

มหาวิทยาลัยเทคโนโลยีพระจอมเกล้าธนบุรี การสอบกลางภาคเรียนที่ 1 ปีการศึกษา 2555

วิชา ENE 325 Electromagnetic fields and waves ภาควิชา วศ.อิเล็กทรอนิกส์ฯ ปีที่ 3 ภาคปกติ สอบ วันจันทร์ที่ 15 ตุลาคม พ.ศ. 2555

เวลา 13.00-16.00 น.

คำเตือน

- 1. ข้อสอบวิชานี้มี 5 ข้อ 12 หน้า (รวมใบปะหน้า)
- 2. ให้ทำทุกข้อลงในข้อสอบ
- 3. ไม่อนุญาตให้นำเอกสารประกอบการเรียนเข้าห้องสอบ
- 4. อนุญาตให้ใช้เครื่องคำนวณได้
- 5. ให้เขียนชื่อ-นามสกุล และเลขประจำตัวลงในข้อสอบทุกหน้า

เมื่อนักศึกษาทำข้อสอบเสร็จ ต้องยกมือบอกกรรมการคุมสอบ เพื่อขออนุญาตออกนอกห้องสอบ ห้ามนักศึกษานำข้อสอบและกระดาษคำตอบออกนอกห้องสอบ

นักศึกษาซึ่งทุจริตในการสอบ อาจถูกพิจารณาโทษสูงสุดให้พ้นสภาพการเป็นนักศึกษา		
ชื่อ-สกุล	รหัสประจำตัวรหัสประจำตัว	
อาจารย์ราชวดี ศิลาพันธ์ และอาจารย์เอกพล ศิว	พรเสถียร	
ผู้ออกช้อสอบ โทร 0-2470-9062		

ผศ.ดร.วุฒิชัย อัศวินชัยโชติ

ข้อสอบนี้ได้ผ่านการประเมินจากคณะกรรมการประจำภาควิชาแล้ว

หัวหน้าภาควิชาวิศวกรรมอิเล็กทรอนิกส์และโทรคมนาคม

<u>สูตรคำนวณ</u>

1. ตารางการแปลงพิกัดระหว่างพิกัดคาร์ทีเซียนและพิกัดทรงกลม

1.1 ตารางการแปลงขนาด

การแปลงจาก $P(x,y,z)$ to $P(r,\theta,\phi)$	การแปลงจาก P(r, θ, ϕ) to P(x, y, z)
$r = \sqrt{x^2 + y^2 + z^2}$	$x = r \sin \theta \cos \phi$
$\theta = \cos^{-1}\left(\frac{z}{r}\right)$	$y = r \sin \theta \sin \phi$
$\phi = \tan^{-1} \left(\frac{y}{x} \right)$	$z = r \cos \theta$

1.2 ดารางการแปลงเวกเตอร์ทิศทาง

	\hat{a}_r	$\hat{a}_{ heta}$	\hat{a}_{ϕ}
\hat{a}_{x} •	$\sin heta$ $\cos\phi$	$\cos heta\cos\phi$	-sin ϕ
\hat{a}_y •	sin $ heta$ sin ϕ	$\cos heta$ sin ϕ	$\cos \phi$
â _z •	$\cos heta$	-sin $ heta$	0

2. ตารางการแปลงพิกัดระหว่างพิกัดคาร์ทีเซียนและพิกัตทรงกระบอก

2.1 ดารางการแปลงขนาด

การแปลงจาก $P(x,y,z)$ to $P(r,\theta,z)$	การแปลงจาก $P(r,\theta,z)$ to $P(x,y,z)$
$\rho = \sqrt{x^2 + y^2}$	$x = \rho \cos \phi$
$\phi = \tan^{-1} \left(\frac{y}{x} \right)$	$y = \rho \sin \phi$
z = z	z = z

2.2 ดารางการแปลงเวกเตอร์ทิศทาง

	$\hat{a}_{ ho}$	\hat{a}_{ϕ}	\hat{a}_z
\hat{a}_x •	$\cos \phi$	-sin $oldsymbol{\phi}$	0
\hat{a}_y •	$\sin \phi$	$\cos\phi$	0
\hat{a}_z •	0	0	1

- 3. กฎของเก๊าส์ (Gauss's law): $Q_{en}=\oint \overrightarrow{D}\cdot d\overrightarrow{S}$ Coulomb
- 4. ขนาดประจุรวมในโครงสร้าง 3 มิติ: $Q=\int \rho_{\rm v} dv$ Coulomb โตยที่ $\rho_{\rm v}=$ ความหนาแน่นของประจุต่อปริมาดร (C/m³)
- 5. Volume differential element ของพิกัดทรงกระบอก: $dv =
 ho d
 ho d\phi dz$

- 6. Surface differential element ของพิกัดทรงกระบอก: $d\vec{S}=\rho d\phi dz \hat{a}_{
 ho}$
- 7. Surface differential element ของพิกัดทรงกลม: $d\vec{s} = r^2 \sin\theta d\theta d\phi \hat{a}_r$
- 8. ความสัมพันธ์ระหว่างสนามไฟฟ้าและความหนาแน่นเส้นแรงไฟฟ้า: $\overrightarrow{D} = \varepsilon_0 \overrightarrow{E} \, \text{C/m}^2$
- 9. งานทางไฟฟ้าและความต่างศักย์
 - 9.1งานในการลากประจุ Q จากจุด a ไปยังจุด b ตามเส้นทาง L

$$W_{ext} = -Q \int_{a}^{b} \vec{E} \cdot d\vec{L}$$
 Joule

9.2 ความต่างศักย์ $V_{ba} = \frac{W}{Q} = -\int\limits_a^b \overrightarrow{E} \cdot d\overrightarrow{L}$ Volt

10. กระแสไฟฟ้าที่เกิดจากการนำ

10.1 ความเร็ว (Drift velocity) ของประจุลบ $\stackrel{
ightarrow}{v_e} = -\mu_e \stackrel{
ightarrow}{E}$

10.2 ความเร็วของประจุบวก $\vec{v}_h = +\mu_h \overrightarrow{E}$

โดยที่ μ_s และ μ_s คือ ความสามารถในการเคลื่อนที่ของประจุลบและบวกตามลำตับ ($\text{m}^2/\text{V}\cdot\text{s}$) 11.1 เงื่อนไขขอบเขต (boundary conditions)

11.1 สนามไฟฟ้าในแนวขนานกับรอยต่อ $E_{tt} = E_{t2}$

11.2 ความหนาแน่นเส้นแรงไฟฟ้าในแนวตั้งฉากกับรอยต่อ $\hat{a}_{12} \cdot (\vec{D}_2 - \vec{D}_1) = \rho_S$ โดยที่ \hat{a}_{12} คือเวกเตอร์ 1 หน่วยที่ตั้งฉากกับรอยด่อและมีทิศจากดัวกลางที่ 1 ไปยังตัวกลางที่ 2 12. ค่าคงที่ \mathcal{E}_0 = 8.854x10 $^{-12}$ F/m

4	ຄ	
T	ᄞ	

	•	•	æ	
รข	าส	นก	PIT	141

__เลขที่นั่งสอบ

1. Coordinate systems: จากเวกเตอร์ $\overrightarrow{B}=3\hat{a}_r+2\hat{a}_\theta+1\hat{a}_\phi$ ซึ่งอยู่ในพิกัดทรงกลม (20 คะแนน) (a) จงแปลงให้อยู่ในพิกัดคาร์ทีเซียนที่จุด P (5, 2, -1) (10 คะแนน)

(b) จงแปลงพิกัดคาร์ทีเชียนที่ได้จากข้อ (a) ให้อยู่ในพิกัดทรงกระบอกจุด P (5, 2, -1) (10 คะแนน)

2. Gauss's law: จากรูปหน้าตัดของสายโคแอ็กเซียลมีประจุ +Q C/m³ กระจายอย่างสม่ำเสมอใน ตัวนำด้านใน ในช่วง $0 \le \rho \le a$ และประจุ –Q C/m^3 กระจายอย่างสม่ำเสมอในตัวนำด้านนอก ในช่วง $b \le \rho \le c$ จงคำนวณ (20 คะแนน)

คำนวณประจุรวมในโครงสร้าง โดยกำหนดให้สายโคแอ็กเชียลยาว h เมตร (5 คะแนน) (a)

ชื่อ	รหัสนักศึกษา	เลขที่นั่งสอบ

(b) ใช้กฎของเก๊าส์ในการคำนวณสนามไฟฟ้า \overrightarrow{E} ที่ทุกระยะรัศมี ρ (9 คะแนน) แนะนำ: ตอบทั้งหมด 3 คำตอบ ประกอบด้วยสนามไฟฟ้าในตัวนำด้านใน ฉนวนตรงกลาง และ ตัวนำด้านนอก

ชื่อ รหัสนักศึกษา เลขที	กี ่นั ่งสอบ
-------------------------	---------------------

(c) วาดกราฟแสดงค่าความหนาแน่นของเส้นแรงไฟฟ้า D ในเทอมของระยะรัศมี กำหนดให้ $Q = 10^{-3} \, \text{C}$ $a = 5 \, \text{mm}$ $b = 8 \, \text{mm}$ $c = 10 \, \text{mm}$ และ $h = 1 \, \text{m}$ (6 คะแนน)

3. Electric potential: จากรูปทรงกลมซ้อนกันสองชั้นโดยทรงกลมเล็กมีรัศมี r=a m และทรงกลม ใหญ่มีรัศมี r=c m กำหนดให้มีประจุรวม +Q C ในทรงกลมเล็ก $0 \le r \le a$ และมีประจุรวม -0.5Q C ที่เปลือกของทรงกลมใหญ่ในช่วง $b \leq r \leq c$ จงคำนวณ (20 คะแนน)

(a) งานในการลากประจุขนาด \mathbf{Q}_1 C จากจุด (2c, $\pi\!\!\!/ \mathbf{Z}_2$, $\pi\!\!\!/ \mathbf{A}_2$) มายังจุด (1c, $\pi\!\!\!/ \mathbf{A}_2$) หาก กำหนดให้ a มีค่าด่ำกว่า 10 มิลลิเมตร ใครจะเป็นผู้ทำงานดังกล่าว สนามไฟฟ้าหรืองานจาก ภายนอก (10 คะแนน)

แนะนำ: line differential element ในพิกัดทรงกลม $d\vec{l}=dr\hat{a}_r+rd\hat{ heta}\hat{a}_{ heta}+r\sin{ heta}d\hat{\phi}\hat{a}\phi$

(b) จงคำนวณค่าความต่างศักย์ V ในฟังก์ชั่นของพิกัด (ไม่ต้องแทนค่าพิกัดเริ่มต้นและพิกัด สุดท้าย) และใช้ความสัมพันธ์ของสนามไฟฟ้าและความต่างศักย์ในรูปแบบเกรเดียนท์ $\vec{E} = -\nabla V$ เพื่อคำนวณค่าสนามไฟฟ้า เปรียบเทียบกับสนามไฟฟ้าที่ได้จากข้อ (a) (10 คะแนน)

แนะนำ: $\nabla V = \frac{\partial V}{\partial r} \hat{a}_r + \frac{1}{r} \frac{\partial V}{\partial \theta} \hat{a}_\theta + \frac{1}{r \sin \theta} \frac{\partial V}{\partial \phi} \hat{a}_\phi$

4. Electric current: จากรูปกำหนดให้ประจุความหนาแน่น $ho_{\!\scriptscriptstyle v}$ C/m 3 เดินทางไปในทิศทาง $_{\!\scriptscriptstyle X}$ โดยที่ เวลา t=0 กลุ่มประจุอยู่ครอบคลุมระยะทาง Δx m (20 คะแนน)

(a) จงอธิบายที่มาของกระแสการพา (convection current) (8 คะแนน)

(b) ใช้ความสัมพันธ์ของความเร็วประจุและกระแส รวมถึงความสามารถในการเคลื่อนที่ของประจุ เพื่ออธิบายค่าความนำ (conductivity หรือ σ) และกฏของโอห์มในรูปแบบ $\overrightarrow{J}=\sigma \overrightarrow{E}$ (12 คะแนน)

5. Boundary conditions: กำหนดให้สนามไฟฟ้า $\vec{E}_1 = \hat{a}_x - 5\hat{a}_y - 4\hat{a}_z$ V/m เดินทางจากตัวกลางที่ 1 ซึ่งเป็นอากาศตกกระทบฟิล์มไดอิเล็กดริกที่มีค่า $\mathcal{E}_n = 3.6$ ดังรูป กำหนดให้ความหนาแน่นประจุที่ รอยต่อระหว่างฟิล์มไดอิเล็กตริกและตัวกลางที่ 3 ซึ่งเป็นอากาศมีค่า ρ_s = 100 pC/m² (20 คะแนน)

(a) จงคำนวณสนามไฟฟ้า \overrightarrow{E}_2 ที่รอยต่อในฟิล์มไดอิเล็กตริก (หรือตัวกลางที่ 2) (10 คะแนน)

ชื่อ เลขที่นั่งสอบ	<u> </u>	รหัสนักศึกษา	เลขที่นั่งสอบ
--------------------	----------	--------------	---------------

(b) สมมดิให้ฟิล์มไตอิเล็กตริกไม่มีการสูญเสียเชิงกำลัง จงคำนวณสนามไฟฟ้า \overrightarrow{E}_3 ที่ผ่านเข้าไปยัง ตัวกลางอากาศ (หรือตัวกลางที่ 3) (10 คะแนน)