

Arquitetura de Computadores

1° Série de Problemas Unidade de Processamento

Considera apenas a Unidade de Processamento apresentada na figura e as funções indicadas na tabela. A
Unidade de Armazenamento é contém registos de 16 bits e implementa as micro-operações descritas por
FSUA. A Unidade Funcional implementa as micro-operações descritas por FSUF. As flags (V,N,Z,C)
são guardadas num registo na UF.

UP: Micro-operações na UF e UA

DA, AA, BA		FSUF		FW		FSUA	
Função	Cod.	Função	Cod.	Função	Cod.	Função	Cod.
R0	00	A	000	Não escreve	0000	Não Escreve	00
R1	01	A + B	001	Guarda C	0001	$(\mathbf{R}\mathbf{D}) = 0$	01
R2	10	A - B	010	Guarda Z	0010	(RD) = DATA	10
R3	11	B + 1	011	Guarda N	0100	Não utilizado	11
		B - 1	100	Guarda V	1000		
		SR (B)	101				
		SL (B)	110				
		NAND (A,B)	111				

- a) Considera a Unidade de Armazenamento apresentada. Esquematize uma possível solução para implementar esta unidade respeitando a dimensão dos registos e o sinal FSUA.
- b) Discuta a execução de uma operação de 3 operandos, e.g., A+B+C, A+B*C, etc. na UP apresentada. Como se alterariam a UA e a UF se fosse um requisito ter operações com 3 operandos na UP.

- c) Considere a Unidade Funcional apresentada. Admita que as operações aritméticas descritas na tabela e selecionadas por FSUF são implementadas com recurso a um somador completo de 16 bits e a alguma lógica combinatória adicional para transformar os operandos A e B nas entradas do somador. Determine o bloco de lógica necessário para transformar o bit menos significativo (B₀) do operando B na respetiva entrada do somador completo (Y₀).
- d) Indique o significado dos vários bits de estado, dando um exemplo para cada situação.
- e) Como deveria alterar a UP para permitir realizar as operações
 - i) Rx < Ry + M[Rz]
 - $ii) \quad M[Rx] < R1 + K$
- f) Para a arquitectura da UP apresentada na figura, indique a estrutura possível de uma palavra de controlo e exemplifique para os casos das seguintes micro-operações:
 - i) $R_1 \leftarrow R_1 + R_2$
 - ii) $R_2 \leftarrow R_0 Data_in$
- g) Faça uma descrição abreviada do ficheiro VHDL que descreve a unidade de processamento. Para a descrição do VHDL, assuma a existencia de todos os componentes indicados na figura, tendo apenas que os declarar e instanciar de forma a cumprir com o esquema da figura.