Name: Jerry Jiang. 91

1. (a) Is $(3\mathbb{Z} \cap 4\mathbb{Z}, +)$ a group? If so describe it, if not explain why.

Yes. 32 N 42 = 122.

(122,+) is a group closed in 122, has e as 0, and has inverse as its om opposite number.

(b) Is $(3\mathbb{Z} \cup 4\mathbb{Z}, +)$ a group? If so describe it, if not explain why.

3+4=7, which is not in 32U4Z.

Therefore, no closure thus not a group.

2. Let A = (0, -1) and B = (0, 2). Describe the locus of a point P that moves so that PA = 2PB.

$$(a^2+(b-3)^2=4=2)^2$$

. The locus of P is a circle with radius 2 at (0,3). 3. Describe the symmetry group of the graph of $x^2+4y^2=1$.

when
$$x = 0$$
, $y^2 = \frac{1}{4}$, $y = \pm \frac{1}{2}$; $y = 0$, $x^2 = 1$, $x = \pm 1$.

Therefore, the graph is an ellipse passing through (0, t'z) and (t1, 0).

The symmetry group is V4 as it's comprises X, Y, H, and e.

4. A triangle has sides of length 4 and 8. If the bisector of the angle between the sides has length 2, find the length of the third side, giving your answer in the form \sqrt{a} where $a \in \mathbb{Z}^+$.

According to the angle bisector theorem, let CD=a, then BD=2a.

According to the law of cosine,

$$2$$
. $\cos \theta = \frac{3}{8}$

$$2. \quad \alpha^2 = 20 - 16. \frac{3}{8} = 20 - 6 = 14$$

- 5. Let G be a group and H a non-empty subset of G. Show that $H \leq G$ if H is closed under division; by this we mean xy^{-1} is in H whenever x and y are in H.
 - · For any XEH, we have X. X' = e EH. identity V.
 - For any $x \in H$, we have $e \cdot x^{-1} = x^{-1} \in H$. inverse V.
 - · for any x,yEH, y' is also in H. we have xy'=x.(y').

Since xy is closed, x-(y-1) is also in H, indicating closure for

According to the 3-step subgroup test, H ≤G.

we should show ... I e. H. y de tH.