Rejection Classification Index (RC-Index) can evaluate how well uncertainty functions as a predictor of incorrectness.

Katherine E. Brown, PhD, Steve Talbert, PhD, Douglas A. Talbert, PhD

Assessing the Quality of Uncertainty Calibration

INTRO

Standard empirical evaluation of uncertainty involves generating and visually inspecting rejectionclassification plots.

Rejection Classification Index

- Let x_i indicate the proportion of most uncertain data and x_i indicate model's accuracy with this data removed
- RC-Index is calculated as the area under the curve given by $\{(x_0,0),(x_1,y_1-y_0),...,(x_m,y_m-y_0)\}$
- Enforces initial accuracy starting at 0 to emphasize magnitude and direction of accuracy change
- Possible range of values is -1 to 1.

Methods

- All values and figures are averaged across 10-fold CV.
- Visualization produced by vertically averaging accuracy across 10-fold CV.
- Dataset: Level 1 Trauma Center In-Field Trauma Triage Registry (n = 52,888)
- Classification Model: Neural Network
- Uncertainty Measures:
 - Epistemic Uncertainty: Bayesian Dropout
 - Softmax Uncertainty: Derived from output probabilities
- Proposed UQ evaluation techniques:
 - Rejection Classification Curves
 - RC-Index

RESULTS

DISCUSSION

- Epistemic and Softmax uncertainty produce usable rejectionclassification compared to random control.
- Epistemic uncertainty produces a more consistent, monotonic increase than Softmax uncertainty
- Behavior of rejection classification curves reflected in RC-Index values

VANDERBILT WUNIVERSITY MEDICAL CENTER

> Department of Biomedical Informatics

Take a picture to download the full text

