## CS3750 – Data Visualisation

# **Assignment 1**

Data Visualization using Python: Matplotlib and Seaborn

Kajanan Selvanesan 190287R

#### **\*** Objectives of Visualization

- Record information.
- Analyse data to support reasoning.
- Confirm hypotheses.

- Communicate ideas to others.
- Point out interesting things.

#### **❖** Useful Python Libraries for Data Visualization

We can use the following Python libraries to manage and store the data before using them for visualisation.

- NumPy: Used for data manipulation.
- pandas
  - Used for storing, handling and analysing input data.
  - It is particularly suited for tabular data.
  - We can use it to do powerful data operations like description, mean, median, etc.
  - Main data structures which are included here: DataFrame and Series.

We can use the following Python libraries to visualise the data by giving those data to them in the form of NumPy ndarray or pandas DataFrame.

- matplotlib
  - Used for basic plotting.
  - o Advantages:
    - Highly customizable.
    - Works well with NumPy and pandas.
  - o **Disadvantage**: Requires more lines of code than that of seaborn.
- seaborn
  - Used for statistical data visualisation.
  - O Advantages:
    - Can get visualisations with good default themes using a few lines of code.
    - It is integrated to work great with pandas's data-frame.
  - **Disadvantage**: It's not highly customizable as matplotlib since it uses matplotlib under the hood.
- bokeh
  - Used for interactive data visualisation.
  - Advantage: Can get interactive visualisations using it.
  - **Disadvantage**: Requires modern web browsers to run since it integrates with JavaScript.

### **Some Basics of matplotlib**

```
from matplotlib import pyplot as plt # importing the library
plt.style.use('seaborn-whitegrid') # setting theme for styling

# define a single container that contains all the objects
representing axes, graphics, text, and labels.
fig = plt.figure()
```

# define a bounding box with ticks and labels, which will eventually contain the plot elements that make up our

visualization. This box is associated with the above fig container.

( + )

Minor tick

Major tick label

```
ax = plt.axes()
```

Object ax has several customisable attributes. The following image shows those attributes and the following codes show how to customise some of those attributes in Python using matplotlib.

```
# adding a title for ax
ax.set_title('Title')
# adding X axis label for ax
ax.set_xlabel('x label')
# adding Y axis label for ax
ax.set_ylabel('y label')
# adding legend for ax
ax.legend()
# defining X axis limit for ax
ax.set_xlim(-5, 15)
# defining Y axis limit for ax
ax.set_ylim(-3, 3)
```

Ana(con) y of a figure

Re (sign)

plt.show() # showing the plot

fig, axs = plt.subplots(2, 2) # a figure with a 2x2 grid of Axes

# NOTE: above codes show how to customise only a few of the ax's attributes. But we can customise even more attributes like colour of the plot, the pattern of the markers, xtick's labels, etc.

#### **Some Basics of seaborn**

# Here, we can use some of the matplotlib codes as well for the plot customizations. However, here, most of the attributes of ax are defined automatically.

import seaborn as sns # importing the library
sns.set style('darkgrid') # setting theme for styling

#### Types of Plots

- Line plots
  - Used for numeric data.
  - Used to show trends.
  - Compares two or more different variables over time.
  - Could be used to make predictions.
  - o matplotlib: ax.plot(x, y)
  - o seaborn: sns.lineplot(data frame, x, y)



#### • Bar plots

- Used for nominal or ordinal categories.
- o Compares data amongst different categories.
- Horizontal bar charts should be preferred over vertical bar charts when we have many categories.
- o Types of bar charts: Simple, Grouped, and Stacked.
- o matplotlib:
  - $\blacksquare$  ax.bar(x, y)
  - ax.barh(x, y) # horizontal bar
    chart



#### o seaborn:

- sns.countplot(data frame, x)
- sns.countplot(data frame, y) # horizontal bar chart
- sns.barplot(data\_frame, x, y)

#### Scatter plots

- Used to visualise relation between two numeric variables.
- Used to visualise correlation in a large data set.
- Predicts behaviour of dependent variable based on the measure of the independent variable.



- ax.scatter(x, y)
- plt.plot(x, y, 'o') # plt.plot should be preferred over plt.scatter for large datasets.



o seaborn: sns.scatterplot(data frame, x, y)

#### • Box plots/ Whisker plot

- Statistical graph used on sets of numerical data.
- Shows the minimum, first quartile, median, third quartile, maximum, and outliers.



- Used to compare data from different categories.
- o matplotlib: ax.boxplot(data)
- o **seaborn**: sns.boxplot(data frame, x, y)

#### Histograms

- Used for continuous data.
- Displays the frequency distribution (shape).
- o Summarises large data sets graphically.
- o Compares multiple distributions.
- o matplotlib: plt.hist(data)

#### o seaborn:

- sns.histplot(data frame, x)
- sns.histplot(data frame, y) # horizontal histogram



