5 МОНИТОРИНГ ОЗОНОВОГО СЛОЯ

Введение

Мониторинг озонового слоя представляет собой систему наблюдений за состоянием озонового слоя, а также оценку и прогнозирование его изменений в целях своевременного выявления негативных воздействий природных и антропогенных факторов [33].

Основными задачами мониторинга озонового слоя являются:

получение данных о состоянии озоносферы над конкретными пунктами на территории Республики Беларусь, которые будут использованы для валидации орбитальных наблюдений, для оценки общего экологического состояния отдельных регионов, а также как параметры климатических и др. моделей;

исследование механизмов стратосферно-тропосферных связей, в частности, влияния стратосферных процессов на динамику тропосферы и формирование регионального климата;

исследование механизмов образования приземных концентраций озона и разработка методики их краткосрочного и среднесрочного прогноза.

Наблюдения за состоянием озоносферы и уровнем приземного солнечного излучения на территории Республики Беларусь проводятся:

- на Минской озонометрической станции (№ 354) ННИЦ МО БГУ (ул. Курчатова, 7);
- в Учебно-научном центре «Нарочанская биологическая станция» имени Г.Г.Винберга;
 - в Гомельском государственном университете имени Франциска Скорины.

Наблюдения за общим содержанием озона (далее – ОСО) в столбе атмосферы проводится с помощью приборов, разработанных в ННИЦ МО БГУ (спектрорадиометра ПИОН-УФ-II, двухканальных фильтровых радиометров ПИОН-Ф).

Для оценки состояния озоносферы привлекаются также данные наблюдений за содержанием приземного озона и иных веществ в атмосферном воздухе, проводимых Белгидрометом.

Основной посыл и вывод

Наблюдения за содержаниеи озона в атмосфере проводится с помощью наземных и спутниковых измерений. Первые дают информацию о региональной динамике озоносферы, ведутся на озонометрических станциях в разных обсерваториях. Вторые обеспечивают систематическую информацию о состоянии озонового слоя в глобальных масштабах.

Сезонный ход общего содержания озона над территорией республики представлен климатической нормой (многолетними средними среднемесячных значений за период 1997 — 2020 гг.) и имеет типичный для средних широт сезонный ход — максимальные значения ОСО имеют место ранней весной (март), минимальные значения наблюдаются осенью (октябрь).

Следует отметить, что в период 1979 — 1993 гг. максимум годового хода наблюдался в апреле, в 90-х годах прошлого столетия он начал смещаться на более ранние сроки и после 2000 г. максимальные среднемесячные значения наблюдаются в марте.

На сезонные вариации накладывается межгодовая изменчивость, которая может быть весьма велика и наиболее сильно проявляется в зимние и весенние месяцы.

Результаты наблюдений и оценка

Стратосферный озон над территорией Республики Беларусь в 2021 г.

Климатическая норма общего содержания озона и годовой ход ОСО за 2020 – 2021 гг. представлен на рисунке 5.1.

Рисунок 5.1 – Сезонный ход ОСО (климатическая норма) и годовой ход ОСО за 2020 г. и 2021 г.

В январе 2021 г. отмечен существенный дефицит среднемесячных значений ОСО (- 8,4 %), который в последующие три месяца сменился превышением среднемесячных значений на 3 % в феврале и марте и 8 % в апреле.

Годовой максимум наблюдался в апреле, что бывает редко в последнее десятилетие. В апреле (8 апреля 2021 г.) отмечено максимальное значение ОСО которое составило 486 ЕД.

В течение июня и июля наблюдался дефицит ОСО от 3 % до 5 % соответственно. Осенью содержание озона над республикой было близко к климатической норме, в декабре на 6 % больше нормы.

Общее содержание озона в атмосфере является очень изменчивой характеристикой климата, изменчивость которой проявляется на различных временных масштабах. В средних широтах, в которых располагается территория Республики Беларусь, ОСО характеризуется значительным сезонным ходом и сильной межгодовой изменчивостью (рисунок 5.1).

Наиболее сильно выражена межсуточная изменчивость в зимне-весенний период (рисунок 5.2), когда значения ОСО значительно меняются за день-два. На рисунке 5.2 стрелками отмечены крупные отрицательные озоновые аномалии, овалом выделено резкое изменение ОСО

Рисунок 5.2 – Климатическая норма и среднесуточные значения ОСО в 2021 г.

Так, например, с 19 февраля 2021 г. по 21 февраля 2021 г. ОСО уменьшилось на 130 ДЕ и было связано с прохождением над территорией Республики Беларусь озоновых аномалий различного знака. Соответствующее распределение полей озона представлено на рисунке 5.3.

Рисунок 5.3 – Распределение отклонений от многолетних средних значений полей озона в январе и феврале 2021 г.

Низкие среднемесячные значения ОСО в январе были связаны с отрицательными озоновыми аномалиями, существовавшими почти все время в январе 2021 г. над Атлантическим и Восточносибирским секторами Северного полушария.

Состояние озоносферы в Южном Полушарии

Антарктическая озоновая дыра — явление образования обширной области с низкими значениями ОСО весной в антарктической атмосфере наблюдалась и в 2021 г. (рисунок 5.4).

Рисунок 5.4 – Распределение ОСО 7 октября 2021 г. над Антарктидой [34]

Из-за более холодной, чем обычно в этом регионе зимы, более сильных стратосферных струйных течений, область с дефицитом ОСО образовалась одной из самых больших (24,8 миллиона км²), глубоких и долгоживущих. Максимальных размеров она достигла 7 октября 2021 г., затянулась — в последней декаде декабря.

Концентрации озона в приземном слое тропосферы

В отличие от стратосферного озона, защищающего живые организмы на Земле от разрушающего действия солнечного ультрафиолетового излучения, приземный озон является загрязняющим веществом, поскольку отрицательно влияет на здоровье человека и животных, оказывает угнетающее воздействие на леса и сельскохозяйственные культуры. Озон относится к загрязнителям атмосферы первого класса опасности.

В результате человеческой деятельности происходит увеличение концентрации приземного озона. Особенно заметно это в Северном полушарии. Концентрация озона в крупных городах, в условиях сильно загрязненной атмосферы, может достигать уровней, которые в десятки раз превышают естественные (фоновые) уровни и достаточны для ощутимого воздействия на живые организмы.

На основании проведения мониторинга в ННИЦ МО БГУ и наблюдений за концентрациями приземного озона и антропогенных загрязнителей воздуха в городах определена климатическая норма приземного озона в условиях свободной от антропогенных загрязнений «чистой» атмосферы и среднего климата Беларуси.

Предполагается, что именно такая норма должна служить «точкой отсчета» для учета влияния метеорологических и антропогенных факторов на приземный озон, а также оценки его долговременных изменений (тренда) в пределах небольшой по территории страны.

Указанная задача решена с помощью полученной ранее зависимости концентрации озона от метеорологических условий и концентраций антропогенных загрязнителей, контролируемых на пунктах мониторинга атмосферного воздуха, расположенных в областных центрах.

Предложена и опробована статистическая методика учета влияния метеоусловий и антропогенных загрязнителей воздуха на концентрацию приземного озона. Проведенные расчеты основывались на данных наблюдений пунктов мониторинга атмосферного воздуха в 4 районах г. Минска, различающихся по степени антропогенного загрязнения.

Методика базируется на обоснованных предположениях, допускающих дальнейшее уточнение, и сводится к определению коэффициентов уравнения регрессии, связывающего величину отклонения концентрации приземного озона от ее климатической нормы со значениями метеопараметров и концентрациями антропогенных загрязнителей воздуха.

Расчеты показали удовлетворительное соответствие с результатами наблюдений. В дальнейшем методика совершенствовалась, а ряды данных расширялись, что способствовало уточнению описания названной зависимости.

Детальное обоснование методики приведено в [35, 36].

Концентрация приземного озона представлена в виде нелинейной функции от всей совокупности факторов, оказывающих влияние на озон. Время (если отвлечься от весьма коротких периодов, необходимых для установления химического равновесия между реагентами) не входит в эту функцию в явном виде, а изменение концентрации озона со временем обусловлено только зависимостью от него переменных функции. К сожалению, ни вид функции, ни полный набор определяющих концентрацию озона переменных неизвестны.

В самом общем виде эту функцию можно представить в виде разложения в ряд Тэйлора:

$$O_3(x) = O_3(X) + \sum_{i} c_i(x_i - X_i) + (1/2) \sum_{i,j} c_{ij}(x_i - X_i)(x_j - X_j) + \dots,$$
(1)

где $\{x\}$ — совокупность переменных, являющихся количественными оценками различных факторов, которые влияют на озон;

 $\{X\}$ — совокупность значений переменных, соответствующих точке в многомерном пространстве переменных, около которой осуществляется разложение.

Коэффициенты c — частные производные от функции по соответствующим переменным:

$$c_{i} = (\partial \mathbf{O}_{3} / \partial x_{i})|_{\mathbf{Y}}, c_{ij} = (\partial^{2} \mathbf{O}_{3} / \partial x_{i} \partial x_{j})|_{\mathbf{Y}}$$
(2)

В случае выбора в качестве параметров $\{X\}$ климатических норм соответствующих переменных в первом приближении можно ограничиться учетом членов разложения до второго порядка включительно. Это действительно первое приближение, поскольку бесспорно наличие взаимовлияния между отдельными переменными x_i и нелинейной зависимости концентрации приземного озона от этих переменных.

Заменяя неизвестную функцию $O_3[X(t)]$ в (1) на климатическую норму приземного озона $\overline{O_3}(t)$, для отклонения концентрации озона от нормы можно записать

$$\Delta O_3[x(t)] = O_3[x(t)] - \overline{O_3}(t) = \sum_i c_i(x_i - X_i) + (1/2) \sum_{i,j} c_{ij}(x_i - X_i)(x_j - X_j) + \varepsilon_2(t)$$
(3)

где $\varepsilon_2(t)$ — поправки второго порядка малости из-за неравенства $O_3[X(t)]$ и $\overline{O_3}(t)$ и из-за игнорирования членов разложения более высоких порядков.

В дальнейшем значения производных, входящих в разложение (3), оцениваются посредством статистического анализа результатов наблюдений за концентрацией приземного озона, погодой и уровнем загрязнения воздуха в различных городах Беларуси. Для аппроксимации разложения (2) используется уравнение множественной линейной регрессии:

$$\Delta O_3 = a_0 z_0 + \sum_{i=1}^{M} a_i z_i \tag{4}$$

где ΔO_3 – отклонение концентрации приземного озона от климатической нормы;

 a_i – коэффициенты регрессии;

 z_i – объясняющие переменные;

M+1 — полное число переменных.

Коэффициент a_0 введен для приближенной компенсации отклонения $O_3[X(t)]$ от $\overline{O_3}(t)$, а также осредненного влияния неучтенных факторов. Соответствующая этому коэффициенту переменная введена ради унификации алгоритма расчета и на самом деле является постоянной: $z_0 \equiv 1$.

В качестве основных переменных в регрессионную модель включены регистрируемые на пунктах мониторинга атмосферного воздуха концентрации азота оксидов, углерод оксида, летучих органических соединений (бензола, толуола, ксилола) и некоторые метеорологические параметры.

Часть метеопараметров в настоящее время не регистрируется на метеостанциях Беларуси. К ним относятся вертикальная устойчивость атмосферы в пограничном слое и фотохимическая активность солнечного излучения.

Для оценки вертикальной устойчивости использованы прогностические расчеты, а фотохимическая активность излучения оценивается полуэмпирически с учетом значений некоторых измеренных метеорологических параметров [36].

Полный список основных объясняющих переменных включает: температуру воздуха, абсолютную влажность воздуха, фотохимическую активность солнечной радиации, скорость ветра, вертикальную устойчивость атмосферы, концентрацию ${\rm CO}$, концентрацию ${\rm NO}_2$, концентрацию ${\rm NO}$, общую концентрацию антропогенных летучих органических соединений (сумму контролируемых на пунктах наблюдений концентраций бензола, толуола, ксилола).

Поскольку эффективность влияния на озон индивидуальна для каждого из веществ, и корректнее было бы складывать их концентрации с соответствующими весовыми множителями [37], однако такие данные в настоящее время отсутствуют.

Коэффициенты уравнения регрессии в общем случае зависят от сезона и времени суток. Однако можно предположить, что основная часть сезонной и суточной изменчивости приземного озона удовлетворительно описывается поведением его климатической нормы, и считать коэффициенты a_i постоянными.

Допустимость такого предположения проверена посредством численного эксперимента.

Для расчета коэффициентов уравнения регрессии и климатической нормы приземного озона в «чистой» атмосфере над территорией Беларуси использованы отнесенные к метеорологическим срокам 55615 наблюдений за концентрацией озона и антропогенными загрязнителями во всех областных центрах страны в период 2012 – 2018 гг. (не со всех пунктов наблюдений получены данные за весь указанный период). Для этого данные ежечасных измерений концентраций усреднялись около метеорологических сроков.

В таблице приводятся значения полученных коэффициентов разложения климатической нормы приземного озона для «чистой» атмосферы на территории Беларуси. Параметры разложения: M=3, N=3. Слева от численных значений указаны порядковые номера коэффициентов разложения (индекс j в выражении (таблица 5.1)).

Таблица 5.1 — Коэффициенты разложения климатической нормы приземного озона для «чистой» атмосферы на территории Беларуси (q_i)

	Коэффициент разложения		Коэффициент разложения
Порядковый номер	климатической нормы	Порядковый номер	климатической нормы
коэффициента	приземного озона для «чистой»	коэффициента	приземного озона для «чистой»
разложения	атмосферы на территории	разложения	атмосферы на территории
	Беларуси		Беларуси
1	29,217	26	-0,655
2	5,852	27	-0,047
3	-6,871	28	0,414
4	0,509	29	0,442
5	-1,116	30	-0,246
6	-1,285	31	0,209
7	1,030	32	0,158
8	-4,557	33	-0,191
9	-0,557	34	0,079
10	3,875	35	0,019
11	-0,471	36	0,311
12	0,339	37	0 ,154

	Коэффициент разложения		Коэффициент разложения
Порядковый номер	климатической нормы	Порядковый номер	климатической нормы
коэффициента	приземного озона для «чистой»	коэффициента	приземного озона для «чистой»
разложения	атмосферы на территории	разложения	атмосферы на территории
	Беларуси		Беларуси
13	0,455	38	-0,836
14	-0,436	39	-0,015
15	-4,277	40	0,026
16	-0,169	41	-0,220
17	2,682	42	0,226
18	0,144	43	0,074
19	0,155	44	-0,054
20	0,250	45	0,027
21	-0,487	46	-0,058
22	0,863	47	-0,241
23	0,021	48	-0,035
24	-0,111	49	0,020
25	0,391		

На рисунке 5.5 показано сравнение рассчитанных значений климатических норм среднесуточных концентраций приземного озона в городах («грязная» норма) и в условиях «чистой» атмосферы («чистая» норма). Стрелками отмечены дни, отвечающие середине сезонов.

1 — «чистая» норма в сравнении с ходом в областных центрах, 2 — «грязная» норма, 3 — среднемесячные значения в Березинском заповеднике по данным наблюдений в 2017 — 2018 гг.

Рисунок 5.5 – Годовой ход фоновых (региональных) среднесуточных концентраций приземного озона над Беларусью

Результаты вполне ожидаемы, поскольку регистрируемые значения параметров антропогенного загрязнения городского воздуха в Беларуси соответствуют сценарию подавления генерации озона [38].

На этом же рисунке показаны среднемесячные значения концентрации озона в Березинском заповеднике, определенные по данным наблюдений в 2017-2018 гг. Заметные

отличия от «чистой» нормы в первой половине года, возможно, обусловлены неполным списком антропогенных загрязнений, учитывавшихся при расчете «чистой» нормы. Больший интерес вызывает июльский провал концентрации озона в Заповеднике, повторяющийся в течение двух лет подряд. Если это явление окажется стабильным и в последующие годы, то следует искать ему объяснение.

Суточный ход «чистой» и «грязной» норм 15 января 2021 г., 15 апреля 2021 г., 15 июля 2021 г. и 15 октября 2021 г. приведен на рисунке 5.6.

1 — «чистая» норма, 2 — «грязная» норма, 3 — суточный ход приземного озона в Березинском заповеднике, усредненный по сезонам 2017-2018 гг.

Рисунок 5.6 – Суточный ход климатической нормы приземного озона в середине каждого сезона

Как видно из рисунка, «чистая» норма приближается к «грязной» в ночное время суток. Это особенно характерно для осенне-зимнего периода. Уменьшается также глубина утреннего и вечернего провалов в суточном ходе концентрации озона, вызванных увеличением степени антропогенного загрязнения городского воздуха в это время. Это вполне естественно для случая «чистой» атмосферы и подтверждает качественно верный характер полученного решения. На этом же рисунке приведен суточный ход приземного озона в Березинском заповеднике, усредненный по сезонам 2017 – 2018 гг.