Reduce & Embed

Yu-Shuen Wang, CS, NCTU

• Slides refer to https://www.cs.ubc.ca/~tmm/

Visualization

Tamara Munzner

Analysis & Design

Guidelines

• Reduce: Filter, Aggregate (CH. 13)

Embed: Focus + Context (CH. 14)

How to handle complexity: 1 previous strategy + 3 more

- derive new data to show within view
- change view over time
- facet across multiple views
- reduce items/attributes within single view
- embed focus and context

Manipulate

- **Navigate**

Facet

Reduce

Select

Partition

Aggregate

Superimpose

Embed

Reduce: Filter, Aggregate

Reduce

→ Filter

Aggregate

Embed

Reduce items and attributes

- reduce/increase: inverses
- filter
 - -pro: straightforward and intuitive
 - to understand and compute
 - -con: out of sight, out of mind
- aggregation
 - -pro: inform about whole set
 - –con: difficult to avoid losing signal
- not mutually exclusive
 - -combine filter, aggregate
 - -combine reduce, change, facet

Reducing Items and Attributes

→ Filter

→ Attributes

- **→** Aggregate
 - → Items

→ Attributes

Idiom: dynamic filtering

System: FilmFinder

- item filtering
- browse through tightly coupled interaction
 - -alternative to queries that might return far too many or too few

[Visual information seeking: Tight coupling of dynamic query filters with starfield displays. Ahlberg and Shneiderman. Proc. ACM Conf. on Human Factors in Computing Systems (CHI), pp. 313–317, 1994.]

Idiom: DOSFA

- attribute filtering
- encoding: star glyphs

[Interactive Hierarchical Dimension Ordering, Spacing and Filtering for Exploration Of High Dimensional Datasets. Yang, Peng, Ward, and. Rundensteiner. Proc. IEEE Symp. Information Visualization (InfoVis), pp. 105–112, 2003.]

Idiom: histogram

- static item aggregation
- task: find distribution
- data: table
- derived data
 - -new table: keys are bins, values are counts

- -pattern can change dramatically depending on discretization
- -opportunity for interaction: control bin size on the fly

Weight Class (lbs)

Continuous scatterplot

- static item aggregation
- data: table
- derived data: table
 - key attribs x,y for pixels
 - quant attrib: overplot density
- dense space-filling 2D matrix
- color: sequential categorical hue + ordered luminance colormap

Idiom: scented widgets

- augment widgets for filtering to show <u>information scent</u>
 –cues to show whether value in drilling down further vs looking elsewhere
- concise, in part of screen normally considered control panel

[Scented Widgets: Improving Navigation Cues with Embedded Visualizations. Willett, Heer, and Agrawala. IEEE Trans. Visualization and Computer Graphics (Proc. InfoVis 2007) 13:6 (2007), 1129–1136.]

Idiom: scented widgets

- augmented widgets show information scent
 - cues to show whether value in drilling down further vs looking elsewhere
- concise use of space: histogram on slider

[Multivariate Network Exploration and Presentation: From Detail to Overview via Selections and Aggregations. van den Elzen and van Wijk, TVCG 20(12) 2014.] video

Idiom: boxplot

- static item aggregation
- task: find distribution
- data: table
- derived data
 - -5 quant attribs
 - median: central line
 - lower and upper quartile: boxes
 - lower upper fences: whiskers
 - -values beyond which items are outliers
 - -outliers beyond fence cutoffs explicitly shown

[40 years of boxplots. Wickham and Stryjewski. 2012. had.co.nz]

Idiom: variants of boxplot

Idiom: Hierarchical parallel coordinates

- dynamic item aggregation
- derived data: <u>hierarchical clustering</u>
- encoding:
 - -cluster band with variable transparency, line at mean, width by min/max values
 - color by proximity in hierarchy

[Hierarchical Parallel Coordinates for Exploration of Large Datasets. Fua, Ward, and Rundensteiner. Proc. IEEE Visualization Conference (Vis '99), pp. 43–50, 1999.]

Spatial aggregation

- MAUP: Modifiable Areal Unit Problem
 - -gerrymandering (manipulating voting district boundaries) is one example!
 - -Zone effects

-Scale effects

Spatial aggregation

-Zone effects

-Scale effects

可調整地區單元問題(MAUP)

http://utopia1234.blogspot.tw/2009/11/maup.html

A multivariate geographic dataset used to explore social issues in 19th century France.

The six quantitative attributes are:

- population per crime against persons
- population per crime against property
- percentage who can read and write
- donations to the poor
- population per illegitimate birth
- population per suicide.

Geowigs are geographically weighted interactive graphics. (a) A choropleth map showing attribute x1. (b) The set of gw-boxplots for all six attributes at two scales. (c) Weighting maps showing the scales: local and larger. (d) A gw-mean map at the larger scale.

Dimensionality reduction

- attribute aggregation
 - -derive low-dimensional target space from high-dimensional measured space
 - -use when you can't directly measure what you care about
 - true dimensionality of dataset conjectured to be smaller than dimensionality of measurements

derived data: 2D target space

Dimensionality reduction & visualization

- why do people do DR?
 - improve performance of downstream algorithm
- avoid curse of dimensionality
 - data analysis
- if look at the output: visual data analysis
- abstract tasks when visualizing DR data
 - dimension-oriented tasks
- naming synthesized dims, mapping synthesized dims to original dims
 - cluster-oriented tasks
- verifying clusters, naming clusters, matching clusters and classes

Dimension-oriented tasks

naming synthesized dims: inspect data represented by lowD points

[A global geometric framework for nonlinear dimensionality reduction. Tenenbaum, de Silva, and Langford. Science, 290(5500):2319–2323, 2000.]

Idiom: Dimensionality reduction for documents

Linear dimensionality reduction

- principal components analysis (PCA)
 - -finding axes: first with most variance, second with next most, ...
 - -describe location of each point as linear combination of weights for each axis
- mapping synthesized dims to original dims

[http://en.wikipedia.org/wiki/File:GaussianScatterPCA.png]

Nonlinear dimensionality reduction

- pro: can handle curved rather than linear structure
- cons: lose all ties to original dims/attribs
 - -new dimensions often cannot be easily related to originals
 - -mapping synthesized dims to original dims task is difficult
- many techniques proposed
 - -many literatures: visualization, machine learning, optimization, psychology, ...
 - -techniques: t-SNE, MDS (multidimensional scaling), charting, isomap, LLE,...
 - t-SNE: excellent for clusters
 - but some trickiness remains: http://distill.pub/2016/misread-tsne/
 - MDS: confusingly, entire family of techniques, both linear and nonlinear
 - minimize stress or strain metrics
 - early formulations equivalent to PCA

t-distributed stochastic neighbor embedding (t-sne)

t-sne process (video)

Reduce items and attributes

→ Filter

→ Items

→ Attributes

Aggregate

→ Items

→ Attributes

Further reading

- Visualization Analysis and Design. Munzner. AK Peters Visualization Series, CRC Press, 2014.
 - -Chap 13: Reduce Items and Attributes
- Hierarchical Aggregation for Information Visualization: Overview, Techniques and Design Guidelines. Elmqvist and Fekete. IEEE Transactions on Visualization and Computer Graphics 16:3 (2010), 439–454.
- A Review of Overview+Detail, Zooming, and Focus+Context Interfaces. Cockburn, Karlson, and Bederson. ACM Computing Surveys 41:1 (2008), 1–31.
- A Guide to Visual Multi-Level Interface Design From Synthesis of Empirical Study Evidence. Lam and Munzner. Synthesis Lectures on Visualization Series, Morgan Claypool, 2010.

Embed

Embed: Focus+Context

- **Embed**

- combine information within single view
- elide
 - -selectively filter and aggregate
- superimpose layer
 - -local lens
- distortion design choices
 - region shape: radial, rectilinear, complex
 - -how many regions: one, many
 - -region extent: local, global
 - -interaction metaphor

→ Elide Data

Superimpose Layer

→ Distort Geometry

Idiom: DOITrees Revisited

- elide
 - -some items dynamically filtered out
 - -some items dynamically aggregated together
 - -some items shown in detail

Superimpose

Gaussian curvature pseudo-color lens with overlaid tool to read the numeric value of the curvature.

Toolglass and magic lenses: the see-through interface. 1993

Idiom: Fisheye Lens

distort geometry

-shape: radial

-focus: single extent

–extent: local

-metaphor: draggable

https://tulip.labri.fr/TulipDrupal/?q=node/371

https://tulip.labri.fr/TulipDrupal/?q=node/

Idiom: Fisheye Lens

System: D3

[D3 Fisheye Lens]

(https://bost.ocks.org/mike/fisheye/_)

Cartesian Distortion

Distortion costs and benefits

- benefits
 - –combine focus and context information in single view
- costs
 - -length comparisons impaired
 - network/tree topology comparisons unaffected: connection, containment
 - –effects of distortion unclear if original structure unfamiliar
 - –object constancy/tracking maybe impaired

Idiom: Stretch and Squish Navigation

- distort geometry
 - > shape: rectilinear
 - > foci: multiple
 - > impact: global
 - > metaphor: stretch and squish, borders fixed

video

System: TreeJuxtaposer

[TreeJuxtaposer: Scalable Tree Comparison Using Focus+Context With Guaranteed Visibility. Munzner, Guimbretiere, Tasiran, Zhang, and Zhou. ACM Transactions on Graphics (Proc. SIGGRAPH) 22:3 (2003), 453–462.]

Focus+Contest Visualization with distortion minimization

Drawing Road Networks with Focus Regions

Edited from Jan-Henrik Haunert's slides

Focus+Context Metro Maps

Can you see the station names?

Yes, you can!