1 Model 1 Wu and Gonzalez(1996)

Model specification

$$\Omega(p) = \frac{p^{\gamma}}{[p^{\gamma} + (1-p)^{\gamma}]^{\alpha}}$$
 (1)

Result

Table 1: MLE Result

	Subjective Probability	
	b	se
sigma	0.260***	0.003
gamma	0.203***	0.007
alpha	0.735***	0.015
N	4299	
Log likelihood = -316.61665		

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

Remember from last time

$$\Omega(p) = \frac{p^{\gamma}}{[p^{\gamma} + (1-p)^{\gamma}]^{1/\gamma}}$$
 (2)

Table 2: MLE result

	Subjective Probability	
	b	se
sigma	0.308***	0.003
gamma	0.648***	0.009
N	4299	
Log likelihood = -1042.7004		

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

2 Model 2 Lattimore, Baker and Witte(1992)

Model specification

$$\Omega(p) = \frac{\alpha p^{\gamma}}{\alpha p^{\gamma} + (1 - p)^{\gamma}} \tag{3}$$

Result

Table 3: MLl	E Result	
	Subjective Probability	
	b	se
sigma	0.261***	0.003
gamma	0.234^{***}	0.008
alpha	1.342***	0.025
\overline{N}	4299	
Log likelihood = -319.67593		

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

3 Model 3 Compound Invariant Ω Prelec(1998)

Model specification

$$\Omega(p) = \gamma \exp\left[-\beta(-\ln p)^{\alpha}\right] \tag{4}$$

Result

Table 4: ML	E result		
	Subjective	Subjective Probabilty	
	b	se	
sigma	0.256***	0.003	
alpha	0.516^{***}	0.034	
beta	0.429^{***}	0.025	
gamma	0.819^{***}	0.016	
\overline{N}	3917		
Log likelihood = -214.55249			

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

4 Model 4 Conditional Invariant Ω Prelec(1998)

Model specification

$$\Omega(p) = \gamma \exp\left[-\beta(1 - p^{\eta})/\eta\right] \tag{5}$$

Result

Table	۲.	1/II	E	rogult
Table	:1.	11/11	, P,	resilii

	Subjective Probability	
	b	se
sigma	0.257***	0.003
eta	0.349^{***}	0.049
beta	0.389***	0.030
gamma	0.751***	0.009
N	3917	
Log likelihood = -232.1272		

^{*} p < 0.05, ** p < 0.01, *** p < 0.001

5 Model 5 Projection Invariant Ω Prelec(1998)

Model specification

$$\Omega(p) = \gamma((1 - \alpha \ln p)^{-\beta/\alpha}$$
(6)

Result

No result...