CINTA 重点

根据华南师范大学计算机学院斌头老师的课件整理整理者: 0.H.P

原文链接: https://www.jianshu.com/p/34107ca9b4ee

1	可除性和带余除法	2
2	欧几里得算法 (gcd)	2
3	拓展欧几里得算法 (egcd)	3
4	费马小定理	4
5	欧拉公式	4
6	米勒拉宾素数测试	4
7	群	6
	7.1 循环群 (cyclic group)	7
	7.2 陪集 (coset)	7
	7.3 拉格朗日定理	8
	7.4 同构 (Isomorphisms)	8
	7.5 同态 (Homomorphisms)	8
	7.5.1 正规子群 (normal subgroup)	9
	7.5.2 商群 (quotient group)	9
8	中国剩余定理	9
9	大整数分解	11
	9.1 Pollard's p-1 算法	11
	9.2 Pollard's rho 算法	12
10	1 1000 220	13
	10.1 Pohlig-Hellman 算法	
	10.2 大步小步算法	14
	10.3 Pollard's rho 算法	14

1 可除性和带余除法

- 1. 定理: 设 $a,b \in Z, b > 0$, 那么 $\exists q, r \in Z$, 使得 a = bq + r 其中 $0 \le r \le b 1$, 且这对整数 q,r 为上述 a,b 所唯一确定。
- 2. 证明:
 - (1). 证 r 的范围:

将实数轴分为左闭右开的长度均为b的无穷个小区间,即

$$[nb, (n+1)b), n \in \mathbb{Z}$$

可得 a 必定落在某一区间内,故 $\exists q \in Z$, 使得 $qb \leq a < (q+1)b$. 令 r = a - bq, 则 $0 \leq r < b$,又因为 $r \in Z$, 故得 $r \leq b - 1$.

(2). 证 q 与 r 的唯一性:

首先证 a 所在区间的唯一性: 运用反证法。

假设 $a \in [nb, (n+1)b)$ 且 $a \in [mb, (m+1)b)$,其中 $n \neq m$,那么假设 n < m. 得 $n+1 \leq m$ 那么假设 $\exists x \in [nb, (n+1)b), \exists y \in [mb, (m+1)b),$ 那么有:

$$\lim_{x \to max} x < \lim_{y \to min} y$$

故得: a 所在区间唯一。又由于 $a \in [qb, (q+1)b)$, 得 q 唯一。又 a=qb+r, 得 r 唯一。证毕。

2 欧几里得算法 (gcd)

- 1. 目的: 求两个数的最大公约数
- 2. 公式: $gcd(a,b) = gcd(b,a \mod b)$ 直到 b=0
- 3. 方法: 对于 $ab \neq 0$, 且 b > 0, $b \nmid a$, 运用带余除法表达式, 有

$$a = bq_0 + r_0, q_0$$
与 $r_0 \in Z$, 且有 $r_0 \in [1, b-1]$
 $b = r_0q_1 + r_1, q_1$ 与 $r_1 \in Z$, 且有 $r_1 \in [1, r_0 - 1]$
 $r_0 = r_1q_2 + r_2, q_2$ 与 $r_2 \in Z$, 且有 $r_2 \in [1, r_1 - 1]$
 $r_1 = r_2q_3 + r_3, q_3$ 与 $r_3 \in Z$, 且有 $r_3 \in [1, r_2 - 1]$

:

可得除第一与第二式外,其余都是用后一个余数除前一个余数的余数,即 $r_0 = a \mod b, r_1 = b \mod r_0 \cdots$ 以此计算,直到余数为 0,即

$$r_{n-1} = r_n q_{n+1}, q_{n+1} \in Z$$

 r_{n-1} 即为结果。

- 4. 证明: 假设 $a,b,d,q \in Z$, 且不全为 0, 且有 a = bq + c. 若 a 与 b 的公因数为 $d,\Rightarrow d|a$ 且 $d|c \Rightarrow d|qb + c \Rightarrow d|c$ 即 d 也是 b 与 c 的公约数 $\Rightarrow gcd(a,b) = gcd(b,c)$ 以此计算,有 $gcd(a,b) = gcd(b,r_0) = \cdots gcd(r_nq_{n+1},r_n)$ 证毕.
- 5. 时间复杂度: log₂n
- 6. 递归算法:

7. 迭代算法:

```
1 def gcd(a,b):
2 while b!=0:
3 y=b
4 b=a%b
5 a=y
6 return a
```

3 拓展欧几里得算法 (egcd)

- 1. 目的: 求线性方程组 a * r + b * s = gcd(a, b) 的一组解
- 2. 方法: q = a//b

$$\begin{bmatrix} r_0 & s_0 & a \\ r_1 & s_1 & b \end{bmatrix} = \begin{bmatrix} r_1 & s_1 & b \\ r_0 - q * r_1 & s_0 - q * s_1 & a\%b \end{bmatrix} = \dots = \begin{bmatrix} r_n & s_n & a\%..\%b \\ r_{n-1} - q * r_n & s_{n-1} - q * s_n & 1 \end{bmatrix}$$

以此循环

4 费马小定理

- 1. 公式: p 是素数时, $a \in [1, p)$, 有 $a^{p-1} \equiv 1 \pmod{p}$
- 2. 证明:

取 i, j $[1, p-1), i \neq j$ $a*i \equiv a*j \pmod{p}$ 由消去律得 $i \equiv j \pmod{p}, i = j,$ 故得 $a*i \pmod{p}$ 有 p-1 种结果

$$\prod_{i=1}^{p-1} i = \prod_{i=1}^{p-1} a * i = a^{p-1} \prod_{i=1}^{p-1} i \pmod{p}$$

 $\mathbb{P} a^{p-1} \equiv 1 \pmod{p}$

5 欧拉公式

- 1. 公式: $a^{(n)} \equiv 1 \pmod{n}$
- 2. 证明: $(n) = |b:1| <= b < n \text{ and } \gcd(b,n) = 1|$ 设集合 $S = \{b_1, b_2, b_3...b_i: 1 <= b_i < n \text{ and } \gcd(b_i,n) = 1\}$ $S' = \{a*b_1, a*b_2...a*b_1: 1 <= b_i < n \text{ and } \gcd(a,n) = 1\}$ 反证: 设存在 $i \neq j; b_i, b_j \in S, \ a*b_i = a*b_j \pmod{n}$ 由消去律得 $b_i = b_j \pmod{n}$ 与条件矛盾,故得 S = S' 所以

$$\prod_{i=1}^{\varphi(n)}b_i=\prod_{i=1}^{\varphi(n)}a*b_i=a^{\varphi(n)}\prod_{i=1}^{\varphi}(n)b_i(mod\ n)$$

由消去律得 $a^{\varphi(n)} \equiv 1 \pmod{n}$

6 米勒拉宾素数测试

米勒拉宾算法:一种检测一个整数是否为素数的算法,准确率约大于 3/4,即伪素数通过检验的概率约小于 1/4。

介绍该算法前,先了解素数的两个性质。

- (1) 若 p 是素数,那么存在 1 < a < p,当且仅当 $a \mod p = 1$ 或 $a \mod p = -1 = p 1$ (逆元) 时,有 $a^2 \mod p = 1$
- (2) 若 p 是素数,且 p > 2 那么有: $p 1 = 2^k q, k > 0, 2 \nmid q$, 有 $a \in (1, p 1)$, 满足一下条件之一:
 - $a^q \equiv 1 \pmod{p}$
 - 在 $a^q, a^{2q}, a^{4q} \dots a^{2^{(k-1)}q}$ 中,必然存在一个数模 p 与 -1 同余。

理解这两个性质:

首先,从费马小定理出发,有 $a^{(p-1)}\equiv 1 \pmod{p}$,那么,由于 p 是素数,所以 $2\mid p-1$,那么 p-1 可表示为 $p-1=\frac{p-1}{2}*2$ 那么得 $a^{(p-1)}=a^{\frac{p-1}{2}*2}\equiv 1 \pmod{p}$,那么必然有 $a \mod p=1$ 或 $a \mod p=-1=p-1$ (逆元)(由此理解性质 1)

然后,将 (p-1) 按以上思路进行分治,直到 $(p-1)=2^kq,2\nmid q$,分治过程中,要么所有值都为 1,那么必然 $a^q\equiv 1$;或者中间某个值为 -1.(由此理解性质 2)

算法步骤:

- 1. 将 (p-1) 分解至 $(p-1) = 2^k q, 2 \nmid q$, 得到 q
- 2. 选取随机数 $a, a \in (1, p-1)$
- 3. 若 $a^q \mod p = 1$, 通过检验; 否则循环一下操作
- 4. 计算 $a^{2^{j}q}$, 其中 $j \in (0, k-1)$ 若出现有结果为 -1, 那么通过检验, 否则不通过

应用:

一般用作检验时,循环 10 次以上米勒拉宾操作,以保证正确概率。 可用该算法,随机生成一个大整数,然后检验该数是否为素数的方法,生成随机素数。

代码:

```
#A quickly multiply algorithm with modding n
   def Qmul(a,b,n):
2
        r=0
3
        while b:
4
             if b&1:
5
                  r = (r+a)\%n
6
             b=b>>1
7
             a = (a << 1)\%n
8
        return r
9
10
   #A quidckly exponential algorithm with modding n
11
   \mathbf{def} \ \mathrm{QPow}(a,x,n):
12
        result=1
13
        while x:
14
             if x&1:
15
                  result = (result *a)%n
16
             x=x>>1
17
             a = (a * a) \% n
18
        return result
19
20
21
   #Find the number = (n-1)/2^k
   def Find q(n):
```

```
while not n&1:
23
              n=n>>1
24
25
         return n
26
   #Miller Rabin algorithm
27
    def Miller_Rabin(a,n):
28
         q=Find_q(n-1)
29
         aq=QPow(a,q,n)
30
         #final condition, q=n-1
31
         while q < n:
32
              if aq==1 or aq==-1:
33
                   return True
34
              \#make aq = aq(q*2^j)
35
              aq=QPow(aq, 2, n)
36
              \mathbf{q} \!\!=\!\! \mathbf{q} \!\!<\!\!< \!\!1
37
         return False
38
```

7 群

- 1. 性质:
 - 满足封闭性
 - 满足结合律
 - 存在单位元
 - 存在逆元
- 2. 单位元唯一性: 设 e' 亦为 G 的单位元 那么有: ee' = e'(e是单位元) ee' = e(e'是单位元)
- 3. 逆元唯一性:

```
设 g \in G,g 的逆元为 g^{-1}, 即 gg^{-1} = e 存在性:在群操作中,运算满足封闭性,h 恒存在唯一性:设有另一个逆元 h,使得 gh = e 那么: gg^{-1} = gh,由消去律得 h = g^{-1} 所以 e = e'
```

4. 子群: H 中元素的集合是 G 的子集, H 的群操作与 G 相同, 称 H 是 G 的子群

7.1 循环群 (cyclic group)

- 1. 定义: $g \in G, g = \{g^k : k \in Z\}$ 为循环群, g 是生成元
- 2. 阶:满足 $g^n = e$, 取 n 的最小值, 阶是 n, 记 |g| = n
- 3. 例:

群 Z_p^* , 阶为 $\varphi(p)$, 生成元个数 $\varphi(\varphi(p))$, 生成元 a, 有 $gcd(a,\varphi(p)) = 1$ 群 Z_{11}^* , 阶为 $\varphi(p) = 10$, 生成元个数 $\varphi(\varphi(p)) = 4$, 生成元: $\{1,3,7,9\}$

4. 定理一: 若存在正整数 k,使得 $g^k=e$, 当且仅当 k 整除 n.

证:

充分性: 令 $g^k = g^{ns} = e$

必要性: 令 k = nq + r

$$e = g^k = g^{nq+r} = g^{nq}g^r = eg^r(0 \le r \le n)$$

由消去律得: $g^r = 0$, 故 r = 0

5. 定理二: $h = g^k$,h 的阶为 n/d, d = gcd(k, n)

证:

设有正整数 m, 使得 $h^m = g^{mk} = e$

d = gcd(n, k)

故 $n \mid mk$, 那么: $(n/d) \mid (k/d)m$

由于 (n/d) 与 (k/d) 互素, 无法整除

故

$$(n/d) \mid (k/d)m = (n/d) \mid m$$

所以 $m_{min} = n/d$

7.2 陪集 (coset)

1. 定义:

H 是 G 的子群,对于 $g \in G$

左陪集: $gH = \{gh : h \in H\}$

右陪集: $Hg = \{hg : h \in H\}$

2. 例:

设 $H = \{[0], [2]\}$ 是 Z_4^+ 的 subgroup,取所有 $g \in Z_4^+$ 遍历:

$$[0] + H = \{[0], [2]\}$$
 ①

$$[1] + H = \{[1], [3]\}$$
 ②

$$[2] + H = \{[0], [2]\}$$
 ③

7.3 拉格朗日定理 7 群

$$[3] + H = \{[1], [3]\}$$
 4

得① ③ ,② ④ 分别相等,所以左陪集有俩: $\{[0][2]\}$ 与 $\{[1][3]\}$ 同理可求右陪集

- 3. 性质 1: H 是 G 的 subgroup, 则有 $g_1, g_2 \in G, g_1H = g_2H$ 或者 $g_1 \cap g_2 = \emptyset$
- 4. 性质二:划分。 所有左陪集构成一个划分,所有右陪集构成一个划分

7.3 拉格朗日定理

1. 定义: G 是有限群,H 是 G 的子群,则 |G| = |H| * [G:H], [G:H] 为 H 在 G 中右陪集的个数。

证明:

设 $[G:H] = r; a_1, a_2...a_r$ 分别为 H 的 r 个右陪集的代表元素

由于每个陪集不同,得: $|G| = |Ha_1| + ... |Ha_r|$

 $|Ha_i| = |H|$

|G| = |H| * r = |H|[G:H]

- 2. 推论一: 群 G 的阶为 n, 所有 $a \in G$, |a|是 n 的因子,且有 $a^n = e$
- 3. 推论二: G 是素数阶群, 则存在 $a \in G, G = \langle a \rangle$

7.4 同构 (Isomorphisms)

1. 定义:

群 (G, \cdot) and (H, *), 满足 one-to-one(单射) and onto(满射) 映射, 称 φ 为一个同构 (isomorphic)

- 2. 证明方法:
 - (a) 构造映射
 - (b) 证明阶相同
 - (c) 满足群操作
 - (d) 双射:
 - (1) 单射 (one-to-one): 利用反证法, $a,b \in G$, 且 $a \neq b$, 有 $f(a) \neq f(b)$
 - (2) 满射 (onto): $a \in G, b \in H$, 有 f(a)=b 恒成立。
 - (e) 群操作保持: 即先映射后计算等于先计算后映射 (证同态)

7.5 同态 (Homomorphisms)

定义: 群 (G, \cdot) and(H, *), φ 是两者间的一个映射, 对于所有 $a, b \in G$

$$\varphi(a \cdot b) = \varphi(a) * \varphi(b)$$

7.5.1 正规子群 (normal subgroup)

- 1. 定义: H 是 G 的子群, 对于所有 $a \in G$, 有 aH=Ha, 称 H 为 G 的正规子群 (即左右陪集相等)
- 2. 性质:

若群 G_1 与 G_2 同态,则

- (a) e 是 G_1 的单位元,那么,e 也是 G_2 的单位元
- (b) 对任何 $g \in G_1, \varphi(g^{-1}) = [\varphi(g)]^{-1}$
- (c) H_1 是 G_1 的子群,那么, $\varphi(H_1)$ 是 G_2 的子群
- (d) H_2 是 G_2 的子群,那么, $\varphi^{-1}(H_2)$ 是 G_1 的子群 H_2 是 G_2 的正规子群,那么, $\varphi^{-1}(H_2)$ 是 G_1 的正规子群

7.5.2 商群 (quotient group)

1. 定义:

N 是 G 的正规子群,对于所有 $a,b \in G$, 有 (aN)(bN)=abN 则 N 的陪集 a,b 构成商群,记为 G/N

- 2. 性质: 商群的阶等于陪集元素的个数, 即 |G/N| = [G:N]
- 3. 例:

 $3Z^+$ 是 Z^+ 的正规子群得

$$0 + 3Z^{+} = \{..., 0, 3, 6...\}$$

$$1 + 3Z^{+} = \{..., 1, 4, 7...\}$$

$$2 + 3Z^+ = \{..., 2, 5, 8...\}$$

满足 (aN)(bN) = (abN)

8 中国剩余定理

- 1. 概念: 一种求一次同余式组的算法
- 2. 算法:

有一次同余式组:

$$x \equiv a_1 (mod \ m_1)$$

$$x \equiv a_2 (mod \ m_2)$$

.

$$x \equiv a_n \pmod{m_n}$$

解:

$$\diamondsuit: M = \prod_{i=1}^n m_i$$
$$b_1 = M/m_i$$

 $b_i' = b_i^{-1} \pmod{m_i}$ (乘法逆元)

$$x = \sum_{i=1}^{n} a_i b_i b_i' \pmod{M}$$

3. 代码:

```
def CRT(a,m):
2
            M, x = 1, 0
            b = list()
3
            b_=list()
4
            for n in range(len(m)):
                     M = M^*m[n];
6
7
            for i in range(len(m)):
                     b.append(M//m[i])
8
9
10
                     compute b_
                     because b_[i]*b[i]=1(mod m[i])
11
                     so b[i]*b_[i]-1=c1*m[i]
12
                     than b[i]*b_[i]+c2*m[i]=1
13
                     use egcd to compute the result
14
15
                     b_.append(egcd(b[i],m[i]))
16
17
                     when the result is a negative number
18
                     let it become a positive number which is a
19
                         Equivalence class about b_[i]
20
                     if b_{-}[i] < 0:
21
22
                              b_[ i ]=b_[ i ]%m[ i ]
                     x=(a[i]*b[i]*b_[i]+x)%M
23
24
            return x
```

4. 证明:

假设 x0 为解,且唯一。

由 $b_i'(mod m_i)$ 的定义可知, 恒有:

$$x_0 \equiv a_i \pmod{m_i} (1 \le i \le k)$$

而由于

$$x \equiv a_i \pmod{m_i}$$

得

$$x \equiv x_0 \pmod{m_i} (1 \le i \le k)$$

且由于 $m_1, m_2...m_k$ 两两互素, 故得

$$x \equiv x_0 \pmod{m}$$

证毕。

5. 例:

Using CRT to solve the system of congruence:

$$x \equiv 1 \pmod{5}$$

$$x\equiv 2\ (mod\ 7)$$

$$x \equiv 3 \pmod{9}$$

$$x \equiv 4 \pmod{11}$$

解: 由题得:

$$\diamondsuit: m_1 = 5, m_2 = 7, m_3 = 9, m_4 = 11;$$

所以

$$M = \prod_{i=1}^{4} m_i = 3465$$

$$a_1 = 1, \ a_2 = 2, \ a_3 = 3, \ a_4 = 4;$$

$$b_i = M/m_i; \ b_i^{'} = b_i^{-1} (mod \ m_i)$$

$$b_1 = 693, \ b_2 = 495, \ b_3 = 385, \ b_4 = 315;$$

因为
$$b_i b_i^{-1} = 1 \pmod{m_i}$$

得
$$b_i b_i^{-1} - 1 = c_c m_i$$

$$b_i b_i^{-1} + c_2 m_i = 1$$

由拓展欧几里得算法解得

$$b_{1}^{'}=2,\ b_{2}^{'}=3,\ b_{3}^{'}=4,\ b_{4}^{'}=8$$

$$x = \sum_{i=1}^{4} a_i b_i b_i' \pmod{M}$$

解得 x = 1731

9 大整数分解

9.1 Pollard's p-1 算法

- 1. 目的: 求合数 N 的数因子
- 2. 思路及算法:
 - (a) 设数字 m, 且 (p-1)|m, p 是素数且为 N 的因子那么,由费马小定理得:

$$a^m \equiv 1 \pmod{p}$$

故有
$$p|gcd(a^m-1,N)$$
;

- (b) $\Leftrightarrow m = n!(2 < n < N);$
- (c) 计算 $gcd((a^{n!}mod\ N) 1, N)$;
- (d) 若结果为 1 或者 N,n 自增 1, 重复步骤 2-3, 否则, $p = gcd((a^{n!} mod \ N) 1, N)$, 即为答案:
- 3. 代码:

```
\mathbf{def} \ \gcd(\mathbf{a}, \mathbf{b}):
              if b==0:
2
3
                        return a
              else:
4
                        return gcd(b,a%b)
5
   def Pollard_PM1(N):
6
              a=2
7
              for i in range (2,N):
8
                        a=(a^i)\%N
9
10
                        divisor=\gcd(a-1,N)
                        if divisor!=1 and divisor!=N:
11
                                   return divisor
12
13
              return 1
```

9.2 Pollard's rho 算法

- 1. 目的: 求合数 N 的数因子
- 2. 思路及算法:
 - 1. 假设 N 有两个数因子 x 和 y
 - $\Leftrightarrow x \ y (mod \ N)$
 - 2. 设有函数 F()

$$\Leftrightarrow x = F(x), y = F(F(x))$$

d = gcd(x - y, N), 当 d! = 1 and d! = N 时, d 即为答案

3. 伪代码:

```
#伪代码
1
  def PollardRho(N):
2
           x1 = x2 = Random_ZN_Star(N)
3
           for i in range (1, 2^{(N. nbits()//2)}):
4
                    x1 = F(x1, N)
5
                    x2 = F(F(x2, N), N)
6
                    p = \gcd(x1 - x2, N)
7
           if p != 1 and p != N:
8
                    return p
9
```

```
设 F(x) = x^2 - 1
```

```
import random
    import cmath
    \mathbf{def} \ \mathbf{F}(\mathbf{x}):
 3
               return x^2-1
 4
    \mathbf{def} \ \gcd(a,b):
 5
 6
               if b==0:
                          return a
               else:
 8
                          return gcd(b,a%b)
 9
    def PollardRho(N):
10
               i, k=1,2
11
               x=random.randint(0,N-1)
12
13
               y=x
14
               while True:
                           i=i+1
15
                          x=F(x)\%N
16
17
                           divisor=gcd(y-x,N)
                           if divisor!=1 and divisor!=N:
18
                                      return divisor
19
                           \mathbf{i}\,\mathbf{f}\quad i\!=\!\!\!=\!\!k:
20
                                      y, k=x, 2*k
21
```

10 离散对数

g 是群 G 的生成元, $|G|=p-1, g^x=y$, 求 x

10.1 Pohlig-Hellman 算法

1. 令

$$p-1 = \prod_{i=1}^{t} p_i^{k_i} = p_1^{k_1} p_2^{k_2} \dots p_t^{k_t}$$

2.
$$g_i = g^{x_i} = g^{(p-1)/p_i^{k_i}}$$

得 $x_i = (p-1)/p_i^{k_i} p_i^{k_i}$
那么: $y_i = y^{(p-1)/p_i^{k_i}}$ 有 $g^{x_i} = y_i$
由于 $g^{x_i p_i k_i} = e$, $g^{x_i} p_i^{k_i} x_i$
故得 $x = x_i \pmod{p_i^{k_i}}$

思路:为求 x,构造一组一次同余式组,以 CRT 求解。那么,每个 x_i 可以用 p-1 的各个因子去构造。

#Problem: Given base g, y \in <g>, y = g^x mod p, to find x.
def Pohlig_Hellman(y, g, p):

10.2 大步小步算法 10 离散对数

```
prime_list = factor(p - 1)
3
       n = len(prime_list)
4
       q_{list} = [prime_{list}[i][0]^prime_{list}[i][1]  for i in range(n)
5
       G = [g^{(p-1)} // q_{list}[i]) for i in range(n)
6
       Y = [y^{(p-1)} // q_{list[i]}) for i in range(n)
7
       val\_list = [discrete\_log(Y[i], G[i])  for i in range(n)]
8
       modulus_list = [q_list[i] for i in range(n)]
9
       x = crt(val\_list, modulus\_list) # solve the CRT problem.
10
11
       return x
```

10.2 大步小步算法

```
1. 大步:  \diamondsuit \ s = \lfloor \sqrt{p} \rfloor  那么有 g^0, g^s, g^{2s}...g^{\lfloor p/s \rfloor s}
```

- 小步:
 令 y
 有 y * g, y * g²...y * g^s
- 3. 算 x: 得 $y * g^r = g^x g^r = g^{st}$ 故 $x = st - r \pmod{p}$

4. 代码:

```
# Input: g, y, n where g is the base, y = g^x \mod p,
    \mathbf{def} \ \mathrm{BGS}(\mathrm{g}, \mathrm{y}, \mathrm{p}):
2
         s = floor(sqrt(p))
3
         A = [(y^*(g^r) \% p) \text{ for } r \text{ in } range(0, s)] \#Baby Step.
4
         B = [(g^(t^*s) \% p) \text{ for } t \text{ in } range(1, s+1)] \#Giant Step.
5
         r, t = 0,0
6
         for u in A:
7
               for v in B:
8
                    if u == v: #Collision.
9
                         r, t = A.index(u), B.index(v)
10
         return ((t+1)*s - r) \% p \# Return x
11
```

10.3 Pollard's rho 算法

1. 设置变量: $lefta = q^{lg}y^{ly}; right = q^{rg}y^{ry};$

2. 设置随机函数 F():

令
$$lefta = F(lefta); righta = F(righta)$$

直到出现 $lefta = righta$

3. 那么:

$$g^{lg}y^{ly} = g^{rg}y^{ry}$$
$$g^{lg}g^{xly} = g^{rg}g^{xry}$$
$$lg + xly = rg + xry$$
$$x = (rg - lg)/(ly - ry)$$

4. 伪代码:

```
\#Input: y = g^x \mod p; Output: x
2
   def PollardRhoDLOG(y):
       lefta , lg , ly = 1, 0, 0 \# lefta = g^lg * y^ly
3
       righta, rg, ry = y, 0, 1 # righta = g^rg * y^ry
4
       while lefta != righta:
5
           lefta, lg, ly = F(lefta, lg, ly)
6
           righta, rg, ry = F(righta, rg, ry)
7
           righta, rg, ry = F(righta, rg, ry)
8
       s, t = lg - rg, ry - ly
9
       if s == 0:
10
           return 'fail'
11
       return s * (t-^(1))
12
```

5. 关于随机函数:

Pollard suggests:

$$F(x) = \begin{cases} ga & 0 < = a < q/3 \\ a^2 & q/3 < = a < 2q/3 \\ ya & 2q/3 < = a < q \end{cases}$$

6. 时间开销: $\theta(\sqrt{q})$