

Dinámica (FIS1514) Introducción

Felipe Isaule

felipe.isaule@uc.cl

Lunes 7 de Agosto de 2023

¿Qué es Dinámica (FIS1514)?

Dinámica es un curso introductorio sobre los principios de la mecánica y sus aplicaciones.

Se estudiarán los cuatro pilares de la mecánica clásica:

- Cinemática
- Dinámica (Cinética)
- Trabajo-energía
- Impulso-momentum

Objetivos del curso

Modelar **sistemas mecánicos** simples, tanto estáticos como en movimiento, usando **herramientas de la mecánica clásica**.

Objetivos específicos:

- Plantear ecuaciones de movimiento de partículas.
- Predecir el movimiento de partículas sometidas a fuerzas.
- Analizar sistemas mecánicos utilizando trabajo y energía.
- Analizar sistemas mecánicos utilizando impulso y momentum.

Contenidos del curso

1. Cinemática de partículas (3 semanas)

Movimiento en una, dos, y tres dimensiones. Sistemas de coordenadas. Movimiento relativo.

2. Dinámica de partículas (3 semanas)

Leyes de Newton. Trabajo y energía. Oscilador armónico. Impulso y momentum.

3. Dinámica de sistemas de partículas (5 semanas)

Conservación de energía y momentum. Colisiones. Torque. Centro de masa.

4. Dinámica de cuerpos rígidos en el plano (3 semanas)

Momento de inercia. Rotación y traslación de un cuerpo rígido. Ecuaciones de movimiento de un cuerpo rígido.

Bibliografía

- Meriam J L, Kraige L G, Bolton J N, Mecánica para ingenierios, Dinámica.
- Hibbeler R C, Ingeniería Mecánica, Dinámica.
- Tipler P A, Mosca G, Física para la Ciencia y la Tecnología.
- Young H D, Freedman R A, Sears & Zemansky's: Física Universitaria.
- Serway R A, Jewett J W, Física para Ciencias e Ingeniería.

Requisitos del curso

- Laboratorio de Dinámica (c), Cálculo I y Algebra Linear (c).
 - → Diferenciación e integración.
 - → Vectores!

Metodología para el aprendizaje

Clases expositivas.

Lunes y Miercoles 12:20 - 13:30.

• Talleres de trabajo grupal (asistencia sobre 85%).

Viernes 12:20 - 13:30.

Ayudantías de ejercicios.

Lunes 14:50 - 16:00.

Evaluaciones

- 3 controles (horario taller): 20% de la nota.
 - Viernes 01/09, Viernes 29/09, Viernes 03/11.
- 2 interrogaciones. 50% de la nota.
 - Miercoles 13/09 (17:30). Lunes 20/11 (17:30).
- Exámen. 30% de la nota.
 - Martes 12/12 (14:50).

- * Talleres con asistencia sobre 85% añade 0.5 a nota de controles. (~10 talleres, pueden faltar a 2).
- Evaluaciones sin formulario. Se evaluan contenidos hasta la semana anterior a la evaluacion.

Calendario

Semana	Lunes	Martes	Miercoles	Jueves	Viernes
7-11/8	Cátedra.		Cátedra.		
14-18/8	Sin actividades.	Feriado.	Cátedra.		Taller 1.
21-25/8	Cátedra. Ayudantía.		Cátedra.		Taller 2.
28/8-1/9	Cátedra. Ayudantía.		Cátedra.		Control 1.
4-8/9	Cátedra. Ayudantía.		Cátedra.		Taller 3.
11-15/9	Cátedra. Ayudantía.		Cátedra. Interrogación 1.		Taller 4.
18-22/9	Feriado.	Feriado.	Cátedra.		Taller 5.
25-29/9	Cátedra. Ayudantía.		Cátedra.		Control 2.
2-6/10			Receso.		
9-13/10	Feriado.		Cátedra.		Taller 6.
16-20/10	Cátedra. Ayudantía.		Cátedra.		Taller 7.
23-27/10	Cátedra. Ayudantía.		Cátedra.		Feriado.
30/10-3/11	Cátedra. Ayudantía.		Feriado.		Control 3.
6-10/11	Cátedra. Ayudantía.		Cátedra.		Taller 8.
13-17/11	Cátedra. Ayudantía.		Cátedra.		Taller 9.
20-24/11	Cátedra. Ayudantía. Interrogación 2.		Cátedra.		Taller 10.

Equipo docente

Profesor de cátedra:

Felipe Isaule (felipe.isaule@uc.cl)

Ayudante de cátedra:

Andrés Aríztia

Ayudantes de taller:

Ignacia Castro

Fernanda Muñoz

Axcell Mera

Maria Jose Frias

<u>Cinemática</u> Conceptos y definiciones básicas

Cinemática

- La cinemática describe el movimiento de partículas y cuerpos sin considerar las fuerzas que generan el movimiento.
- Se utilizan herramientas matemáticas para predecir la posición, velocidad, y aceleración de partículas y cuerpos.
- Hitos importantes de movimientos descritos por ecuaciones:
 - → Movimiento de los planetas (Leyes de Kepler).
 - → Caída libre de objetos (Galileo).

Conceptos básicos

- Partículas: Cuerpo "sin dimensiones". Podemos despreciar las dimensiones de un cuerpo cuando éstas son irrelevantes.
- Espacio: Región geométrica donde residen las partículas.
- Sistema de referencia: Convención geométrica utizada para medir la posición y otras propiedades físicas.
- Tiempo: Medida de sucesión de eventos.
 Es absoluto en física clásica.
- **Escalar**: Cantidad física descrita por un número (magnitud).
- **Vector**: Cantidad física descrita con una magnitud y dirección.

Sistemas de coordenadas

- Vectores en un sistema de referencia pueden describirse en distintos sistemas de coordenadas.
- En coordenadas cartesianas, un vector \vec{v} es escrito como:

$$\vec{v} = x\hat{i} + y\hat{j} + z\hat{k}$$

Su magnitud

$$v = \|\vec{v}\| = \sqrt{x^2 + y^2 + z^2}$$

Si el movimiento está confinado en dos dimensiones.

$$\vec{v} = x\hat{i} + y\hat{j}$$

• Mientras que en una dimension:

$$\vec{v} = x\hat{i}$$

Unidades

- Un **sistema de unidades** es una **convención** utilizada para cuantificar **magnitudes físicas**.
- El sistema más utilizado es el sistema internacional (SI).
 Algunas de sus unidades básicas:
 - → Metro (m)
 - → Kilogramo (kg)
 - → Segundo (s)

- Siempre verificar que las cantidades tienen las unidades correctas.
- Sin embargo, muchas veces nos interesan soluciones algebraicas o simbólicas.

Análisis dimensional

- Cantidades físicas pueden ser descritas en distintas unidades, pero tienen una sóla dimensión. Por ejemplo:
 - → Distancia (L)
 - → Masa (M)
 - → Tiempo (T)

Siempre verificar que las cantidades físicas (incluyendo ecuaciones y soluciones) tienen las dimensiones correctas.

Posición, velocidad, y aceleración

• El vector **posición** define la **trayectoria** de una partícula cómo función del tiempo

$$\vec{r}(t)$$

 El vector velocidad define la variación de la posición a través del tiempo

$$\vec{v}(t) = \frac{d\vec{r}}{dt}$$

• La rapidez es la magnitud de la velocidad.

$$v(t) = \|\vec{v(t)}\|$$

 La aceleración es la variación de la velocidad a través del tiempo

$$\vec{a} = \frac{d\vec{v}(t)}{dt} = \frac{d^2\vec{r}(t)}{dt^2}$$

Posición, velocidad, y aceleración

Podemos invertir la fórmula para la velocidad

$$\vec{v}(t) = \frac{d\vec{r}}{dt}$$
 \rightarrow $\vec{r}(t) = \vec{r}(t_i) + \int_{t_i}^t \vec{v}(t')dt'$

De igual manera con la aceleración

$$\vec{a}(t) = \frac{d\vec{v}}{dt}$$
 \rightarrow $\vec{v}(t) = \vec{v}(t_i) + \int_{t_i}^t \vec{a}(t')dt'$

Movimiento a velocidad constante

Si la velocidad no cambia con el tiempo:

$$\vec{v}(t) = \vec{v}_0 \qquad \rightarrow \qquad \vec{a} = \frac{d\vec{v}(t)}{dt} = 0$$

La posición:

$$\vec{r}(t) = \vec{r}(t_i) + \int_{t_i}^t \vec{v}_0 dt' = \vec{r}(t_0) + \vec{v}_0 (t - t_i)$$

• Si $t_i = 0$ y $\vec{r}(t = 0) = 0$

$$\vec{r}(t) = \vec{v}_0 t$$

Movimiento a aceleración constante

• Si la aceleracion no cambia con el tiempo:

$$\vec{a}(t) = \vec{a}_0$$

La velocidad:

$$\vec{v}(t) = \vec{v}(t_i) + \int_{t_i}^t \vec{a}_0 dt' = \vec{v}(t_i) + \vec{a}_0 (t - t_i)$$

La posición:

$$\vec{r}(t) = \vec{r}(t_i) + \int_{t_i}^t \vec{v}(t')dt'$$

$$= \vec{r}(t_i) + \int_{t_i}^t (\vec{v}(t_i) + \vec{a}_0(t' - t_i)) dt'$$

$$= \vec{r}(t_i) + \vec{v}(t_i)(t - t_i) + \vec{a}_0\left(\frac{t^2 - t_i^2}{2} - t_i(t - t_i)\right)$$

Movimiento a aceleración constante

Si la aceleracion no cambia con el tiempo:

$$\vec{a}(t) = \vec{a}_0$$

La velocidad:

$$\vec{v}(t) = \vec{v}(t_i) + \int_{t_i}^t \vec{a}_0 dt' = \vec{v}(t_i) + \vec{a}_0 (t - t_i)$$

La posición:

$$\vec{r}(t) = \vec{r}(t_i) + \vec{v}(t_i)(t - t_i) + \vec{a}_0 \left(\frac{t^2 - t_i^2}{2} - t_i(t - t_i) \right)$$

• Si $t_i=0$

$$\vec{r}(t) = \vec{r}(t=0) + \vec{v}(t=0) t + \vec{a}_0 \frac{t^2}{2}$$

Resumen

- La cinemática estudia el movimiento de partículas y cuerpos sin considerar las fuerzas que lo genera.
- Hemos definido conceptos básicos usados en la cinématica como partícula, sistema de unidades, y dimensiones.
- Hemos definición la posición, velocidad, y aceleración de partículas.

Resumen

- La cinemática estudia el movimiento de partículas y cuerpos sin considerar las fuerzas que lo genera.
- Hemos definido conceptos básicos usados en la cinématica como partícula, sistema de unidades, y dimensiones.
- Hemos definición la posición, velocidad, y aceleración de partículas.
- Próxima clase:
 - Movimiento rectilíneo.