Exploration-Exploitation dilemna

November 26, 2018

1 Stochastic Multi-Armed Bandits on Simulated Data

1.1 Bernoulli bandit models

We consider the following 4 arms multi-armed bandit model:

$$r_1 \sim \mathcal{B}(0.3)$$

 $r_2 \sim \mathcal{B}(0.25)$

 $r_3 \sim \mathcal{B}(0.20)$

 $r_4 \sim \mathcal{B}(0.10)$

We simulate the bandit game using the following algorithms: UCB, Thompson sampling, naive approach, and generalized Thompson, and we plot the cumulative regret

1.2 Non-parametric bandits (bounded rewards)

In the generalized Thompson sampling, we choose arm i in the same way we did in Bernoulli bandit problem, however when sampling the arm, this time we get $\tilde{r}_t \in [0,1]$ instead of $\{0,1\}$

since We are no longer in a Bernoulli frame, thus we get the reward r_t by sampling Bernoulli distribution $\mathcal{B}(\tilde{r}_t)$.

Here we cosnider the following arms:

$$r_1 \sim \mathcal{B}(0.30)$$

 $r_2 \sim \mathcal{B}(0.25)$
 $r_3 \sim Beta(2,5)$
 $r_4 \sim Beta(0.5,0.5)$
 $r_5 \sim \mathcal{E}(1)$
 $r_6 \sim \mathcal{E}(1.5)$

according to [Burnetas and Katehakis, 1996], there are no parametric assumptions used in the demonstration of the oracle lower bound, thus the notion of complexity still makes sense.

2 Linear Bandit on Real Data

We use $\alpha = 100$ decaying every 10 iterations with a root squared decay, $\lambda = 0.01$ for the linear UCB and $\epsilon = 0.1$ for the ϵ -greedy policy.

the random exploration and ϵ -greedy policy give better estimates of θ than linear UCB, but they suffer more from cumulative regret.

2.1 Toy Model

2.2 Cold-Start Movie Lens Model

