

Fig. 1

(i) The shaded region is rotated through 360° about the y-axis. Show that the volume of

Fig. 1 shows part of the curve $y = x^2 - 1$ and the line y = h, where h is a constant.

	revolution, V , is given by $V = \pi(\frac{1}{2}h^2 + h)$.	[3]
		•••••
(ii)	Find, showing all necessary working, the area of the shaded region when $h = 3$.	[4]
		•••••

(b)	
	h
	Et . A
	Fig. 2
	Fig. 2 shows a cross-section of a bowl containing water. When the height of the water level is $h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is increasing when the height of the water level is 3 cm. [4]
	Fig. 2 shows a cross-section of a bowl containing water. When the height of the water level is $h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	Fig. 2 shows a cross-section of a bowl containing water. When the height of the water level is $h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	Fig. 2 shows a cross-section of a bowl containing water. When the height of the water level is $h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	Fig. 2 shows a cross-section of a bowl containing water. When the height of the water level is $h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	Fig. 2 shows a cross-section of a bowl containing water. When the height of the water level is $h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	Fig. 2 shows a cross-section of a bowl containing water. When the height of the water level is $h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	Fig. 2 shows a cross-section of a bowl containing water. When the height of the water level is $h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is
	Fig. 2 shows a cross-section of a bowl containing water. When the height of the water level is $h \text{cm}$, the volume, $V \text{cm}^3$, of water is given by $V = \pi \left(\frac{1}{2}h^2 + h\right)$. Water is poured into the bowl at a constant rate of $2 \text{cm}^3 \text{s}^{-1}$. Find the rate, in cm s ⁻¹ , at which the height of the water level is