1. Ecuación general

Ecuación general de transferencia de calor:

$$\tau \frac{\partial \psi}{\partial t} + \frac{\partial}{\partial x_j} \left(\upsilon_j \psi \right) - \frac{\partial}{\partial x_j} \left(\Gamma \frac{\partial \psi}{\partial x_j} \right) = q$$

donde se usa la convención de Einstein (índices repetidos se suman) y se define lo siguiente:

Símbolo		Unidades
Parámetros físicos		
au	"Almacenamiento"	
v	'Velocidad'	
Γ	"Difusividad"	
q	Ganancia (fuente) o pérdida (sumidero) de calor	
Símbolo		Unidades
Variables independientes		
x_j	Coordenadas cartesianas de la posición: $(x_1, x_2, x_3) \equiv (x, y, z)$.	[m]
t	Tiempo.	[s]
Variables dependientes		
ψ		
v_{j}	Componentes: $(v_1, v_2, v_3) \equiv (v_x, v_y, v_z)$.	ĺ

1.1. Casos de estudio

Ecuación	Descripción
$-\frac{\partial}{\partial x_j} \left(\Gamma \frac{\partial \psi}{\partial x_j} \right) = q$	Difusión estacionaria
$\frac{\partial}{\partial x_j} \left(\upsilon_j \psi \right) - \frac{\partial}{\partial x_j} \left(\Gamma \frac{\partial \psi}{\partial x_j} \right) = q$	Advección – difusión estacionaria
$\tau \frac{\partial \psi}{\partial t} - \frac{\partial}{\partial x_j} \left(\Gamma \frac{\partial \psi}{\partial x_j} \right) = q$	Difusión NO estacionaria
$\tau \frac{\partial \psi}{\partial t} + \frac{\partial}{\partial x_j} (v_j \psi) - \frac{\partial}{\partial x_j} \left(\Gamma \frac{\partial \psi}{\partial x_j} \right) = q$	Advección – difusión NO estacionaria

2. Difusión estacionaria

$$-\frac{\partial}{\partial x_j} \left(\Gamma \frac{\partial \psi}{\partial x_j} \right) = q \tag{1}$$

$\mathbf{Simbolo}$	Descripción	${f Valor}$
Γ	Difusividad	Variable
L	Tamaño del dominio	Variable
ψ_A	Condición de frontera izquierda (Dir)	1
ψ_B	Condición de frontera derecha (Dir)	0
q	Ganancia (fuente) o pérdida (sumidero)	Variable

Cuando Γ es constante, en una dimensión podemos escribir

$$-\Gamma \frac{\partial^2 \psi}{\partial x^2} = q \tag{2}$$

en cuyo caso la solución analítica es

$$\psi(x) = \left(\frac{\psi_B - \psi_A}{L} + \frac{q}{2\Gamma}(L - x)\right)x + \psi_A \tag{3}$$

Figura 1: Cuando q=0 y variamos la longitud del dominio, observamos que la solución se mantiene en una línea recta cambiando solo su pendiente.

Figura 2: Cuando q=1 observamos una pequeña curvatura en la solución. Conforme L crece esta curvatura se incrementa.

Figura 3: Cuando mantenemos fijos a L=1 y q=1, y variamos Γ , observamos que conforme a valores mayores de Γ la curvatura de en la solución es más pronunciada. Por otro lado, se obtiene casi una línea recta cuando Γ es muy pequeña.

Figura 4: Cuando mantenemos $L=1,\,\Gamma=1$ y variamos q. Observamos que conforme |q| aumenta la solución tiene una mayor curvatura.

3. Advección-Difusión estacionaria

$$\frac{\partial}{\partial x_j} \left(v_j \psi \right) - \frac{\partial}{\partial x_j} \left(\Gamma \frac{\partial \psi}{\partial x_j} \right) = q$$

$\mathbf{Simbolo}$	Descripción	${f Valor}$
Γ	Difusividad	Variable
v	Velocidad	Variable
L	Tamaño del dominio	Variable
ψ_A	Condición de frontera izquierda (Dir)	1
ψ_B	Condición de frontera derecha (Dir)	0
q	Ganancia (fuente) o pérdida (sumidero)	Variable

Cuando Γ y v son constantes y q=0, en una dimensión podemos escribir

$$\frac{\partial \psi}{\partial x} = \frac{1}{P_e} \frac{\partial^2 \psi}{\partial x^2}$$

donde definimos $P_e = \upsilon/\Gamma$ como el número de Peclet. La solución analítica en este caso es

$$\psi(x) = \left(\frac{e^{P_e x} - 1}{e^{P_e L} - 1}\right) (\psi_B - \psi_A) + \psi_A$$

Figura 5: Cuando mantenemos $L=1,\,\Gamma=1$ y variamos q. Observamos que conforme |q| aumenta la solución tiene una mayor curvatura.

4. Difusión NO estacionaria

$$\tau \frac{\partial \psi}{\partial t} - \frac{\partial}{\partial x_j} \left(\Gamma \frac{\partial \psi}{\partial x_j} \right) = q \tag{4}$$

Símbolo	Descripción	\mathbf{Valor}
Γ	Difusividad	Variable
L	Tamaño del dominio	Variable
ψ_A	Condición de frontera izquierda (Dir)	1
ψ_B	Condición de frontera derecha (Dir)	0
$\psi(x,0)$	Condición inicial	0
au	"Almacenamiento"	1

Cuando Γ es constante y q=0, en una dimensión podemos escribir

$$\frac{\partial \psi}{\partial t} = \Gamma \frac{\partial^2 \psi}{\partial x^2} \tag{5}$$

cuya solución analítica es

$$\psi(x,t) = \psi_A + (\psi_B - \psi_A) \left(\frac{x}{L} + \frac{2}{\pi} \sum_{n=1}^{\infty} \frac{1}{n} \exp\left(-\frac{n^2 \pi^2 \Gamma}{L^2} t \right) \sin\left(\frac{n\pi}{L} x \right) \right)$$
 (6)

Figura 6: Se muestra la solución para varios pasos de tiempo. Se observa que la solución avanza hacia una línea recta. Variando Γ y/o L se obtiene un comportamiento similar, con una mayor (aumentar Γ o disminuir L) o menor velocidad (disminuir Γ o aumentar L) del avance en la solución.

5. Advección-Difusión NO estacionaria

$$\tau \frac{\partial \psi}{\partial t} + \frac{\partial}{\partial x_j} (v_j \psi) - \frac{\partial}{\partial x_j} \left(\Gamma \frac{\partial \psi}{\partial x_j} \right) = q \tag{7}$$

$\mathbf{Simbolo}$	Descripción	${f Valor}$
Γ	Difusividad	Variable
v	Velocidad	1.0
L	Tamaño del dominio	$2.5 \ (\to \infty)$
ψ_A	Condición de frontera izquierda (Dir)	1
ψ_B	Condición de frontera derecha (Dir)	0
$\psi(x,0)$	Condición inicial	0
au	"Almacenamiento"	1

Cuando Γ y v son constantes y q=0, en una dimensión podemos escribir

$$\frac{\partial \psi}{\partial t} + \frac{\partial \psi}{\partial x} = \frac{1}{P_e} \frac{\partial^2 \psi}{\partial x^2} \tag{8}$$

donde definimos $P_e=v/\Gamma$ como el número de Peclet. Con estas condiciones y para $0<\Gamma<0.1$ la solución exacta es

$$f(x,t) = 0.5 \left[\operatorname{erfc} \left(\frac{x - ut}{2\sqrt{\Gamma t}} \right) + \exp \left(\frac{ux}{\Gamma} \right) \operatorname{erfc} \left(\frac{x + ut}{2\sqrt{\Gamma t}} \right) \right]$$
 (9)

Figura 7: Se muestra la solución para varios pasos de tiempo. Se observa que la condición de frontera $\psi_A=1.0$ se va transmitiendo de izquierda a derecha conforme avanza el tiempo.

Figura 8: Se muestra la solución para varios pasos de tiempo. Se observa que la condición de frontera $\psi_A = 1.0$ se va transmitiendo de izquierda a derecha conforme avanza el tiempo.

Figura 9: Se muestra la solución para varios pasos de tiempo. Se observa que la condición de frontera $\psi_A = 1.0$ se va transmitiendo de izquierda a derecha conforme avanza el tiempo.

Figura 10: Se muestra la solución para varios pasos de tiempo. Se observa que la condición de frontera $\psi_A=1.0$ se va transmitiendo de izquierda a derecha conforme avanza el tiempo.