

Tutorium 17, #14

Max Göckel- uzkns@student.kit.edu

Institut für Theoretische Informatik - Grundbegriffe der Informatik

Hoare-Kalkül: Tripel

Ein Hoare-Tripel besteht aus zwei Zusicherungen und einem Stück Programmcode:

- {P}: Vorbedingung
 - P soll wahr sein bevor der Programmcode beginnt
- S: Codesegment
 - Ein Stück Algorithmus eine oder mehrere Zeilen vom Code
- {Q}: Nachbedingung
 - Ist P wahr und wurde S ausgeführt so soll nun Q wahr sein.

Eine Hoare-Zusicherung hat also die $\{P\}S\{Q\}$

Hoare-Kalkül: Tripel

Für die Tripel gelten bestimmte Regeln (HT₁, HT₂, HT₃):

- HT_1 Gilt $P' \to P \land Q \to Q'$ und ist $\{P\}S\{Q\}$ korrekt, so ist auch $\{P'\}S\{Q'\}$ korrekt
- $HT_2 \ \{P\}S_1\{Q\} \ \text{und} \ \{Q\}S_2\{R\} \ \text{sind korrekt} \to \{P\}S_1S_2\{R\} \ \text{ist korrekt}$
- HT_3 Ist eine eine Zuweisung $x \leftarrow \beta$, so kann man aus der Nachbed. eine Vorbed. erstellen indem man x mit β substituiert

Hoare-Kalkül: Verzweigungen

In Algortihmen gibt es auch Verzweigungen der Form if B then S else T. Diese können mit Hoare-Tripeln ausgewertet werden.

 $\{P\}$ Verzweigung $\{Q\}$ wahr $\Leftrightarrow \{P \land B\}S\{Q\}$ u. $\{P \land \neg B\}T\{Q\}$ wahr d.h. für eine Verzweigung sind beide Fälle wahr wenn man die Bedigung im if-Teil umdreht.

Hoare-Kalkül: Beweise

"Zeigen sie, dass das Hoare-Tripel $\{P\}S\{Q\}$ korrekt ist".

Vorgehen:

- S in atomare Befehle zerlegen (dabei unten Anfang und dann hocharbeiten)
- Für jeden Befehl ein Tripel finden und angeben
- Tripel und Code verbinden
- Sonderfall Verzweigungen:
 - Jeden Fall abarbeiten
 - Fallbedigung B herausfinden
 - Einzelne Fälle in $\{P \land B\}S\{Q\}$ u. $\{P \land \neg B\}T\{Q\}$ einsetzen
- Umformen, bis {P}S{Q} herauskommt
- Fertig.

Formale Sprachen

Gehen wir zurück zu Tutorium #3 so sind die formalen Sprachen wie folgt definiert:

Definition

Eine formale Sprache F über einem Alphabet A ist eine Teilmenge der Kleenschen Hülle A*

Aber was heißt das?

Die Menge A*

 A^* ist die Menge aller Wörter beliebiger Länge über einem Alphabet A.

Ist $A = \{a, b, c\}$ so sind zum Beispiel

- a
- abc
- cab
- lacksquare

alle in A*

Formale Sprachen als Teilmenge von A^*

Eine formale Sprache ist dabei eine Teilmenge von A^* , also ausgesuchte Elemente aus dieser Menge.

Sei A unser bekanntes Alphabet (a-zA-Z) inkl. 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 und B alle Sonderzeichen mit Punkt und Komma.

Beispielhafte Sprachen über $A \cup B$ sind definiert als:

- \blacksquare ABC = { a, b, c}
- website = $\{www. \cdot w_1 \cdot ... w_2 | w_1, w_2 \in A \land |w_2| < 3\}$
- $DCIM = \{IMG \mid number . ipeg \mid number \in \{0, ..., 9\}*\}$
- count₂ = { $a^nb^n|n \in \mathbb{N}$ }

Formale Sprachen: Operationen

Auf formalen Sprachen gibt es Produkte, Potenzen und Konkatenationsabschlüsse:

- L_1, L_2 form. Sprachen, so ist $L_1 \cdot L_2 = \{w_1 \cdot w_2 | w_1 \in L_1, w_2 \in L_2\}$ also
- $\{a,b\} \cdot \{c,d\} = \{ac,ad,bc,bd\}$
- $L^0 = \{\epsilon\}$ und
- $\forall k \in \mathbb{N}_0 : L^{k+1} = L \cdot L^k$
- $L^* = \bigcup_{i \in \mathbb{N}_0} L^i$
- Jedes Wort aus L bel. oft mit jedem anderen Wort aus L kombiniert

Mastertheorem

Das Mastertheorem ermöglicht Laufzeitabschätzungen für rekursive Algorithmen.

Die Funktionen der Algorithmen müssen folgende Form besitzen, damit das Mastertheorem angewendet werden kann:

$$T(n) = a \cdot T(\frac{n}{b}) + f(n).$$

Mastertheorem

$$T(n) = a \cdot T(\frac{n}{h}) + f(n).$$

- a: Anzahl der Teilprobleme
- $\frac{n}{b}$: Größe der Teilprobleme
- f(n): Von T(n) unabhängige Funktion zur Kombination der Teilprobleme

Bsp.:
$$T_1(n) = a \cdot T_1(\frac{n}{10}) + 3n^2$$

Mastertheorem: Fälle

Bei der Laufzeit der Form $T(n) = a \cdot T(\frac{n}{b}) + f(n)$ gibt es 3 Fälle:

- 1. Ist $f(n) \in O(n^{log_b a \epsilon})$ für ein $\epsilon > 0 \Rightarrow T(n) \in \Theta(n^{log_b a})$
- 2. Ist $f(n) \in \Theta(n^{log_b a}) \Rightarrow T(n) \in \Theta(n^{log_b a} \cdot log(n))$
- 3. Ist $f(n) \in \Omega(n^{\log_b a + \epsilon})$ für ein $\epsilon > 0$ und $\exists d \in (0, 1)$, sodass für ein großes n gilt: $a \cdot f(\frac{n}{b}) \le d \cdot f(n) \Rightarrow T(n) \in \Theta(f(n))$

Mastertheorem: Beispiel

$$\begin{aligned} 4 \cdot T(\frac{n}{4} + n^2) \\ log_b a &= 1, \\ f(n) &= n^2 \in \Omega(n^{log_b a + \epsilon}) = \Omega(n^{1 + \epsilon}), \\ \text{F\"{u}r } \epsilon &= \frac{1}{2}. \text{ Es soll gelten } af(\frac{n}{b}) \leq df(n), d \in (0, 1). \\ af(\frac{n}{b}) &= 4f(\frac{n}{4}) = \frac{n^2}{4} \leq dn^2 = df(n) \text{ mit } d = \frac{1}{4}. \\ \Rightarrow T(n) \in \Theta(n^2) \end{aligned}$$

Vollständige Induktion

Drei Schritte:

- Induktionsanfang (IA): Den kleinsten Wert nehmen und die Behauptung für diesen zeigen. Manchmal noch die Behauptung für den ersten Schritt zeigen.
- 2. Induktionsvoraussetzung: Die Behauptung <Behauptung> gilt für ein beliebiges aber festes $n \in \mathbb{N}_+$ (oder worüber man die Induktion anwendet).
- 3. Induktionsschritt (IS): Für alle n ein (n+1) einsetzen und so lange Umformen bis der Ursprungsterm (mit dem n) wieder auftaucht.

Induktion

Bei der Induktion über kontextfreie Grammatiken ist oft n die Länge des Wortes oder die Anzahl an Ableitungsschritten.

Hierbei dann davon ausgehen das an einer Stelle ein Nichtterminalsymbol steht und jeden möglichen Ableitungsschritt erklären um die Behauptung für (n+1) zu zeigen.

Speicher

Definition

- memwrite : Val^{Adr}xAdrxVal → Val^{Adr}.
 - $(m, a, v) \mapsto m'$

Definition

- lacktriangledown memread : $Val^{Adr}xAdr o Val$
 - $(m,a) \mapsto m(a)$

Die Operationen können auch verkettet werden. an jedem *Val*^{Adr} kann *memwrite* einsetzt werden um die Tabelle vor dem Lesen zu verändern.

Aufbau der MIMA

- Steuerwerk
 - Holt Befehle aus dem Speicher, decodiert sie und steuert die Ausführung
- Rechenwerk
 - Führt arithmetische/logische Operationen aus
- Speicher
 - Speichert Daten an Adressen, besteht aus Programm- und Datenspeicher
 - Adressen 20Bit, Werte 24Bit
- Register
 - Speichern je ein Wort oder eine Adresse (20/24Bit)
- Bus
 - Verbindet die Komponenten

Klasusurthemen

Alle Themen aus GBI:

- Mengen
- Relationen
- Wörter
- Formale Sprachen
- Kontextfreie Grammatiken
- Induktion
- Aussagenlogik
- Prädikatenlogik
- Huffman

- Speicher
- MIMA
- Hoare-Kalkül
- Graphen
- O-Kalkül/Mastertheorem
- Automaten
- RegEx
- Turingmaschinen