Tópicos de Óptica e Física Moderna

universitário			
6	\mathcal{F}	E	

Projeto 1: Ondas Eletromagnéticas (Caps. 32 e 33)

Nome:	_ <i>RA</i>	

Escreva um programa em linguagem Python relacionado com ondas eletromagnéticas. Para fins de organização, os itens a serem incluídos no programa estão separados em partes. O programa será desenvolvido por partes em cada aula, mas deve ser agrupado em apenas um programa no final deste projeto. Como o programa final terá várias partes, o time deverá incluir um menu de opções para que o usuário possa escolher a ferramenta que ele necessite (por ex., converter frequência para comprimento de onda e vice-versa; calcular energia de um fóton, calcular a velocidade de uma onda eletromagnética em um meio material, etc). Os programas devem ser compartilhados entre os membros do time: não será aceita nenhuma desculpa sobre o acesso ao projeto, caso um dos integrantes falte à aula. Cada projeto deve ser desenvolvido pelo próprio time: programas com plágio parcial ou integral não serão considerados para a avaliação.

Instruções gerais:

- Saídas com valores numéricos devem ter 3 algarismos significativos.
- Parâmetros físicos devem ser mostrados com unidades.
- Tenha empatia pelo usuário: exponha menus bem organizados e saídas que sejam atualizadas para cada nova entrada (sem resultados da compilação anterior).

Funções do programa:

- 1. Opção para digitar f em [Hz] e λ em [nm], [μ m], [mm], [m] ou [km].
- 2. Caso o usuário entre com o valor de f, retornar:
 - 2.1. O valor de λ em [m] se a onda for de rádio, em [mm] se for micro-onda, [μ m] se for IV, ou em [nm] se for visível, UV, RX ou gama.
 - 2.2. O tipo de onda eletromagnética (rádio, micro-onda, IV, visível, UV, RX ou gama).
 - 2.3. O valor de $k e \omega$.
- 3. Caso o usuário entre com o valor de λ , retornar:
 - 3.1.0 valor de f em [Hz].
 - 3.2. O tipo de onda eletromagnética (rádio, micro-onda, IV, visível, UV, RX ou gama).
 - 3.3. O valor de $k \in \omega$.
- 4. Caso o usuário entre com o valor de k, retornar:
 - 4.1. O valor de *f* em [Hz].
 - 4.2. O valor de λ em [m] se a onda for de rádio, em [mm] se for micro-onda, [μ m] se for IV, ou em [nm] se for visível, UV, RX ou gama.
 - 4.3. O tipo de onda eletromagnética (rádio, micro-onda, IV, visível, UV, RX ou gama).
 - 4.4. O valor de ω .
- 5. Caso o usuário entre com o valor de ω, retornar:
 - 5.1. O valor de *f* em [Hz].
 - 5.2. O valor de λ em [m] se a onda for de rádio, em [mm] se for micro-onda, [μ m] se for IV, ou em [nm] se for visível, UV, RX ou gama.
 - 5.3. O tipo de onda eletromagnética (rádio, micro-onda, IV, visível, UV, RX ou gama).
 - 5.4. O valor de k.
- 6. Cálculo do campo B_m (com valor de E_m digitado pelo usuário).
- 7. Cálculo do campo E_m (com valor de B_m digitado pelo usuário).

Entregas parciais (não fazem parte da nota do projeto, mas fazem parte da nota das atividades desenvolvidas em aula)

Parte 1 – entender a relação entre comprimento de onda e frequência das ondas eletromagnéticas.

- Inserir a velocidade da luz no vácuo (c) para ser chamada para alguns cálculos. (Opcional)
- Criar opção para o usuário entrar com o comprimento de onda em [nm], [μm],
 [mm], [m] ou [km]:
 - o Calcular a frequência dessa onda eletromagnética em [Hz];
 - Calcular k;
 - Calcular ω;
- Criar opção para o usuário entrar com frequência da onda em [Hz]:
 - Calcular o comprimento de onda dessa onda eletromagnética.
 [[implementar depois da Etapa 2: o comprimento de onda deve sair com unidade de [m] se a onda eletromagnética for uma onda de rádio, em [mm] ser for micro-ondas, em [μm] se for infravermelho e [nm] ser for visível, ultravioleta, raios X ou raio gama.]]
 - Calcular k;
 - Calcular ω;

Parte 2 – classificação de uma onda eletromagnética no espectro eletromagnético.

- Usar o código desenvolvido na Parte 1 para completar a tabela abaixo (parte destacada em amarelo) e use-a para continuar incrementando o seu programa.
- Use os dados da tabela para classificar as ondas eletromagnéticas da Parte

 Para valores no limite de duas categorias, decidir se classifica a onda em
 um dos tipos ou retornar saída com as duas classificações. (Por ex., um
 comprimento de onda de 1·10⁻³ m poderia ser classificada como micro-ondas
 ou infravermelho.)
- OBS: A classificação do espectro eletromagnético não é tão delimitada, como mostram a figura e a tabela abaixo, mas para fins práticos, vamos fazer isso para o programa.

https://phet.colorado.edu/sims/html/molecules-and-light/latest/molecules-and-light pt BR.html

espectro eletromagnético ondas de rádio	λ _{mín} (m)	λ _{máx} (m)	f _{mín} (Hz)	f _{máx} (Hz) 1,00·10 ⁹
micro-ondas	0,001		1,00·10 ⁹	
Infravermelho	7,00·10 ⁻⁷	0,001		
visível	4,00·10 ⁻⁷	7,00·10 ⁻⁷		
ultravioleta		4,00·10 ⁻⁷		1,00·10 ¹⁶
raio X			1,00·10 ¹⁶	1,00·10 ¹⁹
raio gama			1,00·10 ¹⁹	

Parte 1 + Parte 2

- Criar opção para o usuário entrar com o comprimento de onda em [nm], [μm],
 [mm], [m] ou [km]:
 - Calcular a frequência dessa onda eletromagnética em [Hz];
 - Calcular k;
 - Calcular ω;
 - Classificação da onda no espectro eletromagnético. (Ex: Onda de rádio,
 micro-onda, infravermelho, visível, ultravioleta, raio X ou raio gama)
- Criar opção para o usuário entrar com frequência da onda em [Hz]:
 - Calcular o comprimento de onda dessa onda eletromagnética. O comprimento de onda deve sair com unidade de [m] se a onda eletromagnética for uma onda de rádio, em [mm] ser for micro-ondas, em [μm] se for infravermelho e [nm] ser for visível, ultravioleta, raios X ou raio gama.
 - Calcular k;
 - Calcular ω;
 - Classificação da onda no espectro eletromagnético. (Ex: Onda de rádio,
 micro-onda, infravermelho, visível, ultravioleta, raio X ou raio gama)

Parte 3 - entender as equações senoidais dos campos elétricos e magnéticos das ondas eletromagnéticas

- Calcular o campo elétrico máximo [V/m] de uma onda eletromagnética, com o valor do campo magnético máximo [T] digitado pelo usuário e vice-versa.
- Criar opção para o usuário entrar com frequência angular em [rad/s]:
 - Calcular a frequência dessa onda eletromagnética em [Hz];
 - Calcular o comprimento de onda dessa onda eletromagnética. O comprimento de onda deve sair com unidade de [m] se a onda eletromagnética for uma onda de rádio, em [mm] ser for micro-ondas, em [μm] se for infravermelho e [nm] ser for visível, ultravioleta, raios X ou raio gama.
 - Calcular k.
 - Classificação da onda no espectro eletromagnético. (Ex: Onda de rádio,
 micro-onda, infravermelho, visível, ultravioleta, raio X ou raio gama)
- Criar opção para o usuário entrar com o número de onda em [rad/m]:
 - o Calcular a frequência dessa onda eletromagnética em [Hz];
 - Calcular o comprimento de onda dessa onda eletromagnética. O comprimento de onda deve sair com unidade de [m] se a onda eletromagnética for uma onda de rádio, em [mm] ser for micro-ondas, em [μm] se for infravermelho e [nm] ser for visível, ultravioleta, raios X ou raio gama.
 - Calcular ω.

Classificação da onda no espectro eletromagnético. (Ex: Onda de rádio,
 micro-onda, infravermelho, visível, ultravioleta, raio X ou raio gama)

Projeto 1

- Cada estudante deve responder as questões do Moodle que compõem a nota
 NL1. É importante que o programa esteja finalizado para ser usado na resolução dessas questões.
- O que será avaliado pela professora:

Menu intuitivo e fácil de usar – seja no início do cálculo; seja para continuar com outros cálculos.		fácil de acessar e	Em geral, fácil de acessar e fazer o cálculo desejado. 0,8pontos	
cálculo de $E_{\rm m}$ e $B_{\rm m}$	Os dois incorretos 0pontos	Apenas um corretos 0,5pontos	dos cálculos Todos 1,0po	
Classifica corretamente a onda no espectro eletromagnético corretamente. (Na entrada com λ , f, k e ω) Para uma mesma entrada, é preciso classificar corretamente todos os tipos de onda: rádio, micro, IV, etc	incorretas ape 0pontos alguenti	rreta Aproxim mas para metade classifica estão cor pontos 1,0ponto	retas. classifica corretas	das corretas ções 2,0pontos
a) Se existe opção para entrar λ em [nm], [mm], [m] ou [km]. b) Se o valor de λ calculado pelo programa retorna em [m] se a onda for de rádio, em [micro m] se for micro-onda ou em [nm] se for IV, visível, UV, RX ou gama.	opções de unidade	opções de unidades para λ na	de unidades para λ na entrada e na saída, mas não de	Tem várias opções de unidades para λ na entrada e na saída, de acordo com a proposta. 1,0pontos
Para uma dada entrada, cálculo correto de λ , f, k, ω	A maioria das saídas de λ, f, k, ω estão incorretas. 1,0pontos	k, ω aproximadamente		Calcula corretamente λ, f, k, ω em todas as saídas. 4,0pontos
Unidades	parâmetros ou	Existem muitos parâmetros sem unidades ou com unidades incorretas.	entrada de alguns parâmetros ou existem	parâmetros têm unidades ou indicação de unidades. 1,0pontos

• O que será avaliado pelos alunos:

Menu intuitivo e fácil de usar – seja no início do cálculo; seja para continuar com outros cálculos.	navegar e	fazer o cálculo	Em geral, fácil de acessar e fazer o cálculo desejado. 1,6pontos	acessar e fazer o
Compreensão do código	Dificil compreensão. 0,8pontos	É somente compreendido com algumas leituras.	compreendido	Bem legível - pode ser lido e entendido de uma vez. 2,0pontos
Organização do código	Navegabilidade ruim. 0,8pontos	Navegabilidade média. 1,2pontos	Navegabilidade boa. 1,6pontos	Navegabilidade ótima. 2,0pontos
Comentários e documentação	Nível básico de documentação. 0,8pontos	Nível razoável de documentação. 1,2pontos	Nível bom de documentação.	Nível excelente de documentação 2,0pontos
Funcionamento do programa	Ruim. 0,8pontos	Mediano. 1,2pontos	Bom. 1,6pontos	Excelente, de acordo com o esperado. 2,0pontos