Universidade de São Paulo Escola Politécnica - Engenharia de Computação e Sistemas Digitais

Data Augmentation, Dataset Distillation and Adversarial Attacks

Prof. Artur Jordão

Introduction

Data Augmentation

- The consensus is that high-capacity networks promote better predictive ability
 - However, these models are data-hungry, which means that they need a larger number of training samples to avoid poor generalization
- We can deal with data-hungry regimes by generating additional training data
 - Namely data augmentation
- Data augmentation techniques expand the training set by creating replicas of the training samples

Forms of Data Augmentation

Data Augmentation

He et al. Deep Residual Learning for Image Recognition. Computer Vision and Patttern Recognition (CVPR), 2016

DeVries et al. Improved regularization of convolutional neural networks with cutout. ArXiv, 2017

Zhang et al. Mixup: Beyond Empirical Risk Minimization. International Conference on Learning Representations (ICLR), 2018

Yun et al. CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features. International Conference on Computer Vision (ICCV), 2019

Hendrycks et al. *PixMix: Dreamlike Pictures Comprehensively Improve Safety Measures*. Conference on Computer Vision and Pattern Recognition (CVPR), 2022

Stylized Augmentation

Data Augmentation

- Convolutional models prioritize texture identification over global shape (as opposed to humans)
 - When trained on ImageNet, these models exhibit a significant bias towards texture

Texture Image

81.4% Indian elephant 10.3% Indri 8.2% Black swan

Content Image

71.1% Tabby cat 17.3% Grey fox 3.3% Siamese cat

Texture-shape Cue Conflict

63.9% Indian elephant 26.4% Indri 9.6% Black swan

Geirhos et al. *ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness*. International Conference on Learning Representations (ICLR), 2019 (Oral)

Stylized Augmentation

Data Augmentation

Stylized augmentation removes texture information through style transfer

Geirhos et al. *ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness*. International Conference on Learning Representations (ICLR), 2019 (Oral)

Data Augmentation Beyond Images

Data Augmentation

- Augmentation for time series (Abbaspourazad et al., 2024)
 - Crop
 - Gaussian noise
 - Time warp
 - Magnitude warp
 - Channel swap

Data Augmentation Beyond Images

Data Augmentation

Augmentation for natural language processing

Marivate et al. *Improving Short Text Classification through Global Augmentation Methods*. International Cross-Domain Conference for Machine Learning and Knowledge Extraction, 2020

Amount vs. Diversity

Data Augmentation

Which strategy is expected to yield better results?

Amount vs. Diversity

Data Augmentation

Which strategy is expected to yield better results?

Synthetic Data

Data Augmentation

- The community has already recognized the potential of synthetic data for both benchmarking and augmenting training data
 - Due to high diversity, training solely on synthetic data leads to state-of-the-art performance (Fabbri et al., 2021)

Fabbri et al. MOTSynth: How Can Synthetic Data Help Pedestrian Detection and Tracking?. International Conference on Computer Vision (ICCV), 2021

Dataset Distillation and Adversarial Attacks

Dataset Distillation and Adversarial Attacks

- Assume a target dataset $T = \{(x_i, y_i)\}_{i=1}^n$
- Assume $\mathcal{L}_T(\mathcal{F},\mathcal{Z})$ be the loss of a model $\mathcal{F}(\cdot,\theta)$ trained on a dataset \mathcal{Z} and evaluate on a dataset T
 - ${\mathcal F}$ is parameterized by heta

Dataset Distillation and Adversarial Attacks

Given some metric (PerM, ParM, DisM), the objective of dataset distillation is to distillate the knowledge of T into a small synthetic dataset $S = \{(s_j, y_j)\}_{j=1}^m$, where $m \ll n$ (Geng et al. 2023; Lei et al., 2024)

Metric	Formulation	Comment
Performance Matching (PerM)	$\mathcal{L}_T(\mathcal{F},T) \approx \mathcal{L}_T(\mathcal{F},S)$	It makes the model approximate some performance metric (i.e., loss)
Parameter Matching (ParM)	$\nabla_{\theta} \mathcal{L}(T, \theta) \approx \nabla_{\theta} \mathcal{L}(S, \theta)$	It aims to make the model approximate the original model in the parameter space
Distribution Matching (DisM)	$\left\ \frac{1}{S} \sum_{i=1}^{ S } f_{\theta}(s_i) - \frac{1}{T} \sum_{i=1}^{ T } f_{\theta}(x_i) \right\ ^2$	The distribution of the synthetic samples is similar to that of real samples in the feature space

Geng et al. A Survey on Dataset Distillation: Approaches, Applications and Future Directions. International Joint Conference on Artificial Intelligence (IJCAI), 2023

Lei et al. A Comprehensive Survey of Dataset Distillation. Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2024

m samples **Dataset Distillation and Adversarial Attacks** $(m \ll n)$ *n* samples Distillation/Condensation **Process** \approx

He et al. *Multisize Dataset Condensation*. International Conference on Learning Representations (ICLR), 2024 Lei et al. *A Comprehensive Survey of Dataset Distillation*. Transactions on Pattern Analysis and Machine Intelligence (PAMI), 2024

Dataset Distillation and Adversarial Attacks

Overview

```
Dataset Distillation Framework
Input: Original dataset T
Output: Synthetic dataset S
Initialize S \triangleright Random, real, or core-set
while not converge do
       Get a network \theta \triangleright \text{Random or from some cache (i.e., epoch)}
       Update \theta \triangleright Via S or T, for some steps
       Update S via \mathcal{L}(S,T) \triangleright \text{PerM}, ParM, DisM (or their variants)
end
```

Adversarial Attacks

Dataset Distillation and Adversarial Attacks

- Adversarial attacks involve making small modifications to an image (or sample) to force a network to wrong its prediction
 - Such modifications are often imperceptible to a human
- The success of adversarial images is due to the excessive overparameterization and capacity of deep networks (Tran et al. 2018; Kaya et al., 2019)

Tran et al. Spectral signatures in backdoor attacks. Neural Information Processing Systems (NeurIPS), 2018

Adversarial Attacks

Dataset Distillation and Adversarial Attacks

- Fast Gradient Sign Method (FGSM)
 - $x' = x + \epsilon * sign(\nabla_{\theta} \mathcal{L}(\theta, x, y))$
 - ϵ controls the severity of the attack
- Corruptions (Hendrycks et al., 2019)

Common-Corruptions Gaussian Noise **Shot Noise** Impulse Noise Defocus Blur Frosted Glass Blur Motion Blur Zoom Blur Snow Frost Brightness Contrast Elastic **Pixelate JPEG**

Hendrycks et al. Benchmarking neural network robustness to common corruptions and perturbations, International Conference on Learning Representations (ICLR), 2019

Backdoor Attacks

Dataset Distillation and Adversarial Attacks

- Backdoor attacks involve making models perform normally on clean data but give a specific prediction on trigger samples
- Formulation (θ omitted for simplicity)

•
$$\mathcal{L}_{total} = \sum_{i}^{|X|} \mathcal{L}_{clean}(\mathcal{F}(x_i), y_i) + \sum_{j}^{|\hat{X}|} \mathcal{L}_{adv}(\mathcal{F}(\hat{x}_j), y_j)$$

Out of Distribution Generalization

Dataset Distillation and Adversarial Attacks

- Independent and Identically Distributed (i.i.d) samples
 - Training and testing samples are drawn independently from the same distribution
- We usually develop and test deep learning models under the implicit assumption that the *training and test data are i.i.d*
 - Traditional machine-learning paradigms share the same assumption

Out of Distribution Generalization

Dataset Distillation and Adversarial Attacks

- Out-of-Distribution (OOD) samples
 - Data draw from different distribution (unseen distributions)
 - OOD generalization: The ability to perform tasks beyond the training distribution

Adapted from Zhao et al., (2022)

Zhao et al. *OOD-CV*: A Benchmark for Robustness to Out-of-Distribution Shifts of Individual Nuisances in Natural Images. European Conference on Computer Vision (ECCV), 2022

Out of Distribution Generalization

Dataset Distillation and Adversarial Attacks

Zhao et al. *OOD-CV*: A Benchmark for Robustness to Out-of-Distribution Shifts of Individual Nuisances in Natural Images. European Conference on Computer Vision (ECCV), 2022

Adversarial Defenses and Robustness

Dataset Distillation and Adversarial Attacks

- Since adversarial images exist in real-world settings, increasing the adversarial robustness of convolutional networks plays a role in safety- and security-critical applications
- Defense Mechanisms
 - Adversarial training
 - Regularization
 - Transfer learning
 - Data augmentation
 - Pruning

- Dive into Deep Learning
 - Chapter 14
 - 14.1 Augmentation

- Deep Learning: Foundations and Concepts
 - Chapter 10
 - 10.3.4 Adversarial attacks
 - 10.5.3 Synthetic images

- He et al. Masked Autoencoders Are Scalable Vision Learners. Computer Vision and Pattern Recognition (CVPR), 2022
- Hendrycks et al. PIXMIX: Dreamlike Pictures Comprehensively Improve Safety Measures. Computer Vision and Pattern Recognition (CVPR), 2022
- Li et al. Shape-texture Debiased Neural Network Training. International Conference on Learning Representations (ICLR), 2021
- SyntheticData4ML Workshop
 - https://www.vanderschaar-lab.com/syntheticdata4ml/
- Synthetic Data for Computer Vision
 - https://syndata4cv.github.io/