FLAT-BASE TYPE INSULATED PACKAGE

PM75CLB120

FEATURE

- a) Adopting new 5th generation IGBT (CSTBT) chip, which performance is improved by $1\mu m$ fine rule process. For example, typical $V_{ce}(sat)=1.9V$ @Tj=125°C
- b) I adopt the over-temperature conservation by Tj detection of CSTBT chip, and error output is possible from all each conservation upper and lower arm of IPM.
- New small package
 Reduce the package size by 32%, thickness by 22% from S-DASH series.
- 36 75A, 1200V Current-sense IGBT type inverter
- Monolithic gate drive & protection logic
- Detection, protection & status indication circuits for, shortcircuit, over-temperature & under-voltage (P-Fo available from upper arm devices)
- Acoustic noise-less 11kW/15kW class inverter application
- UL Recognized Yellow Card No.E80276(N) File No.E80271

APPLICATION

General purpose inverter, servo drives and other motor controls

FLAT-BASE TYPE INSULATED PACKAGE

MAXIMUM RATINGS (Tj = 25° C, unless otherwise noted)

INVERTER PART

Symbol	Parameter	Condition	Ratings	Unit
VCES	Collector-Emitter Voltage	VD = 15V, VCIN = 15V	1200	V
±lc	Collector Current	Tc = 25°C	75	Α
±ICP	Collector Current (Peak)	Tc = 25°C	150	Α
Pc	Collector Dissipation	$Tc = 25^{\circ}C$ (Note-1)	595	W
Tj	Junction Temperature		-20 ~ +150	°C

CONTROL PART

Symbol	Parameter	Condition	Ratings	Unit
VD	Supply Voltage	Applied between: VuP1-VuPC VvP1-VvPC, VwP1-VwPC, Vn1-VnC	20	V
VCIN	Input Voltage	Applied between : UP-VUPC, VP-VVPC WP-VWPC, UN • VN • WN-VNC	20	٧
VFO	Fault Output Supply Voltage	Applied between : UFO-VUPC, VFO-VVPC, WFO-VWPC FO-VNC	20	V
IFO	Fault Output Current	Sink current at UFO, VFO, WFO, FO terminals	20	mA

FLAT-BASE TYPE INSULATED PACKAGE

TOTAL SYSTEM

Symbol	Parameter	Condition	Ratings	Unit
VCC(PROT)	Supply Voltage Protected by SC	VD = 13.5 ~ 16.5V, Inverter Part, Tj = +125°C Start	800	V
VCC(surge)	Supply Voltage (Surge)	Applied between : P-N, Surge value	1000	V
Tstg	Storage Temperature		− 40 ~ +125	°C
Viso	Isolation Voltage	60Hz, Sinusoidal, Charged part to Base, AC 1 min.	2500	Vrms

THERMAL RESISTANCES

		Condition		Limits			
Symbol	Parameter			Typ.	Max.	Unit	
Rth(j-c)Q	Junction to case Thermal	Inverter IGBT (per 1 element) (Note-1) —	_	0.21*		
Rth(j-c)F	Resistances	Inverter FWDi (per 1 element) (Note-1) —	_	0.30*	°C/W	
Rth(c-f)	Contact Thermal Resistance	Case to fin, (per 1 module)		_	0.038	30/00	
		Thermal grease applied (Note-1) -				

^{*} If you use this value, Rth(f-a) should be measured just under the chips.

(Note-1) Tc (under the chip) measurement point is below.

(Unit	mr	n)
-------	----	----

arm	U	Р	V	Р	W	/P	U	N	V	N	W	'N
axis	IGBT	FWDi										
X	28.3	28.3	65.0	65.0	87.0	87.0	39.3	39.3	54.0	54.0	76.0	76.0
Υ	-8.2	2.0	-8.2	2.0	-8.2	2.0	6.2	-4.0	6.2	-4.0	6.2	-4.0

ELECTRICAL CHARACTERISTICS (Tj = 25° C, unless otherwise noted) **INVERTER PART**

0	Damasadan	Condition		Condition			
Symbol	Parameter	Condition	Condition		Тур.	Max.	Unit
Vor.	Collector-Emitter	VD = 15V, IC = 75A	Tj = 25°C	_	1.8	2.3	V
VCE(sat)	Saturation Voltage	VCIN = 0V (Fig. 1)	Tj = 125°C	_	1.9	2.4]
VEC	FWDi Forward Voltage	-IC = 75A, VD = 15V, VCIN = 15V	(Fig. 2)	_	2.5	3.5	V
ton		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		0.5	1.0	2.5	
trr		VD = 15V, VCIN = 0V↔15V		_	0.5	0.8	
tc(on)	Switching Time	Vcc = 600V, Ic = 75A		_	0.4	1.0	μs
toff		Tj = 125°C	(Fir. 0.4)	_	2.0	3.0	
tc(off)		Inductive Load	(Fig. 3,4)	_	0.7	1.2	
loco	Collector-Emitter	Vor Vore Von 15V (Fir F)	Tj = 25°C	_		1	A
ICES	Cutoff Current	VCE = VCES, VCIN = 15V (Fig. 5)	Tj = 125°C	_	_	10	mA

FLAT-BASE TYPE INSULATED PACKAGE

CONTROL PART

Cumbal	Davamatav	Parameter Condition			Limits		l lmia
Symbol	Parameter	Condition		Min.	Тур.	Max.	Unit
ID	Circuit Current	VD = 15V, VCIN = 15V	VN1-VNC	_	15	25	mA
וט	Circuit Guiterit	VD = 13V, VCIN = 13V	V*P1-V*PC	_	5	10	IIIA
Vth(ON)	Input ON Threshold Voltage	Applied between : UP-VUPC, VP-VVPC,	WP-VWPC	1.2	1.5	1.8	V
Vth(OFF)	Input OFF Threshold Voltage	Un • Vn • Wn-Vnc		1.7	2.0	2.3	, v
SC	Short Circuit Trip Level	$-20 \le T_j \le 125^{\circ}C, V_D = 15V$	(Fig. 3,6)	150	_	_	Α
toff(SC)	Short Circuit Current Delay Time	VD = 15V	(Fig. 3,6)	_	0.2	_	μs
ОТ	Over Temperature Protection	VD = 15V	Trip level	135	145	_	°C
OTr	Over remperature Protection	Detect Tj of IGBT chip	Reset level	_	125	_	
UV	Supply Circuit Under-Voltage	20 < T: < 125°C	Trip level	11.5	12.0	12.5	V
UVr	Protection	Protection $-20 \le T_j \le 125^{\circ}C$		_	12.5	_	, v
IFO(H)	Fault Output Current	VD = 15V, VFO = 15V	(Note-2)	_	_	0.01	mA
IFO(L)	Fauit Output Current	VD = 13V, VFO = 13V	(14018-2)	_	10	15	IIIA
tFO	Minimum Fault Output Pulse Width	VD = 15V	(Note-2)	1.0	1.8	_	ms

⁽Note-2) Fault output is given only when the internal SC, OT & UV protections schemes of either upper or lower arm device operate to protect it.

MECHANICAL RATINGS AND CHARACTERISTICS

	Candition			1.1-24			
Symbol	Parameter	Condition		Min.	Тур.	Max.	Unit
_	Mounting torque	Mounting part	screw : M5	2.5	3.0	3.5	N•m
_	Weight	_			340	_	g

RECOMMENDED CONDITIONS FOR USE

Symbol	Parameter	Condition	Recommended value	Unit
Vcc	Supply Voltage	Applied across P-N terminals	≤ 800	V
VD	Control Supply Voltage	Applied between: VuP1-VuPc, VvP1-VvPc VwP1-VwPc, Vn1-Vnc (Note-3)	15.0 ± 1.5	٧
VCIN(ON)	Input ON Voltage	Applied between: UP-VUPC, VP-VVPC, WP-VWPC	≤ 0.8	V
VCIN(OFF)	Input OFF Voltage	Un • Vn • Wn-Vnc	≥ 9.0	·
fPWM	PWM Input Frequency	Using Application Circuit of Fig. 8	≤ 20	kHz
tdead	Arm Shoot-through Blocking Time	For IPM's each input signals (Fig. 7)	≥ 2.5	μs

(Note-3) With ripple satisfying the following conditions: dv/dt swing $\leq \pm 5V/\mu s$, Variation $\leq 2V$ peak to peak

FLAT-BASE TYPE INSULATED PACKAGE

PRECAUTIONS FOR TESTING

- Before appling any control supply voltage (VD), the input terminals should be pulled up by resistores, etc. to their corresponding supply voltage and each input signal should be kept off state.
 After this, the specified ON and OFF level setting for each input signal should be done.
- 2. When performing "SC" tests, the turn-off surge voltage spike at the corresponding protection operation should not be allowed to rise above VCES rating of the device.

(These test should not be done by using a curve tracer or its equivalent.)

Fig. 3 Switching time and SC test circuit

Fig. 4 Switching time test waveform

Fig. 5 Ices Test

Fig. 6 SC test waveform

1.5V: Input on threshold voltage Vth(on) typical value, 2V: Input off threshold voltage Vth(off) typical value

Fig. 7 Dead time measurement point example

FLAT-BASE TYPE INSULATED PACKAGE

Fig. 8 Application Example Circuit

NOTES FOR STABLE AND SAFE OPERATION;

- Design the PCB pattern to minimize wiring length between opto-coupler and IPM's input terminal, and also to minimize the stray capacity between the input and output wirings of opto-coupler.
- Connect low impedance capacitor between the Vcc and GND terminal of each fast switching opto-coupler.
- Fast switching opto-couplers: tPLH, tPHL \leq 0.8 μ s, Use High CMR type.
- Slow switching opto-coupler: CTR > 100%
- Use 4 isolated control power supplies (VD). Also, care should be taken to minimize the instantaneous voltage charge of the power supply.
- Make inductance of DC bus line as small as possible, and minimize surge voltage using snubber capacitor between P and N terminal.
- Use line noise filter capacitor (ex. 4.7nF) between each input AC line and ground to reject common-mode noise from AC line and improve noise immunity of the system.

FLAT-BASE TYPE INSULATED PACKAGE

PERFORMANCE CURVES

COLLECTOR CURRENT Ic (A)

COLLECTOR-EMITTER SATURATION

FLAT-BASE TYPE INSULATED PACKAGE

COLLECTOR RECOVERY CURRENT -Ic (A)

TRANSIENT THERMAL IMPEDANCE CHARACTERISTICS (INVERTER PART)

TIME (s)

