Natural Language Processing using Python Programming

Notebook 01.2: Installation and Environment Setup

Python 3.8+ NLTK Latest SpaCy Latest License MIT

Part of the comprehensive learning series: Natural Language Processing using Python Programming

Learning Objectives:

- Install and configure NLTK library for basic NLP tasks
- Set up SpaCy with language models for advanced processing
- Verify installations with practical examples
- Prepare the development environment for upcoming NLP projects
- This notebook is our first hands-on step.
- We will cover the practical aspects of setting up the two most important Python libraries for this course: NLTK (Natural Language Toolkit) and SpaCy.
- We will install necessary language data and run simple code to verify everything is working correctly.

1. Prerequisites Check (Non-Executable)

- Before running the code cells below, please ensure you have completed the following steps from the README.md:
 - 1. **Cloned** the repository and navigated to the directory.
 - 2. **Activated** your Python virtual environment (nlp_env).
 - 3. **Installed** all dependencies using pip install -r requirements.txt.

2. Setting Up NLTK (Natural Language Toolkit)

- NLTK is the oldest and most commonly used library for academic research, education, and foundational NLP concepts.
- It includes access to hundreds of corpora and lexical resources.
- While the pip install covers the library itself, NLTK requires manually downloading specific datasets, tokenizers, and resources.

We will download the essential ones here.

```
In [1]: import nltk

print("Starting NLTK downloads...")

# 1. 'punkt': Required for word and sentence tokenization
    nltk.download('punkt', quiet=True)

# 2. 'stopwords': A list of common words to ignore in analysis
    nltk.download('stopwords', quiet=True)

# 3. 'wordnet': Used for advanced analysis like Lemmatization
    nltk.download('wordnet', quiet=True)

# 4. 'averaged_perceptron_tagger': Required for Part-of-Speech (POS) tagging
    nltk.download('averaged_perceptron_tagger', quiet=True)

print("\nNLTK essential resources downloaded successfully!")
```

Starting NLTK downloads...

NLTK essential resources downloaded successfully!

NLTK Verification: Our First NLP Program (Tokenization)

Let's confirm NLTK is working by performing the fundamental task of Word
 Tokenization.

```
In [2]: from nltk.tokenize import word_tokenize
    text_sample = "NLP is fascinating, and I'm ready to learn more!"

# Use NLTK's word_tokenize function
    tokens = word_tokenize(text_sample)

print(f"Original Text: {text_sample}")
    print(f"\nTokens Output: {tokens}")

Original Text: NLP is fascinating, and I'm ready to learn more!

Tokens Output: ['NLP', 'is', 'fascinating', ',', 'and', 'I', "'m", 'ready', 'to', 'learn', 'more', '!']
```

3. Setting Up SpaCy

- **SpaCy** is an industrial-strength library designed for efficiency, speed, and production use.
- Unlike NLTK, which uses separate packages for different tasks, SpaCy uses a unified
 language model that encapsulates all components (tokenization, POS tagging, NER, etc.).
- We need to download the English language model, typically the small one (en_core_web_sm) for quick testing and basic tasks.

```
In [4]: import spacy
      # SpaCy models are downloaded using the command line (or shell commands in the not
      # The '!' prefix runs the command in the shell
      print("Downloading SpaCy English model 'en_core_web_sm'...")
      !python -m spacy download en_core_web_sm
      print("\nSpaCy model download complete!")
     Downloading SpaCy English model 'en_core_web_sm'...
     Collecting en-core-web-sm==3.8.0
     SpaCy model download complete!
      Downloading https://github.com/explosion/spacy-models/releases/download/en_core_w
     eb_sm-3.8.0/en_core_web_sm-3.8.0-py3-none-any.whl (12.8 MB)
        ----- 0.0/12.8 MB ? eta -:--:-
        ---- 1.3/12.8 MB 7.3 MB/s eta 0:00:02
        ----- 2.6/12.8 MB 7.2 MB/s eta 0:00:02
        ----- 4.7/12.8 MB 7.9 MB/s eta 0:00:02
        ----- 6.6/12.8 MB 8.1 MB/s eta 0:00:01
        ----- 7.9/12.8 MB 7.9 MB/s eta 0:00:01
        ----- 8.7/12.8 MB 7.1 MB/s eta 0:00:01
        ----- 9.2/12.8 MB 6.6 MB/s eta 0:00:01
        ----- 9.7/12.8 MB 6.2 MB/s eta 0:00:01
            ----- 10.5/12.8 MB 5.7 MB/s eta 0:00:01
        ----- 11.5/12.8 MB 5.6 MB/s eta 0:00:01
        ----- 12.6/12.8 MB 5.6 MB/s eta 0:00:01
        ----- 12.6/12.8 MB 5.6 MB/s eta 0:00:01
        ----- 12.8/12.8 MB 4.7 MB/s 0:00:02
     Installing collected packages: en-core-web-sm
     Successfully installed en-core-web-sm-3.8.0
     ✓ Download and installation successful
     You can now load the package via spacy.load('en_core_web_sm')
```

SpaCy Verification: Our First NLP Program (Pipeline)

- SpaCy processes text by passing it through the loaded model, creating a Doc object.
- This object holds all the processed information, including tokens, POS tags, and named entities.

Token	Lemma	POS Tag	Named Entity Type
Apple	Apple	PROPN	ORG
is	be	AUX	
looking	look	VERB	
at	at	ADP	
buying	buy	VERB	
U.K.	U.K.	PROPN	GPE
startup	startup	VERB	
for	for	ADP	
\$	\$	SYM	MONEY
1	1	NUM	MONEY
billion	billior	n NUM	MONEY
•	.	PUNCT	

4. Summary and Next Steps

- If both verification steps ran without error, your environment is successfully set up!
- You now have the necessary tools to begin processing language.
- In **Chapter 2**, we will take a deep dive into **Text Preprocessing**, learning how to apply the techniques we verified here (tokenization, lemmatization) in detail, along with other essential cleaning steps.

Key Takeaways

- **Environment Setup:** We successfully installed and configured NLTK and SpaCy libraries for NLP development.
- **Library Verification:** Both NLTK and SpaCy are working correctly with proper language models and data downloads.
- **Development Ready:** Our environment is now prepared for hands-on NLP implementation and experimentation.

Next Notebook Preview

- With our environment set up, we're ready to dive into **practical text preprocessing techniques**.
- The next notebook will cover **tokenization**, **text cleaning**, **and normalization** the essential first steps in any NLP pipeline.

About This Project

This notebook is part of the **Natural Language Processing using Python Programming for Beginners** repository - a comprehensive, beginner-friendly guide for

mastering NLP using Python, NLTK, and SpaCy.

Repository: NLP

Author

Prakash Ukhalkar

Built with ♥ for the Python community