U.B.M Annaba - Département de mathématiques-L3 Introduction aux Processus aléatoires -TD4-Processus aléatoires

Par A. Redjil - Mai 2020

Exercice 1

On se place sur une espace probabilisé filtré $(\Omega, F, P, (F_t)_{t>0})$.

On définit le processus $(X_t)_{t\geq 0}$ par: $X_t = E(X \mid F_t)$, avec X est une fonction de type L^1 .

-Montrer que (X_t) est une (F_t) — martingale.

Indication: Utiliser la définition de l'espérance conditionnelle.

Exercice 2

Soit $(B_t)_{t\geq 0}$ un mouvement brownien standart, montrer que:

- i) Pour tout t > 0, $E[B_t] = 0$ et $E[B_t^2] = t$,
- (ii) Pour tout s, t > 0, $E[B_s B_t] = s \wedge t$, avec $s \wedge t = min(s, t)$,
- (b) Pour tout a > 0, $\frac{1}{\sqrt{a}}B_{at}$ est un mouvement brownien,
- (c) Pour tout $t_0 > 0$, $B_{t_0+t} B_{t_0}$ est un mouvement brownien standart.

Exercice 3

Montrer que la marche aléatoire simple est une martingale à temps discret si elle est symétrique, i.e. si $p = \frac{1}{2}$.

Rappel: Marche aléatoire simple

Soit X un processus stochastique à espace des temps \mathbb{N} , espace d'états \mathbb{Z} et défini de la manière suivante : $X_0 = 0$ et $Z_n = X_n - X_{n-1}$ est de loi $p\delta_1 + (1-p)\delta_{-1}$ et la famille des variables aléatoires

 $(\mathbb{Z}_n)_{n\in\mathbb{N}}$ est une famille indépendante.

Exercice 4

Soit $X \in L^1(\Omega, F, P)$, montrer que la famille des variables aléatoires $\{E[X \mid \sigma] : \sigma \subset F\}$ est L^1 bornée, c'est à dire: $\sup_{\sigma \subset F} E(E[X \mid \sigma]) \prec \infty$.

Exercice 5

Soient $(G_t)_{t>0}$, $(F_t)_{t>0}$ des filtrations vérifiant: $G_t \subset F_t$, pour tout t>0. On suppose qu'un processus $(X_t)_{t\geq 0}$ est G_t —adapté, montrer que: Si (X_t) est une (F_t) —martingale, alors (X_t) est une (G_t) —martingale.

Exercice 6

Soit $(X_n)_{n\geq 0}$ une suite de variables aléatoires positives sur (Ω, F, P) et $(F_n)_{n\geq 0}$ une suite de sous tribus de F.

On suppose que $E[X_n \mid F_n]$ converge en probabilité vers 0.

- 1. Montrer que X_n converge en probabilité vers 0.
- 2. Montrer que la réciproque est fausse.

Indication:

- On peut utiliser le raisonnement par l'absurde pour montrer la convergence en probabilité.
- Utiliser la sous tribu $F_n = \{\emptyset, \Omega\}$ pour montrer que la réciproque est fausse.