

Description

The VSM30N04 uses advanced trench technology to provide excellent $R_{DS(ON)}$ and low gate charge . The complementary MOSFETs may be used to form a level shifted high side switch, and for a host of other applications.

General Features

N-Channel

 V_{DS} =40V, I_{D} =30A

 $R_{DS(ON)}$ < 16m Ω @ V_{GS} =10V

 $R_{DS(ON)}$ < 24m Ω @ V_{GS} =4.5V

- High power and current handing capability
- Lead free product is acquired
- Surface mount package

Package Marking and Ordering Information

Device Marki	ng	Device	Device Package	Reel Size	Tape width	Quantity
VSM30N04-7	2	VSM30N04	TO-252	-	-	-

Absolute Maximum Ratings (T_C=25 ℃unless otherwise noted)

Parameter	Symbol	Limit	Unit	
Drain-Source Voltage	V _{DS}	40	V	
Gate-Source Voltage	Vgs	±20	V	
Drain Current-Continuous	I _D	30	А	
Drain Current-Continuous(T _C =100 °C)	I _D (100℃)	21.2	Α	
Pulsed Drain Current	I _{DM}	70	А	
Maximum Power Dissipation	P _D	45	W	
Operating Junction and Storage Temperature Range	T_{J}, T_{STG}	-55 To 175	$^{\circ}$	

Thermal Characteristic

Thermal Resistance,Junction-to-Case (Note 2)	R _{θJC}	3.3	°C/W
--	------------------	-----	------

N-CH Electrical Characteristics (TA=25 $^{\circ}$ C unless otherwise noted)

Parameter	Symbol	Condition	Min	Тур	Max	Unit
Off Characteristics						•
Drain-Source Breakdown Voltage	BV _{DSS}	V _{GS} =0V I _D =250μA	40	-	-	V
Zero Gate Voltage Drain Current	I _{DSS}	V _{DS} =40V,V _{GS} =0V	-	-	1	μA
Gate-Body Leakage Current	I _{GSS}	$V_{GS}=\pm20V, V_{DS}=0V$	-	-	±100	nA
On Characteristics (Note 3)			•		•	•
Gate Threshold Voltage	V _{GS(th)}	$V_{DS}=V_{GS},I_{D}=250\mu A$	1.0	1.5	2.0	V
Duain Causas On Ctata Basistanas	Б	V _{GS} =10V, I _D =15A	-	12.3	16	mΩ
Drain-Source On-State Resistance	R _{DS(ON)}	V _{GS} =4.5V, I _D =15A	-	17	24	mΩ
Forward Transconductance	g _{FS}	V_{DS} =5 V , I_{D} =15 A	-	15	-	S
Dynamic Characteristics (Note4)						•
Input Capacitance	C _{lss}	\/ 00\/\/ 0\/	-	964	-	PF
Output Capacitance	C _{oss}	V_{DS} =20V, V_{GS} =0V, F=1.0MHz	-	109	-	PF
Reverse Transfer Capacitance	C _{rss}	r-1.0ivinz	-	96	-	PF
Switching Characteristics (Note 4)				•		•
Turn-on Delay Time	t _{d(on)}		-	5.5	-	nS
Turn-on Rise Time	t _r	V_{DD} =20V, R_L =1.3 Ω	-	14	-	nS
Turn-Off Delay Time	t _{d(off)}	V_{GS} =10 V , R_{GEN} =3 Ω	-	24	-	nS
Turn-Off Fall Time	t _f		-	12	-	nS
Total Gate Charge	Qg	\/ -20\/ -45A	-	22.9	-	nC
Gate-Source Charge	Q _{gs}	V_{DS} =20V, I_{D} =15A, V_{GS} =10V	-	3.5	-	nC
Gate-Drain Charge	Q_{gd}	VGS-1UV	-	5.3	-	nC
Drain-Source Diode Characteristics					-	
Diode Forward Voltage (Note 3)	V _{SD}	V _{GS} =0V,I _S =15A	-	8.0	1.2	V

N- Channel Typical Electrical and Thermal Characteristics (Curves)

Figure 1:Switching Test Circuit

Figure 3 Output Characteristics

Figure 5 Drain-Source On-Resistance

Figure 2:Switching Waveforms

Figure 4 Transfer Characteristics

Figure 6 Drain-Source On-Resistance

Vgs Gate-Source Voltage (V)

Figure 7 Rdson vs Vgs

Qg Gate Charge (nC) Figure 9 Gate Charge

Figure 11 Capacitance vs Vds

 T_J -Junction Temperature(${}^{\circ}\mathbb{C}$)

Figure 8 Power Dissipation

Figure 10 Source- Drain Diode Forward

Vds Drain-Source Voltage (V)

Figure 12 Safe Operation Area

Figure 13 Normalized Maximum Transient Thermal Impedance