

Relational Algebra

Database Query Languages

- Use "Campus" schema
- Given a database, ask questions, get data as answers
 - Ex: Get all students with GPA > 3.7 who applied to Berkeley and Stanford and nowhere else
 - Ex: Get all humanities departments at campuses in Florida with < 1000 applicants
 - Ex: Get the campus with highest average accept rate over the last five years
- Some questions are easy to pose, some are not
- Some questions are easy for DBMS to answer, some are not.
- "Query language" also used to update the database

Relational Query Languages

- Formal: relational algebra, relational calculus, Datalog
- Actual: SQL, Quel, Query-by-Example (QBE)
- In ALL languages, a query is executed over a set of relations, get single relation as the result

Relational Algebra

- Notation for describing queries in the relational model
- Relational model has concrete set of "standard" operations
- Operations are not "Turing Complete"
 - Not a defect, helps with query processing and optimization
 - FYI, a language is Turing Complete if it is powerful enough to implement any Turing machine. It's widely believed that Turing machines can do any calculation that can be performed by a modern computer program
- Start by introducing operations of relational algebra, SQL next
- Algebra applies to sets of tuples, i.e., relations
 - Commercial DBMS use different notation of relations which are multisets

Relational Algebra

- Construct new relations from old ones
 - Set of operators
 - Relations are operands
- Build progressively more complex expressions by applying operators to relations or to rela. algebra expressions (which are relations as well)
- Query is an expression of relational algebra
 - First concrete example of a query language
- Four broad classes of operations
 - Set operations, selection operations, operations that combine data from two relations, rename operation

4

Sample Relational Schema

```
Movie
          (Title,Year,length,filmType,
           studioName, producerC#)
StarsIn
          (MovieTitle, MovieYear, StarName)
MovieStar (Name, address, gender, birthdate)
MovieExec (name, address, Cert#, netWorth)
Studio
          (Name,address,presC#)
```

Basics

- Operations of traditional relational algebra fall into four broad classes:
- 1. Set operations
- Operations that remove parts of a relation
- 3. Operations that combine tuples of two relations
- 4. Renaming

Set Operations

Union (binary, commutative, associative)

■ R ∪ S

Intersection (binary, commutative, associative)

R ∩ S

Set Difference (binary)

- R S
 - Set of elements in R but not in S
 - R-S ≠ S-R !!
- $R(A_1,A_2,...,A_n)$, $S(B_1,B_2,...,B_n)$ must be union compatible
 - R and S are of the same degree
 - for each i, dom(A_i) = dom(B_i)
 - Columns of R and S must be ordered so that order of attributes is same for both relations

Example

R

name	address	gender	birthdate
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
Mark Hamil	456 Oak Rd., Brentwood	M	8/8/88

S

name	aame address g		birthdate
Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
Harrison Ford	789 Palm Dr., Beverly Hills	M	7/7/77

4

Sample Operations

$R \cap S$	name	address	gender	birthdate
Carrie Fisher		123 Maple St., Hollywood	F	9/9/99

$R \cup S$	name	address	gender	birthdate
	Carrie Fisher	123 Maple St., Hollywood	F	9/9/99
	Harrison Ford	789 Palm Dr., Beverly Hills	M	7/7/77
	Mark Hamil	456 Oak Rd., Brentwood	M	8/8/88

R - S	name	address	gender	birthdate	
	Mark Hamil	456 Oak Rd., Brentwood	M	8/8/88	

Relational Operator: Project

Project (unary)

- $\pi_{\text{<attr list>}}(R)$
- <attr list> is a list of attributes (columns) from R only
- Ex: $\pi_{\text{title, year, length}}$ (Movie) "horizontal restriction"

Project

 PROJECT can produce many tuples with same value

- Relational algebra semantics says remove duplicates
- SQL does not -- one difference between formal and actual query languages

Relational Operator: Select

Select or Restrict (unary, commutative)

- \bullet $\sigma_{\text{cpredicate}}$ (R)
- predicate> is a conditional expression of the
 type that we are familiar with from
 conventional programming languages
 - <attribute> <op> <attribute>
 - <attribute> <op> <constant>
 - attribute in R
 - op ∈ {=,≠,<,>,≤, ..., AND, OR}
- Ex: $\sigma_{length\geq 100}$ (Movie) vertical restriction"

Pictorially

Movie	<u>title</u>	<u>year</u>	length	filmType	
	Star Wars	1977	124	color	
	Mighty Ducks	1991	104	color	result set
	Wayne's World	1992	95	color	

of selected tuples is referred to as the selectivity of the condition

Cartesian Product

Cartesian Product (binary, commutative, associative)

- R x S
- Sets of all pairs that can be formed by choosing the first element of the pair to be any element of R, the second any element of S
- Relation schema is union of schemas for R and S
- Resulting schema may be ambiguous
 - Use R.A or S.A to disambiguate an attribute that occurs in both schemas

Example

R A B 1 2 3 4

B C D
2 5 6
4 7 8

Α	R.B	S.B	С	D
1	2	2	5	6
1	2	4	7	8
1	2	9	10	11
3	4	2	5	6
3	4	4	7	8
3	4	9	10	11

Join Operations

Natural Join (binary)

- R join S
- Match only those tuples from R and S that agree in whatever attributes are common to the schemas of R and S
 - If r and s from r(R) and s(S) are successfully paired, result is called a *joined tuple*
- This join operation is the same we used in earlier section to recombine relations that had been projected onto two subsets of their attributes (e.g., as a result of a BCNF decomposition)

Example

F	2			S						
	A	В	_	В	С	D	Α	В	С	D
	1	2	join	2	5	6	1	2	5	6
	3	4	JOIII	4	7	8	3	4	7	8
,				9	10	11			-	

- Resulting schema has attributes from R, either R or S (i.e., joining attribute(s)), and S
- Tuples that fail to pair with any tuple of the other relation are called dangling tuples

Join Operations

Theta Join (binary)

- R join_C S, where C is an arbitrary join condition
- Step 1: take the product of R and S
- Step 2: Select from the product only those tuples that satisfy condition C
- As with the product operation, the schema for the result is the union of the schemas of R and S

4

Example

U		
Α	В	С
1	2	3
6	7	8
9	7	8

join_{A<D AND U.B≠V.B}

В	С	D
2	3	4
2	3	5
7	8	10

Α	U.B	U.C	V.B	V.C	D
1	2	3	7	8	10

Final Word on Join

DBMS often implements theta-join as basic operation

 Use of term "join" in implementation circles usually refers to theta-join or sometimes to cross-product