6ª LISTA DE EXERCÍCIOS DE ESTATÍSTICA E INFORMÁTICA

- 1) Para cada um dos casos abaixo, escreva o espaço amostral correspondente e conte seus elementos.
 - a. Uma moeda é lançada duas vezes e observa-se as faces obtidas.
 - b. Um dado é lançado duas vezes e a ocorrência de face par ou impar é observada
 - c. Uma urna contém 10 bolas azuis e 10 vermelhas com dimensões rigorosamente iguais. Três bolas são selecionadas ao acaso com reposição e as cores são anotadas.
 - d. Em uma cidade, famílias com 3 crianças são selecionadas ao acaso, anotando-se o sexo de cada uma.
 - e. Dois dados são lançados simultaneamente e estamos interessados na soma das faces observadas.
 - f. Uma máquina produz 20 peças por hora, escolhe-se um instante qualquer e observa-se o número de peças defeituosas na próxima hora.
 - g. Uma moeda é lançada consecutivamente até o aparecimento da primeira cara.
 - h. Um dado é lançado juntamente com duas moedas e observa-se as faces par (P) ou impar (I) do dado as faces Cara (H) ou Coroa (T) das moedas.
- 2) Sendo A e B dois eventos em um mesmo espaço amostral, "traduza" para a linguagem da Teoria dos Conjuntos as seguintes situações.
 - a. Pelo menos um dos eventos ocorre.
 - b. O evento A ocorre mas B não.
 - c. Nenhum deles ocorre.
 - d. Exatamente um dos eventos ocorre.
- 3) Uma universidade tem 10 mil alunos dos quais 4 mil são considerados esportistas. Temos, ainda, que 500 alunos são do curso de biologia diurno, 700 da biologia noturno, 100 são esportistas e da biologia diurno e 200 são esportistas e da biologia noturno. Um aluno é escolhido ao acaso e pergunta-se a probabilidade de: a) Ser esportista; b)Ser esportista e aluno da biologia noturno; c) Não ser da biologia; d) Ser esportista ou aluno da biologia; e) Não ser esportista, nem aluno da biologia.
- 4) Sejam A e B dois eventos em um dado espaço amostral, tais que as probabilidades: P(A) = 0.2; P(B)=p; $P(A \cup B)=0.5$ e $P(A \cap B)=0.1$. Determine o valor de p.
- 5) Dois processadores tipos A e B são colocados em teste por 50 mil horas. A probabilidade de que um erro de cálculo aconteça em um processador do tipo A é de 1/30, no tipo B, 1/80 e, em ambos, 1/1000. Qual a probabilidade de que:
 - a) Pelo menos um dos processadores tenha apresentado erro?
 - b) Nenhum Processador tenha apresentado erro?
 - c) Apenas o processador A tenha apresentado erro?
- 6) Num total de 20 animais sabe-se que 5 apresentam uma determinada doença. Escolhendo-se aleatoriamente 2 animais (sem reposição), determine: a) a probabilidade de que ambos sejam sadios; b) a probabilidade de que ambos sejam doentes; c) a probabilidade de que um animal seja sadio e o outro doente.
- 7) Escolhendo-se um animal ao acaso, com base na seguinte tabela, determine a probabilidade:

Sexo	Avaliação			_ Total	a) do que o mosmo tonho recebido o avalicação M
	R	M	Ε	– Total	a) de que o mesmo tenha recebido a avaliação M.b) de que tenha recebido a avaliação M, se o mesmo
Macho (G)	3	14	5	22	é macho (G).
Fêmea (F)	5	18	5	28	- Os eventos M e G são independentes?
Total	8	32	10	50	- 05 eventos w e o são maependemes:

- 8) Sabendo-se que 8% de um rebanho tem peso superior a 296 kg e 16% entre 280 e 296 kg, qual a probabilidade de que um bovino com peso superior a 280 kg pesar mais do que 296 kg?
- 9) São dadas as seguintes informações a respeito dos animais de uma fazenda: 2% são machos e Nelore; 10% são Nelore e 50% são machos. Qual a probabilidade de um animal ser Nelore, sabendo-se que é fêmea?

- 10) Sabendo-se que 2% dos exames feitos por um laboratório apresentam falha humana, 1% falha técnica e 2,5% pelo menos uma das duas falhas, qual a probabilidade de um exame ter as duas falhas simultaneamente.
- 11) Uma fazenda contém 4 bezerros Nelore, 5 Gir e 6 Guzerá. Outra fazenda contém 5 bezerros Nelore, 6 Gir e 2 Guzerá. Sorteia-se um bezerro de cada fazenda. Qual a probabilidade de que ambos sejam da mesma raça?
- 12) Três laboratórios A, B, C produzem, respectivamente, 50%, 30% e 20% de vacinas contra a febre aftosa. Constatou-se em um lote de vacinas de uma distribuidora de produtos agrícolas que 3%, 4% e 5% de vacinas A, B, C, respectivamente, não imunizavam. Se uma vacina é selecionada aleatoriamente, encontre:
 - a) a probabilidade de que ela não imunize o animal.
 - Se for constatado que uma vacina selecionada aleatoriamente, não imuniza, encontre:
 - b) a probabilidade de que ela tenha sido fabricada pelo laboratório A.
- 13) Admitamos que a ocorrência de febre aftosa (A) seja independente de brucelose (B) em bovinos. Calcular as quatro probabilidades ausentes na tabela.

	Brucelose (B)	Não Brucelose ($\overline{\overline{B}}$)	Total
Aftosa (A)			0,0800
Não Aftosa (\overline{A})			0,9200
Total	0,0050	0,9950	1,0000

- 14) Um feixe de nêutrons irradia duas camadas de tecido. A probabilidade de que um nêutron seja absorvido pela primeira camada é 10% e a probabilidade de absorção pela segunda camada (depois da passagem através da primeira camada) é 15%. Qual é a probabilidade de que um nêutron passe através das duas camadas?
- 15) Numa população humana, a probabilidade de ser surdo é 0,0050 e a de ser cego é 0,0085. Ambas enfermidades ocorrem simultaneamente com a probabilidade 0,0006. Qual a probabilidade de ter pelo menos um dos males?