```
In [ ]: # import libraries
        import numpy as np
        import pandas as pd
        import matplotlib.pyplot as plt
        import seaborn as sns
        # import scalers
        from sklearn.preprocessing import StandardScaler
        from sklearn.preprocessing import MinMaxScaler
        from sklearn.preprocessing import RobustScaler
        from sklearn.preprocessing import Normalizer
        # import feature selection
        from sklearn.feature selection import VarianceThreshold
        from sklearn.feature_selection import chi2
        from sklearn.feature selection import f classif
        from sklearn.feature_selection import mutual_info_classif
        from sklearn.feature selection import mutual info regression
        from sklearn.feature_selection import SelectKBest
        from sklearn.feature selection import SelectPercentile
        from sklearn.feature_selection import SelectFromModel
        from sklearn.feature_selection import RFE
        # import classificators
        from sklearn.linear model import LogisticRegression
        from sklearn.svm import SVC
        from sklearn.tree import DecisionTreeClassifier
        from sklearn.ensemble import RandomForestClassifier
        # import regressors
        from sklearn.linear model import LinearRegression
        from sklearn.svm import SVR
        from sklearn.tree import DecisionTreeRegressor
        from sklearn.ensemble import RandomForestRegressor
        # import metrics
        from sklearn.model_selection import train_test_split
        from sklearn.model_selection import cross_val_score
        from sklearn.metrics import accuracy_score
        from sklearn.metrics import mean_squared_error
        from sklearn.metrics import mean_absolute_error
        from sklearn.metrics import r2_score
        from sklearn.metrics import classification_report
        from sklearn.metrics import roc_auc_score
        from sklearn.metrics import roc_curve
        from sklearn.metrics import confusion_matrix
        # import library for unalanced data
        # Synthetic Minority Oversampling Technique (SMOTE)
        from imblearn.over_sampling import SMOTE
        # K-Nearest Neighbor OveRsampling (KNNOR)
        from knnor import data_augment
        # SMOTE + Tomek
        from imblearn.combine import SMOTETomek
        # SMOTE + ENN
        from imblearn.combine import SMOTEENN
        # random over sampler
```

```
from imblearn.over_sampling import RandomOverSampler

# import system
import os
import sys
```

Deal with unbalanced data

https://www.analyticsvidhya.com/blog/2020/10/overcoming-class-imbalance-using-smote-techniques/

K-Nearest Neighbor OveRsampling approach: https://www.sciencedirect.com/science/article/pii/S156849462

Online learning:

https://www.sciencedirect.com/topics/physics-and-astronomy/weight-vector

```
In [ ]: models classific = {
            'LogisticRegression': LogisticRegression(),
            'SVC': SVC(),
            'DecisionTreeClassifier': DecisionTreeClassifier(),
            'RandomForestClassifier': RandomForestClassifier(),
        }
In [ ]: def get_data(PATH,file_name):
            try:
                df = pd.read excel(PATH+file name, header=1)
                # fill empty space with _
                csv_filename = file_name.replace(" "," ")
                df.to_csv(PATH+csv_filename[:-5]+".csv", index=False)
                df = pd.read_csv(PATH+csv_filename[:-5]+".csv")
                return df
            except:
                print("Error: file not found")
                sys.exit(1)
In [ ]: df = get_data("../data/","default of credit card clients.xls")
        df.head()
```

Out[]:

ID LIMIT_BAL SEX EDUCATION MARRIAGE AGE PAY_0 PAY_2 PAY_3 PAY

0	1	20000	2	2	1	24	2	2	-1
1	2	120000	2	2	2	26	-1	2	0
2	3	90000	2	2	2	34	0	0	0
3	4	50000	2	2	1	37	0	0	0
4	5	50000	1	2	1	57	-1	0	-1

5 rows × 25 columns

```
In []: # make function looks nicer
        def data_summary(df, interactive=False):
            Prints a summary of the given DataFrame.
            Parameters:
            df (pd.DataFrame): The DataFrame to summarize.
            interactive (bool): If True, pauses after each summary part and clear
            Returns:
            dict: A dictionary containing various summary information of the Data
            hashtable = {
                "Data shape": df.shape,
                "Data columns": df.columns.to_list(),
                "Data types": df.dtypes.to_dict(),
                "Data describe": df.describe().to_string(),
                "Data null count": df.isnull().sum().to_dict(),
                "Data Count": df.count().to_dict()
            }
            for key, value in hashtable.items():
                print(f"{key}:\n{value}\n")
                if interactive:
                    input("Press Enter to continue...")
                    os.system('cls' if os.name == 'nt' else 'clear')
            return None
```

```
In []: # check if the data is clean enough
    def check_data(df):
        return df.isnull().sum()

# check if the the range of each column, not include the first row
    def check_range(df):
        for col in df.columns:
            print(col, df[col].unique())
```

```
In []: # check the correlation between each column
    corr = df.corr()
    plt.figure(figsize=(14, 14))
```

```
plt.title('Correlation Matrix')
sns.heatmap(corr, annot=True, vmin=-1, vmax=1, cmap='coolwarm')

Out[]: <AxesSubplot:title={'center':'Correlation Matrix'}>
```

```
Correlation Matrix
                                                                                                                                                                                                                                                    1.00
                                      ID - 1 0.0260.0180.0390.0290.0190.03±0.01±0.01±0.00±0.0220.020.0190.0180.0240.040.0170.0170.009700846.0386.0386.00780006550030.014
                                                         0.0250.22-0.11 0.14-0.27-0.3-0.29-0.27-0.25-0.24<mark>0.29 0.28 0.28 0.29 0.3 0.29</mark> 0.2 0.18 0.21 0.2 0.22 0.22 <mark>-</mark>0.15
                         LIMIT BAL -0.026
                                   SEX -0.0180.025 1 0.0140.0340.0940.0580.0740.0660.060.0550.0440.0340.0340.0250.0250.0250.0270.0470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.00470.004
                                                                                                                                                                                                                                                   - 0.75
                        EDUCATION 40.039-0.220.014 1 -0.14 0.18 0.11 0.12 0.11 0.110.0980.0820.0240.0190.0180.00065007660090.0370.03-0.040.0380.040.0370.028
                         0.0390.050.0530.050.0540.04<mark>90.0560.0540.0540.0510.0490.04</mark>80.0260.0220.0290.0210.0230.0190.014
                                  AGE -0.0190.14-0.0910.18-0.41 1
                                                                                                                                                                                                                                                   - 0.50
                                PAY_0 -0.0310.270.0580.11 0.02-0.039 1 0.67 0.57 0.54 0.51 0.47 0.19 0.19 0.18 0.18 0.18 0.18 0.0790.070.0710.0640.0580.0590.32
                                                                                                    0.77 0.66 0.62 0.58 0.23 0.24 0.22 0.22 0.22 0.22 0.08 0.05 0.05 0.04 0.03 0.03 70.03 70.26
                                PAY_3 -0.0180.290.0660.110.0330.0530.57 0.77 1 0.78 0.69 0.63 0.21 0.24 0.23 0.23 0.23 0.23 0.20.00180.0670.0530.0460.0360.0360.024
                                PAY_4-9.00270.27-0.06 0.110.033-0.05 0.54 0.66 0.78 1 0.82 0.72 0.2 0.23 0.24 0.25 0.24 0.240.009040019.0690.0430.0340.0270.22
                                                                                                                                                                                                                                                   - 0.25
                                PAY_5 -0.0220.250.05$0.0980.0360.0540.51 0.62 0.69 0.82 1 0.82 0.21 0.23 0.24 0.27 0.27 0.260.006010030200940.0580.0330.023 0.2
                                PAY_6 -0.02-0.240.0440.0820.0340.0490.47 0.58 0.63 0.72 0.82 1 0.21 0.23 0.24 0.27 0.29 0.290.003500520058.0190.0460.0250.19
                         BILL_AMT1 -0.0190.29-0.0340.0240.0230.0560.19 0.23 0.21 0.2 0.21 0.21 1 0.95 0.89 0.86 0.83 0.8 0.140.0990.16 0.16 0.17 0.18 -0.02
                         BILL_AMT2 -0.0180.28-0.03D.0190.0220.0540.19 0.24 0.24 0.23 0.23 0.23 0.95 1 0.93 0.89 0.86 0.83 0.28 0.1 0.15 0.15 0.16 0.17-0.014
                         BILL_AMT3 -0.0240.28-0.0250.0130.0250.0540.18 0.22 0.23 0.24 0.24 0.24 0.29 0.89 0.93 1 0.92 0.88 0.85 0.24 0.32 0.13 0.14 0.18 0.18-0.014
                         BILL AMT4 - 0.04 0.29 0.022000450230.0510.18 0.22 0.23 0.25 0.27 0.27 0.86 0.89 0.92 1 0.94 0.9 0.23 0.21 0.3 0.13 0.16 0.18 0.01
                                                                                                                                                                                                                                                   - -0.25
                         BILL AMT5 -0.017 0.3 -0.017.0076.025.0490.18 0.22 0.23 0.24 0.27 0.29 0.83 0.86 0.88 0.94 1 0.95 0.22 0.18 0.25 0.29 0.14 0.160.0068
                         BILL_AMT6 -0.0170.290.010.0090.0210.0480.18 0.22 0.22 0.24 0.26 0.29 0.8 0.83 0.85 0.9 0.95 1 0.2 0.17 0.23 0.25 0.31 0.120.0054
                          PAY_AMT1 9.00970.20.0002840330.0060.0260.0790.080.00193.009040061.00150.14 0.28 0.24 0.23 0.22 0.2 1 0.29 0.25 0.2 0.15 0.19-0.073
                                                                                                                                                                                                                                                   - -0 50
                          PAY_AMT2 6,00840.180.00140.030.0080.0220.070.0580.0670.00120003220050.099 0.1 0.32 0.21 0.18 0.17 0.29 1 0.24 0.18 0.18 0.16 0.059
                          PAY_AMT3 -0.0390.210.00860.040.0036.0290.0730.0560.0530.0690.009100580.16 0.15 0.13 0.3 0.25 0.23 0.25 0.24 1 0.22 0.16 0.16-0.056
                          PAY_AMT4 9.00780.2-0.0020.0380.0130.0210.0640.0440.0440.0430.0580.0190.16 0.15 0.14 0.13 0.29 0.25 0.2 0.18 0.22 1 0.15 0.16 0.057
                                                                                                                                                                                                                                                   - -0.75
                          PAY_AMT50;0006<mark>8.22</mark>0.00170.040.0010.02230.0580.0370.0360.0340.0380.0460.17 0.16 0.18 0.16 0.14 0.31 0.15 0.18 0.16 0.15 1 0.15-0.055
                          AMT1
```

```
In []: # write a function about one-hot encoding
    def one_hot_encoding(df, col_list):
        df = df.copy()
        for col in col_list:
            dummies = pd.get_dummies(df[col], prefix=col[:4])
            df = pd.concat([df, dummies], axis=1)
            df = df.drop(col, axis=1)
        return df
In []: def pre_processing_class(df,scaler):
    # remove uncessary columns
    df = df.drop(['ID'], axis=1)
```

X = df.drop(['default payment next month'], axis=1)

X = pd.DataFrame(scaler.fit_transform(X), columns=X.columns)

col_list = ["EDUCATION", "MARRIAGE"]
df = one_hot_encoding(df, col_list)

One-hot encoding

scale the data

```
y = df['default payment next month']
return X,y
```

Task1: Build a classification model that predicts whether or not a customer will default on their next payment

```
In [ ]: # scaler name
        scaler_standard = StandardScaler()
        scaler_min_max = MinMaxScaler()
        scaler_robust = RobustScaler()
        scaler norm = Normalizer()
        X, y = pre_processing_class(df, scaler_standard)
In [ ]: def train_test_split_class(X,y,random_state=33,test_size=0.2,oversample=F
            # split the data
            if cross val:
                pass
                # do something
            X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=t
            if oversample:
                X_train_oversample, y_train_oversample = oversampler.fit_resample
            else:
                X_train_oversample, y_train_oversample = [],[]
            return X_train, X_test, y_train, y_test,X_train_oversample, y_train_o
In [ ]: | def train_models(name, model, X_train, y_train):
            model.fit(X_train, y_train)
            print(name + ' trained.')
            print('Training accuracy: {:.2f}%'.format(accuracy_score(y_train, mod
        def evaluate_models(name, model, X_test, y_test):
            # accuracy
            print(name + ' Accuracy: {:.2f}%'.format(model.score(X_test, y_test)
            # ROC AUC
            if name != 'SVC':
                print(name + ' ROC AUC: {:.2f}%'.format(roc_auc_score(y_test, mod
            # confusion matrix
            y_pred = model.predict(X_test)
            cm = confusion_matrix(y_test, y_pred)
            recall = cm[1][1] / (cm[1][1] + cm[1][0])
            precision = cm[1][1] / (cm[1][1] + cm[0][1])
            specificity = cm[0][0] / (cm[0][0] + cm[0][1])
            print(name + ' Recall: {:.2f}%'.format(recall * 100))
            print(name + ' Precision: {:.2f}%'.format(precision * 100))
            print(name + ' Specificity: {:.2f}%'.format(specificity * 100))
            # confusion matrix report
            print(name + ' Confusion Matrix Report: \n', classification_report(y_
            if name != 'SVC':
                # ROC curve
                fpr, tpr, _ = roc_curve(y_test, model.predict_proba(X_test)[:,1])
```

```
plt.figure(figsize=(8, 6))
                plt.plot(fpr, tpr, label=name)
                plt.plot([0, 1], [0, 1], color='black', linestyle='--')
                plt.xlabel('False Positive Rate (Fall-Out)')
                plt.ylabel('True Positive Rate (Recall)')
                plt.title('ROC Curve')
                plt.legend()
                plt.show()
        # test overfitting
        def cross_validation(name, model, X, y):
            scores = cross val score(model, X, y, cv=5)
            print(name + ' Cross Validation Accuracy: {:.2f}%'.format(scores.mean
In [ ]: def model_start(model_name, X_train, y_train, X, y, X_test, y_test):
            train_models(model_name, models_classific[model_name], X_train, y_trai
            evaluate_models(model_name,models_classific[model_name], X_test, y_te
            cross_validation(model_name, models_classific[model_name], X, y)
        def train_different_sampler(X,y,modelname,random_state=33):
            sampler = {
                'SMOTE': SMOTE(random_state=random_state),
                'SMOTETomek': SMOTETomek(random state=random state),
                'SMOTEENN': SMOTEENN(random_state=random_state),
                'RandomOverSampler': RandomOverSampler(random state=random state)
                # 'Knnor': data_augment.KNNOR()
            }
            print("----")
            print("Training without oversampling")
            X_train, X_test, y_train, y_test, X_train_oversample, y_train_oversam
            model_start(modelname, X_train, y_train, X, y, X_test, y_test)
            print("----")
            print("Oversampler Using Different Sampler")
            print("----")
            for name, sampler in sampler.items():
                print("OverSampling with " + name)
                X_train, X_test, y_train, y_test, X_train_oversample, y_train_ove
                # model_name,X_train,y_train,X,y,X_test,y_test
                model_start(modelname,X_train_oversample,y_train_oversample,X,y,X
                print("-----
```

Logistic Regression

```
In [ ]: train_different_sampler(X,y,'LogisticRegression')
```

Training without oversampling LogisticRegression trained. Training accuracy: 81.11%

LogisticRegression Accuracy: 81.22% LogisticRegression ROC AUC: 72.42% LogisticRegression Recall: 23.68% LogisticRegression Precision: 72.62% LogisticRegression Specificity: 97.48% LogisticRegression Confusion Matrix Report:

LOGISCICI	icg. c.	JJION CONTAGI	OII HACLEX	ricpor ci	
		precision	recall	f1-score	support
	0	0.82	0.97	0.89	4678
	1	0.73	0.24	0.36	1322
accur	acy			0.81	6000
macro	avg	0.77	0.61	0.62	6000
weighted	avg	0.80	0.81	0.77	6000

LogisticRegression Cross Validation Accuracy: 81.03%

Oversampler Using Different Sampler

OverSampling with SMOTE

LogisticRegression trained. Training accuracy: 67.59%

LogisticRegression Accuracy: 66.88% LogisticRegression ROC AUC: 72.62% LogisticRegression Recall: 65.36% LogisticRegression Precision: 36.11% LogisticRegression Specificity: 67.32% LogisticRegression Confusion Matrix Report:

	precision	recall	f1-score	support
0	0.87	0.67	0.76	4678
1	0.36	0.65	0.47	1322
accuracy			0.67	6000
macro avg	0.62	0.66	0.61	6000
weighted avg	0.76	0.67	0.70	6000

LogisticRegression Cross Validation Accuracy: 81.03%

OverSampling with SMOTETomek LogisticRegression trained. Training accuracy: 68.05%

LogisticRegression Accuracy: 67.00% LogisticRegression ROC AUC: 72.63% LogisticRegression Recall: 65.28% LogisticRegression Precision: 36.20% LogisticRegression Specificity: 67.49% LogisticRegression Confusion Matrix Report:

3	precision	recall	f1-score	support
0	0.87	0.67	0.76	4678
1	0.36	0.65	0.47	1322
accuracy			0.67	6000
macro avg	0.62	0.66	0.61	6000
weighted avg	0.76	0.67	0.70	6000

LogisticRegression Cross Validation Accuracy: 81.03%

OverSampling with SMOTEENN LogisticRegression trained. Training accuracy: 71.31%

LogisticRegression Accuracy: 55.00% LogisticRegression ROC AUC: 72.63% LogisticRegression Recall: 75.95% LogisticRegression Precision: 29.65% LogisticRegression Specificity: 49.08% LogisticRegression Confusion Matrix Report:

5	precision	recall	f1-score	support
0	0.88	0.49	0.63	4678
1	0.30	0.76	0.43	1322
accuracy			0.55	6000
macro avg	0.59	0.63	0.53	6000
weighted avg	0.75	0.55	0.58	6000

LogisticRegression Cross Validation Accuracy: 81.03%

OverSampling with RandomOverSampler

LogisticRegression trained. Training accuracy: 67.17%

LogisticRegression Accuracy: 67.53% LogisticRegression ROC AUC: 72.65% LogisticRegression Recall: 65.81% LogisticRegression Precision: 36.77% LogisticRegression Specificity: 68.02% LogisticRegression Confusion Matrix Report:

	precision	recall	f1-score	support
0	0.88	0.68	0.77	4678
1	0.37	0.66	0.47	1322
accuracy			0.68	6000
macro avg	0.62	0.67	0.62	6000
weighted avg	0.76	0.68	0.70	6000

ROC Curve LogisticRegression 1.0 0.8 True Positive Rate (Recall) 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 False Positive Rate (Fall-Out)

LogisticRegression Cross Validation Accuracy: 81.03%

SVM

In []: train_different_sampler(X,y,'SVC')

Training without oversampling

SVC trained.

Training accuracy: 82.43% SVC Accuracy: 82.27%

SVC Recall: 32.83% SVC Precision: 71.15% SVC Specificity: 96.24% SVC Confusion Matrix Report:

		precision	recall	f1-score	support
	0	0.84	0.96	0.89	4678
	1	0.71	0.33	0.45	1322
accur	асу			0.82	6000
macro	avg	0.77	0.65	0.67	6000
weighted	avg	0.81	0.82	0.80	6000

SVC Cross Validation Accuracy: 81.95%

Oversampler Using Different Sampler

OverSampling with SMOTE

SVC trained.

Training accuracy: 72.77% SVC Accuracy: 77.45%

SVC Recall: 57.41% SVC Precision: 49.00% SVC Specificity: 83.11%

SVC Confusion Matrix Report:

	pr	ecision	recall	f1-score	support
	0	0.87	0.83	0.85	4678
	1	0.49	0.57	0.53	1322
accura	су			0.77	6000
macro a	vg	0.68	0.70	0.69	6000
weighted a	vg	0.79	0.77	0.78	6000

SVC Cross Validation Accuracy: 81.95%

OverSampling with SMOTETomek

SVC trained.

Training accuracy: 73.36%

SVC Accuracy: 77.40% SVC Recall: 57.49% SVC Precision: 48.91% SVC Specificity: 83.03% SVC Confusion Matrix Report:

	precision	recall	f1-score	support
0	0.87	0.83	0.85	4678
1	0.49	0.57	0.53	1322
accuracy			0.77	6000
macro avg	0.68	0.70	0.69	6000
weighted avg	0.79	0.77	0.78	6000

SVC Cross Validation Accuracy: 81.95%

OverSampling with SMOTEENN

SVC trained.

Training accuracy: 83.50% SVC Accuracy: 66.22% SVC Recall: 72.09% SVC Precision: 36.50%

SVC Specificity: 64.56% SVC Confusion Matrix Report:

	precision	recall	f1-score	support
0	0.89	0.65	0.75	4678
1	0.36	0.72	0.48	1322
accuracy			0.66	6000
macro avg	0.63	0.68	0.62	6000
weighted avg	0.78	0.66	0.69	6000

SVC Cross Validation Accuracy: 81.95%

OverSampling with RandomOverSampler

SVC trained.

Training accuracy: 72.63% SVC Accuracy: 77.28% SVC Recall: 58.47% SVC Precision: 48.71% SVC Specificity: 82.60% SVC Confusion Matrix Report:

	precision	recall	f1-score	support
0	0.88	0.83	0.85	4678
1	0.49	0.58	0.53	1322
accuracy			0.77	6000
macro avg	0.68	0.71	0.69	6000
weighted avg	0.79	0.77	0.78	6000

SVC Cross Validation Accuracy: 81.95%

Random Forest model

In []: train_different_sampler(X,y,'DecisionTreeClassifier')

Training without oversampling DecisionTreeClassifier trained.

Training accuracy: 99.93%

DecisionTreeClassifier Accuracy: 72.25%
DecisionTreeClassifier ROC AUC: 61.27%
DecisionTreeClassifier Recall: 41.75%
DecisionTreeClassifier Precision: 38.15%
DecisionTreeClassifier Specificity: 80.87%
DecisionTreeClassifier Confusion Matrix Report:

	precision	recall	f1-score	support
0	0.83	0.81	0.82	4678
1	0.38	0.42	0.40	1322
accuracy			0.72	6000
macro avg	0.61	0.61	0.61	6000
weighted avg	0.73	0.72	0.73	6000

DecisionTreeClassifier Cross Validation Accuracy: 72.19%

Oversampler Using Different Sampler

OverSampling with SMOTE

DecisionTreeClassifier trained.

Training accuracy: 99.96%

DecisionTreeClassifier Accuracy: 68.93% DecisionTreeClassifier ROC AUC: 60.68% DecisionTreeClassifier Recall: 45.99% DecisionTreeClassifier Precision: 34.58% DecisionTreeClassifier Specificity: 75.42% DecisionTreeClassifier Confusion Matrix Report:

	precision	recall	f1-score	support
0	0.83	0.75	0.79	4678
1	0.35	0.46	0.39	1322
accuracy			0.69	6000
macro avg	0.59	0.61	0.59	6000
weighted avg	0.72	0.69	0.70	6000

DecisionTreeClassifier Cross Validation Accuracy: 72.31%

OverSampling with SMOTETomek DecisionTreeClassifier trained. Training accuracy: 99.96%

DecisionTreeClassifier Accuracy: 69.15% DecisionTreeClassifier ROC AUC: 61.16% DecisionTreeClassifier Recall: 46.90%

DecisionTreeClassifier Precision: 35.05% DecisionTreeClassifier Specificity: 75.44% DecisionTreeClassifier Confusion Matrix Report:

	precision	recall	f1-score	support
0	0.83	0.75	0.79	4678
1	0.35	0.47	0.40	1322
accuracy			0.69	6000
macro avg	0.59	0.61	0.60	6000
weighted avg	0.73	0.69	0.71	6000

DecisionTreeClassifier Cross Validation Accuracy: 72.29%

OverSampling with SMOTEENN DecisionTreeClassifier trained.

Training accuracy: 100.00%

DecisionTreeClassifier Accuracy: 68.13%
DecisionTreeClassifier ROC AUC: 66.02%
DecisionTreeClassifier Recall: 62.25%
DecisionTreeClassifier Precision: 36.81%
DecisionTreeClassifier Specificity: 69.79%
DecisionTreeClassifier Confusion Matrix Report:

	precision	recall	f1-score	support
0	0.87	0.70	0.77	4678
1	0.37	0.62	0.46	1322
accuracy			0.68	6000
macro avg	0.62	0.66	0.62	6000
weighted avg	0.76	0.68	0.71	6000

DecisionTreeClassifier Cross Validation Accuracy: 72.43%

OverSampling with RandomOverSampler DecisionTreeClassifier trained.

Training accuracy: 99.95%

DecisionTreeClassifier Accuracy: 73.05%
DecisionTreeClassifier ROC AUC: 61.09%
DecisionTreeClassifier Recall: 39.71%
DecisionTreeClassifier Precision: 39.03%
DecisionTreeClassifier Specificity: 82.47%
DecisionTreeClassifier Confusion Matrix Report:

	precision	recall	f1-score	support
0	0.83	0.82	0.83	4678
1	0.39	0.40	0.39	1322
accuracy			0.73	6000
macro avg	0.61	0.61	0.61	6000
weighted avg	0.73	0.73	0.73	6000

ROC Curve DecisionTreeClassifier 1.0 0.8 True Positive Rate (Recall) 0.6 0.4 0.2 0.0 0.0 0.2 0.4 0.6 0.8 1.0 False Positive Rate (Fall-Out)

DecisionTreeClassifier Cross Validation Accuracy: 72.28%

In []: train_different_sampler(X,y,'RandomForestClassifier')

Training without oversampling RandomForestClassifier trained.

Training accuracy: 99.93%

RandomForestClassifier Accuracy: 81.60%
RandomForestClassifier ROC AUC: 76.43%
RandomForestClassifier Recall: 36.38%
RandomForestClassifier Precision: 64.65%
RandomForestClassifier Specificity: 94.38%
RandomForestClassifier Confusion Matrix Report:

		precision	recall	f1-score	support
	0	0.84	0.94	0.89	4678
	1	0.65	0.36	0.47	1322
accur	асу			0.82	6000
macro	avg	0.74	0.65	0.68	6000
weighted	avg	0.80	0.82	0.80	6000

RandomForestClassifier Cross Validation Accuracy: 81.51%

Oversampler Using Different Sampler

OverSampling with SMOTE

RandomForestClassifier trained.

Training accuracy: 99.96%

RandomForestClassifier Accuracy: 79.77%
RandomForestClassifier ROC AUC: 75.85%
RandomForestClassifier Recall: 47.28%
RandomForestClassifier Precision: 54.73%
RandomForestClassifier Specificity: 88.95%
RandomForestClassifier Confusion Matrix Report:

	precision	recall	f1-score	support
0	0.86	0.89	0.87	4678
1	0.55	0.47	0.51	1322
accuracy			0.80	6000
macro avg	0.70	0.68	0.69	6000
weighted avg	0.79	0.80	0.79	6000

RandomForestClassifier Cross Validation Accuracy: 81.36%

OverSampling with SMOTETomek RandomForestClassifier trained.

Training accuracy: 99.96%

RandomForestClassifier Accuracy: 79.90%
RandomForestClassifier ROC AUC: 75.38%
RandomForestClassifier Recall: 47.43%
RandomForestClassifier Precision: 55.10%
RandomForestClassifier Specificity: 89.08%
RandomForestClassifier Confusion Matrix Report:

	precision	recall	f1-score	support
0	0.86	0.89	0.87	4678
1	0.55	0.47	0.51	1322
accuracy			0.80	6000
macro avg weighted avg	0.70 0.79	0.68 0.80	0.69 0.79	6000 6000

RandomForestClassifier Cross Validation Accuracy: 81.50%

OverSampling with SMOTEENN RandomForestClassifier trained. Training accuracy: 100.00%

RandomForestClassifier Accuracy: 75.27%
RandomForestClassifier ROC AUC: 76.77%
RandomForestClassifier Recall: 61.57%
RandomForestClassifier Precision: 45.47%
RandomForestClassifier Specificity: 79.14%
RandomForestClassifier Confusion Matrix Report:

	precision	recall	f1-score	support
0	0.88	0.79	0.83	4678
1	0.45	0.62	0.52	1322
accuracy			0.75	6000
macro avg weighted avg	0.67 0.79	0.70 0.75	0.68 0.76	6000 6000

RandomForestClassifier Cross Validation Accuracy: 81.49%

OverSampling with RandomOverSampler RandomForestClassifier trained. Training accuracy: 99.95%

RandomForestClassifier Accuracy: 80.88%
RandomForestClassifier ROC AUC: 76.80%
RandomForestClassifier Recall: 42.97%
RandomForestClassifier Precision: 59.11%
RandomForestClassifier Specificity: 91.60%
RandomForestClassifier Confusion Matrix Report:

	precision	recall	f1-score	support
0	0.85	0.92	0.88	4678
1	0.59	0.43	0.50	1322
accuracy			0.81	6000
macro avg	0.72	0.67	0.69	6000
weighted avg	0.79	0.81	0.80	6000

ROC Curve RandomForestClassifier 1.0 0.8 True Positive Rate (Recall) 0.6 0.4 0.2 0.0 0.2 0.0 0.4 0.6 0.8 1.0 False Positive Rate (Fall-Out)

RandomForestClassifier Cross Validation Accuracy: 81.59%

Build a regression model that predicts a customer's limit balance if they were a new customer to the bank with only X0, X2-5 available to you as data.

```
In [ ]: def pre_processing_regre(df,scaler):
    # remove uncessary columns
    df = df.drop(['ID'], axis=1)
```

```
# One-hot encoding
            col_list = ["EDUCATION", "MARRIAGE"]
            df = one_hot_encoding(df, col_list)
            # scale the data
            X = df.drop(['LIMIT_BAL'], axis=1)
            X = pd.DataFrame(scaler.fit transform(X), columns=X.columns)
            y = df['LIMIT BAL']
            return X, y
        X, y = pre_processing_regre(df, scaler_standard)
In [ ]: models_regre = {
            'LinearRegression': LinearRegression(),
            'SVR': SVR(),
             'DecisionTreeRegressor': DecisionTreeRegressor(),
            'RandomForestRegressor': RandomForestRegressor(),
In [ ]: X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
        def train_models(name, model, X_train, y_train):
            model.fit(X_train, y_train)
            print(name + ' trained.')
        def evaluate_models(name, model, X_test, y_test):
            print(name + ' Accuracy: {:.2f}%'.format(model.score(X_test, y_test)
```

Linear Regression

```
In []: train_models("linear_regression", models_regre["LinearRegression"], X_trai
    evaluate_models("linear_regression", models_regre["LinearRegression"], X_t
    linear_regression trained.
    linear_regression Accuracy: 36.10%
```

Random Forest

```
In []: train_models("SVR", models_regre["SVR"], X_train, y_train)
        evaluate_models("SVR", models_regre["SVR"], X_test, y_test)

SVR trained.
    SVR Accuracy: -4.24%

In []: train_models("DecisionTreeRegressor", models_regre["DecisionTreeRegressor"
        evaluate_models("DecisionTreeRegressor", models_regre["DecisionTreeRegress
        DecisionTreeRegressor trained.
        DecisionTreeRegressor Accuracy: -6.16%

In []: train_models("RandomForestRegressor", models_regre["RandomForestRegressor"
        evaluate_models("RandomForestRegressor", models_regre["RandomForestRegress
        RandomForestRegressor trained.
        RandomForestRegressor Accuracy: 46.90%
```

ANN model

In []: