Bublem 1 P(B) = 0.001 \Rightarrow P(7B) = 1-0.001 = 0.999 P(E) = 0.002) P(¬E) = 1-0.002 = 0.998 B P(A/B,E) P(A/B,TE). P(A/B,E) P(A/B,TE). Using this table, P(A/B, E) = 0.95 > P(TA/B, E) = 1-0.95 = 0.05. P(A/B, TE) = 0.94 7) P(TA/B, TE) = 1-0.94 = 0.06. P(A/7B, E) = 0.29 => P(7A/7B, E) = 1-0.29 = 0.71 P(A/7B,7E) = 0.001 -> P(7A/7B,7E) =1-0.001 = 0.999 Uring table for John $P(J/A) = 0.90 \rightarrow) P(\neg J/A) = 1 - 0.90 = 0.10$ P(J/7A) = 0.05 +> P(7J/7A) = 1-0.05 = 0.95 lleing table for Mary P(M/A) = 0.7 >> P(JM/A) = 1-0.7= 0.3 P(M/JA) = 0.01 >> P(JM/JA) = 1-0.01 = 0.99

Thus the joint perobability of								
P(John Calls, Mary Calls, JAlann, Earthquake,								
P(John Calls, Mary Calls, JAlarm, Earthquake, JBurglary).								
= P(¬J/A). P(M/A). P(¬A/¬B, E). P(E). P(¬B)								
	A			/	. /			
=	0.95	. 0.01	0.71.	0.0	02.	0.999.		
	1				5.		·	
= 0.000128 0.0000135								
= 0.000128 0.0000135								
Perdelam 2°								
Perololem 2°								
al	P(a)) <u>b</u>	P(b)	*1	C	P(c)		
0	0.2		0.86	į	0	0.48		
- 1	0.8		0.14		1	0.52	•	
al	b	P(a, b)	a	C	Plas c	.)		
0	0	0.14	0	0	0,1	2 .		
0		0.06	0		0.			
1	0	0.72	1	O	0,			
1	1	0.08	1	1	}	44		
(0.03		11	10,	74		

	a	C	P(c/a) = P(a,c)/P(a).						
	0	0	0.6						
	0	e2 20	0.4						
	A. S. S.	0	0.45						
	1	·	0.55						
_	C.\.	1- 0.11	MARIA CALLARY CALLER						
-11									
	a b c P(c/a,b) = P(a,b,c)/P(a,b).								
	0	0 0 0 0.084/0.14 = 0.6.							
	0	0 0 1 0.056/0.14 = 0.4							
	0	0 1 0 0.036/0.06 = 0.6							
	0	2021/206-04							
		0 0 0.024/0.72 = 0.45							
	[230/232 - 0.55							
		0.396/0.08 = 0.45							
			0.044/0.08 = 0.55						
	-		0.0447 0.308						
0	1	0	P(c a,b) $P(c a)$						
[2)			()						
	C	0.46							
		0.49							
	P(c/a,b) = P(c/a).								
	1(0/a,b) - 1(0/a).								

Gain = Enterpy (E) -
$$\frac{|E_V|}{|E_V|}$$
 Enterpy (E);

for A:

Enterphy = -4 log 4 - 3 log 3 \\
Enterphy = -2 log 2 - 5 log 5 \\
Enterphy = -2 log 2 - 5 log 5 \\
Enterphy = -0.863

Info Gain = 0.985 - (7 \times 0.985 + 7 \times 0.863)

= 0.985 - 0.9245

= 0.0605 \times 0.061

Entropy: -4 log 4 - 2 log 2 = 0.918 Enteropy: -2 log 2 - 6 log 6 -0.811. Info Gain: 0.985 - (6 x 0.918 + 8 x 0.811) We will choose B' as the gain is maximised in that case.

Teried 2 moved infute :> [1,1,1,1]: Outfut-'No'

> [0,0,0,0,0]: Outfut- Yes'.

B) The screenshot for the XOR function linking up 3 perception units is attached below The newal n/w topology would look similar to

Tinker With a **Neural Network** Right Here in Your Browser. Don't Worry, You Can't Break It. We Promise.

$$9) E(\omega) = \frac{1}{4} \omega(\omega-2)(\omega-1)(\omega+2)$$

$$=\frac{1}{4}\omega(\omega^{2}-4)(\omega-1)$$

$$=\frac{1}{4}(\omega^{3}-4\omega)(\omega-1)$$

$$= \frac{1}{4} \left(\omega^4 - 4\omega^2 + 4\omega - \omega^3 \right).$$

$$= \frac{1}{4} \left(4 \omega^3 - 3 \omega^2 - 8 \omega + 4 \right)$$

$$= w^{3} - 3 w^{2} - 2 w + 1$$

$$=-x(w^3-3w^2-2w+1)$$
.