2024년 SDI과제 킥오프 워크샵 (2024.06.12 ~ 06.13 / 양평 블룸비스타)

미래 모빌리티를 위한 소프트웨어 정의형 인프라스트럭처 기술 개발

- 목표 기술 소개

신용준 박사 한국전자통신연구원

SDI 과제 세부 연구 주제 개요

기존 통신망과의 연계/확장을 위한

인터페이스 개발

실증용 SDx 모빌리티 프로파일 기반의

SDI 운영 환경 개발

저전력/저지연 모빌리티 SW 실행을 위한 IaC 프로세스 개발 "SDI를 효율적으로 운영할 기준을 만들 수 있을까?" <아키텍처별 평가지표 랭킹 점수 > <아키텍처별 학습/추론 총점 비교>

SDI 과제 ETRI 연구팀 소개

신용준 박사

- 소프트웨어 공학
- **ESTJ**

김용연 선임

- AI 시스템 SW
- INFJ

강성주 박사

- 과제 채굴자
- **ESTP**

이준희 연구원

- IaC, M&S, K8s
- ESTP

전재호 선임

- 엣지 플랫폼
- ESFJ

석종수 선임

- 임베디드 시스템
- ISFJ

고동범 박사

- 디지털 트윈
- INFJ

SDI 과제 컨소시엄 구성

신용준 박사

- 소프트웨어 공학
- ESTJ

김용연 선임

- AI 시스템 SW
- INFJ

강성주 박사

- 과제 채굴자
- ESTP

이준희 연구원

- IaC, M&S, K8s
- ESTP

SDI 통합

TTA

kt

"SDx와 SDI 간의 분업/협업 과정을 어떻게 통합하고 검증할 것인가?"

실증용 SDx 모빌리티 프로파일 기반의 SDI 운영 환경 개발

저전력/저지연 모빌리티 SW 실행을 위한 SNI 유영 IaC 프로세스 개발

"SDI를 효율적으로 운영할 기준을 만들 수 있을까?"

전재호 선임

• 엣지 플랫폼

SDI 적용

"기존 통신망/사회망과 어떻게 연계할 것인가?"

기존 통신망과의 연계/확장을 위한

인터페이스 개발

ESFJ

석종수 선임

- 임베디드 시스템
- ISFJ

고동범 박사

- 디지털 트윈
- INFJ

(개발) 클라우드 네이티브 CI/CV/CD 프레임워크 개발

<As-Is> 기존 기술 및 진행 상황

• 소프트웨어 정의형/클라우드 네이티브 모빌리티 SW 개발 패러다임

SOAFEE 아키텍처

AUTOWARE 프로젝트 아키텍처

• 소프트웨어/웹 공학 기반 모빌리티 SW 가상 검증 및 서비스 컴퓨팅 연구 경험

<To-Be> 연구 목표 및 결과물

- (통합기술) 모빌리티 서비스 자동 조합 기술
- (검증기술) 모빌리티 시뮬레이션 기반 가상 검증 기술
- (배포기술) SDI-모빌리티 분업형 서비스 배포 기술
- (도구) 클라우드 네이티브 모빌리티 SW 개발 파이프라인 도구

(실행) SDx-SDI 간 AI 소프트웨어의 분할 실행 모듈 개발

<As-Is> 기존 기술 및 진행 상황

- AI 응용 분할실행 기술 연구(YOLOv5s)
 - 디바이스별 최적 성능 분할 지점 결정 기술 보유

에너지 효율을 고려한 최적 성능 AI 모델 분할 연구 진행 중

Edge HW 전력 소비량 분석

ML Algorithm	Training	Inference	Model Size
k-NN		O(mn)	O(mn)
SVM	$O(mn^2 + n)$	O(mn)	O(n)
LR	$O(mn^2 + m^3)$	O(n)	O(n)
DT	O(mnlog(m))	O(log(m))	O(m)
RF	$O(N_i mnlog(m))$	$O(N_i log(m))$	$O(N_t m)$
k-means	O(mnc)		
PCA	$O(mn^2 + n^3c)$		
ANN	O(mnhki)	O(n)	

AI 모델별 컴퓨팅 complexity

Device	Type	GOPs/W	
Kneron	Edge Al Accelerator	434	
Eyeriss (MIT)	Edge Al Accelerator	302	
1.42TOPS/W	Edge Al Accelerator	1422	
Myriad x (Intel)	Edge Al Accelerator	1500	
NVIDIA Tegra X1	Edge Al Accelerator	142	
Rockchip RK1808	Edge AI Accelerator	91	
Texas InstrumentsAM5729	Edge AI Accelerator	18	
GTI Lightspeeur SPR2801S	Edge AI Accelerator	15750	
Optimising FPGA-based	Edge AI Accelerator	3	
Google Edge TPU	Edge AI Accelerator	1000	
Nvidia T4	GPU	929	
Nvidia A100	GPU	780	
Nvidia A30	GPU	1000	

AI 가속기 전성비 분석

<To-Be> 연구 목표 및 결과물

- 모빌리티 디바이스-SDI 플랫폼간 AI 응용 분할
 - AI 모델 분할 기술 개발(DNN & LLM)

LMM 모델 역할 분할(Private & Specialized)

에너지 효율을 고려한 이종 모빌리티 간 분업/협업 서비스

(운영) 저전력/저지연 모빌리티 SW 실행을 위한 IaC 프로세스 개발

<As-Is> 기존 기술 및 진행 상황

- 기존의 정적인 IaC 기술을 활용해서 동적으로 변화하는 미래 모빌리티를 위한 이프라 및 소프트웨어의 배포를 하기에는 어려움이 있음
 - 동적으로 추가되는 디바이스를 관리하기 위해 코드자동생성 기능 필요 有

동적으로 생성되는 laC의 필요성

엣지 지능화를 위한 6가지 분류

- IaC 프로세스 과정에서 최적의 응용 배치를 위한 평가 기준 선행연구 진행중
 - IaC 자동생성을 위한 기준의 필요성 有

<To-Be> 연구 목표 및 결과물

- (IaC자동생성기술) 요구사항 기반의 IaC 자동 생성 기술
 - 모빌리티의 Mission / Accuracy / Latency / Energy를
 고려한 요구사항
- (IaC검증기술) 자동생성된 IaC 검증 기술
- (동적IaC실행기술) 동적 IaC 실행을 통한 오케스트레이션 기술

(통합) 실증용 SDx 모빌리티 프로파일 기반의 SDI 운영 환경 개발

<As-Is> 기존 기술 및 진행 상황

- SDI-SDx 실증을 위한 테스트베드 구축
 - 컨테이너 기반 오케스트레이션 프레임워크 + SDR 기반 서비스 개발 환경

- Ubuntu 24.04 + k8s + ROS2 Jazzy 내부 테스트 진행 중
 - ROS2 DDS Dynamic Discovery 네트워크 환경 검토

<To-Be> 연구 목표 및 결과물

- SDI-SDx 실증을 위한 테스트베드 구축
 - SDI 프레임워크 설계 확보를 위한 사전 테스트 성격
 - "배포"를 위한 k8s 플랫폼 적합성 검토
 - 대체 플랫폼을 찾거나 구축하는 것도 큰 숙제

(적용) 기존 통신망과의 연계/확장을 위한 인터페이스 개발

<As-Is> 기존 기술 및 진행 상황

- 저지연 모빌리티 서비스를 위한 SDI 운영 및 연결성 지원 기술 개발
 - 다양한 적용 환경 및 서비스 품질 특성을 고려한 통신망-SDI 연결성 및 운영 지원 기술 개발
 - 모빌리티 간 협업을 위한 공개SW 저장소 운영 및 모빌리티 인터페이스 개발
 - 미래 모빌리티-SDI 연동 수요 확보 및결과물 저변 확산을 위한 협의체 운영 및 검증 API 기술 개발

- 실증 관련 현황
 - SDI 기술 적용 가능성 검토를 위한 업무 회의 (2024/4月)
 - 분당서울대병원 + 라이노스(자율주행 휠체어)

	As-Is	To-Be	이슈	
분당 서울대병원	다양한 이종 모빌리티 혼재	휠체어 교체 예정	통합 관제 시스템 부재	
	KT 5G 특화망 구축		보안/유지보수를 위한 인터페이스 구축이 어려움	
라이노스	모터장착 휠체어	전동 스쿠터	기능 한계 개선	
	Intel 보드	Raspberry Pi 5	전력 소모 절감	
	카메라 기반 Visual SLAM	Lidar 기반 SLAM	전력 소모 절감 및 보안	

<To-Be> 연구 목표 및 결과물

• 연구목표

• 실증

National AI Research Institute - Making a Better Tomorrow

