The average age of a group of people is 20 years. What proportion are more than 80 years old?

The average age of a group of people is 20 years. What proportion are more than 80 years old?

Not a lot.

The average age of a group of people is 20 years. What proportion are more than 80 years old?

Not a lot.

But we don't have enough information to say exactly what proportion,

The average age of a group of people is 20 years. What proportion are more than 80 years old?

Not a lot.

But we don't have enough information to say exactly what proportion, or even approximately what proportion.

The average age of a group of people is 20 years. What proportion are more than 80 years old?

Not a lot.

But we don't have enough information to say exactly what proportion, or even approximately what proportion.

However ...

The average age of a group of people is 20 years. What proportion are more than 80 years old?

Not a lot.

But we don't have enough information to say exactly what proportion, or even approximately what proportion.

However ...

Andrey Markov (1856-1922)

The average age of a group of people is 20 years. What proportion are more than 80 years old?

Not a lot.

But we don't have enough information to say exactly what proportion, or even approximately what proportion.

However ...

Andrey Markov (1856-1922) came up with a simple bound.

A tail bound

A tail bound

Let k be any positive number.

Let k be any positive number.

Markov's inequality

If a list has only non-negative entries, then the proportion of entries that are at least as large as k times the average is at most 1/k.

Let k be any positive number.

Markov's inequality

If a list has only non-negative entries, then the proportion of entries that are at least as large as k times the average is at most 1/k.

at least as large as means the same thing as greater than or equal to

Let k be any positive number.

Markov's inequality

If a list has only non-negative entries, then the proportion of entries that are at least as large as k times the average is at most 1/k.

at least as large as means the same thing as greater than or equal to Math symbol: \geq

Let k be any positive number.

Markov's inequality

If a list has only non-negative entries, then the proportion of entries that are at least as large as k times the average is at most 1/k.

at least as large as means the same thing as greater than or equal to Math symbol: \geq

at most means the same thing as no more than

Let k be any positive number.

Markov's inequality

If a list has only non-negative entries, then the proportion of entries that are at least as large as k times the average is at most 1/k.

at least as large as means the same thing as greater than or equal to Math symbol: \geq

at most means the same thing as no more than

Example: In any list of non-negative numbers,

Let k be any positive number.

Markov's inequality

If a list has only non-negative entries, then the proportion of entries that are at least as large as k times the average is at most 1/k.

at least as large as means the same thing as greater than or equal to Math symbol: \geq

at most means the same thing as no more than

Example: In any list of non-negative numbers, the proportion of entries that are at least as large as 4 times the average

Let k be any positive number.

Markov's inequality

If a list has only non-negative entries, then the proportion of entries that are at least as large as k times the average is at most 1/k.

at least as large as means the same thing as greater than or equal to Math symbol: \geq

at most means the same thing as no more than

Example: In any list of non-negative numbers, the proportion of entries that are at least as large as 4 times the average is **at most 1/4**; in other words, **no more than 25%**.

In any non-negative list, the proportion of entries that are at least as large as 10 times the average

In any non-negative list, the proportion of entries that are at least as large as 10 times the average can be no more than 1/10.

In any non-negative list, the proportion of entries that are at least as large as 10 times the average can be no more than 1/10.

This is a **bound**, not an exact answer, nor an approximation, nor an estimate.

In any non-negative list, the proportion of entries that are at least as large as 10 times the average can be no more than 1/10.

This is a **bound**, not an exact answer, nor an approximation, nor an estimate.

The proportion could be exactly 1/10;

In any non-negative list, the proportion of entries that are at least as large as 10 times the average can be no more than 1/10.

This is a **bound**, not an exact answer, nor an approximation, nor an estimate.

The proportion could be exactly 1/10; it could be quite a bit less than 1/10;

In any non-negative list, the proportion of entries that are at least as large as 10 times the average can be no more than 1/10.

This is a **bound**, not an exact answer, nor an approximation, nor an estimate.

The proportion could be exactly 1/10; it could be quite a bit less than 1/10; it could even be 0;

In any non-negative list, the proportion of entries that are at least as large as 10 times the average can be no more than 1/10.

This is a **bound**, not an exact answer, nor an approximation, nor an estimate.

The proportion could be exactly 1/10; it could be quite a bit less than 1/10; it could even be 0; but it cannot be more than 1/10.

The average age of a group of people is 20 years. What proportion are more than 80 years old?

The average age of a group of people is 20 years. What proportion are more than 80 years old?

Can't say exactly, or even approximately, but we can try Markov:

The average age of a group of people is 20 years. What proportion are more than 80 years old?

Can't say exactly, or even approximately, but we can try Markov:

"80 is 4 times the average, so the proportion is at most 1/4"

The average age of a group of people is 20 years. What proportion are more than 80 years old?

Can't say exactly, or even approximately, but we can try Markov:

"80 is 4 times the average, so the proportion is at most 1/4"

Question: more than 80 years old: > 80

The average age of a group of people is 20 years. What proportion are more than 80 years old?

Can't say exactly, or even approximately, but we can try Markov:

"80 is 4 times the average, so the proportion is at most 1/4"

Question: more than 80 years old: > 80

Markov: greater than or equal to 80 years old: \geq 80

The average age of a group of people is 20 years. What proportion are more than 80 years old?

Can't say exactly, or even approximately, but we can try Markov:

"80 is 4 times the average, so the proportion is at most 1/4"

Question: more than 80 years old: > 80

Markov: greater than or equal to 80 years old: \geq 80

The proportion that are more than 80 years old

The average age of a group of people is 20 years. What proportion are more than 80 years old?

Can't say exactly, or even approximately, but we can try Markov:

"80 is 4 times the average, so the proportion is at most 1/4"

Question: more than 80 years old: > 80

Markov: greater than or equal to 80 years old: \geq 80

The proportion that are more than 80 years old is at most the proportion that are greater than or equal to 80 years old.

The average age of a group of people is 20 years. What proportion are more than 80 years old?

Can't say exactly, or even approximately, but we can try Markov:

"80 is 4 times the average, so the proportion is at most 1/4"

Question: more than 80 years old: > 80

Markov: greater than or equal to 80 years old: \geq 80

The proportion that are more than 80 years old is at most the proportion that are greater than or equal to 80 years old.

And that proportion is at most 1/4, by Markov's inequality.

In a non-negative list, what proportion of entries are at least as large as half the average?

In a non-negative list, what proportion of entries are at least as large as half the average?

k=0.5, so Markov says the proportion is at most 1/0.5=2=200%.

In a non-negative list, what proportion of entries are at least as large as half the average?

k = 0.5, so Markov says the proportion is at most 1/0.5 = 2 = 200%. ????

In a non-negative list, what proportion of entries are at least as large as half the average?

k=0.5, so Markov says the proportion is at most 1/0.5=2=200%. ????

This is not a problem.

In a non-negative list, what proportion of entries are at least as large as half the average?

k=0.5, so Markov says the proportion is at most 1/0.5=2=200%. ????

This is not a problem. Markov is not wrong.

In a non-negative list, what proportion of entries are at least as large as half the average?

k=0.5, so Markov says the proportion is at most 1/0.5=2=200%. ????

This is not a problem. Markov is not wrong.

Every proportion in the world is at most 200%, since proportions are at most 100%.

In a non-negative list, what proportion of entries are at least as large as half the average?

k = 0.5, so Markov says the proportion is at most 1/0.5 = 2 = 200%.

This is not a problem. Markov is not wrong.

Every proportion in the world is at most 200%, since proportions are at most 100%.

When k is a fraction, Markov's bound is still correct as a bound.

In a non-negative list, what proportion of entries are at least as large as half the average?

k=0.5, so Markov says the proportion is at most 1/0.5=2=200%.

This is not a problem. Markov is not wrong.

Every proportion in the world is at most 200%, since proportions are at most 100%.

When k is a fraction, Markov's bound is still correct as a bound. It's just not useful.

In a non-negative list, what proportion of entries are at least as large as half the average?

k=0.5, so Markov says the proportion is at most 1/0.5=2=200%.

This is not a problem. Markov is not wrong.

Every proportion in the world is at most 200%, since proportions are at most 100%.

When k is a fraction, Markov's bound is still correct as a bound. It's just not useful.

Markov's bound is most useful when k is large,

In a non-negative list, what proportion of entries are at least as large as half the average?

k = 0.5, so Markov says the proportion is at most 1/0.5 = 2 = 200%.

This is not a problem. Markov is not wrong.

Every proportion in the world is at most 200%, since proportions are at most 100%.

When k is a fraction, Markov's bound is still correct as a bound. It's just not useful.

Markov's bound is most useful when k is large, that is, when you're interested in entries that are quite far above average.