Digital Logic Design Chapter 2

Boolean Algebra and Logic Gate

2.2 BASIC DEFINITIONS

- A set is collection of elements having the same property.
 - \bullet S: set, x and y: element or event
 - For example: $S = \{1, 2, 3, 4\}$
 - » If x = 2, then $x \in S$.
 - » If y = 5, then $y \notin S$.
- lacktriangleq A binary operator defines on a set S of elements is a <u>rule</u> that assigns, to each pair of elements from S, a unique element from S.
 - \bullet For example: given a set S, consider a*b = c and * is a binary operator.
 - ♦ If (a, b) through * get c and $a, b, c \in S$, then * is a binary operator of S.
 - ♦ On the other hand, if * is not a binary operator of S and $a, b \in S$, then $c \notin S$.

2.1 Algebras

What is an algebra?

- Mathematical system consisting of
 - » Set of elements (example: $N = \{1,2,3,4,...\}$)
 - » Set of operators $(+, -, \times, \div)$
 - » Axioms or postulates (associativity, distributivity, closure, identity elements, etc.)

■ Why is it important?

- Defines rules of "calculations"
- Note: operators with two inputs are called *binary*
 - Does not mean they are restricted to binary numbers!
 - Operator(s) with one input are called <u>unary</u>

BASIC DEFINITIONS

- The common postulates used to formulate algebraic structures are:
- 1. Closure: a set S is closed with respect to a binary operator if, for every pair of elements of S, the binary operator specifies a rule for obtaining a unique element of S.
 - ♦ For example, natural numbers $N=\{1,2,3,...\}$ is closed w.r.t. the binary operator + by the rule of arithmetic addition, since, for any $a, b \in N$, there is a unique $c \in N$ such that
 - $\rightarrow a+b=c$
 - » But operator is not closed for N, because 2-3 = -1 and 2, 3 ∈ N, but (-1) $\notin N$.
- **2. Associative law**: a binary operator * on a set *S* is said to be associative whenever
 - (x * y) * z = x * (y * z) for all $x, y, z \in S$ » (x+y)+z = x+(y+z)
- **3. Commutative law**: a binary operator * on a set *S* is said to be commutative whenever
 - - x+y=y+x

BASIC DEFINITIONS

- 4. Identity element: a set S is said to have an identity element with respect to a binary operation * on S if there exists an element $e \in S$ with the property that
 - ♦ e * x = x * e = x for every $x \in S$ » $\theta + x = x + \theta = x$ for every $x \in I$ $I = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$. » $1 \times x = x \times I = x$ for every $x \in I$ $I = \{..., -3, -2, -1, 0, 1, 2, 3, ...\}$.
- 5. *Inverse*: a set having the identity element e with respect to the binary operator to have an inverse whenever, for every $x \in S$, there exists an element $y \in S$ such that
 - $\star x * y = e$
 - » The operator + over I, with e = 0, the inverse of an element a is (-a), since a+(-a)=0.
- 6. Distributive law: if (*) and (.) are two binary operators on a set S, (*) is said to be distributive over (.) whenever
 - \bullet x * (y.z) = (x * y).(x * z)

George Boole

■ Father of Boolean algebra

- He came up with a type of linguistic algebra, the three most basic operations of which were (and still are) **AND, OR and NOT**. It was these three functions that formed the basis of his premise, and were the only operations necessary to perform comparisons or basic mathematical functions.
- Boole's system was based on a binary approach,
 processing only two objects the yes-no, true-false,
 on-off, zero-one approach.
- Surprisingly, given his standing in the academic community, Boole's idea was either criticized or completely ignored by the majority of his peers.
- Eventually, one bright student, claude shunnon(1916-2001), picked up the idea and ran with it

George Boole (1815 - 1864)

2.3 Axiomatic Definition of Boolean Algebra

- We need to define algebra for binary values
 - Developed by George Boole in 1854
- □ Huntington postulates (1904) for Boolean algebra :
- \blacksquare $B = \{0, 1\}$ and two binary operations, (+) and (.)
 - ◆ Closure with respect to operator (+) and operator (.)
 - ◆ Identity element 0 for operator (+) and 1 for operator (.)
 - ◆ Commutativity with respect to (+) and (.)

$$x+y=y+x$$
, $x\cdot y=y\cdot x$

◆ Distributivity of (.) over (+), and (+) over (.)

$$x \cdot (y+z) = (x \cdot y) + (x \cdot z)$$
 and $x + (y \cdot z) = (x+y) \cdot (x+z)$

- Complement for every element x is x' with x+x'=1, $x\cdot x'=0$
- \bullet There are at least two elements $x, y \in B$ such that $x \neq y$

Boolean Algebra

■ Terminology:

- ◆ *Literal*: A variable or its complement
- ◆ *Product term:* literals connected by (⋅)
- ◆ *Sum term:* literals connected by (+)

Postulates of Two-Valued Boolean Algebra

- \blacksquare $B = \{0, 1\}$ and two binary operations, (+) and (.)
- The rules of operations: AND OR and NOT.

AND

\boldsymbol{x}	y	X.y
0	0	0
0	1	0
1	0	0
1	1	1

OR

\boldsymbol{x}	y	<i>x</i> + <i>y</i>
0	0	0
0	1	1
1	0	1
1	1	1

NOT

X	X'
0	1
1	0

- 1. Closure (+ and·)
- 2. The identity elements

$$(1) + = 0$$

(2)
$$\cdot = 1$$

Postulates of Two-Valued Boolean Algebra

- 3. The commutative laws x+y=y+x, x.y=y.x
- 4. The distributive laws

x	y	z	<i>y</i> + <i>z</i>	$x \cdot (y+z)$	$x \cdot y$	$x \cdot z$	$(x \cdot y) + (x \cdot z)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

Postulates of Two-Valued Boolean Algebra

5. Complement

- $\star x + x' = 1 \rightarrow 0 + 0' = 0 + 1 = 1; 1 + 1' = 1 + 0 = 1$
- $\bullet x \cdot x' = 0 \rightarrow 0 \cdot 0' = 0 \cdot 1 = 0; 1 \cdot 1' = 1 \cdot 0 = 0$
- 6. Has two distinct elements 1 and 0, with $0 \neq 1$

Note

- A set of two elements
- \bullet (+) : OR operation; (·) : AND operation
- A complement operator: NOT operation
- Binary logic is a two-valued Boolean algebra

2.4 Basic Theorems And Properties Of Boolean Algebra Duality

- The principle of *duality* is an important concept. This says that if an expression is valid in Boolean algebra, the dual of that expression is also valid.
- To form the dual of an expression, replace all (+) operators with
 (⋅) operators, all (⋅) operators with (+) operators, all ones with zeros, and all zeros with ones.
- Following the replacement rules... a(b + c) = ab + ac
- Form the dual of the expression $\mathbf{a} + (\mathbf{bc}) = (\mathbf{a} + \mathbf{b})(\mathbf{a} + \mathbf{c})$
- Take care not to alter the location of the parentheses if they are present.

Basic Theorems

Table 2.1Postulates and Theorems of Boolean Algebra

Postulate 2	(a) x + 0 = x	(b) $x \cdot 1 = x$
Postulate 5	(a) $x + x' = 1$	$(b) x \cdot x' = 0$
Theorem 1	(a) x + x = x	(b) $x \cdot x = x$
Theorem 2	(a) $x + 1 = 1$	$(b) x \cdot 0 = 0$
Theorem 3, involution	(x')' = x	
Postulate 3, commutative	(a) x + y = y + x	(b) xy = yx
Theorem 4, associative	(a) $x + (y + z) = (x + y) + z$	(b) $x(yz) = (xy)z$
Postulate 4, distributive	(a) $x(y+z) = xy + xz$	(b) $x + yz = (x + y)(x + z)$
Theorem 5, DeMorgan	$(a) \qquad (x+y)' = x'y'$	(b) $(xy)' = x' + y'$
Theorem 6, absorption	(a) $x + xy = x$	(b) $x(x+y)=x$

Boolean Theorems

Huntington's postulates define some rules

```
Post. 1: closure

Post. 2: (a) x+0=x, (b) x\cdot 1=x

Post. 3: (a) x+y=y+x, (b) x\cdot y=y\cdot x

Post. 4: (a) x(y+z)=xy+xz,

(b) x+yz=(x+y)(x+z)

Post. 5: (a) x+x'=1, (b) x\cdot x'=0
```

- Need more rules to modify algebraic expressions
 - Theorems that are derived from postulates
- What is a theorem?
 - A formula or statement that is derived from postulates (or other proven theorems)
- Basic theorems of Boolean algebra
 - Theorem 1 (a): x + x = x (b): $x \cdot x = x$
 - Looks straightforward, but needs to be proven!

Proof of x+x=x

We can only use Huntington postulates:

Huntington postulates:

Post. 2: (a) x+0=x, (b) $x\cdot 1=x$

Post. 3: (a) x+y=y+x, (b) $x\cdot y=y\cdot x$

Post. 4: (a) x(y+z) = xy+xz,

(b) x+yz = (x+y)(x+z)

Post. 5: (a) x+x'=1, (b) $x \cdot x'=0$

lacksquare Show that x+x=x.

$$x+x = (x+x)\cdot 1$$
 by 2(b)

$$= (x+x)(x+x')$$
 by 5(a)

$$= x+xx'$$
 by 4(b)

$$= x+0$$
 by 5(b)

$$= x$$
 by 2(a)
Q.E.D.

■ We can now use Theorem 1(a) in future proofs

Proof of $x \cdot x = x$

Similar to previous proof

Huntington postulates:

Post. 2: (a) x+0=x, (b) $x\cdot 1=x$

Post. 3: (a) x+y=y+x, (b) $x\cdot y=y\cdot x$

Post. 4: (a) x(y+z) = xy+xz,

(b) x+yz = (x+y)(x+z)

Post. 5: (a) x+x'=1, (b) $x \cdot x'=0$

Th. 1: (a) x+x=x

lacksquare Show that $x \cdot x = x$.

$$x \cdot x = xx + 0$$
 by 2(a)
 $= xx + xx$ by 5(b)
 $= x(x + x')$ by 4(a)
 $= x \cdot 1$ by 5(a)
 $= x$ by 2(b)
O.E.D.

Proof of x+1=1

2(b)

2(b)

• Theorem
$$2(a): x + 1 = 1$$

$$x + 1 = 1 \cdot (x + 1)$$
 by
= $(x + x')(x + 1)$
= $x + x' 1$
= $x + x'$
= 1

Huntington postulates:

Post. 2: (a) x+0=x, (b) $x\cdot 1=x$ 5(a) **Post. 3**: (a) x+y=y+x, (b) $x\cdot y=y\cdot x$ 4(b) **Post. 4**: (a) x(y+z) = xy+xz, (b) x+yz = (x+y)(x+z) **Post. 5**: (a) x+x'=1, (b) $x \cdot x'=0$

Th. 1: (a) x+x=x

- $\blacksquare \text{ Theorem 2(b): } x \cdot 0 = 0$
 - by duality
- Theorem 3: (x')' = x
 - Postulate 5 defines the complement of x, x + x' = 1 and x x' = 0
 - \bullet The complement of x' is x is also (x')'

Absorption Property (Covering)

Theorem
$$6(a)$$
: $x + xy = x$

Huntington postulates:

Post. 2: (a)
$$x+0=x$$
, (b) $x\cdot 1=x$

Post. 3: (a)
$$x+y=y+x$$
, (b) $x\cdot y=y\cdot x$

Post. 4: (a)
$$x(y+z) = xy+xz$$
,

(b)
$$x+yz = (x+y)(x+z)$$

Post. 5: (a)
$$x+x'=1$$
, (b) $x \cdot x'=0$

Th. 2: (a)
$$x+1=1$$

- Theorem 6(b): x(x + y) = x by duality
- By means of truth table (another way to proof)

x	y	хy	<i>x</i> + <i>xy</i>
0	0	0	0
0	1	0	0
1	0	0	1
1	1	1	1

Digital Logic Design

DeMorgan's Theorem

- Theorem 5(a): (x + y)' = x'y'
- Theorem 5(b): (xy)' = x' + y'
- By means of truth table

x	у	<i>x</i> '	<i>y</i> '	<i>x</i> + <i>y</i>	(x+y)'	<i>x'y'</i>	xy	x'+y'	(xy) '
0	0	1	1	0	1	1	0	1	1
0	1	1	0	1	0	0	0	1	1
1	0	0	1	1	0	0	0	1	1
1	1	0	0	1	0	0	1	0	0

THE END

THE END

Consensus Theorem

$$1. \quad xy + x'z + yz = xy + x'z$$

2.
$$(x+y) \cdot (x'+z) \cdot (y+z) = (x+y) \cdot (x'+z) -- (dual)$$

Proof:

$$\wedge$$
 $xy + x'z + yz$

$$= xy + x'z + 1.yz$$
 2(a)

$$= xy + x'z + (x+x')yz$$
 5(a)

$$= xy + x'z + xyz + x'yz$$
 3(b) &4(a)

$$= (xy + xyz) + (x'z + x'zy)$$
 Th4(a)

$$= x(y + yz) + x'(z + zy)$$
 4(a)

$$= xy + x'z$$
 Th6(a)

» QED (2 true by duality).

Operator Precedence

- The operator precedence for evaluating Boolean Expression is
 - Parentheses
 - NOT
 - AND
 - OR
- Examples
 - $\rightarrow x y' + z$
 - (x y + z)'

2.5 Boolean Functions

A Boolean function

- Binary variables
- Binary operators OR and AND
- Unary operator NOT
- Parentheses

Examples

- \bullet $F_1 = x y z'$

Boolean Functions

 \blacksquare The truth table of 2^n entries (n=number of variables)

χ	y	Z	F_1	F_2	F_3	F_4
0	0	0	0	0	0	0
0	0	1	0	1	1	1
0	1	0	0	0	0	0
0	1	1	0	0	1	1
1	0	0	0	1	1	1
1	0	1	0	1	1	1
1	1	0	1	1	0	0
1	1	1	0	1	0	0

■ Two Boolean expressions may specify the same function

$$\bullet$$
 $F_3 = F_4$

Boolean Functions

■Implementation with logic gates

 \bullet F_4 is more economical

Algebraic Manipulation

- When a Boolean expression is implemented with logic gates, each term requires a gate and each variable (Literal) within the term designates an input to the gate. (F3 has 3 terms and 8 literal)
- $lue{}$ To minimize Boolean expressions, minimize the number of literals and the number of terms \rightarrow a circuit with less equipment
 - ♦ It is a hard problem (no specific rules to follow)
- **■** Example 2.1
 - 1. x(x'+y) = xx' + xy = 0 + xy = xy
 - 2. x+x'y = (x+x')(x+y) = 1 (x+y) = x+y
 - 3. (x+y)(x+y') = x+xy+xy'+yy' = x(1+y+y') = x
 - 4. xy + x'z + yz = xy + x'z + yz(x+x') = xy + x'z + yzx + yzx' = xy(1+z) + x'z(1+y) = xy + x'z
 - 5. (x+y)(x'+z)(y+z) = (x+y)(x'+z), by duality from function 4. (consensus theorem with duality)

Complement of a Function

- An interchange of 0's for 1's and 1's for 0's in the value of *F*
 - By DeMorgan's theorem

♦
$$(A+B+C)' = (A+X)'$$
 let $B+C = X$
 $= A'X'$ by theorem 5(a) (DeMorgan's)
 $= A'(B+C)'$ substitute $B+C = X$
 $= A'(B'C')$ by theorem 5(a)
(DeMorgan's)
 $= A'B'C'$ by theorem 4(b) (associative)

- Generalization: a function is obtained by interchanging AND and OR operators and complementing each literal.
 - (A+B+C+D+...+F)' = A'B'C'D'...F'
 - (ABCD ... F)' = A' + B' + C' + D' ... + F'

Examples

- Example 2.2
 - \bullet $F_1' = (x'yz' + x'y'z)' = (x'yz')' (x'y'z)' = (x+y'+z) (x+y+z')$
 - $F_{2}' = [x(y'z'+yz)]' = x' + (y'z'+yz)' = x' + (y'z')' (yz)'$ = x' + (y+z) (y'+z') = x' + yz'+y'z
- Example 2.3: a simpler procedure
 - **♦** Take the dual of the function and complement each literal
 - 1. $F_1 = x'yz' + x'y'z$.

The dual of F_1 is (x'+y+z')(x'+y'+z).

Complement each literal: $(x+y'+z)(x+y+z') = F_1'$

2.
$$F_2 = x(y'z' + yz)$$
.

The dual of F_2 is x+(y'+z')(y+z).

Complement each literal: $x'+(y+z)(y'+z')=F_2'$

2.6 Canonical and Standard Forms

Minterms and Maxterms

- A minterm (standard product): an AND term consists of all literals in their normal form or in their complement form.
 - \bullet For example, two binary variables x and y,
 - » *xy*, *xy*′, *x*′*y*, *x*′*y*′
 - ♦ It is also called a standard product.
 - \bullet n variables can be combined to form 2^n minterms.
- A maxterm (standard sums): an OR term
 - It is also call a standard sum.
 - \diamond 2ⁿ maxterms.

Minterms and Maxterms

■ Each *maxterm* is the complement of its corresponding *minterm*, and vice versa.

Table 2.3 *Minterms and Maxterms for Three Binary Variables*

			М	interms	Maxterms		
x	y	z	Term	Designation	Term	Designation	
0	0	0	x'y'z'	m_0	x + y + z	M_0	
0	0	1	x'y'z	m_1	x + y + z'	M_1	
0	1	0	x'yz'	m_2	x + y' + z	M_2	
0	1	1	x'yz	m_3	x + y' + z'	M_3	
1	0	0	xy'z'	m_4	x' + y + z	M_4	
1	0	1	xy'z	m_5	x' + y + z'	M_5	
1	1	0	xyz'	m_6	x' + y' + z	M_6	
1	1	1	xyz	m_7	x' + y' + z'	M_7	

Minterms and Maxterms

- An Boolean function can be expressed by
 - A truth table
 - ◆ Sum of minterms for each combination of variables that produces a (1) in the function.

•
$$f_1 = x'y'z + xy'z' + xyz = m_1 + m_4 + m_7$$
 (Minterms)

Table 2.4

Functions of Three Variables

x	y	z	Function f ₁	Function f ₂
0	0	0	0	0
0	0	1	1	0
0	1	0	0	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Digital Logic Design³

Minterms and Maxterms

■ The complement of a Boolean function

- ◆ The minterms that produce a 0

- $\bullet f_2 = (x+y+z)(x+y+z')(x+y'+z)(x'+y+z) = M_0 M_1 M_2 M_4$
- Any Boolean function can be expressed asterms).
- ◆ A product of maxterms ("product" meaning the ANDing of terms).
- ◆ A sum of minterms ("sum" meaning the ORing of Both boolean functions are said to be in Canonical form.

 Digital Logic Design 32

Sum of Minterms

- \blacksquare Sum of minterms: there are 2^n minterms and 2^{2n} combinations of functions with n Boolean variables.
- Example 2.4: express F = A + B 'C as a sum of minterms.
 - F = A + B'C = A (B + B') + B'C = AB + AB' + B'C = AB(C + C') + AB'(C + C') + (A + A')B'C = ABC + ABC' + AB'C' + AB'C' + A'B'C
 - \bullet $F = A'B'C' + AB'C' + AB'C' + ABC' + ABC = m_1 + m_4 + m_5 + m_6 + m_7$
 - $F(A, B, C) = \Sigma(1, 4, 5, 6, 7)$
 - or, built the truth table first

Table 2.5 *Truth Table for F* = A + B'C

В	С	F
0	0	0
0	1	1
1	0	0
1	1	0
0	0	1
0	1	1
1	0	1
1	1	1
	0 0 1 1 0	0 0 0 1 1 0 1 1 0 0

Product of Maxterms

- Product of maxterms: using distributive law to expand.
- Example 2.5: express F = xy + x'z as a product of maxterms.
 - F = xy + x'z = (xy + x')(xy + z) = (x+x')(y+x')(x+z)(y+z) = (x'+y)(x+z)(y+z)
 - x'+y = x' + y + zz' = (x'+y+z)(x'+y+z')
 - $F = (x+y+z)(x+y'+z)(x'+y+z)(x'+y+z') = M_0 M_2 M_4 M_5$
 - \bullet $F(x, y, z) = \Pi(0, 2, 4, 5)$

Conversion between Canonical Forms

- The complement of a function expressed as the sum of minterms equals the sum of minterms missing from the original function.
 - \bullet $F(A, B, C) = \Sigma(1, 4, 5, 6, 7)$
 - Thus, $F'(A, B, C) = \Sigma(0, 2, 3)$
 - By DeMorgan's theorem

$$F(A, B, C) = \Pi(0, 2, 3)$$

 $F'(A, B, C) = \Pi(1, 4, 5, 6, 7)$

- \bullet $m_j' = M_j$
- **To** convert from one canonical form to another: <u>interchange</u> the symbols Σ and Π and list those numbers <u>missing</u> from the original form
 - » Σ of 1's
 - » ∏ of 0's

Example

$$\bullet$$
 $F = xy + x'z$

$$\bullet$$
 $F(x, y, z) = \Sigma(1, 3, 6, 7)$

$$F(x, y, z) = \Pi(0, 2, 4, 6)$$

Table 2.6 *Truth Table for F* = xy + x'z

X	y	Z	F
0	0	0	0
0	0	1	1
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	0
1	1	0	1
1	1	1	1

Standard Forms

- In canonical forms each minterm or maxterm must contain **all the variables** either complemented or uncomplemented, thus these forms are very seldom the ones with the least number of literals.
- Standard forms: the terms that form the function may obtain **one**, **two**, **or any number** of literals, .There are two types of standard forms:
 - Sum of products: $F_1 = y' + xy + x'yz'$
 - Product of sums: $F_2 = x(y'+z)(x'+y+z')$
- A Boolean function may be expressed in a nonstandard form
 - \bullet $F_3 = AB + C(D + E)$
- But it can be changed to a standard form by using The distributive law

•
$$F3 = AB + C(D + E) = AB + CD + CE$$

Implementation

■ Two-level implementation

Multi-level implementation

(a)
$$AB + C(D + E)$$

2.7 Other Logic Operations

- 2ⁿ rows in the truth table of n binary variables.
- 16 functions of two binary variables.

Table 2.7 *Truth Tables for the 16 Functions of Two Binary Variables*

X	y	F ₀	F ₁	F ₂	<i>F</i> ₃	F ₄	F ₅	F ₆	F ₇	F ₈	F 9	F ₁₀	F ₁₁	F ₁₂	F ₁₃	F ₁₄	F ₁₅
0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1
0	1	0	0	0	0	1	1	1	1	0	0	0	0	1	1	1	1
1	0	0	0	1	1	0	0	1	1	0	0	1	1	0	0	1	1
		0															

■ All the new symbols except for the exclusive-OR symbol are not in common use by digital designers.

Boolean Expressions

Table 2.8Boolean Expressions for the 16 Functions of Two Variables

Boolean Functions	Operator Symbol	Name	Comments
$F_0 = 0$		Null	Binary constant 0
$F_1 = xy$	$x \cdot y$	AND	x and y
$F_2 = xy'$	x/y	Inhibition	x, but not y
$F_3 = x$		Transfer	x
$F_4 = x'y$	y/x	Inhibition	y, but not x
$F_5 = y$		Transfer	y
$F_6 = xy' + x'y$	$x \oplus y$	Exclusive-OR	x or y, but not both
$F_7 = x + y$	x + y	OR	x or y
$F_8 = (x + y)'$	$x \downarrow y$	NOR	Not-OR
$F_9 = xy + x'y'$	$(x \oplus y)'$	Equivalence	x equals y
$F_{10} = y'$	y'	Complement	Not y
$F_{11} = x + y'$	$x \subset y$	Implication	If y , then x
$F_{12} = x'$	x'	Complement	Not x
$F_{13} = x' + y$	$x\supset y$	Implication	If x , then y
$F_{14} = (xy)'$	$x \uparrow y$	NAND	Not-AND
$F_{15}=1$	(54)46 1 - 5 5	Identity	Binary constant 1

2.8 Digital Logic Gates

- Boolean expression: AND, OR and NOT operations
- Constructing gates of other logic operations
 - The feasibility and economy;
 - The possibility of extending gate's inputs;
 - The basic properties of the binary operations (commutative and associative);
 - ◆ The ability of the gate to implement Boolean functions.

Standard Gates

- Consider the 16 functions in Table 2.8
 - **Two** functions produce a constant : $(F_0 \text{ and } F_{15})$.
 - Four functions with unary operations: complement and transfer: $(F_3, F_5, F_{10} \text{ and } F_{12})$.
 - ◆ The other **ten** functions with binary operators
- **Eight** function are used as standard gates:

```
complement (F_{12}), transfer (F_3), AND (F_1), OR (F_7), NAND (F_{14}), NOR (F_8), XOR (F_6), and equivalence (XNOR) (F_9).
```

- Complement: inverter.
- ◆ Transfer: buffer (increasing drive strength).
- Equivalence: XNOR.

Summary of Logic Gates

Name	Graphic symbol	Algebraic function	Tru	
			x	v F
AND	x — F	F = xy		0 0
AND	y — F		0	1 0
				0 0
			1	1 1
	$x \longrightarrow F$	F = x + y	x	y F
OR			0 (0 0
OK				1 1
				0 1
			1	1 1
	¥o.		х	F
Inverter	$x \longrightarrow F$	F = x'	0	1
			1	0
	$x \longrightarrow F$	722	(5)	F
D 66			X	Г
Buffer		F = x	0	0
			ĭ	1

Figure 2.5 Digital logic gates

Summary of Logic Gates

Figure 2.5 Digital logic gates

Multiple Inputs

Extension to multiple inputs

- ◆ A gate can be extended to multiple inputs.
 - » If its binary operation is commutative and associative.
- AND and OR are commutative and associative.
 - » OR
 - -x+y=y+x
 - -(x+y)+z = x+(y+z) = x+y+z
 - » AND
 - -xy = yx
 - -(x y)z = x(y z) = x y z

Multiple Inputs

- Multiple NOR = a complement of OR gate, Multiple NAND = a complement of AND.
- The cascaded NAND operations = sum of products.
- The cascaded NOR operations = product of sums.

Figure 2.7 Multiple-input and cascated NOR and NAND gates

Multiple Inputs

- The XOR and XNOR gates are commutative and associative.
- Multiple-input XOR gates are uncommon?
- XOR is an odd function: it is equal to 1 if the inputs variables have an odd number of 1's.

$\begin{array}{c} x \\ y \\ z \end{array}$	$-F = x \oplus y \oplus z$
(b) 3-input gate	

x	у	\mathcal{Z}	F
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

(c) Truth table

Figure 2.8 3-input XOR gate

Positive and Negative Logic

- Positive and Negative Logic
 - Two signal values <=> two logic values
 - ◆ Positive logic: H=1; L=0
 - ♦ Negative logic: H=0; L=1
- Consider a TTL gates
 - A positive logic AND gate
 - ♦ A negative logic OR gate

Figure 2.9 Signal assignment and logic polarity

Positive and Negative Logic

Figure 2.10 Demonstration of positive and negative logic

Digital Logic Design⁴

2.9 Integrated Circuits

Level of Integration

- An IC (a chip)
- Examples:
 - ◆ Small-scale Integration (SSI): < 10 gates
 - ◆ Medium-scale Integration (MSI): 10 ~ 100 gates
 - ◆ Large-scale Integration (LSI): 100 ~ xk gates
 - ♦ Very Large-scale Integration (VLSI): > xk gates

VLSI

- Small size (compact size)
- Low cost
- Low power consumption
- High reliability
- High speed

Digital Logic Families

- Digital logic families: circuit technology
 - ◆ TTL: transistor-transistor logic (dying?)
 - ◆ ECL: emitter-coupled logic (high speed, high power consumption)
 - ◆ MOS: metal-oxide semiconductor (NMOS, high density)
 - CMOS: complementary MOS (low power)
 - ◆ BiCMOS: high speed, high density

Digital Logic Families

- The characteristics of digital logic families
 - ◆ Fan-out: the number of standard loads that the output of a typical gate can drive.
 - Power dissipation.
 - Propagation delay: the average transition delay time for the signal to propagate from input to output.
 - ◆ Noise margin: the minimum of external noise voltage that caused an undesirable change in the circuit output.

CAD

CAD – Computer-Aided Design

- ◆ Software programs that support computer-based representation of circuits of millions of gates.
- Automate the design process
- ◆ Two design entry:
 - » Schematic capture
 - » HDL Hardware Description Language
 - Verilog, VHDL
- Simulation
- Physical realization

Home Work (4)

Digital Design (4th)- Morris Mano-Page 66-Problems:

```
2.3 d,f
```

2.4 d,e

2.6 Only for (2.3 d,f)

2.7 Only for (2.4 d,f)

2.9

2.20

2.22

Home Work (5)

Digital Design (4th)- Morris Mano-Page 66-Problems:

- 2.13
- 2.14
- 2.15
- 2.27
- 2.28