GREEN (5-2008)**

Vishay Semiconductors

High Speed Infrared Emitting Diodes, 850 nm, Surface Emitter Technology

DESCRIPTION

VSMY1850 is an infrared, 850 nm emitting diode based on GaAlAs surface emitter chip technology with high radiant intensity, high optical power and high speed, molded in clear, untinted 0805 plastic package for surface mounting (SMD).

FEATURES

• Package type: surface mount

• Package form: 0805

• Dimensions (L x W x H in mm): 2 x 1.25 x 0.85

Peak wavelength: λ_p = 850 nm

High reliability

High radiant power

· High radiant intensity

• High speed

• Angle of half sensitivity: $\varphi = \pm 60^{\circ}$

• Suitable for high pulse current operation

• 0805 standard surface-mountable package

• Floor life: 168 h, MSL 3, acc. J-STD-020

• Lead (Pb)-free reflow soldering

 Compliant to RoHS Directive 2002/95/EC and in accordance to WEEE 2002/96/EC

APPLICATIONS

- IrDA compatible data transmission
- Miniature light barrier
- Photointerrupters
- Optical switch
- Emitter source for proximity sensors
- IR touch panels
- IR Flash
- IR illumination
- 3D TV

PRODUCT SUMMARY				
COMPONENT	I _e (mW/sr)	φ (deg)	λ _p (nm)	t _r (ns)
VSMY1850	10	± 60	850	10

Note

• Test conditions see table "Basic Characteristics"

ORDERING INFORMATI	ON		
ORDERING CODE	PACKAGING	REMARKS	PACKAGE FORM
VSMY1850	Tape and reel	MOQ: 3000 pcs, 3000 pcs/reel	0805

Note

· MOQ: minimum order quantity

^{**} Please see document "Vishay Material Category Policy": www.vishay.com/doc?99902

Vishay Semiconductors High Speed Infrared Emitting Diodes, 850 nm, Surface Emitter Technology

ABSOLUTE MAXIMUM RATINGS (T _{amb} = 25 °C, unless otherwise specified)					
PARAMETER	TEST CONDITION	SYMBOL	VALUE	UNIT	
Reverse voltage		V _R	5	V	
Forward current		I _F	100	mA	
Peak forward current	$t_p/T = 0.1$, $t_p = 100 \mu s$	I _{FM}	200	mA	
Surge forward current	t _p = 100 μs	I _{FSM}	1	Α	
Power dissipation		P _V	190	mW	
Junction temperature		Tj	100	°C	
Operating temperature range		T _{amb}	- 40 to + 85	°C	
Storage temperature range		T _{stg}	- 40 to + 100	°C	
Soldering temperature	acc. figure 7, J-STD-020	T _{sd}	260	°C	
Thermal resistance junction/ambient	J-STD-051, leads 7 mm, soldered on PCB	R _{thJA}	270	K/W	

120

Fig. 1 - Power Dissipation Limit vs. Ambient Temperature

Fig. 2 - Forward Current Limit vs. Ambient Temperature

PARAMETER	TEST CONDITION	SYMBOL	MIN.	TYP.	MAX.	UNIT
Forward voltage	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	V _F		1.65	1.9	V
	$I_F = 1 \text{ A}, t_p = 100 \ \mu\text{s}$	V _F		2.9		V
Table and the second first and a fixed	I _F = 1 mA	TK _{VF}		- 1.4		mV/K
Temperature coefficient of V _F	I _F = 10 mA	TK _{VF}		- 1.18		mV/K
Reverse current		I _R	not designed for reverse operation		μΑ	
Junction capacitance	$V_R = 0 \text{ V, f} = 1 \text{ MHz,}$ $E = 0 \text{ mW/cm}^2$	CJ		125		pF
Desilie at Catalana II	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	l _e	5	10	15	mW/sr
Radiant intensity	$I_F = 1 \text{ A}, t_p = 100 \mu \text{s}$	l _e		85		mW/sr
Radiant power	$I_F = 100 \text{ mA}, t_p = 20 \text{ ms}$	фе		50		mW
Temperature coefficient of radiant power	$I_F = 100 \text{ mA}$	TKφ _e		- 0.35		%/K
Angle of half intensity		φ		± 60		deg
Peak wavelength	$I_F = 100 \text{ mA}$	λ_{p}	840	850	870	nm
Spectral bandwidth	I _F = 30 mA	Δλ		30		nm
Temperature coefficient of λ _p	I _F = 30 mA	TK _{λp}		0.25		nm
Rise time	I _F = 100 mA, 20 % to 80 %	t _r		10		ns
Fall time	I _F = 100 mA, 20 % to 80 %	t _f		10		ns
Virtual source diameter		d		0.5		mm

High Speed Infrared Emitting Diodes, Vishay Semiconductors 850 nm, Surface Emitter Technology

BASIC CHARACTERISTICS (T_{amb} = 25 °C, unless otherwise specified)

Fig. 3 - Forward Current vs. Forward Voltage

Fig. 6 - Relative Radiant Intensity vs. Angular Displacement

Fig. 4 - Radiant Intensity vs. Forward Current

Fig. 5 - Relative Radiant Power vs. Wavelength

Vishay Semiconductors High Speed Infrared Emitting Diodes, 850 nm, Surface Emitter Technology

REFLOW SOLDER PROFILE

Fig. 7 - Lead (Pb)-free Reflow Solder Profile acc. J-STD-020

DRYPACK

Devices are packed in moisture barrier bags (MBB) to prevent the products from moisture absorption during transportation and storage. Each bag contains a desiccant.

FLOOR LIFE

Time between soldering and removing from MBB must not exceed the time indicated in J-STD-020:

Moisture sensitivity: level 3

Floor life: 168 h

Conditions: T_{amb} < 30 °C, RH < 60 %

DRYING

In case of moisture absorption devices should be baked before soldering. Conditions see J-STD-020 or label. Devices taped on reel dry using recommended conditions 192 h at 40 $^{\circ}$ C (+ 5 $^{\circ}$ C), RH < 5 %.

PACKAGE DIMENSIONS in millimeters

High Speed Infrared Emitting Diodes, Vishay Semiconductors 850 nm, Surface Emitter Technology

BLISTER TAPE DIMENSIONS in millimeters

22112

Vishay Semiconductors High Speed Infrared Emitting Diodes, 850 nm, Surface Emitter Technology

REEL DIMENSIONS in millimeters

Vishay

Disclaimer

ALL PRODUCT, PRODUCT SPECIFICATIONS AND DATA ARE SUBJECT TO CHANGE WITHOUT NOTICE TO IMPROVE RELIABILITY, FUNCTION OR DESIGN OR OTHERWISE.

Vishay Intertechnology, Inc., its affiliates, agents, and employees, and all persons acting on its or their behalf (collectively, "Vishay"), disclaim any and all liability for any errors, inaccuracies or incompleteness contained in any datasheet or in any other disclosure relating to any product.

Vishay makes no warranty, representation or guarantee regarding the suitability of the products for any particular purpose or the continuing production of any product. To the maximum extent permitted by applicable law, Vishay disclaims (i) any and all liability arising out of the application or use of any product, (ii) any and all liability, including without limitation special, consequential or incidental damages, and (iii) any and all implied warranties, including warranties of fitness for particular purpose, non-infringement and merchantability.

Statements regarding the suitability of products for certain types of applications are based on Vishay's knowledge of typical requirements that are often placed on Vishay products in generic applications. Such statements are not binding statements about the suitability of products for a particular application. It is the customer's responsibility to validate that a particular product with the properties described in the product specification is suitable for use in a particular application. Parameters provided in datasheets and/or specifications may vary in different applications and performance may vary over time. All operating parameters, including typical parameters, must be validated for each customer application by the customer's technical experts. Product specifications do not expand or otherwise modify Vishay's terms and conditions of purchase, including but not limited to the warranty expressed therein.

Except as expressly indicated in writing, Vishay products are not designed for use in medical, life-saving, or life-sustaining applications or for any other application in which the failure of the Vishay product could result in personal injury or death. Customers using or selling Vishay products not expressly indicated for use in such applications do so at their own risk and agree to fully indemnify and hold Vishay and its distributors harmless from and against any and all claims, liabilities, expenses and damages arising or resulting in connection with such use or sale, including attorneys fees, even if such claim alleges that Vishay or its distributor was negligent regarding the design or manufacture of the part. Please contact authorized Vishay personnel to obtain written terms and conditions regarding products designed for such applications.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document or by any conduct of Vishay. Product names and markings noted herein may be trademarks of their respective owners.

Revision: 11-Mar-11