Exercise 2.1

For each of the following functions,

a)
$$f(x) = 3x + 1$$
 b) $f(x) = x^2 - x$ c) $f(x) = \sqrt{x^2 - 9}$ d) $f(x) = \frac{1}{x}$ e) $f(x) = \frac{x-5}{x+2}$ f) $f(x) = -x^3$

i) f(3) ii) f(5) iii) f(-2) iv) f(0) v) $f(\sqrt{13})$

th xhy2

calculate the function values

vi)
$$f(\sqrt{2}+3)$$
 vii) $f(-x)$ viii) $f(x+2)$ ix) $f(x)+h$ x) $f(x+h)$
a) $f(x) = 3x+1$
b) $f(x) = x^2 - x$
i) $f(3) = 3\cdot 3+1 = 10$
ii) $f(5) = 3\cdot 5+1 = (6$
iii) $f(5) = 3\cdot 5+1 = (6$
iii) $f(5) = 3\cdot (-2)+1 = -6+1 = -5$
iii) $f(5) = 3\cdot (-2)+1 = -6+1 = -5$
iv) $f(6) = 3\cdot (-1)+1 = -6+1 = -5$
iv) $f(6) = 3\cdot (-1)+1 = -6+1 = -5$
iv) $f(6) = (-1)^2 - (-1)^2 =$

b)
$$f(x) = x^{2} - 3c$$

i) $f(3) = (3)^{2} - (3) = 9 - 3 = 6$

ii) $f(5) = (5)^{2} - (5) = 25 - 5 = 20$

iii) $f(-2) = (-2)^{2} - (-2) = 4 + 2 = 6$

iv) $f(0) = (0) - (0) = 0$

v) $f(13) = (13)^{2} - (13) = 13 - \sqrt{13}$

vi) $f(12 + 3) = (\sqrt{2} + 3)^{2} - (\sqrt{2} + 3)$
 $\sqrt{2} + 3 + \sqrt{2} = 1 + 6\sqrt{2}$
 $\sqrt{3} + \sqrt{2} = 2$
 $\sqrt{3} + \sqrt{3} + \sqrt{3} = 2$
 $\sqrt{3} + \sqrt{3} + \sqrt{3} = 2$
 $\sqrt{3} + \sqrt{3} + \sqrt{3} + \sqrt{3} = 2$
 $\sqrt{3} + \sqrt{3} + \sqrt{3} + \sqrt{3} + \sqrt{3} + \sqrt{3} = 2$
 $\sqrt{3} + \sqrt{3} + \sqrt{3$

Let *f* be the piecewise defined function

$$f(x) = \begin{cases} x - 5 & \text{, for } \frac{-4 < x < 3}{3 \le x \le 6} \end{cases}$$

- a) State the domain of the function. Find the function values
- b) f(2) c) f(5) d) f(-3)
- e) f(3)
- a) domain has all the possible input: \Rightarrow domain = [x] - 44x < 3 and $3 \le x \le 6$ or domain = {x | x < 64,6] }
- b) f(2) = (2) 5 = -3-4<2<3 \Rightarrow first case
- c) $f(5) = (5)^2 = 25$ $3 \le 5 \le 6 \Rightarrow \text{ the second (a)e}$
- d) f(-3) = (-3) 5 = -8-4 < -3 \(\) = first case
- e) f(3) = (3) 5 = -2-4 < 3 \(3 \) = first case

Exercise 2.4

Find the difference quotient $\frac{f(x+h)-f(x)}{h}$ for the following functions:

a)
$$f(x) = 5x$$
 Vb) $f(x) = 2x - 6$ c) $f(x) = x^2$

d)
$$f(x) = x^2 + 5x$$
 e) $f(x) = x^2 - 7$ Vf) $f(x) = x^2 + 3x + 4$

vg)
$$f(x) = x^2 + 4x - 9$$
 vh) $f(x) = 3x^2 - 2x$ i) $f(x) = 4x^2 + 6x$

j)
$$f(x) = 2x^2 - 8x - 3$$
 k) $f(x) = -5x^2 + 3$ l) $f(x) = x^3$

(b)
$$f(x) = 2x - 6$$
,
 $f(x+h) = 2(x+h) - 6 = 2x + 2h - 6$
 $f(x+h) - f(x) = 2x + 2h - 6 - (2x - 6)$
 $= 2x + 2h - 6 - 2x + 6$
 $= 2h$

$$\frac{f(x+h)-f(x)}{h}=\frac{2h}{n}=2$$

 $(f) f(x) = x^2 + 3x + 4$ $f(xth) = (xth)^2 + 3(xth) + 4$ $= \chi^2_{12}\chi_{h} + h^2_{13}\chi_{13} + 3\chi_{13} + \chi_{13} + \chi$ = 2xhth +3h $f(x+h) - f(x) = x^{2} + 2xh + h^{2} + 3x + 3h + 4 - (x^{2} + 3x + 4)$ $= x^{2}+2xh+h^{2}+3x+3h+4-x^{2}-3x-4$ $=2xh+h^2+3h$ =2X+h+3 $(g) f(x) = \chi^2 + 4\chi - 9$ f(x+h)-f(x) f(xth) = (xth) + (xth) - 9 $=x^{2}+2xh+h^{2}+4x+4h-9$ T(x+h)-f(x)= x2+2xn+n2+4x+4h-9-(x44x-9) $=x^{2}+2xh+h^{2}+4x+4h-9-x^{2}-4x+9$ = 2×n+h2+4h $(h) f(x) = 3x^2 - 2x$ $f(x+h) = 3(x+h)^{2} - 2(x+h)$ $=3(x^{2}+2xh+h^{2})-2x-2h$ $= 3x^2 + 6xh + 3h^2 - 2x - 2h$ $f(x+h) - f(x) = 3x^2 + 6xh + 3h^2 - 2x - 2h - (3x^2 - 2x)$ $= 3x^2 + 6xh + 3h^2 - 2x - 2h - 3x^2 + 2x$

 $= 6xh + 3h^{2} - 2h$

Exercise 2.6

Find the domains of the following functions.

\(\forall a \)
$$f(x) = x^2 + 3x + 5$$
\(\forall d \) $f(x) = \sqrt{8 - 2x}$
\(\forall g \) $f(x) = \frac{x - 5}{x - 7}$

b)
$$f(x) = |x - 2|$$
 \checkmark c) $f(x) = \sqrt{x - 2}$

e)
$$f(x) = \sqrt{|x+3|}$$
 Vf) $f(x) = \frac{1}{x+6}$
Vh) $f(x) = \frac{x+1}{x^2-7x+10}$ i) $f(x) = \frac{x}{x-2}$

$$k) f(x) = \frac{\sqrt{x}}{x-9}$$

$$l) f(x) = \frac{5}{\sqrt{x+4}}$$

- a) All Real numbers
- c) x > 2 or $3 \times |x| > 23$ (since fox is not real when x < 2 for example, x = 1, $f(x) = \sqrt{1-2} = \sqrt{-1}$)

d)
$$f(x) = \sqrt{f-2x}$$
, its domain is $6-2x > 0$
 $\Rightarrow 6 > 2x > 0$
 $\Rightarrow 2 > 2x \Rightarrow 4 > x$.

$$\Rightarrow D = \{x \mid x \leq q\}$$

- f) for the As a fraction, x+6+0 > x+-6 \Rightarrow D = $\{x \mid x \in \mathbb{R} \text{ but } x \neq -6\}$
- g) $f(x) = \frac{x-5}{x-7}$. As a fraction, the denumerator cannot be zero $\Rightarrow x-7 \neq 0 \Rightarrow x \neq 7$

h) fex= xt/ As a fraction, the denumerator cannot be zero which implies $\stackrel{?}{\times}$ -7x+10 =0 \Rightarrow (x-2)(x-5) =0 $\stackrel{?}{\times}$ $\stackrel{?}{\times}$ $\stackrel{?}{\times}$ $\stackrel{?}{\times}$ $\stackrel{?}{\times}$

 \Rightarrow $X-2 \neq 0$ and $x-5 \neq 0$ \Rightarrow $X \neq 2$ and $x \neq 5$ > D= {x| x < | R but x + 2 , x + 5}