Housing Price Prediction Using Machine Learning

Chung-Hsuan Huang Kate Treadwell Laura Elliott

Outline

- Introduction
- Motivation (What do we want to know?)
- Preprocessing
- Model fitting
- Conclusion
- Future Work

Predicting the Real Estate Market of Ames, Iowa

Modeling the sales price of housing in Ames, lowa:

Exploratory Data Analysis (EDA)

- What does our data look like (types, missingness, summary statistics, etc)
- How do we better understand how our data works together (covariance, collinearity, duplicate information, etc.)

Data Preprocessing

- Cleaning and Imputing Data
- Removal of outliers, feature selection, etc

Model Selection

- Determining best model
- Lowering RMSE

Motivation

- Derive the lowest possible RMSE for housing sale prices
- Understanding Data Manipulation
 - How do we best manage and clean our data in order to drive the best models
 - How do we understand the results of our manipulation
- Understanding Grid Search and Model Selection
 - How can we go about choosing our best hyperparameters
 - How can we understand the effect of cross validation on our models
 - What do the results of our fitted models mean and how can we interpret them correctly
- Refining our Models
 - What do we change in order to decrease our RMSE
 - Revisiting data manipulation
 - Changing hyperparameters, grid search, and choice of actual models to compare results

Preprocessing - data exploration

Correlation Analysis Top 10

Note other high correlations between...

- GarageArea and GarageCars (r = 0.88)
- **1stFirSF** and **TotalBsmtSF** (r =0.82)
- TotalRmsAbvGrd and GrLivArea (0.83)

Relationship with Outcome

Top ten continuous variables

Preprocessing - remove outliers

Other than those two points, we can use z-score to systematically remove outliers.

$$z = \frac{x - \mu}{\sigma}$$

Preprocessing - Normalize Sale Price

Preprocessing - Missing data

Model

Preprocessing

Fit linear models (Lasso, Ridge, ElasticNet)

Tune hyperparameters - GridSearchCV, LassoCV, RidgeCV

Compare train-test RMSE

Test different combination of conditions in preprocessing

Fit more models (Boost, SVR ...)

Tune hyperparameters - GridSearchCV

Average models

Averaged Model

- List[predicted price from models]
- 2. Average models

Results

84	score_grid	RMSE	train_RMSE	test_RMSE	diff_RMSE	Kaggle_score
Ridge	0.940449	0.097509	0.097555	0.109320	-0.000415	0.11866
Lasso	0.939068	0.098633	0.098876	0.107920	0.009044	0.11938
ElNet	0.939095	0.098611	0.097866	0.109133	0.011266	0.11926
GBM	0.976308	0.061504	0.058831	0.115570	0.056739	0.12485
XGB	0.964267	0.075532	0.074912	0.115308	0.040396	0.12386
SVR	0.927498	0.107591	0.109351	0.112350	0.002998	0.12388

- GBM and XGB might require more parameter tuning to perform better
- The averaged model gave us best Kaggle score: 0.11653

Feature importance

features from correlation analysis

Feature importance

- Some XGB top 10 features are different
- More hyperparameters tuning might be needed

Summary

- Our Best Score: .11653
 - Ensembling best models: Ridge, Lasso, ElasticNet, GBM, XGB, SVR
- Largest factors in reducing our model:
 - Imputation
 - Outlier removal
 - Normalization of data
 - Feature engineering
 - Hyperparameter tuning
- Best overall stand-alone model
 - Ridge

Future work

- Continued Tuning of Models
 - Testing additional models
 - Tuning hyperparameters
 - Feature engineering
- Adding additional data and incorporating into models
 - Economic data
 - Unemployment
 - Political unrest factors
 - Weather data
- Changing methods
 - Alternating different uses imputation
 - Ensembling different models