

- Eka Firmansyah (7 Pertemuan- sd. Mid)
- Dzuhri Radityo Utomo, ST, M.E., Ph.D. (7 Pertemuan)

- Buku:
- Physics for Scientists and Engineers: A Strategic Approach
 - Edisi 3 atau 4
- Buku fisika tingkat universitas lainnya.

Penilaian

- Eka Firmansyah (50%)
 - Tidak ada UTS
 - Dinilai dari Asesment
- Disklaimer
 - Kuliah bukan tentang nilai akhir.
 - Tapi tentang perjalanannya.
 - Anda adalah mahasiswa DTETI-UGM
 - Value tentang keinsinyuran UGM menjadi landasan utama.

Pesan

Materi

- Chapter 1 Concepts of Motion 2
- 2. Chapter 2 Kinematics in One Dimension 33
- 3. Chapter 3 Vectors and Coordinate Systems 69
- 4. Chapter 4 Kinematics in Two Dimensions 85
- 5. Chapter 5 Force and Motion 116
- 6. Chapter 6 Dynamics I: Motion Along a Line 138
- 7. Chapter 7 Newton's Third Law 167
- 8. Chapter 8 Dynamics II: Motion in a Plane 191
- 9. Chapter 9 Impulse and Momentum 220
- 10. Chapter 10 Energy 245
- 11. Chapter 11 Work 278

Jumlah halaman: 309 Jumlah pertemuan: 7

Rerata halaman per pertemuan: 44 halaman per pertemuan

Rerata halaman per hari: 7

Baru membaca 1 kali.

Anda perlu memahami dan mampu mengerjakan (terkait nilai).

Learning objective

- Mahasiswa dapat menggunakan satuan, besaran fisika, notasi dan operasi vector, pada konteks yang tepat (Bloom Level 3-Apply),
- Mahasiswa dapat melakukan perhitungan atas gerakan lurus, dua, dan tiga dimensi masalah terkait Hukum Newton tentang gerak (Bloom Level 3-Apply)
- Mahasiswa dapat menyelesaikan masalah terkait Usaha, Energi (Kinetik-Potensial), konservasi energy, konsep Momentum, Impulse, dan Tabrakan (Bloom Level 3-Apply)
- 4. Mahasiswa dapat menyelesaikan masalah terkait Rotasi benda rigid & Dinamikanya (Bloom Level 3-Apply)
- 5. Mahasiswa dapat menyelesaikan masalah terkait Gerakan Periodis dan Gelombang Akustik (Bloom Level 3-Apply)
- Mahasiswa dapat menyelesaikan masalah terkait Temperatur, Bahang, Properti Thermal Materi, Hukum Thermodinamika I & II (Bloom Level 3-Apply)

Bloom Taxonomy

Bloom's Taxonomy

Pengantar

Isaac Newton

"Far more than just discovering the laws of gravity, Sir Isaac Newton was also responsible for working out many of the principles of visible light and the laws of motion, and contributing to calculus."

(https://www.nationalgeographic.org/article/isaac-newton-who-he-was-why-apples-are-falling/7th-grade/)

Apakah Sir Newton yang menetapkan hukum gravitasi? Apakah hukum gravitasi di Inggris berbeda dengan di Indonesia?

Pengantar

• Fisika?

- Menghafal persamaan
- Mengingat konstanta
- Matematika rumit

Salah

Mungkin anda hanya sedang belajar berhitung

• Fisika

- memahami mekanisme terjadinya fenomena fisis.
- Matematika sebagai alat bantu
- Komputer, matlab, adalah sarana
- Bisa menghitung tanpa paham sama bahayanya dengan tidak paham fisika.
 - Hukum alam (hukum Tuhan) itu tanpa belas kasihan.

Pengantar

- Dunia fisis (semesta) adalah dunia yang kompleks.
 - Persepsi atas gejala adalah jumlahan berbagai macam hukum yang terjadi secara simultan.
 - Hukum dikenali setelah didefinisikan.
 - Tanpa definisi, 'hukum' bekerja secara tersembunyi. Melahirkan legenda, dongeng, cerita, tahayul.
 - Proses mengenali hukum alam adalah proses yang rumit, detail, penuh petualangan, resiko gagal yang tinggi, dicemooh, tidak dihargai (pada masanya).
 - Mencari keteraturan
 - Mendefinisikan Generalisasi
 - Hukum alam sangat teratur dan konsisten

Galileo Galilei

Saran

- Ada banyak dongeng dan hikmah dalam cerita tentang para ilmuan
- Sempatkanlah membacanya
- Fisika bukan hanya persamaan mati

Besaran Fisis

- Anda mengetahui bila tahu cara mengkuantisasi
- Mendefinisikan besaran fisik berarti:
 - Menetapkan cara mengukurnya,
 - Menentukan cara menghitungnya dari besaran yang lain.
- Ekspresi besaran fisis 🛚 satuan.

Length	Mass	Time	Electric Current	
meter (m)	kilogram (kg)	second (s)	ampere (A)	

- Jangan menduga,
 - Kenali secara pasti
 - Buka buku
 - Pahami besarannya

Besaran Fisis

Prefix	Symbol	Value	Example (some are approximate)				
exa	Е	10 ¹⁸	exameter	Em	10 ¹⁸ m	distance light travels in a century	
peta	P	10 ¹⁵	petasecond	Ps	10 ¹⁵ s	30 million years	
tera	Т	10 ¹²	terawatt	TW	10 ¹² W	powerful laser output	
giga	G	10 ⁹	gigahertz	GHz	10 ⁹ Hz	a microwave frequency	
mega	M	10 ⁶	megacurie	MCi	10 ⁶ Ci	high radioactivity	
kilo	k	10 ³	kilometer	km	10 ³ m	about 6/10 mile	
hecto	h	10 ²	hectoliter	hL	$10^2 L$	26 gallons	
deka	da	10 ¹	dekagram	dag	10 ¹ g	teaspoon of butter	
_	_	100 (=1)					
deci	d	10^{-1}	deciliter	dL	10 ⁻¹ L	less than half a soda	
centi	С	10-2	centimeter	cm	10 ⁻² m	fingertip thickness	
milli	m	10 ⁻³	millimeter	mm	10 ⁻³ m	flea at its shoulders	
micro	μ	10 ⁻⁶	micrometer	μm	10 ⁻⁶ m	detail in microscope	
nano	n	10 ⁻⁹	nanogram	ng	10 ⁻⁹ g	small speck of dust	
pico	p	10 ⁻¹²	picofarad	pF	10 ⁻¹² F	small capacitor in radio	
femto	f	10 ⁻¹⁵	femtometer	fm	10 ⁻¹⁵ m	size of a proton	
atto	a	10 ⁻¹⁸	attosecond	as	10 ⁻¹⁸ s	time light crosses an atom	

Besaran Fisis

	Lengths in meters		sses in kilograms (more se values in parentheses)		nes in seconds (more e values in parentheses)
10^{-18}	Present experimental limit to smallest observable detail	10^{-30}	Mass of an electron $(9.11 \times 10^{-31} \text{ kg})$	10 ⁻²³	Time for light to cross a proton
10 ⁻¹⁵	Diameter of a proton	10^{-27}	Mass of a hydrogen atom $(1.67 \times 10^{-27} \text{ kg})$	10-22	Mean life of an extremely unstable nucleus
10 ⁻¹⁴	Diameter of a uranium nucleus	10^{-15}	Mass of a bacterium	10 ⁻¹⁵	Time for one oscillation of visible light
10 ⁻¹⁰	Diameter of a hydrogen atom	10^{-5}	Mass of a mosquito	10^{-13}	Time for one vibration of an atom in a solid
10 ⁻⁸	Thickness of membranes in cells of living organisms	10-2	Mass of a hummingbird	10 ⁻⁸	Time for one oscillation of an FM radio wave
10^{-6}	Wavelength of visible light	1	Mass of a liter of water (about a quart)	10^{-3}	Duration of a nerve impulse
10^{-3}	Size of a grain of sand	10 ²	Mass of a person	1	Time for one heartbeat
1	Height of a 4-year-old child	10 ³	Mass of a car	10 ⁵	One day $(8.64 \times 10^4 \text{ s})$
10 ²	Length of a football field	108	Mass of a large ship	10 ⁷	One year (y) $(3.16 \times 10^7 \text{ s})$
10 ⁴	Greatest ocean depth	10 ¹²	Mass of a large iceberg	109	About half the life expectancy of a human
107	Diameter of the Earth	10 ¹⁵	Mass of the nucleus of a comet	10 ¹¹	Recorded history
10 ¹¹	Distance from the Earth to the Sun	10 ²³	Mass of the Moon $(7.35 \times 10^{22} \text{ kg})$	10 ¹⁷	Age of the Earth

Akurasi-Presisi

 Akurasi: seberapa dekat hasil ukur terhadap nilai yang sesungguhnya.

 Presisi: seberapa dekatkah hasil ukur antar pengukuran.

- Ketidakpastian:
- Ukuran kuantitatif tentang seberapa besar simpangan hasil ukur dari nilai yang seharusnya.

$$A \pm \delta A$$

$$A \pm \delta A$$
 % unc = $\frac{\delta A}{A} \times 100\%$.

Asesmen

- Sebuah ban dinyatakan memiliki berat 5 kg.
 Dilakukan serangkaian pengukuran dengan hasil:
 - 4,8 kg
 - 5.3 kg
 - 4.9 kg
 - 5.4 kg
 - Nyatakan dalam $A \pm \delta A$ % unc = $\frac{\delta A}{A} \times 100\%$.
- Resistor memiliki nilai 1 kohm dengan ketidakpastian 10%. Dalam rentang berapakah nilai resistor ini mungkin terjadi?

Angka Penting

Alat ukur memiliki ketelitian tertentu

the last digit written down in a measurement is the first digit with some uncertainty

- Angka penting bukan pembulatan
 - Ini masalah fisika, bukan matematika
 - Matematika membantu perhitungannya
- Garbage in garbage out
 - Ini penting saat anda praktikum, capstone, tugas akhir

Angka Penting

Kalkulasi Angka Penting

- Perkalian dan Pembagian
- Hasil perkalian/pembagian memiliki jumlah angka penting yang sama dengan angka penting terkecil yang dioperasikan.
- Penjumlahan dan Pembagian
- Hasil penjumlahan/pengurangan memiliki jumlah decimal sama dengan hasil pengukuran yang memiliki ketelitian (presisi) terburuk.

Asesmen

- Tentukan jumlah angka penting
 - 0,00009
 - 15450,0
 - 6.0×10^{12}
 - 88,980
 - 30,52
- Sebuah lingkaran memiliki radius=1,2 m, tentukan luas permukaannya dengan angka penting yang benar.
- Anda membeli jeruk, di pasar, dengan berat 7,56 kg (timbangan memiliki ketelitian 0,01 kg). Sebagaian jeruk dibawa ke lab, ditimbang di sana dengan timbangan yang memiliki ketelitian 0,001 kg. Jeruk seberat 6,052 kg yang ditimbang di lab, dibagikan di sana. Dalam perjalanan pulang, sisa jeruk yang tidak dibagikan dibawa pulang. Dijumlahkan dengan jeruk hasil oleh-oleh teman, yang dibeli dengan timbangan yang memiliki ketelitian 0.1 kg. Berat jeruk oleh-oleh tersebut adalah 13,7 kg. Berapakah total jeruk yang ada di rumah dinyatakan dengan angka penting?

Model

- Model adalah representasi atas fenomena yang kadang sulit (atau bahkan tidak mungkin) untuk ditampilkan secara langsung.
- Membantu untuk menjelaskan sebuah sistem, memahami efek dari komponen (hipotetikal) dalam sistem, dan memperkirakan perilakunya.
- Meski model dibenarkan oleh bukti eksperimen, keakuratannya terbatas pada situasi tertentu. Contoh: Model Atom.

Hukum dan Teori

Hukum

- dinyatakan secara ringkas dengan kata-kata untuk menjelaskan pola umum (generalisasi) fenomena alam yang didukung dengan bukti ilmiah dan eksperimen berulang.
- sering dinyatakan dengan bentuk persamaan matematis. (F= m a).

Teori

- menjelaskan fenomena alam yang lebih kompleks dan dinamis dibandingkan Hukum (teori Darwin, teori relativitas).
- Tidak dapat secara ringkas menjelaskan fenomena alam yang terjadi.
- Adalah luaran dari proses ilmiah yang bersumber dari suatu hukum sebagai postulatnya (dalilnya).
- Model, teori, dan hukum 🛽 membantu menganalisis data.
- Model, teori, dan hukum 🛭 pijakan temuan baru.

Metode Ilmiah

Gerakan

Linear motion

Projectile motion

Circular motion

Rotational motion

Motion Diagram

Model Partikel

Representasi

Matematika Membantu

Perpindahan

a change of position is called a displacement.

$$\Delta \vec{r} = (100 \text{ ft, northeast})$$

$$\Delta \vec{r} = \vec{r}_{\rm f} - \vec{r}_{\rm i}$$

Selang Waktu

- t₁ dan t₂ dapat saja terjadi secara acak
- Tapi Δt bukan hal yang acak (pasti).
- $\Delta t = t_1 + t_2$

Velocity

"How fast?"

average speed =
$$\frac{\text{distance traveled}}{\text{time interval spent traveling}} = \frac{d}{\Delta t}$$

"How fast, and in which direction?"

average velocity
$$\vec{v}_{avg} = \frac{\Delta \vec{r}}{\Delta t}$$

Kinematika

- Ilmu tentang Gerakan
- Tanpa memperhatikan sebab

Uniform Motion

- motion with constant velocity
- motions with position vs time graph result in straight line

velocity is the combination of speed and direction
speed is how fast it's going, independent of direction

$$v = |v_x| \text{ or } v = |v_y|$$

We will use s as a generic label for position. In practice, s could be either x or y.

$$v_s = \frac{\text{rise}}{\text{run}} = \frac{\Delta s}{\Delta t} = \frac{s_f - s_i}{t_f - t_i}$$

 $s_{\rm f} = s_{\rm i} + v_s \, \Delta t$ (uniform motion)

Predicts future S

Instantaneous Velocity

The increasing separation of the dots in the motion diagram means that Δx increases and the graph curves upward.

Instantaneous Velocity

The slope of this line is the average velocity between 1 and 3, but it is not the instantaneous velocity at time t_2 .

(b) 3000 frames per second

The high-speed movie shows dots that are nearly equally spaced.

(c) The limiting case

The highly magnified section of the graph near point 2 is very nearly a straight line. The slope of this line is a good approximation to the instantaneous velocity at time t_2 . The slope is the instantaneous velocity in the limit $\Delta t \rightarrow 0$.

$$v_s \equiv \lim_{\Delta t \to 0} \frac{\Delta s}{\Delta t} = \frac{ds}{dt}$$

(instantaneous velocity)

 v_s = slope of the position-versus-time graph at time t

Instantaneous Velocity

Catatan Turunan

$$u(t) = ct^n$$

The derivative of
$$u = ct^n$$
 is $\frac{du}{dt} = nct^{n-1}$

$$\frac{du}{dt} = 0 \text{ if } u = c = \text{constant}$$

$$\frac{d}{dt}(u+w) = \frac{du}{dt} + \frac{dw}{dt}$$

Catatan Turunan

Asesmen

Menghitung Posisi dari V

The velocity curve is approximated by constantvelocity steps of width Δt .

$$\Delta s = s_f - s_i \approx \Delta s_1 + \Delta s_2 + \cdots + \Delta s_N = \sum_{k=1}^N (v_s)_k \Delta t$$

$$s_{\rm f} \approx s_{\rm i} + \sum_{k=1}^{N} (v_{\rm s})_k \Delta t$$

 $s_f = s_i + \text{area under the velocity curve } v_s \text{ between } t_i \text{ and } t_f$

$$\int_{t_{i}}^{t_{f}} (u+w) dt = \int_{t_{i}}^{t_{f}} u dt + \int_{t_{i}}^{t_{f}} w dt$$

During the interval t_i to t_f , the total displacement Δs is the "area under the curve."

Menghitung Posisi dari V

Asesmen

Akselerasi Konstan

TABLE 2.1 Velocities of a Porsche and a Volkswagen Beetle

t(s)	$v_{\text{Porsche}}(\text{m/s})$	v _{VW} (m/s)		
0.0	0.0			
0.1	0.5	0.2		
0.2	1.0	0.4		
0.3	1.5	0.6		
0.4	2.0	0.8		
: :		i		

 $a_{\text{avg}} = \text{slope of the velocity-versus-time graph}$

Akselerasi Konstan

Displacement Δs is the area under the curve. The area can be divided into a rectangle of height

(b) Velocity divided into a rectangle of height v_{is} and a triangle of height $a_s \Delta t$.

$$a_{s} = \frac{\Delta v_{s}}{\Delta t} = \frac{v_{fs} - v_{is}}{\Delta t}$$
$$v_{fs} = v_{is} + a_{s} \Delta t$$

$$v_{\rm fs}^2 = v_{\rm is}^2 + 2a_{\rm s} \Delta s$$

 $s_{\rm f} = s_{\rm i} + {\rm area}$ under the velocity curve v_s between $t_{\rm i}$ and $t_{\rm f}$

$$s_{\rm f} = s_{\rm i} + v_{\rm is} \Delta t + \frac{1}{2} a_{\rm s} (\Delta t)^2$$

Akselerasi Konstan

(a) Motion at constant velocity

(b) Motion at constant acceleration

Vector

Please read by your self.