NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE

(NASA-CR-167395) SOLAR POWER SATELLITE ANTENNA PHASE CONTROL SYSTEM HARDWARE SIMULATION, PHASE 4, VOLUME 3: USERS MANUAL Final Report (LinCom Corp., Pasadena, Calif.) 41 p HC A03/MF A01

N87-33614

Unclas G3/44 27698

LinCom Corporation

P.O. Box 2793 D. Pasadena, Calif. 91105

-LinCom-

SOLAR POWER SATELLITE ANTENNA PHASE CONTROL SYSTEM HARDWARE SIMULATION PHASE IV VOLUME III. SOLARSIM USERS MANUAL

PREPARED FOR

NASA LYNDON B. JOHNSON SPACE CENTER HOUSTON, TX 77058

TECHNICAL MONITOR: JACK SEYL

CONTRACT NO. NAS9-16097

PREPARED BY

W. C. LINDSEY

A. V. KANTAK C. M. CHIE

LINCOM CORPORATION P.O. BOX 2793D PASADENA, CA 91105

MARCH 1981

TR-0381-1280

-LinCom'-

TABLE OF CONTENTS

			PAGE
1.0	SOLA	RSIM COMPUTER SIMULATION DEVELOPMENT	1
2.0		RSIM SPS SYSTEM DEFINITION AND COMPUTATIONAL IDERATIONS	4
	2.1	Spacetenna	4
	2.2	Current Taper	4
	2.3	Subarrays	.5
	2.4	Tilts on Subarrays	5
	2.5	Phase Control System	8
	2.6	Inputs for the Double Integrator Subroutine Suppl by the Computer Library "Math Pack"	ied 10
3.0	USAG	E OF SOLARSIM SUBROUTINES	11
	3.1	SOLARSIM Subroutine Pointing Error (PE)	14
	3.2	SOLARSIM Subroutine TILT	17
	3.3	SOLARSIM Subroutine Power Pattern (APP)	20
	3.4	SOLARSIM Subroutine Power Transfer Efficiency (PT	E) 25
	3.5	SOLARSIM Subroutine Carrier Tracking Loop (CRTL)	34
	3.6	SOLARSIM Subroutine Code Tracking Loop (CDTL)	37

1. SOLARSIM COMPUTER SIMULATION DEVELOPMENT

SOLARSIM is a software package designed to predict the effect of certain electrical and mechanical imperfections of the SPS system on its performance. The following is a documentation of the SOLARSIM programs and SOLARSIM capabilities to quantify the spacetenna performance parameter values. The overall set up of SOLARSIM computer simulation is shown in Figure 1.1. As shown in the figure, the user input directs the central processor unit to pick the correct SOLARSIM subroutine from the subroutine package stored in the computer memory. Every operation done by the SOLARSIM is interactive in nature, i.e., questions are asked and the user answers control the execution of the programs. As shown in the Figure 1.1, the SOLARSIM package can compute the following quantities:

- 1. RMS Pointing error (PE)
- 2. Tilt effects (TILT)
- 3. MPTX code tracking loop performance (CDTL)
- 4. MPTX carrier tracking loop performance (CRTL)
- 5. Averaged power pattern (APP)
- 6. Power transfer efficiency (PTE)

There are two different types of inputs necessary for the operation of SOLARSIM routines, user inputs and the computer generated inputs. As mentioned earlier, the user inputs have the prompting, i.e., it is an interactive software, but the computer inputs are automatic in the sense that once the user's input specifies the SOLARSIM subroutine, the subroutine calls for the necessary computer generated input for its execution.

The SOLARSIM programs are configured such that all the user has to know is the set of inputs to the program he desires to execute.

POWER DENSITY STEP	INPUTA OF	NUMBER OF POWER HODGES PER CONJUGATION PT.	TOTAL # OF PINER HORDLES PER DENSITY STEP	POICE DENSITY STREET STEP SUBARR	MUMILE DE	TOTAL OF POWER CONJUGATION POINT	PER POWER POWER
1 3 4 5 6 7 8 10	776 632 644 678 784 900 664 612 1057 1028	36 30 24 20 16 12 9 8 6	\$936 18500 15456 12550 12564 10860 5976 4896 6312 4112	1 1,73ma1, 2 1,89ma1, 3 2,17ma7a 4 2,37ma7, 5 2,6 ma2, 6 3, m a3, 7 3,46ma3, 8 3,67ma3, 9 4,24ma4, 10 5,2 mas,	9m 18760 2m 15456 2m 12560 m 12560 m 10800 6m 5976 7m 4896 4m 6312		9936 18960 15956 12560 12544 10800 5976 4896 6312 4112
TOTAL FOR	7270		101552		101552		101552
2130 01 1	HC SUBARRAY	+ 10,4m p 10,4m	The state of the s	auco marine			
							•
]/[
				Lo'	' '	\	٠
	234						
				X'		Ī	
						/	
				H .			
				10			
				1 10			

Fig. 2.1 VARIABLE AND FIXED SIZE SUBARRAY.

Following is an attempt to make the user familiar with the assumptions and general requirements of the SOLARSIM package.

2.0 SOLARSIM SPS SYSTEM DEFINITION AND COMPUTATIONAL CONSIDERATIONS

2.1 Spacetenna

Spacetenna is a stepped approximation of a circle of 11 cm in diameter having an ara of 0.76 km². This area is subdivided into square subarrays totaling 101,552 = N. The operation of the spacetenna being retrodirective, it needs a pilot beam originating at the center of the rectenna which is used to phase the downlink power beam to achieve retrodirectivity. The convention followed is (θ_r, ϕ_r) as the direction of the pilot reference signal as seen from the spacetenna center.

2.2 Current Taper

ľ

For the control of the power lost in the sidelobes of the antenna pattern, an excitation current taper of 10 dB (center to edge) is suggested. This taper is implemented by discretizing it into ten distinct levels and putting different numbers of amplifiers (klystron tubes) from level to level. It should be remembered that the ratings of all the amplifiers is the same all over the spacetenna. The ten levels when imposed over the circular spacetenna become ten circles with different diameters and having a different number of amplifiers per unit area from circle to circle. Figure 2.1 shows the spacetenna with ten power density circles, their radii and the number of klystrons in each circle. Even though the current rating of the klystron is the same, the current density is different in different power rings. The feed currents also have amplitude jitters associated with them. These two quantities are designated by:

CURNT(I) Current densities in the I^{th} power ring, I=1,...,10

SIGNAL(I) Amplitude jitter in the I $\frac{\text{th}}{\text{power ring}}$, I=1,...,10 2.3 <u>Subarrays</u>

The baseline system assumes only one power amplifier per subarray. Since there are different numbers of amplifiers present per unit area in different power density rings, the size of subarray is different from ring to ring. The subarrays are assumed to be square and have the power amplifier and the phase conjugation circuitry at its geometric center. The actual radiating elements are the slots in the waveguides. Figure 2.1 shows the size and number of subarrays in each power ring. One alternate way is to have a constant sized square subarray throughout the spacetenna. Such an arrangement will have a different number of power amplifier per subarray from ring to ring. This arrangement is also shown in Figure 2.1. The following convention is adapted:

- N(I) The number of radiating slots in $i\frac{th}{t}$ power ring I=1,...,10
- M(I) The number of radiating slots per subarray in $i\frac{th}{t}$ power ring, I=1,...,10)

2.4 <u>Tilts on Subarrays</u>

There are basically one type of tilt and two types of jitters associated with the subarrays which are, mechanical tilting of the subarrays with the associated jitters and the radiating and transmiting element location jitters. The mechanical tiliting of the subarrays can be considered to have two components, i.e, the x-component and the y-component the mean values of which gives the mechanical tilt of the spacetenna with respect to the perfectly pointing spacetenna. The radiating and transmitting element location jitters actually have three

Fig. 2.2. EFFECTS OF SUBARRAY MEAN TILTS AND JITTER

a Lin Com

Fig. 2.3. JITTERS ADDED DUE TO LOCATION UNCERTAINTY OF RADIATING AND CONJUGATION POINTS.

components: two components in the plane perpendicular to the line forming that particular element and the rectenna center and one component along that line. We will neglect the jitter components in the plane mentioned above and consider only the jitter component along the line joining the element and the rectenna center as the location jitter of that particular element. The convention followed is given in the following table:

Mean Mechanical Tilts of the Subarrays	XMEAN(I), YMEAN(I)
Jitters on Mechanical Tilts	SIGMA(I), I=1,2,,10
Location Jitter on the Pilot Receiving Element	SIGPSI(I), I=1,2,,10
Location Jitter on the Radiating	SIGPHI(I), I=1,2,,10

It should be noted that X_{MEAN} as well as Y_{MEAN} are in minutes while the location jitters will be specified in terms of % of the wvelength of the power wave. Figures 2.2 and 2.3 show these tilts and jitters.

2.5 Phase Control System

Since the operation of the spacetenna is retrodirective, it needs a constant phase reference throughout the antenna for conjugator to function properly. This constant phase is supplied to the conjugators by the use of MSRTS in the form of a tree. The master oscillator situated at the physical center of the spacetenna locks onto the phase of the incoming pilot signal. This phase is transmitted to 16 first level slave oscillators, each of these sends the phase to 16 second level slave oscillators. These third level slaves in turn send the phase to 25 fourth level slaves. Figure 2.4 shows the phase distribution tree.

- PHASE NOISES ARE CORRELATED
- POWER SPLITTERS, POWER TRANSPONDERS, PHASE TRACKING PLLS, MULTIPLIERS, MICROWAVE HARDWARE COMPONENTS

Fig. 2.4. FOUR LEVEL PHASE DISTRIBUTION TREE.

·LinCom·

As the master phase passes from level to level of the phase distribution tree structure it gets corrupted by the phase noise added by the oscillators and the related equipment at each level. The variance of the accumulated noise is designated as SIGMAB(I), at the end of the distribution tree.

2.6 <u>Inputs for the Double Integrator Subroutine Supplied by the Computer Library "Math Pack"</u>

The description of these inputs is necessary for the power transfer efficiency program only because a double integration of the averaged power pattern is necessary to obtain the total power radiated by the spacetenna and the power received by the rectenna. The following formula will illustrate the inputs necessary for the program:

where APP(θ , ϕ) is the averaged power pattern produced by the spacetenna. Where

 θ_L, θ_u : The lower and upper limits of the variable θ describing the area A.

 ϕ_L,ϕ_u : The lower and upper limits of the variable ϕ describing the area A.

Note: To obtain the power received by the rectenna $\theta_L=0$, $\theta_U=0.477$, $\phi_L=0$ and $\phi_U=360$.

The double integral subroutine approximates the above double integral by the following double sum

$$\int\limits_{\theta_{L}}^{\theta_{u}} \int\limits_{\phi_{L}}^{\phi_{u}} APP(\theta,\phi) \sin \theta d\theta d\phi \cong \int\limits_{k=1}^{I} \int\limits_{t=1}^{N} \int\limits_{j=1}^{N} W_{\theta j} W_{\phi j} APP(\theta_{kj},\phi_{tj}) \sin \theta ki$$

where

 I_{θ}, I_{ϕ} ; Are the number of intervals on the θ axis and ϕ axis respectively, on the specified θ and ϕ ranges.

N $_{\theta}$, N $_{\phi}$: Number of points in each of I $_{\theta}$ and I $_{\phi}$ respectively in the $^{\theta}$ and $^{\phi}$ ranges.

 $W_{\theta j},~ W_{\varphi j},~ \theta_{k\,i}$ and $\phi_{t\,j}$ are generated by the subroutine and does not have to be supplied.

Note: A reasonable input for I $_{\theta}$, I $_{\phi}$ would be 3,3 and for N $_{\theta}$, N $_{\phi}$ would be 4.4.

3. USAGE OF SOLARSIM SUBROUTINES

SOLARSIM subroutine package is created such that user encounters minimum of trouble to run it. After a few preliminary commands from the user, the entire operation becomes automatic stopping and asking questions where user input is necessary. User is prompted for all the inputs necessary for that particular program; thus, virtually eliminating all user generated errors in data feeding. The preliminary commands preparing the SOLARSIM subroutine package for user selection of program are necessary only once, making selecting and running of subsequent programs easy. The preliminary commands necessary are shown in the following computer printout. As seen on that sheet the last command is @XQT LINCOM.SELECT. This executes the 'select' subroutine which shows that there are six choices possible. They are: Averaged Power Pattern, Power Transfer Efficiency, Pointing Error, Tilt Affects, Carrier Tracking Loop and the Code Tracking Loop. @ ADD.LINCOM. Abbreviated File Name is the command necessary to access the required subroutine from the magnetic tape which was loaded on the tape drive

_	
	9HUN ZTIID3,E/3285,E-N03737
	DATE: 011381 TIME: 172030
	#J3C+CALLUP.TAPES N03737*ZTHD3.,X09676/W
	REQUEST HAS BEEN ACCEPTED
	6ASG,T SPS.,BC,X09676
	READY
	PASG,T LINCOM.
*	READY > PREWIND SPS.
~T 1	FURPUR 27R3A E35 SL73R1 01/13/81 17:33:52) @COPIN SPS., LINCOM.
, ssowish g an	6 SYM 1 ABS PROM. SELECT
· •	
	THERE ARE SIX PROGRAMS AVAILABLE: AVERAGED, POWER PATTERN, POWER TRANSFER EFFICIENCY POINTING ERROR, TILT EFFECTS, CARRIER TRACKING, LOOP AND THE CODE TRACKING LOOP
•	THEY WILL BE ASBREVIATED AS : APP, PTE, PE, TILT, CRTL AND CDTL RESPECTIVELY
	TO EXECUTE WHITE BEAUTION WHITE THE PROPERTY OF THE PROPERTY O
	S THE NAME.
O	
F PO	₩
VAL I	
page Uali	
; IS TY	

-LinCom-

before. As mentioned before, this set of commands are necessary only once, at the start of the computer run. Keeping this in mind we will describe each subroutine one by one.

3.1 SOLARSIM Subroutine Pointing Error (PE)

Purpose: SOLARSIM subroutine POINTING ERROR evaluates the effect of phase error introduced by the phase distribution tree (at various levels of the tree) onto the pointing error. It also allows variations in number of levels and number of branches per node at each level of the phase distribution tree. This subroutine may also be used for determining effects of other phase error sources on the pointing error. An example of this would be the phase error introduced by the SPS transponder circuitry can be counted as the pahse error due to the last level of the phase distribution tree.

Access Command: @ ADD LINCOM.PE

<u>Inputs</u>: The only necessary inputs are:

Number of levels in the phase distribution tree (PDT)

Number of power density levels

Number of branches per node at each level of PDT

Outputs: The following page shows a sample run of the program.

•		The second secon	• • • • •
			- ·
۲,		•	
	FURPUR 27R3A E35 SC/3R1 01/13/81	1 17:35-19	
	READY PURPUR 27R3A E35 SL73R1 01/13/81 2 SYM 1 REL 1 ABS	1 17:35:28	
•			***
•			
-	R THE NUMBER OF PHASE	DISTRIBUTION TREE LEVELS AND THE NUMBER OF POWER DENSITY LEVELS	
	24,10		
L	ENTER THE NUMBER OF BRANCHES PER NODE	308	
١	210,10,10,23		
1	Services and County County County County		
j .	OR ENTER 2 FOR POINTING ERROR FOR VI	FLIEDFRANCE ERRORS-FER LEVEL DE THE PRASE DISTRIBUTION TREE VARIABLE TOTAL RMS PRASE ERROR	ION TREE
(THE STEP SIZE AND NUMBER OF PHASE DISTRIBUTION TREE.	TERMS NECESSARY FOR THE TOTAL RMS PHASE ERROR	
J	>1.0,20		
			•
	BRANCHING OF THE PHASE DISTRIBUTION 16 16 16 25	UTION TREE: 25	XL.
[· [IAU JAU
	TOTAL RMS PEASE ERROR (DEGREES)	POINTING ERROR (MINUTES)	10 TV:
Í	1.0000000	.00110421	Da Tro
1_	3,0000000	.00220842	LE TOY
	4.0000000 5.0000000	.00441683 .00552104	0
.j	7.0000000	.00772946	
J.	8,00000000	.00883367	
ļ,	10.0000000	.01104209	

.01435471 .01545992 .01765313 .01765734 .01877155 .02097996	E THE ROLL			
13.0000000 14.00000000 15.00000000 17.00000000 19.00000000	ENTER 1 FOR A NEW RUN OR 2 TO TERMINATE >2 * *FLOATING PT-GNDRFLO_HAS_OCCURRED* * * *REGISTERS HAVE BEEN ZEROED* *	-16-		

3.2 SOLARSIM Subroutine TILT

<u>Purpose</u>: SOLARSIM subroutine TILT evaluate the effect of various tilts of the subarrays, the location jitters of the power radiating and pilot receiving elements and finally the phase distribution system errors on the gain of the spacetenna.

Access Command: @ ADD LINCOM.TILT

Inputs:

Note that this program does need the integrator subroutine to generate the weights. One needs to know the above inputs only if values different from baseline values are to be fed to the program.

Outputs: The following pages show a sample run of the program.

	0ADD LINCOM.TILT FURPUR 27R3A E35 5L73R1 01/13/81 17:39:42		ď
	835 SL73R1 ABS		gana stá
٠		4	
*	INPUTS FOR THE TILT PROGRAM BEGIN		6 46.2 3888°
	PRINT 1 FOR USING THE BASELINE CURRENT TAPER OR 2 FOR DIFFERENT TAPER	The second secon	**************************************
, 250-124 A	ENTER 1 POR USING BASELINE FOR NUMBER OF SLOTS PER POWER RING OR 2 FOR DIFFERENT NUMBER OF SLOTS		1.25 **** *******************************
• :	ENTER 1_FOR USING BASELINE_FOR NUMBR OF SLOTS PER SUBARRAY IN EACH POWER RING OR 2 FOR DIFFERENT NUMBER OF SLOTS.	BER OF SLOTS.	gendale stee soo
_	ENTER 1 FOR SAME LOCATION JITTERS ON THE RADIATING ELEMENTS IN ALL POWER RINGS OTHERWISE ENTER 2	en elemente de la companya del la companya de la co	
18-	ENTER THE COMMON LOCATION JITTER OF THE RADIATING ELEMENTS IN TERMS OF & OF LAMBDA		
	ENTER 1 FOR SAME LOCATION JITTER ON THE CONJUGATION POINT IN ALL POWER RINGS OTHERWISE ENTER 2		
-	>1		
	ENTER COMMON LOCATION JITTER FOR THE CONJIGATION POINT >0.0		
	ENTER 1 FOR SAME X AND Y TILTS FOR SUBARRAYS OTHERWISE ENTER 2		* ***********
	profession v due x dos till mumixem sht datus		
	>20.0		
	ENTER 1 FOR SAME TILT JITTER FOR EACH POWER RING OTHERWISE ENTER 2		
•	ENTER THE COMMON JITTERS ON TILTS		

ENTER THE NUMBER OF POINTS DESIRED ON X - AXIS->20

1		מוח וחני דותו בנותפטעט, המטגובוב	•	*		***		
	and the second second	VATURE ATTA VAX						
			• (09/9)	•	- EG N1 09/5	ı		
	دو صب	00000000	99,85770130		CE181300 -			1
	***	. 99999433	99.02218361		00772931			
		1.99993876	99.71570778		01236422	!	i	;
		2.99993331	99.53852844		02008782		ľ	
		3.99997815	99.29104519		03089918			
	1	4.82997330	93.97384453		0447955B	2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1	
		2.9996895	98.58765316		06177469		į į	
		5.99996501	98.13335609		08183345			
	••	7.99936173	97.61200237	:	-10496774			
		8.99995911	97.02478409		13117314		1	
-		9,99995720	96.37302971		-16044484			
		10-9995625	95.65822220		19277697			
	-	11.99995625	94.88196564		22816325			
٠. ـ		12.99995708	94.04599330		26659697			
,		13,99995911	93.15216064		7080706K			
		14.99396213	92.20243931		35257586		· · · · · · · · · · · · · · · · · · ·	
		15.99996686	91.19889355		40010427			
	1	16.99997234	90.14369488		45054647			•
~ , `		17.99997997	89.03910637		50419205			
		18.99998856	87.88746357		56073068			١

2

DR 2 FOR TERMINATION			
ENTER 1 FOR FRESH RUN OR 2 FOR TERMINATION	^		
 		. [:	 _ ,

3.3 SOLARSIM Subroutine Power Pattern (APP)

<u>Purpose</u>: The purpose of this subroutine is to study the effects of parameters like the subarray tilts, the phase jitters, current amplitude jitter, etc. on the power pattern produced by the spacetenna.

Access Command: @ ADD LINCOM.APP

Inputs:

 $N(I) \qquad \qquad I = 1, \dots, 10$

 $M(I) \qquad I = 1, \dots, 10$

 $NA(I) \qquad I = 1, \dots, 10$

 $R(I) \qquad I = 1, \dots, 10$

 $SIGMAB(I) \qquad I = 1, ..., 10$

SIGPSI(I) I = 1,...,10

 $SIGPHI(I) \qquad I = 1, ..., 10$

 $SIGMAI(I) \qquad I = 1, ..., 10$

 $CURNT(I) \qquad I = 1, \dots, 10$

 $XMEAN(I) \qquad I = 1, ..., 10$

 $SIGMA(I) \qquad I = 1, \dots, 10$

PHI The value of ϕ direction in which the pattern is generated.

NTERM The number of θ value at which the pattern will be evaluated.

STEP The step size for θ evaluation.

Note that the parameter values N(I), M(I), and $\Re(I)$ are required to be fed into the program only if these values are different from the baseline values. All the necessary baseline values are already present in the program. Of course, NTERM and STEP will be required to be fed in

by the user.

Output: The following pages show a sample run of the subroutine APP.

In this particular run the total rms phase error is assumed to be 10° (input) while all the other inputs were held at zero. It should be noted that the program also produces the power output. This output is true for the SPS at 36,000 km from the surface of the Earth.

AADD LINCOM, APP
FURPUR 27R3A E35 SL73R1 03/18/81 11:48:50 READY FURPUR 27R3A E35 SL73R1 03/18/81 11:49:05 8 SYM 5 REL 1 ABS
ENTER APP FOR THE AVERAGED POWER PATIERN OR PIE FOR POWER TRANSFER EFFICIENCY:
INPUTS FOR THE POWER PATTERN PROGRAM BEGIN
ALL THE ECLIDMING QUESTIONS SHOULD BE ANSWERED IN YES OR NO OR GIVE THE DATA:
DO_YOU WANT BASELINE NUMBER OF POWER DENSITY STEP?
DO YOU WANT THE BASELINE CURRENT TAPER?
DO YOU WANT THE BASELINE NUMBER OF SLOTS PER POWER RING?
DO_XOU_WANT_BASELINE_NUMBER_OF_SLOTS_PER_SUBARRAYIN_EACH_POWER_RING2
DO YOU WANT THE SAME LOCATION JITTER ON THE RADIATING ELEMENTS IN ALL FOWER RINGS?
ENTER THE COMMON LOCATION JITTER OF THE RADIATING ELEMENTS IN TERMS OF & OF LAMBDA:
DO YOU-WANT THE-SAME-LOCATION-JITTERS ON-THE CONJUGATION POINTS IN-ALL-THE-POWER-RINGS?
ENTER THE COMMON LOCATION JITTER OF THE CONJUGATON POINTS IN ALL THE POWER RINGS IN & OF LAMBDA:
IN EACH POWER RING THE MEAN X AND MEAN Y TILTS WILL BE ASSUMED SAME:

DO YOU WANT SAME MEAN VALUES FOR X AND Y TILTS IN DIFFERENT POWER DENSITY RINGS?

ENTER THE COMMON MEAN X AND Y TILTS IN MINUTES.

					25	112	900	00+0	
					3632	4112	888	0000	.0000 .521540)
	•				2427	6312	0000		-4258+01-
	**				1821	4896	0000	-0000	-3687+03
		:33			1618			. 5000+000	-3477401
ACETENNA:	UNIT VALUE:	THE END OF PHASE DISTRIBUTION TREE:	RES		1335	10800	0000	.0000	-3014+01-
SUBARRAYS IN THE SPACETENNA:	E AMPLIFIERS IN PER UNIT VALUE:	PHASE DIS	-PHI—IN—DEGI		12558637	•	0000	.0000	-2604+03
	THE AMPLIFI	1	ENTER THE PILOT WAVE DIRECTIONS, THETA IN MINUTES AND PHI IN DEGREES.		9145204	1	• • •		2332+01-
IN MINUTES FOR	ER OF ALL TH	DEGREES AT	THETA IN	00000000	9376400	.2318+03 .0000	0000	0000	5129+0 1
OITTERS 11	ENTER THE COMMON AMPLITUDE JITTER OF 0.0	ENTER THE TOTAL PHASE JITTER IN DEGREES	DIRECTIONS	PHIR .	9968491	.1773+03	0000	0000	1904+00
ENTER THE COMMON TILT JITTERS 0.0	COMMON AMPI	TOTAL PHASE	PILOT WAVE	.000000000	3918749	9776.	0000	0000	.1000+02
ENTER THE SO.O	ENTER THE	ENTER THE	SO.0,0.0	THETAR =	M(I) = N(I) = NA(I) =	x(1) = S1G%S1(1)	SIGNAI(I) SIGNAI(I)	XMEAN(I)= SIGMA(I)=	SIGNAB =
:				_ ر ر		-23-	 	→	

DO YOU WANT SAME TILT JITTERS FOR THE SUBARRAYS IN ALL POWER RINGS? >YES

IREES:	
ENTER THE VALUE OF PHI IN DEGREES:	

ENTER THE STEP SIZE IN MINUTES:

--Enter-thg-number-of-terms-necessary-->20

NORMALIZING FACTOR	CTOR4002902138+16		# # # # # # # # # # # # # # # # # # #
THETA (MINUTES)	NORMALIZE	POWER DI	
.3000+01		. 1196-02 .7758-03	A colony
5000+01		.3161-03	grave t sie de sécuri d'annez d'anneillement autorité se s'anne
.8000+01 .9000+01 .1000+02		.1474-04 .2541-03	**************************************
.1130+62 .1200+02 .1300+02		.1003-04 .466-04 758-01	
.1400+02 .1500+02 .1600+02		.1080-04 .7400-05 .1317-04	
.1/00+02 .1800+02 .1900±02		.1524-04 .1608-04 .3907-05	
DO YOU WANT A FRESH	FRESH RUN?		
•			
			*
			2 300 AND AL

3.4 SOLARSIM Subroutine Power Transfer Efficiency (PTE)

<u>Purpose</u>: The purpose of SOLARSIM subroutine power transfer efficiency is to study the effects of perturbations, mechanical or otherwise, on the power transfer efficiency of the spacetenna.

Eccess Command: @ ADD LINCOM.PTE

<u>Inputs</u>: If the program is run for the baseline quantities then the following quantities are not necessary but if they are to be different from baseline numbers one needs it for the input of the program.

$$N(I) \qquad \qquad I = 1, \dots, N$$

$$M(I) \qquad I = 1, \dots, N$$

$$NA(I)$$
 $I = 1, ..., N$

$$R(I) \qquad I = 1, \dots, N$$

$$SIGMAB(I)$$
 $I = 1,...,N$

$$SIGPSI(I)$$
 $I = 1,...,N$

$$SIGPHI(I)$$
 $I = 1,...,N$

SIGMAI(I)
$$I = 1,...,N$$

CURNT(I)
$$\ddot{I} = 1,...,N$$

$$XMEAN(I) I = 1,...,N$$

$$SIGMA(I) I = 1,...,N$$

$$(\theta_r, \phi_r)$$
 The pilot incidence angles as seen from the spacetenna.

Nx,Ny

Number of points to be used per interval in the

Gauss Quadrature approximatin of the integral

Ix,Iy

Number of intervals in the theta and phi range to be

considered for the integration.

Output: The following pages indicate the computer run for the Power Transfer Efficiency Program. In this particular run the location jitters on the radiating and receiving elements as well as the current amplitude jitters are constants for the spacetenna, i.e., they do not change from power ring to power ring. In such a case the program has the capability of looping back and changing the initial conditions of the parameters. As seen from the printout, the program is run for different initial conditions for the parameters. Any one of the parameters is allowed to vary producing a set of values for the efficiency holding all other parameters to constant values.

ORIGINAL PAGE IS OF POOR QUALITY

				DATA:					HINGS?	LAMBDA:	POWER RINGS?	INGS IN 8 OF LAMBDA:		RINGS?		
Comment of the commen	ANDD LIWCOM.PTE FURPUR 27K3A E35 SL73R1 03/18/81 10:34:40 READY FURPUR 27K3A E35 SL73R1 03/18/81 10:34:52 8 SYM 5 REL 1 ABS	31	OR THE EPFI	ALL THE FOLLOWING QUESTIGNS SHOULD BE ANSWERED IN YES OR NO OR GIVE THE	DO YOU WANT BASELINE NUMBER OF POWER DENSITY STEP?	DO-YOU WANT THE BASELINE CURRENT TAPER?	DO YOU WANT THE BASELINE NUMBER OF SLOTS PER POWER RING?	DO YOU WANT BASELINE NUMBER OF SLOTS PER SUBARRAY IN EACH POWER RING?	DO-YOU-WANT THE SAME LOCATION JITTER ON THE RADIATING ELEMENTS IN ALL POWEF RINGS?	ENTER THE COMMON LOCATION JITTER OF THE RADIATING ELEMENTS IN TERMS OF &	DO YOU WANT THE SAME LOCATION JITTERS ON THE CONJUGATION POINTS IN ALL THE YES	ENTER THE COMMON LOCATION JITTER OF THE CONJUGATON POINTS IN ALL THE POWER RINGS IN	IN EACH POWER RING THE MEAN X AND MEAN Y TILTS WILL BE ACTUMED SAME:	DO YOU WANT SAME MEAN VALUES FOR X AND Y TILTS IN DIFFERENT POWER DENSITY	ENTER THE COMMON MEAN X AND Y TILTS IN MINUTES:	

-27-

- , +, 15 ×4 Hours (4 mm)4

					· · · · · · · · · · · · · · · · · · ·	· 中央 李肇 基章 中央日子童8	
		***************************************	3				
		•			•		
					,		. [
0:0							ivar-sikares en
DO_YOU_WANT_SAME_TILT_JITTERS_FOR_THE_SUBARRAYS_IN	-IN-ALL-POWER-RINGS?	NGS 2	,a•				
)YES	'						
ENTER THE COMMON TILT JITTERS IN MINUTES FOR SUB-	SUBARRAYS IN THE SP	SPACETENNA:					
DO YOU WANT THE SAME AMPLITUDE JITTER FOR ALL TH	E POWER RINGS?				•		_
ENTER THE COMMON AMPLITUDE JITTER OF ALL THE AMPLIFI	PLIFIERS—IN—PER—UNIT—VALUE	UNIT-VALUE4					
ENTER THE TOTAL PHASE JITTER IN DEGREES AT THE >10.0	END OF PHASE DIS	DISTRIBUTION TREE:	: :				, ,
ENTER THE PILOT WAVE DIRECTIONS, THETA IN MINUTE	S AND PHI IN DEG	DEGREES:					,
NO INPUTS FOR POWER RECEIVED CALCULATIONS:				ORI OF			
DO YOU WANT_THE BASELINE LIMITS FOR THE THETA.I	THETA_INTEGRATION?			GINAL POOR G	·		
DO YOU WANT THE BASELINE LIMITS FOR THE PHI INTER	INTEGRATION?			PAGE UALI			
ENTER THE NUMBER POINTS PER INTERVAL FOR THETA A	AND PHI INTERVALS:	••		IS I'Y			7
NTER THE NUMBER OF INTERVALS TO BE CONSIDERED	FOR-THE THETA-AND	THETA-AND-PHT-RANGES:					
THETAR					- 1		*
395 526 607 3918749 9968491 9376400	729 1002 9145204 12558637 12560	1335	1618	1821	2427	3632	7
1(1)000000000000	.320	.3658+03	3960+03	.4219+03	.4630+03	.5000+03 .0000	
(I)	0000 .0000 454+00 .6666+00	00000.	0000	.0000	0000	0000	-
XMEAN(I) =0000000000	000	0000	0000	0000	9000	ì	

The second secon

Tagang dang paga dang d		
At a second seco		1
INPUTS	S FOR THE TOTAL POWER RADIATED CALCULATIONS:	
ENTER TI	THE LOWER AND UPPER LIMITS FOR THE THETA INTEGRATION IN MINUTES:	'. ']
ENTER	ENTER THE NUMBER OF INTERVALS TO BE CONSIDERED FOR THE THETA RANGE:	*1.5****
•		
	, 00000000	* 2**.
	84128013.00000000 3491363.65625000 87619376.00000000	** Marit
; -29	81940746.00000000 7940756.18750000 89881502.00000000	
-	-81940732.00000000 -7940755.12500000 -89381487.00000000	# ?
	14.87500000	
	87619390.00000000	
ENTER SEEMEN	1 ' 0	THE STATE OF THE S
	A RI HAMPAN AND AND AND AND AND AND AND AND AND A	****

ENTER THE INITIAL CONDITIONS FOR ALL THE PARAMETERS IN THE ORDER! LOCATION JITTERS ON TRANSMITING ELEMENTS
(1 OF LAMBDA), LOCATION JITTERS ON RECEIVING ELEMENTS (1 OF LAMBDA), AMPLITUDE JITTERS (1),
PHASE JITTER (DEGREES) DELETING THE INPUT FOR THE SELECTED VARIABLE

>0.0,1.0	7 THE VARSANCE		i
LOCATION JITTERS ON THE RADIATING E LOCATION JITTERS ON THE RECEIVING E AMPLITUDE JITTERS (PERCENT)	ELEMENTS (% OF LAMBDA) =00000. ELEMENTS (% OF LAMBDA) = .00000 .00000		1 1
TOTAL PHASE ERROR (DEGREES)	POWER TRANSFE		1
1.000000 2.000000	93.289032		1
5.00000	92.605678 92.861331 92.605657		1
7.000000 8.000000	92.294124 91.927310 91.505885		
10.000000 11.0000000 12.000000	91.030617. 90.502372 89.922109		- 1
13.000000	89,290871 88,609797 87,880099		1
IN WHAT FOLLOWS ENTER ONLY ONE NUMBER	DIFFERENT FROM 1 EXCEPTING THAT ALL THE NUMBERS SHOULD BE EQUAL TO 0	TO STOP THE RUN	ļ
ENTER THE NUMBER OF PHASE JITTERS,NUMBER ELEMENTS AND THE NUMBER OF AMPLITUDE JITTERS,1,15,1	JHBER OF LOCATION JITTERS ON RADIATING ELEMENTS NUMBER OF LOCATION JITTERS	RS ON RECEIVING	1
ENTER THE INITIAL CONDITIONS FOR ALL THE PARAMETERS I (4 OF LAMBDA), LOCATION JITTERS ON RECEIVING ELEMENTS— PHASE JITTER (DEGREES) DELETING THE INPUT FOR THE SELE	THE PARAMETERS IN THE ORDER: LOCATION JITTERS ON TRANSMITING ELEMENTS RECEIVING-ELEMENTS-(4-OF-LAMBDA), AMPLITUDE-JITTERS-(4), INPUT FOR THE SELECTED VARIABLE		
ENTER THE STARTING POINT AND STEP OF	THE VARIABLE		
LOCATION JITTERS ON RADIATING ELEMENTS AMPLITUDE JITTERS (PERCENT) = 00000 PHASE JITTER (DEGREES) = 00000	NTS (% OF LAMBDA) = .00000		1

ľ

FFICIENCY(PERCENT)		•	AND THE PARTY OF T		•						UMBERS_SHOULD_BEEQUAL_TO_0_TO_STOP_THE_RUN	NUMBER-OF-LOC		•	ERS ON TRANSMITING ELEMENTS ITTERS (%),					-Transfer - Eppeterocy (Percent)			•	
POWER TRANSFER E 93.317	91.847372	90.04224	87.574899	84.502152 80 BD233	16.827454	72,390455	67.672101	- 62.7.63028 - 153.003		42.912538 42.912538	FERENT FROM 1 EXCEPTING THAT ALL THE NUMBERS SHOULD BE.	O? LOCATION.JITTERS.ON_RADIATING_ELEMENTS_	מעס		PARAMETERS IN THE ORDER: LOCATION JITTERS ON JING ELEMENTS (* OF LAMBDA), AMPLITUDE JITTERS CHEOTHEL-SELECTED VARIABLE		VARIABLE	•	(% OF LAMBDA) = .00000	\$-OF-LAMBDA)POWER	93.317617	-89-075887-	84.20567 78.085267	71-216358-
0000001	2.00000	3.000000	4000000 S	000000.9	7.000000	000000	10,00000	11.00000	12.00000	14.00000	IN WHAT FOLLOWS ENTER ONLY ONE NUMBER DIFFERENT	ENTER_THE_NUMBER_OF_PHASE_JITTERS,NUMBER_OF_			ENTER THE INITIAL CONDITIONS FOR ALL THE PARAMETERS IN THE ORDER: (% OF LAMBDA), LOCATION JITTERS ON RECEIVING ELEMENTS (% OF LAMBDA) PHASE JITTER (DEGREES) DELETING THE INPUT-FOR THE SELECTED VARIABLE	>0.0,0,0,0,0	ENTER THE STARTING POINT AND STEP OF THE >0.0,1.0		LOCATION JITTERS ON PECEIVING ELEMENTS AMPLITUDE JITTER (PERCENT) = .00000 PHASE_JITTER-(DEGREES)	NG-ELEMENTS-	1.00000	2.060000	4. UCUCUCU	0000000

ן]_ רי

		S. C.
8.000000 9.000000 10.000000	50.171278 43.865514 38.116630 32.951161]
13.00000 14.00000	28.31372 20.763932	-
IN WHAT FOLLOWS ENTER ONLY ONE N	ONE NUMBER DIFFERENT FROM 1 EXCEPTING THAT ALL THE NUMBERS SHOULD BE EQUAL TO 0 TO STOP THE RUN	grave and femines 8
ENTER THE NUMBER OF PHASE JITTERS, NUMBER OF ELEMENTS AND THE NUMBER OF AMPLITUDE JITTERS	IS, NUMBER OF LOCATION JITTERS ON RADIATING ELEMENTS NUMBER OF LOCATION JITTERS ON RECEIVING	
ENTER THE INITIAL CONDITIONS FOR ALL THE PARAMETERS IN		
PHASE JITTER (DEGREES) DELETING S >0.0,0.0,0.0	-OF-LAMBDA),-AMPLFTUOG-JFFTERS-(%), ED VARIABLE	-
ENTER THE STARTING POINT AND STEP	P OF THE VARIABLE	,- /
LOCATION JITTERS ON RADIATING E LOCATION JITTERS ON REGEIVING-E PHASE JITTER (DEGREES) = .0	ELEMENTS (% OF LAMBDA) = .00000 -ELEMENTS(%-OF-LAMBDA)00630	
AMPLITUDE JITTERS ON CURRENTS . 000000	POWER TRANSFER EFFICIENCY (PERCENT) 93.317617	
1,000000 2,000000 3,000000	93,308236 93,280093 93,233231	· ·
5.00000 6.00000 6.00000	93.167700 93.083582 92.980979	. ,
8.00000 9.000000 10.000000	92,720821 92,563577	 7
11.000000 12.000000 13.000000 13.000000	92.195687	1
14.00000	- "!	7

i.

O YOU WANT A PRESH RUN?	
A PRESH RUN?	
A PRESH RUN?	
	demand of the second se

270.04 2.

3.5 SOLARSIM Subroutine Carrier Tracking Loop (CRTL)

<u>Purpose</u>: The purpose of SOLARSIM subroutine carrier tracking loop is to study the effect of the random various noises and various system parameters such as the filter bandwidth, loop bandwidth and the chip rate on the carrier tracking loop phase error.

Access Command: @ ADD LINCOM.CRTL

<u>Inputs</u>: The question and answer session generates the following inputs:

 $f_{3 dR} = RF filter 3 dB bandwidth$

δ = Half 3 dB notch frequency normalized to the chip rate

 γ = The front end filter null in per unit value

 β = PN apparent tracking offset normalized to chip time

M = Code repetition rate

 R_c = Chip rate

k₁ = Noncoherent interference coupling coefficient

k₂ = Coherent interference coupling coefficient

It should be noted that the $f_{3\ dB}$ value should be 0.0 when there is no RF filtering before the front end filter. This is provided in the program to account for the filtering effect induced by the waveguides in the subarray. Also the parameter β is not used in the program because it is assumed that there is 10% loss of pwoer due to the code tracking error. The results are rather pessimistic because the code tracking loop can track the code very well.

Output: The computer run of SOLARSIM subroutine CRTL is shown in the following pages.

E		,
¬		. XX# #
	8A0D LINCOM.CRTL FURPUR 27R3A E35 SL73R1 01/14/81 18:19:11 READY	AT THE .
-	FURES 2783A E35 SL73R1 01/14/81 18:19:23	بنسمه
· ·		
•	ENTER NUMBER OF ELEMENTS OF F3, DELTA, GAMMA BETA, M, RC	****
2)!)!)!	r - t - pa
'erms, Inc.	ENTER VALUES FOR RF FILTER 3 DB BANDWIDTH IN FRACTION OF RC-F3: (ONE A LINE)	
, Januarian	FOR DELTA:	
F exically.	SUTER VALUES FOR GAMMA: (ONE A LINE) >0.001 ENTER VALUES FOR BETA: (ONE A LINE)	مدا <u>مون</u>
. •	VALUES FOR M .	-
-35 <i>-</i>	O R VALUES FOR CH	
^	ENTER K2:	
_	(FOR THE FOLLOWING, HIT RETURN FOR NOMINAL VALUES, OTHERWISE ENTER DESTRED WATHER	-
•	Andrew White	
~	ENTER LOOP BANDWIDTH IN HZ (NOMINAL 10) :	
	ENTER TRANSMIT POWER IN KW (NOMINAL 65)	
-	SATER VALUE FOR DIAMETER OF THE TRANSMIT ANTENNA, AREA IN METERS (NOMINAL ID) :	
<i>-</i> :	E .0000 BL = 10.0000 POWER = .354045-06	
-	000000	
	. 10000.0	,
	n TC • .1000u0-06	_

	~		• •	٠,	`	~	# 4		
		,	3						
							-		
	RC								
	ALPHA, BETA, GAMMA, Kl, K2, IF1, IF2, IF3, IF, LF SIGMA, M, TC, RC = 1.17071666 5 OCCURRED**								
.14-02	,IF3,IF,LF								
.96-03	,K2,IF1,IF2					•			
.41-03 -408718 	.TA,GAMMA,K1					•			
.56-12 SIGMA =	A ALPHA, BE SS) = 1 HAS OCCURRE	CCURRED* *				٠	•		
NEQ= .728444-12 .56-12 .41-03 .96-03 .be= .56-12 .41-03 .96-03 .be= .51GMA408718 .be= .51GMA408718 .be= .5016 .buter408718 .bu	PER OF DATA IS: DELTA ALPHA, BETA, GAMMA, I PU TIME USED (MINUTES) = 1.17071666 *FLOATING PT OVRFLO HAS OCCURRED* *	*DIVIDE CHECK HAS OCCURREDS ** *REGISTERS HAVE BEEN ZEROED*			•				
NEO72 THREE PARTS LP ENTER-NUMBE	RDER OF DATA IS CPU TIME USED * *ELOATING PT	* * DIVIDE (emilija iz denima arimitat it marab di	- i	1
					-36-				ļ

1

I

:

i ;

!

ı

3.6 SOLARSIM Subroutine Code Tracking Loop (CDTL)

<u>Purpose</u>: The main purpose of the SOLARSIM subroutine code tracking loop is to study the behavior of the code tracking loop under various noises. The subroutine may be used to produce design values for the code tracking loop such as the arm filter bandwidth or the code loop bandwidth, etc.

Access Command: @ ADD LINCOM.CDTL

Inputs: This program has only three inputs:

 B_1 = The loop bandwidth in Hz

 $F_{3 \text{ dB}}$ = One-half 3 dB bandwidth in kHz of the bandpass filter in the code loop arm.

 F_d = The dither frequency in kHz.

Note: $F_{3\ dB}$ is half of the 3 dB bandwidth and not the total bandwidth. If this instruction is not followed, erroneous results will be generated.

Output: The following pages show a sample run of the SOLARSIM subroutine CDTL.

[* I	ļ	- I	ŋ	January Sec.	٦	ן יייין	-	7 1	-1	 1	l	-
										!	1	
ļ					1				}			
			ĺ	-			Ī					
			İ								;	
			ŀ								1.	
				İ							!	
	ļ			İ								
	İ						1		ļ			
	i								ì.		;	•
							Į					
									İ	i		
											į ·	
									1		1	
									1			
		1 . [İ					à
	l	.										
	ł			ł								î
			. 1				ŀ					
	- 1										li	
											i	
			Į									
			***	•			!					
			i									
			•								· .	
			ĺ								Ì	
	l	:				İ					i :	
			i	į							į '	
1	w	KHZ	:		!		•				Í	
7:1	18:47:35	Z	•		:							
8:4	4:8	83		·	;							
	f	11.		į į	1	-04		Ö		-03		<u>-</u> 03
1/8	01/14/81	S.	: S3		į	7.00000-04		9.83333-04		1.31667-03		1.51567-03
\$	5	PAS	A EU	00		00.		.83		16.	1 !	15
	ਰ ਰ	NA ON	T V	-01000	5	7	j	5				1
E35-SE73R1-01/14/81-18:47:17	SL73R1	ENTER LOOP BANDWIDTH IN HZ: >10.0 -ENTER.3-DB-BAND-WIDTH-OF-BANDPASS-FILTER IN KHZ	ENTER DITHER FREQUENCY IN KHZ: 1.0 ENTER KI AND KZ IN PER UNIT VALUES: 0.01,0.01	1	.3156528901-01 FIRST TERM:	VS ••		1		1	FOURTH TERM:	1
St	SI	BAND-WIDTH IN	2 8		.3156528901 FIRST TERM:	-9864197-15 (MINUTES):	;	-2746433-08- D (MINUTES):	<u></u>	.8239300-05- 0 (MINUTES):	TE	-13
552	E35 S	HTO.	UEN N P	1	565 ST	419 NUT	TER	£ 58	TERM:	300 NUT	RTE	263 NUT
1 1		I MO	RED 2 I	A	FIR	986 (MI	g	746 (MI	H	(MZ	5	17C 1M)
G	REL	BAN	8 O	.01000-K2	THE	03	SECOND TERM:	USED	THIRD		THE	 ED
R3.	10-	LOOP 3-DB	THE	9		USED		us			0	TERM4 =7371263-19 - CPU TIME USED (MINUFES):
22.62	£27	3 4	12 Z		TIN	I WE	Z	IME	I S	3 W I	FEN	IME
DY E	PUR-SY	ENTER 10.0 ENTER	ENTER 1.0 ENTER 0.01.0		SIGSQ =	TERM!	COMPUTING	TERN2	COMPUTING	TERM3-=- CPU TIME	COMPUTING	A E
eADD LINCOM.CDTL FURPUR-27R3A READY	FURPUR 27R3A 12-SYM10-REL	ENTE >10.0	ENTER DITE >1.0 ENTER KI A	2	is 5	F ស	8	<u> </u>	8	5 S	8	- TERM4 -
					1							į
	L	L.	: .1	لــــا	. 1.		38-	L	j		نـــن	•