Lecture One – Limits and Derivatives

Section 1.1 – Rates of Change and Tangents to Curves

Position Function

An object that is falling or vertically projected into the air has its height above the ground, s(t), in feet, given by

$$s(t) = -16t^2 + v_0 t + s_0$$

 v_0 is the original velocity (initial velocity) of the object, in feet per second

t is the time that the object is in motion, in second

 s_0 is the original height (initial height) of the object, in feet

The average rate is given by: $\frac{\Delta s}{\Delta t}$

Example

A rock breaks loose from the top of a tall cliff. What is its average speed

- a) During the first 2 sec of fall?
- b) During the 1-sec interval between second 1 and second 2?

Solution

Since the rock falls free (*down*) without any initial velocity or height. $\Rightarrow y(t) = 16t^2$

1

a) For the first 2 sec: Average speed =
$$\frac{\Delta y}{\Delta t}$$

= $\frac{y(2) - y(0)}{2 - 0}$
= $\frac{16(2)^2 - 16(0)^2}{2}$
= $\frac{64}{2}$
= 32 ft/sec

b) From 1 sec to 2 sec: Average speed =
$$\frac{y(2) - y(1)}{2 - 1}$$

= $\frac{16(2)^2 - 16(1)^2}{1}$
= $\frac{48 \text{ ft/sec}}{1}$

Find the speed of a falling rock $(y(t) = 16t^2)$ over a time interval $[t_0, t_0 + h]$. Then find the average speed at 1 sec and 2 sec.

Solution

$$\frac{\Delta y}{\Delta t} = \frac{16(t_0 + h)^2 - 16(t_0)^2}{(t_0 + h) - t_0}$$

$$= \frac{16(t_0^2 + 2ht_0 + h^2) - 16t_0^2}{t_0 + h - t_0}$$

$$= \frac{16t_0^2 + 32ht_0 + 16h^2 - 16t_0^2}{h}$$

$$= 32\frac{ht_0}{h} + 16\frac{h^2}{h}$$

$$= 32t_0 + 16h$$

If
$$t_0 = 1 \Rightarrow \frac{\Delta y}{\Delta t} = 32(1) + 16h = \underline{32 + 16h}$$

The average speed has the limiting value $32 \, ft/sec$ as h approaches 0.

If
$$t_0 = 2 \Rightarrow \frac{\Delta y}{\Delta t} = 32(2) + 16h = \frac{64 + 16h}{16}$$

The average speed has the limiting value $64 \, ft/sec$ as h approaches 0.

Average Rates of Changes and Secant Lines

The average rate of change of y = f(x) with respect to x over the interval $[x_1, x_2]$ is

$$\frac{\Delta y}{\Delta x} = \frac{f\left(x_2\right) - f\left(x_1\right)}{x_2 - x_1} = \frac{f\left(x_1 + h\right) - f\left(x_1\right)}{h}, \quad h \neq 0$$

Defining the Slope of a Curve

The slope of a line is the rate at which it rises or falls.

To define the tangency for general curves, we need an approach that makes the behavior of the secants through P and points Q as Q moves toward P along the curve:

- 1. Find the slope of the secant *PQ*.
- 2. Investigate the limiting value of the slope as *Q* approaches *P* along the curve.
- 3. If the limit exists, take it to be the slope of the curve at *P* and define the tangent to the curve at *P* to be the line through *P* with this slope.

Find the slope of the parabola $y = x^2$ at the point P(2, 4). Write an equation for the tangent to the parabola at this point.

Solution

Secant slope
$$= \frac{\Delta y}{\Delta x} = \frac{f(x_1 + h) - f(x_1)}{h}$$
$$= \frac{f(2+h) - f(2)}{h}$$
$$= \frac{(2+h)^2 - 2^2}{h}$$
$$= \frac{4+4h+h^2-4}{h}$$
$$= \frac{4h}{h} + \frac{h^2}{h}$$
$$= 4+h$$

As Q approaches P, h approaches 0. Then the secant slope $h+4 \rightarrow 4 = slope$

$$y = m(x-x_1) + y_1$$
$$y = 4(x-2) + 4$$
$$y = 4x - 4$$

Exercises Section 1.1 – Rates of Change and Tangents to Curves

- 1. Find the average rate of change of the function $f(x) = x^3 + 1$ over the interval [2, 3]
- 2. Find the average rate of change of the function $f(x) = x^2$ over the interval [-1, 1]
- 3. Find the average rate of change of the function $f(t) = 2 + \cos t$ over the interval $[-\pi, \pi]$
- **4.** Find the slope of $y = x^2 3$ at the point P(2, 1) and an equation of the tangent line at this P.
- 5. Find the slope of $y = x^2 2x 3$ at the point P(2, -3) and an equation of the tangent line at this P.
- **6.** Find the slope of $y = x^3$ at the point P(2, 8) and an equation of the tangent line at this P.
- 7. Make a table of values for the function $f(x) = \frac{x+2}{x-2}$ at the points

$$x = 1.2$$
, $x = \frac{11}{10}$, $x = \frac{101}{100}$, $x = \frac{1001}{1000}$, $x = \frac{10001}{10000}$, and $x = 1$

- a) Find the average rate of change of f(x) over the intervals [1, x] for each $x \ne 1$ in the table
- b) Extending the table if necessary, try to determine the rate of change of f(x) at x = 1.
- **8.** The accompanying graph shows the total amount of gasoline A in the gas tank of an automobile after being driven for *t* days.

a) Estimate the average rate of gasoline consumption over the time intervals

- b) Estimate the instantaneous rate of gasoline consumption over the time t = 1, t = 4, and t = 8
- c) Estimate the maximum rate of gasoline consumption and the specific time at which it occurs.

Section 1.2 - Limit of a Function and Limit Laws

Definition of the Limit of a Function

If f(x) becomes arbitrary close to a single number L as x approaches x_0 from either side, then

$$\lim_{x \to x_0} f(x) = L$$

Which is read as "the limit of f(x) as x approaches x_0 is L."

Example

How does the function $f(x) = \frac{x^2 - 1}{x - 1}$ behave near x = 1?

Solution

$$f(x) = \frac{(x-1)(x+1)}{x-1} = x+1 \quad for \quad x \neq 1$$

For x = 1:

$$f(x=1)=1+1=2$$

x	.9	.99	.999	1.001	1.01	1.1
f(x)	1.9	1.99	1.999	2.001	2.01	2.1

$$\lim_{x \to 1} f(x) = \lim_{x \to 1} \frac{x^2 - 1}{x - 1} = 2$$

Properties of Limits

Constant function
$$(f(x) = k)$$
: $\lim_{x \to x_0} f(x) = \lim_{x \to x_0} k = k$

Identity function
$$(f(x) = x)$$
:
$$\lim_{x \to x_0} f(x) = \lim_{x \to x_0} x = x_0$$

Example

Discuss the behavior of the following function as $x \rightarrow 0$.

$$U(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

Solution

The unit step function U(x) has no limit as $x \to 0$, it jumps, because the values jump at x = 0. To the left of zero $\left(\text{negative value } \mathbf{0}^{-} \right) U(x) = 0$. For the positive values of x close to zero $\left(\mathbf{0}^{+} \right) U(x) = 1$

Discuss the behavior of the following function as $x \rightarrow 0$.

a)
$$g(x) = \begin{cases} \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$
 b) $f(x) = \begin{cases} 0, & x \leq 0 \\ \sin \frac{1}{x}, & x > 0 \end{cases}$

$$b) \quad f(x) = \begin{cases} 0, & x \le 0\\ \sin\frac{1}{x}, & x > 0 \end{cases}$$

Solution

a)

g(x) has no limit as $x \to 0$ because the values of g(x) grow arbitrary large (negative and positive) value as $x \rightarrow 0$ and do not stay close.

b)

f(x) has no limit as $x \to 0$ because the function's values oscillate between -1 and +1 in every open interval containing 0. The values do not stay close to any one number as $x \to 0$.

8

Limit Laws

If
$$\lim_{x \to c} f(x) = L$$
 and $\lim_{x \to c} g(x) = M$

Constant Multiple Rule:
$$\lim_{x \to c} [bf(x)] = b \lim_{x \to c} f(x) = \underline{bL}$$

Sum and Difference Rules:
$$\lim_{x \to c} [f(x) \pm g(x)] = \lim_{x \to c} f(x) \pm \lim_{x \to c} g(x) = \underline{L} \pm \underline{M}$$

Product Rule:
$$\lim_{x \to c} [f(x) \cdot g(x)] = \lim_{x \to c} f(x) \cdot \lim_{x \to c} g(x) = \underline{L.M}$$

Quotient Rule:
$$\lim_{x \to c} \left[\frac{f(x)}{g(x)} \right] = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} = \frac{L}{M} \qquad M \neq 0$$

Power Rule:
$$\lim_{x \to c} [f(x)]^n = \left[\lim_{x \to c} f(x)\right]^n = \underline{L}^n$$

Root Rule:
$$\lim_{x \to c} \sqrt[n]{f(x)} = \sqrt[n]{\lim_{x \to c} f(x)} = \sqrt[n]{L} \quad n > 0, \quad L > 0, \quad n \text{ is even}$$

Example

Find the following limits:

a)
$$\lim_{x \to c} \left(x^3 + 4x^2 - 3 \right)$$
 b) $\lim_{x \to c} \frac{x^4 + x^2 - 1}{x^2 + 5}$ c) $\lim_{x \to -2} \sqrt{4x^2 - 3}$

$$c) \quad \lim_{x \to -2} \sqrt{4x^2 - 3}$$

a)
$$\lim_{x \to c} \left(x^3 + 4x^2 - 3 \right) = \lim_{x \to c} x^3 + \lim_{x \to c} 4x^2 - \lim_{x \to c} (3)$$
 Sum and Difference Rules
$$= c^3 + 4c^2 - 3$$

b)
$$\lim_{x \to c} \frac{x^4 + x^2 - 1}{x^2 + 5} = \frac{\lim_{x \to c} \left(x^4 + x^2 - 1\right)}{\lim_{x \to c} \left(x^2 + 5\right)}$$

$$= \frac{\lim_{x \to c} x^4 + \lim_{x \to c} x^2 - \lim_{x \to c} 1}{\lim_{x \to c} x^2 + \lim_{x \to c} 5}$$

$$= \frac{\lim_{x \to c} x^4 + \lim_{x \to c} x^2 - \lim_{x \to c} 1}{\lim_{x \to c} x^2 + \lim_{x \to c} 5}$$

$$= \frac{c^4 + c^2 - 1}{c^2 + 5}$$
Sum and Difference Rules

c)
$$\lim_{x \to -2} \sqrt{4x^2 - 3} = \sqrt{\lim_{x \to -2} (4x^2 - 3)}$$

 $= \sqrt{\lim_{x \to -2} 4x^2 - \lim_{x \to -2} 3}$
 $= \sqrt{4(-2)^2 - 3}$
 $= \sqrt{16 - 3}$
 $= \sqrt{13}$

Root Rule

Difference Rule

Theorem – Limits of Polynomials

If
$$P(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$
, then
$$\lim_{x \to c} P(x) = P(c) = a_n c^n + a_{n-1} c^{n-1} + \dots + a_1 c + a_0$$

Theorem – Limits of Rational Functions

If P(x) and Q(x) are polynomials and $Q(c) \neq 0$, then

$$\lim_{x \to c} \frac{P(x)}{Q(x)} = \frac{P(c)}{Q(c)}$$

Example

Find the limit: $\lim_{x \to -1} \frac{x^3 + 4x^2 - 3}{x^2 + 5}$

$$\lim_{x \to -1} \frac{x^3 + 4x^2 - 3}{x^2 + 5} = \frac{(-1)^3 + 4(-1)^2 - 3}{(-1)^2 + 5}$$
$$= \frac{0}{6}$$
$$= 0$$

Eliminating Zero Denominators Algebraically

Example

Evaluate:
$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x}$$

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x} = \frac{1^2 + 1 - 2}{1^2 - 1} = \frac{0}{0}$$

$$\lim_{x \to 1} \frac{x^2 + x - 2}{x^2 - x} = \lim_{x \to 1} \frac{(x - 1)(x + 2)}{x(x - 1)}$$

$$= \lim_{x \to 1} \frac{(x + 2)}{x}$$

$$= \frac{1 + 2}{1}$$

$$= 3$$

Evaluate:
$$\lim_{x \to 0} \frac{\sqrt{x^2 + 100} - 10}{x^2}$$

Solution

$$\lim_{x \to 0} \frac{\sqrt{x^2 + 100} - 10}{x^2} = \frac{\sqrt{0 + 100} - 10}{0} = \frac{0}{0}$$

$$\frac{\sqrt{x^2 + 100} - 10}{x^2} = \frac{\sqrt{x^2 + 100} - 10}{x^2} \cdot \frac{\sqrt{x^2 + 100} + 10}{\sqrt{x^2 + 100} + 10}$$

$$= \frac{x^2 + 100 - 100}{x^2 \left(\sqrt{x^2 + 100} + 10\right)}$$

$$= \frac{x^2}{x^2 \left(\sqrt{x^2 + 100} + 10\right)}$$

$$= \frac{1}{\sqrt{x^2 + 100} - 10}$$

$$\lim_{x \to 0} \frac{\sqrt{x^2 + 100} - 10}{x^2} = \lim_{x \to 0} \frac{1}{\sqrt{x^2 + 100} + 10}$$

$$= \frac{1}{\sqrt{0 + 100} + 10}$$

$$= \frac{1}{\sqrt{0 + 100} + 10}$$

$$= \frac{1}{10 + 10}$$

 $=\frac{1}{20}$

=0.05

The Sandwich Theorem

Suppose that $g(x) \le f(x) \le h(x)$ for all x in some open interval containing c, except possibly at x = c itself. Suppose also that

$$\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L \quad then \quad \lim_{x \to c} f(x) = L$$

Example

Given that $1 - \frac{x^2}{4} \le u(x) \le 1 + \frac{x^2}{2}$ for all $x \ne 0$, find the $\lim_{x \to 0} u(x)$, no matter how complicated u is.

Solution

$$\lim_{x \to 0} \left(1 - \frac{x^2}{4} \right) = 1 - \frac{0}{4} = 1$$

$$\lim_{x \to 0} \left(1 + \frac{x^2}{2} \right) = 1$$

The Sandwich theorem implies that $\lim_{x\to 0} u(x) = 1$

Theorem

Suppose that $f(x) \le g(x)$ for all x in some open interval containing c, except possibly at x = c itself, and the limits of f and g both exist as x approaches c, then

$$\lim_{x \to c} f(x) \le \lim_{x \to c} g(x)$$

Exercises Section 1.2 – Limit of a Function and Limit Laws

Find the limit:

$$\lim_{x \to 1} (2x + 4)$$

2.
$$\lim_{x \to 1} \frac{x^2 - 4}{x - 2}$$

3.
$$\lim_{x \to 2} \frac{x^2 + 4}{x - 2}$$

$$4. \quad \lim_{x \to 0} \frac{|x|}{x}$$

5.
$$\lim_{x \to 3} \frac{x^2 - x - 1}{\sqrt{x + 1}}$$

6.
$$\lim_{x \to 2} \frac{x^2 + x - 6}{x - 2}$$

7.
$$\lim_{x \to 0} (3x - 2)$$

8.
$$\lim_{x \to 1} (2x^2 - x + 4)$$

9.
$$\lim_{x \to -2} \left(x^3 - 2x^2 + 4x + 8 \right)$$

10.
$$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$$

11.
$$\lim_{x \to 2} \frac{x^3 - 8}{x - 2}$$

12.
$$\lim_{x \to 3} \frac{x^2 + x - 12}{x - 3}$$

13.
$$\lim_{x \to 0} \frac{\sqrt{x+4}-2}{x}$$

14.
$$\lim_{x \to 0} \frac{3}{\sqrt{3x+1}+1}$$

15.
$$\lim_{x \to 0} f(x)$$
 $f(x) = \begin{cases} x^2 + 1 & x < 0 \\ 2x + 1 & x > 0 \end{cases}$

16.
$$\lim_{x \to -2} \frac{5}{x+2}$$

17.
$$\lim_{x \to 3} \frac{\sqrt{x+1}-1}{x}$$

18.
$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$

19.
$$\lim_{x \to -2} \frac{|x+2|}{x+2}$$

20.
$$\lim_{x \to 0} (2z - 8)^{1/3}$$

21.
$$\lim_{x \to 2} \frac{x^2 - 7x + 10}{x - 2}$$

22.
$$\lim_{x \to 0} \frac{5x^3 + 8x^2}{3x^4 - 16x^2}$$

23.
$$\lim_{x \to 1} \frac{\frac{1}{x} - 1}{x - 1}$$

24.
$$\lim_{u \to 1} \frac{u^4 - 1}{u^3 - 1}$$

25.
$$\lim_{x \to 1} \frac{x-1}{\sqrt{x+3}-2}$$

26.
$$\lim_{x \to -1} \frac{\sqrt{x^2 + 8} - 3}{x + 1}$$

27.
$$\lim_{x \to -3} \frac{2 - \sqrt{x^2 - 5}}{x + 3}$$

28.
$$\lim_{x\to 0} (2\sin x - 1)$$

$$\mathbf{29.} \quad \lim_{x \to 0} \sin^2 x$$

30.
$$\lim_{x \to 0} \sec x$$

31.
$$\lim_{x \to 0} \frac{1 + x + \sin x}{3\cos x}$$

32.
$$\lim_{x \to -\pi} \sqrt{x+4} \cos(x+\pi)$$

33. For the function f(t) graphed, find the following limits or explain why they do not exist.

$$a) \lim_{t \to a} f(t)$$

$$b) \lim_{t \to -1} f(t)$$

$$c) \lim_{t \to 0} f(t)$$

$$d$$
) $\lim_{t\to -0.5} f(t)$

34. Suppose $\lim_{x \to c} f(x) = 5$ and $\lim_{x \to c} g(x) = -2$. Find

a)
$$\lim_{x \to c} f(x)g(x)$$

c)
$$\lim_{x \to c} (f(x) + 3g(x))$$

b)
$$\lim_{x \to c} 2f(x)g(x)$$

d)
$$\lim_{x \to c} \frac{f(x)}{f(x) - g(x)}$$

- **35.** Explain why the limits do not exist for $\lim_{x\to 0} \frac{x}{|x|}$
- **36.** Evaluate the limit using the form $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ for $f(x)=x^2$, x=1
- 37. Evaluate the limit using the form $\lim_{h\to 0} \frac{f(x+h)-f(x)}{h}$ for $f(x)=\sqrt{3x+1}$, x=0
- **38.** If $\lim_{x \to 4} \frac{f(x) 5}{x 2} = 1$, find $\lim_{x \to 4} f(x)$
- **39.** If $\lim_{x \to 0} \frac{f(x)}{x^2} = 1$, find $\lim_{x \to 0} f(x)$ and $\lim_{x \to 0} \frac{f(x)}{x}$
- **40.** If $x^4 \le f(x) \le x^2$ $-1 \le x \le 1$ and $x^2 \le f(x) \le x^4$ x < -1 and x > 1. At what points c do you automatically know $\lim_{x \to c} f(x)$? What can you say about the value of the limits at these points?

Section 1.3 – Precise Definition of a Limit

Example

Consider the function y = 2x - 1 near $x_0 = 4$. Intuitively it appears that y is close to 7 when x is close to 4, so $\lim_{x \to 4} (2x - 1) = 7$. However, how close to $x_0 = 4$ does x have to be so that y = 2x - 1 differs from 7 by, say less than 2 units?

Solution

We need to find the values of x for |y-7| < 2.

$$|y-7| = |2x-1-7| = |2x-8|$$

$$|2x-8| < 2$$

$$-2 < 2x-8 < 2$$

$$-2+8 < 2x-8+8 < 2+8$$

$$6 < 2x < 10$$

$$\frac{6}{2} < \frac{2x}{2} < \frac{10}{2}$$

$$3 < x < 5$$

$$3-4 < x-4 < 5-4$$

$$-1 < x-4 < 1$$

Keeping x within 1 unit of $x_0 = 4$ will keep y within 2 units of $y_0 = 7$

Definition

Let f(x) be defined on an open interval about x_0 , except possibly at x_0 itself. We say that **the limit of** f(x) as x approaches x_0 is the number L, and write

$$\lim_{x \to x_0} f(x) = L$$

If, for every number $\varepsilon > 0$, there exists a corresponding number $\delta > 0$ such that for all x,

$$0 < |x - x_0| < \delta \implies |f(x) - L| < \varepsilon$$

Make
$$|f(x) - L| < \epsilon = \frac{1}{10}$$

 $|x - x_0| < \delta_{1/10}$ (a number)

New challenge:

Make
$$|f(x) - L| < \epsilon = \frac{1}{100}$$

$$\left|x-x_0\right|<\delta_{1/100}$$

 $L + \frac{1}{1000}$ $L - \frac{1}{1000}$ 0 x_0

New challenge: $\epsilon = \frac{1}{1000}$

Response: $|x - x_0| < \delta_{1/1000}$

New challenge: $\epsilon = \frac{1}{100,000}$

Response: $|x - x_0| < \delta_{1/100,000}$

New challenge:

 $\epsilon = \cdots$

Show that $\lim_{x \to 1} (5x - 3) = 2$

Solution

Let $x_0 = 1$, f(x) = 5x - 3, and L = 2.

For any given $\varepsilon > 0$, there exists a $\delta > 0$ so that $x \neq 1$ and x is within distance δ of $x_0 = 1$, that is

19

$$0 < |x-1| < \delta \implies |f(x)-2| < \varepsilon$$

$$\left| \left(5x - 3 \right) - 2 \right| < \varepsilon$$

$$|5x-5|<\varepsilon$$

$$5|x-1| < \varepsilon$$

$$|x-1| < \frac{\varepsilon}{5}$$

Thus, we can take: $\delta = \frac{\mathcal{E}}{5}$

If
$$0 < |x-1| < \delta = \frac{\mathcal{E}}{5}$$

$$\left| \left(5x - 3 \right) - 2 \right| = \left| 5x - 5 \right| = 5 \left| x - 1 \right| = 5 \frac{\varepsilon}{5} = \varepsilon$$

Which proves that $\lim_{x \to 1} (5x - 3) = 2$

Example

Prove the results presented graphically $\lim_{x \to x_0} x = x_0$

Solution

Let $\varepsilon > 0$ be given, we must find $\delta > 0$ such that for all x

$$0 < |x - x_0| < \delta \implies |x - x_0| < \varepsilon$$

This implication will hold if $\delta = \varepsilon$ or any smaller number.

For the limit $\lim_{x\to 5} \sqrt{x-1} = 2$, find a $\delta > 0$ that works for $\varepsilon = 1$. That is, find a $\delta > 0$ such that for all x:

$$0 < |x-5| < \delta \implies \left| \sqrt{x-1} - 2 \right| < 1$$

Solution

$$\left| \sqrt{x-1} - 2 \right| < 1$$

$$-1 < \sqrt{x-1} - 2 < 1$$

$$-1 + 2 < \sqrt{x-1} - 2 + 2 < 1 + 2$$

$$1 < \sqrt{x-1} < 3$$

$$1 < x - 1 < 9$$

$$1 + 1 < x - 1 + 1 < 9 + 1$$

$$2 < x < 10$$

The inequality holds for all x in the open interval (2, 10). So it holds for all $x \neq 5$ in the interval as well.

Finding δ value.

$$5 - \delta < x < 5 + \delta$$
 Centered at $x_0 = 5$ inside the interval $(2, 10)$

$$\begin{cases} 5 - \delta = 2 \\ 5 + \delta < 10 \end{cases} \rightarrow \delta = 3 \text{ (to be centered)}$$

$$0 < |x - 5| < 3 \implies \left| \sqrt{x - 1} - 2 \right| < 1$$

How to Find Algebraically a δ for a Given f, L, x_0 , and $\varepsilon > 0$

The process of finding a $\delta > 0$ such that for all x:

$$0 < |x - x_0| < \delta \implies |f(x) - L| < \varepsilon$$

Can be accomplished in two steps

- 1. Solve the inequality $|f(x)-L| < \varepsilon$ to find an open interval (a, b) containing x_0 on which the inequality holds for all $x \neq x_0$.
- 2. Find a value of $\delta > 0$ that places the open interval $\left(x_0 \delta, x_0 + \delta\right)$ centered at x_0 inside the interval (a, b). The inequality $|f(x) L| < \varepsilon$ will hold for all $x \neq x_0$ in this δ -interval.

Prove that $\lim_{x \to 2} f(x) = 4$ if

$$f(x) = \begin{cases} x^2, & x \neq 2\\ 1, & x = 2 \end{cases}$$

Solution

We need to show that given $\varepsilon > 0$ there exists a $\delta > 0$ such that for all x:

$$0 < |x-2| < \delta \implies |f(x)-4| < \varepsilon$$

1. Solve the inequality $|f(x)-4| < \varepsilon$ to find an open interval containing $x_0 = 2$ on which the inequality holds for all $x \neq x_0$.

For $x \neq x_0 = 2$, $f(x) = x^2$, and the inequality to solve is $|x^2 - 4| < \varepsilon$:

$$\begin{vmatrix} x^2 - 4 \end{vmatrix} < \varepsilon$$

$$-\varepsilon < x^2 - 4 < \varepsilon$$

$$4 - \varepsilon < x^2 < 4 + \varepsilon$$

$$\sqrt{4 - \varepsilon} < |x| < \sqrt{4 + \varepsilon}$$

$$\sqrt{4 - \varepsilon} < x < \sqrt{4 + \varepsilon}$$
Add 4 to all sides

Square root

Assume $\varepsilon < 4$

The inequality $|f(x)-4| < \varepsilon$ holds for all $x \ne 2$ in the open interval $(\sqrt{4-\varepsilon}, \sqrt{4+\varepsilon})$

2. Find a value of $\delta > 0$ that places the open interval $(2-\delta, 2+\delta)$ inside the interval $(\sqrt{4-\varepsilon}, \sqrt{4+\varepsilon})$.

Take δ to be the distance from $x_0 = 2$ to the nearer endpoint of $(\sqrt{4-\varepsilon}, \sqrt{4+\varepsilon})$.

21

$$\Rightarrow \delta = \min\left(2 - \sqrt{4 - \varepsilon}, \sqrt{4 + \varepsilon} - 2\right).$$

$$0 < |x - 2| < \delta$$

$$-\left(2 - \sqrt{4 - \varepsilon}\right) < x - 2 < \sqrt{4 + \varepsilon} - 2$$

$$-2 + \sqrt{4 - \varepsilon} < x - 2 < \sqrt{4 + \varepsilon} - 2$$

$$\sqrt{4 - \varepsilon} < x < \sqrt{4 + \varepsilon}$$

$$\therefore 0 < |x - 2| < \delta \Rightarrow |f(x) - 4| < \varepsilon$$

Given that
$$\lim_{x \to c} f(x) = L$$
 and $\lim_{x \to c} g(x) = M$, prove that $\lim_{x \to c} (f(x) + g(x)) = L + M$

Solution

We need to show that given $\varepsilon > 0$ there exists a $\delta > 0$ such that for all x:

$$0 < |x - c| < \delta \implies |f(x) + g(x) - (L + M)| < \varepsilon$$

$$|f(x) + g(x) - (L + M)| = |f(x) + g(x) - L - M|$$

$$= |(f(x) - L) + (g(x) - M)| \qquad \textbf{Triangle Inequality } |a + b| \le |a| + |b|$$

$$\le |(f(x) - L)| + |(g(x) - M)|$$

Since $\lim_{x\to c} f(x) = L$, there exists a number $\delta_1 > 0$ such that for all x:

$$0 < |x - c| < \delta_1 \implies |f(x) - L| < \frac{\varepsilon}{2}$$

Similarly, since $\lim_{x\to c} g(x) = M$, there exists a number $\delta_2 > 0$ such that for all x:

$$0 < |x - c| < \delta_2 \implies |g(x) - M| < \frac{\varepsilon}{2}$$

Let $\delta = \min\{\delta_1, \ \delta_2\}$, the smaller of δ_1 and δ_2 . If $0 < |x - c| < \delta$ then $0 < |x - c| < \delta_1$, so

$$|f(x)-L| < \frac{\varepsilon}{2}$$
 and $|x-c| < \delta_2$, so $|g(x)-M| < \frac{\varepsilon}{2}$. Therefore

$$|f(x)+g(x)-(L+M)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon$$

This show that $\lim_{x\to c} (f(x) + g(x)) = L + M$

Exercises Section 1.3 – Precise Definition of a Limit

- 1. Sketch the interval (a, b) on the x-axis with the point x_0 inside. Then find a value of $\delta > 0$ such that for all x, $0 < |x x_0| < \delta \implies a < x < b$ for a = 1, b = 7, $x_0 = 5$
- 2. Sketch the interval (a, b) on the x-axis with the point x_0 inside. Then find a value of $\delta > 0$ such that for all x, $0 < \left| x x_0 \right| < \delta \implies a < x < b$ for $a = -\frac{7}{2}$, $b = -\frac{1}{2}$, $x_0 = -\frac{3}{2}$
- 3. Use the graph to find a $\delta > 0$ such that for all $x \mid 0 < |x x_0| < \delta \implies |f(x) L| < \varepsilon$

- 4. Find an open interval about x_0 on which the inequality $|f(x)-L| < \varepsilon$ holds. Then give a value for δ > 0 such that for all x satisfying $0 < |x-x_0| < \delta$ the inequality $|f(x)-L| < \varepsilon$ holds. f(x) = x+1, L=5, $x_0 = 4$, $\varepsilon = 0.01$
- 5. Find an open interval about x_0 on which the inequality $|f(x)-L| < \varepsilon$ holds. Then give a value for δ > 0 such that for all x satisfying $0 < |x-x_0| < \delta$ the inequality $|f(x)-L| < \varepsilon$ holds. $f(x) = \sqrt{x+1}$, L=1, $x_0=0$, $\varepsilon=0.1$
- 6. Find an open interval about x_0 on which the inequality $|f(x)-L| < \varepsilon$ holds. Then give a value for δ > 0 such that for all x satisfying $0 < |x-x_0| < \delta$ the inequality $|f(x)-L| < \varepsilon$ holds.

$$f(x) = \sqrt{x-7}$$
, $L = 4$, $x_0 = 23$, $\varepsilon = 1$

7. Find an open interval about x_0 on which the inequality $|f(x)-L| < \varepsilon$ holds. Then give a value for δ > 0 such that for all x satisfying $0 < |x-x_0| < \delta$ the inequality $|f(x)-L| < \varepsilon$ holds.

$$f(x) = x^2$$
, $L = 3$, $x_0 = \sqrt{3}$, $\varepsilon = 0.1$

8. Find an open interval about x_0 on which the inequality $|f(x)-L| < \varepsilon$ holds. Then give a value for δ > 0 such that for all x satisfying $0 < |x-x_0| < \delta$ the inequality $|f(x)-L| < \varepsilon$ holds.

$$f(x) = \frac{120}{x}$$
, $L = 5$, $x_0 = 24$, $\varepsilon = 1$

- **9.** Prove that $\lim_{x \to 4} (9 x) = 5$
- 10. Prove that $\lim_{x \to 1} \frac{1}{x} = 1$
- 11. Prove that $\lim_{x \to 0} f(x) = 0$ if $f(x) = \begin{cases} 2x, & x < 0 \\ \frac{x}{2}, & x \ge 0 \end{cases}$
- 12. Prove that $\lim_{x \to 0} x \sin\left(\frac{1}{x}\right) = 0$

Section 1.4 – One-Sided Limits

Notation	Terminology		
$x \rightarrow a^{-}$	\boldsymbol{x} approaches \boldsymbol{a} from the left (through values \boldsymbol{less} than \boldsymbol{a})		
$x \rightarrow a^+$	\boldsymbol{x} approaches \boldsymbol{a} from the right (through values <i>greater</i> than \boldsymbol{a})		
$f(x) \rightarrow \infty$	f(x) increases without bound (can be made as large positive as desired)		
$f(x) \to -\infty$	f(x) decreases without bound (can be made as large negative as desired)		

One-Sided Limits

To have a limit L as x approaches c, a function f must be defined on **both sides** of c and its values f(x) must approach L as x approaches c from either side. Because of this, ordinary limits are called **two-sided**. If f fails to have two-sided limit at c, it may still have one-sided limit.

If the approach is from the *right*, the limit is a *right-hand limit*. $\lim_{x\to c^+} f(x) = L$

If the approach is from the *left*, the limit is a *left-hand limit*. $\lim_{x\to c^-} f(x) = M$

Example

The domain of $f(x) = \sqrt{4 - x^2}$ is [-2, 2]; its graph is the semicircle.

We have: $\lim_{x \to -2^{+}} \sqrt{4 - x^{2}} = 0$ and $\lim_{x \to 2^{-}} \sqrt{4 - x^{2}} = 0$

The function doesn't have a left-hand limit at x = -2 or a right-hand limit at x = 2. It does not have ordinary two-sided limits at either -2 or 2.

25

Theorem

A function f(x) has a limit as x approaches c if and only if it has left-hand and right-hand limits there and these one-sided limits are equal:

$$\lim_{x \to c} f(x) = L \iff \lim_{x \to c^{-}} f(x) = L \quad and \quad \lim_{x \to c^{+}} f(x) = L$$

Example

Given the function graphed:

At
$$x = 0$$
: $\lim_{x \to 0^{+}} f(x) = 1$
 $\lim_{x \to 0^{-}} f(x)$ and $\lim_{x \to 0} f(x)$ don't exist. The function is not defined to the left of $x = 0$

At
$$x = 1$$
: $\lim_{x \to 1^{-}} f(x) = 0$ $\lim_{x \to 1^{+}} f(x) = 1$ $\lim_{x \to 1} f(x)$ doesn't exist. The right-hand and left-hand limits are not equal.

At
$$x = 2$$
: $\lim_{x \to 2^{-}} f(x) = 1$ $\lim_{x \to 2^{+}} f(x) = 1$ $\lim_{x \to 2} f(x) = 2$ even though $f(2) = 2$

At
$$x = 3$$
: $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{+}} f(x) = \lim_{x \to 3} f(x) = 2$

At
$$x = 4$$
: $\lim_{x \to 4^{-}} f(x) = 1$ even though $f(4) \neq 1$
 $\lim_{x \to 4^{+}} f(x)$ and $\lim_{x \to 4} f(x)$ do not exist.

The function is not defined to the right of x = 4

Definitions

We say that f(x) has right-hand limit L at x_0 and $\lim_{x \to x_0^+} f(x) = L$

If for every number $\varepsilon > 0$ there exists a corresponding number $\delta > 0$ such that for all x

$$x_0 < x < x_0 + \delta \implies |f(x) - L| < \varepsilon$$

We say that f(x) has left-hand limit L at x_0 and $\lim_{x \to x_0^-} f(x) = L$

If for every number $\varepsilon > 0$ there exists a corresponding number $\delta > 0$ such that for all x

$$x_0 - \delta < x < x_0 \implies |f(x) - L| < \varepsilon$$

Example

Prove that $\lim_{x \to 0^+} \sqrt{x} = 0$

Solution

Let $\varepsilon > 0$ be given. $x_0 = 0$, L = 0, Find $\delta > 0 \ni \forall x$

$$0 < x < \delta \implies \left| \sqrt{x} - 0 \right| < \varepsilon$$

or

$$0 < x < \delta \implies \sqrt{x} < \varepsilon$$

$$\left(\sqrt{x}\right)^2 < \varepsilon^2$$

$$\Rightarrow x < \varepsilon^2 \quad if \quad 0 < x < \delta$$

If we choose $\delta = \varepsilon^2$, we have

$$0 < x < \delta = \varepsilon^2 \implies \sqrt{x} < \varepsilon$$

According to the definition, this shows that $\lim_{x\to 0^+} \sqrt{x} = 0$

Show that $y = \sin(\frac{1}{x})$ has no limit as x approaches zero from either side.

Solution

As x approaches zero, its reciprocal, $\frac{1}{x}$, grows without bound and the values of $\sin\left(\frac{1}{x}\right)$ cycle repeatedly from -1 to 1. There is no single number L that the function's values stay increasingly close to as x approaches zero.. The function has neither a right-hand limit nor a left-hand limit at x=0.

Limit Involving $\frac{\sin \theta}{\theta}$

A central fact about $\frac{\sin \theta}{\theta}$ is that in radian measure it limit as $\theta \to 0$ is **1**.

Theorem

$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1 \quad (\theta \text{ in rad.})$$

Proof

We need to show that the right-hand limit is 1, $\theta < \frac{\pi}{2}$

Notice that:

 $Area\ \Delta OAP\ < Area\ Sector\ OAP\ < Area\ \Delta OAT$

Area
$$\triangle OAP = \frac{1}{2}base \times height = \frac{1}{2}(1)(\sin\theta)$$

Area Sector
$$\triangle OAP = \frac{1}{2}r^2 \times \theta = \frac{1}{2}(1)^2(\theta) = \frac{\theta}{2}$$

Area
$$\triangle OAP = \frac{1}{2}base \times height = \frac{1}{2}(1)(\tan\theta) = \frac{1}{2}\tan\theta$$

$$\Rightarrow \frac{1}{2}\sin\theta < \frac{1}{2}\theta < \frac{1}{2}\tan\theta$$

$$\frac{2}{\sin\theta} \frac{1}{2} \sin\theta < \frac{1}{2} \theta \frac{2}{\sin\theta} < \frac{1}{2} \frac{\sin\theta}{\cos\theta} \frac{2}{\sin\theta}$$

Taking reciprocals reverses the inequalities

 $\tan \theta$

A(1, 0)

 $\sin \theta$

$$1 > \frac{\sin \theta}{\theta} > \cos \theta$$

Since
$$\lim_{\theta \to 0^+} \cos \theta = 1$$
, then $\lim_{\theta \to 0^-} \frac{\sin \theta}{\theta} = 1 = \lim_{\theta \to 0^+} \frac{\sin \theta}{\theta}$

So
$$\lim_{\theta \to 0} \frac{\sin \theta}{\theta} = 1$$

Show that
$$\lim_{h\to 0} \frac{\cos h - 1}{h} = 0$$

Solution

Using the half-angle formula: $\cos h = 1 - 2\sin^2\left(\frac{h}{2}\right)$

$$\lim_{h \to 0} \frac{\cos h - 1}{h} = \lim_{h \to 0} \frac{1 - 2\sin^2\left(\frac{h}{2}\right) - 1}{h}$$

$$= \lim_{h \to 0} \frac{-2\sin^2\left(\frac{h}{2}\right)}{h}$$

$$= -\lim_{\theta \to 0} \frac{2\sin^2\left(\theta\right)}{2\theta}$$

$$= -\lim_{\theta \to 0} \frac{\sin \theta}{\theta} \sin \theta$$

$$= -(1)(0)$$

$$= 0$$

Example

Show that
$$\lim_{x\to 0} \frac{\sin 2x}{5x} = \frac{2}{5}$$

Solution

$$\lim_{x \to 0} \frac{\sin 2x}{5x} = \lim_{x \to 0} \frac{\left(\frac{2}{5}\right)\sin 2x}{\left(\frac{2}{5}\right)5x}$$
$$= \frac{2}{5} \lim_{x \to 0} \frac{\sin 2x}{2x}$$
$$= \frac{2}{5}(1)$$
$$= \frac{2}{5}$$

Since we need 2x in the denominator

Show that
$$\lim_{x\to 0} \frac{\tan x \sec 2x}{3x} = \frac{1}{3}$$

$$\lim_{x \to 0} \frac{\tan x \sec 2x}{3x} = \frac{1}{3} \lim_{x \to 0} \frac{1}{x} \cdot \frac{\sin x}{\cos x} \cdot \frac{1}{\cos 2x}$$

$$= \frac{1}{3} \lim_{x \to 0} \frac{\sin x}{x} \cdot \frac{1}{\cos x} \cdot \frac{1}{\cos 2x} \qquad \lim_{x \to 0} \frac{\sin x}{x} = 1, \quad \lim_{x \to 0} \frac{1}{\cos x} = 1, \quad \lim_{x \to 0} \frac{1}{\cos 2x} = 1$$

$$= \frac{1}{3} (1)(1)(1)$$

$$= \frac{1}{3}$$

Exercises Section 1.4 – One-Sided Limits

1. Which of the following statements about the function y = f(x) graphed here are true, and which are false?

$$a) \quad \lim_{x \to -1^+} f(x) = 1$$

$$g) \quad \lim_{x \to 0} f(x) = 1$$

$$b) \quad \lim_{x \to 0^{-}} f(x) = 0$$

$$h) \quad \lim_{x \to 1} f(x) = 1$$

$$c) \quad \lim_{x \to 0^{-}} f(x) = 1$$

$$i) \quad \lim_{x \to 1} f(x) = 0$$

$$d) \quad \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x)$$

$$j) \quad \lim_{x \to 2^{-}} f(x) = 2$$

e)
$$\lim_{x \to 0} f(x)$$
 exists

k)
$$\lim_{x \to -1^{-}} f(x) = 0$$
 does not exist

$$f) \quad \lim_{x \to 0} f(x) = 0$$

$$\lim_{x \to 2^+} f(x) = 0$$

2. Let
$$f(x) = \begin{cases} 0, & x \le 0 \\ \sin \frac{1}{x}, & x > 0 \end{cases}$$

- a) Does $\lim_{x\to 0^+} f(x)$ exist? If so, what is it? If not, why not?
- b) Does $\lim_{x\to 0^{-}} f(x)$ exist? If so, what is it? If not, why not?
- c) Does $\lim_{x\to 0} f(x)$ exist? If so, what is it? If not, why not?

3. Let $g(x) = \sqrt{x} \sin \frac{1}{x}$

- a) Does $\lim_{x\to 0^+} g(x)$ exist? If so, what is it? If not, why not?
- b) Does $\lim_{x\to 0^{-}} g(x)$ exist? If so, what is it? If not, why not?
- c) Does $\lim_{x\to 0} g(x)$ exist? If so, what is it? If not, why not?

Find

4.
$$\lim_{x \to -0.5^{-}} \sqrt{\frac{x+2}{x+1}}$$

$$\lim_{x \to 1^+} \sqrt{\frac{x-1}{x+2}}$$

6.
$$\lim_{x \to -2^+} \left(\frac{x}{x+1} \right) \left(\frac{2x+5}{x^2+x} \right)$$

7.
$$\lim_{x \to 0^+} \frac{\sqrt{x^2 + 4x + 5} - \sqrt{5}}{x}$$

8.
$$\lim_{x \to -2^+} (x+3) \frac{|x+2|}{x+2}$$

9.
$$\lim_{x \to 1^+} \frac{\sqrt{2x}(x-1)}{|x-1|}$$

10.
$$\lim_{\theta \to 0} \frac{\sin \sqrt{2}.\theta}{\sqrt{2}.\theta}$$

$$11. \quad \lim_{x \to 0} \frac{\sin 3x}{4x}$$

$$12. \quad \lim_{x \to 0^{-}} \frac{x}{\sin 3x}$$

$$13. \quad \lim_{x \to 0} \frac{\tan 2x}{x}$$

14.
$$\lim_{x \to 0} 6x^2 (\cot x)(\csc 2x)$$

15.
$$\lim_{\theta \to 0} \frac{\sin \theta}{\sin 2\theta}$$

$$16. \quad \lim_{h \to 0} \frac{\sin(\sin h)}{\sin h}$$

17.
$$\lim_{\theta \to 0} \frac{\theta \cot 4\theta}{\sin^2 \theta \cot^2 2\theta}$$

Section 1.5 – Continuity

Definition of Continuity

Let c be a number in the interval (a, b), and let f be a function whose domain contains the interval (a, b). The function f is continuous at the point c if the following conditions are true.

- 1. f(c) is defined
- 2. $\lim_{x \to c} f(x)$ exists
- $3. \quad \lim_{x \to c} f(x) = f(c)$

If f is continuous at every point in the interval (a, b), then it is continuous on an open interval (a, b)

Definition

Interior point: A function y = f(x) is **continuous at an interior point** c of its domain if

$$\lim_{x \to c} f(x) = f(c)$$

Endpoint: A function y = f(x) is **continuous at a left point** a or is **continuous at a right point** b of its domain if

$$\lim_{x \to a^{+}} f(x) = f(a) \quad or \quad \lim_{x \to b^{-}} f(x) = f(b), \quad respectively$$

4

If a function f is not continuous at a point c, we say that f is **discontinuous** at c. (is a **point of discontinuity**)

Example

Find the points at which the function f is continuous and the points at which f is not continuous

Solution

The function f is continuous at every point in its domain [0, 4] except at x = 1, x = 2, and x = 4. At these points, there are breaks in the graph.

x = 0	$\lim_{x \to 0^+} f(x) = f(0) = 1$	f is continuous @ $x = 0$
x = 1	$\lim_{x \to 1} f(x) \text{ doesn't exist}$	f is discontinuous @ $x = 1$
x = 2	$\lim_{x \to 2} f(x) = 1, but 1 \neq f(2)$	f is discontinuous @ $x = 2$
x = 3	$\lim_{x \to 3} f(x) = f(3) = 2$	f is continuous @ $x = 3$
<i>x</i> = 4	$\lim_{x \to 4^{-}} f(x) = 1, \ but \ 1 \neq f(4)$	f is discontinuous @ $x = 4$
$c < 0, \ c > 4$	These points are not in the domain of f .	f is discontinuous
$0 < c < 4, c \ne 1,2$	$\lim_{x \to c} f(x) = f(c)$	

At what points the function $f(x) = \sqrt{4 - x^2}$ is continuous?

Solution

The function is continuous at every point of its domain [-2, 2]. Including x = -2, where f is right-continuous, and x = 2, where f is left-continuous.

Continuous Functions

A function is *continuous on an interval* iff it is continuous at every point of the interval. A *continuous function* is one that is continuous at every point of its domain. A continuous function need not be continuous on every interval.

Example

Determine at which points do the function $f(x) = \frac{1}{x}$ is continuous and discontinuous

Solution

The function f(x) is a continuous function because it is continuous at every point of its domain.

It has a point of discontinuity at x = 0, however, because it is not defined.

It is discontinuous on any interval containing x = 0

Theorem – Properties of Continuous Functions

If the functions f and g are continuous at x = c, then the following combinations are continuous at x = c.

Sums and Differences $f \pm g$

Constant multiples $k \cdot g$, for any number k.

Products $f \cdot g$

Quotients $\frac{f}{g}$

Powers f^n **n** a positive integer

Roots $\sqrt[n]{f}$, provided it is defined on an open interval containing c, where n is a positive integer

Proof

$$\lim_{x \to c} (f+g)(x) = \lim_{x \to c} (f(x)+g(x))$$

$$= \lim_{x \to c} f(x) + \lim_{x \to c} g(x)$$

$$= f(c)+g(c)$$

$$= (f+g)(c)$$

This shows that f + g is continuous

Composites

All composites of continuous functions are continuous.

If f(x) is continuous at x = c and g(x) is continuous at x = f(c), then $g \circ f$ is continuous at x = c

Show that $y = \sqrt{x^2 - 2x - 5}$ is continuous everywhere on its domain

Solution

Let
$$\begin{cases} f(x) = x^2 - 2x - 5, & Domain: \mathbb{R} \\ g(x) = \sqrt{x} & Domain: [0, \infty) \end{cases}$$

 \therefore The function y is continuous on $[0, \infty)$

Example

Show that $y = \left| \frac{x \sin x}{x^2 + 2} \right|$ is continuous everywhere on its domain

Solution

Let
$$\begin{cases} x \sin x & Domain : \mathbb{R} \\ x^2 + 2 & Domain : \mathbb{R} \end{cases}$$

.. The function is the composite of a quotient continuous functions with the continuous absolute value function.

Theorem

If g is continuous at the point b and $\lim_{x\to c} f(x) = b$, then

$$\lim_{x \to c} g(f(x)) = g(b) = g\left(\lim_{x \to c} f(x)\right)$$

Proof

Let $\varepsilon > 0$ be given. Since g is continuous at b, there exists a number $\delta_1 > 0$ such that

$$|g(y)-g(b)| < \varepsilon$$
 whenever $0 < |y-b| < \delta_1$

$$\lim_{x \to c} f(x) = b, \ \exists \ \delta > 0 \ \mathbf{9} \ \left| f(x) - b \right| < \delta_1 \quad whenever \quad 0 < |x - c| < \delta$$

If we let
$$y = f(x)$$
, we then have that $|y-b| < \delta_1$ whenever $0 < |x-c| < \delta$

Which implies from the first statement that $|g(y)-g(b)|=|g(f(x))-g(b)|<\varepsilon$ whenever

$$0 < |x - c| < \delta$$
. From the definition of the limit, this proves that $\lim_{x \to c} g(f(x)) = g(b)$

Find the
$$\lim_{x \to \frac{\pi}{2}} \cos\left(2x + \sin\left(\frac{3\pi}{2} + x\right)\right)$$

Solution

$$\lim_{x \to \frac{\pi}{2}} \cos\left(2x + \sin\left(\frac{3\pi}{2} + x\right)\right) = \cos\left(\lim_{x \to \frac{\pi}{2}} 2x + \lim_{x \to \frac{\pi}{2}} \sin\left(\frac{3\pi}{2} + x\right)\right)$$

$$= \cos\left(\pi + \sin 2\pi\right)$$

$$= \cos\left(\pi + 0\right)$$

$$= \cos\left(\pi\right)$$

$$= -1$$

Example

Show that $f(x) = \frac{x^2 + x - 6}{x^2 - 4}$, $x \ne 2$ has a continuous extension to x = 2, and find that extension.

Solution

$$f(x) = \frac{x^2 + x - 6}{x^2 - 4} = \frac{(x - 2)(x + 3)}{(x - 2)(x + 2)} = \frac{x + 3}{x + 2}$$

After simplification the function is continuous at x = 2

$$\lim_{x \to 2} \frac{x^2 + x - 6}{x^2 - 4} = \lim_{x \to 2} \frac{x + 3}{x + 2} = \frac{5}{4}$$

The new function is the function f with its point of discontinuity at x = 2 removed.

39

Theorem – the Intermediate Value Theorem for Continuous Functions

If f is a continuous function on a closed interval [a, b], and if y_0 is any value between f(a) and f(b), then $y_0 = f(c)$ for some c in [a, b].

A Consequence for Root Finding

We call a solution of the equation f(x) = 0 a **root** of the equation or zero of the function f. The Intermediate Value Theorem said that if f is continuous, then any interval on which f changes sign contains a zero of the function.

Example

Show that there is a root of the equation $x^3 - x - 1$ between 1 and 2.

Solution

$$f(1) = 1^3 - 1 - 1 = -1 < 0$$

$$f(2) = 2^3 - 2 - 1 = 5 > 0$$

Since f is continuous, the Intermediate Value Theorem says there is a zero of f between 1 and 2.

Use the Intermediate Value Theorem to prove that the equation $\sqrt{2x+5} = 4 - x^2$ has a solution.

Solution

The function $g(x) = \sqrt{2x+5}$ is continuous on the interval $\left[-\frac{5}{2}, \infty\right)$ since it is the composite of the square root function with nonnegative linear function y = 2x+5. Then the function $f(x) = \sqrt{2x+5} + x^2$ is the sum of the function g(x) and $y = x^2$. It follows that f(x) is continuous on the interval $\left[-\frac{5}{2}, \infty\right)$.

By trial and error:

$$f(0) = \sqrt{2(0) + 5} + 0^2 = \sqrt{5} > 0$$
$$f(2) = \sqrt{2(2) + 5} + 2^2 = \sqrt{9} + 4 = 7 > 0$$

f is continuous on the interval $[0, 2] \subset \left[-\frac{5}{2}, \infty\right)$.

Since the value $y_0 = 4$ is between $\sqrt{5}$ and 7, by the Intermediate Value Theorem there is a number $c \in [0, 2] \ni f(c) = 4$. That is, the number c solves the original equation.

Exercises Section 1.5 – Continuity

- 1. Given the graphed function f(x)
 - a) Does f(-1) exist?
 - b) Does $\lim_{x \to -1^+} f(x)$ exist?
 - c) Does $\lim_{x \to -1^{+}} f(x) = f(-1)$?
 - d) Is f continuous at x = -1?
 - e) Does f(1) exist?
 - f) Does $\lim_{x \to 1} f(x)$ exist?
 - g) Does $\lim_{x \to 1} f(x) = f(1)$?
 - h) Is f continuous at x = 1?

- **13.** At what points is the function $y = \frac{1}{x-2} 3x$ continuous?
- **14.** At what points is the function $y = \frac{x+3}{x^2 3x 10}$ continuous?
- **15.** At what points is the function $y = |x-1| + \sin x$ continuous?
- **16.** At what points is the function $y = \frac{x+2}{\cos x}$ continuous?
- 17. At what points is the function $y = \tan \frac{\pi x}{2}$ continuous?
- **18.** At what points is the function $y = \frac{x \tan x}{x^2 + 1}$ continuous?
- **19.** At what points is the function $y = \frac{\sqrt{x^4 + 1}}{1 + \sin^2 x}$ continuous?
- **20.** At what points is the function $y = \sqrt{2x+3}$ continuous?
- **21.** At what points is the function $y = \sqrt[4]{3x-1}$ continuous?
- 22. At what points is the function $y = (2-x)^{1/5}$ continuous?
- 23. Find $\lim_{x\to\pi} \sin(x-\sin x)$, then is the function continuous at the point being approached?

- **24.** Find $\lim_{x\to 0} \tan\left(\frac{\pi}{4}\cos\left(\sin x^{1/3}\right)\right)$, then is the function continuous at the point being approached?
- 25. Find $\lim_{t\to 0} \cos\left(\frac{\pi}{\sqrt{19-3\sec 2t}}\right)$, then is the function continuous at the point being approached?
- **26.** Explain why the equation $\cos x = x$ has at least one solution.
- 27. Show that the equation $x^3 15x + 1 = 0$ has three solutions in the interval [-4, 4]
- **28.** If functions f(x) and g(x) are continuous for $0 \le x \le 1$, could $\frac{f(x)}{g(x)}$ possibly be discontinuous at a point of [0, 1]? Give reason for your answer.
- **29.** Suppose that a function f is continuous on the closed interval [0, 1] and that $0 \le f(x) \le 1$ for every x in [0, 1]. Show that there must exist a number c in [0, 1] such that f(c) = c (c is called a *fixed* **point** of f).

Section 1.6 – Limits Involving Infinity; Asymptotes of Graphs

Finite limits as $x \to \pm \infty$

Definitions

We say that f(x) has the **limit** L **as** x **approaches infinity** and write $\lim_{x\to\infty} f(x) = L$

If,
$$\forall \varepsilon > 0 \exists N \ni \forall x$$
, $x > M \implies |f(x) - L| < \varepsilon$

We say that f(x) has the **limit** L **as** x **approaches** minus **infinity** and write $\lim_{x \to -\infty} f(x) = L$

If,
$$\forall \varepsilon > 0 \exists N \ni \forall x$$
, $x < M \implies |f(x) - L| < \varepsilon$

Basic Facts:

$$\lim_{x \to \pm \infty} k = k \quad and \quad \lim_{x \to \pm \infty} \frac{1}{x} = 0$$

Example

Find
$$\lim_{x \to \infty} \frac{5x^2 + 8x - 3}{3x^2 + 2}$$

Solution

$$\lim_{x \to \infty} \frac{5x^2 + 8x - 3}{3x^2 + 2} = \lim_{x \to \infty} \frac{5 + \frac{8}{x} - \frac{3}{x^2}}{3 + \frac{2}{x^2}}$$

$$= \frac{5 + 0 - 0}{3 + 0}$$

$$\lim_{x \to \pm \infty} \frac{1}{x} = 0$$

$$= \frac{5}{3}$$

Example

Find
$$\lim_{x \to \infty} \frac{11x + 2}{2x^3 - 1}$$

$$\lim_{x \to \infty} \frac{11x + 2}{2x^3 - 1} = \lim_{x \to \infty} \frac{\frac{11}{x^2} + \frac{2}{x^3}}{2 - \frac{1}{x^3}}$$

$$= \frac{0 + 0}{2 - 0}$$

$$= \frac{0}{2}$$

$$\lim_{x \to \pm \infty} \frac{1}{x} = 0$$

$$\lim_{x \to \pm \infty} \frac{1}{x} = 0$$

Horizontal Asymptote (HA)

The line y = b is a **horizontal asymptote** for the graph of a function f if

$$\lim_{x \to \infty} f(x) = b \quad \text{or} \quad \lim_{x \to -\infty} f(x) = b$$

Let
$$f(x) = \frac{p(x)}{q(x)} = \frac{a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0}{b_m x^m + b_{m-1} x^{m-1} + ... + b_1 x + b_0} = \frac{a_n x^n}{b_m x^m}$$
 be a rational function. (*Proof*!)

1. If the degree of numerator is less than of denominator $(n < m) \Rightarrow y = 0$

$$y = \frac{2x+1}{4x^2+5}$$
 $\Rightarrow y = 0$

2. If the degree of numerator is equal of denominator $(n = m) \Rightarrow y = \frac{a_n}{b_m}$

$$y = \frac{2x^2 + 1}{4x^2 + 5} \implies \underline{y} = \frac{2}{4} = \underline{\frac{1}{2}}$$

3. If the degree of numerator is greater than of denominator $(n > m) \Rightarrow$ No horizontal asymptote

$$y = \frac{2x^3 + 1}{4x^2 + 5} \implies No \ HA$$

Example

Find the horizontal asymptotes of the graph of $f(x) = \frac{x^3 - 2}{|x|^3 + 1}$

Solution

For
$$x \ge 0$$
 $\lim_{x \to \infty} \frac{x^3 - 2}{|x|^3 + 1} = \lim_{x \to \infty} \frac{x^3}{x^3} = 1$

For
$$x \le 0$$
 $\lim_{x \to \infty} \frac{x^3 - 2}{|x|^3 + 1} = \lim_{x \to -\infty} \frac{x^3}{(-x)^3} = -1$

The **HA** are y = -1 and y = 1.

Find
$$\lim_{x \to \infty} \sin\left(\frac{1}{x}\right)$$

Solution

Let
$$t = \frac{1}{x} \Rightarrow t \to 0$$
 as $x \to \infty$

$$\lim_{x \to \infty} \sin\left(\frac{1}{x}\right) = \lim_{t \to 0} \sin t = 0$$

Example

Find
$$\lim_{x \to \pm \infty} x \sin\left(\frac{1}{x}\right)$$

Solution

Let
$$t = \frac{1}{x} \Rightarrow x = \frac{1}{t}$$

$$\lim_{x \to \infty} x \sin\left(\frac{1}{x}\right) = \lim_{t \to 0^{+}} \frac{\sin t}{t} = 1$$

$$\lim_{x \to -\infty} x \sin\left(\frac{1}{x}\right) = \lim_{t \to 0^{-}} \frac{\sin t}{t} = 1$$

Example

Find the horizontal asymptote of $y = 2 + \frac{\sin x}{x}$

Solution

Since
$$0 \le \left| \frac{\sin x}{x} \right| \le \left| \frac{1}{x} \right|$$

$$\lim_{x \to \pm \infty} \left| \frac{1}{x} \right| = 0 \implies \lim_{x \to \pm \infty} \frac{\sin x}{x} = 0$$

$$\lim_{x \to \pm \infty} \left(2 + \frac{\sin x}{x} \right) = 2 + 0 = 2$$

The **HA** are y = 2

Find
$$\lim_{x \to \infty} \left(x - \sqrt{x^2 + 16} \right)$$

$$\lim_{x \to \infty} \left(x - \sqrt{x^2 + 16} \right) = \lim_{x \to \infty} \left(x - \sqrt{x^2 + 16} \right) \frac{x + \sqrt{x^2 + 16}}{x + \sqrt{x^2 + 16}}$$

$$= \lim_{x \to \infty} \frac{x^2 - \left(x^2 + 16 \right)}{x + \sqrt{x^2 + 16}}$$

$$= \lim_{x \to \infty} \frac{x^2 - x^2 - 16}{x + \sqrt{x^2 + 16}}$$

$$= \lim_{x \to \infty} \frac{-16}{x + \sqrt{x^2 + 16}}$$

$$= \lim_{x \to \infty} \frac{-\frac{16}{x}}{x + \sqrt{x^2 + \frac{16}{x^2}}}$$

$$= \lim_{x \to \infty} \frac{-\frac{16}{x}}{1 + \sqrt{1 + \frac{16}{x^2}}}$$

$$= \frac{0}{1 + \sqrt{1 + 0}}$$

$$= 0$$

Slant or Oblique Asymptotes

When the degree of the numerator is one greater than the degree of the numerator, the graph has a *slant* or *oblique* asymptote and it is a line y = ax + b, $a \ne 0$. To find the slant asymptote, divide the fraction using long division. The quotient (not remainder) is the slant asymptote.

$$y = \frac{3x^{2} - 1}{x + 2}$$

$$x + 2\sqrt{3x^{2} + 0x - 1}$$

$$\frac{3x^{2} + 6x}{-6x - 1}$$

$$\frac{-6x - 12}{R = 11}$$

$$y = \frac{3x^{2} - 1}{x + 2} = (3x - 6) + \frac{11}{x + 2}$$

The *oblique asymptote* is the line y = 3x - 6

Infinite Limits

The limit has a value of infinity or minus infinity, such a function $f(x) = \frac{1}{x}$. It is convenient to describe the behavior of f by saying that f(x) approaches ∞ as $x \to 0^+$.

Definition

We say
$$\lim_{x \to 0^+} f(x) = \infty$$

That $\lim_{x\to 0^+} \frac{1}{x}$ doesn't exist because $\frac{1}{x}$ becomes arbitrary large and positive as $x\to 0^+$.

We say
$$\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \frac{1}{x} = -\infty$$

That $\lim_{x\to 0^{-}} \frac{1}{x}$ doesn't exist because $\frac{1}{x}$ becomes arbitrary large and negative as $x\to 0^{-}$.

Example

Find
$$\lim_{x\to 1^+} \frac{1}{x-1}$$
 and $\lim_{x\to 1^-} \frac{1}{x-1}$

As
$$x \to 1^+ \Rightarrow x - 1 \to 0^+$$

$$\lim_{x \to 1^+} \frac{1}{x - 1} = \infty$$

$$\lim_{x \to 1^{-}} \frac{1}{x - 1} = -\infty$$

$$\lim_{x \to 2} \frac{(x-2)^2}{x^2 - 4} = \lim_{x \to 2} \frac{(x-2)^2}{(x-2)(x+2)} = \lim_{x \to 2} \frac{(x-2)}{(x+2)} = \frac{0}{4} = 0$$

$$\lim_{x \to 2} \frac{x-2}{x^2 - 4} = \lim_{x \to 2} \frac{x-2}{(x-2)(x+2)} = \lim_{x \to 2} \frac{1}{x+2} = \frac{1}{4}$$

$$\lim_{x \to 2^{+}} \frac{x-3}{x^{2}-4} = \lim_{x \to 2^{+}} \frac{x-3}{(x-2)(x+2)} = -\infty$$

$$\lim_{x \to 2^{-}} \frac{x-3}{x^2 - 4} = \lim_{x \to 2^{-}} \frac{x-3}{(x-2)(x+2)} = \infty$$

$$\lim_{x \to 2} \frac{x-3}{x^2 - 4} = \lim_{x \to 2} \frac{x-3}{(x-2)(x+2)} = \underline{\operatorname{doesn't exist}}$$

Vertical Asymptote (VA) - Think Domain

The line x = a is a *vertical asymptote* for the graph of a function f if

$$\lim_{x \to a^{+}} f(x) \to \pm \infty \quad or \quad \lim_{x \to a^{-}} f(x) \to \pm \infty$$

As x approaches a from either the left or the right

$$\lim_{x \to 0^{+}} \frac{1}{x} \to \infty \quad or \quad \lim_{x \to 0^{-}} \frac{1}{x} \to -\infty$$

Example

Find the horizontal and vertical asymptotes of the curve $y = \frac{x+3}{x+2}$

Solution

$$HA: y \to \frac{x}{x} = 1 \implies y = 1$$

$$VA: x+2=0 \implies \boxed{x=-2}$$

Example

Find the horizontal and vertical asymptotes of the curve $f(x) = -\frac{8}{x^2 - 4}$

HA:
$$y \to \lim_{x \to \infty} -\frac{8}{x^2} = 0 \implies \boxed{y = 0}$$

$$VA: x^2 - 4 = 0 \implies \boxed{x = \pm 2}$$

$$\lim_{x \to 2^{+}} f(x) = -\infty \quad and \quad \lim_{x \to 2^{-}} f(x) = \infty$$

Exercises Section 1.6 – Limits Involving Infinity; Asymptotes

1. Find the limit as
$$x \to \infty$$
 and as $x \to -\infty$ of $h(x) = \frac{-5 + \frac{7}{x}}{3 - \frac{1}{x^2}}$

2. Find the limit as
$$x \to \infty$$
 and as $x \to -\infty$ of $f(x) = \frac{2x+3}{5x+7}$

3. Find the limit as
$$x \to \infty$$
 and as $x \to -\infty$ of $f(x) = \frac{2x^3 + 7}{x^3 - x^2 + x + 7}$

4. Find the limit as
$$x \to \infty$$
 and as $x \to -\infty$ of $f(x) = \frac{x+1}{x^2+3}$

5. Find the limit as
$$x \to \infty$$
 and as $x \to -\infty$ of $f(x) = \frac{7x^3}{x^3 - 3x^2 + 6x}$

6. Find the limit as
$$x \to \infty$$
 and as $x \to -\infty$ of $f(x) = \frac{9x^4 + x}{2x^4 + 5x^2 - x + 6}$

7. Find the limit as
$$x \to \infty$$
 and as $x \to -\infty$ of $f(x) = \frac{-2x^3 - 2x + 3}{3x^3 + 3x^2 - 5x}$

Find

8.
$$\lim_{x \to -\infty} \frac{\cos x}{3x}$$

9.
$$\lim_{x \to \infty} \frac{x + \sin x}{2x + 7 - 5\sin x}$$

10.
$$\lim_{x \to \infty} \sqrt{\frac{8x^2 - 3}{2x^2 + x}}$$

11.
$$\lim_{x \to -\infty} \left(\frac{x^2 + x - 1}{8x^2 - 3} \right)^{1/3}$$

12.
$$\lim_{x \to \infty} \frac{2\sqrt{x} + x^{-1}}{3x - 7}$$

13.
$$\lim_{x \to \infty} \frac{x^{-1} + x^{-4}}{x^{-2} + x^{-3}}$$

14.
$$\lim_{x \to -\infty} \frac{4 - 3x^3}{\sqrt{x^6 + 9}}$$

15.
$$\lim_{x \to 0^+} \frac{1}{3x}$$

16.
$$\lim_{x \to -5^{-}} \frac{3x}{2x+10}$$

17.
$$\lim_{x \to 0} \frac{1}{x^{2/3}}$$

18.
$$\lim_{x \to 0^{-}} \frac{1}{3x^{1/3}}$$

19.
$$\lim_{x \to \left(-\frac{\pi}{2}\right)^+} \sec x$$

$$20. \quad \lim_{\theta \to 0^{-}} (1 + \csc \theta)$$

$$21. \quad \lim_{x \to -\infty} \left(\sqrt{x^2 + 3} + x \right)$$

$$22. \quad \lim_{x \to \infty} \left(\sqrt{x^2 + 3x} - \sqrt{x^2 - 2x} \right)$$

- 23. Graph the rational function $y = \frac{1}{2x+4}$. Include the equations of the asymptotes.
- **24.** Graph the rational function $y = \frac{2x}{x+1}$. Include the equations of the asymptotes.
- **25.** Graph the rational function $y = \frac{x^2}{x-1}$. Include the equations of the asymptotes.
- **26.** Graph the rational function $y = \frac{x^3 + 1}{x^2}$. Include the equations of the asymptotes.

Find the vertical, horizontal and oblique asymptotes (if any) of

27.
$$y = \frac{3x}{1-x}$$

28.
$$y = \frac{x^2}{x^2 + 9}$$

29.
$$y = \frac{x-2}{x^2 - 4x + 3}$$

30.
$$y = \frac{3}{x-5}$$

$$31. \quad y = \frac{x^3 - 1}{x^2 + 1}$$

32.
$$y = \frac{3x^2 - 27}{(x+3)(2x+1)}$$

33.
$$y = \frac{x^3 + 3x^2 - 2}{x^2 - 4}$$

34.
$$y = \frac{x-3}{x^2-9}$$

35.
$$y = \frac{6}{\sqrt{x^2 - 4x}}$$

36.
$$y = \frac{5x-1}{1-3x}$$