2.1 Sintaxe do Cálculo de Predicados

- 1. Escreva as seguintes afirmações como fórmulas para um tipo de linguagem apropriado.
 - a) Todo aquele que é persistente aprende Lógica.
 - b) Quem quer vai, quem não quer manda.
 - c) Nem todos os pássaros voam.
 - d) Se toda a gente consegue, também o João consegue.
 - e) Para todo o número natural que é maior do que 6, o seu dobro é maior do que 12.
 - f) Quaisquer dois conjuntos que têm os mesmos elementos são iguais.
 - g) Existe um inteiro positivo menor do que qualquer inteiro positivo.
 - h) Todo o inteiro positivo é menor do que algum inteiro positivo.
 - i) Não há barbeiro que barbeie precisamente aqueles homens que não se barbeiam a si próprios.
- 2. Seja $L=(\{0,f,g\},\{R\},\mathcal{N})$ o tipo de linguagem tal que $\mathcal{N}(0)=0,\,\mathcal{N}(f)=1,\,\mathcal{N}(g)=2,\,\mathcal{N}(R)=2.$
 - a) Explicite a definição indutiva do conjunto dos termos de tipo L.
 - **b)** Indique quais das seguintes sequências de símbolos constituem termos de tipo *L*:
 - i) 0.
- **ii)** f(0).
- **iii)** f(1).

 $R(x_0, x_1).$

vi)

- iv) $g(f(x_1,x_0),x_0)$.
- v) $g(x_0, f(x_1))$.
- c) Calcule o conjunto das variáveis de cada um dos seguintes termos:
 - **i**) 0.
- **ii)** $g(x_1, f(x_1)).$
- **iii**) $g(x_1, x_2)$.
- iv) $g(x_1, g(x_2, x_3))$.
- **d)** Para cada um dos termos t da alínea anterior, calcule subt(t).
- e) Para cada um dos termos t da alínea c), calcule $t[g(x_0,0)/x_1]$.
- 3. Seja *L* o tipo de linguagem definido no exercício anterior.
 - a) Enuncie o teorema de indução estrutural para o conjunto \mathcal{T}_L .
 - **b)** Defina, por recursão estrutural, funções $r, h: \mathcal{T}_L \to \mathbb{N}_0$ que a cada termo t fazem corresponder o número de ocorrências de variáveis em t e o número de ocorrências de símbolos de função em t, respetivamente.
 - c) Dê exemplos de termos t_1 e t_2 de tipo L tais que #VAR $(t_1) = r(t_1)$ e #VAR $(t_2) < r(t_2)$.
 - **d)** Demonstre que, para todo o termo $t \in \mathcal{T}_L$, #VAR $(t) \leq r(t)$.
- 4. Seja L um tipo de linguagem. Mostre que: para todo o termo $t \in \mathcal{T}_L$, $VAR(t) \subseteq subt(t)$.

- 5. Seja $L = (\{0, -\}, \{P, <\}, \mathcal{N})$ em que $\mathcal{N}(0) = 0$, $\mathcal{N}(P) = 1$ e $\mathcal{N}(-) = \mathcal{N}(<) = 2$.
 - a) Dê exemplos de termos de tipo L. Justifique.
 - **b)** Dê exemplos de fórmulas atómicas de tipo L.
 - c) Justifique que cada uma das seguintes palavras é uma fórmula de tipo L.
 - i) $x_2 0 < x_1$.
 - **ii)** $\exists x_0 \forall x_1 (x_1 x_0 < 0).$
 - **iii)** $\forall x_2 (\exists x_0 (x_0 < x_1) \rightarrow \exists x_1 (x_2 < x_1 x_0)) \land P(x_2).$
 - iv) $\forall x_0(x_0 < x_1) \lor \exists x_1(x_1 < x_0).$
 - d) Para cada fórmula da alínea anterior, calcule o conjunto das suas subfórmulas.
 - **e)** Calcule os conjuntos de variáveis livres e de variáveis ligadas de cada uma das fórmulas da alínea c).
 - **f)** A proposição "Para todo $\varphi \in \mathcal{F}_L$, LIV $(\varphi) \cap \text{LIG}(\varphi) = \emptyset$ " é verdadeira?
- 6. Para cada uma das fórmulas φ da alínea c) do exercício anterior, calcule $\varphi[x_2 x_0/x_1]$.
- 7. Considere o tipo de linguagem L do exercício 5. Para cada uma das fórmulas φ do exercício 5.c), indique quais das seguintes proposições são verdadeiras.
 - a) A variável x_1 é substituível pelo termo termo 0 em φ .
 - **b)** A variável x_1 é substituível pelo termo x_2 em φ .
 - c) A variável x_2 é substituível por qualquer termo de tipo L em φ .
 - **d)** Qualquer variável é substituível pelo termo $x_1 x_3$ em φ .
- 8. Seja *L* um tipo de linguagem.
 - a) Defina, por recursão estrutural, a função SUBFA: $\mathcal{F}_L \to \mathcal{P}(\mathcal{F}_L)$ que a cada fórmula φ faz corresponder o conjunto das subfórmulas atómicas de φ .
 - **b)** Sejam φ uma fórmula de tipo L e x uma variável. Demonstre que: se $x \notin LIV(\psi)$ para todo $\psi \in SUBFA(\varphi)$, então $x \notin LIV(\varphi)$.