Advanced Calculus II: Assignment 2

Chris Hayduk

February 15, 2020

Problem 1.

Problem 2.

Let $A = \mathbb{I}$, the set of irrational numbers.

Since \mathbb{Q} is countable, \mathbb{R} is uncountable, and $\mathbb{R} = \mathbb{Q} \cup \mathbb{I}$, we have that \mathbb{I} must be uncountable. If it were not, then \mathbb{R} would be the union of two countable sets and would hence be countable as well, a contradiction.

Now observe that \mathbb{Q} is dense in \mathbb{R} . That is, for every $x_1, x_2 \in \mathbb{R}$ with $x_1 < x_2$, $\exists y \in \mathbb{Q}$ such that $x_1 < y < x_2$. Since $\mathbb{I} \subset \mathbb{R}$, we see that \mathbb{Q} divides \mathbb{I} in such a manner.

Problem 3.

Let $C \subset \mathbb{R}^p$ be open and suppose C is connected.