

INSTITUTO POLITÉCNICO NACIONAL

ESCUELA SUPERIOR DE FÍSICA Y MATEMÁTICAS

INGENIERÍA MATEMÁTICA

SIMULACIÓN II

DISTRIBUCIONES DE PROBABILIDAD

PROF. RICARDO MEDEL ESQUIVEL

ALUMNA: BERNAL AGUILAR ITALIA

GRUPO: 8MM1

FECHA: 22/FEBRERO/2022

	¿Qué cuenta?	f(x)	Evaluada en X	E(x)	V(x)
	La variable aleatoria es continua.				
Distribución uniforme	Tiene límites definidos, es decir, se mueven dentro de un rango limitado.	$\frac{1}{b-a}$	a≤x≤b	<u>b+a</u> 2	$\frac{(b-a)^2}{12}$
continua	Todos los posibles valores de la variable tienen la misma probabilidad de ocurrencia.	<i>u</i>		2	12

Ejemplo

Es tirar los dados. Los valores posibles son 1, 2, 3, 4, 5, 6 y cada vez que se lanza el dado, la probabilidad de una puntuación determinada es de 1/6.

X	¿Qué cuenta?	p(x)	Evaluada en X	E(x)	V(x)
Distribución de Probabilidad Exponencial	Cuando la variable aleatoria X. es el intervalo de tiempo o espacio, requerido para obtener un número específico de éxito.	$\lambda e^{-\lambda x}$	<i>x</i> ≥0	$\frac{1}{\lambda}$	$\frac{1}{\lambda^2}$

Ejemplo

El intervalo de tiempo entre terremotos (de una determinada magnitud) sigue una distribución exponencial.

X	¿Qué cuenta?	p(x)	Evaluada en X	E(x)	V(x)
Distribución de probabilidad Normal	La ubicación de la distribución normal está determinada por la media. Es simétrica, es decir, media = moda = mediana. Estas medidas están ubicadas en el punto más alto de la distribución. Es asintótica, es decir los extremos nunca llegan a cortar el eje x.	$\frac{1}{\sigma\sqrt{2\pi}}e^{\frac{-1}{2}(\frac{x-\mu}{\sigma})^{2}}$	-∞< <i>χ</i> <∞	μ	σ

Ejemplo

Modelado de caracteres morfológicos de individuos como la estatura; caracteres fisiológicos como el efecto de un fármaco; caracteres sociológicos como el consumo de cierto producto por un mismo, etc...

X	¿Qué cuenta?	p(x)	Evaluada en X	E(x)	V(x)
Existe una serie de N ensayos.					
Distribución de Probabilidad Binomial	La probabilidad de éxito y fracaso permanece igual en todas las pruebas o ensayos. Las pruebas son independientes, lo que significa que el resultado de una prueba o ensayo no afecta el resultado en cualquier otra.	$\binom{n}{x}p^{x}(1-$	x = 0, 1,, n	n p	np(1-p)

Ejemplo

El lanzamiento de una moneda cuyo resultado de «sacar cara» es el éxito. Si lanzamos 5 veces la moneda y contamos los éxitos que obtenemos

\boldsymbol{X}	¿Qué cuenta?	p(x)	Evaluada en X	E(x)	V(x)
Distribución de Probabilidad Poisson	Describe el número de veces que ocurre un evento durante un intervalo específico (el intervalo puede ser de tiempo, distancia, área o volumen). La probabilidad de un evento es proporcional al tamaño del intervalo.	$\frac{e^{-\lambda}\lambda^{\lambda}}{x!}$	x=0,1,2,	λ	λ

Ejemplo

El número de pacientes que llegan al servicio de emergencia de un hospital en un intervalo de tiempo.

X	¿Qué cuenta?	p(x)	Evaluada en X	E(x)	V(x)
Distribución de Probabilidad Geométrica	Expresa la probabilidad de tener que esperar exactamente r pruebas hasta encontrar el primer éxito si la probabilidad de éxito en una sola prueba es p.	$(1-p)^{x-1}p$	x=1,2,3,	$\frac{1}{p}$	$\frac{1-p}{p^2}$

Ejemplo

En un proceso de selección, podría definir el número de entrevistas que deberíamos realizar antes de encontrar al primer candidato aceptable.

X	¿Qué cuenta?	p(x)	Evaluada en X	E(x)	V(x)
Distribución de Probabilidad Hipergeomética	El resultado en cada prueba de un experimento se clasifica en una de dos categorías excluyentes (éxito o fracaso). Se realiza un número fijo de pruebas.	$\frac{\binom{M}{x}\binom{N-M}{n-x}}{\binom{N}{n}}$	$\max(0, M+n-N) \le x$ $x \le \min(M, n)$	$n \cdot \frac{M}{N}$	$\frac{nM(N-M)(N-n)}{N^2(N-1)}$

Ejemplo

Recibe un envío de pedido especial de 500 etiquetas. Supongamos que el 2% de las etiquetas es defectuoso. El conteo de eventos en la población es de 10 (0.02 * 500). Usted toma una muestra de 40 etiquetas y desea determinar la probabilidad de que haya 3 o más etiquetas defectuosas en esa muestra.