STA 522, Spring 2022 Introduction to Theoretical Statistics II

Lecture 5

Department of Biostatistics University at Buffalo

AGENDA

- ► Comments on Exam 1
- ▶ Point Estimation
- ► Method of Moments
- ► Method of Maximum Likelihood
- ▶ Review for Exam 1

Review: Likelihood Function

- Let $f(\underline{x} \mid \theta)$ denote the joint pdf or pmf of the sample $\underline{X} = (X_1, X_2, \dots, X_n)$. Then, given that $\underline{X} = \underline{x}$ is observed, the function of θ defined by $L(\theta \mid \underline{x}) = f(\underline{x} \mid \theta)$ is called the **likelihood function**.
- **Example (Poisson Likelihood):** Let $\underline{X} = (X_1, X_2, \dots, X_n)$ denote a random sample from a Poisson distribution with mean λ . The likelihood function for $0 < \lambda < \infty$ is given by:

$$L(\lambda \mid \underline{x}) = P_{\lambda}(\underline{X} = \underline{x}) = \exp(-n\lambda) \frac{\lambda^{\sum_{i=1}^{n} x_i}}{\prod_{i=1}^{n} x_i!}$$

▶ Example (Normal Likelihood): Let $\underline{X} = (X_1, X_2, \dots, X_n)$ denote a random sample from a N (μ, σ^2) distribution. The likelihood function for $-\infty < \mu < \infty$ and $\sigma > 0$ is given by

$$L(\mu, \sigma \mid \underline{x}) = f(\underline{x} \mid \mu, \sigma^2) = \frac{1}{\sqrt{2\pi}} (\sigma^2)^{-n/2} \exp\left(-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2\right)$$

Point Estimation

Background: When sampling is from a population with pdf/pmf $f(\underline{x}|\theta)$, knowledge of θ yields knowledge of the entire population. Given a sample we to find a meaningful reasonable "estimator" of the point θ .

Example: Suppose you have a random sample $X_1, X_2, ..., X_n$ from a $N(\mu, \sigma^2)$ population. How do we determine μ and σ^2 from $X_1, X_2, ..., X_n$?

Definition: A point estimator is any function $W(X_1, X_2, ..., X_n)$ of a sample; that is, any statistic is a point estimator.

NOTE: There is no mention in the definition of any correspondence between the estimator and the parameter. Also there is no mention in the definition of the range of the statistic $W(X_1, X_2, \ldots, X_n)$. This ensures that we do not eliminate any candidates from consideration.

Estimate vs. Estimator

- ▶ An estimator is a function of the random sample, while an estimate is the *realized value* of an estimator that is obtained when a sample is actually taken.
- Thus, an estimator is a random variable whereas an estimate is its observed value.

Method of Finding Point Estimators

- Method of moments
- Method of maximum likelihood
- ► Bayesian Methods (later)

Moments

Definition: The *r*-th moment about the origin (or raw moment) of a random variable X, denoted by μ'_r , is defined as $\mu'_r = E(X^r)$.

Note that $\mu_1' = E(X) = \mu = \text{population mean}$.

Definition: The *r*-th moment about the mean (or central moment) of a random variable X, denoted by μ_r , is defined as $\mu_r = E[(X - \mu)^r]$ where $\mu = \mu_1'$ is the population mean (first raw moment).

Note that $\mu_1 = E[(X - \mu)] = 0$ and $\mu_2 = E(X - \mu)^2 = \sigma^2 =$ population variance.

Definition: The kth sample (raw) moment of a random sample X_1, X_2, \ldots, X_n is the mean of the kth powers, denoted by m_k and defined as $m_k = \frac{1}{n} \sum_{i=1}^n X_i^k$. Note that $m_1 = \overline{X}$ and $\tilde{S}^2 := m_2 - m_1^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2.$

Method of Moments

Let X_1, X_2, \ldots, X_n be a sample from a population with pdf/pmf $f(\underline{x} \mid \theta_1, \ldots, \theta_k)$.

Method of moments estimators of $\theta_1, \ldots, \theta_k$ are obtained by equating the first k sample raw moments to the corresponding k population raw moments, then solving to get $\hat{\theta}_1, \ldots, \hat{\theta}_k$.

• i.e., set $m_j = \mu'_j = \mu'_j(\theta_1, \dots, \theta_k)$ for $j = 1, \dots, k$ (as many equations as we have parameters) and solve for the parameters.

Note that $m_j=m_{j,n}\xrightarrow{a.s.}\mu_j'$ for $j\geq 1$ under standard regularity conditions, using SLLN.

- ▶ i.e., in large samples the sample moment get arbitrarily close to the population moments, so the estimation will be reasonable.
- Estimation can be sub-optimal in small samples

NOTE: When there are just two parameters in the distribution (e.g., $N(\mu, \sigma^2)$), it is sometimes easier to solve the equations $\mu = \overline{X}$ and $\sigma^2 = \tilde{S}^2$. Must write μ and σ^2 in terms of the model parameters first.

Example (Normal Method of Moments): Suppose

 $X_1, X_2, \ldots, X_n \sim \operatorname{iid} \operatorname{N}(\mu, \sigma^2)$. Use the method of moments to find estimators of the parameters μ and σ^2 .

For a N(μ , σ^2) distribution, $\mu'_1 = \mu$ and $\mu_2 = \sigma^2$. Therefore the method of moment estimators are given by $\hat{\mu} = \overline{X}$ and $\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^{n} (X_i - \overline{X})^2$.

Example (Uniform Method of Moments): Let

 $X_1, X_2, \dots, X_n \sim \text{iid Uniform}(0, \theta)$ for $\theta > 0$. Use the method of moments to find an estimator of the parameter θ .

Here $\mu_1' = E(X) = \frac{\theta}{2}$. Therefore the method of moments estimator for θ is obtained as $\hat{\theta} = 2\overline{X}$.

Example (Gamma Method of Moments): Let

 $X_1, X_2, \ldots, X_n \sim \text{iid Gamma}(\alpha, \beta), \ \alpha > 0, \ \beta > 0.$ Use the method of moments to find estimators of the parameters α and β .

Note at the outset that for the Gamma(α , β) distribution, $\mu'_1 = \alpha \beta$ and $\mu_2 = \alpha \beta^2$. Write $\tilde{S}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$. Then the method of moment estimators are: $\hat{\beta} = \tilde{S}^2/\overline{X}$ and $\alpha = \overline{X}^2/\tilde{S}^2$

Example (Binomial Method of Moments): Let

 $X1, X2, ..., Xn \sim \text{iid Binomial}(k, p), k \text{ is a positive integer, } p > 0 \text{ and both } k \text{ and } p \text{ are unknown.}$

Exemplary Situation: want to estimate crime rates for crimes that are known to have many unreported occurrences. For such a crime, both the true reporting rate, p, and the total number of occurrences, k, are both unknown.

Write $\tilde{S}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$. Method of moment estimators are obtained from the system of equations:

$$\overline{X} = \hat{k}\hat{p}$$
 $\tilde{S}^2 = \hat{k}\hat{p}(1-\hat{p})$

Solving, we get

$$\hat{k} = \frac{\overline{X}^2}{\overline{X} - \tilde{S}^2}$$
 and $\hat{p} = \frac{\overline{X}}{\hat{k}}$

NOTE: \hat{k} can be negative.

Maximum Likelihood Estimation

Definition: For each sample point \underline{x} , let $\hat{\theta}(\underline{x})$ be a parameter value at which the likelihood function $L(\theta \mid \underline{x})$ attains its maximum as a function of θ , with \underline{x} held fixed. A maximum likelihood estimator (MLE) of the parameter θ based on a sample \hat{X} is $\hat{\theta}(\underline{X})$.

Notes:

- ▶ Since the logarithm function is strictly increasing on $(0, \infty)$ (and so one-to-one), the value which maximizes $\log L(\theta \mid \underline{x})$ is the same value that maximizes $L(\theta \mid \underline{x})$.
- ▶ $I(\theta \mid \underline{x}) := \log L(\theta \mid \underline{x})$ is called the *log-likelihood* function
- ▶ Often maximizing $I(\theta \mid \underline{x})$ is easier than maximizing $L(\theta \mid \underline{x})$.

Example: (Binomial MLE) Let $X_1, X_2, \dots, X_n \sim \text{iid Bernoulli}(p)$ where 0 . Find the MLE for <math>p.

The likelihood function is

$$L(p \mid \underline{x}) = \prod_{i=1}^{n} p^{x_i} (1-p)^{1-x_i} = p^{y} (1-p)^{n-y}$$

where $y = \sum_{i=1}^{n} x_i = \text{total number of "successes."}$

First consider 0 < y < n. We'll maximize the log-likelihood:

$$\frac{\partial}{\partial p}I(p\mid\underline{x}) = \frac{y}{p} - \frac{n-y}{1-p} \stackrel{\text{set}}{=} 0 \implies p = \frac{y}{n}$$

 $I(p \mid x) := \log L(p \mid x) = y \log p + (n - y) \log(1 - p)$

Straightforward to verify that $\left. \frac{\partial^2}{\partial p^2} I(p \mid \underline{x}) \right|_{p=y/n} < 0$ meaning p = y/n maximizes $I(p \mid x)$ when 0 < y < n.

If y = 0 or y = n then

$$I(p \mid \underline{x}) := \log L(p \mid \underline{x}) = \begin{cases} n \log(1-p) & \text{if } y = 0 \\ n \log p & \text{if } y = n \end{cases}$$

In each case $I(p \mid \underline{x})$ is a monotone function of p, and is maximized at p = y/n.

Thus,
$$\hat{p} = \frac{y}{n}$$
 is the MLE of \hat{p} .

Homework:

- 1. Find the method of moment estimator of p.
- 2. Consider $X_1, X_2, \dots, X_n \sim \text{iid Binomial}(m, p)$ where m is a fixed, known positive integer, and p is unknown. What are the MLE and method of moments estimator of p?