RMIT University School of Science COSC2110/COSC2111 Data Mining

Tutorial Problems Week 12

1. The following heights(cm) of a number of sportspeople were measured:

Height (cm)	Sport		
214	Basketball		
200	Basketball		
210	Football		
213	Basketball		
180	Football		
200	Football		
175	Cricket		
170	Cricket		
210	Basketball		
185	Cricket		
195	Basketball		
175	Football		
190	Cricket		
198	Football		
184	Cricket		

- (a) What are the prior probabilities for each sport, ie P(Basketball), P(Football) and P(Cricket)?
- (b) What are P(Height|Basketball), P(Height|Football) and P(Height|Cricket)?
- (c) Using Bayes rule, find the posterior probabilities P(Basketball|height), P(Football|height) and P(Cricket|height)?
- (d) Sketch the posterior probabilities [You can ignore the denominator]
- (e) [Optional] Use a program like gnuplot, to draw the distributions. (See /KDrive/SEH/SCSIT/Students/Courses/COSC2111 /DataMining/code-and-scripts/gnuplot-normal for an example of using gnuplot)
- (f) How would a person who is 190 cm tall be classified?
- (g) Work out an approximate error rate.
- (h) Is this a good classifier?
- (i) Could the classifier be improved by getting the heights of 1000 sportspeople?

- 2. Suppose we want a classifier for 'Flu' and 'Well'. We find 100 people who are well and 100 who have the flu and build a classifier based on the univariate normal distribution.
 - (a) What is wrong with this procedure?
 - (b) What if we built a decision tree?
- 3. Consider the following data from a factory:

Run	Operator	Machine	Length	Overtime	output
1	Joe	a	51	no	high
2	Sam	b	85	yes	low
3	Jim	b	63	no	low
4	Jim	b	39	no	high
5	Joe	c	32	no	high
6	Sam	c	47	no	low
7	Joe	C	63	no	low
8	Jim	a	70	yes	low
9	Jim	a	51	yes	??

- (a) Using only the nominal attributes of runs 1 to 8, how will case 9 be classified by a naive Bayes classifier.
- (b) How would case 9 be classified by naive Bayes if all attributes are used?
- (c) How does the result of the previous question change if the Laplace correction is used?