HW2 Solution

1. Let $(V, \ \cdot\)$ be a normed vector space.
(a) Prove that, for all $x, y \in V$, $ x - y < x - y .$
(b) Let $\{x_k\}_{k\in\mathbb{N}}$ be a convergent sequence in V with limit $x\in V$. Prove that
$\lim_{k o\infty}\ oldsymbol{x}_k\ =\ oldsymbol{x}\ .$
(Hint: Use part (a).)
(c) Let $\{x^{(k)}\}_{k\in\mathbb{N}}$ be a sequence in V and $x,y\in V$. Prove that, if $x^{(k)}\to x$, and $x^{(k)}\to y$.
$x \xrightarrow{\varphi} \to x$, and $x \xrightarrow{\varphi} \to y$, then $x = y$. (In other words, the limit of the same sequence in a normed vector space is unique.)
Solution:(a) Since (V, 11:11) is a normed vector space,
11 u+v 11 < 11u11 + 11v11 for any u, v & V.
Let $U = x - y$, $V = y$. Then
V + V-x > V+ V-x
That is 11×11 - 11411 ≤ 11×1-411. CD
Similarly, let $u = y - x$, $v = x$. We have
117-x+x11 = 117-x11 + 11x11
That is 11411 - 11811 < 11x-411 @
Combining O, O, we have
J
(b) Since $\lim_{k \to \infty} x_k = x$, for any $\varepsilon > 0$, there exists k
such that for all k > k
11 α _k - α ≤ ε.
Since $ x_k - x \le x_k - x \le \varepsilon$, we have
im (1x) = (x)
(c). Since $\lim_{k \to \infty} x^{(k)} = x$, $\lim_{k \to \infty} x^{(k)} = y$, for any $\epsilon > 0$,
there exist k such that for any $k > k$, we have

$$||\chi^{(k)} - \chi|| \le \varepsilon$$
 and $||\chi^{(k)} - \chi|| \le \varepsilon$.
Note that $||\chi - \chi|| = ||\chi - \chi^{(k)} + \chi^{(k)} - \chi||$
 $\le ||\chi - \chi^{(k)}|| + ||\chi^{(k)} - \chi||$
 $\le 2\varepsilon$.

Since ε can be arbitrary small, we have 1|x-y|=0.

That is, x=y.

- 2. Let V be a vector space, and $\langle \cdot, \cdot \rangle$ be an inner product on V. Use the definition of inner product to prove the following.
 - (a) Prove that $\langle \mathbf{0}, \boldsymbol{x} \rangle = \langle \boldsymbol{x}, \mathbf{0} \rangle = 0$ for any $\boldsymbol{x} \in V$. Here $\mathbf{0}$ is the zero vector in V.
 - (b) Prove that the second condition

$$\langle \alpha \boldsymbol{x}_1 + \beta \boldsymbol{x}_2, \boldsymbol{y} \rangle = \alpha \langle \boldsymbol{x}_1, \boldsymbol{y} \rangle + \beta \langle \boldsymbol{x}_2, \boldsymbol{y} \rangle, \qquad \forall \ \boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{y} \in V \ , \alpha, \beta \in \mathbb{R}$$

is equivalent to

$$\langle \boldsymbol{x}_1 + \boldsymbol{x}_2, \boldsymbol{y} \rangle = \langle \boldsymbol{x}_1, \boldsymbol{y} \rangle + \langle \boldsymbol{x}_2, \boldsymbol{y} \rangle$$
 and $\langle \alpha \boldsymbol{x}, \boldsymbol{y} \rangle = \alpha \langle \boldsymbol{x}, \boldsymbol{y} \rangle$, $\forall \boldsymbol{x}_1, \boldsymbol{x}_2, \boldsymbol{x}, \boldsymbol{y} \in V, \ \alpha \in \mathbb{R}$.

Solution: (a) From the definition, we have <0, x>=<x,0>.

Furthermore, $\langle 0, x \rangle = \langle 0+0, x \rangle$

which implies $\langle 0, \chi \rangle = 0$.

Hence, $\langle 0, x_7 = \langle x, 0 \rangle = 0$.

(b) If $\langle dx_1 + \beta x_2, y \rangle = d \langle x_1, y \rangle + \beta \langle x_2, y \rangle, \forall x_1, x_2, y \in V$

a, B∈R holds, we have

 $\langle x, +x_2, y \rangle = \langle x, y \rangle + \langle x_2, y \rangle$ by choosing $\alpha = \beta = 1$.

Furthermore, choose $x_1 = x$, $x_2 = 0$, $\beta = 0$, we have

 $\langle dx, y\rangle = d \langle x, y\rangle.$

On the other hand, if, for any $d \in \mathbb{R}$, $x_1, x_2, y \in V$, $(x_1+x_2, y) = (x_1+x_2, y) + (x_2, y) + (x_2,$

We have
$$\langle \alpha x_1 + \beta x_2, y \rangle = \langle \alpha x_1, y \rangle + \langle \beta x_2, y \rangle$$

= $\langle \alpha x_1, y \rangle + \langle \beta x_2, y \rangle$

3. $\mathbb{R}^{m \times n}$ is a vector space over \mathbb{R} . Show that $\langle A, B \rangle = \operatorname{trace}(A^T B)$ for $A, B \in \mathbb{R}^{m \times n}$ is an inner product on $\mathbb{R}^{m \times n}$. Here $\operatorname{trace}(\cdot)$ is the trace of a matrix, i.e., the sum of all diagonal entries.

Solution: ① trace
$$(A^TB) = \sum_{i=1}^{n} \sum_{j=1}^{m} A_{ji} B_{ji}$$
, $\forall A, B \in \mathbb{R}^{m \times n}$
 $\angle A, A > = trace (A^TA) = \sum_{i=1}^{n} \sum_{j=1}^{m} (A_{ji})^2 > 0$
Furthermore if $\langle A, A \rangle = 0$, then $\sum_{i=1}^{n} \sum_{j=1}^{n} (A_{ji})^2 = 0$
 $A_{ji} = 0$ for all $i = 1, 2, \dots, n$, $j = 1, 2, \dots, m$
thus $A = 0$

② For any
$$d$$
, $B \in \mathbb{R}$, A , B , $C \in \mathbb{R}^{m \times n}$
 $(dA + \beta B)$, $C > = trace(dA + \beta B)^TC$
 $= trace(dA^T(+\beta B^TC))$
 $= \sum_{i=1}^{n} \sum_{j=1}^{m} (dA_{ji}C_{ji} + \beta B_{ji}C_{ji})$
 $= dA_{ij} \sum_{j=1}^{m} A_{ji}C_{ji} + \beta \sum_{i=1}^{n} \sum_{j=1}^{m} B_{ji}C_{ji}$
 $= dA_{ij} C_{ij} + dA_{ij} C_{ij} + dA_{ij} C_{ij}$

3
$$\langle A, B \rangle = trace(A^TB)$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} A_{ji} B_{ji}$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{m} B_{ji} A_{ji}$$

$$= trace(B^TA)$$

$$= \langle B, A \rangle$$

Thus $\langle A,B \rangle = \text{trace } (A^TB) \text{ for } A,B \in \mathbb{R}^{m \times n}$ is an inner product on $\mathbb{R}^{m \times n}$.

^{4.} Consider the polynomial kernel $K(\boldsymbol{x}, \boldsymbol{y}) = (\boldsymbol{x}^T \boldsymbol{y} + 1)^2$ for $\boldsymbol{x}, \boldsymbol{y} \in \mathbb{R}^2$. Find an explicit feature map $\phi : \mathbb{R}^2 \to \mathbb{R}^6$ satisfying $\langle \phi(\boldsymbol{x}), \phi(\boldsymbol{y}) \rangle = K(\boldsymbol{x}, \boldsymbol{y})$, where the inner product the standard inner product in \mathbb{R}^6 .

Solution: Since $x, y \in \mathbb{R}^2$, we denote $x = (x_1, x_2), y = (y_1, y_2)$.
Then $k(x, y) = (x^T y + 1)^2 = (x, y, +x, y, +1)^2$
$= \chi_{1}^{2} y_{1}^{2} + 2 \chi_{1} \chi_{2} y_{1} y_{2} + 2 \chi_{1} y_{1} + 2 \chi_{2} y_{1} + \chi_{2}^{2} y_{2}^{2} + 1$
Let $\phi(x) = (\chi^2, \chi^2, 1, \sqrt{2}\chi_1, \sqrt{2}\chi_2, \sqrt{2}\chi_1\chi_2)$
Then $\langle \phi(x), \phi(y) \rangle = \chi^2 \cdot y^2 + \chi^2 y^2 + 1 \cdot 1 + \sqrt{2} \chi \cdot \sqrt{2} y + \sqrt{2} \chi \cdot \sqrt{2} y$
+ 12 x, x2 · 12 y, y2
$= \chi_{1}^{2} y_{1}^{2} + \chi_{2}^{2} y_{2}^{2} + +2\chi_{1} y_{1} + 2\chi_{2} y_{2} + 2\chi_{1} \chi_{2} y_{3}$
= k(x, y)
,