

Marta 6 Jesse 6 CM 6 Kira
Team Burnout

FIRE IS A CLEAR AND PRESENT DANGER

2020 was the most active fire season in the Western United States's recorded history.

Worst Fire Season in CA, Worst in a decade AZ, Most destructive OR, Largest Fires on Record in WA and CO

2020 Fire Damage Report

Land Up in Flame

10.2 million acres of land burned.

Lives Lost

46 (32 in California, 11 in Oregon, 1 in Washington, 2 in Colorado)

Carbon Emissions

Oregon and California broke records for carbon emissions

Properties Lost

10,488 structures in CA \$19.884 billion Cost

COVERAGE AREA

- **Arizona**
- **California**
- **6** Colorado
- **ldaho**
- **6** Oregon
- **Mew Mexico**
- Nevada
- **Montana**
- **%** Utah
- **Nashington**
- **Wyoming**

OUR DATASETS

WEATHER

120 years' worth of precipitation, temperatures, and drought indices

FIRES

24 years of fires' history, incl. cause, location, final size (in acres), and dates

CLEANING

CHALLENGES

DATA CLEANING

Cleaning our data:

- Standard stuff like lowercase columns etc.
- Very careful about looking at NaNs
- New Challenge: Date Time Julian to Gregorian
- Limited States to the West
- Limited years to 1987 2015
- Removed Outliers Fires that burned over
 5,000 days

COMBINING DATA SETS

Combining our data:

- Data Size was a limitation
- Set up AWS S3 bucket
- Set up AWS CLI for the team
- Merge file difficulties memory
- Unable to get all data that we wanted
- SQL to pkl to csv fun

CHALLENGES

Difficulties with data:

- We realized that adding foliage and wind data would have been extremely helpful.
- Briefly considered trying to do something with lightning. - That consideration was quickly squashed.
- Limited data sets Fire data only had 1992 2015
- Resource limitations (processing power!)

WEATHER TRENDS ARE SLOW BUT POWERFUL

Lowest and Highest Temperature by Year

WEATHER TRENDS ARE SLOW BUT POWERFUL

Precipitation Index by Year

WEATHER TRENDS ARE SLOW BUT POWERFUL

Average Palmer Hydrological Index Values by Year (-10 = dry, 10 = wet)

NOT ALL STATES ARE CREATED EQUAL

Temperature Index by State

Precipitation Index by State

... AND NOT ALL STATES FEEL THE BURN EQUALLY

WE DIDN'T START THE FIRE... SO WHO DID?

HIGH TEMPS + LOW PRECIPITATION = FIRE

Avg temperature ranges vs avg final size of fires by month of discovery

Avg precipitation index vs avg final size of fires by month of discovery

MODELING

REGRESSION

- Not the best fit model type for the scope of this project.
- Ridge Regression came out at around 15% R²

THE MODEL IMPROVEMENT PROCESS

- Classification
- Bootstrapping
- Clustering
- Trailing Averages
- Class Weighting

CLASSIFICATION

RANDOM FOREST

• Purpose: feature importance

SVM

 Support Vector Machine with bootstrapped data

NEURAL NETWORK

- The Neural Network had the highest Recall Rate across the most important classes.
- This is the best predictive model.

OUR CLASSES WERE MASSIVELY IMBALANCED

TARGET LABELS:

"A" - fires smaller than 0.25 acres, "B" - 9.9 acres, "C" - 99.9 acres, "D" - 299 acres , "E" - 999 acres , "F" - 4999 acres, and "G" - 5000+ acres.

WHY WE CLUSTERED LATITUDE & LONGITUDE DATA

Where are the fires?

WHERE DID THE CLUSTER CENTROIDS LAND?

Location of cluster centroids

THE CHOSEN MODELS

NEURAL NETWORK CLASSIFIER

Purpose: predictive power

Optimized for Recall score, not Accuracy. Our highest Accuracy model was >70%. The chosen model came through at closer to 50% Accuracy, but a much higher recall rate.

Wildfire Class by Size and Recall:

	Modeling		Baseline		
•	A: 59%		A:	62%	
•	B: 1%		B:	29%	
	C: 20%	•	C:	6%	
	D: 50%	•	D:	2%	
	E: 58%	•	E:	1%	
	F: 59%	•	F:	2%	
	G: 86%	•	G:	.07%	

RANDOM FOREST CLASSIFIER

Purpose: feature importance

Most important feature (location excluded):

Temperature average past 3 months

Second most important feature: Temperature average past 6 months

Third most important feature: Monthly Precipitation

WHAT DOES "GOOD" LOOK LIKE?

0

SUMMARY & NEXT STEPS

What we learned

Location is important!

Temp & Precipitation have direct relationships

Bootstrapping helps with unbalanced classes

Focusing on recall helps us predict disastrous fires.

What we would still like to explore

Looking into Local Resources

Adding Altitude and Vegetation Data (Earth Engine)

Add Wind Data (NOAA)

With Climate Change and Warmer Temps

More Risk

Dry and hot conditions will bring more fire risk.

Need for Security

We will need predictive models to protect communities.

More Resources

Being prepared ahead and being able to respond will be critical.

THANKS!

CREDITS: This presentation template was created by **Slidesgo**, including icons by **Flaticon**, and infographics & images by **Freepik**.

Please keep this slide for attribution

DO FIRES GET LARGER AS CLIMATE GETS WARMER?

Number of Fires by Year

Total Size of Fires by Year (in acres)

Averge Size of Fires by Year (in acres)

