

MATRIX ANALYSIS AND APPLICATIONS

This balanced and comprehensive study presents the theory, methods and applications of matrix analysis in a new theoretical framework, allowing readers to understand second-order and higher-order matrix analysis in a completely new light.

Alongside the core subjects in matrix analysis, such as singular value analysis, the solution of matrix equations and eigenanalysis, the author introduces new applications and perspectives that are unique to this book. The very topical subjects of gradient analysis and optimization play a central role here. Also included are subspace analysis, projection analysis and tensor analysis, subjects which are often neglected in other books. Having provided a solid foundation to the subject, the author goes on to place particular emphasis on the many applications matrix analysis has in science and engineering, making this book suitable for scientists, engineers and graduate students alike.

XIAN-DA ZHANG is Professor Emeritus in the Department of Automation, at Tsinghua University, Beijing. He was a Distinguished Professor at Xidian University, Xi'an, China – a post awarded by the Ministry of Education of China, and funded by the Ministry of Education of China and the Cheung Kong Scholars Programme – from 1999 to 2002. His areas of research include signal processing, pattern recognition, machine learning and related applied mathematics. He has published over 120 international journal and conference papers, and 7 books in Chinese. He taught the graduate course "Matrix Analysis and Applications" at Tsinghua University from 2004 to 2011.

MATRIX ANALYSIS AND APPLICATIONS

XIAN-DA ZHANG

Tsinghua University, Beijing

CAMBRIDGEUNIVERSITY PRESS

University Printing House, Cambridge CB2 8BS, United Kingdom
One Liberty Plaza, 20th Floor, New York, NY 10006, USA
477 Williamstown Road, Port Melbourne, VIC 3207, Australia
4843/24, 2nd Floor, Ansari Road, Daryaganj, Delhi – 110002, India
79 Anson Road, #06–04/06, Singapore 079906

Cambridge University Press is part of the University of Cambridge.

It furthers the University's mission by disseminating knowledge in the pursuit of education, learning, and research at the highest international levels of excellence.

www.cambridge.org
Information on this title: www.cambridge.org/9781108417419
DOI: 10.1017/9781108277587

© Xian-Da Zhang 2017

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2017

Printed in the United Kingdom by Clays, St Ives plc

A catalogue record for this publication is available from the British Library.

ISBN 978-1-108-41741-9 Hardback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

To John Zhang, Ellen Zhang and Andrew Wei

Contents

	Pref	ace		page xvii		
	Note	ation		xxi		
	Abbi	Abbreviations				
	Algo	rithms		xxxiv		
	PAI	RT I	MATRIX ALGEBRA	1		
1	Intr	oductio	on to Matrix Algebra	3		
	1.1	Basic	Concepts of Vectors and Matrices	3		
		1.1.1	Vectors and Matrices	3		
		1.1.2	Basic Vector Calculus	6		
		1.1.3	Basic Matrix Calculus	8		
		1.1.4	Linear Independence of Vectors	11		
		1.1.5	Matrix Functions	11		
	1.2	Eleme	entary Row Operations and Applications	13		
		1.2.1	Elementary Row Operations	13		
		1.2.2	Gauss Elimination Methods	16		
	1.3	Sets, V	Vector Subspaces and Linear Mapping	20		
		1.3.1	Sets	20		
		1.3.2	Fields and Vector Spaces	22		
		1.3.3	Linear Mapping	24		
	1.4	Inner	Products and Vector Norms	27		
		1.4.1	Inner Products of Vectors	27		
		1.4.2	Norms of Vectors	28		
		1.4.3	Similarity Comparison Between Vectors	32		
		1.4.4	Banach Space, Euclidean Space, Hilbert Space	35		
		1.4.5	Inner Products and Norms of Matrices	36		
	1.5	Rando	om Vectors	40		
		1.5.1	Statistical Interpretation of Random Vectors	41		
		1.5.2	Gaussian Random Vectors	44		

viii

	1.6	Perforr	mance Indexes of Matrices	47
		1.6.1	Quadratic Forms	47
		1.6.2	Determinants	49
		1.6.3	Matrix Eigenvalues	52
		1.6.4	Matrix Trace	54
		1.6.5	Matrix Rank	56
	1.7	Inverse	e Matrices and Pseudo-Inverse Matrices	59
		1.7.1	Definition and Properties of Inverse Matrices	59
		1.7.2	Matrix Inversion Lemma	60
		1.7.3	Inversion of Hermitian Matrices	61
		1.7.4	Left and Right Pseudo-Inverse Matrices	63
	1.8	Moore-	-Penrose Inverse Matrices	65
		1.8.1	Definition and Properties	65
		1.8.2	Computation of Moore–Penrose Inverse Matrix	69
	1.9	Direct	Sum and Hadamard Product	71
		1.9.1	Direct Sum of Matrices	71
		1.9.2	Hadamard Product	72
	1.10	Kronec	cker Products and Khatri–Rao Product	75
		1.10.1	Kronecker Products	75
		1.10.2	Generalized Kronecker Products	77
		1.10.3	Khatri–Rao Product	78
	1.11	Vectori	ization and Matricization	79
		1.11.1	Vectorization and Commutation Matrix	79
		1.11.2	Matricization of a Vector	82
		1.11.3	Properties of Vectorization Operator	83
	1.12	Sparse	Representations	84
		1.12.1	Sparse Vectors and Sparse Representations	84
		1.12.2	Sparse Representation of Face Recognition	86
	Exer	cises		87
2	Spec	ial Mat	trices	95
	2.1	Hermit	cian Matrices	95
	2.2	Idempo	otent Matrix	96
	2.3	Permut	tation Matrix	98
		2.3.1	Permutation Matrix and Exchange Matrix	98
		2.3.2	Generalized Permutation Matrix	101
	2.4	Orthog	gonal Matrix and Unitary Matrix	104
	2.5	Band M	Matrix and Triangular Matrix	107
		2.5.1	Band Matrix	107
		2.5.2	Triangular Matrix	107
	2.6	Summi	ing Vector and Centering Matrix	109
		2.6.1	Summing Vector	110

				ix
		2.6.2	Centering Matrix	111
	2.7	Vande	ermonde Matrix and Fourier Matrix	112
		2.7.1	Vandermonde Matrix	112
		2.7.2	Fourier Matrix	114
		2.7.3	Index Vectors	116
		2.7.4	FFT Algorithm	118
	2.8	Hadar	nard Matrix	121
	2.9	Toepli	tz Matrix	123
		2.9.1	Symmetric Toeplitz Matrix	123
		2.9.2	Discrete Cosine Transform of Toeplitz Matrix	125
	Exer	cises		126
3	Mat	rix Dif	ferential	129
	3.1	Jacobi	ian Matrix and Gradient Matrix	129
		3.1.1	Jacobian Matrix	130
		3.1.2	Gradient Matrix	132
		3.1.3	Calculation of Partial Derivative and Gradient	133
	3.2	Real N	Matrix Differential	139
		3.2.1	Calculation of Real Matrix Differential	139
		3.2.2	Jacobian Matrix Identification	141
		3.2.3	Jacobian Matrix of Real Matrix Functions	147
	3.3	Real H	Hessian Matrix and Identification	150
		3.3.1	Real Hessian Matrix	150
		3.3.2	Real Hessian Matrix Identification	152
	3.4	Comp	lex Gradient Matrices	157
		3.4.1	Holomorphic Function and Complex Partial Derivative	157
		3.4.2	Complex Matrix Differential	161
		3.4.3	Complex Gradient Matrix Identification	169
	3.5	Comp	lex Hessian Matrices and Identification	174
		3.5.1	Complex Hessian Matrices	175
		3.5.2	Complex Hessian Matrix Identification	177
	Exer	ccises		179
	PAI	RT II	MATRIX ANALYSIS	181
4	Gra	dient A	analysis and Optimization	183
-	4.1		Gradient Analysis	183
		4.1.1	Stationary Points and Extreme Points	184
		4.1.2	Real Gradient Analysis of $f(\mathbf{x})$	186
		4.1.3	Real Gradient Analysis of $f(\mathbf{X})$	188
	4.2	_	ent Analysis of Complex Variable Function	190
			Extreme Point of Complex Variable Function	100

 \mathbf{x}

		4.2.2	Complex Gradient Analysis	195
	4.3	Conve	ex Sets and Convex Function Identification	198
		4.3.1	Standard Constrained Optimization Problems	198
		4.3.2	Convex Sets and Convex Functions	200
		4.3.3	Convex Function Identification	203
	4.4	Gradie	ent Methods for Smooth Convex Optimization	205
		4.4.1	Gradient Method	205
		4.4.2	Conjugate Gradient Method	210
		4.4.3	Convergence Rates	215
	4.5	Nester	rov Optimal Gradient Method	217
		4.5.1	Lipschitz Continuous Function	217
		4.5.2	Nesterov Optimal Gradient Algorithms	220
	4.6	Nonsn	nooth Convex Optimization	223
		4.6.1	Subgradient and Subdifferential	224
		4.6.2	Proximal Operator	228
		4.6.3	Proximal Gradient Method	232
	4.7	Const	rained Convex Optimization	237
		4.7.1	Lagrange Multiplier Method	237
		4.7.2	Penalty Function Method	238
		4.7.3	Augmented Lagrange Multiplier Method	240
		4.7.4	Lagrangian Dual Method	242
		4.7.5	Karush–Kuhn–Tucker Conditions	244
		4.7.6	Alternating Direction Method of Multipliers	248
	4.8	Newto	on Methods	251
		4.8.1	Newton Method for Unconstrained Optimization	251
		4.8.2	Newton Method for Constrained Optimization	254
	4.9	Origin	nal–Dual Interior-Point Method	260
		4.9.1	Original–Dual Problems	260
		4.9.2	First-Order Original–Dual Interior-Point Method	261
		4.9.3	Second-Order Original–Dual Interior-Point Method	263
	Exer	cises		268
5	Sing	ular V	alue Analysis	271
	5.1		rical Stability and Condition Number	271
	5.2		lar Value Decomposition (SVD)	274
		5.2.1	Singular Value Decomposition	274
		5.2.2	Properties of Singular Values	277
		5.2.3	Rank-Deficient Least Squares Solutions	280
	5.3	Produ	act Singular Value Decomposition (PSVD)	283
		5.3.1	PSVD Problem	283
		5.3.2	Accurate Calculation of PSVD	284
	5.4		cations of Singular Value Decomposition	285
			•	

				xi
		5.4.1	Static Systems	286
		5.4.2	Image Compression	287
	5.5	Gener	ralized Singular Value Decomposition (GSVD)	289
		5.5.1	Definition and Properties	289
		5.5.2	Algorithms for GSVD	292
		5.5.3	Two Application Examples of GSVD	294
	5.6	Low-I	Rank–Sparse Matrix Decomposition	296
		5.6.1	Matrix Decomposition Problems	297
		5.6.2	Singular Value Thresholding	298
		5.6.3	Robust Principal Component Analysis	300
	5.7	Matri	x Completion	302
		5.7.1	Matrix Completion Problems	303
		5.7.2	Matrix Completion Model and Incoherence	305
		5.7.3	Singular Value Thresholding Algorithm	306
		5.7.4	Fast and Accurate Matrix Completion	308
	Exer	cises		312
6	Solv	ing Ma	atrix Equations	315
	6.1	Least	Squares Method	316
		6.1.1	Ordinary Least Squares Methods	316
		6.1.2	Properties of Least Squares Solutions	317
		6.1.3	Data Least Squares	320
	6.2	Tikho	nov Regularization and Gauss–Seidel Method	321
		6.2.1	Tikhonov Regularization	321
		6.2.2	Regularized Gauss–Seidel Method	324
	6.3	Total	Least Squares (TLS) Methods	328
		6.3.1	TLS Problems	328
		6.3.2	TLS Solution	329
		6.3.3	Performances of TLS Solution	333
		6.3.4	Generalized Total Least Squares	335
		6.3.5	Total Least Squares Fitting	337
		6.3.6	Total Maximum Likelihood Method	342
	6.4	Const	rained Total Least Squares	344
		6.4.1	Constrained Total Least Squares Method	345
		6.4.2	Harmonic Superresolution	347
		6.4.3	Image Restoration	348
	6.5	Subsp	ace Method for Solving Blind Matrix Equations	350
	6.6	Nonne	egative Matrix Factorization: Optimization Theory	353
		6.6.1	Nonnegative Matrices	353
		6.6.2	Nonnegativity and Sparsity Constraints	355
		6.6.3	Nonnegative Matrix Factorization Model	356
		6.6.4	Divergences and Deformed Logarithm	361

xii

	6.7	Nonne	gative Matrix Factorization: Optimization Algorithms	366
		6.7.1	Multiplication Algorithms	366
		6.7.2	Nesterov Optimal Gradient Algorithm	372
		6.7.3	Alternating Nonnegative Least Squares	374
		6.7.4	Quasi-Newton Method	377
		6.7.5	Sparse Nonnegative Matrix Factorization	378
	6.8	Sparse	Matrix Equation Solving: Optimization Theory	381
		6.8.1	ℓ_1 -Norm Minimization	381
		6.8.2	Lasso and Robust Linear Regression	384
		6.8.3	Mutual Coherence and RIP Conditions	387
		6.8.4	Relation to Tikhonov Regularization	389
		6.8.5	Gradient Analysis of ℓ_1 -Norm Minimization	390
	6.9	Sparse	e Matrix Equation Solving: Optimization Algorithms	391
		6.9.1	Basis Pursuit Algorithms	391
		6.9.2	First-Order Augmented Lagrangian Algorithm	394
		6.9.3	Barzilai–Borwein Gradient Projection Algorithm	394
		6.9.4	ADMM Algorithms for Lasso Problems	397
		6.9.5	LARS Algorithms for Lasso Problems	398
		6.9.6	Covariance Graphical Lasso Method	400
		6.9.7	Homotopy Algorithm	402
		6.9.8	Bregman Iteration Algorithms	403
	Exer	cises		409
7	Eige	enanaly	sis	413
	7.1	Eigenv	value Problem and Characteristic Equation	413
		7.1.1	Eigenvalue Problem	413
		7.1.2	Characteristic Polynomial	415
	7.2	Eigenv	values and Eigenvectors	416
		7.2.1	Eigenvalues	416
		7.2.2	Eigenvectors	419
	7.3	Simila	rity Reduction	422
		7.3.1	Similarity Transformation of Matrices	423
		7.3.2	Similarity Reduction of Matrices	426
		7.3.3	Similarity Reduction of Matrix Polynomials	430
	7.4	Polyno	omial Matrices and Balanced Reduction	434
		7.4.1	Smith Normal Forms	434
		7.4.2	Invariant Factor Method	437
		7.4.3	Conversion of Jordan Form and Smith Form	441
		7.4.4	Finding Smith Blocks from Jordan Blocks	442
		7.4.5	Finding Jordan Blocks from Smith Blocks	443
	7.5	Cayley	–Hamilton Theorem with Applications	446
		7.5.1	Cayley-Hamilton Theorem	446

				xiii
		7.5.2	Computation of Inverse Matrices	448
		7.5.3	Computation of Matrix Powers	450
		7.5.4	Calculation of Matrix Exponential Functions	452
	7.6	Applic	ation Examples of Eigenvalue Decomposition	455
		7.6.1	Pisarenko Harmonic Decomposition	455
		7.6.2	Discrete Karhunen–Loeve Transformation	458
		7.6.3	Principal Component Analysis	461
	7.7	Genera	alized Eigenvalue Decomposition (GEVD)	463
		7.7.1	Generalized Eigenvalue Decomposition	463
		7.7.2	Total Least Squares Method for GEVD	467
		7.7.3	Application of GEVD: ESPRIT	468
		7.7.4	Similarity Transformation in GEVD	471
	7.8	Raylei	gh Quotient	474
		7.8.1	Definition and Properties of Rayleigh Quotient	474
		7.8.2	Rayleigh Quotient Iteration	475
		7.8.3	Algorithms for Rayleigh Quotient	476
	7.9	Genera	alized Rayleigh Quotient	478
		7.9.1	Definition and Properties	478
		7.9.2	Effectiveness of Class Discrimination	480
		7.9.3	Robust Beamforming	482
	7.10	Quadr	atic Eigenvalue Problems	484
		7.10.1	Description of Quadratic Eigenvalue Problems	484
		7.10.2	Solving Quadratic Eigenvalue Problems	486
		7.10.3	Application Examples	490
	7.11	Joint I	Diagonalization	495
		7.11.1	Joint Diagonalization Problems	495
		7.11.2	Orthogonal Approximate Joint Diagonalization	497
		7.11.3	Nonorthogonal Approximate Joint Diagonalization	500
	Exer	cises		503
8	Subs	space A	analysis and Tracking	511
	8.1		al Theory of Subspaces	511
		8.1.1	Bases of Subspaces	511
		8.1.2	Disjoint Subspaces and Orthogonal Complement	513
	8.2	Colum	n Space, Row Space and Null Space	516
		8.2.1	Definitions and Properties	516
		8.2.2	Subspace Basis Construction	520
		8.2.3	SVD-Based Orthonormal Basis Construction	522
		8.2.4	Basis Construction of Subspaces Intersection	525
	8.3	Subspa	ace Methods	526
		8.3.1	Signal Subspace and Noise Subspace	526
		8.3.2	Multiple Signal Classification (MUSIC)	529

xiv

		8.3.3	Subspace Whitening	531
	8.4	Grass	mann Manifold and Stiefel Manifold	532
		8.4.1	Equivalent Subspaces	532
		8.4.2	Grassmann Manifold	533
		8.4.3	Stiefel Manifold	535
	8.5	Projec	ction Approximation Subspace Tracking (PAST)	536
		8.5.1	Basic PAST Theory	537
		8.5.2	PAST Algorithms	540
	8.6	Fast S	Subspace Decomposition	542
		8.6.1	Rayleigh–Ritz Approximation	542
		8.6.2	Fast Subspace Decomposition Algorithm	544
	Exer	cises		546
9	Proj	ection	Analysis	551
	9.1	Projec	ction and Orthogonal Projection	551
		9.1.1	Projection Theorem	552
		9.1.2	Mean Square Estimation	554
	9.2	Projec	ctors and Projection Matrices	556
		9.2.1	Projector and Orthogonal Projector	556
		9.2.2	Projection Matrices	558
		9.2.3	Derivatives of Projection Matrix	561
	9.3	Updat	ting of Projection Matrices	562
		9.3.1	Updating Formulas for Projection Matrices	562
		9.3.2	Prediction Filters	564
		9.3.3	Updating of Lattice Adaptive Filter	567
	9.4	Obliqu	ue Projector of Full Column Rank Matrix	570
		9.4.1	Definition and Properties of Oblique Projectors	571
		9.4.2	Geometric Interpretation of Oblique Projectors	575
		9.4.3	Recursion of Oblique Projectors	578
	9.5	Obliqu	ue Projector of Full Row Rank Matrices	579
		9.5.1	Definition and Properties	579
		9.5.2	Calculation of Oblique Projection	581
		9.5.3	Applications of Oblique Projectors	583
	Exer	cises		585
	PAR	T III	HIGHER-ORDER MATRIX ANALYSIS	587
10	Tens	or An	alysis	589
	10.1		rs and their Presentation	589
		10.1.1	Tensors	589
		10.1.2	Tensor Representation	592
	10.2		rization and Matricization of Tensors	597

			XV
	10.2.1	Vectorization and Horizontal Unfolding	597
	10.2.2	Longitudinal Unfolding of Tensors	601
10.3	Basic A	Algebraic Operations of Tensors	606
	10.3.1	Inner Product, Norm and Outer Product	606
	10.3.2	Mode- n Product of Tensors	608
	10.3.3	Rank of Tensor	612
10.4	Tucker	Decomposition of Tensors	614
	10.4.1	Tucker Decomposition (Higher-Order SVD)	615
	10.4.2	Third-Order SVD	617
	10.4.3	Alternating Least Squares Algorithms	621
10.5	Paralle	l Factor Decomposition of Tensors	625
	10.5.1	Bilinear Model	625
	10.5.2	Parallel Factor Analysis	627
	10.5.3	Uniqueness Condition	635
	10.5.4	Alternating Least Squares Algorithm	637
10.6	Applica	ations of Low-Rank Tensor Decomposition	641
	10.6.1	Multimodal Data Fusion	642
	10.6.2	Fusion of Multimodal Brain Images	644
	10.6.3	Process Monitoring	646
	10.6.4	Note on Other Applications	648
10.7	Tensor	Eigenvalue Decomposition	649
	10.7.1	Tensor-Vector Products	649
	10.7.2	Determinants and Eigenvalues of Tensors	651
	10.7.3	Generalized Tensor Eigenvalues Problems	656
	10.7.4	Orthogonal Decomposition of Symmetric Tensors	658
10.8	Prepro	cessing and Postprocessing	659
	10.8.1	Centering and Scaling of Multi-Way Data	660
	10.8.2	Compression of Data Array	661
10.9	Nonneg	gative Tensor Decomposition Algorithms	664
	10.9.1	Multiplication Algorithm	664
	10.9.2	ALS Algorithms	667
10.10	Tensor	Completion	670
	10.10.1	Simultaneous Tensor Decomposition and Completion	671
	10.10.2	Smooth PARAFAC Tensor Completion	674
10.11	Softwar	re	676
Exerc	ises		678
Refere	ences		681
Index			708

Preface

Linear algebra is a vast field of fundamental importance in most areas of pure (and applied) mathematics, while matrices are a key tool for the researchers, scientists, engineers and graduate students majoring in the science and engineering disciplines.

From the viewpoint of applications, matrix analysis provides a powerful mathematical modeling and computational framework for posing and solving important scientific and engineering problems. It is no exaggeration to say that matrix analysis is one of the most creative and flexible mathematical tools and that it plays an irreplaceable role in physics, mechanics, signal and information processing, wireless communications, machine learning, computer vision, automatic control, system engineering, aerospace, bioinformatics, medical image processing and many other disciplines, and it effectively supports research in them all. At the same time, novel applications in these disciplines have spawned a number of new results and methods of matrix analysis, such as quadratic eigenvalue problems, joint diagonalization, sparse representation and compressed sensing, matrix completion, nonnegative matrix factorization, tensor analysis and so on.

Goal of the Book

The main goal of this book is to help the reader develop the skills and background needed to recognize, formulate and solve linear algebraic problems by presenting systematically the theory, methods and applications of matrix analysis.

A secondary goal is to help the reader understand some recent applications, perspectives and developments in matrix analysis.

Structure of the Book

In order to provide a balanced and comprehensive account of the subject, this book covers the core theory and methods in matrix analysis, and places particular emphasis on its typical applications in various science and engineering disciplines. The book consists of ten chapters, spread over three parts.

Part I is on matrix algebra: it contains Chapters 1 through 3 and focuses on the necessary background material. Chapter 1 is an introduction to matrix algebra that is devoted to basic matrix operations. This is followed by a description of the vec-

xvii

xviii Preface

torization of matrices, the representation of vectors as matrices, i.e. matricization, and the application of sparse matrices to face recognition. Chapter 2 presents some special matrices used commonly in matrix analysis. Chapter 3 presents the matrix differential, which is an important tool in optimization.

Part II is on matrix analysis: this is the heart of the book, and deals with the topics that are most frequently needed. It covers both theoretical and practical aspects and consists of six chapters, as follows.

Chapter 4 is devoted to the gradient analysis of matrices, with applications in smooth and nonsmooth convex optimization, constrained convex optimization, Newton's algorithm and the original–dual interior-point method.

In Chapter 5 we describe the singular value analysis of matrices, including singular value decomposition, generalized singular value decomposition, low-rank sparse matrix decomposition and matrix completion.

Researchers, scientists, engineers and graduate students from a wide variety of disciplines often have to use matrices for modeling purposes and to solve the resulting matrix equations. Chapter 6 focuses on ways to solve such equations and includes the Tikhonov regularization method, the total least squares method, the constrained total least squares method, nonnegative matrix factorization and the solution of sparse matrix equations.

Chapter 7 deals with eigenvalue decomposition, matrix reduction, generalized eigenvalue decomposition, the Rayleigh quotient, the generalized Rayleigh quotient, quadratic eigenvalue problems and joint diagonalization.

Chapter 8 is devoted to subspace analysis methods and subspace tracking algorithms in adaptive signal processing.

Chapter 9 focuses on orthogonal and oblique projections with their applications. Part III is on higher-order matrix analysis and consists simply of Chapter 10. In it, matrix analysis is extended from the second-order case to higher orders via a presentation of the basic algebraic operations, representation as matrices, Tuckey decomposition, parallel factor decomposition, eigenvalue decomposition of tensors, nonnegative tensor decomposition and tensor completion, together with applications.

Features of the Book

The book introduces a novel theoretical framework for matrix analysis by dividing it into second-order matrix analysis (including gradient analysis, singular value analysis, eigenanalysis, subspace analysis and projection analysis) and higher-order matrix analysis (tensor analysis).

Gradient analysis and optimization play an important role in the book. This is a very topical subject and is central to many modern applications (such as communications, signal processing, pattern recognition, machine learning, radar, big data analysis, multimodal brain image fusion etc.) though quite classical in origin.

Some more contemporary topics of matrix analysis such as subspace analysis,

Preface xix

projection analysis and tensor analysis, and which are often missing from other books, are included in our text.

Particular emphasis is placed on typical applications of matrix methods in science and engineering. The 80 algorithms for which summaries are given should help readers learn how to conduct computer experiments using related matrix analysis in their studies and research.

In order to make these methods easy to understand and master, this book adheres to the principle of both interpreting physics problems in terms of mathematics, and mathematical results in terms of physical ideas. Thus some typical or important matrix analysis problems are introduced by modeling a problem from physics, while some important mathematical results are explained and understood by revealing their physical meaning.

Reading the Book

The following diagram gives a schematic organization of this book to illustrate the chapter dependences.

Chapters 2 and 10 are optional. In particular, Chapter 10 is specifically devoted to readers involved in multi-channel or multi-way data analysis and processing.

Intended Readership

Linear algebra and matrix analysis are used in a very wide range of subjects including physics, statistics, computer science, economics, information science and

xx Preface

technology (including signal and image processing, communications, automation control, system engineering and pattern recognition), artificial intelligence, bioinformatics, biomedical engineering, to name just a selection. This book is dedicated to providing individuals in those disciplines with a solid foundation of the fundamental skills needed to develop and apply linear algebra and matrix analysis methods in their work.

The only background required of the reader is a good knowledge of advanced calculus, so the book will be suitable for graduate students in science and engineering.

Acknowledgments

The contents of this book reflect the author's collaboration with his own graduate students Jian Li, Zi-Zhe Ding, Yong-Tao Su, Xi-Lin Li, Heng Yang, Xi-Kai Zhao, Qi Lv, Qiu-Beng Gao, Li Zhang, Jian-Jiang Ding, Lu Wu, Feng Zhu, Ling Zhang, Dong-Xia Chang, De-Guang Xie, Chun-Yu Peng, Dao-Ming Zhang, Kun Wang, Xi-Yuan Wang, Zhong Chen, Tian-Xiang Luan, Liang Zheng, Yong Zhang, Yan-Yi Rao, all at Tsinghua University, and Shun-Tian Lou, Xiao-Long Zhu, Ji-Ming Ye, Fang-Ming Han, Xiao-Jun Li, Jian-Feng Chen at Xidian University.

Since 2004 we have taught graduate courses on matrix analysis and applications at Tsinghua University. Over the years I have benefited from keen interest, feedback and suggestions from many people, including my own graduate students, and students in our courses. I wish to thank Dr. Fang-Ming Han for his contribution to co-teaching and then teaching these courses, and Xi-Lin Li, Lu Wu, Dong-Xia Chang, Kun Wang, Zhong Chen, Xi-Yuan Wang and Yan-Yi Rao for their assistance with the teaching.

Kun Wang, Zhong Chen, Liang Zheng and Xi-Yuan Wang kindly provided some illustrations in the book.

I am grateful to the countless researchers in linear algebra, matrix analysis, information science and technology for their original contributions and to the anonymous reviewers for their critical comments and suggestions, which have greatly improved the text.

I am most grateful to the Commissioning Editor, David Liu, the Content Manager, Esther Miguéliz, and the copyeditor, Susan Parkinson, for their patience, understanding, suggestions and high-quality content management and copyediting in the course of the book's writing and publication.

This book uses some of the contents and materials of my book *Matrix Analysis* and *Applications* (Second Edition in Chinese, Tsinghua University Press, 2013).

Finally, I am grateful to my wife Xiao-Ying Tang, my son Yuan-Sheng Zhang, my daughter-in-law Lin Yan, my daughter Ye-Wei Zhang, my son-in-law Wei Wei for their support and encouragement in this project.

Notation

Sets

 \mathbb{R} real numbers

 \mathbb{R}^n real *n*-vectors $(n \times 1 \text{ real matrices})$

 $\mathbb{R}^{m \times n}$ real $m \times n$ matrices $\mathbb{R}[x]$ real polynomials

 $\mathbb{R}[x]^{m \times n}$ real $m \times n$ polynomial matrices

 $\begin{array}{ll} \mathbb{R}^{I\times J\times K} & \text{ real third-order tensors} \\ \mathbb{R}^{I_1\times \cdots \times I_N} & \text{ real Nth-order tensor} \end{array}$

 \mathbb{R}_{+} nonnegative real numbers, nonnegative orthant

 \mathbb{R}_{++} positive real numbers \mathbb{C} complex numbers \mathbb{C}^n complex *n*-vectors

 $\mathbb{C}^{m \times n}$ complex $m \times n$ matrices $\mathbb{C}[x]$ complex polynomials

 $\mathbb{C}[x]^{m \times n}$ complex $m \times n$ polynomial matrices

 $\begin{array}{ll} \mathbb{K}^{m\times n} & \text{real or complex } m\times n \text{ matrices} \\ \mathbb{K}^{I\times J\times K} & \text{real or complex third-order tensors} \\ \mathbb{K}^{I_1\times \cdots \times I_N} & \text{real or complex } N \text{th-order tensors} \\ \end{array}$

 \mathbb{Z} integers

 \mathbb{Z}_+ nonnegative integers

xxi

xxii Notation

Sets (continued)

Sets (commue	a_j
$\mathbb{S}^{n \times n}$	symmetric $n \times n$ matrices
$\mathbb{S}^{n \times n}_+$	symmetric positive semi-definite $n \times n$ matrices
	symmetric positive definite $n \times n$ matrices
$\mathbb{S}^{[m,n]}$	symmetric <i>m</i> th-order <i>n</i> -dimensional tensors $\mathcal{A}^{I_1 \times \cdots \times I_m}$, $I_1 = \cdots = I_n$
$\mathbb{S}^{[m,n]}$	symmetric m th-order n -dimensional nonnegative tensors
A	for all
$x \in A$	x belongs to the set A , i.e. x is an element of A
$x \notin A$	x is not an element of the set A
,	U maps to V
$U \to W$	U transforms to W
∋	such that
3	exists
$A \Rightarrow B$	A implies B
$A \subseteq B$	A is a subset of B
$A \subset B$	A is a proper subset of B
$A \cup B$	union of sets A and B
$A \cap B$	intersection of sets A and B
A + B	sum set of sets A and B
A - B	set-theoretic difference of sets A and B
$X \setminus A$	complement of the set A in the set X
$X_1 \times \cdots \times X_n$	Cartesian product of sets X_1, \ldots, X_n
$\mathcal L$	linear manifold
Gr(n,r)	Grassmann manifold
$\operatorname{St}(n,r)$	Stiefel manifold
O_r	orthogonal group
S^{\perp}	orthogonal complement of the subspace S
$\mathcal{K}^m(\mathbf{A},\mathbf{f})$	order- m Krylov subspace generated by ${\bf A}$ and ${\bf f}$
$\mathrm{Col}(\mathbf{A})$	column space of the matrix ${\bf A}$
$\mathrm{Ker}(\mathbf{A})$	kernel space of the matrix ${\bf A}$
$\mathrm{Null}(\mathbf{A})$	null space of the matrix ${\bf A}$
$\operatorname{nullity}(\mathbf{A})$	nullity of the matrix \mathbf{A}
$\mathrm{Range}(\mathbf{A})$	range space of the matrix \mathbf{A}
	$\mathbb{S}^{n \times n}$ $\mathbb{S}^{n \times n}_{+}$ $\mathbb{S}^{n \times n}_{++}$ $\mathbb{S}^{m \times n}_{++}$ $\mathbb{S}^{[m,n]}$ \forall $x \in A$ $x \notin A$ $U \mapsto V$ $U \to W$ \exists $A \Rightarrow B$ $A \subseteq B$ $A \cup B$ $A \cap B$ $A + B$ $A \cap B$ $A + B$ $A \cap B$ $A \cap$

Notation xxiii

Sets (continued)

Row(\mathbf{A}) row space of the matrix \mathbf{A} Span($\mathbf{a}_1, \dots, \mathbf{a}_m$) span of vectors $\mathbf{a}_1, \dots, \mathbf{a}_m$

Vectors

 \mathbf{x}^* conjugate of the vector \mathbf{x} \mathbf{x}^T transpose of the vector \mathbf{x}

 \mathbf{x}^H conjugate transpose (Hermitian conjugate) of the vector \mathbf{x}

 $\mathcal{L}(\mathbf{u})$ linear transform of the vector \mathbf{u}

 $\|\mathbf{x}\|_0$ ℓ_0 -norm: the number of nonzero entries in the vector \mathbf{x}

 $\|\mathbf{x}\|_1$ ℓ_1 -norm of the vector \mathbf{x}

 $\|\mathbf{x}\|_2$ Euclidean norm of the vector \mathbf{x}

 $\|\mathbf{x}\|_p$ — ℓ_p -norm or Hölder norm of the vector \mathbf{x}

 $\|\mathbf{x}\|_*$ nuclear norm of the vector \mathbf{x} $\|\mathbf{x}\|_{\infty}$ ℓ_{∞} -norm of the vector \mathbf{x}

 $\langle \mathbf{x}, \mathbf{y} \rangle = \mathbf{x}^H \mathbf{y}$ inner product of vectors \mathbf{x} and \mathbf{y} $\mathbf{x} \circ \mathbf{y} = \mathbf{x} \mathbf{y}^H$ outer product of vectors \mathbf{x} and \mathbf{y} $\mathbf{x} \perp \mathbf{y}$ orthogonality of vectors \mathbf{x} and \mathbf{y}

$$\begin{split} \mathbf{x} > \mathbf{0} & \text{positive vector, with components } x_i > 0, \forall i \\ \mathbf{x} \geq \mathbf{0} & \text{nonnegative vector, with components } x_i \geq 0, \forall i \end{split}$$

 $\mathbf{x} \geq \mathbf{y}$ vector elementwise inequality $x_i \geq y_i, \forall i$ unvec(\mathbf{x}) matricization of the column vector \mathbf{x} unrvec(\mathbf{x}) row matricization of the column vector \mathbf{x} $\theta_i^{(m)}, \mathbf{y}_i^{(m)}$ Rayleigh–Ritz (RR) values, RR vectors

 (a_i, y_i) realized first varies, in

 $(\theta_i^{(m)}, \mathbf{y}_i^{(m)})$ Ritz pair

Matrices

 $\mathbf{A} \in \mathbb{R}^{m \times n} \qquad \text{real } m \times n \text{ matrix } \mathbf{A}$ $\mathbf{A} \in \mathbb{C}^{m \times n} \qquad \text{complex } m \times n \text{ matrix } \mathbf{A}$

 $\mathbf{A}[x] \in \mathbb{R}[x]^{m \times n}$ real $m \times n$ polynomial matrix \mathbf{A} $\mathbf{A}[x] \in \mathbb{C}[x]^{m \times n}$ complex $m \times n$ polynomial matrix \mathbf{A}

 $egin{array}{lll} {\mathbf A}^* & & & & & & & & & \\ {\mathbf A}^T & & & & & & & & & \\ {\mathbf A}^T & & & & & & & & & \\ \end{array}$

xxiv Notation

Matrices (continued)

\mathbf{A}^H	conjugate transpose (Hermitian conjugate) of ${\bf A}$
(\mathbf{A},\mathbf{B})	matrix pencil
$\det(\mathbf{A}), \mathbf{A} $	determinant of \mathbf{A}
$\mathrm{tr}(\mathbf{A})$	trace of ${f A}$
$\mathrm{rank}(\mathbf{A})$	${\rm rank\ of}\ {\bf A}$
$\mathrm{eig}(\mathbf{A})$	eigenvalues of the Hermitian matrix ${\bf A}$
$\lambda_i(\mathbf{A})$	i th eigenvalue of the Hermitian matrix ${\bf A}$
$\lambda_{\max}(\mathbf{A})$	maximum eigenvalue(s) of the Hermitian matrix ${\bf A}$
$\lambda_{\min}(\mathbf{A})$	minimum eigenvalue(s) of the Hermitian matrix ${\bf A}$
$\lambda(\mathbf{A},\mathbf{B})$	generalized eigenvalue of the matrix pencil (\mathbf{A}, \mathbf{B})
$\sigma_i(\mathbf{A})$	i th singular value of ${\bf A}$
$\sigma_{\max}(\mathbf{A})$	maximum singular value(s) of $\bf A$
$\sigma_{\min}(\mathbf{A})$	minimum singular value(s) of $\bf A$
$ ho({f A})$	spectral radius of ${\bf A}$
\mathbf{A}^{-1}	inverse of the nonsingular matrix ${\bf A}$
\mathbf{A}^{\dagger}	Moore–Penrose inverse of \mathbf{A}
$\mathbf{A} \succ 0$	positive definite matrix \mathbf{A}
$\mathbf{A} \succeq 0$	positive semi-definite matrix ${\bf A}$
$\mathbf{A} \prec 0$	negative definite matrix ${\bf A}$
$\mathbf{A} \preceq 0$	negative semi-definite matrix ${\bf A}$
A > O	positive (or elementwise positive) matrix ${\bf A}$
$\mathbf{A} \geq \mathbf{O}$	nonnegative (or elementwise nonnegative) matrix ${\bf A}$
$\mathbf{A} \geq \mathbf{B}$	matrix elementwise inequality $a_{ij} \geq b_{ij}, \forall i, j$
$\ \mathbf{A}\ _1$	maximum absolute column-sum norm of ${\bf A}$
$\ \mathbf{A}\ _{\infty}$	maximum absolute row-sum norm of ${\bf A}$
$\ \mathbf{A}\ _{\mathrm{spec}}$	spectrum norm of \mathbf{A} : $\sigma_{\max}(\mathbf{A})$
$\ \mathbf{A}\ _F$	Frobenius norm of \mathbf{A}
$\ \mathbf{A}\ _{\infty}$	max norm of \mathbf{A} : the absolute maximum of all entries of \mathbf{A}
$\ \mathbf{A}\ _{\mathbf{G}}$	Mahalanobis norm of $\bf A$
$\operatorname{vec} \mathbf{A}$	column vectorization of $\bf A$
$\operatorname{rvec} \mathbf{A}$	row vectorization of \mathbf{A}
$\mathrm{off}(\mathbf{A})$	off function of $\mathbf{A} = [a_{ij}]$: $\sum_{i=1, i \neq j}^{m} \sum_{j=1}^{n} a_{ij} ^2$
$\mathrm{diag}(\mathbf{A})$	diagonal function of $\mathbf{A} = [a_{ij}]$: $\sum_{i=1}^{n} a_{ii} ^2$

Notation xxv

Matrices (continued)

diag(A)	diagonal vector of $\mathbf{\Lambda} = [a_1] \cdot [a_2]$
$\mathbf{diag}(\mathbf{A})$	diagonal vector of $\mathbf{A} = [a_{ij}] : [a_{11}, \dots, a_{nn}]^T$
$\mathbf{Diag}(\mathbf{A})$	diagonal matrix of $\mathbf{A} = [a_{ij}] : \mathbf{Diag}(a_{11}, \dots, a_{nn})$
$\langle \mathbf{A}, \mathbf{B} \rangle$	inner product of \mathbf{A} and \mathbf{B} : $(\text{vec }\mathbf{A})^H \text{vec }\mathbf{B}$
$\mathbf{A}\otimes\mathbf{B}$	Kronecker product of matrices ${\bf A}$ and ${\bf B}$
$\mathbf{A}\odot\mathbf{B}$	Khatri–Rao product of matrices ${\bf A}$ and ${\bf B}$
$\mathbf{A} * \mathbf{B}$	Hadamard product of matrices ${\bf A}$ and ${\bf B}$
$\mathbf{A}\oplus\mathbf{B}$	direct sum of matrices ${\bf A}$ and ${\bf B}$
$\{{f A}\}_N$	matrix group consisting of matrices $\mathbf{A}_1, \dots, \mathbf{A}_N$
$\{{f A}\}_N\otimes {f B}$	generalized Kronecker product of $\{\mathbf{A}\}_N$ and \mathbf{B}
$\delta \mathbf{x}, \delta \mathbf{X}$	perturbations of the vector ${\bf x}$ and the matrix ${\bf X}$
$\operatorname{cond}(\mathbf{A})$	condition number of the matrix ${\bf A}$
$\operatorname{In}(\mathbf{A})$	inertia of a symmetric matrix ${\bf A}$
$i_{+}(\mathbf{A})$	number of positive eigenvalues of ${\bf A}$
$i_{-}(\mathbf{A})$	number of negative eigenvalues of ${\bf A}$
$i_0(\mathbf{A})$	number of zero eigenvalues of ${\bf A}$
$\mathbf{A} \sim \mathbf{B}$	similarity transformation
$\mathbf{A}(\lambda) \cong \mathbf{B}(\lambda)$	balanced transformation
$\mathbf{A} \doteq \mathbf{B}$	essentially equal matrices
$\mathbf{J} = \mathbf{P} \mathbf{A} \mathbf{P}^{-1}$	Jordan canonical form of the matrix ${\bf A}$
$d_k(x)$	$k{\rm th}$ determinant divisor of a polynomial matrix ${\bf A}(x)$
$\sigma_k(x)$	kth invariant factor of a polynomial matrix $\mathbf{A}(x)$
${f A}(\lambda)$	λ -matrix of the matrix ${\bf A}$
$\mathbf{S}(\lambda)$	Smith normal form of the λ -matrix $\mathbf{A}(\lambda)$

Special Vectors and Special Matrices

\mathbf{P}_S	projector onto the subspace S
\mathbf{P}_S^\perp	orthogonal projector onto the subspace S
$\mathbf{E}_{H S}$	oblique projector onto the subspace ${\cal H}$ along the subspace ${\cal S}$
$\mathbf{E}_{S H}$	oblique projector onto the subspace S along the subspace H
1	summing vector with all entries 1
0	null or zero vector with all components 0
\mathbf{e}_i	basic vector with $e_i=1$ and all other entries 0
π	extracting vector with the last nonzero entry 1

xxvi Notation

${\bf Special\ Vectors\ and\ Special\ Matrices}\ ({\it continued})$

 \mathbf{i}_N index vector: $[\langle 0 \rangle, \langle 1 \rangle, \dots, \langle N-1 \rangle]^T$

 $\mathbf{i}_{N,\text{rev}}$ — bit-reversed index vector of \mathbf{i}_N

O null or zero matrix, with all components zero

I identity matrix

 \mathbf{K}_{mn} $mn \times mn$ commutation matrix

 \mathbf{J}_n $n \times n$ exchange matrix: $\mathbf{J}_n = [\mathbf{e}_n, \dots, \mathbf{e}_1]$

 \mathbf{P} $n \times n$ permutation matrix: $\mathbf{P} = [\mathbf{e}_{i_1}, \dots, \mathbf{e}_{i_n}], i_1, \dots, i_n \in \{1, \dots, n\}$

G generalized permutation matrix or g-matrix: G = PD

 \mathbf{C}_n $n \times n$ centering matrix = $\mathbf{I}_n - n^{-1} \mathbf{1}_n \mathbf{1}_n^T$

 \mathbf{F}_N $N \times N$ Fourier matrix with entry $F(i,k) = (e^{-\mathrm{j}2\pi/N})^{(i-1)(k-1)}$

 $\mathbf{F}_{N,\text{rev}}$ $N \times N$ bit-reversed Fourier matrix

 \mathbf{H}_n Hadamard matrix: $\mathbf{H}_n \mathbf{H}_n^T = \mathbf{H}_n^T \mathbf{H}_n = n \mathbf{I}_n$

A symmetric Toeplitz matrix: $[a_{|i-j|}]_{i,j=1}^n$

A complex Toeplitz matrix: Toep $[a_0, a_1, \dots, a_n]$ with $a_{-i} = a_i^*$

 \mathbf{Q}_n $n \times n$ real orthogonal matrix: $\mathbf{Q}\mathbf{Q}^T = \mathbf{Q}^T\mathbf{Q} = \mathbf{I}$

 $\mathbf{U}_n \qquad n \times n \text{ unitary matrix} : \mathbf{U}\mathbf{U}^H = \mathbf{U}^H\mathbf{U} = \mathbf{I}$

 $\mathbf{Q}_{m \times n}$ $m \times n$ semi-orthogonal matrix: $\mathbf{Q}^T \mathbf{Q} = \mathbf{I}_n$ or $\mathbf{Q} \mathbf{Q}^T = \mathbf{I}_m$

 $\mathbf{U}_{m \times n}$ $m \times n$ para-unitary matrix: $\mathbf{U}^H \mathbf{U} = \mathbf{I}_n, m > n$, or $\mathbf{U} \mathbf{U}^H = \mathbf{I}_m, m < n$

 \mathbf{S}_b between-class scatter matrix \mathbf{S}_w within-class scatter matrix

Tensors

 $\mathcal{A} \in \mathbb{K}^{I_1 \times \dots \times I_N}$ Nth-order real or complex tensor

 \mathcal{I}, \mathcal{E} identity tensor

 $\begin{aligned} \mathbf{A}_{i::} & \text{horizontal slice matrix of } \mathcal{A} \in \mathbb{K}^{I \times J \times K} \\ \mathbf{A}_{:j:} & \text{lateral slice matrix of } \mathcal{A} \in \mathbb{K}^{I \times J \times K} \\ \mathbf{A}_{::k} & \text{frontal slice matrix of } \mathcal{A} \in \mathbb{K}^{I \times J \times K} \end{aligned}$

 $\mathbf{a}_{:ik}, \mathbf{a}_{i:k}, \mathbf{a}_{i:k}$ mode-1, model-2, model-3 vectors of $\mathcal{A} \in \mathbb{K}^{I \times J \times K}$

 $\operatorname{vec} \mathcal{A}$ vectorization of tensor \mathcal{A} unvec \mathcal{A} matricization of tensor \mathcal{A}

 $\mathbf{A}^{(JK\times I)}, \mathbf{A}^{(KI\times J)}, \mathbf{A}^{(IJ\times K)}$ matricization of tensor $\mathcal{A} \in \mathbb{K}^{I\times J\times K}$

Notation xxvii

Tensors (continued)

$\langle \mathcal{A}, \mathcal{B} angle$	inner product of tensors: $(\operatorname{vec} A)^H \operatorname{vec} B$
$\ \mathcal{A}\ _F$	Frobenius norm of tensor \mathcal{A}
$\mathcal{A} = \mathbf{u} \circ \mathbf{v} \circ \mathbf{w}$	outer product of three vectors $\mathbf{u}, \mathbf{v}, \mathbf{w}$
$\mathcal{X} imes_n\mathbf{A}$	Tucker mode- n product of $\mathcal X$ and $\mathbf A$
$\mathrm{rank}(\mathcal{A})$	rank of tensor \mathcal{A}
$\llbracket \mathcal{G}; \mathbf{U}^{(1)}, \dots, \mathbf{U}^{(N)} \rrbracket$	Tucker operator of tensor \mathcal{G}
$\mathcal{G} \times_1 \mathbf{A} \times_2 \mathbf{B} \times_3 \mathbf{C}$	Tucker decomposition (third-order SVD)
$\mathcal{G} \times_1 \mathbf{U}^{(1)} \cdots \times_N \mathbf{U}^{(N)}$	higher-order SVD of N th-order tensor
$x_{ijk} = \sum_{p=1}^{P} \sum_{q=1}^{Q} \sum_{r=1}^{R} a_{ip} b_{jq} c_{kr}$	CP decomposition of the third-order tensor ${\mathcal X}$
$\mathcal{A}\mathbf{x}^m, \mathcal{A}\mathbf{x}^{m-1}$	tensor–vector product of $\mathcal{A} \in \mathbb{S}^{[m,n]}, \mathbf{x} \in \mathbb{C}^{n \times 1}$
$\det(\mathcal{A})$	determinant of tensor \mathcal{A}
$\lambda_i(\mathcal{A})$	i th eigenvalue of tensor \mathcal{A}
$\sigma(\mathcal{A})$	spectrum of tensor \mathcal{A}

Functions and Derivatives

$\stackrel{\mathrm{def}}{=}$	defined to be equal
~	asymptotically equal (in scaling sense)
\approx	approximately equal (in numerical value)
$f: \mathbb{R}^m \to \mathbb{R}$	real function $f(\mathbf{x}), \mathbf{x} \in \mathbb{R}^m, f \in \mathbb{R}$
$f: \mathbb{R}^{m \times n} \to \mathbb{R}$	real function $f(\mathbf{X}), \mathbf{X} \in \mathbb{R}^{m \times n}, f \in \mathbb{R}$
$f:\mathbb{C}^m\times\mathbb{C}^m\to\mathbb{R}$	real function $f(\mathbf{z}, \mathbf{z}^*), \mathbf{z} \in \mathbb{C}^m, f \in \mathbb{R}$
$f: \mathbb{C}^{m \times n} \times \mathbb{C}^{m \times n} \to \mathbb{R}$	real function $f(\mathbf{Z}, \mathbf{Z}^*), \mathbf{Z} \in \mathbb{C}^{m \times n}, f \in \mathbb{R}$
$\mathbf{dom}f,\mathcal{D}$	definition domain of function f
${\cal E}$	domain of equality constraint function
${\cal I}$	domain of inequality constraint function
${\mathcal F}$	feasible set
$B_c(\mathbf{c};r), B_o(\mathbf{c};r)$	closed, open neighborhoods of ${\bf c}$ with radius r
$B_c({\bf C};r), B_o({\bf C};r)$	closed, open neighborhoods of ${\bf C}$ with radius r
$f(\mathbf{z}, \mathbf{z}^*), f(\mathbf{Z}, \mathbf{Z}^*)$	function of complex variables $\mathbf{z},$ or \mathbf{Z}
$\mathrm{d}f(\mathbf{z},\mathbf{z}^*),\mathrm{d}f(\mathbf{Z},\mathbf{Z}^*)$	complex differentials
$D(\mathbf{p}\ \mathbf{g})$	distance between vectors ${\bf p}$ and ${\bf g}$

xxviii Notation

Functions and Derivatives (continued)

D/	1
$D(\mathbf{x}, \mathbf{y})$	dissimilarity between vectors \mathbf{x} and \mathbf{y}
$D_E(\mathbf{x}, \mathbf{y})$	Euclidean distance between vectors \mathbf{x} and \mathbf{y}
$D_M(\mathbf{x}, \mathbf{y})$	Mahalanobis distance between vectors \mathbf{x} and \mathbf{y}
$D_J^g(\mathbf{x}, \mathbf{y})$	Bregman distance between vectors \mathbf{x} and \mathbf{y}
$D_{\mathbf{x}}, D_{\mathrm{vec}\mathbf{X}}$	row partial derivative operators
$D_{\mathbf{x}}f(\mathbf{x})$	row partial derivative vectors of $f(\mathbf{x})$
$D_{\text{vec }\mathbf{X}}f(\mathbf{X})$	row partial derivative vectors of $f(\mathbf{X})$
$D_{\mathbf{X}}$	Jacobian operator
$D_{\mathbf{X}}f(\mathbf{X})$	Jacobian matrix of the function $f(\mathbf{X})$
$D_{\mathbf{z}}, D_{\mathrm{vec}\mathbf{Z}}$	complex cogradient operator
$D_{\mathbf{z}^*}, D_{\mathrm{vec}\mathbf{Z}^*}$	complex conjugate cogradient operator
$D_{\mathbf{z}} f(\mathbf{z}, \mathbf{z}^*)$	cogradient vector of complex function $f(\mathbf{z}, \mathbf{z}^*)$
$D_{\text{vec }\mathbf{Z}}f(\mathbf{Z},\mathbf{Z}^*)$	cogradient vector of complex function $f(\mathbf{Z},\mathbf{Z}^*)$
$D_{\mathbf{z}^*} f(\mathbf{z}, \mathbf{z}^*)$	conjugate cogradient vector of $f(\mathbf{z}, \mathbf{z}^*)$
$D_{\text{vec }\mathbf{Z}^*}f(\mathbf{Z},\mathbf{Z}^*)$	conjugate cogradient vector of $f(\mathbf{Z}, \mathbf{Z}^*)$
$D_{\mathbf{Z}}, \nabla_{\mathbf{Z}^*}$	Jacobian, gradient matrix operator
$\mathrm{D}_{\mathbf{Z}} f(\mathbf{Z}, \mathbf{Z}^*)$	Jacobian matrices of $f(\mathbf{Z}, \mathbf{Z}^*)$
$\nabla_{\mathbf{Z}} f(\mathbf{Z}, \mathbf{Z}^*)$	gradient matrices of $f(\mathbf{Z}, \mathbf{Z}^*)$
$\mathrm{D}_{\mathbf{Z}^*}f(\mathbf{Z},\mathbf{Z}^*)$	conjugate Jacobian matrices of $f(\mathbf{Z}, \mathbf{Z}^*)$
$\nabla_{\mathbf{Z}^*} f(\mathbf{Z}, \mathbf{Z}^*)$	conjugate gradient matrices of $f(\mathbf{Z}, \mathbf{Z}^*)$
$\nabla_{\mathbf{x}}, \nabla_{\mathrm{vec}\mathbf{X}}$	gradient vector operator
$\nabla_{\mathbf{x}} f(\mathbf{x})$	gradient vector of function $f(\mathbf{x})$
$\nabla_{\mathrm{vec}\mathbf{X}} f(\mathbf{X})$	gradient vector of function $f(\mathbf{X})$
$\nabla f(\mathbf{X})$	gradient matrix of function f
$\nabla^2 f$	Hessian matrix of function f
$\mathbf{H}_{\mathbf{x}}f(\mathbf{x})$	Hessian matrix of function f
$\mathbf{H}f(\mathbf{z},\mathbf{z}^*)$	full Hessian matrix of $f(\mathbf{z}, \mathbf{z}^*)$
$\mathbf{H}_{\mathbf{z},\mathbf{z}},\mathbf{H}_{\mathbf{z},\mathbf{z}^*},\mathbf{H}_{\mathbf{z}^*,\mathbf{z}^*}$	part Hessian matrices of function $f(\mathbf{z}, \mathbf{z}^*)$
$\mathrm{d}f,\partial f$	differential or subdifferential of function f
$\mathbf{g} \in \partial f$	subgradient of function f
$\Delta \mathbf{x}$	descent direction of function $f(\mathbf{x})$
$\Delta \mathbf{x}_{\mathrm{nt}}$	Newton step of function $f(\mathbf{x})$
\maxf,\minf	maximize, minimize function f

Notation xxix

Functions and Derivatives (continued)

 $\max\{x,y\}$ maximum of x and y minimum of x and y inf infimum sup supremum

Re, Im real part, imaginary part of complex number arg argument of objective function or complex number $\mathcal{P}_C(\mathbf{y}), \mathbf{P}_C\mathbf{y}$ projection operator of the vector \mathbf{y} onto the subspace C

 \mathbf{x}^+ nonnegative vector with entry $[\mathbf{x}^+]_i = \max\{x_i, 0\}$ $\mathbf{prox}_h(\mathbf{u})$ proximal operator of function $h(\mathbf{x})$ to point \mathbf{u} $\mathbf{prox}_h(\mathbf{U})$ proximal operator of function $h(\mathbf{X})$ to point \mathbf{U} $\mathrm{soft}(x, \tau), \mathcal{S}_{\tau}[x]$ soft thresholding operator of real variable x

Probability

 $soft(\mathbf{x}, \tau), soft(\mathbf{X}, \tau)$ soft thresholding operator of real variables \mathbf{x}, \mathbf{X} singular value (matrix) thresholding (operation) $\mathcal{D}_{\mu}(\mathbf{\Sigma})$ $I_C(\mathbf{x})$ indicator function $\mathbf{x}_{\mathrm{LS}}, \mathbf{X}_{\mathrm{LS}}$ least squares solutions to Ax = b, AX = B $\mathbf{x}_{\mathrm{DLS}}, \mathbf{X}_{\mathrm{DLS}}$ data least squares solutions to Ax = b, AX = B $\mathbf{x}_{\mathrm{WLS}}, \mathbf{X}_{\mathrm{WLS}}$ weighted least squares solutions to Ax = b, AX = B $\mathbf{x}_{\mathrm{opt}}, \mathbf{X}_{\mathrm{opt}}$ optimal solutions to Ax = b, AX = B $\mathbf{x}_{\mathrm{Tik}}, \mathbf{X}_{\mathrm{Tik}}$ Tikhonov solutions to Ax = b, AX = Btotal least squares (TLS) solutions to Ax = b, AX = B $\mathbf{x}_{\mathrm{TLS}}, \mathbf{X}_{\mathrm{TLS}}$ $\mathbf{x}_{\mathrm{GTLS}}, \mathbf{X}_{\mathrm{GTLS}}$ generalized TLS solutions to Ax = b, AX = Bmaximum likelihood solutions to Ax = b, AX = B $\mathbf{x}_{\mathrm{ML}}, \mathbf{X}_{\mathrm{ML}}$ $D_{AB}^{(\alpha,\beta)}(\mathbf{P}\|\mathbf{G})$ alpha-beta (AB) divergence of matrices P and G $D_{\alpha}(\mathbf{P}\|\mathbf{G})$ alpha-divergence of matrices ${\bf P}$ and ${\bf G}$ $D_{\beta}(\mathbf{P}\|\mathbf{G})$ beta-divergence of matrices ${\bf P}$ and ${\bf G}$ $D_{\mathrm{KL}}(\mathbf{P} \| \mathbf{G})$ Kullback–Leibler divergence of matrices P and G Tsallis logarithm $\ln_q(x)$ $\exp_q(x)$ q-exponential $\ln_{1-\alpha}(x)$ deformed logarithm

deformed exponential

 $\exp_{1-\alpha}(x)$

xxx Notation

Probability (continued)

sign(x)	signum function of real valued variable x
SGN(x)	signum multifunction of real valued variable \boldsymbol{x}
$\operatorname{shrink}(y,\alpha)$	shrink operator
$R(\mathbf{x})$	Rayleigh quotient, generalized Rayleigh quotient
$\mathbf{M}_{ ext{off}}$	off-diagonal matrix corresponding to matrix ${\bf M}$
$z^{-j}\mathbf{x}(n)$	time-shifting operation on vector $\mathbf{x}(n)$
$E\{\mathbf{x}\} = \bar{\mathbf{x}}$	expectation (mean) of random vector ${\bf x}$
$E\{\mathbf{x}\mathbf{x}^H\}$	autocorrelation matrix of random vector \mathbf{x}
$E\{\mathbf{x}\mathbf{y}^H\}$	cross-correlation matrix of random vectors ${\bf x}$ and ${\bf y}$
$ ho_{xy}$	correlation coefficient of random vectors ${\bf x}$ and ${\bf y}$
$N(\mathbf{c}, \mathbf{\Sigma})$	Gaussian random vector with mean (vector) ${\bf c}$ and
	covariance (matrix) Σ
$CN(\mathbf{c}, \mathbf{\Sigma})$	complex Gaussian random vector with mean (vector) ${\bf c}$
	and covariance (matrix) Σ
$f(x_1,\ldots,x_m)$	joint probability density function of random vector
	$\mathbf{x} = [x_1, \dots, x_m]^T$
$\Phi_{\mathbf{x}}(oldsymbol{\omega})$	characteristic function of random vector ${\bf x}$

Abbreviations

AB alpha-beta

ADMM alternating direction method of multipliers

ALS alternating least squares

ANLS alternating nonnegative least squares
APGL accelerated proximal gradient line

ARNLS alternating regularization nonnegative least squares

BBGP Barzilai–Borwein gradient projection
BCQP bound-constrained quadratic program
BFGS Broyden–Fletcher–Goldfarb–Shanno

BP basis pursuit

BPDN basis pursuit denoising BSS blind source separation

CANDECOMP canonical factor decomposition

CNMF constrained nonnegative matrix factorization CoSaMP compression sampling matching pursuit

CP CANDECOMP/PARAFAC
DCT discrete cosine transform
DFT discrete Fourier transform

DLS data least squares
DOA direction of arrival
EEG electroencephalography
EM expectation-maximization

EMML expectation-maximization maximum likelihood

ESPRIT estimating signal parameters via rotational invariance technique

xxxi

xxxii Abbreviations

EVD eigenvalue decomposition

FAJD fast approximate joint diagonalization

FAL first-order augmented Lagrangian

FFT fast Fourier transform

FISTA fast iterative soft thresholding algorithm GEAP generalized eigenproblem adaptive power GEVD generalized eigenvalue decomposition

generalized total least squares

GSVD generalized singular value decomposition

HBM heavy ball method

HOOI higher-order orthogonal iteration

HOSVD higher-order singular value decomposition

ICA independent component analysis

IDFT inverse discrete Fourier transform

iid independent and identically distributed

inf infimum

GTLS

 $\begin{array}{ll} \mbox{KKT} & \mbox{Karush-Kuhn-Tucker} \\ \mbox{KL} & \mbox{Kullback-Leibler} \\ \mbox{LARS} & \mbox{least angle regressive} \end{array}$

Lasso least absolute shrinkage and selection operator

 $\begin{array}{ll} LDA & linear \ discriminant \ analysis \\ LMV & Lathauwer-Moor-Vanderwalle \\ \end{array}$

LP linear programming

LS least squares

LSI latent semantic indexing max maximize, maximum MCA minor component analysis

 $MIMO \qquad multiple-input-multiple-output$

min minimize, minimum
ML maximum likelihood
MP matching pursuit

MPCA multilinear principal component analysis

MUSIC multiple signal classification

Abbreviations xxxiii

NeNMF Nesterov nonnegative matrix factorization

NMF nonnegative matrix factorization NTD nonnegative tensor decomposition

OGM optimal gradient method
OMP orthogonal matching pursuit
PARAFAC parallel factor decomposition

PAST projection approximation subspace tracking

PASTd projection approximation subspace tracking via deflation

PCA principal component analysis
PCG preconditioned conjugate gradient
PCP principal component pursuit

pdf positive definite

PMF positive matrix factorization

psdf positive semi-definite PSF point-spread function

PSVD product singular value decomposition

RIC restricted isometry constant RIP restricted isometry property

ROMP regularization orthogonal matching pursuit

RR Rayleigh–Ritz

QCLP quadratically constrained linear programming

QEP quadratic eigenvalue problem
QP quadratic programming
QV quadratic variation

sign signum

SPC smooth PARAFAC tensor completion StOMP stagewise orthogonal matching pursuit

sup supremum

SVD singular value decomposition SVT singular value thresholding

TLS total least squares
TV total variation

UPCA unfold principal component analysis

VQ vector quantization