- **1** Consider the sequence defined by $w_n = \frac{1}{n} \frac{1}{n+1}$ defined for $n \ge 1$.
 - a. Find $\sum_{i=1}^{10} w_i$.
 - b. Find a formula for the sequence defined by $c_n = \sum_{i=1}^n w_i$.
 - c. Is w_n increasing?
 - d. Is w_n non-increasing?

Solution a. By direct calculation,

$$\sum_{i=1}^{10} w_i = \left(\frac{1}{1} - \frac{1}{2}\right) + \left(\frac{1}{2} - \frac{1}{3}\right) + \dots + \left(\frac{1}{9} - \frac{1}{10}\right) + \left(\frac{1}{10} - \frac{1}{11}\right)$$

$$= \frac{1}{1} + \left(-\frac{1}{2} + \frac{1}{2}\right) + \left(-\frac{1}{3} + \frac{1}{3}\right) + \dots + \left(-\frac{1}{9} + \frac{1}{9}\right) + \left(-\frac{1}{10} + \frac{1}{10}\right) - \frac{1}{11}$$

$$= 1 - \frac{1}{11} = \frac{10}{11}.$$

b. We claim that $c_n = 1 - \frac{1}{n+1}$, and we will prove this by induction:

Base step: n = 1

In this case, $c_n = \frac{1}{1} - \frac{1}{2} = 1 - \frac{1}{1+1}$, so the base case holds.

Inductive step:

Suppose the formula holds for n = k. We wish to show that it holds for n = k + 1. By calculating, we have

$$c_{k+1} = \sum_{i=1}^{k+1} w_i = \sum_{i=1}^{k} w_i + w_{k+1} = c_k + w_{k+1} = 1 - \frac{1}{k+1} + \left(\frac{1}{k+1} - \frac{1}{(k+1)+1}\right) = 1 - \frac{1}{(k+1)+1},$$

so the inductive step holds.

By induction, $c_n = 1 - \frac{1}{n+1}$.

c. Consider $f(x) = \frac{1}{x} - \frac{1}{x+1} = \frac{1}{x(x+1)}$ on $[1, \infty)$. We have

$$f'(x) = -\frac{2x+1}{(x(x+1))^2} \le -\frac{1}{(x(x+1))^2} < 0,$$

so f is strictly decreasing on this interval. Hence, because $f(n) = w_n$ for all $n \ge 1$, it follows that w_n is not increasing.

- d. Yes, since w_n is decreasing.
- **2** Consider the sequence $\{r_n\}$ defined by $r_n = 3 \cdot 2^n 4 \cdot 5^n$ for $n \ge 0$. Prove that $\{r_n\}$ satisfies $r_n = 7r_{n-1} 10r_{n-2}$ for $n \ge 2$.

Solution By calculation,

$$7r_{n-1} - 10r_{n-2} = 7 \cdot 3 \cdot 2^{n-1} - 7 \cdot 4 \cdot 5^{n-1} - 10 \cdot 3 \cdot 2^{n-2} + 10 \cdot 4 \cdot 5^{n-2}$$

$$= 7 \cdot 3 \cdot 2^{n-1} - 7 \cdot 4 \cdot 5^{n-1} - 5 \cdot 3 \cdot 2^{n-1} + 2 \cdot 4 \cdot 5^{n-1}$$

$$= 2 \cdot 3 \cdot 2^{n-1} - 5 \cdot 4 \cdot 5^{n-1}$$

$$= 3 \cdot 2^{n} - 4 \cdot 5^{n}$$

$$= r_{n},$$

as required.

3 Consider the sequence $\{z_n\}$ defined by $z_n = (2+n)3^n$ for $n \ge 0$. Prove that $\{z_n\}$ satisfies $z_n = 6z_{n-1} - 9z_{n-2}$ for $n \ge 2$.

Solution Substitution yields

$$6z_{n-1} - 9z_{n-2} = 6(2+n-1)3^{n-1} - 9(2+n-2)3^{n-2}$$

$$= (2+2n)3^n - n \cdot 3^n$$

$$= (2+n)3^n$$

$$= z_n$$

as desired.

4 Rewrite the sum $\sum_{i=1}^{n} i^2 r^{n-1}$ replacing the index k by i, where i = k + 1.

Solution We have

$$\sum_{i=1}^{n} i^{2} r^{n-1} = \sum_{k=0}^{n-1} (k+1)^{2} r^{n-1}.$$

5 Let $X = \{a, b\}$ and let X^* be the set of strings over X. For any $\alpha \in X^*$, let $\alpha^R \in X^*$ be the string obtained by reversing α . A palindrome over X is a string $\alpha \in X^*$ for which $\alpha = \alpha^R$. Define a function f from X^* to the set of palindromes over X as $f(\alpha) = \alpha \alpha^R$. Is f one-to-one? Is f onto? Prove your answers.

Solution f is one-to-one: Suppose we had $\alpha, \beta \in X^*$ with

$$f(\alpha) = \alpha \alpha^R = \beta \beta^R = f(\beta).$$

Then $\alpha = \beta$: α and β must both be the first half of $\alpha \alpha^R = \beta \beta^R$, i.e., they are both the first half of the same string, so they must be the same string.

f is not onto: aba is palindrome, but it is not of the form $\alpha\alpha^R$. Indeed, $\alpha\alpha^R$ must have an even number of characters, but aba has an odd number of characters.

6 Draw the digraph of the relation $R = \{(1,2), (2,3), (3,4), (4,1)\}$ on $\{1,2,3,4\}$.

Solution The digraph is the following:

- 7 Determine whether each relation defined on \mathbb{Z}^+ is reflexive, symmetric, antisymmetric, transitive, and/or a partial order.
 - a. $(x,y) \in R$ if $x \ge y$.
 - b. $(x,y) \in R$ if 3 divides x + 2y.
 - c. $(x, y) \in R \text{ if } |x y| = 2.$
- **Solution** a. R is reflexive, since x > x for all $x \in \mathbb{Z}^+$.

R is not symmetric: 2 > 1 for $1 \not > 2$.

R is antisymmetric: if $x \ge y$ and $y \ge x$, then by trichotomy of \ge , x = y.

R is transitive: $x \ge y$ and $y \ge z$ imply that $x \ge z$.

R is a partial order: R is reflexive, transitive, and antisymmetric.

b. R is reflexive: x + 2x = 3x, so $(x, x) \in R$.

R is symmetric:

Notice that if $(x, y) \in R$, then x + 2y = 4x + 2y - 3x = 2(2x + y) - 3x is divisible by 3, i.e., there exists $k \in \mathbb{Z}$ so that

$$2(2x + y) - 3x = 3k \implies 2(2x + y) = 3(x + k) \implies 3 \mid 2(2x + y).$$

Since 2 and 3 are different primes, it follows that $3 \mid 2x + y$, so $(y, x) \in R$.

R is not antisymmetric: for example, $(1,4), (4,1) \in R$, but $1 \neq 4$.

R is transitive:

If $(x,y) \in R$ and $(y,x) \in R$, then there exist $a,b \in \mathbb{Z}$ so that x+2y=3a and y+2z=3b. Then

$$(x+2y)+(y+2z)=3a+3b \implies x+2z=3a+3b-3y=3(a+b-y) \implies 3 \mid x+2z,$$

since $y \in \mathbb{Z}$, so $(x, z) \in R$.

R is not a partial order: R is not antisymmetric.

- c. R is not reflexive: $|x-x|=0\neq 2$ for all $x\in\mathbb{Z}^+$.
 - R is symmetric: if $(x, y) \in R$, then |y x| = |x y| = 2, so $(y, x) \in R$.

R is not antisymmetric: for example, $(1,3),(3,1) \in R$, but $1 \neq 3$.

R is not transitive: for example, $(1,3),(3,5) \in R$, but $(1,5) \notin R$.

R is not a partial order: it is not reflexive.

- 8 Give examples of relations on $\{1, 2, 3, 4\}$ having the specified properties:
 - a. Reflexive, not symmetric, and not transitive.
 - b. Not reflexive, not symmetric, and transitive.
- **Solution** a. $R = \{(1,1), (2,2), (3,3), (4,4), (1,2), (2,3)\}$. It's clearly reflexive, it's not symmetric since $(1,2) \in R$ but $(2,1) \notin R$, and it's not transitive since $(1,2), (2,3) \in R$, but $(1,3) \notin R$.
 - b. $R = \{(1,2),(2,3),(1,3)\}$. R is not reflexive since $(1,1) \notin R$, it's not symmetric since $(1,2) \in R$, but $(2,1) \notin R$, but it's transitive: if (x,y) and (y,z) are in R, then necessarily x=1, y=2, and z=3, and $(x,z)=(1,3) \in R$.
 - **9** What's wrong with the following argument, which supposedly shows that any relation R on X that is symmetric and transitive is also reflexive?

Let $x \in X$. Using symmetry we have (x, y) and (y, x) both in R. Since $(x, y), (y, x) \in R$, by transitivity we have $(x, x) \in R$. Therefore R is reflexive.

Solution Given $x \in X$, it may not be true that $(x, y) \in R$ for any $y \in X$. For example, take $R = \{(2, 3), (3, 2), (2, 2), (3, 3)\}$ on $\{1, 2, 3\}$: R is symmetric and transitive, but $(1, 1) \notin R$, so R is not reflexive.

- 10 Determine whether the given relations are equivalence relations on the set of all people:
 - a. $\{(x,y) \mid x \text{ and } y \text{ have, at some time, lived in the same country at the same time}\}$.
 - b. $\{(x,y) \mid x \text{ and } y \text{ have the same color hair}\}.$
- **Solution** a. This is not an equivalence relation. For example, say person a lived in Canada from 2000 to 2005, person b lived there from 2005 to 2010, and person c lived there from 2010 to 2015. Then $(a,b),(b,c)\in R$, but $(a,c)\notin R$. So R is not transitive and hence not an equivalence relation.
 - b. This is an equivalence relation. Person a obviously has the same color as a, so it is reflexive. If a and b have the same hair color, then b and a have the same hair color. Lastly, if a and b have hair color x, and b and c have hair color y, then because b can only have one hair color, x = y, so a and c both have hair color x. Hence, x is transitive, so x is an equivalence relation.