TOWARDS A GENERAL NESTED SOFT-COLLINEAR SUBTRACTION METHOD FOR NNLO CALCULATIONS

HAMBURG, EPS-HEP2023

Davide Maria Tagliabue

In collaboration with:
F. Devoto, K. Melnikov, R. Röntsch, C. Signorile-Signorile

WHAT IS THE STATUS?

- Any collider process is characterized by its differential partonic cross section which is often computed in **fixed-order perturbation theory**
- The orders in the perturbative expansion are referred to as LO, NLO, NNLO and so on

- NLO: solved in full generality almost a decade ago NNLO: noteworthy results have been achieved up to now N³LO: some results are already available
- Two main difficulties: IR singularities, arising from real radiation, and multi-loop amplitude calculations
- About 1R singularities: they are unphysical and require specific methods to arrive at a finite physical result. Such methods are referred to as **SUBTRACTION SCHEMES**

WHY WE STUDY $P + P \rightarrow X + N$ gluons AT NNLO

Up to now NSC has only been applied to simple processes

WHY WE STUDY $P + P \rightarrow X + N \text{ gluons}$ AT NNLO

Up to now NSC has only been applied to simple processes

WHY WE STUDY $P + P \rightarrow X + N \text{ gluons}$ AT NNLO

Simple = limited number of hard partons

Up to now NSC has only been applied to simple processes

WHY WE STUDY $P + P \rightarrow X + N \text{ gluons}$ AT NNLO

Up to now NSC has only been applied to simple processes

Up to now NSC has only been applied to simple processes

WHY WE STUDY $P + P \rightarrow X + N \text{ gluons}$ AT NNLO

[Devoto, Melnikov, Röntsch, Signorile-Signorile, **D.M.T**., to appear]

What is a good prototype of the problem?

 $P+P \rightarrow X+N$ gluons

Up to now NSC has only been applied to simple processes

WHY WE STUDY $P + P \rightarrow X + N \text{ gluons}$ AT NNLO

This talk!

[Devoto, Melnikov, Röntsch, Signorile-Signorile, **D.M.T**., to appear]

Need to go beyond:

$$P + P \rightarrow X + N Jets$$

[Buonocore et al. '23]

What is a good prototype of the problem?

$$\rightarrow$$
 P + P \rightarrow X + N gluons

Remaining bottleneck?

double-loop

amplitudes

 $N \rightarrow 3$

[Czakon et al. '21]

[Catani et al. '22]

Up to now NSC has only been applied to simple processes

WHY WE STUDY $P + P \rightarrow X + N \text{ gluons}$ AT NNLO

This talk!

[Devoto, Melnikov, Röntsch, Signorile-Signorile, **D.M.T**., to appear]

Need to go beyond:

 $P+P \rightarrow X+N$ Jets

 $N \rightarrow 3$

[Czakon et al. '21] [Catani et al. '22] [Buonocore et al. '23]

What is a good prototype of the problem?

 \rightarrow P + P \rightarrow X + N gluons

Remaining bottleneck?

double-loop

amplitudes

< If someone gives me the finite part of the double-loop amplitude of any kind of process, then I can give back the analytical expression of the whole partonic cross section. >>

Virtual corrections ${
m d}\hat{\sigma}^{
m V}$: the IR content of virtual amplitude is known [Catani '98]. Through the operator

$$\bar{I}_{1}(\epsilon) = \frac{1}{2} \sum_{i \neq j}^{Np} \frac{\mathscr{V}_{i}^{\text{sing}}(\epsilon)}{T_{i}^{2}} (T_{i} \cdot T_{j}) \left(\frac{\mu^{2}}{2p_{i} \cdot p_{j}}\right)^{\epsilon} e^{i\pi\lambda_{ij}\epsilon} \qquad \qquad \mathscr{V}_{i}^{\text{sing}}(\epsilon) = \frac{T_{i}^{2}}{\epsilon^{2}} + \frac{\gamma_{i}}{\epsilon} N_{p} = N + 2$$

$$\mathcal{V}_{i}^{\mathbf{sing}}(\epsilon) = \frac{T_{i}^{2}}{\epsilon^{2}} + \frac{\gamma_{i}}{\epsilon}$$
$$N_{p} = N + 2$$

the divergent part of ${
m d}\hat{\sigma}^{
m V}$ can be written as

$$I_{\mathbf{V}}(\boldsymbol{\epsilon}) = \bar{I}_1(\boldsymbol{\epsilon}) + \bar{I}_1^{\dagger}(\boldsymbol{\epsilon})$$

Virtual corrections $d\hat{\sigma}^{V}$: the IR content of virtual amplitude is known [Catani '98]. Through the operator

$$\bar{I}_{1}(\epsilon) = \frac{1}{2} \sum_{i \neq j}^{Np} \frac{\mathcal{V}_{i}^{\text{sing}}(\epsilon)}{\mathbf{T}_{i}^{2}} (\mathbf{T}_{i} \cdot \mathbf{T}_{j}) \left(\frac{\mu^{2}}{2p_{i} \cdot p_{j}}\right)^{\epsilon} e^{i\pi\lambda_{ij}\epsilon}$$

$$\mathcal{V}_{i}^{\text{sing}}(\epsilon) = \frac{\mathbf{T}_{i}^{2}}{\epsilon^{2}} + \frac{\gamma_{i}}{\epsilon}$$

$$N_{p} = N + 2$$

the divergent part of ${
m d}\hat{\sigma}^{
m V}$ can be written as

$$I_{\mathbf{V}}(\boldsymbol{\epsilon}) = \bar{I}_{1}(\boldsymbol{\epsilon}) + \bar{I}_{1}^{\dagger}(\boldsymbol{\epsilon})$$

Real corrections $d\hat{\sigma}^R$: we would like something similar

We use **NESTED SOFT-COLLINEAR SCHEME** (FKS at NLO) to regularize this divergences [Caola, Melnikov, Röntsch '17]

$$\mathrm{d}\hat{\sigma}^{\mathrm{R}} = \left\langle S_{\mathfrak{m}} F_{\mathrm{LM}}(\mathfrak{m}) \right\rangle + \sum_{i=1}^{N_p} \left\langle \bar{S}_{\mathfrak{m}} C_{i\mathfrak{m}} \Delta^{(\mathfrak{m})} F_{\mathrm{LM}}(\mathfrak{m}) \right\rangle + \left\langle \mathcal{O}_{\mathrm{NLO}} \Delta^{(\mathfrak{m})} F_{\mathrm{LM}}(\mathfrak{m}) \right\rangle$$
Soft term
$$[S_{\mathfrak{m}}: E_{\mathfrak{m}} \to 0]$$

$$[C_{i\mathfrak{m}}: \theta_{i\mathfrak{m}} \to 0]$$
Hard-Collinear term
$$[C_{i\mathfrak{m}}: \theta_{i\mathfrak{m}} \to 0]$$

It turns out that the **soft term** can be written by means of an **operator** that, at least in its soul, is very **close to** $I_{V}(\epsilon)$:

$$I_{\mathbf{S}}(\boldsymbol{\epsilon}) = -\frac{(2E_{\max}/\mu)^{-2\epsilon}}{\epsilon^2} \sum_{i \neq j}^{N_p} \eta_{ij}^{-\epsilon} K_{ij} (\boldsymbol{T}_i \cdot \boldsymbol{T}_j) \qquad \eta_{ij} = (1 - \cos \theta_{ij})/2 K_{ij} \sim \eta_{ij}^{1+\epsilon} {}_2F_1(1,1,1 - \epsilon, 1 - \eta_{ij})$$

$$I_{\mathbf{S}}(\boldsymbol{\epsilon}) = -\frac{(2E_{\max}/\mu)^{-2\epsilon}}{\epsilon^2} \sum_{i \neq j}^{N_p} \eta_{ij}^{-\epsilon} K_{ij} (\boldsymbol{T}_i \cdot \boldsymbol{T}_j) \qquad \eta_{ij} = (1 - \cos \theta_{ij})/2$$

$$K_{ij} \sim \eta_{ij}^{1+\epsilon} {}_2F_1(1,1,1 - \epsilon, 1 - \eta_{ij})$$

Combination of $I_{V}(\epsilon) + I_{S}(\epsilon)$: not only does it vanishes the pole $\mathcal{O}(\epsilon^{-2})$, but it makes the pole $\mathcal{O}(\epsilon^{-1})$ free of color-correlations

$$\begin{split} I_{\mathrm{V,S}}(\epsilon) &\sim \pmb{T}_i \cdot \pmb{T}_j \qquad \pmb{T}_i = \text{matrices in color space} \\ N_p &< 4 \Rightarrow \mathrm{d}\hat{\sigma}^{\mathrm{NLO}} \sim \frac{C_{A,F}}{\epsilon} \left\langle M_0 \, | \, M_0 \right\rangle & \qquad \text{NO color-correlations} \\ N_p &\geq 4 \Rightarrow \mathrm{d}\hat{\sigma}^{\mathrm{NLO}} \sim \frac{1}{\epsilon} \left\langle M_0 \, | \, \pmb{T}_i \cdot \pmb{T}_j \, | \, M_0 \right\rangle & \qquad \text{YES color-correlations} \end{split}$$

This result for $I_{V}(\epsilon) + I_{S}(\epsilon)$ is trivially **dependent** on the **number of gluons** in the final state

What about the hard-collinear term? Some parts vanish against the DGLAP contribution, the remaining part can be collected within the following Catani-like operator

$$I_{\mathbf{C}}(\boldsymbol{\epsilon}) = \sum_{i=1}^{N_p} \frac{\Gamma_{i,f_i}}{\epsilon} \qquad \Gamma_{i,f_i} = \left[\left(\frac{2E_a}{\mu} \right)^{-2\epsilon} \frac{\Gamma^2(1-\epsilon)}{\Gamma(1-2\epsilon)} \right] \left[\gamma_{f_a} + C_{f_a} \frac{1-e^{-2\epsilon L_a}}{\epsilon} \right], \quad a = 1,2$$

$$\Gamma_{i,f_i} = \left[\left(\frac{2E_i}{\mu} \right)^{-2\epsilon} \frac{\Gamma^2(1-\epsilon)}{\Gamma(1-2\epsilon)} \right] \gamma_{z,g \to gg}^{22}(\epsilon, L_i), \quad i \in [3,N_p]$$

Once more the definition depends in a trivial way on N_p

What about the hard-collinear term? Some parts vanish against the DGLAP contribution, the remaining part can be collected within the following Catani-like operator

$$I_{\mathbf{C}}(\boldsymbol{\epsilon}) = \sum_{i=1}^{N_p} \frac{\Gamma_{i,f_i}}{\epsilon} \qquad \Gamma_{i,f_i} = \left[\left(\frac{2E_a}{\mu} \right)^{-2\epsilon} \frac{\Gamma^2(1-\epsilon)}{\Gamma(1-2\epsilon)} \right] \left[\gamma_{f_a} + C_{f_a} \frac{1-e^{-2\epsilon L_a}}{\epsilon} \right], \quad a = 1,2$$

$$\Gamma_{i,f_i} = \left[\left(\frac{2E_i}{\mu} \right)^{-2\epsilon} \frac{\Gamma^2(1-\epsilon)}{\Gamma(1-2\epsilon)} \right] \gamma_{z,g \to gg}^{22}(\epsilon, L_i), \quad i \in [3,N_p]$$

Once more the definition depends in a trivial way on N_p

 $I_{\rm C}(\epsilon)$ cancels perfectly the pole $\mathcal{O}(\epsilon^{-1})$ left by $I_{\rm V}(\epsilon) + I_{\rm S}(\epsilon)$. It is thus natural to introduce the **total operator**

$$I_{\mathbf{T}}(\epsilon) = I_{\mathbf{V}}(\epsilon) + I_{\mathbf{S}}(\epsilon) + I_{\mathbf{C}}(\epsilon)$$
 pole free fully general w.r.t. N_p

In this way the final result for the NLO fits in a line:

$$\mathrm{d}\hat{\sigma}^{\mathrm{NLO}} = [\alpha_{s}] \left\langle I_{\mathrm{T}}(\epsilon) \cdot F_{\mathrm{LM}} \right\rangle + [\alpha_{s}] \left[\left\langle P_{aa}^{\mathrm{NLO}} \otimes F_{\mathrm{LM}} \right\rangle + \left\langle F_{\mathrm{LM}} \otimes P_{aa}^{\mathrm{NLO}} \right\rangle \right] + \left\langle F_{\mathrm{LV}}^{\mathrm{fin}} \right\rangle + \left\langle \mathcal{O}_{\mathrm{NLO}} \Delta^{(\mathfrak{m})} F_{\mathrm{LM}}(\mathfrak{m}) \right\rangle$$

$$d\hat{\sigma}^{\text{NNLO}} = d\hat{\sigma}^{\text{VV}} + d\hat{\sigma}^{\text{RV}} + d\hat{\sigma}^{\text{RR}} + d\hat{\sigma}^{\text{Pdf}}$$
Double-Virtual Real-Virtual Double-Real PDFs Renor.

Consider for instance ${
m d}\hat{\sigma}^{\rm VV}\Rightarrow$ it depends quadratically on $ar{I}_1(\epsilon)$ and $ar{I}_1^{\dagger}(\epsilon)$

$$\begin{split} &\Rightarrow \bar{I}_1, \bar{I}_1^\dagger \sim \pmb{T}_i \cdot \pmb{T}_j \\ &\Rightarrow \mathrm{d}\hat{\sigma}^\mathrm{VV} \sim (\pmb{T}_i \cdot \pmb{T}_j) \cdot (\pmb{T}_k \cdot \pmb{T}_l) \quad \text{double color-correlations} \end{split}$$

The **same** happens for $d\hat{\sigma}^{RV}$ and $d\hat{\sigma}^{RR}$. Dealing with such double-color correlated terms (**DCC**) in general makes the **structure** of the poles **very complicated**

WHAT HAPPENS AT NNLO?

$$d\hat{\sigma}^{\text{NNLO}} = d\hat{\sigma}^{\text{VV}} + d\hat{\sigma}^{\text{RV}} + d\hat{\sigma}^{\text{RR}} + d\hat{\sigma}^{\text{pdf}}$$
Double-Virtual Real-Virtual Double-Real PDFs Renor.

Consider for instance ${ m d}\hat{\sigma}^{\rm VV}\Rightarrow$ it depends quadratically on $ar{I}_1(\epsilon)$ and $ar{I}_1^{\dagger}(\epsilon)$

$$\begin{split} &\Rightarrow \bar{I}_1, \bar{I}_1^\dagger \sim T_i \cdot T_j \\ &\Rightarrow \mathrm{d}\hat{\sigma}^\mathrm{VV} \sim \left(T_i \cdot T_j \right) \cdot \left(T_k \cdot T_l \right) \quad \text{double color-correlations} \end{split}$$

The **same** happens for $d\hat{\sigma}^{RV}$ and $d\hat{\sigma}^{RR}$. Dealing with such double-color correlated terms (**DCC**) in general makes the **structure** of the poles **very complicated**

<u>The strategy</u>: isolate DCC in $d\hat{\sigma}^{VV}$ and then combine them with those contained within $d\hat{\sigma}^{RV}$ and $d\hat{\sigma}^{RR}$

The goal: assemble all these DCC into an expression that we expect being quadratic in $I_{\rm T}(\epsilon)$

WHAT HAPPENS AT NNLO?

WHAT HAPPENS AT NNLO?

Here it is what we find [Devoto, Melnikov, Röntsch, Signorile-Signorile, **D.M.T**., to appear]

$$Y_{\text{VV}} = \frac{\left[\alpha_{s}\right]^{2}}{2} \left\langle M_{0} \middle| \bar{I}_{1}^{2} + (\bar{I}_{1}^{\dagger})^{2} + 2\bar{I}_{1}^{\dagger} \bar{I}_{1} \middle| M_{0} \right\rangle + \dots$$

$$Y_{\text{RR}}^{(\text{ss})} = \frac{\left[\alpha_{s}\right]^{2}}{2} \left\langle M_{0} \middle| I_{\text{S}}^{2} \middle| M_{0} \right\rangle + \dots$$

$$Y_{\text{RR}}^{(\text{shc})} = \left[\alpha_{s}\right]^{2} \left\langle M_{0} \middle| I_{\text{S}} I_{\text{C}} \middle| M_{0} \right\rangle + \dots$$

$$Y_{\text{RR}}^{(\text{cc})} = \frac{\left[\alpha_{s}\right]^{2}}{2} \left\langle M_{0} \middle| I_{\text{C}}^{2} \middle| M_{0} \right\rangle + \dots$$

$$Y_{\text{RV}}^{(\text{shc})} = \frac{\left[\alpha_{s}\right]^{2}}{2} \left\langle M_{0} \middle| I_{\text{S}} \bar{I}_{1} + \bar{I}_{1}^{\dagger} I_{\text{S}} \middle| M_{0} \right\rangle + \dots$$

$$Y_{\text{RV}}^{(\text{shc})} = \left[\alpha_{s}\right]^{2} \left\langle M_{0} \middle| (\bar{I}_{1} + \bar{I}_{1}^{\dagger}) I_{\text{C}} \middle| M_{0} \right\rangle + \dots$$

Once combined, these objects return

NB square of NLO

$$Y = \frac{\left[\alpha_{\rm S}\right]^2}{2} \left\langle M_0 \left| \left[I_{\rm V} + I_{\rm S} + I_{\rm C}\right]^2 \left| M_0 \right\rangle + \dots \right| \equiv \left\langle M_0 \left| I_{\rm T}^2 \left| M_0 \right\rangle + \dots \right|$$

WHAT HAPPENS AT NNLO?

The benefits of introducing these Catani's like operators:

the problem of double color-correlated poles disappears, since everything is written in terms of $I_{\rm T}^2(\epsilon)$, which is $\mathcal{O}(\epsilon^0)$

the **definition** of $I_{\mathbf{T}}(\epsilon)$ depends trivially on N_p so the result we got is **fully general w.r.t. the final state**

We do not explicitly calculate the individual sub-blocks of the process. Instead, we write each of these in terms of $I_{\rm V}(\epsilon)$, $I_{\rm S}(\epsilon)$ and $I_{\rm C}(\epsilon)$, then recombine them to get $I_{\rm T}(\epsilon)$. The cancellation of the poles takes place automatically

Once combined, these objects return

NB square of NLO

$$Y = \frac{\left[\alpha_{\rm S}\right]^2}{2} \left\langle M_0 \left| \left[I_{\rm V} + I_{\rm S} + I_{\rm C}\right]^2 \left| M_0 \right\rangle + \dots \right| \equiv \left\langle M_0 \left| I_{\rm T}^2 \left| M_0 \right\rangle + \dots \right|$$

WHAT HAPPENS AT NNLO?

The benefits of introducing these Catani's like operators:

the problem of double color-correlated poles disappears, since everything is written in terms of $I_{\mathbf{T}}^{2}(\epsilon)$, which is $\mathcal{O}(\epsilon^{0})$

the **definition** of $I_{\mathbf{T}}(\epsilon)$ depends trivially on N_p so the result we got is **fully general w.r.t. the final state**

We do not explicitly calculate the individual sub-blocks of the process. Instead, we write each of these in terms of $I_{\rm V}(\epsilon)$, $I_{\rm S}(\epsilon)$ and $I_{\rm C}(\epsilon)$, then recombine them to get $I_{\rm T}(\epsilon)$. The cancellation of the poles takes place automatically

If $N_p \geq 4$ $[\bar{I}_1, \bar{I}_1^{\dagger}] \neq 0$ $[\bar{I}_1^{\dagger}, \bar{I}_S] \neq 0 \rightarrow f_{abc} T_i^a T_j^b T_k^c$ $[\bar{I}_1, \bar{I}_S] \neq 0$

Once combined, these objects return

$$Y = \frac{\left[\alpha_{\rm S}\right]^2}{2} \left\langle M_0 \left| \left[I_{\rm V} + I_{\rm S} + I_{\rm C}\right]^2 \left| M_0 \right\rangle + \dots \right\rangle = \left\langle M_0 \left| I_{\rm T}^2 \left| M_0 \right\rangle + \dots \right\rangle$$

CONCLUSIONS AND OUTLOOK

We can also vanish the poles $\sim f_{abc}T_i^aT_j^bT_k^c$. How this happens is non trivial

2 There are still **terms** that **do not fit** $I_{\mathbf{T}}(\epsilon)$

The next step is studying the process where we add a $q \bar{q}$ couple in the final state

We also intend to study the asymmetric initial state g q

MANY THANKS FOR YOUR ATTENTION

Presented by

Davide Maria Tagliabue

E-mail

davide.tagliabue@unimi.it