Chapter 6. Classification and Prediction

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Rule-based classification

- Associative classification
- Lazy learners (or learning from your neighbors)
- Prediction
- Accuracy and error measures
- Ensemble methods
- Model selection
- Summary

Example: Image Classification

Classification vs. Prediction

Classification

- predicts categorical class labels (discrete or nominal)
- constructs a model by learning the training set (having the class labels) and classifies new data by using the model

Prediction

- models a continuous-valued functions and predicts unknown or missing values by using the model
- Typical applications
 - Credit approval
 - Target marketing
 - Medical diagnosis
 - Fraud detection

Classification—A Two-Step Process

Model construction

- Goal: to describe a set of predetermined classes by using a training data
- Training data
 - A set of tuples/samples used for model construction
 - Each sample/tuple: <attr-1, attr-2,, attri-n, class label>
 - Each tuple/sample is assumed to belong to a predefined class
- Model
 - Explains how the attributes of tuples/samples determine the class label
 - Represented as classification rules, decision trees, networks, or mathematical formulae

Model usage

 Goal: to classify the future or unknown samples by using the model

Classification—A Two-Step Process

Accuracy evaluation

- Goal: to evaluate the accuracy of the model by using a test data
- Test data
 - A set of tuples/samples used for accuracy evaluation
 - Each sample/tuple: <attr-1, attr-2,, attri-n, class label>
 - Each tuple/sample has a predefined class
- The known label of a test sample is compared with the classified result from the model
- Accuracy rate is the percentage of test set samples that are correctly classified by the model
- The test set should be independent of the training set; otherwise over-fitting will occur
- If the accuracy is acceptable, use the model to classify data tuples whose class labels are not known

Process (1): Model Construction

NAME	RANK	YEARS	TENURED
Mike	Assistant Prof	3	no
Mary	Assistant Prof	7	yes
Bill	Professor	2	yes
Jim	Associate Prof	7	yes
Dave	Assistant Prof	6	no
Anne	Associate Prof	3	no

Classifier (Model)

IF rank = 'professor'
OR years > 6
THEN tenured = 'yes'

Process (2): Using the Model in Prediction

NAME	RANK	YEARS	TENURED
Tom	Assistant Prof	2	no
Merlisa	Associate Prof	7	no
George	Professor	5	yes
Joseph	Assistant Prof	7	yes

Supervised vs. Unsupervised Learning

- Supervised learning (classification)
 - Supervision: The training data (observations, measurements, etc.) are accompanied by labels indicating the class of the observations
 - New data is classified based on the training set
- Unsupervised learning (clustering)
 - The class labels of training data is unknown
 - Given a set of measurements, observations, etc. with the aim of establishing the existence of classes or clusters in the data

Chapter 6. Classification and Prediction

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Rule-based classification
- Classification by back propagation

- Support Vector Machines (SVM)
- Associative classification
- Lazy learners (or learning from your neighbors)
- Other classification methods
- Prediction
- Accuracy and error measures
- Ensemble methods
- Model selection
- Summary

Issues: Data Preparation

- Data cleaning
 - Preprocess data in order to reduce noise and handle missing values
- Relevance analysis (feature selection)
 - Remove the irrelevant or redundant attributes
- Data transformation
 - Generalize and/or normalize data

Issues: Evaluating Classification Methods

- Accuracy
 - classifier accuracy: predicting class label
 - predictor accuracy: guessing value of predicted attributes
- Speed
 - time to construct the model (training time)
 - time to use the model (classification/prediction time)
- Robustness: handling noise and missing values
- Scalability: efficiency in disk-resident databases
- Interpretability
 - understanding and insight provided by the model
- Other measures, e.g., goodness of rules, such as decision tree size or compactness of classification rules

Chapter 6. Classification and Prediction

- What is classification? What is prediction?
- Issues regarding classification and prediction
- Classification by decision tree induction
- Bayesian classification
- Rule-based classification
- Classification by back propagation

- Support Vector Machines (SVM)
- Associative classification
- Lazy learners (or learning from your neighbors)
- Other classification methods
- Prediction
- Accuracy and error measures
- Ensemble methods
- Model selection
- Summary

Decision Tree Induction: Training Dataset

	_	
acc	a	nel
uss	ıuı	

age	income	student	credit_rating/	buys_computer
<=30	high	no	fair	no
<=30	high	no	excellent	no
3140	high	no	fair	yes
>40	medium	no	fair	yes
>40	low	yes	fair	yes
>40	low	yes	excellent	no
3140	low	yes	excellent	yes
<=30	medium	no	fair	no
<=30	low	yes	fair	yes
>40	medium	yes	fair	yes
<=30	medium	yes	excellent	yes
3140	medium	no	excellent	yes
3140	high	yes	fair	yes
>40	medium	no	excellent	no

Output: A Decision Tree for "buys_computer"

Algorithm for Decision Tree Induction

- Basic algorithm
 - A greedy algorithm that constructs a decision tree in a top-down recursive divide-and-conquer manner
 - At start, all the training examples are at the root
 - Attributes are assumed to be categorical
 - If continuous-valued, they are discretized in advance
 - Examples are partitioned recursively based on the selected test attributes
 - Test attributes are selected on the basis of a heuristic or statistical measure (e.g., information gain)

Output: A Decision Tree for "buys_computer"

Algorithm for Decision Tree Induction

- Conditions for stopping the partitioning process
 - All samples for a given node belong to the same class
 - There are no remaining attributes for further partitioning –
 majority voting is employed for classifying the leaf
 - There are no samples left

Output: A Decision Tree for "buys_computer"

Test Attribute Selection

- Which is better as a test attribute?
 - Partitions a group into more homogeneous ones

Attribute Selection Measure: Information Gain

- Select the test attribute having the highest information gain
- Let p_i be the probability that an arbitrary tuple in D belongs to class C_i , estimated by $|C_{i,D}|/|D|$
- Entropy (expected information) to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

The more heterogeneous the higher

