

$$T(N) = C + T(N) - (4)$$
Substitute $s(4)$ in (3)
$$T(N) = T(N) + 3C - (5)$$
Here Pattern
$$T(N) = T(N) + iC$$
At some point, as $N/2$?
$$Iminishes we have only one element
$$T(N) = T(N) + iC$$

$$T(N) = T(N) + i$$$$

Date://
Take dog om Both Sides
log_N = log_2°
1092 N = 3 - (7)
substitute (7) in (8) equation (
$T(N) = T\left(\frac{N}{2\log_2 N}\right) + C\log_2 N$
= T(N) + clog 2 N
$T(N) = T(1) + c \log_{n} N$ $T(N) = + c \log_{n} N$
T(N) = 192N
T(N) & O(log2N)
Complexity & Big-oh ClogeN
Occ D/ Loans