ShapeWorks

Statistical Shape Analysis Using Particle Systems

ShapeWorks Team

Shape = Object

Shape = Object - Location

Shape = Object - Location - Orientation

Shape = Object - Location - Orientation - Scale

Statistical Shape Analysis

Quantify anatomical variability of populations

Anthropology & Evolutionary Biology (taxonomy)
Phenotyping
Neuroanatomy

Hypothesis testing for group differences

OF UTAH

Shape Representation

Geometric surface

- segmentation output
- distance transform

Shape Correspondence

Given a collection of shapes, we can use a point based representation for each S_i

BUT...

SCI

Particle System: Shape Representation

Inspiration: point set surfaces from computer graphics

Particles (interesting points):

- Computed automatically
- Distributed based on entropy based cost function
- Constrained to lie on surface

Particle System: Shape Correspondence

Configuration Space (d-dim)

x_i -> d-dimensional point

 $S_i \rightarrow (\mathbf{x}_i^1, ..., \mathbf{x}_i^M)$

Shape Space (dM-dim)

 S_i -> single point!

Trade-off: compact model v/s accurate sampling

ShapeWorks

Tool to do everything we just saw...

DEMO

