NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CLEVEL--ETC F/6 21/5 COMPUTER PROGRAM FOR AERODYNAMIC AND BLADING DESIGN OF MULTISTA--ETC(U) AD-A109 888 DEC 81 J E CROUSE, W T GORRELL NASA-TP-1946 UNCLASSIFIED USAAVRADCOM-TR-80-C-21 NL 1.,2 ^E 4a - a



NASA Technical Paper 1946

AVRADCOM Technical Report 80-C-21

December 1981

WA109888

UTC FILE COPY

NVSV



Computer Program for Aerodynamic and Blading Design of Multistage Axial-Flow Compressors.

James E. Crouse and William T. Gorrell



This document has been approved for public release and sale; its distribution is unlimited.

01 19 82 027

10°C

NASA Technical Paper 1946

AVRADCOM Technical Report 80-C-21

1981

# Computer Program for Aerodynamic and Blading Design of Multistage Axial-Flow Compressors

James E. Crouse Lewis Research Center Cleveland, Ohio

William T. Gorrell
Propulsion Laboratory
AVRADCOM Research and Technology Laboratories
Lewis Research Center
Cleveland, Ohio

NASA

Scientific and Technical Information Branch



# Contents

|                                                                         | Page |
|-------------------------------------------------------------------------|------|
| Summary                                                                 | 1    |
| Introduction                                                            | 1    |
| Compressor Design Procedures                                            | 2    |
| Input Initialization General Information Calculation Station Data Sets  | 2    |
| General Information                                                     | 2    |
| Calculation Station Data Sets                                           | 3    |
| Initialization                                                          | 5    |
| Iteration                                                               | 6    |
| Aerodynamic Design                                                      | 6    |
| Blade Design                                                            |      |
| Terminal Calculations and Output                                        | 9    |
| User Information                                                        | 10   |
| Appendix                                                                |      |
| A—Symbols                                                               | 15   |
| B—Input Parameters for Compressor Design Program                        | 16   |
| C—Development of Equations of Motion into Form Used in Computer Program | 27   |
| D—Conic Coordinates of Blade Centerline Path                            |      |
| References                                                              | 38   |

# **Summary**

A code for computing the aerodynamic design of a multistage axial-flow compressor and, if desired, the associated blading geometry input for internal flow analysis codes is presented. The aerodynamic solution gives velocity diagrams on selected streamlines of revolution at the blade row edges. Blading is defined from stacked blade elements associated with the selected streamlines. The blade element inlet and outlet angles are established through empirical incidence and deviation angle adjustments to the relative flow angles of the velocity diagrams. The blade element centerline is composed of two segments tangentially joined at a transition point. The local blade angle variation of each segment can be specified with a fourth-degree polynomial function of path distance. Blade element thickness also can be specified with fourth-degree polynomial functions of path distance from the maximum thickness point.

Steady axisymmetric two is assumed; so the aerodynamic problem can be reduced to solving the two-dimensional flow field in the meridional plane. Because the equations of motion as developed herein are only applicable for calculation stations outside the blade rows, stations at the blade edges, but not inside the blade rows, are used. The streamline curvature method is used for the iterative aerodynamic solution. If a blade design is desired, the blade elements are defined and stacked within the aerodynamic solution iteration. Thus the design velocity diagrams can be located at the blade edges.

The program input includes the annulus profile, the overall compressor mass flow, the pressure ratio, and the rotative speed. A number of parameters are input to specify and control the blade row aerodynamics and geometry. There are numerous options for controlling the way information is input and for specifying the amount of output. The output from the aerodynamic solution has an overall blade row and compressor performance summary followed by blade element parameters for the individual blade rows. If desired, blade coordinates in the streamwise direction for internal flow analysis codes and/or coordinates on plane sections through blades for tabrication drawings can be printed and punched.

#### Introduction

The axial-flow compressor is used for aircraft engines because it has distinct configuration and performance advantages over other compressor types, but the good potential performance is not easily attained. The problem and challenge to the designer is to model the actual flows well enough to adequately predict aerodynamic performance. Progress is continually being made with codes for computing the complex three-dimensional flows in turbomachinery. However, it is extremely difficult to design mechanically acceptable turbomachinery blading by using the direct approach (i.e., specifying inviscid blade surface velocities and computing the blade geometry). Consequently, the more detailed codes are generally used in the analysis mode; that is, the flow field is calculated for a fixed geometry. The current procedure is to establish blading geometry with simpler design codes and then to use the more detailed analysis codes in blade rows where troublesome flow conditions are likely to exist. In this way prototype designs can often be adjusted before hardware is built and tested.

The time and effort needed to get acceptable configurations can be reduced if the design code can be made to yield a good initial solution and if the design and analysis codes can be made more compatible with one another. This compatibility can be achieved (1) if the output from a design code can be directly used by flow and mechanical analysis codes and (2) if corrective adjustments indicated by the analysis codes can effectively be made in the design code. With these objectives in mind a composite aerodynamic and blade design code for axial-flow compressors has been developed. The code and its capabilities are the subjects of this report.

The aerodynamic solution assumes steady, axisymmetric flow and uses a streamline curvature method for calculation stations outside the blade rows. The program is structured so that the empirical correlations (such as those for loss, deviation angle, and incidence angle) can readily be changed when the need or desire exists. The method of describing blading is a compromise between the vast amount of input needed for completely general blade elements and the restrictions of simple shapes. A blade element is defined on a conic surface with thickness applied to a centerline that is composed of two segments tangentially joined at a transition point. The blade angle function of each segment can be defined with a fourth-degree polynomial. Thickness is prescribed by first specifying a maximum thickness value and location. The distribution of thickness in each direction from the maximum thickness location is then prescribed with a fourth-degree polynomial. Finally each polynomial coefficient is defined across blade elements with a third-degree polynomial function of annulus height.

# Compressor Design Procedures

The discussion of the compressor design procedures is organized according to usage in the computer program; so for better orientation an operational overview of the program is given first (table I). The computer program can be divided into three major phases of calculation: (1) the input and initialization phase, (2) the iteration phase, and (3) the terminal calculation phase. In the input and initialization phase the input data are read and interpreted, the calculation stations are located with estimated values for the blade edges, and streamlines are located on the basis of annulus area. Estimates of stagnation temperature and pressure and axial and tangential velocity components are also made for all calculation points in the flow field.

The iteration phase includes both the flow field and the blade design iterations. In the flow field iteration the equations of motion are satisfied in the meridional (r-z) plane for stations that are lines across the flow annulus. At the stations the equations of motion and overall flow continuity are satisfied with fixed values of streamline slope and curvature for a complete computational pass across the annulus. After the overall flow continuity condition at a calculation station is satisfied, the internal streamline intersections with the station lines are updated by solving for the locations that give specified fractions of overall station weight flow. At the completion of a pass through all the calculation stations in the annulus, the new streamline locations are curve fit for new streamline slope and curvature values.

To insure proper location of the blade edge stations, most of the blade design iteration is made concurrent with the flow field iteration. This operation includes the calculation of incidence and deviation angles, the layout and stacking of blade elements, and the realignment of the elements.

The terminal calculation phase performs the final calculations and generates the output. Mass-averaged parameters for the individual and cumulative compressor blade rows are computed and printed first. Then tabulated values of aerodynamic and blading parameters along the station lines are computed and printed. Finally blade section coordinates and other section mechanical properties can be computed and printed if desired.

The program is discussed in greater detail in the following subsections.

#### Input and Initialization

The basic computational plane is the meriodional (r-z) plane of a cylindrical coordinate system. A graphic view of an example compressor configuration is shown in figure 1. The hub and tip casing walls are fixed input. Calculation stations are located at the blade row leading and trailing edges and at other annular locations for the purpose of locating streamlines. The input data can be classified into two groups: general information and calculation station and blade row information. The input parameters and options, along with the input data format, are described in appendix B. (All mathematical symbols are defined in appendix A.) Additional advice on how to set up the input is given in the section User Information.

#### General Information

All the general information is read in first. Included are the following:

- (1) Compressor rotational speed
- (2) Inlet flow rate
- (3) Desired compressor pressure ratio
- (4) Gas molecular weight
- (5) Number of streamlines



Figure 1. - Calculation stations in compressor flow path.

- (6) Number of blade rows
- (7) Number of annular stations
- (8) Coefficients for  $c_p$  as a fifth-degree polynomial function of temperature
- (9) Far upstream values of total temperature, total pressure, and inlet tangential velocity for each streamline
- (10) Streamtube mass flow fractions between streamlines
- (11) Sets of points to define tip and hub casing contours
- (12) Sets of blade element profile loss parameters that are tabulated as functions of blade element loading parameter and fraction of passage height

As many as five loss sets can be input. The particular loss set used for a given blade row is designated in the blade row input. Usually at least two loss sets are input—one for rotors and another for stators.

#### Calculation Station Data Sets

The data sets that contain information about the calculation stations and blade rows are read in order from annulus inlet to outlet. The first card of the data set identifies the type of station, the tip and hub axial locations, the tip and hub boundary layer blockage factors and the station mass flow bleed. For annular stations the single card is the whole data set. For rotors and stators several cards are used to describe (1) the blade row inlet and outlet station information, (2) the blade row aerodynamic parameter input and controls, and (3) the parameters defining blade geometry. A blade and the associated edge calculation stations are located in the annulus by using a reference blade element stacking line. Stacking axis tip and hub axial locations and lean angle in the circumferential direction are input.

The locations of the calculation stations at the blade edges are at first approximated from some of the input blade geometry information. The station locations are moved during later iterations when the blade elements are defined and stacked. However, the input tip and hub boundary layer blockages and mass flow bleeds for the inlet and outlet stations are constant.

Aerodynamic parameter input and controls.—The blade aerodynamic design is controlled with several parameters that impose the necessary and sufficient conditions for a solution. The options as to how such conditions can be imposed are shown in table II. For rotors the most convenient option is to specify the stage energy addition as a cumulative fraction of the overall compressor energy addition. With this option the radial distribution of energy addition is not input directly but is imposed through a normalized rotor exit stagnation pressure profile that is expressed as a

polynomial function of annulus height in the radial direction. The pressure level is computed internally to the program from the energy input level and the computed losses. With the other rotor options the exit temperature profile is input instead of the energy addition fraction being specified. For either a rotor or stator, stagnation pressure profiles can be input instead of the losses being computed internal to the program. These options can be useful to users who have existing aerodynamic designs but want to use this program for blade description and fabrication coordinates.

At a stator exit a tangential velocity profile is input as a polynomial function of radius. Unless specified, the stator outlet pressure profile is determined from stator losses and streamline mixing effects from the upstream station.

There are some input aerodynamic limits that the program will not allow to be exceeded. For a rotor the limiting parameters are tip diffusion factor and absolute flow angle at the hub. The stator aerodynamic limits are diffusion factor and inlet Mach number at the hub. If an aerodynamic limit is exceeded during iteration, the stage energy addition is lowered by the amount needed to get the aerodynamic limit within bounds. If any other stage is not up to one of the aerodynamic limits, the energy decrement is made up among such stages. If all the stages reach an aerodynamic limit, the input overall compressor pressure ratio is lowered.

The blade angles are related to fluid flow angles along streamlines by two key correction parameters—incidence angle at the inlet and deviation angle at the outlet (fig. 2). There are several options for specifying each. Two of the options for both the incidence and deviation angles are the two-and three-dimensional methods of reference 1. The other incidence angle option is user-entered tabular



Figure 2. - Blade element incidence and deviation angles.

data referenced to either the centerline or the suctionsurface blade angles at the inlet. Other deviation options are user-entered tabular data and a version of Carter's rule, which was modified to account for centerline shapes other than a circular arc. The modification is shown in figure 3.

Another input aerodynamic parameter is the minimum blade choke margin  $(A/A^*)$  – 1, where A is the local streamtube cascade channel area and A\* is the corresponding area needed for choked flow. The A\* value is the area needed to pass the streamtube flow at a relative Mach number of 1.0. The effects of losses in all blade rows and energy addition in rotors are included in the computation of  $A^*$ . Choke margin depends on the flow conditions and geometry defining the channel area. If insufficient choke margin exists in a prototype design, some compromise must be made in either the aerodynamic requirements or the geometry. Minor choke margin deficiencies can usually be accommodated with adjustments in geometry. Logical procedures for geometry adjustments are not obvious; however, if the minimum margin occurs at the channel entrance, increased incidence is an effective method of relief. If a minimum desired choke margin is input, the program will adjust incidence angle up to  $+2^{\circ}$  to the leading-edge suction surface in order to attain the specified choke margin if the channel entrance is the problem. When the minimum margin occurs at other locations in the channel, the minimum value and its location are printed in the output and it is up to the user to decide if he wants to make compromises to improve the choke margin.

Blade geometry parameters.—A number of blade geometry parameters are input for the pupose of defining a blade. Blade chord is defined along flow streamlines, but for the purpose of this blade definition a radial projection of streamline chord is specified because it is more meaningful for defining a structurally sound configuration. The radially projected chord is defined from the number of blades, the tip solidity, and a normalized polynomial for the radial variation of chord. The blade is basically defined from a stacked series of gradually changing airfoil shapes or "blade elements" in the radial direction.

Each blade element, as shown in figure 4, is defined from a thickness distribution applied to a two-segment centerline. The variation of the local centerline angles  $\kappa$  with path distance can be specified by option through the parameter IDEF(IROW). If IDEF(IROW) equals zero, the  $\kappa$  for each segment varies linearly with path distance (as a circular arc). When IDEF(IROW) does not equal zero, the  $\kappa$  for each segment is expressed as a fourth-degree polynomial function of path distance. The blade angle is continuous at the transition point, but the rate at which the angle changes with distance (curvature) can be discontinuous. The ratio of curvature for the first segment to that for the second segment is defined as the turning rate ratio. When the blade local centerline angle  $\kappa$  is specified by polynomial coefficients, the turning rate ratio is controlled by the relative magnitudes of the linear term coefficients of the polynomials for each segment. However, when the segments are treated



Figure 3, - Variation of coefficient for Carter's deviation equation with location of blade element maximum camber point,

m = (0, 219 + 0, 0008916  $\gamma$  + 0, 000027085  $\gamma^2$ )  $\chi(2a/c)(2, 175-0, 035525 \gamma + 0, 00019167 \gamma^2)$ 



Figure 4. - Reference and direction nomenclature for prescribed blade element contertine and thickness polynomials.

simply as circular arcs, the turning rate ratio is a blade element input parameter.

When IDEF(IROW) equals zero, there are some options for specifying the turning rate ratio at the transition point. With the CIRCULAR option the value is set at 1.0, as for a circular arc blade element, for all blade elements in the blade row. With the TABULAR option a table of values for the elements is read. With the OPTIMUM option a value will be set by an empirical function of inlet relative Mach number. For this option the blade element will be a circular arc below a relative Mach number of 0.8. As relative Mach number increases, the ratio of first-to second-segment turning rate at the transition point is reduced. A limit of zero camber on the suction surface of the first segment is approached at an inlet relative Mach number of about 1.60.

The coefficients for the centerline polynomial (i.e., when IDEF(IROW)  $\neq$ 0) are input as a cubic function of blade span. There are two reasons for this method of specification. First, the user is more confident of specifying a relatively smooth blade surface; and second, the amount of input is reduced over that required by individual coefficients for as many as 11 blade elements.

Blade element surface definition begins with three anchor points from the centerline. These points are a maximum thickness point and the two end points. A maximum thickness value normalized by chord and its location as a fraction of chord are input. At the maximum thickness point the normal-to-centerline distance to each surface is one-half the maximum thickness, and the surface  $\kappa$  angles are equal to the centerline  $\kappa$ .

At the blade element ends the leading- and trailing-edge end circle radii normalized to chord are input. If IDEF(IROW) does not equal zero, the end configurations are ellipses with semimajor axes tangent to the local centerline. For this case the input end circle radius is used as the minimum radius value of the ellipse. For each ellipse one other parameter is input to specify elongation. The parameter is e=(b/a)-1, where b and a are the semimajor and semiminor axes, respectively. Note that as e approaches zero, the ellipse approaches a circle with the input radius.

A surface definition criterion is that the surface curve join the end circles or ellipses at a point of tangency. When IDEF(IROW) equals zero, the surface curves are defined with  $\kappa$  being a linear function of path distance for each segment. As explained in reference 2, necessary and sufficient conditions exist to completely define the surfaces when the computation is begun on the segment where the maximum thickness occurs.

When IDEF(IROW) does not equal zero, the blade

surfaces for each segment are defined by polynomial distributions of the normal-to-centerline distance. The functional relation for this distance is

$$t = \frac{t_m}{2} - a\sqrt{S_o} + a\sqrt{S - S_o} + \frac{aS}{2\sqrt{S_o}} - bS^2 - cS^3 - dS^4$$

where S is the centerline distance (normalized by chord) from the maximum thickness point. Values of S are positive in either direction from the maximum thickness point; and  $S_o$  is the maximum S, which is the distance to the point where the end ellipse intersects the centerline (fig. 4).

There are two other input parameters for blade rows. One is a material density for rotors. If a nonzero value is input for a rotor, the stacked blade will lean in both the meridional and the  $r-\theta$  planes so that the centrifugal force on a blade with the input material density will balance the aerodynamic forces at the design point. The objective is to minimize the blade root stress. With atmospheric air as the working fluid, the lean is normally only a fraction of a degree.

The final input parameter, NXCUT, controls the number and location of planes through a blade row for which fabrication coordinates are desired. If the parameter is zero, the program will set the number of XCUT's on the basis of aspect ratio, which is the ratio of overall radial to axial blade lengths. For positive parameter input values the program will determine appropriate locations for that number of planes to represent the blade. Negative parameter values trigger an option to read cards for the XCUT plane values. The number of input values expected for a blade row is the absolute value of the negative parameter.

#### Initialization

Once the input is read, a number of initialization calculations are made in subroutine START in preparation for the iterative phase of computation. The axial locations of the blade edges are approximated and the intersections of all station lines with the casing walls are determined. Checks are made to be certain that the spacing of calculation stations is appropriate. Annular stations will be shifted by the program if calculation stations cross one another or if adjacent spacing is less than 30 percent of the spacing of neighboring stations.

Streamlines are initially positioned by applying the input stream-tube weight flow fractions to the annulus area. From the input data the circumferential component of velocity and the stagnation temperature and pressure are approximated for all streamlines at all calculation stations throughout the flow field. Finally an axial velocity is computed for each station by using meanline values in a continuity calculation at the station.

#### Iteration

The general objective of the program is to obtain both an aerodynamic solution and a blade design. Both are achieved with iterative procedures. The aerodynamic design has the greater sensitivity, and it requires more iterations. The program is set up to do the aerodynamic and blade design iterations concurrently. However, the blade design is done less frequently and lags the aerodynamic iteration. The first blade design iteration occurs on the fourth aerodynamic iteration, and the final blade design pass is made after the aerodynamic solution is printed.

#### Aerodynamic Design

The aerodynamic design solution establishes complete velocity diagrams and fluid state properties on streamlines at the blade row inlet and exit. A bilevel iteration is used to arrive at the solution. In the outer loop the variables are stagnation temperature and pressure; the tangential component of velocity; and the streamline location, slope, and curvature. The inner loop is the station flow continuity calculation in which the axial component of velocity is the variable and the outer loop parameters are held fixed. An example flow field with typical placement of calculation stations is shown in figure 1.

Outer loop.—In the program the control routine for the outer loop is VDIAG. The basic procedure is station marching from inlet to outlet with streamline parameters fixed. Only after a pass through all the stations are the streamlines relocated from the current flow solution. Normally between 10 and 20 of the cycles are needed to converge to a solution.

The major part of the blade design is also controlled in the outer loop. When a blade design iteration is made, the blade edge station locations are moved to the new blade edge locations.

The tangential velocity and the stagnation temperature and pressure at a station are determined as changes from values of the preceding station on the particular streamline. For annular stations and blade row inlets the tangential velocity is determined from the conservation of angular momentum; that is, the product of radius and tangential velocity remains the same along streamlines outside the blade rows. Stagnation temperature and pressure should also be

conserved along streamlines outside the blade rows except for mixing effects from turbulence and secondary flows. The stagnation pressure distribution is input behind the rotors; so pressure gradients are reasonably well controlled in the design process without using empirical mixing terms.

In the design process the rotor energy addition must cover nonproductive losses in addition to producing a desired pressure. With the usual input options, losses are computed internal to the program. Normally there is a significant radial gradient of loss; so there is also a radial gradient of work. The stagnation temperature increase along a streamline is in almost direct proportion to the blade element work; so temperature gradients are generated. Because these gradients through compressor stages are basically additive, theoretically the gradients can grow very large. The real flows in compressors reduce this effect somewhat with fluid mixing. To at least partially account for fluid mixing in an empirical manner, a mixing term for temperature is used in the program. The mass average temperature is held constant at a station, but specific streamline values outside the blade rows are modified from the previous station values by equation (1).

$$\left(\frac{dT}{dr}\right)_{I} = \left(\frac{dT}{dr}\right)_{I-1} \exp\left\{-0.002\left(\frac{dT}{dr}\right)_{I-1}(\Delta z)\right\} (1)$$

where  $\Delta z$  is the axial distance between the adjacent stations. Future adjustments in this functional relation are probable as data from multistage compressors become available.

Stagnation temperature and pressure values are the most difficult to set at blade row exits. This is mainly because of the complex real flow effects through a blade row that must be represented either through theoretical models of loss or by empirical correlations. Representation of losses is, of course, one of the major problems for an aerodynamic solution. In this program the losses are represented by two additive components: shock losses, and all other losses.

The shock losses are a modification of those given in reference 3. This reference, in essence, gives the shock loss associated with a normal shock with an approach Mach number equal to the average relative Mach number at the suction and pressure surfaces of the blade at the normal shock. The suction-surface Mach number at the shock is determined by Prandtl-Meyer turning from the inlet.

Unless the flow is in the low transonic range, a normal shock cannot be maintained in a blade channel. Either the shock is oblique or it develops a

6

foot at the blade surface because the boundary layer cannot sustain the sudden static pressure rise. In either case the shock losses are less than those predicted by a normal shock. To empirically account for these effects, the computed normal shock loss is reduced by dividing by the average inlet relative Mach number squared.

All the other blade row losses—profile, secondary, etc.—are represented by a correlation with fraction of passage height and aerodynamic blade loading. The values for such a correlation are input in tabular form. The aerodynamic blade loading parameter in the table is the diffusion factor of reference 1. In equation form it is

$$D = 1 - \frac{V_2'}{V_1'} + \frac{\Delta(rV_\theta)}{\sigma(r_1 + r_2)V_1'}$$
 (2)

The loss parameter in the table is

$$\frac{\bar{\omega}\cos\beta_2'}{2\sigma} \tag{3}$$

where  $\bar{\omega}$  is the loss coefficient.

$$\bar{\omega} = \frac{P'_{2i} - P'_{2}}{P'_{1} - p_{1}} \tag{4}$$

The rotor exit tangential velocity is calculated directly from the Euler equation

$$H_2 - H_1 = \int_{T_1}^{T_2} c_p \, dt = U_2 V_{\theta_2} - U V_{\theta_1}$$
 (5)

Note that the enthalpy change is evaluated by using an integral for the calorically nonperfect gas; that is,  $c_p$  is a function of temperature. All state processes in the program use thermally perfect, but calorically nonperfect, gas relations; so integrations and in some cases iterations are used in several small function routines.

Inner loop.—The basis function of the inner loop is to determine the axial velocity profile at the calculation station. The axial velocity level is set by flow continuity, and the distribution is controlled by the radial equation of motion. The differential equation is developed in appendix C. The form used in the program is

$$V_m \frac{dV_m}{dl} = \left(\frac{T-t}{T}\right) \frac{dH}{dl}$$

$$+Rt\frac{d\ln P}{dl}-V_{\theta}\frac{d(rV_{\theta})}{r\,dl}$$

$$+ V_m \frac{\partial V_m}{\partial m} \sin(\alpha + \lambda) + \frac{V_m^2}{R_m} \cos(\alpha + \lambda)$$
 (6)

with

$$\frac{\partial V_m}{\partial m} = \frac{V_m}{M_m^2 - 1}$$

$$\left[\frac{M_{\theta}^2 + 1}{r} \sin \alpha + \frac{d\alpha}{dl} \sec(\alpha + \lambda) - \frac{\tan(\alpha + \lambda)}{R_m}\right]$$
(7)

A velocity gradient procedure is used to construct the axial velocity profile from the tip to the hub with the stagnation state values, the streamline characteristics, and the tangential component of velocity held fixed. Since this inner loop of the program is used many times, some effort was made to evaluate its accuracy and efficiency for typical streamline spacing. Reasonably good accuracy and stability were found to result from a rather simple procedure. Let

$$\frac{dV_m}{dl} \approx \frac{a}{V_m} + bV_m \tag{8}$$

where

$$a = \left(1 - \frac{t}{T}\right) \frac{dH}{dl} + tR \frac{d \ln P}{dl} - V_{\theta} \frac{d(rV_{\theta})}{dl}$$
 (9)

and

$$b = \frac{\cos(\alpha + \lambda)}{R_m} + \frac{\sin(\alpha + \lambda)}{M_m^2 - 1}$$

$$\times \left[ \frac{M_{\theta}^2 + 1}{r} \sin \alpha + \frac{d\alpha}{dl} \sec(\alpha + \lambda) - \frac{\tan(\alpha + \lambda)}{R_m} \right] (10)$$

With a and b constants for the l interval along the station path, the solution for  $V_m$  is

$$V_{m,j+1}^2 = \left(\frac{a}{b} + V_{m,j}^2\right) e^{2b(l-l_o)} - \frac{a}{b}$$
 (11)

A two-step procedure is used in the program. First a, b, and  $V_m$  values on the streamline j are used to determine a temporary  $V_{m,j+1}$ . The a and b values are slightly dependent on  $V_m$  so  $V_{m,j+1}$  is used to determine new a and b values. The second step uses the average of the old and new respective values of a and b to compute a final  $V_{m,j+1}$  value. This  $V_{m,j+1}$  value will then be used as the current  $V_{m,j}$  value for the next l interval.

When  $V_m$  values are set on all streamlines, flow continuity is checked by using dr integration of a piecewise cubic curve fit of  $\rho V_m r$  values at the streamlines. If the integrated weight flow is not within 0.01 percent of its specified value, the tip reference  $V_m$  is adjusted and the  $V_m$  profile is reconstructed. The method of adjusting the reference value of  $V_m$  is shown graphically in figure 5. There are two solutions to the continuity equation in compressible flow—the subsonic and supersonic solutions. When a parabolic fit of trial solutions is used to get a new trial value of  $V_m$ , the lower or subsonic solution is always sought. The  $V_m$ adjustment between iterations usually is small; so convergence normally is achieved in three or four passes.

Once convergence is achieved, the profile is back integrated to find the fraction of weight flow points represented by the streamlines. These points are saved until the outer loop pass through all the stations is completed for the purpose of relocating streamlines.

#### Blade Design

A blade is defined from stacked blade elements. The procedure for laying out blade elements and stacking them for blade definition is given in detail in



Figure 5. - Meridional velocity adjustment for flow continuity iteration.

reference 2. Only a summary description is given herein. A blade element is laid out on a cone with a center axis coincident with the turbomachine axis of rotation. The angle and location of the cone are fixed by the intersection of the streamline with the leading-and trailing-edge station lines of the blade (fig. 6).

The leading- and trailing-edge blade angles are related to aerodynamic flow angles primarily through two key correlation parameters—incidence angle and deviation angle. The user has some options for the specification of these correlation parameters, as already discussed in the section on data input. Application of incidence and deviation angles to the flow angles at the blade edges gives blade angles in the local streamwise direction. Corrections to "cascade" deviation angle for a change in radius and axial velocity are made internally to the program. These corrections are presented in reference 4 to relate deviation angle to a cascade section with equivalent circulation rather than with the same camber angle.

Because the cone angle of the associated blade element is usually a little different from these local streamwise blade angles, corrections are made with current streamwise and radial direction derivatives. The blade element leading- and trailing-edge angles are calculated from aerodynamic flow angles in subroutine BLADE.

Blade element layout.—There are several options for controlling the blade element layout (see the IDEF (IROW) parameter description in appendix B). With all but one of these options a blade element is described by a prescribed thickness applied to a prescribed centerline (fig. 4). The centerline is treated as two segments that are joined at the reference transition point. The rate of change of the local blade angle with path distance,  $\kappa = f(s)$  (fig. 4), is controlled by a fourth-degree polynomial for each segment. The coefficients for the polynomials are input, but they are scaled in the program to match blade element inlet and outlet angles. The fourth-degree polynomial



Figure 6. - Conical coordinate system for blade element layout.

representation of segment blade angle represents greater specification freedom than does the linear specification of reference 2, where the ratio of inlet-to-outlet segment curvature at the transition point is input rather than any polynomial coefficients. A summary derivation of the equations for the centerline coordinates is given in appendix D.

Blade element thickness is defined along a path that is locally normal to the centerline. The pressure and suction surfaces are equidistant from the centerline. Thickness is specified in both the forward and rearward directions from the maximum thickness point by polynomials of the form

$$\frac{t}{2} = \frac{t_m}{2} - a\sqrt{S_o} + a\sqrt{S_o - S} + \frac{aS}{2\sqrt{S_o}}$$
$$-bS^2 - cS^3 - dS^4 \tag{12}$$

The input coefficients are scaled to meet the leadingand trailing-edge ellipses at the appropriate tangency points. The control routine for the blade element layout in the program is CONIC.

Blade element stacking.—The rotating parts of turbomachinery normally operate at high stress levels because of high centrifugal force. The high centrifugal acceleration also causes stress from bending moments to be very sensitive to blade element location. Thus it behooves the designer, first, to be reasonably accurate in the stacking computation and, second, to try to minimize stresses that can be easily reduced—namely, those from the steady-state bending. The blade bending moments from aerodynamic forces can be counterbalanced by centrifugal force moments with slight blade lean in both the (r-z) and  $(r-\theta)$  planes.

The reference line for stacking purposes is a radial line through the hub stacking reference point (fig. 7). The sections used for stacking alignment are planes normal to this reference line in space. Such planes are used because their centers of area are essentially the centers of centrifugal force also. The stacking line is a line that can be leaned from the reference line at the hub reference point. For alignment purposes the planes pass through the stacking line intersection of blade elements (fig. 7). Blade sections are defined by interpolation across blade elements. When the section center of area does not match the stacking line, the corresponding blade element is translated and rotated on its cone for the stacking adjustment. Normally the adjustments decrease by about an order of magnitude for successive passes through the stacking procedure. For each pass the stacking axis lean angles in both the (r-z) and  $(r-\theta)$  planes are



Figure 7. - Location of blade sections for blade element stacking adjustments.

recomputed and adjusted if the stacking axis lean option is activated through the input data.

#### **Terminal Calculations and Output**

The program output of an example two-stage compressor is shown in table III. In general the output is printed shortly after its computation so that large arrays of data are not stored. Data are printed from each of the major phases of computation—input, iteration, and terminal. The first information (table III (a)) is the input data, which are printed directly from input routines in very nearly the order in which the input was read.

The second major part of output (table III (b)), from the iterative phase of computation, is printed to help the user monitor the solution. Although these data have little value once the solution is converged, they are quite helpful in disclosing bad input and in finding sources of problems when solutions are not achieved.

For computational stability a station aspect ratio, defined as  $(r_t - r_h)/(z_{t+1} - z_t)$ , is limited to 7 for streamline fits. When the limit is exceeded, particular stations (according to the priorities set forth in the section User Information) are eliminated from the curve fits used to locate streamlines. The first data shown from the iteration phase are a table of such calculation station information (table II (b)). On the

left is a list of calculation station locations used to compute streamlines, along with the associated aspect ratios. On the right is the input list of station locations and aspect ratios. When blade rows are stacked, the blade edge stations are relocated, and thus the station aspect ratios change. After the first stacking on iteration 4, the station aspect ratios are rechecked and changes in the station list are made if necessary.

Arrays of axial velocities throughout the flow field for each iteration are the bulk of the output printed from the iterative phase of computation. These data are useful for observing solution stability since the solution convergence criterion is based on changes of axial velocity between successive iterations. Some compressor overall parameters are shown above the velocity arrays. Parameters included are the overall values of input pressure (PR), current computed pressure ratio (CPR), enthalpy increase (DHC), and ideal enthalpy increase (DHI).

When the aerodynamic solution is converged, the overall parameters for individual blade rows and the overall cumulative values in the compressor are computed and printed. Overall temperature and pressure values are calculated by mass averaging their equivalent enthalpy values. The cumulative forward axial thrust is the axial force exerted on the rotating shaft by aerodynamic forces from the hub inlet station of the first blade row to the local point. The thrust force shown for individual blade rows is the axial force on the shaft from the trailing edge of the upstream blade to the trailing edge of this blade row. Since the blade forces on stationary blade rows act on the casing, the thrust value on the rotating shaft is simply the static pressure force on the tapered shaft in the forward axial direction. Effects of cavities below the hub flow path are not included since undetermined information about seal locations and pressure differences would be needed. The gas bending moments are values for a single blade. The bending moments are referenced to the stacking axis intersection with the flow path wall from which the blades are attached.

Sets of calculation station data for streamlines across the channel follow the overall data. For all stations, velocity components, streamline slope and curvature, and both stagnation and static values of temperature and pressure are given. For stations at blade row edges, additional information is computed and printed. These parameters are (1) a complete description of velocity triangles, (2) definition of blade elements, (3) relations between aerodynamic and blade angles, (4) aerodynamic performance parameters, (5) streamline choke area margin, (6) local blade force intensity in pounds per radial inch on a blade, and (7) blade edge direction derivatives  $r d\theta/dr$ .



Figure 8. - Coordinate system for blade section output data.

If the input options call for fabrication coordinates, they are printed after all the aerodynamic output. The coordinates are printed in tabular form with four sections on a page, as shown in table III(c). The length coordinate L is a distance along the chord line, with the most forward point being zero (fig. 8). The pressure- and suction-surface height values  $H_p$  and  $H_s$ , respectively, are referenced from the chord line. Surface height values are given for at least 20 round-value increments of L; also surface coordinates are given for three specific values of L—the blade trailing edge and the leading- and trailing-edge ellipse tangency points with the surfaces.

A blade section's properties are shown above its table of coordinates (table III(c)). The blade section radial location, the L and H stacking point values, and the section setting angle are given to locate and orient the blade section. The blade section center-of-area coordinates, section area, minimum and maximum moments of inertia through the center area, orientation angle of the maximum moment of inertia with respect to the axial direction, section torsion constant, and twist stiffness are all useful information for design and stress analysis.

After all the fabrication coordinates for a given blade row are printed, the blade section coordinates are presented in another orientation that may be more useful for further flow analysis. With a stacking axis reference, coordinates for the same blade sections are given in the axial and tangential directions.

#### User Information

Since earlier sections of the report discuss the input, output, and main centers of program control, this discussion is directed at the user who is trying to get the program on his computer and to make it run efficiently. Some facts about the program as well as

some advice about the input are given.

The code, which is written in FORTRAN, takes about 80,000 decimal words of computer storage. The call relation among the subroutines is shown graphically in figure 9. Note that the tickmarks on the routine boxes in the figure mean that there are other call lines to the routine. These lines are shown on the other part of the figure where the routine name is repeated. The program running time on either a Univac 1110 or an IBM 360-67 is about 2 minutes for a single-stage compressor and about 5 minutes for a five-stage compressor. Several of the key indices in COMMON/SCALAR/ are described in the following tabulation.

#### Index

I

#### Description

calculation station index after preliminary calculations are completed. The program is dimensioned for 50 calculation stations and 20 blade rows, of which only 10 can be rotors. Each blade row accounts for two calculation stations—one at the leading edge of the blade and the other at the trailing edge. Rotors, stators, and annular calculation stations can be put together in any combination with the following constraints: The number of stations cannot exceed 50. There must be at least four annular stations ahead of the first blade row and at least three annular stations behind the last blade row.

#### IROTOR rotor index

IROW blade row index

J streamline index. Streamlines are numbered from one at the tip.

K loss set index for subroutine INPUT

As indicated in the table at least four annular stations are expected upstream of the first blade row and at least three downstream of the last blade row. Additional annular stations can be located between blade rows but not within blade rows; that is, not between the inlet and outlet stations of a given blade row.

Streamline intersections of station lines are determined by integrating velocity profiles at station lines to the specified mass flow fractions. Streamline slope and curvature are determined from streamwise

curve fits of these intersections. The consequence of this procedure is that the number of iterations and the program convergence characteristics are dependent on the calculation station location although the final solution, in general, is not very dependent on the location of the calculation stations.

The user can reduce the number of iterations and hence the program running time with good placement of calculation stations. The first calculation station should be placed upstream of the first blade row a distance at least equal to two or three annulus heights. The best far-upstream inlet condition is straight axial flow with no wall curvature. Less iterations are usually needed for more widely spaced calculation stations; however, enough iterations should be used to properly locate the streamlines. Calculation station spacing can vary somewhat along the annulus but, as a general guideline, successive station increments should not be changed more than 35 percent.

When calculation stations are input close together, only some of them will be used for locating the streamlines if the station aspect ratio is above 7.0. This is done for program stability and convergence toward a solution. If the user does not specify which stations to eliminate from the streamline location procedure, the program has logic to do so when the station aspect ratio exceeds 7.0. The priority of stations kept for streamline location is as follows: (1) blade row exit stations are always used, (2) blade row inlet stations are kept if the blade row aspect ratio is less than 7.0, and (3) an annular station is kept if neither adjacent station is closer than the aspect ratio tolerance.

The user can also specify that particular annular stations not be used for streamline definition through the alphanumeric station designation. The program looks for ROTO for rotor, STAT for stator, or ANNU for regular annular. Any other combinations of letters, numbers, or symbols designates the station as the extra-annular type. All the computations that are done for regular annular stations also are done for the extra-annular stations. The only difference is that the new streamline locations at that station are not used for the curve fit for streamline parameters. When the new curve fit streamlines are established, their intersections with the station line are found and the streamline parameters at that point are used in the equation-of-motion calculations.

The arrays of points that describe the hub and tip casing contours should extend at least from the furthest upstream calculation station to the furthest downstream one. There should be enough data points to adequately define the desired casing contours with a spline curve fit.

The input boundary layer blockage factors have an option. A displacement thickness from the wall can

be specified instead of blockage as a fraction of annulus height. This is done by using a negative number the magnitude of which is the value of displacement thickness.

A total pressure profile can be input in place of losses. Although the way to activate this option has been discussed earlier, its full effects need to be understood. This option is activated for a particular blade row by using zero or a negative number in ILOSS (IROW). When the option is activated, an additional data card is required for that blade row (fig. 12(a)). The first parameter PTT(IROW), or  $P_t$  in the equation, is the blade row tip (larger radius) total pressure in psia. The five other parameters are polynomial constants  $P_1$  to  $P_5$ ; therefore a total pressure at some other radial location is

$$P = P_1(1.0 + P_1R + P_2R^2 + P_3R^3 + P_4R^4 + P_5R^5)$$

where

$$R = \frac{r_t - r}{r_t - r_h}$$

or the fraction of passage height at the blade row exit. Because these coefficients are stored into the locations of loss sets 4 and 5, those loss sets are destroyed for the run even if read in.

When the pressure level is specified instead of losses for the last blade row of the compressor, there is an overspecification of data because the inlet pressure and compressor pressure ratio are input too. In computation the pressure ratio predominates; so the pressure levels will be adjusted as necessary. Also note that when the pressure level is input, the total temperature profile must also be input (table II).



(a) Subroutines used in input and iteration phases,

Figure 9. - Line representation of subroutine calls.



(b) Subroutines used for terminal calculations.

Figure 9. - Concluded.

At a rotor exit the total temperature level can be input in place of the cumulative energy addition fraction. If the input CRENGY (IROTOR) is greater than 2.0, the value is interpeted to be the rotor exit tip temperature in degrees Rankine. In the preexecution phase of computation the temperature is converted and used as an appropriate energy addition value. The polynomial coefficients for the radial distribution of total temperature are input in the former pressure polynomial coefficient locations, PARA(IROW)...PRE(IROW). During regular iteration the program will use the polynomial form

for rotor exit total temperature distribution when |PRA(IROW)|≥100.0. The polynomial coefficient represented by PRA(IROW) is found by adding or subtracting the number of 100's needed to give a remainder in the range −100.0 to 100.0.

When the total temperature level is input, the total pressure level can be set in two ways. It can either be determined from losses or input directly by a polynomial, as discussed earlier in this section.

The description of parameter variations with polynomials assures smoothness, but the specification of polynomial coefficients is not always

easy. In most cases the range of applicability for the polynomial independent variable is 0 to 1.0. This considerably eases the burden on the user since computation is normally not needed to choose and set the polynomial coefficients. When the higher degree terms are used to define distributions, the end conditions are relatively easy to meet. However, some simple computations are needed to check the distribution.

Another caution is that combinations of reasonable-looking numbers often give blade elements that one can judge to be poor by visual observation. The capability to make machine graphic plots of blade elements and the channel formed by adjacent blades is very useful. Such plots are made in subroutine EPLOT, which is activated by the input parameter OPM. Since graphics packages differ with computer systems, the program presented will not necessarily work directly on a user's computer. However, it is suggested that the user make the conversions necessary to plot the blade element surface arrays generated in EPLOT.

The determination of acceptable polynomial coefficients for the centerline and thickness of an entire blade row can be difficult when high-degree terms are used. This task was eased considerably at NASA Lewis with an interactive graphics capability. A series of computer programs were developed to design particular blade elements from actual centerline angle and thickness distributions. These data were then curve fit by least-squares methods to produce the input required by the program described in this report. Visual observation of blade elements

generated by this input for several fractions of annulus height is very helpful in avoiding obviously unacceptable configurations.

The computer peripheral equipment also can be used by some other subroutines when options are activated with the parameter OPO. When the punch option is activated, the tables of fabrication coordinates shown on the listing are punched on cards in subroutine COORD. When the plot option of OPO is activated, subroutine BLUEPT plots tables of fabrication coordinates on a blueprint format. If a plot option is activated by either OPM or OPO, subroutine MERID is also called. It produces a meridional plane plot of the annulus flow path with the calculation stations and streamlines included.

This code is interfaced with three other NASA codes through punched card output. Input for the TSONIC code (ref. 5), which is a blade-to-blade channel flow analysis code, is obtained with the T option of OPM. Input for the MERIDL code (ref. 6), which is a more detailed hub-to-shroud flow analysis code within a blade row, is obtained with the M option of OPO. Input for an off-design performance prediction code that is being developed at NASA Lewis is obtained with the O option of OPM.

The computer program can be obtained from COSMIC, 112 Barrow Hall, University of Georgia, 30601. The COSMIC program number is LEW-13505.

Lewis Research Center National Aeronautics and Space Administration Cleveland, Ohio, December 29, 1980

# Appendix A

# Symbols

| A                  | annulus area; also streamtube channel area                                    | $\boldsymbol{\it U}$  | local blade velocity, ft/sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------|-------------------------------------------------------------------------------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $A_i$              | polynomial constants for as a function of S                                   | и                     | generalized variable in a differential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| a                  | sonic velocity, ft/sec; also a coefficient in                                 |                       | equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    | velocity gradient equation; also a                                            | V                     | velocity, ft/sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    | polynomial coefficient                                                        | $\boldsymbol{v}$      | generalized variable in a differential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| b                  | coefficient in velocity gradient equation;                                    |                       | equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| _                  | also a polynamial coefficient                                                 | w                     | weight flow, lb/sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| C                  | constant                                                                      | z                     | axial distance, in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $C_i$              | polynomial constants for conic radius as a function of S                      | α                     | angle of streamline with reference to axial direction, deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| С                  | blade chord, in.; also a polynomial coefficient                               | β                     | flow angle relative to meridional direction, deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $c_p(t)$           | specific heat function for constant                                           | γ                     | blade chord angle, deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| •                  | pressure, ft/sec <sup>2</sup> °R                                              | δ                     | deviation angle, deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| D                  | blade element diffusion factor                                                | E                     | angular coordinate on blade element layout                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $D_{i,i=1,\infty}$ | simplified nomenclature, $D_i = -(C_i)/(i)R_t$                                |                       | cone, rad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| d                  | polynomial coefficient                                                        | $\boldsymbol{\theta}$ | circumferential direction, rad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| f                  | friction force, ft/sec <sup>2</sup>                                           | κ                     | blade angle relative to local conic ray, deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| H                  | stagnation enthalpy, ft/sec <sup>2</sup>                                      | λ                     | local angle of calculation station line with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $H_p$              | pressure-surface height, in.                                                  |                       | reference to radial direction, deg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $H_s$              | suction-surface height, in.                                                   | ρ                     | static density, slug/ft <sup>3</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| h                  | static enthalpy, ft/sec <sup>2</sup>                                          | σ                     | blade element solidity, chord/tangential                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| i                  | integer index; also incidence angle, deg                                      |                       | spacing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| j                  | integer index                                                                 | <i>τ</i><br>_         | time, sec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| k                  | curvature in curvilinear coordinate system,                                   | ω                     | loss coefficient                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    | ft <sup>-1</sup> ; also an integer index                                      | Subscrip              | its:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| L                  | distance along chord line, in.                                                | ca                    | center of area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| I                  | distance along calculation station line, in.                                  | I                     | calculation station index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| M                  | Mach number                                                                   | i                     | ideal value, as by an isentropic process                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| m                  | streamline direction in meridional plane,                                     | j                     | streamline index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    | in.; also an integer index                                                    | le                    | leading edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| n                  | streamline normal direction in meridional                                     | m                     | streamline direction in meridional plane;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| P                  | plane, in.                                                                    |                       | also maximum thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| =                  | stagnation pressure, lb/ft <sup>2</sup> static pressure, lb/ft <sup>2</sup>   | n                     | streamline normal direction in meridional                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| p<br>D             | conic coordinate radius, in.                                                  |                       | plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| R                  | ,                                                                             | 0                     | initial value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $K_{i,i=1,\infty}$ | series coefficients for polynomial,<br>$R_1/R = 1 + R_1S + R_2S^2 + R_3S^3 +$ | sp                    | stacking point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $R_m$              | radius of curvature in meridional plane, ft                                   | t                     | transition point                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| •                  | gas constant, ft lb/slug °R                                                   | te                    | trailing edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| О1<br><i>r</i>     | radius from axis of rotation, in.                                             | $\boldsymbol{	heta}$  | circumferential direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| S                  | blade element path distance, in.                                              | 1                     | blade row inlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | entropy, ft/sec <sup>2</sup> °R                                               | 2                     | blade row outlet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| s<br>T             | stagnation temperature, °R                                                    | Supersor              | ipt:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| t                  | static temperature, °R; also blade element                                    | ()'                   | relative to rotor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| •                  | thickness, in.                                                                | ()*                   | flow at sonic condition $(M' = 1.0)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    |                                                                               | ` '                   | The state of the s |

## Appendix B

### Input Parameters for Compressor Design Program

The input variables for the compressor design program and the associated options are described in this appendix. The format for the input data is given in figures 10 to 12. The calculation station and blade row data sets are input in the order in which they occur in the compressor flow. If any of the sets of option cards for blade rows are needed, they are considered part of the blade row set and they follow the particular basic blade row data set in the order shown in figure 12. The only exception is any XCUT cards that are read in the output routines. These cards are at the end of the input data, but of course the sets of XCUT values must be placed in the same order as the stations specifying them.

In the following list of parameters the independent variable S appears frequently. Since it is an important blade element definition variable, this preliminary explanation of its definition and usage is given. The variable S in equations for the blade element centerline is the distance in either direction from the transition point as a reference. The variable S in equations for the thickness distribution is the distance in either direction from the maximum thickness point as a reference. All four of these usages of S are shown in figure 4. In all cases, S values are positive away from their reference point. The S values for thickness definition are normalized by blade element chord. The S values for centerline definition are also normalized by blade element chord when IDEF(IROW) is less than zero; however, when IDEF(IROW) is greater than zero, S is normalized to 1.0; that is, the maximum segment S is 1.0.

| · · · · · · · · · · · · · · · · · · · |                      |                                                |                    | <u> </u>          | <u> </u>         |                                                                     |                      |                   |
|---------------------------------------|----------------------|------------------------------------------------|--------------------|-------------------|------------------|---------------------------------------------------------------------|----------------------|-------------------|
|                                       | <del></del>          | T1 T L E ( )                                   | 1,1 1,18           |                   | <del></del>      |                                                                     | <del></del>          |                   |
| NS TRM N BRO                          | OWS NA N.L.          | OSS NTIP NHUB                                  | ROT                | FIOWIL            |                  | M                                                                   | 10 L F               |                   |
| · °                                   | PCO(1)               | CPCO                                           |                    |                   | 00(3)            |                                                                     |                      |                   |
| c                                     | PCO(4)               | C P C O (                                      | 15)                | C P               | (* () ( (6 )     |                                                                     |                      |                   |
| FLOFRA (                              | 1) FLOFRA            | (2) FIOFRA(3)                                  |                    | FLOFRACITUBES     | 9 )              |                                                                     |                      |                   |
| TO (1, 1                              | ) TO(1.              | 2) TO(1,3)                                     |                    | FO(1, NS TR       | M )              |                                                                     |                      |                   |
| PO (1 1                               | ) PO(1,:             | 2 ) (9011, 3)                                  |                    | PODA, NSTR        | <u>S.i.</u>      | Use as many ca                                                      | mle a aran a         | u. far            |
| VTH (1.                               | I) VTH(I             | (2) V3H(1,3)                                   |                    | V Th (1, NSTRM)   | <b>-</b>   }     | each variable.                                                      |                      |                   |
| N T 1 1                               | XTIP(                | 2 ) XTIP(3)                                    |                    | XTIPENTI          | PY               | on card.                                                            |                      |                   |
| RTIP(1                                | ) RTIP(              | 2 ) RTTP(3)                                    | -                  | RILLIONILL        | P 1              |                                                                     |                      |                   |
| X II U B (-1                          | XHUB (               | 2) XHUB(3)                                     |                    | NHUBENHU          | B)               |                                                                     |                      |                   |
| RH U B ( 1                            | ) RHUB(              | 2) RHUB(3)                                     |                    | RHUBENHU          | в) 🕽             |                                                                     |                      |                   |
| 1 0 8 ( 1,1,1)                        | D I. O S (2, 1, 1) D | LOS(3, 1, 1) DLOS(4, 1, 1                      | ) D LOS (5, 1, 1)  | D F T AB(1, 1, 1) | D F TAB(2, 1, 1) | ) FTAB (3, 1, 1)                                                    | D I TABO, 1, 1       | 1 D F TAR (5-1, 1 |
| 1 08 (1, 2, 1)                        | D 1. OS (2, 2, 1)    |                                                | D1 O a 65, 2, 1)   | DETA (0, 4, 1)    | DI TAB (2, 2, 1) |                                                                     | <b>l</b> .           | DT CAF (6, 2, 1)  |
|                                       |                      |                                                |                    |                   |                  |                                                                     |                      |                   |
| nosu sentan)                          |                      |                                                | prosa, strain      | DE TAB(1,NSTRM,1) |                  | <u>.</u>                                                            | <u> </u>             | DETABLE AS TROU   |
| 108(1, 1, 2)                          | DLOS (2, 1, 2) D     | LOS (3, 1, 2) DLOS (4, 1, 2                    | 0 1. 0 8 (5, 1, 2) | D FTAB (1, 1, 2)  | DF TAB(2, 1, 2)  | DETAB (3, 1, 2)                                                     | D I TAB64, 1, 2      | DETAB (5, 1, 2)   |
| LOS(1, 2, 2 )                         | D1 O8 (2, 2, 2)      |                                                | D L O S (5, 2, 2)  | D FTAB (1, 2, 2)  | D FTAB (2, 2, 2) |                                                                     | l .                  | DF FAB (5, 2, 2)  |
|                                       |                      |                                                |                    |                   |                  |                                                                     |                      | \                 |
| IOSG NSTEMA                           | l []                 |                                                | blos(5NSTRM2       | DCTAB(LSSHM,2     |                  | Sote If the five                                                    |                      | i i               |
|                                       | •                    |                                                |                    |                   |                  | 0 DI IAB <i>i</i> K, J.,<br>, J., 0, I, 0, 5, 0<br>alues are implie | 6, and 0.7, th       | ese               |
|                                       |                      |                                                |                    | <del>  •</del>    |                  | eld of card blan                                                    |                      |                   |
| •                                     | •                    | •                                              | •                  |                   | _                |                                                                     |                      |                   |
|                                       | •                    |                                                | •                  |                   |                  |                                                                     |                      |                   |
|                                       | •                    |                                                | <u> </u>           | l                 |                  |                                                                     |                      |                   |
|                                       |                      | and the same and the same and the same and the | •                  | <del> </del>      |                  | *********                                                           | I wante and a second |                   |
|                                       |                      | 08/N1/088,1/3) D1/08/N1/088,                   |                    |                   |                  | #CLAB(NIUSS, 1, 3)                                                  | IT TABESTOSS I       |                   |
| 108(3108)230                          | 0( 08(N   08822))    |                                                | p) OS(N) OSS(2,3)  | DETABOLOSS(2,1)   | FIAB(NIOS, 2,2)  |                                                                     | 1                    | DETAROLOS 2.3     |
|                                       | •                    | * * * * * * * * * * * * * * * * * * *          |                    |                   |                  |                                                                     |                      |                   |
| MOTOR, NEIRALD                        |                      |                                                | TONNOR SERVE       | DETAILS HE STITE  |                  |                                                                     |                      | PETATE NEOFENSTR  |

Figure 10. - Input data format of general information.

| A      | A   |      | Z T | ľ. I | Р ( | ſ   | N / | A, B  | z | нс | . 13 | ( | N   | A ( | 3.3 |     | B  | Γ.       | 1 )  |      |     | f.         | 11  | ( 1 | )  | T   | BL  | E  | ΕĐ   | (1    | , 7 |     |       |      |                    |      |    | 4    |     |      |       |  |
|--------|-----|------|-----|------|-----|-----|-----|-------|---|----|------|---|-----|-----|-----|-----|----|----------|------|------|-----|------------|-----|-----|----|-----|-----|----|------|-------|-----|-----|-------|------|--------------------|------|----|------|-----|------|-------|--|
|        |     |      |     |      |     |     |     |       |   |    |      |   |     |     |     |     | (á | a) /     | Ann  | ular | sta | tion       | ١5. |     |    |     |     |    |      |       |     |     |       |      |                    |      |    |      |     |      |       |  |
|        | . 7 |      | _   |      | _   |     |     | -     | _ |    | _    | _ | _   | _   | _   |     |    |          |      |      |     |            |     | _   |    | _   |     | _  | _    |       | _   |     |       |      |                    |      |    |      |     |      |       |  |
| ^      | 싀   |      | 2.7 | M.   | b ( | 1   | N A | 1. B  | Z | н  | . 13 |   | N   | Al  | 3 1 | B 1 | ľ  | <u> </u> | - 1) |      | В   | $H^{\ell}$ | 1 - | - 1 | )  | 13  | LE  | EJ | ) (  | 1 -   | 1)  |     |       |      |                    |      |    |      |     |      |       |  |
| . LM ( | ı   | ROW) | ΑI  | 11.  | М ( | 1 1 | 4 ( | w     | 1 | F  | 3 T  | ( | )   |     | П   | Į.  | н  |          | )    |      | 19  | I.E        | FI  | D / | 1) | Je. | REN | G¥ | (IRC | 77()} | 0   | BM/ | ATI ( | /IRO | ) <sup>(</sup> )Y) | R)   | N: | x[c] | 1 1 | i et | K (   |  |
| S(ROW) | Χſ  | OPM  | ٦,  | эP   | T   | 74  |     | ) P ( | Ţ |    |      |   | \ В | T   | 7.1 | ВЕ  | ╗  |          |      |      | r.  | c.         | Ŀ   | , , |    | 7   | D D | 1  | , ·  |       |     |     |       |      | - 14               | 1, , | ٦, |      | K 1 |      | 1 544 |  |

(b) Rotors.

| AA                 | ZTIP(INAB)        | ZHIB(INAB)       | BT(1-1)   | BH(1-1)   | B L E E D ( 1 - 1 ) | <u> </u>                 |
|--------------------|-------------------|------------------|-----------|-----------|---------------------|--------------------------|
| DLIMITROW          | ) A LI M (I ROW)  | BT(1)            | BH(1)     | BLEED(I)  | 7773977778          | ///////YXCL Lakow        |
| ECRETATION X O P N | ов XX ово         | AA AB            | вв 💥 💥    | CC XXXXV  | DD //// · ·         | E E E B A C BOKE (IR OW) |
| BLADES (IRO        | v, s ollid (irow) | T1 1. T ( 1 ROW) | PRA(IROW) | PRB(IROW) | PRC (TROW)          | PRD CIROW: PREcirow;     |

(c) Stationary blade rows.

Figure 11. - Input data format of calculation stations and basic blade row information.

| Parameter                                                   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Format |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| AA                                                          | This parameter is used twice to indicate options in alphanumeric form. As the first term of a data set it indicates the type of calculation station or blade row (ANNULAR, ROTOR, or STATOR). Any station description other than ANNU, ROTO, or STAT will be treated as an extra-annular station, that is, the streamlines will not be forced to pass through the streamtube-fraction-of weight-flow point as determined by continuity at the station. The second use of AA later in the data set is the incidence angle option for blade design purposes. Interpretable options are 2-D, 3-D, SUCTION, and TABLE. A noninterpretable incidence option word is set to the 2-D option. The 2-D and 3-D options mean incidence angles are determined by procedures in reference 1 for the respective option. The suction option gives zero incidence to the suction surface of the blade at the leading edge. The TABLE option means the blade incidence angles for the blade element will be input in tabular form, INC(IROW, J), at the end of the data set. | A4     |
| AB                                                          | This parameter completes the incidence TABLE option discussed above. To reference incidence to the suction surface at the leading edge, the eight spaces of the card for AA and AB must read                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | A4     |
|                                                             | TABLE SS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |        |
|                                                             | AA AB                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |        |
|                                                             | (If AB is anything other than E SS, the incidence angles will be referenced to the leading-edge centerline.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
| ACF(1,IROW),<br>ACF(2,IROW),<br>ACF(3,IROW),<br>ACF(4,IROW) | polynomial coefficients for linear coefficient of blade element centerline angle equation for front segment, $\kappa = \kappa_l + aS + bS^2 + cS^3 + dS^4$ with $a = ACF1 + ACF2 \cdot R + ACF3 \cdot R^2 + ACF4 \cdot R^3$ , where $R = (r_t - r)/(r_t - r_h)$ —fraction of passage height at blade leading edge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F10.4  |
| ACR(1,IROW),<br>ACR(2,IROW),<br>ACR(3,IROW),<br>ACR(4,IROW) | same as above for rear segment with same R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F10.4  |

|                   | T           |                        |                        |                    | a a jobara at a latar | *****               |                     |               |
|-------------------|-------------|------------------------|------------------------|--------------------|-----------------------|---------------------|---------------------|---------------|
| P F Fa            | ROW         | PECCLAROW              | рт ссг, ню <u>м</u> э  | PTC(S, 1 ROW)      | PT C ( 4 ,1 R QW)     | PTC(5, LROW)        |                     |               |
|                   |             |                        |                        | (a) If ILOSS(      | IROW) ≤ 0.            |                     |                     |               |
| VIEL              | ROW         | PBL+ (LROW)            | TCLF(IROW)             | TDLF(LROW)         | TATE (JRO W)          | TBTF(IROW)          | T C T E ( L ROW) TD | Т1, (Т ко%    |
| AMAX              | ROW         | T B MAX (IR OW)        | TC MAX(IROW)           | FD MAX (IR OW)     | CHORD AGROW           | CHORD B(IROW)       | сноя в с акомут в   | FF(LROW       |
|                   |             |                        | (b) If                 | OP is DESIGN, CO   | ORD, PUNCH, or        | ALL.                |                     |               |
| с F с <b>1,</b> I | R O/4 -     | $A \leq 1 + (2, TROW)$ | ACF(3, LROW)           | ACF(1, LROW)       | BCF(1, IROW)          | B C F ( 2, TR O W)  | BCF(3, fRown BC     | F (4, 18 O W  |
| CF(1, )           | ROW         | CCF(2, LROW)           | CCF(B, IROW)           | C C F (4, 1 R O W) | DCF(1, IROW)          | D C F (2, 1R O W)   | DCFG, LRGW) DC      | F (4, 1R O W  |
| CROL              | ROWI        | ACR (2, TROW)          | ACR(3, IROW)           | ACR(4, 1ROW)       | BCR(1, IROW)          | B CR (2, 1R O W)    | BCRG, IROWI BC      | R (4, 1 R O W |
| CRCL,             | ROW)        | CCR(2, TROW)           | CCR(3, IROW)           | CCR(4, IROW)       | D C R (1, 1 R O W)    | DCR(2, IROW)        | DCR(3, IROW) DC     | R (4, 1R O W  |
| L F (1,           | ROWI        | E L F (2, T R O W)     | E L E ( 3, I R O W )   | ELE(4, IROW)       | ETE(1, 1ROW)          | ETE(2, 1P OW)       | ETE(3, IROW) ET     | E (4, 1 R O W |
| T F (1, 1         | ROW         | ATF(2, IROW)           | AT F ( 3, 1 R O W).    | ATF(4, IROW)       | BTF(1, IROW)          | BTF(2, IROW)        | BTF(3, IROW) BT     | F (4, I R O W |
|                   | <del></del> |                        | ~~~                    |                    |                       |                     | DT F(3, 1 R O W) DT |               |
| T R (1, )         | ROWI        | ATR(2, LROW)           | ATR(3 IROW)            | A , R (4, TROW)    | BTR(1, LROW)          | BTR(2,1ROW)         | BTR(2, JROW) BT     | RIA, IROW     |
| TR(1, 1           | ROWI        | CTR(2, LROW)           | CTR(B, CROW)           | CTR(4, TROW)       | DTR(1, 1 ROW)         | DTR(2, IROW)        | DTR(5, 1 ROW) DT    | R (4, IROW    |
|                   |             |                        |                        | (c) If IDEF(IR     | (OW) > 0.             |                     |                     |               |
| ** C ( T )        | R O W; 1)   | INC(IROW, 2)           | IN - 1 R OW, 31        | PC(IROW, 4)        | -                     | L S C(LROW,NSTRM)   | if AA = TABL        | Æ             |
| EV( LR            | 0 %, 1)     | DEV(TROW,2)            | DEV( ROW, 9)           | DECHROW, 4)        |                       | D F V(BLOW, NSTRM)  | ii BB - TABI        | Æ             |
|                   |             | PHI(IROW,              | management of the same |                    |                       | P H I (IHOW, NSTRM) | it cc = tabl        | d.            |
| RANSGR            | ) W , 1 )   | TRANS(IROW; )          | CHANS (IR - W.C)       | TRANS (IROW, 4)    |                       | TRANSOROW, NSTRM    | ii DD = TABI        | .F            |
| M ' X(1 E         | 0 W,1)      | Z MAX (LROW, 2)        | ZMAX (LROW, 3)         | Z MAX(IROW,4)      |                       | ZMAX(IROW, NSTRM)   | il ee tabl          | E.            |

| VTH(I-1,1)VTH(I-1,2)VTH(I-1,3) | V T H(I - 1, i) V T H (I - 1, 5) P O (I - 1, 1) | PO(1-1, 2) PO(1-1, 3) PO(1-1, 4) PO(1-1, 5) |
|--------------------------------|-------------------------------------------------|---------------------------------------------|
|                                |                                                 | PO(1,2) PO(1,3) PO(1,4) PO(1,5)             |

#### (e) If OP is VEL. DIA.

| × | CF   | T               | (1) | L | xct  | т (   | 2,    | T        | X | ďε | Т ( | 3 ) | Τ        | λ  | C  | T  | (4  | , ]    |     | хс             | 1. 1 | Γ(. | 5)  |                          | х  | cг | Т ( | 6 1     |   |                | хc | ťŤ          | ( 7 | 7 ) | Γ        | Ī            | C   | ľΤ | ( 8               | ,   |
|---|------|-----------------|-----|---|------|-------|-------|----------|---|----|-----|-----|----------|----|----|----|-----|--------|-----|----------------|------|-----|-----|--------------------------|----|----|-----|---------|---|----------------|----|-------------|-----|-----|----------|--------------|-----|----|-------------------|-----|
| × | CI   | т               | (9) |   | x ct | Έ (   | 1 0   |          | _ | _  |     | _   | -I       | _> | C  | T  | (NC | 2      | * × | $\overline{D}$ | 1    | Z   |     | $\langle \Sigma \rangle$ | Ç, | ,  | £λ  | ٠, ,    | 1 | $\mathfrak{D}$ | () | 72          |     |     |          | $\mathbf{F}$ | , , |    | $\overline{\Box}$ |     |
| x | СŢ   | Т               | (1) | L | хст  | т (   | 2 ( ) | ${ m L}$ | X | Ċυ | Τ(  | 3)  | ${ m I}$ | x  | ct | ·T | (4  | $\Box$ |     | хc             | t' j | r ( | 5.) | L                        | x  | qτ | Т(  | -<br>6) |   |                | ХC | <u>(' 7</u> | ٦.  | 7.) | $\Gamma$ | $\int_{S}$   | ( c | υT | ع                 | . , |
| [ |      | $\cdot \square$ |     |   |      | •     |       |          |   | •  |     |     | ,        |    |    |    |     |        |     |                |      |     |     |                          |    | •  |     |         |   |                |    | •.          |     |     |          | Τ            |     | •  |                   |     |
| ļ | •    | •               |     |   |      |       |       |          |   |    |     |     |          |    |    |    |     |        |     |                | •    |     |     |                          |    | •  |     |         |   |                |    | •           |     |     |          |              |     | •  |                   |     |
| l | •    | •  {            |     |   |      |       |       |          |   | ٠  |     |     |          |    | •  | •  |     |        |     |                | ٠    |     |     |                          |    | •  |     |         |   |                |    | ٠           |     |     |          | 1            |     | •  |                   |     |
| l | ٠. ٠ | 1               |     |   |      | •<br> |       |          |   | •  |     |     |          |    |    | •  |     |        |     |                | •    |     |     |                          |    | •  |     |         |   |                |    | •           |     |     |          | 1            | ٠.  | •  |                   |     |

#### (f) If NXCUT(IROW) < 0.

Figure 12. - Input data format of additional blade row information if needed by the options.

Parameter

Description

**Format** 

ALIM(IROW)

For a data set designated ROTOR, ALIM(IROW) is the minimum allowable relative flow angle (deg) leaving the rotor hub. For a data set designated STATOR, ALIM(IROW) is the maximum Mach number entering the stator at the hub. The program will reduce the stage energy addition to satisfy these conditions if a limit criterion has been reached during computation. If no aerodynamic limits have been reached in some other stages of a multistage compressor, the program will try to pick up the energy loss of the limiting stage in the stages free of aerodynamic limits. If all stages have reached some aerodynamic limit, the overall compressor pressure ratio is degraded to get all stages within the specified aerodynamic limits. The most efficient way to run the program is to specify the stage energy addition levels so than aerodynamic limits are not reached or at least not reached in a drastic fashion.

| Parameter                                                   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Format |
|-------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| ATF(1,IROW),<br>ATF(2,IROW),<br>ATF(3,IROW),<br>ATF(4,IROW) | polynomial coefficients for first coefficient $a$ of blade element thickness equation forward of maximum thickness point $\frac{t}{2c} = \frac{t_m}{2c} - a\left(\sqrt{S_o - S} - \sqrt{S_o} + \frac{S}{2\sqrt{S_o}}\right) - bS^2 - cS^3 - dS^4$ with $a = \text{ATF1} + \text{ATF2} \cdot R + \text{ATF3} \cdot R^2 + \text{ATF4} \cdot R^3$ , where $R$ is fraction of passage height at blade leading edge and $S_o$ is distance from maximum thickness point to centerline intersection of edge ellipse (fig. 4)                                                                                                                                         | F10.4  |
| ATR(1,IROW),<br>ATR(2,IROW),<br>ATR(3,IROW),<br>ATR(4,IROW) | same as above for rearward thickness with same R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | F10.4  |
| ВВ                                                          | deviation angle option for blade design purposes. Interpretable options are 2-D, 3-D, TABLE, CARTER, and MODIFY. Noninterpretable input is set to the 2-D option. For the 2-D and 3-D options, deviation angles are determined by procedures of reference 1 for the corresponding option. The CARTER and MODIFY options are now the same in the program. They indicate the use of a Carter's rule with a modification when the front and rear segments of a blade element have different camber rates. The TABLE option means that the blade deviation angles for the blade elements will be input in tabular form, DEV(IROW, J), at the end of the data set. | A4     |
| BCF(1,IROW),<br>BCF(2,IROW),<br>BCF(3,IROW),<br>BCF(4,IROW) | polynomial coefficients for quadratic coefficient of blade element centerline angle equation for front segment, $\kappa = \kappa_t + aS + bS^2 + cS^3 + dS^4$ with $b = BCF1 + BCF2 \cdot R + BCF3 \cdot R^2 + BCF4 \cdot R^3$ , where $R = (r_t - r)/(r_t - r_h)$ —fraction of passage height at blade leading edge                                                                                                                                                                                                                                                                                                                                          | F10.4  |
| BCR(1,IROW),<br>BCR(2,IROW),<br>BCR(3,IROW),<br>BCR(4,IROW) | same as above for rear segment with same R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | F10.4  |
| BH(I)                                                       | hub blockage factor for each calculation station; fraction of the station annular area to be allowed for hub annular surface boundary layer blockage. The hub streamline will be displaced away from the physical wall a distance that gives the specified annular fraction. Negative input values are used as the magnitude of boundary layer displacement in inches.                                                                                                                                                                                                                                                                                        | F10.4  |
| BMATL(IROTOR)                                               | rotor material density (lb/in <sup>3</sup> ). If a positive nonzero number is input, the blade will be stacked so as to balance out gas bending moments with the centrifugal force moment for the material density. Because the hub stacking point stays fixed, the tip location is moved if necessary.                                                                                                                                                                                                                                                                                                                                                       | F10.4  |
| BLADES(IROW)                                                | number of blades in each rotor or stator blade row                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F10.4  |
| BLEED(I)                                                    | fraction of weight flow bled off at particular calculation station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F10.4  |
| BT(I)                                                       | same as BH(I) except applicable at tip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | F10.4  |

| _ |     |    |     |
|---|-----|----|-----|
| P | ara | me | ter |

#### Description

Format

BTF(1,IROW)

polynomial coefficients for quadratic coefficient of blade element thickness F10.4 equation forward of maximum thickness point

$$\frac{t}{2c} = \frac{t_m}{2c} + a\left(\sqrt{S_o - S} - \sqrt{S_o} + \frac{S}{2\sqrt{S_o}}\right) - bS^2 - cS^3 - dS^4$$

with  $b = BTF1 + BTF2 \cdot R + BTF3 \cdot R^2 + BTF4 \cdot R^3$ , where R is fraction of passage height at blade leading edge.

BTR(1,IROW), BTR(2,IROW), BTR(3,IROW), BTR(4,IROW)

same as above for rearward thickness with same R

F10.4

A4

CC

blade element geometry option for blade design purposes. Interpretable options are CIRCULAR, OPTIMUM, and TABLE. The CIRCULAR option gives circular arc blade elements. Noninterpretable input will be set to the CIRCULAR option. The OPTIMUM option means that the ratio of blade element segment turning rates will be set by an empirical function of inlet relative Mach number. Below an  $M_1$  of 0.8 the blade element will be a circular arc. As  $M_1$  is increased, the ratio of front segment turning rate to rear segment turning rate is reduced. A limit of zero camber on the suction surface of the front segment is approached at an  $M_1$  of about 1.60. The TABLE option means the ratio of blade segment turning rates will be input in tabular form, PHI(IROW, J), at the end of the data set.

CCF(1,IROW), CCF(2,IROW),

polynomial coefficients for cubic coefficient of blade element centerline angle equation for front segment,  $\kappa = \kappa_I + aS + bS^2 + cS^3 + dS^4$  with  $c = \text{CCF1} + \text{CCF2} \cdot R + \text{CCF3} \cdot R^2 + \text{CCF4} \cdot R^3$ , where F10.4

CCF(3,IROW), CCF(4,IROW)

 $R = (r_t - r)/(r_t - r_h)$ —fraction of passage height at blade leading edge

CCR(1, IROW), CCR(2,IROW), CCR(3,IROW),

CCR(4,IROW)

same as above for rear segment with same R

F10.4

CHORDA(IROW), CHORDB(IROW), CHORDC(IROW)

constants to define ratio of blade element chord to tip chord on projected

F10.4

 $\frac{c}{c_{tin}} = 1 + R \cdot \text{CHORDA}(\text{IROW}) + R^2 \cdot \text{CHORDB}(\text{IROW})$ 

+ R3 \*CHORDC(IROW)

where  $R = (r_t - r)/(r_t - r_h)$ —fraction of annulus height at blade stacking line

CHOKE(IROW)

desired minimum value of  $(A/A^*)-1.0$ , where  $A/A^*$  is the ratio of local streamtube area in the channel to the area required when M' = 1.0 within a blade passage. If zero is input, no adjustment will be attempted within the program. For input values greater than zero, incidence angle will be increased as necessary up to a maximum of  $+2.0^{\circ}$  on the leading edge of the suction surface in an attempt to give the specified choke margin at the covered channel entrance if the minimum occurs at the channel inlet.

CPCO(I) for I = 1.6 constants for specific heat polynomial function of temperature

E20.8

 $c_p = \text{CPCO}(1) + \text{CPCO}(2) \cdot T + \text{CPCO}(3) \cdot T^2 + \text{CPCO}(4) \cdot T^3$ 

+ CPCO(5) • T4 + CPCO(6) • T5

| Parameter                                                   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Format     |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| CRENGY<br>(IROTOR)                                          | desired cumulative energy addition fraction through particular rotor to total energy addition of compressor. Thus the fractions are progressively larger positive numbers through successive rotors. The last rotor must have CRENGY = 1.0 to meet the input pressure ratio. If a value greater than 2.0 is input, the value is interpreted as a rotor exit total temperature level in degrees Rankine instead of the cumulative energy addition fraction. In the preexecution phase of computation the input temperature is converted and used as an appropriate energy addition value. | F10.4      |
| CTF(1,IROW),<br>CTF(2,IROW),<br>CTF(3,IROW),<br>CTF(4,IROW) | polynomial coefficients for cubic coefficient of blade element thickness equation forward of maximum thickness point $\frac{t}{2c} = \frac{t_m}{2c} + a\left(\sqrt{S_o - S} - \sqrt{S_o} + \frac{S}{2\sqrt{S_o}}\right) - bS^2 - cS^3 - dS^4$ with $c = \text{CTF1} + \text{CTF2} \cdot R + \text{CTF3} \cdot R^2 + \text{CTF4} \cdot R^3$ , where $R$ is fraction of passage height at blade leading edge                                                                                                                                                                               | F10.4      |
| CTR(1,IROW),<br>CTR(2,IROW),<br>CTR(3,IROW),<br>CTR(4,IROW) | same as above for rearward thickness with same R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F10.4      |
| DCF(1,IROW),<br>DCF(2,IROW),<br>DCF(3,IROW),<br>DCF(4,IROW) | polynomial coefficients for fourth degree coefficient of blade element centerline angle equation for front segment, $\kappa = \kappa_l + aS + bS^2 + cS^3 + dS^4$ with $d = \text{DCF1} + \text{DCF2}*R + \text{DCF3}*R^2 + \text{DCF4}*R^3$ , where $R = (r_l - r_l)/(r_l - r_h)$ —fraction of passage height at blade leading edge                                                                                                                                                                                                                                                     | F10.4      |
| DCR(1,IROW),<br>DCR(2,IROW),<br>DCR(3,IROW),<br>DCR(4,IROW) | same as above for rear segment with same R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | F10.4      |
| DD                                                          | option control of location of transition point between segments of a blade element. The interpretable options are CIRCULAR, SHOCK, and TABLE. The SHOCK option locates the transition point on the suction surface at the normal shock impingement point from the leading edge of the adjacent blade. The TABLE option means the location of the transition point will be input in tabular form, TRANS (IROW, J), at the end of the data set. The CIRCULAR option and noninterpretable data put the transition point at midchord.                                                        | <b>A</b> 4 |
| DEV(IROW,J)                                                 | deviation angle (deg) that can be specified by option. If the tabular option is used, a value is expected for each streamline starting from the tip.                                                                                                                                                                                                                                                                                                                                                                                                                                     | F10.4      |
| DFTAB(K,J,I)                                                | blade element diffusion factor (D factor) for which profile losses are tabulated. Five values are input for each streamline; that is, K always has values from 1 to 5, J is the streamline index, and I is the loss set index. The maximum number of sets is 5. Because D-factor values normally fall between 0.3 and 0.7, values of 0.3, 0.4, 0.5, 0.6, and 0.7 for DFTAB on a streamline can be implied by leaving the DFTAB values blank. As a consequence of this option the DFTAB cannot be exactly 0.0 when $K=1$ if you do not want the implied values of DFTAB.                  | F8.4       |
| DLIM(IROW)                                                  | aerodynamic D-factor limit. In a data set designated ROTOR this limit applies at the tip streamline. For a STATOR data set the limit applies at the hub. The program operates with this limit criterion in the same way as it did with ALIM(IROW).                                                                                                                                                                                                                                                                                                                                       | F10.4      |

| Parameter                                                   | Description                                                                                                                                                                                                                                                                                                                                                                                                | Format |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| DLOS(K,J,l)                                                 | profile loss parameter $\omega$ cos $\beta_2'/2\sigma$ corresponding to DFTAB(K,J,I) reference arrays                                                                                                                                                                                                                                                                                                      | F8.4   |
| DTF(1,IROW),<br>DTF(2,IROW),<br>DTF(3,IROW),<br>DTF(4,IROW) | polynomial coefficient for fourth coefficient of blade element thickness equation forward of maximum thickness point $\frac{t}{2c} = \frac{t_m}{2c} + a\left(\sqrt{S_o - S} - \sqrt{S_o} + \frac{S}{2\sqrt{S_o}}\right) - bS^2 - cS^3 - dS^4$ with $d = \text{DTF1} + \text{DTF2} \cdot R + \text{DTF3} \cdot R^2 + \text{DTF4} \cdot R^3$ , where $R$ is fraction of passage height at blade leading edge | F10.4  |
| DTR(1,IROW),<br>DTR(2,IROW),<br>DTR(3,IROW),<br>DTR(4,IROW) | same as above for rear segment with same R                                                                                                                                                                                                                                                                                                                                                                 | F10.4  |
| ЕВ                                                          | EB completes l'ABLE option of maximum thickness location. If the eight spaces controlling the option appear as                                                                                                                                                                                                                                                                                             | A4     |
|                                                             | TABLE LE                                                                                                                                                                                                                                                                                                                                                                                                   |        |
|                                                             | EE EB                                                                                                                                                                                                                                                                                                                                                                                                      |        |
|                                                             | the input values of ZMAX(IROW,J) will be used as the fraction of chord distance from the leading edge. If EB is not as shown, the values of ZMAX(IROW,J) will be used as the fraction of chord distance behind the transition point.                                                                                                                                                                       |        |
| EE                                                          | option control of location of maximum thickness point of a blade element. The interpretable options are TRAN and TABLE. The TRAN option and noninterpretable options will set the maximum thickness point at the transition point. The TABLE option means the maximum thickness point location will be input in tabular form, ZMAX(IROW,J), at the end of the data set.                                    | A4     |
| ELE(1,IROW),<br>ELE(2,IROW),<br>ELE(3,IROW),<br>ELE(4,IROW) | coefficients for leading-edge ellipse ratio of semimajor to semiminor axes minus 1 $e = \frac{b}{a} - 1 = \text{ELE}1 + \text{ELE}2 \cdot R + \text{ELE}3 \cdot R^2 + \text{ELE}4 \cdot R^3$ where R is fraction of passage height at blade leading edge.                                                                                                                                                  | F10.4  |
| 5554 IBOH                                                   | where R is fraction of passage height at blade leading edge                                                                                                                                                                                                                                                                                                                                                |        |
| ETE(1,IROW),<br>ETE(2,IROW),<br>ETE(3,IROW),<br>ETE(4,IROW) | coefficients for trailing-edge ellipse ratio of semimajor to semiminor axes minus 1 $e = \frac{b}{a} - 1 = \text{ETE1} + \text{ETE2*}R + \text{ETE3*}R^2 + \text{ETE4*}R^3$                                                                                                                                                                                                                                |        |
| 21 2(7,110 TT)                                              | where $R$ is fraction of passage height at blade trailing edge                                                                                                                                                                                                                                                                                                                                             |        |
| FLOFRA(I)                                                   | cumulative weight-flow split between streamlines starting from tip. NTUBES, which is NSTRM-1, values are read. Thus the first value is greater than zero and succeeding values must increase to 1.0 in order for the last value to account for the accumulation of flow for all streamtubes.                                                                                                               | F10.4  |
| FLOW(I)                                                     | mass flow (lb/sec) entering the first calculation station                                                                                                                                                                                                                                                                                                                                                  | F10.4  |

| Parameter   | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Format |
|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| IDEF(IROW)  | blade definition index. When the index is zero, the blade segment centerline and surfaces are defined by $d\kappa/dS = \text{constant}$ . When the index is not zero, the segment centerline and thickness are defined with fourth-degree functions of path distance from the transition and maximum thickness points, respectively. The specification of the coefficients for these functions is extra input, for which the format is shown in figure 12(c). If IDEF(IROW) is positive, the coefficients for the definition polynomials are interpreted to be functions of segment length normalized to 1.0; but if IDEF(IROW) is negative, the coefficients are interpreted to be functions of segment length normalized by chord. The reference point for the centerline polynomials can be either the transition point or the segment ends. The possible combinations are shown in the IDEF(IROW) summary in table IV. |        |
| ILOSS(IROW) | designation of which profile loss set (I variable in DLOS(K,J,I)) to use with particular blade row. If the input value of ILOSS(IROW) is less than or equal to zero, a total pressure level is input in place of losses. The pressure is input with the parameters shown in the first option of figure 12. These parameters are stored into the locations of loss sets 4 and 5; so those loss sets are not available for use with any blade row.                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15     |
| INC(IROW,J) | incidence angle (deg) that can be input by option. If the tabular option is used, a value is expected for each streamline starting from the tip.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F10.4  |
| MOLE        | molecular weight of gas (28.97 for dry air)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 15     |
| NA          | number of annular stations at which radial velocity profiles are constructed during computation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 15     |
| NBROWS      | number of blade rows (maximum of 20)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 15     |
| NHUB        | number of points input to describe hub geometric boundary (maximum of 40)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |        |
| NLOSS       | number of loss sets input (maximum of 5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 15     |
| NTIP        | number of points input to describe tip geometric boundary (maximum of 40).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
| NXCUT       | number of sections across blade for which fabrication coordinates are desired. If zero, the program will set the number of XCUT's on the basis of aspect ratio. For all positive values the program will set appropriate locations to represent the blade. Negative values of NXCUT(IROW) trigger an option to read cards for the XCUT values. The number of values expected for a blade row is the absolute value of NXCUT(IROW).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 110    |
| NSTRM       | number of streamlines (maximum of 11)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 15     |
| OP          | option controlling amount of output information desired. Interpretable options are APPROX, VEL. DIA., DESIGN, and COORD. If the first four characters input in OP match none of the above, the program will try to proceed with the VEL. DIA. option. The program completes only velocity diagram information when run with the APPROX and VEL. DIA. options. With the APPROX option the locations of blade edges are estimated from the stacking line, but with the VEL. DIA. option the blade edge locations are input. The blade edge data are read from extra cards at the end of the data set for a particular blade type. The axial coordinates are temporarily read into VTH(I,J), and the radial coordinates are temporarily read into PO(I,J). When run with the DESIGN and                                                                                                                                       | A4     |

COORD options, the program designs and stacks that particular blade row. With the DESIGN option only velocity diagram information is printed, but the blade leading- and trailing-edge locations are for the stacked blade. The COORD option includes the printout of blade section properties and coordinates for fabrication.

**OPM** 

additional output options in effect if OP is DESIGN or COORD

A4

| Card column |   |   | Additional output |                                 |
|-------------|---|---|-------------------|---------------------------------|
| 7           | 8 | 9 | 10                |                                 |
|             | 0 |   |                   | Off-design punch                |
|             | T | j | }                 | TSONIC punch                    |
|             | M |   | •                 | Blade element channel microfilm |
|             | M | 0 |                   | M and O options                 |
|             | M | Т |                   | M and T options                 |

**OPO** 

Additional output options in effect when OP is COORD

**A4** 

| Additional output                  | Card column |    |    |     |
|------------------------------------|-------------|----|----|-----|
|                                    | 20          | 19 | 18 | 17  |
| Fabrication coordinate on microfil |             |    | М  |     |
| Fabrication coordinate punch       | [           |    | P  | - 1 |
| MERIDL punch                       |             |    | C  | - 1 |
| M and P options                    |             | P  | M  | İ   |
| M and C options                    |             | С  | M  | - 1 |

PHI(IROW, J)

ratio of inlet segment turning to outlet segment turning (ratio of  $(d\kappa/dS)_1/(d\kappa/dS)_2$ ) for a blade element. If input values are expected by use of the tabular option, the data cards go with the optional cards at the end of the data set for each blade row. A value is expected for each streamline beginning from the tip.

F10.4

PRA(IROW), PRB(IROW),

coefficients for polynomial equation to define profile behind blade row. Pound a rotor the pressure ratio profile is specified as

F10.4

PRC(IROW). PRD(IROW), PRE(IROW)

 $\frac{r}{P_t} = 1.0 + PRA \cdot R + PRB \cdot R^2 + PRC \cdot R^3 + PRD \cdot R^4 + PRE \cdot R^5$ 

where  $P_t$  is the stagnation pressure at the rotor exit tip and  $R = (r_t - r)/(r_t - r_h)$ —a fraction of passage height. When  $|PRA(IROW)| \ge 100.0$ , another option is activated. The input profile is for a temperature profile  $T/T_1$  instead of a pressure profile  $P/P_1$ . The data value of PRA(IROW) is extracted from the input value by adding or subtracting 100's until the remainder is in the range of -100.0 to 100.0. At a stationary blade row the polynomial is for the blade row exit tangential velocity profile in ft/sec.  $V_{\theta} = PRA/R^2 + PRB/R + PRC + PRD \cdot R + PRE \cdot R^2$  where  $R = r/r_t$ 

PO(I,J)

general stagnation pressure array in lb/ft2 within program. The I index is the F10.4 station index and J is the streamline index. Only (PO(1,J), J=1, NSTRM) values are input; that is, the streamline value for the first calculation station. The input values are read in units of psia.

When blade edge coordinates are input, some of the other PO(I,J) locations are used for temporary storage of the input values of radius.

F8.4

PR

desired overall compressor pressure ratio

F10.4

| Parameter                                                   | Description                                                                                                                                                                                                                                                                                                                              | Format |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| PTT(IROW),<br>PTC(1,IROW),<br>PTC(2,IROW),                  | coefficients that describe blade row exit profile when it is input as an option. PTT is the blade row exit pressure in psia at the tip (highest radius). The other five values are polynomial coefficients for                                                                                                                           | F10.4  |
| PTC(3,IROW),<br>PTC(4,IROW),                                | $P = PTT \cdot (1.0 + PTC1 \cdot R + PTC2 \cdot R^2 + PTC3 \cdot R^3 + PTC4 \cdot R^4 + PTC5 \cdot R^5$                                                                                                                                                                                                                                  |        |
| PTC(5,IROW)                                                 | where $R = (r_t - r)/(r_t - r_h)$ —fraction of passage height at blade row exit                                                                                                                                                                                                                                                          |        |
| RHUB(I)                                                     | radius coordinates of a set of points that define geometric hub boundary (maximum of 40)                                                                                                                                                                                                                                                 | F10.4  |
| ROT                                                         | compressor rotational speed, rpm                                                                                                                                                                                                                                                                                                         | F10.4  |
| ŘTIP(I)                                                     | radius coordinates of set of points that define geometric tip boundary (maximum of 40)                                                                                                                                                                                                                                                   | F10.4  |
| SOLID(IROW)                                                 | tip solidity of a blade row (ratio of chord to circumferential spacing)                                                                                                                                                                                                                                                                  | F10.4  |
| TALE(IROW),<br>TBLE(IROW),<br>TCLE(IROW),<br>TDLE(IROW)     | polynomial coefficients of ratio of blade element leading-edge radius to chord, where $t_{le}/c = \text{TALE} + \text{TBLE} \cdot R + \text{TCLE} \cdot R^2 + \text{TDLE} \cdot R^3$ where $R(r_t - r)/(r_t - r_h)$ —fraction of passage height at blade leading edge                                                                    | F10.4  |
| TAMAX(IROW),<br>TBMAX(IROW),<br>TCMAX(IROW),<br>TDMAX(IROW) | polynomial coefficients of ratio of blade element maximum thickness to chord, where $t_{max}/c = \text{TAMAX} + \text{TBMAX} \cdot R + \text{TCMAX} \cdot R^2 + \text{TDMAX} \cdot R^3$                                                                                                                                                  | F10.4  |
| TATE(IROW),<br>TBTE(IROW),<br>TCTE(IROW),<br>TDTE(IROW)     | polynomial coefficients of ratio of blade element trailing-edge radius to chord, where $t_{le}/c = \text{TATE} + \text{TBTE} \cdot R + \text{TCTE} \cdot R^2 + \text{TCTE} \cdot R^3$ where $R(r_l - r)/(r_l - r_h)$ —fraction of passage height at blade trailing edge                                                                  | F10.4  |
| TILT(IROW)                                                  | angle of stacking axis tilt (deg) in circumferential direction $(r-\theta \text{ plane})$ . The angle is positive in the direction of rotor rotation. If $ \text{TILT}(\text{IROW})  > 100.0$ , a curved stacking line is specified according to $r - r_{ref} = C(\sin \gamma - \sin \gamma_{ref})$ , and the code of the TILT(IROW) is— |        |
|                                                             | **XXXXXXXX overall TILT(IROW) number                                                                                                                                                                                                                                                                                                     |        |
|                                                             | tilt angle at tip in degrees. Circled digit controls sign of tip tilt angle. Even digit gives tip tilt angle same sign as hub tilt angle. Odd digit gives tip tilt angle opposite sign of hub tilt angle.                                                                                                                                |        |
|                                                             | For example: 12332.65 gives a hub angle of $23^{\circ}$ and a tip angle of $-32.65^{\circ}$ .                                                                                                                                                                                                                                            |        |
| TITLE(I)                                                    | description of compressor for printout and later identification                                                                                                                                                                                                                                                                          | 18A4   |
| TO(I,J)                                                     | general stagnation temperature array in program. Only (TO(1,J), $J=1$ , NSTRM) values are input; that is the streamline value for the first calculation station. The input values are in units of $^{\circ}R$ .                                                                                                                          | F10.4  |

| Parameter     | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Format |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| TRANS(IROW,J) | location of transition point on blade element centerline as fraction of blade element chord. If input values are expected by use of the tabular option, the data cards go with the optional cards at the end of the data set for each blade row. A value is expected for each streamline beginning from the tip.                                                                                                                                                                                                                                                                                                                                                                                                                               | F10.4  |
| VTH(I,J)      | general tangential component of velocity array in program. Only (VTH(1,J), $J=1$ , NSTRM) values are input; that is, the streamline value for the first calculation station. The input values have units of ft/sec.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F10.4  |
|               | When blade edge coordinates are input, some of the other VTH(I,J) locations are used for temporary storage of the axial coordinates of the points.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | F8.4   |
| XCUT(IC)      | radial location of blade section planes. Whether or not data cards are read for values of XCUT(IC) for a blade row is controlled by the value of NXCUT (IC). Any XCUT(IC) cards are read in an output routine. Therefore they must follow all cards read in subroutine INPUT; that is, they follow the ANNULAR card for the last calculation station. There is no index identifying the data with a particular blade row, so the data sets for the blade rows are expected in the order that one would see the blade rows in moving through the compressor from the inlet. Start the set of points for each blade row on a new card. It is preferable, but not necessary, to list the XCUT(IC) for a blade row in order starting from the tip. | F10.4  |
| XHUB(I)       | axial coordinates of set of points that define geometric hub boundary. The axial extent of the coordinates must at least reach the first and last calculation stations. The hub coordinates must have the same reference origin as other input axial coordinates, that is, casing, blade edge, and stacking line coordinates. The number of points input should be $4 \le n \le 40$ .                                                                                                                                                                                                                                                                                                                                                          | F10.4  |
| XTIP(I)       | axial coordinates of set of points that define geometric tip boundary (See XHUB(I) for additional comments.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F10.4  |
| ZHUB(I)       | blade data set hub-axial coordinate. When the data set is a blade rather than an ANNULAR station, ZHUB(I) is the axial location of the blade stacking line at the hub.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | F10.4  |
| ZMAX(IROW,J)  | location of maximum thickness point as fraction of blade element chord. If input values are expected by use of the tabular options, the data cards go with the optional cards at the end of the data set for each blade row. A value is expected for each streamline beginning from the tip with a leading-edge or transition-point reference according to option (see EB). With a transition point reference the values input are $(m-t)/c$                                                                                                                                                                                                                                                                                                   | F10.4  |
|               | MAX TRANS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        |

blade data set tip-axial coordinate. (See ZHUB(I) for similar additional F10.4 comments.)

ZTIP

### Appendix C

# Development of Equations of Motion into Form

## Used in Computer Program

In the computer program the equations of motion are applied at calculation stations that are presumed to be outside the blade rows; so the equations of motion are more conveniently developed in an absolute, rather than a relative, coordinate system. The general equation of motion (eq. 3(21) of ref. 7) is

$$\frac{\partial \overline{V}}{\partial \tau} + \nabla H = V \times (\nabla \times V) + t \nabla s + f \tag{C1}$$

When steady flow is assumed and the local friction force is ignored, equation (C1) reduces to

$$\nabla H = \vec{V} \times (\nabla \times \vec{V}) + t \, \nabla s \tag{C2}$$

In orthogonal curvilinear coordinates the velocity vector can be expressed as

$$\widetilde{V} = \widehat{\theta} V_{\theta} + \widehat{m} V_{m} + \widehat{n} V_{n} \tag{C3}$$

where m is in the streamline direction in the meridional plane and n is in the normal direction in the meridional plane. Of course  $V_n$  is zero everywhere for this application. The curl term in general can be expressed as

$$\nabla \times \overline{V} = \theta \left( \frac{\partial V_n}{\partial m} + V_n k_n - \frac{\partial V_m}{\partial n} + V_m k_m \right)$$

$$+\frac{\hat{m}}{r}\left[\frac{\partial(rV_{\theta})}{\partial n}-\frac{\partial V_{n}}{\partial \theta}\right]+\frac{\hat{n}}{r}\left[\frac{\partial V_{m}}{\partial \theta}-\frac{\partial(rV_{\theta})}{\partial m}\right] \quad (C4)$$

where  $k_m$  and  $k_n$  are the curvature of the streamline and the normal, respectively. All terms containing  $V_n$  are zero for this application. The assumption of symmetric flow in the circumferential direction makes  $\partial V_m/\partial\theta$  equal to zero. Also, because angular momentum does not change on streamlines outside the blade rows

$$\frac{\partial (rV_{\theta})}{\partial m} = 0 \tag{C5}$$

Thus equation (C4) reduces to

$$\nabla \times \overline{V} = \hat{\theta} \left( -\frac{\partial V_m}{\partial n} + V_m k_m \right) + \frac{\hat{m}}{r} \frac{\partial (r V_{\theta})}{\partial n}$$
 (C6)

In terms of equations (C3) and (C6) the term  $V \times (\nabla \times V)$  can be expressed as

$$V \times (\nabla \times V) = \begin{vmatrix} \hat{\theta} & \hat{m} & \hat{n} \\ V_{\theta} & V_{m} & 0 \\ -\frac{\partial V_{m}}{\partial n} + V_{m} k_{m} & \frac{\partial (r V_{\theta})}{r \partial n} & 0 \end{vmatrix}$$

$$=\hat{\theta}[0]+\hat{m}[0]+\hat{n}\left[\begin{array}{c} V_{\theta} \\ r \end{array} \frac{\partial (rV_{\theta})}{\partial n}\right]$$

$$+V_m \frac{\partial V_m}{\partial n} - V_m^2 k_m \bigg] \tag{C7}$$

Now break equation (C2) into the three component equations. In the  $\theta$  direction

$$\frac{\partial H}{r \, \partial \theta} = t \, \frac{\partial s}{r \, \partial \theta} = 0 \tag{C8}$$

The zero in equation (C8) recognizes circumferential symmetry of s. In the meridional plane streamline direction

$$\frac{\partial H}{\partial m} = t \frac{\partial s}{\partial m} = 0 \tag{C9}$$

The zero in equation (C9) comes from the assumption that entropy does not change along streamlines that are outside the blade rows. In the meridional plane normal direction

$$\frac{\partial H}{\partial n} = \frac{V_{\theta}}{r} \frac{\partial (rV_{\theta})}{\partial n} + V_{m} \frac{\partial V_{m}}{\partial n} - V_{m}^{2} k_{m} + t \frac{\partial s}{\partial n}$$
 (C10)

Equations (C8) to (C10) apply to the three curvilinear component directions. However, in the program velocity and state values are available along station lines; so it is of computational convenience to apply a component equation along a station line. To accomplish this objective, the derivatives in the meridional plane are converted from the orthogonal

streamline and normal directions to the generally nonorthogonal streamline and station line directions. The angle nomenclature for the conversion is shown in figure 13.

The enthalpy gradient in the station line direction can be expressed as

$$\frac{dH}{dl} \nabla H \cdot \hat{l}$$

$$= \frac{\partial H}{r \partial \theta} \cdot \frac{d\theta}{dl} + \frac{\partial H}{\partial m} \cdot \frac{dm}{dl} + \frac{\partial H}{\partial n} \cdot \frac{dn}{dl}$$

$$= |0| \cdot |0| + |0| \cdot \sin(\alpha + \lambda) + \frac{\partial H}{\partial n} \cdot \cos(\alpha + \lambda)$$

$$\frac{dH}{dl} = \frac{\partial H}{\partial n} \cos(\alpha + \lambda)$$
(C11)

In general a station line derivative can be expressed as

$$\frac{d}{dl} = \frac{\partial}{\partial n} \frac{dn}{dl} + \frac{\partial}{\partial m} \frac{dm}{dl}$$

$$= \frac{\partial}{\partial n} \cos(\alpha + \lambda) + \frac{\partial}{\partial m} \sin(\alpha + \lambda) \tag{C12}$$

When equation (C12) is applied to the other normal derivatives of equation (C10), the following relation develops:

$$\frac{d(rV_{\theta})}{dl} = \frac{\partial(rV_{\theta})}{\partial n}\cos(\alpha + \lambda) + \frac{\partial(rV_{\theta})}{\partial m}\sin(\alpha + \lambda)$$
$$= \frac{\partial(rV_{\theta})}{\partial n}\cos(\alpha + \lambda) + [0]\sin(\alpha + \lambda)$$



Figure 13. - Angle nomenclature for direction derivatives.

Therefore

$$\frac{\partial (rV_{\theta})}{\partial n} = \frac{d(rV_{\theta})}{dl} \frac{1}{\cos(\alpha + \lambda)}$$
 (C13)

$$\frac{dV_m}{dl} = \frac{\partial V_m}{\partial n} \cos(\alpha + \lambda) + \frac{\partial V_m}{\partial m} \sin(\alpha + \lambda)$$

Therefore

$$\frac{\partial V_m}{\partial n} = \frac{dV_m}{dl} \frac{1}{\cos(\alpha + \lambda)} - \frac{\partial V_m}{\partial m} \tan(\alpha + \lambda)$$
 (C14)

$$\frac{ds}{dl} = \frac{\partial s}{\partial n} \cos(\alpha + \lambda) + \frac{\partial s}{\partial m} \sin(\alpha + \lambda)$$
$$= \frac{\partial s}{\partial n} \cos(\alpha + \lambda) + [0] \sin(\alpha + \lambda)$$

Therefore

$$\frac{\partial s}{\partial n} = \frac{ds}{dl} \frac{1}{\cos(\alpha + \lambda)} \tag{C15}$$

The application of equations (C12) through (C15) to (C10) gives

$$\frac{dH}{dl} = \frac{V_{\theta}}{r} \frac{d(rV_{\theta})}{dl} + V_{m} \frac{dV_{m}}{dl} - V_{m} \frac{\partial V_{m}}{\partial m} \sin(\alpha + \lambda)$$
$$-V_{m}^{2} k_{m} \cos(\alpha + \lambda) + t \frac{ds}{dl}$$
(C16)

The streamline curvature  $k_m$  is

$$k_m = \frac{\partial \alpha}{\partial m} = \frac{1}{R_m} \tag{C17}$$

where  $R_m$  is the meridional plane streamline radius of curvature. Substituting equation (C17) into (C16) yields the following form for the meridional velocity gradient:

$$V_{m} \frac{dV_{m}}{dl} = \frac{dH}{dl} - V_{\theta} \frac{d(rV_{\theta})}{r dl} + V_{m} \frac{\partial V_{m}}{\partial m} \sin(\alpha + \lambda) + \frac{V_{m}^{2}}{R_{m}} \cos(\alpha + \lambda) - t \frac{ds}{dl}$$
(C18)

The state properties appearing in equation (C18) are H, t, and s. However, two state properties are sufficient to establish the others at a point. For a

thermally perfect gas  $(p=\rho\Omega t)$  it is rather easy to compute other state properties from two selected properties; so it is desirable from a computer storage standpoint to store only two properties throughout the flow field. The two properties selected were stagnation temperature and pressure. These two properties, along with the velocity components, are sufficient information for the calculation of the other state properties. If these two properties can be used directly in the equations of motion, the need to compute some state properties may not exist. To express s in terms of T and P, start with the property relations

$$\frac{dp}{\rho} = dh - t \, ds \tag{C19}$$

For the introduction of stagnation properties note that the thermodynamic process of moving between the static and stagnation states is isentropic by definition. Thus equation (C19) for this process becomes

$$\frac{dp}{\rho} = dh$$

For a calorically nonperfect gas this becomes

$$\frac{dp}{\rho} = c_p(t)dt$$

$$dp = \left(\frac{p}{\Re t}\right)c_p(t)dt$$

$$\frac{dp}{p} = \frac{1}{\Re}\frac{c_p(t)}{t}dt$$

$$\int_{p}^{P} \frac{dp}{p} = \frac{1}{\Re} \int_{t}^{T} \frac{c_{p}(t)}{t} dt$$

$$\ln p \Big|_{p}^{P} = \frac{1}{\Re} \int_{t}^{T} \frac{c_{p}(t)}{t} dt$$

$$\frac{P}{p} = \exp\left[\frac{1}{R} \int_{t}^{T} \frac{c_{p}(t)}{t} dt\right]$$
 (C20)

Equation (C19) used as a derivative with path distance can be written as

$$\frac{ds}{dl} = \frac{1}{t} \frac{dh}{dl} - \frac{1}{ot} \frac{dp}{dl}$$
 (C21)

Substituting equation (C20) gives

$$\frac{ds}{dt} = \frac{1}{t} \frac{dh}{dt} - \frac{1}{\rho t}$$

$$\frac{d\left\{P \exp\left[-\frac{1}{\Re \int_{t}^{T} c_{p}(t)/t \, dt}\right]\right\}}{dt}$$

$$\times \frac{ds}{dt} = \frac{1}{t} \frac{dh}{dt} - \frac{1}{\rho t} \frac{dP}{dt} \exp\left[-\frac{1}{\Re \int_{t}^{T} \frac{c_{p}(t)}{t} \, dt}\right]$$

$$-\frac{P}{\rho t} \exp\left[-\frac{1}{\Re \int_{t}^{T} \frac{c_{p}(t)}{t} \, dt}\right]$$

$$\left(-\frac{1}{\Re dt}\right) \left[\int_{t}^{T} \frac{c_{p}(t)}{t} \, dt\right]$$

$$= \frac{1}{t} \frac{dh}{dt} - \frac{1}{\rho t} \frac{dP}{dt} \left(\frac{P}{P}\right) + \frac{P}{\Re \rho t} \left(\frac{P}{P}\right) \frac{d}{dt} \left[\int_{t}^{T} \frac{c_{p}(t)}{t} \, dt\right]$$

$$= \frac{1}{t} \frac{dh}{dt} - \frac{\Re dP}{P} \frac{dP}{dt} + \frac{d}{dt} \left[\int_{t}^{T} \frac{c_{p}(t)}{t} \, dt\right] \qquad (C22)$$

The application of Liebnitz's rule to the last term gives

$$\frac{d}{dl} \left[ \int_{t}^{T} \frac{c_{p}(t)}{t} dt \right] = \int_{t}^{T} \frac{\partial}{\partial l} \frac{c_{p}(t)}{t} dt + \frac{c_{p}(T)}{T} \frac{dT}{dl} - \frac{c_{p}(t)}{t} \frac{dt}{dl}$$

The variable  $(c_p(t)/t)$  is not a direct function of path distance; it is a function of temperature alone. Therefore the partial derivative with respect to distance must be zero. Thus the derivative of the integral can be expressed in terms of gradients at the limits so that

$$\frac{d}{dl} \left[ \int_{t}^{T} \frac{c_{p}(t)}{t} dt \right] = \frac{c_{p}(T)}{T} \frac{dT}{dl} - \frac{c_{p}(t)}{t} \frac{dt}{dl}$$

$$= \frac{1}{T} \frac{dH}{dl} - \frac{1}{t} \frac{dh}{dl}$$
 (C23)

Substituting (C23) into (C22) gives

$$\frac{ds}{dl} = \frac{1}{t} \frac{dh}{dl} - \frac{\Re}{P} \frac{dP}{dl} + \frac{1}{T} \frac{dH}{dl} - \frac{1}{t} \frac{dh}{dl}$$

$$\frac{ds}{dl} = \frac{1}{T} \frac{dH}{dl} - \frac{\Re}{P} \frac{dP}{dl} = \frac{1}{T} \frac{dH}{dl} - \frac{1}{\rho_0 T} \frac{dP}{dl}$$
 (C24)

Equation (C24) is essentially equation (C21) expressed in stagnation state variables. Equation (C24) would turn out to be the same for a calorically perfect gas. Substituting equation (C24) into (C18) gives

$$V_m \frac{dV_m}{dl} = \frac{dH}{dl} - V_\theta \frac{d(rV_\theta)}{r \, dl} + V_m \frac{\partial V_m}{\partial m} \sin(\alpha + \lambda)$$
$$+ \frac{V_m^2}{R_m} \cos(\alpha + \lambda) - \frac{t}{T} \frac{dH}{dl} + \frac{\Re t}{P} \frac{dP}{dl}$$

A rearrangement with all the state property terms together gives

$$V_{m} \frac{dV_{m}}{dl} = \left(\frac{T - t}{T}\right) \frac{dH}{dl} + \Re t \frac{d \ln P}{dl} - V_{\theta} \frac{d(r V_{\theta})}{r dl} + V_{m} \frac{\partial V_{m}}{\partial m} \sin(\alpha + \lambda) + \frac{V_{m}^{2}}{R_{m}} \cos(\alpha + \lambda)$$
(C25)

All the terms on the right side of equation (C25) can be computed quite accurately except  $\partial V_m/\partial m$ , which is the gradient of  $V_m$  along a streamline in the meridional plane. The distance over which  $\partial V_m/\partial m$  changes sign are of the order of the calculation station spacing so that representative values of  $\partial V_m/\partial m$  cannot be obtained from a  $V_m$  curve fit along meridional streamlines. A better value of this derivative probably can be obtained by means of local continuity. From equation 9(12) of reference 7 differential continuity can be expressed as

$$\frac{1}{\rho} \frac{d\rho}{Dt} + \nabla \cdot V = 0 \tag{C26}$$

However,

$$\frac{1}{\rho}\,\frac{D\rho}{Dt} = \frac{1}{a^2}\,\frac{Dh}{Dt}$$

so equation (C26) can be written as

$$\frac{1}{a^2} \frac{Dh}{Dt} + \nabla \cdot V = 0 \tag{C27}$$

Equation (C27) expanded from its vector form is

$$\begin{split} \frac{1}{a^2} \left( \frac{\partial h}{\partial t} + \frac{V_{\theta}}{r} \frac{\partial h}{\partial \theta} + V_{m} \frac{\partial h}{\partial m} + V_{n} \frac{\partial h}{\partial n} \right) \\ + \frac{1}{r} \frac{\partial (r V_{m})}{\partial m} + \frac{1}{r} \frac{\partial V_{\theta}}{\partial \theta} + \frac{1}{r} \frac{\partial (r V_{n})}{\partial n} \\ + V_{m} k_{m} + V_{n} k_{n} = 0 \end{split}$$

Outside the blade rows the flow is assumed to be axisymmetric and steady. Also, because there is no velocity component normal to the streamline, the equation reduces to

$$\frac{V_m}{a^2} \frac{\partial h}{\partial m} + \frac{1}{r} \frac{\partial (r V_m)}{\partial m} + V_m k_m = 0$$
 (C28)

Stagnation enthalpy is defined as

$$H = h + \frac{V_m^2}{2} + \frac{V_\theta^2}{2} \tag{C29}$$

$$\frac{dH}{\partial m} = \frac{\partial h}{\partial m} + V_m \frac{\partial V_m}{\partial m} + V_\theta \frac{\partial V_\theta}{\partial m}$$

But because  $\partial H/\partial m = 0$  outside the blade rows,

$$\frac{\partial h}{\partial m} = -V_m \frac{\partial V_m}{\partial m} - V_\theta \frac{\partial V_\theta}{\partial m} \tag{C30}$$

Outside the blade rows angular momentum is conserved along streamlines; so

$$0 = \frac{\partial (r \ V_{\theta})}{\partial m} = \frac{\partial r}{\partial m} \ V_{\theta} + r \frac{\partial V_{\theta}}{\partial m}$$

Rearrangement gives

$$\frac{\partial V_{\theta}}{\partial m} = -\frac{V_{\theta}}{r} \frac{\partial r}{\partial m} = -\frac{V_{\theta}}{r} \sin \alpha \tag{C31}$$

Substituting equation (C31) into (C30) gives

$$\frac{\partial h}{\partial m} = -V_m \frac{\partial V_m}{\partial m} + \frac{V_\theta^2}{r} \sin \alpha \tag{C32}$$

Substituting equation (C32) into (C28) gives

$$\frac{V_m}{a^2} \left( -V_m \frac{\partial V_m}{\partial m} + \frac{V_\theta^2}{r} \sin \alpha \right) + \frac{V_m}{r} \frac{\partial r}{\partial m} + \frac{\partial V_m}{\partial m} + V_m k_m = 0$$

$$\left(1 - \frac{V_m^2}{a^2}\right) \frac{\partial V_m}{\partial m} + \left(\frac{V_\theta^2}{a^2} + 1\right) \frac{V_m}{r} \sin \alpha + V_m k_n = 0$$

$$\frac{\partial V_m}{\partial m} = \frac{1}{M_m^2 - 1} \left[ \left( M_\theta^2 + 1 \right) \frac{V_m}{r} \sin \alpha + V_m k_n \right]$$
 (C33)

The curvature of the streamline normal  $k_n$ , which is  $\partial \alpha/\partial n$ , needs to be expressed in terms that can be evaluated.

$$\frac{d\alpha}{dl} = \frac{\partial \alpha}{\partial n} \cos(\alpha + \lambda) + \frac{\partial \alpha}{\partial m} \sin(\alpha + \lambda)$$

$$\frac{\partial \alpha}{\partial n} = \frac{d\alpha}{dl} \frac{1}{\cos(\alpha + \lambda)} - \frac{\partial \alpha}{\partial m} \frac{\sin(\alpha + \lambda)}{\cos(\alpha + \lambda)}$$

$$k_n = \frac{\partial \alpha}{\partial n} = \frac{d\alpha}{dl} \sec(\alpha + \lambda) - \frac{\tan(\alpha + \lambda)}{R_m}$$
 (C34)

Substituting equation (C34) into (C33) gives

$$\frac{\partial V_m}{\partial m} = \frac{V_m}{M_m^2 - 1} \left[ \frac{M_\theta^2 + 1}{r} \sin \alpha \right]$$

$$+\frac{d\alpha}{dl}\sec(\alpha+\lambda)-\frac{\tan(\alpha+\lambda)}{R_m}$$
 (C35)

Calculation of  $\partial V_m/\partial m$  by using equation (C35) should give a somewhat more accurate result than a curve fit or a finite difference computation across increments that span whole blade elements. However, a potential divide-by-zero complication has been introduced with the term  $M_m^2 - 1$ . In equation (C35) the term in braces in essence represents the dA/A term of one-dimensional flow theory. At a Mach number of 1.0, dA/A is zero, which is the throat of a nozzle. For compressor blade rows the throat occurs within the blade passages. Internal flows adjust around locally choked regions so that the throughflow Mach number outside the blade only approaches 1. Computation of the detailed nature of the flow is not available from only stations outside the blade row; so a minimum value is imposed on the denominator through an empirical additive term to help stabilize the iterative procedure. The additive center term is

$$f = 0.1 \frac{(M_m^2 - 1)}{|M_m^2 - 1|} \exp[-10 M_m^2 - 1]$$

Its characteristics and effect on the denominator are shown in table  $\boldsymbol{V}_{\cdot}$ 

#### Appendix D

#### Conic Coordinates of Blade Centerline Path

Local blade angle is defined with respect to the local conic ray (fig. 14). Let the blade angle vary with path distance along the cone according to the polynomial

$$\kappa = \kappa_t + aS + bS^2 + cS^3 + dS^4 \tag{D1}$$

where  $\kappa_t$  is the blade angle at the transition point between segments in this application. The path distance S is with respect to the transition point reference but always positive in the direction from inlet to outlet.

The conic radial component of the centerline can be found by integrating the differential equation for that component

$$dR = \cos[\kappa]dS = \cos(\kappa_L + aS + bS^2 + cS^3 + dS^4)dS$$

(D2)

The problem is that a trigonometric function of a polynomial is not readily integratable in closed form. However, the function can be expanded in series form and integrated term by term. Of course the series is infinite but it is convergent within the range of our application. In the following presentation enough development is given to show the form of the series. Upon application in the program a tolerance is used so that no more terms than necessary are calculated.



Figure 14. - Blade element centerline nomenclature.

$$\cos \kappa = 1 - \frac{\kappa^2}{2!} + \frac{\kappa^4}{4!} - \frac{\kappa^6}{6!} + \frac{\kappa^8}{8!} \dots$$
 (D3)

When equation (D1) is substituted, the terms of like powers of S can be summed to give in symbolic form

$$\cos \kappa = \left| \begin{array}{c|c} 1 + \left| \begin{array}{c|c} 2S + \left| \begin{array}{c|c} 3S^2 + \left| \begin{array}{c|c} 4S^3 + \ldots \end{array} \right. \end{array} \right. \right.$$
 (D4)

$$R - R_{t} = \int_{0}^{S} \cos \kappa \, ds = \left[ \left| \left| 1 S + \right| \right| \right|_{2} \frac{S^{2}}{2} + \left[ \left| \left| \frac{S^{3}}{3} + \right| \right| \right|_{4} \frac{S^{4}}{4} \dots$$

When terms of similar coefficients are combined, the following form evolves:

$$\int \cos \kappa \, dS = \frac{1}{a} \left[ \cos \kappa_t \sin(aS) + \sin \kappa_t \cos(aS) \right] - \frac{1}{a} \sin \kappa_t$$

$$+ b \sin \kappa_t \left( -\frac{S^3}{3} + \frac{a^2}{2} \frac{S^5}{5} - \frac{a^4}{4!} \frac{S^7}{7} + \frac{a^6}{6!} \frac{S^9}{9} + \dots \right)$$

$$+ b \cos \kappa_t \left( -a \frac{S^4}{4} + \frac{a^3}{3!} \frac{S^6}{6} - \frac{a^5}{5!} \frac{S^8}{8} + \dots \right)$$

$$+ \frac{b^2}{2} \cos \kappa_t \left( -\frac{S^5}{5} + \frac{a^2}{2} \frac{S^7}{7} - \frac{a^4}{4!} \frac{S^9}{9} + \dots \right)$$

$$+ \frac{b^2}{2} \sin \kappa_t \left( a \frac{S^6}{6} - \frac{a^3}{3!} \frac{S^8}{8} + \dots \right)$$

$$+ \frac{b^3}{3!} \sin \kappa_t \left( \frac{S^7}{7} - \frac{a^2}{2} \frac{S^9}{9} \dots \right)$$

$$+ \frac{b^3}{3!} \cos \kappa_t \left( a \frac{S^8}{8} \dots \right)$$

$$+ \frac{b^4}{4!} \cos \kappa_t \left( \frac{S^9}{9} \dots \right)$$

$$+ b \cos \kappa_t \left\{ -c \frac{S^6}{6} + \frac{a^2c}{2} \frac{S^8}{8} + \left( \frac{ac^2}{2} - \frac{a^4c}{4!} \right) \frac{S^{10}}{10} \right\}$$

$$+ \left[ \frac{a^6c}{6!} - \frac{a^3c^2}{3!(2)} + \frac{c^3}{3!} \right] \frac{S^{12}}{12} + \left[ -\frac{a^8c}{8!} + \frac{a^5c^2}{5!(2)} - \frac{a^2c^3}{2(3!)} \right] \frac{S^{14}}{14} \right\}$$

$$+ b \sin \kappa_t \left\{ ac \frac{S^7}{7} + \left( \frac{c^2}{2} - \frac{a^3c}{3!} \right) \frac{S^9}{9} + \left[ -\frac{a^2c^2}{2(2)} + \frac{a^5c}{5!} \right] \frac{S^{11}}{11} + \dots \right\}$$

$$+ \frac{b^2}{2} \sin \kappa_t \left( c \frac{S^8}{8} - \frac{a^2c}{2} \frac{S^{10}}{10} + \dots \right)$$

$$+ \frac{b^2}{2} \cos \kappa_t \left[ ac \frac{S^9}{9} + \left( -\frac{a^3c}{3!} + \frac{c^2}{2} \right) \frac{S^{11}}{11} + \dots \right]$$

$$+ \frac{b^3}{3!} \cos \kappa_t \left( c \frac{S^{10}}{10} + \dots \right)$$

$$+ b \cos \kappa_t \left[ -d \frac{S^7}{7} + \frac{a^2d}{2} \frac{S^9}{9} - \frac{ad}{4!} \frac{S^{11}}{11} + \frac{ad^2}{2} \frac{S^{12}}{2} + \frac{a^6d}{6!} \frac{S^{13}}{13} \right]$$

$$- \frac{a^3d^2}{3!(2)} \frac{S^{14}}{14} + \left( -\frac{a^8d}{8} + \frac{d^3}{3!} \right) \frac{S^{15}}{15}$$

$$+ b \sin \kappa_t \left[ ad \frac{S^8}{8} - \frac{a^3d}{3!} \frac{S^{10}}{10} + \frac{d^2}{2} \frac{S^{11}}{11} + \frac{a^5d}{5!} \frac{S^{12}}{12} - \frac{a^2d^2}{2(2)} \frac{S^{13}}{13} \right]$$

$$- \frac{a^7}{7!} \frac{S^{14}}{14} + \frac{a^4d^2}{4!(2)} \frac{S^{15}}{15} + \left( \frac{a^9d}{9!} - \frac{ad^3}{3!} \right) \frac{S^{16}}{16} \right]$$

$$+ \frac{b^2}{2} \sin \kappa_t \left( d \frac{S^9}{9} - \frac{a^2 d}{2} \frac{S^{11}}{11} + \frac{a^4 d}{4!} \frac{S^{13}}{13} - \frac{ad^2}{2} \frac{S^{14}}{14} - \frac{a^6 d}{6!} \frac{S^{15}}{15} + \dots \right)$$

$$+ \frac{b^2}{2} \cos \kappa_t \left( ad \frac{S^{10}}{10} - \frac{a^3 d}{3!} \frac{S^{12}}{12} + \frac{d^2}{2} \frac{S^{13}}{13} + \frac{a^5 d}{5!} \frac{S^{14}}{14} - \frac{a^2}{2} \frac{d^2}{2} \frac{S^{15}}{15} + \dots \right)$$

$$+ \frac{b^3}{3!} \cos \kappa_t \left( d \frac{S^{11}}{11} - \frac{a^2 d}{2} \frac{S^{13}}{13} + \frac{a^4 d}{4!} \frac{S^{15}}{15} - \frac{ad^2}{2} \frac{S^{16}}{16} + \dots \right)$$

$$+ \frac{b^3}{3!} \sin \kappa_t \left( -ad \frac{S^{12}}{12} + \frac{a^3 d}{3!} \frac{S^{14}}{14} - \frac{d^2}{2} \frac{S^{15}}{15} + \dots \right)$$

$$+ \frac{b^4}{4!} \sin \kappa_t \left( -d \frac{S^{13}}{13} + \frac{a^2}{2} d \frac{S^{15}}{15} + \dots \right)$$

$$+ \frac{b^4}{4!} \cos \kappa_t \left( -ad \frac{S^{14}}{14} + \dots \right)$$

$$+ \frac{b^5}{5!} \cos \kappa_t \left( -ad \frac{S^{15}}{15} + \dots \right)$$

$$+ c \sin \kappa_t \left( -\frac{S^4}{4} + \frac{a^2}{2} \frac{S^6}{6} - \frac{a^4}{4!} \frac{S^8}{8} + \dots \right)$$

$$+ c \cos \kappa_t \left( -a \frac{S^5}{5} + \frac{a^3}{3!} \frac{S^7}{7} - \frac{a^5}{5!} \frac{S^9}{9} + \dots \right)$$

$$+ \frac{c^2}{2} \cos \kappa_t \left( -\frac{S^7}{7} + \frac{a^2}{2} \frac{S^9}{9} + \dots \right)$$

$$+ c \cos \kappa_t \left( -d \frac{S^8}{8} + \frac{a^2 d}{2!} \frac{S^{10}}{10} + \frac{a^4 d}{4!} \frac{S^{12}}{12} + \frac{ad^2}{2!} \frac{S^{13}}{13} + \dots \right)$$

$$+ c \sin \kappa_t \left( ad \frac{S^9}{9} - \frac{a^3 d}{3!} \frac{S^{11}}{11} + \frac{d^2}{2!} \frac{S^{12}}{12} + \frac{a^5 d}{5!} \frac{S^{13}}{13} + \dots \right)$$

$$+ \frac{c^2}{2} \sin \kappa_t \left( ad \frac{S^{11}}{11} - \frac{a^2}{2} \frac{d^3 S^{13}}{13} + \dots \right)$$

$$+ \frac{c^2}{2} \cos \kappa_t \left( ad \frac{S^{12}}{12} + \dots \right)$$

$$+ d \sin \kappa_t \left( -\frac{S^5}{5} + \frac{a^2}{2} \frac{S^7}{7} - \frac{a^4}{4!} \frac{S^9}{9} + \dots \right)$$

$$+ d \cos \kappa_t \left( -a \frac{S^6}{6} + \frac{a^3}{3!} \frac{S^8}{8} + \dots \right)$$

$$+ \frac{d^2}{2} \cos \kappa_t \left( -\frac{S^9}{9} + \dots \right)$$

$$+ abcd \cos \kappa_t \left\{ \frac{S^{11}}{11} - \frac{a^2}{3!} \frac{S^{13}}{13} - \frac{ab}{2(2)} \frac{S^{14}}{14} + \left[ \frac{a^4}{5!} - \frac{b^2 ac}{3!(4)} \right] \frac{S^{15}}{15} \right.$$

$$+ \left[ \frac{a^3 b}{4!(2)} - \frac{bc}{4} \right] \frac{S^{16}}{16} + \left[ -\frac{a^6}{7!} + \frac{a^3 c}{4!(2)} + \frac{a^2 b^2}{(3!)^2} - \frac{c^2}{3!} \right] \frac{S^{17}}{17} \right\}$$

$$+ abcd \sin \kappa_t \left\{ -\frac{a}{2} \frac{S^{12}}{12} - \frac{b}{2} \frac{S^{13}}{13} + \left( \frac{a^3}{4!} - \frac{c}{2} \right) \frac{S^{14}}{14} + \frac{a^2 b}{3!(2)} \frac{S^{15}}{15} \right.$$

$$+ \left[ -\frac{a^5}{6!} + \frac{ab^2}{2(3!)} + \frac{a^2 c}{3!(2)} \right] \frac{S^{16}}{16} + \left[ -\frac{a^4 b}{5!(2)} + \frac{abc}{8} + \frac{b^3}{4!} \right] \frac{S^{17}}{17} \right\}$$

$$+ abc \frac{d^2}{2} \sin \kappa_t \left( -\frac{S^{15}}{15} + \frac{a^2}{3!} \frac{S^{17}}{17} + \dots \right)$$

$$+ abc \frac{d^2}{2} \cos \kappa_t \left( -\frac{a}{2} \frac{S^{16}}{16} + \dots \right)$$

With these groupings shown, patterns of terms and coefficients can be observed. The whole equation was coded into three rather brief subroutines—one for terms with two coefficients, COEF1 (two of the four coefficients a, b, c, and d); another for terms with three coefficients, COEF2; and one for terms with all four coefficients, COEF3. Finally the coefficients of the terms with the same powers of S are summed; so the [] terms are known in

$$R = R_t + [\ ]_1S + [\ ]_2\frac{S^2}{2} + [\ ]_3\frac{S^3}{3}$$

$$+[]_4\frac{S_4}{4}+\ldots+[]_n\frac{S^n}{n}$$

Because in the following developments these coefficients appear frequently within parentheses, for simplicity the []'s are replaced with c's; that is,

$$R = R_t + c_1 S + c_2 \frac{S^2}{2} + c_3 \frac{S^3}{3} + c_4 \frac{S^4}{4} + \dots + c_n \frac{S^n}{n}$$
(D6)

The conic angular coordinate can be expressed as

$$\epsilon - \epsilon_t = \int_0^S \frac{\sin \kappa}{R} dS \tag{D7}$$

where both  $\sin \kappa$  and R can be expressed as infinite, but convergent for our purposes, polynomials of S. Since a polynomial in the denominator is an undesirable form to integrate, the polynomial for R was converted to a polynomial in the numerator of the form shown in equation (D8).

$$\epsilon - \epsilon_t = \int_0^S \frac{\sin \kappa}{R} dS$$

$$= \frac{1}{R_t} \int_0^S \frac{R_t}{R} \sin \kappa \, dS$$

where

$$\frac{R_t}{R} = 1 + R_1 S + R_2 S^2 + R_3 S^3 + \dots$$
 (D8)  $D_1 = -\frac{C_1}{R_t}, D_2 = -\frac{C_2}{2R_t}, D_3 = -\frac{C_3}{3R_t}, \text{ etc.}$ 

The conversion from equation (D6) to (D8) begins as

$$\frac{R_t}{R} = \frac{R_t}{R_t + c_1 S + c_2 (S^2/2) + c_3 (S^3/3) + \dots}$$

$$= \frac{1}{1 + (c_1/R_t)S + (c_2/R_t)S^2 + (c_3/R_t)S^3 + \dots}$$

$$= \frac{1}{1 - D_1 S - D_2 S^2 - D_3 S^3 - \dots}$$

where

$$R_t$$
,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,  $R_t$ ,

$$R_{1} R_{2} R_{3} R_{4}$$

$$1 + D_{1}S + (D_{2} + D_{1}^{2})S^{2} + (D_{3} + 2D_{1}D_{2} + D_{1}^{3})S^{3} + (D_{4} + 2D_{1}D_{3} + D_{2}^{2} + 3D_{1}D_{2} + D_{1}^{4})S^{4}$$

$$1 - D_{1}S - D_{2}S^{2} - D_{3}S^{3} - ... \sqrt{\frac{1}{1 - D_{1}S - D_{2}S^{2}} - D_{3}S^{3} - D_{4}S^{4}}$$

$$\frac{D_{1}S + D_{2}S^{2} + D_{3}S^{3} + D_{4}S^{4}}{D_{1}S - D_{1}^{2}S^{2} - D_{1}D_{2}S^{3} - D_{1}D_{3}S^{4}}$$

$$\frac{(D_{2} + D_{1}^{2})S^{2} + (D_{3} + D_{1}D_{2})S^{3} + (D_{4} + D_{1}D_{3})S^{4}}{(D_{2} + D_{1}^{2})S^{2} - D_{1}(D_{2} + D_{1}^{2})S^{3} - D_{2}(D_{2} + D_{1}^{2})S^{4}}$$

$$\frac{(D_{3} + 2D_{1}D_{2} + D_{1}^{3})S^{3} + (D_{4} + D_{1}D_{3} + D_{2}^{2} + D_{2}D_{1}^{2})S^{4}}{(D_{3} + 2D_{1}D_{2} + D_{1}^{3})S^{3} - D_{1}(D_{3} + 2D_{3} + 2D_{1}D_{2} + D_{1}^{3})S^{4}}$$

$$\frac{(D_{4} + 2D_{1}D_{3} + D_{2}^{2} + 3D_{1}^{2}D_{2} + D_{1}^{4})S^{4}}{(D_{4} + 2D_{1}D_{3} + D_{2}^{2} + 3D_{1}^{2}D_{2} + D_{1}^{4})S^{4}}$$

Table VI summarizes the preceding division.

The coefficients for equation (D8) are generated in subroutine RCOEF. The coding for the procedure is somewhat complex, but in general not much computation is required to satisfy a tolerance criterion of 1.0E-08.

The conversion of  $\sin \kappa$ , where

$$\kappa = \kappa_1 + aS + bS^2 + cS^3 + dS^4$$

to the polynomial form

$$\sin \kappa = A_1 + A_2 S + A_3 S^2 + A_4 S^3 + A_5 S^4 \dots$$
 (D9)

is accomplished in the same way as it was for the cosine series (eqs. (D1) to (D5)). In fact, the cosine series can be converted to the sine series with the following substitutions:

| Cosine series    | Sine series      |
|------------------|------------------|
| $-\sin \kappa_t$ | $\cos \kappa_t$  |
| $-\cos \kappa_t$ | $-\sin \kappa_t$ |
| $\sin \kappa_t$  | $-\cos \kappa_t$ |
| COS K,           | sin κ,           |

Consequently the same routines that are used to compute the cosine series can easily be modified to compute the sine series coefficients also.

When the polynomial series coefficients in equations (D8) and (D9) are known, the integration for  $\epsilon$  is straightforward.

$$\epsilon - \epsilon_{I} = \frac{1}{R_{I}} \int_{0}^{S} \frac{R_{I}}{R} \sin \kappa$$

$$= \frac{1}{R_{I}} \int_{0}^{S} (1 + R_{I}S + R_{2}S^{2} + R_{3}S^{3} + \dots)$$

$$\times (A + A_{2}S + A_{3}S^{2} + A_{4}S^{3} + \dots)$$

$$= \frac{1}{R_{I}} \int_{0}^{S} A_{1} + (A_{2} + R_{1}A_{1})S$$

$$+ (A_{3} + R_{1}A_{2} + R_{2}A_{1})S^{2}$$

$$+ (A_{4} + R_{1}A_{3} + R_{2}A_{2} + R_{3}A_{1})S^{3} + \dots$$

$$= \frac{1}{R_{I}} \left\{ A_{1}S + \frac{A_{2} + R_{1}A_{1}}{2}S^{2} + \frac{A_{3} + R_{1}A_{2} + R_{2}A_{1}}{3}S^{3} + \frac{A_{4} + R_{1}A_{3} + R_{2}A_{2} + R_{3}A_{1}}{3}S^{4} + \dots \right\}$$

The general routine for establishing the polynomial coefficients for the conic coordinates is EPSL2. The end result is constant polynomial coefficients for the conic coordinates  $(R \text{ and } \epsilon)$  as a function of S. These coefficients are saved so that the conic coordinate at any S of interest can be computed easily with subroutine CONE.

#### References

- Johnsen, Irving A.; and Bullock, Robert O. eds.: Aerodynamic Design of Axial-Flow Compressors. NASA SP-36, 1965.
- Crouse, James E.: Computer Program for Definition of Transonic Axial-Flow Compressor Blade Rows. NASA TN D-7345, 1974.
- Schwenk, Francis C.; Lewis, George W.; and Hartmann, Melvin J.: A Preliminary Analysis of the Magnitude of Shock Losses in Transonic Compressors. NACA RM E57A30, 1957.
- Seyler, D.R.; and Smith, L. H., Jr.: Single State Experimental Evaluation of High Mach Number Compressor Rotor Blading. Part I—Design of Rotor Blading.
- (GE-R66FPD321-PT-1, General Electric Co.; NASA Contract NAS3-7617.) NASA CR-54581, 1967.
- Katsanis, Theodore: FORTRAN Program for Calculating Transonic Velocities on a Blade-to-Blade Stream Surface of a Turbomachine. NASA TN D-5427, 1969.
- Katsanis, Theodore; and McNally, William D.: Revised FORTRAN Program for Calculating Velocities and Streamlines on Hub-Shroud Midchannel Stream Surface on an Axial-, Radial-, or Mixed-Flow Turbomachine or Annular Duct. I—User's Manual. NASA TN D-8430, 1977.
- Vavra, Michael H.: Aero-Thermodynamics and Flow in Turbomachines. John Wiley & Sons, Inc., 1960.

#### TABLE I. - OVERVIEW OF COMPUTER PROGRAM

|                                                                                                                                                                             | Program control                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input and initialization                                                                                                                                                    | Iteration                                                                                                                                                                                                                                                                                                                                                                       | Terminal calculations                                                                                                                                                                                                                                                                                                                                                   |
| Read and interpret data  Locate calculation stations  At each station for each streamline, estimate stagnation temperature and pressure and axial and tangential velocities | Outer loop:  At calculation stations  Set coefficients of equation of motion  If blade design option, set incidence and deviation angles, compute new blade edge location, and reset calculation station location  Inner loop:  At each calculation station Solve for meridional velocity distribution to satisfy equations of motion and continuity  Reset streamline location | Overall blade row performance on streamlines at calculation station:  General State properties (temperature and pressure) Velocity diagrams Streamline information Blade rows Element definition parameters Incidence and deviation angles Aerodynamic performance parameters Streamline choke margin Blade section parameters: Surface coordinates Area, moments, etc. |

TABLE II. OP FIONS FOR SPECIFING NEEDS MAY AND SELECTENT BLADE ROW CONDITIONS FOR AFRODYNAMIC SOLUTION

| Rators                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Stators                                                                                                                                                                                                                                        |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cumulative fraction of overall energy addition. CPRDGS (RO FOR) Nordimensional pressure profile at rotor (80). $\frac{P}{R_{1}P} = 1 + R + PRA(ROW) + R^{2} + PRB(ROW) + R^{2} + ORC(ROW)$ $= \frac{P}{R_{1}PRD(ROW)} + R^{2} + ORC(ROW)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tangential velocity component at stator exit $V_{\mu} = \frac{\text{PRAGRGWY}}{R^2} + \frac{\text{PRBGRGW}}{R} + \text{PRCGROW} + \text{R*-PRDGRGW}) + R^2 + \text{PREGROW}$                                                                   |
| where $ R  = (r_1 - r)/(r_1 - r_3)$ Losses from tables of DLOS(K, J, I) as a crion of DFTAB(K, J, I)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | where R r r <sub>tip</sub> Losses from tables of DLOS(K, J, h as function of DFTAB(K, J, l)  Tameential velocity component at stator exit                                                                                                      |
| Rotor exit temperature profile Stagnation temperature at tip P(R) - CPRDGNGROTOR  The stagnation of R*-predictory of Principles  The stagnation of Principles | V <sub>0</sub> PRACTICON) - PHECTROW) - PRECTROW) - R-PRECTROW)  R <sup>2</sup> R + R <sup>2</sup> - PRECTROW)  ***Above R + R <sup>2</sup> - PRECTROW)                                                                                        |
| where $R = (\Gamma_{\ell} - \Gamma) = (\Gamma_{\ell} - \Gamma_{R})$<br>Losses from tables of DLOS(K, J, I) as function of DFTAB(K, J, I)<br>Rotor exit temperature profile<br>Stagnation pressure at tip (psia) = PTT(ROW)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Exit stagnation pressure profile Stagnation pressure at tip (psin) = PTTf(RCM)  Profile    (1 + R+PTC(f, IRCM) + R <sup>2</sup> - PTC(2, IRCM) + R <sup>3</sup> - PTC(6, IRCM) + R <sup>4</sup> - PTC(6, IRCM) + R <sup>5</sup> - PTC(6, IRCM) |
| $T_{\rm tip} = \frac{1}{4} \cdot PRD(ROW_{\rm t} + R^2 + PRE/RROW)$ $\cdot R^4 - PRD(ROW_{\rm t} + R^2 + PRE/RROW)$ $\cdot R^4 - PRE/RROW_{\rm tip}$ Stagnation pressure at tip (bsia) - PTT(RROW) $\frac{P}{P_{\rm tip}} = \frac{1}{4} \cdot R \cdot PTC(I, IROW) \cdot R^3 \cdot PTC(I, IROW)$ $\cdot R^4 \cdot PTC(I, IROW) \cdot R^3 \cdot PTC(I, IROW)$ $\cdot R^4 \cdot PTC(I, IROW) \cdot R^3 \cdot PTC(I, IROW)$ $\cdot R^4 \cdot PTC(I, IROW) \cdot R^3 \cdot PTC(I, IROW)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | where $R = (\mathbf{r}_1 - \mathbf{r}_1)$ $(\mathbf{r}_1 - \mathbf{r}_{1})$                                                                                                                                                                    |

TABLE III. - EXAMPLE PROBLEM

The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th

(a) Input data set

\*\*\* INPUT DATA FOR COMPRESSOR DESIGN PROGRAM \*\*\*

2-STAGE FAN REDESIGN AR=1.52

THE INLET FLOW RATE IS 73.300 (LB/SEC). THE MOLECULAR WEIGHT IS 28.97 . THE DESIRED COMPRESSOR PRESSURE RATIO IS 2.400. CALCULATIONS WILL BE PERFORMED ON 11 STREAMLINES. THE COMPRESSOR ROTATIONAL SPEED IS 16042.8 RPM.

THE COMPRESSOR HAS 4 BLADE ROWS.

CALCULATIONS WILL BE MADE AT THE BLADE EDGES AND AT 17 ANNULAR STATIONS.

THE SPECIFIC HEAT POLYNOMIAL IS IN THE FOLLOWING FORM

CP = 0.23747E 00 + 0.21962E-04\*T + -0.87791E-07\*T\*\*2 + 0.13991E-09\*T\*\*3 + -0.78056E-13\*T\*\*4 + 0.15043E-16\*T\*\*5

## INPUT DISTRIBUTIONS BY STREAMLINE OR STREAMTUBE

| STREAMLINE<br>NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | INLET TOTAL<br>TEMPERATURE<br>(DEG. R.)                        | INLET TOTAL<br>PRESSURE<br>(PSIA)                                  | INLET WHIRL<br>VELOCITY<br>(FI/SEC) | STREAMTUBE<br>NO.             | STREAMTUBE<br>FLOW FRACTION             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|--------------------------------------------------------------------|-------------------------------------|-------------------------------|-----------------------------------------|
| เกษ ค.ย<br>เกษ ค.ย | 518.700<br>518.700<br>518.700<br>518.700<br>518.700<br>518.700 | 14.125<br>14.670<br>14.700<br>14.700<br>14.700<br>14.700<br>14.700 | 00000000                            | <b>ጣለክ</b> ፋ የኒሳ ሶ <b>ሪ</b> ዕ | 000000000000000000000000000000000000000 |
| 10<br>11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 518.700<br>518.700<br>518.700                                  | 14.700<br>14.700<br>14.660                                         | 000.0                               | 10                            | 1.0000                                  |

TABLE III. - Continued.

INPUT DATA POINTS FOR TIP AND HUB CONTOURS.

| HUB<br>RADIUS<br>(INCHES)           | NMMHHHHHHH+++++++++++++++++++++++++++++         |
|-------------------------------------|-------------------------------------------------|
| HUB AXIAL<br>COORDINATE<br>(INCHES) | 1 1 1 2 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
| TIP<br>RADIUS<br>(INCHES)           | 100 100 100 100 100 100 100 100 100 100         |
| TIP AXIAL<br>COORDINATE<br>(INCHES) | 22.000                                          |

WARNING ONLY, AT INPUT POINT, 12, THE TIP CONTOUR DATA IS NOT VERY SMOOTH.

TABLE III. - Continued.

THE IMPUT PROFILE LOSS TABLES - OMEGA(BAR)\*COS(BETA)/(2.0\*SIGMA)

|                           | LOSS PARAM. | 0.0338 | 0.0263 | 0.0210 | 0.0165 | 0.0165  | 0.0165 | 0.0165 | 0.0165 | 0.0200      | 0.0243 | 0.0296 |                           | LOSS PARAM. | 0.0508 | 0.0423   | 0.0360 | 0.0310 | 0.0296 | 0.0299 | 0.0306  | 0.0317 | 0.0347 | 0.0423 | 0.0486 |  |
|---------------------------|-------------|--------|--------|--------|--------|---------|--------|--------|--------|-------------|--------|--------|---------------------------|-------------|--------|----------|--------|--------|--------|--------|---------|--------|--------|--------|--------|--|
|                           | D-FACTOR    | 0.7000 | 0.7000 | 0.7000 | 0.7000 | 0.7000  | 0.7000 | 0.7000 | 0.7000 | 0.7000      | 0.7000 | 0.7000 |                           | D-FACTOR    | 0.7000 | 0.7000   | 0.7000 | 0002.0 | 0.7000 | 0.7000 | 0.7000  | 0.7000 | 0002.0 | 0.7000 | 0.7000 |  |
|                           | LOSS PARAM. | 0.0260 | 0.0202 | 0.0163 | 0.0130 | 0.0130  | 0.0130 | 0.0130 | 0.0130 | 0.0153      | 0.0182 | 0.0221 |                           | LOSS PARAM. | 0.0430 | 0.0362   | 0.0313 | 0.0280 | 0.0261 | 0.0264 | 0.0269  | 0.0278 | 0.0303 | 0.0362 | 0.0411 |  |
|                           | D-FACTOR    | 0.6000 | 0.6000 | 0.6000 | 0.6000 | 0.6000  | 0.6000 | 0.6000 | 0.6000 | 0.6000      | 0.6000 | 0.6000 |                           | D-FACTOR    | 0.6000 | 0.6000   | 0.6000 | 0.6000 | 0.6000 | 0.6000 | 0.009.0 | 0.6000 | 0.6000 | 0.6000 | 0.6000 |  |
| E NO. 1 **                | LOSS PARAM. | 0.0203 | 0.0160 | 0.0132 | 0.0103 | 0.0103  | 0.0103 | 0.0103 | 0.0103 | 0.0122      | 0.0140 | 0.0168 | E NO. 2 **                | LOSS PARAM. | 0.0373 | 0.0320   | 0.0282 | 0.0253 | 0.0234 | 0.0236 | 0.0241  | 0.0248 | 0.0270 | 0.0320 | 0.0358 |  |
| ** PROFILE LOSS TABLE NO. | D-FACTOR    | 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.5000  | 0.5000 | 0.5000 | 0.5000 | 0.5000      | 0.5000 | 0.5000 | ** PROFILE LOSS TABLE NO. | D-FACTOR    | 0.5000 | 0.5000   | 0.5000 | 0.5000 | 0.5000 | 0.5000 | 0.5000  | 0.5000 | 0.5000 | 0.5000 | 0.5000 |  |
| ** PROFI                  | LOSS PARAM. | 0.0166 | 0.0130 | 0.0113 | 0.0089 | 6800.0  | 0.0039 | 0.0089 | 0.0089 | 0.0103      | 0.0110 | 0.0127 | ** PROFI                  | LOSS PARAM. | 0.0336 | 0.0290   | 0.0263 | 0.0239 | 0.0220 | 0.0222 | 0.0226  | 0.0231 | 0.0248 | 0.0290 | 0.0317 |  |
|                           | D-FACTOR    | 0.4000 | 0.4000 | 0.4000 | 0.4000 | 0.4000  | 0.4000 | 0.4000 | 0.4000 | 0 0 0 4 . 0 | 0.4000 | 0.4000 |                           | D-FACTOR    | 0.4000 | 0.4000   | 0.4000 | 0.4000 | 0005.0 | 0.4000 | 0.4000  | 0.4000 | 0.4000 | 0.4000 | 0.4000 |  |
|                           | LOSS PARAM. | 0.0139 | 0.0112 | 0.0100 | 0.0080 | 0.000.0 | 0.0080 | 0.0080 | 0.00.0 | 0.00.0      | 0.0052 | 0.0104 |                           | LOSS PARAM. | 0.0309 | 0.0272   | 0.0220 | 0.0230 | 0.0211 | 0.0212 | 0.0214  | 0.0218 | 0.0233 | 0.0272 | 0.0294 |  |
|                           | D-FACTOR    | 0.3000 | 0.3000 | 0.3000 | 0.3000 | 0.3000  | 0.3000 | 0.3000 | 0.3000 | 0.3000      | 0.3000 | 0.3000 |                           | D-FACTOR    | 0.3000 | 0 . 3000 | 0008.0 | 0.3000 | 0.3000 | 0.3000 | 0.3000  | 0.3000 | 0.3000 | 0.3000 | 0.3000 |  |
|                           | PCT, PASS.  | 0.00   | 10.00  | 20.03  | 30.00  | 40.00   | 20.00  | 60.00  | 70.00  | 80.00       | 30.00  | 103.00 |                           | PCT. PASS.  | 00.0   | 10.00    | 23.00  | 30.00  | 00.05  | 50.00  | 60.00   | 70.00  | 80.00  | 30.00  | 109.00 |  |

|                                             | MASS BLEED FRACTION         | 0.000.0  |                                             | MASS BLEED FRACTION         | 0.000   |
|---------------------------------------------|-----------------------------|----------|---------------------------------------------|-----------------------------|---------|
| ** NOTINE                                   | HUB BLOCKAGE FACTOR         | 0.000.0  | TATION **                                   | HUB BLOCKAGE FACTOR         | 0.0010  |
| ** INPUT SET NO. I IS AN ANNULAR STATION AN | TIP BLOCKAGE FACTOR         | 0.000    | ** INPUT SET NO. 2 IS AN ANNULAR STATION ** | TIP BLOCKAGE FACTOR         | 0.0010  |
| A INFUL SE                                  | HUB AXIAL LOCATION (INCHES) | -11.0000 | ** INPUT SE                                 | HUB AXIAL LOCATION (INCHES) | -9.0000 |
|                                             | TIP AXIAL LOCATION (INCHES) | -11.0000 |                                             | TIP AXIAL LOCATION (INCHES) | -9.0000 |

TABLE III. - Continued.

|                                             | MASS BLEED FRACTION         | 0 0 0 0 0 |                                             | MASS BLEED FRACTION         | 00000.0 |                                   | MASS BLEED FRACTION         | 0 0 0 0 0 0 |                                        |                                             | MASS BLEED FRACTION         | 0.000   |                                             | MASS BLEED FRACTION         | 0.000.0 |
|---------------------------------------------|-----------------------------|-----------|---------------------------------------------|-----------------------------|---------|-----------------------------------|-----------------------------|-------------|----------------------------------------|---------------------------------------------|-----------------------------|---------|---------------------------------------------|-----------------------------|---------|
| TATION **                                   | HUB BLOCKAGE FACTOR         | 0.0020    | TATION **                                   | HUB BLOCKAGE FACTOR         | 0.0030  | TATION **                         | HUB BLOCKAGE FACTOR         | 0.0050      | *** ATA                                | TATION **                                   | HUB BLOCKAGE FACTOR         | 0.0065  | TATION **                                   | HUB BLOCKAGE FACTOR         | 0.0080  |
| ** INPUT SET NO. 3 IS AN ANNULAR STATION ** | TIP BLOCKAGE FACTOR         | 0.0020    | ** INPUT SET NO. 4 IS AN ANNULAR STATION ** | TIP BLOCKAGE FACTOR         | 0.0030  | ET NO. 5 IS AN ANNULAR STATION ** | TIP BLOCKAGE FACTOR         | 0.0050      | *** PRINTOUT OF INPUT STATION DATA *** | ** INPUT SET NO. 6 IS AN ANNULAR STATION ** | TIP BLOCKAGE FACTOR         | 0.0065  | ** INPUT SET NO. 7 IS AN ANNULAR STATION ** | TIP BLOCKAGE FACTOR         | 0.0080  |
| S INUNI **                                  | HUB AXIAL LOCATION (INCHES) | -7.0000   | S LOGNI **                                  | HUB AXIAL LOCATION (INCHES) | ~5.2000 | ** INPUT SET NO.                  | HUB AXIAL LOCATION (INCHES) | -3.7000     | 12C_0 ****                             | ** INPUT S                                  | HUB AXIAL LOCATION (INCHES) | -2.6000 | ** INPUT S                                  | HUB AXIAL LOCATION (INCHES) | -1.5000 |
|                                             | TIP AXIAL LOCATION (INCHES) | -7.0000   |                                             | TIP AXIAL LOCATION (INCHES) | -5.2000 |                                   | TIP AXIAL LOCATION (INCHES) | -3.7000     |                                        |                                             | TIP AXIAL LOCATION (INCHES) | -2.3000 |                                             | TIP AXIAL LOCATION (INCHES) | -1.0000 |

TABLE III. - Continued.

## \*\* INPUT SET NO. & IS ROTOR NO. 1 \*\* \* FOR THIS BLADE ROW THE INPUT OPTION IS DESIGN \*

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INLET MASS BLEED             | 0.000              | OUTLET MASS BLEED       | 0.000               | CUM ENERGY ADD FRACT      | 0.5000               | PARAMETERS *                                                                                                   | CHORD/IIP CHORD       | 0.0000.0                              |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|--------------------|-------------------------|---------------------|---------------------------|----------------------|----------------------------------------------------------------------------------------------------------------|-----------------------|---------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INLET HUB BLOCKAGE I         | 0.0100             | OUTLET HUB BLOCKAGE OU  | 0.0130              | NUMBER OF BLADES CUM      | 22                   | * POLYNOMIAL COEFS. FOR RADIAL PROFILES OF A BLADE AERO. PARAMETER AND BASIC BLADE ELEMENT GEOMETRY PARAMETERS | MAX, THICKNESS/CHORD  | 0.0290<br>0.0000<br>0.1680<br>-0.1170 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | INLET TIP BLOCKAGE IN        | 0.0100             | DUTLET TIP BLOCKAGE OUT | 0.0130              | TIP SOLIDITY N            | 1.3000               | AERO. PARAMETER AND BAS                                                                                        | T.E. RADIUS/CHORD     | 0.0018<br>0.0000<br>0.0090<br>-0.0060 |
| TOTAL | HUB C.G. AXIAL LOCATION INLI | (INCHES)<br>0.9410 |                         | (DEGREES)<br>0.0000 | OM ANGLE LIMIT            | (DEGREES)<br>-20.000 | JIAL PROFILES OF A BLADE                                                                                       | L.E. RADIUS/CHORD     | 0.0018                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AXIAL LOCATION HUB C.6       | (INCHES)<br>0.9410 | LOSS SET USED BLAC      |                     | TIP D FACTOR LIMIT HUB FL |                      | LYNOMIAL COEFS. FOR RAI                                                                                        | ROTOR OUTLET PRESSURE | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 119 6.6                      | Ī                  | 1055                    | •                   | TIPDF                     |                      | 0d *                                                                                                           | COEF.                 | CONSTANT<br>LINEAR<br>QUADRATIC       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                              |                    |                         |                     |                           |                      |                                                                                                                |                       |                                       |

|                                                                                                                     | Ê                                     |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| *                                                                                                                   | FILIPSE MAJOR/MIN                     |
| OMETA                                                                                                               | Σ                                     |
| 1 GE                                                                                                                | 11 17                                 |
| * FUNCTION-OF-PASSAGE-HEIGHT-FROM-TIP POLYNOMIAL COEFFICIENTS FOR GREATER SPECIFICATION OF BLADE ELEMENT GEOMETRY * | _                                     |
| 10E                                                                                                                 | 1                                     |
| F 81.                                                                                                               | 7                                     |
| ě                                                                                                                   | 100                                   |
| CATI                                                                                                                | D T NO                                |
| CIFI                                                                                                                |                                       |
| SPE                                                                                                                 |                                       |
| ATER                                                                                                                | 9                                     |
| GRE                                                                                                                 | :                                     |
| FOR                                                                                                                 |                                       |
| IENT                                                                                                                | RIGNA PATIONIES OF CAS CON PROCESSION |
| FFIC                                                                                                                | •                                     |
|                                                                                                                     |                                       |
| OMIA                                                                                                                |                                       |
| OLYN                                                                                                                |                                       |
| IP P                                                                                                                |                                       |
| OM-T                                                                                                                |                                       |
| T-FR                                                                                                                |                                       |
| EIGH                                                                                                                |                                       |
| GE-H                                                                                                                |                                       |
| A55/                                                                                                                |                                       |
| 0F-F                                                                                                                |                                       |
| HOI                                                                                                                 |                                       |
| :UNC                                                                                                                |                                       |
| *                                                                                                                   |                                       |
|                                                                                                                     |                                       |

0.0000 0.0000 0.0000 0.0000

CONSTANT LINEAR QUADRATIC CUBIC QUARTIC

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ELLIPSE MAJOR/MINOR<br>AXIS RATIO MINUS 1.0<br>************************************ | LEAD. EDGE TRAIL. EDGE                 | -1.00000 | 00000.0   |          | IDEF(IROW)                                                                      | -        | •         |          |          |           |          |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------|----------|-----------|----------|---------------------------------------------------------------------------------|----------|-----------|----------|----------|-----------|----------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | INE ANGLE<br>(NS. PT.)                                                              | QUARTIC                                | 00000    | 00000     |          | IICKNESS<br>( TH. PT.)                                                          | ******   | O COCO    |          | 00000    |           |          |
| :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | POLY, COEF, FOR 2ND SEG. CENTERLINE ANGLE (FUNCTION OF PATH )                       | CUBIC                                  | 1.0000   | 0.0000    |          | POLY, COEF, FOR.2ND SEGMENT THICKNESS (FUNCTION OF PATH DIST, FROM MAX.TH, PI.) | ******** | CUBIC     |          |          |           |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | F. FOR 2ND OF PATH DIS                                                              | QUADRATIC                              | 0.0000   | 0.0000    | 00000.0  | DEF. FOR. 2NI OF PATH DI                                                        | ******** | QUADRATIC |          |          |           | 00000    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | POLY. COE                                                                           | LINEAR                                 | 0.0000   | 0.00000   | 0.00000  | POLY. C                                                                         | ******   | SQ. R00T  | 00000    | 0.0000   | 00000     | 0.0000   |
| * FUNCTION-UT-PASSAGE-NEIGHT-TAUT-III OCCUPATION CONTROLL | INE ANGLE                                                                           | ************************************** | -1.00000 | 0.0000    | 0.0000.0 | LICKNESS<br>C.TH. PT.)                                                          | ******   | QUARTIC   | 0.0000   | 0.000.0  | 000000    | 0.000.0  |
| LIVE LINE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SEG. CENTERI                                                                        | ************************************** | 00000    | 00000.0   | 0.0000.0 | I SEGMENT TH                                                                    | ******** | CUBIC     | 0.0000.0 | 0.00000  | 00000.0   | 0.0000.0 |
| 22AGE-116161                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | POLY. COEF. FOR 1ST SEG. CENTERLINE ANGLE (FUNCTION OF PATH DIST. FROM TRANS. PT.)  | ************************************** | 1.0000   | 0.0000    | 0.00000  | POLY. COEF. FOR 1ST SEGMENT THICKNESS                                           | ******** | QUADRATIC | 1.50000  | -0.50000 | 0.0000    | 00000.0  |
| CITON-OF-PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | POLY. COE                                                                           | LINEAR                                 | 0.5000   | 0.0000    | 0.00000  | POLY. C                                                                         | ******   | 59.8007   | 00000.0  | 0.0000.0 | 00000.0   | 0.0000   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RADIAL                                                                              | COEF.                                  | CONSTANT | OUADRATIC | CUBIC    | RADIAL                                                                          |          |           | CONSTANT | LINEAR   | QUADRATIC | CUBIC    |

TABLE III. - Continued.

|                                            | BLADE MATERIAL DENSITY<br>LB/(IN)**3 | 0.0000           |                                                 |                                                                            | MAX. THICKNESS<br>LOCATION/CHORD                | 0.6400 | 0.6300 | 0.6200 | 0.6100   | 0.6000 | 0.5800 | 0.5600 | 0.5400       | 0.5000 | 0.5000  | 0.5000  |
|--------------------------------------------|--------------------------------------|------------------|-------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|--------|--------|--------|----------|--------|--------|--------|--------------|--------|---------|---------|
|                                            | CHOKE                                | NONE             |                                                 | HE TABLE.)                                                                 | TRANSITION/CHORD<br>LOCATION                    | 0.7000 | 0.6474 | 0.6042 | 0.5627   | 0.5193 | 0.4705 | 0.4180 | 0.3592       | 0.2862 | 0.2243  | 0.1629  |
| *                                          | CKNESS                               | E.REF.)          | PUT *                                           | ROS IN T                                                                   |                                                 |        |        |        |          |        |        |        |              |        |         |         |
| ITION OPTIONS                              | MAX. THICKNESS<br>POINT              | TABLE (L.E.REF.) | VARIABLES IN                                    | APPEAR AS ZE                                                               | INLET/OUTLET TURNING<br>RATE RATIO              | 0.0750 | 0.1800 | 0.4300 | 0.6600   | 0.7900 | 0.8300 | 0.8600 | 0.96.0       | 0.9800 | 1.0000  | 1.0000  |
| NT DEFIN                                   | TRANSITION<br>Point                  | TABLE            | N DESIGN                                        | ONS WILL                                                                   |                                                 |        |        |        |          |        |        |        |              |        |         |         |
| * INPUT BLADE ELEMENT DEFINITION OPTIONS * | URNING RATE TRA<br>RATIO             | TABLE            | * TABLE OF BLADE SECTION DESIGN VARIABLES INPUT | (VARIABLES CONTROLLED BY OTHER OPTIONS WILL APPEAR AS ZEROS IN THE TABLE.) | DEVIATION ANGLE<br>(DEGREES)                    | 8.0000 | 6.8000 | 6.8000 | 4.5000   | 4.6000 | 5.7000 | 6.6300 | 7.5200       | 8.6400 | 10.3900 | 12.5200 |
| *                                          | TURN                                 | _                | * TABI                                          | S CONTROI                                                                  | URFACE<br>Angle<br>ES)                          |        |        |        |          | 6      | _      | _      | •            |        | 0       | 0       |
|                                            | DEVIATION<br>Angle                   | TABLE            |                                                 | CVARIABLE                                                                  | SUCTION SURFACE<br>INCIDENCE ANGLE<br>(DEGREES) | 0.4500 | 0.510  | 0.400  | 0.370    | 0.350  | 0.260  | 0.200  | 0.170        | 0.00.0 | 0.00.0  | 000.0   |
|                                            | INCIDENCE<br>ANGLE                   | TABLE (S.S.REF.) |                                                 |                                                                            | STREAMLINE<br>NUMBER                            | -      | ~      | ·1     | <b>3</b> | ún .   | •      | _      | <b>*</b> 0 ' | 5.     | D ,     | 11      |

|                                             | MASS BLEED FRACTION         | 0.0000 |
|---------------------------------------------|-----------------------------|--------|
| TATION **                                   | HUB BLOCKAGE FACTOR         | 0.0150 |
| ** INPUT SET NO. 9 IS AN ANNULAR STATION ** | TIP BLOCKAGE FACTOR         | 0.0150 |
| S INPUT S                                   | HUB AXIAL LOCATION (INCHES) | 3.3000 |
|                                             | TIP AXIAL LOCATION (INCHES) | 3.0000 |

TABLE III, - Continued,

| *           |           |
|-------------|-----------|
| 5           | *         |
| E OR STATOR | ė         |
| ~           | 90        |
| ō           | COORD     |
| GUIDE VANE  | OPTION IS |
| >           | ĸ         |
| Ē           | Ξ         |
| ini         | 9         |
|             | 5         |
| IS          | INPUT     |
| 10 IS A     |           |
|             | =         |
| SET NO.     | ROW THE   |
| ET          |           |
| ~           | BLADE     |
| Ξ           | ĕ         |
| INPUT       | 15        |
| *           | Ξ         |
| -           | FOR THIS  |
|             | *         |
|             |           |

|                                                          |                                  | C. 04000 04 11011 10 10 |                     |                   |
|----------------------------------------------------------|----------------------------------|-------------------------|---------------------|-------------------|
| TIP C.G. AXIAL LOCATION HUB C.G. AXIAL LOCATION (INCHES) | HUB C.G. AXIAL LOCATION (INCHES) | INLET TIP BLOCKAGE      | INLET HUB BLOCKAGE  | INLET MASS BLEED  |
| 5.2000                                                   | 5.2000                           | 0.0170                  | 0.0170              | 0.0000            |
| LOSS SET USED                                            | BLADE TILT ANGLE                 | OUTLET TIP BLOCKAGE     | OUTLET HUB BLOCKAGE | OUTLET MASS BLEED |
| ~                                                        | 0.0000                           | 0.0200                  | 0.0200              | 0.0000            |
| HUB D FACTOR LIMIT<br>0.7000                             | INLET HUB MACH LIMIT<br>1.0000   | TIP SOLIDITY            | NUMBER OF BLADES    |                   |

| PARAMETERS *                                                                                                                                                                                              | 0000.0                                                         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|
| FPOLYNOMIAL COEFS. FOR RADIAL PROFILES OF A BLADE AERO. PARAMETER AND BASIC BLADE ELEMENT GEOMETRY PARAMETERS *<br>S1'*OR OUTLET V(0) L.E. RADIUS/CHORD T.E. RADIUS/CHORD MAX. THICKNESS/CHORD CHORDALTED | 000000000000000000000000000000000000000                        |
| AERO. PARAMETER AND BASI<br>T.E. RADIUS/CHORD                                                                                                                                                             | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                          |
| DIAL PROFILES OF A BLADE<br>L.E. RADIUS/CHORD                                                                                                                                                             | 0.0130<br>-0.0080<br>0.0000<br>0.0000                          |
| OLYNOMIAL CDEFS. FOR RAD<br>ST.*OR OUTLET V(0)                                                                                                                                                            | 00000                                                          |
| * P                                                                                                                                                                                                       | INV.SQ.<br>INVERSE<br>CONSTANT<br>LINEAR<br>QUADRATIC<br>CUBIC |

| FUNCTION-OF-PASSAGE-HEIGHT-FROM-TIP POLYNOMIAL COEFFICIENTS FOR GREATER SPECIFICATION OF BLADE ELEMENT GERMETRY * | ELLIPSE MAJOR/MINOR<br>AXIS RATIO MINUS 1.0 | **************************************                                                                                                                                                                                                                                                                                                                                                          | 0.00000 0.00000<br>0.00000 0.00000     | IDEF(IROW)                              | J                                                                                       |             |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------|-------------|
| ION OF BLADE                                                                                                      | ERLINE ANGLE                                | LINEAR QUARRAIC CUBIC QUARTIC -1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 | 0.00000<br>0.00000<br>THICKNESS        | AX. TH. PT.)                            | 0.00000 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 | 0.00000     |
| SPECIFICAT                                                                                                        | SEG. CENTE                                  | CCUBIC<br>CCUBIC<br>O.00000                                                                                                                                                                                                                                                                                                                                                                     | O COOOO                                | IST. FROM PERKERS                       | 0.00000                                                                                 | 0.00000     |
| OR GREATER                                                                                                        | EF. FOR 2ND                                 | QUADRATIC<br>0.00000<br>0.00000                                                                                                                                                                                                                                                                                                                                                                 | 0.00000<br>0.00000                     | OF PATE D                               | 00000.0                                                                                 | 0.00000     |
| COEFFICIENTS FI                                                                                                   | POLY. COE                                   | LINEAR<br>-1,00000<br>0,00000                                                                                                                                                                                                                                                                                                                                                                   | 0.00000<br>0.00000                     | **************************************  | 000000                                                                                  | 0.00000     |
| POLYNOMIAL                                                                                                        | LINE ANGLE<br>ANS. PT.)                     | QUARTIC<br>0.00000<br>0.00000                                                                                                                                                                                                                                                                                                                                                                   | O.00000<br>HICKNESS                    | **************************************  | 0.00000                                                                                 | 000000      |
| I-FROM-TIP                                                                                                        | SEG. CENTER<br>ST. FROM TR                  | CUBIC<br>0.00000<br>0.00000                                                                                                                                                                                                                                                                                                                                                                     | 0.00000<br>T SEGMENT T                 | 7 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 000000                                                                                  | 0.0000.0    |
| ISSAGE-HEIGH                                                                                                      | F. FOR IST<br>OF PATH DI                    | LINEAR QUADRATIC CUBIC QUARTIC 1.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000                                                                                                                                                                                                                                                                                          | POLY. COEF. FOR 1ST SEGMENT THICKNESS. | **************************************  | 00000                                                                                   | 000000      |
| ICT I ON-OF-P#                                                                                                    | POLY. COR<br>CFUNCTION                      | LINEAR<br>1.00000<br>0.00000                                                                                                                                                                                                                                                                                                                                                                    | POLY. C                                | ******                                  | 0000                                                                                    | 0 0 0 0 0 0 |
| *                                                                                                                 | RADIAL<br>Function<br>Coef.                 | CONSTANT<br>LINEAR<br>QUADRATIC                                                                                                                                                                                                                                                                                                                                                                 | CUBIC<br>RADIAL<br>FUNCTION            | COEF.                                   | LINEAR                                                                                  | CUBIC       |

TABLE III. - Continued.

**\***:

|                         |                                                              |                                                                                                      |                                                                                                                                                | MAX. THICKNESS<br>LOCATION/CHORD                                                                                                                                                                                           | 0.5000                                                                                                                                                                                                                                                                           | 0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.5000                                                                                                                                                                                                                                                                                                                                        | 0 · 5000<br>0 · 5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------|--------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| CHOKE                   | NONE                                                         |                                                                                                      | THE TABLE.)                                                                                                                                    | NSITION/CHORD<br>LOCATION                                                                                                                                                                                                  | 00000                                                                                                                                                                                                                                                                            | 00000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.000                                                                                                                                                                                                                                                                                                                                         | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MAX. THICKNESS<br>POINT | TABLE (L.E.REF.                                              | I VARIABLES INPUT *                                                                                  | . APPEAR AS ZEROS IN                                                                                                                           |                                                                                                                                                                                                                            | 1.0000                                                                                                                                                                                                                                                                           | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1.0000                                                                                                                                                                                                                                                                                                                                        | 1.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TRANSITION<br>POINT     | S.S. SHOCK                                                   | SECTION DESIGN                                                                                       | ER OPTIONS WILL                                                                                                                                | N ANGLE INLETA                                                                                                                                                                                                             | 000                                                                                                                                                                                                                                                                              | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 000                                                                                                                                                                                                                                                                                                                                           | 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| IRNING RATE<br>Ratio    | TABLE                                                        | ABLE OF BLADE                                                                                        | ROLLED BY OTH                                                                                                                                  |                                                                                                                                                                                                                            | 16.20                                                                                                                                                                                                                                                                            | 10.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9,10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8.80                                                                                                                                                                                                                                                                                                                                          | 10.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DEVIATION TU<br>ANGLE   | TABLE                                                        | *                                                                                                    | (VARIABLES CONT                                                                                                                                | SUCTION SURFACE<br>INCIDENCE ANGLE<br>(DEGREES)                                                                                                                                                                            | -3.0000<br>-3.0000                                                                                                                                                                                                                                                               | -3.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -3.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -3.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -3.0000                                                                                                                                                                                                                                                                                                                                       | 0000 . R -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| INCIDENCE               | TABLE (S.S.REF.)                                             |                                                                                                      |                                                                                                                                                | STREAMLINE<br>NUMBER                                                                                                                                                                                                       | 2                                                                                                                                                                                                                                                                                | m s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | · 60 v                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | or~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | eo (                                                                                                                                                                                                                                                                                                                                          | , 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                         | DEVIATION TURNING RATE TRANSITION MAX, THICKNESS ANGLE ANGLE | DEVIATION TURNING RATE TRANSITION MAX. THICKNESS ANGLE RATIO TABLE TABLE S.S. SHOCK TABLE (L.E.REF.) | DEVIATION TURNING RATE TRANSITION MAX. THICKNESS ANGLE FAILS S.S. SHOCK TABLE (L.E.REF.) TABLE TABLE OF BLADE SECTION DESIGN VARIABLES INPUT * | DEVIATION TURNING RATE TRANSITION MAX. THICKNESS ANGLE RATIO  TABLE S.S. SHOCK TABLE (L.E.REF.)  * TABLE OF BLADE SECTION DESIGN VARIABLES INPUT *  (VARIABLES CONTROLLED BY OTHER OPTIONS WILL APPEAR AS ZEROS IN THE TAB | DEVIATION TURNING RATE TRANSITION MAX. THICKNESS CHOKE ANGLE S.S. SHOCK TABLE (L.E.REF.) NONE  (VARIABLES CONTROLLED BY OTHER OPTIONS WILL APPEAR AS ZEROS IN THE TABLE.)  SUCTION SURFACE DEVIATION ANGLE INLET/OUTLET TURNING TRANSITION/CHORD INCEDENCES) (DEGREES) (DEOREES) | DEVIATION TURNING RATE TRANSITION MAX. THICKNESS CHOKE ANGLE TABLE S.S. SHOCK TABLE (L.E.REF.) NONE  * TABLE OF BLADE SECTION DESIGN VARIABLES INFUT *  (VARIABLES CONTROLLED BY OTHER OPTIONS WILL APPEAR AS ZEROS IN THE TABLE.)  SUCTION SURFACE DEVIATION ANGLE INLET/OUTLET TURNING TRANSITION/CHORD IN CHORD CONTROLLED SUCTION SURFACE INCIDENCE ANGLE DEVIATION ANGLE INLET/OUTLET TURNING TRANSITION/CHORD IN CHORD CONTROLLED SUCTION SURFACE INCIDENCE ANGLE DEVIATION ANGLE INLET/OUTLET TURNING TRANSITION/CHORD IN CONTROLLED SUCTION SURFACE INCIDENCE ANGLE DEVIATION ANGLE INLET/OUTLET TURNING TRANSITION/CHORD IN CONTROLLED SUCTION SURFACE INCIDENCE ANGLE DEVIATION ANGLE INLET/OUTLET TURNING TRANSITION/CHORD IN CONTROLLED SUCTION SURFACE INCIDENCE SUCTION SURFACE INCIDENCE SUCTION SURFACE INCIDENCE SUCTION SURFACE INCIDENCE SURFACE INCIDENCE SUCTION SUCT | DEVIATION TURNING RATE TRANSITION MAX. THICKNESS CHOKE ANGLE TABLE S.S. SHOCK TABLE (I.E.REF.) NONE  * TABLE OF BLADE SECTION DESIGN VARIABLES INFUT *  (VARIABLES CONTROLLED BY DITHER OPTIONS WILL APPEAR AS ZEROS IN THE TABLE.)  SUCTION SURFACE INCIDENCE ANGLE DEVIATION ANGLE INLET/OUTLET TURNING TRANSITION/CHORD INCIDENCE ANGLE DEVIATION ANGLE INLET/OUTLET TOWN OF THE TABLE.)  -3.0000 | DEVIATION TURNING RATE TRANSITION MAX. THICKNESS CHOKE  ANGLE TABLE S.S. SHOCK TABLE (I.E.REF.) NONE  * TABLE OF BLADE SECTION DESIGN VARIABLES INFUT *  (VARIABLES CONTROLLED BY DITHER OPTIONS WILL APPEAR AS ZEROS IN THE TABLE.)  SUCTION SURFACE DEVIATION ANGLE INLET/OUTLET TURNING TRANSITION/CHORD INCIDENCE ANGLE DEVIATION ANGLE INLET/OUTLET TURNING TRANSITION/CHORD ANGLE ANGLE DEVIATION ANGLE AN | DEVIATION TURNING RATE TRANSITION MAX. THICKNESS CHOKE ANGLE TABLE S.S. SHOCK TABLE (I.E.REF.) NONE  * TABLE OF BLADE SECTION DESIGN VARIABLES INPUT *  (VARIABLES COMTROLLED BY DITHER OPTIONS MILL APPEAR AS ZEROS IN THE TABLE.)  SUCTION SURFACE INCIDENCE ANGLE DEVIATION ANGLE INLET/OUTLET TURNING TRANSITION/CHORD (DEGREES)  -3.0000 | DEVIATION TURNING RATE TRANSITION MAX. THICKNESS CHOKE  ANGLE  * TABLE  * T |

|                                              | MASS BLEED FRACTION            | 0.000  |
|----------------------------------------------|--------------------------------|--------|
| ** NOILAL                                    | HUB BLOCKAGE FACTOR            | 0.0200 |
| ** INPUT SET NO. 11 IS AN ANNULAR STATION ** | TIP BLOCKAGE FACTOR            | 0.0200 |
| ** INPUT SE                                  | HUB AXIAL LOCATION<br>(INCHES) | 7.3400 |
|                                              | TIP AXIAL LOCATION (INCHES)    | 7.3400 |

TABLE III. - Continued.

\*\*\* PRINTOUT OF INPUT STATION DATA \*\*\*

| *   |
|-----|
| -   |
| *   |
|     |
|     |
| c.  |
| •   |
|     |
|     |
|     |
|     |
| -   |
| -   |
| S   |
| _   |
|     |
| n   |
| 100 |
| c   |
|     |
| •   |
| _   |
| - 2 |
| 0   |
|     |
|     |
| U   |
| ÷   |
| -   |
|     |
|     |
| £   |
| -   |
| -   |
|     |
|     |
|     |
| 5   |
| - 3 |
| •   |
|     |
|     |
| ٠   |
| L   |
|     |
| ·   |
|     |
|     |
|     |
| - 1 |
| - 2 |
| -   |
|     |
| - 2 |
| -   |
| •   |
|     |
|     |
| - : |
| -   |
|     |

|                                                   | INLET MASS BLEED          | 0.000    | OUTLET MASS BLEED      | 0.000     | CUM ENERGY ADD FRACT | 1.0000               | TRY PARAMETERS *                                                                                               | CHORD/TIP CHORD             | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0 |                                            | BLADE MATERIAL DENSITY LBZ(IN)**3 | 0.16000                     |                                                   |                                                                            | MAX. THICKNESS<br>LOCATION/CHORD                                |                                                                                                   |
|---------------------------------------------------|---------------------------|----------|------------------------|-----------|----------------------|----------------------|----------------------------------------------------------------------------------------------------------------|-----------------------------|------------------------------------------------------------------------------|--------------------------------------------|-----------------------------------|-----------------------------|---------------------------------------------------|----------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
|                                                   | INLET HUB BLOCKAGE        | 0.0200   | OUTLET HUB BLOCKAGE    | 0.0200    | NUMBER OF BLADES C   | 38                   | BLADE ELEMENT GEOMEI                                                                                           | MAX. THICKNESS/CHORD        | 0,0340<br>0,0000<br>0,1350<br>-0,0920                                        |                                            | NESS CHOKE MARGIN                 | REF.) NONE                  | * -                                               | IS IN THE TABLE.)                                                          | TRANSITIOM/CHORD<br>LOCATION                                    |                                                                                                   |
| OPTION IS COORD. *                                |                           | 200      |                        | 500       |                      | 000                  | * POLYNOMIAL COEFS. FOR RADIAL PROFILES OF A BLADE AERO. PARAMETER AND BASIC BLADE ELEMENT GEOMETRY PARAMETERS | T.E. RADIUS/CHORD MA        | 0.000<br>0.000<br>0.000<br>0.000<br>0.000                                    | * INPUT BLADE ELEMENT DEFINITION OPTIONS * | TRANSITION MAX. THICKNESS POINT   | S.S. SHOCK TABLE (L.E.REF.) | * TABLE OF BLADE SECTION DESIGN VARIABLES INPUT * | (VARIABLES CONTROLLED BY OTHER OPTIONS WILL APPEAR AS ZEROS IN THE TABLF.) | DEVIATION ANGLE INLETZOUTLET TURNING TRANSITION/CHORD (DEGREES) | 0.610<br>0.6510<br>0.86510<br>0.88670<br>0.9810<br>0.9810<br>1.0000<br>1.0000<br>1.0000<br>1.0000 |
| * FOR THIS BLADE ROW THE INPUT OPTION IS COORD. * | CATION INLET TIP BLOCKAGE | 0.0200   | LE DUTLET TIP BLOCKAGE |           | 118                  | 1.3000               | ES OF A BLADE AERO.                                                                                            | L.E. RADIUS/CHORD T.        | 000000<br>0000000000000000000000000000000                                    | INPUT BLADE ELEMENT                        | TURNING RATE TRANS<br>PO<br>PO    | TABLE 5.S.                  | LE OF BLADE SECTION                               | LLED BY OTHER OPTION                                                       | DEVIATION ANGLE<br>(DEGREES)                                    | 2.6000<br>2.7000<br>3.2000<br>3.2000<br>4.0200<br>6.7000<br>12.4000                               |
| * FOR THIS                                        | HUB C.G. AXIAL LOCATION   |          |                        | (DEGREES) | HUB FLOW ANGLE L     | (DEGREES)<br>-20,000 | S. FOR RADIAL PROFIL                                                                                           | RESSURE L.E. R/             |                                                                              | *                                          | DEVIATION TURN                    |                             | * TAB                                             | CVARIABLES CONTRO                                                          | INCIDENCE ANGLE (DEGREES)                                       |                                                                                                   |
|                                                   | TIP C.G. AXIAL LOCATION   | (INCHES) | 0351 TES 2301          | 1         | TYP D EACTOR 1 1M11  | 0.4600               | S TO COEFF                                                                                                     | COEF. ROTOR OUTLET PRESSURE | O LI CO                                                                      |                                            | INCIDENCE DI<br>ANGLE             |                             |                                                   |                                                                            | STREAMLINE                                                      | 108400/86011                                                                                      |

TABLF III. - Continued.

|                                              | MASS BLEED FRACTION         | 0 . 0   |
|----------------------------------------------|-----------------------------|---------|
| TATION **                                    | HUB BLOCKAGE FACTOR         | 0.0200  |
| ** INPUT SET NO. 13 IS AN ANNULAR STATION ** | TIP BLOCKAGE FACTOR         | 0.0200  |
| ** INPUT SE                                  | HUB AXIAL LOCATION (INCHES) | 11.0100 |
|                                              | IN AXIAL LOCATION           | 11.0100 |

TABLE III. - Continued.

| *      |  |
|--------|--|
| STATOR |  |
| 08     |  |
| VANE   |  |
| GUIDE  |  |
| 4      |  |
| 5      |  |
| 1,4    |  |
| 2      |  |
| SFT    |  |
| TUPLIT |  |
| *      |  |
|        |  |

|                                                 | INLET MASS BLEED                                | 0 0 0 0 0 | OUTLET MASS BLEED          | 0000.0 |                                |
|-------------------------------------------------|-------------------------------------------------|-----------|----------------------------|--------|--------------------------------|
| 00RD. *                                         | INLET HUB BLOCKAGE                              | 0.0200    | OUTLET HUB BLOCKAGE        | 0.0200 | NUMBER OF BLADES               |
| * FOR THIS BLADE ROW THE IMPUT OPTION IS COORD. | INLET TIP BLOCKAGE                              | 0.0200    | <b>OUTLET TIP BLOCKAGE</b> | 0.0200 | TIP SOLIDITY<br>1.2600         |
| * FOR THIS BLADE R                              | TIP C.G. AXIAL LOCATION HUB C.G. AXIAL LOCATION | 12.7000   | BLADE TILT ANGLE           | 0.0000 | INLET HUB MACH LIMIT<br>1.0000 |
|                                                 | TIP C.G. AXIAL LOCATION                         | 12.7000   | LOSS SET USED              | N      | HUB D FACTOR LIMIT<br>0.7000   |

| PARAMETERS *                                                                                                   | CHORD/IIP CHORD      | 0000.0                                        |                              |                         |                  |
|----------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------|------------------------------|-------------------------|------------------|
| ELEMENT GEOMETRY                                                                                               | MAX. THICKNESS/CHORD | 0.0200<br>0.0200<br>0.0000<br>0.0000          |                              | CHOKE<br>MARGIN         | NONE             |
| ND BASIC BLADE                                                                                                 |                      | ,                                             | PTIONS *                     | MAX. THICKNESS<br>POINT | TABLE (L.E.REF.) |
| ERO. PARAMETER AN                                                                                              | T.E. RADIUS/CHORD    | 0 . 0 140<br>0 . 0080<br>0 . 0000<br>0 . 0000 | ELEMENT DEFINITION OPTIONS * | RANSITION MA            | S.S. SHOCK TAI   |
| * POLYNOMIAL COEFS. FOR RADIAL PROFILES OF A BLADE AERO. PARAMETER AND BASIC BLADE ELEMENT GEOMETRY PARAMETERS | L.E. RADIUS/CHORD    | 0.0080<br>0.0080<br>0.0080<br>0.0000          | * INPUT BLADE ELE            | TURNING RATE<br>RATIO   | TABLE            |
| COEFS. FOR RADIAL                                                                                              | OUTLET V(0)          | 00000                                         |                              | DEVIATION<br>ANGLE      | TABLE            |
| * POLYNOMIAL                                                                                                   | COEF. STATOR O       | INV.50. INVERSE CONSTANT LINEAR QUADRATIC     |                              | INCIDENCE<br>ANGLE      | TABLE (S.S.REF.) |

|                                                                           | MAX. THICKNESS<br>LOCATION/CHORD                |                                                                                            |
|---------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------|
| S IN THE TABLE.)                                                          | TRANSITION/CHORD<br>LOCATION                    | 000000000000000000000000000000000000000                                                    |
| VARIABLES CONTROLLED BY OTHER OPTIONS WILL APPEAR AS ZEROS IN THE TABLE.) | INLET/OUTLET TURNING<br>RATE RATIO              | 000000000000000000000000000000000000000                                                    |
| LED BY OTHER OPTION                                                       | DEVIATION ANGLE<br>(DEGREES)                    | 15.600<br>10.9000<br>10.9000<br>9.4000<br>9.2000<br>9.2000<br>9.1000<br>11.1000<br>16.0000 |
| (VARIABLES CONTROL                                                        | SUCTION SURFACE<br>INCIDENCE ANGLE<br>(DEGREES) | 80000000000000000000000000000000000000                                                     |
|                                                                           | STREAMLINE<br>NUMBER                            | 110000000011                                                                               |

\* TABLE OF BLADE SECTION DESIGN VARIABLES INPUT \*

TABLE III. - Continued.

\*\*\* PRINTOUT OF INPUT STATION DATA \*\*\*

|                                              | MASS BLEED FRACTION         | 0.000   |                                              | MASS BLEED FRACTION         | 0.0000  |                                              | MASS BLEED FRACTION         | 0.000   |                                              | MASS BLEED FRACTION         | 0.000   |                                              | MASS BLEED FRACTION         | 0.000   |
|----------------------------------------------|-----------------------------|---------|----------------------------------------------|-----------------------------|---------|----------------------------------------------|-----------------------------|---------|----------------------------------------------|-----------------------------|---------|----------------------------------------------|-----------------------------|---------|
| STATION **                                   | HUB BLOCKAGE FACTOR         | 0.0200  | STATION **                                   | HUB BLOCKAGE FACTOR         | 0.0200  | 1A110K **                                    | HUB BLOCKAGE FACTOR         | 0.0200  | 14710N **                                    | HUB BLOCKAGE FACTOR         | 0.0200  | STATION **                                   | HUB BLOCKAGE FACTOR         | 0.0200  |
| ** INPUT SET NO. 15 IS AN ANNULAR STATION ** | TIP BLOCKAGE FACTOR         | 0.0200  | ** INPUT SET BO. 16 IS AN ANNULAR STATION ** | TIP BLOCKAGE FACTOR         | 0.0200  | ** INPUT SET NO. 17 IS AN ANNULAR STATION ** | TIP BLOCKAGE FACTOR         | 0.0200  | ** INPUT SET ND. 18 IS AN ANNULAR STATION ** | TIP BLOCKAGE FACTOR         | 0.0200  | ** INPUT SET NO. 19 IS AN ANNULAR STATION ** | TIP BLOCKAGE FACTOR         | 0.0200  |
| S INGNI **                                   | HUB AXIAL LOCATION (INCHES) | 14,4400 | ** INPUT                                     | HUB AXIAL LOCATION (INCHES) | 16.0000 | ** INPUT                                     | HUB AXIAL LOCATION (INCHES) | 17.6000 | ** INPUT                                     | HUB AXIAL LOCATION (INCHES) | 18.6000 | INdNI **                                     | HUB AXIAL LOCATION          | 19.6000 |
|                                              | TIP AXIAL LOCATION (INCHES) | 14.4400 |                                              | TIP AXIAL LOCATION (INCHES) | 15.7000 |                                              | TIP AXIAL LOCATION (INCHES) | 17.0000 |                                              | TIP AXIAL LOCATION (INCHES) | 17.7500 |                                              | TIP AXIAL LOCATION (INCHES) | 18.5900 |

TABLE III. - Continued.

|                                        | MASS BLEED FRACTION<br>0.0000                                                              | MASS BLEED FRACTION<br>0.0000                                                                 |
|----------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| *** 414                                | TATION ** HUB BLOCKAGE FACTOR 0.0200                                                       | STATION **<br>HUB BLOCKAGE FACTOR<br>0.0200                                                   |
| *** PRINTOUT OF INPUT STATION DATA *** | 4. INPUT SET NO. 20 IS AN ANNULAR STATION ** SCATION TIP BLOCKAGE FACTOR HUB BLO 51 0.0200 | •• INPUT SET NO. 21 IS AN ANNULAR STATION **<br>SCATION TIP BLOCKAGE FACTOR HUB BLO<br>0.0200 |
| # # # # # # # # # # # # # # # # # # #  | ** INPUT SE<br>HUB AYTAL LOCATION<br>(INCMES)<br>20 6000                                   | ** INPUT SI<br>HUB AYTAL LOCATION<br>(INCHES)<br>21 SCOO                                      |
|                                        | TIP AXIAL LOCATION<br>(INCHES)<br>19.2500                                                  | TIP AXIAL LOCATION<br>(INCHES)<br>20.0000                                                     |

TABLE III. - Continued.

(b) Printout during iterative computations

|            | - Sunuanna-unuannannan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | aammaa                                                           |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| ((,1)      | -111 0000<br>-79 00000<br>-79 000000<br>-79 00000<br>-79 000000<br>-79 00000<br>-79 000000<br>-79 00000<br>-79 0000000<br>-79 00000<br>-79 00000000<br>-79 00000<br>-79 000000<br>-79 00000<br>-79 0000000<br>-79 00000<br>-79 00000<br>-79 00000<br>-79 00000<br>-79 00000<br>-79 00000<br>-79 00000<br>-70 00000<br>-70 00000<br>-70 00000<br>-70 00000<br>-70 00000<br>-70 0                                                                         | 15.8340<br>17.2699<br>18.1351<br>19.0028<br>19.8740<br>20.7002   |
| H          | 10000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 223<br>223<br>224<br>224<br>224                                  |
| AR         | 32.0000<br>3.00000<br>3.0000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.2665<br>2.3266<br>3.3246<br>3.314<br>2.854<br>2.7756           |
| Z(IFT, JM) | -11.000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.00000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79.0000<br>-79 | 15.8340<br>17.2699<br>18.1351<br>19.0028<br>19.8740<br>20.7002   |
| IFT        | 10848460484848484848484848484848484848484                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>200      |
| -          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 222<br>223<br>243<br>2543<br>2543<br>2543<br>2543<br>2543<br>254 |

FACT2 = 9.0369

FACT1 = 3.2592

TABLE III. - Continued.

|       |         |          |                 | . 6.3  |      | 70.      | 1.35 | 2.50     | 1.96 | 474.02 | 2.49 | 6.53 | 6.0   | 7.37       | 1    | 7.11 | 1.1        | 0.19 | 3.47 | 4.32        | 3.27 | 4.45 | 5.00 | 56.5        | 89.5 | 5.5  |      | ,<br>, |      | 10.   |
|-------|---------|----------|-----------------|--------|------|----------|------|----------|------|--------|------|------|-------|------------|------|------|------------|------|------|-------------|------|------|------|-------------|------|------|------|--------|------|-------|
|       |         |          | 17              | . A.   | 2.5  | 4        | 2    | 5        | 5    | 6.7    | 55   | 5    | 5     | 07)<br>141 | 5.0  | 5    | 65         | 50   | 3    | 5           | 5    | 52   | 50.  | 20          | 4.7  | 5    | C. 7 | . 7    |      | 3     |
|       |         |          |                 | 60.0   | 8/   | 8 6      | 5.36 | 96.9     | 5.54 | 539.25 | 3.29 | 7.72 | 55.   | 7.12       | 3.51 | 8.73 | 7.33       | 7.62 | 2.38 | 0.42        | 6.74 | 9.17 | 5.54 | 7.36        | 69.0 | 09.5 | 7.53 | 5      |      | 0.1.0 |
|       |         |          | 3.0             | 5.7    |      | 5.5      | 5    | 5.5      | 53   | 53     | 5.5  | S    | 55    | 57         | 5.3  | 53   | 54         | .96  | 51.  | 5           | 5    | 55   | 5,5  | 5.2         | 5.1  | 3    | 4.5  | 7      | 7    | ,     |
|       |         |          |                 | 3.37   | 0.1  | 5.72     | 1.43 | 3.64     | 5.27 | 571.29 | 2.73 | 5.86 | 5.23  | 5.16       | 0.7  | 0.32 | 5.61       | 9.76 | 3.35 | 3.62        | 3.91 | 3.86 | 9.16 | 1.87        | 3.02 | 69.  | 55.  | 0.9    | 2    |       |
|       |         |          | •               | 57     | 57   | 26       | 26   | 56       | 55   | 57     | 6.1  | 55   | 55    | 57         | 5.9  | 96   | 57         | 9    | E)   | 5           | 55   | 57.  | 53   | 5.4         | 53   | Š    | 50   | 9      | 7    | 5     |
|       |         |          |                 | 69     | . 79 | 16       | .84  | . 39     | 23.  | 591.11 | . 95 | 65   | . 52  | .38        | 5.83 | . 31 | . 93       | . 95 | . 52 | . 92        | 52   | . 08 | . 01 | 1.27        | . 47 | . 05 | 5,5  | 6.5    | ő    |       |
|       | 00      |          | <b>~</b>        | 57     | 570  | 26       | 296  | 56.      | 298  | 59]    | 62,  | 555  | 555   | 268        | 59   | 26.9 | 587        | 618  | 533  | 53.         | 561  | 578  | 545  | 54.5        | 547  | 539  | 526  | 508    | 3    | ŕ     |
| 9.    | 2.4000  |          |                 | . 02   | 77   | 13       | . 14 | . 95     | .45  | 602.99 | .12  | 60.  | .80   | . 37       | .58  | 8.   | . 12       | . 18 | . 21 | . 59        | . 39 | . 16 | . 29 | . 78        | . 51 | .33  | 0 5  | 90.    | 5    | •     |
|       | 00      |          | 7               | 574    | 570  | 568      | 567  | 569      | 577  | 602    | 627  | 548  | 248   | 566        | 593  | 573  | 593        | 630  | 535  | 535         | 561  | 579  | 5.48 | 553         | 558  | 559  | 549  | 532    | 5.0  | )     |
| CPR   | 0.0000  |          | NUMBER<br>6     | .17    | 69   | .83      | .54  | 9.       | . 80 | 608.71 | 95.  | 42   | 06    | .68        | .07  | .05  | <b>9</b> . | 69.  | . 32 | <b>.</b> 64 | . 93 | . 73 | . 51 | 5           | . 76 | . 23 | • 6  | .65    | 0    | ,     |
|       | 90      |          |                 | 574    | 570  | 568      | 568  | 571      | 583  | 608    | 626  | 546  | 545   | 566        | 594  | 576  | 593        | 636  | 536  | 535         | 561  | 579  | 550  | 556         | 567  | 578  | 571  | 554    | 526  | ,     |
| DHC   | 40.006  |          | STREAMLINE<br>5 | 84.    | 86   | 04.      | . 56 | . 92     | . 39 | . 91   | . 22 | . 38 | . 7.3 | . 07       | .27  | - 02 | .62        | .86  | 9.   | .83         | . 51 | . 52 | 94.  | . <b>48</b> | . 12 | .71  | . 97 | .33    | 66   |       |
|       | 2       |          | STR             | 574    | 570  | 569      | 569  | 572      | 588  | 609.91 | 622  | 543  | 545   | 568        | 594  | 576  | 590        | 638  | 536  | 236         | 262  | 579  | 551  | 558         | 575  | 595  | 592  | 576    | 545  | •     |
| ТЭНС  | 35.3702 |          | :               | 40     | 33   | 10       | 55   | 16       | 80   | 99.    | . 28 | .33  | . 52  | 77         | 58   | 87   | 98         | 56   | 8    | - 51        | 86   | 45   | 99   | 03          | 21   | 43   | 80   | 77     | 06   | •     |
| _     |         |          | ٠               | 574    | 570  | 569      | 569  | 573      | 590  | 606.66 | 614  | 538  | 537   | 568        | 592  | 574  | 584        | 637  | 534  | 535         | 561  | 577  | 551  | 559         | 581  | 612  | 614  | 597    | 565  | ,     |
| SUM.  | 0.000   |          |                 | 97     | 25   | 0.       | 7    | 54       | 38   | 59     | 90   | 86   | 81    | 10         | 52   | 36   | 57         | 4    | 20   | ç           | 0    | 20   | 9    | 0 2         | 51   | 90   | 20   | 95     | 27   | ,     |
| •     |         |          | m               | 575.97 | 572. | 571.     | 571. | 515      | 594  | 602    | 606  | 533  | 532.  | 571.       | 591  | 573. | 577        | 634  | 532. | 252         | 561  | 574. | 551. | 559.        | 586. | 628. | 635. | 619    | 586. |       |
| DHI   | 0.000   |          | :               | 96     | 15   | 56       | 80   | 80       | 26   | 7.1    | 55   | 55   | 43    | 20         | 57   | Ξ    | 53         | 80   | 80   | ζ,          | 74   | 87   | 73   | 66          | 25   | 99   | 8.   | 66     | 65   |       |
|       | J.      |          | ~               | 564.96 | 561. | 559.     | 560. | 564      | 584  | 583.   | 583. | 525  | 523.  | 570.       | 585. | 572. | 569        | 630  | 529  | 529         | 260  | 570. | 551. | 558.        | 591. | 645. | 657. | 641    | 607  |       |
| SAMMA | . 40064 |          | :               | 23     | 96   | \$ 6     | =    | \$0      | 45   | 22     | 35   | 35   | 87    | 02         | 90   | 5    | 05         | 21   | 10 C | 2           | 01   | 25   | 63   | 72          | 56   | 40   | 52   | 35     | 33   | •     |
|       |         | *        | 7               | 508.23 | 503. | 505.     | 505. | 568      | 531  | 522    | 503  | 507  | 505.  | 554.       | 560  | 575  | 558        | 622  | 256  | 200         | 52.6 | 900  | 552  | 559.        | 594. | 666  | 683. | 564.   | 634  |       |
| ٥.    | 1.23968 | ARRAY    | :               |        |      |          |      |          |      |        |      |      |       |            |      |      |            |      |      |             |      | ,    |      |             |      |      |      |        |      |       |
| -     | 0       | ** VZ AI | 10N             |        | C1   | <u>~</u> |      | <u>.</u> |      | ٠.     | •    | σ.   | •     | _          | _    | ν.   | ,          |      | ۰.   | n -         | ٠.   |      |      | -           | _    |      | ۸.   | _      | •    |       |
| TER   |         | *        | STATION         | -      |      | •        |      | •,       | -    |        | ٠ و  |      |       | Ĩ.         | -    |      | Ξ.         | ٠,   | -:   |             | Ξ;   | -₹   | ĩ.   | -           | ⋜    | ~    | Ñ    | ~      | 2    | č     |

| Continued. |
|------------|
| - 1        |
| Ξ          |
| Ξ          |
| AB         |

|                  | 11              | 8                                                                            |
|------------------|-----------------|------------------------------------------------------------------------------|
|                  | 3.0             | 40040000000000000000000000000000000000                                       |
|                  | 6               | 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                      |
| 6                | <b>«</b> 0      | \$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$\$ |
| PR<br>2.4000     | 2               | \$200 \$200 \$200 \$200 \$200 \$200 \$200 \$200                              |
| CFR<br>2.3633    | E NUMBER        | ######################################                                       |
| DHC<br>40.816    | STREAMLINE<br>5 | ######################################                                       |
| DHCI<br>35.3702  | J               | 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                      |
| PSUM<br>4990.961 | m               |                                                                              |
| DHI<br>34.668    | r.              | ######################################                                       |
| GAMMA<br>1.40064 | -               |                                                                              |
| CP<br>0.24117    | VZ ARRAY **     |                                                                              |
| 7 E P            | 5V **           |                                                                              |

TABLE III. - Continued.

|                              | 11 567.43                      | 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 647<br>647<br>647<br>647<br>647<br>647<br>647<br>647<br>647<br>647                                                   |
|------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|
|                              | 10                             | 50000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 538.81<br>5155.49<br>5157.48<br>503.75<br>503.75<br>467.90<br>468.36<br>61                                           |
|                              | 9 573.37                       | 5.50<br>5.50<br>5.50<br>5.50<br>5.50<br>5.50<br>5.50<br>5.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 554.81<br>531.75<br>531.75<br>534.98<br>502.30<br>502.71<br>563.91                                                   |
|                              | 8<br>573.76                    | 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 557.54<br>542.44<br>542.47<br>542.43<br>542.43<br>542.86<br>542.86<br>542.86<br>543.87<br>543.97<br>543.04<br>543.04 |
| PR 2.4000                    | 574.17                         | 50 50 50 50 50 50 50 50 50 50 50 50 50 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                               |
| CPR<br>2.4032                | N 6                            | 500 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 5559.12<br>574.77<br>556.63<br>556.81<br>576.81<br>556.31<br>556.72<br>497.21                                        |
| DHC<br>40.746                | STREAMLINE<br>5<br>5<br>574.75 | 56 56 56 56 56 56 56 56 56 56 56 56 56 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 559<br>574<br>574<br>574<br>575<br>574<br>574<br>574<br>574<br>574<br>574                                            |
| DHCI<br>35.3702              | 574.42                         | 566<br>567<br>567<br>567<br>567<br>567<br>567<br>567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 558.57<br>5571.65<br>571.65<br>553.39<br>575.09<br>610.71<br>561.27<br>565.45                                        |
| PSUM<br>5075.211             | 3<br>576.16                    | 570-74<br>570-74<br>570-74<br>570-74<br>570-74<br>570-74<br>570-74<br>570-73<br>570-73<br>570-73<br>570-73<br>570-73<br>570-73<br>570-73<br>570-73<br>570-73<br>570-74<br>570-74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 557.01<br>5558.21<br>5558.21<br>5558.85<br>579.68<br>579.68<br>581.95<br>581.95<br>581.95                            |
| DHI<br>35.431                | 2                              | 5505.35<br>5505.35<br>5505.35<br>5506.37<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>5506.35<br>550 | 5556.07<br>5556.07<br>5557.11<br>5557.11<br>5551.33<br>5551.33<br>555.53<br>557.25                                   |
| GAMMA<br>1.40064<br>*        | 509.38                         | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 5553<br>5553<br>5550<br>117<br>5555<br>655<br>657<br>657<br>657<br>657<br>657<br>657<br>657<br>6                     |
| CP<br>0.24126<br>VZ ARRAY ** |                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                      |
| 11ER<br>3                    | STATION                        | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 254322222222222222222222222222222222222                                                                              |

TABLE III. - Continued.

|          |          |              |                 | 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------|----------|--------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |          |              |                 | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |              | 10              | $v_{N}$ $v_{N$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          |          |              | 6               | $\begin{array}{c} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} \mathbf{v} v$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AR        | 50 34 34 54 54 54 54 54 54 54 54 54 54 54 54 54                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|          | 0        |              | <b>60</b>       | 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (1,1)     | 689080000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <u>م</u> | 2.4000   |              | 7               | 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Z         | 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CPR      | 2.3989   |              | NUMBER<br>6     | $\begin{array}{c} g_{0}g_{0}g_{0}g_{0}g_{0}g_{0}g_{0}g_{0}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H         | 22222222222222222222222222222222222222                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| рнс      | 40.770   |              | STREAMLINE<br>5 | 557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>557.4<br>55 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DHCI     | 35.3702  |              | •               | 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AR        | 2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000<br>2000 |
| PSUM     | 5066.184 |              | n               | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | (IFT, JM) | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DHI      | 35.350   |              |                 | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 201       | - 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| GAMMA    | 1.40064  |              | 2               | 00 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | IFI       | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| GAP      | _        | *<br>*<br>}- | ~               | ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>H</b>  | 50000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ů        | 0.2412   | VZ ARRAY     | TON .           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ITER     | •        | *            | STATION         | らかどろう のかく くっぱい ちょうしょう ちゅう なん くら くらん くらん くっぱん ちょうしょうしょう いいいい くんこう しょう いいいい いっぱい ちゃく こうりゅう しょう ちゃん マール・ステット しゅう しょうしょう しょうしゅう しょうしょう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しょうしゅう しゅうりゅう しゅうしゅう しゅうしゅう しょうしょう しょうしゅう しょうしゅう しょうしょう しょうしゅう しょうしょう しょうしゅう しょう しょうしゅう しょうしゃく しゅう しょうしゅう しょう しゅう しょうしゅう しょうしゃく しゅう しょうしゅう しょうしゃく しゅう しょうしゃく しょう しょう しょう しょう しょうしゃく しょうしゃく しょうりゅう しゅう しょうしゃく しょうしゃく しゅう しょうしゃく しょう しょう しょう しょうしょう しょう しょうしゅう しょう しょうしゃく しょうしゃく しょうしゃく しょうしゃく しょうしゃく しゅう しょうしゃく しょうしゃく しょう しょう しょう しょう しょうしゅう しょうしゃく しょうしゅう しょうしゃく しょうしゃく しょうしゃく しょうしゃく しょうしゅう しょうしゃく しょうしゃく しょうしゅう しょうしゅう しょうしゃく しょうしゃく しゅう しょうしゃく しょうしゃく しょうしゃく しょうしゃく しゅう しょうしゃく しょうしゃく しゅう                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

FACT2 = 8.2177

FACT1 = 3.0544

| 9       |   |
|---------|---|
|         |   |
| -       |   |
|         |   |
|         |   |
|         |   |
|         |   |
|         |   |
|         |   |
|         |   |
| ς       |   |
| Č       |   |
|         |   |
|         |   |
|         |   |
|         |   |
|         |   |
| - 1     | ı |
| - (     | ١ |
| 1       |   |
| 1       |   |
|         |   |
|         |   |
|         |   |
|         |   |
| Ш       |   |
| Ė       |   |
| Ė       |   |
| Ė       |   |
|         |   |
| Ė       |   |
| Ė       |   |
| I F III |   |
| I F III |   |
| 11 5 11 |   |
| I F III |   |

|          |          |       | :           | 401007788008800880077651198                                                         |
|----------|----------|-------|-------------|-------------------------------------------------------------------------------------|
|          |          |       | =           | 00000000000000000000000000000000000000                                              |
|          |          |       |             | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                               |
|          |          |       | 2           |                                                                                     |
|          |          |       | :           | 44574444444444444444444444444444444444                                              |
|          |          |       | • :         |                                                                                     |
|          |          |       | _ :         | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0                                              |
|          | 000      |       | •           | Pungunaganangangangangan<br>Pungganangan                                            |
| T.       | 2.4000   |       |             | 0.00                                                                                |
|          | 0.01     |       | ω.          |                                                                                     |
| CPR      | 2.400]   |       | NUMBER<br>6 | 00000000000000000000000000000000000000                                              |
|          | 292      |       |             |                                                                                     |
| DHC      | 40.76    |       | STREAMLINE  | 00000000000000000000000000000000000000                                              |
|          | 702      |       | s :         |                                                                                     |
| DHCI     | 35.3702  |       | <b>.</b>    | 110909988884788999999999999999999999999999                                          |
|          | . 719    |       |             |                                                                                     |
| PSUM     | 5068.719 |       | m           | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0                                              |
| . H      | 35.372   |       |             |                                                                                     |
| ā        | 35       |       | ~           | CONTRACTOR AND                                  |
| GAMMA    | 1.40064  |       |             | - Manu4/5mm80mg4mm0c/m4mmm0m4<br>- G484-1686-1696-1696-1606-1606-1606-1606-1606-160 |
| QA.      | 1.       | ×     | -           | 50000000000000000000000000000000000000                                              |
| <u>م</u> | 0.24127  | ARRAY | :           |                                                                                     |
| ပ        | Ö        | 4 Z/  | ž :         |                                                                                     |
| œ        |          | **    | STATION     |                                                                                     |
| TER      | 2        |       |             | :                                                                                   |

| _:         |
|------------|
| ᅮ          |
| a,         |
|            |
| =          |
| =          |
| - 25       |
| =          |
| =          |
|            |
| $^{\circ}$ |
|            |
|            |
| 1          |
| 1          |
| Ŀ          |
| =          |
| Ŀ          |
| E III.     |
| LE III.    |
| E III.     |
| 3LE III,   |

|       |          |             | 11              |          |        |        |        |        |        | 580.01 531.90 |        |        |        |        |        |        |           |        |         |        |        |        |        |        |        |        |        |
|-------|----------|-------------|-----------------|----------|--------|--------|--------|--------|--------|---------------|--------|--------|--------|--------|--------|--------|-----------|--------|---------|--------|--------|--------|--------|--------|--------|--------|--------|
|       |          |             | 10              |          |        |        |        |        |        |               |        |        |        |        |        |        |           |        |         |        |        |        |        |        |        |        |        |
|       |          |             | •               | 573.37   | 570.36 | 566.03 | 560.52 | 559.12 | 563.29 | 585.04        | 557.82 | 557.68 | 578.43 | 594.73 | 558.0  | 570.3  | 904       | 528.5  | 000     | 575    | 532.7  | 535.2  | 528.9  | 514.7  | 503.9  | 486.64 | 467 11 |
|       | 6        |             | <b>4</b> 0      | 573.74   | 570.58 | 567.22 | 564.38 | 565.70 | 573.91 | 625.83        | 545.53 | 545.43 | 571.53 | 592.07 | 567.09 | 583.60 | 623.84    | 228.03 | 0.070   | 576.01 | 540.39 | 543.30 | 544.07 | 538.91 | 529.99 | 513.51 | 107    |
| œ.    | 2.4000   |             | 7               | 574.14   | 570.91 | 568.13 | 567.10 | 570.51 | 583.26 | 612.28        | 536.78 | 536.71 | 567.24 | 590.45 | 572.14 | 590.39 | 6 5 5 5 9 | 526.74 | 17.070  | 575.57 | 545.05 | 548.71 | 555.50 | 559.48 | 552.82 | 537.02 | 512 99 |
| CPR   | 2.3700   |             | NUMBER<br>6     | 574.37   | 571 11 | 568.68 | 568.89 | 573.83 | 583.81 | 604.15        | 531.20 | 531.14 | 565.50 | 590.17 | 574.68 | 592.70 | 641.49    | 526.23 | 26.05   | 575.02 | 80.855 | 552.59 | 564.70 | 578.11 | 573.99 | 558.77 | 17 615 |
| рнс   | 41.438   |             | STREAMLINE<br>5 | 574.72   | 571.46 | 569.22 | 570.24 | 576.32 | 585.83 | 6 12 . 8 1    | 527.03 | 526.99 | 564.93 | 590.08 | 574.78 | 590.84 | 542.84    | 525.69 | 25.7.7  | 200.00 | 549.39 | 554.80 | 571.63 | 595.01 | 593.68 | 578.94 | 550 69 |
| DHCI  | 35.3702  |             |                 |          |        |        |        |        |        | 538.23        |        |        |        |        |        |        |           |        |         |        |        |        |        |        |        |        |        |
| PSUM  | 5005.234 |             | ۳               |          |        |        |        |        |        | 595.38        |        |        |        |        |        |        |           |        |         |        |        |        |        |        |        |        |        |
| DHI   | 34.798   |             | 2               | <b>6</b> | 65     | 55     | 92     | 39     | 55.    | 502.19        | 4.6    | 46     | 8.3    | 21     | 32     | 0      | 5/        | 32     | J .     | ٠<br>۲ | 26     | 26     | 10     | 63     | 75     | 7.3    | 0      |
| GAMMA | 1.40064  |             |                 | 34       | 7.0    | 31     | 53     | 16     | 5      | 519.46        | 5.5    | 22     | 25     | 19     | .91    | 0.0    | .24       | 0.0    | 2 10    |        |        |        | 0.5    | 66     | 66     | 51     |        |
| C P   | 0.24121  | UZ ARRAY ** | :               |          |        |        | - '    |        |        |               |        |        |        |        |        |        |           |        |         |        |        |        |        |        |        |        | •      |
| 1154  | •        | Z           | STATION         | ,        | ~      | ~      | ٠      | 5      | æ r    | ~ ec          | ) (P   | 6      | 10     | 11     | 12     | 13     | e .       | 15     | <u></u> | -      |        |        | 53     | 21     | 22     | 23     | ć      |

TABLE III. - Continued.

| :                               | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 11                              | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 10                              | 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>6</b>                        | $\begin{array}{c} \mathcal{O}_{\mathcal{A}}  |
| <b>60</b>                       | 64999999999999999999999999999999999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| PR 2.4000                       | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CPR<br>2.4024<br>2.4026<br>6.60 | 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DHC 41.385 STREAMLINE           | 55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55746<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 35.3702                         | 77777777777777777777777777777777777777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| P5UM<br>5073.508<br>3           | 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DHI<br>35.416                   | 5.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| GAMMA<br>1.40064<br>1.1.40064   | 50 50 50 50 50 50 50 50 50 50 50 50 50 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| CP<br>0.24126<br>** VZ ARRAY ** | ทยายายกทพพ.ศ.ศ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.พ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| TTER  4 VZ  STATION             | 20000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

TABLE III. - Continued.

|                  | :<br>:        | 85 4 4 4 1 2 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3 1 3                          |
|------------------|---------------|---------------------------------------------------------------------------|
|                  | 10            | MUNUMUMUMUMUMUMUMUMUMUMUMUMA4444     MUNUMUMUMUMUMUMUMUMUMUMUMUMUMUMUMUMU |
|                  | σ.            | 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                   |
|                  | 80            | 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                     |
| PR<br>2.4000     | 7             | 4 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                   |
| CPR<br>2.3993    | E NUMBER<br>6 | ### ##################################                                    |
| DHC<br>41.400    | STREAML INE   | 5.00                                                                      |
| BHCI<br>35.3702  | 4             | 559 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                   |
| PSUM<br>5066.996 | m             |                                                                           |
| DHI<br>35.357    | ~             |                                                                           |
| GAMMA<br>1.40064 | , N           | 60000000000000000000000000000000000000                                    |
| CP<br>0.24126    | VZ ARRAY **   |                                                                           |
| 11ER<br>8        | ** VZ         |                                                                           |

TABLE III. - Continued.

|              |          |             | =               | $\begin{array}{c} \mathbf{n} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} \mathbf{u} u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------|----------|-------------|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|              |          |             | 10              | 0.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|              |          |             | 6               | 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|              |          |             | <b>e</b> 0      | 640 640 640 640 640 640 640 640 640 640                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| д<br>Ж       | 2.4000   |             | 7               | 90 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| CPR          | 2.4001   |             | NUMBER 6        | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 |
| рнс          | 41.397   |             | STREAMLINE<br>5 | 200 200 200 200 200 200 200 200 200 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DHCI         | 35.3702  |             | *               | 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| PSUM         | 5068.809 |             | m               | 55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DHI          | 35.373   |             | 2               | 606 606 606 606 606 606 606 606 606 606                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| GAMMA        | 1,40064  | *           | -               | 66666999999999999999999999999999999999                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <del>م</del> | 0.24126  | VZ ARRAY ** | NO              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ITER         | •        | *           | STATION         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

TABLE III. - Continued,

|                             | 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 44661104<br>44661104<br>4468611004<br>4508311118<br>450831118<br>46185160<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>46183180<br>4618318 |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | 10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10<br>10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                             | 9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9<br>9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ۵                           | 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$6000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| PR<br>2.4000                | 7<br>5574<br>5574<br>5574<br>5570<br>5570<br>5570<br>5570<br>557                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 666<br>666<br>666<br>666<br>666<br>666<br>666<br>666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| CPR<br>2.4001               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 50 1 30 2 30 2 30 30 30 30 30 30 30 30 30 30 30 30 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DHC<br>41.393               | 5   KEAMLINE NOTIFE NOT | 500 100 100 100 100 100 100 100 100 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DHCI<br>35.3702             | 47.22.22.22.22.23.23.23.23.23.23.23.23.23.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55.50<br>55                                                                                               |
| PSUM<br>5068.824            | 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 2000 000 000 000 000 000 000 000 000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 35.373                      | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| GAMNA<br>1.40064            | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| CP<br>0.24126<br>Z ARRAY ** |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 17ER<br>10 0                | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

TABLE III. - Continued.

(c) Program output

\*\*\* COMPUTED COMPRESSOR DESIGN PARAMETERS FOR A ROTATIONAL SPEED OF, 16042.8, RPM \*\*\*

\*\* THE CORRECTED WEIGHTFLOW PER UNIT OF CASING ANNULAR AREA AT THE INLET FACE OF THE FIRST BLADE ROW IS 38.91 LBS/SEC/FT S9 \*\*

| *   |
|-----|
| S   |
| TER |
| ME  |
| A   |
| Ā   |
| ပ္  |
| ξ   |
| Σ   |
| 800 |
| AFR |
| w   |
| AG  |
| 5   |
| 皇   |
| ۷   |
| TOR |
| 80  |
| Ω   |
| 1GE |
| 3   |
| \$  |
| SS  |
| ξ   |
| ×   |
| *   |
|     |

|                                                      |                         | CHE        | 2146.25 |          | 2147.35 |          |                                                      | FRACT                   | ENERG     |         | 6665.0   | 1.0000  |          |
|------------------------------------------------------|-------------------------|------------|---------|----------|---------|----------|------------------------------------------------------|-------------------------|-----------|---------|----------|---------|----------|
|                                                      | TORQUE                  |            | 702.64  |          | 703.00  |          |                                                      | POWER                   | (HP)      | ;       | 57.44.7  | 4293.59 |          |
|                                                      | FOR AX. TANG.           | ) (FI-LBS) | -12.695 |          |         |          |                                                      | TORQUE                  | (FT-LBS)  |         | 49.20/   | Ī       |          |
|                                                      | GAS BEND<br>FOR. AX     | (1-1-1)    | 17.800  | 2.322    | 6.790   | 1.411    | AMETERS **                                           | FOR. AX.                | (LBS)     |         | 20001    | 1840.41 | 1587.65  |
| AMETERS *                                            | FOR. AX.                | (591)      | 1050.19 | -210.05  | 1140.55 | -252.75  | DAMIC PAR                                            | POLY.                   |           |         | 8.669    | 0.8900  | 0.8710   |
| IAMIC PAR                                            | ASPECT<br>RATIO         |            | 1.55    | 2.02     | 1.97    | 1.95     | SE AERODY                                            | ADIA.                   |           | 9       | 0.8579   | 0.8755  | 0.8543   |
| MASS AVERAGED ROTOR AND STAGE AERODYNAMIC PARAMETERS | POLY.<br>EFF.           |            | 0.9141  | 0.8669   | 0.9166  | 0.8756   | MASS AVERAGED ROTOR AND STAGE AERODYDAMIC PARAMETERS | IDEAL HEAD              |           |         | 0.2626   | 0.5254  | 0.5254   |
| R AND ST                                             | ADIA.<br>EFF.           |            | 0.9080  | 0.8579   | 0.9114  | 0.8682   | RAGED ROT                                            | HEAD                    |           | 7020    | 0.2253   | 0.4599  | 0.4488   |
| RAGED ROTO                                           | TEMP.<br>Ratio          |            | 1.1663  | 1.1663   | 1.1421  | 1.1421   |                                                      | TEMP.                   |           | 1771    | 1.1663   | 1.3320  | 1.3320   |
| MASS AVE                                             | PRESS.<br>RATIO         |            | 1.6358  | 1.5948   | 1.5340  | 1.5049   | SUMS OF                                              | PRESS.                  |           | 0327 (  | 1.5948   | 2.4464  | 2.4000   |
| *                                                    | ID. HEAD<br>COEF.       |            | 0.2626  | 0.2626   | 0.2929  | 0.2929   | CUMULATIVE                                           | TOTAL                   | (DEG. R.) | 518.70  | 604.94   | 690.90  | 690.90   |
|                                                      | HEAD<br>COEF.           |            | 0.2384  | 0.2253   | 0.2670  | 0.2543   | *                                                    | PRESS                   | (PSIA)    | 14.666  | 23.389   | 35.879  | 35.198   |
|                                                      | FLOW<br>COEF.           |            | 0.4322  | 0.4188   | 0.4635  | 0.4270   |                                                      | WE I GHT                | LBS/SEC)  | 73.30   | 73.30    | 73.30   | 73.30    |
|                                                      | STAGE BLADE<br>NO. TYPE |            | 1 20108 | I STATUR | 2 40108 | 2 STATOR |                                                      | STAGE BLADE<br>NO. TYPE |           | I INLET | 1 STATOR | 2 ROTOR | 2 STATOR |

\*\* VALUES OF PARAMETERS ON STREAMLINES AT STATION, 1, WHICH IS AN ANNULUS \*\*

| CTATA    | 1 E M D C    |          | DEG. R. J     | 607 23  | 40.75   | 10.10   | 70.76   | 17.16   | 491.17 | 06 169  | 601.50    | 70.107  | 27.17   | 07 T K  | 491.37 | 2 102   | 10.17     |
|----------|--------------|----------|---------------|---------|---------|---------|---------|---------|--------|---------|-----------|---------|---------|---------|--------|---------|-----------|
| STATIS   | 00 5 0 5 0 5 | , , , ,  | 1 1 1 1 1 1 1 | 12 184  | 12 197  | 12.17   | 07.71   | 761.21  | 12.149 | 12 152  | 12.154    | 12.121  | 12.170  | 12.137  | 12.167 | 12 172  | 7 . 7 . 7 |
| TOTAL    | FWP          | 0 0      |               | 518 70  | 200     | 200     | 710.70  | 7.01    | 518.70 | 518.70  | 518 70    | 7.00    | 7.00    | 0       | 518./0 | 518 70  |           |
| 10.101   | 200          | (0210)   |               | 16 125  | 14.670  | 7007    | 16.700  | 001     | 14.700 | 14.700  | 14 700    | 16 700  | 7. 700  | 000     | 14./10 | 14 660  |           |
| STREAM   | CHRV         | ( NI / L |               | 0.00    |         |         |         |         | 000.0  | 0.001   | 00.0      | 700     |         |         | 0.00   | 0 000   |           |
| STREAM   | SLOPE        | CDEC     |               | -0.13   | -0.21   | 22.0-   | 72.01   |         | 5.     | -0.56   | - 0 . 6 9 | 380-    |         |         | 1.29   | - 2.84  |           |
| ABS FLOW | ANGLE        | (050)    |               | 00.00   | 00.0    |         |         |         | 3.0    | 00.0    | 00.0      |         |         |         | 00.0   | 0.0     |           |
| ABS.     | MACH NO      |          |               | 0.4658  | 0.5202  | 0.5301  | 0 5285  | 000     | 0070.0 | 0.5285  | 0.5283    | 0.5280  | 6 5277  | 7,767   | 0.76.0 | 0.5223  |           |
| ABS.     | VEL.         | (FI/SFC) |               | 509.27  | 565.83  | 576.07  | 574 14  |         |        | 574.36  | 574.16    | 573.81  | 573 50  | 572.57  | 10.310 | 567.94  |           |
| TANG.    | VEL.         | (FI/SEC) |               | 00.00   | 0.00    | 00.0    |         |         | 9      | 0.00    | 00.0      | 00.0    | 000     |         |        | 00.0    |           |
| MERD.    | VEL.         | (FI/SEC) |               | 509.27  | 565.83  | 576.07  | 574 34  | 2 7 7 2 |        | 574.36  | 574.16    | 573.81  | 573.50  | 472 47  |        | 567.94  |           |
| AXIAL    | VEL.         | (FI/SEC) |               | 509.27  | 565.83  | 576.06  | 574 33  | 576.47  |        | 574.33  | 574.12    | 573.75  | 573 41  | 572 62  | 11.    | 567.65  |           |
| AXIAL    | COORD.       | CNI      | -11.000       | -11.000 | -11.000 | -11.000 | -11.000 | 000 -1- |        | -11.000 | -11.000   | -11.000 | -11.000 | -11 000 |        | -11,000 | -11 000   |
|          |              |          |               | 10.099  |         |         |         |         |        |         |           |         |         |         |        |         |           |
| STRE     | 9            |          | 119           | -       | 7       | •       | J       | ď       | ١.     | o       | 7         | •0      | c       | =       |        | -       | <u> </u>  |

TABLE III. - Continued.

\*\* VALUES OF PARAMETERS ON STREAMLINES AT STATION, 2, WHICH IS AN ANNULUS \*\*

| STATIC<br>1EMP.<br>(DEG.R.)            | 4.997.30<br>4.991.53<br>4.991.53<br>4.991.53<br>4.991.53<br>4.991.53<br>4.991.53<br>4.991.53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STATIC<br>FRESS.<br>(FSIA)             | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TOTAL<br>TEMP.<br>(DEG.R.)<br>518.70   | 55188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188 700 85188                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TOTAL<br>PRESS.<br>(PSIA)<br>14.125    | 14.600<br>14.700<br>14.700<br>14.700<br>14.700<br>14.700<br>14.700<br>14.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| STREAM.<br>CURV.<br>(1./1H.)<br>0.000  | 0.001<br>0.001<br>0.001<br>0.001<br>0.001<br>0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| STREAM.<br>SLOPE<br>(DEG)              | 100.37<br>100.37<br>100.37<br>100.37<br>100.37<br>100.37<br>100.37<br>100.37<br>100.37                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ABS.FLOW<br>ANGLE<br>(DEG)             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ABS.<br>MACH NO.                       | 0.52722<br>0.52722<br>0.52554<br>0.52554<br>0.52558<br>0.52568<br>0.52568                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ABS.<br>VEL.<br>(FT/SEC)               | 562.82<br>563.82<br>573.01<br>571.23<br>571.15<br>571.15<br>570.95<br>570.35<br>569.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| TANG.<br>VEL.<br>(FI/SEC)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MERD.<br>VEL.<br>(FT/SEC)              | 505.82<br>574.76<br>571.23<br>571.23<br>571.54<br>571.54<br>570.95<br>569.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AXIAL<br>VEL:<br>(FT/SEC)              | 565.82<br>573.76<br>571.22<br>571.52<br>571.52<br>571.53<br>570.53<br>569.48<br>569.48                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •                                      | 0000 66 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| STREAMLINE<br>NO. RADIUS<br>TIP 10 099 | 10.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00 |

# \*\* VALUES OF PARAMETERS ON STREAMLINES AT STATION, 3, WHICH IS AN ANNULUS \*\*

| STATIC<br>TEMP.<br>(DFG.R.) | 64 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                               |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------|
| STATIC<br>FPESS.<br>(FSIA)  |                                                                                                                      |
| TOTAL<br>TEMP.<br>(DEG.R.)  | 5188.70<br>5188.70<br>5188.70<br>5188.70<br>5188.70<br>5188.70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70<br>70 |
| TOTAL<br>PRESS.<br>(PSIA)   | 14, 125<br>14, 670<br>14, 700<br>14, 700<br>14, 700<br>14, 700<br>14, 700<br>14, 700<br>14, 700<br>16, 700           |
| STREAM.<br>CURV.            | 0.001<br>0.001<br>0.001<br>0.001<br>0.002<br>0.003<br>0.004<br>0.004                                                 |
| STREAM.<br>SLOPE<br>(DEG)   | -0.07<br>-0.11<br>-0.11<br>-0.15<br>-0.21<br>-0.21<br>-0.33<br>-0.44<br>-1.00                                        |
| ABS.FLOW<br>ANGLE<br>(DEG)  |                                                                                                                      |
| ABS.<br>MACH NO.            | 0.4607<br>0.5155<br>0.5155<br>0.5236<br>0.5237<br>0.5230<br>0.5230<br>0.5230<br>0.5273                               |
| ABS.<br>VEL.<br>(FT/SEC)    | 563.20<br>564.36<br>564.36<br>569.27<br>569.43<br>568.74<br>568.02<br>568.02<br>568.02<br>568.02<br>568.03           |
| TANG.<br>VEL.<br>(FT/SEC)   |                                                                                                                      |
| MERD.<br>VEL.<br>(FT/SEC)   | 563.87<br>569.91<br>569.29<br>569.29<br>568.74<br>568.02<br>568.92<br>568.92<br>568.92<br>568.92                     |
| AXIAL<br>VEL:<br>(FT/SEC)   | 503.87<br>5603.87<br>569.28<br>569.28<br>568.73<br>568.73<br>568.91<br>565.91<br>565.54                              |
| COORD.                      | -7.000<br>-7.000<br>-7.000<br>-7.000<br>-7.000<br>-7.000<br>-7.000<br>-7.000<br>-7.000                               |
| STREAMLINE<br>NO. RADIUS    | 11P 10 100<br>2 9 146<br>3 9 146<br>5 7 565<br>6 7 955<br>7 6 955<br>8 6 529<br>8 6 529<br>10 4 674<br>11 3 597      |

# \*\* VALUES OF PARAMETERS ON STREAMLINES AT STATION, 4, WHICH IS AN ANNULUS \*\*

| STATIC<br>TEMP.<br>(000.R.)<br>491.46<br>491.76<br>491.57<br>491.57<br>491.57<br>491.57<br>491.57<br>491.57<br>491.57<br>491.57<br>491.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PRESS 100 PRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1017AL<br>1EMP<br>518 70<br>518 70<br>518 70<br>518 70<br>618 |
| 101AL<br>PPESS.<br>(PSESS.<br>184.700<br>184.700<br>184.700<br>184.700<br>184.700<br>184.700<br>184.700<br>184.700<br>184.700<br>184.700<br>184.700<br>184.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1 / CURRAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STREAM.<br>SLOPE<br>(DEG)<br>10.021<br>-0.12<br>-0.04<br>0.13<br>0.23<br>0.29<br>0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ABS. FLOW<br>ANGLE<br>(DEG)<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MARBS. MACH.NO. MACH.NO. 0.4615 0.5258 0.5258 0.5258 0.5258 0.5258 0.5258 0.5258 0.5258 0.5258 0.5258 0.5258                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ABS.<br>VEL.<br>567.75 EC)<br>562.74<br>562.74<br>570.80<br>570.80<br>570.80<br>570.80<br>570.80<br>567.17<br>567.17<br>568.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TAMG.<br>VER.<br>VER.<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                     |
| MERD.<br>VEL<br>VEL<br>502 72<br>562 32<br>570 80<br>570 80<br>567 17<br>567 17<br>567 17<br>567 17<br>567 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| AXIAL<br>VELC)<br>504.72<br>562.32<br>570.82<br>570.82<br>570.82<br>560.27<br>560.27<br>560.27<br>560.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| CAN TO THE PROPERTY OF THE PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| STREAMLINE RADIUS RADIU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

TABLE III. - Continued.

\*\* VALUES OF PARAMETERS ON STREANLINES AT STATION, 5, WHICH IS AN ANNULUS \*\*

|      | 51ATIC<br>TEMP.<br>(DEG.R.)<br>491.64<br>490.70<br>490.70<br>491.03<br>491.54<br>491.57<br>492.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| K    | STATIC<br>PRESS.<br>(PSIA)<br>12.142<br>12.105<br>12.130<br>12.135<br>12.135<br>12.135<br>12.135<br>12.135<br>12.135<br>12.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | TGTAL<br>(DEG.R.)<br>518.70<br>518.70<br>518.70<br>518.70<br>518.70<br>518.70<br>518.70<br>518.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2000 | TOTAL<br>PESS.<br>(PSIA)<br>14.125<br>14.670<br>14.700<br>14.700<br>14.700<br>14.700<br>14.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | 5TREAM.<br>CURV.<br>(1.7IN.)<br>-0.003<br>0.005<br>0.005<br>0.005<br>0.005<br>0.016<br>0.018<br>0.018                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | STREAM.<br>SLOPE<br>(DEG)<br>-0.47<br>-0.17<br>0.05<br>0.51<br>0.76<br>1.35<br>1.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|      | ABS. FLOW ANGLE (DEG) (D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | ABS.<br>0.4698<br>0.5240<br>0.5230<br>0.5231<br>0.5231<br>0.5231<br>0.5251<br>0.5251<br>0.5251<br>0.5251<br>0.5251                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      | ABS.<br>VEL.<br>(FT/SEC)<br>513.44<br>559.74<br>570.74<br>570.75<br>570.88<br>550.12<br>550.12<br>544.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | TANG. VEE. (FIXSEC) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | MERD.<br>VEL.<br>SIJ 44<br>569.74<br>579.53<br>576.10<br>576.10<br>576.10<br>576.10<br>576.10<br>576.10<br>576.10<br>576.10<br>576.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | AXIAL<br>VEL.<br>(F/SEC)<br>513.42<br>559.74<br>570.16<br>570.16<br>570.18<br>570.78<br>570.78<br>570.78<br>570.78<br>570.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|      | AXIAL<br>(000PD<br>(1N.)<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.7000<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.700<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7000<br>13.7 |
|      | FAMILE<br>FADIUS<br>FADIUS<br>10 -101<br>10 -101<br>1                                                                                        |
|      | 7 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

\*\* VALUES OF PARAMETERS ON STREAMLINES AT STATION, 6, WHICH IS AN ANNII IIS \*\*

|                      | STATIC<br>TEMP.<br>(DEG.R.)<br>495.85<br>490.00<br>690.00<br>690.16<br>490.16<br>491.11<br>492.05<br>496.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                      | STATIC<br>FRESS.<br>(PSIA)<br>12.067<br>12.067<br>12.068<br>12.068<br>12.074<br>12.074<br>12.074<br>12.074                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| *<br>*               | TOTAL<br>(DEG.R.)<br>518.70<br>518.70<br>518.70<br>518.70<br>518.70<br>518.70<br>518.70<br>518.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| N ANNULUS            | 101AL<br>(PSIA)<br>14.125<br>14.700<br>14.700<br>14.700<br>14.700<br>14.700<br>14.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| WHICH IS AN          | STREAM.<br>CLCKV.)<br>(1./1N.)<br>0.0013<br>-0.0002<br>0.005<br>0.005<br>0.005<br>0.005<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007<br>0.007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ,<br>6               | STREAM<br>5100PE<br>(DEG)<br>-0.04<br>-0.05<br>0.21<br>0.95<br>1.51<br>1.51<br>2.19<br>3.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| STATION              | ABS. FLOW<br>ANG: E<br>(DEG)<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ALINES A             | ABS.<br>0.4795<br>0.5309<br>0.5309<br>0.5390<br>0.5390<br>0.5390<br>0.5390<br>0.5390<br>0.5390<br>0.5390                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| THE SINE WILLINES AL | ABS.<br>VEL.<br>523.60<br>523.60<br>523.60<br>585.14<br>585.14<br>583.73<br>585.14<br>585.14<br>575.28<br>575.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                      | TANG.<br>VEL<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0 00<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                      | MERD.<br>VEL.<br>7523.60<br>578.60<br>578.60<br>586.20<br>585.20<br>583.73<br>583.73<br>583.73<br>575.28<br>575.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                      | AXIAL VEL. VEL. 525.86 576.86 585.14 585.17 585.17 585.17 585.17 585.17 585.17 585.17 585.17 585.17 585.17 585.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                      | AXIAL (OURD) (OU |
|                      | FAMILINE PADIUS 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0099 110 0 |
|                      | 717<br>100<br>111<br>111<br>111<br>111<br>111<br>111<br>111<br>111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

\*\* VALUES OF PARAMETERS ON STREAMLINES AT STATION, 7, WHICH IS AN ANNULUS \*\*

|             | 5TATIC<br>TEMP.<br>(DEG.R.)<br>497. 28<br>491.33<br>489.54<br>488.55<br>488.55<br>488.45<br>468.56<br>490.06<br>492.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|             | STATIC<br>FRESS.<br>(PSIA)<br>12.189<br>12.189<br>11.965<br>11.959<br>11.959<br>11.959<br>12.053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>t</b>    | TOTAL<br>TEMP.<br>(DEG.R.)<br>518.70<br>518.70<br>518.70<br>518.70<br>518.70<br>518.70<br>518.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|             | TOTAL<br>PRESS:<br>(PSIA):<br>14.125<br>14.700<br>14.700<br>14.700<br>14.700<br>14.700<br>14.700<br>14.700                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | STREAM.<br>CURV.)<br>(1./IN.)<br>-0.040<br>-0.036<br>-0.028<br>-0.013<br>-0.013<br>-0.014<br>0.014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|             | STPEAM.<br>SLOPE<br>(DEG)<br>-1.04<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.20<br>-1.65<br>2.90<br>4.47<br>4.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             | ANGLE (DEG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | MACH NO. 65 45 6 10 6 10 6 10 6 10 6 10 6 10 6 10 6 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|             | ABS.<br>VEL.<br>(FT/SEC)<br>573.04<br>591.48<br>591.48<br>601.72<br>603.68<br>602.63<br>597.50<br>491.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|             | TANG. VEL. 0.0000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | MERD.<br>VEL.<br>(F7/SEC)<br>596.92<br>591.48<br>596.17<br>601.72<br>601.72<br>602.63<br>697.73<br>697.73<br>697.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|             | AKIAL<br>VELA<br>FINSECO<br>506.84<br>591.38<br>596.61<br>601.52<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.64<br>603.                                                                                                                                                |
|             | (14.)<br>(14.)<br>(14.)<br>(14.)<br>(14.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.)<br>(16.) |
| STOCAMITY'S | FIGURE 100 PROPERTY 100 PROPERT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

ABLE III - Continued

L.E.FBGE CIR.CENT R+D0/DR SEGMENT LAYOUT INZOUT COME ANG TURN.RATE (DEG) 57711C 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 161711 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 161711 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 161711 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 161711 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 161711 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 161711 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 161711 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 161711 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 161711 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 161711 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 161711 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 161711 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 161711 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 161711 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 161711 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 00 16171 MIN.CHK. PI.LGC.IN COV.CHAN. 07750 88300 98500 0000 12. 13.6 11. 30.6 11. 30.6 11. 70.9 11. 64.2 11. 63.8 11. 82.6 12. 03.8 12. 03.8 MIN.CHK. AREA MARGIN 18AN.PT. (GCATION /CHOPD 0.6474 0.6642 0.6642 0.5193 0.4786 0.21882 0.2283 0356 0378 01256 0136 0130 0211 05111 050 TD74L TEMP: CEG.R.) 518.70 518.70 518.70 518.70 518.70 518.70 518.70 518.70 +++++++++ COV.CHAN. AS FRACT OF S.S. PRESS. (FSIA) 14.125 14.700 14.700 14.700 14.700 14.700 14.700 14.700 14.700 14.700 14.700 14.700 14.700 3029 3029 4333 4333 4333 5332 5332 7727 7727 7834 PF ++++++++ SH.LOC. AS FRACT OF S.S. STREAM. CURV. 6971 6663 6063 5664 5192 4698 4166 22946 0021 0021 0025 0025 0021 0021 0334 0290 0324 0362 0412 0473 0543 0621 0772 ĭ 0000000000 15T SEG. MACH NO. S.S.CAM. AT SHOCK A (DEG) LOCATION STREAM CDCDE CDCDC 1,4940 1,4534 1,4034 1,3173 1,2173 1,2442 1,2462 1,2462 1,2468 1,0300 0,8670 L.E.RAD. 00118 00019 00020 00025 00028 00041 ₹ Ξ ABS, FLOW ANGLE (DEG) 00000000000 œ 0000000000 232222332 STATION, 2 WHEEL SPEED 1504.64 1338.81 1234.82 1234.82 1236.96 1138.65 1066.16 908.04 908.04 908.05 909.76 400000044 1882 1882 1883 1883 1983 1983 5514 5515 5515 5515 5515 5517 1.3634 1.34536 1.3059 1.2578 1.12664 1.0167 0.9358 0.8358 00000000000 š 4004404486 800086004980 REL. VEL. 1459.95 1459.95 1413.34 1303.17 1303.17 1124.16 1124.11 1098.51 1011.93 72462222442 4LET STREAMLINE --- + S.S.INC. IN.BLADE I ANGLE ANGLE (DEG) (DEG) 2453404260 24684781870 P 56633 56633 5675 5675 5675 5675 ANGLE OM ANGLE OF COLEGIS COLE INC. ANGLE (DEG) AXIAL CCOND. CCO ころのちゃなららって FAMILIA 1 0000 0 9956 0 9956 0 9557 0 8107 1 5742 1 5742 1 5742 1 5742 1 5742 1 5742 1 5742 1 5742 1 5742 1 5742 1 5742 1 5742 RAMLINE RADIUS 10.032 10.032 9.083 9.083 9.083 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7.615 7 EAMLINE PCT. PASS. 04024440044 98577802570

2018 11 P - 11 P - 12 P - 14 P

TABLE III, - Continued.

ROTOR NUMBER,

9, WHICH IS THE OUTLET OF

\*\* VALUES OF PARAMETERS ON STREAMLINES AT STATION,

| STATIC<br>TEMP.<br>(DEG.R.)  | 584.64<br>574.64<br>574.08<br>567.03<br>567.03<br>567.38<br>557.38<br>557.38<br>558.46<br>558.78<br>558.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STATIC<br>PRESS.<br>(PSIA)   | 19.368<br>19.1882<br>19.016<br>18.033<br>18.583<br>17.286<br>17.238<br>16.388<br>16.388                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TOTAL<br>TEMP.<br>(DEG.R.)   | 621.44<br>6011.01<br>605.92<br>605.92<br>604.16<br>601.36<br>601.86<br>600.90<br>600.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TOTAL<br>PRESS.<br>(PSIA)    | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| STREAM.<br>CURV.<br>(1./IN.) | 0.101<br>0.051<br>0.051<br>0.051<br>0.001<br>0.001<br>0.054                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| STREAM.<br>SLOPE<br>(DEG)    | -9.23<br>-6.47<br>-4.77<br>-1.58<br>-0.158<br>-1.58<br>-1.58<br>-1.58<br>-1.58<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61<br>-1.61 |
| ABS.FLOW<br>Angle<br>(Deg)   | 543 07 07 07 07 07 07 07 07 07 07 07 07 07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ABS. #                       | 00.00000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ABS.<br>VEL:<br>(FT/SEC)     | 6665.46<br>6665.46<br>6683.661<br>7184.662<br>77867<br>7787<br>7787<br>8806.61<br>8806.61<br>8808                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TAMG.<br>VEL.<br>(FT/SEC)    | 4454<br>44855<br>44855<br>4477<br>4477<br>4477<br>4477<br>447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MERD.<br>VFL.<br>(FT/SEC)    | 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AXIAL<br>VEL.<br>(FT/SEC)    | 4 000 000 000 000 000 000 000 000 000 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AXIAL<br>COORD.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SULINE IN STREET             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

| 5286<br>5386<br>5386<br>5386<br>5386<br>5386<br>5386<br>5386<br>53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ELEMENT<br>SOLIDITY            | 1.3029<br>1.3646<br>1.5280<br>1.5852<br>1.5852   | 1.8095<br>1.9667<br>2.1781<br>2.4908<br>3.0458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T.E.EDGE<br>CIR.CENT<br>R*DO/DR                                    | 0.2979<br>0.1594<br>0.11894<br>0.1738<br>0.27116<br>0.2934<br>0.5798<br>0.6495                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 18.752<br>17.238<br>17.238<br>16.388<br>54<br>15.044<br>52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SHOCK<br>LOSS<br>COEF.         | 0.0457<br>0.0402<br>0.0337<br>0.0282<br>0.0231   | 0.00117<br>0.00117<br>0.0050<br>0.0001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | CONE +++<br>MAX.CAMB.<br>PT.LOC.<br>/CHORD                         | 0 0 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 600.55 1 1 600.61 1 1 600.61 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LOSS<br>COEF.                  | 0.1395<br>0.1140<br>0.0988<br>0.0837<br>0.0720   | 0.0634<br>0.0634<br>0.06547<br>0.0664                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ++ LAYOUT<br>OUT.BLADE<br>ANGLE<br>(DEG)                           | 53.56<br>52.78<br>50.61<br>50.49<br>47.28<br>42.13<br>27.889<br>17.17<br>17.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.990 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 66.23.900 | DIFFUSION<br>FACTOR            | 0,4264<br>0,4102<br>0,4221<br>0,4355             | 0.4991<br>0.5129<br>0.5229<br>0.5021<br>0.3917                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NUT.BLADE ANGLE CDEG)                                              | 533.73<br>552.887<br>552.887<br>552.887<br>57.987<br>57.981<br>1.59<br>1.59<br>1.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D ADIAB.                       | 0.8246<br>0.8476<br>0.8701<br>0.8932<br>0.9116   | 30000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STREAM<br>DEV. C<br>Angle<br>(Deg)                                 | 8 4 4 4 4 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.61<br>3.61<br>3.24<br>5.24<br>7.43<br>10.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | IDEAL HEAD<br>COEF.            | 0.3130<br>0.2811<br>0.2726<br>0.2656<br>0.2656   | 0.2553<br>0.2553<br>0.2553<br>0.2503<br>0.2594<br>0.2494                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | QUTLET<br>T.E.RAD.<br>/CHORD                                       | 0.0018<br>0.0028<br>0.0028<br>0.0028<br>0.0028<br>0.0088<br>0.0088<br>0.0088<br>0.0088<br>0.0088                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 50 1 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | HEAD<br>COEF.                  | 0.2581<br>0.2372<br>0.2372<br>0.2372<br>0.2372   | 0.2372<br>0.2372<br>0.2372<br>0.2372<br>0.2372                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | RCES<br>TANG.<br>(LBS/IN)                                          | 110.9981<br>110.9981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.35981<br>110.3598 |
| 0.00<br>0.00<br>0.00<br>0.70<br>0.70<br>0.75<br>0.75<br>0.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | FLOW<br>COEF.                  | 0.3626<br>0.3626<br>0.3628<br>0.3715<br>1056     | 0.3879<br>0.3879<br>0.3879<br>0.4953<br>0.4194                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | L BLADE FORCES<br>FOR.AXIAL TANG<br>(LBS/IN) (LBS/                 | 19. 7 8805<br>116. 68948<br>116. 54948<br>117. 94641<br>112. 96541<br>112. 9654<br>89.0654<br>89.0653<br>88.0654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 714 - 65<br>736 - 94<br>756 - 94<br>806 - 61<br>862 - 82<br>948 - 97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | WHEEL<br>SPEED<br>(FI/SEC)     | 1358.65<br>1302.17<br>1246.26<br>1188.35         | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | LOCAL<br>RADIUS FO                                                 | 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 56.27<br>56.27<br>581.52<br>643.54<br>736.27                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | REL.MACH<br>HUMBER             |                                                  | 0.6291<br>0.6293<br>0.5403<br>0.5403<br>0.5162<br>0.5162                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MEAN<br>SPACING<br>(IN.)                                           | 22.88122<br>22.68922<br>22.4432<br>24.432<br>22.113<br>20.133<br>11.68643<br>11.758<br>11.75845<br>11.75845<br>11.75845                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | REL.<br>VIL.<br>(FT/SEC)       | 1026.57<br>1015.16<br>966.32<br>911.99<br>854.62 | 777<br>666<br>666<br>666<br>67<br>67<br>67<br>67<br>67<br>67<br>67<br>67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | AEPO.<br>CHUPD (IH.)                                               | 88888888888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 50 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PEL.<br>TAMS. VEL.<br>(FIZSEC) | 816-122<br>816-122<br>814-63<br>167-138          | 0.4 m 0.4 c<br>0.0 m 0.4 c<br>0.4 m 0.4 c<br>0.4 m 0.4 c<br>0.4 c | TEMP.<br>RATIO                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 77.77.77.77.77.77.77.77.77.77.77.77.77.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | REL.FLOW<br>CMGLE<br>(REG)     | 000000<br>000000<br>000000000000000000000000     | ୨୯୯୯  <br>୧୯୯୯  <br>୧୯୯୯  <br>୧୯୯୯  <br>୧୯୯୯                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | P.P.E.S.S.                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| - / / / / / / / / / / / / / / / / / / /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . ₹ b` -                       | -000000                                          | # M & & & & & & & & & & & & & & & & & &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | S 25                           |                                                  | 60 <b>8</b> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 t d x                                                            | -WW4886885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

TABLE III. - Continued.

\*\* VALUES OF PARAMETERS ON STREAMLINES AT STATION, 10, WHICH IS AN ANNULUS \*\*

| STATIC<br>TEMP.            | 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                      |  |
|----------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| STATIC<br>PRESS.<br>(PSIA) | 18.763<br>18.762<br>18.5651<br>18.5651<br>18.5651<br>17.593<br>17.593<br>16.156<br>15.156                                                                                    |  |
| TOTAL<br>TEMP.<br>(DEG.R.) | 621.29<br>608.24<br>608.24<br>605.24<br>603.35<br>603.35<br>600.91                                                                                                           |  |
| TOTAL<br>PRESS.<br>(PSIA)  | 23.990<br>23.990<br>23.990<br>23.990<br>23.990<br>23.990<br>23.990<br>23.990<br>23.990                                                                                       |  |
| STREAM.<br>CURV.           | 0.056<br>0.051<br>0.051<br>0.053<br>0.053<br>0.005<br>0.005<br>0.005                                                                                                         |  |
| STREAM.<br>SLOPE<br>(DEG)  | 11.00.1<br>10.00.1<br>10.00.1<br>10.00.1<br>10.00.1<br>10.00.1<br>10.00.1<br>10.00.1<br>10.00.1<br>10.00.1<br>10.00.1<br>10.00.1<br>10.00.1<br>10.00.1<br>10.00.1<br>10.00.1 |  |
| ABS.FLOW<br>Angle<br>(DEG) | 40.35<br>37.49<br>38.16<br>38.16<br>40.16<br>41.57<br>47.15<br>47.15<br>47.15<br>47.15<br>47.15                                                                              |  |
| ABS.<br>MACH NO.           | 0.6031<br>0.6045<br>0.6167<br>0.6167<br>0.6366<br>0.6366<br>0.7818<br>0.7818<br>0.7818<br>0.386                                                                              |  |
| ABS.<br>VEL.<br>(FT/SEC)   | 711.45<br>712.21<br>712.22<br>726.33<br>740.04<br>758.06<br>816.31<br>865.29                                                                                                 |  |
| TANG.<br>VEL.<br>(FT/SEC)  | 4660.66<br>430.32<br>4434.95<br>4434.95<br>456.19<br>456.19<br>503.39<br>535.35<br>634.76                                                                                    |  |
| MERD.<br>VEL.<br>(FT/SEC)  | 542.17<br>561.09<br>561.09<br>561.09<br>565.20<br>565.55<br>571.49<br>571.49<br>607.32                                                                                       |  |
| AXIAL<br>VEL:<br>(FT/SEC)  | 560.47<br>560.47<br>560.47<br>563.66<br>565.28<br>570.67<br>5857.12<br>5857.12<br>5857.16                                                                                    |  |
| AXIAL<br>COORD.            | 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                                                                                                        |  |
| <u></u>                    | 11 9 5 5 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                 |  |

TABLE III. - Continued.

| * *                       | STATIC<br>TEMP.<br>(DEG.R.)            | 50000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L.E.EDGE<br>CIR.CENT.<br>R*DO/DR                                       | 0.0071<br>0.0075<br>0.00775<br>0.00775<br>0.1178<br>0.1178<br>0.11775<br>0.11775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STAGE NUMBER, 1           | STATIC ST<br>PRESS. TI<br>(PSIA) (DE   | 1888 588 58 58 58 58 58 58 58 58 58 58 58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +++++++<br>MIN.CHK.<br>PT.LOC.IN<br>COV.CHAN.                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1, OF STAGE               | 101AL S<br>1EMP, P<br>(DEG.R.) (       | 601.15<br>605.836<br>606.836<br>606.836<br>600.836<br>600.838<br>600.638<br>600.638<br>600.638<br>600.638                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ++++++++<br>MIN.CHK.<br>AREA<br>MARGIN                                 | 0.2408<br>0.1995<br>0.1863<br>0.1678<br>0.1690<br>0.1590<br>0.1590<br>0.1590<br>0.1243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                           | TOTAL<br>PRESS.<br>(PSIA)              | Navanavana<br>Navanavanava<br>DODOODOODO<br>DODOODOODO<br>DODOODOODO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | +++++++++<br>COV.CHAN.<br>AS FRACT<br>OF S.S.                          | 0.00<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05<br>0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| IF STATOR NUMBER          | STREAM.<br>CURV.                       | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SEGMENT LAYOUT TUNNOUT COME ANG. TUNNOUT COME ANG. 1.0000 -0.29 1.0000 0.57 1.0000 1.34 1.0000 1.34 1.0000 1.34 1.0000 1.34 1.0000 2.51 1.0000 5.29 1.0000 5.29 1.0000 5.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ++++++++<br>SH.LOC.<br>AS FRACT<br>OF 5.5.                             | 0.3343<br>0.3027<br>0.2967<br>0.2816<br>0.2826<br>0.2826<br>0.2760<br>0.2578<br>0.2578                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| HE INLET OF               | OW STREAM.<br>E SLOPE<br>) (DEG)       | 00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00.00<br>00 | SECOMENT TURN NOT NOT NOT NOT NOT NOT NOT NOT NOT NO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ++++++++++++++++++++++++++++++++++++++                                 | 1.0607<br>0.9921<br>0.9928<br>0.9859<br>0.9949<br>1.0145<br>1.0145<br>1.11881<br>1.3044                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| STATION, 11, WHICH IS THE | . ABS.FLOW<br>NO. ANGLE<br>(DEG)       | 1118 39 90 90 90 90 90 90 90 90 90 90 90 90 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRAN.PT.<br>LDCATION<br>CHORD<br>CHORD<br>0.3032<br>0.3028<br>0.2910<br>0.2910<br>0.2910<br>0.2910<br>0.2910<br>0.2510<br>0.2530                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ++++++ L<br>1ST SEG.<br>S.S.CAM.<br>(DEG)                              | 21<br>17<br>17<br>17<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16<br>16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| IOM, 11, 4                | 15. ABS.                               | 720.92 0 6118<br>722.77 0 6189<br>735.79 0 6487<br>736.79 0 6547<br>755.72 0 6563<br>774.29 0 6718<br>774.29 0 6718<br>864.80 0 7201<br>824.80 0 8231                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 74 X Y TH. C C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +++++++<br>BLD, SET<br>E ANGLE<br>(DEG)                                | 100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ES AT STAT                | TANG. ABS. VEL. VEL. (FT/SEC) (FT/SEC) | 26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.2.42<br>26.                                                                                                                                   | MAX. TH.  CENDRD.  0.0787 0.0787 0.0787 0.0787 0.0787 0.0787 0.0787 0.0883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ++++++++<br>DE TRAN.PT<br>BL.ANGL<br>(DEG)                             | 19 .07 .20 .23 .20 .23 .24 .25 .23 .25 .23 .25 .25 .25 .25 .25 .25 .25 .25 .25 .25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ON STREAMLINES AT         | MERD. T.<br>VEL. VI<br>(FT/SEC) (FT.   | 553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00<br>553.00                                                                           | L.E.RAD.<br>7CHORD<br>0.0129<br>0.0117<br>0.0117<br>0.01097<br>0.0081<br>0.0063                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DE IN.BLA                                                              | 36.70<br>33.52<br>33.52<br>34.55<br>35.91<br>35.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91<br>36.91 |
| ETERS ON                  | AXIAL M<br>VEL. V<br>(FT/SEC) (FT      | 552.<br>554.<br>558.<br>558.<br>558.<br>559.<br>559.<br>559.<br>559.<br>559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | REL. FLOW LANGLE ANGLE CO. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ILET STREAMLINE +<br>S.S.INC. IN.BLADE I<br>ANGLE ANGLE<br>(DEG) (DEG) | 36.73<br>33.50<br>33.50<br>33.92<br>34.63<br>35.89<br>35.89<br>37.00<br>40.91<br>43.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| VALUES OF PARAMETERS      |                                        | 64444444444444444444444444444444444444                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | FLOW<br>COEF.<br>P. COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF.<br>COEF | INLET STR                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ** VALUES                 |                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | INE INC. S<br>CT. ANGLE<br>SS. (DEG)                                   | 1.28 3.17<br>26.49 3.17<br>26.49 3.17<br>32.68 3.04<br>41.69 2.99<br>60.68 2.93<br>60.68 2.93<br>7.99 2.68<br>97.49 2.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                           | STREAML<br>NO. RAD                     | 11. 49.538. 43. 43. 43. 43. 43. 43. 43. 43. 43. 43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STREAMLINE<br>NO. R/RIIP<br>TIP 1 0000<br>2 0 9551<br>5 0 9554<br>6 0 0 795<br>6 0 0 795<br>8 0 6996<br>9 0 6996<br>9 0 6996<br>10 0 5864<br>HUB 0 5564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STREAMLINE<br>NO. PCT.<br>PASS.                                        | 11<br>22<br>33<br>34<br>55<br>55<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

TABLE III. - Continued.

\*\* VALUES OF PARAMETERS ON STREAMLINES AT STATION, 12, WHICH IS THE DUTLET OF STATOR NUMBER, 1, OF STAGE NUMBER, 1 \*\*

|                                           |                                              |                                                                                                                                | NG<br>C                  | 116<br>123<br>123<br>123<br>123<br>123<br>123<br>123<br>123<br>123<br>123                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| •                                         | STATIC<br>TEMP:<br>(DEG.R.)                  | 592.46<br>5883.66<br>5883.66<br>578.61<br>575.77<br>575.96<br>575.00<br>575.00<br>575.00                                       | MEAN<br>SPACING<br>(IN.) | 1.7616<br>1.6570<br>1.5570<br>1.5570<br>1.3570<br>1.3570<br>1.0550<br>1.0550<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.050<br>1.05    |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| STAGE MUNDER                              |                                              | 20 064<br>20 066<br>20 066<br>20 066<br>20 061<br>19 996<br>19 958<br>19 958                                                   | AERO.<br>CHORD           | 22.22.22.22.22.22.22.22.22.22.22.22.22.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| , UT 31A6                                 | _                                            | 600 08 600 08 600 08 600 08 600 00 600 00 600 00 600 00 600 00 600 00                                                          | ELEMENT<br>SOLIDITY      | 2.11.334<br>1.334<br>1.334<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.552<br>1.5 |                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MUNDEN, 1                                 | TOTAL<br>PRESS.<br>(PSIA) (                  |                                                                                                                                | SHOCK<br>LOSS<br>COEF.   | 0 . 0000<br>0 . 00000<br>0 . 0000<br>0 . 00000<br>0 . 0000<br>0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                  | T.E.EDGE<br>CIR.CENT<br>R*D0/DR                                         | 10000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UT STATUR                                 | STREAM.<br>CURV.                             | 00000000000000000000000000000000000000                                                                                         | STATOR<br>LOSS COEF.     | 0.0888<br>0.0810<br>0.0772<br>0.0719<br>0.0773<br>0.0854<br>0.0877<br>0.1287                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | X.CAMB. T.<br>17.LOC. CI<br>CHORD F                                     | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 00115                                     | M STREAM.<br>SLOPE<br>(DEG)                  | 000111100044<br>87.8010800747<br>004470887040                                                                                  | DIFFUSION<br>FACTOR      | 0.44<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45<br>0.45                                                                                                                                                                                                                                                                                                                                                       | ++ LAYOUT CONE +++ c OUT.BLADE MAX.CAMB. ANGLE PT.LOC. (DEG) /CHORD     | 116.26<br>1-12.26<br>1-12.26<br>1-9.70<br>1-9.10<br>1-9.01<br>1-9.01<br>1-10.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| WHICH IS THE                              | ABS.FLOW<br>ANGLE<br>(DEG)                   |                                                                                                                                | STAGE I<br>AD.EFF.       | 0.311<br>0.311<br>0.31131<br>0.3131<br>0.33136<br>0.33136<br>0.33139<br>0.33139<br>0.33139<br>0.33139<br>0.33139<br>0.33139<br>0.33139<br>0.33139<br>0.33139                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ADE OU                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                           | ABS.<br>MACH NO.                             | 0.4837<br>0.48850<br>0.48860<br>0.48860<br>0.48860<br>0.48831<br>0.48831<br>0.48831<br>0.48831<br>0.48831                      |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T STREAMLINE DEV. OUT.BLADE<br>ANGLE ANGLE<br>(DEG) (DEG)               | 16.20<br>112.30<br>112.30<br>19.70<br>19.70<br>18.80<br>18.80<br>19.00<br>19.00<br>19.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ATION,                                    |                                              | 576.44<br>572.71<br>572.71<br>572.09<br>575.09<br>575.07<br>575.07<br>575.07<br>575.07<br>575.07<br>577.09<br>577.09<br>577.09 | STAGE<br>PO.RATIO        | 1.6648<br>1.60020<br>1.60020<br>1.60020<br>1.50020<br>1.50020<br>1.50020<br>1.50020<br>1.50020<br>1.50020<br>1.50020<br>1.50020<br>1.50020                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ET STRE<br>DEV.<br>ANGLE<br>(DEG)                                       | 116,20<br>112,30<br>10,30<br>49,10<br>88,80<br>99,00<br>110,30<br>14,20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| NES AT ST                                 | TAMG. ABS.<br>VEL. VEL.<br>(FI/SEC) (FI/SEC) |                                                                                                                                | STATOR<br>PO.RATIO       | 0 9802<br>0 9816<br>0 9824<br>0 9825<br>0 9826<br>0 9778<br>0 9778<br>0 9715<br>0 9591                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T.E.RAD.                                                                | 0.0123<br>0.01123<br>0.01117<br>0.01104<br>0.0089<br>0.0088<br>0.0064                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| PARAMETERS ON STREAMLINES AT STATION, 12, | MERD.<br>VEL.<br>(FI/SEC) (F                 | 5576-44<br>5572-71<br>5572-71<br>5572-71<br>5575-09<br>5575-09<br>5572-67<br>5572-67<br>557-13<br>557-13<br>557-13             | IDEAL HEAD<br>COEF.      | 0 28311<br>0 28311<br>0 28526<br>0 28537<br>0 28537<br>0 28581<br>0 28581<br>0 28581<br>0 28581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | DRCES<br>TANG.<br>(LBS/IN)                                              | 88.882.0<br>88.11956.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>10.556.0<br>1 |
| RAMETERS (                                | AXIAL<br>VEL.<br>(FI/SEC)                    | 500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500<br>500                                                             | HEAD<br>COEF.            | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LOCAL BLADE FORCES<br>RADIUS FOR AXIAL TANG.<br>(IN.) (LBS/IN) (LBS/IN) | 2,996,93<br>2,941<br>2,64741<br>2,64741<br>2,64741<br>2,940,94<br>3,64<br>3,64<br>3,64<br>3,64<br>3,64<br>3,64<br>3,64<br>3,6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| VALUES OF PA                              | AXIAL<br>COORD.<br>(IN.)                     | **************************************                                                                                         | FLOW<br>COEF.            | 0.41073<br>0.4073<br>0.4088<br>0.4098<br>0.4098<br>0.3974<br>0.3875<br>0.3875                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | LOC<br>RADIUS<br>(IN.)                                                  | 8888773958<br>81849477377<br>8888773770<br>8888773770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| **                                        | PADLINE<br>PADLUS<br>(1N.)                   | 111<br>100<br>100<br>100<br>100<br>100<br>100<br>100                                                                           |                          | 11.00°0<br>99972<br>99972<br>99972<br>998688<br>99868<br>99868<br>99868<br>9986<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868<br>99868                                                                                                                                                                                                                                                                                                                                                                                                                                                         | STREAMLINE<br>NO. PCT.<br>SPAN                                          | 1.53<br>8.93<br>2.6.63<br>3.2.96<br>5.1.58<br>7.1.09<br>7.1.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                           | STRE<br>*0.                                  | 11000000000000000000000000000000000000                                                                                         |                          | 717<br>00 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | STR!                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

TABLE III. - Continued.

\*\* VALUES OF PARAMETERS ON STREAMLINES AT STATION, 13, WHICH IS AN ANNULUS \*\*

| STATIC          | (DEG.R.)           | 594.11  | 583.86  | 580.38  | 577.43 | 575.21  | 574.19  | 573.60  | 573.48  | 573.79  | 576.34   | 582.89   |
|-----------------|--------------------|---------|---------|---------|--------|---------|---------|---------|---------|---------|----------|----------|
| STATIC          | (PSIA)             | 20.255  | 20.032  | 19.984  | 19.897 | 19.831  | 19.791  | 19.767  | 19.772  | 19.810  | 19.898   | 19.988   |
| TOTAL           | (DEG.R.)           | 619.94  | 610.91  | 608.28  | 606.02 | 604.28  | 603.47  | 602.68  | 601.93  | 601.03  | 600.73   | 600.58   |
| TOTAL           | (PSIA)             | 23.515  | 23.548  | 23.558  | 23.568 | 23.570  | 23.558  | 23.506  | 23.428  | 23,306  | 23.008   | 22.195   |
| STREAM.         | (1,71N.)           | -0.095  | -0.054  | -0.041  | -0.030 | -0.021  | -0.013  | -0.004  | 0.004   | 0.013   | 0.024    | 0.043    |
| STREAM.         | (DEG)              | -1.16   | -1.01   | -0.63   | -0.13  | 84.0    | 1.19    | 1.98    | 2.84    | 3.74    | 4.67     | 5.59     |
| ABS. FLOW       | (DEG)              | 00.00   | 0.00    | 00.0    | 0.00   | 00.0    | 00.0    | 00.0    | 00.0    | 00.0    | 00.0     | 9.00     |
| ABS.            |                    | 0.4668  | 0.4817  | 0.4907  | 0.4979 | 0.5030  | 0.5052  | 0.5038  | 0.4984  | 0.4875  | 0.4602   | 0.3896   |
| ABS.            | (FIZSEC)           | 557.55  | 570.48  | 579.38  | 586.41 | 591.30  | 593.38  | 591.38  | 585.01  | 572.38  | 541.51   | 461.06   |
| TANG.           | (FTZSEC)           | 00.0    | 00.0    | 00.0    | 0.00   | 00.0    | 0.00    | 00.0    | 00.0    | 00.0    | 00.0     | 0.00     |
| MEPD.           | (FTZSEC)           | 557.55  | 570.48  | 579.38  | 585.41 | 5-1.30  | 193.38  | 591.33  | 5.5.03  | 572.38  | 541.51   | 461.06   |
| AXIAL           | (FTZSEC)           | 557.43  | 570.39  | 579.35  | 556.41 | 531.28  | 533.24  | 531.02  | 55.1.29 | 571.16  | 539.70   | 458.86   |
| AXIAL<br>CCORD. | (IN.)<br>7.349     | 3.50    | 7.340   | 7.340   | 7.340  | 7.340   | 7.340   | 7.340   | 7.340   | 7.340   | 7.340    | 7.340    |
| STREAMLINE      | (IN.)<br>TIP 9.603 | 1 9.534 | 2 9 130 | 3 8.841 | 58.586 | 5 8.114 | 5 7.730 | 7 7.325 | 8 6.873 | 9 6 425 | 10 5.910 | 11 5.259 |

TABLE III. - Continued.

|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ENG<br>ENG<br>1748<br>1748<br>1748<br>1748                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 151    |
|------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
|                                                                        | STATIC<br>(DEG.R.)<br>577.28<br>577.28<br>574.53<br>574.53<br>579.94<br>569.25<br>569.25<br>569.38<br>573.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LAYOUT<br>COME ANG<br>COEGN<br>-6.62<br>-5.13<br>-5.13<br>-2.36<br>-0.99<br>0.99<br>0.79<br>5.29<br>7.76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | CIRCENT<br>R*DOCNT<br>R*DOCNT<br>CIRCENT<br>R*DOCNT<br>CO 005<br>CO 0 | -0.16  |
|                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SEGMENT<br>INCOUNT<br>INCOUNT<br>TURN .RATE<br>0.6100<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.6630<br>0.66300<br>0.66300<br>0.66300<br>0.66300<br>0.66300<br>0.66300<br>0.66300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MIN. CHK. MIN. CHK. COV. CHAN. 0.4962 0.4962 0.2977 0.1997 0.109894 0.00635                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0000.  |
| 2 *                                                                    | PRESS C PRESS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>.</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |
| NUMBER,                                                                | 101AL<br>TEMP.<br>(DEG.R.)<br>619.71<br>619.88<br>606.028<br>606.028<br>602.70<br>602.70<br>601.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TRAN.<br>CGCAT.PT.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORO.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORD.<br>CCHORO                                                                                                                                                                                                                                                               | MARA MARA MARA MARA MARA MARA MARA MARA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.17   |
| OF ROTOR NUMBER,                                                       | 101AL<br>PPEESS.<br>( PSIA) .<br>(                                                                                                                                                                                                                                                                       | 77 X CHORD C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MS FRACT AS FRACT AREA OF S.S. MARCIN OF S.S. 0.3553 0.0415 0.5572 0.5353 0.0415 0.5572 0.0337 0.045 0.5572 0.045 0.5572 0.045 0.5572 0.045 0.5572 0.045 0.5572 0.045 0.5572 0.045 0.5572 0.045 0.5572 0.045 0.5572 0.045 0.5572 0.045 0.5572 0.045 0.5572 0.045 0.5572 0.045 0.5572 0.045 0.5572 0.045 0.5572 0.045 0.5572 0.045 0.5572 0.045 0.0572 0.555 0.052 0.555 0.555 0.075 0.555 0.075 0.555 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075 0.075                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.7032 |
| THE INLET                                                              | STREAM.<br>(1 / IN).<br>(1 / IN)                                                                                                                                                                                                                                                                         | MAX. TH.<br>/CHORD<br>0.0340<br>0.0351<br>0.0351<br>0.0575<br>0.0573<br>0.0573<br>0.0704                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.2960 |
| VALUES OF PARAMETERS ON STREAMLINES AT STATION, 14, WHICH IS THE INLET | STREAM<br>SLOPE<br>5 C O O O O O O O O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L. E. RAD.<br>/ CHORD<br>0.0061<br>0.0068<br>0.0085<br>0.00875<br>0.0105<br>0.0124<br>0.0124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | AY OULT CONE<br>MACH NO.<br>AT SHIGCK<br>LOCATION<br>1 3470<br>1 5031<br>1 2642<br>1 2642<br>1 2643<br>1 2    | 1.0280 |
| TION, 14,                                                              | ABS. FL DW<br>ANGLE<br>(DEG)<br>(DEG)<br>(DEG)<br>(DG)<br>(DG)<br>(DG)<br>(DG)<br>(DG)<br>(DG)<br>(DG)<br>(D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | FLOW<br>COEF.<br>0.4665<br>0.4730<br>0.4730<br>0.4730<br>0.4730<br>0.4730<br>0.4780<br>0.4550<br>0.4555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ANGLE BLADE TRAN.PT. BLD.SET 15T SEG. MACH ANGLE BL.ANGLE ANGLE S.CAM. AT SH CEG. (DEG.) (DEG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 18.35  |
| AT STA                                                                 | MACH NO. 5485. NO. 5485. NO. 54862 NO. 548242 NO. 548342 NO. 54834                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | WHEEL<br>SPEED<br>(FT/SEC)<br>1330 40<br>1321 11<br>1226 32<br>1230 71<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1183.77<br>1                                                                                                                                                                                                                                                            | PLD: SEE THE S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 26.39  |
| AMLINES                                                                | ABS.<br>VEL.<br>624.73<br>631.70<br>641.00<br>641.00<br>641.68<br>641.68<br>641.68<br>641.68<br>641.68<br>641.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1 TRAN. PT. BL. ANGLE BL. ANGLE G. DEG) 55 0.0 55 4.9 55 4.9 55 4.9 55 4.9 56 4.9 56 4.9 56 4.9 56 56 4.9 56 56 4.9 56 56 56 56 56 56 56 56 56 56 56 56 56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| ON STRE                                                                | 7ANG.<br>VEL.<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | REL. MACH<br>NUMBER<br>1.2304<br>1.2089<br>1.12089<br>1.12089<br>1.12089<br>1.1086<br>1.0361<br>1.0361<br>1.0361<br>0.9358<br>0.9358                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | + # # # # # # # # # # # # # # # # # # #                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |        |
| 1ETERS (                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | REL. VEL. VEL. VEL. VEL. VEL. VEL. VEL. V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 52.41  |
| F PARA                                                                 | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | INE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 52.65  |
| VALUES O                                                               | AXIAL<br>VEL:<br>(F1/SEC)<br>629.31<br>642.50<br>642.70<br>642.70<br>642.70<br>642.70<br>642.70<br>642.70<br>642.70<br>642.70<br>642.70<br>642.70<br>642.70<br>642.70<br>642.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M REL.<br>(FT/SEC)<br>(FT/SEC)<br>1321.11<br>1236.32<br>1236.37<br>1185.17<br>1185.17<br>1084.43<br>973.58<br>973.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | LET STREAMLINE S.S.INC. IN.BLADE ANGLE (DEG)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |
| *                                                                      | AXA<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT)<br>(COOT | ANGLE<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG)<br>(DEG) | INC.<br>INC.<br>ANGLE<br>(DEG)<br>2.54<br>2.56<br>2.57<br>3.63<br>4.21<br>5.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5.12   |
|                                                                        | STREAMLINE<br>NO. RADIUS<br>(AI)<br>1 9 437<br>2 9 437<br>4 8 791<br>4 8 791<br>6 7 7 863<br>7 7 7 863<br>9 6 594<br>9 6 594<br>10 6 608<br>HUB 5.265                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SIREAMLINE<br>TIP 1 0 9930<br>1 0 9930<br>2 0 9936<br>3 0 9556<br>4 0 8539<br>6 0 8151<br>7 0 7749<br>8 0 6525<br>11 0 5659<br>HUB 0 5564                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STREAM<br>NO. PACT.<br>PACT.<br>2 2 90.157<br>5 32 90.148<br>8 60.148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 97.12  |
|                                                                        | NON TIP TIP TO SECOND TIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11 12 12 13 14 15 15 15 15 15 15 15 15 15 15 15 15 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | S 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 11     |

TABLE III. - Continued.

\*\* VALUES OF PARAMETERS ON STREAMLINES AT STATION, 15, WHICH IS THE OUTLET OF ROTOR NUMBER, 2 \*\*

| STATIC<br>TEMP.                      | 6672 47<br>66672 47<br>6657 47<br>6657 47<br>6458 64<br>645 55<br>6645 55<br>6645 53<br>6645 53<br>6645 53<br>6645 53<br>6645 53<br>6645 53<br>6645 53                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ELEMENT<br>SOLIDITY           | 1.3069<br>1.4538<br>1.4538<br>1.5812<br>1.5812<br>1.6559<br>2.0123<br>2.0133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | . T.E.EDGE<br>CIR.CENT<br>R*DO/DR                 | 0 0310<br>0 0724<br>0 0724<br>0 1164<br>0 1167<br>0 1693<br>0 22035<br>0 4105                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ATIC<br>ESS.<br>SIA)                 | 229.585<br>229.5455<br>229.5455<br>229.427<br>229.427<br>229.427<br>228.645<br>27.830<br>27.830<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234<br>27.234 | SHOCK<br>LOSS<br>COEF.        | 0.0270<br>0.0241<br>0.0216<br>0.0195<br>0.0177<br>0.0159<br>0.0183<br>0.0084                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CONE +++<br>MAX.CAMB.<br>PT.LOC.<br>/CHORD        | 00.558<br>00.558<br>00.558<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449<br>00.449                                                                                                                                                                            |
| TOTAL ST.<br>TEMP. PRI<br>DEG.R.) (P | 712.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97<br>7012.97                                                                                                         | 1 1055<br>COEF.               | 0.1108<br>0.0938<br>0.0833<br>0.0833<br>0.0636<br>0.0636<br>0.0632<br>0.0632                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ++ LAYOUT<br>OUT, BLADE<br>ANGLE<br>(DEG)         | 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| OTAL TO<br>PRESS. TE<br>(PSIA) (DE   | ######################################                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DIFFUSION<br>FACTOR           | 0.4162<br>0.4173<br>0.4269<br>0.4563<br>0.4563<br>0.4963<br>0.53693<br>0.5693                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | OUT. BLADE (<br>ANGLE<br>(DEG)                    | 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| STREAM. TO<br>CURV. PR<br>1./IN.) (F | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ADIAB.                        | 0.84<br>0.82<br>0.82<br>0.92<br>0.92<br>0.92<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93<br>0.93                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | T STRE/<br>DEV.<br>ANGLE<br>(DEG)                 | 20000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| STREAM. ST<br>SLOPE C<br>(DEG) (1.   | 24.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DEAL HEAD<br>COEF.            | 0.316<br>0.316<br>0.2869<br>0.2889<br>0.2838<br>0.2838<br>0.2841<br>0.2854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T.E.RAD.<br>/CHORD                                | 0.0061<br>0.0065<br>0.0076<br>0.0083<br>0.0099<br>0.0116<br>0.0116<br>0.0126                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| S.FLOW S<br>ANGLE<br>(DEG)           | 24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HEAD I                        | 0.26890<br>0.26680<br>0.26680<br>0.26680<br>0.26680<br>0.26680<br>0.26680<br>0.26680<br>0.26680<br>0.26680<br>0.26680                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | _                                                 | -8.3978<br>-8.2095<br>-8.1036<br>-7.9553<br>-7.78518<br>-7.7158<br>-7.7158<br>-7.71891<br>-7.1181                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ABS. AB                              | 0.5327<br>0.5336<br>0.5549<br>0.5529<br>0.5529<br>0.6414<br>0.6136                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | FLOW<br>COEF.                 | 0.3915<br>0.3915<br>0.3925<br>0.3951<br>0.3956<br>0.3956<br>0.3883<br>0.3883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BLADE FORCES<br>NR.AXIAL TANG.<br>BS/IN) (LBS/IN) | 13.7589<br>12.5914<br>12.5914<br>11.2899<br>10.5899<br>10.5853<br>8.7717<br>8.7717<br>8.0526<br>6.9670<br>5.354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ABS.<br>VEL.<br>FT/SEC)              | 677.74<br>673.90<br>687.35<br>687.35<br>700.81<br>700.81<br>715.74<br>758.71<br>758.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WHEEL<br>SPEED<br>(FT/SEC)    | 1356-37<br>1126-89<br>11120-53<br>1112-162<br>1113-162<br>1085-61<br>1085-62<br>931-39<br>931-39<br>872-76<br>804-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | LOCAL  <br>RADIUS FO                              | 6 6 5 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TANG.<br>VEL.<br>FT/SEC) (           | 431.58<br>4436.02<br>4436.02<br>4436.02<br>4445.81<br>445.83<br>462.66<br>572.03<br>572.03<br>10.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | REL.MACH<br>NUMBER            | 0.7996<br>0.7825<br>0.7825<br>0.6725<br>0.655<br>0.655<br>0.575<br>0.575<br>0.5768                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MEAN<br>SPACING F<br>(IN.)                        | 555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MERD.<br>VEL.<br>(FT/SEC) (          | 522.57<br>5522.16<br>5524.18<br>5524.58<br>5526.38<br>5526.39<br>5530.55<br>550.55<br>667.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | REL.<br>VEL.<br>(FT/SEC)      | 986.41<br>986.41<br>908.134<br>908.138<br>864.65<br>815.71<br>763.71<br>711.09<br>587.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | AERO, P<br>CHORD SF<br>(IN.) (                    | 2.0262<br>2.0262<br>2.0263<br>1.2.0263<br>1.2.0266<br>1.2.0266<br>1.2.0363<br>1.2.0363<br>1.2.0363<br>1.2.0363<br>2.0363<br>1.2.0363                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| AXIAL<br>VEL.<br>FT/SEC) (           | 550<br>550<br>550<br>550<br>550<br>550<br>550<br>550<br>550<br>550                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | REL.<br>IANG. VEL.<br>FT/SEC) | 8878<br>8852<br>78852<br>78852<br>78852<br>7885<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7886<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>7875<br>787 | RATIO 0                                           | 11.14605<br>11.14605<br>11.13605<br>11.13605<br>11.13605<br>11.13605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11.14605<br>11. |
| AXIAL<br>COURD.<br>CIN.)             | 10 11 6 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | REL.FLOW<br>ANGLE<br>(DEG)    | 5569<br>5569<br>5569<br>5569<br>5569<br>569<br>569<br>569<br>569                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PRESS. 1                                          | 1.5258<br>1.5258<br>1.5250<br>1.5224<br>1.5222<br>1.5263<br>1.5263<br>1.5395<br>1.5395                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                      | 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MLINE                         | 0.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | AMLINE PCT. SPAN                                  | 985<br>985<br>985<br>985<br>985<br>985<br>985<br>985<br>985<br>985                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| EL.                                  | 841<br>C 2000 00 00 00 00 00 00 00 00 00 00 00 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | w                             | 11100000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | STRE,<br>NO.                                      | 11040076621                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

TABLE III. - Continued.

\*\* VALUES OF PARAMETERS ON STREAMLINES AT STATION, 16, WHICH IS AN ANNULUS \*\*

| 5TATIC<br>(DEG.R.)<br>671.59<br>659.20<br>654.17<br>645.48                                                 | 640.67<br>640.67<br>644.95<br>644.95<br>643.61                       |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
| PRESS.<br>(PSIA)<br>(PSIA)<br>29, 127<br>29, 043<br>28,935<br>28,836<br>28,836                             | 28.212<br>27.892<br>27.492<br>26.965<br>26.102                       |
| TOTAL<br>TEMP.<br>(DEG.R.)<br>712.55<br>700.00<br>695.41<br>691.07                                         | 686.00<br>685.41<br>687.24<br>687.24                                 |
| TOTAL<br>PRESS.<br>(PSIA)<br>35.879<br>35.879<br>35.879                                                    | 35.879<br>35.879<br>35.879<br>35.879<br>35.879                       |
| STREAM.<br>CURV.<br>(1./IN.)<br>0.029<br>0.021<br>0.021                                                    | 0.0012                                                               |
| STREAM.<br>SLOPE<br>(DEG)<br>-1.12<br>-0.85<br>-0.50                                                       | 1.61                                                                 |
| ABS. FLOW<br>ANGLE<br>(DEG)<br>38.15<br>37.78<br>37.78<br>37.94                                            | 42.05<br>47.05<br>47.05<br>64.05<br>64.05                            |
| MACH NO.<br>0.5585<br>0.5684<br>0.5684                                                                     | 0.5966<br>0.5966<br>0.6111<br>0.6529<br>0.6924                       |
| ABS.<br>VEL.<br>(FT/SEC)<br>703.68<br>702.08<br>705.77<br>710.06                                           | 739.70<br>739.70<br>756.14<br>776.42<br>804.46<br>852.07             |
| TANG.<br>VEL:<br>(FT/SEC)<br>428.46<br>432.33<br>436.59                                                    | 481.77<br>481.96<br>506.49<br>536.78<br>588.79<br>696.70             |
| MERD.<br>VEL.<br>(FT/SEC)<br>553.37<br>556.18<br>557.85<br>559.97                                          | 561.13<br>561.13<br>561.44<br>560.97<br>548.17<br>490.55             |
| AXIAL<br>VEL:<br>(FI/SEC)<br>553.26<br>556.12<br>557.83<br>559.97                                          | 560.91<br>560.97<br>560.10<br>546.67<br>488.11                       |
| COX                                                                    | 11.010                                                               |
| 1REAMLINE<br>0. RADLIUS<br>RADLIUS<br>11N 9.308<br>1 9.250<br>2 89.250<br>2 88.683<br>4 88.388<br>5 88.085 | 7 7 7 439<br>8 7 931<br>9 6 722<br>10 6 322<br>11 5 856<br>HUB 5.763 |
| or Z ⊢                                                                                                     |                                                                      |

TABLE III. - Continued.

| *                          |
|----------------------------|
| ×<br>*                     |
|                            |
| BER                        |
| NUMBER                     |
|                            |
| STAGE                      |
| 0F 5                       |
| 1,0                        |
| -                          |
| ER,                        |
| UMBER                      |
| ž                          |
| FATOR                      |
| ST/                        |
| 0F S                       |
| NLET OF STATOR NUMBER,     |
| INLEI                      |
| Ħ                          |
| 15 1                       |
|                            |
| HICH                       |
| 3                          |
| 17                         |
| Š,                         |
| ATI                        |
| ST                         |
| ON STREAMLINES AT STATION, |
| S ES                       |
| Ä                          |
| REA                        |
| S                          |
| 8                          |
| ERS                        |
| 151                        |
| RAP                        |
| <u>.</u>                   |
| VALUES OF PAS              |
| .UES                       |
| ۷<br>۲                     |
| *                          |

| *            | STATIC<br>TEMP.<br>(DEG.R.)         | 6530 78<br>653 35<br>653 35<br>644 21<br>644 30<br>641 84<br>643 44<br>653 85<br>632 34 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | L.E.EDGE<br>CIR.CENT.<br>R.DO/DR                                               | 0.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                             |
|--------------|-------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|
| NUMBER, 2    | STATIC ST<br>PRESS, T<br>(PSIA) (DE | 29.033 67.28.912 65.28.912 65.28.673 64.28.00 64.28.00 64.28.00 64.27.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.327.70 65.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MIN. CHK.<br>PT. LOC. IN<br>COV. CHAN.                                         |                                                                                                    |
| , OF STAGE   | TOTAL S<br>TEMP. P<br>(DEG.R.) (    | 712 34<br>6693 99 20<br>6891 10 20<br>688 10 20<br>688 10 20<br>688 687 687 20<br>687 20<br>697 20<br>697 20<br>697 20<br>697 20<br>697 20<br>698 20<br>608 20<br>608 20<br>608 20<br>608 20<br>6 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ++++++++++<br>MIN. CHK.<br>AREA<br>MARGIN                                      | 0.2960<br>0.2767<br>0.2529<br>0.2453<br>0.2350<br>0.2180<br>0.2112                                 |
| NUMBER, 1    | TOTAL<br>PRESS.<br>(PSIA)           | 88888888888888888888888888888888888888                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ++++++++++++++++++++++++++++++++++++++                                         | 0 .55247<br>0 .55384<br>0 .55383<br>0 .5174<br>0 .6174<br>0 .6236<br>0 .6236<br>0 .6236<br>0 .6353 |
| OF STATOR    | . STREAM.<br>CURV.<br>(1./IN.)      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T LAYOUT<br>CONE ANG.<br>TE (DEG)<br>0.37<br>0.35<br>0.55<br>0.55<br>0.55<br>0.55<br>1.30<br>1.30<br>1.35<br>1.35<br>1.35<br>1.35<br>2.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | E +++++++<br>SH.LOC.<br>AS FRACT<br>OF S.S.                                    | 0.32278<br>0.3166<br>0.3166<br>0.3166<br>0.3063<br>0.3063<br>0.29947<br>0.29947<br>0.2995          |
| HE INLET     | OW STREAM.<br>E SLOPE<br>S) (DEG)   | 266 -0.15<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00                                                                                                                                                                                                                                                                                              | SEGMENT TITLE TO THE TOTAL TOT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ++++++ LAYOUT CONE<br>1ST SEG. MACH NO.<br>S.S.CAM. AT SHOCK<br>(DEG) LOCATION | 0.9915<br>0.9208<br>0.9153<br>0.9153<br>0.9254<br>0.9565<br>0.9865<br>1.0885<br>1.2476             |
| WHICH IS 1   | . ABS.FLOW<br>NO. ANGLE<br>(DEG)    | 55590 37.86<br>5648 37.18<br>57.71 37.78<br>5848 37.78<br>5841 38.69<br>6054 42.88<br>6585 46.02<br>6585 53.46                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10CATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COCATION<br>COC                                                                                                                                                                                                                                                                                                                                                    |                                                                                | 20<br>188 39<br>18 00<br>17 37<br>17 12<br>17 52<br>19 26<br>23 59                                 |
| ATION, 17,   | ABS. ABS.<br>VEL. MACH              | 23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | AAX.TH.<br>C CHORD<br>C SOON<br>C SO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +++++++++<br>BLD.SET<br>E ANGLE<br>(DEG)                                       | 9 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8                                                            |
| S AT ST      | TANG. AF<br>VEL. VE<br>T/SEC) (FT.  | 4435.07 708<br>4428.42 716<br>4436.42 716<br>4436.42 719<br>4436.42 719<br>4436.42 719<br>440.84 719<br>480.84 787<br>583.74 788<br>583.74 786<br>583.74 786<br>687.93 886                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 74X.TH.<br>7CHORD<br>0 0797<br>0 0781<br>0 0781<br>0 0781<br>0 0781<br>0 0694<br>0 0694<br>0 0694<br>0 0694<br>0 0694<br>0 0694                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ++++++++++++++++++++++++++++++++++++++                                         | 18.47<br>19.29<br>20.73<br>20.73<br>21.49<br>22.34<br>22.34<br>22.46<br>30.73                      |
| STREAMLINE   | MERD. 1<br>VEL. V<br>FT/SEC) (F1    | 5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559<br>5559                                                                                                                                                                                              | L.E.RAD.<br>CHORD.<br>0 0139<br>0 01126<br>0 0112<br>0 01039<br>0 00098<br>0 00092                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | +++++++<br>ADE IN.BLADE<br>E ANGLE<br>) (DEG)                                  | 0.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00                                                            |
| ARAMETERS ON | AXIAL<br>VEL:<br>FI/SEC) (F         | 500 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AREL FLOW<br>ANGLE<br>ANGLE<br>56 93<br>55 63<br>55 63<br>57 75<br>67 | TREAMLINE INC. IN.BLADE LE ANGLE G) (DEG)                                      | 100 100 100 100 100 100 100 100 100 100                                                            |
| UES OF P.    | م<br>م                              | 111 2663<br>111 2663<br>111 2663<br>111 2663<br>111 2663<br>111 2687<br>111 9033<br>111 9034                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | PFI OF THE PROPERTY OF THE PRO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | INC. S.S.INC<br>INC. S.S.INC<br>ANGLE ANGLE<br>(DEG) (DEG)                     | 12222222222222222222222222222222222222                                                             |
| TW           | EAMLINE<br>RADIUS<br>(IN.)<br>9.299 | 5.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RAMILINE RAMILINE 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EAMLINE<br>PCI.<br>PASS.                                                       | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                            |
|              | STR<br>NO.                          | H H H H H H H H H H H H H H H H H H H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | STR<br>NO.                                                                     | 100000000000000000000000000000000000000                                                            |

TABLE III. - Continued.

| 2 <b>*</b> *    |
|-----------------|
| BER,            |
| GE NUM          |
| OF STAG         |
| ,               |
| NUMBER,         |
| TATOR           |
| LET OF S        |
| Ξ               |
| 15 THE 01       |
| H 15            |
| , WHIC          |
| 18,             |
| STATION         |
| ES AT           |
| STREAMLINE      |
| _               |
| F PARAMETERS ON |
| ES OF P         |
| ** VALUES       |
| *               |

| ,                                        | STATIC<br>TEMP.                              | 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MEAN<br>SPACING<br>(IN.) | 11.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------------|----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| r worth the                              | STATIC (PRESS.                               | 331.059<br>331.0664<br>331.0664<br>331.0664<br>331.0664<br>331.0643<br>331.0634<br>331.0634<br>331.0634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | AERO.<br>CHORD<br>(IN.)  | 1.75330<br>1.75331<br>1.75331<br>1.75532<br>1.75532<br>1.75534<br>1.75534<br>1.75534                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 10 11 11 11 11 11 11 11 11 11 11 11 11 1 | TOTAL<br>TERP.<br>(DEG.R.)                   | 71<br>6699<br>6699<br>6689<br>6689<br>6687<br>6687<br>6687<br>695<br>695<br>695<br>695<br>695<br>695<br>695<br>695<br>695<br>695                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ELEMENT<br>SOLIDITY      | 11.2665<br>11.34665<br>11.34665<br>11.54647<br>11.566466<br>11.6664666666666666666666666666666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                          | TOTAL<br>PRESS.<br>(PSIA)                    | 23 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | SHOCK<br>LOSS<br>COEF.   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T.E.EDGE<br>CIR.CENT<br>R*D0/DR                                   | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ¥0. ¥0.                                  | STREAM.<br>CURV.                             | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | STATOR<br>LOSS COEF.     | 0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.000<br>0.11880<br>0.118680<br>0.1186885<br>0.1186885                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                   | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                          |
| יווב מסורבו                              | OM STREAM.<br>E SLOPE<br>) (DEG)             | 0 0 1 8 0 0 0 1 1 8 0 0 0 0 0 1 1 8 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DIFFUSION<br>FACTOR      | 0.465038<br>0.465038<br>0.465038<br>0.465038<br>0.465038<br>0.65038<br>0.65038<br>0.65038                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ++ LAYOUT CONE +++ OUT.BLADE MAX.CAMB. ANGLE PT.LOC. (DEG) /CHORD | 11.1.2.80<br>1.1.2.80<br>1.1.2.80<br>1.1.2.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.80<br>1.3.                                                                                                                                                                                                                                                       |
|                                          | ABS.FLOW<br>NO. ANGLE<br>(DEG)               | 999 0.00<br>653 0.00<br>653 0.00<br>134 0.00<br>134 0.00<br>46 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | STAGE<br>AD. EFF.        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | #E ++<br>BLADE OU<br>#GLE<br>DEG)                                 | 1112860<br>112880<br>112880<br>112880<br>112880<br>11380<br>11390<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11300<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000<br>11000        |
| 107 'NOTINIC                             | S. ABS.<br>MACH NO.                          | 111 0 4299<br>334 0 44382<br>449 0 4382<br>24 0 43853<br>24 0 43853<br>31 0 64385<br>31 0 64385<br>31 0 64385<br>31 0 64385<br>31 0 64385<br>31 0 64385<br>31 0 64385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STAGE<br>PO.RATIO        | 11.50003<br>11.50003<br>11.50003<br>11.50003<br>11.50003<br>11.50003<br>11.50003<br>11.50003<br>11.50003<br>11.50003                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | T STREAMLINE DEV. DUT.BLADE ANGLE CDEG) (DEG)                     | 12.86<br>9.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>10.90<br>1 |
|                                          | TANG. ABS.<br>VEL. VEL.<br>(FT/SEC) (FT/SEC) | 0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | STATOR<br>PO.RATIO       | 0.9844<br>0.9844<br>0.9851<br>0.9851<br>0.9859<br>0.9859<br>0.9710<br>0.9710                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T.E.RAD.                                                          | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| UN SIKERIILINES AI                       | MERD. TAI<br>VEL. VE<br>(FT/SEC) (FT/        | 551 11<br>550 34<br>550 34<br>550 24<br>550 24<br>548 97<br>541 97<br>541 58<br>676 34<br>676 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | IDEAL HEAD COEF. P       | 0.3181<br>0.3040<br>0.3040<br>0.28969<br>0.2852<br>0.2838<br>0.2834<br>0.2884<br>0.2984                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                   | 5858<br>88.3851<br>88.13851<br>1372<br>7.9952<br>7.9952<br>7.8308<br>8.158<br>8.158<br>7.8308<br>7.78308<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.458<br>8.4       |
| EKS ON S                                 | AXIAL ME<br>VEL. VE<br>(FI/SEC) (FI/         | 551.10<br>550.35<br>550.35<br>550.35<br>550.45<br>550.45<br>550.45<br>550.45<br>550.45<br>550.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>560.45<br>56 | HEAD IDE<br>COEF.        | 22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>22522<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>2252<br>25 | L BLADE FORCES<br>FOR.AXIAL TANG.<br>(LBS/IN) (LBS/IN)            | 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2 6 4 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| UF PAKAMETEKS                            |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | FLOW F                   | 00.41147<br>00.41137<br>00.41137<br>00.41137<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.41135<br>00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | LOCAL BI<br>RADIUS FOR.                                           | 24.74.74.88.68.99.69.69.69.69.69.69.69.69.69.69.69.69.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| * VALUES                                 |                                              | 13.588334<br>13.58838<br>13.58838<br>13.58838<br>14.58838<br>15.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58838<br>13.58                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                          |                                              | 11 9 5 5 6 6 6 7 5 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 6 7 6 6 7 6 7 6 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          | 11P 1.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | STREAMLINE<br>NO. PCT.<br>SPAN                                    | 11.00<br>12.00<br>13.00<br>14.00<br>15.00<br>16.00<br>16.00<br>16.00<br>17.00<br>18.00<br>18.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19.00<br>19                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                          |                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

TABLE III. - Continued.

\*\* VALUES OF PARAMETERS ON STREAM\_INES AT STATION, 19, WHICH IS AN ANNULUS \*\*

| 21417           | LEND I         | CDEG.R.)    | 684.63 | 673.93  | 669.67 | 665.55 | 662.74 | 661.73      | 661.17 | 661.41 | 665.16  | 475 72 |
|-----------------|----------------|-------------|--------|---------|--------|--------|--------|-------------|--------|--------|---------|--------|
| STATIC          | PRESS.         | (FSIA)      | 30.951 | 30.948  | 30.949 | 50.951 | 30.960 | 30.77       | 30.996 | 31.009 | 31.025  | 30.979 |
| TOTAL           | TEMP           | , DEG. R. J | 710.50 | 07.669  | 24.040 | 47.140 | 687.11 | 686.28      | 685.68 | 685.18 | 587.45  | 695.07 |
| TOTAL           | PRESS.         | •           | 35.272 | 35.320  | 77.04  | 15.304 | 35.357 | 35,305      | 35.231 | 25.111 | 24.04.0 | 717.40 |
| STREAM.         | CURV.          |             | 10.004 | 0.00    | 00.0   | 900.0  | 0.004  | 0.005       | 0.004  | 200.0- | 100     |        |
| STREAM.         | SLOPE<br>(DEG) |             | 20.02  | 95.0    | 0.70   | 96.0   | 1.16   | 1.35        | 1.52   | 1 77   | 8.5     | •      |
| ABS. FLOW       | (DEG)          | 6           | 00.0   | 0.00    | 0.00   | 00.0   | 0.00   | 00.0        | 0.0    | 0.00   | 0.00    |        |
| ABS.            |                | 1717 0      | 0.4390 | 0.4400  | 0.4408 | 0.4408 | 0.4393 | 4565        | 0.4253 | 0.4106 | 0.3797  |        |
| ABS.            | (FT/SEC)       | 558.98      | 558.07 | 557.63  | 556.95 | 555.75 | 555.46 | 564         | 535.63 | 518.64 | 483.34  |        |
| TANG.<br>VEL.   | (FT/SEC)       | 00.0        | 0.00   | 0.00    | 0.0    | 00.00  | 200    | 00.0        | 00.0   | 0.00   | 00.00   |        |
| MERD.<br>Vel.   | (F1/SEC)       | 558.98      | 558.07 | 554.05  | 75.70  | 177.   | 549.46 | 543.89      | 535.63 | 918.64 | 403.34  |        |
| AXIAL<br>VEL.   | (FT/SEC)       | 558.98      | 558.07 | 55.4.02 | 555 47 | 553.35 | 549.31 | 543.70      | 535.41 | 20.010 |         |        |
| AXIAL<br>COORD. | 14.440         | 14.440      | 14.40  | 14.440  | 14.440 | 14.440 | 14.440 | 14.440      | 14.440 | 14.440 | 14.440  | ,      |
| RADIUS          | 9.302          | 9.247       | 8.705  | 8.424   | 8.134  | 7.834  | 7.520  | 7.190       | 6.00   | 6.032  | 5.947   |        |
| 20.0            | IIP            | ٠,          | m      | •       | 'n     | ø      | ~ (    | <b>10</b> c | 10     | 1      | HOB     |        |

## \*\* VALUES OF PARAMETERS ON STREAMLINES AT STATION, 20, WHICH IS AN ANNULUS \*\*

| STATIC<br>TEMP.<br>(DEG.R.)<br>681.67<br>687.35<br>667.35<br>667.35<br>661.08<br>660.63<br>661.08<br>661.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STATIC<br>PRESS:<br>100.534<br>30.534<br>30.534<br>30.536<br>30.628<br>30.086<br>30.097<br>31.086<br>31.036                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 101AL<br>DEG.R.)<br>710.16<br>699.64<br>695.41<br>685.27<br>685.23<br>685.23<br>685.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| TOTAL<br>PRESS.<br>(PSIA)<br>35.272<br>35.327<br>35.354<br>35.354<br>35.357<br>35.357<br>35.357<br>35.357<br>35.357<br>35.357<br>35.357                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| STREAM.<br>(1.CURV.<br>(1.0006<br>0.017<br>0.023<br>0.023<br>0.034<br>0.034<br>0.039                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| STREAM<br>SLOPE<br>(DEG)<br>10.39<br>11.08<br>12.02<br>22.23<br>22.23<br>33.05<br>33.37<br>22.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ABS. FLOM<br>ANGLE<br>(DEG)<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ABS.<br>0.4589<br>0.4612<br>0.4589<br>0.4582<br>0.4582<br>0.4582<br>0.4582<br>0.4582<br>0.4582<br>0.4582<br>0.4582<br>0.4583                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ABS.<br>VEL.<br>586.64<br>585.12<br>585.12<br>578.03<br>578.03<br>556.94<br>556.94<br>556.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| TANG.<br>VEL.<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| MERD.<br>VEL.<br>VEL.<br>586.64<br>585.12<br>585.12<br>578.03<br>578.03<br>556.07<br>545.50<br>545.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AXIAL<br>VEL.<br>(FTSEC)<br>585.62<br>585.13<br>587.47<br>572.47<br>572.43<br>565.45<br>565.45<br>565.45<br>565.45<br>565.45<br>565.45<br>565.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| AXIAL<br>(100.20)<br>(100.20)<br>15.700<br>15.700<br>15.700<br>15.700<br>15.800<br>15.800<br>15.800<br>15.800<br>15.800<br>15.800<br>15.800<br>15.800<br>15.800<br>15.800<br>15.800                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 71 F E AMLINE ADDIUS (N. RADIUS N. R |

TABLE III. - Continued.

\*\* VALUES OF PARAMETERS ON STREAMLINES AT STATION, 21, WHICH IS AN ANNULUS \*\*

| STATIC<br>TEMP.<br>(DEG.R.)                                          | 6665<br>6665<br>6665<br>6665<br>6665<br>6665<br>6667<br>6667                                        |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|
| STATIC<br>PRESS.<br>(PSIA)                                           | 29.521<br>30.621<br>30.221<br>30.221<br>30.201<br>31.206<br>31.4554<br>696                          |
| TOTAL<br>TEMP.<br>(DEG.R.)<br>709.79                                 | 6999<br>6995<br>6889<br>6886<br>6886<br>6886<br>6887<br>722<br>6887<br>729<br>687<br>729            |
| TOTAL<br>PRESS.<br>(PSIA)<br>35.272                                  | 35.320<br>35.320<br>35.324<br>35.324<br>35.327<br>35.327<br>34.8111<br>34.8101<br>34.8101           |
| STREAM.<br>CURV.<br>(1./IN.)                                         | 0.102<br>0.097<br>0.097<br>0.088<br>0.087<br>0.087<br>0.058                                         |
| 2,0                                                                  | 7,00<br>6,70<br>7,06<br>7,06<br>8,16<br>8,65<br>9,59<br>10,07                                       |
| A B S                                                                |                                                                                                     |
| ABS.<br>MACH NO.                                                     | 0.50117<br>0.50117<br>0.46420<br>0.46420<br>0.45490<br>0.336430<br>0.336430<br>0.336430<br>0.336430 |
| ABS.<br>VEL.<br>(FT/SEC)                                             | 64300.374<br>5889.7174<br>5822.286<br>427.288<br>427.728                                            |
| TANG.<br>VEL.<br>(FT/SEC)                                            | 2000000000                                                                                          |
| MERD.<br>VEL.<br>(FT/SEC)<br>664.83                                  | 6330<br>5899<br>5899<br>5893<br>585<br>587<br>587<br>587<br>587<br>587<br>587<br>587<br>587         |
| AXIAL<br>VEL:<br>(FT/SEC)<br>663.21<br>643.83                        | 6627<br>5611.20<br>5611.20<br>578.17<br>560.05<br>518.65<br>480.73<br>480.73                        |
| AXIAL<br>COCRD.<br>(IN.)<br>17.000<br>17.010                         | 17.100<br>17.1400<br>17.1400<br>17.251<br>17.307<br>17.307<br>17.501<br>17.501<br>17.600            |
| STREAMLINE<br>NO. RADIUS<br>(IN.)<br>TIP 9.319<br>1 9.264<br>2 9.033 | 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7                                                            |

| *                |
|------------------|
| S                |
| =                |
| =                |
| ž                |
| Z                |
| ⋖                |
| A                |
| 15               |
| I                |
| ပ                |
| 무                |
| 主                |
|                  |
| 25,              |
|                  |
| Ξ                |
| _                |
| Ξ                |
| •                |
| STATION          |
| -                |
| ⋖                |
| STREAMLINES      |
| ž                |
|                  |
| _                |
| Σ                |
|                  |
| ~                |
| ۳                |
| S                |
| _                |
| á                |
| _                |
| S                |
| 2                |
| w                |
| -                |
| Ŧ                |
| ₹                |
| œ                |
| ⋖                |
| OF PARAMETERS ON |
| u.               |
| 0                |
| LUES             |
| ũ                |
| 5                |
| _                |
| ** VALUES        |
| -                |
| *                |
| *                |

| 51111C<br>67 0 C C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 51411C<br>PRESS.<br>29:019<br>29:07:02<br>29:07:03<br>30:436<br>30:436<br>31:69:33<br>31:69:436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| TOTAL<br>TEPP.<br>(DEG.R.)<br>709-59<br>699-59<br>691-59<br>681-688-68<br>687-25<br>687-25<br>685-88-68<br>685-88-68-68-68-68-68-68-68-68-68-68-68-68-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 701AL<br>PESS.<br>35.272<br>35.272<br>35.272<br>35.374<br>35.374<br>35.374<br>35.375<br>35.375<br>35.375<br>35.375<br>35.375<br>35.375<br>35.375<br>35.375<br>35.375                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| STREAM.<br>CUIN.)<br>1.139<br>0.123<br>0.123<br>0.126<br>0.116<br>0.101<br>0.009                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| STREAM<br>DEOPE<br>(DEOP<br>10.21<br>10.21<br>11.25<br>11.35<br>11.35<br>11.35<br>11.35<br>11.35<br>11.35<br>11.35<br>11.35<br>11.35<br>11.35<br>11.35<br>11.35<br>11.35<br>11.35<br>11.35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ABS FLDM ANGLE ANGLE OF CO. 00 00 00 00 00 00 00 00 00 00 00 00 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MABS.<br>0 .5408<br>0 .5260<br>0 .5260<br>0 .5260<br>0 .5260<br>0 .5260<br>0 .56837<br>0 .56837<br>0 .56837<br>0 .5837<br>0 .5833                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| ABS.<br>VEL.<br>685.81<br>663.32<br>663.32<br>663.32<br>663.32<br>663.32<br>568.15<br>568.15<br>568.15<br>568.15<br>568.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| TANG.<br>VEL.<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| MERD.<br>VEL.<br>(F175EC)<br>685.81<br>663.32<br>663.32<br>665.32<br>687.07<br>568.15<br>568.15<br>570.85<br>570.85<br>570.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AXIAL<br>VELAL<br>VELAL<br>652.81<br>612.95<br>652.81<br>613.95<br>594.25<br>594.25<br>594.25<br>591.04<br>688.95                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AXX<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR)<br>(COOR |
| N3 PEANT IN PART IN PA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

TABLE III. - Continued.

\*\* VALUES OF PARAMETERS ON STREAMLINES AT STATIOH, 23, WHICH IS AN ANNULUS \*\*

| STREMLINE AXIAL   AXIAL   MERD.   TANG.   ABS.   ABS.   FLOM STREAM.   STREAM.   TOTAL   TOTAL   STATIC   TAND.   TA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | STATIC<br>TEMP.<br>(DEG.R.)<br>643.13<br>663.12<br>669.04<br>658.07<br>658.75<br>669.32<br>668.30<br>668.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PREMILINE AXIAL AXIAL MERD. TANG. ABS. ABS.FLOW STREAM. STREAM. TOTAL (TH.) (T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PATALC<br>(PSES).<br>(PSES).<br>29.017<br>29.897<br>29.887<br>29.887<br>30.455<br>30.455<br>30.955<br>31.558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FREMLINE AXIAL AXIAL WERD. TANG. ABS. ABS.FLOW STREAM. STREAM. (TH.) (TH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 101AL<br>1EMP.<br>(DEG.R.)<br>709.37<br>699.49<br>691.33<br>689.48<br>685.86<br>685.86<br>685.86                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| REAMLINE         AXIAL         AXIAL         MERD.         TANG.         ABS.         ABS.         ABS.FLOW STREAM.           RADDUS         COORD.         VEI.         VEI.         VEI.         ANGLE         SIGFEAM.           9.572         18.50         CFT/SEC)         CFT/SEC)         CFT/SEC)         CFT/SEC)         CDCG           9.572         18.50         65.81         680.01         0.00         680.01         0.524         0.00         15.01           9.512         18.66         617.91         642.77         0.00         66.37         0.524         0.00         15.59           9.67         18.77         67.77         0.00         642.77         0.5104         0.00         15.59           8.67         18.77         67.77         0.00         642.47         0.00         15.59           8.67         18.77         67.67         0.70         67.43         0.00         15.99           8.18         18.96         55.65         56.04         60.60         6.43         0.43         0.00         15.99           8.18         19.66         558.65         56.04         0.00         56.44         0.00         17.01           7.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 101AL<br>FRESS<br>(PSIA)<br>35.320<br>35.320<br>35.320<br>35.331<br>35.331<br>35.331<br>35.331<br>35.331<br>35.331<br>35.331                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| FRAMLINE AXIAL AXIAL WERD. TANG. ABS. ABS.FLOW S (TH.) (FI75EC) (F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 57REAM<br>CUNEAM<br>0 110<br>0 110<br>0 110<br>0 110<br>0 100<br>0 0 0 0                                                                                                                                                                                                                                        |
| REALLINE         AXIAL         CATAL         MERD.         TANG.         ABS.         ABS.           RADDUS         COORD.         VEL.         VEL.         VEL.         MACH NO.           (TM.)         (TM.)         (FT.SEC)         (FT.SEC)         VEL.         NGL.           9.572         18.519         65.81         680.01         0.00         680.11         0.5360           9.512         18.61         637.31         661.37         0.00         661.37         0.5544           9.54         18.74         598.76         624.43         0.00         642.77         0.5104           9.59         18.74         598.76         626.47         0.00         661.37         0.4624           8.65         18.74         598.76         626.47         0.00         654.43         0.4624           8.18         18.67         589.65         58.00         626.44         0.00         567.43         0.4627           7.83         19.06         583.18         566.44         0.00         567.43         0.4627           7.53         19.10         518.32         0.00         544.11         0.502           7.53         19.27         486.16         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | STREAM.<br>SLOPE<br>(DEG)<br>15.01<br>15.50<br>16.48<br>16.48<br>17.01<br>17.01<br>17.01<br>18.18<br>18.18<br>18.18<br>19.55<br>20.57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| FRAMILNE AXIAL AXIAL MERD. TANG. ABS. VEL. (TH.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ABS. FLOW<br>ANGLE<br>(DEG)<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| FRAMLINE AXIAL AXIAL MERD. TANG. (TM.) (TM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | AABS.<br>MACH NO.<br>0.5240.52440.51440.52440.048240.048240.048240.048240.048240.048240.048240.048240.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.04820.048200.04820.048200.048200.048200.048200.048200.048200.048200.048200.04800.048200.048200.048200.048200.048200.048200.048200.048200.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| REALLINE AXIAL AXIAL MERD.  (IN.)  (I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ABS.<br>VEL.<br>(F1/SEC)<br>680.01<br>681.37<br>642.37<br>642.43<br>624.43<br>587.02<br>587.02<br>566.44<br>548.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| REALLINE AXIAL AXIAL (RE). (RADLUS COORD. (IN.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TANG. VEL. (FT/SEC) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| REALLINE AXIAL COORD. (TM.) (T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | MERD.<br>VEL.<br>(FT/SEC)<br>680.01<br>681.37<br>642.77<br>642.43<br>626.04<br>587.02<br>587.02<br>587.02<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>587.12<br>577.12<br>577.12<br>577.12<br>577.12<br>577.12<br>577.12<br>577.12<br>577.12<br>577.12<br>577 |
| REAMLINE<br>RADIUS<br>(181, 19<br>9 5572<br>9 5573<br>9 9 1954<br>9 1095<br>8 8 8 8 1<br>9 7 5 8 1<br>7 7 5 3 5<br>7 7 7 8 3 5<br>7 7 7 8 3 5<br>7 7 7 8 3 5<br>7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 | AXIAL<br>(FVSEC)<br>656.08<br>637.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>617.31<br>61 |
| W . a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | AXIAL<br>CONCRD.<br>CONCRD.<br>CONCRD.<br>ISC. 500<br>ISC. 601<br>ISC. 608<br>ISC. 608                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

# \*\* VALUES OF PARAMETERS ON STREAMLINES AT STATION, 24, WHICH IS AN ANNULUS \*\*

| STATIC<br>TEMP.                                    | 671.36                               | 650.21<br>659.09<br>659.52           | 650,39<br>661,57<br>663,05<br>668,01<br>679,70 |
|----------------------------------------------------|--------------------------------------|--------------------------------------|------------------------------------------------|
| STATIC<br>PRESS.<br>(PSIA)                         | 29.085                               | 30,071<br>30,334<br>30,572           | 30.805<br>31.028<br>31.247<br>31.471<br>31.667 |
| TOTAL<br>TEMP.<br>(DEG.R.)                         | 709.15<br>699.45<br>695.38           | 691.34<br>688.52<br>687.32           | 685.89<br>685.39<br>687.59<br>694.82           |
| TOTAL<br>PRESS.<br>(PSIA)                          | 35.272<br>35.320<br>35.344           | 35.364                               | 35.231<br>35.111<br>34.840<br>34.217           |
| STREAM.<br>CURV.<br>(1./IN.)                       | 0.166<br>0.130<br>0.118              | 0.109                                | 0.090<br>0.090<br>0.090<br>0.098               |
| STREAM.<br>SLOPE<br>(DEG)                          | 21.17                                | 22.27<br>22.27<br>23.76              | 24.18<br>25.20<br>26.52<br>28.39               |
| ABS.FLOW<br>ANGLE<br>(DEG)                         | 0000                                 | 0000                                 | 0.00                                           |
| ABS.<br>MACH NO.                                   | 0.5327                               | 0.4741                               | 0.4301<br>0.4117<br>0.3841<br>0.3347           |
| ABS.<br>VEL.<br>(FT/SEC)                           | 675.94<br>651.24<br>631.36<br>613.25 | 596.17<br>579.18<br>561.16           | 519.22<br>686.19<br>427.23                     |
| TANG.<br>VEL.<br>(FT/SEC)                          | 00.0                                 | 0000                                 | 0.00                                           |
| MERD.<br>VEL.<br>(FT/SEC)                          | 651.24<br>631.36<br>613.25           | 596.17<br>579.18<br>561.16<br>541.77 | 519.22<br>486.19<br>427.23                     |
| AXIAL<br>VEL:<br>(FT/SEC)                          | 587.01<br>587.01<br>559.01           | 551.68<br>534.08<br>515.07<br>494.23 | 469.81<br>435.03<br>375.86                     |
| AXIAL<br>COORD.<br>(IN.)<br>19.250                 | 19.376                               | 19.830<br>19.830<br>19.956<br>20.090 | 20.233<br>20.389<br>20.568<br>20.600           |
| REAMLINE<br>1. RADIUS<br>(IN.)<br>P 9.812<br>9.766 | 9.569                                | 8.698<br>8.455<br>3.197              | _                                              |
| 25 11                                              | ~ ~ v                                | 1000                                 | * 2 I I                                        |

TABLE III. - Continued.

\*\* VALUES OF PARAMETERS ON STREAMLINES AT STATION, 25, WHICH IS AN ANNULUS \*\*

| STATIC<br>TEMP.<br>(DEG.R.) | 66497<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697<br>66697 |
|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| STATIC<br>PRESS.<br>(PSIA)  | 30.068<br>30.244<br>30.244<br>30.548<br>30.548<br>30.803<br>31.123<br>31.230<br>31.309                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| TOTAL<br>TEMP.<br>(DEG.R.)  | 700<br>66996<br>66996<br>66996<br>6696<br>6696<br>6696<br>669                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TOTAL<br>PRESS.<br>(PSIA)   | 35 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| STREAM.<br>CURV.            | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| STREAM.<br>SLOPE<br>(DEG)   | 200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200<br>200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ABS.FLOW<br>Angle<br>(Deg)  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ABS.<br>MACH NO.            | 00.44<br>4.76<br>4.76<br>4.76<br>4.76<br>4.76<br>4.76<br>4.76<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ABS.<br>VEL:<br>(FT/SEC)    | 616.31<br>5903.65<br>5903.65<br>5903.91<br>5044.00<br>5044.63<br>5044.63<br>5045.53<br>503.97                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| TANG.<br>VEL.<br>(FT/SEC)   | 0000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| MERD.<br>VEL.<br>(FT/SEC)   | 616<br>5008<br>5008<br>5008<br>5008<br>5008<br>5008<br>5008<br>500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| AXIAL<br>VEL:<br>(FT/SEC)   | 555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>555<br>55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| COORD.                      | 20 022<br>20 148<br>20 148<br>20 673<br>20 673<br>20 670<br>21 115<br>21 128<br>21 281<br>21 281<br>21 281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| u)                          | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

TABLE III. - Continued.

\*\* BLADE SECTION PROPERTIES OF STATOR NO. 1 FOLLOWING ROTOR NO. 1 \*\*

BLADE SECTION SECTION MOMENTS OF INERTIA IMAX SECTION SECTION TAIST OF CONSTANT STIFFNESS (IN.) \*\* (IN AXIAL LOCATION OF STACKING LINE IN COMPRESSOR = 5.200 IN. SECTION SETTING ANGLE (DEG.) NUMBER OF BLADES = 34.0 STACKING POINT COORDINATES L H H CIN.) (IN.)

| 4 (IN.)** 5 0.037376 8 0.034537 7 0.032827 2 0.031230         | COORDINATES (I HS) (I H |  |
|---------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0.0025425<br>0.0025425<br>0.0022598<br>0.0020317<br>0.0018222 | CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 10.368<br>11.006<br>12.146<br>13.156                          | SECTION  TLL  TLL  OFFICE  OFF |  |
| 0.108937<br>0.101371<br>0.096598<br>0.092087                  | TIME TO THE TEST OF THE TEST O |  |
| 0.0023894<br>0.0023894<br>0.0016169<br>0.0014601              | NO. 3 COORDINATES  (IN.) |  |
| 0.32689<br>0.31055<br>0.29861<br>0.28709                      | SECTION 1 (TK) 1 |  |
| (18.7<br>0.2300<br>0.1886<br>0.1836                           | INATES  HS  HS  HS  HS  HS  HS  HS  HS  HS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |
| 1.1351<br>1.1351<br>1.1349<br>1.1346                          | O. 2 COORDINATES (IN.) ( |  |
| 10.353<br>10.353<br>11.005<br>12.136<br>13.130                | SECTION NO. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
| 0.1886<br>0.1886<br>0.1835<br>0.1835                          | RU .703 E O HINO NA PO RO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 1.1351<br>1.1359<br>1.1356<br>1.1352                          | 10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
| 9.600<br>9.025<br>8.450<br>7.875                              | N N O O O O O O O O O O O O O O O O O O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| C1 M 4                                                        | SECTION (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) (1975) ( |  |

. . . . . . . . . . .

TABLE III. - Continued,

\*\* BLADE SECTION PROPERTIES OF STATOR NO. 1 FOLLOWING ROTOR NO. 1 \*\* OF BLADES = 34.0

|                                  | z.                                | SS       | o .₁      | 919       | 96        |                           |             |          |           |           |          |            |          |          |        |          |          |          |          |          |          |        |        |          |          |          |          |          |          |            |                                                                                     |                                       |         |
|----------------------------------|-----------------------------------|----------|-----------|-----------|-----------|---------------------------|-------------|----------|-----------|-----------|----------|------------|----------|----------|--------|----------|----------|----------|----------|----------|----------|--------|--------|----------|----------|----------|----------|----------|----------|------------|-------------------------------------------------------------------------------------|---------------------------------------|---------|
|                                  | SECTION<br>TWIST                  |          |           |           |           | RDINATES                  | HS          | 0.0143   | 0.0263    | *****     | 0.0821   | 0.1351     | 0.1815   | 0.2219   | 0.2859 | 0.3100   | 0.3291   | 0.3431   | 0.3524   | 0.3569   | 0.3555   | 10.00  | 0.3267 | 0.3068   | 0.2815   | 0.2507   | 0.2141   | 0.1/11   | 0.1214   | 1 + 90 . 0 | K 00 CK                                         | 0.0240                                |         |
| ï.                               | SECTION<br>TORSION                | CONSTANT | 0.0016300 | 0.0014535 | 0.0011448 | NO. 8 COORDINATES         | dH.         | 0.0143   | *****     | 0.0010    | 0.0306   | 0.0642     | ***      | 0.121.0  | 0.1643 | 0.1809   | 0.1942   | 0.2042   | 0.2109   | 0.2143   | 2144     | 2000   | 0.1945 | 0.1810   | 0.1639   | 0.1431   | 0.1185   | 0.000    | 0.05/5   | 0.0200     | X C C C X C X C X C X C X C X C X X C X X C X X X X X X X X X X X X X X X X X X X X | מאנט ט                                | 10.0    |
| 5.200                            | IMAX                              | ANGLE    | 14.274    | 15.219    | 16.743    | SECTION N                 | د<br>د      | 0.0000   | 0.0066    | 0.0195    | 0.1000   | 0.2000     | 0.3000   | 9000     | 0.000  | 0.7000   | 0.8000   | 0.9000   | 1.0000   | 1.1000   | 1.2000   | 0000   | 1.5000 | 1.6000   | 1.7000   | 1.8000   | 1.9000   | 2.0000   | 2.1000   | 2.2000     | 2.2400                                                                              | 2 2675                                |         |
| COMPRESSOR                       | F INERTIA<br>H C.G.               | IMAX     | 0.087776  | 0.083560  | 0.075536  | INATES                    | HS.         | 0164     | .0306     | ****      | .0813    | .1305      | 1/3/     | .2113    | .2730  | .2934    | . 3111   | .3242    | .3327    | .3368    | . 5563   | 127    | 3078   | .2890    | .2654    | .2367    | .2026    | . 1630   | .1173    | 1690.      | ***                                                                                 |                                       | . 41.70 |
| OF STACKING LINE IN COMPRESSOR = | MOMENTS OF<br>THROUGH             | NIMI     | 0.0013310 | 0.0013171 | 0.0014151 | SECTION NO. 7 COORDINATES | ar .        | 0.0164 0 | 0 ****    | ** 6000.0 | 0.0264 0 | 0.0563 0   | 0.0830   | 0.1066 0 | 0.1449 | 0.1595 0 | 0.1712 0 | 0.1799 0 | 0.1858 0 | 0.1886 0 | 0.1885 0 | 0.1000 | 0.1704 | 0.1583 0 | 0.1430 0 | 0.1246 0 | 0.1030 0 | 0.0780   | 0.0496 0 | 0.01/6     | ** ****                                                                             | * * * * * * * * * * * * * * * * * * * | 0.1130  |
|                                  | SECTION<br>AREA                   |          | 0.27590   |           | 0.24370   | SECTION NO                | ,<br>:<br>: | 0.000    | 0.0081 ×  | 0.0218    | 0.1000   | 0.2000     | 0.3000   | 0.4000   | 0.6000 | 0.7000   | 0.8000   | 0.9000   | 1.0000   | 1.1000   | 1.2000   | 0000   | 1.5000 | 1.6000   | 1.7000   | 1.8000   | 1.9000   | 2.0000   | 2.1000   | 2.2000     | 2542.7                                                                              | 7 707.7                               | 6.602.2 |
| AXIAL LOCATION                   | BLADE SECTION<br>C.G. COORDINATES | I        | 0.1878    | 0.1946    | 22        |                           |             |          |           |           |          |            |          |          |        |          |          |          |          |          |          |        |        |          |          |          |          |          |          |            |                                                                                     |                                       |         |
| AXIA                             | BLADE<br>C.G. CO                  | ;<br>    | 1.1338    | 1.1332    | 1.1311    | 6 C00RD                   | ± .         | 0.0186   | 0 ****    | ** 6000.  | .0240 0  | 0519 0     | 0 69/0.0 | 0.0990   | 1346 0 | 1.1482 0 | 1.1591 0 | 1.1671 0 | 0.1724 0 | 1.1749 0 | 1747     | 1660   | 1.1574 | 0.1460 0 | 1.1317 0 | 1146 0   | 0 944 0  | 0.0713 0 | 0.0450   | 0.0126     | ** **                                                                               |                                       | 1010.   |
| 34.0                             | SECTION                           |          |           |           | 16.529    | SECTION NO. 6 COORDINATES |             | 0.000    | \$ 5600.0 | 0.0243    | 0.1000   | 0.2000     | 0.2000   | 0004.0   | 0.6000 | 0.7000   | 0.8000   | 0.9000   | 1.0000   | 1.1000   | 1.2000   | 0000   | 1.5000 | 1.6000   | 1.7000   | 1.8000   | 1.9000   | 2.0000   | 2.1000   | 2.2000     | 2962.2                                                                              | 20000                                 | 1.02.2  |
| BLADES =                         | STACKING POINT COORDINATES        | Ŧ        | 0.1878    | 0.1946    | 22        |                           |             |          |           |           |          |            |          |          |        |          |          |          |          |          |          |        |        |          |          |          |          |          |          |            |                                                                                     |                                       |         |
| NUMBER OF                        | STACKI                            | 1        | 1.1338    | 1.1332    | 1.1311    | SECTION NO. 5 COORDINATES | H-          | 0208 0   | .0 ****   | *** 6000  | 0519 0.  | 0481 0.    | 0715     | 1103     | 1257   | 1385 0.  | 1486 0.  | .1562 0. | 1611 0.  | .1635 0. | 1632 0.  |        | 1468   | .1360 0. | .1226 0. | .1055 0. | .0876 0. | .0659    | 0413     | 0139       | * * * * * * * * * * * * * * * * * * *                                               | 2000                                  | *0.20   |
|                                  | SECTION<br>RAD.                   | 100.     | 7.300     | 6.725     | 5.575     | CTION NO.                 | ;<br>;<br>: | 0 0000   | .0108 **  | .0268 0   | 1000 0   | 2000 0     | 2000     |          | 0009   | 7000     | 8000 0.  | 0 0006   | 0 0000   | . 1000   | 2000     | 0000   | 5000   | . 6000   | . 7000 0 | 8000 0   | 0 0006   | 0000     | 0001     | 0 0007     | 2010                                                                                | 2000                                  | 20/2    |
|                                  | BLADE                             | NO.      | 9         | ۰ د       | • ••0     | SE                        | •           | - 63     | 9         | -         | 0        | <b>a</b> ( | -        | ., c     |        |          | •        | O        | _        |          |          |        |        | _        | _        | -        |          | .7       | .~ (     | . 4 (      | 40                                                                                  | 40                                    | •       |

TABLE III. - Continued.

|                                                                                                                                    | SECTION<br>IMIST<br>STIFFNESS<br>(IN.)**6<br>0.024228<br>0.0238766                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IN.                                                                                                                                | SECTION<br>TORSION<br>CONSTANT<br>(IN.)**4<br>0.0010197<br>0.0009732                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| **<br>= 5.200 IN.                                                                                                                  | IMAX<br>SETTING<br>ANGLE<br>(DEG.)<br>16.374<br>15.846<br>10.368                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ** BLADE SECTION PROPERTIES OF STATOR NO. 1 FOLLOWING ROTOR NO. 1 **<br>DES = 34.0 AXIAL LOCATION OF STACKING LINE IN COMPRESSOR = | JF INERTIA<br>SH C.G.<br>IMAX<br>(IN.)**4<br>0.072372<br>0.071319                                          | ECTION NG. II COORDINATES (IN.) (IN. |
| FOLLOWIN<br>ING LINE                                                                                                               | 800                                                                                                        | 0 100000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| OR NO. 1<br>OF STACK                                                                                                               | SECTION<br>AREA<br>(IN.)**2<br>0.23474<br>0.23147<br>0.32688                                               | C T T C C C C C C C C C C C C C C C C C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| IES OF STAT<br>AL LOCATION                                                                                                         | BLADE SECTION<br>C.G. COORDINATES<br>L H (IN.)<br>(IN.)<br>1.1294 0.2497<br>1.1283 0.2652<br>1.1351 0.2299 | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| IN PROPERT<br>Axi                                                                                                                  |                                                                                                            | T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ADE SECTIC<br>34.0                                                                                                                 | SECTION<br>SETTING<br>ANGLE<br>(DEG.)<br>16.059<br>15.493                                                  | SECTION NO. 10 COORDINATES (TM.) (TM |
| ** BL/<br>NUMBER OF BLADES =                                                                                                       | STACKING POINT<br>COORDINATES<br>I H H<br>II.N (IN.)<br>1294 0.2497<br>1283 0.2652<br>1351 0.2299          | A THE STATE OF THE |
| NUMBER                                                                                                                             | 0444                                                                                                       | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                    | BLADE SECTION RAD. (IN.) (IN.) 9 5.025 10 4.800 11 9.600                                                   | PECTION NO. 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

TABLE III, - Continued,

|                                       | 8.4500 IN.<br>RE SURFACE<br>Y<br>(IN.)           | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | T.E.<br>1.1193<br>0.0784<br>0.0249<br>0.0000<br>-9.70<br>83.94                                                                            | E SURFACE<br>Y<br>(IN.)               | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1,1259<br>0,1720<br>0,0000<br>0,0000<br>-8,85<br>84,18                                                                                 |
|---------------------------------------|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| *                                     | XCUI OF 8<br>PRESSUF<br>Z<br>(IN.)               | -1.0396<br>-0.9367<br>-0.9367<br>-0.65259<br>-0.1984<br>-0.1984<br>0.65315<br>0.65315<br>0.65315<br>1.0053                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1. E 1. 0513 - 0. 3882 - 0. 3882 0. 0251 0. 0000 0. 34. 00 83.96                                                                          | XCUT OF 6.7<br>PRESSURE<br>Z<br>(IN.) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1,0298<br>-0,4412<br>0,0185<br>0,0185<br>0,085                                                                                         |
| INE ORIEN                             | 3 FOR<br>SURFACE<br>Y<br>(IN.)                   | -0.3690<br>-0.2958<br>-0.2006<br>-0.2006<br>-0.0005<br>0.1356<br>0.1831<br>0.1831<br>0.1831<br>0.1831                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                           | SURFACE<br>Y<br>(IN.)                 | 100.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                        |
| TURBOMACH                             | SUCTION S<br>SUCTION S<br>Z<br>(IN.)             | 100.0000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                           | SECTION S<br>SUCTION S<br>Z<br>(IN.)  | -10.0523<br>-0.05231<br>-0.05531<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0.05549<br>-0. |                                                                                                                                        |
| NO. 1 IN THE TURBOMACHINE ORIENTATION | T OF 9.0250 IN. PRESSURE SURFACE Z Y (IN.) (IN.) | 10.3940<br>10.24789<br>10.24789<br>10.1359<br>10.0294<br>10.0293<br>10.0293<br>10.0293<br>10.0293<br>10.0293<br>10.0293                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | T.E.<br>1.1186<br>0.0532<br>0.0272<br>0.0000<br>-11.29<br>83.90                                                                           | E SURFACE<br>Y<br>(IN.)               | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | T.E.<br>1.1229<br>0.1120<br>0.0204<br>0.0000<br>-8.64<br>84.10                                                                         |
| FOLLOWING ROTOR NO                    | xcur of 9<br>PRESSURI<br>(IN.)                   | 10000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L.E1.0564<br>-0.3697<br>-0.0273<br>0.0000<br>33.36                                                                                        | XCUI OF 7<br>PRESSUR<br>2<br>(IN.)    | -1.0271<br>-0.9271<br>-0.6202<br>-0.6110<br>-0.21110<br>-0.21110<br>0.62080<br>0.64080<br>1.1220                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | L.E.<br>-1.0378<br>-0.4355<br>0.0208<br>0.0000<br>36.99                                                                                |
|                                       | 2 FOR<br>URFACE<br>Y<br>(IN.)                    | -0.3486<br>-0.2763<br>-0.0825<br>-0.0875<br>-0.0890<br>-0.0890<br>-0.1753<br>-0.1753<br>-0.1753<br>-0.1753<br>-0.1753<br>-0.1753<br>-0.1753                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                           | N 5 FOR<br>I SURFACE<br>Y<br>(IN.)    | -0.4203<br>-0.3431<br>-0.3431<br>-0.13731<br>-0.06236<br>0.1323<br>0.1323<br>0.1324<br>0.1324<br>0.1324<br>0.1324<br>0.1324<br>0.1324<br>0.1324<br>0.1324<br>0.1324<br>0.1324                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                        |
| STATOR NO. 1                          | SECTION S<br>SUCTION S<br>Z<br>(IN.)             | -1.0738<br>-0.84807<br>-0.84807<br>-0.6434<br>-0.4633<br>-0.1777<br>-0.64127<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0.6461<br>-0. |                                                                                                                                           | SECTION SUCTION S                     | 1. 0520<br>0. 9635<br>0. 9635<br>0. 6655<br>0. 2666<br>0. 2666<br>0. 2667<br>0. 6697<br>1. 10153<br>1. 1281                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                        |
|                                       | .6000 IN.<br>E SURFACE<br>Y<br>(IN.)             | 0.00132<br>0.00132<br>0.00132<br>0.00132<br>0.00132<br>0.00132<br>0.00132<br>0.00132                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | T.E.<br>1.1237<br>0.0015<br>0.0295<br>0.0295<br>-17.36<br>83.91                                                                           | T.8750 IN.                            | 10.4290<br>10.3746<br>10.3746<br>10.3746<br>10.0256<br>10.0256<br>10.0256<br>10.0706<br>10.0778<br>10.0778                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1,1208<br>0,0961<br>0,0227<br>0,0000<br>-8,95                                                                                          |
| BLADE SECTION COORDINATES OF          | XCUT OF 9.<br>PRESSURE<br>Z<br>(IN.)             | 10000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | L.E1.0515<br>-0.3956<br>0.0297<br>0.0000<br>37.85                                                                                         | XCUT OF 7.<br>PRESSURE<br>Z<br>(IN.)  | -1.03288-6-0.933288-6-0.65288-6-0.1499-6-0.03189-6-0.03189-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.05289-6-0.052                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L.E.<br>-1,0457<br>-0,4090<br>0,0229<br>0,0000<br>35.18                                                                                |
| BLADE SEC                             | 1 FOR<br>URFACE<br>Y<br>(IN.)                    | -0.3742<br>-0.2943<br>-0.0913<br>-0.0870<br>0.0870<br>0.1888<br>0.1897<br>0.1897<br>0.1828                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | METERS<br>IN.)<br>IN.)<br>IN.)<br>E (DEG)                                                                                                 | 4 FOR<br>URFACE<br>Y<br>(IN.)         | -0.3169<br>-0.3169<br>-0.3169<br>-0.1195<br>-0.0126<br>0.1351<br>0.1764<br>0.1764<br>0.1764<br>0.1764                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | METERS<br>IN.)<br>IN.)<br>IN.)<br>E (DEG)<br>EG)                                                                                       |
| 7                                     | SUCTION SUCTION S                                | 10000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | END ELLIPSE PARAMETERS END CIRCLE Z (IN.) END CIRCLE Y (IN.) END CIR. RAD (IN.) ELLO FESE ECCENT. MAJ. AXIS SLOPE (DEG) SURF. TANG. (DEG) | SECTION<br>SUCTION S<br>Z<br>(IN.)    | -1.0608<br>-0.9701<br>-0.6757<br>-0.6757<br>-0.2674<br>-0.2674<br>-0.2675<br>-0.2675<br>-0.4701<br>-0.6711<br>-1.1267                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | END ELLIPSE PARAMETERS END CIRCLE Z (IN.) END CIRCLE Y (IN.) END CIR. AND (IN.) ELLIPSE ECCENT MAJ. AXIS SLOPE (DEG) SURF. TAMG. (DEG) |
|                                       | FRACT.<br>OF<br>SURF.                            | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | END<br>END<br>END<br>END<br>ELD<br>ELL<br>MAJ.<br>SURF                                                                                    | FRACT.<br>OF<br>Surf.                 | 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | END ELEND<br>END<br>END<br>END<br>END<br>ELLI<br>SURF                                                                                  |

TABLE III. - Continued.

|                                      | 5.0250 IN.<br>RE SURFACE<br>Y<br>(IN.) | -0.5465<br>-0.4737<br>-0.2781<br>-0.1673<br>-0.0027<br>0.0590<br>0.0949<br>0.1096<br>0.0893                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.1462<br>0.0819<br>0.0113<br>0.0013<br>-15.54                                                                                                                                     |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                        |
|--------------------------------------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| 1 IN THE TURBOMACHINE DRIENTATION ** | XCUT OF PRESSU                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | L.E.<br>-1.0079<br>-0.5373<br>0.0122<br>0.0000<br>46.30                                                                                                                            |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                        |
| INE ORIEN                            | 9 FOR<br>URFACE<br>Y<br>(IN.)          | -0.5298<br>-0.13286<br>-0.13286<br>-0.18346<br>0.18346<br>0.18369<br>0.13289<br>0.13289                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                        |
| TURBOMACE                            | SECTION S<br>SUCTION S<br>Z<br>(IH.)   | -1.0175<br>-0.9426<br>-0.68285<br>-0.68288<br>-0.27388<br>-0.27389<br>-0.27389<br>-0.27389<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736<br>-0.6736 |                                                                                                                                                                                    |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                        |
| NO. 1 IN THE                         | S.5750 IN. RE SURFACE Y (IN.)          | -0.5274<br>-0.4590<br>-0.3691<br>-0.2749<br>-0.1702<br>-0.0063<br>0.0515<br>0.1159<br>0.1164                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | T.E.<br>1.1356<br>0.1203<br>0.0135<br>0.0000<br>-11.36                                                                                                                             | E SURFACE<br>Y<br>(IN.)              | 0.0555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | T.E.<br>1.1237<br>0.0016<br>0.0295<br>0.0000<br>-17.36<br>83.91                                                        |
| COLLOWING ROTOR N                    | XCUT OF PRESSUR Z Z Z (IN.)            | -1.0030<br>-0.6220<br>-0.6220<br>-0.6220<br>-0.6220<br>-0.6220<br>0.6220<br>0.6220<br>0.6218<br>0.6218<br>1.01858                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1.E.<br>-1.0118<br>-0.5161<br>0.0143<br>0.0000<br>43.52<br>84.32                                                                                                                   | XCUT OF 9<br>PRESSUR<br>Z<br>(IM.)   | -1.0358<br>-0.7370<br>-0.7370<br>-0.6311<br>-0.6207<br>-0.02083<br>0.6707<br>0.6703<br>1.0099                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | L.E.<br>-1.0515<br>-0.3956<br>0.0297<br>0.0000<br>37.84                                                                |
|                                      | 8 FOR<br>URFACE<br>Y<br>(IN.)          | -0.5068<br>-0.4211<br>-0.1307<br>-0.1303<br>0.1303<br>0.1303<br>0.2159<br>0.2159<br>0.2159<br>0.2159                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                    | IN 11 FOR<br>SURFACE<br>Y<br>(IN.)   | -0.3742<br>-0.2942<br>-0.0870<br>0.0217<br>0.1643<br>0.16897<br>0.1887<br>0.1887<br>0.1887<br>0.1887                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                        |
| STATOR NO. 1                         | SECTION SUCTION S                      | -1.0226<br>-0.85454<br>-0.65734<br>-0.65734<br>-0.65736<br>-0.03648<br>-0.6582<br>-0.6582<br>-0.65718<br>-0.65718<br>-0.65718                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                    | SECTION SUCTION S Z Z (IN.)          | -1.00 % % % % % % % % % % % % % % % % % %                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                        |
| JIMATES OF                           | 5.1500 IN.<br>9E SURFACE<br>Y<br>(IM.) | -0.5017<br>-0.4375<br>-0.26481<br>-0.2668<br>-0.0130<br>-0.0130<br>-0.0130<br>0.1093                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.1293<br>0.1300<br>0.0158<br>0.0000<br>-9.35                                                                                                                                      | TE SURFACE Y (IN.)                   | -0.5514<br>-0.5788<br>-0.2788<br>-0.1635<br>-0.0624<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073<br>0.0073                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T.E.<br>1.1522<br>0.0550<br>0.0104<br>0.0000<br>-18.24<br>84.56                                                        |
| BLADE SECTION COORDINATES            | XCUT OF PRESSUR Z Z Z (IN.)            | -1.0112<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.79155<br>-0.7                                                                                 | 1.E.<br>-1.0206<br>-0.4983<br>0.0164<br>0.0000<br>40.96                                                                                                                            | XCUT OF PRESSUR Z Z Z (IN.)          | -1.0010<br>-0.7846<br>-0.7846<br>-0.7873<br>-0.6373<br>-0.6374<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.0093<br>-0.009 | 1. E1. 0086<br>-0. 5430<br>0. 0113<br>0. 0000<br>47. 48                                                                |
| BLADE SEC                            | IN 7 FOR<br>I SURFACE<br>Y<br>(IN.)    | -0.3946<br>-0.3946<br>-0.1730<br>-0.1730<br>-0.0513<br>0.1834<br>0.1834<br>0.1233<br>0.1234<br>0.1234<br>0.1234<br>0.1234<br>0.1234                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ARAMETERS<br>Z (IN.)<br>Y (IN.)<br>D (IN.)<br>ENT.<br>(DPE (DEG)                                                                                                                   | 10 FOR<br>URFACE<br>(IN.)            | -0.5362<br>-0.4655<br>-0.2036<br>-0.2036<br>-0.2036<br>0.1376<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.137776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.13776<br>0.1377 | METERS<br>IN.)<br>IN.)<br>IN.)<br>E (DEG)                                                                              |
| ;                                    | SECTION S<br>SUCTION S<br>Z<br>(IN.)   | -1.0 826<br>-0.896466<br>-0.89666<br>-0.67866<br>-0.6783<br>-0.03781<br>-0.03781<br>-0.03781<br>-0.691<br>-0.691<br>-0.691<br>-0.691<br>-0.691<br>-0.691<br>-0.691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | END ELLIPSE PARAMETERS END CIRCLE Z (IN.) END CIRCLE X (IN.) END X X X X X X X X X X X X X X X X X X X | SECTION S<br>SUCTION S<br>Z<br>(IN.) | 10076<br>100766<br>10089766<br>10089766<br>10089766<br>10089769<br>10089789<br>10088789<br>10088789<br>10088789<br>10088789<br>10088789<br>10088789<br>10088789<br>10088789<br>10088789                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | END ELLIPSE PARAMETERS END CIPCLE Z (IN.) END CIPCLE Y (IN.) ENT ZIP PAD (IN.) ENLIPPE ECCEPTE (DEG) SUPF. IANG. (DEG) |
|                                      | FRACT.<br>OF<br>SHIPF.                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | E4D E1<br>E8D E8D<br>E8D E8D<br>E8D E11<br>E8D E8D E8D                                                                                                                             | FFACT.<br>OF<br>SURF.                | 10000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | END EL<br>END EL<br>END EL LI<br>EL LI<br>EL LI<br>EL LI                                                               |

TABLE III. - Continued.

\*\* BLADE SECTION PROPERTIES OF ROTOR NO. 2 \*\*

| IN.<br>SECTION                                                                        | CONSTANT STIFFRESS (IN.)**4    | 0.0001217 0.0076849<br>0.0001217 0.0076849<br>0.0001428 0.0084126<br>0.0001879 0.0092866 | 1000                                 | 0.0100 0.0100<br>***** 0.0315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 0.0018 0.0567<br>0.0022 0.0633 |                  | 0.0026 0.0768<br>0.0026 0.0792 |                  |                  |        |        |         |        |        |         | 0.0157 0.0157 |
|---------------------------------------------------------------------------------------|--------------------------------|------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------|------------------|--------------------------------|------------------|------------------|--------|--------|---------|--------|--------|---------|---------------|
| .,                                                                                    | ANGLE<br>(DEG.)                | 58.983<br>58.483<br>56.500                                                               | SECTION P                            | 0.0142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0000   | 0.3000                         | 0.5000           | 0.7000                         | 0.9000           | 1.2030           | 1.3000 | 1.5000 | 1.7000  | 1.8000 | 2.0000 | 2.0085  | 2.0244        |
| AXIAL LOCATION OF STACKING LINE IN COMPRESSOR LADE SECTION SECTION MOMENIS OF INERTIA | UGH C.G.<br>IMAX<br>4 (IN.)**4 | 9 0.028379<br>7 0.030789<br>4 0.033954                                                   | RDINATES<br>HS<br>(IN.)              | 0.0283                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0358 | 0.0502                         | 0.0608<br>0.0648 | 0.0678                         | 0.0712           | 0.0712           | 0.0650 | 0.0613 | 0.050.0 | 0.0443 | 0.0285 | *****   | 0.0138        |
| ING LINE IN CO                                                                        | IMIN<br>CIN.)**                | 3 0.0000339 0.7 0.0000339 0.7 0.0000397 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.           | HP HS (IN.)                          | 7 * 0<br>7 * 0<br>7 * 0<br>7 * 0<br>8 br>8 * 0<br>8 * | 0.0001 | 0.0003                         | 0.0002           | 0.0000                         | -0.0002          | -0.0002          | 0.0002 | 0.0004 | 0.0003  | 0.0002 | 0000   | 00000   | 0.0138        |
| OF STACK!                                                                             | AREA<br>(IN.)**2               | 0.186/1<br>0.10803<br>0.11477<br>0.12597                                                 | SECTION P                            | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1000 | 0.3000                         | 0.5000           | 0.7000                         | 0.9000           | 1.1000           | 1.3000 | 1.5000 | 1.7000  | 1.8000 | 2.0000 | 2.0101  | 2.0342        |
| AXIAL LOCATION<br>BLADE SECTION                                                       | 8                              | 5 0.0284<br>5 0.0301<br>7 0.0348                                                         | 2 COORDINATES HP HS N.) (IN.)        | 0.0249                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0323 | 0.0462                         | 0.0566           | 0.0536                         | 0.0673           | 0.0678<br>0.0668 | 0.0651 | 0.0588 | 9350.0  | 0.0416 | 0.0246 | *****   | 0.0113        |
| m)                                                                                    |                                | 1.0056<br>1.0069<br>1.0086<br>1.0097                                                     |                                      | **.<br>**.<br>**.<br>**.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0000   | 5000.0-                        | -0.0007          | -0.0008                        | -0.0007          | -0.0004          | 0.0003 | 0.0010 | 0.0012  | 0.0010 | 0.0001 | 0.000.0 | 0.0119        |
| = 38.0<br>SECTIO                                                                      | SETTIN<br>ANGLE<br>(DEG.)      | 50.218<br>59.895<br>58.493<br>56.545                                                     | SECTION NO.                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 0.3000                         |                  |                                |                  |                  |        | 1.5000 | 1.5000  | 1.8000 | 2.0000 | 2.0073  | 2.0135        |
| NUMBER OF BLADES : STACKING POINT                                                     | <u> </u>                       | 0.9941 -0.0127<br>0.9960 -0.0120<br>0.9996 -0.0067<br>1.0028 0.0016                      | 1 COORDINATES<br>HP HS<br>IN.) (IN.) | 0.0235                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.0312 | 0.0457                         | 0.0566           | 0.0641                         | 0.0682<br>0.0630 | 0.0689           | 0.0662 | 0.0597 | 0.048   | 0.0414 | 0.0228 | *****   | 0.0112        |
| 7                                                                                     | ٠.                             | 9.375 0.9<br>9.000 0.9<br>8.625 1.0                                                      | 4 NO. 1 CI                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | 1000.0-                        |                  |                                |                  |                  | 0.0016 |        |         | 0.0018 |        | 0.0000  | 0.0112        |
| BLADE SECTADI                                                                         |                                | H C) P) 4                                                                                | SECTION NO.                          | 0.0000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0.1000 | 0.3000                         | 0.5000           | 0.7000                         | 1.6956           | 1.1000           | 1.3090 | 1.5000 | 1.5000  | 3008.1 | 2.003( | 2.0035  | 2.015         |

TABLE III. - Continued.

\*\* BLADE SECTION PROPERTIES OF ROTOR NO. 2 \*\*

| ## AKIAL LOCATION OF STACKING LINE IN COMPRESSOR = 9.200 IN.  ### BLABE SECTION  ### C.G. COORDINATES  ### C.G |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| FECTION OF STACKING LINE IN COMPRESSOR = 9.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| FECTION OF STACKING LINE IN COMPRESSOR = 9.200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| L. LOCATION DF STACKING LINE IN COMPRESSOR  SECTION MOMEN'S DE INFRITA  (IN.) (IN.)**2 (IN.)**4 (IN.)**4  0.0402 0.10994 0.001084 0.05786  0.0578 0.12855 0.0001188 0.067365  0.0716 0.12855 0.0001188 0.067365  0.0716 0.12855 0.0001188 0.067365  0.0716 0.12855 0.0001188 0.067365  0.0716 0.12855 0.0001188 0.067365  1.0719 0.0001 0.0001 0.0017  1.071 0.0011 0.0001 0.0017  1.072 0.0010 0.0018 0.0017  1.073 0.0010 0.0018 0.0018  1.072 0.0010 0.0018  1.073 0.0010 0.0118  1.073 0.0010 0.0118  1.074 0.0010 0.0118  1.075 0.0010 0.0118  1.075 0.0010 0.0118  1.076 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.00118  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018  1.077 0.0018 |
| CONTION OF STACKING LINE INCOMING OF STACKING LINE IN THROUGH   Continuo of State      |
| L LOCATION DF STACKITY INTERPORTED AREA  (IN.) (IN.) ***  (IN.) (IN |
| LL LOCATION ORDINATES CIN.) CIN.) CIN.) CIN.) CO.0736  |
| X A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| SECTION NO. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| ACACING PLADES = 2 COCRDINATES (T.L.) |
| ZO*coccoccoccoccocc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| SECTION NO. 250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

TABLE III. - Continued,

| NUMBER OF BLADES = 18.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                      | IN.                | SECTION SECTION TORSION THIST CONSTANT STREEMS | 00000            |                  | .0016118 0.0183776 | NO. 12 COORDINATES | CIN. ) CIN.) |   | . 0000 C C C C C C C C C C C C C C C C C | 0.0061 0.0247 | 0.0242 0.1034 | 0.0416 0.1305 | 0.0742 0.1800 | 0.0833 0.2026 | 0.1036 0.2236 | 0.1298 0.2616 | 0.1416 0.2784 | 0.1524 0.2939 | 0.1523 0.3789 | _ | _ |         | 0.2079 0.3687 | _        | 0.2123 0.3735 | 0.2127                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------------------|------------------------------------------------|------------------|------------------|--------------------|--------------------|--------------|---|------------------------------------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---------------|---|---|---------|---------------|----------|---------------|-----------------------------------------|
| ** BLADE SECTION PROPERTIES OF REALPLES OF |                      | 9.200              | IMAX<br>SETTING                                | (DEG.)           | 33,189           | 27.384             | SECTION NO         |              |   | •                                        |               |               | 0.1500        | 0.2500        | 0.3000        | 0.3500        | 0.4500        | 0.5000        | 0.5500        | 0.6500        |   | _ | <br>~ - |               | _        |               |                                         |
| ** BLADE SECTION PROPERTIES OF REALPLES OF | R NO. 2 **           | LINE IN COMPRESSOR | MOMENTS OF INERTIA<br>THROUGH C.G.<br>TMIN     | **('NI) ***('NI) | 0005596 0.061317 | .0017578 0.069021  | 11 COORDINATES     | CINI) CINI   | _ | <b>.</b>                                 |               | 0             | 00            |               |               | 181           | 213           | <b>.</b>      | σ.            | 181           |   |   |         |               | -        | * r           | .027/ 0.027/                            |
| ** BLADE  ** BLADE  ** BLADE  ** BLADE  ** CORDINATES  ** CORDINAT | IES OF ROTO          | OF STACKING        | SECTION 1<br>AREA                              | (IN.)**2         | 0.23403          | 0.26089            | SECTION NO.        |              |   | *                                        |               |               |               |               |               |               |               |               |               |               |   |   | ~ -     |               | 1.9719 0 | 1.9923 **     |                                         |
| **************************************                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | LADE SECTION PROPERT | AXIAL LOCATION     | BLADE SECTION<br>C.G. COORDINATES              | (IN.) (IN.)      |                  |                    | IG COORDINATES     | IN.) (IN.)   |   |                                          |               |               |               |               |               |               |               | ~             |               | _             |   |   |         |               | _        | * ~           |                                         |
| SECTION STACKING POINT FEATURE FOR BLADES RAD. COORDINATES IN 10 10 10 10 10 10 10 10 10 10 10 10 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | x<br>x               |                    | SECTION<br>SETTING                             | (DEG.)           | 38.077           | 26.287             | SECTION NO.        | CIN.         |   | *                                        |               |               |               |               |               | 0.7000        | 0.9000        | 1.0000        | 1.1000        | 9 43          |   |   |         |               |          | *<br>*        | * * * * * * * * * * * * * * * * * * * * |
| 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                    | 2102                                           |                  |                  |                    |                    | IN.) CIN.)   |   |                                          |               |               |               |               | -             |               |               | -             |               |               |   |   |         |               | -        |               |                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |                    |                                                |                  | 10 6.375         | 12 5.650           | SECTION NO.        |              |   | *                                        |               |               |               |               |               |               |               |               |               |               |   |   |         |               |          | 2.0035 **     | ,                                       |

TABLE III. - Continued.

\*\* BLADE SECTION PROPERTIES OF ROTOR NO. 2 \*\*

|                                | (0.00.01.01.0                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                | SECTION<br>TWIST<br>STIFFNESS<br>(IN.)**6<br>0.0196352<br>0.0223002                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| IN.                            | SECTION<br>TORSION<br>COHSIANT<br>(IN.)***T<br>0.0017010<br>0.0018448                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| = 9.200                        | IMAX<br>SETTING<br>ANGLE<br>(DEG.)<br>22.873<br>16.080<br>22.275                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| OF STACKING LINE IN COMPRESSOR | S OF INERTIA<br>OUGH C.G.<br>IMAX<br># 4 (IN.) **4<br>4 8 0.07327<br>28 0.073905              | 0. 15 COORDINATES  (IN.)  (IN. |
| ING LINE 1                     | MOMENT<br>THR<br>IMIN<br>(IN.)*<br>0.00277<br>0.00505                                         | 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                | SECTION<br>AREA<br>(IN.)**2<br>0.27049<br>0.28844<br>0.27189                                  | \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| AXIAL LOCATION                 | LADE SECTION<br>. COORDINATES<br>H (IN.)<br>12 0.2764<br>016 0.3573<br>114 0.2837             | 0. 14 COORDINATES (IN.)  |
| 1                              | 80.1H                                                                                         | 0.00   11   12   13   14   15   15   15   15   15   15   15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 38.0                           | SECTION<br>SETTING<br>ANGLE<br>(DEG.)<br>21.417<br>14.736<br>20.793                           | PECTION TO THE PROPERTY OF THE |
| NUMBER OF BLADES =             | STACKING POINT<br>COORDINATES<br>L (IN.)<br>(IN.)<br>(IN.)<br>(10.023 0.2762<br>1.0014 0.2837 | 2 COORD NATES  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                | ADE SECTION<br>PAD.<br>10. (1N.)<br>3 5.225<br>5 5.427                                        | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                | LAI<br>133<br>154                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

TABLE III. - Continued.

|                                        | PRESSURE SURFACE Z Y (IN.)                                   | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.8293                        | 8750 IN.<br>CIN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.) | 0.3038<br>0.4588<br>0.5328<br>0.6912<br>0.7687<br>-0.7810 |
|----------------------------------------|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|
|                                        | 5                                                            | -0.5207<br>-0.4686<br>-0.3956<br>-0.3120<br>-0.2074<br>-0.1028<br>0.2160<br>0.3171<br>0.3975<br>0.5224                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.5328                        | XCUT OF 7.8750 IN. PRESSURE SURFACE (IN.) (IN.) (1N.) -0.5947 -0.7924 -0.5515 -0.6026 -0.5515 -0.6026 -0.5517 -0.1955 -0.1114 -0.1656 -0.1114 -0.1656 -0.1114 -0.1656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.2592<br>0.3834<br>0.4828<br>0.5697<br>0.6317<br>-0.6100 |
| ** NOI                                 | SECTION 3 FOR X<br>SUCTION SURFACE<br>Z Y<br>(IN.) (IN.)     | -0.8230<br>-0.6087<br>-0.6087<br>-0.1183<br>-0.1183<br>6.2532<br>6.2532<br>6.5566<br>0.5566<br>0.5566<br>0.5566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                | SURFACE<br>SURFACE<br>(IM.)<br>(IM.)<br>-0.7714<br>-0.6852<br>-0.6852<br>-0.4312<br>-0.2658<br>-0.4312<br>-0.2658<br>-0.0548<br>0.2098                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.3612<br>0.5092<br>0.7247<br>0.7949                      |
| ORIENTAT                               | SECTION<br>SUCTION<br>Z<br>(IN.)                             | -0.5455<br>-0.5066<br>-0.3607<br>-0.2635<br>-0.0626<br>-0.0591<br>0.1561<br>0.2679<br>0.2679<br>0.2679                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                | SECTION 6 FOR NOTION SURFACE (IN.) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.1903<br>0.3245<br>0.5324<br>0.6030                      |
| . 2 IN THE TURBOMACHINE ORIENTATION ** | PRESSURE SURFACE<br>Z Y (IN.) (IN.)                          | 0.000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -0.8386<br>0.8871              | XCUT OF 8.2500 IN.<br>PRESSURE SURFACE<br>(IN.) (IN.)<br>(1N.) -0.5677 -0.8096<br>-0.5109 -0.7280<br>-0.5109 -0.7280<br>-0.2239 -0.3220<br>-0.1080 -0.1602<br>0.1250 0.1626                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                           |
| 2 IN THE                               | <b>ಪ</b>                                                     | 0 - 1 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -0.5145                        | XCUT OF RESSURE S. L. S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.2418<br>0.4587<br>0.4521<br>0.5337<br>0.5919<br>-0.5820 |
| ROTOR NO.                              | SECTION 2 FOR X<br>SUCTION SURFACE<br>Z Y<br>(IN.) (IN.)     | -0 833<br>-0 7427<br>-0 6726<br>-0 6727<br>-0 1192<br>-0 1192<br>0 2277<br>0 2883<br>0 5664<br>0 8943                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                | SECTION SURFACE (IN.) (IN.) (1N.) (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5716<br>0.5267<br>0.7542<br>0.7542<br>0.8287            |
| INATES OF                              | SECTION<br>SUCTION<br>Z<br>(IN.)                             | -0.5558<br>-0.15558<br>-0.15558<br>-0.15558<br>-0.15558<br>-0.15558<br>-0.15558<br>-0.15558<br>-0.1558<br>-0.1558<br>-0.1558<br>-0.1558                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                | SECTIO<br>SUCTION<br>(IN.)<br>(IN.)<br>-0.5973<br>-0.4790<br>-0.2895<br>-0.2895<br>-0.2895<br>-0.2895                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.1787<br>0.3045<br>0.4073<br>0.4987<br>0.5648            |
| BLADE SECTION COORDINATES OF ROTOR NO. | XCUT OF 9.5250 IN.<br>PRESSURE SURFACE<br>Z Y<br>(IN.) (IN.) | -0 8461<br>-0 7594<br>-0 64991<br>-0 13255<br>-0 13256<br>-0 1356<br>-0                                                                                                          | -0.8403<br>0.8884              | E 5050 IN.  E 507 ACE  (IN.)  (IN.)  (1N.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.5413<br>0.5071<br>0.6395<br>0.7555<br>0.8387<br>-0.8156 |
| ** BLADE SE                            | CCUT OF 9<br>PRESSUR<br>Z<br>(IN.)                           | -0.4989<br>-0.3796<br>-0.3796<br>-0.3796<br>-0.1018<br>-0.1018<br>-0.1018<br>-0.1035<br>-0.1955<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.292<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202<br>-0.202 | -0.5092                        | SECTION SURFACE PRESSURE SUPFACE (IN.) (IN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.5255<br>0.3355<br>0.4237<br>0.5557<br>0.5557            |
| ×                                      | SURFACE Y                                                    | -0.8354<br>-0.7454<br>-0.6177<br>-0.2738<br>-0.1887<br>-0.1562<br>0.2292<br>0.5683<br>0.7600<br>0.8147<br>0.8147                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0× 0×                          | SURFACE<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(IN.)<br>(0.7199<br>(0.7199<br>(0.7183)<br>(0.7183)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.5426<br>0.5425<br>0.6694<br>0.7793<br>0.8570            |
|                                        | SECTION 1 FOR X<br>SUCTION SURFACE<br>Z Y<br>(IN.) (IN.)     | - 0 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 . 5 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | CIRCLE CENTER<br>CIRCLE CENTER |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                           |
|                                        | FRACT.<br>OF<br>SURF.                                        | 10000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1.E.C                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                           |

TABLE III. - Continued.

| KCUT OF 6.7500 IN.<br>PRESSURE SUPFACE<br>Z Y<br>(IN.) (IN.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | *0.7019 *0.7067<br>0.7683 0.6702<br>XCUI DE 5.4570 IN.<br>FRESTURE SUMPACE<br>(IN.) (IN.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| XCUI OF 6<br>PRESSUR<br>Z<br>(IH.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 00000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | xCHT OF 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| RIENTATION ** SECTION 9 FOR SUCTION UPFACE Z CIM.) CIM.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 | SECTION 12 FOR<br>SIGITIN SUPERCE<br>T<br>(14) (14)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.05599<br>0.05590<br>0.01100<br>0.01100<br>0.01100<br>0.01100<br>0.01100<br>0.01000<br>0.01000<br>0.01000<br>0.01000<br>0.01000<br>0.01000<br>0.01000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SECTIONS SECTIONS SUCTIONS CITONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | \$10110<br>\$10018<br>\$10019                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| IN THE TURBOMACHINE ORIENTATION #4   T OF 7,1250 IN.   SECTION 9 F   PRESSURE SUFFACE   SUCTION SUPFACE   SUCTION SUPFACE   SUCTION SUPFACE   SUCTION SUPFACE   SUCTION SUPFACE   SUPFAC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -0.6700 -0.7346<br>-0.7074 -0.6730 IN<br>PRESCRIPE SUPPRO-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| SECTING B FRO SCHILD IN THE TUPBOMACH SECTING B FRO SCHILD FRESSURE SUFFICIES FOR SCHILD SCHI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.6700<br>n 1034<br>xcut of 6<br>PREDSHP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 00000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ( MI)<br>A B E P<br>A B E P<br>B E P<br>B |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SECTION 11 FOR<br>SUCTION SURFACE<br>Z<br>(1N.) (1N.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 00 ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 ) ( 0 |
| STORY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60000000000000000000000000000000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| ALABE SECTION CORPURATES OF PRICE PRICES SECTION BY SECTION BY SECTION BY SECTION BY SECTION BY SECTION SEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10.5593 -0.7594<br>20.107 6.3949 IN.<br>20.107 6.3949 IN.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| * BLADE SEC<br>XCUT OF 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -0.5193<br>0.6108<br>20108<br>20108<br>0.140                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SURFACE<br>Y<br>(IM.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | E CHAIRD SIGNATED SCOTTER SIGNATURE FOR EACH CARROLLE SIGN |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| SECTION 7 FOR XC. 5'- E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Section 1997 Secti |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

TABLE III. - Continued.

\*\* BLADE SECTION COORDINATES OF ROTOR NO. 2 IN THE TURBOMACHINE ORIENTATION \*\*

| E SURFACE                      | CIN.   | -0.6069 | -0.5345                                 | -0.4366 | -0.3304 | -0.2079   | -0.0989 | -0 0057   |         | 1000      | 0.1191 | 0.1410  | 200     | 0000   | 0.100   | 0.0660  |                        | -0.5863 | 0.0992       |  |
|--------------------------------|--------|---------|-----------------------------------------|---------|---------|-----------|---------|-----------|---------|-----------|--------|---------|---------|--------|---------|---------|------------------------|---------|--------------|--|
| XCUT OF 5.4269<br>PRESSURE SUR | (IN.)  | -0.8067 | -0.7406                                 | -0.6441 | -0.5281 | -0.3740   | -0.2102 | 0 4 5 0 1 |         | 0.145/    | 0.3371 | 6 3 6 8 |         | 707.0  | 1447    | 0.9558  |                        | -0.8278 | 0.9640       |  |
| 15 FOR<br>SURFACE              | (IN.)  | -0.5699 | -0.4819                                 | -0.3632 | -0.2351 | -0.0886   | 0 3 9 2 | 200       | ***     | P. 2226   | . 2683 | 2776    |         | 1642.0 | 0.1897  | 0.1307  |                        |         |              |  |
| SECTION<br>SUCTION             | (IN.)  | -0.8522 | -0.7964                                 | -n.7107 | -U.6023 | -0.4511   | 0.80    |           | 2660.0- | 0.0989    | 0.3092 | 1001    | 0000    | 507.0  | 0.8561  | 0.9774  |                        |         |              |  |
| .2250 IN.<br>E SURFACE         | CIN.)  | -0.5854 | -0.5102                                 | 06050-  | -0.3005 | -0 1778   | 0.170   | 30.00     | 0.0126  | 0.0720    | 6660 0 |         | 0.0079  | 0.0425 | -0.0296 | -0.1031 |                        | -0.5649 | -0.0692      |  |
| XCUI OF 5.225<br>PRESSURE SU   | (14.)  | -0.8325 | -0.7685                                 | -0 6741 | 20.01   | 7 7 7 7 7 | 77.6    | 0007.0-   | -0.0580 | 0.1317    | 7117   |         | 0.5403  | 0.7135 | 0.8675  | 0.9782  |                        | -0 8547 | 6966.0       |  |
| SECTION 14 FOR )               | CIN.)  | -0.5485 | -0 4575                                 | -0 3351 | 20.00   | 2000      | 0000    | 00/0.0    | 0.1681  | 0.2324    | 0.0550 | 2000    | 0.22.08 | 0.1585 | 0.0591  | -0.0380 |                        |         |              |  |
| SECTION                        | (IN.)  | [0880]  | 45000                                   | 20.01   | 2017    |           | TC/4.01 | -0.3002   | -0.1070 | 0 1022    | 1301   | 6.3643  | 0.5561  | 0.7440 | 0.9068  | 2010    | 2                      |         |              |  |
| 5.4500 IN.                     | CIN.)  | 16040-  | 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 | 70.7.0  | 10.40   | 20.00     | -0.2110 | -0.1015   | -0.0074 | 0 3683    | 1      | 0.1213  | 0.1456  | 0.1422 | 0 1164  | 2 2 2   | 000.0                  | -0.5007 | 0.1164       |  |
| XCUT OF 5.450<br>PRESSURE SU   | ( 'NE) | 8 6     | 9,00                                    | 0/1/10  | 20.00   | 6570.0    | -0.3/10 | -0.2076   | -0.0348 | 0 7 7 7 0 | 7      | 6.55/5  | 0.5361  | 0.7002 | 8,569   |         | 10000                  | 0 20 0  | 0.9602       |  |
| 13 FOR<br>SURFACE              | CIN.)  | 10.53   | -0.0/63                                 | 0.404.0 | 2966.0- | -0.2334   | -0.0921 | 0.0360    | 0.71    | 71.0      | 0177.0 | 0.2637  | 0 2795  | 0 2540 | 20.00   |         | 6 / <del>5</del> 1 · 0 |         | π. σ.<br>σ.  |  |
| SECTION<br>SUCTION             | (1N.)  | ***     | 26.04.0                                 | 10.7900 | 9/0/-0- | 0000 - D  | -0.4436 | -0.2813   | 7860 0- |           | 00000  | 0.3075  | 0.5257  | 7045   | 26.0    |         | 17/4.0                 |         | IRCLE CENTER |  |
| FRACT.                         | SURF.  |         | 0.00                                    | 60.0    | 0.12    | 0.20      | 0.30    | 0 5 0     |         | 9 6       | 9.0    | 0 . 70  | C & C   |        | 0 0     |         | 00.1                   | •       |              |  |

AD-A109 888

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION CLEVEL--ETC F/G 21/5
COMPUTER PROGRAM FOR AERODYNAMIC AND BLADING DESIGN OF MULTISTA--ETC(U)
DEC 81 JE CROUSE, W T GORRELL
UNCLASSIFIED NASA-TP-1946

USAAVRADCOM-TR-A0-C-21 ... 2.42 END 3 **-8**2



TABLE III. - Continued.

\*\* BLADE SECTION PROPERTIES OF STATOR NO. 1 FOLLOWING ROTOR NO. 2 \*\*

| 10.0-10.0-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SECTION<br>IMIST<br>STIFFNESS<br>(IM.)***<br>0.0000311<br>0.007698<br>0.007698                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7 C000 C000 C000 C000 C000 C000 C000 C0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1N.<br>5 SECTION<br>5 SECTION<br>CONSION<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)**4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.)*4<br>(IN.) | 000 000 000 000 000 000 000 000 000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| = 12.701<br>IMAX<br>SETTING<br>ANGLE<br>(DEC.)<br>9.480<br>11.372<br>12.514                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| IN COMPRESSOR<br>000GH C.G.<br>1MAX<br>44 (IN) X*4<br>10 0 0 59209<br>81 0 0 0 59209<br>83 0 0 0 0 592800<br>50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | SECTION NO. 3 CORRDINATES  (IN.)  (TH.)  (TH |
| MOMENTS OF<br>THROUGH<br>TMIN (<br>1N 2981 0<br>0.000513 0<br>0.000518 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 000 000 000 000 000 000 000 000 000 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| OF STACKI<br>SECTION<br>AREA<br>(IN.)**2<br>0.19590<br>0.18626<br>0.17770                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SEC 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| AXIAL LOCATION OF STACKING LINE IN COMPRESSOR BLADE SECTION MOMENTS OF INERIA THROUGH C.G. CORDINATES AREA THROUGH C.G. (CORDINATE) (IN.) ** (IN.)                                                                                                                                                                                                                                                                                                                                                                                                                                                      | THE CORPLIANTES (T.M.)  THE CO |
| 42.0<br>SETTION<br>SETTING<br>ANGLE<br>(DEG.)<br>11.372<br>11.372<br>12.510<br>13.393                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SECTION NO. 2  1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NUMBER OF BLADES = STACKING POINT CORDINATES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| SECTION ST<br>RAD. (IN.)<br>(IN.) (IN.)<br>9.325 0.8<br>8.325 0.8<br>7.825 0.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NO.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| BLADE SECT<br>NO. (1)<br>1 99.<br>2 85.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | SECTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

TABLE III. - Confinued.

| SECTION<br>TWIST<br>STIMIST<br>STIMIST<br>(IN.) W.*6<br>0.0059269<br>0.0059269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RDINATES   RESTREE   RESTR |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1N.<br>5C.TION<br>1ORS: DN<br>1ORS: TN<br>1ORS: TN<br>1O                                                | 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ** = 12.700 IMAX SETTING ANGLE (DEG.) 14.397 15.284 16.385                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| IN COMPRESSOR<br>10 COM                                                                                                                                                                                          | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 10. 1 FOLLDWING ROSTACKING LINE IN MOMENTS OF ILL STANDARD CITCON MOMENTS OF ILL STANDARD CITCON STANDARD CITC                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | NO. 7 COOR IN STATE OF STATE O |
| FOR NO. 1 F  1 OF STACKI  SECTION  AREA  (IN.) **2  0.16163  0.16172  0.15417  0.15422                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PECT 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| BLADE SECTION PROPERTIES OF STATOR NO. 1 FOLLOWING ROTOR NO. 2 42.0  SECTION BLADE SECTION SECTION MOMENTS OF INERTISETING C.G. COORDINATES AREA INTO HIGHOUT C.G. COORDINATES AREA C.G. COORDINAT                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 10N PROPERTY AX1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | # CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ADE SECTION<br>\$2.0<br>\$ECTION<br>\$ETTING<br>ANGLE<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANGLE)<br>(ANG | PEC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| NUMBER OF BLADES = STACKING POINT COORDINATES (LORDINATES (LN ) (L                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | COORDINATES  THE STATES  THE S |
| ADE SECTION ADE PADO 0. LOC: LOC: LND: 5. 7. 325 6. 850 6. 850 8. 5.900                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | SECTION NO. 15 CO. 110 NO. 15 CO. 110 NO. 15 CO. 15 |

TABLE III. - Continued.

| 10N<br>ST<br>NESS                                                                                                                                                                                                                            | (1N.)**6<br>.0055240<br>.0079996   |                             |                                        |        |        |            |          |        |        |      |        |        |        |      |      |      |        |        |       |                                         |           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------|----------------------------------------|--------|--------|------------|----------|--------|--------|------|--------|--------|--------|------|------|------|--------|--------|-------|-----------------------------------------|-----------|
| S.                                                                                                                                                                                                                                           | (1N.)**6<br>0.0055240<br>0.0079996 |                             |                                        |        |        |            |          |        |        |      |        |        |        |      |      |      |        |        |       |                                         |           |
| IN.<br>SECTION<br>TORSION<br>CONSTANT                                                                                                                                                                                                        | (IN.)**4<br>0.0003544<br>0.0009080 |                             |                                        |        |        |            |          |        |        |      |        |        |        |      |      |      |        |        |       |                                         |           |
| 12.700<br>IMAX<br>SETTING<br>ANGLE                                                                                                                                                                                                           | (DEG.)<br>18.147<br>9.568          |                             |                                        |        |        |            |          |        |        |      |        |        |        |      |      |      |        |        |       |                                         |           |
| TOR NO. 2<br>COMPRESSOR<br>F INERTIA<br>H C.G.                                                                                                                                                                                               | (IN.)**4<br>0.027007<br>0.039064   |                             |                                        |        |        |            |          |        |        |      |        |        |        |      |      |      |        |        |       |                                         |           |
| ** BLADE SECTION PROPERTIES OF STATOR NO. 1 FOLLOWING ROTOR NO. 2 ** DES = 42.0 AXIAL LOCATION OF STACKING LINE IN COMPRESSOR = INT SECTION BLADE SECTION SECTION MOMENTS OF INERIA ES SETTING C.G. COORDINATES AREA IMPOUGH C.G. H ANGLE L. | (IN.)**4<br>0.0008286<br>0.0007835 |                             |                                        |        |        |            |          |        |        |      |        |        |        |      |      |      |        |        |       |                                         |           |
| OR NO. 1 FC<br>OF STACKIP<br>SECTION<br>AREA                                                                                                                                                                                                 | (IN.)**2<br>0.14159<br>0.19535     |                             |                                        |        |        |            |          |        |        |      |        |        |        |      |      |      |        |        |       |                                         |           |
| ROPERTIES OF STAT AXIAL LOCATION BLADE SECTION C.G. COORDINATES                                                                                                                                                                              | (IN.)<br>0.2290<br>0.1678          | INATES<br>HS<br>IN.)        | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  | . 1216 | 1665   | 2038       | 2339     | 2574   | 2805   | 2882 | 2898   | 2853   | 2671   | 2471 | 2206 | 2047 | 1676   | .1230  | .0693 | **************************************  | .0245     |
| PROPERTI<br>AXIA<br>BLADE<br>C.G. CO                                                                                                                                                                                                         | (IN.)<br>0.8765<br>0.8765          | 10. 10 COORD<br>HP<br>(IN.) |                                        |        | 0.0555 | 0 931 0    | 0.1127 0 | 1281 0 | 1634 0 | 900  | 0.1496 | 000    | 000    |      | 00   |      |        |        | .00   | *                                       | 0.0245    |
| 42.0<br>\$2.0<br>Section<br>Setting<br>Angle                                                                                                                                                                                                 | (DEG.)<br>17.824<br>9.569          | Z.                          | 0.0329                                 |        |        | 0.3500     |          |        | 0.7000 | 200  |        | 1.0000 |        |      | 000  |      | 1.5000 |        |       |                                         | 1.7413 ** |
| F BLA<br>NG PO                                                                                                                                                                                                                               | (IN.)<br>0.2290<br>0.1678          |                             | ************************************** | 1275   | 1870   | 2361       | 2751     | 3189   | 3365   | 3673 | 3502   | 3455   | 3329   | 3124 | 2832 | 2649 | 1962   | 1357   | 5090  | *************************************** | .0175     |
|                                                                                                                                                                                                                                              | (IN.)<br>0.8765<br>0.8765          | #P C00F                     | *                                      |        | 0.0959 | 1.1548 0.1 |          |        | 0.2345 | 900  | 0.2459 | 2626   | 0.2327 | 2059 |      |      |        | 0.0801 | •••   | 2                                       | 0.0101    |
| DE SECTION<br>RAD.                                                                                                                                                                                                                           | 5.800<br>9.299                     | ž                           | •                                      | 0.1500 | 0.2500 | 0.3500     | 0.4500   |        | 0.7000 |      | 0000   |        |        |      |      |      |        |        |       |                                         | 1.7528    |
| BLADE<br>No.                                                                                                                                                                                                                                 | <b>.</b> 5                         | J.                          |                                        |        |        |            |          |        |        |      |        |        |        |      |      |      |        |        |       |                                         |           |

[ABLE III. - Continued.

SECTION 3 FCR YOUR PE 8,3350 IN, SUCTION SUPERCE CITY, O (IN.) XCUI OF 6.8500 IN.
PRESSURE SUPFACE
7
1 (IN.) (IN.) -0.3066 CT 440 CT 84 8085 TURBOMACHINE ORIENTATION 90 00000000000 IN THE XCUT OF 7.3250 IN.
PRESSURE SURFACE
Z (IH.) (IN.) SURFACE PRESSURE SURFACE Y (IN.) (IN.) 0.3137 0.12318 0.12818 0.12818 0.0086 0.0086 0.0087 0.0087 0.0087 0.0087 ~ ROTOR NO. 8119 7.7900 61167 61167 7.8662 1.0037 1.0037 7.7869 6669 8659 NO. 1 FOLLOWING 22.56 12.75 12.75 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 10.73 SECTION SUCTION SU Z (IN.) SECTION SUCTION SU Z (IN.) STATOR 99999999999 E PRESSURE SURFACE (IN.) (IN.) x xcur of 7.8250 IN.
PRESSURE SURFACE
2 Y Y (IN.) 9 -0.3383 -0.29660 -0.29660 -0.1829 -0.01832 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01836 -0.01 \*\* BLADE SECTION CODRDINATES -0.8164 0.8641 SECTION 1 FOR X SUCTION SURFACE Z Y (IN.) (IN.) SECTION 4 FOR 3 SUCTION SURFACE Z Y (IM.) (IN.) -0.2656 -0.2656 -0.0556 -0.0556 -0.0556 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.0566 -0.056 -0 .3084 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 .0053 -0 CIRCLE CENTER 86428 1054487 1054487 1054487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 105487 

TABLE III. - Concluded.

)

| 6.3750 IN. SECTION 8 FOR XCUT OF 5.9000 IN. SECTION 9 FOR XCUT OF 5.2000 IN. URE SURFACE SUCTION SURFACE PRESSURE SURFACE SUCTION SURFACE PRESSURE SURFACE Y Z Z X Y Z Z X Y Z Z X Y X Z X X X X X | 7 -0.4044 -0.7730 -0.4490 -0.7561 -0.4624 -0.7666 -0.4678 -0.7677 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4799 -0.4 | 3 -0.3945<br>9.29874 0.0657 -0.7576 -0.4731<br>9.29291N.<br>10.8374 0.0657 0.0657 0.0558<br>10.8374 0.0657 0.0657 0.0558<br>2 -0.261<br>3 -0.210<br>4 -0.094<br>6 -0.0148<br>6 -0.0148<br>6 -0.0148<br>6 -0.0148<br>6 -0.0148<br>6 -0.0148                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6.3750 IN.<br>URE SURFACE<br>Y<br>Y (IN.)                                                                                                                                                          | -0.7730<br>-0.7730<br>-0.5260<br>-0.5260<br>-0.3766<br>-0.1376<br>-0.1366<br>0.5241<br>0.5241<br>0.6741<br>0.6741                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | XCUT 0F 9455 -0.3945                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| FRACT. SECTION 7 FOR XCUT OF OF SUCTION SURFCE PRESS SURF. (IM.) (IM.) (IM.)                                                                                                                       | 0.00 -0.7941 -0.3861<br>0.05 -0.7316 -0.2316<br>0.20 -0.65230 -0.1003<br>0.30 -0.5230 -0.1003<br>0.30 -0.5230 -0.1003<br>0.50 -0.2035 0.1003<br>0.70 -0.2035 0.1052<br>0.70 -0.3315 0.1052<br>0.80 0.5158 0.1059<br>0.80 0.5889 0.1007                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | T.E. CIRCLE CENTER FRACT. SECTION 10 FOR XC OF Z (IN.)  SURF. Z (IN.)  OO - 0.5644  OO - 0.7623 - 0.2644  OO - 0.7623 - 0.1119  OO - 0.7624 - 0.0564  OO - 0.7624 - 0.1019  

TABLE IV. - SUMMARY OF IDEF (IROW) INPUT OPTIONS

| IDEF (IROW) | Cente               | erline           | Thiel                | mess                 | Cent                   | ertine                | Thickness               |                          |  |  |
|-------------|---------------------|------------------|----------------------|----------------------|------------------------|-----------------------|-------------------------|--------------------------|--|--|
|             | $\mathbf{s}_1$      | $\mathbf{s}_2$   | S <sub>m, 1</sub>    | $s_{m,2}$            | $\mathbf{s}_{1}$       | $\mathbf{s}_2$        | $s_{m,1}$               | $s_{n_i,2}$              |  |  |
|             |                     | Orig             | in                   |                      | Range (all positive S) |                       |                         |                          |  |  |
| -1          | Leading edge        | Trailing<br>edge | Maximum<br>thickness | Maximum<br>thickness | 0 to S <sub>1</sub> e  | a to S <sub>2</sub> c | n to S <sub>m,1</sub> c | n to S <sub>m, 2</sub> c |  |  |
| <b>-</b> 3  | Transition point    | Trailing<br>edge |                      |                      |                        |                       |                         |                          |  |  |
| -2          | Leading<br>edge     | Transition point |                      |                      |                        |                       |                         |                          |  |  |
| -1 or <-1   | Transition point    | Transition point |                      |                      |                        |                       |                         |                          |  |  |
| 1 or >1     | Transition point    | Transition point | Maximum<br>thickness | Maximum<br>thickness | 0 to 1.0               | 0 to 1.0              | 0 to 1,0                | 0 to 1.0                 |  |  |
| 2           | Leadinz<br>edge     | Transition point |                      |                      |                        |                       |                         | }                        |  |  |
| :,          | Transition<br>por t | Trailing edge    |                      |                      |                        |                       |                         |                          |  |  |
|             | Leading office      | Fraiting edge    |                      |                      |                        |                       |                         |                          |  |  |

## TABLE $\mathbf{V}_\star$ - CHARACTERISTICS OF EMPIRICAL

### ADDITIVE TERM AND ITS EFFECTS

### ON DENOMINATOR

| Mach<br>number in<br>meridional<br>plane,<br>M <sub>m</sub> | м <sup>2</sup> | $M_{m}^{2} = 1$ | Additive<br>factor | Denomi =<br>nator |
|-------------------------------------------------------------|----------------|-----------------|--------------------|-------------------|
| 0.50                                                        | 0.25           | 0.75            | 0.0001             | 0.7501            |
| .70                                                         | . 49           | .51             | ,0006              | .5106             |
| . 80                                                        | . 64           | . 36            | ,0027              | . 3627            |
| .90                                                         | .51            | .19             | .0150              | .2050             |
| . 95                                                        | .9025          | ,007.5          | .0377              | ,1552             |
| . 97                                                        | , 9409         | 0.5(4)          | ,0554              | .1145             |
| .99                                                         | .9501          | ,0100           | ,0.20              | .1619             |
| 1,00                                                        | 1.00           | .0000           | . [1000            | , 1000            |

TABLE VI – SUMMARY OF COLUTICHAUS FOR INOMIAL.  $R_{\rm 0}$  R. AS A FUNCTION OF S.

|                                                                                            | 6       | ; K                 |     |              |                    |                                     |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                                                                 |                                                  |                | D <sub>1</sub>                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                      |  |  |
|--------------------------------------------------------------------------------------------|---------|---------------------|-----|--------------|--------------------|-------------------------------------|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-----------------------------------------------------------------|--------------------------------------------------|----------------|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------------------------------|--|--|
|                                                                                            | ,       | 1 18                |     |              |                    |                                     |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 | ,<br>                                                           |                                                  |                | -a1a-                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          | •                                    |  |  |
|                                                                                            | 2       | 1 18,7              |     |              |                    |                                     |                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2.5       | $^{0}$ 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 | $^{2}$ $^{6}$ $^{2}$                                            |                                                  |                | 7.10                           | . 210 <sup>5</sup> 0 <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                          |                                      |  |  |
| $D_n = C_n \operatorname{nR}_t$                                                            | 9       | $\frac{1}{9}$ H = 1 |     |              |                    |                                     |                                      | D <sub>1</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | , instant | ; o <b>1</b> o s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 6D <sup>3</sup> D <sub>3</sub>                                  | 150 102                                          |                | <sup>†</sup> a <sub>ç</sub> a9 | Taraldec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | galaos ·                 |                                      |  |  |
| ower of R <sub>1</sub> since                                                               | ÷       | ुंभ ।               |     | i            |                    |                                     | $D_1^{\tilde{j}}$                    | ភិបា <mark>រ</mark> ២ភ្ន                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -11413    | $^{\rm ob}_1 \nu_{\rm s}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $-10D_1^2D_2^2$ | $^{1}$ 0 $^{1}$ 0 $^{2}$                                        | + 20D <sub>1</sub> D <sub>2</sub> D <sub>3</sub> | $10D_1^2D_2^3$ | $5D_1D_2^4 + 5D_1^4D_5$        | 10D D D D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $-20D_{1}^{3}D_{2}D_{4}$ | . 300 <sup>2</sup> 0 <sup>2</sup> 0; |  |  |
| Number of services is coefficient product (fore power of $ R_{\rm L} $ space $ D_{\rm R} $ |         | ja s                |     |              |                    | 10                                  | 17,12                                | gajas<br>Fajar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 20 de 10 de | 12070213        | $\mathbf{p}_{1}^{1} \cdot \mathbf{12D_{1}^{-1}p_{2}^{-1}p_{4}}$ | 10 n en 20 n                                     | 120 0203       | tala ala                       | $(a_1^2a_2^2a_3^2a_4^2a_5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1050 1051                | ga <sup>5</sup> a <sup>1</sup> asa - |  |  |
| Number of Septemble                                                                        |         |                     |     |              | . L                | Ξα <u>,</u> -α                      | ula: lala:                           | 10] c = 10] d |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 10,0100000      | न्तृतः वद्भाः                                                   |                                                  | 601020 0201    | _                              | $D_1^2D_2 + D_2^2D_3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                          | id of or                             |  |  |
|                                                                                            |         | - M - ;             |     | : <u>:</u> - | <sup>2</sup> d lac | $\frac{5}{2}a + \frac{5}{2}a^{4}az$ | a <sup>z</sup> az 'a <sup>1</sup> az | 19 - 21 p.,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | i i D           | 10 29 10°                                                       | Start Bagar                                      |                | ในในสา ในในส                   | 10 P. |                          |                                      |  |  |
| ļ                                                                                          | -       | ,<br>H. –           | 1 d | ā            | <u>-</u> -         | ā.                                  | E                                    | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |                                                                 |                                                  | i              | , c                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                      |  |  |
| Corsic                                                                                     | ;<br>33 |                     | H.  | 4            | 7.5                | :=                                  | ::                                   | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |           | . į -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                 | : :                                                             |                                                  |                | 77                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                          |                                      |  |  |

| 1. Report No<br>NASA TP-1946 AVRADCOM T                                                                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                    | ernment Accession No.                                                                                                                                                              | 3 Recipient's Catalog                                                                                                                                                                 | No                                                                             |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--|--|--|--|--|
| 4 Title and Subtitle                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                      | <del>/                                      </del>                                                                                                                                 | 5. Report Date                                                                                                                                                                        | 0.1                                                                            |  |  |  |  |  |
| COMPUTER PROGRAM FOR AE                                                                                                                                                                                                                                                                                                                                                                     | RODYNAMIC AN                                                                                                                                                                         | D BLADING                                                                                                                                                                          | December 1981  6. Performing Organization Code                                                                                                                                        |                                                                                |  |  |  |  |  |
| DESIGN OF MULTISTAGE AXIA                                                                                                                                                                                                                                                                                                                                                                   | L-FLOW COMPI                                                                                                                                                                         | RESSORS                                                                                                                                                                            | 505 –32 –2A                                                                                                                                                                           | ation Code                                                                     |  |  |  |  |  |
| 7. Author(s)                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                      |                                                                                                                                                                                    | 8. Performing Organiza                                                                                                                                                                | ation Report No                                                                |  |  |  |  |  |
| James E. Crouse and William T                                                                                                                                                                                                                                                                                                                                                               | Gorrell                                                                                                                                                                              |                                                                                                                                                                                    | F-280                                                                                                                                                                                 |                                                                                |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                      |                                                                                                                                                                                    | 10. Work Unit No                                                                                                                                                                      |                                                                                |  |  |  |  |  |
| 9. Performing Organization Name and Address                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                      |                                                                                                                                                                                    | 11 Contract or Grant No                                                                                                                                                               |                                                                                |  |  |  |  |  |
| and                                                                                                                                                                                                                                                                                                                                                                                         | NASA Lewis Research Center<br>and                                                                                                                                                    |                                                                                                                                                                                    |                                                                                                                                                                                       |                                                                                |  |  |  |  |  |
| Propulsion Laboratory AVRADCOM Research and Techn                                                                                                                                                                                                                                                                                                                                           | nology Laborator                                                                                                                                                                     | ies                                                                                                                                                                                |                                                                                                                                                                                       |                                                                                |  |  |  |  |  |
| Cleveland, OH 44135                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                      |                                                                                                                                                                                    | 13. Type of Report an                                                                                                                                                                 | d Period Covered                                                               |  |  |  |  |  |
| 12. Sponsoring Agency Name and Address                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                      |                                                                                                                                                                                    | Technical Pa                                                                                                                                                                          | per                                                                            |  |  |  |  |  |
| National Aeronautics and Space A<br>Washington, DC 20546                                                                                                                                                                                                                                                                                                                                    | agministration                                                                                                                                                                       |                                                                                                                                                                                    | 14. Sponsoring Agency                                                                                                                                                                 | <del></del>                                                                    |  |  |  |  |  |
| u.S. Army Aviation Research and                                                                                                                                                                                                                                                                                                                                                             | d Davalonment C                                                                                                                                                                      | ommand                                                                                                                                                                             |                                                                                                                                                                                       |                                                                                |  |  |  |  |  |
| St. Louis, MO 63166                                                                                                                                                                                                                                                                                                                                                                         | n Development C                                                                                                                                                                      | Jiiiiaiia                                                                                                                                                                          |                                                                                                                                                                                       |                                                                                |  |  |  |  |  |
| 5. Supplementary Notes                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                      |                                                                                                                                                                                    |                                                                                                                                                                                       |                                                                                |  |  |  |  |  |
| James E. Crouse: Lewis Resear                                                                                                                                                                                                                                                                                                                                                               | rch Center.                                                                                                                                                                          |                                                                                                                                                                                    |                                                                                                                                                                                       |                                                                                |  |  |  |  |  |
| William T. Gorrell: Propulsion                                                                                                                                                                                                                                                                                                                                                              | Laboratory, AV                                                                                                                                                                       | RADCOM Research                                                                                                                                                                    | and Technology                                                                                                                                                                        | Laboratories.                                                                  |  |  |  |  |  |
| 6. Abstract                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                      |                                                                                                                                                                                    |                                                                                                                                                                                       |                                                                                |  |  |  |  |  |
| A code for computing the aerody desired, the associated blading a Compressible flow, which is associated blading a dimensional solution in the meri coefficients and boundary layer bequation are solved with the street blade rows. The annulus profile A number of other input paramet geometry. In particular, blade fourth-degree polynomials for two solution and, if desired, blading | geometry input for<br>sumed to be stead<br>dional plane with<br>blockage. The re-<br>camline curvature, mass flow, pre-<br>ters specify and<br>element centerli-<br>vo segments. The | or internal flow and ally and axisymmetric viscous effects me adial equation of me method on calculusessure ratio, and a control the blade renes and thicknesses output includes a | alysis codes is p<br>ic, is the basis foodeled by pressu<br>otion and the cor-<br>ation stations our<br>rotative speed ar<br>ow aerodynamics<br>s can be specified<br>detailed aerody | resented. For a two- are loss ntinuity tside the re input. s and rd with mamic |  |  |  |  |  |
| 17 Key Words (Suggested by Author(s))                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                      | 18 Distribution Statemen                                                                                                                                                           | ·                                                                                                                                                                                     |                                                                                |  |  |  |  |  |
| Compressor design                                                                                                                                                                                                                                                                                                                                                                           | j                                                                                                                                                                                    | Unclassified - unlimited                                                                                                                                                           |                                                                                                                                                                                       |                                                                                |  |  |  |  |  |
| Axial-flow compressor                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                      | STAR Category                                                                                                                                                                      |                                                                                                                                                                                       |                                                                                |  |  |  |  |  |
| Multistage compressor                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                      |                                                                                                                                                                                    |                                                                                                                                                                                       |                                                                                |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                      |                                                                                                                                                                                    | T                                                                                                                                                                                     |                                                                                |  |  |  |  |  |
| 19 Security Classif (of this report)  Unclassified                                                                                                                                                                                                                                                                                                                                          | 20 Security Classif to Unclass                                                                                                                                                       |                                                                                                                                                                                    | 21 No of Pages<br>101                                                                                                                                                                 | 22 Price*                                                                      |  |  |  |  |  |
| Unciassineu                                                                                                                                                                                                                                                                                                                                                                                 | i uncias:                                                                                                                                                                            | 9111111                                                                                                                                                                            | 101                                                                                                                                                                                   | 1 A06                                                                          |  |  |  |  |  |

