CLAIMS

What is claimed is:

A method for reducing pilot tone phase interference at the transmitter in a discrete multi-tone (DMT) communications system comprising: generating DMT signal segments REVERB and SEGUE with a pseudo-3 random pattern generator using an initial pattern that minimizes the pilot tone phase 4 offsets in both segments; and 5 transmitting the above-defined REVERB and SEGUE signals in the DMT 6 initialization sequence. 7 The method of claim 1, further comprising: 2. 1 generating ADSL-over-POTS DMT signal segments C-REVERB and C-2 SEGUE with a pseudo-random pattern generator polynomial as defined by the ADSL 3 standard but using an initial pattern of 90 (0x05A); and 4 transmitting the C-REVERB and C-SEGUE signal in the DMT ADSL 5 standard initialization sequence. 6

the phase locked-loop.

1	3.	A method for timing recovery at the receiver in a discrete multi-tone
2	(DMT) comm	nunications system comprising:
3		receiving a plurality of signals generated and transmitted by an associated
4	far-end transr	nission unit;
5		converting the plurality of received signals through an analog to digital
6	converter (AI	DC);
7		detecting a phase error on the received pilot tone;
8		applying the phase error to a phase locked-loop to generate a frequency
9	correction sig	mal; and
10		using the frequency correction signal to modify the sampling time of the
11	ADC.	
1	4.	The method of claim 3, wherein the detection of phase error is
2	compensated	by an offset based on the received signal segment in the initialization
3	sequence.	
1	5.	The method of claim 3, wherein the step of detecting a phase error is
2	performed wi	th a state machine in communication with the ADC output and the input to

1	6. The method of cla	im 3, further comprising:
2	synchronizing a di	gital to analog converter (DAC) in the transmitting path
3	by using a sampling clock derived	I from the phase locked-loop controlled ADC.
1	7. A method for timin	ng recovery at the receiver in a discrete multi-tone
2	(DMT) communications system of	omprising:
3	receiving a pilot to	one generated and transmitted by an associated far-end
4	transmission unit along with othe	r signal streams at a particular receiver;
5	converting the plu	rality of received signals through an analog to digital
6	converter (ADC) to create a digital	al signal stream;
7	detecting the cycli	c prefix in the received digital signal stream;
8	zeroing out the rec	eived digital signal stream from the input to a phase
9	locked-loop while the cyclic prefi	x is present in the received signal stream to create a
10	frequency correction signal; and	
11	using the frequenc	y correction signal to modify the ADC sampling timing.
1	8. The method of cla	im 7, further comprising:
2	synchronizing a di	g tal to analog converter (DAC) in the transmitting path
3	by using a sampling clock derived	from the phase locked-loop controlled ADC.

1	9. A method for timing recovery at the receiver in a discrete multi-tone
2	(DMT) communications system comprising:
3	receiving a standard pilot one generated and transmitted by an associated
4	far-end transmission unit along with other signal streams at a particular receiver;
5	converting the plurality of received signals through an analog to digital
6	converter (ADC) to create a digital signal stream;
7	detecting the cyclic prefix in the received signal stream;
8	performing a time-domain equalization on the received signal stream;
9	removing the cyclic prefix portion of the equalized digital signal stream
10	from the input to a phase locked-loop to create a frequency correction signal; and
11	using the frequency correction signal to modify the sampling time of the
12	ADC.
1	10. The method of claim 9, further comprising:
2	synchronizing a digital to analog converter (DAC) in the transmitting path
3	by using a sampling clock derived from the phase locked-loop controlled ADC.

		1
1	11.	A method for timing recovery at the receiver in a discrete multi-tone
2	(DMT) commu	unications system comprising:
3		receiving a standard pilot tone generated and transmitted by an associated
4	far-end transm	ission unit along with other signal streams at a particular receiver;
5		converting the plurality of received signals through an analog to digital
6	converter (AD	C) to create a digital signal stream;
7		detecting the cyclic prefix in the received signal stream;
8		using the equalized signal stream with the cyclic prefix portion removed to
9	estimate the pl	nase error with a discrete Fourier transform (DFT);
10		applying the estimated phase error to the input of a phase locked-loop to
11	create a freque	ency correction signal; and
12		using the frequency correction signal to modify the sampling time of the
13	ADC.	
1	12.	The method of claim 11, further comprising:
2		synchronizing a digital to analog converter (DAC) in the transmitting path
3	by using a sam	pling clock derived from the phase locked-loop controlled ADC.
1	12	A digital signal processor configured to apply the method of claim 1

- 1 14. A digital signal processor configured to compensate for the offset in phase 2 error on a received pilot tone based upon the received signal segment in the discrete 3 multi-tone (DMT) system initialization sequence.
- 1 15. The digital signal processor of claim 14, wherein the phase error compensation is accomplished with a state machine.
- 1 16. A digital signal processor configured to detect and zero out the cyclic prefix from a received digital signal stream when the cyclic prefix is present to create an input to a phase locked-loop.
- 1 17. The digital signal processor of claim 16, wherein the digital signal processor is configured to perform a time-domain equalization on a received digital data stream and to create an input to a phase locked-loop when the cyclic prefix is zeroed out from the signal stream.

1	18. A digital signal processor configured to detect and remove the cyclic	
2	prefix from a received digital signal stream when the cyclic prefix is present, the digital	
3	signal processor further configured to first perform a time-domain equalization of the	
4	digital signal stream, then to perform a discrete Fourier transform on the digital signal	
5	stream when the cyclic prefix is not present to create a phase error signal for application	
6	at the input to a phase locked-loop.	
1	19. A system for timing recovery in a discrete multi-tone communications	
2	system comprising:	
3	an analog to digital converter (ADC);	
4	a state machine in communication with the ADC configured to determine	
5	the phase offset on a pilot tone in a received signal segment; and	
6	a phase locked loop in communication with the state machine configured	
7	to compensate for the phase offset and to apply a control signal to the ADC, wherein the	
8	received signal samples are synchronized for further processing at a rate compatible with	
9	that of a source transmission.	

1	20. The system of claim 19, further comprising:
2	a sampling clock in communication with the analog to digital converter,
3	the sampling clock in further communication with a digital to analog converter (DAC) in
4	an upstream data path for synchronizing data transmitted in an upstream direction to the
5	source.
1	21. A system for timing recovery in a discrete multi-tone communications
2	system comprising:
3	an analog to digital converter (ADC) configured to create a digital
4	representation of the received signal;
5	a phase locked-loop in communication with the ADC configured to
6	receive the received signal and to apply a control signal to the ADC, wherein the received
7	signal sample stream is synchronized for further processing at a rate compatible with that
8	of a source transmission. and
9	a symbol synchronizer in communication with the ADC configured to
10	determine when the data stream contains a cyclic prefix, the symbol synchronizer further
11	configured to remove the received signal from the phase locked-loop input when the
12	cyclic prefix is present

1	22. The system of claim 21, further comprising:
2	a sampling clock in communication with the analog to digital converter,
3	the sampling clock in further communication with a digital to analog converter (DAC) in
4	the transmitting path for synchronizing data transmitted in the reverse direction to the far
5	end transmission unit.
1	23. A system for timing recovery in a discrete multi-tone communications
2	system comprising:
3	an analog to digital converter (ADC) configured to create a digital
4	representation of the received signal;
5	an equalizer in communication with the ADC, the equalizer configured to
6	perform a time-domain equalization on the received signal;
7	a phase locked-loop in communication with the ADC and the equalizer
8	configured to receive the received signal and to apply a control signal to the ADC,
9	wherein the received signal sample stream is synchronized for further processing at a rate
10	compatible with that of a source transmission; and
11	a symbol synchronizer in communication with the ADC configured to
12	determine when the signal stream contains a cyclic prefix, the symbol synchronizer
13	further configured to remove the time-domain equalized signal from the phase locked-
14	loop input when the cyclic prefix is present.

1	24. The system of claim 23, further comprising:
2	a sampling clock in communication with the analog to digital converter,
3	the sampling clock in further communication with a digital to analog converter (DAC) in
4	the transmitting path for synchronizing signal transmitted in the reverse direction to the
5	far-end transmission unit.
1	25. A system for timing recovery in a discrete multi-tone communications
2	system comprising:
3	an analog to digital converter (ADC) configured to create a digital
4	representation of the received signal;
5	an equalizer in communication with the ADC, the equalizer configured to
6	perform a time-domain equalization on the received signal;
7	a discrete Fourier transform (DFT) in communication with the equalizer,
8	the DFT configured to convert the time-equalized received signal and to generate a pilot
9	tone phase error estimate signal
10	a symbol synchronizer in communication with the ADC configured to
11	remove the cyclic prefix from the signal sample stream; and
12	a phase locked-loop in communication with the ADC and the DFT configured to
13	receive the pilot tone phase error estimate and to apply a control signal to the ADC,
14	wherein the received signal sample stream is synchronized for further processing at a rate
15	compatible with that of a source transmission.

		1
1	28.	A method for timing recovery at the receiver in a discrete multi-tone
2	(DMT) comm	nunications system comprising:
3		means for receiving a standard pilot tone and far-end signal from an
4	associated far	e-end transmission;
5		means for converting the plurality of received signals from analog to
6	digital signals	s;
7		means for detecting the cyclic prefix in the received far-end signal;
8		means for removing the cyclic prefix in the received far-end signal;
9		means for estimating the phase error in the pilot tone with a discrete
1.0	Fourier transf	form (DFT);
11		means for applying the estimated phase error to the input of a phase
12	locked-loop to	o create a frequency correction signal; and
13		means for using the frequency correction signal to modify the sampling
14	rate of the ana	alog to digital conversion.

	I
1	29. A method for timing recovery at the receiver in a discrete multi-tone
2	(DMT) communications system comprising:
3	means for receiving a sandard pilot tone along with a plurality of signals
4	at this particular receiver from a far-end signal;
5	means for converting the plurality of signals from analog to digital signals;
6	means for performing a time-domain equalization on the far-end signal;
7	means for detecting the cyclic prefix in the far-end signal;
8	means for zeroing out the equalized digital signal from the input to a phase
9	locked-loop while the cyclic prefix is present in the received signal to create frequency
LO	correction signal; and
l1	means for using the frequency correction signal to modify the sampling
L2	rate of the analog to digital conversion.

