Numerical / Experimental Comparison of a Scaled Model Horizontal Axis Marine Hydrokinetic (MHK) Turbine

Teymour Javaherchi, Nick Stelzenmuller Joseph Seydel and Alberto Aliseda

Northwest National Marine Renewable Energy Center University of Washington

APS - DFD 2013

Motivations & Goals

- Need for an experimental database to benchmark numerical methodologies to model MHK turbines.
- Understand the trade offs in numerical models to simulate the flow field of MHK turbines.
- Develop a validated numerical methodology to support design of full-scale horizontal axis MHK turbines.

Numerical Methodology

- Sliding Mesh Model
 Rotating Reference Model
 - 3. Blade Element Theory
 - 4. Actuator Disk Theory

Rotating Reference Frame Model Computational Domain (Zoomed-in)

Numerical vs. Experimental Results Efficiency (C_p) – Tip Speed Ratio (TSR) Curves

Limited Streamlines + Wall Shear Stress along the Blade

Limited Streamlines + Wall Shear Stress along the Blade

Numerical vs. Experimental Results Efficiency (C_p) – Tip Speed Ratio (TSR) Curves

Dynamic Fluctuations in Experiment at Low TSRs

Numerical vs. Experimental Results Efficiency (C_p) – Tip Speed Ratio (TSR) Curves

Numerical vs. Experimental Results Reynolds Number Effect

Experimental

Numerical

Numerical vs. Experimental Results Sliding Mesh Model – TSR=8.17

	Efficiency [-]
Experiment	0.38
Sliding Mesh Model	0.38
Rotating Reference Model	0.37

Numerical Results – Velocity Field (TSR=7.16, Re=100,000)

Numerical vs. Experimental Results Velocity Deficit Profiles

Experimental

Numerical

Numerical vs. Experimental Results Velocity Deficit Profiles

Numerical vs. Experimental Results BET - SRF - Experiment

Summary & Conclusions

- 3D RANS numerical models are validated to characterize the performance of a scaled model MHK turbine.
- The error between the measured and predicted power values was between 1% to 25%.
- 3D RANS predicted better results in flow fields with high Reynolds number and not existing or small flow separation.
- Experiment shows that the wake of nacelle enhances velocity deficit recovery, but the current 3D RANS model is limited to capture this physical phenomenon.

