Міністерство освіти і науки України

Національний університет "Львівська політехніка" Інститут комп'ютерних наук та інформаційних технологій

Кафедра САПР

Лабораторна робота №6

з дисципліни: "Технології та стандарти інтернету речей" **на тему:**

"Інтеграція безпеки даних для систем інтернету речей"

Виконав:

Ст. групи ПП-44 Верещак Б. О. Прийняв:

асис. Гавран В. Б.

Мета роботи

Ознайомитись з принципами забезпечення безпеки даних у системах Інтернету речей (IoT), навчитися реалізовувати базові методи захисту даних, такі як шифрування, автентифікація та контроль доступу.

Теоретичні відомості

Майже кожен пристрій Інтернету речей, який підключений до мережі, може отримати доступ до інфраструктури Інтернету речей, а також до ваших персональних даних. Коли з'являються нові лазівки в безпеці та потенційні вразливості, ризики, пов'язані з Інтернетом речей, виходять на новий рівень через сумісність, програми та автономне прийняття рішень. Тому безпека та конфіденційність даних є життєво важливими.

Інтернет речей — це мережа, яка об'єднує мобільну мережу, соціальні мережі, Інтернет і різні розумні об'єкти, щоб надати користувачам різноманітні послуги та додатки.

Покращуючи безпеку взаємодії об'єктів, надійність і сумісність, безпека на різних рівнях безпосередньо впливає на успіх систем Інтернету речей. Інтенет речей тепер може об'єднувати різні простори (наприклад, фізичне та цифрове), де різні датчики взаємодіють з фізичним простором. Ці датчики вже повністю використовуються практично у всьому, від іграшок до систем охорони здоров'я. Це показує, як різні небезпеки, які виникають у цифровому світі, починають діяти на реальний світ.

Система успішна, якщо вона може забезпечити безпеку від вразливостей. Багато в чому успіх додатків Інтернету речей та інфраструктури Інтернету речей залежить від забезпечення безпеки та уразливості. Вимогами до безпеки Інтернету речей (IoT) ϵ велика кількість нових інструментів, які вбудовані в організацію, а часом і в систему.

Всі пристрої, які ϵ підключеними, мають потенціал отримати доступ до Інтернет-інфраструктури або особистих даних. Такі пристрої можна аналізувати та використовувати. У результаті аналізу цих даних можна створити невидимі посилання, які можуть бути спрямовані на конфіденційність людей або організацій. Незважаючи на те, що проблеми безпеки та конфіденційності ϵ надзвичайно важливими, ймовірність небезпеки для об'єктів підвищиться, оскільки сумісність, гібридні програми та незалежне прийняття рішень створюють складність, прогалини в безпеці та потенційні вразливості.

У сфері інформаційних технологій існує ризик захисту даних, оскільки складність може створити високу вразливість у зв'язку з послугами. Більшість інформації, доступної в Інтернеті речей, пов'язана з нашими особистими даними, такими як дата народження, місце розташування, бюджет тощо. Однією з проблем великих даних є ризики, які застосовуються до кожного набору даних. Інтернет речей має бути реалізований законним, моральним, соціальним і

політичним способом. При цьому слід враховувати юридичні, систематичні, технічні та бізнес-проблеми.

Лабораторне завдання

- Ознайомитися з теоретичними відомостями.
- Інтегрувати та описати принципи безпеки даних для ІоТ проекту згідно з варіантом.
 - о Розумні парковки: Система моніторингу та резервування місць;
 - о Інтелектуальна система керування шторами;
 - о Інтелектуальна система керування електроспоживанням будинку;
 - о Інтелектуальна система керування та оптимізації домашніх генераторів;
 - о Застосунок для керування LED-стрічкою та освітленням;
 - о Розумний інкубатор;
 - о Система моніторингу периметру і виявлення загрози;
 - о Інтелектуальна система догляду за садом;
 - о Розумний термостат для опалення;
 - о Розумні двері для домашніх тварин.
- Оформити звіт до лабораторної роботи.

Результати виконання завдання:

На цій лабораторній роботі було інтегровано та документовано комплекс заходів із захисту даних для ІоТ-проєкту Метеостанції. Метою було забезпечення конфіденційності, цілісності та доступності даних від сенсора до веб-інтерфейсу, мінімізувати ризики несанкціонованого доступу і атак, а також зробити систему простою для перевірки безпеки під час тестування й демонстрацій.

Першим і основним рівнем захисту є канал передачі: всі зв'язки між ESP32 і сервером виконуються через HTTPS (TLS). Це означає, що весь HTTP-трафік (заголовки й тіло повідомлень) передається зашифрованим потоком; перехоплювач бачить лише TLS-записи та IP/домен, але не може прочитати JSON-рауload. На пристрої впроваджено перевірку сертифіката сервера: у прошивці або вбудовується кореневий CA (rootCA.pem), або читається з файлової системи (SPIFFS). Таке рішення запобігає МІТМ-атакам навіть у випадку, коли хтось спробує підмінити сертифікат.

Рис. 1. Архітектура ІоТ системи

Другий важливий рівень – аутентифікація та контроль доступу. Кожна метеостанція має унікальний device-token, який передається в заголовку

Authorization; сервер зберігає перелік дозволених токенів і пов'язує кожен токен із конкретним device_id. Для підвищення гарантій достовірності пакетів використовується HMAC-підпис (SHA256) over raw payload з спільним секретом: клієнт обчислює HMAC(SECRET_KEY, payload) і посилає результат у заголовку X-Signature. Сервер відтворює підпис по отриманих сирих байтах і порівнює їх захищеним методом hmac.compare_digest. Така схема гарантує, що навіть у випадку перехоплення зашифрованого потоку зміни в даних або підробка повідомлення будуть виявлені.

```
(venv) PS C:\Studying\NULP_OLD\ESP-IDF_Examples+Project\IS_project> curl --cacert rootCA.pem -k
>> -H "Content-Type: application/json"
>> -H "Authorization: MeteostationVereshchakToken"
>> -H "X-Signature: b27acdbfebd9d2d8d36d1fb26900fa18cafde26cf9c904ca3458906a2f82e14a"
>> --data-binary "@payload.json"
>> https://192.168.0.102:3000/api/data
{
    "error": "Invalid signature"
}
(venv) PS C:\Studying\NULP_OLD\ESP-IDF_Examples+Project\IS_project> curl --cacert rootCA.pem -k
>> -H "Content-Type: application/json"
>> -H "Authorization: MeteostationVereshchakToken"
>> -H "X-Signature: d6eb389382502b452b688988f801607d89f1a092bc36f73a1d383158248dfe8b"
>> --data-binary "@payload.json"
>> https://192.168.0.102:3000/api/data
{
    "alerts": [],
    "status": "success"
}
```

Рис. 2. Результат відправки неправильного підпису файлу і правильного

На сервері реалізовано багатоаспектний захист: всі критичні ендпоїнти вимагають Authorization; маршрути, що змінюють конфігурацію (наприклад, /api/config), додатково обмежені правами адміністратора або окремим адмінтокеном; введено перевірку цілісності даних перед збереженням (сервер валідить типи і межі параметрів), логування подій і обмеження швидкості запитів (rate limiting). Дані в MongoDB зберігаються під обліковим записом з паролем, доступ до БД обмежений мережею.

Практична реалізація на ESP32 враховує обмеження пристрою: для стабільності НМАС формується над компактним JSON, на пристрої встановлено перевірку TLS через .cert_pem = server_root_cert_pem, а всі запити – GET для конфігів і POST для даних — підписуються й відправляються з заголовком Authorization. НМАС-ключ і токени зберігаються в прошивці для лабораторного завдання; у виробничих умовах їх слід тримати у секретному сховищі або використовувати secure element.

Перевірка безпеки виконувалася систематично: TLS-зв'язок контролювався за допомогою openssl s_client -connect host:port i curl —cacert rootCA.pem, трафік аналізувався у Wireshark — при коректній конфігурації видно TLS-handshake, але не JSON-трафік. Тестування HMAC-перевірки проводилося шляхом генерації підпису локально (OpenSSL або Python hmac) і відправки запиту через curl або Python requests; сервер коректно відхиляв змінені payloads або неправильні сигнатури (HTTP 401).

Рис. 3. Послідовність: підписування (ESP32) \rightarrow верифікація (Flask)

Висновки

На даній лабораторній роботі я ознайомився з принципами забезпечення безпеки даних у системах Інтернету речей (IoT), навчитися реалізовувати базові методи захисту даних, такі як шифрування, автентифікація та контроль доступу.

Реалізував багаторівневу систему безпеки для ІоТ-проєкту Метеостанції. Виконані завдання показали, як комплекс заходів — від захищеного каналу передачі даних до НМАС-підпису і контролю доступу — забезпечує конфіденційність, цілісність і доступність інформації в умовах обмежених ресурсів пристроїв.

Отриманий досвід показав, що навіть на обмежених ІоТ-пристроях можна реалізувати надійний захист даних, якщо системно підходити до вибору протоколів, методів аутентифікації та перевірки цілісності. Така лабораторна робота сприяє розумінню практичних принципів безпеки даних у реальних ІоТ-сценаріях і підвищує готовність до проєктування захищених систем у виробничих умовах.