COMP-170: Homework #5

Ben Tanen - March 5, 2017

Problem 1

Let $D5 = \{\text{The set of integers divisible by 5}\}$. Prove every decidable set many one reduces to D5.

* * *

To show every decidable set many one reduces to D5, we will take any decidable set L and prove $L \leq_m D5$. In order to do this, we will construct a function $f: \Sigma_L^* \to \Sigma_{D5}^*$ such that $x \in L \Leftrightarrow f(x) \in D5$. Once we show that $L \leq_m D5$, because L could have been any decidable set, we will have shown that every decidable set many one reduces to D5.

First, let L be any decidable set. With this, we will claim $L \leq_m D5$. By definition, because L is decidable, we know there exists some machine D_L that decides L, such that if $x \in L$, D_L accepts x and if $y \notin L$, D_L rejects y. Given this information, we can show how L and D5 relate to each other (using the "Tony Square").

$$\begin{array}{c|cccc} & L & D5 \\ \hline \text{IN} & x \in L & y \text{ is divisible by 5} \\ \text{OUT} & x \not\in L & y \text{ is not divisible by 5} \\ \end{array}$$

Now that we've built our "Tony Square", we can define our function. Let $f: \Sigma_L^* \to \Sigma_{D5}^*$ be defined as follows:

f on input x outputs y, where y is defined by:

Run
$$D_L$$
 on x
If D_L accepts $x, y = 5$
If D_L rejects $x, y = 1$

Given our definition of f, we claim that f is computable. Because D_L is a valid Turing machine and f is a finite function, we can see that f is indeed computable.

Now, we can go through two cases to show that f correctly satisfies $x \in L \Leftrightarrow f(x) \in D5$. Consider the following two cases:

- 1. Suppose $x \in L$ such that D_L accepts x. Since D_L accepts x, we can see that y will be set as 5, which is divisible by 5. Thus, if $x \in L$, $y \in D5$.
- 2. Suppose $x \notin L$ such that D_L rejects x. Since D_L rejects x, we can see that y will be set as 1, which is not divisible by 5. Thus, if $x \notin L$, $y \notin D5$.

Given these two cases, we can thus see that f does indeed satisfy the claim $x \in L \Leftrightarrow f(x) \in D5$. Therefore, we can see that $L \leq_m D5$. Because we chose L to be any decidable set, we can see that every decidable set many one reduces to D5. \boxtimes