Analyzing the Structure and Composition of Kepler 20b

Kevin Hoy, Joshua Kingsbury, Avidaan Srivastava, Logan Steele

Motivation

- Figure out the chemical composition of exoplanets' Core and Mantle
- Analyze stellar composition to make predictions about planetary composition
- Use Exoplex to construct the likely structure of Kepler 20b

Why Kepler 20b?

- Tatooine-like star system with 6 planets (Star Wars, 1977TM)
- Lies within the Radius Gap (R = 1.91 R_F)
- Very small semi major axis (a = 0.04537 AU)
- High mass $(M = 8.7 M_F)$
- Data taken from Gautier et al. 2011

Assumptions made about Kepler 20b

No atmosphere? (Upper end of radius gap, proximity to host stars)

Stellar Composition

- [Fe/H] = 0.01 from NASAExoplanet Archive
- [X/Fe] from Griffith et al. (2021)
- Converted to [X/Mg] using:

$$[X/H] = (1 + [Fe/H]) * (1 + [X/Fe]) - 1$$

$$[X/Mg] = \frac{10^{[X/H]} * 10^{X-H}}{10^{[Mg/H]} * 10^{Mg-H}}$$

Comparison of Irradiation

	Kepler 20b	Mercury	Earth
Radius (R _E)	1.91	0.383	1
Semi-Major Axis (AU)	0.04537	0.387	1
Surface Irradiation (I _E)	349.636	6.25	1
Total Power (P _E)	1275.4	0.917	1

Location on Radius Valley graph

Planetary Structure Based on only Stellar Composition

	Officially reported	Upper Bound	Lower Bound
Mass (M _E)	8.7	10.8	6.5
Radius (R _E)	1.796	1.89	1.67
Density (g/cm³)	8.269	8.782	7.679
Core Radius Fraction (% of R)	48.02	47.91	48.23

Adjusted Core Mass Fractions

	Officially reported	Upper Bound	Lower Bound
Mass (M _E)	8.7	10.8	6.5
Radius (R _E)	1.91	2.01	1.77
Density (g/cm³)	6.872	7.245	6.426
Core Radius Fraction (% of R)	66.55	66.37	66.82
Core Si Mass Fraction	30%	30%	30%

Comparing Exoplex data plots

Mantle Mineral Composition

Results

Radius

- Officially listed radius: 1.91 (+0.12, -0.21) R_F
- Calculated radii (with adjusted core mass fractions): 1.91 R_F, 2.01 R_F, 1.77 R_F
- All calculated radii lie within the predicted errors

Density

- Officially listed density: 6.5 (+0.20, -0.27) g/cm³
- Calculated densities (with adjusted core mass fractions): 6.872 g/cm³, 7.245 g/cm³,
 6.426 g/cm³
- 2/3 calculated densities are close to predicted error range

Internal Structure

- Core much bigger compared to the Earth
- Density variation at core-mantle boundary much smaller than the Earth

Next Steps...

 Make more accurate calculations regarding the presence of an atmosphere using exobase temperature

Vary core composition to align with the officially reported density value

Questions?????

Citations

 Griffith, E. et al. (2021.). The similarity of abundance ratio trends and nucleosynthetic patterns in Milky Way disk and bulge. ApJ 909 77. https://iopscience.iop.org/article/10.3847/1538-4357/

Gautier, T. N. et al. (2012). Kepler-20: A sun-like star with three sub-neptune exoplanets and two Earth-size candidates. NASA/ADS.
 https://iopscience.iop.org/article/10.1088/0004-637X/749/1/15/