

8K × 8 CMOS STATIC RAM

GENERAL DESCRIPTION

The W2465 is a slow-speed, low-power CMOS static RAM organized as 8192×8 bits that operates on a single 5-volt power supply. This device is manufactured using Winbond's high performance CMOS technology.

FEATURES

- Low power consumption:
 - Active: 250 mW (max.)
 - Standby: 100 μW (max.)(LL-version)

250 μW (max.)(L-version)

- Access time: 70/100 nS (max.)
- Single +5V power supply
- Fully static operation

- · All inputs and outputs directly TTL compatible
- Three-state outputs
- Battery back-up operation capability
- Data retention voltage: 2V (min.)
- · Available packages: 28-pin 600 mil DIP, 330 mil SOP and 300 mil skinny DIP

PIN CONFIGURATION

BLOCK DIAGRAM

PIN DESCRIPTION

SYMBOL	DESCRIPTION				
A0-A12	Address Inputs				
I/O1–I/O8	Data Inputs/Outputs				
CS1, CS2	Chip Select Inputs				
WE	Write Enable Input				
OE	Output Enable Input				
Vdd	Power Supply				
Vss	Ground				
NC	No Connection				

TRUTH TABLE

CS1	CS2	OE	WE	MODE	I/O1-I/O8	VDD CURRENT
Н	Χ	Χ	Х	Not Selected	High Z	ISB, ISB1
Х	L	Х	Х	Not Selected	High Z	ISB, ISB1
L	Н	Н	Н	Output Disable	High Z	IDD
L	Н	L	Н	Read	Data Out	IDD
L	Н	Х	L	Write	Data In	IDD

DC CHARACTERISTICS

Absolute Maximum Ratings

PARAMETER	RATING	UNIT
Supply Voltage to Vss Potential	-0.5 to +7.0	V
Input/Output to Vss Potential	-0.5 to VDD +0.5	V
Allowable Power Dissipation	1.0	W
Storage Temperature	-65 to +150	°C
Operating Temperature	0 to +70	°C

Note: Exposure to conditions beyond those listed under Absolute Maximum Ratings may adversely affect the life and reliability of the device.

Operating Characteristics

(VDD = 5V $\pm 10\%$, Vss = 0V, Ta = 0 to 70° C)

PARAMETER	SYM.	TEST CONDITION	DNS	MIN.	TYP.	MAX.	UNIT
Input Low Voltage	VIL	-	-0.5	-	+0.8	V	
Input High Voltage	VIH	-		+2.2	-	VDD +0.5	V
Input Leakage Current	lu	VIN = Vss to VDD		-2	-	+2	μΑ
Output Leakage	ILO	VI/O = Vss to VDD		-2	-	+2	μΑ
Current		$\overline{\text{CS1}}$ = VIH (min.) or	CS2				
		= VIL (max.) or $\overline{\sf OE}$	= VIH				
		(min.) or $\overline{WE} = VIL$	(max.)				
Output Low Voltage	Vol	IoL = +4.0 mA		-	-	0.4	V
Output High Voltage	Vон	Iон = -1.0 mA		2.4	-	-	V
Operating Power Supply Current	IDD	CS1 = VIL (max.), CS2 = VIH (min.)	70	-	-	70	mA
		I/O = 0 mA, Cycle = min. Duty = 100%	100	-	-	60	mA
Standby Power Supply Current	ISB	CS1 = VIH (min.) or CS2 = VIL (max.), Cycle = min. Duty = 100%		-	-	3	mA
	Is _B 1	$\overline{\text{CS1}} \ge \text{VDD -0.2V}$	LL	-	-	20	μΑ
		or CS2 ≤ 0.2V	L	-	-	50	μА

Note: Typical characteristics are at V_{DD} = 5 V, TA = 25° C.

CAPACITANCE

(VDD = 5V, TA = 25° C, f = 1 MHz)

PARAMETER	SYM.	CONDITIONS	MAX.	UNIT
Input Capacitance	CIN	VIN = 0V	6	pF
Input/Output Capacitance	Cı/o	Vout = 0V	8	pF

Note: These parameters are sampled but not 100% tested.

AC CHARACTERISTICS

AC Test Conditions

PARAMETER	CONDITIONS
Input Pulse Levels	0.6V to 2.4V
Input Rise and Fall Times	5 nS
Input and Output Timing Reference Level	1.5V
Output Load	CL = 100 pF, IoH/IoL = -1 mA/4 mA

AC Test Loads and Waveform

AC Characteristics, continued

(VDD = 5V $\pm 10\%$, Vss = 0V, Ta = 0 to 70° C)

Read Cycle

PARAMETER		SYM.	W24	65-70	W2465-10		UNIT
			MIN.	MAX.	MIN.	MAX.	
Read Cycle Time		Trc	70	1	100	_	nS
Address Access Time		Таа	-	70	-	100	nS
Chip Select Access Time	CS1	Tacs1	-	70	-	100	nS
	CS2	Tacs2	-	70	-	100	nS
Output Enable to Output Valid		TAOE	-	35	-	50	nS
Chip Selection to Output in Low Z	CS1	TCLZ1*	5	-	10	-	nS
	CS2	TCLZ2*	5	-	10	-	nS
Output Enable to Output in Low Z		Tolz*	5	-	5	-	nS
Chip Deselection to Output in High Z	CS1	TCHZ1*	-	30	-	35	nS
	CS2	Tchz2*	-	30	-	35	nS
Output Disable to Output in High Z		Тонz*	-	30	-	35	nS
Output Hold from Address Change		Тон	10	-	10	-	nS

^{*} These parameters are sampled but not 100% tested.

Write Cycle

PARAMETER		SYM.	W24	l65-70	W24	65-10	UNIT
			MIN.	MAX.	MIN.	MAX.	
Write Cycle Time		Twc	70	-	100	1	nS
Chip Selection to End of Write	CS1	Tcw1	60	-	80	-	nS
	CS2	Tcw2	60	-	80	1	nS
Address Valid to End of Write	Address Valid to End of Write			-	80	ı	nS
Address Setup Time	Address Setup Time			-	0	ı	nS
Write Pulse Width		Twp	45	-	60	ı	nS
Write Recovery Time	CS1, WE	Twr1	0	-	0	-	nS
	CS2	Twr2	0	-	0	-	nS
Data Valid to End of Write		Tow	30	-	40	-	nS
Data Hold from End of Write	TDH	0	-	0	1	nS	
Write to Output in High Z	Twhz*	-	30	-	30	nS	
Output Disable to Output in High	Тонz*	-	30	-	30	nS	
Output Active from End of Write		Tow	0	-	0	-	nS

^{*} These parameters are sampled but not 100% tested.

TIMING WAVEFORMS

Read Cycle 1

(Address Controlled)

Read Cycle 2

(Chip Select Controlled)

Read Cycle 3

(Output Enable Controlled)

Timing Waveforms, continued

Write Cycle 1

Write Cycle 2

(OE = VIL Fixed)

Notes:

- 1. During this period, I/O pins are in the output state, so input signals of opposite phase to the outputs should not be applied.
- 2. The data output from DouT are the same as the data written to DIN during the write cycle.
- 3. Dout provides the read data for the next address.
- 4. Transition is measured ±500 mV from steady state with CL = 5 pF. This parameter is guaranteed but not 100% tested.

DATA RETENTION CHARACTERISTICS

 $(TA = 0 \text{ to } 70^{\circ} \text{ C})$

PARAMETER	SYM.	TEST CONDITIONS		MIN.	TYP.	MAX.	UNIT
VDD for Data Retention	VDR	$\overline{\text{CS1}} \ge \text{VDD -0.2V}$, or $\text{CS2} \le 0.2\text{V}$		2.0	-	-	V
Data Retention Current	IDDDR	$\overline{\text{CS1}} \ge \text{VDD -0.2V}$, or $\text{CS2} \le 0.2\text{V}$	LL	-	-	10	μА
		VDD = 3V	L	-	-	20	μΑ
Chip Deselect to Data Retention Time	TCDR	See data retention waveforms		0	-	-	nS
Operation Recovery Time	Tr			TRC*	-	-	nS

TRC* = Read Cycle Time

DATA RETENTION WAVEFORMS

ORDERING INFORMATION

PART NO.	ACCESS TIME (nS)	OPERATING CURRENT MAX. (mA)	STANDBY CURRENT MAX. (μΑ)	PACKAGE
W2465-70LL	70	70	20	600 mil DIP
W2465-10L	100	60	50	600 mil DIP
W2465S-70LL	70	70	20	330 mil SOP
W2465S-10L	100	60	50	330 mil SOP
W2465K-70LL	70	70	20	300 mil Skinny
W2465K-10L	100	60	50	300 mil Skinny

Notes:

^{1.} Winbond reserves the right to make changes to its products without prior notice.

^{2.} Purchasers are responsible for performing appropriate quality assurance testing on products intended for use in applications where personal injury might occur as a consequence of product failure.

BONDING PAD DIAGRAM

PAD NO.	Х	Y
1	-226.95	1526.15
2	-350.95	1526.15
3	-484.10	1526.15
4	-608.10	1526.15
5	-739.75	1526.15
6	-741.75	1315.10
7	-741.75	-1231.85
8	-741.75	-1456.30
9	-610.60	-1456.30
10	-481.50	-1466.30
11	-343.80	-1466.30
12	-206.10	-1466.30
13S-1	-73.00	-1401.10
13S-2	-8.35	-1212.80
14	60.10	-1466.30
15	193.30	-1466.30
16	332.40	-1466.30
17	465.60	-1466.30
18	603.30	-1466.30
19	738.15	-1456.30
20	740.15	-1221.45
21	740.15	1310.80
22	738.15	1526.15
23	606.50	1526.15
24	482.50	1526.15
25	349.35	1526.15
26	225.35	1526.15
27S-1	94.20	1526.15
27S-2	-50.40	1456.10

Note: For bare chip form (C.O.B.) applications, the substrate must be connected to VDD or left floating in the PCB layout.

PACKAGE DIMENSIONS

28-pin P-DIP

28-pin P-DIP Skinny

Package Dimensions, continued

28-pin SO Wide Body

Headquarters

No. 4, Creation Rd. III, Science-Based Industrial Park, Hsinchu, Taiwan TEL: 886-3-5770066 FAX: 886-3-5792647 http://www.winbond.com.tw/

Voice & Fax-on-demand: 886-2-7197006

Taipei Office

11F, No. 115, Sec. 3, Min-Sheng East Rd., Taipei, Taiwan TEL: 886-2-7190505

FAX: 886-2-7197502

Winbond Electronics (H.K.) Ltd. Rm. 803, World Trade Square, Tower II, 123 Hoi Bun Rd., Kwun Tong,

Kowloon, Hong Kong TEL: 852-27513100 FAX: 852-27552064

Winbond Electronics North America Corp. Winbond Memory Lab. Winbond Microelectronics Corp. Winbond Systems Lab.

2730 Orchard Parkway, San Jose, CA 95134, U.S.A.

TEL: 1-408-9436666 FAX: 1-408-9436668

Note: All data and specifications are subject to change without notice.