Серия 5. А теперь к делу.

0. Вычислите фаткторгруппу группы симметрий пятиугольника по подгруппе поворотов. т

Определение. Пусть G — группа. Коммутатором элементов g и h называется $[g,h] = ghg^{-1}h^{-1}$.

- **1.** Для группы G обозначим через [G,G] подгруппу $\langle [g,h] \mid f,h \in G \rangle$. а) Докажите, что $[G,G] \subseteq G$, б) Докажите, что G/[G,G] абелева группа.
- **2.** Пусть G группа, H, K её подгруппы. а) Докажите, что $K \leq H, \ H \leq G \implies K \leq G$. б) Пусть $K \lhd H, \ H \lhd G$. Верно ли, что $K \lhd G$?
 - **3.** Пусть H и K подгруппы в G. Докажите, что

$$|HK| = \frac{|H| \cdot |K|}{|H \cap K|}$$

Определение. Обозначим группу матриц $\begin{pmatrix} a & b \\ c & d \end{pmatrix}$, где $a,b,c,d\in\mathbb{R}$ и ad-bc=1 за $\mathrm{SL}_2(\mathbb{R}).$

4. Проверьте, что $SL_2(\mathbb{R})$ это действительно группа и постройте изоморфизм в группу дробно-линейных преобразований \mathbb{H}^2 .

Во всех задачах ниже G — транзитивная на уровнях подгруппа $\mathrm{Aut}(X^*)$.

- 5. Докажите, что для любой вершины $v \in X^n$ её стабилизатор $\mathrm{Stab}(v)$ это подгруппа индекса $|X|^n$ в группе G.
- **6.** Докажите, что для любой вершины $v \in X^*$ и любого $g \in G$ жесткий стабилизатор G[v] обладает следующим свойством:

$$G[g(v)] = gG[v]g^{-1}.$$

- 7. Докажите, что если слово v является началом слова $u \in X^*$, то $\mathrm{Stab}(u) \leq \mathrm{Stab}(v)$ и $G[u] \leq G[v]$.
- 8. Докажите, что уровневые стабилизаторы $\operatorname{Stab}(n)$ являются нормальными подгруппами конечного индекса в G и

$$\bigcap_{n\geq 1}\operatorname{Stab}(n)=\{e\}.$$

1