Big Data on the Rise?

Testing Monotonicity of Distributions

Clément Canonne

ICALP - 2015, July 8th

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Introduction

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Property testing: what can we say about an object while barely looking at it?

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Property testing: what can we say about an object while barely looking at it?

"Is it in the yolk?"

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Property testing: what can we say about an object while barely looking at it?

"Is it in the yolk?"

This talk: distribution testing, for *one* property ("class") and various settings.

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Property testing: what can we say about an object while barely looking at it?

"Is it in the yolk?"

This talk: distribution testing, for one property ("class") and various settings.

(some of the puns will be made on purpose)

Outline of the talk

Introduction

Testing For Monotonicity

Testing From Samples

Testing Differently: Changing the Rules

Plan in more detail

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

- What We Are Doing Here: "testing for monotonicity"
- Testing From Samples: the standard model, upper and lower bounds

■ Testing Differently: some other access (stronger or incomparable), or some other goal

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Testing For Monotonicity

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

A probability distribution D on $[n] = \{1, \ldots, n\}$ is monotone (non-increasing) if its pmf is: $D(1) \ge D(2) \ge \cdots \ge D(n)$.

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

A probability distribution D on $[n] = \{1, \ldots, n\}$ is monotone (non-increasing) if its pmf is: $D(1) \ge D(2) \ge \cdots \ge D(n)$.

Why: pervasive,

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

A probability distribution D on $[n] = \{1, \ldots, n\}$ is monotone (non-increasing) if its pmf is: $D(1) \ge D(2) \ge \cdots \ge D(n)$.

Why: pervasive, simple enough,

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

A probability distribution D on $[n] = \{1, \ldots, n\}$ is monotone (non-increasing) if its pmf is: $D(1) \ge D(2) \ge \cdots \ge D(n)$.

Why: pervasive, simple enough, complex enough,

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

A probability distribution D on $[n] = \{1, \ldots, n\}$ is monotone (non-increasing) if its pmf is: $D(1) \ge D(2) \ge \cdots \ge D(n)$.

Why: pervasive, simple enough, complex enough, fundamental.

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Debunking One's Parents' Threats

Chances your Kitten Chokes on a Sponge

sporkforge.com

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Testing From Samples

The setting

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

 $\Delta(\Omega)$: all distributions over (finite) domain Ω of size n, [n] (ordered) in this talk. **Property:** subset $\mathcal{P} \subseteq \Delta(\Omega)$. **Tester:** randomized algorithm (knows n, \mathcal{P}).

Given independent samples from a distribution $D \in \Delta(\Omega)$, and parameter $\varepsilon \in (0,1)$, output accept or reject:

- If $D \in \mathcal{P}$, accept with probability at least 2/3;
- If $\ell_1(D, \mathcal{P}) > \varepsilon$, reject with probability at least 2/3;
- otherwise, whatever (make an omelet).

(in the yolk)

(definitely white)

Goal: take o(n) samples, ideally $O_{\varepsilon}(1)$.

The setting

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

 $\Delta(\Omega)$: all distributions over (finite) domain Ω of size n, [n] (ordered) in this talk. **Property:** subset $\mathcal{P} \subseteq \Delta(\Omega)$. **Tester:** randomized algorithm (knows n, \mathcal{P}).

Given independent samples from a distribution $D \in \Delta(\Omega)$, and parameter $\varepsilon \in (0,1)$, output accept or reject:

- If $D \in \mathcal{P}$, accept with probability at least 2/3;
- If $\ell_1(D, \mathcal{P}) > \varepsilon$, reject with probability at least 2/3;
- otherwise, whatever (make an omelet).

(in the yolk)
(definitely white)

Goal: take o(n) samples, ideally $O_{\varepsilon}(1)$. (time efficiency is secondary, yet not frowned upon.)

The setting

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

 $\Delta(\Omega)$: all distributions over (finite) domain Ω of size n, [n] (ordered) in this talk. **Property:** subset $\mathcal{P} \subseteq \Delta(\Omega)$. **Tester:** randomized algorithm (knows n, \mathcal{P}).

Given independent samples from a distribution $D \in \Delta(\Omega)$, and parameter $\varepsilon \in (0,1)$, output accept or reject:

- If $D \in \mathcal{P}$, accept with probability at least 2/3;
- If $\ell_1(D, \mathcal{P}) > \varepsilon$, reject with probability at least 2/3;
- otherwise, whatever (make an omelet).

(in the yolk)

(definitely white)

Goal: take o(n) samples, ideally $O_{\varepsilon}(1)$. (time efficiency is secondary, yet not frowned upon.)

[BFF⁺01, BKR04, BFR⁺10, GGR98]

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Is it possible?

Testing uniformity has sample complexity $O(\sqrt{n}/\varepsilon^2)$ [GR00, Pan08].

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Is it possible?

Testing uniformity has sample complexity $O(\sqrt{n}/\varepsilon^2)$ [GR00, Pan08]. Testing monotonicity has sample complexity $\tilde{O}(\sqrt{n}/\varepsilon^6)$ [BKR04].

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Is it possible?

Testing uniformity has sample complexity $O(\sqrt{n}/\varepsilon^2)$ [GR00, Pan08]. Testing monotonicity has sample complexity $\tilde{O}(\sqrt{n}/\varepsilon^6)$ [BKR04]. $\tilde{O}(\sqrt{n}/\varepsilon^{7/2})$, actually [CDGR15].

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Is it possible?

Testing uniformity has sample complexity $O(\sqrt{n}/\varepsilon^2)$ [GR00, Pan08]. Testing monotonicity has sample complexity $\tilde{O}(\sqrt{n}/\varepsilon^6)$ [BKR04]. $\tilde{O}(\sqrt{n}/\varepsilon^{7/2})$, actually [CDGR15]. Let's even say $O(\sqrt{n}/\varepsilon^2)$ [ADK15].

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Is it possible?

Testing uniformity has sample complexity $O(\sqrt{n}/\varepsilon^2)$ [GR00, Pan08]. Testing monotonicity has sample complexity $\tilde{O}(\sqrt{n}/\varepsilon^6)$ [BKR04]. $\tilde{O}(\sqrt{n}/\varepsilon^{7/2})$, actually [CDGR15]. Let's even say $O(\sqrt{n}/\varepsilon^2)$ [ADK15].

Can we do better?

Testing uniformity has sample complexity $\Omega(\sqrt{n}/\varepsilon^2)$ [GR00, Pan08].

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Is it possible?

Testing uniformity has sample complexity $O(\sqrt{n}/\varepsilon^2)$ [GR00, Pan08]. Testing monotonicity has sample complexity $\tilde{O}(\sqrt{n}/\varepsilon^6)$ [BKR04]. $\tilde{O}(\sqrt{n}/\varepsilon^{7/2})$, actually [CDGR15]. Let's even say $O(\sqrt{n}/\varepsilon^2)$ [ADK15].

Can we do better?

Testing uniformity has sample complexity $\Omega(\sqrt{n}/\varepsilon^2)$ [GR00, Pan08]. Testing monotonicity has sample complexity $\Omega(\sqrt{n}/\varepsilon^2)$ [BKR04].

Any more good news?

Well, it's tight. And everything else (closeness testing, etc.) has sample complexity at least $n^{\Omega(1)}$.

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Is it possible?

Testing uniformity has sample complexity $O(\sqrt{n}/\varepsilon^2)$ [GR00, Pan08]. Testing monotonicity has sample complexity $\tilde{O}(\sqrt{n}/\varepsilon^6)$ [BKR04]. $\tilde{O}(\sqrt{n}/\varepsilon^{7/2})$, actually [CDGR15]. Let's even say $O(\sqrt{n}/\varepsilon^2)$ [ADK15].

Can we do better?

Testing uniformity has sample complexity $\Omega(\sqrt{n}/\varepsilon^2)$ [GR00, Pan08]. Testing monotonicity has sample complexity $\Omega(\sqrt{n}/\varepsilon^2)$ [BKR04].

Any more good news?

Well, it's tight. And everything else (closeness testing, etc.) has sample complexity at least $n^{\Omega(1)}$. Worse – tolerant testing uniformity (let alone monotonicity) has sample complexity $\Theta(n/\log n)$ [Pan04, RRSS09, Val11, VV10a, VV10b, VV11]

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Testing Differently: Changing the Rules

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Instead of changing the assumptions on $D \in \Delta(\Omega)$, changing the model of access to D:

Instead of changing the assumptions on $D \in \Delta(\Omega)$, changing the model of access to D:

■ with evaluation queries to the pmf: [RS09] ("property-testing"-style)

$$x \in \Omega \leadsto D(x)$$

Instead of changing the assumptions on $D \in \Delta(\Omega)$, changing the model of access to D:

■ with evaluation queries to the pmf: [RS09] ("property-testing"-style)

$$x \in \Omega \leadsto D(x)$$

with sampling and evaluation queries to the pmf: [BDKR05, GMV06, CR14]

$$? \leadsto x \sim D$$
 and $x \in \Omega \leadsto D(x)$

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Instead of changing the assumptions on $D \in \Delta(\Omega)$, changing the model of access to D:

with evaluation queries to the pmf: [RS09] ("property-testing"-style)

$$x \in \Omega \leadsto D(x)$$

■ with sampling and evaluation queries to the pmf: [BDKR05, GMV06, CR14]

$$? \leadsto x \sim D$$
 and $x \in \Omega \leadsto D(x)$

with sampling and evaluation queries to the cdf: [BKR04, CR14]

$$? \leadsto j \sim D$$
 and $j \in [n] \leadsto \sum_{i=1}^{j} D(i)$

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Instead of changing the assumptions on $D \in \Delta(\Omega)$, changing the model of access to D:

with evaluation queries to the pmf: [RS09] ("property-testing"-style)

$$x \in \Omega \leadsto D(x)$$

■ with sampling and evaluation queries to the pmf: [BDKR05, GMV06, CR14]

$$? \leadsto x \sim D$$
 and $x \in \Omega \leadsto D(x)$

■ with sampling and evaluation queries to the cdf: [BKR04, CR14]

$$? \leadsto j \sim D$$
 and $j \in [n] \leadsto \sum_{i=1}^{j} D(i)$

■ with conditional sampling: [CFGM13, CRS15]

$$S \subseteq \Omega \leadsto x \sim D_S$$

Informally: across the models and flavors, exponential sample complexity improvements – sometimes even from $n^{\Omega(1)}$ to constant. Some hardness remains, still – and most importantly, all rules of thumbs are down.

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Informally: across the models and flavors, exponential sample complexity improvements – sometimes even from $n^{\Omega(1)}$ to constant. Some hardness remains, still – and most importantly, all rules of thumbs are down.

Conditional sampling: identity and closeness testing are no longer related $(O_{\varepsilon}(1) \text{ vs. } (\log \log n)^{\Omega(1)}).$

Informally: across the models and flavors, exponential sample complexity improvements – sometimes even from $n^{\Omega(1)}$ to constant. Some hardness remains, still – and most importantly, all rules of thumbs are down.

Conditional sampling: identity and closeness testing are no longer related $(O_{\varepsilon}(1) \text{ vs. } (\log \log n)^{\Omega(1)})$. Tolerant uniformity testing and entropy estimation are, similarly, worlds apart.

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Informally: across the models and flavors, exponential sample complexity improvements – sometimes even from $n^{\Omega(1)}$ to constant. Some hardness remains, still – and most importantly, all rules of thumbs are down.

Conditional sampling: identity and closeness testing are no longer related $(O_{\varepsilon}(1) \text{ vs. } (\log \log n)^{\Omega(1)})$. Tolerant uniformity testing and entropy estimation are, similarly, worlds apart.

Testing with queries: Testing uniformity, identity and closeness becomes easy: the challenge now seems to lie in tolerant testing, or in testing against classes.

These models: Everything is Scrambled

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Informally: across the models and flavors, exponential sample complexity improvements – sometimes even from $n^{\Omega(1)}$ to constant. Some hardness remains, still – and most importantly, all rules of thumbs are down.

Conditional sampling: identity and closeness testing are no longer related $(O_{\varepsilon}(1) \text{ vs. } (\log \log n)^{\Omega(1)})$. Tolerant uniformity testing and entropy estimation are, similarly, worlds apart.

Testing with queries: Testing uniformity, identity and closeness becomes easy: the challenge now seems to lie in tolerant testing, or in testing against classes.

And monotonicity? Subject of this work.

New Results: the Sunny Side (Up)

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Model	Upper bound	LOWER BOUND
SAMP	$O(\frac{\sqrt{n}}{\varepsilon^2})$	$\Omega(\frac{\sqrt{n}}{\varepsilon^2})$
COND	$\tilde{O}(\frac{1}{\varepsilon^{22}}), \tilde{O}(\frac{\log^2 n}{\varepsilon^3} + \frac{\log^4 n}{\varepsilon^2})$	$\Omega(\frac{1}{\varepsilon^2})$
INTCOND	$ ilde{O}ig(rac{\log^5 n}{arepsilon^4}ig)$	$\Omega(\sqrt{\frac{\log n}{\log\log n}})$
EVAL	$O(\max\left(\frac{\log n}{\varepsilon}, \frac{1}{\varepsilon^2}\right))^*$	$\Omega(\frac{\log n}{\varepsilon})^*, \Omega(\frac{\log n}{\log \log n})$
Cumulative Dual	$ ilde{O}(rac{1}{arepsilon^4})$	$\Omega(rac{1}{arepsilon})$

Table 1: Highlighted results are new; bounds with * hold for non-adaptive testers.

New Results: the Sunny Side (Up)

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Model	Upper bound	Lower bound
SAMP	$O(rac{\sqrt{n}}{arepsilon^2})$	$\Omega(\frac{\sqrt{n}}{arepsilon^2})$
COND	$\tilde{O}(\frac{1}{\varepsilon^{22}}), \tilde{O}(\frac{\log^2 n}{\varepsilon^3} + \frac{\log^4 n}{\varepsilon^2})$	$\Omega(rac{1}{arepsilon^2})$
INTCOND	$ ilde{O}ig(rac{\log^5 n}{arepsilon^4}ig)$	$\Omega\left(\sqrt{\frac{\log n}{\log\log n}}\right)$
EVAL	$O(\max\left(\frac{\log n}{\varepsilon}, \frac{1}{\varepsilon^2}\right))^*$	$\Omega(\frac{\log n}{\varepsilon})^*, \Omega(\frac{\log n}{\log \log n})$
Cumulative Dual	$ ilde{O}(rac{1}{arepsilon^4})$	$\Omega(rac{1}{arepsilon})$

Table 1: Highlighted results are new; bounds with * hold for non-adaptive testers.

Upshot: depending on the model, monotonicity testing can become over easy, or still medium hard.

Upper bounds

INTCOND: Transposing [BKR04], with a twist – testing uniformity is much cheaper now (but careful! We need a bit more.)

Upper bounds

INTCOND: Transposing [BKR04], with a twist – testing uniformity is much cheaper now (but careful! We need a bit more.)

COND: Using the "Birgé decomposition" [Bir87] to shrink the size of the domain -but this changes the property as well.

Upper bounds

INTCOND: Transposing [BKR04], with a twist – testing uniformity is much cheaper now (but careful! We need a bit more.)

COND: Using the "Birgé decomposition" [Bir87] to shrink the size of the domain -but this changes the property as well.

EVAL: Showing we can learn monotone distributions with this many queries – and (conveniently!) do tolerant testing afterwards.

Upper bounds

INTCOND: Transposing [BKR04], with a twist – testing uniformity is much cheaper now (but careful! We need a bit more.)

COND: Using the "Birgé decomposition" [Bir87] to shrink the size of the domain -but this changes the property as well.

EVAL: Showing we can learn monotone distributions with this many queries – and (conveniently!) do tolerant testing afterwards.

Cumulative Dual: Same approach as for COND, but getting simpler – one of the primitives is now much easier to get.

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Upper bounds

INTCOND: Transposing [BKR04], with a twist – testing uniformity is much cheaper now (but careful! We need a bit more.)

COND: Using the "Birgé decomposition" [Bir87] to shrink the size of the domain -but this changes the property as well.

EVAL: Showing we can learn monotone distributions with this many queries – and (conveniently!) do tolerant testing afterwards.

Cumulative Dual: Same approach as for COND, but getting simpler – one of the primitives is now much easier to get.

Lower bounds

EVAL, non-adaptive: "Needle-in-a-haystack" approach: random support size, with random "chunk" of violations hidden inside.

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

Upper bounds

INTCOND: Transposing [BKR04], with a twist – testing uniformity is much cheaper now (but careful! We need a bit more.)

COND: Using the "Birgé decomposition" [Bir87] to shrink the size of the domain -but this changes the property as well.

EVAL: Showing we can learn monotone distributions with this many queries – and (conveniently!) do tolerant testing afterwards.

Cumulative Dual: Same approach as for COND, but getting simpler – one of the primitives is now much easier to get.

Lower bounds

EVAL, non-adaptive: "Needle-in-a-haystack" approach: random support size, with random "chunk" of violations hidden inside.

EVAL, adaptive: Reduction from another question: "what is the sum of a monotone sequence?"

■ Closing the gaps? (COND, INTCOND, Cumulative Dual)

- Closing the gaps? (COND, INTCOND, Cumulative Dual)
- EVAL: "it should be $\Omega(\frac{\log n}{\varepsilon})$ for adaptive as well"

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

- Closing the gaps? (COND, INTCOND, Cumulative Dual)
- EVAL: "it should be $\Omega(\frac{\log n}{\varepsilon})$ for adaptive as well"
- Other models?

- Closing the gaps? (COND, INTCOND, Cumulative Dual)
- EVAL: "it should be $\Omega(\frac{\log n}{\varepsilon})$ for adaptive as well"
- Other models? Other classes?

- Closing the gaps? (COND, INTCOND, Cumulative Dual)
- EVAL: "it should be $\Omega(\frac{\log n}{\varepsilon})$ for adaptive as well"
- Other models? Other classes?
- What about Dual access? (in between EVAL and Cumulative Dual- but where?)

That's All, (Y)olks!

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

l, (Y)olks!

Thank you.

Bibliography

Introduction Testing For Monotonicity Testing From Samples Testing Differently: Changing the Rules

- [ADK15] J. Acharya, C. Daskalakis, and G. Kamath. Optimal Testing for Families of Distributions. Manuscript, 2015.
- [BDKR05] T. Batu, S. Dasgupta, R. Kumar, and R. Rubinfeld. The complexity of approximating the entropy. SICOMP, 35(1):132–150, 2005.
- [BFF⁺01] T. Batu, E. Fischer, L. Fortnow, R. Kumar, R. Rubinfeld, and P. White. Testing random variables for independence and identity. In FOCS, 2001.
- [BFR⁺10] T. Batu, L. Fortnow, R. Rubinfeld, W. D. Smith, and P. White. Testing closeness of discrete distributions. (abs/1009.5397), 2010.
- [Bir87] L. Birgé. On the risk of histograms for estimating decreasing densities. The Annals of Statistics, 15(3), 1987.
- [BKR04] T. Batu, R. Kumar, and R. Rubinfeld. Sublinear algorithms for testing monotone and unimodal distributions. In STOC, 2004.
- [CDGR15] C. L. Canonne, I. Diakonikolas, T. Gouleakis, and R. Rubinfeld. Testing Shape Restrictions of Discrete Distributions. Manuscript, 2015.
- [CFGM13] S. Chakraborty, E. Fischer, Y. Goldhirsh, and A. Matsliah. On the power of conditional samples in distribution testing. In ITCS, 2013.
- [CR14] C. L. Canonne and R. Rubinfeld. Testing probability distributions underlying aggregated data. In *ICALP*, 2014.
- [CRS15] C. L. Canonne, D. Ron, and R. A. Servedio. Testing probability distributions using conditional samples. SICOMP, 2015.
- [GGR98] O. Goldreich, S. Goldwasser, and D. Ron. Property testing and its connection to learning and approximation. *JACM*, 45(4):653–750, July 1998.
- [GMV06] S. Guha, A. McGregor, and S. Venkatasubramanian. Streaming and sublinear approximation of entropy and information distances. In SODA, 2006.
- [GR00] O. Goldreich and D. Ron. On testing expansion in bounded-degree graphs. Technical Report TR00-020, ECCC, 2000.
- [Pan04] L. Paninski. Estimating entropy on m bins given fewer than m samples. IEEE-IT, 50(9), 2004.
- [Pan08] L. Paninski. A coincidence-based test for uniformity given very sparsely sampled discrete data. IEEE-IT, 54(10), 2008.
- [RRSS09] S. Raskhodnikova, D. Ron, A. Shpilka, and A. Smith. Strong lower bounds for approximating distributions support size and the distinct elements problem. SICOMP, 39(3):813–842, 2009.
- [RS09] R. Rubinfeld and R. A. Servedio. Testing monotone high-dimensional distributions. RSA, 34(1):24-44, January 2009.
- [Val11] P. Valiant. Testing symmetric properties of distributions. SICOMP, 40(6):1927–1968, 2011.
- [VV10a] G. Valiant and P. Valiant. A CLT and tight lower bounds for estimating entropy. ECCC, 17:179, 2010.
- [VV10b] G. Valiant and P. Valiant. Estimating the unseen: A sublinear-sample canonical estimator of distributions. ECCC, 17:180, 2010.
- [VV11] G. Valiant and P. Valiant. The power of linear estimators. In FOCS, 2011. See also [VV10a] and [VV10b].