

David Maykon Krepsky Silva Daniel Galbes Bassanezi

Proteção contra sobre tenção e acoplamento de sensores termo-resistivos

Data de realização do experimento: $6 \ de \ agosto \ de \ 2015 \\ Série/Turma: \\ 1000/1011 \\ Prof. \ Dr. \ José \ Alexandre \ de \ França$

Resumo

Neste trabalho foi realizado, primeiramente, o estudo de circuitos de proteção contra sobre tensão utilizando diodos zener, de silício e de germânio. Foi montado um circuito empregando os diodos citados de forma a limitar a tensão de saída na condição de uma sobre tensão na entrada. Observou-se que os diodos atuam limitando a tensão de saída de acordo com a sua queda de tensão característica. Em uma segunda etapa, foi estudado o comportamento de um sensor termo-resistivo, o qual foi condicionado a uma corrente contínua Este condicionamento fez com que a variação da temperatura produzisse uma diferença na tenção de saída do circuito. Foram coletados dados relacionando a temperatura à variação de tensão na saída do circuito. Com tais dados, foi possível obter a curva característica do sensor e seus parâmetros, para uma possível calibração.

Sumário

R	esumo	1			
1	Introdução	3			
2	Teoria de funcionamento				
	2.1 Circuito de proteção contra sobre tensão	4			
	2.1.1 Utilizando diodo Zener				
	2.1.2 Utilizando diodo Convercional	4			
	2.2 Condicionamento de sensor termo-resistivo com corrente constante				
3		6			
	3.1 Materiais	6			
4	1000 diludios	7			
	4.1 Circuito de proteção com diodo Zener	7			
	4.2 Circuito de proteção com diodo 1N4148	8			
	4.3 Circuito de proteção com diodo germânio				
	4.4 Termistor com corrente constante	11			
5	Discussão e Conclusão	14			
6	Referências	15			

1 Introdução

Surtos de tensão são bastante comuns em circuitos eletrônicos. Esse fenômeno pode ser causado por vários fatores, tais como uma descarga elétrica na rede, por descarga eletrostática (ao tocar o circuito, por exemplo) e até pelo acionamento de máquinas pesadas próximo ao aparelho. Uma outra fonte de sobre tensão em instrumentos de medição acontece quando a saída do sensor ultrapassa o valor máximo da escala do instrumento. Para proteger a entrada dos aparelhos, faz-se necessário o uso de circuitos que limitem a diferença de potencial entre os terminais do instrumento de medição, assim, evitando a queima dos mesmos. Neste experimento foi analisada uma fora de proteção contra sobre tensão utilizando-se diodos do tipo zener, de silício e de germânio.

Um outro problema abordado neste trabalho é o condicionamento de sensores do tipo termoresistivo, sendo possível o emprego de circuitos que geram uma corrente constante ou tensão constante. Durante o experimento foi analisado o condicionamento com corrente constante, o que torna a tensão de saída dependente da temperatura sendo aferida.

2 Teoria de funcionamento

2.1 Circuito de proteção contra sobre tensão

2.1.1 Utilizando diodo Zener

Analisando o circuito da figura 1, quando a tensão V_{in} se torna maior que V_z , o diodo D_z passa a conduzir, fazendo com que haja uma queda de tensão em R_z igual a $V_{rz} = V_{in} - V_z$. Isso faz com que a tensão em V_o seja mantida constante em, no máximo V_z . A equação 1 é, então, utilizada para calcular o valor de R_z de modo a evitar a queima do diodo, onde I_{zmax} é a corrente máxima permitida no diodo.

Figura 1: Circuito para proteção de sobre tensão utilizando diodo zener.

2.1.2 Utilizando diodo Convercional

O circuito da figura 2 possui um princípio de operação semelhante, quando V_{in} é mair que $V_d + V_{cc}$ ou menor que $-V_d$, os diodos conduzem. Porém, diferente do circuito com zener, este necessita de 2 diodos para proteção contra tensões abaixo de 0 V.

A equação 2 é utilizada para o calculo do resistor R_1 . Vale notar que os diodos D_1 e D_2 devem ser iguais.

Figura 2: Circuito para proteção de sobre tensão utilizando diodo convencional.

2.2 Condicionamento de sensor termo-resistivo com corrente constante

O circuito da figura 3 é utilizado para manter uma corrente constante no termistor R_T . Note que a tensão no emissor de Q_1 é ajustada pelo potenciômetro P_1 , sendo denominada V_{ref} . Assim, a corrente que passa e R_T é

$$I_s = \frac{V_{cc} - V_{ref}}{R_1}. (3)$$

Figura 3: Circuito para condicionamento de sensor de temperatura do tipo termistor.

3 Metodologia Experimental

3.1 Materiais

O material utilizado foi:

- LM324;
- BC556;
- 2 diodos 1N4148;
- 2 diodos de germânio;
- 1 zener 5V1 1/4W;
- 1 potenciômetro de 10 $k\Omega$;
- 1 resistor de 4.7 $k\Omega$;
- 1 resistor de 27 Ω ;
- 1 resistor de 2 M Ω ;
- 1 termistor NTC de 10 $k\Omega$;
- fonte de alimentação ajustável;
- multímetro;
- software MATLAB.

Para execução do experimento, faz-se necessário executar os seguintes passos:

- 1. montar o circuito da figura 1, calculando o valor de R_z para $-2.0 \le V_{in} \le 7.1$;
- 2. variar a tensão de entrada em 0.6 V até atingir 7.1 V, anotando os valores de V_o ;
- 3. montar o circuito da figura 2 com os diodos 1N4148, calculando o valor de R_1 para $0 \le V_{in} \le 7.1$;
- 4. variar a tensão de entrada em 0.6 V até atingir 7.1 V, anotando os valores de V_o ;
- 5. montar o circuito da figura 2 com os diodos de gerânio, calculando o valor de R_1 para $0 \le V_{in} \le 7.1$;
- 6. variar a tensão de entrada em 0.6 V até atingir 7.1 V, anotando os valores de V_o ;
- 7. montar o circuito da figura 3, com $V_{cc} = 12V$, $P_1 = 1k$ e $R = 4.7k\Omega$;
- 8. variar a temperatura e medir V_o ;
- 9. montar gráficos para os dados obtidos.

4 Resultados

4.1 Circuito de proteção com diodo Zener

O diodo utilizado possui corrente máxima de 80mA. Sendo assim, o valor de R_z calculado, utilizando a equação 1, foi de

$$R_z = \frac{7.1 - 5.1}{80.10^{-3}} = 25\Omega.$$

O valor comercial mais próximo, e que foi utilizado, é o de 27Ω .

A tabela 1 mostra os dados obtidos durante o experimento e a figura 4 mostra o gráfico.

Tabela 1: Tensão de entrada e tensão de saída para o diodo zener.

V_{in} [V]	V_o [V]
-2.02	-0.840
-1.40	-0.822
-0.8	-0.757
-0.2	-0.220
0.39	0.39
1.00	1.00
1.60	1.60
2.25	2.24
2.88	2.88
3.37	3.37
3.99	3.99
4.64	4.64
5.21	5.17
5.81	5.26
6.40	5.32
6.98	5.37

Figura 4: Circuito de proteção com diodo Zener.

4.2 Circuito de proteção com diodo 1N4148

O diodo utilizado possui corrente máxima de 200mA. Sendo assim, o valor de R_z calculado, utilizando a equação 1, foi de

$$R_z = \frac{7.1 - 5.1 - 0.7}{200.10^{-3}} = 6.5\Omega.$$

O valor comercial mais próximo, e que foi utilizado, é o de 10Ω .

A tabela 2 mostra os dados obtidos durante o experimentoe a figura 5 mostra o gráfico.

Tabela 2: Tensão de entrada e tensão de saída para o diodo 1N4148.

V_{in} [V]	V_o [V]
0.00	0.00
0.36	0.32
0.90	0.81
1.10	1.00
1.60	1.45
1.81	1.64
2.03	1.86
2.52	2.30
2.95	2.70
3.40	3.10
3.85	3.53
4.31	3.94
4.77	4.33
5.01	4.55
5.46	4.95

Figura 5: Circuito de proteção com diodo 1N4148.

4.3 Circuito de proteção com diodo germânio

O diodo utilizado possui corrente máxima de $1\mu A$. Sendo assim, o valor de R_z calculado, utilizando a equação 1, foi de

$$R_z = \frac{7.1 - 5.1 - 0.3}{1.10^{-6}} = 1.7M\Omega.$$

O valor comercial mais próximo, e que foi utilizado, é o de $2M\Omega$.

A tabela 3 mostra os dados obtidos durante o experimento e a figura 6 mostra o gráfico.

Tabela 3: Tensão de entrada e tensão de saída para o diodo de germânio.

V_{in} [V]	V_o [V]
0.00	0.00
0.40	0.40
0.91	0.90
1.51	1.50
1.85	1.84
2.17	2.17
2.68	2.68
3.06	3.06
3.60	3.60
3.96	3.96
4.45	4.45
4.96	4.96
5.21	5.19
5.92	5.27
6.34	5.29
6.79	5.29
7.10	5.29

Figura 6: Circuito de proteção com diodo de germânio.

4.4 Termistor com corrente constante

A tabela 4 mostra os dados obtidos para o termistor NTC com o circuito de corrente constante e a figura 7 mostra a curva característica do sensor.

Tabela 4: Tensão de entrada e tensão de saída para o diodo de germânio.

oniciada e consao de s	araa par
Temperatura [°C]	V_o [V]
26	7.35
28	6.92
29	6.81
30	6.61
31	6.63
32	5.72
33	6.32
34	5.33
35	5.47
39	4.25
42	3.85
43	3.64
46	3.33
47	1.66
52	1.35
54	1.882
56	1.19
63	0.98
68	0.93
69	0.87

Figura 7: Saída de tensão para o termistor NTC.

5 Discussão e Conclusão

Com base nos resultados obtidos, foi possível observar que o uso de diodos possibilita a proteção de circuitos contra surto de tensão. Notou-se que a tensão máxima de saída depende exclusivamente da queda de tensão no diodo utilizado, sendo os diodos zener os que proveem um melhor controle. Os resistores R_z e R_1 são utilizados de forma a limitar a corrente que passa pelos diodos, evitando a queima dos mesmos.

Para o experimento de condicionamento do termistor, foi visto que, para uma corrente constante, a tensão de saída do sistema varia de forma aproximadamente linear para a faixa de temperatura mensurada. Note que os dados obtidos possuem uma precisão ruim devido ao método utilizado para aumentar e amostrar a temperatura.

6 Referências

[1] Roteiro da atividade prática.