UNIVERSITY OF MUMBAI **DEPARTMENT OF COMPUTER SCIENCE**

M.Sc. Computer Science – Semester III

Track C: Computer Networking

Elective II: Wireless Networking

JOURNAL

2023-2024

UNIVERSITY OF MUMBAI **DEPARTMENT OF COMPUTER SCIENCE**

CERTIFICATE

This is to certify	that the	work entered in t	his journal was	done in the Univ	versity
Department	of	Computer	Science	laboratory	by
Mr./Ms			Seat No	0	for
the course of M.S	Sc. Comp	uter Science - Se	mester III (CBC	S) (Revised) duri	ing the
academic year 20	23- 2024	in a satisfactory	manner.		
	_		_		
Subject In-charge			Н	ead of Department	
External Examine	er				

INDEX

Sr. no.	Name of the Practical	Page No.	Date	Sign
1	Configuring WEP on a Wireless Router	1-2		
2	Demonstrating Distribution Layer Functions	3-4		
3	Placing ACLs	5-8		
4	Planning Network-based Firewalls	9-11		
5	Configuring Auto Profiles ACU Utilities	12-15		
6	Creating an Adhoc Network	16-18		
7	Configuring Basic AP Settings	19-21		
8	Configure fast Ethernet on router using packet tracer	22-23		
9	Configure Site-to-Site Wireless Link	24-27		

Aim: Configuring WEP on a Wireless Router

Components: Wireless Router, Router, Switch, Device (PC)

Theory: Wired Equivalent Privacy (WEP) is a security protocol, specified in the IEEE Wireless Fidelity (Wi-Fi) standard, 802.11b. That standard is designed to provide a wireless local area network (WLAN) with a level of security and privacy comparable to what is usually expected of a wired LAN.

Cisco Packet Tracer Setup:-

Implementation:

Step 1: Creating connections using Ethernet and serial cable between devices

Step 2: Configuring all devices according to the table below

Device	Interface	IPv4 address	Other
PC0	IP configuration in	192.168.1.2	Default Gateway:
	desktop		192.168.1.1
PC1	IP configuration in	192.168.2.2	Default Gateway:
	desktop		192.168.2.1
Router0	FastEthernet0/0	192.168.1.1	
Router0	FastEthernet0/1	20.0.0.1	
Router0	Serial0/0/0	10.0.0.1	Clock rate: 64000
Router1	FastEthernet0/0	192.168.2.1	
Router1	Serial0/0/0	10.0.0.2	Clock rate: 64000
PC2	IP Config in desktop		Set to DHCP

Step 3: Configuring wireless router

Click on wireless router > GUI and set the address

Step 4: Adding security mode as WEP and setting up key as 2a2a2a2a2a

Aim: Demonstrating Distribution Layer Functions

Components: Router, Switch, Device (PC)

Theory: The distribution layer is the smart layer in the three-layer model. Routing, filtering, and QoS policies are managed at the distribution layer. Distribution layer devices also often manage individual branch-office WAN connections. This layer is also called the Workgroup layer.

Cisco Packet Tracer Setup:-

Implementation:

Step 1: Arranging devices and creating connections using Ethernet and serial cable between devices according to the image above

Step 2: Configuring all devices according to the table below

Device	Interface	IPv4 address	Other
PC0	IP config	172.16.1.2	Default Gateway: 172.16.1.1
PC1	IP config	192.168.1.2	Default Gateway: 192.168.1.1
DS_1	F0/0	172.16.1.1	
	F0/1	10.0.0.1	
	S0/0/0	30.0.0.1	Clock rate: 64000
	RIP v2	10.0.0.0	
		30.0.0.0	
		172.16.0.0	
DS_2	F0/0	192.168.1.1	
	F0/1	20.0.0.1	
	S0/0/0	30.0.0.2	Clock rate: 64000
	RIP v2	20.0.0.0	
		30.0.0.0	
		192.168.1.0	
Core_1	F0/0	10.0.0.2	
	S0/0/0	40.0.0.1	
	RIP v2	10.0.0.0	
		40.0.0.0	
Core_2	F0/0	20.0.0.2	
	S0/0/0	40.0.0.2	Clock rate: 64000
	RIP v2	20.0.0.0	
		40.0.0.0	

Aim: Placing ACLs

Components: PC, switch, router, server

Theory: A network access control list (ACL) is made up of rules that either allow access to a computer environment or deny it. In a way, an ACL is like a guest list at an exclusive club. Only those on the list are allowed in the doors. This enables administrators to ensure that, unless the proper credentials are presented by the device, it cannot gain access.

Cisco Packet Tracer Setup:-

A) Standard ACL

Implementation:

Step 1: Arranging devices and creating connections and assign IP address as shown below

Step 2: creating access-list in router2 CLI as shown below

```
Router (config-if) #exit
Router (config) #hostname RO
R0(config) #ip route 192.168.2.0 255.255.255.0 192.168.3.2
R0 (config) #
R0 (config) #
R0(config) #access-list 1 deny 192.168.2.101 0.0.0.0
R0(config) #access-list 1 permit any
RO(config) #int fa0/1
RO(config-if) #ip access-group ?
  <1-199> IP access list (standard or extended)
  WORD
           Access-list name
R0(config-if) #ip access-group 1 ?
  in inbound packets
  out outbound packets
RO(config-if) #ip access-group 1 out
R0 (config-if) #
Ctrl+F6 to exit CLI focus
                                                                              Paste
                                                                 Copy
```


B) Extended ACL

Implementation

Step 1: Create the layout shown below and set the IP address accordingly

Step 2: configuring the RIP protocol

Step 3: Setting the access list in Router0 > CLI

```
Router>enable
Router#conf t
Enter configuration commands, one per line. End with CNTL/Z.
Router(config) #access-list 100 deny tcp host 192.168.1.1
Router(config) #access-list 100 deny tcp host 192.168.1.1 host 192.168.19.2 eq
Router(config) #access-list 100 deny tcp host 192.168.17.1 host 192.168.19.2
eq ftp
Router(config) #access-list 100 deny icmp host 192.168
% Invalid input detected at '^' marker.
Router(config) #access-list 100 deny icmp host 192.168.1.2 host 192.168.19.1
Router(config) #access-list 100 permit ip any any
Router(config)#
Router (config) #
Router (config) #
Router (config) #
Router(config) #int se0/1/0
Router(config-if) #ip access-group 100 out
Router(config-if)#
```


Aim: Planning Network-based Firewalls

Components: Wireless Router, Server, PC

Theory: Network firewalls are security devices used to stop or mitigate unauthorized access to private networks connected to the Internet, especially intranets. The only traffic allowed on the network is defined via firewall policies – any other traffic attempting to access the network is blocked.

Cisco Packet Tracer Setup:-

Implementation:

Step 1: Arranging devices and creating connections

- Step 2: Configure wireless router and connect server to wireless router using Ethernet cable
- Step 3: Configure Server by setting IP Config in Server0 to DHCP
- **Step 4:** Configure and connect all PC's to wireless router
- **Step 5:** Changing port to wireless adapter of all PC's

After adding wireless adapter of all PC's they will automatically get connected with wireless router because of DHCP

Step 6: Checking connection of pc's with server

If receiving response from server our connection is done successfully

Step 7: Configure IPv4 firewall to setup networks based firewall and add conditions

After the configuration is done for firewall we are unable to ping to server

```
Approximate round trip times in milli-seconds:

Minimum = 26ms, Maximum = 41ms, Average = 32ms

C:\>ping 192.168.0.100

Pinging 192.168.0.100 with 32 bytes of data:

Request timed out.
Request timed out.
Request timed out.
Request timed out.
Ping statistics for 192.168.0.100:

Packets: Sent = 4, Received = 0, Lost = 4 (100% loss),
```

But we can access the server data (view)

Aim: Configuring Auto Profiles ACU Utilities

Components: WLC (Wireless LAN Controller), AP (Access point), Switch, Server, Laptop, Smartphone, Tablet

Theory: A network access control list (ACL) is made up of rules that either allow access to a computer environment or deny it. In a way, an ACL is like a guest list at an exclusive club. Only those on the list are allowed in the doors. This enables administrators to ensure that, unless the proper credentials are presented by the device, it cannot gain access.

Cisco Packet Tracer Setup: -

Implementation:

Step 1: Arranging devices and creating connections

Step 2: WLC (Wireless LAN Controller):

Config > Management

IPv4 address: 10.10.10.5 Default Gateway: 10.10.10.1

DNS Server: 10.10.10.2

Step 3: Configuring Laptop and server and checking connection:

In Laptop IP Config,

IPv4 address: 10.10.10.10 Default Gateway: 10.10.10.1

DNS Server: 10.10.10.2

In Server0 Config > Fastethernet0,

IPv4 address: 10.10.10.3 Port Status: On

In Server0 > Services > DHCP

Interface: (FastEthernet) Service: ON

Default Gateway: 10.10.10.1 DNS Server: 10.10.10.2

Start IP Address: 10.10.10.100 Subnet Mask: 255.0.0.0

Max no. of users: 100

Click on 'Add' and then 'Save'

Check the connection from laptop0 command prompt with

C:\> ping 10.10.10.1

Step 4: Configuring Admin settings using address (http://10.10.10.5) in the web browser of Laptop2:

1. Create a new username and password and remember it for further steps

2. In the next page, (Set up your Controller)

System Name: GJCCS Management IP Address: 10.10.10.5

Subnet Mask: 255.0.0.0 Default Gateway: 10.10.10.1

Management VLAN ID: 0

3. In the Create your Wireless Networks,

Network name: STUDENT Security: WPA2 Personal

Passphrase: student

4. Click Next in the Advanced Setting section and Apply in the final section

Step 5: Login back to Admin Panel using address (https://10.10.10.5) with the new Admin name and password:

Make sure the 3 Access points are present in the Wireless section,

If not, then re-plug all the access points in the physical section and hit refresh on the top right of the web browser of Laptop0

Go to WLAN make SSID for STUDENT to Student

Step 6: Add new wireless LAN as TEACHER with SSID Teacher and apply and make sure the status is enabled:

Step 7: Create AP Groups for TEACHER and STUDENT:

- 1. In the WLAN tab, select AP Group on the left of the page, below the Advanced section
- 2. Inside, enter

AP Group Name: STUDENT Description: Student AP And click 'add'

- 3. In the WLAN section, select WLAN SSID as Student and add
- 4. Go to the APs section and select the first 2 access points and add them to this AP Group
- 5. Now Repeat above the steps for the TEACHER AP Group and in the access point selection, add the one access point that was left out

Step 8: Take Smartphone to connect Student AP group with wireless connection using SSID

Step 9: Take another smartphone to connect Teachers AP group with wireless connection using SSID

Wait for some time (min 30sec to 1min) after that re-plug the adapters of all Access points

Step 10: Send packets from one smartphone to the other

Aim: Creating an Adhoc Network

Components: Wireless Router, PC

Theory: Ad hoc networks are mostly wireless local area networks (LANs). The devices communicate with each other directly instead of relying on a base station or access points as in wireless LANs for data transfer co-ordination. Each device participates in routing activity, by determining the route using the routing algorithm and forwarding data to other devices via this route.

Cisco Packet Tracer Setup:-

Implementation: -

Step1: Arrange all components i.e., Wireless Router and PC's

Step 2: Configure wireless routers and connect both of them to each other using Ethernet ports:

In **Router0**, go to GUI > Wireless > basic wireless settings

Network SSID: CS and set SSID broadcast to enabled

Now, click on wireless security,

Security Mode: WPA2 Personal, Passphrase: ciscorouter1

Go to the bottom and save settings

In **Router1**, go to GUI > Wireless > basic wireless settings

Network SSID: IT and set SSID broadcast to enabled

Now, click on wireless security,

Security Mode: WPA Personal, Passphrase: ciscorouter2

Step 3: Connect all machines/devices (PC's) to respective router as per our requirements.

Change the Port of all pc's with wireless adapter

Configure Wireless connection: Click on PC0 > Desktop > PC Wireless

Click on Connect tab > click on refresh > Select CS/IT > Enter Password and connect

Do similar configuration to all respective PC's

Aim: Configuring Basic AP Settings

Components: Router, Access points, PC's

Theory: A wireless access point (WAP), or more generally just access point (AP), is a networking hardware device that allows other Wi-Fi devices to connect to a wired network. An access point is a device that creates a wireless local area network, or WLAN, usually in an office or large building.

Cisco Packet tracer Setup:

Step 1: Arrange all devices as following

Step 2: Configure Access Points (A)

In Access point CS

Port 0, set

Port Status: on, Bandwidth: 100 Mbps, Duplex: Half Duplex

Port 1, set

SSID: CS, select WPA2-PSK and password to ciscopacket1

In Access point IT

Port 0, set

Port Status: on, Bandwidth: 100 Mbps, Duplex: Half Duplex

Port 1, set

SSID: IT, select WPA2-PSK and password to ciscopacket2

Step 3: Configure and Setup IP Address for all devices (PC's)

Device	Interface	IPv4 address	Other
CS-1	IP config	192.168.1.3	Default Gateway:
			192.168.1.1
CS-2	IP config	192.168.1.4	Default Gateway:
			192.168.1.1
IT-1	IP config	171.16.10.2	Default Gateway:
			171.16.10.1
IT-2	IP config	171.16.10.3	Default Gateway:
			171.16.10.1
CS-1 and CS-2	Wireless0		SSID: CS
			WPA2-PSK password:
			ciscopacket1
IT-1 and IT-2	Wireless0		SSID: IT
			WPA2-PSK password:
			ciscopacket2
Router2	F0/0	192.168.1.1	
	S0/0/0	20.0.0.1	
	RIP v2	20.0.0.0	
		192.168.1.0	
Router3	F0/0	171.16.10.1	
	S0/0/0	20.0.0.2	
	RIP v2	20.0.0.0	
		171.16.10.0	

Note: Change all port adapters with wireless adapter for all PC's

Aim: Configure fast Ethernet on router using packet tracer

Components: Router, Switches, PC's

Theory: Fast Ethernet is used for departmental backbones, connections to high-speed servers, and connections to workstations running bandwidth-intensive software such as CAD or multimedia applications.

Cisco Packet tracer Setup:

Implementation:

Step 1: Arrange all devices as shown below:

Step 2: Configure Router using CLI, using following commands:

configure t
hostname R1
enable password cisco
interface fa0/0
ip address 192.168.2.1 255.255.255.0
no shutdown
exit
Exit

R1(config)#enable password cisco

```
R1>enable
Password:
R1#R1#R1#
R1#configure terminal
Enter configuration commands, one per line. End with CNTL/Z.
R1(config)#interface FastEthernet0/0
R1(config-if)#ip address 192.168.2.1 255.255.255.0
R1(config-if)#no shutdown
R1(config-if)#exit
R1(config)#exit
R1#
```

Step 3: Configure All PC's and check the connection.

Device	Interface	IPv4 address	Other
PC0	IP config	192.168.2.2	Default Gateway:
			192.168.2.1
PC1	IP config	192.168.2.3	Default Gateway:
			192.168.2.1
PC2	IP config	192.168.2.4	Default Gateway:
			192.168.2.1

Step 4: Ping 192.168.2.1 with all the PCs.

Aim: Configure Site-to-Site Wireless Link

Components: Routers, Switch, PC

Theory: A site-to-site VPN connects users in different locations within an entire network. Through this network, the users can exchange data from their own locations while that information is encrypted and secured through the VPN. Users working in separate offices can still be connected to one another and all of their internal resources. This keeps all users connected even when they are working remotely while securing the information exchanged between them.

Cisco Packet tracer Setup:

Step 1: Connect all devices and assign IP addresses as shown below

Step 2: Set IP route as shown below in the ISP router

Step 3: Try pinging from PC0 or PC1 to check the connection.

In Desktop, Command prompt C:\> ping 192.168.10.10

Step 4: Configure iskamp policy and define IPsec transform set by entering the commands given below in the HQ router

1-Configure ISAKMP policy to establish the IKE(Ineternet Key Exchange) tunnel

```
HQ(config)#crypto isakmp enable

HQ(config)# crypto isakmp policy 20 I

HQ(config-isakmp)#authentication pre-share

HQ(config-isakmp)#encryption 3des

HQ(config-isakmp)#hash md5

HQ(config-isakmp)#group 1

HQ(config-isakmp)#liftetime 3600

HQ(config-isakmp)#exit

HQ(config)#crypto isakmp key cisco123 address 11.11.11.1

2-Define IPsec Transform Set

HQ(config)#crypto ipsec transform-set myset esp-3des esp-md5-hmac
```

Step 5: Create access list and crypto map in the HQ router CLI

```
3-Create Accesslist

R1(config)# access-list 100 permit ip 172.16.1.0 0.0.0.255 192
4-Crete Crypto map for IPsec

HQ(config)#crypto map mymap 20 ipsec-isakmp
HQ(config-crypto-map)#set peer 11.11.11.1
HQ(config-crypto-map)#set transform-set myset
HQ(config-crypto-map)# match address 100
HQ(config-crypto-map)# exit

5-Apply the crypto map to the outgoing interface of the VPN device
HQ(config)#int s0/0/0
HQ(config)#crypto map mymap
```

Step 6: Perform the above 2 steps for the Branch router and change the IP addresses accordingly **Output:**

Verify the created isakmp policies with the following command

