

Figure 1



Figure 2



## Microwave-assisted palladium-catalyzed amidation utilizing in situ generated carbon monoxide from $\text{Mo}(\text{CO})_6$ .



## Microwave-assisted palladium-catalyzed generation of *p*-methyl benzoic acid from tolyl iodide utilizing *in situ* generated carbon monoxide from $[\text{Mo}(\text{CO})_6]$ .

<sup>a</sup>Average isolated yields from 2-3 runs (0.23 mmol scale, SmithSynthesizer™, >95% by GC/MS). <sup>b</sup>p-Methyl-benzoic acid. Ethylene glycol was added as co-solvent.

| entry,<br>aryl-X | R-group           | nucleophile                 | product   | yield <sup>a</sup><br>(%) |
|------------------|-------------------|-----------------------------|-----------|---------------------------|
| 1, <b>1a</b>     | MeO-              | <i>n</i> -BuNH <sub>2</sub> | <b>2a</b> | 70                        |
| 2, <b>1a</b>     | Me-               | <i>n</i> -BuNH <sub>2</sub> | <b>2b</b> | 71                        |
| 3, <b>1a</b>     | F <sub>3</sub> C- | <i>n</i> -BuNH <sub>2</sub> | <b>2c</b> | 75                        |
| 4, <b>1a</b>     | Ac-               | <i>n</i> -BuNH <sub>2</sub> | <b>2d</b> | 77                        |
| 5, <b>1a</b>     | MeO-              | Piperidine                  | <b>2e</b> | 65                        |
| 6, <b>1a</b>     | Me-               | Piperidine                  | <b>2f</b> | 66                        |
| 7, <b>1a</b>     | F <sub>3</sub> C- | Piperidine                  | <b>2g</b> | 74                        |
| 8, <b>1a</b>     | Ac-               | Piperidine                  | <b>2h</b> | 83                        |
| 9, <b>1a</b>     | Me-               | Benzyl<br>amine             | <b>2i</b> | 48                        |
| 10, <b>1b</b>    | MeO-              | <i>n</i> -BuNH <sub>2</sub> | <b>2a</b> | 69                        |
| 11, <b>1b</b>    | Me-               | <i>n</i> -BuNH <sub>2</sub> | <b>2b</b> | 72                        |
| 12, <b>1b</b>    | F <sub>3</sub> C- | <i>n</i> -BuNH <sub>2</sub> | <b>2c</b> | 78                        |
| 13, <b>1b</b>    | Ac-               | <i>n</i> -BuNH <sub>2</sub> | <b>2d</b> | 79                        |
| 14, <b>1b</b>    | MeO-              | Piperidine                  | <b>2e</b> | 66                        |
| 15, <b>1b</b>    | Me-               | Piperidine                  | <b>2f</b> | 69                        |
| 16, <b>1b</b>    | F <sub>3</sub> C- | Piperidine                  | <b>2g</b> | 75                        |
| 17, <b>1b</b>    | Ac-               | Piperidine                  | <b>2h</b> | 76                        |
| 18, <b>1b</b>    | Me-               | Water                       | <b>3</b>  | 87 <sup>b</sup>           |

Figure 3

Type III



100-0752-17403

Figure 4



| <b>R1</b>                   | <b>R2</b>                                                      | <b>Time (s)</b> | <b>Conversion of<br/>1a</b> | <b>Isolated<br/>Yields (%) of<br/>3</b> |
|-----------------------------|----------------------------------------------------------------|-----------------|-----------------------------|-----------------------------------------|
| <b>1a</b> 4-OMe             | <b>2a</b> -nBu                                                 | 300             | 90%                         | <b>3a</b> 75%                           |
| <b>1b</b> 2-Me              | <b>2a</b> -nBu                                                 | 300             | Full                        | <b>3b</b> 46%                           |
| <b>1a</b> 4-OMe             | <b>2b</b> -tBu                                                 | 900             | Full                        | <b>3c</b> 38%                           |
| <b>1a</b> 4-OMe             | <b>2c</b> -CH <sub>2</sub> Ph                                  | 900             | b                           | <b>3d</b> 36%                           |
| <b>1a</b> 4-OMe             | <b>2d</b> -CH <sub>2</sub> CH <sub>2</sub> Si(Me) <sub>3</sub> | 900             | Full                        | <b>3e</b> 65%                           |
| <b>1c</b> 4-CF <sub>3</sub> | <b>2d</b> -CH <sub>2</sub> CH <sub>2</sub> Si(Me) <sub>3</sub> | 900             | Full                        | <b>3f</b> 65%                           |

<sup>a</sup>Measured with GC-MS on crude products. <sup>b</sup>not detected with GC-MS.

Figure 5

| Number | Structure                                                                           | Name                                              |
|--------|-------------------------------------------------------------------------------------|---------------------------------------------------|
| 3a     |    | Butyl-4-methoxybenzoate                           |
| 3b     |    | Butyl-4-methylbenzoate                            |
| 3c     |    | t-Butyl-4-methoxybenzoate                         |
| 3d     |   | Bensyl-4-methoxybenzoate                          |
| 3e     |  | (2-trimethylsilyl)ethyl-4-methoxybenzoate         |
| 3f     |  | (2-trimethylsilyl)ethyl-4-trifluoromethylbenzoate |

Figure 6



**4-Acetyl-*N*-*n*-butyl-benzamide (2d).** White crystals.  $^1\text{H}$  NMR (19 °C, TMS): δ 7.90 (d, 2H; Aryl), 7.77 (d, 2H; Aryl), 6.4 (bs, 1H; CONH), 3.39 (q, 2H; N-CH<sub>2</sub>), 2.45 (s, 3H; COCH<sub>3</sub>), 1.54 ppm (m, 2H; CH<sub>2</sub>), 1.33 (m, 2H; CH<sub>2</sub>), 0.89 (t, 3H; CH<sub>3</sub>);  $^{13}\text{C}$  NMR (CDCl<sub>3</sub>, 25 °C, TMS): δ 197 (CO), 166 (CONH), 138.9 (C-ipso), 138.7 (C-ipso), 128 (C-HAryl), 127 (CHAryl), 40 (C-aliphatic), 31 (C-aliphatic), 27 (C-aliphatic), 20 (C-aliphatic), 14 (C-aliphatic). MS (70 eV): m/z (%): 219 (10) [M<sup>+</sup>], 177 (25), 147 (100). Elemental Analysis: Calculated for C<sub>13</sub>H<sub>17</sub>NO<sub>2</sub>: C, 71.2; N, 6.4; H, 7.8; Found: C, 71.6; N, 6.3; H, 7.9.

**4-Trifluoromethylphenyl-piperidin-1-yl-methanone (2g).** Yellow oil.  $^1\text{H}$  NMR (19 °C, TMS): δ 7.66 (d, 2H; Aryl), 7.48 (d, 2H; Aryl), 3.75 (bs, 2H; CH<sub>2</sub>), 3.32 (bs, 2H; CH<sub>2</sub>), 1.67 (bs, 4H; CH<sub>2</sub>), 1.52 (bs, 2H; CH<sub>2</sub>);  $^{13}\text{C}$  NMR (25 °C, TMS): δ 168 (CO), 140 (C-ipso), 131 (q; CF<sub>3</sub>), 127 (CHAryl), 126 (CHAryl), 122 (C-ipso), 49 (broad, C-aliphatic), 43 (broad, C-aliphatic), 27 (broad, C-aliphatic), 26 (broad, C-aliphatic), 24 (C-aliphatic). MS (70 eV): m/z (%): 256 (80) [M+-1], 173 (100), 145 (75). Elemental Analysis: Calculated for C<sub>13</sub>H<sub>14</sub>F<sub>3</sub>NO × ½H<sub>2</sub>O: C, 58.6; N, 5.3; H, 5.7; Found: C, 58.8; N, 5.1;