ГУАП

КАФЕДРА № 44

ОТЧЕТ ЗАЩИЩЕН С ОЦЕНКОЙ									
ПРЕПОДАВАТЕЛЬ									
Доц., канд. техн. наук, доц.	NO HINNEY TOTAL	Т.Н. Соловьёва							
должность, уч. степень, звание	подпись, дата	инициалы, фамилия							
ОТЧЕТ О	ЛАБОРАТОРНОЙ РА	БОТЕ №1							
АРХИТЕКТУРА ЯДРА И СИСТЕМА КОМАНД МИКРОКОНТРОЛЛЕРОВ MCS-51									
по курсу: МИКРОКОНТРОЛЛЕРНЫЕ СИСТЕМЫ									
РАБОТУ ВЫПОЛНИЛ									
СТУДЕНТ ГР. № 4142	подпись, дата	К.С. Некрасов инициалы, фамилия							

Цель работы

Изучение архитектуры ядра и системы команд микроконтроллеров семейства MCS-51; приобретение навыков программирования микроконтроллеров.

Задание

Необходимо разработать три программы на языке ассемблера MCS-51:

- 1) программу для вычисления зада арифметического выражения (для всех операциях полагайте, что операнды и результат целые однобайтные числа; результат вычислений разместите в ячейке внутренней памяти данных 30h);
- 2) программу для записи заданного массива чисел во внешнюю память данных;
- 3) программу на ассемблере битового процессора для вычисления заданного логического выражения (результат выполнения разместите в любой ячейке памяти данных битового процессора). Работу программ необходимо проверить с помощью симулятора.

Персональное задание. Вариант 33

Арифметическое выражение:

$$0.25(\frac{X}{Z}-Y)(2Y+Z)$$

Последовательность элементов массива:

Логическое выражение:

$$x\bar{r}\vee\bar{y}\oplus d$$

Решение

Программа 1

Было решено положить аргументы x, y и z, а также переменную buf для промежуточного результата и результата в ячейки памяти c адресами 28h, 29h, 2ah, 2bh и 30h соответственно.

Затем была написана программа решающая задачу

```
; *
; Filename: prog.asm *
; Date: 2024/02/25 *
: File Version: 0 *
; Author: Nekrasov K.S. *
; Company: SUAI *
; Description: lr 1.1 *
;************************************
x equ 28h
y equ 29h
z equ 2ah
buf equ 2bh
rez equ 30h;
;**********************
; Reset Vector
;*************************
RES_VECT CODE 0×0000; processor reset vector
SJMP START; go to beginning of program
; *********************
; MAIN PROGRAM
;************************************
MAIN PROG CODE 0×0100
START:
MOV a, x ;/x \rightarrow a
MOV b, z :/z \rightarrow b
DIV ab ;x/z \rightarrow a
SUBB a, y; x/z - y -> a
MOV buf, a ; a -> buf
MOV a,y
MOV b,#2
MUL ab
ADD a,z
MOV b,#4
DIV ab
MOV b, buf
```

MUL ab

mov rez,a

SJMP \$; loop forever
END

В режиме симуляции в соответствующие ячейки были положены аргументы функции

Рисунок 1 – Аргументы функции в ячейках

После пошагового выполнения в ячейку результата установилось значение 4, что и является результатом арифметического выражения

Рисунок 2 – Результат выполнения

Программа 2

Для записи значения во внешнее устройство был использован код вида

```
MOV DPTR, #адрес
MOV A, #значение ; значение для записи
MOVX @DPTR, A ; перемещаем значение в ячейку
```

Код программы:

; ************************************

```
; *
; Filename: prog1.asm *
; Date: 2024/02/25 *
: File Version: 0 *
; Author: Nekrasov K.S. *
; Company: SUAI *
; Description: lr 1.2 *
; **********************
; Reset Vector
:*************************
org Oh; processor reset vector
ajmp start; go to beginning of program
; *********************
; MAIN PROGRAM
;*************************
org 100h
start:
mov DPTR,#000h; нач. адрес -> DPTR
mov A,#0h ; нач. значение -> A
m1: movx @DPTR,A
inc DPTR
inc A
cjne A,#020h,m1
m2: movx @DPTR,A
inc DPTR
dec A
jnz m2
m3: movx @DPTR,A
inc DPTR
inc A
cjne A,#010h,m3
m4: movx @DPTR,A
inc DPTR
dec A
```

jnz m4

sjmp \$; loop forever

END

Результат

Рисунок 3 – Результат работы программы

Программа 3

Исходное логическое выражение, вследствие отсутствия хог в языке для битов, было преобразовано в следующее

$$\overline{(x\overline{r}\vee \overline{y})}d\vee (x\overline{r}\vee \overline{y})\overline{d}$$
$$\overline{x\overline{r}}yd\vee x\overline{r}\overline{d}\vee \overline{y}\overline{d}$$
$$\overline{x}yd\vee ryd\vee x\overline{r}\overline{d}\vee \overline{y}\overline{d}$$

d	r	X	у	r	x n r	y	x ∧ rv y	x∧rv y⊕d
0	0	0	0	1	0	1	1	1
0	0	0	1	1	0	0	0	0
0	0	1	0	1	1	1	1	1
0	0	1	1	1	1	0	1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0	1	0	0	0	0	1	1	1
0	1	0	1	0	0	0	0	0
0	1	1	0	0	0	1	1	michiga 1
0	1	1	1	0	0	0	0	0
1	0	0	0	1	0	1	1	0
1	0	0	1	1	0	0	0	1
1	0	1	0	1	1	1	1	0
1	0	1	1	1	1	0	1	0
1	1	0	0	0	0	1	1	0
1	1	0	1	0	0	0	0	1
1	1	1	0	0	0	1	1	0
1	1	1	1	0	0	0	0	1

Рисунок 4 – Таблица истинности

Код программы

```
;***********************************
; Filename: prog2.asm *
; Date: 2024/02/25 *
; File Version: 0 *
; Author: Nekrasov K.S. *
; Company: SUAI *
; Description: lr 1.3 *
;***********************************
x equ 28h
y equ 29h
r equ 2ah
d equ 2bh
buf equ 2ch
rez equ 2dh;
; *********************
; Reset Vector
```

```
;************************************
RES_VECT CODE 0×0000 ; processor reset vector
SJMP START; go to beginning of program
; *********************
; MAIN PROGRAM
;***************************
MAIN_PROG CODE 0×0100
START:
MOV a,x
cpl a
anl a,y
anl a,d
MOV buf, a
MOV a,r
anl a,y
anl a,d
orl a, buf
mov buf, a
mov a,r
cpl a
MOV b,x
anl b,a
mov a,d
cpl a
anl b,a
mov a,b
orl a, buf
mov buf, a
MOV a,y
cpl a
mov b,a
mov a,d
cpl a
anl a,b
orl a, buf
```

anl a,#1

mov rez,a

SJMP \$; loop forever END

Результат

Рисунок 5 - x=1 y=0 r=1 d=0

Рисунок 6 - x=0 y=1 r=1 d=0

Вывод

Изучена архитектура ядра и системы команд микроконтроллеров семейства MCS-51; приобретены навыки программирования микроконтроллеров.