Equações diferenciais

Uma equação diferencial é uma equação que contém derivadas. A ordem de uma equação diferencial e a ordem da derivada de maior ordem que aparece na equação.

Uma equação diferencial de primeira ordem é da forma $\frac{dy}{dx} = f(x,y(x))$ As equações diferenciais de primeira ordem mais simples são da forma $\frac{dy}{dx} = f(x)$. Escrevendo esta equação com diferenciais, temos dy = f(x)dx. Outro tipo simples de equação diferencial de primeira ordem é da forma $\frac{dy}{dx} = \frac{f(x)}{g(y)}$. Escrevendo esta equação com diferenciais, temos g(y)dy = f(x)dx Em ambos os tipos podemos separar as variáveis, com um dos membros da equação envolvendo a variável y e outro membro envolvendo a variável x. Dizemos então que estas equações diferenciais são equações diferenciais com variáveis separáveis.

a) No primeiro tipo temos $\frac{dy}{dx} = f(x)$.

Resolver esta equação diferencial significa encontrar todas as funções g tais que y = g(x) e satisfazem dy = f(x)dx.

A solução completa será então $y = \int f(x)dx$

Exemplo

Resolva a equação diferencial $\frac{dy}{dx} = x^3$

Temos então $dy = x^3 dx$ e assim $y = \int x^3 dx$

A solução completa é portanto $y = \frac{x^4}{4} + c$

b)No segundo tipo temos $\frac{dy}{dx} = \frac{f(x)}{g(y)}$

Resolver esta equação diferencial significa encontrar todas as equações envolvendo x e y, que satisfazem g(y)dy = f(x)dx

Exemplo

Resolva a equação diferencial $\frac{dy}{dx} = \frac{x}{y}$

Temos então y dy = x dx

Antidiferenciando ambos os membro, temos

$$\int y\,dy=\int x\,dx$$

$$\frac{y^2}{2}+c_1=\frac{x^2}{2}+c_2$$

$$y^2+2c_1=x^2+2c_2$$

$$y^2=x^2+2c_2-2c_1$$

$$y^2=x^2+c$$
 , que é a solução completa da equação diferencial.

Observe, que quando resolvemos uma equação diferencial, obtemos uma família de soluções, pois a constante pode assumir qualquer valor real.

Às vezes queremos apenas uma solução particular. Então precisamos de algum dado que nos possibilite encontrar a solução desejada. Neste caso dizemos que se trata de um problema de valor inicial.

Exemplo

Encontre a solução da equação diferencial $\frac{dy}{dx} = x^3$, satisfazendo a condição inicial que y = 1 quando x = 2.

Então encontramos a solução geral e depois obtemos o valor da constante c, de modo que a condição inicial seja satisfeita.

A solução geral deste problema já vimos que é

$$y = \frac{x^4}{4} + c$$
. Substituindo x por 2 e y por 1, obtemos

$$1 = \frac{2^4}{4} + c$$
 e daí $c = 1 - 4 = -3$

Logo, a solução do problema de valor inicial é $y = \frac{x^4}{4} - 3$.

Equações diferenciais lineares de primeira ordem

Definição:

Um equação diferencial linear de primeira ordem é uma equação diferencial da forma $\frac{dy}{dx} + a(x)y = b(x)$.

Um método para resolver esta equação diferencial consiste em procurar encontrar y(x), da forma $y(x) = u(x) \cdot v(x)$ para certas funções $u \in v$.

Assim $\frac{dy}{dx} = \frac{du}{dx}$. v + u. $\frac{dv}{dx}$ e portanto, substituindo na equação diferencial, temos

$$\frac{du}{dx}.v + u.\frac{dv}{dx} + a(x).u.v = b(x)$$

$$v.\left(\frac{du}{dx} + a(x).u\right) + u.\frac{dv}{dx} = b(x)$$

Escolhendo u de forma que $\frac{du}{dx} + a(x)$. u = 0, temos $u \cdot \frac{dv}{dx} = b(x)$ e então

$$\frac{dv}{dx} = \frac{b(x)}{u(x)} e \operatorname{dai} v(x) = \int \frac{b(x)}{u(x)} dx + c_1$$

Resolvendo agora a equação diferencial $\frac{du}{dx} + a(x)$. u = 0

Temos
$$\frac{du}{dx}=-a(x).u$$
 e então $\frac{1}{u}du=-a(x)dx$. Daí $\ln|u|=-\int a(x)dx+c_2$ Portanto $u(x)=e^{-\int a(x)dx+c_2}=c_3.e^{-\int a(x)dx}$ Assim $y(x)=u(x).v(x)=c_3.e^{-\int a(x)dx}\left(\int \frac{b(x)}{u(x)}dx+c_1\right)$
$$y(x)=c_3.e^{-\int a(x)dx}\left(\int \frac{b(x)}{c_3.e^{-\int a(x)dx}}dx+c_1\right)$$
 $y(x)=e^{-\int a(x)dx}\left(\int b(x)e^{\int a(x)dx}dx+c\right)$, onde $c=c_3.c_1$

Exemplo:

Resolva a equação diferencial linear $x \frac{dy}{dx} - 2y = -x$

Solução:

Colocando na forma
$$\frac{dy}{dx} + a(x)y = b(x)$$
, temos $\frac{dy}{dx} - \frac{2}{x}y = -1$
Então $a(x) = -\frac{2}{x}$ e $b(x) = -1$
$$\int a(x)dx = \int -\frac{2}{x}dx = -2\ln|x| + k$$

$$y(x) = e^{-\int a(x)dx} \left(\int b(x)e^{\int a(x)dx} dx + c \right),$$

$$e^{\int a(x)dx} = e^{-2\ln|x|+k} = me^{-2\ln|x|} = me^{\ln x^{-2}} = \frac{m}{x^2}$$
Daí $y(x) = \frac{x^2}{m} \left(\int -\frac{m}{x^2} dx + c \right),$

$$y(x) = -x^2 \left(\int \frac{1}{x^2} dx + c \right),$$

$$y(x) = x^2 \left(\frac{1}{x} + c \right),$$

$$y(x) = x + cx^2,$$