Rozmaite cierpienia

Na podstawie wykładów Prof. Świątkowskiego w semestrze letnim 2022/2023

oraz Introduction to Smooth Manifolds J.M. Lee

Spis treści

1	Defi	niowanie rozmaitości	3
	1.1	Rozmaitość topologiczna	
	1.2	Mapy, współrzędne lokalne	4
	1.3	Rozmaitości gładkie (różniczkowalne)	
	1.4	Warianty pojęcia rozmaitości różniczkowalnej	
	1.5	Dopowiedzenie o funkcjach gładkich	
	1.6	Dyfeomorfizmy	
	1.7	C ^k -różniczkowalność odwzorowań rozmaitości	
	1.8	Definiowanie rozmaitości gładkiej X za pomocą samego atlasu	
	1.9	Rozmaitość gładka z brzegiem	14
2	Rozl	kład jedności	17
	2.1	Lokalnie skończone rozdrobnienie	17
	2.2	Twierdzenie o rozkładzie jedności	19
	2.3	Zastosowania rozkładów jedności	
	2.4	Alternatywna wersja twierdzenia o rozkładzie jedności	22
3			
3	Dvsl	kretne ilorazy rozmaitości	23
3	Dysl 3.1	k retne ilorazy rozmaitości Klejenie rozmaitości wzdłuż brzegu	23 23
3	-	Klejenie rozmaitości wzdłuż brzegu	23
3	3.1		23 24
3	3.1 3.2	Klejenie rozmaitości wzdłuż brzegu	23 24 26
	3.1 3.2 3.3 3.4	Klejenie rozmaitości wzdłuż brzegu	23 24 26 29
	3.1 3.2 3.3 3.4 Wek	Klejenie rozmaitości wzdłuż brzegu	23 24 26 29
	3.1 3.2 3.3 3.4 Wek 4.1	Klejenie rozmaitości wzdłuż brzegu	23 24 26 29 32 32
	3.1 3.2 3.3 3.4 Wek	Klejenie rozmaitości wzdłuż brzegu Suma spójna rozmaitości Działanie grupy dyfeomorfizmów Gładki atlas na M/G Przestrzeń styczna - definicja kinematyczna Struktura wektorowa przestrzeni T _p M	23 24 26 29 32 32 33
	3.1 3.2 3.3 3.4 Wek 4.1 4.2	Klejenie rozmaitości wzdłuż brzegu	23 24 26 29 32 32 33 35
4	3.1 3.2 3.3 3.4 Wek 4.1 4.2 4.3 4.4	Klejenie rozmaitości wzdłuż brzegu Suma spójna rozmaitości Działanie grupy dyfeomorfizmów Gładki atlas na M/G **tory styczne Przestrzeń styczna - definicja kinematyczna Struktura wektorowa przestrzeni T _p M Różniczka Wiązka styczna	23 24 26 29 32 33 35 37
	3.1 3.2 3.3 3.4 Wek 4.1 4.2 4.3 4.4	Klejenie rozmaitości wzdłuż brzegu Suma spójna rozmaitości Działanie grupy dyfeomorfizmów Gładki atlas na M/G **tory styczne Przestrzeń styczna - definicja kinematyczna Struktura wektorowa przestrzeni TpM Różniczka Wiązka styczna	23 24 26 29 32 33 35 37 40
4	3.1 3.2 3.3 3.4 Wek 4.1 4.2 4.3 4.4	Klejenie rozmaitości wzdłuż brzegu Suma spójna rozmaitości Działanie grupy dyfeomorfizmów Gładki atlas na M/G **tory styczne Przestrzeń styczna - definicja kinematyczna Struktura wektorowa przestrzeni T _p M Różniczka Wiązka styczna	23 24 26 29 32 33 35 37 40

1. Definiowanie rozmaitości

1.1. Rozmaitość topologiczna

Definicja 1.1. Przestrzeń topologiczna M jest n-wymiarową rozmaitością (n-rozmaitością) topologiczną, jeśli:

- · iest Hausdorffa
- · ma przeliczalną bazę topologii
- jest lokalnie euklidesowa wymiaru n, tzn. każdy punkt posiada otoczenie otwarte homeomorficzne z otwartym podzbiorem w \mathbb{R}^n

Warunkiem równoważnym do lokalnej euklidesowości jest posiadanie przez każdy punkt $p \in M$ otoczenia U takiego, że istnieje homeomorfizm U $\stackrel{\cong}{\longrightarrow} B_r \subseteq \mathbb{R}^n$. [ćwiczenia]

Hausdorffowość

Dzięki warunkowi Hausdorffowości wykluczone są np. patologie pokroju

gdzie punktów A i B nie da się rozdzielić za pomocą rozłącznych zbiorów otwartych.

Ogólniej, warunek ten mówi, że lokalnie topologiczne własności z \mathbb{R}^n przenoszą się na M przez homeomorfizmy, np dla podzbioru $U \subseteq M$ i homeomorfizmu $\phi : U \to \overline{U} \subseteq \mathbb{R}^n$:

Dodatkowo, dla dowolnego *zwartego* $\overline{K} \subseteq \overline{U}$ jego odpowiednik na M, czyli $K = \phi^{-1}(\overline{K}) \subseteq U$, jest *domknięty i zwarty* [ćwiczenia]. Jeśli zaś \overline{K} jest zbiorem domknięty w \overline{U} , ale niezwartym, to nie zawsze K jest domknięty w M. Weźmy np. $\phi: U \to \overline{U} = \mathbb{R}^n$ i zbiór domknięty $\overline{K} = \mathbb{R}^n$ (cała przestrzeń jest jednocześnie domknięta i otwarta). Wtedy $K = \phi^{-1}(\overline{K}) = U$ jest otwartym podzbiorem M mimo, że \overline{K} jest otwarte.

Skończone podzbiory rozmaitości będącej przestrzenią Hausdorffa są zawsze domknięte i co ważne, granice ciągów na rozmaitościach topologicznych są jednoznacznie określone.

Przeliczalna baza

Warunek przeliczalnej bazy został wprowadzony, by rozmaitości nie były "zbyt duże". Nieprzeliczalna suma parami rozłącznych kopii \mathbb{R}^n nie może być rozmaitością. Warunek ten implikuje, że każde pokrycie zbiorami otwartymi zawiera przeliczalne podpokrycie [ćwiczenia], co jest nazywane warunkiem Lindelöfa.

Przeliczalność bazy implikuje również, że każda rozmaitość topologiczna jest wstępującą sumą zbiorów otwartych

$$U_1 \subseteq U_2 \subseteq ... \subseteq U_n \subseteq ...$$

które po domknięciu są nadal zawarte w niej. Pozwala ona również na włożenie M do \mathbb{R}^n dla odpowiednio dużego n. Czyli na przykład S², sfera, ma naturalne włożenie w \mathbb{R}^3 pomimo lokalnej euklidesowości z \mathbb{R}^2 .

Rodzina \mathscr{X} podzbiorów M jest *lokalnie skończona*, jeżeli każdy punkt $p \in M$ ma otoczenie, które przecina się co najwyżej ze skończoną liczbą zbiorów z \mathscr{X} . Jeżeli M ma dwa pokrycia: \mathscr{U} i \mathscr{V} takie, że dla każdego $V \in \mathscr{V}$ znajdziemy $U \in \mathscr{U}$ takie, że $V \subseteq U$, to \mathscr{V} jest *pokryciem włożonym/rozdrobnieniem* \mathscr{U} . Dzięki przeliczalności bazy M, każda rozmaitość jest parazwarta, czyli zawiera lokalnie skończone rozdrobnienie.

Lokalna euklidesowość

Twierdzenie 1.2. *Twierdzenie Brouwer'a* Dla m \neq n otwarty podzbiór \mathbb{R}^n nie może być homeomorficzny z żadnym otwartym podzbiorem \mathbb{R}^m .

Z twierdzenia wyżej wynika, że liczba n jest przypisana do M jednoznacznie i nazywa się **wymiarem** M (dim(M) = n). Jeśli wymiar rozmaitości M wynosi n, to nazywamy ją czasem n-rozmaitością.

Inne własności rozmaitości topologicznych:

- Każda rozmaitość ma przeliczalną bazę złożoną ze zbiorów homeomorficznych z kulami w \mathbb{R}^n , których domknięcia są zbiorami zwartymi.
- Każda rozmaitość jest lokalnie spójna, tzn. ma bazę otwartych zbiorów łukowo spójnych.
- Każda rozmaitość jest lokalnie zwarta (tzn. każdy punkt posiada zwarte otoczenie).

1.2. Mapy, współrzędne lokalne

Definicja 1.3. Mapą na rozmaitości topologicznej M nazywamy parę (U, ϕ), gdzie U jest otwartym podzbiorem M, zaś $\phi: U \to \overline{U} = \phi(U) \subseteq \mathbb{R}^n$ jest homeomorfizmem na otwarty podzbiór w \mathbb{R}^n . Zbiór U nazywamy wtedy **zbiorem mapowym**

Ponieważ każda rozmaitość topologiczna jest lokalnie euklidesowa, to M jest pokrywana zbiorami mapowymi.

Dla mapy (U, ϕ) takiej, że p \in U i ϕ (p) = 0 \in \mathbb{R}^n mówimy, że jest *mapą wokół* p . Za pomocą translacji możemy każdą mapę zawsze przesunąć tak, aby ϕ (p) = 0. Czyli możemy odgórnie zakładać, że mapa (U, ϕ) jest mapą o początku w p.

Często będziemy przechodzić do coraz to mniejszych zbiorów mapowych poprzez branie odwzorowań obciętych co nie burzy gładkości ani zgodności z atlasem. Pozwoli to np. zakładać, że dla p \notin F domkniętego bierzemy mapę (U, ϕ) taką, że U \cap F = \emptyset .

Tutaj warto zaznaczyć, że zbiór pusty zaspokaja definicję rozmaitości topologicznej dla dowolnego n. Wygodnie jest go jednak móc użyć, więc w definicji niepustość M nie jest przez nas wymagana. Mapy nazywa się też czasem *lokalnymi współrzędnymi* na M lub *lokalną parametryzacją* M. Ponieważ o mapie można myśleć jako o przeniesieniu siatki współrzędnych $(x_1, ..., x_n)$ z $\overline{U} = \phi(U)$ przez ϕ^{-1} na U, to będziemy często utożsamiać $U \subseteq M$ z \overline{U} . O punkcie $p \in M$ takim, że $\phi(p) = (x_1, ..., x_n)$ będziemy myśleć jako o $p = (x_1, ..., x_n)$.

Przykłady:

- Każdy otwarty podzbiór n-rozmaitości topologicznej jest n-rozmaitością [ćwiczenia].
- 2. Wykresy ciągłych funkcji: Niech U $\subseteq \mathbb{R}^n$ i f : U $\to \mathbb{R}^k$ jest funkcją ciągłą. Wykresem f nazywamy zbiór

$$\Gamma(f)$$
 = {(x, y) : $x \in U$, y = $f(x)$ } $\subseteq \mathbb{R}^n \times \mathbb{R}^k$

Oznaczmy przez $\pi_1:\mathbb{R}^n\times\mathbb{R}^k\to\mathbb{R}^n$ projekcję na \mathbb{R}^n , tzn. $\pi_1(x,y)=x\in\mathbb{R}^n$. Wtedy funkcja $\phi:\Gamma(f)\to U$ będąca obcięciem π_1 do $\Gamma(f)$. Ponieważ ϕ jest obcięciem funkcji ciągłej, to samo również jest ciągłe. W dodatku, funkcja $\phi^{-1}:\mathbb{R}^n\to\Gamma(f)$ dana przez $\phi^{-1}(x)=(x,f(x))\in\Gamma(f)$, jest ciągłą funkcją odwrotną do ϕ . W takim razie, ϕ jest homeomorfizmem między U a $\Gamma(f)$ i wykres funkcji ciągłych jest lokalnie euklidesowy. Jako podzbiór $\mathbb{R}^n\times\mathbb{R}^k$ jest też przestrzenią Hausdorffa oraz ma przeliczalną bazę. W takim razie, wykres ciągłej funkcji jest rozmaitością topologiczną.

3. Sfery S^n są n-rozmaitościami, które wkładają się w \mathbb{R}^{n+1} (S^n = {($x_1,...,x_{n+1}$) $\in \mathbb{R}^{n+1}$: $\sum x_i^2$ = 1}).

Rozważmy rodzinę par $\{(U_i^{\pm},\phi_i^{\pm}): i=1,...,n+1\}$ na S^n zdefiniowanych jako:

$$U_i^+ = \{x \in S^n : x_i > 0\}$$

$$U_i^- = \{x \in S^n : x_i < 0\}$$

Oznaczenie $\widehat{x_i}$ oznacza "wyrzucenie" danej współrzędnej.

$$\phi_i^{\pm}(x) = (x_1, ..., x_{i-1}, \widehat{x_i}, x_{i+1}, ..., x_n).$$

Zbiory U_i^\pm pokrywają całe S^n , gdyż każdy punkt posiada co najmniej jedną niezerową współrzędną, a funkcje ϕ_i^\pm są ciągłe jako obcięcia rzutów \mathbb{R}^{n+1} na \mathbb{R}^n . Obrazem zbioru U_i^\pm przez ϕ_i^\pm jest zbiór

$$\overline{\mathsf{U}_{\mathsf{i}}^{\pm}}$$
 = $\phi_{\mathsf{i}}^{\pm}(\mathsf{U}_{\mathsf{i}}^{\pm})$ = {(x₁, ..., x_n) : $\sum \mathsf{x}_{\mathsf{i}}^2 < 1$ }

czyli otwarta kula w \mathbb{R}^n .

Odwzorowania $\phi_{\mathbf{i}}^{\pm}$ są bijekcjami o odwzorowaniach odwrotnych:

$$(\phi_i^\pm)^{-1}(x_1,...,x_n) = (x_1,...,x_{i-1},\pm\sqrt{1-\sum x_i^2},x_i,...,x_n)$$

które są ciągłe. W takim razie ϕ_i^\pm są homeomorfizmami między otwartymi podzbiorami S^n a otwartymi podzbiorami R^n .

Pokazaliśmy lokalną euklidesowość S^n , natomiast bycie przestrzenią Hausdorffa o przeliczalnej bazie S^n dziedziczy z \mathbb{R}^{n+1} .

- 4. Produkt kartezjański dwóch (lub k) rozmaitości topologicznych rozmaitością topologiczną [ćwiczenia].
- 5. n-torus jest przestrzenią produktową \mathbb{T}^n = $S^1 \times ... \times S^1$ i n-rozmaitością topologiczną. \mathbb{T}^2 nazywamy po prostu torusem.

1.3. Rozmaitości gładkie (różniczkowalne)

Dla funkcji f : M $\to \mathbb{R}$ chcemy rozpoznawać je różniczkowalność za pomocą map (U, ϕ) na M.

Funkcja f : M $\to \mathbb{R}$ wyrażona w mapie (U, ϕ) to złożenie f $\circ \phi^{-1} : \overline{U} \to \mathbb{R}$.

Definicja 1.4. Funkcja $f: M \to \mathbb{R}$ jest **gładka**, jeśli dla każdej mapy (U, ϕ) na M $f \circ \phi^{-1}$ jest gładka.

W tej definicji pojawia się pewien problem: dla jednej mapy (U, ϕ) f może gładka, ale jeśli przejdziemy z obrazu mapy (U, ψ) to może się okazać, że f₂ = f₁ \circ ψ \circ ϕ ⁻¹ nie jest gładka:

Dlatego chcemy móc założyć, że $\phi \circ \psi^{-1}$ jest przekształceniem gładkim.

Definicja 1.5. Mapy (U, ϕ), (V, ψ) nazywamy (gładko) **zgodnymi**, gdy $\phi \circ \psi^{-1}$ i $\psi \circ \phi^{-1}$ są odwzorowaniami gładkimi.

Odwzorowania $\phi\psi^{-1}$ nazywamy *odwzorowaniami przejścia* z jednej mapy do drugiej. Jeśli $\phi\psi^{-1}$ i $\psi\phi^{-1}$ są gładkie, to są one wzajemnie do siebie odwrotnymi bijekcjami. Takie odwzorowania nazywamy **dyfeomorfizmami** (def. 1.14) pomiędzy otwartymi podzbiorami \mathbb{R}^n . Zauważmy, że w każdym punkcie Jakobian, czyli wyznacznik macierzy pochodnych cząstkowych, jest dla dyfeomorfizmów niezerowy [ćwiczenia].

W ogólnym przypadku, gdy U \cap V \neq \emptyset , rysunek wygląda:

Mapy (U, ϕ) i (V, ψ) nazywamy zgodnymi, jeśli:

- U ∩ V = ∅
- · odwzorowania przejścia

$$\phi\psi^{-1}:\psi(U\cap V)\to\phi(U\cap V)$$

oraz

$$\psi\phi^{-1}:\phi(U\cap V)\to\psi(U\cap V)$$

są gładkie (\iff są dyfeomorfizmami podzbiorów $\phi(U \cap V)$ i $\psi(U \cap V)$).

Definicja 1.6. Gładkim atlasem \mathscr{A} na rozmaitości M nazywamy zbiór map $\{(U_{\alpha}, \phi_{\alpha})\}$ takich, że:

- $\{U_{\alpha}\}$ pokrywają całe M
- · każde dwie mapy z tego zbioru są zgodne.

Przykłady:

Rodzina map {(U_i[±], φ_i[±])} na sferze Sⁿ jest atlasem gładkim na Sⁿ. Dla przykładu zbadamy zgodność map (U_i⁺, φ_i⁺) i (U_i⁺, φ_i⁺) dla i < j.

Popatrzmy jak wyglądają interesujące nas zbiory:

$$U_i^+ \cap U_i^+ = \{x \in S^n : x_i > 0, x_j > 0\}$$

$$\phi_i^{\star}(U_i^{\star}\cap U_i^{\star}) = \{x \in \mathbb{R}^n \ : \ |x| < 1, x_{j-1} > 0\}$$

bo usuwamy i-tą współrzędną i numery poprzednich współrzędnych spadają o 1 w dół,

$$\phi_j^{\scriptscriptstyle +}(U_i^{\scriptscriptstyle +}\cap U_j^{\scriptscriptstyle +}) = \{x\in \mathbb{R}^n \ : \ |x| < 1, x_i > 0\}$$

bo w tym przypadku usunęliśmy współrzędną na prawo od i, więc jej położenie nie zmienia się.

$$(x_{1},...,x_{n}) \xrightarrow{(\phi_{j}^{+})^{-1}} (x_{1},...,x_{j-1},\sqrt{1-|x|^{2}},x_{j},...,x_{n})$$

$$\downarrow^{\phi_{i}^{+}}$$

$$\{x \in \mathbb{R}^{n} : |x| < 1,x_{i} > 0\} \qquad (x_{1},...,x_{i-1},\widehat{x_{i}},x_{i+1},...,x_{j-1},\sqrt{1-|x|^{2}},x_{j},...,x_{n})$$

$$\uparrow^{n}$$

$$\{x \in \mathbb{R}^{n} : |x| < 1,x_{i-1} > 0\}$$

Czyli odwzorowanie przejścia jest zadane wzorem:

$$\phi_{i}^{+}(\phi_{j}^{+})^{-1}(x_{1},...,x_{n})=(x_{1},...,x_{i-1},x_{i+1},...,x_{j-1},\sqrt{1-|x|^{2}},x_{j},...,x_{n})$$

i widać, że jest ono gładkie. Pozostałe rachunki przechodzą analogicznie.

2. Jeśli V jest przestrzenią liniową wymiaru n < ∞ nad ℝ, to dowolna norma określona na V zadaje metrykę, która pozwala określić na V topologię (identyczną dla równoważnych norm). Z taką topologią V jest n-rozmaitością z naturalnie zdefiniowaną strukturą.</p>

Niech $(e_1,...,e_n)$ będzie bazą V. Rozważmy izomorfizm $E:\mathbb{R}^n\to V$ zadany przez

$$E(x) = \sum_{i < n} x^i e_i.$$

Funkcja ta w kontekście topologicznym jest homeomorfizmem, więc (V, E^{-1}) jest mapą na V.

Jeśli $(\overline{e}_1, ..., \overline{e}_n)$ jest inną bazą na V, to mamy homeomorfizm

$$\overline{E}(x) = \sum x^j \overline{e}_i$$

Istnieje wtedy pewna odwracalna macierz (A;) taka, że

$$e_i = \sum A_i^{j} \bar{j}$$

dla każdego i.

Stąd modwzorowanie przejścia między tymi dwoma mapami jest zadana przez $\overline{E}^{-1} \circ E(x) = \overline{x}$, gdzie $\overline{x} = (\overline{x}^1, ..., \overline{x}^n)$ jest zadane przez

$$\sum_{j \le n} \overline{x}^j \overline{e}_j = \sum_{i \le n} x^i e_i = \sum_{i,j \le n} x^i A_i^j \overline{e}_j \implies \overline{x}^j = \sum_{i \le n} A_i^j x^i$$

W takim razie jakakolwiek mapa wysyłająca x na \overline{x} jest odwracalna i liniowa \implies jest dyfeomorfizmem. Stąd dowolne dwie mapy (V, E) są gładko zgodne i ich rodzina definiuje na V standardową gładką strukturę.

Definicja 1.7. Rozmaitością gładką nazywamy parę (M, \mathscr{A}), gdzie M jest rozmaitością topologiczną, zaś \mathscr{A} jest pewnym atlasem gładkim na M.

Zdarza się, że różne atlasy na tej samej rozmaitości topologicznej M mogą zadawać tę samą rozmaitość gładką. Na przykład dla M = \mathbb{R}^n istnieje atlas zawierający jedną mapę $\{(\mathbb{R}^n, id_{\mathbb{R}^n})\}$ oraz atlas $\{(B_x(r), id_{B_x(r)}): x \in \mathbb{R}^n, r > 0\}$, który jest tak naprawdę "rozdrobnieniem" pierwszego atlasu.

Definicja 1.8. Niech \mathscr{A} będzie gładkim atlasem na M.

- 1. Mapa (U, ϕ) jest zgodna z \mathscr{A} , jeśli jest zgodna z każdą mapą $(V, \psi) \in \mathscr{A}$.
- 2. Dwa atlasy \mathcal{A}_1 , \mathcal{A}_2 na M są zgodne, jeśli każda mapa z \mathcal{A}_1 jest zgodna z \mathcal{A}_2 .

Warto zaznaczyć, że zgodność atlasów jest relacją zwrotnią i przechodnią [ćwiczenia]. Zgodne atlasy zadają tę samą strukturę rozmaitości gładkiej na topologicznej rozmaitości M. Wszystkie zgodne atlasy należą do jednego większego atlasu, co było przyczyną powstania definicji atlasu maksymalnego.

Definicja 1.9. \mathscr{A} jest **atlasem maksymalnym** na rozmaitości M, jeśli każda mapa zgodna z \mathscr{A} należy do \mathscr{A} .

Każdy atlas \mathscr{A} na M zawiera się w dokładnie jednym atlasie maksymalnym, złożonym ze wszystkich map zgodnych z \mathscr{A} [ćwiczenia]. Dodatkowo, zgodne atlasy zawierają się w tym samym atlasie maksymalnym. Wtedy można definiować rozmaitość gładką jako parę (M, \mathscr{A}), gdzie M jest rozmaitością topologiczną, a \mathscr{A} jest pewnym gładkim atlasem maksymalnym.

1.4. Warianty pojęcia rozmaitości różniczkowalnej

Mówimy, że mapy (U, ϕ), (V, ψ) są C^k -zgodne jeśli $\phi \circ \psi^{-1}$ i $\psi \circ \phi^{-1}$ są funkcjami klasy C^k (posiadają pochodne cząstkowe rzędów \leq k). C^k -atlas to z kolei rodzina C^k -zgodnych map, która określa strukturę C^k -rozmaitości na M. Struktura C^k -rozmaitości jest słabsza niż rozmaitości gładkiej i nie da się na niej zdefiniować map klasy C^m dla m > k.

 C^0 rozmaitość to określenie na rozmaitość topologiczną, a C^∞ -rozmaitość jest tym samym co rozmaitość gładka.

Dychotomia C^0 i C^k dla k > 0 aka dykresja

Z każdego maksymalnego atlasu C^1 -rozmaitości można wybrać atlas złożony z map C^∞ -zgodnych. Zatem, każda C^1 -rozmaitość posiada C^1 -zgodną strukturę C^∞ -rozmaitości [Whitney, 1940]. Istnieją jednak C^0 -rozmaitości, które nie dopuszczają żadnej zgodnej struktury gładkiej [Quinn '82, Friedmann '82].

- Na rozmaitości analitycznej mapy są analitycznie zgodne $[C^{\omega}]$. Mapy są analitycznie zgodne, gdy wyrażają się za pomocą szeregów potęgowych.
- Rozmaitość zespolona ma mapy będące funkcjami w \mathbb{C}^n zamiast \mathbb{R}^n .
- W rozmaitości konforemnej mapy zachowują kąty między punktami.
- Istnieją też rozmaitości kawałkami liniowe (PL)...

1.5. Dopowiedzenie o funkcjach gładkich

Funkcja f : M $\to \mathbb{R}$ jest gładka względem atlasu \mathscr{A} na M, jeśli dla każdej mapy (U, ϕ) \in \mathscr{A} f $\circ \phi^{-1}$ jest gładka.

Fakt 1.10.

• Jeśli f : M $\to \mathbb{R}$ jest gładka względem \mathscr{A} , zaś (U, ϕ) jest mapą zgodną z \mathscr{A} , to f $\circ \phi^{-1}$ jest gładka.

• Jeśli \mathscr{A}_1 i \mathscr{A}_2 są zgodnymi atlasami, to $f: M \to \mathbb{R}$ jest gładka względem $\mathscr{A} \iff$ f jest gładka względem $\mathscr{A}_2 \iff$ f jest gładka względem atlasu maksymalnego \mathscr{A}_{max} zawierającego \mathscr{A}_1 i \mathscr{A} .

Dowód. Ćwiczenia

Fakt 1.11. Złożenie gładkich odwzorowań pomiędzy rozmaitościami jest gładkie.

Dowód. Niech $f: M \to N i g: N \to P$ będą gładkimi funkcjami. Weźmy $p \in M$ oraz oznaczmy $q = f(p) \in N$, $s = g(q) = g(f(p)) \in P$. Niech (U, ϕ) , (V, ψ) , (W, ξ) będą mapami odpowiednio wokół p, q, s.

Wiemy, że $\psi f \phi^{-1}$ oraz $\xi g \psi^{-1}$ są funkcjami gładkimi. Chcemy sprawdzić, czy $\xi(g \circ f) \phi^{-1}$ jest funkcją gładką.

$$\xi(g \circ f)\phi^{-1} = (\xi g\psi^{-1}) \circ (\psi f\phi^{-1})$$

jest złożeniem dwóch funkcji gładkich między \mathbb{R}^n -ami, więc g \circ f jest gładką funkcją między rozmaitościami.

Definicja 1.12. Rzędem funkcji $f: M \to N$ C^1 -różniczkowalnego (def. 1.15) w punkcie p nazywamy rząd macierzy pierwszych pochodnych cząstkowych odwzorowania $\psi f \phi^{-1}$ w $\phi(p)$.

Fakt 1.13. Powyższa liczba [rząd funkcji w p] nie zależy od wyboru mapy wokół p ani wokół f(p).

Dowód. Szkicowy.

Dla map (U, ϕ), (V, ψ) oraz (U', ϕ'), (V', ψ') chcemy porównać rząd macierzy jakobianu $\widehat{f} = \psi f \phi^{-1}$ oraz $\widehat{\widehat{f}} = \psi' f (\phi')^{-1}$. Wiemy, że

$$\widehat{\widehat{\mathbf{f}}} = \alpha \widehat{\mathbf{f}} \beta$$
,

gdzie
$$\alpha$$
 = $\psi'\psi^{-1}$ i β = $\phi(\phi')^{-1}$.

Macierz jakobianu złożenia to iloczyn macierzy jakobianu funkcji składowych. Macierz jakobianu odwzorowań przejścia jest nieosobliwa [są one bijekcjami]. W takim razie domnożenie przez jakobian α i β nie zmieni rzędu jakobianu \hat{f} .

1.6. Dyfeomorfizmy

Definicja 1.14. Gładkie odwzorowanie $f: M \to N$ nazywamy **dyfeomorfizmem,** jeśli jest wzajemnie jednoznaczne (bijekcja) oraz odwzorowanie do niego odwrotne f^{-1} jest gładkie.

Dwie rozmaitości M, N są **dyfeomorficzne**, jeśli istnieje między nimi dyfeomorfizm. Są one wtedy nierozróżnialne jako gładkie rozmaitości.

Wyżej powiedzieliśmy, że każda C^1 -rozmaitość posiada C^1 -zgodną strukturę C^∞ rozmaitości. Teraz możemy dopowiedzieć, że jeśli dwie C^∞ -rozmaitości są C^1 -dyfeomorficzne, to są one też C^∞ -dyfeomorficzne. Stąd klasyfikacja C^1 rozmaitości różniczkowalnych z dokładnością do C^1 -dyfeomorfizmu jest taka sama jak klasyfikacja C^∞ rozmaitości z dokładnością do C^∞ dyfeomorfizmu.

Wiemy już, że istnieją C^0 -rozmaitości bez struktury C^∞ -rozmaitości. Możemy teraz dodać do tego fakt, że istnieją C^0 -rozmaitości które nie są dyfeomorficznie zgodne

jako C^{∞} rozmaitości. W 1956 pokazano, że dla sfer S^n $n\geq 7$ istnieje skończenie wiele takich niedyfeomorficznych struktur.

W latach 1980 pokazano, że na \mathbb{R}^4 istnieje nieprzeliczalnie wiele struktur o których mowa wyżej. Z kolei przypadku \leq 3 związek pomiędzy C^0 a C^∞ jest taki jak pomiędzy C^1 a C^∞ .

1.7. Ck-różniczkowalność odwzorowań rozmaitości

Definicja 1.15. Dla M, N gładkich rozmaitości i f : M \rightarrow N ciągłej mówimy, że f jest C^k -różniczkowalna w punkcie p, jeśli dla dowolnych map $(U, \phi) \ni p$ oraz $(V, \psi) \ni f(p)$ złożenie

$$\psi \circ f \circ \phi^{-1} : \phi[U \cap f^{-1}(V)] \to \psi(V)$$

jest C^k -różniczkowalne w punkcie $\phi(p)$.

f jest C^k na otoczeniu p, jeśli $\psi \circ f \circ \phi^{-1}$ jest C^k różniczkowalne na pewnym otwartym otoczeniu $\phi(p)$.

Funkcję $\psi \circ f \circ \phi^{-1}$ jest nazywana wyrażeniem f w mapach (U, ϕ) i (V, ψ) lub też wyrażeniem f w lokalnych współrzędnych zadanych przez te mapy.

Fakt 1.16. Jeśli f wyrażona w mapach (U, ϕ) i (V, ψ) jest C^k -różniczkowalna w pukcie $\phi(p)$ [na jego otoczniu] to wyrażona w innych mapach (U', ϕ') , (V', ψ') też jest C^k różniczkowalna wokół p [na jego otoczeniu].

Dowód. Niech $\hat{f} = \psi f \phi^{-1}$ a $\hat{f} = \psi' f (\phi')^{-1}$. Oznaczmy odwzorowania przejścia $\alpha = \phi(\phi')^{-1}$ oraz $\beta = \psi' \psi^{-1}$. Zachodzi

$$\widehat{\widehat{\mathsf{f}}} = \beta \circ \widehat{\mathsf{f}} \circ \alpha = (\psi'\psi^{-1}) \circ (\psi \mathsf{f} \phi^{-1})(\phi(\phi')^{-1}) = \psi' \mathsf{f} (\phi')^{-1}.$$

Zarówno \widehat{f} jak i $\beta \widehat{f} \alpha$ są funkcjami określonymi na pewnych podzbiorach \mathbb{R}^n oraz $\alpha(\phi'(p)) = \phi(p)$. W takim razie jeśli \widehat{f} jest funkcją C^k -różniczkowalną, to $\widehat{\widehat{f}}$ jako złożenie funkcji gładkich z funkcją C^k -różniczkowalna też takie jest.

Dzięki tej obserwacji możemy definiować C^k-różniczkowalność funkcji jako bycie C^k-różniczkowalną w dowolnej mapie. Możemy więc dobrać sobie mapę w której sprawdzamy C^k-różniczkowalność tak, aby dowód był wygodny.

Uwaga 1.17. Funkcja $f: M \to N$ jest C^k -różniczkowalna \iff dla dowolnych map (U,ϕ) oraz (V,ψ) wyrażenie ψ $f\phi^{-1}$ funkcji f jest C^k -różniczkowalne na całym zbiorze, na którym jest ono określone.

Pojęcia:

- · odwzorowań gładkich
- różniczkowalności w punkcie (otoczeniu)
- · dyfeomorfizmu
- · rzędu odwzorowania w punkcie

oraz ich własności bez zmian przenoszą się na rozmaitości gładkie z brzegiem (def. 1.19).

1.8. Definiowanie rozmaitości gładkiej X za pomocą samego atlasu

Lemat 1.18. Niech X będzie zbiorem (bez zadanej topologii) i $\{U_{\alpha}\}$ będzie kolekcją podzbiorów w X taką, że dla każdego α istnieje $\phi_{\alpha}: U_{\alpha} \to \mathbb{R}^n$ różniczkowalne takie, że

- 1. dla każdego α $\phi_{\alpha}(u_{\alpha}) = \overline{U_{\alpha}} \subseteq \mathbb{R}^{n}$ jest otwarty
- 2. dla dowolnych $\alpha, \beta \phi_{\alpha}(U_{\alpha} \cap U_{\beta})$ oraz $\phi_{\beta}(U_{\alpha} \cap U_{\beta})$ są otwarte w \mathbb{R}^{n} .
- 3. jeśli $U_{\alpha} \cap U_{\beta} \neq \emptyset$, to $\phi_{\beta} \circ \phi_{\alpha}^{-1} : \phi_{\alpha}(U_{\alpha} \cap U_{\beta}) \to \phi_{\beta}(U_{\alpha} \cap U_{\beta})$ jest gładkie (a nawet dyfeomorficzne, bo odwzorowanie odwrotne $\phi_{\alpha} \circ \phi_{\beta}^{-a}$ też jest gładkie)
- 4. przeliczalnie wiele spośród U_{α} pokrywa X
- 5. dla każdego p, $q \in X$, jeśli p $\neq q$, to istnieją α , β oraz otwarte $V_p \subseteq \overline{U_\alpha}$ i $V_q \subseteq \overline{U_\beta}$ takie, że p $\in \phi_\alpha^{-1}(V_p)$, $q \in \phi_\beta^{-1}(V_q)$ oraz $\phi_\alpha^{-1}(V_p) \cap \phi_\beta^{-1}(V_q) = \emptyset$ (oddzielanie punktów otwartymi zbiorami mapowymi).

Wówczas na X istnieje jedyna struktura rozmaitości topologicznej, dla której zbiory U_{α} są otwarte. Ponadto rodzina $\{(U_{\alpha}, \phi_{\alpha})\}$ tworzy wtedy gładki atlas na X.

Dowód. A dokładniej szkic dowodu.

Dokładny dowód w Lee, lemat 1.35.

Określimy topologię na X przy pomocy przeciwobrazów przez ϕ_{α} otwartych podzbiorów $\overline{U_{\alpha}} = \phi_{\alpha}(U_{\alpha}) \subseteq \mathbb{R}^n$. Sprawdzenie, że jest to bazą topologii jest ćwiczeniem. Dzięki temu zbadanie lokalnej euklidesowości jest trywialne.

Dzięki warunkowi 4 nietrudno jest wybrać wtedy bazę przeliczalną [ćwiczenie], a warunek Hausdorffowości wynika z 5.

Przykłady:

1. \mathscr{L} jest zbiorem prostych na płaszczyźnie. Na takim zbiorze nie ma dogodnej topologii, którą możnaby od razu wykorzystać. Zdefiniujmy zbiory:

U_h = {proste niepionowe}

oraz funkcje ϕ_h , ϕ_V :

$$U_h \ni L = \{y = ax + b\} \stackrel{\phi_h}{\mapsto} (a, b) \in \mathbb{R}^2$$

$$\mathsf{U}_\mathsf{V}
i \mathsf{L} = \{\mathsf{x} = \mathsf{c}\mathsf{y} + \mathsf{d}\} \overset{\phi_\mathsf{V}}{\mapsto} (\mathsf{c},\mathsf{d}) \in \mathbb{R}^2$$

Obie te funkcje są różnowartościowe i ich obrazy to \mathbb{R}^2 , czyli warunek 1 jest spełniony. Ponieważ jest ich tylko 2 sztuki i pokrywają całęgo X, to również 4. został spełniony. Sprawdźmy teraz 2:

 $U_h \cap U_V = \{ \text{proste niepionowe i niepoziome} \} = \{ y = ax + b : a \neq 0 \} = \{ x = cy + d : c \neq 0 \}$

$$\phi_h(U_h \cap U_V) = \{(a, b) \in \mathbb{R}^2 : a \neq 0\}$$

$$\phi_{\mathsf{V}}(\mathsf{U}_{\mathsf{h}}\cap\mathsf{U}_{\mathsf{V}})$$
 = {(c, d) : c \neq 0}

są otwarte, więc 2 jest spełniona. Teraz kolej na 3.

Weźmy prostą L = $\{x = cy + d\} = \{y = \frac{1}{c}x - \frac{d}{c}\} \in U_h \cap U_v$.

$$\left(\frac{1}{c}, -\frac{d}{c}\right) \stackrel{\phi_h}{\longleftarrow} L \stackrel{\phi_V}{\longrightarrow} (c, d)$$

Zatem $\phi_h \phi_v^{-1}(c, d) = \left(\frac{1}{c}, -\frac{d}{c}\right)$ jest gładkie (podobnie $\phi_v \phi_h^{-1}$).

Warunek 5. jest łatwy do sprawdzenia [ćwiczenie].

Z tą naturalną (mimo wszystko) topologią $\mathcal L$ jest w istocie homeomorficzne z wnętrzem wstęgi Möbiusa. Stąd do opisania $\mathcal L$ nie wystarcza jedna mapa.

O notacjach:

- W dalszej części rozważań będziemy utożsamiać mapowe otoczenie $U \subseteq M$ z obrazem przez mapę, czyli $\overline{U} = \phi(U) \subseteq \mathbb{R}^n$. Można o tym myśleć, że przenosimy siatkę współrzędnych $(x_1, ..., x_n)$ z \overline{U} przez ϕ^{-1} na $U \subseteq M$.
- Za pomocą translacji współrzędnych zawsze możemy przyjąć, że p = (0, ..., 0) w mapie, czyli możemy założyć, że (U, ϕ) jest mapą o początku w p.
- Często będziemy przechodzić do mniejszych zbiorów mapowych, za mapę biorąc odwzorowanie obcięte (jest to mapa zgodna z atlasem). Będziemy wtedy mówić, że przyjmujemy, iż mapa wokół p ma zbiór mapowy tak mały, jak nam akurat potrzeba, np. że jest rozłączny z pewnym zbiorem domkniętym F ⊆ M niezawierającym p.

1.9. Rozmaitość gładka z brzegiem

Rzeczywistą półprzestrzeń oznaczamy

$$H^n = \{(x_1, ..., x_n) \in \mathbb{R}^n : x_n > 0\}.$$

jej brzegiem nazywamy

$$\partial H^n = \{(x_1, ..., x_n) \in \mathbb{R}^n : x_n = 0\}$$

a wnętrzem:

$$int(H^n) = \{(x_1, ..., x_n) \in \mathbb{R}^n : x_n > 0\}.$$

Dla U \subseteq Hⁿ oznaczymy ∂ U = U \cap ∂ H oraz int(U) = U \cap int(Hⁿ), czyli definicja brzegu i wnętrza jest nieco inna niż na topologii. Użyjemy Hⁿ oraz definicji jej brzegu i wnętrza, by zdefiniować rozmaitość gładką z brzegiem.

Dla $U\subseteq H^n$ otwartego i $f:U\to \mathbb{R}^m$ mówimy, że f jest **gładka**, gdy jest obcięciem do U gładkiej funkcji $\widehat{f}:\widehat{U}\to \mathbb{R}^m$, $\widehat{U}\subseteq \mathbb{R}^n$ otwartego, $U\subseteq \widehat{U}$. Pochodne cząstkowe funkcji f są dobrze określone na int(U), a ponieważ są ciągłe, to są również dobrze określone na ∂U (tzn. nie zależą od wyboru rozszerzenia \widehat{f}). Z analizy matematycznej wiemy, że rozszerzenia \widehat{f} istnieje \iff wszystkie pochodne cząstkowe f w int(U) w sposób ciągły rozszerzają się do ∂U .

Definicja 1.19. M jest **gładką rozmaitością z brzegiem**, jeśli posiada atlas $\{(U_{\alpha}, \phi_{\alpha})\}$, $U_{\alpha} \subseteq M$ i $\phi_{\alpha} : U_{\alpha} \to H^{n}$ i $\overline{U_{\alpha}} = \phi_{\alpha}(U_{\alpha})$ jest otwarty w H^{n} , gdzie odwzorowania przejścia są gładkie (tzn. $\phi_{\alpha}\phi_{\beta}^{-1}$ są dyfeomorfizmami pomiędzy otwartymi podzbiorami w H^{n}).

Fakt 1.20. Jeśli w pewnej mapie $(U_{\alpha}, \phi_{\alpha}), \phi_{\alpha}(p) \in \partial H^{n}$, to w każdej innej mapie $(U_{\beta}, \phi_{\beta})$ zawierającej p $\phi_{\alpha}(p) \in \partial H^{n}$.

Dowód. Wynika to z twierdzenia o odwzorowaniu otwartym, wraz z nieosobliwością Jakobianu odwzorowań przejścia.

Dla rozmaitości topologicznych z brzegiem analogiczny fakt wymaga w dowodzie twardego twierdzenia Brouwera o niezmienniczności obrazu - analogicznego twierdzenia o odwzorowaniu otwartym dla ciągłych injekcji.

Definicja 1.21. Brzegiem n-rozmaitości M z brzegiem nazywamy zbiór

 $\partial M = \{ p \in M : w \text{ pewnej (każdej) mapie } p \in (U_{\alpha}, \phi_{\alpha}) \text{ zachodzi } \phi(p) \in \partial H^{n} \}$

wnętrze M nazywa się

$$int(M) = \{p \in M : (\exists (U_{\alpha}, \phi_{\alpha}) \phi_{\alpha}(p) \in int(H^{n})\}\$$

Fakt 1.22. Wnętrze int(M) n-rozmaitości gładkiej M jest n-rozmaitością bez brzegu.

Dowód. Jako atlas bierzemy $\{(U'_{\alpha}, \phi'_{\alpha})\}$, gdzie

$$\mathsf{U}_\alpha' = \phi_\alpha^{-1}(\mathsf{int}(\overline{\mathsf{U}_\alpha})) = \mathsf{U}_\alpha \cap \mathsf{int}(\mathsf{M}), \quad \phi_\alpha' = \phi_\alpha \upharpoonright \mathsf{U}_\alpha'$$

Odwzorowania przejścia $\phi_{\alpha}'(\phi_{\beta}')^{-1}$ są obcięciami $\phi_{\alpha}\phi_{\beta}^{-1}$, więc są gładkie.

Przykłady:

1. Dysk D^n = { $x \in \mathbb{R}^n$: $|x| \le 1$ } jest n-rozmaitością z brzegiem ∂D^n = S^{n-1} = { $x \in \mathbb{R}^n$: |x| = 1}.

Dowód. Skonstruujemy mapy, pomijając sprawdzanie gładkości odwzorowań przejścia.

Mapa (U_0, ϕ_0) :

$$U_0 = \{x : |x| < 1\}, \ \phi_0 : U_0 \to H^n, \ \phi_0(x_1, ..., x_n) = (x_1, ..., x_{n-1}, x_n + 2)$$

Mapy $(U_i^{\pm}, \phi_i^{\pm})$

2. Inny atlas na Dⁿ, składający się tylko z dwóch map:

Niech A i B będą punktami styczności dwóch prostych równoległych do dysku Dⁿ. Rozważmy zbiory

$$U_A = D^n \setminus \{A\}$$

$$U_B = D^n \setminus \{B\}$$

oraz odwzorowania $\phi_A:U_A\to H_A^n$ i $\phi_B:U_B\to H_B^n$ będące inwersjami dysku względem sfer S^n o środkach w A i B oraz promieniu 2.

3. Tutaj warto zaznaczyć, że jeśli n = 0, to wtedy ∂M = ∅ i M jest 0-rozmaitością. W dodatku, zbiór rozmaitości gładkich z brzegiem można rozumieć jakoby zawierał zbiór rozmaitości topologicznych, gdyż ∂M = ∅ ← M jest rozmaitością topologiczną.

2. Rozkład jedności

Rozważmy rozmaitość z brzegiem M. Chcielibyśmy mieć narzędzie, które pozwoli nam tworzyć gładkie funkcje $f: M \to \mathbb{R}$ takie, że f(p) = 0 gdy $p \in \partial M$ oraz f(p) > 0 dla dowolnego $p \in Int(M)$.

Bardziej ogólnie, możemy chcieć dla dowolnego zbioru domkniętego $D\subseteq M$ znaleźć funkcję, która dla $p\in D$ jest równa zero, a na $M\setminus D$ ma wartości ściśle dodatnie.

Lokalnie, na zbiorze mapowym (U_{α}, ϕ) możemy funkcję spełniającą wymagania wyżej zadać przy pomocy funkcji wychodzącej z $\overline{U_{\alpha}} = \phi(U_{\alpha})$

$$f_{\alpha}:\overline{U_{\alpha}}\to\mathbb{R}$$
, $f(x_1,...,x_n)=x_n$,

gdyż ostatnia współrzędna punktów z ∂M jest zawsze zerowa (gdyż są one w ∂H^n). Stąd w prosty sposób dostajemy funkcję:

$$f_{\alpha}: U_{\alpha} \to \mathbb{R}$$
, $f_{\alpha} = \overline{f_{\alpha}} \circ \phi$

która lokalnie spełnia nasze wymagania. Nie możemy jednak w prosty sposób przełożyć lokalne f_{α} na funkcję $f: M \to \mathbb{R}$.

2.1. Lokalnie skończone rozdrobnienie

Przypomnijmy definicje, które będą przydatne przy rozkładach jedności:

Definicja 2.1. Pokrycie $\{A_{\alpha}\}$ podzbiorami przestrzeni topologicznej X jest **lokalnie skończone**, jeśli dla każdego $p \in X$ istnieje otoczenie U_p takie, że $U_p \cap A_{\alpha} \neq \emptyset$ tylko dla skończenie wielu α .

Definicja 2.2. Pokrycie $\{V_{\beta}\}$ przestrzeni X zbiorami otwartymi nazywamy **rozdrobnie-niem pokrycia** $\{U_{\alpha}\}$, jeśli każdy V_{β} zawiera się w pewnym U_{α} .

Warto nadmienić, że relacja bycia rozdrobnieniem jest przechodnia. Będziemy oznaczać ją przez $\{V_{\beta}\} \prec \{U_{\alpha}\}$.

 $\begin{array}{l} \{ \mathsf{W}_{\gamma} \} \!\! \prec \!\! \{ \mathsf{V}_{\beta} \} \!\! \prec \!\! \{ \mathsf{U}_{\alpha} \} \Longrightarrow \\ \Longrightarrow \{ \mathsf{W}_{\gamma} \} \!\! \prec \!\! \{ \mathsf{U}_{\alpha} \} \end{array}$

Definicja 2.3. Przestrzeń topologiczna X jest **parazwarta**, jeśli każde jej pokrycie $\{U_{\alpha}\}$ zbiorami otwartymi posiada lokalnie skończone rozdrobnienie $\{V_{\beta}\}$.

Warto przypomnieć, że każda rozmaitość topologiczna jest parazwarta. Dowód tego lematu wykorzystuje w istotny sposób lokalną zwartość, czyli istnienie dla każdego punktu otoczeń prezwartych (po domknięciu zwartych). Własność ta została udowodniona na ćwiczeniach.

Dowód: patrz Lee strona 36-37

Uwaga 2.4. Rozdrobnienie wynikające z parazwartości rozmaitości topologicznych można z góry uznać za składające się z prezwartych zbiorów mapowych.

Dowód. Niech $\{U_{\alpha}\}$ będzie pokryciem M. Łatwo jest znaleźć rozdrobnienie $\{U_{\gamma}'\} \prec \{U_{\alpha}\}$ złożone ze zbiorów prezwartych mapowych. Wystarczy obraz każdego U_{α} w \mathbb{R}^n pokryć

zbiorami prezwartymi i wrócić z nimi na M. Z faktu, że rozmaitości są parazwarte dostajemy lokalnie skończone rozdrobnienie $\{V_{\beta}\} \prec \{U_{\gamma}'\}$, które z przechodności \prec jest też rozdrobnieniem $\{U_{\alpha}\}$. Dodatkowo, każdy V_{β} zawiera się w pewnym U_{γ}' , które były mapowe i prezwarte, więc i V_{β} taki jest.

Uwaga 2.5. Niech $\{A_{\alpha}\}$ będzie lokalnie skończoną rodziną parazwartych podzbiorów rozmaitości M. Wtedy dla każdego A_{α_0} podrodzina

$$\{A_{\alpha}: A_{\alpha} \cap A_{\alpha_0} \neq \emptyset\}$$

jest skończona.

Dowód. Załóżmy nie wprost, że dla pewnego A_{α_0} podrodzina $\{A_{\alpha}: A_{\alpha} \cap A_{\alpha_0} \neq \emptyset\}$ jest nieskończona. Możemy w takim razie wybrać z niej ciąg A_{α_i} oraz ciąg punktów $x_i \in A_{\alpha_i} \cap A_{\alpha_0}$. Ciąg x_i ma punkt skupienia w pewnym $p \in cl(A_{\alpha_0})$.

Ponieważ p jest punktem skupienia x_i , to dowolne otwarte otoczenie U_p punktu p zawiera nieskończenie wiele elementów x_i . W takim razie U_p przecina się z nieskończenie wieloma zbiorami A_α . Jest to sprzeczne z lokalną skończonościa $\{A_\alpha\}$.

W uwadze 2.4 pokazaliśmy mapowość i prezwartość zbiorów z rozdrobnienia $\{V_{\beta}\}$ wynikającego z parazwartości rozmaitości topologicznych. Możemy teraz dodatkowo zapewnić sobie istnienie interesujących nas zbiorów zwartych:

Uwaga 2.6. Niech $\{V_{\beta}\}$ będzie lokalnie skończonym rozdrobnieniem pokrycia M składającym się ze zbiorów mapowych. Wtedy dla każdego β istnieje zwarty zbiór $D_{\beta} \subseteq V_{\beta}$ taki, że

$$\bigcup \mathsf{D}_\beta = \mathsf{M}$$

to znaczy możemy wybrać "rozdrobnienie" przy pomocy zwartych zbiorów, które nadal pokrywa M.

Dowód. Ponieważ V_{β} są zbiorami mapowymi, to o każdym z nich możemy myśleć jak o otwartym podzbiorze w \mathbb{R}^n poprzez utożsamienie go z otwartym zbiorem $\overline{V_{\beta}} = \phi_{\beta}(V_{\beta})$ dla mapy $(V_{\beta}, \phi_{\beta})$.

Każdy V_{β_0} jest wstępującą suma mniejszych zbiorów $V_{\beta_0,k}$ dla $k\in\mathbb{N}$, które są otwarte i ich zwarte domknięcia zawierają się w V_{β_0} : $cl(V_{\beta_0,k})\subseteq V_{\beta_0}$. Możemy np. wybierać $V_{\beta_0,k}=B(x_0,k)\cap\{x\in V_{\beta_0}: d(x,V_{\beta_0^c}>\frac{1}{k}\},$ tzn. przekroje kul otwartych w \mathbb{R}^n o środku w $x_0\in V_{\beta_0}$ i promieniu k ze zbiorami tych $x\in V_{\beta_0}$, które są odległe od dopełnienia V_{β_0} o co najmniej $\frac{1}{k}$.

Niech teraz V_{β_1} , ..., V_{β_m} będą zbiorami z $\{V_{\beta}\}$ niepusto krojącymi V_{β_0} . Jest ich skończenie na mocy 2.5. Wówczas V_{β_1} , ..., V_{β_m} wraz z wcześniej stworzonymi $V_{\beta_0,k}$ jest pokryciem zwartego zbioru cl (V_{β_0}) . Możemy więc z niego wybrać skończone podpokrycie postaci: V_{β_1} , ..., V_{β_m} , ..., V_{β_0,k_0} . Oznacza to, że zastępując w $\{V_{\beta}\}$ zbiór V_{β_0} przez zbiór V_{β_0,k_0} dostajemy nowe pokrycie M z cl $(V_{\beta_0,k_0} \subseteq V_{\beta_0})$. Powtarzamy to induktywnie dla wszystkich V_{β} i wybieramy pokrycie

$$D_{\beta} = cl(V_{\beta,k}),$$

które spełnia wymagania z uwagi.

Z uwag udowodnionych wyżej wynika więc, że dla dowolnego pokrycia otwartego $\{U_\beta\}$ rozmaitości topologicznej M istnieje

- lokalnie skończone rozdrobnienie $\{V_\beta\}$ składające się ze zbiorów mapowych i parazwartych oraz
- rodzina $\{D_{\beta}\}$ zwartych podzbiorów $D_{\beta} \subseteq V_{\beta}$, która dalej pokrywa M.

To samo dotyczy też rozmaitości z brzegiem.

2.2. Twierdzenie o rozkładzie jedności

Definicja 2.7. Dla funkcji rzeczywistej $f: X \to \mathbb{R}$ określamy jej **nośnik** jako:

$$supp(f) := cl(\{x \in X : f(x) \neq 0\})$$

Fakt 2.8. [$z \mathbb{R}^n$] Dla dowolnego otwartego $\Omega \subseteq \mathbb{R}^n_+$ oraz dowolnego zwartego $D \subseteq \Omega$ istnieje gładka funkcja $f : \mathbb{R}^n \to \mathbb{R}$ taka, że:

- 1. $f \ge 0$
- 2. $supp(f) \subseteq \Omega$
- 3. $f(x) > 0 dla x \in D$

Twierdzenie 2.9. [O rozkładzie jedności] Dla każdego otwartego pokrycia $\{U_{\alpha}\}$ rozmaitości gładkiej M istnieje rodzina $\{f_i\}$ gładkich funkcji $f_i: M \to \mathbb{R}$ takich, że

- 1. $f_i \geq 0$
- 2. dla każdego i nośnik supp (f_i) zawiera się w pewnym U_{α}
- 3. nośniki {supp(f_i)} tworzą lokalnie skończone pokrycie M
- 4. dla każdego $x \in M \sum f_i(x) = 1$ [suma ta jest skończona wokół każdego x dzięki 3.]

Dowód. Niech $\{V_j\} \prec \{U_\alpha\}$ będzie lokalnie skończonym pokryciem otwartym prezwartymi zbiorami mapowymi. Niech $D_j \subseteq V_j$ będą zbiorami zwartymi, które dalej pokrywają M (na mocy 2.6).

Niech (V_j,ϕ_j) będzie mapą na M i niech

$$\overline{\mathsf{D}}_{\mathsf{j}} = \phi(\mathsf{D}_{\mathsf{j}}) \subseteq \phi_{\mathsf{j}}(\mathsf{V}_{\mathsf{j}}) = \overline{\mathsf{V}}_{\mathsf{j}}$$

będzie zbiorem zwartym. Dzięki faktowi z \mathbb{R}^n 2.8 wiemy, że dla każdego j istnieje gładka funkcja $\overline{h}_i:\mathbb{R}^n\to\mathbb{R}$ taka, że:

- 1. $\overline{h}_i \geq 0$
- 2. $supp(\overline{h}_i) \subseteq \overline{V}_i$
- 3. $\overline{h}_j(x) > 0$ dla $x \in D_j$.

Zdefiniujmy teraz funkcję $h_i:M\to\mathbb{R}$ taką, że:

$$h_{j}(x) = \begin{cases} \overline{h}_{j} \circ \phi_{j}(x) & x \in V_{j} \\ 0 & x \notin V_{j} \end{cases}$$

Żeby pokazać gładkość h_j, wystarczy pokazać jej gładkość na pewnym otoczeniu każdego punktu.

Na otoczeniu punktów z V_j funkcja jest oczywiście gładka jako złożenie dwóch funkcji gładkich. Dla p \notin V_j istnieje otwarte otocznie U_p które jest rozłączne z supp(h_j), a więc jest otwartym otoczenie na którym h_j jest stale równe zero. Taka funkcja jest oczywiście gładka.

Niech teraz h(x) = $\sum_j h_j(x)$. Jest to dobrze określona definicja, gdyż supp(h_j) tworzą rodzinę lokalnie skończoną (bo $\{V_j\}$ taka jest). Z lokalnej skończoności nośników wynika, że h jest gładka na M.

Dostajemy też h(x) > 0, bo D_j pokrywają całe M, a więc dla każdego $x \in M$ istnieje i takie, że $x \in D_i$, a więc $h_i(x) > 0$.

Określmy $f_j(x) = \frac{h_j(x)}{h(x)}$. Wiemy, że $f_j: M \to \mathbb{R}$ jest gładka na M, supp $(f_j) = \text{supp}(h_j) \subseteq V_j$, więc rodzina $\{\text{supp}(f_j)\}$ jest lokalnie skończona i każdy supp (f_j) zawiera się w pewnym U_{Ω} . Wreszcie mamy

$$\sum f_{j}(x) = \sum \frac{h_{j}(x)}{h(x)} = \frac{\sum h_{j}(x)}{h(x)} = \frac{\sum h_{j}(x)}{\sum h_{j}(x)} = 1$$

dla każdego $x \in M$.

Definicja 2.10. Rodzina funkcji $\{f_j\}$ jak w dowodzie twierdzenia wyżej jest nazywana **rozkładem jedności** wpisanym w pokrycie $\{U_{\alpha}\}$.

2.3. Zastosowania rozkładów jedności

Zazwyczaj rozkłady jedności służą do konstruowania gładkich funkcji, które są określone na całym M i spełniają pewne wymagania. Z pomocą rozkładów jedności będziemy też "globalizować" inne obiekty na rozmaitościach, np. pola wektorowe, metryki Riemanna czy formy różniczkowalne.

Przykłady:

1. Niech F_1 , F_2 będą domkniętymi rozłącznymi podzbiorami gładkiej rozmaitości M. Wówczas istnieje gładka funkcja $f: M \to [0, 1]$ taka, że

$$f \upharpoonright F_1 \equiv 1$$

oraz f \upharpoonright $F_2 \equiv 0$.

Dowód. Niech $U_i = M \setminus F_i$, wtedy $\{U_1, U_2\}$ jest pokryciem M. Niech $\{f_i\}$ będzie rozkładem jedności wpisanym w $\{U_1, U_2\}$. Określmy

$$f(x) = \sum_{\text{supp}(f_j) \subseteq U_2} f_j(x).$$

Weźmy $x \in F_1$, wtedy wszystkie nośniki supp (f_i) zawierające x zawierają się w U_2 , zatem dla takich x jest

$$f(x) = \sum f_i(x) = 1$$

Jeśli $x \in F_2$, to nośniki supp (f_i) zawierające x nie mogą zawierać się w U_2 . W takim razie f(x) = 0.

2. Rozważmy istnienie gładkiej funkcji $f:M \to \mathbb{R}$ takiej, że

$$f(p) = \begin{cases} = 0 & p \in \partial M \\ > 0 & p \in Int(M) \end{cases}$$

Niech $\{U_\alpha\}$ będzie dowolnym pokryciem zbiorami mapowymi, a $f_\alpha:U_\alpha\to\mathbb{R}^n$ będą lokalnie gładkimi funkcjami takimi, że

$$\mathsf{f}_\alpha = \begin{cases} \overline{\mathsf{f}}_\alpha \circ \phi_\alpha & \mathsf{U}_\alpha \cap \partial \mathsf{M} \not= \emptyset \\ \mathsf{1} & \mathsf{U}_\alpha \cap \partial \mathsf{M} = \emptyset \end{cases}$$

gdzie $\overline{f}_{\alpha}: \overline{U}_{\alpha} \to \mathbb{R}$ jest zdefiniowane jako

$$\bar{f}_{\alpha}(x_1,...,x_n) = x_n.$$

Niech $\{h_{\beta}\}$ będzie rozkładem jedności wpisanym w $\{U_{\alpha}\}$. Dla każdego β wybieramy $\alpha(\beta)$ takie, że supp $(h_{\beta}) \subseteq U_{\alpha(\beta)}$. Definiujemy $h'_{\beta} : M \to \mathbb{R}$ przez

$$h'_{\beta} = h_{\beta} \circ f_{\alpha(\beta)}$$
.

Wtedy h'_{β} jest gładkie oraz supp $(h'_{\beta}) \subseteq \text{supp}(h_{\beta})$, więc rodzina nośników $\{\text{supp}(h'_{\beta})\}$ jest lokalnie skończona.

Zdefiniujmy teraz

$$f(x) = \sum h'_{\beta}$$
,

które z lokalnej skończoności nośników $\{\text{supp}(h'_{\beta})\}$ jest dobrze określone.

- $p \in \partial M$, to dla każdego $\beta h'_{\beta}(p) = 0$, więc f(p) = 0.
- p \in Int(M), to wtedy istnieje β takie, że $h_{\beta}(p) > 0$, a ponieważ dla $\gamma \neq \beta$ $h'_{\gamma}(p) \geq 0$, to f(p) > 0.
- 3. Dla dowolnego $A\subseteq M$ domkniętego oraz $A\subseteq U\subseteq M$ otwartego istnieje funkcja $f:M\to\mathbb{R}$ taka, że dla $x\in A$ f(x)=1 oraz $supp(f)\subseteq U$.

Po angielsku taka funkcja nazywa się bump function

Dowód. Niech $U_1 = U$ oraz $U_2 = M \setminus A$, zbiory te pokrywają całe M. Niech h_1 , h_2 będzie rozkładem jedności wpisanym w to pokrycie. Wtedy funkcja h_1 ma poszukiwane własności, bo dla $x \in A$ mamy $h_2(x) = 0$, więc $1 = h_1(x) + h_2(x) = h_1(x)$.

4. Funkcja $f: M \to \mathbb{R}$ jest nazywana *exhaust function*, jeśli dla każdego $c \in \mathbb{R}$ $f^{-1}((-\infty,c])$ jest zwartym podzbiorem M. Kiedy idąc po liczbach naturalnych n rozpatrujemy $f^{-1}((-\inf ty,n])$, to po drodze zahaczamy o wszystkie zwarte zbiory w M, stąd też nazwa. Dowód istnienia exhaust function korzysta z rozkładów jedności $\{h_i\}$ wpisanych w dowolne pokrycie prezwartymi zbiorami oraz funkcji $f(x) = \sum_{i>1} j \cdot \phi_i(x)$.

Dowód istnienia to wniosek 2.28 z Lee.

2.4. Alternatywna wersja twierdzenia o rozkładzie jedności

Twierdzenie 2.11. Dla dowolnego otwartego pokrycia $\{U_{\alpha}\}_{{\alpha}\in A}$ rozmaitości gładkiej M istnieje rodzina $\{f_{\alpha}\}$ gładkich funkcji $f_{\alpha}: M \to \mathbb{R}$ takich, że

- 1. $f_{\alpha} \geq 0$
- 2. $supp(f_{\alpha}) \subseteq U_{\alpha}$
- 3. nośniki $\{\text{supp}(f_{\alpha})\}$ tworzą lokalnie skończone pokrycie M [czyli wiele spośród f_{α} jest zerowych]
- 4. dla każdego $x \in M \sum f_{\alpha}(x) = 1$

Dowód. Znowu szkic dowodu za pomocą wyjściowej wersji twierdzenia.

Rozważmy rodzinę $\{f_j\}_{j\in J}$ jak w wyjściowej wersji twierdzenia. Dla każdego $j\in J$ wybieramy $\alpha(j)\in A$ takie, że supp $(f_i)\subseteq U_{\alpha(j)}$. Zdefiniujmy

$$f_{\alpha} = \sum_{\mathbf{j}:\alpha(\mathbf{j})=\alpha} f_{\mathbf{j}}.$$

Z lokalnej skończoności nośników supp (f_j) wiemy, że f_α również jest funkcją gładką. Warunek 4 zachodzi w sposób oczywisty, tak samo warunek 1.

Warunki 2 i 3 w łatwy sposób wynikają z obserwacji, że dla dowolnej lokalnie skończonej rodziny podzbiorów P_t w przestrzeni X, $cl(\bigcup P_t) = \bigcup cl(P_t)$.

3. Dyskretne ilorazy rozmaitości

3.1. Klejenie rozmaitości wzdłuż brzegu

Twierdzenie 3.1. Niech M będzie gładką n-rozmaitościa, a B niech będzie kompotentą brzegu ∂M. Wtedy istnieje dyfeomorficzne (dyfeomorfizm na obraz) włożenie

$$K: B \times [0, 1) \rightarrow M$$

na otwarte otoczenie U komponenty B w M takie, że K(x, 0) = x dla $x \in B$.

Dowód. Dowód za kilka wykładów przy pomocy potoków wektorowych.

Jeśli M₁, B₁ oraz M₂, B₂ są jak wyżej oraz istnieje dyfeomorfizm

$$f: B_1 \rightarrow B_2$$

to możemy zdefiniować relację równoważności

$$B_1 \ni x \sim f(x) \in B_2$$

oraz stworzyć rozmaitość:

$$M_1 \cup_f M_2 = M_1 \sqcup M_2 / \sim$$
.

Struktura na $M_1 \cup_f M_2$ jest częściowo odziedziczona po M_1 i M_2 . Dodatkowo sklejamy zbiory U_i utożsamiając je z produktami $B_i \times [0,1)$ za pomocą B_i :

$$K_i: B_i \otimes [0,1) \rightarrow M_i$$

Na $M_1 \cup_f M_2$ istnieją trzy rodzaje map:

- 1. dla dowolnej mapy (U, ϕ) na M_1 rozważamy jej obcięcie do $U \setminus B_1$
- 2. dla dowolnej mapy (V, ψ) na M_2 rozważamy jej obcięcie do $V \setminus B_2$

3. dla dowolnej mapy (W, ξ) na B_1 i $\xi : W \to \overline{W} \subseteq \mathbb{R}^{n-1}$ rozważamy zbiór

$$[W \times [0,1)] \cup_{f \upharpoonright W} [f(W) \times [0,1)] = \widehat{W} \subseteq M_1 \cup_f M_2$$

z mapą

$$\begin{split} \widehat{\xi}: \widehat{W} \to \overline{\widehat{W}} \subseteq \mathbb{R}^n \\ \widehat{\xi}(x,t) &= \begin{cases} (\xi(x), -t) & (x,t) \in U_1 \\ (\xi(f^{-1}(x)), t) & (x,t) \in U_2 \end{cases} \end{split}$$

Mamy $\widehat{\xi}(x, 0) = \widehat{\xi}(f(x), 0)$, więc \widehat{x} jest dobrze zdefiniowane w punktach sklejenia.

$$\overline{\widehat{W}} = \overline{W} \times \text{(-1,1)} \subseteq \mathbb{R}^n \times \text{(-1,1)} \subseteq \mathbb{R}^{n+1}$$

zaś $\widehat{\xi}:\widehat{W} \to \overline{\widehat{W}}$ jest homeomorfizmem.

Sprawdzenie gładkiej zgodności map z podpunktów 1, 2 i 3 zostanie pominięte.

Rozmaitość $M_1 \cup_f M_2$ wydaje się zależeć jednocześnie od wyboru f oraz otoczeń kołnierzowych K_i komponent brzegów B_i . W rzeczywistości jednak, $M_1 \cup_f M_2$ jest takie same z dokładnością do dyfeomorfizmu dla dowolnych wyborów K_i :

Fakt 3.2.

1. Jeśli K_1, K_1' są podobnie położone w $M_1,$ tzn. istnieje $h: M_1 \to M_1$ dyfeomorfizm taki, że

$$\mathsf{K}_1'\upharpoonright \mathsf{B}_1\times [0,1\frac{1}{2})=\mathsf{h}\circ \mathsf{K}_1\upharpoonright \mathsf{B}_1\times [0,\frac{1}{2})\text{,}$$

to wtedy

$$M_1 \cup_{f,K_1,K_2} M_2 \cong M_1 \cup_{f,K_1',K_2} M_2.$$

Analogicznie gdy weźmiemy K_2 , K'_2 . [dowód: ćwicznia]

- 2. Każde dwa otoczenia kołnierzowe komponenty B_1 brzegu ∂M są podobnie położone. [dowód trudny]
- 3. Ustalmy otoczenia kołnierzowe K_1 , K_2 . Jeśli f_0 , $f_1: B_1 \to B_2$ są izotopijnymi dyfeomorfizmami, tzn. istnieje gładkie $F: [0,1] \times B_1 \to B_2$ takie, że $F(0) = f_0$ a $F(1) = f_1$, wtedy

$$M_1 \cup_{f_0,K_1,K_2} M_2 \cong M_1 \cup_{f_1,K_1,K_2} M_2.$$

[dowód łatwy]

3.2. Suma spójna rozmaitości

Niech M_1, M_2 będą rozmaitościami wymiaru n. Weźmy $D_i \subseteq M_i$, czyli kule n-wymiarowe zawarte w otoczeniach mapowych. Oznaczmy $B_i = \partial D_i \cong S^{n-1}$ jako komponenty brzegu rozmaitości $M_i \setminus Int(D_i)$. Niech

$$f: B_1 \rightarrow B_2$$

będzie dyfeomorfizmem. Oznaczamy wówczas

$$[M_1 \setminus Int(D_1)] \cup_f [M_2 \setminus Int(D_2)] = M_1 \# M_2$$

jako sumę spójną rozmaitości M_1 i M_2 .

Uwaga 3.3.

- 1. Jeśli M_i jest rozmaitością spójną, to $M_i \setminus Int(D_i)$, z dokładnością do dyfeomorfizmu, nie zależy od wyboru dysku D_i .
- 2. Istnieją dokładnie 2 klasy izotopii dyfeomorfizmów $f:S^{n-1}\to S^{n-1}$: te zachowujące orientację oraz te, które orientacji nie zachowują.
- 3. Są co najwyżej dwie rozmaitości będące sumą spójną M₁#M₂. W przypadku rozmaitości zorientowanych, jedna z nich jest preferowana.

Klasyfikacja zamkniętych powierzchni spójnych (czyli zwarte 2-wymiarowe rozmaitości bez brzegu):

- 1. Powierzchnie orientowalne: S^2 , T^2 , T^2 # T^2 , T^2 # T^2 # T^2 , ...
- 2. Powierzchnie nieorientowalne $\mathbb{R}P^2$ = S^2/\mathbb{Z}_2 , $\mathbb{R}P^2\#\mathbb{R}P^2$, ...

Powierzchnie z powyższej listy są parami niedyfeomorficzne. Każda zamknięta powierzchnia jest dyfeomorficzna z jedną z tej listy.

3-rozmaitości:

Dehn surgery: niech M będzie 3-wymiarową rozmaitością M z kolekcją węzłów (podrozmaitości Sⁿ dyfeomorficznych do skończonej rozłącznej sumy S^j) L = L₁ ∪ ... ∪ L_k. Rozmaitość M wywiercona wzdłuż tubowego otoczeniem L posiada k-wiele komponentów brzegu T₁ ∪ ... ∪ T_k. Chirurgia Dehna polega na wywierceniu z M tubowego otoczenia L wraz ze sklejeniem każdej z komponent brzegu T₁ ∪ ... ∪ T_k w jeden torus [to jest Dehn filling i jest wiele sposobów na wytworzenie go].

Poniżej bardzo luźne opisy z wikipedii. Dokładniejsze opisy lepiej jest doczytać w literaturze. Rozkłady Heegaarda [Heegaard's splittings] na zorientowanej 3-rozmaitości z brzegiem M polega na na podzieleniu jej na dwa handlebody [fidget spinnery; 3-rozmaitości oriengowalne z brzegiem zawierające parami rozłączne włożone 2-dyski takie, że rozmaitość wzdłuż nich przecięta jest S³].

3.3. Działanie grupy dyfeomorfizmów

Definicja 3.4. Grupa G dyfeomorfizmów M to zbiór dyfeomorfizmów $g:M\to M$ zamknięty na składanie i branie odwrotności. Mówimy wtedy, że G działa na M przez dyfeomorfizmy.

Definicja 3.5. Orbita punktu $x \in M$ względem działania G na M nazywamy zbiór

$$G(x) = \{g(x) : g \in G\}$$

Uwaga 3.6. Orbity G(x) i G(y) są albo rozłączne, albo pokrywają się.

Rodzina wszystkich orbit stanowi rozbicie rozmaitości M na podzbiory.

Definicja 3.7. Przestrzeń ilorazowa działania G na M to przestrzeń, której punktami są orbity G(x):

$$M/G = \{G(x) : x \in M\}$$

zaś topologia jest ilorazowa, tzn. *zbiór orbit jest otwarty* w M/G \iff suma tych orbit stanowi otwarty podzbiór w M.

Jeśli U \subseteq M jest otwartym podzbiorem, to

$$G(U)/G = \{G(x) : x \in U\}$$

jest otwarty w M/G i każdy zbiór otwarty w M/G jest takiej postaci. Kiedy ${\mathcal B}$ jest bazą topologii w M, to rodzina

$$\{G(U)/G: U \in \mathscr{B}\}$$

jest bazą topologii w M/G. Z tego powodu M/G zawsze posiada przeliczalną bazę.

Definicja 3.8. Lokalną euklidesowość M/G zapewnia warunek na działanie nakrywające:

$$(\forall \ p \in M)(\exists \ p \in U \overset{\text{otw.}}{\subseteq} M)(\forall \ g_1, g_2 \in G) \ g_1(U) \cap g_2(U) = \emptyset.$$

Przy takim działaniu G na M podzbiór G(U)/G jest otoczeniem G(p) homeomorficzny z U. Oznacza to lokalną euklidesowość M/G.

Fakt 3.9. Jeśli działanie grupyG przez homeomorfizmy na rozmaitości M jest nakrywające, to iloraz M/G jest lokalnie euklidesowy dla wymiaru n = dim(M).

Przykłady:

1. Działanie grupy \mathbb{Z} na $\mathbb{R}^2\setminus\{(0,0)\}$ przez potęgi przekształcenia liniowego zadanego macierzą

$$A = \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

jest nakrywające. W takim razie iloraz ($\mathbb{R}^2 \setminus \{(0,0)\})/\langle A \rangle$ jest lokalnie euklidesowy wymiaru 2. Jednak iloraz ten nie jest przestrzenią Hausdorffa, bo dla punktów na osobnych osiach p i q zbiory otwarte:

nigdy nie mogą być rozłączne. Stąd rozmaitość ilorazowa M/G nie może być nigdy rozmaitością różniczkowalną.

Definicja 3.10. Działanie G na M przez dyfeomorfizm jest:

- 1. wolne, gdy dla każdego $g \in G \setminus \{id\} i$ dla każdego $x \in M$ $g(x) \neq x$
- 2. **właściwie nieciągłe** [properly discontinuous], gdy dla każdego zwartego $K \subseteq M$ zbiór $\{g \in G : g(K) \cap K \neq \emptyset\}$ jest skończony.

Definicja 3.11. Dla $x \in M$ **stabilizator** (nadgrupa stabilizująca) punktu x względem G to

$$Stab(x) := \{g \in G : g(x) = x\}$$

jest automatycznie podgrupą G.

Fakt 3.12. Działanie G jest wolne \iff wszystkie stabilizatory stab(x) są trywialne (= $\{id\}$).

Przykłady:

1. Działanie grupy \mathbb{Z}_n na \mathbb{R}^2 zadane przez potęgi obrotu o kąt $\frac{2\pi}{n}$ nie jest wolne.

2. Działanie G jest wolne \iff dla każdego $x \in M$ odwzorowanie $G \to G(x)$ zadane przez $g \mapsto g(x)$ jest bijekcją.

Fakt 3.13.

- 1. Gdy działanie G przez homeomorfizmy na przestrzeni topologicznej lokalnie zwartej X jest właściwie nieciągłe, to każda orbita G(x) jest dyskretnym podzbiorem w X (tzn. każdy $x \in G(x)$ ma otwarte otocznie U takie, że $U \cap G(x) = \{x\}$).
- 2. Jeśli działanie G na X jest właściwie nieciągłe i wolne, to jest też nakrywające.
- 3. Jeśli G działa przez homeomorfizmy na przestrzeni lokalnie zwartej X w sposób właściwie nieciągły, to iloraz X/G jest przestrzenią Hausdorffa.

Przykłady:

- 1. Działanie grupy \mathbb{Z} na S¹ przez potęgi obrotu o kąt α niewspółmierny z 2π jest wolne, ale ma orbity gęste w S¹, a więc nie są one dyskretne. Zatem działanie nie jest ani właściwie nieciągłe, ani wolne. Iloraz s¹/ \mathbb{Z} jest wtedy przestrzenią z topologią trywialną, więc nie jest rozmaitością.
- 2. Działanie \mathbb{Z} na $\mathbb{R}^2 \setminus \{(0,0)\}$ przez potęgi

$$A = \begin{pmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{pmatrix}$$

nie może być właściwie nieciągłe. Można to zobaczyć bezpośrednio:

dla każdego n \geq 1 mamy $A^{n}(K) \cap K \neq \emptyset$.

Jednakże tak zadane działanie \mathbb{Z} na $\mathbb{R}^2\setminus\{(0,0)\}$ jest wolne i ma dyskretne orbity. W takim razie warunek, by działanie było wolne i miało dyskretne orbity nie jest wystarczający do tego, by iloraz był rozmaitością. Nie musi być nawet przestrzenią Hausdorffa, jak pokazaliśmy wcześniej.

Fakt 3.14. Jeśli G jest działaniem na Mⁿ przez dyfeomorfizmy w sposób wolny i właściwie nieciągły, to iloraz M/G jest

- lokalnie euklidesowy n-wymiarowy
- Hausdorffa

· ma przeliczalną bazę

Zatem M/G jest n-wymiarową rozmaitością topologiczną.

3.4. Gładki atlas na M/G

Niech $U \subseteq M$ spełnia warunek:

 $(\textcircled{ }) \text{ U jest zbiorem mapowym oraz dla każdych } g_1,g_2 \in G\text{, } g_1 \neq g_2 \implies g_1(U) \cap g_2(U) = \emptyset.$

Zauważmy, że każdy $p \in M$ ma otoczenie U spełniające (5), a zatem każda orbita $G(p) \in M/G$ ma otoczenie postaci G(U)/G ze zbiorem U spełniającym (5). Dla takiego U odwzorowanie

$$i_U: U \rightarrow G(U)/G$$

 $p \mapsto G(p)$

jest homeomorfizmem. Niech teraz $\phi: I \to \overline{U} \subseteq \mathbb{R}^n$ będzie mapą z atlasu \mathscr{A} . Wtedy

$$\phi_G: G(U)/G \to \overline{U} \subseteq \mathbb{R}^n$$

$$\phi_{G} = \phi \circ i_{U}^{-1}$$

jest obiecującym kandydatem na mapę dla M/G. Rozważmy rodzinę

$$\mathscr{A}_{\mathsf{G}} = \{(\mathsf{G}(\mathsf{U})/\mathsf{G}, \phi_{\mathsf{G}}) : \mathsf{U} \text{ spełnia } (\textcircled{\$}) \text{ oraz } (\mathsf{U}, \phi) \in \mathscr{A}\}.$$

Fakt 3.15. Odwzorowanie ilorazowe $q_G:M\to M/G$ zadane przez

$$q_G(x) = G(x) \in M/G$$

jest gładkie i jest lokalnym dyfeomorfizmem.

Dowód.

Zakładamy, że \mathscr{A}_G tworzy gładki atlas [fakt 3.16]. Wtedy q_G obcięte do mapowego U musi spełniać ((S)), więc jest bijekcją na otwary podzbiór w M/G. Ponadto

$$\phi_{\mathsf{G}} \circ \mathsf{q}_{\mathsf{G}} \circ \phi^{-1} = \phi \circ \mathsf{i}_{\mathsf{U}}^{-1} \circ \mathsf{i}_{\mathsf{U}} \phi^{-1} = \mathsf{id}_{\mathsf{\overline{II}}}$$

czyli q_G musi być funkcją gładką, bo inaczej id $_{\overline{U}}$ takie nie będzie. Stąd q_G jest dyfeomorfizmem.

Fakt 3.16. \mathscr{A}_{G} jest gładko zgodny, więc jest gładkim atlasem na M/G.

Dowód. Niech (G(U)/G, ϕ_G) oraz (G(V)/G, ψ_G) będą mapami związanymi z (U, ϕ) i (V, ψ) na zbiorach U, V spełniającymi (\bigcirc). Rozważmy odwzorowanie przejścia

$$\psi_{\mathsf{G}} \circ \phi_{\mathsf{G}}^{\mathsf{-1}} : \phi_{\mathsf{G}}(\mathsf{G}(\mathsf{U})/\mathsf{G} \cap \mathsf{G}(\mathsf{V})/\mathsf{G}) \to \psi_{\mathsf{G}}(\mathsf{G}(\mathsf{U})/\mathsf{G} \cap \mathsf{G}(\mathsf{V})/\mathsf{G})$$

wiemy, że zachodzi

$$\psi_{\mathsf{G}} \circ \phi_{\mathsf{G}}^{-1} = \psi \circ \mathsf{i}_{\mathsf{V}}^{-1} \circ [\phi \circ \mathsf{i}_{\mathsf{V}}^{-1}]^{-1} = \psi \circ \mathsf{i}_{\mathsf{V}}^{-1} \circ \mathsf{i}_{\mathsf{U}} \circ \phi^{-1}$$

czyli wystarczy, żeby

$$i_V^{-1}i_U:U\cap i_U^{-1}(G(V)/G)\to V\cap i_V^{-1}(G(U)/G)$$

było gładkie.

Złożenie

$$i_V^{-1}\circ i_U:U\cap i_U^{-1}(G(V)/G)\to V\cap i_V^{-1}(G(U)/G)$$

jest homeomorfizmem otwartych podzbiorów w M. Weźmy y = $i_V^{-1}i_U(x)$, wtedy

$$G(x)\ni i_U(x)=i_V(y)\in G(y)$$

czyli x i y są w tej samej orbicie działania G. W takim razie istnieje $g_X \in G$ takie, że $y = g_X(x)$. Z ciągłości $i_V^{-1}i_U$ możemy wywnioskować, że przyporządkowanie $x \mapsto g_X$ musi być stałe na komponentach spójności. W przeciwnym przypadki obraz spójnej komponenty przez ciągłe $i_V^{-1}i_U$ przeciąłby zbiory g(U) dla kilku różnych g, a te są rozłączne dla różnych g. Stąd obraz nie byłby spójny, co daje sprzeczność.

Komponenty spójności $U \cap i_U^{-1}(G(V)/G)$ są otwarte w M. Na każdej takiej komponencie W mamy $i_V^{-1}i_U(x) = g(x)$ dla ustalonego g, które jest zależne od doboru komponenty (może być różne dla różnych komponent). Zatem

$$\psi_{\rm G}\phi_{\rm G}^{-1} = \psi {\sf i}_{\rm V}^{-1} {\sf i}_{\rm U}\phi^{-1}$$

jest zadane an $\phi(W)$ wzorem

$$\psi_{\mathsf{G}}\phi_{\mathsf{G}}^{-1}(\mathsf{x}) = \psi \circ \mathsf{g} \circ \phi^{-1}(\mathsf{x}).$$

Odwzorowanie $\psi g \phi$ jest wyrażeniem dyfeomorfizmu g w mapach ϕ i ψ , więc jest gładkie. Z tego wynika, że $\psi_G \phi_G^{-1}$ jest gładkie na każdej komponencie spójności dziedziny, czyli jest gładkie.

Uwaga. Iloraz M/G dla wolnego i właściwie nieciągłego działania grupy dyfeomorfizmów G na rozmaitość M z brzegiem jest rozmaitością z brzegiem.

Przykłady:

- 1. Działanie \mathbb{Z}^n na \mathbb{R}^n przez przesunięcia. Wtedy $\mathbb{R}^n/\mathbb{Z}^n$ = T^n to n-wymiarowy torus.
- 2. \mathbb{Z} działa na produkcie $S^1 \times \mathbb{R}$ tak, że dla $k \in \mathbb{Z}$ mamy

$$k \cdot (\theta, t) = ((-1)^k \theta, t + k)$$

Jest to przesunięcie z odpowiednią potęgą odbicia. Iloraz (S^1 \times \mathbb{R})/ \mathbb{Z} jest butelką Kleina.

3. \mathbb{Z} działa na $[-1,1] \times \mathbb{R}$ przez

$$k \cdot (x, y) = ((-1)^k x, y + k)$$

a iloraz ([-1,1] $\times \mathbb{R}$)/ \mathbb{Z} jest wstęgą Möbiusa.

4. Conf_n(M) jest przestrzenią konfiguracyjną n-elementowych podzbiorów gładkiej rozmaitości M (bez brzegu), tzn. jej punkty opisują wszystkie możliwe położenia punktów w układzie.

Conf $_n(M)$ można wyrazić jako iloraz działania nieciągłej grupy dyfeomorfizmów. Rozważmy produkt $\underbrace{M \times ... \times M}_n$ oraz tzw. uogólnioną przekątną $\Delta^n(M)$ złożoną z

punktów

$$(x_1, ..., x_n) \in M \times ... \times M$$

takich, że x_i = x_j . Zbiór $\Delta^n(M)$ jest domknięty w $M \times ... \times M$, więc $M \times ... \times M \setminus \Delta^n(M)$ jest otwarty i składa się z (x_1 , ..., x_n) takich, że x_1 są parami różne. Grupa permutacji S_n działa na $M \times ... \times M \setminus \Delta^n(M)$ przez

$$\sigma(\mathsf{x}_1,...,\mathsf{x}_\mathsf{n}) = (\mathsf{x}_{\sigma(1)},...,\mathsf{x}_{\sigma(\mathsf{n})}).$$

Wtedy (M \times ... \times M \ Δ^n (M))/S_n = Conf(M). Takie działanie jest wolne i właściwie nieciągłe, bo S_n jest skończone. Dodatkowo, każda taka funkcja σ jest dyfeomorfizmem.

Naturalna mapa w Conf_n(M) wokół punktu p = $(x_1, ..., x_n)$ to $U_1 \times ... \times U_n$, gdzie U_i są parami rozłącznymi otoczeniami punktów x_i (można je tak dobrać ze względu na Hausdorffowość M).

4. Wektory styczne

Oznaczenia z analizy matematycznej:

• dla gładkiej funkcji $f:(a,b)\to\mathbb{R}^n$ takiej, że $f=(f_1,...,f_n)$ i dla $t\in(a,b)$ pochodną nazywamy wektor

$$f'(t) = \frac{\partial f}{\partial t}(t) = \begin{pmatrix} f'_1(t) \\ f'_2(t) \\ ... \\ f'_n(t) \end{pmatrix}$$

• dla gładkiego odwzorowania $f:U\to\mathbb{R}^m$, $U\subseteq\mathbb{R}^n$ i $p\in U$ oznaczamy macierz pierwszych pochodnych cząstkowych w punkcie p przez D_pf . Dokładniej, jeśli $f=(f_1,...,f_m)$ i $f_i:U\to\mathbb{R}^m$ są wszystkie gładkie, to

$$D_{p}f = \begin{pmatrix} \frac{\partial f_{1}}{\partial x_{1}}(p) & \frac{\partial f_{1}}{\partial x_{2}}(p) & \dots & \frac{\partial f_{1}}{\partial x_{n}}(p) \\ \vdots & \vdots & \vdots & \vdots \\ \frac{\partial f_{m}}{\partial x_{1}}(p) & \frac{\partial f_{m}}{\partial x_{2}}(p) & \dots & \frac{\partial f_{m}}{\partial x_{n}}(p) \end{pmatrix}$$

Tym samym symbolem oznaczamy też odwzorowanie liniowe $\mathbb{R}^n \to \mathbb{R}^m$ zadane tą macierzą (różniczka f w p).

4.1. Przestrzeń styczna - definicja kinematyczna

Przestrzeń styczną będziemy definiować przez styczność krzywych gładkich.

Niech M będzie gładką rozmaitością. **Krzywą gładką** na M nazywamy gładkie odw-zorowanie $c:(a,b)\to M$. O krzywej gładkiej c takiej, że $c(t_0)=p$ mówimy, że jest zbazowana w p . Zbiór par (c,t_0) krzywych zbazowanych w p oznaczamy C_pM .

Definicja 4.1. Niech $\phi: U \to \mathbb{R}^n$ będzie mapą wokół p. Krzywe (c_1, t_1) i (c_2, t_2) zbazowane w p są do siebie styczne w mapie (U, ϕ) jeśli $(\phi \circ c_1)'(t_1) = (\phi \circ c_2)'(t_2)$.

Lemat 4.2. Jeżeli $(c_1, t_1), (c_2, t_2) \in C_pM$ są styczne w mapie (U, ϕ) wokół p, to są też styczne w dowolnej innej mapie (W, ψ) wokół p (zgodnej z (U, ϕ)).

Dowód.

$$\begin{aligned} (\psi \circ c_1)'(t_1) &= [(\psi \circ \phi^{-1}) \circ (\phi \circ c_1)(t_1)]' = D_{\phi(p)}(\psi \circ \phi^{-1}) \circ [(\phi \circ c_1)'(t_1)] = \\ &= D_{\phi(p)}(\psi \circ \phi^{-1})[(\phi \circ c_2)'(t_2)] = [(\psi \circ \phi^{-1}) \circ (\phi \circ c_2)(t_2)]' \\ &= (\psi \circ c_2)'(t_2) \end{aligned}$$

Definicja 4.3. Krzywe $(c_1, t_1), (c_2, t_2) \in C_pM$ są styczne, jeżeli są styczne w pewnej (równoważnie każdej) mapie wokół p.

Relacja styczności krzywych jest relacją równoważności na C_pM , bo jest zwrotnia, symetryczna i przechodnia $((\phi \circ c_1)'(t_1) = (\phi \circ c_2)'(t_2) i (\phi \circ c_2)'(t_2) = (\phi \circ c_3)'(t_3) \implies (\phi \circ c_1)'(t_1) = (\phi \circ c_3)'(t_3)).$

Definicja 4.4. Przestrzenią styczną do M w punkcie p nazywamy zbiór klas abstrakcji relacji styczności krzywych zbazowanych w p

$$T_pM := C_pM/stycznosc$$

Klasę abstrakcji krzywej $(c, t_0) \in C_pM$ oznaczamy przez $[c, t_0]$ lub $c'(t_0)$. Elementy przestrzeni T_pM nazywamy **wektorami stycznymi** do M w punkcie p.

4.2. Struktura wektorowa przestrzeni TpM

Dla mapy $\phi: U \to \mathbb{R}^n$ wokół $p \in M$ określamy dwa odwzorowania:

$$\begin{split} \phi_p^*: \mathsf{T}_p \mathsf{M} &\to \mathbb{R}^n \quad \phi_p^*([\mathsf{c},\mathsf{t}_0]) = (\phi \circ \mathsf{c})'(\mathsf{t}_0) \in \mathbb{R}^n \\ \lambda_{\phi,p}: \mathbb{R}^n &\to \mathsf{T}_p \mathsf{M} \quad \lambda_{\phi,p}(\mathsf{v}) = [\mathsf{c}_\mathsf{v},\mathsf{0}] \end{split}$$

gdzie $c_{V}(t) = \phi^{-1}(\phi(p) + tv)$.

Lemat 4.5. $\phi_p^* \circ \lambda_{\phi,p} = \mathrm{id}_{\mathbb{R}^n}$ oraz $\lambda_{\phi,p} \circ \phi_p^* = \mathrm{id}_{\mathsf{T}_p\mathsf{M}}$, czyli ϕ_p^* i $\lambda_{\phi,p}$ są one wzajemnie jednoznacze i do siebie odwrotne.

Dowód. Niech $v \in \mathbb{R}^n$, wtedy

$$\begin{split} \phi_p^* \circ \lambda_{\phi,p}(v) &= \phi_p^*([c_v, 0]) = (\phi \circ c_v)'(0) = \frac{d}{dt} \int_{|t=0}^{\infty} \phi(\phi^{-1}(\phi(p) + t \cdot v)) = \\ &= \frac{d}{dt} \int_{|t=0}^{\infty} (\phi(p) + tv) = v \end{split}$$

Niech $[c, t_0] \in T_pM$

$$\lambda_{\phi,p} \circ \phi_p^*([\mathsf{c},\mathsf{t}_0]) = \lambda_{\phi,p}((\phi \circ \mathsf{c})'(\mathsf{t}_0)) = [\mathsf{c}_{(\phi \circ \mathsf{c})'(\mathsf{t}_0)},0]$$

gdzie $c_{(\phi \circ c)'(t_0)}(t) = \phi^{-1}(\phi(p) + t(\phi \circ c)'(t_0))$. W mapie ϕ zachodzi więc:

$$(\phi \circ c_{(\phi \circ c)(t_0)})'(0) = \frac{d}{dt}_{|t=0} [\phi(p) + t \cdot (\phi \circ c)'(t_0)] = (\phi \circ c)'(t_0)$$

W takim razie (c, t_0) i $(c_{(\phi \circ c)'(t_0)}, 0)$ są krzywymi stycznymi i mamy $[c, t_0] = [(c_{(\phi \circ c)'(t_0)}, 0]$ i w takim razie $\lambda_{\phi, p} \circ \phi_p^*([c, t_0]) = [c, t_0]$ \checkmark .

Fakt 4.6. Na przestrzeni stycznej T_pM istnieje dokładnie jedna struktura przestrzeni wektorowej, dla której odwzorowania ϕ_p^* oraz $\lambda_{\phi,p}$ dla wszystkich map ϕ wokół p są liniowymi izomorfizmami.

Struktura ta jest zadana przez operacje dodawania wektorów i mnożenia ich przez skalary następująco:

- dla X, Y \in T_pM: X + Y := $\lambda_{\phi,p}(\phi_n^*(X) + \phi_n^*(Y))$ (suma w środku jest sumą w \mathbb{R}^n)
- dla a $\in \mathbb{R}$: a · X := $\lambda_{\phi,p}$ (a · ϕ_p^* (X)) (mnożenie przez skalar w \mathbb{R}^n).

Dowód. Struktura przestrzeni wektorowej musi być przeniesiona z \mathbb{R}^n przez $\lambda_{\phi,p}$. Wystarczy więc uzasadnić, że dla różnych map ϕ , ψ wokół p przeniesione z \mathbb{R}^n na T_pM struktury liniowe pokrywają się, to znaczy złożenie odwzorowań

Odwzorowanie ϕ_p^* jest dobrze określone z definicji $T_p M$ (wszystkie krzywe z jednej klasy abstrakcji mają tę samą pochodną w jednej mapie).

$$\mathbb{R}^{\mathsf{n}} \xrightarrow{\lambda_{\phi,\mathsf{p}}} \mathsf{T}_{\mathsf{p}}\mathsf{M} \xrightarrow{\psi_{\mathsf{p}}^{\mathsf{*}} = \lambda_{\psi,\mathsf{p}}^{\mathsf{-}} \mathbb{R}} \mathsf{n}$$

jest liniowe.

$$\begin{split} \psi_p^* \circ \lambda_{\phi,p}(v) &= \psi_p^*([c_V,0]) = (\psi \circ c_V)'(0) = \frac{d}{dt}_{|t=0} \psi \circ \phi^{-1}(\phi(p) + tv) = \\ &= D_{\phi(p)}(\psi \circ \phi^{-1})[\frac{d}{dt}_{|t=0}(\phi(p) + tv)] = D_{\phi(p)}(\psi \circ \phi^{-1})(v) \end{split}$$

Przekształcenie $\psi_{\mathbf{p}}^* \circ \lambda_{\phi,\mathbf{p}}$ pokrywa się z działaniem macierzy $\mathbf{D}_{\phi(\mathbf{p})}(\psi \circ \phi^{-1})$, a więc jest liniowe.

O odwzorowaniu $\phi_{\mathbf{p}}^*:\mathsf{T}_{\mathbf{p}}\mathsf{M}\to\mathbb{R}^{\mathsf{n}}$ można myśleć jak o "mapie" dla $\mathsf{T}_{\mathbf{p}}\mathsf{M}$ stowarzyszonej z mapą ϕ otoczenia punktu p. W tej mapie działania na wektorach z $T_p M$ sprowadzają się do zwykłych działań na wektorach w \mathbb{R}^n .

Przykład:

- Dla M = \mathbb{R}^n mamy wyróżnioną mapę $\phi: M = \mathbb{R}^n \to \mathbb{R}^n$, $\phi = \mathrm{id}_{\mathbb{R}^n}$. Dla każdego $p \in M$ mapa ta, poprzez $\phi_{\mathbf{p}}^* = (\mathrm{id}_{\mathbb{R}^n})^*$ kanonicznie utożsamia $\mathsf{T}_{\mathbf{p}}\mathbb{R}^n$ z \mathbb{R}^n .
- Analogiczna sytuacja zachodzi z M = U $\subseteq \mathbb{R}^n$ otwartego podzbioru i p \in U, gdzie inkluzja i : $U \to \mathbb{R}^n$ jest traktowana jako mapa.

Dla rozmaitości M z brzegiem i p $\in \partial$ M dopuszczamy dodatkowo krzywe gładkie c : $[t_0, b) \rightarrow M$ oraz c: $(a, t_0[\rightarrow M \text{ takie, } \dot{z}e c(t_0) = p \text{ oraz pary } (c, t_0) \text{ jako el-}$ ementy CpM. Inaczej dla niektórych "kierunków" wektorów nie istniałyby odpowiednie krzywe reprezentujące te wektory. Styczność na T_pM określa się potem w sposób analogiczny jak dla rozmaitości bez brzegu.

Wektory styczne do M = \mathbb{R}^n (lub U $\subseteq \mathbb{R}^n$) w punkcie p odpowiadające wektorom bazowym e_1 = (1, 0, 0, ..., 0), e_2 = (0, 1, 0, ..., 0), ..., e_n = (0, 0, 0, ..., 1) oznaczamy przez $\frac{\partial}{\partial x_1}(p)$, $\frac{\partial}{\partial x_2}(p)$, ..., $\frac{\partial}{\partial x_n}(p)$. Tworzą one bazę $T_p\mathbb{R}^n$ (T_pU), zaś dowolny wektor z $T_p\mathbb{R}^n$ (T_pU) ma postać $\sum_{i=1}^n a_i \frac{\partial}{\partial x_i}(p)$. [0cm]

Analogicznie, dla dowolnej rozmaitości M i p \in M oraz mapy ϕ wokół p przeciwobraz przez ϕ_p^* : $T_pM \to \mathbb{R}^n$ wersorów $e_1, ..., e_n$ oznaczamy:

$$(\phi_{\mathbf{p}}^*)^{-1}(\mathbf{e_i}) = \frac{\partial}{\partial \phi_{\mathbf{i}}}(\mathbf{p}).$$

Elementy te tworzą bazę T_pM i dowolny wektor z T_pM ma postać $\sum a_i \frac{\partial}{\partial \phi_i}(p)$.

Dla gładkiej $c:(a,b) \to M$ wektor styczny do $c w t \in (a,b)$ to

$$\mathbf{c}'(\mathsf{t}) \coloneqq [\mathsf{c},\mathsf{t}] = [(\phi \circ \mathsf{c})'(\mathsf{t})] = \sum_{\mathsf{i}} (\phi \circ \mathsf{c})'_{\mathsf{i}}(\mathsf{t}) \frac{\partial}{\partial \phi_{\mathsf{i}}} (\mathsf{c}(\mathsf{t})),$$

34

gdzie (U, ϕ) jest mapą wokół c(t).

4.3. Różniczka

Rozważmy funkcję gładką $f: M \to N \ i \ p \in M, f(p) = q \in N.$ Dla krzywej zbalansowanej $(c, t_0) \in C_p M$ mamy $(f \circ c, t_0) \in C_q N.$

Lemat 4.7. Jeżeli $(c_1,t_1),(c_2,t_2)\in C_pM$ są styczne, to $(f\circ c_1,t_1),(f\circ c_2,t_2)\in C_qN$ też są styczne

Dowód. Niech ϕ będzie mapą wokół p, $\phi: U \to \mathbb{R}^m$, zaś ψ mapą wokół q,

$$\psi: W \to \mathbb{R}^n$$

$$\begin{split} (\psi \circ f \circ c_1)'(t_1) &= [(\psi \circ f \circ \phi^{-1}) \circ (\phi \circ c_1)]'(t_1) = D_{\phi(p)}(\psi \circ f \circ \phi^{-1}) \cdot [(\phi \circ c_1)'(t_1)] = \\ &= D_{\phi(p)}(\psi \circ f \circ \phi^{-1}) \cdot [(\phi \circ c_2)'(t_2)] = [(\psi \circ f \circ \phi^{-1}) \circ (\phi \circ c_2)]'(t_2) = \\ &= (\psi \circ f \circ c_2)'(t_2) \end{split}$$

Zatem krzywe (f \circ c₁, t₁) i (f \circ c₂, t₂) są styczne.

Definicja 4.8. Różniczką f w punkcie p nazywamy odwzorowanie $df_p: T_pM \to T_{f(p)}N$ określone przez $df_p([c,t_0]) = [f \circ c,t_0]$.

Odwzorowanie różniczkowe jest dobrze określone na mocy Lematu 4.7.

Lemat 4.9. $df_p: T_pM \to T_{f(p)}N$ jest odwzorowaniem liniowym.

Dowód. Wystarczy sprawdzić, że odwzorowanie

$$\mathbb{R}^m \xrightarrow{\lambda_{\phi,p}} \mathsf{T}_p\mathsf{M} \xrightarrow{\mathsf{df}_p} \mathsf{T}_{\mathsf{f}(p)}\mathsf{N} \xrightarrow{\psi_{\mathsf{f}(p)}^*} \mathbb{R}^n$$

jest liniowe (analogicznie jak przy dowodzie 4.6).

$$\begin{split} \psi_{f(p)} \circ df_{p} \circ \lambda_{\phi,p}(v) &= \psi_{f(p)}^{*} \circ df_{p}([c_{v},0]) = \psi_{f(p)}^{*}([f \circ c_{v},0]) = \\ &= (\psi \circ f \circ c_{v})'(0) = [(\psi \circ f \circ \phi^{-1}) \circ (\phi \circ c_{v})]'(0) = \\ &= D_{\phi(p)}(\psi \circ f \circ \phi^{-1}) \cdot [(\phi \circ c_{v})'(0)] = \\ &= D_{\phi(p)}(\psi \circ f \circ \phi^{-1})[v] \end{split}$$

jest to przekształcenie zadane macierzą, a więc liniowe.

Dla gładkiej funkcji f : M \to N odwzorowanie df $_p$: T $_p$ M \to T $_{f(p)}$ N wyznaczyliśmy w mapach ϕ wokół p i ψ wokół f(p) jako

$$\psi_{f(p)}^* df_p \lambda_{\phi,p}(p) = D_{\phi(p)}(\psi f \phi^{-1})(v).$$

Stąd, odwzorowanie df $_p$ w bazach $\{\frac{\partial}{\partial \phi_i}(p)\}$ w T_pM i $\{\frac{\partial}{\partial \psi_j}(p)\}$ w $T_{f(p)}N$ zapisuje się macierzą

$$D_{\phi(p)}(\psi f \phi^{-1}) = \left(\frac{\partial (\psi f \phi^{-1})_{i}}{\partial x_{j}}(\phi(p))\right)_{ij}$$

$$df_{p}\left[\sum a_{i} \frac{\partial}{\partial \phi_{i}}(p)\right] = \sum_{i} \left[\sum_{j} \frac{\partial (\psi f \phi^{-1})}{\partial x_{j}}(\phi(p)) \cdot a_{j}\right] \frac{\partial}{\partial \psi_{i}}(f(p))$$

Przykłady:

• Niech $\phi: U \to \mathbb{R}^n$ będzie mapą wokół $p \in M$. Możemy ją potraktować jako gładkie odwzorowanie między dwiema rozmaitościami. Wówczas różniczka d $\phi_p: T_pU \to T_pM$

 $\mathsf{T}_{\phi(\mathsf{p})}\mathbb{R}^{\mathsf{n}}$ jest wówna odwzorowaniu "mapowemu" $\phi_{\mathsf{p}}^*:\mathsf{T}_{\mathsf{p}}\mathsf{M}\to\mathbb{R}^{\mathsf{n}}.$

Dowód. Niech $[c, t_0] \in T_pM$, wtedy

$$d\phi_p([c,t_0]) = [\phi \circ c,t_0] \in \mathsf{T}_{\phi(p)}\mathbb{R}^n$$

Mapę $(\mathrm{id}_{\mathbb{R}^n})_{\phi(p)}^*:\mathsf{T}_{\phi(p)}\mathbb{R}^n o\mathbb{R}^n$ kanonicznie utożsamiliśmy z $\mathrm{id}_{\mathbb{R}^n}$, stąd też

$$\mathsf{d}\phi_\mathsf{p}([\mathsf{c},\mathsf{t}_0]) = (\mathsf{id}_{\mathbb{R}^\mathsf{n}} \circ \phi \circ \mathsf{c})'(\mathsf{t}_0) = (\phi \circ \mathsf{c})'(\mathsf{t}_0),$$

a z kolei

$$\phi_{\mathrm{p}}^{*}([\mathsf{c},\mathsf{t}_{0}])$$
 = $(\phi\circ\mathsf{c})'(\mathsf{t}_{0})\in\mathbb{R}^{\mathsf{n}}$

z definicji tego odwzorowania.

- Dla gładkiej krzywej $c:(a,b)\to M$ oraz $t_0\in(a,b)$, różniczka $dc_{t_0}:T_{t_0}(a,b)\to T_{c(t_0)}M$ jest jedynym przekształceniem liniowym, które wersor z $\mathbb{R}\cong T_{t_0}(a,b)$ przekształca na wersor $[c,t_0]=c'(t_0)\in T_{c(t_0)}M$.
- Rozważmy gładką funkcję $f:M\to\mathbb{R}$ i $p\in M$. Różniczka $df_p:T_pM\to T_{f(p)}\mathbb{R}\cong\mathbb{R}$ jest funkcjonałem liniowym na T_pM .

Definicja 4.10. Dla funkcji f : $M \to \mathbb{R}$ możemy wybrać wektor styczny X = [c, t_0] $\in T_pM$ i zdefiniować **pochodną kierunkową** funkcji f w kierunku wektora X:

$$Xf = df_p(X) = df_p([c, t_0]) = (f \circ c)'(t_0).$$

Pochodna kierunkowa ma następujące własności:

- X(f + g) = Xf + Xg
- $X(f \cdot g) = g(p) \cdot Xf + f(p) \cdot Xg (regula Leibniza)$

Dowód.

$$\begin{split} X(f \cdot g) &= [(f \cdot g) \circ c]'(t_0) = [(f \circ c) \cdot (g \circ c)]'(t_0) = \\ &= (f \circ c)'(t_0) \cdot (g \circ c)(t_0) + (f \circ c)(t_0) \cdot (g \circ c)'(t_0) = \\ &= Xf \cdot g(p) + f(p) \cdot Xg \end{split}$$

- dla $a \in \mathbb{R}$ (aX)f = a(Xf)
- jeśli X, Y \in T_DM, to (X + Y)f = Xf + Yf

Dowód.

$$(X + Y)f = df_p(X + Y) = df_p(X) + df_p(Y) = Xf + Yf$$

Przykłady:

- Jeśli X = $\frac{\partial}{\partial x_i}(p) \in T_p\mathbb{R}^n$ i mamy gładką funkcję $f: \mathbb{R}^n \to \mathbb{R}$, to wówczas Xf = $\frac{\partial f}{\partial x_i}(p)$.
- Jeśli X = $\frac{\partial}{\partial \phi_i}(p) \in T_p M$ i f : $M \to \mathbb{R}$ jest funkcją gładką, to oznaczamy

$$Xf = \frac{\partial (f\phi^{-1})}{\partial x_i}(\phi(p) =: \frac{\partial f}{\partial \phi_i}(p)$$

• Podobnie jak wyżej, jeśli X = $\sum a_i \frac{\partial}{\partial \phi_i}$ (p), to

$$Xf = \sum a_i \frac{\partial f}{\partial \phi_i}(p) = \sum a_i \frac{\partial f \circ \phi^{-1}}{\partial x_i}(\phi(p))$$

4.4. Wiązka styczna

Definicja 4.11. Wiązka styczna to rozłączna suma przestrzeni stycznych we wszystkich punktach rozmaitości M:

$$TM = \coprod_{p \in M} T_p M$$

Chcemy teraz opisać na TM strukturę rozmaitości gładkiej. Rozważymy w tym celu rzutowanie

$$\pi:\mathsf{TM} o\mathsf{M}$$
 $\pi(\mathsf{v})=\mathsf{p},\quad\mathsf{v}\in\mathsf{T}_\mathsf{p}\mathsf{M},$

które wektorowi przyporządkowuje jego punkt zaczepienia.

Lemat 4.12. Niech M będzie rozmaitością n-wymiarową M klasy C^k . Wówczas na wiązce stycznej TM istnieje naturalna struktura 2n-wymiarowej rozmaitości klasy C^{k-1} , dla której rzutowanie π jest C^{k-1} -różniczkowalne.

Jeśli M jest rozmaitością gładką (C^{∞}), to π również takie jest.

Stąd oznaczenie $\frac{\partial}{\partial X_i}(p)$, które ma charakter operatorowy związany z działaniem tego wektora na funkcjach

 $rac{\partial \mathbf{f}}{\partial \phi_{\mathbf{i}}}$ jest to i-ta pochodna cząstkowa f w mapie ϕ w punkcie p

Dowód. Strukturę rozmaitości zadamy za pomocą samych map, nie definiując właściwej topologii na TM.

Niech (U, ϕ) będzie mapą na M. Rozważmy zbiór

$$\mathsf{TU} = \pi^{-1}(\mathsf{U}) = \bigcup_{\mathsf{p} \in \mathsf{U}} \mathsf{T}_{\mathsf{p}}\mathsf{M} \subseteq \mathsf{TM}$$

oraz odwzorowanie

$$\overline{\phi}: TU \to \mathbb{R}^{2n} = \mathbb{R}^n \times \mathbb{R}^n$$

 $\phi_{\rm p}^*([{\rm c},{\rm t}_0]) = (\phi \circ {\rm c})'({\rm t}_0)$

$$\overline{\phi}(v)$$
 = ($\phi(\pi(v))$, $\phi_{\pi(v)}^*(v)$) = ($\phi(p)$, $\phi_p^*(v)$) $v \in T_pM$.

 $\overline{\phi}$ jest różniczkowalne jako produkt kartezjański dwóch różniczkowalnych odwzorowań, a jego obraz to $\phi(\mathbf{v}) \times \mathbb{R}^n$.

Sprawdźmy teraz zgodność tak zadanego atlasu. Niech (U, ϕ) i (V, ψ) będą mapami na M, a (TU, $\overline{\phi}$), (TV, $\overline{\psi}$) odpowiadającymi im mapami na TM. Spójrzmy na odwzorowania przejścia:

$$\overline{\psi} \circ \overline{\phi}^{-1} : \phi(U \cap V) \times \mathbb{R}^n \to \psi(U \cap V) \times \mathbb{R}^n$$

$$\overline{\psi\phi}^{-1}(x,w) = (\psi\pi[\phi\pi]^{-1}(x), \psi^*_{\phi^{-1}(x)}[\phi^*_{\phi^{-1}(x)}]^{-1}(w)) =$$

$$= (\psi\phi^{-1}(x), D_x(\psi\phi^{-1})(w))$$

Jest to odwzorowanie różniczkowalne klasy C^{k-1} jako produkt odwzorowania klasy C^k i C^{k-1} .

Pozostaje sprawdzić różniczkowalność odwzorowania π . Wyrazimy je w mapach (U, ϕ) na M oraz (TU, $\overline{\phi}$) na TM. Niech p \in U oraz v \in T_pU, wtedy:

$$\phi\pi\overline{\phi}^{-1}(\phi(p),\phi_p^*(v)) = \phi\pi(v) = \phi(p)$$

więc π jest w tych mapach rzutowaniem na pierwszą składową \mathbb{R}^n , więc jest gładkie

1

Definicja 4.13. Dla $f: M \to N$ odwzorowaniem stycznym $df: TM \to TN$ nazywamy odwzorowanie

$$\mathsf{df}(\mathsf{v}) = \mathsf{df}_{\pi(\mathsf{v})}(\mathsf{v}) \in \mathsf{T}_{\mathsf{f}(\pi(\mathsf{v}))}\mathsf{N} \subseteq \mathsf{TN}$$

Lemat 4.14. Dla gładkiego f również df jest gładkie.

Dowód. Weźmy $v \in T_pM$ i niech (U, ϕ) będzie mapą wokół p. Oznaczmy wówczas q = f(p) i niech (V, ψ) będzie mapą wokół q. Wyrazimy df w mapach $(TU, \overline{\phi})$ i $(TV, \overline{\psi})$.

$$\mathbb{R}^{2m} \stackrel{\overline{\phi}^{-1}}{\longrightarrow} \mathsf{TU} \stackrel{\mathsf{df}}{\longrightarrow} \mathsf{TV} \stackrel{\overline{\psi}}{\longrightarrow} \mathbb{R}^{2n}$$

$$\begin{split} \overline{\psi} \mathrm{d} f \overline{\phi}^{-1}(\mathbf{x}, \mathbf{w}) &= (\ \psi f \phi^{-1}(\mathbf{x}), \ \psi_{f \phi^{-1}(\mathbf{x})}^* \mathrm{d} f_{\phi^{-1}(\mathbf{x})} [\phi_{\phi^{-1}(\mathbf{x})}^*]^{-1}(\mathbf{w}) \) \stackrel{1}{=} \\ &= (\ \psi f \phi^{-1}(\mathbf{x}), \ \mathrm{d} \psi_{f \phi^{-1}(\mathbf{x})} \mathrm{d} f_{\phi^{-1}(\mathbf{x})} (\mathrm{d} \phi_{\phi^{-1}(\mathbf{x})})^{-1}(\mathbf{x}) \) \stackrel{2}{=} \\ &= (\ \psi f \phi^{-1}(\mathbf{x}), \ \mathrm{d} \psi_{f \phi^{-1}(\mathbf{x})} \mathrm{d} f_{\phi^{-1}(\mathbf{x})} \mathrm{d} \phi_{\mathbf{x}}^{-1}(\mathbf{w}) \) \stackrel{3}{=} \\ &= (\ \psi f \phi^{-1}(\mathbf{x}), \ \mathrm{d} (\psi f \phi^{-1})_{\mathbf{x}}(\mathbf{w}) \) = \\ &= (\ \psi f \phi^{-1}(\mathbf{x}), \ \mathrm{D}_{\mathbf{x}}(\psi f \phi^{-1})(\mathbf{x}) \) \end{split}$$

Równość 1 wynika z utożsamienia $d\phi_p = \phi_p^*$ (uzasadnione tutaj). Równość 2 to ogólny fakt, że jeśli f jest dyfeomorfizmem, to $(df_p)^{-1} = df_{f(p)}^{-1}$, natomiast równość 3 pojawia się na liście ćwiczeń:

$$d(f \circ g)_p = df_{g(p)} \circ dg_p.$$

Ш

Uwaga 4.15. Różniczka df_p jak w lemacie wyżej zapisuje się w bazach $\{\frac{\partial}{\partial \phi_i}(p)\}$ w T_pM oraz $\{\frac{\partial}{\partial \psi_i}(q)\}$ w T_qN przy pomocy macierzy:

$$D_{\phi(p)}(\psi f \phi^{-1}) = \left(\frac{\partial (\psi f \phi^{-1})}{\partial x_{j}}(\phi(p))\right)_{i,i}.$$

To znaczy ma postać:

$$df_p\left[\sum a_i \frac{\partial}{\partial \phi_i}(p)\right] = \sum_i \left[\sum_i \frac{\partial (\psi f \phi^{-1})_i}{\partial x_j}(\phi(p)) \cdot a_j\right] \frac{\partial}{\partial \psi_i}(q)$$

Przykłady:

1. Dla otwartego U \subseteq \mathbb{R}^n , wiązka styczna TU do U utożsamia się z U \times \mathbb{R}^n poprzez

$$\sum_{i \leq n} a_i \frac{\partial}{\partial x_i}(p) \mapsto (\ p,\ a_1,...,a_n\)$$

Niech $f: M \to N i g: N \to P$ będą odwzorowaniami gładkimi, wtedy:

Dowód tych właności iest ćwiczeniem

- $d(g \circ f) = dg \circ df$
- $d(id_M) = id_{TM}$
- jeśli f jest dyfeomorfizmem, to również df jest dyfeomorfizmem oraz $(df)^{-1} = df^{-1}$

5. Pola wektorowe

Definicja 5.1. Niech M będzie gładką rozmaitością. Gładką funkcję X : M \rightarrow TM taką, że dla każdego p \in M X(p) \in T_pM \subseteq TM nazywamy **gładkim polem wektorowym** na M.

Równoważnie możemy postawić warunek, że $\pi \circ X = id_M$.

Uogólnienie pól wektorowych pojawiających się w kontekście równań różniczkowych. Często zamiast X(p) piszemy krócej X_p, co oznacza wektor pola w punkcie p. Pozwala to również uniknąć konfliktu notacji z pochodną kierunkową funkcji f wzdłuż wektora X (Xf).

Wyraźmy pole wektorowe X : M \to TM w mapach (U, ϕ) na M oraz (TU, $\overline{\phi}$) na TM. Niech $a_i:\phi(U)\to\mathbb{R}$ będą gładkimi funkcjami rzeczywistymi (nazwiemy je współrzędnymi X w mapach ϕ i $\overline{\phi}$) takimi, że

$$\overline{\phi}X\phi^{-1}(x) = (x, a_1(x), ..., a_n(x)) = (x, \sum a_i(x)e_i),$$

gdzie e_i to baza standardowa \mathbb{R}^n . Zgodnie z oznaczeniem z poprzedniego rozdziału $\frac{\partial}{\partial \phi_i}(p) = (\phi_p^*)^{-1}(e_i)$ mamy

$$X(p) = \sum a_i(\phi(p)) \cdot \frac{\partial}{\partial \phi_i}(p).$$

Jeśli teraz oznaczymy $b_i = a_o \phi : U \to \mathbb{R}$, to wówczas

$$X(p) = \sum b_i(p) \cdot \frac{\partial}{\partial \phi_i}(p).$$

Fakt 5.2. Pole X : M \to TM jest gładkim polem wektorowym na M \iff w mapaie (U, ϕ) na M i odpowiadającej jej mapie $(TU, \overline{\phi})$ na TM wyraża się jako

$$X(p) = \sum b_i(p) \cdot \frac{\partial}{\partial \phi_i}(p)$$

dla pewnych gładkich $b_i: U \to \mathbb{R}$.

Dowód. Bezpośrednio z przestawienia X w mapach (U, ϕ) i $(TU, \overline{\phi})$ jak wyżej.

Pole wektorowe na otwartym $U \subseteq \mathbb{R}^n$ ma postać

$$X(x) = \sum_{i \le n} a_i(x) \cdot \frac{\partial}{\partial x_i}(x)$$

dla pewnych gładkich funkcji $a_i:U\to\mathbb{R}$. Z tego powodu będziemy pisać

$$X(x) = [a_1(x), ..., a_n(x)] \in \mathbb{R}^n \cong T_x U.$$

Zjawiska lokalne dla pól na rozmaitościach będziemy wyrażać za pośrednictwem map za pomocą pól na otwartych podzbiorach \mathbb{R}^n .

Wniosek 5.3. Suma dwóch gładkich pól wektorowych

$$(X + Y)(p) := X(p) + Y(p)$$

jest gładkim polem wektorowym.

Iloczyn gładkiej funkcji $f:M\to\mathbb{R}$ oraz gładkiego pola X

$$(f \cdot X)(p) := f(p) \cdot X(p)$$

jest gładkim polem wektorowym

Rodzinę wszystkich gładkich pól wektorowych na M będziemy oznaczać przez $C^{\infty}(TM)$ lub $\mathfrak{X}(M)$. W algebraicznym rozumienia jest to moduł nad pierścieniem $C^{\infty}(M)$ gładkich funkcji rzeczywistych na M (patrz wniosek 5.3).

5.1. Definiowanie pola wektorowego za pomocą rozkładów jedności

Niech M będzie rozmaitością z niepustym brzegiem ∂M .

Definicja 5.4. Mówimy, że wektor $Y \in T_pM$, gdzie $p \in \partial M$, jest **skierowany do wewnątrz** M, jeśli w pewnej mapie $\phi : U_p \to H^n$ wyraża się przez

$$Y = \sum_{i \le n} a_i \cdot \frac{\partial}{\partial \phi_i}(p), \quad a_n > 0$$

Fakt 5.5. Jeśli wektor o początku p jest skierowany do wewnątrz w jednej mapie, to jest tak w każdej innej mapie wokół p. Ponadto, suma wektorów skierowanych do wewnątrz jest wektorem skierowanym do wewnątrz.

Dowód. Niech Y będzie wektorem skierowanym do wewnątrz w mapie (U, ϕ). Niech (V, ψ) będzie inną mapą wokół p. Wiemy, że

$$Y = \sum a_i \cdot \frac{\partial}{\partial \phi_i}(p)$$

i $a_n>0$. Chcemy teraz sprawdzić, co się dzieje w indeksie n, gdy przedstawimy ten wektor jako kombinację liniową $\frac{\partial}{\partial \psi_i}(p)$. Popatrzmy na zamianę baz:

$$\begin{split} \frac{\partial}{\partial \phi_{n}}(p) &= (\phi_{p}^{*})^{-1}(e_{n}) = \\ &= (\psi_{p}^{*})^{-1}[\psi_{p}^{*}(\phi_{p}^{*})^{-1}](e_{n}) = \\ &= (\psi_{p}^{*})^{-1}d\psi_{p}d(\phi)_{\phi(p)}^{-1}(e_{n}) = \\ &= (\psi_{p}^{*})^{-1}[d(\psi\phi^{-1})_{\phi(p)}(e_{n})] \end{split}$$

Wiemy, że $\psi\phi^{-1}:\mathbb{R}^n\to\mathbb{R}^n$ jest funkcją rzeczywistą, czyli

$$d(\psi\phi^{-1})_{\phi(p)} = D_{\phi(p)}(\psi\phi^{-1})$$

jest jej pochodną. Dodatkowo, wiemy, że $\psi\phi^{-1}$ jest bijekcją, więc na pewno $D_{\phi(p)}(\psi\phi^{-1})(e_n)$ nie może się zerować. Zarówno ψ jak i ϕ są mapami wokół brzegu ∂M , czyli tak naprawdę:

$$\psi\phi^{-1}: H^n \to H^n$$

W takim razie, $D_{\phi(p)}(\psi\phi^{-1})(e_n) > 0$ i mamy

$$a_n \cdot \frac{\partial}{\partial \phi_n}(p) = \underbrace{a_n \cdot D_{\phi(p)}(\phi \psi^{-1})(e_n)}_{>0} \cdot \frac{\partial}{\partial \psi_n}$$

Dla sumy wektorów X + Y takich, że X = $\sum a_i \frac{\partial}{\partial \phi_i}(p)$ i Y = $\sum b_i \frac{\partial}{\partial \phi_i}(p)$, a_n , $b_n > 0$, mamy

$$X + Y = \sum (a_i + b_i) \frac{\partial}{\partial \phi_i}(p)$$

więc $a_i + b_i > 0$.

Definicja 5.6. Pole wektorowe X : $M \to TM$ jest skierowane do wewnątrz M, jeśli dla każdego $p \in \partial M$ X(p) jest skierowany do wewnątrz M.

Fakt 5.7. Na każdej rozmaitości gładkiej z brzegiem M istnieje gładkie pole wektorowe X skierowane do wewnątrz M.

Dowód. Rozważmy rozkład jedności $\{f_i\}$ wpisany w pokrycie M zbiorami mapowymi U_{α} i niech supp $(f_i) \subseteq U_{\alpha_i}$. Dla tych U_{α} , które zahaczają o brzeg ∂M określmy pola wektorowe

$$X_{\alpha}:U_{\alpha}\to TU_{\alpha}\subset TM$$

$$X_{\alpha}(p) = \frac{\partial}{\partial (\phi_{\alpha})_n}(p).$$

Dla pozostałych U $_{\alpha}$ określamy X $_{\alpha}$ dowolnie.

Zdefiniujmy teraz pole wektorowe:

$$X = \sum_{i} f_{j} X_{\alpha_{j}}$$
,

które jest lokalnie skończoną kombinacją gładkich pól skierowanych do wewnątrz i funkcji dodatnich. Jest to więc pole wektorowe skierowanie do wewnątrz.

5.2. Przenoszenie gładkich pól wektorowych przez dyfeomorfizmy

Niech $f: M \to N$ będzie dyfeomorfizmem i niech $X \in \mathfrak{X}(M)$ będzie gładkim polem wektorowym na M. Poszczególne wektory X_p pola X przenoszone przez odwzorowanie styczne df do TN tworzą pola wektorowe na N oznaczane przez df(X) w ten sposób, że

$$df_p(X_p) = df(X)_{f(p)}$$

Określamy pole wektorowe df(X) na N przez

$$df(X)_q:=df_{f^{-1}(\alpha)}(X_{f^{-1}(\alpha)})\in T_qN\subseteq N.$$

Powyższe określenia oznaczają, że pole df(X), jako odwzorowanie N \to TN, jest złożeniem

$$df(X) = df \circ X \circ f^{-1}$$
.

Jako złożenie odwzorowań gładkich, samo też jest odwzorowaniem gładkim.

Definicja 5.8. Gładkie pole wektorowe df(X) określone jak wyżej jest nazywane przeniesieniem pola X na N przez dyfeomorfizm f.

Jeśli o dyfeomorfiźmie f myślimy jako o sposobie utożsamienia rozmaitości M i N, to o polu df(X) na N możemy myśleć jako o tym samym polu co pole X na M względem utożsamienia za pomocą f.

Przykłady:

1. Wybierzmy pole $X \in \mathfrak{X}(M)$, takie, że dla mapy (U, ϕ) na M mamy

$$X(p) = \sum a_i(p) \cdot \frac{\partial}{\partial \phi_i}(p), \quad p \in U.$$

Wówczas

- przeniesienie pola X | U na ϕ (U) przez dyfeomorfizm ϕ daje pole d ϕ (X)(u) = $\sum a_i(\phi^{-1}(u)) \cdot \frac{\partial}{\partial X_i}(x)$
- wyrażenie pola X w mapach (U, ϕ) na M oraz (TU, $\overline{\phi}$) na TM daje

$$\overline{\phi}X\phi^{-1}(x) = (x, a_1(\phi^{-1}(x)), ..., a_n(\phi^{-1}(x)))$$

Oba te pola, a zwłaszcza pierwsze z nich, będziemy nazywać **wyrażeniem pola** X w mapie (U,ϕ) . Ponadto zachodzi

Dowód w lemacie 5.10

$$X(p) = [c, t_0] \iff d\phi(X)(\phi(p)) = [\phi \circ c, t_0]$$

5.3. Krzywe całkowe

Definicja 5.9. Niech M będzie rozmaitością bez brzegu. Krzywą całkową pola wektorowego $X \in \mathfrak{X}(M)$ to dowolna krzywa

$$\gamma: (a, b) \rightarrow M$$

taka, że dla każdego $t \in (a, b)$

$$\gamma'(t) = [\gamma, t] = X(\gamma(t))$$

Lemat 5.10. Niech γ będzie krzywą całkową pola $X \in \mathfrak{X}(M) \iff$ dla każdej mapy (U, ϕ) na M krzywa $\phi \circ \gamma$ jest krzywą całkową pola $d\phi(X) \in \mathfrak{X}(\phi(U))$.

Dowód.

 \Longrightarrow

Dla przypomnienia: $df(X)_{f(p)} = df_p(X_p)$ Jeśli γ' (t) = [γ , t] = $\mathbf{X}_{\gamma(\mathbf{t})}$, to z definicji d ϕ mamy

$$(\phi\circ\gamma)'(\mathsf{t}) = [\phi\circ\gamma,\mathsf{t}] = \mathsf{d}\phi_{\gamma(\mathsf{t})}([\gamma,\mathsf{t}]) = \mathsf{d}\phi(\mathsf{X}_{\gamma(\mathsf{t})}) = \mathsf{d}\phi(\mathsf{X})_{\phi\circ\gamma(\mathsf{t})}$$

 \leftarrow

Niech ($\phi \circ \gamma$)'(t) = [$\phi \circ \gamma$, t] = d ϕ (X) $_{\phi \circ \gamma$ (t). Wówczas

$$\begin{split} \gamma'(\mathsf{t}) &= [\phi^{-1}(\phi \circ \gamma)]'(\mathsf{t}) = \mathsf{d}\phi_{\phi \circ \gamma(\mathsf{t})}^{-1}[(\phi \circ \gamma)'(\mathsf{t})] = \\ &= \mathsf{d}\phi_{\phi \circ \gamma(\mathsf{t})}[\mathsf{d}\phi(\mathsf{X})_{\phi \circ \gamma(\mathsf{t})}] = \underbrace{\mathsf{d}\phi_{\phi \circ \gamma(\mathsf{t})}^{-1}\mathsf{d}\phi_{\gamma(\mathsf{t})}}_{\mathsf{id}_{\mathsf{T}_{\gamma(\mathsf{t})}^{\mathsf{M}}}}\!\!(\mathsf{X}_{\gamma(\mathsf{t})}) = \mathsf{X}_{\gamma(\mathsf{t})} \end{split}$$

Krzywe całkowe wyrażenia pola X w mapie (U, ϕ) to wyrażenie krzywych całkowych pola X w tej samej mapie.

Twierdzenie 5.11. Dla każdego $p \in M$ istnieje krzywa całkowa o początku w p, tzn. krzywa całkowa $\gamma: (-\epsilon, \epsilon) \to M$ taka, że $\gamma(p) = p$

Dowód.