Name: Student University Roll No .:

Printed Pages:1

School of Engineering Second Theory Sessional Examination Odd Semester (AS: 2024-25)

B. Tech: CSE/CSE-AI/CSE-IOTBC/CSE-CCML [Year: III] [Semester: V]

Course Title: AUTOMATA THEORY AND

FORMAL LANGUAGES Course Code: BCS-3504

Max Marks: 30 Time: 1hrs

Insti	ructions if any: Read the question Carefully.	-	
Q.N.1. Attempt all parts of the following:		Course Objective	Marks
a)	Define Ambiguous Grammar.	CO3	1
b)	"Every Regular Grammar is Context Free Grammar" justify your Answer.	CO3	1
c)	State the pumping lemma theorem for regular languages.	CO3	1
d)	Define the closure properties of context free languages.	C04	1
e)	Define Turing Machine.	CO4	1
SECTION 'B' Q.N.2. Attempt any two parts of the following:		Course Objective	Mor/ks
a)	Define PDA. Obtain PDA to accept the languages L={a^nb^n n>=1} by a final state.	CO4	7.5
b)	Eliminate useless symbols from the grammar. S→AB/CA, B→BC/AB, A→a, C→Ab/b	CO4	7.5
c)	Explain in detail about Chomsky hierarchy of languages.	COT	

(,	languages.	CO5	7.5
Q.N	N.3. Attempt any one part of the following: Prove that Every context free grammar, there is an equivalent grammar G in Cl.		Marks
a)	the given grammar G is S \rightarrow aAbB, A \rightarrow aA/a, B \rightarrow bB/b. Prove that "if L is a Context Free !	CO5	10
b)	L=N(A) for the following grammar: S→0BB, B→0S/1S/0. Test whether 010 ⁴ is in N(A)	CO4	10
c)	Explain in detail about variations of the Turing Machine? And construct a Turing machine that recognizes the language {a^nb^nc^n n>=1} Table 1: Manning between COs and	CO ₅	10

Table 1: Mapping between COs and questions (Number of COs may vary from course to course)

CUS	Questions Numbers	Total Marks
CO3	1.a, 1.b, 1.c	3
CO4	1.d, 1.e, 2.a, 2.b, 3. b	27
CO5	2.c, 3.a, 3.c	275

