A Regularized Wasserstein Framework for Graph Kernels

Grégoire Béchade

Introduction

A measure to compare graph similarity

Conclusion

A Regularized Wasserstein Framework for Graph Kernels

Asiri Wijesinghe, Qing Wang, and Stephen Gould School of Computing, Australian National University, Canberra, Australia

Grégoire Béchade

January 16 2025

Introduction

A Regularized Wasserstein Framework for Graph Kernels

Grégoire Béchade

Introduction

A measure to compare graph similarity

- A measure to compare graph similarity
- Numerical experiments

From graphs to distributions

A Regularized Wasserstein Framework for Graph Kernels

Grégoire Béchade

Introductio

A measure to compare graph similarity

Conclusion

In order to compare graphs with Wasserstein distance, we need to associate each graph with a distribution. Let :

- ullet $\xi_f:V o\mathbb{R}^m$ a feature embedding of the nodes
- ullet $\xi_s:V o\mathbb{R}^k$ a structure embeding of the nodes

 $p = \sum_{i=0}^{n} \mu_i \delta(\xi_f(v_i), \xi_s(v_i))$ can be seen as a distribution on \mathbb{R}^{m+k} .

Defining the Wasserstein problem

A Regularized Wasserstein Framework for Graph Kernels

Grégoire Béchade

Introductio

A measure to compare graph similarity

Conclusion

To solve a Wasserstein problem, one need to define a cost function :

$$C^{V}(i,j) = \|(\xi_f(v_i), \xi_f(v_j))\|^2$$

With $\xi_f(v_i)$ the feature embedding of the node v_i :

$$\xi_f(v_i) = [x_i, \Delta(x_i)] \in \mathbb{R}^{2m}$$
 and $\Delta(x_i)$ the local variation of the node x_i .

LW : A Regularization to Preserve Neighborhood Similarity

A Regularized Wasserstein Framework for Graph Kernels

Grégoire Béchade

Introduction

A measure to compare graph similarity

Conclusion

LW distance:

$$\mathit{LW}(\mu,\nu) = \min_{\gamma} \left\langle \gamma,\mathit{C}^{\mathit{N}} \right\rangle_{\mathit{F}} + \Theta_{\omega}(\gamma)$$

 $C^{N}(i,j) = d_{s}(e_{i},e_{j})$, with e_{i} and e_{j} the embeddings of the nodes v_{i} and v_{i}

$$\Theta_{w}(\gamma) = \lambda_{\mu} \Gamma_{\mu}(\gamma) + \lambda_{\nu} \Omega_{\nu}(\gamma) = \frac{\rho}{2} \|\gamma\|_{F}^{2}$$

LW : A Regularization to Preserve Neighborhood Similarity

A Regularized Wasserstein Framework for Graph Kernels

Grégoire Béchade

Introductio

A measure to compare graph similarity

Conclusion

 $\hat{\mathbf{e}}_i$: mean of the embeddings of the nodes connected to v_i in γ :

$$\hat{\mathbf{e}}_{i}^{\mu} = \frac{\sum_{j=1}^{n_{2}} \gamma(i,j) \mathbf{e}_{j}^{\nu}}{\sum_{j=1}^{n_{2}} \gamma(i,j)}.$$

Source regularization : $\Omega_{\mu}(\gamma) = \frac{1}{n_1^2} \sum_{i,j} a_{i,j} \left\| \hat{\mathbf{e}}_i^{\mu} - \hat{\mathbf{e}}_j^{\mu} \right\|^2$, with $a_{i,j}$ the adjacency matrix of G_1 .

Target regularization: Defined the same way.

GW : A Regularization to Preserve Pairwise Similarity

A Regularized Wasserstein Framework for Graph Kernels

Grégoire Béchade

Introductio

A measure to compare graph similarity

Conclusion

• Pairwise similarity:

- Cost matrix for graph $G: C^P(i,j) = d_s(e_i,e_j)$.
- Pairwise similarity between G_1 and G_2 :

$$L_2(C_1^P(i,j), C_2^P(k,l)) = |C_1^P(i,j) - C_2^P(k,l)|^2$$

Gromov-Wasserstein (GW) distance :

$$GW(\mu,\nu) = \min_{\gamma \in \pi(\mu,\nu)} \left\langle \gamma, L_2(C_1^P, C_2^P) \otimes \gamma \right\rangle_F - \lambda_g \Theta_g(\gamma)$$

- $\Theta_g(\gamma)$: Kullback-Leibler divergence with prior γ' .
- Regularization improves convergence despite GW not being convex.

solving this optimization problem with the SCG algorithm

A Regularized Wasserstein Framework for Graph Kernels

Grégoire Béchade

Introductio

A measure to compare graph similarity

- NP-hard problem.
- SCG algorithm that iterates by using the gradient of the objective function as the cost matrix in a Sinkhorn-Kopp algorithm.
- Theoretical guarantees of the convergence.

Using This distance to perform graph classification

A Regularized Wasserstein Framework for Graph Kernels

Grégoire Béchade

Introductio

A measure to compare graph similarity

Conclusion

The authors use kernel methods to classify graphs :

$$K(G_1, G_2) = e^{(-\eta RW(G_1, G_2))}$$

Which is not positive definite but is seen as the noisy observation of a positive definite kernel.

Data used for numerical experiments

A Regularized Wasserstein Framework for Graph Kernels

Grégoire Béchade

Introductio

A measure to compare graph similarity

Conclusion

• Task : classification of 2-nn and 3-nn graphs.

• Train set : 400 graphs

• Test set : 100 graphs

Balanced classes

(a) Example of a graph with (b) Example of a graph with k=2 k=3

Figure – Example of two graphs of each class

Impact of the different parameters

A Regularized Wasserstein Framework for Graph Kernels

Grégoire Béchade

Introduction

A measure to compare graph similarity

I have studied	the impact of the	he different param	eters on this
simple task.			

	Time (min)	F1-score	Accuracy
Default	47	0.65	0.73
$\beta_2/\lambda_g=0$	25	0.78	0.76
ho = 0	62	0.63	0.71
$\lambda_{\mu}=0$	58	0.65	0.71
$\lambda_ u=0$	32	0.65	0.72
$\lambda_g = 0$	38	0.61	0.69
Sinkhorn algorithm	11	0	0.5
Random Forest	2.10^{-2}	0.63	0.67
SVC Gaussian kernel	0	0.60	0.66
KNN	1	0.7	0.68

Table – Performances of the classifier with different variations

Impact of the two regularization terms

A Regularized Wasserstein Framework for Graph Kernels

Grégoire Béchade

Introductio

A measure to compare graph similarity

Figure – Results of the classifier with variations of the two regularization terms

Conclusion

A Regularized Wasserstein Framework for Graph Kernels

Grégoire Béchade

Introductio

A measure to compare graph similarity

- An complete way to determine the similarity between graphs.
- Results of the paper not reproduced on a single classification task.