Inteligencia Artificial El Mundo del Wumpus

Edgar Andrade, Ph.D.

Matemáticas Aplicadas y Ciencias de la computación

Última revisión: Abril de 2023

Agente híbrido

Modelo del mundo en lógica proposicional

Desempeño baseline

El Wumpus

Contenido

El mundo del Wumpus

Agente híbrido

Modelo del mundo en lógica proposiciona

Desempeño baseline

El Wumpus

MACC Matemáticas Aplicadas y Ciencias de la Computació

Entorno:

Una cueva representada por una rejilla 4×4 bordeada por muros. El agente siempre comienza en (0, 0) mirando al este. La ubicación del Wumpus se escoge arbitrariamente de manera uniforme en casillas distintas a la inicial. Cualquier casilla distinta de la inicial puede ser un pozo con probabilidad 0.2. El oro puede estar en cualquier casilla, con probabilidad uniforme.

El mundo del Wumpus

000

Actuadores: (1/2)

- Moverse adelante una casilla
- voltearIzquierda, rotar 90º en contra de las manecillas del reloj.
- voltearDerecha, rotar 90º a favor de las manecillas del reloj.

Actuadores: (2/2)

- agarrar el oro cuando este está en la casilla.
- disparar la flecha en la dirección en que está mirando, la cual seguirá en linea recta hasta golpear un muro o al Wumpus.
- salir de la cueva desde la casilla inicial.

Sensores: (1/2)

- hedor cuando llega a la casilla donde está el Wumpus o una advacente (diagonalmente).
- En las casillas advacentes a un pozo percibe una brisa.
- En el cuadro donde está el oro. percibe un brillo.

El mundo del Wumpus

000

Sensores: (2/2)

- Cuando se topa con un muro, percibe un batacazo.
- Si el Wumpus muere, el heroe percibe un grito desde cualquier casilla.

Medida de desempeño:

- ► +1000 por salir de la cueva con el oro
- -1000 por caer en un pozo o ser comido por el Wumpus
- -1 por cada movimiento o rotación
- -10 por usar la flecha.
- El juego termina cuando el agente muere o sale de la cueva.

El mundo del Wumpus

000

000

Intentando encontrar el oro sin morir en el intento...

Sensores

[hedor, brisa, brillo, batacazo, grito] (None, None, None, None, None, None)

Actuadores

000

Intentando encontrar el oro sin morir en el intento...

Sensores

[hedor, brisa, brillo, batacazo, grito] (None, None, None, None, None, None)

Actuadores

000

Intentando encontrar el oro sin morir en el intento...

Sensores

[hedor, brisa, brillo, batacazo, grito] (None, None, None, None, None, None)

Actuadores adelante

000

Intentando encontrar el oro sin morir en el intento...

Sensores

[hedor, brisa, brillo, batacazo, grito] (None, brisa, None, None, None)

Actuadores

000

Intentando encontrar el oro sin morir en el intento...

Sensores

[hedor, brisa, brillo, batacazo, grito] (None, brisa, None, None, None)

Actuadores

000

Intentando encontrar el oro sin morir en el intento...

Sensores

[hedor, brisa, brillo, batacazo, grito]
(None, brisa, None, None, None)

Actuadores

(voltearIzquierda, voltearIzquierda, adelante, voltearDerecha, adelante)

000

Intentando encontrar el oro sin morir en el intento...

Sensores

[hedor, brisa, brillo, batacazo, grito] (Hedor, None, None, None, None, None)

Actuadores

000

Intentando encontrar el oro sin morir en el intento...

Sensores

[hedor, brisa, brillo, batacazo, grito] (Hedor, None, None, None, None)

Actuadores

000

Intentando encontrar el oro sin morir en el intento...

Sensores

[hedor, brisa, brillo, batacazo, grito] (Hedor, None, None, None, None, None)

Actuadores disparar

Agente híbrido

Modelo del mundo en lógica proposicional

Desempeño baseline

El Wumpus

Make decision

MACC Matemáticas Aplicadas y Ciencias de la Computación

Programa de agente

Determinar casillas por visitar

Asumimos que tenemos acceso a:

- Casillas visitadas
- Casillas por visitar
- Casillas adyacentes a la ubicación actual

El proceso es tomar las casillas adyacentes, determinar cuáles de ellas son seguras y no han sido visitadas, luego añadirlas a las casillas por visitar.

Contenido

El mundo del Wumpus

Agente híbrido

Modelo del mundo en lógica proposicional

Desempeño baseline

El Wumpus

Agente basado en modelo

- ▶ Table-driven
- Simple reflex
- Model-based
- Goal-based
- Utility-based

- ¿Cómo se comporta el entorno por su propia dinámica?
- ¿Cómo cambia el entorno con mis acciones?

(None, None, None, None, None)

Datos

Reglas

 $\neg \mathsf{Brisa}(0,0) \to \neg \mathsf{Pozo}(1,0)$ $\neg \mathsf{Hedor}(0,0) \rightarrow \neg \mathsf{Wumpus}(1,0)$ $\neg \mathsf{Pozo}(1,0) \land \neg \mathsf{Wumpus}(1,0) \rightarrow$ Segura(1,0)

(None, None, None, None, None)

Datos

 $\neg Brisa(0,0)$, $\neg Hedor(0,0)$,

Reglas

 $\neg \mathsf{Brisa}(0,0) \to \neg \mathsf{Pozo}(1,0)$

 $\neg \mathsf{Hedor}(0,0) \to \neg \mathsf{Wumpus}(1,0)$ $\neg \mathsf{Pozo}(1,0) \land \neg \mathsf{Wumpus}(1,0) \to$

Segura(1,0)

Matemáticas Aplicadas y Ciencias de la Computació

(None, None, None, None, None)

Datos

 $\neg Brisa(0,0)$, $\neg Hedor(0,0)$, $\neg Pozo(1,0)$, $\neg Wumpus(1,0)$,

Reglas

```
:
\neg \mathsf{Brisa}(0,0) \rightarrow \neg \mathsf{Pozo}(1,0)
\neg \mathsf{Hedor}(0,0) \rightarrow \neg \mathsf{Wumpus}(1,0)
\neg \mathsf{Pozo}(1,0) \land \neg \mathsf{Wumpus}(1,0) \rightarrow \mathsf{Segura}(1,0)
```


(None, None, None, None, None)

Datos

 $\neg Brisa(0,0), \neg Hedor(0,0), \neg Pozo(1,0),$ $\neg Wumpus(1,0)$, Segura(1,0)

Reglas

```
\neg \mathsf{Brisa}(0,0) \to \neg \mathsf{Pozo}(1,0)
\neg \mathsf{Hedor}(0,0) \rightarrow \neg \mathsf{Wumpus}(1,0)
\neg \mathsf{Pozo}(1,0) \land \neg \mathsf{Wumpus}(1,0) \rightarrow
Segura(1,0)
```


(None, Brisa, None, None, None)

Datos

- \neg Brisa(0,0), \neg Hedor(0,0), \neg Pozo(1,0), \neg Wumpus(1,0), Segura(1,0),
- Reglas

: $\neg \mathsf{Brisa}(1,0) \to \neg \mathsf{Pozo}(1,1) \\ \neg \mathsf{Hedor}(1,0) \to \neg \mathsf{Wumpus}(1,1) \\ \neg \mathsf{Pozo}(1,1) \land \neg \mathsf{Wumpus}(1,1) \to \\ \mathsf{Segura}(1,1)$

(None, Brisa, None, None, None)

Datos

- \neg Brisa(0,0), \neg Hedor(0,0), \neg Pozo(1,0), \neg Wumpus(1,0), Segura(1,0), Brisa(1,0),
- Vullipus(1,0), Segura(1,0), Sisa(1,0)
- $\neg \mathsf{Hedor}(1,0)$,

Reglas

: $\neg \mathsf{Brisa}(1,0) \to \neg \mathsf{Pozo}(1,1)$

 $\neg \mathsf{Hedor}(1,0) \to \neg \mathsf{Wumpus}(1,1) \\ \neg \mathsf{Pozo}(1,1) \land \neg \mathsf{Wumpus}(1,1) \to$

Segura(1, 1)

(None, Brisa, None, None, None)

Datos

- $\neg Brisa(0,0), \neg Hedor(0,0), \neg Pozo(1,0),$
- \neg Wumpus(1,0), Segura(1,0), Brisa(1,0), \neg Hedor(1,0), \neg Wumpus_(1,1)
 - 11 cdoi (1, 0), 11 cdii pe

Reglas

```
: \neg \mathsf{Brisa}(1,0) \to \neg \mathsf{Pozo}(1,1) \neg \mathsf{Hedor}(1,0) \to \neg \mathsf{Wumpus}(1,1) \neg \mathsf{Pozo}(1,1) \land \neg \mathsf{Wumpus}(1,1) \to \mathsf{Segura}(1,1)
```


(Hedor, None, None, None, None)

Datos

- $\neg Brisa(0,0)$, $\neg Hedor(0,0)$, $\neg Pozo(1,0)$,
- \neg Wumpus(1,0), Segura(1,0), Brisa(1,0),
- $\neg \mathsf{Hedor}(1,0)$, $\neg \mathsf{Wumpus}(1,1)$,

Reglas

:

- $\neg \mathsf{Brisa}(0,1) \to \neg \mathsf{Pozo}(1,1)$
- $\neg \mathsf{Hedor}(1,0) \rightarrow \neg \mathsf{Wumpus}(1,1)$
- $\neg Pozo(1,1) \land \neg Wumpus(1,1) \rightarrow According to the state of the state of$
- Segura(1, 1) Mater Cienci

Razonando... (versión explícita)

Sensores

(Hedor, None, None, None, None)

Datos

- $\neg Brisa(0,0), \neg Hedor(0,0), \neg Pozo(1,0),$
- \neg Wumpus(1,0), Segura(1,0), Brisa(1,0),
- $\neg \text{Hedor}(1,0), \neg \text{Wumpus}(1,1),$
- $\neg Brisa(0,1)$, Hedor(0,1),

Reglas

- $\neg \mathsf{Brisa}(0,1) \to \neg \mathsf{Pozo}(1,1)$
 - $\neg \mathsf{Hedor}(1,0) \rightarrow \neg \mathsf{Wumpus}(1,1)$
 - $\neg \mathsf{Pozo}(1,1) \land \neg \mathsf{Wumpus}(1,1) \land \neg \mathsf{Wumpus}(1$
 - Segura(1,1)

(Hedor, None, None, None, None)

Datos

- $\neg Brisa(0,0)$, $\neg Hedor(0,0)$, $\neg Pozo(1,0)$,
- $\neg Wumpus(1,0)$, Segura(1,0), Brisa(1,0),
- $\neg \text{Hedor}(1,0)$, $\neg \text{Wumpus}(1,1)$,
- $\neg Brisa(0,1)$, Hedor(0,1), $\neg Pozo(1,1)$,

Reglas

:

- $\neg \mathsf{Brisa}(0,1) \to \neg \mathsf{Pozo}(1,1)$
- $\neg \mathsf{Hedor}(1,0) \rightarrow \neg \mathsf{Wumpus}(1,1)$
- $\neg Pozo(1,1) \land \neg Wumpus(1,1) \land \neg Wumpus(1,1)$
- Segura(1,1)

(Hedor, None, None, None, None)

Datos

```
\neg Brisa(0,0), \neg Hedor(0,0), \neg Pozo(1,0), \neg Wumpus(1,0), Segura(1,0), Brisa(1,0), \neg Hedor(1,0), \neg Wumpus(1,1),
```

 $\neg Brisa(0,1)$, Hedor(0,1), $\neg Pozo(1,1)$, Segura(1,1)

Reglas

: $\neg \mathsf{Brisa}(0,1) \rightarrow \neg \mathsf{Pozo}(1,1)$

 $\neg \mathsf{Hedor}(1,0) \rightarrow \neg \mathsf{Wumpus}(1,1)$

 $\neg Pozo(1,1) \land \neg Wumpus(1,1) \land \neg Wumpus(1,1)$

 $\neg rozo(1,1) \land \neg vvumpus(1,0)$ Segura(1,1)

Contenido

Desempeño baseline

Average sum of rewards:

model

Baseline 324.0

Name: reward, dtype: float64

Episode termination percentage: model

Baseline 100.0

Name: done, dtvpe: float64

Average sum of rewards: model Baseline 324.0 Name: reward, dtype: float64

Episode termination percentage:
 model

Baseline 100.0

Name: done, dtype: float64

Porcentaje de veces que el agente muere: 0 %

Average sum of rewards:

model

Baseline 324.0

Name: reward, dtype: float64

Episode termination percentage:

model

Baseline 100.0

Name: done, dtype: float64

Porcentaje de veces que el agente termina con recompensa

positiva: 36 %

Contenido

El mundo del Wumpus

Agente híbrido

Modelo del mundo en lógica proposicional

Desempeño baseline

El Wumpus

¿Wumpus(1,2)?

¿Segura(0,3)?

¿Wumpus(1,3)?

¿Plan para lanzar flecha?

¿Segura(1,3)?

Ubicando al Wumpus

 λ Wumpus(1,3)?

- Replicar el razonamiento del agente mediante las reglas que representan los aspectos estáticos del mundo del Wumpus.
- Diseñar un agente baseline para resolver el mundo del Wumpus.
- Visualizar algunas reglas de conocimiento para lidiar con el Wumpus.

