Applications of Regular Closure

Linz 6th. § 8.2 Closure Properties and Decision Algorithms for Context-Free Languages. [pages 1-18 here] class13b Linz 6th, §8.1 Pumping Lemma class13c Applications

Recall Thm 8.5: the intersection of a context-free language and a regular language is a context-free language


```
Linz 6^{th}, section 8.2, example 8.7, page 227 L={a^n b^n | 0≤n, n≠100} is context free
```

An Application of Regular Closure

Prove that:
$$L = \{a^n b^n : n \neq 100\}$$

is context-free

We know: $\{a^nb^n\}$

is context-free

We also know:

$$L_1 = \{a^{100}b^{100}\}$$
 is regular

$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$
 is regular

$$\{a^nb^n\}$$

$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$

context-free

regular

(regular closure) $\{a^nb^n\}\cap \overline{L_1}$ is context-free

$$\{a^nb^n\}\cap\overline{L_1}$$

 $= \{a^n b^n : n \neq 100\} = L$ is context-free

```
Linz 6<sup>th</sup>, section 8.2, example 8.8, page 227 

L=\{w \mid \#_a(w) = \#_b(w) = \#_c(w)\}

is not context free
```

Another Application of Regular Closure

Prove that:
$$L = \{w: n_a = n_b = n_c\}$$

is not context-free

If
$$L = \{w: n_a = n_b = n_c\}$$
 is context-free

(regular closure)

Then
$$L \cap \{a*b*c*\} = \{a^nb^nc^n\}$$
 context-free regular context-free **Impossible!!!**

Therefore, L is not context free

Decidable Properties of Context-Free Languages

Linz 6th, Section 8.2, pages 227ff

Membership Question:

for context-free grammar G find if string $w \in L(G)$

Membership Algorithms: Parsers

- · Exhaustive search parser
- · CYK parsing algorithm

Empty Language Question:

for context-free grammar
$$G$$
 find if $L(G) = \emptyset$

Algorithm:

1. Remove useless variables

2. Check if start variable S is useless

Infinite Language Question:

for context-free grammar $\,G\,$ find if $\,L(G)\,$ is infinite

Algorithm:

- 1. Remove useless variables
- 2. Remove unit and λ productions
- 3. Create dependency graph for variables
- 4. If there is a loop in the dependency graph then the language is infinite

Example: $S \rightarrow AB$

 $A \rightarrow aCb \mid a$

 $B \rightarrow bB \mid bb$

 $C \rightarrow cBS$

Dependency graph

Infinite language

$$S \rightarrow AB$$
 $A \rightarrow aCb \mid a$
 $B \rightarrow bB \mid bb$
 $C \rightarrow cBS$

$$S \rightarrow AB$$
 $A \rightarrow aCb \mid a$
 $B \rightarrow bB \mid bb$
 $C \rightarrow cBS$

$$S \Rightarrow AB \Rightarrow aCbB \Rightarrow acBSbB \Rightarrow acbbSbbb$$

$$S \stackrel{*}{\Rightarrow} acbbSbbb \stackrel{*}{\Rightarrow} (acbb)^2 S(bbb)^2$$

$$\stackrel{*}{\Rightarrow} (acbb)^i S(bbb)^i$$

There is no algorithm to determine whether two context-free grammars generate the same language.

For the moment we do not have the technical machinery for defining the meaning of "there is no algorithm".

The Pumping Lemma for Context-Free Languages

Linz 6th Section 8.1

Take an infinite context-free language

Generates an infinite number of different strings

Example:

$$S \rightarrow AB$$

$$A \rightarrow aBb$$

$$B \rightarrow Sb$$

$$B \rightarrow b$$

$$S \rightarrow AB$$

$$A \rightarrow aBb$$

$$B \rightarrow Sb$$

$$B \rightarrow b$$

A derivation:

Variables are repeated

$$S \Rightarrow AB \Rightarrow aBbB \Rightarrow abbB \Rightarrow$$

$$\Rightarrow abbSb \Rightarrow abbABb \Rightarrow abbaBbBb \Rightarrow$$

$$\Rightarrow abbabbBb \Rightarrow abbabbbb$$

$$B \Rightarrow ... \Rightarrow a B bbb$$

$$B \Rightarrow ... \Rightarrow aBbbb... \Rightarrow aBbbbbbb$$

$$S \Rightarrow ... \Rightarrow abbaBbbb$$

$$S \Rightarrow ... \Rightarrow abbaabbbbbbb$$

Therefore, the string

abbaabbbbbbb

is also generated by the grammar

We know:
$$B \Rightarrow b$$

$$B \Rightarrow ... \Rightarrow aBbbb$$

$$S \Rightarrow ... \Rightarrow abbaBbbb$$

We also know this string is generated:

$$S \Rightarrow ... \Rightarrow abbaBbbb \Rightarrow$$

$$\Rightarrow abbaabbbb$$

We know:
$$B \Rightarrow b$$

$$B \Rightarrow ... \Rightarrow aBbbb$$

$$S \Rightarrow ... \Rightarrow abbaBbbb$$

Therefore, this string is also generated:

$$S \Rightarrow ... \Rightarrow abbaBbbb \Rightarrow$$

$$\Rightarrow abbaaBbbbbbbb \Rightarrow$$

$$\Rightarrow$$
 abbaabbbbbbb

We know:

$$B \Rightarrow b$$

$$B \Rightarrow ... \Rightarrow aBbbb$$

$$S \Rightarrow ... \Rightarrow abbaBbbb$$

Therefore, this string is also generated:

$$S \Rightarrow ... \Rightarrow abbaBbbb \Rightarrow$$

- $\Rightarrow abba(a)B(bbb)bbb$
- $\Rightarrow abba(a)^2 B(bbb)^2 bbb$
- $\Rightarrow abba(a)^2b(bbb)^2bbb$

We know:

$$B \Rightarrow b$$

$$B \Rightarrow ... \Rightarrow aBbbb$$

$$S \Rightarrow ... \Rightarrow abbaBbbb$$

Therefore, this string is also generated:

$$S \Rightarrow ... \Rightarrow abbaBbbb \Rightarrow$$

- $\Rightarrow \dots$
- $\Rightarrow abba(a)^i B(bbb)^i bbb$
- $\Rightarrow abba(a)^i b(bbb)^i bbb$

Therefore, knowing that

abbabbbb

is generated by grammar G, we also know that

abba(a)ⁱb(bbb)ⁱbbb

is generated by G

In general:

We are given an infinite context-free grammar G

Assume G has no unit-productions no λ -productions

Take a string $w \in L(G)$ with length bigger than

Mumber of productions) X
 (Largest right side of a production)

Consequence:

Some variable must be repeated in the derivation of w

u,v,x,y,z: strings of terminals

Possible derivations:

 $A \Rightarrow vAy$

 $A \Longrightarrow X$

$$S \Rightarrow uAz$$

$$A \Rightarrow vAy$$

$$A \Longrightarrow X$$

$$* * UAz \Rightarrow uxz$$

$$uv^0xy^0z$$

$$S \Rightarrow uAz$$

$$A \Rightarrow vAy$$

$$A \Longrightarrow X$$

* * * *
$$S \Rightarrow uAz \Rightarrow uvAyz \Rightarrow uvxyz$$

The original
$$w = uv^1xy^1z$$

$$S \Rightarrow uAz$$

$$A \Rightarrow vAy$$

$$A \Longrightarrow X$$

* * * * * *
$$S \Rightarrow uAz \Rightarrow uvAyz \Rightarrow uvvAyyz \Rightarrow uvvxyyz$$

$$uv^2xy^2z$$

$$S \Rightarrow uAz$$

$$A \Rightarrow vAy$$

$$A \Rightarrow x$$

$$\begin{array}{c}
* \\
S \Rightarrow uAz \Rightarrow uvAyz \Rightarrow uvvAyyz \Rightarrow \\
* \\
\Rightarrow uvvVAyyz \Rightarrow uvvxyyz
\end{array}$$

$$uv^3xy^3z$$

$$S \Rightarrow uAz$$

$$A \Rightarrow vAy$$

$$A \Rightarrow x$$

$$S \stackrel{*}{\Rightarrow} uAz \stackrel{*}{\Rightarrow} uvAyz \stackrel{*}{\Rightarrow} uvvAyyz \stackrel{*}{\Rightarrow}$$

$$\stackrel{*}{\Longrightarrow} uvvvAyyyz \stackrel{*}{\Longrightarrow} \dots$$

$$\stackrel{*}{\Rightarrow} uvvv\cdots vAy\cdots yyyz \stackrel{*}{\Rightarrow}$$

$$\stackrel{*}{\Longrightarrow} uvvv\cdots vxy\cdots yyyz$$

$$uv^i xy^i z$$

Therefore, any string of the form

$$uv^i xy^i z$$
 $i \ge 0$

is generated by the grammar G

Therefore,

knowing that
$$uvxyz \in L(G)$$

we also know that
$$uv^i xy^i z \in L(G)$$

Observation: $|vxy| \leq m$

Since A is the last repeated variable

Observation: $|vy| \ge 1$

Since there are no unit or λ productions

The Pumping Lemma:

For infinite context-free language L there exists an integer $\,m\,$ such that

for any string
$$w \in L$$
, $|w| \ge m$

we can write W = UVXYZ

with lengths
$$|vxy| \le m$$
 and $|vy| \ge 1$

and it must be:

$$uv^i xy^i z \in L$$
, for all $i \ge 0$

Applications of the Pumping Lemma For Context-Free Languages

Linz 6th Section 8.1

Non-context free languages

$$\{a^nb^nc^n:n\geq 0\}$$

$$\{a^nb^n:n\geq 0\}$$

Linz
$$6^{th}$$
, section 8.1, example 8.1, page 216 { $a^n b^n c^n \mid 0 \le n$ }

 $w = a^m b^m c^m$

Cannot cut w st vy has the same number of a's, b's and c's

Theorem: The language

$$L = \{a^n b^n c^n : n \ge 0\}$$

is **not** context free

Proof: Use the Pumping Lemma for context-free languages

$$L = \{a^n b^n c^n : n \ge 0\}$$

Assume for contradiction that L is context-free

Since L is context-free and infinite we can apply the pumping lemma

$$L = \{a^n b^n c^n : n \ge 0\}$$

Pumping Lemma gives a magic number m such that:

Pick any string $w \in L$ with length $|w| \ge m$

We pick:
$$w = a^m b^m c^m$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

We can write:
$$w = uvxyz$$

with lengths
$$|vxy| \le m$$
 and $|vy| \ge 1$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Pumping Lemma says:

$$uv^i x y^i z \in L$$
 for all $i \ge 0$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

We examine <u>all</u> the possible locations of string vxy in w

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 1: vxy is within a^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 1: v and y consist from only a

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 1: Repeating
$$v$$
 and y

$$k \ge 1$$

$$m+k \qquad m \qquad m$$

$$aaaaaa...aaaaaa bbb...bbb ccc...ccc$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 1: From Pumping Lemma:
$$uv^2xy^2z \in L$$
 $k \ge 1$

$$m+k$$
 m m

aaaaaa...aaaaaaa'bbb...bbb'ccc...ccc

$$u v^2 x v^2$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 1: From Pumping Lemma: $uv^2xy^2z \in L$ $k \ge 1$

However:
$$uv^2xy^2z = a^{m+k}b^mc^m \notin L$$

Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 2: vxy is within b^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 2: Similar analysis with case 1

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 3: vxy is within c^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 3: Similar analysis with case 1

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4:
$$vxy$$
 overlaps a^m and b^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Possibility 1: v contains only a y contains only b

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Possibility 1:
$$v$$
 contains only a
 $k_1 + k_2 \ge 1$
 y contains only b
 $m + k_1$
 $m + k_2$
 m
 $aaa...aaaaaaaa bbbbbbbb...bbb ccc...ccc$
 u
 $v^2 x v^2$
 z

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: From Pumping Lemma: $uv^2xy^2z \in L$

$$k_1 + k_2 \ge 1$$

$$m + k_1$$

$$m+k_2$$

m

aaa...aaaaaaa bbbbbbbb...bbb ccc...ccc

$$v^2 xy^2$$

Z

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: From Pumping Lemma: $uv^2xy^2z \in L$ $k_1 + k_2 \ge 1$

However:
$$uv^2xy^2z = a^{m+k_1}b^{m+k_2}c^m \notin L$$

Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Possibility 2: v contains a and b y contains only b

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^{m}b^{m}c^{m}$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Possibility 2:
$$v$$
 contains a and b $k_1 + k_2 + k \ge 1$ y contains only b

$$u$$
 v^2xv^2 z

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: From Pumping Lemma:
$$uv^2xy^2z \in L$$
 $k_1 + k_2 + k \ge 1$

$$u v^2 x y^2$$

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: From Pumping Lemma: $uv^2xy^2z \in L$

However:

$$k_1 + k_2 + k \ge 1$$

$$uv^2xy^2z = a^mb^{k_1}a^{k_2}b^{m+k}c^m \notin L$$

Contradiction!!!

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Possibility 3: v contains only a y contains a and b

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 4: Possibility 3:
$$v$$
 contains only a y contains a and b

Similar analysis with Possibility 2

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz \qquad |vxy| \le m \qquad |vy| \ge 1$$

Case 5:
$$vxy$$
 overlaps b^m and c^m

$$L = \{a^n b^n c^n : n \ge 0\}$$

$$w = a^m b^m c^m$$

$$w = uvxyz |vxy| \le m |vy| \ge 1$$

Case 5: Similar analysis with case 4

There are no other cases to consider

(since $|vxy| \le m$, string vxy cannot

overlap a^m , b^m and c^m at the same time)

In all cases we obtained a contradiction

Therefore: The original assumption that

$$L = \{a^n b^n c^n : n \ge 0\}$$

is context-free must be wrong

Conclusion: L is not context-free