Math 321 Lecture 22

Yuchong Pan

March 1, 2019

1 Fourier Series

Let $f \in \mathcal{R}[-\pi, \pi]$. Recall: $\alpha_0 + \sum_{k=1}^n (\alpha_k \cos kx + \beta_k \sin kx)$ is called the **Fourier series** of f if

$$\begin{cases}
\alpha_0 = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) dx, \\
\alpha_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos kx dx, & k \ge 1, \\
\beta_k = \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \sin kx dx, & k \ge 1.
\end{cases}$$
(*)

As of now, we do not know if this series converges for any $x \in [-\pi, \pi]$.

Definition 1. The n^{th} partial Fourier series/sum of f is given by

$$(S_n f)(x) = \alpha_0 + \sum_{k=1}^n (\alpha_k \cos kx + \beta_k \sin kx),$$

where $\alpha_0, \alpha_k, \beta_k$ are as in (*) for $1 \le k \le n$. Note that $S_n f$ is a well-defined trignometric polynomial for every $n \ge 1$.

Question: What do $S_n f$ represent, especially since $\{S_n f : n \geq 1\}$ need not converge to f pointwise?

Consider the following space of functions in $[-\pi, \pi]$. Fix any $p \in [1, +\infty)$,

$$L^p_*[-\pi,\pi] := \left\{ f: [-\pi,\pi] \xrightarrow[2\pi\text{-periodic}]{\text{continuous}} \mathbb{C} \right\},$$

equipped with the norm

$$||f||_p = \left[\frac{1}{2\pi} \int_{-\pi}^{\pi} |f(x)|^p dx\right]^{\frac{1}{p}}, \qquad 1 \le p < \infty.$$

For $p = \infty$,

$$||f||_{\infty} \stackrel{\text{def}}{=\!\!\!=\!\!\!=} \sup\{|f(x)| : x \in [-\pi, \pi]\}.$$

Special case: p=2.

Theorem 1. Consider the following minimization problem: Take any $f \in L^2_*[-\pi, \pi]$.

What is $\min\{\|f - T\| : T \in \text{span}\{1, \cos kx, \sin kx : 1 \le k \le n\}$?

When is the minimum attained?

Answer: $\min\{\|f-T\|: T\in \text{span}\{1,\cos kx,\sin kx: 1\leq k\leq n\}$ is attained if and only if $T=S_nf=n^{\text{th}}$ Fourier series.

Math 321 Lecture 22 Yuchong Pan

Note that

$$\underbrace{\dim\left(L_*^2[-\pi,\pi]\right)}_{\{1,\sin kx,\cos kx:k\geq 1\}} = \infty$$

 L^2_*

Proof. We have

$$||f - T||_2^2 = \int_{-\pi}^{\pi} (f(x) - T(x))^2 dx = \int_{-\pi}^{\pi} (f(x))^2 dx - 2 \int_{-\pi}^{\pi} f(x) T(x) dx + \int_{-\pi}^{\pi} (T(x))^2 dx.$$

Suppose $T(x) = a_0 + \sum_{k=1}^{n} (a_k \cos kx + b_k \cos kx), \ a_0, a_k, b_k \in \mathbb{C}$. Then,

$$\begin{split} \|f - T\|_2^2 &= \int_{-\pi}^{\pi} (f(x))^2 dx - 2 \int_{-\pi}^{\pi} f(x) \left[a_0 + \sum_{k=1}^{n} (a_k \cos kx + b_k \cos kx) \right] dx + \int_{-\pi}^{\pi} (T(x))^2 dx \\ &= \int_{-\pi}^{\pi} (f(x))^2 dx - 2 \left[a_0 \underbrace{\int_{-\pi}^{\pi} f(x) dx}_{=2\pi\alpha_0} + \sum_{k=1}^{n} \left(a_k \underbrace{\int_{-\pi}^{\pi} f(x) \cos kx dx}_{=\pi\alpha_k} + b_k \underbrace{\int_{-\pi}^{\pi} f(x) \sin kx dx}_{=\pi\beta_k} \right) \right] \\ &+ \int_{-\pi}^{\pi} (T(x))^2 dx \\ &= \int_{-\pi}^{\pi} (f(x))^2 dx - 2\pi \left[2\alpha_0 a_0 + \sum_{k=1}^{n} (a_k \alpha_k + b_k \beta_k) \right] + a_0^2 \cdot 2\pi + \pi \sum_{k=1}^{n} \left(a_k^2 + b_k^2 \right) \\ &= \int_{-\pi}^{\pi} (f(x))^2 dx + 2\pi \underbrace{\left[a_0^2 - 2\alpha_0 a_0 \right]}_{=(a_0 - \alpha_0)^2 - \alpha_0^2} + \pi \sum_{k=1}^{n} \underbrace{\left(a_k^2 - 2\alpha_k a_k \right)}_{=(a_k - \alpha_k)^2 - \alpha_k^2} + \pi \underbrace{\sum_{k=1}^{n} \left(b_k^2 - 2\beta_k b_k \right)}_{=(b_k - \beta_k)^2 - \beta_k^2} \\ &= \underbrace{\int_{-\pi}^{\pi} (f(x))^2 dx - \pi \left[2\alpha_0^2 + \sum_{k=1}^{n} \left(\alpha_k^2 + \beta_k^2 \right) \right]}_{\text{independent of } a_k, b_k \text{ (dependent on } f)} \\ &\geq \underbrace{\int_{-\pi}^{\pi} (f(x))^2 dx - \pi \left[2\alpha_0^2 + \sum_{k=1}^{n} \left(\alpha_k^2 + \beta_k^2 \right) \right]}_{\text{minimum value, attained when } a_0 = \alpha_0, a_k = \alpha_k, b_k = \beta_k} \end{split}$$

Exercise: $||f - S_n f||_2^2 = ||f||_2^2 - ||S_n f||_2^2$