varian

Nuclei Detection

Sangyu Shen

Agenda

- 1. Goals of the project
- 2. Segmentation Semantic vs Instance
- 3. Unet Model
- 4. Mask RCNN Model
- 5. Model Result
- 6. Conclusion

Goals

Nuclei Segmentation

Project Goal: Count and segment nuclei from microscope images

Counting cells

- The first step for many clinical purposes
- Enable extraction of high quality features for analysis in pathology

Fluorescently stained with different markers

DAPI: Nuclei

FITC: T cell

Cy3: Tumor

Nuclei Segmentation

 Project Goal: Count and segment nuclei from microscope images

Previous Approach

- QuPath
 - Open source software for quantitative pathology (scriptable)
 - Segment cells with filters and thresholds (traditional image processing)
 - Tunable parameters
 - Further analysis pipeline after segmentation

Challenges

- Manual counting
 - Time consuming
 - Labor intensive
 - Impossible to count a whole tissue slice
 - Difficult quality control sampling and random errors
- Thresholding techniques
 - Various staining conditions, cell types
 - Difficult to count overlapping cells
 - No standard requirements
 - Threshold parameters: not one size fits all

Background

Image Processing Problem

Classification

Object Detection

SemanticSegmentation

Instance Segmentation

Segmentation Algorithm - Unet

- Unet algorithm semantic segmentation
 - Convolutional Networks for Biomedical Image Segmentation
 - Created by Olaf Ronneberger, Philipp Fischer, Thomas Brox in 2015

- Encoder: captures context from image
- Decoder: enables precise localization

Segmentation Algorithm – Mask RCNN

- Mask R CNN algorithm instance segmentation
 - Created by Facebook AI research, 2017
 - Generates bounding boxes and segmentation masks for each instance of an object in the image

- Region Proposal Network: proposes candidate object bounding boxes
- Feature Extraction and Prediction: extracts from each candidate box; classify and re-define bounding-box
- Mask: also outputs a binary mask for each box

Methodology

Nuclei Segmentation Training

- Dataset:
 - Booz Allen Hamilton Nuclei Segmentation Dataset
 - ~900 images with masks
 - a variety of conditions, e.g, cell type, magnification, and imaging modality (brightfield vs. fluorescence)

- Augmentation:
 - horizontal or vertical flips
 - Random rotation: 90 or (-10, 10) degrees
 - → Random resizer image NLY

- Pre-train Weights:
 - Computed based on COCO dataset
 - Provided a better starting point

- a large-scale object detection, segmentation, and captioning dataset.
- 330K images (>200K labeled)
- 1.5 million object instances
- 80 object categories

Nuclei Segmentation Training

Image

Ground Truth

Prediction

Image ID	Pixels
Image-2019- 01	59776 8 60126 12 60469 22 60820 24 61171 26 61523 27 61875 27 62227
Image-2019- 01	5233 3 5583 7 5934 9 6286 9 6637 11 6989

rows = total cells

Mask Visualization

varian

Result

Nuclei Segmentation Training

Model	Training Time	Prediction Time	Complete Prediction	# total cells
Unet	< 24 hours	~ 40s	~ 24 hours *	-
Mask RCNN	~ 2 days	<1s	~ 2.5 hours	~ 150,000 *

^{*} Estimated – 6 batches in 3 hours (total 49 batches)

Execution: NVIDIA GK210 GPU 12GB

Testing – Outcome between Unet and Mask RCNN

QuPath

Unet

Mask RCNN

Testing – Outcome between Unet and Mask RCNN

QuPath Unet Mask RCNN

Conclusion

Conclusion

CNN Method:

Better solution to overlapping cells

Fast prediction

- Could perform for a whole image at once
 - Where threshold method fails

 Could be embedded into QuPath framework

- Stable and general outcomes
 - User independent
 - Train on various image types
- Framework for future process

Possible Improvement

- More Data
 - Larger training data
 - Tweak by more specific data related to our project
- Validation and hyperparameters tuning Generalized Ability
 - Stratified validation set
 - Other optimizer
 - More post-processing

