The Algebraic Properties of Formal Group Laws

Shay Ben Moshe

20/06/2017

1 Introduction

(All rings are commutative with unit.)

Definition. Let R be a ring. A (commutative one-dimensional) formal group law over R is an element $F(x,y) \in R[[x,y]]$, such that:

- 1. F(x,0) = x = F(0,x)
- 2. F(x,y) = F(y,x) (commutativity) **TODO Do we need commutative?**
- 3. F(F(x,y),z) = F(x,F(y,x)) (associativity)

Example. The additive formal group law, $F_a(x,y) = x + y$.

Example. The multiplicative formal group law, $F_m(x,y) = x + y + uxy$ for some unit $u \in R$, and specifically $F_m(x,y) = x + y + xy$.

Lemma. $p(x) \in R[[x]]$ is (multiplicatively) invertible if and only if $p(0) \in R$ is invertible.

Proof. Let $p(x) = \sum a_n x^n$, and assume $q(x) = \sum b_n x^n \in R[[x]]$ is an inverse to p, i.e. pq = 1. By comparing coefficients it follows that $a_0b_0 = 1$ (so the first part follows), and $\sum_{k=0}^n a_k b_{n-k} = 0$. If a_0 is invertible then we can find a suitable q, by defining $b_0 = a_0^{-1}$, and $b_n = -a_0^{-1} \left(\sum_{k=1}^n a_k b_{n-k} \right)$ (so the second part follows).

Definition. An homomorphism from F to G, two formal group laws over R, is a $f \in R[[x]]$, such that:

- 1. f(0) = 0
- 2. f(F(x,y)) = G(f(x), f(y))

Definition. The definition of a homomorphism between formal group laws, turns the collection of formal group laws over a ring into a category, denoted FGL(R).

TODO Should I mention the fact that there is a fully faithful functor $FGL(R) \to Grp$? (actually this is the way we define the homomorphisms)

Claim. $f: F \to G$ is (compositionally) invertible (i.e. an isomorphism) if and only if f'(0).

Proof. It is easy to see the first implication. If f'(0) = 0, we can show explicitly that there exists a unique g such that g(f(x)) = x, and $g'(0) = (f'(0))^{-1}$. From the very same claim, it follows that there exists an h such that h(g(x)) = x, it follows that h(x) = h(g(f(x))) = f(x).

Definition. $f: F \to G$ is a *strict isomorphism* if f'(0) = 1.

Example. The multiplicative formal group law is strictly isomorphic to the additive formal group law, by $f(x) = u^{-1} \log(1 + ux) = \sum_{n=1}^{\infty} \frac{(-u)^{n-1}x^n}{n}$:

$$f(F_m(x,y)) = u^{-1} \log (1 + uF_m(x,y))$$

$$= u^{-1} \log (1 + ux + uy + u^2xy)$$

$$= u^{-1} \log (1 + ux) (1 + uy)$$

$$= u^{-1} \log (1 + ux) + \log (1 + uy)$$

$$= F_a(f(x), f(y))$$

(Note that we don't need the u^{-1} to get an isomorphism, but we do need it to get a strict isomorphism.)

Definition. A strict isomorphism from F to F_a is called a *logarithm*.

2 Characteristic 0

Theorem. A formal group law over a Q-algebra has a logarithm.

Proof. Let F be such a formal group law, and denote $F_2 = \frac{\partial F}{\partial y}$. Since $F(x,y) = x + y + \cdots$, we know that $F_2(0,0) = 1$, thus $F_2(t,0)$ is (multiplicatively) invertible. Since each $0 \neq n \in \mathbb{Z}$ is invertible, we can define the following:

$$f(x) = \int_0^x \frac{\mathrm{d}t}{F_2(t,0)}$$

We claim that it is a logarithm. We already know that $f'(0) = \frac{1}{F_2(0,0)} = 1$. We need to prove that $f(F(x,y)) = F_a(f(x), f(y))$, or equivalently, that w(x,y) = f(F(x,y)) - f(x) - f(y) vanishes. Denote the coefficients by $w(x,y) = \sum c_{ij}x^iy^j$. First, note that w(x,0) = f(F(x,0)) - f(x) - f(0) = f(x) - f(x) - 0 = 0 and it follows that $c_{i0} = 0$. If we prove that

$$0 = \frac{\partial w}{\partial y}$$
= $f'(F(x,y)) F_2(x,y) - f'(y)$
= $\frac{1}{F_2(F(x,y),0)} F_2(x,y) - \frac{1}{F_2(y,0)}$

it follows that $jc_{ij} = 0$, and since each $0 \neq j \in \mathbb{Z}$ is invertible, $c_{ij} = 0, j > 0$, which finishes the proof. Indeed, by associativity, F(F(x,y),z) = F(x,F(y,z)), differentiating w.r.t. z at z = 0 we get, $F_2(F(x,y),0) = F_2(x,y)F_2(y,0)$ and the result follows.

3 Characteristic p

Remark. The above theorem is not true over arbitrary rings.

To see this, we define a notion, that will lead us to the concept of height. Let F be a formal group law over a ring R. We define $[n]_F(x) \in R[[x]]$ by recursion:

$$[0]_F(x) = 0$$
 $[n+1]_F(x) = F(x, [n]_F(x))$

Clearly, for $f: F \to G$ we get $f([n]_F(x)) = [n]_G(f(x))$. If no confusion will arise, we will denote $[n] = [n]_F(0)$.

For F_a we have $[n]_{F_a}(x) = nx$, and by induction for F_m we have $[n]_{F_a}(x) = (1+x)^n - 1$. Consider them over a field of characteristic p, and assume that $f: F_m \to F_a$ is an homomorphism then

$$0 = \left[p\right]_{F_a}\left(f\left(x\right)\right) = f\left(\left[p\right]_{F_m}\left(x\right)\right) = f\left(\left(1+x\right)^p - 1\right) = f\left(x^p\right)$$

which means that f is not invertible, thus F_m and F_a are not isomorphic.

Claim. For all n, $[n]_F$ is an endomorphism of F. TODO Comm. is used here

Proof. It is trivial by definition that [n](0) = 0. The addition by induction. For n = 0 trivial. Now:

$$[n] (F (x,y)) = F (F (x,y), [n-1] (F (x,y)))$$

$$= F (F (y,x), F ([n-1] (x), [n-1] (y)))$$

$$= F (y, F (x, F ([n-1] (x), [n-1] (y))))$$

$$= F (y, F ([n] (x), [n-1] (y)))$$

$$= F (y, F ([n-1] (y), [n] (x)))$$

$$= F ([n] (y), [n] (y))$$

In what follows in this section, R is an \mathbb{F}_p -algebra.

Lemma. Let F, G be formal group laws over F, and $f: F \to G$ non-trivial. Then $f(x) = g(x^{p^n})$ for some n and $g \in R[[x]]$ with $g'(0) \neq 0$, and in particular the leading term of f is ax^{p^n} .

Proof. If $f'(0) \neq 0$, we are done. Otherwise, we will find a formal group law \tilde{F} , and $\tilde{f}: \tilde{F} \to G$, such that $f(x) = \tilde{f}(x^p)$. Since f is non-trivial, and the least non-zero degree is lowered by this process, this process must terminate after a finite amount of stages. So suppose f'(0) = 0.

First we claim that f'(x) = 0. Deriving f(F(x,y)) = F(f(x), f(y)) by y and setting y = 0, we get $f'(F(x,0)) F_2(x,0) = F_2(f(x), f(0)) f'(0)$ remembering that $F(x,0) = x, F_2(x,0) = 1, f'(0) = 0$, we conclude that f'(x) = 0. Write $f(x) = \sum a_n x^n$, by f'(x) = 0, $a_n = 0$ for all $p \nmid n$, therefore $f(x) = \tilde{f}(x^p)$.

Denote by $\varphi: R \to R$ the Frobenius endomorphism $\varphi_i(x) = x^p$. Define $\tilde{F} = \varphi^*(F)$. It follows that $\tilde{f}\left(\tilde{F}(x^p,y^p)\right) = \tilde{f}\left(F(x,y)^p\right) = f\left(F(x,y)\right) = G\left(f(x),f(y)\right) = G\left(\tilde{f}(x^p),\tilde{f}(y^p)\right)$ i.e. that $\tilde{f}: \tilde{F} \to G$ is the desired homomorphism. **TODO How do we remove the** p? I think it follows if we don't have nilpotents..

Definition. The *height* of a formal group law F over R is defined as follows: if $[p]_F = 0$, the height is ∞ , otherwise it is the unique $n \in \mathbb{N}$ such that $[p]_F(x) = g(x^{p^n})$ with $g'(0) \neq 0$.

Lemma. The height is an isomorphism invariant.

Proof. Let $f: F \to G$ be an isomorphism. We've seen that in that case $f([n]_F(x)) = [n]_G(f(x))$. Since f is an isomorphism, f'(0) is a unit, the least non-zero degree is conserved and the result follows.

TODO Existence for each height over a field, uniqueness over an algebraically closed field.

4 The Lazard Ring

Definition. Given an homomorphism $\varphi: R \to S$, and a formal group law over R, $F(x,y) = \sum a_{ij}x^iy^j$, we define the base change by $\varphi^*(F)(x,y) = \sum \varphi(a_{ij})x^iy^j$. In fact, that is a functor, defined similarly for morphisms.

Theorem. There is a ring L, called the Lazard ring, and a formal group law over it F_{univ} , called the universal formal group law, such that for every ring R the map

$$\operatorname{hom}_{\operatorname{Ring}}(L,R) \to \operatorname{Ob}(\operatorname{FGL}(R)) \qquad \varphi \mapsto \varphi^*(F_{\operatorname{univ}})$$

is one-to-one and onto.

Proof. Look at the ring $\tilde{L} = \mathbb{Z}[c_{ij}]$, and $\tilde{F}_{\text{univ}}(x,y) = \sum c_{ij}x^iy^j \in \tilde{L}[[x,y]]$. There are various relations obtained from the definition of a formal group law, e.g. $c_{0j} = 0 = c_{i0}$. Denote by I the ideal generated by these relations, and define $L = \tilde{L}/I$, and $F_{\text{univ}}(x,y) = \sum (c_{ij}+I)x^iy^j \in L[[x,y]]$, which satisfies the definition of a formal group law over L by construction. The map being one-to-one is trivial. Given a formal group law $F(x,y) = \sum a_{ij}x^iy^j$, we can define $\tilde{\varphi}: \tilde{L} \to R$ by $\tilde{\varphi}(c_{ij}) = a_{ij}$, It is clear that if factors through L, to a map $\varphi: L \to R$, and that the base w.r.t $\varphi^*(F_{\text{univ}}) = F$, therefore it is onto.

TODO Lazard's theorem?