

Personalized Truncation for Personalized Privacy

Dajun Sun, Wei Dong, Yuan Qiu, Ke Yi

Hong Kong University of Science and Technology

Personalized Differential Privacy(PDP) Basics

- Personalized Differential Privacy (PDP)_[Jorgensen et al. 2015]
 - For any pair of database instances \mathbf{I} , \mathbf{I}' , they are neighbors on u ($\mathbf{I} \sim_u \mathbf{I}'$) if they differ by user u's information
 - Each user u specifies his own privacy parameter $\Phi(u)$
 - PDP Definition: A mechanism M is Φ -PDP if for any $\mathbf{I} \sim_u \mathbf{I}'$ and any subset of outputs Y :

 $\Pr[M(\mathbf{I}) \in Y] \leq e^{\Phi(u)} \cdot \Pr[M(\mathbf{I}') \in Y]$

Problem Definition

- We study the sum estimation problem under PDP
- Assume n users, each user u holds:
- An integer value I(u) ∈ {0,1, ..., B}
- His privacy parameter $\Phi(u)$
- Want to produce a privatized estimation for Sum(I)= \sum_{u} I(u)
- Naïve approach: Add a Laplace noise with scale $\frac{B}{\varepsilon_{\min}}$
 - B is the global sensitivity
 - $-\varepsilon_{\min} = \min_{u} \Phi(u)$ is the strongest privacy requirement

Challenges

Previous solution Consider these two challenges together Previous solution Truncation based mechanisms Personalized privacy parameters Previous solution Previous solution PDP Sampling (No error guarantee)

Our Proposal: Personalized Truncation

Warm-up: PDP Bit Counting

- I(u) = 0 or 1 (B=1)
 - The only challenge comes from the PDP model
- Observation: For a user with small $\Phi(u)$, it may be a better choice to **delete** it from **I**
 - Including it induces at least O(1/ $\Phi(u)$) error due to privacy
 - Deleting it only introduces a bias of at most 1, but required noise can be much smaller

- Naive method: Laplace mechanism with privacy parameter $\varepsilon_{\min} = \min_u \Phi(u)$
 - O(n) noise
- Delete the first user: O(1) noise and bias

Question: How to determine which user should be deleted?

- Assume $\Phi(u_i)$ is sorted in non-decreasing order, if we delete the first k users:

 Bias O(k), noise $O(1/\Phi(u_{k+1}))$
- Intuitively, we want to check each k=1,2,...,n and select the best result
 - Searching for k requires n times composition
 - Want to skip some indexes
- Instead of searching an index k, we want to search a threshold ε that
 - Deleting all users with $\Phi(u) \leq \varepsilon$ leads to good result
 - Use doubling search, say, only consider $\varepsilon=\Phi(u_1)$, $2\Phi(u_1)$, ..., $2^{\log\frac{\Phi(u_n)}{\Phi(u_1)}}\Phi(u_1)$
 - Searching for ε requires $\log \frac{\Phi(u_n)}{\Phi(u_1)}$ times composition
 - Achieves $\widetilde{O}(1)^*$ optimal error

General PDP Sum Problem

Adopt the idea of PDP count? Say,...

- Find a threshold ε and discard all users with $\Phi(u) \leq \varepsilon$
- \blacksquare Apply ε -(standard) DP sum algorithm on the remaining data

This is no longer optimal

Privacy budgets that are greater than ε are wasted

- \blacksquare To make use of each user's privacy, we assign each user a personalized threshold \blacksquare Defined by a truncation vector $\pmb{\tau}$
 - $\tau(u)$ denotes the threshold for user u
 - $\mathbf{I}_{\tau}(u) = \min(\mathbf{I}(u), \ \tau(u))$
- We show adding a noise with scale $s = \max_{u} \tau(u)/\Phi(u)$ preserves Φ -PDP
- We design a mechanism to search a suitable noise scale s
- Achieves an error with only logarithm overhead compared with the error from the optimal truncation vector
 - $-\widetilde{O}(1)$ * optimal error

Personalized Sum under User DP

- It is not always the case that input data can be expressed as I(u)
- In relational database, the results after executing SQL queries are more complicated
 Each user may own multiple values
 - Each value may be contributed by multiple users
- The user-level PDP model:
 - Each value is denoted as $\mathbf{I}(u) \in \{0,1,...,B\}$
 - $oldsymbol{\cdot}$ $oldsymbol{u}$ is a subset of users
 - Each user has a privacy parameter $\Phi(u)$

	Customer			Supplier						
	СК	NK		SK	NK					
	c1	US		s1	US					
	c2	Japar	<u>1</u>	s2	UK				I	
							Join	СК	SK	$\mathbf{I}(\{c,s\})$
	Line	item			Ord	ders	\rightarrow	c1	s1	p1(1-d1)
SK	ок	Price	Discour		ОК	СК	1	c1	s2	p2(1-d2)
		11100	Bioodii	<u>"</u>	———		_	c2	s2	p3(1-d3)
s1	01	p1	d1		01	c1				
s2	02	p2	d2		02	c1]			
s2	о3	рЗ	d3		о3	c2				
				_		1	_			

Challenge: How to do truncation on I(u)

- lacksquare Cannot directly do truncation on lacksquare
 - Consider u_1 , ..., u_n and $\mathbf{I}(u_1, u_i) = 1$, $\boldsymbol{\tau} = \mathbf{1}$
 - The direct truncation method $\mathbf{I}_{\pmb{ au}}(\pmb{u})=\min(\mathbf{I}(\pmb{u}),u\in \pmb{u},\;\pmb{ au}(u))$ will not change any record
 - Sum($\mathbf{I}_{ au}$) has sensitivity n-1
- \blacksquare We design a linear program to obtain the truncated dataset \mathbf{I}_{τ}

$$\max \quad \sum_{\boldsymbol{u}} \mathbf{I}_{\boldsymbol{\tau}}(\boldsymbol{u})$$

s.t.
$$\sum_{\boldsymbol{u} \ni \boldsymbol{u}} \mathbf{I}_{\boldsymbol{\tau}}(\boldsymbol{u}) \leq \boldsymbol{\tau}(\boldsymbol{u}), \quad \boldsymbol{u} \in \mathcal{U},$$

$$0 \leq \mathbf{I}_{\boldsymbol{\tau}}(\boldsymbol{u}) \leq \mathbf{I}(\boldsymbol{u}), \quad \boldsymbol{u} \subseteq 2^{\mathcal{U}}.$$

■ Achieves an error of $\widetilde{O}(1) * \min_{\tau} \operatorname{Error}(\mathbf{I}_{\tau})$

Experiments

Problem Type Data		Query Result	Technique	Relative Error(%)	Time(s)	
			Naive	12.0	0.000002	
	Synthetic	100,000	Sampling	16.0	0.03	
Count			PDP EM	0.4	0.5	
			PDP Count	1.2	0.04	
			PDP Count (with sampling)	0.5	0.2	
			Naive	100	0.08	
	Synthetic	99,933,209	Sampling	16.0	1.0	
C.,,,,,			PDP Sum	1.1	2.0	
Sum	Bank	61,589,682	Naive	100	0.08	
			Sampling	19.5	0.19	
		10 20	PDP Sum	8.6	0.96	

Table 1: Summary of results for count and sum under default setting where $|\mathcal{U}| = 10^6$, the performance of our best PDP mechanism is boldfaced.

Problem Type	Data	Query Result	Query Time	Technique	Relative Error(%)	Time(s)
		846,915	1.22	Naive	100	293.4
q_{1-}				Sampling	30.3	220.9
- 7-20	Deezer			PDP Query	4.1	131.7
	Deezer	794,210	4.66	Naive	100	6,201
$\boldsymbol{q}_{\triangle}$				Sampling	48.2	6,585
(C)		53		PDP Query	16.2	174.5
				Naive	100	30.2
Q_5		240,000	2.55	Sampling	30.3	30.5
	TDC II			PDP Query	5.5	27.3
	TPC-H	218,000,000	3.28	Naive	100	1,108
Q_7				Sampling	30.4	1,043
	1 1			PDP Query	5.7	1,325

Table 2: Summary of results for PDP query answering under default setting, the performance of our PDP mechanism is boldfaced.