Distribuciones conjuntas de probabilidad

1.1. Distribución de probabilidad bivariadas

Definición 1.1. Sean X e Y dos variables aleatorias discretas. La probabilidad de que X = x e Y = y está determinada por la función de probabilidad bivariada

$$p(x,y) = P(X = x, Y = x),$$

en donde $P(x,y) \ge 0$ para toda x,y, de X, Y, y $\sum_{x} \sum_{y} p(x,y) = 1$.

La **función de distribución acumulativa bivariada** es la probabilidad conjunta de que $X \le x$ y $Y \le y$, dada por

$$F(x,y) = P(X \le x, Y \le y) = \sum_{x_i \le x} \sum_{y_i \le y} p(x_i, y_i).$$

La función de distribución trinomial viene dado por:

$$p(x,y,n,p_1,p_2) = \frac{n!}{x!y!(n-x-y)!} p_1^x p_2^y (1-p_1-p_2)^{n-x-y}$$

y su generalización llamada función de distribución multinomial viene dada por:

$$p(x_1, x_2, \dots, x_{k-1}; n, p_1, p_2, \dots, p_{k-1}) = \frac{n!}{x_1! x_2! \dots x_k!} p_1^{x_1} p_2^{x_2} \dots p_k^{x_k}, \quad x_1 = 0, 1, \dots, n \text{ para } i = 1, 2, \dots, k$$
 en donde $x_k = n - x_1 - x_2 - \dots - x_{k-1}$ y $p_k = 1 - p_1 - p_2 - \dots - p_{k-1}$.

Definición 1.2. Sean X e Y dos variables aleatorias continuas. Si existe una función f(x,y) tal que la probabilidad conjunta:

$$P(a < X < b, c < Y < d) = \int_{a}^{b} \int_{c}^{d} f(x, y) \, dy dx$$

para cualquier valor de a,b,c y d en donde $f(x,y) \ge 0, -\infty < x,y < \infty$ y $\int_{\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) \ dy dx = 1$, entonces f(x,y) es la función de densidad de probabilidad bivariada de X e Y.

La **función de distribución bivariada acumulativa** de X e Y es la probabilidad conjunta de que $X \le x$ e $Y \le y$, dada por:

$$P(X \le x, Y \le y) = F(x, y) = \int_{-\infty}^{x} \int_{-\infty}^{y} f(u, v) \, dv du.$$

Por lo tanto, la función de densidad bivariada se encuentra diferenciando F(x,y) con respecto a x e y; es decir,

$$f(x,y) = \frac{\partial^2 F(x,y)}{\partial x \partial y}$$

1.2. Distribuciones marginales de probabilidad