

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	26/6/2024	17:00

Esta prueba sólo la pueden realizar los estudiantes que han aprobado la Evaluación Continua

Ficha técnica de la prueba de síntesis

- No es necesario que escribas tu nombre. Una vez resuelta la prueba final, solo se aceptan documentos en formato .doc, .docx (Word) y .pdf.
- Comprueba que el código y el nombre de la asignatura corresponden a la asignatura de la que te has matriculado.
- Tiempo total: **1 hora** Valor de cada pregunta:
- ¿Se puede consultar material durante la prueba? Sí ¿Qué materiales están permitidos?
 Solo los módulos 1 y 2 de la asignatura. Nada más.
- ¿Puede utilizarse calculadora? NO ¿De qué tipo? NINGUNO
- Si hay preguntas tipo test, ¿descuentan las respuestas erróneas? NO ¿Cuánto?
- Indicaciones específicas para la realización de esta prueba de síntesis:
 - No es necesario que te identifiques con el nombre o el número de carnet de estudiante. La autoría de la prueba es detectada por el propio sistema.
 - En el momento de la entrega, indica claramente el número de páginas que estás entregando. Por ejemplo, numera las páginas indicando el total (1 de 5, 2 de 7, ... 7 de 7)
 - La prueba se puede resolver a mano o directamente en ordenador en un documento a parte. Referencia claramente la pregunta que estás respondiendo. Recomendamos la resolución a mano de la prueba para agilizar la escritura de las fórmulas.
 - En caso de responder la prueba a mano:
 - o No hace falta imprimir el enunciado, puedes resolver las preguntas en una hoja en blanco.
 - o Utiliza un bolígrafo de tinta azul o negra.
 - o Digitaliza tus respuestas en un único fichero en formato PDF o Word. Puedes hacerlo con un escáner o con un dispositivo móvil. Asegúrate de que el fichero que entregas sea legible.
 - o Dispones de 10 minutos extra para la digitalización y entrega de la prueba.
 - Esta prueba debe resolverse de forma estrictamente individual. En caso que no sea

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	26/6/2024	17:00

así, se evaluará con un cero. Por otro lado, y siempre a criterio de los Estudios, el incumplimiento de este compromiso puede suponer la apertura de un expediente disciplinario con posibles sanciones.

- No es obligatorio resolver los ejercicios en orden. Simplemente indica claramente qué ejercicio estás resolviendo en cada momento. RECOMENDAMOS QUE ANTES DE PONERTE A RESOLVER LA PRUEBA LEAS TODOS LOS ENUNCIADOS DE LAS ACTIVIDADES PARA PLANIFICAR EN QUÉ ORDEN TE CONVIENE RESOLVERLOS PARA SACAR EL MÁXIMO PARTIDO AL TIEMPO DEL QUE DISPONES.
- Recordad que los auriculares no están permitidos

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	26/6/2024	17:00

Enunciados

Actividad 1 (1.5 puntos + 1.5 puntos)

[Criterio de valoración: Las formalizaciones deben ser correctas en todos los aspectos, incluida la parentización. Cada frase se valora independientemente de las demás]

a) Utilizando los siguientes átomos, formalizad las frases que hay a continuación

P: haces de pastor

E: amas la naturaleza

A: disfrutas del aire libre

V: te ganas bien la vida

T: trabajas de sol a sol

F: quieres un futuro mejor

 Cuando amas la naturaleza, es necesario disfrutar el aire libre y trabajar de sol a sol para hacer de pastor.

$$E \rightarrow (P \rightarrow A \wedge T) - ||-E \rightarrow (\neg(A \wedge T) \rightarrow \neg P)$$

2) Cuando haces de pastor, siempre que te ganas bien la vida trabajas de sol a sol y quieres un futuro mejor.

$$P \rightarrow (V \rightarrow T \land F)$$

3) Solo cuando no amas la naturaleza, ni quieres un futuro mejor ni trabajas de sol a sol.

$$\neg F \land \neg T \rightarrow \neg E \cdot || - E \rightarrow \neg (\neg F \land \neg T)$$

b) Usando los siguientes predicados y constantes, formalizad las frases que hay a continuación:

E(x): x es una empresa

P(x): x es pública

T(x): x es un técnico

M(x): x es metódico

B(x): x tiene beneficios

S(x, y): x supervisa y

a: Albert Antic

b: Bowl-Tec

1) Hay técnicos que solo supervisan empresas.

$$\exists x \{ T(x) \land \forall y [S(x,y) \rightarrow E(y)] \}$$

2) Albert Antic no supervisa todas las empresas públicas, pero sí supervisa Bowl-Tec.

$$\neg \forall x [E(x) \land P(x) \rightarrow S(a,x)] \land S(a,b)$$

3) Si ningún técnico fuera metódico, todas las empresas públicas tendrían beneficios.

$$\neg \exists x [T(x) \land M(x)] \rightarrow \forall x [E(x) \land P(x) \rightarrow B(x)]$$

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	26/6/2024	17:00

Actividad 2 (2 puntos / 1 punto)

[Criterio de valoración: será inválida (0 puntos) cualquier deducción que contenga la aplicación incorrecta de alguna regla]

Demostrad, utilizando las 9 reglas primitivas de la deducción natural, que el siguiente razonamiento es correcto.

En toda la demostración podéis utilizar **un** equivalente deductivo o **una** regla derivada (pero no ambos) y en cualquiera de los dos casos la valoración máxima del ejercicio será de 1 punto.

$$\neg (B \lor C) :: D \lor B \to A \lor D$$

Podéis plantear la demostración de la siguiente manera: en el ámbito de la suposición del antecedente de la implicación haced una prueba por casos en que ambas ramas finalicen con el enunciado D.

1.	¬(B∨C)				Р
2.	1(2 ; 0)	D∨B			H
3.			D		Н
4.			D		It 3
5 .			В		H
6.				¬D	Н
7.				B√C	Iv 5
8.				¬(B∨C)	It 1
9.			¬¬D		I¬ 6, 7, 8
10.			D		E¬ 9
11.		D			Ev 2, 4, 10
12.		$A \lor D$			l∨ 11
13	$D\lor B\to A\lor D$				l→ 2. 12

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	26/6/2024	17:00

Actividad 3 (3 puntos)

[Criterio de valoración: 5 respuestas correctas: 3 puntos; 4 respuestas correctas: 2.5 puntos; 3 respuestas correctas: 2 puntos; 2 respuestas correctas: 1 punto; menos de dos respuestas correctas: 0 puntos]

- Al aplicar el método de resolución a un razonamiento se llega a encontrar una contradicción. Seguro
 que todas las interpretaciones que hacen ciertas las premisas también hacen cierta la conclusión. ¿Esta
 afirmación es CIERTA o FALSA?
- 2) Al simplificar el conjunto de cláusulas obtenidas de las premisas de un razonamiento éste se queda vacío. Es imposible que este razonamiento sea correcto. ¿Esta afirmación es CIERTA o FALSA? FALSA
- 3) Sea A un enunciado contingente, T un teorema y C una contradicción. El razonamiento ¬T ∨ A ∴ C es válido. ¿Esta afirmación es CIERTA o FALSA?
 FALSA
- 4) ¿Cuál es la forma normal de Skolem (FNS) de la fórmula $\forall x \exists y A(x,y) \lor \neg \forall z B(z,a)$? $\forall x [A(x,f(x)) \lor \neg B(b,a)]$
- 5) ¿Las cláusulas ¬Q(x, g(x)) ∨ P(x) y R(y) ∨ Q(f(a), y) se pueden resolver entre ellas? Si la respuesta es afirmativa dad la cláusula resultante. Si es negativa explicad con una frase qué es lo que impide la unificación.

 $P(f(a))\lor R(g(f(a)))$

Asignatura	Código	Fecha	Hora inicio
Lógica	75.570	26/6/2024	17:00

<u>Actividad 4 (1.5 + 0.5 puntos)</u>

[Criterio de valoración: cada error en los apartados a y b se penalizará con -0.75 puntos. El apartado c es independiente y se valorará con 0.5 puntos sólo si la respuesta es correcta y bien argumentada]

Un razonamiento ha dado lugar al conjunto de cláusulas que tiene a continuación. Las tres últimas cláusulas (en negrita) son las que proceden de la negación de la conclusión.

$$S = \{R \lor \neg S \lor Q, \neg L \lor T, R \lor \neg S \lor P \lor L, \neg P \lor W \lor S, \neg T \lor \neg Q, \neg R \lor W, P, T, \neg W\}$$

- a) Simplificad el conjunto tanto como sea posible, aplicando las reglas del literal puro y de subsunción (indicad qué reglas aplicáis, qué efecto tienen y, finalmente, indicad el conjunto simplificado resultante)
 - Aplicando la regla de la subsunción podemos eliminar la cláusula ¬L∨T, ya que esta es subsumida por la cláusula T.
 - Después, la regla del literal puro permite eliminar R∨¬S∨P∨L por la ausencia de ¬L.

También hubiera sido correcta la siguiente simplificación:

- Aplicando la regla de la subsunción podemos eliminar la cláusula R∨¬S∨P∨L, ya que esta es subsumida por la cláusula P.
- Después, la regla del literal puro permite eliminar ¬L∨T por la ausencia de L.

Finalmente el conjunto se reduce a S' = { $R \lor \neg S \lor Q$, $\neg P \lor W \lor S$, $\neg T \lor \neg Q$, $\neg R \lor W$, **P, T, \neg W**}

b) Si es posible, aplicad el método de resolución con la estrategia del conjunto de apoyo para determinar si el razonamiento es o no correcto. Una vez hayáis finalizado decid explícitamente si el razonamiento es correcto o no lo es.

Troncales	Laterales	
Р	¬P∨W∨S	
W√S	R∨¬S∨Q	
W∨R∨Q	$\neg T \lor \neg Q$	
W∨R∨¬T	Т	
W∨R	¬R∨W	
W√W = W	⊣W	

El razonamiento es CORRECTO.

c) Haced lo que consideréis oportuno para determinar si las premisas de este razonamiento son o no consistentes. Dad una respuesta explícita justificándola brevemente.

El conjunto de cláusulas que proviene de las premisas es
$$S = \{R \lor \neg S \lor Q, \neg L \lor T, R \lor \neg S \lor P \lor L, \neg P \lor W \lor S, \neg T \lor \neg Q, \neg R \lor W\}$$

Este conjunto se puede simplificar hasta quedar vacío: las cláusulas que contienen W se pueden descartar por ausencia de ¬W (literal puro). Después, con el conjunto resultante pasa lo mismo con las cláusulas que contienen R, que se pueden eliminar por ausencia de ¬R. Finalmente, la ausencia de L y ¬Q en el conjunto resultante nos permite volver a aplicar otra vez la regla del literal puro y nos deja con un conjunto vacío.

De un conjunto vacío no se puede obtener una contradicción (la cláusula vacía). Esto significa que las premisas son CONSISTENTES.