Steps in Commutative Algebra 题解

2022年1月29日

为了仔细学习局部化、整扩张和维数理论,我从 *Sharp, R. Y.* Steps in Commutative Algebra. 2nd ed. New York: Cambridge University Press, 2000 中选择了一些相关题目并写了题解,并对书中一些证明写了注记.

1 Ideals

2.25(iv) 设 R 是交换环,I, J 是其理想,则若 $\sqrt{I} + \sqrt{J} = (1)$,则 I + J = (1).

证明. 若 a+b=1, 其中 $a^n\in I, b^m\in J$, $n,m\in\mathbb{N}$, 则 $(a+b)^{n+m}=1$. 将 $(a+b)^{n+m}$ 展开,每一项或者 a 的指数大于等于 n,此时这一项属于 I; 或者 b 的指数大于等于 m,此时这一项属于 J. 于是得到 I,J 中的元的和为 1,即 I+J=(1).

注记. 用于 4.9 从 $\sqrt{Q}+\sqrt{(b)}=R$ 导出 Q+(b)=R, 进而可以将 1 表示为 Q 和 (b) 中元的和,从而 $a=a1\in Q$.

2.30 设 I, J 是交换环 R 的理想,则

$$\sqrt{IJ} = \sqrt{I \cap J} = \sqrt{I} \cap \sqrt{J}.$$

证明. 显然 $IJ \subset I \cap J$,于是 $\sqrt{IJ} \subset \sqrt{I \cap J}$. 如果 $a^n \in I \cap J$,则 $a^{2n} \in IJ$,故 $\sqrt{I \cap J} \subset \sqrt{IJ}$. 这就证明了第一个相等.

如果 $a^n \in I \cap J$,则 $a^n \in I$, $a^n \in J$,所以 $a \in \sqrt{I} \cap \sqrt{J}$,另一方面,如果 $a \in \sqrt{I} \cap \sqrt{J}$,设是 $a^n \in I$, $a^m \in J$,则 $a^{n+m} \in I \cap J$,于是 $a \in \sqrt{I \cap J}$. 这就证明了第二个相等.

- **注记.** 1. 这一命题在准素分解中反复用到,比如,用于 4.13 证明 P-准素理想的交还是 P-准素理想.
 - 2. $IJ = I \cap J$ 不一定成立,例如对于 \mathbb{Z} , $(2) \cap (2) \neq (4) = (2)(2)$. 但是总有 $\sqrt{IJ} = \sqrt{I \cap J}$. 特别地, $\sqrt{I^n} = \sqrt{I}$.
- **2.33(ii)** 令 I, J, K 是交换环 R 的理想, $(I_{\lambda})_{\lambda \in \Lambda}$ 是 R 的一族理想.则 $(\cap_{\lambda \in \Lambda} I_{\lambda} : K) = \cap_{\lambda \in \Lambda} (I_{\lambda} : K)$.

证明. 因为 $a \in (\cap_{\lambda \in \Lambda} I_{\lambda} : K) \Leftrightarrow \forall k \in K : ak \in \cap_{\lambda \in \Lambda} I_{\lambda} \Leftrightarrow \forall k \in K : \forall \lambda \in \Lambda : ak \in I_{\lambda} \Leftrightarrow \forall \lambda \in \Lambda : a \in (I_{\lambda} : K) \Leftrightarrow a \in \cap_{\lambda \in \Lambda} (I_{\lambda} : K).$

注记. 用于 4.17 证明 $(I:a_n)$ 是 P-准素的.

2.42 设 R 和 S 是交换环, $f: R \to S$ 是环同态. I 是 R 的理想,由集合 H 生成. 证明 I^e 由 $f(H) = \{f(h): h \in H\}$ 生成.

证明. $H \subset I$,故 f(H) 生成的理想,姑且记为 H^e ,含于 f(I) 生成的理想 I^e . 现在任取 I^e 的元,它是有限个 f(I) 的元的 S-线性组合,后者又分别是有限个 f(H) 的元的 S-线性组合,于是 $I^e \subset H^e$. 故 I^e 由 f(H) 生成.

2.43(iv) 条件同上, $J \in S$ 的理想, 则 $(\sqrt{J})^c = \sqrt{J^c}$.

证明. 因为有 $a \in (\sqrt{J})^c \Leftrightarrow \exists n \in \mathbb{N} : f(a)^n \in J \Leftrightarrow \exists n \in \mathbb{N} : f(a^n) \in J \Leftrightarrow \exists n \in \mathbb{N} : a^n \in J^c \Leftrightarrow a \in \sqrt{J^c}$.

注记. 本题结论用在 4.6 节的注记中, 证明如果 $Q \neq P$ -准素理想, 则这一关系可以沿同态拉回.

2.46 设 $f: R \to S$ 是交换环的满同态. 用 C_R 和 E_S 表示收缩理想和扩张理想的集合. 证明

$$C_R = \{I \in \mathcal{I}_R : I \supseteq \ker f\} \quad \coprod \quad \mathcal{E}_S = \mathcal{I}_S.$$

从而得到双射

$$\{I \in \mathcal{I}_R : I \supseteq \ker f\} \rightarrow \mathcal{I}_S$$

$$I \mapsto f(I)$$

证明. 因为 $(0) \subset J \subset S$,故 $\ker f \subset J^c$,这表明 $\{I \in \mathcal{I}_R : I \supseteq \ker f\} \supset \mathcal{C}_R$. 如果 $\ker f \subset I$,我 们证明 $I^{ec} = I$,从而 $I \in \mathcal{C}_R$. 显然 $I \subset I^{ec}$. 下面设 $f(a) \in I^e$,则 $f(a) = \sum b_n f(a_n)$ 为有限和,其中 $a_n \in I$ 而 $b_n \in S$. 因为 f 是满同态,故存在 b'_n 使 $f(b'_n) = b_n$,这时 $f(\sum b'_n a_n - a) = 0$,于是 $\sum b'_n a_n - a \in \ker f$, $a \in \sum b'_n a_n + \ker f \subset I$. 故 $I^{ec} \subset I$. 这就证明了第一个相等.

显然 $\mathcal{E}_S \subset \mathcal{I}_S$. 设 $J \in \mathcal{I}_S$,我们证明 $J = J^{ce}$,从而 $J \in \mathcal{E}_S$. 显然 $J^{ce} \subset J$. 由于 f 是满射,则对于 $a \in J$ 都存在 $b \in R$ 使 f(b) = a. 显然 $b \in J^c$ 而 $a = f(b) \in J^{ce}$. 故 $J = J^{ce}$. 最后,所要的双射由 2.45 得到.

2 Prime ideals and maximal ideals

3.15 证明 $(X_1 - a_1, \ldots, X_n - a_n)$ 是 $K[X_1, \ldots, X_n]$ 的极大理想,其中 $a_i \in K$.

证明. 定义赋值映射 ev: $K[X] \to X$, ev $(f) = f(a_1, \ldots, a_n)$, 它显然是同态. 因为 ev $(c) = c, c \in K$, 所以是满同态. 下面考虑 ker ev. 显然 $(X_1 - a_1, \ldots, X_n - a_n) \subset \text{ker ev.}$ 如果 $f \in \text{ker ev}$, 则对 f 用带余除法,可以得到 $f = (X_1 - a_1)g_1 + f_1$,其中 f_1 不含字母 X_1 ,然后用 $X_2 - a_2$ 除 f_1 ,得 $f_1 = (X_2 - a_2)g_2 + f_2$,其中 f_2 不含字母 X_1, X_2 ,依此类推,得 $f = f_n + \sum (X_i - a_i)g_i$,

其中 f_n 不含字母 X_1, \ldots, X_n ,故是常数. 因为 $\operatorname{ev}(f) = 0$,故 $f_n = 0$,这证明了 $f \in (X_1 - a_1, \ldots, X_n - a_n)$. 于是 $\operatorname{ker} \operatorname{ev} = (X_1 - a_1, \ldots, X_n - a_n)$, $K[X]/(X_1 - a_1, \ldots, X_n - a_n) \cong K$ 为域,故 $(X_1 - a_1, \ldots, X_n - a_n)$ 是极大理想.

注记. 用于例 4.12.

3.47 对交换环 R 的素理想 P 和任意 $n \in \mathbb{N}$,有 $\sqrt{P^n} = P$.

证明. 回忆 2.30,则 $\sqrt{P^n}=\sqrt{P}$. 显然 $P\subset \sqrt{P}$,而如果 $a^n\in P$,则必有 $a\in P$,故 $\sqrt{P}\subset P$. 于是 $\sqrt{P^n}=P$.

注记. 第 4 章开头引入准素分解和 4.9 节证明对于极大理想 M, M^n 是 M-准素理想时用到此题结论.

3.53 设 P, I 是交换环 R 的理想,P 是素理想, $P \supset I$. 证明非空集

$$\Theta := \{ P' \in \operatorname{Spec}(R) : P \supset P' \supset I \}$$

有包含关系下的极小元. 于是存在 I 的极小素理想使 $P'' \subset P$.

证明. 由 Zorn 引理,只要验证每条链都有下界. 设 $P \subset P_1 \subset P_2 \subset \cdots P$,令 $P' = \bigcap_{i=1}^{\infty} P_i$. 若 $ab \in P'$,则对于任何 i 都有 $a \in P_i$ 或 $b \in P_i$. 若 $a \notin P'$,则存在 j 使 $a \notin P_i$,则对于 $j \geq i$ 都 有 $a \notin P_j$,此时一定有 $b \in P_j$,从而 $b \in P'$. 于是 P' 是素理想, $P' \in \Theta$. 即证.

注记. 用于 15.1.

3.65(i) 设 R 是交换环,X 是不定元, $f:R\to R[X]$ 为自然映射,I 是 R 的理想,证明 I 是素理想 当且仅当 I^e 是 R[X] 的素理想.

证明. 设 I^e 是素理想. 如果在 $R \mapsto ab \in I$,则在 $R[X] \mapsto ab \in I^e$,于是 $a \in I^e$ 或 $b \in I^e$. 不妨 设 $a \in I^e$,则 $a = \sum c_i f_i$ (有限和), $c_i \in I$, $f_i \in R[X]$. 代入 X = 0 得 $a = \sum c_i f_i(0) \in I$. 于是 I 是素理想.

如果 I 是素理想,则 R/I 是整环. 下面构造映射 $R[X]/I^e \to (R/I)[X]$, $f(X) + I^e \mapsto \bar{f}(X)$,其中 \bar{f} 的系数是 f 的系数在 R/I 中的像. 我们证明这是同构. 先证明其合理,则只要证明如果 $f(X) \in I^e$,则 $\bar{f}(X) = 0$. 设 $f(X) = \sum c_i f_i(X)$ 为有限和, $c_i \in I$, $f_i \in R[X]$,令 X = 0 得到 $f(0) \in I$. 两边同减 $f(0) = \sum c_i f_i(0)$,则两边都是 X 的倍式,除以 X 后则降了一次,于是可以对次数归纳. 这样,知道 f 所有的系数在 I 中. 下面验证这映射是满同态,而这是显然的. 最后,如果 $\bar{f}(X) = 0$,则 f 的系数均在 I 中,这时 $f(X) \in I^e$,反之亦然,故是同构. 这样,由 (R/I)[X] 是整环,知道 I^e 是素理想.

注记. 用于例 4.12 的说明.

3.67 设 $t \in \mathbb{N}$, p_1, \ldots, p_t 是 t 个互异的质数,证明

 $R = \{ \alpha \in \mathbb{Q} : \alpha = m/n, m \in \mathbb{Z}, n \in \mathbb{N} \notin \mathbb{R}$ 使得n 不被 p_1, \ldots, p_t 中的任何一个整除 $\}$

是 \mathbb{Q} 的一个子环,恰有t个极大理想.

证明. $0,1 \in R$. 不难验证 R 对加法和乘法封闭,所以是 $\mathbb Q$ 的子环. 我们证明 $p_i R$ 均是极大理想且 R 的极大理想一定形如 $p_i R$,从而恰有 t 个极大理想. 首先,任取 m,n 均不被 p_1,\ldots,p_t 整除,则 $m/n \in R \setminus p_i R$,故 $p_i R$ 是真理想. 又设 $m/n \in R \setminus p_i R$,其中 (m,n)=1,则 $(m,np_i)=1$,于是存在 x,y 使 $xm/n+ynp_i/n=1$,故 $p_i R+(m/n)R=R$. 这表明 $p_i R$ 是极大理想. 设 I 是 R 的一个极大理想, $m/n \in R$,则 m 必被 p_1,\ldots,p_t 之一整除,否则 $(n/m)(m/n)=1 \in I$ 与 I 是极大理想矛盾. 现在取定这样的 m/n,使 m 的素因子落入 p_1,\ldots,p_t 的个数达到最小值,设是 $p_1,\ldots,p_r,r \leq t$. 如果对于任何 $p/q \in I$,都有 $p_i \mid p,1 \leq i \leq t$,则 $I \subset p_1 R$,由极大性一定有 $I=p_1 R$. 不然,则存在 p/q 有 p_r,\ldots,p_t 中的素因子. 我们知道可以用 m/n,p/q 线性表示出 (mq,np),而 (mq,np) 的素因子落入 p_1,\ldots,p_t 的个数严格比 m 小,与极小性矛盾. 这样就证明了 R 的极大理想恰是 $p_i R$.

3 Primary decompostion

4.4 对于交换环 R 的理想 I ,如果 R/I 不是平凡环,且 R/I 所有的零因子都是幂零的,则 I 是准素 理想.

证明. 因为 $R/I \neq 0$,所以 $R \neq I$. 设 $ab \in I$,而 $a \notin I$,则 (a+I)(b+I) = I,因此或者 $b \in I$,或者 $b+I \neq I$ 是零因子,则存在 $n \in \mathbb{N}$ 使 $(b+I)^n = b^n + I = I$. 于是总有 n 使 $b^n \in I$,则 I 是准素理想.

- **4.7** 继续 2.46 的假设. 设 $I \in C_R$, 证明
 - (i) $I \in R$ 的准素理想, 当且仅当 $I^e \in S$ 的准素理想, 且
 - (ii) 此时, $\sqrt{I} = (\sqrt{I^e})^c$ 且 $\sqrt{I^e} = (\sqrt{I})^e$.
 - 证明. (i) 设 I 是 R 的准素理想, $I = J^c$, $J = I^e$. 如果 $ab \in J, a \notin J$,设 f(a') = a, f(b') = b,则 $a'b' \in I, a' \notin I$ (否则 $a = f(a') \in J$). 此时有 $b'^n \in I$,从而 $b^n = f(b'^n) \in J$. 反之,如果 I^e 是 R 的准素理想, $I = I^{ec}$. 设 $ab \in I$ 而 $a \notin I$,则 $f(ab) \in I^e$.

如果 $f(a) \in I^e$,则 $a \in f^{-1}(f(a)) \subset I^{ec} = I$,矛盾,所以 $f(a) \notin I^e$,从而 $f(b^n) = f(b)^n \in I^e$. 于是 $b^n \in f^{-1}(f(b^n)) \subset I^{ec} = I$,即 I 也是准素理想.

- (ii) 用 2.43(iv), $(\sqrt{I^e})^c = \sqrt{I^{ec}} = \sqrt{I}$. 另一方面,这时 \sqrt{I} 是一个收缩理想,所以由 2.46 知 $(\sqrt{I})^e = \sqrt{I^e}$.
- **4.8** 设 I 是交换环 R 的一个真理想,P, Q 是 R 的含 I 的理想,证明 Q 是 P-准素理想当且仅当 Q/I 是 R/I 的一个 P/I-准素理想.

证明. 由 4.7 知 Q 是准素理想当且仅当 Q/I 是准素理想,而如果 Q 是准素理想,则 $\sqrt{Q}/I=\sqrt{Q/I}$,于是如果 Q 是 P-准素的,则 Q/I 是 P/I-准素的,反之亦然.

- **4.21** 设 $f: R \to S$ 是交换环的同态, \mathcal{I} 是 S 的一个可分解的理想.
 - (i) 设 $\mathcal{I} = \bigcap_{i=1}^n \mathcal{Q}_i$,其中 $\sqrt{\mathcal{Q}_i} = \mathcal{P}_i$,为 \mathcal{I} 的准素分解. 则 $\mathcal{I}^c = \bigcap_{i=1}^n \mathcal{Q}_i^c$,其中 $\sqrt{\mathcal{Q}_i^c} = \mathcal{P}_i^c$ 为 \mathcal{I}^c 的准素分解. 于是 \mathcal{I}^c 也是可分解的理想,ass_R(\mathcal{I}^c) $\subseteq \{\mathcal{P}^c : \mathcal{P} \in \operatorname{ass}_S \mathcal{I}\}$.

(ii) 现在假设 f 是满射,则如果 (i) 中的第一个准素分解是极小的,则第二个也是极小的,这时有

$$\operatorname{ass}_R(\mathcal{I}^c) = \{\mathcal{P}^c : \mathcal{P} \in \operatorname{ass}_S \mathcal{I}\}.$$

- 证明. (i) 由收缩素理想的性质,我们有 $\mathcal{I}^c = \bigcap_{i=1}^n \mathcal{Q}_i^c$,而 $\sqrt{Q_i^c} = \sqrt{Q_i^c} = P_i^c$. 我们知道 P_i^c 也是素理想. 设 $ab \in \mathcal{Q}_i^c$,则 $f(ab) \in \mathcal{Q}_i^c$,于是或者 $f(a) \in \mathcal{Q}_i$ 或者 $f(b^n) = f(b)^n \in \mathcal{Q}_i$. 因此 $a \in \mathcal{Q}_i^c$ 或 $b^n \in \mathcal{Q}_i^c$,即 \mathcal{Q}_i 也是准素理想. 这样, $\mathcal{I}^c = \bigcap_{i=1}^n \mathcal{Q}_i^c$,其中 $\sqrt{\mathcal{Q}_i^c} = \mathcal{P}_i^c$ 为 \mathcal{I}^c 的准素分解.
- (ii) 这时, 由 2.46 和 4.7, 收缩和扩张建立起了 \mathcal{C}_R 和 \mathcal{E}_S 间的双射, 所以 P_i^c 互不相同. 又设

$$Q_1^c \supset \bigcap_{i=2}^n Q_i^c = \left(\bigcap_{i=2}^n Q_i\right)^c,$$

则 $Q_1 \subset \bigcap_{i=2}^n Q_i$,与第一个分解的极小性矛盾. 所以第二个分解也是极小的. 由于第一唯一性定理,则得到 $\operatorname{ass}_R(\mathcal{I}^c)$ 正由所有 \mathcal{P}^c 构成.

4.22 现在设 $f: R \to S$ 是交换环的满同态, I, Q_i, P_i 是 R 的含 ker f 的理想. 如果 $I = \bigcap_{i=1}^n Q_i$,其中 $\sqrt{Q_i} = P_i$ 是 I 的(极小)准素分解,那么 $I^e = \bigcap_{i=1}^n Q_i^e$,其中 $\sqrt{Q_i^e} = P_i^e$ 是 I^e 的(极小)准素分解,反之亦然,从而得到如果 I 是 R 的可分解的理想,则 I^e 是 S 的可分解的理想,而

$$\operatorname{ass}_S(I^e) = \{ P^e : P \in \operatorname{ass}_R I \}.$$

证明. 由 2.46,这些理想都是其扩理想的收缩. 由 4.7, Q_i^e 是准素理想, $\sqrt{Q_i^e} = P_i^e$. 我们有 $I^e \subset \bigcap_{i=1}^n Q_i^e$. 如果 $I^e \subsetneq \bigcap_{i=1}^n Q_i^e$,取 $a \in \bigcap_{i=1}^n Q_i^e \setminus I^e$,考虑 $a' \in R$, f(a') = a,则因 $Q_i = Q_i^{ec}$,则 $a' \in Q_i$,故 $a' \in \bigcap_{i=1}^n Q_i = I$,于是 $a \in I^e$,矛盾. 这样 $I^e = \bigcap_{i=1}^n Q_i^e$ 正好构成 I^e 的准素分解. 极小性的证明和上一题类似,最后得到 $\operatorname{ass}_S(I^e) = \{P^e : P \in \operatorname{ass}_R I\}$.

4.26 设交换环 R 的可分解理想 I 满足 $\sqrt{I} = I$, 则 I 没有嵌入素理想.

证明. 设 $I = \bigcap_{i=1}^n Q_i$ 是 I 的极小准素分解,则 $I = \sqrt{I} = \bigcap_{i=1}^n \sqrt{Q_i} = \bigcap_{i=1}^n P_i$ 也是 I 的准素分解(2.30). 如果有 $P_i \subset P_j$,则可以得到更少元素的准素分解,与第一个分解的极小性矛盾.

注记. 我们还得到 $\sqrt{I} = I$ 的可分解理想是有限个不同的素理想的交.

- **4.28** 设 K 是域,R = K[X,Y] 为多项式环, $I = (X^3, XY)$.
 - (i) 证明对每个 $n \in \mathbb{N}$, 理想 (X^3, XY, Y^n) 是准素的;
 - (ii) 证明 $I = (X) \cap (X^3, Y)$ 是 I 的极小准素分解.
 - (iii) 构造 I 的无穷多极小准素分解.
 - 证明. (i) 我们计算 $\sqrt{(X^3, XY, Y^n)}$. 至少有 $X, Y \in \sqrt{(X^3, XY, Y^n)}$. 如果有 $f \in \sqrt{(X^3, XY, Y^n)}$,则 f 的常数项也属于 $\sqrt{(X^3, XY, Y^n)}$. 但 $\sqrt{I} \neq R$,故 f 的常数项等于 0. 这意味着 $\sqrt{(X^3, XY, Y^n)} = (X, Y)$. 后者是极大理想,由 4.9,则 (X^3, XY, Y^n) 是准素理想.

(ii) $(X^3, Y) = (X^3, XY, Y)$,故是准素理想.

再证分解成立. 显然 $I \subset (X) \cap (X^3,Y)$. 现设 $X^3f + Yg \in (X)$, 则 $g \in (X)$. 于是 $X^3f + Yg = X^3f + XY(g/X) \in (X^3,XY) = I$. 于是分解成立,两个理想一个是素理想 (X),一个是准素理想 (X^3,Y) ,其根为 (X,Y).

显然 $(X) \subseteq (X,Y)$, 故分解是极小的.

- (iii) 我们证明 $I = (X) \cap (X^3, XY, Y^n)$. 只要证明右边含于左边. 设 $X^3 f + XY g + Y^n h \in (X)$,则 h = Xh',于是 $X^3 f + XY g + Y^n h = X^3 f + XY g + Y^n X h' = X^3 f + (Xg + Y^{n-1} X h') Y \in I$. 于是构成 I 的准素分解,而且是极小的,因为 I 的极小准素分解需要两个元.
- **4.30** 证明,在闭区间 [0,1] 上定义连续实值函数环 C[0,1] 中,零理想是不可分解的,即没有准素分解。

证明. 设 $P \in \operatorname{ass}_{C[0,1]}(0)$,由 4.17 存在 $0 \neq f \in C[0,1]$ 使 $\sqrt{(0:f)} = P$. 我们证明 (0:f) = P. 首先,显然有 $(0:f) \subset P$. 任取 $a \in P$,则存在 n 使 $a^n f \in (0)$,即 $a^n f = 0$. 如果对于 $x \in [0,1]$,a(x) = 0,则 a(x)f(x) = 0;否则, $a(x) \neq 0$,则 $a(x)f(x) = a(x)^n f(x)a(x)^{1-n} = 0$. 总之,af = 0,于是 $a \in (0:f)$, $P \subset (0:f)$,即证.

下面证明存在至多一个实数 $a \in [0,1]$ 使 $f(a) \neq 0$,从而和连续性矛盾. 首先,P 中的元一定有公共零点. 否则,对任何 $x \in [0,1]$,都存在 $f_x \in P$ 使 $f_x(x) \neq 0$,不妨设 $f_x \geq 0$,否则用 f_x^2 讨论. $V_x = \{t \in [0,1]: f_x(t) > 0\}$ 是开集,所有 V_x 覆盖 [0,1],则可选有限个 x_i 覆盖 [0,1],这时 $\sum f_{x_i} \in P$ 在所有的 $x \in [0,1]$ 处都不等于零,即是可逆元,与 P 是素理想矛盾. 于是一定存在 $a \in [0,1]$,使所有 $g \in P$,都有 g(a) = 0. 对任意 $b \neq a$,可取 V_a, V_b 为开集, $a \in V_a, b \in V_b$ 而 $V_a \cap V_b = \varnothing$. 可以构造连续函数 f_a, f_b ,使 $f_a(a) = f_b(b) = 1$,而 $f_a(V_a^c) = f_b(V_b^c) = 0$,于是 $f_a f_b = 0 \in P$,但 $f_a \notin P$,故 $f_b \in P$. 这表明 $a \in P$ 唯一的公共零点. 如果 f 有 a 以外的非零点 b,则用前面构造的 $f_b \in P$,应有 $b \in P$,但 $b \in P$,应有 $b \in P$,但 $b \in P$,应有 $b \in P$,是 $b \in P$,是 b

4.32 设 $f: R \to S$ 是交换环的满同态, $I \not\in R$ 的含 $\ker f$ 的理想,证明 $I \not\in R$ 的不可约理想,当且 仅当 $I^e \not\in S$ 的不可约理想.

证明. 如果 $I = I_1 \cap I_2$,那么 I_1, I_2 含 $\ker f$,则 $I^e \subset I_1^e \cap I_2^e$. 如果 $I^e \subsetneq I_1^e \cap I_2^e$,则 $I = I^{ec} \subsetneq (I_1^e \cap I_2^e)^c = I_1^{ec} \cap I_2^{ec} = I_1 \cap I_2$,矛盾. 所以 $I^e = I_1^e \cap I_2^e$. 如果 $I^e = I_1^e$,则 $I = I^{ec} = I_1^{ec} = I_1$. 因此如果 I 可约,则 I^e 可约. 反之如果 $I^e = I_1 \cap I_2$,则 $I = I_1^c \cap I_2^c$,并且 $I = I_1^c$ 可导出 $I^e = I_1^{ee} = I_1$. 因此 I^e 可约导出 I 可约。即证.

- **4.36** 设 R 是交换环, X 是不定元, $f: R \to R[X]$ 是自然的嵌入, Q, I 是 R 的理想.
 - (i) 证明 Q 是 P-准素理想当且仅当 Q^e 是 R[X] 的 P^e -准素理想;
 - (ii) 证明, 如果 $I \neq R$ 的可分解理想,

$$I = Q_1 \cap \cdots \cap Q_n, \quad \sqrt{Q_i} = P_i$$

是 I 的准素分解,则 $I^e = \bigcap Q_i^e$ 是 I^e 的准素分解, $P_i^e = \sqrt{Q_i^e}$.

(iii) 证明如果 $I \in R$ 的可分解理想,则

$$\operatorname{ass}_{R[X]}I^e=\{P^e:P\in\operatorname{ass}_RI\}.$$

证明. (i) $Q^e = QR[X]$. Q^e 由系数属于 Q 的所有多项式组成. 如果 Q^e 准素,则若 $ab \in Q \subset Q^e$, $a,b \in R$,则必有 $a \in Q^e$ 或 $b^n \in Q^e$,而 $Q^e \cap R = Q$,故 Q 准素. 如果 Q 准素,设 $a(X)b(X) \in Q^e$,则或者 $a(X) \in Q^e$,或者 a(X) 有系数不属于 Q. 如果这时 b(X) 有系数 不属于 \sqrt{Q} ,则取 a(X) 系数不属于 Q 的最低项和 b(X) 系数不属于 \sqrt{Q} 的最低项,两者的积不会被其他项相乘消掉,而不属于 Q^e ,矛盾. 故 Q^e 也是准素的.

如果 Q 是准素理想,设 $f^n \in Q^e$,那么 f 的常数项属于 \sqrt{Q} ,归纳可知 f 所有项的系数属于 \sqrt{Q} . 于是 $\sqrt{Q^e} = P^e$.

- (ii) 因为 I^e 是系数属于 I 的多项式的全体,而 $\cap Q_i^e$ 表示的是系数属于 $\cap Q_i = I$ 的多项式全体,故两边相等.
- (iii) (ii) 的直接结论.
- **4.37** 设 R 是交换 Noether 环,Q 是 R 的 P-准素理想. 由 **4.33**,Q 可以表示为有限个 R 的不可约理想的交. 我们可以定义这样的表示

$$Q = \bigcap_{i=1}^{n} J_i,$$

其中 J_i 不可约,不冗余,意即对任意 $i=1,\ldots,n$,

$$\bigcap_{\substack{j=1\\j\neq i}}^n J_j \not\subset J_i.$$

证明 J_i 都是 P-准素的.

证明. 按 **4.16**,这个准素分解可先按有相同的根理想合并,然后再去掉冗余项. 经过第一步后,其实不可能再有冗余项,否则我们将得到:存在 i_1, \ldots, i_i ,

$$\bigcap_{i \notin \{i_1, \dots, i_j\}} J_i \subset \bigcap_{i \in \{i_1, \dots, i_j\}} J_i$$

于是

$$\bigcap_{i\neq j_1}J_i\subset \bigcap_{i\notin \{i_1,\dots,i_j\}}J_i\subset \bigcap_{i\in \{i_1,\dots,i_j\}}J_i\subset J_{i_1}$$

矛盾. 于是按根理想合并后就得到极小准素分解,因为 Q 是准素理想,所以这个分解只有一项. 因此, J_i 都有相同的根理想,等于 $\sqrt{Q} = P$.

4.38 设 R 是域 K 上的多项式环 $K[X_1, \ldots, X_n]$, $\alpha_i \in K$. 令 $r \in \mathbb{N}, 1 \le r \le n$, 证明对于 $t_1, \ldots, t_r \in \mathbb{N}$ 的任一选择,理想

$$((X_1-\alpha)^{t_1},\ldots,(X_r-\alpha_r)^{t_r})$$

均是准素的.

证明. 因为 $K[X_1, ..., X_n]$ 和 $K[X_1 - \alpha_i, ..., X_r - \alpha_r, X_{r+1}, ..., X_n]$ 同构, 所以我们不妨设 $\alpha_i = 0$. 又由 **4.36** 题,我们不妨设 n = r. 此时, $(X_1, ..., X_r) \subset \sqrt{(X_1^{t_1}, ..., X_r^{t_r})} \subsetneq K[X_1, ..., X_r]$. 由于前者是极大理想,所以 $(X_1^{t_1}, ..., X_r^{t_r})$ 是准素理想.

4 Rings of fractions

5.6 设 I 是交换环 R 的真理想, Φ 表示 R 中所有和 I 不相交的乘法封闭子集. 证明 Φ 有关于包含关系的极大元,并且对于 R 的子集 S ,S 是 Φ 的极大元当且仅当 $R \setminus S$ 是 I 的极小素理想.

证明. I 决定的闭集 V(I) 非空. 任取 $\mathfrak{p} \in V(I)$,则 $R \setminus \mathfrak{p}$ 是与 I 不交的乘法封闭子集,故 Φ 非空. 任取 Φ 中由包含关系构成的链 $S_1 \subset S_2 \subset \cdots$,对其中所有的元取并集 $S := \cup_{i=1}^{\infty} S_i$,则任取 $a,b \in S$,则存在 i 使 $a,b \in S_i$,从而 $ab \in S_i \subset S$,这样 $S \in \Phi$ 是 $\{S_i\}$ 的上界,由 Zorn 引理 Φ 存在极大元.

取含 I 的素理想 \mathfrak{p} ,则 $R \setminus \mathfrak{p} \in \Phi$. 如果 $S \in \Phi$ 是极大元,我们证明 $R \setminus S$ 是一个理想,从而是素理想. 设 $a \in R \setminus S$,而 $r \in R$, $ar \in S$. 这时 $a \notin I$,否则 $ar \in I \cap S$ 矛盾. 这时不妨考虑 $\langle S, a \rangle := \{a^n s : s \in S, n \in \mathbb{N}\}$,不难验证也是乘法封闭子集而且真包含 S 且与 I 不相交(否则如果 $a^n s \in I$,则 $(ar)^n s \in S \cap I$ 矛盾),与 S 的极大性矛盾. 因此 $ar \in R \setminus S$. 再设 $a \notin I$, $a \notin S$,则同样可证明存在 $s \in S$ 使 $as \in I$. 再设 $a, b \in R \setminus S$,而 $a + b \in S$,则 a, b 至少之一不属于 I. 总之,一定存在 $s, t, \in S$ 使 $as, bt \in I$. 于是 $(a + b)st \in S \cap I$ 矛盾. 这表明 $a + b \in R \setminus S$,从而 $R \setminus S$ 是素理想. 如果 $R \setminus S$ 不是极小素理想,取含在其中的极小素理想 \mathfrak{p} ,则 $R \setminus \mathfrak{p} \in \Phi$ 真包含 S,与极大性矛盾. 所以 $R \setminus S$ 是极小素理想. 反之,如果 $S = R \setminus \mathfrak{p}$,其中 \mathfrak{p} 是极小素理想 而 S 不是极大元,则取含 S 的极大元,则 $R \setminus S$ 是含在 P 里的更小的素理想,矛盾.

- **5.7** 设 S 是交换环 R 的乘法封闭子集,称 S 是饱和的,如果满足下面的条件: 只要 $a,b \in R$ 使 $ab \in S$,则 a,b 均属于 S.
 - (i) 证明 S 是饱和的, 当且仅当 $R \setminus S$ 是一些(也许为空) R 的素理想的并;
 - (ii) 令 T 是 R 的任意乘法封闭子集. 令 \overline{T} 是所有含 T 的饱和乘法封闭子集的交. 证明 \overline{T} 也是 含 T 的饱和乘法封闭子集,于是 \overline{T} 是含 T 的最小的饱和乘法封闭子集;(称 \overline{T} 是 T 的饱和化)
 - (iii) 证明

$$\overline{T} = R \setminus \bigcup_{P \in \operatorname{Spec}(R) \atop P \cap T = \emptyset} P.$$

- 证明. (i) 如果 $R \setminus S$ 是一些素理想的并,现在设 $ab \in S$. 如果 $a \notin S$,则存在素理想 P, $a \in P$,而 $P \subset R \setminus S$. 于是 $ab \in P$ 从而与 $ab \in S$ 矛盾. 于是 $a \in S$,同理 $b \in S$. 反之,如果 S 是饱和的,我们证明对任何 $a \in R \setminus S$,都存在素理想 P,使 $a \in P \subset R \setminus S$. 为此我们证明 $(a) \cap S = \emptyset$,而事实上 $ab \in S$ 蕴含 $a \in S$ 与 a 的选取矛盾. 于是取与 S 不交的含 (a) 的极大理想即可.
- (ii) 因为若 $ab \in \overline{T}$,则 a,b 均属于任一含 T 的饱和乘法封闭子集,从而 a,b 均属于 \overline{T} .
- (iii) $R \setminus \bigcup_{\substack{P \in \operatorname{Spec}(R) \\ P \cap T = \emptyset}} P$ 是含 T 的饱和乘法封闭子集,所以 $\overline{T} \subset R \setminus \bigcup_{\substack{P \in \operatorname{Spec}(R) \\ P \cap T = \emptyset}} P$. 另一方面要证 $R \setminus \overline{T} \subset \bigcup_{\substack{P \in \operatorname{Spec}(R) \\ P \cap T = \emptyset}} P$. 但这是显然的,因为 $R \setminus \overline{T}$ 也一些素理想的并,而且这些素理想不 含 T 中的元.
- **5.12** 设 S 和 T 是交换环 R 的乘法封闭子集, $S \subset T$. 这时,因为 $R \to T^{-1}R$ 使所有 S 的元素可逆, 所以分解通过 $R \to S^{-1}R \to T^{-1}R$,记 $h: S^{-1}R \to T^{-1}R$. 证明下述等价:

- (i) 同态 h 是同构;
- (ii) 对任意 $t \in T$, $t/1 \in S^{-1}R$ 是单位;
- (iii) 对任意 $t \in T$, 存在 $a \in R$ 使 $at \in S$;
- (iv) $T \subset \overline{S}$, 其中 \overline{S} 是S的饱和化;
- (v) 只要 $P \in \operatorname{Spec}(R)$ 使 $P \cap S = \emptyset$,则 $P \cap T = \emptyset$.

证明. (i) \Rightarrow (ii). 当 h 是同构时,因为 h(t/1) 可逆,故 t/1 可逆,是单位.

- (ii) \Rightarrow (iii). 当 $t/1 \in S^{-1}R$ 可逆时,设 at/b = (a/b)(t/1) = 1,则存在 $c \in S$,使 ats = bs,于是 $(as)t \in S$.
- (iii) \Rightarrow (iv). 对任意 $t \in T$,存在 $a \in R$ 使 $at \in S$,则 $a, t \in \overline{S}$. 从而 $T \subset \overline{S}$.
- (iv) \Rightarrow (v). 因为 $P \in \operatorname{Spec}(R)$ 使 $P \cap S = \emptyset$,故 $P \subset R \setminus \overline{S} \subset R \setminus T$,于是 $P \cap T = \emptyset$.
- (v)⇒(i). 现在设 h 不是同构,h(r/s)=0,于是存在 $t\in T$,rt=0,但不存在 $u\in S$ 使 ru=0,即 $(0:r)\cap S=\varnothing$,但 $(0:r)\cap T\neq\varnothing$. 取含 (0:r) 而和 S 不相交的极大理想则得到矛盾.
- **5.18** 证明 3.67 中的环 R 同构于 \mathbb{Z} 的一个分式环.

证明. 取 S 为所有不被 p_1, \ldots, p_t 整除的整数的集,则 S 是乘法封闭的. $R = S^{-1}\mathbb{Z}$.

5.26 设 S 是交换环 R 的乘法封闭子集, $f: R \to S^{-1}R$ 是自然同态. 证明如果 R 是 Noether 的,则 $S^{-1}R$ 亦然.

证明. 设 R 是 Noether 的. 设 I 是 $S^{-1}R$ 的理想,则 I^c 是有限生成的,设 $I^c = (a_1, \ldots, a_n)$. 我们证明在 $S^{-1}R$ 中也有 $I = (a_1, \ldots, a_n)$. 为此,设 $m/n \in I$, $n \in S$,由 5.25,可以取 $m \in I$. 设 $m = \sum_{i=1}^n b_i a_i, b_i \in R$,则 $m/n = \sum_{i=1}^n (b_i/n) a_i$. 故 (a_1, \ldots, a_n) 生成 I. 于是 $S^{-1}R$ 是有限生成的.

5.34 设 R 是非平凡交换环,对任意 $P \in \operatorname{Spec}(R)$,局部化 R_P 没有非零的幂零元,证明 R 没有非零的幂零元.

证明. 设 $a \in R$ 是非零幂零元, $a^n = 0$,则在任何一个局部化 R_P 中均有 $(a/1)^n = 0$. 由题意知 (a/1) = 0,即存在 $s_P \notin P$ 使 $as_P = 0$. 现在取含 (0:a) 的极大理想 Q,则 $s_Q \in (0:a) \subset Q$,与 s_Q 的选取矛盾.

5.35 称有有限个极大理想的交换环为拟半局部环. 令 R 是交换环, P_1, \ldots, P_n 是其真素理想,证明 $S := \bigcap_{i=1}^n (R \setminus P_i)$ 是乘法封闭子集, $S^{-1}R$ 是拟半局部环. 决定 $S^{-1}R$ 的极大理想.

注记. 这是5.18 的推广.

证明. 我们基本可以沿用 3.67 的证明. 先证明 S 非空. 因为如果 $R = P_1 \cup P_2 \cup \cdots \cup P_n$,则 1 必属于某个 P_i ,矛盾. 然后证明乘法封闭性: 如果 $a,b \notin P_i$, $\forall i$,则 $ab \notin P_i$, $\forall i$,于是 S 对乘法封闭. 然后我们证明 $P_iS^{-1}R$ 是所有的极大理想. 因为 P_i 与 S 不交, $P_iS^{-1}R$ 是 $S^{-1}R$ 的真理想. 下面证明 $S^{-1}R$ 的极大理想 I 一定含于 $P_iS^{-1}R$ 之一. 因为 $I^c \cap S = \emptyset$,故 $I^c \subset \bigcup P_i$. 于是必有某个 i, $I^c \subset P_i$. 这样, $I = I^{ce} \subset P_iS^{-1}R$. 这样, $P_iS^{-1}R$ 就是所有的极大理想.

- **5.39** (i) 设 \mathcal{I} 是 $S^{-1}R$ 的不可约理想,证明 \mathcal{I}^c 是 R 的不可约理想.
 - (ii) 设 $I \neq R$ 的不可约理想, $S \cap I = \emptyset$. $R \neq N$ Doether 的,证明 $I^e \neq S^{-1}R$ 的不可约理想.

证明. (i) 设 $\mathcal{I}^c = I_1 \cap I_2$,则 $I = I^{ce} = I_1^e \cap I_2^e$.故 I 不可约蕴含 I^c 不可约.

- (ii) 设 $I^e = I_1 \cap I_2$. 由于 I 准素,故 $I^{ec} = I$. 于是 $I = I^{ec} = I_1^c \cap I_2^c$. 故 I 不可约蕴含 I^e 不可约.
- **5.40 注记.** 由本题的条件,从 $P_j \cap S \neq \emptyset$ 得到了 $Q_j^e = S^{-1}R$. 然而,5.37(i) 只告诉我们如果 $Q_j \cap S \neq \emptyset$,则 $Q_j^e = S^{-1}R$. 这时就要用 5.37(ii),如果 $Q_j \cap S = \emptyset$,则 Q_j^e 也是准素理想且 $\sqrt{Q_j^e} = P_j^e$,但是 P_j^e 不是素理想,矛盾.
- **5.43** 令 I 是交换环 R 的可分解理想, $I = Q_1 \cap \cdots \cap Q_n$, $\sqrt{Q_i} = P_i$ 为其极小准素分解.令 $\mathcal{P} \subset \text{ass } I$ 非空,使若 $P \in \mathcal{P}$,则对所有 $P' \in \text{ass } I$, $P' \subset P$ 都有 $P' \in \mathcal{P}$. 证明

$$\bigcap_{\substack{i=1\\P_i\in\mathcal{P}}}^n Q_i$$

只取决于I,而不取决于I的极小准素分解.

证明. 令 $S = R \setminus \bigcap_{P \in \mathcal{P}} P$. 考虑 $R \to S^{-1}R$,则 I^e 中,那些 $P_i \in \mathcal{P}$ 的 P_i 有 Q_i^e 为 $S^{-1}R$ 的准素理想. 而对于 $P_i \notin \mathcal{P}$ 的那些 P_i ,则 $P_i \cap S \neq \emptyset$. 我们知道 $Q_i^e = S^{-1}R$. 于是 $I^e = \bigcap_{P_i \in \mathcal{P}}^{n_{i-1}} Q_i^e$,拉回得 $\bigcap_{P_i \in \mathcal{P}}^{n_{i-1}} Q_i^e$ 唯一被 I 确定,即 I^{ec} .

5.45 设 S 是交换环 R 的乘法封闭子集,P 是 R 的与 S 不相交的素理想. 于是 $PS^{-1}R$ 是 $S^{-1}R$ 的素理想(5.32(ii)). 证明存在环同构

$$\chi: R_P \xrightarrow{\cong} (S^{-1}R)_{PS^{-1}R}$$

使得对所有 $r \in R, t \in R \setminus P$ 有 $\chi(r/t) = (r/1)/(t/1)$.

证明. 不难验证 $\chi(r/t)$ 合理, 不依赖于 r, t 的具体选取, 而且保持加法和乘法, 所以是环同态. 若 (r/1)/(t/1) = 0, 则存在 $u/v \in PS^{-1}R$ 使 (u/v)(r/1) = 0, 从而存在 $w \in S$ 使 wur = 0 = wut0, 从而 r/t = 0. 这表明 χ 是单射. 对于 $(a/s)/(p/t) \in (S^{-1}R)_{PS^{-1}R}$, 其中 $p \notin P$, 则由 $apst = apst \Rightarrow aps/s = apt/t \Rightarrow (a/s)(ps/1) = (at/1)(p/t)$, 于是 $(a/s)/(p/t) = (at/1)/(ps/1) = \chi(at/ps)$. 所以 χ 是满射.

注记. 本题中为了定义 R_P 和 $(S^{-1}R)_{PS^{-1}R}$ 用到 P 是素理想; 而证明满射时,要求 $ps \notin P$ 又用到 $S \subset R \setminus P$. 而若假设 $P \vdash S$ 相交,则 $PS^{-1}R = S^{-1}R$,这时同构自然不存在.

- **5.47** P 是交换环 R 的素理想, $m, n \in \mathbb{N}$.
 - (i) 如果 P^n 有准素分解,则 P 是其唯一的孤立素理想, $P^{(n)}$ 是 P^n 任何极小准素分解中的 P-准素项;
 - (ii) 设 $P^{(m)}P^{(n)}$ 有准素分解,则 P 是其唯一的孤立素理想, $P^{(m+n)}$ 是其任何极小准素分解中的 P-准素项;

- (iii) $P^{(n)} = P^n$ 当且仅当 P^n 是 P-准素的.
- 证明. (i) 设 $P^n = \cap Q_i$ 为准素分解,则 $P = \sqrt{\cap Q_i} = \cap \sqrt{Q_i}$. 这样 P^n 任何孤立素理想一定含 P,从而 P 是唯一的孤立素理想. 现在设 Q 是 P^n 极小准素分解中的 P-准素项,则 Q^e 是 R_P 中 $(P^e)^n$ 的极小准素分解中的 P-准素项,这意味着 $Q^e = (P^e)^n$,于是 $P^{(n)} = (Q^e)^c \subset Q$. 由极小性, $Q = P^{(n)}$.
- (ii) 因为 $\sqrt{P^{(m)}P^{(n)}} = \sqrt{P^{(m)}} \cap \sqrt{P^{(n)}}$,而 $\sqrt{((P^e)^n)^c} = (\sqrt{(P^e)^n})^c = (P^e)^c = P$,故其任何孤立素理想一定含 P. 而由于 $((P^{(m)})(P^{(n)}))^e = (P^{(m)})^e (P^{(m)})^e = (P^e)^{m+n}$,故前者的极小准素分解中如果 Q 是 P-准素项,则 $Q^e = (P^e)^{m+n}$ 是 P^e -准素项,于是 $Q^{ec} = P^{(m+n)} \subset Q$. 由极小性, $Q = P^{(m+n)}$.
- (iii) 如果 P^n 是 P-准素的,则 P^n 就是 P^n 的极小准素分解,由 (i) $P^n = P^{(n)}$. 反之,如果 $P^n = P^{(n)}$,显然 P^n 是 P-准素理想.
- **5.48** R 是非平凡的交换环,对所有的 $P \in \operatorname{Spec} R$ 都有 R_P 是整环,那么 R 一定是整环吗?

证明. $\mathbb{Z}/6\mathbb{Z}$ 就是例外. 一般地 1 ,令 A, B 是两个环,考虑 $A \times B$ 的理想 \mathcal{I} . $(1,0)\mathcal{I}$ 的第一分量对 $A \times 0$ 的乘法封闭,所以等于 $I \times 0$,其中 I 是 A 的理想. 同理 $0 \times B \subset \mathcal{I}$. 于是由加法得 $I \times J \subset \mathcal{I}$. 另一方面 $(1,0)\mathcal{I} \subset I \times 0$, $(0,1)\mathcal{I} \subset 0 \times J$,这保证 $\mathcal{I} = I \times J$. 又 $A \times B \to (A/I) \times (B/J)$ 的自然映射 π ,其核 $\ker \pi$ 满足 $(x,y) \in \ker \pi \iff x \in I \land y \in J \iff (x,y) \in I \times J$. 故 $(A \times B)/(I \times J) \simeq (A/I) \times (B/J)$. 如果 A, B 均不为零,则 $A \times B$ 中有 (1,0)(0,1) = 0,不是整环. 因此, $A \times B$ 是整环时一定有 A = 0 或 B = 0. 设是 B = 0,这时 $A \times 0$ 同构于 A,故 A 也是整环. 现在研究 $A \times B$ 的素理想,由上知 $A \times B$ 的素理想 $I \times J$ 总要求 A/I, B/J 之一为零,另一者为整环,于是形如 $\mathfrak{p} \times B$ 或 $A \times \mathfrak{p}$,其中 \mathfrak{p} 为 A 或 B 的素理想.

最后观察 $A \times B$ 在 $\mathfrak{p} \times B$ 处的局部化,设 (a,b)/(s,t) 是其中的元,我们将其映到 $a/s \in A_{\mathfrak{p}}$. 这显然是满射,要证明这是单射,只要证明 (0,b)/(s,t) 彼此相等。但分子分母同乘 (1,0) 得 (0,0)/(s,0)=0. 于是证明了这是同构。这样,如果 A,B 是一般的非平凡整环,就是满足条件的反例。特别地,取 $A=\mathbb{Z}/2\mathbb{Z}, B=\mathbb{Z}/3\mathbb{Z}$ 就得 $\mathbb{Z}/6\mathbb{Z}$.

注记. 从几何上看, $Spec A \times B$ 同胚于 Spec A 和 Spec B 的余积,于是不连通, $A \times B$ 不是整环,尽管从每点局部上看是一个整环的谱.

5 Chain conditions on modules

7.2 对 Noether 模 M 的自同态 u, 满性蕴含是同构.

证明. 因为 $\ker u \subset \ker u^2 \subset \cdots$,故总存在 n > 0, $\ker u^n = \ker u^{n+1}$. 现在设 $x \in \ker u^n$,因为 u 是满射,存在 $y \in M$,x = uy,则 $u^{n+1}y = 0$,于是 $u^ny = 0$,从而 $u^{n-1}x = 0$.即 $\ker u^{n-1} = \ker u^n$.这样递推, $\ker u = \ker u^2$.现在设 $x \in \ker u$,则存在 y,x = uy,于是 $u^2y = 0$,uy = 0,从而 x = 0,即 $\ker u = 0$.

注记. 有限性条件经常导致类似的结论,如 Fitting 分解定理和 Schur 定理等等.

7.4 Artin 模 M 的单自同态 v 是同构.

证明. 同样找到 $\operatorname{im} v^n = \operatorname{im} v^{n+1}$. 对任意 $x \in M$, $v^n x = v^{n+1} y$, 由于 v 是单射,则 x = v y,可见 v 是满射.

- 7.8 (i) 证明域同时是 Artin 和 Noether 环;
 - (ii) 证明 Artin 的 PID 是域.

证明. (i) 显然,因为域只有两个理想. 设 PID R 是 Artin 的. 任取 $a \in R$,则存在 n 使 $(a^n) = (a^{n+1})$,从而 $a^n = a^{n+1}b$,因为 R 是整环,如果 $a \neq 0$,必有 1 = ab,从而 a 可逆.

7.46 设 G 是非平凡 Noether 环 R 上的模. 证明 G 是有限长度的,等价于 G 是有限生成的且存在 $n \in \mathbb{N}$ 和极大理想 M_1, \ldots, M_n 使 $M_1 \cdots M_n G = 0$.

证明. 必要性. 考虑链

$$0 = M_1 \cdots M_n G \subset M_1 \cdots M_{n-1} G \subset \cdots \subset M_1 G \subset G$$

相邻项的比是被某个极大理想零化的,所以其实是相应剩余类域上的线性空间,又是有限生成的,即是线性空间,所以是有限长度的,这样递推得G也是有限长度的.

另一方面,设G的合成列是

$$0 = G_0 \subset G_1 \subset \cdots \subset G_n = G,$$

相邻项的商 G_i/G_{i+1} 是单模,故其零化子 \mathfrak{p} 是 R 的极大理想(否则 G_i/G_{i+1} 是环 R/\mathfrak{p} 上的忠实模,任取一非零元,则 R/\mathfrak{p} 的极大理想生成其一个真 R/\mathfrak{p} -子模,与单性矛盾). 这些零化子就是所要的 M_1, \ldots, M_n . 又由 G 是有限长的,一定是有限生成的.

6 Commutative Noetherian Rings

8.5 证明 \mathbb{C} 的子环 $\mathbb{Z}[\sqrt{-5}]$ 是 Noether 的.

证明. 它是 $\mathbb{Z}[X]/(X^2+5)$ 的商环,所以是 Noether 的(这里用了 Hilbert 基定理). 或者把 $\mathbb{Z}[\sqrt{-5}]$ 看成 \mathbb{Z} -模,则它是有限生成的,所以是 Noether 的.

8.10 设 R 是交换环,S 是交换 R-代数,带有结构环同构 $f: R \to S$. 令 $R' = \operatorname{im} f$. 设 $\alpha_1, \ldots, \alpha_n \in S$. 证明 $R'[\alpha_1, \ldots, \alpha_n]$ 等于

$$\left\{ \sum_{i=(i_1,\ldots,i_n)\in\Lambda} r_i'\alpha_1^{i_1}\cdots\alpha_n^{i_n}: \Lambda\subset\mathbb{N}_0^n, \Lambda\not=\mathbb{R}, r_i'\in R'\quad\forall i\in\Lambda\right\}.$$

证明. 记后者为 R'',则 $\alpha_i \in R''$ 且 R'' 确实是 R-代数. 所以 $R' \subset R''$. 另一方面,由 $\alpha_i \in R'$,则对任何 $a \in R''$,a 是有限个 α_i 的积的有限线性组合,故 $a \in R''$,于是 R' = R''.

注记. 在代数中有许多类似的概念采用"含某物的极小对象"的抽象定义,而又可证明具体地写出来是由一些元素的有限线性组合构成的全体.

8.15 设 R 是交换环,X 是不定元. R[X] 或 R[[X]] 是 Noether 环时,R 是 Noether 环吗?

证明. 是,因为均可构造到R的满射(或者说可商去理想(X)).

注记. 于是对于交换环 R, R, R, R[X], R[[X]] 的 Noether 性彼此等价.

8.28 设 (R, M) 是 Noether 局部环,I 是 R 的理想,证明 $\bigcap_{n=1}^{\infty} (I + M^n) = I$.

证明. 只要转向 R/I,它也是 Noether 局部环. 因为一定有 $I \subset M$,而如果记⁻为商映射,则 R/I 中 $\cap \bar{M}^n = 0$,拉回知 $\cap (I + M^n) = I$.

8.39 注记. 从本命题可看出, Artin 整环都是域, 这是对 7.8(ii) 题的推广.

7 Some applications to field theory

12.50 令 $F \subset K$ 为域扩张,证明"关于 F 代数等价"关系是 K 的有限子集间的等价关系.

证明. 显然任何有限子集都是代数等价于自己的,而且由定义中 (α_i) 和 (β_j) 地位相同,这个关系有自反性. 最后,12.46 告诉我们传递性. 于是代数等价是等价关系.

12.57 设 $F \subset L$ 是域扩张,L 在 F 上有有限的超越次数. K 是 F 和 L 间的中间域,则 $\operatorname{tr.deg}_F K$ 和 $\operatorname{tr.deg}_K L$ 均有限.

证明. 设 tr. $\deg_F L = n$,取 $\alpha_1, \ldots, \alpha_n \in L$ 为 L 在 F 上的超越基. 对 K 中任意代数独立集 β_1, \ldots, β_m ,总有 β_i 与 $\alpha_1, \ldots, \alpha_n$ 代数相关,所以 $m \leq n$,即 tr. $\deg_F K \leq n$ 为有限. 又设 β_1, \ldots, β_m 是 L 中有限的 K 代数独立集,那么一定也是 F 代数独立集,一样有 $m \leq n$. 于是 tr. $\deg_K L \leq n$ 亦为有限.

12.58 设 $S = \mathbb{R}[X_1, ..., X_n]$, n > 1. 证明 $f := X_1^2 + ... + X_n^2$ 不可约,于是由 3.42,(f) 是 S 的素理想. 令 F 为整环 S/(f) 的分式域,注意 F 可以自然的方式表示为 \mathbb{R} 的扩域。求 tr. deg F .

证明. 设 f = g(X)h(X) 且 g,h 与 f 不相伴. 先看成 $R(X_1,\ldots,X_{n-1})[X_n]$ 中的分解,则不妨设 $g(X) = X_n - g_1(X), h(X) = X_n - h_1(X)$,其中 $g_1,h_1 \in R(X_1,\ldots,X_{n-1})$ 不为 0 多项式. 于是 $g_1(X) + h_1(X) = 0$,而 $-g_1(X)^2 = g_1(X)h_1(X) = X_1^2 + \cdots + X_{n-1}^2$. 然而两侧都是多项式,零点有限,则存在一组数使两边不为 0,此时左边为负,右边为正,矛盾. 故 f 不可约.

用 x_i 表示 X_i 在 F 中的像. 则 $x_1, x_2, \ldots, x_{n-1}$ 在 \mathbb{R} 上代数无关. 否则若 $p(x_1, \ldots, x_{n-1}) = 0$,则 $p(X_1, \ldots, X_{n-1}) \in (f)$,从而 p 一定出现 X_n ,矛盾. 而 $F = \mathbb{R}(x_1, \ldots, x_{n-1})(x_n)$ 是 $\mathbb{R}(x_1, \ldots, x_{n-1})$ 的代数扩张,所以 $\operatorname{tr.deg}_{\mathbb{R}} F = n - 1$.

8 Integral dependence on subrings

13.25 设 R, S_1, \ldots, S_n $(n \ge 1)$ 为交换环, $f_i : R \to S_i$ 为整的环同态,证明 $f : R \to \prod S_i, f(r) = (f_1(r), \ldots, f_n(r))$ 也是整的.

证明. 对任意 $s=(s_1,s_2,\ldots,s_n)$,取首一多项式 $\phi_i(X)\in R[X]$ 零化 s_i . 则如果用映射 f 看成 $\prod S_i$ 中的多项式,则 $\phi_i(s)$ 的第 i 分量为 0. 于是 $\prod \phi_i(X)$ 零化 s,即 s 在 f(R) 上整,f 是整的同态.

- **13.35** 设 R 的交换环 S 的子环, S 在 R 上整.
 - (i) 如果 $r \in R$ 是 S 里的单位,则 r 是 R 里的单位.
 - (ii) 证明 $J(R) = J(S) \cap R$.
 - 证明. (i) 设 $r \in R$ 是 S 里的单位, $rs = 1, s \in S$,而 s 满足 $s^n + a_{n-1}s^{n-1} + \cdots + a_0 = 0$. 两 边乘 r^n 得 $1 + a_{n-1}r + \cdots + a_0r^n = 0$. 于是

$$r(-a_{n-1} - \dots - a_0 r^{n-1}) = 1$$

即 r 在 R 中也是单位.

- (ii) 如果 $r \in J(S) \cap R$,则对于所有 $a \in S$,1 ra 是 S 的单位,进而是 R 的单位,于是对于所有 $a \in R$,1 ra 是 R 的单位,于是 $r \in J(R)$. 另一方面,S 任一极大理想拉回到 R 均是极大理想,而且 R 任一极大理想均可由 S 一个极大理想拉回得到(13.31),故 J(R) 的元均在 S 所有极大理想中,即在 J(S) 中. 于是证明了相等.
- **13.36** 设 R 是非平凡交换环, G 是 R 的自同构群的有限子群. 证明

$$R^G := \{ r \in R : \forall \sigma \in G, \sigma(r) = r \}$$

是 R 的子环,R 在 R^G 上整. 设 $P \in \operatorname{Spec}(R^G)$,令

$$\mathcal{P} := \{ Q \in \operatorname{Spec}(R) : Q \cap R^G = P \},$$

令 $Q_1, Q_2 \in \mathcal{P}$. 证明 $Q_1 \subset \bigcup_{\sigma \in G} \sigma(Q_2)$,进而存在 $\tau \in G$ 使 $Q_1 = \tau(Q_2)$. 最后得到 \mathcal{P} 是有限集.

证明. 显然总有 $\sigma(0) = 0$, $\sigma(1) = 1$. 如果 $\sigma(r) = r$, $\sigma(s) = s$, 则 $\sigma(rs) = \sigma(r)\sigma(s) = rs$, $\sigma(r + s) = \sigma(r) + \sigma(s) = r + s$. 于是 R^G 是 R 的子环. 对于 $r \in R$, $\prod_{\sigma \in G} (X - \sigma(r))$ 的系数均属于 R^G , 而零化 r, 故 R 在 R^G 上整.

任取 $a \in Q_1$,则 $\prod \sigma(a) \in Q_1$ 被 G 固定,故 $\prod \sigma(a) \in R^G \cap Q_1 = P \subset Q_2 \cap R^G$. 于是必有一个 $\sigma(a) \in Q_2$,或 $a \in \sigma^{-1}(Q_2)$,从而 $Q_1 \subset \bigcup_{\sigma \in G} \sigma(Q_2)$.

由于 $\sigma(Q_2) \in \mathcal{P}$ 均是素理想,故 Q_1 必属于某个 $\tau(Q_2)$. 由不可比较性定理, $Q_1 = \tau(Q_2)$. 因此 取定 $Q_2 \in \mathcal{P}$,则 $\mathcal{P} \subset \{\sigma(Q_2) : \sigma \in G\}$ 是有限集.

13.37 设 $f: R \to S$ 是交换环的同态, $P \in \operatorname{Spec}(R)$,证明存在 $Q \in \operatorname{Spec}(S)$ 使 $Q^c = P$ 当且仅当 $P^{ec} = P$.

证明. 如果 $Q \in \operatorname{Spec}(S)$, $Q^c = P$, 自然 $P^{ec} = Q^{cec} = Q^c = P$. 如果 $P^{ec} = P$, 则对任意 $x \in R \setminus P$, $f(x) \notin P^e$, 即 $P^e \cap f(R \setminus P) = \emptyset$. 取极大的理想 $Q \supset P^e$ 使 $Q \cap f(R \setminus P) = \emptyset$, 则 Q 是素理想而 $P \subset Q^c$,但 $Q^c \cap (R \setminus P) = \emptyset$,于是 $Q^c = P$.

13.42 设 R 是交换环,f 是首一非常数的多项式,证明存在交换环 $R' \supset R$ 使 f 在 R'[X] 中分裂成线性因子的积.

注记. 本题未要求 R 是整环.

证明. 不妨设 f 没有在 R 中的根,则 $R \to R[X]/fR[X] = R'$ 是单射. 设 R' 中的 $X + fR[X] = \bar{X}$,则 f 作为 R'[X] 中的多项式有 $f(\bar{X}) = 0$. 于是 \bar{X} 是 f 的一个根,由综合除法 $(X - \bar{X})$ 是 f 在 R'[X] 中的一个因式. 设 f' 是 R'[X] 中将 f 去掉所有一次因式所得,则其次数严格小于 f,这样就可以用归纳法得证.

13.43 R 是交换环 S 的子环. 设 f,g 是 S[X] 中的首一多项式,fg 所有系数都在 R 上整,证明 f,g 的 系数也都在 R 上整.

证明. 由 13.42, 存在 S 的扩环 S', f, g 在 S'[X] 中均可写为一次因式的乘积, 设 $f = \prod (X - \alpha_i)$, $g = \prod (X - \beta_j)$, α_i , $\beta_j \in S'$. 考虑 R 在 S' 中的整闭包 R', 则 $fg \in R'[X]$, 所以 α_i , β_j 在 R' 上整, 而 R' 在 S' 中的整闭包仍是 R', 于是 α_i , $\beta_i \in R'$. 于是 f, g 所有系数都属于 f, 即在 f 上整.

9 Dimension theory

- **15.1 注记.** 本命题似乎不需要 Noether 性. 由本命题, 我们研究一个素理想的高度可以转向在它处的局部化, 即假设环是局部环.
- 15.2 注记. Noether 性用在了中山引理上.
- **15.3** 设 P,Q 是 Noether 交换环的素理想, $P \subsetneq Q$. 证明如果 $P \subsetneq Q$ 之间可以插入项,则实际上有无穷多素理想夹在 P,Q 之间.

证明. 转向 R/P,这时 Q/P 是 Noether 整环 R/P 的真素理想,于是我们下面设 R 是整环,P=0. 设 $0 \subseteq Q_i \subseteq Q$, $(1 \le i \le n)$ 是所有 P,Q 之间的素理想,则 $\cup Q_i \subseteq Q$,否则一定有某个 i, $Q=Q_i$ 矛盾. 取 $a \in Q \setminus \cup Q_i$,考虑含 a 的极小素理想 Q_{n+1} . 因为 R 是整环,由 Krull 主理想定理, Q_{n+1} 不含有 (0) 以外的素理想,这样 $Q_{n+1} \subset Q$ 一定是真包含,否则与 Q 的条件矛盾. 于是 Q 不可能真包含有限个素理想,即有无穷多素理想夹在 P,Q 间.

15.8 设 I, J 是交换 Noether 环的两个理想, $I \subseteq J$. 那么是否一定有 ht I < ht J?

证明. 如果 I,J 都是素理想,那么这是对的. 不然,任取 I 不是素理想但是一个可分解理想,J 是含它的极小素理想,使 $\operatorname{ht} J$ 最小,注意可分解理想的极小素理想有限所以可以做到,则 $\operatorname{ht} I = \operatorname{ht} J$.

9 DIMENSION THEORY 16

15.9 决定 \mathbb{Z} 所有真理想的高度. 决定 PID \mathbb{R} 的所有真理想的高度.

证明. \mathbb{Z} 所有的非零素理想的高度均是 1,而 ht(0) = 0. 于是 \mathbb{Z} 的所有真理想的高度都是 1. 如果 R 是 PID,则非零素理想是素元生成的理想,这种理想的高度只能是 1. 于是其所有真理想的高度都是 1.

15.10 令 K 是域,R := K[X,Y], $I := (X^2, XY)$,确定 $ht_R I$. I 可以由一个元生成吗?

证明. 我们知道在交换 Noether 环 R 里所有理想都是可分解的. 我们可以计算 $\sqrt{(X^2,Y)} = (X,Y)$,从而 (X^2,Y) 是准素的. 而 $I = (X^2,Y) \cap (X)$ 是准素分解,从而 I 的极小素理想只有 (X) (因 $(X) \subset (X,Y)$). 于是 $\operatorname{ht} I = \operatorname{ht}(X) = 1$.

但是 I 不能由一个元生成,因为设 I = (f(X)),则 $f(X) \mid X^2, f(X) \mid XY$,故 $f(X) \mid X$. 但是 (X), (1) = R 均不等于 I,矛盾.

15.11 设 K 是域, $R := K[X_1, X_2, X_3, X_4, X_5]$. 决定以下理想的高度: (X_1, X_2, X_3, X_4) , $(X_1X_5, X_2X_5, X_3X_5, X_4X_5)$, $(X_1, X_2) \cap (X_3, X_4)$, $(X_1X_3, X_2X_3, X_1X_4, X_2X_4)$, $(X_1, X_2) \cap (X_3X_5, X_4X_5)$.

证明. $(0) \subset (X_1) \subset (X_1, X_2) \subset (X_1, X_2, X_3) \subset (X_1, X_2, X_3, X_4)$,另一方面 $\operatorname{ht}(X_1, X_2, X_3, X_4) \leq 4$,则 $\operatorname{ht}(X_1, X_2, X_3, X_4) = 4$. $(X_1X_5, X_2X_5, X_3X_5, X_4X_5) \subset (X_5) \cap (X_1, X_2, X_3, X_4)$,所以 (X_5) 是它的所有极小素理想, $\operatorname{ht}(X_5) = 1$,故它的高度也是 1. $(X_1, X_2) \cap (X_3, X_4)$ 是极小准素分解的形式,它的两个极小素理想是 $(X_1, X_2), (X_3, X_4)$,高度均是 2,所以它的高度也是 2. $(X_1X_3, X_2X_3, X_1X_4, X_2X_4) \subset (X_1, X_2) \cap (X_3, X_4)$,另一方面设 $X_1f + X_2g \in (X_3, X_4)$,其中 g 不含 X_1 ,则去掉 f, g 中含 X_3, X_4 的项后可设 g 是 X_2 的多项式,f 是 X_1, X_2 的多项式,由于 $X_1f + X_2g \in (X_3, X_4)$ 故 $X_1f + X_2g = 0$,比较含 X_1 的项得 f = 0,再得 g = 0. 因此 $f, g \in (X_3, X_4)$ 。从而 $(X_1X_3, X_2X_3, X_1X_4, X_2X_4) = (X_1, X_2) \cap (X_3, X_4)$,高度也是 2.最后, $(X_3X_5, X_4X_5) = (X_5) \cap (X_3, X_4)$,所以最后一个理想的孤立素理想只有 (X_5) ,高度是 1.

15.16 设 R 是交换 Noether 环, $a \in R$ 不是单位亦不是零因子. 令 $P \in Spec(R)$, $a \in P$. 证明

$$\operatorname{ht}_{R/Ra} P/Ra = \operatorname{ht}_R P - 1.$$

证明. 由 15.15 知

$$\operatorname{ht}_{R/Ra} P/Ra \leq \operatorname{ht}_R P \leq \operatorname{ht}_{R/Ra} P/Ra + 1.$$

我们只要证明含 (a) 的极小理想一定真包含一个素理想. 为此我们只要证明它不是幂零根,然而它含 a, a 不是幂零元, 故它含幂零根, 这样必须取得第二个等号.

- **15.17** 设 (R, M) 是 Noether 局部环, $Q \in R$ 的真理想. 证明下述命题等价:
 - (i) R-模 R/Q 是有限长的;
 - (ii) 含Q的素理想只有M;
 - (iii) $ass(Q) = \{M\};$

9 DIMENSION THEORY

17

- (iv) $Q \in M$ -准素的;
- (v) 存在 $h \in \mathbb{N}$, 使 $Q \supset M^h$;
- (vi) $\sqrt{Q} = M$.

证明. (ii)⇒(iii): 极大理想 M 是含 Q 唯一的素理想,则是它唯一的孤立素理想,且 Q 不能有嵌入素理想. (iii)⇒(ii): 此时 M 是含 Q 的孤立素理想,所以是唯一含 Q 的极小素理想,而 M 是极大理想,故是含 Q 的唯一素理想. (iii)⇔(iv) 显然. (iv)⇔(vi): 因为 M 是极大理想,(iv) 和 (vi) 等价. (v)⇒(vi): 显然 $M \subset \sqrt{Q}$. 又 Q 是真理想,故 $\sqrt{Q} \subsetneq R$. 于是 $M = \sqrt{Q}$. (vi) ⇒ (v): 这是 Noether 环的性质.

根据 7.46,R/Q 是有限长度的,当且仅当 R/Q 有限生成(然而是由 1+Q 生成),而存在极大理想 M_1,\ldots,M_n 使 $M_1\cdots M_n(R/Q)=0$. 因为 R 是局部环,所以等价于 $M^n(R/Q)=0$,即 等价于 $M^n\subset Q$. 于是完成了 (i) \Leftrightarrow (v).

注记. 这个理想在 Stacks Project 称作 R 的定义理想 (ideal of definition).

15.20 设 (R, M) 是 d 维的 Noether 局部环, a_1, \ldots, a_d 构成 R 的参数系. 令 $n_1, \ldots, n_d \in \mathbb{N}$,则 $a_1^{n_1}, \ldots, a_d^{n_d}$ 也构成 R 的参数系.

证明. 设 $Q=(a_1,\ldots,a_d)$,则 $\sqrt{Q}=M$. 而 $\sqrt{a_1^{n_1},\ldots,a_d^{n_d}}\subset\sqrt{Q}$,另一方面 $a_i\in\sqrt{a_1^{n_1},\ldots,a_d^{n_d}}$,于是 $Q\subset\sqrt{a_1^{n_1},\ldots,a_d^{n_d}}$,从而 $M=\sqrt{Q}=\sqrt{\sqrt{a_1^{n_1},\ldots,a_d^{n_d}}}=\sqrt{a_1^{n_1},\ldots,a_d^{n_d}}$,这样知 $\sqrt{a_1^{n_1},\ldots,a_d^{n_d}}=M$,从而 $a_1^{n_1},\ldots,a_d^{n_d}$ 也生成一个 M-准素理想,构成 R 的参数系.

15.24 设 (R, M) 是 Noether 局部环, G 是非零有限生成 R-模. 定义 G 的维数 $\dim_R G$ 为环 R/ Ann(G) 的维数. 证明, $\dim G$ 等于最小的整数 i, 其使得存在 i 个元素 $a_1, \ldots, a_i \in M$ 使 $G/(a_1, \ldots, a_i)G$ 是有限长度的.

证明. 设 I = Ann(G). 则 $\text{Ann}(G/(a_1, \dots, a_i)G) = (I, a_1, \dots, a_i)$. 我们知道 $G/(a_1, \dots, a_i)G$ 是有限长度的等价于 $M^n \subset \text{Ann}(G/(a_1, \dots, a_i)G) = (I, a_1, \dots, a_i)$. 转向 R/I,则等价于 $(M/I)^n \subset (\bar{a_1}, \dots, \bar{a_i})$. 由 15.18,这样的 i 的最小值就是 R/I 的维数.