GUÍA DE EJERCICIOS RESUELTOS DE TECNOLOGÍA Y ORGANIZACIÓN DE COMPUTADORES (TOC)

Para Estudiantes de 1° Doble Grado Matemáticas y Física $10~{\rm de~octubre~de~2025}$

Índice

Tema 1: Representación de Datos Numéricos

Ejercicio 1: Representación de Enteros en Complemento a 2 (C2) Enunciado

Suponiendo un computador que opere con una longitud de palabra n=8 bits y que utiliza la representación en **complemento a 2**, ¿cómo se representarían internamente los siguientes números enteros: +65 y -37? [1].

Solución

La representación en complemento a 2 (C2) es un método común en la tecnología de computadores [2]. Para n=8 bits:

- A) Representación de +65 Para números positivos, la representación es simplemente su binario natural [3].
 - \bullet 65₁₀ = (01000001)₂.
 - En C2 (8 bits): **01000001**. (El bit más significativo es 0, indicando signo positivo).
- B) Representación de -37 Para números negativos, se utiliza la técnica de Complemento a 2:
 - 1. Obtener el binario de |-37| = +37: $37_{10} = (00100101)_2$.
 - 2. Obtener el Complemento a 1 (C1), invirtiendo los bits: $(11011010)_2$.
 - 3. Obtener el Complemento a 2 (C2), sumando 1 a C1:

$$11011010 + 1 = 11011011$$

4. En C2 (8 bits): **11011011**. (El bit más significativo es 1, indicando signo negativo) [1].

Ejercicio 2: Interpretación de Binarios en Diferentes Representaciones

Enunciado

¿Cuál sería el número decimal entero correspondiente al número binario de 8 bits: 1000 1000, suponiendo la representación en **complemento a 2** (C2)? [4].

Solución

El número binario dado es N=10001000 (8 bits). En representación C2, el bit más significativo (MSB) es 1, lo que indica que el número es **negativo** [1].

Para encontrar su valor decimal, calculamos el C2 de N:

1. Binario: 10001000.

- 2. Complemento a 1 (C1): 01110111.
- 3. Complemento a 2 (C2): 01110111 + 1 = 01111000.
- 4. Conversión a decimal:

$$0 \cdot 2^7 + 1 \cdot 2^6 + 1 \cdot 2^5 + 1 \cdot 2^4 + 1 \cdot 2^3 + 0 \cdot 2^2 + 0 \cdot 2^1 + 0 \cdot 2^0$$
$$64 + 32 + 16 + 8 = 120$$

Dado que el número original era negativo, el valor decimal es -120 [4].

Ejercicio 3: Desbordamiento (Overflow) en Complemento a 2 Enunciado

En la representación de **complemento a 2 con signo** (C2), ¿cuándo ocurre un desbordamiento al realizar una suma? [5].

Solución

En la representación en complemento a 2 (C2) con signo, el desbordamiento (overflow) ocurre cuando el resultado de la operación **no es representable** dentro de la longitud de palabra definida [5].

Específicamente, hay desbordamiento en C2 si:

- 1. Tras sumar dos números **positivos** (ambos con bit de signo 0), el resultado sale **negativo** (bit de signo 1) [5].
- 2. Tras sumar dos números **negativos** (ambos con bit de signo 1), el resultado sale **positivo** (bit de signo 0) [5].

No ocurre desbordamiento cuando se suman números de diferente signo [5].

Tema 2: Unidades Funcionales de un Computador

Ejercicio 4: Estructura de Buses y Memoria

Enunciado

Un procesador dispone de un registro de dirección de memoria (AR) de 16 bits y un registro de memoria (DR) de 8 bits. Indicar el número de bits de los buses de datos y de direcciones, y el tamaño máximo de la memoria principal [6].

Solución

Los parámetros del procesador definen la arquitectura del sistema:

1. Número de bits del bus de direcciones (Ancho del bus de direcciones): Determinado por el tamaño del Registro de Dirección de Memoria (AR).

$$AR = 16 \text{ bits} \implies Bus de Direcciones} = 16 \text{ bits (hilos)}[6].$$

2. Número de bits del bus de datos (Ancho del bus de datos): Determinado por el tamaño del Registro de Memoria (DR).

$$DR = 8 \text{ bits} \implies Bus \text{ de Datos} = 8 \text{ bits (hilos)}[6].$$

3. Tamaño en bytes de la memoria principal: Determinado por la capacidad de direccionamiento $(2^n$, donde n es el número de bits de dirección) y el tamaño de la palabra de datos (dado por DR).

Capacidad =
$$2^{16}$$
 direcciones = $65,536$ posiciones.
Dado que el bus de datos es de 8 bits (1 Byte) [6]:
Tamaño de Memoria = $2^{16} \cdot 1$ Byte = **64** KB.

Ejercicio 5: Prestaciones del Procesador (MIPS)

Enunciado

Considere tres procesadores (A, B, C) y un programa de prueba (benchmark) que contiene 5 millones de instrucciones. Utilizando los datos de la tabla, indique las prestaciones en MIPS (Millones de Instrucciones Por Segundo) de cada procesador [7, 8].

Procesador	Frecuencia reloj (GHz)	Número de ciclos de reloj por instrucción	Tiempo ejecución
A	1,5	4	
В	2,0	8	
С	3,0	10	

Solución

El tiempo de ciclo (T_{ciclo}) es el inverso de la frecuencia (f): $T_{\text{ciclo}} = 1/f$ [7]. Las prestaciones en MIPS (Millones de Instrucciones Por Segundo) se calculan como:

$$\mathrm{MIPS} = \frac{\mathrm{Frecuencia\ del\ reloj\ (MHz)}}{\mathrm{Ciclos\ por\ instrucción\ media\ (CPI)}}$$

Procesador A:

- Frecuencia $(f_A) = 1.5 \text{ GHz} = 1500 \text{ MHz}.$
- CPI (Ciclos por Instrucción) = 4 [8].
- MIPS_A = $\frac{1500 \text{ MHz}}{4}$ = 375 MIPS [8].

Procesador B:

- Frecuencia $(f_B) = 2.0 \text{ GHz} = 2000 \text{ MHz}.$
- CPI = 8 [8].
- MIPS_B = $\frac{2000 \text{ MHz}}{8}$ = **250** MIPS [8].

Procesador C:

- Frecuencia $(f_C) = 3.0 \text{ GHz} = 3000 \text{ MHz}.$
- CPI = 10 [8].
- MIPS_C = $\frac{3000 \text{ MHz}}{10}$ = **300** MIPS [8].

Nota sobre el tiempo de ejecución (aunque no se pide directamente): El tiempo de ejecución (T) se calcula como: $T = \text{Número de Instrucciones} \times \text{CPI} \times T_{\text{ciclo}}$ [7].

$$T_A = 5 \times 10^6 \text{ inst.} \times 4 \frac{\text{ciclos}}{\text{inst.}} \times \frac{1}{1.5 \times 10^9} \frac{\text{s}}{\text{ciclo}} \approx 0.01333 \text{ s[8]}.$$

$$T_B = 5 \times 10^6 \text{ inst.} \times 8 \frac{\text{ciclos}}{\text{inst.}} \times \frac{1}{2.0 \times 10^9} \frac{\text{s}}{\text{ciclo}} \approx 0,02000 \text{ s[8]}.$$

$$T_C = 5 \times 10^6 \text{ inst.} \times 10 \frac{\text{ciclos}}{\text{inst.}} \times \frac{1}{3.0 \times 10^9} \frac{\text{s}}{\text{ciclo}} \approx 0.01667 \text{ s[8]}.$$

Tema 3: Sistemas Combinacionales

Ejercicio 6: Diseño de Sistemas Combinacionales Sencillos

Enunciado

Diseñar un circuito lógico combinacional con tres entradas (a, b, c) y una salida (y) de forma que dicha salida es 1 si y sólo si las señales a y b son 1 $\mathbf{\acute{o}}$ la señal c es 0 [9].

Obtenga la tabla de verdad, la expresión analítica mínima y la implementación del circuito en forma AND/OR/INVERSORES [10, 11].

Solución

Un sistema combinacional es aquel donde las salidas en cualquier instante dependen solo de los valores de las entradas en ese mismo instante [12]. El proceso de diseño incluye obtener la tabla de verdad y minimizar la expresión booleana [10].

1. Tabla de Verdad [13] La condición es y = 1 si (a = 1 AND b = 1) OR (c = 0).

Dec	a	b	c	у
0	0	0	0	1 (c=0)
1	0	0	1	0
2	0	1	0	1 (c=0)
3	0	1	1	0
4	1	0	0	1 (c=0)
5	1	0	1	0
6	1	1	0	1 (c=0 o a=1,b=1)
7	1	1	1	1 (a=1,b=1)

2. Expresión Analítica y Minimización (Suma de Productos) [13] La función se define por los minitérminos m(0, 2, 4, 6, 7):

$$y(a,b,c) = \sum m(0,2,4,6,7)$$

Usando un Mapa de Karnaugh (simplificado en la fuente) [13]:

$c \setminus ab$	00	01	11	10
0	1	1	1	1
1	0	0	1	0

La minimización produce dos grupos: un grupo que cubre todos los 1s en c=0, que es \bar{c} , y otro grupo que cubre el m_7 , que junto a m_6 ya cubierto por \bar{c} se simplifica a $a \cdot b$ [13].

$$\mathbf{y}(\mathbf{a}, \mathbf{b}, \mathbf{c}) = \overline{\mathbf{c}} + \mathbf{a} \cdot \mathbf{b}[13]$$

3. Implementación AND/OR/INVERSORES [11] La expresión mínima $\mathbf{y} = \overline{\mathbf{c}} + \mathbf{a} \cdot \mathbf{b}$ se implementa con una puerta AND (para $a \cdot b$), un inversor (para \bar{c}) y una puerta OR (para la suma de productos) [9, 11].

6

Ejercicio 7: Sumador Completo de 1 bit

Enunciado

Defina las ecuaciones lógicas para la salida de suma (S) y el acarreo de salida (C_{out}) de un sumador completo de 1 bit, cuyas entradas son A, B y el acarreo de entrada C_{in} [14].

Solución

Un sumador completo (Full Adder) tiene tres entradas (A, B, C_{in}) y dos salidas (S, C_{out}) [14].

Tabla de Verdad (Resumida)

C_{in}	A	B	C_{out}	S
0	0	0	0	0
1	1	1	1	1

Las funciones de suma (S) y acarreo de salida (C_{out}) son:

Función de Suma (S): La suma S es 1 para los minitérminos m(1, 2, 4, 7) [15].

$$S = \bar{A}\bar{B}C_{in} + \bar{A}B\bar{C}_{in} + A\bar{B}\bar{C}_{in} + ABC_{in}$$

La forma minimizada es la función XOR de las tres entradas:

$$S = A \oplus B \oplus C_{in}[15]$$

Función de Acarreo de Salida (C_{out}): El acarreo C_{out} es 1 para los minitérminos m(3, 5, 6, 7) [15].

$$C_{out} = \bar{A}BC_{in} + A\bar{B}C_{in} + AB\bar{C}_{in} + ABC_{in}$$

La forma minimizada es:

$$C_{out} = AB + AC_{in} + BC_{in}[15]$$

Tema 4: Sistemas Secuenciales

Ejercicio 8: Biestable D (Flip-Flop D)

Enunciado

Muestre la tabla de transición (o tabla inversa) para un biestable tipo D y defina cómo se relaciona la entrada D con el estado siguiente Q^+ [16, 17].

Solución

Un biestable (flip-flop) tipo D es un elemento secuencial fundamental [18]. Los sistemas secuenciales necesitan elementos de memoria (como los biestables) para memorizar el estado del sistema [19].

Tabla de Estados Abreviada y de Transición para el Biestable D El biestable tipo D es muy sencillo: el estado siguiente (Q^+) es igual al valor de la entrada D en el flanco activo del reloj [16].

$$\mathbf{Q}^+ = \mathbf{D}[16]$$

Tabla Abreviada (Estado Siguiente vs. Entrada D) [16, 17]

D	Q^+ (Estado Siguiente)
0	0
1	1

Tabla Inversa (Tabla de Transición) [16, 17] Muestra el valor de entrada D

necesario para producir una transición de
$$Q$$
 a Q^+ .
$$\begin{matrix} Q & Q^+ & D \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1 \end{matrix}$$

La tabla de transición confirma la relación fundamental: la entrada del biestable D es directamente el estado siguiente deseado Q^+ [16].

Ejercicio 9: Análisis de Máquina de Estados Finitos (FSM) Tipo Moore

Enunciado

Para la FSM analizada en el ejemplo de la fuente, definida por las funciones de excitación D_0 y D_1 y la salida Y [20]:

$$D_0 = Q_0 \oplus X$$

$$D_1 = \bar{X} \cdot Q_1 + X \cdot \bar{Q}_1 \cdot Q_0 + X \cdot Q_1 \cdot \bar{Q}_0$$

$$Y = Q_1 \cdot Q_0$$

Indique de qué tipo de máquina de estados se trata (Mealy o Moore) y cuál es el comportamiento que describe cuando X=1 [20].

Solución

Tipo de FSM: Una FSM es de tipo Moore si las salidas dependen solo del estado actual [21, 22]. Es de tipo Mealy si las salidas dependen del estado actual y de las entradas externas [21, 23].

Observando la función de salida:

$$Y = Q_1 \cdot Q_0$$

La salida Y depende únicamente de las variables de estado Q_1 y Q_0 [20]. Por lo tanto, se trata de una FSM de **Tipo Moore** [21].

Comportamiento cuando X = 1: El ejemplo de análisis de la FSM muestra que el sistema es un contador módulo 4, controlado por la entrada X [20].

- Si X = 0, el contador se detiene (mantiene el estado actual) [20].
- Si X = 1, el sistema pasa por los cuatro estados secuencialmente: $Q_1Q_0 = 00, 01, 10, 11$ [20].

Cuando X = 1, la máquina actúa como un **contador binario síncrono ascendente módulo 4** [20]. La salida Y se activa (Y = 1) únicamente cuando el contador alcanza el estado $Q_1Q_0 = 11$ (que es el conteo 3) [20].

Tema 5: Sistemas en el Nivel de Transferencia de Registros (RT)

Ejercicio 10: Microoperaciones en Camino de Datos (Buses Dedicados)

Enunciado

Con un esquema de transferencia basado en **multiplexores con buses dedicados** (Ejercicio 1 de la fuente), y asumiendo 3 registros R_0 , R_1 , R_2 , indique si la operación $R_0 \leftarrow R_1$ y $R_2 \leftarrow R_0$ puede efectuarse en un solo ciclo de reloj, indicando los valores de control S_0 , S_1 , S_2 , W_0 , W_1 , W_2 [24].

Solución

Un sistema de transferencia de registros (RT) basado en buses dedicados utiliza buses separados (controlados por S_i) para seleccionar la fuente de datos, y señales de escritura (W_i o LD_i) para habilitar la carga en el registro destino [24, 25].

La microoperación doble $R_0 \leftarrow R_1$ y $R_2 \leftarrow R_0$ requiere dos transferencias simultáneas:

- Transferencia 1: $R_1 \to R_0$. R_1 debe ser la fuente para R_0 .
- Transferencia 2: $R_0 \to R_2$. R_0 debe ser la fuente para R_2 .

Dado que se trata de buses dedicados (generalmente un bus por par de transferencia o similar, según el esquema del Ejercicio 1, donde R_0, R_1, R_2 tienen sus propios multiplexores de entrada/salida [24]), el ejemplo de la fuente muestra que este sistema **permite múltiples transferencias simultáneas** (como $R_0 \leftarrow R_1, R_1 \leftarrow R_2, R_2 \leftarrow R_0$ en un solo ciclo) [25].

No obstante, la operación específica $R_0 \leftarrow R_1$ y $R_2 \leftarrow R_0$ (donde R_0 es fuente y destino simultáneamente) implica que el bus que alimenta a R_0 toma el dato de R_1 , y el bus que alimenta a R_2 toma el dato de R_0 .

Si consideramos la tabla de soluciones para el Ejercicio 1 [24]:

- $R_0 \leftarrow R_1$: $S_0 = 0, W_0 = 1$ [24].
- $R_2 \leftarrow R_0$: $S_2 = 0, W_2 = 1$ [24].

La operación $R_0 \leftarrow R_1, R_2 \leftarrow R_0$ **NO** puede efectuarse en un solo ciclo.

Operación RT	¿En un solo ciclo?	S_0	S_1	S_2	W_0	W_1	W_2
$R_0 \leftarrow R_1, R_2 \leftarrow R_0$	NO	_	_	_	_	_	_

(Nota: El ejercicio 1 del fuente solo lista transferencias simples y una triple, no la combinación específica solicitada) [24, 25]. La respuesta se deduce por las limitaciones inherentes: si R_0 se usa como fuente $(R_0 \to R_2)$ y como destino $(R_1 \to R_0)$, se requiere que R_0 retenga el valor original para R_2 antes de que se cargue el nuevo valor. Sin embargo, en un sistema síncrono, la escritura ocurre en el flanco del reloj. Es posible que el valor de R_0 se lea antes del flanco, y ambos valores se escriban simultáneamente, pero sin un diagrama claro y microoperaciones específicas para esta combinación, la imposibilidad (NO) se mantiene como una restricción lógica general en diseños síncronos simples donde la fuente y el destino coinciden.

Ejercicio 11: Programación en Ensamblador CS1 (Nivel RT)

Enunciado

Utilizando las instrucciones del Computador Sencillo CS1 (Tabla P.1, donde los datos y direcciones son de 8 bits y 6 bits respectivamente [26, 27]), realice un programa que sume los valores que hay almacenados en las direcciones de memoria M(\$3A), M(\$3B) y M(\$3C) y almacene el resultado en la posición de memoria M(\$3E). Es decir: $M(\$3E) \leftarrow M(\$3A) + M(\$3B) + M(\$3C)$ [28].

Solución

El CS1 usa un acumulador (AC) para realizar operaciones aritméticas [29]. Primero, el AC debe inicializarse a cero [28]. Se utiliza una dirección auxiliar, por ejemplo M(\$3D), para realizar la operación $AC \leftarrow AC - M(\$3D)$ (SUB) después de haber hecho $M(\$3D) \leftarrow AC$ (STA) para garantizar que el AC quede a cero, independientemente de su valor inicial [30].

Instrucciones del CS1 [27, 29]:

- STA $$DirDato: M($DirDato) \leftarrow AC \text{ (CO: 11)}$
- SUB $\$DirDato: AC \leftarrow AC M(\$DirDato)$ (CO: 10)
- ADD \$DirDato: $AC \leftarrow AC + M(\$DirDato)$ (CO: 01)
- STOP: Fin ejecución (CO: 00)

Tabla del Programa La dirección 3D en binario es 111101_2 . Las direcciones 3A, 3B, 3C, 3E son $111010_2, 111011_2, 111100_2, 111110_2$ respectivamente [30, 31].

Programa Ensamblador	Descripción RT del programa	CO (2 bits)	Dirección dato (6 bits)	Insti
STA $\$3D$	$M(\$3D) \leftarrow AC$	11	111101	
SUB $\$3D$	$AC \leftarrow AC - M(\$3D)$	10	111101	
ADD $\$3A$	$AC \leftarrow AC + M(\$3A)$	01	111010	
ADD $\$3B$	$AC \leftarrow AC + M(\$3B)$	01	111011	
ADD $\$3C$	$AC \leftarrow AC + M(\$3C)$	01	111100	
STA $\$3E$	$M(\$3E) \leftarrow AC$	11	111110	
STOP	Fin ejecución	00	000000	