

Chunghwa Picture Tubes, Ltd. Product Specification

To : HUI YING TUNG ELECTRONIC CO., LTD.

Date: 2009/02/20

TFT LCD

CLAA089NA0ACW

ACCEPTED BY : (V1.2)		

APPROVED BY	CHECKED BY	PREPARED BY
黃奕凱	劉益群	趙志方

Prepared by:

Product Planning Management Division Small & Medium TFT Product Business Unit CHUNGHWA PICTURE TUBES, LTD.

1127 Hopin Rd., Padeh, Taoyuan, Taiwan 334, R.O.C. TEL: +886-3-3675151 FAX: +886-3-377-3858

Doc.No:	CLAA089NA0ACW-HUI YING TUNG-V1.2-	Issue Date:	2009/02/20
	2009/02/20		

REVISION STATUS

Revision Notice	Description	Page	Rev. Date
0.0	First revision (Tentative)		2007/12/26
0.1	Revise the Mechanical Dimension- Front Side	14	2008/01/04
0.1	Revise the Mechanical Dimension- Rear Side	15	2008/01/04
0.2	Revise the Pin Assignment	8	2008/01/22
0.2	Revise the Fig. 8-1 Measuring Point	17	2008/01/22
0.3	Revise the Pin Assignment	8	2008/02/29
0.3	Revise the Rear Side	15	2008/02/29
0.3	Revise the Measurment Condition	16	2008/02/29
0.4	Revise the Power Consumption	4	2008/03/06
0.4	Revise the Module Weight	4	2008/03/06
0.4	Revise the TFT-LCD Current Consumption	6	2008/03/06
0.4	Revise the Optical Characteristics	16	2008/03/06
0.4	Revise the Luminance	17	2008/03/06
0.5	Revise the Module Weight	4	2008/04/02
0.5	Revise the Front Side	14	2008/04/02
0.6	Revise the Front Side	14	2008/04/18
0.6	Revise the Rear Side	15	2008/04/18
0.7	Revise the Rear Side	15	2008/04/24
0.7	Revise the Optical Characteristics	16	2008/04/24
0.8	Revise the Outline Dimension	4	2008/05/05
0.8	Revise the Front Side	14	2008/05/05
0.9	Revise the Power Consumption	4	2008/05/12
0.9	Revise the Remark3	5	2008/05/12
0.9	Revise the LCD Current Consumption	7	2008/05/12
0.9	Revise the Timing Specification	10	2008/05/12
0.9	Revise the Input Timing Diagram	10	2008/0512
0.9	Revise the ESD Test	19	2008/06/18
1.0	Revise the Outline Dimension	4	2008/08/18
1.0	Revise the Module Weight	4	2008/08/18
1.0	Revise the Power Supply Voltage for LED	5	2008/08/18
1.0	Revise the LVDS signal	6	2008/08/18
1.0	Revise the Power and Signal sequence	7	2008/08/18
1.0	Revise the Pin Assignment Remark 5	9	2008/08/18
1.0	Revise the Front Side	14	2008/08/18
1.0	Revise the Rear Side	15	2008/08/18
1.1	Revise the color data assignment	12	2008/12/15
1.2	Revise the Absolute Maximum Ratings	5	2009/02/11
1.2	Revise the Power and Signal Sequence	7	2009/02/11
1.2	Revise the ADJ signal	9	2009/02/11
1.2	Revise the Block Diagram	12	2009/02/11

CONTENTS

1.	. OVERVIEW	4
2	ABSOLUTE MAXIMUM RATINGS	5
3	ELECTRICAL CHARACTERISTICS	6
	3.1 TFT-LCD Power Supply Voltage	6
	3.2 TFT-LCD Current consumption	7
	3.3 Power and Signal sequence	7
4	. INTERFACE CONNECTION:	8
	4.1 Pin Assignment	8
5	. INPUT SIGNAL	. 10
	5.1 Timing Specification	10
	5.2 Timing Chart	10
6	BLOCK DIAGRAM	.12
7.	MECHANICAL DIMENSION	.13
	7.1 Front Side	13
	7.2 Rear Side	14
8	OPTICAL CHARACTERISTICS	.15
9	RELIABILITY TEST CONDITIONS	. 18
	9.1 Temperature and Humidity	18
	9.2 Shock & Vibration	18
	9.3. ESD Test	18
	9.4 Judgment Standard	18

1. OVERVIEW

CLAA089NA0ACW is 8.9" color TFT-LCD (Thin Film Transistor Liquid Crystal Display) module composed of LCD panel, driver ICs, control circuit and LED backlight.

The 8.9" screen produces 1024× RGB X600 resolution image. By applying 6 bits digital data, 262K color images are displayed. The LCD is drivered by a single input voltage (3.3 V and 5V).

General specifications are summarized in the following table:

ITEM	SECIFICATION
Display Area (mm)	195.072 (H) × 114.3 (V)
Number of Pixels(dot)	1024(H) × 3(RGB)× 600(V)
Pixel Pitch (mm)	0.1905 (H) × 0.1905 (V)
Color Pixel Arrangement	RGB vertical stripe
Display Mode	Normally white,TN
Number of Color	262,144
Viewing Direction	6 o'clock
Response Time (Tr+Tf)	20 ms (typ.)
Brightness(cd/m²)	220 nit (typ.)
Viewing Angle (CR≧10)	140 degree (Horizontal)
violing / ingle (ert = 10)	120 degree (Vertical)
Electrical Interface	LVDS
Power Consumption(W)	2.9 W (typ.)
Outline Dimension(mm)	210(W) × 127.8(H) × 5.2(D)
Module Weight(g)	190(typ.)
BL unit	LED
Surface Treatment	Anti-Glare, Surface hardness: 3H

2. ABSOLUTE MAXIMUM RATINGS

ITEM	SYMBOL	MIN.	MAX.	UNIT	NOTE
Power Supply Voltage for LCD	Vcc	-0.3	4.0	V	
Power Supply Voltage for LED	Vdd	-0.3	6.0	V	
Signal Input Voltage	RxIN0+ ~ RxIN2+ RxIN0- ~ RxIN2- Rx CLK IN +/-	-0.3	Vcc + 0.3	V	
Static Electricity	VESDc	-200	+200	V	[Note2]
Static Electricity	VESDm	-15K	+15K	>	[Note2]
ICC Rush Current	IRUSH	-	1	Α	[Note3]
Operation Temperature	T _{op}	-20	70	$^{\circ}\!\mathbb{C}$	[Note1]
Storage Temperature	T _{stg}	-30	80	$^{\circ}\!\mathbb{C}$	[Note1]

[Note]

[Note 1] If users use the product out off the environmental operation range (temperature and humidity), it will have visual quality concerns.

[Note 2] Test Condition: IEC 61000-4-2

VESDc : Contact discharge to input connector VESDm : Discontact discharge to module

[Note 3] The input pulse-current measurement system is as below:

Control signal: High (+3.3V)→Low (GND)

Supply Voltage of rising time should be from R3 and C2 tune to 550 μ s.

3. ELECTRICAL CHARACTERISTICS

3.1 TFT-LCD Power Supply Voltage

(Ta=25°C)

ITEM	SYMBOL	MIN.	Тур.	MAX.	UNIT	NOTE	
Power Supply Voltage For LCD	VCC	3.0	3.3	3.6	V		
Power Supply Voltage For LED	VLED	4.5	5	5.5	V		
	VIN	0	-	2.4	V		
	VCM	0.3	1.2	2.1	V	[Note1]	
Logic Input Voltage	VID	0.1	-	0.6	V	[Note1]	
	VTH	-	-	100	mV	[Note1]	
	VTL	-100	-	-	mV	[Note1]	
ADJ Input Voltage	VIH	3.0		3.3	V		
AD3 input voltage	VIL	GND		0.3	V		

[Note] [Note1] LVDS signal

Note:

VCM: Common Mode Voltage Offset | VID | : Differential Input Voltage

VTH: Differential Input High Threshold Voltage VTL: Differential Input Low Threshold Voltage

3.2 TFT-LCD Current consumption

ITEM	SYMBOL	MIN.	TYP.	MAX.	UNIT	NOTE
LCD Power Current	ICC		240	300	mA	[Note1]
LED Power Current	IDD		420	480	mA	[Note2]

[Note]

[Note1] Typical: Under 64 gray pattern Maximum: Under black pattern

(a) 64 Gray Pattern

(b) Black Pattern

[Note2] Typical: VDD = 5V Maximum: VDD = 4.5V

3.3 Power and Signal sequence

4. INTERFACE CONNECTION:

4.1 Pin Assignment

PIN NO.	SYMBOL	DESCRIPTION			
1	AVSS	Power Ground			
2	VCC	Power Supply for Digital circuit			
3	VCC	Power Supply for Digital circuit			
4	VEDID	3.3V			
5	ADJ	Brightness control for LED B/L			
6	CLKEDID	EDID Clock Signal			
7	DATAEDID	EDID Data Signal			
8	RXIN0-	Negative LVDS differential data inputs			
9	RXIN0+	Positive LVDS differential data inputs			
10	AVSS	Power Ground			
11	RXIN1-	Negative LVDS differential data inputs			
12	RXIN1+	Positive LVDS differential data inputs			
13	AVSS	Power Ground			
14	RXIN2-	Negative LVDS differential data inputs			
15	RXIN2+	Positive LVDS differential data inputs			
16	AVSS	Power Ground			
17	RXCLK-	Negative LVDS differential clock inputs			
18	RXCLK+	Positive LVDS differential clock inputs			
19	AVSS	Power Ground			
20	NC	NC			
21	NC	NC			
22	AVSS	Power Ground			
23	AVSS	Power Ground			
24	VLED	Power Supply for LED(VLED=5.0±0.5)			
25	VLED	Power Supply for LED(VLED=5.0±0.5)			
26	VLED	Power Supply for LED(VLED=5.0±0.5)			
27	NC	NC			
28	NC	NC			
29	NC	NC			
30	NC	NC			

[Note]:

- To reserve NC pin, don't make it connect with GND or any other signal.
 AVSS pin must be connected with GND. Don't let it be an empty pin.
- 3) Adjust control pin (ADJ) controls brightness. The bigger pulse duty, the brighter luminance.

4) ADJ signal=0~3.3V, operation frequency: 25KHZ±5KHz

5) The ADJ should pull-high if not adjust brightness, this pin can't floating.

5. INPUT SIGNAL

5.1 Timing Specification

		Item		SYMBOL	MIN.	TYP.	MAX.	UNIT
LVDS		CLK fred	quency	fCLKin	39.05	45	51.42	MHz
	DENA	Horizontal DENA Vertical	Horizontal Period	t _H	1160	1200	1240	tCLK
			Horizontal Valid	t _{HA}	1024	1024	1024	tCLK
I CD Innut			Horizontal Blank	t _{HB}	136	176	216	tCLK
LCD Input timing			Frame	fV	55	60	65	Hz
urning			Vertical Period	t_V	612	625	638	t _H
			Vertical Valid	t _{VA}	600	600	600	t _H
			Vertical Blank	t _{VB}	12	25	38	t_{H}

5.2 Timing Chart

(1) Input Timing Diagram Horizontal Timing:

Vertical Timing:

(2) LVDS Input Data Mapping

Note: R/G/B[7] are MSB and R/G/B[0] are LSB.

6. BLOCK DIAGRAM

7. MECHANICAL DIMENSION

7.1 Front Side

[Note]: Tolerance is ±0.3mm unless noted

7.2 Rear Side

[Note]: 1. Tolerance is ±0.3mm unless noted

2. CN1: STARCONN 093F30

3. SIDE MOUNT M2 SCREW TORQUE Max. 2.5 kgf*cm

4. SIDE MOUNT M2 SCREW Length Max. 2.0 mm

8. OPTICAL CHARACTERISTICS

ľ	TEM	SYMBOL	CONDITION	MIN.	TYP.	MAX.	UNIT	Remarks
Constrast Ratio		CR	Point-5	300	400	-	-	*1)*2)*3)
Luminance		Lw	Point-5	180	220		cd/m ²	*1)*3)
Luminance I	Uniformity	ΔL		70	80	-	%	*1)*3)
Response Time (White - Black)		Tr+ Tf	Point-5	-	20	35	ms	*1)*3)*5)
Viewing	Horizontal	Ψ	CR≧10	120	140	-	0	*1)*2)*4)
Angle	Vertical	θ	Point-5	100	120	-	٥	*1)*2)*4)
	White	Wx Wy	Point-5	0.273 0.289	0.313 0.329	0.353 0.369		
Color	Red	Rx Ry		0.554 0.297	0.594 0.337	0.634 0.377	_	*1)*3)
Coordinate	Green	Gx Gy		0.299 0.548	0.339 0.588	0.379 0.628		, ,
	Blue	Bx By		0.108 0.055	0.148 0.095	0.188 0.135		

[Note]:

*2) Definition of contrast ratio:
Contrast Ratio (CR) = (White) Luminance of ON / (Black) Luminance of OFF

^{*1)}Measurment condition: $25^{\circ}C \pm 2^{\circ}C$, $60\% \pm 10\%$ RH, under 10 Lux in the dark room. Measuring with BM-5A (TOPCON) under viewing angle 2° , V_{CC} =3.3V, Vadj=3.3V, Duty 100%, after lighting 10 mins.

*3) Definition of Luminance: Measuring white luminance on the point 5 as figure 8-1
Definition of Luminance Uniformity: Measuring white luminance on the point1 to 9 as figure 8-1 $\triangle L = [L(Min)/L(Max)] \times 100\%$

Fig. 8-1 Measuring point

*4) Definition of Viewing Angle(θ , ψ):

Fig. 8-2 Definition of Viewing Angle

*5) Definition of Response Time

The response time is defined as the time interval between the 10% and 90% amplitudes. Refer to the figure 8-3 as below.

Fig. 8-3 Definition of Response Time

9. RELIABILITY TEST CONDITIONS

9.1 Temperature and Humidity

TEST ITEMS	CONDITIONS
High Temperature Operation	70° ℂ ;240 Hrs
High Temperature Storage	80° C ;240 Hrs
High Temperature High Humidity Operation	60° C ;90% RH;240 Hrs (No condensation)
Low Temperature Operation	-20° € ; 240Hrs
Low Temperature Storage	-30° C ;240 Hrs
Thermal Shock	-30° C (0.5Hr)∼80° C (0.5Hr) 200 CYCLE

9.2 Shock & Vibration

TEST ITEMS	CONDITIONS
SHOCK (NON-OPERATION)	 Shock level: 980m/s²(equal to 100G). Waveform: half sinusoidal wave, 6ms. Number of shocks: one shock input in each direction of three mutually perpendicular axes for a total of three shock inputs.
VIBRATION (NON-OPERATION)	 Frequency range:8~33.3Hz Stroke: 1.3 mm Vibration: sinusoidal wave, perpendicular axis (both x,z axis: 2Hrs, and y axis: 4Hrs). Sweep: 2.9G,33.3 Hz -400 Hz Cycle: 15 min

9.3. ESD Test

ITEM	CONDITION	NOTE
ESD	150pF [,] 330Ω [,] ±8KV&±15KV air test	[Note1]
	200pF , 0Ω , ±200V contact test	[Note2]

[Note]

[Note1] LCD glass and metal bezel

[Note2] IF connector pins

9.4 Judgment Standard

The judgment of the above test should be made as follow:

Pass: Normal display image with no obvious non-uniformity and no line defect. Partial transformation of the module parts should be ignored.

Fail: No display image, obvious non-uniformity, or line defects.