Introduction to Databases

Tutorial 5

Dr Paolo Guagliardo

Fall 2020 (week 7)

Problem 1 (mandatory). Consider the following set of FDs:

$$D \to AC$$
,

$$AB \rightarrow DE$$
,

$$FD \to E$$
,

$$C \to F$$

(a) Indicate which of the above FDs hold in the following relation:

A	B	C	D	E	F
1	1	2	3	0	4
2	1	2	3	1	4
1	1	3	3	0	5

Moreover, for each FD that does not hold provide two tuples (from the above relation) constituting a violation.

(b) Determine whether each of the following FDs is implied by the FDs above:

$$AC \to E$$

$$BD \to EF$$

$$EF \to BC$$

$$BC \to BF$$

$$AD \to CF$$

$$ABC \to DF$$
$$BE \to AC$$

$$DEF \to AB$$

$$DF \to AE$$

$$CD \to DE$$

$$BE \rightarrow AC$$

$$CD \to ED$$

$$DE \to AF$$

(c) For each FD in point (b) that is implied, write a derivation using Armstrong's axioms (including union and decomposition). Requirement for tutorial marks: attempt at least one derivation.

Solution.

- (a) Let r_1 , r_2 and r_3 denote the rows of the given table (in the order in which they are shown, from top to bottom). Then, we have the following:
 - $D \to AC$ does not hold because r_1 and r_2 agree on the value of D but they disagree on the values the assign to the pair of attributes A, C.
 - $AB \to DE$ holds because all rows that agree on the values they assign to the pair of attributes A, B, namely r_1 and r_3 , also agree on the values they assign to the pair of attributes D, E.
 - $FD \to E$ does not hold because r_1 and r_2 agree on the values they assign to the pair of attributes F, D but they disagree on the value of E.
 - $C \to F$ holds because all rows that agree on the value of C, namely r_1 and r_2 , also agree on the value of F.

- (b) Call Σ the given set of FDs. Recall that, for any FD $X \to Y$, we have $\Sigma \models X \to Y$ if and only if $Y \subseteq C_{\Sigma}(X)$.
 - $\{E\} \not\subset C_{\Sigma}(AC) = ACF$, so $\Sigma \not\models AC \to E$
 - $CF \subseteq C_{\Sigma}(AD) = ADCFE$, so $\Sigma \models AD \rightarrow CF$
 - $DE \subseteq C_{\Sigma}(CD) = CDAFE$, so $\Sigma \models CD \rightarrow DE$
 - $EF \subseteq C_{\Sigma}(BD) = BDACEF$, so $\Sigma \models BD \to EF$
 - $DF \subseteq C_{\Sigma}(ABC) = ABCDEF$, so $\Sigma \models ABC \rightarrow DF$
 - $AC \not\subset C_{\Sigma}(BE) = BE$, so $\Sigma \not\models BE \to AC$
 - $BC \nsubseteq C_{\Sigma}(EF) = EF$, so $\Sigma \not\models EF \to BC$
 - $AB \not\subseteq C_{\Sigma}(DEF) = DEFAC$, so $\Sigma \not\models DEF \to AB$
 - $CD \to ED$ is the same as $CD \to DE$ because the l.h.s. and r.h.s. of an FD are sets of attributes
 - $BF \subseteq C_{\Sigma}(BC) = BCF$, so $\Sigma \models BC \to BF$
 - $AE \subseteq C_{\Sigma}(DF) = DFACE$, so $\Sigma \models DF \rightarrow AE$
 - $AF \subseteq C_{\Sigma}(DE) = DEACF$, so $\Sigma \models DE \rightarrow AF$
- (c) • Derivation of $AD \to CF$
 - (1) $D \to AC$

[given in Σ]

(2) $AD \rightarrow AC$

[from (1) by augmentation with A]

(3) $C \rightarrow F$

[given in Σ]

(4) $AC \rightarrow ACF$

[from (3) by augmentation with AC]

(5) $AD \rightarrow ACF$

[from (2) and (4) by transitivity]

(6) $AD \rightarrow CF$

[from (5) by decomposition]

- Step (6) above uses decomposition, which is a non-essential axiom. It could be replaced as follows: (6a) $ACF \rightarrow CF$

[by reflexivity]

(6b) $AD \rightarrow CF$

[from (5) and (6a) by transitivity]

In general, the decomposition axiom:

$$\frac{X \to YZ}{X \to Y}$$
 (decomposition)

can be replaced by the following sequence that uses only essential axioms:

$$\frac{X \to YZ \qquad \overline{YZ \to Y}}{X \to Y} \stackrel{\text{(reflexivity)}}{\text{(transitivity)}}$$

- Derivation of $CD \to DE$
 - (1) $C \rightarrow F$

[given in Σ]

(2) $CD \rightarrow FD$

[from (1) by augmentation with D]

(3) $FD \rightarrow E$

[given in Σ]

(4) $CD \rightarrow E$

[from (2) and (3) by transitivity]

(5) $CD \rightarrow DE$

[from (4) by augmentation with D]

• Derivation of $BD \to EF$

(1) $D \rightarrow AC$

[given in Σ]

(2) $DB \rightarrow ACB$

(3) $DB \rightarrow AB$

(4) $DB \rightarrow C$

(5) $AB \rightarrow DE$

(6) $DB \rightarrow DE$

(7) $C \rightarrow F$

(8) $DB \rightarrow F$

(9) $DB \rightarrow DEF$

(10) $DB \to EF$

[from (1) by augmentation with B]

[from (2) by decomposition]

[from (2) by decomposition]

[given in Σ]

[from (3) and (5) by transitivity]

[given in Σ]

[from (4) and (7) by transitivity]

[from (6) and (8) by union]

[from (9) by decomposition]

Step (9) above uses union, which is a non-essential axiom. It could be replaced as follows:

(9a) $DB \to DBE$

(9b) $DBE \rightarrow DEF$

(9c) $DB \rightarrow DEF$

[from (6) by augmentation with DB]

[from (8) by augmentation with DE]

[from (9a) and (9b) by transitivity]

In general, the union axiom:

$$\frac{X \to Y \quad X \to Z}{X \to YZ} \text{ (union)}$$

can be replaced by the following sequence that uses only essential axioms:

$$\frac{X \to Y}{X \to XY} \text{ (augmentation with } X) \qquad \frac{X \to Z}{XY \to YZ} \text{ (augmentation with } Y)}{X \to YZ} \text{ (transitivity)}$$

• Derivation of $ABC \to DF$

(1) $AB \rightarrow DE$

[given in Σ]

(2) $ABC \rightarrow DEC$

[from (1) by augmentation with C]

(3) $C \rightarrow F$

[given in Σ]

(4) $DEC \rightarrow DEF$

[from (3) by augmentation with DE]

(5) $ABC \rightarrow DEF$

[from (2) and (4) by transitivity]

(6) $ABC \rightarrow DF$

[from (5) by decomposition]

• Derivation of $CD \to ED$

(1) $C \to F$

[given in Σ]

(2) $CD \rightarrow FD$

[from (1) by augmentation with D]

(3) $FD \rightarrow E$

[given in Σ]

(4) $FD \rightarrow ED$

[from (3) by augmentation with D]

(5) $CD \rightarrow ED$

[from (2) and (4) by transitivity]

- Derivation of $BC \to BF$
 - (1) $C \to F$ [given in Σ]
 - (2) $BC \to BF$ [from (1) by augmentation]

• Derivation of $DF \to AE$

(1) $DF \rightarrow E$

[given in Σ]

(2) $DF \rightarrow DE$

[from (1) by augmentation with D]

(3) $D \to AC$

[given in Σ]

(4) $DE \rightarrow ACE$

[from (3) by augmentation with E]

(5) $DF \rightarrow ACE$

[from (2) and (4) by transitivity]

(6) $DF \rightarrow AE$

[from (5) by decomposition]

• Derivation of $DE \to AF$

(1) $D \to AC$

[given in Σ]

(2) $C \to F$

[given in Σ]

(3) $AC \to AF$

[from (2) by augmentation with A]

(4) $D \to AF$

[from (1) and (3) by transitivity]

(5) $DE \rightarrow AFE$

[from (4) by augmentation with E]

(6) $DE \rightarrow AF$

[from (5) by decomposition]

Problem 2 (optional). Let R, S and T be relations on attributes A, B, C. Given the following set of INDs:

$$R[A, B] \subseteq S[B, C]$$

$$S[C, B] \subseteq T[C, A]$$

determine which of the following INDs are implied:

 $R[A]\subseteq T[A]$

 $R[B] \subseteq T[B]$

 $R[C] \subseteq T[C]$

 $R[A]\subseteq T[B]$

 $R[B] \subseteq T[A]$

 $R[B] \subseteq T[C]$

 $R[C] \subseteq T[B]$

 $R[A] \subseteq T[C]$

 $R[C] \subseteq T[A]$

Solution. Call Σ the given set of INDs. Using the axioms for INDs we can compute the closure Σ^+ of Σ :

(1) $R[A,B] \subseteq S[B,C]$ (2) $S[C,B] \subseteq T[C,A]$ [given in Σ]

[given in Σ]

 $(3) \ R[A] \subseteq S[B]$

[from (1) by projection]

 $(4) S[C] \subseteq T[C]$

[from (2) by projection]

 $(5) R[B,A] \subseteq S[C,B]$

[from (1) by permutation]

(6) $S[B,C] \subseteq T[A,C]$

[from (2) by permutation]

(7) $R[B] \subseteq S[C]$

[from (5) by projection]

(8) $S[B] \subseteq T[A]$

[from (6) by projection]

(9) $R[A, B] \subseteq T[A, C]$

[from (1) and (6) by transitivity]

 $(10) R[A] \subseteq T[A]$

[from (9) by projection]

(11) $R[B,A] \subseteq T[C,A]$

[from (9) by permutation]

(12) $R[B] \subseteq T[C]$

[from (11) by projection]

(13) All trivial INDs obtained by reflexivity

So $R[A] \subseteq T[A]$ and $R[B] \subseteq T[C]$ are implied by Σ (because they are in Σ^+).