

Ali Naghiloo 40010093

output:

```
ا- (لف
```

```
clc ; close all ; clear all ;
         x=-5:0.01:5;
         %% PART A:
         fX = \exp((-x.^2)/2)/\sqrt{2*pi};
         FX = 1-qfunc(x);
          % plotting them :
         figure(1);
9
          plot(x,fX);
         xlabel('x');
10
11
         ylabel('fX(x)');
12
         title('PDF');
13
          grid on
14
15
         figure(2);
16
          plot(x,FX);
17
         xlabel('x');
18
         ylabel('FX(x)');
19
         title('CDM');
20
          grid on
```


نتایج حاصل همان PDF, CDF با توزیع نرمال با پارامتر (۱و۰) را نشان میدهد.

22	%% PART B :
23	figure(3);
24	<pre>plot(x,normpdf(x));</pre>
25	xlabel('x');
26	<pre>ylabel('fX(x)');</pre>
27	<pre>title('normpdf');</pre>
28	grid on;
29	
30	%% PART c :
31	figure(4);
32	<pre>plot(x,normcdf(x));</pre>
33	xlabel('x');
34	<pre>ylabel('FX(x)');</pre>
35	<pre>title('normcdf');</pre>
36	grid on;

output:

از مقایسه نمودار متوجه می شویم که normpdf و normcdf همان PDF و CDF با توزیع نرمال با پارامترهای (۱و۰) را در بازه داده شده محاسبه میکند.

10

11

12

13 14

```
clc ; close all ; clear all ;

%% PART A & B :
    x = rand(1,5)
    y = (x > 0.5) % it is logical

%% PART D :
    dice1 = (rand(1,10) > 0.7)
    sum(dice1)

%% PART E :
    dice2 = (rand(1,1000) > 0.7);
    s=sum(dice2);
    probability = s/1000 %it will be approximatly 0.3
```

output:

٢- (لف، ب، لج، ح، و

```
0.0774
              0.9006
                         0.8466
                                   0.3957
                                             0.1692
 1×5 logical array
dice1 =
  1×10 logical array
probability =
   0.3100
```

متناسب با تعداد دفعات انجام آزمایش پرتاب سکه میتوان هر پرتاب را متناظر با یک عدد تصادفی بین \cdot و ۱ در نظر گرفت که این اعداد تصادفی با استفاده از تابع rand قابل تولید هستند. برای مثال در \cdot پرتاب سکه میتوان برداری به نام \cdot در نظر گرفت که المان های آن به صورت تصادفی با استفاده از دستور (\cdot واوا) \cdot بررگتر میشوند حال به منظور تعیین شیر یا خط بودن سکه بردار \cdot را چنان تشکیل که اگر مقدار موجود در بردار \cdot برزگتر از \cdot با شد برابر ۱ برآمد خط بودن و در غیر این صورت برابر \cdot برآمد شیر بودن باشد. در واقع با توجه به این فرآیند اگه عدد تصادفی تولید شده توسط تابع \cdot rand بررگتر از \cdot با شد آن را متناظر با برآمد خط آمدن قرار میدهیم و اگر عدد تصادفی تولید شده کوچکتر از \cdot با شد آن را متناظر با برآمد شیر آمدن قرار میدهیم که این کار منطقی است زیرا احتمال اینکه عدد تصادفی بیشتر از \cdot باشد \cdot باشد \cdot است و احتمال اینکه عدد تصادفی بیشتر از \cdot باشد \cdot باشد \cdot است که این همان احتمالات داده شده برای برآمدهای شیر و خط می باشد.

```
clc; close all; clear all;
          y = raylrnd(1,1,100000); %general
          b = max(y);
          a = min(y);
          Ni = hist(y, 100);
          delta x = (b-a)/100;
          fx app = Ni/(100000*delta x);
          figure(1);
10
          t = a +(delta_x:delta_x:b);
11
          plot(t,fx app);
12
          xlabel('t');
          ylabel('fx app');
13
14
          title('Approximate PDF');
15
          grid on;
16
17
          x = a:0.01:b;
18
          fx_ex = x.*exp(-x.^2/(2));
19
          figure(2);
20
          plot(x,fx_ex);
21
          xlabel('x');
22
          ylabel('fx ex');
23
          title('Exact PDF');
24
          grid on;
```

output:

با توجه دو نمودار و شباهت آن ها، نتیجه آزمایش به طور تقریبی با مقدار حقیقی آن برابر است. بنابراین PDF متغیر تصادفی به صورت تقریبی با مقدار فراوانی که توسط هیستوگرام به دست می آید متناسب است.