Left-to-Right Target Generation for Hierarchical Phrase-based Translation

Marzieh Razavi

Maryam Siahbani

Ravikiran Vadlapudi

Introduction

- Problem with Hierarchical phrase-based translation: Cost of Decoding
 - the number of extracted rules from initial phrases would be numerous
 - The integration with language model especially when incorporating with higher order n-grams:
 - $-O(n^3|T|^{4(m-1)})$ (T: English terminal alphabet)

Introduction

- Idea: Target-normalized Hierarchical Phrasebased Translation
 - Restrict the target side to have GNF-like structure:
 - Sequence of terminals followed by non-terminals
 - Reduce the number of extracted rules from the bilingual corpus
 - Integration with n-gram language model would be straight forward
 - The target side is generated in Left-to-right order

Translation Model

$$X \rightarrow < \gamma$$
, $\overline{b}\beta$, $\sim >$

- *X* : non-terminal
- γ : strings of terminals and non-terminals for source
- \bar{b} : strings of terminals or phrase for target
- β : string of non-terminals for target
- \sim : 1-1 correspondence between non-terminals

Rule Extraction

- 1. Identifying initial phrase pairs
- 2. Extracting rules:
 - I. Use initial phrases $(\overline{f}, \overline{e})$:

$$X \rightarrow <\overline{f}$$
, $\overline{e}>$

II. Choose a rule $X \to < \gamma$, $\alpha >$ and a phrase $(\overline{f}, \overline{e})$ s.t. $\gamma = \gamma' \overline{f} \gamma''$ and $\alpha = \overline{e'} \overline{e} \beta$

$$X \rightarrow \langle \gamma' X \gamma'', \overline{e'} X \beta \rangle$$

テロ は

テロ は

テロ は 日本

International terrorism also possible threat in Japan The <u>.</u>2 σ 国際 でも 起 りう 脅威 で ある

テロ は 日本

International terrorism also possible threat in Japan The <u>.</u>2 σ 国際 でも 起 りう 脅威 で ある

テロ は 日本

International terrorism also possible threat in Japan The <u>.</u> Ф 日でも 起 りう本 脅威 で ある

国際 テロ は

X →< 国際 X, int. X ≥

International terrorism also possible Jic threat in Japan 国際 テロ は 日本 ŧ 起こ り うる 脅威 で ある

X →< X も 起こり うる 脅威 で ある 1

, also is a possible treat X >

$$X \rightarrow < X = X, also X X > 1$$

$$X \rightarrow < X \bowtie X, the XX >$$

Phrase-based Rules

- From step 1 of rule extraction : $X \to <\overline{f}$, $\overline{e} >$
- We add the following rules to avoid data sparseness:

•
$$X \rightarrow \langle \overline{f} X, \overline{e} X \rangle$$

•
$$X \rightarrow \langle X \overline{f}, \overline{e} X \rangle$$

•
$$X \rightarrow \langle X \overline{f} X, \overline{e} X X \rangle$$

•
$$X \rightarrow \langle X \overline{f} X \overline{e} X X \rangle$$

Example

$$X: [1,11] \rightarrow \left\langle X_{\boxed{1}}: [1,2] \text{ if } X_{\boxed{2}}: [4,11], \text{The } X_{\boxed{1}} X_{\boxed{2}} \right\rangle$$

 $X: [1,2] \rightarrow \left\langle \boxtimes \mathbb{R} X_{\boxed{1}} : [2,2], \text{ international } X_{\boxed{1}} \right\rangle$

国際 テロ は 日本 で も 起こりうる 脅威 である 1 2 3 4 5 6 7 8 9 10 11 Rules Stack
$$X: [7,11] \rightarrow \langle X_{\boxed{1}}: [7,9]$$
 である, is a $X_{\boxed{1}}\rangle$
$$X: [7,9] \rightarrow \langle \text{起こりうる} X_{\boxed{1}}: [9,9], \text{ possible } X_{\boxed{1}}\rangle$$

$$\begin{bmatrix} [9,9] \\ [4,5] \end{bmatrix}$$

国際 テロ は 日本 で も 起こりうる 脅威 である 1 2 3 4 5 6 7 8 9 10 11 Rules Stack
$$X: [7,11] \rightarrow \langle X_{\square}: [7,9]$$
 である, is a $X_{\square} \rangle$
$$X: [7,9] \rightarrow \langle \mathbb{Z}[7,9] \rightarrow \langle \mathbb{Z}[7,9], \text{ possible } X_{\square} \rangle$$

$$X: [9,9] \rightarrow \langle \mathbb{Z}[7,9], \text{ possible } X_{\square} \rangle$$

$$[9,9] = [4,5]$$

$$[4,5]$$

国際 テロ は 日本 で も 起こりうる 脅威 である
$$1$$
 2 3 4 5 6 7 8 9 10 11 $\frac{\text{Rules}}{\text{Rules}}$ $\frac{\text{Stack}}{\text{Stack}}$ $X:[7,11] \rightarrow \langle X_{\square}:[7,9]$ で ある, is a $X_{\square}\rangle$ $\frac{[7,9]}{[4,5]}$ $X:[7,9] \rightarrow \langle 起こりうる X_{\square}:[9,9]$, possible $X_{\square}\rangle$ $\frac{[9,9]}{[4,5]}$ $X:[9,9] \rightarrow \langle$ 脅威, threat \rangle $X:[4,5] \rightarrow \langle X_{\square}:[4,4]$ で, in $X_{\square}\rangle$ $\frac{[4,4]}{[4,4]}$

[4, 4]

 $X: [4,4] \rightarrow \langle \Box \Delta, Japan \rangle$

国際 テロ は 日本 で も 起こりうる 脅威 である 1 2 3 4 5 6 7 8 9 10 11

$$X: [1,2] \rightarrow \left\langle \boxtimes \Re X_{\boxed{1}}: [2,2], \text{ international } X_{\boxed{1}} \right\rangle$$

$$X: [2,2] \to \langle \mathcal{F} \square, \mathsf{terrorism} \rangle$$

$$X: [7,11] \rightarrow \left\langle X_{\boxed{1}}: [7,9]$$
 で ある, is a $X_{\boxed{1}}\right\rangle$

$$X: [7,9] \rightarrow \left\langle$$
起こり うる $X_{\boxed{\square}}: [9,9]$, possible $X_{\boxed{\square}} \right\rangle$

$$X: [9,9] \rightarrow \langle$$
脅威, threat \rangle

$$X: [4,4] \rightarrow \langle 日本, Japan \rangle$$

Example of derivation tree

Model

General log-linear model over derivations D

$$\underset{e_{1}^{I}}{\operatorname{argmax}} \frac{exp(\lambda_{lm}P_{lm}(e_{1}^{I}) + \sum_{m=1, m \neq lm}^{M} \lambda_{m}h_{m}(e_{1}^{I}|f_{1}^{J}, D))}{\sum_{e_{1}^{I'}} exp(\lambda_{lm}P_{lm}(e_{1}^{I'}) + \sum_{m=1, m \neq lm}^{M} \lambda_{m}h_{m}(e_{1}^{I'}|f_{1}^{J}, D))}$$

- $-h_m(e_1^I|f_1^J,D)$: feature functions
- $-\lambda_m$: weights

Feature functions

• Likelihood of two sentences $f_1^{\ J}$ and $e_1^{\ I}$

$$-h_{\phi}(e_1^I|f_1^J,\mathcal{D}) \quad h_{\phi}(f_1^J|e_1^I,\mathcal{D})$$

$$h_{\phi}(f_1^J|e_1^I,\mathcal{D}) = \log \prod_{\langle \gamma,\alpha\rangle \in \mathcal{D}} \phi(\gamma|\alpha)$$

- Lexical weights: $h_w(e_1^I|f_1^J,D), h_w(f_1^J|e_1^I,D)$
 - How well the words in $e_1^{\ I}$ translate the words $\inf_1^{\ J}$
- Language model

Reordering features

Two features to limit the reordering

Reordering features

Length-based features

- Three length-based features:
 - Length of English sentence: $h_l(e_1^I) = I$
 - Control the length of output
 - No. of extracted rules: $h_r(D) = rule(D)$
 - No. of phrase-based rules: $h_p(D) = phrase(D)$
 - Control whether to choose a extracted rule of phrasebased rules in D

Experiments

	# rules/phrases
Phrase	5,433,091
Normalized-2	6,225,630
Normalized-3	6,233,294
Hierarchical	12,824,387

- No. of Rules with 2 non-terminals are slightly larger than phrase pairs
- Including 3 non-terminals did not change the grammar size

Experiments

- At most two non-terminals
- 3-gram/5-gram language models

		BLEU	NIST
		[%]	
Phrase	3-gram	7.14	3.21
	5-gram	7.33	3.19
Normalized-2	3-gram	10.00	4.11
	5-gram	10.26	4.20

results for Japanese-English

Questions ??