統計学 演習問題②

問題を解くための計算過程を記述すること. 計算結果のみは採点対象外です.

小数点以下は適宜四捨五入すること. なお, 必要に応じて次の分布関数を用いても良い.

二項分布関数: $\Pr(x) =_n C_x \pi^x (1-\pi)^{n-x}$ ポアソン分布関数: $\Pr(x) = \frac{\mu^x e^{-\mu}}{x!}$

- 1. 打率が 0.321 の野球選手が、今日の試合で打席に 5 回立つとする。ヒットの本数をxとし、確率 $\Pr(x)$ について考える。
- (1) 確率分布関数を示しなさい.
- (2) ヒットの本数の①期待値と②分散を求めなさい.
- (3) 確率分布のおおよその姿を描きなさい.
- 2. ある人がデータ入力をする際, 500 データのうち 1 つの入力ミスをする. いま, この人が 2750 個のデータ入力することを考える. 入力ミスの個数をxとして, 確率分布はポアソン分布で近似できるものとする.
- (1) 入力ミスの個数の①期待値と②分散を求めなさい.
- (2) 確率分布関数を示しなさい.
- (3) 確率分布のおおよその姿を描きなさい.
- 3. ある年の統計学の平均点は 65 点,標準偏差は 9 であった.試験の点数は正規分布 $N(65,9^2)$ にしたがう確率変数xであるとする.
- (1) 80点以上は何パーセントいるか.
- (2) 45点未満は何パーセントいるか.
- (3) 高い方から 10%までの点数に A をつけるとすると、A の最低点を何点に設定したら良いか.
- (4) 低い方から 5%の学生を D 判定とするとすれば、C 判定以上となる最低点は何点か.
- なお、(3)(4)の点数は整数値とする.
- 4. あるチェーンレストランの 20 店舗の売上高x,は以下の表のとおりであった. (単位:万円)
- ①標本平均 \bar{x} と②標本分散 S_r^2 を求めよ.
- (2) 標本平均は正規分布にしたがい、標本分散 S_x^2 を母集団の分散 σ_x^2 として考えることができるとする場合、95%の信頼係数でこのチェーンレストラン全体の平均売上高の下限値と上限値を求めよ.
- (3) (2)とは異なり、母集団の分散 σ_x^2 は未知とするとき、①不偏分散 $\widehat{\sigma_x^2}$ を求めよ。また、②95% 信頼区間でチェーンレストラン全体の平均売上高の上限値と下限値を求めよ。

ID	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
x_i	45	60	62	69	76	78	63	42	45	41	80	70	43	80	74	51	44	56	40	59

学籍番号	()氏名()	
	(1)			
	(2)	1		
		2		
1.				
	(3)			
		①		
	(1)			
		2		
	(2)			
2.	(3)			

学籍番号	() 氏名()	
	(1)			
	(2)			
3.	(3)			
	(4)			
		1		
	(1)	2		
	(2)			
4.		①		
	(3)			
		2		