Unit - 5

Singular Value Decomposition (Chapter 6-6.2, 6.3)

Tests for Positive Definiteness

Each of the following tests is a necessary and sufficient condition for the real symmetric matrix A to be *positive* definite:

- $x^TAx > 0$ for all nonzero real vectors x.
- All the eigenvalues of A satisfy $\lambda_i > 0$.
- All the upper left submatrices A_k have positive determinants.
- All the pivots (without row exchanges) satisfy d_k > 0.

Positive Definite Matrices and Least

Squares

Note:

- 1.A symmetric matrix A is positive definite if and only if there is a matrix R with independent columns such that $A = R^TR$.
- 2. Using LDU decomposition $A=R^TR$ where $R=DL^T$. This Choleskydecomposition has the pivots split evenly between L and L^T .

3. Usingdiagonalization

 $A = Q\Lambda Q^T$, therefore $R = \sqrt{\Lambda} Q^T$.

where Q is an orthogonal matrix with orthonormal eigenvectors of A.

- 4. A third possibility is $R = \emptyset$ ΛQ^T . the symmetric positive definite square root of
- A. If we multiply any R by a matrix Q with orthonormal columns, then $(QR)^T(QR) = R^TQ^TQR = R^TIR = A$. Therefore QR is another choice.

Semi Definite

matrices

Each of the following tests is a necessary and sufficient condition for a symmetric matrix A to be positive semidefinite:

- $x^TAx \ge 0$ for all vectors x (this defines positive semidefinite).
- All the eigenvalues of A satisfy ≥ \(\mathbb{Q}_i \)
- No principal submatrix has negative determinants.
- None of the pivots is negative.
- There is a matrix R, possibly with dependent columns, such that $A = R^TR$.

PES UNIVERSITY

Singular Value Decomposition

DecompositionAny m by n matrix A can be factored into

$$A = U \sum_{T} V^{T}$$

(orthogonal)(diagonal)(orthogonal)

The columns of U (m by m) are eigenvectors of AA^T , and the columns of V (n by n) are eigenvectors of A^TA . The r singular values on the diagonal of Σ (m by n) are the square roots of the nonzero eigenvalues of both AA^T and A^TA .

Note:

- For positive definite matrices, ∑is Λ.
- U and V give orthonormal bases for all four fundamental subspaces:

first *r* columns of *U*: column space of *A*

last *m-r* columns of *U*: left nullspace of *A*

first r columns of V: row space of A last n-r columns of V: nullspace of A