O- Catsci Exc entia latu

Deep Architecture and Consumer Heterogeneity

Sanjog Misra (University of Chicago Booth School of Business)

{Chris Hansen, Max Farell, Tengyuan Liang} + {J.P. Dube} + {Gunter Hitsch}.

DSE 2019

Connected Research

Deep Neural Networks for Estimation and Inference: Application to Causal Effects and Other Semiparametric Estimands (with Farell and Liang) https://arxiv.org/abs/1809.09953

Targeted Undersmoothing (with Hansen) https://arxiv.org/abs/1706.07328

Heterogeneous Treatment Effects and Optimal Targeting Policy Evaluation (with Hitsch)

 $https://papers.ssrn.com/sol3/papers.cfm?abstract_id = 3111957$

Scalable Price Targeting (with Dube)

 $https://papers.ssrn.com/sol3/papers.cfm?abstract_id = 2992257$

Consumer Heterogeneity

- A fundamental building block of marketing decisions is the construct of consumer heterogeneity.
- Accounting for such heterogeneity is relevant for a number of tasks
 - Accuracy (Bias)
 - ► Inference (Variance)
 - Policy Design and Evalauation
 - Targeting
 - Segmentation
 - Personalization
- ► This paper is about the *practice* of estimating and using heterogeneity measures.

Thinking about heterogeneity

Consider some (log) likelihood

$$\sum_{i}\ell(\mathbb{D}_{i};\theta_{i})$$

- ightharpoonup Since we don't know θ_i we have to figure something out
- We can assume the problem aways and set $\theta_i = \theta$
- ▶ If we had panel data with could try to estimate θ_i
 - In most applications (e.g. B2B, eCommerce,...) this is not the case
- **Even** if it were, simply estimating θ_i may not be useful.
- ▶ For example, we need to know *types* (θ_i) for new customers.

Predicting Types

We assume that we can project customer types onto a known vector of consumer characteristics x_i

$$\theta_i = \theta(X_i)$$

- ▶ In low-dimensional cases with *f* linear this is simply an "interactions" model.
 - ▶ Think $\theta_i = X\theta$, so that

$$Y_i = a + (X_i\theta) \cdot T_i + \epsilon_i$$

Approximating Types

- As we get more data about a customer it is plausible to assume that some subset of these high dimensional data will be relevant in articulating/approximating consumer types with some reasonable accuracy.
- Assumption: There exist $\theta(X_i)$ such that for some X_i

$$\|\theta_i - \theta(X_i)\| \to 0$$

- Couple of issues:
 - 1. We dont know which X_i matter.
 - 2. We dont know the function $\theta(X)$.

DeepNets Architecture

- We propose assuming that $\theta(X_i)$ is β -smooth and can be approximated by some Deepnet or **Deep Neural Network** (DNN).
- ► That is

$$\|\theta(X_i) - f_{\mathsf{DNN}}(X_i; \Theta)\| \to 0$$

- What are Deepnets?
- Why Deepnets?

Neural Networks

Artificial Neural Nets

Deepnets

Deepnets

- Units are arranged into layers. . .
 - According to a directed, acyclic graph
 - ► Number of layers *L* (**depth**)
 - ▶ Unit is in layer I if it has a predecessor in I-1 and none for any $I' \ge I$
 - Unit receives some $\tilde{\mathbf{x}}_l'\mathbf{w} + b_l$, returns $\tilde{\mathbf{x}}_{l+1} = \sigma(\tilde{\mathbf{x}}_l'\mathbf{w}_l + b_l)$
 - \triangleright σ is an activation function.
 - ▶ Dimension of $\tilde{\mathbf{x}}_l$ is width
 - Final layer is $\hat{y}_{\text{MLP}}(\mathbf{x}) = \Phi(\tilde{\mathbf{x}}_L(\mathbf{x})'\mathbf{w}_L + b_L)$

Why DeepNets?

- Simple. Scalable.
- ▶ They are universal approximation theorems.
- Loosely speaking, for continuous functions there will always exists some DNN that approximates it arbitrarily well.
- We could use some ML (say Random forests or Lasso)
 - Many appraoches (such as the Lasso) require us to know the true basis functions.
 - Other more flexible ones (say Forests) may not have the ability to maintain structural assumptions.
 - For example we may want $g(x_i)$ in

$$q_i = a + g(x_i) \cdot p_i + \epsilon_i$$

to be a random forest.

Why DeepNets?

- Wemay be able to construct an ML based estimator on a case by case basis
- ightharpoonup DNNs offer the potential for a standardized approach for any structural model we may write down, so that for some Θ

$$\|\theta(X_i) - f(X_i; \Theta)\| \to 0$$

and

$$\left\|\sum_{i}\ell(\mathbb{D};\theta(X_{i}))-\sum_{i}\ell(\mathbb{D};f(X_{i};\Theta))\right\|\to0$$

Current applications of DNNs

Typically . . .

$$Y = f_{DNN}(X)$$

► A tad more interesting is. . .

$$W = f_{DNN}(X)$$
$$Y = m(Z, \gamma, \hat{f}_{DNN}(X))$$

- examples: DNN Text analysis on Mturk, Plugin estimation using other data.
- Our theory applies in both cases (under some verifiable conditions)

Agenda

- Heterogenous Treatment Effects (NP)
- ► Embedding DeepNets in Structural models
 - ► Heterogenous Choice Models
 - ► Heterogeneous Discount Factors

Causal Effects

- In a variety of contexts we might be interested in how individual subjects respond to a discrete (binary) treatment.
 - Health responses to a medical treatment
 - ▶ Voter tunrounout as a response to some intervention
 - Unemployment as a function of a change in minimum wage
 - Customer spending in response to some targeted marketing campaign
- This example is about the use of DNNs for the purposes of estimating heterogeneous treatment effects and policy evaluation.

Potential Outcomes Framework

- Population of units (customers) indexed by i
- ▶ Binary treatment $t_i \in \{0,1\}$
 - $-t_i = 1$ if customer is treated
 - $-t_i = 0$ otherwise
- ▶ Potential outcomes: $Y_i(t_i = 0)$ and $Y_i(t_i = 1)$ or

The object of interest.

Conditional Average Treatment Effects (CATE)

$$\tau(x) = \mathbb{E}(Y|X = x, t = 1) - \mathbb{E}(Y|X = x, t = 0)$$

- Useful object to construct average treatment effects (ATE)
- For policy evaluation
- For policy design

Data

- ▶ The data vector is $\mathcal{D}_i = \{Y_i, X_i, t_i\}$ for all i
- Outcomes are observed conditional on treatment,

$$Y_i = \begin{cases} Y_i(0) & \text{if } t_i = 0 \\ Y_i(1) & \text{if } t_i = 1 \end{cases}$$

ightharpoonup Problem: Counterfactuals are unobserved \implies fundamental problem of causal inference

Response functions

Recall that the CATE is defined as

$$\tau(x) = \mathbb{E}(Y|X=x,t=1) - \mathbb{E}(Y|X=x,t=0)$$

We can write this as

$$\tau(x) = \mu(x,1) - \mu(x,0)$$

- where $\mu(x,t) = \mathbb{E}(Y|X=x,t=1)$
- Note that the $\mu(x,t)$ are simply conditional expectations.

Difference Estimators

A natural estimator is

$$\widehat{\tau}(x) = \widehat{\mu}(x,1) - \widehat{\mu}(x,0)$$

- Now if we obtain estimators for $\mu(x,t)$ we can construct an estimator for $\tau(x)$
- We can use any "regression" framework to obtain $\widehat{\mu}(x,t)$
 - Linear Models (or GLMs)
 - Regularized Models (e.g. Lasso)
 - Trees and Random Forests
 - Gradient Boosted Machines
 - Deep Nets
 - Kernels

Direct Estimators

- ► The above estiamtors use the MSE $\sum (y \hat{y})^2$ to estiamte parameters
- ▶ Ideally, one should minimize $\sum (\tau \hat{\tau}(x))^2$
- ▶ Seems impossible (since we dont observe τ).

Direct Estimators: Transformed Outcomes

Consider the following...

$$Y_i^* = t_i \frac{Y_i(1)}{e(X_i)} - (1 - t_i) \frac{Y_i(0)}{1 - e(X_i)}$$

- where $e(X_i) = \Pr(t_i = 1|X_i)$ (**Propensity Score**)
- If unconfoundedness holds, then

$$\mathbb{E}[Y_i^*|X_i=x]=\tau(x)$$

- ▶ Hence Y_i^* is a proxy for the CATE: $Y_i^* = \tau(X_i) + \nu_i$
- $ightharpoonup \mathbb{E}[\nu_i|X_i]=0$ and ν_i is orthogonal to any function of X_i
- ▶ This approach is used (in some way) by
 - Causal forests
 - Causal k-NN
 - . . .

Interactions Estimator

▶ We can define $\tau(x)$ implicitly by

$$y = \mu(x,0) + \tau(x)t$$

- Then use an interactions approach...
- Easy to do with linear models.

$$y_i = \alpha' x_i + (\beta' x_i) t_i + \varepsilon_i$$

- ► Can replace x_i with other basis functions $\varphi(x)$
- Can add regularization

Causal Deepnets

We will use an interactions approach:

$$y_i = \alpha(x_i) + \beta(x_i) \cdot t_i$$

- where by definition $\tau(x) = \beta(x)$
- Define

$$e(X_i) = \Pr(t_i = 1|X_i)$$

and write

$$\theta(x) = \{\alpha(x), \beta(x), e(x)\}\$$

- We assume that $\theta(x)$ can be approximated by a DNN.
- Note: In our application $e(x) = e = \text{known constant} = \frac{2}{3}$

Causal Deepnets

Implementation

- ▶ The implementation of these models is simple but not trivial.
 - ► DNN's can be implement with standard software (Keras,h2o, mxnet . . .)
 - ► These are too restrictive for our purposes.
- ▶ We use **Tensorflow** for all computations.
 - One could use Theaono, CNTK, (Py) Torch etc. as well.
 - Any software that allows for designing DNNs with custom architecture and loss functions.

Some (new) theory...

- ▶ No current convergence rates for DNNs!
- ▶ To do inference we need some work.
 - ▶ We need to show that a deepnet that gets at the truth exists
 - ▶ And that we can estimate this deepnet at a fast enough rate.
- Start with the ususal Bias-Variance set-up

$$\left\|\hat{f} - f_*\right\|_{L_2(X)}^2 \lesssim \left(\mathbb{E} - \mathbb{E}_n\right) \left[\ell(\hat{f}, \boldsymbol{z}) - \ell\left(f_*, \boldsymbol{z}\right)\right] + \mathbb{E}_n\left[\ell\left(f_n, \boldsymbol{z}\right) - \ell\left(f_*, \boldsymbol{z}\right)\right]$$

Use novel localization methods along with new approximation results to bound this quantity. Some (new) theory...

▶ We show that

$$\left\|\widehat{f}_{\mathsf{MLP}} - f_*\right\|_n^2 \le C \cdot \left\{n^{-\frac{\beta}{\beta+d}} \log^8 n + \frac{\log\log n}{n}\right\}$$

- Comments:
 - ▶ These are the first results on rates of convergence for DNNs
 - Uses standard architecture MLP+ReLU
 - ► Fast enough rates for semiparametric inference
 - but not minimax optimal.

When is this trivial

Consider

$$\|\theta(X_i) - f_{\mathsf{DNN}}(X_i; \Theta_k)\| \approx 0$$

▶ where *k* is the number of parameters and *n* is the number of observations.

$$\frac{k}{\sqrt{n}} \to 0$$

Semiprametric Objects

Recall that

$$\theta(X_i) = \{\alpha(X_i), \beta(X_i), e(X_i)\}\$$

▶ Define the following...

$$\hat{\psi}_t = \frac{\mathcal{I}\{t_i = t\}(y_i - \hat{\mu}_t(x_i))}{t_i e(x_i) + (1 - t_i)(1 - e(x_i))} + \hat{\mu}_t(x_i)$$

then

$$\widehat{ au} = \mathbb{E}_n \left[\widehat{\psi}_1 - \widehat{\psi}_0
ight]$$

- ► Further, the estimator is **Doubly Robust**
 - ▶ i.e. it is consistent even if one component is misspecified.

Semiprametric Objects

▶ More generally for some s(x)

$$\sqrt{n} \mathbb{E}_n \left[s(x_i) \hat{\psi}_t - s(x_i) \psi_t \right] = o_P(1)$$

$$\frac{\mathbb{E}_n \left[(s(x_i) \hat{\psi}_t)^2 \right]}{\mathbb{E}_n \left[(s(x_i) \psi_t)^2 \right]} = o_P(1)$$

- Could use these to construct other objects
- ▶ Profits: $\mathbb{E}_n\left[s\left(\mathbf{x}_i\right)\hat{\psi}_1\left(\mathbf{z}_i\right) + \left(1 s\left(\mathbf{x}_i\right)\right)\hat{\psi}_0\left(\mathbf{z}_i\right)\right]$
- Profit Differences:

$$\mathbb{E}_{n}\left[\left[s_{a}\left(\boldsymbol{x}_{i}\right)-s_{b}\left(\boldsymbol{x}_{i}\right)\right]\hat{\psi}_{1}\left(\boldsymbol{z}_{i}\right)-\left[s_{a}\left(\boldsymbol{x}_{i}\right)-s_{b}\left(\boldsymbol{x}_{i}\right)\right]\hat{\psi}_{0}\left(\boldsymbol{z}_{i}\right)\right]$$

Empirical Application

Direct Mail Marketing

- ▶ Data from a large consumer-goods retailer
 - Direct to customers only
- Treatment is catalog mailing
- Outcome is consumer spending
- Questions:
 - ▶ Does getting a catalog increase spending (ATE)?
 - ▶ Who should be mailed a catalog (profit)?

The Data

n = 292,657		Mean	SD
▶ Randomized: $\mathbb{P}[T=1 \mid X] = 2/3$ ▶ ≈ 150 covariates ▶ $Y=$ sales from all channels	Purchase	0.062	0.24
	Spend	7.311	43.55
	Spend Purchase	117.730	132.44
	Treatment	0.669	0.47

Distribution of Spending

Deep Network Architectures

- ► Single layer networks must be quite wide ⇒ many parameters
- ▶ Experimented with different/no regularization
- All use SGD, ReLU activation
- ▶ Joint estimation was much better:

$$\begin{pmatrix} \hat{\mu}_0(\boldsymbol{x}) \\ \hat{\tau}(\boldsymbol{x}) = \hat{\mu}_1(\boldsymbol{x}) - \hat{\mu}_0(\boldsymbol{x}) \end{pmatrix} := \operatorname*{arg\,min}_{\tilde{\mu}_0, \tilde{\tau}} \sum_{i=1}^n \frac{1}{2} \Big(y_i - \tilde{\mu}_0(\boldsymbol{x}_i) - \tilde{\tau}(\boldsymbol{x}_i) t_i \Big)^2$$

Learning	Widths	Dropout	Total	Validation	Training
Rate	$[H_1, H_2,]$	$[H_1, H_2,]$	Parameters	Loss	Loss
0.0003	[60]	[0.5]	8702	1405.62	1748.91
0.0003	[100]	[0.5]	14502	1406.48	1751.87
0.0001	[30, 20]	[0.5, 0]	4952	1408.22	1751.20
0.0009	[30, 10]	[0.3, 0.1]	4622	1408.56	1751.62
0.0003	[30, 30]	[0, 0]	5282	1403.57	1738.59
0.0003	[30, 30]	[0.5, 0]	5282	1408.57	1755.28
0.0003	[100, 30, 20]	[0.5, 0.5, 0]	17992	1408.62	1751.52
0.00005	[80, 30, 20]	[0.5, 0.5, 0]	14532	1413.70	1756.93

One Goodness of Fit Measure

- ► Getting a catalog shouldn't make you buy less
- ▶ Plot $\hat{ au}(m{x}_i)$

Comparison

Semiparametric Results

- Networks gave similar results
- ▶ Lines up closely with difference in means (RCT)
- Study ATE and profits from different mailing strategies
 - $lackbox{Loyalty: } s(oldsymbol{x}_i) = 1$ if purchased in prior calendar year

From Network 3:

Estimand:	$\hat{\pi}(s)$	95% CI	
ATE	2.547	[2.223 , 2.872]	
$\pi ({\sf never \ treat})$	2.027	[1.934 , 2.120]	
$\pi({\rm always}{\rm treat})$	2.224	[2.152 , 2.296]	
$\pi ({\rm loyalty policy})$	2.358	[2.283 , 2.434]	

Targeting Strategy

Should we target bigger spenders?

- Study $\{\pi (\text{spend} > \bar{y}) \pi (\text{always treat}) \}$
- ► Pointwise 95% confidence band
- lacktriangle Profits increase in \bar{y} until roughly \$500, then too few are targeted

General Discrete Choice Models

- Essentially these are (semiparametric) interactions models
- with possibly continuous treatments
- and a specified structure.

$$\Pr(y_{ij} = 1 | X_i) = \frac{\exp(\theta(X_i) \overline{Z_i})}{1 + \sum_{i} \exp(\theta(X_i) \overline{Z_j})}$$

- Whis is structure important?
 - Information from theory (Shape Restrictions)
 - Guards against overfitting

Theory

- What we dont have theory for
 - IV
 - Fixed Effects (True unobserved heterogeneity)
- What our theory is ok (kind of) for
 - If you want to do flexible control functions.
 - If you assume the the deepnet is a parametric model.
 - ► If you assume the DeepNet converges fast enough.

Deep Architecture for Choice Models

Our working framework is now

$$\Pr(y_{ij} = 1 | X_i) = \frac{\exp(f_{\mathsf{DNN}}(X_i; \Theta) \widetilde{Z}_i)}{1 + \sum_{j} \exp(f_{\mathsf{DNN}}(X_i; \Theta) \widetilde{Z}_j)}$$

- where

$$f_{\text{DNN}}(X_i; \Theta)\widetilde{Z}_j = \alpha_j(X_i) + \sum_k \beta_k(X_i) \cdot Z_{ik}$$

Personalized Pricing

- Ziprecruiter.com: online recruiting platform to match jobseekers and potential employees
- Customers are potential employers that pay a monthly subscription rate to access a stream of matched resumes for posted jobs
- ▶ Base price for "starter" firm (small business < 50 employees) was \$99/month</p>
- Customers required to register details about firm, job descriptions etc before they can reach paywall
- ▶ i.e. we obtain set of features, x_{i}, for each new firm i
- Goal: use methods described to improve pricing at ziprecruiter.com

Ziprecruiter Experiment Data

Ziprecruiter Experiment Data

Example (Ziprecruiter)

Choice model structure is standard

$$\mathbb{P}(p_i; x_i) = \frac{\exp(\alpha(x_i; \theta_\alpha) + \beta(x_i; \theta_\beta) p_i)}{1 + \exp(\alpha(x_i; \theta_\alpha) + \beta(x_i; \theta_\beta) p_i)}$$

▶ Let $f(x_i) = \{\alpha(X_i), \beta(X_i)\}$ and $\tilde{p}_i = [1 \ p_i]$ then we can write

$$\mathbb{P}(p_i; x_i) = \frac{1}{1 + \exp(-f_{\mathsf{DNN}}(x_i; \Theta)\widetilde{p}_i)}$$

Estimate and use for optimal uniform and targeted pricing.

Results

Results

Verification

Pricing Structure	Conversion Rate		Profit per Lead (\$)	
	Mean	95% CI	Mean	95% CI
Control	0.26	(0.24, 0.29)	25.76	(23.74,28.5)
Implemented Uniform	0.16	(0.13, 0.19)	40.05	(32.97,47.5)
Targeted	0.16	(0.13, 0.18)	44.49	(35.12,53.71)

(a) Expected Outcomes

Pricing Structure	Conversion Rate		Profit per Customer (\$)	
	Mean	95% CI	Mean	95% CI
Control	0.23	(0.21,0.25)	22.55	(20.75,24.39)
Implemented Uniform	0.15	(0.14,0.17)	37.73	(33.78,41.79)
Targeted	0.15	(0.14,0.16)	41.48	(38.15,45.07)

(b) Realized Outcomes

A standard brand choice model

- ► Data for toothpaste choices
- 7 brands
 - Aim, A&H, Aquafrsh, Colgate, Crest, Mentadent, Pepsodent
- Standard scanner panel data with price and display.
- We estimate choice model with DNN architechture for heterogeneity.
- Use all available consumer characteristics (demo)
- Results comparable to random coefficients.

Toothpaste Heterogenity

Toothpaste Heterogenity

Toothpaste Heterogenity

Takeaways

- Deepnets can be used for a flexible approach to heterogenity.
- ► The approach is practical and feasible.
- Need more case studies and examples.
- ▶ They can be embedded in structural models.
- ▶ There are avenues for inference.
- Challenges:
 - Architecture is still human driven. Requires search.
 - Leaves out informnation (panel e.g.)
 - Inference is limited.

More generally...

- ▶ Need to think about Deepnets
- Useful tool in a number of contexts where NP estimators are needed...
 - Games
 - Dynamics
 - Selection
 - Causal Inference
- As a prediction too DNNs are useful.
- ▶ We need to think about what it is we want to predict.

Discussion: ML in Dynamics

- ► Estimating NP Objects
- ► Function Spaces
- ► Heterogeneity
- Optimization
- ► Tricks and Treats
- ► New Ideas
- ► Challenges: Theory, Inference, Data