H07T2A1

Es sei $G \subset \mathbb{C}$ eine beschränkte, offene und zusammenhängende Menge, die nichtleer ist. Es seien $w_1, \ldots, w_n \in \mathbb{C}, n \in \mathbb{N} \setminus \{0\}$. Wir betrachten für $\alpha > 0$ die Funktion

$$f: \overline{G} \to \mathbb{R}_{\geq 0}, \quad z \mapsto \prod_{j=1}^{n} |z - w_j|^{\alpha}.$$

- a) Zeige: $\sup_{z \in \overline{G}} f(z) = \max_{z \in \overline{G}} f(z)$.
- b) Es sei $z_0 \in \overline{G}$ mit $f(z_0) = \max_{z \in \overline{G}} f(z)$. Zeige, dass $z_0 \in \partial G := \overline{G} \backslash G$.

Zu a):

Offensichtlich ist f stetig und \overline{G} ist abgeschlossen und (wie G) beschränkt, also kompakt. Daher nimmt f auf \overline{G} ein Maximum an. Das zeigt a).

Zu b):

Es sei $g(z) := \prod_{i=1}^{n} (z - w_i)$. Dann gilt $|g(z)|^{\alpha} = f(z)$ für alle $z \in \overline{G}$. g ist offensichtlich nicht konstant und holomorph. Mit f ist auch g in z_0 maximal (weil $\mathbb{R}^+ \to \mathbb{R}^+, t \mapsto t^{\alpha}$ für $\alpha > 0$ str. monoton steigt). Aus dem Maximumsprinzip (bzw. der Randversion) folgt $z_0 \in \partial G$.

(Achtung: $\tilde{f}(z) := \prod_{j=1}^n (z-w_j)^{\alpha}$ ist i.A. für $\alpha > 0$ nicht holomorph in G.)