ChumakovNV 25112024-193116

Если в каком-либо задании среди предлагаемых вариантов ответа нет правильного, нужно внести 0 в соответствующую строчку файла .txt.

Дана частотная характеристика модуля коэффициента отражения (см. рисунок 1) от входа цепи согласования (слева) с действительным импедансом R (подключённым справа), причём $\theta_{\Pi} < \frac{\pi}{2}$. (Измерения проведены с помощью генератора с внутренним импедансом 50 Ом).

Рисунок 1 — Частотная характеристика модуля коэффициента отражения

Какой из предложенных на рисунке 2 ситуаций соответствует эта частотная характеристика?

Варианты ОТВЕТА: 1) a 2) b 3) c 4) d

Рисунок 2 — Различные реализаци и Γ -образной цепи согласования

Четыре микрополосковые линии изготовлены на подложке, выполненной из материала RO4003C ($\epsilon = 3, 55$):

- 1 толщиной 0.406 мм и с волновым сопротивлением 59 Ом;
- 2 толщиной 0.508 мм и с волновым сопротивлением 77 Ом;
- 3 толщиной 0.305 мм и с волновым сопротивлением 74 Ом;
- 4 толщиной 0.203 мм и с волновым сопротивлением 50 Ом.

В каком из случаев ширина микрополосковой линии будет наименьшей?

Варианты ОТВЕТА:

- 1) 1
- 2) 2
- 3) 3
- 4) 4

Реактивная цепь коррекции выполнена с помощью отрезка микрополосковой линии, являющегося полуволновым на частоте $f_{\rm B}$.

Дано значение коэффициента отражения s_{11} от входа этой цепи коррекции на частоте $f_{\scriptscriptstyle \rm H}=0.74f_{\scriptscriptstyle \rm B}$:

```
s_{11} = -0.209 + 0.182і. (Значение s_{11} приведено для 50-омной среды).
```

Найти волновое сопротивление микрополосковой линии.

Варианты ОТВЕТА:

- 1) 40 Om
- 2) 34 Om
- 3) 74 Om
- 4) 89 Om

К однопортовому анализатору цепей, измеряющему коэффициенты отражения без погрешности, подключён заполненный фторопластом ($\epsilon=2$) коаксиальный кабель без потерь .

Была выполнена калибровка на частоте 9 ГГц с помощью калибровочной меры с названием "короткое замыкание". (Калибровочная мера идеально соответствует своему названию.)

Результат калибровочного измерения:

-0.72 + 0.69i

Какую из предложенных ниже длин может иметь этот кабель:

- 1) 41 cm
- 2) 7.7 cm
- 3) 23.9 см
- 4) 2.5 cm

Даны значения s-параметров:

Freq	s_{11}		s_{21}		s_{12}		s_{22}	
$_{ m GHz}$	MAG	ANG	MAG	ANG	MAG	ANG	MAG	ANG
5.8	0.501	151.5	4.867	42.2	0.084	49.5	0.184	-125.9

Выбрать Γ -образный четырёхполюсник (см. рисунок 3), который *не мо- жеет* обеспечить согласование со стороны плеча 2 на частоте 5.8 $\Gamma\Gamma$ ц при наложении следующих ограничений:

- 1 W_T больше 37 Ом;
- 2 θ_Π меньше $\frac{\pi}{2}$.

Рисунок 3 – Различные реализации Г-образного четырёхполюсника

Варианты ОТВЕТА:

1) A 2) B 3) C 4) D

Отрезок микрополосковой линии использован для согласования 50-омного генератора с широкополосной нагрузкой $R=121~{\rm Om}.$ Известно, что:

- 1 в полосе, ограниченной частотами $f_{\rm H}=4$ ГГц и $f_{\rm B}=10.9$ ГГц, модули коэффициента отражения от входа цепи согласования на частотах $f_{\rm H}$ и $f_{\rm B}$ равны;
- 2 коэффициент отражения на центральной частоте полосы равен 0.2+j0;
- 3 использован *наикратчайший* отрезок, удовлетворяющий вышеупомянутым условиям.

Каковы максимальные потери рассогласования в полосе $[f_{\scriptscriptstyle \rm H}, f_{\scriptscriptstyle \rm B}]$?

Варианты ОТВЕТА:

- 0.5 дБ
- 2) 1.4 дБ
- 3) 0.2 дБ
- 4) 1 дБ