CHAPITRE

41

APPLICATIONS LINÉAIRES ET DIMENSION

41.1 APPLICATION LINÉAIRE EN DIMENSION FINIE

§1 Caractérisation d'une application linéaire par l'image d'une base

Test 1

On considère la base $S=(v_1,v_2)$ de $E=\mathbb{R}^2$ donnée par

$$v_1 = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 et $v_2 = \begin{pmatrix} 1 \\ -1 \end{pmatrix}$.

On suppose donnée une application linéaire $f: E \to \mathbb{R}^3$ telle que

$$f(v_1) = \begin{pmatrix} 1\\2\\3 \end{pmatrix} \quad \text{et} \quad f(v_2) = \begin{pmatrix} -2\\3\\-1 \end{pmatrix}.$$

Déterminer l'image du vecteur $v = (2, -5)^T$ par f.

Théorème 2

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $\mathcal{B}=(v_1,v_2,\ldots,v_n)$ une base de E. Soit F un \mathbb{K} -espace vectoriel et (y_1,y_2,\ldots,y_n) une famille de n vecteurs de F. Alors, il existe une unique application linéaire $T:E\to F$ telle que

$$\forall j \in [[1, n]], T(v_j) = y_j.$$

Autrement dit, une application linéaire est entièrement déterminée par l'image d'une base.

Corollaire 3 Deux applications linéaires qui coïncident sur une base sont égales.

Théorème 4

Soient E et F deux K-espaces vectoriels de dimension finie. Alors $\mathcal{L}(E,F)$ est de dimension finie et

$$\dim (\mathcal{L}(E, F)) = \dim(E) \times \dim(F).$$

Démonstration. Admettons ce résultat pour ce chapitre. Nous verrons le cas particulier $F = \mathbb{K}$ dans la section 41.3.

§2 Caractérisation des isomorphismes par les bases

Théorème 5

Soit E un \mathbb{K} -espace vectoriel de dimension finie et $\mathcal{B} = (v_1, v_2, \dots, v_n)$ une base de E. Soit F un \mathbb{K} -espace vectoriel et $f: E \to F$ une application linéaire. On note $f(\mathcal{B})$ la famille

$$(f(v_1), f(v_2), \dots, f(v_n))$$

Alors,

- 1. f est un isomorphisme si, et seulement si la famille $f(\mathcal{B})$ est une base de F.
- **2.** f est un injective si, et seulement si la famille $f(\mathcal{B})$ est une famille libre de F.
- 3. f est un surjective si, et seulement si la famille f(B) est une famille génératrice de F.

Proposition 6

Deux espaces vectoriels de dimension finie sont isomorphes si, et seulement si ils ont même dimension.

Proposition 7

Soient E et F deux \mathbb{K} -espaces vectoriels, et $f: E \to F$ un isomorphisme. Alors, pour toute famille $S = (w_1, w_2, \dots, w_n)$ de vecteurs de E, on a

$$\operatorname{rg}(f(w_1), f(w_2), \dots, f(w_n)) = \operatorname{rg}(w_1, w_2, \dots, w_n).$$

Corollaire 8

Si E est de dimension finie et B est une base de E, alors

$$rg(w_1, w_2, ..., w_p) = rg(Coord_B(w_1), Coord_B(w_2), ..., Coord_B(w_p))$$
$$= rg(Coord_B(w_1, w_2, ..., w_p)).$$

§3 Caractérisation des isomorphismes en dimension finie

Théorème 9

Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie et $f \in \mathcal{L}(E, F)$. On suppose $\dim(E) = \dim(F)$. Alors, les assertions suivantes sont équivalentes:

- 1. f est bijective.
- 2. f est surjective.
- 3. f est injective.

Corollaire 10

Soit f un endomorphisme d'un \mathbb{K} -espace vectoriel E de dimension finie. Alors f est bijective f si, et seulement si f est injective.

Exemple 11

On reprend l'exemple de l'application $T: \mathbb{R}^3 \to \mathbb{R}^3$ définie par

$$T \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} x + y + z \\ x - y \\ x + 2y - 3z \end{pmatrix}.$$

Montrer (rapidement) que T est bijective.

41.2 RANG D'UNE APPLICATION LINÉAIRE

§1 Applications linéaires de rang fini

Définition 12

Soit E et F deux K-espaces vectoriels et $f:E\to F$ une application linéaire. On dit que f est de **rang fini** lorsque l'image de f est de dimension finie. La dimension de cette image est alors appelée **rang** de f que l'on note $\operatorname{rg}(f)$:

$$rg(f) = dim(Im(f))$$
.

Théorème 13

Soit E et F deux \mathbb{K} -espaces vectoriels et $f: E \to F$ une application linéaire. On suppose que E est de dimension finie $n \ge 1$ et que $\mathcal{B} = (v_1, v_2, \dots, v_n)$ est une base de E. Alors f est de rang fini et

$$Im(f) = Vect (f(v_1), f(v_2), \dots, f(v_n)).$$

On a donc

$$\operatorname{rg}(f) = \operatorname{rg}(f(v_1), f(v_2), \dots, f(v_n)) \qquad \operatorname{rg}(f) \le \dim(E) \qquad \operatorname{rg}(f) \le \dim(F).$$

Remarque

Plus généralement, si A est une partie de E,

$$f(\operatorname{Vect}(A)) = \operatorname{Vect}(f(A))$$
.

§2 Rang d'une composée

Proposition 14

Soit E, F et G trois K-espaces vectoriels de dimension finie, $f \in \mathcal{L}(E, F)$ et $g \in \mathcal{L}(F, G)$,

- 1. $\operatorname{rg}(g \circ f) \leq \operatorname{rg} f \operatorname{et} \operatorname{rg}(g \circ f) \leq \operatorname{rg} g$.
- **2.** Si g est injective, alors $rg(g \circ f) = rg f$.
- 3. Si f est surjective, alors $rg(g \circ f) = rg g$.

Corollaire 15 💙 Le rang d'une application linéaire est invariant par composition à gauche, ou à droite, par un isomorphisme.

§3 Théorème du rang pour les application linéaires

Théorème 16

Forme géométrique du théorème du rang

Soient E et F deux K-espaces vectoriels et $f: E \to F$ une application linéaire. Soit S est un supplémentaire de ker f dans E alors

$$g = f_S^{\operatorname{Im} f}$$
: $S \to \operatorname{Im} f$
 $x \mapsto f(x)$

est un isomorphisme. C'est-à-dire que tout supplémentaire de $\ker f$ dans E est isomorphe $\hat{a} \operatorname{Im} f$.

On dit que f induit un isomorphisme g de S sur Im f.

Théorème 17

Théorème du rang

Soient E et F deux K-espaces vectoriels, E étant de dimension finie et $f: E \to F$ une application linéaire. Alors f est de rang fini et

$$rg(f) + dim(ker(f)) = dim E$$
.

Dans le cas où $f \in \mathcal{L}(E)$, il n'y a aucune raison de croire que ker f et Im f sont supplémentaires. Par contre, si E est de dimension finie et si ker $f \cap \text{Im } f = \{0_E\}$, alors

$$E = \ker(f) \oplus \operatorname{Im}(f).$$

Corollaire 18

Soient E et F deux K-espaces vectoriels de dimension finie et $f: E \to F$ une application linéaire. Alors si (b_1,\ldots,b_p) est une base de ${\rm Im}\, f$, et, pour chaque $i\in [\![1,p]\!]$, a_i un élément de E tel que $f(a_i) = b_i$, la famille (a_1, \dots, a_p) est libre et engendre un sous-espace supplémentaire de ker(f).

Remarque

Soit une matrice A de type (m, n) et $T: x \mapsto Ax$. Alors T est une application linéaire de $E = \mathbb{K}^n$ dans $F = \mathbb{K}^m$. De plus, $\ker(T) = \ker(A)$ et $\operatorname{Im}(T) = \operatorname{Im}(A)$, donc $\operatorname{rg}(T) = \operatorname{rg}(A)$. Le théorème du rang affirme donc que

$$rg(A) + dim(ker A) = n,$$

où *n* est la dimensions de $E = \mathbb{K}^n$, qui est égale au nombre de colonnes de *A*.

5

Test 19

Soient E et F deux \mathbb{K} -espaces vectoriels de dimension finie et $f:E\to F$ une application linéaire. Alors

- 1. On a $rg(f) \le dim(E)$, et rg(f) = dim(E) si, et seulement si f est injective.
- 2. On a $rg(f) \le dim(F)$, et rg(f) = dim(F) si, et seulement si f est surjective.

En particulier, f est bijective si, et seulement si rg(f) = dim(E) = dim(F).

Test 20

Existe-il une application $T: \mathbb{R}^3 \to \mathbb{R}^3$ linéaire telle que $\ker(T) = \operatorname{Im}(T)$?

41.3 DUALITÉ

§1 Base duale

Définition 21

Soit E un espace vectoriel de dimension n et $\mathcal{B}=(e_1,\ldots,e_n)$ une base de E. La **base duale** de (e_1,\ldots,e_n) est la famille (e_1^*,\ldots,e_n^*) des **formes linéaires coordonnées** relativement à la base \mathcal{B} , c'est-à-dire la famille des formes linéaires vérifiant

$$\forall i \in \llbracket 1, n \rrbracket, \forall j \in \llbracket 1, n \rrbracket e_i^* \left(e_j \right) = \delta_{i,j} = \begin{cases} 1 & \text{si } i = j \\ 0 & \text{si } i \neq j. \end{cases}$$

Exemple 22

La base duale de la base (1, i) de \mathbb{C} (vu comme \mathbb{R} -espace vectoriel) est $(\Re e, \Im m)$.

Exemple 23

La base duale de la base $(1, X, \dots, X^n)$ de $\mathbb{R}[X]$ est $\left(P \mapsto \frac{P^{(k)}(0)}{k!}\right)_{k=0,\dots,n}$

Proposition 24

Soit E un espace vectoriel de dimension n et (e_1, \ldots, e_n) une base de E. La base duale de (e_1, \ldots, e_n) est une base de l'espace dual $E^* = \mathcal{L}(E, \mathbb{K})$. Par conséquent, E^* est de dimension finie et

$$\dim\left(E^*\right) = \dim(E).$$

§2 Formes linéaires et hyperplans

Définition 25

Soit E un \mathbb{K} -espace vectoriel et H un sous-espace vectoriel de E. On dit que H est un **hyperplan** de E si il existe une droite vectorielle $D = \text{Vect } \{a\}$ telle que

$$E = H \oplus D$$
.

Proposition 26

Soit H un hyperplan d'un espace vectoriel E et $x \notin H$. Alors l'hyperplan H et la droite Vect(x) sont supplémentaire dans E.

Théorème 27

Si E est de dimension finie $n \in \mathbb{N}^*$, les hyperplans de E sont exactement les sous-espaces vectoriels de E de dimension n-1.

Théorème 28

Soit φ une forme linéaire non nulle sur un espace vectoriel E. Alors, $\ker(\varphi)$ est un hyperplan de E.

Le théorème précédent admet une réciproque:

Théorème 29

Soit H un hyperplan d'un espace vectoriel E.

- 1. Il existe des formes linéaire φ telles que $H = \ker \varphi$.
- **2.** Si φ_0 est l'une d'entre elles, les autres sont les $\lambda \varphi_0$ avec $\lambda \in \mathbb{K} \setminus \{0\}$.

Définition 30

Lorsque $H = \ker \varphi$, on dit que H a pour **équation** $\varphi(x) = 0$.

Il n'y a pas unicité de cette équations, mais les autres équations de H sont $\lambda \varphi(x) = 0$ avec $\lambda \neq 0$.

Remarquez qu'en dimension finie, après choix d'une base (e_1, \dots, e_n) , une forme linéaire sera décrite par une expression du type

$$\varphi(x) = a_1 x_1 + \dots + a_n x_n,$$

où les (x_1, \ldots, x_n) sont les coordonnées de x dans la base (e_1, \ldots, e_n) . Ainsi, l'équation d'un hyperplan est de la forme

$$a_1x_1 + \dots + a_nx_n = 0,$$

et les autres sont promotionnelles.

Théorème 31

Intersection d'hyperplans

Soit E un espace vectoriel de dimension finie n.

- 1. L'intersection de m hyperplans de E est un sous-espace vectoriel de dimension au moins n-m.
- **2.** Tout sous-espace vectoriel V de E de dimension n-m peut s'écrire comme l'intersection de m hyperplans.

Esquisse. 1. Par récurrence sur m, en utilisant la formule de Grassmann.

2. Soit (e_{m+1}, \ldots, e_n) une base de V que l'on complète en $\mathcal{B} = (e_1, \ldots, e_m, e_{m+1}, \ldots, e_n)$ une base de E.

En notant (e_1^*, \dots, e_n^*) la base duale de la base $\mathcal B$ et

$$H_i = \ker\left(e_i^*\right),\,$$

on vérifie bien que $V=H_1\cap\cdots\cap H_m$.

.

CHAPITRE Compléments

41.4 APPLICATION AUX SUITES RÉCURRENTES LINÉAIRES D'ORDRE DEUX