claim: The zero vector is unique.

Proof. Assume that
$$\mathbf{0}_1$$
 and $\mathbf{0}_2$ are two zero vectors. Then, $\mathbf{0}_1 = \mathbf{0}_1 + \mathbf{0}_2 = \mathbf{0}_2$.

Claim: Given $\mathbf{x} \in V$, there exists a unique $\mathbf{y} \in V$ such that $\mathbf{x} + \mathbf{y} = \mathbf{0}$

Proof. Let
$$\mathbf{y}_1$$
 and \mathbf{y}_2 be two such vectors. Then, $\mathbf{y}_1 = \mathbf{y}_1 + \mathbf{0} = \mathbf{y}_1 + (\mathbf{x} + \mathbf{y}_2) = (\mathbf{y}_1 + \mathbf{x}) + \mathbf{y}_2 = \mathbf{0} + \mathbf{y}_2 = \mathbf{y}_2$.

Bold face for vectors will be dropped unless it needs to be distinguished.

Claim: Let $u, v, w \in V$, if u + v = u + w, then v = w.

$$u + v = u + w$$

$$(-u) + (u + v) = (-u) + (u + w)$$

$$(-u + u) + v = (-u + u) + w$$

$$0 + v = 0 + w$$

$$v = w$$

Claim: $a \cdot \mathbf{0} = \mathbf{0}$

$$a \cdot \mathbf{0} = a \cdot (\mathbf{0} + \mathbf{0}) = a \cdot \mathbf{0} + a \cdot \mathbf{0}$$

 $a \cdot \mathbf{0} = a \cdot \mathbf{0} + \mathbf{0}$

By cancellation, $a \cdot \mathbf{0} = \mathbf{0}$

Claim: $0 \cdot a = \mathbf{0}$

$$0 \cdot a + 0 \cdot a = (0+0) \cdot a = 0 \cdot a = 0 \cdot a + 0$$

By cancellation, $0 \cdot a = \mathbf{0}$.

Claim: Define $-x = (-1) \cdot x$. Show that this is the additive inverse of x.

Proof.
$$(-1)x + x = (-1)x + 1x = (-1+1)x = 0x = \mathbf{0}$$

Example: Vector Spaces

- \mathbb{F}^n is the space of *n*-tuples $\mathcal{F}(S,\mathbb{F}) = \{f: S \to \mathbb{F}\}$
- $\mathbb{M}_{2\times 3}(\mathbb{F})$ space of 2×3 matrices $\mathcal{P}(\mathbb{F})$ is space of all polynomials

Aside: As a vector space over \mathbb{F} , \mathbb{F}^n is equivalent to $\mathbb{M}_{2\times 3}(\mathbb{F})$

Example: Non Vector Spaces

$$\bullet \ \{(x,y) \in \mathbb{R}^2 | x,y \ge 0\}$$

•
$$\mathbb{R}^2$$
; $(a_1, a_2) + (b_1, b_2) = (a_1 + b_1, a_2 - b_2)$

Definition. Let V be a vector space over \mathbb{F} . A subset $W \subset V$ is called a subspace if

- 1. $0 \in W$
- 2. If $x, y \in W$, then $x + y \in W$
- 3. If $x \in W$, then $cx \in W$ for all $c \in \mathbb{F}$

Example: Subspaces

•
$$V = \mathbb{F}^{n \times 1}$$
; $W = \{x \in \mathbb{F}^{n \times 1} : Ax = 0\}$

Proof. $0_{n\times 1}\in W$ because A0=0. W is closed under addition because $x,y\in W$,

$$Ax = 0, Ay = 0 \implies A(x + y) = Ax + Ay = 0 + 0 = 0$$

W is closed under scalar multiplication because $x \in W$, $c \in \mathbb{F}$,

$$A(cx) = c(Ax) = c0 = 0$$

• $V = \mathbb{M}_{m \times n}(\mathbb{F})$

$$- W = \{ A \in M_{m \times n}(\mathbb{F}) := AT = A \}$$

$$-W = \text{diagonal } m \times n \text{ matrices}$$

-W =space of all upper triangular matrices

$$-W = \{A \in M_n(\mathbb{F})|tr(A) = 0\}$$

Definition. Let V be a vector space over a field of scalars \mathbb{F} and let S be a nonempty subset of V. We say that $v \in V$ is in the span of S, if v is a linear combination of a finite number of elements in S.

 $\mathrm{span}(S)$ is the set of all linear combinations of vectors in S

$$\operatorname{span}(\emptyset) = \{0\}$$

S generates V if $\mathrm{span}(S) = V$

Definition. Let V be a vector space over \mathbb{F} . A subset $S \subset V$ is called linearly dependent if there is a finite number of distinct vectors $u_1, ..., u_n \in S$ and scalars $a_1, ..., a_n$, not all zero, such that

$$a_1u_1 + \dots + a_nu_n = 0$$

S is linearly independent if it is not linearly dependent.

A trivial linear combination for the vector 0 would be setting all the coefficients to 0

Claim: A subset S of V is linearly independent iff the only linear combination for 0 in span(S) is the trivial one.

Proof. Assume that S is linearly independent. Cannot form 0 vector using nonzero scalars for $u_1, ..., u_n \in S$. Since span(S) is the set of all linear combinations of vectors in S, it must be the trivial solution. To prove the opposite direction, use the contrapositive. If $S \subset V$ is linearly dependent, then there exists a nontrivial linear combination for 0 in span(S).

Ax = 0 has a unique solution iff the set is $\{u_1, ..., u_n\}$ (which forms A) is linearly independent.

Assume $S_1 \subseteq S_2$. If S_2 is linearly independent, then S_1 is linearly independent. If S_1 is linearly dependent, then S_2 is linearly dependent.