Verifizierte Implementierung einer Mapping-Datenbank in Coq

besondere Lernleistung 2016

Benno Fünfstück

12. Mai 2016

Betreuer: Dr. Hendrik Tews & Dr. Thomas Türk

FireEye Technologie Deutschland GmbH

Gliederung

- 1. Microkern und Mapping-Datenbank
- 2. Implementierung
- 3. Verifikation

4. Ergebnisse und Ausblick

Microkern und Mapping-Datenbank

Entwicklung des Linux-Kerns

Quelle: http://cache.techie-buzz.com/images4/chinmoy/linux-kernel-rise.jpg

Lösungsansatz: Microkern

- Nur wesentliche Funktionen im Kern
- NOVA-Microkern: ca. 10000 Zeilen Quelltext
- weniger Fehler im Kern

Capabilities

Mapping-Datenbank

Implementierung

Operationen der Mapping-Datenbank

- Eintrag anlegen
- Eintrag entfernen
- Zugriff auf ein bestimmtes Kernobjekt entziehen

Datenstruktur der Mapping-Datenbank

Darstellung der Zuordnung

Capability	Kernobjekt
2	В
5	E
1	A
4	D
3	С

Binärer Baum

Binärer Baum

Binärer Baum

1

Rotation

Vergleich mit Listenimplementierung

Verifikation

Möglichkeiten zur Überprüfung

- Manuelles Testen ⇒ aufwändig, wenig Fälle abdeckbar
- Automatisiertes Testen ⇒ weniger aufwändig, aber immer noch nicht alle Fälle testbar
- Verifikation ⇒ Beweis, gilt für alle Fälle
- Coq ist ein interaktiver Theorembeweiser ⇒ Beweise werden durch den Computer überprüft.

Bewiesene Eigenschaften

- 1. Die angestrebte Veränderung wird durchgeführt
- 2. Es finden keine weiteren Veränderungen statt
- 3. Alle Invarianten werden beibehalten

 \implies nur die angestrebte Veränderung wird durchgeführt.

Beispiel: Anlegen eines Mappings

```
Theorem create_has_mapping :
forall (db:mapping_db) (pd:N) (sel:N) (ko:kernel_object),
 mapping_db_inv db ->
has_mapping pd sel ko (create_mapping pd sel ko db).
```

Beispiel: Anlegen eines Mappings

Beispiel: Anlegen eines Mappings

```
Theorem create_invariant :
forall (db:mapping_db) (pd:N) (sel:N) (ko:kernel_object),
 mapping_db_inv db ->
mapping_db_inv (create_mapping pd sel ko db).
```

Ergebnisse und Ausblick

Ergebnisse

- 2000 Zeilen Quelltext
- verifizierte Implementierung von AVL-Bäumen in Coq
- abstrakte Implementierung und Verifikation einer Mapping-Datenbank
- durch Verifikation wurden mehrere Fehler gefunden
 - Fehler bei der Implementierung des Löschens
 - Falsche Anpassung der Balance im Falle einer Rotation

Ausblick

- Verknüpfung mit Operationen des Microkerns
- Refinement auf C-Implementierung

Fragen?

- Bildquellen
 - http://cache.techie-buzz.com/images4/chinmoy/linux-kernel-rise.jpg
- Vielen Dank für die Aufmerksamkeit!