

THE MAIN TITLE OF THE LECTURE IN TWO LINES THE CHAPTER TITLE IN ONE LINE

The program name

î The university name - 2025/2026

IDIR AIT SADOUNE

IDIR AIT SADOUNE

- Docteur en Informatique diplômé par l'ENSMA @ en 2010.
 - Thèse ② sur la modélisation et la vérification des services par une approche basée sur le raffinement et sur la preuve.
- Enseignant au sein du département informatique de CentraleSupelec - Université Paris-Saclay .

IDIR AIT SADOUNE

- Docteur en Informatique diplômé par l'ENSMA @ en 2010.
 - Thèse sur la modélisation et la vérification des services par une approche basée sur le raffinement et sur la preuve.
- Enseignant au sein du département informatique de CentraleSupelec - Université Paris-Saclay .
- Chercheur membre des pôles Modèles et Preuve du LMF - Laboratoire Méthodes Formelles .

UN TITRE PRINCIPAL UN SOUS-TITRE

What are the main views on the relation between logic and human question?

- What are the main views on the relation between logic and human question?
- Why are straight-in approaches dangerous at uncontrolled airfields?
- Why the serpent was more crafty than any of the wild animals?
- Clone Kubuntu to different computer, different hardware
- Multirow colour and vertical alignment using tabularx
- What are the main views on the relation between logic and human question?
- Why are straight-in approaches dangerous at uncontrolled airfields?

OUTLINE

- The first chapter title
- The second chapter title
- The third chapter title
- Une image dans le texte

Back to the begin - Back to the outline

OUTLINE

- The first chapter title
- The second chapter title
- The third chapter title
- Une image dans le texte

Back to the begin - Back to the outline

LE TITRE DE LA SLIDE

- Un premier item pour introduire le point à aborder dans cette slide.
- Un deuxième item pour parler d'un concept lancé en 2025
 - un sous item pour détailler ce qui se passe au premier semestre
 - un autre sous item pour détailler ce qui se passe au deuxième semestre
 - juste pour préciser que la fin du deuxième semestre était magnifique
 - un lien aussi vers un site à vister adipiscing elit @
 - peut être un contact aussi personne@exemple.com
- Un troisième item pour introduire le troisième point du cours
 - 1. on commence par le début d'un *point important*.
 - 2. on termine aussi par un point important à ne pas négliger.
- void assertEquals(Object e, Object a)
 - vérifie l'égalité entre deux objets e=a or e=a.
 - \checkmark vérifie l'équivalence entre deux objets $e \equiv a$ or $e \equiv a$.
 - \times vérifie la différence entre deux objets $e \neq a$ or $e \neq a$.

LE TITRE DE LA SLIDE SUR DEUX LIGNES

Beast of Bodmin

A large feline inhabiting Bodmin Moor.

Beast of Bodmin

A large feline inhabiting Bodmin Moor.

Beast of Bodmin

A large feline inhabiting Bodmin Moor.

DEFAULT BLOCKS

Block Title

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Block Title

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

Example

Lorem ipsum dolor sit amet, consectetur adipisicing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.

SPECIFIC BLOCKS

Definition

A prime number is a number that...

Theorem (Pythagoras)

$$a^2 + b^2 = c^2$$

Corollary

$$x + y = y + x$$

Démonstration.

$$\omega + \phi = \epsilon$$

OUTLINE

- The first chapter title
- The second chapter title
- The third chapter title
- Une image dans le texte

Back to the begin - Back to the outline

EXEMPLE MATH

$$\begin{split} \dot{x} &= \sigma(y-x) \\ \dot{y} &= \rho x - y - xz \\ \dot{z} &= -\beta z + xy \end{split}$$

exponent

$$x = 3.14159265359 = \underbrace{314159265359}_{\text{significand}} \times \underbrace{10}_{\text{base}} \stackrel{\widehat{-11}}{\widehat{-11}}$$

• Les règles et les techniques de programmation.

- Les règles et les techniques de programmation.
- Le **support** des langages de programmation.

- Les règles et les techniques de programmation.
- Le **support** des langages de programmation.
- Les méthodologies de conception et de développement.

- Les règles et les techniques de programmation.
- Le **support** des langages de programmation.
- Les **méthodologies de conception** et de développement.
- Le test.

- Les règles et les techniques de programmation.
- Le **support** des langages de programmation.
- Les **méthodologies de conception** et de développement.
- Le test.
- Les méthodes formelles.

- Les règles et les techniques de programmation.
- Le **support** des langages de programmation.
- Les **méthodologies de conception** et de développement.
- Le test.
- Les méthodes formelles.

OUTLINE

- The first chapter title
- The second chapter title
- The third chapter title
- Une image dans le texte

Back to the begin - Back to the outline

Analyse

Des erreurs possibles à toutes les étapes du développement.

EXEMPLE CODE

```
$ cp file.txt directory
$ cd directory
$ ls -al .
```


ASSEMBLER CODE

```
2 mov eax, balance
 3 add eax, 1
 4 mov balance, eax
 1 .MODEL SMALL
 2 .STACK 100H
 3 .CODE
 5 MOV AX, 0x3C
 6 MOV BX, 000000000001010B
 7 ADD AX, BX
8 MOV BX, 14
 9 SUB AX, BX
   MOV AH, 04FF
12 INT 21H
```



```
1 package ltof.gameserver.model;
2 /* *******
3 Un commenaire sur plusieurs lignes
4 ******* */
```



```
package ltof.gameserver.model;
/* *******

Un commenaire sur plusieurs lignes
**********/
public abstract strictfp class LtoChar extends LtoObject {
// Un commentaire sur une seule ligne
public static final Short ERROR = 0x0001;
```


PROGRAMME vs PROCESSUS

```
1 int a = 3;
2 a = a + 2;
```

```
1 @a: memval 3
2 mov eax, a
3 mov ebx, 2
4 add ecx, eax, ebx
5 mov a, ecx
```

```
1 2B50: mov eax, 2B1E
2 2B52: mov ebx, #0002
3 2B54: add ecx, eax, ebx
4 2B55: mov 2B1E, ecx
5 ...
6 2B1E: 0003
```

```
1 2B50: mov eax, 2B1E
2 2B52: mov ebx, #0002
3 2B54: add ecx, eax, ebx
4 2B55: mov 2B1E, ecx
5 ...
6 2B1E: 0003
```



```
package ltof.gameserver.model;
/* *******

Un commenaire sur plusieurs lignes

**********/

public abstract strictfp class LtoChar extends LtoObject {
    // Un commentaire sur une seule ligne
    public static final Short ERROR = 0x0001;

public void moveTo(int x, int y, int z) {
    _ai = null;
    log("Should not be called");
    if (1 > 5) return;
}
```



```
package ltof.gameserver.model;
2 /* *******
3 Un commenaire sur plusieurs lignes
4 ******* */
5 public abstract strictfp class LtoChar extends LtoObject {
6     // Un commentaire sur une seule ligne
7     public static final Short ERROR = 0x0001;
8
9     public void moveTo(int x, int y, int z) {
10         _ai = null;
11         log("Should not be called");
12         if (1 > 5) return;
13     }
14 }
```


THE POWER OPERATOR

```
THEORY thy_power_operator
```

AXIOMATIC DEFINITIONS

```
operators
```

```
pow(x \in Z, n \in N) : Z INFIX // x pow n = x^n wd condition : \neg (x = 0 \wedge n = 0) // 0^0 is not defined
```

END

THE POWER OPERATOR

```
THEORY thy_power_operator  
AXIOMATIC DEFINITIONS  
operators  
pow(x \in \mathbb{Z}, n \in \mathbb{N}) : \mathbb{Z} \text{ INFIX } / / x \text{ pow } n = x^n 
wd \text{ condition } : \neg (x = \emptyset \land n = \emptyset) / / \emptyset^0 \text{ is not defined} 
axioms  
@axm1: \forall n. n \in \mathbb{N}_1 \Rightarrow \emptyset \text{ pow } n = \emptyset 
@axm2: \forall x. x \in \mathbb{Z} \land x \neq \emptyset \Rightarrow x \text{ pow } \emptyset = 1 
@axm3: \forall x, n. x \in \mathbb{Z} \land x \neq \emptyset \land n \in \mathbb{N}_1 \Rightarrow x \text{ pow } n = x \times (x \text{ pow } (n-1)) 
\dots
```


FND

THE POWER OPERATOR

```
THEORY thy_power_operator
AXIOMATIC DEFINITIONS
   operators
      pow(x \in \mathbb{Z}, n \in \mathbb{N}) : \mathbb{Z} INFIX // x pow n = x^n
      wd condition: \neg (x = 0 \land n = 0) // 0 \land 0 is not defined
   axioms
      @axm1: \forall n. n \in \mathbb{N}_1 \Rightarrow \emptyset pow n = \emptyset
      @axm2: \forall x. x \in \mathbb{Z} \land x \neq 0 \Rightarrow x pow 0 = 1
      @axm3: \forall x,n. x \in \mathbb{Z} \land x \neq \emptyset \land n \in \mathbb{N}_1 \Rightarrow x \text{ pow } n = x \times (x \text{ pow } (n-1))
THEOREMS
   @thm1: \forall x,n,m... \Rightarrow x \text{ pow } (n+m) = (x \text{ pow } n) \times (x \text{ pow } m)
   @thm2: \forall x,n,m. ... \Rightarrow (x pow n) pow m = x pow (n \times m)
   @thm3: \forall x,y,n. \dots \Rightarrow (x \times y) \text{ pow } n = (x \text{ pow } n) \times (y \text{ pow } n)
    . . .
FND
```


OUTLINE

- The first chapter title
- The second chapter title
- The third chapter title
- Une image dans le texte

Back to the begin - Back to the outline

 Le Langage de Modélisation Unifié, (Unified Modeling Language - UML), est un langage de modélisation graphique à base de pictogrammes.

 Le Langage de Modélisation Unifié, (Unified Modeling Language - UML), est un langage de modélisation graphique à base de pictogrammes.

• L'UML est une synthèse de langages de modélisation objet antérieurs : Booch, OMT, OOSE.

 Le Langage de Modélisation Unifié, (Unified Modeling Language - UML), est un langage de modélisation graphique à base de pictogrammes.

- L'UML est une synthèse de langages de modélisation objet antérieurs : Booch, OMT, OOSE.
- UML 1.0 a été normalisé en janvier 1997; UML 2.0 a été adopté par l'OMG en juillet 2005. L'UML est une synthèse de langages de modélisation objet.

THANK YOU

Back to the begin - Back to the outline

