Information Theory and Decision Trees

Entropy

- For a discrete random variable X
- Entropy: $H(X) = -\sum p(x)log_2(p(x))$
- The "average number of bits needed each symbol of X"

Example

X generates 4 possible symbols {a,b,c,d}

$$- P(X = 'a') = 0.5$$

$$- P(X = 'b') = 0.25$$

$$- P(X = 'c') = 0.125$$

$$- P(X = 'd') = 0.125$$

Naïve Encoding:

а	>	00
b	>	10
С	>	01
d	>	11

Naïve Encoding

X generates 4 possible symbols {a,b,c,d}

$$-$$
 P(X = 'a') = 0.5

$$-$$
 P(X = 'b') = 0.25

$$- P(X = 'c') = 0.125$$

$$- P(X = 'd') = 0.125$$

Naïve Encoding:

а	>	00
b	>	10
С	>	01
d	>	11

Average cost of encoding each symbol?

We Can Do Better

X generates 4 possible symbols {a,b,c,d}

$$-$$
 P(X = 'a') = 0.5

$$-$$
 P(X = 'b') = 0.25

$$-$$
 P(X = 'c') = 0.125

$$-$$
 P(X = 'd') = 0.125

Better Encoding:

Average cost of encoding each symbol?

Length of Encoding symbol 'a' * Probability of symbol 'a' Length of Encoding symbol 'b' * Probability of symbol 'b'
$$2*0.25$$
 + $3*0.125$ + $3*0.125$ + $= 1.25$ bits

This Encoding is Optimal

We Can Do Better

X generates 4 possible symbols {a,b,c,d}

$$-$$
 P(X = 'a') = 0.5

$$- P(X = 'b') = 0.25$$

$$-$$
 P(X = 'c') = 0.125

$$-$$
 P(X = 'd') = 0.125

Better Encoding:

Average cost of encoding each symbol?

Length of Encoding symbol 'a' * Probability of symbol 'a' Length of Encoding symbol 'b' * Probability of symbol 'b' 2 * 0.25 + 3 * 0.125 + 3 * 0.125 +

= 1.25 bits

But observe that: -Log(0.5) = 1

-Log(0.25) = 2 ... etc

Length of Encoding of symbol x = -log(x)

Average Cost of encoding a symbol = $-\sum p(x)log_2(p(x)) = H(X)$

More Generally

- X generates 4 possible symbols {a,b,c,d}
 - P(X = 'a') = 0.21
 - P(X = 'b') = 0.14
 - P(X = 'c') = 0.52
 - P(X = 'd') = 0.13

What is the optimal encoding for this?

It is possible to attain an average of H(X) bits per symbol, but quite complicated: See **Arithmetic Compression**

Conditional Entropy

• H(X|Y) =
$$\sum_{y} p(y) \sum H(X|Y = y)$$

= $\sum_{y} p(y) \sum_{x} p(x|y) \log p(x|y)$

Intuition: Average # bits needed to Encode Y, if X is already transmitted

Information Gain

• H(X) =
$$-\sum p(x)log_2(p(x))$$

• H(X|Y) =
$$\sum_{y} p(y) \sum_{x} H(X|Y = y)$$

 = $\sum_{y} p(y) \sum_{x} p(x|y) \log p(x|y)$

$$IG(X,Y) = H(X) - H(X|Y)$$

H(X): # bits to encode X

H(X|Y): # bits to encode X if Y is already transmitted

IG(X,Y): The "number of bits of information" gained about X, by knowing Y

Counter Intuitive Property: IG(X, Y) = IG(Y, X)

Decision Tree

Outdoors	Computer	Lost	Count
Т	Т	Т	2
Т	F	Т	2
F	Т	F	5
F	F	Т	1

X1	X2	Υ	Count
Т	Т	Т	2
Т	F	Т	2
F	Т	F	5
F	F	Т	1

$$\begin{split} & | \text{IG}(X1,Y) = \text{H}(Y) - \text{H}(Y \mid X1) \\ & \text{H}(Y) = - (5/10) \log(5/10) - 5/10 \log(5/10) = 1 \\ & \text{H}(Y \mid X1) = \text{P}(X1=T) \text{H}(Y \mid X1=T) \quad (4/10) \quad * (1 \log(1) - 0 \log(0)) \\ & \qquad \qquad \text{P}(X1=F) \text{H}(Y \mid X1=F) \quad (6/10) \quad * \quad (-(5/6) \log(5/6) - (1/6) \log(1/6)) \\ & \qquad = 0.3900 \\ & \text{IG}(X1,Y) = 0.6100 \end{split}$$

X1	X2	Υ	Count
Т	Т	Т	2
Т	F	Т	2
F	Т	F	5
F	F	Т	1

Outdoors	Computer	Lost	Count
Т	Т	Т	2
Т	F	Т	2
F	Т	F	5
F	F	Т	1

$$IG(X1, Y) = 0.6100$$

$$IG(X2, Y) = 0.1203$$

Heuristic: Pick the variable which provides the most Information Gain about Y

Outdoors	Computer	Lost	Count
T	Т	Т	2
Т	F	Т	2
F	Т	F	5
F	F	Т	1

IG(Lost, Outdoors) = 0.6100

IG(Lost, Computer) = 0.1203

Heuristic: Pick the variable which provides the most Information Gain about Y Recurse on the branches

Heuristic: Pick the variable which provides the most Information Gain about Y Recurse on the branches

- Decision Trees tend to overfit
- Pruning Necessary
- Bottom Up Pruning

- 1. Build Complete Tree
- 2. Consider each "leaf" decision and perform the chi-square test (label vs split variable)

```
# of instances entering this decision: s

# of + instances entering this decision: p

# of - instances entering this decision: n

# instances here: s<sub>f</sub> # instances here: s<sub>t</sub>

# of + instances here: p<sub>f</sub> # of - instances here: p<sub>t</sub>

# of - instances here: n<sub>t</sub>
```

Hypothesis: X is uncorrelated with the decision

```
# of instances entering this decision: s

# of + instances entering this decision: p

# of - instances entering this decision: n

# instances here: s<sub>f</sub> # instances here: s<sub>t</sub>

# of + instances here: p<sub>f</sub> # of - instances here: p<sub>t</sub>

# of - instances here: n<sub>t</sub>
```

Hypothesis: X is uncorrelated with the decision

```
Then p_f should be "close" to (s_f * p/s)
And p_t should be "close" to (s_t * p/s)
```

Similarly for n_f and n_t

Υ	=	Lost
•	_	LUS

Variable Assignment	Real Counts	Expected Counts (S _{x2} * p / S)
X2 = F	1	1/6
X2 = T	0	5/6

Variable Assignment	Real Counts	Expected Counts (S _{x2} * n / S)
X2 = F	0	5/6
X2 = T	5	25/6

Y = Not Lost

Y = Lost

Variable Assignment	Real Counts	Expected Counts (S _{x2} * p / S)
X2 = F	1	1/6
X2 = T	0	5/6

Y = Not Lost

Variable Assignment	Real Counts	Expected Counts (S _{x2} * n / S)
X2 = F	0	5/6
X2 = T	5	25/6

If uncorrelated, I expect the Real Counts to be close to Expected Counts Need some kind of measure of "deviation"

$$\begin{array}{lll} {\sf C} &= \sum_{X_2} \frac{({\sf Real\ Count}_{\sf lost} - {\sf Expected\ Count}_{\sf lost})^2}{{\sf Expected\ Count}_{\sf lost}} + & \frac{({\sf Real\ Count}_{\sf notlost} - {\sf Expected\ Count}_{\sf notlost})^2}{{\sf Expected\ Count}_{\sf notlost}} \\ & {\sf C} \sim \chi^2(({\sf num\ Y\ labels} - 1) \times ({\sf num\ X2\ labels} - 1))} \\ & {\sf C} \sim \chi^2(1) \end{array}$$

$$c = \sum_{X_2} \frac{(\text{Real Count}_{\text{lost}} - \text{Expected Count}_{\text{lost}})^2}{\text{Expected Count}_{\text{lost}}} + \frac{(\text{Real Count}_{\text{notlost}} - \text{Expected Count}_{\text{notlost}})^2}{\text{Expected Count}_{\text{notlost}}}$$

Intuitively, the smaller C is, the more likely they are uncorrelated.

If X2 and Y are uncorrelated,

P(C >= c) is the "probability" that we see such large deviations "by chance".

We define "maxPChance" as the "worst chance we are willing to accept"

(Coin Flip Example: we believe coin is unbiased. Then out of 1000 flips, How many "heads" do you want to see before you stop believing coin is unbiased?)

$$c = \sum_{X_2} \frac{(\text{Real Count}_{\text{lost}} - \text{Expected Count}_{\text{lost}})^2}{\text{Expected Count}_{\text{lost}}} + \frac{(\text{Real Count}_{\text{notlost}} - \text{Expected Count}_{\text{notlost}})^2}{\text{Expected Count}_{\text{notlost}}}$$

Intuitively, the smaller C is, the more likely they are uncorrelated.

Let maxPchance = 0.05

We only stop believing that the splits are "by chance" if the probability of getting a deviation larger than c is < 0.05.

We only stop believing that the splits are "by chance" if the probability of getting a deviation larger than c is < 0.05.

Look at cdf.
$$P(C \le 3.8415) = 0.95$$

 $P(C > 3.8415) = 0.05$

If $c \le 3.8415$ we believe the split is "by chance" and prune the decision If c > 3.8415 we do not believe the split is "by chance"

Applet

Play With Applet