#### Reinforcement learning

Episode that was long overdue...

#### **Planning**







# Learning Vs planning

#### Learning

- Black box environment
- Explore through trial and error
- Minimize regret

#### **Planning**

- Got environment model
- Search for optimal behavior
- Then act optimally

# Model-based setup

#### What we know

State transitions

$$P(s_{next}|s,a)$$
 or  $s_{next}=T(s,a)$ 



• Rewards  $r(s_t, a_t)$ 

## Model-based setup

#### What we know

State transitions

$$P(s_{next}|s,a)$$
 or  $s_{next}=T(s,a)$ 

Weaker version: we can only sample from P(s'|s,a)

• Rewards  $r(s_t, a_t)$ 



# Planning: pathfinding

#### **Further limitations:**

- Deterministic  $s_{next} = T(s, a)$
- Pay c(s1,s2) for moving s1->s2
- Find shortest route
   from state A to state B

Trivia: how do we do that?

# Planning: pathfinding

#### **Further limitations:**

- Deterministic  $s_{next} = T(s, a)$
- Pay c(s1,s2) for moving s1->s2

Consider c(s1,s2) as a negative reward -r(s1,go\_to\_s2)

Find shortest route
 from state A to state B

**Trivia:** how do we do that?

# Dynamic programming

#### Compute following function

```
path(start,end)
path(a,b) = \min_{v} [path(a,v) + cost(v,b)]
```

## Dijkstra's algorithm

- Computes the same function
- Maintains a queue of candidate nodes
- Expands the node with minimal distance to start

#### Pseudo-code

```
distance = {node:inf for each node} #distance to start
distance[start] = 0
fringe = [start]
                                     #nodes to explore
while True:
  node = fringe.pop_node_with_least_distance()
  if node == end: break
  for neighbor in neighbors(node):
    new_distance = distance[node] + cost(node, neighbor)
    #if we found a better path...
    if new_distance < distance[neighbor]:</pre>
      distance[neighbor] = new_distance
      fringe.add(neighbor)
```

#### Pseudo-code

```
distance = {node:inf for each node} #distance to start
distance[start] = 0
fringe = [start]
                                     #nodes to explore
while True:
  node = fringe.pop_node_with_least_distance()
  if node == end: break
  for neighbor in neighbors(node):
    new distance = distance[node] + cost(node, neighbor)
    #if we found a better path...
    if new_distance < distance[neighbor]:</pre>
      distance[neighbor] = new distance
      fringe.add(neighbor)
```

**Trivia:** how do we get path(start,end)?

# Examples





Blue: viewed nodes, red/violet = start/end, dark-grey = obstacle

#### A\*, informed search

• Heuristic estimate of distance h(a,b)

$$h(a,b) \leq Path(a,b)$$

Optimistic path estimate

$$estimate(v) = Path(start, v) + h(v, end)$$

$$\forall v, Path(start, v) + h(v, end) \leq Path(start, end)$$

• Pick nodes with least estimate(node)!

#### A\*, informed search

• Heuristic estimate of distance h(a,b)

e.g. euclidian distance

$$h(a,b) \leq Path(a,b)$$

Optimistic path estimate

$$estimate(v) = Path(start, v) + h(v, end)$$

$$\forall v, Path(start, v) + h(v, end) \leq Path(start, end)$$

• Pick nodes with least estimate(node)!

#### A\*, "informed" search

• Heuristic estimate of distance h(a,b)

```
estimate(v) = Path(start, v) + h(v, end)
```

```
distance = {node:inf for each node} #distance to start
distance[start] = 0
fringe = [start]
                                    #nodes to explore
                pop node with least estimate()
while True:
  node = fringe.pop_node_with_least_distance()
  if node == end: break
  for neighbor in neighbors(node):
    new distance = distance[node] + cost(node, neighbor)
    #if we found a better path...
    if new_distance < distance[neighbor]:</pre>
      distance[neighbor] = new distance
      fringe.add(neighbor)
```

# A\* example



Blue: fringe, red/green= distance, dark-grey = obstacle

## Adversarial setup

Same as deterministic case, but there's a second agent...

And he's playing against us!

We want highest expected reward.

#### Examples:

- Any board game: chess, checkers, go
- Pong :)

#### Adversarial search trees



## Stochastic setup

Stochastic environment,

$$s \sim P(s_{next}|s,a)$$

We want highest expected reward or least expected cost

#### Stochastic search trees



How to evaluate action value?

# Large/continuous state space

We can't explore all the nodes.

Need to pick most interesting ones!

#### Examples:

- ~any practical use case :)
- Atari

#### **UCB-1** for bandits

Idea:

Prioritize actions with uncertain outcomes!

Less times visited = more uncertain.

Math: add upper confidence bond to reward.

#### **UCB-1** for bandits

Take actions in in proportion to  $\tilde{v}_a$ 

$$\widetilde{v}_a = v_a + \sqrt{\frac{2 \log N}{n_a}}$$

Upper conf. bound

- N number of time-steps so far for r in [0,1]
- $n_a$  times action **a** is taken

#### **UCB-1** for bandits

Take actions in in proportion to  $\tilde{v}_a$ 

$$\widetilde{v}_a = v_a + \sqrt{\frac{2 \log N}{n_a}}$$

- N number of time-steps so far
- $n_a$  times action **a** is taken

#### UCB generalized for multiple states

$$\widetilde{Q}(s,a) = Q(s,a) + \alpha \cdot \sqrt{\frac{2 \log N_s}{n_{s,a}}}$$

#### where

- $N_s$  visits to state **s**
- $n_{s,a}$  times action **a** is taken from state **s**

#### **MCTS**



#### MCTS: selection

Selection



Starting from the root, recursively select node with highest ucb-1 score

$$\widetilde{Q}(s,a) = Q(s,a) + \alpha \cdot \sqrt{\frac{2 \log N_s}{n_{s,a}}}$$

#### MCTS: Expansion

Expansion



Add one or more children from the chosen node.

Each child is a one-step simulation  $s \rightarrow s'$ , a, r

Simple case: add one node per action.

#### MCTS: Expansion

Expansion



Add one or more children from the chosen node.

Each child is a one-step simulation  $s \rightarrow s'$ , a, r

Simple case: add one node per action.

Any ideas when this is won't work?

## MCTS: Rollout (sampling)

Sampling



Estimate node value by playing game from that state till the end with simple policy.

e.g. random actions

Remember total reward.

# MCTS: Rollout (sampling)

Sampling



Estimate node value by playing game from that state till the end with simple policy.

e.g. random actions

Remember total reward.

Can we do better than random?

## MCTS: Backprop

Backpropagation



Given rollout reward, update value of leaf and all it's parents.

$$V(parent) = r + \gamma \cdot V(child)$$

Also increment visit counts (N and n\_a for ucb-1)

#### **MCTS**



How do we pick action from root?

#### Brace yourselves



And now goes the part with actual cool stuff... 33