Algoritmi v bioinformatiki - 2. Domača naloga

Jan Panjan

May 7, 2025

1. Dano imamo naslednje zaporedje izidov metov kovanca

$$V = CCCGCGGCCGC$$

pri čemer C označuje, da je bil izid meta cifra, G pa da je bil izid meta grb. Za mete imamo na voljo 3 kovance, A, B in C, veljajo naslednje verjetnosti:

Prehod:

%	A	В	C
A	40	30	30
В	30	40	30
\overline{C}	30	30	40

Izpis:

%	С	G
A	75	25
В	80	20
\overline{C}	20	80

Katera od možnosti je najbolj verjetna?

- (a) za vse mete smo uporabili kovanec A
- (b) za vse mete smo uporabili kovanec C
- (c) za vse mete smo uporabili kovanec B
- (d) $\Pi = AAACBCCBBCA$

Odgovor ustrezno utemeljite.

Za vse mete smo uporabili kovanec A

	7-krat vržemo C z verjetnostjo 0.75
\ /	7-krat vržemo G z verjetnostjo 0.75
$(0.4)^{10}$	10-krat ne zamenjamo kovanca A z verjetnostjo 0.4

$$p(A) = (0.75)^7 \cdot (0.25)^4 \cdot (0.4)^{10} = 0.00209$$

Za vse mete smo uporabili kovan<u>ec</u> B

\ /	7-krat vržemo C z verjetnostjo 0.8
` /	7-krat vržemo G z verjetnostjo 0.2
$(0.4)^{10}$	10-krat ne zamenjamo kovanca B z verjetnostjo 0.4

$$p(B) = (0.8)^7 \cdot (0.2)^4 \cdot (0.4)^{10} = 0.00134$$

Za vse mete smo uporabili kovanec C

$(0.2)^{\gamma}$	7-krat vržemo C z verjetnostjo 0.8
(/	7-krat vržemo G z verjetnostjo 0.2
$(0.4)^{10}$	10-krat ne zamenjamo kovanca C z verjetnostjo 0.4

$$p(C) = (0.2)^7 \cdot (0.8)^4 \cdot (0.4)^{10} = 0.0000209$$

$\Pi = AAACBCCBBCA$

\ /	6-krat ostanemo v istem kovancu (vsi kovanci imajo enake verjetnosti)
$(0.4)^4$	4-krat zamenjamo kovanec (tudi tu imajo enako verjetnosti)
$(0.75)^4$	4-krat vržemo kovanec A , vsakič vržemo cifro z verjetnostjo 0.75
$(0.8)^3$	3-krat vržemo kovanec B , vsakič vržemo cifro z verjetnostjo 0.8
$(0.8)^4$	4-krat vržemo kovanec C, vsakič vržemo grb z verjetnostjo 0.8

$$p(\Pi) = (0.3)^6 \cdot (0.4)^4 \cdot (0.75)^4 \cdot (0.8)^3 \cdot (0.8)^4 = 0.00000124$$

Rešitev: Najbolj verjetna je možnost z največjo verjetnostjo. To je možnost (a) z verjetnostjo 0.00209.

- 2. Dani imamo zaporedji s = GAGTACA in t = TGATTACA ter vrednostno funkcijo s parametroma $\mu = 4, \sigma = 2$ in nagrado za ujemanje 2.
 - (a) Zuporabo Needleman-Wunsch-evega algoritma za globalno poravnavo smo dobili naslednjo tabelo:

Dopolnite tabelo tako, da poračunate vrednosti (in ustrezne puščice) za zadnji dve vrstici.

(b) Koliko optimalnih globalnih poravnav dobite? Izpišite vse rešitve. Dobim dve optimalni globalni poravnavi, in sicer:

Z matrikami to izgleda tako:

Spremeni se mesto vrzeli in sicer iz mesta (4,4) na mesto (4,3).

3. Dano imamo naslednjo matriko izražanja:

	T_1	T_2	T_3	T_4	T_5	T_6
g_1	2	2	6	2	3	4
g_2	3	7	3	1	9	3
g_3	2	2	7	2	6	3
g_4	3	2	3	2	1	3
g_5	2	1	5	1	0	4
g_6	3	5	5	8	2	3
g_7	1	3	1	5	4	2
g_8	5	4	2	4	7	5

4. Določite gruče z uporabo metode voditeljev, če je začetna množica voditeljev enaka $X = \{g_1, g_5, g_6\}$. Vsak gen lahko obravnavamo kot vektor $g_i = (T_1, \dots, T_6)$.

Prva iteracija

Prvi korak Najprej je potrebno izračunati razdalje med geni. (Evklidska) razdalja med vsakim genom je definirana kot:

$$d(g_i, g_j) = \sqrt{\left(T_i^{(1)} - T_j^{(1)}\right)^2 + \dots + \left(T_i^{(6)} - T_j^{(6)}\right)^2} \quad ; \quad 1 \le i, j \le 8$$

Primer za prvi gen:

$$d(g_1, g_1) = \sqrt{(2-2)^2 + (2-2)^2 + (6-6)^2 + (2-2)^2 + (3-3)^2 + (4-4)^2} = 0$$

Očitno je razdalja med istim genom 0, kar pravi tudi prva lastnost metrike: $d(x,y) = 0 \iff x = y$. Ko poračunamo vse, dobimo matriko razdalj. Potrebujemo razdalje samo do voditeljev:

3

	$d(g_1,g_i)$	$d(g_5,g_i)$	$d(g_6,g_i)$
g_1	0	18.166	17.493
g_2	8.544	11.091	10.296
g_3	3.317	6.557	8.124
g_4	3.873	3.000	7.071
g_5	18.166	0	10.198
g_6	17.493	10.198	0
g_7	5.657	7.071	5.568
g_8	7.071	9.274	7.681

Drugi korak Za vsak gen izberemo najkrajšo razdaljo med njim in voditeljem.

	$d(g_1,g_i)$	$d(g_5,g_i)$	$d(g_6,g_i)$
g_1	0	18.166	17.493
g_2	8.544	11.091	10.296
g_3	3.317	6.557	8.124
g_4	3.873	3.000	7.071
g_5	18.166	0	10.198
g_6	17.493	10.198	0
g_7	5.657	7.071	5.568
g_8	7.071	9.274	7.681

Tretji korak Iz vsakega stolpca odčitamo nove voditelje (vrednosti označene z rdečo), katere označimo s $C_i, i \in \mathbb{N}$, in sicer:

$$C_1 = \{g_1, g_2, g_3, g_8\}$$

$$C_2 = \{g_4, g_5\}$$

$$C_3 = \{g_6, g_7\}$$

Četrti korak Za gručo C_i z n geni $\{g_1, \ldots, g_k \mid 1 \le k \le 8\}$, izračunamo nov vektor vrednosti $v_i = (v_{i1}, \ldots, v_{in})$ z enačbo:

$$v_i = \frac{1}{n} \sum_{i=1}^n g_k$$

Nove vrednosti so torej aritmetična sredina vseh genov v gruči:

$$v_1 = (3, 3.75, 4.5, 2.25, 6.25, 3.75)$$

$$v_2 = (2.5, 1.5, 4, 1.5, 0.5, 3.5)$$

$$v_3 = (2, 4, 3.5, 6.5, 3, 2.5)$$

Zdaj ponovimo korake dokler ne dosežemo konvergence:

- ko se gruče med iteracijama ne spremenijo
- ko postanejo razlike med radaljami gruč manjše od neke vnaprej določene vrednosti.

Druga iteracija

Prvi + drugi korak

	$d(v_1,g_i)$	$d(v_2,g_i)$	$d(v_3,g_i)$
g_1	3.808	3.354	5.723
g_2	4.743	10.209	8.761
g_3	3.317	6.344	6.764
g_4	5.788	1.500	5.454
g_5	7.036	1.500	7.263
g_6	7.314	7.632	2.784
g_7	5.148	5.958	2.784
g_8	3.937	8.185	6.305

Tretji korak

$$C_4 = \{g_1, g_2, g_3, g_8\}$$

$$C_5 = \{g_4, g_5\}$$

$$C_6 = \{g_6, g_7\}$$

Ker so gruče enake kot v prejšnji iteraciji, lahko postopek tu končamo...

 ${\bf Re \check{s}itev:}\,$ gruče določene z metodo voditeljev s k=3 za dano matriko izražanja so

$$\{g_1, g_2, g_3, g_8\}$$

 $\{g_4, g_5\}$
 $\{g_6, g_7\}$

5. Izračunajte drevo hierarhičnega gručenja z uporabo algoritma UPGMA.

Osnova za algoritem UPGMA je matrika razdalj genov (matrika iz prve iteracije prejšnje naloge), za katero uporabimo sledečo enačbo

$$d_{\text{avg}}(C, C^*) = \frac{1}{|C||C^*|} \sum_{x \in C, y \in C^*} d(x, y)$$

kjer staC in C^{\ast} dve gruči (na začetku so to geni).

	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8
g_1	0	8.544	3.317	3.873	3.464	7.000	5.657	7.071
g_2		0	8.124	10.198	11.091	10.296	10.677	8.602
g_3			0	6.325	6.557	8.124	6.403	7.000
g_4				0	3.000	7.071	5.099	6.403
g_5					0	10.198	7.071	9.274
g_6						0	5.568	7.681
g_7							0	5.916
g_8								0

Gručenje deluje tako, da vsako iteracijo izberemo najbližja gena in ju združimo v gručo. Na začetku je vsak gen v svoji gruči, do konca postopka pa ustvarimo eno celovito gručo, ki bo vsebovala vse gene.

Začetni dendrogram:

 g_1 g_2 g_3 g_4 g_5 g_6 g_7 g_8

Prvi korak Izberemo najmanjšo vrednost med razdaljami.

	g_1	g_2	g_3	g_4	g_5	g_6	g_7	g_8
g_1	0	8.544	3.317	3.873	3.464	7.000	5.657	7.071
g_2		0	8.124	10.198	11.091	10.296	10.677	8.602
g_3			0	6.325	6.557	8.124	6.403	7.000
g_4				0	3.000	7.071	5.099	6.403
g_5					0	10.198	7.071	9.274
g_6						0	5.568	7.681
g_7							0	5.916
g_8								0

Drugi korak Dodamo gena v gručo C_1 , torej $C_1 = \{g_4, g_5\}$ in poračunamo novi vektor v_1 , ki bo predstavljal novo gručo v matriki razdalj (tako kot prej uporabimo aritmetično sredino komponent):

$$v_1 = (2.5, 1.5, 4, 1.5, 0.5, 3.5)$$

Tretji korak Izračunamo razdaljo gruče (C) do vseh ostalih gruč (C^*) s pomočjo prejšnje enačbe. V matriki razdalj odstranimo gena, ki smo ju združili v gručo ter dodamo novo gručo:

	g_1	g_2	g_3	C_1	g_6	g_7	g_8
g_1	0	8.544	3.317	3.669	7.000	5.657	7.071
g_2		0	8.124	10.645	10.296	10.677	8.602
g_3			0	6.441	8.124	6.403	7.000
C_1				0	8.635	6.085	7.839
g_6					0	5.568	7.681
g_7						0	5.916
g_8							0

<u>Četrti korak</u> Gena povežemo na dendrogramu na izračunani višini:

$$g_1$$
 g_2 g_3 g_4 g_5 g_6 g_7 g_8