Recurrent Neural Network - 1 (순환 신경망)

조윤상

목차

❖ 순환 신경망 개요

❖ 순환 신경망 학습(Backpropagation Trough Time)

❖ 순환 신경망 모델링

❖ 순환 신경망 한계

목차

❖ 순환 신경망 개요

❖ 순환 신경망 학습(Backpropagation Trough Time)

❖ 순환 신경망 모델링

❖ 순환 신경망 한계

❖ 기계학습 모델

$$f(\cdot) = Model$$

설명 변수(X)

$$f(X) = y$$
 반응 변수(y)

변수 관측치	x ₁	X ₂	•••	X _{p-1}	x _p		У
N_1							
N ₂						학습	
•••							
N _{n-1}							
N _n							

순환 신경망(recurrent neural network, RNN) 이란?

❖ 순환 신경망(recurrent neural network, RNN)

$$f(\cdot) = RNN Model$$

설명 변수(X)

$$f(X) = y$$
 반응 변수(y)

변수 관측치	X ₁	x ₂	•••	Х _{р-1}	X _p		У
N_1					Time		
N ₂						학습	
•••		Sequ	uential	data			
N _{n-1}							
N _n	Time						

순차 데이터(sequential data) 모델링을 위한 인공 신경망(neural network) 모델

- ❖ 순차 데이터(sequential data)
 - 변수 간 or 관측치 간 순서가 있는 데이터

구글 트렌드 데이터

- ❖ 순차 데이터(sequential data)
 - 변수 간 or 관측치 간 순서가 있는 데이터

주가 데이터

- ❖ 순차 데이터(sequential data)
 - 변수 간 or 관측치 간 순서가 있는 데이터

텍스트 데이터

	Review	Rating
0	excellent service, great price, an	5
1	Comfortable seating with adequate	5
2	I like Flix Bus. It seems like an	4
3	Very good service, clean bus, big,	4
4	Great first trip! Great price, cle	5
5	It was a very bad trip. The bus de	1
6	Im first time by flixbus, it's nic	4
7	Good way to travel	4
8	Very fast, very cheap and rather c	4
9	Booked bus from Bayreuth in German	1

- ❖ 순차 데이터(sequential data)
 - 변수 간 or 관측치 간 순서가 있는 데이터

- ❖ 순환 신경망(recurrent neural network, RNN) 이란?
 - 순차 데이터(sequential data) 모델링을 위한 인공 신경망(neural network) 모델
 - 순차 데이터(sequential data): **변수** 간 or **관측치** 간 순서가 있는 데이터

인공신경망

- · 1943: Neural networks
- · 1957: Perceptron
- 1974-86: Backpropagation, RBM, RNN
- 1989-98: CNN, MNIST, LSTM, Bidirectional RNN
- 2006: "Deep Learning", DBN
- 2009: ImageNet
- · 2012: AlexNet, Dropout
- 2014: GANs
- · 2014: DeepFace
- 2016: AlphaGo
- 2017: AlphaZero, Capsule Networks
- 2018: BERT
- * Dates are for perspective and not as definitive historical record of invention or credit

순환 신경망 구조

No	RNN Architectures
1	Fully Recurrent Neural Network
2	Recursive Neural Network
3	Hopfield Network
4	Elman Networks And Jordan Networks or Simple
	Recurrent Network (SRN)
5	Echo State Network
6	Neural History Compressor
7	Long Short-Term Memory (LSTM)
8	Gated Recurrent Unit
9	Bi-Directional Recurrent Neural Network
10	Continuous-Time Recurrent Neural Network (CTRNN)
11	Hierarchical Recurrent Neural Network
12	Recurrent Multilayer Perceptron Network
13	Multiple Timescales Model
14	Neural Turing Machines (NTM)
15	Differentiable Neural Computer (DNC)
16	Neural Network Pushdown Automata (NNPDA)

https://www.rsisinternational.org/journals/ijrsi/digital-library/volume-5-issue-3/124-129.pdf

❖ 신경망(NN) vs 순환 신경망(RNN)

$f(\cdot) = Neural Network$

반응 변수

은닉층

설명 변수

→ Y를 잘 예측하는 방향으로.

❖ 신경망(NN) vs 순환 신경망(RNN)

$f(\cdot)$ = Recurrent Neural Network

반응 변수

은닉층

설명 변수

→ Y를 잘 예측하는 방향으로.

❖ 신경망(NN) vs 순환 신경망(RNN)

$f(\cdot)$ = Recurrent Neural Network

시간을 반영하는 것은 Hidden layer, 어떻게?

❖ 신경망(NN) vs 순환 신경망(RNN)

$f(\cdot)$ = Recurrent Neural Network

❖ 순환 신경망(RNN)

t 시점 y를 예측

$f(\cdot)$ = Recurrent Neural Network

- ❖ t 시점 이전 정보와, → hidden layder로부터 전달되는 weight(W_{hh})
- ❖ t 시점 input 데이터 정보를 가지고 → \mathbf{W}_{xh}

t

❖ t 시점의 y를 예측 → \mathbf{W}_{hv}

반응 변수 W_{hy} W_{hh} 은닉층 h W_{xh} x_t 설명 변수 X

학습의 대상: $(\mathbf{W}_{xh}, \mathbf{W}_{hh}, \mathbf{W}_{hy})$

- ❖ RNN 구조: t 시점 이전 정보, t시점 데이터 X, 를 가지고 t 시점 Y를 예측
 - $y_t = g(W_{xh}h_t + b_y)$
 - $h_t = f(W_{hh}h_{t-1} + W_{xh}x_t + b_x)$

학습의 대상: $(\mathbf{W}_{xh}, \mathbf{W}_{hh}, \mathbf{W}_{hy})$

학습 방법: Backpropagation <u>Trough Time</u>

학습의 대상: $(\mathbf{W}_{xh}, \mathbf{W}_{hh}, \mathbf{W}_{hy})$

❖ RNN 구조

Many to Many RNN

학습의 대상: $(\mathbf{W}_{xh}, \mathbf{W}_{hh}, \mathbf{W}_{hy})$

❖ RNN 구조

학습의 대상: $(\mathbf{W}_{xh}, \mathbf{W}_{hh}, \mathbf{W}_{hy})$

❖ RNN 구조

학습의 대상: $(\mathbf{W}_{xh}, \mathbf{W}_{hh}, \mathbf{W}_{hy})$

❖ RNN 구조

Many to Many RNN

학습의 대상: (\mathbf{W}_{xh} , \mathbf{W}_{hh} , \mathbf{W}_{hy})

❖ RNN 구조

Many to Many RNN

Task: Machine Translation

(한국어) 안녕하세요 조 박사님, 한화입니다.

(English) Hello Dr. Cho, This is Hanhwa.

학습의 대상: $(\mathbf{W}_{xh}, \mathbf{W}_{hh}, \mathbf{W}_{hy})$

❖ RNN 구조

One to Many RNN

학습의 대상: $(\mathbf{W}_{xh}, \mathbf{W}_{hh}, \mathbf{W}_{hy})$

❖ RNN 구조

One to Many RNN

Task: Image Captioning

··· 선글라스 낀 남자가 V 를 하고 있다. ···

학습의 대상: $(\mathbf{W}_{xh}, \mathbf{W}_{hh}, \mathbf{W}_{hy})$

❖ RNN 구조

Many to One RNN

학습의 대상: $(\mathbf{W}_{xh}, \mathbf{W}_{hh}, \mathbf{W}_{hy})$

❖ RNN 구조

학습의 대상: $(\mathbf{W}_{xh}, \mathbf{W}_{hh}, \mathbf{W}_{hy})$

❖ RNN 구조

목차

❖ 순환 신경망 개요

❖ 순환 신경망 학습(Backpropagation Trough Time)

❖ 순환 신경망 모델링

❖ 순환 신경망 한계

학습의 대상: (**W**_{xh}, **W**_{hh}, **W**_{hy})

부정

- ❖ RNN 구조: t 시점 이전 정보, t시점 데이터 X, 를 가지고 t 시점 Y를 예측
 - $y_t = g(W_{xh}h_t + b_y)$
 - $h_t = f(W_{hh}h_{t-1} + W_{xh}x_t + b_x)$
 - $h_t = f_W(h_{t-1}, x_t)$

 y_t w_{hh} h_t w_{xh} w_{xh}

학습의 대상: $(\mathbf{W}_{xh}, \mathbf{W}_{hh}, \mathbf{W}_{hv})$

학습 방법: Backpropagation <u>Trough Time</u>

- ❖ RNN 구조: t 시점 이전 정보, t시점 데이터 X, 를 가지고 t 시점 Y를 예측
 - $y_t = g(W_{xh}h_t + b_y)$

Many to Many RNN

• $h_t = f(W_{hh}h_{t-1} + W_{xh}x_t + b_x)$

학습의 대상: $(\mathbf{W}_{xh}, \mathbf{W}_{hh}, \mathbf{W}_{hy})$

학습 방법: Backpropagation <u>**Trough Time**</u>

- ❖ RNN 학습 방식: 시간 흐름에 따라 파라미터 업데이트
- Backpropagation <u>Trough Time (BPTT)</u>

학습의 대상: (\mathbf{W}_{xh} , \mathbf{W}_{hh} , \mathbf{W}_{hy})

- $h_t = f(W_{hh}h_{t-1} + W_{xh}x_t + b_x) \rightarrow f(\cdot)$ 를 tanh 함수라 하자

- ❖ RNN 학습 방식: Backpropagation <u>Trough Time (BPTT)</u>
- ❖ 학습의 대상: (W_{xh}, W_{hh}, W_{hy})

$$\frac{\partial Cost}{\partial \mathbf{W}_{xh}} = \frac{\partial Cost}{\partial y} \times \frac{\partial y}{\partial \mathbf{h}_{4}} \times \frac{\partial \mathbf{h}_{4}}{\partial W_{xh}} + \frac{\partial Cost}{\partial y} \times \frac{\partial y}{\partial \mathbf{h}_{4}} \times \frac{\partial \mathbf{h}_{4}}{\partial \mathbf{h}_{3}} \times \frac{\partial \mathbf{h}_{3}}{\partial W_{xh}} + \frac{\partial Cost}{\partial y} \times \frac{\partial y}{\partial \mathbf{h}_{4}} \times \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{h}_{3}} \times \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{h}_{2}} \times \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{h}_{1}} \times \frac{\partial \mathbf{h}_{2}}{\partial \mathbf{h}_{1}} \times \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{h}_{2}} \times \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{h}_{2}} \times \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{h}_{1}} \times \frac{\partial \mathbf{h}_{2}}{\partial \mathbf{h}_{1}} \times \frac{\partial \mathbf{h}_{2}}{\partial \mathbf{h}_{1}} \times \frac{\partial \mathbf{h}_{2}}{\partial \mathbf{h}_{1}} \times \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{h}_{2}} \times \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{h}_{2}} \times \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{h}_{1}} \times \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{h}_{2}} \times \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{h}_{1}} \times \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{h}_{1}} \times \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{h}_{1}} \times \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{h}_{2}} \times \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{h}_{2}} \times \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{h}_{2}} \times \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{h}_{2}} \times \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{h}_{3}} \times \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{h}_{2}} \times \frac{\partial \mathbf{h}_{3}}{\partial \mathbf{h}_{3}} \times \frac{\partial$$

- ❖ RNN 학습 방식: Backpropagation <u>Trough Time (BPTT)</u>
- ❖ 학습의 대상: (W_{xh}, W_{hh}, W_{hy})

$$\frac{\partial Cost}{\partial \mathbf{W}_{xh}} = \sum_{i=1}^{n} \frac{\partial Cost}{\partial y} \left(\frac{\partial y}{\partial \mathbf{h}_{n}} \cdot \left(\prod_{j=i}^{n-1} \frac{\partial \mathbf{h}_{j+1}}{\partial \mathbf{h}_{j}} \right) \cdot \frac{\partial \mathbf{h}_{i}}{\partial \mathbf{W}_{xh}} \right)$$

- ❖ RNN 학습 방식: Backpropagation <u>Trough Time (BPTT)</u>
- ❖ 학습의 대상: (W_{xh}, W_{hh}, W_{hy})

$$\frac{\partial Cost}{\partial \mathbf{W}_{xh}} = \sum_{i=1}^{n} \frac{\partial Cost}{\partial y} \cdot \frac{\partial y}{\partial \mathbf{h}_{n}} \cdot \left(\prod_{j=i}^{n-1} \frac{\partial \mathbf{h}_{j+1}}{\partial \mathbf{h}_{j}} \right) \cdot \frac{\partial \mathbf{h}_{i}}{\partial \mathbf{W}_{xh}}$$

$$\mathbf{h}_{t} = f(\mathbf{W}_{hh}\mathbf{h}_{t-1} + \mathbf{W}_{xh}\mathbf{x}_{t} + \mathbf{b}_{x}) = \tanh(\mathbf{z}_{t})$$

$$\frac{\partial \mathbf{h}_{t}}{\partial \mathbf{h}_{t-1}} = \frac{\partial \mathbf{h}_{t}}{\partial \mathbf{z}_{t}} \times \frac{\partial \mathbf{z}_{t}}{\partial \mathbf{h}_{t-1}} = \left(1 - \tanh^{2}(\mathbf{z}_{t})\right) \cdot \mathbf{W}_{hh}$$

$$\frac{\partial \mathbf{h}_{t}}{\partial \mathbf{W}_{xh}} = \frac{\partial \mathbf{h}_{t}}{\partial \mathbf{z}_{t}} \times \frac{\partial \mathbf{z}_{t}}{\partial \mathbf{W}_{xh}} = \left(1 - \tanh^{2}(\mathbf{z}_{t})\right) \cdot \mathbf{x}_{t}$$

❖ RNN 구조

순환 신경망 모델링

Many to Many RNN for Language modeling

wxh						
0.287027	0.84606	0.572392	0.486813			
0.902874	0.871522	0.691079	0.18998			
0.537524	0.09224	0.558159	0.491528			

target chars: "e" "I" "I" "o"

https://www.analyticsvidhya.com/blog/2017/1 2/introduction-to-recurrent-neural-networks/

W_hy W_hh W_xh

- https://cs224d.stanford.edu/

Many to Many RNN for Text modeling

- https://cs224d.stanford.edu/

목차

❖ 순환 신경망 개요

❖ 순환 신경망 학습(Backpropagation Trough Time)

❖ 순환 신경망 모델링

❖ 순환 신경망 한계

- Many to Many RNN for Time series data modeling: Univariate
 - ightharpoonup 설명 변수 $(y_{t-10}, \dots, y_{t-1})$: 주가 (이전 시점)
 - ightharpoonup 반응 변수 (y_t) : 주가 건수 (현재 or 예측 시점)
 - ▶ 하이퍼파라미터(hyperparmameter): 주기 (time length) = 10

주가 예측

- ❖ Many to Many RNN for Time series data modeling: Univariate
 - \triangleright 설명 변수 $(y_{t-10}, \dots, y_{t-1})$: 리조트 취소 건수 (이전 시점)
 - ightharpoonup 반응 변수 (y_t) : 리조트 취소 건수 (현재 or 예측 시점)
 - ▶ 하이퍼파라미터(hyperparmameter): 주기 (time length) = 10

한화 리조트 객실 취소 건수 예측(단변량)

- Many to Many RNN for Time series data modeling: Multivariate
 - \triangleright 설명 변수 $(x_{1,t},\cdots,x_{i,t})$: 예약자 정보, 객실 정보(평수, 방 개수 등) 등
 - ightharpoonup 반응 변수 (y_t) : 리조트 취소 건수

한화 리조트 객실 취소 건수 예측(다변량)

목차

❖ 순환 신경망 개요

❖ 순환 신경망 학습(Backpropagation Trough Time)

❖ 순환 신경망 모델링

❖ 순환 신경망 한계

❖ RNN 용어

❖ RNN 용어: 약어 표시 예시

- x_t : input at time step $t \in \mathbb{R}^m$
- s_t : hidden state at time step $t \in \mathbb{R}^n$
- y_t : output at time step $t \in \mathbb{R}^l$
- $U \in \mathbb{R}^{n \times m}$
- $V \in \mathbb{R}^{l \times n}$
- $W \in \mathbb{R}^{n \times n}$
- $s_t = \tanh(Ux_t + Ws_{t-1})$
- $y_t = softmax(Vs_t)$
- $L(y, \hat{y}) = \sum_t L_t(y_t, \hat{y}_t) = -\sum_t y_t \ln \hat{y}_t$

❖ RNN 용어: 약어 표시 예시

1)
$$\frac{\partial L_t}{\partial V} = \frac{\partial L_t}{\partial \hat{y}_t} \times \frac{\partial \hat{y}_t}{\partial V s_t} \times \frac{\partial V s_t}{\partial V}$$

2)
$$\frac{\partial L_t}{\partial W} = \sum_{k=0}^t \left(\frac{\partial L}{\partial \hat{y}_t} \times \frac{\partial \hat{y}_t}{\partial s_t} \times \frac{\partial s_t}{\partial s_k} \times \frac{\partial s_k}{\partial W} \right)$$

3)
$$\frac{\partial L_t}{\partial U} = \sum_{k=0}^t \left(\frac{\partial L}{\partial \hat{y}_t} \times \frac{\partial \hat{y}_t}{\partial s_t} \times \frac{\partial s_t}{\partial s_k} \times \frac{\partial s_k}{\partial U} \right)$$

- ❖ 길이기 긴 sequence 의 경우 Gradient Vanishing / Exploding 문제 발생
 - Vanishing gradient: 다른 모델 사용 →(LSTM, GRU 등)
 - Exploding gradient: clip gradient

$$\frac{\partial \mathcal{E}_{3}}{\partial \hat{y}_{3}} \frac{\partial \hat{y}_{3}}{\partial s_{3}} \left(\frac{\partial s_{3}}{\partial W} + \frac{\partial s_{3}}{\partial s_{2}} \frac{\partial s_{2}}{\partial W} + \frac{\partial s_{3}}{\partial s_{2}} \frac{\partial s_{2}}{\partial s_{1}} \frac{\partial s_{1}}{\partial W} + \frac{\partial s_{3}}{\partial s_{2}} \frac{\partial s_{2}}{\partial s_{1}} \frac{\partial s_{1}}{\partial s_{0}} \frac{\partial s_{1}}{\partial W} \right)$$

Long-Term Dependency problem

EOD