TYPE YOUR NAME HERE HW 21: 4.7 - 4.11 M328K April 10th, 2012

4.7 Question. Choose some relatively prime natural numbers a and n and compute the order of a modulo n. Frame a conjecture concerning how large the order of a modulo n can be, depending on n.

Answer. \Box

4.8 Theorem. Let a and n be natural numbers with (a, n) = 1 and let $k = \operatorname{ord}_n(a)$. Then the numbers a^1, a^2, \ldots, a^k are pairwise incongruent modulo n.

Proof. et a and n be natural numbers with (a,n)=1 and let $k=\operatorname{ord}_n(a)$. We will show the numbers a^1, a^2, \ldots, a^k are pairwise incongruent modulo n. Assume by way of contradiction that there exist two natural numbers i and j such that $1 \leq i, j \leq k, i \neq j$, and $a^i \equiv a^j \pmod{n}$. Assume without loss of generality that i > j. Let m = i - j so i = j + m and 0 < m < k. Then $a^i = a^j a^m$ and $a^j = a^j \cdot 1$. Now substituting into our congurence, we obtain $a^j a^m \equiv a^j 1 \pmod{n}$. Therefore by theorem 4.5 $a^m \equiv 1 \pmod{n}$. However, m < k and k is defined to be the smallest natural number such that a^k is congruent to 1 modulo n, so we have a contradiction.

4.9 Theorem. Let a and n be natural numbers with (a, n) = 1 and let $k = \operatorname{ord}_n(a)$. For any natural number m, a^m is congruent modulo n to one of the numbers a^1 , a^2 , ..., a^k .

Proof. Let a and n be natural numbers with (a, n) = 1 and let $k = \operatorname{ord}_n(a)$. Let m be any arbitrary natural number. We will show that a^m is congruent modulo n to one of the numbers a^1, a^2, \ldots, a^k . If $m \leq k$, then $a^m \equiv a^m \pmod{n}$ so we're done. In the case that m > k, use the division algorithm to find two integers q and r such that m = qk + r where $0 \leq r < k$. If r = 0, then let s = q - 1 and t = k, otherwise let s = q and t = r. So m = sk + t and $0 < t \leq k$. Now $a^{sk} = (a^k)^s$, and because $a^k \equiv 1 \pmod{n}$, we can say by theorem 1.18 that $(a^k)^s \equiv 1^s \pmod{n}$. Then by theorem 1.2? $a^{ks}a^t \equiv 1a^t \pmod{n}$ or equivalently $a^m \equiv a^t$. Therefore since $0 < t \leq k$, we have shown that a^m is congruent modulo n to one of the numbers a^1, a^2, \ldots, a^k . \square

4.10 Theorem. Let a and n be natural numbers with (a, n) = 1, let $k = \operatorname{ord}_n(a)$, and let m be a natural number. Then $a^m \equiv 1 \pmod{n}$ if and only if k|m.

Proof. Let a and n be natural numbers with (a, n) = 1, let $k = \operatorname{ord}_n(a)$, and let m be a natural number. Use the division algorithm to find integers q and r such that m = qk + r where $0 \le r < k$. Then $a^{qk} = (a^k)^q$ and since $a^k \equiv 1 \pmod{n}$, by theorem 1.18 $(a^k)^q \equiv 1^q \pmod{n}$. By theorem 1.?? $a^{qk}a^r \equiv 1a^r \pmod{n}$ and $a^m \equiv a^r \pmod{n}$.

If $k \mid m$, then r will equal 0, so $a^r = 1$ and $a^m \equiv 1 \pmod{n}$.

If $k \nmid m$ then assume by way of contradiction that $a^m \equiv 1 \pmod{n}$. In this case, by theorem 1.11 $a^r \equiv 1 \pmod{n}$ and since 0 < r < k, this contradicts the definition of k as $\operatorname{ord}_n(a)$.

4.11 Theorem. Let a and n be natural numbers with (a, n) = 1. Then $\operatorname{ord}_n(a) < n$.

Proof.