5. TCP Congestion Control

- TCP congestion control prevents the sender from congesting the network with too much data
 - Sender probes the network capacity by dynamically adjusting its congestion window size (cwnd)
 - Sender makes sure: swnd ≤ cwnd
 - Combined with TCP flow control, we have
 - swnd = min(rwnd, cwnd)

- Congestion detection
- Upon detecting congestion, sender slows down its transmissions

Cpr E 489 -- D.Q.

TCP Congestion Control: Probing the Network Capacity

rund is large

- Probing the network capacity in two phases:
 - ▶ Phase 1: Slow Start (SS)

- Starts with cwnd = 1 (MSS)
 - MSS (Maximum Segment Size) for TCP is 536 bytes by default
- Each time a non-duplicate ACK is received, increment cwnd

$$cwnd \leftarrow cwnd + 1$$

i.e., exponential growth of cwnd over time

each RTT: cwnd \leftarrow 2 x cwnd

Cpr E 489 -- D.Q.

TCP Congestion Control: Probing the Network Capacity

- Probing the network capacity in two phases:
 - ▶ Phase 2: Congestion Avoidance (CA)
 - Enters CA when cwnd ≥ ssthresh
 - Each time a non-duplicate ACK is received,

 $cwnd \leftarrow cwnd + 1/floor(cwnd)$

• i.e., linear growth of cwnd over time

each RTT: $cwnd \leftarrow cwnd + 1$

TCP Congestion Control: Congestion Detection

- How to detect congestion?
 - Interprets segment loss as congestion signal
 - Retransmits the lost segment upon
 - RTO
 - Reception of the 4th <u>ACK with the same</u> sequence number
 - This is called Fast Retransmit

3rd dup ACK

Cpr E 489 -- D.Q.

TCP Congestion Control: Slowing Down Transmission

- Sender slows down its transmissions upon congestion detection
 - **→** TCP Tahoe
 - → TCP Reno
 - **▶** TCP New Reno

Cpr E 489 -- D.Q.

Cpr E 489 -- D.Q.

