Lecture 21: Neyman-Pearson lemma

Ciaran Evans

Neyman-Pearson test

Let $X_1,...,X_n$ be a sample from some distribution with probability function f and parameter θ . To test

$$H_0: \theta = \theta_0 \qquad H_A: \theta = \theta_1,$$

the **Neyman-Pearson** test rejects H_0 when

$$\frac{L(\theta_1|X)}{L(\theta_0|X)} = \frac{f(X_1, ..., X_n|\theta_1)}{f(X_1, ..., X_n|\theta_0)} > k$$

where k is chosen so that $\beta(\theta_0) = \alpha$.

Warm-up

Let $X_1,...,X_n \stackrel{iid}{\sim} Poisson(\lambda)$, with pmf $f(x) = \frac{e^{-\lambda}\lambda^x}{x!}$. We want to test $H_0: \lambda = \lambda_0$ vs. $H_A: \lambda = \lambda_1$, where $\lambda_1 > \lambda_0$. The Neyman-Pearson test rejects when

$$\frac{L(\lambda_1|\mathbf{X})}{L(\lambda_0|\mathbf{X})} > k$$
. ω went \mathcal{X} st $\beta(\lambda_0) = \alpha$

- 1. Calculate $\frac{L(\lambda_1|\mathbf{X})}{L(\lambda_0|\mathbf{X})}$
- 2. Rearrange the ratio to show that $\frac{L(\lambda_1|\mathbf{X})}{L(\lambda_0|\mathbf{X})} > k$ if and only if $\sum_i X_i > c$ for some c
- 3. Using the fact that $\sum_i X_i \sim Poisson(n\lambda)$, find c such that $\beta(\lambda_0) = \alpha$

$$\frac{L(\lambda_{1}|X)}{L(\lambda_{0}|X)} = \frac{e^{-\lambda_{1}} \lambda_{1} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} \lambda_{i}}{e^{-\lambda_{0}} \lambda_{0} \sum_{i=1}^{\infty} \lambda_{i}} = e^{-\lambda_{0}} \left(\frac{\lambda_{1}}{\lambda_{0}}\right)^{2ix_{i}}$$

$$\frac{L(\lambda_{1}|X)}{L(\lambda_{0}|X)} = \frac{e^{-\lambda_{1}} \lambda_{0} \sum_{i=1}^{\infty} \lambda_{i}}{e^{-\lambda_{0}} \lambda_{0} \sum_{i=1}^{\infty} \lambda_{i}} = e^{-\lambda_{0}} \left(\frac{\lambda_{1}}{\lambda_{0}}\right)^{2ix_{i}}$$

$$\frac{L(\lambda_{0}|X)}{L(\lambda_{0}|X)} = \frac{e^{-\lambda_{1}} \lambda_{0} \sum_{i=1}^{\infty} \lambda_{i}}{e^{-\lambda_{0}} \lambda_{0} \sum_{i=1}^{\infty} \lambda_{i}} + h(\lambda_{0}-\lambda_{i}) > \log H$$

$$\frac{L(\lambda_{1}|X)}{L(\lambda_{0}|X)} = \frac{e^{-\lambda_{1}} \lambda_{0}}{e^{-\lambda_{1}} \lambda_{0}} + h(\lambda_{0}-\lambda_{1}) > \log H$$

$$\frac{L(\lambda_{1}|X)}{L(\lambda_{0}|X)} = \frac{e^{-\lambda_{1}} \lambda_{0}}{e^{-\lambda_{1}} \lambda_{0}} + h(\lambda_{0}-\lambda_{1}) > \log H$$

$$\frac{L(\lambda_{1}|X)}{L(\lambda_{0}|X)} = \frac{e^{-\lambda_{1}} \lambda_{0}}{e^{-\lambda_{1}} \lambda_{0}} + h(\lambda_{0}-\lambda_{1}) > \log H$$

$$\frac{L(\lambda_{1}|X)}{L(\lambda_{0}|X)} = \frac{e^{-\lambda_{1}} \lambda_{0}}{e^{-\lambda_{1}} \lambda_{0}} + h(\lambda_{0}-\lambda_{1}) > \log H$$

$$\frac{L(\lambda_{1}|X)}{L(\lambda_{0}|X)} = \frac{e^{-\lambda_{1}} \lambda_{0}}{e^{-\lambda_{1}} \lambda_{0}} + h(\lambda_{0}-\lambda_{1}) > \log H$$

$$\frac{L(\lambda_{1}|X)}{L(\lambda_{0}|X)} = \frac{e^{-\lambda_{1}} \lambda_{0}}{e^{-\lambda_{1}} \lambda_{0}} + h(\lambda_{1}-\lambda_{0}) = e^{-\lambda_{1}} \lambda_{0}$$

$$\frac{L(\lambda_{1}|X)}{L(\lambda_{1}|X)} = \frac{e^{-\lambda_{1}} \lambda_{0}}{e^{-\lambda_{1}} \lambda_{0}} + h(\lambda_{1}-\lambda_{0})$$

$$\frac{L(\lambda_{1}|X)}{L(\lambda_{1}|X)} = \frac{e^{-\lambda_{1}} \lambda_{0}}{L(\lambda_{1}|X)} + h(\lambda_{1}-\lambda_{0})$$

$$\frac{L(\lambda_{1}|X)}{L(\lambda_{1}|X)} = \frac{e^{-\lambda_{1}} \lambda_{0}}{L(\lambda_{1}|X)} + h(\lambda_{1}-\lambda_{0})$$

$$\frac{L(\lambda_{1}|X)}{L(\lambda_{1}|X)} = \frac{e^{-\lambda_{1}} \lambda_{0}}{L(\lambda_{1}|X)} + h(\lambda_{1}-\lambda_{0})}$$

$$\frac{L(\lambda_{1}|X)}{L(\lambda_{1}|X)} = \frac{e^{-\lambda_{1}} \lambda_{0}}{L(\lambda_{1}|X)} + h(\lambda_{1}-\lambda_{0})$$

$$\frac{L(\lambda_{1}|X)}{L(\lambda_{1}|X)} = \frac{e^{-\lambda_{1}} \lambda_{0}}{L(\lambda_{1}|X)} + h(\lambda_{1}-\lambda_{0})$$

$$\frac{L(\lambda_{1}|X)}{L(\lambda_{1}|X)} = \frac{e^{-\lambda_{1}} \lambda_{0}}{L(\lambda_{1}|X)} + h(\lambda_{1}-\lambda_{0})$$

$$\frac{L(\lambda_{1}|X)}{L(\lambda_{1}|X)} = \frac{e^{-\lambda_{1}} \lambda_{0}}{L(\lambda_{1}|X)} + h(\lambda_{1}|X)$$

e-n2 2 2:X:

$$\frac{\log \pi + n(\lambda_1 - \lambda_0)}{(\log \lambda_1 - \log \lambda_0)}$$

$$\sim Poisson(n\lambda)$$

 $C = (X_i)$

 $L(\lambda|\lambda) = \Pi \frac{e^{-\lambda} \lambda^{x_i}}{2}$

=> Eixi ~ Paissan (n20) \mathcal{H}_{o_j} $\lambda = \lambda_o$ Undes quantile of Paisson (n 20) C = upper &

Uniformly most powerful tests

Big idea: can't do better than the Neyman-Pearson test for two simple hypotheses!

What does it mean for one test to be "better" than another?

Definition: Consider testing $H_0: \theta \in \Theta_0$ vs. $H_A: \theta \in \Theta_1$. Let \mathcal{C}_{α} be the set of level α tests for these hypotheses. A test in \mathcal{C}_{α} is the **uniformly most powerful** level α test if:

It has power
$$\beta(\theta) \geq \beta^*(\theta)$$
 $\forall \theta \in H$,

power function
for unp test

any other level a test

of these hypotheses

(i.e. $\beta^*(\theta) \leq d \forall \theta \in H_0$)

we your - Plance setting: $H_0: G = \theta_0$ $H_A: G = \theta_0$

unp: $\beta(\theta_0) \geq \beta^*(\theta_0)$

Lemma: The Neyman-Pearson test is a *uniformly most powerful* level α test of $H_0: \theta = \theta_0$ vs. $H_A: \theta = \theta_1$.

Pf: N-P ks+ rejects when
$$\frac{f(x \mid \theta_i)}{f(x \mid \theta_0)} > H$$

where we choose H st $\beta NP(\theta_0) = \alpha$
 $\Rightarrow N \cdot P + est \Rightarrow \alpha \text{ level } \alpha + est$

Let β^* be power of where level $\alpha + est$

of these hypotheses

 $\Rightarrow \beta^*(\theta_0) \perp \alpha \Rightarrow \beta NP(\theta_0) - \beta^*(\theta_0) \geq \alpha$

WTS: $\beta NP(\theta_i) \geq \beta^*(\theta_i) \Rightarrow \beta NP(\theta_i) - \beta^*(\theta_i) \geq \alpha$

In fact, we will show that

 $\beta NP(\theta_i) - \beta^*(\theta_i) \geq H(\beta NP(\theta_0) - \beta^*(\theta_0)) \geq \alpha$

Lemma: The Neyman-Pearson test is a *uniformly most powerful* level α test of H_0 : $\theta = \theta_0$ vs. H_A : $\theta = \theta_1$. Bur (6) - B*(0) = H(Bur(00) -B*(00) >0 475 Let ONP denote N-P rejection function Likewise, &* rejection function for other test BNP (0) = Po (reject Ho) = Po (BNP (x) = 1) $= \int_{a}^{b} \emptyset_{\mu\rho}(x) f(x|\theta) dx$ 13 * (0) -) = 0 * (x) f(x(6) dx

Lemma: The Neyman-Pearson test is a *uniformly most powerful*

level
$$\alpha$$
 test of $H_0: \theta = \theta_0$ vs. $H_A: \theta = \theta_1$.

$$\beta_{NP}(\theta_n) - \beta^*(\theta_n) = \int_{\mathcal{R}} (\omega_{NP}(x) - \omega^*(x)) f(x(\theta_n)) dx$$

$$\begin{bmatrix}
\beta_{NP}(\Theta_{i}) - \beta^{*}(\Theta_{i})
\end{bmatrix} - W(\beta_{NP}(\Theta_{0}) - \beta^{*}(\Theta_{0}))$$

$$= \int (\Theta_{NP}(x) - \Theta^{*}(x)) (f(x|\Theta_{i}) - Wf(x|\Theta_{0})) dx$$

Lemma: The Neyman-Pearson test is a *uniformly most powerful* level α test of $H_0: \theta = \theta_0$ vs. $H_A: \theta = \theta_1$.

level
$$\alpha$$
 test of $H_0: \theta = \theta_0$ vs. $H_A: \theta = \theta_1$.

$$\begin{bmatrix} \beta_{NP}(\Theta_1) - \beta^*(\Theta_1) \end{bmatrix} - W(\beta_{NP}(\Theta_0) - \beta^*(\Theta_0) \\
= \int_{\mathcal{X}} (\Theta_{NP}(x) - \Theta^*(x)) (f(x|\Theta_1) - Wf(x|\Theta_0)) dx$$
Show: integrand is always ≥ 0

$$\int_{\mathcal{X}} (\Theta_{NP}(x) - \Theta^*(x)) (f(x|\Theta_1) - Wf(x|\Theta_0)) dx$$

$$= 0 \text{ if tests agree}$$

Lemma: The Neyman-Pearson test is a *uniformly most powerful* level α test of $H_0: \theta = \theta_0$ vs. $H_A: \theta = \theta_1$.

integrand
$$20$$

=> [Bnp(G)] - B*(O)] - H (Bnp(GO)] - B*(O)) ≥ 0

=> Bnp(G)] - B*(O) $\geq H$ (Bnp(GO) - B*(O))

 ≥ 0

=> Bnp(O) $\geq B*(O)$