Maximum Likelihood Estimation Merlise Clyde

STA721 Linear Models

Duke University

September 2, 2014

Outline

Topics

- Projections
- Maximum Likelihood Estimates
- Spectral Decomposition

Readings: Continue reading Wakefield 5.6.1 or for more details Christensen Chapter 1-2, Appendix A, and Appendix B

ullet $\mathbf{Y} \sim \mathsf{N}(\mu, \sigma^2 \mathbf{I}_n)$ with $\mu \in \mathcal{C}(\mathbf{X}) \Leftrightarrow \mu = \mathbf{X} eta$

- $\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in \mathcal{C}(\mathbf{X}) \Leftrightarrow \boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$
- ullet Claim: Maximum Likelihood Estimator (MLE) of μ is $\mathsf{P}_{\mathsf{X}}\mathsf{Y}$

- $\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in \mathcal{C}(\mathbf{X}) \Leftrightarrow \boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$
- ullet Claim: Maximum Likelihood Estimator (MLE) of μ is P_XY
- $P_{\mathbf{X}}$ is the orthogonal projection operator on the column space of \mathbf{X} ; e.g. \mathbf{X} full rank $P_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$
- $P = P^2$ (idempotent)

- $\mathbf{Y} \sim N(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in C(\mathbf{X}) \Leftrightarrow \boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$
- ullet Claim: Maximum Likelihood Estimator (MLE) of μ is $\mathsf{P}_{\mathsf{X}}\mathsf{Y}$
- P_X is the orthogonal projection operator on the column space of X; e.g. X full rank $P_X = X(X^TX)^{-1}X^T$
- $P = P^2$ (idempotent)

$$P_X^2 = P_X P_X = X(X^T X)^{-1} X^T X(X^T X)^{-1} X^T$$

- $\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in \mathcal{C}(\mathbf{X}) \Leftrightarrow \boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$
- ullet Claim: Maximum Likelihood Estimator (MLE) of μ is $\mathsf{P}_{\mathsf{X}}\mathsf{Y}$
- P_X is the orthogonal projection operator on the column space of X; e.g. X full rank $P_X = X(X^TX)^{-1}X^T$
- $P = P^2$ (idempotent)

$$P_X^2 = P_X P_X = X(X^T X)^{-1} X^T X(X^T X)^{-1} X^T$$
$$= X(X^T X)^{-1} X^T$$

- $\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in \mathcal{C}(\mathbf{X}) \Leftrightarrow \boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$
- ullet Claim: Maximum Likelihood Estimator (MLE) of μ is $\mathsf{P}_{\mathsf{X}}\mathsf{Y}$
- P_X is the orthogonal projection operator on the column space of X; e.g. X full rank $P_X = X(X^TX)^{-1}X^T$
- $P = P^2$ (idempotent)

$$P_X^2 = P_X P_X = X(X^T X)^{-1} X^T X(X^T X)^{-1} X^T$$

$$= X(X^T X)^{-1} X^T$$

$$= P_X$$

- $\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in \mathcal{C}(\mathbf{X}) \Leftrightarrow \boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$
- ullet Claim: Maximum Likelihood Estimator (MLE) of μ is $\mathsf{P}_{\mathsf{X}}\mathsf{Y}$
- $P_{\mathbf{X}}$ is the orthogonal projection operator on the column space of \mathbf{X} ; e.g. \mathbf{X} full rank $P_{\mathbf{X}} = \mathbf{X}(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T$
- $P = P^2$ (idempotent)

$$P_X^2 = P_X P_X = X(X^T X)^{-1} X^T X(X^T X)^{-1} X^T$$

$$= X(X^T X)^{-1} X^T$$

$$= P_X$$

- $\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in \mathcal{C}(\mathbf{X}) \Leftrightarrow \boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$
- ullet Claim: Maximum Likelihood Estimator (MLE) of μ is $\mathsf{P}_{\mathsf{X}}\mathsf{Y}$
- P_X is the orthogonal projection operator on the column space of X; e.g. X full rank $P_X = X(X^TX)^{-1}X^T$
- $P = P^2$ (idempotent)

$$P_X^2 = P_X P_X = X(X^T X)^{-1} X^T X(X^T X)^{-1} X^T$$

$$= X(X^T X)^{-1} X^T$$

$$= P_X$$

$$\mathsf{P}_{\mathsf{X}}^{\mathsf{T}} = (\mathsf{X}(\mathsf{X}^{\mathsf{T}}\mathsf{X})^{-1}\mathsf{X}^{\mathsf{T}})^{\mathsf{T}}$$

- $\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in \mathcal{C}(\mathbf{X}) \Leftrightarrow \boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$
- ullet Claim: Maximum Likelihood Estimator (MLE) of μ is $\mathsf{P}_{\mathsf{X}}\mathsf{Y}$
- P_X is the orthogonal projection operator on the column space of X; e.g. X full rank $P_X = X(X^TX)^{-1}X^T$
- $P = P^2$ (idempotent)

$$P_X^2 = P_X P_X = X(X^T X)^{-1} X^T X(X^T X)^{-1} X^T$$

$$= X(X^T X)^{-1} X^T$$

$$= P_X$$

$$P_{\mathbf{X}}^{T} = (\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T})^{T}$$
$$= (\mathbf{X}^{T})^{T}((\mathbf{X}^{T}\mathbf{X})^{-1})^{T}(\mathbf{X})^{T}$$

- $\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in \mathcal{C}(\mathbf{X}) \Leftrightarrow \boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$
- ullet Claim: Maximum Likelihood Estimator (MLE) of μ is $\mathsf{P}_{\mathsf{X}}\mathsf{Y}$
- P_X is the orthogonal projection operator on the column space of X; e.g. X full rank $P_X = X(X^TX)^{-1}X^T$
- $P = P^2$ (idempotent)

$$P_X^2 = P_X P_X = X(X^T X)^{-1} X^T X(X^T X)^{-1} X^T$$

$$= X(X^T X)^{-1} X^T$$

$$= P_X$$

$$P_{\mathbf{X}}^{T} = (\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T})^{T}$$

$$= (\mathbf{X}^{T})^{T}((\mathbf{X}^{T}\mathbf{X})^{-1})^{T}(\mathbf{X})^{T}$$

$$= \mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}$$

- $\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in \mathcal{C}(\mathbf{X}) \Leftrightarrow \boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$
- ullet Claim: Maximum Likelihood Estimator (MLE) of μ is $\mathsf{P}_{\mathsf{X}}\mathsf{Y}$
- P_X is the orthogonal projection operator on the column space of X; e.g. X full rank $P_X = X(X^TX)^{-1}X^T$
- $P = P^2$ (idempotent)

$$P_X^2 = P_X P_X = X(X^T X)^{-1} X^T X(X^T X)^{-1} X^T$$

$$= X(X^T X)^{-1} X^T$$

$$= P_X$$

$$P_{\mathbf{X}}^{T} = (\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T})^{T}$$

$$= (\mathbf{X}^{T})^{T}((\mathbf{X}^{T}\mathbf{X})^{-1})^{T}(\mathbf{X})^{T}$$

$$= \mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}$$

$$= P_{\mathbf{X}}$$

- $\mathbf{Y} \sim \mathsf{N}(\boldsymbol{\mu}, \sigma^2 \mathbf{I}_n)$ with $\boldsymbol{\mu} \in \mathcal{C}(\mathbf{X}) \Leftrightarrow \boldsymbol{\mu} = \mathbf{X}\boldsymbol{\beta}$
- ullet Claim: Maximum Likelihood Estimator (MLE) of μ is $\mathsf{P}_{\mathsf{X}}\mathsf{Y}$
- P_X is the orthogonal projection operator on the column space of X; e.g. X full rank $P_X = X(X^TX)^{-1}X^T$
- $P = P^2$ (idempotent)

$$P_X^2 = P_X P_X = X(X^T X)^{-1} X^T X(X^T X)^{-1} X^T$$

$$= X(X^T X)^{-1} X^T$$

$$= P_X$$

$$P_{\mathbf{X}}^{T} = (\mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T})^{T}$$

$$= (\mathbf{X}^{T})^{T}((\mathbf{X}^{T}\mathbf{X})^{-1})^{T}(\mathbf{X})^{T}$$

$$= \mathbf{X}(\mathbf{X}^{T}\mathbf{X})^{-1}\mathbf{X}^{T}$$

$$= P_{\mathbf{X}}$$

•
$$C(X) = C(P_X)$$

Claim: $I - P_X$ is an orthogonal projection onto $C(X)^{\perp}$

Claim: $I - P_X$ is an orthogonal projection onto $C(X)^{\perp}$

Claim: $\mathbf{I} - P_{\mathbf{X}}$ is an orthogonal projection onto $C(\mathbf{X})^{\perp}$

$$(\mathbf{I} - \mathsf{P}_{\mathbf{X}})^2 = (\mathbf{I} - \mathsf{P}_{\mathbf{X}})(\mathbf{I} - \mathsf{P}_{\mathbf{X}})$$

Claim: $\mathbf{I} - P_{\mathbf{X}}$ is an orthogonal projection onto $C(\mathbf{X})^{\perp}$

$$(I - P_X)^2 = (I - P_X)(I - P_X)$$
$$= I - P_X - P_X + P_X P_X$$

Claim: $\mathbf{I} - P_{\mathbf{X}}$ is an orthogonal projection onto $C(\mathbf{X})^{\perp}$

$$(I - P_X)^2 = (I - P_X)(I - P_X)$$
$$= I - P_X - P_X + P_XP_X$$
$$= I - P_X - P_X + P_X$$

Claim: $\mathbf{I} - P_{\mathbf{X}}$ is an orthogonal projection onto $C(\mathbf{X})^{\perp}$

$$(I - P_X)^2 = (I - P_X)(I - P_X)$$

$$= I - P_X - P_X + P_XP_X$$

$$= I - P_X - P_X + P_X$$

$$= I - P_X$$

Claim: $I - P_X$ is an orthogonal projection onto $C(X)^{\perp}$

idempotent

$$(I - P_X)^2 = (I - P_X)(I - P_X)$$

$$= I - P_X - P_X + P_X P_X$$

$$= I - P_X - P_X + P_X$$

$$= I - P_X$$

• Symmetry $\mathbf{I} - P_{\mathbf{X}} = (\mathbf{I} - P_{\mathbf{X}})^T$

Claim: $I - P_X$ is an orthogonal projection onto $C(X)^{\perp}$

$$(I - P_X)^2 = (I - P_X)(I - P_X)$$

$$= I - P_X - P_X + P_X P_X$$

$$= I - P_X - P_X + P_X$$

$$= I - P_X$$

- Symmetry $I P_X = (I P_X)^T$
- ullet $\mathbf{u} \in C(\mathbf{X})^{\perp} \Rightarrow \mathbf{u} \perp C(\mathbf{X})$ and $(\mathbf{I} \mathsf{P}_{\mathbf{X}})\mathbf{u} = \mathbf{u}$ (projection)

Claim: $I - P_X$ is an orthogonal projection onto $C(X)^{\perp}$

$$(I - P_X)^2 = (I - P_X)(I - P_X)$$

$$= I - P_X - P_X + P_X P_X$$

$$= I - P_X - P_X + P_X$$

$$= I - P_X$$

- Symmetry $I P_X = (I P_X)^T$
- ullet $\mathbf{u} \in C(\mathbf{X})^{\perp} \Rightarrow \mathbf{u} \perp C(\mathbf{X})$ and $(\mathbf{I} \mathsf{P}_{\mathbf{X}})\mathbf{u} = \mathbf{u}$ (projection)
- if $\mathbf{v} \in C(\mathbf{X})$, $(\mathbf{I} P_{\mathbf{X}})\mathbf{v} = \mathbf{v} \mathbf{v} = 0$

• Log Likelihood:

• Log Likelihood:

$$\log \mathcal{L}(\boldsymbol{\mu}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}$$

• Log Likelihood:

$$\log \mathcal{L}(\boldsymbol{\mu}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}$$

• Decompose $\mathbf{Y} = P_{\mathbf{X}}\mathbf{Y} + (\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}$

• Log Likelihood:

$$\log \mathcal{L}(\boldsymbol{\mu}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}$$

- Decompose $\mathbf{Y} = P_{\mathbf{X}}\mathbf{Y} + (\mathbf{I} P_{\mathbf{X}})\mathbf{Y}$
- ullet Use $\mathsf{P}_{\mathsf{X}}\mu=\mu$

• Log Likelihood:

$$\log \mathcal{L}(\boldsymbol{\mu}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}$$

- Decompose $\mathbf{Y} = P_{\mathbf{X}}\mathbf{Y} + (\mathbf{I} P_{\mathbf{X}})\mathbf{Y}$
- Use $\mathsf{P}_{\mathsf{X}}\mu = \mu$
- ullet and Simplify $\|\mathbf{Y}-oldsymbol{\mu}\|^2$

$$\|\mathbf{Y} - \boldsymbol{\mu}\|^2 = \|\mathbf{Y} - \mathbf{P_XY} + \mathbf{P_XY} - \boldsymbol{\mu}\|^2$$

$$\|\mathbf{Y} - \boldsymbol{\mu}\|^2 = \|\mathbf{Y} - P_{\mathbf{X}}\mathbf{Y} + P_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^2$$
$$= \|\mathbf{Y} - P_{\mathbf{X}}\mathbf{Y} + P_{\mathbf{X}}\mathbf{Y} - P_{\mathbf{X}}\boldsymbol{\mu}\|^2$$

$$\|\mathbf{Y} - \boldsymbol{\mu}\|^2 = \|\mathbf{Y} - P_{\mathbf{X}}\mathbf{Y} + P_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^2$$
$$= \|\mathbf{Y} - P_{\mathbf{X}}\mathbf{Y} + P_{\mathbf{X}}\mathbf{Y} - P_{\mathbf{X}}\boldsymbol{\mu}\|^2$$
$$= \|(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y} + P_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^2$$

$$\|\mathbf{Y} - \boldsymbol{\mu}\|^2 = \|\mathbf{Y} - P_{\mathbf{X}}\mathbf{Y} + P_{\mathbf{x}}\mathbf{Y} - \boldsymbol{\mu}\|^2$$

$$= \|\mathbf{Y} - P_{\mathbf{X}}\mathbf{Y} + P_{\mathbf{x}}\mathbf{Y} - P_{\mathbf{X}}\boldsymbol{\mu}\|^2$$

$$= \|(\mathbf{I} - P_{\mathbf{x}})\mathbf{Y} + P_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^2$$

$$= \|(\mathbf{I} - P_{\mathbf{x}})\mathbf{Y}\|^2$$

$$\|\mathbf{Y} - \boldsymbol{\mu}\|^2 = \|\mathbf{Y} - P_{\mathbf{X}}\mathbf{Y} + P_{\mathbf{x}}\mathbf{Y} - \boldsymbol{\mu}\|^2$$

$$= \|\mathbf{Y} - P_{\mathbf{X}}\mathbf{Y} + P_{\mathbf{x}}\mathbf{Y} - P_{\mathbf{X}}\boldsymbol{\mu}\|^2$$

$$= \|(\mathbf{I} - P_{\mathbf{x}})\mathbf{Y} + P_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^2$$

$$= \|(\mathbf{I} - P_{\mathbf{x}})\mathbf{Y}\|^2 + \|P_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^2$$

$$\begin{aligned} \|\mathbf{Y} - \boldsymbol{\mu}\|^2 &= \|\mathbf{Y} - \mathsf{P}_{\mathbf{X}}\mathbf{Y} + \mathsf{P}_{\mathbf{x}}\mathbf{Y} - \boldsymbol{\mu}\|^2 \\ &= \|\mathbf{Y} - \mathsf{P}_{\mathbf{X}}\mathbf{Y} + \mathsf{P}_{\mathbf{x}}\mathbf{Y} - \mathsf{P}_{\mathbf{X}}\boldsymbol{\mu}\|^2 \\ &= \|(\mathbf{I} - \mathsf{P}_{\mathbf{x}})\mathbf{Y} + \mathsf{P}_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^2 \\ &= \|(\mathbf{I} - \mathsf{P}_{\mathbf{x}})\mathbf{Y}\|^2 + \|\mathsf{P}_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^2 + 2(\mathbf{Y} - \boldsymbol{\mu})^T \mathsf{P}_{\mathbf{X}}^T (\mathbf{I} - \mathsf{P}_{\mathbf{X}})\mathbf{Y} \end{aligned}$$

$$\|\mathbf{Y} - \boldsymbol{\mu}\|^{2} = \|\mathbf{Y} - P_{\mathbf{X}}\mathbf{Y} + P_{x}\mathbf{Y} - \boldsymbol{\mu}\|^{2}$$

$$= \|\mathbf{Y} - P_{\mathbf{X}}\mathbf{Y} + P_{x}\mathbf{Y} - P_{\mathbf{X}}\boldsymbol{\mu}\|^{2}$$

$$= \|(\mathbf{I} - P_{\mathbf{x}})\mathbf{Y} + P_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^{2}$$

$$= \|(\mathbf{I} - P_{\mathbf{x}})\mathbf{Y}\|^{2} + \|P_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^{2} + 2(\mathbf{Y} - \boldsymbol{\mu})^{\mathsf{T}}P_{\mathbf{X}}^{\mathsf{T}}(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}$$

$$= \|(\mathbf{I} - P_{\mathbf{x}})\mathbf{Y}\|^{2} + \|P_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^{2} + 0$$

$$\|\mathbf{Y} - \boldsymbol{\mu}\|^{2} = \|\mathbf{Y} - P_{\mathbf{X}}\mathbf{Y} + P_{x}\mathbf{Y} - \boldsymbol{\mu}\|^{2}$$

$$= \|\mathbf{Y} - P_{\mathbf{X}}\mathbf{Y} + P_{x}\mathbf{Y} - P_{\mathbf{X}}\boldsymbol{\mu}\|^{2}$$

$$= \|(\mathbf{I} - P_{x})\mathbf{Y} + P_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^{2}$$

$$= \|(\mathbf{I} - P_{x})\mathbf{Y}\|^{2} + \|P_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^{2} + 2(\mathbf{Y} - \boldsymbol{\mu})^{T}P_{\mathbf{X}}^{T}(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}$$

$$= \|(\mathbf{I} - P_{x})\mathbf{Y}\|^{2} + \|P_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^{2} + 0$$

$$= \|(\mathbf{I} - P_{x})\mathbf{Y}\|^{2} + \|P_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^{2}$$

$$\|\mathbf{Y} - \boldsymbol{\mu}\|^{2} = \|\mathbf{Y} - P_{\mathbf{X}}\mathbf{Y} + P_{x}\mathbf{Y} - \boldsymbol{\mu}\|^{2}$$

$$= \|\mathbf{Y} - P_{\mathbf{X}}\mathbf{Y} + P_{x}\mathbf{Y} - P_{\mathbf{X}}\boldsymbol{\mu}\|^{2}$$

$$= \|(\mathbf{I} - P_{x})\mathbf{Y} + P_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^{2}$$

$$= \|(\mathbf{I} - P_{x})\mathbf{Y}\|^{2} + \|P_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^{2} + 2(\mathbf{Y} - \boldsymbol{\mu})^{T}P_{\mathbf{X}}^{T}(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}$$

$$= \|(\mathbf{I} - P_{x})\mathbf{Y}\|^{2} + \|P_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^{2} + 0$$

$$= \|(\mathbf{I} - P_{x})\mathbf{Y}\|^{2} + \|P_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^{2}$$

$$\|\mathbf{Y} - \boldsymbol{\mu}\|^{2} = \|\mathbf{Y} - P_{\mathbf{X}}\mathbf{Y} + P_{x}\mathbf{Y} - \boldsymbol{\mu}\|^{2}$$

$$= \|\mathbf{Y} - P_{\mathbf{X}}\mathbf{Y} + P_{x}\mathbf{Y} - P_{\mathbf{X}}\boldsymbol{\mu}\|^{2}$$

$$= \|(\mathbf{I} - P_{x})\mathbf{Y} + P_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^{2}$$

$$= \|(\mathbf{I} - P_{x})\mathbf{Y}\|^{2} + \|P_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^{2} + 2(\mathbf{Y} - \boldsymbol{\mu})^{T}P_{\mathbf{X}}^{T}(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}$$

$$= \|(\mathbf{I} - P_{x})\mathbf{Y}\|^{2} + \|P_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^{2} + 0$$

$$= \|(\mathbf{I} - P_{x})\mathbf{Y}\|^{2} + \|P_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^{2}$$

$$\mathsf{P}_{\boldsymbol{\mathsf{X}}}^{\mathcal{T}}(\boldsymbol{\mathsf{I}}-\mathsf{P}_{\boldsymbol{\mathsf{X}}}) \ = \ \mathsf{P}_{\boldsymbol{\mathsf{X}}}(\boldsymbol{\mathsf{I}}-\mathsf{P}_{\boldsymbol{\mathsf{X}}})$$

$$\|\mathbf{Y} - \boldsymbol{\mu}\|^{2} = \|\mathbf{Y} - P_{\mathbf{X}}\mathbf{Y} + P_{\mathbf{x}}\mathbf{Y} - \boldsymbol{\mu}\|^{2}$$

$$= \|\mathbf{Y} - P_{\mathbf{X}}\mathbf{Y} + P_{\mathbf{x}}\mathbf{Y} - P_{\mathbf{X}}\boldsymbol{\mu}\|^{2}$$

$$= \|(\mathbf{I} - P_{\mathbf{x}})\mathbf{Y} + P_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^{2}$$

$$= \|(\mathbf{I} - P_{\mathbf{x}})\mathbf{Y}\|^{2} + \|P_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^{2} + 2(\mathbf{Y} - \boldsymbol{\mu})^{T}P_{\mathbf{X}}^{T}(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}$$

$$= \|(\mathbf{I} - P_{\mathbf{x}})\mathbf{Y}\|^{2} + \|P_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^{2} + 0$$

$$= \|(\mathbf{I} - P_{\mathbf{x}})\mathbf{Y}\|^{2} + \|P_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^{2}$$

$$P_{\mathbf{X}}^{T}(\mathbf{I} - P_{\mathbf{X}}) = P_{\mathbf{X}}(\mathbf{I} - P_{\mathbf{X}})$$
$$= P_{\mathbf{X}} - P_{\mathbf{X}}P_{\mathbf{X}}$$

$$\|\mathbf{Y} - \boldsymbol{\mu}\|^{2} = \|\mathbf{Y} - P_{\mathbf{X}}\mathbf{Y} + P_{\mathbf{x}}\mathbf{Y} - \boldsymbol{\mu}\|^{2}$$

$$= \|\mathbf{Y} - P_{\mathbf{X}}\mathbf{Y} + P_{\mathbf{x}}\mathbf{Y} - P_{\mathbf{X}}\boldsymbol{\mu}\|^{2}$$

$$= \|(\mathbf{I} - P_{\mathbf{x}})\mathbf{Y} + P_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^{2}$$

$$= \|(\mathbf{I} - P_{\mathbf{x}})\mathbf{Y}\|^{2} + \|P_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^{2} + 2(\mathbf{Y} - \boldsymbol{\mu})^{T}P_{\mathbf{X}}^{T}(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}$$

$$= \|(\mathbf{I} - P_{\mathbf{x}})\mathbf{Y}\|^{2} + \|P_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^{2} + 0$$

$$= \|(\mathbf{I} - P_{\mathbf{x}})\mathbf{Y}\|^{2} + \|P_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^{2}$$

$$P_{\mathbf{X}}^{T}(\mathbf{I} - P_{\mathbf{X}}) = P_{\mathbf{X}}(\mathbf{I} - P_{\mathbf{X}})$$
$$= P_{\mathbf{X}} - P_{\mathbf{X}}P_{\mathbf{X}}$$
$$= P_{\mathbf{X}} - P_{\mathbf{X}}$$

$$\|\mathbf{Y} - \boldsymbol{\mu}\|^{2} = \|\mathbf{Y} - P_{\mathbf{X}}\mathbf{Y} + P_{\mathbf{x}}\mathbf{Y} - \boldsymbol{\mu}\|^{2}$$

$$= \|\mathbf{Y} - P_{\mathbf{X}}\mathbf{Y} + P_{\mathbf{x}}\mathbf{Y} - P_{\mathbf{X}}\boldsymbol{\mu}\|^{2}$$

$$= \|(\mathbf{I} - P_{\mathbf{x}})\mathbf{Y} + P_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^{2}$$

$$= \|(\mathbf{I} - P_{\mathbf{x}})\mathbf{Y}\|^{2} + \|P_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^{2} + 2(\mathbf{Y} - \boldsymbol{\mu})^{T}P_{\mathbf{X}}^{T}(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}$$

$$= \|(\mathbf{I} - P_{\mathbf{x}})\mathbf{Y}\|^{2} + \|P_{\mathbf{X}}(\mathbf{Y} - \boldsymbol{\mu})\|^{2} + 0$$

$$= \|(\mathbf{I} - P_{\mathbf{x}})\mathbf{Y}\|^{2} + \|P_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^{2}$$

$$P_{\mathbf{X}}^{T}(\mathbf{I} - P_{\mathbf{X}}) = P_{\mathbf{X}}(\mathbf{I} - P_{\mathbf{X}})$$

$$= P_{\mathbf{X}} - P_{\mathbf{X}}P_{\mathbf{X}}$$

$$= P_{\mathbf{X}} - P_{\mathbf{X}}$$

$$= 0$$

$$\log \mathcal{L}(\boldsymbol{\mu}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}$$

$$\log \mathcal{L}(\boldsymbol{\mu}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}$$
$$= -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \left(\frac{\|(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2} + \frac{\|P_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \right)$$

$$\log \mathcal{L}(\boldsymbol{\mu}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}$$

$$= -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \left(\frac{\|(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2} + \frac{\|P_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \right)$$

$$= -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2} + -\frac{1}{2} \frac{\|P_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}$$

$$\log \mathcal{L}(\boldsymbol{\mu}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}$$

$$= -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \left(\frac{\|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2} + \frac{\|\mathbf{P}_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \right)$$

$$= -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2} + -\frac{1}{2} \frac{\|\mathbf{P}_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}$$

$$= \text{constant with respect to } \boldsymbol{\mu}$$

$$\log \mathcal{L}(\boldsymbol{\mu}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}$$

$$= -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \left(\frac{\|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2} + \frac{\|\mathbf{P}_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \right)$$

$$= -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2} + \frac{1}{2} \frac{\|\mathbf{P}_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}$$

$$= \text{constant with respect to } \boldsymbol{\mu} \leq 0$$

Substitute decomposition into log likelihood

$$\begin{split} \log \mathcal{L}(\boldsymbol{\mu}, \sigma^2) &= -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \\ &= -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \left(\frac{\|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2} + \frac{\|\mathbf{P}_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \right) \\ &= \underbrace{-\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2}}_{= \text{constant with respect to } \boldsymbol{\mu} \leq 0 \end{split}$$

Maximize with respect to μ for each σ^2

Substitute decomposition into log likelihood

$$\begin{split} \log \mathcal{L}(\boldsymbol{\mu}, \sigma^2) &= -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \\ &= -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \left(\frac{\|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2} + \frac{\|\mathbf{P}_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \right) \\ &= \underbrace{-\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2}}_{= \text{constant with respect to } \boldsymbol{\mu} \leq 0 \end{split}$$

Maximize with respect to μ for each σ^2 RHS is largest when $\mu = P_X Y$ for any choice of σ^2

Substitute decomposition into log likelihood

$$\begin{split} \log \mathcal{L}(\boldsymbol{\mu}, \sigma^2) &= -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \\ &= -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \left(\frac{\|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2} + \frac{\|\mathbf{P}_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \right) \\ &= \underbrace{-\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2}}_{= \text{constant with respect to } \boldsymbol{\mu} + \underbrace{-\frac{1}{2} \frac{\|\mathbf{P}_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}}_{\leq 0} \end{split}$$

Maximize with respect to μ for each σ^2 RHS is largest when $\mu = P_X Y$ for any choice of σ^2

$$\hat{\mu} = \mathsf{P}_{\mathsf{X}}\mathsf{Y}$$

is the MLE of μ

Substitute decomposition into log likelihood

$$\begin{split} \log \mathcal{L}(\boldsymbol{\mu}, \sigma^2) &= -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \\ &= -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \left(\frac{\|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2} + \frac{\|\mathbf{P}_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \right) \\ &= \underbrace{-\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \frac{\|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2}}_{= \text{constant with respect to } \boldsymbol{\mu} + \underbrace{-\frac{1}{2} \frac{\|\mathbf{P}_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2}}_{\leq 0} \end{split}$$

Maximize with respect to μ for each σ^2 RHS is largest when $\mu = P_X Y$ for any choice of σ^2

$$\hat{\mu} = \mathsf{P}_{\mathsf{X}}\mathsf{Y}$$

is the MLE of μ (yields fitted values $\hat{\mathbf{Y}} = P_{\mathbf{X}}\mathbf{Y}$)

$$\mathcal{L}(\boldsymbol{\mu}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \left(\frac{\|(\mathbf{I} - \mathsf{P}_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2} + \frac{\|\mathsf{P}_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \right)$$

$$\mathcal{L}(\boldsymbol{\mu}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \left(\frac{\|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2} + \frac{\|\mathbf{P}_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \right)$$

$$\mathcal{L}(\boldsymbol{\beta}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \left(\frac{\|(\mathbf{I} - \mathbf{P}_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2} + \frac{\|\mathbf{P}_{\mathbf{X}}\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2}{\sigma^2} \right)$$

$$\mathcal{L}(\boldsymbol{\mu}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \left(\frac{\|(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2} + \frac{\|P_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \right)$$

$$\mathcal{L}(\boldsymbol{\beta}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \left(\frac{\|(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2} + \frac{\|P_{\mathbf{X}}\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2}{\sigma^2} \right)$$

Similar argument to show that RHS is maximized by minimizing

$$\|\mathsf{P}_{\mathbf{X}}\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2$$

$$\mathcal{L}(\boldsymbol{\mu}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \left(\frac{\|(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2} + \frac{\|P_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \right)$$

$$\mathcal{L}(\boldsymbol{\beta}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \left(\frac{\|(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2} + \frac{\|P_{\mathbf{X}}\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2}{\sigma^2} \right)$$

Similar argument to show that RHS is maximized by minimizing

$$\|\mathsf{P}_{\mathsf{X}}\mathsf{Y}-\mathsf{X}\boldsymbol{\beta}\|^2$$

Therefore $\hat{\boldsymbol{\beta}}$ is a MLE of $\boldsymbol{\beta}$ if and only if satisfies

$$P_XY = X\hat{\beta}$$

$$\mathcal{L}(\boldsymbol{\mu}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \left(\frac{\|(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2} + \frac{\|P_{\mathbf{X}}\mathbf{Y} - \boldsymbol{\mu}\|^2}{\sigma^2} \right)$$

$$\mathcal{L}(\boldsymbol{\beta}, \sigma^2) = -\frac{n}{2} \log(\sigma^2) - \frac{1}{2} \left(\frac{\|(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2} + \frac{\|P_{\mathbf{X}}\mathbf{Y} - \mathbf{X}\boldsymbol{\beta}\|^2}{\sigma^2} \right)$$

Similar argument to show that RHS is maximized by minimizing

$$\|\mathsf{P}_{\mathsf{X}}\mathsf{Y}-\mathsf{X}\boldsymbol{\beta}\|^2$$

Therefore $\hat{\beta}$ is a MLE of β if and only if satisfies

$$\mathsf{P}_{\mathsf{X}}\mathsf{Y}=\mathsf{X}\hat{\boldsymbol{\beta}}$$

If $\mathbf{X}^T\mathbf{X}$ is full rank, the MLE of $\boldsymbol{\beta}$ is

$$(\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{Y} = \hat{\boldsymbol{\beta}}$$

ullet Plug-in MLE of $\hat{\mu}$ for μ and differentiate with respect to σ^2

ullet Plug-in MLE of $\hat{oldsymbol{\mu}}$ for $oldsymbol{\mu}$ and differentiate with respect to σ^2

$$\log \mathcal{L}(\hat{\boldsymbol{\mu}}, \sigma^2) = -\frac{n}{2} \log \sigma^2 - \frac{1}{2} \frac{\|(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}\|^2}{\sigma^2}$$

ullet Plug-in MLE of $\hat{oldsymbol{\mu}}$ for $oldsymbol{\mu}$ and differentiate with respect to σ^2

$$\log \mathcal{L}(\hat{\boldsymbol{\mu}}, \sigma^2) = -\frac{n}{2} \log \sigma^2 - \frac{1}{2} \frac{\|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2}{\sigma^2}$$
$$\frac{\partial \log \mathcal{L}(\hat{\boldsymbol{\mu}}, \sigma^2)}{\partial \sigma^2} = -\frac{n}{2} \frac{1}{\sigma^2} + \frac{1}{2} \|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2 \left(\frac{1}{\sigma^2}\right)^2$$

ullet Plug-in MLE of $\hat{oldsymbol{\mu}}$ for $oldsymbol{\mu}$ and differentiate with respect to σ^2

$$\log \mathcal{L}(\hat{\boldsymbol{\mu}}, \sigma^2) = -\frac{n}{2} \log \sigma^2 - \frac{1}{2} \frac{\|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2}{\sigma^2}$$
$$\frac{\partial \log \mathcal{L}(\hat{\boldsymbol{\mu}}, \sigma^2)}{\partial \sigma^2} = -\frac{n}{2} \frac{1}{\sigma^2} + \frac{1}{2} \|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2 \left(\frac{1}{\sigma^2}\right)^2$$

Set derivative to zero and solve for MLE

$$0 = -\frac{n}{2}\frac{1}{\hat{\sigma}^2} + \frac{1}{2}\|(\mathbf{I} - \mathsf{P}_{\mathbf{X}})\mathbf{Y}\|^2 \left(\frac{1}{\hat{\sigma}^2}\right)^2$$

ullet Plug-in MLE of $\hat{oldsymbol{\mu}}$ for $oldsymbol{\mu}$ and differentiate with respect to σ^2

$$\log \mathcal{L}(\hat{\boldsymbol{\mu}}, \sigma^2) = -\frac{n}{2} \log \sigma^2 - \frac{1}{2} \frac{\|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2}{\sigma^2}$$
$$\frac{\partial \log \mathcal{L}(\hat{\boldsymbol{\mu}}, \sigma^2)}{\partial \sigma^2} = -\frac{n}{2} \frac{1}{\sigma^2} + \frac{1}{2} \|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2 \left(\frac{1}{\sigma^2}\right)^2$$

Set derivative to zero and solve for MLE

$$0 = -\frac{n}{2}\frac{1}{\hat{\sigma}^2} + \frac{1}{2}\|(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}\|^2 \left(\frac{1}{\hat{\sigma}^2}\right)^2$$
$$\frac{n}{2}\hat{\sigma}^2 = \frac{1}{2}\|(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}\|^2$$

ullet Plug-in MLE of $\hat{oldsymbol{\mu}}$ for $oldsymbol{\mu}$ and differentiate with respect to σ^2

$$\log \mathcal{L}(\hat{\boldsymbol{\mu}}, \sigma^2) = -\frac{n}{2} \log \sigma^2 - \frac{1}{2} \frac{\|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2}{\sigma^2}$$
$$\frac{\partial \log \mathcal{L}(\hat{\boldsymbol{\mu}}, \sigma^2)}{\partial \sigma^2} = -\frac{n}{2} \frac{1}{\sigma^2} + \frac{1}{2} \|(\mathbf{I} - \mathbf{P_X})\mathbf{Y}\|^2 \left(\frac{1}{\sigma^2}\right)^2$$

Set derivative to zero and solve for MLE

$$0 = -\frac{n}{2} \frac{1}{\hat{\sigma}^2} + \frac{1}{2} \| (\mathbf{I} - P_{\mathbf{X}}) \mathbf{Y} \|^2 \left(\frac{1}{\hat{\sigma}^2} \right)^2$$
$$\frac{n}{2} \hat{\sigma}^2 = \frac{1}{2} \| (\mathbf{I} - P_{\mathbf{X}}) \mathbf{Y} \|^2$$
$$\hat{\sigma}^2 = \frac{\| (\mathbf{I} - P_{\mathbf{X}}) \mathbf{Y} \|^2}{n}$$

$$\hat{\sigma}^2 = \frac{\|(\mathbf{I} - \mathsf{P}_{\mathsf{X}})\mathbf{Y}\|^2}{n}$$

$$\hat{\sigma}^{2} = \frac{\|(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}\|^{2}}{n}$$
$$= \frac{\mathbf{Y}^{T}(\mathbf{I} - P_{\mathbf{X}})^{T}(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}}{n}$$

$$\hat{\sigma}^{2} = \frac{\|(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}\|^{2}}{n}$$

$$= \frac{\mathbf{Y}^{T}(\mathbf{I} - P_{\mathbf{X}})^{T}(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}}{n}$$

$$= \frac{\mathbf{Y}^{T}(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}}{n}$$

$$\hat{\sigma}^{2} = \frac{\|(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}\|^{2}}{n}$$

$$= \frac{\mathbf{Y}^{T}(\mathbf{I} - P_{\mathbf{X}})^{T}(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}}{n}$$

$$= \frac{\mathbf{Y}^{T}(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}}{n}$$

$$= \frac{\mathbf{e}^{T}\mathbf{e}}{n}$$

Maximum Likelihood Estimate of σ^2

$$\hat{\sigma}^{2} = \frac{\|(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}\|^{2}}{n}$$

$$= \frac{\mathbf{Y}^{T}(\mathbf{I} - P_{\mathbf{X}})^{T}(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}}{n}$$

$$= \frac{\mathbf{Y}^{T}(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}}{n}$$

$$= \frac{\mathbf{e}^{T}\mathbf{e}}{n}$$

where $\mathbf{e} = (\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}$ residuals from the regression of \mathbf{Y} on \mathbf{X}

• Fitted Values $\hat{\mathbf{Y}} = P_{\mathbf{X}}\mathbf{Y} = \mathbf{X}\hat{\boldsymbol{\beta}}$

- Fitted Values $\hat{\mathbf{Y}} = P_{\mathbf{X}}\mathbf{Y} = \mathbf{X}\hat{\boldsymbol{\beta}}$
- $\bullet \ \ \mathsf{Residuals} \ \boldsymbol{e} = (\boldsymbol{I} \mathsf{P}_{\boldsymbol{X}})\boldsymbol{Y}$

- Fitted Values $\hat{\mathbf{Y}} = P_{\mathbf{X}}\mathbf{Y} = \mathbf{X}\hat{\boldsymbol{\beta}}$
- Residuals $\mathbf{e} = (\mathbf{I} P_{\mathbf{X}})\mathbf{Y}$
- $\bullet Y = \hat{Y} + e$

- Fitted Values $\hat{\mathbf{Y}} = P_{\mathbf{X}}\mathbf{Y} = \mathbf{X}\hat{\boldsymbol{\beta}}$
- $\bullet \ \mathsf{Residuals} \ \boldsymbol{e} = (\boldsymbol{I} \mathsf{P}_{\boldsymbol{X}}) \boldsymbol{Y}$
- $\bullet \ \mathbf{Y} = \hat{\mathbf{Y}} + \mathbf{e}$

$$\|\boldsymbol{Y}\|^2 = \|(\boldsymbol{\mathsf{I}} - \mathsf{P}_{\boldsymbol{\mathsf{X}}})\boldsymbol{\mathsf{Y}}\|^2 + \|\mathsf{P}_{\boldsymbol{\mathsf{X}}}\boldsymbol{\mathsf{Y}}\|^2$$

- Fitted Values $\hat{\mathbf{Y}} = P_{\mathbf{X}}\mathbf{Y} = \mathbf{X}\hat{\boldsymbol{\beta}}$
- Residuals $\mathbf{e} = (\mathbf{I} P_{\mathbf{X}})\mathbf{Y}$
- $\bullet Y = \hat{Y} + e$

$$\|\boldsymbol{Y}\|^2 = \|(\boldsymbol{\mathsf{I}} - \mathsf{P}_{\boldsymbol{\mathsf{X}}})\boldsymbol{\mathsf{Y}}\|^2 + \|\mathsf{P}_{\boldsymbol{\mathsf{X}}}\boldsymbol{\mathsf{Y}}\|^2$$

Properties

 $\hat{f Y}=\hat{m \mu}$ is an unbiased estimate of $m \mu={f X}m eta$

$$\hat{f Y}=\hat{m \mu}$$
 is an unbiased estimate of $m \mu={f X}m m eta$
$${\sf E}[\hat{f Y}] \ = \ {\sf E}[{\sf P}_{f X}{f Y}]$$

$$\hat{\mathbf{Y}}=\hat{\mu}$$
 is an unbiased estimate of $\mu=\mathbf{X}eta$
$$\mathsf{E}[\hat{\mathbf{Y}}] = \mathsf{E}[\mathsf{P}_{\mathbf{X}}\mathbf{Y}] \\ = \mathsf{P}_{\mathbf{X}}\mathsf{E}[\mathbf{Y}]$$

$$\hat{\mathbf{Y}}=\hat{\mu}$$
 is an unbiased estimate of $\mu=\mathbf{X}eta$
$$\mathsf{E}[\hat{\mathbf{Y}}] = \mathsf{E}[\mathsf{P}_{\mathbf{X}}\mathbf{Y}]$$

$$= \mathsf{P}_{\mathbf{X}}\mathsf{E}[\mathbf{Y}]$$

$$= \mathsf{P}_{\mathbf{X}}\mu$$

$$\hat{\mathbf{Y}}=\hat{\mu}$$
 is an unbiased estimate of $\mu=\mathbf{X}eta$
$$\mathsf{E}[\hat{\mathbf{Y}}] = \mathsf{E}[\mathsf{P}_{\mathbf{X}}\mathbf{Y}]$$

$$= \mathsf{P}_{\mathbf{X}}\mathsf{E}[\mathbf{Y}]$$

$$= \mathsf{P}_{\mathbf{X}}\mu$$

$$= \mu$$

$$\hat{\mathbf{Y}}=\hat{\mu}$$
 is an unbiased estimate of $\mu=\mathbf{X}eta$
$$\mathsf{E}[\hat{\mathbf{Y}}] = \mathsf{E}[\mathsf{P}_{\mathbf{X}}\mathbf{Y}]$$

$$= \mathsf{P}_{\mathbf{X}}\mathsf{E}[\mathbf{Y}]$$

$$= \mathsf{P}_{\mathbf{X}}\mu$$

$$= \mu$$

$$\mathsf{E}[\mathsf{e}] = \mathbf{0} \; \mathsf{if} \; \mu \in \mathcal{C}(\mathsf{X})$$

$$\hat{\mathbf{Y}}=\hat{\mu}$$
 is an unbiased estimate of $\mu=\mathbf{X}eta$
$$\mathsf{E}[\hat{\mathbf{Y}}] = \mathsf{E}[\mathsf{P}_{\mathbf{X}}\mathbf{Y}]$$

$$= \mathsf{P}_{\mathbf{X}}\mathsf{E}[\mathbf{Y}]$$

$$= \mathsf{P}_{\mathbf{X}}\mu$$

$$= \mu$$

$$\mathsf{E}[\mathsf{e}] = \mathbf{0} \; \mathsf{if} \; \mu \in \mathcal{C}(\mathbf{X})$$

$$\mathsf{E}[\mathsf{e}] \;\; = \;\; \mathsf{E}[(\mathbf{I} - \mathsf{P}_{\mathbf{X}})\mathbf{Y}]$$

$$\hat{\mathbf{Y}}=\hat{\mu}$$
 is an unbiased estimate of $\mu=\mathbf{X}eta$
$$\mathsf{E}[\hat{\mathbf{Y}}] = \mathsf{E}[\mathsf{P}_{\mathbf{X}}\mathbf{Y}]$$

$$= \mathsf{P}_{\mathbf{X}}\mathsf{E}[\mathbf{Y}]$$

$$= \mathsf{P}_{\mathbf{X}}\mu$$

$$= \mu$$

$$\mathsf{E}[\mathbf{e}] = \mathbf{0} \ \mathrm{if} \ \mu \in \mathcal{C}(\mathbf{X})$$

$$\mathsf{E}[\mathbf{e}] = \mathsf{E}[(\mathbf{I} - \mathsf{P}_{\mathbf{X}})\mathbf{Y}]$$

$$= (\mathbf{I} - \mathsf{P}_{\mathbf{X}})\mathsf{E}[\mathbf{Y}]$$

$$\hat{\mathbf{Y}}=\hat{\mu}$$
 is an unbiased estimate of $\mu=\mathbf{X}eta$
$$\mathsf{E}[\hat{\mathbf{Y}}] = \mathsf{E}[\mathsf{P}_{\mathbf{X}}\mathbf{Y}]$$

$$= \mathsf{P}_{\mathbf{X}}\mathsf{E}[\mathbf{Y}]$$

$$= \mathsf{P}_{\mathbf{X}}\mu$$

$$= \mu$$

$$\begin{aligned} \mathsf{E}[\mathsf{e}] &= \mathbf{0} \text{ if } \mu \in \mathcal{C}(\mathbf{X}) \\ &\qquad \mathsf{E}[\mathsf{e}] &= \mathsf{E}[(\mathbf{I} - \mathsf{P}_{\mathbf{X}})\mathbf{Y}] \\ &= (\mathbf{I} - \mathsf{P}_{\mathbf{X}})\mathsf{E}[\mathbf{Y}] \\ &= (\mathbf{I} - \mathsf{P}_{\mathbf{X}})\mu \end{aligned}$$

$$\hat{\mathbf{Y}}=\hat{\mu}$$
 is an unbiased estimate of $\mu=\mathbf{X}eta$
$$\mathsf{E}[\hat{\mathbf{Y}}] = \mathsf{E}[\mathsf{P}_{\mathbf{X}}\mathbf{Y}]$$

$$= \mathsf{P}_{\mathbf{X}}\mathsf{E}[\mathbf{Y}]$$

$$= \mathsf{P}_{\mathbf{X}}\mu$$

$$= \mu$$

$$\begin{split} \mathsf{E}[\mathsf{e}] &= \mathbf{0} \text{ if } \mu \in \mathcal{C}(\mathbf{X}) \\ &\quad \mathsf{E}[\mathsf{e}] &= & \mathsf{E}[(\mathbf{I} - \mathsf{P}_{\mathbf{X}})\mathbf{Y}] \\ &= & (\mathbf{I} - \mathsf{P}_{\mathbf{X}})\mathsf{E}[\mathbf{Y}] \\ &= & (\mathbf{I} - \mathsf{P}_{\mathbf{X}})\mu \\ &= & \mathbf{0} \end{split}$$

$$\hat{f Y}=\hat{m \mu}$$
 is an unbiased estimate of $m \mu={f X}m eta$

$$E[\hat{\mathbf{Y}}] = E[P_{\mathbf{X}}\mathbf{Y}]$$

$$= P_{\mathbf{X}}E[\mathbf{Y}]$$

$$= P_{\mathbf{X}}\mu$$

$$= \mu$$

$$\mathsf{E}[\mathsf{e}] = \mathbf{0} \; \mathsf{if} \; \boldsymbol{\mu} \in \mathcal{C}(\mathbf{X})$$

$$E[e] = E[(I - P_X)Y]$$

$$= (I - P_X)E[Y]$$

$$= (I - P_X)\mu$$

$$= 0$$

Will not be $\mathbf{0}$ if $\mu \notin C(\mathbf{X})$

Estimate of σ^2

MLE of
$$\sigma^2$$
:

$$\hat{\sigma}^2 = \frac{\mathbf{e}^T \mathbf{e}}{n} = \frac{\mathbf{Y}^T (\mathbf{I} - \mathsf{P}_{\mathbf{X}}) \mathbf{Y}}{n}$$

Estimate of σ^2

MLE of σ^2 :

$$\hat{\sigma}^2 = \frac{\mathbf{e}^T \mathbf{e}}{n} = \frac{\mathbf{Y}^T (\mathbf{I} - \mathsf{P}_{\mathbf{X}}) \mathbf{Y}}{n}$$

Is this an unbiased estimate of σ^2 ?

Estimate of σ^2

MLE of σ^2 :

$$\hat{\sigma}^2 = \frac{\mathbf{e}^T \mathbf{e}}{n} = \frac{\mathbf{Y}^T (\mathbf{I} - \mathsf{P}_{\mathbf{X}}) \mathbf{Y}}{n}$$

Is this an unbiased estimate of σ^2 ?

Need expectations of quadratic forms $\mathbf{Y}^T \mathbf{A} \mathbf{Y}$ for \mathbf{A} an $n \times n$ matrix \mathbf{Y} a random vector in \mathbb{R}^n

Without loss of generality we can assume that $\mathbf{A} = \mathbf{A}^T$

 \bullet **Y**^T**AY** is a scalar

- \bullet **Y**^T**AY** is a scalar
- $\bullet \ \mathbf{Y}^{T}\mathbf{A}\mathbf{Y} = (\mathbf{Y}^{T}\mathbf{A}\mathbf{Y})^{T} = \mathbf{Y}^{T}\mathbf{A}^{T}\mathbf{Y}$

- \bullet **Y**^T**AY** is a scalar
- $\bullet \mathbf{Y}^T \mathbf{A} \mathbf{Y} = (\mathbf{Y}^T \mathbf{A} \mathbf{Y})^T = \mathbf{Y}^T \mathbf{A}^T \mathbf{Y}$

$$\frac{\mathbf{Y}^{T}\mathbf{A}\mathbf{Y} + \mathbf{Y}^{T}\mathbf{A}^{T}\mathbf{Y}}{2} = \mathbf{Y}^{T}\mathbf{A}\mathbf{Y}$$

- \bullet **Y**^T**AY** is a scalar
- $\bullet Y^TAY = (Y^TAY)^T = Y^TA^TY$

$$\frac{\mathbf{Y}^{T}\mathbf{A}\mathbf{Y} + \mathbf{Y}^{T}\mathbf{A}^{T}\mathbf{Y}}{2} = \mathbf{Y}^{T}\mathbf{A}\mathbf{Y}$$
$$\mathbf{Y}^{T}\frac{(\mathbf{A} + \mathbf{A}^{T})}{2}\mathbf{Y} = \mathbf{Y}^{T}\mathbf{A}\mathbf{Y}$$

$$\mathbf{Y}^T \frac{(\mathbf{A} + \mathbf{A}^T)}{2} \mathbf{Y} = \mathbf{Y}^T \mathbf{A} \mathbf{Y}$$

Without loss of generality we can assume that $\mathbf{A} = \mathbf{A}^T$

- \bullet **Y**^T**AY** is a scalar
- $\mathbf{Y}^{T}\mathbf{A}\mathbf{Y} = (\mathbf{Y}^{T}\mathbf{A}\mathbf{Y})^{T} = \mathbf{Y}^{T}\mathbf{A}^{T}\mathbf{Y}$ $\mathbf{Y}^{T}\mathbf{A}\mathbf{Y} + \mathbf{Y}^{T}\mathbf{A}^{T}\mathbf{Y}$

$$\frac{\mathbf{Y}^{T}\mathbf{A}\mathbf{Y} + \mathbf{Y}^{T}\mathbf{A}^{T}\mathbf{Y}}{2} = \mathbf{Y}^{T}\mathbf{A}\mathbf{Y}$$
$$\mathbf{Y}^{T}\frac{(\mathbf{A} + \mathbf{A}^{T})}{2}\mathbf{Y} = \mathbf{Y}^{T}\mathbf{A}\mathbf{Y}$$

• may take $\mathbf{A} = \mathbf{A}^T$

Expectations of Quadratic Forms

Theorem

Let ${f Y}$ be a random vector in ${\Bbb R}^n$ with ${\it E}[{f Y}]=\mu$ and ${\it Cov}({f Y})={f \Sigma}$.

Expectations of Quadratic Forms

Theorem

Let **Y** be a random vector in \mathbb{R}^n with $E[Y] = \mu$ and $Cov(Y) = \Sigma$. Then $E[Y^TAY] = trA\Sigma + \mu^TA\mu$.

Expectations of Quadratic Forms

Theorem

Let **Y** be a random vector in \mathbb{R}^n with $E[Y] = \mu$ and $Cov(Y) = \Sigma$. Then $E[Y^TAY] = trA\Sigma + \mu^TA\mu$.

Result useful for finding expected values of Mean Squares; no normality required!

Start with $(\mathbf{Y} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})$, expand and take expectations

Start with $(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})$, expand and take expectations

$$\mathsf{E}[(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] \ = \ \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y} + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \mathbf{Y} - \mathbf{Y}^T \mathbf{A} \boldsymbol{\mu}]$$

Start with $(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})$, expand and take expectations

$$\begin{split} \mathsf{E}[(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y} + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \mathbf{Y} - \mathbf{Y}^T \mathbf{A} \boldsymbol{\mu}] \\ &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \end{split}$$

Start with $(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})$, expand and take expectations

$$\begin{split} \mathsf{E}[(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y} + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \mathbf{Y} - \mathbf{Y}^T \mathbf{A} \boldsymbol{\mu}] \\ &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \end{split}$$

Start with $(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})$, expand and take expectations

$$\begin{split} \mathsf{E}[(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y} + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \mathbf{Y} - \mathbf{Y}^T \mathbf{A} \boldsymbol{\mu}] \\ &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \end{split}$$

Start with $(\mathbf{Y} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})$, expand and take expectations

$$\begin{split} \mathsf{E}[(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y} + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \mathbf{Y} - \mathbf{Y}^T \mathbf{A} \boldsymbol{\mu}] \\ &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \end{split}$$

$$\mathsf{E}[\mathbf{Y}^T\mathbf{A}\mathbf{Y}] \ = \ \mathsf{E}[(\mathbf{Y}-\boldsymbol{\mu})^T\mathbf{A}(\mathbf{Y}-\boldsymbol{\mu})] + \boldsymbol{\mu}^T\mathbf{A}\boldsymbol{\mu}$$

Start with $(\mathbf{Y} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})$, expand and take expectations

$$\begin{split} \mathsf{E}[(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y} + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \mathbf{Y} - \mathbf{Y}^T \mathbf{A} \boldsymbol{\mu}] \\ &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \end{split}$$

$$\begin{aligned} \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] &= \mathsf{E}[(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{E}[\mathsf{tr}(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \end{aligned}$$

Start with $(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})$, expand and take expectations

$$\begin{split} \mathsf{E}[(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y} + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \mathbf{Y} - \mathbf{Y}^T \mathbf{A} \boldsymbol{\mu}] \\ &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \end{split}$$

$$\begin{split} \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] &= \mathsf{E}[(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{E}[\mathsf{tr}(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{E}[\mathsf{tr} \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu}) (\mathbf{Y} - \boldsymbol{\mu})^T] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \end{split}$$

Start with $(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})$, expand and take expectations

$$\begin{split} \mathsf{E}[(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y} + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \mathbf{Y} - \mathbf{Y}^T \mathbf{A} \boldsymbol{\mu}] \\ &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \end{split}$$

$$\begin{split} \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] &= \mathsf{E}[(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{E}[\mathsf{tr}(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{E}[\mathsf{tr} \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu}) (\mathbf{Y} - \boldsymbol{\mu})^T] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{tr} \mathsf{E}[\mathbf{A} (\mathbf{Y} - \boldsymbol{\mu}) (\mathbf{Y} - \boldsymbol{\mu})^T] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \end{split}$$

Start with $(\mathbf{Y} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})$, expand and take expectations

$$\begin{split} \mathsf{E}[(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y} + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \mathbf{Y} - \mathbf{Y}^T \mathbf{A} \boldsymbol{\mu}] \\ &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \end{split}$$

$$\begin{aligned} \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] &= \mathsf{E}[(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{E}[\mathsf{tr}(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{E}[\mathsf{tr} \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu}) (\mathbf{Y} - \boldsymbol{\mu})^T] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{tr} \mathsf{E}[\mathbf{A} (\mathbf{Y} - \boldsymbol{\mu}) (\mathbf{Y} - \boldsymbol{\mu})^T] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{tr} \mathbf{A} \mathsf{E}([(\mathbf{Y} - \boldsymbol{\mu}) (\mathbf{Y} - \boldsymbol{\mu})^T] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \end{aligned}$$

Start with $(\mathbf{Y} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})$, expand and take expectations

$$\begin{split} \mathsf{E}[(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y} + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \mathbf{Y} - \mathbf{Y}^T \mathbf{A} \boldsymbol{\mu}] \\ &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \end{split}$$

$$\begin{split} \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] &= \mathsf{E}[(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{E}[\mathsf{tr}(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{E}[\mathsf{tr} \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu}) (\mathbf{Y} - \boldsymbol{\mu})^T] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{tr} \mathsf{E}[\mathbf{A} (\mathbf{Y} - \boldsymbol{\mu}) (\mathbf{Y} - \boldsymbol{\mu})^T] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{tr} \mathbf{A} \mathsf{E}([(\mathbf{Y} - \boldsymbol{\mu}) (\mathbf{Y} - \boldsymbol{\mu})^T] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{tr} \mathbf{A} \mathbf{\Sigma} + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \end{split}$$

Start with $(\mathbf{Y} - \boldsymbol{\mu})^{\mathsf{T}} \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})$, expand and take expectations

$$\begin{split} \mathsf{E}[(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y} + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \mathbf{Y} - \mathbf{Y}^T \mathbf{A} \boldsymbol{\mu}] \\ &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= & \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] - \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \end{split}$$

$$\begin{split} \mathsf{E}[\mathbf{Y}^T \mathbf{A} \mathbf{Y}] &= \mathsf{E}[(\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{E}[\mathsf{tr} (\mathbf{Y} - \boldsymbol{\mu})^T \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu})] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{E}[\mathsf{tr} \mathbf{A} (\mathbf{Y} - \boldsymbol{\mu}) (\mathbf{Y} - \boldsymbol{\mu})^T] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{tr} \mathsf{E}[\mathbf{A} (\mathbf{Y} - \boldsymbol{\mu}) (\mathbf{Y} - \boldsymbol{\mu})^T] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{tr} \mathbf{A} \mathsf{E}([(\mathbf{Y} - \boldsymbol{\mu}) (\mathbf{Y} - \boldsymbol{\mu})^T] + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \\ &= \mathsf{tr} \mathbf{A} \mathbf{\Sigma} + \boldsymbol{\mu}^T \mathbf{A} \boldsymbol{\mu} \end{split}$$

$$tr \mathbf{A} \equiv \sum_{i=1}^{n} a_{ii}$$

Expectation of $\hat{\sigma}^2$

Use the theorem:

Expectation of $\hat{\sigma}^2$

Use the theorem:

$$\mathsf{E}[\mathbf{Y}^T(\mathbf{I} - \mathsf{P}_{\mathbf{X}})\mathbf{Y}] = \mathsf{tr}(\mathbf{I} - \mathsf{P}_{\mathbf{X}})\sigma^2\mathbf{I} + \mu^T(\mathbf{I} - \mathsf{P}_{\mathbf{X}})\mu$$

Use the theorem:

$$E[\mathbf{Y}^{T}(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}] = tr(\mathbf{I} - P_{\mathbf{X}})\sigma^{2}\mathbf{I} + \mu^{T}(\mathbf{I} - P_{\mathbf{X}})\mu$$
$$= \sigma^{2}tr(\mathbf{I} - P_{\mathbf{X}})$$

Use the theorem:

$$E[\mathbf{Y}^{T}(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}] = tr(\mathbf{I} - P_{\mathbf{X}})\sigma^{2}\mathbf{I} + \mu^{T}(\mathbf{I} - P_{\mathbf{X}})\mu$$
$$= \sigma^{2}tr(\mathbf{I} - P_{\mathbf{X}})$$
$$= \sigma^{2}r(\mathbf{I} - P_{\mathbf{X}})$$

Use the theorem:

$$E[\mathbf{Y}^{T}(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}] = tr(\mathbf{I} - P_{\mathbf{X}})\sigma^{2}\mathbf{I} + \mu^{T}(\mathbf{I} - P_{\mathbf{X}})\mu$$

$$= \sigma^{2}tr(\mathbf{I} - P_{\mathbf{X}})$$

$$= \sigma^{2}r(\mathbf{I} - P_{\mathbf{X}})$$

$$= \sigma^{2}(n - r(\mathbf{X}))$$

Use the theorem:

$$E[\mathbf{Y}^{T}(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}] = tr(\mathbf{I} - P_{\mathbf{X}})\sigma^{2}\mathbf{I} + \mu^{T}(\mathbf{I} - P_{\mathbf{X}})\mu$$

$$= \sigma^{2}tr(\mathbf{I} - P_{\mathbf{X}})$$

$$= \sigma^{2}r(\mathbf{I} - P_{\mathbf{X}})$$

$$= \sigma^{2}(n - r(\mathbf{X}))$$

Therefore an unbiased estimate of σ^2 is

$$\frac{\mathbf{e}^T \mathbf{e}}{n - r(\mathbf{X})}$$

Use the theorem:

$$E[\mathbf{Y}^{T}(\mathbf{I} - P_{\mathbf{X}})\mathbf{Y}] = tr(\mathbf{I} - P_{\mathbf{X}})\sigma^{2}\mathbf{I} + \mu^{T}(\mathbf{I} - P_{\mathbf{X}})\mu$$

$$= \sigma^{2}tr(\mathbf{I} - P_{\mathbf{X}})$$

$$= \sigma^{2}r(\mathbf{I} - P_{\mathbf{X}})$$

$$= \sigma^{2}(n - r(\mathbf{X}))$$

Therefore an unbiased estimate of σ^2 is

$$\frac{\mathbf{e}^T \mathbf{e}}{n - r(\mathbf{X})}$$

Trace of a Projection Matrix

Theorem

Theorem

If **A** $(n \times n)$ is a symmetric real matrix then there exists a **U** $(n \times n)$ such that $\mathbf{U}^T \mathbf{U} = \mathbf{U} \mathbf{U}^T = \mathbf{I}_n$ and a diagonal matrix $\boldsymbol{\Lambda}$ with elements λ_i such that $\mathbf{A} = \mathbf{U} \boldsymbol{\Lambda} \mathbf{U}^T$

ullet ${f U}$ is an orthogonal matrix; ${f U}^{-1}={f U}^T$

Theorem

- ullet **U** is an orthogonal matrix; $\mathbf{U}^{-1} = \mathbf{U}^T$
- The columns of **U** from an Orthonormal Basis for \mathbb{R}^n

Theorem

- **U** is an orthogonal matrix; $\mathbf{U}^{-1} = \mathbf{U}^T$
- The columns of **U** from an Orthonormal Basis for \mathbb{R}^n
- rank of **A** equals the number of non-zero eigenvalues λ_i

Theorem

- **U** is an orthogonal matrix; $\mathbf{U}^{-1} = \mathbf{U}^T$
- The columns of **U** from an Orthonormal Basis for \mathbb{R}^n
- rank of **A** equals the number of non-zero eigenvalues λ_i
- Columns of U associated with non-zero eigenvalues form an ONB for C(A) (eigenvectors of A)

Theorem

- **U** is an orthogonal matrix; $\mathbf{U}^{-1} = \mathbf{U}^T$
- The columns of **U** from an Orthonormal Basis for \mathbb{R}^n
- rank of **A** equals the number of non-zero eigenvalues λ_i
- Columns of U associated with non-zero eigenvalues form an ONB for C(A) (eigenvectors of A)
- $\mathbf{A}^p = \mathbf{U} \mathbf{\Lambda}^p \mathbf{U}^T$ (matrix powers)

Theorem

- **U** is an orthogonal matrix; $\mathbf{U}^{-1} = \mathbf{U}^T$
- The columns of **U** from an Orthonormal Basis for \mathbb{R}^n
- rank of **A** equals the number of non-zero eigenvalues λ_i
- Columns of U associated with non-zero eigenvalues form an ONB for C(A) (eigenvectors of A)
- $\mathbf{A}^p = \mathbf{U} \mathbf{\Lambda}^p \mathbf{U}^T$ (matrix powers)
- a square root of $\mathbf{A} > 0$ is $\mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{U}^T$

Theorem

- **U** is an orthogonal matrix; $\mathbf{U}^{-1} = \mathbf{U}^T$
- The columns of **U** from an Orthonormal Basis for \mathbb{R}^n
- rank of **A** equals the number of non-zero eigenvalues λ_i
- Columns of U associated with non-zero eigenvalues form an ONB for C(A) (eigenvectors of A)
- $\mathbf{A}^p = \mathbf{U} \mathbf{\Lambda}^p \mathbf{U}^T$ (matrix powers)
- a square root of $\mathbf{A} > 0$ is $\mathbf{U} \mathbf{\Lambda}^{1/2} \mathbf{U}^T$

Projection Matrix

Projection Matrix

If P is an orthogonal projection matrix, then its eigenvalues λ_i are either zero or one with $tr(P) = \sum_i (\lambda_i) = r(P)$

• $P = U \Lambda U^T$

Projection Matrix

- $P = U \Lambda U^T$
- $P = P^2 \Rightarrow U \Lambda U^T U \Lambda U^T = U \Lambda^2 U^T$

Projection Matrix

- $P = U \Lambda U^T$
- $\bullet \ \mathsf{P} = \mathsf{P}^2 \Rightarrow \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T \mathbf{U} \mathbf{\Lambda} \mathbf{U}^T = \mathbf{U} \mathbf{\Lambda}^2 \mathbf{U}^T$
- $\Lambda = \Lambda^2$ is true only for $\lambda_i = 1$ or $\lambda_i = 0$

Projection Matrix

- $P = U \Lambda U^T$
- $P = P^2 \Rightarrow U \Lambda U^T U \Lambda U^T = U \Lambda^2 U^T$
- $\Lambda = \Lambda^2$ is true only for $\lambda_i = 1$ or $\lambda_i = 0$
- Since r(P) is the number of non-zero eigenvalues, $r(P) = \sum \lambda_i = tr(P)$

Projection Matrix

If P is an orthogonal projection matrix, then its eigenvalues λ_i are either zero or one with $tr(P) = \sum_i (\lambda_i) = r(P)$

- $P = U \Lambda U^T$
- $P = P^2 \Rightarrow U \Lambda U^T U \Lambda U^T = U \Lambda^2 U^T$
- $\Lambda = \Lambda^2$ is true only for $\lambda_i = 1$ or $\lambda_i = 0$
- Since r(P) is the number of non-zero eigenvalues, $r(P) = \sum \lambda_i = tr(P)$

$$\begin{split} \mathsf{P} = \left[\mathbf{U}_{P} \mathbf{U}_{P^{\perp}} \right] \left[\begin{array}{cc} \mathbf{I}_{r} & \mathbf{0} \\ \mathbf{0} & \mathbf{0}_{n-r} \end{array} \right] \left[\begin{array}{c} \mathbf{U}_{P}^{T} \\ \mathbf{U}_{P^{\perp}}^{T} \end{array} \right] = \mathbf{U}_{P} \mathbf{U}_{P}^{T} \\ \mathsf{P} = \sum_{i=1}^{r} \mathbf{u}_{i} \mathbf{u}_{i}^{T} \end{split}$$

sum of r rank 1 projections.

Prostate Example

- > library(lasso2) > summary(lm(lcavol ~ ., data=Prostate))
- Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.260101 1.259683 -1.794 0.0762.
lweight -0.073166 0.174450 -0.419 0.6759
age 0.022736 0.010964 2.074 0.0410 *
lbph -0.087449 0.058084 -1.506 0.1358
svi -0.153591 0.253932 -0.605 0.5468
lcp 0.367300 0.081689 4.496 2.10e-05 ***
gleason 0.190759 0.154283 1.236 0.2196
pgg45 -0.007158 0.004326 -1.654 0.1016
      lpsa
```

Residual standard error: 0.6998 on 88 degrees of freedom Multiple R-squared: 0.6769, Adjusted R-squared: 0.6475 F-statistic: 23.04 on 8 and 88 DF, p-value: 6.2.2e-16.