

3^{ème} année

Traitement du signal Contrôle continu N°2 –19 juin 2020

NOM:	Durée : 2 heures	
Prénom :	Délai supplémentaire de 15 minutes pour pallier aux problèmes de connexion, accès à Moodle, etc.	
Groupe (entourer): II HF		

Exercice 1

1a) Calculer la transformée en z, notée X(z), du signal x(n) défini par :

 $x(n) = \sin\left(\frac{n\pi}{6}\right)$ si $n \ge 0$ et 0 sinon. Précisez le domaine de convergence.

Indications: $\sin(x) = \frac{e^{jx} - e^{-jx}}{2j}$ $\sin(\frac{\pi}{6}) = \frac{1}{2}$ $\sum_{n=0}^{n=+\infty} (a)^n = \frac{1}{1-a}$ si a < 1

1b) Calculer la TZ inverse de : $Y(z) = \frac{z}{(z-1)(z-0.5)}$ en décomposant tout d'abord Y(z) en éléments simples.

Exercice 2

Soit le signal h(k) tel que : h(0) = 1; h(1) = 0.75; h(2) = 0.5; h(k) = 0 ailleurs.

2a) Déterminer la TZ, notée H(z), de h(k).

2b) Sachant que : $H(z) = \frac{Y(z)}{X(z)}$, déterminez l'équation donnant y(k) en fonction des valeurs de x

Exercice 3

On considère un filtre numérique dont l'équation de récurrence est :

$$y(k) = -y(k-2) + x(k) - x(k-2)$$

3a) Est-ce l'équation d'un filtre récursif ? Purement récursif ? D'un filtre RII ou RIF ? Justifiez vos réponses.

3b) Déterminer sa fonctions de transfert, H(z).				

3c) Exprimer son gain complexe et représenter	les courbes du module et de la phase entre 0 et
Fe/2.	

Exercice 4

Un système possédant une entrée x(k) et une sortie y(k) est décrit par les trois équations suivantes :

$$y(k) = y(k-1) + 2v(k) + v(k-1)$$

$$v(k) = 2v(k-1) + w(k)$$

$$w(k) = x(k) + 2x(k-1)$$

4a) En utilisant la TZ, démontrez que l'équation de récurrence décrivant la totalité de ce système est : y(k) = 3y(k-1) - 2y(k-2) + 2x(k) + 5x(k-1) + 2x(k-2)

4b) Proposer un schéma de réalisation de ce système en utilisant les notations suivantes :

 z^{-1} : opérateur retard, x: opérateur multiplication par a et x opérateur addition.

Exercice 5

On veut réaliser un filtre numérique à partir du filtre analogique de fonction de transfert $H_c(p) = \frac{\tau p}{1 + \tau p}$ en utilisant l'invariance de la dérivation.

5a) Démontrer la relation donnant le lien entre p et z si l'on impose **l'invariance de la dérivation**, à

savoir :
$$p = \frac{1-z^{-1}}{T_e}$$
, où T_e est le pas d'échantillonnage ($T_e = 1/F_e$).

5b) Déterminer la fonction de transfert H(z) du filtre numérique obtenu.

5c) Déterminer l'équation aux différences de ce filtre.

5d) Ce filtre est-il stable ? Justifiez votre réponse.