Lie's Third Theorem in Synthetic Differential Geometry

Matthew Burke

University of Cambridge, 2nd May 2017

Summary

1. The Dubuc Topos and Germ Representability

- 2. Germs of Local Lie Groups and Lie's Third Theorem
- 3. Statment and Other Attempts

4. Closure Under Decomposition and Infinitesimal Closure

Lie's Third Theorem

$$LieAlg \xrightarrow{\simeq} FGLaw \xrightarrow{\simeq} LGGerm \perp LieGrp \qquad (1)$$

$$LieAlgd \longrightarrow ???? \longrightarrow LGdGerm \perp LieGrpd \qquad (2)$$

$$SmthAlgd \longrightarrow Cat_{jet}(\mathcal{E}) \longrightarrow Cat_{\infty}(\mathcal{E}) \xrightarrow{(-)_{int}} Cat_{int}(\mathcal{E})$$

$$(3)$$

Theorem (Lie's Third Theorem)

If \mathbb{K} is one of the local approximations then $(\mathbb{K}_{int})_{\infty} \cong \mathbb{K}$.

Germs of Local Lie Groups

Definition

A local Lie group consists of open sets $U_0, U \subset \mathbb{R}^n$ containing $\vec{0} \in \mathbb{R}^n$, a smooth map $\mu: U \times U \to \mathbb{R}^n$ and a smooth map $i: U_0 \to \mathbb{R}^n$ such that if $X, Y, Z \in U$ then:

- $\mu(X,0) = X = \mu(0,X)$
- $X \in U_0 \implies \mu(X, i(X)) = \mu(i(X), X) = 0$
- $\qquad \qquad \mu(X,Y),\mu(Y,Z) \in U \implies \mu(X,\mu(Y,Z)) = \mu(\mu(X,Y),Z)$

Definition

A germ of a local Lie group is an equivalence class of local Lie groups where $G \sim H$ iff there exists a open neighbourhoods V_0 of $\vec{0} \in \mathbb{R}^n$ such that $\mu_G | V = \mu_H | V$ and $i_G | V_0 = i_H | V_0$.

Germ Representability in the Dubuc Topos

The $Dubuc\ topos\ \mathcal{E}$ is a topos such that:-

- ▶ There is a full and faithful embedding $Man \stackrel{\iota}{\to} \mathcal{E}$.
- ▶ There is a ring $R = \iota(\mathbb{R}) \in \mathcal{E}$.
- ► The object $D_k = \{x \in R : x^{k+1} = 0\}$ is not terminal, in fact the Kock-Lawvere axiom holds: $\alpha : R^{k+1} \to R^{D_k}$ defined by $(a_0, a_1, ..., a_k) \mapsto (d \mapsto a_0 + a_1 d + ... + a_k d^k)$ is an isomorphism.

Definition

A germ of a smooth function at $\vec{x} \in \mathbb{R}^n$ is an equivalence class of smooth functions $\mathbb{R}^n \to \mathbb{R}$ where $f \sim g$ iff there exists a neighbourhood V of \vec{x} such that f|V=g|V.

Definition

 m_0 is the ideal of smooth maps $f: \mathbb{R}^n \to \mathbb{R}$ with null germ at $\vec{0}$.

Proposition

The object $[1,m]\cong\{x\in[1,(0)]:\neg\neg(x=0)\}$.

The Nilradical and Jacobson Radical (Skipped)

In intuitionistic logic the following statements are not equivalent.

$$U(x) \lor \neg(x = 0) \longrightarrow \neg(x = 0) \Longrightarrow U(x)$$

$$\downarrow \qquad \qquad \downarrow$$

$$\neg U(x) \Longrightarrow (x = 0) \longrightarrow \neg\neg(U(x) \lor (x = 0))$$

hence we have four different kinds of field.

Definition

The Jacobson radical $J(R) = \{x \in R : \forall u \in R. \ 1-ux \ is \ inv.\}$. The nilradical N(R) is the set of all the nilpotent elements of R. $N(R) \subset J(R)$ because $(1-ud)(1+ud+(ud)^2+...+(ud)^{k-1})$.

In a 'field of fractions' (top right definition above):

$$1 - ux$$
 is inv. $\iff \neg(1 - ux = 0)$
 $\iff \neg(1 = ux)$
 $\iff \neg(x \text{ is inv.})$
 $\iff \neg\neg(x = 0)$

Structure Required for Lie III

Definition

If $\mathbb{C}=C \rightrightarrows M$ is a category in $\mathcal E$ then the *infinitesimal part* \mathbb{C}_{∞} of \mathbb{C} has object space M and arrow space $\{c\in C: \neg\neg(esc=c)\}$.

Definition

The fundamental category \mathbb{I} on the unit interval \mathbf{I} is

$$\mathbb{I}^{2} := \{(a,b) \in \mathbb{I}^{2} : a \leq b\} \xrightarrow{\stackrel{\pi_{0}}{\leftarrow} \Delta} \stackrel{1}{\rightarrow} \mathbb{I}$$

and the only possible composition.

Definition

If $\mathbb C$ is a category in $\mathcal E$ then the integral completion $\mathbb C_{int}$ of $\mathbb C$ is the pushout

$$hom(\mathbb{I}_{\infty},\mathbb{C}) \times \mathbb{I}_{\infty} \stackrel{ev}{\longrightarrow} \mathbb{C}$$

$$\downarrow^{1 \times \iota} \qquad \qquad \downarrow^{\tau}$$
 $hom(\mathbb{I}_{\infty},\mathbb{C}) \times \mathbb{I} \stackrel{\alpha}{\longrightarrow} \mathbb{C}_{int}$

Attempts at Lie's Third Theorem

- For Lie algebroids the functor (−)_{int}: LieAlgs → TopGrpd doesn't factor through LieGpd. (Mention Tseng and Zhu.)
- with groupoids in synthetic differential geometry: counter example involving inverses
- with categories and nilpotents in synthetic differential geometry: still doesn't rule out all inverses! Similar counter example.

Closure under decomposition

Definition

 $\beta: A \to B$ is infinitesimally closed iff β is a monomorphism and $\forall b \in B$. $[\neg \neg (\exists a \in A. \ \beta(a) = b) \implies \exists a_0 \in A. \ \beta(a_0) = b].$

Lemma

Infinitesimally closed arrows are closed under pushout in \mathcal{E} .

Definition

A functor $\beta : \mathbb{A} \to \mathbb{B}$ is closed under decomposition iff $b \circ b' \in \beta(A) \implies b, b' \in \beta(A)$.

Theorem

In the following pushout τ is closed under decomposition.

$$\mathbb{K}^{\mathbb{I}_{\infty}} \times \mathbb{I}_{\infty} \xrightarrow{ev} \mathbb{K}$$

$$\downarrow \mathbb{K}^{\mathbb{I}_{\infty}} \times \iota_{\mathbb{I}}^{\infty} \qquad \downarrow \tau_{K}$$

$$\mathbb{K}^{\mathbb{I}_{\infty}} \times \mathbb{I} \xrightarrow{\alpha_{K}} \mathbb{P}$$

$$(4)$$

Main Theorem

Theorem

If \mathbb{K} is an infinitesimal category and

$$egin{aligned} \mathit{hom}(\mathbb{I}_{\infty},\mathbb{K}) imes \mathbb{I}_{\infty} & \stackrel{\mathit{ev}}{\longrightarrow} \mathbb{K} \ & \downarrow^{1 imes \iota} & \downarrow^{ au} \ & \downarrow^{\tau} \ & \mathit{hom}(\mathbb{I}_{\infty},\mathbb{K}) imes \mathbb{I} & \stackrel{lpha}{\longrightarrow} \mathbb{P} \end{aligned}$$

is a pushout in $Cat(\mathcal{E})$ then the arrow $\tau_{\infty}: \mathbb{K}_{\infty} \to \mathbb{P}_{\infty}$ is an isomorphism.

Proof.

Let $p \in P$ such that $\neg \neg (esp = p)$ and $p = L_0 \circ ... \circ L_n$ for $L_i \in Q$. First $\neg \neg (\forall i \in \{1,...,n\}.\ L_i \in v(K))$ because $esp \in v(K)$ and τ is closed under decomposition. Therefore $\forall i \in \{1,...,n\}.\ \neg \neg (L_i \in v(K))$. Finally $\forall i \in \{1,...,n\}.\ L_i \in v(K)$ because v is infinitesimally closed and therefore $p \in \tau(K)$ as required.

Germs of Local Lie Groups in SDG

If time at end: formulate germs of local Lie groups in SDG.