Stat 134: Joint Distributions Review

Adam Lucas

December 5th, 2018

Conceptual Review

Suppose X, Y are random variables with joint distribution $f_{X,Y}$ over the region $\{(x,y) \in \mathbb{R}^2 : 0 < x < y\}$.

- a. Are *X*, *Y* independent?
- b. Set up an integral to find each of the following:
 - i. $f_X(x)$;
 - ii. $F_Y(y)$;
 - iii. P(Y < X + 5);
 - iv. $\mathbb{E}(X)$;
 - v. $\mathbb{E}(g(X,Y))$.

Problem 1

Based on each of the joint densities below, with minimal calculation, identify the marginal distribution of *X* and *Y*.

- a. $f_{X,Y}(x,y) = 3360x^3(y-x)^2(1-y)$, 0 < x < y < 1, (Bonus: how did we compute the constant of 3360?);
- b. $f_{X,Y}(x,y) = \lambda^3 e^{-\lambda y} (y-x), \ 0 < x < y, \text{ (Hint: } X \sim \text{Exp } (\lambda));$
- c. $f_{X,Y}(x,y) = e^{-4y}$, 0 < x < 4, 0 < y.

Problem 2

Suppose *X*, *Y* follow the standard bivariate normal distribution with correlation ρ . Find the joint density of *X* and *Y* in terms of ϕ , the standard normal PDF.

(Note we have worked a lot with these two variables, but we have not yet derived this density or used it directly!)

Problem 3

Let (X, Y) represent a point chosen uniformly at random from the region $\{(x,y): x > 0, y > 0, x^2 + y^2 < 4\}$. Let *R* represent the distance from the origin to the random point (X, Y), i.e. R = $\sqrt{X^2 + Y^2}$. Find:

- a. $f_{X,Y}(x,y)$;
- b. $f_R(r)$;
- c. P(cX > Y), for some c > 0.