See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/6887886

Theoretical Study of Unsymmetrical Bisfullerene and Its Derivatives: C 131, C 129 BN, and C 130 Si

ARTICLE in THE JOURNAL OF PHYSICAL CHEMISTRY A · SEPTEMBER 2006

Impact Factor: 2.69 · DOI: 10.1021/jp0570519 · Source: PubMed

CITATIONS	READS
3	25

3 AUTHORS, INCLUDING:

Jingping Zhang

Northeast Normal University

157 PUBLICATIONS 1,874 CITATIONS

SEE PROFILE

Gahungu Godefroid

BURUNDI University

29 PUBLICATIONS 269 CITATIONS

SEE PROFILE

Theoretical Study of Unsymmetrical Bisfullerene and Its Derivatives: C_{131} , $C_{129}BN$, and $C_{130}Si$

Yiying Zheng, Jingping Zhang,* and Godefroid Gahungu

Faculty of Chemistry, Northeast Normal University, Changchun, 130024, China Received: December 4, 2005; In Final Form: May 1, 2006

Unsymmetrical bisfullerene C_{131} and its derivatives such as $C_{129}BN$ and $C_{130}Si$ are systematically investigated by semiempirical and density functional theory approaches. In comparison with the experimental data, calculated IR and NMR results reveal that both $C_{131}(H)$ and $C_{131}(P)$ isomers are possible compounds to coexist in the synthesized product. The C/Si and CC/BN substitution can change the electronic properties and reactivities compared with the pristine $C_{131}(H)$ and $C_{131}(P)$, respectively.

1. Introduction

The discovery of fullerenes by Kroto and co-workers initiated a new era in carbon chemistry. Fullerene dimers, like the balland-chain dimmers,² bisfullerenes have attracted attention as models for fullerene polymers, as intermediates for the formation of endohedral fullerenes,³ or as molecules with interesting properties, such as electronic interactions between the two cages.^{4–6} Drageo et al. synthesized the first molecule C₁₂₁, which is also the only one that has been successfully synthesized to date for the bisfullerene family.^{7,8} A theoretical study was reported on C_{121} by the same group. 9 It was revealed that [6,6]-[6,5] (C_s) C₁₂₁ (it has both a methanofullerene and a homofullerene moiety) was the most stable structure among three possible isomers, which was supported by the calculations of energies, IR and Raman spectra, as well as NMR spectra. Recently, Zhao et al. succeeded in synthesis of other two bisfullerenes (C₁₄₁ and C₁₃₁) using an energetic radiationcatalyzed sandwich reaction. 10,11 Theoretically, they pointed out that the C₁₄₁ had a new structure: two C₇₀ side cage open [6,6] ring junctions located at the equator area to create new chemical bonds for the bridge atom.¹²

Recently, Zhao et al. reported that C_{131} has two considerable stable structures: [6,6]-[e,e] (the bridge atom connects the [6,6] bond of C_{60} and the [e,e] bond of C_{70}) and [5,6]-[e,e] (the C_{60} opens the [5,6] bond bridging with the [e,e] bond of C_{70}), the former was predicted to be more stable. However, which of them exist in the synthesized product is still unknown now. With the aim to answer a previous question, both IR and NMR spectra are calculated herein for C_{131} isomers with lower energies and compared to available experimental data.

As it is well-known and exploited in many technological applications, doping is a very efficient way of modifying and tailoring the molecular electronic, superconducting, and nonlinear optical and many other properties of fullerenes. $^{14-20}$ To investigate the properties of heterofullerenes derived from $C_{131},$ such as $C_{130}\mbox{Si}$ and $C_{129}\mbox{BN},$ a set of properties are calculated and compared as well.

2. Computational Methodology

The calculations discussed in this work are all carried out using the Gaussian 98 (revision A.9) program.²¹ Geometry pre-

optimizations for all possible isomers of C₁₃₁ are performed at AM1²² and PM3²³ levels. Then two lowest-energy isomers are chosen for high-level (B3LYP²⁴ with 3-21G,^{25,26} 6-31G,^{27,28} and 6-31G*27,28,29 basis sets) re-optimizations. Their vibrational frequencies are predicted at the HF/STO-3G level with the scaling factor (0.8287) and rms (83 cm⁻¹) used by Shimotani et al.9 13C NMR shielding values are evaluated with the HF/3-21G method employing the gauge-independent atomic orbital $(GIAO)^{30}$ method. The geometries of all the C_{131} derivatives $(C_{130}Si$ and $C_{129}BN)$ are calculated at the AM1 level. The selected four lowest-energy isomers of C130Si and six lowestenergy ones of C₁₂₉BN are re-optimized at high-level DFT approaches (B3LYP/6-31G* for C130Si isomers and B3LYP/6-31G*//B3LYP/3-21G for C₁₂₉BN ones). The energies of neutral and ionic forms (cation and anion) for C₁₃₁(H), C₁₃₁(P), and C₁₃₁Si isomers, respectively, are calculated at the B3LYP/6-31G* level, and their electron populations are obtained using natural population analysis (NPA).31

3. Results and Discussion

3.1. The Stable Structures for C₁₃₁**. 3.1.1. Molecular Geometries of C**₁₃₁**.** Figure 1 shows (a) two different bond types for C₆₀ and (b) eight different bond types for C₇₀. In the case of the [5,6] structure (pentagon—hexagon ring fusion) of C₆₀, the larger moiety of C₇₀ faces up to the five- or six-membered ring, leading to the so-called [5,6]/5 or [5,6]/6 isomers (i.e., the optical isomers). As a result, there are 20 possible structural isomers of C₁₃₁, depending on the bridged position and orientation facial, named from C₁₃₁(A) to C₁₃₁(P), whose structures and symmetries are listed in Table 1 (see Supporting Information Figure S1 for description in details).

3.1.2. Relative Stability of C_{131} Isomers and Comparison of the Optimization Methods. The experimental X-ray data for C_{131} is not available yet. Meanwhile, the structure parameters of C_{60}^{32} and $C_{70}^{33,34}$ were measured by many methods. To compare the efficiency of various calculation methods used for the optimization of fullerene molecules, semiempirical, HF- and B3LYP-optimized structures for both C_{60} and C_{70} are listed in Table S1 (see Supporting Information) compared with available experimental measurements. On the basis of these results, one may find that the HF method with used basis sets and MNDO method fails to accurately describe the molecular geometry for both C_{60} and C_{70} . However, B3LYP-optimized geometries using

^{*} To whom correspondence should be addressed. Fax: \pm 86-431-5684937. E-mail: zhangjp162@nenu.edu.cn.

Figure 1. Structures and labeled C-C bond types for (a) C_{60} (I_h) and (b) C_{70} (D_{5h}).

TABLE 1: Names, Structures, Symmetries, and Relative Energies (E_R in kcal/mol) for 20 Possible Isomers of C_{131}

name	structure	symmetry	$E_{\rm R}1^{\rm a}$	$E_{\rm R}2^{\rm b}$
C131(A)	[a,a]-[5,6]	C_1	0	0
C131(Ba)	[a,b]-[5,6]/5	C_s	2.975	-3.564
C131(Bb)	[a,b]-[5,6]/6	C_s	2.975	-3.558
C131(Ca)	[b,c]-[5,6]/5	C_1	2.836	2.960
C131(Cb)	[b,c]-[5,6]/6	C_1	2.836	2.959
C131(D)	[c,c]- $[5,6]$	C_1	3.275	-3.859
C131(Ea)	[c,d]-[5,6]/5	C_1	9.708	8.944
C131(Eb)	[c,d]-[5,6]/6	C_1	9.824	9.046
C131(F)	[d,d]-[5,6]	C_1	10.792	5.570
C131(Ga)	[d,e]-[5,6]/5	C_1	18.979	11.167
C131(Gb)	[d,e]-[5,6]/6	C_1	19.071	11.243
C131(H)	[e,e]-[5,6]	C_s	-6.342	-7.819
C131(I)	[a,a]-[6,6]	C_s	2.029	-4.725
C131(J)	[a,b]-[6,6]	C_s	9.639	-3.188
C131(K)	[b,c]-[6,6]	C_1	4.981	-1.650
C131(L)	[c,c]-[6,6]	C_s	10.077	-3.420
C131(M)	[c,d]-[6,6]	C_1	11.645	4.053
C131(N)	[d,d]-[6,6]	C_s	16.534	5.053
C131(O)	[d,e]-[6,6]	C_1	25.366	11.131
C131(P)	[e,e]-[6,6]	C_{2v}	-5.673	-13.950

^a Relative energy calculated at AM1 with respect to the $C_{131}(A)$ isomer. ^b Relative energy calculated at PM3 level with respect to the $C_{131}(A)$ isomer.

the basis sets 6-31G, 6-31G* show a good agreement with the experimental data. Indeed, within B3LYP results, no more than 0.013 Å of deviation is observed when 6-31G* basis set is used for C_{60} , and 0.014 Å is the greatest deviation predicted by 6-31G for C_{70} . Meanwhile, the semiempirical (AM1 and PM3) parameters are found to deviate the experimental values by no more than 0.021 Å.

In consideration of both the large size of C_{131} and the accuracy of method, these 20 isomers are pre-optimized by two semiempirical levels: (a) AM1 and (b) PM3, respectively. In Table 1, we list the relative energies with respect to the $C_{131}(A)$ isomer (see detail in Supporting Information Figure S2). It is shown in Table 1 that two isomers ($C_{131}(H)$ and $C_{131}(P)$) possess lower energy compared with the rest of the isomers. Hence these two isomers are chosen and re-optimized at the B3LYP/3-21G, B3LYP/6-31G, and B3LYP/6-31G* levels, respectively. It is found that the energy of $C_{131}(P)$ is only ~ 6.55 kcal/mol lower than that of $C_{131}(H)$ at B3LYP/6-31G* level. These results are compared well with those calculated by Zhao et al. ¹² In addition, the same energy difference is also observed with 3-21G and 6-31G basis sets.

The selected parameters of $C_{131}(H)$ and $C_{131}(P)$ with different approaches are listed in Table S2 (Supporting Information); the labeling scheme for the central bridge part is shown in Figure 2. B3LYP method with the 3-21G, 6-31G, and 6-31G* basis sets can obtain almost the same geometries and relative energies. Thus, to save computational time, we can use either the 3-21G or 6-31G basis sets to optimize the structure by the density

Figure 2. Numbering systems of the carbon atoms in the bridging moiety of (a) $C_{131}(H)$ and (b) $C_{131}(P)$.

functional theory (DFT) approach, then calculate the single-point energy for optimized system at DFT/6-31G* level with higher accuracy. It is worth noting that the AM1-optimized geometry is found to be quite similar to those obtained at DFT higher levels. Therefore, AM1 is a practical method for primary optimization for this kind of compound, although it deviates slightly in energy calculation. However, there is a dramatic deviation for the PM3 predicted parameters for $C_{131}(H)$ compared with other models. Taking the central bridging site as an example, the C1-C1' distance and C1-C0-C1' bond angle are found to deviate from other values by ~ 0.6 Å and $\sim 28.5^\circ$, respectively. The obvious deviation leads to a closed structure of C_{60} monomer at PM3 level rather than the opened structure predicted by other methods.

3.1.3. Calculated ¹³C NMR Chemical Shifts for C₁₃₁(H) and $C_{131}(P)$. Molecules can be identified by their characteristic spectra; the ¹³C NMR chemical shifts which are known as a powerful technique for determining bisfullerene structures are calculated in this work, for the purpose of confirming the existence of C₁₃₁(H) and/or C₁₃₁(P) in experimental work.¹⁰ The NMR results for $C_{131}(H)$ and $C_{131}(P)$ are obtained by applying the GIAO-HF/3-21G method on the B3LYP/6-31G*-optimized structure. For $C_{131}(H)$, the calculated chemical shifts for sp^2 carbons are in the range from 112.36 to 144.44 ppm, which match the experimental measurement well (from 117 to 140 ppm¹⁰). Furthermore, the obtained chemical shift at 52.06 ppm in the sp³ region, which is assigned to the intermediate bridge carbon atom, is in good agreement with the experimental data (59.78 ppm). While for $C_{131}(P)$, the obtained chemical shifts for carbons in the sp² region are in the range from 119.46 to 143.04 ppm, matching the experimental values well. In the sp³ region, the calculated chemical shifts are 38.97 ppm for the central bridge atom and two degenerate ones (63.43 ppm) for the bridgehead carbons of C₆₀ monomer. The later chemical shifts agree with the experiment well, in the range from 61.57 to 64.49 ppm. The former one, however, is ~20 ppm smaller than the experimental data. This may result from the basis set effect of NMR calculation.³⁵ Therefore, one can conclude that both $C_{131}(H)$ and $C_{131}(P)$ are the most possible isomers existing in the synthesized mixture.

3.1.4. IR-Active Vibrational Modes and Intensities for $C_{131}(H)$ and $C_{131}(P)$. With the aim to investigate C_{131} structure further, the IR-active vibrational modes and intensities for C_{131} -(H) and $C_{131}(P)$ are calculated at the HF/STO-3G//B3LYP/6-31G* level as used in the calculation of C_{121} . From the FT-IR spectra measurements, 10 beside the presence of C_{60} and C_{70} that was verified, a peak of bridged part skeletal (1025.8 cm $^{-1}$) was also observed, confirming the existence of the intermediate bridge part of the two monomers. The computed results are presented in Table 2, where experimental data are listed as well.

In general, the calculated results for both compounds agree with the experimental data. Especially the calculated vibrational

TABLE 2: Selected IR-Active Vibrational Wavenumbers (cm⁻¹) and IR Scattering Actives (Å⁴/amu) for C₁₃₁(H) and C₁₃₁(P) at HF/STO-3G//B3LYP6-31G* Level (after scaled)

C ₁₃₁ (H)		C ₁₃₁	C ₁₃₁ (P)		
frequency	IR active	frequency	IR active	\exp^a	
1464.9	5.3	1459.7	35.3	1463	
1429.4	36.7	1430.4	40.9	1430	
1358.9	22.8	1358.9	22.9	1360	
1274.8	24.7	1260.8	40.6	1270	
1187.2	3.7	1198.6	12.9	1182	
1148.5	19.0	1127.7	4.4	1130	
1082.4	6.9	1069.4	2.8	1072	
1015.8	22.8	1017.8	4.7	1025.8	

^a Data from ref 10.

Figure 3. Molecular orbital amplitude plots and energies of the FMOs of $C_{131}(H)$ and $C_{131}(P)$ calculated at B3LYP/6-31G* level.

wavenumbers for the bridged part skeletal stretch are 1015.8 and 1017.8 cm⁻¹ for $C_{131}(H)$ and $C_{131}(P)$, respectively, that match the experimental data (1025.8 cm⁻¹) well. However, the intensity of IR activity for C₁₃₁(P) (4.7) is much weaker than that for C₁₃₁(H) (22.8). It can be traced back to the higher symmetry of $C_{131}(P)$ ($C_{2\nu}$) compared with that of $C_{131}(H)$ (C_s). Consequently, our calculated IR results suggest that both C₁₃₁-(H) and $C_{131}(P)$ may exist in the synthesized mixture.

3.1.5. Frontier Molecular Orbitals Analysis. Figure 3 shows the frontier molecular orbitals (FMO) for $C_{131}(H)$ and $C_{131}(P)$ at B3LYP/6-31G* level. Similar FMO surfaces distribution pattern is found for these two isomers: the highest-occupied molecular orbitals (HOMOs) are mainly localized on the C₇₀ monomer, while the lowest-unoccupied molecular orbitals (LUMOs) are distributed on the whole molecule. However, the distribution regions for FMOs are different between them. For the HOMO of $C_{131}(P)$, it is almost uniformly delocalized on C_{70} monomer, whereas the HOMO of $C_{131}(H)$ is mainly localized on the moiety faced up to the C₆₀'s six-member ring of the C₇₀ monomer, and a slight contribution is also observed in the C_{60} part. The same tendency is also observed in the distribution of LUMOs. This can be traced back to their different symmetries.

According to Koopmans' theorem, IP = $-E_H$ (E_H = the HOMO energy), and EA = $-E_L$ (E_L = the LUMO energy). IP and EA represent ionization potential and electron affinity, respectively. $E_{\rm H}$ is found to be -4.95 eV for $C_{131}({\rm H})$, 0.86 eV higher than that for $C_{131}(P)$. While E_L is calculated at -3.90eV for $C_{131}(H)$, 0.64 eV lower than that for $C_{131}(P)$. This indicates that $C_{131}(H)$ may more easily lose or receive electrons than $C_{131}(P)$. In addition, the HOMO-LUMO energy gap (E_G) for $C_{131}(P)$ (2.55 eV) is significantly larger than that for C_{131} -(H) (1.05 eV), suggesting that $C_{131}(P)$ is a more stable isomer compared with $C_{131}(H)$ in the ground state.

3.2. The Stability and Properties of $C_{130} Si.$ 3.2.1. Electronic Structure. Silicon is a very interesting element for doping fullerenes. 18 Indeed, SiC compounds exhibit desirable properties

TABLE 3: Substitution Sites, Relative Energies (E_R , kcal/mol), HOMO Energies ($E_{\rm H}$, eV), LUMO Energies ($E_{\rm L}$, eV) and HOMO-LUMO Gap Energies (E_G , eV) for Four C₁₃₀Si Isomers

species	substitution sites ^a	$E_{\mathrm{R}}{}^{b}$	$E_{ m H}$	$E_{ m L}$	E_{G}
C130Si(HA)	Si0	0.00	-5.74	-3.27	2.46
C130Si(HB)	Si1	-5.77	-5.59	-3.46	2.13
C130Si(PA)	Si0	-12.34	-5.58	-3.36	2.22
C130Si(PB)	Si1	-14.63	-5.73	-3.37	2.36

^a See Figure 2 for labeling scheme. ^b E_R is with respect to C₁₃₀Si(H_A).

Figure 4. Molecular orbital surfaces (0.02 e au⁻³) of the HOMO (lower panel) and LUMO (upper panel) for C₁₃₀Si(H_A), C₁₃₀Si(H_B), C₁₃₀Si- (P_A) , and $C_{130}Si(P_B)$.

such as polymorphism, variable band gaps, extraordinary hardness, etc. Considering the successful synthesis of many Sidoped fullernes,20 it is reasonable to expect that silicon doped bisfullerenes would be synthesized and detected experimentally if appropriate synthetic protocols are achieved.

For the purpose of investigating the stability and properties of C/Si substituted C₁₃₁, we substitute the central bridge and bridgehead carbon atoms by silicon in $C_{131}(H)$ and $C_{131}(P)$. The selected four possible C/Si substituted isomers for C₁₃₁(H) and 3 ones for C₁₃₁(P) are listed in Table S3 (see Supporting Information). After the optimization with AM1 method, four more stable isomers are chosen for high level calculation. As summarized in the second column of Table 3, both C₁₃₀Si(H_A) and C₁₃₀Si(P_A) are the isomers whose central bridge carbons are substituted by Si, respectively, while for both C₁₃₀Si(H_B) and C₁₃₀Si(P_B), the C/Si substitution sites are on the bridgehead carbon of C₆₀ monomer.

Table 3 summarizes the B3LYP/6-31G*-calculated E_R , E_H , $E_{\rm L}$, and $E_{\rm G}$ of the four selected $C_{130}{\rm Si}$ isomers. One may find that the energies of C/Si substituted isomers of C₁₃₁(P) are slightly lower than those of C₁₃₁(H), with C₁₃₀Si(P_B), i.e., one of the formers, possessing the lowest energy. Moreover, the C/Si substitution significantly changes the electronic properties compared with those for C₁₃₁(H) and C₁₃₁(P). Indeed, the C/Si substitution leads to the decrease of $E_{\rm H}$ and the increase of $E_{\rm L}$ in $C_{131}(H)$. As a result, the E_G values for $C_{130}Si(H_A)$ and C_{130} -Si(H_B) are much greater than that for C₁₃₁(H), corresponding to more stable ground states. However, a reverse trend is observed in the C/Si substitution derivatives of C₁₃₁(P). Correspondingly, the FMOs of C₁₃₀Si as shown in Figure 4 are different from those of $C_{131}(H)$ and $C_{131}(P)$, where the HOMOs

TABLE 4: S^+ , S^- , S^+/S^- , and S^-/S^+ Values of the Relevant Atomic Positions for $C_{13i}(H)$, $C_{130}Si(H_A)$, $C_{130}Si(H_B)$, $C_{131}(P)$, $C_{130}Si(P_A)$, and $C_{130}Si(P_B)$

S^-/S^+
2.000
2.000
1.529
3.000
8.000
9.000

are all mainly localized on the C_{60} monomer instead of on C_{70} monomers for $C_{131}(H)$ and $C_{131}(P)$. A significant difference is observed for $C_{130}Si(H_B)$ whose LUMO is mainly localized on C_{60} monomer, while those for the other isomers are mainly localized on the C_{70} monomers.

3.1.2. Reactivity for Silicon in C₁₃₀**Si Isomers.** Because of the electronegativity difference between the heteroatom and the carbon atom, it is necessary to investigate the reactivities of interested atoms before and after the substitution. To predict the intramolecular and intermolecular reactivity, the relative electrophilicity (S^+/S^-) and nucleophilicity (S^-/S^+) are calculated as proposed by Roy et al.³⁶ The atomic softness values (S^+ and S^-) is defined by eqs 1 and 2^{37}

$$\mathbf{S}^+ = [\rho_{\mathbf{A}}(N+1) - \rho_{\mathbf{A}}(N)]\mathbf{S}$$
 (suited for studies of nucleophilic attack) (1)

$$S^{-} = [\rho_{A}(N) - \rho_{A}(N-1)]S$$
(suited for studies of electrophilic attack) (2)

$$S = 1/(IP - EA) \tag{3}$$

Here $\rho_A(N)$ represents the electronic population on atom A for the N electron system. The global softness (S) is described in eq 3. For a certain atom, if $S^+/S^- > S^-/S^+$, then it is the preferred electrophilic site and vice versa. For different atoms in same/different molecules, the highest S^+/S^- corresponds to the most probability of being attacked by a nucleophile (Nu⁻), and the site having the highest S^-/S^+ is the most probable site to be attacked by an electrophile (El⁺).

TABLE 5: Substitution Site, Structures, Relative Energies $(E_{\rm R})$, HOMO Energies $(E_{\rm H})$, LUMO Energies $(E_{\rm L})$, and HOMO-LUMO Energies $(E_{\rm G})$ for Six C₁₂₉BN Isomers

species	substitution site ^a	$E_{ m R}{}^b$	$E_{ m H}$	$E_{ m L}$	E_{G}
C ₁₂₉ BN(H _{Ea})	B1, N3	0.00	-5.70	-3.30	2.40
$C_{129}BN(H_{Eb})$	B3, N1	2.60	-5.70	-3.30	2.39
$C_{129}BN(H_J)$	B8, N8	-0.07	-5.77	-3.24	2.53
$C_{129}BN(P_{Db})$	B5, N2	3.76	-5.59	-3.28	2.31
$C_{129}BN(P_{Ea})$	B3, N4	-5.47	-5.47	-3.26	2.54
$C_{129}BN(P_{Eb})$	B4, N3	0.44	-5.76	-3.29	2.48

^a See Figure 2 for labeling scheme. ^b E_R is with respect to C₁₂₉BN(H_{Ea}).

In Table 4, we list the S^+ , S^- , S^+/S^- , and S^-/S^+ values for the atoms of interest. It can be found that C/Si substitution results in the changes of reactivity for interested atoms. For $C_{131}(H)$, C0 is a neutral site (both S⁺ and S⁻ values are zero) and C1 is a nucleophilic one $(S^-/S^+ > S^+/S^-)$. After the C/Si substitution, Si0 changes to a nucleophilic site with $S^-/S^+ > S^+/S^-$ for C_{130} $Si(H_A)$. While for $C_{130}Si(H_B)$, Si1 is more electrophilic (S⁺/S⁻ = 0.654) than the pristine C1 (0.500). However, it is still a preferred nucleophilic site with S^-/S^+ (1.529) $> S^+/S^-$ (0.654). For $C_{131}(P)$, the C0 is a nucleophilic site with $S^-/S^+ > S^+/S^-$, C1 being a neutral one (S⁺, S⁻ \approx 0.000). The C substitution by Si in C₁₃₁(P) results in more nucleophilicity for both Si0 $(S^-/S^+ = 8.000)$ in $C_{130}Si(P_A)$ and $Si1~(S^-/S^+ = 9.000)$ in C_{130} $Si(P_B)$ than those in $C_{131}(P)$ (S⁻/S⁺ = 3.000). Furthermore, Si1 in C₁₃₀Si(P_B) is the most nucleophilic one among all investigated sites. These results compare well with those reported by Masenelli et al. in their theoretical study on Si-(C₆₀)₂ that observed that Si has nucleophilic character.38

3.3. The Stability and Properties of $C_{129}BN$. **3.3.1.** Electronic Structures. BN is an isoelectronic equivalent of CC. The CC/BN substitution is expected to change the structure and nature of the bisfullerenes. In this work, the carbon atoms around the central bridge atom are substituted by BN unit. Then 18 possible CC/BN substitution isomers for $C_{131}(H)$ and 11 ones for $C_{131}(P)$ are optimized at AM1 level (See Supporting Information Table S4 in detail). Six isomers with lower energies are chosen for high-level studies. Three derivatives are from $C_{131}(H)$ and another three ones from $C_{131}(P)$; their corresponding substitution sites are listed in the second column of Table 5.

Figure 5. Molecular orbital surfaces (0.02 e au $^{-3}$) of the HOMO (lower) and LUMO (upper) for $C_{129}BN(H_{Fa})$, $C_{129}BN(H_{Fb})$, $C_{129}BN(H_{J})$, $C_{129}BN(P_{Db})$, $C_{129}BN(P_{Ea})$, and $C_{129}BN(P_{Eb})$.

TABLE 6: S⁺, S⁻, S⁺/S⁻, and S⁻/S⁺ Values of the Relevant Atomic Positions for C₁₃₁(P), C₁₂₉BN(P_{Ea}), C₁₃₁(H), and $C_{129}BN(H_J)$

species	atom	S^+	S^-	S^+/S^-	$S^-\!/S^+$
C ₁₃₁ (P)	C3	0.001	0.003	0.333	3.000
	C4	0.001	0.004	0.250	4.000
$C_{129}BN(P_{Ea})$	В3	0.001	0.003	0.333	3.000
	N4	0.001	0.002	0.500	2.000
$C_{131}(H)$	C8	0.003	0.001	3.000	0.333
	C8'	0.003	0.001	3.000	0.333
$C_{129}BN(H_J)$	B8	0.003	0.005	0.800	1.667
	N8′	0.002	0.003	0.667	1.500

The B3LYP/6-31G*//B3LYP/3-21G-calculated energies of $E_{\rm R}$, $E_{\rm H}$, $E_{\rm L}$, and $E_{\rm G}$ for the six $C_{129}{\rm BN}$ isomers are listed in Table 5. From the calculated results, it is found that the energies of these six isomers are very close with each other and C₁₂₉-BN(P_{Ea}) possesses the lowest energy. In comparison with $C_{131}(H)$, its $C_{129}BN$ derivatives have lower E_H and higher E_L values. Consequently, their HOMO-LUMO gaps are larger than that of C₁₃₁(H), indicating that CC/BN substitutions favor for the stabilities of their ground state. While the CC/BN substitution of $C_{131}(P)$ only slightly changes the E_H , E_L , and E_G values for corresponding isomers.

For a better understanding of the influence of the substitution on the electronic structure, we show their FMOs in Figure 5. A significant difference is observed for C₁₂₉BN(P_{Db}), whose HOMO is mainly localized on C₇₀ monomer instead of C₆₀ monomers for the other derivatives. It can be traced back to the CC/BN substitution sites of C₁₂₉BN(P_{Db}), in which the BN unit substitute the CC on the C₇₀ monomer instead of C₆₀ monomer (for other derivatives). However, LUMOs are mainly localized on the C_{60} monomers for $C_{129}BN(H_{Fa})$, $C_{129}BN(H_{Fb})$, and C₁₂₉BN(P_{Db}), while they are mainly localized on the C₇₀ monomers for the rest three derivatives. These features indicate the significant change of electronic structures after CC/BN substitution.

3.3.2. Reactivity for BN in $C_{129}BN$ Isomers. With the aim to investigate the reactivity of CC/BN substitution sites, the calculated S⁺, S⁻, S⁺/S⁻, and S⁻/S⁺ values for interested atoms in C₁₂₉BN(P_{Ea}) and C₁₂₉BN(H_J) those possess lower relative energy values, are given in Table 6. For the ease of comparison, corresponding atoms in $C_{131}(H)$ and $C_{131}(P)$ are listed as well.

From the calculated results, it can be found that the change of reactivity is CC/BN substitution sites dependent. For C131-(P), both C3 and C4 are nucleophilic sites with $S^-/S^+ > S^+/S^+$ S⁻. Slight changes are observed for both B3 and N4 in C₁₂₉BN(P_{Ea}) after CC/BN substitution, with the slight increase of S^+/S^- . While for $C_{131}(H)$, both C8 and C8' are electrophilic sites, whose S^{+}/S^{-} (3.000) are larger than S^{-}/S^{+} (0.333). However, S^-/S^+ for both of the substituted B8 and N8' in C_{129} -BN(H_J) is significant increasing, with B8 being more nucleophilic $(S^-/S^+ = 1.667)$ than N8' $(S^-/S^+ = 1.500)$. In addition, for both C₁₂₉BN(P_{Ea}) and C₁₂₉BN(H_J), B is more favored by electrophilic attack than N.

4. Conclusion

In this article, we reported the structures and stabilities of C₁₃₁, C₁₂₉BN, and C₁₃₀Si. The main conclusions from this study are as following: Among 20 possible structures of C₁₃₁, C₁₃₁-(H), and $C_{131}(P)$ process lower energies than other isomers. The calculated IR and NMR spectra all suggest that both of them may exist in the synthesized product. Both C/Si and CC/BN substitution can change the electronic properties and reactivities of pristine C₁₃₁(H) and C₁₃₁(P). C/Si and CC/BN substitution

can alter the distribution for FMOs and energy gaps for the derivatives of $C_{131}(H/P)$. The heteroatom Si in $C_{130}Si$ isomers with lower energies is a nucleophilic site after C/Si substitution, while the changes of reactivity for C₁₂₉BN isomers with lower energies are CC/BN substitution sites dependent.

Acknowledgment. Financial supports from the National Natural Science Foundation of China (No. 50473032), SRF for ROCS, SEM, and Outstanding Youth Project of Jilin Province are gratefully acknowledged.

Supporting Information Available: Computed bond lengths (Å) of C_{60} (I_h) and C_{70} (D_{5h}) at different levels, selected structural parameters for $C_{131}(H)$ (C_s) and $C_{131}(P)$ ($C_{2\nu}$) with different methods. names, structures, and relative energies (E_R) for C₁₃₀Si and C₁₂₉BN isomers at the AM1 level, structures of 20 possible isomers of C_{131} , and dependence of relative energies of 20 C₁₃₁ isomers at the (a) AM1 and (b) PM3 levels. This material is available free of charge via the Internet at http:// pubs.acs.org.

References and Notes

- (1) Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318, 162.
- (2) Shvartsburg, A. A.; Hudgins, R. R.; Gutierrez, R.; Jungnickel, G.; Frauenheim, T.; Jackson, K. A.; Jarrold, M. F. J. Phys. Chem. A 1999, 103, 5275.
 - (3) Patchkovskii, S.; Thiel, W. J. Am. Chem. Soc. 1998, 120, 556.
- (4) Hummelen, J. C.; Knight, B.; Pavlovich, J.; Gonzales, R.; Wudl, F. Science 1995, 269, 1554.
- (5) Balch, A. L.; Costa, D. A.; Fawcett, W. R.; Winkler, K. J. Phys. Chem. 1996, 100, 4823.
- (6) Dragoe, N.; Shimotani, H.; Hayashi, M.; Saigo, K.; de Bettencourt-Dias, A.; Balch; A. L.; Miyake, Y.; Achiba; Y.; Kitazawa, K. J. Org. Chem. **2000**, 65, 3269
- (7) Dragoe, N.; Shimotani, H.; Wang, J.; Iwaya, M.; de Bettencourt-Dias, A.; Balch, A. L.; Kitazawa, K. J. Am. Chem. Soc. 2001, 123, 1294.
- (8) Dragoe, N.; Tanibayashi, S.; Nakahara, K.; Nakao, S.; Shimotani, H.; Xiao, L.; Kitazawa, K.; Kitazawa, K.; Achiba, Y.; Kikuchi, K.; Nojima, K. Chem. Commun. 1999, 85.
- (9) Shimotani, H.; Dragoe, N.; Kitazawa, K. J. Phys. Chem. A 2001, 105, 4980.
- (10) Zhao; Y.; Chen, Z.; Yuan, H.; Gao; X.; Qu, L.; Chai, Z.; Xing, G.; Yoshimoto, S.; Tsutsumi, E.; Itaya, K. J. Am. Chem. Soc. 2004, 126, 11134.
- (11) Chen, Z.; Zhao, Y.; Qu, L.; Gao, X.; Zhang, J.; Yuan, H.; Chai, Z.; xing, G.; Cheng, Y. Chin. Sci. Bull. 2004, 49, 225.
- (12) Gao, X.; Yuan, H.; Chen, Z.; Zhao, Y. J. Comput. Chem. 2004, 25, 2023.
- (13) Gao, X.; Zhao, Y.; Yuan, H.; Chen, Z.; Chai, Z. Chem. Phys. Lett. **2006**, 418, 24.
- (14) Chen, Z.; Ma, K.; zhao, H.; Pan, Y.; Zhao, X.; Tang, A.; Feng, J. THEOCHEM 1999, 466, 127.
- (15) Chen, Z.; Ma, K.; Pan, Y.; Zhao, X.; Tang, A. THEOCHEM 1999, 490, 61.
- (16) Pattanayak, J.; Kar, T.; Scheiner, S. J. Phys. Chem. A 2004, 108, 7681
- (17) Piechota, J.; Byszewski, P.; Jablonski, R.; Antonova, K. Fullerene Sci. Technol. 1996, 4, 491.
- (18) Marcos, P. A.; Alonso, J. A.; Molina, L. M.; Rubio, A.; López, M. J. J. Chem. Phys. 2003, 119, 1127.
- (19) Chen, Z.; Ma, K.; Shang, Z.; Pan, Y.; Zhao, X.; Tang, A. Acta Chim. Sin. 1999, 57, 712.
- (20) Pellarin, M.; Ray, C.; Lermé, J.; Vialle, J. L.; Broyer, M.; Mélinon, P. J. Chem. Phys. 2000, 112, 8436.
- (21) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M. W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A. Gaussian 98; Gaussian, Inc.: Pittsburgh, PA. 1998.

- (22) Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. P. J. Am. Chem. Soc. **1985**, 107, 3902.
 - (23) Stewart, J. J. P. J. Comput. Chem. 1989, 10, 209.
- (24) Stephens, P. J.; Devlin, F. J.; Chabalowski, C. F.; Frisch, M. J. J. Phys. Chem. **1994**, *98*, 11623.
- (25) Binkly, J. S.; Pople, J. A.; Hehre, W. J. J. Am. Chem. Soc. 1980, 102, 939.
- (26) Gordon, M. S.; Binkley, J. S.; Pople, J. A.; Pietro, W. J.; Hehre, W. J. J. Am. Chem. Soc. 1982, 104, 2797.
 - (27) Hariharan, P. C.; Pople, J. A. Mol. Phys. 1974, 27, 209.
 - (28) Gordon, M. S. Chem. Phys. Lett. 1980, 76, 163.
- (29) Frisch, M. J.; Pople, J. A.; Binkley J. S. J. Chem. Phys. **1984**, 80, 3265.
- (30) Wolinski, K.; Hinton, J. F.; Pulay, P. J. Am. Chem. Soc. 1990, 112, 8251.

- (31) Reed, A. E.; Curtiss, L. A.; Weinhold, F. Chem. Rev. 1988, 88,
- (32) Hedberg, K.; Hedberg, L.; Bethune, D. S.; Brown, C. A. Dorn, H. C. Johnson, R. D.; de Vries, M. *Science* **1991**, *254*, 410.
- (33) Burgi, H. B.; Venugopalan, P.; Schwarzenbach, D.; Diederich, F.; Thilgen, C. Helv. Chim. Acta 1993, 76, 2155.
- (34) Nikolaev, A. V.; Dennis, T. J. S.; Prassides, K.; Soper, A. K. Chem. Phys. Lett. **1994**, 223, 143.
- (35) Cheeseman, J. R.; Trucks, G. W.; Keith, T. A.; Frisch, M. J. J. Chem. Phys. **1996**, 104, 5497.
- (36) Roy, R. K.; Krishnamurthy, S.; Geerlings, P.; Pal, S. *J. Phys. Chem.* A **1998**, *102*, 3746.
 - (37) Yang, W.; Mortier, W. J. J. Am. Chem. Soc. 1986, 108, 5708.
- (38) Masenelli, B.; Tournus, F.; Mélinon, P.; Pérez, A.; Blase, X. J. Chem. Phys. **2002**, 117, 10627.