

Qualificação Profissional de Assistente de Desenvolvimento de Sistemas

LÓGICA DE PROGRAMAÇÃO

GEEaD - Grupo de Estudos de Educação a Distância Centro de Educação Tecnológica Paula Souza

Autores:

Eliana Cristina Nogueira Barion Marcelo Fernando Iguchi Paulo Henrique Mendes Carvalho Rute Akie Utida

Revisão Técnica: Sandra Maria Leandro

Revisão Gramatical: Juçara Maria Montenegro Simonsen Santos

Editoração e Diagramação: Flávio Biazim

AGENDA 11

MATRIZES

Você já sabe que, na programação, existem variáveis especiais capazes de armazenar múltiplos dados, utilizadas para organizar e facilitar a escrita do seu código, não é mesmo? Matrizes, conhecidas também por Array (termo originário do inglês), são variáveis desse tipo. Elas podem guardar múltiplos valores em mais de uma dimensão, ou seja, seus dados podem ser armazenados ou lidos de acordo com a relação entre eixos.

Os elementos de uma matriz são ordenados como em um jogo de Batalha Naval: em linhas e colunas identificadas. Mas, diferentemente do jogo, para indicar a localização dos elementos dentro da matriz, são utilizados apenas números, chamados de **índices**.

	1	2	3	1	5	6	7	8	9	10	
	_	~	7	7	7	U	′	O	9	10	
А	l.										
В	3										
C											
D)										
E	\times										
F	\times										
G											
Н											
	Batalha Naval										

Então, na programação as matrizes são identificadas utilizando-se **duas variáveis distintas**: uma para a representação das linhas e outra para a das colunas. Observe a matriz representada a seguir: em vermelho, estão destacados os índices para a identificação de cada elemento da matriz. Por exemplo, para endereçarmos o elemento de número 9, teremos: linha[2], coluna[100] = 9.

	1	2	 100
1	10	7	
2	34	78	 9
			 18
100	6	3	 54

Antes de prosseguir, assista a <u>videoaula</u> do Prof. Sandro Valérius que esclarece bastante o conceito de Matrizes, utilizando exemplos e analogias que auxiliam muito nesse estudo. Veja:

Conhecendo um exemplo:

As matrizes são utilizadas constantemente no cotidiano, mas costumamos não nos dar conta. Veja o exemplo a seguir:

O professor Rafael deseja realizar o fechamento das notas bimestrais de sua turma. Naquele bimestre, cada aluno realizou três atividades valendo nota. Para organizar esses dados, o professor preparou uma tabela.

Considerando que todas as notas podem ser números reais, teremos tipos de dados idênticos para todos os campos, inclusive para a média das notas.

Assim, cada uma das notas individuais dos alunos da tabela representa um elemento da matriz. E esses elementos podem ser facilmente referenciados para a realização de cálculos ou outra operação necessária. Veja a seguir:

Na matriz representada acima, temos as notas das 3 atividades nas três primeiras colunas e a média bimestral na última coluna. Se quisermos buscar a terceira nota do primeiro aluno, teremos: linha[1], coluna[3] = 6. As matrizes são um modo muito simples e eficaz de representarmos os dados em programação.

Como utilizar uma matriz em Java?

Agora que você já compreendeu o que é uma matriz e como ela é declarada, é momento de focar na parte prática da utilização em pseudocódigo e em Java. Veja a sintaxe da declaração de uma matriz bidimensional, a seguir:

PORTUGOL	JAVA
<tipo> <nome>[tamanho][tamnaho]</nome></tipo>	<tipo> <nome>[][] = new <tipo>[n][m];</tipo></nome></tipo>

Onde temos <nome>, você indicará o nome da matriz. Em <tipo>, deve ser indicado o tipo de variável a ser armazenada. Em n, você deverá especificar o número de linhas e, em m, o de colunas.

Veja um exemplo de declaração de matriz bidimensional:

PORTUGOL	JAVA
int mat [10][10]	int mat[][] = new int [10][10];

Tanto o Portugol quanto o Java declaram uma matriz **mat** com duas dimensões (linha e coluna) com 100 posições no total (10 linhas x 10 colunas).

Dica:

Isso mesmo! Você pode utilizar esses termos: **Arrays Unidimensionais** para informar o uso de vetores (matrizes unidimensionais) e **Arrays Bidimensionais** para o uso de matrizes bidimensionais. Essa é a diferença!

Veja agora outro exemplo:

PORTUGOL	JAVA
cadeia nomes [10][5]	String nomes[][] = new String [10][5];
inteiro num [4][4]	double num[] [] = new double [4][4];
real num [4][4]	float num1[] [] = new float [4][4];

Observe que o número de linhas e o número de colunas indicados nos [] (colchetes) não precisam ser iguais.

Declarando uma Matriz inicializada

Você já compreendeu como declarar uma matriz em seu programa, mas percebeu que não indicou nenhum valor presente nos elementos da matriz? Em outras palavras, até este momento, você sabe declarar uma matriz vazia. Agora, pense, pesquise e responda:

Como você poderia declarar uma matriz 2x2 (duas linhas por duas colunas) com seus valores inteiros já inicializados em Java?

Reflita e busque resolver essa questão antes de visualizar a solução.

Agora, analise a declaração da matriz na codificação a seguir e entenda como inicializar uma matriz com valores pré-definidos:

```
☐ import javax.swing.JOptionPane;
      public class MatrizInicializada {
              public static void main(String[] args) {
                      // Matriz 2x2 inicializada
                      //declaração da matriz e inicialização
10
                     int mat[][] = { {1,2}, {3,4} };
11
12
                      //saída de valores da matriz
13
                      for (int linha= 0; linha<2;linha++) {
14
                             for(int coluna = 0; coluna<2; coluna++) {
                                     JOptionPane.showMessageDialog(null, "Matriz[" + linha + "] coluna[" + coluna + "] = " + mat[linha][coluna]);
15
                             }//fim do segundo for
16
17
                     }//fim do primeiro for
18
             }//fim do main
19
     1//fim da classe
```

Como acessar os dados da Matriz?

O acesso aos elementos de uma matriz é feito utilizando **comandos de repetição**. Durante o curso, você viu três comandos desse tipo, sendo o **para...fim-para** (for no Java) o mais adequado para utilização com matrizes. Isso porque ele executa uma repetição por um número fixo de vezes e, como você já sabe, uma matriz possui um número fixo de linhas e colunas.

O exemplo a seguir considera uma matriz 4x4 de números inteiros, com as variáveis linha e coluna controlando o acesso à linha e à coluna das matrizes. Nela, o usuário irá incluir os valores presentes em cada elemento da matriz, ou seja, trata-se de uma matriz não-inicializada. Veja como ficaria a sintaxe do comando em pseudocódigo e em Java:

```
PORTUGOL
                                                                                  JAVA
programa
{
                                                      double num [] [] = new double [4][4];
 funcao inicio()
                                                      int linha. coluna:
   real num[4][4]
                                                      JOptionPane.showMessageDialog (null, "Inserindo os dados
   inteiro linha, coluna
                                                      na Matriz"):
                                                      for (linha = 0; linha < 4; linha++) {
   escreval("Inserindo os dados na Matriz:")
                                                        for (coluna = 0; coluna < 4; coluna++) {
                                                          num[linha][coluna] = Double.parseDouble(
   para (linha = 0; linha < 4; linha++)
                                                               JOptionPane.showInputDialog("Entre com
   {
    para (coluna = 0; coluna < 4; coluna++)
                                                               o número" + "\nlinha " + "" + linha +
                                                               "\ncoluna " + coluna));
      escreva("Digite o número para a posição [",
                                                        }
linha, "][", coluna, "]: ")
      leia(num[linha][coluna])
                                                      JOptionPane.showMessageDialog (null, "Mostrando
    }
                                                          os dados na Matriz");
   }
                                                      for (linha = 0; linha < 4; linha++) {
   escreval("\nMostrando os dados na Matriz:")
                                                        for (coluna = 0; coluna < 4; coluna++) {
                                                          JOptionPane.showMessageDialog(null,"linha"
   para (linha = 0; linha < 4; linha++)
                                                            + linha + "\ncoluna " + coluna + "\nNúmero
                                                            " + num[linha][coluna]);
    para (coluna = 0; coluna < 4; coluna++)
```

O portugol inicia-se com a declaração da matriz num **4x4** e das variáveis **linha** e **coluna** que servirão para acessarmos os elementos da matriz. Logo depois, temos dois comandos de repetição encadeados: um para controlarmos a linha (Para linha) e outro para a coluna (Para coluna). Dessa forma, os elementos da matriz serão inseridos na primeira linha, uma coluna por vez, e passa-se para a linha seguinte ao chegar ao final (coluna 4).

Note que no interior desses dois comandos de repetição temos uma entrada de dados (**Escreva**), para que o usuário insira o valor do elemento **num[linha][coluna]** da matriz. Então, quando a linha = 1 e a coluna = 2, teremos acesso ao elemento num[1][2].

O mesmo ocorre na etapa "Mostrando os dados da matriz", porém, ao invés de realizarmos a leitura do valor **num[linha][coluna]**, realizamos a escrita do mesmo.

Agora, confira o programa Java.

num[linha][coluna])

} } escreval("Posição [", linha, "][", coluna, "] = ",

Em Linguagem Java ocorre algo semelhante ao visto no pseudocódigo: primeiro declara-se a matriz e as variáveis de controle, para na primeira dupla do comando **for** realizar-se a entrada dos dados. Os dados inseridos são exibidos na segunda dupla.

VOCÊ NO COMANDO

Quando você executar o exemplo acima em Java, serão geradas várias janelas com a exibição dos dados. Serão pelo menos 16 janelas para a entrada e mais 16 para a saída de dados. Então, você tem um desafio: tente modificar o programa de modo que ele fique com as 16 janelas de entrada e somente 1 janela de saída.

Reflita e busque resolver essa questão antes de visualizar a solução.

Perceba que, para resolver o problema, basta mover o JOptionPane para fora do laço for:

```
import javax.swing.JOptionPane;
   public class ExemploMatriz {
public static void main(String[] args) {
          double num[][] = new double[4][4];
          int linha, coluna;
          String exibir = "";
           //Entrada de dados na matriz
          JOptionPane.showMessageDialog(null, "Inserindo os dados na Matriz");
           for (linha = 0; linha < 4; linha++) {</pre>
              for (coluna = 0; coluna < 4; coluna++) {</pre>
                  num[linha][coluna] = Double.parseDouble(
                           JOptionPane.showInputDialog("Entre com o número" + "\nlinha" + linha + "\ncoluna" + coluna));
           JOptionPane.showMessageDialog(null, "Mostrando os dados na Matriz");
           for (linha = 0; linha < 4; linha++) {</pre>
               for (coluna = 0; coluna < 4; coluna++) {</pre>
                  exibir += num[linha][coluna] + "|";
               exibir += "\n";
           JOptionPane.showMessageDialog(null, exibir);
```

Outra opção seria utilizar o comando System.out.print que realiza a impressão no console do programa.

Agora que você já compreendeu o conceito de Matrizes e como aplicá-las, assista à videoaula a seguir, gravada pelo professor Rogério Silva, que sintetiza os conteúdos apresentados.

Retomando ao Exemplo:

No começo deste texto, você viu que o professor Rafael desejava calcular a média bimestral de seus estimados alunos e, para isso, organizou os dados em uma matriz. Considerando que a turma tem 10 alunos, cada um realizou 3 atividades e uma coluna deve ser reservada para a média, sabemos que essa matriz tem 10 linhas e 4 colunas.

Como poderíamos codificar um programa que realizasse esse cálculo?

Veja o portugol e a codificação em Java:

PORTUGOL

```
programa
 funcao inicio(){
   real notas[10][4]
   real media
   inteiro linha, coluna
   escreval("Inserindo os dados na Matriz:")
   // Leitura das notas
   para (linha = 0; linha < 10; linha++){
     para (coluna = 0; coluna < 3; coluna++)
       escreva("Digite a nota do aluno ", linha + 1, " na disciplina ",
coluna + 1, ": ")
       leia(notas[linha][coluna])
     }
   }
   escreval("\nCalculando as médias...")
 // Cálculo da média para cada aluno (armazenada na 4ª coluna - índice 3)
   para (linha = 0; linha < 10; linha++)
   {
     media = 0
     para (coluna = 0; coluna < 3; coluna++) {
       media = media + notas[linha][coluna]
     }
     notas[linha][3] = media / 3
   }
   escreval("\nMostrando os dados da matriz (notas e média):")
   // Exibição dos dados
   para (linha = 0; linha < 10; linha++){
     escreval("\nAluno ", linha + 1)
     para (coluna = 0; coluna < 3; coluna++) {
       escreval("Nota ", coluna + 1, ": ", notas[linha][coluna])
     }
     escreval("Média: ", notas[linha][3])
   }
 }
```

No Java:

```
4
     public class MatrizExemploMedia {
 6 🗀
        public static void main(String[] args) {
      //declaração de variáveis
            double notas[][] = new double[10][4];
             int linha, coluna;
10
             double media = 0;
11
12
      //entrada de dados
13
             JOptionPane.showMessageDialog(null, "Inserindo os dados na Matriz");
             for (linha = 0; linha < 10; linha++) {</pre>
                 for (coluna = 0; coluna < 3; coluna++) {
15
                   notas[linha][coluna] = Double.parseDouble(JOptionPane.showInputDialog("Entre a nota do " + (linha + 1) + "° " + "aluno"));
16
                 }//fim do for
17
             }//fim do for
18
     //cálculo da média
19
             for (linha = 0; linha < 10; linha++) {</pre>
20
                 for (coluna = 0; coluna < 3; coluna++) {</pre>
21
                     media = media + notas[linha][coluna];
22
23
24
                 }//fim do for
25
                 notas[linha][3] = media / 3;
26
                 //atribuindo o valor O para iniciar o cálculo da media para o próximo aluno
27
                 media = 0;
28
             }//fim do for
29
30
      //saída de dados
31
             JOptionPane.showMessageDialog(null, "Mostrando as menções");
32
             for (linha = 0; linha < 10; linha++) {
               for (coluna = 0; coluna < 3; coluna++) {
34
                     JOptionPane showMessageDialog(null, "Aluno " + (linha + 1) + "\n" " + (coluna + 1) + "\nNúmero " + notas[linha][coluna]);
35
                }//fim do for
36
37
     //exibe média de aluno
                JOptionPane.showMessageDialog(null, "Média: " + notas[linha][3]);
38
39
             }//fim do for
40
41
         }//fim do método main
```


Agora que você já compreendeu o conceito de Matriz e viu o exemplo do professor Rafael, procure solucionar o desafio de Paulo:

1. Como estudante do Ensino Médio, Paulo deseja fazer um software que realize a soma de duas matrizes **4x4**. Ele sabe que, para realizar a soma de duas matrizes, segundo a matemática, cada elemento da matriz A deve ser somado ao seu elemento correspondente da matriz B, gerando o resultado em uma terceira matriz C. Elabore o pseudocódigo e a codificação em linguagem Java de um software que resolva o desafio de Paulo.

Dica: Para fazer a soma dessas duas matrizes, deve-se ler as matrizes A e B, cada uma de duas dimensões, com 4 linhas e 4 colunas. Construir a matriz C, de mesma dimensão, ou seja, formada pela soma dos elementos da matriz A com os elementos da matriz B e apresentar os elementos da matriz C. Soma de matrizes: A[1,1] + B[1,1] = C[1,1].

Reflita e busque resolver essa questão antes de visualizar a solução.

Compare sua resposta com a solução a seguir:

Portugol

```
programa
 funcao inicio()
   inteiro a[4][4], b[4][4], c[4][4]
   inteiro linha, coluna
   escreval("Inserindo os dados na Matriz A:")
   para (linha = 0; linha < 4; linha++)
     para (coluna = 0; coluna < 4; coluna++)
      escreva("Digite o valor para A[", linha, "][", coluna, "]: ")
      leia(a[linha][coluna])
     }
   }
   escreval("\nInserindo os dados na Matriz B:")
   para (linha = 0; linha < 4; linha++)
     para (coluna = 0; coluna < 4; coluna++)
      escreva("Digite o valor para B[", linha, "][", coluna, "]: ")
      leia(b[linha][coluna])
   }
   escreval("\nCalculando a Matriz C = A + B")
   para (linha = 0; linha < 4; linha++)
     para (coluna = 0; coluna < 4; coluna++)
       c[linha][coluna] = a[linha][coluna] + b[linha][coluna]
     }
   }
   escreval("\nMostrando os resultados da Matriz C:")
   para (linha = 0; linha < 4; linha++)
   {
     para (coluna = 0; coluna < 4; coluna++)
      escreval("C[", linha, "][", coluna, "] = ", c[linha][coluna])
   }
 }
```

Programa em Java:

```
1 = import javax.swing.JOptionPane;
       public class MatrizEx1 {
 3
 4
 5 🗐
           public static void main(String[] args) {
 6
              // exercício 1
               //declaração de variáveis
              int a[][] = new int[4][4];
              int b[][] = new int[4][4];
 10
              int c[][] = new int[4][4];
11
              int linha, coluna;
12
              //entrada de dados
13
14
               //matriz A
              for (linha = 0; linha < 4; linha++) {
15
                  for (coluna = 0; coluna < 4; coluna++) {
16
                      a[linha][coluna] = Integer.parseInt(JOptionPane.showInputDialog("Entre com o elemento [" + linha + "][" + coluna + "] da matriz A"));
 17
                 }//fim do for
19
              }//fim do for
20
21
              //matriz B
              for (linha = 0; linha < 4; linha++) {
22
                  for (coluna = 0; coluna < 4; coluna++) {
23
                      b[linha][coluna] = Integer.parseInt(JOptionPane.showInputDialog("Entre com o elemento [" + linha + "][" + coluna + "] da matriz B"));
24
                  }//fim do for
25
26
              }//fim do for
27
28
               //cálculo
29
               for (linha = 0; linha < 4; linha++) {
                for (coluna = 0; coluna < 4; coluna++) {
 30
 31
                       c[linha][coluna] = a[linha][coluna] + b[linha][coluna];
                  }//fim do for
 32
 33
               }//fim do for
 34
35
       //saída de dados
              for (linha = 0; linha < 4; linha++) {
36
                  for (coluna = 0; coluna < 4; coluna++) {
    System.out.print("C[" + linha + "][" + coluna + "] = " + c[linha][coluna]);</pre>
37
38
                   }//fim do for
39
 40
                   System.out.println("");
 41
               }//fim do for
44
```

2. Roberta deseja fazer um programa que armazene somente três dados de cada um dos visitantes de seu restaurante: o nome completo, a cidade e o estado aonde residem. O programa deve ser capaz de armazenar 100.000 pessoas. Como Roberta resolveria esse problema?

Dica:

Durante os testes faça com somente 10 entradas e depois altere para o que foi pedido.

Reflita e busque resolver essa questão antes de visualizar a solução.

Compare sua resposta com a solução a seguir:

```
PSEUDOCÓDIGO
programa{
 funcao inicio(){
   caractere dados[10][3]
   inteiro linha, coluna
   escreval("Inserindo os dados na Matriz:")
   para (linha = 0; linha < 10; linha++){
    escreva("Entre com o nome da pessoa ", linha + 1, ": ")
    leia(dados[linha][0])
    escreva("Entre com a cidade: ")
    leia(dados[linha][1])
    escreva("Entre com o estado: ")
    leia(dados[linha][2])
   escreva("\nExibindo os dados armazenados:")
   para (linha = 0; linha < 10; linha++){
    para (coluna = 0; coluna < 3; coluna++){
      se (coluna == 0){
        escreval("Nome: ", dados[linha][coluna])
      }
      senao{
        se (coluna == 1){
         escreval("Cidade: ", dados[linha][coluna])
         escreva("Estado: ", dados[linha][coluna])
        }
      }
    escreva("-----")
   }
 }
```

Programa em Java:

```
1 = import javax.swing.JOptionPane;
2
      public class MatrizEx4 {
3 -
          public static void main(String[] args) {
4
              //declaração de variáveis
5
              String dados[][] = new String[100000][3];
6
              int linha, coluna;
              String saida = "Nome: ";
7
8
              //Entrada de dados
9
              JOptionPane.showMessageDialog(null, "Entrada de dados");
10
              for (linha = 0; linha < 100000; linha++) {</pre>
11
                  //não usaremos o for para a coluna endereçaremos a coluna diretamente
12
                  dados[linha][0] = JOptionPane.showInputDialog("Entre com o Nome:");
                  dados[linha][l] = JOptionPane.showInputDialog("Entre com a cidade:");
13
                  dados[linha][2] = JOptionPane.showInputDialog("Entre com o Estado:");
14
15
              }//fim do for
16
              //exibição dos dados
              for (linha = 0; linha < 100000; linha++) {
17
                  for (coluna = 0; coluna < 3; coluna++) {
18
19
                      saida = saida.concat(dados[linha][coluna]);
20
                      if (coluna == 0) {
                          saida = saida.concat("\nCidade: ");
21
22
23
                      if (coluna == 1) {
24
                          saida = saida.concat("\nEstado: ");
25
26
                  }//fim do for
27
                  JOptionPane.showMessageDialog(null, "Dados:\n" + saida);
28
                  saida = "Nome: ";
              }//fim do for
29
30
31
```

Utilizando uma Matriz Tridimensional

Até o momento você viu como utilizar vetores (Arrays) bidimensionais, mas saiba que também é possível utilizar **Arrays Tridimensionais**. Se podemos relacionar as matrizes bidimensionais às caixas organizadoras com diversos compartimentos, podemos entender que matrizes tridimensionais seriam como caixas especiais, com diversas gavetas bidimensionais.

Para utilizá-las, basta tomar alguns cuidados:

• Para declarar a matriz: utilizar uma variável a mais. Pensando em uma matriz de 2 x 2 x 2 elementos, o código Java ficará assim:

double matriz [][][] = new double [2][2][2];

• Para acessar os elementos: acrescentar mais um for em seu código

Tratando erros em Matrizes

Você já imaginou como é possível tratar erros utilizando o comando Try-Catch com matrizes? Veja o programa a seguir, preparado com base no exemplo do professor Rafael.

Exemplo com o Try-Catch em Java:

```
1 | import javax.swing.JOptionPane;
      public class MatrizExemploMedia {
 3
           public static void main(String[] args) {
 6
               double notas[][] = new double[10][4];
               int linha, coluna;
 8
               double media = 0;
10
              JOptionPane.showMessageDialog(null, "Inserindo os dados na Matriz");
11
               //Iniciando a verificação
12
               try {
                   for (linha = 0; linha < 10; linha++) {</pre>
13
                      for (coluna = 0; coluna < 3; coluna++) {
15
                           notas[linha][coluna] = Double.parseDouble(JOptionPane.showInputDialog("Entre a nota do " + (linha + 1) + " o " + "aluno"));
                       1//fim do for
16
                  1//fim do for
17
18
      //cálculo da média
                  for (linha = 0; linha < 10; linha++) {</pre>
                      for (coluna = 0; coluna < 3; coluna++) {
   media = media + notas[linha][coluna];</pre>
20
21
22
23
                      notas[linha][3] = media / 3;
25
                       //atribuindo o valor 0 para iniciar o cálculo da
26
                       media = 0:
                   }//fim do for
27
28
29
      //saída de dados
30
                   JOptionPane.showMessageDialog(null, "Mostrando as menções");
                   for (linha = 0; linha < 10; linha++) {</pre>
31
32
                      for (coluna = 0; coluna < 3; coluna++) {
33
                          JOptionPane.showMessageDialog(null, "Aluno " + (linha + 1) + "\n " + (coluna + 1) + "\nNúmero " + notas[linha][coluna]);
34
                      }//fim do for
35
36
      //exibe média de aluno
37
                       JOptionPane.showMessageDialog(null, "Média: " + notas[linha][3]);
39
40
              } catch (NumberFormatException e) {
                   JOptionPane.showMessageDialog(null, "Entre somente com números\nEncerrando", "ERRO", JOptionPane.ERROR MESSAGE);
41
              } //fim do try-catch
42
          }//fim do método main
      }//fim da classe
46
```