## Calea de date:



#### A) Cele 4 instructiuni alese sunt:

Xor, nand, andi si ori





51 andi \$t,\$0,imm andi \$1,\$0,3 Bulest



101\_001\_000\_00000 11 RTL: RF [nt] & RF[ns] & Z\_Ext (inorm)



# B) Tabelul cu valorile semnalelor de control pentru toate instructiunile

| Instructions | Regulat | Regite | ALU | Ext | ALUOR | ALU Ctrl   | Mem | Mamta<br>Reg | Branch | Sump. |
|--------------|---------|--------|-----|-----|-------|------------|-----|--------------|--------|-------|
| a dd         | 1       | 1      | 0   | 0   | 000   | 000 (+)    | 0   | 0            | 0      | 0     |
| sub          | 1       | 1      | 0   | 0   | 000   | 004(-)     | 0   | 0            | 0      | 0     |
| sll          | 1       | 1      | 0   | 0   | 000   | 010(20)    | 0   | 0            | 0      | 0     |
| srl          | 1       | 1      | 0   | 0   | 000   | 011(>>)    | 0   | 0            | 0      | 0     |
| and          | 1       | 1      | 0   | 0   | 000   | 100 (and)  | 0   | 0            | 0      | 0     |
| Or           | 1       | 1      | 0   | 0   | 000   | 101 (27)   | 0   | 0            | 0      | 0     |
| XOT          | 1       | 1      | 0   | 0   | 000   | 110 (xor)  | 0   | 0            | 0      | 0     |
| Nand         | 1       | 1      | 0   | 0   | 000   | 111 (mand) | 0   | 0            | 0      | 0     |
| addi         | 0       | 1      | 1   | 1   | 001   | 000(+)     | 0   | 0            | 0      | 0     |
| lu           | 0       | 1      | 1   | 1   | 001   | 000(+)     | 0   | 1            | 0      | 0     |
| DW           | 0       | 0      | 1   | 1   | 001   | 000(+)     | 1   | 0            | 0      | 0     |
| beg          | 0       | 0      | 0   | 1   | 010   | 001(-)     | X   | 0            | 1      | 0     |
| andi         | 0       | 1      | 1   | 0   | 101   | 100 (and)  | X   | 0            | 0      | 0     |
| ori          | 0       | 1      | 1   | 0   | 110   | 101(02)    | 0   | 0            | 0      | 0     |
| J J          | ×       | 0      | ×   | ×   | ×××   | ××x        | 0   | X            | X      | 1     |
|              |         |        |     |     |       |            |     |              |        | Belei |

### C) Descrierea codului

```
Junctia este:
 int A [10] = {5, 5, 5, 5, 5, 5, 5, 5, 5, 5}
 int x = 100;
for (int i=0; i 10; i++)
  { A [i] = A [i] + 1;
     x = x - A [i];
```

Cod de asamblate. 0: add \$1,\$0,\$0 i=0 1: addi \$4,\$0,10: se solveatà un de iteratii \$4=10 2: add \$2,\$0,\$0: initializarea indexului locatiei de memorie 3: addi \$5, \$0, 100 : x=100 4: beg \$1, \$4, 7: Verifica daca i=10 5: lu \$3,40(\$2): in \$3=ALOS=5 aduce demental curent din sir 6: addi \$3,\$3,1 : \$3=\$3+1=6 7 DX \$3, 40(\$2): Re nalveatà mara valoare a lui \$3 in 8. DL \$5, \$5, \$3: X=X-\$3 (=) 100=100-6 9. addi \$2, \$2,1 Indexul wimatorului element din sir 10 addi \$1, \$1, 1 : i=i+1 j 4 : salt la inceput ul bucki 12 DIX \$5, 60(\$0) : salvarea sumei in memorais la odresa 60

Bulan.

Se presupune ca situal A se afla in memoria
le adresa A-addr ion urmatocrele la adrese
consecutive din 2 in 2 octeti (fie care element este
intreg pe 16 biti).

voriabila x se afla in memorie la adresa
x-addr dar este stocata temporar in \$5

registral \$2 este folosit ca index.

i este representat de registral \$1:

- A-addr: adresa sirului A.

- 10 \$5: adresa X

\_ \$2 : folosit ca index

- \$1: i

- \$4: Numarul de itoration - A cre 10 locatione a câte 2 octete fierare.

- se prengume ca A are adresse de in ceput

A-addr = 40 jar varia bila x se aflà in

memorie ime diat dupa sir , x-addr = 60

- begin-loop se afla la pseudo-adresa = 4

- end-loop = 7 (12-5) unde 5 este indexul
instructionii lu. pag 2

0: 000\_ 000\_ 000\_ 001\_ 000

1: 001\_000\_100\_0001010

2: 000\_000\_000\_010\_000

3: 001\_ 000\_ 101\_ 110 0100

4: 010-001-100-0000111

5: 011\_010\_011\_0101000

6: 001-011-011-0000 001

7: 100\_010\_011\_010 1000

8:000\_101\_011\_101\_001

9:001-010-010-0000010

10:001\_001\_001\_0000001

11:101\_0000000000100

12:100-000-101-0111100

### D) Trasarea executiei programului

```
add $1,$0,$0,: Rb1=0, Rb2=0, ALURes=0
1) addi $4, $0, 10: RD1= 0, Ext-Jmm=10, ALURes= 10
2) add $2,$0,$0 RD1=0, RD2=0, ALURes=0
3) addi $5,$0,100: Rb1=0, Ext-imm=100, ALURes=100
4) bog $1, $4, 7 : RD1=10, Ext-Jmm=7, Branch=0
 5) lu $3,40($2): RD1=0, Ext-Imm: 10, Addres=40, ALURCS=40
 6) addi $3, $3,1. Rb1=5, Ext_inm=1, ALURes=6
 7) ox $3,40($2) RD1=0, Ext-imm=6, ALU Res=6
 8) gub $5,$5,$3 RA1=100, RA2=6, ALURES = 94
 9) addi $2, $2,1 RD1=0, Ext-imm=1, ALURes=1
 10) add: $1,$1,1: RD1=0, Ext_imm=1, ALURes=1
  11) ju : Jump = 1, Addres = 4
  12) sw $5, 60($0): RD+=0, Ext_imm = 60, ALVRes=60
```