```
In [1]: # Data used: the 2019 Index of Economic Freedom (ief) public data from http
        s://www.heritage.org/index/ is used
        # Here, new metrics with new criteria (features) is introduced for arriving at
        a score ranking the world countries
        # Examining this new metrics is the motivation for this project based on the f
        ollowing reasoning:
            # In our days, new metrics are introduced to rank or explain different thi
        ngs and phenomena
                # It is not always clear that the new metrics and its results have any
        logic behind or make any sense
            # So, our goal is:
                # to examine the new metrics feature behavior
                # to determine if these features or part of them play a significant ro
        le in the overall score
                # to determine whether the overall score can be accurately predicted u
        sing these features
        # We use Linear Regression model for our analysis
        # If the answers from our investigation are positive, then we can take into co
        nsideration the new metrics and results
        # If the answers are negative, then we should be discard this new metrics and
         the results presented
```

```
In [2]: # Import libraries

import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
sns.set(style = "whitegrid", font_scale = 1.5)
```

```
In [3]: # Read ief data

data = pd.read_excel('index2019_data.xls')

data.info()
```

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 186 entries, 0 to 185
Data columns (total 34 columns):

#	Column	Non-Null Count	Dtype
0	CountryID	186 non-null	 int64
1	Country Name	186 non-null	object
2	WEBNAME	186 non-null	object
3	Region	186 non-null	object
4	World Rank	180 non-null	float64
5	Region Rank	180 non-null	float64
6	2019 Score	180 non-null	float64
7	Property Rights	185 non-null	float64
8	Judical Effectiveness	185 non-null	float64
9	Government Integrity	185 non-null	float64
10	Tax Burden	180 non-null	float64
11	Gov't Spending	183 non-null	float64
12	Fiscal Health	183 non-null	float64
13	Business Freedom	185 non-null	float64
14	Labor Freedom	184 non-null	float64
15	Monetary Freedom	184 non-null	float64
16	Trade Freedom	182 non-null	float64
17	Investment Freedom	184 non-null	float64
18	Financial Freedom	181 non-null	float64
19	Tariff Rate (%)	182 non-null	float64
20	Income Tax Rate (%)	183 non-null	float64
21	Corporate Tax Rate (%)	183 non-null	float64
22	Tax Burden % of GDP	179 non-null	float64
23	Gov't Expenditure % of GDP	182 non-null	float64
24	Country	186 non-null	object
25	Population (Millions)	186 non-null	object
26	GDP (Billions, PPP)	185 non-null	object
27	GDP Growth Rate (%)	184 non-null	float64
28	5 Year GDP Growth Rate (%)	183 non-null	float64
29	GDP per Capita (PPP)	184 non-null	object
30	Unemployment (%)	181 non-null	object
31	<pre>Inflation (%)</pre>	182 non-null	float64
32	FDI Inflow (Millions)	181 non-null	float64
33	Public Debt (% of GDP)	182 non-null	float64
	es: float64(25), int64(1), ob	oject(8)	
memor	^y usage: 49.5+ KB		

memory usage: 49.5+ KB

```
In [4]: data.head(10)
```

Out[4]:

	CountryID	Country Name	WEBNAME	Region	World Rank	Region Rank	2019 Score	Property Rights	Judical Effectiveness
0	1	Afghanistan	Afghanistan	Asia- Pacific	152.0	39.0	51.5	19.6	29.6
1	2	Albania	Albania	Europe	52.0	27.0	66.5	54.8	30.6
2	3	Algeria	Algeria	Middle East and North Africa	171.0	14.0	46.2	31.6	36.2
3	4	Angola	Angola	Sub- Saharan Africa	156.0	33.0	50.6	35.9	26.6
4	5	Argentina	Argentina	Americas	148.0	26.0	52.2	47.8	44.5
5	6	Armenia	Armenia	Europe	47.0	24.0	67.7	57.2	46.3
6	7	Australia	Australia	Asia- Pacific	5.0	4.0	80.9	79.1	86.5
7	8	Austria	Austria	Europe	31.0	16.0	72.0	84.2	71.3
8	9	Azerbaijan	Azerbaijan	Asia- Pacific	60.0	13.0	65.4	59.1	53.1
9	10	Bahamas	Bahamas	Americas	76.0	15.0	62.9	42.2	46.9

10 rows × 34 columns

```
In [5]: data.columns
```

Out[7]:

	Property Rights	Judical Effectiveness	Government Integrity	Tax Burden	Gov't Spending	Fiscal Health	Business Freedom	Labor Freedom	Monetar Freedoi
0	19.6	29.6	25.2	91.7	80.3	99.3	49.2	60.4	76.
1	54.8	30.6	40.4	86.3	73.9	80.6	69.3	52.7	81.
2	31.6	36.2	28.9	76.4	48.7	18.7	61.6	49.9	74.
3	35.9	26.6	20.5	83.9	80.7	58.2	55.7	58.8	55.
4	47.8	44.5	33.5	69.3	49.5	33.0	56.4	46.9	60.
4									+

In [8]: # The target is '2019 Score' and the rest of the columns are the predictors (f eatures)

In [9]: # 1) EDA

```
In [10]: # Visualize missing data points
# Please, note that this visualization method works only with relatively small
number of rows

plt.figure(figsize = (17, 8))
sns.heatmap(data_ief.isnull(), yticklabels = False, cbar = False, cmap ='viridis')
plt.tick_params(labelsize = 16, rotation = 60)

plt.show()
```


In [11]: # The yellow bars in the plot represent missing data points

> In [12]: # Another way to find if there is missing data in different columns is by call ing .info() on data -->

if the number of non-null entries is smaller than the total number of en tries, then that feature has missing values

data_ief.info()

<class 'pandas.core.frame.DataFrame'> RangeIndex: 186 entries, 0 to 185 Data columns (total 13 columns):

200	coramis (cocar is cora		
#	Column	Non-Null Count	Dtype
0	Property Rights	185 non-null	float64
1	Judical Effectiveness	185 non-null	float64
2	Government Integrity	185 non-null	float64
3	Tax Burden	180 non-null	float64
4	Gov't Spending	183 non-null	float64
5	Fiscal Health	183 non-null	float64
6	Business Freedom	185 non-null	float64
7	Labor Freedom	184 non-null	float64
8	Monetary Freedom	184 non-null	float64
9	Trade Freedom	182 non-null	float64
10	Investment Freedom	184 non-null	float64
11	Financial Freedom	181 non-null	float64
12	2019 Score	180 non-null	float64
_			

dtypes: float64(13) memory usage: 19.0 KB

In [13]: | # Maximum number of missing data is in the target column '2019 Score' - six mi ssing points out of 186

> # All other missing points are in the rows with missing target data points - s ee missing data map above

> # Since we cannot work without a target value dropping the few missing data po ints is justified

In [14]: # Drop nulls data_c = data_ief.dropna().reset_index(drop = True) # Always use .reset_index(drop=True) after dropna() or any time a raw is dropp ed to avoid index mix up between different cols!!! data_c.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 180 entries, 0 to 179
Data columns (total 13 columns):

#	Column	Non-Null Count	Dtype
0	Property Rights	180 non-null	float64
1	Judical Effectiveness	180 non-null	float64
2	Government Integrity	180 non-null	float64
3	Tax Burden	180 non-null	float64
4	Gov't Spending	180 non-null	float64
5	Fiscal Health	180 non-null	float64
6	Business Freedom	180 non-null	float64
7	Labor Freedom	180 non-null	float64
8	Monetary Freedom	180 non-null	float64
9	Trade Freedom	180 non-null	float64
10	Investment Freedom	180 non-null	float64
11	Financial Freedom	180 non-null	float64
12	2019 Score	180 non-null	float64

dtypes: float64(13)
memory usage: 18.4 KB

In [16]: # Excellent - no missing data!

```
In [17]: # Plot correlation matrix to examine for highly-correlated features

plt.figure(figsize = (14, 10))
    sns.heatmap(data_c.corr(), cmap = 'viridis_r')
    plt.tick_params(labelsize = 15)
    plt.show()
```



```
In [19]: # Print columns to have them handy for the code that follows
data_c.columns
```

Out[20]:

	Property Rights	Tax Burden	Gov't Spending	Fiscal Health	Business Freedom	Labor Freedom	•	Trade Freedom	Investment Freedom	2 Sc
0	19.6	91.7	80.3	99.3	49.2	60.4	76.7	66.0	10.0	Ę
1	54.8	86.3	73.9	80.6	69.3	52.7	81.5	87.8	70.0	•
2	31.6	76.4	48.7	18.7	61.6	49.9	74.9	67.4	30.0	2
3	35.9	83.9	80.7	58.2	55.7	58.8	55.4	61.2	30.0	ţ
4	47.8	69.3	49.5	33.0	56.4	46.9	60.2	70.0	55.0	Ę
4										


```
In [23]: # Create pairplot with second half of data

sns.pairplot(data_c.iloc[:, 5:], height = 4, aspect = 1)
plt.tight_layout
plt.show()
```


In [24]: # Similarly here, some data points in 'Monetary Freedom', 'Trade Freedom', and 'Financial Freedom' are 0

It is very unlikely that these are real 0 scores given how far off the 0 points are from the rest of the data points

The conclusion is that these 0s represent missing data and we need to replac e them with something more appropriate

 $\mbox{\it\#}$ since there are no outliers, as a first order approximation we will use the corresponding mean values

Regarding correlation, all plotted features appear correlated with the targe t '2019 Score'

```
In [25]: # Print columns to have them handy for the code that follows
         data c.columns
Out[25]: Index(['Property Rights', 'Tax Burden', 'Gov't Spending', 'Fiscal Health',
                 'Business Freedom', 'Labor Freedom', 'Monetary Freedom',
                'Trade Freedom', 'Investment Freedom', '2019 Score'],
               dtype='object')
In [26]: # Define function for replacing the zero values
         def replaceZeroValues(data):
             for col in ['Property Rights', 'Tax Burden', "Gov't Spending", 'Fiscal Hea
         lth', 'Business Freedom',
                          'Labor Freedom', 'Monetary Freedom', 'Trade Freedom', 'Investm
         ent Freedom ', '2019 Score']:
                 for i in range(len(data)):
                     if data[col].iloc[i] == 0:
                         print(col) # allows us to see which columns have data points =
         0
                         print(i) # and the row index for these data points
                         data[col].iloc[i] = round((data[col].mean()), 1)
                 else:
                     data[col].iloc[i] = data[col].iloc[i]
```

```
In [27]: # Replace data points = 0
         replaceZeroValues(data_c)
         Tax Burden
         Gov't Spending
         42
         Gov't Spending
         Gov't Spending
         Gov't Spending
         110
         Fiscal Health
         38
         Fiscal Health
         50
         Fiscal Health
         53
         Fiscal Health
         61
         Fiscal Health
         87
         Fiscal Health
         94
         Monetary Freedom
         87
         Monetary Freedom
         176
         Trade Freedom
         87
         Investment Freedom
         Investment Freedom
         87
         Investment Freedom
         176
```

In [28]: # Quick check by creating the same pairplots again


```
In [30]: # 'Gov't Spending' has a point which is very close to 0 - let's quickly check
    its value
    min(data_c["Gov't Spending"])
```

Out[30]: 0.9

```
In [31]: # This value is close to 0
# However, since we assumed that the missing data entries were writen as 0s, w
e assume that this is a true value
```

```
In [32]: # Second data half
sns.pairplot(data_c.iloc[:, 5:], height = 4, aspect = 1)
plt.tight_layout
plt.show()
```


In [33]: # Check the data point with a very small value in '2019 Score'
min(data_c.iloc[:, -1])

Out[33]: 5.9

In [34]: # Here too, we assume that this is a true data point

In [35]: # 2) Create a model and use it with the data - in this project we will use Lin ear Regression

```
In [36]: # Separate data into features, X, and target, y
         X = data c.iloc[:, :-1].values # features - all data columns, but last
          y = data c.iloc[:, -1].values # target - last data column
In [37]: | # Split data in train/test subsets
          from sklearn.model selection import train test split
          X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, ran
          dom state = 0)
In [38]: # Create Linear Regession model
          from sklearn.linear_model import LinearRegression
          regressor = LinearRegression()
          # Train model with training set
          regressor.fit(X_train, y_train)
Out[38]: LinearRegression(copy X=True, fit intercept=True, n jobs=None, normalize=Fals
In [39]:
         # Make predictions using test set
          y_pred_1 = regressor.predict(X_test) # indexing '_1' is used to be able to com
          pare to results from another model
In [40]: # Plot coefficients
          coeff_data = pd.DataFrame(regressor.coef_, data_c.iloc[:, :-1].columns, column
          s=['Coefficient'])
          coeff data
Out[40]:
                            Coefficient
              Property Rights
                              0.183020
                 Tax Burden
                              0.031414
              Gov't Spending
                              0.111794
                Fiscal Health
                              0.077224
            Business Freedom
                              0.260371
              Labor Freedom
                              0.139410
            Monetary Freedom
                              0.126166
               Trade Freedom
                              0.058219
```

0.104326

Investment Freedom

In [41]: # Compare predictions to the test target, y test # Create data points for a straight line representing a perfect fit to the tes t data points y_line = np.arange(int(y_test.min()) - 10, int(y_test.max()) + 10) # Set axes limits - adjust if necessary x min = 30x max = 90 $d_x = 10$ y min = 30y max = 90 $d_y = 10$ plt.figure(figsize = (10, 10)) ax = plt.axes() ax.set_xlim(x_min, x_max) ax.set xticks(np.arange(x min, x max + d x, d x)) ax.set_ylim(y_min, y_max) ax.set_yticks(np.arange(y_min, y_max + d_y, d_y)) plt.scatter(y_pred_1, y_test, s = 50, c = 'b', label = 'Test Data vs. Predicti on') plt.plot(y_line, y_line, 'r--', lw = 2, label = 'Perfect Fit') plt.xlabel('Predicted Values', fontsize = 20, labelpad = 15) plt.ylabel('Test Values', fontsize = 20, labelpad = 15) plt.title('Multi-linear Regression Model Prediction', fontsize = 22, c = 'b', pad = 20)plt.legend(fontsize = 15) plt.tick params(labelsize = 15) plt.show()

Multi-linear Regression Model Prediction

- In [42]: # Predictions are very close to the true target values, y_test
 # The straight red dash line represents the ideal case when the prediction poi
 nts are equal to the target values
 # However, in reality we can never expect to have perfect fit
 # In fact, we should be looking for something abnormal/wrong with the data, if
 we get a perfect fit from the model!
- In [43]: # 3) Model optimization
 # Question: can we do (a little) better?
 # Apply Backward Elimination using features p-value

```
In [47]: # Create model from statsmodels.api
import statsmodels.api as sm

regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit() # using Ordinary Least S
quares (OLS)
regressor_OLS.summary()
```

Out[47]:

OLS Regression Results

0.920	R-squared:	у	Dep. Variable:
0.916	Adj. R-squared:	OLS	Model:
217.2	F-statistic:	Least Squares	Method:
2.35e-88	Prob (F-statistic):	Sat, 30 May 2020	Date:
-463.36	Log-Likelihood:	10:30:15	Time:
946.7	AIC:	180	No. Observations:
978.7	BIC:	170	Df Residuals:
		9	Df Model:

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	-6.8642	3.639	-1.886	0.061	-14.048	0.320
x 1	0.1880	0.025	7.428	0.000	0.138	0.238
x2	0.0318	0.024	1.338	0.183	-0.015	0.079
х3	0.1110	0.014	7.870	0.000	0.083	0.139
x4	0.0809	0.009	8.835	0.000	0.063	0.099
х5	0.2540	0.027	9.571	0.000	0.202	0.306
x6	0.1331	0.020	6.551	0.000	0.093	0.173
х7	0.0999	0.040	2.515	0.013	0.021	0.178
x8	0.0552	0.034	1.641	0.103	-0.011	0.121
х9	0.1079	0.017	6.326	0.000	0.074	0.142

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 8586.184

 Skew:
 -3.988
 Prob(JB):
 0.00

Kurtosis: 35.882 **Cond. No.** 3.03e+03

Durbin-Watson:

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

1.785

[2] The condition number is large, 3.03e+03. This might indicate that there are strong multicollinearity or other numerical problems.

Omnibus: 195.499

In [48]: # Examine p-values from table; set significance threshold to 0.05 - everything above is non-significant

The variable with largest p-value here is x2 with column index = 2; so, for the next step we will remove it from X_opt

Out[49]:

OLS Regression Results

Dep. Variable: R-squared: 0.919 У Model: OLS Adj. R-squared: 0.915 Method: Least Squares F-statistic: 243.0 Date: Sat, 30 May 2020 Prob (F-statistic): 3.54e-89 Time: 10:30:15 Log-Likelihood: -464.31 No. Observations: 180 AIC: 946.6 **Df Residuals:** BIC: 171 975.4 **Df Model:** 8 **Covariance Type:** nonrobust

	coef	std err	t	P> t	[0.025	0.975]
const	-5.3714	3.472	-1.547	0.124	-12.225	1.482
x 1	0.1807	0.025	7.294	0.000	0.132	0.230
x2	0.1167	0.013	8.661	0.000	0.090	0.143
х3	0.0800	0.009	8.742	0.000	0.062	0.098
x4	0.2589	0.026	9.831	0.000	0.207	0.311
х5	0.1380	0.020	6.893	0.000	0.098	0.178
х6	0.0985	0.040	2.474	0.014	0.020	0.177
х7	0.0652	0.033	1.984	0.049	0.000	0.130
x8	0.1044	0.017	6.180	0.000	0.071	0.138

 Omnibus:
 185.943
 Durbin-Watson:
 1.804

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 7309.994

 Skew:
 -3.710
 Prob(JB):
 0.00

 Kurtosis:
 33.325
 Cond. No.
 2.67e+03

Warnings:

- [1] Standard Errors assume that the covariance matrix of the errors is correctly specified.
- [2] The condition number is large, 2.67e+03. This might indicate that there are strong multicollinearity or other numerical problems.

```
In [50]: # Results show that the constant term (column of ones) has largest p --> remove it, as well
```

```
In [51]: X_opt = X[:, [1, 3, 4, 5, 6, 7, 8, 9]] # remove colum with index = 0 and repea
t

regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit()
regressor_OLS.summary()
```

Out[51]: OLS Regression Results

Dep. Variable: R-squared (uncentered): 0.997 У OLS Adj. R-squared (uncentered): Model: 0.997 Method: 7927. Least Squares F-statistic: Date: Sat, 30 May 2020 Prob (F-statistic): 1.65e-216 Time: 10:30:15 Log-Likelihood: -465.56 No. Observations: 180 AIC: 947.1

Df Residuals: 172 **BIC:** 972.7

Df Model: 8

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
x1	0.1905	0.024	7.922	0.000	0.143	0.238
x2	0.1085	0.012	8.721	0.000	0.084	0.133
х3	0.0807	0.009	8.791	0.000	0.063	0.099
х4	0.2543	0.026	9.679	0.000	0.202	0.306
х5	0.1345	0.020	6.733	0.000	0.095	0.174
x6	0.0535	0.027	1.961	0.052	-0.000	0.107
x7	0.0411	0.029	1.415	0.159	-0.016	0.098
x8	0.1107	0.016	6.721	0.000	0.078	0.143

 Omnibus:
 188.606
 Durbin-Watson:
 1.782

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 7599.142

 Skew:
 -3.790
 Prob(JB):
 0.00

 Kurtosis:
 33.916
 Cond. No.
 27.6

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

```
In [52]: # The feature x7 with column index = 8 in X has largest p --> remove it and re
    peat

X_opt = X[:, [1, 3, 4, 5, 6, 7, 9]]
    regressor_OLS = sm.OLS(endog = y, exog = X_opt).fit()
    regressor_OLS.summary()
```

Out[52]:

OLS Regression Results

Dep. Variable: R-squared (uncentered): 0.997 У Model: OLS Adj. R-squared (uncentered): 0.997 Method: Least Squares F-statistic: 9007. **Date:** Sat, 30 May 2020 Prob (F-statistic): 4.52e-218 10:30:15 Log-Likelihood: Time: -466.60 No. Observations: AIC: 947.2 180 **Df Residuals:** 173 BIC: 969.5

Df Model: 7

Covariance Type: nonrobust

	coef	std err	t	P> t	[0.025	0.975]
x1	0.1973	0.024	8.346	0.000	0.151	0.244
x2	0.1109	0.012	8.973	0.000	0.087	0.135
х3	0.0817	0.009	8.896	0.000	0.064	0.100
х4	0.2623	0.026	10.190	0.000	0.211	0.313
х5	0.1361	0.020	6.805	0.000	0.097	0.176
x6	0.0757	0.022	3.379	0.001	0.031	0.120
x7	0.1137	0.016	6.946	0.000	0.081	0.146

 Omnibus:
 175.293
 Durbin-Watson:
 1.733

 Prob(Omnibus):
 0.000
 Jarque-Bera (JB):
 5875.642

 Skew:
 -3.432
 Prob(JB):
 0.00

 Kurtosis:
 30.135
 Cond. No.
 22.7

Warnings:

[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.

In [53]: # All remaining features meet the significance threshold! # More importantly, even though we have eliminated a feature Adjusted R2 remai n as high as in the previous step # Thus, a multiple linear regression model using the last selected features wi ll be most accurate

In [54]: # Due to the addition of ones, features with indexes from X correspond to feat
 ures from data_c as follows
 # X[:, [1, 3, 4, 5, 6, 7, 9]] --> data_c[:, [0, 2, 3, 4, 5, 6, 8]]
 data_c.iloc[:, [0, 2, 3, 4, 5, 6, 8]].head(5)

Out[54]:

	Property Rights	Gov't Spending	Fiscal Health	Business Freedom	Labor Freedom	Monetary Freedom	Investment Freedom
0	19.6	80.3	99.3	49.2	60.4	76.7	10.0
1	54.8	73.9	80.6	69.3	52.7	81.5	70.0
2	31.6	48.7	18.7	61.6	49.9	74.9	30.0
3	35.9	80.7	58.2	55.7	58.8	55.4	30.0
4	47.8	49.5	33.0	56.4	46.9	60.2	55.0

In [55]: # The above seven features, out of 12 total initial features, play significant
 role in determining the overall score!
Note:

it is surprising that 'Gov't Spending' made the cut since it did not app ear to be strongly correlated with the target

In [56]: # Use these features with the linear model and see if model predictions will i mprove

X_r = data_c.iloc[:, [0, 2, 3, 4, 5, 6, 8]].values # new reduced number of fea tures

X_train, X_test, y_train, y_test = train_test_split(X_r, y, test_size = 0.2, r
andom_state = 0) # replace X with the new X_r

In [57]: # Train and predict

regressor.fit(X_train, y_train)
y_pred_2 = regressor.predict(X_test) # change the index to "_2" to be able to
compare with initial predictions "_1"

```
In [58]: # Compare predictions from Initial and Optimized model to test points, y test
         # Create data points for a straight line representing a perfect fit to the y t
         est data points
         y line = np.arange(int(y test.min()) - 10, int(y test.max()) + 10)
         # set axes limits - adjust if necessary
         x min = 40
         x max = 80
         d_x = 10
         y min = 40
         y max = 80
         d_y = 10
         fig, axes = plt.subplots(1, 2, sharey=True, figsize=(16,8))
         # Initial Model
         axes[0].scatter(y_pred_1, y_test, s = 50, c = b')
         axes[0].plot(v line, v line, 'r--', lw = 2)
         axes[0].set title('Initial Regression Model Prediction', fontsize = 23, c =
         'b', pad = 20)
         axes[0].set xlabel('Predicted Points', fontsize = 20, labelpad = 15)
         axes[0].set_ylabel('Test Points', fontsize = 20, labelpad = 15)
         axes[0].set xlim(x min, x max)
         axes[0].set xticks(np.arange(x min, x max + d x, d x))
         axes[0].set ylim(y min, y max)
         axes[0].set_yticks(np.arange(y_min, y_max + d_y, d_y))
         axes[0].tick params(labelsize = 14)
         # Optimized Model
         axes[1].scatter(y_pred_2, y_test, s = 50, c = 'b')
         axes[1].plot(y_line, y_line, 'r--', lw = 2)
         axes[1].set_title('Optimized Regression Model Prediction', fontsize = 23, c =
         'b', pad = 20)
         axes[1].set xlabel('Predicted Points', fontsize = 20, labelpad = 15)
         axes[1].set xlim(x min, x max)
         axes[1].set xticks(np.arange(x min, x max + d x, d x))
         axes[1].set ylim(y min, y max)
         axes[1].set_yticks(np.arange(y_min, y_max + d_y, d_y))
         axes[1].tick params(labelsize = 14)
         plt.show()
```


Optimized Regression Model Prediction

In [59]: # It is difficult to visually discern significant differences between the two scatter plots

> # That's why we will plot the distributions of the residuals for each model # word of caution: the number of observations here is small - not a good c ase for comparison with normal distribution

In [60]: # Get the residuals

from Initial regression model

 $res_1 = y_test - y_pred_1$

from Optimized regression model

 $res_2 = y_test - y_pred_2$

```
In [61]: # Plot the histograms of the residuals --> use small number of bins because of
         the limited number of data points
         # Set axes limits - adjust if necessary
         x min = -5
         x max = +5
         d x = 1
         y \min = 0
         y_max = 10
         d_y = 1
         fig, axes = plt.subplots(1, 2, sharey=True, figsize=(16,8))
         # Initial Model
         axes[0].hist(res_1, bins = 7, color = 'b')
         axes[0].set title('Histogram of Residuals from Initial Model', fontsize = 23,
         c = 'b', pad = 20)
         axes[0].set_xlabel('Residuals', fontsize = 20, labelpad = 15)
         axes[0].set ylabel('Count', fontsize = 20, labelpad = 15)
         axes[0].set xlim(x min, x max)
         axes[0].set_xticks(np.arange(x_min, x_max + d_x, d_x))
         axes[0].set ylim(y min, y max)
         axes[0].set_yticks(np.arange(y_min, y_max + d_y, d_y))
         axes[0].tick_params(labelsize = 14)
         # Optimized Model
         axes[1].hist(res 2, bins = 7, color = 'b')
         axes[1].set title('Histogram of Residuals from Optimized Model', fontsize = 23
         , c = b', pad = 20)
         axes[1].set xlabel('Residuals', fontsize = 20, labelpad = 15)
         axes[1].set xlim(x min, x max)
         axes[1].set_xticks(np.arange(x_min, x_max + d_x, d_x))
         axes[1].set_ylim(y_min, y_max)
         axes[1].set_yticks(np.arange(y_min, y_max + d_y, d_y))
         axes[1].tick params(labelsize = 14)
         plt.show()
```


In [62]: # Because of the small number of of observations the histograms are not very s
mooth
It appears that both models slightly underestimate the target since there ar
e more positive than negative residuals

In [63]: # Print the means and the standard deviations (std) of the residuals
 print("Mean of Residuals_1:", round(res_1.mean(),2))
 print("std of Residuals_1:", round(res_1.std(),2))
 print("\n")
 print("Mean of Residuals_2:", round(res_2.mean(),2))
 print("std of Residuals_2:", round(res_2.std(),2))

Mean of Residuals_1: 0.51
std of Residuals_1: 1.73

Mean of Residuals_2: 0.47
std of Residuals_2: 1.76

In [64]: # The mean of the residuals of the Optimized model is slightly smaller than th
 at of the Initial model
 # Taking into account the improved Adjusted R2 score as well, the optimized mo
 del should be selected as the final model
 # Note: for the magnitude of the target values, the mean and the std of the re
 siduals are extremely small --> very accurate model

In [65]: # This concludes our investigation of the new metrics introduced # We find that:

- # 1) the new features do not show abnormal behavior
- # 2) most of these features play significant role in determining the overa L ranking score
- # 3) from these feature using Multiple Linear Regression model one can pre dict with high accuracy the ranking score
- # Thus, we can conclude that the new metrics introduced and the ranking based on it are sound