The area between functions $x^{\frac{1}{n}}$ and x^n in the domain $0 \le x \le 1$ is equal to $\frac{n-1}{n+1}$

Amit Kumar

April 26, 2025

1 Abstract

When the graphs of functions $y=x^{\frac{1}{n}}$ and $y=x^n$ are plotted [in the domain $0 \le x \le 1$,range/co-domain $0 \le y \le 1$] then an area is carved between the two functions by the virtue of intersection of the two graphs (at 0 and 1). If we consider the area formed by the unit square $[0 \le x \le 1]$ and $0 \le y \le 1$] to be 100%, then the above mentioned 'carved out area due to intersection' is a function of 'n' and grows as the value of 'n' grows, asymptotically reaching 100% for $n=\infty$. The relationship between the 'carved area' and 'n' is simply: $\Delta = (\frac{n-1}{n+1} \times 100)$ % of the total area between the unit square formed.

2 Derivation

Let us see three plots to understand the behavior of the area carved out by the intersection of two curves. Below are the curves for n=2, 3 and 10 (Figure 1). It is easy to calculate the area formed by the intersection between

Figure 1: The area made by intersection is an increasing function of n

the two functions by going through these 3 steps.

- 1. Calculate the area under the function $x^{\frac{1}{n}}$.
- 2. Calculate the area under the function $y = x^n$.
- 3. Subtract the second step from the first step.

Thus we can calculate the area as below.

$$\Delta = \int_0^1 x^{\frac{1}{n}} dx - \int_0^1 x^n dx$$

$$= \frac{x^{\frac{1}{n}+1}}{\frac{1}{n}+1} \Big|_0^1 - \frac{x^{n+1}}{n+1} \Big|_0^1$$

$$= \left[\frac{1^{\frac{1}{n}+1}}{\frac{1}{n}+1} - \frac{0^{\frac{1}{n}+1}}{\frac{1}{n}+1} \right] - \left[\frac{1^{n+1}}{n+1} - \frac{0^{n+1}}{n+1} \right]$$

$$= \frac{1}{\frac{1}{n}+1} - \frac{1}{n+1}$$

$$= \frac{n}{n+1} - \frac{1}{n+1}$$

$$= \frac{n-1}{n+1}$$

For n=1 there should be no area while for $n=\infty$ the area should cover the whole square intuitively. As a sanity check we can calculate the area for n=1 and $n=\infty$ and we find the results to be 0 and 1 respectively, as expected.

3 Discussion

Below is a table for different values of n (from 1 to 100) for the equation $y = \frac{n-1}{n+1}$.

n	fraction
1	0.0000
2	0.3333
3	0.5000
4	0.6000
5	0.6667
6	0.7143
10	0.8182
25	0.9231
50	0.9608
100	0.9802

This observation can be turned into a plot as below (Figure 2).

Figure 2: The fraction asymptotically reaches 100% for large values of n

There are a few interesting properties of this equation.

- 1. As we can see this equation $\left(y=\frac{n-1}{n+1}\right)$ is a special case of Möbius-Transformation. A Möbius-Transformation is defined as $f(z)=\frac{az+b}{cz+d}$, where $ad-bc\neq 0$ and z is a complex number. In this context this function is special since z is replaced by x and $a=c=d=1\neq b=-1$. Please see https://math.stackexchange.com/questions/5059632/does-the-function-y-fracx-1x1-have-a-name for some very helpful comments on this.
- 2. The n^{th} derivative of this function is defined as: $f'^n\left(\frac{x-1}{x+1}\right) = \frac{-1^{(n+1)}*2n!}{(x+1)^{(n+1)}}$, where $1 \le n$.
- 3. The fifth composition of the function with itself is the original function again [see https://math.stackexchange.com/q/5059632/357360].

$$f(n) = \frac{n-1}{n+1}$$

$$f(f(n)) = \frac{-1}{n}$$

$$f(f(f(n))) = \frac{n+1}{-n+1}$$

$$f(f(f(f(n)))) = n$$

$$f(f(f(f(f(n))))) = \frac{n-1}{n+1}$$