## Classification

### Classification vs. Regression vs. Clustering

Classification – model (can also be called a classifier) predicts a categorical label

Ex: You are given an image. You have to predict whether it is a cat image or a dog image.

Regression – model predicts continuous-valued function, or ordered value

Ex: Prediction or forecasting of sales data.

Clustering – Unsupervised learning Grouping of things based on similarity or dissimilarity of attributes.

Ex: Creation of severity clusters and hot spots during the Covid-19 pandemic.

Based on high and low footfall in the areas with patients for sneezing, coughing and fever.

#### **Classification and Clustering**

Let's take the example of T-shirt store.

#### Problem 1:

Salesman gets to know height and weight of the customer who comes in. And he has to classify this customer for a t-shirt size.

(height, weight, age) --> (t-shirt size as in small, medium, large)

#### Problem 2:

You open a new store in some part of the world. And you collect data about people's age, height and weight.

As a store owner, you would like to know how many groups of t-shirts sizes should be there and what are those t-shirt sizes.

As in: xs, s, m, l, xl (so on, so forth)

#### **General Architecture of Classification Model**

#### Classification:

training data + testing data --> classifier <-- predictions (labels)

Training – training set

Testing - test set (validation)

Accuracy measurement of classification

Steps involved in building a classifier:

Step 1: Collect the data.

As in from the client. Or through a survey or study.

Step 2: Split the data into training set and test set.

Step 3: As part of training: You do data preprocessing and model selection.

Step 4: Model Evaluation on Test data set.

Decision tree induction is the learning of decision trees from class-labeled training tuples. A decision tree is a flowchart-like tree structure, where each internal node (nonleaf node) denotes a test on an attribute, each branch represents an outcome of the test, and each leaf node (or terminal node) holds a class label. The topmost node in a tree is the root node.

Decision tree induction is the learning of decision trees from class-labeled training tuples. A decision tree is a flowchart-like tree structure, where each internal node (nonleaf node) denotes a test on an attribute, each branch represents an outcome of the test, and each leaf node (or terminal node) holds a class label. The topmost node in a tree is the root node.

| RID | age         | income | student | credit_rating | Class: buys_computer |
|-----|-------------|--------|---------|---------------|----------------------|
| 1   | youth       | high   | no      | fair          | no                   |
| 2   | youth       | high   | no      | excellent     | no                   |
| 3   | middle_aged | high   | no      | fair          | yes                  |
| 4   | senior      | medium | no      | fair          | yes                  |
| 5   | senior      | low    | yes     | fair          | yes                  |
| 6   | senior      | low    | yes     | excellent     | no                   |
| 7   | middle_aged | low    | yes     | excellent     | yes                  |
| 8   | youth       | medium | no      | fair          | no                   |
| 9   | youth       | low    | yes     | fair          | yes                  |
| 10  | senior      | medium | yes     | fair          | yes                  |
| 11  | youth       | medium | yes     | excellent     | yes                  |
| 12  | middle_aged | medium | no      | excellent     | yes                  |
| 13  | middle_aged | high   | yes     | fair          | yes                  |
| 14  | senior      | medium | no      | excellent     | no                   |

Decision tree induction is the learning of decision trees from class-labeled training tuples. A decision tree is a flowchart-like tree structure, where each internal node (nonleaf node) denotes a test on an attribute, each branch represents an outcome of the test, and each leaf node (or terminal node) holds a class label. The topmost node in a tree is the root node.



```
Attribute Selection Measures (or Splitting Rules)
Information gain (entropy)
Gain ratio
Gini Index
```

#### Information Gain

Expected information needed to classify a tuple in D:

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

 $Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$  where  $p_i$  is the probability that an arbitrary tuple in D belongs to class  $C_i$ 

If we select attribute A for partition, then the information we still need for classification is given by:

$$\mathit{Info}_A(D) = \sum_{j=1}^{v} rac{|D_j|}{|D|} imes \mathit{Info}(D_j)$$

Attribute A can be used to split D into v partitions or subsets

$$Gain(A) = Info(D) - Info_A(D)$$

| RID | age         | income | student | credit_rating | Class: buys_computer |
|-----|-------------|--------|---------|---------------|----------------------|
| 1   | youth       | high   | no      | fair          | no                   |
| 2   | youth       | high   | no      | excellent     | no                   |
| 3   | middle_aged | high   | no      | fair          | yes                  |
| 4   | senior      | medium | no      | fair          | yes                  |
| 5   | senior      | low    | yes     | fair          | yes                  |
| 6   | senior      | low    | yes     | excellent     | no                   |
| 7   | middle_aged | low    | yes     | excellent     | yes                  |
| 8   | youth       | medium | no      | fair          | no                   |
| 9   | youth       | low    | yes     | fair          | yes                  |
| 10  | senior      | medium | yes     | fair          | yes                  |
| 11  | youth       | medium | yes     | excellent     | yes                  |
| 12  | middle_aged | medium | no      | excellent     | yes                  |
| 13  | middle_aged | high   | yes     | fair          | yes                  |
| 14  | senior      | medium | no      | excellent     | no                   |

$$Info(D) = -\frac{9}{14}\log_2\left(\frac{9}{14}\right) - \frac{5}{14}\log_2\left(\frac{5}{14}\right)$$

$$Info(D) = -\sum_{i=1}^{m} p_i \log_2(p_i)$$

| RID | age         | income | student | credit_rating | Class: buys_computer |
|-----|-------------|--------|---------|---------------|----------------------|
| 1   | youth       | high   | no      | fair          | no                   |
| 2   | youth       | high   | no      | excellent     | no                   |
| 3   | middle_aged | high   | no      | fair          | yes                  |
| 4   | senior      | medium | no      | fair          | yes                  |
| 5   | senior      | low    | yes     | fair          | yes                  |
| 6   | senior      | low    | yes     | excellent     | no                   |
| 7   | middle_aged | low    | yes     | excellent     | yes                  |
| 8   | youth       | medium | no      | fair          | no                   |
| 9   | youth       | low    | yes     | fair          | yes                  |
| 10  | senior      | medium | yes     | fair          | yes                  |
| 11  | youth       | medium | yes     | excellent     | yes                  |
| 12  | middle_aged | medium | no      | excellent     | yes                  |
| 13  | middle_aged | high   | yes     | fair          | yes                  |
| 14  | senior      | medium | no      | excellent     | no                   |
|     |             |        |         |               |                      |

$$Info(D) = -\frac{9}{14}\log_2\left(\frac{9}{14}\right) - \frac{5}{14}\log_2\left(\frac{5}{14}\right) = 0.940 \text{ bits.}$$

| RID | age         | income | student | credit_rating | Class: buys_computer |
|-----|-------------|--------|---------|---------------|----------------------|
| 1   | youth       | high   | no      | fair          | no                   |
| 2   | youth       | high   | no      | excellent     | no                   |
| 3   | middle_aged | high   | no      | fair          | yes                  |
| 4   | senior      | medium | no      | fair          | yes                  |
| 5   | senior      | low    | yes     | fair          | yes                  |
| 6   | senior      | low    | yes     | excellent     | no                   |
| 7   | middle_aged | low    | yes     | excellent     | yes                  |
| 8   | youth       | medium | no      | fair          | no                   |
| 9   | youth       | low    | yes     | fair          | yes                  |
| 10  | senior      | medium | yes     | fair          | yes                  |
| 11  | youth       | medium | yes     | excellent     | yes                  |
| 12  | middle_aged | medium | no      | excellent     | yes                  |
| 13  | middle_aged | high   | yes     | fair          | yes                  |
| 14  | senior      | medium | no      | excellent     | no                   |
|     |             |        |         |               |                      |

$$Info(D) = -\frac{9}{14}\log_2\left(\frac{9}{14}\right) - \frac{5}{14}\log_2\left(\frac{5}{14}\right) = 0.940 \text{ bits.}$$

$$Info_{age}(D) = \frac{5}{14} \times \left(-\frac{2}{5}\log_2\frac{2}{5} - \frac{3}{5}\log_2\frac{3}{5}\right)$$

$$+\frac{4}{14} \times \left(-\frac{4}{4}\log_2\frac{4}{4} - \frac{0}{4}\log_2\frac{0}{4}\right)$$

$$+\frac{5}{14} \times \left(-\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5}\right)$$

$$= 0.694 \text{ bits.}$$

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times Info(D_j)$$

| RID | age         | income | student | credit_rating | Class: buys_computer |
|-----|-------------|--------|---------|---------------|----------------------|
| 1   | youth       | high   | no      | fair          | no                   |
| 2   | youth       | high   | no      | excellent     | no                   |
| 3   | middle_aged | high   | no      | fair          | yes                  |
| 4   | senior      | medium | no      | fair          | yes                  |
| 5   | senior      | low    | yes     | fair          | yes                  |
| 6   | senior      | low    | yes     | excellent     | no                   |
| 7   | middle_aged | low    | yes     | excellent     | yes                  |
| 8   | youth       | medium | no      | fair          | no                   |
| 9   | youth       | low    | yes     | fair          | yes                  |
| 10  | senior      | medium | yes     | fair          | yes                  |
| 11  | youth       | medium | yes     | excellent     | yes                  |
| 12  | middle_aged | medium | no      | Gain(age      | P) = Info(D) - P     |
| 13  | middle_aged | high   | yes     | ıaır          | yes                  |
| 14  | senior      | medium | no      | excellent     | no                   |

$$Info(D) = -\frac{9}{14}\log_2\left(\frac{9}{14}\right) - \frac{5}{14}\log_2\left(\frac{5}{14}\right) = 0.940 \text{ bits.}$$

$$Info_{age}(D) = \frac{5}{14} \times \left(-\frac{2}{5}\log_2\frac{2}{5} - \frac{3}{5}\log_2\frac{3}{5}\right)$$

$$+\frac{4}{14} \times \left(-\frac{4}{4}\log_2\frac{4}{4} - \frac{0}{4}\log_2\frac{0}{4}\right)$$

$$+\frac{5}{14} \times \left(-\frac{3}{5}\log_2\frac{3}{5} - \frac{2}{5}\log_2\frac{2}{5}\right)$$

$$= 0.694 \text{ bits.}$$

$$\mathit{Info}_A(D) = \sum_{j=1}^{v} rac{|D_j|}{|D|} imes \mathit{Info}(D_j)$$

| RID | age         | income | student | credit_rating | Class: buys_computer |
|-----|-------------|--------|---------|---------------|----------------------|
| 1   | youth       | high   | no      | fair          | no                   |
| 2   | youth       | high   | no      | excellent     | no                   |
| 3   | middle_aged | high   | no      | fair          | yes                  |
| 4   | senior      | medium | no      | fair          | yes                  |
| 5   | senior      | low    | yes     | fair          | yes                  |
| 6   | senior      | low    | yes     | excellent     | no                   |
| 7   | middle_aged | low    | yes     | excellent     | yes                  |
| 8   | youth       | medium | no      | fair          | no                   |
| 9   | youth       | low    | yes     | fair          | yes                  |
| 10  | senior      | medium | yes     | fair          | yes                  |
| 11  | youth       | medium | yes     | excellent     | yes                  |
| 12  | middle_aged | medium | no      | excellent     | yes                  |
| 13  | middle_aged | high   | yes     | fair          | yes                  |
| 14  | senior      | medium | no      | excellent     | no                   |
|     |             |        |         |               |                      |

$$Gain(age) = Info(D) - Info_{age}(D) = 0.940 - 0.694 = 0.246$$
 bits.

Gain(income) = 0.029 bits

$$Gain(student) = 0.151$$
 bits

$$Gain(credit\_rating) = 0.048$$
 bits.

$$\mathit{Info}_A(D) = \sum_{j=1}^v rac{|D_j|}{|D|} imes \mathit{Info}(D_j)$$



| income               | student          | credit_rating             | class            |
|----------------------|------------------|---------------------------|------------------|
| medium<br>low<br>low | no<br>yes<br>yes | fair<br>fair<br>excellent | yes<br>yes<br>no |

fair

excellent

yes

no

senior

yes

no

| income                        | student                | credit_rating                          | class                    |
|-------------------------------|------------------------|----------------------------------------|--------------------------|
| high<br>low<br>medium<br>high | no<br>yes<br>no<br>yes | fair<br>excellent<br>excellent<br>fair | yes<br>yes<br>yes<br>yes |

medium

medium

age?

| RID | age         | income | student | credit_rating | Class: buys_computer |
|-----|-------------|--------|---------|---------------|----------------------|
| 1   | youth       | high   | no      | fair          | no                   |
| 2   | youth       | high   | no      | excellent     | no                   |
| 3   | middle_aged | high   | no      | fair          | yes                  |
| 4   | senior      | medium | no      | fair          | yes                  |
| 5   | senior      | low    | yes     | fair          | yes                  |
| 6   | senior      | low    | yes     | excellent     | no                   |
| 7   | middle_aged | low    | yes     | excellent     | yes                  |
| 8   | youth       | medium | no      | fair          | no                   |
| 9   | youth       | low    | yes     | fair          | yes                  |
| 10  | senior      | medium | yes     | fair          | yes                  |
| 11  | youth       | medium | yes     | excellent     | yes                  |
| 12  | middle_aged | medium | no      | excellent     | yes                  |
| 13  | middle_aged | high   | yes     | fair          | yes                  |
| 14  | senior      | medium | no      | excellent     | no                   |
|     |             |        |         |               |                      |

$$GainRatio(A) = \frac{Gain(A)}{SplitInfo(A)}$$

$$\textit{SplitInfo}_A(D) = -\sum_{j=1}^v rac{|D_j|}{|D|} imes \log_2 \left(rac{|D_j|}{|D|}
ight)$$

| RID | age         | income | student | credit_rating | Class: buys_comp | outer                                                                                              |
|-----|-------------|--------|---------|---------------|------------------|----------------------------------------------------------------------------------------------------|
| 1   | youth       | high   | no      | fair          | no               |                                                                                                    |
| 2   | youth       | high   | no      | excellent     | no               | $GainRatio(A) = \frac{Gain(A)}{SplitInfo(A)}$                                                      |
| 3   | middle_aged | high   | no      | fair          | yes              | $GainRatio(A) = \frac{SplitInfo(A)}{SplitInfo(A)}$                                                 |
| 4   | senior      | medium | no      | fair          | yes              |                                                                                                    |
| 5   | senior      | low    | yes     | fair          | yes              |                                                                                                    |
| 6   | senior      | low    | yes     | excellent     | no               | W-1774 W-1774                                                                                      |
| 7   | middle_aged | low    | yes     | excellent     | yes              | $SplitInfo_A(D) = -\sum_{i=1}^{\nu} \frac{ D_j }{ D } \times \log_2\left(\frac{ D_j }{ D }\right)$ |
| 8   | youth       | medium | no      | fair          | no               | $Spiningo_A(D) = \sum_{i=1}^{\infty}  D ^{-\lambda \log_2( D )}$                                   |
| 9   | youth       | low    | yes     | fair          | yes              |                                                                                                    |
| 10  | senior      | medium | yes     | fair          | yes              |                                                                                                    |
| 11  | youth       | medium | yes     | excellent     | yes              |                                                                                                    |
| 12  | middle_aged | medium | no      | excellent     | yes              |                                                                                                    |
| 13  | middle_aged | high   | yes     | fair          | yes              |                                                                                                    |
| 14  | senior      | medium | no      | excellent     | no               |                                                                                                    |

Computation of gain ratio for the attribute income.

$$SplitInfo_{A}(D) = -\frac{4}{14} \times \log_{2}\left(\frac{4}{14}\right) - \frac{6}{14} \times \log_{2}\left(\frac{6}{14}\right) - \frac{4}{14} \times \log_{2}\left(\frac{4}{14}\right)$$

| RID | age         | income | student | credit_rating | Class: buys_compu | ter                                                                                                |
|-----|-------------|--------|---------|---------------|-------------------|----------------------------------------------------------------------------------------------------|
| 1   | youth       | high   | no      | fair          | no                |                                                                                                    |
| 2   | youth       | high   | no      | excellent     | no                | $GainRatio(A) = \frac{Gain(A)}{SplitInfo(A)}$                                                      |
| 3   | middle_aged | high   | no      | fair          | yes               | $GainRailo(A) = {SplitInfo(A)}$                                                                    |
| 4   | senior      | medium | no      | fair          | yes               |                                                                                                    |
| 5   | senior      | low    | yes     | fair          | yes               |                                                                                                    |
| 6   | senior      | low    | yes     | excellent     | no                | 00.137500                                                                                          |
| 7   | middle_aged | low    | yes     | excellent     | yes               | $SplitInfo_A(D) = -\sum_{i=1}^{\nu} \frac{ D_j }{ D } \times \log_2\left(\frac{ D_j }{ D }\right)$ |
| 8   | youth       | medium | no      | fair          | no                | $Sputing o_A(D) = -\sum_{i=1}^{\infty} \frac{1}{ D } \times \log_2(\frac{1}{ D })$                 |
| 9   | youth       | low    | yes     | fair          | yes               | <i>j</i> =1                                                                                        |
| 10  | senior      | medium | yes     | fair          | yes               |                                                                                                    |
| 11  | youth       | medium | yes     | excellent     | yes               |                                                                                                    |
| 12  | middle_aged | medium | no      | excellent     | yes               |                                                                                                    |
| 13  | middle_aged | high   | yes     | fair          | yes               |                                                                                                    |
| 14  | senior      | medium | no      | excellent     | no                |                                                                                                    |

Computation of gain ratio for the attribute income.

$$SplitInfo_{A}(D) = -\frac{4}{14} \times \log_{2}\left(\frac{4}{14}\right) - \frac{6}{14} \times \log_{2}\left(\frac{6}{14}\right) - \frac{4}{14} \times \log_{2}\left(\frac{4}{14}\right)$$

$$= 0.468 \ (?)$$

| RID | age         | income | student | credit_rating | Class: buys_computer |
|-----|-------------|--------|---------|---------------|----------------------|
| 1   | youth       | high   | no      | fair          | no                   |
| 2   | youth       | high   | no      | excellent     | no                   |
| 3   | middle_aged | high   | no      | fair          | yes                  |
| 4   | senior      | medium | no      | fair          | yes                  |
| 5   | senior      | low    | yes     | fair          | yes                  |
| 6   | senior      | low    | yes     | excellent     | no                   |
| 7   | middle_aged | low    | yes     | excellent     | yes                  |
| 8   | youth       | medium | no      | fair          | no                   |
| 9   | youth       | low    | yes     | fair          | yes                  |
| 10  | senior      | medium | yes     | fair          | yes                  |
| 11  | youth       | medium | yes     | excellent     | yes                  |
| 12  | middle_aged | medium | no      | excellent     | yes                  |
| 13  | middle_aged | high   | yes     | fair          | yes                  |
| 14  | senior      | medium | no      | excellent     | no                   |

The Gini index measures the impurity of D, a data partition or set of training tuples

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2$$

where  $p_i$  is the probability that a tuple in D belongs to class  $C_i$  and is estimated by  $|C_{i,D}|/|D|$ . The sum is computed over m classes.

| RID | age         | income | student | credit_rating | Class: buys_comp | uter                                                         |  |
|-----|-------------|--------|---------|---------------|------------------|--------------------------------------------------------------|--|
| 1   | youth       | high   | no      | fair          | no               |                                                              |  |
| 2   | youth       | high   | no      | excellent     | no               |                                                              |  |
| 3   | middle_aged | high   | no      | fair          | yes              | if a binary split on A partitions D                          |  |
| 4   | senior      | medium | no      | fair          | yes              | if a billary split off A partitions D in                     |  |
| 5   | senior      | low    | yes     | fair          | yes              | gini index of D given that partition                         |  |
| 6   | senior      | low    | yes     | excellent     | no               | gill fildex of D given that partition                        |  |
| 7   | middle_aged | low    | yes     | excellent     | yes              | $ D_1 $ $ D_2 $                                              |  |
| 8   | youth       | medium | no      | fair          | no               | $Gini_A(D) = \frac{ D_1 }{ D }Gini(D_1) + \frac{ D_2 }{ D }$ |  |
| 9   | youth       | low    | yes     | fair          | yes              | D  $ D $                                                     |  |
| 10  | senior      | medium | yes     | fair          | yes              |                                                              |  |
| 11  | youth       | medium | yes     | excellent     | yes              |                                                              |  |
| 12  | middle_aged | medium | no      | excellent     | yes              |                                                              |  |
| 13  | middle_aged | high   | yes     | fair          | yes              |                                                              |  |
| 14  | senior      | medium | no      | excellent     | no               |                                                              |  |

The Gini index measures the impurity of D, a data partition or set of training tuples

$$Gini(D) = 1 - \sum_{i=1}^{m} p_i^2$$

where  $p_i$  is the probability that a tuple in D belongs to class  $C_i$  and is estimated by  $|C_{i,D}|/|D|$ . The sum is computed over m classes.

| RID | age         | income | student | credit_rating | Class: buys_computer |
|-----|-------------|--------|---------|---------------|----------------------|
| 1   | youth       | high   | no      | fair          | no                   |
| 2   | youth       | high   | no      | excellent     | no                   |
| 3   | middle_aged | high   | no      | fair          | yes                  |
| 4   | senior      | medium | no      | fair          | yes                  |
| 5   | senior      | low    | yes     | fair          | yes                  |
| 6   | senior      | low    | yes     | excellent     | no                   |
| 7   | middle_aged | low    | yes     | excellent     | yes                  |
| 8   | youth       | medium | no      | fair          | no                   |
| 9   | youth       | low    | yes     | fair          | yes                  |
| 10  | senior      | medium | yes     | fair          | yes                  |
| 11  | youth       | medium | yes     | excellent     | yes                  |
| 12  | middle_aged | medium | no      | excellent     | yes                  |
| 13  | middle_aged | high   | yes     | fair          | yes                  |
| 14  | senior      | medium | no      | excellent     | no                   |

Consider each attribute and all possible split. Ex. Let's consider attribute income. Find Gini index of the split into subset {low, medium} and {high}

| RID | age         | income | student | credit_rating | Class: buys_computer |
|-----|-------------|--------|---------|---------------|----------------------|
| 1   | youth       | high   | no      | fair          | no                   |
| 2   | youth       | high   | no      | excellent     | no                   |
| 3   | middle_aged | high   | no      | fair          | yes                  |
| 4   | senior      | medium | no      | fair          | yes                  |
| 5   | senior      | low    | yes     | fair          | yes                  |
| 6   | senior      | low    | yes     | excellent     | no                   |
| 7   | middle_aged | low    | yes     | excellent     | yes                  |
| 8   | youth       | medium | no      | fair          | no                   |
| 9   | youth       | low    | yes     | fair          | yes                  |
| 10  | senior      | medium | yes     | fair          | yes                  |
| 11  | youth       | medium | yes     | excellent     | yes                  |
| 12  | middle_aged | medium | no      | excellent     | yes                  |
| 13  | middle_aged | high   | yes     | fair          | yes                  |
| 14  | senior      | medium | no      | excellent     | no                   |
|     |             |        |         |               |                      |

Consider each attribute and all possible split. Ex. Let's consider attribute income. Find Gini index of the split into subset {low, medium} and {high}

Fill correct values here: 
$$Gini_{income \in \{low, medium\}}(D) \qquad Gini(D) = 1 - \sum_{i=1}^{m} p_i^2$$

$$= \frac{10}{14} Gini(D_1) + \frac{4}{14} Gini(D_2)$$

$$= \frac{10}{14} \left(1 - \left(\frac{6}{10}\right)^2 - \left(\frac{4}{10}\right)^2\right) + \frac{4}{14} \left(1 - \left(\frac{1}{4}\right)^2 - \left(\frac{3}{4}\right)^2\right)$$

$$= 0.450$$

$$= Gini_{income \in \{high\}}(D).$$

# Thank You!