

Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный технический университет имени Н.Э. Баумана (национальный исследовательский университет)» (МГТУ им. Н.Э. Баумана)

ФАКУЛЬТЕТ «Информатика и системы управления» (ИУ)

КАФЕДРА «Информационная безопасность» (ИУ8)

Отчёт

по лабораторной работе № 4 по дисциплине «Интеллектуальные технологии информационной безопасности»

Tema: «Изучение алгоритма обратного распространения ошибки (метод Back Propagation)»

Вариант 1

Выполнил: Антипов И.С., студент группы ИУ8-63

Проверил: Волосова Н.К., преподаватель каф. ИУ8

1. Цель работы

Исследовать функционирование многослойной нейронной сети (МНС) прямого распространения и ее обучение методом обратного распространения ошибки.

2. Условие

Задана архитектура многослойной нейронной сети:

$$1 - 2 - 1$$

Входной вектор:

$$x = (1, 2)$$

Выходной вектор:

$$t = (0.4)$$

Необходимо обучить нейронную сеть при помощи метода обратного распространения ошибки.

Функция активации:

$$f(net) = \frac{1 - \exp(-net)}{1 + \exp(-net)} \in (-1,1)$$

Её производная:

$$\frac{df(net)}{dnet} = \frac{1}{2} [1 - f^2(net)]$$

Начальные веса:

$$w_{ij}^1 = w_{im}^2 = 0$$

Значение суммарной среднеквадратичной ошибки:

$$\varepsilon = 0.001$$

3. Ход работы

Первый этап обучения – по заданному входному сигналу рассчитать значения нейронов на скрытом слое, а далее на выходном слое.

1)
$$x_i^1 \equiv x_i, i = \overline{0, N}$$

2)
$$net_{j}^{1}(k) = \sum_{i=1}^{N} w_{ij}^{1}(k)x_{i}^{1} + w_{0j}^{1}(k), j = \overline{1,J}$$

3) $x_{j}^{2}(k) \equiv out_{j}^{1}(k) = f[net_{j}^{1}(k)], j = \overline{1,J}$
4) $net_{m}^{2}(k) = \sum_{j=1}^{J} w_{jm}^{2}(k)x_{j}^{2}(k) + w_{0m}^{2}(k), m = \overline{1,M}$
5) $y_{m}(k) \equiv out_{m}^{2}(k) = f[net_{m}^{2}(k)], m = \overline{1,M}$

Второй этап обучения – оценка ошибки нейронов выходного слоя, а после этого нейронов скрытого слоя.

1)
$$\delta_{m}(k) \equiv \delta_{m}^{2}(k) = \frac{df [net_{m}^{2}(k)]}{dnet_{j}^{1}(k)} [t_{m} - y_{m}(k)], \qquad m = \overline{1, M}$$
2) $\delta_{j}^{1}(k) = \frac{df [net_{j}^{1}(k)]}{dnet_{j}^{1}(k)} \sum_{m=1}^{M} w_{jm}^{2}(k) \delta_{m}(k), \qquad j = \overline{1, J}$

Третий этап – настройка весов выходного и скрытого слоев.

$$\begin{split} w_{ij}^{1}(k+1) &= w_{ij}^{1}(k) + \Delta w_{ij}^{1}(k), & \Delta w_{ij}^{1}(k) &= \eta x_{i} \delta_{j}^{1}(k) \\ |w_{jm}^{2}(k+1) &= w_{jm}^{2}(k) + \Delta w_{jm}^{2}(k), & \Delta w_{jm}^{2}(k) &= \eta x_{j}^{2} \delta_{m}^{2}(k) \end{split}$$

Обучение происходит до тех пор, пока суммарная среднеквадратичная ошибка не превысит некоторого заданного значения.

$$E(k) = \sqrt{\sum_{j=1}^{M} [t_j - y_j(k)]^2} \le \varepsilon$$

Результаты обучения приведены в таблице 1. График зависимости суммарной квадратичной ошибки от количества эпох приведен на рисунке 1.

Таблица 1. Результаты обучения

+		+ +		+		+		+
	k	y	hidden weight		output weight		E	
+		+ +		+		+		+
-	1	: :	[0.0000, 0.0000] [0.0000, 0.0000]		[0.1000, 0.0000, 0.0000]		0.400	•
	2	0.050	[0.0012, 0.0012] [0.0000, 0.0000]		[0.1873, 0.0000, 0.0000]		0.350	
	3	0.093	[0.0056, 0.0056] [0.0000, 0.0000]		[0.2633, 0.0001, 0.0000]		0.307	
	4	0.131	[0.0142, 0.0142] [0.0000, 0.0000]		[0.3294, 0.0005, 0.0000]		0.269	
	5	0.163	[0.0277, 0.0277] [0.0000, 0.0000]		[0.3870, 0.0013, 0.0000]		0.237	
	6	0.191	[0.0462, 0.0462] [0.0001, 0.0001]		[0.4373, 0.0027, 0.0000]		0.209	
	7	0.215	[0.0696, 0.0696] [0.0002, 0.0002]		[0.4814, 0.0047, 0.0000]		0.185	
	8	0.236	[0.0979, 0.0979] [0.0005, 0.0005]		[0.5200, 0.0074, 0.0000]		0.164	
	9	0.255	[0.1307, 0.1307] [0.0010, 0.0010]		[0.5540, 0.0107, 0.0000]		0.145	
	10	0.271	[0.1676, 0.1676] [0.0017, 0.0017]		[0.5839, 0.0146, 0.0001]		0.129	
	11	0.285	[0.2081, 0.2081] [0.0027, 0.0027]		[0.6103, 0.0190, 0.0001]		0.115	
	12	0.298	[0.2516, 0.2516] [0.0042, 0.0042]		[0.6336, 0.0238, 0.0002]		0.102	
	13	0.309	[0.2976, 0.2976] [0.0060, 0.0060]		[0.6541, 0.0288, 0.0003]		0.091	
	14	0.320	[0.3455, 0.3455] [0.0083, 0.0083]		[0.6722, 0.0340, 0.0004]		0.080	
	15	0.329	[0.3947, 0.3947] [0.0111, 0.0111]		[0.6880, 0.0393, 0.0005]		0.071	
	16	0.338	[0.4446, 0.4446] [0.0144, 0.0144]		[0.7018, 0.0445, 0.0006]		0.062	
	17	0.345	[0.4946, 0.4946] [0.0183, 0.0183]		[0.7138, 0.0495, 0.0008]		0.055	
	18	0.352	[0.5443, 0.5443] [0.0226, 0.0226]		[0.7242, 0.0543, 0.0010]		0.048	
	19	0.359	[0.5933, 0.5933] [0.0275, 0.0275]		[0.7332, 0.0587, 0.0012]		0.041	
	20	0.365	[0.6412, 0.6412] [0.0328, 0.0328]		[0.7409, 0.0628, 0.0014]		0.035	
	21	0.370	[0.6878, 0.6878] [0.0386, 0.0386]		[0.7474, 0.0665, 0.0016]		0.030	
	22	0.374	[0.7328, 0.7328] [0.0448, 0.0448]		[0.7529, 0.0698, 0.0018]		0.026	
	23	0.378	[0.7763, 0.7763] [0.0514, 0.0514]		[0.7575, 0.0726, 0.0021]		0.022	
	24	0.382	[0.8180, 0.8180] [0.0583, 0.0583]		[0.7613, 0.0751, 0.0023]		0.018	
	25	0.385	[0.8580, 0.8580] [0.0656, 0.0656]		[0.7645, 0.0773, 0.0024]		0.015	
	26	0.388	[0.8963, 0.8963] [0.0730, 0.0730]		[0.7671, 0.0791, 0.0026]		0.012	
	27	0.390	[0.9329, 0.9329] [0.0807, 0.0807]		[0.7692, 0.0806, 0.0028]		0.010	
	28	0.392	[0.9679, 0.9679] [0.0885, 0.0885]		[0.7709, 0.0818, 0.0029]		0.008	
	29	0.394	[1.0014, 1.0014] [0.0965, 0.0965]		[0.7722, 0.0828, 0.0030]		0.006	
	30	0.395	[1.0333, 1.0333] [0.1046, 0.1046]		[0.7732, 0.0836, 0.0031]		0.005	
	31	0.396	[1.0639, 1.0639] [0.1128, 0.1128]		[0.7740, 0.0842, 0.0032]		0.004	
	32	0.397	[1.0931, 1.0931] [0.1211, 0.1211]		[0.7746, 0.0847, 0.0033]		0.003	
Ī	33	0.398	[1.1211, 1.1211] [0.1294, 0.1294]		[0.7750, 0.0850, 0.0033]		0.002	
	34	0.399	[1.1479, 1.1479] [0.1377, 0.1377]		[0.7753, 0.0852, 0.0033]		0.001	
-	35	0.399	[1.1737, 1.1737] [0.1461, 0.1461]	-	[0.7755, 0.0854, 0.0034]		0.001	
+		+ +	·	+		+		+

Рисунок 1 — График суммарной ошибки нейронной сети на полной выборке Код программы приведен в Приложении А.

4. Выводы

В ходе выполнения лабораторной работы было произведено обучение многослойной нейронной сети (МНС) прямого распространения с помощью метода обратного распространения ошибок.

Нейронная сеть смогла обучиться и выдать значения, которые отличаются от оригинала меньше заданной величины.

Приложение А. Исходный код программы

Файл таіп.ру

```
import math
import matplotlib.pyplot as plot
class NeuralNetwork:
    def __init__(self, eta, x, t, N, J, M, target_epsilon):
        self.__eta = eta
        self._x = x
        self. \underline{\phantom{0}} t = t
self. \underline{\phantom{0}} N = N
        self.__J = J
        self._M = M
        self._epoch = 0
        self.__target_epsilon = target_epsilon
        self._epsilon = 1
        self.__first_w = [[0] * (N + 1) for _ in range(J)]
        self.\__first\_net = [0] * J
        self.__first_out = [0] * J
        self. first error = [0] * J
        self. second w = [[0] * (J + 1) for in range(M)]
        self.\_second\_net = [0] * M
        self.\_second_out = [0] * M
        self. second_error = [0] * M
        self. all epsilon = []
    def count first net(self, i):
        self. first net[i] = self. first w[i][0]
        for j in range (1, self. N + 1):
            self. first net[i] += self. first w[i][j] * self. x[j-1]
    def count second net(self, i):
        self. second net[i] = self. second w[i][0]
        for j in range(1, self. J + 1):
            self. second net[i] += self. second w[i][j] * self. first out[j -
1]
    def count f(self, net):
        return (1 - math.exp((-1) * net)) / (1 + math.exp((-1) * net))
    def count df(self, net):
        return 0.5 * (1 - (self.count f(net) ** 2))
    def count_epsilon(self):
        self. epsilon = 0
        for i in range(len(self. t)):
            self. epsilon += (self. t[i] - self. second out[i]) ** 2
        self. epsilon = math.sqrt(self. epsilon)
    def count_sum(self, j):
        result = 0
        for i in range(self. M):
            result += self.__second_w[i][j] * self.__second out[i]
        return result
```

```
def get epsilon(self):
        return self. all epsilon
    def get epoch(self):
        return self. epoch
    def study(self):
        done = False
        while not done:
            for i in range(self.__J):
                self.count first net(i)
                self. first out[i] = self.count f(self. first net[i])
            for i in range(self. M):
                self.count second net(i)
                self. second out[i] = self.count f(self. second net[i])
            for i in range(self. M):
                df = self.count df(self. second net[i])
                self. second error[i] = df * (self. t[i] -
self. second out[i])
            for i in range(self. J):
                df = self.count df(self. first net[i])
                self.__first_error[i] = df * self.count sum(i)
            for i in range(self. J):
                self. first w[i][0] += self. eta * self. first error[i]
                for j in range(self. N):
                     self. first w[i][j + 1] += self. eta * self. x[j] *
self. first error[i]
            for i in range(self. M):
                self. second w[i][0] += self. eta * self. second error[i]
                for j in range(self.
                                       J):
                     self. second w[\overline{i}][j + 1] += self. eta *
self. first out[j] * self. second error[i]
            self. epoch += 1
            self.count epsilon()
            self. all epsilon.append(self. epsilon)
            f w string = ""
            for i in range(self.
                f_w_string += "["
f_{w}^{-} string += ', '.join([str("%.3f" % it) if it < 0 else str("%.4f" % it) for it in self.__first_w[i]])
                f w string += "] "
            s w string = ""
            for i in range(self. M):
                s w string += "["
                s_w_string += ', '.join([str("%.3f" % it) if it < 0 else</pre>
str("%.4f" % it) for it in self.___s
s_w_string += "] "
                                   second w[i]])
            print("|", str(self. epoch).ljust(2),
                   "|", str(', '.join(str("%.3f" % it) for it in
self. second out)).ljust(5),
                   "|", str(f_w_string).ljust(34),
                   "|", str(s w string).ljust(25),
```

```
"|", str("%.3f" % self.__epsilon).ljust(5), "|")
            done = self. epsilon <= self. target epsilon</pre>
       print("+", "-" * 2, "+", "-" * 5, "+", "-" * 34, "+", "-" * 25, "+", "-"
* 5, "+")
def print_graph(errors, epoch):
    ep = [[i] for i in range(epoch)]
    plot.ylabel('Epsilon')
    plot.xlabel('epoch')
    plot.plot(ep, errors, "ro-")
    plot.show()
def start():
    print("Task Full", '\n')
   print("+", "-" * 2, "+", "-" * 5, "+", "-" * 34, "+", "-" * 25, "+", "-" *
5, "+")
   print("|", "k".ljust(2), "|", "y".ljust(5), "|", "hidden weight".ljust(34),
"|", "output weight".ljust(25),
    "|", "E".ljust(5), "|")
   print("+", "-" * 2, "+", "-" * 5, "+", "-" * 34, "+", "-" * 25, "+", "-" *
5, "+")
    nw = NeuralNetwork(0.5, [1, 2], [0.4], 1, 2, 1, 0.001)
    nw.study()
    print graph(nw.get epsilon(), nw.get epoch())
if __name__ == '__main__':
    start()
```