SDS 387, Fall 2024 Homework 3

Due October 17, by midnight on Canvas.

1. The **Delta Method** is a method to derive the asymptotic distribution of a function of a random vector converging in distribution to a Gaussian. It is a consequence of the CLT. Formally, let $\mathbb{R}^d \to \mathbb{R}$ be a function continuously differentiable at a point μ on its domain and let $\{X_n\}$ be a sequence of random vectors such that

$$\sqrt{n}(\overline{X}_n - \mu) \stackrel{d}{\to} N_d(0, \Sigma).$$

Show that

$$\sqrt{n}(f(\overline{X}_n) - f(\mu)) \stackrel{d}{\to} N_d(0, \nabla f(\mu)^\top \Sigma \nabla f(\mu)),$$

where $\nabla f(\mu)$) denotes the gradient of f evaluated at μ . This result is referred to as the delta method. *Hint: Do a first-order Taylor series expansion*.

2. The delta method is not very useful when $\nabla f(\mu) = 0$. Here is a one-dimensional example. Suppose that $\sqrt{n}(\overline{X}_n - \mu) \stackrel{d}{\to} N(0, \sigma^2)$ and let $f(x) = x^2$. Show that $\sqrt{n}(\overline{X}_n^2 - \mu^2) \stackrel{d}{\to} N(0, 4\mu^2\sigma^2)$. If $\mu = 0$ the result implies that $\sqrt{n}(\overline{X}_n^2 - \mu^2) \stackrel{p}{\to} 0$. To obtain a limiting distribution, we need to consider a higher-order Taylor series expansion. Show that

$$n(\overline{X}_n^2 - \mu^2) \stackrel{d}{\to} \sigma^2(\chi_1^2(\gamma_n^2) - \gamma_n^2),$$

where $\chi_1^2(\gamma_n^2)$ denotes a chi-squared distribution with one degree of freedom and non-centrality parameter γ_n^2 and

$$\gamma_n = \sqrt{n}\mu/(2\sigma).$$

What is interesting about this problem is that $\sqrt{n}(\overline{X}_n^2 - \mu^2)$ has a non-trivial limiting distribution for all $\mu \neq 0$ but not when $\mu = 0$, an odd discontinuity of sort. On the other hand $n(\overline{X}_n^2 - \mu^2)$ does not suffer from this issue.

Hint: perform a second order Taylor series expansion and use the fact that if $X \sim N(\gamma, \sigma^2)$, then $X^2 \sim \sigma^2 \chi_1^2(\gamma^2)$.

- 3. Let A be a symmetric matrix with eigendecomposition $A = U\Lambda U^{\top}$.
 - (a) Show that, for any positive integer k

$$A^k = U\Lambda^k U^\top$$

and, provided that A is non-singular,

$$A^{-k} = U\Lambda^{-k}U^{\top}.$$

(If A is singular, not all hopes are lost: we would use a pseudo-inverse. But that is a topic for another homework.)

(b) The matrix exponent of a symmetric matrix A is

$$e^A = \sum_{i=1}^{\infty} \frac{A^i}{i!}.$$

Let $A = U\Lambda U^{\top}$ be the eigendecomposition of A. Show that

$$e^A = Ue^{\Lambda}U^{\top}.$$

where e^{Λ} is the diagonal matrix with diagonal elements $e^{\lambda_1}, \ldots, e^{\lambda_n}$, where the λ_i 'a are the eigenvalues of A.

- 4. Let Σ be the covariance matrix of a n-dimensional random vector X that has mean zero. If Σ has rank r < n, show that X takes values on a n r dimensional linear subspace and finds that subspace.
- 5. Let A be a $m \times n$ matrix with SVD $U\Sigma V^{\top}$. Suppose we want to approximate it using a rank $r < \min\{m,n\}$ matrix. We measure the quality of the approximation by the squared Frobenius norm, i.e., we want to find a rank-r $m \times n$ matrix B such that the least squares error

$$||A-B||_F^2$$

is minimal. Find a B such that

$$||A - B||_F^2 = \sum_{i > r} \sigma_i^2,$$

where the σ_i 's are the singular values of A (in decreasing order). In fact, that is the best we can do, a result known as the Eckart-Young-Mirsky theorem.

6. **PCA.** Let A be a n-dimensional positive definite matrix. For i = 1, ..., n, denote with λ_i be the i-th eigenvalue, with corresponding eigenvector u_i , and, without loss of generality, assume that the eigenvalues are ordered in decreasing order. Let $U\Lambda U^{\top}$ be the eigendecomposition of A. The Courant-Fischer-Weyl theorem implies that the eigenvalue/eigenvector pairs can be characterized in the following way. For any $x \in \mathbb{R}^d$, let $q(x) = x^{\top} A x$. Then

$$\lambda_1 = q(u_1) = \max_{\|x\|=1} q(x).$$

For $k \geq 2$, let \mathcal{U}_k be the k-dimensional subspace of \mathbb{R}^n spanned by the first k leading eigenvectors u_1, \ldots, u_k . Then

$$\lambda_k = q(u_k) = \max_{\|x\|=1, x \perp \mathcal{U}_{k-1}} q(x),$$

where $x \perp \mathcal{U}_{k-1}$ signifies that $x \in \mathcal{U}_{k-1}^{\perp}$.

PCA is a technique for dimensionality reduction. If X is a n-dimensional random vector with covariance matrix Σ , then the first k principal components of X are the eigenvectors u_1, \ldots, u_k and their scores are the eigenvalues $\lambda_1, \ldots, \lambda_k$, respectively.

- (a) Show that $Var(u_k^{\top}X) = \lambda_k$. That is, k-th PCA indicates a direction (a one-dimensional subspace) along which to project X, and that projection has variance λ_k . Furthermore, the first PCAs are directions of maximal variance.
- (b) The *total variance* of a (possibly rank deficient) covariance matrix is the sum of its diagonal. Show that this is the same as the sum of its eigenvalue.
- (c) Show that the total variance of the projection of X onto the first k principal components is maximal, i.e. larger than the total variance of the projection of X onto any other k-dimensional linear subspace. So, one way to think of PCA is as the best in the sense of maximizing the total variance linear approximation of X by an affine subspace of dimension k.
- 7. Distance between equidimensional linear subspaces. Let \mathcal{F} and \mathcal{E} be two r-dimensional subspaces of \mathbb{R}^d with orthogonal projection matrices $P_{\mathcal{F}}$ and $P_{\mathcal{E}}$, respectively. To measure the distance between them, a very commonly used metric is the $\sin \theta$ distance:

$$\frac{1}{\sqrt{2}} \|\mathbf{P}_{\mathcal{F}} - \mathbf{P}_{\mathcal{E}}\|_F.$$

(The fact that this is a distance is immediate and follow from the fact that the Frobenius norm is a norm. The division by $\sqrt{2}$ is made out of convenience and is immaterial. To learn more about this topic, see Chapter 5 of the book "Matrix Perturbation Theory" by Stewart and Sun). Show that the squared $\sin \theta$ distance is equal to

$$\|\mathbf{P}_{\mathcal{F}}(I_d - \mathbf{P}_{\mathcal{E}})\|_F^2 = \|\mathbf{P}_{\mathcal{E}}(I_d - \mathbf{P}_{\mathcal{F}})\|_F^2.$$

When r = 1 show that the above expression reduces to

$$1 - (e^{\mathsf{T}}f)^2,$$

where e and f are unit vectors spanning \mathcal{E} and \mathcal{F} respectively. It is, of course, not a coincidence that in this case the squared sin- θ distance is 1 minus the squared cosine of the angle between the vectors f and e.