Correction 28.15

Hasard 2 Math

Si vous voyez une coquille, n'hésitez pas à la signaler par mail.

1 Indication

Bien définir la probabilité recherchée en utilisant des centralisateurs. Majorer les cardinaux de ces centralisateur C_x en fonction de si x est dans le centre du groupe ou ne l'est pas. Finir par majorer le cardinal du centre de groupe.

2 Correction

Soit G un groupe fini. Notons p la probabilité que deux éléments pris au hasard dans G commutent.

Si G est abélien, alors, on a bien p = 1.

Sinon, on suppose donc que G est non-abélien (non-commutatif).

On a équiprobabilité pour le choix de nos deux éléments, donc :

$$p = \frac{1}{|G|^2} \sum_{x,y \in G} \left\{ \begin{array}{l} 1 \text{ si x et y commutent} \\ 0 \text{ sinon} \end{array} \right.$$

On peux simplifier l'écriture en utilisant les centralisateurs (noté C_x , le centralisateur de x).

$$p = \frac{1}{|G|^2} \sum_{x \in G} |C_x|$$

Or, pour tout élément $x \notin \mathcal{Z}(G)$, si $C_x = G$ alors x commute avec tout les éléments de G donc $x \in \mathcal{Z}(G)$. Ceci est absurde donc $C_x \subsetneq G$. Ainsi, d'après le théorème de Lagrange, l'ordre de C_x divise l'ordre de G. De plus, ces deux ordres sont différents par l'inclusion stricte, donc on a :

$$|C_x| \le \frac{1}{2}|G|$$

On sépare donc la somme pour pouvoir utiliser notre majoration.

$$p = \frac{1}{|G|^2} \left(\sum_{x \in \mathcal{Z}(G)} |C_x| + \sum_{x \notin \mathcal{Z}(G)} |C_x| \right) \le \frac{1}{|G|^2} \left(\sum_{x \in \mathcal{Z}(G)} |G| + \frac{1}{2} \sum_{x \notin \mathcal{Z}(G)} |G| \right)$$
$$p \le \frac{1}{|G|} \left(|\mathcal{Z}(G)| + \frac{1}{2} (|G| - |\mathcal{Z}(G)|) \right) \le \frac{1}{2} + \frac{\mathcal{Z}(G)}{2 \cdot |G|}$$

Le problème est donc de majorer $\mathcal{Z}(G)$. Pour cela, on utilise la même technique d'inclusion stricte. On va donc montrer que, pour $x \notin \mathcal{Z}(G)$, $\mathcal{Z}(G) \subsetneq C_x \subsetneq G$. En effet, si $\mathcal{Z}(G) = C_x$, alors $x \in \mathcal{Z}(G)$ car $x \in C_x$ ce qui est contradictoire. Ainsi la première inclusion est stricte. Tout comme la deuxième déjà montré en haut. Donc par le théorème de Lagrange, on a

$$|\mathcal{G}| \le \frac{1}{2}|C_x| \le \frac{1}{4}|G|$$

Donc, on a

$$p \le \frac{1}{2} + \frac{1}{8} = \frac{5}{8}$$