Sensing Technologies and Mathematics for Geomatics

GEO1001.2020 MSc Geomatics Delft University of Technology

Homework 1

Guilherme Spinoza Andreo (5383994)

1 A1

1.1 Compute mean statistics (mean, variance and standard deviation for each of the sensors variables), what do you observe from the results?

Firstly, due to the high number of variables in our data [1], we cannot examine in depth all of the descriptive statistics. From the results, we can observe that the means of the same variables are quite close yet differ. Big differences in the mean are mostly evident in Wind Speed, Head Wind Speed and Crosswind Speed, especially in sensor E in comparison with all the other sensors.

Sensor, Variable M	Mean	Var	SD
A - True Direction 20	209.4063	10108.94	100.5432
B - True Direction 18	83.4124	9977.218	99.88602
C - True Direction 18	.83.5889	7703.363	87.7688
D - True Direction	98.3266	8133.89	90.18808
E - True Direction 22	223.9564	9308.285	96.47945
A - Wind Speed 1.	.290307	1.251154	1.11855
B - Wind Speed 1.	.242124	1.301502	1.140834
C - Wind Speed 1.	.371463	1.43092	1.196211
D - Wind Speed 1.	.581649	1.739817	1.319021
E - Wind Speed 0.	0.596242	0.511227	0.715001
A - Head Wind Speed 0.	0.964943	0.926593	0.962597
B - Head Wind Speed 0.	0.835622	0.878585	0.937329
C - Head Wind Speed 0.	0.963298	1.042575	1.021066
D - Head Wind Speed 1.	.210509	1.451503	1.204783
E - Head Wind Speed 0.	0.438505	0.315942	0.562087
A - Crosswind Speed 0.	0.16353	1.03494	1.01732
B - Crosswind Speed -0	0.12981	1.256719	1.121035
C - Crosswind Speed -0	0.26289	1.271732	1.127711
D - Crosswind Speed -0	0.30057	1.232503	1.110181
E - Crosswind Speed 0.	0.194949	0.319073	0.564866
A - Temperature 1	7.9691	15.86427	3.982998
B - Temperature 18	8.06543	16.62907	4.077875
C - Temperature 1	7.91314	16.10454	4.013046
D - Temperature 1	7.99636	16.10559	4.013177
E - Temperature 18	8.35394	19.04313	4.363844

A CI I T			
A - Globe Temperature	21.54459	68.19135	8.257806
B - Globe Temperature	21.79943	66.04932	8.127073
C - Globe Temperature	21.58739	67.9413	8.242652
D - Globe Temperature	21.3593	61.20225	7.823187
E - Globe Temperature	21.17616	63.2155	7.950818
-			
A - Wind Chill	17.83821	16.26445	4.03292
B - Wind Chill	17.94592	17.03583	4.127448
C - Wind Chill	17.773	16.54112	4.067078
D - Wind Chill	17.83537	16.55685	4.069011
E - Wind Chill	18.29402	19.13706	4.374593
A - Relative Humidity	78.18477	376.0101	19.39098
B - Relative Humidity	77.87831	408.623	20.21443
· ·		374.6226	
C - Relative Humidity	77.96285		19.35517
D - Relative Humidity	77.94204	389.856	19.74477
E - Relative Humidity	76.79305	406.4945	20.16171
A - Heat Stress Index	17.8996	14.99685	3.872576
B - Heat Stress Index	18.00428	15.43916	3.929269
C - Heat Stress Index	17.82825	15.35625	3.918706
D - Heat Stress Index	17.92162	15.11764	3.888141
E - Heat Stress Index	18.28642	18.47524	4.298283
A - Dew Point	13.55388	9.723472	3.118248
B - Dew Point	13.53086	9.636518	3.104274
C - Dew Point	13.45812	10.08415	3.175555
D - Dew Point	13.50861	10.07188	3.173623
E - Dew Point	13.55879	9.422585	3.069623
A - Psychro Wet Bulb Temperature	15.27072	6.944027	2.635152
		6.770263	
B - Psychro Wet Bulb Temperature	15.29552		2.601973
C - Psychro Wet Bulb Temperature	15.19665	7.239313	2.690597
D - Psychro Wet Bulb Temperature	15.26019	7.044403	2.654129
E - Psychro Wet Bulb Temperature	15.40667	6.997445	2.645268
A - Station Pressure	1016.168	38.47127	6.202521
B - Station Pressure	1016.657	36.84193	6.069756
C - Station Pressure	1016.689	37.69149	6.13934
D - Station Pressure	1016.728	34.98778	5.915047
E - Station Pressure	1016.126		
		38.93991	6.240185
A - Barometric Pressure	1016.128	38.46795	6.202254
B - Barometric Pressure	1016.616	36.82887	6.068679
C - Barometric Pressure	1016.652	37.67562	6.138047
D - Barometric Pressure	1016.689	34.95233	5.912049
E - Barometric Pressure	1016.128	38.93518	6.239806
A - Altitude	-25.9871	2663.641	51.61047
B - Altitude	-30.0582	2545.708	50.45501
C - Altitude	-30.3387	2608.535	51.07382
D - Altitude	-30.6532	2419.724	49.19069
E - Altitude	-25.9612	2692.353	51.88789
A - Density Altitude	137.3166	26510.04	162.8191
B - Density Altitude	135.5808	26863.31	163.9003
v			

deviations.

C - Density Altitude	129.6229	26986.6	164.276
D - Density Altitude	132.4111	26516.13	162.8377
E - Density Altitude	150.84	29714.93	172.3802
A - NA Wet Bulb Temperature	15.98154	10.01211	3.164191
B - NA Wet Bulb Temperature	15.99681	9.809254	3.131973
C - NA Wet Bulb Temperature	15.93424	10.48028	3.237326
D - NA Wet Bulb Temperature	15.91564	9.987434	3.16029
E - NA Wet Bulb Temperature	15.93689	9.432184	3.071186
A - WBGT	17.25432	16.13526	4.016872
B - WBGT	17.32197	15.83536	3.979366
C - WBGT	17.22502	16.54675	4.067769
D - WBGT	17.1768	15.50718	3.937916
E - WBGT	17.18554	15.48987	3.935717
A - TWL	301.3929	814.7666	28.54412
B - TWL	299.4517	790.0692	28.10817
C - TWL	301.8998	766.5335	27.68634
D - TWL	305.2546	616.0098	24.81954
E - TWL	284.1153	1289.913	35.91536
A - Direction, Mag	208.9051	10105.68	100.527
B - Direction, Mag	183.2173	9975.447	99.87716
C - Direction, Mag	183.0837	7704.62	87.77597
D - Direction, Mag	197.8262	8135.316	90.19598
E - Direction, Mag	223.8966	9268.008	96.27049
Table 1: Measures of means, variability and standard			

In Table 1, we can see that the Wind Speed mean for sensor E is clearly lower in comparison with the means of Sensors A, B, C and D. Another clear distinctive mean is the Altitude, which is negative, meaning that the sensors are below sea level. However, for a more profound analysis, we require more representative data.

1.2 Create 1 plot that contains histograms for the 5 sensors Temperature values. Compare histograms with 5 and 50 bins, why is the number of bins important?

When the number of bins is changed, the histogram changes as well. With 50 bins, the variability of the temperatures is higher and the distribution is clearer than with 5 bins. Moreover, the higher the number of bins, the clearer it becomes to check the most frequent values, the outliers and distinguish the mean. In general, the more the bins, the clearer the distribution.

Temperatures of Sensor A

Figure 1: Temperature Histograms Sensor A: bins = 5, bins = 50

Temperatures of Sensor B

Figure 2: Temperature Histograms Sensor B: bins = 5, bins = 50

Temperatures of Sensor C

Figure 3: Temperature Histograms Sensor C: bins = 5, bins = 50

Temperatures of Sensor D

Figure 4: Temperature Histograms Sensor D: bins = 5, bins = 50

Figure 5: Temperature Histograms Sensor E: bins = 5, bins = 50

1.3 Create 1 plot where frequency polygons for the 5 sensors Temperature values overlap in different colors with a legend.

Figure 6: Frequency Polygons for Temperature Values

1.4 Generate 3 plots that include the 5 sensors boxplot for: Wind Speed, Wind Direction and Temperature.

Figure 7: Boxplot for Wind Speed

Figure 8: Boxplot for Wind Direction

Figure 9: Boxplot for Temperature $\,$

2 A2

2.1 Plot PMF, PDF and CDF for the 5 sensors Temperature values in independent plots (or subplots). Describe the behaviour of the distributions, are they all similar? what about their tails?

Figure 10: Probability Density Function for Temperature

Figure 11: Probability Density Function for Temperature

Figure 12: Cumulative Distribution Function for Temperature

First of all, we can observe that the PMF and PDF results are very similar because of the high amount of data to our samples [1], furthermore, most of the data is contained in a range of 0 to 35 °C. The PMF and PDF are both asymmetrical distributions with long right tails. Nevertheless, PDF and PMF of sensor E seems to have the longest right tail, which could indicate that there more outliers in the higher temperature values.

2.2 For the Wind Speed values, plot the pdf and the kernel density estimation. Comment the differences.

Kernel and PDF graphs of the same sensors are almost identical. The Kernel graphs offer a smoother picture of the data visualization. We can observe that A and B are very similar, however, E has definitely lower wind speed values than all of the other sensors. Most of the values in sensors A, B, C and D are contained in in the range of 0 to 4, however sensor E has very few values above 3. This could mean that sensor is at a location where it receives less wind comparatively to the other sensors.

3 A3

3.1 Compute the correlations between all the sensors for the variables: Temperature, Wet Bulb Globe Temperature (WBGT), Crosswind Speed. Perform correlation between sensors with the same variable, not between two different variables; for example, correlate Temperature time series between sensor A and B. Use Pearson's and Spearmann's rank coefficients. Make a scatter plot with both coefficients with the 3 variables.

Figure 13: Scatterplots for Temperature

Figure 14: Scatterplots for Wet Bulb Globe Temperature

Correlations: Cross Wind Speed - sensor correlation

Figure 15: Scatterplots for Crosswinds

3.2 What can you say about the sensors' correlations?

With Temperature and WBGT, we can see that all of the sensors have a very high positive correlation in both the Pearson and Spearman correlation graphs, which is greater than or equal to 95% with AB, AC and CD possessing the highest correlations. Sensor E has the lowest correlation with the other sensors, yet still very high. the correlation between AE appears to have the lowest in temperature, along with DE in WBGT.

Cross wind speed on the other hand, has much more modest positive correlations in both correlation graphs, ranging from 40% to 64%. Clearly, the most correlated crosswind speed is between sensors C and D with 64% in the Spearman correlation, while the least correlated crosswind speeds are between sensors B and E which is lower than 40% in the Pearson correlation. Similarly with the previous variables, correlations of sensor E with the rest of the sensors are lower than the rest.

All in all, Sensor E seems to be less correlated with all the rest four sensors in all three different variables under examination. Next to that, BE has the biggest correlation among E correlations with other sensors in WBGT and in Temperature, along with CE, but the least correlated in cross wind speed.

GEO1001: Homework 1

3.3 If we told you that that the sensors are located as follows, hypothesize which location would you assign to each sensor and reason your hypothesis using the correlations.

Figure 16: Sensors possible location

According to the to the Spearman and Pearson correlations, It is very certain that E would be the sensor on the upper right. Because sensor E's results are the most discrepant in comparison with the others sensors, therefore, it is reasonable to assume that it is isolated. Furthermore, the location on the upper right is also covered with walls, which would effectively explain the weak Wind Speed results of Sensor E with our other representative data.

I would also hypothesize that Sensors A and B are together, while B and C are together, due to the high value correlations presented in the previous section. Moreover, we can observe that D has the highest correlation with C and A has a extremely high correlation with C in all of the graphs. However, to precisely determine where the sensors are located, we would need to produce more relevant representative data to make a firm conclusion.

4 A4

4.1 Plot the CDF for all the sensors and for variables Temperature and Wind Speed, then compute the 95 percentage confidence intervals for variables Temperature and Wind Speed for all the sensors and save them in a table (txt or csv form)

Variable, Sensor	Lower Interval Limit	Higher Interval Limit
Temperature, A	17.81214113267346	18.126065652463858
Temperature, B	17.90472689963894	18.226129320070267
Temperature, C	17.754926235060246	18.071347006653575
Temperature, D	17.83814660824381	18.15457772482005
Temperature, E	18.181933946027776	18.525944841851015
Wind Speed, A	1.246227038990971	1.3343868543854427
Wind Speed, B	1.1971663346979249	1.287082453670411
Wind Speed, C	1.3243037885948932	1.418622646328308
Wind Speed, D	1.5296480419653757	1.633650260379006
Wind Speed, E	0.5680599051948441	0.6244249432900044

Figure 17: Cumulative Distribution Function for Temperature

Figure 18: Cumulative Distribution Function for Temperature

- **4.2** Test the hypothesis: the time series for Temperature and Wind Speed are the same for sensors: E,D; D,C; C,B; B,A.
- **4.3** What could you conclude from the p-values?

Sensors and Variable	T-Value	P-Value
E-D, Temperature	3.000	.0027
D-C, Temperature	0.729	.4657
C-B, Temperature	-1.324	.1854
B-A, Temperature	0.840	.4004
E-D, Wind Speed	-32.673	$.3729 e^{-212}$
D-C, Wind Speed	5.871	$.6101 e^{-09}$
C-B, Wind Speed	3.892	.0001
B-A, Wind Speed	1.500	.1335

We can observe that the p-values for the sensor correlation ED for temperature and ED for wind speed are below 0.05, in this case, we can reject the null hypothesis that there's no difference between the time series for the sensor pairings and we can provide support that there is a significant statistical difference. It's also logical to make the same conclusion for the correlations for DC and CB for Wind Speed.

For other time series correlations that have p-values above 0.05, in this case, DC, CB, BA

GEO1001: Homework 1

in relation to temperature and BA in relation to wind speed are not statistically significant because the p-values are greater than 0.05, therefore, we cannot say that the null hypothesis is rejected, only that the values are not statistically significant and indicates strong evidence for the null hypothesis.

References

[1] Daniela Maiullari and Clara Garcia Sanchez. Measured Climate Data in Rijsenhout. 8 2020.