Honors Mathematics IV RC 3

CHEN Xiwen

UM-SJTU Joint Institute

October 8, 2018

Table of contents

The Eigenvalue Problem

The Eigenvalue Problem

Matrix Power

Matrix Power of Diagonalizable Matrices Matrix Power of Non-diagonalizable Matrices

Solving Linear System of Equations Using Matrix Power

Diagonalizable Matrices
Non-diagonalizable Matrices

The Eigenvalue Problem The Eigenvalue Problem

Matrix Power

Matrix Power of Diagonalizable Matrices Matrix Power of Non-diagonalizable Matrices

Solving Linear System of Equations Using Matrix Power Diagonalizable Matrices Non-diagonalizable Matrices

Let V be a real or complex vector space. For $L \in \mathcal{L}(V, V)$,

- ▶ eigenvalue of L: $\lambda \in \mathbb{F}$ such that $\exists x, Lx = \lambda x$.
- eigenvector for the eigenvalue λ : x such that $Lx = \lambda x$.
- eigenspace for the eigenvalue λ :

$$V_{\lambda} = \{x \in V : Lx = \lambda x\}.$$

• geometric multiplicity of λ : dim V_{λ} .

Note. From above we highlight the followings:

- 1. An eigenvalue can be real or complex.
- 2. If λ is a complex eigenvalue of A with corresponding eigenvector v, then $\overline{\lambda}$ is an eigenvalue of A with corresponding eigenvector \overline{v} .
- 3. The concept of eigenspace and geometric multiplicity is associated with a specific eigenvalue. (Same with algebraic multiplicity.)

Let V be a real or complex vector space with dimension n. For $L \in \mathcal{L}(V, V)$,

- L has at most n distinct eigenvalues.
- If L has n eigenvalues $\lambda_1, \ldots, \lambda_n$, then it has precisely n independent eigenvectors v_1, \ldots, v_n . Thus $\mathcal{B} = (v_1, \ldots, v_n)$ constitutes as basis of V and

$$V = \bigoplus_{i=1}^n V_{\lambda_i}.$$

▶ If the sum of geometric multiplicities equals n, there exists a basis of eigenvectors of \mathbb{R}^n .

The Eigenvalue Problem for Matrices

Finding eigenvalues and eigenvectors for matrices.

▶ For $V = \mathbb{R}^n$, $A \in \operatorname{Mat}(n \times n, \mathbb{R})$,

$$Ax = \lambda x \Leftrightarrow (A - \lambda 1)x = 0$$

and $p(\lambda) = \det(A - \lambda 1)$ is the *characteristic polynomial*.

- ▶ Solve $p(\lambda) = 0$ to obtain eigenvalues $\lambda_1, \ldots, \lambda_k$. (Or else the column vectors of $A \lambda \mathbb{1}$ should be independent, and thus x = 0.)
- Plug in each eigenvalue

$$Ax = \lambda_i x, \qquad i = 1, \dots, k$$

and solve for the eigenvectors.

The Eigenvalue Problem

Matrix Power

Matrix Power of Diagonalizable Matrices

Matrix Power of Non-diagonalizable Matrices

Solving Linear System of Equations Using Matrix Power

Diagonalizable Matrices

Non-diagonalizable Matrices

Matrix Power of Diagonalizable Matrices

- ▶ *Diagonalizable matrix*: $A \in Mat(n \times n, \mathbb{R})$ whose eigenvectors form a basis.
- ▶ Diagonal form of A:

$$D := U^{-1}AU = \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & & \vdots \\ \vdots & & \ddots & 0 \\ 0 & \cdots & 0 & \lambda_n \end{pmatrix}.$$

Matrix Power of Diagonalizable Matrices

Matrix power of diagonalizable matrices:

$$A^k = UD^kU^{-1}, \quad D^k = \begin{pmatrix} \lambda_1^k & 0 \\ & \ddots & \\ 0 & & \lambda_n^k \end{pmatrix},$$

and in particular,

$$e^A=Uegin{pmatrix} e^{\lambda_1} & & 0 \ & \ddots & \ 0 & & e^{\lambda_n} \end{pmatrix}U^{-1}.$$

Self-Adjoint Matrices

If a matrix $A \in \operatorname{Mat}(n \times n, \mathbb{F})$ is **self adjoint**, then

- $\langle x, Ay \rangle = \langle Ax, y \rangle, A = \overline{A}^T.$
- ▶ All eigenvalues of *A* are real.
- ▶ If $\mathbb{F} = \mathbb{R}$, A is a linear map $A : \mathbb{R}^n \to \mathbb{R}^n$, then it has at least one eigenvalue.
- ▶ If $U \subset \mathbb{R}^n$ is *invariant* under A (if $x \in U$, then $Ax \in U$), then U^{\perp} is invariant under A.

Self-Adjoint Matrices

If a matrix $A \in \operatorname{Mat}(n \times n, \mathbb{F})$ is *self adjoint*, then

- ▶ 1.8.6. Spectral Theorem. There exists an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of A.
- A is diagonalizable.
- Let $U=(v_1,\ldots,v_n)$ is an orthonormal basis consisting of eigenvectors. Then $U^{-1}=U^*$.
- ▶ The diagonal form of *A* is given by

$$D = U^*AU$$
.

Positive Definite Linear Maps

For a matrix $A \in \operatorname{Mat}(n \times n, \mathbb{R})$,

▶ it is *positive definite* if

$$\langle x, Ax \rangle > 0$$
 for all $x \in \mathbb{R}^n \setminus \{0\}$,

▶ it is *negative definite* if −A is positive definite

$$\langle x,Ax\rangle<0\qquad\text{for all }x\in\mathbb{R}^n\setminus\{0\},$$

▶ if A is self-adjoint, then A is positive definite iff all eigenvalues of A are strictly greater than zero.

The Eigenvalue Problem

Matrix Power

Matrix Power of Diagonalizable Matrices

Matrix Power of Non-diagonalizable Matrices

Solving Linear System of Equations Using Matrix Power Diagonalizable Matrices Non-diagonalizable Matrices

Generalized Eigenvectors

1.9.1. Definition. Let λ be an eigenvalue of a matrix A. Then v is a *generalized eigenvector* of rank $r, r \in \mathbb{N} \setminus \{0\}$, if

$$(A - \lambda \mathbb{1})^r v = 0$$
 and $(A - \lambda \mathbb{1})^{r-1} v \neq 0$.

Denote

$$E_k = \{ v \in V : (A - \lambda \mathbb{1})^k v = 0 \}.$$

Then a generalized eigenvector of rank r is an element in $E_r \setminus E_{r-1}$.

Finding Generalized Eigenvectors

Bottom-up Method. (For specific λ .)

- 1. Find the ordinary eigenspace E_1 using $(A \lambda \mathbb{1})v^{(1)} = 0$. Set $E = E_1$.
- 2. If dim $E < a_{\lambda}$, where a_{λ} is the algebraic multiplicity, use a suitable $v^{(1)} \in E_1$ to find $v^{(2)}$ using

$$(A - \lambda 1)v^{(2)} = v^{(1)}.$$

- 3. $E = E_1 \oplus \operatorname{span}\{v^{(2)}\}.$
- 4. Repeat step 2 and 3 for one higher dimension until there is no solution.

Finding Generalized Eigenvectors

Top-down Method. (For specific λ .)

- 1. Find the highest rank necessary: $m := a_{\lambda} \dim V_{\lambda} + 1$.
- 2. Solve

$$(A - \lambda \mathbb{1})^m v = 0,$$
 $(A - \lambda \mathbb{1})^{m-1} \neq 0$

to obtain $v^{(m)}$.

3. Set

$$v^{(m-1)} := (A - \lambda \mathbb{1})v^{(m)}$$

and similarly for lower ranks to find a set of generalized eigenvectors $\{v^{(m)}, v^{(m-1)}, \dots, v^{(1)}\}.$

Chain of Generalized Eigenvectors

Note. The vectors found by a chain of multiplication in the top-down method are linearly independent. Suppose we have r and v such that

$$(A - \lambda \mathbb{1})^r v = 0,$$
 $(A - \lambda \mathbb{1})^{r-1} v \neq 0.$

Then for the chain of generalized eigenvectors $\{(A - \lambda \mathbb{1})^{r-1}v, (A - \lambda \mathbb{1})^{r-2}v, \ldots, v\}$, assume

$$a_0v + a_1(A - \lambda 1)^1v + a_2(A - \lambda 1)^3v + \cdots + a_{r-1}(A - \lambda 1)^{r-1}v = 0.$$

Then multiplying by $(A - \lambda 1)^{r-1}$, we obtain

$$a_0(A-\lambda \mathbb{1})^{r-1}v=0 \quad \Rightarrow \quad a_0=0.$$

Continuing this process, we can verify that $a_0 = \cdots = a_{r-1} = 0$.

Finding Generalized Eigenvectors

Example 1. Find the generalized eigenvectors for the matrix

$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 3 \end{pmatrix} .$$

Matrix Power of Non-diagonalizable Matrices

- ► The generalized eigenvectors give a "nearly diagonalized" matrix.
- ► We will then calculate the matrix power using this "nearly diagonalized matrix".

Jordan Matrices

Definition.

▶ *Jordan block of size* $k \in \mathbb{N} \setminus \{0\}$, $\lambda \in \mathbb{C}$:

$$J_k(\lambda) := egin{pmatrix} \lambda & 1 & & 0 \ & \ddots & \ddots & \ & & \ddots & 1 \ 0 & & & \lambda \end{pmatrix} \in \operatorname{Mat}(k imes k, \mathbb{C}).$$

▶ **Jordan matrix** with not necessarily distinct $\lambda_1, \ldots, \lambda_m \in \mathbb{C}$ and $k_1, \ldots, k_m \in \mathbb{N}$:

$$J=egin{pmatrix} J_{k_1}(\lambda_1) & 0 & & & \ & \ddots & & \ 0 & & J_{k_m}(\lambda_m) \end{pmatrix}.$$

Jordan Normal Form and Nilpotent Matrix

▶ Jordan normal form of $A \in \operatorname{Mat}(n \times n, \mathbb{C})$: there exists a basis of \mathbb{C}^n consisting of generalized eigenvectors such that

$$J:=U^{-1}AU$$

is a Jordan matrix, where \boldsymbol{U} is the transformation into this basis.

▶ *Nilpotent matrix*: there exists $k \in \mathbb{N}$ such that $N^k = 0$.

Jordan Normal Form

Note. Given a matrix A, we can directly write out a Jordan normal form without calculating $U^{-1}AU$. This follows from:

- 1. The number of Jordan blocks is the number of linearly independent eigenvectors of *A*.
- 2. The size of a Jordan block for an eigenvector v is number of vectors in the corresponding cycle of generalized eigenvectors of A.

Jordan Normal Form

Example 2. Write out a Jordan normal form of the matrix

$$A = \begin{pmatrix} 7 & 0 & 0 & 4 & 0 & 0 \\ 0 & 7 & 0 & 0 & 5 & 0 \\ 0 & 0 & 7 & 0 & 0 & 6 \\ 0 & 0 & 0 & 7 & 0 & 0 \\ 0 & 0 & 0 & 0 & 7 & 0 \\ 0 & 0 & 0 & 0 & 0 & 7 \end{pmatrix}$$

Jordan Normal Form and Nilpotent Matrix

Note. For a Jordan matrix J = D + N, where N is a nilpotent matrix $N \in \operatorname{Mat}(n \times n, \mathbb{R})$ and D is a diagonal matrix $D \in \operatorname{Mat}(n \times n, \mathbb{R})$,

$$e^{J} = e^{D} \cdot e^{N} = e^{N} \cdot e^{D},$$

which is in general not the case for D, N.

Matrix Power of Non-diagonalizable Matrices

To find e^A ,

- 1. Find generalized eigenvectors $\{v_1, \ldots, v_n\}$.
- 2. Construct a basis consisting of these generalized eigenvectors and find the transformation U to this basis. Then

$$J := U^{-1}AU = D + N,$$

where D is a diagonal matrix and N is a nilpotent matrix.

3. Then

$$e^{A} = Ue^{J}U^{-1} = U(e^{J_{k_{1}}(\lambda_{1})}, \dots, e^{J_{k_{m}}(\lambda_{m})})U^{-1},$$

where e^N is found by expanding the series.

The Eigenvalue Problem

Matrix Power

Matrix Power of Diagonalizable Matrices Matrix Power of Non-diagonalizable Matrices

Solving Linear System of Equations Using Matrix Power Diagonalizable Matrices

Non-diagonalizable Matrices

Solving Linear System of Equations Using Matrix Power

Example 3. Solve the system

$$x_1' = 9x_1 + 6x_2$$

$$x_2' = -10x_1 - 7x_2$$

for x(t).

The Eigenvalue Problem

Matrix Power

Matrix Power of Diagonalizable Matrices Matrix Power of Non-diagonalizable Matrices

Solving Linear System of Equations Using Matrix Power

Diagonalizable Matrices

Non-diagonalizable Matrices

Solving Linear System of Equations Using Matrix Power

Example 4. Solve the linear system

$$x_1' = -9x_1 + 9x_2$$

$$x_2' = -16x_1 + 15x_2$$

for x(t).

Thanks for your attention!