Redes de computadoras

Capa de transporte - UDP

Las diapositivas están basadas en en libro: "Redes de Computadoras – Un enfoque descendente" de James F. Kurose & Keith W. Ross

UDP

Protocolo de transporte ligero, simple, no orientado a la conexión.

- servicio de transferencia de datos no fiable (sin garatia de que los datos lleguen al receptor)
- Los mensajes pueden llegar en forma desordenada
- Sin control de congestión (se pueden introducir datos en la capa inferior a la máxima velocidad)

UDP

UDP Definido en el RFC 768

Realiza prácticamente la mínima tarea que se requiere de la capa de transporte.

- Multiplexación-Demultiplexación
- Mecanismo de comprobación de errores
 (checksum opcional sobre IPv4 obligatoria en IPv6)

No existe una fase de establecimiento de conexión por lo que se dice que es un protocolo sin conexión.

UDP - casos en los que utilizarlo

Control de cuando se envían los datos

Los datos se envían exactamente cuando la aplicación lo requiere, se toleran perdidas, y no se realizan re envíos

Sin establecimiento de la conexión

El establecimiento de una conexión genera un retardo inicial

Sin información del estado de la conexión

Menor sobrecarga en los sistemas terminales, por lo que servidores podrían mantener más conexiones utilizando UDP.

Poca sobrecarga en la cabecera

TCP utiliza 20 bytes mientras que UDP 8 bytes.

UDP - casos en los que utilizarlo

	Application-Layer	Underlying Transport
Application	Protocol	Protocol
Electronic mail	SMTP	TCP
Remote terminal access	Telnet	TCP
Web	HTTP	TCP
File transfer	FTP	TCP
Remote file server	NFS	Typically UDP
Streaming multimedia	typically proprietary	Typically UDP
Internet telephony	typically proprietary	Typically UDP
Network management	SNMP	Typically UDP
Routing protocol	RIP	Typically UDP
Name translation	DNS	Typically UDP

Figure 3.6 ◆ Popular Internet applications and their underlying transport protocols

UDP - casos en los que utilizarlo

Las aplicaciones multimedia, telefonía por internet, video conferencias, radio o TV en tiempo real.

- Toleran perdidas de paquetes
- Requieren inmediatez en la transmisión.

Sin embargo se esta tendiendo a utilizar TCP cuando la tasa de perdidas de paquetes es baja.

Algunas organizaciones bloquean el trafico UDP por cuestiones de seguridad.

Sin control de congestión

La falta de control de congestión de UDP podría ser catastrófica si se utilizara a gran escala

En una red congestionada se seguirían enviando paquetes por más que sean perdidos.

Esto también afectaría a las conexiones TCP ya que por su control de congestión reducirían drásticamente su velocidad.

Se han propuesto nuevos mecanismos para que todas las fuentes de datos, incluyendo UDP cuenten con control de congestión.

Segmento UDP

Figure 3.7 ♦ UDP segment structure

Segmento UDP

La cabecera UDP sólo contiene 4 campos

Cada campo tiene una longitud de 2 bytes

- Puerto de origen
- Puerto de destino
- Tamaño del segmento
- Checksum (suma de comprobación)

Checksum de UDP

Proporciona un mecanismo de detección de errores

Comprueba si los bits contenidos han sido alterados en el trayecto.

En el emisor se calcula el complemento a 1 de la suma de todas las palabras de 16 bits.

```
EJ: (desbordamiento se pasa al bit de menor peso)  \begin{array}{l} 01100110011000000 \\ +0101010101010101 \\ +1000111100001100 \\ ------ \\ +0100101011000010 \rightarrow complemento a 1 = 1011010100111101 \end{array}
```

Checksum de UDP

En el receptor, las 4 palabras se suman.

Checksum de UDP

- Capas inferiores también brindan mecanismos de comprobación de errores, pero nada lo garantiza.
- Principio terminal a terminal (end-to-end principle)
- UDP no hace nada para recuperarse de un error.
 - o descarta el paquete
 - o lo pasa a la aplicación con una advertencia

Enlaces

TCP vs UDP manejo de errores

https://serverfault.com/questions/506924/tcp-vs-udp-error-checking

Detección de errores en TCP y UDP

https://stackoverflow.com/questions/4529604/how-do-tcp-and-udp-detect-transmission-errors

End-to-end

http://web.mit.edu/Saltzer/www/publications/endtoend/endtoend.pdf

https://en.wikipedia.org/wiki/End-to-end_principle