Meeting Update

Gaussian Process Covariance Function Selection Using Minimum Energy Designs, For Real This Time

Kristyn Pantoja

Department of Statistics Texas AM University

05 April 2019

Outline

Last Time

Sequentially Chosen Candidates in One-at-a-Time Algorithm Expected posterior probabilities of hypotheses Another metric, using distances in both x and y

Timing Things

Comments

Last Time

Last Time

What happened last time

- 1. Started Gaussian Process Model Selection
- 2. Saw results for large K

Things to do:

- 1. Some statistics/numbers for evaluating the criterion, for the purpose of doing comparisons with other designs. Basically a way to show that the design is better!
- 2. Time things!
- 3. Clean up code, address pull request comments.

Sequentially Chosen Candidates in One-at-a-Time Algorithm

Here, *numCandidates* = 1500 in One-at-a-Time Algorithm, with candidates picked uniformly. (Even when sorting uniformly-selected candidates)

Fast Algorithm K=100

One-at-a-Time Uniform

When we choose candidates along a sequence instead of uniformly, the two designs are closer. (Why? Rui Tui's seminar talk, when he mentioned difference in sphere packing)

Fast Algorithm K=100

One-at-a-Time Sequential

Here, $numCandidates = 10^5$ in One-at-a-Time Algorithm. They're even closer!

Fast Algorithm K=100

One-at-a-Time Sequential

Compare Fast with K=20 and One-at-a-Time with $numCandidates=10^5$ in One-at-a-Time Algorithm.

Fast Algorithm K=100

One-at-a-Time Sequential

Histograms for Designs

Comparing designs in Fast (K = 100) and One-at-a-Time with candidates along sequence ($numCandidates = 10^5$)

Fast

One-at-a-Time Seq

Summary Stats on Designs

Comparing designs in Fast (K = 100) and One-at-a-Time with candidates along sequence ($numCandidates = 10^5$)

Fast

- 1. mean, sd of design points = 0.6129598, 0.2540533
- 2. sum, mean, sd of differences between consecutive sorted points = 0.9599863, 0.01454525, 0.00766221
- 3. sum, mean, sd of differences between f_0 and $f_1 = 20.53415$, 0.3064799, 0.1270267

One-at-a-Time

- 1. mean, sd of design points = 0.6882634, 0.2182556
- 2. sum, mean, sd of differences between consecutive sorted points = 0.8859489, 0.01342347, 0.01187598
- 3. sum, mean, sd of differences between f_0 and $f_1 = 23.05683$, 0.3441317, 0.1091278

Thoughts

Comparing designs in Fast (K = 100) and One-at-a-Time with candidates along sequence ($numCandidates = 10^5$), it seems....

- 1. The fast algorithm is more space-filling
- 2. Its mean is smaller... not sure what this implies. Not as focused on distinguishing the models? More for prediction/parameter estimation?
- 3. ...

Sequentially Chosen Candidates in One-at-a-Time Algorithm

Expected posterior probabilities of hypotheses

Expected Posterior Probability of Model

- ▶ Posterior probability of a model given by H_{ℓ} , $\ell = 1, ..., M$ to see which model is more likely to be the correct one.
- Posterior Probability is

$$P(H_{\ell}|Y) = \frac{\pi_{\ell}P(Y|H_{\ell})}{\sum_{m=1}^{M} \pi_{m}P(Y|H_{m})}$$
(1)

where π_m is the prior on the model given by H_m , and $P(Y|H_m)$ is the model evidence.

Consider the linear model.

$$y = f(\mathbf{x}) + \epsilon$$
$$f(x) = \mathbf{x}\beta$$

where $\epsilon \sim N(0, \sigma_{\epsilon}^2)$ and $\beta \sim N(\tilde{\beta}, \sigma_{\beta}^2)$.

- ▶ For model H_{ℓ} with $\epsilon_{\ell} \sim N(0, \sigma_{\epsilon_{\ell}}^2)$ and $\beta_{\ell} \sim N(\tilde{\beta}_{\ell}, \sigma_{\beta_{\ell}}^2)$, we have $y|H_{\ell} \sim N(\tilde{\beta}_{\ell}\mathbf{x}, \sigma_{\epsilon_{\ell}}^2 + \mathbf{x}^2\sigma_{\beta_{\ell}}^2)$ where the mean and variance are computed by iterated expectation and variance.
- Since we don't have Y to calculate the model evidence. instead calculate the expected model evidence $\mathbb{E}_{Y}[P(Y|\mathcal{H}_{m})]$ 14/25

Estimate Expected Posterior Probability of Model

- 1. Obtain design $\mathbf{D} = \{x_1, ..., x_N\}$ from the Fast Algorithm for Linear Model Selection.
- 2. Draw $y_i^{(j)} \sim N(\tilde{\beta}_\ell \mathbf{x}, \sigma_{\epsilon_\ell}^2 + \mathbf{x}^2 \sigma_{\beta_\ell}^2), \forall \mathbf{x}_i \in \mathbf{D}, j = 1, ..., J$ to obtain J simulations of $Y = \{y_1, ..., y_N\}$ for model H_ℓ , which gives the linear model:

$$y = f(\mathbf{x}) + \epsilon$$
$$f(x) = \mathbf{x}\beta_{\ell}$$

where $\epsilon \sim N(0, \sigma_{\epsilon_{\ell}}^2)$ and $\beta_{\ell} \sim N(\tilde{\beta}_{\ell}, \sigma_{\beta_{\ell}}^2)$.

- 3. Estimate $E_y[P(Y|H_m)] \approx \frac{1}{J} \sum_{j=1}^J P(Y|H_m), \forall m \in \{1,...,M\}$, where $P(Y|H_m)$ is the pdf of the distribution $N(\tilde{\beta_m}\mathbf{x},\sigma_{\epsilon_m}^2 + \mathbf{x}^2\sigma_{\beta_m}^2)$.
- 4. Then estimate $E_Y[P(H_{\ell}|Y)]$ by

$$E_{Y}[P(H_{\ell}|Y)] = \frac{\pi_{\ell} E_{Y}[P(Y|H_{\ell})]}{\sum_{m=1}^{M} \pi_{m} E_{Y}[P(Y|H_{m})]}$$
(2)

Questions about Step 3

- ▶ How to get a single number out of this computation?
- ▶ Where to put the design points **D** = $\{x_1, ..., x_N\}$?
- ▶ What do we do with $y_i^{(j)}$ from simulations?
- ▶ Is there some kind of likelihood for linear regression? Some sources talk about Laplace approximation to marginal Y... did I compute that wrong? I averaged over β , am I supposed to somehow average over \mathbf{D} as well?
- ▶ Need to get rid of **x**'s somehow...

What I Ended Up Doing

- Obtain design **D** from the Fast Algorithm for Linear Model Selection.
- 2. Draw $y_i^{(j)} \sim N(\tilde{\beta}_\ell \mathbf{x}, \sigma_{\epsilon_\ell}^2 + \mathbf{x}^2 \sigma_{\beta_\ell}^2), \forall \mathbf{x}_i \in \mathbf{D}, j = 1, ..., J$ for model H_ℓ . For now, M = 2.
- 3. Estimate $E_y[P(Y|H_m)] \approx \frac{1}{JN} \sum_{j=1}^J \sum_{i=1}^N P(y_i|H_m,\mathbf{x}_i)$, $\forall m \in \{1,...,M\}$, where $P(y_i|H_m,\mathbf{x}_i)$ is the pdf of $N(\tilde{\beta_m}\mathbf{x},\sigma_{\epsilon_m}^2+\mathbf{x}^2\sigma_{\beta_m}^2)$.
- 4. Assume $\pi_m = \frac{1}{M}, \forall m = 1, ..., M$ and estimate $E_Y[P(H_\ell|Y)]$ by

$$E_Y[P(H_\ell|Y)] \approx \frac{E_Y[P(Y|H_\ell)]}{\sum_{m=1}^M \pi_m E_Y[P(Y|H_m)]}$$
(3)

5. Since M = 2, can also compute the Bayes Factor,

$$BF_{01} \approx \frac{E_Y[P(Y|H_0)]}{E_Y[P(Y|H_1)]}$$
 (4)

New Results

For both
$$H_0, H_1, \ \sigma_{\epsilon} = 0.01, \sigma_{\beta} = 0.001, N = 51.$$
 $\tilde{\beta}_0 = 1, \tilde{\beta}_0 = 1/2.$

For generating Y under the null model given by H_0 ,

- $ightharpoonup E_Y[P(H_0|Y)] \approx 0.8196135$
- \triangleright $E_Y[P(H_1|Y)] \approx 0.1803865$
- ► $BF_{01} \approx 4.543653$: supports H_0

For generating Y under the alternative model given by H_1 ,

- $ightharpoonup E_Y[P(H_0|Y)] \approx 0.1818883$
- $ightharpoonup E_Y[P(H_1|Y)] \approx 0.8181117$
- ▶ $BF_{01} \approx 0.222327$: supports H_1

Results, continued...

For both
$$H_0$$
, H_1 , $\sigma_\epsilon=0.01$, $\sigma_\beta=0.001$, $N=51$. $\tilde{\beta}_0=1, \tilde{\beta}_0=1/2$.

Example Simulation from H_0 Model,

Interpreting Bayes Factors (Kass & Raftery 1995):

	1
BF_{01}	Evidence for H_0
< 1	Supports H_1
1 to 3	not worth mentioning
3 to 20	positive
20 to 150	Strong
> 150	v strong

Sequentially Chosen Candidates in One-at-a-Time Algorithm

Another metric, using distances in both x and y

Summary Stats on Designs

How do we use these to evaluate the design?

Fast

- 1. mean, sd of design points = 0.6129598, 0.2540533
- sum, mean, sd of differences between consecutive sorted points = 0.9599863, 0.01454525, 0.00766221
- 3. sum, mean, sd of differences between f_0 and $f_1 = 20.53415$, 0.3064799, 0.1270267

One-at-a-Time

- 1. mean, sd of design points = 0.6882634, 0.2182556
- 2. sum, mean, sd of differences between consecutive sorted points = 0.8859489, 0.01342347, 0.01187598
- 3. sum, mean, sd of differences between f_0 and $f_1 = 23.05683$, 0.3441317, 0.1091278

Timing Things

Times

- 1. Fast Algorithm with K = 20: 2.77915 minutes
- 2. Fast Algorithm with K = 100: 58.4566 minutes
- 3. One-at-a-Time Sequential with $numCandidates = 10^5$: 17.37015 minutes
- 4. The "Fast" Algorithm is probably slower since K is so large... but it has to be.

Comments

Some Things.

- 1. Candidate set: N/2 from space filling design in L_{jk} , and other N/2 some linear combination of nearby points (Nesterov?) get a total of N additional candidates in each new design $k=1,\ldots,K$
- 2. So I suppose that would be the next step? Will hopefully see faster convergence.
- 3. Maybe choose a different power than 2p = 2 for d(.,.) to see if it makes the designs even more similar?
- 4. $gamma_{k+1} = \frac{k}{K-1}$ since we're indexing from k = 1, ..., K-1 to create the next design k = 2, ..., K, resp.
- Still thinking about asymptotic properties / limiting distribution (if it exists) for the fact that we're using Wasserstein distance instead of a density now.