Practical Session – Week 1A

Objectives

- 1. To draw the logic gate circuits of Boolean expressions
- 2. To write down the Boolean expressions of given circuit diagrams
- 3. To find Boolean expressions

Tasks

1. Draw the logic gate circuit corresponding to the following Boolean expression $F = (A' \cdot B' + A \cdot B) + (C' \cdot D' + C \cdot D)$

Answer:

2. Write the Boolean expression of the following circuit diagram. Set up the truth table

Answer: X = C.A + A.B'

Table 1. Truth Table for Task 2

А	В	С	B'	C . A	A . B'	X
0	0	0	1	0	0	0
0	0	1	1	0	0	0
0	1	0	0	0	0	0
0	1	1	0	0	0	0
1	0	0	1	0	1	1
1	0	1	1	1	1	1
1	1	0	0	0	0	0
1	1	1	0	1	0	1

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

3. Write the Boolean expression of the following circuit diagram. Set up the truth table

Answer: X = (A' . C')' . A . B' + A . C . B

or equivalently, X = M + L, where M = K . A . B', L = A . C . B , K=(A' . C')'

Table 2. Truth Table for Task 3

Α	В	С	Α'	В'	C'	К	L	М	X
0	0	0	1	1	1	0	0	0	0
0	0	1	1	1	0	1	0	0	0
0	1 •	0	1	0	1	0	₽ 1	0	0
0	ASS1	anmo	ant P	roje	Gt E	xam	Hel	\mathbf{O}	0
1	0	0	0	1	1	1	0	1	1
1	0	1	0	1	0_	1	0	1	1
1	1	ottos	3 /100	WCO	der.	com	0	0	0
1	1	1	0	0	0	1	1	0	1

Add WeChat powcoder

4. Compare X of exercise 2 and exercise 3. Keep in mind that the Boolean expression of X in exercise 3 can be simplified to the one of exercise 2.

Answer (not assessed):

```
(A'.C')' . A.B' + A.C.B = // Apply DeMorgan Theorem: (A.B)'=A'+B' and (A+B)'=A'.B'

= (A + C).A.B' + A.C.B = // Distributive Law – permits the factoring out of an expression

= A.A.B' + C.A.B' + A.C.B = // Idempotent Rule

= A.B' + C.A.B' + A.C.B = // Absorptive Law – absorbing like terms

= A.B' + C.A(B'+B) = // complement Rule

= A.B' + C.A
```

5. Find the Boolean expression of function f(x,y,z) with three inputs and one output; f(x,y,z) produces 1 when at least two of the inputs are 1, otherwise it produces 0

Step1: set up the truth table

х	У	Z	f (x, y, z)
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

Step: Sing illum Propagation for the sub-expression is generated by inverting the inputs with zero and keeping the rest as they are, e.g., the subexpression for (x=0,y=1,z=1) is x'yz.

Answer: x'yz, https://powcoder.com

Step3: f(x,y,z) is given by summing (applying logical OR) all the sub-expressions found in step2. Add WeChat powcoder

Answer: f = x'yz + xy'z + xyz' + xyz

Step4 (this step is optional and will **not be assessed**): Simplify f(x,y,z) using Boolean algebra. For those who are interested in how to simplify Boolean expressions, they can read the following link (Karnaugh maps) https://www.geeksforgeeks.org/k-mapkarnaugh-map/

Answer: this is out of the scope of this lab session

6. Revisit and study the 4-bit ripple carry adder shown in the slides. Draw the circuit for an 8-bit ripple carry adder