Lecture11: Diode models and circuits (3)

Sung-Min Hong (smhong@gist.ac.kr)

Semiconductor Device Simulation Lab.
School of Information and Communications
Gwangju Institute of Science and Technology

Diode

Its symbol

Ideally, a perfect rectifier

Example 3.4

A diode-resistor combination

- Consider two cases, $V_A > 0$ and $V_A < 0$.
- ← Draw the IV curve.

Example 3.6

An OR gate

Rectifier

Same circuit shown in Example 3.4.

Input vs. output

Input

- 50 Hz
- Pure sine
- No dc

Output

- 0, 50, 100, ... Hz
- dc voltage: $\frac{1}{\pi}$ V

GIST Lecture on April 6, 2016 (Internal use only)

Concept!

- How to detect the electromagnetic radiation
 - Nonlinearity is required.

Incident THz wave (High freq)

Rectifier, revisited

Same circuit shown in Example 3.4.

pn junction as a diode

Exponential model

$$I_D = I_S \left(\exp \frac{V_D}{V_T} - 1 \right)$$

A simple math, again

- Taylor series expansion
 - Consider a function, f(x).
 - Then, at $x_0 + \Delta x$ (Δx is small.), the function value would be similar to that at x_0 :

$$f(x_0 + \Delta x) \approx f(x_0)$$

– A better approximation?

$$f(x_0 + \Delta x) \approx f(x_0) + \frac{df(x)}{dx} \Big|_{x=x_0} \Delta x$$

Nonlinear function → linearly approximated!

A system

A system (You know what it actually represents.)

$$V_{in} \longrightarrow I_{out} = I_s \exp \frac{V_{in}}{V_T} \longrightarrow I_{out}$$

Smaller amplitude?

- When $V_{in} = 0.6 + 0.001 \sin 2\pi f t$,
 - Nonlinear?

Verbatim (p. 66)

- These thought lead us to the extremely important concept of "<u>small-signal operation</u>," whereby the circuit experiences only small changes in voltages and currents.
- Therefore it can be simplified through the use of "<u>small-</u> <u>signal models</u>" for nonlinear devices.
- The simplicity arises because such models are linear, allowing standard circuit analysis and obviating the need for iteration.

Exponential

- Simple, but important example
 - A diode is biased to a voltage V_{D1} .
 - The current is given by I_{D1} .

$$I_{D2} = I_s \exp \frac{V_{D1} + \Delta V}{V_T} = I_s \exp \frac{V_{D1}}{V_T} \exp \frac{\Delta V}{V_T}$$

$$I_{D2} \approx I_{D1} \left(1 + \frac{\Delta V}{V_T} \right)$$

Example3.18

- A diode is biased at a current of 1 mA.
 - Determine the current change if V_D changes by 1 mV.

$$\Delta I_D = \frac{I_D}{V_T} \Delta V_D \approx 40 \mu A$$

- Small-signal resistance
 - As far as small changes in the diode current and voltage are concerned, the device behaves as a linear resistor.

$$r_d = \frac{V_T}{I_D}$$

Example3.19

- When the small change in the diode voltage is time-varying,
 - What happens?

$$I_{D2} = I_s \exp \frac{V_{D1} + \Delta V}{V_T} = I_s \exp \frac{V_{D1}}{V_T} \exp \frac{\Delta V}{V_T}$$

$$I_{D2} \approx I_{D1} \left(1 + \frac{\Delta V}{V_T} \right)$$

$$I_{D2} = I_s \exp \frac{V_{D1} + \Delta V \cos \omega t}{V_T} = I_s \exp \frac{V_{D1}}{V_T} \exp \frac{\Delta V \cos \omega t}{V_T}$$

$$I_{D2} \approx I_{D1} \left(1 + \frac{\Delta V \cos \omega t}{V_T} \right)$$

Rectifier, revisited

Constant-voltage model?

Introducing a capacitor

Difference from the previous one?

Introducing a capacitor

Difference from the previous one?

Voltage [V]

Analogy

A blood vessel

(Google image)

Limiter

Level-shift for both half cycles

MOSFET

- Metal-Oxide-Semiconductor Field-Effect Transistor
 - How can I explain its importance properly?
- In the biology,
 - All living organisms are composed of cell(s).

Structure of cork (Wikipedia)

Its generic structure

- Vertical structure
 - Metal-Oxide-Semiconductor
- Terminals
 - Gate, Source, Drain, (and substrate)

Actual device

- TEM image of a MOSFET
 - 32nm node
 - (somewhat old...)

(Packan et al., IEDM 2009)

How to fabricate it (1/6)

How to fabricate it (2/6)

How to fabricate it (3/6)

How to fabricate it (4/6)

How to fabricate it (5/6)

How to fabricate it (6/6)

• 0.18 μm NMOSFET

Source/drain implant

Top view

- TEM image of a MOSFET
 - 22nm node
 - (a few years ago...)

(Wikipedia)

Future

Nanowire?

(Google images)

• III-V?

(Google images)

Other application

- Up to now, we have seen the MOSFET used for the logic application.
 - CMOS RF
- However,
 - NAND Flash memory
 - Power device
 - Various sensors