

# Aç Gözlü Algoritmalar (Greedy )

- Bozuk para verme problemi
  - Bir kasiyer 48 kuruş para üstünü nasıl verir?
    - 25 kuruş, 10 kuruş, 5 kuruş, 1 kuruş
  - Hırslı teknik ilk olarak 25 kuruş verir
    - Geri kalan miktarı en çok o azaltır
  - İkinci de 25 kuruş veremez
    - 10 kuruş verir
  - Üçüncüde kalan miktarı en aza indirmek için 10 kuruş verir
  - Kalan kısım için 3 adet 1 kuruş verebilir

# Aç Gözlü Algoritmalar (Greedy )

- Sadece optimizasyon problemlerinde kullanılabilmelerine rağmen genel bir tasarım tekniği olarak kabul edilir.
- Açgözlü algoritmalar ardışık adımlarla bir çözüm oluşturma yaklaşımı izler
  - O ana kadar oluşturulan kısmi çözüm problemin tam çözümüne ulaşana kadar her adımda genişletilir
  - Atılan her adımda yapılacak seçim:
    - Problemin kısıtlarına göre uygulanması mümkün olmalıdır
    - O adım için tüm mümkün seçenekler arasında en optimal olanı olmalıdır
    - Gerçekleştirildikten sonra ki adımlarda değiştirilemez olmalıdır

#### Minimum Kapsama Ağacı Problemi

- Tüm network türlerinde karşılaşılan bir problem
  - N adet noktayı her nokta çifti arasında bir yol olacak şekilde en ucuz maliyetle birleştirmek
    - Elektrik
    - Haberleşme
    - Ulaşım
  - Veri setleri içerisindeki noktaları kümeleme için kullanılabilirler
    - Sınıflandırma problemlerinin çözümünde kullanılabilirler
  - Bir graf yapısı ile gösterilebilirler
    - Notalar düğüm
    - Ayrıtlar yollar
    - Maliyetler ise ayrıt ağırlıkları ile ifade edilir
  - Bu durumda problem «minimum kapsama ağacı»nın (Minimum Spanning Tree-MST) bulunması olarak nitelenebilir

#### Minimum Kapsama Ağacı Problemi

- Kapsama Ağacı (Spanning Tree)
  - Yönsüz, temaslı bir grafın tüm düğümlerini kapsayan, çevrimsiz, temaslı bir alt grafıdır (Ağaç)
  - Grafın ayrıtlarının ağırlıkları varsa minimum tarama ağacı en düşük ağırlıklı kapsama ağacıdır
    - Ağacın ağırlığı = Tüm ayrıtlarının ağırlık toplamı
  - Minimum Kapsama Ağacı (Minimum Spanning Tree – MST) problemi verilen ağırlıklı bir grafın MST'sinin bulunmasıdır

## Minimum Kapsama Ağacı Problemi









Graph and its spanning trees, with  $T_1$  being the minimum spanning tree.

## Prim'in MST Algoritması

- Prim'in alt ağacı ardışık adımlarla genişleterek
   MST oluşturur
  - Başlangıç olarak herhangi bir düğüm seçilir
  - Her adımda bulunulan düğüme en yakın (ağaca önceden dahil olmamış) düğüm ağaca dahil edilir
  - Eşit mesafede iki düğüm varsa belirlenen kurala göre biri tercih edilir
  - n düğüm için n-1 adet iterasyon gerçekleşir

## Prim'in MST Algoritması

```
ALGORITHM Prim(G)

//Prim's algorithm for constructing a minimum spanning tree

//Input: A weighted connected graph G = \langle V, E \rangle

//Output: E_T, the set of edges composing a minimum spanning tree of G

V_T \leftarrow \{v_0\} //the set of tree vertices can be initialized with any vertex

E_T \leftarrow \varnothing

for i \leftarrow 1 to |V| - 1 do

find a minimum-weight edge e^* = (v^*, u^*) among all the edges (v, u) such that v is in V_T and u is in V - V_T

V_T \leftarrow V_T \cup \{u^*\}

E_T \leftarrow E_T \cup \{e^*\}

return E_T
```









 $e(f,2) \hspace{1cm} \textbf{d}(\textbf{f},\textbf{5})$ 



d(f, 5)

# Örnek



| Tree vertices | Priority queue of remaining vertices                   |  |
|---------------|--------------------------------------------------------|--|
| a(-,-)        | $b(a,5)$ $c(a,7)$ $d(a,\infty)$ $e(a,2)$               |  |
| e(a,2)        | b(e,3) $c(e,4)$ $d(e,5)$                               |  |
| b(e,3)        | $\mathbf{c}(\mathbf{e}, 4)  \mathbf{d}(\mathbf{e}, 5)$ |  |
| c(e,4)        | d(c,4)                                                 |  |
| d(c,4)        |                                                        |  |

The minimum spanning tree found by the algorithm comprises the edges ae, eb, ec, and cd.

# Örnek



| Priority queue of fringe vertices      |  |  |
|----------------------------------------|--|--|
| b(a,3) $c(a,5)$ $d(a,4)$               |  |  |
| c(a,5) $d(a,4)$ $e(b,3)$ $f(b,6)$      |  |  |
| c(a,5) <b>d(e,1)</b> $f(e,2)$ $i(e,4)$ |  |  |
| c(d,2) f(e,2) i(e,4) h(d,5)            |  |  |
| f(e,2) i(e,4) h(d,5) g(c,4)            |  |  |
| i(e,4) $h(d,5)$ $g(c,4)$ $j(f,5)$      |  |  |
| h(d,5) g(c,4) j(i,3) l(i,5)            |  |  |
| h(d,5) $g(c,4)$ $l(i,5)$               |  |  |
| h(g,3) $l(i,5)$ $k(g,6)$               |  |  |
| l(i,5) k(g,6)                          |  |  |
| k(g,6)                                 |  |  |
| ,                                      |  |  |
|                                        |  |  |

The minimum spanning tree found by the algorithm comprises the edges ab, be, ed, dc, ef, ei, ij, cg, gh, il, gk.

### Kruskal'ın Algoritması

- MST probleminin çözümü için geliştirilmiş açgözlü başka bir algoritma
  - Bu algoritma ağırlıklı, temaslı bir G=(V, E) grafının MST'sine ayrıt ağırlıkları toplamı en düşük, çevrimsel olmayan |V|-1 adet ayrıtı olan bir alt graf olarak oluşturur
  - Bu alt graf aynı zamanda bir ağaçtır
  - Algoritma ardışık adımlarla ilerler
    - Her adımda altgrafı çevrimsel olmayacak şekilde genişletir
    - Altgrafa eklenen yeni düğümün temaslı olması gerekmez



### Dijkstra Algoritması

- DijkstraAlgoritması
  - En kısa yol algoritması
  - Komşu
     düğümlerden en
     yakın olan
     seçilerek hedefe
     ulaşılmaya
     çalışılır.



| Tree vertices | Remaining vertices                         | Illustration                                          |
|---------------|--------------------------------------------|-------------------------------------------------------|
| a(-, 0)       | $b(a,3)\ c(-,\infty)\ d(a,7)\ e(-,\infty)$ | 3 2 6 6 8 7 d 4 8                                     |
| b(a, 3)       | $c(b, 3+4) \ d(b, 3+2) \ e(-, \infty)$     | 3 2 6 6 8 7 d 4 8                                     |
| d(b, 5)       | c(b, 7) e(d, 5+4)                          | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| c(b, 7)       | e(d, 9)                                    | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ |
| e(d, 9)       |                                            |                                                       |

