Course Schedule

Due dates

• See homework and assessment due dates on Assignment Page.

Put the assessment days on the calendar you actually check. On the assessment day, you can choose from the morning session (10:00AM-11:00AM) or the evening session (7:00PM-8:00PM), but not both.

You have one week grace period to turn in your assignment after which you automatically get a 0 unless you have emailed me for an extension.

If your grade is C or lower, you have 1 attempt to fix your assignment and the highest grade you can get for the resubmission is a B, unless you have made prior arrangements with your instructor.

If you are missing assessments please contact your instructor.

Weekly schedule

Tentative/Always Subject to Change

Weekly Schedule			
Modules	Lesson	Assignments	
01	Course Information Structs & Lambda Functions	1. Complete the Course Information Quiz in D2L. 2. Complete Zylabs and Assignment - Structs Review Assignment *Students who do not complete the above items will be dropped from the course on the	
		second Tuesday of the term. Other goals for this week: 1. Post a brief introduction to the class in the D2L Discussion topic "Introductions". 2. Log in to the Linux server cslinux.pcc.edu to make sure	
		your account is enabled. Contact your instructor if you are not able to log in to the Linux server. 3. Access zyBooks.com and subscribe to the	
		course text. The main goals for this week are to understand the course organization and review CS 161 material. Structs are the introduction to creating user-defined data types.	

Modules	Lesson	Assignments
02	Classes Part 1	 Classes are the object-oriented way of creating user-defined data types. Start Assignment 1 Classes Assessment 1 Classes coming up
03	• Classes Part 2	 The principle of encapsulation, or "information hiding", protects the internal structure of an object from unwanted interference. Complete Assignment 1 Classes Assessment 1 Classes Due
04	Dynamic Variables and Memory Management	 Pointers and Memory Management Start Assignment 2 Dynamic Variables Assessment 2 Dynamic Variables and Memory Management coming up
05	Dynamic Variables and Memory Management	 Pointers and Memory Management Continue Assignment 2 Dynamic Variables and Memory Management Practice Assessment 2 Dynamic Variables and Memory Management Due
06	Dynamic Variables and Memory Management	 Pointers and Memory Management (Debugging) Continue Assignment 2 Dynamic Variables and Memory Management Assessment 2 Dynamic Variables and Memory Management Due
07	• Linear Linked Lists Part 1	 Linked lists are the basis of most dynamic data structures, including stacks, queues, and trees Start Assignment 3 Linear Linked Lists 1 Assessment 3 Linear Linked Lists 1 coming up

Modules	Lesson	Assignments
08	• Linear Linked Lists Part 2	 Linked lists are the basis of most dynamic data structures, including stacks, queues, and trees Complete Assignment 3 Linear Linked Lists 1 Assessment 3 Linear Linked Lists 1 Due
09	Basic Recursion	 Recursive algorithms are algorithms that refer to themselves. Start Assignment 4 Linear Linked Lists 2 Assessment 4 Linear Linked Lists 2 coming up
10	Recursion and Linked Lists	 Every linked list operation can be implemented either recursively or non-recursively. Complete Assignment 4 Linear Linked Lists 2 Assessment 4 Linear Linked Lists 2 coming up
11	Finals Week	Assessment 4 Linear Linked Lists 2 Due

Flexibility statement

The instructor reserves the right to modify course content and/or substitute assignments and learning activities in response to institutional, weather or class situations.

End of Weekly Schedule