TDS3651 Visual Information Processing

Binary Image Processing Lecture 5

Faculty of Computing and Informatics

Multimedia University

Lecture Outline

- Thresholding
- Morphological Operations
- Blob Extraction (and labelling)
- Blob Description

What are binary images? And, are they of any good use?

Binary Images

Binary image processing: Tasks

- Convert the image into binary form
 - Thresholding
- Clean up the thresholded image
 - Morphological operators
- Extract separate blobs
 - Connected components
- Describe the blobs with region properties

Binary images

- Two pixel values
 - Foreground and background
 - Mark region(s) of interests (ROI)

1	1	0	1	1	1	0	1
1	1	0	1	0	1	0	1
1	1	1	1	0	0	0	1
0	0	0	0	0	0	0	1
1	1	1	1	0	1	0	1
0	0	0	1	0	1	0	1
1	1	0	1	0	0	0	1
1	1	0	1	0	1	1	1

Thresholding

- Grayscale image ⇒ Binary image
- Useful if object of interest's intensity distribution is distinct from background
- Here are some scenarios...

$$F_{T}(i,j) = \begin{cases} 1 & if \ F(i,j) \ge T \\ 0 & otherwise \end{cases}$$

$$F_{T}(i,j) = \begin{cases} 1 & if \ T_{1} \le F(i,j) \le T_{2} \\ 0 & otherwise \end{cases}$$

$$F_{T}(i,j) = \begin{cases} 1 & if \ F(i,j) \in Z \\ 0 & otherwise \end{cases}$$

 Given a grayscale image or an intermediate matrix of values ⇒ threshold to create a binary output

Edge detection

Gradient magnitude

Find strong gradient that are above a certain **threshold**

Output will be

1 : edge

0: non-edge

 Given a grayscale image or an intermediate matrix of values ⇒ threshold to create a binary output

 Given a grayscale image or an intermediate matrix of values ⇒ threshold to create a binary output

Intensity-based Detection

Image

Find pixels that are dark, **corresponding to the detection** of dark-intensity doors

Output will be

1 : object of interest

0: background

 Given a grayscale image or an intermediate matrix of values ⇒ threshold to create a binary output

Colour-based Detection

Find pixels that are within a certain hue (colour) range, e.g. skin colour

Output will be 1 : object of interest

0 : background

What to use?

 What is a suitable information to use to convert this gif into a binary image/clip of only the dog?

- A. Edges
- B. Background
- C. Color
- D. All of the above

Histograms: Nice case

Ideal histogram: light object on a dark background

Histograms: Not-so-nice case

Two tasks lie ahead...

1. What to do with "noisy" binary outputs?

2. How to demarcate (mark) multiple regions of interest?

Dealing with noisy binary output?

Morphological operations

Morphological operators

- Change the shape of the foreground regions via intersection/union operations between a scanning structuring element and binary image
- Useful for cleaning up result from thresholding
- Basic operators:
 - Dilation
 - Erosion

Dilation

- Expands connected regions
- "Grow" pixels
- Fill holes

Before dilation

After dilation

Erosion

- Erodes connected regions
- "Trim" pixels
- Removes bridges, branches, noise

Before erosion

After erosion

Structuring elements

 Masks of varying shapes and sizes are used for morphological operations:

 Scan mask across foreground pixels to transform the binary image

Dilation vs. Erosion

- At each position:
 - Dilation: If current pixel is foreground, OR the structuring element with the input image

Remember: OR-ing only happens when there is a FOREGROUND PIXEL!

• Using a 3x3 structuring element, with the middle centre pixel taken as the reference pixel:

- A. More 1s, and thicker white regions
- B. More 0s and thinner white regions
- C. No change

What would be the output?

Dilation vs. Erosion

- At each position:
 - Dilation: If current pixel is foreground, OR the structuring element with the input image
 - Erosion: If every pixel under the structuring element's nonzero entries is foreground, OR the current pixel with structuring element (at reference point).

1-D Example of Erosion

1-D Example of Erosion

1-D Example of Erosion

Remember: OR-ing only happens when ALL are FOREGROUND PIXELS!

• Using a 3x3 structuring element, with the middle centre pixel taken as the reference pixel:

- A. More 1s, and thicker white regions
- B. More 0s and thinner white regions
- C. All the white disappear

What is the output again?

Opening

- Erode, then dilate
- Remove small objects, keep original shape

Before opening

After opening

Closing

- Dilate, then erode
- Fill holes, but keep original shape

Before closing

After closing

Morphology operators on grayscale images

- Dilation and erosion typically performed on binary images
- If image is grayscale: for dilation take the neighbourhood max, for erosion take the min

Marking multiple regions of interest?

Connected components / Region labelling

Two tasks lie ahead...

1. What to do with "noisy" binary outputs?

- 2. How to demarcate (mark) multiple regions of interest?
 - Count objects
 - Compute further features from objects

Connected Components

 Identify distinct regions of "connected pixels" by labelling

Binary Image

1	1	0	1	1	1	0	1
1	1	0	1	0	1	0	1
1	1	1	1	0	0	0	1
0	0	0	0	0	0	0	1
1	1	1	1	0	1	0	1
0	0	0	1	0	1	0	1
1	1	0	1	0	0	0	1
1	1	0	1	0	1	1	1

_		
	•	

1	1	0	1	1	1	0	2
1	1	0	1	0	1	0	2
1	1	1	1	0	0	0	2
0	0	0	0	0	0	0	2
3	3	3	3	0	4	0	2
0	0	0	3	0	4	0	2
5	5	0	3	0	0	0	2
5	5	0	3	0	2	2	2

Connected Components Labeling

Connectedness

Defining which pixels are considered neighbours

Recursive method

- Negate the binary image (so that 1-pixels become negative-1's)
 - to distinguish unprocessed pixels (-1) from those of component label 1
- 2. Find an unlabelled pixel (-1), assign it a new label
- 3. Search to find its neighbours (that have value -1)
 - following scan-line order

Four-neighborhood

Eight-neighborhood

- 4. Recursively repeat to find their neighbours till there are no more left
- 5. Go back to (2) and repeat.

Connected components

Connected components of 1's from thresholded image

Connected components of cluster labels

Region properties

- Given connected components, can compute simple features per blob, such as:
 - Area (number of pixels in the region)
 - Centroid (average x and y position of pixels in region)
 - Bounding box (min and max coordinates)
 - Circularity (ratio of mean distance to centroid over std.)

Circularity

- Measure of "round-ness" of a region
- Circularity values **large** \Longrightarrow more circular in shape
- There are a few methods. Simplest formula:

$$C = \frac{4 \times Area \times \pi}{(Perimeter)^2}$$

The circularity measure expects a value between 0 and 1. Closer to 1, rounder the component.

Circularity

 Haralick (1974) proposed a quite robust measure for circularity:

circularity

$$C_2 = \frac{\mu_R}{\sigma_R}$$
(3.12)

where μ_R and σ_R are the mean and standard deviation of the distance from the centroid of the shape to the shape boundary and can be computed according to the following formulas.

mean radial distance:

$$\mu_R = \frac{1}{K} \sum_{k=0}^{K-1} ||(r_k, c_k) - (\bar{r}, \bar{c})||$$
(3.13)

standard deviation of radial distance:

$$\sigma_R = \left(\frac{1}{K} \sum_{k=0}^{K-1} \left[\|(r_k, c_k) - (\bar{r}, \bar{c})\| - \mu_R \right]^2 \right)^{1/2} \qquad (3.14)$$

where the set of pixels (r_k, c_k) , k = 0, ..., K - 1 lie on the perimeter P of the region. The circularity measure C_2 increases monotonically as the digital shape becomes more circular and is similar for digital and continuous shapes.

Application Examples

Example: Segmentation of a liver

Example: Background subtraction + blob detection

Binary images

Pros

- Can be fast to compute, easy to store
- Simple processing techniques available
- Lead to some useful compact shape descriptors

Cons

- Hard to get "clean" silhouettes
- Noise is common in realistic scenarios
- Can be too coarse of a representation
- Not 3D in nature

Techniques that get us what we want

Operations, techniques

Derivative filters

Smoothing, morphology

Thresholding

Connected components

Matched filters

Histograms

Features,representations

Edges, gradients

Blobs/regions

Local patterns

Textures

Color distributions

Summary

- Binary Images
 - Thresholding
- Morphological operations
 - Dilation, erosion, opening, closing
- Connected components & Region labelling
- Region properties
 - Area, centroid, bounding box, circularity

Recommended Reading

- [Gonzalez & Woods] Chapter 9 & 10 (10.3 in particular)
- [Forsyth & Ponce] Chapter 9 (9.5.4 in particular)