HMMs para Caracterização de Ilhas CpG

Heitor Baldo

Algoritmos em Bioinformática (IBI5037) Prof. Alan M. Durham 2º Semestre, 2019

1 Modelos Ocultos de Markov para caracterização de ilhas CpG

Para a caracterização de ilhas CpG, construímos um HMM com oito estados, sendo A_+, C_+, G_+, T_+ os estados correspondentes às ilhas CpG e A_-, C_-, G_-, T_- os estados que não correspondem às ilhas CpG (NonCpG), totalmente conectado, como mostrado na figura 1 abaixo.

Figura 1. Arquitetura do HMM para ilhas CpG (imagem modificada de [1], p. 52). As caixas retangulares apresentam a probabilidade de emissão de cada nucleotídeo em cada estado.

2 Metodologia

Para implementarmos computacionalmente o HMM para ilhas CpG, iremos estimar seus parêmtros (probabilidades iniciais, de transição e de emissão) utilizando o framework ToPS [2], produzindo dois modelos, um tendo os parâmetros estimados pelo algortimo de Baum-Welch, e o outro pelo algoritmo de Máxima Verossimilhança.

2.1 Estimação dos Parâmetros: Treinando o modelo com o Algoritmo de Baum-Welch

Como modelo inicial, utilizamos o modelo apresentado na figura 1, com as probabilidades iniciais, de transições e de emissões apresentadas na tabela 1 abaixo.

O modelo foi treinado separadamente: o modelo apenas com os estados (+) foi treinado com um conjunto de aproximadamente 15.000 nucleotídeos de ilhas CpG conhecidas (extraídos do arquivo CpG.fasta - cromossomo 1), e o modelo apenas com os estados (-) foi treinado com um conjunto de aproximadamente

	Transição							Emissão				Inicial	
	A+	C+	G+	T+	A-	C-	G-	T-	A	C	G	T	
A+	0.22	0.25	0.35	0.18	_	_	_	_	1.00	0.00	0.00	0.00	0.20
C+	0.20	0.25	0.35	0.20	_	_	_	_	0.00	1.00	0.00	0.00	0.30
G+	0.22	0.28	0.28	0.22	_	_	_	_	0.00	0.00	1.00	0.00	0.30
T+	0.15	0.25	0.35	0.25	_	_	_	_	0.00	0.00	0.00	1.00	0.20
A-	_	_	_	_	0.23	0.27	0.25	0.25	1.00	0.00	0.00	0.00	0.25
C-	_	_	_	_	0.30	0.20	0.25	0.25	0.00	1.00	0.00	0.00	0.25
G-	_	_	_	_	0.25	0.25	0.25	0.25	0.00	0.00	1.00	0.00	0.25
T-	_	_	_	_	0.25	0.25	0.30	0.20	0.00	0.00	0.00	1.00	0.25

Tabela 1. Tabela de probabilidades do HMM apresentado na figura 1.

15.000 nucleotídeos de trechos normais de DNA¹, utilizando as mesmas probabilidades iniciais e de emissão da tabela 1 acima. O valor do parâmetro *maxiter* foi setado com o valor 300.

Para o treinamento e validação de ambos os modelos ((+) e (-)), foi utilizada a estratégia de validação cruzada k-fold, com k=6, e com cada um dos 6 subconjuntos contendo aproximadamente 2.500 nucleotídeos, sendo que 5 subcojunto (totalizando 12.500 nucleotídeos) foram usandos para treinamento, e um subconjunto utilizado para teste. Os erros nos treinamentos foram muitos pequenos e, por conseguinte, puderam ser desconsiderados.

O modelo final foi composto pelos dois modelos (+) e (-) treinados separadamente e as probabilidades de transição entre os dois modelos foram adicionadas posteriormente, utilizando como probabilidade total p=0.1 para transições do estado (+) para (-) e vice-versa, então fizemos $\frac{p}{4}=0.025$, e os valores das probabilidades de transição entre os estados de (+), tanto quanto dos estados (-), tendo valor p'=0.9, e os valores dos parâmetros encontrados nos treinamentos separados foram ajustados, como mostra o modelo final apresentado na figura 2.

model_name="HiddenMarkovModel"	"A " "G " O OF		
	"A-" "C-": 0.25;	"G+" "T-": 0.025;	"C" "G+": 0;
state_names =	"C-" "C-": 0.28;	"T+" "T-": 0.025;	"G" "G+": 1;
("A+", "C+", "G+", "T+",	"G-" "C-": 0.09;	"C-" "A+": 0.025;	"T" "G+": 0;
"A-", "C-", "G-", "T-")	"T-" "C-": 0.28;	"G-" "A+": 0.025;	"A" "T+": O;
observation_symbols =	"A-" "G-": 0.20;	"T-" "A+": 0.025;	"C" "T+": 0;
("A", "C", "G", "T")	"C-" "G-": 0.27;	"A-" "C+": 0.025;	"G" "T+": 0;
transitions =	"G-" "G-": 0.28;	"C-" "C+": 0.025;	"T" "T+": 1;
("A+" "A+": 0.22;	"T-" "G-": 0.15;	"G-" "C+": 0.025;	"A" "A-": 1;
"C+" "A+": 0.28;	"A-" "T-": 0.13;	"T-" "C+": 0.025;	"C" "A-": 0;
"G+" "A+": 0.32;	"C-" "T-": 0.27;	"A-" "G+": 0.025;	"G" "A-": O;
"T+" "A+": 0.08;	"G-" "T-": 0.31;	"C-" "G+": 0.025;	"T" "A-": O;
"A+" "C+": 0.17;	"T-" "T-": 0.19;	"G-" "G+": 0.025;	"A" "C-": 0;
"C+" "C+": 0.38;	"A+" "A-": 0.025;	"T-" "G+": 0.025;	"C" "C-": 1;
"G+" "C+": 0.20;	"C+" "A-": 0.025;	"A-" "T+": 0.025;	"G" "C-": 0;
"T+" "C+": 0.15;	"G+" "A-": 0.025;	"C-" "T+": 0.025;	"T" "C-": 0;
"A+" "G+": 0.15;	"T+" "A-": 0.025;	"G-" "T+": 0.025;	"A" "G-": 0;
"C+" "G+": 0.28;	"A+" "C-": 0.025;	"T-" "T+": 0.025)	"C" "G-": 0:
"G+" "G+": 0.37;	"C+" "C-": 0.025;	emission_probabilities =	"G" "G-": 1;
"T+" "G+": 0.10;	"G+" "C-": 0.025;	("A" "A+": 1:	"T" "G-": 0;
"A+" "T+": 0.11;	"T+" "C-": 0.025;	"C" "A+": 0;	"A" "T-": 0;
"C+" "T+": 0.34:	"A+" "G-": 0.025;	"G" "A+": 0:	"C" "T-": 0;
"G+" "T+": 0.28;	"C+" "G-": 0.025;	"T" "A+": 0:	"G" "T-": 0;
"T+" "T+": 0.17;	"G+" "G-": 0.025;	"A" "C+": 0:	"T" "T-": 1)
"A-" "A-": 0.23;	"T+" "G-": 0.025;	"C" "C+": 1;	initial probabilities =
"C-" "A-": 0.24;	"A+" "T-": 0.025;	"G" "C+": 0:	("A+": 0.125; "C+": 0.125
"G-" "A-": 0.24;	"C+" "T-": 0.025;	"T" "C+": 0;	"G+": 0.125; "T+": 0.125;
"T-" "A-": 0.15;	0.025;	"A" "G+": 0;	"A-": 0.125; "C-":0.125;
-1 -A: U.15;		A GT : U;	"G-": 0.125; "T-": 0.125)

Figura 2. Parêmtros estimados com o Algoritmo de Baum-Welch.

2.2 Estimação dos Parâmetros: Treinando o modelo com o Algoritmo de Máxima Verossimilhança

Baseando-se no modelo precedente, escolhemos os parâmetros do modelo inicial do seguinte modo:

¹Extraídos de https://www.ncbi.nlm.nih.gov/nuccore/CM000663.2?report=fasta

```
model_name="HiddenMarkovModel"
                                                                                     "T-": 0.1737;
"A+": 0.093;
state names =
                                                   "C-":
                                                                                             0.093;
                                                                                                                     "G+": 0.8904
state_names =
    ("A+", "C+", "G+", "T+"
    "A-", "C-", "G-", "T-"

observation_symbols =
    ("A", "C", "G", "T")

transitions =
                                                                                                              "G"
                                                          0.0087;
                                                                             "T+"
                                                                                     "C+": 0.252:
                                                                                                                     "G+": 0.0331
                                                          0.0226
                                                                                             0.3459;
                                                          0.0243;
                                                                             "T+"
                                                                                     "T+": 0.245:
                                                                                                                     "T+": 0.0486;
                                                          0.0392:
                                                                                             0.0093
                                                                                                              "G"
                                                                                                                     "T+": 0.0544:
                                                   "G+":
                                                          0.0089
                                                                                                                     "T+"
                                                                                             0.0184
                                                                                                                             0.8376
    ("A+" | "A+": 0.225:
                                                          0.0146;
                                                                             "T+"
                                                                                     "G-"
                                                                                             0.0182
                                                                                                                            0.8699
                                                                                     "T-":
                                                          0.3052
              "G+": 0.300:
                                                           0.2486;
                                                                                             0.021;
              "T+": 0.175:
                                                          0.065;
                                                                             "T-"
                                                                                     "C+"
                                                                                             0.0274
                                                                                                                     "A-": 0.0452:
              "A-": 0.027;
"C-": 0.034;
                                                                                                                     "C-"
                                                   "T-":
                                                          0.3013:
                                                                             "T-"
                                                                                     "G+":
"T+":
                                                                                              0.0372
                                          "G+"
"G+"
                                                   "A+":
"C+":
                                                          0.1846;
                                                                                             0.0209
                                                                                                                             0.8827
              "G-": 0.016;
"T-": 0.023;
"A+": 0.035;
                                                          0.2703;
                                                                                             0.0966
                                                                                                              "G"
                                                                                                                     "C-":
                                                                                                                            0.033:
                                          "G+"
                                                   "G+":
                                                          0.2326
                                                          0.1815;
                                                                                     "G-":
                                                                                                                     "G-": 0.0382:
                                                                                             0.3511
              "C+": 0.015;
"G+": 0.035;
                                          "G+"
                                                          0.0399:
                                                                                     "T-":
                                                                                             0.2114)
                                                                                                                     "G-"
                                                                                                                            0.0307
                                                   "C-":
"G-":
"T-":
                                          "G+"
"G+"
                                                           0.0272;
                                                                         mission_probabilities
              "T+": 0.015:
                                                          0.0531;
                                                                                                                     "G-":
                                                                                    "A+": 0.8358:
                                                                                                                            0.0406
              "A-":
"C-":
                                                                                   "A+": 0.0607;
"A+": 0.0564;
                                          "G+"
                                                          0.0178:
                                                                                                                            0.0729
                      0.170;
                                                   "A+":
                                                                                                                            0.0389;
              "G-": 0.330:
                                                   "C+":
                                                          0.0303;
                                                                                   "A+":
                                                                                            0.0501
                                                                                                                     "T-": 0.036;
              "T-": 0.130;
"A+": 0.255;
                                                   "G+":
                                                          0.0287
                                                                                   "C+"
                                                                                            0.0382
                                                                                                                     "T-":
                                                                                                                            0.8552)
                                                                                                          initial_probabilities
                                                                                            0.9006;
              "C+": 0.245:
                                                          0.2575;
                                                                             "G"
                                                                                    "C+":
                                                                                            0.0376:
                                                                                                           ("A+": 0.075; "C+": 0.1; 
"G+": 0.125; "T+": 0.03;
                                                                                            0.0266;
              "T+": 0.325;
                                                                                                             "A-": 0.07;
                                                                                    "G+": 0.0344;
                                                                                                            "G-": 0.29: "T-": 0.07)
```

Figura 3. Modelo inicial para estimação dos parâmetros com o Algoritmo de Máxima Verossimilhança.

A partir deste modelo inicial (figura 3), geramos um conjunto rotulado com 66.000 nucleotídeos (44 sequências com 1.500 nucleotídeos cada, utilizando o comando simulate do ToPS) e aplicamos o método k-fold com k=10, com 6.600 nucleotídeos cada subconjunto, sendo 9 utilizados para treinamento e um para teste. No conjunto de treino, aplicamos o algoritmo de Máxima Verossimilhança para estimação dos parâmetros, utilizando a estratégia de validação cruzada, e obtemos o modelo final com um erro médio de 0.04 para a probabilidade de transição entre si dos estados de (+) tanto quando dos estados de (-), e 0.005 para a probabilidade de transição entre os estados (+) e (-):

```
model_name = "HiddenMarkovModel
                                                   "G-": 0.485903:
                                                                                                                       0.0271593
                                                                                           0.00430883:
                                                                                    "G-
0.16285;
                                                                                           0.222143;
                                                                                                                       0.93355;
                                                    "T+"
                                                           0.592023;
                                                                                           0.0254172;
                                                                                                                       0.0216675
                                                    "T+"
                                                           0.122764
                                                                                           0.0249751;
                                                                                                                       0.0222167
               0.256862;
                                                           0.00751616
                                                                                             .0196707
                                                                                                                       0.0225662
               0.447123;
               0.0190344
                                                           0.0104725;
                                                                                                                       0.114808:
                                                           0.0133103
                                                                                           0.191955
                                                                                                                       0.0035565
                                                                                             233617)
                                                                                                                       0.00254616
               0.00429808;
                                                                                           bilities
                                                                                          0.96658;
0.0121327;
               0.277874
                                                           0.133103;
                                                           0.643431:
                                                                                         0.0112732:
                                                                                                                 "T-"
                                                                                                                       0.072682:
                                                           0.126941
                                                                                         0.010014:
                                                                                                                       0.0387836
                                                                                         0.00477321;
0.987205;
0.00469824;
                                                                                                                 "T-": 0.0358923
"T-": 0.852642)
               0.00485197;
                                                           0.00517057
                                                                                                         initial_probabilities
("A+": 0.0993902;
               0.00339142:
                                                           0.00302451
                                                                                         0.00332375
        "G+":
"G+":
"G+":
"G+":
               0.049478;
0.0123695;
                                                                                                                0.173171:
                                                           0.00204599
                                                                                   "G+":
                                                                                         0.00573047
                                                           0 130098
                                                                                   "G+":
                                                                                         0.00751291
               0.221975:
        "G+":
"G+":
"G+":
               0.00577243
                                                           0.360439;
                                                                                          0.0311533;
                                                                                                                 0.200976:
                                                    "G-"
                                                           0.00106064
                                                                                         0.523515;
                                                                                                                 0.348537
                                                    "G-"
                                                           0.00057672
                                                                                                                 0.00170732)
               0.335989;
```

Figura 4. Parêmtros estimados com o Algoritmo de Máxima Verossimilhança.

3 Resultados

Para estimar a capacidade de previsão dos nossos modelos finais (figura 2 e figura 4), aplicamo-os à um conjunto de 10 sequências, todas com aproximadamente 3.000 nucleotídeos, todas contendo ilhas CpG putativas.

Utilizamos o algoritmo de Viterbi para a decodificação (comando *viterbi_decoding* do ToPS). O modelo treinado com o algoritmo de Baum-Welch (figura 2) identificou todas as ilhas CpG em todas as 10 sequências, porém 12 novas ilhas CpG foram previstas (falsos positivos), e 10 trechos foram caracterizadas como não sendo ilhas CpG erroneamente (falsos negativos).

O modelo treinado com o algoritmo de Máxima Verossimilhança (figura 4) conseguiu identificar apenas cinco das ilhas CpG, e de forma não muito precisa. Além disso, 112 novas ilhas CpG foram previstas (falsos positivos), revelando uma grande imprecisão do modelo.

Todavia, para identificação de ilhas CpG em sequências pequenas (< 200 nucleotídeos), o modelo treinado com o algoritmo de Máxima Verossimilhança mostrou-se mais preciso do que o modelo treinando com o algoritmo de Baum-Welch, rotulando corretamente todas as 10 sequências curtas contra apenas uma do modelo estimado com Baum-Welch.

4 Conclusão

O modelo treinado com o algoritmo de Baum-Welch mostrou-se muito mais preciso do que o modelo treinado com o algoritmo de Máxima Verossimilhança para caracterização de ilhas CpG em sequências longas, porém o inverso mostrou-se verdadeiro para caracterização de ilhas CpG em sequências curtas (< 200 nucleotídeos).

Referências

- [1] R. Durbin, S. R. Eddy, A. Krogh, G. Mitchison, Biological sequence analysis: Probabilistic models of proteins and nucleic acids. Cambridge University Press, 1998.
- [2] A. Y. KASHIWABARA, I. BONADIO, V. ONUCHIC, F. AMADO, R. M., A. M. DURHAM, *ToPS: A Framework to Manipulate Probabilistic Models of Sequence Data.* PLoS Comput. Biol. 2013 Oct; 9(10): e1003234.