Nitte Meenakshi Institute of Technology Department of Computer Science & Engineering

Course Coordinator: Dr.Vani V

Exercise 1:

x ₁	x ₂	у	Lagrange Multiplier
0.3858	0.4687	1	65.5261
0.4871	0.611	-1	65.5261
0.9218	0.4103	–1	0
0.7382	0.8936	–1	0
0.1763	0.0579	1	0
0.4057	0.3529	1	0
0.9355	0.8132	-1	0
0.2146	0.0099	1	0

$$\mathbf{w} = \sum_{i=1}^{N} \lambda_i y_i \mathbf{x}_i,$$

Given: N = 2; $x_{i=1,2} = x_1$ and x_2 which is a vector

 $y_1 = 1$

 $y_2 = -1$

 $\lambda 1 = 65.5261$

 $\lambda 2 = 65.5261$

Vector W computation

Vector $\mathbf{W} = \mathbf{w}_1 & \mathbf{w}_2$

$$W_1 = \lambda 1 * y 1 * x 1 + \lambda 2 * y 2 * x 2$$

$$w_2 = \lambda 1 * y 1 * x 1 + \lambda 2 * y 2 * x 2$$

$$w_1 = 65.5261 \times 1 \times 0.3858 + 65.5261 \times -1 \times 0.4871 = -6.64.$$

$$w_2 = 65.5261 \times 1 \times 0.4687 + 65.5261 \times -1 \times 0.611 = -9.32.$$

Bias Computation

$$y_i(\mathbf{w} \cdot \mathbf{x}_i + \mathbf{b}) = 1$$

substituting $y_1 = 1$ to get b_1 that is i = 1

$$b_1 = 1 - wx_i$$

substituting $y_2 = -1$ to get b_2 that is i = 2

$$-wx_i-b_2 = 1$$

$$b_2 = -1 - wx_i$$

$$b_1 = 1 - \mathbf{w} \cdot \mathbf{x} = 1 - (-6.64)(0.3858) - (-9.32)(0.4687) = 7.9300.$$

 $b_2 = -1 - \mathbf{w} \cdot \mathbf{x} = -1 - (-6.64)(0.4871) - (-9.32)(0.611) = 7.9289$
Averaging these values to obtain $b = 7.93$.

Decision boundary
$$w1x1 + w2x2 + b = 0$$

 $(-6.64)*x_1 + (-9.32)*x_2 + 7.93 = 0$

Exercise 2:

Note: Refer Slide No.99 – 104 from Lecture 20 to 29_Rule Extraction_SVM_Univariate_Multivariate_Regression Trees

The decision boundary is $f(x_1, x_2) = x_1x_2$.

Exercise 3:

1. Consider the 1-dimensional data set with 10 data points {1, 2, 3, ... 10}. Show three iterations of the k-means algorithms when k = 2, and the random seeds are initialized to {1,2}. Repeat the problem with random seeds {2,9}. How did the different choice of the seed set affect the quality of the results?

Use Manhattan

Solution:

dp	m1(1)	m2(2)	MANHATTAN
1	0	1	
2	1	0	
3	2	1	
4	3	2	
5	4	3	
6	5	4	
7	6	5	
8	7	6	
9	8	7	
10	9	8	
INITIAL:	NITIAL: C1={1} C2={2,3		3,9,10}
dp	m1(1)	m2(6)	
1	0	5	
2	1	4	
3	2	3	

	1		1		1
4	3	2			
5	4	1			
6	5	0			
7	6	1			
8	7	2			
9	8	3			
10	9	4			
ITERATION					
1	C1={1,2,3}	C2={4,5,6,7,8,9,1	0}	7	
dp	m1(2)	m2(7)			
1	1	6			
2	0	5			
3	1	4			
4	2	3			
5	3	2			
6	4	1			
7	5	0			
8	6	1			
9	7	2			
10	8	3			
ITERATION		_			
2:	C1={1,2,3,4}	2.5	C2={5,6,7,	8,9,10}	7.5
dp	m1(2.5)	m2(7.5)			
1	1.5	6.5			
2	0.5	5.5			
3	0.5	4.5			
4	1.5	3.5			
5	2.5	2.5			
6	3.5	1.5			
7	4.5	0.5			
8	5.5	0.5			
9	6.5	1.5			
10	7.5	2.5			
ITERATION 3	: c1={1,2,3,4,5}				
	c2=(6,7,8,9,1				

- $\sqrt{}$ With the initial seed as $\{2,9\}$; the quality of the algorithm is improvised, and the algorithm converges in the first iteration itself.
- $\sqrt{\text{Initial:C1(m1=2)}} = \{1,2,3,4,5\}$

$$C2(m2=9) = \{6,7,8,9,10\}$$

$$√ Iteration 1: C1(m1=3) = {1,2,3,4,5}
C2(m2=8) = {6,7,8,9,10}$$