Data Analysis – Lab 2

M. Sébastien MASCHA

M.Pierre Sauvage

ISEP Paris - 17 Septembre 2019

M. Sublime

Import of libraries

This document has been done using python on Jupyter Notebook with the librairies:

- · Numpy to manipulate arrays
- · matplotlib to plot graphics
- · pandas to import csv
- · scipy for mathematicals usage
- · maths for sqrt, pi, exp

In [38]:

```
# coding: utf-8

import data
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd
import seaborn as sns; sns.set()
from math import sqrt,pi,exp
```

Exercice A - Multivariate data set: Fisher Iris

In this exercice, we study the Iris data set.

Question 1 - Open iris.csv as a matrice

We use the comma separator because we saw in the text editor that the data was separated by commas.

```
In [ ]:

dataframe = pd.read_csv("data/iris.csv")
print(dataframe.shape)

dataframe.head()
dataframe.shape()
```

As we can see from the command dataframe.head() & dataframe.shape(), our dataset contains attributes on 150 flowers: their sepals length and width and the same measure for their petals

Question 2 - Display the histograms of the different attributes.

You may use the displot function from the seaborn library.

What can you say about their distributions?

- · We cannot say anything clearly about the distribution of the first attribute.
- The second one follows approximately a normal distribution with a mode of 30.
- · The third and the forth one are bimodal.

Question 3 - Compute the coefficient of correlation between all attributes

In [46]:

```
def cov(a, b):
    if len(a) != len(b):
        return "Error : the two vectors should have an equal size."
    return np.sum((a-np.mean(a))*(b-np.mean(b)))/(len(a)-1)
```

In [62]:

```
# Checking values :
dataframe.cov()
```

Out[60]:

	sepal_length	sepal_width	petal_length	petal_width
sepal_length	68.569351	-4.243400	127.431544	51.627069
sepal_width	-4.243400	18.997942	-32.965638	-12.163937
petal_length	127.431544	-32.965638	311.627785	129.560940
petal_width	51.627069	-12.163937	129.560940	58.100626

In [61]:

```
dataframe.corr()
```

Out[61]:

	sepal_length	sepal_width	petal_length	petal_width
sepal_length	1.000000	-0.117570	0.871754	0.817941
sepal_width	-0.117570	1.000000	-0.428440	-0.366126
petal_length	0.871754	-0.428440	1.000000	0.962865
petal_width	0.817941	-0.366126	0.962865	1.000000

We check the result with the made-in function from Pandas library, and yes the results are correct. Let's visualize our data before going into a deeper interpretation

Question 4 - Visualize the correlation between the different variables.

--- (--)

sns.pairplot(dataframe)

Out[17]:

<seaborn.axisgrid.PairGrid at 0x1a1f078ac8>

Comment your results:

We used to kind of visualisation, to have a better understanding of our data The results are the same using the Python function. Using plot, we can see that we have the same intuition looking at:

- Graph 1-3
- Graph 1-4
- Graph 3-4

The petal lengths and widths have a good correlation between them, and it's the same for the sepals lengths and widths. If we have correlation between those attributes we could classify flowers depending on their petals and sepals

Question 5 - Compute the confidence intervals for the correlation coefficients

We will suppose that the attributes are following a normal distribution

In [93]:

```
def IC95(a,b):
    r = cov(a,b) / (np.std(a) * np.std(b))
    Z = np.log(abs(1 + r)) - np.log(abs(1 - r))/2
    sz = sqrt(1/(len(a) - 3))
    Zinf = Z - 1.96*sz
    Zsup = Z + 1.96*sz
    ic_interval = [(exp(2*Zinf) - 1)/(exp(2*Zinf) + 1), (exp(2*Zsup) - 1)/(exp(2*Zsup) + 1)]
    return ic_interval

# Calcul des 16 intervalles de confiance à 95% :
for i in range(dataframe.shape[1]):
    for j in range(dataframe.shape[1]):
        print(IC95(dataframe.values[:,i],dataframe.values[:,j]))
```

We can confirm that we got good result because our correlation coefficient are well computed: they each sit between their distinct inferior and superior bounds.

We observe that two variables with a low coefficient of correlation like the sepal length and the sepal width, r12 = -0.1093692, the confidence interval is wider.

The span of Confidence Interval (95%) varies from 0.32 to 0.07 when considering the high correlation between the sepal length and the petal length.

Wider the IC95 is, highest the correlation is.

Exercice B - Multivariate data set : Anthropometric data

In this exercice, we study the "mansize" data set. These data described anthropo- metric features acquired in a famous medicine University based on a population of Bachelor students.

Question 1 - Open mansize.csv as a matrice

We use the semicolon separator because we saw in the text editor that the data was separated by semicolon.

```
In [4]:
dataframe = pd.read_csv("data/mansize.csv", sep=';')
print(dataframe.shape)
(161, 9)
```

Question 2 - Apply the function describe(·) to your data set. What does this function do ? Comment the results on your data.

print(dataframe.d	escrib	e())						
	Age	Heigh	nt (cm)	Weigh	t (kg)	Femur	Leng	th (cm)	\
count	161.000000	161	.000000	161.	000000)	161	.000000	
mean	20.447205	173	.223602	73.	357143	3	47	.516149	
std	1.676681	12	.346546	14.	160746	5	5	.210949	
min	18.000000		.000000	40.	000000)	37	.100000	
25%	19.000000	165	.000000	63.	100000)	43	.600000	
50%	20.000000		.000000		500000		47	.400000	
75%	22.000000	181	.000000	81.	100000)	51	.300000	
max	24.000000	203	.000000	115.	200000)	62	.100000	
me (cm	Feet Size	(cm)	Arm span	(cm)	Hand	length	(cm)	Cranial	volu
count	161.00	0000	161.00	00000		161.00	0000		16
1.0000 mean	24.96	7702	183.04	10001		18.88	25003		141
8.1055		7702	103.04	10994		10.00	55093		141
std	2.70	3530	8.98	39101		1.24	7258		4
9.0105		3330	0.50	,,,,,,,		1.2	17230		•
min	18.90	0000	159.60	00000		15.80	0000		129
8.0000									
25%	23.10	0000	176.30	00000		18.20	0000		138
2.0000									
50%	25.10	0000	181.70	00000		18.90	0000		141
8.0000	00								
75%	26.70	0000	188.90	00000		19.80	0000		145
0.0000	00								
max	32.20	0000	206.90	00000		22.60	0000		155
8.0000	00								
	Penis size	(cm)							
count	161.0								
mean	13.3	94410							
std	1.4	81986							
min	9.1	00000							
25%		00000							
50%		00000							
75%	14.3	00000							
max	18.4	00000							

Function pandas.DataFrame.describe:

- Generate descriptive statistics that summarize the central tendency, dispersion and shape of a dataset's distribution, excluding NaN values.
- Analyzes both numeric and object series, as well as DataFrame column sets of mixed data types. The
 output will vary depending on what is provided. Refer to the notes below for more detail.

About mansize.csv data?

We observe that most of the variables have an average value close to the median and the 1st and 3rd
quartiles are almost symmetrical around the mean. This means that the data set is quite homogenous
and that most of these variables follow a normal distribution.

For the first three:

Question 4 - Use the commands corr(), subplots(), heatmap() and pairplot() to visualize the correlation between the different variables. Comment your results. In particular, what can you say about the use in archaeology of the femur length to predict the height of an individual?

In [34]:

```
df_corr = dataframe.corr()
figure,axe = plt.subplots(figsize=(12,10))
sns.heatmap(df_corr)
```

Out[34]

<matplotlib.axes._subplots.AxesSubplot at 0x1a2d2d9748>


```
sns.pairplot(dataframe)
```

Out[26]:

<seaborn.axisgrid.PairGrid at 0x1a273495c0>


```
def IC95(a,b):
    r = pearsonr(a,b)[0]
    Z = np.log(abs(1 + r)) - np.log(abs(1 - r))/2
    sz = sqrt(1/(len(a) - 3))
    Zinf = Z - 1.96*sz
    Zsup = Z + 1.96*sz
    ic_interval = [(exp(2*Zinf) - 1)/(exp(2*Zinf) + 1), (exp(2*Zsup) - 1)/(exp(2*Zsup) + 1)]
    return ic_interval

# Calcul des 16 intervalles de confiance à 95% :
for i in range(dataframe.shape[1]):
    for j in range(dataframe.shape[1]):
        print(IC95(dataframe.values[:,i],dataframe.values[:,j]))
```

It appears that there is a strong link between the height and the length of the femur as well as with the span of the arm which have a coefficient of determination of around 0.8.

There is also a 0.64 and 0.62 coefficient of determination between the height and the size of the feet as well as with the length of the hand, making them less strongly linked.

We observe about a 0.55 determination between the length of the femur and the size of the feet as well as with the length of the hand. It shows are strong they're linked.

Furthermore, penis' size is definitely not linked with attributes provided.

Exercice C - Chi-squared test of independence and categorial variables

In this exercice, we study the Weather data set.

Question 1 - Open weather.csv

```
In [3]:
```

```
dataframe = pd.read_csv("data/weather.csv",sep=';')
print(dataframe.shape)
dataframe.head()
```

(193, 4)

Out[3]:

	City	Outlook	Humidity	Temperature
0	Abidjan	Rainy	High	Hot
1	Addis-Abeba	Rainy	Average	Mild
2	Algiers	Overcast	Average	Mild
3	Amsterdam	Sunny	Average	Mild
4	Anchorage	Sunny	Average	Cold

In [4]:

```
dataframe.describe()
```

Out[4]:

	City	Outlook	Humidity	Temperature
count	193	193	193	193
unique	193	4	3	3
top	Lhasa	Sunny	Average	Mild
freq	1	81	82	89

We have three categorical variables that describe the outlook, the temperature and the humidity in different cities around the world.

The outlook can be : foggy, overcast, rainy or sunny.

The temperature can be : cold, mild or hot.

The humidity can be: low, average or high.

Question 2 - Create the contingency table between the variables "outlook" and "temperature"

pd.crosstab(dataframe['Outlook'], dataframe['Temperature'], margins = True)
Out[6]:

Temperature	Cold	Hot	Mild	All
Outlook				
Foggy	4	3	2	9
Overcast	19	14	36	69
Rainy	6	11	17	34
Sunny	17	30	34	81
All	46	58	89	193

Comments

More measures were done in situations of overcast and sunny outlooks. If the data collected is accurate, foggy days or rainy days are rare. Therefore we have more exhaustive data for the corresponding temperatures in these situations.

The outlook data has a span of 4 and the temperature data takes 3 different values.

We consider the following formula to calculate the degrees of freedom of this problem :

Degrees of freedom = (r - 1)(c - 1)

Degrees of freedom = (4-1)(3-1) = 6

Question 3 - Use the command chi2 contingency(·)

```
In [7]:
```

```
contingency_table_outlook_temperature = pd.crosstab(dataframe['Outlook'], datafr
ame['Temperature'], margins = False)
```

-- Lol.

```
print('This function computes the chi-square statistic and p-value for the hypothesis test of independence of the observed frequencies in the contingency table observed. \n') stats.chi2_contingency(contingency_table_outlook_temperature)
```

This function computes the chi-square statistic and p-value for the hypothesis test of independence of the observed frequencies in the c ontingency table observed.

Out[8]:

Comments:

Using the chi2_contingency() command we obtain the value of Chi square: $X^2 = 8,493$.

We also get the p-value: p = 0.2041.

As the p value is way higher than 0.05 we cannot reject the independence hypothesis between the outlook and the temperature.

Question 4 - Assess whether there is a link between the other variables

i.e.: Outlook/humidity, temperature/humidity

Dependency between the outlook and the humidity:

At first we generate the contingency table of these two variables :

In [9]:

```
contingency_table_outlook_humidity = pd.crosstab(dataframe['Outlook'], dataframe
['Humidity'], margins = False)
print(contingency_table_outlook_humidity)
```

```
Humidity Average High Low Outlook
Foggy 3 6 0 Overcast 34 30 5 Rainy 10 24 0 Sunny 35 9 37
```

Then we proceed to compute the p value and the chi square for this table using the chi2_contingency() command.

In [10]:

Using the chi2_contingency() command we obtain the value of Chi square : $X^2 = 68,490$.

We also get the p-value: p = 8,340.

As the p value is very close to zero we can reject the independence hypothesis on these two variables. It is therefore relevant to compute the value of a contingency coefficient.

As the two variables do not have the same span, we chose to compute the Cramer contingency coefficient for these variables : $\rho = \operatorname{sqrt}(x^{\wedge}2 (N \min((c-1)(r-1))))$

We obtain Cramer's V = 0.42132306 We cannot conclude that the two variables are dependant as almost 60% of the data's contingency cannot be explained.

Dependency between the temperature and the humidity:

At first we generate the contingency table of these two variables :

In [13]:

```
contingency_table_temp_humidity = pd.crosstab(dataframe['Temperature'], datafram
e['Humidity'], margins = False)
print(contingency_table_temp_humidity)
```

```
        Humidity
        Average
        High
        Low

        Temperature
        Very Cold
        Very Cold
        Very Cold
        4

        Hot
        24
        15
        19

        Mild
        38
        32
        19
```

Then we proceed to compute the p value and the chi square for this table using the chi2_contingency() command.

--- [--]

```
stats.chi2_contingency(contingency_table_temp_humidity)
Out[14]:
```

```
(10.330736992441599,
0.03521016044258168,
4,
array([[19.54404145, 16.44559585, 10.01036269],
[24.64248705, 20.7357513 , 12.62176166],
[37.8134715 , 31.81865285, 19.36787565]]))
```

Using the chi2_contingency() command we obtain the value of Chi square: $X^2 = 10.331$.

We also get the p-value : p = 0.0352.

As the p value is very close to zero we can reject the independence hypothesis on these two variables. It is therefore relevant to compute the value of a contingency coefficient.

As the two variables have the same span, we chose to compute the Chuprov contingency coefficient for these variables :

```
p = sqrt((x^{2})/(N^*sqrt((c-1)(r-1)))
```

We have ptemphum = 0.1635978

The Chuprov coefficient is close to zero, we can therefore conclude that the two variables are independent.