Carry-Flag (CF) und Overflow-Flag (OF)

Allgemeine Information:

- Das **Carry-Flag** (Carry-Bit C) ist nur wichtig im Zusammenhang mit **unsigned**-Datentypen.
- Das **Overflow-Flag** ist nur wichtig im Zusammenhang mit **signed**-Datentypen

Für die folgenden Beispiele gilt:

unsigned char: Datenbereich 0 - 255
signed char: Datenbereich -128 - 127

Beispiel 1:

==> signed und unsigned char CF = 0, OF = 0

Hinweis:

- kein Carry von Pos. $6 \rightarrow Pos. 7$
- kein Carry von Pos. 7 \rightarrow Pos. 8 (Position Carry = C) ==> 0F = 0

Beispiel 2:

- ==> signed und unsigned char CF = 0, OF = 1, SF = 1
 - 144 liegt außerhalb des zul. Bereichs
 - außerdem pos. Zahl + pos. Zahl = neg. Zahl ist falsch ==> Overflow- und Sign-Flag gesetzt

<u>Hinweis:</u>

- Carry von Pos. $6 \rightarrow Pos. 7$
- kein Carry von Pos. 7 \rightarrow Pos. 8 (Position Carry = C) ==> OF = 1

Beispiel 3:

==> signed und unsigned char CF = 1, OF = 0

Bei signed char alles korrekt (keine Überschreitung des Bereichs), bei unsigned char Carry C gesetzt.

<u>Hinweis:</u>

- Carry von Pos. $6 \rightarrow Pos. 7$
- Carry von Pos. 7 \rightarrow Pos. 8 (Position Carry = C) ==> 0F = 0

Beispiel 4:

==> signed und unsigned char CF = 1, OF = 1

Bei signed char Bereichsüberschreitung, außerdem neg. Zahl + neg. Zahl = pos. Zahl ist falsch ==> OF = 1 und Carry gesetzt.

Hinweis:

- kein Carry von Pos. 6 \rightarrow Pos. 7
- Carry von Pos. 7 \rightarrow Pos. 8 (Position Carry = C) ==> 0F = 1

Zusammenfassung für OF:

Ist das Carry von Pos. $n-2 \rightarrow Pos. \ n-1$ **XOR** Pos. $n-1 \rightarrow Pos. \ n$ (C) gesetzt ==> OF = 1 (n=8)