

s = species (H = Hake)

j = location (northing, easting, depth)

x = northing

y = easting

d = depth

i = biological replicate

r = technical replicate

p = qPCR plate

m = mock community sample

q = qPCR standard aliquote sample

R = metabarcoding reference species

 $\psi = \text{mean hake eDNA concentration (log(copies/μL))}$

 δ = biological replicate random effect

 V_i = volume filtered and aliquote dilution offset

 $\phi = \text{qPCR}$ amplification parameter

 $\sigma_Y = \text{standard deviation of qPCR Ct values}$

 $\beta_{0n}, \beta_{1n} = \text{intercept and slope defining mean qPCR}$

DNA concentration relationship

 $\gamma_0, \gamma_1 = \text{intercept}$ and slope defining standard deviation

of qPCR - DNA concentration relationship

 α_s = amplification efficiency relative to reference species π = predicted sequence proportions at the end of PCR

 $\zeta = \text{ethanol wash effect}$

 $\tau = \text{standard deviation among biological replicates}$

Z = qPCR amplification (yes=1; no=0)

Y = qPCR Ct values

 $K = \text{known DNA conc. } (\log(\text{copies}/\mu L))$

 $L = \text{known DNA conc. } (\log(\text{copies}/\mu L))$

W = metabarcoding sequencing reads

T = total number sequencing reads

V = volume filtered and aliquote dilution offset

I = aliquote dilution factor

States

D = DNA conc. at a station-depth $(\log(\text{copies}/\mu L))$

E = DNA conc. in a biological replicate

 $(\log(\text{copies}/\mu L))$

F = Smoothed DNA conc. (copies/L)