Unidade VIII

8 INSTALAÇÃO DO LINUX

Antes de efetuar a instalação do Sistema Operacional, é importante saber quais serão os serviços que o servidor proverá. Com isso, será possível realizar uma instalação personalizada, considerando, por exemplo, a definição do tamanho dos discos e suas respectivas partições. Em uma situação real, esse exemplo seria apenas um dos fatores importantes que deveriam ser planejados com a equipe de TI.

8.1 Distribuição CentOS

Nesse momento não será uma preocupação a configuração do *layout* do disco, pois existem assuntos que ainda não foram estudados e que são necessários para definir essa configuração.

Para essa primeira instalação, o particionamento será realizado de forma automática.

É importante destacar que todas as telas e exemplos seguintes foram criados com base na distribuição CentOS.

Saiba mais

Conheça mais sobre a distro CentOS na página oficial da distribuição, na guia *About*.

<www.centos.org/about/>.

8.1.1 Passo a passo sobre a instalação do software

• **Passo 1:** acesse o *site* <www.centos.org> (CentOS Project) e clique no ícone **Get CentOS Now**, destacado em laranja, conforme exibido na figura seguinte.

Figura 171 - Site do CentOS

• Passo 2: clique no ícone Minimal ISO, destacado em laranja, conforme exibido na figura a seguir.

Figura 172 - Download CentOS

• **Passo 3:** selecione um dos endereços ou **mirrors** disponíveis para a realização do *download* da imagem com o nome de CentOS-7-x86_64-Minimal-1511.iso, conforme exibido na próxima figura.

Figura 173 – Download da imagem

Após fazer o download da imagem e gravá-la em um DVD, deve-se começar a instalação do sistema.

Insira o DVD na unidade de disco do servidor e ligue-o para dar início à instalação. Em seguida, selecione a opção **Install CentOS**, conforme exibido na figura a seguir.

Figura 174 – Menu de seleção da instalação

Selecione a primeira opção e aguarde o carregamento da janela de seleção do idioma. Em seguida, selecione a opção Português no campo disponível e clique no botão **Continuar**, conforme exibido na figura seguinte.

Figura 175 – Janela de escolha do idioma para a instalação

Na janela de Resumo da Instalação, clique na opção **Destino Instalação** e depois no botão **Finalizado**, localizado no canto superior esquerdo, conforme exibido na figura seguinte.

Figura 176 – Janela de resumo da instalação

Agora, clique na opção **Rede** & **Nome do Host**, para definir o nome do computador.

No campo **Nome do host**, substitua o nome localhost.localdomain por srvcentos7.localdomain e clique no botão **Finalizado**, no canto superior esquerdo, conforme exibido na figura a seguir.

Figura 177 – Janela de Rede & Nome do Host

A configuração de rede será realizada manualmente.

Clique no botão Iniciar a instalação, conforme exibido na figura a seguir.

Figura 178 - Janela de Resumo da Instalação

A partir desse momento, o sistema será instalado.

Figura 179 – Janela de Progresso da Instalação

Após a instalação do sistema, será necessário definir a senha do usuário *root* e também criar um usuário comum. Esse processo é exibido na figura anterior.

Clique na opção **Senha Raiz** para cadastrar a senha do usuário *root*.

Caso cadastre uma senha que não satisfaça os requisitos de segurança, uma tarjeta em laranja é apresentada, conforme exibido na figura seguinte. Se mesmo assim quiser continuar com a senha, clique no botão **Finalizado** duas vezes.

Figura 180 – Janela de senha root

Será cadastrado um usuário comum, conforme pode ser exibido na figura seguinte.

Clique na opção de criação de usuário.

Cadastre o usuário de nome **tux** e informe uma senha.

Se a senha cadastrada for simples, a mensagem de alerta ocorrerá novamente. Clique duas vezes no botão **Finalizado**.

Figura 181 – Janela para criar usuário

Aguarde a instalação do sistema, até aparecer o botão **Finalizar configuração**, conforme exibido na figura a seguir.

Figura 182 – Janela de configuração

Clique no botão e aguarde novamente, esse processo poderá demorar alguns minutos. Finalizada a instalação, clique no botão **Reiniciar**, conforme exibido na figura seguinte.

Figura 183 – Janela de configuração

Pronto! O Sistema Operacional está instalado e disponível para ser utilizado.

8.2 Editor de texto Vim

O Editor Vim, muito poderoso e com diversas funcionalidades indispensáveis no dia a dia, é bastante utilizado por programadores, administradores de sistemas e profissionais da área. Afinal, a maior parte dos serviços é configurada por meio de arquivos armazenados no diretório etc., e como nem todo servidor possui ambiente gráfico e muitos deles são operados remotamente, o Vim se destaca como uma opção leve e ágil.

Neste subtópico serão abordados os seguintes assuntos:

- como esse editor funciona;
- trabalho em modo de edição;
- trabalho em modo de comando;
- operações;
- arquivo de configuração do Vim.

8.2.1 Funcionamento do editor

O programa Vim provavelmente seja o editor de texto mais utilizado pelos profissionais que trabalham com o sistema GNU/Linux. Ele é uma melhoria do antigo editor Vi, muito utilizado em Sistemas Operacionais Unix.

Segundo Ferreira (2003), por padrão, o CentOS já vem com o editor instalado, e para executá-lo basta digitar "vi". Ao ser executado, aparecerá a tela de abertura do editor Vim, conforme exibido na figura seguinte.

```
VIM - Vi IMproved
               version 7.4.160
           by Bram Moolenaar et al.
     Modified by <bugzilla@redhat.com
Vim is open source and freely distributable
       Help poor children in Uganda!
      :help iccf (Enter)
type
                              for information
type
     :q<Enter>
                              to exit
      :help(Enter) or (F1) for on-line help
type
      :help version? (Enter)
                              for version info
```

Figura 184 – Tela de abertura do Vim

Esse editor pode funcionar de duas maneiras: modo de edição, em que as teclas possuem suas funcionalidades originais, podendo o texto ser completamente redigido ou alterado no formado desejado; e modo de comando, utilizado para manipular o arquivo, podendo executar tarefas de automação, como copiar, apagar uma sequência de linhas, salvar as alterações do arquivo, realizar pesquisas, entre outras funções.

8.2.2 Executando em modo de edição

Ao abrir o editor de texto, por padrão, ele fica em **modo de comando**. Para o acesso ao **modo de edição**, pressione a tecla Esc e depois a tecla I, ou O, ou A, ou Insert.

Realize os testes usando cada opção e perceba a diferença. Sempre use a tecla Esc para alterar como o editor irá trabalhar.

8.2.3 Executando em modo de comando

Para acessar o modo de comando, efetue esta sequência:

- Clique na tecla Esc, mantenha pressionada a tecla Shift e clique na tecla :.
- Será apresentado no canto inferior esquerdo o Prompt de Comando :.
- Informe o comando desejado.
- Para sair do editor, digite q.
- Para salvar as alterações e sair do editor, digite wq.
- Se for um arquivo novo, será apresentada uma mensagem informando que o arquivo não tem nome.

Digite o exemplo a seguir:

:wq teste

O arquivo será salvo no diretório atual em que o processo foi executado com o nome **teste** e o editor será encerrado.

8.2.3.1 Operações

Nas operações seguintes, serão realizadas algumas operações usando a ferramenta Vim.

Vamos abrir um outro arquivo e realizar algumas pesquisas.

[root@centos7 ~]\$ vim /etc/services

Para pesquisar determinada palavra, em modo de comando, digite a tecla "/" (barra normal) e, em seguida, digite a palavra a ser pesquisada.

Por exemplo:

/ssh

Outra maneira de realizar uma pesquisa seria utilizando o caractere ?. Com isso, a pesquisa será realizada de maneira recursiva, em uma sequência de baixo para cima. Caso o editor encontre mais de uma palavra, basta pressionar a tecla N para mostrar a próxima ocorrência.

8.2.4 Acessar uma determinada linha do texto

É possível acessar uma determinada linha do arquivo informando ao editor o número da linha desejada. Por exemplo, ainda usando o mesmo arquivo aberto anteriormente, será acionado o Prompt de Editor e então informado o número da linha desejada, por exemplo, :20

Nesse caso, o editor irá posicionar o cursor na linha 20 do arquivo. Para ter certeza de que o cursor está realmente na linha 20, basta digitar o comando **:set nu**. O número será exibido na linha atual, e vale lembrar que esse número não ficará gravado no arquivo.

8.2.5 Arquivo de configuração Vim

Poderão ser realizadas algumas customizações no editor, por exemplo: numerar as linhas de um texto ou colori-lo, no caso de se estar desenvolvendo um *shell script*.

Edite o arquivo **vimrc** que se encontra no diretório /etc/ no CentOS ou no diretório /etc/vim/ no Debian, lembrando que precisa ter permissão do usuário *root*. A tabela a seguir exibe algumas opções que podem ser incluídas no arquivo de configuração:

Quadro 1 - Opções de configuração do Vim

Opção	Função	
set ve=all	Permite mover o cursor por toda a tela	
set bg=dark	Define cores apropriadas ao terminal padrão do modo texto	
set hlsearch	Marca todos os textos que casarem com o padrão pesquisado em vídeo reverso	
set incsearch	Permite pesquisa incremental	
set backspace=indent,eol,start	Permite que a tecla Backspace remova fins de linha	
set visualbell	Retira o bipe do Vi	
set ignorecase	Permite pesquisar um texto ignorando caixa alta/baixa	
cab Wq wq cab WQ wq cab W! w! cab Q! q!	Corrige erros comuns de digitação no modo de comando	
set nu	Numera as linhas	
set sintaxy on	Colore o texto	

Veja na tabela seguinte as opções mais utilizadas do Vim.

Quadro 2 - Outras opções do Vim

Opção	Função			
:wq, ZZ, :x	Salva o arquivo e sai do editor			
u	Desfaz uma modificação			
gg	Avança para a primeira linha do arquivo			
G	Avança para a última linha do arquivo			
h	Leva o cursor um caractere à esquerda			
j	Avança para a linha seguinte			
k	Leva o cursor para a linha anterior			
1	Avança um caractere à direita			
:20	Avança para a linha 20			
e: arquivo	Alterna a edição do arquivo atual para outro arquivo informado			
:!comando	Executa o comando informado e exibe o resultado. Não será inserido no documento aberto			
:r!comando	Executa o comando informado e salva o resultado no arquivo			
:set nu	Insere numeração no texto, apenas para visualização			
:set nonu	Desabilita a numeração			
:help	Ajuda do editor			
n	Repete o comando / ou ?			
:sav novoarquivo	Salva o arquivo atual como outro arquivo ("novoarquivo")			
Ctrl+e	Move a tela uma linha acima			
Ctrl+y	Move a tela uma linha abaixo			
Ctrl+G	Exibe o nome do arquivo, o número da linha atual e o total de linhas no texto			

8.3 Sistemas de Arquivos e Diretórios

O sistema de arquivos é responsável pelo gerenciamento das informações que são gravadas em uma determinada partição do disco. O sistema GNU/Linux trabalha com uma grande variedade de sistemas de arquivos. Seguem alguns:

• EXT2

- Conhecido como Second Extended FileSystem.
- Utiliza blocos do mesmo tamanho para armazenar os arquivos.
- Trabalha com partições de até 4 terabytes.
- O tamanho máximo do nome do arquivo é de 255 caracteres.

- Reserva normalmente 5% dos blocos para o superusuário (root).
- Não possui journaling e foi substituído pelo ext3.

FXT3

- Permite utilizar o sistema de cotas.
- Pode trabalhar com blocos de 1,2 e 4 kilobytes.
- O tamanho máximo da partição é de 16 terabytes.
- O tamanho máximo dos arquivos é de 2 terabytes.

• EXT4

- Podem facilmente ser convertidos para o formato ext4.
- Melhorias no desempenho e na capacidade de armazenamento.
- Disponibiliza o recurso de *journaling*, podendo este ser habilitado ou não.
- O tamanho máximo de cada arquivo é de 16 Tb.

ReiserFS

- Possui suporte ao journaling.
- Trabalha com blocos de 4 kilobytes
- O tamanho máximo da partição é de 1 ectabyte.
- O tamanho máximo do arquivo é de 1 ectabyte.

XFS

- Permite utilizar o sistema de cotas de usuários e de grupos.
- Trabalha com blocos de até 64 kilobytes.
- O tamanho máximo da partição é de 16 terabytes (32 bits) e 8,58 ectabytes (64 bits).
- O tamanho máximo dos arquivos é de 16 terabytes no Linux 2.4 e de 8,58 ectabytes no Linux 2.6, estando com o endereçamento de 64 bits acionado.

Saiba mais

Conheça mais sobre os sistemas de arquivo Linux lendo o capítulo 5 do livro:

FERREIRA, R. E. *Linux*: guia do administrador do sistema. 2. ed. São Paulo: Novatec, 2003.

8.4 Diretórios do sistema (FHS)

Devido à existência de diversas distribuições disponíveis, foi preciso realizar uma padronização nos diretórios encontrados (cada diretório possui características diferentes). Essa padronização é conhecida como **File System Hierarchy Standard (FHS).**

Segundo Negus (2014), o **FHS**, que hoje é utilizado por 99% dos sistemas Linux, é mantido pela **Free Standard Groups**, que possui engenheiros de organizações como IBM, Red Hat, Dell e HP.

Essa estrutura está dividida de uma forma hierárquica, em que cada diretório possui uma finalidade diferente.

Dentre as diversas características que um bom técnico Linux deve possuir, pode-se destacar o conhecimento sobre a estrutura de arquivos do Sistema Operacional.

O diretório-raiz do sistema é representado por uma barra normal (/). Abaixo do diretório-raiz, conforme exibido na figura seguinte, são exibidos os subdiretórios que organizam os arquivos no sistema.

Figura 185 - Estrutura do FHS

A tabela seguinte apresenta a importância de cada um dos diretórios exibidos na figura anterior.

Quadro 3 - Detalhamento dos diretórios

Diretório	Descrição		
1	Diretório-raiz do sistema GNU/Linux.		
Home	Armazena os diretórios e arquivos dos usuários comuns. O nome desse diretório é opcional		
Root	Armazena os diretórios e arquivos do usuário <i>root</i> . O nome desse diretório é opcional.		
Boot	Contém arquivos necessários para inicialização do sistema, gerenciador de inicialização e imagem do kernel		
Bin	Comandos essenciais de uso geral. Todos os usuários podem executar		
Sbin	Comandos restritos para o uso do usuário <i>root</i> . O usuário comum poderá executar esses comandos, porém uma configuração no sistema deverá ser realizada		
Media	Ponto de montagem para mídias removíveis. Exemplo: CD-ROM, <i>pen drive</i> , cartão de memória.		
Mnt	Ponto de montagem para partições de discos locais ou outros diretórios compartilhados em rede		
Srv	Dados de serviços providos pelo sistema		
Usr	Arquivos e comandos de programas instalados, jogos, serviços etc. Possui a segunda maior árvore de diretórios do sistema		
Var	Contém arquivos de dados variáveis, como: <i>logs</i> do sistema, diretórios de <i>spool</i> , caixa de correio etc.		
Opt	Utilizado para instalação de programas não essenciais para o funcionamento do sistema. Exemplo: banco de dados, sistema de ERP, navegador etc.		
Etc	Arquivos de configuração do sistema do host específico.		
Lib	Bibliotecas compartilhadas e módulos do kernel		
Tmp	Arquivos temporários		
Dev	Arquivos que representam os dispositivos de hardware		

8.5 Manipulando *hardwares* e dispositivos

A seguir, será descrita a manipulação de *hardwares* e dispositivos em sistemas Linux, já que neste Sistema Operacional eles trabalham de maneira bem diferente da verificada nos sistemas Windows.

8.5.1 Processo de boot

Existem duas etapas na verificação do processo de boot.

• Primeira etapa

- Testes de POST (Power on Self Tests).
- Verificar a integridade física do equipamento.
- Detecção de componentes básicos, como: memória, discos, placa de vídeo etc.

Segunda etapa

- Identificando o dispositivo de inicialização.
- Será verificado, na Master Boot Record (MBR), o Boot Loader:
 - Linux: Lilo, Grub, Grub2;
 - Windows: NT Boot Loader.
- O gerenciador de boot indica ao BIOS os arquivos que deverão ser carregados para a memória e os arquivos que devem ser executados para iniciar o equipamento.
- O arquivo /boot/vmlinuz (kernel) é executado.
- O arquivo /boot/initrd (módulos) é carregado na memória para o acesso aos periféricos.

8.5.2 Diretórios "virtuais" /proc e /sys e seus arquivos

Os dispositivos de *hardware*, com exceção da interface de rede, são representados por um arquivo como: HD, terminais de acesso, portas de comunicação, placa de vídeo, placa de som etc.

Esses arquivos ficam armazenados no diretório /dev/, onde são criados durante o momento do *boot* do sistema.

Existem dois diretórios "virtuais" que também são criados no momento da inicialização do sistema: o /proc e o /sys/. Esses dois diretórios não são criados na instalação do sistema.

Para controlar os dispositivos de *hardware* em funcionamento e todos os processos ativos do sistema, o *kernel* utiliza esses dois diretórios.

Esses arquivos são solicitados por alguns comandos do sistema, por exemplo, o comando Ismod, que informa os módulos carregados. Exemplos:

- /proc/interrupts: informa as IROs em uso por cada periférico.
- /proc/bus: contém informações específicas do barramento.
- /proc/cpuinfo: contém informações do processador utilizado (modelo, fabricante etc).
- /proc/devices: informa os drivers de dispositivos configurados no kernel que estão em execução.
- /proc/dma: informa os canais de acesso à memória que estão em uso.

- /proc/diskstats: informa as estatísticas de entrada e saída dos dispositivos de bloco.
- /proc/filesystems: informa os sistemas de arquivos que possuem suporte do kernel.
- /proc/ioports: informa as portas de entrada e saída que estão sendo utilizadas.
- /proc/meminfo: informa o uso, pelo sistema, de memória RAM, buffer, cache, entre outros.
- /proc/modules: informa os módulos que foram carregados pelo kernel.
- /proc/partitions: informa os HDs e suas devidas partições reconhecidas pelo sistema.
- /proc/swaps: informa o tamanho da memória SWAP utilizada.

No diretório **/sys** também existem outros arquivos referentes ao *hardware*, em que os valores podem ser alterados. Exemplos:

- /sys/block: informações dos dispositivos de blocos do HD, CD, DVD, entre outros.
- /sys/bus: informações dos barramentos que possuem suporte do kernel.
- /sys/class: organiza os tipos de dispositivos que possuem suporte do sistema em subdiretórios.
- /sys/module: módulos carregados na memória pelo *kernel*. Podemos habilitar/desabilitar esses módulos usando o comando **modprob**. Sempre que um dispositivo é adicionado, um arquivo é criado nesse diretório e gerenciado pelo programa udev.

8.5.3 Dispositivos de hardware

É extremamente necessário saber identificar os arquivos que compõem o *hardware* do computador, para que se tenha um bom resultado ao utilizar o Linux.

8.5.3.1 Barramento

O barramento serve para comunicação do periférico com o processador. Alguns tipos:

- ISA: comunicação de 8 a 16 bits.
- PCI: comunicação de 32 a 64 bits.
- AGP: comunicação de 32 bits (placas gráficas).

Os periféricos são identificados através de arquivos especiais no diretório /proc.

8.5.3.2 Portas de entrada e saída

Cada periférico necessita de um canal de comunicação específico para a troca de informações com o processador e pode conter mais de um endereço I/O. As portas estão localizadas no arquivo /proc/ioports.

8.5.3.3 Interrupções (IRQs)

Segundo Negus (2014), toda troca de informação entre os periféricos e o processador deverá ser sinalizada, para que o processador detecte que existem dados a serem lidos.

As mensagens de ativação poderão ser visualizadas via comando **dmesg**. As IROs associadas aos periféricos estão localizadas no arquivo /proc/interrupts.

8.5.3.4 Direct Memory Access (DMA)

Faz o controle de determinados dispositivos de um computador para acessarem a memória do sistema de forma independente do Processador.

8.5.3.5 Plug and play

Tem o objetivo de fazer com que os dispositivos de um computador sejam automaticamente reconhecidos pelo Sistema Operacional, facilitando desta forma a expansão segura dos computadores e eliminando a configuração manual.

Para consultar os periféricos Plug And Play, pode-se utilizar o comando Ispnp ou consultar no diretório /proc/bus/pnp.

8.5.3.6 Portas seriais

Utilizadas para troca de informações e para conexão de periféricos.

Os periféricos seriais foram substituídos pelo Universal Serial Bus (USB), conforme exibido na tabela a seguir, que possui recursos de configuração automática.

Portas Windows	Portas Linux	Endereço de I/O	IRQs
COM 1	ttys0	3F8-3FF	4
COM 2	ttys1	2F8-2FF	3
COM 3	ttys2	3E8-3EF	4
COM 4	ttys3	2E8-2EF	3

Tabela 1 – Lista de portas seriais

8.5.3.7 Portas paralelas

Conforme exibido na tabela seguinte, as portas de comunicação paralelas estabelecem um canal de comunicação maior que as portas seriais e podem estar disponíveis de LPT1 a LPT4.

Endereço de I/O Linux **IRQs Porta** IPT 1 lp0 378-37F 7 LPT 3 278-27F lp1 5 LPT 2 lp2 3BC-3BE 4

Tabela 2 – Lista de portas paralelas

8.5.3.8 Placas de som

Em um ambiente computacional, os computadores podem possuir placas de controle de emissão de áudio. Neste caso, se necessário, um *driver* para esse periférico deverá ser carregado, tarefa que pode ser executada através do comando **lspci –v.**

Os módulos de ativação da placa de som estão listados no arquivo /etc/modules.conf. Para instalar a placa de som, deve-se carregar o pacote alsa-utils.

8.5.3.9 Small Computer System Interface (SCSI)

Representa uma tecnologia que permite ao usuário conectar uma vasta lista de dispositivos, como discos rígidos, CD-ROM, *scanners* e impressoras. Dentre os padrões, podem ser destacados:

- SCSI-1: interconexão de até 7 periféricos.
- SCSI-3: interconexão de até 126 periféricos em um único barramento.
- Fibre channel: com largura de banda de até 2 Gbps.
- Cabo coaxial: possui uma distância de conexão de até 24 metros.
- Fibra óptica: possui uma distância de conexão de até 10 quilômetros.

Em versões recentes do Linux, encontra-se o modelo SCSI generic chamado de **sg_map**, e as informações do *driver* encontram-se no diretório **/proc/scsi/sg/**.

8.5.3.10 Universal Serial Bus (USB)

Criado para permitir a conexão de periféricos ao computador sem desligar o equipamento e com uma configuração dinâmica de *hardware*.

Versões de USB

- USB 1.0 e 1.1: taxas de transferência de até 12 Mbps.
- USB 2.0: taxas de transferência de até 480 Mbps, utilizado para discos externos, como HDs, CDs e DVDs.

A tabela seguinte exibe uma lista de drivers usados pelos dispositivos USB.

Quadro 4 - Lista de drivers USB

Driver	Chipset
EHCI	Suporte USB 2.0, requer o uso de UHCI, OHCI ou JE
JE	Alternativa ao driver UHCI, utilizado no kernel 2.4
OHCI	Para equipamentos COMPAO, Power MACs, iMACs, entre outros

8.5.4 Hot plugging

Esses recursos são controlados pelos comandos **usbmgr** e **hotplug**, ambos utilizados pelo *kernel* do Linux. As configurações de cada sistema ficam nos diretórios **/etc/usbmgr** e **/etc/hotplug**.

8.5.4.1 Identificando o HD no sistema

Da mesma forma que em outros Sistemas Operacionais, o Linux conta com uma série de discos, dentre os quais podemos citar:

- Integrated Drive Electronics (IDE): discos antigos.
- Serial ATA (SATA): possui maiores capacidades de armazenamento e taxas de transferência mais elevadas.
- Small Computer System Interface (SCSI): para uma maior quantidade de informações, permitindo a conexão de vários periféricos. Possui taxas de transferência superiores às dos padrões IDE e SATA.

HDs SATA e SCSI são identificados com o nome do arquivo SD.

Caso seu computador possua somente um HD, será criado um arquivo identificado como SDA.

A cada novo HD adicionado, um novo arquivo é criado, alterando a última letra do nome para b, c, d e assim por diante.

O arquivo que informa os HDs e suas devidas partições reconhecidas pelo sistema estão em /proc/partitions.

Se o computador possuir 1 HD com duas partições, serão encontrados os seguintes arquivos no diretório /dev:

- SDA: representa o primeiro HD.
- SDA1: representa a primeira partição do primeiro HD.
- SDA2: representa a **segunda partição** do primeiro HD.

Adicionando um segundo HD ou um *pen drive*, a regra é a mesma: no caso de um dispositivo de CD/DVD, o arquivo que representa o dispositivo é identificado como SRO.

8.6 Administração de usuários

Assim como outros Sistemas Operacionais que usam um esquema de permissão para controle e gerenciamento da manipulação dos arquivos e diretórios, o GNU/Linux não é diferente. Porém, precisamos entender como essas permissões são gerenciadas pelo sistema.

Todas as vezes que um determinado arquivo/diretório é criado, o sistema já associa o nome e o grupo do usuário como responsável pela administração e pelo uso deles, e também a definição do tipo de manipulação, podendo ser leitura, gravação ou execução.

Por padrão, a criação de um arquivo recebe as seguintes permissões:

- Leitura e gravação para o dono do arquivo.
- Leitura para o grupo do arquivo.
- Leitura para outros usuários.

No caso da criação de um diretório, as permissões são:

- Leitura, gravação e execução para o dono.
- Leitura e execução para o grupo.
- Leitura e execução para outros.

Somente o dono do arquivo/diretório poderá alterar as permissões, ou trocar o grupo ou o dono.

O usuário *root* pode alterar livremente as configurações do sistema.

8.6.1 Administrando os usuários

O sistema GNU/Linux reconhece três tipos de usuário:

- Administrador: identificado como *root*, esse usuário poderá efetuar qualquer tipo de operação no sistema. Possui o poder de superusuário.
- Sistema: tem a função de iniciar um determinado serviço, associado ao seu nome de usuário.
- **Comum:** os usuários com essa característica podem gerenciar seus arquivos/diretórios apenas em seu diretório pessoa localizado no /home.

Para criação dos usuários, utilizamos o comando adduser.

Para cadastrar um usuário no sistema, basta utilizar o comando a seguir:

[root@srvcentos7 ~]# adduser operador

Esse comando, além de criar o usuário no sistema, realiza as seguintes configurações:

- cria o diretório pessoal do usuário operador, com o mesmo nome no /home;
- copia os arquivos .bash_logout, .bash_profile e .bashrc do diretório /etc/skell/ para o diretório pessoal;
- cria o grupo primário do usuário chamado operador e adiciona no arquivo /etc/group e /etc/gshadow;
- cadastra as informações pessoais do usuário no arquivo /etc/passwd;
- bloqueia a conta do usuário no arquivo /etc/shadow.

As informações dos usuários são mantidas no arquivo /etc/passwd e são organizadas por um sinal de dois-pontos (:).

Cada linha do arquivo refere-se ao usuário cadastrado, e a edição dessas informações pode ser realizada através de alguns comandos.

Após a criação do usuário, é necessário definir uma senha para o acesso ao sistema.

Para definir a senha, utilizamos o comando passwd.

[root@srvcentos7 ~]# passwd operador

Será necessário informar a senha duas vezes, e se informar uma senha muito simples, o sistema irá apresentar uma mensagem informando que a senha não passa pela verificação dos dicionários, porém a aceitará. Lembrando que no Debian não ocorre essa verificação.

8.6.2 Permissão dos arquivos e diretórios

Diz respeito ao controle de acesso de acordo com o usuário em que se está operando o sistema. Sem esse controle, a administração seria impossível, fazendo o sistema perder uma de suas principais características, que é a segurança.

Vamos dar um exemplo:

Verifique a propriedade do arquivo yum.conf.

[usuario@srvcentos7 ~]\$ Is -I /etc/yum.conf

Informações:

- **rw-r--r--** 1 **root root** 860 Jan 9 13:50 yum.conf

Perceba que no segundo campo (**rw-r--r--**1) do resultado temos as permissões que dizem respeito a como o arquivo poderá ser usado. No quarto e no quinto campo(**root root**), está a identificação dos nomes do dono e do grupo.

Segue um breve resumo.

Dono

- Identificado pelo mesmo nome do usuário.
- Define as permissões do arquivo ou diretório.

Grupo

- Permite acesso a determinados arquivos a um conjunto de usuários.
- Possui uma identificação conhecida como group identification (GID).

Outros

Usuários que não são donos e que não fazem parte de determinado grupo.

Para criação dos usuários, utilizamos o comando adduser.

As permissões são representadas pelas letras r (read), w (write) e x (execution).

Essa forma de apresentação é conhecida como formato **literal**; porém, para a alteração dessas permissões, poderemos representar em um outro formato, conhecido como formato octal, em que cada letra é representada por um número.

A letra r é representada pelo valor 4, a letra w é representada pelo valor 2 e a letra x é representada pelo valor 1, ficando da seguinte forma:

• Read (r em formato literal ou 4 em formato octal)

- Para arquivos, permite sua leitura.
- Para diretórios, permite que seu conteúdo seja listado.

• Write (w em formato literal ou 2 em formato octal)

- Para arquivos, permite alteração de seu conteúdo.
- Para diretórios, permite a criação de novos arquivos.

• Execution (x em formato literal ou 1 em formato octal)

- Para arquivos, permite que sejam executados. Por exemplo, um script em shell.
- Para diretórios, habilita seu acesso por meio do comando cd.

• Hífen (-)

Anula uma das três permissões, conforme a posição apresentada.

Crie um arquivo chamado **relatorio** no diretório pessoal do usuário operador.

[usuario@srvcentos7 ~]\$ touch relatorio

Verifique as permissões do arquivo criado.

[usuario@srvcentos7 ~]\$ Is -I relatorio

O arquivo de nome **relatorio** tem como dono e grupo o usuário **usuario**. Esse arquivo poderá ter seu conteúdo lido ou alterado tanto pelo dono quanto pelo grupo, e os demais usuários poderão apenas ler o arquivo.

Repare que as permissões de uso do arquivo são definidas em blocos de três letras.

- rw-: para o dono do arquivo.
- rw-: para o grupo do arquivo.
- r--: para os demais usuários do sistema.

Para alterar as permissões do arquivo, usamos o comando **chmod**.

Podemos informar as novas permissões em formato literal ou em formato octal. Para o formato literal, o comando poderá ser usado assim:

[usuario@srvcentos7 ~]\$ chmod u+x,q-x,o-r relatorio

- A permissão de execução foi adicionada para o dono do arquivo relatorio.
- A permissão de execução foi removida para o grupo do arquivo relatorio.
- A permissão de leitura foi removida para os demais usuários do sistema.

Essa mesma configuração poderá ser representada em formato octal. Nesse caso, utilizaremos o resultado da soma dos valores das respectivas permissões para informar ao comando **chmod**.

Cada letra é representada por um valor: r = 4, w = 2, e x = 1.

[usuario@srvcentos7 ~]\$ chmod 750 relatorio

O 7 representa as permissões do dono do arquivo. Nesse caso, todas as permissões foram adicionadas, e o resultado da soma de todos os valores é 7.

O 5 representa as permissões do grupo do arquivo.

Apenas as permissões r(4) e x(1) foram somadas, tendo como resultado o valor 5. O valor 0 representa as permissões dos demais usuários do sistema.

Nenhum valor foi somado, portanto foi informado 0.

Verifique a permissão do arquivo **relatorio**.

[usuario@srvcentos7 ~]\$ Is relatorio

-rwxr-x---. 1 usuario usuario 0 Dez 9 10:27 relatorio

Para o uso em um diretório e seus respectivos arquivos e subdiretórios, a opção -R é necessária.

[usuario@srvcentos7 ~]\$ chmod 755 -R /home/operador/diretorio

8.7 Administração do shell

O *shell* é um módulo que atua como interface usuário-sistema operacional, possuindo diversos comandos internos que permitem ao usuário solicitar serviços do Sistema Operacional. Também implementa uma linguagem simples de programação que permite o desenvolvimento de pequenos programas (os famosos *shell scripts*).

Para acesso local, tem até 8 terminais disponíveis. Os seis primeiros são destinados à operação do sistema em modo texto, e os dois últimos servem para o acesso à interface gráfica, caso esteja instalada.

Esses terminais são acionados através de um conjunto de teclas: Ctrl + Alt + F1, F2, F3, F4, F5, F6, F7 e F8.

Para o acesso ao Terminal 2, por exemplo, basta acionar as teclas Ctrl + Alt + F2.

Podemos trabalhar com quantos terminais for necessário, e cada terminal poderá ser acessado com usuários diferentes. Lembrando sempre que o sistema é multiusuário.

Em modo texto, acionado o terminal 7, o sistema irá apresentar a interface gráfica, em que poderá selecionar o usuário previamente cadastrado no momento da instalação e informar a senha dele. Porém, isso somente ocorrerá se a interface gráfica já estiver instalada.

Mesmo trabalhando em modo texto, é possível alterar para o modo gráfico e vice-versa.

Ao acionar um terminal, temos as seguintes informações:

No CentOS

A primeira linha do terminal representa o nome da distribuição, o nome do *kernel* e a versão da distribuição.

CentOS Linux 7 (core)

A segunda linha informa a versão do kernel e em que plataforma está instalada.

kernel 3.10.0-327.el7.x86_64 on an x86_64

A terceira linha informa o nome do computador, seguido da palavra *login*. É nessa linha que deve ser informado o usuário que deseja acessar o sistema.

localhost login:

No Debian

A primeira linha do terminal representa o nome da distribuição, o nome do Sistema Operacional, a versão da distribuição, o nome do *host* e a identificação do terminal.

Debian GNU/LINUX 8 < nomehost > tty1

A segunda linha informa o nome do *host*, seguido da palavra *login*. É nessa linha que se deve informar o usuário que deseja acessar o sistema.

<nomehost> login:

8.7.1 Diferenças de acesso entre os usuários *root* e comum

Após a autenticação com usuário e senha, um Prompt de Comando é apresentado. Por meio dele, ocorre a operação do sistema.

[root@srvcentos7 ~]#

usuario@srvdebian8:~\$

Esse Prompt é composto das seguintes informações:

- Usuário ou root: nome do usuário logado no sistema.
- @: separador do nome do usuário e do nome da máquina.
- srvcentos7: nome da máquina.
- ~: representa o diretório pessoal do usuário.
- \$ ou #:

- \$: identificação do usuário comum;
- #: identificação do usuário root.

O comando **pwd** informa o diretório de trabalho atual.

[usuario@srvcentos7 ~] \$pwd

/home/usuário

Não é uma regra, mas, por uma questão de precaução, sempre opere o sistema com um usuário comum que, quando houver a necessidade de realizar alguma atividade que exija um privilégio de administrador, acessa o sistema como *root*.

Para mudar a conta de um usuário comum para o *root*, utilizando o mesmo terminal, digite o comando **su** com – e informe em seguida a senha do *root*.

[usuario@srvcentos7 ~]\$ su -

8.8 Comandos úteis da linha de comando do Linux

No Linux, existem diversos comandos e sintaxes que facilitam ou ajudam a operação desse sistema, sendo os listados a seguir alguns dos mais utilizados.

- **Is:** exibe os arquivos que estão dentro da pasta em que o usuário está no momento. Para utilizar, basta digitar **Is** na linha do *shell*. Existem variações, como **Is -I**, com a qual é possível obter informações mais detalhadas sobre os arquivos, como permissões e tamanho. Exemplos:
 - I: lista os arquivos em formato detalhado;
 - -a: lista os arquivos ocultos (iniciam com .).
 - -h: exibe o tamanho num formato legível (combinar com -l);
 - R: Diretório-raiz.
- **grep:** basicamente, pode ser usado para pesquisar uma *string* (cadeia de caracteres) em um conjunto de arquivos:

grep -r "minha string" *.txt

O comando dado pesquisará a cadeia "minha string" em todos os arquivos com extensão .txt, recursivamente.

Supondo que se deseje encontrar todas as ocorrências da *string* mcrypt, dentro do arquivo /etc/php5/apache2/php.ini, uma sugestão é usar esse comando da seguinte forma:

cat /etc/php5/apache2/php.ini | grep -i mcrypt

O parâmetro -i desliga a sensibilidade à caixa das letras -, ou seja, é indiferente estar em minúsculas ou não.

•cd: serve para acessar e mudar de diretório corrente. Ele é utilizado para a navegação entre as pastas do computador. Exemplo:

cd /home/usuario/Desktop

Acessa a pasta correspondente à área de trabalho do usuário **usuario**.

- **shutdown:** comando utilizado para desligar o computador. Exemplos:
 - shutdown -r now: reinicia o computador;
 - shutdown -h now: desliga o computador (só desligue quando aparecer escrito system halted ou algo equivalente).

O **now** pode ser mudado. Por exemplo: **shutdown -r +10** fará o sistema reiniciar depois de 10 minutos.

• pwd e passwd:

pwd: comando utilizado para exibir a pasta atual em que o usuário se encontra. Exemplo: se o usuário-teste digitar **cd** ~/ e, em seguida, digitar **pwd**, o retorno será /home/teste.

passwd: altera a senha de um usuário exibindo um Prompt para que a nova senha seja fornecida e logo depois repetida para confirmação. O usuário logado pode alterar a própria senha digitando apenas **passwd**.

• mv: tem a função de mover arquivos. Sua utilização é praticamente igual à do comando cp, abordado a seguir. Exemplos:

mv MV.txt /home/teste/Trabalho/MV.txt

O arquivo MV.txt foi movido para a pasta /home/teste/Trabalho com o mesmo nome.

mv MV.txt VM.txt

O arquivo MV.txt continuou onde estava, porém agora tem o nome de VM.txt.

• cp: comando utilizado para copiar arquivos. Exemplo:

cp Exemplo.doc /home/teste/Trabalho/EXEMPLO.doc

O arquivo EXEMPLO.doc foi copiado para a pasta /home/teste/Trabalho com o mesmo nome.

• rm: tem a função de remover arquivos. Cuidado ao utilizá-lo, pois caso remova algum arquivo por engano o erro será irreversível. Exemplo:

rm /home/teste/Arquivo.txt

O arquivo Arquivo.txt localizado na pasta /home/teste foi deletado.

• **chmod:** altera as permissões de acesso a arquivos/diretórios.

chmod 777 arquivo

Dá permissão total de acesso ao arquivo. O primeiro número se refere ao proprietário, o segundo ao grupo e o terceiro aos demais usuários. Lembrando que 1 = executar(x), 2 = escrever(w) e 4 = ler(r), deve ser colocada a soma das opções desejadas.

• **chown:** executado pelo *root*, permite alterar o proprietário ou o grupo do arquivo ou diretório. Alguns exemplos:

chown usuário arquivo

chown usuário diretório

Para saber quem é o dono e qual grupo é o proprietário da pasta, basta usar o comando **Is –I /**.

• ifconfig e iwconfig:

- ifconfig: permite configurar as interfaces de rede, sendo o comando utilizado na inicialização do sistema para configuração dessas interfaces. Caso nenhum argumento seja passado junto do comando, este apenas exibirá o estado das interfaces atualmente definidas.
 - **ifconfig eth0:** para exibir o estado e as informações da interface de rede eth0;

- ifconfig eth1 down: para desativar a interface de rede eth1;
- ifconfig eth1 up: para ativar a interface de rede eth1.
- iwconfig: similar ao comando ifconfig, mas usado para redes Wi-Fi. Permite verificar diversas características das redes wireless.
- **ps:** exibe os processos em execução no sistema. Pode ser usado sem parâmetro algum, mas vai produzir uma quantidade muito grande (ou muito pequena) de informações. É costume "filtrar" sua saída com alguns parâmetros e combinando outros comandos, para ver apenas o que interessa. Exemplos:

ps aux

Utiliza-se a sintaxe **less** para pausar entre telas:

ps aux | less

Usa-se a tecla **q** para sair do **less**.

Para ver apenas os processos referentes ao navegador Chromium, usa-se assim:

ps aux | grep -i chromium

Isso é muito útil para descobrir o PID de um processo que se deseja interromper à força, com o comando **kill**.

• su e sudo:

- su: passa para o superusuário (no Prompt, onde havia \$, aparecerá #);
- sudo: permite a um usuário autorizado, conforme configurado no arquivo "/etc/sudoers", executar comandos como se fosse o superusuário (root) ou outro usuário qualquer.
- apt-get: recurso desenvolvido originalmente para a distribuição Debian, que permite a instalação e a atualização de pacotes (programas, bibliotecas de funções etc.) no Linux, de maneira fácil e precisa. Vale frisar que deve ser utilizado por um usuário com privilégios de administrador.

dd: o comando dd é um clássico dos ambientes Unix-Like que permite fazer uma cópia exata de um arquivo, ou seja, uma cópia bit a bit. Sintaxe básica:

dd if=origem of=destino

8.9 Instalando, removendo e atualizando programas

De acordo com Ferreira (2003), uma das principais características das distribuições GNU/Linux é o gerenciamento de pacotes.

O programa **rpm** é um gerenciador de pacotes criado pela Red Hat. Tem a função de realizar diversas tarefas administrativas, como instalar, remover, atualizar, consultar etc.

No caso do Debian, o gerenciador de pacotes se chama **dpkg** e possui as mesmas funções descritas para o **rpm**.

Para instalar algum programa utilizando o comando **rpm** ou o **dpkg**, será necessário já ter o pacote no sistema, conforme exibido na tabela seguinte.

Quadro 5 - Comandos de instalação de pacotes

Distribuição	Pacote pré-compilado	Repositório
Red Hat	rpm	yum
Suse	rpm	yast
Debian	dpkg	apt-get ou aptitude

8.9.1 Instalando um programa

Execute a linha de comando para o acesso aos arquivos da imagem. Montará a unidade em que se encontram os arquivos de instalação:

[root@srvcentos7 ~]# mount -t iso9660 /dev/sr0 /media/

mount: /dev/sr0 is write-protected, mount read-only

Os pacotes .rpm estão disponíveis no diretório /media/Packages/.

Acessando o seguinte diretório, você pode instalar o pacote yum:

[root@srvcentos7 ~]# cd /media/Packages

Após instalar os pacotes **yum-plugin-fastestmirror-1.1.31-34.el7.noarch.rpm** e **yum-3.4.3-132.el7.centos.0.1.noarch.rpm**:

[root@srvcentos7 Packages]# rpm -ivh yum-plugin-fastestmirror-1.1.31-34.el7.noarch.rpm yum-3.4.3-132.el7.centos.0.1.noarch.rpm

Aviso:

yum-plugin-fastestmirror-1.1.31-34.el7.noarch.rpm

Cabeçalho:

V3 RSA/SHA256 Signature, ID da chave f4a80eb5: NOKEY

Preparando... ################## [100%]

Updating / installing...

1:yum-3.4.3-132.el7.centos.0.1 ################# [50%]

2:yum-plugin-fastestmirror-1.1.31-3 ################ [100%]

O parâmetro -i instala o pacote informado. Use-o em conjunto com as opções **vh**, em que o **v** mostrará a instalação sendo executada, e o **h**, uma barra de progresso.

8.9.2 Atualizando um programa

No **CentOs**, para atualizar determinado pacote, obtenha o arquivo necessário e use a opção **U**:

[root@centos7 Packages]# rpm -Uvh yum-3.4.3-132.el7.centos.0.1.noarch.rpm

No Debian, obtenha o arquivo atualizado e utilize a opção -i:

root@srvdebian8 /media/pool/main/a/aptitude# dpkg -i *.deb

8.9.3 Desinstalando um pacote

Com o comando rpm, use o parâmetro **-e** para desinstalar o programa yum:

[root@srvcentos7 ~]# rpm -e yum

8.10 Adicionando softwares no desktop do Linux

Negus (2014) refere-se a uma distribuição Linux para usuários de computadores pessoais, como interface gráfica e aplicativos de uso pessoal.

O Linux oferece muitas alternativas para *desktop*. As mais populares são **GNOME**, **KDE**, **Xfce** e **LXDE**, que constituem grandes coleções de programas para um ambiente *desktop*, em vez de apenas o "esqueleto".

Esses ambientes apresentam interfaces gráficas que tentam simular um escritório. Todos eles permitem ao usuário configurar várias preferências pessoais e realizar várias tarefas de gerenciamento de seu sistema.

8.11 Soluções corporativas

São ferramentas desenvolvidas a fim de otimizar e/ou facilitar o uso do Linux no ambiente corporativo, com empresas especializadas nesse tipo de solução. Algumas soluções corporativas serão descritas a seguir.

8.11.1 OpenStack

Trata-se de um conjunto de projetos de *software* de código aberto usados para configurar e operar infraestrutura de computação e armazenamento em Nuvem, gerenciando os componentes de múltiplas infraestruturas virtualizadas.

Assim como o Sistema Operacional gerencia os componentes de nossos computadores, o OpenStack é chamado de Sistema Operacional da Nuvem por cumprir o mesmo papel em maior escala.

A administração desses recursos é realizada através de um console web.

8.11.2 Vagrant

Software de computador que cria e configura ambientes virtuais de desenvolvimento. Pode ser visto como um wrapper de nível superior em torno de softwares de virtualização como VirtualBox, VMware, KVM e Containers Linux (LXC), e de softwares de gerenciamento de configuração como Ansible, Chef, Salt e Puppet.

O Vagrant foi originalmente ligado à VirtualBox, mas a versão 1.1 serve como suporte para outros *softwares* de virtualização, como VMware e KVM, e para ambientes de servidor, como Amazon EC2. Embora escrito em Ruby, pode ser usado em projetos escritos em outras linguagens de programação, como PHP, Python, Java, C # e JavaScript.

8.11.3 **Puppet**

Projetado para gerenciar a configuração de sistemas Unix-like e Microsoft Windows declaradamente. O usuário descreve os recursos do sistema e do seu estado, usando linguagem declarativa do Puppet ou um DSL Ruby (linguagem específica de domínio). Essas informações são armazenadas em arquivos chamados *Puppet manifests*. O Puppet descobre as informações do sistema através de um utilitário chamado *facter* e compila o *Puppet manifest* em um catálogo específico do sistema contendo recursos e dependência de recursos, que são aplicados contra os sistemas de destino. Quaisquer ações tomadas por Puppet são então relatados.

8.11.4 Docker

Programa de código aberto que permite empacotar um aplicativo Linux e suas dependências como um recipiente.

Conhecido como *container*, tem como base a virtualização isolada de aplicativos, uns em relação aos outros, em um Sistema Operacional comum. Essa abordagem padroniza a entrega do programa,

permitindo que aplicativos rodem em qualquer ambiente Linux, físico ou virtual. Como eles compartilham o mesmo Sistema Operacional, os recipientes são portáteis entre distribuições Linux diferentes e são significativamente menores do que as imagens de máquina virtual (VM).

O Docker compete com recipientes de aplicações proprietárias, como o VMware vApp, e com ferramentas de captação de infraestrutura, como o Chef.

Nesta unidade aprendemos a realizar a instalação do Linux com a distro CentOS, que é uma distribuição livre. Após a instalação e seus processos, aprendemos sobre o editor de texto VIM, um dos mais utilizados por profissionais de Linux.

Aprendemos também sobre os sistemas de arquivos que possuem suporte para o Sistema Operacional Linux, como Ext3 e Ext4.

Por fim, aprendemos a administrar *hardwares* e dispositivos no sistema, além de usuários e *shell*, bem como a realizar instalação, atualização e desinstalação de programas, finalizando com algumas soluções utilizadas em ambiente corporativo.

Exercícios

Questão 1. Em muitos sistemas Linux, o shell padrão é o bash shell. Para descobrir qual o shell padrão do sistema Linux, deve-se digitar um comando no terminal:

- A) \$ echo \$Shell.
- B) \$ ECHO \$Shell.
- C) \$ echo \$SHELL.
- D) \$ ECHO \$SHELL.
- E) \$\$ echo \$\$SHELL.

Resposta correta: alternativa C.

Análise da resposta

Para saber qual shell você está usando, use um dos comandos a seguir:

\$echo \$SHELL – retorna o caminho (path), exemplo: /bin/bash.

\$echo \$0 - retorna o nome do shell, exemplo: bash.

Questão 2. (Fau 2016, adaptada) Qual das expressões a seguir é utilizada para se referenciar à interface gráfica do Linux?

- A) Kernel.
- B) Terminal.
- C) Shell.
- D) Console.
- E) Ambiente X.

Resolução desta questão na plataforma.

FIGURAS E ILUSTRAÇÕES

Figura 3

AMARAL, H. Windows 95. São Paulo: Atlas, 1996, p. 23.

Figura 4

AMARAL, H. Windows 95. São Paulo: Atlas, 1996, p. 28.

Figura 5

DEITEL, H. M.; DEITEL, P. J.; CHOFFNES, D. R. Sistemas Operacionais. 3. ed. São Paulo: Pearson, 2010, p. 20.

Figura 6

DEITEL, H. M.; DEITEL, P. J.; CHOFFNES, D. R. Sistemas Operacionais. 3. ed. São Paulo: Pearson, 2010, p. 24.

Figura 7

DEITEL, H. M.; DEITEL, P. J.; CHOFFNES, D. R. Sistemas Operacionais. 3. ed. São Paulo: Pearson, 2010, p. 27.

Figura 79

RIR-MAP.SVG. Disponível em: https://www.iana.org/_img/2013.1/rir-map.svg. Acesso em: 28 nov. 2017.

REFERÊNCIAS

Textuais

AMARAL, H. *Windows 95*. São Paulo: Atlas, 1996. p. 23 e 28.

BATTISTI, J.; POPOVICI, E. Windows Server 2012 R2 e Active Directory. São Paulo: Instituto Alpha, 2015. p. 47.

COX, J.; PREPPERNAU, J. Windows 7: passo a passo. Porto Alegre: Artmed, 2010.

DEITEL, H. M.; DEITEL, P. J.; CHOFFNES, D. R. Sistemas Operacionais. 3. ed. São Paulo: Pearson, 2010 p. 20, 24 e 27.

FERREIRA, R. E. *Linux*: guia do administrador do sistema. 2. ed. São Paulo: Novatec, 2003.

INTERNET ASSIGNED NUMBERS AUTHORITY (IANA). *Number resources*. 2017. Disponível em: https://www.iana.org/numbers <a href="https://

MICROSOFT. TechNet Evaluation Center. *Windows Server*: avaliações. 2017. Disponível em: <https://www.microsoft.com/pt-br/evalcenter/evaluate-windows-server-2012-r2>. Acesso em: 10 set. 2017.

NEGUS, C. Linux, a Bíblia: o mais abrangente e definitivo quia sobre Linux. Rio de Janeiro: Alta Books, 2014.

OLIVEIRA, A. L de. *Windows Server 2012 R2*: uma abordagem prática de Suporte de TI e Redes Corporativas. Santa Cruz do Rio Pardo: Viena, 2016.

TANENBAUM, A. S.; WETHERALL, D. Redes de computadores. 5. ed. São Paulo: Pearson, 2011. p. 31, 48.

ZACKER, C. *Instalação e configuração do Windows Server 2012 R2*. São Paulo: Bookman, 2015. (Série Exam 70-410).

Sites

<www.centos.org>.

<www.centos.org/about/>.

Exercícios

Unidade I – Questão 1: FUNDAÇÃO DE APOIO DA UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL (Faurgs). Concurso público para provimento do cargo de Analista Judiciário 2017: (Ciências Jurídicas e Sociais). Questão 69. Disponível em: https://www.qconcursos.com/arquivos/prova/arquivos/arquivos/prova/arquivos/prova/arquivos/prova/arquivos/prova/arquivos/prova/arquivos/arquivos/arquivos/arquivos/arquivos/arquivos/arquivos/arquivos/arquivos/arquivos/arquivos/arquivos/arquivos/

Unidade II – Questão 2: INAZ DO PARÁ. Analista de Informática 2017: Curso Superior. Questão 40. Disponível em: https://www.qconcursos.com/arquivos/prova/arquivo_prova/54561/inaz-do-para-2017-dpe-pr-analista-de-informatica-prova.pdf>. Acesso em: 2 out. 2018.

Unidade III – Questão 1: FACULDADE GETÚLIO VARGAS (FGV). Tribunal de Contas do Estado de Sergipe (Concurso Público) 2015: Analista de Tecnologia da Informação – Suporte Técnico em Infraestrutura e Redes. Questão 67. Disponível em: . Acesso em: 2 out. 2018.

Unidade III – Questão 2: INSTITUTO AMERICANO DE DESENVOLVIMENTO (lades). Empresa Brasileira de Serviços Hospitalares 2013: Analista TI – Sistemas Operacionais. Questão 30. Disponível em: https://www.qconcursos.com/arquivos/prova/arquivo_prova/29624/iades-2013-ebserh-analista-de-tecnologia-da-informacao-sistemas-operacionais-prova.pdf>. Acesso em: 2 out. 2018.

Unidade IV – Questão 1: INSTITUTO NACIONAL DE ESTUDOS E PESQUISAS EDUCACIONAIS ANÍSIO TEIXEIRA (Inep). Exame Nacional de Desempenho dos Estudantes (Enade) 2011: Engenharia

Grupo III. Questão 26. Disponível em: http://download.inep.gov.br/educacao_superior/enade/provas/2014/40_tecnologia_analise_desenv_sistemas.pdf>. Acesso em: 2 out. 2018.

Unidade IV – Questão 2: FUNDAÇÃO CARLOS CHAGAS (FCC). Concurso público para provimento de cargos de Analista Judiciário – Área apoio especializado. Especialidade Tecnologia da Informação 2013. Questão 28. Disponível em: http://download.inep.gov.br/educacao_superior/enade/provas/2014/40_tecnologia_analise_desenv_sistemas.pdf. Acesso em: 2 out. 2018.

Unidade V – Questão 1: CENTRO DE SELEÇÃO E DE PROMOÇÃO DE EVENTOS (Cespe). Analista Judiciário – Tecnologia da Informação 2017. Questão 68. Disponível em: https://www.qconcursos.com/arquivos/prova/arquivo_prova/55852/cespe-2017-trt-7-regiao-ce-analista-judiciario-tecnologia-da-informação-prova.pdf>. Acesso em: 4 out. 2018.

Unidade V – Questão 2: INAZ DO PARÁ. Analista de Informática 2017: Curso Superior. Questão 36. Disponível em: https://www.qconcursos.com/arquivos/prova/arquivo_prova/54561/inaz-do-para-2017-dpe-pr-analista-de-informatica-prova.pdf>. Acesso em: 4 out. 2018.

Unidade VI – Questão 1: FUNDAÇÃO CARLOS CHAGAS (FCC). Técnico Judiciário – Suporte Técnico 2012. Questão 50. Disponível em: https://www.qconcursos.com/arquivos/prova/arquivo_prova/25311/fcc-2012-tj-pe-tecnico-judiciario-suporte-tecnico-prova.pdf. Acesso em: 4 out. 2018.

Unidade VI – Questão 2: CENTRO DE SELEÇÃO E DE PROMOÇÃO DE EVENTOS (Cespe). Técnico Judiciário – Operação de Computadores 2015. Questão 23. Disponível em: https://www.qconcursos.com/arquivos/prova/arquivo_prova/46422/cespe-2015-tre-rs-tecnico-judiciario-operacao-de-computadores-prova.pdf>. Acesso em: 4 out. 2018.

Unidade VII – Questão 1: CENTRO DE SELEÇÃO E DE PROMOÇÃO DE EVENTOS (Cespe). Auxiliar Judiciário – Conhecimentos Básicos 2012. Questão 23. Disponível em: https://www.qconcursos.com/arquivos/prova/arquivo_prova/46422/cespe-2015-tre-rs-tecnico-judiciario-operacao-de-computadores-prova.pdf>. Acesso em: 4 out. 2018.

Unidade VIII – Questão 2: FUNDAÇÃO DE APOIO AO DESENVOLVIMENTO UNICENTRO (FAU). Tecnólogo em Tecnologia da Informação 2016. Questão 68. Disponível em: https://www.qconcursos.com/arquivos/prova/arquivo_prova/47381/fau-2016-jucepar-pr-tecnologo-em-tecnologia-da-informacao-prova.pdf>. Acesso em: 4 out. 2018.

Informações: www.sepi.unip.br ou 0800 010 9000