

Physical Design Help Weekttps://tutorcs.com

WeChat: cstutorcs

Improving Database Performance RAID

• A typical Abylighment Project Exam Help layered architecture

Query Optimizat

• This is one of setteps://tutorcs.com possible architectures:

• each system as it hat: CStu to Sand Access Methods own variations

Query Optimization and Execution
COM
Relational Operators
Ples and Access Methods
Buffer Management
Disk Space Management

DBMS neglistigetrieventurenturetet Exam process

- persistently stolettpeta/tutorcs.com
 - Data is huge
 - Must persist Across lead cutions to to to the state of the state of
 - But has to be fetched into main memory when DBMS processes the data
- Storage consideration is an important factor in planning a database system (physical layer)

Data is storeignmento Pageject Exam Helphy Optimization medium

and Execution

- Media diffettinstertus of cs.com
 - Random Access Speed
 - Average viractoral dess GSTANGATCS piece of data at a known media position
 - Usually measured in ms or ns
 - Random/Sequential Read/Write speed
 - Capacity
 - Cost per Capacity

- Random Asguential Read Write Exam Helpy Optimization speed
- How fast an SSD can read/write one large continuous file torcs.com
- Is data in sequential blocks or is it scattered in random blocks attutores over the drive?
- Transfer Rate:
 - Average amount of consecutive data which can be transferred per time unit
 - Usually measured in KB/sec, MB/sec, GB/sec,...
 - Sometimes also in Kb/sec, Mb/sec, Gb/sec

• Capacity Assignment Project Exam Helpy Optimization

• Quantifies the amount of data which can be stored

https://tutorcs.com

WeChat: cstutorcs

• The unit of information for readin Posts from Exam Helpy Optimization disk, or writing data to disk, is a page

• Disks: Can retrieve random page at fixed cost

Reading several consecutive pages is much cheaper than reading pages in random order
 WeChat: cstutorcs

Relational Operators
Files and Access Methods
Buffer Management
Disk Space Management

DBMS Architecture – Disk Space Management

- Lowest layer of perfect parents on disk
- Higher levels call hepon this tayentes.com
 - allocate/de-allocate a page
 - read/write a page
- Size of a page = size of a disk block tutorcs
 - = data unit
- Request for a sequence of pages is often satisfied by allocating contiguous blocks on disk
- Space on disk managed by Disk-space Manager
 - Higher levels don't need to know how this is done, or how free space is managed

DBMS Architecture – Buffer Management

- Suppose water in the market of the space for 1000 in memory
- A query needs to sampthe entire files.com
- DBMS has to
 - bring pages into memory cstutores
 - decide which existing pages to replace to make room for a new page
 - called Replacement Policy
- Managed by the Buffer manager
 - Files and access methods ask the buffer manager to access a page mentioning the "record id"
 - Buffer manager loads the page if not already there

Disk performance and reliability

Assignment Project Exam Help

https://tutorcs.com

- First rule of datapase performancers
 - Disk access is the most expensive thing databases do

Disk performance and reliability: Problems

Assignment Project Exam Help

https://tutorcs.com

- Disks are slow
 - => we need a way to improve performance
- Disks are subject to hardware failure
 - =>we need a way to protect our data

Disk performance and reliability

- When using a singlar dish twe renject scheduling techniques to improve reading/writing performance
- A single HD is ditterpins ufficition cs.com
 - Limited capacity
 - Limited speedWeChat: cstutorcs
 - Limited reliability
- If we have multiple disks available
 - We can improve performance spreading data across disks
 - We can improve reliability with redundancy (using spare disks)

Redundant Array of Independent Disks (RAID)

Data Virtualization Technology

Use more than one physical disk and spread and/or duplicate your data across multiple disks to improve performance and/or reliability (Logically is considered one unit).

https://tutorcs.com

Costly since we need to buy and maintain more disks + the hardware weededato: makenther system working

RAID SYSTEM

What is RAID?

- Raid is a way sof in granizing filersystem to be than one physical disk.
- RAID Array treat https://ethandwase.disknas a single logical disk
 - More HDs for in Wased hand city stutores
 - · Parallel access for increased speed
 - Controlled redundancy for increased reliability

What is RAID?

- It is usually Angrogen estated (Girlo trainers Help dedicated buses)
- It can also be softwaps on the top the softwaps.
 - Windows and Unix have RAID capabilities
- Rationale WeChat: cstutorcs
 - Disk unit costs is decreasing
 - Dealing with mission critical systems cost of failure will be larger than not addressing this

RAID Systems Performance Criteria

- Speed: read and write performance Exam Help
- Redundancy: level of reliabilities.com
 - If a disk fails, can I recover my data? What if two disks fail?
- Cost: how much loss that RAIST into lens entation cost?
- Storage Efficiency: how much storage is needed to store data?
 - Since data might be replicated or control data might be added to actual data, not all the disk space is used efficiently for data, but only part of it

• Improve Aperignmaente Byopjarat le Isam Help RAID 0

• Idea: Distribute data among all disks for increased performance...com

• i.e. Two contiguous blocks on separate disks. WeChat: Cstutorcs

• BitLevel Assipingment Project Exam Help RAID 0

• Split all bits of a byte to the disks

- - e.g. for 8 dishttippet/vetantoards.wortenith bit to disk i
- Number of disks pageds to be a power of 2
- Each disk is involved in each access
 - Access rate does not increase
 - Read and write transfer speed linearly increases
 - Simultaneous accesses not possible
- Good for speeding up few, sequential and large accesses

• Block Le Aed signaine and i Probjecte Exam Help RAID 0 blocks among the disks

- Only one disk isting over the tong a specific block
 - · Read and with a read afta single block not increased
 - Other disks still free to read/write other blocks
 - Read and write speed of multiple accesses increase
- Good for large number of parallel accesses

• Granula Atsysoig stringent (Pize jefca Exam Help) RAID 0 block sector) is very important

- Fine-grain but psip tutores.com
 - Small block size, many disks used for big size file. VeChat: cstutorcs
- Coarse-grained strips:
 - Strip bigger.
 - Generally files distributed over less disks. Waste of performance and space for small files.

• Storage Efficiency:

• All the space used for dattpo//effictoryos.com

Redundancy:

• NOT present - No Fault to each at: cstutorcs

Performance:

- Reading: n times faster (ideally) than single disk
- Writing: n times faster (ideally).
- Read and write can overlap
 - E.g.: K can be written while reading A.
- Very good if sequential
- The choice of the size of the block is important

• Cost:

The lowest of all RAID

RAID 1 - Mirroring

RAID 1 - MARSSÖGNINGENT Project Exam Help

• Each data block has a copy on 1 or N https://tutor@sk.com

- Storage Efficiency: Only 1/N storage Chat: CSplice Sed. (In case of a mirrored pair, 50% wasted)
 - Complete Redundancy
 - Fault tolerance is very high.
 - Spare disk usually hot swappable (replaceable without stopping DBMS)

This Photo by Unknown Author is licensed under <u>CC BY-NC</u>

2012/2013 - DT228/4

RAID 1 - Mirroring

Assignment Profisht Estam Help RAID 1 - MIRRORING

High Reliability.

• Writing: slower than average to the same mirror couple (wait the cstudiower one).

- Reading: improved, (read the fastest disk).
 - Response time decreases by 33%
- Multiple read, but no multiple write
- It is not a substitute for a backup strategy

This Photo by Unknown Author is licensed under CC BY-NC

2012/2013 - DT228/4 23

Questions

Assignment Project Exam Help

- 1. Suppose you have of the cose will have 50 GB of data
 - How many disks (at least) are needed for RAID 0?
 - How many disks (at least) to CRAHE 95CS
 - If data are not critical, which system would you chose?
- 2. In RAID 1, if 1 mirrored disk fails, can you still keep on working?
- 3. Why does the size of the block affect performance?

Error Correction Codes

Assignment Project Exam Help

https://tutorcs.com

- Increase reliability with computed redundancy
 WeChat: cstutorcs
 The parity bit is an extra-bit added to a sequence of data used to check for data errors

Error Correction Codes

• Suppose your data are a sequence of 5 bits:

Bit 1	Bit 2	gnmen	t Projec	ct Exan	n Harity
0	1	1	0	1	?? `

 https://tutorcs.com
 The parity bit has a value so that your data + the parity bit has an even number of ones: eChat: cstutorcs

Bit 1	Bit 2	Bit 3	Bit 4	Bit 5	Parity
0	1	1	0	1	1

RAID 2

Assignment Project Exam Help

- Uses bit-level striping and each sequential bit is placed on a different hard drive.
- The error correcting code (ECC) used is the Hamming code parity, which is calculated across bits and stored separately in at least a single drive.

This Photo by Unknown Author is licensed under CC BY-SA

Parity Bit – why it is used?

- Detect errors in your data
- What if there assignment Project Exam Help
 - More parity bits are needed to detect them.
 - E.g. the Hamming (7,4) adds & parity bits every 4 bits of data to detect and correct errors
- Why are they used with RAID? cstutorcs
 - If we store parity bits on a disk, the parity bit can be used to reconstruct a faulty disk in case of failure
- Not really used in industry anymore

RAID 2

Assignment Project Exam Help

- Rarely used
- Storage efficiency: low.
- Fault Tolerance: 2 disks can break.

RAID 3

Assignment Project Exam Help RAID 3

parity on https://tuttorcs.com

- Rarely used in practice
- Byte level striping
- A dedicated parity disk is added
- The other disks are striped (RAID 0)

RAID 3 – The bottleneck problem

- Storage efficiency: Ship Folisk used for Control. So, (N-1)/N. with N=10 storage efficiency is 90% • Fault Tolerance: one disk failure
- Cost: Fair. Hardware controller requiredres
- Performance
 - Writing: quite poor.
 - Parity bits must be computed for every stripe and written. Even if part of the stripe is written (in that case all the stripe must be read before writing)
 - The parity disk limits performance and represents a bottleneck

RAID 5

Assignment Project Exam Help

parity across disks

- The most popular solution.
- Parity blocks are striped as well.
- Removes the bottleneck on the parity disk for RAID 3

RAID 5

RAID Assignment Project Exam Help

parity across disks

https://tutorageofficiency. like RAID 3.

• Fault Tolerance like RAID 3

• Performance.

- Writing is improved because parity disks are different.
 - Again, all the stripe must be read to compute parity.
- Improvement using AFRAID techniques (parity computed every X ms instead of every time)

• Cost: fair

RAID 10 (RAID 0+1)

- Combination of RAID 0 (for performance) and RAID 1 (for reliability)
- RAID 10: first RAID 1 then RAID 0
- RAID 0+1: first RAID 0 then RAID 1
- Mirroring duplicates all your data.
- Fast because the data is striped across multiple disks
- Chunks of data can be read and written to different disks simultaneously.

Assignment Project Exam Help https://tutorcs.com RAID 0 RAID 1 WeChat: cstutorcs RAID 1 RAID 1 RAID 0 A2 A2 **A1 A1** АЗ **A3 A4** A4 A₁ A2 A₁ A2 A5 A5 A6 A6 **A7 A8 A8 A3** A4 A3 A4 A5 A5 **A6 A6** A7 **A8** A7 A8

RAID 10 and RAID 0+1

- **High performance** due to striping
- High reliability due to mirroring
- High Cost
- RAID 10 is the Industry Standard
- RAID is implemented by Storage servers containing arrays of disks connected by optical fibres and connected to a server farm via a dedicated private storage area network (SAN)

Comparison

• RAID 10 slightly better than RAID 0+1

RAID LEVEL	Storage Efficiency	ssignmer Performance https:/	t Projec Write Concurrency tutores.	Concurrency	Telp Redundancy	Costs
0	100%	High	Υ	Υ	None	Low
1	50% (or lower)	_{Low} WeCh	at: cstute	OÇCS	Mirroring	High
3	Medium	Medium	N	Y (N)	Parity	Fair
5	Medium	Medium	N	Y (N)	Parity	Fair
10	50% (low)	High	Υ	Υ	Mirroring	High
01	50% (low)	High	Υ	Υ	Mirroring	High

Conclusions

- RAID systems in property pance and reliability p
- Which one is the best choice?
 - It depends on performance required suggestand criticality of data
 - RAID 10 is the most used standard in industry for big companies with large budget and medium dataset at: cstutorcs
 - RAID 5 is popular (cheaper solution but still good performance)
 - Critical data such as OS are usually mirrored
 - Non critical data can be striped only
 - Non critical data with little access do not require RAID