

Homework 6 Maximum Likelihood

Estimation and Method of

1. Asymptotic Variance of MLE for

课程 □ Unit 3 Methods of Estimation □ Moments

□ Curved Gaussian

1. Asymptotic Variance of MLE for Curved Gaussian

(a)

3/3 points (graded)

Let X_1,\ldots,X_n be n i.i.d. random variables with distribution $\mathcal{N}\left(heta, heta
ight)$ for some unknown heta>0 .

In the last homework, you have computed the maximum likelihood estimator $\hat{m{ heta}}$ for $m{ heta}$ in terms of the sample averages of the linear and quadratic means, i.e. \overline{X}_n and \overline{X}_n^2 , and applied the CLT and delta method to find its asymptotic variance.

In this problem, you will compute the asymptotic variance of $\hat{m{ heta}}$ via the Fisher Information.

Denoting the log likelihood for one sample by $\ell\left(heta,x
ight)$, compute the second derivative $rac{d^2}{d heta^2}\ell\left(heta,x
ight)$.

$$\frac{d^2}{d\theta^2}\ell\left(\theta,x\right) = \boxed{\begin{array}{c} \text{(theta - 2*x^2)/(2*theta^2)} \\ \hline \frac{\theta-2\cdot x^2}{2\cdot\theta^3} \end{array}}$$

Then, compute the Fisher information $I\left(heta
ight)$.

as

$$I\left(heta
ight)=-\mathbb{E}\left[rac{d^{2}}{d heta^{2}}\ell\left(heta,X
ight)
ight].$$

$$I(\theta) = \boxed{ \frac{1}{\text{theta} + \frac{1}{(2^* \text{theta}^2)}} } \qquad \boxed{ \text{Answer: (2 * theta + 1)/(2 * theta}^2) }$$

Finally, what does this tell us about the asymptotic variance of $\, \hat{m{ heta}} \, ? \,$

$$V(\hat{\theta}) = \boxed{\frac{1}{(1/\text{theta} + 1/(2*\text{theta}^2))}} \quad \Box \text{ Answer: 2 * theta^2 / (2*\text{theta} + 1)}$$

$$\frac{1}{\frac{1}{\theta} + \frac{1}{2\theta^2}}$$

STANDARD NOTATION

Solution:

Let $\ell(\theta, x)$ denote the log likelihood for one sample. Recall its first derivative:

$$egin{array}{lll} \ell\left(heta,x
ight) &=& -rac{1}{2}(\log\left(2
ight)+\log\left(\pi
ight)+\log\left(heta
ight))-\left(rac{1}{2 heta}X^2-X+rac{1}{2} heta
ight) \ \Longrightarrow &rac{d}{d heta}\ell\left(heta,x
ight) &=& -rac{1}{2 heta}+rac{1}{2 heta^2}X^2-rac{1}{2}. \end{array}$$

Differentiating one more time yields

$$rac{d^{2}}{d heta^{2}}\ell\left(heta,x
ight)=rac{1}{2 heta^{2}}-rac{x^{2}}{ heta^{3}}.$$

Since

$$\mathbb{E}\left[X^2\right] = \theta + \theta^2,$$

we obtain

$$I\left(heta
ight)=-\mathbb{E}\left[rac{d^{2}}{d heta^{2}}\ell\left(heta,X
ight)
ight]=rac{2 heta+1}{2 heta^{2}}.$$

By the theorem about the asymptotic variance of the MLE from class, we finally have

$$V\left(\hat{ heta}
ight) = I(heta)^{-1} = rac{2 heta^2}{\left(2 heta+1
ight)},$$

which coincides with the result from part (b).

提交

你已经尝试了3次(总共可以尝试3次)

☐ Answers are displayed within the problem

讨论

显示讨论

主题: Unit 3 Methods of Estimation:Homework 6 Maximum Likelihood Estimation and Method of Moments / 1. Asymptotic Variance of MLE for Curved Gaussian