Diseño y Análisis de Algoritmos Tarea 8

Sergio Montoya Ramírez
202112171

Contents

Chapter 1		Page 2
1.1		2
	Tabla — $2 \bullet$ Pre condición — $2 \bullet$ Post condición — 2	
1.2		3
	Tabla — 3 • Pre condición — 3 • Post condición — 3	
1.3		4
	Tabla — $4 \bullet \text{Pre condición} — 4 \bullet \text{Post condición} — 4$	

Chapter 1

1.1

1.1.1 Tabla

$\overline{{ m E}/{ m S}}$	Nombre	Tipo	Descripción
E	graph	List < List < int >>	Esta es una matriz de adyacencia. Cada vértice esta representado sin colisión por el indice de la lista. Por otro lado, la entrada $graph[i][j]$ es la distancia que hay entre el nodo i y el j . En caso de que $i = j$ entonces el valor de esta entrada es ∞
S	bestRoute	List < int >	Lista con el camino mas barato de vertices que pasa por todos

1.1.2 Pre condición

$$\forall i, j \in V : graph[i][j] = graph[j][i]$$

 $\forall i, j \in V : graph[i][j] > 0$
 $graph \neq null.$

1.1.3 Post condición

bestRoute = min(H) Donde H es el conjunto de caminos hamiltonianos sobre matrix DEG(bestRoute) = DEG(V) + 1 bestRoute[0] = bestRoute[-1].

1.2

1.2.1 Tabla

$\overline{\mathrm{E/S}}$	Nombre	Tipo	Descripción
E	graph	List < List < int >>	Esta es una matriz de adyacencia. Cada vértice esta representado sin colisión por el indice de la lista. Por otro lado, la entrada $graph[i][j]$ es la distancia que hay entre el nodo i y el j . En caso de que $i = j$ entonces el valor de esta entrada es ∞
Е	k	int	Valor que me interesa decidir si existe un camino con peso menor o igual a k
S	bestRoute	List < int >	Lista con un camino hamiltoniano con peso menor o igual a k
S	existsRoute	bool	Existe un camino hamiltoniano con peso menor o igual a k

1.2.2 Pre condición

$$\forall i, j \in V : graph[i][j] = graph[j][i]$$

 $\forall i, j \in V : graph[i][j] > 0$
 $graph \neq null$
 $k > 0$.

1.2.3 Post condición

 $bestRoute \in H$ Donde H es el conjunto de caminos hamiltonianos sobre matrix DEG(bestRoute) = DEG(V) + 1 bestRoute[0] = bestRoute[-1] $\sum_{n=0}^{DEG(V)} graph[bestRoute[n]][bestRoute[n+1]] \leq k.$

1.3

1.3.1 Tabla

$\overline{\mathrm{E/S}}$	Nombre	Tipo	Descripción
E	graph	List < List < int >>	Esta es una matriz de adyacencia. Cada vértice esta representado sin colisión por el indice de la lista. Por otro lado, la entrada $graph[i][j]$ es la distancia que hay entre el nodo i y el j . En caso de que $i = j$ entonces el valor de esta entrada es ∞
Е	k	int	Valor que me interesa decidir si existe un camino con peso menor o igual a k
Е	bestRoute	List < int >	Lista con un camino hamiltoniano con peso menor o igual a k
S	fullFill	bool	El camino hamiltoniano $bestRoute$ tiene un costo menor a k

1.3.2 Pre condición

$$\forall i, j \in V : graph[i][j] = graph[j][i]$$

 $\forall i, j \in V : graph[i][j] > 0$
 $graph \neq null$
 $k > 0$
 $bestRoute \in H$

Donde H es el conjunto de caminos hamiltonianos sobre matrix

$$DEG(bestRoute) = DEG(V) + 1$$

 $bestRoute[0] = bestRoute[-1].$

1.3.3 Post condición

$$k = true \rightarrow \sum_{n=0}^{DEG(V)} graph[bestRoute[n]][bestRoute[n+1]] \leq k$$

$$k = false \rightarrow \sum_{n=0}^{DEG(V)} graph[bestRoute[n]][bestRoute[n+1]] > k.$$