A6-1

解: ①根据二阶系统的时域性能指标,有

$$M_p = e^{-\pi \varsigma / \sqrt{1-\varsigma^2}} < 5\%$$

$$t_s = \frac{4}{\varsigma \omega_n}$$

求得要求校正后系统的 $\varsigma = 0.68$, $\omega_n = 5.9$ 。

闭环系统的期望主导极点为: $s_c = -4 \pm 4.3 i$

②加上串联校正后,系统的开环传递函数为:

$$G(s)G_c(s) = \frac{K_1(s+a)}{s(s+5)}$$

系统是I型系统,对于阶跃输入的稳态误差一定为零。

则系统在主导极点 $s_c = -4 \pm 4.3 j$ 位置,满足如下的幅值和相角条件表达式:

$$|G(s)G_c(s)| = \frac{|K_1| \cdot |s_c + a|}{|s_c| \cdot |s_c + 5|} = \frac{|K_1| \cdot |(a - 4) + 4.3j|}{|-4 + 4.3j| \cdot |1 + 4.3j|} = 1$$

$$\angle G(s)G_c(s) = \angle(s_c + a) - \angle(s_c) - \angle(s_c + 5) = \angle((a - 4) + 4.3j) - \angle(-4 - 4.3j) - \angle(1 + 4.3j)$$

$$= \pm(2k + 1) \times 180^{\circ}$$

由方程 2 可以解得,a=14.3 代入方程 1 解得 $K_1=0.93$ 。所以,校正以后,系统的开环传递函数为:

$$G(s)G_c(s) = \frac{0.93(s+14.3)}{s(s+5)}$$

A6-2

解: ①系统的 $\varsigma=0.45$, $\omega_{\scriptscriptstyle n}=2.23$ 。闭环系统的期望主导极点为: $s_{\scriptscriptstyle c}=-1\pm 2j$

②计算 K

系统在主导极点
$$s_c = -1 \pm 2j$$
 位置,满足如下的幅值和相角条件表达式:
$$|G(s)G_c(s)| = \frac{|K|\cdot|s_c + 0.87|}{3.47\cdot|s_c|\cdot|s_c|\cdot|s_c + 0.243|} = \frac{|K|\cdot|-0.13 + 2j|}{3.47\cdot|-1 + 2j|\cdot|-1 + 2j|\cdot|-0.757 + 2j|} = 1$$

 $0.0540 \cdot |K| = 1$

K=18.5185

系统的开环传递函数为:

$$G(s)G_c(s) = \frac{18.5185(s+0.87)}{3.47s^2(s+0.243)}$$

A6-3

解: ①求 K_I

经过 PI 控制后,系统的开环传递函数为:
$$G(s) = (K_p + \frac{K_I}{s})(\frac{1}{s+0.5}) = \frac{K_p s + K_I}{s(s+0.5)}$$

系统的速度误差系数 $K_{\nu}=10$,所以系统的开环增益为 $\frac{K_{I}}{0.5}=10$ 。所以, $K_{I}=5$

②求 K_P

系统的特征方程为: $s^2 + (K_P + 0.5)s + 5 = 0$

令 $K = K_P + 0.5$ 。于是特征方程变为:

画出由(*)式给出的系统的根轨迹

由 $M_p = e^{-\pi\varsigma/\sqrt{1-\varsigma^2}} < 4.5\%$, 得 $\varsigma = 0.7$ 。 在图中找出对应 $\varsigma = 0.7$ 的根的位置,其对应根为: $s_c = -1.57 \pm 1.59\,j$,其对应的 K = 5.8 ,进而可以求得 $K_P = 5.3$ 。 综上, $K_I = 5$, $K_P = 5.3$ 系统的开环传递函数为: $G(s) = \frac{5.3s + 5}{s(s + 0.5)}$

系统的阶跃响应为:

超调为
$$\frac{(1.04-1)}{1} \le 4.5\%$$

A6-4

解: 1.使用 bode 图

加上超前校正后,系统的开环传递函数为:

$$G(s)G_c(s) = \frac{3(1+0.25s)}{s^2(1+0.05s)(1+0.2s)}$$

系统的闭环传递函数为:

$$G'(s) = \frac{3(1+0.25s)}{0.01s^4 + 0.25s^3 + s^2 + 0.75s + 3}$$

画出其 bode 图,如下:

从图中可以读出,谐振峰值 $M_{p\omega}$ 为 38.7dB,带宽 ω_b 为 2.77 rad/sec

2.使用 nichols 图

加上超前校正后,系统的开环传递函数为:

$$G(s)G_c(s) = \frac{3(1+0.25s)}{s^2(1+0.05s)(1+0.2s)}$$

画出其 nichols 图,如下:

同样可以得到,谐振峰值 $M_{p\omega}$ 为 38.7dB,带宽 ω_b 为 2.77 rad/sec

A6-5

解: 原系统的开环传递函数为:

$$G(s) = \frac{40}{s(s+4)}$$

原系统的速度误差系数 $K_v=10$,对于对速度输入 u(t)=At 的稳态误差为 0.1A,满足条件。

①使用工程方法画出原系统的 bode 图。

可以得到原系统的相位裕量为: $\gamma=32.33^{\circ}$,增益剪切频率为: $\omega_{c0}=6.32 \, rad \, / \, sec$

②也可以使用 MATLAB 画出画出原系统的 bode 图,此时可以得到原系统的相位裕量为: $\gamma=35^\circ$,增益剪切频率为: $\omega_{c0}=5.72 rad$ /sec

由于题目要求相位余量不小于 45° ,这有超前环节可以比较容易的达到要求。但是,超前环节会增大增益剪切频率。

在第一种情况下,要求剪切角频率 $\omega_c=10 rad$ / sec,由于 $\omega_c>\omega_{c0}$,使用超前校正的话,可以满足要求;在第二种情况下,要求剪切角频率 $\omega_c=4 rad$ / sec,由于 $\omega_c<\omega_{c0}$,无法使用超前校正。由于滞后校正可以减小剪切角频率,同时在一定的程度上增加相位裕量 γ ,所以在第二种情况下,可以尝试使用滞后环节进行校正。

A6-6

解:因为加入反馈校正(速度反馈或者速度微分反馈)后,系统的增益剪切频率都会增大,而在第一种情况下,要求剪切角频率 $\omega_c=10 rad$ / \sec ,由于 $\omega_c>\omega_{c0}$,使用反馈校正的话,可以满足要求;在第二种情况下,要求剪切角频率 $\omega_c=4 rad$ / \sec ,由于 $\omega_c<\omega_{c0}$,所以无法使用反馈校正。

A6-7

解: 原系统的开环传递函数为:

$$G(s) = \frac{40}{s(s+4)}$$

原系统已经满足稳态要求

(1) 设超前环节为:
$$G_c(s) = \alpha \times \frac{s + \frac{1}{\alpha T}}{s + \frac{1}{T}}$$
, 其开环增益为 1

法一: ①根据工程方法得到的原系统 bode 图

②计算 α

系统在 $\omega_c = 10 rad / sec$ 处的幅值为 $L(\omega_c) = -7.96 dB$

利用超前环节的增益补偿 $L(\omega_c)$, 使得校正后的系统在 $\omega_c=10 rad$ / \sec 的 $L'(\omega_c)=0 dB$

所以有 $10\lg\alpha = 7.96dB$

解得,
$$\alpha = 6.25$$

③计算 T

$$\frac{1}{T} = \sqrt{\alpha} \cdot \omega_c = 2.5 \times 10 = 25$$

所以,超前校正环节为: $G_c(s) = 6.25 \times \frac{s+4}{s+25}$

校正后的系统开环传递函数为:

$$G(s)G_c(s) = \frac{250(s+4)}{s(s+4)(s+25)}$$

法二: ①根据 MATLAb 得到的原系统 bode 图,系统在 $\omega_c=10 rad$ / sec 处的幅值为 $L(\omega_c)=-8.64 dB$ ②计算 α

利用超前环节的增益补偿 $L(\omega_c)$,使得校正后的系统在 $\omega_c=10$ rad / \sec 的 $L'(\omega_c)=0$ dB

所以有 $10\lg\alpha = 8.64dB$

解得, $\alpha = 7.3$

③计算 T

$$\frac{1}{T} = \sqrt{\alpha} \cdot \omega_c = 2.7 \times 10 = 27$$

所以,超前校正环节为: $G_c(s) = 7.3 \times \frac{s+3.7}{s+27}$

校正后的系统开环传递函数为:

$$G(s)G_c(s) = \frac{292(s+3.7)}{s(s+4)(s+27)}$$

画出校正后的系统的 bode 图

可见,校正后系统的剪切角频率 $\omega_c=10 rad$ / \sec ,相位裕量为: $\gamma=81^\circ$,速度误差系数 $K_\nu=10$ 满足设计要求。

(2) 设滞后环节为:
$$G_c(s) = \beta \times \frac{s + \frac{1}{\beta T}}{s + \frac{1}{T}}$$
, 其开环增益为 1

法一: ①根据工程方法得到的原系统 bode 图

②选择校正后系统的剪切角频率

可以发现在新的剪切角频率 $\omega_c = 4rad / \sec$, 系统的相位裕量为: $\gamma = 46^\circ$, 正好满足要求。

③求 β

欲使校正后 $L(\omega)$ 曲线在 $\omega=\omega_c$ 穿越 0dB 线,从图上可查到,应使 $20Lg\beta=7.96dB$,则:

$$\beta = 10^{-L(\omega_c)/20} = 10^{-0.25} = 0.4$$

④求
$$\frac{1}{\beta T}$$

④求 $\frac{1}{\beta T}$ 选取滞后校正网络的零点。令

$$\frac{1}{\beta T} = 0.1\omega_c = 0.4$$

⑤相位滞后校正网络的传递函数为:

$$G_c(s) = \beta \times \frac{s + \frac{1}{\beta T}}{s + \frac{1}{T}} = 0.4 \times \frac{s + 0.4}{s + 0.16}$$

校正后系统的开环传递函数为:

$$G(s)G_c(s) = \frac{16(s+0.4)}{s(s+4)(s+0.16)}$$

法二: ①根据 MATLAb 得到的原系统 bode 图

②选择校正后系统的剪切角频率

可以发现在新的剪切角频率 $\omega_c = 4rad / sec$, 系统的相位裕量为: $\gamma = 46^\circ$, 正好满足要求。

③求 β

欲使校正后 $L(\omega)$ 曲线在 $\omega=\omega_c$ 穿越 0dB 线,从图上可查到,应使 20Lg $\beta=5dB$,则:

$$\beta = 10^{-L(\omega_c)/20} = 10^{-0.25} = 0.56$$

④求
$$\frac{1}{\beta T}$$

④求 $\frac{1}{\beta T}$ 选取滞后校正网络的零点。令

$$\frac{1}{\beta T} = 0.1\omega_c = 0.4$$

⑤相位滞后校正网络的传递函数为:

$$G_c(s) = \beta \times \frac{s + \frac{1}{\beta T}}{s + \frac{1}{T}} = 0.56 \times \frac{s + 0.4}{s + 0.224}$$

校正后系统的开环传递函数为:

$$G(s)G_c(s) = \frac{22.4(s+0.4)}{s(s+4)(s+0.224)}$$

画出校正后的系统的 bode 图:

可见,校正后系统的剪切角频率 $\omega_c=4rad$ / \sec ,相位裕量为: $\gamma=45^\circ$,速度误差系数 $K_{\nu}=10$ 满足设计要求。

A6-8

解: ①为了不影响系统的稳态指标,选用速度微分校正。

②根据工程方法绘制系统 bode 图

 $L(\omega) dB$

③根据图示,要使 G_2G_c 的剪切频率为 ω_2 =10rad/sec ,所以可以算出 G_2G_c 的 0db/10 倍频段的增益为 20(1-log(4)) = 7.96,即 G_2G_c 的开环增益为 2.5

根据选择的规则, $\omega_2 \ge 10\frac{1}{T_c}$, 所以选择 $\frac{1}{T_c} = 1$

④写出 G_2G_c 的传递函数:

$$G(s) = G_2(s)G_c(s) = \frac{2.5s}{(s+1)(0.25s+1)}$$

$$\mathbb{M} G_c(s) = G(s) / G_2(s) = \frac{2.5s}{(s+1)(0.25s+1)} / \frac{10}{s(0.25s+1)} = \frac{0.25s^s}{s+1}$$

A6-9

解: ①根据二阶系统的时域性能指标,有

$$M_p = e^{-\pi \varsigma / \sqrt{1 - \varsigma^2}} < 4.5\%$$
 $t_s = 4 = \frac{4}{\varsigma \omega_n}$

求得要求校正后系统的 $\varsigma = 0.7$, $\omega_n = 1.42$ 。确定闭环系统的期望主导极点为:

$$s_c = -1 \pm 1j$$

②绘制原系统的根轨迹

原系统的开环传递函数为:
$$G(s) = \frac{40}{s(s+4)}$$

③计算相位超前量

$$\phi = -135^{\circ} - 18.4^{\circ} = -153.4^{\circ}$$

④使用滞后校正,提供的滞后相角为:

$$\phi = -180^{\circ} + (135^{\circ} + 18.4^{\circ}) = -26.6^{\circ}$$

⑤假设滞后校正如下:

$$G_c(s) = K_c \frac{(s + z_c)}{(s + z_c / \beta)} \qquad \text{ @ \varnothing $z_c = 2.5$}$$

根据相角的条件:
$$(\angle(s+1)-\angle(s+1/\beta))|_{s=-1+j}=-26.6^{\circ}\to 33.7^{\circ}-\tan^{-1}(\frac{1}{1/\beta-2.5})=-26.6^{\circ}$$

解得 $\beta = 1.6$, 再根据幅值条件

$$|G(s)G_c(s)| = \frac{|40K_c| \cdot |s_c+1|}{|s_c| \cdot |s_c+4| \cdot |s_c+0.5|}|_{s=-1+j} = 1, \quad \text{$\not$$} K_c = 0.0711$$

由于要求速度误差系数 $K_v=10$,所以再加入一个滞后环节,用于加强稳态指标,同时尽量保持主导极点的位置。其传递函数如下:

$$G_{c2}(s) = \frac{(s + \frac{1}{T})}{(s + \frac{1}{\beta T})}$$

令
$$\frac{1}{T} = 0.1$$
,根据 $10K_c \beta \beta_2 = 10 \rightarrow \beta_2 = 8.8$

所以,校正以后,系统的开环传递函数为:

$$G(s)G_c(s)G_{c2}(s) = \frac{2.844(s+2.5)(s+0.01)}{s(s+4)(s+1.56)(s+0.0011)}$$

校正后系统的根轨迹图如下:

系统的阶跃响应如下:

A6-10

解:要求相位余量已经满足要求,将稳态误差要求提高到: 0.01A。而滞后校正可以提高稳态响应并不降低动态特性,所以使用滞后校正。

①确定闭环主导极点

原系统闭环传递函数为:

$$\Phi(s) = \frac{40}{s(s+4)+40} = \frac{40}{(s+2+6j)(s+2-6j)}$$

画出根轨迹图:

所以,主导极点为 $s_c = -2 \pm 6j$,阻尼比为 $\varsigma = 0.316$

②计算校正网络的 β

未校正系统的静态速度误差系数为 $K_v'=40/4=10$,要求的静态速度误差系数为 $K_v=100$

所以
$$\beta = \frac{K'_{\nu}}{K_{\nu}} = 0.1$$

③选 $z_c=-0.1$,因为 $z_c=-\frac{1}{bT}$,则 T=100,而 $p_c=-\frac{1}{T}=-0.01$,于是相位滞后校正网络的传递函数为:

$$G_c(s) = K_c^* \times \frac{s + \frac{1}{bT}}{s + \frac{1}{T}} = K_c^* \times \frac{s + 0.1}{s + 0.01}$$

校正后系统的传递函数为:

$$G(s)G_c(s) = \frac{40K_c^* \cdot (s+0.1)}{s(s+4)(s+0.01)}$$

④绘制校正后的根轨迹图:

⑤校正后系统和原系统有相同的阻尼比,但位置略有变化。 新的主导极点为 $s_c = -1.95 \pm 5.86 j$ 根据幅值条件

$$|G(s)G_c(s)| = \frac{|40K_c^*| \cdot |s + 0.1|}{|s| \cdot |s + 4| \cdot |s + 0.01|} = \frac{|40K_c^*| \cdot |-1.85 + 5.86j|}{|-1.95 + 5.86j| \cdot |2.05 + 5.86j| \cdot |-1.949 + 5.86j|} = 1$$

求得
$$K_c^* = \frac{38.5320}{40} = 0.9633$$

设计的滞后环节传递函数为:

$$G_c(s) = 0.9633 \times \frac{s + 0.1}{s + 0.01}$$

校正后系统的传递函数为: $G(s)G_c(s) = \frac{38.532 \cdot (s+0.1)}{s(s+4)(s+0.01)}$

A6-11

解:确定闭环主导极点。原系统闭环传递函数为:

$$\Phi(s) = \frac{4}{s(s+2)(s+4)+4} = \frac{4}{(s+0.477+1.72j)(s+0.477-1.72j)(s+5.04)}$$

①绘制系统的根轨迹图:

②在图上求得主导极点为 $s_c = -0.48 \pm 1.72j$, 阻尼比为 $\varsigma = 0.268$

③计算校正网络 b

未校正系统的静态速度误差系数为 $K_{_{v}}'=4/2\cdot 4=0.5$,要求的静态速度误差系数为 $K_{_{v}}=5$ 所以 $b=\frac{K_{_{v}}'}{K_{_{v}}}=0.1$

④选 $z_c=-0.1$,因为 $z_c=-\frac{1}{bT}$,则 T=100,而 $p_c=-\frac{1}{T}=-0.01$,于是相位滞后校正网络的传递函数为:

$$G_c(s) = K_c^* \times \frac{s + \frac{1}{bT}}{s + \frac{1}{T}} = K_c^* \times \frac{s + 0.1}{s + 0.01}$$

校正后系统的传递函数为:

$$G(s)G_c(s) = \frac{4K_c^* \cdot (s+0.1)}{s(s+2)(s+4)(s+0.01)}$$

⑤绘制校正后的根轨迹图:

⑥校正后系统和原系统有相同的阻尼比,但位置略有变化。 新的主导极点为 $s_c = -0.455 \pm 1.63\,j$ 根据幅值条件

设计的滞后环节传递函数为: $G_c(s) = 3.775 \times \frac{s+0.1}{s+0.01}$

校正后系统的传递函数为:

$$G(s)G_c(s) = \frac{15.1 \cdot (s+0.1)}{s(s+2)(s+4)(s+0.01)}$$

A6-12

- (1) 不接内反馈
- ①系统输出对与输入的开环传递函数为:

$$G(s) = \frac{C(s)}{E(s)} = \frac{112}{2s(s+3)}$$

系统闭环的传递函数为:

$$G'(s) = \frac{112}{2s(s+3)+112} = \frac{112}{2s^2+6s+112} = \frac{\sqrt{56}^2}{s^2+2\times\frac{3}{2\times\sqrt{56}}\times\sqrt{56}s+\sqrt{56}^2}$$

求得 $\varsigma = 0.2$, $\omega_n = 7.48$

计算得到

超调量
$$M_p = e^{-\pi \varsigma/\sqrt{1-\varsigma^2}} = 0.527$$
 $t_s = \frac{4}{\varsigma \omega_n} = \frac{4}{1.5} = 2.67$

系统闭环的阶跃响应如下:

②系统输出对与扰动的开环传递函数为:

$$G_2(s) = \frac{C(s)}{E_N(s)} = \frac{0.1}{2s(s+3)}$$

系统闭环的传递函数为:

$$G_2'(s) = \frac{0.1}{2s(s+3)+1} = \frac{0.05}{s^2 + 3s + 0.5} = \frac{0.1*\sqrt{0.5}^2}{s^2 + 2 \times \frac{3}{2 \times \sqrt{0.5}} \times \sqrt{0.5}s + \sqrt{0.5}^2}$$

求得 $\varsigma = 2.12$, $\omega_n = 0.707$

因为是过阻尼, 所以不存在超调量

$$t_s = 22.5$$

系统闭环的阶跃响应如下:

(2) 接内反馈

①系统开环的传递函数为:

$$G''(s) = \frac{C(s)}{E(s)} = \frac{112}{2s(s+3) + K_f s}$$

系统的特征方程为:

$$s^2 + (0.5K_f + 3)s + 56 = 0$$

$$\diamondsuit K = 0.5K_f + 3$$

于是特征方程变为:

画出由(*)式给出的系统的根轨迹

由
$$M_p = e^{-\pi \varsigma/\sqrt{1-\varsigma^2}} < 20\%$$
 , 得 $\varsigma = 0.456$, $\omega_n = 7.48$

在图中找出对应 ς = 0.456 的根的位置,其对应根为: s_c = -3.41 \pm 6.66 j

其对应的 K = 6.82

进而可以求得
$$6.82 = 0.5K_f + 3$$
 => $K_f = 7.64$ 系统的开环传递函数为: $G''(s) = \frac{112}{2s(s+3) + 7.64s}$

系统的阶跃响应为:

②系统输出对与扰动的开环传递函数为:

$$G_2''(s) = \frac{C(s)}{E_N(s)} = \frac{0.1}{2s^2 + 13.64s}$$

系统闭环的传递函数为:

$$G_2'(s) = \frac{0.1}{2s^2 + 13.64s + 1} = \frac{0.1 * \sqrt{0.5}^2}{s^2 + 2 \times \frac{6.82}{2 \times \sqrt{0.5}} \times \sqrt{0.5}s + \sqrt{0.5}^2}$$

求得 $\varsigma = 4.82$, $\omega_n = 0.707$

因为是过阻尼, 所以不存在超调量。

$t_{\rm s} = 53$

系统闭环的阶跃响应如下:

A6-13

解:加上扰动补偿 F(s),系统输出对于扰动的传递函数为:

$$G_2'''(s) = \frac{C(s)}{N(s)} = \frac{(0.1 + 112F(s))G_1(s)}{1 + 112G_1(s)}$$

要消除扰动对输出的影响,则 $(0.1+112F(s))G_1(s)=0\Rightarrow 0.1+112F(s)=0$

$$F(s) = -1/1120$$

B6-1

解: 原系统的开环传递函数为:

$$G(s) = \frac{40}{s(s+4)}$$

为了满足稳态条件,先加上增益 10 的环节并将加上增益环节后的系统作为新的原系统,调整后的原系统的 开环传递函数为:

$$G'(s) = \frac{400}{s(s+4)}$$

①使用工程方法绘制系统 bode 图

增益剪切频率为: $\omega_{c0}=20 rad/\sec$,可以得到原系统的相位裕量为: $\gamma=180^{\circ}-90^{\circ}-\tan^{-1}(20/5)=11.3^{\circ}$

此外,也可以使用 MATLAB 画出其 bode 图:

可以得到原系统的相位裕量为: $\gamma=11^\circ$, 增益剪切频率为: $\omega_{c0}=19.8 rad/sec$

(1) 在第一种情况下,要求剪切角频率 $\omega_c=10 rad$ / \sec ,此时由于 $\omega_c<\omega_{c0}$,无法仅仅使用超前校正。而且虽然滞后校正可以减小剪切角频率,同时在剪切角频率 $\omega_c=10 rad$ / \sec 相位裕量 $\gamma=22^\circ$,所以仅仅使用滞后校正也很难达到要求。所以,使用超前-滞后校正。设超前-滞后校正为:

$$G_c(s) = \frac{(s + \frac{1}{T_1})(s + \frac{1}{T_2})}{(s + \frac{\beta}{T_1})(s + \frac{1}{\beta T_2})}$$

法一: ①根据工程方法得到的原系统 bode 图,新的剪切角频率 $\omega_c=10rad$ / sec ,所需的相位超前角 $\phi_m=45^\circ-22^\circ+7^\circ=30^\circ$ 由超前环节提供。

②确定滞后部分的转角频率。

选择转角频率 $\omega=1/T_2$ 在新的剪切角频率以下十倍频程处,即 $\omega=1rad$ / \sec ,所以 $T_2=1$ 在超前部分,最大超前相位角 $_{\phi_m}$ 有以下方程确定:

$$\sin \phi_m = \frac{1 - \frac{1}{\beta}}{1 + \frac{1}{\beta}} = \frac{\beta - 1}{\beta + 1}$$

$$\mathbb{R} \beta = 5$$

③确定超前部分的转角频率

从原系统的 bode 图可以看到 G'(j10)=12dB,超前-滞后校正可以产生-14dB 的幅值。画一条斜率为 20dB/10 倍频,且通过(-12dB,10rad/sec)点的直线。该直线与 0db 以及-201g5 的交点,就确定了所要求的转角频率。可以得到超前部分的转角频率为 $\omega=8rad/sec$

④超前-滞后校正为

$$G_c(s) = \frac{(s+8)(s+1)}{(s+40)(s+0.2)}$$

校正后系统的开环传递函数为:

$$G(s)G_c(s) = \frac{400(s+8)(s+1)}{s(s+4)(s+40)(s+0.2)}$$

法二: ①根据 MATLAb 得到的原系统 bode 图,新的剪切角频率 $\omega_c=10 rad$ / sec ,所需的相位超前角 $\phi_m=45^\circ-22^\circ+7^\circ=30^\circ$ 由超前环节提供。

②确定滯后部分的转角频率。选择转角频率 $\omega=1/T_2$ 在新的剪切角频率以下十倍频程处,即 $\omega=1 rad$ / sec,所以 $T_2=1$

③确定超前部分

最大超前相位角 ϕ_m 有以下方程确定:

$$\sin \phi_m = \frac{1 - \frac{1}{\beta}}{1 + \frac{1}{\beta}} = \frac{\beta - 1}{\beta + 1}$$

$$\mathbb{R} \beta = 5$$

超前部分确定如下:

从原系统的 bode 图可以看到 G'(j10)=11.4dB,超前-滞后校正可以产生-14dB 的幅值。画一条斜率为 20dB/10 倍频,且通过(-11.4dB,10rad/sec)点的直线。该直线与 0db 以及-201g5 的交点,就确定了所要求的转角频率。可以得到超前部分的转角频率为 $\omega=8.4rad/sec$

④超前-滞后校正为

$$G_c(s) = \frac{(s+8.4)(s+1)}{(s+42)(s+0.2)}$$

校正后系统的开环传递函数为:

$$G(s)G_c(s) = \frac{400(s+8.4)(s+1)}{s(s+4)(s+42)(s+0.2)}$$

⑤画出校正后的系统的 bode 图:

满足设计要求。

选择元件:

超前滞后环节:

$$G_c(s) = \frac{(\alpha T_1 s + 1)(\beta T_2 s + 1)}{(T_1 s + 1)(T_2 s + 1)} = \frac{(1/8.4 \cdot s +)(s+1)}{(1/42 \cdot s + 42)(5s+1)}$$

$$\alpha T_1 = 1/8.4 = 0.12$$
, $T_1 = 1/42 = 0.024$, $\beta T_2 = 1$, $T_2 = 5$
$$R_1 C_1 + R_1 C_2 + R_2 C_2 = T_1 + T_2 = 5.024$$

$$R_1 R_2 C_1 C_2 = T_1 T_2 = 0.12$$

$$R_1 C_1 = \alpha T_1 = 0.12$$

$$R_2 C_2 = \beta T_2 = 1$$

$$\alpha \beta = 1$$

计算得到:

$$R_1 = 12$$
, $R_2 = 3.08$, $C_1 = 0.01$, $C_2 = 0.325$

(2) 设滞后环节为:
$$G_c(s) = \beta \times \frac{s + \frac{1}{\beta T}}{s + \frac{1}{T}}, \quad 其开环增益为 1$$

法一: ①根据工程方法得到的原系统 bode 图,可以发现在新的剪切角频率 $\omega_c = 4rad$ / \sec ,系统的相位 裕量为: $\gamma = 46^\circ$,正好满足要求。

②欲使校正后 $L(\omega)$ 曲线在 $\omega=\omega_c$ 穿越 0dB 线,从图上可查到,应使 $20Lg\beta=27.96dB$,则: $\beta=10^{-L(\omega_c)/20}=10^{-1.398}=0.04$

④相位滞后校正网络的传递函数为:

$$G_c(s) = \beta \times \frac{s + \frac{1}{\beta T}}{s + \frac{1}{T}} = 0.04 \times \frac{s + 0.4}{s + 0.016}$$

校正后系统的开环传递函数为:

$$G(s)G_c(s) = \frac{16(s+0.4)}{s(s+4)(s+0.016)}$$

法二: ①根据 MATLAb 得到的原系统 bode 图,可以发现在新的剪切角频率 $\omega_c=4rad$ / sec ,系统的相位裕量为: $\gamma=46^\circ$,正好满足要求。

②求 β

欲使校正后 $L(\omega)$ 曲线在 $\omega=\omega_c$ 穿越 0dB 线,从图上可查到,应使 $20Lg\beta=25dB$,则: $\beta=10^{-L(\omega_c)/20}=10^{-0.25}=0.056$

④相位滞后校正网络的传递函数为:

$$G_c(s) = \beta \times \frac{s + \frac{1}{\beta T}}{s + \frac{1}{T}} = 0.056 \times \frac{s + 0.4}{s + 0.0224}$$

校正后系统的开环传递函数为:

$$G(s)G_c(s) = \frac{22.4(s+0.4)}{s(s+4)(s+0.0224)}$$

⑤绘制校正后的系统的 bode 图:

满足设计要求。

选择元件:

滞后环节:

$$G_c(s) = \frac{(\beta T s + 1)}{(T s + 1)} = \frac{2.5 s + 1}{44.64 s + 1}$$

 $\beta T = 2.5, \quad T = 44.64$

$$(R_1 + R_2)C = T = 44.64$$
, $\frac{R_2}{R_1 + R_2} = \beta = 0.056$

计算得到:

$$R_1 = 42.14$$
, $R_2 = 2.5$, $C_1 = 1$

B6-2

解: ①当 K=10 时,系统的开环传递函数为:

$$G(s) = \frac{10e^{-\tau s}}{s(s+10)} = \frac{10e^{-0.1s}}{s(s+10)}$$

②绘制系统 bode 图:

当 K=10 时,相位裕量为: $\gamma = 71^{\circ}$;

③当相位裕量为: $\gamma=55^\circ$ 时,对应的频率为: $\omega=3.11rad/\sec$,对应的幅值为: $L(\omega)=-10.3dB$ 所以,增加 K,可以使幅值曲线上移,使得新的剪切频率变成 $\omega_c=3.11rad/\sec$

$$20\lg K - 20\lg K' = -10.3dB$$
,得 $K' = 3.05$

B6-3

解: 开环传递函数为:

$$G(s) = \frac{K_r}{s(s+3)(s+9)}$$

画出系统的根轨迹

(1) 要求系统的超调量
$$M_p=20\%$$
, 由 $M_p=e^{-\pi\varsigma/\sqrt{1-\varsigma^2}}<20\%$, 得 $\varsigma=0.456$, $\omega_n=2.36$

在图中找出对应 $\varsigma=0.456$ 的根的位置,其对应根为: $s_c=-1.07\pm2.1j$

其对应的 $K = K_r = 55$

(2) 开环传递函数为:

$$G(s) = \frac{55}{s(s+3)(s+9)}$$

系统的速度误差系数 $K_{\nu} = \frac{55}{3 \times 9} = 2.04$

2% 准则的调整时间
$$t_{s2\%} = \frac{4}{\varsigma \omega_n} = \frac{4}{1.07} = 3.74$$

5% 准则的调整时间
$$t_{s5\%} == \frac{3}{\varsigma \omega_s} = \frac{3}{1.07} = 2.8$$

系统的阶跃响应如下:

(3) 要求系统的 $K_v = 20$,

开环传递函数为:

$$G(s) = \frac{55}{s(s+3)(s+9)}$$

①根据二阶系统的时域性能指标,有

$$M_p = 15\%$$
 , $t_s = 3.74/2.5 = 1.5$

$$M_p = e^{-\pi \zeta / \sqrt{1 - \zeta^2}} < 15\%$$
 $t_s = \frac{4}{\zeta \omega_n} = 1.5$

求得要求校正后系统的 $\varsigma = 0.52$, $\omega_n = 5.13$ 。闭环系统的期望主导极点为:

$$s_c = -2.67 \pm 4.38 j$$

已校正的开环传递函数为:

$$G(s) = K_c \bullet \frac{55}{s(s+3)(s+9)} \bullet \frac{(s+\frac{1}{T_1})(s+\frac{1}{T_2})}{(s+\frac{\beta}{T_1})(s+\frac{1}{\beta T_2})}$$

②求 K_c

要求系统的 $K_v = 20$, 所以 $K_c = 20/2.04 = 10$

③求超前校正装置提供的超前相角

超前相角 $\phi = -180^{\circ} + (121.37^{\circ} + 85.69^{\circ} + 34.68^{\circ}) = 61.74^{\circ}$ 。

④确定*T*₁, β

$$\frac{|s + \frac{1}{T_1}|}{|s + \frac{\beta}{T_1}|} | \frac{550}{s(s+3)(s+9)}|_{s=-2.67+4.38j} = 1 \Rightarrow \frac{|s + \frac{1}{T_1}|}{|s + \frac{\beta}{T_1}|} \times 3.17 = 1$$

$$\angle(s + \frac{1}{T_1}) - \angle(s + \frac{1}{\beta T_1}) = 61.74^{\circ}$$

由图解法,可以求得

$$\frac{1}{T_1}$$
=3.44, $\frac{\beta}{T_1}$ =15.87

$$T_1 = 0.3, \beta = 4.61$$

$$\Rightarrow \frac{1}{T_2} = 0.1$$
, $\square \frac{1}{\beta T_2} = \frac{0.1}{4.61} = 0.02$

已校正的开环传递函数为:

$$G(s) = \frac{550(s+3.44)(s+0.1)}{s(s+3)(s+9)(s+15.87)(s+0.02)}$$

⑤绘制校正后系统的根轨迹图

⑥系统的阶跃响应

B6-4

解: ①求对象的传递函数

由于 $\omega = \sqrt{10}$ 是幅值为-10dB,可以求得剪切频率 ω_c 为

$$\frac{\lg \omega - \lg \omega_c}{1} = \frac{10dB}{20dB}, \quad \text{?} \quad \text{?} \quad \text{?} \quad \omega_c = \sqrt[4]{10} = 1.78$$

低频段延长线和 0dB 的交点正好为 ω_c =1.78,所以 $K_1=\omega_c=\sqrt[4]{10}$ =1.78。 对象的传递函数为:

$$G(s) = \frac{\sqrt[4]{10}}{s(\frac{s}{\sqrt[4]{10}} + 1)(\frac{s}{\sqrt{10}} + 1)} = \frac{1.78}{s(\frac{s}{1.78} + 1)(\frac{s}{3.16} + 1)}$$

②求得增益环节 K

要求速度误差系数 $K_v=10$,可以求得增益环节 K,即 $K\times 1.78=10 \to K=5.62$ 将增益环节和对象合并为新的对象:

$$G'(s) = \frac{10}{s(\frac{s}{\sqrt{10}} + 1)(\frac{s}{\sqrt[4]{10}} + 1)} = \frac{56.248}{s(s + 1.78)(s + 3.16)}$$

③根据工程方法绘制原系统 bode 图:

相位裕量为: $\gamma = -25^{\circ}$, 要求相位余量 $\gamma \ge 45^{\circ}$

也可以根据 MATLAB 得到的原系统 bode 图:

相位裕量为: $\gamma = -18^{\circ}$, 要求相位余量 $\gamma \ge 45^{\circ}$

采用超前-滞后校正,设为:

$$G_c(s) = \frac{(s + \frac{1}{T_1})(s + \frac{1}{T_2})}{(s + \frac{\beta}{T_1})(s + \frac{1}{\beta T_2})}$$

法一: ①根据工程方法得到的原系统 bode 图,选择新的剪切角频率 $\omega_c=2rad$ / \sec ,此处的相位为 $\phi=9^\circ$,由超前环节提供的相位超前角 $\phi_m=45^\circ-9^\circ+9^\circ=45^\circ$ 。

②确定滞后部分的转角频率。选择转角频率 $\omega = \frac{1}{T_2}$ 在新的剪切角频率以下十倍频程处,即

$$\omega = 0.2 rad / sec$$
,所以 $T_2 = 5$

③确定超前部分最大超前相位角 ϕ_m

$$\sin \phi_m = \frac{1 - \frac{1}{\beta}}{1 + \frac{1}{\beta}} = \frac{\beta - 1}{\beta + 1}$$

$$\mathbb{R} \beta = \epsilon$$

④确定超前部分

从原系统的 bode 图可以看到G'(j2)=12.96dB,超前-滞后校正可以产生-15.6dB的幅值。画一条斜率为 20dB/10 倍频,且通过(-12.96dB,2rad/sec)点的直线。该直线与 0db 以及-201g6 的交点,就确定了所要求的转角频率。可以得到超前部分的转角频率为 $\omega=1.48rad/sec$

⑤超前-滞后校正为

$$G_c(s) = \frac{(s+1.48)(s+0.2)}{(s+8.88)(s+0.03)}$$

校正后系统的开环传递函数为:

$$G(s)G_c(s) = \frac{56.248(s+1.48)(s+0.2)}{s(s+1.78)(s+3.16)(s+8.88)(s+0.03)}$$

法二: ①根据 MATLAb 得到的原系统 bode 图,选择新的剪切角频率 $\omega_c=2rad$ / \sec ,此处的相位为 $\phi=9^\circ$,由超前环节提供的相位超前角 $\phi_m=45^\circ-9^\circ+9^\circ=45^\circ$ 。

②确定滞后部分的转角频率。选择转角频率 $\omega = \frac{1}{T_2}$ 在新的剪切角频率以下十倍频程处,即

 $\omega = 0.2 rad / sec$,所以 $T_2 = 5$

③确定超前部分最大超前相位角 ϕ_m

$$\sin \phi_m = \frac{1 - \frac{1}{\beta}}{1 + \frac{1}{\beta}} = \frac{\beta - 1}{\beta + 1}$$

$$\mathbb{R} \beta = 6$$

④确定超前部分

从原系统的 bode 图可以看到G'(j2)=8.94dB,超前-滞后校正可以产生-15.6dB 的幅值。画一条斜率为 20dB/10 倍频,且通过(-8.94dB,2rad/sec)点的直线。该直线与 0db 以及-201g6 的交点,就确定了所要求的转角频率。可以得到超前部分的转角频率为 $\omega=1rad/sec$

⑤超前-滞后校正为

$$G_c(s) = \frac{(s+1)(s+0.2)}{(s+6)(s+0.03)}$$

校正后系统的开环传递函数为:

$$G(s)G_c(s) = \frac{56.248(s+1)(s+0.2)}{s(s+1.78)(s+3.16)(s+6)(s+0.03)}$$

绘制校正后的系统的 bode 图:

满足设计要求。

B6-5

解: (1) G(s) 的传递函数可以求出为:

$$G(s) = \frac{1}{s(s+1)(0.1s+1)}$$

系统期望开环传递函数:

设期望开环传递函数为:

$$G'(s) = \frac{K_c(s+1)}{s(5s+1)(\frac{s}{\omega}+1)(0.1s+1)}$$

假设拐角(3)处的频率为 ω_3 ,设期望开环传递函数的开环增益为 K_c 。

可以求得在 $\omega_1 = 0.2$ 即(1)处的幅值为 $L(\omega_1) = 20 \lg K_c + 20 \lg 5$

在 $\omega_2 = 1$ 即(2)处的幅值为 $L(\omega_2) = 20 \lg K_c - 20 \lg 5$

在 $\omega_3 = \omega$ 即(3)处的幅值为 $L(\omega) = 20 \lg K_c - 20 \lg 5 - 20 \lg \omega_3$

在 $\omega_4 = 10$ 即(4)处的幅值为 $L(\omega_4) = 20 \lg K_c - 20 \lg 5 + 20 \lg \omega_3 - 40$

又在 $\omega_4=10$ 处的幅值为-20dB,所以 $-20=20\lg K_c-20\lg 5+20\lg \omega_3-40$,解得 $K_c\cdot\omega_3=50$ 系统期望开环传递函数为:

$$G'(s) = \frac{\frac{50}{\omega_3}(s+1)}{s(5s+1)(\frac{s}{\omega_3}+1)(0.1s+1)}$$

假设 $\omega_3 = 5$

$$G'(s) = \frac{10(s+1)}{s(5s+1)(0.2s+1)(0.1s+1)}$$

(2) 令 F(s) = 0, 系统的开环传递函数为

$$G_T(s) = G_c(s)G(s) = G'(s)$$

所以,
$$G_c(s)G(s) = \frac{G'(s)}{G(s)} = \frac{\frac{10(s+1)}{s(5s+1)(0.2s+1)(0.1s+1)}}{\frac{1}{s(s+1)(0.1s+1)}} = \frac{10(s+1)^2}{(5s+1)(0.2s+1)}$$

(3) 令 $G_c(s)=1$,系统框图变为:

假设使用速度微分反馈 $F(s) = \frac{1 + T_c s}{K_c T_c s^2 + 1}$

局部闭环的开环传递函数为:

$$G(s)F(s) = \frac{K_1 K_c T_c s}{(T_m s + 1)(T_c s + 1)(T_1 s + 1)}$$

它于 0dB 有两个交点,分别在 $\omega_1 = \frac{1}{T_1}$ 和 $\omega_2 = \frac{1}{T_m'}$

因为F(s)可以等效为一个串联校正环节,

$$F_{\text{max}}(s) = \frac{(T_m s + 1)(T_c s + 1)}{(T_1 s + 1)(T'_m s + 1)}$$

令它等效于 $G_c(s)$

即
$$\frac{10(s+1)^2}{(5s+1)(0.2s+1)} = \frac{(T_m s+1)(T_c s+1)}{(T_1 s+1)(T_m' s+1)}$$
 其中 $(T_1 > T_m')$

求得
$$T_m = 1$$
, $T_c = 1$, $T_1 = 1$, $T_m' = 0.2$, $K_c = \frac{\omega_2 T_m}{K_1} = \frac{T_m / T_m'}{K_1} = \frac{1/0.2}{1} = 5$

所以,
$$F(s) = \frac{1+s}{5s^2+1}$$

B6-6

解: (1) 系统的开环传递函数为:

$$G(s) = \frac{8}{s(0.05s+1)(2s+1)}$$

要求系统的 $K_v = 80$, $M_p = 16\%$, $t_s = 1.65$

①根据二阶系统的时域性能指标,有

$$M_p = e^{-\pi \varsigma / \sqrt{1 - \varsigma^2}} < 16\%$$
 $t_s = \frac{4}{\varsigma \omega_n} = 1.65$

求得要求校正后系统的 $\varsigma = 0.5$, $\omega_n = 4.75$ 。闭环系统的期望主导极点为:

$$s_c = -2.375 \pm 4.11j$$

②设计超前-滞后校正:

$$G_c(s) = K_c \times \frac{(s + \frac{1}{T_1})(s + \frac{1}{T_2})}{(s + \frac{\alpha}{T_1})(s + \frac{1}{\beta T_2})}$$

已校正的开环传递函数为:

$$G(s)G_c(s) = K_c \times \frac{(s + \frac{1}{T_1})(s + \frac{1}{T_2})}{(s + \frac{\alpha}{T_1})(s + \frac{1}{\beta T_2})} \cdot \frac{8}{s(0.05s + 1)(2s + 1)}$$

③求超前校正装置提供的超前相角

$$\phi = -180^{\circ} + (112.33^{\circ} + 13.13^{\circ} + 114.52^{\circ}) = 68^{\circ}$$

利用图解法可以解得:

$$\frac{1}{T_1}$$
=2.088, $\frac{\alpha}{T_1}$ =10.802

④根据幅值条件确定 K。

$$\left| K_c \times \frac{(s + \frac{1}{T_1})}{(s + \frac{\alpha}{T_1})} \cdot \frac{8}{s(0.05s + 1)(2s + 1)} \right|_{s_c = -2.375 \pm 4.11j} = 1$$

$$K_c = 11.0375$$

⑤选择滞后部分零极点

要求系统的
$$K_{\nu} = 80$$
, $\frac{8K_{c}\beta}{\alpha} = 80 \rightarrow \beta = 4.687$

选取
$$T_2$$
足够大,令 $T_2 = 10$

所以,
$$\frac{1}{T_2}$$
=0.1, $\frac{1}{\beta T_2}$ =0.021

⑥已校正的开环传递函数为

$$G(s)G_c(s) = \frac{88.3 \cdot (s + 2.088)(s + 0.1)}{s(0.05s + 1)(2s + 1)(s + 10.802)(s + 0.021)}$$

⑦校正后系统的根轨迹图

主导极点参数非常接近要求。

- (2) 速度误差系数 $K_v = 80$, 所以 $K_c = 80/8 = 10$ 。
- ①根据二阶系统的时域性能指标,有

超调量 $M_p \leq 16\%$, 接 2% 准则的调节时间 $t_s \leq 1.65s$

将时域指标换算为频域指标。由公式

$$\gamma = \arctan \frac{2\xi}{\sqrt{\sqrt{1 + 4\xi^4} - 2\xi^2}}$$

$$t_s = \frac{\pi}{\omega_c} [2 + 1.5(M_r - 1) + 2.5(M_r - 1)^2] \le 1.65s$$

解得 γ≥52°

$$t_s = \frac{2\pi}{\omega_c} \le 1.65s$$
 , 所以 $\omega_c \ge 3.8$

②系统的开环传递函数为:

$$G(s) = \frac{80}{s(0.05s+1)(2s+1)}$$

③根据工程方法绘制原系统 bode 图

系统的增益剪切频率为 6.3rad/sec, 相位裕量:

$$\gamma = 180^{\circ} - 90^{\circ} - \tan^{-1}(0.05 \cdot 6.3) - \tan^{-1}(2 \cdot 6.3) = 12.94^{\circ}$$

也可以根据 MATLAb 得到的原系统 bode 图:

系统的增益剪切频率为 8.63rad/sec, 相位裕量 $\gamma \ge -13^\circ$

④设超前-滞后校正为:

$$G_c(s) = \frac{(s + \frac{1}{T_1})(s + \frac{1}{T_2})}{(s + \frac{\beta}{T_1})(s + \frac{1}{\beta T_2})}$$

法一: ①根据工程方法得到的原系统 bode 图,新的剪切角频率 $\omega_c=3.8rad$ /sec, 在新的剪切频率对应的相位裕量 $\gamma \ge -3^\circ$,所需的相位超前角 $\phi_m=52^\circ+3^\circ+10^\circ=65^\circ$ 由超前环节提供。

②确定滞后部分的转角频率。选择转角频率 $\omega = \frac{1}{T_2}$ 在新的剪切角频率以下十倍频程处,即

 $\omega = 0.38 rad / sec$,所以 $_{T_2 = 2.63}$

③确定超前部分最大超前相位角 ϕ_m :

④确定超前部分:

从原系统的 bode 图可以看到 G'(j3.8)=8.77dB,超前-滞后校正可以产生-25.58dB 的幅值。画一条斜率为 20dB/10 倍频,且通过(-8.77dB,10rad/sec)点的直线。该直线与 0db 以及-201g19 的交点,就确定了所要求的转角频率。可以得到超前部分的转角频率为 $\omega=0.55rad$ /sec

⑤超前-滞后校正为

$$G_e(s) = \frac{(s+0.55)(s+0.38)}{(s+10.45)(s+0.0375)}$$

校正后系统的开环传递函数为:

$$G(s)G_c(s) = \frac{80(s+0.55)(s+0.38)}{s(0.05s+1)(2s+1)(s+10.45)(s+0.0375)}$$

法二: ①根据 MATLAb 得到的原系统 bode 图,

新的剪切角频率 $\omega_c=3.8rad/\sec$,在新的剪切频率对应的相位裕量 $\gamma \geq -3^\circ$,所需的相位超前角 $\phi_m=52^\circ+3^\circ+10^\circ=65^\circ$ 由超前环节提供。

②确定滞后部分的转角频率。选择转角频率 $\omega = \frac{1}{T_2}$ 在新的剪切角频率以下十倍频程处,即

 $\omega = 0.38 rad / sec$,所以 $T_2 = 2.63$

③确定超前部分最大超前相位角 ϕ_m

④确定超前部分

从原系统的 bode 图可以看到G'(j3.8) = 8.63dB,超前-滞后校正可以产生-25.58dB的幅值。

画一条斜率为 20dB/10 倍频,且通过(-8.63dB,10rad/sec)点的直线。该直线与 0db 以及-201g19 的交点,就确定了所要求的转角频率。可以得到超前部分的转角频率为 $\omega=0.54$ rad/sec

⑤超前-滞后校正为

$$G_c(s) = \frac{(s+0.54)(s+0.38)}{(s+10.26)(s+0.0375)}$$

校正后系统的开环传递函数为:

$$G(s)G_c(s) = \frac{80(s+0.54)(s+0.38)}{s(0.05s+1)(2s+1)(s+10.26)(s+0.0375)}$$

⑥绘制校正后的系统的 bode 图:

B6-7

解: (1) ①经 PI 控制,系统的开环传递函数为:

$$G(s) = (K_p + \frac{K_I}{s})(\frac{0.005}{s(0.1s+1)(0.05s+1)}) = \frac{0.005(K_p s + K_I)}{s^2(0.1s+1)(0.05s+1)}$$

显然系统的对速度输入的稳态误差为零。

②假设 $K_{I} = 1$

系统的特征方程为:

$$s^{2}(0.1s+1)(0.05s+1) + 0.005K_{p}s + 0.005 = 0$$

于是特征方程变为:

$$\frac{1}{200}s^4 + \frac{3}{20}s^3 + s^2 + \frac{1}{200}K_ps + \frac{1}{200} = 0 \Rightarrow s^4 + 30s^3 + 200s^2 + K_ps + 1 = 0$$

$$\Leftrightarrow K = K_n$$

③画出由(*)式给出的系统的根轨迹

找出对应的阻尼比 $\varsigma = 0.707$ 的主导极点位置,其对应的增益为 $K = K_p = 648$

(2) 调节时间:

2%误差标准:
$$t_{s2\%} = \frac{4}{\varsigma \omega_n} = \frac{4}{0.707 \times 5.35} = 1.0575$$

峰值时间:

$$t_p = \frac{\pi}{\omega_d} = \frac{\pi}{\omega_n \sqrt{1 - \varsigma^2}} = \frac{4}{0.707 \times 5.35} = 0.8303$$

系统的阶跃响应如下:

(3) 单位速度输入的响应:

t=0:0.01:10

如果选取 t=0:0.01:100,可以发现输出几乎和输入一样,说明对于速度输入,系统的调整时间相当的长。

B6-8

解: ①求 K

系统的开环传递函数为:

$$G(s) = \frac{K(s+4)}{s(s+1)(s+3)(s^2+4s+8)}$$

要求稳态速度误差小于 5% ,即系统的 $K_{\nu}=20$,所以 $4K/3\times8=20\to K=120$ ②根据二阶系统的时域性能指标,有

超调量 $M_p \le 10\%$,接 5% 准则的调节时间 $t_s \le 10s$ 。

$$M_p = e^{-\pi \varsigma / \sqrt{1 - \varsigma^2}} < 10\%$$
 $t_s = \frac{3}{\varsigma \omega_n} = 10$

求得要求校正后系统的 $\varsigma=0.59$, $\omega_{_{n}}=0.5$ 。闭环系统的期望主导极点为:

$$s_c = -0.295 \pm 0.4 j$$

原系统的开环传递函数为:
$$G(s) = \frac{120(s+4)}{s(s+1)(s+3)(s^2+4s+8)}$$

③计算相位超前量

$$\phi = 6.16^{\circ} - 126.4^{\circ} - 29.57^{\circ} - 8.41^{\circ} - 11.4^{\circ} = -169.657^{\circ}$$

④使用滯后校正,提供的滯后相角为: $\phi = -180^{\circ} + 169.657^{\circ} = -10.343^{\circ}$

假设滞后校正如下:

$$G_c(s) = K_c \frac{(s + z_c)}{(s + z_c / \beta)}$$

⑤假设 $z_c = 0.4$

根据相角的条件:
$$(\angle(s+1)-\angle(s+1/\beta))|_{s=-0.295\pm0.4j}=-10.343^{\circ} \rightarrow 75.292^{\circ}-\tan^{-1}(\frac{0.4}{1/\beta-0.4})=-10.343^{\circ}$$

解得 $\beta = 1.23$, 再根据幅值条件

$$|G(s)G_c(s)| = \frac{|120K_c| \cdot |s_c + 4| \cdot |s_c + 0.4|}{|s_c| \cdot |s_c + 1| \cdot |s_c + 3| \cdot |s_c^2 + 4s_c + 8| \cdot |s_c + 0.325|}|_{s = -0.295 + 0.4j} = 1, \quad \text{ for } K_c = 0.0164$$

由于要求速度误差系数 $K_{\nu}=20$,所以再加入一个滞后环节,用于加强稳态指标,同时尽量保持主导极点的位置。其传递函数如下:

$$G_{c2}(s) = \frac{(s + \frac{1}{T})}{(s + \frac{1}{\beta_2 T})}$$

令
$$\frac{1}{T} = 0.1$$
,根据 $K_c \beta \beta_2 = 1 \rightarrow \beta_2 = 49.57$

⑥校正以后,系统的开环传递函数为:

$$G(s)G_c(s)G_{c2}(s) = \frac{1.968(s+4)(s+0.4)(s+0.1)}{s(s+1)(s+3)(s^2+4s+8)(s+0.325)(s+0.002)}$$

⑦绘制校正后系统的根轨迹图

⑧系统的阶跃响应

C6-1

解: ①系统的传递函数为:

$$G(s) = \frac{\Theta(s)}{U_g(s)} = \frac{K_p K_s K_m}{(L_d J s^2 + (R_d J + b L_d)s + (K_e K_m + R_d b) + K_p K_s K_m K_{fs} K_{fs}}$$

$$= \frac{10 \times 5 \times 0.84}{(0.0036 \times 0.011s^2 + (1.36 \times 0.011 + 0.27 \times 0.0036)s + (0.84 \times 0.84 + 1.36 \times 0.27) + 42 \times 0.1 \times 0.2s}$$

$$= \frac{42}{0.0000396s^2 + 0.015932s + 1.0728 + 0.84s}$$

$$= \frac{42}{0.0000396s^2 + 0.855932s + 1.0728}$$

②根据二阶系统的时域性能指标,有

超调量 $M_P \le 0.05$, 接2%准则的调节时间 $t_s \le 0.1s$ 。

$$M_p = e^{-\pi \varsigma / \sqrt{1 - \varsigma^2}} < 5\%$$
 $t_s = \frac{4}{\varsigma \omega_p} = 0.1$

求得要求校正后系统的 $\varsigma = 0.69$, $\omega_n = 57.96$ 。闭环系统的期望主导极点为:

$$s_c = -40 \pm 41.95 j$$

③经 PI 控制,系统的开环传递函数为:

$$G(s) = (K_p + \frac{K_I}{s})(\frac{42}{0.0000396s^2 + 0.855932s + 1.0728})$$
$$= \frac{42(K_p s + K_I)}{s(0.0000396s^2 + 0.855932s + 1.0728)}$$

④系统的特征方程为:

$$s(0.0000396s^2 + 0.855932s + 1.0728) + 42(K_p s + K_I) = 0$$

于是特征方程变为:

$$0.0000396s^3 + 0.855932s^2 + (1.0728 + 42K_p)s + K_I = 0$$

$$\Leftrightarrow K_I = 0.0000396K$$

$$1 + \frac{K}{s^3 + 21614.44s^2 + (27090.91 + 1060606.061K_p)s} = 0$$

要 求 速 度 误 差 系 数 不 小 于 $0.5 \,\mathrm{s}^{-1}$, 即 系 统 的 $K_{\nu} = 0.5$, 所 以

$$27090.91 + 1060606.061K_P = 0.5 \rightarrow K_p = 0.02554$$

⑤画出由(*)式给出的系统的根轨迹

C6-2

解: (1) 系统的特征方程:

$$\frac{K}{0.1s+1} \cdot \frac{1}{0.2s+1} \cdot \frac{1}{Js} \cdot K_f + 1 = 0 \text{ ID } \frac{K_f}{s(s+10)(0.2s+1)} + 1 = 0$$

绘制根轨迹:

求得要求校正后系统的 $\varsigma = 0.707$ 。闭环系统的期望主导极点为:

$$s_c = -1.89 \pm 1.89i$$

$$K_f = 16.2$$

(2) ①系统对于输入的闭环传递函数为:

$$M(s) = \frac{N(s)}{U_r(s)} = \frac{1}{s(s+10)(0.2s+1)+16.2} = \frac{1}{0.2s^3 + 3s^2 + 10s + 16.2}$$

②系统的输出 n(s) 对于单位阶跃响应($U_r(s)=1$)的稳态值为:

$$\lim_{s \to 0} = s \cdot \frac{1}{0.2s^3 + 3s^2 + 10s + 16.2} \cdot \frac{1}{s} = \frac{1}{16.2}$$

所以,如果希望n(s) = 1200,则 $U_r(s) = 1.16.2 \cdot 1200 = 19440$

③系统的阶跃响应如下图:

(3) 系统对于负载的闭环传递函数为:

$$M(s) = \frac{N(s)}{T_L(s)} = \frac{\frac{1}{100s}}{1 + \frac{1}{100s} \cdot \frac{100 \times 16.2}{(s+10)(0.2s+1)}} = \frac{(0.01s+0.1)(0.2s+1)}{0.2s^3 + 3s^2 + 10s + 16.2}$$

系统的输出 n(s) 对于单位阶跃响应($T_L(s)=1$)的稳态值为:

$$\lim_{s \to 0} = s \cdot \frac{(0.01s + 0.1)(0.2s + 1)}{0.2s^3 + 3s^2 + 10s + 16.2} \cdot \frac{1}{s} = \frac{0.1}{16.2} = 0.0062$$

所以,改变比为 0.62%

系统的阶跃响应如下图:

①系统对于负载的闭环传递函数为:

$$M(s) = \frac{N(s)}{T_L(s)} = \frac{\frac{1}{100s}}{1 + \frac{1}{100s} \cdot \frac{100 \times 16.2}{(s+10)(0.2s+1)} \cdot G_c(s)}$$

②系统输出对于输入的开环特征传递函数为:

$$G(s) = G_c(s) \cdot \frac{16.2}{s(s+10)(0.2s+1)}$$

③系统的主导极点参数为: $\varsigma = 0.707$, $\omega_n = 3.5 rad / sec$;

则系统的主导极点为: $s_c = -2.74 \pm 2.48 j$

④采用超前一滞后校正:

$$G_c(s) = K_c \times \frac{(s + \frac{1}{T_1})(s + \frac{1}{T_2})}{(s + \frac{\alpha}{T_1})(s + \frac{1}{\beta T_2})}$$

校正后的开环特征传递函数为:

$$G(s)G_c(s) = K_c \times \frac{(s + \frac{1}{T_1})(s + \frac{1}{T_2})}{(s + \frac{\alpha}{T_1})(s + \frac{1}{\beta T_2})} \cdot \frac{16.2}{s(s + 10)(0.2s + 1)}$$

⑤超前校正装置需要增加的相角为:

$$\phi = -180^{\circ} + (137.85^{\circ} + 47.66^{\circ} + 18.86^{\circ} = 24.37^{\circ}$$

⑥利用图解法可以解得:

$$\frac{1}{T_1}$$
=3. 13, $\frac{\alpha}{T_1}$ =4.37

⑦根据幅值条件确定 K

$$\left| K_c \times \frac{(s + \frac{1}{T_1})}{(s + \frac{\alpha}{T_1})} \cdot \frac{16.2}{s(s + 10)(0.2s + 1)} \right|_{s_c = -2.74 \pm 2.48j} = 1$$

$$K_c = 1.39$$

⑧确定滞后环节

要求发电机转速变化的百分比 $\nu \leq \pm 0.1\%$,可以使 $G_{c}(s)$ 的开环增益调节到7,这样改变比可以调节到

 $0.62\% / 7 \le 1\%$

所以,
$$\frac{K_c\beta}{\alpha} = 7 \rightarrow \beta = 7.03$$

选取 T_2 足够大,令 $T_2 = 10$

所以,
$$\frac{1}{T_2}$$
=0.1, $\frac{1}{\beta T_2}$ =0.014

⑨校正后的开环特征传递函数为:

$$G(s)G_c(s) = \frac{22.52 \cdot (s+3.13)(s+0.1)}{s(s+10)(0.2s+1)(s+4.37)(s+0.014)}$$

⑩系统的根轨迹图如下:

主导极点参数非常接近要求。

(5) 校正前系统的单位阶跃响应如下:

校正后系统的单位阶跃响应为:

C6-3

解:①根据二阶系统的时域性能指标,有

超调量 $M_p \leq 10\%$,接 2% 准则的调节时间 $t_s \leq 0.5s$ 。

$$M_p = e^{-\pi \varsigma / \sqrt{1-\varsigma^2}} < 10\%$$
 $t_s = \frac{4}{\varsigma \omega_n} = 0.5$

求得要求校正后系统的 $\varsigma = 0.59$, $\omega_n = 13.56$ 。闭环系统的期望主导极点为:

$$s_c = -8 \pm 10.95 j$$

②设计超前-滞后校正:

$$G_c(s) = K_c \times \frac{(s + \frac{1}{T_1})(s + \frac{1}{T_2})}{(s + \frac{\alpha}{T_1})(s + \frac{1}{\beta T_2})}$$

$$\Leftrightarrow K_r = 500$$

已校正的开环传递函数为:

$$G(s)G_c(s) = K_c \times \frac{500}{s(s+10)(s+50)} \bullet \frac{(s+\frac{1}{T_1})(s+\frac{1}{T_2})}{(s+\frac{\alpha}{T_1})(s+\frac{1}{\beta T_2})}$$

- ③要求超前校正装置提供的超前相角 $\phi = -180^{\circ} + (126.1516^{\circ} + 79.6491^{\circ} + 14.6125^{\circ}) = 40.41^{\circ}$
- ④利用图解法可以解得:

$$\frac{1}{T_1}$$
 = 9. 3, $\frac{\alpha}{T_1}$ = 19.8

⑤根据幅值条件确定 K。

$$\left| K_c \times \frac{(s + \frac{1}{T_1})}{(s + \frac{\alpha}{T_1})} \cdot \frac{500}{s(s+10)(s+50)} \right|_{s = -8+10.95 \, i} = 1$$

$$K_c = 19.1205$$

⑥选择滞后部分零极点

要求系统的速度误差系数
$$K_{v}=10$$
 , $\frac{500K_{c}\beta}{500\alpha}=10 \rightarrow \beta=1.5$

选取 T_2 足够大,令 $T_2 = 10$

所以,
$$\frac{1}{T_2}$$
=0.1, $\frac{1}{\beta T_2}$ =0.067

⑦已校正的开环传递函数为:

$$G(s)G_c(s) = \frac{9560.3 \cdot (s+9.3)(s+0.1)}{s(s+10)(s+50)(s+19.8)(s+0.067)}$$

D6-1

解: ①校正前:

校正前的开环特征传递函数为:

$$G(s) = \frac{16.2}{s(s+10)(0.2s+1)}$$

编写 MATLAB 程序:

num=[16.2]
den=conv([1 10 0],[0.2 1])
sys1=tf(num,den)
[Gm,Pm,Wcg,Wcp]=margin(sys1)

Bode 图如下:

相位裕量为: $P_m = 64.2686$

②校正后:

校正后的开环特征传递函数为:

$$G(s)G_c(s) = \frac{22.52 \cdot (s+3.13)(s+0.1)}{s(s+10)(0.2s+1)(s+4.37)(s+0.014)}$$

编写 MATLAB 程序:

num=conv([22.52 22.52*3.13],[1 0.1])

den=conv([1 10 0],conv([0.2 1],conv([1 4.37],[1 0.014])))

sys1=tf(num,den)

[Gm,Pm,Wcg,Wcp]=margin(sys1)

Bode 图如下:

D6-2

解:校正以后,系统的开环传递函数为:

$$G(s)G_c(s) = \frac{0.93(s+14.3)}{s(s+5)}$$

编写 MATLAB 程序:

num=[0.93 13.24]

den=[1 5 0]

sys1=tf(num,den)

whole1=feedback(sys1,1)

step(whole1)

得到系统的阶跃响应曲线如下:

系统的调整时间小于1秒,超调量=1%<5%,稳态误差为0。满足设计条件。

D6-3

解: ①控制系统的传递函数为: $G(s) = \frac{s+10}{s^2+2s+20}$

②为了满足稳态误差,必须乘上 20 的增益,调整后的系统传递函数为: $G(s) = \frac{20 \cdot (s+10)}{s^2 + 2s + 20}$

③系统的根轨迹图如下:

观察 bode 图可以发觉此时的相位裕量是满足的,也就是说 $\varsigma=0.742$ 满足条件,只是 $\omega_n=14.8$ 不满足条件。

④由于要求调整时间 $\leq 5s$,所以 $\omega_n = 4/(5 \cdot 0.742) = 1.08$ 闭环系统的期望主导极点为:

$$s_c = -0.8 \pm 0.724 j$$

⑤设计滞后校正:

$$G_c(s) = K_c \cdot \frac{(s + z_c)}{(s + \frac{z_c}{\beta})}$$
 \Leftrightarrow Zc=0. 1

阶跃响应的稳态误差 \leq 10% ,所以位置误差系数为 10,所以 $\frac{K_c \cdot \beta \cdot 10}{20} = 10 \to K_c \cdot \beta = 20$

D6-4

解:①剪切频率可以计算得到为: 0.3 原系统为:

$$G(s) = \frac{0.3}{s(\frac{s}{0.3} + 1)(\frac{s}{\sqrt{3}/4} + 1)}$$

根据已知的串联校正的图,可以知道 $T_1 = 10T_2$

编写 matlab 程序,首先在较大的范围寻找 T2

num = [0.3]

den=conv([1/0.3 1],conv([4/sqrt(3),1],[1 0]))

gh=tf(num,den)

figure(1)

```
bode(gh)
grid
[Gm,Pm,Wg,Wc]=margin(gh)
hold on
for T2=0.3:0.1:1
    num1=[a*T2,1]
    den1=[T2,1]
    gh1=tf(num1,den1)
    gh2=gh1*gh
    [Gm,Pm,Wg,Wc]=margin(gh2)
    bode(gh2)
    grid on
    hold on
    disp('T2=');disp(T2);
    disp('Gm=');disp(Gm);
    disp('Pm=');disp(Pm);
```

②画出的 bode 图如下:

结果如下 (Pm 是相位裕量):

T2 = 0.3000	Gm = 12.7312	Pm = 52.8911
T2 = 0.4000	Gm= 9.2935	Pm= 56.4368
T2 = 0.5000	Gm = 7.0257	Pm= 56.9081
T2 = 0.6000	Gm = 5.5294	Pm= 54.8115
T2 = 0.7000	Gm = 4.5036	Pm= 51.1222
T2 = 0.8000	Gm= 3.7709	Pm= 46.6921

```
T2 = 0.9000
                   Gm= 3.2286
                                       Pm= 42.0914
T2 = 1
                   Gm = 2.8174
                                       Pm= 37.4975
可以发觉在 0.5 附近的相位裕量比较大,再编写下面的程序,进一步寻找 T2,
③编写 matlab 程序
num=[0.3]
den=conv([1/0.3 1],conv([4/sqrt(3),1],[1 0]))
gh=tf(num,den)
figure(2)
bode(gh)
[Gm,\!Pm,\!Wg,\!Wc]\!\!=\!\!margin(gh)
a=10
hold on
for T2=0.45:0.01:0.58
    num1 = [a*T2,1]
    den1 = [T2,1]
    gh1=tf(num1,den1)
    gh2=gh1*gh
    [Gm,Pm,Wg,Wc]=margin(gh2)
    bode(gh2)
    grid on
    hold on
    disp('1/T2=');disp(1/T2);
    disp('Gm=');disp(Gm);
    disp('Pm=');disp(Pm);
end
```

④画出的 bode 图如下:

结果如下 (Pm 是相位裕量):

1/T2=2.2222	Gm=8.0369	Pm=57.0434
1/T2=2.1739	Gm=7.8167	Pm=57.0736
1/T2=2.1277	Gm=7.6058	Pm=57.0726
1/T2=2.0833	Gm=7.4038	Pm=57.0449
1/T2=2.0408	Gm=7.2101	Pm=56.9907
1/T2=2	Gm=7.0257	Pm=56.9081
1/T2=1.9608	Gm=6.8474	Pm=56.7992
1/T2=1.9231	Gm=6.6764	Pm=56.6652
1/T2=1.8868	Gm=6.5123	Pm=56.5071
1/T2=1.8519	Gm=6.3547	Pm=56.3258
1/T2=1.8182	Gm=6.2033	Pm=56.1225
1/T2=1.7857	Gm=6.0579	Pm=55.8981
1/T2=1.7544	Gm=5.9180	Pm=55.6537
1/T2=1.7241	Gm=5.7835	Pm=55.3905

由上述结果可知,当 $\frac{1}{T_1}$ =0.21739, $\frac{1}{T_2}$ =2.1739时,校正系统的相位裕量 γ =57.0736°是最大的。