1 Evaluating Functions

In this activity we practice evaluating functions at numbers and other functions.

Theorem 1 (Hello)

solution Obvious!1

Exercise 1 Given that $f(x) = -5x^4 + 2x^3 + x^2 - 3x + 2$, evaluate f(3.9). Solution

Hint: $f(3.9) = -5(3.9)^4 + 2(3.9)^3 + (3.9)^2 - 3(3.9) + 2.$

Hint: f(3.9) = -1032.57.

The value of the function $f(x) = -5x^4 + 2x^3 + x^2 - 3x + 2$, evaluated at x = 3.9, is -1032.57.

Question 2

- (a) Hello! ✓
- (b) NO!

Solution

Hint: Hello is always right!

Question 3 In the plot below, is B a function of z?

 $^{1}\mathrm{Link}$: http://kjflkdjf

²Video link: hello

- (a) Yes. \checkmark
- (b) No.

Solution

Hint: For each input, how many outputs are there?

Use the plot to compute B(0)

Solution

Hint: To start, find 0 on the horizontal axis.

Hint: Now from this position, move up or down until you reach the curve. The value of B(0) is the height of the curve at the point z=0.

The value of B(0) is 4.

Is B^{-1} a function of z on the domain [-10, 141]?

- (a) Yes.
- (b) No. ✓

Solution

Hint: For each input of B^{-1} , how many outputs are there?

Restrict the domain of B to [3,5] and compute $B^{-1}(4)$.

Solution

Hint: Since we are looking at B^{-1} , now we must find -1 on the vertical axis. The value of $B^{-1}(-1)$ is 4.

Question 4 In the plot below, is B a function of z?

- (a) Yes. ✓
- (b) No.

Solution

Hint: For each input, how many outputs are there?

Use the plot to compute B(0)

Solution

Hint: To start, find 0 on the horizontal axis.

Hint: Now from this position, move up or down until you reach the curve. The value of B(0) is the height of the curve at the point z=0.

The value of B(0) is 4.

Is B^{-1} a function of z on the domain [-10, 141]?

- (a) Yes.
- (b) No. ✓

Solution

Hint: For each input of B^{-1} , how many outputs are there?

Restrict the domain of B to [3,5] and compute $B^{-1}(4)$.

Solution

Hint: Since we are looking at B^{-1} , now we must find -1 on the vertical axis. The value of $B^{-1}(-1)$ is 4.