Задачи по Математическим основам анализа данных

Артамонов Н.В.

7 апреля 2025 г.

Содержание

1	Раб	ота с массивами (матричный анализ)	2
	1.1	Операции с матрицами	2
		1.1.1 Скалярное умножение и сложение	
		1.1.2 Умножение матриц	
		1.1.3 Обратная матрица	
		1.1.4 Матричные уравнения	6
		1.1.5 Определитель	8
	1.2	Системы линейных уравнений	8
2	Эле	менты анализа	10
	2.1	Функции одной переменной	10
	2.2	Функции многих переменных	11

1 Работа с массивами (матричный анализ)

1.1 Операции с матрицами

1.1.1 Скалярное умножение и сложение

№1. Рассмотрим матрицы

$$A = \begin{pmatrix} -1 & 2 & 0 \\ 0 & 2 & 3 \\ 1 & -1 & 0 \\ 2 & -2 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & -1 & 1 \\ 0 & 1 & 1 \\ 2 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & 0 & -1 \\ -1 & -2 & 2 \\ 1 & -1 & 2 \\ 0 & 3 & -1 \end{pmatrix}$$

Вычислите

$$2A+B$$
 $A-2C$ $4B-A-C$ $C-2A+4B$

№2. Рассмотрим матрицы

$$A = \begin{pmatrix} 2 & 1 & 5 \\ 3 & 4 & 3 \\ 1 & 2 & 0 \\ 2 & 3 & 1 \\ 1 & 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 1 & 0 \\ 2 & 5 & 2 \\ 4 & 3 & 2 \\ 3 & 4 & 1 \\ 1 & 3 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 5 & 2 & 3 \\ 2 & 3 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \\ 2 & 2 & 3 \end{pmatrix}$$

Вычислите

$$A + 3B$$
 $3B - 2C$ $2B - C + 3A$ $2C + 3A - 5B$

№3. Рассмотрим матрицы

$$A = \begin{pmatrix} -1 & 2 & 2 & 1 & 0 \\ 1 & 0 & -2 & 1 & 0 \end{pmatrix}$$

$$B = \begin{pmatrix} 0 & 0 & 1 & 3 & 2 \\ -1 & 0 & 2 & 1 & -3 \end{pmatrix}$$

$$C = \begin{pmatrix} 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & 1 & -1 & -2 \end{pmatrix}$$

Вычислите

$$3A - B$$
 $2A - C$ $2B - C + 3A$ $B - 2A + C$

1.1.2 Умножение матриц

Замечание: через \odot будем обозначать *произведение Адамара* для матриц

№4. Для следующим матриц вычислите $A \odot B$, если операция определена

1.
$$A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$$
 $B = \begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix}$

2.
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} B = \begin{pmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

3.
$$A = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 1 & 2 & -1 & 0 \end{pmatrix} B = \begin{pmatrix} -1 & 1 & 1 & 2 \\ 0 & 1 & 2 & -2 \end{pmatrix}$$

4.
$$A = \begin{pmatrix} 1 \\ -1 \\ 2 \\ 0 \\ -2 \end{pmatrix}$$
 $B = \begin{pmatrix} 0 \\ 2 \\ -1 \\ 1 \\ 0 \end{pmatrix}$

№5. Для матрицы $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ вычислите

$$A\odot A \qquad A^{\top}\odot A \qquad A\odot A\odot A \qquad A\odot A^{\top}\odot A \qquad A\odot A^{\top}\odot A$$

№6. Для матрицы
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$
 вычислите

$$A\odot A \qquad A^{\top}\odot A \qquad A\odot A\odot A \qquad A\odot A^{\top}\odot A \qquad A\odot A^{\top}\odot A^{\top}$$

№7. Рассмотрим матрицы

$$A = \begin{pmatrix} -1 & 2 & 0 \\ 0 & 2 & 3 \\ 1 & -1 & 0 \\ 2 & -2 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 0 & -1 & 1 \\ 0 & 1 & 1 \\ 2 & 0 & -1 \\ 1 & 1 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 2 & 0 & -1 \\ -1 & -2 & 2 \\ 1 & -1 & 2 \\ 0 & 3 & -1 \end{pmatrix}$$

Вычислите

$$A\odot B\odot C$$
 $A\odot B-C$ $2B\odot C-A$ $2A\odot B-3B\odot C$

№8. Рассмотрим матрицы

$$A = \begin{pmatrix} 2 & 1 & 5 \\ 3 & 4 & 3 \\ 1 & 2 & 0 \\ 2 & 3 & 1 \\ 1 & 1 & 0 \end{pmatrix} \qquad B = \begin{pmatrix} 2 & 1 & 0 \\ 2 & 5 & 2 \\ 4 & 3 & 2 \\ 3 & 4 & 1 \\ 1 & 3 & 2 \end{pmatrix} \qquad C = \begin{pmatrix} 5 & 2 & 3 \\ 2 & 3 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \\ 2 & 2 & 3 \end{pmatrix}$$

Вычислите

$$A \odot B \odot C$$
 $2A \odot B - C$ $B \odot C + 2A$ $3A \odot B - 2B \odot C$

№9. Рассмотрим матрицы

$$A = \begin{pmatrix} -1 & 2 & 2 & 1 & 0 \\ 1 & 0 & -2 & 1 & 0 \end{pmatrix}$$

$$B = \begin{pmatrix} 0 & 0 & 1 & 3 & 2 \\ -1 & 0 & 2 & 1 & -3 \end{pmatrix}$$

$$C = \begin{pmatrix} 1 & 2 & 0 & 1 & 0 \\ 0 & 1 & 1 & -1 & -2 \end{pmatrix}$$

Вычислите

$$A \odot B \odot C$$
 $2A \odot C - B$ $B \odot C - 2B$ $3A \odot C - 2A \odot C$

№10. Для следующим матриц вычислите произведении AB и BA, если операции определены

1.
$$A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$$
 $B = \begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix}$

2.
$$A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 2 & 1 \end{pmatrix}$

3.
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix} B = \begin{pmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

4.
$$A = \begin{pmatrix} 1 & 0 & -1 & 1 \\ 1 & 1 & -1 & 0 \end{pmatrix} B = \begin{pmatrix} -1 & 1 \\ 1 & -1 \\ 0 & 1 \\ 1 & -1 \end{pmatrix}$$

5.
$$A = \begin{pmatrix} 1 & -1 & 1 \end{pmatrix} B = \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix}$$

№11. Для следующим матриц вычислите произведении $A^{\top}B, AB^{\top}, B^{\top}A$ и $BA^{\top},$ если операции определены

1.
$$A = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix}$$
 $B = \begin{pmatrix} -1 & 1 \\ 2 & -2 \end{pmatrix}$

2.
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$$
 $B = \begin{pmatrix} -1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$

№12. Рассмотрим матрицы

$$A = \begin{pmatrix} 1 & -1 \\ -1 & 1 \end{pmatrix} \qquad B = \begin{pmatrix} -1 & 1 \\ 1 & -1 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}$$

Вычислите

$$AC - B$$
 $BA + C$ $(B + C)A$ $C(A - B)$ $AB - BC$ ABC

№13. Рассмотрим матрицы

$$A = \begin{pmatrix} 2 & 1 & -1 \\ -1 & 1 & 2 \\ 1 & 1 & -1 \end{pmatrix} \qquad B = \begin{pmatrix} -2 & 1 & 0 \\ 1 & -1 & 1 \\ 1 & -1 & 1 \end{pmatrix} \qquad C = \begin{pmatrix} 1 & 2 & -1 \\ 2 & -1 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

Вычислите

$$AB-C$$
 $BC+A$ $A(B+C)$ $(2A-3B)C$ $AB+BC$ ABC

№14. Для матрицы
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
 вычислите A^2, A^3, A^4

№15. Для матрицы
$$A = \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$
 вычислите A^2, A^3, A^4

1.1.3 Обратная матрица

№16. Найдите обратную к следующим матрицам или покажите, что обратная не существует

$$\begin{pmatrix}
1 & 1 \\
0 & 1
\end{pmatrix} \qquad
\begin{pmatrix}
1 & 1 \\
1 & 0
\end{pmatrix} \qquad
\begin{pmatrix}
0 & 1 \\
1 & 0
\end{pmatrix} \qquad
\begin{pmatrix}
2 & 1 \\
3 & 0
\end{pmatrix} \qquad
\begin{pmatrix}
1 & 1 \\
2 & 2
\end{pmatrix} \\
\begin{pmatrix}
2 & 1 \\
5 & 3
\end{pmatrix} \qquad
\begin{pmatrix}
1 & 3 \\
2 & 5
\end{pmatrix} \qquad
\begin{pmatrix}
1 & 1 \\
0 & 0
\end{pmatrix} \qquad
\begin{pmatrix}
2 & 2 \\
4 & 3
\end{pmatrix} \qquad
\begin{pmatrix}
3 & 2 \\
5 & 3
\end{pmatrix}$$

№17. Найдите обратную к следующим матрицам или покажите, что обратная не существует

$$\begin{pmatrix}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & 1
\end{pmatrix}
\qquad
\begin{pmatrix}
0 & 1 & -1 \\
-1 & 0 & 1 \\
1 & -1 & 0
\end{pmatrix}
\qquad
\begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0 & 1 \\
1 & 1 & 1 \\
1 & 0 & 1
\end{pmatrix}
\qquad
\begin{pmatrix}
3 & 0 & 2 \\
0 & 1 & 1 \\
5 & 0 & 3
\end{pmatrix}
\qquad
\begin{pmatrix}
1 & 1 & 0 \\
0 & 1 & 1 \\
0 & 1 & 1
\end{pmatrix}$$

1.1.4 Матричные уравнения

№18. Решите матричное уравнение AX = B для следующих матриц

1.
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

2.
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 & 1 \\ 1 & 1 & 0 \end{pmatrix}$

3.
$$A = \begin{pmatrix} 2 & 3 \\ 3 & 5 \end{pmatrix}, B = \begin{pmatrix} 0 & -1 & 2 \\ -1 & 0 & 1 \end{pmatrix}$$

4.
$$A = \begin{pmatrix} 3 & 2 \\ 5 & 3 \end{pmatrix}, B = \begin{pmatrix} 0 & -1 & 2 & 1 \\ 2 & 0 & 1 & -1 \end{pmatrix}$$

№19. Решите матричное уравнение AX = B для следующих матриц

1.
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{pmatrix}$$

2.
$$A = \begin{pmatrix} 1 & 1 & -1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

3.
$$A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & 0 & 1 \\ 1 & -1 & 1 & 0 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

№20. Решите матричное уравнение XA = B для следующих матриц

1.
$$A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

2.
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 2 \\ 1 & 1 \\ 1 & 0 \end{pmatrix}$

3.
$$A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 1 & 0 \\ 0 & 1 & -1 \end{pmatrix}$$

4.
$$A = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, B = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}$$

№21. Решите матричное уравнение $A_1XA_2 = B$ для следующих матриц

1.
$$A_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}$

2.
$$A_1 = \begin{pmatrix} 3 & 2 \\ 5 & 3 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 3 \\ 4 & 2 \end{pmatrix}$

3.
$$A_1 = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{pmatrix}$

4.
$$A_1 = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 2 & 3 \end{pmatrix}$

5.
$$A_1 = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$
, $A_2 = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}$, $B = \begin{pmatrix} 1 & 1 \\ 1 & 0 \\ 0 & 2 \end{pmatrix}$

1.1.5 Определитель

№22. Вычислите определитель следующих матриц

$$\begin{pmatrix}
2 & 5 \\
1 & 3
\end{pmatrix} \qquad \begin{pmatrix}
3 & 2 \\
5 & 3
\end{pmatrix} \qquad \begin{pmatrix}
2 & 5 \\
1 & 3
\end{pmatrix} \qquad \begin{pmatrix}
2 & 3 \\
6 & 9
\end{pmatrix} \\
\begin{pmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{pmatrix} \qquad \begin{pmatrix}
0 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{pmatrix} \qquad \begin{pmatrix}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{pmatrix} \qquad \begin{pmatrix}
0 & 1 & 0 \\
-1 & 0 & -1 \\
0 & 1 & 0
\end{pmatrix}$$

№23. Вычислите определитель следующих матриц

$$\begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{pmatrix} \quad \begin{pmatrix} 0 & 1 & 0 & 0 \\ -1 & 0 & -1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & -1 & 0 \end{pmatrix}$$

№24. Вычислите определитель следующих матриц

$$\begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 & 0 \\ 0 & -1 & 0 & 1 & 0 \\ 0 & 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & -1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 1 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 1 & 1 \\ 1 & 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 1 & 0 \end{pmatrix}$$

№25. Какие из следующи матриц обратимы?

$$\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \qquad \begin{pmatrix} 3 & 2 \\ 5 & 3 \end{pmatrix} \qquad \begin{pmatrix} 2 & 5 \\ 4 & 10 \end{pmatrix} \qquad \begin{pmatrix} 6 & 9 \\ 4 & 6 \end{pmatrix} \qquad \begin{pmatrix} 3 & 5 \\ 4 & 7 \end{pmatrix}$$

№26. Какие из следующи матриц обратимы?

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{pmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{pmatrix} \qquad \begin{pmatrix} 6 & 9 & 3 \\ 4 & 6 & 2 \\ 1 & 0 & 1 \end{pmatrix}$$

1.2 Системы линейных уравнений

№1. Рассмотрим систему линейных уравнений в матричном виде Ax = b. Для следующих матриц запишите систему линейных уравнений и решите её использую обратную матрицу

$$A, b = \begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix}, \begin{pmatrix} 2 \\ 4 \end{pmatrix} \qquad A, b = \begin{pmatrix} 3 & 4 \\ 2 & 3 \end{pmatrix}, \begin{pmatrix} 3 \\ 5 \end{pmatrix} \qquad A, b = \begin{pmatrix} 5 & 3 \\ 7 & 4 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \end{pmatrix}$$

№2. Рассмотрим систему линейных уравнений в матричном виде Ax = b. Для следующих матриц запишите систему линейных уравнений и решите её использую обратную матрицу

$$A, b = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 0 \\ 1 \end{pmatrix} \qquad A, b = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & 2 \\ 0 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$$

$$A, b = \begin{pmatrix} 5 & 0 & 2 \\ 0 & 3 & 0 \\ 3 & 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 \\ 6 \\ 1 \end{pmatrix} \qquad A, b = \begin{pmatrix} 3 & 4 & 0 \\ 5 & 7 & 1 \\ 0 & 0 & 2 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$

№3. Решите систему линейных уравнений использую формулы Крамера

$$\begin{cases} 2x_1 - 3x_2 = 0 \\ 3x_1 + 5x_2 = 2 \end{cases} \begin{cases} x_1 - x_2 + x_3 = 1 \\ 2x_1 + 2x_2 - 3x_3 = 0 \\ 3x_1 + x_2 - 4x_3 = 2 \end{cases}$$
$$\begin{cases} 2x_1 - 3x_2 = 0 \\ 3x_1 + 5x_2 = 2 \end{cases} \begin{cases} x_1 + x_2 - x_3 = 1 \\ x_1 - 2x_2 + 3x_3 = 2 \\ 2x_1 - x_2 - 3x_3 = 5 \end{cases}$$

№4. Какие из следующих систем Ax = b имеют единственной решений?

1)
$$A, b = \begin{pmatrix} 4 & 6 \\ 6 & 9 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix}$$
 2) $A, b = \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix}$
3) $A, b = \begin{pmatrix} 4 & 7 \\ 3 & 5 \end{pmatrix}, \begin{pmatrix} 1 \\ 2 \end{pmatrix}$ 4) $A, b = \begin{pmatrix} 2 & 3 & 1 \\ 5 & 7 & -2 \\ 0 & 0 & -1 \end{pmatrix}, \begin{pmatrix} 2 \\ 1 \\ 4 \end{pmatrix}$

2 Элементы анализа

2.1 Функции одной переменной

№1. Вычислите первую производную функций

$$f(x) = x \cos(x) \quad f(x) = x \sin(x) \quad f(x) = x^2 \sin(x) \quad f(x) = x^2 \cos(x)$$

$$f(x) = \cos^2(x) \quad f(x) = \sin^2(x) \quad f(x) = x \cos^2(x) \quad f(x) = x \sin^2(x)$$

$$f(x) = \frac{\sin(x)}{x} \quad f(x) = \frac{\cos(x)}{x} \quad f(x) = \frac{\cos^2 x}{x} \quad f(x) = \frac{\sin x}{x^2}$$

$$f(x) = x \ln x \quad f(x) = x^2 \ln x \quad f(x) = x \ln^2(x) \quad f(x) = \frac{\ln x}{x}$$

$$f(x) = x \exp(x) \quad f(x) = \exp(x^2) \quad f(x) = x \exp(-x) \quad f(x) = x \exp(-x^2)$$

№2. Вычислите значение первой производной функции

- 1. $f(x) = x \cos(x)$ в точках $x = 0, \pi/2, \pi$
- 2. $f(x) = x^2 \sin(x)$ в точках $x = 1, \pi/2, \pi$
- 3. $f(x) = x^3 \ln x$ в точках x = 1, 2, 3
- 4. $f(x) = x \exp(x^2)$ в точках x = 1, 2, 3

№3. Вычислите вторую производную функций

$$f(x) = x \cos(x)$$
 $f(x) = x \sin(x)$ $f(x) = \cos^2(x)$ $f(x) = \sin^2(x)$
 $f(x) = x \ln x$ $f(x) = x \exp(x)$ $f(x) = x^2 \exp(-x)$ $f(x) = \exp(-x^2)$

№4. Найдите (численно) локальные экстремумы функции

$$f(x) = 10 + 3x - x^{2}$$

$$f(x) = x^{3} - 4x^{2} + 3x - 10$$

$$f(x) = x \exp(x)$$

$$f(x) = x^{2} + 4x - 5$$

$$f(x) = 6 + 3x - 5x^{2} - x^{3}$$

$$f(x) = x^{2} \exp(x)$$

$$f(x) = x^{2} \exp(x)$$

$$f(x) = x^{2} \exp(x)$$

2.2 Функции многих переменных

№1. Вычислите градиент следующих функции

$$f = xy$$
 $f = x^2y^2$ $f = x^2y - xy^2$ $f = x^2 - xy + y^2$
 $f = \exp(xy)$ $f = \exp(x+y)$ $f = \ln(x+y)$ $f = \exp(x^2y)$

№2. Найдите значение градиента функции

- 1. $f = xy^2$ в точке (1,2)
- 2. $f = x^2y + xy^2$ в точке (2, -1)
- 3. $f = x^2 + xy + y^2$ в точке (-1, 2)
- 4. $f = \ln(x^2 + y^2)$ в точке (2,3)
- 5. $f = \exp(x^2 + y^2)$ в точке (-2, 1)

№3. Найдите локальные экстремумы функций

$$f(x,y) = 10 - 6x - 4y + 2x^{2} + y^{2} - 2xy$$

$$f(x,y) = 8 + 8x + 4y - 5x^{2} - 2y^{2} + 6xy$$

$$f(x,y) = 5 + 2x + 6y + 5x^{2} + 3y^{2} + 8xy$$

№4. Найдите локальные экстремумы функций

$$f(x,y,z) = 6 + 4x + 2y + 6z + 2x^{2} + 2y^{2} + z^{2} + 2xy + 2yz$$

$$f(x,y,z) = 3 + 4x + 8y + 4z - 3x^{2} - 2y^{2} - 4z^{2} + 2xy + 2xz + 4yz$$

$$f(x,y,z) = 8 + 2x + 4y + 2z + 2x^{2} + y^{2} + 3z^{2} + 2xy + 4xz + 4yz$$

№5. Найдите локальные экстремумы функций

$$f(x,y) = 5 + x^3 - y^3 + 3xy$$

$$f(x,y) = 3x^2y + y^3 - 3x^2 - 3y^2 + 2$$

$$f(x,y) = x^3 + x^2y - 2y^3 + 6y$$

№6. Найдите локальные экстремумы функций

$$f(x,y) = 6 \ln x + 8 \ln y - 3x - 2y$$

$$f(x,y) = 4 \ln x + 6 \ln y + 2x - 3xy$$

$$f(x,y) = 5 \ln x + 4 \ln y - x - 4xy$$