Выбор модели глубокого обучения

Бахтеев Олег

МФТИ

16.10.2019

1 / 33

Сложность модели: зачем?

Устойчивость моделей при возмущении выборки

Качество классификации при удалении параметров

Сложность модели: зачем?

Model	image size	# parameters	Mult-Adds	Top 1 Acc. (%)	Top 5 Acc. (%)
Inception V2 [29]	224×224	11.2 M	1.94 B	74.8	92.2
NASNet-A (5 @ 1538)	299×299	10.9 M	2.35 B	78.6	94.2
Inception V3 [59]	299×299	23.8 M	5.72 B	78.0	93.9
Xception [9]	299×299	22.8 M	8.38 B	79.0	94.5
Inception ResNet V2 [57]	299×299	55.8 M	13.2 B	80.4	95.3
NASNet-A (7 @ 1920)	299×299	22.6 M	4.93 B	80.8	95.3
ResNeXt-101 (64 x 4d) [67]	320×320	83.6 M	31.5 B	80.9	95.6
PolyNet [68]	331×331	92 M	34.7 B	81.3	95.8
DPN-131 [8]	320×320	79.5 M	32.0 B	81.5	95.8
SENet [25]	320×320	145.8 M	42.3 B	82.7	96.2
NASNet-A (6 @ 4032)	331×331	88.9 M	23.8 B	82.7	96.2

Zoph et al., 2017. Сложность моделей отличается почти в два раза при одинаковом качестве.

3 / 33

Глубокого обучение

Определение

 $\mathit{Moдeлью}\ f(w,x)$ назовем дифференцируемую по параметрам w функцию из множества признаковых описаний объекта во множество меток:

$$f: \mathbb{X} \times \mathbb{W} \to \mathbb{Y}$$
,

где \mathbb{W} — пространство параметров функции \mathbf{f} .

Особенность задачи выбора модели *глубокого обучения* — значительное число параметро в моделях приводит к неприменимости классических методов оптимизации и выбора модели.

Сложность модели:

- количество параметров;
- 2 количество суперпозиций внутри модели.

Принцип минимальной длины описания

$$\mathsf{MDL}(\mathbf{f},\mathfrak{D}) = L(\mathbf{f}) + L(\mathfrak{D}|\mathbf{f}),$$

где ${f f}$ — модель, ${\mathfrak D}$ — выборка, L — длина описания в битах.

$$\mathsf{MDL}(\mathbf{f},\mathfrak{D}) \sim \mathit{L}(\mathbf{f}) + \mathit{L}(\mathbf{w}^*|\mathbf{f}) + \mathit{L}(\mathfrak{D}|\mathbf{w}^*,\mathbf{f}),$$

 ${\bf w}^*$ — оптимальные параметры модели.

f_1	$L(\mathbf{f}_1)$	$L(w_1^* f_1)$		$L(oldsymbol{ ho} \mathbf{w}_1^*,\mathbf{f}_1)$	
\mathbf{f}_2	$L(\mathbf{f}_2)$	$L(\mathbf{w}_2^* \mathbf{f}_2)$		$L(\mathbf{p} \mathbf{w}_2^*,\mathbf{f}_2)$	
f ₃	$L(\mathbf{f}_3)$	$L(\mathbf{w}_3^*)$	\mathbf{f}_3)	$L(\overline{D} \mathbf{w}_3^*,\mathbf{f}_3)$	

MDL и Колмогоровская сложность

Колмогоровская сложность — длина минимального кода для выборки на предварительно заданном языке.

Теорема инвариантности

Для двух сводимых по Тьюрингу языков колмогоровская сложность отличается не более чем на константу, не зависяющую от мощности выборки.

Отличия от MDL:

- Колмогоровская сложность невычислима.
- Длина кода может зависеть от выбранного языка. Для небольших выборок теорема инвариантности не дает адекватных результатов.

Связанный байесовский вывод

Первый уровень: выбираем оптимальные параметры:

$$\mathbf{w} = \max \frac{ \rho(\mathfrak{D}|\mathbf{w}) \rho(\mathbf{w}|\mathbf{h}) }{ \rho(\mathfrak{D}|\mathbf{h}) },$$

Второй уровень: выбираем модель, доставляющую максимум обоснованности модели.

Обоснованность модели ("Evidence"):

$$\rho(\mathfrak{D}|\mathbf{h}) = \int_{\mathbf{w}} \rho(\mathfrak{D}|\mathbf{w}) \rho(\mathbf{w}|\mathbf{h}) d\mathbf{w}.$$

Схема выбора модели

Пример: полиномы

Evidence vs MDL

Evidence	MDL
Использует априорные знания	Независима от априорных знаний
Основывается на гипотезе о порождении	
выборки	Минимизирует длину описания выборки
вне зависимости от их природы	

8 / 33

Оптимальность модели

Определение

Пусть задано множество моделей M.

Пусть для каждой модели \mathbf{f} задано априорное распределение параметров: $p(\mathbf{w}|\mathbf{h})$, где \mathbf{h} — параметры априорного распределения.

Модель ${f f}$ назовем оптимальной среди моделей M, если достигается максимум интеграла:

$$p(\mathfrak{D}|\mathbf{h}) = \int_{\mathbf{w}} p(\mathfrak{D}|\mathbf{w}) p(\mathbf{w}|\mathbf{h}) d\mathbf{w}.$$

Вариационная оценка, ELBO

Вариационная оценка Evidence, Evidence lower bound — метод нахождения приближенного значения аналитически невычислимого распределения $p(\mathbf{w}|\mathfrak{D},\mathbf{h})$ распределением $q(\mathbf{w})\in\mathfrak{Q}$. Получение вариационной нижней оценки обычно сводится к задаче минимизации

$$\mathsf{KL}(q(\mathbf{w})||p(\mathbf{w}|\mathfrak{D})) = -\int_{\mathbf{w}} q(\mathbf{w})\log \frac{p(\mathbf{w}|\mathfrak{D})}{q(\mathbf{w})} d\mathbf{w} = \mathsf{E}_{\mathbf{w}}\log p(\mathfrak{D}|\mathbf{w}) - \mathsf{KL}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{h}))$$

Вариационный вывод и expectation propogation (Bishop)

Аппроксимация Лапласа и вариационная оценка, зеленая линия (Bishop)

3

Получение вариацонной нижней оценки

Утверждение 1

Максимизация вариационной нижней оценки

$$\int_{\mathbf{w}} q(\mathbf{w}) \log \frac{p(\mathbf{y}, \mathbf{w} | \mathbf{X}, \mathbf{h})}{q(\mathbf{w})} d\mathbf{w}$$

эквивалентна минимизации расстояния Кульбака—Лейблера между распределением $q(\mathbf{w}) \in \mathfrak{Q}$ и апостериорным распределением параметров $p(\mathbf{w}|\mathbf{y},\mathbf{X},\mathbf{h})$:

$$\hat{q} = \operatorname*{arg\,max}_{q \in \mathfrak{Q}} \int_{\mathbf{w}} q(\mathbf{w}) \log \, \frac{p(\mathbf{y}, \mathbf{w} | \mathbf{X}, \mathbf{h})}{q(\mathbf{w})} d\mathbf{w} \Leftrightarrow \hat{q} = \operatorname*{arg\,min}_{q \in \mathfrak{Q}} \mathsf{D}_{\mathsf{KL}} \big(q(\mathbf{w}) || p(\mathbf{w} | \mathbf{y}, \mathbf{X}, \mathbf{h}) \big),$$

$$\mathsf{D}_{\mathsf{KL}}\big(q(\mathbf{w})||p(\mathbf{w}|\mathbf{y},\mathbf{X},\mathbf{h})\big) = \int_{\mathbf{w}} q(\mathbf{w})\log\left(\frac{q(\mathbf{w})}{p(\mathbf{w}|\mathbf{y},\mathbf{X},\mathbf{h})}\right) d\mathbf{w}.$$

Определение

Модель ${f f}$ назовем субоптимальной на множестве моделей M, если модель доставляет максимум нижней вариационной оценке:

$$\int_{\mathbf{w}} q(\mathbf{w}) \log \frac{p(\mathbf{y}, \mathbf{w} | \mathbf{X}, \mathbf{h})}{q(\mathbf{w})} d\mathbf{w}.$$

Вариационная оценка и эффективный размер выборки

Утверждение 2

Пусть $m\gg 0$, $\lambda>0$, $\frac{m}{\lambda}\in\mathbb{N}, \frac{m}{\lambda}\gg 0$. Тогда оптимизация функции

$$\mathsf{E}_q \log p(\mathbf{y}|\mathbf{X}, \mathbf{w}) - \lambda \mathsf{D}_{\mathsf{KL}}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{y}, \mathbf{X}, \mathbf{h}))$$

эквивалентна оптимизации вариационной оценки обоснованности для произвольной случайной подвыборки $\hat{\mathbf{y}},\hat{\mathbf{X}}$ мощности $\frac{m}{\lambda}$ из генеральной совокупности.

См. также [Alemi et al., 2017, Fixing Broken ELBO].

Plate notation

Plate notation — формат представления вероятностных моделей, альтернативный вероятностным графам.

Элементы:

- Белые кружки (случайные величины);
- Серые кружки (наблюдаемые реализации случайной величины);
- Маленькие кружки (неслучайные величины);
- Плитки (дублирование вероятностного вывода).

DAG и Plate notation (Bishop)

Plate notation для модели perpeccuu (Bishop)

Вариационный автокодировщик

Пусть объекты выборки ${f X}$ порождены при условии скрытой переменной ${f h} \sim \mathcal{N}({f 0},{f I})$:

$$\mathbf{x} \sim p(\mathbf{x}|\mathbf{h}, \mathbf{w}).$$

 $p(\mathbf{h}|\mathbf{x},\mathbf{w})$ — неизвестно. Будем максимизировать в

Будем максимизировать вариационную оценку правдоподобия выборки:

$$\log\! p(\mathbf{x}|\mathbf{w}) \geq \mathsf{E}_{q_\phi(\mathbf{h}|\mathbf{x})}\!\log p(\mathbf{x}|\mathbf{h},\mathbf{w}) \!-\! D_\mathsf{KL}(q_\phi(\mathbf{h}|\mathbf{x})||p(\mathbf{h})) \to \mathsf{max}\,.$$

Распределения $q_{\phi}(\mathbf{h}|\mathbf{x})$ и $p(\mathbf{x}|\mathbf{h},\mathbf{w})$ моделируются нейросетью:

$$q_{\phi}(\mathbf{h}|\mathbf{x}) \sim \mathcal{N}(oldsymbol{\mu}_{\phi}(\mathbf{x}), oldsymbol{\sigma}_{\phi}^2(\mathbf{x})),$$

$$p(\mathbf{x}|\mathbf{h},\mathbf{w}) \sim \mathcal{N}(\boldsymbol{\mu}_{\scriptscriptstyle W}(\mathbf{h}), \boldsymbol{\sigma}_{\scriptscriptstyle W}^2(\mathbf{h})),$$

где функции μ, σ — выходы нейросети.

Использование вариационной нижней оценки

Для чего используют вариационный вывод?

- получение оценок Evidence;
- получение оценок распределений моделей со скрытыми переменными (тематическое моделирование, снижение размерности).

Зачем используют вариационный вывод?

- сводит задачу нахождения апостериорной вероятности к методам оптимизации;
- проще масштабируется, чем аппроксимация Лапласа;
- проще в использовании, чем сэмплирующие методы.

Вариационный вывод может давать сильно заниженную оценку.

ELBO: нормальное распределение

Пусть $q \sim \mathcal{N}(oldsymbol{\mu}_q, \mathbf{A}_q)$.

Тогда вариационная оценка имеет вид:

$$\int_{\mathbf{w}} q(\mathbf{w}) \log p(\mathbf{Y}|\mathbf{X}, \mathbf{w}, \mathbf{h}) d\mathbf{w} - D_{\mathsf{KL}} (q(\mathbf{w}) || p(\mathbf{w}|\mathbf{h})) \simeq$$

$$\sum_{i=1}^m \log p(\mathbf{y}_i|\mathbf{x}_i, \hat{\mathbf{w}}) - D_{\mathsf{KL}}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{h})) \to \max_{\mathbf{A}_q, \boldsymbol{\mu}_q}, \quad \hat{\mathbf{w}} \sim q.$$

В случае, если априорное распределение параметров $p(\mathbf{w}|\mathbf{h})$ является нормальным:

$$p(\mathbf{w}|\mathbf{h}) \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{A}),$$

дивергенция $D_{\mathsf{KL}}(q(\mathbf{w})||p(\mathbf{w}|\mathbf{h})$ вычисляется аналитически:

$$\underline{\mathbf{D}_{\mathsf{KL}}\big(q(\mathbf{w})||p(\mathbf{w}|\mathbf{h})\big)} = \frac{1}{2} \big(\mathsf{tr}(\mathbf{A}^{-1}\mathbf{A}_q) + (\boldsymbol{\mu} - \boldsymbol{\mu}_q)^\mathsf{T}\mathbf{A}^{-1}(\boldsymbol{\mu} - \boldsymbol{\mu}_q) - n + \mathsf{ln} \; |\mathbf{A}| - \mathsf{ln} \; |\mathbf{A}_q| \big).$$

Graves, 2011

Априорное распределение: $p(\mathbf{w}|\sigma) \sim \mathcal{N}(\boldsymbol{\mu}, \sigma \mathbf{I})$. Вариационное распределение: $q(\mathbf{w}) \sim \mathcal{N}(\boldsymbol{\mu}_q, \sigma_q \mathbf{I})$. Жадная оптимизация гиперпараметров:

$$\mu = \hat{E}w$$
, $\sigma = \hat{D}w$.

Прунинг параметра w_i определяется относительной плотностью:

$$\lambda = rac{q(\mathbf{0})}{q(oldsymbol{\mu}_{i,q})} = \exp(-rac{\mu_i^2}{2\sigma_i^2}).$$

ELBO: нормальное распределение

"Обычная" функция потерь:

$$L = \sum_{\mathbf{x}, \mathbf{y} \in \mathfrak{D}} - \log p(\mathbf{y}|\mathbf{x}, \mathbf{w}) + \lambda ||\mathbf{w}||_2^2.$$

Вариационный вывод при $(ho(\mathbf{w}|\mathbf{h}) \sim \mathcal{N}(\mathbf{0},\mathbf{1}))$:

$$L = \sum_{\mathbf{x}, \mathbf{y}} \log p(\mathbf{y} | \mathbf{x}, \hat{\mathbf{w}}) +$$

$$+ \frac{1}{2} \big(\mathrm{tr}(\mathbf{A}_q) + \boldsymbol{\mu}_q^\mathsf{T} \mathbf{A}^{-1} \boldsymbol{\mu}_q - \mathsf{ln} \ |\mathbf{A}_q| \big).$$

Пример грубой аппроксимации нормальным диагональным распределением *q*

МСМС и вариационный вывод

Идея МСМС: Порождаем сэмплы из простого распределения и принимаем их, если заданное отношение больше порога:

$$\min\left(1,\frac{\rho(\mathbf{w}^{\tau}|\mathbf{y},\mathbf{X},\mathbf{h})}{\rho(\mathbf{w}^{\tau-1}|\mathbf{y},\mathbf{X},\mathbf{h})}\right),$$

где $\mathbf{w}^{ au}$ выбирается на основе предыдущего сэмпла:

$$\mathbf{w}^{\tau} = T(\mathbf{w}^{\tau-1}).$$

Salimans et al., 2014: будем интерпретировать последовательность применения оператора $\mathcal T$ как оптимизацию вариационной оценки:

$$T^1 \circ \dots T^{\eta}(\mathbf{w}) \to p(\mathbf{w}^{\tau}|\mathbf{y}, \mathbf{X}, \mathbf{h}).$$

Maclaurin et. al, 2015: в качестве оператора T будем рассматривать оператор оптимизации. Откажемся от отклонения сэмплов по порогу.

Оператор оптимизации, Maclaurin et. al, 2015

Определение

Назовем оператором оптимизации алгоритм T выбора вектора параметров \mathbf{w}' по параметрам предыдущего шага \mathbf{w} :

$$\mathbf{w}' = T(\mathbf{w}).$$

Определение

Пусть L — дифференцируемая функция потерь.

Оператором градиентного спуска назовем следующий оператор:

$$T(\mathbf{w}) = \mathbf{w} - \beta \nabla L(\mathbf{w}, \mathbf{y}, \mathfrak{D}).$$

Градиентный спуск для оценки правдоподобия

Рассмотрим максимизацию совместного распределения параметров:

$$L = -\log p(\mathfrak{D}, \mathbf{w} | \mathbf{h}) = -\sum_{\mathfrak{D} \in \mathfrak{D}} \log p(\mathfrak{D} | \mathbf{w}, \mathbf{h}) p(\mathbf{w} | \mathbf{h})$$

Проведем оптимизацию нейросети из r различных начальных приближений $\mathbf{w}_1, \dots, \mathbf{w}_r$ с использованием градиентного спуска:

$$\mathbf{w}' = T(\mathbf{w}).$$

Векторы параметров $\mathbf{w}_1, \dots, \mathbf{w}_r$ соответствуют некоторому скрытому распределению $q(\mathbf{w})$.

Энтропия

Формулу вариационной оценки можно переписать с использованием энтропии:

$$\log p(\mathfrak{D}|\mathbf{f}) \ge \int_{\mathbf{w}} q(\mathbf{w}) \log \frac{p(\mathfrak{D}, \mathbf{w}|\mathbf{h})}{q(\mathbf{w})} d\mathbf{w} =$$
$$\mathsf{E}_{q(\mathbf{w})}[\log p(\mathfrak{D}, \mathbf{w}|\mathbf{h})] + \mathsf{S}(q(\mathbf{w})),$$

где $S(q(\mathbf{w}))$ — энтропия:

$$S(q(\mathbf{w})) = -\int_{\mathbf{w}} q(\mathbf{w}) \log q(\mathbf{w}) d\mathbf{w}.$$

Градиентный спуск для оценки правдоподобия

Утверждение 3

Пусть L — липшицева функция, оператор оптимизации — биекция. Тогда разность энтропии на различных шагах оптимизации вычисляется как:

$$\mathsf{S}(q'(\mathbf{w})) - \mathsf{S}(q(\mathbf{w})) \simeq \frac{1}{r} \sum_{g=1}^{r} \left(-\beta \mathsf{Tr}[\mathsf{H}(\mathbf{w}'^g)] - \beta^2 \mathsf{Tr}[\mathsf{H}(\mathbf{w}'^g)\mathsf{H}(\mathbf{w}'^g)] \right).$$

Итоговая оценка на шаге оптимизации au:

$$\log \, \hat{p}(\mathbf{Y}|\mathfrak{D},\mathbf{h}) \sim \frac{1}{r} \sum_{g=1}^{r} L(\mathbf{w}_{\tau}^{g},\mathfrak{D},\mathbf{Y}) + \mathsf{S}(q^{0}(\mathbf{w})) +$$

$$+\frac{1}{r}\sum_{b=1}^{\tau}\sum_{g=1}^{r}\left(-\beta \operatorname{Tr}[\mathbf{H}(\mathbf{w}_{b}^{g})]-\beta^{2}\operatorname{Tr}[\mathbf{H}(\mathbf{w}_{b}^{g})\mathbf{H}(\mathbf{w}_{b}^{g})]\right),$$

 \mathbf{w}_b^g — вектор параметров старта g на шаге b, $\mathsf{S}(q^0(\mathbf{w}))$ — начальная энтропия.

Переобучение, Maclaurin et. al, 2015

Градиентный спуск не минимизирует дивергенцию $\mathsf{KL}(q(\mathbf{w})||p(\mathbf{w}|\mathfrak{D},\mathbf{h}))$. При приближении к моде распределения снижается оценка Evidence, что интерпретируется как переоубчение модели.

Схождение распределения к моде

Оценка начала переобучения

Стохастическая динамика Ланжевена

Модификация стохастического градиентного спуска:

$$T = \mathbf{w} - \beta \nabla L + \epsilon, \quad \epsilon \sim \mathcal{N}(0, \frac{\alpha}{2})$$

где шаг оптимизации lpha изменяется с количеством итераций:

$$\sum_{\tau=1}^{\infty} \beta_{\tau} = \infty, \quad \sum_{\tau=1}^{\infty} \beta_{\tau}^{2} < \infty.$$

Утверждение [Welling, 2011]. Распределине $q^{\tau}(\mathbf{w})$ сходится к апостериорному распределению $p(\mathbf{w}|\mathbf{X},\mathbf{f})$.

Изменение энтропии с учетом добавленного шума:

$$\hat{\mathsf{S}}\big(q^{\tau}(\mathbf{w})\big) \geq \frac{1}{2}|\mathbf{w}|\mathsf{log}\big(\mathsf{exp}\big(\frac{2\mathsf{S}(q^{\tau}(\mathbf{w}))}{|\mathbf{w}|}\big) + \mathsf{exp}\big(\frac{2\mathsf{S}(\epsilon)}{|\mathbf{w}|}\big)\big).$$

Стохастическая динамика Ланжевена в генеративных моделях

Altieri et al., 2015: будем сэмплировать скрытую переменную **z** и приближать его распределение к максимуму вариационной оценки с использованием динамики Ланжевена.

Стохастическая динамика Ланжевена

Распределения параметров после 2000 итераций:

Проблема: медленная сходимость динамики.

SGD с оптимизацией длины шага

Mandt et al., 2017: вблизи точки экстремума градиентный спуск приближает апостериорное распределение параметров модели. Существуют оценки на длину шага градиентного спуска.

SGD с разным типом длин шагов

Сравнение с динамикой Ланжевена

Список источников

- Zoph, B., Vasudevan, V., Shlens, J. and Le, Q.V., 2018. Learning transferable architectures for scalable image recognition
- David J. C. MacKay, Information Theory, Inference & Learning Algorithms
- Peter Grunwald, A tutorial introduction to the minimum description length principle
- Kuznetsov M.P., Tokmakova A.A., Strijov V.V. Analytic and stochastic methods of structure parameter estimation
- Christopher Bishop, Pattern Recognition and Machine Learning
- Diederik P Kingma, Max Welling, Auto-Encoding Variational Bayes
- Dougal Maclaurin, David Duvenaud, Ryan P. Adams, Early Stopping is Nonparametric Variational Inference
- Max Welling, Yee Whye Teh, Bayesian Learning via Stochastic Gradient Langevin Dynamics

Бахтеев Олег (МФТИ) Выбор модели 16.10.2019 29 / 33

Список источников

- A. Graves. Practical Variational Inference for Neural Networks
- Salimans, Tim, Diederik Kingma, and Max Welling, 2015. Markov chain monte carlo and variational inference: Bridging the gap
- Altieri: http://approximateinference.org/accepted/AltieriDuvenaud2015.pdf
- Stephan Mandt, Matthew D. Hoffman, David M. Blei, 2017. Stochastic Gradient Descent as Approximate Bayesian Inference
- О. Ю. Бахтеев, В. В. Стрижов, "Выбор моделей глубокого обучения субоптимальной сложности"
- А. Н. Смердов, О. Ю. Бахтеев, В. В. Стрижов, "Выбор оптимальной модели рекуррентной сети в задачах поиска парафраза"

ДЗ: выбор задания

Дедлайн: 23 октября, 0 часов.

from zlib import crc32

theory = crc32('фамилия кириллицей'.lower().encode('utf-8'))%3+1

practice = crc32('фамилия латиницей'.lower().encode('utf-8'))%3+1

Задания заливаются на github: https://github.com/Intelligent-Systems-Phystech/model_selection/фамилия латиницей

ДЗ: теория

Формат: tex + pdf.

- ① Доказать утверждение 1;
 - ► Воспользоваться Bishop.
- 2 Доказать утверждение 2;
 - ▶ Воспользоваться УЗБЧ.
- ③ Доказать утверждение 3;
 - ► Воспользоваться разложением по Тейлору и свойством энтропии распределения под действием биекции (https://en.wikipedia.org/wiki/Differential_entropy)

ДЗ: практика

Формат: ipynb.

- Реализовать пример выбора модели с аппроксимацией Лапласа (Bishop/McKay).
- Реализовать пример выбора модели с вариационным нормальным распределением (Graves).
- ③ Реализовать пример выбора модели с распределением под дейвтием градиентного спуска (Maclaurin).

При оценивании будут учитываться аккуратность кода ноутбуков и наглядность примера.

Пример должен быть выполнен на **простых** игрушечных синтетических данных.