## Logistic Regression with 'Adult' data

By Rustamova Malakkhanim | 604.19E

## **Instructions**

Logistic regression is used in statistical software to understand the relationship between the dependent variable and one or more independent variables by estimating probabilities using a logistic regression equation. Logistic regression is easier to implement, interpret and very efficient to train. Today, I am going to solve a classification problem with the help of scikit-learn and import some libraries for visualization of a confusion matrix, data pre-processing, ignoring warnings and classification.

```
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import warnings
warnings.filterwarnings('ignore')
from sklearn import preprocessing
from sklearn.linear_model import LogisticRegression
from sklearn.model_selection import train_test_split
from sklearn import metrics
```

Then, I import adult data with the help of a pandas and do some modifications on it.



Dropped some columns because they have numerical values, in classification problem we need only categoric variables.

#droping unwanted columns(unwanted-> columns with numerical values, because it's classification problem)
data.drop(data.columns[[0,2,4,6,10,11,12]], axis=1, inplace=True)

data

|       | workclass        | education  | marital-status     | relationship  | race  | sex    | native-country | class |
|-------|------------------|------------|--------------------|---------------|-------|--------|----------------|-------|
| 0     | State-gov        | Bachelors  | Never-married      | Not-in-family | White | Male   | United-States  | <=50K |
| 1     | Self-emp-not-inc | Bachelors  | Married-civ-spouse | Husband       | White | Male   | United-States  | <=50K |
| 2     | Private          | HS-grad    | Divorced           | Not-in-family | White | Male   | United-States  | <=50K |
| 3     | Private          | 11th       | Married-civ-spouse | Husband       | Black | Male   | United-States  | <=50K |
| 4     | Private          | Bachelors  | Married-civ-spouse | Wife          | Black | Female | Cuba           | <=50K |
|       | 675              | 100        | 575                | (010          | -     | (88.6) | 575            | 6022  |
| 32556 | Private          | Assoc-acdm | Married-civ-spouse | Wife          | White | Female | United-States  | <=50K |
| 32557 | Private          | HS-grad    | Married-civ-spouse | Husband       | White | Male   | United-States  | >50K  |
| 32558 | Private          | HS-grad    | Widowed            | Unmarried     | White | Female | United-States  | <=50K |
| 32559 | Private          | HS-grad    | Never-married      | Own-child     | White | Male   | United-States  | <=50K |
| 32560 | Self-emp-inc     | HS-grad    | Married-civ-spouse | Wife          | White | Female | United-States  | >50K  |
|       |                  |            |                    |               |       |        |                |       |

32561 rows × 8 columns

I create dummy table, generally 'get\_dummies' function is used for data manipulation and it converts categorical data into dummy or indicator variables. Then, I dropped some columns like sex(because when sex is 1 it means person is man and woman-0), and columns with ? (blank) sign.

| dummy |          |               |                               |                         |                                |                       |                                |                                    |                         |                               |     |                                 |                                        |                                 |
|-------|----------|---------------|-------------------------------|-------------------------|--------------------------------|-----------------------|--------------------------------|------------------------------------|-------------------------|-------------------------------|-----|---------------------------------|----------------------------------------|---------------------------------|
|       | class    | workclass_    | workclass_<br>Federal-<br>gov | workclass_<br>Local-gov | workclass_<br>Never-<br>worked | workclass_<br>Private | workclass_<br>Self-emp-<br>inc | workclass_<br>Self-emp-<br>not-inc | workclass_<br>State-gov | workclass_<br>Without-<br>pay |     | native-<br>country_<br>Portugal | native-<br>country_<br>Puerto-<br>Rico | native-<br>country_<br>Scotland |
| 0     | <=50K    | 0             | 0                             | 0                       | 0                              | 0                     | 0                              | 0                                  | 1                       | 0                             |     | 0                               | 0                                      | O                               |
| 1     | <=50K    | 0             | 0                             | 0                       | 0                              | 0                     | 0                              | 1                                  | 0                       | 0                             | 556 | 0                               | 0                                      | C                               |
| 2     | <=50K    | 0             | 0                             | 0                       | 0                              | 1                     | 0                              | 0                                  | 0                       | 0                             | *** | 0                               | 0                                      | 0                               |
| 3     | <=50K    | 0             | 0                             | 0                       | 0                              | 1                     | 0                              | 0                                  | 0                       | 0                             | 122 | 0                               | 0                                      | 0                               |
| 4     | <=50K    | 0             | 0                             | 0                       | 0                              | 1                     | 0                              | 0                                  | 0                       | 0                             | *** | 0                               | 0                                      | 0                               |
| 3000  |          |               | , ***                         | (200                    | (2000)                         | (275)                 | 1775                           | 6575                               | (500)                   |                               | 555 | 200                             | (275)                                  | Section                         |
| 2556  | <=50K    | 0             | 0                             | 0                       | 0                              | 1                     | 0                              | 0                                  | 0                       | 0                             | 222 | 0                               | 0                                      | 0                               |
| 2557  | >50K     | 0             | 0                             | 0                       | 0                              | 1                     | 0                              | 0                                  | 0                       | 0                             | 111 | 0                               | 0                                      | 0                               |
| 2558  | <=50K    | 0             | 0                             | 0                       | 0                              | 1                     | 0                              | 0                                  | 0                       | 0                             | 142 | 0                               | 0                                      | 0                               |
| 2559  | <=50K    | 0             | 0                             | 0                       | 0                              | 1                     | 0                              | 0                                  | 0                       | 0                             |     | 0                               | 0                                      | C                               |
| 2560  | >50K     | 0             | 0                             | 0                       | 0                              | 0                     | 1                              | 0                                  | 0                       | 0                             | 222 | 0                               | 0                                      | O                               |
| 2561  | rows x 8 | 38 columns    |                               |                         |                                |                       |                                |                                    |                         |                               |     |                                 |                                        |                                 |
| 2001  | 000      | oo oolulliilo |                               |                         |                                |                       |                                |                                    |                         |                               |     |                                 |                                        | •                               |

I take Y as target value(class) and X as features.

|         | class    | workclass_ | workclass_<br>Federal-<br>gov | workclass_<br>Local-gov | workclass_<br>Never-<br>worked | workclass_<br>Private | workclass_<br>Self-emp-<br>inc | workclass_<br>Self-emp-<br>not-inc | workclass_<br>State-gov | workclass_<br>Without-<br>pay |      | native-<br>country_<br>Portugal | nativ<br>country<br>Puert<br>Ric |
|---------|----------|------------|-------------------------------|-------------------------|--------------------------------|-----------------------|--------------------------------|------------------------------------|-------------------------|-------------------------------|------|---------------------------------|----------------------------------|
| 0       | <=50K    | 0          | 0                             | 0                       | 0                              | 0                     | 0                              | 0                                  | 1                       | 0                             | ***  | 0                               |                                  |
| 1       | <=50K    | 0          | 0                             | 0                       | 0                              | 0                     | 0                              | 1                                  | 0                       | 0                             |      | 0                               |                                  |
| 2       | <=50K    | 0          | 0                             | 0                       | 0                              | 1                     | 0                              | 0                                  | 0                       | 0                             | ***  | 0                               |                                  |
| 3       | <=50K    | 0          | 0                             | 0                       | 0                              | 1                     | 0                              | 0                                  | 0                       | 0                             | ***  | 0                               |                                  |
| 4       | <=50K    | 0          | 0                             | 0                       | 0                              | 1                     | 0                              | 0                                  | 0                       | 0                             | 27.2 | 0                               |                                  |
| ***     | ***      | ***        | ***                           | 5380                    | 57500                          | (27)                  | (595)                          | 3850                               | 3000                    | 955                           | 555  | MK.                             |                                  |
| 32556   | <=50K    | 0          | 0                             | 0                       | 0                              | 1                     | 0                              | 0                                  | 0                       | 0                             |      | 0                               |                                  |
| 32557   | >50K     | 0          | 0                             | 0                       | 0                              | 1                     | 0                              | 0                                  | 0                       | 0                             | 000  | 0                               |                                  |
| 32558   | <=50K    | 0          | 0                             | 0                       | 0                              | 1                     | 0                              | 0                                  | 0                       | 0                             |      | 0                               |                                  |
| 32559   | <=50K    | 0          | 0                             | 0                       | 0                              | 1                     | 0                              | 0                                  | 0                       | 0                             | 227  | 0                               |                                  |
| 32560   | >50K     | 0          | 0                             | 0                       | 0                              | 0                     | 1                              | 0                                  | 0                       | 0                             | 227  | 0                               |                                  |
| 32561 i | rows × 8 | 88 columns |                               |                         |                                |                       |                                |                                    |                         |                               |      |                                 |                                  |
|         |          |            |                               |                         |                                |                       |                                |                                    | -                       |                               |      |                                 |                                  |
| < = du  | mmy.il   | oc[:,1:]   |                               |                         |                                |                       |                                |                                    |                         |                               |      |                                 |                                  |
| / = du  | mmv.il   | oc[:,0]    |                               |                         |                                |                       |                                |                                    |                         |                               |      |                                 |                                  |

I split data into 2 parts, train and test data with the help of 'train\_test\_split'. Predicted y is the predicted values of our target value(class).

And finally its accuracy will be 0.823... approximately 82%.

```
print("Accuracy:",metrics.accuracy_score(Y_test, predicted_y))
Accuracy: 0.8238545633214592
```

Confusion matrix is a summary of prediction results on a classification problem. The number of correct and incorrect predictions are summarized with it. It has TN, TP, FN, FP values.

```
class_names=['>50k','<50k'] # name of classes
fig, ax = plt.subplots()
tick_marks = np.arange(len(class_names))
plt.xticks(tick_marks, class_names)
plt.yticks(tick_marks, class_names)
sns.heatmap(pd.DataFrame(cnf_matrix), annot=True, cmap="BuPu",fmt='g')
ax.xaxis.set_label_position("top")
plt.tight_layout()
plt.title('Confusion matrix', y=1.1)
plt.ylabel('Actual label')
plt.xlabel('Predicted label')</pre>
```

Text(0.5, 257.44, 'Predicted label')

## Confusion matrix

