24 - Sprzeganie łańcuchów Markowa. Lemat o monotoniczności. Geometryczna zbieżność. Tuesday, 6 February 2024 11:59 Spreganie Tancuchow S-zhor stamoir, P-movien przejscia X, y - Tomouchy zadone movierza przejscia P. Z_t = (X_t, Y_t) - sprzegomie Taneuchow X; Y: - Xi Y mogo, (i beday) zaleine - Testi raz się spotkoją, to zowsze są rozem. Lemot o spregamu IP[X₁ ≠ Y_T | X₀=x, Y₀=y] { E | Ma kovidego X₁y to Tmix (E) ST Dona Ustolony donoly Xo, Yo hybrany z nozkłodu Ti P[XTEA] > P[YTEAN XT=YT]=1-P[XFAUX+YT] >1-1P[Y_ \$A]-1P[X_ + Y_] > 1P[Y_ 6A]-E=T(A)-E $P[X_T \in S-A] > P[Y_T \in S-A \cap X_T = Y_T] = 1-P[Y_T \notin S-A \cup X_T \neq Y_T]$ 7 1- IP[Y, & S-A] - IP[X, * Y] = IP[Y, & S-A] - E = TT(S-A) - E Zatem: 1-1P[XTEA]=P[XTES-A] > 1-T(A)-E $= \langle \Pi(A) + \xi \rangle P[\chi_{T} \in A] > \Pi(A) - \xi$ Lemat o monotoniczności $\Delta_{x}(t+1) \leq \Delta_{x}(t)$ zotem $\Delta(t+1) \leq \Delta(t)$ Dla zlione stanour Simorien, przejscia P Wedny takie sprzeganie (X+, Y+) rodulodów Pt(X,·); T $ie \|P^{\dagger}(x,\cdot) - \pi\|_{TV} = \|P[X_{\dagger} \neq Y_{\dagger}]$ oroz jesti $X_t = Y_t + X_{t+1} = Y_{t+1}$:

jesti $X_t = Y_t$ to $X_{t+1} = Y_{t+1}$:

Jesti $X_t = Y_t$ to przechodza novem według P

W przeciwnym przypodlu według Pale nicealeinie.

Wtedy: $IP[X_t \neq Y_t] > IP[X_{t+1} \neq Y_{t+1}]$ $IP[X_t \neq Y_t] = IP[X_t \neq Y_t]$

Twievdzenie o geometycznej zbieżności

P-maciera przejścia

Istnieje $\alpha \in (0,1)$ i C > 0 talue, że $\forall n$ $\Delta(n) = \max_{x \in S} \|P^{n}(x,\cdot) - T\| \| \leq C \propto n$

> P[X+++ + Y++] = | P++1(x, .) - II | TV =

Lenot r > 1 tolne, ze P xiy > 0

V graniy lim P = II y :)

Donoid:

- Wesny r z popredniego lenoth i rocpatremy Pr

- my = min Px,y - minimal na zama na wejsire do y

- m = \(\text{M} \) \

- Konstruujeny sprzez anie Tamuchour tolice, że:

\[P[X_+ = \frac{1}{4} = \frac{1}{4}] \ge m_y
\]

Vtedy \[P[X_+ = \frac{1}{4}] \ge m_y
\]

Rzucamy moneta, z szama, m:

Zesti tak to idnieg oboma na roz do y z p. \(\frac{m_y}{m} \)

Testi nie to Jesti nie to z "resita," idiay ofdies żely się

 $\alpha = (1 - m)^{\frac{1}{r}}$ $C = \alpha^{-r}$

 $\Delta_{x}(n) \in \Delta_{x}(rt) \in (1-m)^{T} = \alpha^{rt} = \alpha^{n-j} \in (\alpha^{n})$

n = rt + j