This key should allow you to understand why you choose the option you did (beyond just getting a question right or wrong). More instructions on how to use this key can be found here.

If you have a suggestion to make the keys better, please fill out the short survey here.

Note: This key is auto-generated and may contain issues and/or errors. The keys are reviewed after each exam to ensure grading is done accurately. If there are issues (like duplicate options), they are noted in the offline gradebook. The keys are a work-in-progress to give students as many resources to improve as possible.

36. Solve the equation for x and choose the interval that contains the solution (if it exists).

$$\log_5(2x+5) + 4 = 2$$

The solution is x = -2.480

A. $x \in [-5, -2]$

* x = -2.480, which is the correct option.

B. $x \in [-20, -14]$

x = -18.500, which corresponds to reversing the base and exponent when converting.

C. $x \in [7, 14]$

x = 10.000, which corresponds to ignoring the vertical shift when converting to exponential form.

D. $x \in [-14, -10]$

x = -13.500, which corresponds to reversing the base and exponent when converting and reversing the value with x.

E. There is no Real solution to the equation.

Corresponds to believing a negative coefficient within the log equation means there is no Real solution.

General Comments: First, get the equation in the form $\log_b{(cx+d)} = a$. Then, convert to $b^a = cx + d$ and solve.

37. Which of the following intervals describes the Range of the function below?

$$f(x) = -\log_2(x-3) + 1$$

The solution is (∞, ∞)

A. $[a, \infty), a \in [-4.27, -2.69]$

 $[-3,\infty)$, which corresponds to using the negative of the horizontal shift AND including the endpoint.

B. $(-\infty, a), a \in [-0.5, 2.81]$

 $(-\infty,1)$, which corresponds to using the vertical shift while the Range is $(-\infty,\infty)$.

C. $(-\infty, a), a \in [-1.77, 0.12]$

 $(-\infty, -1)$, which corresponds to using the using the negative of vertical shift on $(0, \infty)$.

D. $[a, \infty), a \in [2.95, 3.66]$

 $[1,\infty)$, which corresponds to using the flipped Domain AND including the endpoint.

E. $(-\infty, \infty)$

*This is the correct option.

General Comments: The domain of a basic logarithmic function is $(0, \infty)$ and the Range is $(-\infty, \infty)$. We can use shifts when finding the Domain, but the Range will always be all Real numbers.

38. Solve the equation for x and choose the interval that contains x (if it exists).

$$15 = \ln \sqrt[4]{\frac{16}{e^{3x}}}$$

The solution is x = -19.076, which does not fit in any of the interval options.

A. $x \in [-8, -1]$

x = -4.535, which corresponds to thinking you need to take the natural log of the left side before reducing.

B. $x \in [18, 22]$

x = 19.076, which is the negative of the correct solution.

C. $x \in [-11, -8]$

x = -9.076, which corresponds to treating any root as a square root.

D. There is no Real solution to the equation.

This corresponds to believing you cannot solve the equation.

E. None of the above.

*x = -19.076 is the correct solution and does not fit in any of the other intervals.

General Comments: After using the properties of logarithmic functions to break up the right-hand side, use ln(e) = 1 to reduce the question to a linear function to solve. You can put ln(16) into a calculator if you are having trouble.

39. Which of the following intervals describes the Range of the function below?

$$f(x) = e^{x-5} - 8$$

The solution is $(-8, \infty)$

A. $(a, \infty), a \in [-10, -1]$

* $(-8, \infty)$, which is the correct option.

B. $[a, \infty), a \in [-10, -1]$

 $[-8,\infty)$, which corresponds to including the endpoint.

C. $(-\infty, a), a \in [-1, 13]$

 $(-\infty, 8)$, which corresponds to using the negative vertical shift AND flipping the Range interval.

D. $(-\infty, a], a \in [-1, 13]$

 $(-\infty, 8]$, which corresponds to using the negative vertical shift AND flipping the Range interval AND including the endpoint.

E. $(-\infty, \infty)$

This corresponds to confusing range of an exponential function with the domain of an exponential function.

General Comments: Domain of a basic exponential function is $(-\infty, \infty)$ while the Range is $(0, \infty)$. We can shift these intervals [and even flip when a < 0!] to find the new Domain/Range.

40. Solve the equation for x and choose the interval that contains the solution (if it exists).

$$5^{-3x-2} = 27^{-2x+5}$$

The solution is x = 11.171

- A. $x \in [9, 13]$
 - * x = 11.171, which is the correct option.
- B. $x \in [-10, -2]$

x = -7.000, which corresponds to solving the numerators as equal while ignoring the bases are different.

- C. $x \in [-22, -19]$
 - x = -19.698, which corresponds to distributing the $\ln(base)$ to the second term of the exponent only.
- D. $x \in [3, 6]$
 - x = 3.970, which corresponds to distributing the $\ln(base)$ to the first term of the exponent only.
- E. There is no Real solution to the equation.

This corresponds to believing there is no solution since the bases are not powers of each other.

General Comments: This question was written so that the bases could not be written the same. You will need to take the log of both sides.