Contents

1	Propositional Logic	3
	1.1 Operators	3

Chapter 1

Propositional Logic

A logical **proposition** is a statement that is either true or false.

1.1 Operators

Definition (Negation): Let p be a proposition, then its negation $\neg p$, read as "not p", has the opposite truth value of p.

$$\begin{array}{c|c} p & \neg p \\ \hline T & F \\ F & T \end{array}$$

Definition (Conjunction): Let p and q be two propositions, then their conjunction $p \wedge q$, read as "p and q", is true only when both p and q are true, it is false otherwise.

$$\begin{array}{c|ccc} p & q & p \wedge q \\ \hline F & F & F \\ F & T & F \\ T & F & F \\ T & T & T \end{array}$$

Conjunction and not operators are **universal**, also called **functionally complete**, in the sense that every boolean function $f: B^n \to B$ can be generated with these two operators. Note that, every boolean function $f: B^n \to B$ for $n \geq 2$ can be generated with binary boolean functions thus, it only suffice to show that every binary and unary boolean function can be generated with $\{\land, \neg\}$.

Definition (Disjunction): Let p and q be two propositions, then their disjunction $p \lor q$, read as "p or q", is false only when both p and q are false, and true otherwise.

$$\begin{array}{c|cc} p & q & p \lor q \\ \hline F & F & F \\ F & T & T \\ T & F & T \\ T & T & T \\ \end{array}$$

Similary, $\{\lor, \neg\}$ is functionally complete.

Definition (Exclusive or): Let p and q be two propositions, then their exclusive or $p \oplus q$, read as "p xor q", is true only when exactly one the p or q is true, it is false otherwise.

$$\begin{array}{c|ccc} p & q & p \oplus q \\ \hline F & F & F \\ F & T & T \\ T & F & T \\ T & T & F \end{array}$$

Curiously, $\{\oplus,\neg\}$ is not universal.