Decision Trees on MapReduce

CS246: Mining Massive Datasets
Jure Leskovec, Stanford University
http://cs246.stanford.edu

Decision Tree Learning

- Give one attribute (e.g., lifespan), try to predict the value of new people's lifespans by means of some of the other available attribute
- Input attributes:
 - d features/attributes: x⁽¹⁾, x⁽²⁾, ... x^(d)
 - Each x^(j) has domain O_i
 - Categorical: O_i = {red, blue}
 - Numerical: H_i = (0, 10)
 - Y is output variable with domain O_Y :
 - Categorical: Classification, Numerical: Regression
- Data D:
 - n examples (x_i, y_i) where x_i is a d-dim feature vector, $y_i \in O_Y$ is output variable
- Task:
 - Given an input data vector x predict y

Decision Trees

 A Decision Tree is a tree-structured plan of a set of attributes to test in order to predict the output

Decision Trees (1)

Decision trees:

- Split the data at each internal node
- Each leaf node makes a prediction

Lecture today:

- Binary splits: X^(j)<v</p>
- Numerical attrs.
- Regression

How to make predictions?

- Input: Example x_i
- Output: Predicted y_i'
- "Drop" x_i down the tree until it hits a leaf node
- Predict the value stored in the leaf that x_i hits

Decision Trees Vs. SVM

Training dataset D*, |D*|=100 examples

- Imagine we are currently at some node G
 - Let D_G be the data that reaches G
- There is a decision we have to make: Do we continue building the tree?

- Continue building the tree recursively
- If not, how do we make a prediction?
 - We need to build a "predictor node"

3 steps in constructing a tree

```
Algorithm 1 | BuildSubtree
Require: Node n, Data D \subseteq D^*
 1: (n \rightarrow \text{split}, D_L, D_R) = \text{FindBestSplit}(D)
 2: if StoppingCriteria(D_L) then
       n \rightarrow \text{left\_prediction} = \text{FindPrediction}(D_L)(3)
 4: else
 5:
                   BuildSubtree (n \rightarrow \text{left}, D_L)
 6: if StoppingCriteria(D_R) then
        n \rightarrow \text{right\_prediction} = \text{FindPrediction}(D_R)
 8: else
                    BuildSubtree (n \rightarrow \text{right}, D_R)
 9:
```

Requires at least a single pass over the data!

(1) How to split? Pick attribute & value that optimizes some criterion

- Regression: Purity
 - Find split (X⁽ⁱ⁾, v) that creates D, D_L, D_R: parent, left, right child datasets and maximizes:

$$|D| \cdot Var(D) - (|D_L| \cdot Var(D_L) + |D_R| \cdot Var(D_R))$$

•
$$Var(D) = \frac{1}{n} \sum_{i \in D} (y_i - \overline{y})^2$$
 ... variance of y_i in D

- (1) How to split? Pick attribute & value that optimizes some criterion
- Classification: Information Gain
 - Measures how much a given attribute X tells us about the class Y
 - IG(Y | X): We must transmit Y over a binary link. How many bits on average would it save us if both ends of the line knew X?

Why Information Gain? Entropy

- Entropy: What's the smallest possible number of bits, on average, per symbol, needed to transmit a stream of symbols drawn from X's distribution?
- The entropy of X: $H(X) = -\sum_{j=1}^{m} p_j \log p_j$
 - "High Entropy": X is from a uniform (boring) distribution
 - A histogram of the frequency distribution of values of X is flat
 - "Low Entropy": X is from a varied (peaks/valleys) distrib.
 - A histogram of the frequency distribution of values of X would have many lows and one or two highs

Why Information Gain? Entropy

Suppose I want to predict Y and I have input X

- X = College Major
- Y = Likes "Gladiator"

X	Υ	
Math	Yes	
History	No	
CS	Yes	
Math	No	
Math	No	
CS	Yes	
Math	Yes	
History	No	

From this data we estimate

$$P(Y = Yes) = 0.5$$

$$P(X = Math \& Y = No) = 0.25$$

$$P(X = Math) = 0.5$$

$$P(Y = Yes | X = History) = 0$$

Note:

•
$$H(Y) = -\frac{1}{2}\log_2(\frac{1}{2}) - \frac{1}{2}\log_2(\frac{1}{2}) = \mathbf{1}$$

$$H(X) = 1.5$$

Why Information Gain? Entropy

- Suppose I want to predict Y and I have input X
 - X = College Major
 - Y = Likes "Gladiator"

X	Y	
Math	Yes	
History	No	
CS	Yes	
Math	No	
Math	No	
CS	Yes	
Math	Yes	
History	No	

Def: Specific Conditional Entropy

H(Y | X=v) = The entropy of Y among only those records in which X has value v

Example:

- H(Y|X = Math) = 1
- -H(Y|X = History) = 0
- -H(Y|X=CS)=0

Why Information Gain?

- Suppose I want to predict Y and I have input X
 - X = College Major
 - Y = Likes "Gladiator"

X	Υ	
Math	Yes	
History	No	
CS	Yes	
Math	No	
Math	No	
CS	Yes	
Math	Yes	
History	No	

Def: Conditional Entropy

- $H(Y \mid X)$ = The average specific conditional entropy of **Y**
 - = if you choose a record at random what will be the conditional entropy of Y, conditioned on that row's value of X
 - = Expected number of bits to transmit Y if both sides will know the value of X

$$= \sum_{j} P(X = v_j) H(Y|X = v_j)$$

Why Information Gain?

Suppose I want to predict Y and I have input X

• $H(Y \mid X)$ = The average specific conditional entropy of Y

X	Υ	
Math	Yes	
History	No	
CS	Yes	
Math	No	
Math	No	
CS	Yes	
Math	Yes	
History	No	

$$= \sum_{j} P(X = v_j) H(Y|X = v_j)$$

Example:

$V_{\rm j}$	P(X=v _j)	$H(Y X=v_j)$
Math	0.5	1
History	0.25	0
CS	0.25	0

So: H(Y|X)=0.5*1+0.25*0+0.25*0 =**0.5**

Why Information Gain?

Suppose I want to predict Y and I have input X

$$IG(Y|X) = H(Y) - H(Y|X)$$

- Example:
 - H(Y) = 1
 - H(Y|X) = 0.5
 - Thus IG(Y|X) = 1 0.5 = 0.5

What is Information Gain used for?

- Suppose you are trying to predict whether someone is going live past 80 years
- From historical data you might find:
 - IG(LongLife | HairColor) = 0.01
 - IG(LongLife | Smoker) = 0.3
 - IG(LongLife | Gender) = 0.25
 - IG(LongLife | LastDigitOfSSN) = 0.00001
- IG tells us how much information about Y is contained in X
 - So attribute X that has high IG(Y|X) is a good split!

3 steps in constructing a tree

```
Algorithm 1 BuildSubtree
Require: Node n, Data D \subseteq D^*
 1: (n \rightarrow \text{split}, D_L, D_R) = \text{FindBestSplit}(D)
 2: if StoppingCriteria(D_L) then
        n \rightarrow \text{left\_prediction} = \text{FindPrediction}(D_L)(3)
 4: else
 5:
                   BuildSubtree (n \rightarrow \text{left}, D_L)
 6: if StoppingCriteria(D_R) then
        n \rightarrow \text{right\_prediction} = \text{FindPrediction}(D_R)
 8: else
                    BuildSubtree (n \rightarrow \text{right}, D_R)
 9:
```

When to stop?

(2) When to stop?

- Many different heuristic options
- Two ideas:
 - (1) When the leaf is "pure"
 - The target variable does not vary too much: $Var(y_i) < \varepsilon$
 - (2) When # of examples in the leaf is too small
 - For example, |D|≤100

How to predict?

(3) How to predict?

- Many options
 - Regression:
 - Predict average y_i of the examples in the leaf
 - Build a linear regression model on the examples in the leaf

Classification:

• Predict most common y_i of the examples in the leaf

Building Decision Trees Using MapReduce

Problem: Building a tree

- Given a large dataset with hundreds of attributes
- Build a decision tree!
- General considerations:
 - Tree is small (can keep it memory):
 - Shallow (~10 levels)
 - Dataset too large to keep in memory
 - Dataset too big to scan over on a single machine
 - MapReduce to the rescue!

Algorithm 1 BuildSubTree

```
Require: Node n, Data D \subseteq D^*

1: (n \to \text{split}, D_L, D_R) = \text{FindBestSplit}(D)

2: if StoppingCriteria(D_L) then

3: n \to \text{left\_prediction} = \text{FindPrediction}(D_L)

4: else

5: BuildSubTree(n \to \text{left}, D_L)

6: if StoppingCriteria(D_R) then

7: n \to \text{right\_prediction} = \text{FindPrediction}(D_R)

8: else

9: BuildSubTree(n \to \text{right}, D_R)
```

Today's Lecture: PLANET

Parallel Learner for Assembling Numerous Ensemble Trees [Panda et al., VLDB '09]

 A sequence of MapReduce jobs that builds a decision tree

Setting:

- Hundreds of numerical (discrete & continuous, but not categorical) attributes
- Target variable is numerical: Regression
- Splits are binary: X(j) < v</p>
- Decision tree is small enough for each Mapper to keep it in memory
- Data too large to keep in memory

PLANET Architecture

PLANET: Building the Tree

- The tree will be built in levels
 - One level at a time:

- 1) Master decides '--' '--' '--' '--' '--' which nodes/splits to consider, MapReduce computes quality of those splits
- 2) Master then grows the tree for a level
- Goto 1)

Decision trees on MapReduce

PLANET Overview

- We build the tree level by level
 - One MapReduce step builds one level of the tree
- Mapper
 - Considers a number of possible splits (X⁽ⁱ⁾,v) on its subset of the data
 - For each split it stores partial statistics
 - Partial split-statistics is sent to Reducers
- Reducer
 - Collects all partial statistics and determines best split
- Master grows the tree for one level

PLANET Overview

- Mapper loads the model and info about which attribute splits to consider
 - Each mapper sees a subset of the data D*
 - Mapper "drops" each datapoint to find the appropriate leaf node L
 - For each leaf node L it keeps statistics about
 - (1) the data reaching L
 - (2) the data in left/right subtree under split S
- Reducer aggregates the statistics (1), (2) and determines the best split for each tree node

PLANET: Components

- Master
 - Monitors everything (runs multiple MapReduce jobs)
- Three types of MapReduce jobs:
 - (1) MapReduce <u>Initialization</u> (run once first)
 - For each attribute identify values to be considered for splits
- (2) MapReduce FindBestSplit (run multiple times)
 - MapReduce job to find best split (when there is too much data to fit in memory)
- (3) MapReduce <u>InMemoryBuild</u> (run once last)
 - Similar to BuildSubTree (but for small data)
 - Grows an entire sub-tree once the data fits in memory
- Model file
 - A file describing the state of the model

PLANET: Components

- (1) Master Node
- (2) MapReduce Initialization (run once first)
- (3) MapReduce FindBestSplit (run multiple times)
- (4) MapReduce InMemoryBuild (run once last)

PLANET: Master

- Master controls the entire process
- Determines the state of the tree and grows it:
 - (1) Decides if nodes should be split
 - (2) If there is little data entering a tree node, Master runs an <u>InMemoryBuild</u> MapReduce job to grow the entire subtree below that node
 - (3) For larger nodes, Master launches MapReduce
 <u>FindBestSplit</u> to evaluate candidates for best split
 - Master also collects results from FindBestSplit and chooses the best split for a node
 - (4) Updates the model

PLANET: Components

- (1) Master Node
- (2) MapReduce Initialization (run once first)
- (3) MapReduce FindBestSplit (run multiple times)
- (4) MapReduce InMemoryBuild (run once last)

Initialization: Attribute metadata

- Initialization job: Identifies all the attribute values which need to be considered for splits
 - Initialization process generates "attribute metadata" to be loaded in memory by other tasks
- Main question:
 Which splits to even consider?

Initialization: Attribute metadata

- Which splits to even consider?
 - For small data we can sort the values along a particular feature and consider every possible split
 - But data values may not be uniformly populated so many splits may not really make a difference

 $X^{(j)}$: 1.2 1.3 1.4 1.6 2.1 7.2 8.1 9.8 10.1 10.2 10.3 10.4 11.5 11.7 12.8 12.9

 Idea: Consider a limited number of splits such that splits "move" about the same amount of data

Initialization: Attribute metadata

Splits for numerical attributes:

- For attribute X^(j) we would like to consider every possible value v∈O_i
- Compute an approx. equi-depth histogram on D*
 - Idea: Select buckets such that counts per bucket are equal

Use boundary points of histogram as splits

Side note: Computing Equi-Depth

- Goal: Equal number of elements per bucket
 (B buckets total)
- Construct by first sorting and then taking
 B-1 equally-spaced splits
 - 1 2 2 3 4 7 8 9 10 10 10 10 11 11 12 12 14 16 16 18 19 20 20 20
- Faster construction:
 - Sample & take equally-spaced splits in the sample
 - Nearly equal buckets

PLANET: Components

- (1) Master Node
- (2) MapReduce Initialization (run once first)
- (3) MapReduce FindBestSplit (run multiple times)
- (4) MapReduce InMemoryBuild (run once last)

FindBestSplit

- Goal: For a particular split node j find attribute $X^{(j)}$ and value v that maximizes Purity:
 - $|D| \cdot Var(D) (|D_L| \cdot Var(D_L) + |D_R| \cdot Var(D_R))$
 - D ... training data (x_i, y_i) reaching the node j
 - **D**_L ... training data \mathbf{x}_i , where $\mathbf{x}_i^{(j)} < \mathbf{v}$
 - **D**_R ... training data \mathbf{x}_i , where $\mathbf{x}_i^{(j)} \ge \mathbf{v}$

$$Var(D) = \frac{1}{n} \sum_{i \in D} y_i^2 - \left(\frac{1}{n} \sum_{i \in D} y_i\right)^2$$

FindBestSplit

To compute Purity we need

$$Var(D) = \frac{1}{n} \sum_{i} y_i^2 - \left(\frac{1}{n} \sum_{i} y_i\right)^2$$

Important observation: Variance can be computed from sufficient statistics:

N,
$$S=\Sigma y_i$$
, $Q=\Sigma y_i^2$

- Each Mapper processes subset of data D_m , and computes N_m , S_m , Q_m for its own D_m
- Reducer combines the statistics and computes global variance and then Purity:

$$Var(D) = \frac{1}{\sum_{m} N_{m}} \sum_{m} Q_{m} - \left(\frac{1}{\sum_{m} N_{m}} \sum_{m} S_{m}\right)^{2}$$

FindBestSplit: Map

Mapper:

- Initialized by loading results of Initialization task
 - Current model (to find which node each datapoint x_i ends up)
 - Attribute metadata (all split points for each attribute)
- For each data record run the Map algorithm:
 - For each node store statistics of the data entering the node and at the end emit (to all reducers):
 - <NodeID, $\{S=\Sigma y, Q=\Sigma y^2, N=\Sigma 1\}$ >
 - For each split store statistics and at the end emit:
 - <SplitID, { S, Q, N } >
 - SplitID = (node n, attribute X^(j), split value v)

FindBestSplit: Reducer

Reducer:

- (1) Load all the <NodelD, <u>List</u> {S_m, Q_m, N_m}> pairs and aggregate the per node statistics
- (2) For all the <SplitID, List {S_m, Q_m, N_m}> aggregate the statistics

$$Var(D) = \frac{1}{\sum_{m} N_{m}} \sum_{m} Q_{m} - \left(\frac{1}{\sum_{m} N_{m}} \sum_{m} S_{m}\right)^{2}$$

For each NodeID, output the best split found

Overall system architecture

Master gives the mappers: (1) Tree (2) Set of nodes (3) Set of candidate splits Nodes: F, G, H, I Split candidates: $(X^{(1)}, v^{(1)})$, $(X^{(1)},V^{(2)}), (X^{(3)},V^{(3)}), (X^{(3)},V^{(4)})$ Mappers output 2 types of key-value pairs: (NodelD: S,Q,N) Mapper (NodelD, Spit: S,Q,N) For every (NodelD, Split) Reducer(s) compute the Reducer Mapper Data **Purity and output** the best split Mapper

Overall system architecture

- Example: Need to split nodes F, G, H, I
- Map and Reduce:
 - FindBestSplit::Map (each mapper)
 - Load the current model M
 - Drop every example x_i down the tree
 - If it hits G or H, update in-memory hash tables:
 - For each node: T_n : (Node) \rightarrow {S, Q, N}
 - For each (Split, Node): T_{n.i.s}: (Node, Attribute, SplitValue)→{S, Q, N}
 - Map::Finalize: output the key-value pairs from above hashtables
 - FindBestSplit::Reduce (each reducer)
 - Collect:
 - T1:<Node, List{S, Q, N} > \rightarrow <Node, {Σ S, Σ Q, Σ N} >
 - **T2:**<(Node, Attr. Split), List{S, Q, N}> \rightarrow <(Node, Attr. Split), { Σ S, Σ Q, Σ N}>
 - Compute impurity for each node using T1, T2
 - Return best split to Master (which then decides on globally best split)

Back to the Master

- Collects outputs from FindBestSplit reducers
 <Split.NodeID, Attribute, Value, Impurity>
- For each node decides the best split
 - If data in D_L/D_R is small enough, later run a MapReduce job
 InMemoryBuild on the node
 - Else run MapReduce
 FindBestSplit job for both nodes

Decision Trees: Conclusion

Decision Trees

- Decision trees are the single most popular data mining tool:
 - Easy to understand
 - Easy to implement
 - Easy to use
 - Computationally cheap
 - It's possible to get in trouble with overfitting
 - They do classification as well as regression!

Learning Ensembles

- Learn multiple trees and combine their predictions
 - Gives better performance in practice
- Bagging:
 - Learns multiple trees over independent samples of the training data
 - For a dataset **D** on **n** data points: Create dataset **D'** of **n** points but sample from **D** with replacement:
 - 33% points in D' will be duplicates, 66% will be unique
 - Predictions from each tree are averaged to compute the final model prediction

Bagged Decision Trees

- How to create random samples of D*?
 - Compute a hash of a training record's id and tree id
 - Use records that hash into a particular range to learn a tree
 - This way the same sample is used for all nodes in a tree
 - Note: This is sampling D* without replacement (but samples of D* should be created with replacement)

SVM vs. DT

SVM

- Classification
 - Usually only 2 classes
- Real valued features (no categorical ones)
- Tens/hundreds of thousands of features
- Very sparse features
- Simple decision boundary
 - No issues with overfitting

Example applications

- Text classification
- Spam detection
- Computer vision

Decision trees

- Classification & Regression
 - Multiple (~10) classes
- Real valued and categorical features
- Few (hundreds) of features
- Usually dense features
- Complicated decision boundaries
 - Overfitting! Early stopping

Example applications

- User profile classification
- Landing page bounce prediction

References

- B. Panda, J. S. Herbach, S. Basu, and R. J. Bayardo.
 PLANET: Massively parallel learning of tree ensembles with MapReduce. In Proc. VLDB 2009.
- J. Ye, J.-H. Chow, J. Chen, Z. Zheng. Stochastic Gradient Boosted Distributed Decision Trees. In Proc. CIKM 2009.