Reducing Number of Candidates

- Apriori principle:
 - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the anti-monotone property of support

Apriori Algorithm

- Method:
 - Let k=1
 - Generate frequent itemsets of length 1
 - Repeat until no new frequent itemsets are identified
 - Generate length (k+1) candidate itemsets from length k frequent itemsets
 - **Prune candidate** itemsets containing subsets of length k that are infrequent
 - Count the support of each candidate by scanning the DB
 - Eliminate candidates that are infrequent, leaving only those that are frequent

Max-patterns

- Max-pattern: frequent patterns without proper frequent super pattern
 - BCDE, ACD are max-patterns
 - BCD is not a max-pattern

Min_sup=2

Tid	Items
10	A,B,C,D,E
20	B,C,D,E,
30	A,C,D,F

Frequent-pattern mining methods

Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets is frequent

Database TDB

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

Here is a database that has 5 transactions: A, B, C, D, E.

Let the min support = 2.

Find all frequent max itemsets using Apriori algorithm.

1st scan: count support

Generate frequent itemsets of length 1

C_{I}	Itemset	sup
1	{A}	2
	{B}	3
	{C}	3
	{D}	1
	{E}	3

Eliminate candidates that are infrequent

Itemset	sup
{A}	2
{B}	3
{C}	3
{E}	3

The algorithm stops here

Database TDB

Tid	Items
10	A, C, D
20	В, С, Е
30	A, B, C, E
40	B, E

1 st scan

Itemset	sup
{A}	2
{B}	3
{C}	3
{D}	1
{E}	3

	Itemset	sup
L_1	{A}	2
	{B}	3
	{C}	3
	{E}	3

L_2	Itemset	sup	Ī
L 2	{A, C}	2	
	{B, C}	2	
	{B, E}	3	
	{C, E}	2	

C_2	Itemset	sup
_	{A, B}	1
	{A, C}	2
	{A, E}	1
	{B, C}	2
	{B, E}	3
	{C, E}	2

 $2^{\text{nd}} \operatorname{scan}$

Itemset
{A, B}
{A, C}
{A, E}
{B, C}
{B, E}
{C, E}

C_3	Itemset
3	{B, C, E}

 3^{rd} scan L_3

Itemset	sup
{B, C, E}	2

Draw a graph to illustrate the result

- Scan the database once to store all essential information in a data structure called FP-tree(Frequent Pattern Tree)
- The FP-tree is concise and is used in directly generating large itemsets
- Once an FP-tree has been constructed, it uses a recursive divide-and-conquer approach to mine the frequent itemsets

- Step 1: Deduce the ordered frequent items. For items with the same frequency, the order is given by the alphabetical order.
- Step 2: Construct the FP-tree from the above data
- **Step 3:** From the FP-tree above, construct the FP-conditional tree for each item (or itemset).
- Step 4: Determine the frequent patterns.

A Simple Example of FP-tree

TID	Items
1	A, B
2	B, C, D
3	A, C, D, E
4	A, D, E
5	A, B, C

Problem:

Find all frequent itemsets with support >= 2)

- Step 1: Deduce the ordered frequent items. For items with the same frequency, the order is given by the alphabetical order.
 - Step 2: Construct the FP-tree from the above data
 - **Step 3:** From the FP-tree above, construct the FP-conditional tree for each item (or itemset).
 - Step 4: Determine the frequent patterns.

A Simple Example: Step 1

TID	Items
1	A, B
2	B, C, D
3	A, C, D, E
4	A, D, E
5	A, B, C

Item	Frequency
A	4
В	3
C	3
D	3
Е	2

Threshold = 2

Item	Ordered Frequency
A	4
В	3
C	3
D	3
Е	2

A Simple Example: Step 1

TID	Items
1	А, В
2	B, C, D
3	A, C, D, E
4	A, D, E
5	A, B, C

Item	Ordered Frequency
A	4
В	3
C	3
D	3
Е	2

TID	Items	(Ordered) Frequent Items
1	A, B	A, B
2	B, C, D	B, C, D
3	A, C, D, E	A, C, D, E
4	A, D, E	A, D, E
5	A, B, C	A, B, C

- Step 1: Deduce the ordered frequent items. For items with the same frequency, the order is given by the alphabetical order
- Step 2: Construct the FP-tree from the above data
- Step 3: From the FP-tree above, construct the FP-conditional tree for each item (or itemset).
- Step 4: Determine the frequent patterns.

Step 2: Construct the FP-tree from the above data

TID	Items	(Ordered) Frequent Items
1	A, B	(A, B)
2	B, C, D	B, C, D
3	A, C, D, E	A, C, D, E
4	A, D, E	A, D, E
5	A, B, C	A, B, C
		/
Item	Head of node-link	
A	_	
В		
C		
C D		

Step 2: Construct the FP-tree from the above data

TID		Items	(Ordered) Frequent Items	Root
1		A, B	A, B	
2		B, C, D	(B, C, D)	A: 1 B: 1
3	A	, C, D, E	A, C, D, E	
4		A, D, E	A, D, E	B: 1
5		A, B, C	A, B, C	B: 1 C: 1
lte	em	Head of node-link		D: 1
1	A	_		
]	В			
	C			
]	D	_		
]	Е			

Step 2: Construct the FP-tree from the above data

TID	Items	(Ordered) Frequent Items	Root
1	A, B	A, B	
2	B, C, D	B, C, D	A: 2 B: 1
3	A, C, D, E	A, C, D, E	
4	A, D, E	A, D, E	B: 1 C: 1
5	A, B, C	A, B, C	B: 1
ltem	Head of node-link		D: 1 D: 1
A	_		
В			
C			E: 1
D			
Е			

Step 2: Construct the FP-tree from the above data

TID	Items	(Ordered) Frequent Items
1	A, B	A, B
2	B, C, D	B, C, D
3	A, C, D, E	A, C, D, E
4	A, D, E	A, D, E
5	A, B, C	A,B,C
ltem	Head of node-link	
Item A	1 1	
	1 1	
A	1 1	
A B	1 1	

Step 2: Construct the FP-tree from the above data

TID	Items	(Ordered) Frequent Items
1	A, B	A, B
2	B, C, D	B, C, D
3	A, C, D, E	A, C, D, E
4	A, D, E	A, D, E
5	A, B, C	A,B,C
	/	/
ltem	Head of node-link	
Item A		
A		
A B		

- Step 1: Deduce the ordered frequent items. For items with the same frequency, the order is given by the alphabetical order.
- Step 2: Construct the FP-tree from the above data
- Step 3: From the FP-tree above, construct the FP-conditional tree for each item (or itemset).
 - Step 4: Determine the frequent patterns.

Step 3: From the FP-tree above, construct the FP-conditional

Step 3: From the FP-tree above, construct the FP-conditional tree for each item (or itemset).

Step 3: From the FP-tree above, construct the FP-conditional

Step 3: From the FP-tree above, construct the FP-conditional tree for each item (or itemset).

D

Cond. FP-tree on "E"

{ (A:1, C:1, D:1, E:1),

(A:1, D:1, E:1), }

Item	Frequency
A	2
C	1
D	2
E	2

Item	Frequency
A	2
D	2
Е	2

Step 3: From the FP-tree above, construct the FP-conditional

Step 3: From the FP-tree above, construct the FP-conditional tree for each item (or itemset)

Step 3: From the FP-tree above, construct the FP-conditional tree for each item (or itemset). Root Item **Head of** Threshold = 2node-link A: 4 A B: 1 В \mathbf{C} B: 2 C: 1 C: 1 D E D: 1 C: 1 Cond. FP-tree on "D" D: 1 D: 1 { (A:1, C:1, D:1), (A:1, D:1), (B:1, C:1, D:1), } **Frequency Item** E: 1 A В \mathbf{C} 3 D

Step 3: From the FP-tree above, construct the FP-conditional tree for each item (or itemset). Root Head of 🦰 Threshold = 2Item node-link A: 4 A B: 1 В B: 2 C: 1 C: 1 D E D: 1 C: 1 Cond. FP-tree on "D" 3 D: 1 D: 1 { (A:1, C:1, D:1), (A:1, D:1), (B:1, C:1, D:1), } **Frequency Item** E: 1 A В \mathbf{C} D

Step 3: From the FP-tree above, construct the FP-conditional tree for each item (or itemset).

Threshold = 2

Cond. FP-tree on "D"

{ (A:1, C:1, D:1), (A:1, D:1), (B:1, C:1, D:1), }

ltem	Frequency
A	2
В	1
C	2
D	3

Item	Frequency
A	2
С	2
D	2

Step 3: From the FP-tree above, construct the FP-conditional

Step 3: From the FP-tree above, construct the FP-conditional tree for each item (or itemset).

Cond. FP-tree on "C"

{ (A:1, B:1, C:1), (A:1, C:1), (B:1, C:1), }

Item	Frequency
A	2
В	2
C	3

Step 3: From the FP-tree above, construct the FP-conditional

Step 3: From the FP-tree above, construct the FP-conditional

Step 3: From the FP-tree above, construct the FP-conditional tree for each item (or itemset).

- Step 1: Deduce the ordered frequent items. For items with the same frequency, the order is given by the alphabetical order.
- Step 2: Construct the FP-tree from the above data
- **Step 3:** From the FP-tree above, construct the FP-conditional tree for each item (or itemset).
- Step 4: Determine the frequent patterns.

Step 4: Determine the frequent patterns

TID	Items
1	А, В
2	B, C, D
3	A, C, D, E
4	A, D, E
5	A, B, C

Answer:

According to the above step 4, we can find all frequent itemsets with support >= 2):