

Ye Zhang

An overview of zkEVM Design & Challenges

What is Scroll?

We are building a native zkEVM solution

Our vision

- EVM-equivalent zk-Rollup → Best user and developer experience
- Decentralization → Decentralized proving network
- Align with Ethereum
 Open-source, co-build with community

The motivation

The problem of Layer 1

The idea behind zk-Rollup

The idea behind zk-Rollup

However...

Circuit

The signature is correct Enough balance, ... The path is updated correctly (hashes)

Application specific zk-Rollups

Smart contract root vk

Smart contract root <mark>vk</mark>

Smart contract root vk

Layer 1

Layer 2

We simulate EVM in circuit

zkEVM Circuit

The signature is correct

The smart contract is loaded correctly

The execution trace is valid

The storage is updated correctly

• • • • • • • •

The Comparison

How is a smart contract compiled and executed?

What is zkEVM? (according to Justin Drake)

Three flavours of zkEVM:

language-level:

Transpile an EVM-friendly language (Solidity or Yul) to a SNARK-friendly VM which may be different from the EVM. This is the approach of Matter Labs and Starkware.

bytecode-level:

Interpret EVM bytecode directly, though potentially producing different state roots than the EVM, e.g. if certain implementation-level data structures are replaced with SNARK-friendly alternatives. This is the approach taken by Scroll, Hermez, and the Consensys-led effort.

consensus-level:

Target full equivalence with EVM as used by Ethereum L1 consensus. That is, it proves validity of L1 Ethereum state roots. This is part of the "zk-SNARK everything" roadmap for Ethereum.

- Security inherited from EVM
 - This model has stood the test of time (i.e. gas)

- Security inherited from EVM
 - This model has stood the test of time (i.e. gas)
- Compatible with all infrastructure seamlessly
 - All DApps, wallets, tools and interfaces
 - Re-use Geth as our node for execution

- Security inherited from EVM
 - This model has stood the test of time (i.e. gas)
- Compatible with all infrastructure seamlessly
 - All DApps, wallets, tools and interfaces
 - Re-use Geth as our node for execution
- High encapsulated complexity
 - Hard for us to build, but it's the best trade-off for users and developers
 - Doesn't rely on external compiler

- Security inherited from EVM
 - This model has stood the test of time (i.e. gas)
- Compatible with all infrastructure seamlessly
 - All DApps, wallets, tools and interfaces
 - Re-use Geth as our node for execution
- High encapsulated complexity
 - Hard for us to build, but it's the best trade-off for users and developers
 - Doesn't rely on external compiler
- Efficiency problem solved through crypto and hardware
 - Advances in ZK (i.e. custom gates, lookup arguments, recursive proof)
 - Hardware acceleration (i.e. ASIC/FPGA/GPU)

- Security inherited from EVM
 - This model has stood the test of time (i.e. gas)
- Compatible with all infrastructure seamlessly
 - All DApps, wallets, tools and interfaces
 - Re-use Geth as our node for execution
- High encapsulated complexity
 - Hard for us to build, but it's the best trade-off for users and developers
 - Doesn't rely on external compiler
- Efficiency problem solved through crypto and hardware
 - Advances in ZK (i.e. custom gates, lookup arguments, recursive proof)
 - Hardware acceleration (i.e. ASIC/FPGA/GPU)
- Align with Ethereum
 - A lot of credit goes to the community (EF appliedZKP team)
 - Push forward the end-goal of "zk-SNARK" everything

The tech stack

The workflow of zkEVM

The workflow of zkEVM

The workflow of zkEVM

EVM circuit

Constrains the state machine

Challenge 1: zk-unfriendly opcodes

Challenge 2: verify stack/memory/storage operations

More tech details

	q_op	a_1	a_2			 	a_w
-1 }						 	
Slot i-1						 	
	1	рс	sp	gas	:	 :	
	0	ADD	MUL	SHR	:	 :	
Slot i	0	err1	err2	:	:	 :	::
	0	v_0	v_1		:	 :	
	0	:	:	:	:	 :	v_n
	1					 	
Slot i+1	0					 	

Split a slot to context, case switch, and operating values

context

Store the context of state machine

op and case switch

Switch the state between opcodes and error cases

Operating values

Operating values specific to each opcode

	q_op	a_1	a_2					a_w
.1 }								
Slot i-1								
	1	рс	sp	gas	:	:	:	
	0	ADD	MUL	SHR		:	:	
t i	0	err1	err2				:-	
Slot i	0	va_0	va_1				:	
	0	vb_0	vb_1					
	0	vc_0	vc_1					
Slot i+1		pc'	sp'	gas'	:		:	

Constrain the context transition

```
if case == ADD:
    pc' = pc + 1
    sp' = sp - 1
    gas'= gas + 3
    ...
```


	q_op	a_1	a_2		 	 a_w
-1 }					 	
Slot i-1					 	
	1	рс	sp	gas	 	
	0	ADD	MUL	SHR	 	
ot i	0	err1	err2		 	
Slot i	0	va_0	va_1		 	
	0	vb_0	vb_1		 	
	0	vc_0	vc_1		 	
Slot i+1	:				 	
Slot	:				 	

Write custom constraints for each opcode

```
if case == ADD:
    vc[0] + carry[0]*256 == va[0] + vb[0]
    vc[1] + carry[1]*256 == va[1] + vb[1] +
    carry[0]
    ...
    vc[31] + carry[31]*256 == va[31] + vb[31] +
    carry[30]
```


Lookup to RAM table for stack/memory/storage operations

RAM table

idx	tag	addr	R/W	value
1	STACK	1023	1	
5	STACK	1023	0	va
6	STACK	1022	0	vb
7	STACK	1022	1	VC
:	STACK	::	::	
	MEMORY	0x40	1	
::	MEMORY	0x40	0	
	MEMORY			
	STORAGE			
	STORAGE			

Lookup to RAM table for stack/memory/storage operations

Pop va from stack at 1022

Pop va from stack at 1022

Pough ve to stack at 1022

RAM table

idx	tag	addr	R/W	value
1	STACK	1023	1	
5	STACK	1023	0	va
6	STACK	1022	0	vb
7	STACK	1022	1	VC
	STACK			
:	MEMORY	0x40	1	
::	MEMORY	0x40	0	
	MEMORY			
	STORAGE			
	STORAGE			

More features in zkEVM circuits

- Handle dynamic opcode (e.g., CALLDATACOPY, etc.)
- Handle error cases (e.g., out-of-gas error)
- Handle calls into other contracts
- Support EIPs such as warm storage access list, tx refund, etc.

Credit to all community members!

Scroll-dev

Chih Cheng Liang

Eduard S.

Han

Brecht Devos

ying tong

Zhang Zhuo

HAOYUatHZ

Rohit Narurkar

icemelon

DreamWuGit

silathdiir

Miha Stopar

Lawliet-Chan

pinkiebell

adria0

bchyl

genfengDog

Kris Nuttycombe

davidnevadoc

TrapdoorHeader

str4d

ying tong

ebfull Daira Hopwood

Roadmap

We are hiring! Check out scroll.io

A native zkEVM Layer 2 Solution for Ethereum

Scaling Ethereum with cutting edge research and technology