General purpose operational amplifier

μ A741/ μ A741C/SA741C

DESCRIPTION

The μ A741 is a high performance operational amplifier with high open-loop gain, internal compensation, high common mode range and exceptional temperature stability. The μ A741 is short-circuit-protected and allows for nulling of offset voltage.

FEATURES

- Internal frequency compensation
- Short circuit protection
- Excellent temperature stability
- High input voltage range

PIN CONFIGURATION

Figure 1. Pin Configuration

ORDERING INFORMATION

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG #
8-Pin Plastic Dual In-Line Package (DIP)	-55°C to +125°C	μΑ741N	SOT97-1
8-Pin Plastic Dual In-Line Package (DIP)	0 to +70°C	μΑ741CN	SOT97-1
8-Pin Plastic Dual In-Line Package (DIP)	-40°C to +85°C	SA741CN	SOT97-1
8-Pin Ceramic Dual In-Line Package (CERDIP)	-55°C to +125°C	μΑ741F	0580A
8-Pin Ceramic Dual In-Line Package (CERDIP)	0 to +70°C	μΑ741CF	0580A
8-Pin Small Outline (SO) Package	0 to +70°C	μΑ741CD	SOT96-1

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _S	Supply voltage		
	μ A741 C	±18	V
	μΑ741	±22	V
P_{D}	Internal power dissipation		
	D package	780	mW
	N package	1170	mW
	F package	800	mW
V _{IN}	Differential input voltage	±30	V
V _{IN}	Input voltage ¹	±15	V
I _{SC}	Output short-circuit duration	Continuous	
T _A	Operating temperature range		
	μ A741 C	0 to +70	°C
	SA741C	-40 to +85	°C
	μΑ741	-55 to +125	°C
T _{STG}	Storage temperature range	-65 to +150	°C
T _{SOLD}	Lead soldering temperature (10sec max)	300	°C

NOTES:

1994 Aug 31 1 853-0903 13721

^{1.} For supply voltages less than $\pm 15 \text{V}$, the absolute maximum input voltage is equal to the supply voltage.

General purpose operational amplifier

$\mu \text{A741/}\mu \text{A741C/SA741C}$

DC ELECTRICAL CHARACTERISTICS

 T_A = 25°C, V_S = $\pm 15 V$, unless otherwise specified.

SYMBOL	PARAMETER	TEST CONDITIONS -		μ Α741		μ Α741C		UNIT	
STWIBUL			Min	Тур	Max	Min	Тур	Max	UNII
Vos	Offset voltage	R _S =10kΩ		1.0	5.0		2.0	6.0	mV
		R_S =10k Ω , over temp.		1.0	6.0			7.5	mV
ΔV _{OS} /ΔT				10			10		μV/°C
los	Offset current			20	200		20	200	nA
		Over temp.						300	nA
		T _A =+125°C		7.0	200				nA
		T _A =-55°C		20	500				nA
ΔI _{OS} /ΔT				200			200		pA/°C
I _{BIAS}	Input bias current			80	500		80	500	nA
		Over temp.						800	nA
		T _A =+125°C		30	500				nA
		T _A =-55°C		300	1500				nA
ΔΙ _Β /ΔΤ				1			1		nA/°C
		$R_L=10k\Omega$	±12	±14		±12	±14		V
V_{OUT}	Output voltage swing								
		R_L =2kΩ, over temp.	±10	±13		±10	±13		V
		$R_L=2k\Omega$, $V_O=\pm 10V$	50	200		20	200		V/mV
A_{VOL}	Large-signal voltage gain	$R_L=2k\Omega$, $V_O=\pm 10V$,							
		over temp.	25			15			V/mV
	Offset voltage adjustment range			±30			±30		mV
		R _S ≤10kΩ					10	150	μV/V
PSRR	Supply voltage rejection ratio								
		$R_S \le 10 k\Omega$, over temp.		10	150				μV/V
						70	90		dB
CMRR	Common-mode rejection ratio								
		Over temp.	70	90			.		dB
			1	1.4	2.8		1.4	2.8	mA
I _{CC}	Supply current	T _A =+125°C		1.5	2.5				mA
		T _A =-55°C		2.0	3.3				mA
V _{IN}	Input voltage range	(μA741, over temp.)	±12	±13		±12	±13		V
R _{IN}	Input resistance		0.3	2.0		0.3	2.0	0-	ΜΩ
_	<u></u>		1	50	85		50	85	mW
P_D	Power consumption	T _A =+125°C	1	45	75				mW
		T _A =-55°C	╀	45	100				mW
R _{OUT}	Output resistance		1	75		4.2	75 25	0.0	Ω
I _{SC}	Output short-circuit current		10	25	60	10	25	60	mA

General purpose operational amplifier

$\mu \text{A741/}\mu \text{A741C/SA741C}$

DC ELECTRICAL CHARACTERISTICS

 T_A = 25°C, V_S = ±15V, unless otherwise specified.

SYMBOL	PARAMETER	TEST COMPITIONS	SA741C			LINUT
STWBUL		TEST CONDITIONS	Min	Тур	Max	UNIT
Vos		R _S =10kΩ		2.0	6.0	mV
	Offset voltage	$R_S=10k\Omega$, over temp.			7.5	mV
$\Delta V_{OS}/\Delta T$				10		μV/°C
I _{OS}				20	200	nA
	Offset current	Over temp.			500	nA
$\Delta I_{OS}/\Delta T$				200		pA/°C
I _{BIAS}				80	500	nA
	Input bias current	Over temp.			1500	nA
$\Delta I_{B}/\Delta T$				1		nA/°C
		$R_L=10k\Omega$	±12	±14		V
V _{OUT}	Output voltage swing					
		$R_L=2k\Omega$, over temp.	±10	±13		V
		$R_L=2k\Omega$, $V_O=\pm 10V$	20	200		V/mV
A_{VOL}	Large-signal voltage gain					
		$R_L=2k\Omega$, $V_O=\pm 10V$, over temp.	15			V/mV
	Offset voltage adjustment range			±30		mV
PSRR	Supply voltage rejection ratio	R _S ≤10kΩ		10	150	μV/V
CMRR	Common mode rejection ration		70	90		dB
V _{IN}	Input voltage range	Over temp.	±12	±13		V
R _{IN}	Input resistance		0.3	2.0		МΩ
P_d	Power consumption			50	85	mW
R _{OUT}	Output resistance			75		Ω
I _{SC}	Output short-circuit current			25		mA

AC ELECTRICAL CHARACTERISTICS

 $T_A=25$ °C, $V_S=\pm15$ V, unless otherwise specified.

CVMDOL	PARAMETER	TEST CONDITIONS	μΑ741, μΑ741C			LINUT
SYMBOL		TEST CONDITIONS	Min	Тур	Max	UNIT
R _{IN}	Parallel input resistance	Open-loop, f=20Hz	0.3			MΩ
C _{IN}	Parallel input capacitance	Open-loop, f=20Hz		1.4		pF
	Unity gain crossover frequency	Open-loop		1.0		MHz
	Transient response unity gain	V_{IN} =20mV, R_L =2k Ω , C_L ≤100pF				
t _R	Rise time			0.3		μs
	Overshoot		1	5.0		%
SR	Slew rate	C≤100pF, R _L ≥2kΩ, V _{IN} =±10V		0.5		V/μs

General purpose operational amplifier

$\mu \text{A741/}\mu \text{A741C/SA741C}$

EQUIVALENT SCHEMATIC

Figure 2. Equivalent Schematic

1994 Aug 31

General purpose operational amplifier

μΑ741/μΑ741C/SΑ741C

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Typical Performance Characteristics

1994 Aug 31 5

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

Figure 4. Typical Performance Characteristics (cont.)

TYPICAL PERFORMANCE CHARACTERISTICS (Continued)

Figure 5. Typical Performance Characteristics (cont.)

This datasheet has been downloaded from:

www. Data sheet Catalog.com

Datasheets for electronic components.