Linguagens Formais e Autômatos

Linguagens Regulares

Eduardo Furlan Miranda

Baseado em: GARCIA, A. de V.; HAEUSLER, E. H. Linguagens Formais e Autômatos. Londrina: EDA, 2017.

Linguagens Regulares (LR)

- Algumas abreviações
 - LC Livre de Contexto
 - LLC Linguagem Livre de Contexto
 - GLC Gramática Livre de Contexto
 - RLC Regra Livre de Contexto
 - SC Sensível ao Contexto
 - LSC Linguagem Sensível ao Contexto
 - GSC Gramática Sensível ao Contexto
 - RSC Regra Sensível ao Contexto
 - LR Linguagem Regular
 - GR Gramática Regular
 - MT Máquina de Turing
 - AF Autômato Finito

Analisador Sintático (AS)

```
R a<sup>n</sup>b ε,b,ab,aab

LC a<sup>n</sup>b<sup>n</sup> ab, aabb 3/18

SC a<sup>n</sup>b<sup>n</sup>c<sup>n</sup> abc, aabbcc

I a<sup>2^n</sup> a, aa, aaaa
```

- Um reconhecedor (analisador sintático) para uma linguagem formal L ⊆ Σ* "está contido ou é igual a"
 - é um procedimento que ao ler qualquer palavra $\omega \in \Sigma^*$
 - indica se $\omega \in L$ ou se $\omega \notin L$
- Dado um símbolo s e um alfabeto Σ ,
 - saber se $s \in \Sigma$ e se $s \neq s_2 \in \Sigma$ deve ser um procedimento automático
 - A verificação é feita símbolo a símbolo
 - * = inclui ε
 - $\omega = \omega$ (ômega) é uma string que pertence ao conjunto T*
 - Σ = alfabeto { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, . }
 - L = linguagem { 0, 1, 2, ..., 99, 100, ..., 0.1, 0.2, ... }
 - símbolo é um elemento individual do alfabeto
 - palavra|cadeira|string = sequência de símbolos

Analisador Léxico (AL)

- Análise léxica: segmentação do texto em palavras
 - Percorre-se o texto agrupando os símbolos em agregados (clusters) denominados itens léxicos:
 - Identificadores, nomes de variáveis, nomes de funções, etc.
- O tipo de gramática mais simples é a regular. Ex.:
 - G = (V, T, P, S), regra $A \rightarrow aB$, com $A, B \in V$, e a, b $\in T$
 - A e B : variáveis, a e b : terminais
 - Uma linguagem é regular se, e somente se, existir uma gramática regular que a gere

- Linguagem L={aab, bba} sobre o alfabeto Σ ={a, b}
 - A linguagem pode ser gerada pela gramática regular:
 - $S \rightarrow aA_1$,
 - $S \rightarrow bB_1$,
 - $A_1 \rightarrow aA_2$,
 - $A_2 \rightarrow b$,
 - $B_1 \rightarrow bB_2$,
 - $B_2 \rightarrow a$

símbolo terminal

A primeira cadeia pode ser gerada pela derivação:

$$S \Rightarrow aA_1 \Rightarrow aaA_2 \Rightarrow aab$$

A segunda cadeia:

$$S \Rightarrow bB_1 \Rightarrow bbB_2 \Rightarrow bba$$

- Dada uma gramática G, que não é regular, é possível que a linguagem L(G) seja regular, bastando que, para isso, exista uma gramática regular G₂ tal que L(G₂) = L(G). Ex.:
 - Considere a gramática não regular
 S → A₁b , S → B₁a , A₁ → A₂a , A₂ → a , B₁ → B₂b , B₂ → b
 A₁ → A₂a não é regular (para ser regular: A → aB)
 - Como L(G) = {aab, bba}, visto anteriormente, e gerado por uma gramática regular, então L(G) é regular
 - $S \rightarrow A_1b \rightarrow A_2ab \rightarrow aab$
 - $S \rightarrow B_1a \rightarrow B_2ba \rightarrow bba$

ou seja, existe uma GR

Regras de produção para GR A → aB A → a

Gramática linear à esquerda e direita

- Gramática linear à esquerda
 - $A \rightarrow b$, $A \rightarrow \epsilon$, $A \rightarrow Ba$, $com A, B \in V$ e a, $b \in T$
 - A linguagem gerada por gramáticas deste tipo é regular
- Gramáticas lineares à direita
 - $A \rightarrow b$, $A \rightarrow \epsilon$, $A \rightarrow aB$, com $A, B \in V$ e $a, b \in T$
 - · Alguns autores consideram ambos os tipos gramáticas regulares,
 - tanto as lineares à esquerda quanto as lineares à direita

```
R a<sup>n</sup>b ε,b,ab,aab
LC a<sup>n</sup>b<sup>n</sup> ab, aabb
SC a<sup>n</sup>b<sup>n</sup>c<sup>n</sup> abc, aabbcc
I a<sup>2^n</sup> a, aa, aaaa
```

De GLC para GR

```
Regras de produção para GR
A → aB
A → a
```

- Regras A → B podem ser substituídas para obtermos uma gramática regular (GR) equivalente. Exemplo:
 - S → A | a
 A → aB | B
 B → b

 A → B não se encaixa na forma de uma GR
 derivações transitivas
 - Podemos observar que é possível S ⇒* A , S ⇒* B , A ⇒* B :
 - S ⇒* A : significa que S pode derivar A em zero ou mais passos, pois existe a produção S → A , em um único passo
 - S ⇒* B : S pode derivar B em zero ou mais passos usando
 A (S ⇒ A) e, em seguida, A pode derivar B (A ⇒ B)
 - portanto, S pode derivar B em dois passos (S ⇒ A ⇒ B)
 - A ⇒* B : olhando as regras, existe a produção A → B
 - portanto, em um único passo (A ⇒ B), A deriva B

De GLC para GR

- Podemos substituir o lado direito das regras simples da forma
 A → B pelo lado direito das regras cujo lado esquerdo é B
 - Regras com o lado esquerdo B: B → b

(substituição indireta)

 Substituimos o lado direito da regra A → B pelo lado direito da regra B → b , resultando A → b

Antes da substituição: $S \Rightarrow A \Rightarrow B \Rightarrow b$

Gramática resultante

S → aB | b | a era:
 S → A | a
 A → aB | b
 B → b
 B → b

Após a substituição: $S \Rightarrow A \Rightarrow b$

 A linguagem gerada por uma gramática apenas com regras regulares e regras simples, é regular LR e GR 10/18

 Se L₁ e L₂ são linguagens regulares, então L₁ υ L₂ também é regular

- Se L_1 e L_2 são linguagens regulares, então existem gramáticas regulares G_1 = (V_1 , T , P_1 , S_1) e G_2 = (V_2 , T , P_2 , S_2) tais que $L(G_1)$ = L_1 e $L(G_2)$ = L_2
 - Podemos renomear as variáveis de $\,V_2\,$ de modo que não tenham o mesmo nome que uma variável de $\,V_1\,$
 - Podemos criar um novo símbolo inicial S e criar a gramática

$$G_3 = (V_1 \cup V_2 \cup \{S\}, T, P_1 \cup P_2 \cup \{S \rightarrow S_1, S \rightarrow S_2\}, S)$$

- G₃ possui regras regulares simples
- $L(G_3) = L(G_1) \cup L(G_2)$, portanto, $L(G_1) \cup L(G_2)$ é regular

- Sejam as gramáticas
 - $G_1: S_1 \rightarrow bA_1$, $A_1 \rightarrow a$
 - $G_2: S_2 \to aA_2 \mid bB_2 , A_2 \to a , B_2 \to bB_2 \mid b$
- Podemos construir a nova gramática G₃ tal que
 L(G₃) = L(G₁) ∪ L(G₂)
 - $S \rightarrow S_1 \mid S_2$, $S_1 \rightarrow bA_1$, $A_1 \rightarrow a$, $S_2 \rightarrow aA_2 \mid bB_2$, $A_2 \rightarrow a$, $B_2 \rightarrow bB_2 \mid b$
- G₃ é uma gramática apenas com regras regulares simples, e portanto, gera uma linguagem regular

De G₂ para L(G₂)*

- Desejamos uma gramática que gera a linguagem L(G₂)* ,
 - ou seja, o fecho de Kleene da linguagem gerada por G₂
 - É uma gramática que gera todas as strings que podem ser formadas pela concatenação de zero ou mais geradas por G₂
- $G_2: S_2 \rightarrow aA_2$, $S_2 \rightarrow bB_2$, $A_2 \rightarrow a$, $B_2 \rightarrow bB_2$, $B_2 \rightarrow b$
- Em G₂ o símbolo inicial (S₂) não aparece do lado direito
 - Isso é importante pois para gerar o fecho de Kleene (*), precisamos permitir a concatenação de strings geradas por G₂
 - Para isso, precisamos de uma forma de "voltar" para o símbolo inicial (S₂) após gerar uma string

De G₂ para L(G₂)*

- Como G₂ só tem regras na forma A → b e A → aB ,
 - basta colocar o símbolo inicial (S_2) nas regras, da forma $A \rightarrow b$
 - Isso permite que, após gerar um terminal, a gramática "retorne" ao estado inicial e gere outra string da linguagem
 - $A_2 \rightarrow a$ se torna $A_2 \rightarrow aS_2$, e $B_2 \rightarrow b$ se torna $B_2 \rightarrow bS_2$
 - Acrescentar a regra S₂ → ε
 - Adicionada para representar a concatenação de zero strings de L(G₂), pois o fecho de Kleene (*) inclui a string vazia
- Resultado final:

$$S_2 \rightarrow \epsilon$$
 , $S_2 \rightarrow aA_2$, $S_2 \rightarrow bB_2$, $A_2 \rightarrow aS_2$, $B_2 \rightarrow bB_2$, $B_2 \rightarrow bS_2$

 Gramática, com símbolo inicial A₀, gera os números inteiros, escritos na base 2, que deixam resto 1 quando divididos por 3 :

- $A_0 \to 0A_0 \mid 1A_1$
- A₁ → 0A₂ | 1A₀ | ε
- $A_2 \rightarrow 0A_1 \mid 1A_2$

 A_0 : símbolo inicial A_0 , A_1 , A_2 : variáveis

0, 1: terminais

- Observe que A₀ ⇒* wA_i se, e somente se, w é um número na base 2 que deixa resto i quando dividido por 3
 - Se a derivação a partir de Ao termina em Ao, então a string binária gerada
 (w) representa um número que, quando dividido por 3, tem resto 0
 - Se a derivação a partir de A₀ termina em A₁, então a string binária gerada
 (w) representa um número que, quando dividido por 3, tem resto 1
 - Se a derivação a partir de A₀ termina em A₂, então a string binária gerada
 (w) representa um número que, quando dividido por 3, tem resto 2

- Gerando o número binário 1 (decimal 1)
 - $A_0 \Rightarrow 1A_1 \Rightarrow 1\epsilon = 1$
 - Como a derivação termina em A₁, o número 1 (decimal) deixa resto
 1 quando dividido por 3
- Gerando o número binário 100 (decimal 4)
 - $A_0 \Rightarrow 1A_1 \Rightarrow 10A_2 \Rightarrow 100A_1 \Rightarrow 100\epsilon = 100$
 - Como a derivação termina em A₁, o número 4 (decimal) deixa resto
 1 se dividido por 3

- Gerando o número binário 111 (decimal 7)
 - $A_0 \Rightarrow 1A_1 \Rightarrow 11A_0 \Rightarrow 110A_0 \Rightarrow 1100A_0 \Rightarrow 11000A_0...$
 - podemos continuar adicionando zeros indefinidamente, e o resto continuará sendo 1
 - $A_0 \Rightarrow 1A_1 \Rightarrow 11A_0 \Rightarrow 111A_1 \Rightarrow 111\epsilon = 111$
 - como a derivação termina em A₁, o número 7 (decimal) deixa resto
 1 quando dividido por 3
- Gerando o número binário 10 (decimal 2)
 - $A_0 \Rightarrow 1A_1 \Rightarrow 10A_2 \Rightarrow 10\epsilon = 10$
 - como a derivação termina em A₂, o número 2 (decimal) deixa resto
 2 quando dividido por 3

- Como a gramática "calcula" o resto:
 - A gramática implementa uma espécie de autômato finito que simula a divisão por 3
 - A cada novo bit lido (0 ou 1), o estado (A₀, A₁ ou A₂) muda, representando o novo resto

 - Ler um '0' não altera o resto $(A_0 \rightarrow 0A_0, A_1 \rightarrow 0A_2, A_2 \rightarrow 0A_1)$
 - Ler um '1' incrementa o resto em 1 ($A_0 \rightarrow 1A_1$, $A_1 \rightarrow 1A_0$, $A_2 \rightarrow 1A_2$)
 - Como queremos gerar números com resto 1, as derivações devem terminar em A₁
 - A regra A₁ → ε permite que a derivação termine e, assim, gere a string binária

• Gramática regular para ler comentários em Python:

$$A \rightarrow "#" B^*$$

 $B \rightarrow [a-zA-Z0-9_-+*/=.,!@#$%^&*{}:;<>?~\]$

- Onde:
 - "#" representa o caractere de início do comentário
 - B* representa zero ou mais ocorrências de caracteres válidos