Logistic Regression

Quiz, 5 questions

1	
point	

1.

Suppose that you have trained a logistic regression classifier, and it outputs on a new example x a prediction $h_{\theta}(x)$ = 0.7. This means (check all that apply):

	Our estimate for $P(y=0 x; heta)$	is 0.3
	(.)	

Our estima	te for $P(y$ =	$=1 x;\theta\rangle$) is 0.7.
------------	----------------	----------------------	-----------

Our estimate for P(y=0|x; heta) is 0.7.

1 point

2.

Suppose you have the following training set, and fit a logistic regression classifier $\text{Logistic Reg}_0+\theta_1x_1+\theta_2x_2$).

Quiz, 5 questions

\boldsymbol{x}_1	x_2	у
1	0.5	0
1	1.5	0
2	1	1
3	1	0

Which of the following are true? Check all that apply.

J(heta) will be a convex function, so gradient descent should converge to the global minimum.

Adding polynomial features (e.g., instead using $h_\theta(x)=g(\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1^2+\theta_4x_1x_2+\theta_5x_2^2) \text{) could increase how well we can fit the training data.}$

The positive and negative examples cannot be separated using a straight line. So, gradient descent will fail to converge.

Because the positive and negative examples cannot be separated using a straight line, linear regression will perform as well as logistic regression on this data.

1 point

Logistic Regression, the gradient is given by

Quiz, 5 questions $\frac{\partial}{\partial \theta_i} J(\theta) = \frac{1}{m} \sum_{i=1}^m (h_{\theta}(x^{(i)}) - y^{(i)}) x_j^{(i)}$. Which of these is a correct gradient descent update for logistic regression with a learning rate of α ? Check all that apply.

- $oxed{ } heta_j := heta_j lpha \, rac{1}{m} \sum_{i=1}^m \Big(heta^T x y^{(i)} \Big) x_j^{(i)}$ (simultaneously update for all j).
- $oxed{ \quad \ \ } \quad heta:= heta-lpha\,rac{1}{m}\sum_{i=1}^m ig(h_ heta(x^{(i)})-y^{(i)}ig)x^{(i)}.$
- $egin{aligned} egin{aligned} heta := heta lpha \, rac{1}{m} \sum_{i=1}^m \Big(heta^T x y^{(i)} \Big) x^{(i)}. \end{aligned}$
- $heta:= heta-lpha\,rac{1}{m}\sum_{i=1}^migg(rac{1}{1+e^{- heta^Tx^{(i)}}}-y^{(i)}igg)x^{(i)}.$

point

4.

Which of the following statements are true? Check all that apply.

- Since we train one classifier when there are two classes, we train two classifiers when there are three classes (and we do one-vs-all classification).
- For logistic regression, sometimes gradient descent will converge to a local minimum (and fail to find the global minimum). This is the reason we prefer more advanced optimization algorithms such as fminunc (conjugate gradient/BFGS/L-BFGS/etc).
- The one-vs-all technique allows you to use logistic regression for problems in which each $y^{(i)}$ comes from a fixed, discrete set of values.
- The cost function $J(\theta)$ for logistic regression trained with $m \geq 1$ examples is always greater than or equal to zero.

5.

Suppose you train a logistic classifier $h_{\theta}(x)=g(\theta_0+\theta_1x_1+\theta_2x_2)$. Suppose $\theta_0=-6, \theta_1=1, \theta_2=0$. Which of the following figures represents the decision boundary found by your classifier?

Figure:

Figure:

Figure:

Figure:

I, **Bo Wen**, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account. Learn more about Coursera's Honor Code

Submit Quiz

