Advanced Linear Algebra Week 5 Day 1

2018/10/08 – Jonathan Hayase, updated by Prof. Weiqing Gu

1 Positive Matrices and Applications to Markov Processes

Definition: A matrix $P = (p_{ij})_{n \times n}$ is positive if if $p_{ij} \in \mathbb{R}$ and $p_{ij} > 0$ for all $i, j \in 1, \ldots, n$.

Note: A matrix being positive is not the same as being positive definite (which is $x^T P x > 0$).

Notation:

- 1. For $x = \begin{bmatrix} x_1 & \cdots & x_n \end{bmatrix}^T$ and $y = \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix}^T$, we say x < y if $x_i < y_i$ for all $i = 1, \dots, n$.
- 2. Say x < y if $x_i \le y_i$ as above.

Note that tripotomy does not hold here, so $x \leq y \implies x < y \lor x = y$.

3. Let $\xi_0 = (1, 1, \dots, 1) \in R$ and vector x > 0. We say x is L_1 -normalized if

$$\xi_0 = (1, \dots, n) \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \sum_{i=1}^n x_i = 1.$$

1.1 Perron's Theorem

If P is a positive matrix, then P has a dominant eigenvalue $\lambda(P)$ such that:

- 1. $\lambda(P) > 0$, $\lambda(P)$ is an eigenvalue of P and there exists a eigenvector h > 0 such that $Ph = \lambda(P)h$.
- 2. $\lambda(P)$ is a simple (e.g. multiplicity 1) eigenvalue.
- 3. For any eigenvalue μ , then $|\mu| \leq \lambda(P)$.
- 4. For any eigenvalue μ , then if $\mu \neq \lambda(P)$ we have $|\mu| < \lambda(P)$ and (u, f) is an eigen pair, then $f \not\geq 0$.

1.1.1 Proof

Idea: Want to maximize λ such that $Px = \lambda x$ and $x \neq 0$ and $x \geq 0$ for positive P. Define

$$\mathcal{N}(P) = \left\{ \lambda \in R \mid \lambda \ge 0, \ \exists x \subseteq \mathbb{R}^n, \ x \ge 0, \ \xi_0 x = 1, \ P\lambda \ge \lambda x \right\} \subseteq \mathbb{R}$$

Goal is to show that $\mathcal{N}(P)$ is nonempty, bounded, and closed subset of \mathbb{R} .

First, we show that $\mathcal{N}(P)$ is non-empty. Clearly, $0 \in \mathcal{N}(P)$, since we may take x = (1, 0...) so $\xi_0 x = 1$ and observe that $Px \geq 0x \geq 0$. Moreover, $\mathcal{N}(P)$ contains nonzero element. Take y = any positive vector, then Py > 0. Let $x = y/\xi_0 y > 0$, then $\xi_0 x = \xi_0 \left(y/\xi_0 y \right) = 1$ and $Px > 0 = \lim_{x \to 0} \lambda x$. Notice that $\lambda \geq 0$ so $\lim_{\lambda \to 0} \lambda x = 0$ so there must exist $\lambda 0 > 0$ such that $\lambda_0 x \leq Px$. Thus, $\lambda_0 \in \mathcal{N}(P)$.

Second, we show that $\mathcal{N}(P)$ is bounded. Let $\lambda \in \mathcal{N}(P)$. Then there exists $x \in \mathbb{R}^n$ such that $x \geq 0$, $\xi_0 x = 1$, and $Px \geq \lambda$. Thus, $\xi_0 Px \geq \xi_0 \lambda x = \lambda \xi_0 x = \lambda$. Now write $\xi_0 P = (b_1, \dots, b_n)$ where b_i is the sum of the i_{th} column of P. Let $b = \max_i (b_1, \dots, b_n)$. Then $b\xi_0 \geq \xi P$, so

$$b = b1 = b(\xi_0 x) = (b\xi_0) x \ge \xi_0 Px \ge \lambda$$

Since $\lambda \geq 0$, we have $\lambda \in [0, b]$ for any $\lambda \in \mathcal{N}(P)$. Hence, $\mathcal{N}(P)$ is a bounded subset of \mathbb{R} .

Aside (Stochastic Matrices): Suppose you have three lily pads, and the probability that the frog jumps from pad 1 to pad 2 is 2/3 and the probability that the frog stays or jumps to pad 3 are both 1/6. We can construct a matrix that describes this sort of behavior:

$$P = \begin{bmatrix} 1/6 & 2/3 & 1/6 \\ 1/2 & 0 & 1/2 \\ 1/4 & 1/2 & 1/4 \end{bmatrix}$$

is a stochastic matrix, P is positive, and the sum of the rows of P equal 1.

Note: If P is a stochastic matrix, then $\xi_0 P = (1, 1, ..., 1)$ so b = 1, so $0 \le \lambda \le 1$.

Third, we are going to show that $\mathcal{N}(P)$ is a closed subset of \mathbb{R} . Let $\{\lambda_m\}_{m=1}^{\infty}$ be a sequence in $\mathcal{N}(P)$ and $\lim_{m\to\infty}\lambda_m=\lambda$. We wish to show that $\lambda\in\mathcal{N}(P)$. Details of this will be handed out.

Claim is proved, so there exists $\lambda(P) = \max \{\lambda \subseteq \mathcal{N}(P)\} > 0$. Moreover, there exists an $h \in \mathbb{R}^n$ such that $h \geq 0$, $\xi_0 h = 1$, and $Ph \geq \lambda(P)h$.

Claim 2: $Ph = \lambda(P)h$ so $\lambda(P)$ is an eigenvalue w/ non-negative eigenvectors. Idea of proof: Prove by contradiction. Details in handout.

Claim 3: In fact, we can show that h > 0. Proof: Since P > 0 and $h \ge 0$ and $h \ne 0$, then Ph > 0. Now, since $Ph = \lambda(P)h$ implies $\lambda(P)h > 0$. So h > 0 since $\lambda(P) > 0$.

Claim 4: $\lambda(P)$ is a simple eigenvalue. Detail will be handed out.

Claim 5: For any eigenvalue k of P, then $|k| \leq \lambda(P)$ and $|k| = \lambda(P)$ iff $k = \lambda(P)$. Proof: Let (k, y) be an eigen pair, $y = \begin{bmatrix} y_1 & \cdots & y_n \end{bmatrix}^T \neq 0$. Then Py = ky. Look at the s^{th} element of above equation.

$$\sum_{i=1}^{n} P_{sj} y_j = k y_s$$

$$|k||y_s|j = |ky_s| = \left|\sum_{j=1}^n p_{sy}y_j\right| \le \sum_{j=1}^n |p_{sj}y_j| = \sum_{j=1}^n P_{sj}|y_j|$$

Let $z = (|y_1|, \ldots, |y_n|) \ge 0$. Then we have $Pz \ge |k| z$. Let $c = z/\xi_0 z$, then $x \ge 0$, $\xi_0 x = 1$, and $Px \ge |k| x$. Therefore, $|k| \in \mathcal{N}(P)$, so $|K| \le \lambda(P)$. Next, we can show if $|k| = \lambda(P)$ then $k = \lambda(P)$. Details in handout.

Claim 6: Suppose that $k < \lambda(P)$ and (k,f) is an eigen pair, then $f \not\geq 0$. Proof: consider P^T we also have $P^T > 0$. Then, (Exercise) $\lambda(P) = \lambda(P^T)$. Let $\xi > 0$ such that $(\lambda(P), \xi)$ is an eigen pair for P^T . Now, Pf = kf and $f \neq 0$. $P^T \xi = \lambda(P)\xi$, so $(P^T \xi)^T = \lambda(P)\xi^T$. Acting on f implies $\xi^T Pf \cdot \lambda(P)\xi^T f$. Multiplying both sides by ξ^T yields $\xi^T pf = k\xi^T$ so $(\lambda(P-k))\xi^T f = 0$ because $\lambda(P) - k \neq 0$, so $\xi^T f = 0$ and $\xi > 0$ so $\xi^T f = 0$ implies $f \not\geq 0$.

2 PageRank

$$\begin{bmatrix} 1/4 & 0 & 1/2 \\ 1/2 & 1/2 & 1/2 \\ 1/4 & 1/2 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1/4+p & p & 1/2+p \\ 1/2+p & 1/2+p & 1/2+p \\ 1/4+p & 1/2+p & p \end{bmatrix}$$

Can use Perron's Theorem.

As we noticed that for a Markov chain, the transition stochastic matrix P may not be positive. But $P \ge 0$. (P is regular if there exist an $m \in \mathbb{N}$ such that $P^m > 0$). Consider the example $P = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$, then P is not regular, since $P^2 = I$, but $P^2 = P$, and this pattern repeats. We still would like to analyze this situation.

2.1 Frobenius Theorem

Let $P \geq 0$ be a $n \times n$ matrix. Then there exist $\lambda(P)$ such that

- 1. $\lambda(P)$ is an eigenvalue of P, $\lambda(P) \geq 0$ and there exists $h \geq 0$ such that $\xi_0 h = 1$ and $Ph = \lambda(P)h$.
- 2. If $k \in \mathbb{C}$ is an eigenvalue of P, then
 - (i) $|k| \leq \lambda(P)$.
 - (ii) $|k| = \lambda(P)$ implies $k = \exp\left(\frac{2\pi i k}{m}\right) \lambda(P)$ for some $k, m \in \mathbb{N}$ and $m \le n$.

2.1.1 Proof of 1

Let's perturb P. Let

$$P_m = \begin{bmatrix} 1/m & \cdots & 1/m \\ \vdots & \ddots & \vdots \\ 1/m & \cdots & 1/m \end{bmatrix} + P > 0$$

Then $\lim_{m\to\infty} P_m = P$. By Perron's Theorem, P_m has a dominant eigenvalue $\lambda(P) > 0$. By Theorem 6, P101, $\lim_{m\to\infty} \lambda(P_m)$ exists and is an eigenvalue of P.

Claim: $\lambda(P) \geq 0$ and there exists $h \geq 0$ such that $\xi_0 h = 1$ and $Ph = \lambda(P)h$. Because $\lambda(P_m) > 0$ we have $\lim_{m \to \infty} \lambda(P_m) \geq 0$ so $\lambda(P) \geq 0$.

Let h_m satisfy $P_m h_m = \lambda(P_m) h_m$, $h_m > 0$, and $\xi_0 h_m = 1$.

As we showed earlier, $||h_m|| \leq \sqrt{n}$. Therefore, there exists a subsequence $\{h_{m_k}\}$ of $\{h_m\}$ such that $\lim_{k\to\infty} h_{m_k} \to h$. Because $h_{m_k} > 0$, we have $h \geq 0$.

Moweover since $\xi_0 h_{m_k} = 1$ taking the limit of both sides yields $\xi_0 h = 1$ so $h \neq 0$.

Now

$$\begin{array}{ccc} P_{m_k}h_{m_k} \stackrel{=}{\longrightarrow} \lambda(P_{m_k})h_{m_k} \\ \downarrow^{m \to \infty} & \downarrow^{m \to \infty} \\ Ph \stackrel{=}{\longrightarrow} \lambda(P)h \end{array}$$

3

2.1.2 Proof of 2

(i) Let $k \in \mathbb{C}$ be any eigenvalue of P. Then again by Theorem 6, P101, there exists an eigenvalue k_m of P_m such that $\lim_{m\to\infty} k_m = k$.

By Perron's Theorem,

$$|k_m| \xrightarrow{\leq} \lambda(P_m)$$

$$\downarrow^{m \to \infty} \qquad \downarrow$$

$$|k| \xrightarrow{\leq} \lambda(P)$$

(ii) $|k| = \lambda(P)$ so $|k| = e^{i\theta}\lambda(P)$. Then we show that $\theta = \exp\left(\frac{2\pi i k}{m}\right)$. Too much detail. Not required for this class.

3 Riesz Representation Theorem

Recall the Riesz Representation Theorem.

If V^n is an n dimensional vector space over a field K, either \mathbb{R}^n or \mathbb{C}^n . Then V^* is the set of linear functions on V.

$$V^* = \big\{\ell \mid \ell : V \to K, \ell \text{ is linear}\big\}$$

For all $\lambda \in V^*$, there exists a y such that

$$\ell(x) = \langle x, y \rangle$$

for all x. If and only if $V^{**} = V$.

Key idea: if $(V, \langle \cdot, \cdot \rangle)$ then orthonormal because great/fast in use

$$v = \sum_{i=1}^{n} a_i u_i$$

But if we have no inner product, we want to mimic an orthonormal basis. We define a dual basis $\ell_i(e_j) = \delta_{ij}$. Mimics $u_i(uj) = \langle u_i, u_j \rangle = \delta_{ij}$.

If there exists an inner product on V^* then $\{\ell_1, \ldots, \ell_n\}$ is $\{u_1, \ldots, u_n\}$.

Now, we want to extend this to C[a, b]. But to do this we will need the following theorem:

3.1 Hahn–Banach theorem

Recall $(V, \langle \cdot, \cdot \rangle)$. Only having $(V, \|\cdot\|)$ is weaker. Even weaker is (V, p), where p is sublinear.

Definition: A sublinear functional is a real valued function p on vector space X which satisfies

1.
$$p(x+y) \le p(x) + p(y)$$
 for $x, y \in X$.

2.
$$p(ax) = ap(x)$$
 for $a \ge 0, x \in X$.

3.1.1 Examples

For any linear map $\ell: X \to \mathbb{R}$, define $p(x) = |\ell(x)|$.

1.
$$p(x+y) = |\ell(x+y)| \le |\ell(x)| + |\ell(y)| = p(x) + p(y)$$
.

2.
$$p(ax) = |\ell(ax)| = a|\ell(x)| = ap(x)$$
.

3.2 Statement of Hahn–Banach theorem for real vector spaces

Suppose we have $(X/\mathbb{R}, p)$ for sublinear p

$$f \bigg|_{Z}^{\text{linear functional}} \implies \exists \, \tilde{f} \bigg|_{X}^{\text{linear functional}} : \begin{cases} \tilde{f}(z) = f(z) & \text{for } z \in Z \\ \tilde{f}(x) \leq p(x) & \text{for all } x \in X \end{cases}$$

where $Z \subseteq X$ is a subspace of X if $f(x) \leq p(x)$ on Z.

Let x be a real vector space and p be a sublinear functional on X. Let f be a linear functional defined on a subspace $Z \subseteq X$ satisfying $f(z) \le p(x)$ for all $z \in Z$. Then, there exists linear functional \tilde{f} satisfying

1.
$$\tilde{f}(z) = f(z)$$
 for all $z \in \mathbb{Z}$, and

2.
$$\tilde{f}(x) \leq p(x)$$
 for all $x \in X$.

3.3 Proof

By Zorn's Lemma.

Recall: **Zorn's Lemma**: Let P be a partially ordered set such that every chain has an upper bound in P. Then the set P contains at least one maximum element.

Step 1: Form a set {all linear functionals of f that are dominated by p}.

$$S = \{ \phi \mid \phi : \mathcal{D}_{\phi} \to \mathbb{R} \text{ is linear, } \mathcal{D}_{\phi} \supset Z, \phi = f \text{ on } z, \phi \leq p \text{ on } \mathcal{D}_{\phi} \}$$

Step 2: Define binary relation < (extension) Say $\phi_1 < \phi_2$ if ϕ_2 is an extension of ϕ_1 .

Step 3: Every chain $C \subseteq S$ has an upper bound.

 $^{^1{\}rm This}$ line seems a bit suspicious.