

On the Correlation of Traffic Severity and Weather in California

Ching Wang*

Kuan-Hsun Wu**

Department of Statistics, National Chengchi University

Introduction

Motivation: Provide guidance to local governments for enhancing public facilities and overall safety.

- Building on previous findings [1] linking weather and traffic accidents in snowy mountain areas.
- Identify the impact of weather on the severity of traffic accidents.
- Determine suitable model, considering geographic features.

Data Introduction

- <u>Data:</u> The dataset, with 7.7 million entries, is derived from the "A Countrywide Traffic Accident Dataset" on Kaggle.
- The dataset comprises 45 attributes, categorised into 5 distinct groups.

Important Attribute Table

Traffic Attributes (10)	severity, start_time, start_point, distance	
Address Attributes (8)	city, county, state	
Weather Attributes (10)	temperature, humidity, pressure, visibility, wind_speed, precipitation	
POI Attributes (13)	normal traffic facilities	
Period-of-Day (4)	Civil Twilight	

Variable Correlation Plot

Data preprocessing

- Geographic: Obtain 23% of entries from California, and zoom in Tehama.
- Time: A change point in accident counts was found on September 15, 2020, using the Pettitt test. Data before this point was chosen.
- <u>Severity:</u> To mitigate the effect of imbalance in Severtity, levels 1 and 2 of the severity attribute were merged, as were levels 3 and 4.

Change Point of Accident counts

Unbalanced Severity Attribute

Model

Ordinal Logistic Regression:

$$logit\left(P\left(Y_{i}\leqslant j
ight)
ight)=eta_{0}+\sum_{i=1}^{p}eta_{i}X_{i}$$

- Six variables were chosen for the model based on the correlation plot.
- Adjusted R-square(McFadden): 0.0242

Confusion Matrix

predictions\actual	2	3	4
2	52	28	0
3	0	0	2
4	1	0	0

Deviance Table

	Pr(>Chisq)	
Distance	0.0009	
Temperature	0.0862	
Humidity	0.1853	
Pressure	0.7171	
Visibility	0.0563	
Lasting_time	0.2514	

Geographically Weighted Regression (GWR):

Geographical Factor was not considered in above regression models.

$$Y_i = eta_0 + \sum\limits_{i=1}^p eta_i X_i$$

(global regression)

$$Y_i = eta_{0,(u_i,v_i)} + \sum\limits_{j=1}^p eta_{(u_i,v_i)} X_{ij}$$

(Local regression, spatial distance considered)

 GWR considers local variation and parameter estimate differs from each other.

Geographic Weight Illustration

Parameter Estimate

GWR Evaluation

	Lasting_time	Distance	Lasting_time+Distance
pseudo_r_square	0.0001	0.0121	0.01279

Conclusion

Ordinal Logistic Regression Issues

- Omission of Crucial Variables:
 - Human factors in car accidents may be overlooked.
- Imbalanced Response Variable:
 - Severity variable imbalance, with a majority labeled as severity 2.

Geographically Weighted Regression Challenges

- Limited Geographic Scope
 - Analysis constrained to Tehama due to computational limits.
- Spatial Variation in Parameter Estimation
 - Model captures spatial variation but doesn't help explanation.

Future prospective

Geographical Models

- The corrleation of each area does exhibit variation.
- Perhaps Tehama is too small to show spatial variation, we can consider larger data scope in the future. **CA Partial Correlation Plot**

<u>Computational Resource</u>

- Search of optimal bandwidth requires large resource.
- R does not completely support GWR. Software suite such as ArcGIS is needed.

Human-Related Factors

 Include more human related factors might help increasing the explanation in response variable.

Severity - Temperature

Cited References

- Pang, J., Krathaus, A., Benedyk, I., Ahmed, S. S., & Anastasopoulos, P. C. (2022). A temporal instability analysis of environmental factors affecting accident occurrences during snow events: The random parameters hazard-based duration model with means and variances heterogeneity. Analytic methods in accident research, 34, 100215.
- Moosavi, S., Samavatian, M. H., Parthasarathy, S., & Ramnath, R. (2019). A countrywide traffic accident dataset. arXiv preprint arXiv:1906.05409.
- Fotheringham, A. S., Brunsdon, C., & Charlton, M. (2003). Geographically weighted regression: the analysis of spatially varying relationships. John Wiley & Sons.