

Pattern Recognition Chapter 3: Image Acquisition and Preprocessing

Prof. Dr.-Ing. Uwe Sörgel soergel@ifp.uni-stuttgart.de

Contents

- Image Acquisition
- Preprocessing
 - Image enhancement
 - Image restauration
- Calculation of derivations

Level model of model-based image analysis

Many entities can be visualized as image

- In principle, any mathematical function of type g = f(x,y) can be coded as image.
 - Height with respect to some reference
 - Chemical concentration
 - Temperature
 - Pressure
- Some examples related to our field:

Aerial image

Infrared image (IR) Radar image (SAR)

Laserscan height

Level model of model-based image analysis

Recognition/Evaluation

Features → Objects

Segmentation

Image → Features

Preprocessing

Image → Image

Image acquisition

Scene → Image

high-level

mid-level

low-level

Contents

- Image Acquisition
- Preprocessing
 - Image enhancement
 - Image restauration
- Calculation of derivations

Example for histogram normalisation

original

On both ends 0.5% of values forced into saturation

Problem statement of image restauration

- The "true" image g(x,y) is corrupted by some distortion n(x,y).
- For example, additive zero mean Gaussian noise $\eta(x,y)$:

$$g_R(x, y) = g(x, y) + \eta(x, y)$$

• There are also other kinds of distortions like "Salt-and-Pepper" noise (randomly distributed white and black noise pixels)

Original

Gaussian noise

"Salt-and-Pepper"

Local filter operation

- Point operations only consider the current pixel value
- Global transformations use the whole image
- Local filter operations are a mixture of both:
 - Neighbourhood around current pixel is considered.
 - Neighbourhood is defined via a window (filter mask).
 - Filter mask is continuously moved across the image.
 - In each position value of one pixel (usually the central pixel) is determined.

Different types of local filters

- Linear Filters
 - Linear digital filters h(x,y) carry out **CONVOLUTION** on the image g(x,y).
 - The coefficients of filter matrix represent weights, which are multiplied with corresponding pixel values, before adding all products.
 - For homogeneous filters the coefficients are constant, independent of image location (shift invariant)

$$h(x,y) = \begin{bmatrix} -1 & -2 & -1 \\ -2 & 12 & -2 \\ -1 & -2 & -1 \end{bmatrix}$$

- Non-linear filters, for example.:
 - · Rank filter
 - Median filter
 - · Morphological filter
 - Diffusion filter

■ifp

Application of linear local filters

- Examples for typical application of some linear local filter
 - Smoothing
 - Enhancement of
 - · Salient points
 - Edges
- Can not be achieved by point operations → Context required

Smoothed

Gradient image

Box filter (rectangular filter)

• The most simple smoothing filter is the box or rectangular filter of size 3 x 3.

$$h(x,y) = \frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix} \Rightarrow g'(x,y) = g * h = \frac{1}{9} \sum_{i=-1}^{i=1} \sum_{j=-1}^{j=1} g(x+i, y+j)$$

Example

$$g'(93,15) = \frac{1}{9} (113 + 116 + 104 + 99 + 101 + 125 + 0 + 107 + 105) = \underline{96.7 \approx 97}$$

■ifp

Disadvantages of the box filter

• Box filters are no ideal low-pass filters:

Transfer function

- The box filter is rotation variant
 - Orientation dependency (diagonal longer than edges)
 - · Non-uniform suppression of high frequencies
 - · Undesired sidelobes may cause artifacts

Comparison of box and Gauss operator

frequency domain

box operator

disadvantage: not rotation invariant, does not suppress all high frequencies advantage: recursive implementation possible

advantage: rotation invariant, suppresses all high frequencies disadvantage: only approx. recursive implementation -> binomial filter

■ifp

Disadvantage of linear smoothing filters

Blur at edges and lines

Salt-and-Pepper-Noise not removed

- The grey values inside mask are sorted in ascending manner.
- The choice of the rank (i.e., index) depends on the desired purpose

Minimum filter: Lowest rankMaximum filter: Highest rank

• Median filter: Middle rank

Example of application of median filter

- Removes Salt-and-Pepper noise
- Mostly quite convincing results

Original image

Original image + Salt-and-Pepper noise

After Median filtering (3x3)

Contents

- Image Acquisition
- Preprocessing
 - Image enhancement
 - Image restauration
- Calculation of derivations

ifp

The derivations of an image and their meanings

1. Derivation

$$g_x(x,y) = \frac{\partial g(x,y)}{\partial x}, g_y(x,y) = \frac{\partial g(x,y)}{\partial y}$$

- Digital images: Change of grey values → edges, points
- Digital surface models: normal vectors, height jumps
- 2. Derivation

$$g_{xx}(x,y) = \frac{\partial^2 g(x,y)}{\partial x^2}, g_{yy}(x,y) = \frac{\partial^2 g(x,y)}{\partial y^2}, g_{xy}(x,y) = \frac{\partial^2 g(x,y)}{\partial x \partial y}$$

- Digital images: At edges the 2. derivation vanishes
- Digital surface models: Curvature, torsion

High pass filters: Edge detection

edge = strong straight change of grey values g(x)

gradient operator:

- 1. derivative g'(x)
- → Search for maxima

Laplace-Operator:

- 2. derivative g''(x)
- → Search for zero crossings

■ifp

Gradient based edge detection

Discrete approximation of gradient by differencing

- Take left and right value to end up at grid position.
- Σ (filter coeff.) = 0 (i.e., high-pass filter)

$$f'(x) = \frac{\partial f(x)}{\partial x} \approx \frac{f(x+1) - f(x-1)}{2} =$$

$$= 0.5 \cdot \left(f(x+1) - f(x-1) \right)$$

Prewitt-Operator

Simple realization:

$$f'(x) \approx 0.5 \cdot (f(x+1) - f(x-1)) \longrightarrow h_x = 0.5 \cdot [-1 \ 0 \ 1]$$

$$f'(y) \approx 0.5 \cdot (f(y+1) - f(y-1)) \longrightarrow h_{y} = 0.5 \cdot \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix}$$

However, differencing enhances noise:

→ noise suppression by low pass filtering (smoothing) in across direction!

Laplace operator

- Alternative to gradient filtering (1. derivative)
- Search for zero crossings of 2nd derivative.

Universität Stuttgart

■ifp

Laplace operator

Laplace Operator Δ computes sum of 2nd partial derivatives of a continuous function g(x,y) for the variables x und y:

$$\Delta g(x, y) = \frac{\partial^2 g(x, y)}{\partial x^2} + \frac{\partial^2 g(x, y)}{\partial y^2}$$

Discrete realization of 2nd derivative: difference of difference of neighboring pixels per row and column

$$\frac{\partial^2 g(x,y)}{\partial x^2} \approx \frac{g(x+1,y) - g(x,y)}{(x+1) - x} - \frac{g(x,y) - g(x-1,y)}{x - (x-1)}$$

$$\approx g(x+1,y) - 2 \cdot g(x,y) + g(x-1,y)$$

$$\frac{\partial^2 g(x,y)}{\partial y^2} \approx g(x,y+1) - 2 \cdot g(x,y) + g(x,y-1)$$

Laplace-Operator for 2D

• It is better to add the two filter masks for each direction in order to yield the result in only a single run:

$$h_{\Delta} = h_{\Delta x} + h_{\Delta y} = \begin{bmatrix} 0 & 0 & 0 \\ 1 & -2 & 1 \\ 0 & 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 1 & 0 \\ 0 & -2 & 0 \\ 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$

Original

Result

Unfortunately, besides desired object contours also noise is enhanced.

Laplace operator: Image sharping

• "Sharper" image by adding high-pass signal:

$$h_{Sharping} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} - \frac{1}{4} \begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} 0 & -1 & 0 \\ -1 & 8 & -1 \\ 0 & -1 & 0 \end{bmatrix}$$

"Image" - k · Laplacian = Sharpening

Result

Laplace operator in presence of noise

• The Laplace operator is very noise sensitive because difference operation enhances noise – now we have two of them in a row...

ifp

LoG operator (Laplace of Gaussian)

- In order to mitigate noise, it is beneficial to smooth the image (G*image) before subsequent convolution with Laplace Operator (Δ(G*image)).
- Alternatively, same as for gradient approach we rather should calculate the 2^{nd} derivation of Gaussian first and use this result for convolution ((ΔG)*image):

$$G(x,y) = \frac{1}{2\pi\sigma^{2}} e^{\frac{x^{2}+y^{2}}{2\sigma^{2}}} \qquad \frac{\partial G(x,y)}{\partial x} = \frac{1}{2\pi\sigma^{2}} e^{\frac{x^{2}+y^{2}}{2\sigma^{2}}} \cdot \frac{-x}{\sigma^{2}}$$

$$\frac{\partial^{2}G(x,y)}{(\partial x)^{2}} = \frac{-1}{2\pi\sigma^{4}} e^{\frac{x^{2}+y^{2}}{2\sigma^{2}}} + \frac{1}{2\pi\sigma^{4}} e^{\frac{x^{2}+y^{2}}{2\sigma^{2}}} \cdot \frac{x^{2}}{\sigma^{2}}$$

$$LoG: \Delta G = \frac{\partial^{2}G(x,y)}{(\partial x)^{2}} + \frac{\partial^{2}G(x,y)}{(\partial y)^{2}} \qquad = \frac{1}{2\pi\sigma^{4}} e^{\frac{x^{2}+y^{2}}{2\sigma^{2}}} \left[\left(\frac{x}{\sigma} \right)^{2} - 1 \right]$$

$$\frac{\partial^{2}G(x,y)}{(\partial y)^{2}} = \frac{1}{2\pi\sigma^{4}} e^{\frac{x^{2}+y^{2}}{2\sigma^{2}}} \left[\left(\frac{y}{\sigma} \right)^{2} - 1 \right]$$

LoG-Operator (Laplace of Gaussian)

$$LoG(x, y) = \frac{1}{2\pi\sigma^4} e^{-\frac{x^2+y^2}{2\sigma^2}} \left[\frac{x^2+y^2}{\sigma^2} - 2 \right]$$

x

■ifp

LoG-Operator (Laplace of Gaussian)

- Because of similarity with Sombrero this operator is sometime called Mexican-Hat-Operator.
- The result depends on the choice standard deviation σ .
- An edge is inferred from zero crossings of the 2nd derivation.
- <u>In contrast to gradient methods, which always rely to some threshold,</u> we yield always closed curves

σ=5

DoG operator (Difference of Gaussians)

- The very good LoG operator can be quite good approximated by the difference of two low-pass filterings with Gaussians of different σ .
- However, the ration of standard deviations is recommended to be σ_1/σ_2 =1.6.
- Similar processing I taking place in visual system of humans.

