ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

Для студентов 2-го курса МФТИ

5 июня 2009г.

ФИО	№ группы

ВАРИАНТ А

1	2	3	4	5	чисто решено

1А. В интерферометре Майкельсона (см. рисунок) используется монохроматический точечный источник света **S**. В одно из плеч интерферометра вносится поляроид **P**. При этом видность интерференционной картины на экране **Э** оказалась равной $0.7 \simeq 1/\sqrt{2}$. Найти коэффициент отражения по интенсивности **R** зеркала 2, полагая, что зеркало 1 идеально отражает (**R**₁ = 1). (Делительная пластинка **П** половину света пропускает, а половину отражает).

2A. В газоразрядной трубке находится неон ²⁰Ne при низком давлении. Из-за теплового движения молекул неона красная спектральная линия с длиной волны $\lambda = 633 \, нm$ (на этой длине волны работает гелий-неоновый лазер) уширена (эффект Доплера). Принимая температуру газа равной 400 K, оцените, при какой базе интерферометра Фабри-Перо, зеркала которого имеют энергетический коэффициент отражения r = 0.98, можно измерить доплеровскую ширину спектральной линии неона. Постоянная Больцмана $k = 1.38 \cdot 10^{-16}$ эрг/град, число Авогадро $N_{\rm A} = 6.02 \cdot 10^{-23} \, mont$.

3A. Точечный фотоприёмник смещается вдоль оси z и регистрирует результат интерференции трёх плоских монохроматических волн ($\lambda = 500 \, \text{нм}$), одна из которых \vec{k}_0 бежит вдоль оси z, и имеет амплитуду a_0 , а две других \vec{k}_1 и \vec{k}_2 составляют с осью z углы соответственно $\alpha_1 = 10^{-3} \, pad$ и $\alpha_2 = \sqrt{2} \cdot 10^{-3} \, pad$ и имеют амплитуду $a_1 = a_2 = a_0/2$. Колебания волн \vec{k}_0 и \vec{k}_2 в точке **O** оказались синфазными, а волна \vec{k}_1 отстаёт по фазе на $\pi/2$.

1. При каком минимальном смещении *z* интенсивность, регистрируемая фотоприёмником, окажется минимальной и чему она равна?

2. При каком минимальном смещении регистрируемая приёмником интенсивность окажется равной интенсивности волны \vec{k}_0 ?

4A. Голограмма точечного объекта **O** записывается по схеме Габора с той лишь разницей, что опорная волна создаётся точечным монохроматическим источником **S** с длиной волны $\lambda = 633$ нм, расположенным на расстоянии L = 1 м от фотопластинки **Ф** (см. рис.). Объект расположен на расстоянии R = 60 см от фотопластинки. Предметной волной служит свет опорной волны, рассеянный

объектом. Полученная таким образом голограмма просвечивается параллельным пучком лучей от удаленного монохроматического источника с той же длиной волны.

1. Определите положение действительного и мнимого изображений объекта.

2. Принимая диаметр фотопластинки равным $D=10\,\text{см}$, оцените допустимую немонохроматичность света $\Delta\lambda/\lambda$ при записи, при которой достигается максимальное разрешение голограммы.

Указание: используйте параболическое приближение.

5A. При Комптон-эффекте максимальная энергия электронов отдачи оказалась равной $T_{max} = 0,44 M \ni B$. Определите длину волны фотона.

ЭКЗАМЕНАЦИОННАЯ КОНТРОЛЬНАЯ РАБОТА ПО ФИЗИКЕ

Для студентов 2-го курса МФТИ

5 июня 2009г.

ФИО	№ группы

ВАРИАНТ Б

1	2	3	4	5	чисто решено

1Б. В интерференционном опыте Юнга одна из щелей прикрыта поляроидом, а вторая — изотропной пластинкой с коэффициентом пропускания по интенсивности, равным 0,5. Какова видность наблюдаемой интерференционной картины, если используется точечный монохроматический источник неполяризованного света?

2Б. Спектральные волны в спектре далёких галактик смещены в область длинных волн (красное смещение), причём сдвиг спектральных линий пропорционален расстоянию r до галактики. В модели расширяющейся Вселенной это явление объясняется доплеровским сдвигом частоты спектральных линий. Из наблюдений установлено, что скорость удаления \mathbf{v} галактики пропорциональна расстоянию до неё: $\mathbf{v} = H\mathbf{r}$. Это соотношение называется законом Хаббла; коэффициент пропорциональности H называется постоянной Хаббла. Его численное значение: $H \approx 75 \, \kappa \text{м/(cMn\kappa)}$. (В астрономии расстояние принято измерять в парсеках, $1 \, n\kappa = 3086 \cdot 10^{12} \, \kappa M = 3,26 \, ce$. coda.)

- 1. Какой должна быть длина b основания призмы, выполненной из стекла с дисперсией показателя преломления $|dn/d\lambda| = 10^3 \, cm^{-1}$, чтобы с её помощью можно было обнаружить красное смещение спектральных линий туманности Андромеды, если расстояние до этой галактики равно $0.7 \, Mn\kappa$?
- 2. Какой бы Вы предложили спектральный прибор для обнаружения красного смещения линий в спектре галактики Большое Магелланово Облако (БМО) ($r = 0.05 Mn\kappa$)?

3Б. Точечный фотоприёмник, смещаясь вдоль оси z, регистрирует результат интерференции трёх монохроматических волн ($\lambda = 500\, hm$), одна из которых \vec{k}_0 , с амплитудой a_0 , бежит вдоль оси z, а волновые векторы \vec{k}_1 и \vec{k}_2 двух других, с амплитудами $a_1 = a_2 = a_0/2$ составляют углы $\alpha_1 = 10^{-3}\, pa\partial$ и $\alpha_2 = \sqrt{3} \cdot \alpha_1$ с осью z. Колебания всех трёх волн в точке O оказались синфазными.

- 1. Какова интенсивность, регистрируемая приёмником в точке О?
- 2. При каком минимальном смещении регистрируемая приёмником интенсивность окажется равной интенсивности волны \vec{k}_0 ?
- 3. При каком минимальном смещении регистрируемая интенсивность максимальна?

4Б. При записи голограммы небольшого предмета ${\bf \Pi}$ использовалась схема Габора. Предмет располагался на расстоянии ${\bf R}=100\,c_{\it M}$ от фотопластинки ${\bf \Phi}$ и освещался параллельным пучком лучей

от далёкого монохроматического источника ${\bf S}$ с длиной волны $\lambda=633\,{\rm HM},$ нормально падающим на фотопластинку (см. рис.1). Предметной волной служил свет, рассеянный предметом. При восстановлении изображения предмета голограмма просвечивалась светом точечного источника с той же длиной волны, расположенного на расстоянии ${\bf L}=150\,{\rm cM}$ от голограммы (рис.2).

- 1. Определите положение действительного и мнимого изображений предмета.
- 2. Принимая диаметр фотопластинки равным $D = 19 \, cM$, оцените разрешающую способность её фотоэмульсии (в линиях на мм), при которой достигается максимальное разрешение голограммы.

Указание: используйте параболическое приближение.

5Б. Фотон с длиной волны $\lambda = 2,3\cdot 10^{-5}$ см нормально падает на поверхность платиновой (Pt) пластинки и выбивает фотоэлектрон, движущийся в противоположном направлении с максимально возможной кинетической энергией. Работа выхода платины $A_{Pt} = 5,29 \, \mathrm{pB}$. Определите импульс, переданный пластинке.

Какая из двух частиц — фотон или электрон — передаёт стенке больший импульс и во сколько раз?