Informe TP2

Transferencia de calor

OBJETIVOS

Determinar el coeficiente global de transferencia de calor en un intercambiador de placas de escala planta piloto. Compararlo con el valor estimado a partir de correlaciones de bibliografía.

Evaluar la pérdida de calor al medio ambiente del equipo en cuestión.

MEDICIONES REALIZADAS

Se realizaron mediciones en un intercambiador de placas. Para distintos caudales de corrientes caliente y fría se midieron las temperaturas de entrada y salida.

Se obtuvieron los coeficientes globales a partir de las mediciones experimentales para cada uno de los caudales utilizados y se los comparó con las correlaciones.

Determinación del coeficiente de intercambio y pérdida de calor

Condición	Caudal (L/h)	T _{entrada} (°C)	T _{salida} (°C)	Caudal (L/h)	T _{entrada} (°C)	T _{salida} (°C)
1	600	23	36	600	61	42,2
2	600	23	41,5	900	65	48,2
3	600	23	45	1200	67	52,1
4	900	23	39	1200	65	48,9
5	900	23	36	900	63	45,2
6	900	23	32	600	61	40,1
7	1200	23	30	600	60	39
8	1200	23	33,5	900	61	43,2
9	1200	23	34	1200	61	45,2

Tabla 1: Valores medidos para el grupo M5

Para cada corriente se calculó el calor según:

$$Q = \dot{m}. Cp (T_{out} - T_{in})$$

Con m el caudal másico, Cp el calor específico y T's las temperaturas de entrada y salida.

Cp se consideró constante (1Kcal/kg°C) y los caudales másicos se calcularon considerando que la temperatura en cada fluido era una temperatura media. Para la corriente caliente se utilizó $\rho(50^{\circ}\text{C})=976\text{kg/m}^3$ y para la corriente fría $\rho(30^{\circ}\text{C})=995\text{kg/m}^3$.

Un balance de energía térmica (asumiendo que la pérdida de carga es despreciable comparada con el calor intercambiado) permite calcular el calor disipado como la diferencia¹ de los calores de cada una de las corrientes.

_

¹ En valores absolutos

Cintia Beron, Pablo García, Alex Casanueva, Mariano Calcabrini

$$Q_{disipado} = Q_{frio} + Q_{caliente}$$

El coeficiente global de intercambio viene dado por:

$$U = \frac{Q}{A\Delta Tml}$$

$$\text{Con } \Delta T_{ml} = \frac{\Delta T\big|_{Z=0} - \Delta T\big|_{Z=L}}{\ln\!\left(\frac{\Delta T\big|_{Z=0}}{\Delta T\big|_{Z=L}}\right)} \text{ la diferencia media logarítmica.}$$

En el trabajo se utilizaron cuatro placas corrugadas con un área total de intercambio de 0.39m².

Condición	ΔTml (°C)	Q _{frío} (Kcal/h)	Q _{caliente} (Kcal/h)	Q _{disipado} (Kcal/h)	U ² (Kcal/m ² °C)
1	17,5	-7761	11280	3519	1649,0
2	19,2	-11045	15120	4076	2016,0
3	20,2	-13134	17880	4746	2266,3
4	22,2	-14328	19320	4992	2230,2
5	21,0	-11642	16020	4379	1960,1
6	19,3	-8060	12540	4481	1662,2
7	19,8	-8358	12600	4242	1631,2
8	20,7	-12537	16020	3483	1981,9
9	21,9	-13134	18960	5826	2216,1

Tabla 2: parámetros calculados para las distintas condiciones

ESTIMACIÓN DE LOS COEFICIENTES

Se pueden estimar coeficientes peliculares a partir del Nusselt:

$$Nu = 0.26Re^{0.65} Pr^{0.40}$$

Los adimensionales se calculan según:

$$Nu = \frac{h2b}{k}$$
 $Re = \frac{Gm. 2e}{\mu}$ $Pr = \frac{\mu. Cp}{k}$

Sabiendo que la separación entre placas es b=0.0025m. Y considerando valores promedio para K (0,53 Kcal/hm°C), la viscosidad del fluido frío (2.8kg/mh) y la viscosidad del fluido caliente (1.6kg/mh).

² Calcaulado con el Qcaliente

Condición		FR	CALIENTE					
	Gm (Kg/h.m²)	Re	Pr	Nu	Gm (Kg/h.m²)	Re	Pr	Nu
1	1404706	2508,4	5,3	82,0	1377882	4305,9	3,0	93,1
2	1404706	2508,4	5,3	82,0	2066824	6458,8	3,0	120,9
3	1404706	2508,4	5,3	82,0	2755765	8611,8	3,0	145,8
4	2107059	3762,6	5,3	106,7	2755765	8611,8	3,0	145,8
5	2107059	3762,6	5,3	106,7	2066824	6458,8	3,0	120,9
6	2107059	3762,6	5,3	106,7	1377882	4305,9	3,0	92,9
7	2809412	5016,8	5,3	128,6	1377882	4305,9	3,0	92,9
8	2809412	5016,8	5,3	128,6	2066824	6458,8	3,0	120,9
9	2809412	5016,8	5,3	128,6	2755765	8611,8	3,0	145,8

Tabla 3: Flujos másicos y adimensionales para las distinta condiciones experimentales

Por otra parte, asumiendo que no hay una resistencia por ensuciamiento, podemos encontrar los coeficientes peliculares (a partir del Nusselt) y el coeficiente de intercambio.

$$U^{-1} = h_{caliente}^{-1} + h_{frio}^{-1}$$

Condición	h _{caliente} (Kcal/m ² °C)	h _{frío} (Kcal/m²°C)	U correlación (Kcal/m²°C)	U _{medido} (Kcal/m ² °C)	Error porcentual
1	9870,9116	8690,412	4621,56099	1649,0	64%
2	12815,26	8688,425	5177,92322	2016,0	61%
3	15450,325	8688,425	5561,14104	2266,3	59%
4	15450,325	11308,38	6529,39466	2230,2	66%
5	12815,26	11308,38	6007,37834	1960,1	67%
6	9846,1879	11308,38	5263,37549	1662,2	68%
7	9846,1879	13633,6	5717,21478	1631,2	71%
8	12815,26	13633,6	6605,88535	1981,9	70%
9	15450,325	13633,6	7242,61105	2216,1	69%

Tabla 4: coeficientes parciales y globales de la correlación teórica

CONCLUSIONES

En este trabajo se pudieron determinar los coeficientes de intercambio para un intercambiador de placas. Se observa que estos resultados difieren entre un 60 y un 70% de los valores obtenidos por la correlación teórica. No obstante el error es constante y esto viene de no considerar la pérdida de calor por disipación.

El hecho de que este error sea sistemático da lugar a una corrección empírica a la correlación teórica. Esto permitiría modelar correctamente el funcionamiento del intercambiador para una instalación nueva.