Miscellaneous Notes

D. Zack Garza

November 29, 2019

Contents

1 Some Matrix Examples

1

- Canonical forms:
 - Rational Canonical Form: Invariant Factor Decomposition of T
 - Jordan Canonical Form: Elementary Divisor Decomposition of T
- For characteristic polynomials $p(x) = \det(A x1) = \det(SNF(A x1))$.
- Writing

char
$$_A(x) = \prod_i (x - \lambda_i)^{a_i}$$

 $\min_A(x) = \prod_i (x - \lambda_i)^{b_i}$

then $b_i \leq a_i$, and

- b_i tells you the size of the largest Jordan block associated to λ_i ,
- a_i is the sum of sizes of all Jordan blocks associated to λ_i
- dim E_{λ_i} is the number of Jordan blocks associated to λ_i
- Given an invariant factor decomposition

$$V = \bigoplus_{j=1}^{n} \frac{k[x]}{(f_j)}$$

then

- $-f_n(x) = \min_T(x)$ (i.e., the minimal polynomial is the invariant factor of highest degree)
- $-\prod_{j=1}^{n} f_j(x) = \operatorname{char} T(x).$

1 Some Matrix Examples

1.

$$M = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \sim \left(\begin{array}{c|c} -1\sqrt{-1} & 0 \\ \hline 0 & 1\sqrt{-1} \end{array} \right).$$

- Not diagonalizable over $\mathbb R,$ diagonalizable over $\mathbb C$
- No eigenvalues in \mathbb{R} , distinct eigenvalues over \mathbb{C} $\min_M(x) = \operatorname{char}_M(x) = x^2 + 1$

2.

$$M = \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right) \sim \left(\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right).$$

- Not diagonalizable over $\mathbb C$
- Eigenvalues [1,1] (repeated, multiplicity 2)
 min_M(x) = char _M(x) = x² 2x + 1