Identifying changes in RNA binding using a linear model

In this notebook, we will apply the linear model approach presented in (1_simple_example) to a real-life data set.

We start by reading in the data. Our input here is the protein-level quantification for the Nocodazole arrest/release experiment conducted for the OOPS NBT paper. In this experiment, we wanted to assess changes in RNA binding in arrested/released cells. To do this, we quantified "total" protein abundance and RNA-bound (extracted by OOPS) protein abundance. The peptide-level abundances have been aggregated to protein level abundance and center-median normalised. Proteins with missing values have been removed.

```
total_protein_quant <- readRDS("../raw/total_res_pro_agg_norm.rds")
rbp_protein_quant <- readRDS("../raw/rbp_res_pro_agg_norm.rds")</pre>
```

The input data are in MSnSets. As a reminder, the MSnSet class mimics the ExpressionSet class and contains 3 matrices: 1. assay data (obtained via: exprs) 2. feature data (fData) 3. phenotype data (pData)

The assay data is the quantification of the features (PSMs/peptides/proteins) and contains one column per sample

The feature data describes each feature, e.g peptide sequence, master protein accession, retention time etc etc The phenotype data describes the samples

Let's take a look at our total protein quantification data. If we "print" the object, we get a summary including the processing steps performed.

Here we have 2761 features (proteins) quantified across 6 samples.

The varLabels describe the "Condition", "Replicate" and "Type" for these samples. We'll take a look at these in more detail shortly.

We can see that there were originally 20171 features which were combined into 18111 features using a user-defined function. This was the step at which peptides with the same sequence but different variable modifications were aggregated. Then, these 18111 features were combined into the 2761 features (peptide->protein aggregation). Finally, the data was center-median normalised and missing values with imputed with knn.

```
print(total_protein_quant)

## MSnSet (storageMode: lockedEnvironment)
```

```
## assayData: 2761 features, 6 samples
     element names: exprs
##
## protocolData: none
## phenoData
##
     sampleNames: Abundance.F1.127N.Sample Abundance.F1.127C.Sample
       ... Abundance.F1.129C.Sample (6 total)
##
     varLabels: Sample name Condition Replicate Type
##
     varMetadata: labelDescription
##
## featureData
     featureNames: AOAVT1 AOMZ66 ... Q9Y6Y8 (2761 total)
##
##
     fvarLabels: Checked Confidence ... CV.Abundance.F1.131.Sample
##
       (47 total)
     fvarMetadata: labelDescription
##
## experimentData: use 'experimentData(object)'
## Annotation:
## - - - Processing information - - -
## Subset [20171,10] [20171,10] Thu Aug 9 16:17:13 2018
## Combined 20171 features into 18111 using user-defined function: Thu Aug 9 16:17:32 2018
## Combined 18111 features into 2761 using user-defined function: Thu Aug 9 16:17:46 2018
## Normalised (center.median): Thu Aug 9 16:17:51 2018
## Data imputation using knn Thu Aug 9 16:17:58 2018
     Using default parameters
## Subset [2761,10][2761,6] Wed Jun 12 15:16:25 2019
## MSnbase version: 2.4.2
Here's the top of the assay data
print(dim(exprs(total_protein_quant)))
## [1] 2761
print(head(exprs(total_protein_quant), 2))
##
          Abundance.F1.127N.Sample Abundance.F1.127C.Sample
## AOAVT1
                           5.379489
                                                     5.296457
                           4.926415
## AOMZ66
                                                     4.876517
          Abundance.F1.128N.Sample Abundance.F1.128C.Sample
##
                           5.356980
## AOAVT1
                                                     5.444870
## AOMZ66
                           4.955341
                                                     4.735426
          Abundance.F1.129N.Sample Abundance.F1.129C.Sample
##
## AOAVT1
                           5.532511
                                                     5.411776
                           4.886217
## AOMZ66
                                                     4.834322
... and the associated feature data. Notice that there are many columns in the feature data. These are all
the additional columns output from PD in addition to the quantification. They are all stored here in case
```

Sequence ACIGDTLCQK

they are required.

##

AOAVT1

print(head(fData(total_protein_quant), 2))

High

Checked Confidence

False

```
## AOMZ66
            False
                         High ATQPETTEEVTDLK
##
                                                   Modifications Qvality.PEP
## AOAVT1 2xTMT6plex [N-Term; K10]; 2xCarbamidomethyl [C2; C8] 0.000118596
                                       2xTMT6plex [N-Term; K14] 0.000709357
          Qvality.q.value Number.of.Protein.Groups Number.of.Proteins
## AOAVT1
              5.56241e-05
## AOMZ66
              0.000157133
          Number.of.PSMs Master.Protein.Accessions Number.of.Missed.Cleavages
## AOAVT1
                        3
                                              AOAVT1
## AOMZ66
                        3
                                              AOMZ66
                                                                               0
          Theo.MHplus.in.Da Quan.Info Amanda.Score.MS.Amanda
              1623.85986925
## AOAVT1
                                Unique
                                              330.291304522885
              2020.08503667
## A0MZ66
                                Unique
                                              342.226818892066
          Confidence.MS.Amanda Search.Space.MS.Amanda
##
## AOAVT1
                           High
                                                 1206.0
## AOMZ66
                           High
                                                 1908.0
##
          Percolator.q.Value.MS.Amanda Percolator.PEP.MS.Amanda
                                          0.000159000000000000002
## AOAVT1
                              9.831e-05
## AOMZ66
                              0.0001625
                                                        0.0004789
          XCorr.Sequest.HT Confidence.Sequest.HT Search.Space.Sequest.HT
## A0AVT1 3.72960662841797
                                             High
## A0MZ66 3.85038113594055
          Percolator.q.Value.Sequest.HT Percolator.PEP.Sequest.HT
##
## AOAVT1
                               7.671e-05
                                                          0.0001077
                 0.0001441999999999998
                                                          0.0003799
## AOMZ66
          Ions.Score.Mascot Confidence.Mascot Search.Space.Mascot
## AOAVT1
                      71.39
                                          High
                      32.36
                                          High
          Percolator.q.Value.Mascot Percolator.PEP.Mascot master_protein
##
                           8.725e-05 0.00010700000000000001
## AOAVT1
                                                                      AOAVT1
## AOMZ66
                           0.0001791
                                                   0.0007973
                                                                      AOMZ66
##
          protein_length
                           protein_description peptide_start peptide_end
                    1052 sp|AOAVT1|UBA6_HUMAN
## AOAVT1
                                                           447
                                                                        457
## A0MZ66
                     631 sp|AOMZ66|SHOT1_HUMAN
                                                           392
                                                                        406
          crap_protein associated_crap_protein unique
## AOAVT1
                     0
## AOMZ66
                      0
                                               0
                                                      1
##
                                     filename CV. Abundance. F1. 126. Sample
## AOAVT1 Nocodazole_Total_PeptideGroups.txt
                                                               0.08912426
  AOMZ66 Nocodazole_Total_PeptideGroups.txt
                                                               0.14097226
          CV. Abundance. F1.127N. Sample CV. Abundance. F1.127C. Sample
## AOAVT1
                            0.08717847
                                                          0.1025999
## A0MZ66
                            0.10111405
                                                          0.1889357
##
          CV. Abundance. F1.128N. Sample CV. Abundance. F1.128C. Sample
                            0.12057913
## AOAVT1
                                                         0.06179052
                            0.08956286
## AOMZ66
                                                         0.13456950
          CV. Abundance. F1.129N. Sample CV. Abundance. F1.129C. Sample
                            0.11457832
                                                         0.04857286
## AOAVT1
## A0MZ66
                            0.04768461
                                                         0.03199063
          CV. Abundance. F1.130N. Sample CV. Abundance. F1.130C. Sample
## AOAVT1
                            0.05473802
                                                          0.1359917
## AOMZ66
                            0.13902945
                                                          0.2397172
##
          CV.Abundance.F1.131.Sample
## AOAVT1
                            0.1632846
```

AOMZ66 0.1071883

... and here is the phenotype data. As we can see, we have 3 replicates each of "M", "G1" and "S" phase, plus an additional Control sample. For our purposes, we're only going to be interested in the M and G1 phases so we can remove the other data. Both the total and RBP quantification objects have the exact same order

print(pData(total_protein_quant))

```
##
                             Sample_name Condition Replicate Type
## Abundance.F1.127N.Sample
                                     M_1
                                                 М
                                                            1 Total
## Abundance.F1.127C.Sample
                                     M_2
                                                 М
                                                            2 Total
## Abundance.F1.128N.Sample
                                     M_3
                                                 Μ
                                                            3 Total
## Abundance.F1.128C.Sample
                                    G1_1
                                                G1
                                                            1 Total
## Abundance.F1.129N.Sample
                                                G1
                                    G1_2
                                                            2 Total
## Abundance.F1.129C.Sample
                                    G1_3
                                                G1
                                                            3 Total
```

To detect changes in RNA binding, we can only consider RBPs where we have also quantified the total protein. Below, we identify these cases by intersecting the rownames of each MSnSet (the protein names)

mutate(intensity=value) %>% dplyr::select(-value) # rename the "value" column -> "intensity"

Top of the total protein expression data.frame. See how each intensity value now has it's own row with the other columns describing the associated aspects of the intensity value, e.g the protein and experimental condition

print(head(total_exprs))

```
## # A tibble: 6 x 7
     protein sample
                                Sample_name Condition Replicate Type intensity
     <fct>
             <fct>
                                <chr>
                                            <chr>>
                                                       <chr>>
                                                                 <chr>
                                                                            <dbl>
## 1 AOAVT1 Abundance.F1.127~ M_1
                                                                             5.38
                                            Μ
                                                       1
                                                                 Total
## 2 A1L0T0 Abundance.F1.127~ M_1
                                            Μ
                                                       1
                                                                 Total
                                                                             3.79
## 3 A1L390 Abundance.F1.127~ M_1
                                                                 Total
                                                                             4.90
                                            М
                                                       1
## 4 A1X283 Abundance.F1.127~ M 1
                                            М
                                                                 Total
                                                                             5.00
## 5 A5YKK6 Abundance.F1.127~ M_1
                                            М
                                                       1
                                                                 Total
                                                                             5.22
## 6 A6NFI3 Abundance.F1.127~ M_1
                                            Μ
                                                       1
                                                                 Total
                                                                             5.06
```

Question: Why doesn't the MSnSet object store all the data in this long format?

Now we do the same for the RBP quantification and then concatenate the two data frames together.

```
coops_exprs <- rbp_protein_quant[intersecting_proteins,] %>%
   tidy(addPheno=TRUE) %>%
   mutate(intensity=value) %>% dplyr::select(-value)

combined_exprs <- rbind(total_exprs, oops_exprs)</pre>
```

We want to tell R which is the order of the values in the condition and type columns so that the fold changes are in the expected direction, e.g positive = higher in G1 vs M.

```
combined_exprs$condition <- factor(combined_exprs$Condition, levels=c("M", "G1"))
combined_exprs$type <- factor(combined_exprs$Type, levels=c("Total", "OOPS"))</pre>
```

Now we model the protein intensity according to the models described in 1_simple_example_vd.Rmd. As an example, let's see the results from just applying the models to a single UniprotID.

```
combined_exprs %>% filter(protein == 'AOAVT1') %>%
   ggplot(aes(Condition, intensity, group=1)) +
   geom_point(size=2) +
   stat_summary(geom="line", fun.y=mean) +
   xlab("") +
   facet_wrap(~type)
```



```
fit <- combined_exprs %>% filter(protein == 'AOAVT1') %>%
   lm(formula=intensity~Condition*Type)
print(summary(fit))
```

```
##
## Call:
## lm(formula = intensity ~ Condition * Type, data = .)
##
## Residuals:
                          Median
                                         3Q
##
         Min
                    10
                                                  Max
                        0.007263 0.041451
   -0.087537 -0.048708
##
## Coefficients:
##
                        Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                         6.53699
                                    0.03620 180.590 9.89e-16 ***
## ConditionM
                        -0.76710
                                    0.05119 -14.985 3.88e-07 ***
## TypeTotal
                        -1.07394
                                    0.05119 -20.979 2.80e-08 ***
                                               8.956 1.92e-05 ***
## ConditionM:TypeTotal
                        0.64836
                                    0.07240
## ---
## Signif. codes:
                 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.0627 on 8 degrees of freedom
## Multiple R-squared: 0.988, Adjusted R-squared: 0.9835
## F-statistic: 219.6 on 3 and 8 DF, p-value: 5.07e-08
```

We can see that the model fits the data well ("Multiple R-squared: 0.9673, Adjusted R-squared: 0.955"). We can see that the interaction term that we're interested in (for changes in RNA binding) significantly deviates from zero in both models.

Below, we make a function to run the linear models on a protein, select the best model and then return the required values from the model. When we run on the same protein as above, we can see that the best model is the one including the TMT tag as a co-variate.

```
combined_exprs %>% filter(protein == 'AOAVT1') %>% Change_in_RNA_binding_LM()
```

```
## lm_fold_change lm_std_error lm_t_value lm_p_value lm_adj_R_squared
## 1 0.6483564 0.07239593 8.955702 1.921547e-05 0.983507
```

Below, we make a function to run the testModels() function on all proteins in turn using dplyr. We will use the standard Benjamini-Hochberg method to adjust p-values for the multiple tests we have conducted.

Below, we plot the p-values. Under the null hypothesis they should show an approximately uniform distribution. If there were a large number of proteins with a significant change in RNA binding, we would expect an additional "spike" with low p-values (<0.05). We see an approximately uniform distribution but with a slight skew towards low p-value. This may indicate the presence of changes in RNA binding but which we are insufficiently powered to detect, e.g low p-value but not significant low p-value.

M_G1 %>% ggplot(aes(lm_p_value)) + geom_histogram(bins=20)

Task: How many significant changes in RNA binding were detected (You'll need to settle on a suitable FDR threshold)?

So, we have detected a lot of proteins with a signficant change in RNA binding!!

We can use a volcano plot to take a look at the estimated fold changes and associated p-values

```
M_G1 %>%
   ggplot(aes(x=lm_fold_change, y=-log10(lm_p_value))) +
   geom_point(size=0.25)
```


We can make this volcano plot a bit more informative (and prettier) with a few extra lines:

```
M_G1 %>%
mutate(sig=ifelse(lm_BH<0.01, "Sig.", "Not sig.")) %>% # add "sig" column
ggplot(aes(x=lm_fold_change, y=-log10(lm_p_value), colour=sig)) +
geom_point(size=0.25) +
scale_colour_manual(values=c("black", cbPalette[6]), name="") + # manually adjust colours
xlab("Fold change (log2)") + ylab("-log10(p-value)") # manual axes labels
```


Finally, we save out the results for use in later notebooks

saveRDS(M_G1, "../results/M_G1_changes_in_RNA_binding_linear_model.rds")