

经典卷积网络

主讲: 龙良曲

ImageNet

LeNet-5

- 99.2% acc.
- 5/6 layers

LeNet5 Demo

AlexNet

- GTX 580
 - 3GBx2

- 11X11
- 8 layers

AlexNet: ILSVRC 2012 winner

- Similar framework to LeNet but:
 - Max pooling, ReLU nonlinearity
 - More data and bigger model (7 hidden layers, 650K units, 60M params)
 - GPU implementation (50x speedup over CPU)
 - Trained on two GPUs for a week
 - Dropout regularization

A. Krizhevsky, I. Sutskever, and G. Hinton, <u>ImageNet Classification with Deep Convolutional Neural Networks</u>, NIPS 2012

VGG

- **3**x3
- 1X1
- 11-19 layers

发现小的卷积核更好

VGGNet: ILSVRC 2014 2nd place

		ConvNet C	onfiguration			
A	A-LRN	В	С	D	Е	
11 weight layers	11 weight layers	13 weight layers	16 weight layers	16 weight layers	19 weight layers	
	i	nput (224 × 2	24 RGB image	e)	-700,000760	
conv3-64	conv3-64 LRN	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	conv3-64 conv3-64	
200220		max	pool	Y 2 - 1389-70		
conv3-128	conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	conv3-128 conv3-128	
		max	pool			
conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256	conv3-256 conv3-256 conv1-256	conv3-256 conv3-256 conv3-256	conv3-256 conv3-256 conv3-256 conv3-256	
	in transferred at	max	pool			
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512	
		max	pool			
conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512	conv3-512 conv3-512 conv1-512	conv3-512 conv3-512 conv3-512	conv3-512 conv3-512 conv3-512 conv3-512	
		max	pool			
		FC-	4096			
			4096			
			1000			
		soft-	-max			

Table 2: Number of parameters (in millions).

	er or berreit	ber mureter a		(
Network	A,A-LRN	В	C	D	E	
Number of parameters	133	133	134	138	144	

- Sequence of deeper networks trained progressively
- Large receptive fields replaced by successive layers of 3x3 convolutions (with ReLU in between)

- One 7x7 conv layer with C feature maps needs 49C² weights, three 3x3 conv layers need only 27C² weights
- Experimented with 1x1 convolutions

K. Simonyan and A. Zisserman,

Very Deep Convolutional Networks for Large-Scale Image Recognition, ICLR 2015

1x1 Convolution

- less computation
- c_in => c_out

GoogLeNet

- 1st in 2014 ILSVRC
- 22 layers

同一层使用不同类型的卷积核 对不同kernel使用不同的padding,stride,保证卷积结果shape相同 然后concat在一起

GoogLeNet

C. Szegedy et al., Going deeper with convolutions, CVPR 2015

Stack more layers?

• 1000 layers?

CIFAR-10 experiments

下一课时

BatchNorm

Thank You.