Máquinas de Boltzmann

Aluno: Artur Chiaperini Grover Orientadora: Dra. Roseli Suzi Wedemann

> PPG-CComp Universidade do Estado do Rio de Janeiro

> > 20 de novembro de 2019

Sumário

Introdução

Redes Neuronais Artificiaisi (ANN)

Conceitos

Esquema

Treinamento e Padrões

Redes de Hopfield

Definições

Esquema

Funcionamento

Introdução

Redes neuronais artificiais são algoritmos computacionais que se inspiram na rede neuronal biológica. Estes algoritmos podem ser usados para resolver problemas onde uma solução analítica é difícil de ser encontrada, por exemplo, no caso de reconhecimento de padrão em imagens.

A inspiração nas redes neuronais biologicas, é devido ao fato de que as redes neuronais artificiais tem dois elementos basicos: os neuronios (unidades) e as sinapses (conexoes).

Há diferentes algoritmos de redes neuronais artificiais, suas diferenças estão relacionadas a forma como esses dois elementos básicos são agrupados (como são feitas as conexões entre eles), e como cada unidade opera. Alguns exemplos de redes neuronais conhecidas são: perceptron, MLP, CNN, redes de Hopfield, máquina de Boltzmann, entre outras . . .

Motivação e Objetivo

As diferentes redes neuronais possuem cada uma as suas peculiaridades, e problemas para os quais possuem melhor desempenho se comparadas com seus outros parentes.

Neste trabalho o nosso objetivo é entender o lado teórico da máquina de Boltzmann, e de suas derivadas, como a máquina restrita de Boltzmann, e aplicá-las em um problema simples afim de comprovar seu mecanismo de funcionamento.

Redes Neuronais Artificiais

Precisamos de dois elementos básicos para definir uma rede neuronal: as unidades (os neurônios) e as conexões (as sinápses).

Redes Neuronais Artificiais

Precisamos de dois elementos básicos para definir uma rede neuronal: as unidades (os neurônios) e as conexões (as sinápses). Determinar como que as unidades ficam ativas ou não.

Redes Neuronais Artificiais

Precisamos de dois elementos básicos para definir uma rede neuronal: as unidades (os neurônios) e as conexões (as sinápses). Determinar como que as unidades ficam ativas ou não. Isso vai do tipo de rede neuronal.

ANN - A Unidade

Figura 2.1: Neurônio

ANN - A Unidade

Figura 2.1: Neurônio

Neurônio – Unidade

ANN - Unidades e Conexões

Figura 2.2: ANN

ANN - Unidades e Conexões

Figura 2.2: ANN

Conexões – Sinápse – Pesos

Treinamento e Padrões

Treinar uma rede neuronal significa determinar o valor das conexões entre as unidades baseado num conjunto de observações que são mostrados para a rede.

O conjunto de treinamento é composto de padrões, que são estados (configurações) da rede.

Redes de Hopfield

Uma rede de Hopfield é uma rede que armazena padrões de tal forma que quando um padrão novo é mostrado para a rede, ela responde devolvendo o padrão que ela tem armazenado mais próximo ao novo padrão.

Hopfield é uma rede determinística.

Quais os elementos básicos para Hopfield?

Vamos considerar que cada uma das **unidades** da rede é denominada por x_i , onde i = 1, ..., N, para uma rede com N unidades. Em Hopfield, cada x_i pode assumir um dos valores $x_i \in \{0, 1\}$. Rede binária!

Se $x_i = 0$, a unidade i desativada; se $x_i = 1$, unidade i ativada.

Quais os elementos básicos para Hopfield?

Os **pesos** chamaremos de ω .

Na rede de Hopfield os pesos são simétricos, isto é, $\omega_{ij} = \omega_{ji}$ (conexão entre as unidades $i \in j$).

Rede de Hopfield diagrama

Figura 3.3: Distribuição dos neurônios de uma rede de Hopfield com 4 unidades.

Rede de Hopfield diagrama

Figura 3.4: Identificação das conexões de uma rede de Hopfield com 4 unidades.