ЛАБОРАТОРНАЯ 4 РЕШЕНИЕ НЕЛИНЕЙНЫХ УРАВНЕНИЙ

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Пусть дана некоторая функция f(x), непрерывная на некотором промежутке X. Требуется найти все или некоторые значения $x \in X$, для которых

$$f(x) = 0 \tag{1}$$

Приближенное нахождение корней уравнения (1) состоит из двух этапов:

- 1. Отделение корней, то есть установление возможно тесных отрезков $[a_i, b_i] \subset X$, в которых содержится один и только один корень уравнения (1).
- 2. Уточнение приближенных корней, то есть получение приближенных значений корней с заданной точностью $\varepsilon > 0$. Это означает, что вычисленное значение корня x_n должно отличаться от корня c не более, чем на величину ε :

$$|c-x_n| \leq \varepsilon$$

Аналитический способ отделения корней

- Шаг 1. Выбрать достаточно большой отрезок [A, B], в котором заключен корень уравнения (1).
 - Шаг 2. Разбить отрезок [A, B] на n равных частей.
 - Шаг 3. С шагом $h = \frac{B-A}{n}$ вычислить значения f(x) в точках $x_k = A + k \cdot h$, $k = \overline{0, n}$.
 - Шаг 4. Если окажется, что

$$f(x_{k}) \cdot f(x_{k+1}) < 0, \ i = \overline{0, n-1},$$

то в в интервале (x_k, x_{k+1}) имеется корень уравнения (1).

Замечание. Шаг h должен быть достаточно малым, чтобы в интервал длины h не могло попасть более одного корня.

Метод половинного деления

Пусть на отрезке [a,b] уравнение f(x)=0 имеет единственный корень c. Пусть функция f(x) непрерывна на отрезке [a,b].

Сначала надо задать начальное приближение. В качестве начального приближения искомого корня принять середину отрезка, т.е. $x_0 = \frac{a+b}{2}$.

Если $f(x_0) = 0$, то x_0 – корень уравнения (1).

Если $f(x_0) \neq 0$, то из двух полученных отрезков $[a, x_0]$ или $[x_0, b]$ выбрать тот, на концах которого функция f(x) имеет противоположные знаки; новый суженый отрезок обозначить как $[a_1, b_1]$, т.е.

$$[a_1, b_1] = [a, x_0]$$
, если $f(a) \cdot f(x_0) < 0$

ИЛИ

$$[a_1, b_1] = [x_0, b]$$
, если $f(x_0) \cdot f(b) < 0$

Новый отрезок $[a_1, b_1]$ снова разделить пополам и провести тот же анализ.

Итерационный процесс продолжать до тех пор, пока не будет выполнено неравенство $|b_k - a_k| \le \varepsilon$. Тогда за искомое значение корня c принимается полученное приближение $x_k : c = x_k$.

Количество итераций k можно определить заранее. Каждое очередное вычисление середины отрезка x_i и значения функции $f(x_i)$ сужает отрезок поиска вдвое, поэтому $k \approx \log_2 \left(\frac{b-a}{\varepsilon}\right)$.

Метод Ньютона (метод касательных)

Требуется решить уравнение

$$f(x) = 0$$
.

Расчетная формула метода Ньютона:

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)},$$
 $n = 0, 1, 2, ...$

Сходимость метода Ньютона устанавливает следующая теорема.

Теорема. Пусть функция f(x) непрерывна и дважды дифференцируема на отрезке [a,b]. Если $f(a) \cdot f(b) < 0$, причем f'(x) и f''(x) непрерывны и сохраняют постоянные знаки при $\forall x \in [a,b]$, то исходя из начального приближения $x_0 \in [a,b]$, удовлетворяющему неравенству

$$f(x_0)f''(x_0) > 0$$
,

можно вычислить методом Ньютона по его расчетной формуле единственный корень уравнения с любой степенью точности.

При заданной точности ε > 0 вычисления нужно вести до тех пор, пока не будет выполнено неравенство $|x_k - x_{k-1}| \le \varepsilon$.

Метод секущих

Расчетная формула метода секущих:

$$x_{k+1} = x_k - \frac{x_k - x_{k-1}}{f(x_k) - f(x_{k-1})} \cdot f(x_k)$$

Метод секущих является двухшаговым, то есть новое приближение x_{k+1} определяется двумя предыдущими итерациями x_k и x_{k-1} . Поэтому в методе необходимо задавать два начальных приближения корня. Можно выбрать

$$x_0 = a$$

$$x_1 = x_0 + \varepsilon$$

Условия сходимости метода секущих аналогичны условиям сходимости метода Ньютона.

При заданной точности $\varepsilon > 0$ вычисления нужно вести до тех пор, пока не будет выполнено неравенство $|x_k - x_{k-1}| \le \varepsilon$.

ЗАДАНИЯ

Написать программу решения нелинейного уравнения, которая:

- 1. Отделяет корни уравнения алгебраическим способом
- 2. Уточняет корни уравнения методом половинного деления с методом Ньютона (нечетный вариант). Сравнить скорость сходимости методов
- 3. Уточняет корни уравнения половинного деления и методом секущих (четный вариант). Сравнить скорость сходимости методов

Результаты решения на каждой итерации представить в виде таблицы

Варианты заданий

1)
$$\cos x - 4x = 0$$
,

16)
$$e^{-x} - \sqrt{x} + 1.5 = 0$$
,

2)
$$x \ln x - 14 = 0$$
,

17)
$$e^{-2x} - \sqrt{x} + 1.8 = 0$$
,

3)
$$10x - e^{-x} = 0$$
,

18)
$$\cos x - x^3 = 0$$
,

4)
$$\ln x - \frac{1}{x} = 0$$
,

19)
$$e^{-x} - 2.6x + 4.3 = 0$$
,

5)
$$\ln x - \frac{1}{x+1} = 0$$
,

20)
$$e^{-3x} - 4.7x + 1.6 = 0$$
,

6)
$$x 2^x + x - 3,1 = 0$$
,

21)
$$e^x - x^2 + 1.7 = 0$$
.

7)
$$e^x + 3x - 4,2 = 0$$
,

22)
$$x \ln x - 5.3 = 0$$
,

8)
$$e^x + 2.4x - 3.7 = 0$$
,

23)
$$x^2 \ln x - 4.9 = 0$$
,

9)
$$\cos x - 3.6x + 1.2 = 0$$
,

24)
$$x^3 - 3x^2 + 7.5x + 1.7 = 0$$
.

10)
$$\sin x - 2.3x - 2.8 = 0$$
,

25)
$$x^3 - 2.5x^2 + 9.3x - 4.3 = 0$$
,

11)
$$\sin 2x + 5.2x + 0.3 = 0$$
,

26)
$$x \lg x - 7.2 = 0$$
,

12)
$$e^{1.5x} + 3x - 4.5 = 0$$
,

27)
$$x^2 \lg x - 3.8 = 0$$
,

13)
$$x \ln x - 3.2 = 0$$
,

28)
$$e^x - x^2 - 3.4 = 0$$
,

14)
$$x^3 - 2x^2 + 3x - 5 = 0$$

28)
$$e^{-3x} - \sqrt{x} + 2.3 = 0$$
,
29) $e^{-3x} - \sqrt{x} + 2.3 = 0$,

15)
$$\sin 3x - 2.5x + 6.2 = 0$$
,

30)
$$e^{-x} - 3.4x + 5.7 = 0$$
.