Matemática Discreta 2

Santiago Sierra

Índice general

		Divisionidad	1 agc 2
	1.1	Introducción	2
	1.2	Máximo Común Divisor	4
	1.3	Pruebas de Irracionalidad	7
	1.4	Algoritmo de Euclides Extendido	8
	1.5	Ecuaciones diofánticas lineales	10
	1.6	El problema de los sellos	12
	1.7	Teorema Fundamental de la Aritmética	13
Chapter 2		Congruencias	Page 15
	2.1	Definiciones y primeras propiedades	15
	2.2	Algunas aplicaciones Criterios de divisibilidad — 17 • Dígitos Verificadores — 18	17
	2.3	Ecuaciones con congruencias	19
	2.4	Teorema Chino del Resto	20
	2.5	Exponenciación y Teoremas de Fermat y Euler	22
Chapter 2			
Chapter 3		Teoría de Grupos	Page 25
	3.1	Definición y propiedades	25
	3.2	Grupos de permutacion	26
	3.3	Tablas de Cayley	27
	3.4	El grupo de enteros módulo n	28
	3.5	El grupo de los invertibles módulo n	29
	3.6	Grupos Dihedrales	29
	3.7	Subgrupos y grupos cíclicos	32
	3.8	Teorema de Lagrange	35
	3.9	Homomorfismos	36
Chapter 4		Raíces Primitivas	Page 39
	4.1	Raíces Primitivas	39

Capítulo 1

Divisibilidad

1.1. Introducción

Teorema 1.1.1 Teorema de División Entera

Dados $a, b \in \mathbb{Z}$, con $b \neq 0$, existen únicos $q, r \in \mathbb{Z}$ con $0 \leq r < |b|$ y a = bq + r.

- 1. A q se le llama el cociente, y a r el resto de dividir a entre b.
- 2. Basta con suponer que b > 0, ya que si a = bq + r entonces a = (-b)(-q) + r.
- 3. Basta con suponer que $a \ge 0$, ya que si a = bq + r (con b > 0 y $0 \le r < b$) entonces -a = -bq r, pero aquí si $r \ne 0$ no obtuvimos un resto positivo. Sumando y restando b, tenemos que: -a = b(-q) b + b r = b(-q 1) + (b r) y si $r \ne 0$ al ser 0 < r < b, tenemos que 0 < b r < b.

 $\boldsymbol{Demostración:}\$ Vamos a suponer que $a\geq 0$ y b>0, veamos primero la existencia: Consideremos el conjunto

$$S = \{ s \in \mathbb{N} : s = a - bx \text{ para algún } x \in \mathbb{Z} \}$$

Entonces, como $a \ge 0$ tomando x = 0, tenemos que $a \in S$ y, por lo tanto $\emptyset \ne S \subset \mathbb{N}$. Como todo conjunto de naturales no vació tiene mínimo, llamamos $r = min\ S$. Así que por la definición de S tenemos que $r \ge 0$ y que existe un $q \in \mathbb{Z}$ con r = a - bq y, por lo tanto a = bq + r. Entonces solo queda probar qué r < b.

Supongamos lo contrario, que $r \ge b$; en este caso tendríamos que r = b + s con $0 \le s < r$. Pero en este caso tendríamos que s = r - b = a - bq - b = a - b(q + 1) y tendríamos que $s \in S$ lo cual es absurdo pues s < r = min S.

Veamos la unicidad: supongamos que $a = bq_1 + r_1$ y $a = bq_2 + r_2$ con $0 \le r_1, r_2 < b$, entonces $bq_1 + r_1 = bq_2 + r_2$, por lo tanto $r_2 = b(q_1 - q_2) + r_1$.

Si $q_1 - q_2 \ge 1$ tendríamos que $r_2 \ge b$, y si $q_1 - q_2 \le -1$ tendríamos que $r_2 < 0$ (pues $r_1 < b$). Así que $q_1 - q_2 = 0$, y sustituyendo, nos queda qué $r_1 = r_2$.

Corolario 1.1.1

Sean $b \in \mathbb{N}$, con $b \ge 2$ y $x \in \mathbb{N}$, entonces existen a_0, a_1, \ldots, a_n enteros tales que podemos escribir a x en base b como

$$x = b^n a_n + b^{n-1} a_{n-1} + \dots + b^1 a_1 + b^0 a_0 = \sum_{i=0}^n b^i a_i, \ y \ 0 \le a_i < b, \ a_n \ne 0$$

Demostración: Lo probamos por inducción en $x \in \mathbb{N}$. Sí x = 0 es claro porque $x = b^0 \times 0$. Sí x > 0, por el teorema anterior existen q y r tales que x = bq + r con $0 \le r < b$. Como q < x aplicamos la

hipótesis inductiva para obtener

$$q = \sum_{i=0}^{n} b^i a_i'$$

con $0 \le a'_i < b$. Entonces

$$x = b\left(\sum_{i=0}^{n} b^{i} a'_{i}\right) + r = \left(\sum_{i=0}^{n} b^{i+1} a'_{i}\right) + r = \sum_{i=1}^{n+1} b^{i} a'_{i-1} + r = \sum_{i=0}^{n+1} b^{i} a_{i}$$

(2)

con $a_0 = r$ y $a_{i+1} = a'_i$ para i = 0, 1, ..., n, demostrado así el corolario.

Ejemplo 1.1.1

Escribamos n = 233 en base 4.

$$233 = 4 \times 58 + 1$$

$$= 4 \times (4 \times 14 + 2) + 1$$

$$= 4 \times (4 \times (4 \times 3 + 2) + 2) + 1$$

$$= 4^{3} \times 3 + 4^{2} \times 2 + 4^{1} \times 2 + 4^{0} \times 1$$

$$= (3221)_{4}$$

Definición 1.1.1

Dados $n, m \in \mathbb{Z}$ decimos que m divide a n si existe $q \in \mathbb{Z}$ tal que n = qm. En este caso escribimos $m \mid n$, y en caso contrario escribiremos $m \nmid n$.

Corolario 1.1.2

- 1. Tenemos que m divide a n si y solo si, el resto de dividir n entre m es cero.
- 2. $\pm 1 \mid a, \forall a \in \mathbb{Z}$. Ademas si un entero x cumple que $x \mid a, \forall a \in \mathbb{Z}$, entonces $x = \pm 1$.
- 3. $b\mid 0, \ \forall b\in \mathbb{Z}$. Ademas, si un entero x cumple que $b\mid x, \ \forall b\in \mathbb{Z}$, entonces x=0.
- 4. $\pm n \mid n \ \forall n \in \mathbb{Z}$.
- 5. Si $b \mid a \ y \ a \neq 0$ entonces $|b| \leq |a|$.
- 6. Si $a \mid b \mid b \mid a$ entonces $a = \pm b$.
- 7. Si $a \mid b \mid c$ entonces $a \mid c$ (transitiva).
- 8. Si $db \mid da \ y \ d \neq 0$ entonces $b \mid a$ (cancelativa).
- 9. Si $b \mid a$, entonces $db \mid da$ para todo $d \in \mathbb{Z}$
- 10. En particular, si d divide a n y a m, entonces d divide al resto de dividir n entre m.

1.2. Máximo Común Divisor

Definición 1.2.1

Si $a \in \mathbb{Z}$ escribiremos Div(a) al conjunto de divisores de a y $Div_+(a)$ al conjunto de divisores positivos de a. Es decir $Div(a) = \{x \in \mathbb{Z} : x \mid a\}$ y $Div_+(a) = \{x \in \mathbb{Z}^+ : x \mid a\}$.

Corolario 1.2.1

Observar que si $a \neq 0$ y $x \mid a$ entonces como $|x| \leq |a|$, $Div(a) \subset \{\pm 1, \pm 2, \dots, \pm a\}$, y por lo tanto Div(a) es un conjunto finito (y en particular acotado).

Dados $a, b \in \mathbb{Z}$ diremos que $x \in \mathbb{Z}$ es un divisor común de a y b si $x \mid a y x \mid b$; es decir, el conjunto de divisores comunes de a y b es $Div(a) \cap Div(b)$.

Observar que si $a \neq 0$ o $b \neq 0$ entonces el conjunto de divisores comunes de a y b es finito y por lo tanto tiene máximo.

Definición 1.2.2

Sean $a,b \in \mathbb{Z}$, definimos el máximo común divisor de a y b, que escribiremos mcd(a,b), de la siguiente manera:

• Si $a \neq 0$ o $b \neq 0$, definimos

$$mcd(a,b) = max(Div(a) \cap Div(b)) = max\{x \in \mathbb{Z} : x \mid a \lor x \mid b\}$$

■ En caso contrario definimos mcd(0,0) = 0.

Proposición 1.2.1

- 1. $mcd(1, a) = 1 \ \forall a \in \mathbb{Z}$.
- 2. $mcd(0,b) = |b| \forall b \in \mathbb{Z}$.
- 3. $mcd(a,b) = mcd(|a|,|b|) \forall a,b \in \mathbb{Z}$.
- 4. Cuando mcd(a,b) = 1 decimos que a y b son coprimos o primos entre sí.

Corolario 1.2.2

Dados $a,b\in\mathbb{Z}$ con $a,b\neq 0$ entonces:

- 1. $mcd(a,b) = mcd(b,a-bx) \forall x \in \mathbb{Z}$.
- 2. En particular, si r es el resto de dividir a entre b, se tiene que mcd(a,b) = mcd(b,r).

Demostración: Por la propiedad 3 que mencione anteriormente, basta con probarlo para $a \ y \ b$ positivos. Llamemos $d = mcd(a,b) \ y \ d' = mcd(b,a-bx)$. Como $d|a \ y \ d|b$, por lo visto en las propiedades del Corolario 1.2 tenemos que d divide a cualquier combinación lineal entera de $a \ y \ b$, en particular, d|a - bx. Por lo tanto $d \in Div(b) \cap Div(a - bx)$, y entonces $d \le max(Div(b) \cap Div(a - bx)) = d'$.

Por otro lado, d'|b y d'|a - bx; utilizando el mismo razonamiento, tenemos que d' divide a (a - bx) + x(b) = a. Así que $d' \in Div(a) \cap Div(b)$ y tenemos qué $d' \leq max(Div(a) \cap Div(b)) = d$.

Definición 1.2.3: Algoritmo de Euclides

Dados $a, b \in \mathbb{Z}$ con $a \ge b > 0$. Y sea r(a, b) el resto de dividir a entre b:

- Fijamos $r_0 = b$.
- Sea $r_1 = r(a, b)$; por lo tanto tenemos que $mcd(a, b) = mcd(b, r_1)$ y que $0 \le r_1 < b$.
- Si $r_1 = 0$, entonces $mcd(a,b) = mcd(b,r_1) = mcd(b,0) = b$; y si no, sea $r_2 = r(b,r_1)$. Por lo tanto $0 \le r_2 < r_1 < b$ y $mcd(a,b) = mcd(b,r_1) = mcd(r_1,r_2)$.
- Se sigue de esta forma, definiendo en el paso i+1, $r_{i+1}=r(r_{i-1},r_i)$, en particular tenemos que $0 \le r_{i+1} < r_i$ y que $mcd(r_{i-1},r_i)=mcd(r_i,r_{i+1})$. De esta forma, vamos construyendo enteros, hasta conseguir $r_n=0$, para obtener

$$mcd(a,b) = mcd(b,r_1) = mcd(r_1,r_2) = \cdots = mcd(r_{n-1},r_n) = mcd(r_{n-1},0) = r_{n-1}$$

Teorema 1.2.1 Igualdad de Bezout

Sean $a, b \in \mathbb{Z}$ con $(a, b) \neq (0, 0)$, entonces:

- 1. $mcd(a,b) = min\{s \in \mathbb{Z}^+ : s = ax + by \text{ para algún } x,y \in \mathbb{Z}\}$
- 2. (Identidad de Bezout) $\exists x, y \in \mathbb{Z} / mcd(a, b) = ax + by$.

Nota:-

Alcanza probarlo para $a, b \in \mathbb{Z}^+$.

Proposición 1.2.2

Los números $x, y \in \mathbb{Z}$ de la segunda parte se llaman "coeficientes de Bezout" (no son únicos).

Demostración: Llamemos $S = \{s \in \mathbb{Z}^+ : s = ax + by \text{ con } x, y \in \mathbb{Z}\}$, por definición, tenemos que $S \subset \mathbb{Z}^+$ y además $S \neq \emptyset$ ya que tomando x = a e y = b, tenemos que $s = ax + by = a^2 + b^2 > 0$ así que $a^+b^{\epsilon}S$.

Entonces por el principio de buen orden, S tiene mínimo, y lo llamamos $s_0 = min S$.

Queremos probar que $s_0 = mcd(a, b)$ y lo haremos probando las dos desigualdades. Tenemos entonces que $s_0 > 0$ y que existen $x_0, y_0 \in \mathbb{Z}$ tales qué $s_0 = ax_0 + by_0$.

Llamemos d = mcd(a, b). Como d|a y d|b, tenemos $d|ax_0 + by_0 = s_0$. Por lo tanto $d \le s_0$.

Probemos ahora que s_0 divide a a y b. Por el teorema de división entera, tenemos que existen $q, r \in \mathbb{Z}$ con $a = qs_0 + r$ y $0 \le r < s_0$.

Luego $r = a - qs_0 = a - q(ax_0 + by_0) = a(1 - qx_0) + b(-qy_0)$. Por lo tanto, si r fuera positivo tendríamos que $r \in S$; pero como s_0 es el menor entero positivo en S y $r < s_0$, tenemos qué r = 0. Resulta entonces que $a = qs_0$ y, por lo tanto $s_0|a$. De igual modo se muestra qué $s_0|b$.

Hemos obtenido que s_0 es un divisor común de a y b, luego $s_0 \le d$.

Proposición 1.2.3

Sean $a, b \in \mathbb{Z}$, no nulos

- 1. Si $e \in \mathbb{Z}$ es tal que $e|a \lor e|b$ entonces e|mcd(a,b).
- 2. $mcd(a,b) = 1 \Leftrightarrow \exists x,y \in \mathbb{Z} \text{ tal que } ax + by = 1.$
- 3. Si $n \in \mathbb{Z}$ entonces mcd(na, nb) = |n|mcd(a, b).
- 4. Sea $d \in \mathbb{Z}^+$ tal que $a = da^*$ y $b = db^*$ con $a^*, b^* \in \mathbb{Z}$. Entonces $d = mcd(a, b) \Leftrightarrow mcd(a^*, b^*) = 1$. A los enteros a^* y b^* tales que $a = mcd(a, b)a^*$ y $b = mcd(a, b)b^*$ se les llama cofactores de a y b.

Corolario 1.2.3

Sean $a, b, c \in \mathbb{Z}$ con mcd(a, b) = 1. Si a|bc entones a|c.

Demostración: Por la igualdad de Bezout, tenemos que existen $x, y \in \mathbb{Z}$ tales que 1 = ax + by. Multiplicando por c tenemos que c = cax + cby. Ahora, a|a y por hipótesis a|cb y, por lo tanto a|a(cx) + cb(y) = c.

Corolario 1.2.4

Sea p un entero primo y $b, c \in \mathbb{Z}$. Si p|bc entonces p|b o p|c.

Demostración: Si $p \nmid b$, entonces (al ser p primo) tenemos que mcd(p,b) = 1, y por el Lema de Euclides concluimos que p|c.

Corolario 1.2.5

Sea $p \in \mathbb{N}$ que cumple que si p|bc entonces p|b o p|c, luego p es primo.

Demostración: Supongamos por absurdo que p no es primo, entonces existen b y c tales que 1 < b, c < p y p = bc. Por hipótesis, como p|p = bc, se tiene que p|b o p|c. Además b|p y c|p. Concluimos que p = b o p = c, pero b, c < p. Por lo tanto, p tiene que ser primo.

Corolario 1.2.6

Sea p un entero primo, y a_1, \ldots, a_n enteros, tales que $p | a_1 a_2 \ldots a_n$. Entonces $p | a_i$ para algún $i \in \{1, \ldots, n\}$.

Definición 1.2.4

Dados $a, b \in \mathbb{Z}$ no nulos, definimos el mínimo común múltiplo de a y b como:

$$mcm(a,b) = min\{x \in \mathbb{Z}^+: a|x \le b|x\}$$

En el caso de que alguno sea nulo, definimos mcm(0, b) = 0, $\forall b \in \mathbb{Z}$.

Definición 1.2.5

Dados $a, b \in \mathbb{Z}$ no nulos, se cumple que

$$mcm(a,b) = \frac{|ab|}{mcd(a,b)}$$

Demostración: Llamemos m = mcm(a,b) y sean a^* y b^* los cofactores de a y b. Claramente $\frac{|ab|}{mcd(a,b)} > 0$ y $\frac{|ab|}{mcd(a,b)} = |ab^*| = |a^*b|$ es múltiplo de a y b; así que $m \le \frac{|ab|}{mcd(a,b)}$. Por otro lado, como a|m, existe $k \in \mathbb{Z}$ tal que

$$m = ak = mcd(a, b)a^*k$$

Como b|m y $b = mcd(a,b)b^*$ tenemos que $mcd(a,b)b^*|mcd(a,b)a^*k$. Como $mcd(a,b) \neq 0$, por la cancelativa tenemos que entonces $b^*|a^*k$. Ahora como $mcd(a^*,b^*)=1$, por el Lema de Euclides, tenemos que $b^*|k$. Por lo tanto, existe $k' \in \mathbb{Z}$ tal que $k=b^*k'$ y sustituyendo, obtenemos que $m=ab^*k'$ y, por lo tanto $\frac{|ab|}{mc(a,b)}=|ab^*|\leq m$.

1.3. Pruebas de Irracionalidad

Corolario 1.3.1

Si p es primo entonces \sqrt{p} no es racional.

1.4. Algoritmo de Euclides Extendido

Veamos ahora un método para hallar coeficientes de Bezout; es decir, $x, y \in \mathbb{Z}$ tales que mcd(a, b) = ax + by. Escribimos los datos de cada paso del Algoritmo de Euclides en forma de vector.

En general, si partimos del dato inicial $B_0 = \begin{pmatrix} a \\ b \end{pmatrix}$:

1. En el primer paso del algoritmo de Euclides realizamos $a = bq_1 + r_1$, y obtenemos los nuevos datos

$$B_1 = \begin{pmatrix} b \\ r_1 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & -q_1 \end{pmatrix} B_0$$

Llamemos $M_1 = \begin{pmatrix} 0 & 1 \\ 1 & -q_1 \end{pmatrix}$.

2. Luego realizamos lo mismo con estos nuevos datos: $b = q_2r_1 + r_2$, y obtenemos los nuevos datos

$$B_2 = \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} \text{ y } M_2 = \begin{pmatrix} 0 & 1 \\ 1 & -q_2 \end{pmatrix}$$

con la relación

$$B_2 = \begin{pmatrix} r_1 \\ r_2 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & -q_2 \end{pmatrix} B_1 = M_2 M_1 B_0$$

3. Y seguimos el algoritmo, donde cada paso con los datos $B_i = \begin{pmatrix} r_{i-1} \\ r_i \end{pmatrix}$ escribiendo $r_{i-1} = q_{i+1}r_i + r_{i+1}$ obtenemos los nuevos datos $B_{i+1} = \begin{pmatrix} r_i \\ r_{i+1} \end{pmatrix}$ y la matriz $M_{i+1} = \begin{pmatrix} 0 & 1 \\ 1 & -q_{i+1} \end{pmatrix}$, con la relación

$$B_{i+1} = \begin{pmatrix} r_i \\ r_{i+1} \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & -q_{i+1} \end{pmatrix} B_i = M_{i+1}B_i = M_{i+1}M_i \dots M_1B_0$$

4. Al obtener el primer resto nulo, $r_n = 0$ tendremos que en el paso anterior

$$B_{n-1} = \begin{pmatrix} r_{n-2} \\ r_{n-1} \end{pmatrix} = \begin{pmatrix} r_{n-2} \\ mcd(a,b) \end{pmatrix} = M_{n-1} \dots M_1 B_0$$

Llamando $M = M_{n-1} \dots M_1$ tenemos que

$$B_{n-1} = \begin{pmatrix} r_{n-2} \\ mcd(a,b) \end{pmatrix} = M \ B_0 = M \begin{pmatrix} A \\ B \end{pmatrix}$$
:

por lo tanto, si $M = \begin{pmatrix} z & w \\ x & y \end{pmatrix}$, la ultima fila nos dice que mcd(a,b) = xa + yb; es decir, la segunda fila de M son coeficientes de Bezout para a y b.

Ejemplo 1.4.1

El dato inicial del algoritmo es el vector $B_0 = \begin{pmatrix} 132\\28 \end{pmatrix}$.

■ En el primer paso, a partir de 132 = $4 \times 28 + 20$, cambiamos los datos del algoritmo a $B_1 = \begin{pmatrix} 28 \\ 20 \end{pmatrix}$, observar que:

$$B_1 = \begin{pmatrix} 28\\20 \end{pmatrix} = \begin{pmatrix} 0 & 1\\1 & -4 \end{pmatrix} \begin{pmatrix} 132\\28 \end{pmatrix}$$

■ En el segundo paso, a partir de 28 = $1 \times 20 + 8$, cambiamos los datos del algoritmo a $B_2 = \binom{20}{8}$, queda:

$$B_2 = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 28 \\ 20 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -4 \end{pmatrix} \begin{pmatrix} 132 \\ 28 \end{pmatrix}$$

■ En el segundo paso, a partir de 20 = 2 × 8 + 4, cambiamos los datos del algoritmo a $B_3 = \begin{pmatrix} 8 \\ 4 \end{pmatrix}$, observamos que:

$$B_3 = \begin{pmatrix} 8 \\ 4 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 20 \\ 8 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -4 \end{pmatrix} \begin{pmatrix} 132 \\ 28 \end{pmatrix}$$

Ahora, como $8 = 2 \times 4 + 0$, es decir el resto es 0, ya podemos hacer el producto

$$\begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & -4 \end{pmatrix} = \begin{pmatrix} -1 & 5 \\ 3 & -14 \end{pmatrix}$$

Obteniendo

$$\begin{pmatrix} 8 \\ 4 \end{pmatrix} = \begin{pmatrix} -1 & 5 \\ 3 & -14 \end{pmatrix} \begin{pmatrix} 132 \\ 28 \end{pmatrix}$$

En particular, obtenemos que 4=3(132)-14(28). Obtuvimos entonces que x=3 e y=-14 verifican que 4=132x+28y.

1.5. Ecuaciones diofánticas lineales

Definición 1.5.1

Una ecuación diofántica lineal en las variables x, y es una ecuación de la forma ax + by = c, con $a, b, c \in \mathbb{Z}$. Nos interesa buscar todas las soluciones enteras a la ecuación, por lo tanto, diremos que el conjunto solución es:

$$S = \{(x, y) \in \mathbb{Z} \times \mathbb{Z} : ax + by = c\}$$

A partir de ahora, cuando hablamos de una solución a la ecuación, nos referimos a un par $(x, y) \in S$.

Teorema 1.5.1

Sean a, b, c enteros con $(a, b) \neq (0, 0)$. Entonces la ecuación diofántica ax + by = c

- Tiene solución si y solo si mcd(a,b)|c.
- Ademas, si tiene una solución, tiene infinitas. Es mas, si (x_0, y_0) es una solución, entonces el conjunto de soluciones es

$$S = \left\{ \left(x_0 + \frac{b}{mcd(a,b)} k, y_0 - \frac{a}{mcd(a,b)} k \right) : k \in \mathbb{Z} \right\} = \left\{ (x_0 + b^*k, y_0 - a^*k) : k \in \mathbb{Z} \right\}$$

Demostración: Llamemos d = mcd(a, b). Al ser $(a, b) \neq (0, 0)$, tenemos que $d \neq 0$.

1. Si la ecuación tiene solución, entonces existen $x_0, y_0 \in \mathbb{Z}$ tales que $ax_0 + by_0 = c$. Como d|a y d|b, entonces $d|ax_0 + by_0 = c$.

Supongamos ahora que d|c y veamos que la ecuación tiene solución: como d|c, existe $e \in \mathbb{Z}$ tal que c = de. Por la igualdad de Bezout, existen $x', y' \in \mathbb{Z}$ tales que ax' + by' = d. Multiplicando por e tenemos que a(x'e) + b(y'e) = de = c, y por lo tanto el par (x, y) = (x'e, y'e) es solución de la ecuación ax + by = c.

2. Sea (x_0, y_0) una solución. Veamos primero que para todo $k \in \mathbb{Z}$, el par

$$\left(x_0 + \frac{b}{mcd(a,b)}k, y_0 - \frac{a}{mcd(a,b)}k\right)$$

es solución de la ecuación. Para esto simplemente sustituimos:

$$a\left(x_{0} + \frac{b}{mcd(a,b)}k\right) + b\left(y_{0} - \frac{a}{mcd(a,b)}\right) = ax_{0} + \frac{abk}{d} + by_{0} - \frac{abk}{d} = ax_{0} + by_{0} = c$$

donde la ultima igualdad vale porque (x_0, y_0) es solución.

Veamos ahora que para cualquier solución (x_1, y_1) de la ecuación, existe un $k \in \mathbb{Z}$ tal que

$$(x_1, y_1) = \left(x_0 + \frac{b}{d}k, y_0 - \frac{a}{d}k\right) = (x_0 + b^*k, y_0 - a^*k)$$
. Al ser $(a, b) \neq (0, 0)$ podemos suponer que $b \neq 0$ (y en consecuencia $b^* = \frac{b}{d} \neq 0$).

Sea entonces (x_1, y_1) una solución, tenemos pues que

$$ax_1 + by_1 = c y$$
$$ax_0 + by_0 = c$$

Por lo tanto $ax_1 + by_1 = ax_0 + by_0$, entonces $a(x_1 - x_0) = b(y_0 - y_1)$. Al ser $d \neq 0$, podemos dividir entre d y obtenemos $a^*(x_1 - x_0) = b^*(y_0 - y_1)$.

Tenemos en particular que $b^*|a^*(x_1-x_0)$ y como $mcd(a^*,b^*)=1$, por el Lema de Euclides tenemos que $b^*|(x_1-x_0)$. Por lo tanto existe un $k \in \mathbb{Z}$ tal que $x_1-x_0=b^*k$ y por lo tanto $x_1=x_0+b^k$. Si ahora sustituimos en la ecuación anterior obtenemos:

$$a^*b^*k = b^*(y_0 - y_1)$$

y como supusimos $b^* \neq 0$, cancelando obtenemos $a^*k = y_0 - y_1$, y por lo tanto $y_1 = y_0 - a^*k$.

Ejemplo 1.5.1

Una barraca vende ladrillos a 12 pesos la unidad y baldozas a 21 pesos cada una. Tenemos 333 pesos y queremos gastarlo todo en baldozas y ladrillos (y que no sobre nada). De cuantas formas podemos hacerlo? Si llamamos x a la cantidad de ladrillos que compramos, e y la cantidad de baldozas, tenemos que $x, y \in \mathbb{N}$ y la condición de gastar los 333 pesos se traduce a

$$12x + 21y = 333$$

Algunas observaciones:

- La primera es que como tanto 12 y 21 son múltiplos de 3, el dinero que gastamos tendrá que ser múltiplo de 3, es decir, si en vez de 333 pesos quisiéramos gastar 100 pesos, no podríamos hacerlo.
- La segunda observación es que como 3 = mcd(12, 21), por la igualdad de Bezout podemos hallar $x', y' \in \mathbb{Z}$ tales que 12x' + 21y' = 3.
- Por ejemplo x' = 2 e y' = -1 cumplen la ultima ecuación: 12(2) + 21(-1) = 3.
- Si multiplicamos la ultima igualdad por 111, obtenemos que 12(222) + 21(-111) = 333, es decir, que x = 222 e y = -111 verifican la ecuación; pero estos valores de x e y no nos resuelven el problema original, ya que buscamos que $x, y \ge 0$. No nos interesa entonces hallar TODOS los pares de enteros (x, y) que son solución, hay que buscar los que no sean negativos.
- Como ya tenemos una solución, viendo el ultimo teorema, sabemos que el conjunto solución es $\{(x,y)=(222-7k,-111+4k): k\in\mathbb{Z}\}$, siendo $x_0=222$, $\frac{b}{mcd(a,b)}=\frac{21}{3}=7$, $y_0=-111$, y $\frac{a}{mcd(a,b)}=\frac{12}{3}=4$.

Entonces, para terminar de resolver el problema original, necesitamos las soluciones tales que $x=222-7k \ge 0$, e $y=-111+4k \ge 0$, es decir las soluciones para valores de k tales que $222 \ge 7k$ y $4k \ge 111$. O sea, necesitamos $k \in \mathbb{Z}$ con $\frac{111}{4} \le k \le \frac{222}{7}$, así que los valores de k son k=28,29,30,31, y por lo tanto, las soluciones al problema son (x=26,y=1), (x=19,y=5), (x=12,y=9), (x=5,y=13).

1.6. El problema de los sellos

Proposición 1.6.1

Sean a > 1, b > 1 enteros, primos entre si. Entonces no hay enteros x, y no negativos con ax + by = ab - a - b.

Proposición 1.6.2

Sean a y b enteros positivos tales que mcd(a,b)=1. Si $n \geq ab-a-b+1$, entonces existen enteros no negativos x,y tales que ax+by=n.

Demostración: Por el teorema 1.5 como mcd(a,b) = 1, existe un par de enteros (x_0,y_0) que cumplen

$$ax_0 + by_0 = n \ge ab - a - b + 1$$

que nos permite expresar todas las soluciones en la forma

$$x = x_0 + bk$$
, $y = y_0 - ak$, $k \in \mathbb{Z}$

Usando el algoritmo de división, podemos dividir y_0 por a y escribir $y_0 = at + y_1$, con $0 \le y_1 \le a - 1$, para algún entero t. Probaremos que $x_1 = x_0 + bt$ es no negativo. Si $x_1 \le -1$, entonces, como $y_1 \le a - 1$,

$$n = ax_0 + by_0$$

$$= a(x_1 - bt) + b(y_1 + at)$$

$$= ax_1 + by_1$$

$$\leq a(-1) + b(a - 1)$$

$$\leq ab - a - b$$

que contradice la hipótesis $n \ge ab-a-b+1$. Concluimos que (x_1,y_1) es una solución de enteros no negativos.

1.7. Teorema Fundamental de la Aritmética

Teorema 1.7.1 Teorema Fundamental de la Aritmética

Sea $n \in \mathbb{N}$, n > 1; entonces

- 1. Existen primos p_1, \ldots, p_k (no necesariamente distintos) con $k \ge 1$, tales que $n = p_1 \ldots p_k$.
- 2. Hay unicidad en la factorización. Es decir, k (la cantidad de factores primos) es único y la lista de primos (contando repeticiones), p_1, \ldots, p_k es única.

Demostración:

- 1. Demostraremos la existencia de la factorización en primos por inducción en n.
 - Si n = 2, al ser 2 primo, tomando $p_1 = 2$ tenemos que $2 = p_1$.
 - Sea n > 2. Supongamos que las factorizaciones en productos de primos existen para todo natural m con 2 ≤ m < n (hipótesis inductiva) y probemoslo para n (tesis inductiva):
 Si n es primo, entonces tomando p₁ = n tenemos lo deseado. Si n no es primo, entonces n tiene un divisor positivo a, con 1 < a < n. Entonces existe b ∈ Z tal que n = ab y luego 1 < b < n. Por lo tanto a y b se encuentran en nuestra hipótesis inductiva, y por lo tanto existen primos p₁,..., pk y p'₁,..., p'r tales que a = p₁...pk y b = p'₁...p'r. Al ser n = ab tenemos que n = p₁...pkp'₁...p'r y hemos probado la tesis inductiva.
- 2. Para probar la unicidad supongamos que existe un natural n>1 que se escribe de dos formas distintas como producto de primos. Podemos considerar n_0 , el menor natural que verifica lo anterior. Entonces existen primos $p_1, \ldots, p_k, q_1, \ldots, q_r$ tales que $n_0 = p_1 \ldots p_k$, $n_0 = q_1 \ldots q_r$ con $\{p_1, \ldots, p_k\} \neq \{q_1, \ldots, q_r\}$ (y como claramente n_0 no puede ser primo, tenemos que $k, r \geq 2$.)

 Tenemos entonces que $p_1 \ldots p_k = q_1 \ldots q_r$ y por lo tanto $p_1 | q_1 \ldots q_r$. Al ser p_1 primo, por el corolario 1.2 existe $j \in \{1, \ldots, r\}$ tal que $p_1 | q_j$; y al ser $p_1 > 1$ y q_j primo, debe ser $p_1 = q_j$. Podemos asumir que j = 1. Así que ahora tenemos que $p_1 \ldots p_k = p_1 q_2 \ldots q_r$ y cancelando p_1 obtenemos $p_2 \ldots p_k = q_2 \ldots q_r$ es un entero $p_1 = q_2 \ldots p_n$ y $p_1 = q_2 \ldots p_n$ es un entero $p_2 = q_2 \ldots q_n$ y $p_3 = q_3 \leq q$

⊜

Corolario 1.7.1

Existen infinitos primos.

Demostración: Supongamos por absurdo que existe una cantidad finita de primos y sea $\{p_1, \ldots, p_k\}$ el conjunto de todos los primos. Consideremos el entero $n = p_1 p_2 \ldots p_k + 1$. Al ser n > 1, por el Teorema Fundamental de la Aritmética, n se escribe como producto de primos. En particular, existe algún primo p que divide a n, y como supusimos que todos los primos son $\{p_1, \ldots, p_k\}$ tenemos que $p_i | p$ para algún $i \in \{1, \ldots, k\}$. Tenemos entonces que $p_i | p_1 p_2 \ldots p_k + 1$, pero como $p_i | p_1 p_2 \ldots p_k$, tenemos que $p_i | 1$ lo cual es absurdo al ser $p_i > 1$.

Nota:-

Si en la descomposición de un entero positivo a, tomamos primos distintos, entonces estos pueden aparecer con exponentes. Por lo tanto, todo entero a > 1 se escribe (de forma única, al menos del orden) como $a = p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}$, con p_i primos distintos y $e_i \in \mathbb{Z}^+$.

Proposición 1.7.1

Sean a, b enteros positivos con descomposición en factores primos

$$a = 2^{a_2}3^{a_3}5^{a_5}$$
 y $b = 2^{b_2}3^{b_3}5^{a_5}$

entonces:

- 1. a|b si y solo si $a_p \le b_p$ para todo p (cabe aclarar que estamos notando como $a=p^{a_p}$ como lo hice arriba)
- 2. $mcd(a,b)=2^{d_2}3^{d_3}5^{d_5}\dots$ siendo $d_p=min\{a_p,b_p\}$ para todo primo p.
- 3. $mcm(a,b)=2^{m_2}3^{m_3}5^{m_5}\dots$ siendo $m_p=max\{a_p,b_p\}$ para todo primo p.

Demostración:

1. Si a|b, existe $c \in \mathbb{Z}^+$ tal que ac = b. Escribimos $c = 2^{c_2}3^{c_3}5^{c_5}\dots$ y tenemos

$$2^{a_2+c_2}3^{a_3+c_3}5^{a_5+c_5}\cdots = ac = b = 2^{b_2}3^{b_3}5^{b_5}\dots$$

Por la unicidad de la descomposición factorial debe ser $a_p + c_p = b_p$ para todo primo p y en particular (al ser $c_p \ge 0$) $a_p \le b_p$.

2. Por lo visto en la parte anterior, tenemos que

$$Div_{+}(a) = \{c = 2^{c_2} 3^{c_3} 5^{c_5} \dots \text{ con } 0 \le c_p \le a_p, \ \forall p\}$$

$$Div_{+}(b) = \{c = 2^{c_2}3^{c_3}5^{c_5}\dots \text{ con } 0 \le c_p \le b_p, \ \forall p\}$$

Por lo tanto, los divisores comunes de a y b son:

$$\begin{split} Div_{+}(a) \cap Div_{+}(b) &= \left\{ c = 2^{c_2} 3^{c_3} 5^{c_5} \dots \text{ con } 0 \leqslant c_p \leqslant a_p, \text{ y } c_p \leqslant b_p, \ \forall p \right\} \\ &= \left\{ c = 2^{c_2} 3^{c_3} 5^{c_5} \dots \text{ con } 0 \leqslant c_p \leqslant min\{a_p, b_p\}, \ \forall p \right\} \end{split}$$

El máximo de este conjunto es claramente $c=2^{d_2}3^{d_3}5^{d_5}\dots$ siendo $d_p=min\{a_p,b_p\}$ para cada primo p.

3. Se deduce de la parte anterior y del hecho de que para enteros positivos a y b se tiene que $mcm(a,b) = \frac{ab}{mcd(a,b)}$.

(

Corolario 1.7.2

Sea $n=p_1^{e_1}p_2^{e_2}\cdots p_k^{e_k},$ con p_i primos distintos y $e_i\in\mathbb{Z}^+.$ Entonces:

- 1. $Div_+(n) = \{p_1^{c_1}p_2^{c_2}\dots p_k^{c_k}: c_i \in \mathbb{N} \text{ y } c_i \leq e_i, \forall i = 1,\dots,k\}.$
- 2. La cantidad de divisores positivos de n es $\#Div(n)=(e_1+1)(e_2+1)\dots(e_k+1)$.
- 3. El entero n es un cuadrado perfecto (es decir, existe $m \in \mathbb{Z}$ tal que $n = m^2$) si y solo si $2|e_i \forall i = 1 \dots, k$.
- 4. Existe $m \in \mathbb{Z}^+$ y $k \in \mathbb{Z}^+$ tales que $n = m^k$ si y solo si, todos los e_i son múltiplos de k.

Capítulo 2

Congruencias

2.1. Definiciones y primeras propiedades

Definición 2.1.1

Fijado $n \in \mathbb{Z}$, y dados $a, b \in \mathbb{Z}$, decimos que a es congruente con b módulo n y escribimos $a \equiv b \pmod{n}$ si $n \mid a - b$. En caso contrario, escribiremos $a \not\equiv b \pmod{n}$.

Proposición 2.1.1

- 1. La congruencia módulo n es una relación de equivalencia.
- 2. $a \equiv b \pmod{n}$ si y solo si $a \equiv b \pmod{(-n)}$.
- 3. $a \equiv b \pmod{n}$ si y sólo si $a \neq b$ tienen el mismo resto al dividirlos entre n.
- 4. Dado $n \in \mathbb{Z}^+$, y $a \in \mathbb{Z}$ existe un único $r \in \{0, 1, \dots, n-1\}$ tal que $a \equiv r \pmod n$ (r es el resto de dividir a entre n).

Ejemplo 2.1.1 (Propiedad cancelativa)

Observemos por ejemplo que $6 \equiv 16 \pmod{5}$; es decir, $2 \times 3 \equiv 2 \times 8 \pmod{5}$. En este caso podemos cancelar el 2 ya que claramente $3 \equiv 8 \pmod{5}$.

Ahora, porque podemos cancelar el 2?

La congruencia $6 \equiv 16 \pmod{5}$ es cierta pues 5|(16-6); factorizando el 2, tenemos que 5|2(8-3), y como 5 y 2 son coprimos, por el Lema de Euclides, obtenemos entonces 5|(8-3) y por lo tanto $3 \equiv 8 \pmod{5}$. Aquí utilizamos que mcd(5,2) = 1; esto es absolutamente necesario para poder cancelar y obtener una congruencia con el mismo modulo.

Ejemplo 2.1.2

Observar que $5 \equiv 10 \pmod{5}$; es decir $5 \times 1 \equiv 5 \times 2 \pmod{5}$ y sin embargo $1 \not\equiv 2 \pmod{5}$. Aquí no podemos cancelar el 5 pues el hecho de que $5 \mid (10 - 5) = 5(2 - 1)$ no implica que $5 \mid (2 - 1)$.

Proposición 2.1.2 Propiedades Cancelativas

Sea $a, b, c, n \in \mathbb{Z}$ con $c \neq 0$.

- 1. Si $ca \equiv cb \pmod n$ y mcd(c,n) = 1 entonces $a \equiv b \pmod n$.
- 2. Si c|n y $ca \equiv cb \pmod n$ entonces $a \equiv b \pmod {\frac{n}{c}}$.
- 3. Si $ca \equiv cb \pmod{n}$ entonces $a \equiv b \pmod{\frac{n}{mcd(c,n)}}$.

Demostración:

- 1. Tenemos que $ca \equiv cb \pmod{n}$, es decir n|(ca-cb). Entonces n|c(a-b) y como mcd(c,n)=1 por el Lema de Euclides obtenemos que n|(a-b) y por lo tanto $a \equiv b \pmod{n}$.
- 2. Si c|n, existe un $k \in \mathbb{Z}$ tal que n = ck. Si ademas $ca \equiv cb \pmod{n}$ entonces ck = n|c(a b). Por lo tanto existe $e \in \mathbb{Z}$ tal que c(a b) = cke, y como $c \neq 0$, por la cancelativa en \mathbb{Z} tenemos que a b = ke. Por lo tanto k|(a b) y entonces $a \equiv b \pmod{k}$, es decir $a \equiv b \pmod{\frac{n}{c}}$.
- 3. Si llamamos d = mcd(c, n) tenemos que $c = dc^*$ y $n = dn^*$, con c^* , n^* enteros coprimos. Si $ca \equiv cb$ (mod n), entonces $dc^*a = dc^*b$ (mod dn^*), y por la parte anterior tenemos que $c^*a \equiv c^*b$ (mod n^*). Ahora como $mcd(c^*, n^*) = 1$, utilizando la primer parte para estos enteros obtenemos que $a \equiv b$ (mod n^*); es decir $a \equiv b$ (mod $\frac{n}{mcd(c,n)}$).

2.2. Algunas aplicaciones

Proposición 2.2.1

Sean $a,b,c,n,m\in\mathbb{Z}.$

- 1. $a \equiv b \pmod{n}$ y $c \equiv b \pmod{n} \Rightarrow a + c \equiv b + d \pmod{n}$ y $ac \equiv bd \pmod{n}$.
- 2. $b \equiv c \pmod{n} \Rightarrow a + b \equiv a + c \pmod{n}$.
- 3. $a \equiv b \pmod{n}$ y $m|n \Rightarrow a \equiv b \pmod{m}$.
- 4. $a \equiv b \pmod{m} \Rightarrow na \equiv nb \pmod{m}$.
- 5. $a \equiv b \pmod{m}$ y $n \in \mathbb{N} \Rightarrow a^n \equiv b^n \pmod{m}$.

2.2.1. Criterios de divisibilidad

Proposición 2.2.2

Si los dígitos de a son $a=a_k\ldots a_1a_0$. Entonces 3|a si y sólo si $3|a_0+a_1+\cdots+a_k$.

Demostración: Tenemos que $a = a_k 10^k + \dots a_1 10 + a_0$. Tenemos que 3|a si y sólo si $a \equiv 0 \pmod 3$; es decir, si y solo si $a_k 10^k + \dots + a_1 10 + a_0 \equiv 0 \pmod 3$.

Ahora $10 \equiv 1 \pmod{3}$, y entonces (por la ultima propiedad de la proposición anterior) $10^i \equiv 1^i \pmod{3}$ para todo $i \in \mathbb{N}$. Así que $10^i \equiv 1 \pmod{3}$ y por lo tanto para todo $i = 0, \dots k$ tenemos que $a_i 10^i \equiv a_i \pmod{3}$ (por la propiedad (4)); y sumando, utilizando la propiedad (1) obtenemos que $a = a_k 10^k + \dots + a_1 10 + a_0 \equiv a_k + \dots + a_1 + a_0 \pmod{3}$.

Entonces (por la transitividad de la congruencia) $a \equiv 0 \pmod 3 \Leftrightarrow a_k + \cdots + a_1 + a_0 \equiv 0 \pmod 3$; es decir 3 divida a a, si y sólo si 3 divide a la suma de sus dígitos.

Proposición 2.2.3

Si los dígitos de a son $a = a_k \dots a_1 a_0$. Entonces 9|a si y sólo si $9|a_0 + a_1 + \dots + a_k$.

2.2.2. Dígitos Verificadores

Definición 2.2.1: Código ISBN

El ISBN (International Standard Book Number) es una cadena de diez símbolos que identifica a los libros. Los primeros nueve símbolos con dígitos, y el ultimo el símbolo verificador.

Es entonces una cadena $x_1, x_2, \dots, x_9 - x_{10}$, donde cada x_1, x_2, \dots, x_9 es un dígito de 0 a 9, mientras que $x_{10} \in \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, X\}$. Al símbolo x_{10} se llama el símbolo verificador y se calcula de la siguiente manera:

$$c = \sum_{i=1}^{9} i \cdot x_i$$

y sea $r \in \{0,1,\ldots,10\}$ tal que $r \equiv c \pmod{11}$ (es decir, r el resto de dividir c entre 11). Entonces:

$$x_{10} = \begin{cases} r & \text{si } 0 \le r \le 9 \\ X & \text{si } r = 10 \end{cases}$$

Proposición 2.2.4

Sean $x_1x_2\dots x_9-x_{10}$ y $y_1y_2\dots y_9-y_{10}$ dos códigos ISBN. Sea k un entero tal que:

- $1 \le k \le 9$.
- $\mathbf{x}_k \neq y_k$
- $x_i = y_i$ para todo $i \le 9, i \ne k$.

Entonces $x_{10} \neq y_{10}$.

Demostración: Supongamos que $x_{10} = y_{10}$; entonces tendríamos que

$$\sum_{i=1}^{9} i \cdot x_i \equiv \sum_{i=1}^{9} i \cdot y_{10} \pmod{11}$$

Pero en estas sumas tenemos que para $i \neq k$, $i \cdot x_i = i \cdot y_i$, y por lo tanto cancelando tendríamos que

$$k \cdot x_k \equiv k \cdot y_k \pmod{11}$$

y como mcd(k,11)=1, por la propiedad cancelativa tendríamos que $x_k\equiv y_k\pmod{11}$ lo cual es absurdo pues $x_k\neq y_k$ y son números entre 0 y 9.

2.3. Ecuaciones con congruencias

Teorema 2.3.1

Dados $a, b, n \in \mathbb{Z}$ y sea d = mcd(a, n). Entonces la ecuación $ax \equiv b \pmod{n}$ tiene solución si y sólo si d|b. Ademas, si d|b existen exactamente d soluciones distintas al modulo n.

Demostración: Tenemos que $ax \equiv b \pmod{n}$ si y sólo si n|(ax-b), si y sólo si ax-b=ny para algún $y \in \mathbb{Z}$. Por lo tanto, la ecuación $ax \equiv b \pmod{n}$ tiene solución, si y solo si existen $x, y \in \mathbb{Z}$ tales que ax-ny=b. Por el Teorema de Ecuaciones Diofánticas, sabemos que esto sucede si y sólo si d|b.

Ahora, en el caso que d|b, si (x_0,y_0) es solución de la ecuación diofántica, tenemos (por el mismo teorema) que el conjunto de soluciones de la diofántica es $\{(x,y)=(x_0+\frac{n}{d}k,y_0+\frac{a}{d}k;\ k\in\mathbb{K})\}$. Por lo tanto, las soluciones de la ecuación $ax\equiv b\pmod{n}$ son $x=x_0+\frac{n}{d}k$, con $k\in\mathbb{Z}$.

Observar que $x_0, x_1 = x_0 + \frac{n}{d}, x_2 = x_0 + 2\frac{n^u}{d}, \dots, x_{d-1} = x_0 + (d-1)\frac{n}{d}$ son d soluciones que no son congruentes entre ellas modulo n. Esto es porque si $i \neq j$, $0 \neq |x_i - x_j| = |x_0 + i\frac{n}{d} - x_0 - j\frac{n}{d}| = |(i-j)\frac{n}{d}| \leq (d-1)\frac{n}{d} < n$; por lo tanto $n \nmid x_i - x_j$ y entones $x_i \not\equiv x_j \pmod{n}$. Veamos ahora que cualquier otra solución es congruente (modulo n) a una de estas.

Si $x=x_0+\frac{n}{d}k$, dividiendo k entre d, tenemos que k=dq+i con $0\leq i< d$, y por lo tanto $x=x_0+\frac{n}{d}k=x_0+\frac{n}{d}(dq+i)=x_0+i\frac{n}{d}+qn=x_i+qn\equiv x_i\pmod n$.

Definición 2.3.1

Decimos que un entero a es invertible modulo n, si existe otro entero x tal que $ax \equiv 1 \pmod{n}$. Al entero x se le llama inverso de a modulo n.

Corolario 2.3.1

Un entero a es invertible modulo n si y sólo si mcd(a, n) = 1. Ademas, si a es invertible, el inverso de a modulo n es único modulo n.

2.4. Teorema Chino del Resto

Teorema 2.4.1 Teorema Chino del Resto

Sean m_1, m_2, \ldots, m_n enteros coprimos dos a dos y $a_1, a_2, \ldots, a_k \in \mathbb{Z}$. Entonces el sistema

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \\ \vdots \\ x \equiv a_k \pmod{m_k} \end{cases}$$

tiene solución, y hay una única solución modulo $m_1m_2...m_k$. Es decir, si x_0 es solución, entonces todas las soluciones son $x \equiv x_0 \pmod{m_1m_2...m_k}$.

Demostración: Haremos la demostración por inducción en k (la cantidad de ecuaciones) partiendo del caso k = 2. Consideremos dos enteros m_1, m_2 coprimos $a_1, a_2 \in \mathbb{Z}$ y el sistema

$$\begin{cases} x \equiv a_1 \pmod{m_1} \\ x \equiv a_2 \pmod{m_2} \end{cases}$$

La primer congruencia equivale a que exista $s \in \mathbb{Z}$ tal que

$$x = a_1 + m_1 s$$

y la segunda equivale a que exista $t \in \mathbb{Z}$ tal que

$$x = a_2 + m_2 t$$

Por lo tanto, debemos encontrar $x \in \mathbb{Z}$ que verifique estas dos ultima condiciones, es decir, que existe $x \in \mathbb{Z}$ que verifica las congruencias si y solo si

$$\exists s, t \in \mathbb{Z}: a_1 + m_1 s = a_2 + m_2 t$$

Es decir, si v solo si

$$\exists s,t \in \mathbb{Z}: \ m_1s-m_2t=a_2-a_1$$

Como $mcd(m_1, m_2) = 1$, por el teorema de Ecuaciones Diofánticas, esta ultima ecuación tiene solución.

Ademas, dada una particular (s_0, t_0) , todas las soluciones de la diofántica son $(s, t) = (s_0 + m_2 k, t_0 + m_1 k)$ tal que $k \in \mathbb{Z}$. Ahora sustituyendo el s de estas soluciones, obtenemos que $x = a_1 + m_1 s = a_1 + m_1 (s_0 + m_2 k) = a_1 + m_1 s_0 + m_1 m_2 k$, $k \in \mathbb{Z}$.

Si llamamos $x_0 = a_1 + m_1 s_0$, tenemos que las soluciones de las dos congruencias son

$$x = x_0 + m_1 m_2 k$$
, $k \in \mathbb{Z}$

Es decir, que el sistema tiene solución x_0 y todas las soluciones son $x \equiv x_0 \pmod{m_1 m_2}$.

Así que obtuvimos una única solución módulo m_1m_2 .

Ahora, el paso inductivo: sea k > 2 y asumamos que el teorema es cierto para k - 1, probemos que es cierto para k ecuaciones. Por la hipótesis inductiva tenemos que el sistema

$$\begin{cases} x \equiv a_1 & (mod \ m_1) \\ x \equiv a_2 & (mod \ m_2) \\ \vdots \\ x \equiv a_{k-1} & (mod \ m_{k-1}) \end{cases}$$

tiene solución x_1 y que ademas cualquier solución cumple que $x \equiv x_1 \pmod{m_1 m_2 \dots m_{k-1}}$; por lo tanto, este sistema con k-1 ecuaciones es equivalente a la ecuación $x \equiv x_1 \pmod{m_1 m_2 \dots m_{k-1}}$.

Entonces el sistema con k ecuaciones

$$\begin{cases} x \equiv a_1 & (mod \ m_1) \\ x \equiv a_2 & (mod \ m_2) \\ \vdots \\ x \equiv a_{k-1} & (mod \ m_{k-1}) \\ x \equiv a_k & (mod \ m_k) \end{cases}$$

es equivalente al sistema

$$\begin{cases} x \equiv x_1 \pmod{m_1 m_2 \dots m_{k-1}} \\ x \equiv a_k \pmod{m_k} \end{cases}$$

Como los enteros $m_1, m_2 \dots, m_k$ son coprimos dos a dos, tenemos que $mcd(m_1m_2 \dots m_{k-1}, m_k) = 1$. Por lo tanto tenemos un sistema con 2 ecuaciones que involucran módulos coprimos. Por lo ya probado para k = 2, tenemos entonces que este ultimo sistema tiene solución $x_0 \in \mathbb{Z}$ y ademas que toda solución cumple $x \equiv x_0 \pmod{m_1m_2 \dots m_{k-1}} \cdot k$.

Por lo tanto el sistema tiene solución x_0 , y las soluciones son $x \equiv x_0 \pmod{m_1 m_2 \dots m_{k-1} m_k}$; es decir, la solución es única módulo $m_1 m_2 \dots m_k$.

Corolario 2.4.1

Generalizando el teorema, tenemos que si m_1, \ldots, m_k no son coprimos dos a dos, entonces el sistema puede o no tener solución.

En caso de que tenga una solución x_0 , todas las soluciones son

$$x \equiv x_0 \pmod{mcm(m_1, m_2, \ldots, m_k)}$$

2.5. Exponenciación y Teoremas de Fermat y Euler

Definición 2.5.1

La función de Euler es $\varphi: \mathbb{Z}^+ \to \mathbb{Z}^+$ dada por

$$\varphi(n) = \#\{a \in \{1, ..., n\} : mcd(a, n) = 1\}$$

Es decir, que la función de Euler cuenta la cantidad de naturales coprimos con n y menores que n.

Proposición 2.5.1

Si *p* es primo, entonces $\varphi(p) = \#\{1, 2, ..., p-1\} = p-1$.

Proposición 2.5.2

Si p es primo, obtengamos una formula para obtener $\varphi(p^k)$, tenemos que

$$\varphi(p^k) = \#\{a \in \{1, 2, \dots, p^k\} : mcd(a, p^k) = 1\} = \#\{a \in \{1, 2, \dots, p^k\} : mcd(a, p) = 1\}$$

Entonces:

$$\varphi(p^k) = \#\{1, 2, \dots, p^k\} - \#\{a \in \{1, 2, \dots, p^k\} : mcd(a, p) \neq 1\}$$

Por lo tanto

$$\varphi(p^k) = p^k - \#\{a \in \{1, 2, \dots, p^k\} : mcd(a, p) \neq 1\}$$

Ahora, como p es primo, tenemos que $mcd(a,p) \neq 1 \Leftrightarrow a = pk$ para algún $k \in \mathbb{Z}$. Por lo tanto $\{a \in \{1,\ldots,p^k\}: mcd(a,p) \neq 1\} = \{a = pk \text{ con } k \in \{1,2,\ldots,p^{k-1}\}\}$ y el cardinal de este conjunto es p^{k-1} . Sustituyendo obtenemos que

$$\varphi(p^k) = p^k - p^{k-1} = p^k \left(1 - \frac{1}{p}\right)$$

Teorema 2.5.1

Si mcd(m, n) = 1, $\varphi(mn) = \varphi(m)\varphi(n)$.

Demostración: Como la tesis es obvia si m o n es 1, demostremoslo para m, n > 1. La idea de la demostración es la siguiente: daremos dos conjuntos C y D tales que tales que $\#C = \varphi(mn)$ y $\#D = \varphi(m)\varphi(n)$, y lego construiremos una función biyectiva $f: C \to D$ lo cual terminaría probando que #C = #D; es decir que $\varphi(mn) = \varphi(m)\varphi(n)$.

Sea $C = \{c \in \{0, ..., mn - 1\} : mcd(c, mn) = 1\}$; claramente $\#C = \varphi(mn)$. Ademas, tenemos que

$$mcd(c, mn) = 1 \Leftrightarrow mcd(c, m) = 1 \vee mcd(c, n) = 1$$

Así que $C = \{c \in \{0, ..., mn\} : mcd(c, m) = 1 \text{ y } mcd(c, n) = 1\}.$

Sea $A = \{a \in \{0, ..., m-1\} : mcd(a, m) = 1\}$ y $B = \{b \in \{0, ..., n-1\} : mcd(b, n) = 1\}$; tenemos que $\#A = \varphi(m)$ y $\#B = \varphi(n)$ y por lo tanto si $D = A \times B = \{(a, b) : a \in A, b \in B\}$ tenemos que $\#D = \varphi(m)\varphi(n)$.

Consideramos ahora la función $f: C \to D$ dada por f(c) = (a, b) siendo a el resto de dividir c entre m y b el resto de dividir c entre n. Es decir f(c) = (a, b) con $a \in \{0, ..., m-1\}, b \in \{0, ..., n-1\}$ y

$$\begin{cases} c \equiv a \pmod{m} \\ c \equiv b \pmod{n} \end{cases}$$

Veamos primero que efectivamente, si $c \in C$ y f(c) = (a,b), entonces $(a,b) \in D$. Como c = mq + a y c = nq' + b tenemos que

$$mcd(c, m) = mcd(a, m) y mcd(c, n) = mcd(b, n)$$

Por lo tanto si mcd(c,m)=1 y mcd(c,n)=1 tenemos que mcd(a,m)=1 y mcd(b,n)=1. Como ademas claramente $a\in\{0,\ldots,m-1\}$ y $b\in\{0,\ldots,n-1\}$ concluimos que $(a,b)\in D$.

Veamos ahora que la función f es biyectiva. Para esto tenemos que ver que dado $(a,b) \in D$, existe un único $c \in C$ tal que f(c) = (a,b) (la existencia de c nos da la sobreyectividad de f y la unicidad nos da la inyectividad de f). Tenemos que probar entonces que dado $(a,b) \in D$ existe un único $c \in C$ tal que

$$\begin{cases} c \equiv a \pmod{m} \\ c \equiv b \pmod{n} \end{cases}$$

Como mcd(m,n)=1, por el Teorema Chino del resto sabemos que el sistema tiene solución c_0 , todas las soluciones son $c \equiv c_0 \pmod{mn}$. Por lo tanto, existe un único $c \in \{0,\ldots,mn-1\}$ que verifica el sistema. Resta ver que efectivamente este $c \in C$: como mcd(a,m)=1, mcd(b,n)=1 y $c \equiv a \pmod{m}$, $c \equiv b \pmod{n}$, tenemos que

$$mcd(c, m) = 1$$
 y $mcd(c, n) = 1$

y por lo tanto $c \in C$.

⊜

Corolario 2.5.1

Sea $n \in \mathbb{Z}^+$

1. Si n tiene descomposición factorial $n=p_1^{e_1}p_2^{e_2}\dots p_k^{e_k}$ (con los p_i primos distintos y $e_i>0$), entonces:

$$\varphi(n) = \left(p_1^{e_1} - p_1^{e_1 - 1}\right) \left(p_2^{e_2} - p_2^{e_2 - 1}\right) \dots \left(p_k^{e_k} - p_k^{e_k - 1}\right)$$

2.
$$\varphi(n) = n \prod_{p \text{ primo, } p|n} \left(1 - \frac{1}{p}\right)$$

Demostración: 1. Como los p_i son primos distintos, tenemos que los $p_i^{e_i}$ son coprimos 2 a 2, y por lo visto en el teorema anterior, reiteradas veces obtenemos que

$$\varphi(n) = \varphi(p_1^{e_1} p_2^{e_2} \dots p_k^{e_k}) = \varphi(p_1^{e_1}) \varphi(p_2^{e_2}) \dots \varphi(p_k^{e_k})$$

y utilizando la formula 2.5 obtenemos lo deseado.

2. Como cada $(p_i^{e_i} - p_i^{e_i-1}) = p_i^{e_i} \left(1 - \frac{1}{p_i}\right)$ sustituyendo en la formula recién obtenida nos queda que

$$\varphi(n) = p_1^{e_1} \left(1 - \frac{1}{p_1} \right) p_2^{e_2} \left(1 - \frac{1}{p_2} \right) \dots p_k^{e_k} \left(1 - \frac{1}{p_k} \right)$$

$$= p_1^{e_1} p_2^{e_2} \dots p_k^{e_k} \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) \dots \left(1 - \frac{1}{p_k} \right)$$

$$= n \prod_{\substack{p \text{ primo, } p \mid n}} \left(1 - \frac{1}{p} \right)$$

⊜

Teorema 2.5.2 Teorema de Euler

Sean $n, a \in \mathbb{Z}$ tales que mcd(a, n) = 1, entonces

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

Demostración: Sea $B = \{b \in \{1, ..., n\} : mcd(b, n) = 1\}$; claramente $\#B = \varphi(n)$. Observar que si $b \in B$ en particular mcd(b, n) = 1, y como mcd(a, n) = 1 tenemos que tambien mcd(ab, n) = 1. Por lo tanto (tomando el resto de dividir ab entre n), existe un unico $b' \in B$ tal que $ab \equiv b' \pmod{n}$. Ademas, dados dos elementos distintos de B, b_1 y b_2 , al multiplicarlos por a obtenemos enteros no congruentes modulo n, ya que si $ab_1 \equiv ab_2 \pmod{n}$, al ser mcd(a, n) = 1 podemos cancelar a y obtendriamos $b_1 \equiv b_2 \pmod{n}$, lo cual es absurdo ya que en B no hay dos elementos congruentes modulo n. Por lo tanto, si multiplicamos por a a todos los elementos de B, y luego tomamos los restos de dividir entre n, volvemos a obtener todos los elementos de B (permutados). Entonces

$$\prod_{b \in B} ab \equiv \prod_{b' \in B} b' \pmod{n} \Rightarrow \prod_{b \in B} ab \equiv \prod_{b \in B} b \pmod{n}$$

En la izquierda, el factor a aparece $\#B = \varphi(n)$ veces, por lo que obtenemos

$$a^{\varphi(n)} \prod_{b \in B} b \equiv \prod_{b \in B} b \pmod{n}$$

y como cada $b \in B$ es coprimo con n, no lo podemos cancelar de la congruencia y obtenemos

$$a^{\varphi(n)} \equiv 1 \pmod{n}$$

Corolario 2.5.2 Teorema de Fermat

Si p es primo y $a \in \mathbb{Z}$ tal que $p \nmid a$, entonces

$$a^{p-1} \equiv 1 \pmod{p}$$

Corolario 2.5.3

Sean a, n dos enteros coprimos

- Si $m \in \mathbb{Z}$ y $m = \varphi(n)q + r$ entonces $a^m \equiv a^r \pmod{n}$.
- Si $m \equiv k \pmod{\varphi(n)}$ entonces $a^m \equiv a^k \pmod{n}$.

Demostración: 1. Si $m = \varphi(n)q + r$ entonces

$$a^{m} = a^{\varphi(n)q+r} = \left(a^{\varphi(n)}\right)^{q} a^{r} \equiv 1^{q} a^{r} \pmod{n} \equiv a^{r} \pmod{n}$$

2. Es claro a partir de lo anterior.

(2)

Capítulo 3

Teoría de Grupos

3.1. Definición y propiedades

Definición 3.1.1

Un grupo es un conjunto G con una operación binaria $*: G \times G \to G$ tal que

- (asociativa) $x * (y * z) = (x * y) * z \forall x, y, z \in G$.
- (neutro) existe un elemento $e \in G$ tal que e * x = x y $x * e = x \ \forall x \in G$.
- \blacksquare (inverso) para todo elemento $g \in G$, existe $g' \in G$ tal que g * g' = e y g' * g = e.

En general escribimos al grupo como (G,*) o (G,*,e). Si la operación y neutro son claros simplemente notamos G.

Proposición 3.1.1

Sea (G,*) un grupo y $g,h\in G.$ Entonces:

- 1. El neutro de G es único.
- 2. $\forall g \in G$, el inverso de g es único (y lo escribimos g^{-1} ; si la operación es una suma, generalmente lo llamamos opuesto y lo escribimos -g).
- 3. Si e es el neutro de G, entonces $e^{-1} = e$.
- 4. El inverso de g^{-1} es g.
- 5. $(gh)^{-1} = h^{-1}g^{-1}$.
- 6. Propiedad cancelativa a derecha: si $g, x, h \in G$ y gx = hx, entonces g = h.
- 7. Propiedad cancelativa a izquierda: si $g, x, h \in G$, y xg = xh, entonces g = h.
- 8. Soluciones de ecuaciones a derecha: si $g, h \in G$, entonces existe un único $x \in G$ tal que gx = h.
- 9. Soluciones de ecuaciones a izquierda: si $g, h \in G$, entonces existe un único $x \in G$ tal que xg = h.
- 10. (un inverso a izquierda es el inverso) Si g' * g = e entonces $g' = g^{-1}$.
- 11. (un inverso a derecha es el inverso) Si g * g' = e entonces $g' = g^{-1}$.

3.2. Grupos de permutacion

Definición 3.2.1

Un grupo de permutaciones es un conjunto de funciones que reordenan los elementos de un conjunto finito y que, al componerlas, siguen siendo permutaciones del mismo conjunto. El grupo de permutaciones de un conjunto finito de n elementos se denota como S_n , es decir, para cada $n \in \mathbb{Z}^+$ llamamos

$$S_n = \{f : \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\} : f \text{ es una función biyectiva}\}$$

Y ademas, $|S_n| = n!$

Ejemplo 3.2.1

Si n=2, en S_2 tenemos dos funciones, Id (la función identidad) y la función f tal que f(1)=2 y f(2)=1.

Proposición 3.2.1

 (S_n, \circ, Id) es un grupo.

Utilizaremos la siguiente notación: a una función en S_n la escribiremos como una matriz, cuya primera fila consta de los números del 1 al n en orden, y en su segunda fila escribiremos $f(1), f(2), \ldots, f(n)$.

Ejemplo 3.2.2

$$S_2 = \left\{ Id = \begin{pmatrix} 1 & 2 \\ 1 & 2 \end{pmatrix}, \tau = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix} \right\}.$$

Observar en este caso que $\tau \circ \tau = Id$.

Ejemplo 3.2.3

$$S_3 = \{Id = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \end{pmatrix}, \tau_1 = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \end{pmatrix}, \tau_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}, \tau_3 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 1 & 3 \end{pmatrix}$$

$$\sigma_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \sigma_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix}$$

 $\sigma_1 = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}, \sigma_2 = \begin{pmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \end{pmatrix} \}$ En este caso por ejemplo, $\tau_1 \circ \tau_2 = \sigma_1$ y $\tau_2 \circ \tau_1 = \sigma_2$ y por lo tanto S_3 no es abeliano. En general, si $n \geq 3 \ S_n$ no es abeliano.

3.3. Tablas de Cayley

Para grupos de orden finito puede resultar conveniente escribir la tabla de multiplicación. A esta tabla se la conoce como Tabla de Cayley del grupo, y se construye de la siguiente manera: se colocan los elementos de G arriba de la tabla, y en el mismo orden también a la izquierda de la tabla; luego en la entrada correspondiente a la fila del elemento g y a la columna del elemento h colocamos g * h.

Ejemplo 3.3.1

La tabla de Cayley de S_2 es

$$\begin{array}{c|ccc} \circ & \mathrm{Id} & \tau \\ \mathrm{Id} & \mathrm{Id} & \tau \\ \tau & \tau & \mathrm{Id} \end{array}$$

Ejemplo 3.3.2

Algunas de las entradas de la Tabla de Cayley de S_3 son

Proposición 3.3.1

En la tabla de Cayley de un grupo, cada elemento de G aparece exactamente una vez en cada fila y columna. Es decir, que cada columna y cada fila de la tabla es una premutación de los elementos de G.

Demostración: El elemento h aparece en la fila correspondiente a g y en la columna correspondiente a g, si g solo si g g g h. Ya vimos que dados g y h en g existe un único g h for la columna h aparece una sola vez (en la columna h). De forma análoga probamos que cada elemento aparece una sola vez en cada columna.

3.4. El grupo de enteros módulo n

Definición 3.4.1: Clase de congruencia

Una clase \overline{z} es un conjunto de números enteros que comparten el mismo residuo cuando se dividen por un número entero (módulo).

$$\overline{z} = \{ x \in \mathbb{Z} | x \equiv z \pmod{n} \}$$

Definición 3.4.2

Llamaremos \mathbb{Z}_n al conjunto de clases de modulo n. Por ejemplo $\mathbb{Z}_2 = \{\overline{0}, \overline{1}\}$ y $\mathbb{Z}_3 = \{\overline{0}, \overline{1}, \overline{2}\}$. Es claro entonces que \mathbb{Z}_n tiene n elementos; es decir $\mathbb{Z}_n = \{\overline{0}, \overline{1}, \dots, \overline{n-1}\}$.

Corolario 3.4.1

Queremos definir en \mathbb{Z}_n una operación que le de estructura de grupo. Quisiéramos definir una operación que llamaremos suma y la escribiremos como +, de forma mas natural $\overline{a} + \overline{b} = \overline{a+b}$.

Ejemplo 3.4.1

En \mathbb{Z}_5 tendríamos que $\overline{3} + \overline{4} = \overline{3+4} = \overline{7} = \overline{2}$.

Proposición 3.4.1

Sea $n \in \mathbb{Z}$, entonces $(\mathbb{Z}_N, +)$ es un grupo abeliano.

Demostración: Veamos que la operación antes definida es asociativa: sean $a,b,c \in \mathbb{Z}$, entonces $(\overline{a}+\overline{b})+\overline{c} \stackrel{\text{def}}{=} \overline{(a+b)}+\overline{c} \stackrel{\text{def}}{=} \overline{(a+b)+c}$. Ahora, como la suma de enteros es asociativa, tenemos que $\overline{(a+b)+c} = \overline{a+(b+c)} \stackrel{\text{def}}{=} \overline{a+\overline{b}+c} \stackrel{\text{def}}{=} \overline{a+(\overline{b}+\overline{c})}$. Claramente $\overline{0}$ es neutro de esta operación

Proposición 3.4.2

Dados dos grupos $(G, *, e_G)$, $(K, *, e_K)$ si consideramos el conjunto $G \times K = \{(g, k) : g \in G, k \in K\}$ con la operación coordenada a coordenada: (g, k)(g', k') = (g * g', k * k'), entonces obtenemos un nuevo grupo (llamado el producto directo de $G \vee K$).

3.5. El grupo de los invertibles módulo n

Corolario 3.5.1

De manera análoga a la suma de clases en \mathbb{Z}_n , podemos definir el producto de clases:

$$\overline{a} \times \overline{b} = \overline{ab}$$

Definición 3.5.1

Llamamos U(n) al conjunto de todas las clases de z modulo n que sean coprimos con n. Formalmente lo definimos como

$$U(n) = \{ \overline{a} : mcd(a, n) = 1 \}$$

Ejemplo 3.5.1

Por ejemplo $U(4)=\{\overline{1},\overline{3}\},\ U(5)=\{\overline{1},\overline{2},\overline{3},\overline{4}\}\ y\ U(8)=\{\overline{1},\overline{3},\overline{5},\overline{7}\}.$

Corolario 3.5.2

Observar que $|U(n)| = \varphi(n)$.

Proposición 3.5.1

 $(U(n), \times, \overline{1})$ es un grupo abeliano con $\varphi(n)$ elementos.

3.6. Grupos Dihedrales

Definición 3.6.1: Grupos dihedrales

Estos grupos describen las simetrías de figuras geométricas regulares, como polígonos y poliedros. El grupo dihedrico de orden n, denotado como D_n , consiste en todas las transformaciones rígidas (geométricas) que preservan las propiedades del objeto original. Estas transformaciones pueden ser rotaciones y reflexiones. La cantidad de elementos en el grupo dihedrico D_n es 2n, donde n es el número de lados del polígono o caras del poliedro.

Ejemplo 3.6.1

Tomando n=3, consideremos en el plano, un triangulo equilátero T. Sea $D_3=\{f:\mathbb{R}^2\to\mathbb{R}^2:f$ es un movimiento del plano y $f(T)=T\}$. Entonces en D_3 tenemos al movimiento identidad, id; también las simetrías axiales s_1, s_2, s_3 con ejes en las mediatrices de los lados de T, y ademas tenemos las rotaciones antihorarias r_1 y r_2 con centro el centro del triangulo y ángulos 120 y 240 grados respectivamente. Entonces:

$$D_3 = \{id, r_1, r_2, s_1, s_2, s_3\}$$

Es claro que si dos movimientos del plano preservan el triangulo, entonces su composición también.

Proposición 3.6.1

 (D_3, \circ, id) es un grupo de orden 6. Este grupo se llama grupo dihedral.

Demostración: Ya vimos que la composición de dos elementos de D_3 es nuevamente un elemento de D_3 . La función id es el neutro de la composición así que resta ver que todo elemento de D_3 tiene inverso:

- Claramente $(id)^{-1} = id$.
- Para todo i=1,2,3, tenemos que $s_i \circ s_i = id$ y por lo tanto cada simetría es inversa de si misma.
- Tenemos que $r_1 \circ r_2 = id$ y por lo tanto $(r_1)^{-1} = r_2$ y $(r_2)^{-1} = r_1$.

⊜

Corolario 3.6.1

Observar que $s_1 \circ r_1 = s_2$ y $r_1 \circ s_1 = s_3$, por lo tanto D_3 no es abeliano.

Proposición 3.6.2

Por simplicidad notaremos $s = s_1$ y $r = r_1$. Tenemos las siguientes propiedades:

- 1. $D_3 = \{id, s, sr, sr^2, r, r^2\}.$
- 2. $r^3 = id$.
- 3. $s^2 = id$.
- 4. $rs = sr^2$.
- 5. Las relaciones anteriores (y la asociatividad) son suficientes para obtener todas las multiplicaciones en D_3 .

Ejemplo 3.6.2

Para n=4, se considera un cuadrado C en el plano y $D_4=\{f:\mathbb{R}^2\to\mathbb{R}^2:f$ es un movimiento del plano y $f(C)=C\}$.

En D_4 tenemos el movimiento identidad id, cuatro simetrías axiales s_1, s_2, s_3, s_4 y tres rotaciones antihorarias r_1, r_2, r_3 con centro en el centro del cuadrado y ángulos 90, 180 y 270 grados. Así que tenemos

$$D_4 = \{id, r_1, r_2, r_3, s_1, s_2, s_3, s_4\}$$

Y en este caso tenemos que $s_2 = s_1 \circ r_1^3$, $s_3 = s_1 \circ r_1^2$, $s_4 = s_1 \circ r_1$, $r_2 = r_1^2$ y $r_3 = r_1^3$.

Proposición 3.6.3

De forma analoga a lo hecho con D_3 , se prueba que (D_4, \circ, id) es un grupo no abeliano (con 8 elementos). En este caso, si llamamos $s = s_1$ y $r = r_1$ tenemos que

- 1. $D_4 = \{id, r, r^2, r^3, s, sr, sr^2, sr^3\}.$
- 2. $r^4 = id$
- 3. $s^2 = id$.
- 4. $rs = sr^3$
- 5. Las relaciones anteriores (y la asociatividad) son suficientes para obtener todas las multiplicaciones en D_4 .

Proposición 3.6.4

 (D_n,\circ,id) es un grupo no abeliano y $|D_n|=2n$. Estos grupos se llaman grupos dihedrales. En este caso general, si llamamos $s=s_1$ y $r=r_1$ es la rotación antihoraria con centro en el centro del polígono y angulo $\frac{360}{n}$ grados, tenemos que

- 1. $D_n = \{id, r, r^2, \dots, r^{n-1}, s, sr, sr^2, \dots, sr^{n-1}\}.$

- 3. $s^2 = id$. 4. $rs = sr^{n-1}$.
- 5. Las relaciones anteriores (y la asociatividad) son suficientes para obtener todas las multiplicaciones

3.7. Subgrupos y grupos cíclicos

Definición 3.7.1

Dado un grupo (G, *, e), un subconjunto $H \subset G$ es un subgrupo de G si cumple:

- 1. (Cerrado con la operación) para todo $h, h' \in H, h * h' \in H$.
- 2. (Neutro) $e \in H$.
- 3. (Cerrado por inversos) si $h \in H$, entonces $h^{-1} \in H$.

Escribiremos H < G cuando H es un subgrupo de G.

Claramente un subgrupo es en particular un grupo con la misma operación de G.

Definición 3.7.2

Si (G, *, e) es un grupo definimos las potencias de g como $g^0 = e$ y si $n \in \mathbb{Z}^+$ entonces

$$g^n = \underbrace{g * g * \cdots * g}_{\text{Pages}}$$

$$g^{-n} = \underbrace{g^{-1} * g^{-1} * \dots g^{-1}}_{\text{n veces}}$$

Proposición 3.7.1

Para todo $g \in G$ y $m, n \in \mathbb{Z}$, se cumple:

1.
$$g^n * g^m = g^{n+m}$$
.

2.
$$g^{-n} = (g^n)^{-1}$$
.

3.
$$(g^n)^m = g^{mn}$$
.

Definición 3.7.3

Si (G, *, e) es un grupo y $g \in G$, al conjunto de todas las potencias de g lo escribiremos $\langle g \rangle$; es decir

$$\langle g \rangle = \{ g^n : n \in \mathbb{Z} \}$$

Como $g^0 = e$, tenemos que $e \in \langle g \rangle$; ademas, por las dos primeras propiedades de la proposición anterior, tenemos que $\langle g \rangle$ es cerrado con la operación y cerrado por inversos y por lo tanto $\langle g \rangle$ es un subgrupo de G, al que llamamos subgrupo generado por g. En el caso en que para G, exista un elemento $g \in G$ tal que $\langle g \rangle = G$ decimos que G es un grupo cíclico generado por G0 decimos que G0 es generador de G1.

Definición 3.7.4

Sea (G, *, e) un grupo y $g \in G$. Definimos el orden del elemento g y lo escribiremos o(g), de la siguiente manera:

- Si $g^n \neq e \ \forall n \in \mathbb{Z}^+$, decimos que $o(g) = \infty$.
- En caso contrario, definimos $o(g) = min\{n \in \mathbb{Z}^+ : g^n = e\}$.

Proposición 3.7.2

Si (G, *, e) es un grupo y $g \in G$ entonces:

1. Si $n \in \mathbb{Z}^+$, tenemos que

$$o(g) = n \Leftrightarrow \begin{cases} g^n = e \\ \text{si } g^m = e \Rightarrow n | m \end{cases}$$

- 2. Si $n \in \mathbb{Z}^+$ entonces o(g) = n si y solo si $\begin{cases} g^n = e \\ g^d \neq e \ \forall \ d | n, \ d \neq n, \ d > 0 \end{cases}$
- 3. Si $n \in \mathbb{Z}^+$ entonces o(g) = n si y solo si $\begin{cases} g^n = e \\ g^{\frac{n}{p}} \neq e \ \forall \ p | n, \ p \neq n, \ p \text{ primo} \end{cases}$
- 4. Se tiene que $g^m = e \Leftrightarrow o(g)|m$.
- 5. Si o(g) es finito, entonces $g^m = g^k$ si y solo si $m \equiv k \pmod{o(g)}$.
- 6. Si $o(g) = \infty$ y $m \neq k$ entonces $g^m \neq g^k$.
- 7. Si o(g)es finito y $k \in \mathbb{Z}$ entonces $o(g^k) = \frac{o(g)}{mcd(k,o(g))}$
- 8. Si o(g)es finito y $k\in\mathbb{Z},$ entonces $o(g)=o(g^k)$ si y solo si mcd(k,o(g))=1.
- **Demostración:** 1. Veamos primero el directo: si n = o(g), por definición tenemos que $g^n = e$. Ademas, si $g^m = e$, dividiendo m entre n tenemos que m = qn + r con $0 \le r < n$. Tenemos que $e = g^m = g^{nq+r} = (g^n)^q g^r = e^q g^r = g^r$. Por lo tanto $g^r = e$ y como n es la menor potencia positiva de g con la que se obtiene $e, y \ 0 \le r < n$ concluimos que debe ser r = 0 y por lo tanto n|m.

Para el reciproco es evidente que si $n \in \mathbb{Z}^+$, $g^n = e$ y si cada vez que $g^m = e$ se tiene que n|m, entonces n es la menor potencia positiva de g con la cual se llega a e y por lo tanto n = o(g).

2. Para el directo, si n = o(g), por la definición sabemos que $g^n = e$. Ahora, si $g^d = e$ con d|n, $d \neq n$, por la primera parte sabemos que n|d, lo que implica que n = d lo cual contradice la hipótesis sobre d. Concluimos que no existe tal d.

Para el reciproco, supongamos que $m = o(g) \neq n$, que por definición de orden cumple m < n. Sabemos que $g^m = e$ y por la parte 1, m|n, que contradice la hipótesis. Por lo tanto n = o(g).

3. El directo es similar a la demostración anterior ya que $\frac{n}{p}|n.$

El reciproco también es similar al anterior, supongamos que $m = o(g) \neq n$, de vuelta m < n. Por la parte 1, vemos que m|n y como m < n existe un primo p tal que p|n y $m|\frac{n}{p}$. Como $g^m = e$, entonces $g^{\frac{n}{p}} = e$ contradiciendo la hipótesis. Concluimos que o(g) = n.

- 4. Se puede deducir de la primer parte de la proposición.
- 5. Tenemos que $g^m = g^k$ si y solo si $g^m(g^k)^{-1} = e$; si y solo si, $g^{m-k} = e$. Y por la primer parte, esto sucede si y solo si o(g)|(m-k); es decir, si y solo si $m \equiv k \pmod{o(g)}$.
- 6. Supongamos que m>k; si tuviéramos que $g^m=g^k$, tendríamos que $g^{m-k}=e$ con m-k>0 y por lo tanto tendríamos que o(g) es finito.
- 7. Llamemos n = o(g), y d = mcd(n, k). Entonces tenemos que n = dn', k = dk' siendo n' y k' enteros coprimos. Entonces queremos probar que $o(g^k) = n'$. Usando la primer parte, debemos probar dos cosas: que $(g^k)^{n'} = e$ y que si $(g^k)^m = e$ entonces n'|m. Veamos lo primero: $(g^k)^{n'} = (g^{dk'})^{n'} = g^{dn'k'} = g^{nk'} = (g^n)^{k'} = e^k = e$. Para lo segundo: si $(g^k)^m = e$ entonces $g^{km} = e$ y como n = o(g), por la primer parte tenemos que n|(km). Cancelando d obtenemos que n'|(k'm), y como mcd(n', k') = 1, por el Lema de Euclides concluimos que n'|m.

8. Es claro por la parte anterior.

Proposición 3.7.3

Si (G, *, e) es un grupo y $g \in G$ entonces

$$|\langle g \rangle| = o(g)$$

Demostración: Si $o(g) = \infty$, por la parte 4 de la proposición, si $m \neq k$ tenemos que $g^m \neq g^k$ y por lo tanto en $\langle g \rangle = \{g^k : k \in \mathbb{Z}\}$ no hay elementos repetidos, y entonces $|\langle g \rangle| = \#\{g^k : k \in \mathbb{Z}\} = \infty = o(g)$. Ahora si o(g) = n es finito, por la parte 3 de la proposición anterior tenemos que $g^m = g^k$ si y solo si $k \equiv m \pmod{n}$ y por lo tanto $\langle g \rangle = \{g^k : k \in \mathbb{Z}\} = \{g^0 = e, g, g^2, \dots, g^{n-1}\}$ y entonces $|\langle g \rangle| = \#\{g^0 = e, g, g^2, \dots, g^{n-1}\} = n = o(g)$.

Corolario 3.7.1

sea G un grupo de orden finito, entonces:

- 1. G es cíclico si y solo si existe $g \in G$ tal que o(g) = |G|.
- 2. Si $G=\langle g\rangle,$ entonces $G=\langle g^k\rangle$ si y solo si mcd(k,|G|)=1.
- 3. Si $G = \langle g \rangle$ entonces G tiene $\varphi(|G|)$ generadores distintos.

Demostración: 1. G es es cíclico si y solo si existe $g \in G$ tal que $\langle g \rangle = G$. Como |G| es finito, esto sucede si y solo si existe $g \in G$ tal que $|\langle g \rangle| = |G|$. Y como $|\langle g \rangle| = o(g)$ queda demostrada la primera parte.

- 2. Tenemos que $G = \langle g^k \rangle$ si y solo si $|G| = o(g^k)$. Como |G| = o(g), tenemos que $G = \langle g^k \rangle$ si y solo si $o(g^k) = o(g)$ y por la parte 8 de la proposición anterior, tenemos que $o(g^k) = o(g)$ si y solo si mcd(k, o(g)) = 1 y como o(g) = |G| se concluye lo deseado.
- 3. Al ser $G = \langle g \rangle$ y G finito, tenemos que $G = \{e = g^0, g, g^2, \dots, g^{|G|-1}\} = \{g^k : k \in \{0, \dots, |G|-1\}\}$. Junto con lo visto en la parte anterior concluimos que $\{h \in G : \langle h \rangle = G\} = \{g^k : k \in \{0, \dots, |G|-1\}\}$ y $mcd(k, |G|) = 1\}$ y este conjunto tiene cardinal $\varphi(|G|)$.

Proposición 3.7.4

Sea G un grupo cíclico, entonces todo subgrupo de G también es cíclico.

3.8. Teorema de Lagrange

Teorema 3.8.1 Teorema de Lagrange

Si G es un grupo finito y H < G, entonces |H| divide a |G|.

Demostración: La idea de la demostración es la siguiente: definiremos en G una relación de equivalencia de forma tal que si C es una clase de equivalencia, entonces #C = |H|. Entonces, como G es finito, la cantidad de clases de equivalencia también lo es; sean C_1, C_2, \ldots, C_k las clases de equivalencia distintas. Sabemos que el conjunto de clases de equivalencia (de cualquier relación de equivalencia) es una partición de G; es decir que $G = C_1 \cup C_2 \cup \cdots \cup C_k$ y esta unión es disjunta. Por lo tanto tendremos que $|G| = \#C_1 + \#C_2 + \cdots + \#C_k$ $|H| + |H| + \cdots + |H| = k|H|$ y por lo tanto obtendremos que |H| divide a |G|.

Resta entonces definir la relación de equivalencia en G que cumpla con lo deseado: para $g,g'\in G$ definimos $g\sim g'$ si existe $h \in H$ tal que g = hg'; o equivalentemente, $g \sim g'$ si $g(g')^{-1} \in H$. Veamos primero que esto define una relación de equivalencia:

- (reflexiva) Para todo $g \in G$, tenemos que $g \sim g$ pues g = eg y $e \in H$ (pues H es subgrupo de G).
- (simétrica) Sean $g, g' \in G$ tales que $g \sim g'$. Entonces $g(g')^{-1} \in H$. Al ser H un subgrupo, es cerrado por inversos y por lo tanto $(g(g')^{-1})^{-1} \in H$. Por lo tanto $g'g^{-1} \in H$ y entonces $g' \sim g$.
- (transitiva) Si $g \sim g'$ y $g' \sim g''$ entonces existen $h, h' \in H$ tales que g = hg' y g' = h'g''. Por lo tanto tenemos que g = hg' = h(h'g'') = (hh')g''. Al ser H un subgrupo (en particular cerrado con la operación) tenemos que $hh' \in H$ y entonces $g \sim g''$.

Resta ver entonces que una clase de equivalencia tiene tantos elementos como H. Observar que si $g' \in G$ entonces la clase de equivalencia de g' es $C = \{g \in G : g \sim g'\} = \{g \in G : \exists h \in H : g = hg'\}$. Por lo tanto $C = \{hg' : h \in H\}$. Ademas, al multiplicar a todos los elementos de H por g', no hay repeticiones; es decir que si $h_1 \neq h_2$ entonces $h_1g' \neq h_2g'$ (por la propiedad cancelativa). Por lo tanto #C = |H|.

Corolario 3.8.1

Si (G, *, e) es un grupo de orden finito y $g \in g$ tenemos que

- 1. o(g) | |G|.
- 2. $g^{|G|} = e$.
- 3. Si |G| es primo, entonces G es cíclico.
- 4. $G = \langle g \rangle$ si y solo si $g^d \neq e$ para todo $d \mid |G|, d \neq |G|$.
- 5. $G = \langle g \rangle$ si y solo si $g^{\frac{|G|}{p}} \neq e$ para todo $p \mid |G|, p$ primo, $p \neq |G|$.

Demostración: Consideramos $H = \langle g \rangle$; ya vimos que H es un subgrupo de G y que |H| = o(g). Entonces, por el Teorema de Lagrange tenemos que o(g) = |H| divide a |G| y hemos probado la primer parte.

Ademas, como |G| es un múltiplo de o(g), se deduce que g|G| = e.

Para la tercer parte, como |G| > 2 entonces existe un $g \in G$ tal que $g \neq e$. Por el Teorema de Lagrange debemos tener que $|\langle g \rangle|$ divide a |G|. Como $|\langle g \rangle| > 1$ y |G| es primo tenemos que $|\langle g \rangle| = |G|$ y entonces $\langle g \rangle = G$. ☺

Por ultimo, las partes 4 y 5 son consecuencias de las partes 2 y 3 de la proposición 3.7.

3.9. Homomorfismos

Definición 3.9.1

Sean (G,*) y (K,*) dos grupos. Una función $f:G\to K$ es un homomorfismo o morfismo de grupos si para todo $g,g'\in G,\ f(g*g')=f(g)*f(g')$.

Proposición 3.9.1

Sean $(G,*,e_G)$ y (K,\star,e_K) dos grupos, $f:G\to K$ un homomorfismo y $g\in G.$ Entonces:

- 1. $f(e_G) = e_K$.
- 2. $f(g^{-1}) = f(g)^{-1}$.
- 3. $f(g^n) = f(g)^n$ para todo $n \in \mathbb{Z}$.
- 4. Si $g \in G$ es un elemento de orden finito, entonces o(f(g)) también es finito y ademas divide a o(g).

Definición 3.9.2

Sean $(G,*,e_G)$ y (K,\star,e_K) grupos y $f:G\to K$ un homomorfismo. Definimos:

- El núcleo de f, $Ker(f) = \{g \in G : f(g) = e_K\}$.
- La imagen de f, $Im(f) = \{k \in K : \exists g \in G : f(g) = k\} = \{f(g) : g \in G\}.$

Proposición 3.9.2

Sean $(G, *, e_G)$ y (K, \star, e_K) dos grupos y $f: G \to K$ un homomorfismo, entonces:

- 1. Ker(f) < G.
- 2. Im(f) < K.
- 3. f es inyectiva si y solo si $Ker(f) = \{e_G\}$.
- 4. f es sobreyectiva si y solo si Im(f) = K.

Teorema 3.9.1 Teorema de órdenes

Sean G y K dos grupos y $f:G\to K$ un homomorfismo, entonces

$$|G| = |Ker(f)| \times |Im(f)|$$

Demostración: Para cada $y \in Im(f)$, sea

$$f^{-1}(y) = \{g \in G : f(g) = y\} \subset G$$

es decir, $f^{-1}(y)$ es el conjunto de preimagenes de y. Observar que

$$G = \bigcup_{y \in Im(f)} f^{-1}(y)$$

y la unión es disjunta; esto es porque:

■ Claramente la unión de las preimagenes es un subconjunto de G. A su vez, cada $g \in G$, esta en $f^{-1}(f(g))$, así que G esta incluido en la unión de todas las preimagenes.

■ Los conjuntos son disjuntos: si $g \in f^{-1}(y) \cap f^{-1}(y') \Rightarrow f(g) = y$ y f(g) = y', al ser f función, esto puede pasar solo si y = y'.

Si probamos que para todo $y \in Im(f)$, $\#(f^{-1}(y)) = |Ker(f)|$ entonces tendremos que:

$$|G| = \#\left(\bigcup_{y \in Im(f)} f^{-1}(y)\right) = \sum_{y \in Im(f)} \#\left(f^{-1}(y)\right) = \sum_{y \in Im(f)} |Ker(f)| = |Ker(f)| \times |Im(f)|$$

Probaremos esto ultimo verificando que si $y \in Im(f)$ y fijamos que $g \in f^{-1}(y)$, entonces

$$f^{-1}(y) = \{gx : x \in Ker(f)\}\$$

Observemos que $\#\{gx: x \in Ker(f)\} = |Ker(f)|$ puesto que para cada $x \in Ker(f)$ tenemos un elemento gx en este conjunto, y no hay repeticiones pues si $x \neq x'$, por la cancelativa se tiene que $gx \neq gx'$. Probaremos entonces que si $y \in Im(f)$ y fijamos que $g \in f^{-1}(y) = \{gx: x \in Ker(f)\}$.

■ Veamos primero que $\{gx : x \in Ker(f)\} \subset f^{-1}(y) : \text{si } x \in Ker(f) \text{ entonces}$

$$f(gx) = f(g)f(x) = f(g)e_K = f(g) = y \Rightarrow gx \in f^{-1}(y)$$

(en la primer igualdad usamos que f es homomorfismo y en la segunda que $x \in Ker(f)$).

■ Veamos que ahora que $f^{-1}(y) \subset \{gx : x \in Ker(f)\}$: sea $g' \in f^{-1}(y)$, queremos ver que existe $x \in Ker(f)$ tal que g' = gx. Ahora $g' = gx \Leftrightarrow x = g^{-1}g'$, así que basta con ver $g^{-1}g' \in Ker(f)$. Veamos:

$$f(g^{-1}g') = f(g^{-1})f(g') = f(g)^{-1}f(g') = y^{-1}y = e_K \Rightarrow g^{-1}g' \in Ker(f)$$

(en la primer igualdad usamos que f es homomorfismo y en la segunda, la propiedad de homomorfismo para el inverso).

(3)

Proposición 3.9.3

Sean G un grupo cíclico finito con generador g y K un grupo finito. Sea $k \in K$, la función $f: G \to K$ dada por

$$f(g^n) = k^n, n \in \mathbb{Z}$$

esta bien definida y es un homomorfismo si y solo si o(k)|o(g).

Demostración: El directo de la proposición es consecuencia de la parte 4 de la proposición 3.9. Para el reciproco tenemos que verificar dos cosas, primero que f esta bien definida y luego que es un homomorfismo. Para ver que esta bien definida tenemos que ver que si $g^n = g^m$ entonces $k^n = k^m$. Para eso recordamos que como $g^n = g^m$ entonces $n \equiv m \pmod{o(g)}$, o sea que o(g)|n - m, pero o(k)|o(g) entonces o(k)|n - m y por lo tanto $k^n = k^m$. Solo queda verificar que f es un homomorfismo.

Lenma 3.9.1

Sea G un grupo cíclico finito con generador g. Si K es otro grupo finito, entonces todos los morfismos

$$f: G \to K$$

quedan determinados por $f(g) \in K$ tal que o(f(g))|o(g).

Corolario 3.9.1

Sean G v K grupos finitos:

1. Si $f: G \to K$ es un homomorfismo, entonces |Im(f)| divide a mcd(|G|, |K|).

2. Si |G| y |K| son coprimos, entonces el único homomorfismo $f:G\to K$ es el trivial.

Definición 3.9.3

Dados dos grupos $(G, *, e_G)$ y (K, \star, e_K) , una función $f: G \to K$ es un isomorfismo si es un homomorifsmo biyectivo. Decimos que G y K son isomorfos si existe un isomorfismo $f: G \to K$.

Corolario 3.9.2

Tenemos que

- 1. Un homomorifsmo $f:G\to K$ es un isomorfismo si y solo si $Ker(f)=\{e_G\}$ e Im(f)=K.
- 2. Si $f:G\to K$ es un isomorfismo, entonces la función $f^{-1}:K\to G$ también es un isomorfismo.
- 3. Si G y K son grupos isomorfos, entonces |G| = |K|.
- 4. Si G y K son grupos isomorfos, entonces G es abeliano si y solo si K es abeliano.
- 5. Si $f:G\to K$ es un isomorfismo y $g\in G$ entonces o(g)=o(f(g)).

Capítulo 4

Raíces Primitivas

4.1. Raíces Primitivas