

(12) NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES
PATENTWESENS (PCT) VERÖFFENTLICHTE INTERNATIONALE ANMELDUNG

(19) Weltorganisation für geistiges Eigentum
Internationales Büro

(43) Internationales Veröffentlichungsdatum
12. September 2003 (12.09.2003)

PCT

(10) Internationale Veröffentlichungsnummer
WO 03/075096 A2

(51) Internationale Patentklassifikation⁷: **G03F 7/20**

(21) Internationales Aktenzeichen: PCT/EP03/01147

(22) Internationales Anmeldedatum:
6. Februar 2003 (06.02.2003)

(25) Einreichungssprache: Deutsch

(26) Veröffentlichungssprache: Deutsch

(30) Angaben zur Priorität:
60/360,845 1. März 2002 (01.03.2002) US

(71) Anmelder (*für alle Bestimmungsstaaten mit Ausnahme von US*): CARL ZEISS SMT AG [DE/DE]; Carl-Zeiss-Straße 22, 73446 Oberkochen (DE).

(72) Erfinder; und
(75) Erfinder/Anmelder (*nur für US*): ULRICH, Wilhelm [DE/DE]; Lederackerring 44, 73434 Aalen (DE). HUDYMA, Russell [US/US]; 218 East Ridge Drive, San Ramon, CA 94583 (US). ROSTALSKI, Hans-Jürgen [DE/DE]; Albertinenstrasse 5b, 13086 Berlin (DE).

(81) Bestimmungsstaaten (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR,

CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KB, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZM, ZW.

(84) Bestimmungsstaaten (*regional*): ARIPO-Patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HU, IE, IT, LU, MC, NL, PT, SE, SI, SK, TR), OAPI-Patent (BR, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Erläuterung gemäß Regel 4.17:

— Erfindererklärung (Regel 4.17 Ziffer iv) nur für US

Veröffentlicht:

— ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben-Codes und der anderen Abkürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

A2

(54) Title: REFRACTIVE PROJECTION LENS

WO 03/075096

(54) Bezeichnung: REFRAKTIVES PROJEKTIONSOBJEKTIV

(57) Abstract: Disclosed is a refractive projection lens with a numerical aperture of more than 0.7, comprising a first convex form, a second convex form, and a middle that is arranged between said bodies. The first form has a maximum diameter D_1 while the second form has a maximum diameter D_2 , and $0.8 < D_1/D_2 < 1.1$ applies.

(57) Zusammenfassung: Refraktives Projektionsobjektiv mit einer numerischen Apertur grösser 0,7, bestehend aus einem ersten Bauch, einem zweiten Bauch und einer zwischen den Bäuchen angeordneten Taille, wobei der erste Bauch einen maximalen Durchmesser, mit D_1 bezeichnet, aufweist und der zweite Bauch einen maximalen Durchmesser, mit D_2 bezeichnet, aufweist und es gilt: $0.8 < D_1/D_2 < 1.1$.

Beschreibung:**Refraktives Projektionsobjektiv**

Die Erfindung betrifft ein refraktives Projektionsobjektiv für die Mikrolithographie, dass in Ausbreitungsrichtung des Lichtes aus einem ersten Bauch, einer Taille und einem zweiten Bauch besteht. Derartige refraktive Projektionsobjektive werden auch mit Bintaillen-Systeme bezeichnet.

Solche Bintaillen-Systeme sind zum Beispiel aus der US60/160799, der EP 1 061 396 A2 und aus der EP 1 139 138 A1 bzw. WO 01/23933 – WO 01/23935 bekannt. Aus diesen Schriften ist es bereits bekannt, dass die erste oder die ersten beiden objektseitigen Linsen negative Brechkraft aufweisen. Weiterhin ist aus diesen Schriften bekannt, dass durch den Einsatz von Asphären die Abbildungsqualität gesteigert werden kann. Da die mit einem Projektionsobjektiv erreichbare Auflösung proportional mit der bildseitigen numerischen Apertur des Projektionsobjektives ansteigt und weiterhin proportional zum Kehrwert der Belichtungswellenlänge ansteigt, herrscht das Bestreben vor, Projektionsobjektive mit möglichst großer numerischer Apertur zur Steigerung der Auflösung bereitzustellen.

Bei den in der Mikrolithographie gestellten Anforderungen an ein Projektionsobjektiv ist es weiterhin erforderlich, ausgewählte Materialien mit einer hohen Qualität zu verwenden. Insbesondere die Fluorid Materialien sind derzeit nur im begrenzten Umfang in der erforderlichen Qualität erhältlich. So werden beispielsweise bei einer Belichtungswellenlänge von 193 nm in den für diese Wellenlänge ausgelegten Projektionsobjektiven einige Linsen aus Calciumfluorid zur Kompensation von Farbfehlern verwendet. Weiterhin werden bevorzugt kurz vor dem Wafer Calciumfluoridlinsen eingesetzt, die bezüglich Compaction nicht so empfindlich sind.

Der Erfindung liegt die Aufgabe zugrunde eine refraktive Projektionsobjektiv bereitzustellen, dass bei einer hohen numerischen Apertur reduzierte Herstellungskosten durch einen verminderten Materialeinsatz aufweist.

Dies konnte insbesondere durch die Maßnahme, den maximalen Durchmesser des zweiten Bauches zu reduzieren, erreicht werden.

Eine Anordnung von zerstreuenden Linsen im Ringangsbereich des Objektives, insbesondere von drei negativen Linsen, tragen zur Verkürzung des Projektionsobjektives bei, was sich vorteilhaft auf den in der Projektionsbelichtungsanlage für das Projektionsobjektiv erforderlichen Platzbedarf auswirkt. Weiterhin impliziert eine Verkürzung des Projektionsobjektives auch eine Reduzierung der eingesetzten Linsen, womit sich das eingesetzte Material und somit die Herstellkosten reduzieren lassen.

Es hat sich als vorteilhaft herausgestellt, zur Kompensation von sphärischen Aberrationen höherer Ordnung, die durch eine hohe numerische Apertur im Endbereich des Projektionsobjektives erzeugt werden, stark gekrümmte Menisken vorzusehen, die negative Brechkraft aufweisen und die zwischen der engsten Einschnürung in der Taille und der Blende und direkt nach der Blende angeordnet sind.

Es hat sich als vorteilhaft herausgestellt, dass diese Menisken auf der dem Objekt zugewandten Seite eine konvexe Oberfläche aufweisen.

Es hat sich auch als vorteilhaft herausgestellt, zwischen der engsten Einschnürung des Lichtbündels in der Taille und der Blende zwei Menisken vorzusehen, deren konvexen Linsenoberflächen zueinander gewandt sind. [003c]

Weiterhin hat es sich als vorteilhaft herausgestellt, im zweiten Bauch einen freien Bereich für die Anordnung einer Systemblende vorzusehen. Durch das Vorsehen dieses freien Bereiches ist es möglich, eine Blende vorzusehen, die axial verschiebbar ist. [003d]

Weiterhin kann bei einem derartigen für die Anordnung der Blende zur Verfügung stehenden Bauraum problemlos auch die Verwendung von gekrümmten Blenden vorgesehen werden. [003e]

Es hat sich als vorteilhaft herausgestellt die vorgesehenen Linsenoberflächen gezielt so auszuwählen, dass der Ein- und Austrittswinkel der auf die Linse fallende Strahlung bzw. die Linsen verlassende Strahlung kleiner als 60° ist. Diese Maßnahme wirkt sich insbesondere vorteilhaft auf die verwendbaren Beschichtungen der Linsen aus bzw. es können einfachere [003f]

Beschichtungen als Antireflexbeschichtung vorgesehen werden, da die Wirksamkeit solcher Beschichtungen wie eine Antireflexbeschichtung insbesondere vom Einfallswinkel der auftreffenden Strahlung abhängt.

Weitere vorteilhafte Maßnahmen sind in weiteren Unteransprüchen beschrieben.

Anhand der folgenden Ausführungsbeispiele wird die Erfindung näher erläutert. Diese Ausführungsbeispiele sind nicht einschränkend zu verstehen. Es zeigt:

Figur 1: Projektionsbelichtungsanlage;

Figur 2: Projektionsobjektiv für die Wellenlänge 193 nm;

Figur 3: Projektionsobjektiv für die Belichtungswellenlänge 193 nm;

Figur 4: Projektionsobjektiv für die Wellenlänge 193 nm;

Figur 5: Projektionsobjektiv für die Belichtungswellenlänge 157 nm.

Figur 6 Projektionsobjektiv für die Wellenlänge 193 nm;

Figur 7: Projektionsobjektiv für die Belichtungswellenlänge 193 nm;

Figur 8: Projektionsobjektiv für die Wellenlänge 193 nm;

Figur 9: Projektionsobjektiv für die Belichtungswellenlänge 193 nm.

Anhand von Figur 1 wird zunächst der prinzipielle Aufbau einer Projektionsbelichtungsanlage 101 der Mikrolithographie beschrieben. Die Projektionsbelichtungsanlage 101 weist eine Beleuchtungseinrichtung 103 und ein Projektionsobjektiv 105 auf. Das Projektionsobjektiv 105 umfasst eine Linsenanordnung 121 mit einer Aperturblende 119, wobei durch die Linsenanordnung 121 eine optische Achse 107 definiert wird. Zwischen Beleuchtungseinrichtung 3 und Projektionsobjektiv 105 ist eine Maske 109 angeordnet, die mittels eines Maskenhalters 111 im Strahlengang gehalten wird. Solche in der Mikrolithographie verwendeten Masken 109 weisen eine Mikrometer bis Nanometerstruktur auf, die mittels des Projektionsobjektives 105 bzw. durch die Linsenanordnung 121 bis zu einem Faktor von 10, insbesondere um den Faktor 4, verkleinert auf eine Bildebene 113 abgebildet wird. In der Bildebene 113 wird ein durch einen Substrathalter 117 positionierte Substrat bzw. ein Wafer 115 gehalten. Die noch auflösbarer minimalen Strukturen hängen von der Wellenlänge des für die Belichtung verwendeten Lichtes sowie von der Apertur des Projektionsobjektives 5 ab; wobei die maximal erreichbare Auflösung

der Projektionsbelichtungsanlage 1 mit abnehmender Wellenlänge und mit zunehmender bildseitiger numerischer Apertur des Projektionsobjektives 5 steigt.

In den Figuren 2 bis 5 sind mögliche Linsenanordnungen 121 der Projektionsobjektive 105 detaillierter dargestellt. Diese dargestellten Linsenanordnungen 121, die auch mit Designs bezeichnet werden, weisen bildseitige eine numerische Apertur von 0,85 bzw. 0.9 auf. Die in Figur 2 bis 4 und 6 bis 9 dargestellten Designs sind für die Belichtungswellenlänge von 193 nm ausgelegt. Das in Figur 5 dargestellte Projektionsobjektiv ist für die Belichtungswellenlänge von 157 nm ausgelegt. All diesen Designs ist gemeinsam, dass die auftretenden Aberrationen sehr klein sind und damit Strukturbreiten von bis zu 70 nm aufgelöst werden können. Dabei sind einerseits die Wellenfrontfehler kleiner als 5/1000 der Wellenlänge des für die Belichtung eingesetzten Lichtes und andererseits die Verzeichnung kleiner als 1 nm. Der Farblängsfehler ist kleiner als 380nm/pm. Die große Feldgröße von $26 \times 10,5 \text{ mm}^2$, in der die Abbildung derart hochwertig korrigiert ist, ermöglicht einen produktiven Einsatz in der Mikrolithographie. Aufgrund der Ausgestaltung der Feldgröße bzw. des Feldformates sind diese Projektionsobjektive mit derartigen Linsenanordnungen insbesondere für den Einsatz in lithographischen Scaneinrichtungen geeignet.

Bevor auf die ausgezeichneten optischen Eigenschaften der in den Figuren 2-9 gezeigten Linsenanordnungen 121 näher eingegangen wird, wird zunächst der prinzipielle Aufbau dieser Linsenanordnungen 121 näher beschrieben. In Ausbreitungsrichtung des Lichtbündels weisen die Linsenanordnungen 121 einen ersten Bauch 123 eine Taille 125 und einen zweiten Bauch 127 auf. Die Taille 125 umfasst eine Stelle engster Einschnürung 129 in dem zweiten Bauch ist eine Systemblende 119 angeordnet.

Diese Linsenanordnungen lassen sich auch in fünf Linsengruppen LG1-LG5 unterteilen. Die erste Linsengruppe LG1 umfasst drei negativ Linsen mit den Linsenoberflächen 2-7. Die ersten beiden Negativlinsen sind vorzugsweise zum Objekt hin durchgebogen. Die dritte Negativlinse ist vorzugsweise eine Meniskulinse, die zum Bild hin durchgebogen ist. An diese erste Linsengruppe schließt sie die zweite Linsengruppe LG2 an, die positive Brechkraft aufweist, wobei eine Linse maximalen Durchmessers des ersten Bauches in dieser zweiten Linsengruppe

angeordnet ist. Diese zweite Linsengruppe LG2 umfasst vorzugsweise ausschließlich Linsen positiver Brechkraft.

An diese Linsengruppe LG2 schließt sich die dritte Linsengruppe LG3, die negative Brechkraft aufweist, an. Diese dritte Linsengruppe LG3 umfasst mindestens drei aufeinanderfolgende Linsen negativer Brechkraft. An diese dritte Linsengruppe LG3 schließt sich eine vierte Linsengruppe LG4 an, die positive Brechkraft aufweist. Diese vierte Linsengruppe LG4 endet vor der Blende.

Durch die nach der Systemblende 119 angeordneten Linsen wird eine fünfte Linsengruppe LG5 gebildet, die ebenfalls positive Brechkraft aufweist. Diese fünfte Linsengruppe LG5 umfasst eine Linse maximalen Durchmessers im zweiten Bauch, wobei dieser Durchmesser mit D2 bezeichnet wird.

Alle diese Beispiele zeichnen sich durch eine ansgezeichnete Korrektion der Wellenfront aus. Die auftretenden Bildfehler sind auf Werte kleiner 5/1000 der Wellenlänge korrigiert. Die Hauptstrahlverzeichnung ist auf Werte kleiner 1 nm korrigiert.

Der vorteilhafte Effekt der vorliegenden Brechkraftverteilung ist durch den Einsatz von Asphären verstärkt worden. Die beiden Asphären auf den zerstreuenden Linsen in der ersten Linsengruppe LG1 dienen hauptsächlich zur Korrektion der Verzeichnung und der objekt- und bildseitigen Telezentrie der Hauptstrahlen des äußersten Feldpunktes.

Die dritte Linsengruppe LG3 beginnt mit einem schwach zerstreuenden Meniskus, dessen konvexe Seite der Maske 109 zugewandt angeordnet ist. An diesen Meniskus schließt sich eine Linse mit positiver Brechkraft und mindestens zwei stark zerstreuenden bikonkaven Linsen an. Wenn in dieser zweiten Linsengruppe LG2 Asphären vorgesehen sind, dann sind diese auf einer dem Wafer zugewandten Konkavfläche angeordnet. Zur Korrektur von höheren Termen des Öffnungsfehlers und der Koma werden mindestens je eine Asphäre in den Linsengruppen LG4 und 5 bzw. vor und hinter der Blende in der Nähe des größten Durchmessers des zweiten Bauches angeordnet. Zwischen der Taille und der Blende, also in der vierten Linsengruppe LG4, ist mindestens ein zerstreuender Meniskus angeordnet. In den bevorzugten Ausführungsformen,

Figur 2 und 3, hat dieser eine dem Wafer zugewandte Konkavfläche und damit eine ähnliche Form wie der unmittelbar hinter der Blende folgende zerstreuende Meniskus.

Der Korrektionszustand wird für jedes Beispiel anhand von Kurven für die sphärische Aberration und den Astigmatismus und die Kennzahlen für den RMS Wert der Wellenfront in den Figuren 2a-2c... bis Figur 5a-5c dargestellt. Die RMS- Werte, welche der mittleren quadratischen Wellenfrontdeformation entsprechen, lassen sich wie folgt bestimmen:

$$W_{RMS} = \sqrt{\langle W^2 \rangle - \langle W \rangle^2}$$

mit W als Wellenfrontfehler und die spitzen Klammern als Operand für die Mittelwertbildung.

Der Farblängsfehler CHL, der wie folgt bestimmt wird:

$$CHL = \frac{s'(\lambda_2) - s'(\lambda_1)}{\lambda_1 - \lambda_2}$$

ist in Tabelle 1 angegeben. Dabei ist s' die paraxiale Bildweite nach der letzten Fläche und λ_1 und λ_2 sind Bezugswellenlängen. CHL wird in nm pro pm angegeben.

Die Wahl eines Eintaillensystems wirkt sich vorteilhaft auf das Auftreten von chromatischen Fehlern aus, die üblicherweise, wie zum Beispiel in der WO 01/23935 durch den Einsatz von mindestens zwei Materialien, so beispielsweise bei einer Belichtungswellenlänge von 193 nm von SiO₂ und CaF₂ korrigiert werden.

Dahingegen ist bei den in den Figuren 2-9 gezeigten Ausführungsbeispielen die Verwendung von nur einem Material vorgesehen, wobei gerade durch die Anordnung der nach der Stelle der engsten Einschnürung vorgesehenen Menisken eine hervorragende Bildqualität bezüglich der chromatischen Aberrationen erreicht werden konnte. Diese Bildqualität zeichnet sich durch einen Farblängsfehler oder „axial color“ kleiner als 385nm pro pm aus. Der Farbvergrößerungsfehlers oder „lateral color“ ist kleiner als 0,8 ppm/pm, was einen hervorragenden Wert darstellt. Dies entspricht einem Farbvergrößerungsfehler von 11nm/pm am Bildrand. Wobei ppm für parts per million steht.

Der Einsatz eines eventuell zusätzlich verwendeten zweiten Materials kann zur Farbfehlerkorrektion und/oder an Stellen auftretender hoher Energiedichte zur Vermeidung von Compaction- und Rarefactioneffekte vorgesehen werden. Mit Compaction- und Rarefactioneffekten sind dabei die materialabhängigen Brechzahländerungen in Bereichen großer Energiedichte gemeint.

Die ausgezeichnete Bildqualität bezüglich Farbfehler wird durch die Gestalten der beiden Bäuche maßgeblich unterstützt. Das Verhältnis der maximalen Durchmesser des ersten Bauches D_1 und des zweiten Bauches D_2 genügt den folgenden Bedingungen $0,8 < D_1/D_2 < 1,1$. Vorzugsweise gilt: $0,8 < D_1/D_2 < 1,0$.

In den vorliegenden Beispielen weisen alle Linsenanordnungen 121 eine numerische Apertur von mindestens 0,85 auf. Es ist jedoch selbstverständlich auch möglich, diese spezielle Anordnung bei einer Linsenanordnung, die bildseitig eine geringere numerische Apertur aufweist, einzusetzen, um entweder ein größeres Feld mit unverminderter Bildqualität bereitzustellen oder die Bildqualität über die anhand der Ausführungsbeispiele gezeigte Güte noch weiter zu verbessern oder den Einsatz von Asphären reduzieren zu können. Die Designs zeichnen sich trotz hoher numerischer Apertur durch geringe Strahlablenkungen bzw. Strahlwinkel an den meisten Flächen aus. Dadurch werden nur wenige Bildfehler höherer Ordnung generiert.

Da sich die hohen Einfallswinkel in der Nähe des Wafers auf den Linsen und der planparallelen Abschlussplatte nicht vermeiden lassen, werden zwangsläufig Aberrationen höherer Ordnung generiert. Um diese Aberrationen höherer Ordnung zu kompensieren, sind einige wenige Flächen im System vorgesehen, an denen die einfallende Strahlung bzw. die aus den Linsen austretende Strahlung einen großen Einfallswinkel bzw. Brechungswinkel aufweist, der einer Aberration höherer Ordnung durch Wahl des Vorzeichens entgegenwirkt. In den Beispielen sind aus diesem Grunde die stark gekrümmten Menisken, die negative Brechkraft aufweisen und die in der vierten und fünften Linsengruppe angeordnet sind, vorgesehen. Die meisten Linsen, mindestens 80 % aller Linsen weisen jedoch Linsenoberflächen auf, an denen das eintretende Licht einen Einfallswinkel von kleiner 60° aufweist. Das gleiche gilt für die Linsenflächen, an denen die Strahlung wieder austritt.

Die Möglichkeiten für die optimale Beschichtung der Linsen werden dadurch vereinfacht bzw. eine Rückreflexion an den Linsenoberflächen kann weiter vermindert werden, da die Wirksamkeit solcher Beschichtungen vom Einfallswinkel stark abhängt und mit steigendem Einfallswinkel in der Regel abnimmt. Es ist nicht möglich mit einem homogenen Schichtsystem über die gesamte Fläche und das volle Spektrum der Einfallswinkel an der Linse konstante Transmission zu erhalten. Insbesondere in der Übergangszone des Winkelbereichs zwischen 50 und 60 Grad verschlechtert sich die Transmission bei gleicher Beschichtung erheblich. Deshalb ist es vorteilhaft, erstens die Einfallswinkel generell so klein wie möglich zu halten und zweitens, wenn sich große Einfallswinkel aus Korrektionsgründen nicht vermeiden lassen, die Flächen mit den maximalen Einfallswinkeln in die Nähe der Blende zu positionieren. In diesem Fall treten bestimmte Einfallswinkelspektren nur in definierten Ringzonen der Linse auf. Zur Erzielung eines optimalen Ergebnisses bezüglich der Transmission werden die Beschichtungen in Abhängigkeit des Radiuses variiert und somit optimal an den jeweiligen Einfallwinkelbereich angepasst.

Um unterschiedlichste Blenden systeme bei den dargestellten Designs vorsehen zu können, ist im Bereich der Blende ein freier Bereich, der mit L_{AP} bezeichnet wird, vorgesehen worden. Dadurch sind Blenden einsetzbar, die in Abhängigkeit von den Anforderungen an das Bild nachgeföhrt werden können. Auch sind unterschiedlichste Blenden einsetzbar und es können Blendenfassungen vorgesehen werden, die bereits einen Mechanismus zur Verstellung der Blende aufweisen, da für das Vorsehen einer derartigen Konstruktion ausreichend Bauraum zur Verfügung steht muss. Die letzten beiden Linsen vor der Systemblende 119 angeordneten Linsen haben maßgeblich dazu beigetragen, dass der Freiraum L_{AP} bereitgestellt werden konnte.

Durch die kleinen Durchmesser D1 und D2 in den beiden Bäuchen 123, 127, und die kurze Baulänge von 1000-1150 mm und die geringe Anzahl von Linsen konnte eine Reduktion des erforderlichen Linsenmaterials erreicht werden. Es konnte erreicht werden, dass die Linsenmasse m in einigen Ausführungsbeispielen kleiner als 55 kg ist siehe Tabelle 1. Die Linsen der in den Figuren 2-9 gezeigten Linsenanordnungen liegt im Bereich 54 bis 68 kg.

Systeme mit großer numerischer Apertur neigen dazu, besonders große Durchmesser im zweiten Bauch 127 und eine große Baulänge 0 0' zu erfordern. Wesentlich zur Erzielung der kleinen

Bauchdurchmesser und der handlichen Baulänge ist die Gestaltung des Übergangs zwischen Taille und dem zweiten Bauch. Hier werden zwei sammelnde Menisken verwendet, die mit ihren konvexen Seiten zueinander gewandt angeordnet sind. Aufgrund dieser Anordnung konnte der maximale Linsendurchmesser und damit insbesondere die Masse der notwendigen Linsenblanks aufgrund der Ausgestaltung des zweiten Bauches gering gehalten werden. Um eine möglichst geringe Masse zu erzielen, müssen die folgenden Beziehungen eingehalten werden:

$$L * D_{\max} / (NA * 2yb) < 12850$$

wobei L die Baulänge gemessen vom Reticle zum Wafer ist, NA die bildseitige numerische Apertur ist, D_{\max} der maximale Durchmesser des Systems, also D_1 oder D_2 ist und $2yb$ der Durchmesser des Bildfeldes ist. Besonders vorteilhaft ist es, wenn der maximale Durchmesser des ersten Bauches D_1 maximal gleich dem maximalen Durchmesser des zweiten Bauches D_2 ist.

In der nachfolgenden Tabelle 1 sind die jeweiligen Linsenanordnungen 121 charakterisierenden Daten angegeben. L_{geo} ist die Summe der Mittendicken aller Linsen des Objektives.

LV ist ein Maß für den freien Bauraum um eine Systemblende herum, wobei mit L_{AP} der freie Abstand von der letzten Linsenoberfläche vor der Blende bis zur ersten Linsenoberfläche nach der Blende ist.

$$LV = \frac{2 \cdot L_{AP} \cdot \left(\frac{L_{\text{geo}}}{L - L_{AP}} \right)}{L}$$

L_{geo} ist die Summe über die Mittendicken aller im Objektiv angeordneten Linsen ist und L der Abstand von Bildebene O' zur Objektebene O ist.

Tabelle 1

	NA	D_1 mm	D_2 mm	L $= 00'$ mm	L_{AP} mm	L_{geo} mm	D_1/D_2	Feld mm ²	Anzahl	λ in nm	CHL	m	LV	$\frac{NA \cdot L}{D_{\max}}$
Fig. 2	0,85	258,7	275,3	1150	49,6	821,7	0,94	$26 \times 10,5$	8	193	380, 5	63	0,13	3,55

Fig. 3	0,85	266,7	279,4	1150	52,1	810,6	0,95	26 x 10,5	8	193	384, 9		0,14	3,50
Fig. 4	0,85	199,5	235,8	999,8	12,5	688,5	0,85	22 x 6	8	157	529, 5	57	0,04	3,6
Fig. 5	0,85	260	264	1100	46,1	794,5	0,98	26 x 10,5	8	193	370	60	0,13	3,54
Fig. 6	0,85	263,9	277,6	1098	6	728	0,95	26 x 10,5	6	193	396	54	0,016	3,36
Fig. 7	0,85	263,9	277,8	1098	9	726	0,95	26 x 10,5	6	193	392	54	0,023	3,36
Fig. 8	0,9	284,2	285	1107	18	777,2	1	26 x 10,5	9	1193	374	60	0,05	3,5

Die genauen Linsendaten der in Figur 2 gezeigten Linsenanordnung sind aus Tabelle 2 zu entnehmen.

Tabelle 2:

TABELLE 2

crv8_5

FLAECHE	RADIEN	DICKEN	GLAESER	Brechzahl	1/2 FREIER DURCHMESSER
0	0.000000000	32.000000000	L710	0.99998200	56.080
1	0.000000000	0.000000000	L710	0.99998200	63.104
2	727.642869160	10.000000000	SIO2HL	1.56028895	63.718
3	226.525323855AS	13.700039256	HE193	0.99971200	65.318
4	2211.534901544	10.867348809	SIO2HL	1.56028895	67.362
5	272.198328283AS	38.109427988	HE193	0.99971200	70.568
6	-110.268448226	53.110762192	SIO2HL	1.56028895	71.923
7	-150.645587119	1.027970654	HE193	0.99971200	97.325
8	-1859.686377061	35.612645698	SIO2HL	1.56028895	112.154
9	-785.737931706	1.605632266	HE193	0.99971200	120.907
10	-15567.86026603	41.231791248	SIO2HL	1.56028895	124.874
11	-255.699077104	1.000000000	HE193	0.99971200	126.787
12	1289.315128841	21.016190377	SIO2HL	1.56028895	129.339
13	-1288.131288834	1.000000000	HE193	0.99971200	129.365
14	260.564227287	51.423634995	SIO2HL	1.56028895	127.263
15	1730.695425203	13.188971653	HE193	0.99971200	122.159
16	176.011027540	55.000000000	SIO2HL	1.56028895	107.596
17	109.644555647	11.784016964	HE193	0.99971200	81.889
18	136.796552665	41.333702101	SIO2HL	1.56028895	81.527
19	127.780585003	23.051923975	HE193	0.99971200	68.904
20	2669.368605391	34.121643610	SIO2HL	1.56028895	68.053
21	355.264577081AS	30.898497897	HE193	0.99971200	62.218
22	-109.389008884	10.000000000	SIO2HL	1.56028895	61.017
23	249.223110659	27.598291596	HE193	0.99971200	66.233
24	-143.820224710	42.179010727	SIO2HL	1.56028895	67.085
25	-176.696299845	2.479524938	HE193	0.99971200	84.196
26	-475.210722340AS	19.825006874	SIO2HL	1.56028895	90.545
27	-224.363382582	1.042633596	HE193	0.99971200	93.106
28	308.609848426	16.000000000	SIO2HL	1.56028895	102.746
29	201.721667456	25.528839747	HE193	0.99971200	103.303
30	944.687071148AS	19.894794059	SIO2HL	1.56028895	104.495
31	366.820570030	8.208658436	HE193	0.99971200	112.097
32	574.278724113	39.477814236	SIO2HL	1.56028895	113.555
33	-358.531323193	1.326991422	HE193	0.99971200	116.205
34	320.594715977AS	33.261672159	SIO2HL	1.56028895	129.696
35	1861.755729783	32.119103109	HE193	0.99971200	129.674
36	0.000000000	17.287410699	HE193	0.99971200	130.664
37	361.690129139	40.443225527	SIO2HL	1.56028895	137.657

38	232.801533112	17.100750060	HE193	0.99971200	134.775
39	343.521129222	43.749080263	SiO2HL	1.56028895	135.562
40	-1180.085155420	5.861047182	HE193	0.99971200	136.059
41	404.126406350	50.820935982	SiO2HL	1.56028895	137.263
42	-499.905302311AS	1.129115320	HE193	0.99971200	136.399
43	132.000000000	50.889776270	SiO2HL	1.56028895	108.737
44	207.781260330	1.875778948	HE193	0.99971200	96.990
45	131.976080166	50.620041025	SiO2HL	1.56028895	88.265
46	216.108478997	8.560819690	HE193	0.99971200	66.515
47	345.785473120AS	40.780402187	SiO2HL	1.56028895	62.290
48	803.014748992	2.855378377	HE193	0.99971200	37.054
49	0.000000000	10.000000000	SiO2HL	1.56028895	33.755
50	0.000000000	8.000000000	L710	0.99998200	27.205
51	0.000000000	0.000000000		1.000000000	14.020

ASPHÄRISCHE KONSTANTEN:

FLÄSCHEN NR. 3

K	0.0000
C1	-1.09559753e-007
C2	3.57596534e-012
C3	9.55681903e-017
C4	1.60627093e-020
C5	-2.38364411e-024
C6	9.48007957e-029
C7	6.17790835e-034
C8	0.00000000e+000
C9	0.00000000e+000

FLÄSCHEN NR. 5

K	0.0000
C1	-3.98669984e-008
C2	1.21202773e-012
C3	-2.54482855e-016
C4	2.63372160e-020
C5	-7.20324194e-024
C6	1.11610638e-027
C7	-6.59707609e-032
C8	0.00000000e+000
C9	0.00000000e+000

FLÄSCHEN NR. 21

K	0.0000
C1	-2.55118726e-008
C2	-2.20548948e-012
C3	-9.25235857e-017
C4	-3.33206057e-020
C5	6.94726983e-024
C6	-1.13902882e-027
C7	-1.90433265e-032
C8	0.00000000e+000
C9	0.00000000e+000

FLÄSCHEN NR. 26

K	0.0000
C1	-2.59102407e-009
C2	7.80412785e-013
C3	6.46009507e-018
C4	9.48615754e-022
C5	-5.98580637e-026
C6	-6.85408327e-031
C7	-1.22088512e-035
C8	0.00000000e+000
C9	0.00000000e+000

FLAECHE NR. 30

K	0.0000
C1	-2.05499169e-009
C2	-9.59524174e-014
C3	3.47471870e-018
C4	-1.59033679e-023
C5	3.61312920e-027
C6	4.19166365e-031
C7	-6.21964399e-036
C8	0.00000000e+000
C9	0.00000000e+000

FLAECHE NR. 34

K	0.0000
C1	-5.41197195e-011
C2	2.68576256e-014
C3	1.97154224e-018
C4	-1.14136005e-023
C5	-6.50140227e-029
C6	-1.62666510e-032
C7	1.03803879e-037
C8	0.00000000e+000
C9	0.00000000e+000

FLAECHE NR. 42

K	0.0000
C1	4.81397179e-010
C2	-9.43105453e-016
C3	2.24359599e-019
C4	4.36770636e-024
C5	-6.88569878e-028
C6	4.99976924e-033
C7	-3.38683104e-039
C8	0.00000000e+000
C9	0.00000000e+000

FLAECHE NR. 47

K	0.0000
C1	-3.38379388e-008
C2	1.92297513e-012
C3	3.68388126e-016
C4	-4.26261424e-020
C5	-7.93153105e-025
C6	5.33775440e-028
C7	-3.98605335e-032
C8	0.00000000e+000
C9	0.00000000e+000

Die asphärischen Flächen werden durch die Gleichung

$$P(h) = \frac{\delta \cdot h^2}{1 + \sqrt{1 - (1-K) \cdot \delta^2 \cdot h^2}} + C_1 h^4 + \dots + C_n h^{2n+2} \quad \delta = 1/R$$

beschrieben wobei P die Pfeilhöhe als Funktion des Radius h (Höhe zur optischen Achse 7) mit den in den Tabellen angegebenen asphärischen Konstanten K, C₁ bis C_n ist. R ist der in den Tabellen angegebene Scheitelradius.

In den Figuren 2a bis 2c ist die Verteilung der Bildfehler über das Bild dargestellt. In Figur 2a ist die sphärische Längsaberration dargestellt, wobei auf der Vertikalachse die relative Öffnung und auf der Horizontalachse die Längsaberration aufgetragen ist. Aus Figur 2b ist der Verlauf des Astigmatismus zu entnehmen. Auf der Vertikalachse ist die Objekthöhe aufgetragen und auf der Horizontalachse ist die Defokussierung in mm aufgetragen. In Figur 2c ist die Verzeichnung dargestellt, wobei über die Horizontalachse die Verzeichnung in % gegenüber der Objekthöhe auf der Vertikalachse aufgetragen ist.

Die genauen Linsendaten zu der in Figur 3 dargestellten Linsenanordnung ist der Tabelle 3 zu entnehmen.

TABELLE 3

crv9_13

FLÄCHE	RADIEN	DICKEN	GLÄSER	BRECHZAHL 193.304nm	1/2 FREIER DURCHMESSER
0	0.000000000	32.000000000	L710	0.99998200	56.080
1	0.000000000	0.000000000	L710	0.99998200	63.102
2	225.350754363AS	10.000000000	SIO2HL	1.56028895	65.569
3	205.452906258	16.699011276	HE193	0.99971200	65.485
4	-485.968436889AS	10.000000000	SIO2HL	1.56028895	65.851
5	236.120586098	35.991435570	HE193	0.99971200	69.716
6	-118.383252950	35.248541973	SIO2HL	1.56028895	70.715
7	-199.283119032	1.000000000	HE193	0.99971200	91.711
8	-297.219107904	20.818099956	SIO2HL	1.56028895	96.216
9	-242.015290785	1.012986192	HE193	0.99971200	103.186
10	-8025.596542346	34.642805711	SIO2HL	1.56028895	115.500
11	-527.541918500	1.061404340	HE193	0.99971200	122.264
12	2846.863809159	47.490572144	SIO2HL	1.56028895	129.024
13	-281.5275056472	1.000000000	HE193	0.99971200	131.520
14	720.498316615	25.197751101	SIO2HL	1.56028895	133.348
15	-1864.287720284	1.000000000	HE193	0.99971200	133.010
16	297.151930333	51.479599832	SIO2HL	1.56028895	129.235
17	2167.873564789	1.204618080	HE193	0.99971200	123.220
18	188.319913743	55.000000000	SIO2HL	1.56028895	111.397
19	108.153510038	15.971910183	HE193	0.99971200	83.783
20	148.002390368	55.000000000	SIO2HL	1.56028895	83.477
21	190.335908124	13.500103985	HE193	0.99971200	69.512
22	1443.253928436	24.323718717	SIO2HL	1.56028895	68.921
23	199.695044391AS	37.573461703	HE193	0.99971200	62.387
24	-111.551299373	10.000000000	SIO2HL	1.56028895	60.784
25	239.358614085	27.666487186	HE193	0.99971200	65.748
26	-142.880130573	41.866297159	SIO2HL	1.56028895	66.580
27	-189.902057474	1.589605652	HE193	0.99971200	84.173
28	-748.290216502AS	29.582545265	SIO2HL	1.56028895	90.858
29	-233.966894232	8.147720844	HE193	0.99971200	95.596
30	522.113109615	10.822356285	SIO2HL	1.56028895	105.238
31	222.998461180	27.042016978	HE193	0.99971200	107.333
32	2251.467600263	35.217263658	SIO2HL	1.56028895	108.549

33	-318.234735893	15.214352753	HE193	0.99971200	112.335
34	299.639863140	37.156335602	S102HL	1.56028895	130.529
35	1065.209248614AS	29.625427714	HE193	0.99971200	130.316
36	0.000000000	22.504097096	HE193	0.99971200	131.300
37	354.298294212	22.760275111	S102HL	1.56028895	139.703
38	238.221108961	17.302856825	HE193	0.99971200	137.684
39	350.361961049	48.201285092	S102HL	1.56028895	138.456
40	-830.182582275AS	8.553043233	HE193	0.99971200	138.929
41	451.152609432	53.706250069	S102HL	1.56028895	138.872
42	-529.782985076	2.080488115	HE193	0.99971200	137.286
43	131.667284180	50.882399067	S102HL	1.56028895	108.852
44	197.437143555	1.961444642	HE193	0.99971200	96.477
45	128.459992965	50.613576955	S102HL	1.56028895	87.931
46	248.183667913	8.856875224	HE193	0.99971200	67.641
47	466.791868973AS	40.667719468	S102HL	1.56028895	63.096
48	942.984808834	2.803249134	HE193	0.99971200	37.242
49	0.000000000	10.000000000	S102HL	1.56028895	33.823
50	0.000000000	8.020000000	L710	0.99998200	27.268
51	0.000000000	0.000000000		1.000000000	14.021

ASPHÄRISCHE KONSTANTEN

FLÄCHE NR. 2

K 0.0000
C1 9.00497722e-008
C2 -2.96761245e-012
C3 2.42426411e-016
C4 -1.29024008e-020
C5 -2.03172826e-024
C6 5.50185705e-028
C7 -3.89197744e-032
C8 0.00000000e+000
C9 0.00000000e+000

FLÄCHE NR. 4

K 0.0000
C1 3.65969250e-008
C2 -1.92473151e-012
C3 -1.32665803e-016
C4 5.69164703e-021
C5 1.31041719e-024
C6 -1.53054324e-028
C7 9.97324868e-033
C8 0.00000000e+000
C9 0.00000000e+000

FLÄCHE NR. 23

K 0.0000
C1 -1.27989150e-008
C2 -3.88749373e-012
C3 -2.51584504e-016
C4 -8.45723879e-021
C5 -7.11343179e-024
C6 1.64378151e-027
C7 -2.17615886e-031
C8 0.00000000e+000
C9 0.00000000e+000

FLÄCHE NR. 28

K 0.0000
C1 -1.03153490e-008
C2 6.25910971e-013
C3 5.45981131e-018
C4 9.75498051e-022
C5 -1.22736867e-025
C6 1.17406737e-029
C7 -5.81094482e-034

C8 0.00000000e+000
 C9 0.00000000e+000

PLAECHE NR. 35

K 0.0000
 C1 5.28759000e-010
 C2 1.51806496e-014
 C3 -1.87647477e-018
 C4 -1.08308029e-023
 C5 -5.74605211e-028
 C6 6.03242407e-032
 C7 -5.09796873e-037
 C8 0.00000000e+000
 C9 0.00000000e+000

PLAECHE NR. 40

K 0.0000
 C1 1.83813349e-010
 C2 3.19321009e-015
 C3 2.04249906e-019
 C4 6.57531812e-024
 C5 -2.09352644e-028
 C6 1.60987553e-033
 C7 -2.90466412e-037
 C8 0.00000000e+000
 C9 0.00000000e+000

PLAECHE NR. 47

K 0.0000
 C1 -3.99800644e-008
 C2 4.05930779e-012
 C3 1.42362123e-016
 C4 -3.12437665e-020
 C5 -5.49454012e-024
 C6 1.84641101e-027
 C7 -1.54565739e-031
 C8 0.00000000e+000
 C9 0.00000000e+000

In den Figuren 3a-3c ist die sphärische Aberration, der Astigmatismus und die Verzeichnung wie bereits anhand von Figur 2a-2c beschrieben dargestellt.

Die genauen Linsendaten zu der in Figur 5 gezeigten Linsenanordnung sind aus Tabelle 5 zu entnehmen.

Tabelle 4

cr15_1

PLAECHE	RADIEN	DICKEN	GLAESER	BRECHZAHLD 157.6 nm	1/2 FREIER DURCHMESSER
---------	--------	--------	---------	------------------------	---------------------------

0	0.000000000	29.091200000	N2	1.00000300	46.170
1	0.000000000	0.050360271	N2	1.00000300	52.536
2	-27403.121890329	6.400000000	CAP2HL	1.55848720	52.536
3	128.789046652	8.167826938	N2	1.00000300	55.162
4	454.481828994AS	6.543292509	CAF2HL	1.55848720	56.851
5	250.689303807	19.604013184	N2	1.00000300	58.208
6	-223.266447510AS	50.327605169	CAP2HL	1.55848720	59.504
7	-141.012345914	0.896857450	N2	1.00000300	77.821
8	-492.125790935	.39.701273305	CAP2HL	1.55848720	84.708
9	-188.333140083	.1.620061449	N2	1.00000300	91.930
10	-4917.002616489AS	36.075373094	CAF2HL	1.55848720	96.618
11	-224.975412381	17.499455417	N2	1.00000300	98.628
12	-249.735183706	31.779981213	CAF2HL	1.55848720	97.516
13	-169.147720350	1.273004772	N2	1.00000300	99.721
14	131.492053134	36.312876809	CAF2HL	1.55848720	83.706
15	1183.761281348	0.820000000	N2	1.00000300	79.822
16	446.400836562	6.793752445	CAF2HL	1.55848720	76.456
17	80.708201634	6.438487413	N2	1.00000300	62.135
18	88.076542641	28.609450919	CAF2HL	1.55848720	61.689
19	103.290384365	24.140118330	N2	1.00000300	53.717
20	-214.410142174	6.400000000	CAF2HL	1.55848720	52.881
21	166.705978193AS	25.336749078	N2	1.00000300	50.734
22	-86.759432429	6.718880984	CAF2HL	1.55848720	50.602
23	-895.255217870	20.208808365	N2	1.00000300	55.126
24	-94.182592644	7.167405034	CAF2HL	1.55848720	56.136
25	-199.256306511	6.787427649	N2	1.00000300	63.043
26	-257.348011065	42.358250101	CAF2HL	1.55848720	67.198
27	-158.070327885	0.915908375	N2	1.00000300	79.706
28	-536.887928001	21.844348944	CAF2HL	1.55848720	84.997
29	-205.950312449	2.162149307	N2	1.00000300	87.472
30	-1845.287959821AS	27.220459982	CAF2HL	1.55848720	90.588
31	-211.608710551	29.606451754	N2	1.00000300	91.877
32	-183.434679441	7.418912892	CAF2HL	1.55848720	90.562
33	240.988713790	8.623094130	N2	1.00000300	99.368
34	286.816486745	50.566486028	CAF2HL	1.55848720	104.285
35	-278.974234663	3.401812568	N2	1.00000300	106.263
36	272.985081433	35.883815357	CAF2HL	1.55848720	110.387
37	-1204.561658666AS	29.820606892	N2	1.00000300	109.520
38	-205.963439341	9.589085190	CAF2HL	1.55848720	108.972
39	-486.467956109	23.105163626	N2	1.00000300	111.820
40	0.000000000	-10.63177329	N2	1.00000300	113.000
41	520.246306609AS	6.400000000	CAF2HL	1.55848720	113.282
42	210.835739690	9.380949546	N2	1.00000300	113.819
43	249.610235127	72.661056858	CAF2HL	1.55848720	116.283
44	-368.944153695	27.617582877	N2	1.00000300	118.001
45	194.602406707AS	40.994994726	CAF2HL	1.55848720	111.496
46	2325.171902613	0.959912478	N2	1.00000300	108.992
47	120.131289340	32.489921154	CAF2HL	1.55848720	91.646
48	219.061234205	4.330384877	N2	1.00000300	86.556
49	148.308513415	23.818571196	CAF2HL	1.55848720	79.114
50	203.105155430	0.826871809	N2	1.00000300	69.446
51	136.769195322	19.729069306	CAF2HL	1.55848720	64.538
52	210.657871509	6.502120434	N2	1.00000300	55.515
53	376.287223054	15.336785456	CAF2HL	1.55848720	51.778
54	183.572236231	4.060877180	N2	1.00000300	40.084
55	181.243374040	16.948210271	CAF2HL	1.55848720	36.115
56	426.075165306	1.398093981	N2	1.00000300	26.107
57	0.000000000	2.400024000	CAF2HL	1.55848720	25.121
58	0.000000000	7.272800000	N2	1.00000300	23.545
59	0.000000000	0.000000000	N2	1.00000300	11.543
60	0.000000000	0.000000000	N2	1.000000000	11.543

ASPHÄRISCHE KONSTANTEN

FLÄCHE NR. 4

K 0.0000
 C1 3.68947301e-007
 C2 -2.07010320e-011
 C3 1.80448893e-015

C4	-2.02024724e-019
C5	1.06591750e-023
C6	8.66812157e-027
C7	-1.28036020e-030
C8	0.00000000e+000
C9	0.00000000e+000

FLAECHE NR. 6

K	0.0000
C1	-1.90456699e-007
C2	7.09276542e-012
C3	-9.42039479e-016
C4	9.60030375e-020
C5	-4.81313543e-023
C6	1.26016542e-026
C7	-2.12906900e-030
C8	0.00000000e+000
C9	0.00000000e+000

FLAECHE NR. 10

K	0.0000
C1	1.24881874e-009
C2	-7.54632592e-013
C3	9.59548418e-018
C4	3.61424148e-022
C5	4.66204361e-026
C6	-5.18069760e-030
C7	6.76055535e-035
C8	0.00000000e+000
C9	0.00000000e+000

FLAECHE NR. 21

K	0.0000
C1	-1.78468549e-007
C2	-5.04642691e-012
C3	-9.31857452e-016
C4	2.41285214e-019
C5	-1.68512636e-022
C6	5.20287108e-026
C7	-7.17032999e-030
C8	0.00000000e+000
C9	0.00000000e+000

FLAECHE NR. 30

K	0.0000
C1	-1.34161725e-008
C2	8.16970893e-014
C3	-3.14061744e-018
C4	1.03237892e-021
C5	-1.84717130e-025
C6	1.87170281e-029
C7	-7.93751880e-034
C8	0.00000000e+000
C9	0.00000000e+000

FLAECHE NR. 37

K	0.0000
C1	7.99945890e-009
C2	-1.42636834e-013
C3	-2.69989142e-019
C4	-5.15246689e-023
C5	-4.83470243e-027
C6	2.58478622e-031
C7	-7.74164486e-036
C8	0.00000000e+000
C9	0.00000000e+000

FLAECHE NR. 41

K	0.0000
C1	-4.43364574e-009
C2	1.10741132e-014
C3	3.55153523e-018
C4	-4.85210428e-024
C5	2.35336826e-027
C6	-1.03253172e-031
C7	4.79327883e-036
C8	0.00000000e+000
C9	0.00000000e+000

FLAECHE NR. 45

K	0.0000
C1	-1.18399241e-009
C2	-1.58492270e-013
C3	-1.27975554e-018
C4	-1.10519991e-022
C5	2.24373710e-027
C6	-9.77335519e-032
C7	-5.74659204e-036
C8	0.00000000e+000
C9	0.00000000e+000

Die Abbildungsgüte bezüglich sphärischer Aberration, Astigmatismus und Verzeichnung sind in den Figuren 4a-4c dargestellt.

Die genauen Linsendaten zu der in Figur 5 gezeigten Linsenanordnung sind aus Tabelle 5 zu entnehmen.

Tabelle 5

FLAECHE	RADIEN	DICKEN	GLAESER	BRECHZAHL 193.304nm	1/2 FREIER DURCHMESSER
0	0.000000000	32.000000000	LUFTV193	1.00030168	56.080
1	0.000000000	0.000000000	LUFTV193	1.00030168	63.258
2	-1268.338705527AS	11.478260873	SIO2V	1.56078570	63.258
3	267.538117540	9.451447213	N2VP950	1.00029966	65.916
4	600.021131212AS	11.500000000	SIO2V	1.56078570	67.578
5	326.741991833	28.091498045	N2VP950	1.00029966	70.893
6	-170.788507842	51.999135922	SIO2V	1.56078570	72.910
7	-330.329053389	1.000000000	N2VP950	1.00029966	99.226
8	-1068.525517497	19.979625145	SIO2V	1.56078570	105.942
9	-387.645501150	1.000000000	N2VP950	1.00029966	109.709
10	-704.568730532AS	42.420550373	SIO2V	1.56078570	113.373
11	-222.016287024	1.000000000	N2VP950	1.00029966	119.118
12	1941.257887377	52.000000000	SIO2V	1.56078570	126.942
13	-469.372066662	3.397916884	N2VP950	1.00029966	129.896
14	-4169.926875111	52.000000000	SIO2V	1.56078570	129.822
15	-295.686690038	1.000000000	N2VP950	1.00029966	130.032
16	159.750938231	51.964442356	SIO2V	1.56078570	108.529
17	376.268786269	1.000000000	N2VP950	1.00029966	97.568
18	307.447954470	51.969227450	SIO2V	1.56078570	95.447
19	116.498974152	31.898186858	N2VP950	1.00029966	65.905
20	-288.097826092	11.500000000	SIO2V	1.56078570	64.079
21	336.397895010AS	37.099202165	N2VP950	1.00029966	60.053
22	-106.320408238	11.500000000	SIO2V	1.56078570	58.050
23	187.789793825	26.304322413	N2VP950	1.00029966	63.753
24	-209.237460909	43.406094751	SIO2V	1.56078570	66.044

WO 03/075096

PCT/EP03/01147

25	-216.929048076	1.000000000	N2VP950	1.00029966	82.840
26	1164.410193579AB	23.567441112	SIO2V	1.56078570	92.682
27	-329.001203575	1.000000000	N2VP950	1.00029966	94.132
28	2521.852603301	17.217391310	SIO2V	1.56078570	97.558
29	228.980652217	28.589394523	N2VP950	1.00029966	102.117
30	27241.479244975	36.454079888	SIO2V	1.56078570	105.084
31	-230.122916051	2.961510546	N2VP950	1.00029966	108.362
32	270.925118464	38.714553103	SIO2V	1.56078570	124.500
33	763.688485160AB	35.762711758	N2VP950	1.00029966	123.913
34	0.000000000	10.298384083	N2VP950	1.00029966	124.951
35	305.539519440	25.677979598	SIO2V	1.56078570	131.506
36	216.211099364	24.769069040	N2VP950	1.00029966	128.830
37	382.860100127	50.973600009	SIO2V	1.56078570	130.799
38	-694.560467360AB	5.723480057	N2VP950	1.00029966	131.956
39	325.403745866	49.444778918	SIO2V	1.56078570	131.961
40	-731.949523671	1.000000000	N2VP950	1.00029966	130.439
41	129.520874552	46.268119852	SIO2V	1.56078570	105.425
42	252.827890722	1.000000000	N2VP950	1.00029966	97.727
43	136.184798222	47.793960778	SIO2V	1.56078570	87.092
44	291.218349738	8.959947251	N2VP950	1.00029966	67.069
45	1284.867832510AB	36.652815450	SIO2V	1.56078570	62.759
46	1021.772390757	3.210870937	N2VP950	1.00029966	38.108
47	0.000000000	10.000000000	SIO2V	1.56078570	33.939
48	0.000000000	8.000000000	LUFTV193	1.00030168	27.360
49	0.000000000	0.000000000		1.000000000	14.020

ASPHÄRISCHE KONSTANTEN

FLÄCHE NR. 2

K	0.0000
C1	1.67561866e-007
C2	-2.12938922e-011
C3	1.69680309e-015
C4	-1.98132595e-019
C5	7.57848219e-024
C6	-1.91694592e-028
C7	7.31348529e-034
C8	0.00000000e+000
C9	0.00000000e+000

FLÄCHE NR. 4

K	0.0000
C1	-7.60044675e-008
C2	1.17354453e-011
C3	-1.30436139e-015
C4	1.52774359e-019
C5	-6.11275102e-024
C6	2.17798015e-028
C7	-4.32254321e-033
C8	0.00000000e+000
C9	0.00000000e+000

FLÄCHE NR. 10

K	0.0000
C1	-1.34208180e-009
C2	2.87384909e-013
C3	-2.97929643e-018
C4	-1.89342955e-022
C5	-5.11583717e-027
C6	1.55819935e-031
C7	-1.40446770e-038
C8	0.00000000e+000
C9	0.00000000e+000

FLÄCHE NR. 21

K	0.0000
C1	1.83877356e-008

C2	-2.86899242e-012
C3	3.19518028e-017
C4	-7.19052986e-020
C5	1.13466451e-023
C6	-1.77192399e-027
C7	-1.01670692e-031
C8	0.00000000e+000
C9	0.00000000e+000

FLAECHE NR. 26

K	0.0000
C1	-1.01472536e-008
C2	1.33731219e-012
C3	-5.43150945e-018
C4	4.71557114e-023
C5	-6.64341291e-026
C6	-3.91519696e-031
C7	6.16634038e-035
C8	0.00000000e+000
C9	0.00000000e+000

FLAECHE NR. 33

K	0.0000
C1	2.13285827e-009
C2	-5.84623813e-014
C3	-1.42317238e-018
C4	1.10894118e-023
C5	-1.75615181e-027
C6	1.54014495e-031
C7	-3.58350869e-036
C8	0.00000000e+000
C9	0.00000000e+000

FLAECHE NR. 38

K	0.0000
C1	-4.16611922e-009
C2	4.28615353e-014
C3	-6.79159744e-019
C4	-2.60455674e-023
C5	1.06709495e-027
C6	-7.04980983e-032
C7	3.97315562e-037
C8	0.00000000e+000
C9	0.00000000e+000

FLAECHE NR. 45

K	0.0000
C1	-1.10987995e-008
C2	6.74554563e-012
C3	-6.08182492e-016
C4	2.40267725e-020
C5	-2.12867221e-024
C6	6.08391245e-028
C7	-5.81691443e-032
C8	0.00000000e+000
C9	0.00000000e+000

Die genauen Linsendaten zu der in Figur 6 gezeigten Linsenanordnung sind aus Tabelle 6 zu entnehmen.

Tabelle 6

cr15f_caf1

PLAECHE	RADIEN	DICKEN	GLAESER	BRECHZAHL 193.304nm	1/2 FREIER DURCHMESSER
0	0.000000000	31.000000000	L710	0.99998200	56.080
1	0.000000000	1.000000000	HE193	0.99971200	62.856
2	324.818247939AS	8.109025357	SIO2HL	1.56028895	64.646
3	219.117611826	5.509660348	HE193	0.99971200	65.135
4	289.200300616AS	7.000000000	SIO2HL	1.56028895	66.381
5	227.856104705	17.243048254	HE193	0.99971200	66.734
6	-377.649070374	7.000000000	SIO2HL	1.56028895	67.059
7	387.641770903	30.796463985	HE193	0.99971200	71.597
8	-125.714248975	54.975207900	SIO2HL	1.56028895	72.277
9	-176.955529980	1.000000000	HE193	0.99971200	100.007
10	-1297.534896140	31.636302227	SIO2HL	1.56028895	114.600
11	-320.961128376	1.000000000	HE193	0.99971200	119.511
12	936.880173082	44.820142873	SIO2HL	1.56028895	130.745
13	-328.618771838	3.088384233	HE193	0.99971200	131.968
14	317.145646669	32.169396486	SIO2HL	1.56028895	131.861
15	1880.972057190	78.800003484	HE193	0.99971200	130.569
16	778.616134901	21.855706412	SIO2HL	1.56028895	112.867
17	-1344.892951770	2.120584882	HE193	0.99971200	111.151
18	184.194583638	26.864832492	SIO2HL	1.56028895	98.404
19	117.923993472	8.944323916	HE193	0.99971200	83.450
20	122.599592610	50.092138884	SIO2HL	1.56028895	82.216
21	123.591716800	52.677842672	HE193	0.99971200	66.129
22	-133.413687632	7.000000000	SIO2HL	1.56028895	59.894
23	201.636820203	31.091699285	HE193	0.99971200	59.866
24	-117.122170355	22.371886041	SIO2HL	1.56028895	60.770
25	271.237822926	18.190270939	HE193	0.99971200	77.184
26	-828.307583707	23.724292231	SIO2HL	1.56028895	80.324
27	-217.730531706	1.629365175	HE193	0.99971200	86.028
28	24863.715253700	23.891029762	SIO2HL	1.56028895	99.050
29	-340.154546232	1.000000000	HE193	0.99971200	102.080
30	499.177180862	33.230036742	SIO2HL	1.56028895	114.528
31	-613.861853920	4.746303203	HE193	0.99971200	115.894
32	-515.657687359AS	7.000000000	SIO2HL	1.56028895	116.027
33	-2799.133265700	28.850953586	HE193	0.99971200	119.520
34	-374.801866679	25.903304270	SIO2HL	1.56028895	122.380
35	-229.064488423	3.130798012	HE193	0.99971200	125.091
36	0.000000000	4.590309473	HE193	0.99971200	129.531
37	0.000000000	-1.761443244	HE193	0.99971200	129.976
38	480.603781326	23.812586743	SIO2HL	1.56028895	134.088
39	259.375898088	8.237844188	HE193	0.99971200	135.910
40	312.231631384	55.513942588	SIO2HL	1.56028895	136.609
41	-596.581070286	4.943886708	HE193	0.99971200	137.420
42	371.538894387	38.328387113	SIO2HL	1.56028895	138.683
43	-20570.555487000AS	2.057897803	HE193	0.99971200	137.171
44	186.804638892	55.000000000	SIO2HL	1.56028895	127.714
45	371.539070225	13.149085685	HE193	0.99971200	117.755
46	136.294111489	54.999981718	SIO2HL	1.56028895	99.988
47	527.773767013AS	1.000000000	HE193	0.99971200	86.981
48	170.379719961	35.449588232	SIO2HL	1.56028895	76.078
49	292.013444451AS	7.226713258	HE193	0.99971200	57.583
50	0.000000000	27.238216082	CAF2HL	1.50143563	54.452
51	0.000000000	1.500000000	HE193	0.99971200	35.406
52	0.000000000	10.000000000	SIO2HL	1.56028895	32.871
53	0.000000000	7.250000000	L710	0.99998200	26.261
54	0.000000000	0.000000000		1.000000000	14.020

ASPHÆRISCHE KONSTANTEN

FLAECHE NR. 2

K	-1.8845
C1	5.29821153e-008
C2	-4.43279002e-012
C3	1.28707472e-015
C4	-2.39343289e-019
C5	1.99234178e-023
C6	2.46399483e-027
C7	-4.33709316e-031
C8	0.00000000e+000
C9	0.00000000e+000

FLAECHE NR. 4

K	0.1824
C1	7.99717816e-008
C2	3.44235754e-013
C3	-1.08433322e-015
C4	2.49428499e-019
C5	-4.04263889e-023
C6	2.92251162e-027
C7	-2.35276355e-032
C8	0.00000000e+000
C9	0.00000000e+000

FLAECHE NR. 32

K	0.0000
C1	-1.27754362e-008
C2	3.02764844e-013
C3	1.00750526e-018
C4	-6.13679335e-023
C5	4.38665224e-027
C6	-3.40250286e-031
C7	1.46968938e-035
C8	0.00000000e+000
C9	0.00000000e+000

FLAECHE NR. 43

K	0.0000
C1	1.57685663e-009
C2	1.02156359e-013
C3	-1.70007813e-018
C4	-2.26737767e-023
C5	2.28492082e-027
C6	-1.04091200e-031
C7	2.34019985e-036
C8	0.00000000e+000
C9	0.00000000e+000

FLAECHE NR. 47

K	6.8784
C1	1.53142434e-008
C2	-3.32257012e-013
C3	8.40396973e-017
C4	-1.22248965e-020
C5	1.29284065e-024
C6	-8.59096802e-029
C7	1.99745782e-033
C8	0.00000000e+000
C9	0.00000000e+000

FLAECHE NR. 49

K	0.0000
C1	-2.17885424e-008
C2	-4.43299434e-013

C3	-1.44194471e-015
C4	2.99216702e-019
C5	-8.06687258e-023
C6	1.77963946e-026
C7	-1.41052000e-030
C8	0.00000000e+000
C9	0.00000000e+000

Die genauen Linsendaten zu der in Figur 7 gezeigten Linsenanzordnung sind aus Tabelle 7 zu entnehmen.

TABELLE 7

cr15f

PLAECHE	RADIEN	DICKEN	GLASER	BRECHZAHL 193.304nm	1/2 FREIER DURCHMESSER
0	0.000000000	31.000000000	L710	0.99998200	56.080
1	0.000000000	1.000000000	HE193	0.99971200	62.856
2	324.818247939AS	8.109025357	SIO2HL	1.56028895	64.646
3	219.117611826	5.508087220	HE193	0.99971200	65.135
4	289.200300616AS	7.000000000	SIO2HL	1.56028895	66.381
5	227.856104705	17.243070148	HE193	0.99971200	66.734
6	-377.649070374	7.000000000	SIO2HL	1.56028895	67.059
7	387.641770903	30.765544016	HE193	0.99971200	71.598
8	-125.714248975	54.975207900	SIO2HL	1.56028895	72.265
9	-176.955529980	1.000000000	HE193	0.99971200	99.993
10	-1297.534896140	31.636302227	SIO2HL	1.56028895	114.582
11	-320.961128376	1.000000000	HE193	0.99971200	119.494
12	936.880173082	44.820142873	SIO2HL	1.56028895	130.726
13	-328.618771838	3.492277374	HE193	0.99971200	131.951
14	317.145646669	32.169396486	SIO2HL	1.56028895	131.848
15	1880.972057190	78.466159550	HE193	0.99971200	130.555
16	778.616134901	21.855706412	SIO2HL	1.56028895	112.930
17	-1344.892951770	1.631223556	HE193	0.99971200	111.218
18	184.194583638	26.864832492	SIO2HL	1.56028895	98.601
19	117.923993472	8.738538132	HE193	0.99971200	83.612
20	122.599592610	50.092138884	SIO2HL	1.56028895	82.419
21	123.591716800	53.386697866	HE193	0.99971200	66.332
22	-133.413687632	7.000000000	SIO2HL	1.56028895	59.919
23	201.636820203	31.123951016	HE193	0.99971200	59.900
24	-117.122170355	22.371886041	SIO2HL	1.56028895	60.806
25	271.237822926	18.548517752	HE193	0.99971200	77.260
26	-828.307583707	23.724292231	SIO2HL	1.56028895	80.717
27	-217.730531706	1.000000000	HE193	0.99971200	86.373
28	24863.715253700	23.891029762	SIO2HL	1.56028895	99.099
29	-340.154546232	1.000000000	HE193	0.99971200	102.128
30	499.177180862	33.230036742	SIO2HL	1.56028895	114.615
31	-613.861853920	4.746303203	HE193	0.99971200	115.978
32	-515.657687359AS	7.000000000	SIO2HL	1.56028895	116.111
33	-2799.133265700	28.850953586	HE193	0.99971200	119.614
34	-374.801866679	25.903304270	SIO2HL	1.56028895	122.472
35	-229.064488423	3.130798012	HE193	0.99971200	125.181
36	0.000000000	5.173121288	HE193	0.99971200	129.642
37	0.000000000	1.000000000	HE193	0.99971200	130.135
38	474.346153969	24.214285976	SIO2HL	1.56028895	134.997
39	257.158432536	8.053951335	HE193	0.99971200	136.742
40	306.376423539	.57.804293441	SIO2HL	1.56028895	137.456
41	-562.895510400	1.000000000	HE193	0.99971200	138.239
42	372.293287787	33.212051475	SIO2HL	1.56028895	138.770

43	12328.532325400A5	1.106587587	HE193	0.99971200	137.675
44	193.144605329	54.576878288	S102HL	1.56028895	128.685
45	379.786426378	16.773776607	HE193	0.99971200	118.623
46	134.855937913	55.000000000	S102HL	1.56028895	99.496
47	536.515306116A5	1.080464261	HE193	0.99971200	86.795
48	173.206435013	35.323967088	S102HL	1.56028895	76.056
49	299.060830919AB	6.563458346	HE193	0.99971200	57.738
50	0.000000000	28.341741198	S102HL	1.56028895	55.402
51	0.000000000	1.500000000	HE193	0.99971200	36.669
52	0.000000000	10.000000000	S102HL	1.56028895	34.134
53	0.000000000	7.999999986	L710	0.99998200	27.525
54	0.000000000	0.000000000		1.000000000	14.020

ASPHÄRISCHE KONSTANTEN

FLÄCHE NR. 2

K	-1.8845
C1	5.29821153e-008
C2	-4.43279002e-012
C3	1.28707472e-015
C4	-3.39343289e-019
C5	1.99234178e-023
C6	2.46399483e-027
C7	-4.33709316e-031
C8	0.00000000e+000
C9	0.00000000e+000

FLÄCHE NR. 4

K	0.1824
C1	7.99717816e-008
C2	3.44235754e-013
C3	-1.08433322e-015
C4	2.49428499e-019
C5	-4.04263889e-023
C6	2.92251162e-027
C7	-2.35276355e-032
C8	0.00000000e+000
C9	0.00000000e+000

FLÄCHE NR. 32

K	0.0000
C1	-1.27754362e-008
C2	3.02764844e-013
C3	1.00750526e-018
C4	-6.13679336e-023
C5	4.38665224e-027
C6	-3.40250286e-031
C7	1.4696893Be-035
C8	0.00000000e+000
C9	0.00000000e+000

FLÄCHE NR. 43

K	0.0000
C1	1.36549730e-009
C2	1.02306815e-013
C3	-1.35739896e-018
C4	-1.99345093e-023
C5	1.59224599e-027
C6	-6.75882258e-032
C7	1.39559460e-036
C8	0.00000000e+000
C9	0.00000000e+000

FLÄCHE NR. 47

K 7.2953

C1	1.61057750e-008
C2	-5.05815953e-013
C3	8.84032736e-017
C4	-1.11981147e-020
C5	1.14085256e-024
C6	-7.43387672e-029
C7	1.41113763e-033
C8	0.00000000e+000
C9	0.00000000e+000

PLAETSCHE NR. 49

K	0.0000
C1	-3.00219975e-008
C2	-1.20927625e-013
C3	-1.49865939e-015
C4	3.27847128e-019
C5	-9.19939235e-023
C6	2.08807060e-026
C7	-1.71435366e-030
C8	0.00000000e+000
C9	0.00000000e+000

Die genannten Linsendaten zu der in Figur 8 gezeigten Linsenanordnung sind aus Tabelle 8 zu entnehmen.

TABELLE 8

hna_28_NAO9

PLAETSCHE	RADIEN	DICKEN	GLAESER	BRECHZAHL 1.93.304nm	1/2 FREIER DURCHMESSER
0	0.000000000	34.598670703	LUFTV193	1.00030168	56.080
1	0.000000000	5.480144837	LUFTV193	1.00030168	64.122
2	6478.659586000AS	10.843585909	SIO2V	1.56078570	65.807
3	-1354.203087320	2.423172128	N2VP950	1.00029966	66.705
4	-1087.803716660	9.621961389	SIO2V	1.56078570	67.029
5	183.366808766	2.746190506	N2VP950	1.00029966	70.249
6	206.367008633AS	8.085673658	SIO2V	1.56078570	71.462
7	193.387116101	36.794320510	N2VP950	1.00029966	72.483
8	-140.799169619	50.095071588	SIO2V	1.56078570	73.484
9	-373.463518266	1.000056376	N2VP950	1.00029966	103.736
10	-561.452806488	22.561578822	SIO2V	1.56078570	107.508
11	-263.512680429	1.000756794	N2VP950	1.00029966	111.562
12	-49392.554837400AB	53.841314203	SIO2V	1.56078570	124.515
13	-256.359005048	15.247580669	N2VP950	1.00029966	130.728
14	840.618794866	29.011390428	SIO2V	1.56078570	141.816
15	-926.722502535	1.005611320	N2VP950	1.00029966	142.120
16	2732.904696180	38.725041529	SIO2V	1.56078570	141.999
17	-356.203262494AS	2.005496104	N2VP950	1.00029966	141.858
18	318.151930355	16.617316424	SIO2V	1.56078570	124.740
19	513.819497301	1.562497532	N2VP950	1.00029966	122.663
20	171.455700974	30.277693574	SIO2V	1.56078570	111.385
21	154.841382726	1.064445848	N2VP950	1.00029966	98.077
22	127.756841801	43.191494812	SIO2V	1.56078570	94.695
23	104.271940246	52.476004091	N2VP950	1.00029966	74.378
24	-283.692700248	8.000000007	SIO2V	1.56078570	68.565
25	242.925344027	39.949819872	N2VP950	1.00029966	64.404
26	-117.414778719	8.181191942	SIO2V	1.56078570	63.037
27	197.144513187	26.431530314	N2VP950	1.00029966	69.190
28	-244.477949570	44.225451360	SIO2V	1.56078570	71.085
29	-230.356430065	1.409104251	N2VP950	1.00029966	88.427
30	1472.096760620AB	21.137736519	SIO2V	1.56078570	99.340
31	-450.715283484	1.259333876	N2VP950	1.00029966	101.126

32	3573.378947270	8.391191259	SIO2V	1.56078570	105.206
33	7695.066698120	1.258010005	N2VP950	1.00029966	106.474
34	1029.326174920	8.390466230	SIO2V	1.56078570	108.186
35	243.058844043	29.823514356	N2VP950	1.00029966	112.152
36	29057.985214100	38.911793339	SIO2V	1.56078570	114.058
37	-232.205630821	1.000000003	N2VP950	1.00029966	116.928
38	270.144711058	55.850950401	SIO2V	1.56078570	139.162
39	1183.955771760AS	20.935175304	N2VP950	1.00029966	138.048
40	0.000000000	-2.958030543	N2VP950	1.00029966	138.244
41	368.638236812	22.472409726	SIO2V	1.56078570	141.049
42	220.058626892	26.974361640	N2VP950	1.00029966	137.707
43	355.728536436	58.022036072	SIO2V	1.56078570	140.923
44	-861.478061183AS	4.104303800	N2VP950	1.00029966	142.103
45	420.713002153	55.049896341	SIO2V	1.56078570	142.502
46	-478.998238339	1.000000000	N2VP950	1.00029966	141.431
47	122.579574949	48.569396230	SIO2V	1.56078570	106.623
48	223.612364356AS	1.000000000	N2VP950	1.00029966	99.428
49	132.028746911	49.487311459	SIO2V	1.56078570	88.176
50	247.223694320	10.595001724	N2VP950	1.00029966	65.249
51	712.954951376AS	8.355490390	SIO2V	1.56078570	57.430
52	163.735058824	3.094306970	N2VP950	1.00029966	47.446
53	154.368612651	19.294967287	SIO2V	1.56078570	44.361
54	677.158668491	2.851896407	N2VP950	1.00029966	33.956
55	0.000000000	10.000000000	SIO2V	1.56078570	29.686
56	0.000000000	4.000000000	LUFTV193	1.00030168	22.559
57	0.000000000	0.000000000		1.00000000	14.020

ASPHÄRISCHE KONSTANTEN

FLÄCHE NR. 2

K	0.0000
C1	1.38277367e-007
C2	-1.88982133e-011
C3	1.94899866e-015
C4	-3.04512613e-019
C5	3.31424645e-023
C6	-2.70315185e-027
C7	1.30470314e-031
C8	0.000000000e+000
C9	0.000000000e+000

FLÄCHE NR. 6

K	0.0000
C1	-1.02654080e-008
C2	1.22477004e-011
C3	-1.70638250e-015
C4	2.48526394e-019
C5	-2.38582445e-023
C6	1.51451580e-027
C7	-6.30610228e-032
C8	0.000000000e+000
C9	0.000000000e+000

FLÄCHE NR. 12

K	0.0000
C1	-3.36870323e-009
C2	1.77350477e-013
C3	1.19052376e-019
C4	-1.17127296e-022
C5	-9.25382522e-027
C6	4.88058037e-031
C7	-1.32782815e-035
C8	0.00000000e+000
C9	0.00000000e+000

FLÄCHE NR. 17

K 0.0000

C1	2.29017476e-010
C2	4.92394931e-014
C3	2.34180010e-019
C4	-2.74433865e-023
C5	8.02938234e-029
C6	-1.05282366e-032
C7	-1.44319713e-038
C8	0.00000000e+000
C9	0.00000000e+000

PLAECHE NR. 30

K	0.0000
C1	-1.51349530e-008
C2	9.73999326e-013
C3	8.62745113e-018
C4	5.94720340e-022
C5	-4.71903409e-026
C6	2.87654316e-031
C7	4.40822786e-035
C8	0.00000000e+000
C9	0.00000000e+000

PLAECHE NR. 39

K	0.0000
C1	5.16807805e-009
C2	-6.52986543e-014
C3	-6.91577796e-019
C4	-3.61532300e-024
C5	-1.38222518e-027
C6	1.06689880e-031
C7	-1.65303231e-036
C8	0.00000000e+000
C9	0.00000000e+000

PLAECHE NR. 44

K	0.0000
C1	-3.74086200e-009
C2	9.09495287e-014
C3	-9.58269360e-019
C4	2.46215375e-023
C5	-8.23397865e-028
C6	1.33400957e-032
C7	-5.95002910e-037
C8	0.00000000e+000
C9	0.00000000e+000

PLAECHE NR. 48

K	0.0000
C1	-2.07951112e-009
C2	-3.24793684e-014
C3	-4.06763809e-018
C4	-4.85274422e-022
C5	2.39376432e-027
C6	2.44680800e-030
C7	-5.62502628e-035
C8	0.00000000e+000
C9	0.00000000e+000

PLAECHE NR. 51

K	0.0000
C1	-6.57065732e-009
C2	2.35659016e-012
C3	-1.23585829e-016
C4	5.34294269e-020
C5	-1.12897797e-023
C6	1.37710849e-027

WO 03/075096

PCT/EP03/01147

C7 -1.15055048e-031
C8 0.00000000e+000
C9 0.00000000e+000

Bezugszeichenliste:

101 Projektionsbelichtungsanlage

103 Beleuchtungseinrichtung

105 Projektionsobjektiv

107 optische Achse

109 Maske

111 Maskenhalter

113 Bildebene

115 Wafer, Substrat

117 Substrathalter

119 Systemblende

121 Linsenanordnung

123 erster Bauch

125 Taille

127 zweiter Bauch

129 Stelle engste Einschnürung

Patentansprüche:

1. Refraktives Projektionsobjektiv der Mikrolithographie mit einer numerischen Apertur von größer 0,7 bestehend aus einem ersten Bauch, einem zweiten Bauch und einer zwischen den Bäuchen angeordneten Taille, dadurch gekennzeichnet, dass der erste Bauch einen maximalen Durchmesser, mit D₁ bezeichnet, aufweist und der zweite Bauch einen maximalen Durchmesser, mit D₂ bezeichnet, aufweist und es gilt:
 $0,8 < D_1/D_2 < 1,1.$
2. Refraktives Projektionsobjektiv nach Anspruch 1, dadurch gekennzeichnet, dass für die Verhältnisse der maximalen Durchmesser gilt:
 $0,9 < D_1/D_2 < 1,0.$
3. Refraktives Projektionsobjektiv, das in Ausbreitungsrichtung des Lichtes aus einer ersten Linsengruppe mit negativer Brechkraft, aus einer zweiten Linsengruppe mit positiver Brechkraft, aus einer dritten Linsengruppe mit negativer Brechkraft zur Bereitstellung einer Einschnürung des Lichtbündels und aus einer nachfolgenden vierten Linsengruppe mit positiver Brechkraft, aus einer Systemblende mit einer nachfolgenden fünften Linsengruppe, die positive Brechkraft aufweist besteht, dadurch gekennzeichnet, dass vor der Blende und nach der Blende jeweils eine zum Objekt hin durchgebogene Meniskulinse angeordnet ist.
4. Refraktives Projektionsobjektiv nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die folgenden Beziehungen gelten:
$$L * D_{\max}/(NA * 2yb) < 12850$$
wobei L die Baulänge gemessen vom Reticle zum Wafer ist, NA die bildseitige numerische Apertur ist, D_{MAX} der maximale Durchmesser des Systems, also D₁ oder D₂ ist und 2yb der Durchmesser des Bildfeldes ist.

5. Refraktives Projektionsobjektiv nach mindestens einem der vorangegangenen Ansprüche, dadurch gekennzeichnet, dass die erste Linsengruppe mindestens zwei, vorzugsweise drei negative Linsen aufweist.
6. Refraktives Projektionsobjektiv bestehend aus einem ersten Bauch und einem zweiten Bauch und einer zwischen den Bäuchen angeordneten Taille, die eine Stelle engster Einschnürung umfasst, dadurch gekennzeichnet, dass nach dieser engsten Einschnürung und vor der Systemblende zwei Meniskuslinsen mit zueinander gewandten konvexen Oberflächen angeordnet sind.
7. Refraktives Projektionsobjektiv bestehend aus einem ersten Bauch, einer nachfolgenden Taille und einem darauffolgenden zweiten Bauch, wobei im zweiten Bauch eine Systemblende angeordnet ist und wobei der Bereich von der Objektebene O bis zur letzten der Blende zugewandten Linsenoberfläche mit L_P bezeichnet wird und der Bereich von der ersten auf die Blende folgende Linsenoberfläche bis zur Bildebene mit L_R bezeichnet wird und der Bereich zwischen L_P und L_R mit L_{AP} bezeichnet wird, dadurch gekennzeichnet, dass für das Längenverhältnis LV gilt:

$$LV = \frac{2 \cdot L_{AP} \cdot \left(\frac{L_{geo}}{L - L_{AP}} \right)}{L}$$

$LV \geq 0,1$,

wobei L_{geo} die Summe über die Mittendicken aller im Objektiv angeordneten Linsen ist und L der Abstand von Bildebene O' zur Objektebene O ist.

8. Refraktives Projektionsobjektiv nach Anspruch 7, dadurch gekennzeichnet, dass die numerische Apertur größer 0,7, vorzugsweise größer 0,8 ist.
9. Refraktives Projektionsobjektiv nach den vorhergehenden Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass der Lichtleitwert des projektionsobjektives größer als 2% der Baulänge ist, wobei der Lichtleitwert als Produkt aus Bildfelddurchmesser und numerischer Apertur auf der Bildseite definiert ist.

10. Refraktives Projektionsobjektiv nach mindestens einem der Ansprüche 1, 3 bis 5, 6, 7 oder 8, dadurch gekennzeichnet, dass nur Linsen aus einem Material verwendet worden sind.
11. Refraktives Projektionsobjektiv nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass das Verhältnis von Baulänge (OO') und Brennweite der fünften Linsengruppe größer acht ist.
12. Refraktives Projektionsobjektiv nach mindestens einem der Ansprüchen 1 bis 11, dadurch gekennzeichnet, dass die erste Linsengruppe LG1 mindestens eine asphärische Fläche enthält, wobei vorzugsweise zwei asphärische Flächen vorgesehen sind.
13. Refraktives Projektionsobjektiv mindestens nach Anspruch 12, dadurch gekennzeichnet, dass die asphärischen Flächen in der erste Linsengruppe LG1 bevorzugt auf der dem Retikel zugewandte Flächen liegen.
14. Refraktives Projektionsobjektiv mindestens nach Anspruch 13, dadurch gekennzeichnet, dass die asphärischen Flächen in der erste Linsengruppe LG1 bevorzugt auf der dem Retikel zugewandte sammelnden Flächen liegen.
15. Refraktives Projektionsobjektiv nach einem der Ansprüche 1 bis 14, dadurch gekennzeichnet, dass bei dem, wenn asphärische Flächen in der dritten Linsengruppe LG3 verwendet werden, diese immer auf Flächen, die dem Wafer zugewandt sind eingesetzt werden.
16. Refraktives Projektionsobjektiv nach mindestens einem der Ansprüche 1, 2, 4, 5 und 7 bis 14, dadurch gekennzeichnet, dass in der dritten Linsengruppe keine asphärische Flächen vorgesehen sind
17. Refraktives Projektionsobjektiv nach den Ansprüchen 15 oder 16, dadurch gekennzeichnet, dass in der ersten Linsengruppe LG1 mindestens eine zur Objektebene konvexe Meniskuslinse mit negativer Brechkraft angeordnet ist.

18. Refraktives Projektionsobjektiv nach den Ansprüchen 15 oder 16, dadurch gekennzeichnet, dass die fünfte Linsengruppe LG5 mindestens zwei asphärische Flächen enthält.
19. Refraktives Projektionsobjektiv nach den Ansprüchen 15 oder 16, dadurch gekennzeichnet, dass die fünfte Linsengruppe LG5 mindestens zwei bikonvexe Linsen und zwei zum Bild konkave sammelnde Menisken.
20. Refraktives Projektionsobjektiv nach den Ansprüchen 15 oder 16, dadurch gekennzeichnet, dass die fünfte Linsengruppe LG5 maximal als 5 sammelnde Linsen aufweist.
21. Refraktives Projektionsobjektiv nach den Ansprüchen 15 oder 16, dadurch gekennzeichnet, dass in den Linsengruppen LG1 und LG2 die Höhe des Hauptstrahles für den äußersten Feldpunkt größer als die Höhe des Randstrahles zur Abbildung des Achspunktes ist, wobei sich dieses Verhältnis innerhalb der Linsengruppe G3 umkehrt.
22. Refraktives Projektionsobjektiv nach den Ansprüchen 15 oder 16, dadurch gekennzeichnet, dass die maximale Höhe des Randstrahles zur Abbildung des Achspunktes mehr als drei mal so groß ist wie seine Höhe in der engsten Einschnürung in Linsengruppe LG3.
23. Refraktives Projektionsobjektiv nach den Ansprüchen 15 oder 16, dadurch gekennzeichnet, dass der maximale Durchmesser der Linsengruppe zwei LG2 zwei Mal größer ist als der Objektfelddurchmesser.
24. Refraktives Projektionsobjektiv nach den Ansprüchen 15 oder 16, dadurch gekennzeichnet, dass der minimale freie Durchmesser in der Linsengruppe LG3 kleiner als das 1.2fache des Objektfelddurchmessers ist, in bevorzugten Ausführungsformen kleiner als das 1.1fache.

25. Projektionsbelichtungsanlage der Mikrolithographie umfassend einem Projektionsobjektiv nach mindestens einem der Ansprüche 1-25 .

26. Verfahren zur Herstellung mikrostrukturierte Bauteile, bei dem ein mit einer lichtempfindlichen Schicht versehene Substrat mittels einer Maske und einer Projektionsbelichtungsanlage mit einer Linsenanordnung nach mindestens einem der Ansprüche 1-25 durch ultraviolettes Laserlicht belichtet wird und gegebenenfalls nach entwickeln der lichtempfindlichen Schicht entsprechend einem auf der Maske enthaltenen Muster strukturiert wird.

1/13

FIG.1

2/13

FIG.2

3/13

FIG.2aSPHÄRISCHE
ABERRATIONFIG.2b

ASTIGMATISMUS

OBJ HT

FIG.2c

VERZEICHNUNG

OBJ HT

4/13

FIG.3

5/13

FIG.3a

SPHÄRISCHE
ABERRATION

FIG.3b

ASTIGMATISMUS

FIG.3c

VERZEICHNUNG

FOKUS (MILLIMETER)

%VERZEICHNUNG

6/13

FIG.4

7/13

FIG.4a

SPHÄRISCHE
ABERRATION

OBJ HT

1.00

0.75

0.50

0.25

FOKUS (MILLIMETER)

%FOKUS (MILLIMETER)

FIG.4b

ASTIGMATISMUS

OBJ HT

ST 46.17

34.63

-23.08

-11.54

FOKUS (MILLIMETER)

%FOKUS (MILLIMETER)

FIG.4c

VERZEICHNUNG

OBJ HT

-46.17

-34.63

-23.08

-11.54

%VERZEICHNUNG

%VERZEICHNUNG

8/13

FIG.5

9/13

FIG.6

10/13

FIG.6aFIG.6bFIG.6c

11/13

FIG.7

12/13

FIG.7a

SPHÄRISCHE
ABERRATION

FIG.7b

ASTIGMATISMUS

FIG.7c

13/13

FIG.8