1 Koordinatentransformationen

 \mathbb{R}^2 : Polarkoordinaten (r, φ)

$$x = r \cdot \cos \varphi$$
 $r = \sqrt{x^2 + y^2}$
 $y = r \cdot \sin \varphi$ $\varphi = \arg(x, y)$

 \mathbb{R}^3 : Zylinderkoordinaten (ρ, φ, z)

$$\begin{aligned} x &= \rho \cdot \cos \varphi & \rho &= \sqrt{x^2 + y^2} \\ y &= \rho \cdot \sin \varphi & \varphi &= arg(x, y) & (0 \leq \varphi < 2\pi) \\ z &= z & \end{aligned}$$

 \mathbb{R}^3 : Kugelkoordinaten (r, φ, θ)

$$\begin{array}{ll} x = r \cdot \cos \theta \cdot \cos \varphi & \qquad r = \sqrt{x^2 + y^2 + z^2} \\ y = r \cdot \cos \theta \cdot \sin \varphi & \qquad \varphi = arg(x,y) & (0 \le \varphi < 2\pi) \\ z = r \cdot \sin \theta & \qquad \theta = arg\left(\sqrt{x^2 + y^2}, z\right) & \left(-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}\right) \end{array}$$

 \mathbb{R}^3 : Elliptische Koordinaten $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$

$$x = ar \cos \theta \cos \varphi \qquad \qquad \varphi \in (0 \le \varphi < 2\pi)$$

$$y = br \cos \theta \sin \varphi \qquad \qquad \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$$

$$z = cr \sin \theta \qquad \qquad r \in [0, 1]$$

Argument (auch Polarwinkel zwischen Z(x, y) und \vec{e}_x)

$$\tan \varphi := (\frac{y}{x}) \to \arg(x,y) := \begin{cases} \arctan(\frac{y}{x}) & x \ge 0 \\ -\arctan(\frac{y}{x}) & x < 0 \end{cases}$$

$$\frac{\pi}{2} & x = 0, y < 0$$

$$\frac{3}{2}\pi & x = 0, y > 0$$

 $\begin{array}{c|c} y & z = (x,y) \\ \hline y & \\ \hline (\cos\varphi,\sin\varphi) & y \\ \hline e_z & x \end{array}$

 \mathbb{R}^3 : Toruskoordinaten (φ, ϑ)

$$x = (R + r\cos\theta)\cos\varphi \qquad \qquad \varphi \in (0 \le \varphi < 2\pi)$$

$$y = (R + r\sin\theta)\sin\varphi \qquad \qquad \theta \in \left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$$

$$z = r\sin\theta \qquad \qquad r \in [0, k] \quad k < R$$

Integralsubstitutionen bei Koordinatenwechsel = |det(df)|Polarkoordinaten $dxdy \longrightarrow r \cdot drd\varphi$ | Zylinderkoordinaten $dxdydz \longrightarrow \rho \cdot drd\varphi dz$

Kugelkoordinaten $dxdydz \longrightarrow r^2 \cdot cos(\theta) \cdot drd\varphi d\theta$ Toruskoordinaten $drd\varphi d\theta \longrightarrow r \cdot (R + r\cos\theta) \sin\varphi dr d\varphi d\theta$

2 Komplexe Zahlen $\mathbb C$

komplexe Zahl

Ein
$$z \in \mathbb{C}$$
, wobei $i^2 = -1$.
 $z = x + iy = Re(z) + i \cdot Im(z)$

reelle Zahlenebene z lässt sich bijektiv auf einer \mathbb{R}^2 -Ebene darstellen

konjugiert wenn z = x + iy, dann ist $\overline{z} := x - iy$

Rechenregeln

 $\begin{array}{ll} \text{Normalform} & z=x+iy \\ \text{Polarkoordinaten} & x=r\cdot\cos\varphi \\ & y=r\cdot\sin\varphi \\ & r=|z|=\sqrt{x^2+y^2} \\ & \varphi=\begin{cases} +\arccos\frac{x}{|z|} & \text{falls } y\geq0 \\ -\arccos\frac{x}{|z|} & \text{falls } y<0 \end{cases} \\ \text{Euler'sche Form} & z=r\cdot(\cos\varphi+i\sin\varphi)=r\cdot e^{i\varphi} \\ \end{array}$

Euler'sche Form $z=r\cdot(\cos\varphi+i\sin\varphi)=r\cdot e^{i\varphi}$ $i=e^{i\frac{\pi}{2}}$ $-i=e^{-i\frac{\pi}{2}}$ $1=-e^{i\pi}$

 $\begin{array}{cc} e^{i\varphi}=1\Leftrightarrow\varphi=2k\pi, & k\in\mathbb{Z}\\ \text{Realteil} & \text{Re}(z)=\frac{z+\overline{z}}{2}\\ \text{Imaginärteil} & \text{Im}(z)=\frac{z-\overline{z}}{2i} \end{array}$

Addition $z_1 \pm z_2 = (x_1 \pm x_2) + i(y_1 \pm y_2)$ Multiplikation $z_1 \cdot z_2 = (x_1 x_2 - y_1 y_2) + i(x_1 y_2 + x_2 y_1)$

 $z_1 \cdot z_2 = (r_1 r_2) \cdot e^{i(\varphi_1 + \varphi_2)}$ Division $\frac{z_1}{z_2} = \frac{z_1 \cdot \overline{z_2}}{z_2 \cdot \overline{z_2}}$ Potenz $z^n = [r \cdot e^{i\varphi}]^n = r^n \cdot e^{in\varphi}$ Betrag $|z| = \sqrt{z\overline{z}} = \sqrt{x^2 + y^2} = r$ Wurzel $\sqrt[n]{z} = \sqrt[n]{r} \cdot e^{i(\frac{i\varphi + k \cdot 2\pi}{n})}$

 $(k=0,1,\dots,n-1),\, \text{Hauptwert für } k=0$ Konjugationen $\quad \overline{\overline{z}}=z$

 $z=\overline{z}$ $\overline{z_1+z_2}=\overline{z_1}+\overline{z_2}$ $\overline{z_1\cdot z_2}=\overline{z_1}\cdot \overline{z_2}$ $\overline{\overline{z}}=\frac{1}{z}$

3 Mengenlehre

Definition von Mengen

durch Aufzählung $A = \{1, \pi, 3, ...\}$ oder durch Eigenschaften $A = \{x | \text{ist eine gerade Zahl}\}$

Leere Menge

 \emptyset oder $\{\}$ Die Menge, die kein Element enthält

ZFC: Extensionalität (Gleichheit von Mengen)

 $A = B \longleftrightarrow \forall x : (x \in A \leftrightarrow x \in B)$

Mengenbildung

Teilmenge $A \subseteq B \leftrightarrow (x \in A \rightarrow x \in B)$

Schnitt $x \in A \cap B \leftrightarrow (x \in A \land x \in B)$

Vereinigung $x \in A \cup B \leftrightarrow (x \in A \lor x \in B)$

Differenz $x \in A \setminus B \leftrightarrow (x \in A \land x \notin B)$

Symm. Differenz $x \in A \triangle B \leftrightarrow ((x \in A) \oplus (x \in B))$

Komplement $x \in \overline{A} \leftrightarrow x \notin A$, $\overline{A} = U(Grundmenge) \setminus A$

Potenzmenge (= Menge aller Teilmengen einer gegebenen Menge)

$$\mathcal{P}(A) = 2^A : x \in \mathcal{P} \leftrightarrow x \subseteq A$$

Beispiel: $\mathcal{P}(\{1,2,3\}) = \{\{\},\{1\},\{2\},\{3\},\{1,2\},\{1,3\},\{2,3\},\{1,2,3\}\}$

Rechenregeln für Mengen

Idempotenz	$A \cap A = A, \ A \cup A = A$
Kommutativität	$A \cap B = B \cap A, \ A \cup B = B \cup A$
Assoziativität	$A \cap (B \cap C) = (A \cap B) \cap C$
	$A \cup (B \cup C) = (A \cup B) \cup C$
Absorption	$A \cap (A \cup B) = A, \ A \cup (A \cap B) = A$

Komplement	$A \cap A' = \emptyset, \ A \cup A' = I$
Konsistenz	$A \cap B = A \Leftrightarrow A \subseteq B \Leftrightarrow A \cup B = B$
Distributivität	$A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
	$A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$

de Morgan
$$\bigcup_{i=1}^k A_i = \bigcap_{i=1}^k A_i^c \qquad \bigcap i = 1^k A_i = \bigcup_{i=1}^k A_i^c$$

Beispiel: $(A \land B) \lor C \equiv (A \lor C) \land (B \lor C) \leftrightarrow (A \cup C) \cap (B \cup C)$

Beweis $x \in (A \cup B)^c \leftrightarrow x \notin (A \cup B)$

 $x \in (A \cup B)^c \leftrightarrow x \notin (A \cup B)$

 $\leftrightarrow \neg (x \in A \lor x \in B)$

 $\leftrightarrow x \notin A \land x \notin B$

 $\leftrightarrow x \in A^c \cap B^c$

für $\cap \cup$ analog einfach und und oder vertauschen

Ordnungsrelation

Reflexivität $\forall x \in X : x \leq x$

Transitivität $\forall x, y, z \in X : x \leq y \land y \leq z \Rightarrow x \leq z$

Identitivität $\forall x, y \in X : x \leq y \land y \leq x \Rightarrow x = y$

(X, <) heisst total oder linear geordnet, falls gilt:

 $\forall x, y \in X : x \le y \text{ oder } y \le x$

Äquivalenzrelation

 $\forall x \in X: x \sim x$ Reflexivität

 $\forall x, y \in X : x \sim y \Rightarrow y \sim x$ Symmetrie

Transitivität $\forall x, y, z \in X : x \sim y \land y \sim z \Rightarrow x \sim z$

Zornsches Lemma

Zu jeder total geordneten Teilmenge L von M gibt es ein $m \in M$ mit $l < m, \forall l \in L$, eine obere Schranke für L Dann gibt es zu jedem $x \in X$ ein maximales Element $m \in M$ $mit \ x \leq m$

Zwei Mengen X und Y heissen gleichmässig, falls es eine bijektive Abbildung $f: X \to Y$ gibt

Für jede Menge X ist P(X) mächtiger als X, das heisst es gibt keine surjektive Abbildung $f: X \to P(X)$

Eine Menge X heisst $abz\ddot{a}hlbar$, falls sie gleichmächtig zu \mathbb{N} ist, das heisst es existiert eine bijektive Abbildung $f: X \to Y$ **Bsp.** Q ist abzählbar, \mathbb{R} nicht abzählbar

4 Funktionen

Eine Funktion oder Abbildung $f: X \to Y$ ordnet jedem Punkt $x \in X$ genau ein Bild $y = f(x) \in Y$ zu.

X ist der **Definitionsbereich** dom(f), Y der **Zielbereich** range(f) und die Menge der tatsächlich angenommenen Werte aus B heisst **Bild- oder Wertebereich** im(f).

injektiv
$$\forall x_1, x_2 \in X : (f(x_1) = f(x_2) \Rightarrow x_1 = x_2)$$

Jedes Element Zielbereich **höchstens** einmal bzw. besitzt höchstens ein Urbild

surjektiv
$$\forall y \in Y \ \exists x \in X : f(x) = y$$

Jedes Element Zielbereich **mindestens** einmal bzw.falls jedes $y \in Y$ mindestens ein Urbild $x \in X$ mit f(x) = y

bijektiv

Jedes Element Zielbereich genau einmal, injektiv und surjektiv. Eine bijektive Abbildung besitzt auch eine inverse Abbildung

Bijektivität einer Funktion zeigen

Sei $f: I \to \mathbb{R}$ und $f(x) = \frac{g(x)}{h(x)}$

• Zeige die Surjektivität

Mit ZWS
$$\forall y \in [f(a), f(b)] \exists x \in [a, b] : f(x) = y$$

Via Stetigkeit Zeige, dass die Funktion auf dem Intervall I stetig ist (für g(x) und h(x) separat beweisen) (dann gilt der ZWS) und das gesamte Intervall abdeckt $\lim_{x\to\sup(I)} f(x) = \pm\infty$ und $\lim_{x\to\inf(I)} f(x) \mp\infty$. Dann ist die Funktion Surjektiv.

• Zeige die Injektivität

Mittels Monotonie Zeige, dass die Funktion f(x) monoton fallend/wachsend ist (starke Bedingung)

Ableitung betrachten Falls $f'(x) > 0 \forall x \in I$, dann ist die Funktion monoton wachsend (alternativ, fallend)

Urbildfunktion

Ist eine Funktion, welche den Bild- oder Wertebereich dem Definitionsbereich zuweist $f^{-1}:P(Y)\to P(X)$

Achtung: f muss nicht bijektiv sein!

fist bijektiv genau dann, wenn $f^{-1}(y)$ für jedes $y \in Y$ genau ein Element enthält.

Falls f bijektiv ist, so heisst die Urbildfunktion auch Umkehrfunktion oder Inverse.

stetig

Eine Funktion ist stetig, wenn sie keine Sprungstellen im Graphen aufweist. Sie ist in einem Punkt P stetig, wenn der $\lim_{x^+\to P}=\lim_{x^-\to P}$ mit anderen Worten, der rechtseitige Grenzwert ist gleich dem linksseitigen Grenzwert!

C^0 -Funktionen

 $f \in C^0$, falls f stetig.

C^1 -Funktionen

 $f \in C^1$, falls f' stetig ist.

C^2 -Funktionen

Sei $f \in C^2(\Omega)$. Dann gilt:

$$\frac{\delta}{x^i} \left(\frac{\delta f}{\delta x^j} \right) = \frac{\delta^2 f}{\delta x^i \delta x^j} = \frac{\delta}{\delta x^j} \left(\frac{\delta f}{\delta x^i} \right) \qquad 1 \le i, j \le n$$

Beispiel C^2 -Funktion

$$f(x,y) = \begin{cases} xy\frac{x^2 - y^2}{x^2 + y^2} &, (x,y) \neq (0,0) \\ 0 &, (x,y) = (0,0) \end{cases}$$
$$f_{xy} = f_{yx}$$

Somit ist die Funktion f(x, y) eine C^2 Funktion.

C^m -Funktionen

 $f \in C^m(\Omega)$, falls f m-mal partiell Differenzierbar ist und alle partiellen Ableitungen bis zur Ordnung m stetig sind.

4.1 Stetige Funktionen

Lipschitzstetig

Eine Funktion $f: \Omega \subset \mathbb{R}^d \to \mathbb{R}^n$ heisst Lipschitzstetig, wenn

$$||f(x) - f(y)|| \le L||x - y|| \quad \forall x, y \in \Omega$$
 L: Lipschitzkonstante

Eine Lipschitzstetige Funktion ist an jeder Stelle $x_0 \in \overline{\Omega}$ stetig ergänzbar

Stetigkeit einer Funktion

Eine Funktion $f:\Omega\subset\mathbb{R}^d\to\mathbb{R}^n$ heisst stetig auf Ω falls f in jedem Punkt $x_0\in\Omega$ ist.

Folgenkriterium

 $f: D \to \mathbb{R}$ ist stetig in $x_0 \in D$, wenn für jede Folge $(x_k)_{k \in \mathbb{N}}$ mit den Elementen $x_k \in D$ die gegen x_0 konvergiert auch $f(x_k)$ gegen x_0 konvergiert. Also

$$x_k \to x_0 \qquad \Longleftrightarrow \qquad f(x_k) \to f(x_0)$$

ε - δ -Kriterium

 $f:D\to\mathbb{R}$ ist stetig in $x_0\in D$, wenn zu jedem $\varepsilon>0$ ein $\delta>0$ existiert, so dass für alle $x\in D$ gilt:

$$|x - x_0| < \delta \qquad \Longrightarrow \qquad |f(x) - f(x_0)| < \varepsilon$$

Komposition von stetigen Funktionen

Seien $f: \mathbb{R}^d \to \mathbb{R}^n$ und $g: \mathbb{R}^n \to R^l$ stetig so ist auch $f \circ g: \mathbb{R}^d \to \mathbb{R}^l$, also deren Komposition, stetig.

5 Die reellen Zahlen

Aeblsche/kommutative Gruppe

Assoziativität $\forall x, y, z \in \mathbb{R} : x + (y + z) = (x + y) + z$ d.h. \mathbb{R} bildet eine *abelsche* Gruppe bezüglich der Addition Neutrales Element $\exists 0 \in \mathbb{R}, \forall x \in \mathbb{R} : x + 0 = x$ Die Multiplikation ist mit der Addition verträglich im Sinne

Inverses Element $\forall x \in \mathbb{R} \exists y \in \mathbb{R} : x + y = 0$ des Distributivgesetzes:

Kommutativität $\forall x, y \in \mathbb{R} : x + y = y + x$ $\forall x, y, z \in \mathbb{R} : x \cdot (y + x) = x \cdot y + x \cdot z$

ordnungsvollständig

 $\forall x,y,z \in \mathbb{R}: \qquad x \leq y \Rightarrow x+y \leq y+z \\ \forall x,y,z \in \mathbb{R}: \quad x \leq y,0 \leq z \Rightarrow x \cdot z \leq y \cdot z$

Zu je zwei nicht leeren Mengen $A, B \subset \mathbb{R}$ mit $a \leq b, \forall a \in A, b \in B$ gibt es eine Zahl $c \in \mathbb{R}$ mit:

 $\forall a \in A, b \in B : a \le c \le b$

Somit ist \mathbb{R} ordnungsvollständig, Q jedoch nicht!!

5.1 Supremum und Infimum

beschränkt, kompakt

 $A \subset \mathbb{R}$ heisst nach oben beschränkt, falls gilt: $A \subset \mathbb{R}$ heisst nach unten beschränkt, falls gilt:

 $\exists b \in \mathbb{R}, \forall a \in A : a < b \qquad \qquad \exists b \in \mathbb{R} \forall a \in A : A > b$

Jedes derartige b heisst *obere Schranke* Jedes derartige b heisst *untere Schranke* für A

Eine stetige Funktion ist kompakt, wenn f ein globales Maximum und Minimum annimmt.

 $M \text{ kompakt (z.B. } [a,b]) \Rightarrow \sup = \max = b \land \inf = \min = a \quad \sup(A+B) = \sup(A) + \sup(B)$

Supremum

Die kleinste obere Schranke von einer Menge A wird als Supremum von A bezeichnet. Diese Schranke muss in einem Intervall **nicht** angenommen werden.

Infimum

Die grösste $untere\ Schranke$ von einer menge A Wird als Infimum von A bezeichnet. Diese Schranke muss in einem Intervall nicht angenommen werden.

Jedes Intervall respektiv Menge besitzt wenn sie nach oben beschränkt ist ein Supremum, wenn sie nach unten beschränkt ist ein Infimum!

Maximum

Ist ein spezieller Fall des Supremum, ist die kleinste obere Schranke einer Menge, welche tatsächlich angenommen wird.

Minimum

Ist ein spezieller Fall des Infimum, ist die grösste untere Schranke einer Menge, welche tatsächlich angenommen wird.

monoton wachsend

A>Bdann gilt $f(A)\geq f(B)$ wenn f(A)>f(B) ist die Funktion **streng** monoton wachsend

monoton fallend

A>Bdann gilt $f(A) \leq f(B)$ wenn f(A) < f(B)ist die Funktion **streng** monoton fallend

5.2 Polynome und komplexe Zahlen

Fundamentalsatz der Algebra (gekürzt)

Ein komplexes Polynom vom Grad n hat genau n (evt. doppelte und / oder komplexe) Nullstellen

Komplexe Nullstellen

Komplexe Nullstellen treten immer doppelt auf, d.h. ist z eine Nullstelle ist auch die konjugiert komplexe Zahl \overline{z} eine Nullstelle.

6 Folgen und Reihen

6.1 Folgen

Konvergenz

 $(a_n)_{n\in N}$ konvergiert gegen a
, falls gilt: $\forall \epsilon>0 \exists n_0=n_0(\epsilon)\in N, \forall n\geq n_0: |a_n-a|<\epsilon$ In diesem Fall heisst a der *Grenzwert* von $(a_n)_{n\in N}$

Nicht jede Folge $(a_n)_{n\in N}$ konvergiert. Zum Beispiel: $a_n=(-1)^n, n\in N$ $a_n=n, n\in N$ Fibonaccizahlen

Divergenz

Falls eine Folge nicht konvergiert, divergiert die Folge

monotone Konvergenz

Sei $(a_n) \subset \mathbb{R}$ nach oben beschränkt und monoton wachsend, d.h. eine Zahl $b \in \mathbb{R}$ gilt: $a_1 \leq a_2 \ldots a_n \leq a_{n+1} \leq \ldots b \quad \forall n \in \mathbb{N}$ Dann ist a_n konvergent, und $\lim_{n \to \infty} a_n = \sup_{n \in \mathbb{N}} a_n$

Rechenregeln für Grenzwerte

Seien $(a_n)_{n\in\mathbb{N}}$, $(b_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ konvergent mit $\lim_{n\to\infty}a_n=n$, $\lim_{n\to\infty}b_n=n$. Dann konvergiert die Folge $(a_n+b_n)_{n\in\mathbb{N}}$, $(a_n\cdot b_n)_{n\in\mathbb{N}}$ und $(\frac{1}{b_n})_{n\in\mathbb{N}}$ $(b_n\neq 0)$

- $\lim_{n\to\infty} (a_n + b_n) = a + b = \lim_{n\to\infty} a_n + \lim_{n\to\infty} b_n$
- $\lim_{n\to\infty} (a_n \cdot b_n) = a \cdot b = \lim_{n\to\infty} a_n \cdot \lim_{n\to\infty} b_n$
- $\lim_{n\to\infty}(a_n/b_n)=a/b$, falls zusätzlich $b_n\neq 0\neq b$
- Falls $a_n \leq b_n$ für $n \in N$, so auch $a \leq b$

beschränkt

 $(a_n)_{n\in N}$ ist beschränkt, falls gilt: $\exists C \in \mathbb{R} \forall n \in N : ||a_n|| \leq \mathbb{C}$ Falls $(a_n)_{n\in N}$ konvergent ist, dann ist $(a_n)_{n\in N}$ beschränkt **Achtung:** Beschränktheit ist notwendig, aber nicht hinreichend für Konvergenz

Sei $(a_n)_{n\in\mathbb{N}}$ nach oben beschränkt und monoton wachsend, dann ist $(a_n)_{n\in\mathbb{N}}$ konvergent

Grenzwert/Häufungspunkt

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge. Die Zahl $a\in\mathbb{R}$ heisst $H\ddot{a}ufungspunkt$ von $(a_n)_{n\in\mathbb{N}}$, falls gilt:

 $\forall \epsilon > 0, \forall n_0 \in \mathbb{N} \exists n \ge n_0 : |a_n - a| < \epsilon$

Beispiel Häufungspunkt

Die Folge $a_n = (-1)^{n+1}$ besitzt die Häufungspunkte +1 und

Bolzano Weierstrass

Jede beschränkte Folge $(a_n)_{n\in\mathbb{N}}$ besitzt eine konvergente Teilfolge, also auch mindestens einen Häufungspunkt.

Limes superior

Der limsup bezeichnet den grössten Grenzwert. Wenn die Menge nicht beschränkt ist, also ins $+\infty$ geht, ist der $limsup = +\infty$

Limes inferior

Der liminf bezeichnet den kleinsten Grenzwert. Wenn die Menge nicht beschränkt ist, also ins $-\infty$ geht, ist der $limsup = -\infty$

Cauchy-Folgen

 $(a_n)_{n\in\mathbb{N}}$ heisst Cauchy-Folge, falls gilt:

$$\forall \epsilon > 0 \exists n_0 = n_0(\epsilon) \in \mathbb{N} \quad \forall n, l \ge n_0 : |a_n - a_l| < \epsilon$$

Für alle $(a_n)_{n\in\mathbb{N}}\subset\mathbb{R}$ gilt: $(a_n)_{n\in\mathbb{N}}$ ist konvergent $(a_n)_{n\in\mathbb{N}}$ ist eine Cauchy-Folge

Konvergente Folgen sind Cauchy-Folgen, sie sind somit in \mathbb{R} konvergent und beschränkt

harmonische Reihe

Bsp. $a_n=1+\frac12+\ldots+\frac1n=\sum_{k=1}^n=\frac1k\quad n\in\mathbb N$ konvergiert nicht und ist somit auch keine Cauchy-Folge, da:

$$a_{2n} - a_n = \frac{1}{n+1} + \ldots + \frac{1}{2n} \ge \frac{n}{2n} = \frac{1}{2} \quad \forall n \in \mathbb{N}$$

alternierende harmonische Reihe Bsp. $a_n=1-\frac{1}{2}+\frac{1}{3}\dots(-1)^{n+1}\frac{1}{n}=\sum_{k=1}^n=\frac{(-1)^{k+1}}{k},\quad n\in\mathbb{N}$ ist eine Cauchy Folge, da

$$|a_n - a_l| \le \frac{1}{l} \le \frac{1}{n_0} < \epsilon$$

Satz von L'Hôpital

$$\lim \frac{f(x)}{g(x)} = \lim \frac{f'(x)}{g'(x)} \quad \text{nur falls} \quad (\lim f(x) = \lim g(x) = 0 \lor \infty)$$

BSP Konvergenz einer Reihe

Gegeben sei eine Folge $(a_k)_{k\in\mathbb{N}}$ die gegen den Wert a konvergiert. Zeige nun, dass das arithm. Mittel der Summe von $s_n = \frac{1}{n} \sum_{k=1}^n a_k$ auch gegen akonvergiert
. Idee Zeige, dass $|a-s_n|$ konvergiert.

$$\forall \epsilon > 0 \exists N_0 \in \mathbb{N} : |a - s_n| < \epsilon \quad \forall n \ge N_0$$

da $a_n \to a$ existiert ein $n_0 \in \mathbb{N}$ so dass gilt: $|a_n - a| < \frac{\epsilon}{2}$ $\forall n \geq n_0$

$$|a - a_n| = \left| \frac{1}{n} \sum_{k=1}^n a_k - a \right| \le \frac{1}{n} \sum_{k=1}^n |a - a_k| = \frac{1}{n} \sum_{k=1}^{n_0} |a - a_k| + \frac{1}{n} \sum_{k=n_0+1}^n \underbrace{|a - a_k|}_{\le \frac{\epsilon}{2}}$$

Der zweite Term is nun $\leq \frac{n-n_0}{n} \cdot \frac{\epsilon}{2} \leq \frac{\epsilon}{2}$ Der erste Term wird nun folgendermassen abgeschätzt

$$\frac{1}{n} \sum_{k=1}^{n_0} |a - a_k| \le \frac{n_0}{n} \cdot \max\{|a_k - a| : 1 \le k \le n_0\} \le \frac{\epsilon}{2}$$

$$\text{falls } n \geq \max \left\{ n_0, \frac{n_0 \cdot \max\{|a_k - a|: \quad 1 \leq k \leq n_0\}}{\frac{\epsilon}{2}} \right\} := N_0 \quad \text{(das N_0 der Cauchyfolge)}$$

Also gilt:

$$|a - s_n| \le \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$
 $\forall \epsilon > 0$ (mit entspr. N_0)

6

6.2 Reihen

Grenzwerte

Grenzwert

Eine Funktion f hat an der Stelle x_0 den Grenzwert a falls gilt

$$\lim_{x \to x_0} f(x) = a$$

Tricks zur Bestimmung der Grenzwerte

$$u(x)v(x) = \frac{u(x)}{\frac{1}{v(x)}} \qquad \text{, falls } \lim u(x)v(x) = 0 \cdot \infty$$

$$u(x)v(x) = \frac{v(x)}{\frac{1}{u(x)}} \qquad \text{, falls } \lim u(x)v(x) = \infty \cdot 0$$

$$u(x)^{v(x)} = e^{v(x) \cdot \ln u(x)} \qquad \text{falls } \lim u(x)^{v(x)} = 0^0 \quad \infty^\infty \quad 1$$

$$\begin{array}{lll} u(x)v(x) = \frac{u(x)}{\frac{1}{v(x)}} &, \text{ falls } \lim u(x)v(x) = 0 \cdot \infty & u(x) + v(x) = \frac{[u(x) + v(x)][u(x) - v(x)]}{u(x) - v(x)} \\ u(x)v(x) = \frac{v(x)}{\frac{1}{u(x)}} &, \text{ falls } \lim u(x)v(x) = \infty \cdot 0 & u(x) - v(x) = \frac{\frac{1}{v(x)} - \frac{1}{u(x)}}{u(x)}, \text{ falls } \lim u(x) - v(x) = \infty - \infty \\ u(x)^{v(x)} = e^{v(x) \cdot \ln u(x)} &, \text{ falls } \lim u(x)^{v(x)} = 0^0, \infty^\infty, 1^\infty & u(x) + v(x) = \frac{[u(x) + v(x)][u(x) - v(x)]}{\frac{1}{v(x)} - \frac{1}{v(x)}}, \text{ falls } \lim u(x) - v(x) = \infty - \infty \\ u(x) & \text{erweitern } \min \frac{u(x)}{u(x)} & u(x) & \text{erweitern } \min \frac{u(x)}{u(x)} & u(x) & \text{erweitern } \min \frac{u(x)}{v(x)} & \frac{1}{v(x)} & \frac{1}{v($$

6.3Konvergenz

Partialsumme

Sei $(a_n)_{n\in\mathbb{N}}$ eine Folge in \mathbb{R} oder \mathbb{C} . $(S_n)_{n\in\mathbb{N}}$ ist die Folge der **Partialsummen** $(S_n)_{n\in\mathbb{N}}=a_1+a_2+\ldots+a_n=\sum_{k=1}^n a_k \quad n\in\mathbb{N}$

eine Folge ist konvergent

falls $\lim_{n\to\infty} A_n = \lim_{n\to\infty} \sum_{k=1}^n a_k =: \sum_{k=1}^\infty a_k$

absolute konvergenz

Die Reihe $\sum_{k=1}^{\infty} a_k$ konvergiert absolut, falls $\sum_{k=1}^{\infty} |a_k|$ kon-

Cauchy

Die Reihe $\sum_{k=1}^{\infty} a_k$ ist konvergent, wenn gilt $\left|\sum_{k=l}^{n} a_k\right| \to 0 (n \le l, l \to \infty)$

Quotientenkriterium

Sei $a_k \neq 0, k \in \mathbb{N}$

- Falls $\lim_{k\to\infty} \sup \frac{a_{k+1}}{a_k} < 1$ so ist $\sum_{k=1}^{\infty} a_k$ konvergent
- falls $\lim_{k\to\infty} \sup \frac{a_{k+1}}{a_k} > 1$ so ist $\sum_{k=1}^{\infty} a_k$ divergent

- falls $\lim_{k\to\infty} \sup \sqrt[k]{|a_k|} < 1$, so konvergiert die Reihe
- falls $\lim_{k\to\infty} \sup \sqrt[k]{|a_k|} > 1$, so divergiert die Reihe

ist stärker als Quotientenkriterium

Majorantenkriterium

Gibt es eine Reihe $M = \sum_{k=0}^{\infty} b_k$ und gilt $|a_i| \le |b_i|$

Dann wird R von M majorisiert \Rightarrow Wenn M konvergiert, dann konvergiert auch R

Die Kriterien sind Kriterien für die absolute konvergenz

wichtig: die Bedingung, dass $a_k \to 0 (k \to \infty)$ ist notwendig aber nicht hinnreichend, bsp. harmonische Reihe

Leibnizsches Konvergenzkriterium für alternierende Reihen (hinreichend)

Eine alternierende Reihe $\sum_{n=1}^{\infty} (-1)^{n+1} \cdot a_n$ konvergiert, wenn sie die folgenden Bedingungen erfüllt:

$$a_1 > a_2 > a_3 > \ldots > a_n > a_{n+1} > \ldots$$
 und $\lim_{n \to \infty} a_n = 0$

7

Beweisideen um die Konvergenz von Reihen/Folgen zu beweisen

• Cauchy (siehe BSP oben)

• Quotientenkriterium anwenden

Konvergenz und Beschränktheit durch Induktion beweisen

• Wurzelkriterium

• Das Majorantenkriterium anwenden

• Abschätzen anhand von Folgen/Reihen, deren Konvergenz man kennt.

Abschätzen von Reihen mit uneigentlichen Integralen

Sei f(x) stetig auf $[n_0, \infty)$ $(n_0 \in \mathbb{N})$ und monoton fallend $(f(x) \to 0(x \to 0), a_n = f(n))$.

• $\sum_{n_0}^{\infty} a_n$ divergiert falls

$$\int_{n_0}^{\infty} f(x)dx \qquad \text{divergiert (Obersumme)} \qquad \left(\sum a_n \ge \int f(x)dx\right)$$

• $\sum_{n=0}^{\infty} a_n$ konvergiert falls

$$\int_{n_0}^{\infty} f(x)dx \qquad \text{konvergiert (Untersumme)} \qquad \left(\sum a_n - a_{n_0} \le \int f(x)dx\right)$$

Konvergenz und Beschränktheit via Induktion beweisen

Die rekursive Folge $(a_n)_{n\in\mathbb{N}}$ ist definiert durch:

$$a_1 = 1, \qquad a_{n+1} := \sqrt{1 + a_n}, \quad n \ge 1$$

Bestimme den Grenzwert. (Als Hinweis sei gegeben, dass man beweisen muss, dass diese Folge wächst und durch c=2 beschränkt ist).

Beh 1 $a_n \leq 2 \quad \forall n \in \mathbb{N}$

Beweis durch Induktion $a_1 = 1 \le 2$

Schritt $n \to n+1$

 $da \ a_n \le 2 \qquad \Rightarrow \qquad a_{n+1} = \sqrt{1 + a_n} \le \sqrt{1 + 2} \le 2$

Beh 2 $(a_n)_{n\in\mathbb{N}}$ ist monoton wachsend, d.h. $a_{n+1} \geq a_n \quad \forall n \in \mathbb{N}$

Beweis durch Induktion $a_1 = 1 \le \sqrt{1+1} = a_2$

Schritt $n \to n+1$

da $a_n \le a_{n+1}$ \Rightarrow $a_{n+1} = \sqrt{1 + a_n} \le \sqrt{1 + a_{n+1}} = a_{n+2}$

dies gilt, da es ja schon für die vorhergehenden Elemente galt

Weil jede nach oben beschränkte, monoton wachsende Folge konvergent ist, konvergiert $a_n \to a \in \mathbb{R}$. Falls also a der Grenzwert der Folge ist, muss a festbleiben so lässt sich a relativ einfach bestimmen:

$$a = \sqrt{1+a}$$
 \Longrightarrow $a^2 = a+1$ (a wächst nicht, wenn)

$$a = \frac{1 + \sqrt{5}}{2}$$

6.3.1 Potenzreihen / Konvergenzradius

Potenzreihe

Eine Potenzreihe ist eine beliebige Folge $(a_n)_{n\in\mathbb{N}}$ um einen Entwicklungspunkt x_0 gegeben:

$$\sum_{n=0}^{\infty} a_n (x-x_0)^n$$
 Potenzreihe mit den Koeffizienten a_n um den Entwicklungspunkt x_0

Die wichtigste Frage ist nun für welche x diese Reihe konvergiert. Dazu genügt es den Spezialfall x=0 zu beachten:

$$\sum_{n=0}^{\infty} a_n x^n$$

Konvergenzradius einer Potenzreihe

Als Konvergenzradius einer Potenzreihe der Form $\sum a_k(z-a)^k$ ist die grösse Zahl r definiert für welche die Potenzreihe $\forall x$ mit $|x-x_0| < r$ konvergiert

$$R = \frac{1}{\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|} = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$
 (Quotientenkriterium)
$$= \frac{1}{\lim_{n \to \infty} \sqrt[n]{|a_n|}}$$
 (Wurzelkriterium)

Konvergenzradius

Mittels Potenzreihe

$$S = \sum_{k=1}^{\infty} q^k \qquad s \text{ ist eine Potenreihe, } a_k = 1$$

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \left| \frac{1}{1} \right| = 1$$

diese Reihe konvergiert nun für x < 1 = R

Konventionell (beachte, dass hier einfach das hier einfach das Quotientenkriterium für Reihen angewandt wird und der Endwert so abgeschätzt wird, dass die Reihe konvergiert.

$$S = \sum_{k=1}^{\infty} q^k$$

$$R = \lim_{n \to \infty} \left| \frac{q^n}{q^{n+1}} \right| = |q| < 1$$
 (Falls also $q < 1$ Konvergiert die Reihe)

Beachte, dass hier der Konvergenzradius von |q| berechnet wird. Falls also $a_n = (-1)^n b_n$ muss der negative Fall auch noch beachtet werden.

6.4 Konvergenz von Funktionenfolgen

Punktweise Konvergenz

Sei (f_n) eine Funktionenfolge, wobei $f_n \supseteq I \to W \subset \mathbb{R}$. (f_n) konvergiert Punktweise gegen die Grenzfunktion $f = \lim_{n \to \infty} f_n(x)$, wenn die (Zahlen)folge $f_n(x) \forall x \in I$ gegen f konvergiert.

Gleichmässige Konvergenz

Sei (f_n) konvergiert gleichmässig gegen f wenn

$$\sup_{x \in I} |f(x) - f_n(x)| \to 0 \qquad (n \to \infty)$$

Beispiel Konvergenz einer Funktionenfolge

$$f_n : [0, r] \to \mathbb{R} \quad f_n(x) = x^n$$

$$f(x) = \begin{cases} 0 & 0 \le x \le 1 \\ 1 & x = 1 \\ \infty & x > 1 \end{cases}$$

Dies Funktion ist Punktweise konvergent $\forall x \in [0,1]. \ \forall x \in (1,r]$ ist die Funktion divergent.

Beispiel gleichmässige Konvergenz

$$f_n : \mathbb{R} \to \mathbb{R} \qquad f_n(x) = \frac{\sin(x)}{n}$$

$$\Rightarrow f(x) = 0$$

$$\sup_{x \in \mathbb{R}} |f(x) - f_n(x)| = \sup_{x \in \mathbb{R}} |0 - \frac{\sin(x)}{n}|$$

$$= \sup_{x \in \mathbb{R}} |\frac{\sin(x)}{n}| = \frac{1}{n} \xrightarrow{n \to \infty} 0$$

6.4.1 Konvergenz von uneigentlichen Integralen

Betrachte Integrale wie Funktionenfolgen und wende die selben Regeln an um Konvergenz/Divergenz zu beweisen.

Beispiel: Konvergenz einer Reihe

Bestimme ob das Integral $\int_{n=1}^{\infty} \frac{n^2+1+n^22^{-n}}{n^3-2}$ konvergiert. Es gilt:

$$a_n = \frac{n^2 + 1 + n^2 2^{-n}}{n^3 - 2} \ge \frac{n^2 + 1}{n^3 - 2} \ge \frac{n^2}{n^3} = \frac{1}{n}$$

Weil die Reihe $\sum_{n=1}^{\infty} \frac{1}{n}$ divergiert folgt auch, dass das Integral $\int_{n=1}^{\infty} a_n$ divergiert (Majorantenkriterium).

7 Topologie

Der Abschluss einer Menge Ω

$$\overline{\Omega} = \{ x \in \mathbb{R}^d; \exists (x_k)_{k \in \mathbb{N}} \subset \Omega : x_k \to x(k \to \infty) \}$$

Es gilt $\Omega \subset \overline{\Omega}$.

Der offene Ball

Der offene Ball vom Radius r > 0 um x_0 ist die Menge:

$$B_r(x_0) = \{x \in \mathbb{R}^d; |x - x_0| < r\}$$

Abgeschlossene Mengen auf \mathbb{R}^d

- A_1, A_2 abgeschlossen $\Rightarrow A_1 \cup A_2$ abgeschlossen
- A_i abgeschlossen für $i \in I \Rightarrow \bigcap_{i \in I} A_i$ abgeschlossen

Offene Mengen auf \mathbb{R}^d

- \emptyset , \mathbb{R}^d sind offen.
- Ω_1 , $\Omega_2 \subset \mathbb{R}^s$ offen $\Rightarrow \Omega_1 \cap \Omega_2$ offen
- $\Omega_i \subset \mathbb{R}^d$ offen, $l \in I \Rightarrow \bigcup_{i \in I} \Omega_i$ offen

Das Innere einer Menge (offener Kern)

$$int(\Omega) = \bigcup_{U \subset \Omega, U \text{ offen}} U =: \Omega^{\mathrm{o}}$$

Abschluss einer Menge

$$clos(\Omega) = \bigcap_{A \supset \Omega, A \text{ abgeschlossen}} A = \overline{\Omega}$$

 $\overline{\Omega}$ ist abgeschlossen
. $\overline{\Omega}$ ist sogar die kleinste Abgeschlossene Menge, die
 Ω enthält.

Abgeschlossenheit

 $A \subset \mathbb{R}^d$ heisst abgeschlossen, falls $\mathbb{R}^d \setminus A$ offen ist.

Rand einer Menge

$$\delta\Omega = clos(\Omega) \setminus int(\Omega)$$

Der Rand ist abgeschlossen. Eine alternative Definition: $\delta\Omega = \{x_0 \in \mathbb{R}^d; \forall r > 0 : B_r(x_0) \cap \Omega \neq \emptyset \neq B_r(x_0) \setminus \Omega \}$

Differentialrechnung 8

Ableitung einer Funktion

Steigung der Tangente an die Funktion in einem Punkt x

$$f'(x) = \lim_{\Delta x \to 0} \frac{\Delta y}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(x + \Delta x) - f(x)}{(x + \Delta x) - x}$$

$$f(x) - f(x_0) \qquad \dots \qquad f(x_0 + h) - f(x_0) \qquad \dots$$

$$f'(x) = \lim_{x \to x_0} \frac{f(x) - f(x_0)}{x - x_0} = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h} \quad (\text{mit } h = x - x_0)$$

Rechenregeln der Differentialrechnung

Summenregel	(f+g)' = f' + g'	Kettenregel	$(g \circ f)(x) = g'(f) \cdot f'$
Produktregel	$(f \cdot g)' = f'g + fg'$	Umkehrfunktion	$(f^{-1})'(y) = \frac{1}{f'(f^{-1}(y))}$
Quotientenregel	$\left(\frac{f}{g}\right)' = \frac{f' \cdot g - f \cdot g'}{g^2}$	Logarithmus	$(\ln(f))' = \frac{f'}{f}$

Ableitung der Umkehrfunktion

Sei f streng monoton und differenzierbar in x_0 wobei $f(x_0) \neq 0$. Dann ist f' differenzierbar in $y_0 = f(x_0)$ mit

$$(f^{-1})'(y_0) = \frac{1}{f'(x_0)} = \frac{1}{f'(f^{-1}(y_0))}$$

1D Kurvendiskussion

1D Ital veliaiskass	1
Extremstelle	$f'(x_E) = 0 \text{ und } f''(x_E) \neq 0$
Minimalstelle	$f''(x_E) > 0$
Maximalstelle	$f''(x_E) < 0$
Wendestelle	$f'(x_W) \neq 0 \text{ und } f''(x_W) = 0 \text{ und } f^{(3)}(x_W) \neq 0$
Sattelstelle	$f'(x_W) = 0 \text{ und } f''(x_W) = 0 \text{ und } f^{(3)}(x_W) \neq 0$

8.1 Wichtige Sätze der Differentialrechnung

Satz von Rolle

 $f:[a,b]\to\mathbb{R}$ ist stetig, diff'bar und sei f(a)=f(b), dann gilt: $\exists \tau \in (a,b) \text{ mit } f'(\tau) = 0$

Mittelwertsatz

Mittelwertsatz Es sei
$$f:[a,b]\to\mathbb{R}$$
, stetig und diff'bar, dann gilt.
$$\exists \tau\in[a,b]\quad\text{mit}\quad \frac{f(b)-f(a)}{b-a}=f'(\tau)$$

Daraus folgt direkt: Falls $f' \ge 0 (f' > 0) \forall x \in]a, b[$, so ist f (streng) monoton wachsend.

Anschaulich Unter den obigen Voraussetzungen gibt es im Intervall [a, b] mindestens einen Kurvenpunkt, der die gleiche Steigung hat wie die direkte Verbindung zwischen a und b

Variante Seien $f, g : [a, b] \to \mathbb{R}$, stetig, diff'bar und $g'(x) \neq 0$, dann gilt $\forall x \in [a, b] \; \exists \tau \in (a, b) \; \text{mit} \; \frac{f(b) - f(a)}{g(b) - g(a)} = \frac{f'(\tau)}{g'(\tau)}$

Anwendung Mittelwertsatz

Zeige, dass $\forall x > 0$ gilt: $\sqrt{1+x} < 1 + \frac{x}{2}$

Betrachte $f(x) = \sqrt{1+x}$. Diese Funktion ist differenzierbar für x > -1 mit $f'(x) = \frac{1}{2\sqrt{1+x}}$. Also gilt mit nach dem Mittelwertsatz, dass für jedes x > 0 ein $u \in]0,1[$ existiert mit:

$$\frac{\sqrt{1+x}-1}{x} = \frac{f(x)-f(0)}{x-0} = f'(u) = \frac{1}{2\sqrt{1+u}} < \frac{1}{2} \quad \text{da } u > 0$$

Somit gilt $\sqrt{1+x} < 1+x/2$ (die Funktion besitzt die maximale Steigung $\frac{1}{2}$)

Zwischenwertsatz

Sei $f:[a,b]\to\mathbb{R}$ eine stetige Funktion, dann existiert zu jedem $t\in[f(a),f(b)]$ mindestens ein $s\in[a,b]$ für das gilt f(t)=s. Haben f(a) und f(b) verschiedene Vorzeichen, so existiert mindestens eine Nullstelle in f:[a,b]

8.2 Fixpunkt / Kontraktion

Kontraktion

Eine Kontraktion in \mathbb{R} ist eine Funktion $f: I \to I$, $(I \subset \mathbb{R}$ ein abgeschlossenes Intervall). $x, y \in I$

$$|f(x) - f(y)| < L \cdot |x - y|$$

mit $L \leq 1$ existiert. Das heisst f ist Lipschitzstetig mit Likpschitzkonstante $L \leq 1$.

Aus dem MWS folgt dann, falls $f: I \longrightarrow I$ stetig und $f'(x) < 1 \forall x \in I$ (offen) $\Longrightarrow f$ ist eine Kontraktion.

Beispiele zu Kontraktion

$$\sqrt{x}:[1,\infty[\longrightarrow[1,\infty[$$

ist eine Kontraktion

$$\sqrt{x}:[0,\infty[\longrightarrow [0,\infty[$$

ist keine Kontraktion, da für x=0, $y\in(0,1]$ gilt

$$\frac{|\sqrt{0}-\sqrt{y}|}{|0-y|} = \frac{1}{\sqrt{y}} \ge 1$$

Kontraktion zeigen

Sei
$$f(x) = \sqrt{1 + \sin(x) + x} [0, \infty[\to [0, \infty[$$
.

Zeige zunächst, dass $f(x) \ge 1 \forall x \in [0, \infty)$

Beh: f(x) ist kontraktiv auf I

Bew: Es gilt $f'(x) = \frac{1}{\sqrt{1+\sin(x)+x}}(1+\cos(x))$ und damit

$$|f'(x)| \le \frac{1}{\sqrt{1+\sin(x)+x}} \le \frac{1}{\sqrt{2}} = q < 1 \text{ für } x \ge 1$$

Mit dem Mittelwertsatz folgt daher:

$$|f(x) - f(y)| = |f'(\xi)(x - y)| \le q \cdot |x - y|$$

Damit folgt aus dem Banachschen Fixpunktsatz, dass es genau einen Fixpunkt in $[1, \infty)$ gibt.

Banach'scher Fixpunktsatz

Ist f eine Kontraktion auf $I \subset \mathbb{R}$, dann hat f genau einen Fixpunkt, d.h. $\exists k \in I \text{ mit } f(k) = k$

Banach'scher Fixpunktsatz / Kontraktion

Bemerkung: Der Begriff der Kontraktion, als auch der der Banach'sche Fixpunktsatz sind allgemein für vollständige metrische Räume definiert. Bezogen auf $\mathbb R$ heisst dies, dass I vollständig, d.h. abgeschlossen sein muss.

 $[a, \infty)$ ist in \mathbb{R} abgeschlossen $(a \in \mathbb{R})$

9 Differentialgleichungen

9.1 DGL 1. Ordnung (F(x, y, y') = 0)

Elementare DGL

$$(y' = f(x))$$

• Allg. Lösung: $y(x) = \int f(x)dx$

Separierbare DGL

$$(y' = g(x) \cdot h(x))$$

- Allg. Lösung: $\frac{dy}{dx} = g(x) \cdot h(x)$, durch Umformen folgt Lösung $\int \frac{1}{h(y)} dy = \int g(x) dx$
- Partikuläre Lösung: Bei $P_0=(x_0,y_0)$ Anfangspunkt ist PL: $\int\limits_{y_0}^y \frac{1}{h(y)}dy=\int\limits_{x_0}^x g(x)dx$

Variation der Konstanten

Geg:
$$y'(x) = a(x) \cdot y(x) + q(x)$$

Allgemeine Lösung: $y = y_H + y_I$

• Finde y_H mit Separationsansatz: $y'(x) = a(x) \cdot y(x)$

 $y_H = C \cdot f(x)$ siehe Ansatz für Separierbare DGL

• Finde y_I : Falls $C \equiv c(x)$ bekommnt man wegen der Produktregel einen zusätzlichen Term: Setze $y_H = c(x) \cdot f(x)$ in die DGL $(y'(x) = a(x) \cdot y(x) + q(x))$ ein.

$$c'(x) \cdot f(x) + \underbrace{c(x) \cdot f'(x)}_{=(y_H)'} = \underbrace{a(x)y(x)}_{=(y_H)'} + q(x)$$

$$c'(x) \cdot f(x) = q(x)$$

$$c(x) = \int \frac{q(x)}{f(x)} dx$$

$$y_I = c(x) \cdot f(x)$$

$$\Rightarrow y(x) = y_H + y_I = C \cdot f(x) + c(x) \cdot f(x)$$

da: $y'_H = Cf'(x) + \underbrace{C'f(x)}_{=0}$

Differentialgleichung mittel Substitution lösen (weiteres BSP auf Rückseite)

$$u' = \frac{1}{1+x}y + 1 + x$$

substituiere mit
$$y(x) = \frac{1}{u(x)}$$

$$y' = -\frac{1}{u^2} \cdot u' = -\frac{1}{u^2} \cdot \left(\frac{1}{1+x}y + 1 + x\right) = -2\frac{1}{u} - \sin(x) = -2y - \sin(x)$$

Differentialgleichung nach y(x) lösen und Gleichung wieder in $u(x) = \frac{1}{y(x)}$ einsetzen

Durch Substitution lösbare DGL

homogene DGL $\rightarrow y'(x) = f(\frac{y}{x})$

$$u = \frac{y}{x}$$

$$u' = \frac{f(u) - u}{x}$$

 \Rightarrow Separierbare DGL

Einfache $\rightarrow y'(x) = f(ax + by + c)$

$$u = ax + by + c$$

$$u' = a + b \cdot f(u)$$

⇒ Separierbare DGL

Bernoullische DGL $\rightarrow y' + g(x) \cdot y = h(x) \cdot y^n$

$$u = y^{1-n}$$

$$u' + (1 - n)g(x) \cdot u = (1 - n)h(x)$$

 \Rightarrow Lineare DGL

9.2 DGL höherer Ordnung (F(x, y, y', y'', y''', ...) = 0)

Durch Substitution lösbare $DGL \to R$ ückführung auf DGLen 1. Ordnung

$$\begin{aligned} (\mathbf{A})y'' &= f(y) \\ y' &= \frac{dy}{dx} = u \;,\; y'' = \frac{du}{dy} \cdot \frac{dy}{dx} = \frac{du}{dy} \cdot u \end{aligned} \qquad u \frac{du}{dy} = f(y) \\ (\mathbf{B})y'' &= f(y') \qquad y' = u \;,\; y'' = u' \qquad u' = f(u) \\ (\mathbf{C})y'' &= f(x;y') \qquad y' = u \;,\; y'' = u' \qquad u' = f(x;u) \\ (\mathbf{D})y'' &= f(y;y') \qquad y' = \frac{dy}{dx} = u \;,\; y'' = \frac{du}{dy} \cdot \frac{dy}{dx} = \frac{du}{dy} \cdot u \qquad u \frac{du}{dy} = f(y;u) \end{aligned}$$

Lineare DGL mit konstanten Koeffizienten $(y^{(n)} + a_{n-1}y^{(n-1)} + ... + a_1y' + a_0y = q(x))$

- Allg. Lösung: $y(x) = y_h(x) + y_p(x)$
- Homogene DGL lösen: q(x) = 0
 - 1. Bestimme $chp(\lambda) := \lambda^n + a_{n-1}\lambda^{n-1} + \ldots + a_1\lambda + a_0$ 1
 - 2. Bestimme $chp(\lambda) = 0 \Rightarrow$ Eigenwerte (\equiv Nullstellen): $\lambda_1, \ldots, \lambda_n$
 - 3. drei mögliche Fälle:
 - (a) λ_i ist einfache (reelle) Nullstelle: $\Rightarrow y_i(x) = C_i \cdot e^{\lambda_i x}$
 - (b) λ_i ist k-fache (reelle) Nullstelle: $\Rightarrow y_{i+j}(x) = C_{i+j} \cdot x^j \cdot e^{\lambda_i x}$ für $j = 0, \dots, k-1$ (Ergibt k Gleichungen)
 - (c) λ_i ist konjugiert komplexe Nullstelle: $(\alpha \pm \beta i)$ $\Rightarrow y_i = C_1 e^{\alpha x} \sin(\beta x) + C_2 e^{\alpha x} \cos(\beta x)$
 - (d) Tipp: Behandle komplexe Nullstellen ohne Realteile vereinfacht wie eine reelle Nullstelle (siehe Punkt 3b und Beispiel. komplexe NST ohne Realteil).
 - 4. Füge alle Gleichungen y_i zu einer Gesamtlösung $y_h(x) = y_1(x) + y_2(x) + \ldots + y_n(x)$ zusammen
 - 5. Bei gegebenen Anfangsbedingungen bestimme die Konstanten C_1, \ldots, C_n
- Partikuläre Lösung finden: $q(x) \neq 0$
 - 1. Bestimme allgemeine Lösung der zugehörigen homogenen DGL (wie oben) $\Rightarrow y_h(x)$.
 - 2. Mache einen geeigneten Ansatz $y_p(x)$ für die partikuläre Lösung und setze ihn in die DGL ein.
 - 3. Bestimme dadurch die Konstanten im Ansatz $\Rightarrow y_p(x)$.
 - 4. Allgemeine Lösung ist $y(x) = y_h(x) + y_p(x)$.

g(x)	Spektralbedingung	Ansatz für $y_p(x)$
x^r	$0 \notin Eigenwerte$	$A_0 + A_1 x + \ldots + A_r x^r$
	$0 \in Eigenwerte, m$ -fach	$A_0x^m + A_1x^{m+1} + \ldots + A_rx^{m+r}$
Polynom $b_0 + b_1 x + \dots + b_r x^r$, $b_i \in \mathbb{R}$	$0 \notin Eigenwerte$	$A_0 + A_1 x + \ldots + A_r x^r$
$\frac{(a_0 + a_1 x + \dots + a_m x^m) \cdot e^{\mu x}}{a_m x^m) \cdot e^{\mu x}}$	$\mu \notin Eigenwerte$	$(A_0 + A_1 x + \ldots + A_r x^r) \cdot e^{\mu x}$
	$\mu \in Eigenwerte, m$ -fach	$(A_0 + A_1 x + \ldots + A_r x^r) \cdot x^m \cdot e^{\mu x}$
$e^{\lambda_0 x}, \lambda_0 \in \mathbb{C}$	$\lambda_0 \notin Eigenwerte$	$Ae^{\lambda_0 x}$
	$\lambda_0 \in Eigenwerte, m$ -fach	$Ax^m e^{\lambda_0 x}$
$\cos(\omega x), \sin(\omega x)$	$\pm i\omega \notin Eigenwerte$	$A\cos\left(\omega x\right) + B\sin\left(\omega x\right)$
	$\pm i\omega \in Eigenwerte$, einfach	$x \cdot (A\cos(\omega x) + B\sin(\omega x))$
$\cosh(\omega x), \sinh(\omega x)$	$\pm \omega \notin Eigenwerte$	$A\cosh(\omega x) + B\sinh(\omega x)$
	$\pm \omega \in Eigenwerte$	$x \cdot (A\cosh(\omega x) + B\sinh(\omega x))$
x^2e^{-x}	$-1 \notin Eigenwerte$	$(A_0 + A_1 x + A_2 x^2)e^{-x}$
xe^{-x}	$-1 \notin Eigenwerte$	$(A_0 + A_1 x)e^{-x}$
c := const		wähle $a_n y_p^{(n)} = g(x)$ für kleinstes n mit $a_n \neq 0$ und löse nach y_p auf

Beispiel

$$y''(x) + 3y'(x) + 2y(x) = \cos(x)$$

1. Homogene Lösung bestimmen:

$$y_h = C_1 e^{-x} + C_2 e^{-2x}$$

2. Inhomogene Lösung, Ansatz:

$$y_p = A\cos(x) + B\sin(x)$$

$$y'_p = -A\sin(x) + B\cos(x)$$

$$y''_p = -A\cos(x) - B\sin(x)$$

3. Ansatz einsetzen in y'' + 3y' + 2y: Koeffizienten so anordnen, dass man sie vergleichen kann (nicht zu fest kürzen)

$$\underbrace{(A+3B)}_{=1}\cos(x) + \underbrace{(B-3A)}_{=0}\sin(x) = \cos(x)$$
GLS aufstellen:
$$\begin{cases} A+3B &= 1\\ B-3A &= 0 \end{cases}$$

$$\implies A = \frac{1}{10} \qquad B = \frac{3}{10}$$

4. Lösung:

$$y(x) = C_1 e^{-x} + C_2 e^{-2x} + \frac{1}{10} \cos(x) + \frac{3}{10} \sin(x)$$

Beispiel mit g(x) = const

$$y''(x) + 2y'(x) - 3y(x) = 6$$

1. Homogene Lösung bestimmen:

$$y_h = C_1 e^{-3x} + C_2 e^x$$

2. Inhomogene Lösung, Ansatz:

$$-3y_p = 6$$

$$\implies y_p = -2$$

3. Lösung:

$$y(x) = C_1 e^{-3x} + C_2 e^x - 2$$

Beispiel mit komplizierterem q(t)

$$\ddot{y} - 3\dot{y} - 4y = \underbrace{t + t \cdot e^{-2t}}_{=q(t)}$$

1. Homogene Lösung

$$y_H(t) = C_1 e^{-t} + C_2 e^{4t}$$

2. Inhomogene Lösung Erstelle 2 Separate Ansätze für:

$$q(x) = \begin{cases} y_{P_1}(t) = \ddot{y} - 3\dot{y} - 4y = t \\ y_{P_2}(t) = \ddot{y} - 3\dot{y} - 4y = te^{-2t} \end{cases}$$

und löse für jeden Ansatz ein GLS

(a) $q_1(x) = t$, Ansatz: $y_{P_1}(t) = A_0 + A_1 t$

$$y_{P_1}(t) = -\frac{1}{4}t + \frac{3}{16}$$

(b) $q_2(x) = te^{-2t}$, Ansatz: $y_{P_2}(t) = (A_0 + A_1 t)e^{2t}$

$$y_{P_2}(t) = \left(\frac{7}{36} + \frac{1}{6}t\right)e^{-2t}$$

Füge für die Partikuläre Lösung alles Zusammen

$$y_P(t) = y_{P_1}(t) + y_{P_2}(t) = \left(\frac{7}{36} + \frac{1}{6}t\right)e^{-2t} - \frac{1}{4}t + \frac{3}{16}t$$

3. Allgemeine Lösung $y(t) = y_H(t) + y_P(t)$:

$$y(t) = C_1 e^{-t} + C_2 e^{4t} + \left(\frac{7}{36} + \frac{1}{6}t\right) e^{-2t} - \frac{1}{4}t + \frac{3}{16}$$

Beispiel: komplexe NST ohne Realteil

$$y^{(4)} + 2y^{(2)} + y = 0$$

$$\Rightarrow chp(\lambda) = 0 \Rightarrow \lambda_{1,2} = i, \lambda_{3,4} = -i$$

$$y(x) = (C_1e^{ix} + C_2xe^{ix}) + (C_3e^{-ix} + C_4xe^{-ix})$$

Diffgleichung mittel Substitution lösen

$$y' = \frac{3y^2 - x^2}{2xy} \implies \text{substituiere mit } u = \frac{y}{x}$$

$$y' = \left(x \cdot \frac{y}{x}\right)' = (x \cdot u)' = \frac{3y^2}{2xy} - \frac{x^2}{2xy} = 3u - \frac{1}{2u} \implies u + x \cdot u' = \frac{3}{2}u - \frac{1}{2} \cdot \frac{1}{u}$$

$$u' = \frac{1}{2}\left(u - \frac{1}{u}\right) \cdot \frac{1}{x}$$

Beispiel Separierbare DGL

Geg: $(\log y)(1 + \sqrt{x})y' - (1 - \sqrt{x})y = 0$

$$\frac{1-\sqrt{x}}{1+\sqrt{x}} = \frac{y'\log y}{y} \quad \to \quad \int_0^x \frac{1-\sqrt{t}}{1+\sqrt{t}} dt = \int_0^x \frac{y(t)'\log y(t)}{y(t)} dt$$

Beide Seiten separat Integrieren. und nach y(x) auflösen (durch die Integration wird das y(t) zu y(x)).

Integralrechnung 10

Riemannsche Summe

$$\lim_{N \to \infty} \sum_{k=0}^{N-1} f(x_k) \cdot \Delta x \qquad \text{wobei } \Delta x := \frac{b-a}{N} \quad \text{und} \quad x_k := a + k \frac{b-a}{N}$$

Fläche zwischen Kurve und x-Achse im Intervall [a, b]

riemannsches Integral

$$\int_B f \ d\mu := \lim_{\partial(Z) \to 0} \sum_{k=1}^N \left[f(x_k) \cdot \mu(B_k) \right]$$

Beispiel: Berechnung eines Integrals mittels riemannscher Summe

$$\int_{a}^{b} e^{\lambda x} dx = \lim_{\partial(Z) \to 0} \sum_{k=0}^{N-1} e^{\lambda(a+k\frac{b-a}{N})} \cdot \left(\frac{b-a}{N}\right) = \lim_{\partial(Z) \to 0} \frac{b-a}{N} e^{\lambda a} \sum_{k=0}^{N-1} \left(e^{\lambda \frac{b-a}{N}}\right)^{k} = \lim_{\partial(Z) \to 0} \frac{b-a}{N} e^{\lambda a} \frac{1-e^{\lambda(b-a)}}{1-e^{\lambda \frac{b-a}{N}}}$$
Sei $\partial(Z) = \frac{b-a}{N}$

$$\int_{a}^{b} e^{\lambda x} dx = \lim_{\partial(Z) \to 0} \partial e^{\lambda a} \frac{1-e^{\lambda(b-a)}}{1-e^{\lambda \partial}} = \frac{e^{\lambda(a+a)} - e^{\lambda(b-a)}}{1-e^{\lambda(a+b)}} = \frac{e^{\lambda a} - e^{\lambda b}}{-\lambda e^{\lambda \partial}} = \frac{e^{\lambda a} - e^{\lambda b}}{-\lambda} = \frac{1}{\lambda} \left(e^{\lambda b} - e^{\lambda a}\right)$$

Hauptsatz der Infinitesimalrechnung

Sei $f:[a,b]\to\mathbb{R}$ eine stetige Fkt. und $F:[a,b]\to\mathbb{R}$ eine beliebige Stammfunktion von f, dann gilt

$$\int_{[a,b]} f(t)dt = F(b) - F(a)$$

Leibniz-Regel

$$\frac{d}{dt} \int_{B} f(\vec{x}, t) d\mu(\vec{x}) = \int_{B} f_{t}(\vec{x}, t) d\mu(\vec{x})$$

Rechenregeln für Integrale

• $\int (f+g) = \int f + \int g$

• $\int \lambda f = \lambda \int f$

• $\int_{A \cap B} g = \int_A g + \int_B g$ (Wenn A und B disjunkt)

• $|\int f| \le \int |f|$

 $\bullet \int_{b}^{a} f = -\int_{a}^{b} f$ $\bullet \int_{a}^{a} f = 0$

Substitutionsregel

$$\int_{x_0}^{x_1} f'(g(x))g'(x)dx = (f \circ g)|_{x=x_0}^{x_1} = f(g(x_1)) - f(g(x_0)) = \int_{g(x_0)}^{g(x_1)} f'(z)dz$$

Funktionen als Integrationsgrenze

$$\frac{d}{dx} \int_{a}^{g(x)} f(t)dt = f(g(x)) \cdot g'(x) \qquad \frac{d}{dx} \int_{g(x)}^{b} f(t)dt = -f(g(x)) \cdot g'(x)$$

Mittelwertsatz für die Integralrechnung

Ist $f: B \to \mathbb{R}$ eine stetige Funktion auf B so gibt es einen Punkt $\xi \in B$ mit

$$\int_{B} f \ d\mu = f(\xi) \cdot \mu(B)$$

10.1 Integrationstechniken

Partielle Integration

$$\int u(x) \cdot v'(x) \ dx = u(x) \cdot v(x) - \int u'(x) \cdot v(x) \ dx$$

Beispiel: Substitution nach partieller Integration

$$\underbrace{\int \cos(x)\sin(x)dx}_{=X} = -\cos(x)^2 - \underbrace{\int \cos(x)\sin(x)dx}_{=X} \Rightarrow X = -\cos(x)^2 - X \Rightarrow \int \cos(x)\sin(x)dx = -\cos(x)^2 + \frac{1}{2}\cos(x)^2$$

Substitution

Idee Funktion und ihre Ableitung im Integral vorhanden

1 Ersetzen beider durch Substitutionsgleichung:

$$u = f(x),$$
 $\frac{du}{dx} = f'(x),$ $dx = \frac{du}{u'},$ $(x = f^{-1}(u))$

2 Integrieren und zurück ersetzen

Beispiel Substitution

$$\int_0^{\pi^2} \sin(\sqrt{t}) dt \quad \text{Substitution:} \quad \left\{ \begin{array}{ccc} u & = \sqrt{t} & | & t & = u^2 \text{ (Bilde Inverse)} \\ \frac{du}{dt} & = \frac{1}{2\sqrt{t}} & | & \frac{dt}{du} & = 2u \\ dt & = 2\sqrt{t} du & | & dt & = 2u du \end{array} \right.$$

Substitution einsetzen. Hier wird die "rechte" Substitution verwendet, da man nichts streichen kann.

$$\int_0^{\pi = \sqrt{\pi^2}} \sin(u) \cdot 2u du = \left[-\cos(u) \cdot 2u + 2 \int \cos(u) du \right]_0^{\pi} = \left[2\sin(u) - 2u \cdot \cos(u) \right]_0^{\pi}$$

Beispiel Substitution mit Jacobi Determinante

Geg:
$$f(x,y) = x^{\frac{3}{2}}y$$
 auf $D = \left\{ (x,y) \in \mathbb{R}^2; 1 \le x \le 3; \frac{1}{x} \le y \le \frac{2}{x} \right\}$

$$\int_{1}^{3} \int_{\frac{1}{2}}^{\frac{2}{x}} x^{\frac{3}{2}} y dy dx$$

Substitution mit: x = u $y = \frac{v}{u}$

Abbildung:
$$\Phi = \begin{pmatrix} u \\ v \end{pmatrix} \mapsto \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} u \\ \frac{v}{u} \end{pmatrix}$$

$$|det(d\Phi)| = \left| \begin{pmatrix} 1 & 0 \\ -\frac{v}{u^2} & \frac{1}{u} \end{pmatrix} \right| = \frac{1}{u}$$

neuer Bereich: $D=\{(u,v)\in\mathbb{R}^2; 1\leq u\leq 3, 1\leq v\leq 2\}$

$$\implies \int_{1}^{3} \int_{\frac{1}{2}}^{\frac{2}{x}} x^{\frac{3}{2}} y dy dx = \int_{1}^{3} \int_{1}^{2} u^{\frac{3}{2}} \frac{v}{u} \frac{1}{u} dv du = \int_{1}^{2} v dv \int_{1}^{3} u^{-\frac{1}{2}} du$$

Beispiel Vertauschung von Parameter und Integral

$$G(u) = \int_{-\frac{1}{2}}^{\frac{1}{2}} \cos ux \cdot \frac{x+u}{x^2+x+1} dx$$
 gesucht: $G'(0)$, da $f_u(x,u)$ stetig, kann man Ableitung und Integral vertauschen

17

$$G'(u) = \frac{d}{du} \int_{-\frac{1}{2}}^{\frac{1}{2}} \cos ux \cdot \frac{x+u}{x^2+x+1} dx = \int_{-\frac{1}{2}}^{\frac{1}{2}} \frac{\partial}{\partial u} \cos ux \cdot \frac{x+u}{x^2+x+1} dx = \dots_{\text{nach } u \text{ ableiten}} = \int_{-\frac{1}{2}}^{\frac{1}{2}} \cdot \frac{1}{x^2+x+1} dx$$

Spezielle Integraltypen

$$\int f(x) \cdot f'(x) dx = \frac{1}{2} [f(x)]^2 + C$$

$$\int [f(x)]^n \cdot f'(x) dx = \frac{1}{n+1} [f(x)]^{n+1} + C$$

$$\int \frac{f'(x)}{f(x)} dx = \log(|f(x)|) + C$$

Alle diese speziellen Integraltypen können mit entsprechender Substitution hergeleitet werden.

Anwendung Kettenregel

Sei $g:]a,b[\to\Omega\subset\mathbb{R}^n$ an der Stelle $t_0\in]a,b[$ mit $g(t_0)=x_0$ diffbar, $f:\mathbb{R}^n\supset\Omega\to\mathbb{R}$ an der Stelle x_0 diffbar. Dann ist die Funktion $f\circ g:]a,b[\to\mathbb{R}$ an der Stelle $x_0\in\Omega$ diffbar:

$$d(f \circ g)(x_0) = f'(g(x_0))dg(x_0)$$

Anwendung:

$$u(t) = \int_0^t h(s,t)ds \quad t > 0 \quad \Rightarrow \quad \frac{du}{dt}(t) = h(t,t) + \int_0^t \frac{\delta h}{\delta t}(s,t)ds$$

10.2 Konvergenz

Konvergenz/Divergenz eines Integrals zeigen

• Berechne die Stammfunktion, setze ein und berechne den lim für alle Kritischen Punkte.

$$\int_{-2}^{2} \frac{1}{x^2 - 2x + 1} dx \implies \int \frac{1}{x^2 - 2x + 1} dx = \int \frac{1}{(x - 1)^2} = -\frac{1}{x - 1}$$
 Da $t = 1$ ein Nullpunkt: $\lim_{t \to 1^-} \int_{-2}^{t} \frac{1}{(x - 1)^2} dx = \lim_{t \to 1^-} -\frac{1}{t - 1} - \frac{1}{3} = +\infty$ Funktion divergiert

• Schätze die Funktion ab:

11 Differential rechnung in \mathbb{R}^n

11.1 Partielle Ableitungen und Differential

Eine Funktion f(x) heisst differenzierbar, falls der folgende Grenzwert existiert:

$$f'(x_0) := \lim_{x \to x_0, x \neq x_0} \frac{f(x) - f(x_0)}{x - x_0} = \frac{df}{dx}(x_0) \qquad \Rightarrow \qquad df(x_0) := A \text{ heisst das Differential von } f \text{ an der Stelle } x_0 = f(x_0) =$$

Partielle Differenzierbarkeit

Die Funktion $f:\Omega\to\mathbb{R}$ heisst an der Stelle x_0 partiell nach x^i (oder in Richtung e_i diffbar, falls:

$$f_{x^i} = \frac{\delta f}{\delta x^i} = \lim_{h \to 0} \frac{f(x_0 + he_i) - f(x_0)}{h}$$
 existient

$$f(x,y) = |xy| \qquad f_x = \lim_{h \to 0} \frac{|(x_0 + h)y| - |x_0y|}{h} \quad \text{für } x_0 = 0 \text{ ist diese Funktion nicht differenzierbar da}$$

$$f_x(0,y) = \lim_{h \to 0} \frac{|(0+h)y| - |0y|}{h} = \lim_{h \to 0} \frac{|hy|}{h} = \pm y \quad \text{nicht existiert}$$

18

Differenzierbarkeit auf einer Ebene D

Vorgehen: Zz: f diffbar auf $D \Leftrightarrow df$ existiert.

1. Partiell ableiten, falls part. Ableitungen existieren

f ist diffbar in (0,0) falls gilt:

2. Sind part. Ableitungen stetig? Wenn ja $\Rightarrow df$ existiert

 $\lim_{(x,y)\to 0} \frac{f(x,y)-f(0,0)}{|(x,y)|} = \lim_{(x,y)\to 0} \frac{f(x,y)-f(0,0)}{\sqrt{x^2+y^2}} \text{ existiert}$

Vektorfeld

Ein Vektorfeld auf Ω ist eine Abbildung: $v:\Omega\to\mathbb{R}^n$

$$v(\vec{x})$$
: $\mathbb{R}^n \longrightarrow \mathbb{R}^n$

$$\vec{x} \mapsto \equiv v(\vec{x})$$

Gradient ∇

Vektor aus den partiellen Ableitungen 1. Ordnung von f:

$$\operatorname{grad} f = f_x \vec{e_x} + f_y \vec{e_y} + f_z \vec{e_z} = \begin{pmatrix} f_x \\ f_y \\ f_z \end{pmatrix} = \vec{\nabla} f$$

steht immer senkrecht bzgl. der Niveaulinie

• $\operatorname{grad} f(P_0)$ zeigt in die Richtung der max. Zuwachsrate von f an der Stelle P_0 . $|\operatorname{grad} f(P_0)|$ ist der Wert der Zuwachsrate

Richtungsableitung

Mass für die Veränderung des Fkt.wertes von P aus in Richtung \vec{v} . Projektion des Gradienten in P in Richtung \vec{v} :

$$D_{\vec{v}}f = \frac{1}{|\vec{v}|} \langle \nabla f, \vec{v} \rangle$$

Tangentialebene

Analogon zur Tangente im mehrdim. Fall. Tangentialebene im Punkt $P_0 = (x_0, y_0, z_0)$:

$$\left\langle \nabla f(P_0), \begin{pmatrix} x \\ y \\ z \end{pmatrix} - P_0 \right\rangle = 0 \quad \text{im 2 Dimensionalen Fall: } z = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0) \cdot (x - x_0) + \frac{\partial f}{\partial y}(x_0, y_0) \cdot (y - y_0)$$

Der 2-dimensionale Fall ist insbesondere, dann interessant, wenn man das Taylorpolynom schon berechnet hat, da \equiv Taylorpolynom 1. Grades

Divergenz

$$\vec{v} = \begin{pmatrix} P \\ Q \\ R \end{pmatrix} \rightarrow div(\vec{v}) = P_x + Q_y + R_z$$

- $div\vec{v} > 0$ in dV gibt es eine Quelle
- $div\vec{v} < 0$ in dV gibt es eine Senke
- $div\vec{v} = 0$ in dV das Feld ist Quellenfrei

Rotation

$$\mathbb{R}^{2} \quad \vec{v} = \begin{pmatrix} P \\ Q \end{pmatrix} \quad \to \quad rot(\vec{v}) = (Q_{x} - P_{y})$$

$$\mathbb{R}^{3} \quad \vec{v} = \begin{pmatrix} P \\ Q \\ R \end{pmatrix} \quad \to \quad rot(\vec{v}) = \nabla \times v = \begin{pmatrix} R_{y} - Q_{z} \\ P_{z} - R_{x} \\ Q_{x} - P_{y} \end{pmatrix}$$

Für Divergenz, Rotation und Gradient gilt

$$\begin{split} rot(\nabla \cdot f) &= 0 \\ div(rot(\vec{K}) &= 0 \\ div(f \cdot \vec{K}) &= \nabla f \cdot \vec{K} + f \cdot div(\vec{K}) \\ div(\vec{K} \times \vec{L}) &= \vec{L} \cdot rot(\vec{K}) - K \cdot rot(\vec{L}) \\ div(f \cdot rot(\vec{K})) &= \nabla f \cdot rot(\vec{K}) \end{split}$$

11.2 Differentiationsregeln

Sei $\Omega \subset \mathbb{R}^n$ offen.

Differentiations regeln in \mathbb{R}^n

Sein $\Omega \subset \mathbb{R}^n$ offen und seien $f, g : \Omega \to \mathbb{R}$.

- $d(f+g)(x_0) = df(x_0) + dg(x_0)$
- $d(fg)(x_0) = g(x_0) \cdot df(x_0) + f(x_0) \cdot dg(x_0)$
- $d(\frac{d}{g})(x_0) = \frac{g(x_0)df(x_0) f(x_0)dg(x_0)}{g^2(x_0)}$

Kettenregel

Seien $f: \mathbb{R}^n \ni \Omega \to \mathbb{R}^l$ an der Stelle $x_0 \in \Omega$ diffbar und $g: \mathbb{R}^l \to \mathbb{R}^m$ diffbar an der Stelle $y_0 = f(x_0)$ Dann ist $g \circ f: \Omega \to \mathbb{R}^m$ an der Stelle x_0 diffbar mit:

$$d(g \circ f)(x_0) = \underbrace{dg(f(x_0))}_{\text{lin. Abb. } \mathbb{R}^l \to \mathbb{R}^m \text{ lin. Abb. } R^n \to \mathbb{R}^l}$$

Bemerkung Falls $f: \mathbb{R}^n \to \mathbb{R}^l, g: \mathbb{R}^l \to \mathbb{R}^m$ linear mit f(x) = Ax $x \in \mathbb{R}^n$ $g(y) = By, y \in \mathbb{R}^l$ wo $A \ l \times n$ -Matrix, $B \ m \times l$ -Matrix, dann gilt: $(g \circ f)(x) = BAx, x \in \mathbb{R}^n$

BSP Kettenregel

Betrachte $f: \mathbb{R}^3 \to \mathbb{R}^2$, $g: \mathbb{R}^2 \to \mathbb{R}^2$ mit:

$$g(x,y) = \begin{pmatrix} x^2 - y^2 \\ 2xy \end{pmatrix} \qquad f(x,y,z) = \begin{pmatrix} x^2 + y^2 + z^2 \\ xyz \end{pmatrix}$$
$$(g \circ f)(x,y,z) = \begin{pmatrix} (x^2 + y^2 + z^2)^2 - (xyz)^2 \\ 2(x^2 + y^2 + z^2)xyz \end{pmatrix}$$

Es gilt

$$dg(x,y) = \begin{pmatrix} 2x & -2y \\ 2y & 2x \end{pmatrix}, \qquad df(x,y,z) = \begin{pmatrix} 2x & 2y & 2z \\ yz & xz & xy \end{pmatrix}$$
$$dg(f(x,y,z)) \cdot df(x,y,z) = \begin{pmatrix} 2(x^2 + y^2 + z^2) \cdot 2x - 2xyz \cdot yz \dots \\ \vdots & & & \\ \vdots & & & \\ \end{pmatrix}$$

Hesse-Matrix

fasst die partiellen Ableitungen 2. Ordnung in einer Matrix zusammen

$$H(f) = \nabla^2 f = \left(\frac{d^2 f}{dx_i dx_j}\right) = \begin{pmatrix} f_{xx} & f_{xy} & f_{xz} \\ f_{yx} & f_{yy} & f_{yz} \\ f_{zx} & f_{zy} & f_{zz} \end{pmatrix}$$
 Beispiel für 3-dim Fall

Diese Matrix ist positiv (bzw negativ) definit. Da sie symmetrisch ist.

$$H_f\langle \xi, \xi \rangle = \sum_{i,j} \frac{\delta^2 f}{\delta x^i \delta x^j} (x_0) \xi^i \xi^j > 0$$

(positiv definit: $x^H Ax > 0 \forall x, x \neq 0$)

11.3 Kritische Punkte

Kritischer Punkt

 x_0 is ein kritischer Punkt von f, falls

$$df(x_0) = 0$$

Extremalstellen einer mehrdimensionalen Funktion

Werden analog zum eindimensionalen Fall über die kritischen Punkte der 'ersten Ableitung', dem Gradienten, bestimmt. Diese Punkte werden dann mit der 'zweiten Ableitung', der Hesse-Matrix, auf ihren Typ überprüft:

- 1. Kritische Punkte von f: Alle P_i für die gilt: $\nabla f(P_i) = \vec{0}$
- 2. Typ der krit. Punkte bestimmen: über Eigenwerte der Hesse-Matrix $\vec{\nabla}^2 f$ im Punkt P_i :
 - Alle EW $> 0 \Rightarrow lok$. Maximum
 - Alle EW $< 0 \Rightarrow lok$. Minimum
 - Sowohl > als auch $< \Rightarrow$ Sattelpunkt
 - weder noch (semidefinit) \Rightarrow keine Entscheidung

Bem: falls $\nabla^2 f$ symmetrisch \Rightarrow alle EW positiv

BSP Extremalstellen

Sei $f(x,y) = \frac{1}{2}(x^2 + \alpha y^2) + \beta xy$, $(x,y) \in \mathbb{R}^2$ mit $df(x,y) = (x + \beta y, \alpha y + \beta x)$. Die Hessische Matrix lautet somit:

$$H_f(x_0) = \begin{pmatrix} \frac{\delta^2 f}{(\delta x)^2} & \frac{\delta^2 f}{\delta y \delta x} \\ \frac{\delta^2 f}{\delta x \delta y} & \frac{\delta^2 f}{(\delta y)^2} \end{pmatrix} = \begin{pmatrix} 1 & \beta \\ \beta & \alpha \end{pmatrix}$$

Falls $\alpha \neq \beta^2$, ist $(x_0, y_0) = (0, 0)$ der einzige kritische Punkt. Die Eigenwerte von $Hess_f(0, 0)$ bestimmen den qualitativen Verlauf von f. Wir erhalten sie aus:

$$p(\lambda) = \det(H_f(0,0) - \lambda 1) = (1 - \lambda)(\alpha - \lambda) - \beta^2 = \lambda^2 - (1 + \alpha)\lambda + \alpha - \beta^2 = 0$$

Es folgt:

$$\lambda_{1,2} = \frac{1+\alpha}{2} \pm \underbrace{\sqrt{\left(\frac{1+\alpha}{2}\right) - \alpha + \beta^2}}_{\geq 0, \text{ da } (1+\alpha)^2 - 4\alpha = (1-\alpha)^2}$$

Falls

- $\alpha > \beta^2 \Rightarrow \lambda_1, \lambda_2 > 0$: (0,0) ist ein Minimalstelle
- $\alpha < \beta^2 \Rightarrow \lambda_1 > 0 > \lambda_2$: (0,0) ist ein Sattelpunkt

Typbestimmung der kritischen Punkte bei 2×2 -Matrix

1.
$$\begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} > 0$$
 an der Stelle (x_0, y_0)

(a) $f_{XX}(x_0, y_0) > 0 \Rightarrow \text{lokales Minimum}$

(b) $f_{XX}(x_0, y_0) < 0 \Rightarrow \text{lokales Maximum}$

2.
$$\begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} < 0$$
 an der Stelle (x_0, y_0) \Rightarrow keine lokale Extremalstelle: Sattelpunkt

3.
$$\begin{vmatrix} f_{xx} & f_{xy} \\ f_{yx} & f_{yy} \end{vmatrix} = 0 \text{ an der Stelle } (x_0, y_0)$$

$$\Rightarrow \text{Entartung}$$

Extremalstellen unter Nebenbedingungen: Auf einem Bereich

- 1. Bestimme Extrema von f und prüfe, ob diese in B
- 2. Bestimme Extrema des Randes (Bsp NB_1, NB_3, NB_3)
- 3. Prüfe Schnittpunkte (Bsp P_1, P_2, P_3) auf Extrema

Eigenwerte einer Diagonalmatrix

entsprechen genau den Diagonalelementen

Allg. Berechnung der EW

1. Char. Polynom aufstellen

$$chp(\lambda) = det(A - \lambda I)$$

2. Nullstellen (=Eigenwerte) bestimmten

11.4 Vektorwertige Funktionen

Differenzierbarkeit

f heisst an der Stelle $x_0 \in \Omega$ diffbar , falls jede Funktion $f^i, 1 \leq i \leq n$ dort diffbar ist und

$$df(x_0) = \begin{pmatrix} df^1(x_0) \\ \vdots \\ df^l(x_0) \end{pmatrix} : T_{x_0} \mathbb{R}^n \to T_{f(x_0)} \mathbb{R}^l$$

Jacobi Matrix

$$df(x_0) = \left(\frac{\delta f^i}{\delta x^j}(x_0)\right)_{1 \le i \le l \land 1 \le j \le n}$$

$$= \left(\begin{array}{ccc} \frac{\delta f^1}{\delta x^1}(x_0) & \dots & \frac{\delta f^1}{\delta x^n}(x_0) \\ \vdots & & \vdots \\ \frac{\delta f^l}{\delta x^1}(x_0) & \dots & \frac{\delta f^l}{\delta x^n}(x_0) \end{array}\right)$$

BSP Jacobi Matrix

Sei $f:\mathbb{R}^2\to\mathbb{R}^2$ gegeben durch: $f(x,y)=\left(\begin{array}{c}x^2-y^2\\2xy\end{array}\right)$ Dann ist $f\in C^1(\mathbb{R}^2;\mathbb{R}^2)$

$$df(x,y) = \begin{pmatrix} 2x & -2y \\ 2y & 2x \end{pmatrix}$$

11.5 Umkehrsatz

Satz der Umkehrbarkeit

Sei $f: \mathbb{R}^n \to \mathbb{R}^n$ stetig differenzierbar. Falls nun df(a) ein Isomorphismus dh: (\exists Umkehrfunktion: $df(a)^{-1}$). Dann ist f auf einer genügend kleinen Umgebung um a invertierbar.

 $det(df(a)) \neq 0$ \exists Umkehrfunktion für die Umgebung a

BSP

Betrachte $f: \mathbb{R}^2 \to \mathbb{R}^2$ mit

$$f(x,y) = \begin{pmatrix} x^2 - y^2 \\ 2xy \end{pmatrix}$$
 $(x,y) \in \mathbb{R}^2$ und $df(x,y) = \begin{pmatrix} 2x & -2y \\ 2y & 2x \end{pmatrix}$

Da

$$det(df(x,y)) = 4(x^2 + y^2) > 0$$
 für $(x,y) \neq (0,0)$

ist f lokal invertierbar auf $\mathbb{R}^2 \setminus \{(0,0)\}$. Mit der Identifikation $(x,y) = x + iy \in \mathbb{C}$ gilt

$$f(x+iy) = x^2 - y^2 + 2ixy = (x+iy)^2$$

Da $f(z)=z^2=(-z)^2=f(-z), \forall z\in\mathbb{C}$ ist f nicht global invertierbar.

11.6 Implizite Funktionen

regulärer Punkt

Der Punkt p_0 heisst regulärer Punkt von f falls $Rang(df_{(p_0)}) = \min\{n, l\}$ maximal.

Satz über implizite Funktionen

Sei F(x,y) differenzierbar, $x,y \in \mathbb{R}$ und (x_0,y_0) eine Lösung von F(x,y) = 0. Falls $\frac{\delta F}{\delta y}(x_0,y_0) \neq 0$, dann lässt sich F(x,y) lokal, d.h. in einer Umgebung von (x_0,y_0) nach y auflösen.

Aufstellen der impliziten Funktion

 $f_y(x_0, y_0) \neq 0$:

Es gibt Fenster mit Zentrum (x_0, y_0) in dem gilt $x \mapsto y = \phi(x)$, wobei $\phi(x_0) = y_0$:

 $\mathbf{f_x}(\mathbf{x_0}, \mathbf{y_0}) \neq \mathbf{0}$:

Dann gibt es aber eine Funktion $y\mapsto x=\psi(y)$ und die Ableitungen lauten:

$$\phi'(x_0) = -\frac{f_x(x_0, y_0)}{f_y(x_0, y_0)}$$

$$\phi''(x_0) = \left[\frac{f_{xx}f_y^2 + 2f_xf_{xy}f_y - f_x^2f_{yy}}{f_y^3}\right]$$

$$\psi'(y_0) = -\frac{f_y(x_0, y_0)}{f_x(x_0, y_0)}$$

$$\psi''(y_0) = \left[\frac{f_{yy}f_x^2 + 2f_yf_{xy}f_x - f_y^2f_{xx}}{f_x^3}\right]$$

11.6.1 Mehrdimensionaler Fall

Satz über implizite Funktionen in höheren Dimensionen

Wir schreiben F als F(x,y) für $\begin{cases} x = (x_1, \dots, x_n) & \in \mathbb{R}^n \\ y = (y_1, \dots, y_e) & \in \mathbb{R}^e \end{cases}$. Die Gleichung F(x,y) = 0 ist dann ein (nichtlineares) Gleichungs-

system mit e Gleichungen und n + e Unbekannten.

Die Idee des Satzes ist, dass unter geeigneten Voraussetzungen diese Gleichungen lokal (in der Umgebung einer bekannten) Lösung nach y aufgelöst werden kann. Man kann aus gegebenen x_1, \ldots, x_n entsprechende y_1, \ldots, y_e berechnen, so dass $(x_1, \ldots, x_n, y_1, \ldots, y_e)$ die Gleichung löst.

Man kann also Funktionen $n_1(x), \ldots, n_e(x)$ finden, so dass sich die Lösungsmenge lokal als $(x_1, \ldots, x_n, n_1(x), \ldots, n_e(x))$ schreiben lässt.

Diese Funktionen kann man im Allgemeinen nicht explizit ausrechnen. Der Satz besagt nur, dass es solche Funktionen gibt und dass sie differenzierbar sind.

Die einfachsten Funktionen $f: \mathbb{R}^{n+e} \to \mathbb{R}^e$ sind lineare Funktionen

$$f(x,y) = A \cdot \begin{pmatrix} x \\ y \end{pmatrix} + b$$

$$x \quad \mathbb{R}^n$$

$$y \quad \mathbb{R}^e$$

$$b \quad \mathbb{R}^e$$

Wenn wir A schreiben als $A = (\underbrace{Ax}_{e \times n} \underbrace{Ay}_{e \times e})$ ist $f(x,y) = A_x \cdot x + A_y \cdot y + b = 0$ nach y auflösbar, falls die Matrix A_y

invertierbar ist.

Für allgemeine Funktionen ist das ähnlich. Die Bedingung der Invertierbarkeit muss dann für den Teil der Jacobimatrix gelten, der von den Ableitungen nach y_i , $i=1,\ldots,e$. Dazu teilt man die Jacobimatrix in 2 Blöcke auf

$$df(x,y) = (\underbrace{\delta_x f(x,y)}_{e \times n \text{ Matrix}} \mid \underbrace{\delta_y f(x,y)}_{e \times e \text{ Matrix}})$$

und prüft ob $\delta_y f(x_0, y_0)$ in einem Punkt (x_0, y_0) invertierbar ist (siehe Umkehrsatz).

Beispiel Mehrdimensionaler Fall

Es sei $g: \mathbb{R}^3 \to \mathbb{R}^2$ gegebenen durch

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \mapsto \begin{pmatrix} x^3 - zx + y \\ xyz \end{pmatrix}$$
$$dg(x, y, z) = \begin{pmatrix} 3x^2 - x & 1 & -x \\ yz & xz & xy \end{pmatrix}$$

1. Zeige, dass die Niveaumenge $g^{-1}(\{(1,1)\})=\{(x,y,z):g(x,y,z)=(1,1)\}$ in einer Umgebung als $\gamma(x)=(x,\varphi_1(x),\varphi_2(x))$ geschrieben werden kann.

$$\left(\frac{\delta g}{\delta y}(1,1,1),\frac{\delta g}{\delta z}(1,1,1)\right) = \left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right) \qquad \text{ist invertierbar, und aus diesem Grund ist } g^{-1} \text{ definiert}$$

2. Berechne den Tangentialvektor $\dot{\gamma}(1)$

$$\begin{split} d\varphi(x) &= -\left(\frac{\delta g}{\delta y}(x,\varphi(x)), \frac{\delta g}{\delta z}(x,\varphi(x))\right)^{-1} \cdot \frac{\delta g}{\delta x}(x,\varphi(x)) \\ d\varphi(1) &= -\left(\begin{array}{cc} 1 & -1 \\ 1 & 1 \end{array}\right)^{-1} \cdot \left(\begin{array}{c} 2 \\ 1 \end{array}\right) = -\frac{1}{2} \left(\begin{array}{cc} 1 & 1 \\ -1 & 1 \end{array}\right) \cdot \left(\begin{array}{c} 2 \\ 1 \end{array}\right) = \left(\begin{array}{c} -\frac{3}{2} \\ \frac{1}{2} \end{array}\right) \\ \dot{\gamma}(1) &= \left(\begin{array}{c} 1 \\ -\frac{3}{2} \\ \frac{1}{2} \end{array}\right) \end{split}$$

11.7 Extremwerte mit Nebenbedingungen

Regulärer Punkt einer Funktion f

Ein Punkt x_0 ist dann regulär, wenn er in der Ableitungsmatrix $df(x_0)$ den maximalen Rang erzeugt.

$$Rang(df(x_0)) = min\{n, m\}$$
 für $df \in \mathbb{R}^{n \times m}$

Finde globale Extrema einer Funktion $f: \mathbb{R}^n \supset U \to \mathbb{R}$ unter Nebenbedingung $g_i = 0$

$Multiplikatorenregel\ von\ Lagrange \rightarrow Extrema\ auf\ einem\ Bereich\ mit\ Nebenbedingungen\ bestimmen$

Sei f und $g = \begin{pmatrix} g_1 \\ \vdots \\ g_k \end{pmatrix}$ stetig differenzierbar auf $U \subset \mathbb{R}^n$ offen. Sei zudem $x_0 \in U$ ein $regul\"{a}rer$ $(Rang(dg(x_0)) = k, k \equiv$

maximaler Rang) Punkt von g.

Dann gilt: Falls x_0 ein Extremum von f und x_0 erfüllt Nebenbedingung $(g(x_0) = 0)$, dann existieren $\lambda_1, \ldots, \lambda_k$, so dass

$$df(x_0) = \sum_{i=1}^k \lambda_i dg_i(x_0) \Longleftrightarrow \nabla f(x_0) = \sum_{i=1}^k \lambda_i \nabla g_i(x_0)$$
Falls $k = 1$: $\nabla f = \lambda \nabla g$

Falls
$$k = 1$$
: $\nabla f = \lambda \nabla g$
 $k = 2$: $\nabla f = \lambda_1 \nabla g_1 + \lambda_2 \nabla g_2$

Vorgehen:

1. Finde alle nicht regulären Punkte von g, welche Nebenbedingung erfüllen \Rightarrow Kandidaten Erstelle für jeden Rang $\in 0, \ldots, \min(n, m) - 1$ ein GLS um die nicht Regulären Punkte zu erhalten. Alternativ:

Löse GLS (für
$$g_1$$
 und g_2)
$$\nabla g_1 \cdot = \nabla g_2 \cdot t$$

$$g_1 = 0$$

$$g_2 = 0$$

2. Für reguläre Werte lösen wir das Gleichungssystem. Achte auf Fallunterscheidungen!

$$\nabla f = \lambda_1 \nabla g_1 + \ldots + \lambda_k \nabla g_k$$

$$g_1 = 0$$

$$\vdots$$

$$g_k = 0$$

3. vergleiche Kandidaten

Es folgt also die Existens von impliziten Funktionen $u = g_1(x, y)$ und $v = g_2(x, y)$

Beispiel zu Lagrange

Funktion:
$$f(x,y) = x^2 - 2x + y^2 + 1$$
 Nebenbedingung: $g(x,y) = x^2 + y^2 - 4$

Nebenbedingung:
$$g(x,y) = x^2 + y^2 - 4$$

1.
$$dg(x,y) = \begin{pmatrix} 2x \\ 2y \end{pmatrix} = (0,0)!$$
 (damit $Rang(dg) = 0$. Der maximale Rang von dg ist 1)

(x,y)=(0,0) einziger nicht regulärer Punkt. Er erfüllt aber die Nebenbedingung nicht und ist daher kein Kandidat.

2. Lösen des Gleichungssystems

$$\nabla f = \lambda \nabla g$$

$$g = 0$$

$$\downarrow \downarrow$$

$$2x - 2 = \lambda \cdot 2x$$

$$2y = \lambda \cdot 2y$$

$$x^2 + y^2 = 4$$

(a) Fall
$$y = 0$$

$$x=\pm 2$$

$$x=2\Longrightarrow \lambda=\frac{1}{2}$$

$$\lambda \text{ existiert: es ist also eine Lösung}$$

$$x=-2\Longrightarrow \lambda=\frac{3}{2}$$

$$\lambda \text{ existiert: es ist also eine Lösung}$$

2 Kandidaten:
$$P_1 = (2,0)$$
 und $P_2 = (-2,0)$

(b) Fall
$$y \neq 0$$

$$y \neq 0 \Longrightarrow \lambda = 1$$

 $\Longrightarrow 2x - 2 = 2x \to \text{ Keine L\"osung}$

3. Vergleiche Kandidaten

$$P_1 = (2,0)$$
 $= f(P_2) = 1 \Rightarrow \min$
 $P_2 = (-2,0)$ $= f(P_1) = 9 \Rightarrow \max$

12 Integration in \mathbb{R}^n

${\bf Mehr dimensionale\ Integrale}$

 $f: \mathbb{R}^n \to \mathbb{R} \quad \underbrace{\Omega \in \mathbb{R}^n}_{\text{Def-Bereich}}$

• Falls $f \equiv 1$:

$$\int_{\Omega} f d\mu = \int_{\Omega} 1 d\mu = \text{Volumen}(\Omega)$$

• Falls $f \equiv \rho$ eine Dichte (oder eine Dichtefunktion)

$$\int_{\Omega} \rho d\mu = \text{ Masse von Volumen}(\Omega)$$

Linearität

$$\int_Q (l \circ f) d\mu = l \int_Q f d\mu$$

$$l \in \mathbb{R}$$

$$\int_Q f_1 + f_2 d\mu = \int_Q f_1 d\mu + \int_Q f_2 d\mu$$

1-Formen

Eine 1 Form ist eine spezielle Darstellung der Differentiation eines Vektors. Im \mathbb{R}^n hat eine 1- Form die Form

$$dw(\vec{x}) = w_1(\vec{x})dx_1 + \ldots + w_n(\vec{x})dx_n$$

Über einen Tetraeder integrieren

Ein Tetraeder ist gegeben durch die Eckpunkte (0,0,0), (0,0,1), (0,1,0), (1,0,0)

Das untere Dreieck D wird durch die Achsen und die Gerade x+y=1 begrenzt und ist bestimmt durch:

$$D = \{(x, y) : 0 \le x \le 1, 0 \le y \le 1 - x\}$$

Das obere Dreieck, E, das durch die x, y und z Achsen aufgespannt wird lässt sich durch eine Ebenengleichung bestimmen.

Der Normalenvektor von
$$E$$
 berechnet sich durch $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix} \times \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

wobei dann die Ebenengleichung bestimmt wird durch: x + y + z + d = 0. (1,0,0) in Gleichung einsetzen um die Konstante d zu erhalten (d = -1)

$$z = 1 - x - yE$$
 = $\{(x, y, z), 0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1 - x - y\}$

So lässt sich dann das Integral Einfach aufstellen

$$\int_{\Omega} f(x, y, z) d\mu = \int_{0}^{1} \int_{0}^{1-x} \int_{0}^{1-x-y} f(x, y, z) dz dy dx$$

12.1 Wegintegrale

Sei $\Omega \subset \mathbb{R}^n$ offen. $\gamma:[0,1] \to \Omega \subset \mathbb{R}^n$ von der Klasse C^1 , $\gamma \in \subset C^1([0,1],\Omega)$ mit $\dot{\gamma}(t) = \frac{dy}{dt}(t) \in T_{\gamma(t)}R^n$ (Geschwindigkeitsvektor).

Wegintegral

Im 1-dimensionalen Fall

$$\int_{\gamma} \lambda := \int_{0}^{1} \lambda(\gamma(t))\dot{\gamma}(t)dt$$

Im mehrdimensionalen Fall

$$\int_{\mathcal{C}} \lambda = \int_{\mathcal{C}} v \cdot d\vec{s} = \int_{0}^{1} \langle v(\gamma(t)), \dot{\gamma}(t) \rangle_{R^{n}} dt$$

Ist das Wegintegral von λ längs γ .

Unabhängigkeit des Wegintegrals

Falls ein Potentioal $f(\vec{x}): \mathbb{R}^n \to \mathbb{R}$ zum Vektorfeld $v(\vec{x})$ dh. $\nabla f = v$. Dann ist das Wegintegral unabhängig vom gewählten weg, so dass für 2 verschiedene Wege $\gamma_1: a \to b$ und $\gamma_2: a \to b$ gilt:

$$\int_{\gamma_1} \lambda(\gamma(t))\dot{\gamma}(t)dt = \int_{\gamma_2} \lambda(\gamma(t))\dot{\gamma}(t)dt = \lambda(\gamma(a)) - \lambda(\gamma(b))$$

Potential

Falls ein Potential $f(\vec{x}): \mathbb{R}^n \to \mathbb{R}$ zu einem Vektorfeld $v(\vec{x})$ existiert. \vec{v} heisst dann konservativ Dh. es gilt:

$$v(\vec{x}) = \nabla f \tag{1}$$

$$\frac{\delta v^i}{\delta x^j} = \frac{\delta^2 f}{\delta x^j \delta x^i} = \frac{\delta^2 f}{\delta x^i \delta x^j} = \frac{\delta v^j}{\delta x^i} \qquad 1 \ge i, j \ge n \tag{2}$$

Um nun zu bestimmen ob v ein Potential besitzt, kann man nun Def. (1) benutzen (integrieren) oder man benutzt Def. (2) und differenziert die 1. Komponente nach y und die 2. Komponente nach x.

Dann ist das Wegintegral über den Weg γ von $\gamma(a) \rightarrow \gamma(b)$ unabhängig vom gewählten Weg:

$$\int_{\gamma} v d\vec{s} = \int_{a}^{b} v(\gamma(t)) \cdot \dot{\gamma}(t) dt = f(b) - f(a)$$
$$\int_{\gamma} v d\vec{s} = 0 \qquad \text{für } \gamma(0) = \gamma(1) \text{ dh. der Weg geschlossen ist}$$

Es ist äquivalent

Ein Potential zu einem gegebenen $v(\vec{x})$ finden (Integrieren)

$$v(x,y) = \begin{pmatrix} 2x+y \\ x+1 \end{pmatrix} = \begin{pmatrix} \frac{\delta f}{\delta x} \\ \frac{\delta f}{\delta y} \end{pmatrix} = \nabla f$$

Alle Komponenten von $v(\vec{x})$ Separat integrieren

$$\int 2x + y dx = x^2 + xy + C(y)$$

$$\int x + 1 dy = xy + y + C(x)$$

$$x^2 + xy + C(y) = xy + y + C(x)$$

$$C(y) = y$$

$$C(x) = x^2$$

$$f = x^2 + xy + y + d$$

f existiert also und es gibt ein Potential für die Funktion $v(\vec{x})$

Bestimmen ob \vec{v} ein Potential besitzt (Differenzieren)

$$v(x,y) = \begin{pmatrix} 2x + y \\ x + 1 \end{pmatrix}$$

$$\frac{\delta v^1}{\delta y} = 1$$

$$\frac{\delta v^2}{\delta x} = 1$$

$$\implies \frac{\delta v^1}{\delta y} = \frac{\delta v^2}{\delta x} \qquad \vec{v} \text{ besitzt ein Potential}$$

Man leitet dabei die 1. Komponente nach y ab und die 2. Komponente nach y. Wenn sie gleich sind, besitzen sie ein Potential.

BSP zum Wegintegral mit Potential

Sei
$$v(x,y) = \begin{pmatrix} 2x+y \\ x+1 \end{pmatrix} = \nabla f$$
, $\gamma(a) = (0,0)$ und $\gamma(b) = (1,1)$ Also gilt:

$$f: \int 2x + y dx = x^2 + yx + C(y)$$

$$\frac{\delta f}{\delta y} = \frac{\delta}{\delta y} = x^2 + xy + C(y) = x + \frac{\delta C}{\delta y} = x + 1$$

$$\implies C(y) = y$$

$$\text{volution} \qquad \int y dx - f(1, 1) \quad f(0, 0) = 3$$

Einsetzen
$$\int_{\gamma} v ds = f(1,1) - f(0,0) = 3$$

BSP zum Wegintegral mit einer Gammafunktion

Es sei
$$\gamma(t): y = \sqrt{x}$$
 \longrightarrow $\gamma(t) = \begin{pmatrix} t \\ t^2 \end{pmatrix}, \quad t \in [0,1] \text{ und } v(t) = \begin{pmatrix} 2x+y \\ x+1 \end{pmatrix}$
$$\int_0^1 v(\gamma(t)) \cdot \dot{\gamma}(t) dt = \int_0^1 \begin{pmatrix} 2t+t^2 \\ 2t+1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 2t \end{pmatrix} dt$$

$$= \int_0^1 2t + t^2 + 2t dt = \left[2t^2 + t^2\right]_0^1 = 3$$

12.2 Der Satz von Green

Satz von Green in \mathbb{R}^2

Der Satz von Green erlaubt es das Integral über eine ebene Fläche durch ein Kurvenintegral auszudrücken: Sei $\Omega \subset \mathbb{R}^2$ beschränkt und von der Klasse $C^1_{p\omega}$ und seien $g, h \in C^1(\overline{\Omega})$. Dann gilt:

$$\int_{\Omega} \left(\frac{\delta h}{\delta x} - \frac{\delta g}{\delta y} \right) d\mu = \int_{\delta \Omega} \left(g dx + h dy \right)$$

wobei $\delta\Omega$ so orientiert, dass Ω zur Liunken liegt. $\delta\Omega$: Rand, Ω : Fläche

Beispiel zu Green

$$w = ydx + xdy$$

$$\Omega = \{(x,y) \in \mathbb{R} | x \in [0,\pi], 0 \le y \le sin(x) \}$$
Gesucht:
$$\int_{\partial\Omega} wd\mu = \int_{\Omega} \frac{\delta w_1}{\delta x} - \frac{\delta w_2}{\delta y} d\mu = \int_{\Omega} 1 - 1d\mu = 0$$

12.3 Transformationsregeln

Substitutionsregel

Sei $\phi: \mathbb{R}^n \to \mathbb{R}^n$ eine Koordinatentransformation

$$\phi(x_1, \dots, x_n) = \begin{pmatrix} \phi_1(x_1, \dots, x_n) \\ \vdots \\ \phi_n(x_1, \dots, x_n) \end{pmatrix} = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$$
 Dann gilt:
$$\int_{\Omega} f(\vec{x}) d\mu(\vec{x}) = \int_{\phi(\Omega)} f(\phi(x)) \cdot |\det(d\phi)| \mu(\vec{y})$$

Beispiel Transformationsregel

Integration über einen Kreis mit Koordinantentransformation Φ

$$\begin{split} \Phi(r,\varphi) &= \left(\begin{array}{c} r\cos\varphi \\ r\sin\varphi \end{array} \right) = \left(\begin{array}{c} x \\ y \end{array} \right) \\ \int_{-1}^{1} \int_{-\sqrt{R^2-x^2}}^{\sqrt{R^2-x^2}} 1 dy dx &= \int_{0}^{2\pi} \int_{0}^{R} 1*|det(d\Phi)| dr d\phi = \int_{0}^{2\pi} \int_{0}^{R} 1*|r| dr d\phi \end{split}$$

Flächeninhalt einer 2-dim Fläche S in \mathbb{R}^3

Sei $\Phi(u,v)$ eine Parameterisierung der Fläche S

$$\mu(S) = \int_{S} d\sigma = \iint |\Phi_{u} \times \Phi_{v}| du dv$$

Mantelfläche eines Zylinders mit Radius R und Höhe H

$$\begin{split} \Phi(\phi,z) &= \begin{pmatrix} R\cos\phi \\ R\sin\phi \\ z \end{pmatrix} \\ |\Phi_{\phi}\times\Phi_{z}| &= R \\ \mu(M) &= \int_{0}^{H} \int_{0}^{2\pi} |\Phi_{\phi}\times\Phi_{z}| d\phi dz = \int_{0}^{H} \int_{0}^{2\pi} R d\phi dz = 2\pi R H \end{split}$$

Fluss eines Vektorfelds durch eine Fläche S

Fluss von v durch die Fläche S (parametrisiert durch $\Phi(u,v)$), $\vec{n} \perp S$ und $|\vec{n}| = 1$. Wichtig: Hier findet eine Koordinatentransformation statt! Man braucht den Korrekturfaktor jedoch nicht hinzuzufügen.

$$\begin{split} \vec{n}(u,v) &= \frac{\Phi_u \times \Phi_v}{|\Phi_u \times \Phi_v|} \\ \int_S \vec{v} \cdot \vec{n} d\sigma &= \iint \vec{v}(\Phi(u,v)) \cdot \vec{n}(u,v) |\Phi_u \times \Phi_v| du dv = \iint \vec{v}(\Phi(u,v)) \cdot \frac{\Phi_u \times \Phi_v}{|\Phi_u \times \Phi_v|} |\Phi_u \times \Phi_v| du dv \\ &= \iint \vec{v}(\Phi(u,v)) \cdot \Phi_u \times \Phi_v du dv \end{split}$$

Beispiel Fluss eines Vektorfelds \boldsymbol{v} durch den Rand eines Zylinders

Zylinder:
$$Z = \{(x, y, z) : x^2 + y^2 \le 1, -1 \le z \le 1\}$$
 $\phi = \begin{pmatrix} r \cdot \cos \varphi \\ r \cdot \sin \varphi \\ z \end{pmatrix}$

Fluss:
$$v(x, y, z) = \begin{pmatrix} x - y + z \\ x + y + z \\ z + z^2 \end{pmatrix}$$

$$\phi_{\varphi} \times \phi_{z} = \begin{pmatrix} -\sin \varphi \\ \cos \varphi \\ 0 \end{pmatrix} \times \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} = \begin{pmatrix} \cos \varphi \\ \sin \varphi \\ 0 \end{pmatrix}$$

$$\text{Mantelfläche:} \quad \iint_{M} \vec{v} \cdot n d\mu = \int_{-1}^{1} \int_{0}^{2\pi} \left(\begin{array}{c} \cos \varphi - \sin \varphi + z \\ \cos \varphi + \sin \varphi + z \\ z + z^{2} \end{array} \right) \cdot \left(\begin{array}{c} \cos \varphi \\ \sin \varphi \\ 0 \end{array} \right) d\varphi dz = 4\pi$$

Da hier nur der Fluss durch die Mantelfläche berechnet wurde

muss man noch den Fluss durch den Deckel und den Boden berechnen

Deckel: Normalenvektor:
$$n = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\int_0^{2\pi} \int_0^1 \left(\begin{array}{c} \cos \varphi - \sin \varphi + z \\ \cos \varphi + \sin \varphi + z \\ z + z^2 \end{array} \right) \cdot \left(\begin{array}{c} 0 \\ 0 \\ 1 \end{array} \right) |\phi_\varphi \times \phi_r| dr d\varphi = \int_0^{2\pi} \int_0^1 \underbrace{z + z^2}_{z=1} dr d\varphi = \int_0^{2\pi} \int_0^1 2 dr d\varphi = 4\pi$$

Boden: Normalenvektor:
$$n = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix}$$

$$\int_0^{2\pi} \int_0^1 -(\underbrace{z+z^2}_{z=-1}) dr d\varphi = 0$$

Fluss:
$$4\pi + 4\pi = 8\pi$$

Satz von Gauss 12.4

Divergenz

$$\vec{v} = \begin{pmatrix} P \\ Q \\ R \end{pmatrix} \rightarrow div(\vec{v}) = P_x + Q_y + R_z$$

Satz von Gauss (Fluss durch einen Körper V)

Gegeben: V kompakt in \mathbb{R}^3

 $\delta V = A$ die Oberfläche von $V \colon S^2$

Fluss durch $A = \int_{A} \vec{v} \cdot \vec{n} d\sigma = \int_{V} div(\vec{v}) d\mu = \int_{V} \frac{\delta v_1}{\delta x} + \frac{\delta v_2}{\delta y} + \frac{\delta v_3}{\delta z} d\mu$

Beispiel Satz von Gauss

$$v = \left(\begin{array}{c} x \\ 0 \\ 0 \end{array}\right)$$

$$\begin{split} \int_{S^2} \vec{v} \cdot \vec{n} d\sigma &= \int_V div(v) d\mu = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_0^{2\pi} \int_0^1 \phi(div(\vec{v})) |det(d\phi)| dr d\varphi d\theta = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_0^{2\pi} \int_0^1 \phi(div(\vec{v})) r^2 \cos(\theta) dr d\varphi d\theta \\ &= \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_0^{2\pi} \int_0^1 1 \cdot r^2 \cos(\theta) dr d\varphi d\theta = \frac{4\pi}{3} \end{split}$$

div(v) = 0 ausnutzen

Falls die div(v) über ein Vektorfeld 0 ist (div(v) = 0), dann weiss man, dass der Fluss über alle Aussenflächen 0 ist.

$$\int_{G} div(\vec{v})d\vec{\sigma} = \int_{B} \vec{v} \cdot nd\mu + \int_{D} \vec{v} \cdot nd\mu = 0$$

$$\implies \int_{B} \vec{v} \cdot nd\mu = -\int_{B} \vec{v} \cdot nd\mu$$

 $\begin{cases} G & \text{Volumen} \\ B & \text{Fläche} \\ D & \text{Fläche} \end{cases}$

Die Flächen muss man so wählen, dass sie an den Rand des Flussintegrals angrenzen.

Der Satz von Stokes in \mathbb{R}^3 12.5

Rotation von K ("Wirbelstärke", engl: curl)

$$\overrightarrow{rotK} = \overrightarrow{\nabla} \times \overrightarrow{K} = \begin{pmatrix} \delta x \\ \delta y \\ \delta z \end{pmatrix} \times \begin{pmatrix} X \\ Y \\ Z \end{pmatrix} = \begin{pmatrix} Z_y - Y_z \\ X_z - Z_x \\ Y_x - X_y \end{pmatrix}$$

Der Satz von Stokes (Fluss durch eine Oberfläche)

Sei S eine Fläche in \mathbb{R}^3 (mit einem Rand) und \vec{v} ein Vektorfeld in \mathbb{R}^3 :

$$\int_{S} \overrightarrow{rotK} \cdot \vec{n} d\sigma = \int_{\delta S} K \cdot d\vec{s}$$

Der Satz von Green, ist ein Spezialfall vom Satz von Stokes (Green $\in \mathbb{R}^2$ und Stokes $\in \mathbb{R}^3$).

Wenn man S von oben betrachtet muss man den Weg δS gegen den Uhrzeigersinn integrieren (\vec{n} Positiv). Falls man im Uhrzeigersinn integriert, muss man den Normalenvektor \vec{n} umkehren, das heisst mit -1 multiplizieren.

Beispiel zu Stokes

Berechne das Wegintegral $\int_{\gamma} K \cdot ds$ für das Vektorfeld K(x,y,z) = (x-y+z,y-z+x,z-x+y) über das Dreieck

$$D: (1,0,0) \quad (0,1,0) \quad (0,0,1)$$
 Parametrisierung:
$$\Phi(x,y) = \begin{pmatrix} x \\ y \\ 1-x-y \end{pmatrix}$$

$$\Phi_x \times \Phi_y = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix} \times \begin{pmatrix} 0 \\ 1 \\ -1 \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

$$rot(K) = \begin{pmatrix} \delta_y Kz - \delta_z K_y \\ \delta_z K_x - \delta_x K_z \\ \delta_x K_y - \delta_y K_x \end{pmatrix} = \begin{pmatrix} 1+1 \\ 1+1 \\ 1+1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix}$$
 Nach dem Satz von Stokes:
$$\int_{\lambda} K ds = \int_{G} rot(K) \cdot \vec{n} do = \int_{D} \begin{pmatrix} 2 \\ 2 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} d\mu(x,y) = \int_{0}^{1} \int_{0}^{1-x} 6 dy dx = 3$$

13 Approximationsverfahren

Newton-Verfahren

Nullpunktbestimmung einer Funktion durch Folgenentwicklung. Anwenden der rekursiven Formel:

$$(x_n) \rightarrow \begin{cases} x_0 & \text{Startpunkt} \\ x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \end{cases}$$

13.1 Taylorreihe

Taylorreihe

beliebig genaue Annäherung an einer Kurve, durch

$$T_n(t) = \sum_{k=0}^n \frac{f^{(k)}(a)}{k!} (t-a)^k + R_n(t)$$

a: Entwicklungspunkt (Punkt, den man einfach ausrechnen kann, z.B.: approximiere $\sqrt{65}$ mit $a:=\sqrt{64}$)

 $R_n(t)$: Restglied

Tipp: Alle Ableitungen $f^{(n)}(a)$ im vornherein ausrechnen. Dann muss man weniger schreiben.

Restglied, Fehler

Der Fehler der Taylorreihe, also die Abweichung zur eig. Funktion, wird Restglied genannt:

$$R_n(t) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (t-a)^{n+1} \le \sup_{\xi \in [a,t]} \frac{f^{(n+1)}(\xi)}{(n+1)!} (t-a)^{n+1}$$

13.1.1 Mehrdimensionaler Fall

Mehrdimensionale Taylorreihe

Entspricht im wesentlichen 1-dim Fall. Ableitung wird allerdings durch Gradient, Hesse-Matrix, usw. ersetzt:

$$T_n(\vec{t}) := \sum_{k=0}^n \frac{\nabla^k f(\vec{a})}{k!} (\vec{t} - \vec{a})^k$$

 $\vec{a} := \text{Entwicklungspunkt}$

Beispiel Taylorreihe

Taylorreihe mit 2 Variabeln

$$\begin{split} P^N_{x_0,y_0}(x,y) = & f(x_0,y_0) + f_x(x_0,y_0) \cdot (x-x_0) + f_y(x_0,y_0) \cdot (y-y_0) \\ & + \frac{1}{2} \left(f_{xx}(x_0,y_0) \cdot (x-x_0)^2 + 2 f_{xy}(x_0,y_0) \cdot (x-x_0)(y-y_0) + f_{yy}(x_0,y_0) \cdot (y-y_2)^2 \right) \\ & + \ldots + \ldots \\ & + \frac{1}{N!} \left(\binom{N}{0} f_{x^N}(x_0,y_0) \cdot (x-x_0)^N + \binom{N}{1} f_{x^{N-1}y}(x_0,y_0) \cdot (x-x_0)^{N-1}(y-y_0) + \ldots \right) \end{split}$$

Taylorreihe mit 3 Variabeln
$$\Delta x = (x - x_0), \Delta y = (y - y_0). \Delta z = (z - z_0)$$

$$P_{x_0,y_0,z_0}^{N}(x,y,z) = f(x_0,y_0,z_0) + f_x \Delta x + f_y \Delta y + f_z \Delta z + \frac{1}{2} [f_{xx} \Delta x^2 + f_{yy} \Delta y^2 + f_{zz} \Delta z^2 + 2f_{xy} \Delta x \Delta y + 2f_{xz} \Delta x \Delta z + 2f_{yz} \Delta y \Delta z] + \dots + R_N$$

Restglied Taylorreihe

Das R—te Restglied der Taylorreihe von f:

$$R_n = \frac{1}{n!} H_f(\xi) (\vec{x} - \vec{x}_0)$$

Dabei ist zu beachten, dass der Punkt $\vec{\xi}$ ein Punkt im Defenitionsbereich darstellt.

Restglied Taylorreihe

$$R_2 = \frac{1}{2}H_f(\xi)(\vec{x} - \vec{x_0}) = \frac{1}{2}f_{xx}(\vec{\xi})(x - x_0)^2 + \frac{1}{2}f_{yy}(\vec{x}i)(y - y_0)^2 + f_{xy}(\vec{\xi})(x - x_0)(y - y_0)$$

Beispiel zu Taylorreihe und Restglied

Bestimme das Taylorpolynom 3. Grades um $t_0 = \frac{\pi}{3}$ von $f(x) = \sin(x)$ und gib eine Schranke für den Fehler für $t = 59^{\circ}$ an.

$$P_3(t) = f(t_0) + f'(t_0)(t - t_0) + \frac{1}{2!}f''(t_0)(t - t_0)^2 + \frac{1}{3!}f'''(t_0)(t - t_0)^3$$

$$= \sin(t_0) + \cos(t_0)(t - t_0) - \frac{1}{2!}\sin(t_0)(t - t_0)^2 - \frac{1}{3!}\cos(t_0)(t - t_0)^3$$

$$= \frac{\sqrt{3}}{2} + \frac{1}{2}\left(t - \frac{\pi}{3}\right) - \frac{\sqrt{3}}{4}\left(t - \frac{\pi}{3}\right)^2 - \frac{1}{12}\left(t - \frac{\pi}{3}\right)^3$$

Für den Fehler R_n , den man bei einer Näherung durch den Wert dieses Polynoms begeht gilt allgemein:

$$R_n(t) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (t-a)^{n+1} \qquad \xi \in]t, t_0[$$

Demnach gilt (für $t=59^\circ,\, t-t_0=1^\circ=\frac{2\pi}{360}=\frac{\pi}{180})$

$$|R_3| = \frac{\left(t - \frac{\pi}{3}\right)^4}{4!} |\sin(\xi)| \le \frac{\left(\frac{\pi}{180}\right)^4}{24} \sup_{\xi \in]t, t_0[} \sin(\xi) = \frac{\left(\frac{\pi}{180}\right)^4}{24} \cdot \frac{\sqrt{3}}{2}$$
 Alternativ: $\sup_{\xi \in]t, t_0[} \sin(\xi) = 1$

Appendix

A Tafeln und Tabellen

Ableitungen	ı		
f(x)	f'(x)	f(x)	f'(x)
c	0	$\sin(x)$	$\cos(x)$
cx	c	$\cos(x)$	$-\sin(x)$
x	$egin{array}{c} rac{ x }{x} = rac{x}{ x } \ nx^{n-1} \end{array}$	$\tan x$	$\frac{1}{\cos^2(x)} = 1 + \tan^2(x)$
x^n	nx^{n-1}	$\cot x$	$-\frac{1}{\sin^2(x)} = -(1 + \cot^2(x))$
\sqrt{x}	$\frac{1}{2\sqrt{x}}$	$\arcsin(x)$	$ \frac{1}{\sqrt{1-x^2}} - \frac{1}{\sqrt{1-x^2}} \\ \frac{1}{1+x^2} $
e^{cx}	ce^{cx}	$\arccos(x)$	$-\frac{1}{\sqrt{1-x^2}}$
$\ln x $	$\frac{1}{x}$	$\arctan(x)$	$\frac{1}{1+x^2}$
$\log_a x $	$(\log_a(e))\frac{1}{x} = \frac{1}{x\ln(a)}$	$\operatorname{arccot}(x)$	$-\frac{1}{1+x^2}$
a^x	$a^x \cdot \ln(a)$	$\sinh(x)$	$\cosh(x)$
a^{cx}	$a^{cx} \cdot (c \ln(a))$	$\cosh(x)$	$\sinh(x)$
x^x	$(1 + \ln(x))x^x$	tanh(x)	$\frac{1}{\cosh^2(x)} = 1 - \tanh^2(x)$
		$\coth(x)$	$-\frac{1}{\sinh^2(x)} = 1 - \coth^2(x)$
$\sqrt{a^2 + x^2}$	$\frac{x}{\sqrt{a^2+x^2}}$	$\operatorname{arsinh}(x)$	$\frac{1}{\sqrt{x^2+1}}$
$\sqrt{a^2-x^2}$	$-\frac{x}{\sqrt{a^2-x^2}}$	$\operatorname{arcosh}(x)$	$\frac{1}{\sqrt{x^2-1}}$
$\sqrt{x^2 - a^2}$	$\frac{x}{\sqrt{x^2-a^2}}$	$\operatorname{artanh}(x)$	$\frac{1}{\sqrt{1-x^2}}$
$\frac{1}{\sqrt{a^2+x^2}}$	$-\frac{x}{(\sqrt{-2+-2})^{\frac{3}{2}}}$	$\operatorname{arcoth}(x)$	$\frac{1}{\sqrt{1-x^2}}$
1	$\begin{pmatrix} (\sqrt{a^2+x^2})^2 \\ x \end{pmatrix}$	()	$ \sqrt{1-x^2} $
$\sqrt{a^2-x^2}$	$-\frac{x^{2}-a^{2}}{x} \frac{x}{\left(\sqrt{a^{2}+x^{2}}\right)^{\frac{3}{2}}} \frac{x}{\left(\sqrt{a^{2}-x^{2}}\right)^{\frac{3}{2}}} - \frac{x}{\left(\sqrt{x^{2}-a^{2}}\right)^{\frac{3}{2}}}$		
$ \sqrt{a^{2} + x^{2}} \sqrt{a^{2} - x^{2}} \sqrt{x^{2} - a^{2}} \frac{1}{\sqrt{a^{2} + x^{2}}} \frac{1}{\sqrt{a^{2} - x^{2}}} \frac{1}{\sqrt{x^{2} - a^{2}}} $	$-\frac{x}{(\sqrt{x^2-a^2})^{\frac{3}{2}}}$		

Standardsubstitutionen							
Integral	Substitution	Differential	Bemerkungen				
f(g(x), g'(x))dx	t = g(x)	$dx = \frac{dt}{g'(x)}$	Lsg: $\frac{1}{2}[f(x)^2] + C$				
$\int f((ax+b))dx$	t = ax + b	$dx = \frac{dt}{a}$	Lsg: $\frac{1}{a} \int f(u) du$				
$\int f(x, \sqrt{ax+b}) dx$	$x = \frac{t^2 - b}{a}$	$dx = \frac{2tdt}{a}$	$t \ge 0$				
$\int f(x, \sqrt{ax^2 + bx + c}) dx$	$x = \alpha t + \beta$	$dx = \alpha dt$	wähle α und β so, dass gilt $ax^2 + bx + c = \gamma \cdot (\pm t^2 \pm 1)$				
$\int f(x, \sqrt{a^2 - x^2}) dx$	$x = a \cdot \sin t$	$dx = a \cdot \cos t dt$	$-\frac{\pi}{2} \le t \le \frac{\pi}{2}$				
$\int f(x, \sqrt{a^2 + x^2}) dx$	$x = a \cdot \sinh t$	$dx = a \cdot \cosh t dt \ t \in \mathbb{R}$					
$\int f(x, \sqrt{x^2 - a^2}) dx$	$x = a \cdot \cosh t$	$dx = a \cdot \sinh t dt$	$t \ge 0$				
$\int f(e^x, \sinh x, \cosh x) dx$	$e^x = t$	$dx = \frac{dt}{t}$	$t > 0$, und dabei gilt $\sinh x = \frac{t^2 - 1}{2t}$, $\cosh x = \frac{t^2 + 1}{2t}$				
$\int f(\sin x, \cos x) dx$	$\tan \frac{x}{2} = t$	$dx = \frac{2dt}{1+t^2}$	$-\frac{\Pi}{2} < t < \frac{\Pi}{2}$, und dabei gilt $\sin x = \frac{2t}{1+t^2}$, $\cos x = \frac{1-t^2}{1+t^2}$				

(x)	F(x)	f(x)	F(x)
onst	$\operatorname{const} \cdot x$	$\sin(x)$	$-\cos(x)$
$x \text{ nur } \Rightarrow$	$\frac{1}{2}x^2$	$\cos(x)$	$\sin(x)$
$\frac{1}{x}$	$\log x $	tan(x)	$-\ln \cos(x) $
$\frac{f'(x)}{f(x)}$	$\log f(x) $	$\cot(x)$	$\ln \sin(x) $
c^s	$\frac{1}{s+1}x^{s+1}, \ s \neq -1$	$\sin\left(ax+b\right)$	$-\frac{1}{a}\cos\left(ax+b\right)$
$(ax+b)^s$	$\frac{(ax+b)^{s+1}}{a(s+1)}$	$\cos\left(ax+b\right)$	$\frac{1}{a}\sin\left(ax+b\right)$
$\frac{1}{ix+b}$	$\frac{1}{a} \ln ax + b $	$\frac{1}{\sin(x)}$	$\ln\left \tan\left(\frac{x}{2}\right)\right $
$ax^p + b)^s x^{p-1}$	$\frac{(ax^p+b)^{s+1}}{ap(s+1)}$	$\frac{1}{\cos(x)}$	$\left \ln \left \tan \left(\frac{x}{2} + \frac{\pi}{4} \right) \right \right $
$ax^p + b)^{-1}x^{p-1}$	$\frac{\ln ax^p+b }{ap}$	$\sin^2(x)$	$\frac{1}{2}(x-\sin(x)\cos(x))$
$\frac{ax+b}{ax+d}$	$\frac{ax}{c} - \frac{ad - bc}{c^2} \cdot \ln cx + d $	$\cos^2(x)$	$\frac{1}{2}(x+\sin(x)\cos(x))$
$\frac{1}{c^2 + a^2}$	$\frac{1}{a}\arctan\left(\frac{x}{a}\right)$	$\tan^2(x)$	$\tan(x) - x$
$\frac{1}{c^2 - a^2}$	$\left \frac{1}{2a} \ln \left \frac{x-a}{x+a} \right \right $	$\cot^2(x)$	$-\cot(x)-x$
$\sqrt{a^2 + x^2}$	$\frac{x}{2}\sqrt{a^2+x^2}+\frac{a^2}{2}\ln\left \sqrt{a^2+x^2}+x\right $	$\sin^3(x)$	$\frac{1}{12}\cos(3x) - \frac{3}{4}\cos(x)$
$\sqrt{a^2-x^2}$	$\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\arcsin\frac{x}{ a }$	$\cos^3(x)$	$\frac{1}{12}\sin(3x) + \frac{3}{4}\sin(x) +$
$\sqrt{x^2 - a^2}$	$\frac{x}{2}\sqrt{x^2-a^2} - \frac{a^2}{2}\ln\left(\sqrt{x^2-a^2} + x\right)$	$\sin^4(x)$	$\frac{3}{8}x - \frac{1}{4}\sin(2x) + \frac{1}{32}\sin(4x)$
$\frac{1}{\sqrt{a^2+x^2}}$	$\ln\left x + \sqrt{a^2 + x^2}\right $	$\cos^4(x)$	$\frac{3}{8}x + \frac{1}{4}\sin(2x) + \frac{1}{32}\sin(4x)$
$\frac{1}{\sqrt{a^2-x^2}}$	$\arcsin \frac{x}{ a }$	$\frac{1}{\sin^2(x)}$	$\frac{-1}{\tan(x)}$
$\frac{1}{\sqrt{x^2 - a^2}}$	$\ln\left(x+\sqrt{x^2-a^2}\right)$	$\frac{1}{\cos^2(x)}$	$\tan(x)$
$\frac{1}{\sqrt{1-x^2}}$	$\arcsin(x)$	$\arcsin(x)$	$x \cdot \arcsin(x) + \sqrt{1 - x^2}$
$\frac{-1}{\sqrt{1-x^2}}$	$\arccos(x)$	$\arccos(x)$	$x \cdot \arccos(x) - \sqrt{1 - x^2}$
$\frac{1}{\sqrt{1+x^2}}$	$\operatorname{arsinh}(x)$	$\arctan(x)$	$x \cdot \arctan(x) - \frac{1}{2}\ln(1+x^2)$
$\frac{1}{\sqrt{x^2-1}}$	$\operatorname{arcosh}(x)$	$\operatorname{arccot}(x)$	$x \cdot \operatorname{arccot} x + \frac{1}{2} \ln \left(1 + x^2 \right)$
cx	$\frac{e^{cx}}{c}$	sinh(x)	$\cosh(x)$
$_{l}cx$	$\frac{c}{a^{cx}}$	$\cosh(x)$	$\sinh(x)$
$\int_{a}^{cx} \sin(ax+b)$	$\begin{bmatrix} e^{\ln a} \\ \frac{e^{cx}}{a^2+c^2} \cdot \left[e \sin \left(ax + b \right) - a \cos \left(ax + b \right) \right] \end{bmatrix}$	tanh(x)	$ln(\cosh(x))$
$e^{cx}\cos(ax+b)$	$\begin{vmatrix} e^{-x} & e^{-x} \\ \frac{e^{x}}{a^2+c^2} & \left[c\cos\left(ax+b\right) + a\sin\left(ax+b\right) \right] \end{vmatrix}$	$\coth(x)$	$ln(\sinh(x))$
$c \cdot e^{cx}$	$\left(\frac{cx-1}{c^2}\right) \cdot e^{cx}$	$\frac{1}{\sinh^2(x)}$	$-\coth(x)$
$e^n \cdot e^{cx}$	$\frac{x^n \cdot e^{cx}}{c} - \frac{n}{c} \cdot \int x^{n-1} \cdot e^{cx} dx$	$\frac{1}{\cosh^2(x)}$	$\tanh(x)$
$\ln x $	$\begin{vmatrix} c & c & J \\ x \cdot (\ln x - 1) \end{vmatrix}$	$\operatorname{arsinh}(x)$	$x \cdot \operatorname{arsinh}(x) - \sqrt{x^2 + 1}$
$\ln(x))^2$	$x(\ln(x))^n - n \cdot \int (\ln(x))^{n-1}$	$\operatorname{arcosh}(x)$	$x \cdot \operatorname{arcosh}(x) - \sqrt{x^2 - 1}$
$\log_a x $	$x \cdot (\log_a x - \log_a e)$	$\operatorname{artanh}(x)$	$x \cdot \operatorname{artanh}(x) + \frac{1}{2}ln(1-x^2)$
$x^s \cdot \ln x$	$\frac{x^{s+1}}{s+1} \cdot \left(\ln x - \frac{1}{s+1}\right)$	$\operatorname{arcoth}(x)$	$x \cdot \operatorname{arcoth}(x) + \frac{1}{2}ln(x^2 - 1)$
$\frac{1}{r}(\ln x)^n$	$\left \frac{1}{n+1} (\ln x)^{n+1} \right $	$\sin^n(x)$	$s_n = -\frac{1}{n}\sin^{n-1}(x)\cos(x) + \frac{n-1}{n}s_{n-2}$
$e^{ax}p(x)$	$\begin{vmatrix} a^{n+1}(-1) & b^{n+1} \\ e^{ax}[a^{-1}p(x) - a^{-2}p'(x) \\ \end{vmatrix}$		Rekursion mit: $s_0 = x$, $s_1 = -\cos(x)$
r (**/	$\begin{vmatrix} -1 & p(x) & a & p(x) \\ + - & + & -1 & -1 \\ + & - & -1 & -1 \end{vmatrix} p(x)$	$\cos^n(x)$	$c_n = \frac{1}{n}\sin(x)\cos^{n-1}x + \frac{n-1}{n}c_{n-2}$
	p: Polynom n-ten Grades		Rekursion mit: $c_0 = x$, $c_1 = \sin(x)$
$(\frac{a}{c}x^2 + \frac{2b}{c}x + \frac{b^2+1}{ac})^{-1}$	$c \cdot \arctan(ax + b)$	$x^n \cdot \sin(ax)$	$-\frac{x^n}{a}\cos(ax) + \frac{n}{a}\int x^{n-1}\cos(ax)dx$
c ' c - ' ac '	1		,(n>0)
		$x^n \cdot \cos(ax)$	$\frac{x^n \sin(ax)}{a} - \frac{n}{a} \int x^{n-1} \sin(ax) dx$
			(n>0)

Trigonometrische Umformungen

Grenzwerte

$$\lim_{x \to 0^{+}} \frac{1}{x} = \infty \qquad \qquad \lim_{x \to 0^{-}} \frac{e^{n} - 1}{n} = 1 \qquad \qquad \lim_{x \to 1} \frac{\ln x}{x - 1} = 1$$

$$\lim_{x \to 0^{-}} \frac{1}{x} = -\infty \qquad \qquad \lim_{x \to 0} \frac{\sin(x)}{x} = 1 \qquad \qquad \lim_{x \to \infty} x^{m} e^{-ax} = 0 \quad (a > 0)$$

$$\lim_{x \to 0} \frac{1}{x^{2}} = \infty \qquad \qquad \lim_{x \to 0} \frac{1 - \cos(x)}{x} = 0 \qquad \qquad \lim_{x \to \infty} x^{-a} \ln x = 0 \quad (a > 0)$$

$$\lim_{x \to 0} (x^{a} \ln x) = 0 \quad (a > 0) \qquad \qquad \lim_{x \to \infty} \frac{e^{x}}{x} = \infty \qquad \qquad \lim_{x \to \infty} (1 + \frac{x}{n})^{n} = e^{x}$$

$$\lim_{x \to 0} \frac{e^{x} - 1}{x} = 1 \qquad \qquad \lim_{x \to 0} \frac{\log_{a}(1 + x)}{x} = \frac{1}{\ln a} \qquad \qquad \lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$$

$$\lim_{x \to 0} \frac{\ln(1 + x)}{x} = 1 \qquad \qquad \lim_{x \to 0} \frac{a^{x} - 1}{x} = \ln a \qquad \qquad \lim_{x \to \infty} \frac{f(x)}{g(x)} = 0$$

$$\forall \alpha > 0 : \lim_{t \to \infty} t^{\alpha} e^{-t} = 0 \quad (\alpha \in \mathbb{R})$$

Reihen

$$\sum_{k=0}^{\infty} kz^k = \frac{z}{(1-z)^2}$$

$$\sum_{k=0}^{\infty} k^2 z^k = \frac{z(1+z)}{(1-z)^3}$$

$$\sum_{k=0}^{\infty} a^k z^k = \frac{1}{1-az}$$

$$\sum_{k=0}^{\infty} {c+k-1 \choose k} a^k z^k = \frac{1}{(1-az)^c}$$

$$\sum_{k=1}^{\infty} \frac{1}{k} z^k = \ln \frac{1}{1-z}$$

$$\sum_{k=0}^{\infty} \frac{1}{k!} z^k = e^z$$

\mathbf{B} Weitere Formeln

Auflösungsformel 2. Grades (Mitternachtsformel)

Gegeben: $ax^2 + bx + c = 0$

$$x_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Skalar-, Kreuz-, Spatprodukt

Skalarprodukt:

$$\vec{a} \circ \vec{b}$$

$$= |\vec{a}| \cdot |\vec{b}| \cdot \cos \gamma$$

Kreuzprodukt:

$$\vec{a} \times \vec{b} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \end{pmatrix} \times \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} = \begin{pmatrix} a_2b_3 - a_3b_2 \\ a_3b_1 - a_1b_3 \\ a_1b_2 - a_2b_1 \end{pmatrix}$$
$$\vec{a} \times \vec{b} = |\vec{a}| \cdot |\vec{b}| \cdot \sin \gamma \longleftarrow \text{ WTF?}$$

Spatprodukt::

$$(\vec{a} \times \vec{b}) \circ \vec{c}$$
 = Volumen des aufgesp. Raumes

Binomischer Lehrsatz:

$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} b^k$$

Vandermonde Identität:

$$\binom{n+m}{r} = \sum_{k=0}^{r} \binom{n}{k} \cdot \binom{m}{r-k}$$

Pascals Identität:

$$\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}, \text{ wenn } n \ge 0$$

$$\binom{n+1}{k+1} = \binom{n}{k} + \binom{n}{k+1}$$

Rechenregeln Logarithmus

$$\begin{array}{ll} \log a - \log b = \log(\frac{a}{b}) & \log(1/a) = -\log a \\ \log a + \log b = \log(a \cdot b) & \log x^r = r \log x \\ \mathbf{Basiswechsel} & \log_b r = \frac{\log_a r}{\log_a b} & x^{\log(y)} = y^{\log(x)} \end{array}$$

Dreiecksungleichung

$$||x \pm y|| \le ||x|| \cdot ||y||$$

\mathbf{C} Spezielle Funktionen

C.1Trigonometrische Funktionen

\mathbf{Winkel}	0	30	45	60	90	180	270
Bogenmass	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$
Sinus	0	$\frac{1}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{\sqrt{3}}{2}$	1	0	-1
Cosinus	1	$\frac{\sqrt{3}}{2}$	$\frac{\sqrt{2}}{2}$	$\frac{1}{2}$	0	-1	0
Tangens	0	$\frac{\sqrt{3}}{3}$	1	$\sqrt{3}$	-	0	-

C.2 Hyperbolische Funktionen

C.3 Exponentialfunktionen

D Sonstiges

Partialbruchzerlegung

Idee Gebrochenrationale Funktion zerlegen

1 Polynomdivision durchführen

2 Nenner des Divisionsrests q(x) faktorisieren, damit Rest umschreiben:

$$\frac{p(x)}{q(x)} = \frac{A_1}{u_1} + \ldots + \frac{A_n}{u_n} \quad \text{wobei } u_1 \cdot \ldots \cdot u_n = q(x)$$

Beachte: Doppelte Faktoren u müssen bis im Quadrat, Dreifache bis hoch 3 usw. vorkommen! $\left(\frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{(x-1)^3} + \ldots\right)$

3 rechte Seite der oberen Gl. auf selben Nenner bringen

4 A_1 bis A_n mit Koeffizientenvergleich und Auflösen eines LGS berechnen

Spezielle Taylorreihen

$$e^{x} = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

$$= 1 + x + \frac{x^{2}}{2!} + \frac{x^{2}}{2!} + \frac{x^{3}}{3!} + \frac{x^{4}}{4!} \dots$$

$$\sin(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{(2n+1)!}$$

$$= x - \frac{x^{3}}{2!} + \frac{x^{5}}{5!} - \frac{x^{7}}{7!} + \frac{x^{9}}{9!} - \dots$$

$$\cos(x) = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n}}{(2n)!}$$

$$= 1 - \frac{x^{2}}{2!} + \frac{x^{4}}{4!} - \frac{x^{6}}{6!} + \frac{x^{8}}{8!} - \dots$$

$$\log(1+x) = \sum_{n=0}^{\infty} (-1)^{n+1} \frac{x^{n}}{n}$$

$$\text{für } -1 \le x \le 1$$

Spezialfall Ausklammern

$$(x^{n} - y^{n}) = (x - y)(x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1})$$

Signum-Funktion

$$sgnx = \begin{cases} 1 & \text{falls } x > 0 \\ 0 & \text{falls } x = 0 \\ -1 & \text{falls } x < 0 \end{cases}$$

D.1 Flächen, Volumenformeln

Kreis
$$(x-x_0)^2+(y-y_0)^2=r^2$$

Kugeloberfläche $(x-x_0)^2+(y-y_0)^2+(z-z_0)^2=r^2$

D.1.1 Masse von speziellen Gebieten

$$\begin{array}{ll} \text{Zylinder} & V = \pi r^2 h \\ \text{Kegel} & V = \frac{\pi}{3} r^2 h \\ \text{Kegelstumpf} & V = \frac{\pi h}{3} (r_1^2 + r_2^2 + r_1 r_2) \\ \text{Pyramide} & V = \frac{1}{3} G h \\ \text{Ellipsoid} & V = \frac{4\pi}{3} abc \end{array}$$

D.2 Euklidischer Raum

Euklidische Norm

$$||x|| = \sqrt{\langle x, x \rangle}$$

Eigenschaften der Euklidischen Norm

positive Definitheit: $\forall x \in \mathbb{R}^n$: $||x|| \ge 0, ||x|| = 0 \Leftrightarrow x = 0$ positive Homogenität: $\forall x \in \mathbb{R}^n, \alpha \in R$: $||\alpha x|| = |\alpha| ||x||$ Dreiecksgleichung: $\forall x, y \in \mathbb{R}^n$: $||x + y|| \le ||x|| + ||y||$

Cauchy-Schwarz

 $\forall x,y \in \mathbb{R}^n: |\langle x,y \rangle| \leq \|x\| \|y\|$

Euklidische Metrik

d(x,y) = ||x-y|| (d: Distanz) positive Definitheit: $d(x,y) \ge 0, d(x,y) = 0 \Leftrightarrow x = y$ Symmetrie: d(x,y) = d(y,x)Dreiecksgleichung: $d(x,z) \le d(x,y) + d(y,z)$

Metrik

Eine Abbildung $d: M \times M \to \mathbb{R}$ heisst Metrik auf M, falls gilt: $d(x,y) \geq 0, d(x,y) = 0 \Rightarrow x = y$ d(x,y) = d(y,x) $d(x,z) \leq d(x,y) + d(y,z)$

D.3 Konstanten

Eulersche Zahl $a_n = (1 + \frac{1}{n})^n < b_n = (1 + \frac{1}{n})^{n+1} \quad n \in \mathbb{N}$

 $g=1+\frac{1}{g} \quad \ h=\frac{1}{g}:=$ Goldener Schnitt