SET- RESET LATCH

s	R	Q	QN
0	0	last Q	last QN
0	1	0	7
1	0	1	0
1	1	0	0
_			

Figure 7-5 S-R latch: (a) circuit design using NOR gates; (b) function table.

Figure 7-6 Typical operation of an S-R latch: (a) "normal" inputs; (b) S and R asserted simultaneously.

(a)

(b)

Figure 7-7

Symbols for an S-R latch:

- (a) without bubble;
- (b) preferred for bubble-
- to-bubble design;
- (c) incorrect because
- of double negation.

SR	00	01	11	10	
0	0	0	X	1	
1	1	0	Χ	1	
$Q^{\dagger} = S + \overline{Q}.R$					

Figure 7-9 S-R latch: (a) circuit design using NAND gates; (b) function table; (c) logic symbol.

	-			
(b)	S_L	R_L	Q	QN
	0	0	1	1
	0	1	1	0
	1	0	0	1
	1	1	last Q	last QN

Raquinas Hoore

o no estado 11 independentemente do enable a saída será sempre o

, Ráquinas de Nealy

Destado 11

• EN-0 → saída sempre O

0 EN-1→ Saída peflete valor do enable

Figure 7-8 Timing parameters for an S-R latch.

Figure 7-12 D latch: (a) circuit design using NAND gates; (b) function table; (c) logic symbol.

Figure 7-13 Functional behavior of a D latch for various inputs.

Figure 7-14 Timing parameters for a D latch.

Device Type	Characteristic Equation	Table 7-1 Latch and flip-flo		
S-R latch	$Q* = S + R' \cdot Q$	characteristic		
D latch	Q* = D	equations.		
Edge-triggered D flip-flop	Q* = D			
D flip-flop with enable	$Q* = EN \cdot D + EN' \cdot Q$			

DECIMAL	BINÁRIO	OCTAL	HEXADECIMAL	COMP.1	COMP.2	BCD-	BCD
				- Land		AIKEN	
0	0000	0	0	0	0	0000	0000
1	0001	1	1	1	1	0001	0001
2	0010	2	2	2	2	0010	0010
3	0011	3	3	3	3	0011	0011
4	0100	4	4	4	4	0100	0100
5	0101	5	5	5	5	1011	0101
6	0110	6	6	6	6	1100	0110
7	0111	7	7	7	7	1101	0111
8	1000	10	8	-7	-8	1110	1000
9	1001	11	9	-6	-7	1111	1001
10	1010	12	Α	-5	-6	1111	1001
11	1011	13	В	-4	-5		
12	1100	14	С	-3	-4		
13	1101	15	D	-2	-3		
14	1110	16	Е	-1	-2		
15	1111	17	F	-0	-1		

Flip-Flop D

Figure 7-15 Positive-edge-triggered D flip-flop: (a) circuit design using D latches; (b) function table; (c) logic symbol.

Figure 7-18 Negative-edge triggered D flip-flop: (a) circuit design using D latches; (b) function table; (c) logic symbol.

FLIP-FLOPS

- comuta aprnas quando recebe a impulso do pelógio

 Comuta aprnas quando recebe
 a impulso do pelógio

 Txor Qn + TQn Txor Qn
- . SR → Q (n+1) = 5+R .Q"

Healy => dependem diretamente das entradas externas, enable e do estado atual

Hoore => dependem apenas da saída da unidade de memoraia (estado atual)

$$\overline{x \cdot y} = \bar{x} + \bar{y}$$

$$\overline{\prod_{i=0}^{n-1} x_i} = \sum_{i=0}^{n-1} \overline{x_i}$$

Mux 2:1

$$\overline{x+y} = \bar{x} \cdot \bar{y}$$

$$\sum_{i=0}^{\overline{n-1}} x_i = \prod_{i=0}^{n-1} \overline{x_i}$$

$$f(x_0, x_1, ..., x_{n-1}) = \sum_{i=0}^{2^n - 1} m_i \cdot f_i$$

AND-OR

Corma canónica:
$$f(x_0, x_1, ..., f(x_0, x_0, x_0, ..., f(x_0, x_0, x_0,$$

$$f(x_0, x_1, ..., x_{n-1}) = \prod_{i=0}^{2^n-1} (f_i + M_i)$$

OR-AND

NAND-NAND

4ª forma canónica:
$$f(x_0, x_1, ..., x_{n-1}) = \sum_{i=0}^{2^n-1} \frac{1}{f_i + M_i}$$

NOR-NOR