

Conceitos Gerais Sobre Energia e Transferência de Calor: Exercicios 1

Fenomenos de Transporte

Arthur Cadore Matuella Barcella

24 de Março de 2025

Engenharia de Telecomunicações - IFSC-SJ

Sumário

1.	Introdução:	. 3
	Questões:	
	2.1. Questão 1:	
	2.2. Questão 2:	
	2.3. Questão 3:	
3.	Referencias:	

1. Introdução:

O objetivo deste documento é estudar na apostila a introdução e até o item 1.2 até 1.2.2 (pp. 10 a 16) e em seguida assistir o vídeo explicativo, com base nisto, resolva os exercícios apresentados abaixo.

2. Questões:

2.1. Questão 1:

Uma taxa de transferência de calor de 3 kW atravessa uma seção de um material de isolamento, com uma área transversal de 10 m² e espessura de 2,5 cm. Se a superfície mais quente está a uma temperatura de 415°C e a condutividade térmica do material isolante é de 0,2 W/(m.K), qual é a temperatura da superfície mais fria?

2.2. Questão 2:

As temperaturas interna e externa em um vidro de janela, de 5 mm de espessura, são 24°C e 38°C respectivamente. Qual a taxa de transferência de calor através de uma janela com 1 m de altura por 3 m de largura? A condutividade térmica do vidro é de 1,4 W/m.K

2.3. Questão 3:

Uma câmara frigorífica possui 8m de comprimento por 4m de largura e 3m de altura. O fundo da câmara é apoiado sobre o solo e pode ser assumido como perfeitamente isolado. Qual é a espessura mínima de espuma de uretano (k = 0.026 W/m.K) que deve ser aplicada às superfícies do topo e dos lados do compartimento para garantir um ganho de calor menor que 500 W, quando as temperaturas interna e externa são respectivamente -10°C e 35°C ?

3. Referencias:

• Fundamentos de Fenômenos de Transporte de Celso P. Livi, capítulo 8, pp 165-168