

Architectural Acoustics

7LS8M0

Room Acoustics

Constant Hak

Eindhoven University of Technology
Department of Architecture, Building and Planning
Unit Building Physics and Services

Introduction Room Acoustics

"Acoustics: An Introduction", Kuttruff (Taylor and Francis, 2007)

Detailed information:

Sound in closed spaces Room acoustics

Chapter 9 Chapter 13

Introduction 'Room Acoustics' in closed spaces

Small rooms

Large rooms/halls

Listening rooms
Sound studios
Recording studios
Audiometry rooms

Concert halls
Theaters
Auditoriums
Lecture halls

Introduction

'Room Acoustics' in closed spaces

Small rooms

Large rooms/halls

Listening rooms
Sound studios
Recording studios
Audiometry rooms

Concert halls
Theaters
Auditoriums
Lecture halls

Introduction 'Room Acoustics' in closed spaces

- Music transfer
- Speech transfer
- Sound assessment
- Measurements

Introduction

'Room Acoustics' in closed spaces

Small rooms

Large rooms/halls

'Large room condition':

$$f > f_s = 2000\sqrt{\frac{T}{V}}$$

 $(f_s = Schroeder frequency)$

$$V = 25 \text{ m}^3$$

 $T = 1 \text{ s}$
 $f_s = 400 \text{ Hz}$

$$V = 13000 \text{ m}^3$$

 $T = 2 \text{ s}$
 $f_s = 25 \text{ Hz}$

Introduction

'Room Acoustics' in small rooms

$$V = 3 \times 4 \times 2,5 = 25 \text{ m}^3$$

 $T = 1 \text{ s}$
 $f_s = 400 \text{ Hz}$

Normal modes in small (rectangular) rooms

Architectural Acoustics 7LS8M0

Normal modes in small (rectangular) rooms

Axial mode:

$$f_4 = 4\frac{c}{2L} \quad (m=4)$$

$$p_4(y,t) = \hat{p}\cos(\frac{4\pi y}{L})e^{j\omega_4 t}$$

Normal modes in small (rectangular) rooms

Architectural Acoustics 7LS8M0

Normal modes in small (rectangular) rooms

Normal modes in small (rectangular) rooms

Architectural Acoustics 7LS8M0

Normal modes in small (rectangular) rooms

Axial + Tangential + Obligue:

$$f_{lmn} = \frac{c}{2} \sqrt{\left(\frac{l}{L_x}\right)^2 + \left(\frac{m}{L_y}\right)^2 + \left(\frac{n}{L_z}\right)^2}$$

$$p_{lmn}(x, y, z, t) = \hat{p} \cos\left(\frac{l\pi x}{L_x}\right)^2 \cos\left(\frac{m\pi y}{L_y}\right)^2 \cos\left(\frac{n\pi z}{L_z}\right)^2 \cdot e^{j\omega_{lmn}t}$$

Normal modes in small (rectangular) rooms

Axial + Tangential + Obligue:

http://amroc.andymel.eu/

1	42.9	0-1-0	ax	11	114.3	2-0-0	ax
2	57.2	1-0-0	ax	12	122.1	2-1-0	tan
3	68.6	0-0-1	ax	13	123.8	1-2-1	obl
4	71.5	1-1-0	tan	14	128.6	0-3-0	ax
5	80.9	0-1-1	tan	15	133.3	2-0-1	tan
6	85.8	0-2-0	ax	16	137.2	0-0-2	ax
7	89.3	1-0-1	tan	17	140.1	2-1-1	obl
8	99.1	1-1-1	obl	18	140.8	1-3-0	tan
9	103.1	1-2-0	tan	19	142.9	2-2-0	tan
10	109.8	0-2-1	tan	20	143.7	0-1-2	tan

Literature

```
Bolt (1946) 1:1.25:1.6
```

Walker (1996)
$$1.1L_{y} \le \frac{L_{x}}{L_{z}} \le \frac{4.5L_{y}}{L_{z}} - 4$$
 $L_{x} < 3L_{z}$

$$L_{y} < 3L_{z}$$

Cox and D'Antonio (2000) flattest possible modal frequency response

'Small' Rooms Literature

- [1] R.H.Bolt. Note on the normal frequency statistics in rectangular rooms. J.Acoust.Soc.Am. 18(1) 130-133. (1946).
- [2] M M Louden. Dimension ratios of rectangular rooms with good Distribution of eigentones. Acustica. 24. 101-104 (1971).
- [3] C.L.S.Gilford. The acoustic design of talk studios and listening rooms. J.Audio.Eng.Soc. 27. 17-31. (1979).
- [4] O. J. Bonello. A New Criterion for the Distribution of Normal Room Modes. JAES Volume 29 Issue 9 pp. 597-606; (1981).
- [5] R. Walker. Optimum Dimension Ratios for Small Rooms. Preprint 4191. 100th Convention of the AES. (5/1996).
- [6] Trevor J Cox and Peter D'Antonio. Determining Optimum Room Dimensionsfor Critical Listening Environments: A New Methodology. Proc 110th Convention AES. paper 5353 (2000)

Acoustics Design

Dimension: volume

hall function

concert hall cinema etc.

of persons

volume

Architectural Acoustics 7LS8M0

Acoustics Design

Direct sound field: theoretical free field

$$I_{dir} = \frac{p_{eff}^{2}}{\rho c} \quad \mathbf{W} = \frac{\mathbf{p_{eff}^{2}}}{\rho c} \cdot 4 \mathbf{r}^{2}$$

$$\mathbf{L_{p}} = \mathbf{10} \cdot \mathbf{lg} \left(\frac{\mathbf{p_{eff}^{2}}}{\mathbf{p_{0}^{2}}} \right) = \mathbf{10} \cdot \mathbf{lg} \left(\frac{\mathbf{W} \rho c}{\mathbf{p_{0}^{2}} 4 \pi \mathbf{r^{2}}} \right) \qquad \approx 10 \cdot \mathbf{lg}(1) = 0$$

$$\mathbf{L_{p}} = \mathbf{10} \cdot \mathbf{lg} \left(\frac{\mathbf{W}}{\mathbf{W_{0}}} \right) + \mathbf{10} \cdot \mathbf{lg} \left(\frac{\mathbf{1}}{4 \pi \mathbf{r^{2}}} \right) + \mathbf{10} \cdot \mathbf{lg} \left(\frac{\mathbf{W_{0}} \rho c}{\mathbf{p_{0}^{2}}} \right)$$

$$L_p = L_w + 10 \cdot \lg\left(\frac{1}{4\pi r^2}\right)$$
 [dB]

Acoustics Design

Shape (intermezzo)

$$L_{p} = L_{w} + 10 \cdot lg \left(\frac{Q}{4\pi r^{2}} \right)$$

Q = directivity factor

sound source in free field:

- □ 1/1 sphere
- □ Q = 1
- □ + 0 dB

Acoustics Design

Shape (intermezzo)

$$L_{p} = L_{w} + 10 \cdot lg \left(\frac{Q}{4\pi r^{2}} \right)$$

Q = directivity factor

sound source on hard surface:

- □ 1/2 sphere
- □ Q = 2
- +3dB

Acoustics Design

Shape (intermezzo)

$$L_{p} = L_{w} + 10 \cdot lg \left(\frac{Q}{4\pi r^{2}} \right)$$

Q = directivity factor

sound source in 2 surface corner:

- □ 1/4 sphere
- □ Q = 4
- □ +6 dB

Acoustics Design

Shape (intermezzo)

$$L_{p} = L_{w} + 10 \cdot lg \left(\frac{Q}{4\pi r^{2}} \right)$$

Q = directivity factor

sound source in 3 surface corner:

- 1/8 sphere
- □ Q = 8
- □ +9 dB

Acoustics Design

Shape (intermezzo)

$$Q = Q_s \cdot Q_r$$

$$L_p = L_w + 10 \cdot \lg \left(\frac{Q_s \cdot Q_r}{4\pi r^2} \right)$$

$$Q$$
 directivity factor [-] $q = 10 \lg Q$ directivity index [dB]

Sound Field

Diffuse sound field: theoretical reverberant field

$$I = \frac{p_{eff}^2}{4\rho c}$$
 $W = I \cdot A$ $W = \frac{p_{eff}^2}{4\rho c} \cdot A$

$$L_{p} = 10 \cdot lg \left(\frac{p_{eff}^{2}}{p_{0}^{2}} \right) = 10 \cdot lg \left(\frac{W \cdot 4 \cdot \rho \cdot c}{A \cdot 4 \cdot p_{0}^{2}} \right)$$

$$L_{p} = 10 \cdot lg \left(\frac{W}{W_{0}}\right) + 10 \cdot lg \left(\frac{W_{0} \cdot 4 \cdot \rho \cdot c}{A \cdot 4 \cdot 10^{-10}}\right)$$

$$L_p = L_w + 10 \cdot \lg\left(\frac{4}{A}\right) \quad [dB]$$

Sound Field

-----In a 'normal' room

Architectural Acoustics 7LS8M0

Sound Field

Architectural Acoustics 7LS8M0

Sound Field

Architectural Acoustics 7LS8M0

Sound Field

Architectural Acoustics 7LS8M0

Sound Field

Anechoic room / Reflection free room

Architectural Acoustics 7LS8M0

Sound Field

Anechoic room / Reflection free room

Architectural Acoustics 7LS8M0

Sound Field

Reverberation room

TU/e

Architectural Acoustics 7LS8M0

Intermezzo

Sound Field

Reverberation room

Architectural Acoustics 7LS8M0

Sound in closed spaces 2019 - 2020

Sound Field

Direct field / Diffuse field

direct field

$$L_{p_{direct}} = L_{w} + 10 \lg \left(\frac{Q}{4\pi r^{2}} \right)$$

diffuse veld
$$L_{p_{diffus}} = L_w + 10 lg \left(\frac{4}{A}\right)$$

dir. + diff. field
$$L_{p_{dir} + diff} = L_w + 10 lg \left(\frac{Q}{4\pi r^2} + \frac{4}{A} \right)$$

Critical distance
$$L_{p_{dir}} = L_{p_{diff}} \implies r_k = \sqrt{\frac{QA}{16\pi}}$$

Room Acoustics Concert hall

TU/e

Architectural Acoustics 7LS8M0

Sound in closed spaces 2019 - 2020

Room Acoustics Concert hall

Room Acoustics

Fingerprint(s) of the hall

Room Acoustics Subjective room acoustical parameters

Feedback Spaciousness Intimacy Reverb Clarity Detail Balance Loudness Interplay Sound Color Intelligibility

Room Impulse Response (RIR)

Time-domain

Architectural Acoustics 7LS8M0

Sound in closed spaces 2019 - 2020

- External
 - Impuls
- Internal
 - MLS
 - lin Sweep
 - e-Sweep

- External
 - Impuls
- Internal
 - MLS
 - lin Sweep
 - e-Sweep

- External
 - Impuls
- Internal
 - MLS
 - lin Sweep
 - e-Sweep

- ExternalImpuls
- Internal
 - MLS
 - lin Sweep
 - e-Sweep

IR Measurement MLS versus Sweep

e-Sweep versus lin-Sweep

Architectural Acoustics 7LS8M0

Sound in closed spaces 2019 - 2020

IR Measurement lin-Sweep

IR Measurement e-Sweep

IR Measurement flutter in sporthal

IR Measurement waterfall plot

IR Measurement spectrogram

Microphones

В	Microphone type	Application
0	Omnidirectional	
0,37	Hypocardioid	
0,5	Cardioid	
0,63	Hypercardioid	
0,75	Supercardioid	
1,0	Bidirectional	Measurement!

Microphones

Application B Microphone type **Omnidirectional** Measurement! 1,0 **Bidirectional** Measurement!

Microphones

Parameters

Room ISO 3382

- G [dB]
- EDT [s]
- T20 [s]
- T30 [s]
- C80 [dB]
- D50 --
- T_{S} [ms]
- LF --
- LFC --
- IACC --

Stage Gade

- ST early [dB]
- ST late [dB]
- ST total [dB]

Quality

- INR [dB]
- SNR [dB]
- CC ---

Reflection

- RI --
- Q_{w} --

Speech

ISO 60268-16

- STI
- STI male -
- STI female --
- STITEL
- RASTI -
- ALC [%]

Level

- Grel [dB]
- Magnitude --
- SPL [dB]

Architectural Acoustics 7LS8M0

Sound in closed spaces 2019 - 2020

Roomacoustic Parameters (ISO 3382)

- G [dB]
- EDT [s]
- T20 [s]
- T30 [s]
- C80 [dB]
- D50 --
- Ts [ms]
- | | LF --
- LFC --
- IACC --

Strength G

```
G [dB]
```

- EDT [s]
- T20 [s]
- T30 [s]
- C80 [dB]
- D50 --
- Ts [ms]
- | | LF ---
- LFC --
- IACC --

$$G = L_p - L_W + 31 [dB]$$

$$G = L_p - L_{p(10m\,dir)}[dB]$$

F

Strength G

```
[dB]
EDT [s]
      [S]
T20
T30
      [S]
C80
     [dB]
D50
     [ms]
Ts
IACC --
```

```
G = 10 \lg \frac{\int_{0}^{\infty} p^{2}(t)dt}{\int_{0}^{\infty} p_{10,dir}^{2}(t)dt}
```


Intermezzo

Reverberation Time T₆₀ Sabins decay formula

$$w(t) = w_0 e^{\frac{-cAt}{4V}} for \ t > 0$$

$$T = \frac{24\ln 10}{c} \cdot \frac{V}{A}$$

$$T = 0.163 \frac{V}{A} \qquad T = \frac{V}{6A}$$

Intermezzo

Reverberation Time T₆₀ Eyring's formula

$$w(t) = w_0 e^{\frac{-cSt}{4V}\ln(1-\overline{\alpha})-mct}$$

$$T = 0.163 \frac{V}{4mV - S\ln(1 - \overline{\alpha})}$$

$$for \alpha << 1 \quad \ln(1-\overline{\alpha}) \approx -\overline{\alpha} \rightarrow Sabin$$

Reverberation Time T₆₀

Architectural Acoustics 7LS8M0

Sound in closed spaces 2019 - 2020

Early Decay Time EDT

Reverberation Time T20

Reverberation Time T30

Clarity C80

```
G [dB]
```

$$C_{80} = 101g \frac{\int_{0}^{0.080s} p^{2}(t)dt}{\int_{0.080s}^{\infty} p^{2}(t)dt}$$
 [dB]

Clarity C80

TU/e

Architectural Acoustics 7LS8M0

Sound in closed spaces 2019 - 2020

Clarity C80

Definition D50

- **G** [dB]
- EDT [s]
- T20 [s]
- T30 [s]
- C80 [dB]
- **D**50 --
- Ts [ms]
- __ LF --
- LFC --
- IACC --

$$D_{50} = \frac{\int_{0}^{0.050s} p^{2}(t)dt}{\int_{0}^{\infty} p^{2}(t)dt}$$
 [-]

Centre Time

```
G [dB]
```

$$T_{S} = \frac{\int_{0}^{\infty} t \cdot p^{2}(t)dt}{\int_{0}^{\infty} p^{2}(t)dt}$$
 [s]

Early Lateral Energy LF

- G [dB]
- EDT [s]
- T20 [s]
- T30 [s]
- C80 [dB]
- D50 --
- Ts [ms]
- **√** LF --
- LFC --
- IACC --

Early Lateral Energy LFC

- G [dB]
- EDT [s]
- T20 [s]
- T30 [s]
- C80 [dB]
- D50 --
- Ts [ms]
- ___ LF --
 - LFC --
- IACC --

Inter Aural Cross Correlation IACC

- G [dB]
- EDT [s]
- T20 [s]
- T30 [s]
- C80 [dB]
- D50 --
- Ts [ms]
- LF --
- LFC --
- IACC --

IACF_{t1,t2} =
$$\frac{\int_{t_1}^{t_2} |p_L(t) \cdot p_R(t+\tau)| dt}{\sqrt{\int_{t_1}^{t_2} p_L^2(t) dt \cdot \int_{t_1}^{t_2} p_R^2(t) dt}}$$

$$IACC_{t1,t2} = \max \left| IACF_{t1,t2}(\tau) \right|_{\tau < +1 \, ms}^{\tau > -1 \, ms}$$

Speech Intelligibility

- G [dB]
- EDT [s]
- T20 [s]
- T30 [s]
- C80 [dB]
- D50 --
- Ts [ms]
- | LF --
- LFC --
 - IACC --

Signal modulation reduction

TU/e

Architectural Acoustics 7LS8M0

Sound in closed spaces 2019 - 2020

Signal modulation reduction

TU/e

Architectural Acoustics 7LS8M0

Sound in closed spaces 2019 - 2020

$$m = \frac{A}{I_g} = 1$$

$$m = \frac{A}{I_g} < 1$$

$$m = \frac{A_i}{A_0} = 1$$

$$m = \frac{A_i}{A_0 + n} < 1$$

Speech Intelligibility

Speech Transmission Index: STI

$$m(F) = \frac{\int\limits_{-\infty}^{\infty} p^2(t) \cdot e^{-j2\pi F t} dt}{\int\limits_{-\infty}^{\infty} p^2(t) dt}$$
 Architectural Acoustics 7LS8M0

