Cheat Sheet: Model

Development

Process	Description	Code Example	
Linear Regressio n	Create a Linear Regression model object	 from sklearn.linear_model import LinearRegression lr = LinearRegression() Copied!	1 2
Train Linear Regressio n model	Train the Linear Regression model on decided data, separating Input and Output attributes. When there is single attribute in input, then it is simple	<pre>• X = df[['attribute_1', 'attribute_2',]] • Y = df['target_attribute'] • lr.fit(X,Y) Copied!</pre>	1 2 3

	linear regression. When there are multiple attributes, it is multiple linear regression.	
Generate output prediction	Predict the output for a set of Input attribute values.	<pre> • Y_hat = lr.predict(X) Copied!</pre>
Identify the coefficient and intercept	Identify the slope coefficient and intercept values of the linear regression model defined by $\hat{y} = mx$. Where m is the slope coefficient and c is the intercept.	<pre>coeff = lr.coef intercept = lr.intercept_ Copied!</pre>

Residual	This function will regress y on x (possibly as a robust or polynomial regression) and then draw a scatterplot of the residuals.	<pre>import seaborn as sns import seaborn as sns sns.residplot(x=df[['attribute_1']], y=df[['attribute_2']])</pre> Copied!
Distributio n Plot	This function can be used to plot the distribution of data w.r.t. a given attribute.	<pre>import seaborn as sns import seaborn as sns sns.distplot(df['attribute_name'], hist=False) # can include other parameters like color, label and so on.</pre> Copied!
Polynomi al Regressio n	Available under the numpy package, for single variable feature creation and model fitting.	1 2 3 4 5 6 • f = np.polyfit(x, y, n) • #creates the polynomial features of order n

		 p = np.poly1d(f) #p becomes the polynomial model used to generate the predicted output Y_hat = p(x) # Y_hat is the predicted output Copied!
Multi-vari ate Polynomi al Regressio n	Generate a new feature matrix consisting of all polynomial combinations of the features with the degree less than or equal to the specified degree.	<pre>from sklearn.preprocessing import PolynomialFeatures Z = df[['attribute_1','attribute_2',]] pr=PolynomialFeatures(degree=n) Z_pr=pr.fit_transform(Z) Copied!</pre>

```
R^2 value
             R^2, also
                              a.
             known as the
                                                                                     1
             coefficient of
                                                                                     2
             determination
                                                                                     3
             , is a
                                                                                     4
             measure to
                                 • X = df[['attribute_1', 'attribute_2',
             indicate how
                                     ...]]
             close the
                                  • Y = df['target_attribute']
             data is to the
                                   lr.fit(X,Y)
             fitted
                                     R2_score = lr.score(X,Y)
             regression
             line.
                              Copied!
             The value of
             the
             R-squared is
                              b.
             the
             percentage of
                                                                                     1
             variation of
                                                                                     2
             the response
                                                                                     3
             variable (y)
                                                                                     4
             that is
                                  • from sklearn.metrics import r2_score
             explained by
                                     f = np.polyfit(x, y, n)
             a linear
                                     p = np.poly1d(f)
             model.
                                     R2\_score = r2\_score(y, p(x))
             a. For Linear
             Regression
                              Copied!
             (single or
             multi
             attribute)
             b. For
             Polynomial
```

	regression (single or multi attribute)		
MSE	The Mean		1
value	Squared		2
	Error	from sklearn.metrics import	
	measures the	mean_squared_error	
	average of	<pre>mse = mean_squared_error(Y, Yhat)</pre>	
	the squares		
	of errors, that		
	is, the		
	difference		
	between		
	actual value		
	and the		
	estimated		
	value.		