Misure di precisione dei rapporti di decadimento del bosone W con l'esperimento CMS

Relatore: Paolo Azzurri Candidato: Giulio Cordova

Motivazione

I risultati di LEP

Misure a LHC

Verifica del principio di Universalità Leptonica

Accoppiamento dei bosoni di gauge con i leptoni indipendentemente dal loro sapore

Verifica di altri aspetti dello SM

Matrice CKM

unitarietà delle

prime due righe elemento |V__|

accoppiamento forte alla scala di massa del W

ATLAS

Distribuzione del parametro d'impatto del muone: misura del rapporto $R\tau/\mu$

CMS

Studio completo dei decadimenti di coppie di top con leptoni da collisioni pp a 13 TeV a 35.9 fb⁻¹ Run 2016

Il rivelatore CMS e la ricostruzione delle particelle con Particle Flow (PF)

Trigger online: singolo elettrone $p_T^e > 27 \text{ GeV}$ singolo muone $p_T^{\mu} > 30 \text{ GeV}$

I τ sono solo quelli che decadono adronicamente (es. $\tau \to \pi^- \nu_{\, \tau}, \ \tau \to \pi^- \pi^0 \nu_{\, \tau}$..)

Categorizzazione offline degli eventi

a seconda del numero di jet, jet b-taggati e leptoni

Getto (Jet):

Candidati PF clusterati in un cono

di raggio $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2} = 0.4$

pseudorapidità: $\eta = -\log(\tan(\theta/2))$ θ angolo polare

b-tagging: Con l'individuazione di un vertice secondario si tagga il getto come

proveniente da quark b

Estrazione delle Branching Fraction

Fit MLE dei dati su Template Monte Carlo

Segnale: ttbar, tW, WW, W + jets

Background: Z + jets e altri multibosoni multijet QCD (dai dati)

Variando le BF β e i Nuisance Parameters θ si minimizza la Negative Log Likelihood

$$L(\boldsymbol{\beta}, \boldsymbol{\theta}) = \sum_{i \in \text{channel } j \in \text{bins}} \left[-y_{ij} \ln f_{ij}(\boldsymbol{\beta}, \boldsymbol{\theta}) + f_{ij}(\boldsymbol{\beta}, \boldsymbol{\theta}) \right] + \sum_{\boldsymbol{\theta} \in \boldsymbol{\theta}} \pi(\boldsymbol{\theta})$$

Risultati e confronto con LEP

$${
m Br}\Big(\ {
m W}
ightarrow e
u_{\ e}\Big)$$
e ${
m Br}\Big(\ {
m W}
ightarrow \mu
u_{\ \mu}\Big)$ più precise rispetto a LEP ${
m Br}\Big(\ {
m W}
ightarrow au
u_{\ au}\Big)$ ha incertezza simile

Le misure di CMS sono statisticamente più precise

Valori numerici e risultati di CMS

Rapporto fra le Branching Fraction

	CMS	LEP	ATLAS
$R_{\mu/e} = \mathcal{B}(W \to \mu \overline{\nu}_{\mu}) / \mathcal{B}(W \to e \overline{\nu}_{e})$	1.009 ± 0.009	0.993 ± 0.019	_
$R_{\tau/e} = \mathcal{B}(W \to \tau \overline{\nu}_{\tau}) / \mathcal{B}(W \to e \overline{\nu}_{e})$			_
$R_{ au/\mu} = \mathcal{B}(W o au \overline{ u}_{ au}) / \mathcal{B}(W o \mu \overline{ u}_{\mu})$	0.985 ± 0.020	1.070 ± 0.026	0.992 ± 0.013
$R_{ au/\ell}$	1.002 ± 0.019		_

Universalità Leptonica

verificata con buona precisione

Con le **BF adroniche** si possono calcolare altre costanti del Modello Standard
$$\frac{\mathcal{B}(W \to h)}{1 - \mathcal{B}(W \to h)} = \left(1 + \frac{\alpha_S(m_W^2)}{\pi}\right) \sum_{\substack{i=(u,c),\\j=(d,s,b)}} |V_{ij}|^2 = 2.060 \pm 0.021$$

Matrice CKM

Costante coupling forte

Elemento |V_{cs}|

CMS

$$|V_{cs}| = 0.969 \pm 0.011$$

D or D_c decays

$$|V_{cs}| = 0.987 \pm 0.011$$

stessa precisione delle misure dirette

Unitarietà CKMII

$$\sum_{ij} |V_{ij}|^2 = 1.989 \pm 0.021$$

ottima precisione

Costante coupling forte

$$\alpha_{S}(m_{W}^{2}) = 0.094 \pm 0.033$$

world average

$$\alpha_{S}(m_{W}^{2}) = 0.1202 \pm 0.0010$$

in linea con misure precedenti ma con

precisione minore

Studi con Monte Carlo ttbar di CMS

per la classificazione di leptoni prompt

Spettro dell'impulso trasverso

fondamentale per la misura di rate di Tau

Distribuzione del parametro di impatto

non usato nell'esperimento CMS

Sommario

spettro dell'impulso p₊

Flettroni e Muoni decaduti da Tau hanno p₋ minore rispetto a quelli decaduti direttamente dal bosone W

parametro d'impatto d invariante relativistico

Flettroni e Muoni da Tau hanno d maggiore a causa della vita media dei Tau

decadimenti del bosone W forniscono un **ottimo test** per alcuni aspetti dello SM, in particolare l'ipotesi **LU**. Con Monte Carlo ho riprodotto template per lo spettro dell'impulso e del parametro d'impatto, non analizzato da CMS.

Grazie a tutti per l'attenzione

CMS Collaboration, "A precision measurement of the W boson decay branching fractions in pp collisions at \s\s=13 TeV", CMS-PAS-SMP-18-011

ATLAS Collaboration, "Test of the universality of **r** and µ lepton couplings in W-boson decays from tt events with the ATLAS detector", (7, 2020).

