ЛИСТОЧЕК ПО АЛГЕБРЕ-1

МКН СПбГУ, 1 курс, 2024–2025

Сдавать можно до 25.10.2024

Каждая задача (или пункт) имеет указанный в скобках вес от 1 до 3, соответствующий ее сложности.

- Задача 1. (1) Докажите, что любое подкольцо с единицей в поле рациональных чисел является евклидовым.
- **Задача 2.** (2) Для коммутативного кольца R рассмотрим его «удвоение» $R^{(2)}$: множество $R \times R$ c покомпонентным сложением, где умножение задано по формуле $(a,b)\cdot(c,d)=(ac+bd,ad+bc)$. Выясните, какие из следующих колец изоморфны:

$$\mathbb{Q} \times \mathbb{Q}$$
 и $\mathbb{Q}^{(2)}$; $\mathbb{Z} \times \mathbb{Z}$ и $\mathbb{Z}^{(2)}$.

- **Задача 3.** (3) Докажите, что кольцо $\mathbb{Z}\left[\frac{1+\sqrt{-19}}{2}\right]$ область главных идеалов.
- **Задача 4.** Пусть R область целостности, а $f: R \setminus \{0\} \to \mathbb{Z}$ не (тождественно) нулевая функция, такая, что для любых $x, y \in R \setminus \{0\}$ выполнено f(xy) = f(x) + f(y) и $f(x+y) \ge \min(f(x), f(y))$ (если $x + y \ne 0$).
 - (a) (2) Докажите, что f однозначно продолжается до функции $f_Q \setminus \{0\}: Q \to \mathbb{Z}$, для которой выполнены аналогичные свойства; здесь Q поле частных R.
 - (b) (2) Докажите, что $Q_f = \{x \in Q, \ f_Q \geq 0\}$ локальная область главных идеалов (максимальный идеал единственен), и все его ненулевые идеалы имеют вид $\{x \in Q, \ f_Q \geq i\}$, где $i \geq 0$. Q_f называется кольцом дискретного нормирования.
- **Задача 5.** Для $p \in \mathbb{Z}$ обозначим через \mathbb{Z}_p множество всех целочисленных последовательностей $(a^{(1)}, a^{(2)}, \ldots)$ таких, что $0 \leqslant a^{(n)} \leqslant p^n 1$ и $a^{(m)} \equiv a^{(n)} \pmod{p^n}$ для любых натуральных m > n. Докажите, что:
- (a) (1) это множество замкнуто относительно операций почленного сложения и умножения последовательностей, где n-е компоненты складываются и умножаются по модулю p^n и, будучи наделенным этими операциями, оказывается коммутативным кольцом с единицей, содержащим кольцо целых чисел;
- (b) (2) если p простое целое число, кольцо \mathbb{Z}_p является областью целостности с единственным (с точностью до ассоциированности) простым элементом $p \in \mathbb{Z} \subset \mathbb{Z}_p$.
- (c) (2) Определим p-адическую запись числа $a \in \mathbb{Z}_p$ как последовательность чисел $b_i = (a^{(i)} a^{(i-1)})/p^{i-1}$; здесь мы берем $i \in \mathbb{N}$ и полагаем $a^{(0)} = 0$.
 - Докажите, что все b_i целые неотричательные числа от 0 до p-1, и p-адическая запись $a \in \mathbb{Z}_p$ периодична (возможно, с предпериодом то есть, начиная с некоторого места) тогда и только тогда, когда найдутся целые $m, n \in \mathbb{Z} \subset \mathbb{Z}_p$ такие, что na = m.
- (d) (1) Докажите, что $\mathbb{Z}_{10} \cong \mathbb{Z}_2 \times \mathbb{Z}_5$ и $\mathbb{Z}_{25} \cong \mathbb{Z}_5$.
- (e) (3) Пусть p>2. Докажите, что гомоморфизм факторизации $\mathbb{Z}_p \to \mathbb{Z}_p/p\mathbb{Z}_p \cong \mathbb{Z}/p\mathbb{Z}$ существует и индуцирует изоморфизм подгруппы кручения $\mathrm{Tor}\,\mathbb{Z}_p^* \subset \mathbb{Z}_p^*$ (берем все $z\in\mathbb{Z}_p^*$ конечного порядка, т.е., существует k>0 т.ч. $z^k=1$) с группой $(\mathbb{Z}/p\mathbb{Z})^*$.
- (f) (2) Пусть $\mu_{p^{\infty}}$ абелева группа по умножению, состоящая из всех комплексных чисел z (на единичной окружности), таких, что $z^{p^k}=1$ при некотором натуральном k. Докажите, что кольцо эндоморфизмов абелевой группы $\mu_{p^{\infty}}$ изоморфно \mathbb{Z}_p .
 - **Задача 6.** (1) Опишите все $a, b \in \mathbb{Z}$ такие, что $\mathbb{R}[x]/\langle x^2 + ax + b \rangle \cong \mathbb{C}$.
 - **Задача 7.** (2) Для ассоциативного с единицей кольца R и $a,b \in R$ известно, что 1-ab обратим. Докажите, что 1-ba обратим.
 - **Задача 8.** (2) Пусть R область главных идеалов и $K \supset R$ поле. Докажите, что если элемент $k \in K$ является корнем унитарного многочлена с коэффициентами из R (т.е. $\sum_{i=0}^n a_i k^i = 0$, $a_n = 1$, а $a_i \in R$) и $kr \in R$ для некоторого $r \in R \setminus \{0\}$, то $k \in R$.
 - **Задача 9.** (3) Доказать, что для любого идеала I в квадратичном кольце $\mathbb{Z}[\sqrt{d}]$ существуют a,k,n такие, что a^2-d делится на n и верно равенство

$$I = \mathbb{Z}kn + \mathbb{Z}k(a + \sqrt{d}).$$