Homework 7

Problem 1. Let T be a countable theory in a countable language \mathcal{L} and let $M \models T$, $A \subseteq |M|$. Say that $p(x_1, \ldots, x_n)$ is an n-type of T over A if it is a consistent in the language \mathcal{L}' in which we add constants for the elements of A and it is realized in some model of T.

- (a) Let $M = \langle \mathbb{Q}, \langle \rangle$. Show that there are continuum many types of $Th(\mathbb{Q})$ over \mathbb{Q} .
- (b) Give an example of a model in a countable language in which there are continuum many distinct 1-types of Th(M) over \emptyset . Can they all be principal?
- (c) Give an example of a model in which there are only countably many 1-types of Th(M) over \emptyset .
- Proof. (a) Let $r \in \mathbb{R}$ and consider the 1-type $p_r(q) = \{x > q \mid q < r\} \cup \{x < q \mid q > r\}$. Every finite subset of p(q) is realized in M. Additionally, since there exists a p_r for each real number r, there are continuum many of them. To see that they're all distinct, consider two p_r and p_s . Without loss of generality, let r < s and let $q \in (r, s)$. Then q realizes a formula in p_r , but not in p_s .
- (b) Let $M = \langle \mathbb{N}, <, \cdot, +, 0, 1 \rangle$. Let P be the set of primes and let $X \subseteq P$. Define $p_X(y) = \{p \mid p \mid y, p \in X\}$. We can define the prime divisors of y and so this is finitely satisfiable. But since P is countable, there are continuum many types p_X . They can't all be principal, since a countable language implies countably many formulas and thus each formula can only label countably many things.
 - (c) Let $M = \langle \mathbb{N}, S, 0 \rangle$. Let $p_n = \{x \neq S^n(0)\}$. Since \mathbb{N} is countable, there are countably many p_n .

Problem 2. Let S_0 be the following topological space: the points T are the maximal consistent sets of \mathcal{L} -sentences and for each \mathcal{L} -sentence φ , $O_{\varphi} = \{T \mid \varphi \in T\}$ is a basic open set.

- (a) Show that the complement of each basic open set is open. Show that for any two points T_1 , T_2 , there are φ , $\psi = \neg \varphi$ such that $T_1 \in O_{\varphi}$, $T_2 \in O_{\psi}$. (So S_0 is Hausdorff.)
- (b) Show that the compactness theorem is equivalent to the statement that S_0 is a compact space.
- Proof. (a) Let O_{φ} be an open set and note that $S_0 \setminus O_{\varphi} = \{T \mid \varphi \notin T\}$. But since the points T are maximally consistent, this is the same as $\{T \mid \neg \varphi \in T\}$. Thus $S_0 \setminus O_{\varphi} = O_{\neg \varphi}$. Let T_1 and T_2 be two distinct points in S_0 . Then there exists $\varphi \in T_1$ such that $\varphi \notin T_2$. But since T_2 is maximally consistent, $\neg \varphi \in T_2$ and thus $T_1 \in O_{\varphi}$ and $T_2 \in O_{\neg \varphi}$.
- (b) Assume that a theory T is maximally consistent if and only if it is finitely satisfiable. Let $F = \{f_i \mid i \in I\}$ be a family of closed sets with the finite intersection property. From part (a) we can write each f_i as the intersection of open sets

$$f_i = S_0 \setminus \bigcup_j O_{\varphi_j} = \bigcap_j S \setminus O_{\varphi_j} = \bigcap_j O_{\varphi'_j}.$$

We know that for each $k < \omega$, we have

$$\bigcap_{i < k} f_i = \bigcap_{i < k} \bigcap_j O_{\varphi'_j} \neq \emptyset.$$

Thus there exists a theory T_k in this intersection which is maximally consistent. But then since T_k is finitely satisfiable for each k, we can extend the intersection to all i so that

$$\bigcap_i f_i = \bigcap_i \bigcap_j O_{\varphi_j} \neq \emptyset$$

and S_0 is a compact space. Now suppose the converse, that S_0 is compact. Then every collection of closed sets F with the finite intersection property has nonempty intersection. Let T be a theory which is finitely satisfiable. Let T_i be a subset of T and extend T_i to a maximal consistent theory T_i' . Each T_i' is a point in S_0 , so each one corresponds to a closed set in S_0 . This family of closed sets has the finite intersection property, and thus the entire family has nontrivial intersection. But this means precisely that $T \in S_0$ and is thus maximally consistent.

Problem 3. Explain how to modify the proof of the Omitting Types Theorem to omit two nonprincipal types simultaneously.

Proof. The statement of the theorem will now be "Suppose \mathcal{L} is a countable language and T is a set of \mathcal{L} -structures. If Σ_1 and Σ_2 are nonprincipal types then there exists a model $M \models T$ which omits Σ_1 and Σ_2 . Steps 1, 2 and 3 of the proof remain the same. In step 4, we need to write, "There are $\sigma_1 \in \Sigma_1$ and $\sigma_2 \in \Sigma_2$ such that $\neg \sigma_1(c_i) \in T_{i+1}$ and $\neg \sigma_2(c_i) \in T_{i+1}$.

Problem 4. Let T be a complete countable theory and let p_i $(i \in \mathbb{N})$ be a countable set of 1-types of T over \emptyset . Show that there exists a countable model of T in which each p_i is realized (i.e., for each p_i there exists $a_i \in |M|$ such that $M \models \varphi(a_i)$ for each $\varphi \in p_i$).

Proof. Let T be over a language \mathcal{L} and let $\mathcal{L}' = \mathcal{L} \cup \{c_i \mid i \in \mathbb{N}\}$. Let $T' = T \cup \{\varphi(c_i) \mid \varphi \in p_i, i \in \mathbb{N}\}$. Since T is countable and complete, we know there exists a countable model $M \models T$. Furthermore for each $i \in \mathbb{N}$ and each $k < \omega$, we know $T \models \exists x \bigwedge_{j=1}^k \varphi_j(x)$ where $\varphi_j \in p_i$. But now just let c_i be interpreted as elements of M which satisfy φ_k for each p_i . Then each p_i is realized in M and M is still countable. \square

Problem 5. A model M is said to be countably saturated if for all finite $A \subseteq |M|$ and all 1-types p of Th(M) over A, p is realized in M. Suppose M, N are countable and countably saturated. Write $(M, a_1, \ldots, a_k) \equiv (N, b_1, \ldots, b_k)$ to indicate $M \equiv N$ in the language where we add new constant symbols c_1, \ldots, c_k and c_i is interpreted as a_i in M and as b_i in N.

- (a) Suppose $(M, a_1, \ldots, a_n) \equiv (N, b_1, \ldots, b_n)$. For each $a_{n+1} \in |M|$, there exists $b_{n+1} \in |N|$ such that $(M, a_1, \ldots, a_{n+1}) \equiv (N, b_1, \ldots, b_{n+1})$.
- (b) Restate (a) in terms of a condition about realizing types over finite sets.
- (c) Show that any two countable countably saturated models which are elementary equivalent are isomorphic.
- (d) If a countable countably saturated model of T exists, there cannot be more than countably many 1-types of T over \emptyset .

Proof. (a) Let $a_{n+1} \in |M|$ where a_{n+1} is the interpretation of c_{n+1} in M. Since N is countably saturated, let $A = \{b_1, \ldots, b_n\}$ so that every 1-type over A is realized in N. In particular, $p(x) = \{x \neq b_1, x \neq b_2, \ldots, x \neq b_n\}$ is realized by some b_{n+1} . Then we must have b_{n+1} is the interpretation of c_{n+1} in N and $(M, a_1, \ldots, a_{n+1}) \equiv (N, b_1, \ldots, b_{n+1})$.

- (b) Let $M \equiv N$. For each finite subset $A \subseteq |M|$ and let $x \notin A$ be the realization of a 1-type over A. Then if $B \subseteq |N|$ with every element in A corresponding to an element of B, there exists y, the realization of a 1-type over B.
- (c) Let M and N be two elementary equivalent countably saturated countable models for \mathcal{L} . Add countably many constants c_i to \mathcal{L} . Let a_1 be the interpretation of c_1 in M. From part (a) we know that there exists $b_1 \in |N|$ which is the interpretation of c_1 in N. Choosing $b_2 \in |N|$ as the interpretation of c_2 , we again know there exists $a_2 \in |M|$ which is the interpretation of c_2 in M. Since M and N are countable, we can enumerate every element as an interpretation of some constant c_i , and so they must be isomorphic.
- (d) Let $M \models T$ be a countably saturated countable model of T. Then there are only countably many formulas. Thus each 1-type can only be countable and there can only be countably many of them.