المدرسـة الـوطنية

Exercise 1. Find the general solution of the following equations:

1.
$$y'' - 8y' + 16y = 0$$
.

2.
$$y'' + k^2y = 0$$
, for a constant $k > 0$.

3.
$$y'' - 6y' + 13y = 0, y(0) = 0, y'(0) = 10.$$

Exercise 2. Which of the following operators are linear?

•
$$\mathcal{L}_1 u = u_x + x u_y$$
; $\mathcal{L}_2 u = u_x + u u_y$; $\mathcal{L}_3 u = u_x + u_y^2$; $\mathcal{L}_4 u = u_x + u_y + 1$

•
$$\mathcal{L}_5 u = \sqrt{1+x^2}(\cos y)u_x + u_{yxy} - [\arctan(x/y)]u$$

Exercise 3. For each of the following equations, state the order and whether it is linear/nonlinear/semilinear, quasilinear, homogeneous; provide reasons.

1.
$$u_t - u_{xx} + 1 = 0$$
; $u_t - u_{xx} + xu = 0$; $u_t - u_{xxt} + uu_x = 0$; $u_{tt} - u_{xx} + x^2 = 0$

2.
$$iu_t - u_{xx} + u/x = 0$$
; $u_x + e^y u_y = 0$; $xu_x + yu_y = u$; $xu_x + yu_y = u^2$

3.
$$u_x + (x+y)u_y = xy$$
; $uu_x + u_y = 0$; $xu_x^2 + yu_y^2 = 2$.

4. Shock wave:
$$u_x + uu_y = 0$$
; Wave with interaction: $u_{tt} - u_{xx} + u^3 = 0$; Dispersive wave: $u_t + uu_x + u_{xxx} = 0$

Exercise 4.

- Verify by direct substitution that $u_n(x,y) = \sin nx \sinh ny$ is a solution of $u_{xx} + u_{yy} = 0$ for every n > 0.
- Verify that u(x,y) = f(x)g(y) is a solution of the PDE $uu_{xy} = u_x u_y$ for all pairs of (differentiable) functions f and g of one variable.
- Show that $u_1(x,y) = x$ and $u_2(x,y) = x^2 y^2$ are solutions to Laplace's equation. How can you combine them to create a new solution?
- Show that the soliton

$$h(x,t) = 2\alpha^2 \operatorname{sech}\left(\alpha(x - 4\alpha^2 t)\right)$$

satisfies the the Korteweg-deVries equation,

$$h_t + 6hh_r = h_{rrr}$$

• The PDE

$$v_t - 6v^2v_x + v_{xxx} = 0$$

is known as the modified Korteweg de Vries (mKdV) equation. Show that if v is a solution of the mKdV, then

$$u = v_x - v^2$$

is a solution of the KdV

$$u_t + 6uu_x + u_{xxx} = 0.$$

Exercise 5. Consider Laplace's equation $u_{xx} + u_{yy} = 0$ in \mathbb{R}^2 with the boundary conditions u(x,0) = 0.

1. Show that

$$u_n(x,y) = \frac{1}{n}e^{-\sqrt{n}}\sin nx \sinh ny$$

are solutions of the problem.

- 2. Compute the limit of u_n when $n \to \infty$.
- 3. Is the problem defined by the PDE and the boundary condition stable?

Exercise 6. Consider the traffic flow in a highway as shown on the next figure.

Figure 1: Traffic flow in a highway

Let $\rho(x,t)$ be the density of cars and u(x,t) their velocity. We would like the express a PDE that describes the density function ρ .

- 1. How can you express the quantity of vehicles between a and b and its variation over time?
- 2. Express the difference between the traffic inflow (at x = a) and outflow (x = b) in terms of ρu .
- 3. Combine the two previous relations to deduce the equation $\rho_t + (u\rho)_x = 0$.
- 4. Assume that $u = 1 \rho$. Motivate this choice then deduce a nonlinear convection equation of ρ .
- 5. Assume that $u = c \epsilon(\rho'/\rho)$. Motivate this choice then deduce a convection-diffusion equation of ρ .

Exercise 7. Consider a smooth surface in \mathbb{R}^{n+1} representing the graph of a function $x_{n+1} = u(x_1, ..., x_n)$ defined on a bounded open set Ω in \mathbb{R}^n . Assuming that u is sufficiently smooth, the area of the surface is given by the nonlinear functional

$$\mathcal{A}(u) = \int_{\Omega} \left(1 + |\nabla u|^2\right)^{1/2} dx_1 ... dx_n.$$

The minimal surface problem is the problem of minimizing A(u) subject to a prescribed boundary condition u = g on the boundary of Ω . A classical result from the calculus of variations asserts that if u is a minimiser of A(u), then it satisfies the Euler-Lagrange equation:

$$\nabla \cdot \left(\nabla u / \left(1 + |\nabla u|^2 \right)^{1/2} \right) = 0.$$

This PDE is known as the minimal surface equation.

- 1. Write down the previous PDE in the case n = 2.
- 2. Show that the plane u(x,y) = Ax + By + C is a (trivial) solution to this equation.
- 3. Show that the following are non-trivial solutions

$$u_1(x,y) = \tan^{-1}(y/x);$$
 $u_2(x,y) = \frac{1}{a}\cosh^{-1}\left(a\sqrt{x^2+y^2}\right);$ $u_3(x,y) = \frac{1}{a}\log\frac{\cos ay}{\cos ax},$ (1)

where a is a real constant.

4. Show that the helicoid surface (u_1) is a harmonic function. In fact, it is the is the only non-trivial solution that is a harmonic function while the catenoid (u_2) is the only non-trivial solution that is a surface of revolution and the Scherk surface (u_3) ant, is the only nontrivial solution that can be written in the form u(x,y) = f(x) + g(y).