Quantum Information Theory - 67749 Recitation 2, May 7, 2025

1 Overview - Quantum States as Computational Resources.

In the last lectures, we saw that quantum states can be considered as resources. In particular, we saw that shared **EPR** pair (\mathbf{Bell}_{00}) enables one:

- 1. Transmit two classical bits by sending a single qubit, via the superdense-coding.
- 2. 'Teleoperate' a qubit by sending two classical bits. From an engineering point of view, it means that for having a complete quantum internet, it's enough to provide a mechanism to distribute **EPR** pairs.

2 Dense Encoding.

)

3 Quantum Teleportation.

Figure 1: Measuring the single-qubit state $|\psi\rangle$ at the $\{|+\rangle, |-\rangle\}$ base.

4 Gate Teleportation.

Gate teleportation is a method to 'encode' operations by states. At the high level, given a precomputed state, it allows one to apply an operation (gate) by using (probably) simpler gates. The precomputed states are called **Magic States**.

4.1 Leading Example: *T*-Teleportation.

Recall that the Clifford 1 + T is a universal quantum gate set. The Clifford group alone is considered from the computer science point of view a simple/weak computational class since it can be classically simulated 2 . Yet, we will see that given access to the magic $|T\rangle = T|+\rangle$, one can simulate the T gate using only Clifford gates and measurements.

Figure 2: Measuring the single-qubit state $|\psi\rangle$ at the $\{|+\rangle, |-\rangle\}$ base.

$$\left(\sum_{x} \alpha_{x} |x\rangle\right) \otimes \frac{1}{\sqrt{2}} \left(|0\rangle + e^{i\frac{\pi}{4}} |1\rangle\right) \xrightarrow{\mathbf{CX}} \sum_{x,y} \frac{1}{\sqrt{2}} \alpha_{x} |x\rangle |x \oplus y\rangle e^{i\frac{\pi}{4}y}$$

$$\mapsto \begin{cases} \sum_{x} \alpha_{x} |x\rangle e^{i\frac{\pi}{4}x} = T |\psi\rangle & \text{measured } 0 \\ \sum_{x} \alpha_{x} |x\rangle e^{i\frac{\pi}{4}\bar{x}} & \text{measured } 1 \end{cases}$$

$$\xrightarrow{\mathbf{CS}} \begin{cases} T |\psi\rangle \\ \sum_{x} \alpha_{x} |x\rangle e^{i\left(\frac{\pi}{4}\bar{x} + \frac{\pi}{2}x\right)} = \sum_{x} \alpha_{x} |x\rangle e^{i\frac{\pi}{4}} e^{i\left(\frac{\pi}{4}\bar{x} + \frac{\pi}{4}x\right)} \end{cases}$$

$$= \begin{cases} T |\psi\rangle \\ e^{i\frac{\pi}{4}} \sum_{x} \alpha_{x} |x\rangle e^{i\frac{\pi}{4}} = e^{i\frac{\pi}{4}} T |\psi\rangle \end{cases}$$

4.2 Extends it.

Let's extends it to a general gate. First create $|\mathbf{GHZ}_{2n}\rangle$ state, then Let's split upon the measurement result.

1. If we measured 0, means the states 'agreed' in the computational base.

$$|\psi\rangle\otimes\left(\sum_{x}|x\rangle\otimes U|x\rangle\right)$$

¹Generated by H, S and CX

 $^{^{2}}$ And conjectured to be strictly weaker than **P**

5 Uhlmann's theorem

Claim 5.1.

$$\langle \Omega | A \otimes B | \Omega \rangle = \mathbf{Tr} A B^{\dagger}$$

Proof.

$$\begin{split} \langle \Omega | A \otimes B | \Omega \rangle &= \sum_{ij} \langle i; i | AB | j; j \rangle = \sum_{ij} \langle i | A | j \rangle \, \langle i | B | j \rangle = \sum_{ij} \langle i | A | j \rangle \, \langle j | B^{\dagger} | i \rangle \\ &= \sum_{i} \langle i | AB^{\dagger} | i \rangle = \mathbf{Tr} AB^{\dagger} \end{split}$$

 $|\psi_{\rho}\rangle = \sum_{i} \left(\rho^{\frac{1}{2}} |\psi_{i}\rangle\right) |i\rangle = \sum_{i} \left(\rho^{\frac{1}{2}} U_{\rho} |i\rangle\right) |i\rangle = \left(\rho^{\frac{1}{2}} U_{\rho}\right) \otimes I |\Omega\rangle$

$$|\psi_{\sigma}\rangle = \sum_{i} \left(\sigma^{\frac{1}{2}} |\psi_{i}'\rangle\right) |i'\rangle = \sum_{i} \left(\sigma^{\frac{1}{2}} U_{\sigma} |i\rangle\right) V |i\rangle = \left(\sigma^{\frac{1}{2}} U_{\sigma}\right) \otimes V |\Omega\rangle$$

Claim 5.2. For any square matrix A:

$$\max_{U \in \mathcal{U}} \mathbf{Tr} A U = \mathbf{Tr} \sqrt{A^{\dagger} A}$$

$$\begin{aligned} \max | \left\langle \psi_{\rho} | \psi_{\sigma} \right\rangle |^2 &= \max | \left\langle \Omega | \left(U_{\rho}^{\dagger} \rho^{\frac{1}{2}} \right) \otimes I \left(\sigma^{\frac{1}{2}} U_{\sigma} \right) \otimes V | \Omega \right\rangle |^2 \\ &= \max | \mathbf{Tr} \left[\left(U_{\rho}^{\dagger} \rho^{\frac{1}{2}} \sigma^{\frac{1}{2}} U_{\sigma} \right) V^{\dagger} \right] |^2 \\ &= \max | \mathbf{Tr} \left[\rho^{\frac{1}{2}} \sigma^{\frac{1}{2}} V^{\dagger} \right] |^2 \\ &\leq \left| \mathbf{Tr} \sqrt{\rho^{\frac{1}{2}} \sigma^{\frac{1}{2}} \sigma^{\frac{1}{2}} \rho^{\frac{1}{2}}} \right|^2 = \left| \mathbf{Tr} \sqrt{\rho^{\frac{1}{2}} \sigma \rho^{\frac{1}{2}}} \right|^2 \end{aligned}$$

6 Monotonicity of Fidelity.

Let ρ_{AB} , $\sigma_{AB} \in \mathcal{D}(\mathcal{H}_A \otimes \mathcal{H}_B)$. Then the fidelity is non-decreasing with respect to the partial trace:

$$F(\rho_{AB}, \sigma_{AB}) \le F(\rho_A, \sigma_A),$$

where $\rho_A = \text{Tr}_B\{\rho_{AB}\}$ and $\sigma_A = \text{Tr}_B\{\sigma_{AB}\}.$

Proof. Consider fixed purifications $|\psi\rangle_{RAB}$ and $|\phi\rangle_{RAB}$ of ρ_{AB} and σ_{AB} , respectively, which also purify ρ_A and σ_A . By Uhlmann's theorem,

$$F(\rho_{AB}, \sigma_{AB}) = \max_{U_R} |\langle \psi | U_R \otimes I_A \otimes I_B | \phi \rangle|^2.$$

On the other hand, since $U_R \otimes I_A$ is a subset of the larger class of unitaries U_{RB} on RB,

$$F(\rho_A, \sigma_A) = \max_{U_{RB}} |\langle \psi | U_{RB} \otimes I_A | \phi \rangle|^2 \ge F(\rho_{AB}, \sigma_{AB}).$$

Thus, we conclude that

$$F(\rho_{AB}, \sigma_{AB}) \leq F(\rho_A, \sigma_A).$$

Notice that $|i\rangle\langle j|$ is unitray since.

7 $|\text{EPR}\rangle$ Distillation.

Figure 3: Measuring the single-qubit state $|\psi\rangle$ at the $\{|+\rangle, |-\rangle\}$ base.

$$\rho = p |\beta_{00}\rangle \langle \beta_{00}| + \frac{1-p}{3} \sum_{j \neq 00} |\beta_j\rangle \langle \beta_j|$$

The density matrix over each qubit is $\frac{1}{2}I$, so the measurement is equivalent to flipping coins and asking if the first pair and second pair are the same. Thus, the success probability is $\frac{1}{4}$. Now the state that is left is the projection of ρ into the space in which both the bits of Alice and Bob are equal, namely:

$$\begin{split} &\frac{1}{4}((|00\rangle\pm|11\rangle)\otimes(|00\rangle\pm|11\rangle))\rightarrow(|0000\rangle+|1111\rangle)\\ &\frac{1}{4}\left((|00\rangle\pm|11\rangle)\otimes(|00\rangle\mp|11\rangle)\right)\rightarrow(|0000\rangle-|1111\rangle)\\ &\frac{1}{4}\left((|00\rangle\pm|11\rangle)\otimes(|01\rangle\pm|01\rangle)\right)\rightarrow\emptyset\\ &\frac{1}{4}\left((|01\rangle\pm|10\rangle)\otimes(|01\rangle\pm|10\rangle)\right)\rightarrow(|0101\rangle+|0101\rangle)\\ &\frac{1}{4}\left((|01\rangle\pm|10\rangle)\otimes(|01\rangle\mp|10\rangle)\right)\rightarrow(|0101\rangle-|0101\rangle) \end{split}$$

$$p^{2} + 2\frac{p(1-p)}{3} + \frac{1}{3}(1-p)^{2} + 4\frac{1}{3}(1-p)^{2}$$

$$p' \leftarrow \frac{p^2 + \frac{1}{3}(1-p)^2}{p^2 + 2\frac{p(1-p)}{3} + \frac{1}{3}(1-p)^2 + 4\frac{1}{3}(1-p)^2}$$

8 Magic State Distillation.

Question. Can we purify noisy magic states into high-fidelity ones, using only Clifford operations?

Magic state distillation is a procedure that uses many copies of noisy magic states, plus only Clifford gates and measurements, to produce fewer, higher-fidelity magic states.