Студент: Бескровный Дмитрий

Группа: 2361 Вариант: 52 Дата: 21.02.2024

Комбинаторика и теория графов

Индивидуальное домашнее задание № 1

Задание (вводные данные). Дано множество $M = \{18, 24, 51, 56, 67, 86, 87, 98\}$ и следующие бинарные отношения на нём:

$$F_1(x,y) = 1 \Leftrightarrow \exists z \in M : (x-z)(y-z) < 0 \tag{1}$$

$$F_2(x,y) = 1 \Leftrightarrow x \ge y$$
 поразрядно (2)

$$F_3(x,y) = 1 \Leftrightarrow \left[\frac{x}{3}\right] = \left[\frac{y}{3}\right] \tag{3}$$

$$F_4(x,y) = 1 \Leftrightarrow x^2 - y^3$$
 нечётно (4)

$$F_5(x,y) = 1 \Leftrightarrow |x-y| < 5 \tag{5}$$

Задания подразумевают выполнение для каждого из отношений.

Нумерация соответствует нумерации отношений. Дополнительные пояснения приведены в приложении (код — в файле table.typ).

Задание 1. Проверить, является ли бинарное отношение рефлексивным, арефлексивным, симметричным, антисимметричным, асимметричным, транзитивным (с обоснованием).

Решение.

Составим матрицы бинарных отношений и воспользуемся таблицей. Здесь и далее строка соответствует у, стобец — x.

(x/y	18	24	51	56	67	86	87	680	Pec	флексивность:	нет, 0 на главной
18	0	0	1	1	1	1	1	1		ефлексивность:	диагонали. да, 0 на главной диагонали.
51 56	1	0	0	0	1 0	1	1	1	(1)	анзитивность:	$\begin{array}{l} \text{ Het,} \\ F_1(56,18) = F_1(18,67) = 1, \end{array}$
67 86	1 1 1	1	1	0	0	0	1	1 1	()	мметричность:	но $F_1(56,67) = 0$. да, матрица равна своей
87 88	1 1	1 1	1 1	1 1	1 1	$0 \\ 1$	0	$\begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$		имметричность: тисимметричность:	транспонированной. нет, все 1 симметричны 1. нет, $F_1(18,51) = F_1(51,18)$,
\								/	1111	monsimorph moorb	Ho $18 \neq 51$.

$\begin{pmatrix} x/y & 18 & 24 & 51 & 56 & 67 & 86 & 87 & 98 \\ 18 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 24 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 51 & 1 & 1 & 1 & 0 & 0 & 0 & 0 & 0 \\ 56 & 1 & 1 & 1 & 1 & 0 & 0 & 0 & 0 \\ 67 & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 0 \\ 86 & 1 & 1 & 1 & 1 & 1 & 1 & 0 & 0 \\ 87 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 0 \\ 98 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \end{pmatrix}$	(2)	Рефлексивность: Арефлексивность: Транзитивность: Симметричность: Асимметричность: Антисимметричность:	да, 1 на главной диагонали. нет, 1 на главной диагонали. да, по определению. нет, матрица не равна своей транспонированной. нет, есть 1 на главной диагонали. да, по определению.
$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$		Рефлексивность: Арефлексивность:	да, 1 на главной диагонали. нет, 1 на главной диагонали.
$\left[\begin{array}{cccccccccccccccccccccccccccccccccccc$		Транзитивность:	да, 1 только на главной
	(3)	Симметричность:	да, матрица равна своей транспонированной.
86 0 0 0 0 0 1 0 0		Асимметричность:	нет, на главной диагонали
$\left(\begin{array}{cccccccccccccccccccccccccccccccccccc$		Антисимметричность:	есть 1. да, по определению.
(x/y 18 24 51 56 67 86 87 98)		Рефлексивность:	нет, 0 на главной
18 0 0 1 0 1 0 1 0 24 0 0 1 0 1 0 1 0		Арефлексивность: Транзитивность:	диагонали. да, 0 на главной диагонали. нет,
$\begin{bmatrix} 51 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 56 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\ 67 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ 86 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \end{bmatrix}$	(4)	Симметричность:	$F_4(67,24)=F_4(24,51)=1,$ но $F_4(67,51)=0.$ да, матрица равна своей
$ \left(\begin{array}{cccccccccccccccccccccccccccccccccccc$		Асимметричность: Антисимметричность:	
$\begin{pmatrix} x/y & 18 & 24 & 51 & 56 & 67 & 86 & 87 & 98 \\ 18 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 24 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 51 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 56 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 67 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 86 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 87 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\ 98 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$	(5)	Рефлексивность: Арефлексивность: Транзитивность: Симметричность: Асимметричность:	$F_5(86, 87) = F_5(87, 86) = 1,$
			но $86 \neq 87$.

Задание 2. Построить матрицу и граф этого бинарного отношения.

Решение.

Матрицы были построены в предыдущем задании.

Задание 3. Определить, является ли это бинарное отношение отношением эквивалентности, частичного порядка, линейного порядка, строгого порядка (с обоснованием).

Решение.

Соответствие наборов свойств бинарных отношений и их типов см. в таблице.

1. Эквивалентность: нет, нет рефлексивности. Частичный порядок: нет, нет рефлексивности. Линейный порядок: нет, нет рефлексивности. Строгий порядок: нет, нет транзитивности.

2. Эквивалентность: нет, нет транзитивности.

Частичный порядок: нет, нет рефлексивности.

Линейный порядок: нет, нет рефлексивности.

Частичный порядок: да. Линейный порядок: да,

4. Эквивалентность:

Строгий порядок:

 $\forall a,b \in M: F_1(a,b) \cup F_1(b,a) = 1.$

Строгий порядок: нет, не

асимметричности.

нет, нет рефлексивности.

нет, нет транзитивности.

3. Эквивалентность: да. Частичный порядок: да. Линейный порядок: нет,

 $F_3(18,24) \cup F_3(24,18) = 0.$

Строгий порядок: нет, нет

арефлексивности.

5. Эквивалентность: да. Частичный порядок: нет, нет

антисимметричности.

Линейный порядок: нет, нет

антисимметричности.

Строгий порядок: нет, нет

арефлексивности.

Задание 4. Если это отношение эквивалентности, построить классы эквивалентности

Решение.

3. В силу того что целые части от деления на 3 всех элементов M различны, F_3 можно рассматривать как отношение равенства на этом множестве; для него существует единственный тривиальный вариант разбиения:

 $M/F_3 = \{ \{18\}, \{24\}, \{51\}, \{56\}, \{67\}, \{86\}, \{87\}, \{98\} \}.$

5. Модуль разности 86 и 87 меньше 5, в то время как модули разности остальных чисел больше. Таким образом получаем следующее фактор-множество:

 $M/F_5 = \{\{86,87\}, \{18,24,51,56,67,98\}\}.$

Задание 5. Если это отношение частичного порядка, применить алгоритм топологической сортировки и получить отношение линейного порядка.

Решение.

2. Начиная с вершины 86, проведём поиск в глубину, получим следующий порядок вершин: 18, 24, 51, 56, 67, 86, 87, 98. Пронумеруем их в обратном порядке, получим один из вариантов топологической сортировки для этого графа: 98, 87, 86, 67, 56, 51, 24, 18.

Это уже отношение линейного порядка.

3. Имеем дело с вырожденным случаем, когда поиск в глубину равносилен перебору вершин. Построим его, начиная с вершины 98: 98, 87, 86, 67, 56, 51, 24, 18. Один из вариантов топологической сортировки: 18, 24, 51, 56, 67, 86, 87, 98.

Чтобы отношение стало отношением линейного порядка, необходимо, чтобы все вершины были соединены рёбрами, но не двунаправленными, и сохранялось транзитивное свойство. Следующий граф будет удовлетворять заданным условиям:

Задание 6. Если это нетранзитивное отношение, построить транзитивное замыкание, используя алгоритм Уоршелла.

Решение.

Используем классическую реализацию: выбираем і-ю строку и і-й столбец матрицы $(i \in (1, n), n$ — количество столбцов (строк) в матрице); остальные элементы становятся 1, если на обоих "перпедикулярах", опущенных на выбранные столбцы, стоят 1.

	Рефлексив- ность	Транзитив- ность	Симметрич- ность	Асимметрич- ность	Антисиммет- ричность	Арефлексив- ность
Описание	$\forall a \in M:$ $f(a,a)=1$	$\forall a, b, c \in M :$ $\begin{cases} f(a, b) = 1 \\ f(b, c) = 1 \end{cases}$ $\Rightarrow f(a, c) = 1$	$\forall a, b \in M$: $f(a, b) = 1 \Leftrightarrow$ f(b, a) = 1	$\forall a, b \in M:$ $f(a, b) = 1 \Rightarrow$ $f(b, a) = 0$	$\forall a, b \in M:$ $\begin{cases} f(a, b) = 1\\ f(b, a) = 1 \end{cases}$ $\Rightarrow a = b$	$orall a \in M:$ $f(a,a) = 0$
Толерантность	✓		✓			
Эквивалентность	✓	✓	\checkmark			
Предпорядок	✓	✓				
Частичный (нестрогий) порядок	✓	√			✓	
Линейный порядок $orall a,b\in M:$ $f(a,b)\cup f(b,a)=1$ $+$	✓	✓			✓	
Строгий порядок		✓		✓		✓
Матрица	'1' на главной диагонали	$\begin{cases} m_{i,j} = 1 \\ m_{j,k} = 1 \end{cases} \Rightarrow$ $m_{i,k} = 1$	$A = A^T$	ни одной 1 на главной диаго- нали, при транспонировании все 1->0	'1' могут быть только на глав- ной диагонали	'0' на главной диагонали
Граф	петли на всех вершинах	Если есть путь длины n, то есть путь дли- ны 1	двунаправлен- ные рёбра (все дуги— рёбра)	Нет петель и двунаправлен- ных рёбер	Могут быть петли, но не двунаправлен- ные рёбра	Без петель

Таблица 1. Свойства бинарных отношений.