13 DE NOVIEMBRE DE 2019

MEMORIA PRÁCTICA 2

INTELIGENCIA ARTIFICIAL 2019-2020

PEDRO TAMARGO ALLUÉ - 758267

Contenido

Cálculo de la media de los nodos generados y del factor de ramificación efectivo2

Cálculo de la media de los nodos generados y del factor de ramificación efectivo

П	Ш	Nodos Generados b*							
П	d	BFS	IDS	A*h(1)	A*h(2)	BFS	IDS	A*h(1)	A*h(2)
Ш	2	8	13	6	6	2.37	3.14	1.99	1.99
Ιİ	3	20	37	10	9	2.31	2.94	1.73	1.66
H	4	37	101	13	11	2.13	2.85	1.53	1.44
H	5	69	273	18	15	2.05	2.81	1.46	1.39
Ш	6	121	766	26	20	1.98	2.81	1.44	1.35
Ш	7	212	2144	34	23	1.94	2.80	1.40	1.30
Ш	8	374	5951	52	27	1.91	2.80	1.41	1.26
Ш	9	641	17467	78	36	1.88	2.81	1.42	1.27
Ш	10	1008		115	45	1.84		1.42	1.26
Ш	11	1644		170	65	1.82		1.43	1.28
Ш	12	2676		263	88	1.80		1.44	1.28
Ш	13	4354		408	120	1.78		1.45	1.29
Ш	14	7088		645	146	1.77		1.46	1.28
Ш	15	11223		1002	232	1.76		1.46	1.30
Ш	16	17533		1454	325	1.74		1.46	1.31
Ш	17	26784		2403	422	1.73		1.47	1.31
Ш	18	41082		3659	516	1.71		1.48	1.30
Ш	19	62626		5518	781	1.70		1.48	1.31
Ш	20	90121		8914	948	1.69		1.49	1.31
Ш	21	127273		12827	1222	1.67		1.48	1.30
Ш	22	173492		21229	1871	1.65		1.49	1.32
Ш	23	231046		30050	2308	1.64		1.49	1.31
П	24	288524		47099	2944	1.62		1.49	1.31

Tabla comparativa de resultados entre las búsquedas en anchura, en profundidad iterativa, e informadas con el algoritmo A*, utilizando las heurísticas de *Manhattan* y de *MisplacedTille*.

Para la creación de esta tabla, se ha modificado la clase NodeExpander, situada en el paquete aima. core. search. framework y la clase IterativeDeepeningSearch del paquete aima. core. search. uninformed, añadiendo la métrica de nodos generados.

También, se han modificado las heurísticas aplicadas a los algoritmos de búsqueda A*. En el caso de la heurística *Manhattan*, se evalúa en valor absoluto la distancia de la pieza con respecto a su posición en el tablero final (*goal*). En el caso de la heurística *MisplacedTille*, se evalúan las posiciones de todas las piezas con respecto a la posición en el tablero final (*goal*).

Para referirnos a un tablero final (goal) distinto del tablero que se evaluaba por defecto (todas las piezas ordenadas con el hueco al final), se ha dotado a la clase de métodos setter y getter para el atributo goal, siendo este de tipo static.

Para comprobar que los tableros elegidos tenían su solución a la profundidad deseada en cada iteración, se ha utilizado el algoritmo A^* con la heurística Manhattan, que encuentra el camino óptimo a la solución, si la profundidad del camino optimo a la solución no se correspondía a la profundidad evaluada, se generaba un nuevo tablero para repetir la comprobación.

Para el cálculo del factor de ramificación efectivo (b^*) se ha utilizado la clase Biseccion, la cual mediante el método metodoDeBiseccion(1.0000000001, 4, 1E-10) se obtienen los ceros de la función por aproximaciones sucesivas.