- I. Structure de l'eau et solutions aqueuses:
 - b) Composition / propriétés

Composition de l'eau:

Propriété de l'eau

Molécule polaire Solvant

$$KMnO_4 \longrightarrow K^+ + MnO_4^-$$

• • • •

- Rapport Stœchiométrique et bilan de matière :

A l'équilibre:

$$\frac{n_{a'}}{w} = \frac{n_{b'}}{x} = \frac{n_c}{y} = \frac{n_d}{z}$$

Unités classiques de travail :

- Concentrations :

$$[C] = \frac{m}{V_{eau}} \longrightarrow g/L \text{ ou g.L}^{-1}$$

$$[C] = \frac{n}{V_{eau}} \longrightarrow \text{mol/L ou mol.L}^{-1}$$

$$[C] = \frac{m}{m_{eau}} \longrightarrow \text{Pas d'unité ou \%}$$

C_B: Concentration (mol/L)

V_B: volume d'eau (L)

CHIMIE DES SOLUTIONS

Chapitre I: Réactions Acides-Bases

2012-2013
M. GUERIN
mguerin@isara.fr
Bureau B330

- ١. Pour commencer du bon pied :
 - Quelques rappels

<u>acide</u> <u>base</u> <u>Polyacide</u> **Polybase**

c) Le pHmètre:

- II. Réaction acido-basiques, les grands principes :
 - c) Diagramme de prédominance

- IV. Exemples d'utilisations des réactions acido-basiques :
 - a) Agronomie, réaction acide chlorhydrique sur sol calcaire :

Test de terrain normé réalisé avec une solution d'HCl concentrée (30%) diluée au 1/3

Code 0	Pas de réaction Aucun dégagement gazeux	Pas de calcaire Chaulage proposé
Code 2	Réaction moyenne Dégagement gazeux avec formation de bulles (1 rangée)	Sol moyennement calcaire Entretien, maintient
Code 4	Forte réaction Fort dégagement gazeux avec formation de bulles (2 à 3 rangée)	Sol fortement calcaire Maladies possibles

b) Aquaculture, cas du couple NH₄+/NH₃:

c) Microbiologie, activité microbienne :

d) Dosages RODIER titrage acido-basique:

i) Titrage d'un acide ou d'une base ; définition et méthodes :

Doser/Titrer une solution d'acide = Déterminer la concentration apportée d'acide dans cette solution.

Volume précis d'une solution d'acide de concentration inconnue

Solution de base de concentration connue

Déterminer l'équivalence

La réaction doit être unique, quantitative et rapide. Il faut pouvoir repérer l'équivalence.

√ synthèse

iv) Titrage d'un acide fort suivi conductimétrique:

CHIMIE DES SOLUTIONS

Chapitre II: Réactions de complexation.

2012-2013
M. GUERIN
mguerin@isara.fr
Bureau B330

Electronégativité

Liaison dative

Liaison Covalente de coordination

c) Diagramme de prédominance

i) En fonction de pL=-log[L]

ii) En fonction de pM=-log[M]

c) Dosage RODIER titrage des ions calcium par complexométrie (EDTA) :

ii) Détermination de l'équivalence

1^{er} phase: <u>Préparation de l'échantillon</u>

2^{eme} phase: <u>Titrage</u>

$$[CaInd]^{-} + Y^{4-} + NH_4^{+} = HInd^{2-} + [CaY]^{2+} + NH_3$$

Rose

bleu

CHIMIE DES SOLUTIONS

Chapitre III: Réactions de précipitation.

2012-2013
M. GUERIN
mguerin@isara.fr
Bureau B330

II. Précipitation Produit de solubilité :

a) Solubilité

b) Solution saturée ; produit de solubilité

d) Condition de précipitation

e) Effet d'ion commun

f) Précipitations compétitives

Précipité blanc de PbCl₂

Précipité jaune de Pbl₂

Exp. c:

Solution de l'exp a PbCl₂

Pbl₂

III. Dissolution d'un précipité par formation de complexe :

IV. pH et précipitation :

a) Dissolution d'un précipité par action d'un acide

V. La précipitation dans l'environnement :

a) Géologie, formation des évaporites

Chlorure (Cl ⁻)	0,54 mol/L	Salinité moyenne
Sodium (Na+)	0,47 mol/L	35 g/L
Magnésium (Mg ²⁺)	0,05 mol/L	Forte salinité
Potassium (K+)	0,01 mol/L	280 g/L

b) Préparation du dosage du lactose dans le lait

Composition du lait

Minéraux6%Eau
87%Lactose5%87%Lipide4%Matière sèche
13%

Principe du dosage

Filtrat

Lait

précipitées

c) Dosage RODIER titrage par précipitation :

i) Détermination de l'équivalence par conductimétrie

CHIMIE DES SOLUTIONS

Chapitre IV: Réactions d'oxydoréduction

2012-2013
M. GUERIN
mguerin@isara.fr
Bureau B330

b) Quelques rappels

Re = $Ox^+ + e^-$

Couple oxydant/réducteur Ox+/Re

Convention

c) Le potentiomètre

c) Réaction d'oxydoréduction par transfert direct d'électrons

i) Oxydation du zinc par les ions cuivre (II)

$$Cu^{2+} + 2.e^{-} = Cu$$

$$Zn = Zn^{2+} + 2.e^{-}$$

$$Cu^{2+} + Zn = Cu + Zn^{2+}$$

III. Piles électrochimiques :

a) La pile Daniell : étude expérimentale :

ANODE

$$Cu^{2+} + Zn_{(s)} = Cu_{(s)} + Zn^{2+}$$

CATHODE

c) Potentiel d'électrode

Gauche: Droite:

Demi-cellule de référence Demi-cellule réalisée avec le couple Ox/Red à étudier

Le potentiel d'électrode peut être positif ou négatif

VII. Facteurs influençant les réactions d'oxydoréduction :

a) Agronomie, Sol hydroxyde/oxyde ferrique hydroxyde/oxyde ferreux :

b) Microbiologie, mécanismes simplifiés de la respiration cellulaire

Première phase (milieu intracellulaire en dehors et dans la mitochondrie):

Seconde phase (respiration dans membrane interne de mitochondrie):

c) Microbiologie, la dénitrification

Cf. respiration cellulaire

$$NO_2^- \longrightarrow NO \longrightarrow N_2O \nearrow N_2$$

Equation bilan de la réaction totale $2NO_3^- + 12H^+ + 10e^- = N_{2(g)} + 6H_2O$

Rarement atteint car traces d'O2 possibles

d) Dosage RODIER titrage d'oxydoréduction

i) Etude de la réaction de titrage

Rappel du rappel:

Doser/Titrer une solution = Déterminer la concentration de l'espèce recherchée dans cette solution.

ii) Suivi potentiométrique de la réaction de titrage

iv) Utilisation d'indicateur coloré redox

