

Ù&@^œ^¦ÊÁQ}&È		FÍ»ÁVã¦oÁ, ĐịÁÙ^ã;{ã&ÁÖ^∙ã;}
PÔX	Ùœ), 忦åÁÚXTæ¢ÁÜæ&\ ã), *ÁÛ^• ♂{	
	Ü^]¦^•^} æaāç^ÁÔæþ&` æaā[}•ÁËÁŒLÌÔÒÁIEF€	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2

Module Tilt = 15°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-10 Chapter 26-31, Wind Loads
- ASCE 7-10 Chapter 7, Snow Loads
- ASCE 7-10 Chapter 2, Combination of Loads
- International Building Code, IBC, 2012, 2015
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load,
$$P_g =$$
 30.00 psf Sloped Roof Snow Load, $P_s =$ 22.68 psf (ASCE 7-10, Eq. 7.4-1)
$$I_s = 1.00$$

$$C_s = 1.00$$

$$C_e = 0.90$$

$$C_t = 1.20$$

2.3 Wind Loads

Design Wind Speed, V =	110 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, $q_z = 19.00 \text{ psf}$ Including the gust factor, G=0.85. (ASCE 7-10, Eq. 27.3-1)

Pressure Coefficients

Cf+ _{TOP}	=	1.000 (Prossure)	
Cf+ BOTTOM	=	1.000 1.600 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.300	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.780 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied away from the surface.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used
$T_a =$	0.00	$C_{d} = 1.25$	to calculate C_s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.5W 1.2D + 1.0W + 0.5S $0.9D + 1.0W^{M}$ 1.54D + 1.3E + 0.2S ^R $0.56D + 1.3E^{R}$ $1.54D + 1.25E + 0.2S^{\circ}$ 0.56D + 1.25E °

(ASCE 7, Eq 2.3.2-1 through 2.3.2-7) & (ASCE 7, Section 12.4.3.2)

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S1.0D + 0.6W1.0D + 0.75L + 0.45W + 0.75S $0.6D + 0.6W^{M}$ (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) $1.238D + 0.875E^{\circ}$ 1.1785D + 0.65625E + 0.75S O 0.362D + 0.875E O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u> M13 M14 M15 M16	<u>Location</u> Top Mid-Top Mid-Bottom Bottom	Diagonal Struts M3 M7 M11	<u>Location</u> Outer Inner Outer	Front ReactionsLocationN7OuterN15InnerN23Outer
Girders M1 M5 M9 Front Struts M4 M8 M12	Location Outer Inner Outer Location Outer Inner Outer Inner Outer	Rear Struts M2 M6 M10	Location Outer Inner Outer	Rear Reactions N8 Outer N16 Inner N24 Outer

[™] Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

O Includes overstrength factor of 1.25. Used to check seismic drift.

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u> Front</u>	<u>Rear</u>	
<u>1066.15</u>	<u>3798.97</u>	k
4728.26	<u>4908.66</u>	k
<u>11.05</u>	<u>1391.20</u>	k
0.02	<u>0.01</u>	k
	1066.15 4728.26 11.05	1066.15 3798.97 4728.26 4908.66 11.05 1391.20

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC table 1806.2 (2012, 2015).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. Compressive Strength = 2500 psi Yield Strength = 60000 psi Overturning Check 90906.6 in-lbs $M_O =$ Resisting Force Required = 1377.37 lbs A minimum 132in long x 21in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 2295.62 lbs to resist overturning. Minimum Width = <u>21 in</u> in Weight Provided = 4186.88 lbs Sliding 320.69 lbs Force = Friction = Use a 132in long x 21in wide x 18in tall 0.4 801.72 lbs ballast foundation to resist sliding. Weight Required = Resisting Weight = 4186.88 lbs Friction is OK. Additional Weight Required = 0 lbs Cohesion Sliding Force = 320.69 lbs Cohesion = 130 psf Use a 132in long x 21in wide x 18in tall 19.25 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2093.44 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi $f'_c =$

Bearing Pressure

Length =

8 in

 $\frac{\text{Ballast Width}}{21 \text{ in}} = \frac{22 \text{ in}}{23 \text{ in}} = \frac{24 \text{ in}}{4785 \text{ lbs}}$ $P_{\text{ftg}} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(1.75 \text{ ft}) = \frac{4187 \text{ lbs}}{4386 \text{ lbs}} = \frac{4586 \text{ lbs}}{4785 \text{ lbs}} = \frac{4785 \text{ lbs}}{4785 \text{ lbs}}$

ASD LC		1.0D + 1.0S 1.0D + 0.6W					1.0D + 0.75L + 0.45W + 0.75S			S	0.6D + 0.6W					
Width	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in	21 in	22 in	23 in	24 in
FA	1810 lbs	1810 lbs	1810 lbs	1810 lbs	1287 lbs	1287 lbs	1287 lbs	1287 lbs	2189 lbs	2189 lbs	2189 lbs	2189 lbs	-482 lbs	-482 lbs	-482 lbs	-482 lbs
F _B	1877 lbs	1877 lbs	1877 lbs	1877 lbs	1336 lbs	1336 lbs	1336 lbs	1336 lbs	2271 lbs	2271 lbs	2271 lbs	2271 lbs	-1743 lbs	-1743 lbs	-1743 lbs	-1743 lbs
F _V	162 lbs	162 lbs	162 lbs	162 lbs	578 lbs	578 lbs	578 lbs	578 lbs	544 lbs	544 lbs	544 lbs	544 lbs	-641 lbs	-641 lbs	-641 lbs	-641 lbs
P _{total}	7874 lbs	8074 lbs	8273 lbs	8473 lbs	6810 lbs	7010 lbs	7209 lbs	7408 lbs	8647 lbs	8846 lbs	9046 lbs	9245 lbs	287 lbs	407 lbs	527 lbs	646 lbs
М	4396 lbs-ft	4396 lbs-ft	4396 lbs-ft	4396 lbs-ft	3818 lbs-ft	3818 lbs-ft	3818 lbs-ft	3818 lbs-ft	5835 lbs-ft	5835 lbs-ft	5835 lbs-ft	5835 lbs-ft	990 lbs-ft	990 lbs-ft	990 lbs-ft	990 lbs-ft
е	0.56 ft	0.54 ft	0.53 ft	0.52 ft	0.56 ft	0.54 ft	0.53 ft	0.52 ft	0.67 ft	0.66 ft	0.65 ft	0.63 ft	3.45 ft	2.43 ft	1.88 ft	1.53 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft
f _{min}	284.5 psf	281.4 psf	278.7 psf	276.1 psf	245.6 psf	244.3 psf	243.2 psf	242.1 psf	283.9 psf	280.8 psf	278.1 psf	275.6 psf	0.0 psf	0.0 psf	0.0 psf	4.8 psf
f _{max}	533.6 psf	519.3 psf	506.1 psf	494.1 psf	461.9 psf	450.8 psf	440.7 psf	431.4 psf	614.5 psf	596.5 psf	580.0 psf	564.9 psf	53.3 psf	48.3 psf	50.6 psf	53.9 psf

Maximum Bearing Pressure = 615 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 21in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Weak Side Design

A minimum 132in long x 21in wide x 18in tall

Overturning Check

 $M_O = 845.6 \text{ ft-lbs}$

Resisting Force Required = 966.42 lbs

S.F. = 1.67

Weight Required = 1610.70 lbs Minimum Width = $\frac{21 \text{ in}}{100}$ in ballast foundation is required to resist overturning.

Minimum Width = $\frac{21 \text{ in}}{4186.88}$ lbs

Bearing Pressure

ASD LC	1	.238D + 0.875	iΕ	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E			
Width		21 in		21 in			21 in			
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer	
F_Y	247 lbs	676 lbs	247 lbs	981 lbs	3000 lbs	981 lbs	72 lbs	198 lbs	72 lbs	
F _V	1 lbs	0 lbs	1 lbs	4 lbs	0 lbs	4 lbs	0 lbs	0 lbs	0 lbs	
P _{total}	5430 lbs	4187 lbs	5430 lbs	5915 lbs	4187 lbs	5915 lbs	1588 lbs	4187 lbs	1588 lbs	
М	3 lbs-ft	0 lbs-ft	3 lbs-ft	13 lbs-ft	0 lbs-ft	13 lbs-ft	0 lbs-ft	0 lbs-ft	0 lbs-ft	
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	
L/6	0.29 ft	0.29 ft	0.29 ft	0.29 ft	0.29 ft	0.29 ft	0.29 ft	0.29 ft	0.29 ft	
f _{min}	281.5 psf	217.5 psf	281.5 psf	305.0 psf	217.5 psf	305.0 psf	82.4 psf	217.5 psf	82.4 psf	
f _{max}	282.7 psf	217.5 psf	282.7 psf	309.6 psf	217.5 psf	309.6 psf	82.5 psf	217.5 psf	82.5 psf	

Maximum Bearing Pressure = 310 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 21in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 21in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut Maximum Axial Load = M12 Bolt Capacity = Strut Bearing Capacity = Utilization =	3.637 k 12.808 k 7.421 k <u>49%</u>	Rear Strut Maximum Axial Load = 3.607 k M12 Bolt Capacity = 12.808 k Strut Bearing Capacity = 7.421 k Utilization = 49%
Diagonal Strut Maximum Axial Load = M12 Bolt Shear Capacity = Strut Bearing Capacity = Utilization =	1.013 k 12.808 k 7.421 k <u>14%</u>	Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, h}_{\text{sx}} = & & 36.30 \text{ in} \\ \text{Allowable Story Drift for All} & & 0.020 h_{\text{sx}} \\ \text{Other Structures, } \Delta = \{ & & 0.726 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & & 0.041 \text{ in} \\ \end{array}$

N/A

The racking structure's reaction to seismic loads is shown to the right.
The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_b = 126 \text{ in}$$

$$J = 0.432$$

$$348.575$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\varphi F_L = 27.2 \text{ ksi}$$

3.4.16

b/t = 32.195

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16.1

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

Not Used

Weak Axis:

3.4.14

$$L_{b} = 126$$

$$J = 0.432$$

$$221.673$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\phi F_{1} = \phi b[Bc-1.6Dc]$$

$$\phi F_{L} = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 28.5$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\varphi F_L = 23.1 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.2$$

$$\phi F_L = \phi b [Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{rll} \phi F_L St = & 25.1 \text{ ksi} \\ lx = & 897074 \text{ mm}^4 \\ & 2.155 \text{ in}^4 \\ y = & 41.015 \text{ mm} \\ Sx = & 1.335 \text{ in}^3 \\ M_{max} St = & 2.788 \text{ k-ft} \end{array}$$

3.4.18

h/t = 32.195

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 23.1 \text{ ksi}$$

$$ly = 446476 \text{ mm}^4$$

$$1.073 \text{ in}^4$$

$$x = 45.5 \text{ mm}$$

$$Sy = 0.599 \text{ in}^3$$

$$M_{max} W k = 1.152 \text{ k-ft}$$

Compression

3.4.9

$$b/t = 32.195$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

$$b/t = 37.0588$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = (\varphi ck2^* \sqrt{(BpE)})/(1.6b/t)$$

$$\phi F_L = 21.9 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^{\frac{1}{2}}$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$P_{max} = 41.32 \text{ kips}$$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis:

3.4.14

$$L_b = 88.9 \text{ in}$$
 $J = 1.08$

$$\theta_{v}$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$
$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$φF_L = φb[Bc-1.6Dc*√((LbSc)/(Cb*√(IyJ)/2))]$$

 $φF_L = 29.4 \text{ ksi}$

Weak Axis:

3.4.14

$$L_b = 88.9$$
 $J = 1.08$
 161.829

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{16Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 29.2$$

3.4.16

$$b/t = 16.2$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

 $\phi F_L = 31.6 \text{ ksi}$

$$\theta$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.16.1 Used
$$Rb/t = 18.1$$

$$S1 - \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{\theta_b}\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = C_t$$

S2 = 141.0

$$\phi F_L = \phi b[Bt-Dt^*\sqrt{(Rb/t)}]$$

$$\phi F_L = 31.1 \text{ ksi}$$

3.4.18

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\begin{array}{ccc} \phi F_L St = & 29.4 \text{ ksi} \\ lx = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ y = & 43.717 \text{ mm} \\ Sx = & 1.375 \text{ in}^3 \\ M_{max} St = & 3.363 \text{ k-ft} \end{array}$$

 $\phi F_L = 1.3 \phi y F c y$

43.2 ksi

3.4.16.1

3.4.18

h/t = 16.2

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W \, k = & 33.3 \, \, ksi \\ ly = & 923544 \, \, mm^4 \\ & 2.219 \, \, in^4 \\ x = & 40 \, \, mm \\ Sy = & 1.409 \, \, in^3 \\ M_{max} W \, k = & 3.904 \, \, k\text{-ft} \end{array}$$

Compression

 $\phi F_L =$

3.4.9

$$b/t = 16.2$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 31.6 \text{ ksi}$$

$$b/t = 7.4$$

 $S1 = 12.21$
 $S2 = 32.70$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.3 \text{ ksi}$$

3.4.10

Rb/t = 18.1
$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
$$\phi F_L = \phi c [Bt - Dt^* \sqrt{(Rb/t)}]$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$\phi F_L = 31.09 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = <u>55x55</u>

Strong Axis:

3.4.14 24.8 in $L_b =$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_b = 24.8$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$(C)^2$$

$$\frac{32-\left(\frac{1.6}{1.6}\right)}{1.6}$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$
$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_{L} = 31.4$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C$$

$$S2 = C_t$$

Rb/t =

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

 $Cc = 27.5$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

0.672 in⁴

$$Sx = 0.621 \text{ in}^3$$

 $M_{max}St = 1.460 \text{ k-ft}$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$m = 0.65$$

 $C_0 = 27.5$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$x = 27.5 \text{ mm}$$

 $Sy = 0.621 \text{ in}^3$

$$M_{\text{max}}Wk = 1.460 \text{ k-ft}$$

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc - Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$
3.4.9
$$b/t = 24.5$$

$$S1 = 12.21 \text{ (See 3.4.16 above for formula)}$$

$$S2 = 32.70 \text{ (See 3.4.16 above for formula)}$$

$$\varphi F_L = \varphi c[Bp - 1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

$$S2 = 32.70$$

$$\varphi F_L = \varphi c[Bp - 1.6Dp^*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$
3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$
 $\phi F_L = 28.03 \text{ ksi}$
 $\phi F_L = 663.99 \text{ mm}^2$
1.03 in²
 $\phi F_L = 28.85 \text{ kips}$

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis: 3.4.14	Weak Axis: 3.4.14
$L_{b} = 86.60 \text{ in}$	$L_{b} = 86.6$
J = 0.942 135.148	J = 0.942 135.148
$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$	$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$
S1 = 0.51461	S1 = 0.51461
$S2 = \left(\frac{C_c}{1.6}\right)^2$	$S2 = \left(\frac{C_c}{1.6}\right)^2$
S2 = 1701.56	S2 = 1701.56
$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$	$\phi F_{L} = \phi b[Bc-1.6Dc*\sqrt{(LbSc)/(Cb*\sqrt{(lyJ)/2)})}$
$\varphi F_L = 29.6 \text{ ksi}$	$\phi F_{L} = 29.6$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16.1 <u>Not Used</u>

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

20.2 KSI

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$

lx =	279836 mm ²
	0.672 in ⁴
y =	27.5 mm
Sx =	0.621 in ³

$$M_{max}St = 1.460 \text{ k-ft}$$

Compression

3.4.7

$$λ = 2.00335$$
 $r = 0.81$ in
$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$
 $S1^* = 0.33515$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$
 $S2^* = 1.23671$
 $φcc = 0.86047$
 $φF_L = (φccFcy)/(λ^2)$
 $φF_L = 7.50396$ ksi

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$\phi F_L = \phi c [Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$P_{max} = 1.03 \text{ in}^2$$

$$7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

$$L_b = 48.30 \text{ in}$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc\text{*}\sqrt{((LbSc)/(Cb\text{*}\sqrt{(lyJ)/2}))}]$$

$$\phi F_L =$$

Weak Axis:

3.4.14

$$L_b = 48.3$$
 $J = 0.942$
 75.3767

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

S2 = 1701.56

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.6$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$
$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_1 = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used Rb/t = 0.0
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = 1.17 \phi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1 N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

28.2 ksi

 0.672 in^4

0.621 in³

1.460 k-ft

27.5 mm

 $lx = 279836 \text{ mm}^4$

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$del{the product of the pr$$

Compression

 $M_{max}St =$

y =

Sx =

 $\phi F_1 St =$

3.4.7 $\lambda = 1.11734$ r = 0.81 in $S1^* = \frac{Bc - Fcy}{1.6Dc^*}$ $S1^* = 0.33515$ $S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$ $S2^* = 1.23671$ $\phi = 0.76536$ $\phi = 0.76536$ $\phi = 0.76536$ $\phi = 0.76536$ $\phi = 0.76536$

$\phi F_L = \phi cc(Bc-Dc^*\lambda)$ $\phi F_{L} = 18.9268 \text{ ksi}$ 3.4.9 b/t =24.5 12.21 (See 3.4.16 above for formula) S1 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi b/t =24.5 S1 = 12.21 32.70 S2 = $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 28.2 ksi

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 18.93 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

$$P_{max} = 19.48 \text{ kips}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ	_	-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3: Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-61.093	-61.093	0	0
2	M14	Υ	-61.093	-61.093	0	0
3	M15	Υ	-61.093	-61.093	0	0
4	M16	Υ	-61 093	-61 093	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-52.98	-52.98	0	0
2	M14	V	-52.98	-52.98	0	0
3	M15	V	-84.769	-84.769	0	0
4	M16	٧	-84.769	-84.769	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	121.855	121.855	0	0
2	M14	V	94.305	94.305	0	0
3	M15	V	52.98	52.98	0	0
4	M16	V	52 98	52 98	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	.Fa
1	LRFD 1.2D + 1.6S + 0.5W	Yes	Υ		1	1.2	3	1.6	4	.5														
2	LRFD 1.2D + 1.0W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1														
3	LRFD 0.9D + 1.0W	Yes	Υ		2	.9					5	1												
4	LATERAL - LRFD 1.54D + 1.3E	.Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25	Yes	Υ		1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Load Combinations (Continued)

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 0.6W	Yes	Υ		1	1			4	.6														
11	ASD 1.0D + 0.75L + 0.45W + 0	Yes	Υ		1	1	3	.75	4	.45														
12	ASD 0.6D + 0.6W	Yes	Υ		2	.6					5	.6												
	LATERAL - ASD 1.238D + 0.875E				1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	237.631	2	1119.659	1	1.169	1	.005	1	0	1	Ó	1
2		min	-340.145	3	-885.642	3	.043	15	0	15	0	1	0	1
3	N7	max	.053	1	1242.892	1	288	15	0	15	0	1	0	1
4		min	049	2	-233.324	3	-8.498	1	018	1	0	1	0	1
5	N15	max	.024	9	3637.122	1	0	2	0	2	0	1	0	1
6		min	774	2	-820.114	3	0	3	0	3	0	1	0	1
7	N16	max	1022.997	2	3775.89	1	0	1	0	1	0	1	0	1
8		min	-1070.157	3	-2922.287	3	0	3	0	3	0	1	0	1
9	N23	max	.053	1	1242.892	1	8.498	1	.018	1	0	1	0	1
10		min	049	2	-233.324	3	.288	15	0	15	0	1	0	1
11	N24	max	237.631	2	1119.659	1	043	15	0	15	0	1	0	1
12		min	-340.145	3	-885.642	3	-1.169	1	005	1	0	1	0	1
13	Totals:	max	1497.387	2	12138.114	1	0	2						
14		min	-1750.787	3	-5980.335	3	0	3						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	93.492	1	516.116	1	-4.68	15	0	3	.222	1	0	1
2			min	3.06	15	-459.303	3	-143.394	1	013	1	.007	15	0	3
3		2	max	93.492	1	361.708	1	-3.601	15	0	3	.074	1	.456	3
4			min	3.06	15	-323.177	3	-110.302	1	013	1	.002	15	512	1
5		3	max	93.492	1	207.3	1	-2.522	15	0	3	0	12	.754	3
6			min	3.06	15	-187.052	3	-77.21	1	013	1	035	1	844	1
7		4	max	93.492	1	52.893	1	-1.443	15	0	3	003	12	.893	3
8			min	3.06	15	-50.927	3	-44.117	1	013	1	106	1	996	1
9		5	max	93.492	1	85.199	3	364	15	0	3	004	12	.873	3
10			min	3.06	15	-101.515	1	-11.025	1	013	1	138	1	967	1
11		6	max	93.492	1	221.324	3	22.068	1	0	3	004	15	.694	3
12			min	3.06	15	-255.923	1	.459	12	013	1	132	1	759	1
13		7	max	93.492	1	357.45	3	55.16	1	0	3	003	15	.356	3
14			min	3.06	15	-410.331	1	1.538	12	013	1	086	1	37	1
15		8	max	93.492	1	493.575	3	88.253	1	0	3	0	10	.199	1
16			min	3.06	15	-564.738	1	2.617	12	013	1	003	1	14	3
17		9	max	93.492	1	629.7	3	121.345	1	0	3	.119	1	.947	1
18			min	3.06	15	-719.146	1	3.696	12	013	1	.003	12	795	3
19		10	max	93.492	1	765.826	3	154.438	1	0	3	.28	1	1.877	1
20			min	3.06	15	-873.554	1	4.774	12	013	1	.008	12	-1.609	3
21		11	max	93.492	1	719.146	1	-3.696	12	.013	1	.119	1	.947	1
22			min	3.06	15	-629.7	3	-121.345	1	0	3	.003	12	795	3
23		12	max	93.492	1	564.738	1	-2.617	12	.013	1	0	10	.199	1
24			min	3.06	15	-493.575	3	-88.253	1	0	3	003	1	14	3
25		13	max	93.492	1	410.331	1	-1.538	12	.013	1	003	15	.356	3
26			min	3.06	15	-357.45	3	-55.16	1	0	3	086	1	37	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]					LC
27		14	max	93.492	1	255.923	1	459	12	.013	1	004	15	<u>.694</u>	3
28			min	3.06	15	-221.324	3	-22.068	1	0	3	132	1	7 <u>59</u>	1
29		15	max	93.492	1	101.515	1	11.025	1	.013	1	004	12	.873	3
30			min	3.06	15	-85.199	3	.364	15	0	3	138	1	967	1
31		16	max	93.492	1	50.927	3	44.117	1	.013	1	003	12	.893	3
32			min	3.06	15	-52.893	1	1.443	15	0	3	106	1	<u>996</u>	1
33		17	max	93.492	1	187.052	3	77.21	1	.013	1	0	12	<u>.754</u>	3
34		1.0	min	3.06	15	-207.3	1	2.522	15	0	3	035	1	<u>844</u>	1
35		18	max	93.492	1	323.177	3	110.302	1_	.013	1	.074	1_	.456	3
36			min	3.06	15	-361.708	1	3.601	15	0	3	.002	15	512	1
37		19	max	93.492	1	459.303	3	143.394	1	.013	1_	.222	1	0	1
38			min	3.06	15	-516.116	1_	4.68	15	0	3	.007	15	0	3
39	M14	1	max	42.33	1	542.314	1_	-4.819	15	.005	3	.252	1	0	1
40			min	1.389	15	-359.905	3	-147.654	1	011	1_	.008	15	0	3
41		2	max	42.33	1	387.906	1_	-3.74	15	.005	3	.099	1	.359	3
42			min	1.389	15	-255.921	3	-114.561	1_	011	1_	.003	15	<u>543</u>	1
43		3	max	42.33	1	233.498	1	-2.661	15	.005	3	0	3	.597	3
44			min	1.389	15	-151.937	3	-81.469	1	011	_1_	015	1	905	1
45		4	max	42.33	1	79.091	1_	-1.582	15	.005	3	003	12	.714	3
46			min	1.389	15	-47.954	3	-48.376	1	011	1_	091	1	-1.087	1
47		5	max	42.33	1	56.03	3	503	15	.005	3	004	12	.709	3
48			min	1.389	15	-75.317	1_	-15.284	1	011	1_	128	1	-1.09	1
49		6	max	42.33	1	160.014	3	17.809	1	.005	3_	004	15	.583	3
50			min	1.389	15	-229.725	1	.325	12	011	1_	127	1	912	1
51		7	max	42.33	1	263.997	3	50.901	1	.005	3	003	15	.336	3
52			min	1.389	15	-384.132	1	1.403	12	011	1_	087	1	554	1
53		8	max	42.33	1	367.981	3	83.993	1	.005	3	0	10	0	15
54			min	1.389	15	-538.54	1_	2.482	12	011	1_	008	1	033	3
55		9	max	42.33	1	471.965	3	117.086	1	.005	3	.109	1	.703	1
56			min	1.389	15	-692.948	1	3.561	12	011	1_	.003	12	523	3
57		10	max	42.33	1	575.948	3	150.178	1	.005	3_	.265	1	1.601	1
58			min	1.389	15	-847.355	1_	4.64	12	011	1_	.007	12	-1.134	3
59		11	max	42.33	1	692.948	_1_	-3.561	12	.011	_1_	.109	1	.703	1
60			min	1.389	15	-471.965	3	-117.086	1	005	3	.003	12	523	3
61		12	max	42.33	1_	538.54	_1_	-2.482	12	.011	_1_	0	10	0	15
62			min	1.389	15	-367.981	3	-83.993	1	005	3	008	1	033	3
63		13	max	42.33	1	384.132	_1_	-1.403	12	.011	_1_	003	15	.336	3
64			min	1.389	15	-263.997	3	-50.901	1	005	3	087	1	554	1
65		14	max	42.33	1	229.725	_1_	325	12	.011	_1_	004	15	.583	3
66			min	1.389	15	-160.014	3	-17.809	1	005	3	127	1	912	1
67		15	max	42.33	1	75.317	_1_	15.284	1	.011	_1_	004	12	.709	3
68			min	1.389	15	-56.03	3	.503	15	005	3	128	1	-1.09	1
69		16	max	42.33	1	47.954	3	48.376	1	.011	1_	003	12	.714	3
70			min	1.389	15	-79.091	1	1.582	15	005	3	091	1	-1.087	1
71		17	max	42.33	1	151.937	3	81.469	1	.011	_1_	0	3	.597	3
72			min	1.389	15	-233.498	1_	2.661	15	005	3	015	1	905	1
73		18	max	42.33	1	255.921	3	114.561	1	.011	_1_	.099	1	.359	3
74			min	1.389	15	-387.906	1_	3.74	15	005	3	.003	15	543	1
75		19	max	42.33	1	359.905	3	147.654	1	.011	1_	.252	1	0	1
76			min	1.389	15	-542.314	1_	4.819	15	005	3	.008	15	0	3
77	<u>M15</u>	1	max	-1.461	15	604.888	1_	-4.818	15	.011	1_	.252	1	0	1
78			min	-44.539	1	-197.335	3	-147.632	1	005	3	.008	15	0	3
79		2	max	-1.461	15	431.937	1_	-3.739	15	.011	_1_	.099	1	.198	3
80			min	-44.539	1	-141.564	3	-114.539	1	005	3	.003	15	605	1
81		3	max	-1.461	15	258.986	1_	-2.66	15	.011	1_	0	3	.33	3
82			min	-44.539	1	-85.793	3	-81.447	1	005	3	015	1	-1.008	1
83		4	max	-1.461	15	86.034	1_	-1.581	15	.011	1_	003	12	.398	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]				Torque[k-ft]					
84			min	-44.539	1	-30.022	3	-48.354	1_	005	3	091	1	-1.209	1
85		5	max	-1.461	15	25.75	3	502	15	.011	1	004	12	.4	3
86			min	-44.539	1	-86.917	1_	-15.262	1	005	3	128	1	-1.209	1
87		6	max	-1.461	15	81.521	3	17.831	1	.011	1	004	15	.338	3
88			min	-44.539	1	-259.868	1	.345	12	005	3	127	1	-1.006	1
89		7	max	-1.461	15	137.292	3	50.923	1	.011	1	003	15	.21	3
90			min	-44.539	1	-432.819	1	1.423	12	005	3	087	1	602	1
91		8	max	-1.461	15	193.063	3	84.016	1	.011	1	0	10	.017	3
92			min	-44.539	1	-605.771	1	2.502	12	005	3	008	1	003	9
93		9	max	-1.461	15	248.834	3	117.108	1	.011	1	.109	1	.811	1
94			min	-44.539	1	-778.722	1	3.581	12	005	3	.003	12	24	3
95		10	max	-1.461	15	304.605	3	150.2	1	.011	1	.265	1	1.821	1
96			min	-44.539	1	-951.673	1	4.66	12	005	3	.007	12	563	3
97		11	max	-1.461	15	778.722	1	-3.581	12	.005	3	.109	1	.811	1
98			min	-44.539	1	-248.834	3	-117.108	1	011	1	.003	12	24	3
99		12	max	-1.461	15	605.771	1	-2.502	12	.005	3	0	10	.017	3
100		12	min	-44.539	1	-193.063	3	-84.016	1	011	1	008	1	003	9
101		13	max	-1.461	15	432.819	1	-1.423	12	.005	3	003	15	.21	3
102		13	min	-44.539	1	-137.292	3	-50.923	1	011	1	087	1	602	1
		11					<u>ა</u> 1		12						3
103		14	max	<u>-1.461</u>	15	259.868		345		.005	3	004	15	.338	
104		4.5	min	-44.539	1_	-81.521	3	-17.831	1_	011	1	127	1	-1.006	1
105		15	max	-1.461	15	86.917	1_	15.262	1	.005	3	004	12	.4	3
106		1.0	min	<u>-44.539</u>	1	-25.75	3	.502	15	011	1	128	1	-1.209	1
107		16	max	-1.461	15	30.022	3	48.354	1	.005	3	003	12	.398	3
108			min	-44.539	1	-86.034	1_	1.581	15	011	1	091	1	-1.209	1
109		17	max	<u>-1.461</u>	15	85.793	3_	81.447	1	.005	3	0	3	.33	3
110			min	-44.539	1	-258.986	1_	2.66	15	011	1	015	1_	-1.008	1
111		18	max	-1.461	15	141.564	3	114.539	1	.005	3	.099	1_	.198	3
112			min	-44.539	1	-431.937	1	3.739	15	011	1	.003	15	605	1
113		19	max	-1.461	15	197.335	3	147.632	1	.005	3	.252	1	0	1
114			min	-44.539	1	-604.888	1	4.818	15	011	1	.008	15	0	3
115	M16	1	max	-3.233	15	578.906	1	-4.684	15	.012	1	.223	1	0	1
116			min	-98.612	1	-185.685	3	-143.561	1	007	3	.007	15	0	3
117		2	max	-3.233	15	405.955	1	-3.605	15	.012	1	.075	1	.184	3
118			min	-98.612	1	-129.913	3	-110.469	1	007	3	.002	15	574	1
119		3	max	-3.233	15	233.003	1	-2.527	15	.012	1	0	12	.303	3
120			min	-98.612	1	-74.142	3	-77.377	1	007	3	034	1	947	1
121		4	max	-3.233	15	60.052	1	-1.448	15	.012	1	003	12	.357	3
122			min	-98.612	1	-18.371	3	-44.284	1	007	3	105	1	-1.118	1
123		5	max	-3.233	15	37.4	3	369	15	.012	1	004	12	.346	3
124			min	00 040	1	-112.899		-11.192	1	007	3	138	1	-1.087	1
125		6	max	-3.233	15	93.171	3	21.901	1	.012	1	004	15	.27	3
126			min	-98.612	1	-285.851	1	.523	12	007	3	131	1	855	1
127		7	max	-3.233	15	148.942	3	54.993	1	.012	1	003	15	.129	3
128		-	min	- <u>98.612</u>	1	-458.802	1	1.602	12	007	3	003	1	42	1
129		0		-3.233	_	204.714	3	88.086	1		1	0	10		1
		8	max		15					.012	_			.216	
130		0	min	<u>-98.612</u>	1 1 5	-631.753	1	2.681	12	007	3	003	1	078	3
131		9	max	-3.233	15	260.485	3	121.178	1	.012	1	.119	1	1.054	1
132		40	min	-98.612	1	-804.704	1	3.76	12	007	3	.003	12	349	3
133		10	max	-3.233	15	316.256	3	154.271	1	.012	1	.28	1	2.093	1
134		4.4	min	-98.612	1_	-977.656	1_	4.838	12	007	3	.008	12	686	3
135		11	max	-3.233	15	804.704	1	-3.76	12	.007	3	.119	1	1.054	1
136			min	<u>-98.612</u>	1	-260.485	3	-121.178	1	012	1	.003	12	349	3
137		12	max	-3.233	15	631.753	1_	-2.681	12	.007	3	0	10	.216	1
138			min	-98.612	1	-204.714	3	-88.086	1_	012	1	003	1_	078	3
139		13	max	-3.233	15	458.802	1_	-1.602	12	.007	3	003	15	.129	3
140			min	-98.612	1	-148.942	3	-54.993	1	012	1	087	1	42	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]		y Shear[lb]	LC			Torque[k-ft]	LC			z-z Mome	
141		14	max	-3.233	15	285.851	1	523	12	.007	3	004	<u>15</u>	.27	3
142			min	-98.612	1	-93.171	3	-21.901	1	012	1	131	1_	855	1
143		15	max	-3.233	15	112.899	1	11.192	1	.007	3	004	12	.346	3
144			min	-98.612	1	-37.4	3	.369	15	012	1	138	1	-1.087	1
145		16	max	-3.233	15	18.371	3	44.284	1	.007	3	003	12	.357	3
146			min	-98.612	1	-60.052	1	1.448	15	012	1	105	1	-1.118	1
147		17	max	-3.233	15	74.142	3	77.377	1	.007	3	0	12	.303	3
148			min	-98.612	1	-233.003	1	2.527	15	012	1	034	1	947	1
149		18	max	-3.233	15	129.913	3	110.469	1	.007	3	.075	1	.184	3
150			min	-98.612	1	-405.955	1	3.605	15	012	1	.002	15	574	1
151		19	max	-3.233	15	185.685	3	143.561	1	.007	3	.223	1	0	1
152			min	-98.612	1	-578.906	1	4.684	15	012	1	.007	15	0	3
153	M2	1		1114.847	1	2.279	4	1.327	1	0	3	0	3	0	1
154	··· -		min	-807.049	3	.537	15	.043	15	0	1	0	1	0	1
155		2		1115.175	1	2.264	4	1.327	1	0	3	0	1	0	15
156			min	-806.802	3	.533	15	.043	15	0	1	0	15	0	4
157		3		1115.504	1	2.249	4	1.327	1	0	3	0	1	0	15
158			min	-806.556	3	.53	15	.043	15	0	1	0	15	001	4
159		4		1115.832	1	2.233	4	1.327	1	0	3	0	1	0	15
160			min	-806.31	3	.526	15	.043	15	0	1	0	15	001	4
161		5		1116.161	1	2.218	4	1.327	1	0	3	.001	1	0	15
162			min	-806.063	3	.523	15	.043	15	0	1	0	15	002	4
163		6		1116.489	1	2.203	4	1.327	1	0	3	.001	1	0	15
164		0	min	-805.817	3	.519	15	.043	15	0	1	.001	15	002	4
165		7		1116.817	1	2.188	4	1.327	1			.002	1 <u>15</u>	002 0	
							15			0	3	.002	15	_	15
166		0	min	-805.571	3	.516		.043	15	0		_		003	4
167		8		1117.146	1	2.172	15	1.327	1	0	3	.002	<u>1</u> 15	0	15
168			min	-805.324	3	.512		.043	15	0		0		003	4
169		9		1117.474	1	2.157	4	1.327	1	0	3	.002	1_	0	15
170		10	min	-805.078	3	.508	15	.043	15	0	1	0	15	004	4
171		10		1117.803	1	2.142	4	1.327	1	0	3	.003	1_	001	15
172		4.4	min	-804.832	3	.505	15	.043	15	0	1	0	15	004	4
173		11		1118.131	1	2.127	4	1.327	1	0	3	.003	1_	001	15
174		40	min	-804.585	3	.501	15	.043	15	0		0	15	005	4
175		12	max	1118.46	1	2.111	4	1.327	1	0	3	.003	1_	001	15
176		40	min	-804.339	3	.498	15	.043	15	0	1	0	15	005	4
177		13		1118.788	1	2.096	4	1.327	1	0	3	.004	1_	001	15
178		4.4	min	-804.093	3	.494	15	.043	15	0	1	0	15	006	4
179		14		1119.116	1	2.081	4	1.327	1	0	3	.004	1_	001	15
180		4.5	min	-803.846	3	.49	15	.043	15	0	1	0	15	006	4
181		15		1119.445	1	2.065	4	1.327	1	0	3	.004	1_	002	15
182		40	min	-803.6	3	.487	15	.043	15	0	1	0	<u>15</u>	007	4
183		16		1119.773	1	2.05	4	1.327	1	0	3	.004	1_	002	15
184		47		-803.354	3	.483	15	.043	15	0	1	0	15	007	4
185		17		1120.102	1	2.035	4	1.327	1	0	3	.005	1_	002	15
186		40		-803.107	3	.48	15	.043	15	0	1	0	15	008	4
187		18		1120.43	1	2.02	4	1.327	1	0	3	.005	1_	002	15
188		40	min		3	.476	15	.043	15	0	1	0	15	008	4
189		19		1120.759	1	2.004	4	1.327	1	0	3	.005	1_	002	15
190	B 40	4	min		3	.473	15	.043	15	0	1	0	15	009	4
191	<u>M3</u>	1		216.109	2	8.077	4	.011	1	0	3	0	1_	.009	4
192		_	min		3	1.899	15	0	15	0	1	0	15	.002	15
193		2	max		2	7.305	4	.011	1	0	3	0	1_	.005	4
194		_		-323.021	3	1.718	15	0	15	0	1	0	15	.001	15
195		3	_	215.768	2	6.532	4	.011	1	0	3	0	1_	.003	2
196			min		3	1.536	15	0	15	0	1	0	15	0	12
197		4	max	215.598	2	5.76	4	.011	1	0	3	0	_1_	0	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
198			min	-323.277	3	1.355	15	0	15	0	1	0	15	001	3
199		5	max		2	4.987	4	.011	1	0	3	0	1	0	15
200			min	-323.405	3	1.173	15	0	15	0	1	0	15	002	4
201		6	max	215.257	2	4.215	4	.011	1	0	3	0	1	001	15
202			min	-323.533	3	.992	15	0	15	0	1	0	15	004	4
203		7	max	215.087	2	3.443	4	.011	1	0	3	0	1	001	15
204			min	-323.66	3	.81	15	0	15	0	1	0	15	006	4
205		8	max	214.916	2	2.67	4	.011	1	0	3	0	1	002	15
206			min	-323.788	3	.628	15	0	15	0	1	0	15	007	4
207		9	max	214.746	2	1.898	4	.011	1	0	3	0	1	002	15
208			min	-323.916	3	.447	15	0	15	0	1	0	15	008	4
209		10	max	214.576	2	1.125	4	.011	1	0	3	0	1	002	15
210			min	-324.044	3	.265	15	0	15	0	1	0	15	009	4
211		11	max	214.405	2	.375	2	.011	1	0	3	0	1	002	15
212			min	-324.171	3	.054	12	0	15	0	1	0	15	009	4
213		12	max	214.235	2	098	15	.011	1	0	3	0	1	002	15
214			min	-324.299	3	42	4	0	15	0	1	0	15	009	4
215		13	max	214.065	2	279	15	.011	1	0	3	0	1	002	15
216			min	-324.427	3	-1.192	4	0	15	0	1	0	15	009	4
217		14	max	213.894	2	461	15	.011	1	0	3	0	1	002	15
218			min	-324.555	3	-1.964	4	0	15	0	1	0	15	008	4
219		15	max	213.724	2	643	15	.011	1	0	3	0	1	002	15
220			min	-324.682	3	-2.737	4	0	15	0	1	0	15	007	4
221		16	max	213.554	2	824	15	.011	1	0	3	0	1	001	15
222			min	-324.81	3	-3.509	4	0	15	0	1	0	15	006	4
223		17	max		2	-1.006	15	.011	1	0	3	0	1	001	15
224			min	-324.938	3	-4.282	4	0	15	0	1	0	15	004	4
225		18	max		2	-1.187	15	.011	1	0	3	0	1	0	15
226			min	-325.066	3	-5.054	4	0	15	0	1	0	15	002	4
227		19	max		2	-1.369	15	.011	1	0	3	0	1	0	1
228			min	-325.193	3	-5.827	4	0	15	0	1	0	15	0	1
229	M4	1	max	1239.825	1	0	1	289	15	0	1	0	1	0	1
230			min	-235.624	3	0	1	-8.84	1	0	1	0	10	0	1
231		2	max	1239.996	1	0	1	289	15	0	1	0	12	0	1
232			min	-235.496	3	0	1	-8.84	1	0	1	0	1	0	1
233		3		1240.166	1	0	1	289	15	0	1	0	15	0	1
234			min	-235.369	3	0	1	-8.84	1	0	1	002	1	0	1
235		4	max	1240.336	1	0	1	289	15	0	1	0	15	0	1
236			min	-235.241	3	0	1	-8.84	1	0	1	003	1	0	1
237		5	max	1240.507	1	0	1	289	15	0	1	0	15	0	1
238			min	-235.113	3	0	1	-8.84	1	0	1	004	1	0	1
239		6		1240.677	1	0	1	289	15	0	1	0	15	0	1
240			min		3	0	1	-8.84	1	0	1	005	1	0	1
241		7		1240.847	1	0	1	289	15	0	1	0	15	0	1
242			min	-234.857	3	0	1	-8.84	1	0	1	006	1	0	1
243		8		1241.018	1	0	1	289	15	0	1	0	15	0	1
244			min		3	0	1	-8.84	1	0	1	007	1	0	1
245		9		1241.188	1	0	1	289	15	0	1	0	15	0	1
246				-234.602	3	0	1	-8.84	1	0	1	008	1	0	1
247		10		1241.359	1	0	1	289	15	0	1	0	15	0	1
248			min		3	0	1	-8.84	1	0	1	009	1	0	1
249		11		1241.529	1	0	1	289	15	0	1	0	15	0	1
250			min		3	0	1	-8.84	1	0	1	01	1	0	1
251		12		1241.699	1	0	1	289	15	0	1	0	15	0	1
252			min	-234.219	3	0	1	-8.84	1	0	1	011	1	0	1
253		13		1241.87	1	0	1	289	15	0	1	0	15	0	1
254				-234.091	3	0	1	-8.84	1	0	1	012	1	0	1
								0.01							

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

055	Member	Sec		Axial[lb]								y-y Mome			
255		14	max		1	0	1	289	<u>15</u>	0	1	0	15	0	1
256 257		15	min	<u>-233.963</u> 1242.21	<u>3</u> 1	0	1	-8.84 289	<u>1</u> 15	0	<u>1</u> 1	013 0	1 15	0	1
258		13	max	-233.835	3	0	1	-8.84	1	0	1	014	1	0	1
259		16		1242.381	<u></u>	0	1	289	15	0	1	0	15	0	1
260		10		-233.708	3	0	1	-8.84	1	0	1	015	1	0	1
261		17		1242.551	1	0	1	289	15	0	1	0	15	0	1
262		- '	min	-233.58	3	0	1	-8.84	1	0	1	016	1	0	1
263		18		1242.721	1	0	1	289	15	0	1	0	15	0	1
264			min	-233.452	3	0	1	-8.84	1	0	1	017	1	0	1
265		19		1242.892	1	0	1	289	15	Ö	1	0	15	0	1
266			min	-233.324	3	0	1	-8.84	1	0	1	018	1	0	1
267	M6	1	max	3601.141	1	2.543	2	0	1	0	1	0	1	0	1
268			min	-2657.335	3	.373	12	0	1	0	1	0	1	0	1
269		2	max	3601.469	1	2.531	2	0	1	0	1	0	1	0	12
270			min	-2657.088	3	.367	12	0	1	0	1	0	1	0	2
271		3	max	3601.798	1	2.519	2	0	1	0	1	0	1	0	12
272			min	-2656.842	3	.361	12	0	1	0	1	0	1	001	2
273		4	max	3602.126	1_	2.507	2	0	1_	0	1	0	1	0	12
274			min	-2656.596	3	.355	12	0	1	0	1	0	1	002	2
275		5	max	3602.455	_1_	2.495	2	0	_1_	0	_1_	0	1	0	12
276			min	-2656.349	3	.349	12	0	1	0	1	0	1	002	2
277		6		3602.783	_1_	2.484	2	0	_1_	0	_1_	0	1	0	12
278			min	-2656.103	3	.343	12	0	1_	0	1	0	1	003	2
279		7		3603.112	1_	2.472	2	0	_1_	0	_1_	0	1	0	12
280			min	-2655.857	3_	.337	12	0	1_	0	1	0	1	003	2
281		8	max		1_	2.46	2	0	1_	0	1	0	1	0	12
282			min	-2655.61	3	.332	12	0	_1_	0	1	0	1	004	2
283		9		3603.768	1	2.448	2	0	1_	0	1	0	1	0	12
284		40	min	-2655.364	3	.326	12	0	<u>1</u> 1	0	<u>1</u> 1	0	1	004	2
285		10		3604.097 -2655.118	1	2.436	2 12	0	1	0	1	0	1	0	12
286 287		11	min	3604.425	<u>3</u> 1	.32 2.424	2	0	1	0	1	0	1	005 0	12
288			min	-2654.871	3	.314	12	0	1	0	1	0	1	006	2
289		12		3604.754	_ <u></u>	2.412	2	0	1	0	1	0	1	0	12
290		12	min	-2654.625	3	.308	12	0	1	0	1	0	1	006	2
291		13		3605.082	1	2.4	2	0	1	0	1	0	1	0	12
292		10	min	-2654.379	3	.302	12	0	1	0	1	0	1	007	2
293		14		3605.411	1	2.388	2	0	1	0	1	0	1	0	12
294				-2654.132	3	.296	12	0	1	0	1	0	1	007	2
295		15		3605.739	1	2.376	2	0	1	0	1	0	1	001	12
296			min	-2653.886	3	.29	12	0	1	0	1	0	1	008	2
297		16		3606.068	1	2.365	2	0	1	0	1	0	1	001	12
298				-2653.64	3	.284	12	0	1	0	1	0	1	008	2
299		17		3606.396	1	2.353	2	0	1	0	1	0	1	001	12
300			min	-2653.393	3	.278	12	0	1	0	1	0	1	009	2
301		18		3606.724	1_	2.341	2	0	1_	0	1	0	1	001	12
302				-2653.147	3	.272	12	0	1_	0	1	0	1	009	2
303		19		3607.053	1_	2.329	2	0	1_	0	1	0	1	001	12
304			min	-2652.901	3	.266	12	0	1	0	1	0	1	01	2
305	<u>M7</u>	1	max		2	8.12	4	0	_1_	0	1	0	1	.01	2
306			min	-1010.758	3	1.905	15	0	1	0	1	0	1	.001	12
307		2	max		2	7.347	4	0	_1_	0	1	0	1	.007	2
308				-1010.886	3	1.723	15	0	1_	0	1	0	1	0	3
309		3	max		2	6.575	4	0	1	0	1	0	1	.005	2
310			min	-1011.014	3	1.542	15	0	1_	0	1	0	1	002	3
311		4	max	963.796	2	5.802	4	0	_1_	0	_1_	0	1	.002	2

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
312			min	-1011.142	3	1.36	15	0	1	0	1	0	1	003	3
313		5	max	963.626	2	5.03	4	0	1	0	1	0	1	0	2
314			min	-1011.269	3	1.179	15	0	1	0	1	0	1	004	3
315		6	max		2	4.258	4	0	1	0	1	0	1	001	15
316			min	-1011.397	3	.997	15	0	1	0	1	0	1	005	3
317		7	max	963.285	2	3.485	4	0	1	0	_1_	0	1	001	15
318			min	-1011.525	3	.815	15	0	1	0	1	0	1	006	4
319		8	max	963.115	2	2.713	4	0	1	0	1	0	1	002	15
320			min	-1011.653	3	.634	15	0	1	0	1	0	1	007	4
321		9	max	962.945	2	1.94	4	0	1	0	1	0	1	002	15
322			min	-1011.78	3	.452	15	0	1	0	1	0	1	008	4
323		10	max		2	1.28	2	0	1	0	_1_	0	_1_	002	15
324			min	-1011.908	3	.168	12	0	1	0	1	0	1	009	4
325		11	max		2	.678	2	0	1	0	1	0	1	002	15
326			min	-1012.036	3	246	3	0	1	0	1	0	1	009	4
327		12	max	962.434	2	.076	2	0	1	0	_1_	0	1	002	15
328			min	-1012.164	3	697	3	0	1	0	1	0	1	009	4
329		13	max	962.263	2	274	15	0	1	0	1	0	1	002	15
330			min	-1012.291	3	-1.149	4	0	1	0	1	0	1	009	4
331		14	max	962.093	2	456	15	0	1	0	1	0	1	002	15
332			min	-1012.419	3	-1.922	4	0	1	0	1	0	1	008	4
333		15	max		2	637	15	0	1	0	_1_	0	_1_	002	15
334			min	-1012.547	3	-2.694	4	0	1	0	1	0	1	007	4
335		16	max		2	819	15	0	1	0	1	0	1	001	15
336			min	-1012.675	3	-3.467	4	0	1	0	1	0	1	006	4
337		17	max	961.582	2	-1	15	0	1	0	_1_	0	1	0	15
338			min	-1012.802	3	-4.239	4	0	1	0	1	0	1	004	4
339		18	max	961.412	2	-1.182	15	0	1	0	1	0	1	0	15
340			min	-1012.93	3	-5.012	4	0	1	0	1	0	1	002	4
341		19	max	961.241	2	-1.363	15	0	1	0	_1_	0	1	0	1
342			min	-1013.058	3	-5.784	4	0	1	0	1	0	1	0	1
343	<u>M8</u>	1	max	3634.056	_1_	0	1	0	1	0	1	0	1	0	1
344			min	-822.413	3	0	1	0	1	0	1	0	1	0	1
345		2		3634.226	_1_	0	1_	0	1	0	1	0	1	0	1
346			min	-822.285	3	0	1	0	1	0	1	0	1	0	1
347		3	max	3634.397	_1_	0	1	0	1_	0	1	0	1	0	1
348			min	-822.158	3	0	1	0	1	0	1	0	1	0	1
349		4	max		_1_	0	1_	0	1_	0	1	0	1_	0	1
350			min	-822.03	3	0	1	0	1	0	1	0	1	0	1
351		5		3634.737	1_	0	1	0	1	0	1	0	1	0	1
352				-821.902		0	1	0	1	0	1	0	1	0	1
353		6		3634.908	1	0	1	0	1	0	1	0	1	0	1
354			min		3	0	1	0	1	0	1	0	1_	0	1
355		7		3635.078	1	0	1	0	1	0	1	0	1	0	1
356				-821.647	3	0	1	0	1	0	1	0	1_	0	1
357		8		3635.248	1	0	1	0	1	0	1	0	1	0	1
358				-821.519		0	1	0	1	0	1	0	1	0	1
359		9		3635.419	1	0	1	0	1	0	1	0	1	0	1
360		1.0		-821.391	3	0	1	0	1	0	1	0	1	0	1
361		10		3635.589	1	0	1	0	1	0	1	0	1	0	1
362				-821.263	3	0	1	0	1	0	1	0	1	0	1
363		11_		3635.759	1	0	1	0	1	0	1	0	1	0	1
364			min	-821.136	3	0	1	0	1	0	1	0	1	0	1
365		12		3635.93	1	0	1	0	1	0	1	0	1	0	1
366		4.0	min		3	0	1	0	1	0	1	0	1_	0	1
367		13	max		1	0	1	0	1	0	1	0	1	0	1
368			min	-820.88	3	0	1	0	1	0	1	0	1	0	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	_LC_
369		14	max		_1_	0	1	0	1	0	_1_	0	1	0	1
370				-820.752	3	0	1	0	1	0	1_	0	1	0	1
371		15		3636.441	_1_	0	1	0	1	0	_1_	0	1	0	1
372				-820.625	3	0	1	0	1	0	1_	0	1	0	1
373		16		3636.611	1_	0	1	0	1	0	1	0	1	0	1
374		47		-820.497	3	0	1	0	1	0	1	0	1	0	1
375		17		3636.781	1	0	1	0	1	0	1	0	1	0	1
376		40		-820.369	3	0	1	0	1	0	1_	0	1	0	1
377		18		3636.952	1	0	1	0	1	0	1_4	0	1	0	1
378		10	min	-820.241	3	0	1	0	1	0	<u>1</u> 1	0	1	0	1
379		19		3637.122	1	0	1	<u> </u>	1	0	1	0	1	0	1
380	M10	1		<u>-820.114</u> 1114.847	<u>3</u> 1	2.279	4	043	15	0	1	0	1		1
382	IVITO			-807.049	3	.537	15	-1.327	1	0	3	0	3	0 0	1
383		2		1115.175	<u> </u>	2.264	4	-1.327 043	15	0	<u>ა</u> 1	0	15	0	15
384				-806.802	3	.533	15	-1.327	1	0	3	0	1	0	4
385		3		1115.504	1	2.249	4	043	15	0	1	0	15	0	15
386				-806.556	3	.53	15	-1.327	1	0	3	0	1	001	4
387		4		1115.832	1	2.233	4	043	15	0	1	0	15	0	15
388			min	-806.31	3	.526	15	-1.327	1	0	3	0	1	001	4
389		5		1116.161	1	2.218	4	043	15	0	1	0	15	0	15
390				-806.063	3	.523	15	-1.327	1	0	3	001	1	002	4
391		6		1116.489	1	2.203	4	043	15	0	1	0	15	0	15
392				-805.817	3	.519	15	-1.327	1	0	3	001	1	002	4
393		7		1116.817	1	2.188	4	043	15	0	1	0	15	0	15
394				-805.571	3	.516	15	-1.327	1	0	3	002	1	003	4
395		8	max	1117.146	1	2.172	4	043	15	0	1	0	15	0	15
396			min	-805.324	3	.512	15	-1.327	1	0	3	002	1	003	4
397		9	max	1117.474	1	2.157	4	043	15	0	1_	0	15	0	15
398			min	-805.078	3	.508	15	-1.327	1	0	3	002	1	004	4
399		10		1117.803	_1_	2.142	4	043	15	0	_1_	0	15	001	15
400				-804.832	3	.505	15	-1.327	1	0	3	003	1	004	4
401		11		1118.131	_1_	2.127	4	043	15	0	1	0	15	001	15
402				-804.585	3	.501	15	-1.327	1	0	3	003	1	005	4
403		12	max	1118.46	1_	2.111	4	043	15	0	1_	0	15	001	15
404		40		-804.339	3	.498	15	-1.327	1	0	3	003	1	005	4
405		13		1118.788	1	2.096	4	043	15	0	1_	0	15	001	15
406		4.4		-804.093	3	.494	15	-1.327	1	0	3	004	1	006	4
407		14		1119.116	1	2.081	4	043	15	0	1	0	15	001	15
408		15	min	-803.846	3	.49	1 <u>5</u>	-1.327	1 15	0	<u>3</u> 1	004	1 15	006	15
409		15		1119.445		2.065		043		0	3	0		002	
410		16		-803.6	3	.487	15	-1.327	1_	0		004	1 1 5	007	4
411		10		1119.773 -803.354	<u>1</u> 3	2.05 .483	15	043 -1.327	15 1	0	<u>1</u> 3	004	15 1	002 007	1 <u>5</u>
413		17		1120.102	<u>ა</u> 1	2.035	4	-1.32 <i>1</i> 043	15	0	<u>၂</u> ၂	004 0	15	007	15
414		17		-803.107	3	.48	15	-1.327	1	0	3	005	1	002 008	4
415		18		1120.43	1	2.02	4	043	15	0	<u> </u>	0	15	002	15
416		10		-802.861	3	.476	15	-1.327	1	0	3	005	1	002	4
417		19		1120.759	1	2.004	4	043	15	0	1	0	15	002	15
418		'		-802.615	3	.473	15	-1.327	1	0	3	005	1	002	4
419	M11	1		216.109	2	8.077	4	0	15	0	1	0	15	.009	4
420				-322.894	3	1.899	15	011	1	0	3	0	1	.002	15
421		2		215.939	2	7.305	4	0	15	0	1	0	15	.005	4
422				-323.021	3	1.718	15	011	1	0	3	0	1	.001	15
423		3		215.768	2	6.532	4	0	15	0	1	0	15	.003	2
424				-323.149	3	1.536	15	011	1	0	3	0	1	0	12
425		4	max	215.598	2	5.76	4	0	15	0	1	0	15	0	2

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:__

	Member	Sec		Axial[lb]	LC	y Shear[lb]		z Shear[lb]	LC	Torque[k-ft]		y-y Mome	LC	z-z Mome	<u>LC</u>
426			min	-323.277	3	1.355	15	011	1	0	3	0	1	001	3
427		5	max		2	4.987	4	0	15	0	1	0	15	0	15
428			min	-323.405	3	1.173	15	011	1	0	3	0	1_	002	4
429		6	max		2	4.215	4	0	15	0	1	0	15	001	15
430		_	min	-323.533	3	.992	15	011	1	0	3	0	1_	004	4
431		7	max	215.087	2	3.443	4	0	15	0	1	0	15	001	15
432			min	-323.66	3	.81	15	011	1	0	3	0	1_	006	4
433		8	max		2	2.67	15	011	15	0	1	0	<u>15</u>	002	15
434		9	min	-323.788	3	.628 1.898				0	1	0		007 002	15
435 436		9	max min	214.746 -323.916	3	.447	15	011	15	<u> </u>	3	0	1 <u>5</u>	002	1 <u>5</u>
437		10			2	1.125	4	0	15	0	1	0	15	002	15
438		10	max	-324.044	3	.265	15	011	1	0	3	0	1	002	4
439		11	max		2	.375	2	0	15	0	1	0	15	002	15
440			min	-324.171	3	.054	12	011	1	0	3	0	1	002	4
441		12	max	214.235	2	098	15	0	15	0	1	0	15	003	15
442		12	min	-324.299	3	42	4	011	1	0	3	0	1	009	4
443		13	max	214.065	2	279	15	0	15	0	1	0	15	002	15
444		-10	min	-324.427	3	-1.192	4	011	1	0	3	0	1	009	4
445		14	max	213.894	2	461	15	0	15	0	1	0	15	002	15
446			min	-324.555	3	-1.964	4	011	1	0	3	0	1	008	4
447		15	max		2	643	15	0	15	0	1	0	15	002	15
448			min	-324.682	3	-2.737	4	011	1	0	3	0	1	007	4
449		16	max	213.554	2	824	15	0	15	0	1	0	15	001	15
450			min	-324.81	3	-3.509	4	011	1	0	3	0	1	006	4
451		17	max	213.383	2	-1.006	15	0	15	0	1	0	15	001	15
452			min	-324.938	3	-4.282	4	011	1	0	3	0	1	004	4
453		18	max	213.213	2	-1.187	15	0	15	0	1	0	15	0	15
454			min	-325.066	3	-5.054	4	011	1	0	3	0	1	002	4
455		19	max	213.043	2	-1.369	15	0	15	00	1_	0	15	0	1
456			min	-325.193	3	-5.827	4	011	1	0	3	0	1_	0	1
457	M12	1		1239.825	_1_	0	1	8.84	1	0	1	0	10	0	1
458			min	-235.624	3_	0	1_	.289	15	0	1	0	1	0	1
459		2		1239.996	1	0	1	8.84	1	0	1	0	1	0	1
460		_	min	-235.496	3	0	1	.289	15	0	1	0	12	0	1
461		3	_	1240.166	1	0	1	8.84	1	0	1	.002	1	0	1
462		4	min	-235.369	3	0	1	.289	15	0	1	0	15	0	1
463		4		1240.336 -235.241	<u>1</u>	0	1	8.84	1 15	0	1	.003	15	0	1
464 465		5	min	1240.507	<u>3</u> 1	0	1	.289 8.84	1	<u> </u>	1	.004	1	0	1
466		5		-235.113		0	1	.289	15	0	1	0	15		1
467		6		1240.677	1	0	1	8.84	1	0	1	.005	1	0	1
468			min		3	0	1	.289	15	0	1	0	15	0	1
469		7		1240.847	1	0	1	8.84	1	0	1	.006	1	0	1
470			min	-234.857	3	0	1	.289	15	0	1	0	15	0	1
471		8		1241.018	1	0	1	8.84	1	0	1	.007	1	0	1
472			min		3	0	1	.289	15	0	1	0	15	0	1
473		9		1241.188	1	0	1	8.84	1	0	1	.008	1	0	1
474				-234.602	3	0	1	.289	15	0	1	0	15	0	1
475		10		1241.359	1	0	1	8.84	1	0	1	.009	1	0	1
476			min		3	0	1	.289	15	0	1	0	15	0	1
477		11		1241.529	1	0	1	8.84	1	0	1	.01	1	0	1
478			min	-234.346	3	0	1	.289	15	0	1	0	15	0	1
479		12	max	1241.699	1	0	1	8.84	1	0	1	.011	1	0	1
480			min	-234.219	3	0	1	.289	15	0	1	0	15	0	1
481		13		1241.87	_1_	0	1	8.84	1	0	1	.012	1	0	1
482			min	-234.091	3	0	1	.289	15	0	1	0	15	0	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
483		14	max	1242.04	1	0	1	8.84	1	0	_1_	.013	_1_	0	1
484			min	-233.963	3	0	1	.289	15	0	1	0	15	0	1
485		15	max	1242.21	1	0	1	8.84	1	0	1	.014	1	0	1
486			min	-233.835	3	0	1	.289	15	0	1	0	15	0	1
487		16	max	1242.381	1	0	1	8.84	1	0	1	.015	1	0	1
488			min	-233.708	3	0	1	.289	15	0	1	0	15	0	1
489		17	max	1242.551	1	0	1	8.84	1	0	1	.016	1	0	1
490			min	-233.58	3	0	1	.289	15	0	1	0	15	0	1
491		18	max	1242.721	1	0	1	8.84	1	0	1	.017	1	0	1
492			min	-233.452	3	0	1	.289	15	0	1	0	15	0	1
493		19	max		1	0	1	8.84	1	0	1	.018	1	0	1
494			min	-233.324	3	0	1	.289	15	0	1	0	15	0	1
495	M1	1	max	143.397	1	459.292	3	-3.06	15	0	1	.222	1	0	3
496			min	4.68	15	-514.904	1	-93.399	1	0	3	.007	15	013	1
497		2	max	143.768	1	458.254	3	-3.06	15	0	1	.173	1	.259	1
498			min	4.792	15	-516.288	1	-93.399	1	0	3	.006	15	242	3
499		3	max	189.505	3	566.947	1	-3.017	15	0	3	.124	1	.518	1
500			min	-124.537	2	-329.888	3	-92.309	1	0	1	.004	15	474	3
501		4	max	189.783	3	565.564	1	-3.017	15	0	3	.075	1	.22	1
502			min	-124.166	2	-330.925	3	-92.309	1	0	1	.002	15	299	3
503		5	max	190.061	3	564.18	1	-3.017	15	0	3	.026	1	004	15
504			min	-123.795	2	-331.963	3	-92.309	1	0	1	0	15	124	3
505		6	max	190.339	3	562.796	1	-3.017	15	0	3	0	15	.051	3
506		ľ	min	-123.424	2	-333.001	3	-92.309	1	0	1	022	1	376	1
507		7	max	190.617	3	561.413	1	-3.017	15	0	3	002	15	.227	3
508			min	-123.054	2	-334.039	3	-92.309	1	0	1	071	1	672	1
509		8	max	190.895	3	560.029	1	-3.017	15	0	3	004	15	.404	3
510			min	-122.683	2	-335.076	3	-92.309	1	0	1	12	1	968	1
511		9	max	198.818	3	32.033	2	-4.406	15	0	9	.07	1	.472	3
512		J	min	-65.439	2	.42	15	-134.659	1	0	3	.002	15	-1.103	1
513		10	max	199.096	3	30.649	2	-4.406	15	0	9	0	15	.459	3
514		10	min	-65.068	2	.002	15	-134.659	1	0	3	0	1	-1.112	1
515		11	max	199.374	3	29.265	2	-4.406	15	0	9	002	15	.447	3
516		.	min	-64.698	2	-1.71	4	-134.659	1	0	3	072	1	-1.12	1
517		12	max	207.264	3	219.605	3	-2.945	15	0	1	.118	1	.389	3
518		12	min	-38.501	10	-593.698	1	-90.164	1	0	3	.004	15	988	1
519		13	max	207.543	3	218.567	3	-2.945	15	0	1	.071	1	.273	3
520		''	min	-38.192	10	-595.082	1	-90.164	1	0	3	.002	15	675	1
521		14	max	207.821	3	217.53	3	-2.945	15	0	1	.023	1	.158	3
522		17	min	-37.883	10	-596.465	1	-90.164	1	0	3	0	15	36	1
523		15		208.099	3	216.492	_	-2.945	15	0	1	0	15	.044	3
524		15	min	-37.574	10	-597.849		-90.164	1	0	3	024	1	045	1
525		16	max		3	215.454	3	-2.945	15	0	1	002	15	.271	1
526		10	min		10	-599.233		-90.164	1	0	3	072	1	07	3
527		17	max		3	214.416	3	-2.945	15	0	<u> </u>	004	15	.587	1
528		 ' '	min	-36.956	10	-600.616	1	-90.164	1	0	3	12	1	183	3
529		18	max		15	581.44	1	-3.233	15	0	3	006	15	.294	1
530		10	min	-143.93	1	-184.672	3	-98.702	1	0	1	171	1	091	3
531		19	max		15	580.056	1	-3.233	15	0	3	007	15	.007	3
532		13	min	-143.56	1	-185.71	3	-98.702	1	0	1	223	1	012	1
533	M5	1		308.87	1	1531.609	3		1	0	1	0	1	.027	1
534	IVIO		max min	9.549	12	-1739.795	1	0	1	0	1	0	1	0	3
535		2	max		1	1530.571	3	0	1	0	1	0	1	.945	1
536			min	9.734	12	-1741.178	1	0	1	0	1	0	1	809	3
537		3	max		3	1746.494	1	0	1	0	1	0	1	1.822	1
538		J	min	-494.053	1	-1067.491	3	0	1	0	1	0	1	-1.585	3
539		4	max		3	1745.111	1	0	1	0	1	0	1	.901	1
000		_ +	πιαλ	003.24	J	11770.111				U		U		.501	\perp

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
540			min	-493.682	1	-1068.529	3	0	1	0	1	0	1	-1.021	3
541		5	max	609.518	3	1743.727	1	0	1	0	1	0	1	.011	9
542			min	-493.312	1	-1069.567	3	0	1	0	1	0	1	457	3
543		6	max	609.796	3	1742.344	1	0	1	0	1	0	1	.107	3
544			min	-492.941	1	-1070.604	3	0	1	0	1	0	1	939	1
545		7	max	610.074	3	1740.96	1	0	1	0	1	0	1	.673	3
546			min	-492.57	1	-1071.642	3	0	1	0	1	0	1	-1.858	1
547		8	max	610.352	3	1739.576	1	0	1	0	1	0	1	1.238	3
548			min	-492.199	1	-1072.68	3	0	1	0	1	0	1	-2.776	1
549		9	max	624.466	3	105.768	2	0	1	0	1	0	1	1.426	3
550			min	-345.413	2	.418	15	0	1	0	1	0	1	-3.139	1
551		10	max	624.745	3	104.384	2	0	1	0	1	0	1	1.382	3
552			min	-345.043	2	.001	15	0	1	0	1	0	1	-3.168	1
553		11	max	625.023	3	103	2	0	1	0	1	0	1	1.338	3
554			min	-344.672	2	-1.576	4	0	1	0	1	0	1	-3.198	1
555		12	max	639.202	3	699.017	3	0	1	0	1	0	1	1.174	3
556			min	-227.652	2	-1853.021	1	0	1	0	1	0	1	-2.847	1
557		13	max	639.481	3	697.98	3	0	1	0	1	0	1	.805	3
558			min	-227.282	2	-1854.405	1	0	1	0	1	0	1	-1.869	1
559		14	max	639.759	3	696.942	3	0	1	0	1	0	1	.437	3
560			min	-226.911	2	-1855.788	1	0	1	0	1	0	1	89	1
561		15	max	640.037	3	695.904	3	0	1	0	1	0	1	.132	2
562			min	-226.54	2	-1857.172	1	0	1	0	1	0	1	004	13
563		16	max	640.315	3	694.866	3	0	1	0	1	0	1	1.07	1
564			min	-226.169	2	-1858.555	1	0	1	0	1	0	1	297	3
565		17	max	640.593	3	693.829	3	0	1	0	1	0	1	2.051	1
566			min	-225.799	2	-1859.939	1	0	1	0	1	0	1	664	3
567		18	max	-9.862	12	1963.584	1	0	1	0	1	0	1	1.06	1
568		1	min	-308.916	1	-631.635	3	0	1	0	1	0	1	347	3
569		19	max	-9.677	12	1962.2	1	0	1	0	1	0	1	.024	1
570		1.0	min	-308.545	1	-632.672	3	0	1	Ö	1	0	1	013	3
571	M9	1	max	143.397	1	459.292	3	93.399	1	0	3	007	15	0	3
572	1110		min	4.68	15	-514.904	1	3.06	15	0	1	222	1	013	1
573		2	max	143.768	1	458.254	3	93.399	1	0	3	006	15	.259	1
574		_	min	4.792	15	-516.288	1	3.06	15	0	1	173	1	242	3
575		3	max	189.505	3	566.947	1	92.309	1	0	1	004	15	.518	1
576			min	-124.537	2	-329.888	3	3.017	15	0	3	124	1	474	3
577		4	max	189.783	3	565.564	1	92.309	1	0	1	002	15	.22	1
578			min	-124.166	2	-330.925	3	3.017	15	0	3	075	1	299	3
579		5	max		3	564.18	1	92.309	1	0	1	0	15	004	15
580				-123.795	_	-331.963		3.017	15	0	3	026	1	124	3
581		6	max		3	562.796	1	92.309	1	0	1	.022	1	.051	3
582			min	-123.424	2	-333.001	3	3.017	15	0	3	0	15	376	1
583		7		190.617	3	561.413	1	92.309	1	0	1	.071	1	.227	3
584			min		2	-334.039	3	3.017	15	0	3	.002	15	672	1
585		8		190.895	3	560.029	1	92.309	1	0	1	.12	1	.404	3
586			min	-122.683	2	-335.076	3	3.017	15	0	3	.004	15	968	1
587		9		198.818	3	32.033	2	134.659	1	0	3	002	15	.472	3
588			min		2	.42	15		15	0	9	07	1	-1.103	1
589		10		199.096	3	30.649	2	134.659	1	0	3	0	1	.459	3
590		10	min		2	.002	15		15	0	9	0	15	-1.112	1
591		11	max		3	29.265	2	134.659	1	0	3	.072	1	.447	3
592			min	-64.698	2	-1.71	4	4.406	15	0	9	.002	15	-1.12	1
593		12		207.264	3	219.605	3	90.164	1	0	3	004	15	.389	3
594		14	min	-38.501	10	-593.698	1	2.945	15	0	1	118	1	988	1
595		12		207.543	3	218.567	_	90.164	1		3	002	15	.273	3
		13					3			0					
596			min	-38.192	10	-595.082	1	2.945	15	0	1	071	1	675	1

Model Name

: Schletter, Inc. : HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	207.821	3	217.53	3	90.164	1	0	3	0	15	.158	3
598			min	-37.883	10	-596.465	1	2.945	15	0	1	023	1	36	1
599		15	max	208.099	3	216.492	3	90.164	1	0	3	.024	1	.044	3
600			min	-37.574	10	-597.849	1	2.945	15	0	1	0	15	045	1
601		16	max	208.377	3	215.454	3	90.164	1	0	3	.072	1	.271	1
602			min	-37.265	10	-599.233	1	2.945	15	0	1	.002	15	07	3
603		17	max	208.655	3	214.416	3	90.164	1	0	3	.12	1	.587	1
604			min	-36.956	10	-600.616	1	2.945	15	0	1	.004	15	183	3
605		18	max	-4.796	15	581.44	1	98.702	1	0	1	.171	1	.294	1
606			min	-143.93	1	-184.672	3	3.233	15	0	3	.006	15	091	3
607		19	max	-4.684	15	580.056	1	98.702	1	0	1	.223	1	.007	3
608			min	-143.56	1	-185.71	3	3.233	15	0	3	.007	15	012	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	0	1	.111	1	.003	3 8.8e-3	1_	NC	1_	NC	1
2			min	0	15	013	3	001	10 -9.774e-4	3	NC	1	NC	1
3		2	max	0	1	.237	3	.039	1 1.017e-2	1	NC	5	NC	2
4			min	0	15	148	1	.001	15 -1.026e-3	3	971.583	1	6897.132	1
5		3	max	0	1	.44	3	.092	1 1.155e-2	1_	NC	5	NC	3
6			min	0	15	354	1	.003	15 -1.075e-3	3	541.871	1	2802.902	1
7		4	max	0	1	.563	3	.138	1 1.292e-2	1_	NC	5	NC	3
8			min	0	15	47	1	.005	15 -1.124e-3	3	433.583	1	1847.904	1
9		5	max	0	1	.59	3	.163	1 1.429e-2	1_	NC	5	NC	3
10			min	0	15	48	1	.005	15 -1.172e-3	3	417.648	3	1569.421	1
11		6	max	0	1	.525	3	.158	1 1.567e-2	1_	NC	5	NC	3
12			min	0	15	388	1	.005	15 -1.221e-3	3	468.284	3	1620.371	1
13		7	max	0	1	.386	3	.125	1 1.704e-2	1_	NC	5	NC	3
14			min	0	15	215	1	.004	15 -1.27e-3	3	631.025	3	2055.09	1
15		8	max	0	1	.21	3	.074	1 1.841e-2	1_	NC	5	NC	2
16			min	0	15	012	9	.003	15 -1.319e-3	3	1127.554	3	3516.949	1
17		9	max	0	1	.185	1	.023	1 1.979e-2	1_	NC	4	NC	1
18			min	0	15	.005	15	002	10 -1.367e-3	3	3410.677	1	NC	1
19		10	max	0	1	.269	1	.011	3 2.116e-2	1	NC	3	NC	1
20			min	0	1	021	3	006	2 -1.416e-3	3	1592.699	1	NC	1
21		11	max	0	15	.185	1	.023	1 1.979e-2	1	NC	4	NC	1
22			min	0	1	.005	15	002	10 -1.367e-3	3	3410.677	1	NC	1
23		12	max	0	15	.21	3	.074	1 1.841e-2	1	NC	5	NC	2
24			min	0	1	012	9	.003	15 -1.319e-3	3	1127.554	3	3516.949	1
25		13	max	0	15	.386	3	.125	1 1.704e-2	1	NC	5	NC	3
26			min	0	1	215	1	.004	15 -1.27e-3	3	631.025	3	2055.09	1
27		14	max	0	15	.525	3	.158	1 1.567e-2	1	NC	5	NC	3
28			min	0	1	388	1	.005	15 -1.221e-3	3	468.284	3	1620.371	1
29		15	max	0	15	.59	3	.163	1 1.429e-2	1	NC	5	NC	3
30			min	0	1	48	1	.005	15 -1.172e-3	3	417.648	3	1569.421	1
31		16	max	0	15	.563	3	.138	1 1.292e-2	1_	NC	5	NC	3
32			min	0	1	47	1	.005	15 -1.124e-3	3	433.583	1	1847.904	1
33		17	max	0	15	.44	3	.092	1 1.155e-2	1	NC	5	NC	3
34			min	0	1	354	1	.003	15 -1.075e-3	3	541.871	1	2802.902	1
35		18	max	0	15	.237	3	.039	1 1.017e-2	1	NC	5	NC	2
36			min	0	1	148	1	.001	15 -1.026e-3	3	971.583	1	6897.132	1
37		19	max	0	15	.111	1	.003	3 8.8e-3	1	NC	1_	NC	1
38			min	0	1	013	3	001	10 -9.774e-4	3	NC	1	NC	1
39	M14	1	max	0	1	.138	3	.003	3 5.568e-3	1	NC	1	NC	1
40			min	0	15	36	1	0	10 -2.52e-3	3	NC	1	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio			LC
41		2	max	0	1	.376	3	.027	1	6.711e-3	_1_	NC	<u>5</u>	NC	1
42			min	0	15	753	1	0	15	-3.081e-3	3	641.865	1_	NC	1
43		3	max	0	1	.575	3	.075	1	7.853e-3	_1_		15	NC	3
44			min	0	15	-1.089	1	.002	15		3	346.047	1_	3475.449	
45		4	max	0	1	.712	3	.119	1	8.995e-3	1_	NC	15	NC	3
46			min	0	15	-1.328	1	.004	15	-4.203e-3	3	260.411	1	2148.974	1
47		5	max	0	1	.772	3	.145	1	1.014e-2	1	9016.974	15	NC	3
48			min	0	15	-1.452	1	.005	15	-4.764e-3	3	230.908	1	1762.492	1
49		6	max	0	1	.757	3	.144	1	1.128e-2	1	8986.467	15	NC	3
50			min	0	15	-1.459	1	.005	15	-5.325e-3	3	229.317	1	1779.768	1
51		7	max	0	1	.68	3	.116	1	1.242e-2	1		15	NC	3
52			min	0	15	-1.37	1	.004	15	-5.886e-3	3	249.596	1	2221.804	1
53		8	max	0	1	.567	3	.069	1	1.356e-2	1	NC	15	NC	2
54		Ŭ	min	0	15	-1.223	1	.002	15		3	292.285	1	3751.812	1
55		9	max	0	1	.46	3	.022	1	1.471e-2	1		15	NC	1
56		-	min	0	15	-1.075	1	002	10	-7.008e-3	3	352.611	1	NC	1
57		10	max	0	1	.41	3	.002	3	1.585e-2	1	NC	5	NC	1
58		10		0	1	-1.005	1	006	2	-7.569e-3	3	390.87	1	NC	1
		11	min				3	.022	1				15	NC NC	1
59			max	0	15	.46				1.471e-2	1				
60		40	min	0	1	<u>-1.075</u>	1	002	10	-7.008e-3	3	352.611	1_	NC NC	1
61		12	max	0	15	.567	3	.069	1	1.356e-2	1_	NC 200,005	<u>15</u>	NC 0754 040	2
62		10	min	0	1	-1.223	1	.002	15	-6.447e-3	3	292.285	1_	3751.812	1
63		13	max	0	15	.68	3	.116	1	1.242e-2	1		<u>15</u>	NC	3
64			min	0	1	-1.37	1	.004	15		3	249.596	1_	2221.804	1
65		14	max	0	15	.757	3	.144	1	1.128e-2	_1_		<u>15</u>	NC	3
66			min	0	1	-1.459	1	.005	15	-5.325e-3	3	229.317	1_	1779.768	1
67		15	max	0	15	.772	3	.145	1	1.014e-2	_1_		<u>15</u>	NC	3
68			min	0	1	-1.452	1	.005	15	-4.764e-3	3	230.908	1	1762.492	1
69		16	max	0	15	.712	3	.119	1	8.995e-3	1	NC	15	NC	3
70			min	0	1	-1.328	1	.004	15	-4.203e-3	3	260.411	1	2148.974	1
71		17	max	0	15	.575	3	.075	1	7.853e-3	1	NC	15	NC	3
72			min	0	1	-1.089	1	.002	15	-3.642e-3	3	346.047	1	3475.449	1
73		18	max	0	15	.376	3	.027	1	6.711e-3	1	NC	5	NC	1
74			min	0	1	753	1	0	15	-3.081e-3	3	641.865	1	NC	1
75		19	max	0	15	.138	3	.003	3	5.568e-3	1	NC	1	NC	1
76			min	0	1	36	1	0	10	-2.52e-3	3	NC	1	NC	1
77	M15	1	max	0	15	.142	3	.003	3	2.12e-3	3	NC	1	NC	1
78			min	0	1	36	1	0	10	-5.659e-3	1	NC	1	NC	1
79		2	max	0	15	.291	3	.027	1	2.594e-3	3	NC	5	NC	2
80			min	0	1	787	1	0	15		1	590.492	1	9975.962	1
81		3	max	0	15	.419	3	.075	1	3.068e-3	3		15	NC	3
82		 	min	0	1	-1.15	1	.002	15	-7.99e-3	1	318.981	1	3466.285	
83		4	max	0	15	.513	3	.12	1	3.543e-3	3		15	NC	3
84		7	min	0	1	-1.406	1	.004		-9.156e-3	1	240.865	1	2144.552	
85		5	max	0	15	.564	3	.145	1	4.017e-3	3		15	NC	3
86		J	min	0	1	-1.534	1	.005		-1.032e-2	<u> </u>	214.713	1	1759.185	
		G					3						_		
87		6	max	0	15	.572 -1.532		.144	1	4.491e-3	3		<u>15</u>	NC 1776.276	3
88		7	min	0	1		1	.005	15		1_	214.95	1_		
89		7	max	0	15	.544	3	.116	1	4.966e-3	3		<u>15</u>	NC 224C 444	3
90			min	0	1	-1.424	1	.004		-1.265e-2	1_	236.799	1_	2216.411	1
91		8	max	0	15	.495	3	.07	1	5.44e-3	3_		<u>15</u>	NC 0700 000	2
92			min	0	1	<u>-1.253</u>	1	.002	15	-1.382e-2	1_	282.26	1_	3736.939	
93		9	max	0	15	.444	3	.022	1	5.914e-3	3_		<u>15</u>	NC	1
94			min	0	1	-1.084	1	001		-1.498e-2	1_	348.258	<u>1</u>	NC	1
95		10	max	0	1	.419	3	.009	3	6.389e-3	3	NC	5	NC	1
96			min	0	1	-1.004	1	005	2	-1.615e-2	1_	391.399	1_	NC	1
97		11	max	0	1	.444	3	.022	1	5.914e-3	3_	NC	15	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

98		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) I /v Ratio	I C	(n) I /z Ratio	L C
99	98	WICHIBOI		min				T T								
100			12		0			_				3		15		2
101										15						
102			13		0			3		1		3		15		
104	102			min	0	15	-1.424	1	.004	15		1	236.799	1	2216.411	1
105	103		14	max	0	1	.572	3	.144	1	4.491e-3	3	8995.305	15	NC	3
106				min	0	15	-1.532		.005	15	-1.149e-2	1				1
107			15	max	0	_		3		1		3		<u>15</u>		
108				min	0	15				15		_		•		
109			16			_										
1110				min				_						•		-
111			17													
1112																
113			18													
114			40									_				•
115			19											_		
116		MAC	4									_		•		
117		<u>M16</u>	1					_								
118												_		_		
119			2													
120			2					_								-
121			3													3
122			4													1
123			4													
124			_			_						_				
125			5													3
126			_													1
127			ь													
128			7									_		•		
129																
130			0													
131			0													
132			0			-										
133			9								1 9240 2					
134			10									_		_		
135 11 max 0 1 .166 1 .024 1 9.094e-3 3 NC 4 NC 1 136 min 0 15 095 3 0 10 -1.834e-2 1 4310.645 1 NC 1 137 12 max 0 1 .001 13 .074 1 8.416e-3 3 NC 3 NC 2 138 min 0 15 065 2 .003 15 -1.709e-2 1 1666.744 1 3475.283 1 139 13 max 0 1 .052 3 .125 1 7.738e-3 3 NC 5 NC 3 140 min 0 15 278 1 .004 15 -1584e-2 1 652.898 1 2044.968 1 141 min 0 15 278 <			10					+								
136 min 0 15 095 3 0 10 -1.834e-2 1 4310.645 1 NC 1 137 12 max 0 1 .001 13 .074 1 8.416e-3 3 NC 3 NC 2 138 min 0 15 065 2 .003 15 -1.709e-2 1 1666.744 1 3475.283 1 139 13 max 0 1 .052 3 .125 1 7.738e-3 3 NC 5 NC 3 140 min 0 15 278 1 .004 15 -1.584e-2 1 652.898 1 2044.968 1 141 max 0 1 .117 3 .158 1 7.059e-3 3 NC 5 NC 3 142 min 0 15 469 1 <			11											•		
137 12 max 0 1 .001 13 .074 1 8.416e-3 3 NC 3 NC 2 138 min 0 15 065 2 .003 15 -1.709e-2 1 1666.744 1 3475.283 1 139 13 max 0 1 .052 3 .125 1 7.738e-3 3 NC 5 NC 3 140 min 0 15 278 1 .004 15 -1.584e-2 1 652.898 1 2044.968 1 141 14 max 0 1 .117 3 .158 1 7.059e-3 3 NC 5 NC 3 142 min 0 15 469 1 .005 15 -1.458e-2 1 436.618 1 1616.965 1 143 15 max 0 1																
138 min 0 15 065 2 .003 15 -1.709e-2 1 1666.744 1 3475.283 1 139 13 max 0 1 .052 3 .125 1 7.738e-3 3 NC 5 NC 3 140 min 0 15 278 1 .004 15 -1.584e-2 1 652.898 1 2044.968 1 141 14 max 0 1 .117 3 .158 1 7.059e-3 3 NC 5 NC 3 142 min 0 15 469 1 .005 15 -1.458e-2 1 436.618 1 1616.965 1 143 15 max 0 1 .153 3 .163 1 6.381e-3 3 NC 5 NC 3 144 min 0 15 57			12									_		•		
139 13 max 0 1 .052 3 .125 1 7.738e-3 3 NC 5 NC 3 140 min 0 15 278 1 .004 15 -1.584e-2 1 652.898 1 2044.968 1 141 14 max 0 1 .117 3 .158 1 7.059e-3 3 NC 5 NC 3 142 min 0 15 469 1 .005 15 -1.458e-2 1 436.618 1 1616.965 1 143 15 max 0 1 .153 3 .163 1 6.381e-3 3 NC 5 NC 3 144 min 0 15 57 1 .005 15 -1.333e-2 1 371.763 1 1568.805 1 145 16 max 0 1 .153 3 .138 1 5.702e-3 3 NC 5 NC 3 </td <td></td> <td></td> <td>12</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-1 7096-2</td> <td></td> <td></td> <td></td> <td></td> <td></td>			12								-1 7096-2					
140 min 0 15 278 1 .004 15 -1.584e-2 1 652.898 1 2044.968 1 141 14 max 0 1 .117 3 .158 1 7.059e-3 3 NC 5 NC 3 142 min 0 15 469 1 .005 15 -1.458e-2 1 436.618 1 1616.965 1 143 15 max 0 1 .153 3 .163 1 6.381e-3 3 NC 5 NC 3 144 min 0 15 57 1 .005 15 -1.333e-2 1 371.763 1 1568.805 1 145 16 max 0 1 .153 3 .138 1 5.702e-3 3 NC 5 NC 3 146 min 0 15 555			13											•		
141 max 0 1 .117 3 .158 1 7.059e-3 3 NC 5 NC 3 142 min 0 15 469 1 .005 15 -1.458e-2 1 436.618 1 1616.965 1 143 15 max 0 1 .153 3 .163 1 6.381e-3 3 NC 5 NC 3 144 min 0 15 57 1 .005 15 -1.333e-2 1 371.763 1 1568.805 1 145 16 max 0 1 .153 3 .138 1 5.702e-3 3 NC 5 NC 3 146 min 0 15 555 1 .005 15 -1.207e-2 1 380.141 1 1849.861 1 147 17 max 0 1 .114 3 .092 1 5.024e-3 3 NC 5 NC 3												1		1		
142 min 0 15 469 1 .005 15 -1.458e-2 1 436.618 1 1616.965 1 143 15 max 0 1 .153 3 .163 1 6.381e-3 3 NC 5 NC 3 144 min 0 15 57 1 .005 15 -1.333e-2 1 371.763 1 1568.805 1 145 16 max 0 1 .153 3 .138 1 5.702e-3 3 NC 5 NC 3 146 min 0 15 555 1 .005 15 -1.207e-2 1 380.141 1 1849.861 1 147 17 max 0 1 .114 3 .092 1 5.024e-3 3 NC 5 NC 3 148 min 0 15 421			14									3		5		
143 15 max 0 1 .153 3 .163 1 6.381e-3 3 NC 5 NC 3 144 min 0 15 57 1 .005 15 -1.333e-2 1 371.763 1 1568.805 1 145 16 max 0 1 .153 3 .138 1 5.702e-3 3 NC 5 NC 3 146 min 0 15 555 1 .005 15 -1.207e-2 1 380.141 1 1849.861 1 147 17 max 0 1 .114 3 .092 1 5.024e-3 3 NC 5 NC 3 148 min 0 15 421 1 .003 15 -1.082e-2 1 476.357 1 2810.782 1 149 18 max 0 1 .043 3 .038			1.7													
144 min 0 15 57 1 .005 15 -1.333e-2 1 371.763 1 1568.805 1 145 16 max 0 1 .153 3 .138 1 5.702e-3 3 NC 5 NC 3 146 min 0 15 555 1 .005 15 -1.207e-2 1 380.141 1 1849.861 1 147 17 max 0 1 .114 3 .092 1 5.024e-3 3 NC 5 NC 3 148 min 0 15 421 1 .003 15 -1.082e-2 1 476.357 1 2810.782 1 149 18 max 0 1 .043 3 .038 1 4.346e-3 3 NC 5 NC 2 150 min 0 15 187			15									_		•		
145 16 max 0 1 .153 3 .138 1 5.702e-3 3 NC 5 NC 3 146 min 0 15 555 1 .005 15 -1.207e-2 1 380.141 1 1849.861 1 147 17 max 0 1 .114 3 .092 1 5.024e-3 3 NC 5 NC 3 148 min 0 15 421 1 .003 15 -1.082e-2 1 476.357 1 2810.782 1 149 18 max 0 1 .043 3 .038 1 4.346e-3 3 NC 5 NC 2 150 min 0 15 187 1 .001 15 -9.566e-3 1 855.324 1 6938.545 1 151 19 max 0 1 .108 1 .003 3 3.667e-3 3 NC 1 NC 1 152 min 0 15 047 3 0 10 -8.312e-3 1 NC 1 NC <												-		-		
146 min 0 15 555 1 .005 15 -1.207e-2 1 380.141 1 1849.861 1 147 17 max 0 1 .114 3 .092 1 5.024e-3 3 NC 5 NC 3 148 min 0 15 421 1 .003 15 -1.082e-2 1 476.357 1 2810.782 1 149 18 max 0 1 .043 3 .038 1 4.346e-3 3 NC 5 NC 2 150 min 0 15 187 1 .001 15 -9.566e-3 1 855.324 1 6938.545 1 151 19 max 0 1 .108 1 .003 3 3.667e-3 3 NC 1 NC 1 152 min 0 15 047			16					+								
147 17 max 0 1 .114 3 .092 1 5.024e-3 3 NC 5 NC 3 148 min 0 15 421 1 .003 15 -1.082e-2 1 476.357 1 2810.782 1 149 18 max 0 1 .043 3 .038 1 4.346e-3 3 NC 5 NC 2 150 min 0 15 187 1 .001 15 -9.566e-3 1 855.324 1 6938.545 1 151 19 max 0 1 .108 1 .003 3 3.667e-3 3 NC 1 NC 1 152 min 0 15 047 3 0 10 -8.312e-3 1 NC 1 NC 1						_										_
148 min 0 15 421 1 .003 15 -1.082e-2 1 476.357 1 2810.782 1 149 18 max 0 1 .043 3 .038 1 4.346e-3 3 NC 5 NC 2 150 min 0 15 187 1 .001 15 -9.566e-3 1 855.324 1 6938.545 1 151 19 max 0 1 .108 1 .003 3 3.667e-3 3 NC 1 NC 1 152 min 0 15 047 3 0 10 -8.312e-3 1 NC 1 NC 1			17					-				_		•		-
149 18 max 0 1 .043 3 .038 1 4.346e-3 3 NC 5 NC 2 150 min 0 15 187 1 .001 15 -9.566e-3 1 855.324 1 6938.545 1 151 19 max 0 1 .108 1 .003 3 3.667e-3 3 NC 1 NC 1 152 min 0 15 047 3 0 10 -8.312e-3 1 NC 1 NC 1																
150 min 0 15 187 1 .001 15 -9.566e-3 1 855.324 1 6938.545 1 151 19 max 0 1 .108 1 .003 3 3.667e-3 3 NC 1 NC 1 152 min 0 15 047 3 0 10 -8.312e-3 1 NC 1 NC 1			18					_				•				
151												1		1		
152 min 0 15047 3 0 10 -8.312e-3 1 NC 1 NC 1			19					1				3		1		
100 1 1 100 1 200 2 2 200 1 100 2 10 10	153	M2	1	max	.005	1	.002	2	.007	1	-6.063e-6	15	NC	1	NC	2
										15				1		

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC		LC		
155		2	max	.005	1	.002	2	.007	1 -5.618e-6	<u>15</u>	NC	_1_	NC	2
156			min	003	3	004	3	0	15 -1.721e-4	1	NC	1	7298.723	1
157		3	max	.005	1	.001	2	.006	1 -5.173e-6	15	NC	1	NC	2
158			min	003	3	004	3	0	15 -1.585e-4	1	NC	1	8020.672	1
159		4	max	.004	1	0	2	.005	1 -4.728e-6	15	NC	1	NC	2
160			min	003	3	004	3	0	15 -1.448e-4	1	NC	1	8889.323	1
161		5	max	.004	1	0	2	.005	1 -4.283e-6	15	NC	1	NC	2
162			min	003	3	004	3	0	15 -1.312e-4	1	NC	1	9946.559	1
163		6	max	.004	1	0	2	.004	1 -3.838e-6	15	NC	1_	NC	1
164			min	003	3	004	3	0	15 -1.176e-4	1	NC	1	NC	1
165		7	max	.003	1	0	2	.004	1 -3.393e-6	15	NC	1	NC	1
166			min	002	3	004	3	0	15 -1.039e-4	1	NC	1	NC	1
167		8	max	.003	1	0	10	.003	1 -2.948e-6	15	NC	1_	NC	1
168			min	002	3	004	3	0	15 -9.027e-5	1	NC	1	NC	1
169		9	max	.003	1	0	15	.003	1 -2.503e-6	15	NC	1	NC	1
170			min	002	3	003	3	0	15 -7.662e-5	1	NC	1	NC	1
171		10	max	.003	1	0	15	.002	1 -2.058e-6	15	NC	1	NC	1
172			min	002	3	003	3	0	15 -6.298e-5	1	NC	1	NC	1
173		11	max	.002	1	0	15	.002	1 -1.613e-6	15	NC	1	NC	1
174			min	002	3	003	3	0	15 -4.934e-5	1	NC	1	NC	1
175		12	max	.002	1	0	15	.001	1 -1.168e-6	15	NC	1	NC	1
176			min	001	3	003	3	0	15 -3.57e-5	1	NC	1	NC	1
177		13	max	.002	1	0	15	.001	1 -7.23e-7	15	NC	1	NC	1
178			min	001	3	002	3	0	15 -2.205e-5	1	NC	1	NC	1
179		14	max	.001	1	0	15	0	1 -2.779e-7	15	NC	1	NC	1
180			min	001	3	002	4	0	15 -8.411e-6	1	NC	1	NC	1
181		15	max	.001	1	0	15	0	1 5.231e-6	1	NC	1	NC	1
182			min	0	3	002	4	0	15 0	3	NC	1	NC	1
183		16	max	0	1	0	15	0	1 1.887e-5	1	NC	1	NC	1
184		10	min	0	3	002	4	0	15 5.513e-7	12	NC	1	NC	1
185		17	max	0	1	0	15	0	1 3.252e-5	1	NC	1	NC	1
186			min	0	3	001	4	0	15 1.057e-6	15	NC	1	NC	1
187		18	max	0	1	0	15	0	1 4.616e-5	1	NC	1	NC	1
188		10	min	0	3	0	4	0	15 1.502e-6	15	NC	1	NC	1
189		19	max	0	1	0	1	0	1 5.98e-5	1	NC	1	NC	1
190		10	min	0	1	0	1	0	1 1.947e-6	15	NC	1	NC	1
191	M3	1	max	0	1	0	1	0	1 -6.033e-7	15	NC	1	NC	1
192	IVIO	•	min	0	1	0	1	0	1 -1.852e-5	1	NC	1	NC	1
193		2	max	0	3	0	15	0	1 4.357e-6	1	NC	1	NC	1
194			min	0	2	001	4	0	15 1.427e-7	15	NC NC	1	NC	1
195		3	max	0	3	0	15	0	1 2.723e-5	1	NC	1	NC	1
196		J	min	0	2	003	4	0	15 8.887e-7	15	NC NC	1	NC	1
197		4	max	0	3	003	15	0	1 5.011e-5	1	NC	1	NC	1
198		-	min	0	2	005	4	0	15 1.635e-6	15	NC NC	1	NC	1
198		5		0	3	005 002	15	.001	1 7.299e-5	<u>15</u> 1	NC NC	1	NC NC	1
200		J	max min	0	2	002 007	4	001 0	15 2.381e-6	15	NC NC	1	NC NC	1
		6										•		
201		6	max	0	3	002	15	.002	1 9.587e-5	1_	NC NC	1_1	NC NC	1
202		7	min	0	2	009	4	0	15 3.127e-6	<u>15</u>	NC NC	1_1	NC NC	1
203		7	max	0	3	002	15	.002	1 1.187e-4	1_	NC	11	NC NC	1
204		0	min	0	2	01	4	0	15 3.873e-6		9281.999	4	NC NC	1
205		8	max	.001	3	003	15	.002	1 1.416e-4	1_	NC 0074 000	1_1	NC NC	1
206			min	0	2	011	4	0	15 4.619e-6		8274.232	4	NC NC	1
207		9	max	.001	3	003	15	.003	1 1.645e-4	1_	NC 7070 040	1_	NC NC	1
208		10	min	0	2	012	4	0	15 5.365e-6	15	7672.049	4_	NC NC	1
209		10	max	.001	3	003	15	.003	1 1.874e-4	1_	NC 7000 454	2	NC NC	1
210		4.	min	0	2	013	4	0	15 6.111e-6	<u>15</u>	7368.451	4	NC	1
211		11	max	.002	3	003	15	.003	1 2.103e-4	<u>1</u>	NC	2	NC	1_

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

212	Member	Sec	min	x [in] 001	LC 2	y [in] 013	LC 4	z [in]	LC 15	x Rotate [r 6.857e-6	LC 15	(n) L/y Ratio	LC 4	(n) L/z Ratio	LC 1
213		12	max	.002	3	003	15	.004	1	2.331e-4	1	NC	2	NC	1
214		12	min	001	2	013	4	0	15	7.603e-6		7518.842	4	NC	1
215		13	max	.002	3	003	15	.004	1	2.56e-4	1	NC	1	NC	1
216		13	min	001	2	012	4	0	15	8.349e-6		8015.014	4	NC	1
217		14	max	.002	3	002	15	.005	1	2.789e-4	1	NC	1	NC	1
218		17	min	001	2	011	4	0	15	9.095e-6		8919.004	4	NC	1
219		15	max	.002	3	002	15	.005	1	3.018e-4	1	NC	1	NC	1
220		13	min	001	2	009	4	0	15	9.841e-6	15	NC	1	NC	1
221		16	max	.002	3	002	15	.005	1	3.246e-4	1	NC	1	NC	1
222		10	min	002	2	008	1	0	15	1.059e-5	15	NC	1	NC	1
223		17	max	.003	3	001	15	.006	1	3.475e-4	1	NC	1	NC	1
224			min	002	2	006	1	0	15	1.133e-5	15	NC	1	NC	1
225		18	max	.003	3	0	15	.006	1	3.704e-4	1	NC	1	NC	1
226			min	002	2	005	1	0	15	1.208e-5	15	NC	1	NC	1
227		19	max	.003	3	0	15	.007	1	3.933e-4	1	NC	1	NC	1
228			min	002	2	003	1	0	15	1.282e-5	15	NC	1	NC	1
229	M4	1	max	.003	1	.001	2	0	15	-4.624e-7	12	NC	1	NC	3
230			min	0	3	003	3	007	1	-1.537e-5	1	NC	1	3629.968	1
231		2	max	.003	1	.001	2	0	15	-4.624e-7	12	NC	1	NC	2
232			min	0	3	003	3	006	1	-1.537e-5	1	NC	1	3954.006	1
233		3	max	.003	1	.001	2	0	15	-4.624e-7	12	NC	1	NC	2
234			min	0	3	002	3	006	1	-1.537e-5	1	NC	1	4339.295	1
235		4	max	.002	1	.001	2	0	15	-4.624e-7	12	NC	1	NC	2
236			min	0	3	002	3	005	1	-1.537e-5	1	NC	1	4801.813	1
237		5	max	.002	1	.001	2	0	15	-4.624e-7	12	NC	1	NC	2
238			min	0	3	002	3	005	1	-1.537e-5	1	NC	1	5363.272	1
239		6	max	.002	1	0	2	0	15	-4.624e-7	12	NC	1	NC	2
240			min	0	3	002	3	004	1	-1.537e-5	1	NC	1	6053.783	1
241		7	max	.002	1	0	2	0	15	-4.624e-7	12	NC	1	NC	2
242			min	0	3	002	3	004	1	-1.537e-5	1	NC	1	6916.09	1
243		8	max	.002	1	0	2	0	15	-4.624e-7	12	NC	1	NC	2
244			min	0	3	002	3	003	1	-1.537e-5	1	NC	1	8012.542	1
245		9	max	.002	1	0	2	0	15	-4.624e-7	12	NC	1	NC	2
246			min	0	3	002	3	003	1	-1.537e-5	1	NC	1	9437.019	1
247		10	max	.001	1	0	2	0	15	-4.624e-7	12	NC	_1_	NC	1
248			min	0	3	001	3	002	1	-1.537e-5	1_	NC	1_	NC	1
249		11	max	.001	1	0	2	0	15	-4.624e-7	12	NC	_1_	NC	1
250			min	0	3	001	3	002	1	-1.537e-5	1_	NC	1	NC	1
251		12	max	.001	1	0	2	0	15	-4.624e-7	12	NC	_1_	NC	1_
252			min	0	3	001	3	001		-1.537e-5	1_	NC	1_	NC	1
253		13	max	0	1	0	2	0		-4.624e-7		NC	1	NC	1
254			min	0	3	0	3	001	1	-1.537e-5	1_	NC	<u>1</u>	NC	1
255		14	max	0	1	0	2	0		-4.624e-7	12	NC	1_	NC	1
256			min	0	3	0	3	0	1_	-1.537e-5	1_	NC	1_	NC	1
257		15	max	0	1	0	2	0	15	-4.624e-7		NC	_1_	NC	1
258			min	0	3	0	3	0	1_	-1.537e-5	1_	NC	1_	NC	1
259		16	max	0	1	0	2	0	15			NC	1	NC	1
260		-	min	0	3	0	3	0	1	-1.537e-5	1_	NC	1_	NC	1
261		17	max	0	1	0	2	0			12	NC	1	NC NC	1
262		4.0	min	0	3	0	3	0	1_	-1.537e-5	1_	NC	1_	NC NC	1
263		18	max	0	1	0	2	0	15	-4.624e-7		NC	1	NC	1
264		10	min	0	3	0	3	0	1	-1.537e-5	1_	NC NC	1_	NC NC	1
265		19	max	0	1	0	1	0	1	-4.624e-7		NC NC	1	NC	1
266	B 40	4	min	0	1	0	1	0	1	-1.537e-5	1_	NC NC	1	NC NC	1
267	<u>M6</u>	1	max	.017	1	.009	2	0	1	0	1_	NC FO44 F7	3	NC NC	1
268			min	012	3	014	3	0	1	0	1	5044.57	2	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

270		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio) LC
271	269		2	max	.016		.009	2	0	1	0	1	NC	3	NC	1
272				min					0					2		1
273			3						-							
274												•				
275			4			•						_				-
276			-							•						
277			5	_												
278									<u> </u>	-		-				
279			ь								-					
280			7									-				
281			+									_				
282			0													
283			0						-							1
284			0									•				1
285			1 3			•						_				-
286			10							•						
288			10													
288			11						<u> </u>	-		-		•		
289																
290			12							1		_		_		
291			<u> </u>							1		1				
292			13						0	1		1		1		1
293									0	1		1		1		1
294			14						0	1		1		1		1
296						3	004	3	0	1		1		1		1
16 max	295		15	max	.004	1	0	2	0	1	0	1	NC	1	NC	1
298	296			min	003	3	003	3	0	1	0	1	NC	1	NC	1
17 max	297		16	max	.003		0	2	0	1	0	1	NC	1	NC	1
300				min		3	003		0	1		1		1		1
301			17	max								_				
302																
303			18		-		_		-							1
304												•				1
305 M7			19					-				_				-
306		2.47								•						
307 2 max 0 3 0 15 0 1 0 1 NC 1 NC 1 308 min 0 2002 3 0 1 0 1 NC 1 NC 1 309 3 max 0 3 0 15 0 1 0 1 NC 1 NC 1 310 min 0 2003 3 0 1 0 1 NC 1 NC 1 311 4 max .001 3001 15 0 1 0 1 NC 1 NC 1 312 min 001 2005 3 0 1 0 1 NC 1 NC 1 313 5 max .002 3002 15 0 1 0 1 NC 1 NC 1 314 min 002 2007 4 0 1 0 1 NC 1 NC		<u> </u>	1		-		-		-							
308 min 0 2 002 3 0 1 0 1 NC 1 NC 1 309 3 max 0 3 0 15 0 1 0 1 NC 1 NC 1 310 min 0 2 003 3 0 1 0 1 NC 1 NC 1 311 4 max .001 3 001 15 0 1 0 1 NC 1 NC 1 312 min 001 2 005 3 0 1 0 1 NC 1 NC 1 313 5 max .002 3 002 15 0 1 0 1 NC 1 NC 1 314 min 002 2 007 4 0 1 0 1 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td><u> </u></td> <td>-</td> <td></td> <td></td> <td></td> <td>•</td> <td></td> <td></td>									<u> </u>	-				•		
309 3 max 0 3 0 15 0 1 0 1 NC 1 NC 1 310 min 0 2 003 3 0 1 0 1 NC 1 NC 1 311 4 max .001 3 001 15 0 1 0 1 NC 1 NC 1 312 min 001 2 005 3 0 1 0 1 NC 1 NC 1 313 5 max .002 3 002 15 0 1 0 1 NC 1 NC 1 314 min 002 2 007 4 0 1 0 1 NC 1 NC 1 315 6 max .002 3 002 15 0 1			2		-							_				_
310 min 0 2 003 3 0 1 0 1 NC 1 NC 1 311 4 max .001 3 001 15 0 1 0 1 NC 1 NC 1 312 min 001 2 005 3 0 1 0 1 NC 1 NC 1 313 5 max .002 3 002 15 0 1 0 1 NC 1 NC 1 314 min 002 2 007 4 0 1 0 1 NC 1 NC 1 315 6 max .002 3 002 15 0 1 0 1 NC 1 NC 1 316 min 002 2 009 4 0 1 0			2					1 <i>E</i>						_		
311 4 max .001 3 001 15 0 1 0 1 NC 1 NC 1 312 min 001 2 005 3 0 1 0 1 NC 1 NC 1 313 5 max .002 3 002 15 0 1 0 1 NC 1 NC 1 314 min 002 2 007 4 0 1 0 1 NC 1 NC 1 315 6 max .002 3 002 15 0 1 0 1 NC 1 NC 1 316 min 002 2 009 4 0 1 0 1 NC 1 NC 1 317 7 max .003 3 002 15 0 1			3													
312 min 001 2 005 3 0 1 0 1 NC 1 NC 1 313 5 max .002 3 002 15 0 1 0 1 NC 1 NC 1 314 min 002 2 007 4 0 1 0 1 NC 1 NC 1 315 6 max .002 3 002 15 0 1 0 1 NC 1 NC 1 316 min 002 2 009 4 0 1 0 1 NC 1 NC 1 317 7 max .003 3 002 15 0 1 0 1 NC 1 NC 1 318 min 003 2 01 4 0 1 0			1													
313 5 max .002 3 002 15 0 1 0 1 NC 1 NC 1 314 min 002 2 007 4 0 1 0 1 NC 1 NC 1 315 6 max .002 3 002 15 0 1 0 1 NC 1 NC 1 316 min 002 2 009 4 0 1 0 1 NC 1 NC 1 317 7 max .003 3 002 15 0 1 0 1 NC 1 NC 1 318 min 003 2 01 4 0 1 0 1 NC 1 NC 1 319 8 max .003 3 003 15 0 1			4													
314 min 002 2 007 4 0 1 0 1 NC 1 NC 1 315 6 max .002 3 002 15 0 1 0 1 NC 1 NC 1 316 min 002 2 009 4 0 1 0 1 NC 1 NC 1 317 7 max .003 3 002 15 0 1 0 1 NC 1 NC 1 318 min 003 2 01 4 0 1 0 1 NC 1 NC 1 319 8 max .003 3 003 15 0 1 0 1 NC 1 NC 1 320 min 003 2 011 4 0 1 0			5									•				
315 6 max .002 3 002 15 0 1 0 1 NC 1 NC 1 316 min 002 2 009 4 0 1 0 1 NC 1 NC 1 317 7 max .003 3 002 15 0 1 0 1 NC 1 NC 1 318 min 003 2 01 4 0 1 0 1 9568.412 4 NC 1 319 8 max .003 3 003 15 0 1 0 1 NC 1 NC 1 320 min 003 2 011 4 0 1 0 1 8508.952 4 NC 1 321 9 max .004 3 003 15 0 <			5									_				
316 min 002 2 009 4 0 1 0 1 NC 1 NC 1 317 7 max .003 3 002 15 0 1 0 1 NC 1 NC 1 318 min 003 2 01 4 0 1 0 1 9568.412 4 NC 1 319 8 max .003 3 003 15 0 1 0 1 NC 1 NC 1 320 min 003 2 011 4 0 1 0 1 8508.952 4 NC 1 321 9 max .004 3 003 15 0 1 0 1 NC 1 NC 1 322 min 004 2 012 4 0 1 <			6									•				
317 7 max .003 3 002 15 0 1 0 1 NC 1 NC 1 318 min 003 2 01 4 0 1 0 1 9568.412 4 NC 1 319 8 max .003 3 003 15 0 1 0 1 NC 1 NC 1 320 min 003 2 011 4 0 1 0 1 8508.952 4 NC 1 321 9 max .004 3 003 15 0 1 0 1 NC 1 NC 1 322 min 004 2 012 4 0 1 0 1 7874.079 4 NC 1 323 10 max .004 3 003 15 0																
318 min 003 2 01 4 0 1 0 1 9568.412 4 NC 1 319 8 max .003 3 003 15 0 1 0 1 NC 1 NC 1 320 min 003 2 011 4 0 1 0 1 8508.952 4 NC 1 321 9 max .004 3 003 15 0 1 0 1 NC 1 NC 1 322 min 004 2 012 4 0 1 0 1 7874.079 4 NC 1 323 10 max .004 3 003 15 0 1 0 1 NC 1 NC 1 324 min 004 2 013 4 0 1			7											•		
319 8 max .003 3 003 15 0 1 0 1 NC 1 NC 1 320 min 003 2 011 4 0 1 0 1 8508.952 4 NC 1 321 9 max .004 3 003 15 0 1 0 1 NC 1 NC 1 322 min 004 2 012 4 0 1 0 1 7874.079 4 NC 1 323 10 max .004 3 003 15 0 1 0 1 NC 1 NC 1 324 min 004 2 013 4 0 1 0 1 7550.1 4 NC 1										-						
320 min 003 2 011 4 0 1 0 1 8508.952 4 NC 1 321 9 max .004 3 003 15 0 1 0 1 NC 1 NC 1 322 min 004 2 012 4 0 1 0 1 7874.079 4 NC 1 323 10 max .004 3 003 15 0 1 0 1 NC 1 NC 1 324 min 004 2 013 4 0 1 0 1 7550.1 4 NC 1			8									_		•		
321 9 max .004 3 003 15 0 1 0 1 NC 1 NC 1 322 min 004 2 012 4 0 1 0 1 7874.079 4 NC 1 323 10 max .004 3 003 15 0 1 0 1 NC 1 NC 1 324 min 004 2 013 4 0 1 0 1 7550.1 4 NC 1												_				
322 min 004 2 012 4 0 1 0 1 7874.079 4 NC 1 323 10 max .004 3 003 15 0 1 0 1 NC 1 NC 1 324 min 004 2 013 4 0 1 0 1 7550.1 4 NC 1			9													
323 10 max .004 3 003 15 0 1 0 1 NC 1 NC 1 324 min 004 2 013 4 0 1 0 1 7550.1 4 NC 1			Ĭ													
324 min004 2013 4 0 1 0 1 7550.1 4 NC 1			10							1				•		
										1		_		4		
020 11 max 1000 0 1000 10 0 1 100 1	325		11	max	.005	3	003	15	0	1	0	1	NC	1	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

326		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC		LC
328				min					0	1		1		4		1
329			12	max					0		0	1		1_		1
330												•				
331			13													
333			4.4									_		_		
333			14													
334			45									•				
336			15													
336			10					-						•		•
338			16													
338			17									_		_		-
339			17													
3440			10									•		•		
341			10													•
342			10								_	_				
343 M8			13													
344		M8	1			_								•		
345		IVIO														1
346			2											1		1
347			_			-										
348			3							1		1		1		1
349										1		1		1		1
350			4						0	1	0	1		1		1
S51						3			0	1	0	1		1		1
353			5			1			0	1	0	1	NC	1	NC	1
354	352			min	002	3	007	3	0	1	0	1	NC	1	NC	1
355	353		6	max	.006	1	.005	2	0	1	0	1	NC	1	NC	1
356	354			min	001	3	006	3	0	1	0	1	NC	1	NC	1
357			7	max	.006	-			0	1		1_		1_		1_
358				min								1		1_		-
359			8	max					0	1	0	1		1_		1
360				min					00	•		•		1_		1
361			9													•
362											_	_				
363 11 max .004 1 .003 2 0 1 0 1 NC 1 NC 1 364 min 0 3 004 3 0 1 0 1 NC 1 NC 1 365 12 max .003 1 .003 2 0 1 0 1 NC 1 NC 1 366 min 0 3 003 3 0 1 0 1 NC 1 NC 1 367 13 max .003 1 .002 2 0 1 NC 1 NC 1 368 min 0 3 002 2 0 1 0 1 NC			10													
364 min 0 3 004 3 0 1 0 1 NC 1 NC 1 365 12 max .003 1 .003 2 0 1 0 1 NC 1 NC 1 366 min 0 3 003 3 0 1 0 1 NC 1 NC 1 367 13 max .003 1 .002 2 0 1 0 1 NC 1 NC 1 368 min 0 3 003 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 370 min 0 3 002 3 0 1 0 1						_										
365 12 max .003 1 .003 2 0 1 0 1 NC 1 NC 1 NC 1 NC 1 1 366 1 NC 1 NC 1 NC 1			11											1_		1
366 min 0 3 003 3 0 1 0 1 NC 1 NC 1 367 13 max .003 1 .002 2 0 1 0 1 NC 1 NC 1 368 min 0 3 003 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 370 min 0 3 002 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 372 min 0 3 002 3 0 1 0 1			40		_									1_		1
367 13 max .003 1 .002 2 0 1 0 1 NC 1 NC 1 368 min 0 3 003 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 370 min 0 3 002 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 372 min 0 3 002 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .001 1 NC 1 NC </td <td>365</td> <td></td> <td>12</td> <td>max</td> <td></td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>	365		12	max				2								-
368 min 0 3 003 3 0 1 0 1 NC 1 NC 1 369 14 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 370 min 0 3 002 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 372 min 0 3 002 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .001 2 0 1 0 1 NC 1 NC 1 374 min 0 3 001 3 0 1 0 1			40													
369 14 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 1 NC 1 <td< td=""><td></td><td></td><td>13</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			13													
370 min 0 3 002 3 0 1 0 1 NC 1 NC 1 371 15 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 372 min 0 3 002 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .001 2 0 1 0 1 NC 1 NC 1 374 min 0 3 001 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 0 2 0 1 0 1 NC 1 NC 1 376 min 0 3 0 3 0 1 0 1 <td< td=""><td></td><td></td><td>1.1</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td>•</td><td></td><td></td></td<>			1.1									•		•		
371 15 max .002 1 .002 2 0 1 0 1 NC 1 NC 1 372 min 0 3 002 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .001 2 0 1 0 1 NC 1 NC 1 374 min 0 3 001 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 0 2 0 1 0 1 NC 1 NC 1 376 min 0 3 0 3 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1			14													
372 min 0 3 002 3 0 1 0 1 NC 1 NC 1 373 16 max .001 1 .001 2 0 1 0 1 NC 1 NC 1 374 min 0 3 001 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 0 2 0 1 0 1 NC 1 NC 1 376 min 0 3 0 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC			15									_		_		
373 16 max .001 1 .001 2 0 1 0 1 NC 1 NC 1 374 min 0 3 001 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 0 2 0 1 0 1 NC 1 NC 1 376 min 0 3 0 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC			10													
374 min 0 3 001 3 0 1 0 1 NC 1 NC 1 375 17 max 0 1 0 2 0 1 0 1 NC 1 376 min 0 3 0 3 0 1 0 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max			16			_										
375 17 max 0 1 0 2 0 1 0 1 NC 1 376 min 0 3 0 3 0 1 0 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .005 1 .002 2 0 15 1.858e-4 1 NC 1 NC 2			10													
376 min 0 3 0 1 0 1 NC 1 NC 1 377 18 max 0 1 0 2 0 1 0 1 NC 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .005 1 .002 2 0 15 1.858e-4 1 NC 1 NC 2			17							•		•				•
377 18 max 0 1 0 2 0 1 0 1 NC 1 378 min 0 3 0 3 0 1 0 1 NC 1 379 19 max 0 1 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .005 1 .002 2 0 15 1.858e-4 1 NC 1 NC 2			17			-										
378 min 0 3 0 1 0 1 NC 1 NC 1 379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .005 1 .002 2 0 15 1.858e-4 1 NC 1 NC 2			18		_							_		_		-
379 19 max 0 1 0 1 0 1 NC 1 NC 1 380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .005 1 .002 2 0 15 1.858e-4 1 NC 1 NC 2			10	_	_											
380 min 0 1 0 1 0 1 NC 1 NC 1 381 M10 1 max .005 1 .002 2 0 15 1.858e-4 1 NC 1 NC 2			19									•		•		
381 M10 1 max .005 1 .002 2 0 15 1.858e-4 1 NC 1 NC 2			1.5								_			1		
		M10	1		•	1				15		1		1		
	382			min	004	3	004	3	007		6.063e-6	15	NC	1	6692.778	

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r					
383		2	max	.005	1	.002	2	0	15	1.721e-4	1_	NC	1	NC	2
384			min	003	3	004	3	007	1	5.618e-6	15	NC	1_	7298.723	1
385		3	max	.005	1	.001	2	0	15	1.585e-4	_1_	NC	1_	NC	2
386			min	003	3	004	3	006	1	5.173e-6	<u>15</u>	NC	1_	8020.672	1
387		4	max	.004	1	0	2	0	15	1.448e-4	1_	NC	1_	NC	2
388			min	003	3	004	3	005	1_	4.728e-6	15	NC	1_	8889.323	1
389		5	max	.004	1	0	2	0	15	1.312e-4	1_	NC	1	NC 0040.550	2
390			min	003	3	004	3	005	1_	4.283e-6	<u>15</u>	NC NC	1_	9946.559	
391		6	max	.004	1	0	2	0	15	1.176e-4	1_	NC	1	NC NC	1
392		7	min	003	3	004	3	004	1_1_	3.838e-6	<u>15</u>	NC NC	1_	NC NC	1
393		7	max	.003	1	0	2	0	15	1.039e-4	1_	NC NC	1	NC NC	1
394		0	min	002	3	004	3	004	1_1_	3.393e-6	<u>15</u>	NC NC	1_	NC NC	1
395		8	max	.003	1	0	10	0	15	9.027e-5	1_	NC NC	1	NC NC	1
396			min	002	3	004	3	003	1_1_	2.948e-6	<u>15</u>	NC NC		NC NC	1
397		9	max	.003	3	003	15	003	15	7.662e-5	1_	NC NC	<u>1</u> 1	NC NC	1
398		10	min	002	1				1 1 5	2.503e-6 6.298e-5	<u>15</u>	NC NC	_		1
399		10	max	.003	3	003	15	002	15		1_	NC NC	1	NC NC	
400		11	min	002	1				1 1 5	2.058e-6	<u>15</u>	NC NC	1		1
401		11	max	.002	3	0	15	0 002	15	4.934e-5	1_	NC NC	1	NC NC	1
402		12	min	002 .002	1	003 0	15	<u>002</u> 0	15	1.613e-6 3.57e-5	<u>15</u> 1	NC NC	1	NC NC	1
404		12	max	002	3	003	3	001	1	1.168e-6	15	NC NC	1	NC NC	1
405		13	min	.002	1	003 0	15	<u>001</u> 0	15	2.205e-5	1 <u>15</u>	NC NC	1	NC NC	1
406		13	max min	002 001	3	002	3	001	1	7.23e-7	15	NC NC	1	NC NC	1
407		14		.001	1	<u>002</u> 0	15	<u>001</u> 0	15	8.411e-6	1 <u>5</u>	NC NC	1	NC NC	1
407		14	max min	001	3	002	4	0	1	2.779e-7	15	NC NC	1	NC NC	1
409		15	max	.001	1	<u>002</u> 0	15	0	15	0	3	NC	1	NC	1
410		13	min	0	3	002	4	0	1	-5.231e-6	1	NC	1	NC	1
411		16	max	0	1	<u>002</u> 0	15	0	15		12	NC	1	NC	1
412		10	min	0	3	002	4	0	1	-1.887e-5	1	NC	1	NC	1
413		17	max	0	1	<u>002</u> 0	15	0	15	-1.057e-6	15	NC	1	NC	1
414		17	min	0	3	001	4	0	1	-3.252e-5	1	NC	1	NC	1
415		18	max	0	1	0	15	0	15	-1.502e-6	15	NC	1	NC	1
416		10	min	0	3	0	4	0	1	-4.616e-5	1	NC	1	NC	1
417		19	max	0	1	0	1	0	1	-1.947e-6	15	NC	1	NC	1
418		10	min	0	1	0	1	0	1	-5.98e-5	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	1.852e-5	1	NC	1	NC	1
420			min	0	1	0	1	0	1	6.033e-7	15	NC	1	NC	1
421		2	max	0	3	0	15	0	15	-1.427e-7	15	NC	1	NC	1
422			min	0	2	001	4	0	1	-4.357e-6	1	NC	1	NC	1
423		3	max	0	3	0	15	0	15	-8.887e-7			1	NC	1
424			min	0	2	003	4	0	1	-2.723e-5	1	NC	1	NC	1
425		4	max	0	3	001	15	0	15	-1.635e-6	15	NC	1	NC	1
426			min	0	2	005	4	0	1	-5.011e-5	1	NC	1	NC	1
427		5	max	0	3	002	15	0	15		15	NC	1	NC	1
428			min	0	2	007	4	001	1	-7.299e-5	1	NC	1	NC	1
429		6	max	0	3	002	15	0	15	-3.127e-6	15	NC	1	NC	1
430			min	0	2	009	4	002	1	-9.587e-5	1	NC	1	NC	1
431		7	max	0	3	002	15	0	15	-3.873e-6	15	NC	1	NC	1
432			min	0	2	01	4	002	1	-1.187e-4	1	9281.999	4	NC	1
433		8	max	.001	3	003	15	0	15		15	NC	1	NC	1
434			min	0	2	011	4	002	1	-1.416e-4	1	8274.232	4	NC	1
435		9	max	.001	3	003	15	0	15	-5.365e-6	15	NC	1	NC	1
436			min	0	2	012	4	003	1	-1.645e-4	1	7672.049	4	NC	1
437		10	max	.001	3	003	15	0	15	-6.111e-6	15	NC	2	NC	1
438			min	0	2	013	4	003	1	-1.874e-4	1	7368.451	4	NC	1
439		11	max	.002	3	003	15	0	15	-6.857e-6	<u>15</u>	NC	2	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
440			min	001	2	013	4	003	1	-2.103e-4	1	7317.921	4	NC	1
441		12	max	.002	3	003	15	0	15	-7.603e-6	15	NC	2	NC	1
442			min	001	2	013	4	004	1	-2.331e-4	1	7518.842	4	NC	1
443		13	max	.002	3	003	15	0	15	-8.349e-6	15	NC	1	NC	1
444			min	001	2	012	4	004	1	-2.56e-4	1	8015.014	4	NC	1
445		14	max	.002	3	002	15	0	15	-9.095e-6	15	NC	1	NC	1
446			min	001	2	011	4	005	1	-2.789e-4	1	8919.004	4	NC	1
447		15	max	.002	3	002	15	0	15	-9.841e-6	15	NC	1	NC	1
448			min	001	2	009	4	005	1	-3.018e-4	1	NC	1	NC	1
449		16	max	.002	3	002	15	0	15	-1.059e-5	15	NC	1	NC	1
450			min	002	2	008	1	005	1	-3.246e-4	1	NC	1	NC	1
451		17	max	.003	3	001	15	0	15	-1.133e-5	15	NC	1	NC	1
452			min	002	2	006	1	006	1	-3.475e-4	1	NC	1	NC	1
453		18	max	.003	3	0	15	0	15	-1.208e-5	15	NC	1	NC	1
454			min	002	2	005	1	006	1	-3.704e-4	1	NC	1	NC	1
455		19	max	.003	3	0	15	0	15	-1.282e-5	15	NC	1	NC	1
456			min	002	2	003	1	007	1	-3.933e-4	1	NC	1	NC	1
457	M12	1	max	.003	1	.001	2	.007	1	1.537e-5	1	NC	1	NC	3
458			min	0	3	003	3	0	15	4.624e-7	12	NC	1	3629.968	1
459		2	max	.003	1	.001	2	.006	1	1.537e-5	1	NC	1	NC	2
460			min	0	3	003	3	0	15	4.624e-7	12	NC	1	3954.006	1
461		3	max	.003	1	.001	2	.006	1	1.537e-5	1	NC	1	NC	2
462			min	0	3	002	3	0	15	4.624e-7	12	NC	1	4339.295	1
463		4	max	.002	1	.001	2	.005	1	1.537e-5	1	NC	1	NC	2
464			min	0	3	002	3	0	15	4.624e-7	12	NC	1	4801.813	1
465		5	max	.002	1	.001	2	.005	1	1.537e-5	1	NC	1	NC	2
466			min	0	3	002	3	0	15	4.624e-7	12	NC	1	5363.272	1
467		6	max	.002	1	0	2	.004	1	1.537e-5	1	NC	1	NC	2
468			min	0	3	002	3	0	15	4.624e-7	12	NC	1	6053.783	1
469		7	max	.002	1	0	2	.004	1	1.537e-5	1	NC	1	NC	2
470			min	0	3	002	3	0	15	4.624e-7	12	NC	1	6916.09	1
471		8	max	.002	1	0	2	.003	1	1.537e-5	1	NC	1	NC	2
472			min	0	3	002	3	0	15	4.624e-7	12	NC	1	8012.542	1
473		9	max	.002	1	0	2	.003	1	1.537e-5	1	NC	1	NC	2
474			min	0	3	002	3	0	15	4.624e-7	12	NC	1	9437.019	1
475		10	max	.001	1	0	2	.002	1	1.537e-5	1	NC	1	NC	1
476			min	0	3	001	3	0	15	4.624e-7	12	NC	1	NC	1
477		11	max	.001	1	0	2	.002	1	1.537e-5	1	NC	1	NC	1
478			min	0	3	001	3	0	15	4.624e-7	12	NC	1	NC	1
479		12	max	.001	1	0	2	.001	1	1.537e-5	1	NC	1	NC	1
480			min		3	001	3	0		4.624e-7	12	NC	1	NC	1
481		13	max	0	1	0	2	.001	1	1.537e-5	1	NC	1	NC	1
482		1.0	min	0	3	0	3	0	15	4.624e-7	12	NC	1	NC	1
483		14	max	0	1	0	2	0	1	1.537e-5	1	NC	1	NC	1
484		17	min	0	3	0	3	0	15	4.624e-7	12	NC	1	NC	1
485		15	max	0	1	0	2	0	1	1.537e-5	1	NC	1	NC	1
486		1	min	0	3	0	3	0	15	4.624e-7	12	NC	1	NC	1
487		16	max	0	1	0	2	0	1	1.537e-5	1	NC	1	NC	1
488		10	min	0	3	0	3	0	15		12	NC	1	NC	1
489		17	max	0	1	0	2	0	1	1.537e-5	1	NC	1	NC	1
490		17	min	0	3	0	3	0	15	4.624e-7	12	NC	1	NC	1
491		18	max	0	1	0	2	0	1	1.537e-5	1	NC	1	NC	1
492		10	min	0	3	0	3	0	15	4.624e-7	12	NC NC	1	NC	1
493		19	max	0	1	0	1	0	1	1.537e-5	1	NC NC	1	NC NC	1
493		19	min	0	1	0	1	0	1	4.624e-7	12	NC NC	1	NC NC	1
494	M1	1	max	.003	3	.111	1	0	1	1.928e-2	<u>12</u> 1	NC NC	1	NC NC	1
496	IVI I		min	001	10	013	3	0		-1.856e-2	3	NC NC	1	NC NC	1
490			1111111	001	IU	013	J	U	10	-1.0000-2	<u> </u>	INC		INC	

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio LC		
497		2	max	.003	3	.055	1	0	15	9.398e-3	_1_	NC 3	NC	1
498			min	001	10	006	3	005	1	-9.183e-3	3	2040.247 1	NC	1
499		3	max	.003	3	.005	3	0	15	1.738e-5	10	NC 5	NC	1
500			min	001	10	006	1	007	1	-1.367e-4	1	974.809 1	NC	1
501		4	max	.003	3	.025	3	0	15	5.229e-3	_1_	NC 5	NC	1
502			min	001	10	077	1	007	1	-3.31e-3	3	607.919 1	NC	1
503		5	max	.003	3	.052	3	0	15	1.059e-2	_1_	NC 15		1
504			min	001	10	152	1	005	1	-6.532e-3	3	434.292 1	NC	1
505		6	max	.003	3	.08	3	0	15	1.596e-2	_1_	NC 15		1_
506			min	0	10	226	1	002	1	-9.753e-3	3	339.385 1	NC	1
507		7	max	.003	3	.108	3	0	1	2.133e-2	_1_	9413.062 15		1
508			min	0	10	292	1	0	12	-1.297e-2	3	283.723 1	NC	1
509		8	max	.003	3	.131	3	0	1	2.669e-2	_1_	8359.901 15		1_
510			min	0	10	344	1	0	15	-1.62e-2	3	250.954 1	NC	1
511		9	max	.003	3	.146	3	0	15	2.931e-2	1_	7811.107 15	NC	1
512			min	0	10	378	1	0	1	-1.625e-2	3	233.954 1	NC	1
513		10	max	.003	3	.152	3	0	1	3.01e-2	1	7644.054 15		1
514			min	0	10	389	1	0	12	-1.421e-2	3	228.855 1	NC	1
515		11	max	.003	3	.148	3	0	1	3.089e-2	1	7810.967 15	NC	1
516			min	0	10	377	1	0	15	-1.217e-2	3	234.195 1	NC	1
517		12	max	.003	3	.136	3	0	15	2.908e-2	1	8359.607 15	NC	1
518			min	0	10	344	1	0	1	-1.014e-2	3	251.71 1	NC	1
519		13	max	.003	3	.115	3	0	15	2.337e-2	1	9412.545 15	NC	1
520			min	0	10	29	1	0	1	-8.115e-3	3	285.597 1	NC	1
521		14	max	.003	3	.089	3	.002	1	1.766e-2	1	NC 15	NC	1
522			min	0	10	223	1	0	15	-6.092e-3	3	343.43 1	NC	1
523		15	max	.003	3	.06	3	.004	1	1.194e-2	1	NC 15	NC	1
524			min	0	10	149	1	0	15	-4.07e-3	3	442.669 1	NC	1
525		16	max	.003	3	.03	3	.006	1	6.23e-3	1	NC 5	NC	1
526			min	0	10	074	1	0	15	-2.047e-3	3	625.655 1	NC	1
527		17	max	.003	3	.002	3	.007	1	5.169e-4	1	NC 5	NC	1
528			min	0	10	004	1	0	15	-2.475e-5	3	1015.131 1	NC	1
529		18	max	.003	3	.055	1	.005	1	1.101e-2	1	NC 5	NC	1
530			min	0	10	023	3	0	15	-3.299e-3	3	2142.99 1	NC	1
531		19	max	.003	3	.108	1	0	15	2.189e-2	1	NC 1	NC	1
532			min	0	10	047	3	0	1	-6.697e-3	3	NC 1	NC	1
533	M5	1	max	.011	3	.269	1	0	1	0	1	NC 1	NC	1
534			min	006	2	021	3	0	1	0	1	NC 1	NC	1
535		2	max	.011	3	.133	1	0	1	0	1	NC 5	NC	1
536			min	007	2	011	3	0	1	0	1	842.54 1	NC	1
537		3	max	.011	3	.016	3	0	1	0	1	NC 15		1
538			min	007	2	021	1	0	1	0	1	393.678 1	NC	1
539		4	max	.011	3	.072	3	0	1	0	1	8874.354 15		1
540			min	006	2	21	1	0	1	0	1	238.729 1	NC	1
541		5	max	.01	3	.149	3	0	1	0	1	6213.024 15		1
542			min	006	2	416	1	0	1	0	1	166.789 1	NC NC	1
543		6	max	.01	3	.234	3	0	1	0	1	4784.93 15		1
544			min	006	2	622	1	0	1	0	1	128.223 1	NC NC	1
545		7	max	.01	3	.318	3	0	1	0	1	3959.894 15		1
546			min	006	2	809	1	0	1	0	1	105.958 1	NC NC	1
547		8	max	.01	3	.388	3	0	1	0	1	3480.041 15		1
548		0	min	006	2	96	1	0	1	0	1	93.016 1	NC NC	1
549		9		.01	3	.433	3	0	1	0	+	3233.906 15		1
550		3	max	006	2	-1.054	1	0	1	0	1	86.385 1	NC NC	1
551		10		.009	3	-1.054 .45	3	0	1		1	3159.735 15		1
552		10	max	006	2	-1.086	1	0	1	0	1	84.408 1	NC NC	1
		11	min		3		_	_	1					
553		11	max	.009	J 3	.439	3	0		0	_1_	3233.955 15	NC	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratic	LC_
554			min	005	2	-1.054	1	0	1	0	1	86.481	1	NC	1
555		12	max	.009	3	.401	3	0	1	0	1	3480.159	15	NC	1
556			min	005	2	957	1	0	1	0	1	93.334	1	NC	1
557		13	max	.009	3	.339	3	0	1	0	1	3960.139	15	NC	1
558			min	005	2	804	1	0	1	0	1	106.784	1	NC	1
559		14	max	.009	3	.262	S	0	1	0	1	4785.415	15	NC	1
560			min	005	2	613	1	0	1	0	1	130.08	1	NC	1
561		15	max	.008	3	.175	3	0	1	0	1	6213.994	15	NC	1
562			min	005	2	405	1	0	1	0	1	170.81	1	NC	1
563		16	max	.008	3	.088	S	0	1	0	1	8876.399	15	NC	1
564			min	005	2	198	1	0	1	0	1	247.714	1	NC	1
565		17	max	.008	3	.006	3	0	1	0	1	NC	15	NC	1
566			min	005	2	013	1	0	1	0	1	415.46	1	NC	1
567		18	max	.008	3	.134	1	0	1	0	1	NC	5	NC	1
568			min	005	2	064	3	0	1	0	1	900.754	1	NC	1
569		19	max	.008	3	.26	1	0	1	0	1	NC	1	NC	1
570			min	005	2	126	3	0	1	0	1	NC	1	NC	1
571	M9	1	max	.003	3	.111	1	0	15	1.856e-2	3	NC	1	NC	1
572			min	001	10	013	3	0	1	-1.928e-2	1	NC	1	NC	1
573		2	max	.003	3	.055	1	.005	1	9.183e-3	3	NC	3	NC	1
574			min	001	10	006	3	0	15	-9.398e-3	1	2040.247	1	NC	1
575		3	max	.003	3	.005	3	.007	1	1.367e-4	1	NC	5	NC	1
576			min	001	10	006	1	0	15	-1.738e-5	10	974.809	1	NC	1
577		4	max	.003	3	.025	3	.007	1	3.31e-3	3	NC	5	NC	1
578			min	001	10	077	1	0	15	-5.229e-3	1	607.919	1	NC	1
579		5	max	.003	3	.052	3	.005	1	6.532e-3	3	NC	15	NC	1
580			min	001	10	152	1	0	15	-1.059e-2	1	434.292	1	NC	1
581		6	max	.003	3	.08	3	.002	1	9.753e-3	3	NC	15	NC	1
582			min	0	10	226	1	0	15	-1.596e-2	1	339.385	1	NC	1
583		7	max	.003	3	.108	3	0	12	1.297e-2	3	9413.062	15	NC	1
584			min	0	10	292	1	0	1	-2.133e-2	1	283.723	1	NC	1
585		8	max	.003	3	.131	3	0	15	1.62e-2	3	8359.901	15	NC	1
586			min	0	10	344	1	0	1	-2.669e-2	1	250.954	1	NC	1
587		9	max	.003	3	.146	3	0	1	1.625e-2	3	7811.107	15	NC	1
588			min	0	10	378	1	0	15	-2.931e-2	1	233.954	1	NC	1
589		10	max	.003	3	.152	3	0	12	1.421e-2	3	7644.054	15	NC	1
590			min	0	10	389	1	0	1	-3.01e-2	1	228.855	1	NC	1
591		11	max	.003	3	.148	3	0	15	1.217e-2	3	7810.967	15	NC	1
592			min	0	10	377	1	0	1	-3.089e-2	1	234.195	1	NC	1
593		12	max	.003	3	.136	3	0	1	1.014e-2	3		15	NC	1
594			min	0	10	344	1	0	15	-2.908e-2	1	251.71	1	NC	1
595		13	max	.003	3	.115	3	0	1	8.115e-3	3		15	NC	1
596			min	0	10	29	1	0	15	-2.337e-2	1	285.597	1	NC	1
597		14	max	.003	3	.089	3	0		6.092e-3	3	NC	15	NC	1
598			min	0	10	223	1	002	1	-1.766e-2	1	343.43	1	NC	1
599		15	max	.003	3	.06	3	0	15	4.07e-3	3	NC	15	NC	1
600			min	0	10	149	1	004	1	-1.194e-2	1	442.669	1	NC	1
601		16	max	.003	3	.03	3	0	15		3	NC	5	NC	1
602			min	0	10	074	1	006	1	-6.23e-3	1	625.655	1	NC	1
603		17	max	.003	3	.002	3	0		2.475e-5	3	NC	5	NC	1
604			min	0	10	004	1	007	1	-5.169e-4	1	1015.131	1	NC	1
605		18	max	.003	3	.055	1	0	15	3.299e-3	3	NC	5	NC	1
606		ľ	min	0	10	023	3	005	1	-1.101e-2	1	2142.99	1	NC	1
607		19	max	.003	3	.108	1	0	1	6.697e-3	3	NC NC	1	NC	1
608		ľ	min	0	10	047	3	0	_	-2.189e-2	1	NC	1	NC	1
			,												

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)$	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-30 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015				
Engineer:	HCV	Page:	2/5				
Project:	Standard PVMax - Worst Case, 21	Standard PVMax - Worst Case, 21-30 Inch Width					
Address:							
Phone:							
E-mail:							

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}}^{1.5}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	,N $\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extstyle _{ extsty$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378.00	648.00	1 000	0 836	1 000	1 000	15503	<i>Ψ</i> 0.70	φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 21-30 Inch Width		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.