

Universidad Ricardo Palma

RECTORADO

Formamos seres humanos para una cultura de pay

Primer Programa de Especialización INTRODUCCIÓN AL DATA SCIENCE

ANÁLISIS DE DATOS CON PYTHON

Contenido

✓ Análisis Exploratorio : Estadística Descriptiva

DataSet

	rank	discipline	yrs.since.phd	yrs.service	sex	salary
0	Prof	В	19	18	Male	139750
1	Prof	В	20	16	Male	173200
2	AsstProf	В	4	3	Male	79750
3	Prof	В	45	39	Male	115000
4	Prof	В	40	41	Male	141500
5	AssocProf	В	6	6	Male	97000
6	Prof	В	30	23	Male	175000
7	Prof	В	45	45	Male	147765
8	Prof	В	21	20	Male	119250
9	Prof	В	18	18	Female	129000

Funciones de Estadística

```
df.describe() - Summary statistics for numerical columns

df.mean() - Returns the mean of all columns

df.corr() - Returns the correlation between columns in a DataFrame

df.count() - Returns the number of non-null values in each DataFrame column

df.max() - Returns the highest value in each column

df.min() - Returns the lowest value in each column

df.median() - Returns the median of each column

df.std() - Returns the standard deviation of each column
```


Importar las librerías para trabajar con los gráficos

```
In [157]: import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
from pandas.tools.plotting import scatter_matrix
```



```
In [6]: df['sex'].value_counts()
                                                 Female
Out[6]: Male
                    358
         Female
                     39
         Name: sex, dtype: int64
         genero_tabla=df['sex'].value_counts()
In [23]:
                                                   Male
In [24]: genero_tabla.plot(kind='barh',rot=0)
                                                                  100
                                                                        150
                                                             50
                                                                              200
                                                                                    250
                                                                                          300
```



```
data_salary=df['salary']
data_salary.plot.hist(color='orange',grid=True)
```



```
In [168]: df[['salary']].boxplot()
```



```
In [165]: scatter_matrix(df[['salary','yrs.since.phd','yrs.service']], alpha=0.5,diagonal='kde')
    plt.suptitle('scatter-matrix')
    plt.show()
```

scatter-matrix

Comunidad Data Science Perú

@comunidaddatascience

