SCS 43XX

Quantum Mechanics in Computing

University of Colombo, School of Computing

Tutorial 3

Unitary and Hermitian Matrices. Eigenvectors

Unitary matrices, denoted as U, are used in quantum computing to represent quantum gates, ensuring that

$$UU^{\dagger} = I$$

where U^{\dagger} is the conjugate transpose of U.

Hermitian matrices, denoted as H, represent observable quantities in quantum mechanics, satisfying:

$$H = H^{\dagger}$$

Conjugate: For a matrix A, the conjugate A^* is obtained by taking the complex conjugate of each element in A.

Conjugate Transpose: The conjugate transpose (or Hermitian adjoint) of a matrix A, denoted as A^{\dagger} , is obtained by taking the transpose of A and then taking the complex conjugate of each element.

1. Let
$$A = \begin{bmatrix} 1 & 0 & 4 \\ 17 & 10 & 18 \end{bmatrix}$$
, find A^T .

2. Let
$$A = \begin{bmatrix} 3 + 2i & 2e^{\pi i/3} & 4 \\ 1 - 7i & 10 & -3i \end{bmatrix}$$
, find A^* (Hint: $z = re^{i\theta}$, $z^* = re^{-i\theta}$).

3. Let
$$A = \begin{bmatrix} 3 + 2i & 2e^{\pi i/3} & 4 \\ 1 - 7i & 10 & -3i \end{bmatrix}$$
, find A^{\dagger} .

4. Is the matrix
$$A = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$
, Unitary? Prove.

5. Is the matrix
$$A = \begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$
, Hermitian? Prove.

SCS 43XX: Lab 1 UCSC

Eigenvectors of a matrix A are non-zero vectors v that satisfy:

$$Av = \lambda v$$
,

where λ is the eigenvalue.

Eigenvalues are scalars that indicate how the eigenvector v is scaled during the transformation by A.

1. When we apply a matrix to one of it's eigenvectors, what happens to the eigenvector geometrically?

- 2. Find the eigenvalue when the matrix $\begin{bmatrix} 1 & 9 \\ 4 & 1 \end{bmatrix}$ applied to its eigenvector $\begin{bmatrix} 3 \\ 2 \end{bmatrix}$
- 3. Geometrically what happens to the vector when the eigenvalue is greater than 1 and less that 1 respectively
- 4. Find the eigenvalues and eigenvectors of the matrices $\begin{bmatrix} -2 & 1 & 1 \\ 6 & 3 & 2 \\ 0 & 0 & 1 \end{bmatrix}$ and $\begin{bmatrix} 1 & 1 & 2 \\ 2 & 2 & 2 \\ -1 & -1 & -1 \end{bmatrix}$
- 5. Show that the Hermitian matrix $\begin{bmatrix} 0 & 0 & i \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}$ has only two real eigenvalues and the three eigenvectors are orthonormal.

Credits: IBM 2