OpenCV

Основные понятия и определения

Pug or Loaf?

Что такое OpenCV?

Библиотека компьютерного зрения и машинного обучения с открытым исходным кодом. В неё входят более 2500 алгоритмов, в которых есть как классические, так и современные алгоритмы для компьютерного зрения и машинного обучения.

Пиксели

Пиксель — это строительный блок изображения. Если представить изображение в виде сетки, то каждый квадрат в сетке содержит один пиксель, где точке с координатой (0, 0) соответствует верхний левый угол изображения. К примеру, представим, что у нас есть изображение с разрешением 400х300 пикселей. Это означает, что наша сетка состоит из 400 строк и 300 столбцов. В совокупности в нашем изображении есть 400*300 = 120000 пикселей.

Если рассматриваем стандартное изображение (1920х1080), то кол-во пикселей будет 2 073 600. Что соответствует кол-ву входных нейронов.

RGB. Цветовое пространство

Black	rgb(0, 0, 0)
White	rgb(255, 255, 255)
Red	rgb(255, 0, 0)
Blue	rgb(0, 0, 255)
Green	rgb(0, 255, 0)
Yellow	rgb(255, 255, 0)
Magenta	rgb(255, 0, 255)
Cyan	rgb(0, 255, 255)
Violet	rgb(136, 0, 255)
Orange	rgb(255, 136, 0)

Импорт и просмотр изображений

```
import cv2
image = cv2.imread("./путь/к/изображению.расширение")
cv2.imshow("Image", image)
cv2.waitKey(0)
cv2.destroyAllWindows()
```

Загрузка и сохранение изображения

```
import cv2
image = cv2.imread("./импорт/путь.расширение")# загрузка изображения
cv2.imwrite("./экспорт/путь.расширение", image)# сохранение изображения
```

Особенности импорта изображения OpenCV

- 1. Поменять местами 1-й канал (R красный) с 3-м каналом (В синий), и тогда красный цвет будет (0,0,255), а не (255,0,0).
- 2. Поменять цветовое пространство на RGB:

```
rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
```

И тогда в коде работать уже не с image, а с rgb_image

Стандартная форма

Кадрирование

Буханочка до кадрирования

Буханочка после кадрирования

Кадрирование

```
import cv2
cropped = image[10:500, 500:2000]
viewImage(cropped, "Буханочка обрезалась")

Где image[10:500, 500:2000] — это image[y:y + высота, x:x + ширина].
```

Изменение размера

Нормальная буханочка

Маленькая буханочка

Изменение размера

```
import cv2
scale_percent = 30 # Изменения размера в процентах
width = int(img.shape[1] * scale_percent / 100)
height = int(img.shape[0] * scale_percent / 100)
dim = (width, height)
resized = cv2.resize(img, dim, interpolation = cv2.INTER_AREA)
viewImage(resized, "Буханочка уменьшилась")
```

Поворот

Нормальная буханочка

Перевернутая буханочка

Поворот

```
import cv2
(h, w, d) = image.shape
center = (w // 2, h // 2)
M = cv2.getRotationMatrix2D(center, 180, 1.0)
rotated = cv2.warpAffine(image, M, (w, h))
viewImage(rotated, "Буханочка перевернулась")
```

Поворот. Примечание

image.shape возвращает высоту, ширину и каналы. **M** — матрица поворота — поворачивает изображение на 180 градусов вокруг центра. **-ve** — это угол поворота изображения по часовой стрелке, а **+ve**, соответственно, против часовой.

Градация серого

Преобразует изображение в серое, с 256 оттенками серого, от 0 (чёрный) до 255 (белый)

Перевод в градацию серого

Нормальная буханочка

Буханочка посерела

Перевод в градацию серого

```
import cv2
gray_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
viewImage(gray_image, "Буханочка посерела")
```

Перевод в черно-белое изображение по порогу

Нормальная буханочка

Буханочка почернела/побелела

Перевод в градацию серого

```
import cv2
ret, threshold_image = cv2.threshold(im, 127, 255, 0)
viewImage(threshold_image, "Чёрно-белая буханочка")
```

Размытие

Нормальная буханочка

Мутная буханка

Размытие

```
import cv2
blurred = cv2.GaussianBlur(image, (51, 51), 0)
viewImage(blurred, "Мутная буханка")
```

Размытие. Примечание

Функция GaussianBlur (размытие по Гауссу) принимает 3 параметра:

- 1. Исходное изображение.
- 2. Кортеж из 2 положительных нечётных чисел. Чем больше числа, тем больше сила сглаживания.
- 3. sigmaX и sigmaY. Если эти параметры оставить равными 0, то их значение будет рассчитано автоматически.

Рисование прямоугольников

Нормальная буханочка

Буханочка в прямоугольнике

Рисование прямоугольников

```
import cv2
output = image.copy()
cv2.rectangle(output, (2600, 800), (4100, 2400), (0, 255, 255), 10)
viewImage(output, "Буханочка в прямоугольнике")
```

Рисование прямоугольников. Примечание

Эта функция принимает 5 параметров:

- 1. Само изображение.
- 2. Координата верхнего левого угла (х1, у1).
- 3. Координата нижнего правого угла (х2, у2).
- 4. Цвет прямоугольника (GBR/RGB в зависимости от выбранной цветовой модели).
- 5. Толщина линии прямоугольника.

Рисование линии

Нормальная буханочка

Буханочка и линия

Рисование линии

```
import cv2
output = image.copy()
cv2.line(output, (60, 20), (400, 200), (0, 255, 255), 5)
viewImage(output, "Буханочка и линия")
```

Рисование линии. Примечание

Функция line принимает 5 параметров:

- 1. Само изображение, на котором рисуется линия.
- 2. Координата первой точки (х1, у1).
- 3. Координата второй точки (х2, у2).
- 4. Цвет линии (GBR/RGB в зависимости от выбранной цветовой модели).
- 5. Толщина линии.

Текст

Нормальная буханочка

"Буханочка

Текст

```
import cv2
output = image.copy()
cv2.putText(output, "Буханочка", (1500, 3600),cv2.FONT_HERSHEY_SIMPLEX, 15, (255, 0, 0), 40)
viewImage(output, "Буханочка")
```

Текст. Примечание

Функция putText принимает 7 параметров:

- 1. Непосредственно изображение.
- 2. Текст для изображения.
- 3. Координата нижнего левого угла начала текста (x, y).
- 4. Используемый шрифт.
- 5. Размер шрифта.
- 6. Цвет текста (GBR/RGB в зависимости от выбранной цветовой модели).
- 7. Толщина линий букв.

Распознавание лиц