Using moment equations to understand heterogeneity

Definition

We want to write $Y_o(v; D)$ for Type, order, variable, and Domain.

We define total as follows: $T_o(v; D) = \int v(a)^o D(a) da$. Since we're mainly interested with susceptibility for now, T_o is represents $T_o(.; S)$.

We define $M_i = T_i/T_0$. Then, M_1 is the mean susceptibility and $\kappa = \frac{M_2 M_0}{M_1^2} - 1$ is the squared coefficient of variance (CV).

SI example

We have $\dot{S}(a) = -\Lambda \sigma(a) S(a)$. Integrating gives us $\dot{T}_0 = -\Lambda T_1$. More generally, we have $\dot{T}_i = -\Lambda T_{i+1}$. Given that M_1 is the mean susceptibility, we can also write:

$$\dot{S} = -\Lambda M_1 S$$

Using M defined above, we also have the following equations: $\dot{M}_i = -\Lambda (M_{i+1} - M_i M_1)$.

Given that $M_2 = (1 + \kappa)M^2$ and assuming that κ stays constant, we can integrate the equation above to obtain the following equation:

 $M = \hat{M}S^{\kappa}$, where \hat{M} is the mean susceptibility of the susceptible population at a disease free equilibrium.

We can define $\kappa = \kappa_2$ and extend this idea to $\kappa_i = \frac{M_i M_{i-2}}{M_{i-1}^2} - 1$. This also We can derive an equation for κ_i as well:

$$\begin{split} \dot{\kappa_i} &= \frac{M_{i-2}M_{i-1}\dot{M}_i + M_{i-1}M_i\dot{M}_{i-2} - 2M_{i-2}M_i\dot{M}_{i-1}}{M_{i-1}^3} \\ &= -\Lambda \frac{M_{i-2}M_{i-1}(M_{i+1} - M_iM_1) + M_{i-1}M_i(M_{i-1} - M_{i-2}M_1) - 2M_{i-2}M_i(M_i - M_{i-1}M_1)}{M_{i-1}^3} \\ &= -\Lambda \frac{M_{i-2}M_{i-1}M_{i+1} + M_{i-1}^2M_i - 2M_{i-2}M_i^2}{M_{i-1}^3} \\ &= -\Lambda \frac{M_{i-2}(\kappa_{i+1} + 1)M_i^2 + M_{i-1}^2M_i - 2M_{i-2}M_i^2}{M_{i-1}^3} \\ &= -\Lambda \frac{(\kappa_{i+1} - 1)M_{i-2}M_i^2 + M_{i-1}^2M_i}{M_{i-1}^3} \\ &= -\Lambda \frac{(\kappa_{i+1} - 1)(\kappa_i + 1)M_iM_{i-1}^2 + M_{i-1}^2M_i}{M_{i-1}^3} \\ &= -\Lambda \frac{(\kappa_{i+1}\kappa_i - \kappa_i + \kappa_{i+1})M_i}{M_{i-1}^3} \end{split}$$