Baccalauréat 2011

Session Normale

Séries : C & TMGM **Epreuve: Mathématiques** Durée: 4 heures

(1,5)

(0,5)

(0,5)

(0,5)

(0,5)

(0,5)

(0,75)

Honneur - Fraternité - Justice

Coefficients: 9 & 6

Exercice 1 (4 points)

Pour tout nombre complexe z on pose : $P(z) = z^3 - (1 + 2\cos\theta)z^2 + (1 + 2\cos\theta)z - 1$ où $\theta \in [0; 2\pi]$.

- 1) Calculer P(1) puis déterminer les solutions z_0 , z_1 et z_2 de l'équation P(z) = 0 sachant que z_0 est réel, et $\operatorname{Im} z_1 \ge 0$ si $\sin \theta \ge 0$.
- 2) Dans le plan complexe muni d'un repère orthonormé $(\mathbf{O}; \mathbf{u}, \mathbf{v})$ on considère les points \mathbf{M}_0 , \mathbf{M}_1 et \mathbf{M}_{2} d'affixes respectives \mathbf{z}_{0} , \mathbf{z}_{1} et \mathbf{z}_{2} . Déterminer, lorsque $\boldsymbol{\theta}$ décrit l'intervalle $[0;2\pi[$, le lieu géométrique Γ_1 des points M_1 et M_2 .
- 3) Soit le point G barycentre du système $S = \{(M_0, 1); (M_1, 1); (M_2, -3)\}$
- a) Démontrer que si θ décrit l'intervalle $[0;2\pi[$, alors le lieu géométrique Γ du point G est une ellipse dont on donnera une équation cartésienne.
- b) Déterminer, dans le repère (O; u, v), les coordonnées du centre et des sommets puis calculer l'excentricité de l'ellipse Γ . Construire Γ dans ce repère.
- 4) On suppose dans cette question que $\theta = \frac{\pi}{2}$
- a) Déterminer les coordonnées des points M_0 , M_1 , M_2 et G. Placer ces points sur la figure précédente. Quelle est la particularité de G dans ce cas ?
- b) Déterminer puis construire l'ensemble Γ' des points M du plan tels que :

$$MM_0^2 + MM_1^2 - 3MM_2^2 = 6$$

Exercice 2 (4 points)

Soit **f** la fonction numérique définie par : $\begin{cases} f(x) = x(1 - \ln x); & x > 0 \\ f(0) = 0 \end{cases}$

Soit (C) la courbe représentative de f dans un repère orthonormal (O; u, v).

- 1.a) Etudier la continuité et la dérivabilité de \mathbf{f} à droite de $\mathbf{x}_0 = \mathbf{0}$, interpréter graphiquement.
- b) Dresser le tableau de variations de \mathbf{f} . (0,75)
- c) Calculer $\lim_{x \to 0} \frac{f(x)}{x}$. Construire la courbe (C). (0,25)
- $\begin{cases} f_n(x) = x^n (1 \ln x); & x > 0 \\ f_n(0) = 0 \end{cases}$ 2) Pour tout entier $n \ge 1$, on pose :

Soit (C_n) la courbe représentative de la fonction f_n dans le repère orthonormal $(O; \mathbf{u}, \mathbf{v})$.

- (0,25)a) Pour $n \ge 2$, étudier la dérivabilité de f_n à droite de $x_0 = 0$. Interpréter graphiquement.
- b) Dresser le tableau de variation de \mathbf{f}_n . (0,5)
- (0,5)3.a) Montrer que toutes les courbes (C_n) passent par trois points communs que l'on déterminera.
- (0,25)b) Etudier la position relative de (C_n) et (C_{n+1}) .
- 4) Pour tout entier naturel $n \ge 1$ on pose : $U_n = \int_{\frac{1}{2}}^{1} f_n(x) dx$.
- a) Donner une interprétation géométrique de l'intégrale U,. (0,25)
- b) Justifier sans calcul, que la suite (U_n) est positive et décroissante. (0,25)
- c) Donner l'expression de U_n en fonction de n et calculer $\lim_{n\to +\infty} U_n$. (0,25)

Exercice 3 (5 points)

 $f(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$. On considère la fonction f définie sur IR par :

1.a) Calculer $\lim_{x\to\infty} f(x)$, $\lim_{x\to+\infty} f(x)$. Interpréter graphiquement.

b) Vérifier que **f** est impaire, puis dresser son tableau de variation.

(1)

(0,75)

c) Tracer la courbe représentative (C) de f dans un repère orthonormé ($O(\vec{i}, \vec{j})$) d'unité 1cm.

(0,25)

d) Calculer l'aire A du domaine plan limité par (C), l'axe des abscisses et les droites d'équation x = 0et $x = \ln 3$.

(0,25)

2. On considère la suite numérique (U_n) définie par :

 $U_0 = \ln 3$, et pour tout entier naturel $n \ge 1$: $U_n = \int_n^{\ln 3} (f(t))^n dt$.

(0,25)

a) Calculer U₁.

b) Montrer que pour tout entier naturel n, on $a: 0 \le U_n \le \left(\frac{4}{5}\right)^n \ln 3$. En déduire $\lim_{n \to +\infty} U_n$.

(0,5)

c) Vérifier que pour tout $x \ge 0$ on a : $1 - f'(x) = (f(x))^2$. Montrer que pour tout $n \ge 0$:

$$U_{n+2} - U_n = \frac{-1}{n+1} \left(\frac{4}{5}\right)^{n+1}.$$
 (0,75)

d) En déduire que pour tout entier naturel $n \ge 1$:

$$\begin{cases}
U_{2n} = \ln 3 - \sum_{p=1}^{n} \frac{1}{2p-1} \left(\frac{4}{5}\right)^{2p-1} \\
U_{2n+1} = \ln \frac{5}{3} - \sum_{p=1}^{n} \frac{1}{2p} \left(\frac{4}{5}\right)^{2p}
\end{cases} (0,5)$$

e) Pour tout entier nature $n \ge 1$, on pose :

 $S_n = \frac{4}{5} + \frac{1}{2} \left(\frac{4}{5}\right)^2 + \frac{1}{3} \left(\frac{4}{5}\right)^3 + ... + \frac{1}{2n} \left(\frac{4}{5}\right)^{2n} = \sum_{n=1}^{2n} \frac{1}{n} \left(\frac{4}{5}\right)^n$

Calculer $\lim_{n\to+\infty} S_n$.

(0,75)

Exercice 4 (7 points)

Dans le plan orienté, on considère un triangle ABC équilatéral direct de centre G et de côté a, a > 0. Soient I, J et K les milieux respectifs des segments [BC], [CA] et [AB].

L'objectif de cet exercice est l'étude de quelques propriétés de la configuration précédente.

1.a) Faire une figure illustrant les données précédentes que l'on complétera au fur et à mesure. (On pourra prendre la droite (AB) horizontale)

(0,75)(0,5)

b) Montrer qu'il existe une unique rotation r, qui transforme I en A et B en J.

c) Déterminer un angle de \mathbf{r}_1 et préciser son centre.

(0,5)

2) On considère la rotation \mathbf{r}_2 de centre I et d'angle $\frac{\pi}{3}$.

(0,5)

a) Déterminer $r_1(C)$, $r_2(J)$. b) En déduire l'image de la droite (AC) par r₂ puis la construire.

(0,25)

3) Soit **h**1'homothétie de centre **G** et de rapport $\mathbf{k} = \frac{-1}{2}$. On pose $\mathbf{s} = \mathbf{r}_1 \circ \mathbf{h}$.

(0,25)

a) Quelle est l'image du triangle **ABC** par **h**?

(0,5)

b) Montrer que s'est une similitude directe et donner son rapport et son angle.

(0,25)

c) Déterminer s(A). Que peut-on conclure?

Séries C & TMGM

d) Donner la forme réduite de s.	(0,25)
4) On pose $s^1 = s$ et pour tout $n \in \mathbb{N}^*$: $s^{n+1} = s \circ s^n$.	
a) Caractériser s ³ .	(0,25)
b) Soit $p = 10^{2011}$. Montrer que s^{p-1} est une homothétie de rapport négatif.	(0,75)
5) Pour tout point M du plan, on pose : $\mathbf{r}_1(\mathbf{M}) = \mathbf{M}_1$, $\mathbf{r}_2(\mathbf{M}) = \mathbf{M}_2$ et $\mathbf{s}(\mathbf{M}) = \mathbf{M}'$.	
a) Déterminer M_1, M_2 dans chacune des positions suivantes de M : M est en I ; en K ; ou en A .	(0,75)
b) Montrer que, pour tout M distinct de A, le triangle AMM' est rectangle.	(0,25)
c) Déterminer l'ensemble Γ des points \mathbf{M} du plan tels que \mathbf{M}, \mathbf{M}_1 et \mathbf{M}_2 soient alignés. (On pourra	
considérer les triangles \overline{IMM}_2 , \overline{KMM}_1 et l'angle ($\overline{MK}; \overline{MI}$).	(0,5)
6) On suppose dans cette question que Mest situé sur le cercle de diamètre [AC], Mest distinct du	
point A. Montrer que:	
a) La droite $(\mathbf{M_1M_2})$ passe par un point fixe que l'on déterminera.	(0,25)
b) La droite (MM') passe par un point fixe que l'on déterminera.	(0,25)
c) L'angle $(\overline{M_1M_2}, \overline{MM'})$ à une mesure constante α modulo π que l'on déterminera.	(0,25)

Fin.

Baccalauréat 2011 Session Normale Epreuve de Mathématiques Séries C & TMGM 3/3