$2^{\rm o}$ appello — 5 luglio 2022

Esercizio 1. In \mathbb{R}^4 sia U il sottospazio di equazione $2x_1 - x_4 = 0$ e sia W il sottospazio generato dai vettori $w_1 = (-1, 2, 1, 0)$ e $w_2 = (1, 0, 0, 1)$.

- (a) Scrivere una base di U e una base di U^{\perp} .
- (b) Trovare una base ortogonale di W.
- (c) Scrivere le equazioni cartesiane di W e trovare una base di $U \cap W$.
- (d) Dato v = (3, -1, 2, 1) determinare la sua proiezione ortogonale sul sottospazio U.

Esercizio 2. Sia $f: \mathbb{R}^4 \to \mathbb{R}^3$ la funzione lineare la cui matrice (rispetto alle basi canoniche) è

$$A = \begin{pmatrix} 2 & 0 & 1 & -t \\ 1 & -2 & 0 & 3 \\ 4 & -4 & t & 5 \end{pmatrix}$$

- (a) Trovare una forma a scala di A e determinare il valore di t per cui dim(Ker f) = 2.
- (b) Per il valore di t trovato al punto (a) si scriva una base di Ker(f) e una base di Im(f).
- (c) Poniamo t = 0. Si scriva la matrice di f rispetto alla base di \mathbb{R}^4 formata dai vettori $v_1 = (1, 1, 1, 0), v_2 = (1, 1, 0, 1), v_3 = (1, 0, 1, 1), v_4 = (0, 1, 1, 1)$ e alla base canonica di \mathbb{R}^3 .
- (d) Poniamo t = 0. È possibile trovare delle basi di \mathbb{R}^4 e di \mathbb{R}^3 rispetto alle quali la matrice di f abbia la prima riga uguale alla seconda riga? (la risposta deve essere motivata)

Esercizio 3. Consideriamo la matrice

$$A = \begin{pmatrix} 4 & 0 & 4 \\ t & 2 & t \\ -2 & 0 & -2 \end{pmatrix}$$

- (a) Determinare il polinomio caratteristico e gli autovalori di A.
- (b) Determinare per quale valore di t la matrice è diagonalizzabile. Per tale valore di t trovare una matrice invertibile P tale che $P^{-1}AP$ sia diagonale.
- (c) Si dica se la matrice $B = A \cdot A^T$ è diagonalizzabile per ogni valore di t (la risposta deve essere motivata e NON è necessario calcolare il prodotto $A \cdot A^T$)

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ consideriamo il piano $\pi: x+2y-z+3=0$.

- (a) Trovare il punto $A' \in \pi$ di minima distanza da A = (3,3,0).
- (b) Sia $B=(0,-1,1)\in\pi$. Scrivere l'equazione del piano σ parallelo a π e passante per il punto medio del segmento AB.
- (c) Scrivere le equazioni parametriche della retta s contenuta nel piano π , passante per il punto B = (0, -1, 1) e tale che $\operatorname{dist}(A, s) = \operatorname{dist}(A, B)$.
- (d) Sia r_1 la retta passante per il punto A e parallela al vettore w = (1, 1, 0). Sia r_2 la retta passante per il punto B e parallela a r_1 . Calcolare la distanza dist (r_1, r_2) .

$2^{\rm o}$ appello — 5 luglio 2022

Esercizio 1. In \mathbb{R}^4 sia U il sottospazio di equazione $x_2 + 3x_4 = 0$ e sia W il sottospazio generato dai vettori $w_1 = (0, 2, 1, 0)$ e $w_2 = (2, 1, 0, -1)$.

- (a) Scrivere una base di U e una base di U^{\perp} .
- (b) Trovare una base ortogonale di W.
- (c) Scrivere le equazioni cartesiane di W e trovare una base di $U \cap W$.
- (d) Dato v = (1, -2, -1, 4) determinare la sua proiezione ortogonale sul sottospazio U.

Esercizio 2. Sia $f: \mathbb{R}^4 \to \mathbb{R}^3$ la funzione lineare la cui matrice (rispetto alle basi canoniche) è

$$A = \begin{pmatrix} 2 & -1 & 4 & 0 \\ 1 & 0 & t & -1 \\ 1 & 1 & 5 & -t \end{pmatrix}$$

- (a) Trovare una forma a scala di A e determinare il valore di t per cui dim(Ker f) = 2.
- (b) Per il valore di t trovato al punto (a) si scriva una base di Ker(f) e una base di Im(f).
- (c) Poniamo t=0. Si scriva la matrice di f rispetto alla base di \mathbb{R}^4 formata dai vettori $v_1=(1,1,1,0), v_2=(1,1,0,1), v_3=(1,0,1,1), v_4=(0,1,1,1)$ e alla base canonica di \mathbb{R}^3 .
- (d) Poniamo t = 0. È possibile trovare delle basi di \mathbb{R}^4 e di \mathbb{R}^3 rispetto alle quali la matrice di f abbia la prima riga uguale alla seconda riga? (la risposta deve essere motivata)

Esercizio 3. Consideriamo la matrice

$$A = \begin{pmatrix} -1 & t & -2 \\ 0 & 1 & 0 \\ 1 & -t & 2 \end{pmatrix}$$

- (a) Determinare il polinomio caratteristico e gli autovalori di A.
- (b) Determinare per quale valore di t la matrice è diagonalizzabile. Per tale valore di t trovare una matrice invertibile P tale che $P^{-1}AP$ sia diagonale.
- (c) Si dica se la matrice $B = A \cdot A^T$ è diagonalizzabile per ogni valore di t (la risposta deve essere motivata e NON è necessario calcolare il prodotto $A \cdot A^T$)

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ consideriamo il piano $\pi: 2x - y + z + 3 = 0$.

- (a) Trovare il punto $A' \in \pi$ di minima distanza da A = (2, -2, 3).
- (b) Sia $B=(0,2,-1)\in\pi$. Scrivere l'equazione del piano σ parallelo a π e passante per il punto medio del segmento AB.
- (c) Scrivere le equazioni parametriche della retta s contenuta nel piano π , passante per il punto B = (0, 2, -1) e tale che $\operatorname{dist}(A, s) = \operatorname{dist}(A, B)$.
- (d) Sia r_1 la retta passante per il punto A e parallela al vettore w = (1, 0, 1). Sia r_2 la retta passante per il punto B e parallela a r_1 . Calcolare la distanza dist (r_1, r_2) .

$2^{\rm o}$ appello — 5 luglio 2022

Esercizio 1. In \mathbb{R}^4 sia U il sottospazio di equazione $2x_2 + x_4 = 0$ e sia W il sottospazio generato dai vettori $w_1 = (1, 1, 0, 2)$ e $w_2 = (0, 2, 1, 0)$.

- (a) Scrivere una base di U e una base di U^{\perp} .
- (b) Trovare una base ortogonale di W.
- (c) Scrivere le equazioni cartesiane di W e trovare una base di $U \cap W$.
- (d) Dato v = (1, 1, 2, 3) determinare la sua proiezione ortogonale sul sottospazio U.

Esercizio 2. Sia $f: \mathbb{R}^4 \to \mathbb{R}^3$ la funzione lineare la cui matrice (rispetto alle basi canoniche) è

$$A = \begin{pmatrix} 2 & 5 & t & 0 \\ 1 & 4 & 2 & -6 \\ 1 & 3 & 0 & t \end{pmatrix}$$

- (a) Trovare una forma a scala di A e determinare il valore di t per cui dim(Ker f) = 2.
- (b) Per il valore di t trovato al punto (a) si scriva una base di Ker(f) e una base di Im(f).
- (c) Poniamo t=0. Si scriva la matrice di f rispetto alla base di \mathbb{R}^4 formata dai vettori $v_1=(1,1,1,0), v_2=(1,1,0,1), v_3=(1,0,1,1), v_4=(0,1,1,1)$ e alla base canonica di \mathbb{R}^3 .
- (d) Poniamo t = 0. È possibile trovare delle basi di \mathbb{R}^4 e di \mathbb{R}^3 rispetto alle quali la matrice di f abbia la prima riga uguale alla seconda riga? (la risposta deve essere motivata)

Esercizio 3. Consideriamo la matrice

$$A = \begin{pmatrix} -2 & 0 & -2 \\ t & -1 & t \\ 1 & 0 & 1 \end{pmatrix}$$

- (a) Determinare il polinomio caratteristico e gli autovalori di A.
- (b) Determinare per quale valore di t la matrice è diagonalizzabile. Per tale valore di t trovare una matrice invertibile P tale che $P^{-1}AP$ sia diagonale.
- (c) Si dica se la matrice $B = A \cdot A^T$ è diagonalizzabile per ogni valore di t (la risposta deve essere motivata e NON è necessario calcolare il prodotto $A \cdot A^T$)

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ consideriamo il piano $\pi: x-2y+2z+5=0$.

- (a) Trovare il punto $A' \in \pi$ di minima distanza da A = (1, -3, 3).
- (b) Sia $B=(-3,1,0)\in\pi$. Scrivere l'equazione del piano σ parallelo a π e passante per il punto medio del segmento AB.
- (c) Scrivere le equazioni parametriche della retta s contenuta nel piano π , passante per il punto B = (-3, 1, 0) e tale che $\operatorname{dist}(A, s) = \operatorname{dist}(A, B)$.
- (d) Sia r_1 la retta passante per il punto A e parallela al vettore w = (0, 1, -1). Sia r_2 la retta passante per il punto B e parallela a r_1 . Calcolare la distanza dist (r_1, r_2) .

$2^{\rm o}$ appello — 5 luglio 2022

Esercizio 1. In \mathbb{R}^4 sia U il sottospazio di equazione $x_2 - 3x_4 = 0$ e sia W il sottospazio generato dai vettori $w_1 = (1, 2, 0, 0)$ e $w_2 = (0, 1, -2, 1)$.

- (a) Scrivere una base di U e una base di U^{\perp} .
- (b) Trovare una base ortogonale di W.
- (c) Scrivere le equazioni cartesiane di W e trovare una base di $U \cap W$.
- (d) Dato v = (2, -2, 1, -4) determinare la sua proiezione ortogonale sul sottospazio U.

Esercizio 2. Sia $f: \mathbb{R}^4 \to \mathbb{R}^3$ la funzione lineare la cui matrice (rispetto alle basi canoniche) è

$$A = \begin{pmatrix} 3 & -4 & t & 3 \\ 1 & 0 & -1 & t \\ 1 & -2 & 2 & 0 \end{pmatrix}$$

- (a) Trovare una forma a scala di A e determinare il valore di t per cui dim(Ker f) = 2.
- (b) Per il valore di t trovato al punto (a) si scriva una base di Ker(f) e una base di Im(f).
- (c) Poniamo t=0. Si scriva la matrice di f rispetto alla base di \mathbb{R}^4 formata dai vettori $v_1=(1,1,1,0), v_2=(1,1,0,1), v_3=(1,0,1,1), v_4=(0,1,1,1)$ e alla base canonica di \mathbb{R}^3 .
- (d) Poniamo t = 0. È possibile trovare delle basi di \mathbb{R}^4 e di \mathbb{R}^3 rispetto alle quali la matrice di f abbia la prima riga uguale alla seconda riga? (la risposta deve essere motivata)

Esercizio 3. Consideriamo la matrice

$$A = \begin{pmatrix} 2 & t & 4 \\ 0 & -2 & 0 \\ -2 & -t & -4 \end{pmatrix}$$

- (a) Determinare il polinomio caratteristico e gli autovalori di A.
- (b) Determinare per quale valore di t la matrice è diagonalizzabile. Per tale valore di t trovare una matrice invertibile P tale che $P^{-1}AP$ sia diagonale.
- (c) Si dica se la matrice $B = A \cdot A^T$ è diagonalizzabile per ogni valore di t (la risposta deve essere motivata e NON è necessario calcolare il prodotto $A \cdot A^T$)

Esercizio 4. Nello spazio affine $\mathbb{A}^3_{\mathbb{R}}$ consideriamo il piano $\pi: 2x+2y-z+5=0.$

- (a) Trovare il punto $A' \in \pi$ di minima distanza da A = (4, 2, -1).
- (b) Sia $B=(-3,0,-1)\in\pi$. Scrivere l'equazione del piano σ parallelo a π e passante per il punto medio del segmento AB.
- (c) Scrivere le equazioni parametriche della retta s contenuta nel piano π , passante per il punto B = (-3, 0, -1) e tale che dist(A, s) = dist(A, B).
- (d) Sia r_1 la retta passante per il punto A e parallela al vettore w = (1, 0, -1). Sia r_2 la retta passante per il punto B e parallela a r_1 . Calcolare la distanza dist (r_1, r_2) .