

Bruce M. Boghosian

A loose end from last time

Bayes' Theorer

Exampl

Bayesiai search strategy

Application to estimation

Summary

Bayesian estimation

Bruce M. Boghosian

Department of Mathematics

Tufts University

Outline

Bruce M Boghosia

A loose end from last time

Bayes' Theorei

Exampl

Bayesiar search strategy

Application to

ımmary

- 1 A loose end from last time
- 2 Bayes' Theorem
- 3 Example
- 4 Bayesian search strategy
- 5 Application to estimation
- 6 Summary

Convergence in probability and almost sure convergence

Bruce M. Boghosian

A loose end from last time

Bayes' Theorer

Examp

Bayesia search strategy

Application to estimation

ummary

Recall MLE estimator $\hat{\sigma}^2$ for the variance of the normal is not unbiased,

$$E\left[\hat{\sigma^2}(\vec{Y})\right] = \frac{n-1}{n}\sigma^2$$

but it is asymptotically unbiased since

$$E\left[\lim_{n\to\infty}\left(\hat{\sigma^2}(\vec{Y})-\sigma^2\right)\right]=\lim_{n\to\infty}\left(\frac{n-1}{n}\sigma^2-\sigma^2\right)=0.$$

Bayesian estimation: The problem

Bruce M. Boghosian

A loose end from last time

Bayes' Theorem

Exampl

Bayesia search strategy

Application to estimation

ummary

- Given *n* possible events $\{A_j\}_{j=1}^n$, each with some corresponding probability
- These events partition the set of all such possibilities A: $A = \bigcup_{j=1}^{n} A_j = A_1 \cup A_2 \cup \cdots \cup A_n \qquad \text{(Every possible outcome is accounted for)}$ $A_j \cap A_k = \emptyset \text{ if } j \neq k \qquad \text{(Outcomes are mutually exclusive)}$
- We may have an initial guesses for the *prior distribution*, $\{P(A_j)\}_{j=1}^n$.
- Now event let B be some new observation related to the above events.
- We wish to update the $\{P(A_j)\}_{j=1}^n$, given the observation B.

Bayesian estimation: The problem

Bruce M. Boghosiar

A loose end from last time

Bayes' Theorem

Examp

Bayesian search strategy

Application to estimation

ummary

- We wish to update the $\{P(A_i)\}_{i=1}^n$, given the observation B.
- That is, we wish to find the *posterior distribution*, $\{P(A_j | B)\}_{j=1}^n$.
- If there is a subsequent guess, the process could be repeated.
- In this way, the algorithm "learns" from new information.
- According to the "Bayesians", you should not suppose that a new piece of information will give you all the answers you are seeking. Rather, the new information should update prior beliefs.

Bayes' Theorem

Bruce M. Boghosian

A loose end from last time

Bayes' Theorem

Examp

Bayesiar search strategy

Application t estimation

Summary

Recall from the definition of conditional probability

$$P(A_j, B) = P(A_j | B)P(B) = P(B | A_j)P(A_j).$$

$$\therefore P(A_j | B) = \frac{P(B | A_j)P(A_j)}{P(B)}$$

■ Then recall that, since the $\{A_j\}_{j=1}^n$ partition A,

$$P(B) = \sum_{k=1}^{n} P(B | A_k) P(A_k)$$

■ This gives us *Bayes' Theorem*,

$$P(A_j | B) = \frac{P(B | A_j)P(A_j)}{\sum_{k=1}^{n} P(B | A_k)P(A_k)}.$$

Reasoning with Bayes' Theorem

Bruce M. Boghosian

from last time

Bayes' Theorem

Examp

Bayesian search strategy

Application to estimation

ummary

■ Bayes' Theorem

$$P(A_j | B) = \frac{P(B | A_j)P(A_j)}{\sum_{k=1}^{n} P(B | A_k)P(A_k)}.$$

- Note numerator is one term of denominator, and all terms are positive.
- Result will always be in [0, 1], as expected.
- Gives the desired $P(A_j | B)$ in terms of things that we might actually know, or be able to measure, or at least be able to estimate.
- The results of thinking in this way can defy intuition.
- An enormous body of scientific conclusions are gleaned in exactly this way.
- Key question: How do we use this theorem in the context of a real problem?

Example: Librarians and Farmers

- Bruce M. Boghosia
- A loose end from last time Bayes'
- Example

Bayesian search strategy Applicatio

Application to estimation

- Example due to D. Kahneman and A. Tversky, as presented in "Thinking Fast and Slow" by D. Kahneman, FSG Publishers, New York (2011) pp. 6-7.
- **Given information:** "An individual has been described by a neighbor as follows: 'Steve is very shy and withdrawn, invariably helpful but with very little interest in people or the world of reality. A meek and tidy soul, he has a need for order and structure, and a passion for detail.' "
- Question: "Is Steve more likely to be a librarian or a farmer?"
- According to Kahneman, the vast majority of people who are asked this question say that Steve is more likely to be a librarian, almost surely due to the stereotypical view of librarians as having these personality traits.
- Does this make sense? Are we missing any information?

Example: Librarians and Farmers (continued)

- Does this make sense? Are we missing information?
- \blacksquare Kahneman: There are 20× as many farmers as librarians in the US.
- Consider a sample of 105 people consisting of 100 farmers and 5 librarians.
- Say 40% of librarians have this personality trait and only 10% of farmers.
- That means 2 librarians and 10 farmers in our sample have the trait.
- Given that a randomly selected person this trait, there is only a 2/12 = 1/6chance that they are a librarian, and a $\frac{10}{12} = \frac{5}{6}$ chance that they are a farmer.
- Kahneman: "Because there are so many farmers, it is almost certain that more 'meek and tidy' will be found on tractors than at library information desks."
- Clearly we were missing information. The ratio of farmers to librarians matters to the question as posed! Most people don't even consider this possibility!

Bayesian analysis of Librarians and Farmers problem

Bruce M. Boghosian

A loose end from last time

Theore

Examp

Bayesiar search strategy

Application to estimation

Summary

Decide on your events and give them variable names:

- \blacksquare B =Steve is a "meek and tidy soul"
- lacksquare $A_1 =$ Steve is a librarian
- \blacksquare $A_2 =$ Steve is a farmer
- We know that $P(A_1) = \frac{1}{21}$ and $P(A_2) = \frac{20}{21}$.
- We estimate $P(B | A_1) = \frac{4}{10}$, and $P(B | A_2) = \frac{1}{10}$.
- Then the probability that Steve is a librarian given that he is a "meek and tidy soul" is

$$P(A_1 \mid B) = \frac{P(B \mid A_1)P(A_1)}{P(B \mid A_1)P(A_1) + P(B \mid A_2)P(A_2)} = \frac{\frac{4}{10} \cdot \frac{1}{21}}{\frac{4}{10} \cdot \frac{1}{21} + \frac{1}{10} \cdot \frac{20}{21}} = \frac{4}{24} = \frac{1}{6},$$

in agreement with our earlier calculation.

Bayesian search strategy

Bruce M. Boghosian

A loose end from last time

Theore

Examp

Bayesian search strategy

Application to estimation

ummar

- lacksquare $A_j :=$ Event that missing object is in region r_j
- $B_j :=$ Event that object would be found if it was in r_j , and r_j was searched
- $lacksquare P\left(A_j \mid B_j^C\right)$ is probability that the item is in r_j , given
- Start with *prior* estimates for the probabilities $\{P(A_j)\}_{j=1}^n$. This could be as simple as the uniform distribution $\forall j \in \{1, ..., n\}: P(A_j) = \frac{1}{n}$.
- Suppose a search is undertaken in r_j , and nothing is found there.

Updating the prior for the searched region

Bruce M. Boghosiar

A loose end from last time

Theo

Examp

Bayesian search strategy

Application to estimation

ummary

lacksquare Apply Bayes' Theorem, and note that $P\left(B_j^{\mathcal{C}} \mid A_j^{\mathcal{C}}
ight) = 1$

$$P(A_{j} | B_{j}^{C}) = \frac{P(B_{j}^{C} | A_{j})P(A_{j})}{P(B_{j}^{C} | A_{j})P(A_{j}) + P(B_{j}^{C} | A_{j}^{C})P(A_{j}^{C})}$$

$$= \frac{[1 - P(B_{j} | A_{j})]P(A_{j})}{[1 - P(B_{j} | A_{j})]P(A_{j}) + [1 - P(A_{j})]} = \left[\frac{1 - P(B_{j} | A_{j})}{1 - P(B_{j} | A_{j})P(A_{j})}\right]P(A_{j})$$

■ Hence, after unsuccessful search in r_j , prior for $P(A_j)$ is updated to obtain

$$P^*(A_j) = P(A_j | B_j^C) = \left[\frac{1 - P(B_j | A_j)}{1 - P(B_j | A_j)P(A_j)}\right] P(A_j) < P(A_j).$$

Updating the priors for the other regions

Bruce M. Boghosian

A loose end from last time

Theore

Examp

Bayesian search strategy

Application to estimation

ummar

■ Rescale all the other priors, $P(A_k)$ where $k \neq j$,

$$P^*(A_k) = P\left(A_k \mid B_j^C\right) = \alpha_j P(A_k)$$

Demand normalization $1 = \sum_{m=1}^{n} P^*(A_m)$ to find

$$\alpha_j = \frac{1}{1 - P(B_j \mid A_j)P(A_j)}$$

So the other priors update as follows

$$P^*(A_k) = P\left(A_k \mid B_j^C\right) = \left[\frac{1}{1 - P\left(B_j \mid A_j\right)P(A_j)}\right]P(A_k) > P(A_k).$$

Bayesian search strategy algorithm

Bruce M. Boghosian

from last time

I neorei

Bayesian

search strategy

Application to estimation

ummary

- For all $m = 1, \ldots, n$:
 - Determine the probabilities that a search in r_m will find the object if it is in r_m .
 - Guess the priors $P(A_m)$.
- Now repeat until the object is found:
 - Suppose that the value of m for which $P(A_m)$ is highest is m = j.
 - \blacksquare Conduct a search in region r_j
 - If the search is unsuccessful, update the priors and repeat.

Tuffs Application to estimation

Application to

- Let W be a statistic dependent on a parameter θ . Call its pdf $f_W(w \mid \theta)$.
- \blacksquare Suppose that θ is the value of a random variable Θ .
- \blacksquare Denote the prior distribution of Θ by
 - $p_{\Theta}(\theta)$ if Θ is discrete
 - $= f_{\Theta}(\theta)$ if Θ is continuous
- Posterior distribution of Θ , given that W = w is the quotient

$$g_{\Theta}(\theta \mid W = w) = \begin{cases} \frac{p_{W}(w \mid \theta)f_{\Theta}(\theta)}{\int d\xi \ p_{W}(w \mid \xi)f_{\Theta}(\xi)} & \text{if } W \text{ is discrete} \\ \\ \frac{p_{W}(w \mid \theta)f_{\Theta}(\theta)}{\int d\xi \ f_{W}(w \mid \xi)f_{\Theta}(\xi)} & \text{if } W \text{ is continuous} \end{cases}$$

- If Θ is discrete
 - Replace the $f_{\Theta}(\theta)$ by $p_{\Theta}(\theta)$.
 - Replace the integrals over θ by sums.

Summary

Bruce M. Boghosiar

A loose end from last time

Theore

Exampl

Bayesia search

Application to estimation

Summary

- We have reviewed Bayes' Theorem
- We have given an example of Bayesian reasoning
- We have studied Bayesian search strategy
- We have studied Bayesian estimation