Advanced Tree Searches

Week 4

Previously on BIME 591

- Conversations as States and Actions
- State and Action Space as Trees
- Depth First Search
- Breadth First Search
- Uniform Cost Search

Traversing Decisions Trees

Hierarchal Dialogue Management

Table 4.2: An example of multi-domain dialogue, adapted from Cuayáhuitl et al. (2016). The first column specifies which domain is triggered in the system, based on user utterances received so far.

Domain	Agent	Utterance
meta	system	"Hi! How can I help you?"
	user	"I'm looking for a hotel in Seattle on January 2nd
		for 2 nights."
hotel	system	"A hotel for 2 nights in Seattle on January 2nd?"
	user	"Yes."
	system	"I found Hilton Seattle."
meta	system	"Anything else I can help with?"
	user	"I'm looking for cheap Japanese food in the downtown."
restaurant	system	"Did you say cheap Japanese food?"
	user	"Yes."
	system	"I found the following results."

Weighted Trees

Problems with Uniform Cost Search

Greedy Alternative

- Strategy
 - Search the best node at each step.
- Implementation.
 - Priority Queue

Greedy Alternative

Greedy Alternative

Figure 3.22

Arad	366	Mehadia	241
Bucharest	0	Neamt	234
Craiova	160	Oradea	380
Drobeta	242	Pitesti	100
Eforie	161	Rimnicu Vilcea	193
Fagaras	176	Sibiu	253
Giurgiu	77	Timisoara	329
Hirsova	151	Urziceni	80
Iasi	226	Vaslui	199
Lugoj	244	Zerind	374

Values of h_{SLD} —straight-line distances to Bucharest.

Properties of Greedy Search

- Complete
 - Yes
- Optimal
 - No
- Time Complexity
 - O(b^m)
- Space Complexity
 - O(bm)

Combining UCS and Greedy Search

- Uniform Cost Search
 - f(n) = c(n)
- Greedy Search
 - f(n) = h(n)
- A* Search
 - f(n) = c(n) + h(n)

A* Search

Figure 3.25 Map of Romania showing contours at f = 380, f = 400, and f = 420, with Arad as the start state. Nodes inside a given contour have f-costs less than or equal to the contour value.

A* Heuristics

- A heuristic *h* is *admissible* if:
 - $h(n) \le c(g^*) c(n)$
- Heuristic is always less than real cost.
- Admissible heuristics are difficult to find!

A* Properties

- Complete
 - Yes
- Optimal
 - Yes
- Time Complexity
 - O(bd)
- Space Complexity
 - O(bd)

A* Optimality

A* and NLP

Joint A* CCG Parsing and Semantic Role Labeling

Mike Lewis Luheng He Luke Zettlemoyer

Computer Science & Engineering University of Washington Seattle, WA 98195

{mlewis, luheng, lsz}@cs.washington.edu

Figure 1: Mismatch between syntactic and semantic dependencies.

Single-Agent

- One Agent Acting in Environment
 - Deterministic
 - Fully Observable
 - Discrete Spaces
- Just a Search!

- Decision Trees
 - Costs

Multi-Agent

- Examples
 - Conversations
 - Most Games
 - Self-Driving
 - Etc.
- Modeling Other Agents

Rational Agents

Everyone makes the best decision

- Centipede Problem
 - 1981 by Robert Rosenthal
 - \$1 Million Dollar Rounds
 - After \$10 Million split the Pot

Min Max Algorithm

Min Max Algorithm

- Strategy
 - Traverse to leaf nodes.
 - Alternate between min and max levels.
 - Propagate scores up the tree.
- Implementation
 - DFS or BFS

Min Max Algorithm

- Complete
 - Yes
- Optimal
 - Yes
- Time Complexity
 - O(b^m)
- Space Complexity
 - O(bm)

Min Max in the World

- Chess Engines until Recently
- Intermediate Heuristic Calculations
- Alpha-Beta Pruning
- Heuristic Pruning

Today's Exercise

- Grundy's Game of Nim
 - 1935 and 1939 by Sprague and Grundy
 - Start with a stack of 7 tiles
 - Split a stack into uneven piles
 - First person who can't make a move loses
- Draw the Full Game Tree
 - Run the Min-Max Algorithm
 - Determine Optimal Strategy

7

6,1

5,2

4,3

5,1,1

4,2,1

3,2,2

3,3,1

4,1,1,1

3,2,1,1

2,2,2,1

3,1,1,1,1

2,2,1,1,1

2,1,1,1,1,1

Sneak Peak

- What happens when actions have probabilistic outcomes?
- Expected Value Trees
 - Markov Decision Processes
 - Bellman Equations
- Dialogue Management with Markov Models