Strommessung (R, R_M unbekannt)

Gegeben: e, I_W , U_q , R_q Gesucht: R, R_M

Wahrer Strom I _W	0,5	А
Messabweichung e	-0,05	А

Spannungsquelle:

Uq	10	V
R _q	2	Ohm

Wie groß ist der Widerstand des Verbrauchers? (ohne Verbraucher)

$$I_W = \frac{U_q}{R_q + R} \quad \Longrightarrow \quad R_q + R = \frac{U_q}{I_W} \quad \Longrightarrow \quad R = \frac{U_q}{I_W} - R_q$$

R(Verbraucher)	18	Ohm

In welchem Wertebereich darf R_M liegen,

damit der Betrag der Messabweichung e nicht größer als 0,05 V wird ?

$$e = I - I_W \implies I = e + I_W$$

Zwischenergebnis: I	0,45	А
	,	

$$e = -I * \frac{R_M}{R_q + R} \implies R_M = \frac{e * (R_q + R)}{-I}$$

Maximaler Wert von R _M	2,22	Ohm

Messbereichserweiterung Strom

Gegeben: R_M, R_P, I_{MAX} Gesucht: I, R_{M,neu}

Der Messbereich eines Strommessgerätes wird auf einen neuen Endwert erweitert.

Messgerät

R _M	10	Ohm
I _{MAX}	0,1	А

Das dazu verwendete Bauteil hat den Wert...

R _P	0,1	Ohm

Wie groß ist der neue Bereichsendwert?

$$R_P = R_M * \frac{I_{max}}{I - I_{max}} \implies I - I_{max} = R_M * \frac{I_{max}}{R_P}$$
 (Maschenregel)

$$\Rightarrow I = R_M * \frac{I_{max}}{R_P} + I_{max}$$

I	10,1	А

Wie groß ist der Widerstand der gesamten Messeinrichtung?

$$R_{M,neu} = R_M \parallel R_P$$

oder
$$R_{M,neu} = R_M * \frac{I_{max}}{I}$$

R _{M,neu}	0,0990099	Ohm

Reale Spannungsquelle

Gegeben: U_A, U_{AL}, I Gesucht: R_i (zuerst R_b berechnen)

Wir betrachten eine reale Stromquelle.

Ohne äußere Beschaltung messen wir eine Klemmenspannung von...

Mit äußerem Widerstand messen wir einen Strom...,

und die am Widerstand abfallende Spannung...

Reale Spannungsquelle

Leerlaufspannung U _{aL}	11	V
---	----	---

Beschaltung mit Rb von außen

Gemessener Strom I	0,1	А
Am Widerstand abfallende Spannung U _a	10,9	V

Wie groß ist der Innenwiderstand R_i?

Zwischenergebnis: R _b =U _a /I	109	Ohm

$$R_i = \left(\frac{U_{aL}}{U_a} - 1\right) * R_b$$

In welchem Wertebereich darf R_b liegen damit die Quelle als Spannungsquelle zu betrachten ist ?

R _b >10*R _i , also größer als:	10	Ohm
--	----	-----

I-U Verstärker

Ein Sensor ist als Stromquelle zu betrachten.

Das von ihm gegebene Signal soll verstärkt und in eine Spannung konvertiert werden.

Welcher Verstärkertyp wird benötigt? (ggf. zeichnen)

Wir gehen von einem idealen Verhalten des Verstärkers aus.

Der Strom... soll in die Spannung... konvertiert werden.

Strom I	0,01	А
Spannung U	-10	V

Berechnen sie den Wert der zugehörigen Kenngröße des Verstärkers und den Wert des zugehörigen Bauteils R_G im Rückkopplungspfad der Verstärkung.

$$V = \frac{u_a}{i_e}$$

Volotariang V	Verstärkung V	-1000	Ohm
---------------	---------------	-------	-----

$$V \approx -R_g$$

Widerstand R _G	1000	Ohm

U-U Verstärker

Gesucht: R₂(ideal), R₂(real), R_b(unter besonderen Bedingungen)

Es gelte...

Verstärkerschaltung:

R ₁	199000	Ohm
R _b	500	Ohm

Unbeschalteter Operationsverstärker:

V ₀	100000	/
R _i ′	50	Ohm

Eine Verstärkung V = 200 soll realisiert werden.

Berechnen sie R₂(ideal)

$$V \approx 1 + \frac{R_1}{R_2} \implies V - 1 = \frac{R_1}{R_2} \implies R_2 = \frac{R_1}{V - 1}$$

R₂(ideal) 1000	Ohm
-----------------------	-----

Wie muss R_2 gewählt werden, wenn die realen Eigenschaften des OPV berücksichtigt werden?

$$V = 1 / \left(\frac{R_2}{R_1 + R_2} + \frac{1}{V_0} + \frac{R_i'}{V_0 R_b} \right)$$

$$\Rightarrow \frac{R_1}{R_2} = \frac{1}{\frac{1}{V} - \left(\frac{1}{V_0} + \frac{R_i'}{V_0 R_b}\right)} - 1$$

Zwischenergebnis Klammer im Nenner	0,000011	
Zwischenergebnis Nenner	0,004989	
Zwischenergebnis R1/R2	199,441	

$R_2=R_1*1/(R_2/R_1)$	997,789	Ohm

Anpassung eines u/u Verstärkers

Gegeben: R_1 , R_2 , $U_{a(OS)}$, R_q Gesucht: I_{OS} , Werte $R_{1,2}$ bei Anpassung an R_q

Ein Signal soll verstärkt werden mit einem u/u- Verstärker.

Der Sensor verhält sich wie eine reale Spannungsquelle mit dem Innenwiderstand R_q . Ein u/u- Verstärker verhält sich annähernd ideal, leider existieren zwei gleiche, reale Eingangsströme in den +/- Eingang des OPV.

$I_{OS}=I_{P}=I_{N} \rightarrow diese Erzeugen die Spannung U_{A}(I_{OS})$

u/u-Verstärker

R ₁	499500	Ohm
R ₂	500	Ohm
U _A (I _{OS})	1	V
R_q		
Spannungsquelle (Sensor)	50	Ohm

Die durch die Eingangsströme erzeugte, störende Ausgangsspannung beträgt U_A(I_{OS}).

Wie groß sind die Eingangsströme?

$$V = 1 + \frac{R_1}{R_2}$$

V 1000

$$U_A(I_{os}) = (V * R_g - R_1) * I_{os} \implies I_{os} = \frac{U_A(I_{os})}{(V * R_g - R_1)}$$

I _{os}	-2,22*10 ⁻⁶	А
-----------------	------------------------	---

los=IN=IP