UNIVERSITY OF GUYANA FACULTY OF NATURAL SCIENCES DEPARTMENT OF COMPUTER SCIENCE

Course Number: CSE 3201

Course Name: Computer Architecture and Organisation

Course Credit: 4

Description: This course is a third year second semester course intended for students pursuing the two year full time degree program. This course seeks to take the student on a journey beginning with elementary Boolean logic and culminating with the design and implementation of a simple digital computer system. The course will emphasize handling complexity by embracing abstraction, designing clean interfaces and the "keep it as simple as possible" approach to systems design.

Exemption(s): There are no exemptions for this course.

Pre-requisites: Discrete Mathematics

Follow-On Courses: Operating Systems

Learning Outcomes:

The student will:

- Be able to convert from a Boolean equation to a digital circuit vise-versa.
- Be able to design simple digital circuits, given a specification, based on the AND, OR and NOT gate abstractions.
- Be able to use simple digital circuits to construct complex digital systems, utilizing concepts of abstraction and clean interface design.
- Be able to construct an entire computing system by combining digital sub-systems.
- Be able to program a digital computing system using its native machine language.
- Be able to perform the translation of an assembly language to machine code.

Course Topics:

- 1. Boolean Logic and Arithmetic
- 2. Combinational Logic Design
- 3. Sequential Logic Design
- 4. Hardware description languages

- 5. Digital Building Blocks
- 6. Number Systems
- 7. Sequential Building Blocks
- 8. MIPS assembly language
- 9. MIPS machine language
- 10. Assemblers
- 11. MIPS assembly language programming
- 12. MIPS Single cycle Processor
- 13. MIPS Multi cycle Processor
- 14. MIPS Pipelined Processor
- 15. Memory Systems

Course Content:

WEEK	TOPICS	HOURS	HOURS
1	 Review Boolean Logic and Arithmetic Combinational Logic Design Introduction of Gates Sum of products Product of Sums 		
2	 Combinational Logic Design Karnaugh Maps Combinational Building Blocks Timing 		
3	 Sequential Logic Design D Flip-Flops Finite State Machines Timing in Sequential Logic Systems 		
4	 Hardware description languages Combinatorial Logic Structural Modeling Sequential Logic 		
5	 Digital Building Blocks Addition Subtraction Comparators ALU 		
6	- Digital Building Blocks		

	 Shifters and Rotators Multiplication Division
7	 Number Systems Fixed point number systems Floating point number systems Sequential Building Blocks Counters Shift Registers Memory Arrays
8	 MIPS assembly language MIPS machine language Translating assembly language to machine language
	- Assmeblers
9	- MIPS assembly language programming
10	- MIPS Single cycle Processor - MIPS Multi cycle Processor
11	- MIPS Pipelined Processor
12	- Memory Systems
13	
15	Course Review.
	Semester Exams.

Method of Teaching:

Lectures
$$2 \times 15 = 30 \text{ hrs.}$$

Laboratories/ Tutorials $2 \times 15 = 30 \text{ hrs.}$

Method of Assessment:

Coursework (40%)

2 Tests at 30 marks each = 60 4 Lab assignments: 4@ 10 marks = 40 100

Final Examination (60%)

5 Questions at 20 marks each answer any 3 questions

Students are reminded that a failure in any of the above sections may result in his/her repeating the entire course

Required Reading(s)

Recommended Reading(s)