<u>IITP 프로젝트 결과 보고서</u>

제목	반려동물 안구질환 조기판별 모델		
조명	AI 어벤져스		
조원	강재현(조장)	Yolov7 모델학습 , PPT제작	
	김민지	Yolov7 모델학습 , PPT제작	
	김현진	이미지 라벨링, 포스터제작	
	천대원	CNN, XGBoost 모델학습	
	최진자랑	CNN, XGBoost 모델학습	
목적	한국의 반려동물 양육 인구가 증가함에 따라, 반려동물 치료비 지출도 연평균 78만 원으로 높은 수준을 보이고 있습니다. 이러한 높은 치료 비는 가계에 경제적 부담을 주며, 반려동물 유기 등 다양한 사회적 문제를 야기할 수 있습니다. 이에 따라 반려동물의 안구질환을 조기에 판별할 수 있는 모델을 개발하여, 안구질환의 조기 발견 및 예방뿐만 아니라 재발 방지와 심각한 질병으로의 진행을 예방하는 것을 목표로 이 모델을 개발 하게 되었습니다.		
수행 내용	a. 데이터 수집 (github) 데이터 셋을 활용하여 강아지의 안구질환 이미지 수집 b. 데이터 분류(labelimg) 강아지가 가지고 있는 안구질환을 11개를 선정하고 질환 별로 라벨링 c. 모델 학습 YOLO, CNN, CNN-XGBoost d. 평가 및 구현 학습 시킨 모델로 반려동물 안구 이미지를 업로드하면서 안구 질환 탐지		
프로젝트 산출물	1)Yolo • 데이터: train: 26,400 test.validation: 8,800 • 모델 구조: 24개의 컨볼루션층과 2개의 완전 연결 층으로 구성 초기 Layers: 필터와 스트라이드를 사용하여 이미지 축소 중간 layers: 작은 필터들을 사용하여 특징 추출 최종 Layers: 이미지를 각 그리대 셀에서 객체를 탐지 • 학습 진행: Img 128, batch 32, epoch 100 • 이미지 detection: 초기 증상이기에 임계값 작게 설정		

Yolov5 VS Yolov7

	Yolov5	Yolov7
장점	널리 사용되는 모델	높은 mAP 성능
		최신 기술 적용
단점	Yolov7에 비해 낮은 성	커뮤니티 자원이
	<u>L</u>	Yolov5에 비해 적음
결과	mAP:0.489	mAP:0.387
	정밀도 : 0.412	정밀도 : 0.333
	재현율 : 0.632	재현율 : 0.585

< 垂 1.1>

Yolov5가 Yolov7에 비해 mAP 값이 높아서 Yolov5로 채택함.

<학습결과>

계양성각막질환의 초기증상이 있는 사진을 었을 때.정상이 0.67, 궤양성각막질환 등상 이 0.29로 예측이 되었다.

<그림1.1>

2)CNN

• 데이터:

train: 27,500

test.validation: 8,250

• 모델구조:

2개의 컨볼루션층, 2개의 풀링층을 flatten 한 후 1개의 완전 연

곀

층으로 구성

합성제곱층: Stride = 1, Padding= SAME

풀링층: Padding= VALID Flatten: 1차원 배열로 변경

완전연결층: Activation = Softmax

◆ 학습진행:

Optimizer = Adam

Learning rate = 0.001,

Epochs= 600(Early_stopping)

loss= 다중분류손실함수

• 모델평가:

Metrics = 정확도(Accuracy)

<학습결과>

손실: 0.9948 정확도: 0.6358

검증손실: 1.7061 검증정확도: 0.390

<그림1.2> <그림1.3>

<그림1.2>에서 훈련 손실은 지속적으로 감소, 검증 손실은 초반에 감 소하다 증가하는 경향을 보임

<그림1.3>은 훈련 정확도는 계속 증가, 검증 정확도는 초반에 증가하 다가 정체됨을 보여줌. 따라서, 이는 모델이 과적합되고 있음을 시사 함.

색경화로 의심되는 안구질환을 모델에 넣어 보았을 때 색경화로 진단함.

3)CNN-XGBoost

• 데이터:

train: 22,000

test.validation: 7,370

• 모델구조:

CNN(VGG16)에서 feature map 추출 해서 Flatten층 통과한 후 이미지와 라벨을 사용해서 XGBoost 모델 학습.

VGG16: ImageNet에서 pre-trained 된 가중치 사용해서

학습

Flatten: 1차원 배열로 변경

XGBoost: 학습률: 0.01 ~ 0.19

최대깊이 : 3~8

최소 자식 가중치 : 1~6 트리의 개수 : 100~300

Epochs = 500(early_stopping = 183)

• 모델평가:

Validation, Test datasets의 성능 평가

<학습결과>

정확도: 0.4548 정밀도: 0.4482 재현율: 0.4548 F1 Score: 0.4501

색경화로 의심되는 증상이 있는 사진을 넣었을 때, 색경화로 예측함.

<그림1.5>

겨	루
'근	ᆫ

	Yolov5	CNN + XGBoost
mAP	0.489	0.4548
정밀도	0.412	0.4482
재현율	0.632	0.4548

< 垂 1.2>

Yolo의 mAP가 0.489로 더 **높은 정밀도와 재현율**의 조합이며 실제 양성을 더 잘 포착하고 있음. 이는 안구 질환을 놓치치 않는 것에 더 중요한 요소임. 따라서, Yolov5 모델이 반려동물 안구 질환을 구별하는데 더 적합하다고 판단함.

기대효과

1. 반려동물 안구질환을 조기 발견 하여 질병 악화를 방지할 뿐만 아니라

재발 또는 심각한 질병으로 진행되지 않게 할 수 있다.

2. 모델을 통해 질병이 심각해지기 전에 판별하면 가계부담을 줄이고 나아

가 사회적 비용 절감을 기대할 수 있다.