Definition : When a and b are integers and a is nonz	zero, a divides b means there is an integer	c such
that $b = ac$. Symbolically, $F((a, b)) =$	and is a predicate over the domain	Other
(synonymous) ways to say that $F((a, b))$ is true:		

a is a **factor** of b a is a **divisor** of b b is a **multiple** of a a|b

When a is a positive integer and b is any integer, a|b exactly when $b \mod a = 0$ When a is a positive integer and b is any integer, a|b exactly $b = a \cdot (b \operatorname{\mathbf{div}} a)$