10 Sep.

E. Reggij

امتحانات رقورا)

الأول

النموذج

المجموعة الأولى اختر الإجابة الصحيحة:

- $\mathbf{v} = \mathbf{v} \cdot \mathbf{v} \cdot$
- (د)۷
- (ب) ۱۸ (ج)
- 7(1)
- 🚺 الدالة د: د (س) = س م (س ۳) من الدرجة
- (د) الثالثة

- (۱) صفر (ب) الأولى (ج) الثانية
- ٤(د)
 - $\frac{1}{5}$ (-1)
 - 1 الوسط المتناسب الموجب بين الكميتين: P ، ح هو
- (c) $\sqrt{4}$
- $\frac{1}{2}$ (\Rightarrow) $\frac{1}{2}$ (\Rightarrow) \Rightarrow $\frac{1}{2}$ (\Rightarrow)

۱٤(۵)

- ٦(١)
- 🚺 نصف العدد ۲۰۶ يساوي

- 197 (2)
- (۱) ۲۰۲ (ح) ۲۹۲

(ج) ۷

- - (ب) ٥ (ج) ۹ (ح)
- ξ(I)

- $(1) \quad (2) \quad (2) \quad (4) \quad (4)$
- ٩ إذا كانت النقطة (ك٢ ٤ ، ك) تقع على الجزء السالب من محور الصادات فإن: ك =
 - (٤) ٢
- (ب) ٤ (ج)
- Y±(1)

المجموعة الثانية أجـــب عمــــا يلــــى:

وكانت كا علاقة من سر إلى صرحيث « أ كاب» تعنى أن (أ أ = $^{\vee}$) لكل أ \in سر ، $^{\vee}$ \in صر ، فاكتب بيان كا ومثلها بمخطط سهمى وهل كا دالة من سر إلى صر ولماذا ؟

٢ مثل بيانيًّا منحنى الدالة د حيث د(س) = ٢٠٠٠ متخذًا س ∈ [٣٠٣]

ومن الرسم استنتج إحداثيي نقطة رأس المنحني والقيمة العظمي أو الصغرى للدالة.

إذا كان $\frac{9+2}{2} = \frac{2+2}{2}$ فأثبت أن: $\frac{9}{1}$ ، $\frac{9}{1}$ ، $\frac{9}{1}$ كميات متناسبة.

٤ أوجد الرابع المتناسب للأعداد: ٣، ٥، ٦

إذا كانت $\infty \infty 0 0$ وكانت $\infty 0 = \Lambda$ عندما $\infty 0 0$ فأوجد:

قیمة س عندما ص = ۱۰۰

٧ فيها يلي توزيع تكراري يبين أعمار ١٠ أطفال:

المجموع	١٢	١.	٩	٨	٥	العمر بالسنوات
١.	١	٣	٣	۲	١	عدد الأطفيال

احسب الانحراف المعياري للعمر بالسنوات.

(ب) ٣٤) (ج) ٣١) ٥] [0,7]() $\emptyset(1)$

آ إذا كان ^٧ ٧٧ = ٧-٠ فإن: س =

۹ (۱) هجا ۳ (جـ) (د) -۳

٣ إذا كان: (٢ + ٣ ، ٢ - ١) = (-٢ ، ٤) فإن: ٢ + ٢ =

(۱) صفر (ب) ۲ (ج) ٥ (د) ۱۰

٤ إذا كانت د(س) = ٩ فإن: د(-٩) = ···········

۹ (ا) ۸۱ (ا) (د) -۳

 $\{(7,1)\}(2) \qquad (=) \{7,7\} \qquad (=) \{1,7\}$

🚺 الدالة د: د (س) = ٥ تقطع محور الصادات في النقطة

 $(\circ,\circ)(\circ) \qquad (\circ,\cdot)(\circ) \qquad (\cdot,\circ)(\circ) \qquad (\cdot,\circ)(\circ)$

V إذا كانت: الكميات ٦٩٦ ص٢، ٣٩ ص، ح في تناسب متسلسل، فإن: ح =

 $\frac{\gamma}{\pi}(2) \qquad \frac{\gamma}{\pi}(2) \qquad \gamma(1)$

🔥 العلاقة التي تمثل تغيرًا طرديًّا بين س ، ص هي

 $\frac{\delta}{\gamma} = \frac{\delta}{\delta} (1)$ $\delta = \frac{\delta}{\delta} = \frac{\delta}{\gamma} (1)$

٩ إذا كان: ١٥ هي أكبر مفردات مجموعة من القيم مداها ٩ ، فإن أصغر قيم هذه المجموعة =

(د) ۳ ۲٤(۱)) ۲٤(۱)

المجموعة الثانية أجـــب عمــــا يلــــى:

انت سہ = $\{1, 7, 7, \frac{1}{7}, \frac{1}{7},$

فاكتب بيان ع ومثلها بمخطط سهمي، وبيِّن أن ع دالة أم لا؟ ولماذا؟

- وجد العدد الموجب الذي إذا أُضيف مربعه إلى كل من حدى النسبة ٥: ١١ فإنها تصبح ٣: ٥ أوجد العدد الموجب الذي إذا أُضيف
- ("") = ("") = ("") = "" "" ("") = "" "" فأثبت أن: <math>("") = ("")
 - إذا كانت $\frac{\omega}{\omega} = \frac{\gamma}{m}$ فأوجد قيمة المقدار $\frac{\gamma}{100} = \frac{\gamma}{100}$
- ١, ٥ = ٣ عندما 0 = 0 عندما 0 = 0
 - ▼ احسب الانحراف المعياري للقيم: ٣، ٦، ٧، ٩، ١٠، ١٠، ٩، ١٠، ١٠ المياري للقيم: ٣، ١٠، ١٠، ١٠، ١٠ المياري للقيم: ١٠، ١٠ المياري للقيم: ١٠، ١٠ المياري للقيم: ١٠، ١٠ المياري المياري للقيم: ١٠، ١٠ المياري للقيم: ١٠، ١٠ المياري للقيم: ١٠، ١٠ المياري للقيم: ١٠٠ المياري للقيم: ١٠٠ المياري للقيم: ١٠٠ المياري المياري للقيم: ١٠٠ المياري للقيم: ١٠٠ المياري للقيم: ١٠٠ المياري الميا

(د) الرابع

المجموعة الأولى اختر الإجابة الصحيحة:

🚺 النقطة (-٣ ، ٤) تقع في الربع

(١)الأول (ب) الثاني

 $(7\sqrt{7} - \sqrt{7})^{2}(7\sqrt{7} + \sqrt{7})^{2} = \cdots$

(۱۲)(ح) ٤(١٠)(ك) ⁽²⁾(10)(3)

📆 إذا كانت: ٩ ، ٠ ، ح ، ٤ في تناسب متسلسل، وكان ٩ + ٠ + ح = ٥ ، ٠ + ح + ٥ + ٧ ، فإن 🖵 =

(جـ) الثالث

 $\frac{\sqrt{-}}{2}(2) \qquad \frac{\sqrt{-}}{2}(2) \qquad \frac{\sqrt{-}}{2}(2$

الأجر الأسبوعي بالجنيهات لمجموعة من العمال في أحد المصانع

هو ۱۷۰، ۱۸۰، ۲۳۰، ۲٤٠ فإن: الأجر الذي يمثل الوسيط يساوي

(ب) ۷۰ (ج) ۱۸۰

• إذا كان: (س^٣، ص^٢) = (١، ٤)، س > ص فإن: س ص =

(ب) ۲ (ج) ۲-(د)-٤ £(1)

يمر بنقطة الأصل فإن ح =

 $\frac{\gamma}{\gamma}(z)$ (ب) -۳ (جـ) صفر **T(1)**

 \mathbf{V} إذا كانت $\frac{\mathbf{v}}{\mathbf{v}} = \mathbf{0}$ ، فإن: $\mathbf{v} \propto \dots$

......» (ب) من المناسب (۱)س

٨ أكثر المجموعات الآتية تشتتًا هي المجموعة =

٤٣,٣٧,٢٩,١٩,٢٠(ك)

(ح) ۲۱، ۳۵، ۲۲، ۳۷، ۲۱ 77,0,19,79,70(3)

٩ الدالة د: ع → ع حيث د (س) = ٩ س + ب تمثل دالة من الدرجة الأولى بشرط ٩ ∈

 $(-) g_{+} (-) g_{-} (-)$ و (۱) ع

المجموعة الثانية أجـــب عمــــا يلــــى:

- ۱۲ و کانت د(س) = ۵ س + ۹ و کانت: د(۲) = ۱۲ فأوجد قيمة: ۹ ا
- إذا كانت سـ = (١، ٢)، صـ = (٠، ٢، ٣) وكانت ع علاقة من سـ → صـ حيث (١ ع ب تعنى أن: ١ + ٠ = ١)

عددًا أوليًا) لكل $\{ \in \mathbb{Z} : \neg \in \neg \text{ فاكتب بيان } \beta \text{ ومثلها بمخطط سهمي، وهل <math>\beta \in \neg \bullet \text{ or } \beta \in \neg \bullet \text{$

- $\frac{2+5}{5} = \frac{3+5}{5} = \frac{3$
- عددان صحيحان النسبة بينها ٢: ٣ وإذا أضيف للأول ٧ وطُرح من الثاني ١٢

صار<mark>ت النسبة بينهما ٥: ٣ فأوجد ال</mark>عددين.

- ۱, ٥ = م عندما س عندما س α و کانت م α عندما س α نأوجد: قيمة ص عندما س α
 - إذا كان ٩ ، ٢ ، ٤ ، و في تناسب متسلسل، فأوجد قيمة ٩ + و
 - ▼ أوجد الوسط الحسابي والانحراف المعياري للبيانات الآتية:

المجموع	۱ • - ۸	-٦	- ٤	-7	صفر –	الفئـــة
۲.	٥	٥	٦	٣	١	التكــرار

- 🚺 إذا كان المدي لسبع قيم يساوي صفرًا ، فإن الانحراف المعياري لهذه القيم =.....
- (\mathbf{v}) (\mathbf{v}) (\mathbf{v}) (\mathbf{v})
 - ك إذا كانت: س∈ع فإن: النقطة (−س ، الس) تقع في الربع
- (۱) الأول (ب) الثاني (ج) الثالث (د) الرابع
 - 🝸 إذا كانت: د (س) = ٧ فإن: د (٧) + د (-٧) = ·········
 - V = (-1) V = (-1) V = (-1) V = (-1)
- ا إذا كانت: د دالة حيث د (س) = ٣ س ١٢ يمثلها بيانيًا مستقيم يقطع محور السينات
 - في النقطة

V(1)

- $(\Upsilon,\xi)(z) \qquad (\cdot,\xi)(z) \qquad (\xi,\Upsilon)(1)$
 - 💿 الشكل المقابل يمثل دالة على سـمداها هو
 - (۱) {۹، ۲} (ب)
 - $\{\beta\}(z) \qquad \{z, -z, \beta\}(z)$
 - 1 إذا كانت س ∈ ع وكان ١ < س < ٣ فإن: (٣ س ١) ∈
- $\{\Lambda, \Upsilon\}(\Sigma)$ $[\Lambda, \Upsilon](\Sigma)$ $[\Lambda, \Upsilon](\Sigma)$ $[\Lambda, \Upsilon](\Sigma)$

(ب) ٤ (ب)

(د) ۲۶

(د) ۹

- اذا كانت: ٣٠٠ = ٩٠ فإن: س =
- - \P اذا كان س $^{7}-3$ س $\phi^{7}+3$ $\phi^{3}=4$ فإن: س ∞
- $\frac{1}{\sigma}(2) \qquad \frac{1}{\sigma}(2) \qquad \frac{1$

٣(١)

المجموعة الثانية أجـــب عمــــا يلــــى:

- 🚺 عددان صحيحان النسبة بينهم ٣: ٧ إذا طُرح من كل منهما ٥ أصبحت النسبة ١: ٣، فأوجد العددين.
 - إذا كان $\frac{\omega}{3} = \frac{\omega}{0} = \frac{\xi}{V} = \frac{\omega V}{0} = \frac{\xi}{V}$ فأوجد قيمة ك
 - $\Upsilon = \varphi + \Lambda$ و کانت $\varphi = \varphi + \Lambda$ و کانت $\varphi = \Upsilon$ تتناسب عکسیًّا مع φ و کانت $\varphi = \Upsilon$ عندما $\varphi = \Upsilon$

فأوجد العلاقة بين ص، س ثم أوجد: قيمة ص عندما س = ٣

- الدالة: د = ((۱، ۳)، (۲، ٥)، (۳، ۷)) فاكتب: مجال ومدى وقاعدة الدالة إذا كان بيان الدالة: د
 - $Y = (1) = ^{-1} + ^{-1} + ^{-1}$ فأثبت أن: د(۳) $Y = ^{-1}$ د(۱) = ۲
 - ~ 200 إذا كان ~ 1000 إذا كان ~ 1000 إذا كان ~ 1000
 - ٧ أوجد الوسط الحسابي والانحراف المعياري للقيم الآتية: ٢٣ ، ١٢ ، ١٧ ، ١٣ ، ١٥

10(2)

المجموعة الأولى اختر الإجابة الصحيحة:

			0 ,5 - 7
•	حيث س≠ ، ص ≠ .	تقع في الربع	النقطة (س ^۲ ، ص ^۲)
(د) الرابع	(جـ) الثالث	(ب) الثاني	(١)الأول
=	ة الأولى ما عدا د (س) =	<mark>ثيرات ح</mark> دود من الدرج	الدوال الآتية <mark>دوال ك</mark>
(1+1) 0-(2) (0	- ۱ (ج) ۳ + (س +	+ س ۲ ۲ (ب)	$Y + \omega \frac{\psi}{\sigma}(1)$

- - اخا کان (س + ٥ ، ٨) = (١ ، ٦ ص + س) فإن: س + ص =
 - $\Upsilon(z)$ $\xi (چ)$ $\Upsilon(z)$ $\chi(z)$
 - ✓ أدق مقاييس التشتت
 (١) الوسط الحسابي (ب) الوسيط

(ب) ۳ (ج) ۲ (۱)

- (ج) الانحراف المعياري (د) المنوال
- $\Lambda (2)$ $\frac{1-}{\Lambda}(2)$ $\Lambda(-1)$
- ٩ إذا كان: مساحة المستطيل ٣٠سم وأحد بُعديه س والبعد الآخر ص فإن: ص∞
 - $(-)^{\omega} (-)^{\omega} = (-)^{\omega} + (-)^{\omega}$

المجموعة الثانية أجـــب عمــــا يلــــى:

آ إذا كانت: سـ = {۲ ، ۳ ، ٥} وكانت علاقة معرفة على سـ حيث «٩ ع٠» تعنى أن (٩ = ٠) لكل ٩ ∈ سـ

، و رسح فاكتب بيان ع ومثلها بمخطط سهمي، وبين أن ع تمثل دالة واذكر مداها.

و العدد الذي إذا طُرح ثلاثة أمثاله من كل من حدى النسبة ع في النها تصبح ٢ العدد الذي إذا طُرح ثلاثة أمثاله من كل من حدى النسبة

 7 إذا كانت 9 وسطًا متناسبًا بين 9 ، ح فأثبت أن: $\frac{9+4+4+4}{9+4+4+4}=0$

إذا كانت $\frac{w}{Y} = \frac{w}{T} = \frac{3}{2} = \frac{Y}{W} = \frac{w - w + 0}{2}$ فأوجد قيمة ك

٧ الجدول الآتي يمثل عدد الأطفال في ١٠٠ أسرة في إحدى المدن:

المجموع	٤	٣	۲	١	صفر	عدد الأطفال (س)
1	١٤	70	٤٠	10	٦	عدد الأسر (التكرار)

احسب الوسط الحسابي والانحراف المعياري.

- الفرق بين أكبر قيمة وأصغر قيمة لمجموعة من البيانات هو
 - (ب) المدي

(١) الوسيط

(د) الانحراف المعياري

- (جـ) الوسط الحسابي
- النقطة (۱ ، -٥) تقع في الربع
- (١) الأول (ب) الثاني (جـ) الثالث (د) الرابع

- \square إذا كانت: $\square = -\infty$ ، \square أفإن: $\square = \square$
- $(1) \underline{g} \qquad (2) \qquad (3) \qquad (4) \qquad (4) \qquad (4) \qquad (5) \qquad (6) \qquad$

 - - الثالث المتناسب للعددين ٣، ٦ هو
- ۱۲(۵)
- $\Upsilon(-)$ $\Theta(-)$ $\frac{1}{\Upsilon}(1)$
 - إذا كان د: د (س) = ١ فإن: د (١) + د (٢) =
- (ج_) ۳ (د) ٤
- (ب) ۲
- 1(1) = 17 V + **77** V
- ٥٢ (ټ) ٢٤ (ت) ١٠(١)
- 1,.(3)

- - إذا كان: س = {۱، ۳} فإن: ٥ (س) =
- 1.(2)
- (ب) ٤ (ج) ٣
- ٨ إذا كانت ص تتغير عكسيًّا مع س ، فإن
- $\frac{\rho}{\rho} = \rho \qquad (2) \qquad (2) \qquad (3) \qquad (4) \qquad (4) \qquad (4) \qquad (5) \qquad (5) \qquad (6) \qquad (6$
- ٩ إذا كانت النقطة (س ٣- ، ٢ -س) تقع في الربع الرابع فإن: س =
- (د)۱
- (ب) ۳ (ج)
- ξ(I)

Y(1)

المجموعة الثانية أجـــب عمــــا يلــــى:

- $\frac{-7 + 60}{5 + 7 + 60} = \frac{-7 + 7 + 7}{5 + 7 + 7} = \frac{-7 + 7 + 7}{5 + 7 + 7} = \frac{-7 + 7 + 7}{5 + 7 + 7} = \frac{-7 + 7 + 7}{5 + 7 + 7}$ إذا كان أ ، ب ، < كميات متناسبة فأثبت أن:
 - إذا كان ٢ ، ٩ ، ٠ ، ٤٥ فى تناسب متسلسل فأوجد قيمة ٩ + ٠
- إذا كانت ع ارتفاع أسطوانة دائرية قائمة (حجمها ثابت) تتغير عكسيًّا بتغير مربع طول نصف قطر قاعدتها مو ، وكان على المناع عندما مو = ٥٠ , ١٥ سم عندما مو = ٥٠ , ١٥ سم
- ا فانت النقطة (٩، ٣) تقع على الخط المستقيم الممثل للدالة د: ع \rightarrow ع، حيث د(س) = ٤ س ٥ ، فأوجد قيمة ٩ إذا كانت النقطة (١٩، ٣)
- مثل بيانيًا منحنى الدالة دحيث د(س) = س' + ۲س + ۱ متخذًا س ∈ [-۳، ۳]، ومن الرسم استنتج إحداثيى نقطة
 رأس المنحنى والقيمة العظمى أو الصغرى للدالة.
 - ∞ اذا کانت $\infty^{1} 3$ ∞ ∞ ∞ ∞ ∞ ∞ ∞
 - ٧ احسب الوسط الحسابي والانحراف المعياري للقيم: ٨ ، ٩ ، ٧ ، ٦ ، ٥

T: 1(1)

- ١ إذا كان ١ : ٢ = ٢ : ٣ ، ٢ : ح = ٥ : ٦ فإن ١ : ح =
- (د) ۳: ۰ (ح) ۳: ۲
- - (۱) ۱۲ (ح) ۱۲ (ح) ۲٤ (۵)
 - **٣** إذا كانت: [-١ ، س] [ص ، ٥] = [٢ ، ٣] فإن: س^ص =
 - $A(z) \qquad A(z) \qquad \frac{1}{2}(z) \qquad 1-(1)$
 - وا كان المستقيم الممثل للدالة د : ع ح حيث د (س) = ٢ س + π + ح يمر بنقطة الأصل، فإن ح = π
 - $\Upsilon(s)$ (ح) صفر $\Upsilon(s)$
 - $^{\circ}$ اذا كان $^{\circ}$ $^{\circ}$
 - $\Upsilon(z)$ (z) (z) (z) (z)
 - $\frac{1}{1}$ إذا كان: $\frac{1}{\sqrt{1}} = \frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} = 7$ فإن $\frac{1}{2}$
 - $\Upsilon(1) \qquad (-) \qquad (-) \qquad (1)$
 - lack la
 - (۱) ۱ ± (ج) + ۱ (د) صفر
 - ٨ المستقيم الذي يمثل الدالة د : د(س) = س + ١ يقطع محور الصادات في النقطة
 - $(1,\cdot)(2) \qquad (\cdot,1)(2) \qquad (\cdot,1-)(2) \qquad (1,\cdot)(1)$
 - ٩ إذا كانت د : د (س) = ٣ هي دالة كثيرة حدود من الدرجة
 - (۱) الثالثة (ب) الثانية (ج) الأولى (د) الصفرية

المجموعة الثانية أجـــب عمــــا يلــــى:

$$\frac{\xi}{1}$$
 إذا كان $\frac{\xi}{\gamma}$ ا ، فأوجد قيمة: $\frac{\delta}{\gamma}$ ا ، فأوجد

حيث ا عنى (
$$=$$
 ا کل ا $=$ س ، \sim و صحميث ا

فأوجد بيان كم ، وأثبت أن ع دالة من سم إلى صم واذكر مداها.

إذا كان
$$\frac{9}{10-4} = \frac{1}{10-4}$$
 فأثبت أن: $\frac{9}{10-4}$ وسط متناسب بين $\frac{9}{10-4}$

- عددان صحيحان النسبة بينهم ٢: ٣ وإذا أضيف للأول ٧ وطُرح من الثاني ١٢ صارت النسبة بينهم ٥: ٣ فأوجد العددين.
 - إذا كانت: $\frac{0}{2} \propto \frac{1}{2}$ وكانت $\frac{0}{2} = 7$ عندما $\frac{1}{2}$ فأوجد:

▼ أوجد الوسط الحسابي والانحراف المعياري للبيانات الآتية:

المجموع	۱ • - ۸	-٦	- ٤	-7	صفر-	الفئـــة
۲.	٥	٥	٦	٣	١	التكـــرار

اذا کانت سہ ، صہ مجموعتین غیر خالیتین وکان کہ (سہ) = کہ (سہ × صہ)، فإن کہ (صہ) = ……

🕤 الشكل البياني الذي يمثل التغير الطردي بين س ، ص هو

٣ إذا كان (٣ ، ٣) ∈ بيان الدالة د حيث د (س) = ٢ س ١٠ فإن: ٢ =

ع مجموع الجذرين التربيعيين للعدد ٢ - ٢ هو

$$\frac{1}{v}$$
 (د) ا $\frac{1}{v}$ (ع) مفر

م إذا كانت: س $= \{\Upsilon, \circ, V\}$ و كانت على قة على س

الله على ال

فإن: العلاقة التي تمثل دالة من بين العلاقات الآتية هي

$$\{(\circ, \lor), (\circ, \circ), (\circ, \Upsilon)\} = \mathcal{E}, (\smile) \qquad \{(\lor, \Upsilon), (\Upsilon, \circ), (\circ, \Upsilon)\} = \mathcal{E}, (\lor)$$

$$\{(V, T), (T, O), (O, T)\} = \mathcal{E}, (I)$$

$$\{(v, T), (o, T), (T, T)\} = \{(T, T), (T, T)\}$$

$$\{(\vee, \circ), (\circ, \vee)\} = \mathcal{E}, (\rightleftharpoons)$$

$$(1)$$
 صفر (-1) (د) ۲

.... النقطة (
$$\sim$$
 - $<$ ، فإن: النقطة (\sim - $<$ ، $<$) تقع في الربع

المجموعة الثانية أجـــب عمــــا يلــــى:

- أوجد العدد الذي إذا طُرح من كل الأعداد: ٣، ٥، ٨، ١٢ فإنها تكون متناسبة.
- $\frac{1}{2}$ إذا كان $\frac{1}{2}$ ، $\frac{1}{2}$ ، $\frac{1}{2}$ كميات متناسبة فأثبت أن: $\frac{1}{2}$
 - ▼ إذا كانت س ص ٤ س ص = -٤ فأثبت أن: س تتناسب عكسيًا مع ص
- الله علاقة من سر إلى صر الله كانت: سر الله علاقة من سر إلى صر

حيث الم عاب تعنى أن (٩٣ = ٣) لكل ا ∈سم، ب ∈ ص

فاكتب بيان ع ومثلها بالمخطط السهمي، وهل ع دالة من سر إلى صر؟

- 🖸 مثل بيانيًّا الدالة د: د (س) = (س ٢٠) مستعينًا بالفترة [٠، ٤] واستنتج من الرسم نقطة رأس المنحني ومعادلة محور التهاثل.
 - ۱٤ = س عندما س عندما س V = V عندما س V = V عندما س عندما س عندما س
 - ٧ احسب الانحراف المعياري للقيم الآتية: ١٦ ، ٣٢ ، ٥ ، ٢٠ ، ٢٧

(د) ص

(د) ۹۹ س۲

(د)۲

المجموعة الأولى اختر الإجابة الصحيحة:

1	•			•	١
(٩	1		

 ∞	س	، فان:	۲ ص =	س _	کانت:	ا اذا	١

 $\frac{\gamma}{\omega}(-1)$ $\frac{1}{\omega}(-1)$ (۱) ص

آ الوسط المتناسب بين ٢٣٣ م ، ٩٢٧ م^٣ هو

👕 العدد الذي نصفه و ثلثه عدد أولى هو

(۱) ۲ (ج) ۲ (ج) (د) ۱۸

ع إذا كانت س ٢ = ٤ ، فإن س =

۲ (ب) ۲ (ب) ۲ (۲ (۱) ٤(د)

◘ إذا كانت النقطة (س - ٤ ، ٢ -س) تقع في الربع الثالث حيث س ∈ ص فإن: س =

٣ (ك) (ج) ٤ 7(1)

1 إذا كانت: د (س) = ٣ ، فإن: د(٥) + د (−٥) =

(۱) ۲ (جـ) صفر 1-(3)

V إذا كان س ، ص مجموعتين غير خاليتين، وكان: $Y^{\omega(-\infty)}=3^{\omega(-\infty)}$

فإن: ١٠(س): ١٠(ص) =

\Lambda الجذر التربيعي الموجب لمتوسط مربعات انحرافات القيم عن وسطها الحسابي يسمى .

(ب) الوسط الحسابي (١)المدي

> (د) المنوال (جـ) الانحراف المعياري

🗨 إذا كانت: (٣، ٣ - ١) تقع على محور السينات فإن: - =

(ب) ۳– (جـ) (د) ۱ **m**(1)

المجموعة الثانية أجـــب عمــــا يلــــى:

ا الله عانت: سہ – صہ = $\{ \mathbb{T} \}$ ، صہ – سہ = $\{ \mathbb{T} \}$ ، سہ صہ = $\{ \mathbb{T} \}$ فأو جد:

 \sim \times $(\sim$ \cap \sim) \cdot \sim \sim

آ إذا كانت ٢ ، ٦ ، ٠ ، ٥٤ أربع كميات موجبة في تناسب متسلسل فأوجد قيمة: ٩ ، ٠

٦	٤	۲	سی
۲	٣	٦	ص

٣ = س عندما س = ٣ من بيانات الجدول التالى: أوجد قيمة ص عندما س = ٣

٤ أوجد العدد الموجب الذي إذا أضيف مربعه إلى حدى النسبة ٥: ٧ فإنها تصبح ٧: ٨

(س) = س - ۳ فأوجد: قيم س التي تجعل د(س) = س - $\sqrt{(m)}$

 $\frac{7}{1}$ إذا كان $\frac{7}{1} + \frac{7}{1} = \frac{9}{12 - 2}$ فأثبت أن: $\frac{7}{12} + \frac{9}{12} = \frac{7}{12} + \frac{9}{12} = \frac{7}{12} + \frac{9}{12} = \frac{9}{12}$

٧ الجدول التالي يمثل التوزيع التكراري لأعمار ١٠ أطفال:

المجموع	١٢	١.	٩	٨	٥	العمر بالسنوات
١.	١	٣	٣	۲	١	عدد الأطفيال

احسب الانحراف المعياري للعمر بالسنوات.

1(1)

- 🚺 العدد الذي إذا أضيف لكل من الأعداد ١ ، ٣ ، ٦ تصبح في تناسب متسلسل هو
 - ۲ (پ) (د) ٤ (ج_) ۳
 - ا اخاکان: $\infty \infty$ و کانت: $\infty = 7$ عندما $\infty = 7$ فإن $\infty = 1$
 - (ج) $\frac{\pi}{4}(\dot{\gamma})$ $\frac{1}{4}(1)$ (د) ۳
 - مجموع قيم المفردات =
 - (ب) الانحراف المعياري (١) المدي
 - (د) الوسط الحسابي (ج) المنوال
 - \mathfrak{Z} إذا كان $\mathfrak{P}^{\omega} \times \mathfrak{P}^{\omega} = \mathfrak{p}^{\mathcal{B}}$ ، فإن $\mathfrak{Z} = \ldots$
- $\frac{\omega+\omega}{Y}(z)$ (۱) ۲ س ۲ ع (ب) س + ص (ب) ۲ س ص
 - إذا كانت س = {٣} فإن س ٢ =
- $\{\P, \P\} (2) \qquad \{(\P, \P)\} (2) \qquad \qquad \{\P\} (1)$
 - $\frac{1}{2}$ $=\frac{1}{2}+\frac{1}{2}$ $\frac{\gamma}{5}(-1) \qquad \frac{1}{5}(-1)$ VO(3)
 - (ب) ٤ (ج) ٨-(د)صفر $\Lambda(1)$
 - ٨ إذا كان (٣ ، ٣) ∈ بيان الدالة د حيث د (س) = ٢ س ١- فإن: ٢ =
 - (پ) ٥ (ج) (د)٧ £(1)
- ٩ المستقيم الذي يمثل الدالة د : د(س) = س + ١ يقطع محور الصادات في النقطة

المجموعة الثانية أجـــب عمــــا يلــــى:

$$\frac{1}{Y} = \frac{2}{3} = \frac{2}{3} = \frac{2}{3} = \frac{2}{3}$$
 إذا كان $\frac{\pi}{Y} = \frac{2}{3} = \frac{3}{3}$ فأثبت أن:

$$\frac{-\frac{7}{5}}{\frac{7}{5}} = \frac{7 - 7 - 7}{\frac{7}{5}}$$
 إذا كان $\frac{7}{5}$ ، $\frac{7}{5}$ ، $\frac{7}{5}$ وفي تناسب متسلسل فأثبت أن:

ا بنت: ص
$$\infty$$
 بندما ص = ۳ عندما ص = ۲ فأوجد: قيمة ص عندما ص = ۱, ٥ وكانت: ص

ا إذا كانت
$$\frac{m-7}{m+7} = \frac{7}{0}$$
 فأوجد قيمة س: ص

V احسب الوسط الحسابي والانحراف المعياري للقيم: ١٢ ، ١٨ ، ١٦ ، ١٨ ، ٢١ ، ٢١

الأول النموذج

المجموعة الأولى اختر الإجابة الصحيحة:

- ۱۱ ظاه ٤° =
- $\frac{1}{Y}(-) \qquad (-)$ Y (2)
 - آ إذا كانت جا س = ٢ فإن س = ········ حيث س قياس زاوية حادة.
- °۲۰(س) °۲۰(ج) °۳۰ (د) ۹۰
 - **۱** البعد بين النقطتين (۳، ۰) ، (۰، <mark>۱-۶</mark>) يساوي وحدات طول.
 - (۱) ٤ (ح) ۲ (د)٧

 - ١ (١ (١) (د) ۲
 - o إذا كان ٢ (٥ ، ٧) ، (١ ، -١) فإن نقطة منتصف ٢ هي
- $(\gamma, \gamma) (\varphi) \qquad (\varphi, \gamma) (\varphi) \qquad (\varphi, \gamma) (\varphi)$ (٤,٣)(٤)
 - رحا ۳۰ + حتا ۲۰°) =

 - ▼ قياس الزاوية الخارجة عند أحد رءوس المثلث المتساوى الأضلاع = ……… °
 - ٣٠(١) ٢٠(١)
 - ٨ إذا كان ٨ ٩ ب ح = ٨ س ص ع ، فإن ٩ ب =
 - (۱) ح (د) س ع (ج) ع (د) س ص
 - نی Δ ا \sim إذا كان $oldsymbol{\circ}$ (\sim \sim) = ۹۰° ، فإن جا ا + جتا ح = \sim
 - (د) ظام (د) حاد (د) خام (د) طام (د) ظام (د) طام (د) ط

المجموعة الثانية أجـــب عمــــا يلــــى:

- أثبت أن النقط ٩ (-٣، -١) ، (٦ ، ٥) ، ح (٣، ٣) تقع على استقامة واحدة.
- الله المانت ٤ جتا ٢٠° جا ٣٠ = ظا س فأوجد قيمة س (حيث س قياس زاوية حادة).
 - ا إذا كانت ح (٦، -٤) هي منتصف أب حيث (٥، -٣) فأوجد إحداثيي النقطة ب
- و إذا كان المستقيم ل, يمر بالنقطتين (٣ ، ١)، (٢ ، ك)، والمستقيم ل, يصنع مع الاتجاه الموجب لمحور السينات زاوية قياسها ٥٤°، فأوجد قيمة ك إذا كان ل, / ل,
 - الم الزاوية في ح فيه $\Lambda = \Gamma$ سم، $\rho = \Lambda$ سم أوجد:

جتا ا جتا - - جا ا حاب ، ق (<-)

🔻 أوجد معادلة المستقيم الذي ميله ٢ ويمر بالنقطة (١،٠)

النموذج الثانى

(m)

المجموعة الأولى اختر الإجابة الصحيحة:

9

۱۱ ۲ حا ۳۰ ظا ۲۰ =

 $\frac{1}{Y}(z) \qquad \frac{\overline{Y}}{Y}(z) \qquad \overline{Y}(1)$

🚺 لأي زاوية حادة قياسها ايكون المقدار: جا ٩ - جتا ٩ ظا ٩ =

(۱) ۱ (ح) صفر (ج) ۱ (د) ۲

ان جتا $w = \frac{\sqrt{r}}{r}$ ، w قیاس زاویة حادة فإن حا ۲ w

 $\frac{1}{\sqrt{L}}(2) \qquad \qquad L-(2) \qquad \frac{1}{\sqrt{L}}(2) \qquad \qquad J(1)$

كا دائرة مركزها نقطة الأصل وطول نصف قطرها ٢ وحدة طول فإن النقطة تنتمي إليها.

 $(1,\cdot)(2) \qquad (1,\overline{\tau})(2) \qquad (\overline{0},\tau-)(2) \qquad (7-\epsilon,1)(1)$

۲ (۵) (۵) (۱ (۱)

ا إذا كان المستقيمان اللذان ميلاهما $-\frac{\gamma}{\gamma}$ ، $\frac{\gamma}{\beta}$ متوازيين فإن ك =

 $\Upsilon(z) \qquad \frac{\Upsilon}{\Upsilon}(z) \qquad \xi - (\psi) \qquad \Upsilon(1)$

(۱) ۱۳۰ (چ) ۱۰۰ (چ) ٤٠(۱)

∧ محيط الشكل المقابل يساوى سم.

۲۲ (ت)

۱۱ (ح)

٩ في ١٩ ح القائم الزاوية في ٧ يكون جا ٩ + ٢ جتا ح =

(۱) ۲ جاح (ب) ۳ جا ۱ (ج) ۲ جا ۱

المجموعة الثانية أجـــب عمــــا يلــــى:

- ١١ إذا كان جتا ه ظا ٣٠ = حتا ٥٤ فأوجد ه حيث ه قياس زاوية حادة.
- بین نوع المثلث الذی رءوسه النقط (۳ ، ۳)، (۱، ٥)، ح (۱، ۳) من حیث أطوال أضلاعه.
- 🕶 أوجد معادلة المستقيم المار بالنقطتين (١، ٣) ، (١- ، ٣٠) ثم أثبت أنه يمر بنقطة الأصل.
- ا إذا كانت النقطة (٣،١) في منتصف البعد بين النقطتين (١،٥)، (٥،١) فأوجد النقطة (٥،٥)
- و أوجد ميل المستقيم الذي يقطع من محورى الإحداثيات السينى والصادى جزأين موجبين طولاهما ١، ٤ وحدات طول على الترتيب، ثم أوجد معادلة هذا المستقيم.
 - سم، $\sim = \Lambda$ سم ، $\sim = \Lambda$ سم

أثبت أن: جا ٩ + ١ = ٢ جتا ٢ ح + جتا ٩

▼ أثبت أن المستقيم المار بالنقطتين (-١، ٣)، (٢، ٤)

یوازی المستقیم الذی معادلته ۳ص – س – ۱ = ۰

- 🚺 بُعد النقطة (٤ ، ٣) عن المحور السيني يساوى وحدات طول.
- (د) ٤ (حـ) ٤
- ٣(١) ٣-(١)

 - ع حتا ۳۰ ط ۲۰ =
- ٣(١) ٣ (ح) 17(3)
 - الستقیمان -0 + 0 = 0 ، -0 + 0 = 0 متو از پین فإن -0 + 0 = 0
- (۱) -۲ (ب) (د) ۲

 - النقط (۰،۰)، (۲،۰)، (٤،٠)
 - (ب) تكون مثلثًا حاد الزوايا
- (١) تكون مثلثًا منفرج الزاوية
- (د) تقع على استقامة واحدة
- (جـ) تكون مثلثًا قائم الزاوية
- اذا کان 9 1 / 2 وکان میل $9 2 = \frac{7}{4}$ فإن میل حوء =
- $\frac{\Psi^{-}}{\Upsilon}(2) \qquad \frac{\Psi^{-}}{\Psi}(2) \qquad \frac{\Psi^{-}}{\Psi}(1)$
- إذا كان جاس = ٦ حيث س قياس زاوية حادة فإن جا ٢ س =
- $\frac{1}{\sqrt{1}}(2) \qquad \frac{\sqrt{r}}{\sqrt{r}}(2) \qquad \frac{1}{2}(2) \qquad 1(1)$
- ا سح ۶ متوازی أضلاع فیه: $oldsymbol{o}$ (igwap igwedta) : $oldsymbol{o}$ (igwedta) =
 - (۱) ۱۲۰ (ج) ۱۳۰ (د) ٤٥ (۱)

- ا اذا کان ظا (س ۱۵) = $\sqrt{\gamma}$ فإن س = $\sqrt{\gamma}$ فإن س خيث س زاوية حادة.
- ٧٥ (١) ٤٥ (١) ٩٠ (١)
- ٩ في ١٥ صح القائم الزاوية في سيكون جا ١ جتا ح =
- (د) ۱ جا ۲ (ب) ۲ جتا ح (جـ) صفر (د) ۱

المجموعة الثانية أجـــب عمـــا يلــــى:

- ۱ ا ا حود شبه منحرف فیه: $\frac{1}{\sqrt{5}} / \frac{1}{\sqrt{2}}$ ، $\frac{1}{\sqrt{5}} / \frac{1}{\sqrt{2}}$ ، ا $\frac{1}{\sqrt{5}} / \frac{1}{\sqrt{2}}$ ا وجد طول $\frac{1}{\sqrt{5}}$ ثم أوجد قيمة حتا $\frac{1}{\sqrt{5}}$
- أثبت أن النقط (٣ ، ١) ، (٤ ، ٦) ، ح (٢ ، ٢) الواقعة في مستوى إحداثي متعامد تمر بها دائرة واحدة مركزها النقطة م (١ ، ٢) ثم أوجد محيط الدائرة.
- ۴ سم ٤ سم

٢ في الشكل المقابل: ١ - ح △

قائم الزاوية في م فيه: ٩ م = ٣ سم ، م ح = ٤ سم أوجد قيمة ٥ (جتاح - جاح)

٤ في الشكل المقابل:

إذا كان: و ٢ = ٣ وحدات طول، و ٢ = ٤ وحدات طول

حيث (و) هي نقطة الأصل، فأوجد:

إحداثيي نقطة منتصف ٢٠٠

، معادلة الخط المستقيم أب

٢ - ٢ - ١٠ مثلث رءوسه النقط (۱ ، ۲)، (- ۲ ، ۳)، ح (- ٤ ، - ۳)، (5 متوسط.

أوجد معادلة المستقيم المار بالنقطتين ٢، ٥

إذا كانت النقط (• ، ١)، - (ك ، ٣)، - (٢ ، ٥) تقع على استقامة واحدة، فأوجد قيمة ك.

٧ في الشكل المقابل:

و نقطة الأصل لنظام إحداثي متعامد،

و ٢ = و ٠٠ ، ١ و حدة طول

فإذا كان إحداثيا ه (٢، ك) ، أب له ه و فأوجد:

قيمة ك ، معادلة ﴿ وَ وَ

	. 8			
يساويا	: ي الإضلاء	الداخلة لمته ا	سات الا و ايا	🚺 محمه ۶ قبار

- (۱) ۹۰(د) °۲۷۰ (ج) °۲۷۰
 - ۲ ظا ه × جتا ه =
- ه اج (۱) $\frac{1}{\sin \varphi}$ (ح) $\frac{1}{\sin \varphi}$ (د) جا ه
 - ٣ عدد محاور تماثل المستطيل هو
- (۱) صفر (ب) ۲ (ج) ٤ (د) عدد لا نهائي
 - 🛂 طول الضلع المقابل لزاوية قياسها ٣٠°، في المثلث القائم الزاوية يساوي طول الوتر.
 - (۱) ربع (ب) ثلث (ج) نصف

 - (د) ۹۰ (ج) ۳۰ (۱)
 - 🚺 ٩ س حـ مثلث قائم الزاوية في 🗝 حيث ٣٩ حـ = ٥ س حـ فإن: ظلا ٩ =
 - $\frac{\xi}{T}(z) \qquad \frac{\pi}{\xi}(z) \qquad \frac{\sigma}{T}(z) \qquad \frac{\pi}{\sigma}(1)$
 - ٧ طول نصف قطر الدائرة التي مركزها (٠،٠) وتمر بالنقطة (٣،٤)
 - يساوى وحدات طول.
 - ٧(٥) (ج) ٥ (ح) ٣ (١)
 - ∧ إذا كان: ح (٦ ، -٤) في منتصف أ- حيث (٥ ، -٣) ،

فإن إحداثيي نقطة - هما

- $(V-,11)(5) \qquad (V,0-)(-,0-)(-,0) \qquad (0-,V)(1)$
 - 🚹 ميل المستقيم المار بالنقطتين ٩ (٥،١)، (٣،٣) هو
 - ۲-(۵) (ج) ۲ (ح) ۱ (۱)

المجموعة الثانية أجـــب عمــــا يلــــى:

- الوجد قياس الزاوية الموجبة (ه) التي يصننعها المستقيم المار بالنقطتين (-۲، √۳)، (۱، ٤ √۳)
 مع الاتجاه الموجب لمحور السينات.
 - T أوجد معادلة الخط المستقيم المار بالنقطة (١ ، ٥)، وميله يساوى ٣
 - (بدون استخدام الآلة الحاسبة) أثبت أن:

جتاً ٢٠° = ظا ٤٥° - جا ٢٠° (مبينًا خطوات الحل)

٢ - ٥- ١ متوازى أضلاع فيه: ٢ (٣، ٤) ، ٣ (٢ ، -١) ، ح (-٥ ، ٢)

فإذا كانت: م نقطة تقاطع قطريه أوجد:

إحداثيي نقطة م ، إحداثيي نقطة ٤

- ١ = ٥ ح مثلث قائم الزاوية في ٢٠ ؛ فيه ٢ = ٥ سم، ٢ ح = ١٣ سم، أثبت أن: جا ح + جتا ح = ١
- 1 أثبت أن الخط المستقيم المار بالنقطتين (٣، ٢) ، (١، ٣) عمودي على الخط المستقيم ص = ٢ ٠ + ٥
 - (١) أوجد طول قطر الدائرة التي مركزها م (٢، ٧) وتمر بالنقطة ١ (-١، ٣)

(د)-۱

النموذج الخامس

4

المجموعة الأولى اختر الإجابة الصحيحة:

				- 1	4	_
—	حادث فان ه	: امنة	، حيث هـ قياس	_ อไ:'∿ = °ซ	'· ~ :11<	131 \
	حادة الماقي ط	ر رو په	المحيت طرفياس	١ – جن هر ،	تان ب	

٦٠(٥) (ح.) ٢٥(١)

المستقيم الذي معادلته $\omega = \gamma - \Lambda$ يقطع من محور السينات الموجب جزءًا طوله وحدة طول.

 $V(2) \qquad \qquad \xi(2) \qquad \qquad V(1)$

نان: س، ص قیاسی زاویتین متتامتین وکان جاس = $\frac{\pi}{6}$ فإن: جتا ص =

 $\frac{\partial}{\pi}(z) \qquad \frac{\pi}{\xi}(z) \qquad \frac{\pi}{\delta}(1)$

ا اذا کان q - c مثلثًا متساوی الساقین فیه q - c = c سم، c - c = c سم، فإن q - c = c

V(z) V(z) Y(1)

💿 مربع مساحته ۱۰۰ سم ٔ فإن محيطه يساويسم.

(۱۰۰(۵) (ج) ۵۰(پ) (۵۰(۱)

🚺 ميل الخط المستقيم الموازي لمحور السينات يساوي

(۱)غیر معرف (ب) صفرًا (جـ) ۱

۷ جتا ۲ ، ۳۰ + جا ۲ ، ۳۰ =

 $(1) \quad \frac{\overline{r} \, V}{r} \quad (2) \quad (2) \quad (3) \quad (4) \quad$

٨ إذا كان: ظا ٣٠٠ = ١ فإن: س = (حيث ٣٠٠ قياس زاوية حادة).

°۲۰(ع) °۲۰(ج) °۲۰(ع) °۲۰(ع) °۲۰(ع)

(-1) = (-1) عير معرف (-1) = (-1)

المجموعة الثانية أجـــب عمــــا يلــــى:

۱ إذا كان: ٢ جاس = جا ٣٠ جتا ٢٠٠ + جتا ٣٠٠ جا ٢٠

فأوجد بدون استخدام الآلة الحاسبة قيمة س (حيث س قياس زاوية حادة).

- ويوازى المستقيم الذي معادلة الخط المستقيم المار بالنقطة (٢ ، -٥) ويوازى المستقيم الذي معادلته ٢ س + ص ٧ = صفر
 - ٩ ح مثلث قائم الزاوية في فيه: ٩ ح = ٥ سم ، ح = ٤ سم ،

أوجد قيمة المقدار: جا المجتاح + جتا ا جاح

ا إذا كانت ح (٣،٤) هي نقطة منتصف المس حيث: ١ (١،٢)،

فأوجد إحداثي النقطة و

أوجد الميل وطول الجزء المقطوع من محور الصادات للمستقيم الذي معادلته:

۲ س – ۳ ص + ۲ = ۰

¶ إذا كان البعد بين النقطتين (س ، ٥)، (٦ ، ١) يساوي ٢ √ و وحدة طول

إذا كان البعد بين النقطتين (س ، ٥)، (٦ ، ١) يساوي ٢ √ و وحدة طول

إذا كان البعد بين النقطتين (س ، ٥)، (٢ ، ١) يساوي ٢ √ و وحدة طول

إذا كان البعد بين النقطتين (س ، ٥)، (٢ ، ١) يساوي ٢ √ و وحدة طول

إذا كان البعد بين النقطتين (س ، ٥)، (٢ ، ١) يساوي ٢ √ و وحدة طول

إذا كان البعد بين النقطتين (س ، ٥)، (٢ ، ١) يساوي ٢ √ و وحدة طول

إذا كان البعد بين النقطتين (س ، ٥)، (٢ ، ١) يساوي ٢ √ و وحدة طول

إذا كان البعد بين النقطتين (س ، ٥)، (٢ ، ١) يساوي ٢ √ و وحدة طول

إذا كان البعد بين النقطتين (س ، ٥)، (٢ ، ١) يساوي ٢ √ و وحدة طول

إذا كان البعد بين النقطتين (س ، ٥)، (٢ ، ١) يساوي ٢ √ و وحدة طول

إذا كان البعد بين النقطتين (س ، ٥)، (٢ ، ١) يساوي ٢ √ و وحدة طول

إذا كان البعد بين النقطتين (س ، ٥) و وحدة طول

إذا كان البعد بين النقطتين (س ، ٥) و وحدة طول

إذا كان البعد بين النقطتين (س ، ٥) و وحدة طول

إذا كان البعد بين النقطتين (س ، ٥) و وحدة طول

إذا كان البعد بين البعد بين النقطتين (س ، ٥) و وحدة طول

إذا كان البعد بين البعد

فأوجد قيمة س

▼ بين نوع المثلث ٢ - ح الذي رءوسه النقط ٢ (-٢،٤)، - (٣، -١)، ح (٤،٥)؛

من حيث أطوال أضلاعه.

- طول نصف قطر الدائرة التي مركزها (۲ ، ۳) وتمر بالنقطة (۲ ، ۱) يساوى وحدة طول.
 - (پ) ۲ \ ۲ (پ) (د) ۳

 - الشكل الرباعي الذي قطراه متساويان في الطول ومتعامدان هو
- (۱) المعين (ب) المستطيل (ج) المربع (د) متوازى الأضلاع

 - ٦٠(٥) ٥٠(٩) ٤٠(١)
- عجم متوازى المستطيلات الذي أبعاده ٧٧٠٠ ، ٧٦٠ من السنتيمترات يساوي سم
 - マママ(シ) マママ(シ) 7/7(1) (د)۲
 - الثلث المثلث القائم الزاوية في اليكون جا ب: جتاح =
 - $(c)\frac{\xi}{\pi}$ $\frac{\pi}{s}(1)$

1 في الشكل المقابل:

0(1)

- ۲- (ب) y-(1)
- $\frac{\pi}{4}$ (ϵ) ٧ إذا كان: ظا (س + ٢٠٠) = √ ٣ حيث س قياس زاوية حادة فإن: س =
 - °٤٠(ب) °٣٠(س) °0 • (2)
 - 🔥 إذا كان ٢ جا س = ظا س حيث س قياس زاوية حادة فإن س =
 - (ب) ۲۰ (ج) (د) ۹۰ ٣٠(١)
 - ٩ المستقيمان اللذان ميلاهما ٢٠٠٠ ، ٣٠ يكونان
 - (ب) متوازيين (۱) متعامدين
 - (د) منطبقین (جـ) متقاطعين وغير متعامدين

المجموعة الثانية أجـــب عمــــا يلــــى:

- أو جد معادلة الخط المستقيم الذي ميله يساوي ٧ ويمر بالنقطة (٠، ٣).
- أثبت أن المثلث الذي رءوسه النقط (۳ ، ۰)، → (۳ ، ٤)، → (۱ ، 7) متساوى الساقين، ثم أوجد مساحته.
 - ت أوجد قيمة س التي تحقق: ٣ جاس جتا ٢٥٥ = جا ٢٠٠، حيث س زاوية حادة.
 - أوجد ميل الخط المستقيم: $\frac{\omega}{V} + \frac{\omega}{W} = 1$ ، ثم أوجد طول الجزء المقطوع من محور الصادات.
 - ◘ إذا كان: المستقيم حرى // محور السينات، حيث: ح (٤، ٢) ، ٥ (-٥، ص)، فأوجد قيمة ص

الشكل المقابل: ١ - ح ٤ مستطيل فيه: ١ - = ٥ سم،

ب ح = ۱۲ سم ، أوجد:

طول اح ، قيمة: ٥ ظا (\ ١٣ - (١٥ ح) - ١٣ جا (\ ١٥ ع) ح)

▼ إذا كان المستقيم المار بالنقطتين (٥،٢)، (٦، - ٣) عموديًّا على المستقيم الذي معادلته:

ص - إس + ٣ = · ، فأوجد قيمة إ

17(1)

- 🚺 المثلث الذي أطوال أضلاعه ٥ سم ، ٥ سم ، سم مثلث متساوى الساقين.
- (ب) ۱۱ (ج) ۱۰ (د) ۹
 - 🔽 عدد محاور الت<mark>ماثل للمثلث المتس</mark>اوي الأضلاع يساوي
- (حـ) ۲ (۱) صفرًا (ت) ۱ (د) ۳
 - \triangle إذا كان \triangle س ص ع فيه $(\neg \neg \neg \neg)^{\prime} > (\neg \neg \neg)^{\prime} + (\neg \neg \neg)^{\prime}$ فإن: \triangle ع
- (۱) حادة (ب) قائمة (ج) منفرجة (د) مستقيمة
 - $^{\circ}$ اذا كان جتا ٢ س = $\frac{1}{7}$ حيث س زاوية حادة فإن: \mathbf{o} (\mathcal{L} س) =
 - ۲۰ (ب) ۲۰ (ج) ۳۰ (۱) (د) ۹۰
 - اذا کان المستقیان اللذان میلاهما $\frac{7}{\pi}$ ، $\frac{6}{7}$ متوازیین ، فإن: 6
 - $\frac{\xi}{w}(-1) \qquad \frac{\psi^{-}}{\psi}(-1)$ (د) ۳
- T إذا كان: آ قطرًا في الدائرة م حيث (٣ ، -٥)، (٥ ، ١)، فإن: مركز الدائرة م (····، ····)
- $(\Upsilon \Lambda)(2) \qquad (\Upsilon, \xi)(\Rightarrow) \qquad (\Upsilon \chi \xi)(\psi) \qquad (\Upsilon, \Upsilon)(1)$
- °٤٥ ١٥ "٦(ع) °٤٧ ١٥ ق٨(ج) °٣٦ ٥٢ ١٢(ك) °٥١ ش٣ ش٥(١)
 - 🔥 إذا كان: سِ جِا ٣٠° = ظا ه ٤° فإن: س=
 - (-)(د) ۲
 - ٩ صح مثلث قائم الزاوية في صفيه جا ١ + جتاح = ١ فإن ظاح =
 - 1 (1) (ج) √۳ (ب) –۱ $\frac{1}{\sqrt{m}}(z)$

المجموعة الثانية أجـــب عمــــا يلــــى:

- - آ إذا كان: Δ ا \sim ح قائم الزاوية فى ح فيه: ا \sim اسم، \sim = ۸ سم فأوجد قيمة: جا ا جتا \sim + جتا ا جا \sim
- اوجد معادلة المستقيم الذي يمر بالنقطة (٣،٤) وعموديًّا على المستقيم ٣٠٠٠ ٢٠٠٠ = صفر
 - 💿 إذا كان: ٢ جاه = ظا ٢٠٠٠ ٢ ظا ٤٥٠، حيث هر زاوية حادة، فأوجد قيمة ه
- 1 أثبت أن △ أ ح الذي رءوسه أ (١،٤)، (-١، ٢)، ح (٢، ٣) قائم الزاوية في -، ثم أوجد مساحة سطحه.
 - ▼ الميل وطول الجزء المقطوع من محور الصادات للمستقيم الذي معادلته: ٣ ٠ + ٢ ص = ٦

- 🚺 ميل المستقيم العمودي على محور الصادات يساوي
- (۱)غیر معرف (ب) صفر (جـ) -۱ (د) ۱
 - 🕥 زاويتان متتامتان النسبة بين قياسيهم ٤: ٥ فإن قياس أصغرهما
- °۸۰ (ج) (د) ۱۰۰ (۰)
- ٣ إذا كانت ظا (س + ١٠)° = √ ٣ حيث (س + ١٠) ° قياس زاوية حادة فإن س =
 - °٤٠(١) °٥٠ (ج) °٧٠(٤)
 - را حر) = النقطة ح منتصف $\frac{1}{1}$ فإن $(1 1)^2 = ...$
 - (ب) ۲ (ج<u>ـ</u>) (c)ξ(I)

ه في الشكل المقابل:

إذا كان: ق (🚄 ح) = ١٢٠°

فإن: ق (🚄 ۶۶ ح) + ق (﴿ هُ وَ حُوْ ا

- °۱۸۰ (پ)
- (د) ۲۰۰۳ °۲٤٠ (ح)
- مساحة سطح المثلث المحدد بالمستقيمات w = v ، w = v ، w = v وحدة مربعة.
 - (۱) ۲ (ج) ۲ (ج) ۲ (۲)
 - ۷ جتا ۲۰° + جا ۲۰° = $\frac{\overline{r}}{\overline{u}}(\underline{\Rightarrow})$ (۱) صفر (ب) ۱ (د)۲
 - ا المستقيم $\frac{1}{\sqrt{2}}$ يوازي محور السينات حيث $\frac{1}{\sqrt{2}}$ يوازي محور السينات حيث $\frac{1}{\sqrt{2}}$

فإن: ك =

- (پ) ۲ (ج) (د) صفر $\Lambda(1)$
 - ٩ إذا كان: جا ٧٠° = جتا ٢ س حيث ٢ س قياس زاوية حادة، فإن: س =
 - (۱) ۲۰ (چ) ۲۰ (د) ۲۰

(T)

المجموعة الثانية أجـــب عمــــا يلــــى:

- 🚺 إذا كان 🖣 قطرًا في دائرة مركزها م، فإذا كانت النقطة ١ (٨، ص) ، (س، ٣) ، م (٥، ٧) فأوجد قيمة ص + ص
 - ا إذا كان الشكل ٢ ح 2 معينًا فيه: ١ (٥ ، ٣) ، (٦، ٢) ، ح (١ ، م) فأوجد قيمة م
- ٣ أوجد معادلة الخط المستقيم الذي ميله يساوي ٣ ، ويقطع من الجزء السالب من محور الصادات جزءًا طوله ٤ وحدات.

الشكل المقابل يمثل حركة جسيم يتحرك

بسرعة منتظمة (٤) حيث المسافة (ف) مقيسة بالمتر

والزمن (٧) بالثانية. أوجد:

المسافة عند بدء الحركة ، سرعة الجسيم ،

معادلة الخط المستقيم الممثل لحركة الجسيم

الستقيم المار بالنقطتين $\{(\xi, \pi), -(-\tau, -\pi)\}$ يوازى المستقيم إذا كان المستقيم المار بالنقطتين

(۲ ك + ۱) س - ك ص + ۷ = ٠ ، فيا قيمة ك ؟

■ سلم الم الم الموله ٦ أمتار يستند طرفه العلوى المعلى المعلى على حائط رأسى ، وطرفه سعلى أرض أفقية، فإذا كانت حهى مسقط المعلى مسطح الأرض، وكان قياس زاوية ميل السلم على سطح الأرض ٦٠°، فأوجد طول المح

∨ في الشكل المقابل:

م ب ل ع ح = ٥٦ سم، ٩٥ = ٥ ح سم، ٩٥ = ٥ ح

أوجد ظاح+ ظا(\ إ - اع)

التاسع

		عُتر الإجابة الصحيحة:	المجموعة الأولى الأ
	ضلاع =	جة عن المثلث المتساوي الأ	🚺 قياس الزاوية الخار
°۱۸۰(۵)	۰ ۱۲۰ (خ)	°۳۰ (ب)	°7•(1)
هو	صل وتمر بنقطة (٣،٤)	<mark>دائرة التي</mark> مركزها نقطة الأم	طول نصف قطر ال
٧(٥)	٥ (ج)	(ب)	٣(١)
ل.	وىوحدة طو	، ۲) ومحور <mark>الصا</mark> دات يساو	٣ البعد بين النقطة (٤
1.(7)	(جـ)	(ب)	7(1)
ظاً ٥٤° فإن ص =	ص)، (۳،۶) يساوي ذ	لستقيم المار بالنقطتين (١،	ع إذا كان ميل الخط ا.
٤(٥)	(جـ) -۱	۲ (ب)	1(1)
····=(~	= جتا <u>و فإن ق (</u>	ن ور (۱۵) = ۸۰، جاب	۵ فی ۵ ۹ → حـ إذا كار
°۲۰(۵)	°٥٠ (ج)	°٤٥ (ب)	۰۳۰(۱)
() + فر (<u> </u>	= ∆ ۶ ه و، وكان ق (∠،	٦ إذا كان 🛆 ٩ 🗝 ح ≡
°1(2)	°۲۰ (ج)	°۸۰ (ب)	°0 • ()
		· ·····=	٧ طاه٤٠ جا٣٠٠
1/3)	ر ج) ۳	$\frac{7}{1}(\dot{\varphi})$	1(1)
= 0	ياس زاوية حادة فإن: ¬	۲۰) = $\sqrt{7}$ حیث س ق	🖊 إذا كان: ظا (س +
°^ (° 5 • (~)	° ~ . ()	٥٧.(١)

- ۲۰ (ب) ۲۰ (ج) ۳۰ (۱) (د)٥٧

المجموعة الثانية أجـــب عمـــا يلــــى:

۱ أوجد قيمة س التي تحقق أن: جاس جا ٥٤° ظا ٦٠° = ظا ٥٥° - جتا ٢٠٠٠

حىث (°۹۰ > س > ۰۹)

(۲، ۲) بازا کان: ۱(-۱، -۱)، بار (۲، ۳)، ح (۲، ۰)

فبرهن أن المثلث أوح قائم الزاوية وأوجد مساحة سطحه.

الشكل المقابل:

۱۰= ۱۰ - - - ۱۰ مر ۱۰ مرم،

٩ ح = ١٧ سم ، ٥ ح = ١٥ سم

أوجد قيمة: ٣ ظاح + جا ٧

- ٤ أوجد معادلة محور تماثل القطعة المستقيمة <u>وص</u> حيث و (٣، ٢٠) ، ص (٥-١) .
- 💿 أوجد قيمة ١، ٣ التي تجعل النقطة (١ ٢ ٣ ، ٥ + ٣) منتصف القطعة المستقيمة التي طرفاها النقطتان (٧ ، -١) ، (٣ ، ٧)
 - 🚺 أوجد معادلة الخط المستقيم المار بالنقطة (٣، -٥) ويوازى المستقيم ٠٠+ ٢ ص ٧ = صفر
 - ▼ أوجد معادلة الخط المستقيم الذي يصنع زاوية قياسها ٤٥° مع الاتجاه الموجب لمحور السينات ويمر بالنقطة (٠،٣).

المجموعة الأولى اختر الإجابة الصحيحة:

- 🚺 مجموع قياسات زوايا المثلث الداخلة =°
- ١٨٠ (ب) ٣٦٠(٥)
 - ٢ إذا كان ظا (س ٥) = ١ ، فإن س =
 - (۱) ٥٥ (ج) ٥٠ (ج) ٥٥ ٣٥(٥)
 - ان س، ص قیاسی زاویتین متتامتین، وکان جا $\frac{\pi}{2}$ فإن جتاص =
 - $\frac{\circ}{\xi}(\Rightarrow) \qquad \frac{\pi}{\circ}(\Rightarrow) \qquad \frac{\xi}{\circ}(1)$ (د) 😽
 - 1 البعد بين النقطتين (٣ ، ٩) ، (١- ١ ، ٩) هو وحدة طول.
 - (ب) ٤ (د) ۱۲ ٣(١)
 - ۵ ۲ جا ۳۰ ظا ۲۰ =
 - <u>س</u> (ج) $\Upsilon(\cup)$ $\Upsilon(1)$ (د) ٢
- 🚺 إذا كانت نقطة الأصل هي منتصف 🖣 حيث ٩ (٥ ، ٢) فإن إحداثي النقطة هو
 - (Y, 0-)(x) (0-, Y-)(x-2) (y-, 0)(y-2) (0, Y)(y-2)
 - 🔻 حاصل ضرب ميلي المستقيمين المتعامدين يساوي
 - $\frac{1}{I}(2)$
 - إذا كان ا بحو مربعًا فإن ن (\ اب ع) =
 - °۲۰(۱) ۳۲۰ (ح) ۳۲۰ (۱) (د) ۹۰
 - ۹ إذا كانت س جتا ٦٠° = ظا ٥٤° فإن س =
 - (د) 🔻 (ج) اج (ب) ۱ **Y**(1)

(T)

المجموعة الثانية أجـــب عمــــا يلــــى:

- ١٥ إذا كان ٢ جا س° = ظا ٢٠٠٠ ٢ ظا ٢٥٠٠، فأوجد قيمة س (حيث س زاوية حادة).
 - نبت أن المستقيم الذي معادلته: ٤ - 7 = 7 يوازي المستقيم الذي يمر

بالنقطتين (١، ٣)، (٢، ٥)

🍸 إذا كان: ٩ (١-١، ١-١) ، 🗕 (٢، ٣) ، ح (٦، ١) رءوس مثلث،

فأثبت أن ١٥ ٧ ح قائم الزاوية في س

ا إذا كانت النقطة ح (٢،٤) منتصف المحيث: ١ (س،٤)، ب (٦، ص)،

فأوجد قيمة س + ص

أوجد معادلة المستقيم المار بالنقطة (٢ ، -٥) وعموديًّا على المستقيم الذي معادلته:

۲ س – ص + ۳ = صفر

البدون استخدام الآلة الحاسبة) أثبت أن:

ظا ۲۰ = ۲ظا۳۰ = طا۲۰۰

▼ أوجد معادلة الخط المستقيم الذي يصنع زاوية قياسها ٤٥° مع الاتجاه الموجب لمحور السينات، ويقطع من الجزء

الموجب لمحور الصادات ٣ وحدات.

أولًا: الجبر

الأول

النموذج

المجموعة الأولى اختر الإجابة الصحيحة:

- 7
- 2/1~

- **^** س××س

1 الأولى

70

1. 1

المجموعة الثانية أجـــب عمــــا يلــــى:

- $\{(9,7),(\xi,7),(1,1),(\cdot,\cdot),(1,1-)\}=\xi$ بیان $\{(9,7),(\xi,7),(1,1-)\}$
 - ، ع دالة؛ لأن كل عنصر من عناصر س له صورة واحدة من عناصر ص
- 1 ص = د (س)

إحداثي نقطة رأس المنحني (٠، -١) القيمة الصغرى للدالة = -٢

- 1
- 44 T
- 7-9
- صفر × x \ ٦× x Y

$$\frac{5+2}{5}=\frac{2+3}{2+3}$$
:

$$(5+2) = (4+3)5$$
.

$$\frac{s}{s} = \frac{p}{s}$$
 : $s = \frac{p}{s}$:.

$$1 \cdot = \frac{7 \times 0}{r} = \cdots \therefore \frac{7}{c} = \frac{r}{0}$$

$$\xi = \frac{\Lambda}{Y} = \frac{\omega}{\omega} = \rho$$
 ...

$$\frac{1}{\frac{1}{\omega}} = \frac{V}{\omega}$$
 ... Julium, ainline $\frac{1}{\omega}$, ω , V ... 1

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$

ex س	ط	س
٥	١	٥
١٦	۲	٨
77	٣	٩
٣.	٣	١.
١٢	١	١٢
٩٠	١.	المجموع

ن. الوسط الحسابى (
$$\overline{U}$$
) = $\frac{a + U \times D}{a + U} = \frac{9}{1} = 9$ سنوات

(س - س) ×۲((س - س)		ك	س
١٦	١٦	٤-	١	٥
۲	١	1-	۲	٨
•	•	•	٣	٩
٣	١	١	٣	١.
٩	٩	٣	١	١٢
٣٠			١.	المجموع

نه الانحراف المعياري (
$$\sigma$$
) = $\sqrt{\frac{m\cdot}{n+(m-m)}\times 9}$ = $\sqrt{\frac{m\cdot}{n+m}}$ = (σ) سنة ...

الثاني النموذج

المجموعة الأولى اختر الإجابة الصحيحة:

- [0, 7]
 - - 9 💈

{ m, r} •

9

<u>γ</u> •

- $\frac{\omega}{Y} = \frac{\omega}{0}$

 $(11 + {}^{t}))$ $= (0 + {}^{t}))$:

- ۲ (مرفوض)

.. د (۳) = \sim (۳)

- المجموعة الثانية أجـــب عمــــا يلــــى:
 - $\left\{\left(\frac{1-}{m}, \Upsilon\right), \left(\frac{1-}{r}, \Upsilon\right)\right\} = \xi$, ψ ψ
 - ع ليست دالة ، لأن العنصر ١ ليس
 - له صور من عناصر ص
 - نفرض أن العدد = س، مربعه = س
 - $\frac{\psi}{2} = \frac{0 + \psi_{-}}{11 + \psi_{-}} :$
 - ٣٣ + ⁷ω, Ψ = 10 + ⁷ω. ...
 - Λ = ^۲ω-Υ ...
 - .:. ت = ۲
 - .. العدد هو ٢
 - د (۳) = (۳) ^۲ ۳ (۳) = صفر
 - **ر (۳) = ۳ − ۳ = صفر**
 - \frac{7}{7} = \frac{\infty}{\infty} \cdot \frac{2}{5}
- .: س = ۲م ، ص = ۳ م (حیث م ثابت ≠ ۰).
- $\frac{\text{result}}{\text{result}} = \frac{\text{result}}{\text{result}} = \frac{\text{result}}{\text{result}} = \frac{\text{result}}{\text{result}} \cdot \cdot \cdot$ $\frac{\psi}{5} = \frac{\psi}{6\sqrt{3}} =$

- 🕜 صفر
- (0, 1)
 - 7 9

$$\rho = \frac{\zeta}{2} = \frac{\beta}{2} : \Theta$$

$$\frac{1}{1+\sqrt{1-c^2}} = \frac{c^2}{(1-c^2)^2} = \frac{c^2}{1+\sqrt{1-c^2}} = \frac{c^2}{1+\sqrt$$

$$\frac{\rho}{\rho} = \frac{\rho}{\rho} + \frac{\rho}{\rho} + \frac{\rho}{\rho} = \frac{\rho}{\rho} + \frac{\rho}{\rho} = \frac{\rho}{\rho} + \frac{\rho}{\rho} + \frac{\rho}{\rho} + \frac{\rho}{\rho} = \frac{\rho}{\rho} + \frac{\rho}{\rho} + \frac{\rho}{\rho} + \frac{\rho}{\rho} + \frac{\rho}{\rho} + \frac{\rho}{\rho} + \frac{$$

·. الطرفان متساويان

$$7 = \% \times 7 =$$

$$\xi = \frac{7}{1,0} = 0.$$

$$V = \frac{1 + 9 + 7 + 7 + 7}{0} = \frac{0 + 7 + 7 + 9 + 7 + 9}{0} = \frac{1}{0}$$

(س _ س)	<u> </u>	J
17	ξ-=V-Ψ	٣
١	1-=V-7	٦
•	• = V - V	٧
٤	Y = V - Q	٩
٩	T = V - 1	١.
۳.	مــوع	المج

$$\Upsilon, \xi \circ \simeq \overline{ } \sqrt{ } = \frac{\overline{\Upsilon} \cdot \overline{ } }{ \circ } = \frac{\overline{\Upsilon} \cdot \overline{ } }{ \circ } = \frac{\overline{\Upsilon} \cdot \overline{ } }{ \circ } = (\mathbf{O})$$
 ... الانحراف المعياري (\mathbf{O}) = \mathbf{O}

المجموعة الأولى اختر الإجابة الصحيحة:

المجموعة الثانية أجـــب عمــــا يلــــى:

$$\beta + 7 \times 0 = 17$$
 ... $17 = (7) \circ \cdots$

ع لست دالة؛ لأن العنصر ٢

له صورتان من عناصر ص

$$\zeta = \frac{1}{5} = \frac{1}{5} \cdots$$

$$\frac{\rho + 1}{\rho} = \frac{(\rho + 1)^{-1}}{\rho} = \frac{\rho + \rho}{\rho} = \frac{\rho + \rho}{\rho}$$
 الطرف الأيمن = $\frac{\rho + \rho}{\rho}$

$$\frac{7+7}{6} = \frac{5+5}{6} = \frac{5$$

من (۱) ، (۲)

ن. الطرفان متساويان.

🕹 نفرض أن العددان هما ٢س ، ٣س

$$\frac{\circ}{m} = \frac{\vee + \cdots \vee \vee}{1 \vee - \cdots \vee m} :$$

$$\frac{r}{r_{o}} = r$$
 ...

$$\frac{1}{\sqrt{1-x^2}} = \frac{1}{2}$$

$$\frac{\Lambda}{\Lambda} = \beta : : \qquad \Lambda = \gamma \left(\frac{\gamma}{\gamma}\right) \times \Lambda = \gamma \cup \beta = \gamma : :$$

$$Q - \frac{\Lambda}{1 - \frac{1}{2}} = \omega$$

$$-\frac{\Lambda}{100} = 0$$
 هي $-\frac{\Lambda}{100} = -9$.: العلاقة بين ص، س هي

عندما س = ١

Y

$$\Lambda = \frac{\zeta}{\zeta} \cdot 1 = \frac{\gamma}{\zeta} = \frac{\gamma}{\zeta} = \frac{\beta}{\gamma} :$$

ط×۲(<u>۳</u> -۳)	(س – س)	 _ <u>~</u>	ك	س
۲٥	۲٥	0-	١	١
Y V	٩	٣-	٣	٣
٦	١	1-	٦	٥
٥	١	١	٥	٧
٤٥	٩	٣	٥	٩
۱۰۸			۲.	المجموع

$$\gamma, \gamma \sim \frac{\overline{\gamma, \gamma}}{\gamma, \gamma} = \frac{\overline{\omega \times \gamma(\overline{\omega} - \omega)_{-\infty}}}{\sqrt{\gamma, \gamma}} = (\sigma)$$
 الانحراف المعياري (σ) الانحراف المعياري (σ) ...

المجموعة الأولى اختر الإجابة الصحيحة:

المجموعة الثانية أجـــب عمــــا يـــــى:

$$\frac{1}{\pi} = \frac{0 - \omega \pi}{0 - \omega V} :$$

$$\frac{\xi + \psi - \psi - \psi}{\psi + \psi} = \frac{\xi}{V} = \frac{\psi}{0} = \frac{\psi}{\xi} :$$

بضرب حدى النسبة الثانية $\times (-7)$ وحدى النسبة الثالثة $\times (3)$ وجمع المقدمات

وجمع التوالي للنسب الثلاثة:

$$\frac{\xi,\xi+\omega,\gamma-\omega}{\gamma,\lambda+\gamma,-\xi} = \frac{\xi,\xi+\omega,\gamma-\omega}{\gamma\times\xi+0\times\gamma-\xi} = \frac{\xi,\xi+\omega,\gamma-\omega}{\gamma,+\xi}.$$

$$\frac{\xi, \xi + \omega + \gamma - \omega}{\gamma \gamma} =$$

$$\frac{\rho}{\omega} = \xi, :.$$

$$\frac{7}{\varphi} = \xi, :.$$

$$7 = 7 \times 7 = 9$$

$$\Lambda + \frac{7}{\omega} = \omega : :$$

$$\Psi = 0$$
 عندما $\Lambda + \frac{7}{\omega} = 0$ عندما $\Lambda = \Psi$ عندما $\Lambda = \Psi$

$$0 - = \frac{7}{\omega} : \qquad \qquad \Lambda + \frac{7}{\omega} = \% :$$

$$\frac{\overline{1}}{2} = \omega : .$$

$$\mathbf{7} \cdot = \mathbf{7} + (\mathbf{7}) \times \mathbf{7} + \mathbf{7} \times (\mathbf{7}) = \mathbf{7}$$

$$\mathcal{L}(I) = (I)^{7} + 7 \times (I) + 7 = \Gamma$$

$$T = T \times T - T \cdot (1) = T \times T - T \times T = T$$

$$\frac{\varphi}{\xi} = \frac{\varphi - \varphi - \chi}{\xi - \varphi - \chi} \therefore 1$$

$$(2 - \omega - \omega) = \omega (v - \omega - \omega)$$

(<u>~</u> - ~)	س _ س	س	
٤٩	V = 17 - 77°	۲۳	
17	₹-= \7 - \Y	١٢	
1	\ - \ 7 - \ \	۱۷	
٩	٣ -= 17 - 1 ٣	۱۳	
1	1-=17-10	10	
٧٦	المجموع		

$$^{\text{m}}$$
, $^{\text{m}}$ = $\frac{\overline{^{\text{m}}} - \overline{^{\text{m}}} - \overline{^{\text{m}}}}{\sqrt{\sigma}}$ = (σ) الانحراف المعيارى $::$

النموذج الخامس

المجموعة الأولى اختر الإجابة الصحيحة:

$$(1+\frac{1}{2}) \smile \bigcirc$$

7 0

1 الأول

$$\frac{1-}{\Lambda}$$
 Nierole llasylos

$$(7) = 7 \times 7 + 9 = 3 + 9$$

$$\beta + 17 = \beta + \gamma(\xi -) = (\xi -)$$

$$\Upsilon \cdot = (\xi -) + (\Upsilon) \circ :$$

$$Y = \frac{7}{w} = \frac{\omega}{w} = \frac{1}{w} = \frac{1}{w}$$

$$\frac{\gamma}{m} = \frac{\omega - \gamma - \xi q}{\omega - \gamma q} :$$

$$\rho = \frac{\Box}{\Box} = \frac{\rho}{\Box} :$$

$$\frac{-1}{-1} \frac{-1}{-1} \frac{-1}{-1} \frac{-1}{-1} \frac{-1}{-1} = \frac{-$$

$$\rho = \frac{2}{0} = \frac{\omega}{2} = \frac{\omega}{2} : 1$$

$$\frac{\gamma \circ - \gamma \wedge \lambda}{\gamma \circ - \gamma \circ - \gamma$$

$$= \frac{\gamma \gamma}{\gamma \gamma} = \frac{1}{\gamma}$$
 eac Iladle γ

الا × ك	ව	س
صفر	٦	صفر
10	10	١
٨٠	٤٠	۲
٧٥	70	٣
٥٦	١٤	٤
777	١	المجموع

$$\Upsilon$$
, $\Upsilon = \frac{\Upsilon \Upsilon \Upsilon}{1 \cdot \cdot \cdot} = \frac{\sim \sim \sim \sim \sim \sim \sim}{\sim \sim \sim \sim} = \frac{(\overline{})}{\sim}$... الوسط الحسابى ($\overline{}$)

ط×۲(<u>س</u> - س)	^۲ (<u> </u>	<u> </u>	ك	س
٣٠,٦٤٥٦	0,1•٧٦-	۲,۲٦–	٦	صفر
24,715	١,٥٨٧٦	۱,۲٦-	10	١
Y,V• £	• , • ٦٧٦	• , ۲٦–	٤٠	۲
17,79	٠,٥٤٧٦	٠,٧٤	70	٣
٤٢,٣٨٦٤	٣,•٢٧٦	١,٧٤	١٤	٤
117,78			١	المجموع

$$1, \cdot 7 \simeq \frac{\overline{117,75}}{1 \cdot \cdot \cdot} = \frac{\overline{2 \times 7(\overline{2} - 2)}}{2 \times 7(\overline{2} - 2)} = (\sigma)$$
 الانحراف المعيارى (σ) الانحراف المعيارى (...

المجموعة الأولى اختر الإجابة الصحيحة:

$$] \infty \cdot \cdot] \bigcirc$$

$$\frac{\rho}{\omega} = \omega$$

$$\rho = \frac{2}{5} = \frac{\rho}{2} :$$

ر. الطرف الأيمن =
$$\frac{79-7-2}{90-75} = \frac{75-7-27}{90-75} = \frac{7(70-75)}{90-75} = \frac{7}{90}$$

ن. الطرف الأيسر =
$$\frac{64+72}{6+72} = \frac{6+7+72}{6+72} = \frac{7(6+7+7)}{6+72} = 7$$

$$\rho = \frac{\zeta}{0.5} = \frac{\beta}{\zeta} = \frac{\gamma}{\beta} :$$

$$0.05 = 4.0$$
 $0.5 = 7.0$ $0.5 = 7.0$

$$\frac{1}{m} =$$

$$7\xi = 1 \wedge + 7 = \left(\frac{1}{r}\right) \circ \xi + 7 \left(\frac{1}{r}\right) \circ \xi = -7 + 7 \therefore$$

$$\frac{Y(w_{y})}{Y(w_{y})} = \frac{Y_{\xi}}{Y_{\xi}} ::$$

$$\frac{{}^{\mathsf{Y}}(10,00)}{{}^{\mathsf{Y}}(1\cdot,0)} = \frac{\mathsf{Y}\mathsf{V}}{\mathsf{Y}^{\mathsf{E}}} :$$

$$\Upsilon = \frac{\Upsilon(10,0) \times \Upsilon V}{\Upsilon(10,V0)} = \Upsilon \mathcal{E} :$$

م – ٥ = ٤ ص – ٥ تقع على المستقيم د (س) = ٤ ص – ٥
$$:: \{ \{ (\pi, \pi) : \pi \} \}$$

١	•	١-	۲-	٣-	ب
٤	١	٠	١	٤	ص = د (س)

$$V = \frac{0 + 7 + V + 9 + \Lambda}{0} = \frac{0 + \frac{1}{2} + \frac{1}{2}$$

(س - س)	س – س	س		
١	\ = V - A	٨		
٤	Y = V - Q	٩		
•	• = V − V	٧		
١	7 - V = -1	٦		
٤	Y-=V-0	٥		
١٠	المجموع			

$$1,\xi \simeq \overline{YV} = \frac{\overline{V}}{0} = \frac{\overline{V}}{0} = \frac{\overline{V}}{0} = \sqrt{V} = \sqrt{V}$$
 الانحراف المعيارى $V = V$

النموذج السابع

المجموعة الأولى اختر الإجابة الصحيحة:

المجموعة الثانية أجـــب عمــــا يلــــى:

$$1 = \frac{\omega_{p}}{\omega_{p}} : \Omega$$

$$\frac{\frac{\varphi}{\xi}}{\frac{\xi}{2}} = \frac{\varphi}{\varphi} : \cdot \cdot$$

$$\frac{\Lambda' - 100}{\Gamma' \xi + 9\Gamma'} = \frac{\xi \Gamma' \times \Gamma - \Gamma' \times 0}{\Gamma' \xi + \Gamma' \times \times W} = \frac{\sigma \Gamma - \sigma \sigma}{\sigma + \sigma W} ..$$

$$\{(\Lambda, \Upsilon), (\Lambda, \Lambda), (\Lambda, \Lambda)\} = \{(\Lambda, \Upsilon), (\Lambda, \Lambda)\}$$
 یبان $\{(\Lambda, \Upsilon), (\Lambda, \Lambda), (\Lambda, \Lambda)\}$

ع تُمثل دالة من سر إلى صر لأن كل عنصر من عناصر المجموعة سر ظهر كمسقط أول مرة واحدة.

$$\{\Lambda, \Lambda, \Lambda_{-}\} = \{\Lambda, \Lambda, \Lambda_{-}\}$$

نفرض أن العددان هما ٢س، ٣س

$$\frac{\circ}{\Upsilon} = \frac{V + \cdots Y}{1Y - \cdots \Upsilon} ::$$

$$\frac{\Lambda}{\gamma_{out}} = \beta$$
...

$$\frac{\Lambda}{\gamma_{1}} = \beta : \Lambda = \gamma_{1} + \frac{\gamma_{2}}{\gamma_{1}} \times \Lambda = \gamma_{2} + \frac{\Lambda}{\gamma_{2}} \times \Lambda = \gamma_{2} + \frac{\Lambda}{\gamma_{1}} \times \Lambda = \gamma_{2} + \frac{\Lambda}{\gamma_{2}} \times \Lambda = \gamma_{2} + \frac{\Lambda}{\gamma_{2}} \times \Lambda = \gamma_{2} + \frac{\Lambda}{\gamma_{2}} \times \Lambda = \gamma_{2} \times \Lambda = \gamma_$$

$$Q - \frac{\Lambda}{1 - 1} = 0$$
 $\therefore Q - P = 0$

$$q - \frac{\Lambda}{100} = 0$$
 هی $\theta = \frac{\Lambda}{100} - \frac{\Lambda}{100}$.: العلاقة بین θ

الدالة من الدرجة الأولى

$$\mathcal{E} = \mathcal{Y} - (\mathcal{Y}) \times \mathcal{Y} = (\mathcal{Y}) - \mathcal{Y} = \mathcal{Z}$$

الا ×ك	ଥ	ب
1	١	١
٩	٣	٣
٣.	٦	٥
40	٥	٧
٤٥	٥	٩
17.	۲.	المجموع

$$7 = \frac{17}{7} = \frac{17}{10} = \frac{17}{10} = \frac{17}{10} = \frac{17}{10} = \frac{17}{10}$$
 ... الوسط الحسابي (ت)

ط×۲(<u>س</u> - س)	(س - س)	س _ س	ط	<u>J</u>
Y 0	70	0-	١	١
77	٩	٣-	٣	٣
٦	١	1-	٦	٥
٥	١	١	٥	٧
٤٥	٩	٣	٥	٩
1.4			۲.	المجموع

الثامن النموذج

المجموعة الأولى اختر الإجابة الصحيحة:

0

۷ صفر

$$\frac{\omega - \lambda}{\omega - 17} = \frac{\omega - 7}{\omega - 0} :$$

$$(\omega - 0)(\omega - \lambda) = (\omega - 17)(\omega - 7)$$
..

$$\rho = \frac{3}{5} = \frac{\beta}{5} : .$$

$$\frac{7^{7} + 7^{7} + 7^{7} - 7^$$

$$\bullet = \xi + \omega \omega + \xi - \zeta \omega \omega + \xi$$

$$\bullet = \Upsilon - \omega \omega$$
 .. $\bullet = \Upsilon(\Upsilon - \omega \omega)$..

$$\{(17,\xi),(9,T),(7,T)\}=\xi$$
 بیان ξ

د (س) = (س - ۲)۲

٤	٣	۲	١	•	س
٤	١	•	١	٤	د (س)

من الرسم:

$$\frac{\gamma}{\gamma} = \gamma$$
.

العلاقة بين
$$\sigma$$
 ، س هي $\sigma = \frac{r}{V}$ س

$$\xi \cdot = 1 \xi \times \frac{\gamma \cdot}{\gamma} = \omega$$
 ...

$$\mathbf{Y} \bullet = \frac{\mathbf{Y} \mathbf{V} + \mathbf{Y} \bullet + \mathbf{0} + \mathbf{W} \mathbf{Y} + \mathbf{1} \mathbf{T}}{\mathbf{0}} = \overline{\mathbf{U}}$$

(س – س)	س _ س	س	
١٦	₹-= Y • - 17	١٦	
1	17 = 7 • - 47	٣٢	
770	10-= 7 • - 0	٥	
•	• = ٢ • - ٢ •	۲.	
٤٩	V = T • - TV	77	
٤٣٤	المجموع		

$$q, \pi \simeq \frac{\overline{\xi \pi \xi}}{\delta} \sqrt{1 - \frac{\overline{(\sigma - \sigma)}}{\delta}} \sqrt{1 - \frac{\xi \pi \xi}{\delta}} \sqrt{$$

$$\left\{ \left(\mathsf{7} \,,\, \mathsf{7} \right) \,,\, \left(\mathsf{7} \,,\, \mathsf{7} \right) \right\} = \left\{ \mathsf{7} \,,\, \mathsf{7} \right\} \times \left\{ \mathsf{7} \right\} = \mathbf{1} \times (\mathbf{1} \times \mathbf{1}) \times (\mathbf{1} \times \mathbf{1})$$

$$\forall \Upsilon \xi = 0 \xi \times \Upsilon = \Upsilon \longrightarrow \therefore \qquad \frac{\Box}{0 \xi} = \frac{\Upsilon}{\Box} = \frac{\beta}{\gamma} \therefore$$

$$\frac{\zeta}{\delta \xi} = \frac{7}{\zeta} = \frac{\beta}{7} :$$

$$\therefore \emptyset = \frac{r \times r}{\Lambda / r} = \gamma$$

$$(V + {}^{Y} \cup V) V = (0 + {}^{Y} \cup V) A \leftarrow \frac{V}{A} = \frac{0 + {}^{Y} \cup V}{V + {}^{Y} \cup V} :$$

نضرب حدى النسبة الأولى × ٢، جمع مقدمات وجمع توالى النسبتين الأولى والثانية

$$\frac{Y + v + v}{1 + 2v + 4v + 4v - 2v} = \frac{Y + v + v}{1 + 2$$

بضرب حدى النسبة الأولى \times ٢ ، وحدى النسبة الثانية \times ٢ ، وجمع مقدمات وجمع توالى النسب الثلاث

$$\frac{7 - \omega + 7 - \omega + 3}{34 + 7 - \omega + 3} = \frac{7 - \omega + 7 - \omega + 3}{9 - 4 + 7 - \omega + 3} = \frac{7 - \omega + 7 - \omega + 3}{9 - 4 + 7 - \omega + 3} = \frac{7 - \omega + 7 - \omega + 3}{9 - 4 + 7 - \omega + 3} = \frac{7 - \omega + 7 - \omega + 3}{9 - 4 - 2 - 2} = \frac{7 - \omega + 7 - \omega + 3}{9 - 4 - 2} = \frac{7 - \omega + 7 - \omega + 3}{9 - 2 - 2} = \frac{7 - \omega + 7 - \omega + 3}{9 - 2 - 2} = \frac{7 - \omega + 7 - \omega + 3}{9 - 2 - 2} = \frac{7 - \omega + 7 - \omega + 3}{9 - 2 - 2} = \frac{7 - \omega + 7 - \omega + 3}{9 - 2 - 2} = \frac{7 - \omega + 7 - \omega + 3}{9 - 2 - 2} = \frac{7 - \omega + 7 - \omega + 3}{9 - 2 - 2} = \frac{7 - \omega + 7 - \omega + 3}{9 - 2 - 2} = \frac{7 - \omega + 7 - \omega + 3}{9 - 2 - 2} = \frac{7 - \omega + 7 - \omega + 3}{9 - 2 - 2} = \frac{7 - \omega + 7 - \omega + 3}{9 - 2 - 2} = \frac{7 - \omega + 7 - \omega + 3}{9 - 2 - 2} = \frac{7 - \omega + 7 - \omega + 3}{9 - 2 - 2} = \frac{7 - \omega + 7 - \omega + 3}{9 - 2 - 2} = \frac{7 - \omega + 7 - \omega + 3}{9 - 2 - 2} = \frac{7 - \omega + 7 - \omega + 3}{9 - 2 - 2} = \frac{7 - \omega + 7 - \omega + 3}{9 - 2 - 2} = \frac{7 - \omega + 7$$

$$\therefore \frac{7 + 9}{29 + 39 - 2} = \frac{7 + 7 + 9}{29 + 79} = \frac{7 + 10}{29 + 10} = \frac{7}{29} = \frac{7}$$

ن ا	J	ب
٥	1	0
١٦	٢	٨
7∨	٣	٩
٣.	٣	١.
17	1	١٢
٩.	موع	المج

$$q = \frac{q \cdot q}{1 \cdot q} = \frac{Q \times Q \cdot q}{Q \times Q} = \frac{Q}{Q \times Q}$$

(س - س) × کل	(س _ س)	(" - ")
17 = 1 × 17	١٦	£-= 9 - 0
Y = Y × 1	1	1-= 9-A
صفر × ۳ = صفر	صفر	۹ – ۹ = صفر
r = r × 1	١	\ = 9 − \ •
$P = 1 \times P$	٩	T = 9 - 1 T
٣٠		المجمـوع

۱, ۷۳
$$\simeq \overline{\ } V = \overline{\ } \overline{\ } V = \overline{\ } \overline{\ } \overline{\ } V = \overline{\ } \overline$$

المجموعة الثانية أجـــب عمــــا يلــــى:

$$\rho = \frac{\xi}{0} = \frac{\omega}{\xi} = \frac{\omega}{\psi} : 0$$

$$\frac{70-71}{10+11} = \frac{70-71}{10+11} = \frac{70-712\times 7}{10+112\times 7-111} = \frac{2-07}{10+112\times 7-11} = \frac{2-07}{10+112\times 7-112} = \frac{2-07}{10+112\times 7-1$$

$$=\frac{\gamma^{2}}{2}=\frac{1}{2}$$
 eae lladle.

ناسب متسلسل ٢٠٠٠ ، ح ، ٤ في تناسب متسلسل

$$\rho = \frac{2}{\varsigma} = \frac{1}{2} = \frac{1}{2}$$
 ...

$$rac{1}{2} s = s - rac{1}{2} s = s - rac{1}{2}$$

$$^{\mathsf{Y}}$$
 الطرف الأيسر = $\frac{\mathsf{v}}{\mathsf{s}} = \frac{\mathsf{v}}{\mathsf{s}} = \mathsf{v}$

ن الطرفان متساويان

$$\{V, 7, 0\} \times \{\Upsilon\} = \xi \times (\sim - \sim)$$

$$7 = 7 \Leftrightarrow 7 \Rightarrow 7 \Rightarrow 7 \Rightarrow 7$$

$$\frac{7}{1}$$
 العلاقة هي $\omega = \pi$ أو $\omega = \frac{7}{1}$..

$$\xi = \frac{7}{1,0} = \omega$$
 .. $1,0 = \omega$

$$(\sqrt{7}) + 7 \sim (\sqrt{7}) = (\sqrt{7})^7 - 7 \times \sqrt{7} + 7 (\sqrt{7} - 7)$$

$$= 7 - 7 \sqrt{7} + 7 \sqrt{7} - 7 = -3$$

$$\frac{\pi}{0} = \frac{\pi - \gamma - \omega}{\omega + \omega} : \bullet$$

$$(-\infty + -\infty) = (-\infty + -\infty)$$
.

$$\frac{19}{7} = \frac{0}{0} ..$$

$$17 = \frac{71 + 14 + 17 + 17 + 17}{0} = \frac{17 + 14 + 17 + 17 + 17}{0} = 71$$

(س - س)	<u> </u>	س
١٦	71-71=-3	17
٩	۳-= ۱٦ - ۱۳	۱۳
صفر	۱۶ – ۱۹ = صفر	١٦
٤	1 - 7 l = 7	١٨
70	0 = 17 - 71	۲۱
٥٤	مــوع	المج

$$^{"}$$
, ۲۸٦ $\simeq \frac{\overline{\delta \xi}}{\delta} \sqrt{1 - \frac{\overline{\delta \xi}}{\delta}} \sqrt{1 - \frac{\overline{\delta}}{\delta}} \sqrt{1 - \frac{\overline{$

الأول النموذج

المجموعة الأولى اختر الإجابة الصحيحة:

0

٠٣٠ (1)

1

1

(٣,٣)

7- 2

۲ جتا ح

٨ س ص

17.

المجموعة الثانية أجـــب عمــــا يلــــى:

$$7 + \omega = \frac{\Psi^{-}}{Y} = \omega \leftarrow 1Y + \omega \Psi^{-} = \omega Y$$

الميل =
$$\frac{\Psi}{\gamma}$$
، الجزء المقطوع من محور الصادات = ٦

الجزء المقطوع من محور السينات = ٤

$$\frac{\gamma}{m} = \frac{\gamma}{q} = \frac{\gamma + o}{\gamma + \gamma} = \frac{\gamma}{\gamma}$$
 میل \therefore (3)

$$\frac{Y}{m} = \frac{m-0}{m-7} = \frac{4}{m-7}$$
ميل

◄ النقط ١ ، ٠ ، ح تقع على استقامة واحدة.

$$0 - = \Upsilon + \Lambda - = \varphi - \frac{\Upsilon}{Y}$$

$$\xi - = \frac{\varphi + \varphi - \varphi}{\Upsilon}$$

$$1 = °80$$
 $\frac{1-\omega}{1-} = \frac{1-\omega}{m-1} = \frac{1}{m-1}$

من ()
$$\blacktriangleright$$
 $= \frac{1-2}{1-}$ من ()

$$\emptyset = \sqrt{(\Gamma)^{7} + (\Lambda)^{7}} = 1 \text{ and}$$

ثانیًا:
$$\mathfrak{O}((-)) = \frac{1}{4} \cdot (\frac{7}{4})$$
 ، $\mathfrak{O}((-)) \simeq 71^{8} \cdot 70^{8}$

الثاني النموذج

المجموعة الأولى اختر الإجابة الصحيحة:

$$\frac{1}{r} = \pi \approx \frac{1}{r}$$
.:

$$A \sim = \sqrt{(Y-Y)^{2}+(Y-Y)^{2}}$$
 = ۲ وحدة طول

$$\Upsilon = \frac{7}{7} = \gamma$$
 الميل م

$$1 = \frac{-\omega + \gamma}{\gamma}$$
, $\gamma = \frac{-\omega + 1}{\gamma}$

$$\xi - = \frac{\xi}{1 - \xi}$$
 ميل المستقيم

وحدات طول $\gamma(1) - \gamma(1) = \gamma$ وحدات طول

$$\frac{\xi}{70} = 1 + \frac{7}{6} + 1 = \frac{1}{6}$$
 الطرف الأيمن = حا $\frac{\xi}{7}$ الطرف الأيمن

$$\frac{\xi}{\gamma}$$
 $= \gamma \left(\frac{\gamma}{\delta}\right) + \gamma \left(\frac{\xi}{\delta}\right) \gamma =$

$$\frac{1}{\gamma} = \frac{1}{\gamma} + \frac{1}{\gamma} = \frac{1}{\gamma} + \frac{1}{\gamma} = \frac{1}{\gamma}$$

النموذج الثالث

المجموعة الأولى اختر الإجابة الصحيحة:

7

٣ 0

<u>₹</u> •

7

ك تكون مثلثًا قائم الزاوية كون مثلثًا قائم الزاوية

VO A 17.

۹ صفر

المجموعة الثانية أجـــب عمــــا يلــــى:

- $\left(\frac{\frac{m}{r}}{r} \right)$ إحداثي نقطة منتصف $\frac{1}{r}$ هي
 - میل (ای ای اس

معادلة الخط المستقيم
$$\frac{6}{9}$$
 هي $\frac{8}{9}$ س + ٤

$$1 = \frac{1}{2} \times 0 = \left[\frac{\psi}{2} - \frac{\xi}{2}\right] 0 =$$

🚯 :: ٩ ، 🏲 ، ح تقع على استقامة واحدة

$$\frac{1-0}{1-7} = \frac{1-7}{1-2} :$$

$$1 = \frac{Y \times Y}{s} = 2$$
:

$$\frac{\xi}{\gamma} = \frac{\gamma}{2} : :$$

🗿 : ۹ ، س ، ح تقع على استقامة واحدة

$$\frac{1-0}{\cdot-7}=\frac{1-\pi}{\cdot-2}$$
.:

$$1 = \frac{Y \times Y}{\xi} = 2 : \frac{\xi}{Y} = \frac{Y}{2} : \frac{\xi}{Y}$$

.: △ و ا ب متساوى الساقين

$$\frac{1}{\sqrt{17}} = \frac{e^{\frac{1}{\sqrt{17}}}}{\sqrt{177}} \implies e^{\frac{1}{\sqrt{17}}} = \frac{1}{\sqrt{17}}$$

- : النقطة تقع على محور الصادات
 - .. إحداثي نقطة و هو (٠، ٢)
- : النقطة 1 تقع على محور السينات
 - .. إحداثي النقطة ﴿ هي (-٢ ،)

$$\frac{\gamma - 0}{\gamma - \gamma} = 1$$

$$\xi = \mathcal{O}$$
 $Y = Y - \mathcal{C}$

المجموعة الأولى اختر الإجابة الصحيحة:

٠٣٦٠ 🕦

7

المجموعة الثانية أجـــب عمــــا يلــــى:

$$\sqrt{r} = \frac{\sqrt{r} \sqrt{r}}{r} = \frac{\sqrt{r} \sqrt{r} \sqrt{r}}{(r-1)} = \sqrt{r}$$

$$\Upsilon + \sigma = \sigma = \sigma + \tau$$
 ... معادلة المستقيم هي: $\sigma = \sigma$

الطرف الأيمن = جتا
7
 - 9 الطرف الأيمن

$$\frac{1}{\xi} = \frac{\pi}{\xi} - 1 = \frac{7}{4} \frac{\overline{\pi V}}{7} - 1 = 1 - \frac{7}{4} \frac{\overline{\pi V}}{7}$$
 الطرف الأيسر = ظاه ٤° - جا

$$(T, 1-) = (\frac{Y+\xi}{Y}, \frac{N-0}{Y}) = (-1, T)$$
 إحداثي منتصف

$$(\mathcal{V}, 1-) = \left(\frac{1-\omega}{7}, \frac{7+\omega}{7}\right) ::$$

$$V = \frac{1 - \omega}{Y}$$

$$V = \omega \iff T = 1 - \omega$$

$$V = \omega \iff T = Y + \omega$$

$$V = \omega \iff Y = Y + \omega$$

$$Y = Y + \omega$$

$$Y = Y + \omega$$

إحداثي نقطة ٤ هي (-٤، ٧)

$$^{r}\left(\frac{1}{1}\frac{1}{r}\right) + ^{r}\left(\frac{0}{1}\frac{1}{r}\right) =$$

$$=\frac{57}{179} + \frac{11}{179} = 1$$
 (ese lladle)

$$\frac{1-}{r} = \frac{r-r}{r-1} = \frac{1}{r}$$

$$1-= {}_{\gamma} \wedge \times {}_{\gamma} \wedge \cdots$$

ن المستقيمان متعامدان.

ن. طول قطر الدائرة =
$$1 \times 0 = 1$$
 وحدات طول ..

النموذج الخامس

المجموعة الأولى اختر الإجابة الصحيحة:

٤٠ 0

م 🕝

$$\frac{\lambda}{\Delta \sqrt{\lambda}} \times \frac{\lambda}{\Delta \sqrt{\lambda}} + \frac{\lambda}{\lambda} \times \frac{\lambda}{\lambda} = 0 \quad \forall \lambda \in \mathcal{L}$$

... معادلة المستقيم هي
$$\omega = -7$$
 س + ح

.. معادلة المستقيم المطلوبة هي:
$$\omega = -7 - 0 - 1$$

$$\Upsilon = \overline{\Upsilon(0)^{\Upsilon} - (\xi)^{\Upsilon}} = \Upsilon$$
سم $\Upsilon = \overline{\Upsilon(0)^{\Upsilon} - (\xi)^{\Upsilon}}$

$$\frac{\gamma}{\delta} \times \frac{\gamma}{\delta} + \frac{\xi}{\delta} \times \frac{\xi}{\delta} =$$

$$1 = \frac{9}{70} + \frac{17}{70} =$$

$$(\xi, \Upsilon) = \left(\frac{\Upsilon + \omega}{\Upsilon}, \frac{1 + \omega}{\Upsilon}\right) ::$$

$$\xi = \frac{Y + \omega}{Y}$$

$$\Lambda = Y + \omega$$

$$\gamma = \omega$$

$$\gamma = \omega$$

$$\gamma = \omega$$

$$\gamma = \omega$$

$$7 = 0$$
 $1 + 0$

$$Y + \omega - \frac{Y}{W} = \omega$$
 .. $T + \omega - Y = \omega + \omega$

$$\frac{7}{m}$$
 = الميل

، طول الجزء المقطوع من محور الصادات = ٢ وحدة طول

الطرفين
$$\sqrt{(-0-7)^7 + (0-1)^7} = 7$$
 بتربيع الطرفين

رس
$$-7$$
 = ٤ بأخذ الجذر التربيعي للطرفين

وحدة طول
$$\uparrow V = \sqrt{(-Y - Y)^{T} + (3 + 1)^{T}} = 0$$
 $\uparrow V$

$$\mathbf{v} = \mathbf{v} = \mathbf{v}^{(\mathbf{v} - \mathbf{v})^{\mathsf{v}} + (-1 - 0)^{\mathsf{v}}}$$
وحدة طول

$$P \sim \sqrt{(-Y-3)^{2}+(3-0)^{2}}$$
 وحدة طول

0. 6

۹ متعامدین

المجموعة الأولى اختر الإجابة الصحيحة:

- 3√7
- - 7 2

٤ · V

1 0

1 1

1 المربع

- المجموعة الثانية أجـــب عمــــا يلــــى:
 - ٣ + س٧ = ١
 - (7-,1) >, (2,7) , (1, -7)

$$A = \sqrt{(-7 - 7)^{T} + (\cdot - 3)^{T}}$$
 وحدة طول

$$\omega = \sqrt{(7-1)^{7} + (3+7)^{7}}$$
 وحدة طول

$$P = \sqrt{(-Y - 1)^{7} + (3 + 1)^{7}}$$
 وحدة طول

في ∆ إبء:

$$(77\sqrt{77})^{7} - (\sqrt{77})^{7} = 5 \text{ } ...$$

$$=777$$
 وحدة طول

$$\overline{Y}$$
 مساحة Δ ا حد = $\frac{1}{Y}$ × حد \times ا \overline{Y} = \overline{Y} × \overline{Y} \overline{Y} \overline{Y}

$$\mathbf{A} \times \mathbf{\dot{\gamma}} \sim \mathbf{\dot{\gamma}} = \mathbf{\dot{\lambda}} \left(\frac{\mathbf{\dot{\lambda}}}{\mathbf{\dot{\lambda}}}\right) \times \mathbf{\dot{\lambda}} \times \mathbf{\dot{\lambda}}$$

$$\frac{1}{1} = \frac{1}{1} \times 1 \times \frac{1}{2} \times 1 \times \frac{1}{2} = \frac{1}{1} \times 1 \times \frac{1}{2} \times 1 \times \frac{1}{2} = \frac{1}{1} \times 1 \times$$

$$7 \times \frac{\omega}{\gamma} + \frac{\omega}{m} = 1$$
 بالضرب × ٦

$$\frac{m}{r} = n$$
ميل المستقيم $r = r - m + r$...

طول الجزء المقطوع من محور الصادات =
$$\left| \frac{- \text{ الحد المطلق}}{\text{معامل}} \right|$$
 = $\left| \frac{-(-7)}{\sqrt{}} \right|$ = $\%$ وحدة طول

ن خور السينات ٢٠٠٠ محور السينات

$$\therefore \frac{\omega - Y}{\varepsilon - o - \varepsilon} = -\omega \text{ i.} \qquad \omega - Y = -\omega \text{ i.}$$

$$\therefore \quad \emptyset \leftarrow = \sqrt{(11)^7 + (0)^7} = 71 \text{ mg}$$

$$V = 0 - 17 = \frac{0}{17} \times 17 - \frac{17}{0} \times 0 =$$

$$0 - = \frac{0}{1} = \frac{1}{1} = \frac{1}{1}$$

$$\rho_{\gamma} = \frac{\rho}{\rho} = \frac{\rho}{\rho} = \frac{\rho}{\rho} = \frac{\rho}{\rho} = \frac{\rho}{\rho}$$

$$\frac{1}{0} = \frac{1}{0} = \frac{1}{0}$$
 : $\frac{1}{0} = \frac{1}{0}$

النموذج السابع

المجموعة الأولى اختر الإجابة الصحيحة:

٣ 🕦

9

\(\frac{\x}{\pi}\)

٣. 2

T \ 9

🕜 منفر جة

(3,-7)

٧٧ ٢١ ٢٥ ٢٣٠ 7 1

المجموعة الثانية أجـــب عمــــا يلــــى:

$$V = \frac{7 + \infty}{Y}$$

$$V = \frac{7 + \omega}{\gamma} \qquad \gamma = \frac{\gamma + \omega}{\gamma}$$

$$\Lambda = \omega$$
 $\Sigma = \omega$

$$P = \sqrt{(1+3)^{7} + (-7-7)^{7}} = \sqrt{13}$$
 وحدة طول

$$u = \sqrt{(-3-1)^{7} + (7-7)^{7}}$$
 وحدة طول

$$\Lambda = \sqrt{(1-1)^{\dagger} + (-1-1)^{\dagger}} = \Lambda$$
 وحدات طول

$$\Delta \cap \Delta$$

$$\therefore \neq |4 \neq \exists 1 \rightarrow + \Rightarrow |4 \neq 1 \rightarrow + \frac{7}{4} \times \frac{7}{4} + \frac{7}{4} \times \frac{7}$$

$$1 = \frac{1 \cdot \cdot}{1 \cdot \cdot} = \frac{m\pi}{1 \cdot \cdot} + \frac{\pi \xi}{1 \cdot \cdot} =$$

ميل المستقيم المعلوم =
$$\frac{m}{r} = \frac{m}{r}$$

$$\frac{-7}{m}$$
 ميل المستقيم المطلوب $\frac{-7}{m}$

.:. معادلة المستقيم المطلوب هي:
$$\omega = \frac{-7}{9}$$
 $\omega + \infty$

$$7 = > : : > + \% \times \frac{7-}{\%} = \xi : :$$

$$7 + \dots = \frac{7}{4} - \dots = \frac{7}{4}$$
 معادلة المستقيم المطلوب هي: $\frac{7}{4} - \dots = \frac{7}{4}$

$$\xi \cdot = {}^{\Upsilon}(\Upsilon + \xi) + {}^{\Upsilon}(\Upsilon + \chi) = {}^{\Upsilon}(\hookrightarrow \xi)$$

$$1 \cdot = {}^{\uparrow}(\Upsilon + \Upsilon -) + {}^{\uparrow}(\Upsilon - 1 -) = {}^{\uparrow}(\smile \smile)$$

$$0 \cdot = {}^{\Upsilon}(\Upsilon + \xi) + {}^{\Upsilon}(\Upsilon - 1) = {}^{\Upsilon}(\rightarrow \beta)$$

$$0 \cdot = 1 \cdot + \xi \cdot = {}^{\Upsilon}(\rightarrow \hookrightarrow) + {}^{\Upsilon}(\hookrightarrow \beta) \triangleright$$

... مساحة سطح
$$\triangle \land \neg = \frac{1}{7} \times \deg \cup$$
 الارتفاع ... مساحة سطح

$$\rightarrow \hookrightarrow \times \hookrightarrow \stackrel{1}{\rightarrow} \times \frac{1}{7} =$$

$$= \frac{1}{4} \times \sqrt{4 \cdot 3} \times \sqrt{4 \cdot 7} =$$

$$\frac{W}{Y} = \frac{W}{\omega} = \frac{W}{\omega} = \frac{W}{\omega} = \frac{W}{\omega}$$
 ميل المستقيم = $\frac{W}{W}$

ن. طول الجزء المقطوع من محور الصادات =
$$\frac{- \text{ الحد المطلق}}{\text{معامل ص}}$$

$$=\left|\frac{-(-7)}{7}\right|=7$$
 وحدات طول

النموذج الثامن

المجموعة الأولى اختر الإجابة الصحيحة:

- ° { }
- 🕦 صفر

٤ 😉

٦ 🕦

°0. 📆

°۳۰۰

1

1. 9

- ٣ \Lambda
- المجموعة الثانية أجـــب عمــــا يلــــى:
 - ٠٠٠ تطر في الدائرة م
 - ن م منتصف آب
 - $\left(\frac{\Upsilon+\omega}{Y},\frac{\Lambda+\omega}{Y}\right)=(Y,0):$
 - $V = \frac{\Psi + \omega}{Y}, \quad 0 = \frac{\Lambda + \omega}{Y} \therefore$
 - $1\xi = \Psi + \omega$ $1 \cdot = \Lambda + \omega$...
 - س = ۲ ص
 - 1 = 1 + 7 = 0قىمة س + ص
 - € : ٩ ب ح ع معين
 - > 4 = 4 } ..
- $\frac{1}{2} \sqrt{(2-r)^{2} + (2+r)^{2}} = \sqrt{(r-r)^{2} + (-r-r)^{2}}$
 - (7+7)+70=70+1...
 - $1 = {}^{\mathsf{Y}}(\mathsf{Y} + \mathsf{C})$:
 - - - س = ٣س ٤
 - 1) المسافة عند بدء الحركة = ٢ متر
- من الرسم: (٠ ، ٢) ، (٤ ، ٤) تقع على خط الحركة
 - $\frac{1}{2}$ سرعة الجسيم = $\frac{2}{2} \frac{1}{2} = \frac{7}{2} \frac{1}{2}$ م / ث
- Υ معادلة الخط المستقيم الممثل لحركة الجسيم هي $\sigma = \frac{1}{2}$ س + ۲

$$1 = \frac{\gamma + \gamma}{\gamma + \xi} = \frac{\gamma}{\gamma + \xi}$$

$$\gamma_{\gamma}$$
 ميل المستقيم الآخر = $\frac{\gamma \ \upsilon + 1}{\upsilon}$

$$^{\circ}$$
 المستقیمین متوازیان $^{\circ}$ المستقیمین متوازیان

$$0 = 1 + 0 \times 1 = \frac{1 + 0 \times 1}{0}$$
.

ت
$$P = P \times \frac{\overline{P}}{Y} = P \sqrt{\overline{P}}$$
 متر

$$\therefore \emptyset \sim = \sqrt{(07)^7 - (10)^7} = 37 \text{ mag}$$

$$\frac{7 \times V}{Y \times 17} + \frac{V}{Y \xi} = \frac{1}{\frac{17}{V}} + \frac{V}{Y \xi} = \frac{1}{(5 \cup 7)} + \frac{1}{2} \times \frac{1}{(5 \cup 7)} = \frac{1}{2} \times \frac{1}{(5$$

$$\frac{V}{\Lambda} = \frac{Y \cdot V}{Y \cdot \xi} = \frac{Y \cdot \xi}{Y \cdot \xi} + \frac{V}{Y \cdot \xi} = \frac{V}{V \cdot \xi$$

المجموعة الأولى اختر الإجابة الصحيحة:

- ° ·
- °17.

7 💈

\(\frac{1}{Y}\) \(\frac{1}{Y}\)

°۸۰ 🚺

٤ 😙

7

209

٤٠٨

°0 • 0

- المجموعة الثانية أجـــب عمــــا يــــــى:
- ۰، جا سجا ٌ ه ٤° ظا ، ٦٠ = ظا ٌ ه ٤° جتا ٌ ٦٠ °

$$(\frac{1}{r}) - 1 = \frac{1}{r} \sqrt{r} \times (\frac{1}{r}) \times \cdots \rightarrow ...$$

$$\therefore \neq -\infty \times \frac{\overline{\psi}}{\xi} = \frac{\overline{\psi}}{\xi} \times \cdots$$
 :: جا س

$$\frac{\overline{r}V}{r} = \frac{\overline{r}V}{\overline{r}V} \times \frac{r}{r} = 0 \implies \therefore$$

$$Y \circ = {}^{Y}(\cdot - Y) + {}^{Y}(7 - Y) = {}^{Y}(2 - Y),$$

$$\circ \cdot = {}^{\uparrow}(\cdot - 1 - 1) + {}^{\uparrow}(1 - 1 - 1) = {}^{\uparrow}(2 - 1),$$

$$^{\prime}(>) = ^{\prime}(>) + ^{\prime}(()) :$$

$$\Delta$$
 ۱ و حقائم الزاوية في Δ

مساحة
$$\Delta$$
 ا \sim ح $=$ $\frac{1}{7}$ \times ا \sim \times ح

$$=\frac{1}{7}\times 0\times 0=0$$
 وحدة مربعة

- ٣ في △ ١٥ ح
- - :. ظاح= ۸ :. ظاح
- $\frac{\xi}{\delta} = \frac{\Lambda}{\Lambda} = \frac{\xi}{\delta} = \frac{1}{\delta}$ فی $\Delta \delta \delta = \frac{\xi}{\delta}$
- $\frac{17}{0} = \frac{\xi}{0} + \frac{\lambda}{10} \times \pi = -\frac{\xi}{0} + \frac{\lambda}{0} \times \pi = \frac{1}{0} \times \frac{1$

$$1 - = \frac{\Lambda}{\Lambda -} = \frac{\Upsilon + 7}{\Psi - 0 -} = \overline{\psi} \quad \therefore \quad \text{(1)}$$

$$(\Upsilon, \Upsilon) = (\frac{\Upsilon + \Upsilon - \sigma}{\Upsilon}, \frac{\sigma - \Psi}{\Upsilon}) = \overline{\sigma}$$
منتصف منتصف

$$\sim$$
 + ω = ω = ω + ω ... معادلة محور تماثل ω

$$\left(\frac{1-V}{Y},\frac{W+V}{Y}\right)=\left(\omega+0,W-\gamma\right)$$

$$\frac{1-}{\gamma}$$
 ميل المستقيم = $\frac{1-}{\gamma}$

$$\rightarrow + \Upsilon \times \frac{1-}{\Upsilon} = 0 - :$$

$$\frac{V-}{Y} = \frac{Y}{Y} + 0 - = >$$

$$\frac{V}{Y}$$
 - س $\frac{V}{Y}$ = ص $\frac{V}{Y}$ معادلة المستقيم هي: ص

النموذج العاشر

المجموعة الأولى اختر الإجابة الصحيحة:

0.

- - 14.

(7,0-)

T 10

٤ (2)

7 9

م •

٥٤٥ ٨

1- V

المجموعة الثانية أجـــب عمــــا يلــــى:

$$Y = \frac{\xi - - \text{valab} - - \text{valab}}{\text{valab}} = \sqrt{\Gamma}$$

$$\gamma = \frac{\gamma - 0}{1 - \gamma} = \frac{\gamma - 0}{1 - \gamma} = \gamma$$

$$Y \circ = {}^{Y}(Y - 1 -) + {}^{Y}(Y - 1 -) = {}^{Y}(\hookrightarrow P)$$

$$70 = (7-7)^{\dagger} + (7-7)^{\dagger} = 0$$

$$(\mathbf{1} \mathbf{1})^{\mathsf{T}} = (\mathbf{1} \mathbf{1})^{\mathsf{T}} + (\mathbf{1} \mathbf{1})^{\mathsf{T}} + (\mathbf{1} \mathbf{1})^{\mathsf{T}} = \mathbf{1}$$

$$(\Upsilon, \xi) = \left(\frac{\sigma + \xi}{\Upsilon}, \frac{\Upsilon + \sigma}{\Upsilon}\right) \therefore$$

$$\Upsilon = \frac{\omega + \xi}{\Upsilon}$$

$$\xi = \frac{7 + \cdots}{7} ::$$

$$\xi = \xi + \omega$$

- ميل المستقيم المعلوم = $\frac{Y-Y}{1-Y}$ = Y
- ت المستقيم المطلوب عمودي على المستقيم المعلوم
 - $\frac{1-}{y}$ = $\frac{1-}{y}$ and liaming in a simple $\frac{1-}{y}$
 - معادلة المستقيم المطلوب هي: $\omega = \frac{-1}{7} \omega + \infty$
 - · النقطة (٢ ، -٥) يمر بها المستقيم
 - $\xi = \Rightarrow \therefore \qquad \Rightarrow + \Upsilon \times \frac{1 \Upsilon}{\Upsilon} = 0 \therefore$
 - .:. معادلة المستقيم المطلوب هي: $\omega = \frac{-1}{\gamma} \omega 3$
- الطرف الأيمن = ظا٢٠ = ٣١٠ الطرف
- رسورف الأيسر = $\frac{d \cdot 7^{\circ} = \sqrt{T}}{T} = \frac{\sqrt{T}}{T} \times \sqrt{T} = \frac{\sqrt{T}}{T} = \sqrt{T}$ الطرف الأيسر = $\frac{1}{T} = \frac{T}{T} = \frac{T}{T} = \frac{T}{T} = \frac{T}{T}$
 - من () ، (ن الطرفان متساويان.
- ۷ م = ظاه ٤° = ١ $^{\circ}$. معادلة الخط المستقيم هي: $^{\circ}$ = $^{\circ}$ + $^{\circ}$

ကြောင်္ကျာပိုက်မျှာတွင်ပြည်တွင်ပြည်လျှင်

~ 8°

Everage

اوتحانات رقور (2)

أولًا الجبر

2024

نمــوذج (۱)

السؤال الأول

- اختر الإجابة الصحيحة من بين الإجابات المعطاة:
- 🕦 المدى لمجموعة القيم ٨ ، ٢ ، ٥ ، ٩ ، ٦ يساوى
- V(z) (z) (z) (z)
 - و المان ٤ ١ ٣ م = فإن ١ : م =
- $V: \xi(z)$ $\gamma: \xi(z)$ $\gamma: \gamma(1)$
 - ان س ص 2 اذا کان س ص 3 ، س + ص 4 فإن س
 - $\Lambda(\Rightarrow) \qquad \qquad \chi(1)$
 - ∞ إذا كان $\frac{0}{0}$ = ٥، فإن ص ∞
- $\frac{1}{\omega}(2) \qquad (2) \qquad \frac{1}{\omega}(3) \qquad (3) \qquad (4) \qquad (4) \qquad (5) \qquad (4) \qquad (5) \qquad (6) \qquad (7) \qquad (7$
 - 🗿 الرابع المتناسب للأعداد ٢ ، ٣ ، ٤ هو
 - $\Lambda (-)$ V (-) $\uparrow (1)$
 - 1 إذا كان (7 $^{\circ}$ ، $\sqrt{9}$ $\sqrt{9}$) = (1 ، 3) فإن س + ص =
 - $\Upsilon(2)$ $\Upsilon(2)$ $\Upsilon(1)$

السؤال الثاني

- (۱) إذا كانت س $= \{ \Upsilon, \Upsilon \}$ ، ص $= \{ \Xi, \Lambda \}$ ، ع $= \{ \Lambda, \Lambda \} \}$ فأوجد:
 - $(\xi \times (0)) \circ (1)$ $(\xi \cap (0) \times (1)$

(د) ۹

	$\frac{1}{2}$ ب) إذا كانت $\frac{1}{2}$ ، $\frac{2}{2}$ ، $\frac{2}{2}$ كميات متناسبة فأثبت أن: $\frac{1}{2}$ $\frac{1}{2}$ $\frac{2}{2}$
·····	السؤال الثالث
D	ا) إذا كانت سـ = {٢ ، ٢ ، ٣} ، صـ = {٣ ، ٤ ، ٥ ، ٧} وكانت ع علاقة من سـ إلى صـ
	-حیث اع ب تعنی $(-)$ = $(-)$ لکل ا $(-)$ سہ ، ب $(-)$ حیث اعنی $(-)$
	فاكتب بيان ع ومثلها بمخطط سهمي. هل ع دالة ؟ ولماذا؟
	ب) إذا كانت $\frac{1}{2}$ وكانت $\frac{1}{2}$ عندما $\frac{1}{2}$ فأوجد:
	(١) العلاقة بين س، ص. (٢) قيمة س عندما ص = ٦
	السؤال الرابع
	 ا) إذا كانت النقطة (٢ ، ٥) تقع على الخط المستقيم الممثل للدالة د: ع→ع حيث د (س) = ك س + ٣. فأوجد قيمة ك . ثم أوجد نقطة تقاطع المستقيم مع محور السينات.
	ب) مثل بيانيًّا منحنى الدالة د حيث د (س) = س٬ + ۲ س + ۱ متخذًا س ∈ [-٤ ،٢].
	ومن الرسم استنتج:
	(١) نقطة رأس المنحني.
	(٢) القيمة العظمي أو الصغري للدالة.
	(٣) معادلة محور التماثل.

\(\sigma \) = -	أن: الم الم الم الم الم الم الم	ح . فأثبت	ا بین ا ، -	ِسطًا متناسبً	ا کانت <i>ب</i> و	(۱)إذ
۲۷، ۲	.,0,47	لآتية: ١٦ ،	, للقيم ال	راف المعياري	سب الانحر	(ب) اح

نمـــوذج (۲)

السؤال الأول

	لصحيحة	11	٦,	1.	V	١.	::1	
ē	عصحيحه	,,	40		_	1 >		_

ر اذا كان مجـ (س - س) = ٣٦ لمجموعة من القيم عددها يساوي ٩ فإن س =

۲۷(۵) (ح) ۲۷(۱)

آ إذا كان ل ، ٢ ، م ، ٣ كميات متناسبة فإن ك =

 $\frac{r}{\circ}(2) \qquad \frac{r}{\pi}(2) \qquad \frac{r}{\pi}(1)$

 $\{(\Upsilon,\Upsilon)\}(L)$ $\{(\Upsilon,\Upsilon)\}(L)$ $\{(\Upsilon,\Upsilon)\}(L)$

 ∞ إذا كانت ∞ ص ∞ فإن ∞

(۱) س (۱) س (ب) س (ب) ۱-س (۱)

إذا كان المستقيم الممثل للدالة د : ع \longrightarrow عيث د (س) = γ س + γ ح γ

يمر بنقطة الأصل فإن حـ =

 $\frac{\Psi^{-}}{\Upsilon}$ (۱) (-1) (-1) (-1) (-1)

🚺 إذا كانت النقطة (ك ٢ - ٤ ، ك) تقع على الجزء السالب من محور الصادات فإن ك =

(ب) ٤ (ج) ۲ (د) ۲-۲

Y ± (1)

(T)

السؤال الثانى

(۱) إذا كانت س = $\{Y, Y, X, Y\}$ ، ص = $\{Y, Y, X, Y, Y\}$ وكانت $\{X, Y, Y, Y, Y\}$ ، ص حيث $\{Y, Y, Y, Y, Y\}$ وكانت $\{Y, Y, Y, Y\}$ من س حيث $\{Y, Y, Y, Y\}$ وكانت $\{Y, Y, Y\}$ من المحل $\{Y, Y, Y\}$ المحل $\{Y, Y, Y\}$ المحل $\{Y, Y\}$ المحل

(١) فاكتب بيان العلاقة. (٢) مثِّل ٤ بمخطط سهمي. (٣) هل ٤ دالة من سه إلى صه أم لا؟ ولماذا؟

	$(-)$ إذا كان: $\frac{77-7}{70} = \frac{1}{50}$ فأثبت أن: $(-)$ ه كميات متناسبة.
(1)	السؤال الثالث
	 (۱) إذا كانت سـ = {۱، ۲، ۳، ٤} ، صـ = {۲، ۳} ، ع = {۷، ۲} فأوجد:
	$.\xi,\times(\sim-\sim)(Y)$ $.\xi,\times(\sim\cap\sim)(Y)$
	(ب) إذا كانت ل م وكانت ل = ٢٠ عندما م = ٧ فأوجد: العلاقة بين ك ، م ثم أوجد: م عندما ك = ٠٤.
	السؤال الرابع
	(١) مثل بيانيًّا منحنى الدالة د: د (س) = ١ - س متخذًا س ∈ [-٢، ٢]
	ومن الرسم أوجد: (١) إحداثي نقطة رأس المنحني.
	(٢) القيمة العظمي أو الصغرى للدالة.
	(٣) معادلة محور التهاثل.
	(-) إذا كانت $-$ وسطًا متناسبًا بين $+$ ، $-$ فأثبت أن: $+$ $ +$ $ +$ $ +$ $-$.

(١) أوجد الانحراف المعياري للقيم الآتية: ١٢، ١٣، ١٦، ١٨، ٢١
(ب) إذا كان المستقيم الممثل للدالة د حيث د : ع →ع حيث د (س) = ٢ س - ٣ ك
يقطع محور السينات في النقطة (٦، م - ٢) فأوجد قيمة كل من: م، ك.

رم وذج (۳)

السؤال الأول

(د) الوسط الحسابي

(د) 🏌 ۲

- اختر الإحابة الصحيحة:
- (۱) صفر (ب) ۳ (ج) ٥ (د)٧
- ۲ (ب) (۲،۱)(۱) (د) (-۲} (ج) ۲}
 - 😙 أبسط وأسهل مقاييس التشتت هو
 - (١) الوسيط (ب) المدى (جـ) المنوال
 -
 - \sqrt{r} (\sqrt{r}) \sqrt{r} (\sqrt{r}) (ج) ۲۲ (ج)
 - 🧿 إذا كانت (س ، ص) تقع في الربع الثاني فإن س ص صفر
 - <(١) = (١) >(--) (د)≽
 - اذا کانت س $=]-\infty$ ، $\bullet [$ فإن سَ=]
 - (د)ع (ج_)] - ∞ ، ۰]]∞,⋅](_) (۱)ع

ً السؤال الثاني

- (۱) إذا كانت س = $\{ 1, 7, 7, 7 \}$ ، ص = $\{ 1, 7, 7, 7 \}$ ، وكانت ع علاقة من س إلى ص حيث $\{ 1, 7, 7, 7 \}$ تعنى أن (﴿ ب = ١) لكل ﴿ ﴿ س ، ب ﴿ ص
 - (١) فاكتب بيان ع. (٢) مثل ع بمخطط سهمي. (٣) هل العلاقة ع دالة؟ ولماذا؟

	(ب) إذا كانت (س - ۱،۱۱) = (۸، ص + ۳) فأوجد قيمة √س + ۲ ص
7	السؤال الثالث الشار ۲۹ - حرام الشار
	$(\ \)$ إذا كان $\frac{\gamma\gamma - \gamma}{\gamma - \varepsilon} = \frac{1}{\gamma}$ فأثبت أن γ وسط متناسب بين γ ، ح.
	(ب) إذا كانت $\omega = 9 - 9$ وكان $\omega \propto \frac{1}{w^{7}}$ وكان $1 = 1$ عندما $\omega = \frac{7}{w}$ وكان $\omega = 1$ عندما $\omega = 1$.
<u>"</u>	السؤال الرابع) (۱) احسب الوسط الحسابي والانحراف المعياري للقيم التالية: ۸، ۹، ۷، ۲، ۵.
	$\binom{7}{(-\frac{1}{2})} = \frac{\frac{1}{2}}{(-\frac{1}{2})}$ (ب) إذا كان $\binom{1}{2}$ ، $\binom{2}{2}$ ، $\binom{3}{2}$ ميات متناسبة، فأثبت أن:
<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	السؤال الخامس
	()

(-) ارسم منحنى الدالة: د $(-0) = (-0)^{1}$ حيث $(-1)^{1}$ ومن الرسم استنتج:

(١) إحداثي نقطة رأس المنحني.

(٢) معادلة محور التماثل.

(٣) القيمة الصغرى للدالة.

نمــوذج (٤)

(د) ۲۰۲

السؤال الأول

- اخترالإجابة الصحيحة:
- = °7 + °7 + °7 + °7
- ۲۲ (ب)
- °۸ (ج)
 - 🚺 النقطة (٣ ، -٤) تقع في الربع
- (د) الرابع (جـ) الثالث

 - ٣(١) (د) ۹ (ج) ۲
 - 🚯 العلاقة التي تمثل تغيرًا طرديًّا بين س ، ص هي =
- $\Psi + \Psi = \Psi (\psi)$ $\Theta = \Psi (\psi)$ $\frac{\xi}{\omega} = \frac{\omega}{\Psi} (z)$ $\frac{\omega}{\alpha} = \frac{\omega}{Y}$
 - 🧿 الأول المتناسب للأعداد ٢١ ، ١٥ ، ٣٥ هو
 - $\Upsilon(\psi)$ $\frac{\Upsilon}{V}(1)$ (د) ۹ (چـ) ۷
 - 🕦 الجذر التربيعي الموجب لمتوسط مربعات انحرافات القيم عند وسطها الحسابي يسم
 - (ب) الانحراف المعياري (ج) المنوال (د) المدي (١)الوسيط

- (۱) إذا كانت سـ = {٤ ، ٥ ، ٧} ، وكانت ع دالة على سـ وكان بيان ع = {(١ ، ٥)، (٠ ، ٥)، (٤ ، ٧)} فأوجد:
- (۲) القيمة العددية للمقدار (۳ ↑ + ۳). (١) مدى الدالة

السؤال الثانى

	(ب) إذا كان $\frac{11}{2} - \frac{90}{2} = \frac{90}{2}$ فأثبت أن 0×2 ، ثم أوجد قيمة $0 = 7$.
ر آ ، ٤، ۷} وكانت	السؤال الثالث (۱) إذا كانت سہ = $\{-7, -1, -1, -1, -1, -1, -1, -1, -1, -1, -1$
······································	(-) إذا كان
	ناسب متسلسل، عن النت الم الم الم المتسلسل، عن النت الم المتسلسل، $\frac{r}{s} = \frac{r}{s+s^{7}} = \frac{r}{s+s^{7}}$
	(ب) إذا كان د (س) = ٧ س - بوكان د (٥) = ١٥ فأوجد قيمة ب.
7	السؤال الخامس (۱) التوزيع التكرارى يبين عدد أطفال بعض الأسر في إحدى المدن الجديدة: عدد الأطفال صفر ۱ ۲ ۳ ٤ عدد الأسر ۸ ۱۲ ۰۰ ۲۰ ۲ ا ۲۰ ۲۰ ۲۰ ا ۲۰ ا ۲۰ ۲۰ ۲۰ ۲۰ ا ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰ ۲۰

(ب) مثل بيانيًّا منحنى الدالة د حيث د (س) = ٢ - س٢ متخدًا س ∈ [-٣،٣]، ومن الرسم استنتج:

(١) نقطة رأس المنحني

(٢) معادلة محور التهاثل.

(٣) القيمة العظمي أو الصغرى للدالة.

نمــوذج (ه)

السؤال الأول

- اختر الإجابة الصحيحة:
- ١ النقطة (٣- ، ٤) تقع في الربع
- (١) الأول (ب) الثاني (جـ) الثالث (د)الرابع
 - نصف العدد ٤٦ هو
 - (۱) ۲۳ (چ) °۶ (ح) ۳۶ (۱) 177 (2)
 - 😙 الوسط الحسابي للأعداد: ٢٠ ، ٢٧ ، ٥ ، ١٦ ، ٣٢ هو
- (ب) ۲۰ (ج) (د) ۱۰۰ 0(1)
 - £ المعكوس الضربي للعدد (١ + v +) هو
 - (د) ۱
 - 🧿 الرابع المتناسب للأعداد ٤ ، ١٢ ، ١٦ هو
 - (ب) ۳۲ (ج) Y7(3)
 -
- (ب) ۹ (د)ه (ج) ۱٥ V(1)

السؤال الثاني

(ا) إذا كانت س = $\{7, 7, 8\}$ ، ص = $\{3, 7, 8\}$ وكانت علاقة من س إلى ص حيث $\{7, 8, 8\}$ تعنى أن (۱ = $\frac{1}{7}$ کال (۱ = $\frac{1}{$ وإذا كانت دالة اذكر مداها.

× + < × × × × × × × × × × × × × × × × ×	(ب) إذا كانت سوسطًا متناسبًا بين أ ، ح فأثبت أن: ﴿ وَسُطًّا مَتَنَاسَبًا بِينَ أَ ، حَ فَأَثْبُتَ أَن: ﴿ وَسُطًّا مَتَنَاسَبًا بِينَ اللَّهِ اللَّهُ اللَّهِ اللَّهُ اللَّهِ اللَّهُ اللَّهِ اللَّ
	السؤال الثالث
	$\{ Y, Y \} = \emptyset $, $\{ Y, Y \} = \emptyset $
	فأوجد: (١) سـ × صه.
	$(()\times())\times()$
	(ب) إذا كانت ص x س وكانت ص = ٦ عندما س = ٣
	فأوجد: (١) العلاقة بين س، ص.
	(٣) قيمة ص عندما س = ٥.
	السؤال الرابع
س ∈ [-۱، ٥] ومن الرسم استنتج إحداثي نقطة رأس	(١) مثل بيانيًّا منحنى الدالة د حيث د (س) = (س ٢)٢ متخذًا
	المنحني، ومعادلة محور التهاثل، والقيمة الصغرى للدالة.
	(ب) إذا كانت $\frac{9}{7} = \frac{\omega}{m} = \frac{2}{3} = \frac{7}{9} = \frac{7}{9}$ أوجد قيمة ω .

السؤال الخامس

((, , ۲)	ت في النقطة	قطع محور السينان	= ۳ س – ۹ یا	→ ع، د (س)	للدالة د : ع –	إذا كان المستقيم الممثل	[(1)
						فأوجد قيمة ١، ٠.	•

(ب) أوجد الوسط الحسابي والانحراف المعياري للبيانات الآتية:

المجموع	١ • - ٨	-٦	- {	-7	صفر –	الفئة
۲٠	٥	٥	٦	٣	١	التكرار

ثانيًا الهندسة

			س مصودج (
7		فترالإجابة الصحيحة:	السؤال الأول
	° = ä	وايا المتجمعة حول نقط	🚺 مجموع قياسات الز
۹٠(۵)	(ج) ۲۷۰	۱۸۰ (ب)	٣٦٠(١)
°	زاوية حادة فإن س =	: ۱ حیث (۳ س) قیاس	ا إذا كان طا ٣ س =
7.(2)	(ج) ۲۰	(ب) ١٥	ξο(I)
۰(٤-،٣	ة المستقيمة (حيث ((صل هي منتصف القطع	إذا كانت نقطة الأ
		ة ب هي	فإن إحداثي النقط
(٢,٤)(٤)	(ج) (۳-) (ع)	(۳، ٤-) (ب)	(\(\(\) (- \(\) (\)
ين فإن ل =	، ل ص + ٣ س = • متوازي	٣ س - ٤ ص - ١ = ١	إذا كان المستقيان
(د) – ٤	(ج) ٤	(ب) ۳–	٣(١)
	بوازی محور السی <mark>نات ه</mark> ی	ر بالنقطة (-۲ ، -۳) و	💿 معادلة المستقيم الما
(د) س = ۳۰	(جـ) ص = -۲	(ب) ص = ۳-	(۱) س = ۲-۲
° = (\(\subseteq \subseteq \) \(\partial \)	ل (﴿ ح) = ٠٠٠° ، فإن	ر (igl) + (igl)	۹ 🕶 ح و متوازي أف
17.(2)	(ج) ۱۰۰	(ب) ۸۰	0 • (1)
7			السؤال الثانى
	7), (-1 , -7)	م المار بالنقطتين (١، ٢	(١) أوجد معادلة المستقي
نطتین (۱، ص)، (س، ۳). فأوجد قیمتی س، ص	المستقيمة الواصلة بين النة	١) هي منتصف القطعة	(ب) إذا كانت النقطة (٣،

<u> </u>	السوال النالك (۱) أوجد قيمة س التي تحقق ٢ حاس = طا٢٠٥٠ - ٢ طا ٤٥٥ حيث س قياس زاوية حادة.
تجاه الموجب لمحو	ب) أثبت أن: المستقيم الذي معادلته ٣س - ٣ص + ٥ = ٠ يوازي المستقيم الذي يصنع مع الا السينات زاوية قياسها ٤٥°
7	السؤال الرابع ۱) بدون استخدام الآلة الحاسبة أوجد قيمة: حتا ۲۰° حا ۳۰° – حا ۲۰° طا ۲۰° + حتا ۲۰°
	ب) أثبت أن: النقط ((-٣ ، -١)، ب (٦ ، ٥)، ح (٣ ، ٣) تقع على استقامة واحدة.

السؤال الخامس

(١) في الشكل المقابل: س ص ع مثلث قائم الزاوية في ص فيه:

أوجد قيمة حتا س حتا ع - حا س حاع

(-) أوجد ميل الخط المستقيم وطول الجزء المقطوع من محور الصادات للمستقيم $\frac{-0}{7} + \frac{0}{7} = 1$

نمــوذج (۲)

السؤال الأول

- اخترالإجابة الصحيحة:

 $\frac{1}{r}$ - (ψ) 1- (1)

🕥 <mark>عدد محاور تماثل الم</mark>ثلث <mark>المت</mark>ساوي الأضلاع يساوي

- 😙 إذا كانت النقطة (٠، ٥) تنتمي إلى المستقيم ٣ س ٤ ص + ١٢ = صفر فإن ٩ =

- (۱) ۱۲ (۱)
- (ج) ٤

فإن ١ ح بح

(جے) ۲۰

🧿 صورة النقطة (٣٠ ، ٥) بالانعكاس على محور الصادات هي

$$(\circ -, \Upsilon -) (\circ)$$
 $(\Upsilon, \circ) (\circ)$ $(\circ, \Upsilon) (\circ)$ $(\circ, \Upsilon) (1)$

عا ۳۰۰ = حتا

(د) ۳۰

- °٤٥ (ب)
- °1•(1)

(١) في الشكل المقابل:

السؤال الثاني

٩ ب ح مثلث فيه و م (عرب) = ٩٠ ° ، ٩ ح = ٥ سم ،

ب ح = ٣ سم، أوجد قيمة:

	١ حاد - حتاد + طاد١ حام حتاد + حتام حاد
	$(m{\psi})$ قطر فی دائرة مرکزها م فإذا کانت $m{\psi}$ (۱۱، ۸)، م (۷، ۵) فأوجد إحداثی النقطة م ثم أوجد محیط الدائرة. $(m{\psi}, 1)$
7	السؤال الثالث (۱) أثبت بدون استخدام الحاسبة أن : ٥ حتا ٦٠° – طا ٤٥° = ٣ حا ٣٠°
	(ب) أثبت أن المستقيم المار بالنقطتين (٥ ، ٣ ل ٣) ، (٤ ، ٢ ل ٣) يوازى المستقيم الذي يصنع مع الاتجاه ال
7	السؤال الرابع المعادية: $ q - q = 10$ سم، $ q - q = 10$ سم، $ q - q = 10$ سم، $ q - q = 10$ المعادية المستطيل فيه: $ q - q = 10$ سم، $ q - q = 10$
	(ب) إذا كانت النقط ل (۳، ۹)، م (۱، ۰)، نه (۲، ۵) على استقامة واحدة فأوجد قيمة ۹

	، مستطيل.	و (۲،۰) ه <i>ی</i> رءوس)، ح (۲، ٤)،	۱، ٥) پ ، (٣، ١-)	ميل أن النقط ٩ (ثبت باستخدام ال	1(1)
٤ ، ٩	ن موجبين طولاهما	يني والصادي جزأير	ى الإحداثيات الس	ى يقطع من محوري	بط المستقيم الذي	أوجد معادلة الخ	(ب)
					ى الترتيب.	وحدا <mark>ت طول عا</mark>	

نمــوذج (۳)

السؤال الأول

- اختر الإحاية الصحيحة:
- ا إذا كانت حا $w=rac{1}{2}$ فإن v (v س v = حيث س قياس زاوية حادة.
- °۹۰(۵) °۳۰(ج) °۲۰(۵) °٤٥(۱)

 - o مثلث أطوال أضلاعه o سم ، ۲ سم ، ۱۳ سم تكون مساحته = سم م
- (د) ١٤٤
- (۱) ۳۲,۰ (ج) ۷۸

 - إذا كان المستقيمان اللذان ميلاهما = $\frac{7}{7}$ ، $\frac{7}{6}$ متوازيين فإن ك =
 - (د)۲
- $\frac{\tau}{\tau}(\Rightarrow) \qquad \qquad \xi (-1)$

- (۱) صفر (ت) ۹۰ (ج) ۱۸۰
 - 🧿 معادلة المستقيم الذي يمر بالنقطة (٣ ، -٥) ويوازي محور ا<mark>لصاد</mark>ات هي
- 0 = 0 (c) 0 = 0 (-0) 0 = 0

- م م ب ح فيه ق (∠ ب) > ق (∠ ح) فإن م ب م ح

- (ب)(د)
- =(1)

السؤال الثاني

- (١) إذا كانت النسبة بين قياسي زاويتين متتامتين كنسبة ٣: ٥ فأوجد مقدار كل منهما بالقياس الستيني.

(ب) أثبت أن النقط (٣- ، ٠) ، ب (٣ ، ٤) ، ح (١ ، ٦-) هي رءوس مثلث متساوي الساقين رأسه ٩ ،

ثم أوجد طول القطعة المستقيمة المرسومة من ٢ وعمودية على -ح.

السؤال الثالث

	(١) أوجد ميل المستقيم وطول الجزء المقطوع من محور الصادات للمستقيم ٥ س + ٤ ص - ١٠ = ٠
× ×	(-) فی الشکل المقابل:
ر حدة مركزها	السؤال الرابع (1) ، (-3) ، (-3) ، (-3) ، الواقعة في مستوى إحداثي متعامد تمر بها دائرة والنقطة م (-1) . ثم أوجد محيط ومساحة الدائرة. $(\pi, 1)$
	$(ب)$ $q \mapsto \Delta$ قائم الزاوية في ψ ، وكان $q \mapsto \sqrt{q}$ $q \mapsto 0$ أوجد: (النسب المثلثية الأساسية للزاوية ح. $q \mapsto 0$
7	السؤال الخامس) الشاؤال الخامس) المسؤال الخامس) المسؤال الخامس) المسؤال الخامس) المسؤال الخامس) المسؤال المائ $3.7^\circ + 7.7^\circ + 7.7^\circ + 7.7^\circ + 7.7^\circ + 7.7^\circ$
	(ب) إب ح مثلث فيه إ (١، ١) ، ب (٥، -٢) ، ح (٣، ٤) و منتصف أب الرسم على المستقيم أوجد معادلة المستقيم وه

نمــوذج (٤)

السؤال الأول

- اخترالإجابة الصحيحة:
- الأطوال T سم، Λ سم، \dots سم، \dots

- ن في الشكل المقابل:

 (\mathfrak{P}, ξ) ح منتصف $\{\mathfrak{P}, \mathfrak{p}\}$

فإن مساحة ∆ ٩ و ب = وحدة مربعة.

- ۲(پ) ۲٤(۱)
- (ج) ۱۲ (c) *۱*۲
- ع حتا ۲۰ طا ۲۰ =
- 17(2) | | | | | | | | | | | |

- سساوی الذی معادلته $\gamma = V = \bullet$ یساوی میل المستقیم الذی معادلته $\gamma = V = \bullet$ $\frac{1}{m}(\Rightarrow) \qquad \qquad m-(\neg) \qquad \qquad m(1)$ $\frac{1}{\sqrt{2}}$ – (2)
 - وحدة طول. (۵ البُعد بين النقطة (۷ ، ۳) ونقطة الأصل يساوى وحدة طول.
 - (۱) ۲ (چ) ۲ (ج) 1(2)
- - 🕦 عدد محاور التهاثل للمثلث المتساوي الساقين تساوي

- (ب) ۲ (ج)
 - ٣(١)

السؤال الثاني

- (۱) إذا كان حتا ه طا ۳۰ = حتا ٤٥ ثأوجد $(\triangle \triangle)$ حيث ه زاوية حادة.
- - () أوجد معادلة الخط المستقيم المار بالنقطة (7 0) ويوازى المستقيم الذي معادلته: 7 0

السؤال الثالث

(T)	(۱) أثبت أن: حا ۲۰° = ۲ حا ۳۰ حتا ۳۰
 ات زاوية 	(ب) إذا كان المستقيم ل, يمر بالنقطتين (٣، ١)، (٢، ١) والمستقيم ل, يصنع مع الاتجاه الموجب لمحور السينا قياسها ٤٥° فأوجد قيمة ك إذا كان ل, ل ل ل
7	السؤال الرابع (١) بدون استخدام الآلة الحاسبة أوجد القيمة العددية للمقدار: حا ٤٥° حتا ٥٥° + حا ٣٠° حتا ٢٠° – حتا ٣٠٠ ون استخدام الآلة الحاسبة أوجد القيمة العددية للمقدار: حا ٤٥° حتا ٥٤٠ + حا ٣٠٠ حتا ٢٠٠ – حتا ٢٠٠ وي
	(ب) إذا كانت ((۱ ، - ٦)، ب (۹ ، ۲) فأوجد إحداثيات النقط التي تقسم ﴿ بَ إِلَى أَرْبِعَة أَجْزَاء متساوية في الطول.
 آج لصادات 	السؤال الخامس (۱) أوجد معادلة المستقيم الذي ميله يساوى ميل المستقيم الذي معادلته $\frac{\sigma-1}{m}=\frac{1}{m}$ ويقطع جزءًا سالبًا من محور امقداره ٣ وحدات طول.
	(ب) ٩ ب ح ى متوازى أضلاع فيه ٩ (٣، ٢)، ب (٤، -٥)، ح (٠، -٣) أوجد: (١) إحداثي نقطة تقاطع القطرين. (ب) إحداثي نقطة ي

نمــوذج (ه)

السؤال الأول

- اخترا لإجابة الصحيحة:
- 🕦 دائرة طول محيطها يساوي π فإن طول قطرها = سم.
- $\xi(z) \qquad \qquad \Upsilon(z) \qquad \qquad \frac{1}{2}(1)$
 - o مربع طول قطره ۸ سم فإن مساحة سطحه =سس.... سم٢.
- - 😙 في الشكل المقابل:

فإن: ق (ك ب ع و) =

- °۲۰(۱)
- °۱۲۰(ح) ۹۰(ح)
- ٤ إذا كان المستقيمان: ٣ س ٤ ص ٣ = ٠ ، ك ص = ١ ٨ س متعامدين فإن ك =
 - (د) ۳ (ح) ۳ (ح) ۲ (۱)
 - 🗿 المستقيم ص = ۲ يوازي
 - (۱) محور السينات (ب) محور الصادات (ج) ص = س
 - $\frac{1}{r}(z) \qquad \frac{r}{r}(z) \qquad \frac{1}{2}(z) \qquad 1(1)$

السؤال الثانى

(۱) [بدون استخدام الحاسبة] أوجد قيمة صحيث: ٥٠ < س < ٩٠ ° حاس حا ٥٤ ° حتا ٥٤ ° طا ٥٠ = طا ٥٤ - حتا ٢٠ ° ٢٠

(د)س=۲

(ب) في الشكل المقابل: م \sim و شبه منحرف فیه: ق (\leq ب) = ۹۰°، ر سر کا ب سر $\gamma = \gamma$ سم، ب د $\gamma = \gamma$ سم، ب د $\gamma = \gamma$ سم، ٩ = ٢ سم. أوجد بالبرهان: 1 طول 5 ح ۲ ق (_ ب ح ی) السؤال الثالث (۱) إذا كانت (-7, 7)، (-9, 1)، حدهى منتصف (-7, 1) أوجد: معادلة المستقيم العمودي على م ب ومارًا بالنقطة ح (ب) | q - c| = | c| = | c| سم، - c| = | c| سم، | c| <math>| c| = | c| = |١, ٤ = حا ب + حتاح ١ ١ = - ٢ حا ح = ١ السؤال الرابع (١) إذا كان المثلث الذي رءوسه النقط: ص (٤، ٢)، ص (٣، ٥)، ع (٥- ، ١) قائم الزاوية في ص. فأوجد بالبرهان قيمة ٩ (ب) أثبت أن: المستقيم الذي يمر بالنقطتين (٣٠، ٣٠)، (٤، ٥) يوازي المستقيم الذي يصنع مع الاتجاه الموجب لمحور السينات زاوية قياسها ٥٤°.

السؤال الخامس

(١) إذا كان بُعد النقطة (س، ٥) عن النقطة (٦، ١) يساوى ٢ V وحدة طول فأوجد قيمة س.

(ب) في الشكل المقابل:

المستقيم حري يمر بالنقطتين ٩ (٣،٥)، ب (٢،٤)

ويقط<mark>ع محوري الإحداثيات في ي،</mark> ح على الترتيب.

١ أوجد معادلة المستقيم مرب

٢ أوجد إحداثيي نقطة تقاطع المستقيم ﴿ لَى مَع محور السينات.

أولًا الجبر

إجابــة نمـــوذج (١)

السؤال الأول

- 17 6 5 : 4 6
 - 17 ٦٥

ً السؤال الثاني

$$\{0\} \times \{\xi, \Upsilon\} = (\xi \cap \neg \neg) \times \neg \neg \bigcirc (1)$$

$$\{(\circ, \xi), (\circ, \Upsilon)\} =$$

٤ س

$$\rho = \frac{2}{s} = \frac{\beta}{s} : (\psi)$$

الطرف الأيمن =
$$\frac{(-7)^{4} + (7)^{4}}{(-7)^{4} + (7)^{4}}$$
 الطرف الأيمن = $\frac{(-7)^{4} + (7)^{4}}{(-7)^{4} + (7)^{4}}$ = 7^{4}

$$^{\prime}$$
الطرف الأيسر = $\frac{^{\prime} \circ \times \circ \circ}{^{\prime}} = \circ$

من (١) ، ٢٠ ألطرفان متساويان.

$^{\circ}$ معادلة المستقيم الممثل للدالة د : د (س) = س + $^{\circ}$

نقطة تقاطع المستقيم مع محور السينات هي (٣٠،٠)

(١) : (١) تقع على الخط المستقيم فهي تحقق معادلته.

1 = ② ∴ Y = ② Y ∴ Y + ② Y = ○ ∴

(س) د (س) = س۲ + ۲ س + ۱

السؤال الرابع

۲	١	•	١-	۲-	٣-	٤-	س
٩	٤	١	•	١	٤	٩	د (س)

- (١) نقطة رأس المنحني (١- ، ٠)
- ٧ القيمة الصغرى للدالة هي صفر
- ٣ معادلة محور التماثل هي س = -١

ً السؤال الخامس

(٢)

الطرف الأيمن =
$$\frac{حرم' - حرم}{c - (0 - 1)}$$

من (١) ، ٢ ن الطرفان متساويان.

$$\mathbf{7.} = \frac{\mathbf{7.} + \mathbf{7.} + \mathbf{0.} + \mathbf{0.} + \mathbf{1.} \mathbf{1}}{\mathbf{0}} = \overline{\mathbf{0.}} (\dot{\mathbf{0.}})$$

(<u>س</u> – س)	(U – U)	س		
١٦	ξ-	17		
١٤٤	١٢	٣٢		
770	10-	٥		
صفر	صفر	۲.		
٤٩	٧	77		
٤٣٤	المجموع			

$$9, \text{TY} \simeq \frac{\text{ETE}}{\text{o}} \sqrt{=\sigma} \qquad \frac{\text{T}(\overline{\cup \sigma} - \cup \sigma)}{\text{v}} \sqrt{=\sigma}$$

السؤال الثالث

$$\{(V, \Upsilon), (O, Y), (\Upsilon, I)\} = \{(I, \Upsilon), (Y, Y)\}$$

ع دالة لأن كل عنصر من عناصر المجموعة سم خرج منه سهم واحد فقط إلى عناصر المجموعة صر.

ص = ٣ عندما س = ٤

١٢ - العلاقة هي: سص = ١٢

$$\Upsilon = \frac{17}{7} = \omega$$

اجابــة نمـــوذج (٢)

السؤال الأول

Y .

🗿 صفر

{(۲,۲)}

السؤال الثانى

$$\{(17, \xi), (9, \pi), (7, T)\} = \{(17, \xi), (1, \pi), (1, \pi)\}$$

ت نعم دالة؛ لأن كل عنصر من عناصر المجموعة سد خرج منه سهم واحد فقط إلى المجموعة صد.

$$\frac{1}{2} = \frac{2 \times 1 - 1}{2 \times 1 - 1} \therefore (\dot{\gamma})$$

$$\frac{2}{5} = \frac{1}{5}$$
 ...

.. ۱ ، ب ، ح ، ۶ كميات متناسبة.

السؤال الثالث

$$\{Y,V\}\times\{Y,Y\}=\xi\times(\neg\neg\neg)\bigcirc(1)$$

$$\{\Upsilon, V\} \times \{\xi, 1\} = \xi \times (-\infty)$$

$$\{(Y, \xi), (Y, \xi), (Y, 1), (Y, 1)\} =$$

$$r = 0$$
: $r = 0$: $r = 0$

$$\frac{Y}{V} = 0$$
 \therefore $V = \gamma$ size $Y = 0$ \therefore

ن العلاقة هي:
$$b = \frac{4}{V}$$
م

$$1\xi = \gamma : \leftarrow \gamma = \xi : \cdots$$

السؤال الرابع

۲	١	*	1-	۲-	J
٣-	صفر	١	صفر	۳-	ص

- (١،٠٠) هي نقطة رأس المنحني هي
 - ٧) القيمة العظمى للدالة هي ١

$$\gamma \sim = \beta$$
, $\gamma \sim = \gamma$. $\gamma = \frac{\gamma}{\gamma} = \frac{\beta}{\gamma}$

$$\frac{Y - Y - Y - Y}{1 - Y} = \frac{Y - Y - Y}{1 - Y} = \frac{Y - Y}{1 - Y}$$

$$\frac{Y - Y - Y}{1 - Y} = \frac{Y - Y}{1 - Y}$$

$$\frac{1}{\sqrt{\zeta}} = \frac{(\sqrt{\zeta} - \sqrt{\zeta})^{\gamma}}{(\sqrt{\zeta} - \sqrt{\zeta})^{\gamma}} = \frac{1}{\sqrt{\zeta}}$$

(٢)

$$\frac{1}{1} \frac{1}{1} = \frac{1}{1} = \frac{1}{1}$$
الطرف الأيسر = $\frac{1}{1} = \frac{1}{1}$

من (١) ، ٢٠ ن الطرفان متساويان.

السؤال الخامس

$$17 = \frac{71 + 17 + 17 + 17 + 17}{0} = \frac{71}{0}$$

(س – س)	(J		
17	٤-	17		
9	٣-	١٣		
صفر	صفر	١٦		
٤	۲	١٨		
70	0	71		
٥٤	المجموع			

$$r, rq \simeq \frac{\delta \xi}{\delta} = \sigma$$

$$\mathfrak{t} = \mathfrak{t} : \mathfrak{t} = \mathfrak{t} : \mathfrak{t} = \mathfrak{t} = \mathfrak{t}$$
 نا الله عنه عنه

اجابــة نمـــوذج (٣)

السؤال الأول

- 🐧 صفر 🐧 ۲}
- $]\infty,\cdot] \qquad > \bigcirc \qquad \overline{17} \quad \Sigma$

السؤال الثاني

 $\left\{\frac{1}{w}, \Upsilon\right), \left(\frac{1}{v}, \Upsilon\right), \left(1, 1\right)\right\} = \psi \qquad (1)$

ت نعم دالة؛ لأن كل عنصر من عناصر المجموعة سه ظهر كمسقط أول مرة واحدة.

٣ المدي

- $(\Upsilon + \omega \cdot \Lambda) = (11 \cdot 1 \omega) (\psi)$ $11 = \Upsilon + \omega \quad || \Lambda = 1 \omega$ $\Lambda = \omega \quad || \Lambda = \omega$
- $0 = \overline{100} = \overline{1100} = \overline{1100} = \overline{1000} = 0$

السؤال الثالث

- $\frac{\beta}{\gamma} = \frac{\gamma \beta \gamma}{\gamma \gamma \gamma} : (1)$
- ットーットY=Y--ットY:
 - - > P = Y ...
- ن وسط متناسب بين ١، ح
 - $\frac{\gamma}{\pi} = \omega \quad \text{aixal } \gamma = \gamma \quad (\psi)$ $\varphi = \varphi \gamma \quad \gamma = \gamma \quad (\psi)$
- $\frac{1}{2} \cos \omega \cos \omega = 0$
- $: (\frac{\gamma}{\pi})^{\gamma} \times \beta = \gamma \implies (\frac{\gamma}{\pi}) :$
 - () العلاقة هي س^٢ص = ٤
 - ۲ عندما س = ۱
 - $\xi = \omega \iff \xi = \omega \times 1$:

السؤال الرابع

$$V = \frac{\text{$\frac{\phi}{0}$}}{\text{$\frac{\phi}{0}$}} = \frac{\text{$\frac{\phi}{1}$} + \text{$\frac{\chi}{1}$} + \text{$\frac{\chi}{1}$} + \text{$\frac{\chi}{1}$}}{\text{$\frac{\chi}{1}$}} = \frac{\text{$\frac{\phi}{1}$}}{\text{$\frac{\chi}{1}$}} (1)$$

(س – س)	(U - U)	j
١	١	٨
٤	۲	٩
صفر	صفر	٧
1	1-	٦
٤	۲-	٥
١.	جموع	الم

$$1,\xi \Upsilon \simeq \overline{\Upsilon V} = \frac{\overline{1 \cdot V}}{\overline{0}} = \sigma$$

من (١٠) الطرفان متساويان.

السؤال الخامس

$$\xi = \Upsilon \times \Upsilon = (\sim \times \sim) = 0) ())$$

$$\{Y, Y\} \times \{0\} = \mathcal{P} \times (\mathcal{P} \cap \mathcal{P})$$

$$\{(Y, 0)\}, (Y, 0)\} = \{(Y, 0)\}, (Y, 0)\}$$

(س) د (س) = (س - ۳)

٦	٥	٤	٣	٢	١	صفر	ب
٩	٤	1	صفر	1	٤	٩	ص

إحداثي نقطة رأس المنحني (٣،٠) معادلة محور التماثل هي س = ٣ القيمة الصغرى للدالة هي صفر

إجابــة نمـــوذج (٤)

السؤال الأول

$$\frac{\omega}{\circ} = \frac{\omega}{\gamma}$$
 2

السؤال الثانى

(۱) **(** مدى الدالة = {۰، ۷

$$\frac{\gamma}{2} = \frac{\gamma}{2} = \frac{\gamma}{2} = \frac{\gamma}{2} = \frac{\gamma}{2} = \frac{\gamma}{2}$$

$$Y = \frac{Y}{w} = \omega$$
 .. $\omega = \frac{Y}{w} = \frac{Y}{w}$

عندماع = ۲
$$\stackrel{7}{\sim}$$
 ص = $\frac{7}{\pi}$ × ۲ = ع

السؤال الثالث

نعم ع دالة؛ لأن كل عنصر من عناصر المجموعة سم ظهر كمسقط أول مرة واحدة.

المقدار
$$\frac{59-50}{79} = \frac{7\times07-7\times77}{7\times07+3\times77} = \frac{57-777}{507-7177}$$

$$= \frac{7}{77-7} = \frac{7}{77}$$

السؤال الرابع

$$\frac{7^{7}}{(1+7)^{5}} = \frac{7^{7}}{5^{7}+5} = \frac{7^{7}}{5^{7}+5}$$
 الطرف الأيمن = $\frac{7^{7}}{5^{7}+5}$

$$\frac{r}{1+r} =$$

$$\frac{7^{7}}{1 + 7^{5}} = \frac{7^{7}}{7^{5}} = \frac{7^{7}}{7^{5}} = \frac{7^{7}}{7^{5}} = \frac{7^{7}}{7^{5}}$$
 الطرف الأيسر

$$\frac{r}{1+r}=$$

من (١) ، ٢) ٠٠ الطرفان متساويان.

$$Y \cdot = 10 - Y0 = \checkmark : \Leftarrow \checkmark - (0) V = 10 : \bullet$$

السؤال الخامس

(1)

معادلة محور التماثل هي س = ٠

(١ نقطة رأس المنحني هي (١، ٢)

٣ القيمة العظمي هي ٢

չ	صفر	1	~	2	3	المجموع
б	<	11	•	۲.	٦	
e ×	صفو	11	1	• 1	31	٠.٨
(-DD)	$\Delta \dot{a}_{V} - V = -V$	1 - 7 = 7 - 1	Y - Y = ob	$\lambda = \lambda - \gamma$	$\gamma = \gamma = \gamma$	
(-00)	3	١	صفر	١	3	
(-22) × 6	1.1	11	صفر	٠,	31	16

$$Y = \frac{Y \cdot \cdot}{1 \cdot \cdot} = \frac{0 \times 0^{-1} \times 0^{-1}}{0 \times 0^{-1}} = \overline{(0^{-1})} \cdot \cdot \cdot$$

$$\frac{\overline{0 \times \sqrt{\omega - \omega}}}{\omega}$$
 $\sqrt{\omega} = \sqrt{\omega}$ الانحراف المعيارى $\sqrt{\omega} = \sqrt{\omega}$ مجد $\sqrt{\omega}$ $\sqrt{\omega}$ $=$ $\sqrt{\omega}$

٣	۲	١	•	١-	۲-	٣-	(س)
٧-	۲-	١	۲	١	۲-	٧-	د(س)

اِجابــة نمـــوذج (ه)

السؤال الأول

- الثاني ٢٠٣٥ ٢٠٠
 - ٥ ٨٤ ١٥

السؤال الثانى

$$\{(1, 0), (3, 7), (7, 7), (8, 7)\}$$
 بیان ع = $\{(7, 3), (7, 7), (8, 7)\}$

1-71

ع دالة؛ لأن كل عنصر من عناصر المجموعة سم خرج منه سهم واحد فقط إلى عناصر المجموعة صه.

$$1 + {}^{\uparrow} \mathcal{C} = \frac{(1 + {}^{\uparrow} \mathcal{C})^{\uparrow} \mathcal{C}^{\uparrow} \mathcal{S}}{{}^{\uparrow} \mathcal{C}^{\uparrow} \mathcal{S}} =$$

الطرف الأيسر =
$$\frac{-7 + -7}{-7} = \frac{-7 - 7 + -7}{-7}$$

$$1 + {}^{\gamma} C = \frac{(1 + {}^{\gamma} C)^{\gamma} > 1}{2} = \frac{1}{2}$$

من ١٠٠٠ ن الطرفان متساويان.

السؤال الثالث

- - $\{\Upsilon\} = \mathcal{A} \mathcal{A} \cdot \{\Upsilon \cdot \Upsilon \cdot \Upsilon\} = \mathcal{A} \cup \mathcal{A} \quad \text{```} \quad \Upsilon$
 - $\mathcal{A} = [(\mathbf{1} \mathbf{1}) \times (\mathbf{1} \mathbf{1})] \times \mathbf{1}$

- - ن: ص = ٦ عندما س = ٣

$$\Upsilon = \frac{\tau}{w} = \gamma$$
 ...

· العلاقة هي ص = ٢ س

السؤال الرابع

$$(1) c (-1) = (-1)^{2}$$

٥	٤	٣	۲	١	•	1-	٦
٩	٤	١	•	١	٤	٩	د (س)

- (١) نقطة رأس المنحني (٢،٠)
- ۳) معادلة محور التماثل هي س = ۲
- القيمة الصغرى للدالة هي صفر

$\frac{2}{5} = \frac{\sqrt{4}}{2} = \frac{1}{2}$ \therefore (-1)

7

بضرب حدى النسبة الأولى \times 7 وضرب حدى النسبة الثانية \times -1 وضرب حدى النسبة \times 0 وجمع مقدمات وجمع توالى النسب الثلاث.

V = → ← Y 1 = → T ...

السؤال الخامس

- (١)٠٠ المستقيم يقطع محور السينات في النقطة (٢، ١)
 - ن و = صفر
 - $\mathbf{..} \bullet = \mathbf{7} \times \mathbf{7} \mathbf{9} \Longrightarrow \mathbf{9} = \mathbf{7}$

				17
س× ك	0	مركز المجموعة س	المجموعات	(ب)
١	١	١	صفر –	
٩	۲	٣	- ٢	
٣.	۲	٥	- ٤	
٣٥	0	٧	٦-	
٤٥	0	٩	-1	
17.	۲.		المجموع	

مركز المجموعة س		3	0	٨	Ь	المجموع
9	_	1	٦	0	0	۲.
ا ا ا	0	- >	-/	1	3	
(بی - آبی) ۲	٧٥	Ь	_	1	Ь	
(-vv) × 6	0 1	\ \	,-	0	03	٧٠١

$$\frac{\overline{\alpha_{\infty}(\omega_{-}\omega_{-})\times b}}{\omega_{\infty}}$$
 \(\varphi\) الانحراف المعيارى (\sigma) = \(\frac{\cdot \cdot \lambda}{\cdot \cdot \cdot}\) = \(\cdot \cdot \cdot

ثانيًا الهندسة

إجابــة نمـــوذج (١)

السؤال الأول

🖸 ص = -٣

ص = - ١

السؤال الثانى

$$\Upsilon = \frac{7}{1+1} = \frac{7+7}{1+1} = \frac{7}{1+1}$$
 ميل المستقيم

- · النقطة (١، ٣) تحقق المعادلة.
- . ۳ = ۳ + ح *> ح = صفر*
 - ن المعادلة هي ص = ٣ س

السؤال الثالث

$$1 \times Y - (\sqrt{\gamma}) = 1 \times 1$$

$$\frac{1}{Y} = \omega = 0$$

 $\bullet = 0 + \infty$ س – $-\infty$ ميل المستقيم الذي معادلته $-\infty$

$$A_{e}=\frac{-7}{-7}=1$$

م, ميل المستقيم الآخر هو طا ٥٤° = ١

٠٠ المستقيمان متوازيان.

السؤال الرابع

$$\frac{1}{\gamma} = \frac{\gamma}{\gamma} + \frac{\gamma}{\gamma} - \frac{1}{\xi} = \frac{\gamma}{\gamma} \left(\frac{\gamma}{\gamma}\right) + \frac{\gamma}{\gamma} + \frac{\gamma}{\gamma} + \frac{\gamma}{\xi} = \frac{\gamma}{\gamma} + \frac{\gamma}{\xi} = \frac{\gamma}{\gamma} + \frac{\gamma}{\xi} = \frac{\gamma}{\gamma} + \frac{\gamma}{\xi} = \frac{\gamma}{\zeta} + \frac{\gamma}{\zeta} + \frac{\gamma}{\zeta} = \frac{\gamma}{\zeta} + \frac{\gamma}{\zeta} + \frac{\gamma}{\zeta} + \frac{\gamma}{\zeta} = \frac{\gamma}{\zeta} + \frac{$$

$$\frac{\gamma}{m} = \frac{\gamma}{q} = \frac{\gamma + 0}{m + \gamma} = \frac{\langle \gamma \rangle}{q} \text{ and } (-1)$$

$$\frac{7}{m} = \frac{m-0}{m-3}$$
 میل رح هی تابه

السؤال الخامس

(من نظرية فيثاغورث)

حتا س حتا
$$3$$
 – حا س حا 3 = $\frac{\circ}{17} \times \frac{17}{17} - \frac{17}{17} \times \frac{\circ}{17}$

$$= -\frac{\circ}{17} \times \frac{17}{17} \times \frac{\circ}{17} \times \frac{\circ}{$$

$$1 = \frac{\omega}{\psi} + \frac{\omega}{\psi} \cdot (\psi)$$

$$\frac{\omega}{\sqrt{\eta}} = -\frac{1}{\sqrt{\eta}}$$
 بضرب المعادلة × η

$$\Psi + \omega - \frac{\Psi}{Y} - = \omega$$

$$\frac{w_{-}}{\gamma}$$
 = ميل المستقيم

وطول الجزء المقطوع من محور الصادات

= ٣ وحدات طول

إجابــة نمـــوذج (٢)

السؤال الأول

السؤال الثاني

$$\frac{\gamma\gamma}{10} = \frac{\xi}{\gamma} + \frac{\gamma}{0} - \frac{\xi}{0} =$$

$$\frac{\xi}{\circ} \times \frac{\xi}{\circ} + \frac{\psi}{\circ} \times \frac{\psi}{\circ} =$$

$$1 = \frac{70}{70} = \frac{17}{70} + \frac{9}{70} =$$

(ب) نفرض أن إحداثي (س، ص)

$$V = \frac{11 + \omega}{Y}$$
, $0 = \frac{\Lambda + \omega}{Y}$.

· ((7) T)

$$\sqrt{(V-1)} + \sqrt{(V-1)} + \sqrt{(V-1)} + \sqrt{(V-1)}$$

$$=\sqrt{\rho + r r}$$

$$= \sqrt{70V} = 0$$
 وحدة طو ل

ن محيط الدائرة =
$$\pi$$
 س

$$\mathbf{r} = \mathbf{r} \times \mathbf{r}, \mathbf{1} \times \mathbf{r} \times \mathbf{r}$$
 وحدة طول

السؤال الثالث 🤇

$$(1)$$
 الطرف الأيمن = ٥ حتا (1) طا (1)

$$\frac{r}{r} = 1 - \frac{1}{r} \times 0 =$$

- الطرف الأيسر = $\frac{\gamma}{\gamma} \times \frac{1}{\gamma} = \frac{\gamma}{\gamma}$
 - ٠٠ الطرفان متساويان

$$\frac{\overline{\psi} - \overline{\psi} - \overline{\psi}}{\delta} = \frac{\overline{\psi} - \overline{\psi}}{\delta}$$
 ميل المستقيم المار بالنقطتين

$$\sqrt{m} = \sqrt{m} = \sqrt{m}$$

$$\overline{T}V = ^{\circ}$$
 ميل المستقيم الآخر م، $\overline{T}V = ^{\circ}$

٠٠ المستقيمان متوازيان وهو المطلوب.

السؤال الرابع

$$^{\mathsf{Y}}(\mathsf{U},\mathsf{P}) - ^{\mathsf{Y}}(\mathsf{P},\mathsf{P}) = ^{\mathsf{Y}}(\mathsf{P},\mathsf{U})(\mathsf{I})$$

$$(07)^{7} - (01)^{7} =$$

$$\frac{1-0}{1-1} = \frac{1-1}{1-1} \cdot \frac{1}{1-1}$$

$$\frac{\xi}{\gamma} = \frac{\gamma}{4} \cdot \cdot \cdot$$

السؤال الخامس

$$\frac{1}{T} - = \frac{T}{T} = \frac{1-T}{1-0} = \frac{T}{1-0} = \frac{T$$

$$r = \frac{r}{1 - 0} = \frac{\xi - 1}{1 - 0} = \frac{r}{1 - 0}$$
ميل ميل

$$\frac{1}{\gamma} - \frac{7}{\gamma} = \frac{7 - \xi}{7} = \frac{7 - \xi}{7} = \frac{7 - \xi}{7}$$
 میل

$$\Upsilon = \frac{\Psi - }{1 - } = \frac{7 - \Psi}{1 - 1 - } = \frac{\Psi}{5 \ P}$$
 میل

- ٠٠ ميل ٩ عيل حـ ۶ ·
 - <u>5</u> → // → ↑ ∴
- ٠٠ ميل - ح = ميل ١٥
 - 5 P // → :.
- ن الشكل أوحد متوازى أضلاع
 - ن ميل ۲ × ميل ح
 - $1 = \Upsilon \times \frac{1}{\Upsilon} =$
 - <u>~~</u> _ ~ ..
 - ۰۹ = (کرک) عه ۰
 - ن الشكل المحدد مستطيل
- (ب) ٠٠ المستقيم يمر بالنقطتين (٤ ، ٠) ، (٠ ، ٩)
 - $\frac{9-1}{\xi} = \frac{9-1}{2} = 7 \quad ...$
 - \rightarrow المعادلة هي $\omega = -\frac{9}{3}$ س + ح
 - ∵ (٤ ، ٠) ∈ المستقيم.

 - $q + \omega = -\frac{q}{2} \omega + \varphi$ المعادلة هي $\omega = -\frac{q}{2} \omega + \varphi$

(11)

إجابــة نمـــوذج (٣)

السؤال الأول

٣. 1

ξ-

> 1

السؤال الثانى

ن الزاوية الأولى =
$$\mathbb{Y} \times \frac{\mathbf{p}^{\circ}}{\Lambda} = \mathbf{0}$$
 \$ \mathbb{Y}

$$^{\circ}$$
 ۱۵ – $^{\circ}$ الزاوية الثانية = م \times \times \times \times \times

$$\sqrt{(-7-4)^{7}+(-7-3)^{7}}$$

$$=\sqrt{77+77} = \sqrt{70}$$
 وحدة طول

$$A = \sqrt{(-7-1)^7 + (-7-1)^7} = \sqrt{70}$$
 وحدة طول

$$\omega = \sqrt{(7-1)^7+(3+7)^7} = \sqrt{3\cdot1} = 7\sqrt{77}$$
 e - Les de b

$$\Delta$$
 ormule Δ ormule Δ .

تنصف - ح في و

$$(1-, 7) = \left(\frac{7-\xi}{7}, \frac{1+\eta}{7}\right) = \overline{2-\xi}$$

$$\sqrt{(1+\cdot)} + \sqrt{(7-7-)} = \sqrt{5}$$
 طول :

$$=\sqrt{1+70}$$
 وحدة طول.

السؤال الثالث

(1) ميل المستقيم =
$$\frac{-\text{valot}}{\text{valot}} = -\frac{\delta}{\xi}$$

 $\frac{1}{\xi}$ and $\frac{1}{\xi}$ $\frac{1}$

من هندسة الشكل يكون الشكل اه و 5 مستطيل.

السؤال الرابع

$$^{\mathbf{r}}$$
, ۱ فره $^{\mathbf{r}}$ محیط الدائرة $^{\mathbf{r}}$ $^{\mathbf{r}}$

$$au$$
مساحة الدائرة = π ون π = ۲۰ \times ۳, ۱۶

$$\begin{pmatrix}
 \frac{\lambda}{\lambda} = \frac{\lambda}{\lambda} \\
 \frac{\lambda$$

$$\frac{1}{2}$$
 $\frac{1}{2}$ $\frac{1}{2}$

السؤال الخامس

$$=(\sqrt{\gamma})^{\gamma}-(1)^{\gamma}$$

$$=\frac{1}{T}\times \Upsilon + \left(\frac{1}{T}\right) + \left(\frac{\overline{T}}{T}\right) =$$

$$Y = 1 + \frac{1}{\xi} + \frac{\gamma^{\alpha}}{\xi} =$$

$$\left(\frac{\Upsilon-\Upsilon}{\Upsilon},\frac{\Lambda}{\Lambda},\frac{\Lambda}{\Lambda}\right)=5$$

$$\frac{7+\xi}{2} = \frac{7+\xi}{2}$$

$$-\frac{7}{7}=\overline{\frac{7}{7}}=\overline{\frac{7}{7}}=$$
 میل \cdot :

(1)

7

$$0 + m = -7 = 0$$
 معادلة المستقيم $0 = 8$ هي:

إجابــة نمـــوذج (٤)

السؤال الأول

7 0

₩ Y **W**

1

7 2 1

السؤال الثانى

$$\frac{1}{r} = \frac{1}{r\sqrt{r}} \times \Delta \text{ is } (1)$$

$$\sim$$
تا ه = $\frac{\sqrt{\gamma}}{\gamma}$ و ر \leq ه $=$ \sim

$$\frac{-1}{\gamma}$$
 ميل المستقيم المعطى = $\frac{-1}{\gamma}$ ص = $\frac{-1}{\gamma}$ ص = $\frac{-1}{\gamma}$ ص = $\frac{-1}{\gamma}$

$$\frac{V-}{\gamma} = \frac{\gamma}{\gamma} + 0 - = 2 \iff \gamma + \frac{\gamma}{\gamma} = 0 - 3 \iff \gamma = \frac{\gamma}{\gamma} = 0 + \frac{\gamma}{\gamma} = 0 +$$

معادلة المستقيم هي
$$\omega = \frac{1}{\gamma}$$
 س $-\frac{\gamma}{\gamma}$

السؤال الثالث

$$\sqrt{\frac{\sqrt{7}}{1}}$$
 = °۱۰ = حا °۱۰ الطرف الأيمن

$$= \Upsilon \times \frac{\gamma}{\gamma} \times \frac{\sqrt{\gamma}}{\gamma} = \frac{\sqrt{\gamma}}{\gamma}$$

ن الطرفان متساويان.

$$1 -= {}_{\gamma} \times {}_{\gamma} \times \cdots \times {}_{\gamma} \perp {}_{\gamma} \cup (-1)$$

$$1-=1\times\frac{1-0}{r-r}=$$

السؤال الرابع

$$=\frac{1}{\sqrt{7}} \times \frac{1}{\sqrt{7}} + \frac{1}{7} \times \frac{1}{7} - \frac{7}{3} = \alpha \dot{\alpha}_{1}$$

- (ب) نفرض أن حهى منتصف اب
- $(\Upsilon , \circ) = \left(\frac{\Upsilon + 7}{7}, \frac{9 + 1}{7}\right)$ هی نتصف ن
 - نفرض أن ه منتصف اح
- $(\xi \zeta^*) = (\frac{(Y) + \zeta \zeta \zeta + \zeta}{Y})$ منتصف $\frac{1}{Y}$ هی $\frac{1}{Y}$
 - نفرض أن و منتصف سح
- $(\cdot, \lor) = \frac{(-1) + (-1)}{2}$ هی $\frac{7}{2}$ هی $\frac{7}{2}$
 - ٠٠ النقاط هي: (٥، -٢)، (٣، -٤)، (٧، ٠)
 - نقسم أب إلى ٤ أجزاء متساوية

السؤال الخامس

- $\frac{1}{m} = 1 \omega$... $\frac{1}{m} = \frac{1-\omega}{1-\omega} \cdots (1)$
 - $1 + \omega = \frac{1}{w} = \omega$.
 - $\frac{1}{m}$ ميل المستقيم

 $m-m-\frac{1}{m}=0$ معادلة الخط المستقيم هي ص

(ب) (۱ محوری أضلاع متوازی أضلاع

- ن القطران ينصف كل منهما الآخر
- ٠٠ إحداثي نقطة تقاطع القطرين هي
 - $\left(\frac{1-\zeta}{\gamma},\frac{\gamma}{\gamma}\right)=\left(\frac{\gamma}{\gamma},\frac{\gamma}{\gamma}\right)$
 - ۲ نفرض ان إحداثي ۶ هي (س، ص)
 - ·: منتصف اح = منتصف بع
- $\left(\frac{\circ \circ \circ}{\mathsf{Y}}, \frac{\xi + \circ \circ}{\mathsf{Y}}\right) = \left(\frac{\mathsf{Y}}{\mathsf{Y}}, \frac{\mathsf{Y}}{\mathsf{Y}}\right) \cdot \cdot \cdot$
- $\frac{1-}{y} = \frac{0-\omega}{y} \qquad \frac{y}{y} = \frac{\xi+\omega}{y}$

 - ص = ٤

إحداثي نقطة ٤ هي (١-١،٤)

إجابــة نمـــوذج (ه)

السؤال الأول

۹۰ 😭

السؤال الثانى

$$\sqrt[4]{\frac{1}{1}} - \sqrt[4]{1} = \sqrt[4]{\frac{1}{1}} \times \sqrt{\frac{1}{1}} \times \sqrt{\frac{1}} \times \sqrt{\frac{1}{1}} \times \sqrt{\frac{1}} \times \sqrt{\frac{1}{1}} \times \sqrt{\frac{1}} \times \sqrt{\frac{1}{1}} \times \sqrt{\frac{1}} \times \sqrt{\frac{1}} \times \sqrt{\frac{1}} \times \sqrt{\frac{1}} \times \sqrt{\frac{1}}} \times \sqrt{\frac{1}} \times$$

$$\frac{\overline{r}\sqrt{r}}{r} \times \frac{r}{r} = r \Rightarrow \Leftrightarrow \frac{r}{r} = r \Rightarrow \frac{\overline{r}\sqrt{r}}{r}$$

$$= \frac{1}{\sqrt{\gamma}} = \frac{1}{\sqrt{\gamma}} = \frac{1}{\sqrt{\gamma}}$$

()
$$2 = \sqrt{(7)^7 + (3)^7} = 0$$
 ma

$$\frac{\varphi}{\varphi} = (5 \Rightarrow -) \Rightarrow :$$

السؤال الثالث

$$(1)$$
 إحداثي النقطة ح (س، ص) هو $\left(\frac{-7+4}{7}, \frac{7+6}{7}\right) = (-1,3)$

$$1 = \frac{6 - 7}{(7 - 1)} = \frac{6 - 7}{(7 - 1)}$$
ميل الخط المستقيم المعطى

وبالتعويض بإحداثي نقطة المنتصف الواقعة عليه ينتج أن:

(ب) ۲۰۰۰ مثلث متساوى الساقين،

$$A = \sqrt{(7)^{7} - (7)^{7}} = \Lambda$$
سیم

$$1, \xi = \frac{7}{1!} + \frac{\Lambda}{1!} = 2 \text{ is } + 4 \text{ is}$$

$$1 = \frac{77}{111} + \frac{75}{111} = 7(\frac{7}{11}) + 7(\frac{1}{11}) = 27$$

السؤال الرابع

(١) : المثلث قائم الزاوية في ص

$$m-=\frac{o-r}{m-\xi}=\overline{u} \quad \text{ and } \quad \underline{v} \quad \text{ and } \quad \underline{v} \quad \underline{v} \quad .$$

$$\frac{\Upsilon - P}{9 - \frac{\xi - P}{\xi - 0}} = \frac{\overline{\xi - P}}{2} = \frac{\overline{\xi - P}}{2}$$
ميل

$$1 - = \Upsilon - \times \frac{\Upsilon - \beta}{a} : \leftarrow \overline{\xi} \cdot \overline{\omega} \perp \overline{\omega} :$$

(ب) ميل المستقيم المار بالنقطتين

$$1 = \frac{V}{V} = \frac{(Y-)-0}{(Y-)}$$
 هو $(0, \xi), (Y-, Y-)$

وميل المستقيم الذي يصنع زاوية قياسها ٥٤° مع الاتجاه

الموجب لمحور السينات يساوى ظا ٥٤ = ١

· الميلين متساويان ⇒ · المستقيمان متوازيان

السؤال الخامس

ر ۱)
$$\cdot \cdot \sqrt{(-0-7)^7 + (0-1)^7} = 7$$
 بتربیع الطرفین

$$\xi = {}^{\mathsf{Y}}(\mathsf{I} - \mathsf{J}) \iff \mathsf{Y} \cdot = \mathsf{I} \mathsf{I} + {}^{\mathsf{Y}}(\mathsf{I} - \mathsf{J}) :$$

$$1 = \frac{o - \xi}{r - r} = \frac{1}{r}$$
 ميل المستقيم

ويمربالنقطة أ

بالتعويض عن إحداثيات ٩

$$Y = 2 \iff 2 + (Y) = 0$$

ကြောင်္ကျာပိုက်မျှာတွင်ပြည်တွင်ပြည်လျှင်

