Praktiukumsarbeit zum Praktikum Regelungstechnik

Christian Küllmer, Jonas Kallweidt, Leon Blum ${\bf August~5,~2019,~Kassel}$

Inhaltsverzeichnis

1	Rechnerteil Aufgaben aus Kapitel 9.3. des Praktikumsskrips		
	1.1	Wichtiger Hinweis:	3
	1.2	Aufgabe a) Gebautes Simulink Modell	3
	1.3	Aufgabe b)	4
	1.4	Aufgabe c)	5
	1.5	Aufgabe d)	5
	1.6	Aufgabe e)	6
	1.7	Aufgabe f)	7
	1.8	Aufgabe g)	7
2	Vers	such Antrieb	9
3	Vers	such Schwebekörper	11
4	Vers	such Kran	11
	4.1	Vorbereitungsaufgaben	11
	4.2	Regelung der Wagenposition y_w	11
	4.3	Zusätzliche regelung des Winkels α	11
	4.4	Digitale PD-Regelung von y_w und α	13
	4.5	Regelung mit zusätzlicher Stellgrößenbeschränkung	13
		4.5.1 Einfluss der Abtastzeit	13
	4.6	Regelung der x- und y- Achse	13

1 Rechnerteil Aufgaben aus Kapitel 9.3. des Praktikumsskrips

In diesem Anteil geht es um die in Aufgabe 9.3a. Dieser bezeichnet das Aufstellen der Gleichungen aus den gegeben Gleichungen. Die Gleichungen sind gegen als Blockschaltbild gegeben. Diese werden jetzt übersetzt in Mathlab Simulink.

1.1 Wichtiger Hinweis:

Für alle in diesem Bereich folgenden Auswertungen gibt folgende Farbkonvention

- $\bullet\,$ Die rote Kurve entspricht dem Winkel φ
- \bullet Die blaue Kurve entspricht dann der Winkelgeschwindigkeit $\dot{\varphi}$
- \bullet Die grüne Kurve entspricht der Winkelbeschleunigung $\ddot{\varphi}$

1.2 Aufgabe a) Gebautes Simulink Modell

Figure 1: In Simulink gebautes Modell des Systems des Roboterarms

1.3 Aufgabe b)

Das System wird simuliert und die Zustandsgrößen werden über einen Zeitverlauf dargestellt. Dabei entstehen folgende Diagramme:

Figure 2: Darstellung des Winkels für eine anfängliche Auslenkung von 40 Grad.

Aus dem Diagramm Figure 4 geht hervor, dass das System ein stabiles System darstellt,
solange keine Stellgröße eingeprägt wird und dabei für gewöhlich eine Ruhelage bei 0° annehmen kann, wenn vorher keine Auslenkung vorgenommen wurde. Hier geht die Auslenkung auf keinen stationären Endwert, da die Expotentialfunktion zur Beschreibung der Dämpfung niemals null wird. In einem Realen System wird hier aber wahrscheinlich ein Stillstand nach beliebig langer Wartezeit eintreten, wenn der Roboterarm die Haftreibung nicht mehr Überwinden kann und die Bewegung im Aperiodischen Grenzfall endet.

1.4 Aufgabe c)

Es soll eine Simulation angezeigt werden, die die Startwerte

$$\varphi(0) = 0 \tag{1}$$

$$\dot{\varphi}(0) = 0 \tag{2}$$

$$u(t) = \begin{pmatrix} 0 & f \ddot{\mathbf{u}} r \ t < 1\\ 0.17 & f \ddot{\mathbf{u}} r \ t \ge 1 \end{pmatrix}$$
 (3)

Figure 3: Darstellung des Winkels für eine anfängliche Auslenkung von 40 Grad.

Das System befindet sich zunächst in Ruhelage zum Zeitpunkt t=1 wird ein Drehmoment vom Motor aufgebaut, das den Roboterarm nach Durchlaufen eines Einschwingvorgangs um die neue Ruhelage in eben diese auslenkt . Diese neue Ruhelage hängt von dem Eingangsdrehmoment ab. Der Einschwingvorgang hat dabei ein gleiches Verhalten, wie der Einschwingvorgang von Aufgabe 9.3.b).

1.5 Aufgabe d)

$$\varphi(0) = 0 \tag{4}$$

$$\dot{\varphi}(0) = 0 \tag{5}$$

$$u(t) = \begin{pmatrix} 0 & f\ddot{\mathbf{u}}r \ t < 1\\ 0.18 & f\ddot{\mathbf{u}}r \ t \ge 1 \end{pmatrix} \tag{6}$$

Figure 4: Darstellung des Winkels für eine anfängliche Auslenkung von 40 Grad.

Anders als im Versuch 9.3c befindet sich der Roboterarm nun zum Zeitpunkt t=0 nicht mehr in der Ruhelage bei einem Winkel von 0° , sondern in einem Winkel von 40° . Dies hat zur Folge, dass der Arm zunächst in der Zeit bis t=1*s sowie in der darauffolgenden Sättigungszeit des PT1-Gliedes, das den Motor beschreibt, zurückschwingen kann. Sobald das Drehmoment des Motors aufgebaut ist legt der Roboterarm an Geschwindigkeit zu und überschreitet dabei sogar die kritische 180° Marke, ab der der Arm nicht mehr zurückschwingt, sondern einen Überschlag vollführt und weiter an Geschwindigkeit gewinnt. Da es sich bei dem betrachtetet Roboterarm um ein gedämpftes Model handelt, geht die Gewschwindigkeit in eine Sättigung über, bis diese um einen konstanten Wert fluktuiert.

1.6 Aufgabe e)

Um zu überprüfen, ob der Motor bei einem Arm bei einem Eingangssignal von eine Ruhelage bei $40\,^\circ$ zur Einstellung bringt. Wird dies in Mathlab mit folgendem Eingangssignal geprüft:

$$u_0 = \frac{m * g * l * sin(\varphi(0))}{300} = 0,1471 \tag{7}$$

Dies entspricht einem Drehmoment von 44,1402 Nm. Dieses Drehmoment wird im Modell als Konstante Eingangsgröße Augegebenen. Der resultierende Winkel wird dann in Grad angegeben und sollte entsprechend der Erwartung einen Winkel von 40 $^\circ$ entsprechen.

Figure 5: Darstelung des Winkelgraphen bei einem gegebenen Drehmoment

An dem Diagramm ist explizit zu sehen, dass es sich bei der Auslenkung durch das Drehmoment u $_0$ einstellt. Diese Auslenkung entspricht im Mitte. einem Wert von 0,6971 Rad. Daraus ergibt sich eine neue Auslenkung von 40 °. Damit wird die Angabe aus dem Aufgabenscript bestätigt.

1.7 Aufgabe f)

Bei der Linearisirung durch Softwarenutzung von Mathlab ergibt folgendes Ergebnis im Bogenmaß:

$$G_s = \frac{428.6}{(s^3 + 10.14 * s^2 + 8.944 * s + 75.15)}$$
(8)

Die Abweichung in der dritten Nachkommastelle des Zählers lässt sich dabei auf ein veränderten Rundungsalgorithmus im Programm verweisen. Die Ergebnisse stimmen also überein wodurch $G_{\rm s}$ von nun an unsere Funktion der Strecke beschreibt.

1.8 Aufgabe g)

Um einen Regler zu finden, der die Stabilitätskriterien einhält stellen wir zunächst die orginale Wurzelortskurve dar.

Figure 6: Wurzelortskurve des Systems G_s

In der Wurzelortskurve kann man direkt sehen, dass zwei Nullstellen in Richtung der zwei Nullstellen im positiven Bereich einen guten Reglner darstellen würden. Diese müssen dabei nicht die die Polstellen kompensieren, sondern lediglich im Imaginären Anteil des Wurzel Ortskurve liegen um dort den die Zerphilien Anteile der Wurzelortskurve anzuziehen. Es entsteht folgende Ausgabe.

Figure 7: Anzeige des Ausgangswertes

Die Sich damit realisierende Ausgabe wurde von dieser Wurzelortskurve erzeugt.

Figure 8: Wurzelortskurve des Systems G_s mit der Anpassung zweier Nullstellen

2 Versuch Antrieb

a) Die Sprungantwort des Systems soll ohne Filter ermittelt werden. Dabei zeigt sich jedoch das die Sprungantwort stark um den Wert von 300 fluktuiert. Nun soll die Sprungantwort mit eingeschaltetem Filter aufgenommen werden. Daraus wurde die Übertragungsfunktion durch ein PT1 Glied angenähert. Das Überschwingen wurde vernachlässigt. Die bestimmte Näherung lautet:

$$G(s)_{PT1} = \frac{1275}{1+9,17s} \tag{9}$$

c) Auf Basis der angenäherten Übertragungsfunktion kann nun ein Simulink Modell erstellt werden. Auf dies kann ein Regler ausgelegt werden und am realem Versuchsaufbau getestet werden. d) Die Vorgabe für den Regler soll eine t $_{5\%}$ Zeit von 0,3 Sekunden sein. Mithilfe einer Faustformel kann nun der Der Realteil des Poles bestimmt werden. Es ergibt sich dafür ein Realteil von -10 für den Pol des Geschlossenen Regelkreises des P Reglers. Der Geschlossene Regelkreis weist folgende Form auf:

$$G(s)_{PT1-geschlossen} = \frac{1275K_p}{1275K_p + 9,17s}$$
 (10)

e) Der P-Regler wird nun am Simulink Modell getestet. Als Stationärer Endwert wird 1 angestrebt. Um diesen Zu erreichen wird eine Vorsteuerung mit dem Verstärkungsfaktor K $_{\rm vor}=\frac{1600}{1581,5}$ die benötigte Stellgröße liegt über 5Volt aber im realistischen Bereich, dennoch liegt diese über 0,3 Sekunden lang an, sodass hier Handlungsbedarf besteht wenn das Reale System einen Error Code ausgibt. f) Der P-Regler wird mit

Vorsteuerung an der realen Maschine getestet. Es fällt auf das die Maschine trotz eines überschreitens der kritischen Überspannungszeit in der Simulation korrekt arbeitet. Hier sind die Modellabweichungen so groß, dass wir die kritische Spannung weniger als 0,3 Sekunden lang halten. Es lässt sich durch die nur näherungsweise zutreffende Streckenübertragungsfunktion in form eines PT1 Gliedes erklären. Das System ist nur für den einen Sollwert von 1600 Grad/sec stationär genau. Umso mehr die Sollwertgröße von 1600 Grad/sec abweicht desto Größer wird die Abweichung des Stationären Endwertes. Dies fällt erst bei weniger als 800 Grad/sec deutlich auf und ist bei 400 Grad/sec gut zu erkennen. g) Um Stationäre Genauigkeit für alle Sollwerte zu erreichen wird dem Regler ein I-Anteil hinzugefügt. Der PI-Regler wird über das SISO Tool ausgelegt. Aus den Anforderungen t $_{5\%}\!=\!0,4$ s und kein Überschwingen woraus sich ergibt das die Pole rein reell sein müssen ergibt sich für den schnellst möglichen Regler die Übertragungsfunktion

$$G(s)_{PI} = 0,0074 * \frac{1 - 7,1s}{s}$$
(11)

ferner ist keine Vorsteuerung erforderlich, da der PI-Regler ohnehin eine stationäre Genauigkeit aufweist. 6 Statt dem PI-Regler soll nun eine Regelstruktur bestehend aus einem kaskadiertem P-Regler verwendet werden. Die Übertragungsfunktion

$$G(s)_p = \frac{90653}{91,653 + 9,17s} \tag{12}$$

Die Übertragungsfunktion des Kaskadierten Reglers

$$G(s)_{\dot{\theta}} = \frac{1}{s} = \frac{90,653}{91,653s + 9,17s^2} \tag{13}$$

Mithilfe des SISO Tools kann ein P-Regler ausgelegt werden der die t $_{5\%}$ Zeit minimiert ohne dabei überzuschwingen. Als Verstärkungsfaktor des P-Reglers wurde 2,5262 ermittelt. Die im bestimmte Kaskadenregelung soll nun in Simulink getestet werden. Als Sollwert wird dabei 90 Grad angenommen. Die dabei Benötigte Stellgröße liegt in einem realistischen Bereich und ist der Simulation nach zu Urteilen keine Gefahr für das reale System, da sie nicht länger als 0,3 Sekunden über einem Wert von 5 Volt liegt. Der zuvor in Simulink überprüfte Regler wird in das Reale System eingebaut und als Sollwert werden 90 Grad angelegt. Der Regler im echtem System bietet im Gegensatz zur Simulation keine Stationäre Genauigkeit. Dies liegt daran, dass das Modell keine Reibung berücksichtigt. Nun soll der Motor 10000 Grad drehen. Allerdings ist dies ohne weiteres nicht möglich da das reale System einen Error Code ausgibt. Zuerst muss das Problem der Überspannung gelöst werden. Dies kann dadurch geschehen, dass ein Sättigungsblock in den Regelkreis eingebaut wird, sodass der Motor mit Maximal 5 Volt versorgt wird. Als nächstes muss die zu große Winkelgeschwindigkeit verringert werden. Dazu wird wieder ein Sättigungsblock eingebaut, weher die Winkelgeschwindigkeit auf Maximal 2000 Grad/sec wachsen lässt. Sind diese Probleme behoben kann der Motor in diesem Versuch einwandfrei benutzt werden.

3 Versuch Schwebekörper

4 Versuch Kran

- 4.1 Vorbereitungsaufgaben
- 4.2 Regelung der Wagenposition yw
- 4.3 Zusätzliche regelung des Winkels α

Februar 2019 durchgeführt.

Das Linearisierte Modell der Hausaufgabe kann in zwei Versionen in Mathlab bzw. Simulink implementiert werden: 1) Es kann über die Verschiedenen Beziehungen der einzelnen Zustandsgrößen und Eingangsgrößen ein Simulink Modell erstellt werden. 2) Die Linearisierten Gleichungen in Matrizen Form können direkt in Mathlab eingegeben werden, woraus Mathlab selbstständig ein LTI System realiesiert. Beide Varianten liefern das gleiche Ergebnis. Wir benutzten den 1. Weg. Versuchsdurchführung: Aus dem Modell werden die Pole sowie die Übertragungsfunktion bestimmt.

$$G_{(s)} = \frac{Zhler}{Nenner} \tag{14}$$

Von dieser Übertragungsfunktion entfallen folgende Pole auf die Last: Dies lässt sich durch die Schwingfähigkeit der Last erklären, weswegen hier Pole mit Imaginären Anteil enthalten sind. Die Pole des Wagens sind hingegen rein reell modelliert. Daraus ergibt sich die über die Faustformel für das Einschwingen in das 5% Band Folgender Ausdruck

$$t_{(5\%)} = \frac{-3}{Re(s_D)} = 33,3 \tag{15}$$

Als sinnvolle Einschwingzeit für das geregelte System wurde eine Einschwingzeit von 3,3 Sekunden gewählt, was einer Dekade weniger als die des ungeregelten Systems beträgt. Aus dieser Überlegung ergibt sich als gewünschter Überlegung über die obrige Faustformel ein Realteil des dominanten Poles der Last von -1. Über eine Bedingung für die Maximale Überschwingweite könnten nun die Imaginär Anteile bestimmt werden. (Hier nicht gegeben.) Mithilfe des SISO Tools kann der Regler Parameter R $_{\rm a}$ über die Wurzelortskurve und die Sprungantwort bestimmt werden. R $_{\rm a}=$ - 2,6 Das System soll nun simuliert werden für die festgelegten Parameter R $_{\rm a}=$ 1 y $_{\rm w}=$ 1 Daraus ergibt sich das folgende Ergebnis:

(g+h) Der Regler soll nun am Realem System getestet werden Der Regler dämpft die Schwingung deutlich besser als das ungeregelte System. Es liegt aber trotzdem weit weg von der Simulation bei der wir nach 3,3 Sekunden im 5% Band liegen. Im Vergleich, dieser Zustand ist im realem System erst nach ca. 5,5 Sekunden erreicht. Dennoch liegt die Maximale Winkelauslenkung des Realem Systems unter der der Simulation. Das verlangsamte einschwingen kann durch die Sättigung des Motors erklärt werden, welcher nur bei Spannungen bis ?5Volt? die Regelung des Winkes einbeziehen kann.

Das führt dazu, dass die Regelung erst später beginnt zu arbeiten und damit das System langsamer wird. Die Regelung arbeitet die Erste 2,5 Sekunden nicht und diese Braucht das reale System länger um die Ruhelage zu erreichen. Das Maximale Überschwingen ist geringer, da der Motor auch die Bewegung in y Richtung nicht beliebig Schnell durchführen kann sondern auch hier gesättigt ist. Außerdem wurde im Modell keine Gleitreibung berücksichtigt.

Antrieb 5: Drehzahlregelung Die Sprungantwort des Systems soll ohne Filter ermittelt werden. Dabei zeigt sich jedoch das die Sprungantwort stark um den Wert von 300 fluktuiert.

Nun soll die Sprungantwort mit eingeschaltetem Filter aufgenommen werden. Daraus wurde die Übertragungsfunktion durch ein PT1 Glied angenähert. Das Überschwingen wurde vernachlässigt. Die bestimmte Näherung lautet:

$$G(s)_P T1 = 1275/(1+9,17s)$$
 (16)

Auf Basis der angenäherten Übertragungsfunktion kann nun ein Simulink Modell erstellt werden. Auf dies kann ein Regler ausgelegt werden und am realem Versuchsaufbau getestet werden. Die Vorgabe für den Regler soll eine t(5%) Zeit von 0,3 Sekunden sein. Mithilfe einer Faustformel kann nun der Der Realteil des Poles bestimmt werden. Es ergibt sich dafür ein Realteil von -10 für den Pol des Geschlossenen Regelkreises des P Reglers. Der Geschlossene Regelkreis weist folgende Form auf:

$$G(s)_{(geschl.)} = (1275K_p)/(1275K_p + 1 + 9, 17s)$$
(17)

nun werden daraus die Pole in Abhängigkeit des Faktors Kp bestimmt. Daraus folgt das der Wert für

$$K_{\nu} = 0,0711$$
 (18)

betragen muss. Der P-Regler wird nun am Simulink Modell getestet. Als Stationärer Endwert wird 1 angestrebt. Um diesen Zu erreichen wird eine Vorsteuerung mit dem Verstärkungsfaktor

$$K_v or = \frac{1600}{1581, 5} \tag{19}$$

die benötigte Stellgröße liegt über 5Volt aber im realistischen Bereich, dennoch liegt diese über 0,3 Sekunden lang an, sodass hier Handlungsbedarf besteht wenn das Reale System einen Error Code ausgibt. Der P-Regler wird mit Vorsteuerung an der realen Maschine getestet. Es fällt auf das die Maschine trotz eines überschreitens der kritischen Überspannungszeit in der Simulation korrekt arbeitet. Hier sind die Modellabweichungen so groß, dass wir die kritische Spannung weniger als 0,3 Sekunden lang halten. Es lässt sich durch die nur näherungsweise zutreffende Streckenübertragungsfunktion in form eines PT1 Gliedes erklären. Das System ist nur für den einen Sollwert von 1600 Grad/sec stationär genau. Umso mehr die Sollwertgröße von 1600 Grad/sec abweicht desto Größer wird die Abweichung des Stationären Endwertes. Dies fällt erst bei weniger als 800 Grad/sec deutlich auf und ist bei 400 Grad/sec gut zu erkennen. Um Stationäre Genauigkeit für alle Sollwerte zu erreichen wird dem Regler ein

I-Anteil hinzugefügt. Der PI-Regler wird über das SISO Tool ausgelegt. Aus den Anforderungen t(5%)=0,4s und kein Überschwingen woraus sich ergibt das die Pole rein reell sein müssen ergibt sich für den schnellst möglichen Regler die Übertragungsfunktion $G(s)_P I = 0.0074 * (1-7,1s)/s$ ferner ist keine Vorsteuerung erforderlich, da der PI-Regler ohnehin eine stationäre Genauigkeit aufweist.

4.4 Digitale PD-Regelung von y_w und α

4.5 Regelung mit zusätzlicher Stellgrößenbeschränkung

4.5.1 Einfluss der Abtastzeit

In diesem Versuch wird der Einfluss der Abtastzeit auf das Ergebnis der Regelung genommen. Da wir die Regelfunktion des PD-Regler diskretisiert haben und danach sich das Ergebnis im k Bereich befindet, muss dieses Ergebnis dann noch in die Bildebene Z gebracht werden.

$$G_R(s) = K_P + K_D s = K_P * s + K_D * \Delta(1 + s * T_D)$$
(20)

$$y_k = K_P * k + \frac{K_D}{T_D} * (k - 1)$$
 (21)

$$y_{k} = K_{P} * k + \frac{K_{D}}{T_{D}} * (k - 1)$$

$$G_{R}(z) = K_{p} * z + \frac{K_{D}}{T_{D} * T} * \frac{z - 1}{z}$$
(21)

Was dabei einkalkuliert wurde, ist, dass T direkt die Abtastzeit des Reglers Berücksichtigt und daraus sich der Regelkreis beeinflussen lässt.

- 1. Die Abtastzeit wird auf t = festgelegt.
- 2. Die Abstastzeit wird auf t = festgelegt. Fazit

Im Vergleich der Abtastzeiten schauen wir uns das

4.6 Regelung der x- und y- Achse