BRAC University, Dhaka Department of Computer Science and Engineering

CSE321: Operating Systems

Quiz - 2

Marks: 15 Time: 30 Min

Name:	ID:	Section:

1. Determine if the following sentences are true or false. For any false sentence, write its correct form.

5*1 = 5

- To increase performances of a scheduling algorithm, we need to minimise Throughput. (F)
 We need to maximise throughput.
- ii. All queues in a multilevel queue must implement the same scheduling algorithm.
 (F)
 Different queues can implement different scheduling algorithms.
- iii. A thread can be considered lightweight in comparison to a process. (T)
- iv. In a many-to-one model, multiple user threads utilise multiple kernel threads. (F) Multiple user threads utilise the same kernel thread.
- v. Parallel components of an application have an effect on the performance of a system when additional cores are added into the system. (F)

 Serial components affect the performance of the system when additional cores are added into the system.
- 2. Consider the following processes:

10

Process	Burst Time	Arrival Time	Priority
P1	2	0	3
P2	8	1	2
Р3	6	3	5
P4	3	5	1
P5	5	7	4

Answer the following for preemptive priority and RR (q = 3ms) scheduling algorithms

i. Draw the Gantt Chart for each algorithm.

2

ii. Calculate the average turnaround time for each algorithm.

2

4

iii. Calculate the number of context switches.

2

iv. Among these two algorithms, which one is better in terms of average turnaround time and context switches.

Preemptive priority scheduling algorithm:

	P1	P2	P4	P2	P1	P5	Р3	
() :	1 .	5 8	3 1	.2 1	.3 1	L8	24

Turnaround time:

$$P1 = 13 - 0 = 13$$

$$P2 = 12 - 1 = 11$$

$$P3 = 24 - 3 = 21$$

$$P4 = 8 - 5 = 3$$

$$P5 = 18 - 7 = 11$$

Average turnaround time = (13+11+21+3+11)/5 = 59/5 = 11.8ms

No. of context switches: 6

RR scheduling algorithm (q = 3ms):

	P1	P2	Р3	P4	P5	P2	Р3	P5	P2
() 2	<u>)</u> !	5 8	3 1	1 14	1	7 20) 22	2 24

Turnaround time:

$$P1 = 2 - 0 = 2$$

$$P2 = 24 - 1 = 23$$

$$P3 = 20 - 3 = 17$$

$$P4 = 11 - 5 = 6$$

$$P5 = 22 - 7 = 15$$

Average turnaround time = (2+23+17+6+15)/5 = 63/5 = 12.6ms

No. of context switches: 8

The preemptive scheduling is better for both criteria.