Performance Loss Bounds for Approximate Value Iteration with State Aggregation

Mathematics of Operations Research

Van Roy

February 18, 2019

Problem Definition

- What is this paper about? How to approximate J*, the optimal cost-to-go function (value function), with Φr?
 - State Aggregation
 - Value Iteration
 - In particular, how to find $r \in \Re^K$?
- ▶ What is this paper NOT about? How to partition the space (or find $\Phi \in \Re^{|\varphi| \times K}$)?

 $^{^{0}|\}varphi|$ is the number of states

Approximating J

$$\min_{r} ||J - \Phi r||_{2,\pi} \tag{1}$$

lacktriangle Projection with respect to a weighted Euclidean norm $\|.\|_\pi$

$$||J||_{2,\pi} = \left(\sum_{x \in \varphi} \pi(x)J^2(x)\right)^{1/2}$$

 $\pi \in \Re_+^{|\varphi|}$ is a vector of weights, showing the ${\it importance}$ of each state

▶ To get *I*, we need to run value iteration

$$\Phi r^{(l+1)} = \Pi_{\pi} T \Phi r^{(l)}$$

Calculating r

$$\Phi r^{(l+1)} = \Pi_{\pi} T \Phi r^{(l)}$$

- T is the dynamic programming operator
- T is a contraction
- $ightharpoonup \Pi_{\pi}$ is max-norm nonexpansive
- $lackbox{\Pi}_{\pi}$ operator (matrix) projects onto the column space of Φ with respect to a weighted Euclidean Norm that minimizes equation (1)

$$\Pi_{\pi} = \Phi(\Phi^T D \Phi)^{-1} \Phi^T D$$

where $D = diag(\pi_i)$

Bounds

▶ Without considering the importance weights, and when μ is greedy with respect to \tilde{J} we have the bound¹:

$$||J_{\mu} - J^*||_{\infty} \le \frac{2\alpha}{1 - \alpha} ||J^* - \tilde{J}||_{\infty}$$
 (2)

- Considering the importance weights and when $\Phi \tilde{r} = \Pi_{\pi} T \Phi \tilde{r}$
 - Approximation Error Bound

$$\|\Phi \tilde{r} - J^*\|_{\infty} \le \frac{2}{1 - \alpha} \min_{r \in \Re^K} \|J^* - \tilde{J}\|_{\infty}$$

Performance Loss Bound

$$(1-\alpha)\|J_{\mu\tilde{r}} - J^*\|_{\infty} \le \frac{4\alpha}{1-\alpha} \min_{r \in \mathfrak{R}^K} \|J^* - \Phi r\|_{\infty}$$

▶ HOWEVER!!!

 $[|]J_{\mu} - J^*|_{\infty}$ is performance loss

Using the Invariant Distribution

If $\pi_{\tilde{r}}$ is is the invariant state distribution of transition matrix $P_{\mu_{\tilde{r}}}^{2}$

$$(1 - \alpha)\pi_{\tilde{r}}^T (J_{\mu\tilde{r}} - J^*) \le 2\alpha \min_{r \in \Re^K} ||J^* - \Phi r||_{\infty}$$

Compare it with:

$$(1-\alpha)\|J_{\mu\tilde{r}} - J^*\|_{\infty} \le \frac{4\alpha}{1-\alpha} \min_{r \in \mathfrak{P}^K} \|J^* - \Phi r\|_{\infty}$$

• Weighting Euclidean Norm projection by the invariant distribution of a greedy (or ϵ -greedy) policy improves the performance loss.

 $^{^2\}pi$ is an invarient of P if $\pi^T P = \pi^T$

Thank You!