UNIVERSIDAD MAYOR DE SAN SIMON FACULTAD DE CIENCIAS Y TECNOLOGIA

EXAMEN DE INGRESO 1 2015 ARITMETICA -ALGEBRA FINAL - F2 SOLUCIONARIO

1.	La cantidad de divisores comunes de los números 690 y 960, mayores que 2 y menores que 100, es:
	A) 6 B) 10 C) 8 D) 7 E) Ninguno
	Solución
	La descomposición factorial de 960 es: $960 = 2^6 \times 3 \times 5$
	La descomposición factorial de 690 es: $690 = 2 \times 3 \times 5 \times 23$
	Los divisores comunes se obtienen a partir de los factores simples comunes: 1 . 2 . 3 . 5 :
	$1\;,2\;,3\;,5\;,6\;,10\;,15\;,30$
	Hay 6 divisores comunes mayores que 2 y menores que 100
	La respuesta es \mathbf{A}
2.	Las ganancias anuales durante 10 años por un interés están en progresión aritmética. Si el primer año se ganó 200 bolivianos y el décimo año se ganó 3800 bolivianos. La ganacia G , correspondiente al sexto año, verifica:
	A) $G < 1650$ B) $1650 < G < 1750$ C) $1750 < G < 1850$ D) $G > 1850$ E) Ninguno Solución.
	(1) Si r es la razón de la progresión, entonces las ganancias anuales en los 10 años respectivamente son:
	200,200+r.200+2r.200+3r,,200+9r
	(2) De los datos se tiene que $200 + 9r = 3800$. De donde $r = 400$
	(3) La ganancia correspondiente al sexto año es $200 + 5r = 2200$
	La respuesta es ${f D}$
3.	Si (x, y, z, u) es solución del sistema
	2x - 3z - u = 2
	3y - 2z - 5u = 3
	x - 3y + 3u = 0
	4y - 3u = 2
	entonces el valor de $x - y + z + u$ es
	A) 4 B) 5 C) 6 D) 7 E) Ninguno
	Solución.
	El sistema, reordenando y completando los coeficientes de las variables que no figuran, se puede escribir como
	x - 3y + 0z + 3u = 0
	2x + 0y - 3z - u = 2
	0x + 3y - 2z - 5u = 3
	0x + 4y + 0z - 3u = 2
	(1) Multiplicando la primera ecuación por (-2) y sumando a la segunda se obtiene:
	1

$$6y - 3z - 7u = 2$$
 (*)

(2) se obtiene un sistema sin la variable x:

$$6y - 3z - 7u = 2$$

$$3y - 2z - 5u = 3$$

$$4y + 0z - 3u = 2$$

(3) Multiplicando la segunda ecuación por(-2) y sumando a la primera se obtiene:

$$z + 3u = -4$$

(4) Multiplicando la primera ecuación por (-2) y sumando a la tercera multiplicada por (3) se obtiene:

$$6z + 5u = 2$$
. Se obtiene el sistema $z + 3u = -4$

$$6z + 5u = 2$$

(5) Multiplicando la primera ecuación por (-6) y sumando a la segunda, se obtiene:

$$-13u = 26$$
. De donde $u = -2$, $z = 2$, $y = -1$, $x = 3$

De donde
$$x-y+z+u=3-(-1)+2+(-2)=4$$

La respuesta es A.

4. Si α y β son las raíces de la ecuación $x^2-px+q=0$, entonces el valor de $\alpha^3+\beta^3$ es

A)
$$p(2q - p^2)$$
 B) $p(3q - p^2)$ C) $p(p^2 - 3q)$ D) $p(p^2 - 2q)$

B)
$$p(3q - p^2)$$

C)
$$p(p^2 - 3q)$$

D)
$$p(p^2 - 2q^2)$$

E) Ninguno

Soluci'on.(1) Se conoce que $\alpha + \beta = p$, $\alpha\beta = q$

(2)
$$(\alpha + \beta)^3 = \alpha^3 + \beta^3 + 3\alpha\beta^2 + 3\alpha^2\beta = \alpha^3 + \beta^3 + 3\alpha\beta(\alpha + \beta) = p^3$$

(3) Entonces
$$\,\alpha^3+\beta^3+3q(p)=p^3$$
 . De donde $\,\alpha^3+\beta^3=p(p^2-3q)\,$

La respuesta es C.

Solución del examen de ingreso GEOMETRÍA-TRIGONOMETRÍA 2015 fila 2

 $1.\ \,$ En un triángulo rectángulo de lados 4 y 3 se construye un rombo (ver figura). El área (fracción simplificada) del rombo es:

- (A) 43/16
- (B) 45/16
- (C) 47/16
- (D) 49/16
- (E) Ninguno

- Solución:
- De la figura

tenemos la razones:

$$\frac{x}{3-x} = \frac{5}{3} \text{ de donde } x = \frac{15}{8}$$

 $\frac{h}{3-\frac{15}{2}}=\frac{4}{3}$. Solution is: $\frac{3}{2}$

$$\frac{h}{3-x} = \frac{4}{3} \text{ de donde } h = \frac{3}{2}$$

Así el área del rombo es $xh = \left(\frac{15}{8}\right)\left(\frac{3}{2}\right) = \frac{45}{16}$ respuesta (B)

2. Desde la orilla de un rio un observador ve un poste de altura $\sqrt{27}$ con un ángulo de elevación de 30 grados. Cruza el rio de ancho desconocido y logra ver el poste con un ángulo de 60 grados, entonces el ancho del rio es:

 $(A) 3 \qquad ($

(B) 4

C) 5

(D) 6

(E) Ninguno

Solución: De la figura

tenemos las siguientes razones trigonométricas

$$\tan{(60)} = \frac{\sqrt{27}}{a} = \sqrt{3}$$
 de donde se tiene $a = 3$

tambien

$$\tan{(30)} = \frac{\sqrt{27}}{x+a} = \frac{\sqrt{3}}{3}$$
 de donde se tiene $x = 6$

Así el rio tiene un ancho de 6. respuesta (D)

3. En un cuadrado de lado $2\sqrt{2} + 2$ se dibujan dos circunferencias idénticas tangentes entre si y tangentes interiormente al cuadrado, ver figura, entonces el perímetro de las dos circunferencias es igual a:

(A) 8π (B) 9π

(C) 7π

(D) 6π

(E) Ninguno

Solución: De la figura

tenemos

$$(2r)^{2} = 2\left(2\sqrt{2} + 2 - 2r\right)^{2}$$
$$(2r)^{2} - \left(\sqrt{2}\left(2\sqrt{2} + 2 - 2r\right)\right)^{2} = 0$$
$$\left[2r - \sqrt{2}\left(2\sqrt{2} + 2 - 2r\right)\right]\left[2r + \sqrt{2}\left(2\sqrt{2} + 2 - 2r\right)\right] = 0$$

tenemos las soluciones $r_1 = \sqrt{2}$ y $r_2 = 3\sqrt{2} + 4$, como esta solución el mayor que el lado se la desprecia. El radio buscado es $\sqrt{2}$ y el perímetro de las dos circunferencias es $4\pi r = 4\pi \left(\sqrt{2}\right) = 4\sqrt{2}\pi$. respuesta (E)

- 4. Sumando las soluciones, comprendidas en el intervalo $[0, \pi]$ de la ecuación $2\cos(4x) 1 = 0$, se obtiene:
 - (A) $\frac{3}{2}\pi$
- (B) 2π
- (C) $\frac{5}{2}\pi$
- (D) 3π
- (E) Ninguno

Solución:

$$4x = \arccos\left(\frac{1}{2}\right)$$

Caso1:

$$4x = \frac{\pi}{3} + 2\pi k, k = 0, 1, 2, 3, \dots$$

tenemos

$$x = \frac{\pi}{12} \text{ y } x = \frac{7\pi}{12}$$

Caso2:

$$4x = \frac{5\pi}{3} + 2\pi k, k = 0, 1, 2, 3, \dots$$

tenemos

$$x = \frac{5\pi}{12} \text{ y } x = \frac{11\pi}{12}$$

Así la suma buscada es $\frac{\pi}{12} + \frac{7\pi}{12} + \frac{5\pi}{12} + \frac{11\pi}{12} = 2\pi$, respuesta (B)

Progunta F1

Para A:
$$h = \frac{1}{2} y t_A^2$$

$$t_A = \sqrt{\frac{2h}{9}} = \sqrt{\frac{2(45)}{10}} = \sqrt{9} = 3s$$

$$t_{B} = t_{A} - 4 = 25$$

$$h = V_{oB} t_{B} + \frac{1}{2}g t_{B}^{2}$$
 $V_{oB} = \frac{h}{t_{B}} - \frac{g t_{B}}{2}$

$$V_{OB} = \frac{h}{t_B} - \frac{g t_B}{Z}$$

$$V_{0B} = \frac{45}{2} - \frac{(10)(z)}{z}$$

$$= \frac{45}{2} - 10 = \frac{25}{z}$$

Presunta F2,

Filia ZI Dado el valor de las masas del sistema,

éste nunca podria acelerar con $\alpha = 2g$ R. (e) Ninguno

Presenta F31

Fila 2

T cos 60° = mg (1)
T su 60° =
$$\frac{m\dot{V}^2}{R}$$
 (2)

$$\frac{mV^2}{R}$$
 = mg tan60° ya sue $V=w\cdot R$

$$W = \sqrt{\frac{g + cn 60^{\circ}}{R}} \quad R = L cen \theta$$

$$M = \sqrt{\frac{\Gamma \cos(60)}{d}}$$

$$W = \sqrt{\frac{q}{L\cos60^{\circ}}}$$

$$Co160^{\circ} = \frac{1}{2}$$

$$W = \sqrt{\frac{2q}{L}}$$

$$W = \sqrt{\frac{2(10)}{4}} = \sqrt{5} \text{ rad}_{S}$$

$$W = \sqrt{5} \text{ rad}_{S}$$

$$R(c)$$

Dreguta F4,

$$W = 20 N \qquad k = 10 \frac{1}{2}$$

Conservación de energía:

$$\cos 45^{\circ} = \frac{\sqrt{2}}{2}$$

$$\chi = \sqrt{\frac{2(20)(2)\sqrt{2}}{2(10)}}$$

$$\chi = \sqrt{4\sqrt{2}} m$$

R. (e)

Q13.- ¿Cuántos átomos de oxígeno hay en 28 g de bicarbonato de sodio, NaHCO₃?

A)
$$1,205\times10^{23}$$

B)
$$6,023 \times 10^{23}$$

C)
$$1,807 \times 10^{24}$$

D)
$$2,409 \times 10^{24}$$

E) Ninguno

Solución:

$$28 \ g \ NaHCO_{3} * \frac{1 \ mol \ NaHCO_{3}}{84 \ g \ NaHCO_{3}} * \frac{3 \ moles \ de \ O}{1 \ mol \ NaHCO_{3}} * \frac{6,023 * 10^{23} \ átm. \ O}{1 \ mol \ O} = 6,023 * 10^{23} \ átm. \ O$$

Q14.- Para la reacción:

$$Al + H_2SO_4 \rightarrow Al_2(SO_4)_3 + H_2$$

Calcular los moles de gas hidrógeno cuando reaccionan 270 g de aluminio puro, si el rendimiento de la reacción del 80%.

E) Ninguno

Solución:

$$2A1 + 3 H_2SO_4 \rightarrow Al_2(SO_4)_3 + 3H_2$$

$$270 \ g \ Al \times \frac{1 \ mol \ Al}{27 \ g \ Al} \times \frac{3 \ mol \ H_2}{2 \ mol \ Al} \times \frac{80\%}{100\%} = 12 \ moles \ H_2$$

Q15.- En un recipiente se introducen 20 litros de amoniaco y 30 litros de oxígeno. Estas sustancias reaccionan de la siguiente manera:

$$\mathrm{NH_{3\,(g)}\,+O_{2\,(g)}} \boldsymbol{\rightarrow} \mathrm{NO\,_{(g)}+\ H_2O_{\,(g)}}$$

Considerando constantes las condiciones de presión y temperatura, calcular el volumen de las sustancias presentes cuando finaliza la reacción.

E) Ninguno

Solución:

$$4 \text{ NH}_3(g) + 5 \text{ O}_2(g) \rightarrow 4 \text{ NO}(g) + 6 \text{ H}_2\text{O}(g)$$

20 L NH
$$_3/4 = 5$$
 Reactivo Limitante

$$30 L O_2/5 = 6$$

$$20 L NH_{3} \left(\frac{4LNO}{4L NH_{3}}\right) = 20 L NO$$

$$20 L NH_{3} \left(\frac{5LO_{2}}{4L NH_{3}}\right) = 25 L O_{2} \text{ Reacciona}; \quad \text{Exceso} = 30L - 25L = 5 L O_{2}$$

$$20 L NH_{3} \left(\frac{6LH_{2}O}{4L NH_{3}}\right) = 30 L H_{2}O$$

Q16.-¿Cuántos gramos de solución de ácido fosfórico al 70% y al 20% se deben tomar para preparar 100 g de una solución al 30%?

B) 80 y 20

C) 30 y 70

D) 40 y 60

E) Ninguno

Solución:

$$m_1\%_1 + m_2\%_2 = m_3\%_3$$

 $m_1 + m_2 = m_3 = 100 \text{ g}$
 $m_1*70 + m_2*20 = 100*30$
 $70 m_1 + 20*(100-m_1) = 3000$
 $70 m_1 + 2000 - 20 m_1 = 3000$
 $50 m_2 = 1000 \Rightarrow m_2 = 20 \text{ g}; m_1 = 80 \text{ g} \Rightarrow 80 \text{ y} 20$