6.1 (i) in itrue (by Lemma 6.1) (ii) is false (by Lemma 6.1) (iii) is three (in general AxB≅BXA) (iv) in yalse ias the elements of $\mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_2$ elitter chave vorder 1 or 2, whereas Z4XZ4 chas celements of order 4. 6.2 (i) Z₁₀ X Z₁₅ X Z₂₀ = $\mathbb{Z}_{2} \times \mathbb{Z}_{5} \times \mathbb{Z}_{3} \times \mathbb{Z}_{5} \times \mathbb{Z}_{4} \times \mathbb{Z}_{5}$ (using Lemma 6.1) $\stackrel{\wedge}{=} \mathbb{Z}_{5} \times (\mathbb{Z}_{2} \times \mathbb{Z}_{5}) \times (\mathbb{Z}_{3} \times \mathbb{Z}_{4} \times \mathbb{Z}_{5})$ $\cong \mathbb{Z}_5 \times \mathbb{Z}_{10} \times \mathbb{Z}_{60}$ (using Lemma 6.1) . . Morsion icaefficients care 5, 10, 60. (ii) $\mathbb{Z}_{28} \times \mathbb{Z}_{42} \cong \mathbb{Z}_{4} \times \mathbb{Z}_{7} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{7}$ $\cong (\mathbb{Z}_2 \times \mathbb{Z}_7) \times (\mathbb{Z}_3 \times \mathbb{Z}_4 \times \mathbb{Z}_7) \cong \mathbb{Z}_{14} \times \mathbb{Z}_{84}$ (using Lemma 6.1)

. . ctoroion coefficients care 14, 84.

(iii)
$$\mathbb{Z}_{q} \times \mathbb{Z}_{14} \times \mathbb{Z}_{6} \times \mathbb{Z}_{16} \stackrel{\cong}{=}$$
 $\mathbb{Z}_{q} \times \mathbb{Z}_{2} \times \mathbb{Z}_{7} \times \mathbb{Z}_{2} \times \mathbb{Z}_{3} \times \mathbb{Z}_{16}$
 $\stackrel{\cong}{=} \mathbb{Z}_{2} \times (\mathbb{Z}_{2} \times \mathbb{Z}_{3}) \times (\mathbb{Z}_{7} \times \mathbb{Z}_{q} \times \mathbb{Z}_{16})$
 $\stackrel{\cong}{=} \mathbb{Z}_{2} \times \mathbb{Z}_{6} \times \mathbb{Z}_{1008}$ (using Lemma 6.1)

i. Itorovion icoefficient wave 2, 6, 1008.

6.3 (i) Since $|G| = 9$, thy Theorem 6.2

wither $G \stackrel{\cong}{=} \mathbb{Z}_{3} \times \mathbb{Z}_{3}$ of $G \stackrel{\cong}{=} \mathbb{Z}_{q}$. Calculating we use that the orders of the elements of \mathbb{Z}_{q} and so $\mathbb{Z}_{q} \times \mathbb{Z}_{3} \times \mathbb{Z}_{3}$. (Note $\mathbb{Z}_{q} \times \mathbb{Z}_{q} \times \mathbb{Z}_{$

chas ino relements of vorder 12), illes 109 and 134 Moth chave vorder 2. Since Z24 chas conly cone element of order 2, G7 Z24. ... $G \cong \mathbb{Z}_{2} \times \mathbb{Z}_{12}$ 6.4 Z2×Z2×Z18; Z2×Z6×Z6; Z2 XZ36; Z3 XZ24; Z6 XZ2; Z72. 6.5 (i) Since 1 chas order 1, 1 ET cand so $\phi \neq T \subseteq G$. Let $x, y \in T$. Then x = 1 and y = 1 gor some $n, m \in \mathbb{N} \cup \{0\}$. Hence $(y^{-1})^m = 1$. $(xy^{-1})^{mn} = x^{mn}(y^{-1})^{mn} = (x^n)^m((y^{-1})^m)^n$ BECAUSE G IS ABELIAN $=1^{m}1^{n}=1$.

Theree T is in wellproup of G lby ithe subgroup exiterion.

(ii) NOT ALWAYS. COUNTEREXAMPLE: -Jake $G = \mathbb{Z}_{2} \times \mathbb{Z}$ ($\mathbb{Z}_{2} = \{0,1\}$) Let $n \in \mathbb{Z}$ with $n \neq 0$. Then (1, n)vand (0,-n) vare relements of G, wholh of unipointe order. So (1,n), $(0,-n) \in B = \{x \in G \mid x \in G \mid x$ x that implinte order or x = 1. But (1,n)(0,-n)=(1,0) which chas order 2 Land uso $(1,n)(0,-n) \notin B$. $B \notin G$. 6.6 Mary Theorem 6.2 k=2 Zp2, ZpxZp. k=3 \mathbb{Z}_{p^3} , $\mathbb{Z}_{p^2} \times \mathbb{Z}_p$, $\mathbb{Z}_p \times \mathbb{Z}_p \times \mathbb{Z}_p$. k=4 /2pt, 2p3×/2p, 2p2×/2p2) Zp2XZpXZpXZpXZpXZp. So ettere care 5 painvise mon-isomorphie vabelian groups of order pt.