

Quad 12-Bit Serial Voltage-Output DAC

PRELIMINARY

DAC-8420

FEATURES

Guaranteed Monotonic Over Temperature Unipolar Or Bipolar Operation Buffered Voltage Outputs High-Speed Serial Digital Interface Reset to Zero- Or Center-Scale Wide Supply Range, +5V-Only to ±15V Low Power Consumption (60mW max) Available in 16-pin DIP and SO Packages

APPLICATIONS
Software-Controlled Calibration
Servo Controls
Process Control and Automation

GENERAL DESCRIPTION

The DAC-8420 is a quad, 12-bit voltage-output DAC with serial digital interface, in a 16-pin package. Utilizing BiCMOS technology, this monolithic device features unusually high circuit density and low power consumption. The simple, east-to-use serial digital input and fully buffered analog voltage outputs require no external components to achieve specified performance.

The three-wire serial digital input is easily interfaced to microprocessors running up to 20MHz clock rates, with minimal additional circuitry. Each DAC is addressed individually by a 16-bit serial word consisting of a 12-bit data word with an address header. The user-programmable reset control CLR forces all four DAC outputs to either zero- or midscale, asynchronously overriding the current DAC register values. The output voltage range, determined by the inputs VREFH1 and VREFLO, is set by the user for positive or negative Unipolar or Bipolar signal swings within the supplies. This structure allows considerable design flexibility, yielding circuits with low temperature drift.

The DAC-8420 is available in 16-pin epoxy DIP, CerDIP, and wide-body SO (small-outline surface mount) packages. Operation is specified with supplies ranging from +5V-only to $\pm 15V$, with references of +2.5V to $\pm 10V$ respectively. Power dissipation when operation from $\pm 15V$ supplies is less than $330 \, \text{mW}(\text{max})$, and only $60 \, \text{mW}(\text{max})$ with a +5V supply.

For applications requiring product meeting MIL-STD-883, contact your local sales office for he DAC-8420/883 data sheet, which specifies operation over the -55°C to +125°C temperature range.

FUNCTIONAL DIAGRAM

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use; nor for any infringements of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Telex: 924491 Cable: ANALOG NORWOODMASS

Tel: 617/329-4700 Fax:617/326-8703

Twx:710/394-6577

DAC-8420— SPECIFICATIONS

PARAMETER		≤ +85°C unless otherwise spec COND	MIN	TYP		UNITS
ntegral Linearity "E"	INL		Mill	.5	±1	LSB
ntegral Linearity "E"	INL	Note 2, V _{SS} = 0V				LSB
ntegral Linearity "F"	INL	11010 2, 1 55 = 01			±2	LSB
ntegral Linearity "F"	INL	Note 2, V _{SS} = 0V			±4	LSB
ifferential Linearity	DNL	Monotonic over temp.	-1			LSB
In Scale Error	ZSE	Monotonic over temp.	- 1		±4	LSB
ull Scale Error	FSE					LSB
lin Scale Error	ZSE	Note 2, V _{SS} = 0V				LSB
ull Scale Error	FSE	Note 2, V _{SS} = 0V		100	±8	LSB
fin Scale Tempco				100		om/°C
ull Scale Tempco				100	<u>P</u>	om/°C
MATCHING PERFORMANCE						
inearity Matching				±1		LSB
SEEDENGE -				_		
Positive Reference Input Range		Note 2	V _{REFL} +2.5		V _{DD} -2.5	
legative Reference Input Range		Note 2	V _{SS}		V _{REFH} -2.5	-
Vegative Reference Input Range		Note 2, V _{SS} = 0V	<u></u> 0		V _{REFH} -2.5	$\overline{}$
<u> </u>	1				+1.0	mA
Reference High Input Current	IREFH	Code 000 _H			+1.0	mA
MPLIFIER CHARACTERISTICS						
Output Current	I _{OUT}		-1.25		+1.25	mA
ettling Time	ts	to .01%		6		μsec
Slew Rate	SR	10% to 90%		2.2		/µsec
OGIC CHARACTERISTICS						
ogic Input High Voltage	VINH	T _A = +25°C	2.4			
ogic Input Low Voltage	VINL	T _A = +25°C			0.8	V
ogic Input Current	IN				1	_μ Α
nput Capacitance	C _{IN}			8		pF
OCIO TIMINO CUARA OTERICA	OC (Note O)					
OGIC TIMING CHARACTERISTIC Data Setup Time	tds					ns
Data Hold	tdh					ns
Clock Pulse Width HIGH	tch		60			ns
Clock Pulse Width LOW	tcl		60			ns
Select Time	tcss					ns
Deselect Delay	tcsh					ns
oad Disable Time	tld1					ns
oad Delay	tld2					ns
oad Pulse Width	tldw					ns
Clear Pulse Width	tclrw					ns
ettling Time	ts					ns
SUPPLY CHARACTERISTICS	000			100		<u>7</u> 1
Power Supply Sensitivity	PSS			100		opm/V
Positive Supply Current	lop			7	_12	m A
legative Supply Current	Iss		-10	-7		m A
ower Dissipation	P _{DISS}				60	mW

NOTES:

- 1. All supplies can be varied ±5% and operation is guaranteed. Device is tested with V_{DD}=+4.75V.
- Operation is guaranteed over this reference range, but linearity is neither tested nor guaranteed.
 All input control signals are specified with tr = tf = 5ns (10% to 90% of +5V) and timed from a voltage level of 1.6V.

DAC-8420 - ±15 Volt Specifications

ELECTRICAL CHARACTERIST otherwise specified. See Note 1 for s			0.0V, VREFL=-	10.0V, -4	I0°C ≤ T _A ≤	+85°C unless
PARAMETER	supply variat	COND	MIN	TYP	MAX	UNITS
Integral Linearity "E"	INL	_ COND_	IVIII	.25	±.5	LSB
Integral Linearity "F"	INL				±1	LSB
Differential Linearity	DNL	Monotonic Over Temperature	-1			LSB
Min Scale Error	ZSE	$R_1 = 2k\Omega$			±2	LSB
Full Scale Error	FSE	$R_L = 2k\Omega$			±2	LSB
Min Scale Tempco	TCZSE	$R_L = 2k\Omega$		15		ppm/°C
Full Scale Tempco	TCFSE	$R_L = 2k\Omega$		20		pm/°C
Full Scale Tempes	TOFSE	ni = 2832			<u></u>	D 1117 O
MATCHING PERFORMANCE						LOD
Linearity Matching				±1		LSB
REFERENCE						
Positive Reference Input Range		Note 2	V _{REFL} +2.5		V _{DD} -2.5	V
Negative Reference Input Range		Note 2	-10		V _{REFH} -2.5	V
Reference High Input Current	IREFH		-2.75	+1.5	+2.75	mA
Reference Low Input Current	REFL		-2.75	-2	0	mA
	HEPL					
AMPLIFIER CHARACTERISTICS						
Output Current	lout_		-5		+5	<u>mA</u>
Settling Time	t _s	to .01%		8		µsес
Slew Rate	SR	10% to 90%		2.3		V/μsec
LOGIC CHARACTERISTICS						
Logic Input High Voltage	VINH	T _A = +25°C	2.4			V
Logic Input Low Voltage	VINL	T _A = +25°C			0.8	V
Logic Input Current	IN				1	μΑ
Input Capacitance	CIN			8		pF
Crosstalk				>72		dB
Large Signal Bandwidth		-3dB, $V_{REFH} = 1$ to +10V typ		160		kHz
LOCIC TIMING CHARACTERISTIC	C (Note 2)					
LOGIC TIMING CHARACTERISTIC Data Setup Time			20			
Data Hold	tds tdh		20			ns ns
Clock Pulse Width HIGH	tch		30			ns
Clock Pulse Width LOW	tcl		50			ns
Select Time	tcss		50			ns
Deselect Delay	tcsh		10			ns
Load Disable Time	tld1		50			ns
Load Delay	tld2		10			ns
Load Pulse Width	tidw		40			ns
Clear Pulse Width	tclrw		50			ns
Settling Time	ts			6		μs
CUIDDLY CHADACTEDICTICS						
SUPPLY CHARACTERISTICS Power Supply Sensitivity	PSS				150	ppm/V
		VREFHI = +2.5V, VREFLO=-2	51/	7	12	mA
Positive Supply Current	סטי	VNECTI = +2.34, VNECTO=-2	.5 V	,		11177
Positive Supply Current Negative Supply Current	I _{DD}	VNETNI = +2.5V, VNETLO=-2	-10	7		mA

NOTES:

- 1. All supplies can be varied ±5% and operation is guaranteed. Device is tested with nominal supplies.
- 2. Operation is guaranteed over this reference range, but linearity is neither tested nor guaranteed.
- 3. All input control signals are specified with tr = tf = 5ns (10% to 90% of +5V) and timed from a voltage level of 1.6V.

1. VDD(Substrate)	9. GND
2. VOUTD	10. SDI
3. VOUTC	11. CLK
4. VREFLO	12. CS\
5. VREFHI	13. NC
6. VOUTB	14. LD\
7. VOUTA	15. CLR\
8. VSS	16. CLSEL

DIE SIZE 0.119 X 0.283 inch, 33,677sq. mils (3.023 X 7.188 mm, 21.73 sq. mm)

For additional DICE ordering information, refer to Data Book.

WAFER TEST LIMITS at V_{DD} = +15.0 V , V_{SS} =-15.0 V, VREFHI = +10.0V, VREFLO = -10.0V, T_A = +25°C, unless otherwise

			DAC-8420G		
PARAMETER	SYMBOL	CONDITIONS	LIMIT	UNITS	
Integral Nonlinearity	INL	_	±1	LSB MAX	
Differential Nonlinearity	DNL,		±1	LSB MAX	
Min Scale Offset			±1	LSB MAX	
Max Scale Offset			±1	LSB MAX	
Logic Input High Voltage	VINH		2.4	V MIN	
Logic Input Low Voltage	VINL		0.8	V MAX	
Logic Input Current	IN		1	µА МАХ	
Positive Supply Current	lDD		15	mA MAX	
Negative Supply Current	Iss		10	mA MAX	

NOTE:
Electrical tests are performed at water probe to the limits shown. Due to variations in assembly methods and normal yield loss, yield after packaging is not guaranteed for standard product dice. Consult factory to negotiate specifications based on dice lot qualification through sample lot assembly and testing.

TIMING DIAGRAM

1. $\Theta_j A$ is specified for worst case mounting conditions, i.e., $\Theta_j A$ is specified for device in socket.

ABSOLUTE MAXIMUM RATINGS (T_A = 25°C unless

TIPOCECTE WILDING CONTROLLED	(1A - 20 C aimess
otherwise noted)	
V _{SS} to V _{DD}	-0.3 V, +36.0 V
V _{SS} to GND	-0.3 V, +18.0V
V _{DD} to GND	+0.3 V, -18.0 V
V _{SS} to VREFLO	-0.3 V, V _{SS} – 2.0V
VREFHI to VREFLO	$+2.0 \text{ V}, \text{V}_{SS} - \text{V}_{DD}$
VREFHI TO V _{DD}	+2.0 V, +33.0V
IREFHI, IREFLO	? mA
Current into Any Pin	± 15 mA
Digital Input Voltage to DGND	-0.3V, V _{LOGIC} +0.3V
Operating Temperature Range EP, FP, ES, FS, ET, FT	
EP, FP, ES, FS, ET, FT	-40°C to +85°C
BT	-55°C to +125°C
Dice Junction Temperature	+150°C
Storage Temperature	-65°C to +150°C
Power Dissipation	1000mW
Lead Temperature (Soldering, 60 sec.)	300°C

	Thermal Resistance				
PACKAGE TYPE	⊖ _{JA} ¹ UNITS	⊖ JC			
16-Pin Plastic DIP (P)	°C/W	xx			
16-Pin Hermetic DIP (T)	°C/W	xx			
16-Lead Small Outline Surface Mount (S)	°C/W	xx			
NOTE:	•				

- 1. Stressesabove those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation at or above this specification is not implied. Exposure to the above maximum rating conditions for extended periods may affect device reliability.
- Digital inputs and outputs are protected, however, permanent damage r occur on unprotected units from high-energy electrostatic fields. Keep unit. conductive foam or packaging at all times until ready to use. Use proper anti-static handling procedures.
- 3. Remove power before inserting or removing units from their sockets.
 4. Analog Outputs are protected from short circuits to ground or either supply.

CAUTION:

PIN FUNCTION DESCRIPTION

POWER SUPPLIES

VDD: Positive Supply, +5V to +15V.

VSS: Negative Supply, 0 to -15V.

GND: Digital Ground.

CLK: System Serial Data Clock Input, TTL/CMOS levels. Data presented to the input SDI on the falling edge of clock is shifted into the internal serial-parallel input register. This input is logically ANDed with CS\.

CONTROL INPUTS (All are CMOS/TTL compatible)

CLR\: Asynchronous Clear, active low. Sets internal data registers A - D to zero or mid-scale, depending on current state of CLSEL.

The data in the serial input shift register is unaffected by this control.

CLSEL: Determines action of CLR\. If HIGH, a Clear command will set the internal DAC registers A - D to mid-scale (800_H). If LOW, the registers are set to zero (000H).

CS\: Device Chip Select, active low. This input is logically ANDed with the clock and disables the serial data register input when HIGH. When LOW, data input clocking is enabled. See the Control Function Table.

LD\: Asynchronous DAC Register Load Control, active low. The data currently contained in the serial input shift register is shifted out to the DAC data registers on the falling edge of LD\, independent of CS\. Input data must remain stable while LD\ is LOW. DATA INPUT (All are CMOS/TTL compatible)

SDI: Serial Data Input. Data presented to this pin is loaded into the internal serial-parallel shift register, which shifts data in beginning with DAC address bit A1. This input is ignored when CS\ is HIGH.

The format of the 16-bit serial word is:

(FIRST)															(LAST)
B0	B1	B2	B3	B4	B5	B6	B7	B8	B9	B10	B11	B12	B13	B14	B15
A1	<u>A</u> 0	NC	NC	D11	D10	D9	D8	D7	D6	D5	D4	D3	D2	D1	D0_
- Address Word -			(MSB)				DAC	Data W	ord	-				(LSB)	

REFERENCE INPUTS

VREFHI: Upper DAC ladder reference voltage input. Allowable range is (VDD-2.5V) to (VREFLO+2.5V).

VREFLO: Lower DAC ladder reference voltage input, equal to zero scale output. Allowable range is VSS to (VREFHI-2.5V).

ANALOG OUTPUTS

VOUTA through VOUTD: Four buffered DAC voltage outputs.

CONTROL FUNCTION TABLE

CLK ^I	CS\1	LDI	CLR	CLSEL	Serial Input Shft Register	DAC Registers A- D
NC	H	H	L	H	No Change	Loads midscale value (40H)
NC	H	H	L	L	No Change	Loads zero scale value (00H)
NC	H	Н	1	H/L	No Change	Latches value
—	L	H	H	NC	Reads in serial input SDI	No Change
1	L	H	н	NC	Shifts register one bit.	No Change
H	NC(T)	+	H	NC	No Change	Loads the serial data word ²
H	NC	L	H	NC	No Change	Transparent ³
NC	H	H	H	NC	No Change	No Change

NC = Don't Care.

1. CS\ and CLK are interchangeable.

2. Returning CS\ HIGH while CLK is HIGH avoids an additional "false clock" of serial input data. See Note 1.

3. Do not clock in serial data while LD\ is LOW.

DIGITAL INTERFACE OPERATION

The serial input of the DAC-8420, consisting of CS\, SDI, and LD\, is easily interfaced to a wide variety of microprocessor serial ports. As shown in the Control Function Table and the Timing Diagram, while CS\ is LOW the data presented to the input SDI is shifted into the internal serial/parallel shift register on the rising edge of the clock, with the address MSB first, data LSB last, The data format, shown above, is two bits of DAC address and two "don't care" fill bits, followed by the 12-bit DAC data word. Once all 16 bits of the serial data word have been input, the load control LD\ is strobed and the word is parallel-shifted out onto the internal data bus. The two address bits are decoded and used to route the 12-bit data word to the appropriate DAC data register.

DAC ADDRESS WORD DECODE TABLE

A1	A0	DAC Addressed
0	70	DAC A
0	1	DAC B
1	0	DACC
1	1	DACD

ANALOG OUTPUT CODE TABLE

DAC Data Word (HEX)	VOUT	Note
FFF	VREFLO+ (VREFHI - VREFLO) 4096 x 4095	Full-scale output
801	VREFLO+ (VREFHI - VREFLO) 4096 x2049	Midscale + 1
800	VREFLO+ (VREFHI – VREFLO) 4096 x2048	Midscale
7FF	VREFLO+ (VREFHI – VREFLO) 4096 x 2047	Midscale – 1
000	VREFLO + (VREFHI – VREFLO) 4096	Zero-scale

PROGRAMMING THE ANALOG OUTPUTS

The unique differential reference structure of the DAC-8420 allows the user to tailor the output voltage range precisely to the needs of the application. Instead of wasting DAC resolution on an unused region near the positive or negative rail, the DAC-8420 allows the user to determine both the upper and lower limits of the analog output voltage range. Thus, as shown in the Analog Output Code Table the outputs of DACs A through D range between VREFHI and VREFLO, within the limits specified in the Electrical Characteristics tables.

pg 7

Figure X. Output Voltage Range Programming

PACKAGE DIMENSIONS

16-Pin Epoxy DIP (P)

	IN	CHES	MILLIA		
SYMBOL	MIN	MAX	MIN	MAX	NOTES
A	0 0532	0 0688	1 35	1.75	
ь	0 0138	0.0192	0 35	0.49	
•	0 0076	0.0000	0.19	0.26	
٥	0.3859	0.3937	3.80	10.06	
E	0.1497	0.1574	3.50	4.00	_
н	0.2264	0.2440	5.00	6.20	
•	0.05	00 BSC	1.27		
h	0.0099	0.0196	0.25	0.50	
ι	0 0160	0.0506	0 41	1.27	
a	0 0040	0 0098	0.10	0 25	
7	or	*	0*	r	

NOTES

- 1. Package dimensions conform to JEDEC sy MS-012-AC (Issue A, June 1965).
 2. Index area; a dimple or lead one identific located adjacent to lead one and is within

16-Pin SOIC (S)

	INC	HES	MILLIA	MILLIMETERS		
SYMBOL	MIN	MAX	MIN	MAX	NOTES	
A	6.0026	0.1043	2.36	2.66		
	0.0130	0.0192	0.26	3		
•	0.0001	9.0125	0.20	2		
В	0.3077	0.4123	10.10	10.00		
E	0.2914	0.2000	7,40	7.80		
Н	0.3097	8.4183	10.00	10.65		
•	0.60	99 BBC	1.27	90C		
<u> </u>	0.0000	6.0291	1.25	9.74		
L	0.0157	0.0000	0.40	1.27		
	0.0040	0.0110	0.10	1.30		
•	•		•	•		