Remotely Controllable Driverless Vehicle Equipped With Computer Vision System

PRESENTED BY

Student Name: Masud Ahmed Rifat

ID no : 1509007

SUPERVISED BY

Md. Abdur Rahman

Lecturer

Department of Mechatronics & Industrial Engineering

Introduction

Objectives

- Develop a prototype car with computer vision system
- ➤ Integrate automatic lane detection
- > Develop automatic lane following control
- ➤ Develop remote control of the car

Project Flow

Scopes

- Automation in car includes all the components of mechatronics, like hardware, software, intelligence
- Reduce traffic accidents caused by human error
- Increase safety on the road
- Collaborate in the advancement of car technology
- The prototype can be used to test more advanced features in physical world rather than in simulation.

Literature Review

Author	Title	Contribution
Hummel, R. [1]	Image enhancement by histogram transformation	Suggested a number techniques makes use of easily computed local context features by each point's gray level during histogram transformation.
J. P. Gonzalez and U. Ozguner [2]	Lane detection using histogram-based segmentation and decision trees	Exploits the characteristics of the gray level histogram of the road to detect lane markers.

Literature Review

Author	Title	Contribution
P. Pramkeaw and C. Thongchaisuratk rul [3]	Automated Driving System of Lane Detection Using Image Processing Techniques	A system that is mostly accurate in an environment where there is no objects or obstruction, the road is clearly seen and the light is not too bright.
Gurjashan Singh Pannu, Mohammad Dawud Ansari and Pritha Gupta[4]	Design and Implementation of Autonomous Car using Raspberry Pi	Uses Hough line transformation. They also have an extra feature of region of interest.

Literature Review

Author	Title	Contribution
N. P. Pawar and M. M. Patil [5]	Driver Assistance System based on Raspberry Pi	Used Hough line transformation for finding lane lines and gave satisfactory results. They also compressed there video before streaming. Network bandwidth made a significant impact on video transmission.
Raja Muthalagu, Anudeepsekhar Bolimera, V. Kalaichelvi[6]	Lane detection technique based on perspective transformation and histogram analysis for self-driving cars	Preprocessing of the image. Both Sobel operator and color thresholding is used. Preprocessing is computationally expensive.

Methodology

System Overview

System Overview (Continued)

The system is composed of four major sections:

- Camera for real time environment image input
- Computer for central processing.
- Power management system
- Two wheel rear drive.

Image Processing Pipeline

Thresholding

HSV Color Selection

HSV Color Space [7]

Thresholding and Binary Masking

Original Image

HSV Thresholded

Binary Masked (0,1)

Warp Perspective / Birds Eye

- OpenCV function is "Perspective Transformation"
- Corrects error caused by camera angle alignment
- Required for Correct angle calculation.

Warp Effect

Histogram

- Approximate representation
- Distribution of numerical data
- Used for continuous data

Fig: Histogram [8]

Histogram

Pixel Summation[9]

WHITE = 255 BLACK = 0

Histogram Visualization

Decision Logic

- Calculate average in the lower region.
- Determine average point location
- Locate middle line
- If more pixels is on the right side, move right and vice versa

PIXEL SUMMATION [9]

Decision / Logic Flow

Motor Driver Diagram

Power Design

Power for Logic System

Remote Control System

Remote Control Algorithm

Result and Limitation

- The car successfully drives over straight, left and right turns
- The car is able to accommodate additional sensors
 - Though this requires multithreading programming, which is more complex. So it will be worked on future implementation.
- The car is very slow
 - Detection and processing takes long time. Need to use powerful processor.
- Remote control works. But single press is processed at any moment.

Video with Explanation

• Google Drive link: https://drive.google.com/file/d/1PJA7G-LvgrDHkBlLhBRDVgVZ1TRDPb1S/view?usp=sharing

References

- [1] Hummel, R., "Image enhancement by histogram transformation", ieht.rept, 1975.
- [2] J. P. Gonzalez and U. Ozguner, "Lane detection using histogram-based segmentation and decision trees," ITSC2000. 2000 IEEE Intelligent Transportation Systems. Proceedings (Cat. No.00TH8493), Dearborn, MI, USA, 2000, pp. 346-351, doi: 10.1109/ITSC.2000.881084.
- [3] P. Pramkeaw and C. Thongchaisuratkrul, "Automated Driving System of Lane Detection Using Image Processing Techniques", International Journal of the Computer, the Internet and Management Vol.27 No.1 (January-April, 2019) pp. 58-63
- [4] Gurjashan Singh Pannu, Mohammad Dawud Ansari and Pritha Gupta. Article: Design and Implementation of Autonomous Car using Raspberry Pi. *International Journal of Computer Applications* 113(9):22-29, March 2015

References (continued)

- [5] N. P. Pawar and M. M. Patil "Driver Assistance System based on Raspberry Pi", International Journal of Computer Applications (0975 8887), Volume 95– No.16, June 2014
- [6] Raja Muthalagu, Anudeepsekhar Bolimera, V. Kalaichelvi, Lane detection technique based on perspective transformation and histogram analysis for self-driving cars, Computers & Electrical Engineering, Volume 85, 2020, 106653, ISSN 0045-7906, https://doi.org/10.1016/j.compeleceng.2020.106653. (https://www.sciencedirect.com/science/article/pii/S0045790620305085)

References (continued)

• [7] HSV cylinder, Page url:

https://commons.wikimedia.org/wiki/File:HSV_color_solid_cylinder.png, file URL: https://upload.wikimedia.org/wikipedia/commons/4/4e/HSV_color_solid_cylinder.png, attribution: SharkD, CC BY-SA 3.0 https://creativecommons.org/licenses/by-sa/3.0, via Wikimedia Commons. Date taken: 14 April,2021

- [8] https://www.allaboutcircuits.com/technical-articles/introduction-to-histogram-equalization/
- [9] https://www.murtazahassan.com/courses/self-driving-car-using-raspberry-pi/lesson/finding-curve/

Thank you.

Questions and Answers