MTH 416: Lecture 11

Cliff Sun

October 3, 2024

Lecture Span

• Matrix multiplication & composition

Matrix Multiplication & composition

Recall

$$T: V \to W$$
 (1)

a linear transformation where $V = \mathbb{R}^n$ and $W = \mathbb{R}^m$ for now. Given an ordered basis

$$\beta = \{e_1, \dots, e_n\} \text{ for } \mathbb{R}^n$$
 (2)

$$\gamma = \{e_1, \dots, e_m\} \text{ for } \mathbb{R}^m \tag{3}$$

Which means we can write T as a matrix $[T]_{\beta}^{\gamma}$. Then if V = W, then $\beta = \gamma$ then $[T]_{\beta} \iff [T]_{\beta}^{\beta}$. We note that the columns of $[T]_{\beta}^{\gamma}$ is $T(e_1), \ldots, T(e_n)$. In general

$$[T]^{\gamma}_{\beta} = ([T(v_1)]_{\gamma}, \dots, [T(v_n)]_{\gamma}) \tag{4}$$

Then we have that $T(v) = [T]_{\beta}^{\gamma} v$ for any column vector $v \in \mathbb{R}^n$. Then if $v = \langle a_1, \dots, a_n, \text{ then } v \rangle$

$$T(v) = a_1 T(e_1) + \dots + a_n T(e_n)$$
 (5)

It follows that

- $R(T) = \{T(v) : v \in \mathbb{R}^n\} = \text{span}(\text{columns of A}) = \text{columnspace of A or } (C(A))$
- $N(T) = \{v \in \mathbb{R}^n : T(v) = 0\} = N(A) = \text{kernel of a Linear Transformation}$

This gives a fresh perspective on the rank nullity theorem. That is if we row-reduce A, then

- $\dim R(T) = \#$ of columns that contain pivots
- $\dim N(T) = \#$ of non-pivot columns

Composition of Linear Transformations

Suppose V, W, X are vector spaces and we have that

$$V \to^T W \to^U X \tag{6}$$

Theorem 0.1. $U \cdot T$ $V \to X$ is a linear transformation.

Proof. Recall from HW 4,

Some function T is linear $\iff T(cv_1 + v_2) = cT(v_1) + T(v_2)$ for all v_1, v_2, c_1

Calculate

$$U \cdot T(cv_1 + v_2) \iff U(T(cv_1 + v_2)) \tag{7}$$

$$\iff U(cT(v_1) + T(v_2))$$
 (8)

$$\iff cU(T(v_1)) + U(T(v_2))$$
 (9)

$$\iff c[U \cdot T(v_1)] + U \cdot T(v_2) \tag{10}$$

Thus $U \cdot T$ is linear.

Now suppose we're given ordered basis α of V, β for W, and γ for X. Then we have the matrices

$$[T]^{\beta}_{\alpha}, \ [U]^{\gamma}_{\beta}, \& \ [U \circ T]^{\gamma}_{\alpha} \tag{11}$$

Note this is matrix multiplication. Also a transformation from $\mathbb{R}^n \to \mathbb{R}^n$ means that $\beta = \beta$

Definition 0.2. Suppose $A \in M_{m \times n}(\mathbb{R})$ and $B \in M_{n \times p}(\mathbb{R})$. The product $AB \in M_{m \times p}(\mathbb{R})$ is defined by

$$(AB)_{ij} = \sum_{k=1}^{n} A_{ik} B_{kj} \tag{12}$$

Note, this only makes sense for $(m \times n) \cdot (n' \times p)$ where n = n'.

Note: if $B = (b_1, \ldots, b_p)$, then

$$AB = (Ab_1, \dots, Ab_p) \tag{13}$$

Theorem 0.3. Given $V, W, X, T, U, \alpha, \beta, \gamma$ as before, then

$$[U \cdot T]_{\alpha}^{\gamma} = [U]_{\beta}^{\gamma} \cdot [T] \alpha^{\beta} \tag{14}$$

Proof. We'll calculate the RHS, recall

1.

$$[T]_{\gamma}^{\beta} = ([T(v_1)]_{\gamma}, \dots, [T(v_n)]_{\gamma})$$
 (15)

2. For any $w \in W$, we have that

$$[U(w)]_{\gamma} = [U]_{\beta}^{\gamma} \cdot [w]_{\beta} \tag{16}$$

Thus,

$$[U]^{\gamma}_{\beta} \cdot [T]^{\beta}_{\alpha} = \left([U]^{\gamma}_{\beta} [v]_{\alpha}, \dots \right) \tag{17}$$

$$\iff [U \cdot T]^{\gamma}_{\alpha} \tag{18}$$

In general,

1. Matrix multiplication is not generally communitative. That is

$$AB \neq BA$$
 (19)

Say if $A = (2 \times 3)$ and $B = (3 \times 4)$, then $AB = (2 \times 4)$, but BA doesn't exist.

2. Even if A, B are borth $n \times n$, then AB is usually not equal to BA.

Theorem 0.4. Matrix multiplication is

1. Associative, meaning

$$A(BC) \iff (AB)C$$
 (20)

2. Distributive, meaning

$$A(B+C) \iff AB+AC \tag{21}$$

and

$$(A+B)C \iff AC+BC \tag{22}$$

Note: (1) corresponds to the fact that for linear transformations

$$V \to^S W \to^T \to^U Y \tag{23}$$

Then

$$U \circ (T \circ S) = (U \circ T) \circ S \tag{24}$$

For any $a, b \in W$, we have that the zero matrix

$$0_{a \times b} = (0 \dots 0) \tag{25}$$

Similarly, the identity matrix is

$$I_{a \times b} = \begin{pmatrix} 1 & 0 & 0 & \dots & 0 \\ 0 & 1 & 0 & \dots & 0 \\ \dots & & & & \end{pmatrix}$$
 (26)

Facts: Whenever the equations (matrix multiplication) makes sense, we have:

$$A0 = 0 (27)$$

$$0B = 0 (28)$$

$$AI = A \tag{29}$$

$$IB = B \tag{30}$$

Let $V = \mathbb{R}^n$ and $W = \mathbb{R}^m$, and $A \in M_{m \times n}(\mathbb{R})$, then

Definition 0.5. The left-multiplication operation by A is the function

$$L_A: \mathbb{R}^n \to \mathbb{R}^m \tag{31}$$

$$L_A(v) = Av (32)$$

Theorem 0.6. 1. L_A is linear

- 2. $[L_A]^{\gamma}_{\beta} = A$ where β, γ are the same ordered basis for \mathbb{R}^n and \mathbb{R}^m .
- 3. Given matrices $A = M_{m \times n}(\mathbb{R})$ and $B = M_{m \times p}(\mathbb{R})$, then we have that

$$L_{AB} = L_A \circ L_B \tag{33}$$