(Documento) apresentada à Pró-Reitoria de Pós-Graduação e Pesquisa do Instituto Tecnológico de Aeronáutica, como parte dos requisitos para obtenção do título de (Titulo) em Ciências no Curso de Engenharia Aeronáutica, Área de Sistemas Aeroespaciais e Mecatrônica.

João Paulo de Souza Oliveira

MODELAGEM DE UM CONTROLADOR DE ATUADOR ELETROHIDRÁULICO PARA ESTIMATIVA DE DEMANDA DE POTÊNCIA ELÉTRICA, FATOR DE POTÊNCIA E TOTAL HARMONIC DISTORTION

(Documento) aprovada em sua versão final pelos abaixo assinados:

Prof. Dr. Roberto D'amore Orientador

Eng. MSc. Andre Domingues Rocha de Oliveira Coorientador

Prof. Dr. John von Neumann Pró-Reitor de Pós-Graduação e Pesquisa

Campo Montenegro São José dos Campos, SP - Brasil

Dados Internacionais de Catalogação-na-Publicação (CIP) Divisão Biblioteca Central do ITA/CTA

de Souza Oliveira, João Paulo

Modelagem de um Controlador de Atuador Eletrohidráulico para Estimativa de Demanda de Potência Elétrica, Fator de Potência e *Total Harmonic Distortion* / João Paulo de Souza Oliveira. São José dos Campos, 2015.

(Documento) de — Curso de Engenharia Aeronáutica. Área de Sistemas Aeroespaciais e Mecatrônica — Instituto Tecnológico de Aeronáutica, 2015. Orientador: Prof. Dr. Roberto D'amore. Coorientador: Eng. MSc. Andre Domingues Rocha de Oliveira.

1. Cupim. 2. Dilema. 3. Construção. I. Centro Técnico Aeroespacial. Instituto Tecnológico de Aeronáutica. Divisão de Engenharia Mecânica. II. Título.

REFERÊNCIA BIBLIOGRÁFICA

DE SOUZA OLIVEIRA, João Paulo. Modelagem de um Controlador de Atuador Eletrohidráulico para Estimativa de Demanda de Potência Elétrica, Fator de Potência e Total Harmonic Distortion. 2015. 29f. (Documento) de — Instituto Tecnológico de Aeronáutica, São José dos Campos.

CESSÃO DE DIREITOS

NOME DO AUTOR: João Paulo de Souza Oliveira

TITULO DO TRABALHO: Modelagem de um Controlador de Atuador Eletrohidráulico para Estimativa de Demanda de Potência Elétrica, Fator de Potência e *Total Harmonic Distortion*.

TIPO DO TRABALHO/ANO: (Documento) / 2015

É concedida ao Instituto Tecnológico de Aeronáutica permissão para reproduzir cópias desta (Documento) e para emprestar ou vender cópias somente para propósitos acadêmicos e científicos. O autor reserva outros direitos de publicação e nenhuma parte desta (Documento) pode ser reproduzida sem a autorização do autor.

João Paulo de Souza Oliveira Av. Cidade Jardim, 679 CEP 12.233-066 – São José dos Campos-SP

MODELAGEM DE UM CONTROLADOR DE ATUADOR ELETROHIDRÁULICO PARA ESTIMATIVA DE DEMANDA DE POTÊNCIA ELÉTRICA, FATOR DE POTÊNCIA E TOTAL HARMONIC DISTORTION

João Paulo de Souza Oliveira

Composição da Banca Examinadora:

Prof. Dr. Presidente Alan Turing ITA Prof. Dr. Roberto D'amore Orientador ITA Eng. MSc. Embraer Andre Domingues Rocha de Oliveira Coorientador Prof. Dr. Linus Torwald UXXX Prof. Dr. Richard Stallman UYYY Prof. Dr. Donald Duck DYSNEY Prof. Dr. Mickey Mouse DISNEY

ITA

iv
Aos esforçados alunos de Pós-
Graduação do ITA, por criarem
este magnífico template LATEX,
permitindo que eu ficasse ainda
mais longe do Word :-)
E a um cara do INPE, que
apesar de já ser doutor,
ainda se rebaixa a essas coi-
sas de mexer com templates
:O)(Agradeça até ao seu
animal de estimação, caso queira.) João
quena.) Joan

Agradecimentos

Primeiramente, gostaria de agradecer ao Dr. Donald E. Knuth, por ter desenvolvido o T_FX.

Ao Dr. Leslie Lamport

por ter criado o La TeX, facilitando muito a utilização do TeX, e assim, eu não ter que usar o Word.

Ao Prof. Dr. Meu Orientador,

pela orientação e confiança depositada na realização deste trabalho.

Ao Dr. Nelson D'Ávilla,

por emprestar seu nome a essa importante via de trânsito na cidade de São José dos Campos.

Ah, já estava esquecendo... agradeço também, mais uma vez ao TEX por ele não possuir vírus de macro :-)

Resumo

Aqui começa o resumo do referido trabalho. Não tenho a menor idéia do que colocar aqui. Sendo assim, vou inventar. Lá vai: Este trabalho apresenta uma metodologia de controle de posição das juntas passivas de um manipulador subatuado de uma maneira subótima. O termo subatuado se refere ao fato de que nem todas as juntas ou graus de liberdade do sistema são equipados com atuadores, o que ocorre na prática devido a falhas ou como resultado de projeto. As juntas passivas de manipuladores desse tipo são indiretamente controladas pelo movimento das juntas ativas usando as características de acoplamento da dinâmica de manipuladores. A utilização de redundância de atuação das juntas ativas permite a minimização de alguns critérios, como consumo de energia, por exemplo. Apesar da estrutura cinemática de manipuladores subatuados ser idêntica a do totalmente atuado, em geral suas caraterísticas dinâmicas diferem devido a presença de juntas passivas. Assim, apresentamos a modelagem dinâmica de um manipulador subatuado e o conceito de índice de acoplamento. Este índice é utilizado na sequência de controle ótimo do manipulador. A hipótese de que o número de juntas ativas seja maior que o número de passivas $(n_a > n_p)$ permite o controle ótimo das juntas passivas, uma vez que na etapa de controle destas há mais entradas (torques nos atuadores das juntas ativas), que elementos a controlar (posição das juntas passivas).

Abstract

Well, the book is on the table. This work presents a control methodologie for the position of the passive joints of an underactuated manipulator in a suboptimal way. The term underactuated refers to the fact that not all the joints or degrees of freedom of the system are equipped with actuators, which occurs in practice due to failures or as design result. The passive joints of manipulators like this are indirectly controlled by the motion of the active joints using the dynamic coupling characteristics. The utilization of actuation redundancy of the active joints allows the minimization of some criteria, like energy consumption, for example. Although the kinematic structure of an underactuated manipulator is identical to that of a similar fully actuated one, in general their dynamic characteristics are different due to the presence of passive joints. Thus, we present the dynamic modelling of an underactuated manipulator and the concept of coulpling index. This index is used in the sequence of the optimal control of the manipulator.

Págs

Sumário

Lista de Figuras	xi
Lista de Tabelas	xii
Lista de Abreviaturas e Siglas	xiii
Lista de Símbolos	xiv
1 Introdução	15
2 Qualidade de Energia em Aeronaves	16
2.1 Tendência de Aumento da Capacidade de Geração Elétrica em Ae-	
ronaves	17
2.1.1 Tipos de Geradores e Sistemas de Distribuição	21
2.2 Análise de Cargas Elétricas em Aeronaves	21
2.2.1 Atuadores Eletrohidrostáticos	21
2.3 Problemas Causados Pelas Harmônicas na Rede	21
2.3.1 DO-160	22
2.3.2 MIL-STD 704	22
2.3.3 Conversores com Alto Fator de Potência	22
2.3.4 Filtros Passivos	22
2.3.5 Filtros Ativos	22
3 Filtros Ativos Em Sistemas Elétricos	23
3.1 Definição de Potência Ativa, Reativa e Fator de Potência	23

		-

3.1.1	Definição de Potências em Sistemas Senoidais	23
3.1.2	Definição de Potências em Sistemas Não-Senoidais	23
3.1.3	Potência Instantânea Utilizando a Teoria P-Q	23
3.2	Filtros Ativos	23
3.2.1	Filtros Ativo Empregando a Teoria P-Q	23
4	Conceito de Conversor Estático na Aplicação de Fil-	
7	TROS ATIVOS	24
5	Conclusão	25
Ref	erências Bibliográficas	26
Apê	NDICE A – TÓPICOS DE DILEMA LINEAR	27
A.1	Uma Primeira Seção para o Apêndice	27
Ane	exo A – Exemplo de um Primeiro Anexo	28
A.1	Uma Seção do Primeiro Anexo	28
Ane	exo B – To usando craque	29

Lista de Figuras

FIGURA 2.1 – Aumento capacidade de geração de aeronaves [5]	17
FIGURA 2.2 – Aumento da capacidade de geração ao longo dos anos	18
FIGURA 2.3 – Tendência futura para o mercado de aviação [4]	19
FIGURA A.1 –Uma figura que está no apêndice	27

	xiil
Lista de Tabelas	

Γ

Lista de Abreviaturas e Siglas

MEA More Electric Aircraft

CTq computed torque

DC direct current

EAR Equação Algébrica de Riccati

GDL graus de liberdade

ISR interrupção de serviço e rotina

LMI linear matrices inequalities

MIMO multiple input multiple output

PD proporcional derivativo

PID proporcional integrativo derivativo

PTP point to point

UARMII Underactuated Robot Manipulator II

VSC variable structure control

viv

Lista de Símbolos

CO₂ Dióxido de Carbono

nada nada

a Escalar

a Vetor

 a_1 Primeiro componente de **a**

 $a_{1,k}$ Primeiro componente de \mathbf{a}_k

A Matriz

 \mathbf{e}_{j} Vetor unitário de dimensão n e com o j-ésimo componente igual a 1

 δ_{k-k_f} Delta de Kronecker delta no instante k_f

1 Introdução	
5 Págs	

2 Qualidade de Energia em

Aeronaves

 $\begin{bmatrix} 30 \\ \text{Págs} \end{bmatrix}$

O mercado da aviação tem passado por uma mudança nos preceitos de desenvolvimento de sistemas que vão desde a utilização de novas tecnologias embarcadas até a mudança na concepção de operação da aeronave. Essa tendência vem ocorrendo de maneira natural como evolução do mercado pela demanda de aeronaves mais eficientes e competitivas. Nesse contexto há o conceito de *More Electric Aircraft* (MEA) e, como o próprio nome diz, essa concepção baseia-se em aeronaves cuja filosofia de projeto contempla o uso abundante de sistemas alimentados eletricamente com o objetivo de aumentar a eficiência e confiabilidade [1].

As aeronaves comumente possuem sistemas hidráulicos, pneumáticos e elétricos que passam a receber suas potências diretamente do eixo do motor da aeronave. Essa transferência de energia dá-se por caixas de engrenagens que condicionam a velocidade do eixo e o torque de modo a impulsionar bombas hidráulicas e geradores elétricos. Ainda há o sistema pneumático que possui como fonte de energia o sangramento de ar comprimido do motor [2]. Tais sistemas são imprescindíveis para o funcionamento operacional da aeronave visto que equipamentos que provém a aeronavegabilidade e o conforto de cabine utilizam de tais sistemas. Essa topologia de projeto, contemplando a utilização destes sistemas, é comumente utilizada nas aeronaves comerciais e militares em geral.

O conceito de MEA não é exatamente novo, esse tema vem sendo estudado por décadas e a ideia de contemplar uma aeronave com a substituição de sistemas que necessitam de energia do motor por àqueles movidos por eletricidade está bem estabelecido [3]. Devido à falta de tecnologias de condicionamento de energia elétrica para utilização na indústria aeroespacial, seja pela baixa capacidade potência, seja pelo volume e peso excessivos, os conceitos de utilização abundante do sistema elétrico está sendo objeto de estudos para quando as tecnologias de conversão e geração de alta capacidade estiverem melhor estabelecidas. Desse modo, os sistemas hidráulicos e pneumáticos continuam sendo utilizados de maneira convencional [3, 2]. Contudo, o desenvolvimento de novas tecnologias nas áreas de eletrônica de potência, como semicondutores que aguentam maiores capacidade de tensão e corrente, e na área de geração de energia elétrica, como geradores com maior eficiência, com maiores capacidades e densidade de energia por peso específico, vem tornando possível a implementação de sistemas elétricos que substituem parcialmente ou totalmente os sistemas hidráulicos ou pneumáticos. Isso pode ser visto nos mais recentes desenvolvimentos de aeronaves, como por exemplo o Boeing 787, onde a redução da

emissão de CO_2 é 20% menor se comparado com o Boeing 767 [4].

O ganho não se dá apenas na redução do consumo de combustível e emissão de gases pela queima de combustíveis fósseis, mas há também a redução de peso e volume de sistemas, aumento de segurança, melhora na confiabilidade e manutenabilidade [1, 2, 4].

2.1 Tendência de Aumento da Capacidade de Geração Elétrica em Aeronaves

Seguindo a tendência de aumentar a quantidade de sistemas elétricos para melhorar a eficiência em aeronaves, a geração desse tipo de energia teve de acompanhar a demanda de carga de modo a suprir o aumento vertiginoso de potência elétrica requerida. Com o avanço tecnológico nas áreas de geração e distribuição, o aumento de demanda de potência pode ser atendido pelo sistema elétrico, e ainda, seguindo os critérios impostos pelo projeto nos quesitos de peso, confiabilidade e eficiência. Com esse aumento na capacidade de geração e distribuição, cada vez mais os sistemas vêm sendo substituídos por sistema elétricos cujas funções substituem o emprego do sistemas hidráulicos e pneumáticos. Segundo [5], o aumento da capacidade de geração de energia aumentará significativamente com o a troca de sistemas que possuem equivalentes movidos pela energia elétrica. Esse aumento está acontecendo no cenário atual no mercado de aviação e esta tendência pode ser vista na figura 2.1. Ainda, elencando os dados da capacidade de geração segundo o critério da data de lançamento das aeronaves, pode-se notar que a capacidade de geração ao longo do tempo vem crescendo exponencialmente, como é demonstrado na figura 2.2.

FIGURA 2.1 – Aumento capacidade de geração de aeronaves [5]

A elevação na precificação do combustível e o aumento na participação deste fator nos

Dá de encher mais linguiça pelas referencias Abdelhafez2009 Abdel201

FIGURA 2.2 – Aumento da capacidade de geração ao longo dos anos

custos operacionais de uma aeronave fazem com que a eficiência e o baixo utilização de energia, atrelado às baixas emissões de gases que aumentam o efeito estufa, sejam itens cruciais para tornar uma aeronave competitiva no mercado de aviação [6]. Para atender a esse requisito de mercado no que tange a eficiência, uma série de fatores vem sendo alvo de estudos para melhorar a consumo de combustível. Pode-se enumerar alguns destes fatores como: melhor eficiência aerodinâmica; otimização estrutural; maior eficiência do motor; melhor aproveitamento no suo de energia pelos sistemas [6]. Nesse contexto, futuro da aviação segue uma tendência de utilizar uma gama ainda maior de sistemas dependentes de energia elétrica. Isso reflete em um menor gasto de energia necessária por passageio por quilometro voado e a tendência futura é que todos os sistemas da aeronave seja inteiramente elétricos [4], como mostra a figura 2.3. A intensa utilização de energia elétrica não é feita nas aeronaves atuais pelo simples fato de ainda não haver um desenvolvimento tecnológico suficientemente avançado que propicie tal tendência. Limitações nas áreas de armazenamento de energia, engenharia de materiais, eletrônica de potência, entre outros fazem com que as aeronaves sejam projetadas com a utilização de sistemas que dependam de arquiteturas convencionais.

Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Ut purus elit, vestibulum ut, placerat ac, adipiscing vitae, felis. Curabitur dictum gravida mauris. Nam arcu libero, nonummy eget, consectetuer id, vulputate a, magna. Donec vehicula augue eu neque. Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Mauris ut leo. Cras viverra metus rhoncus sem. Nulla et lectus vestibulum urna fringilla ultrices. Phasellus eu tellus sit amet tortor gravida placerat. Integer sapien est, iaculis in, pretium quis, viverra ac, nunc. Praesent eget sem vel leo ultrices bibendum.

FIGURA 2.3 – Tendência futura para o mercado de aviação [4]

Aenean faucibus. Morbi dolor nulla, malesuada eu, pulvinar at, mollis ac, nulla. Curabitur auctor semper nulla. Donec varius orci eget risus. Duis nibh mi, congue eu, accumsan eleifend, sagittis quis, diam. Duis eget orci sit amet orci dignissim rutrum.

Nam dui ligula, fringilla a, euismod sodales, sollicitudin vel, wisi. Morbi auctor lorem non justo. Nam lacus libero, pretium at, lobortis vitae, ultricies et, tellus. Donec aliquet, tortor sed accumsan bibendum, erat ligula aliquet magna, vitae ornare odio metus a mi. Morbi ac orci et nisl hendrerit mollis. Suspendisse ut massa. Cras nec ante. Pellentesque a nulla. Cum sociis natoque penatibus et magnis dis parturient montes, nascetur ridiculus mus. Aliquam tincidunt urna. Nulla ullamcorper vestibulum turpis. Pellentesque cursus luctus mauris.

Nulla malesuada porttitor diam. Donec felis erat, congue non, volutpat at, tincidunt tristique, libero. Vivamus viverra fermentum felis. Donec nonummy pellentesque ante. Phasellus adipiscing semper elit. Proin fermentum massa ac quam. Sed diam turpis, molestie vitae, placerat a, molestie nec, leo. Maecenas lacinia. Nam ipsum ligula, eleifend at, accumsan nec, suscipit a, ipsum. Morbi blandit ligula feugiat magna. Nunc eleifend consequat lorem. Sed lacinia nulla vitae enim. Pellentesque tincidunt purus vel magna. Integer non enim. Praesent euismod nunc eu purus. Donec bibendum quam in tellus. Nullam cursus pulvinar lectus. Donec et mi. Nam vulputate metus eu enim. Vestibulum pellentesque felis eu massa.

Quisque ullamcorper placerat ipsum. Cras nibh. Morbi vel justo vitae lacus tincidunt ultrices. Lorem ipsum dolor sit amet, consectetuer adipiscing elit. In hac habitasse platea

dictumst. Integer tempus convallis augue. Etiam facilisis. Nunc elementum fermentum wisi. Aenean placerat. Ut imperdiet, enim sed gravida sollicitudin, felis odio placerat quam, ac pulvinar elit purus eget enim. Nunc vitae tortor. Proin tempus nibh sit amet nisl. Vivamus quis tortor vitae risus porta vehicula.

Fusce mauris. Vestibulum luctus nibh at lectus. Sed bibendum, nulla a faucibus semper, leo velit ultricies tellus, ac venenatis arcu wisi vel nisl. Vestibulum diam. Aliquam pellentesque, augue quis sagittis posuere, turpis lacus congue quam, in hendrerit risus eros eget felis. Maecenas eget erat in sapien mattis porttitor. Vestibulum porttitor. Nulla facilisi. Sed a turpis eu lacus commodo facilisis. Morbi fringilla, wisi in dignissim interdum, justo lectus sagittis dui, et vehicula libero dui cursus dui. Mauris tempor ligula sed lacus. Duis cursus enim ut augue. Cras ac magna. Cras nulla. Nulla egestas. Curabitur a leo. Quisque egestas wisi eget nunc. Nam feugiat lacus vel est. Curabitur consectetuer.

Suspendisse vel felis. Ut lorem lorem, interdum eu, tincidunt sit amet, laoreet vitae, arcu. Aenean faucibus pede eu ante. Praesent enim elit, rutrum at, molestie non, nonummy vel, nisl. Ut lectus eros, malesuada sit amet, fermentum eu, sodales cursus, magna. Donec eu purus. Quisque vehicula, urna sed ultricies auctor, pede lorem egestas dui, et convallis elit erat sed nulla. Donec luctus. Curabitur et nunc. Aliquam dolor odio, commodo pretium, ultricies non, pharetra in, velit. Integer arcu est, nonummy in, fermentum faucibus, egestas vel, odio.

Sed commodo posuere pede. Mauris ut est. Ut quis purus. Sed ac odio. Sed vehicula hendrerit sem. Duis non odio. Morbi ut dui. Sed accumsan risus eget odio. In hac habitasse platea dictumst. Pellentesque non elit. Fusce sed justo eu urna porta tincidunt. Mauris felis odio, sollicitudin sed, volutpat a, ornare ac, erat. Morbi quis dolor. Donec pellentesque, erat ac sagittis semper, nunc dui lobortis purus, quis congue purus metus ultricies tellus. Proin et quam. Class aptent taciti sociosqu ad litora torquent per conubia nostra, per inceptos hymenaeos. Praesent sapien turpis, fermentum vel, eleifend faucibus, vehicula eu, lacus.

Pellentesque habitant morbi tristique senectus et netus et malesuada fames ac turpis egestas. Donec odio elit, dictum in, hendrerit sit amet, egestas sed, leo. Praesent feugiat sapien aliquet odio. Integer vitae justo. Aliquam vestibulum fringilla lorem. Sed neque lectus, consectetuer at, consectetuer sed, eleifend ac, lectus. Nulla facilisi. Pellentesque eget lectus. Proin eu metus. Sed porttitor. In hac habitasse platea dictumst. Suspendisse eu lectus. Ut mi mi, lacinia sit amet, placerat et, mollis vitae, dui. Sed ante tellus, tristique ut, iaculis eu, malesuada ac, dui. Mauris nibh leo, facilisis non, adipiscing quis, ultrices a, dui.

Morbi luctus, wisi viverra faucibus pretium, nibh est placerat odio, nec commodo

wisi enim eget quam. Quisque libero justo, consectetuer a, feugiat vitae, porttitor eu, libero. Suspendisse sed mauris vitae elit sollicitudin malesuada. Maecenas ultricies eros sit amet ante. Ut venenatis velit. Maecenas sed mi eget dui varius euismod. Phasellus aliquet volutpat odio. Vestibulum ante ipsum primis in faucibus orci luctus et ultrices posuere cubilia Curae; Pellentesque sit amet pede ac sem eleifend consectetuer. Nullam elementum, urna vel imperdiet sodales, elit ipsum pharetra ligula, ac pretium ante justo a nulla. Curabitur tristique arcu eu metus. Vestibulum lectus. Proin mauris. Proin eu nunc eu urna hendrerit faucibus. Aliquam auctor, pede consequat laoreet varius, eros tellus scelerisque quam, pellentesque hendrerit ipsum dolor sed augue. Nulla nec lacus.

Suspendisse vitae elit. Aliquam arcu neque, ornare in, ullamcorper quis, commodo eu, libero. Fusce sagittis erat at erat tristique mollis. Maecenas sapien libero, molestie et, lobortis in, sodales eget, dui. Morbi ultrices rutrum lorem. Nam elementum ullamcorper leo. Morbi dui. Aliquam sagittis. Nunc placerat. Pellentesque tristique sodales est. Maecenas imperdiet lacinia velit. Cras non urna. Morbi eros pede, suscipit ac, varius vel, egestas non, eros. Praesent malesuada, diam id pretium elementum, eros sem dictum tortor, vel consectetuer odio sem sed wisi.

2.1.1 Tipos de Geradores e Sistemas de Distribuição

2.2 Análise de Cargas Elétricas em Aeronaves

Assim, o uso de conversores para alimentar cargas não lineares vem poluindo a rede o uso de cargas não lineares suja a rede, degradando a qualidade de energia

2.2.1 Atuadores Eletrohidrostáticos

[7]

2.3 Problemas Causados Pelas Harmônicas na Rede

os problemas da energia suja são

2.3.1	DO-160	
2.3.2	MIL-STD 704	
mét	odos são necessários para mitigar esse problema	
2.3.3	Conversores com Alto Fator de Potência	
2.3.4	Filtros Passivos	
2.3.5	Filtros Ativos	

3 Filtros Ativos Em Sistemas Elétricos

30 Págs

3.1 Definição de Potência Ativa, Reativa e Fator de Potência

blbalbablablablablablab

- 3.1.1 Definição de Potências em Sistemas Senoidais
- 3.1.2 Definição de Potências em Sistemas Não-Senoidais
- 3.1.3 Potência Instantânea Utilizando a Teoria P-Q
- 3.1.3.1 Transformada de Clarke
- 3.2 Filtros Ativos
- 3.2.1 Filtros Ativo Empregando a Teoria P-Q

4 Conceito de Conversor Estático na Aplicação de Filtros Ativos

40 Págs	

25	
	•

5	Conclusão	
5 Pág	s	

Referências Bibliográficas

- [1] MOIR, I. More-electric aircraft-system considerations. In: *IEE Colloquium on Electrical Machines and Systems for the More Electric Aircraft*. Londres: IET, 1999.
- [2] ABDEL-HAFEZ, A.; FORSYTH, A. A review of more-electric aircraft. In: 13th International Conference on Aerospace Science & Aviation Technology (ASAT-13). Cairo: Military Technical College, 2009.
- [3] ABDEL-HAFEZ, A. Recent Advances in Aircraft Technology. Arábia Saudita: IN-TECH, 2012. Cap. Power Generation and Distribution System for a More Electric Aircraft-A Review.
- [4] KARIMI, K. J. Future Aircraft Power Systems Integration Challenges. [S.l.]: The Boeing Company, 2007.
- [5] SRIMOOLANATHAN, В. Aircraft ElectricalPower Systems 1 Char 2008. 29/03/2014. ged with Opportunities. Acessado Disponível emem: https://www.frost.com/sublib/display-market-insight.do?id=150507057>.
- [6] BABIKIAN, R.; LUKACHKO, S. P.; WAITZ, I. A. The historical fuel efficiency characteristics of regional aircraft from technological, operational, and cost perspectives. *Journal of Air Transport Management*, Elsevier, v. 8, n. 6, p. 389–400, 2002.
- [7] RAJASHEKARA, K. More electric aircraft trends. IEEE Electrification Magazine,
 v. 2, 2014.

Apêndice A - Tópicos de Dilema

Linear

A.1 Uma Primeira Seção para o Apêndice

A matriz de Dilema Linear M e o vetor de torques inerciais b, utilizados na simulação são calculados segundo a formulação abaixo:

$$M = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix}$$
(A.1)

FIGURA A.1 – Uma figura que está no apêndice

Anexo A - Exemplo de um Primeiro Anexo Uma Seção do Primeiro Anexo Algum texto na primeira seção do primeiro anexo.

Anexo B - To usando craque	

CLASSIFICAÇÃO/TIPO TD TÍTULO E SUBTÍTULO: odelagem de um Contro tor de Potência e Total AUTOR(ES): ao Paulo de Souza O	 DATA 25 de março de 2015 	3. DOCUMENTO Nº	
odelagem de um Contro tor de Potência e <i>Total</i> AUTOR(ES):		DCTA/ITA/TD-018/2015	4. Nº DE PÁGINAS 29
` '	olador de Atuador Eletrohidráu Harmonic Distortion	ılico para Estimativa de Dema	nda de Potência Elétrica
	Oliveira		
INSTITUIÇÃO(ÕES)/ÓRO stituto Tecnológico de A	GÃO(S) INTERNO(S)/DIVISÃO(Õ Aeronáutica – ITA	ES):	
PALAVRAS-CHAVE SUGE			
PALAVRAS-CHAVE RESU ıpim; Dilema; Construç	JLTANTES DE INDEXAÇÃO: ão		
ecânica. Área de Sister efesa em 05/03/2015. P RESUMO: Aqui começa o resumo o nventar. Lá vai: Este t manipulador subatuado untas ou graus de libero ou como resultado de proelo movimento das jura de utilização de redunda	os. Curso de Doutorado. Progras Aeroespaciais e Mecatrôni ublicada em 25/03/2015. do referido trabalho. Não tenlo trabalho apresenta uma metodo de uma maneira subótima. O dade do sistema são equipados rojeto. As juntas passivas de mas ativas usando as caracteros de la complexión de la complexi	no a menor idéia do que colocidologia de controle de posição termo subatuado se refere ao se com atuadores, o que ocorre manipuladores desse tipo são rísticas de acoplamento da di	dalberto Santos Dupont. ear aqui. Sendo assim, ve das juntas passivas de ue fato de que nem todas na prática devido a falh indiretamente controlad
lo totalmente atuado, en apresentamos a modelag ndice é utilizado na seq eja maior que o número	ancia de atuação das juntas a exemplo. Apesar da estrutura geral suas caraterísticas dinâr em dinâmica de um manipulad uência de controle ótimo do mo de passivas $(n_a > n_p)$ permihá mais entradas (torques nos	a cinemática de manipuladores nicas diferem devido a presença or subatuado e o conceito de ín anipulador. A hipótese de que te o controle ótimo das juntas	a de juntas passivas. Assinadice de acoplamento. Es e o número de juntas ativ es passivas, uma vez que n