Model Transformation

MT^2 Tutorial

James Williams University of York

James Williams

Research Associate
Enterprise Systems Group
University of York

How many of you are familiar with MDE?

Overview of MDE

Model Transformation

Overview of MDE

Model Transformation

Model-Driven Engineering

Treats **models** as first class artefacts in the development lifecycle.

Models are structured; amenable to automated processing.

Overview of MDE

Model Transformation

Domain-Specific Languages

Metamodels define domainspecific modelling languages.


```
Start {
    next : s1
}

s1 : State {
    next : s2
}

s2 : State {
    next : End
}

End {}
```


Overview of MDE

Model Transformation

Model Management

Programmatic management of models:

- validation
- transformation
- comparison
- merge
- analysis (e.g. pattern detection)

Model Management Operations

Overview of MDE

Model Transformation

Model Transformation

Transforms a model into some other useful artefact.

Can have multiple inputs and multiple outputs.

Model Transformation

[Czarnecki and Helsen, 2006]

Overview of MDE

Model Transformation

Model Transformation

Applications:

- Elaboration
- Synchronisation
- View creation
- Model evolution/refactoring
- Abstraction

Model Transformation

Overview of MDE

Model Transformation

Model Transformation

Transformations are not necessarily:

- semantic preserving
- refinements
- specified in a way that allows interesting properties to be checked

Model Transformation

Overview of MDE

Model Transformation

Transformation Languages

Numerous mature tools

- QVT
- VIATRA2
- Tefkat
- ETL
- ATL
- GReAT
- KerMeta

•

Example

Overview of MDE

Transformation Languages

Much variety in implementation:

- APIs in GPLs
- Operational (procedural)
- Relational (declarative)
- Graph matching

•

Example

Overview of MDE

M2T/M2M

Model-to-Text Transformation

Output is a string.

e.g. source code, documentation (HTML, LaTeX, Markdown), visualise models (svg, dot), serialise models (JSON, XMI)

Overview of MDE

Model Transformation

Model-to-Text Transformation

Approaches:

- Visitor-based
- Template-based

```
<html>
<head></head>
<body>
[% for (s in Stars all) { %]
<div class="star">
 <l
[% for (c in s.circles) { %]
  Circle<\li>
[% } %]
 </div>
[% } %]
```

Model-to-Model Transformation

Generate a (set of) model(s) from a (set of) model(s).

[Czarnecki and Helsen, 2006]

Overview of MDE

Model Transformation

Model-to-Model Transformation

```
rule StarToHexagon
  transform star : Star
  to hex : Hexagon {
   // Describe process
}
```


Model-to-Model Transformation

[Czarnecki and Helsen, 2006]

Overview of MDE

Model Transformation

Overview
MDE+MT

M2M + M2T

Example:

Campus Menu

Overview MDE+MT

M2M + M2T

Example:

Campus Menu

Example: Campus Menu

Edible items metamodel

Example: Campus Menu

rule CampusToEdibleItems

```
transform c : CAMPUS!Campus
to e : FOOD!EdibleItems {
e.items.addAll(c.wildlife.equivalents().flatten());
e.items.addAll(c.flora.equivalents().flatten());
        @greedy
        rule WildlifeToEdible
          transform w : CAMPUS!Wildlife
          to e : FOOD!Item {
          guard : not w.isTypeOf(CAMPUS!Swan)
          e.name = w.eClass.name;
          e.quantity = w.quantity;
```

```
@lazy
rule FloraToEdible
  transform f : CAMPUS!Flora
  to e : FOOD!Item {
  e.name = f.name;
  e.quantity = f.quantity;
}
```

Example:

Campus Menu

Merge the fridge food and edible campus food

var edibleItems = new OUT!EdibleItems;
edibleItems.items.addAll(FOOD!Item.all);

Example: Campus Menu

Print the available meals

```
[% var book = RECIPE!RecipeBook.all.first();
var rs = new Sequence;
for (recipe in book.recipes) {
  var canMake = true;
  for (item in recipe.items) {
     if (FOOD!Item.all.select(i | i.name == item.name and i.quantity >= item.quantity).size() == 0) {
       canMake = false;
       break;
  if (canMake) {
     rs.add(recipe);
<html>
<head>
  <title>Recipes</title>
</head>
<body>
[% if (rs.size() == 0) {%]
  Sorry, you don't have enough food to make a meal! Maybe you should go shopping!
[%} else {%]
  Available recipes:
  <l
[%for (r in rs) {%]
     (1i)[%=r.name%]
[%}%]
  [%}%]
</body>
</html>
                                                        Example
                     M2M + M2T
```

Overview

%]

Example: Campus Menu

Print the available meals

```
<html>
<head>
  <title>Recipes</title>
</head>
<body>
  Sorry, you don't have enough food to make
  a meal! Maybe you should go shopping!
</body>
</html>
<html>
<head>
  <title>Recipes</title>
</head>
<body>
  Available recipes:
  <l
     Duck Cassoulet
  </body>
</html>
```

Example:

Campus Menu

Code for example available at: https://github.com/UOY-Enterprise/mt2-tutorial

Overview M2M + M2T Example MDE+MT

Overview
MDE+MT

M2M + M2T

Open Research Areas

Testing MTs [Baudry 2009]

- Oracle
- Test data
- Language heterogeneity
- Test coverage
- Incrementality
- Scalability
- Semantics
- "Learning" transformations from examples

Further Reading

Epsilon: www.eclipse.org/epsilon

Example code: https://github.com/UOY-Enterprise/mt2-tutorial

General overview: Marco Brambilla, Jordi Cabot, and Manuel Wimmer. *Model-Driven Software Engineering in Practice*. Morgan and Claypool, 2012.

Shane Sendall and Wojtek Kozaczynski. *Model transformation: The heart and soul of model-driven software development*. IEEE Software, pages 42–45, 2003.

Czarnecki and Helsen, Feature-based survey of model transformation approaches, IBM Systems Journal, 45(3):621–645, 2006

B. Baudry, S. Ghosh, F. Fleurey, R. France, Y. La Traon, and J-M. Mottu. *Barriers to systematic model transformation testing*. Communications of the ACM, 53(6):139–143, 2009.

Workshops and conferences: ICMT, VOLT, AMT, TTC, ...

Please Don't Eat the Ducks

Thank you

@j_r_williams