CHM 673 Lecture 17: Density Functional Theory, part 2

Suggested reading:

Chapter 6.2, 6.4, 6.5 from Jensen

Kohn-Sham DFT

Solution: Kohn & Sham approach

Represent kinetic energy as two terms:

one will be exact through orbitals (Slater Determinant term, T_{SD}), second – small correction

Price:

- back to orbitals (from 3 to 4N coordinates)
- correlation functional reappears as a separate term E_{xc}

Kohn-Sham functional:
$$E_{KS}[n] = T_{SD}[n] + E_{ne}[n] + J[n] + E_{xc}[n]$$

where
$$E_{xc}$$
 is defined as: $E_{xc}[n] = (T[n] - T_{SD}[n]) + (E_{ee}[n] + J[n])$

kinetic correlation potential correlation energy & exchange energies

Kohn-Sham DFT

$$E_{KS}[n] = T_{SD}[n] + E_{ne}[n] + J[n] + E_{xc}[n]$$

compare with Hartree-Fock energy:

$$E_{HF}[\{\chi\}] = T + E_{ne} + J - K$$

Using variational principle, Kohn-Sham functional results in a self-

consistent problem

$$\hat{f}^{KS}\chi_i = \varepsilon_i \chi_i$$

with

$$\hat{f}^{KS}(x_1) = \hat{h}(x_1) + \sum_{j} \hat{J}_{j}(x_1) + V_{xc}(x_1)$$

exchange-correlation potential

$$V_{xc} = \frac{\delta E_{xc}}{\delta n}$$

Kohn-Sham theory is exact if V_{xc} is known

Pair density

Electron density

$$\rho(r) = \rho_1(r) = N \int |\Psi(r_1, r_2, r_3, ..., r_N)|^2 dr_2 dr_3 ... dr_N$$

A related more general property: electron pair-density \rightarrow probability to find an electron at position r_1 and another electron at position r_2

$$\rho_2(r_1, r_2) = N(N - 1) \int |\Psi(r_1, r_2, r_3, ..., r_N)|^2 dr_3 ... dr_N$$

integrates to the number of electron pairs

Pair-electron density contains information about electron correlation. In particular:

$$E_{ee} = \frac{1}{2} \int \frac{\rho_2(r_1, r_2)}{|r_1 - r_2|} dr_1 dr_2$$

$$\rho_2(r_1,r_1)=0$$
 probability to find 2 electrons in the same space is zero

Exchange-correlation hole

Assume non-interacting electrons (electrons do not have charge and spin). Then:

$$\rho_2^{indep}(r_1, r_2) = \frac{N-1}{N} \rho_1(r_1) \rho_1(r_2) = \left(1 - \frac{1}{N}\right) \rho_1(r_1) \rho_1(r_2)$$

self-interaction factor

Since real electrons have charge and spin, there is a reduced probability to find an electron near another electron. We can account for this reduced probability with exchange-

$$\rho_2(r_1, r_2) = \rho_1(r_1)\rho_1(r_2) + \rho_1(r_1)h_{xc}(r_1, r_2)$$

$$h_{xc}(r_1, r_2) = \frac{\rho_2(r_1, r_2)}{\rho_1(r_1)} - \rho_1(r_2)$$

The exchange-correlation hole represents the reduced probability of finding electron 2 at a position r_2 given that electron 1 is located at r_1

Exchange-correlation hole

The exchange-correlation hole represents the reduced probability of finding electron 2 at a position r_2 given that electron 1 is located at r_1

Repulsion due to electron charge (dynamical correlation) \rightarrow Coulomb hole h_c Repulsion due to electron spin (exchange) \rightarrow Fermi hole h_x

$$h_{xc} = h_x + h_c$$

$$h_x = h_x^{\alpha\alpha} + h_x^{\beta\beta}$$

$$h_c = h_c^{\alpha\alpha} + h_c^{\beta\beta} + h_c^{\alpha\beta}$$

Exchange and correlation holes

$$\int h_{xc}(r_1, r_2) dr_2 = \int \frac{\rho_2(r_1, r_2)}{\rho_1(r_1)} dr_2 - \int \rho_1(r_2) dr_2 = \frac{N(N-1)}{N} - N = -1$$

The integral of the total exchange-correlation hole is -1 \rightarrow this is electron self-repulsion

$$\int h_x(r_1, r_2) dr_2 = -1$$

exchange hole is negative everywhere: static reduction in a probability to find one electron near another

$$\int h_c(r_1, r_2) dr_2 = 0$$

Coulomb hole reduces the probability of finding an electron near the reference electron, but increases the probability of finding it further away

Exchange and correlation holes

From definition of the hole

$$h_{xc}(r_1, r_2) = \frac{\rho_2(r_1, r_2)}{\rho_1(r_1)} - \rho_1(r_2)$$

$$h_{xc}(r_1, r_2 \to r_1) = -\rho_1(r_1)$$

Consider H₂ molecule at the Hartree-Fock level (no correlation)

$$h_x(r_1, r_2 \to r_1) = -\rho_1(r_1)$$

$$h_x^{\alpha}(r_1, r_2) = -\rho_1^{\alpha}(r_1) = -\frac{1}{2}\rho_1(r_1)$$

There is only one electron of each spin, so the exchange hole is fully due to self-interaction!

Electron self-interaction energy

Hartree-Fock electron-
electron interaction:
$$J - K =$$

$$\int dx_1 dx_2 \chi_i^*(x_1) \chi_j^*(x_2) \frac{1}{r_{12}} \chi_i(x_1) \chi_j(x_2)$$
$$-\int dx_1 dx_2 \chi_i^*(x_1) \chi_j^*(x_2) \frac{1}{r_{12}} \chi_i(x_2) \chi_j(x_1)$$

if
$$x1 = x2 \rightarrow J - K = 0$$

Electron self-interaction energy in HF model is zero!

DFT: electron-electron interaction is given by $E_{ee} = J[\rho] + E_{xc}[\rho] =$

$$\frac{1}{2} \int \frac{\rho(r_1)\rho(r_2)}{|r_1 - r_2|} dr_1 dr_2 + \frac{1}{2} \int \frac{\rho(r_1)h_{xc}(r_1, r_2)}{|r_1 - r_2|} dr_1 dr_2$$

 \neq 0 for 1 electron!

It is hard to cancel self-interaction with non-HF exchange functional

DFT infamous self-interaction error: each electron interacts with itself (repels itself)

DFT self-interaction error

In most modern density functionals, there is a repulsive electron self-interaction

→ Electrons tend to be more delocalized

Chemical consequences:

- transition states are too low (too stable)
- loose electrons in anions
- charge-transfer states are too low
- small band gaps
- dissociation energies of ions are too low
- Rydberg states are too low

Why not to use the HF exchange in DFT?

If the Hartree-Fock exchange so nicely cancels out electron self-interaction, why not use it in DFT, and add a correlation functional to describe correlation?

Consider H₂ modeled with FCI

Near equilibrium

large separation

wave function methods:

delocalized h_x + delocalized h_c \rightarrow might cancel to produce localized h_{xc}

DFT:

localized $h_x +$ localized $h_c \rightarrow$ localized h_{xc}

delocalized HF h_x + Localized DFT $h_c \rightarrow$ delocalized h_{xc} BAD

Functionals. LDA

Perdew-Jacob's ladder of approximations: $n \to \nabla n \to \nabla^2 n \to ...$

- 1. Local density approximation (LDA): functionals depend on density only
 - often called LSDA (local spin density approximation)
 - exchange from the uniform electron gas model: $E_x^{LDA} = -c_X \int n^{\frac{4}{3}}(r) dr$
 - correlation E_c^{LDA} : analytic expressions for low-density and high-density UEG, interpolated in the middle (Vosko-Wilk-Nusair (VWN), Perdew-Wang (PW))
 - recall: Kohn-Sham approximation → kinetic energy from Slater detreminant
 - accuracy similar to Hartree-Fock
 - ~10% underestimation in exchange energy
 - correlation is overestimated (often ~twice)
 - bonds are too tight (by ~100 kJ/mol)
 - LDA is exact for UEG!

Functionals. GGA

2. Gradient-corrected methods: functionals depend on density and density derivatives non-local methods

Let's improve exchange functional with
$$K_2[n]=-rac{5}{216}(3\pi^5)^{-\frac{1}{3}}\int rac{|
abla n(r)|^2}{n^{\frac{4}{3}}(r)}dr$$

and similarly for correlation. But these corrections break properties of holes (integrals are not -1 and 0 for h_x and h_c)

→ Performance worse than LDA 🕾

Solution: Generalized Gradient Approximation (GGA) ∇n becomes a variable + condition on h_x and h_c

Functionals. GGA

Generalized Gradient Approximation (GGA): ∇n becomes a variable + condition on h_x and h_c

$$E_x[n] = \int n(r)\varepsilon_x[n(r)]dr$$

energy per particle (energy density)

Axel Becke (1988):

$$\varepsilon_x^{B88} = \varepsilon_x^{LDA} + \Delta \varepsilon_x^{B88}$$

$$\Delta \varepsilon_x^{B88} = -\beta n^{\frac{1}{3}} \frac{x^2}{1 + 6\beta x sinh^{-1}x}$$
 fitted to rare gases
$$x = \frac{|\nabla n|}{n^{\frac{4}{3}}}$$

$$x = \frac{|\nabla n|}{n^{\frac{4}{3}}}$$

Reduces error in exchange energy by 2 orders! for the cost of 1 parameter

GGA correlation: LYP (Lee, Yang, Parr) – 4 parameters fitted to He

BLYP, PW86, PW91 (Perdew, Wang), PBE (Perdew, Burke, Ernzerhof)

Functionals. Meta-GGA

3. Meta-GGA

include Laplacian $abla^2 n$ or orbital kinetic energy density

BR, B95, HCTH, TPSS, ...

Not a significant improvement in accuracy

Functionals. Hybrid or Hyper-GGA

4. Back to self-interaction problem: hybrid or hyper-GGA functionals include a portion of the Hartree-Fock exchange

adiabatic connection formula (slowly turning on the interaction between electrons):

$$E_{xc} = \frac{1}{2}E_x^{HF} + \frac{1}{2}(E_x^{LDA} + E_c^{LDA})$$

$$E_{xc}^{B3LYP} = (1 - a)E_x^{LDA} + aE_x^{HF} + b\Delta E_x^{B88} + (1 - c)E_c^{LDA} + cE_c^{LYP}$$

B3LYP: a=0.20, b=0.72, c=0.81

PBEO

HF & LDA exchange produce error cancelation

Functionals. Double hybrid methods

5. Double hybrid methods: add MP2 (perturbation theory) correlation high computational cost