Repaso: Teoría de autómatas

Conceptos previos:

- **Alfabeto** Σ : un conjunto de de símbolos finito y no vació.
- ► Cadena de caracteres: una secuencia finita de símbolos seleccionados de algún alfabeto.
- **Cadena vacía** ϵ : cadena que presenta cero apariciones de símbolos.
- ► Longitud de una cadena: el número de posiciones ocupadas por símbolos dentro de la cadena.

Potencias de un alfabeto Σ^k : el conjunto de todas las cadenas de una determinada longitud de dicho alfabeto utilizando una notación exponencia.

$$\Sigma^* = \{\epsilon\} \cup \Sigma^1 \cup \Sigma^2 \cup \cdots$$

- Concatenación de cadenas xy: la cadena formada por una copia de x seguida de una copia de y.
- **Lenguaie** L: todo subconjunto de Σ^*
- ▶ **Notación**: Se suele escribir un lenguaje como: $L = \{w \in \Sigma^* | p(w)\}$ donde p(w) es una proposición abierta.

Considere el alfabeto binario $\Sigma = \{0, 1\}$, son lenguajes:

- ► El conjunto de todas las cadenas que constan de n ceros seguidos de n unos.
- ► El conjunto de cadenas formadas por el mismo número de ceros que de uno.
- ► El conjunto de números binarios cuyo valor es un número primo.

Autómata finito determinista ADF

- ► Es una quíntupla $A = \{Q, \Sigma, \delta, q_0, F\}$, donde
 - Q: conjunto finito de estados.
 - Σ: conjunto finito de símbolos de entrada.
 - \triangleright δ : función de transición.
 - g₀: estado inicial.
 - F: conjunto de estado finales.
- \triangleright El lenguaje L(A) de un autómata finito determinista A es el conjunto:

$$L(A) = \{ w \mid \delta(q_0, w) \in F \}$$

▶ Si un lenguaje es generado por un ADF se dice que este es regular.

Considere el AFD que acepte únicamente todas las cadenas de ceros y unos que contengan la secuencia 01 en cualquier posición de la cadena.

Considere el AFD que genere el lenguaje

 $L = \{w \mid w \text{ tiene una cantidad par de unos y un cantidad par de ceros}\}$

Autómata finito no determinista AFN

- ► Es una quíntupla $A = \{Q, \Sigma, \delta, q_0, F\}$, donde
 - Q: conjunto finito de estados.
 - Σ: conjunto finito de símbolos de entrada.
 - δ : es una función que toma como argumentos un estado de Q y un símbolo de entrada de Σ y devuelve un subconjunto de Q.
 - ▶ q₀: estado inicial.
 - F: conjunto de estado finales.
- ▶ El lenguaje L(A) de un autómata finito no determinista A es el conjunto

$$L(A) = \{ w \mid \delta(q_0, w) \cap F \neq \emptyset \}$$

Considere el AFN que acepte todas las cadenas que terminan en 01.

Propiedades

Proposición

Todo lenguaje que puede describirse mediante algún AFN también puede ser descrito mediante algún AFD.

Proposición

Un lenguaje L es aceptado por algún AFD si y sólo si L es aceptado por algún AFN.

Convierta en AFD el AFN que acepte todas las cadenas que terminan en 01.

Autómatas AFN $-\epsilon$

Es una quíntupla $A=\{Q,\Sigma,\delta,q_0,F\}$, donde δ toma como argumentos a:

- ▶ Un estado de *Q*
- ▶ Un elemento de $\Sigma \cup \{\epsilon\}$

donde ϵ es la cadena vacía.

Considere el AFN- ϵ que acepte los números decimales, considere que estos pueden tener signo(opcional), parte entera, punto decimal y parte decimal.

Operaciones sobre lenguajes

Dados dos lenguajes L y M , se definen las operaciones:

- ▶ Unión: $L \cup M$ es el conjunto de cadenas que pertenecen a L, a M o a ambos.
- Concatenación LM: es el conjunto de cadenas que se puede formar tomando cualquier cadena de L y concatenándola con cualquier cadena de M.
- ▶ Clausura L^* : es el conjunto de cadenas que se pueden formar tomando cualquier número de cadenas de L.

Observación: La precedencia de operadores es: Clausura, concatenación y unión; respectivamente.

Expresiones regulares

- Una expresión regular básica constituida por un solo carácter a, donde cr proviene de un alfabeto Σ de caracteres legales; el metacaracter ϵ ; o el metacarácter \emptyset .
- ▶ Una expresión de la forma r|s, r+s, donde r y s son expresiones regulares. En este caso, $L(r|S) = L(r) \cup L(s)$.
- ▶ Una expresión de la forma rs, donde r y s son expresiones regulares. En este caso, L(rs) = L(r)L(s).
- ▶ Una expresión de la forma r*, donde r es una expresión regular. En este caso, $L(r^*) = L(r)^*$.
- ▶ Una expresión de la forma (r), donde r es una expresión regular. En este caso, L((r)) = L(r). Los paréntesis no cambian el lenguaje, sólo se utilizan para ajustar la precedencia de las operaciones.

- $ightharpoonup 01^* + 10^*$ representa el lenguaje que consta de todas las cadenas que comienzan con un 0 seguido de cualquier número de 1's o que comienzan por un 1 seguido de cualquier número de 0's.
- $(01)^* + (10)^* + 0(10)^* + 1(01)^*, (\epsilon + 1)(01)^*(\epsilon + 0)$ representan el conjunto de cadenas que constan de 0's y 1's alternos.
- $(a|c)^*b(a|c)^*$ representa el conjunto de todas las cadenas en este alfabeto que contengan exactamente una b en el alfabeto $\Sigma = \{a, b, c\}.$

Autómatas finitos y expresiones regulares

- ► Todo lenguaje definido mediante un autómata también se define mediante una expresión regular.
- ► Todo lenguaje definido mediante una expresión regular también puede definirse mediante un autómata finito.

Autómatas finitos y expresiones regulares

Convertir la expresión regular $(0+1)^*1(0+1)$ en un AFN- ϵ .

