数据库系统概论

An Introduction to Database System

第二章 关系数据库

中国人民大学信息学院

关系数据库语言的分类

- ❖ 关系代数语言
 - 用对关系的运算来表达查询要求
- ❖ 关系演算语言:用谓词来表达查询要求
 - 元组关系演算语言
 - 谓词变元的基本对象是元组变量
 - 代表: APLHA, QUEL
 - 域关系演算语言
 - ●谓词变元的基本对象是域变量
 - 代表: QBE
- ❖ 具有关系代数和关系演算双重特点的语言
 - 代表: SQL (Structured Query Language)

关系代数

- ❖ 关系代数是一种抽象的查询语言,它用对关系的运算来表达查询
- **❖**关系代数
 - ■运算对象是关系
 - ■运算结果亦为关系
 - 关系代数的运算符有两类:集合运算符和专门的关系 运算符

2.4 关系代数

表2.4 关系代数运算符

运算	算 符 人	含义
集合		并
运算符	-	差
		交交
	×	笛卡尔积
专门的 关系	σ	选择
关系	π	投影
运算符		连接
		除

关系代数

- 1 传统的集合运算
- 2 专门的关系运算
- 3 综合练习

关系代数

(传统的集合运算)

一些记号

(1) R, $t \in R$, $t[A_i]$

设关系模式为 $R(A_1, A_2, ..., A_n)$

它的一个关系设为R

t∈R表示t是R的一个元组

 $t[A_i]$ 则表示元组t中相应于属性 A_i 的一个分量

一些记号(续)

(2) A, t[A], A

若 $A=\{A_{i1}, A_{i2}, ..., A_{ik}\}$,其中 $A_{i1}, A_{i2}, ..., A_{ik}$ 是 $A_{1}, A_{2}, ..., A_{n}$ 中的一部分,则A称为属性列或属性组。

 $t[A]=(t[A_{i1}], t[A_{i2}], ..., t[A_{ik}])$ 表示元组t在属性列A上诸分量的集合。

A 则表示 $\{A_1, A_2, ..., A_n\}$ 中去掉 $\{A_{i1}, A_{i2}, ..., A_{ik}\}$ 后剩余的属性组。

一些记号(续)

 $(3) \ \overrightarrow{t_r} \, \overrightarrow{t_s}$

R为n目关系,S为m目关系。

 $t_r \in R$, $t_s \in S$, $t_r t_s$ 称为元组的连接。

t, t, 是一个<math>n + m列的元组,前n个分量为R中的一

个n元组,后m个分量为S中的一个m元组。

一些记号(续)

(4) 象集**Z**_x

给定一个关系R(X,Z),X和Z为属性组。

当t[X]=x时,x在R中的象集(Images Set)为:

$$Z_{x}=\{t[Z]|t\in R, t[X]=x\}$$

它表示R中属性组X上值为x的诸元组在Z上分量的集合

一些记号

R	, .	
x_1	Z_1	
x_1	Z_2	
x_1	Z_3	– .
x_2	Z_2	
x_2	Z_3 .	
x_3	Z_1	
x_3	Z_3	

❖ x.在R中的象集

$$Z_1 = \{Z_1, Z_2, Z_3\},$$

❖ x₂在R中的象集

$$Z_2 = \{Z_2, Z_3\}$$

 $Z_{2} = \{Z_{2}, Z_{3}\},$ $x_{3} \in \mathbb{R}$ 中的象集

$$Z_3 = \{Z_1, Z_3\}$$

象集举例

1 并(Union)

❖R和S

- ■具有相同的目n(即两个关系都有n个属性)
- ■相应的属性取自同一个域

***** *R*∪ *S*

■ 仍为n目关系,由属于R或属于S的元组组成 $R \cup S = \{ t | t \in R \lor t \in S \}$

并(续)

R

Α	В	С
a1	b1	c1
a1	b2	c2
a2	b2	c1

S

Α	В	С
a1	b2	c2
a1	b3	c2
a2	b2	с1

RUS

Α	В	С
a1	b1	c1
a1	b2	c2
a2	b2	c1
a1	b 3	c2

并(续)

	R			
	A	В	C	
-	a_1	b_1	c_1	
-	a_1	b_2	c_2	
-	a_2	b_2	c_1	
	S			
	A	В	С	
—	a_1	b_2	C ₂	****
-	a_1	b_3	c_2	2
=	a_2	b_3 b_2	c_1	••••

	$R \cup S$		
	A	В	С
	a_1	b_1	c_1
٧	a_1	b_2	c_2
	a_2	b_2	c_1
•	a_1	b_3	c_2

2差(Difference)

- **⇔**R和S
 - ■具有相同的目n
 - ■相应的属性取自同一个域

- * R S
 - 仍为n目关系,由属于R而不属于S的所有元组组成

$$R-S = \{ t | t \in R \land t \notin S \}$$

差(续)

_
~
1

Α	В	С
a1	b 1	c1
a1	b2	c2
a2	b2	c1
S		

Α	В	С
a1	b2	c2
a1	b 3	c2
a2	b2	с1

R-S

A	В	С
a1	b 1	c1

3 交 (Intersection)

- ❖R和S
 - 具有相同的目n
 - ■相应的属性取自同一个域

- **⇔**R∩S
 - ■仍为n目关系,由既属于R又属于S的元组组成

$$R \cap S = \{ t | t \in R \land t \in S \}$$

$$R \cap S = R - (R - S)$$

交(续)

R

Α	В	С
a1	b 1	c1
a1	b2	c2
a2	b2	c1
S		

Α	В	С
a1	b2	c2
a1	b 3	c2
a2	b2	c1

 $R \cap S$

A	В	С
a1	b2	c2
a2	b2	c1

4 笛卡尔积(Cartesian Product)

- ❖ R: n目关系, k₁个元组; S: m目关系, k₂个元组
- * R×S
 - ■列: (n+m) 列元组的集合
 - ●元组的前n列是关系R的一个元组
 - 后 m 列是关系 S 的一个元组
 - 行: $k_1 \times k_2$ 个元组
 - $\bullet R \times S = \{ \widehat{t_r} \ t_s \mid t_r \in R \land t_s \in S \}$

笛卡尔积 (续)

R				
Α	В	С		
a1	b 1	c 1		
a1	b2	c2		
a2	b2	c1		
S				
Α	В	С		
a1	b2	c2		
a1	b 3	c2		
a1 a2	b3 b2	c2 c1		

$R \times$	S				
R.A	R.B	R.C	S.A	S.B	S.C
a1	b1	c1	a1	b2	c2
a1	b 1	c1	a1	b 3	c2
a1	b1	c1	a2	b2	с1
a1	b2	c2	a1	b2	c2
a1	b2	c2	a1	b3	c2
a1	b2	c2	a2	b2	с1
a2	b2	c1	a1	b2	c2
a2	b2	c1	a1	b3	c2
a2	b2	c1	a2	b2	c1