Intégration

Sommes de Riemann

Déterminer les limites de (u_n) dans chacun des cas suivants :

1)
$$u_n = \frac{1}{n^4} \sum_{k=1}^n k^2$$

1)
$$u_n = \frac{1}{n^4} \sum_{k=1}^n k^3$$
 3) $u_n = \frac{1}{n} \sum_{k=1}^n \sin(\frac{k\pi}{n})$

2)
$$u_n = \sum_{k=1}^n \frac{n^2}{(n+2k)}$$

2)
$$u_n = \sum_{k=1}^n \frac{n^2}{(n+2k)^3}$$
 4) $u_n = \frac{1}{n^2} \sum_{k=0}^n k \cos(\frac{k\pi}{n})$

▶ 2

Déterminer un équivalent, quand n tend vers $+\infty$, de la suite u définie par

$$\forall n \in \mathbb{N}^*, \quad u_n = \sum_{k=0}^{n-1} \sqrt[n]{2^k}.$$

▶ 3

1) Soit (u_n) la suite définie par

$$\forall n \in \mathbb{N}^*, \quad u_n = \frac{1}{n} \sum_{k=1}^n \ln(1 + \frac{k}{n}).$$

Montrer que (u_n) converge et préciser sa limite.

2) Soit (v_n) la suite définie par

$$\forall n \in \mathbb{N}^*, \quad v_n = \left(\frac{(2n)!}{n! \, n^n}\right)^{\frac{1}{n}}.$$

Déterminer $ln(v_n)$ et étudier la convergence de (v_n) .

Propriétés générales de l'intégrale

⊳ 4

Soit f et g deux fonctions définies sur le même segment [a, b] à valeurs réelles. On suppose f et g continues. Les affirmations suivantes sont-elles vraies ou fausses (preuve / contre-exemple)?

- 1) f est identiquement nulle sur [a, b] si et seulement si $\int_a^b f(x) \, \mathrm{d}x = 0.$
- 2) Si $f \leq g$ sur [a,b] et que $\int_a^b f(x) dx = \int_a^b g(x) dx$, alors f = g.

► 5 Une suite d'intégrales

On définit, pour tout $n \in \mathbb{N}$, l'intégrale

$$I_n = \int_0^1 \frac{\mathrm{d}x}{1 + x^n}.$$

- 1) Justifier que I_n est bien définie pour tout $n \in \mathbb{N}$. Calculer I_0 , I_1 et I_2 .
- **2)** Prouver que la suite (I_n) est monotone.
- **3)** Montrer que la suite (I_n) est convergente. Conjecturer la valeur de sa limite puis démontrer.
- **4)** Démontrer que, pour tout $n \in \mathbb{N}^*$,

$$\int_0^1 \frac{x^n}{1+x^n} \, \mathrm{d}x = \frac{\ln(2)}{n} - \frac{1}{n} \int_0^1 \ln(1+x^n) \, \mathrm{d}x.$$

5) Établir que : $\lim_{n\to+\infty}\int_0^1 \ln(1+x^n) dx = 0.$

En déduire que : $I_n = 1 - \frac{\ln(2)}{n} + o\left(\frac{1}{n}\right)$.

► 6 Une autre...

Pour tout entier naturel n, on pose $I_n = \int_0^1 t^n \sqrt{1+t} dt$.

- 1) Justifier l'existence de I_n pour tout $n \in \mathbb{N}$.
- **2)** Calculer I_0 et I_1 .
- 3) Montrer que la suite (I_n) est décroissante puis qu'elle
- 4) À l'aide d'un encadrement de $\sqrt{1+t}$, établir que

$$\forall n \in \mathbb{N}, \quad \frac{1}{n+1} \leqslant I_n \leqslant \frac{\sqrt{2}}{n+1}$$

En déduire la limite de la suite (I_n) et que $I_n = \mathcal{O}\Big(\frac{1}{n}\Big)$.

5) Montrer que :

$$\forall t \in [0,1], \quad 0 \le \sqrt{2} - \sqrt{1+t} \le \frac{1-t}{2}.$$

En déduire la limite de la suite $(n I_n)$ puis un équivalent de la suite (I_n) .

Prouver que les suites (I_n) et (J_n) définies par

$$I_n = \int_0^1 t^n \sin^2 t \, dt$$
 et $J_n = \int_0^1 t^n e^{-t} \, dt$

sont décroissantes et convergentes. Préciser leur limite.

▶ 8 Découpage

Calculer les intégrales suivantes :

1)
$$\int_{-2}^{3} |x-1| dx$$
, 3) $\int_{0}^{2\pi} |\sin t| dt$,

2)
$$\int_{-3}^{5} |x^2 - 9| dx$$
, **4)** $\int_{0}^{\pi/2} |\sin \theta - \cos \theta| d\theta$.

▶ 9 Étude d'une primitive non calculable

Soit $f: x \mapsto e^{-x^2}$. On note F l'unique primitive de f sur \mathbb{R} qui s'annule en 0.

- 1) Justifier l'existence de F et en donner une expression faisant intervenir des intégrales.
- 2) Justifier que F est impaire, qu'elle est de classe \mathscr{C}^{∞} sur IR et étudier son sens de variation. Montrer qu'elle admet un unique point d'inflexion.
- 3) On montre ici que F admet une limite finie en $+\infty$.
 - **a.** Justifier que $\forall t \geqslant 1$, $e^{-t^2} \leqslant e^{-t}$. Majorer la fonction $t \mapsto e^{-t^2}$ sur l'intervalle [0,1] par une constante.
 - **b.** En déduire que : $\forall x \ge 1$, $F(x) \le 1 + \frac{1}{e} e^{-x}$.
 - **c.** En déduire que F admet une limite finie en $+\infty$ et proposer un majorant de cette limite.

▶ 10 Une intégrale à bornes mobiles

Soit Φ la fonction définie sur \mathbb{R}_+ par

$$\forall x \ge 0, \quad \Phi(x) = \int_{x}^{3x} e^{-t^2} dt.$$

- 1) Justifier que Φ est bien définie.
- 2) Montrer que Φ est de classe \mathscr{C}^1 sur \mathbb{R}_+ et déterminer une expression de sa dérivée.
- 3) Étudier les variations de Φ .
- 4) Établir que

$$\forall x \ge 0$$
, $2x e^{-9x^2} \le \Phi(x) \le 2x e^{-x^2}$.

En déduire la limite de Φ en $+\infty$.

▶ 11 Une autre

Soit F et G les fonctions définies par

$$G(x) = \int_0^x \frac{1}{t^4 + 1} dt$$
 et $F(x) = \int_x^{2x} \frac{1}{t^4 + 1} dt$.

- 1) Déterminer le domaine de définition de G, montrer que G est de classe \mathscr{C}^1 et déterminer sa dérivée.
- **2)** Montrer que *F* est définie sur IR. Étudier son signe et sa parité.
- 3) Montrer que F est dérivable sur \mathbb{R} et calculer F'.
- **4)** Montrer que : $\forall x > 0$, $\frac{x}{16x^4+1} \le F(x) \le \frac{x}{x^4+1}$. En déduire les limites de F en $+\infty$ et en $-\infty$.

Soit $f: [0,+\infty[\to \mathbb{R} \text{ de classe } \mathscr{C}^1 \text{ et vérifiant } f(0)=0$ et $\forall \, x \in [0,+\infty[\, , \, 0 \leqslant f'(x) \leqslant 1.$ Démontrer que :

$$\forall x \in [0, +\infty[, \left(\int_0^x f\right)^2 \geqslant \int_0^x f^3.$$

(Indication : introduire $F: x \mapsto \left(\int_0^x f\right)^2 - \int_0^x f^3$ et déterminer F(0). Que pourrait-on prouver concernant F qui résoudrait le problème?)

▶ 13

Soit $\phi: [0,1] \to \mathbb{R}$ une fonction continue.

1) Montrer que :
$$\int_0^1 \varphi(t) e^{t/n} dt \xrightarrow[n \to +\infty]{} \int_0^1 \varphi(t) dt.$$

2) Montrer que :
$$\int_{0}^{1-\frac{1}{n}} \varphi(t) dt \xrightarrow[n \to +\infty]{} \int_{0}^{1} \varphi(t) dt.$$

▶ 14

Soit f continue, monotone sur $[0,+\infty[$, telle que $\lim_{x\to +\infty} f(x) = a$ où a est un réel fixé.

On pose
$$I_n = \int_n^{n+1} f(t) dt$$
.

- 1) Prouver que la suite (I_n) converge vers un réel que l'on précisera.
- 2) Cette conclusion reste-t-elle valable si l'on ne suppose plus f monotone?

▶ 15

Soit $\phi \colon [0,1] \to \mathbb{R}$ une fonction de classe \mathscr{C}^1 sur [0,1]. Démontrer que

$$\int_{0}^{1} x \, \varphi\left(\frac{x}{n}\right) \mathrm{d}x \xrightarrow[n \to +\infty]{} \frac{\varphi(0)}{2}.$$

Formule de Taylor avec reste intégral

⊳ 16

En appliquant la formule de Taylor avec reste intégral à une fonction bien choisie...

1) montrer que, pour tout réel $x \ge 0$,

$$x - \frac{x^2}{2} + \frac{x^3}{3(1+x)^3} \le \ln(1+x) \le x - \frac{x^2}{2} + \frac{x^3}{3}.$$

2) montrer que, pour tout réel $x \ge 0$,

$$0 \le \sqrt[3]{1+x} - 1 - \frac{x}{3} + \frac{x^2}{9} \le \frac{5x^3}{81}.$$