Operációs rendszerek BSc

8.Gyak 2022.03.28.

Készítette:

Lénárt Zsófia Eszter Gazdaságinformatika BV9CU6 1. **feladat** – Adott a következő ütemezési feladat, amit a FCFS, SJF és Round Robin (RR:10ms) ütemezési algoritmus alapján határozza meg következő teljesítmény értékeket, metrikákat (külön-külön táblázatba):

FCFS megoldás:

	P1	P2	P3	P4
Érkezés	0	7	11	20
CPU idő	14	8	36	10
Indulás	0	14	22	58
Befejezés	14	22	58	68
Várakozás	0	7	10	38

Algoritmus neve	FCFS
CPU kihasználtság	99,42%
Körülfordulási idők átlaga	31 ms
Várakozási idők átlaga	13,75 ms
Válaszidők átlaga	

SJF megoldás:

	P1	P2	P3	P4
Érkezés	0	7	11	20
CPU idő	14	8	36	10
Indulás	0	14	32	22
Befejezés	14	22	68	32
Várakozás	0	7	21	2

Algoritmus neve	SJF
CPU kihasználtság	99,42%
Körülfordulási idők átlaga	24,5 ms
Várakozási idők átlaga	7,5 ms
Válaszidők átlaga	

RR (10 ms) megoldás:

	P1	P2	P3	P4
Érkezés	0,10	7	11,32,52,62	20
CPU idő	14,4	8	36,26,16,6	10
Indulás	0,18	10	22,42,52,62	32
Befejezés	10,22	18	32,52,62,68	42
Várakozás	0,8	3	10,10,0,0	12

Algoritmus neve	RR (10ms)
CPU kihasználtság	
Körülfordulási idők átlaga	112/4=28 ms
Várakozási idők átlaga	44/4=11 ms
Válaszidők átlaga	

2. feladat - Adott négy processz a rendszerbe, melynek a ready sorban a beérkezési sorrendje: A, B, C és D. Minden processz USER módban fut és mindegyik processz futásra kész. Kezdetben mindegyik processz p_uspri = 60. Az A, B, C processz p_nice = 0, a D processz p_nice = 5. Mindegyik processz p_cpu = 0, az óraütés 1 indul, a befejezés legyen 301. óraütés-ig.

RR Nélkül: (külön pdf-ben feltöltve)

```
100.-nál:
```

A process: p_pri =60+50/4=72,5 kerekítve = 73 p_cpu= 100/2=50 200.-nál:

A process: p_pri= 60+25/4=66 p_cpu=50/2=25

B process: p_pri =60+50/4=72,5 kerekítve = 73 p_cpu=100/2=50

300.-nál:

A process: p_pri=60+13/4=63 p_cpu=25/2=13

B process: p_pri=60+25/4=63 p_cpu=50/2=25

C process: p_pri=60+50/4=63 p_cpu=100/2=50

RR-nal: (külön pdf-ben feltöltve)

100.-nál:

KF = (3*3)/(3*3+1) = 9/10 = 0.9

A process: p_pri= 60+36/4+2*0=69 p_cpu=40*0,9=36

B process: p_pri= 60+18/4+2*0=65 p_cpu=20*0,9=18

C process: p_pri= 60+18/4+2*0=65 p_cpu=20*0,9=18

D process: p_pri= 60+18/4+2*5=75 p_cpu=20*0,9=18 200.-nál:

KF = (3*3)/(3*3+1) = 9/10 = 0,9

A process: p_pri= 69+50/4+2*0=82 p_cpu=56*0,9=50

B process: p_pri= 65+53/4+2*0=52 p_cpu=58*0,9=53

C process: p_pri= 65+34/4+2*0=34 p_cpu=38*0,9=34

D process: p_pri= 75+34/4+2*5=34 p_cpu=38*0,9=34