MGMT MFE 431-3 Statistical Arbitrage Lecture 06: More Alphas Professor Olivier Ledoit

University of California Los Angeles Anderson School of Management Master of Financial Engineering Fall 2018

Overall Structure

What We've Seen So Far

 Risk Model: shrinkage estimator of the covariance matrix of stock returns

Transaction Cost Model: 1bp + ½ bid-ask spread

 Alpha: Weighted blend of various standardized, windsorized alphas

Follow-up on Momentum

- Returns to momentum strategies experience infrequent but strong and persistent strings of losses
- These momentum "crashes" are forecastable: they occur:
 - following market declines
 - when market volatility is high
 - and contemporaneous with market "rebounds"

Momentum Crashes - Daniel (2011)

Figure 2: Momentum Components, 1949-2007

Worst Monthly Momentum Returns

Rank	Month	WML_t	Мкт-2ү	M K T_t
1	1932-08	-0.7896	-0.6767	0.3660
2	1932 - 07	-0.6011	-0.7487	0.3375
3	2009-04	-0.4599	-0.4136	0.1106
4	1939-09	-0.4394	-0.2140	0.1596
5	1933-04	-0.4233	-0.5904	0.3837
6	2001-01	-0.4218	0.1139	0.0395
7	2009-03	-0.3962	-0.4539	0.0877
8	1938-06	-0.3314	-0.2744	0.2361
9	1931-06	-0.3009	-0.4775	0.1380
10	1933-05	-0.2839	-0.3714	0.2119
11	2009-08	-0.2484	-0.2719	0.0319

2009 Momentum Performance

Momentum in the Great Depression

Explanation

- Poor performance due to short side: the short side of the portfolio (the losers) are crashing up rather than down.
- Loser portfolio optionality:
 loser up-market beta >> loser down-market beta

 Dangerous to be short losers after bear market when volatility is high... because they might rebound!

Alphas Everywhere

Haugen & Baker (2010) Case Closed

Most important factors for predicting the crosssection of US stock returns:

- 1) Residual Return = last month's residual stock return unexplained by the market
- 2) Cash Flow-to-Price = 12-month trailing cash flow-per-share divided by current price
- 3) Earnings-to-Price = 12-month trailing earnings-per-share divided by current price

Factors 4-6

- 4) Return On Assets = 12-month trailing total income divided by most recently reported total assets
- 5) Residual Risk = 24-month trailing variance of residual stock return unexplained by market return
- 6) 12-month Return = total return for the stock over trailing twelve months

Factors 7-9

- 7) Return on Equity = 12-month trailing earnings-per-share divided by most recently reported book value-per-share
- 8) Variance = 24-month trailing variance of total stock return
- 9) Book-to-Price = most recently reported book value of equity divided by current market price

Factors 10-12

- 10)Profit Margin = 12-month trailing earnings before interest divided by 12-month trailing sales
- 11)3-month Return = total return for the stock over trailing 3 months
- 12)Sales-to-Price = 12-month trailing sales-pershare divided by market price

Lessons

- Value, momentum, reversion: we knew
- Some accounting performance ratios:
 - Return on Book Value of Total Assets
 - Return on Book Value of Equity
 - Profit Margin: Earnings divided by Sales
- Low residual risk, low variance: Haugen & Baker's contribution
- Missing: analyst revisions, earnings announcements

Optimizer

- Inputs:
 - position as of close of business on day t-1
 - alphas using data observed up to day t-1
 - -t-costs using data observed up to day t-1
 - -risk model using data observed up to day t-1
 - constraints using data observed up to day t-1
- Output: trade to be executed on day t

```
final position(t+1) = final position(t) + trade (t)
```

Timeline

• Day t-1: most recent available data

<u>Day t:</u> trade gets executed

• Day t+1: returns start to be earnt

Backtest Code

- Load all necessary data into memory
- Create the alphas
- Start from portfolio with zero dollar invested
- Loop over all days in backtest period
 - Every day: call optimizer to find optimal rebalancing trade given initial position
 - End-of-day position becomes initial position of next day
- Compute P&L

Notation

- x: (n × 1) vector of desired portfolio weights
- w: (n × 1) vector of initial portfolio weights
- Σ : (n × n) covariance matrix of stock returns
- α : (n × 1) vector of aggregate alphas
- β : (n × 1) vector of historical betas
- τ : (n × 1) vector of transaction costs

Objectives and Constraints

- Minimize risk: $x' \Sigma x$
- Maximize exposure to alpha: α ' x
- Neutralize exposure to beta: $\beta' x = 0$
- Minimize transaction costs: τ ' | x-w |
- Other constraints:
 - maximum trade size
 - maximum position size
 - maximum industry and country exposure

Optimization Problem

$$\max_{\mathbf{X}} \alpha' \mathbf{x} - \lambda \cdot \tau' |\mathbf{x} - \mathbf{w}| - \mu \cdot \mathbf{x}' \Sigma \mathbf{x}$$
subject to:
$$\beta' \mathbf{x} = \mathbf{0}$$

and other constraints:

- maximum trade size
- maximum position size
- maximum industry exposure
- maximum country exposure

Objective Function

Maximum Trade Size

1% of Average Daily Volume (ADV)
 Can go to 2% if necessary (big book)

- Capped so liquid stocks do not dominate
- Example: cap at \$150K
 Can go higher if necessary (big book)

Maximum Position Size

- Multiple of maximum trade size
- I want to be able to liquidate every position in how many days?
- 10 days \Rightarrow 10 × max trade size
- Can be big relative to book size
- Keep balance between liquid and illiquid stocks

min(10 × max trade size, 2.5% of long side of book)

Merge the 2 Constraints

• Max trade size for ith stock: θ_i

$$\Rightarrow$$
 $w_i - \theta_i \le x_i \le w_i + \theta_i$

• Max position size for ith stock: π_i

$$\Rightarrow -\pi_{i} \leq x_{i} \leq \pi_{i}$$

Enforce both constraints simultaneously:

$$\max(w_{i} - \theta_{i}, -\pi_{i}) \leq x_{i} \leq \min(w_{i} + \theta_{i}, \pi_{i})$$

$$\gamma_{i} \leq x_{i} \leq \delta_{i}$$

Industry Constraints

- Sectors are a factor of risk
- Difficult to time sector performance
- Constrain industry exposure
- But not to zero (too much transaction cost)
- For \$50 \times 50M book size: $r^* = $300,000$ limit

Industry Dummy

- ρ industries
- Boolean matrix R of dimension (n $\times \rho$)
- R(i,j) = 1 if ith stock belongs to jth industry
- R(i,j) = 0 if ith stock is outside jth industry
- Every row of matrix R has exactly one entry equal to 1; all other entries are equal to 0
- Constraint: $-r^* \cdot 1 \le R'x \le r^* \cdot 1$ where 1 = vector of ones of the right dimension

Country Constraints

- Countries are a factor of risk
- Difficult to time country performance
- Constrain country exposure
- But not to zero (too much transaction cost)
- For \$50 \times 50M book size: $f^* = $100,000$ limit
- Tighter than industry exposure

Country Dummy

- φ countries
- Boolean matrix F of dimension (n $\times \phi$)
- F(i,j) = 1 if ith stock belongs to jth country
- F(i,j) = 0 if ith stock does not belong to jth country
- Every row of matrix F has exactly one entry equal to 1; all other entries are equal to 0
- Constraint: $-f^* \cdot 1 \le F'x \le f^* \cdot 1$

Overall Problem

$$\text{max}_{\textbf{X}} \ \alpha \ ' \ \textbf{x} - \lambda \cdot \tau \ ' \ | \ \textbf{x-w} \ | \ - \mu \cdot \textbf{x}' \Sigma \textbf{x}$$

Subject to:

- beta neutrality: $\beta' x = 0$
- max trade and position: $\gamma \le x \le \delta$
- industry constraint: $-r^* \cdot 1 \le R'x \le r^* \cdot 1$
- country constraint: $-f^* \cdot 1 \le F'x \le f^* \cdot 1$

Is this standard Quadratic Programming?

Quadratic Programming

- Quadratic programming (QP) is fast, efficient and guaranteed to converge
- Excellent off-the-shelf software
- Matlab optimization toolbox

 Problem: the absolute value in the transaction cost term is not standard quadratic programming: τ' | x-w |

Split Variables

- Classic solution: split each variable into 2
- Drawback: twice as many variables
- Advantage: no need to use nonlinear programming
- Define:
 - \rightarrow y = max(x-w,0)
 - \geq z = max(w-x,0)
- Then $y \ge 0$, $z \ge 0$, x = w + y z and |x-w| = y+z

Indeterminacy?

- Initial problem strictly convex
 ⇒ unique solution in x
- Twice as many variables: solution still unique in y and z?
- Replace y by y+1 and z by z+1
 ⇒ x = w + y z remains unchanged!

Still OK because |x-w| = y+z penalized

New Formulation

```
\max_{y,z} \alpha'(w+y-z) - \lambda \cdot \tau'(y+z) - \mu \cdot (w+y-z)' \Sigma(w+y-z)
Subject to:
```

- beta neutrality: $\beta'(w+y-z) = 0$
- max trade and position: $\gamma \leq w+y-z \leq \delta$
- industry constraint: $-r^* \cdot 1 \le R' (w+y-z) \le r^* \cdot 1$
- country constraint: $-f^* \cdot 1 \le F'$ (w+y-z) $\le f^* \cdot 1$

Very close to standard Quadratic Programming

Standard Quadratic Programming

$$min_u 0.5 u' H u + g' u$$

Subject to:

- A u ≤ b
- C u = d
- LB ≤ u ≤ UB

Rewrite Optimization Problem

$$\begin{aligned} \min_{\mathbf{y},\mathbf{z}} - \alpha'(\mathbf{y}-\mathbf{z}) + \lambda \cdot \tau'(\mathbf{y}+\mathbf{z}) + 2\mu \cdot \mathbf{w}' \Sigma(\mathbf{y}-\mathbf{z}) \\ + \mu \cdot (\mathbf{y}-\mathbf{z})' \Sigma(\mathbf{y}-\mathbf{z}) + \text{constant} \end{aligned}$$

Subject to:

- beta neutrality: $\beta'(y-z) = -\beta'w$
- max trade and position: $\gamma w \le y z \le \delta w$
- industries: $-r^* \cdot 1 R'w \le R'(y-z) \le r^* \cdot 1 R'w$
- countries: $-f^* \cdot 1 F'w \le F'(y-z) \le f^* \cdot 1 F'w$

Maps into standard Quadratic Programming

Mapping Objective Function

•
$$u = \begin{bmatrix} y \\ z \end{bmatrix}$$

• H = 2
$$\mu$$
 $\begin{bmatrix} \Sigma & -\Sigma \\ -\Sigma & \Sigma \end{bmatrix}$

• g =
$$\begin{bmatrix} 2\mu \Sigma w - \alpha + \lambda \tau \\ -2\mu \Sigma w + \alpha + \lambda \tau \end{bmatrix}$$

Mapping Inequality Constraints

$$A = \begin{pmatrix} R' & -R' \\ -R' & R' \\ F' & -F' \\ -F' & F' \end{pmatrix}$$

• A =
$$\begin{pmatrix} R' & -R' \\ -R' & R' \\ F' & -F' \\ -F' & F' \end{pmatrix}$$
 • b = $\begin{pmatrix} r^* \cdot \mathbf{1} - R' w \\ r^* \cdot \mathbf{1} + R' w \\ f^* \cdot \mathbf{1} - F' w \\ f^* \cdot \mathbf{1} + F' w \end{pmatrix}$

Mapping Equality Constraints

•
$$C = \begin{bmatrix} \beta' & -\beta' \end{bmatrix}$$
 • $d = -\beta' w$

Bounds on Optimization Variables

Lower bound:
 LB = vector of zeros of dimension (2n × 1)

Upper bound:

UB =
$$\left(\max(0, \min(\theta, \pi - w)) \right)$$
$$\max(0, \min(\theta, \pi + w))$$

Matlab Quadratic Optimizer

- quadprog.m
- No starting point needed
- options = optimset('Algorithm','interior-pointconvex')
- options = optimset(options,'Display','iter')

[u,fval,exitflag,output] = quadprog(H,g,A,b,C,d,LB,UB,[],options)

Other Good Optimizers

- IBM: CPLEX
- FICO: Xpress
- Sunset: XA
- Stanford: QPOPT, SQOPT and MINOS
- Roger Fletcher: BQPD
- KNITRO

Not cheap!

Required Readings for Next Lecture

- Cristi A. Gleason and Charles M. C. Lee. Analyst forecast revisions and market price discovery. The Accounting Review, 78(1):pp. 193–225, 2003.
- Narasimhan Jegadeesh, Joonghyuk Kim, Susan D. Krische, and Charles M. C. Lee. Analyzing the analysts: When do recommendations add value? The Journal of Finance, 59(3):1083–1124, 2004.