TITLE OF THE EXERCISE: DC shunt generator

DATE:06/10/20

AIM: To develop and Simulate mathematical dynamic modal of DC shunt generator under magnetic saturation of and also analyze with theoretical results.

TOOL USED: MATLAB and SIMULINK

ELECTRICAL CIRCUIT: PARAMETERS

USED FOR THE STUDY:

Armature resistance RA= 0.24 ohms

Armature winding inductance LA=0.018H

Shunt field winding resistance RF=111 ohms

Shunt field winding inductance LF=10H

Shunt field Rheostat Resistance Rrh=25 ohms

Load resistance RL=100000 ohms

Rated Voltage VA=125 volts

Rated Current IA=16 amps

Rated power P=2KW

Rated Speed ωm=183 rad/sec

Speed ωmo= 209.5rad/sec (speed at Give field current and voltage Data)

Carbon brush Voltage Drop Vbrush=2volt

Field Current	Generated Voltage Ego
0	7.5
0.05	12
0.1	20
0.13	24
0.18	32
0.22	40
0.26	48
0.32	59
0.36	66
0.4	74
0.47	86
0.54	97
0.575	102.5
0.61	107.5

I	0.64	112
	0.68	117
	0.71	121
	0.74	125
	0.78	130
	0.82	135
	0.86	140
	0.9	143
	0.93	146
	1	152
	1.1	158
	1.2	164
	1.3	168
	1.4	172
	1.5	175
ł		

Theoretical Analysis: The open circuit characteristics of the dc shunt motor is observed under two different speeds And the corresponding effect of varying If,Iar,wm,RL are noted.

Calculations (Predetermination):

If = 1 A;

Vf = (Rf+Rrh) * If = (111+25)*1 = 136 V;

IL = 136/(1E6) A = 0.136 mA

Ia = IL + If = 1 + 0.000136 A = 1.000136 A Eg

= Va + IaRa + Vb = 136 + 0.24 + 2 = 138.24 V

wm = (138.24/152)*209.5 = 190.5 rad/sec;

 $K\phi = Eg/wm = 0.7255 \text{ Vs}$

 $Te = K\phi*Ia = 0.7255*1.000136 = 0.7256 Nm$

Procedure for simulation study:

- Step1-Write the coding for Initialize the input parameters and as per requirement of plots in m file and save it
- Step 2-open new Simulink file and make mathematical modelling as per circuit diagram and save it
- Step3-Run the m file first, after that run Simulink file
- Step4-View the result in Scope
- Step5- Again run m file and view the plots
- Step6-Make various plots and write the Results

Simulation Diagram and m.file coding:

Simulation rendered wave form:-

Comparison (Observations):

Hence, we were able to obtain the plots for dc shunt generator under magnetic saturation conditions.

Conclusion:

Hence, we were able to obtain the plots for dc shunt generator under magnetic saturation conditions.

Inference:

We were able to see the effects of armature reaction in a dc shunt generator

References: -NIL-