```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import statsmodels.api as sm

df = pd.read_csv('MLR-Feature-Elimination.csv')
```

First we import all the necessary libraries and import the data on which we are going to work on.

```
y=df["c52"]
X = df.drop(columns=["c1", "c2", "c241","c52"])
X = sm.add_constant(X)
```

We define y as c52 and x as all the other columns excluding c1, c2, c241 and c52.

```
drop = []
r2 = []
mse_value = []
```

Here we create three arrays which store dropped variables, R^2 after dropping variables and Mean square Errors. We use a while loop to drop these variables and obviously exclude the constant term.

```
model = sm.OLS(y, X).fit()
print(model.summary())
while len(X.columns) > 1:
   model = sm.OLS(y, X).fit()
   max_p_value = model.pvalues[1:].max()
   if max_p_value > 0.05:
       drop = model.pvalues[1:].idxmax()
       X = X.drop(columns=[dropped_var])
       model = sm.OLS(y, X).fit()
       drop.append(dropped_var)
       r2.append(model.rsquared)
       mse_value.append(model.mse_resid)
   else:
       break
summary_table = pd.DataFrame({
   "Dropped Variable": dropped vars,
   "R2": r2_values,
    "MSE": mse_values
})
print(summary_table)
```

OLS Regression Results

Dep. Variable: c52		R-squ	uared:		0.785		
Model:		OLS	Adj.	R-squared:		0.777	
Method:	Leas	Least Squares		F-statistic:		97.27	
Date:	Sat, 02	Sep 2023	Prob	(F-statistic)	:	1.11e-299	
Time:		19:37:45		_ikelihood:	-1479.4		
No. Observations:		1025	AIC:			3035.	
Df Residuals:		987 BI				3222.	
Df Model:		37					
Covariance Type:		nonrobust					
c	oef std	err	t	P> t	[0.025	0.975]	
const -136.4	882 104	.748 -1	.303	0.193	-342.042	69.065	
c26 0.3	634 0	.049 7	.442	0.000	0.268	0.459	
c27 -0.1	911 0	.895 -0	.214	0.831	-1.948	1.565	
c28 0.2	266 0	.044 5	.150	0.000	0.140	0.313	
c29 -0.4	454 0	.049 -9	.115	0.000	-0.541	-0.349	

c30	3.4632	0.458	7.568	0.000	2.565	4.361
c31	0.2667	0.035	7.699	0.000	0.199	0.335
c32	0.1781	0.199	0.895	0.371	-0.212	0.569
c33	-0.6545	0.464	-1.412	0.158	-1.564	0.255
c39	12.9984	1.470	8.845	0.000	10.114	15.882
c139	-0.8439	0.225	-3.745	0.000	-1.286	-0.402
c142	0.0454	0.067	0.682	0.495	-0.085	0.176
c143	-0.1537	0.039	-3.956	0.000	-0.230	-0.077
c155	-0.0342	0.013	-2.684	0.007	-0.059	-0.009
c157	0.2501	0.041	6.100	0.000	0.170	0.331
c158	0.2836	0.023	12.121	0.000	0.238	0.329
c160	0.0040	0.002	2.206	0.028	0.000	0.008
c161	0.0105	0.001	9.632	0.000	0.008	0.013
c162	0.0027	0.002	1.649	0.099	-0.001	0.006
c163	0.0081	0.002	3.724	0.000	0.004	0.012
c7	0.3236	0.292	1.108	0.268	-0.250	0.897
c8	-0.4465	0.137	-3.257	0.001	-0.716	-0.177
c9	-0.6863	0.075	-9.097	0.000	-0.834	-0.538
c10	8.8046	1.541	5.715	0.000	5.781	11.828
c11	-0.1706	0.042	-4.044	0.000	-0.253	-0.088
c12	-0.3028	0.109	-2.765	0.006	-0.518	-0.088
c13	0.0757	0.052	1.455	0.146	-0.026	0.178
c15	-0.4255	0.058	-7.336	0.000	-0.539	-0.312
c16	-0.5046	0.103	-4.919	0.000	-0.706	-0.303
c17	-0.0792	0.021	-3.707	0.000	-0.121	-0.037
c19	0.3822	0.218	1.756	0.079	-0.045	0.809
c20	0.2279	0.042	5.449	0.000	0.146	0.310
c21	-0.1647	0.049	-3.329	0.001	-0.262	-0.068
c22	-0.1258	0.036	-3.455	0.001	-0.197	-0.054
c23	-0.3301	0.048	-6.848	0.000	-0.425	-0.235
c34	-0.5123	1.765	-0.290	0.772	-3.976	2.951
c35	6.3277	1.616	3.917	0.000	3 .1 57	9.498
c36	-1.8280	90.385	-0.020	0.984	-179.197	175.541
		========			========	
Omnibus:		40.4		n-Watson:		0.546
Prob(Omnibus):		0.6		e-Bera (JB)	:	113.185
Skew:		-0.6	949 Prob(3	JB):		2.64e-25

-0.049 Prob(JB): 4.625 Cond. No. 2.64e-25 Skew: 3.48e+06 Kurtosis:

final_model = sm.OLS(y, X).fit() print(final_model.summary())

OLS Regression Results

OLS Regression Results							
Dep. Varia		=======	-====== c52 R-sa	uared:	=======	0.782	
Model:	abie.			R-squared:		0.776	
Method:		Least Squ	,	atistic:		127.9	
Date:		Wed, 30 Aug		(F-statisti	c):	1.30e-306	
Time:	,	00:0		Likelihood:	-,.	-1485.0	
No. Observ	/ations:		1025 AIC:			3028.	
Df Residua			996 BIC:			3171.	
Df Model:			28				
Covariance	e Type:	nonrol					
		========		========	========	========	
	coef	std err	t	P> t	[0.025	0.975]	
const	-125.8111	17.336	-7.257	0.000	-159.831	-91.791	
c26	0.3663	0.047	7.734	0.000	0.273	0.459	
c28	0.2515	0.034	7.454	0.000	0.185	0.318	
c29	-0.4401	0.047	-9.342	0.000	-0.532	-0.348	
c30	3.4022	0.447	7.610	0.000	2.525	4.280	
c31	0.2953	0.022	13.236	0.000	0.252	0.339	
c33	-0.2699	0.082	-3.293	0.001	-0.431	-0.109	
c39	14.6285	1.314	11.134	0.000	12.050	17.207	
c139	-0.4288	0.045	-9.546	0.000	-0.517	-0.341	
c143	-0.1502	0.037	-4.063	0.000	-0.223	-0.078	
c155	-0.0418	0.012	-3.576	0.000	-0.065	-0.019	
c157	0.2573	0.039	6.587	0.000	0.181	0.334	
c158	0.2832	0.023	12.429	0.000	0.239	0.328	
c160	0.0039	0.002	2.152	0.032	0.000	0.007	
c161	0.0110	0.001	10.690	0.000	0.009	0.013	
c163	0.0087	0.002	4.141	0.000	0.005	0.013	
c8	-0.4440	0.131	-3.381	0.001	-0.702	-0.186	
c9	-0.6920	0.066	-10.507	0.000	-0.821	-0.563	
c10	8.9184	1.518	5.876	0.000	5.940	11.897	
c11	-0.1655	0.041	-4.004	0.000	-0.247	-0.084	
c12	-0.3099	0.105	-2.939	0.003	-0.517	-0.103	
c15	-0.4338	0.052	-8.278	0.000	-0.537	-0.331	
c16	-0.4095	0.087	-4.699	0.000	-0.580	-0.238	
c17	-0.0800	0.021	-3.797	0.000	-0.121	-0.039	
c20	0.2353	0.040	5.827	0.000	0.156	0.315	
c21	-0.1557	0.048	-3.213	0.001	-0.251	-0.061	

c22	-0.1296	0.035	-3.717	0.000	-0.198	-0.061
c23	-0.3024	0.045	-6.746	0.000	-0.390	-0.214
c35	6.4165	1.516	4.232	0.000	3.441	9.392
		========				========
Omnibus:		53.6	980 Durbi	n-Watson:		0.546
Prob(Omnibu	ıs):	0.0	000 Jarqu	e-Bera (JB):		178.982
Skew:		-0.6	977 Prob(JB):		1.36e-39
Kurtosis:		5.6	941 Cond.	No.		5.63e+05

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 5.63e+05. This might indicate that there are strong multicollinearity or other numerical problems.

	The dropped	vari	able	list	is g	given	by
	Dropped Var	riabl	e	F	2	N	151
0	(:36	0.784	773	1.08	39361	
1	(:27	0.784	763	1.08	88310	
2	(:34	0.784	744	1.08	37306	
3	c:	L42	0.784	643	1.08	86720	
4	(:32	0.784	505	1.08	86317	
5		c7	0.784	152	1.08	37002	
6	(:13	0.783	681	1.08	88280	
7	c:	L62	0.783	137	1.08	39919	
8	(19	0.782	408	1.09	2487	

Here we can see that p values of most of the variables are 0.00 which are equally significant on the basis of the p-values. But on the basis of coefficients, variables with larger magnitude coefficients are more significant than other and we can see that c39 has the highest coefficient and hence the greatest significance.