(POLYNOM) INTERPOLATION, NEWTON,

ALTKEN-NEVILLE, HERMITE/SPLIMES, IP

POLYNOM INTERPOLATION:

$$g_0(x)=1$$
; $g_1(x)=\cos(\frac{\pi t x}{2})$; $g_2(x)=\cos(\pi t x)$
1 Matrix au(stellen: Flankkagen

$$\begin{pmatrix} 1 & 1 & 1 & 3 \\ 1 & 0 & -1 & 0 \\ 1 & -1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 3 \\ 0 & -1 & -2 & -3 & 1 & 1 \\ 1 & -1 & 1 & 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 & 1 & 1 & 3 \\ 0 & -1 & -2 & -3 & 1 & 1 \\ 0 & -2 & 0 & -2 & 1 & 1 \end{pmatrix}$$

$$3. \text{ Polynom autisticum:}$$

$$G(x) = Gg_0(x) + G_1g_1(x) + ...$$

 $G(x) = A \cdot 1 + A \cdot Cos(\frac{\pi Lx}{2})$

$$G(x) = A \cdot 1 + A \cdot \cos(\frac{\pi x}{2}) + A \cdot \cos(\pi x)$$

$$= 4 + \cos(\frac{\pi x}{2}) + \cos(\pi x)$$

= 3-5x + 2x2

 $\begin{pmatrix} 1 & 0 & 0 & 3 \\ 1 & 1 & 1 & 0 \\ 1 & 2 & 4 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 1 & -3 \\ 0 & 2 & 4 & -3 \\ 0 & 2 & 4 & -3 \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 & 3 \\ 0 & 1 & 1 & -3 \\ 0 & 0 & 2 & 4 \\ -3 & 0 & 0 & 2 \end{pmatrix}$

I -1.1+(-2) C2=-3

I Co+1+1=3

NEWTONSCHE DIVIDIERTE DIFFERENZ

tusammenfasiving aller Interpolations-

oder leicher/visuell ausgedricht

NEWTON SCHEMA/ VERFAHREN Lywanum is die so nice? @? -> Man bann neue Rinkle éinfügen und ganz leicht neue Drogonaten

	مادر	٠	- C.	 		1	Fne	ul c	 flinksumen - flinks										
	Xi	* K	- ×:	-	ب			.,-		wksiv Friuk≥2	- >	(-ciņks	-						

(die To	se.		٠	Xi	1/k	0 1	2 .
	10	se selle owsf	üllen	٠	Χů	. 0 .	C ₀₁₀ · C ₀₁ · C ₁₁ · · · · ·	C0,2 · · · ·
.(•	-b		٠	X	٠, ١	Caio Cai	°C 412
					Χž	٠2 ٠	C210 C211	·C _{2,2} · ·
					4	+} +		

p(x)= (00 + Co11 · (x-x0) + ... + Co11-x · T (x-xi)

				٠	٠		٠.	.010		4	. 0	lh r ice er	LUCIU LCIU	bra: eire
	۰	۰					. C	~J 41	(Co)	2		и	·	
•														

BS	<u>ę</u>	P	(2,4)	,	P1=(1,1),ρ	, (-	۱,۱
				0					

_			((2) = T)
Χį	ilk	0 1 2	$C_{1,0} = f(1) = 1$
2	0	4 3 1 0	
1		0 0 1 2	C210 = f(-1) = 1
		a sex	
-1		1 2 mailber	f Unks unten f unks
3	3	9 /200	\rightarrow

$$C_{A/A} = \frac{C_{A/A}}{-1 - 1} = 0$$
 $C_{0/2} = \frac{0 - 3}{-1 - 2} = 1$
=) Hinzukiigen uch
Nemneuen Runkt $P_3(3,9)$

																٠.
AC X) = C ₀₁₀	+	Con	Cx-	- X°) +	C012	Cx-	(_ە X	Cx-	X,)	→ Co	2 ()	(-Xc`) (x-	-X ₄).
11													, ,			X2)

~ ATTKEN-NEVILLE ~

(ähnliche Funktionsweise wie das Newton-Verfahlen

ί۱k	0	1	2
0	P[0,0]=40	[ho]9	P[012]
1	P[1,0] = Y1	[1,1]	
2	P[2,0] = 42		
	0	0 P[0,0]=40	0 P[0,0]=Y0 P[0,1] 1 P[1,0]=Y1 P[1,1]

Coler

BS	<u></u> ρ:	Pc	(2/	4)	, P _A (1/4),	ρ,(.	٠ ١/٠	1)		ge.	soci	/ †:	(v)	elch	sn U	æa	ha	+ un	લવ	Fur	khi	an i	s nc	Helie	Χ=	3) .	?						
٠	××		i (K	<	0	1		2		٠	PΤ	0,17		4 +	3-	2 . ([1-4	ا (ا	· Դ ՝		٠	٠		٠			T.					٠		٠	
	2		0		4	. 9)	9	-		Þ[/	143	=	1 +	3-	·1 · ((0)	-	1			2 <i>=</i> (ruz	or.	<u> </u>	γ'				Pred	ict	iau :	9		1
	1		1 2		1	1)				. <u>p</u>	[o	, 2.]	=-() 4	3	2	(1)())	=(3)	×	-(11)	ن				1		a.h.				Jen Jet	
	•			-												ブ																	сv	વહ	۲.
												٠		٠		div	ben F di	er (us Drag	onál	Len	٠				٠				SHEL	16	X=3			
												·£	ina	φ¢	Fil.	166	210	•)																	
															Civ	400	1113																		

Runge-Effekt

- =) Polynomintenpolation liesent ein zu ungenauts Ergebnis (trifft ein falls det Graph keinem Polynom ähneut)
- =) Durch setten van sehr vielen gemeinsamen Schnithpunkten => RUNGF EFFFKT

- => ILH seigencer machi an Schnitistellen => lunge Ffect, dh. Ereugies Palynam schwöft/schwingt nach außen iller mehr und stänker aus
- =) We kaw wan ein besigter Interpolationsergebink enzugen?
- 1 Stuck für Stück unterpoliteren

- 2 Tschebyschaw-Polyname (Chebyshev-Paynamicus)
- 3) Andere Paynome benutien, ave aus der nchagen klosse Haumen

, P(x1)=y1

P(t)= 00+0xt + 02t2+ 02t3

P'(t) = a1+ 2a2t + 3a2t2

einsetzen

 $P(0) = \alpha_0 + \alpha_4 \cdot 0 + \alpha_2 \cdot 0^2 + \alpha_3 6^3 = \alpha_0$

p/(0) = . Q.4. + 2Q.2.0 + 3Q.3.02 = . Q.4. = 4

-44+341

P(t) = 40 + 46t + (-41+ 341+246-340) t2

P(t)= 40. Ho(t) + 4. H,(t) + 40'. H2(t) + 41. H3(t) = [0]1]

 $P(t) = y_0 \cdot (4-3t^2+2t^3) + y_1 \cdot (3t^2-2t^3) + y_0' \cdot (t-2t^2+t^3) + y_1' \cdot (-t^2+t^3)$

P'(X1)=U'1

P(1) = a + a 1 1 + a 2 1 2 + a 3 13 = 10 + a 1 + b 2 + a 3 = 0

3240

-3-2-10°

-41+341-240'-340

= Y1- (-41' + 341 - 240' - 340) -40

+ (240+46-241+94)+3

 $p'(\Lambda) = \alpha_{\Lambda} + 2\alpha_{2} \cdot A + 3\alpha_{3} \cdot A^{2} = 4\alpha_{\Lambda} + 2\alpha_{2} + 3\alpha_{3} = 0$

F ELO: 71

i [Xo;Xi

BSP:

Bedingungen:

P(X0)=40

P'(x0) = 40

LGS Lösen.

0123

10001

J

da einsetien P(t) = 90+0xt + a2t3+ 93t3

ZZ zu dem umardnen

=) man kann nur zuschen [0;1] Interpoliteren

PROBLEM BEI HERMITE-IP:

Eigenteich wiedermal nur einsehen und LGS Lösen

$$\begin{pmatrix} 4 & 1 \\ 1 & \ddots & 1 \\ & 1 & 4 \end{pmatrix} - \begin{pmatrix} y_{1} \\ y_{2} \\ \vdots \\ y_{n-1} \end{pmatrix} = \frac{2}{h} \cdot \begin{pmatrix} y_{2} - y_{0} \\ y_{3} - y_{1} \\ \vdots \\ y_{n} \cdot y_{n-2} \end{pmatrix} - \begin{pmatrix} y_{0} \\ \vdots \\ y_{n} \end{pmatrix}$$

$$= \frac{3}{h} \cdot \begin{pmatrix} y_{2} - y_{0} \\ y_{3} - y_{1} \\ \vdots \\ y_{n} \cdot y_{n-2} \end{pmatrix} - \begin{pmatrix} y_{0} \\ \vdots \\ y_{n} \end{pmatrix}$$

$$= \frac{3}{h} \cdot \begin{pmatrix} y_{2} - y_{0} \\ \vdots \\ y_{n} \cdot y_{n-2} \end{pmatrix} - \begin{pmatrix} y_{0} \\ \vdots \\ y_{n} \end{pmatrix}$$

$$= \frac{3}{h} \cdot \begin{pmatrix} y_{1} - y_{1} \\ \vdots \\ y_{n} \cdot y_{n-2} \end{pmatrix} - \begin{pmatrix} y_{0} \\ \vdots \\ y_{n} \end{pmatrix}$$

$$= \frac{3}{h} \cdot \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \cdot y_{n-2} \end{pmatrix} - \begin{pmatrix} y_{0} \\ \vdots \\ y_{n} \end{pmatrix}$$

$$= \frac{3}{h} \cdot \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \cdot y_{n-2} \end{pmatrix} - \begin{pmatrix} y_{0} \\ \vdots \\ y_{n} \end{pmatrix}$$

$$= \frac{3}{h} \cdot \begin{pmatrix} y_{1} \\ \vdots \\ y_{n} \cdot y_{n-2} \end{pmatrix} - \begin{pmatrix} y_{0} \\ \vdots \\ y_{n} \end{pmatrix}$$

Bestimme die Spline Funktion SCX) für die Shithpunkte Po=(-1,2), Pa(0,0), Pz=(1,2), Pz=(2,3) und Randbedingung:

S'(-1)=9, S'(2)=0 Hirstasolle

mit allen werren autstellen:)

= Motrix aufstellen

where cause to send einserten:
$$\begin{pmatrix} 4 & 1 \\ 1 & 4 \end{pmatrix} \cdot \begin{pmatrix} y_1' \\ y_2' \end{pmatrix} = \frac{3}{1} \cdot \begin{pmatrix} 2-2 \\ 3-0 \end{pmatrix} - \begin{pmatrix} 9 \\ 0 \end{pmatrix}$$

00.6

2 2 9

٥

3

3

Lisung

.Abstand zw.

schen wei i's