CSC 320 Foundations of Computer Science

Lecture 2

Instructor: Dr. Ulrike Stege

Territory Acknowledgement

We acknowledge and respect the ləkwəŋən peoples on whose traditional territory the university stands and the Songhees, Esquimalt and WSÁNEĆ peoples whose historical relationships with the land continue to this day.

This meeting will be recorded

"Please be aware our sessions are being screen-recorded to allow students who are not able to attend to watch later and will be posted in Brightspace."

Deadlines; Assessment

Quiz 1-8: 1% each

Quiz 9: 2%

Assignment 1-5: 5% each

Final Exam

40%

Midterm 1: 10% Midterm 2: 15%

Ma	ıy						Ju	ne						,	Jul	У					
S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S		S	М	Т	W	Т	F	S
			3	4	5	6	28	29	30	31	1	2	3	4	25	26	27	28	29	30	1
7	8	9	10	11	12	13	4	5	6	7	8	9	10		2	3	4	5	6	7	8
14	15	16	17	18	19	20	11	12	13	14	15	16	17						13		
21	22	23	24	25	26	27	18	19	20	21	22	23	24	,	16	17	18	19	20	21	22
	29						25	26	27	28	29	30	1						27		
	5							2													

Timed quizzes (~30 min)
Review before starting quiz

Office hours

Mondays, Thursdays 2:30-3:30

Last time

• countable vs uncountable

Countable & uncountable

- A set is countable if it is finite or countably infinite: the elements of a countable set can always be counted one at a time; every element of the set is associated with a unique natural number
- A set that is neither finite nor countably infinite is uncountable

Z is countable

\mathbb{N}	\mathbb{Z}
0	0
1	-1
2	1
3	-2
4	2
5	-3
6	3
	•••

Counting the set of positive rational numbers $\mathbb{Q}^+ \setminus \{0\}$

1	1	1	1	1	1	1	1	1	1	1
$\sqrt{1}$	$\sqrt{2}$	/ 3	$7\overline{4}$	$\sqrt{5}$	√ 6 /	$\sqrt{7}$	* 8 /	$\sqrt{9}$	$\overline{10}$	<u></u>
2/	2	2/	2	2/	2	2	2	2	2	2
1	/2	7 3	/4	1 5	6	/7	/8	/ 9	10	11
3/	3/	3/	3	3	3	3	3/	3	3/	3.
$\begin{pmatrix} 1 \end{pmatrix}$	$\sqrt{2}$	/3	/4	/ 5	6	⁷ 7	8	/9 /	/10	/11
4	4	4/	4	4	4	4	4	4	4	4
1	/2	7 3 /	/4	/ 5	6	/ 7	/8 /	/9	1 0	41
5	5	5	5	5	5	5	5	5	5	5
$\begin{pmatrix} 1 \\ a \end{pmatrix}$	$^{\prime 2}$	3 	4	5	/ 6	7	8	.v.9 9	.10	·11
6	<u>6</u>	<u>6</u>	6	5	$\frac{6}{8}$	6/7	$\frac{6}{8}$	6	1.00 ·	6
CSÇ 320 (S	ummer 202	23): /	A. A	: :	(i.i.	· ·	Arter transfer to the state of	<i>y</i>		;

Theorem: \mathbb{R} is uncountable Proof uses Cantor's Diagonalization Argument

Proof by contradiction. Assume: \mathbb{R} is countable.

- Then we can enumerate $\mathbb R$
- We can also enumerate each subset of R
- Therefore, if \mathbb{R} is countable then we can enumerate the set of all real numbers between 0 and 1:

$$x_1 = 0.d_{11}d_{12}d_{13}d_{14}...$$
 $x_2 = 0.d_{21}d_{22}d_{23}d_{24}...$
 $x_3 = 0.d_{31}d_{32}d_{33}d_{34}...$
 $x_4 = 0.d_{41}d_{42}d_{43}d_{44}...$

where

$$x_n = 0.d_{n1}d_{n2}d_{n3}d_{n4}\dots$$

George Cantor 1845 – 1918

Cantor's Diagonalization Argument (continued)

Consider the number $c = 0.c_1c_2c_3c_4...$ with $c_i \neq d_{ii}$ for each i

Clearly: $0 \le c < 1$

c is not in above list

Cantor's Diagonalization Argument (continued)

$$x_{1} \quad 0.d_{11}d_{12}d_{13}d_{14} \dots \quad c \neq x_{1}$$

$$x_{2} \quad 0.d_{21}d_{22}d_{23}d_{24} \dots \quad c \neq x_{2}$$

$$x_{3} \quad 0.d_{31}d_{32}d_{33}d_{34} \dots \quad c \neq x_{3}$$

$$x_{4} \quad 0.d_{41}d_{42}d_{43}d_{44} \dots \quad c \neq x_{4}$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots$$

$$x_{n} = 0.d_{n1}d_{n2}d_{n3}d_{n4} \dots \quad c \neq x_{n}$$

$$\vdots \quad \vdots \quad \vdots \quad \vdots$$

$$c = 0.c_1c_2c_3c_4\dots c_i \neq d_{ii}$$

Cantor's Diagonalization Argument (continued)

Answer: No!

 $0.c_1c_2c_3c_4...$ is not in the list as it is different from each list element! Therefore, since $0 \le c < 1$, the list **does not** contain all real numbers between 0 and 1

• If we cannot even enumerate this subset of \mathbb{R} , then it is also impossible to enumerate \mathbb{R}

Recommended reading: https://www.cantorsparadise.com/hilberts-hotel-an-ingenious-explanation-of-infinity-1d1a79932080

Terminology Review: Sets

- Set $S=\{3,\ell,20,green,\alpha\}$
 - Objects in a set: elements/members
- Membership/Non-membership $\ \alpha \in S; eta \notin S$
- Empty set
 - Set with zero members/elements
- Singleton set
 - Set with exactly one member
- Unordered pair
 - Set with exactly two members

Terminology Review: Set Operations

- Union of sets A and B: $A \cup B = \{x | x \in A \text{ or } x \in B\}$
- Intersection of sets A and B: $A \cap B = \{x | x \in A \text{ and } x \in B\}$
- Complement of set A: $\bar{A} = \{x | x \notin A\}$
- Set difference of sets A and B: $A-B=\{x\in A:x\notin B\}$ $A\backslash B$

More terminology: Powerset

• Powerset $\mathcal{P}(A)$ of set A: set of all subsets of A $\mathcal{P}(A) = \{S \mid S \subseteq A\}$. Note that $\emptyset \in \mathcal{P}(A)$

Alphabets, Languages, Strings, Symbols

Terminology to describe and work with finite automata and more

- An alphabet Σ is a finite set of symbols
 - eg: binary alphabet $\{0,1\}$ or the Roman/Latin alphabet
- A **string** over an alphabet Σ is a finite sequence of symbols from Σ
 - 0001 is a string over alphabet $\{0,1\}$
- The **empty string** ε is the string with no symbols

Alphabets, Languages, Strings, Symbols (2)

- The **set of all strings** over an alphabet Σ is denoted Σ^*
- Note: $\epsilon \in \Sigma^*$
 - ie, ϵ is a string over any alphabet
- Example: Let $\Sigma = \{a,b\}$. Then $\Sigma^* = \{\epsilon, a, b, aa, ab, ba, bb, aaa, aab, aba, aba, baa, bab, bba, bbb, ...}$

Alphabets, Languages, Strings, Symbols (3)

- The **length** |w| of a string $w \in \Sigma^*$ is the number of symbols of w when considered as a sequence, e.g.
 - length of the empty string e: |e| = 0
 - w = ab, |w| = 2
- For a string $w \in \Sigma^*$, the symbol in the i^{th} position of w is denoted w_i . We say that w_i occurs in position i of w
 - Note that a symbol may occur more than once in the same string
 - e.g., for w = aba, $w_2 = b$

Alphabets, Languages, Strings, Symbols (4)

Operations and relations on strings

- Concatenation for strings x and y yields string xy
 - Concatenation is an associative operation: xyz := (xy)z = x(yz)
- Eg: for $\Sigma = \{a, b, c\}$, if x = ab, y = bac and z = bba: xyz = abbacbba

Alphabets, Languages, Strings, Symbols (5)

More operations and relations on strings

- String v is a **substring** of string w if and only if there are strings x and y such that w = xvy
 - If $y = \epsilon$ then w = xv and v is a **suffix** of w
 - If $x = \epsilon$ then w = vy and v is a **prefix** of w
- Eg: if w = abbacbba then
 - *cbba* is a suffix of *w* and
 - *abb* is a prefix of *w*

Alphabets, Languages, Strings, Symbols (6)

And more operations and relations on strings

- A string w written backwards is denoted w^R and called the **reversal** of w
- Eg: If w = abbacbba then $w^R = abbcabba$

Alphabets, Languages, Strings, Symbols (7)

- A **language** is a set of strings over an alphabet Σ
 - Set operations apply to languages (eg, union, intersection, set difference)
- For a language L over alphabet Σ , its **complement** \bar{L} is $\bar{L}=\Sigma^*-L$ (or $\bar{L}=\Sigma^*\backslash L$)
- Given languages L_1 and L_2 over alphabet Σ , their concatenation, denoted L_1L_2 is defined by

$$L_1L_2 = \{ w \in \Sigma^* \mid w = xy \text{ for some } x \in L_1 \text{ and } y \in L_2 \}$$

Alphabets, Languages, Strings, Symbols (8)

 The Kleene star L* of a language L is the set of all strings obtained by concatenating zero or more strings from L:

$$L^* = \{ w \in \Sigma^* \mid w = w_1 w_2 \dots w_k, k \ge 0 \text{ and } w_i \in L \text{ for } 1 \le i \le k \}$$

- Given a language L over alphabet Σ , the **closure** L^+ of L is $L^+ = LL^*$
 - smallest language that includes L and all strings that are concatenations of strings in L

Didn't we say we wanted to study problems and their solutions?

- A (decision or yes/no) problem is a mapping from a set of problem instances to Yes/No (called yes-instances and no-instances)
- Languages: abstract representation of problems
- For a problem Π , the associated language L_{Π} is $L_{\Pi} = \{x \in \Sigma^* \mid x \text{ is a yes-instance of } \Pi\}$

Examples: Yes-No-Problems and their Languages

SORTED SEQUENCE

Input: A list of n comparable elements $e_1, e_2, ..., e_n$

Question: Are the elements, as given, in sorted order? That is: is it true that $e_1 \le e_2 \le ... \le e_n$?

 $L_{\text{SORTED SEQUENCE}} = \{ \text{list of comparable elements } l \mid \text{the elements of } l \text{ are in sorted order} \}$

Examples: Yes-No-Problems and their Languages

CONNECTED GRAPH

Input: A simple, undirected graph G = (V, E)

Question: Is G connected? That is: for any pair of vertices $x, y \in V$, does there exists a path from x to y in G?

 $L_{\text{CONNECTED GRAPH}} = \{G = (V, E) \mid G \text{ is a simple, undirected connected graph}\}$

Examples: Yes-No-Problems and their Languages

SHORT SPANNING TREE

Input: A simple, undirected, edge-weighted graph G = (V, E) where each edge $e \in E$ is assigned a positive integer weight w(e), an integer k

Question: Does there exist a spanning tree $T = (V, E_T)$ for G where T has weight at most k? That is: T is a tree, $E_T \subseteq E$, and $\sum_{e \in E_T} w(e) \le k$?

 $L_{\text{SHORT SPANNING TREE}} = \{(G = (V, E), k) \mid k \text{ is a positive integer and } G \text{ is a simple, undirected, edge-weighted graph has a spanning tree of weight at most } k\}$

Languages / Yes/No problems: How many are there?

- To figure this out, since the set of all languages over an alphabet Σ is defined as the set of all subsets of Σ , first
 - Determine the size of Σ^* for any alphabet Σ

How large is Σ^* ?

Claim: Σ^* is countably infinite (and therefore countable)

Proof for $\Sigma = \{0,1\}$:

\mathbb{N}	\sum *
0	ε
1	0
2	1
3	00
4	01
5	10
6	11
•••	•••

CSC 320 (Summer 2023)

How large is the set of all languages over Σ ?

- Recall: Σ^* is countably infinite (and therefore countable)
- and: Languages are subsets of Σ^*
- Then the set of all languages over alphabet Σ is the set of all subsets of Σ^*

$$\mathscr{P}(\Sigma^*)$$

- For every language L: L is countably infinite or finite
- How large is the set of all languages over alphabet Σ ?
 - $|\mathscr{P}(\Sigma^*)|$

$$|\mathscr{P}(\Sigma^*)| = ?$$

- Idea: Show that powerset of any countably infinite set is uncountable
 - This would imply that the powerset of P(Σ*) is uncountable
- Recall: Any countably infinite set has a bijection with \mathbb{N} , that is Σ^* has a bijection with \mathbb{N}
- Therefore, if we show that $\mathscr{P}(\mathbb{N})$ is uncountable then we know that $\mathscr{P}(\Sigma^*)$ is uncountable, ie uncountably infinite

$\mathscr{P}(\mathbb{N})$ is uncountable

Proof by contradiction

- Assume that $\mathscr{P}(\mathbb{N})$ is countable. Then $\mathscr{P}(\mathbb{N})$ is countably infinite
- We list every subset of \mathbb{N} as S_0, S_1, S_2, \dots s.t.
 - every subset of $\mathbb N$ is equal to a subset S_i for some i
- Consider subset $D \subseteq \mathbb{N}$: $D = \{i \in \mathbb{N} \mid i \notin S_i\}$
 - For each $j \in \mathbb{N}$, $j \in D$ if and only if $j \notin S_j$

Goal: determine a subset that should be on the list but is not

- Since $D \subseteq \mathbb{N}$: D is on above list & there is some $j_0 \in \mathbb{N}$ with $S_{j_0} = D$
 - If $j_0 \in D$ then $j_0 \notin S_{j_0} = D$
 - If $j_0 \notin D$ then $j_0 \in S_{j_0} = D$
- That is: $j_0 \in D$ if and only if $j_0 \notin D$

Used diagonalization to achieve contradiction

How large is the set of all languages?

- We recap
 - Since 𝒯(ℕ) is uncountably infinite, the powerset of any countably infinite set is uncountable
 - Since the set of all languages is the powerset of Σ^* , the set of all languages is uncountable

So far

- Review, terminology and warmup
- Foundational for upcoming course concepts

Next up: Finite Automata and Regular languages

 we begin looking at automata that describe some of those languages

Automata Theory

- Finite Automata & Regular Languages
- Pushdown Automata & Context-Free Languages

Finite Automata & Regular Languages

Understanding computability requires

- Model(s) of computer that capture(s) its computational power
- Most simple model
 - Finite state machine or finite automaton
 - Model of computation with finite amount of memory, independent of problem size

Finite Automata

- Finite automata are all around us! Example: electromechanical devices
 - Controller of an automatic door

Automatic entrance door view from above Front pad Rear pad CSC 320 (Summer 2023)

Rear Front Rear Neither Open Neither State diagram

Controller

Finite Automata in Practice

- Automatic door controller: a finite automaton/computer with just a single bit of memory that records which of the two states the controller is in (closed or open)
- Many other common devices have controllers with somewhat larger memories
- Elevator controller
 - state represents floor elevator is on
 - inputs: signals received from the buttons
- Controllers for various household appliances
 - dishwashers, electronic thermostats, parts of simple digital watches and simple calculators

Other Applications of Finite Automata

- Pattern recognition
- Speech recognition
- Optical character recognition
- Compilers
- A (probabilistic) relative of the finite automaton: Markov chain

Abstract Description of the Finite Automaton

- State diagrams: used to describe finite automata
- Formal Definition: Deterministic finite automaton

State Diagram

- States {*q*₁, *q*₂, *q*₃, *q*₄}
- Start state q_1
- Accept state q₃

DFA accepts 11011 since it is in an accept state at end of input string processing

For input string 11011:

Start in q₁, read 1 Now in q_2 , read 1 Now in q₃, read 0 Now in q₁, read 1 Now in q2, read 1 In q₃

Transitions: arrows from one state to another (according to received inputs)

Inputs (labels on transition): symbols from alphabet

State Diagram

- States {*q*₁, *q*₂, *q*₃, *q*₄}
- Start state q₁
- Accept state q₃
- Transitions: arrows from one state to another (according to received inputs)

What other strings does the automaton accept?

Formal Definition Deterministic Finite Automaton

A deterministic finite automaton (DFA) is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$ with

- 1. *Q* is a finite set called the **states**
- 2. Σ is a finite set called the **alphabet**
- 3. Function $\delta: Q \times \Sigma \rightarrow Q$ is the **transition** function
- 4. $q_0 \in Q$ is the **start state**
- 5. $F \subseteq Q$ is the **set of accept** (or **final**) states

Transition table