

ANSWER KEYS

	_	 -

- **2.** (1)
- **3.** (3)
- **4.** (1)
- **5.** (3)
- **6.** (1)
- 7. (3)
- **8.** (2)
- 9.(2)nathongo 10.(2)1thongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo ///

1. (2)

$$f'(x) = \begin{cases} 3x^2 + 2x - 10 & -1 \le x \le 0 \\ -\sin x & 0 < x < \frac{\pi}{2} \end{cases}$$

- - $\cos x_{//} \mod \frac{\pi}{2} \le x \le \pi_{/} \mod m$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// mathongo It is clear that all functions are decreasing in their respective interval
 - Displaying the trend of values of the function in different intervals, we get the adjoining graph.

- $\frac{\pi}{2}$ ongo $\frac{\pi}{4}$ mathongo $\frac{\pi}{4}$ mathon

Here it is clear that

- f(x) has a local maximum at $x=\frac{\pi}{2}$

2. (1)

- Let $f(x) = \frac{x^3}{3} x b$ $\Rightarrow f'(x) = x^2 - 1 = 0$
- $\Rightarrow x = \pm 1$ mathongo
 - f(-1)f(1) < 0 for three distinct zeroes
- $\Rightarrow (3b+2)(3b-2) < 0$ $\Rightarrow b \in \left(-\frac{2}{3}, \frac{2}{3}\right)$

3. (3) thongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo ///. mathongo

- Given statement is
 - $f(x) = \int_{-1}^{x} t(e^{t} 1)(t 1)(t 2)^{3}(t 3)^{5} dt$
 - Now for local maximum put f'(x) = 0 and to get f'(x) we need to apply Leibnitz theorem. So differentiating both sides
 - $f'(x) = x(e^x 1)(x 1)(x 2)^3(x 3)^5, \ f'(x) = 0$ Ignoring x = 0 as it has occurred two times so no sign change in derivative of function. The mathematical $\Rightarrow x = 0, 1, 2, 3$
 - Applying wavy-curve method

- So at x = 2, the function increases to its local maximum and then starts decreasing. 4. (1)
- Let $f(x) = x^3 + 2x^2 + 5x + 2\cos x$ $\Rightarrow f'(x) = 3x^2 + 4x + 5 - 2\sin x$
- $\Rightarrow f'(x) = 3\left(x^2 + \frac{4}{3}x + \frac{5}{3}\right) 2\sin x$ mathongo /// mathongo /// mathongo /// mathongo /// mathongo /// $\Rightarrow f'x = 3\left\{\left(x + \frac{2}{3}\right)^2 + \frac{11}{9}\right\} - 2\sin x$
- $\Rightarrow f'x = 3\left(x+rac{2}{3}
 ight)^2 + rac{11}{3} 2\sin x$ mathongo /// mathongo // mat
- Now $\frac{11}{2} 2\sin x > 0$ x $(as 1 \le \sin x \le 1)$
- $\Rightarrow f'(x) > 0 \ x \Rightarrow f(x)$ is an increasing function. Now f(0)=2
 - $\Rightarrow f(x) = 0$ has no solution in $[0,2\pi]$
- Hence (A) is the correct answer.

Answer Keys and Solutions

Answer Keys and Solutions

Answer Keys and Solutions

10.	(2) thongo												
	Let, $P(x) = (x)$	x-4		$)^{41} +$	$egin{aligned} & ^{2009} = 0 \ & -(x-2009)^{200} \ & 2009(x-2009)^2 \end{aligned}$								
	G: 11	vers an	re even. $x \in R$										
	P(x) cuts a Therefore, on	x-axis	s only once.										
		gative)09 –	e. $41)^{49} + (2009)^{49}$										
				creasi	ing function, $p($	(x) ha	as only one pos	itive	real root.				