Exercise 1

Ranking 1	d1	d2	d3	d4	d5	d6	d7	d8	d9
recall	0.17	0.17	0.33	0.5	0.5	0.67	0.83	0.83	0.83
precision	1.0	0.5	0.67	0.75	0.6	0.67	0.71	0.625	0.56
Ranking 2	d3	d8	d7	d1	d2	d4	d5	d9	d10
recall	0.0	0.5	0.5	0.5	0.5	0.5	0.5	1.0	1.0
precision	0.0	0.5	0.33	0.25	0.2	0.167	0.14	0.25	0.22
Ranking 3	d7	d6	d5	d3	d2	d1	d9	d10	d4
recall	0.0	0.0	0.33	0.33	0.33	0.33	0.67	0.67	0.67
precision	0.0	0.0	0.33	0.25	0.2	0.167	0.286	0.25	0.22

(a)

	AP@5	AP@10	RR@5	RR@10
Ranking 1	0.704	0.6685	1.0	1.0
Ranking 2	0.256	0.2257	0.5	0.5
Ranking 3	0.156	0.2003	0.33	0.33

(b)

MAP@5	MAP@10	MRR@5	MRR@10
0.372	0.3648	0.61	0.61

Exercise 2

Ranking	1	2	3	4	5	6	7	8	9	10
recall	0.14	0.29	0.29	0.43	0.57	0.71	0.71	0.86	0.86	1.0
precision	1.0	1.0	0.66	0.75	0.8	0.83	0.71	0.75	0.67	0.7

(a)

P@5	P@10
0.8	0.7

(b)

R@5	R@10
0.57	1.0

(c)

rank	docID
1	51
2	501
3	101
4	75
5	321
6	38
7	521
8	412
9	331
10	21

(d)

rank	docID
1	51
2	501
3	101
4	75
5	321
6	38
7	412
8	331
9	521
10	21

(e)

rank	docID
1	51
2	501
3	101
4	75
5	321
6	38
7	521
8	412
9	331
10	21

(f)

rank	docID
1	51
2	501
3	101
4	75
5	321
6	38
7	412
8	331
9	521
10	21

(g)

R-precision requires knowing all documents that are relevant to a query. The number of relevant documents R, is used as the cutoff for calculation, and this varies from query to query.

Set K = R.

(h)

$$AP = \frac{(1.0+1.0+0.75+0.8+0.83+0.75+0.7)}{7} = 0.83285$$

AP 是对一个排序结果中的相关文档的精度加和求平均。反应了此排序的精度。

MAP是对同个查询主题的多个排序的AP加和平均。反应了多个算法对此查询主题的查询精度。

(i)

rank	docID
1	51
2	501
3	101
4	75
5	321
6	38
7	412
8	331
9	521
10	21

rank	discounted gain	DCG
1	4	4
2	0.629	4.629
3	0	4.629
4	1.29	5.919
5	1.54	7.459
6	0.36	7.819
7	0	7.819
8	0.32	8.139
9	0	8.139
10	0.58	8.719

So DCG5 = 7.459

(k)

(i)

rank	docID
1	51
2	321
3	75
4	101
5	501

(ii)

rank	docID	discounted gain	DCG
1	51	4	4
2	321	1.156	5.156
3	75	1.5	6.656
4	101	0.862	7.518
5	501	0.386	7.904

IDCG5 = 7.904

$$NDCG_5 = \frac{DCG_5}{IDCG_5} = \frac{7.459}{7.904} = 0.9437$$

(l)

Mean Reciprocal Rank.

$$The\ Reciprocal\ Rank\ score = rac{1}{1} = 1$$

Exercise 3

根据 Exercise 2 计算出的数据绘制 Precision-Recall Curves, 得到下图:

Exercise 4

分类问题:

- 铰链损失
 - 铰链损失 (Hinge loss) 一般用来使"边缘最大化" (maximal margin)。铰链损失最开始出现在二分类问题中,假设正样本被标记为1,负样本被标记为-1,y是真实值,w是预测值,则铰链损失定义为:

$$L_{Hinge}(w,y) = max\{1-wy,0\} = |1-wy|_{+}$$

- kappa系数
 - 。 kappa系数用来衡量两种标注结果的吻合程度,标注指的是把N个样本标注为C个互斥类别。 计算公式为

$$\kappa = rac{p_o - p_e}{1 - p_e} = 1 - rac{1 - p_o}{1 - p_e}$$

两种标注结果完全相符时, K=1, 越不相符其值越小, 甚至是负的。

• 混淆矩阵

又被称为错误矩阵,通过它可以直观地观察到算法的效果。它的每一列是样本的预测分类,每一行是样本的真实分类(反过来也可以),顾名思义,它反映了分类结果的混淆程度。混淆矩阵;行;列的原始是原本是类别;却被分为类别;的样本个数,计算完之后还可以对之进行可视化。

拟合问题

- 平均绝对误差
 - 平均绝对误差MAE (Mean Absolute Error) 又被称为I1范数损失 (I1-norm loss) :

$$ext{MAE}(y, \hat{y}) = \frac{1}{n_{ ext{samples}}} \sum_{i=1}^{n_{ ext{samples}}} |y_i - \hat{y}_i|$$

- 决定系数
 - 。 又被称为R2分数:

$$R^2(y, \hat{y}) = 1 - \frac{\sum_{i=1}^{n_{\text{samples}}} (y_i - \hat{y}_i)^2}{\sum_{i=1}^{n_{\text{samples}}} (y_i - \bar{y}_i)^2}$$
其中 $\bar{y} = \frac{1}{n_{\text{samples}}} \sum_{i=1}^{n_{\text{samples}}} y_i$

当R2越接近1时,表示相关的方程式参考价值越高;相反,越接近0时,表示参考价值越低。

聚类的评价指标

- 兰德指数
 - 兰德指数 (Rand index) 需要给定实际类别信息C,假设K是聚类结果,a表示在C与K中都是同类别的元素对数,b表示在C与K中都是不同类别的元素对数,则兰德指数为:

$$ext{RI} = rac{a+b}{{C_2^{n_{ ext{samples}}}}}$$

其中
$$C_2^{n_{\text{samples}}}$$
数据集中可以组成的总元素对数

RI取值范围为[0,1], 值越大意味着聚类结果与真实情况越吻合。

o 为了实现"在聚类结果随机产生的情况下,指标应该接近零",调整兰德系数(Adjusted rand index)被提出,它具有更高的区分度:

$$ARI = \frac{RI - E[RI]}{\max(RI) - E[RI]}$$

ARI取值范围为[-1,1],值越大意味着聚类结果与真实情况越吻合。从广义的角度来讲,ARI衡量的是两个数据分布的吻合程度。

• 轮廓系数

。 适用于实际类别信息未知的情况。对于单个样本,设a是与它同类别中其他样本的平均距离, b是与它距离最近不同类别中样本的平均距离,轮廓系数为:

$$s = \frac{b - a}{max\{a, b\}}$$

还原 S,有

$$S(i) = \begin{cases} 1 - \frac{a(i)}{b(i)} & a(i) < b(i) \\ 0 & a(i) = b(i) \\ \frac{b(i)}{a(i)} - 1 & a(i) > b(i) \end{cases}$$

可以发现, 当a(i)
b(i)时, 即类内的距离小于类间距离,则聚类结果更紧凑。S的值会趋近于1。越趋近于1代表轮廓越明显。

相反, 当a(i)>b(i)时, 类内的距离大于类间距离, 说明聚类的结果很松散。S的值会趋近于-1, 越趋近于-1则聚类的效果越差。

对于一个样本集合,它的轮廓系数是所有样本轮廓系数的平均值。

由此可得,轮廓系数取值范围是[-1,1],**同类别样本越距离相近且不同类别样本距离越远,分数越高**。