Learning to Generalize

Jake Hofman

Microsoft Research

March 16, 2018

Learning by example

Fwd: Yahoo! supercomputing cluster RFP - i have no idea. i have no idea. O non urgent - whoops! yes that's what i meant, thanks for decoding my questi-SourceForge.net: variational bayes for network modularity - can i get admin Byline - iPhone Apps, iPhone 3G apps and iPod touch Applications Gallery a Laurence J. Peter: Facts are stubborn things, but statistics are more pliable. Re: JAFOS 2008, Applied Math Session - ves. the listening post dude. On N Access to over 5,000 Health Plan Choices! - Affordable health insurance, Ins. More effective - If you are having trouble viewing this email click here. Thurs Special Offer! Cialis, Viagra, VicodinES! - Order all your Favorite Rx~Medica Financial Aid Available: Find Funding for Your Education - Get the financial a Find The Perfect School and Financal Aid for your College Degree - HI! It has **PHARMA viagra PHARMA cialis** - Wanted; web store with remedies. N

Learning by example

Fwd: Yahoo! supercomputing cluster RFP - i have no idea. i have no idea. O non urgent - whoops! yes that's what i meant, thanks for decoding my questi-SourceForge.net: variational bayes for network modularity - can i get admin Byline - iPhone Apps, iPhone 3G apps and iPod touch Applications Gallery a Laurence J. Peter: Facts are stubborn things, but statistics are more pliable. Re: JAFOS 2008, Applied Math Session - ves. the listening post dude. On N Access to over 5,000 Health Plan Choices! - Affordable health insurance, Ins. More effective - If you are having trouble viewing this email click here. Thurs Special Offer! Cialis, Viagra, VicodinES! - Order all your Favorite Rx~Medica Financial Aid Available: Find Funding for Your Education - Get the financial a Find The Perfect School and Financal Aid for your College Degree - HI! It has **PHARMA viagra PHARMA cialis** - Wanted; web store with remedies. N

- How did you solve this problem?
- Can you make this process explicit (e.g. write code to do so)?

Machine Learning: A Definition

The study of algorithms that enable machines to learn from experience and improve over time

http://www.cs.cmu.edu/~tom/

Everything old is new again¹

- Many fields ...
 - Statistics
 - Pattern recognition
 - Data mining
 - Machine learning
- ... similar goals
 - Extract and recognize patterns in data
 - Interpret or explain observations
 - Test validity of hypotheses
 - · Efficiently search the space of hypotheses
 - Design efficient algorithms enabling machines to learn from data

Statistics vs. machine learning²

Glossary					
Machine learning	Statistics				
network, graphs	model				
weights	parameters				
learning	fitting				
generalization	test set performance				
supervised learning	regression/classification				
unsupervised learning	density estimation, clustering				
large grant = \$1,000,000	large grant= \$50,000				
nice place to have a meeting: Snowbird, Utah, French Alps	nice place to have a meeting: Las Vegas in August				

²http://bit.ly/statvsml

Example results: machine learning³

Add an asymmetric frequency feature $y_{j,f_{ut}}^{(3)}$: SBRAMF-UTB-UTF-MTF-AFF

$$\widehat{\mathbf{r}_{uit}} = \mu_i + \mu_u + \mu_{u,t} + \mu_{i,\text{bin}(t)} + \left(\mathbf{p}_i^{(1)} + \mathbf{p}_{i,\text{bin}(t)}^{(2)} + \mathbf{p}_{i,f_{ut}}^{(3)}\right)^T \left(\mathbf{q}_u^{(1)} + \mathbf{q}_{u,t}^{(2)} + \frac{1}{\sqrt{|N(u)|}} \sum_{j \in N(u)} \left(\mathbf{y}_j^{(1)} + \mathbf{y}_{j,\text{bin}(t)}^{(2)} + \mathbf{y}_{j,f_{ut}}^{(3)}\right)\right)$$
(34)

Model extension (+)	epoch time	#epochs	probeRMSE, $k = 50$ features
SBRMF - SVD with biases	17[s]	69	0.9054
SBRAMF - asymmetric part	50[s]	30	0.8974
+UTB - user time bias	61[s]	50	0.8919
+UTF - user time feature	62[s]	38	0.8911
+MTF - movie time feature	74[s]	37	0.8908
+ATF - asymmetric time feature	74[s]	44	0.8905
+MFF - movie frequency feature	149[s]	46	0.8900
+AFF - asymmetric frequency feature	206[s]	45	0.8886 (0.8846 with k = 1000)

³Bell, Koren & Volinsky, 2008

◆ロト ◆母 ト ◆ 恵 ト ◆ 恵 ・ り へ ②

Example results: social science⁴

Table 2: Relationship of clicks/added revisions and time dummies for direct neighbors of shocked articles in the 'featured articles' condition.

	clicks			Δ revisions			
	(1)	(2)	(3)	(4)	(5)	(6)	
	compare control	comp. placebo	before after	comp. control	comp. placebo	before after	
Before: days - 7 to -4	0.821	0.486	-0.181	-0.000	0.002	0.001	
	(1.342)	(1.222)	(1.066)	(0.004)	(0.004)	(0.003)	
Before: days - 3 to -1	1.811	2.026	1.910	0.000	-0.001	-0.001	
	(2.408)	(1.990)	(1.462)	(0.005)	(0.004)	(0.003)	
t = 0	28.546***	34.577***	31.603***	0.030***	0.033***	0.030***	
	(5.948)	(5.731)	(5.573)	(0.009)	(0.008)	(0.007)	
t = 1	1.632	1.535	0.974	0.007	0.006	0.005	
	(2.146)	(2.318)	(1.565)	(0.007)	(0.007)	(0.005)	
t = 2	-0.569	-1.189	0.028	-0.013*	-0.011	-0.007*	
	(2.768)	(2.395)	(1.910)	(0.007)	(0.007)	(0.004)	
After: days 3 to 6	-2.170	-0.376	-0.531	0.002	-0.000	-0.001	
	(2.052)	(2.296)	(1.359)	(0.004)	(0.004)	(0.003)	
After: days 7 to 14	-0.639	0.207	0.207	0.001	-0.001	0.001	
	(2.593)	(2.794)	(1.953)	(0.007)	(0.007)	(0.005)	
Time Dummies	Yes	Yes	No	Yes	Yes	No	
Mean dep. Variable	36.208	36.559	37.276	0.045	0.045	0.047	
Observations	346104	371382	186384	346104	371382	186384	
Number of Pages	15732	16881	8472	15732	16881	8472	
Adj. R ²	0.002	0.003	0.004	0.000	0.000	0.000	

Social science vs. machine learning?⁵

Important to view prediction and explanation as compliments, not substitutes

Why Machine Learning?⁶

- Prediction is often useful in its own right
 e.g., forecasting economic outcomes, quantifying risk
- Prediction can help fill in missing data e.g., inferring online demographics
- Prediction can aid in causal inference
 e.g., matching, instrumental variables, heterogenous effects
- Predictive models can provide benchmarks for causal theories e.g., gap in performance indicates work to be done

Outline for the day

What we'll cover:

Concepts:

- Generalization error
- Overfitting
- Cross-validation
- Regularization

Methods:

- k-nearest neighbors
- Naive Bayes
- Ridge regression
- Gradient descent

What we won't cover: tree-based methods, deep neural nets, ensemble methods, unsupervised learning, reinforcement learning, ...

Learning by example

Fwd: Yahoo! supercomputing cluster RFP - i have no idea. i have no idea. O non urgent - whoops! yes that's what i meant, thanks for decoding my questi-SourceForge.net: variational bayes for network modularity - can i get admin Byline - iPhone Apps, iPhone 3G apps and iPod touch Applications Gallery a Laurence J. Peter: Facts are stubborn things, but statistics are more pliable. Re: JAFOS 2008, Applied Math Session - ves. the listening post dude. On N Access to over 5,000 Health Plan Choices! - Affordable health insurance, Ins. More effective - If you are having trouble viewing this email click here. Thurs Special Offer! Cialis, Viagra, VicodinES! - Order all your Favorite Rx~Medica Financial Aid Available: Find Funding for Your Education - Get the financial a Find The Perfect School and Financal Aid for your College Degree - HI! It has **PHARMA viagra PHARMA cialis** - Wanted; web store with remedies. N

- How did you solve this problem?
- Can you make this process explicit (e.g. write code to do so)?

Roadmap?

Step 1: Have data

Step 2: ???

Step 3: Profit

• Get data

First Yalder approximation global PRF. The large of last Index on last Index on last Index of last Index Index of last Index of

- Get data
- ② Visualize/perform sanity checks
- 3 Clean/filter observations
- 4 Choose features to represent data

Park Yakod appectorspoint dualer RFP - The market Report and the Section of the Control of the Section of the S

- Get data
- ② Visualize/perform sanity checks
- 3 Clean/filter observations
- 4 Choose features to represent data
- Specify model
- Specify loss function

Feet Yelrod appearance of the PP - How no lide. How no lide. I have no lide. On our agreet variously use that what I make that the toward yell of the period of the period

- Get data
- ② Visualize/perform sanity checks
- 3 Clean/filter observations
- 4 Choose features to represent data
- Specify model
- 6 Specify loss function
- Develop algorithm to minimize loss

Field Yellord Supercomputing dualer RFP - There no blass. In the no blass is not compared to what places what it makes the beauting the control great of a second great produced by the control produced and places of the control great places and the control great places and the control great places and the control great places are the places and the first places and the places are the places and the first places and the first places are the places and the places are the places and the first places are the first places ar

- Get data
- Visualize/perform sanity checks
- Clean/filter observations
- 4 Choose features to represent data
- Specify model
- Specify loss function
- Develop algorithm to minimize loss
- 8 Choose performance measure
- "Train" to minimize loss
- "Test" to evaluate generalization

Feet "Neted supercomputing dualer RFP - There no date. I have no date. In consuraged window play to that whall means thanks for doubting no page of the Special Defendable of the page of pag

Fitting models is a relatively small piece of the pipeline

Cleaning and normalizing data is a substantial amount of the work (and likely impacts results)

The features you choose to represent the data often matter more than the algorithm that learns from it

There's a skill in matching tools (e.g., models and algorithms) to problems

Our models should be complex enough to explain the past, but simple enough to generalize to the future

Bigger models \neq Better models

Simple methods (e.g., linear models) work surprisingly well, especially with lots of data

Even with simple methods, there are many decisions to be made in developing a successful machine learning solution

Digit recognition

Classification is an *supervised* learning task by which we aim to predict the correct label for an example given its features

e.g. determine which digit $\{0, 1, \dots, 9\}$ is in depicted in each image

Digit recognition

Determine which digit $\{0, 1, \dots, 9\}$ is in depicted in each image

k-Nearest Neighbors classification

Memorize training examples, predict labels using labels of the **k closest** training points

Intuition: nearby points have similar labels

k-Nearest Neighbors classification

Training:

Load all training examples into memory

Prediction:

Compute the distance between each training example and the query point

Find the k closest training examples to the query point

Return a majority vote over their labels

Choosing features: Images as arrays

Grayscale images \leftrightarrow 2-d arrays of *M*-by-*N* pixel intensities

Choosing features: Images as arrays

Grayscale images \leftrightarrow 2-d arrays of *M*-by-*N* pixel intensities

Flatten each array into a vector, representing each image as a "vector of pixels"

Measuring similarity: Euclidean distance

Grayscale images \leftrightarrow 1-d vector of $M \cdot N$ pixel intensities

Measure similarity using the Euclidean distance between any two pixel vectors

Complexity control: how many neighbors k?

Small k gives a complex boundary, large k results in coarse averaging

Overfitting⁷

7http://xkcd.com/1122

4 D > 4 A > 4 B > 4 B > B 9 Q C

Overfitting⁷

7http://xkcd.com/1122

4 D > 4 D > 4 E > 4 E > E 9040

Philosophy

Our models should be complex enough to explain the past, but simple enough to generalize to the future

Bias-variance tradeoff

Bias-variance tradeoff

Simple models may be "wrong" (high bias), but fits don't vary a lot with different samples of training data (low variance)

Bias-variance tradeoff

Flexible models can capture more complex relationships (low bias), but are also sensitive to noise in the training data (high variance)

Cross-validation

- Randomly split our data into three sets
- Fit models on the training set
- Use the validation set to find the best model
- Quote final performance of this model on the test set

Complexity control: how many neighbors k?

Evaluate performance on a **held-out test set** to assess **generalization error**

Cross-validation for digit recognition

- Randomly split our data into three sets
- For each number of neighbors k:
 - Fit a model to the training set
 - Evaluate on the validation set
- Select the model with the lowest validation error
- Quote final performance of this model on the test set

March 16, 2018

K-fold cross-validation

Estimates of generalization error from one train / validation split can be noisy, so shuffle data and average over K distinct validation partitions instead

K-fold cross-validation for digit recognition

- Randomly divide the data into F folds
- For each number of neighbors k
 - For each fold:
 - Fit a model on everything but one fold
 - Evaluate the model on the held-out fold
 - Compute the average validation error across folds
- Select the model with the lowest average validation error
- Quote final performance of this model on the test set

Performance

Simple approach: Predict the future by memorizing the past

Still many choices:

Number of neighbors, feature transformations, distance measures,

Problems (practice): Becomes costly as we see more training examples

Problems (theory): Performs poorly when large number of features relative to

examples

Curse of dimensionality⁸

kNN requires a prohibitive number of training examples in high dimensions (e.g., for text data)

Even with simple methods, there are many decisions to be made in developing a successful machine learning solution

Bigger models \neq Better models