ESCS SAS - Machine Learning
Lesture 6
Discriminant Functions
- Marchan I archang
Linear discriminant function is for discriminating two classes
Specify weight vector and bios wo, h(x)-wix + wo
Assign n to (, if h(n) no assign to Go otherwise
· For k>2 classes, each class Ck gets its own function
$h_{k}(x) = \omega_{k}^{T}x + \omega_{k}$
· An. on L C. P. I. Co.) . I (a) Pro all s. Ale
Assign a to (kif hk(n) th; (n) for all j + k
'We conselect w that unimizes squared errors, but this is sensitive to outliers
·Fisher's Linear Discriminant - select w that best separates the classes
Maniuize between class variances (inter-class)
Minimize within class variances (intra-class)
· Project 2 onto one dissension - if winz, -w. then C, else Co
· Manistra alista sa bat an classes a u - u = v. T(u - u) where u = 15 7 a
Moninize distance between classes - M2-M, = wT(M2-M,) where ME = NE Xn
Projected Mean
· · · · · · · · · · · · · · · · · · ·
· Himinize the distance within each class - 5? +52 = \((wTxn-M,)^2 + \(\) (wTxn-M2)^2 NEC, NEC,
·Objective function -> J(w)=(M2-11,)2
25+75