20

CONTROLLING ATM LAYER TRANSFER CHARACTERISTICS BASED ON PHYSICAL LAYER DYNAMIC RATE ADAPTATION

Field of the Invention

This invention relates to communications service over an asynchronous transfer mode (ATM) network and more particularly, to management of data traffic over an endsystem to end-system path which includes an ATM layer connection and a physical layer link having a transfer or transport rate subject to variation as a function of time. Transfer characteristics provided by the network for the ATM layer connection are controlled based on dynamic adaptation to the physical layer rate variation of the link.

Background

Asynchronous transfer mode (ATM) technology is rapidly becoming the technology of choice for broadband digital communications. The fixed length ATM cell is well suited to the transport of multi-media communications including voice, video and data. As a result, ATM technology supports a wide range of services and applications. The ability of ATM technology to adapt to existing systems and architectures results in improved performance and bandwidth utilization.

20

This has resulted in the integration of ATM architectures with other developing technologies in order to gain the advantages offered by ATM.

The rapid expansion of Internet connections and services in recent years has resulted in attempts to increase the physical layer transfer rate, otherwise referred to herein as the transport rate, over existing telephone connections. Although coaxial cable or optical fiber is being used for trunk connections between central offices, connections to private homes and small businesses generally rely on existing local copper loops. These, of course, have a limited bandwidth and attempts to improve utilization of this bandwidth are being investigated constantly.

One of the technologies which will improve transport rate over that obtained by presently used modems and ISDN lines is known as a digital subscriber line (DSL). xDSL technologies include symmetric digital subscriber line (SDSL), asymmetric digital subscriber line (ADSL) and veryhigh rate digital subscriber line (VDSL). In ADSL the asymmetric line provides a higher transport rate in the downstream (i.e. to the ADSL subscriber) direction than it does in the upstream (i.e. from the ADSL subscriber) direction. The range of downstream transport rate typically

20

varies from as little as 32 kb/s to over 8 mb/s and the upstream rate from 32 kb/s to over 640 kb/s. This downstream rate offers considerable improvement over the 160 kb/s rates provided by existing ISDN architectures.

As the potential transport rate increases, minor variations in the local loop as a function of time become significant. The transport rate within the above-mentioned range in xDSL technology is known to vary due to physical conditions of the local loop. These physical conditions include the actual condition of the loop itself, temperature variations and/or electromagnetic interference. Therefore, conventional xDSL termination units, also commonly referred to as xDSL modems, are equipped with dynamic rate adaptation functionality whereby the modem dynamically adjusts its transmission rate according to the measured physical characteristics (i.e., usable transport rate) of the loop. The transmission rate in use by the xDSL modem is stored in an internal register which may be read by an end-system connected to the modem.

Currently, the proposed broadband ADSL service interface with an ATM network utilizes unspecified bit rate (UBR), one of the five categories of service defined in the ATM Forum's Traffic Management Specification, version 4.0. This service

category is intended for non-real time applications such as those that do not require tightly constrained delay and delay variations. UBR service does not specify traffic related service guarantees. Under UBR service a peak cell rate (PCR) is negotiated between the source and destination at connection setup. The source can send data up to the negotiated PCR.

As indicated previously, the transport rate characteristics of the xDSL link forming part of the path between the two end-systems may change during the time of the connection (i.e. after the connection has been set up). If, for example, the transport rate decreases during this interval the xDSL link will not be able to carry the data at the negotiated transmission rate of the source. As a result, congestion will occur at the interface between the ATM path and the xDSL link leading to packet discard and a reduction in system performance.

Another network architecture in which a transmission link
may have a variable transport rate is in a wireless
configuration. In this example, the data is transmitted
from the ATM network interface card to the destination
across a wireless link. Such wireless links are subject to
transport rate variations due to atmospheric conditions

changing path lengths, etc. Again, if the transport rate characteristic is reduced after the connection has been negotiated, congestion will occur.

A third example of a transmission link having a dynamically varying transport rate is an inverse multiplexing over ATM (IMA) system. In this example, one of the multi paths through the network may experience a temporary failure which results in increase demands on the bandwidth requirements of the remaining paths. If the connections are already operating at or near their physical capacity they will be unable to satisfy the negotiated peak cell rate (PCR) resulting in congestion.

There is, therefore, a requirement to improve the management of data traffic through an ATM path that includes a link having a dynamically variable physical layer transport rate.

Summary of the Invention

20

Therefore in accordance with a first aspect of the present invention there is provided in a communications system for transporting data traffic from a source end point to a destination end point over a path which includes a transmission link having a physical layer transport rate

which is subject to variations as a function of time, a method of managing transmission of the data traffic through the system, the method comprising: monitoring the physical layer transport rate of the transmission link; sending to the source end point a management cell including rate information based on the monitored physical layer transport rate; and adjusting, by the source end point, the transmission rate responsive to the rate information in the management cell.

10

20

In accordance with a second aspect of the invention there is provided in a communications system for transporting data traffic from a source end point to a destination end point over a path which includes a transmission link having a physical layer transport rate which is subject to variations as a function of time, a system for managing transmission of the data traffic through the system, the system comprising: monitoring means associated with the physical layer to monitor the transport rate of the transmission link; sending means to send to the source end point a management cell including rate information based on the monitored physical layer transport rate; and adjusting means, at the source end point, to adjust the transmission rate responsive to the rate information in the management cell.

20

In accordance with a further aspect of the invention there is provided in a communications system for transporting data traffic from an a source end point to a destination end point over a path which includes a transmission link having a physical layer transport rate which is subject to variations as a function of time, a method of managing transmission of the data traffic through the system, the method comprising: continually monitoring the physical layer transport rate of the transmission link; generating a management cell in response to a change in the monitored physical layer transport rate which exceeds a threshold value, the management cell including rate information based on the monitored transport rate; sending to the source end point the management cell; and adjusting the source end point transmission rate in response to the rate information in the management cell.

In a still further aspect of the invention there is provided in a communications system for transporting data traffic from an a source end point to a destination end point over a path which includes a transmission link having a physical layer transport rate which is subject to variations as a function of time, a system for managing transmission of the data traffic through the system, the system comprising:

monitoring means for monitoring the physical layer transport

20

rate of the link; generating means to generate a management cell in response to a change is the monitored physical layer transport rate which exceeds a threshold value, the management cell including information based on the monitored transport rate; means to send the management cell to the source end point; and adjusting means at the source end point to adjust the transmission rate in response to the rate information in the management cell.

In accordance with a further aspect of the present invention there is provided in a communications system for transporting data traffic from a source end point to a destination end point over an ATM path which includes a transmission link having a physical layer transport rate which is subject to variations as a function of time, a method of managing transmission of data traffic through the The method comprises: shaping data connections from the source end point in accordance with the ATM available bit rate (ABR) category of service, the ABR connection including integrated resource management (RM) cells for carrying congestion information back to the source over a feedback path; monitoring dynamically the transport rate of the transmission link and recording a rate derived from the monitored transport rate in the RM cell; returning the RM cell including the recorded dynamic transport rate of the

20

 \mathbb{F}_{p}

transmission link to the source; and adjusting the send rate of the source in accordance with the transport rate information.

In accordance with another aspect of the present invention there is provided a system for managing data traffic from a source end point to a destination end point over an ATM path, the ATM path including a transmission link having a dynamically variable physical layer transport rate. system comprises shaping means in the source to shape the data traffic connection to comply with ATM available bit rate (ABR) category of service, the ABR connection including an integrated resource management (RM) cell for returning explicit rate congestion information to the source over a feedback path; monitoring means associated with the transmission link to monitor dynamically, the physical layer transport rate capability of the transmission link; recording means in the monitoring means to record a value derived from the transport rate capability in the RM cell; and control means in the source to change the send rate of the data traffic in accordance with the transport rate information.

The invention advantageously uses the instantaneous physical layer information on transmission rates to provide control

of the ATM layer congestion control loop, in advance of the onset of congestion and cell loss.

Brief Description of the Drawings

The invention will now be described, by way of exemplary embodiments, in greater detail with reference to the attached drawings wherein:

10 Figure 1 illustrates an ATM system including an ADSL link;

Figure 2 illustrates an ABR connection with resource management cells;

Figure 3A is a flow chart of the ABR service combining physical layer rate information with ATM layer traffic load;

Figure 3B is a flow diagram of a spontaneous management cell generation process in response to a dramatic change in transport rate of the physical layer;

Figure 4 illustrates the system of Figure 1 for bidirectional traffic;

Figure 5 illustrates a variation of the network shown in Figure 4;

Figure 6 illustrates a further variation of the network of Figure 4;

Figure 7 is an illustration of an ATM network including a wireless link; and

10 Figure 8 illustrates an ATM network with an IMA connection.

Detailed Description of the Invention

Turning to Figure 1, illustrated is an exemplary clientserver based data processing system comprising an ATM
network 10, communicatively coupled to which are two
conventional end-systems 11 and 12. End-system 11 is
embodied by a data server 13 connected through an ATM
network interface card (NIC) 14 to the ATM network 10. Endsystem 12 is embodied by a personal computer functioning as
a client 15 connected through an ADSL link 16 and ATM
termination unit 17 to the ATM network 10. The ADSL link 16
is constituted by two ADSL modem 18 and 19, with which the
client 15 and ATM termination unit 17 are respectively
equipped and which are interconnected by a typical

20

subscriber loop 20. A telephone 22 may be connected to the ADSL line with or without POTS splitters 23.

Although a client-server architecture is specifically illustrated herein, it should be understood that end systems 11 and 12 can represent any data processing system including, for instance, other communications networks.

Bi-directional data traffic, identified as upstream and downstream in Figure 1, is exchanged between the two endsystems 11 and 12. With respect to upstream traffic, the client 15 (end-system 12) and server 13 (end-system 11) are the source and destination, respectively. However, for downstream traffic, server 13 (end-system 11) is the source and the client 15 (end-system 12) is the destination.

The ATM termination unit 17 interfaces traffic to and from the ATM network 10 with the ADSL link 16, and includes a buffer 21 for managing egress of downstream traffic onto the link 16. An example of the ATM termination unit 17 is an access node or digital subscriber loop access multiplexer (DSLAM). The ATM termination unit 17 together with the ATM NIC 14 are responsible for shaping ATM layer traffic between their respective end-systems 12 and 11.

Under current proposed schemes, in respect of downstream traffic, data from source end-system 11 is shaped to comply with the ATM Forum's unspecified bit rate (UBR) category of service. This means that at connection setup source end-system 11, network 10 and destination end-system 12 negotiate a data transport rate which represents the peak cell rate which the system can accommodate at that time. Once negotiated the peak cell rate remains constant until the connection is torn down.

10

20

ADSL link 16 represents a copper local loop 20 commonly found in private homes and small businesses. It is known that the physical characteristics of ADSL link 16 may change with time due to the physical condition of the link, temperature variations or electromagnetic interference. Ιf the physical characteristic of the loop 20 changes such that the peak cell rate carried by the ADSL link 16 is reduced after the connection has been negotiated, ADSL link 16 will not be able to carry all of the data traffic sent out from source end-system 11. In this case, buffer 21 will become full and a congestion condition will result. Eventually buffer 21 will overflow resulting in cell traffic discard and loss of continuity.

20

According to the present invention this problem is overcome by shaping traffic from source 12 to comply with the ATM Forum's available bit rate (ABR) category of service. As shown in Figure 2, ABR class traffic typically includes data cells 28 and resource management (RM) cells 26 integrated into the traffic flow from source end-system 11. network element 24 along the path within the ATM network monitors its local congestion conditions and may mark the resource management cell with an indication of bandwidth availability through that element. When the resource management cells reach destination end-system 12 they are returned towards the source end-system 11 along feedback path 30. Each RM cell, passing back through the network elements 24 receives updated congestion information and returns to the source end-system 11 with an explicit rate (ER) of the available bandwidth or the peak cell rate permitted by the source.

Conventional ER implementations are designed to function with constant speed links carrying variable loads or data traffic. The ER methodology, according to this invention, handles variable rate links along with variable load. A quick convergence to the available or usable bandwidth of a particular variable rate link is desired, and the use of physical layer information about the instantaneous

20

transmission rate of the link achieves increased convergence speed.

Figure 3A, in conjunction with reference to Figure 1 illustrates the manner in which the ABR category of service is implemented in the present invention. Downstream data traffic egressing from source end-system 11, specifically server 13 is shaped to comply with the ABR category of Starting at step S1, the ATM termination unit 17 receives an RM cell, responsive to which the destination end-system 12 determines the instantaneous physical layer rate of the ADSL link 16, at step S2. Such is effected by the ADSL modem 19 measuring (monitoring) the physical layer rate over the loop 20 in a conventional manner and providing the measured physical link rate in an internal register, or memory location from which this information is retrieved by the ATM termination unit 17. The ATM termination unit 17, at step S3, then computes a new allowed cell rate (ACR) as a function of measured ATM layer bandwidth fair sharing, local to unit 17, and the measured instantaneous physical rate of the ADSL link 16. At step S4, the ER value in the received RM cell is compared to the computed ACR. If the ACR is less than that ER, step S5, then the computed ACR is inserted as the new ER parameter in the RM cell, and otherwise advance directly to step S6. Lastly, at step S6, The RM cell of the

20

ABR traffic is returned to the source end-system 11 in order to appropriately modify the send rate of traffic leaving source end-system 11. Thus, if the physical characteristics of ADSL link 16 between the ATM termination unit 17 and destination client 15 changes during the time of the connection, the ACR is now derived from the transport rate (i.e. less than or equal to transport rate) recorded in the ER field of the RM cell and is returned to ATM NIC 14 of the source end-system 11 over the feedback path, thereby shaping the downstream traffic. Consequently, previously occurring congestion problems are avoided.

Conditions may occur in the system wherein it is advantageous to independently generate a management cell containing allowable rate information instead of waiting for the next resource management cell in the ABR loop to carry the new transmission rate to the source end point. On start up or initiation, for example, it may be beneficial to have the instantaneous allowable cell rate passed immediately to the source via an autonomously generated RM cell. Another situation in which it is beneficial to immediately send rate information respecting the physical layer transport rate to the source end is when there is a sudden or dramatic change in available bandwidth. This might occur, for example, when the telephone 22 shown bridging the xDSL link in Figure 1

20

goes off-hook. In accordance with one aspect of the invention a change in available bandwidth such as this will lead to the generation of a management cell containing new transport rate information and this management cell is sent to the source for adjustment of the transmission rate.

It is within the scope of the present invention to have the access modem generate a management cell containing rate information any time a change in transport rate exceeds a preset threshold. This feature may be implemented independently of the resource management cells associated with the ABR category of service or in combination therewith. By immediately generating a management cell with new rate information each time a change in the transport rate exceeds a set threshold potential congestion can be avoided by implementing an adjusted transmission rate earlier. If the traffic is shaped to the ABR category of service the frequency of resource management cells or stated differently the number of RM cells can be reduced as any change in transport rate in excess of the threshold will automatically lead to the generation of a management cell with new rate information. The reduced number of RM cells results in an overall savings of bandwidth to the system as RM cells do not carry data traffic. This feature also results in better buffer utilization and smaller queues with

20

lower cell loss. In the ABR implementation RM cells are still treated normally by other multiplexing or switching nodes in the system, and this feature is interoperable with standard ABR behaviours.

Figure 3B illustrates this aspect of the invention. At step S10 there is a detection of an instantaneous change in transport rate of the physical layer of the transmission link (ADSL link in Figure 1). This change may be caused, for example, by telephone 22 going off-hook. The actual rate reduction is computed at step S11 and this computed rate is compared with the cell rate or link bandwidth negotiated at call set up (step S12). If the reduction is less than a threshold value the occurrence of the detected reduction is disregarded. If, however, the reduction is greater than the threshold value an allowed cell rate (ACR) is computed at step S13. A management cell is generated and rate information based on the ACR is inserted in the management cell at step S14. Finally the management cell with rate information is sent to the source end point and the transmission rate of the system is adjusted accordingly. The foregoing description is based primarily on the detection of a reduction in the transport rate of the physical layer. It will be apparent that this aspect applies to a situation in which the transport rate dramatically increases. This could

20

occur, for example, when the system shown in Figure 1 with telephone 22 off hook has established a stable transmission rate and the telephone goes on hook. The available bandwidth will suddenly increase and this increase will be detected by the access modem. The management cell generated in this case will contain information which will lead to an increase in transmission rate for the system.

Moreover, different bandwidth change thresholds (ΔBW) can be used, dependent upon whether the physical layer transport rate is decreasing or increasing. It may be advantageous to have a smaller ΔBW when the transport rate decreases, thereby adjusting more quickly to the change. Alternatively, one might choose not to send independently generated RM cells when the physical transport rate increases.

It will also be apparent to one skilled in the art that the processes shown in the flow diagrams of Figures 3A and 3B can be combined. Traffic shaped to ABR and having RM cells carrying rate information will be transported through the system in a feedback control loop as previously discussed. In the event of a dramatic or sudden change in the transport rate of the physical layer a management cell will be generated spontaneously and sent to the source end point for transmission rate adjustment. In view of this the number of

20

RM cells in the data stream as part of the control loop can be reduced. The autonomous generation of RM cells allows the control loop to be reduced, while still maintaining high efficiency.

Traffic management for the ATM based system in Figure 1 has been described thus far having regard to downstream traffic, for which the ABR service class has been used to shape traffic dependent upon the physical layer transmission rate of the ADSL link 16. Of course, ABR may be used to shape the upstream traffic as well. However, some network level efficiencies may be realized by employing a different class of service, e.g. either ABR or UBR, for each direction of such bi-directional traffic. Figures 4 to 6 depict various end-system configurations and the preferred service classes to be used.

Figure 4 relates to bi-directional traffic flow between end systems 40 and 41. In the downstream direction traffic from source end-system 40 to destination end-system 41 is shaped to conform to the ABR category of service as explained above. If, however, traffic is flowing in the upstream direction from source end-system 41 towards destination end-system 40, the change in physical characteristics of ADSL link 42 will not lead to downstream congestion. In this

20

case, traffic may be shaped by the ATM termination unit 43 to the UBR category of service for the upstream direction.

It is noted that the UBR class of service does not transfer resource management cells between end systems, whereas the ABR class of services provides for RM cells in both directions. Consequently, employment of ABR service for downstream traffic (i.e., from end system 40 to end system 41) and UBR service for upstream traffic (i.e., from end system 41 to end system 40) achieves a more efficient utilization of network bandwidth resources because of less overhead.

Figures 5 and 6 illustrate different network architectures in which at least a portion of the bi-directional path between end systems 40 and 41 includes an ADSL link 42. As shown in Figure 5 the path includes optical fiber 44 providing an OC3 link between an access switch 45 of the ATM network 46 and the termination unit 43 which includes ABR interface 47 and UBR interface 48. As in the previous example downstream traffic from end system 40 to end-system 41 is shaped to conform to ABR category of service whereas upstream traffic from end system 41 to termination unit 43 may comply with UBR category of service. It is, of course, within the scope of the invention to shape traffic in

20

accordance with ABR category of service in both directions. Figure 6 is yet a further example in which the ADSL link is between two ATM networks. As in previous examples, traffic from end source to end source is shaped to ABR but may be shaped to UBR within the network at the interface to the ADSL link 42.

As indicated previously, the ADSL link represents one example wherein physical characteristics of the path may change dynamically to alter the transport rate capabilities. Figure 7 represents a further example incorporating a wireless path. In this example, virtual destination 50 represents the termination unit for ATM traffic. Destination 52 is configured to received data traffic from virtual destination 50. Traffic between the destination 52 and virtual destination 50 is carried through a wireless path from transmitter 54 to receiver 56. The physical characteristics of the wireless path are also subject to variations due to changes such as environmental conditions. As in the previous example, if the conditions change after the peak cell rate has been negotiated the virtual destination will not be able to transmit data across the wireless link if the data is shaped to UBR. Under ABR shaping the new permitted transport rate is returned to the

20

source (not shown) in order to avoid congestion at virtual destination 50.

Figure 8 is a high level diagram representing an inverse multiplexing over ATM (IMA) configuration. In this example, traffic from virtual destination 50 to actual destination 56 is shared by virtual channel connections 58. multiplexing occurs at destination 56. A UBR connection between virtual destination 50 and destination 56 will carry traffic at the negotiated rate at connection setup. If one of the intermediate paths 58 is lost or temporarily interrupted, the remaining virtual channel connections will be called on to carry that portion of the traffic which was previously carried by the interrupted connection. This may result in an inability to transport data at the negotiated rate, again resulting in congestion. If the traffic is shaped to the ABR category of service, however, the need to share a greater transport rate will be recorded in the resource management cell and the send rate from the source revised accordingly.

Embodiments of the invention described above include an ATM network interconnecting the two end-systems. However, it is noted that the invention may be readily applied to any data communications networking technology implementing a class of

service providing an explicit rate flow control. An explicit rate flow control specifies the particular rate at which a network connection may carry data traffic. Frame relay and Internet Protocol may some day offer various classes of service and explicit rate based service similar to ATM's ABR.

Although certain embodiments of the present invention have been described and illustrated it will be apparent to one skilled in the art that other changes can be made to the basic concept. It is to be understood, however, that such changes will fall within the scope of the invention as defined by the appended claims.