Homework #7 of「類比積體電路導論」

作業繳交截止日期:Dec. 5, 2024 12:00 (上傳E3數位平台繳交)

本次作業共兩大題,7.1~7.2

請將作業轉成一個PDF檔案(file size小於10MB),檔名請使用

「AIC_HW7_自己的學號」(例如: AIC_HW7_109700018),於作業繳

交截止日期/時間前,上傳到指定的E3數位平台繳交。

Unless otherwise stated, in the following problems, use the device data shown in Table 1 and assume that VDD=3V. The Dielectric constant of gate oxide is 3.9 and $\varepsilon o=8.854\times10^{-12}F/m$.

Table 1. Level 1 SPICE models for NMOS and PMOS devices.

NMOS Model			
LEVEL = 1 NSUB = 9e+14	VTO = 0.7 LD = 0.08e - 6	GAMMA = 0.45 UO = 350	PHI = 0.9 LAMBDA = 0.1
TOX = 9e-9	PB = 0.9	CJ = 0.56e - 3	CJSW = 0.35e-11
MJ = 0.45 PMOS Model	MJSW = 0.2	CGDO = 0.4e - 9	JS = 1.0e-8
LEVEL = 1	VTO = -0.8	GAMMA = 0.4	PHI = 0.8
NSUB = 5e+14	LD = 0.09e - 6	UO = 100	LAMBDA = 0.2
TOX = 9e-9 MJ = 0.5	PB = 0.9 $MJSW = 0.3$	CJ = 0.94e - 3 CGDO = 0.3e - 9	CJSW = 0.32e-11 JS = 0.5e-8

VTO: threshold voltage with zero V_{SB} (unit: V)

GAMMA: body-effect coefficient (unit: V1/2)

PHI: $2\Phi_F$ (unit: V)

TOX: gate-oxide thickness (unit: m)

NSUB: substrate doping (unit: cm⁻³)

LD: source/drain side diffusion (unit: m)

UO: channel mobility (unit: cm²/V/s)

LAMBDA: channel-length modulation coefficient (unit: V-1)

CJ: source/drain bottom-plate junction capacitance per unit area (unit: F/m²)

CJSW: source/drain sidewall junction capacitance per unit length (unit: F/m)

PB: source/drain junction built-in potential (unit: V)

MJ: exponent in CJ equation (unitless)

MJSW: exponent in CJSW equation (unitless)

CGDO: gate-drain overlap capacitance per unit width (unit: F/m)

CGSO: gate-source overlap capacitance per unit width (unit: F/m)

JS: source/drain leakage current per unit area (unit: A/m²)

- 7.1 In this problem, we design a two-stage op amp based on topology shown in Fig 7.1. Assume a power budget of 6mW, a required output swing of 2.4V, and L_{eff} = 0.5μ m for all devices. Assume $\lambda=\gamma=0$ for bias purpose and $\gamma=0$, $\lambda\neq0$ for small signal analysis.
 - (a) Allocating a current of 1 mA to the output stage and roughly equal overdrive voltages to M₅ and M₆, determine (W/L)₅ and (W/L)₆.

 Note that the gate-source capacitance of M₅ is in the signal path, whereas that of M₆ is not. Thus, M₆ can be quite a lot larger than M₅.
 - (b) Calculate the small-signal gain of the output stage. (calculate the 2nd stage gain only).
 - (c) With the remaining 1 mA flowing through M_7 , determine the aspect ratio of M_3 (and M_4) such that $VGS_3 = VGS_5$.

 This is to guarantee that if Vin = 0 and hence $V_X = V_Y$, then M_5 carries the expected current.
 - (d) Calculate the aspect ratios of M_1 and M_2 such that the overall voltage gain of the op amp is equal to 400.

Fig.7.1

7.2 In the op amp of Fig. 7.2, $(W/L)_{1-8}=120~\mu m/0.5~\mu m$, $I_{SS}=1~mA$, and $V_{b1}=1.7~V$. Assume that $\lambda=\gamma=0$.

- (a) What is the maximum allowable input CM level?
- (b) What is V_X ?
- (c) What is the maximum allowable output swing if the gate of M_2 is connected to the output?
- (d) What is the acceptable range of V_{b2} ?

Fig.7.2