# Minimization by Incremental Stochastic Surrogate with Application to Bayesian Deep Learning

## B. Karimi<sup>1,2</sup>, E. Moulines<sup>2</sup>

## INRIA<sup>1</sup>, CMAP École Polytechnique<sup>2</sup>

belhal.karimi@polytechnique.edu



We are interested in the constrained minimization of a large sum of nonconvex functions defined as:

$$\min_{\theta \in \Theta} \left[ f(\theta) \triangleq \sum_{i=1}^{N} f_i(\theta) \right] \tag{1}$$

Beforehand, let  $\mathcal{T}(\Theta)$  be a neighborhood of  $\Theta$  and assume that:

**M 1.** For all  $i \in [N]$ ,  $f_i$  is continuously differentiable on  $\mathcal{T}(\Theta)$ .

**M 2.** For all  $i \in [N]$ ,  $f_i$  is bounded from below, i.e. there exist a constant  $M_i \in \mathbb{R}$  such as for all  $\theta \in \Theta$ ,  $f_i(\theta) \geq M_i$ .

For any  $\theta \in \Theta$  and  $i \in [N]$ , we say, following (Mairal, 2015) that a function  $f_{i,\theta} : \mathbb{R}^p \to \mathbb{R}$  is a surrogate of  $f_i$  at  $\theta$  if the following properties are satisfied:

• the function  $\vartheta \to f_{i,\theta}(\vartheta)$  is continuously differentiable on  $\mathcal{T}(\Theta)$ 

ullet for all  $\vartheta \in \Theta$ ,  $f_{i,\theta}(\vartheta) \geq f_i(\vartheta)$  ,  $f_{i,\theta}(\theta) = f_i(\theta)$  and  $\nabla f_{i,\theta}(\vartheta)\Big|_{\vartheta=\theta} = \nabla f_i(\vartheta)\Big|_{\vartheta=\theta}$ .

The gap  $f_{i,\theta}-f_i$  plays a key role in the convergence analysis and we require this error to be L-smooth for some constant L>0 Denote by  $\langle\cdot,\cdot\rangle$  the scalar product, we also introduce the following stationary point condition:

**Definition 1.** (Asymptotic Stationary Point Condition)

A sequence  $(\theta^k)_{k>0}$  satisfies the asymptotic stationary point condition if

$$\liminf_{k \to \infty} \inf_{\theta \in \Theta} \frac{\langle \nabla f(\theta^k), \theta - \theta^k \rangle}{\|\theta - \theta^k\|_2} \ge 0.$$
 (2)

#### **MISO Scheme**

The incremental scheme of (Mairal, 2015) computes surrogate functions, at each iteration of the algorithm, for a mini-batch of components:

#### Algorithm 1 MISO algorithm

**Initialization**: given an initial parameter estimate  $\theta^0$ , for all  $i \in [N]$  compute a surrogate function  $\vartheta \to f_{i,\theta^0}(\vartheta)$ .

**Iteration k**: given the current estimate  $\theta^{k-1}$ :

1. Pick a set  $I_k$  uniformly on  $\{A \subset [N], \operatorname{card}(A) = p\}$ 

2. For all  $i \in I_k$  and compute  $\vartheta \to f_{i,\theta^{k-1}}(\vartheta)$ , a surrogate of  $f_i$  at  $\theta^{k-1}$ .

3. Set  $\theta^k \in \arg\min_{\theta \in \Theta} \sum_{i=1}^N a_i^k(\theta)$  where  $a_i^k(\theta)$  are defined recursively as follows:

$$a_i^k(\vartheta) \triangleq \begin{cases} f_{i,\theta^{k-1}}(\vartheta) & \text{if } i \in I_k \\ a_i^{k-1}(\vartheta) & \text{otherwise} \end{cases} \tag{3}$$

#### MISSO Scheme

Case when the surrogate functions computed in Algorithm 1 are not tractable.

Assume that the surrogate can be expressed as an integral over a set of latent variables  $z = (z_i \in Z_i, i \in [N]) \in Z$  where  $Z = X_{i=1}^N Z_i$  where  $Z_i$  is a subset of  $\mathbb{R}^{m_i}$ .

$$f_{i,\theta}(\vartheta) \triangleq \int_{\mathsf{Z}_i} r_{i,\theta}(z_i,\vartheta) p_i(z_i,\theta) \mu_i(\mathrm{d}z_i) \quad \text{for all } (\theta,\vartheta) \in \Theta^2.$$
 (4)

 Our scheme is based on the computation, at each iteration, of stochastic auxiliary functions for a mini-batch of components. For  $i \in [N]$ , the auxiliary function, noted  $\hat{f}_{i,\theta}(\vartheta)$  is a Monte Carlo approximation of the surrogate function  $f_{i,\theta}(\vartheta)$  defined by (4) such that:

$$\hat{f}_{i,\theta}(\vartheta) \triangleq \frac{1}{M} \sum_{m=0}^{M-1} r_{i,\theta}(z_i^m, \vartheta) \quad \text{for all } (\theta, \vartheta) \in \Theta^2$$
(5)

where  $\{z_i^m\}_{m=0}^{M-1}$  is a Monte Carlo batch.

Algorithm 2 MISSO algorithm

**Initialization**: given an initial parameter estimate  $\theta^0$ , for all  $i \in [N]$  compute the function  $\vartheta \to f_{i,\theta^0}(\vartheta)$  defined by (5).

**Iteration k**: given the current estimate  $\theta^{k-1}$ :

1. Pick a set  $I_k$  uniformly on  $\{A \subset [N], \operatorname{card}(A) = p\}$ 

2. For all  $i \in I_k$ , sample a Monte Carlo batch  $\{z_i^{k,m}\}_{m=0}^{M_k-1}$  from  $p_i(z_i, \theta^{k-1})$ .

3. For all  $i \in I_k$ , compute the function  $\vartheta \to \hat{f}_{i,\theta^{k-1}}(\vartheta)$  defined by (5).

4. Set  $\theta^k \in \arg\min_{\theta \in \Theta} \sum_{i=1}^N \hat{a}_i^k(\theta)$  where  $\hat{a}_i^k(\theta)$  are defined recursively as follows:

$$\hat{a}_i^k(\vartheta) \triangleq \begin{cases} \hat{f}_{i,\theta^{k-1}}(\vartheta) & \text{if } i \in I_k \\ \hat{a}_i^{k-1}(\vartheta) & \text{otherwise} \end{cases} \tag{6}$$

#### Convergence Guarantees Assumptions

Whether we use Markov Chain Monte Carlo or direct simulation, we need to control the supremum norm of the fluctuations of the Monte Carlo approximation. Let  $i \in [N]$ ,  $\{j_i(z_i,\vartheta),z_i\in\mathsf{Z}_i,\vartheta\in\Theta\}$  be a family of measurable functions,  $\lambda_i$  a probability measure on  $Z_i \times Z_i$ . We define:

$$C_{i}(j_{i}) \triangleq \sup_{\theta \in \Theta} \sup_{M>0} M^{-1/2} \mathbb{E}_{i,\theta} \left[ \sup_{\theta \in \Theta} \left| \sum_{m=0}^{M-1} \left\{ j_{i}(z_{i}^{m}, \theta) - \int_{\mathsf{Z}_{i}} j_{i}(z_{i}, \theta) p_{i}(z_{i}, \theta) \lambda_{i}(\mathrm{d}z_{i}) \right\} \right]$$

$$(7)$$

**M 3.** For all  $i \in [N]$  and  $\theta \in \Theta$ :

$$\lim_{k \to \infty} C_i(r_{i,\theta}) < \infty \quad and \quad \lim_{k \to \infty} C_i(\nabla r_{i,\theta}) < \infty. \tag{8}$$

**M 4.**  $\{M_k\}_{k\geq 0}$  is a non deacreasing sequence of integers which satisfies  $\sum_{k=0}^{\infty} M_k^{-1/2} < \infty$ .





#### Theorem: MISSO Convergence Guarantees

Assume M1-M4. Let  $(\theta^k)_{k>1}$  be a sequence generated from  $\theta^0 \in \Theta$  by the iterative application described by Algorithm 2. Then:

(i)  $(f(\theta^k))_{k>1}$  converges almost surely.

(ii)  $\left(\theta^k\right)_{k\geq 1}$  satisfies the Asymptotic Stationary Point Condition.

#### Application to Variational Bayesian Inference

• Let  $x=(x_i, i\in [\![N]\!])$  and  $y=(y_i, i\in [\![N]\!])$  be i.i.d. input-output pairs and w be a global latent variable taking values in W as subset of  $\mathbb{R}^J$ . A natural decomposition of the joint distribution is:

$$p(y, x, w) = p(w) \prod_{i=1}^{N} p_i(y_i | x_i, w)$$
(9)

The goal is to calculate the posterior distribution p(w|y,x).

Variational inference problem boils down to minimizing the following KL divergence:

$$\theta^* = \arg\min_{\theta \in \Theta} \mathrm{KL}(q(w; \theta) \parallel p(w|y, x)) = \arg\min_{\theta \in \Theta} f(\theta)$$
 (10)

where for all  $\theta \in \Theta$ ,  $f(\theta) = \sum_{i=1}^{N} f_i(\theta)$  with :

$$f_i(\theta) \triangleq -\int_{\mathsf{W}} q(w;\theta) \log p_i(y_i, x_i | w) \mathrm{d}w + \frac{1}{N} \mathrm{KL}(q(w;\theta) \parallel p(w)) = r_i(\theta) + d(\theta)$$
 (11)

• Define following quadratic surrogate at  $\theta \in \Theta$ :

$$f_{i,\theta}(\vartheta) \triangleq f_i(\theta) + \nabla f_i(\theta)^{\top} (\vartheta - \theta) + \frac{L}{2} \|\vartheta - \theta\|_2^2$$
 (12)

where  $\|\cdot\|_2$  is the  $\ell_2$ -norm and L is an upper bound of the spectral norm of the Hessian of  $f_i$  at  $\theta$ .

• Reparametrization trick: We assume that for all  $\theta \in \Theta$ , the distribution of the random vector  $W=t(\theta,\epsilon)$  where  $\epsilon\sim\mathcal{N}_d(0,\mathrm{Id})$  has a density  $q(\cdot,\theta)$ . Then, following (Proposition 1)blundell:

$$\nabla \int_{\mathsf{W}} \log p_i(y_i, x_i | w) q(w, \theta) dw = \int_{\mathsf{W}} J(\theta, e) \nabla \log p_i(y_i, x_i | t(\theta, e)) \phi(e) de$$

where for each  $e \in \mathbb{R}^d$ ,  $J(\theta, e)$  is the Jacobian of the function  $t(\cdot, e)$  with respect to  $\theta$ .

• The pair  $(r_{i,\theta}(e,\vartheta),\phi(e))$  defining  $f_{i,\theta}(\vartheta)$  is given by:

$$r_{i,\theta}(e,\vartheta) \triangleq (-\log p_i(y_i, x_i | t(\theta, e)) + d(\theta))$$

$$+ (-J(\theta, e)\nabla \log p_i(y_i, x_i | t(\theta, e)) + \nabla d(\theta))^{\top} (\vartheta - \theta) + \frac{L}{2} \|\vartheta - \theta\|_2^2$$
(13)

The MISSO algorithm consists in:

. Picking a set  $I_k$  uniformly on  $\{A \subset [\![N]\!], \operatorname{card}(A) = p\}$ .

2. Sampling a Monte Carlo batch  $\{\epsilon^{k,m}\}_{m=0}^{M_k-1}$  from the standard Gaussian distribution.

3. Setting  $\theta^k = \theta^{k-1} - \frac{1}{L} \sum_{i=1}^N \hat{a}_i^k$  where  $\hat{a}_i^k$  are defined recursively as follows:

$$\hat{a}_i^k \triangleq \begin{cases} -\frac{1}{M_k} \sum_{m=0}^{M_k-1} J(\theta, e^{k,m}) \nabla_{\theta} \log p_i(y_i, x_i | t(\theta, e^{k,m})) + \nabla d(\theta^{k-1}) & \text{if } i \in I_k \\ \hat{a}_i^{k-1} & \text{otherwise} \end{cases}$$
(14)

#### Training a Bayesian Neural Network on MNIST

#### Settings

- 2-layer bayesian neural network
- Tanh activation function
- Standard Gaussian prior on the weight
- Gaussian variational posterior independent of i and l (layers)

$$p(w) = \mathcal{N}(0, \text{Id})$$
$$p(y_i|x_i, w) = \text{Softmax}(f(x_i, w))$$

- Input layer d = 784
- $\bullet$  A single hidden layer of p=100 hyperbolic tangent units
- ullet Final softmax output layer with K=10 classes
- MNIST dataset  $N=60\,000$



Figure 1: ELBO convergence.

### References

(pai())

(Blundell et al.(2015)Blundell, Cornebise, Kavukcuoglu, and Wierstra) C. Blundell, Cornebise, K. Kavukcuoglu, and D. Wierstra. Weight uncertainty in neural networks. In *Proceedings of the* 32Nd International Conference on ICML - Volume 37, ICML'15, pages 1613–1622. JMLR.org, 2015.

(Gal(2016)) Y. Gal. *Uncertainty in Deep Learning*. PhD thesis, University of Cambridge, 2016.

(Le Roux et al.(2012)Le Roux, Schmidt, and Bach) N. Le Roux, M.W. Schmidt, and F. Bach. A stochastic gradient method with an exponential convergence rate for finite training sets. In NIPS, pages 2672-2680, 2012.

(Mairal(2015)) J. Mairal. Incremental Majorization-Minimization Optimization with Application to Large-Scale Machine Learning. SIAM, 2015.

(Ranganath et al.(2014)Ranganath, Gerrish, and Blei) R. Ranganath, S. Gerrish, and D. Blei. Black Box Variational Inference. PMLR, 33:814-822, 2014.