Univers	idad de Buenos Aires	Facultad de Ingeniería			
1º Cuatrimestre 2015	Análisis Numérico I. Curso 07	Parcial. Primera Oportunidad.	Tema 1	Nota	
Padrón	Apellido y Nombres				

Ejercicio 1. Con los datos de la grilla que se muestra se han obtenido la matriz A y el vector B de los SEL correspondientes a un Ajuste Polinómico por Cuadrados Mínimos y a una Interpolación por Spline, tomando puntos desde i=0 en adelante. Luego, tomando otros puntos, se construyó PN(x) y se calculó el coeficiente de peso W3.

i	0	1	2	3	4
Xi	?	?	?	7	?
Yi	?	?	?	?	?

$$A2 = \begin{vmatrix} 4 & nd \\ 15 & nd \end{vmatrix} B2 = \begin{vmatrix} 6 \\ nd \end{vmatrix}$$

- a) Indiciar para cada Interpolación o Ajuste los puntos utilizados, el grado y la cantidad de polinomios resultantes
- b) Sabiendo que tras una iteración de Gauss-Seidel con X⁰ como vector inicial se obtuvo X¹, hallar los valores faltantes en A1 y B1.
 - NOTA: Si no los obtuvo considere la segunda Fila de A1 = (2,6,1) y la primer columna de A2 = (4,27) y X3=10
- c) Incorporando la información que brinda PN(x) hallar Y0, Y1 e Y2.
- d) Utilizando la totalidad de la información disponible, obtener de los datos faltantes en la tabla
- e) ¿Qué grado máximo se podría obtener para un polinomio de Hermite desarrollado con los datos disponibles para X0,X1 y X2?
- f) ¿Con qué tipo de frontera se ha planteado la Spline? Indique qué otro tipo de frontera conoce y si en caso de haber utilizado una distinta, hubiera respondido de otra manera en el ítem anterior.

Ejercicio 2. Para la siguiente matriz, se pide:

$$A = \begin{vmatrix} 1 & 0 & 0 \\ 0 & \cos(x) & 0 \\ 0 & 0 & 3,2.x \end{vmatrix}$$

- a) Obtener un expresión para su número de condición kA(x) considerando x en el intervalo [3; 3,4]
- b) Resolver mediante un método de Refinamiento la ENOL $kA(x) = -x^2$ con tolerancia relativa de 10^{-4} para encontrar la raíz p en el intervalo
- c) ¿Podría haber aplicado un método de Arranque en dicho intervalo?
- d) Obtener Cp y Te para la función $F(x) = kA(x) + x^2$ mediante la construcción de la gráfica de proceso
- e) ¿De qué otra manera se podría haber obtenido la expresión teórica de Cp? ¿Y la de Te?
- f) Estimar por Perturbaciones Experimentales el valor de Cp y Te para F(x=p). Si no se ha obtenido la raíz p considerar x=3.2.
- g) Indicar si el problema está bien condicionado y si el algoritmo es estable. Justificar.

Firma	

Univers	idad de Buenos Aires	Facultad de Ingeniería			
1º Cuatrimestre 2015	Análisis Numérico I. Curso 07	Parcial. Primera Oportunidad.	Nota		
Padrón	Apellido y Nombres				

Ejercicio 1. Con los datos de la grilla que se muestra se han obtenido la matriz A y el vector B de los SEL correspondientes a un Ajuste Polinómico por Cuadrados Mínimos y a una Interpolación por Spline, tomando puntos desde i=0 en adelante. Luego, tomando otros puntos, se construyó PN(x) y se calculó el coeficiente de peso W3.

	i	0	1	2	3	4		?	?	0		-3,0		1		-1,250	l
	Xi	?	?	?	10	?	A1 =	?	?	?	B1 =	6,0	X0 =	1	X1 =	1,250	l
	Yi	?	?	?	?	?		0	?	?		?		1		-5,125	
$PN(x) = 2,00$.(X-X1) + -0,25 (X-X1)(X-X2) + -0,025 (X-X1)(X-X2)(X-X3) $A2 = \begin{bmatrix} 4 & nd \\ 27 & nd \end{bmatrix}$ $B2 = \begin{bmatrix} 10 \\ nd \end{bmatrix}$								10 nd									

- a) Indiciar para cada Interpolación o Ajuste los puntos utilizados, el grado y la cantidad de polinomios resultantes
- b) Sabiendo que tras una iteración de Gauss-Seidel con X⁰ como vector inicial se obtuvo X¹, hallar los valores faltantes en A1 y B1.
 - NOTA: Si no los obtuvo considere la segunda Fila de A1 = (2,6,1), la primer columna de A2 = (4,15) y X3=7
- c) Incorporando la información que brinda PN(x) hallar Y0, Y1 e Y2.
- d) Utilizando la totalidad de la información disponible, obtener de los datos faltantes en la tabla
- e) ¿Qué grado máximo se podría obtener para un polinomio de Hermite desarrollado con los datos disponibles para X0, X1 y X2?
- f) ¿Con qué tipo de frontera se ha planteado la Spline? Indique qué otro tipo de frontera conoce y si en caso de haber utilizado una distinta, hubiera respondido de otra manera en el ítem anterior.

Ejercicio 2. Para la siguiente matriz, se pide:

- a) Obtener un expresión para su número de condición kA(x) considerando x en el intervalo [2,2; 2,6]
- b) Resolver mediante un método de Refinamiento la ENOL kA(x) = -3,2.x con tolerancia relativa de 10^{-4} para encontrar la raíz p en el intervalo dado.
- c) ¿Podría haber aplicado un método de Arrangue en dicho intervalo?
- d) Obtener Cp y Te para la función F(x) = kA(x) + 3.2.x mediante la construcción de la gráfica de proceso
- e) ¿De qué otra manera se podría haber obtenido la expresión teórica de Cp? ¿Y la de Te?
- f) Estimar por Perturbaciones Experimentales el valor de Cp y Te para F(x=p). Si no se ha obtenido la raíz p considerar x=3.
- g) Indicar si el problema está bien condicionado y si el algoritmo es estable. Justificar.

Fire	ma