

Dipartimento di Ingegneria e Scienza dell'Informazione

Teoria dei Segnali

Parte Seconda: Fondamenti di elaborazione dei segnali

Lezione 4: Rappresentazione in frequenza di sistemi LTI

Docente: Prof. Claudio Sacchi

- Motivazioni dell'analisi;
- Funzione di trasferimento di un sistema LTI;
- Composizione di funzioni di trasferimento;
- Esempio: il circuito RC;
- Banda passante di un sistema LTI;
- Introduzione al filtraggio di segnali deterministici.

Motivazioni dell'analisi

Introduzione

- Il formalismo tipico dell'elaborazione dei segnali studia un sistema LTI <u>sulla base della sua risposta</u> <u>all'impulso</u>;
- Questo formalismo è molto elegante ed efficace: infatti considera il sistema attraverso un segnale (la risposta all'impulso, appunto) che caratterizza tutta la sua struttura interna;
- Il problema è che il calcolo della risposta ad un segnale generico <u>passa attraverso la convoluzione</u> <u>dell'ingresso con la risposta all'impulso</u>: operazione quanto mai ostica.

Motivazioni dell'analisi

Perché nel dominio delle frequenze?

□ La convoluzione, nel dominio delle frequenze, diviene un prodotto e quindi:

$$x(t) \longrightarrow h(t) \longrightarrow y(t)$$

$$y(t) = h(t) * x(t) \longrightarrow Y(f) = H(f)X(f)$$

$$H(f) = \Im[h(t)] \quad X(f) = \Im[x(t)]$$

H(f) è detta <u>funzione di trasferimento</u> o <u>risposta in</u> <u>frequenza</u> del sistema LTI

- Significato fisico e signalistico (1)
 - □ In pratica H(f) è una funzione che trasferisce all'uscita del sistema LTI l'energia del segnale di ingresso e, per questo, è detta funzione di trasferimento:

$$H(f) = \frac{Y(f)}{X(f)}$$

□ E' invece detta risposta in frequenza perché effettivamente <u>rappresenta la risposta del sistema LTI</u> <u>ad un fasore complesso</u> (come viene mostrato di seguito):

$$y(t) = h(t) * e^{j2\pi ft} = \int_{-\infty}^{+\infty} h(\alpha) e^{2\pi j f(t-\alpha)} d\alpha = e^{j2\pi ft} \int_{-\infty}^{+\infty} h(\alpha) e^{-2\pi j f\alpha} d\alpha$$

- Significato fisico e signalistico (2)
 - □ Si definisce risposta in frequenza (talora indicata anche come <u>risposta armonica</u>) di un sistema LTI la seguente funzione:

$$H(f) = \frac{y(t)}{e^{j2\pi ft}} = \int_{-\infty}^{+\infty} h(\alpha)e^{-2\pi jf\alpha}d\alpha = \Im[h(t)]$$

H(f) è proprio <u>la trasformata di Fourier della risposta</u> <u>all'impulso del sistema</u>, come si evince dall'equazione soprastante.

- Risposta in ampiezza e risposta in fase
 - □ Data la funzione di trasferimento (o risposta in frequenza a dir si voglia ...) di un sistema LTI si definiscono <u>risposta in ampiezza</u> e <u>risposta</u> <u>in fase</u>, le seguenti funzioni *reali*:

$$A(f) = |H(f)|$$
 Risposta in ampiezza

$$\Phi(f) = \arg \left[H(f) \right]$$
 Risposta in fase

- Guadagno in potenza del sistema LTI
 - □ E' detto guadagno in potenza (o di energia) di un sistema LTI la seguente funzione reale della frequenza:

 $G(f) = \left| H(f) \right|^2$

□ Si chiama così perché se ci ricordiamo il teorema di Parseval e calcoliamo <u>la densità spettrale di</u> energia dell'uscita del sistema LTI avremo che:

$$|Y(f)|^2 = |H(f)|^2 |X(f)|^2 = G(f)|X(f)|^2$$

Guadagno in potenza in decibel

□ Nei sistemi di uso ingegneristico, il guadagno di potenza è spesso misurato in decibel rispetto ad una frequenza di riferimento, ovvero:

$$G_{dB}(f) = 10 \log_{10} \left\{ \frac{|H(f)|^{2}}{|H(f_{rif})|^{2}} \right\} = 20 \log_{10} \left\{ \frac{|H(f)|}{|H(f_{rif})|} \right\}$$

In generale f_{rif} è scelto in corrispondenza del massimo della risposta in ampiezza.

Composizione di funzioni di trasferimento

Sistemi LTI in cascata

Se abbiamo due (o più) sistemi LTI in cascata, la funzione di trasferimento complessiva della cascata è data <u>dal prodotto delle funzioni di</u> <u>trasferimento</u> dei singoli sistemi LTI:

$$X(f) \longrightarrow H_1(f) \longrightarrow H_2(f) \longrightarrow Y(f)$$

$$H_{tot}(f) = H_1(f)H_2(f)$$

Composizione di funzioni di trasferimento

Sistemi LTI in parallelo

Se abbiamo il parallelo di due (o più) sistemi LTI con somma (o differenza) dei contributi, la funzione di trasferimento complessiva è data dalla somma (o differenza) delle funzioni di trasferimento:

- Sistemi LTI in retroazione (1)
 - □ La retroazione di sistemi LTI ha molto interesse in discipline legate alla <u>regolazione</u> <u>automatica</u> ed al <u>controllo</u>:

Esempio classico: regolazione di una caldaia, retro-azionata dalla misura della temperatura ambiente.

Composizione di funzioni di trasferimento

- Sistemi LTI in retroazione (2)
 - □ Calcolo della funzione di trasferimento complessiva:

$$H_{tot}(f) = \frac{Y(f)}{U(f)} = \frac{H_1(f)}{1 + H_1(f)H_2(f)}$$

Risposta all'impulso

□ La risposta all'impulso del circuito RC è nota:

$$h(t) = RCe^{-\frac{t}{RC}}1(t)$$

□ Si tratta di un'esponenziale causale. Se ne può calcolare <u>la trasformata di Fourier</u>:

$$H(f) = \frac{1/RC}{1/RC + j2\pi f} = \frac{1}{1 + j(2\pi fRC)}$$

- Risposta in ampiezza, risposta in fase e guadagno in potenza (1)
 - □ La funzione di trasferimento (o risposta in frequenza)
 è quindi già calcolata:

$$H(f) = \frac{1}{1 + j(2\pi fRC)}$$

□ Se ne possono calcolare, quindi, <u>risposta in</u> ampiezza, <u>risposta in fase e guadagno in potenza</u>:

$$A(f) = \frac{1}{\sqrt{1 + (2\pi fRC)^2}} \qquad G(f) = \frac{1}{1 + (2\pi fRC)^2}$$

$$\Phi(f) = -\arctan(2\pi fRC)$$

- Risposta in ampiezza, risposta in fase e guadagno in potenza (1)
 - □ Di seguito, forniamo i grafici della risposta in ampiezza e della risposta in fase (RC=0.1 msec):

- Risposta in ampiezza, risposta in fase e guadagno in potenza (2)
 - □ Interessante è <u>il guadagno in potenza</u> in dB rispetto al massimo, che è nella continua (f_{rif} =0):

Considerazioni sul sistema

- □ Il comportamento del guadagno in potenza del circuito RC è indicativo del fatto che <u>tale sistema</u> <u>"mantiene" le frequenze del segnale in ingresso</u> inferiori a circa 1 KHz;
- □ Frequenze del segnale di ingresso superiori a 1KHz vengono "abbattute" e l'abbattimento diviene assai pesante per frequenze maggiori di 10KHz;
- □ Quindi, questo circuito <u>effettua un filtraggio del</u> <u>segnale in ingresso</u>, salvandone le basse frequenze e tagliando le alte. E' chiamato, infatti, <u>filtro RC</u>.

Banda passante di un sistema LTI

- Larghezza di banda di un sistema?
 - □ Abbiamo parlato, finora, di larghezza di banda di un segnale. Ha senso parlare di "larghezza di banda di un sistema LTI?"
 - □ Sostanzialmente, un sistema LTI <u>è un oggetto che esegue</u> operazioni su un segnale, alterandone lo spettro;
 - La "larghezza di banda" di un sistema è comunemente definita come la porzione di spettro ove la risposta in frequenza del sistema LTI è "piatta", <u>ovvero non altera significativamente lo</u> <u>spettro del segnale entrante;</u>
 - Per distinguerla dalla larghezza di banda di un segnale, tale larghezza di banda è detta <u>banda passante</u>.

Banda passante di un sistema LTI

- Definizione formale di banda passante di un sistema LTI
 - □ Si definisce <u>formalmente</u> banda passante di un sistema LTI la larghezza di banda che soddisfa la seguente condizione:

$$B_{pass}: G_{dB}(f) \ge -3dB \quad \forall f: |f - f_{rif}| \le B_{pass}$$

□ E' detta, per questo motivo, anche <u>banda a 3dB</u>, intendendo con 3dB <u>la massima attenuazione in potenza che possiamo accettare</u> (al di sotto, il sistema "taglia" frequenze e distorce).

Banda passante di un sistema LTI

- Calcolo della banda passante del circuito RC (1)
 - Può essere interessante <u>calcolare la banda</u> <u>passante del circuito RC</u>, impostando (e risolvendo) la seguente disequazione:

$$G_{dB}(f) = 10\log_{10}\left[\frac{1}{1 + (2\pi fRC)^{2}}\right] \ge -3dB \Rightarrow$$

$$\Rightarrow \frac{1}{1 + (2\pi fRC)^{2}} \ge \frac{1}{2} \Rightarrow -1 \le (2\pi fRC) \le 1 \Rightarrow -\frac{1}{2\pi RC} \le f \le \frac{1}{2\pi RC}$$

Banda passante di un sistema LTI

- Calcolo della banda passante del circuito RC (2)
 - □ Poiché la frequenza di riferimento è f=0 (massimo valore della risposta in frequenza nella continua), la banda passante del circuito RC è calcolata come:

$$B_{pass} = \frac{1}{2\pi RC}$$

□ Sostituendo i numeri (ovvero RC = 0.1 msec) si ottiene:

$$B_{pass} = \frac{10^4}{2\pi} = 1.59 KHz$$

- Cosa vuol dire "filtrare" nell'elaborazione dei segnali
 - Un filtro in idraulica è un oggetto che <u>separa l'acqua</u> dalle impurità allo stato solido;
 - □ Nell'elaborazione dei segnali, "l'acqua" è <u>il segnale</u> che noi desideriamo puro e pulito e le impurità sono segnali rumorosi che si sovrappongono ad esso nella sua larghezza di banda;
 - □ Il filtro, quindi, <u>seleziona una parte dello spettro</u> (dove si spera ci sia il nostro segnale) <u>e ne rigetta un'altra</u>, dove ci sono i disturbi.

7

Introduzione al filtraggio di segnali deterministici

- Esempio di segnale "sporco":
 - □ Prendiamo questo grafico:

Se il rumore fosse localizzato in un certo intervallo di frequenze, potrei pensare di "tagliarlo" con un filtro, sperando di non "uccidere" anche il segnale pulito.

- Filtro passabasso ideale
 - Si tratta di un filtro che <u>lascia intatte le componenti</u> <u>frequenziali del segnale localizzate intorno alla continua</u> e <u>rigetta totalmente</u> le componenti al di fuori della sua banda passante;
 - □ Inoltre, ha <u>risposta in fase lineare</u>;
 - □ Un filtro di questo genere non può che avere <u>la seguente</u> <u>funzione di trasferimento</u> (LPF sta per "Low-Pass Filter")

$$H_{LPF}(f) = \Pi\left(\frac{f}{2B_{pass}}\right) e^{-j2\pi f t_0}$$

Filtro passabasso ideale: risposta in ampiezza e risposta in fase

$$A_{LPF}(f) = \Piigg(rac{f}{2B_{pass}}igg)$$
 Frequenze $|f| < f_1$: Passano Frequenze $|f| > f_1$: Vengono tagliate Frequenze $|f| > f_1$: Vengono tagliate Frequenze

$$\Phi_{LPF}(f) = -2\pi f t_0$$

$$h_{LPF}(t) = 2B_{pass} \operatorname{sinc}(2B_{pass}(t - t_0))$$

Risposta all'impulso: sistema non causale e quindi irrealizzabile

Funzionamento ($B_{pass} = f_1$ nell'esempio)

- Filtro passa-alto ideale
 - ☐ Si tratta di un filtro che <u>lascia intatte le componenti</u> <u>frequenziali del segnale oltre la banda passante e</u> <u>rigetta totalmente</u> le componenti attorno alla continua;
 - □ Inoltre, ha <u>risposta in fase lineare</u>;
 - □ E' quindi <u>il complementare del filtro passabasso</u> <u>ideale</u>. La sua risposta in frequenza sarà data da:

$$H_{HPF}(f) = \left[1 - \Pi \left(\frac{f}{2B_{pass}} \right) \right] e^{-j2\pi f t_0}$$

Filtro passa-alto ideale: risposta in ampiezza e risposta in fase

$$A_{HPF}(f) = \left| 1 - \Pi \left(\frac{f}{2B_{pass}} \right) \right| \qquad \text{frequenze} \\ |f| > f_1 : \text{PASSANO} \\ |f| < f_1 : \text{VENGONO TAGLIATE}$$

$$\Phi_{HPF}(f) = -2\pi f t_0$$

$$h_{HPF}(t) = \delta(t - t_0) +$$

$$-2B_{pass} \operatorname{sinc}(2B_{pass}(t - t_0))$$

Risposta all'impulso: <u>sistema non</u> causale e quindi irrealizzabile

Funzionamento ($B_{pass} = f_1$ nell'esempio)

.

Introduzione al filtraggio di segnali deterministici

- Filtro passa-banda ideale
 - □ E' un filtro che <u>lascia intatte le componenti</u> frequenziali di un segnale che stanno nell'intorno di una frequenza diversa da zero e rigetta totalmente tutte le altre;
 - □ Inoltre, ha <u>risposta in fase lineare</u>;
 - □ E' quindi <u>una sorta di passabasso,</u> ma centrato non in banda-base, bensì <u>in una banda traslata</u>:

$$H_{BPF}(f) = \left[\Pi\left(\frac{(f - f_c)}{2B_{pass}}\right) + \Pi\left(\frac{(f + f_c)}{2B_{pass}}\right) \right] e^{-j2\pi f t_0}$$

 Filtro passa-banda ideale: risposta in ampiezza e risposta in fase (1)

$$\begin{split} A_{BPF}(f) &= \Pi\!\left(\frac{\left(f - f_{c}\right)}{2B_{pass}}\right) + \Pi\!\left(\frac{\left(f + f_{c}\right)}{2B_{pass}}\right) \\ \Phi_{BPF}\left(f\right) &= -2\pi f t_{0} \end{split}$$

$$h_{BPF}(t) = B_{pass} \operatorname{sinc}\left(2B_{pass}\left(t - t_{0}\right)\right) \cos\left(2\pi f_{c}\left(t - t_{0}\right)\right)$$

Risposta all'impulso: sistema non causale e quindi irrealizzabile

Filtro passa-banda ideale: risposta in ampiezza e risposta in fase (2)

FREQUENZE $f_1 \leq |f| \leq f_2$: PASSANO

ALTRE FREQUENZE: VENGONO TAGLIATE

N.B. c'è anche la parte simmetrica a frequenze negative!

ESEMPI:

H(f)

Funzionamento ($B_{pass} = (f_2 - f_1)$ nell'esempio)

Alcune considerazioni

- ☐ <u>Il filtro passabasso funzione in pratica come un integratore</u>: taglia le frequenze alte ed esalta quelle basse: il segnale filtrato avrà un andamento "smooth" con le transizioni brusche (corrispondenti alle alte frequenze) spianate ed addolcite;
- □ <u>Il filtro passa-alto funziona come un derivatore</u>: taglia le frequenze basse ed evidenzia le transizioni (alte frequenze): l'esempio del coseno rialzato è illuminante: rimane la sinusoide (alta frequenza) e viene tagliata la costante che lo solleva (bassa frequenza);
- Invece, il filtro passabanda non ha un funzionamento così facilmente spiegabile a parole: esso taglia frequenze lontane dalla banda traslata. Questo genere di filtri si usa nei sistemi di trasmissione radio, che usano sempre portanti modulate.