目 录

第1章	Sarksiov 纲领 ·····	1
1.1 下降	备法 · · · · · · · · · · · · · · · · · · ·	1
1.1.1	前置知识 · · · · · · · · · · · · · · · · · · ·	2
1.1.2	Flowchart for the Sarkisov program · · · · · · · · · · · · · · · · · · ·	5
1.1.3	Termination · · · · · · · · · · · · · · · · · · ·	8
参考文献	【	11

目 录

第1章 Sarksiov 纲领

1.1 下降法

首先回顾 Corti [3] 给出的三维终端奇点的 Sarkisov 纲领。令 $f: X \to S$ 和 $f': X' \to S'$ 是双有理等价的两个有终端奇点的三维森纤维空间。S' 上的丰沛除子 A' 使得对某个 $\mu' > 0$ 有 X' 上的一般的丰沛除子 H' 满足 $H' \sim -\mu' K_{X'} + f'^* A'$,并令 H 是 H' 在 X 上的双有理变换 (birational transform)。取一个公共解消 $p: W \to X$ 和 $q: W \to X'$ 。

- (1) $\diamondsuit \mu = \max\{c \in \mathbb{R} : K_X + \frac{1}{c}H$ 在S上数值有效 $\};$
- (2) $\diamondsuit \lambda = \min\{c \in \mathbb{R} : (X, \frac{1}{c}H)$ 有典范奇点};
- (3) 令 $e = (X, \frac{1}{\lambda}H)$ 的无差异的例外除子的个数。

如果 $\lambda \leq \mu$,在 X 运行相对于恰当基底的 $(K_X + \frac{1}{\mu}H)$ -MMP;如果 $\lambda > \mu$ 则构造一个除子解压 (divisorial extraction) $p: Z \to X$,并运行相对于 S 的 $(K_Z + \frac{1}{\lambda}H_Z)$ -MMP,这样得到第一个 Sarkisov 连接 $\psi_1: X \dashrightarrow X_1$ 。这两种情况都是 2-ray games。用 X_1 和 $\Phi_1 = \Phi \circ \psi_1^{-1}: X_1 \longrightarrow X'$ 替换 X 和 Φ ,并重复这个过程,这样递归地构造一系列 Sarkisov 连接。在这个过程中不变量 (μ, λ, e) 将按字典序下降,最终得到 $\Psi_N: X_{N-1} \longrightarrow X_N$,且 $X_N \cong X'$ 。这就是三维终端奇点代数簇的 Sarkisov 纲领。

对于 \mathbb{Q} -分解的有 klt 奇点的代数簇对,考虑 MMP-相关的森纤维空间 (X, B) 和 (X', B')。一个自然的想法是按如下定义 μ 和 λ :

- (1) $\diamondsuit \mu = \max\{c \in \mathbb{R} : K_X + B + \frac{1}{c}H$ 在S上数值有效};
- (3) 令 $e = (X, B + \frac{1}{4}H)$ 的无差异的例外除子的个数。

对 λ 的定义将导致一些困难。当 $\lambda > \mu$ 时,为了构造 Sarkisov 连接需要在一个除子解压 $p: Z \to X$ 上运行 $(K_Z + B_Z + \frac{1}{\lambda} H_Z)$ -MMP。这个除子解压会解压出一个素除子 E,这个素除子 E 在 Z 的边界 B_Z 中的系数是 1。如果 E 是 (X', B') 的边界 B' 的一项,那么 E 在 B' 中的系数小于 1,这两者不匹配。另一方面,这是需要在具有 1c 奇点的代数簇对上运行 MMP,这比在具有 1c 6点的代数簇对上的 MMP 有技术上的困难。除此之外,由于具有 1c 6点的 1c 6点的 1c 6点的 1c 6点的 1c 7。 1c

Bruno 和 Matsuki 给出了 λ 的另一种定义 (见1.3),且取决于特定的一个包含 (X, B) 和 (X', B') 的代数簇对的集合 C_{θ} ,这个集合满足:

- 对任意两个 C_{θ} 中的代数簇对 (X, B), (X', B') , 存在 C_{θ} 中的代数簇对 (W, B_{W}) 和算术公共解消 $p: W \to (X, B)$ 和 $q: W \to (X', B')$,使得 (W, B_{W}) 具有 klt 奇点且 $p_{*}B_{W} = B, q_{*}B_{W} = B'$ 。
- 在集合中的任意代数簇对 (X,B) 和 (Z,B_Z) 上可以运行 $(K_X + B + cH)$ -MMP 和 $(K_Z + B_Z + cH_Z)$ -MMP,并且所有结果都任然在集合 C_θ 中;
- 所有 C_{θ} 中的代数簇对都具有 δ-lc 奇点,其中 δ 是取决于 C_{θ} 的正实数。

1.1.1 前置知识

令 K = K(X) 是双有理等价类的有理函数域 (注意到双有理等价的代数簇有相同的有理函数域) 今 $\Sigma = \{v\}$ 是有理函数域的离散赋值的集合。

定义 1.1. [4, Definition 3.5] 取一个函数 $\theta: \Sigma \to [0,1)_{\mathbb{Q}}$,那么可以定义关于 的集合 C_{θ} ,包含满足下列条件的具有 klt 奇点的代数簇对 $(X, B = \sum a_i B_i)$:

- (1) $a_i = \theta(B_i)$;
- (2) 对所有 X 上的例外除子 E 有 $a(E; X, B) > -\theta(E)$ 。

注. 例如取 $\theta \equiv 0$ 为常值函数,那么 C_{θ} 是所有和 X 双有理等价的具有终端奇点的代数簇 Y (不带有边界)。

根据这个集合可以定义 θ -差异数 (θ -discrepancy):

定义 1.2 (θ -差异数). 令 C_{θ} 为上述代数簇对的集合,且 (X, B) 是有理函数域满足 K(X) = K 的代数簇对。令 $f: Y \to X$ 是 (X, B) 的一个算术奇点解消,有分歧 等式:

$$K_Y + B_Y + C = f^*(K_X + B)$$

其中 $B_Y = f_*^{-1}B + \sum_{E_i \text{ exc}} \theta(E_i)E_i$ 。则 X 的例外除子 E_i 的 θ -差异数定义为

$$a_{\theta}(E_i; X, B) = -\operatorname{mult}_{E_i} C.$$

或等价的,可以定义为

$$a_{\theta}(E_i; X, B) = a(E_i; X, B) + \theta(E_i).$$

如果 (*X*, *B*) 上的所有例外除子 *E* 满足 $a_{\theta}(E; X, B) \ge 0$ (对应的, $a_{\theta}(E; X, B) > 0$), 则称代数簇对 (*X*, *B*) 具有 θ-典范奇点 (对应的, θ-终端奇点)。

注. θ -典范代数簇对并不总在集合 C_{θ} 中。

Bruno 和 Matsuki 的 [4, Lemma 3.6] 构造了运行 Sarkisov 纲领所需要的集合 C_{θ} :

命题 1.1. 令 $f:(X,B) \to S$ 和 $f':(X',B') \to S'$ 是两个 *MMP*-相关的具有 *klt* 奇点的 Q-分解森纤维空间,有双有理映射 Φ :

$$(X,B) \xrightarrow{\Phi} (X',B')$$

$$f \downarrow \qquad \qquad \downarrow f'$$

$$S \qquad \qquad S'$$

假设 $B = \sum_i b_i B_i + \sum_j d_j D_j$ 和 $B' = \sum_j d'_j D_j + \sum_k b'_k B'_k$,其中 B_i 是在 X 上但不在 X' 上的除子, B'_k 是在 X' 上但不在 X 上的除子,而 D_j 是在 X 和 X' 上的除子。由引理??,有 $d_j = d'_j$ 。取一个有理数 ϵ 满足

$$-$$
 totdiscrep (X, B) , $-$ totdiscrep $(X', B') < \epsilon < 1$

并按如下定义函数 $\theta: \{v\} \rightarrow [0,1)_{\mathbb{Q}}:$

- 对于边界 B, B' 的除子,有 $\theta(B_i) = b_i, \theta(D_i) = d_i, \theta(B'_k) = b'_k$;
- 如果 $E \neq X$ 和 X' 上的例外除子,则 $\theta(E) = \epsilon$;
- 如果 $D \in X$ 和 X' 上的除子, 但不是 B 或 B' 的部分, 则 $\theta(D) = 0$ 。

那么定义1.1 构造的集合 C_{θ} 满足:

- (1) (X,B) 和 (X',B') 在集合 C_{θ} 中;
- (2) 对 C_{θ} 中任意有限多个具有 klt 奇点的代数簇对 $\{(X_{l},B_{l})\}$, 有 $(Z,B_{Z})\in C_{\theta}$ 射影双有理态射 $Z\to X_{l}$ 使得 X_{l} 是相对于 X_{l} 的 $(K_{Z}+B_{Z})$ -MMP 的输出,因此也是相对于 Spec \mathbb{C} 的 $(K_{Z}+B_{Z})$ -MMP 结果;
- (3) 任何从 C_{θ} 中一个元素出发的 (K+B)-MMP ,其结果依然落入 C_{θ} 。如果对任何 $c\in\mathbb{Q}_{>0}$ 和无基点的除子 H 给出的 (K+B+cH)-MMP 也成立。

注. 令 $\delta = 1 - \epsilon$, 那么所有 C_{θ} 中的代数簇对都是具有 δ -lc。

使用命题 1.1中的假设和记号,可以定义 Sarkisov 次数 (Sarkisov degree)。取 S' 上的非常丰沛的除子 A' 和足够大和可除的整数 $\mu' > 1$ 使得

$$\mathcal{H}'=|-\mu'(K_{X'}+B')+f'^*A'|$$

是 X' 在 $Spec \mathbb{C}$ 上的非常丰沛的完全线性系。令 (W, B_W) 是 X 和 X' 在 C_θ 中的公共算术解消,有射影态射 $\sigma: W \to X$ 和 $\sigma': W \to X'$ 满足 $\sigma_* B_W = B, \sigma'_* B_W = B'$ 。令 Let $\mathcal{H}_W := \sigma'^* \mathcal{H}'$,那么 $\mathcal{H} := \Phi_*^{-1} \mathcal{H}' = \sigma_* \mathcal{H}_W$ 。进一步,如果 \mathcal{H} 不是无基点的,那么

$$\sigma^*\mathcal{H} = \mathcal{H}_{W} + F$$

其中 $F = \sum f_l F_l \geqslant 0$ 是固定部分 (fixed part)。取线性系 \mathcal{H}' 中的一个一般除子 H' 使得 $H_W := \sigma'^* H' = \sigma_*'^{-1} H' \in \mathcal{H}_W$,并记 $H := \Phi_*^{-1} H' = \sigma_* H_W$ 。那么 H 是 f-丰沛的,且 $\sigma^* H = H_W + F$ 。通过取进一步的解消,不妨设 H_W 与 σ 和 σ' 的例外除子各部分光滑且互相横截相交 (即 $(W, H_W + \operatorname{Exc} \sigma + \operatorname{Exc} \sigma')$ 是算术光滑的)。

接下来定义在 C_{θ} 中关于 H' (或 H') 的 Sarkisov 次数:

定义 1.3. [4, Definition 3.8] C_{θ} 中关于 H' (或 H') 的 Sarkisov 次数是一个按字典序排序的三元组 (μ , λ , e),其中:

• **数值有效阈值** μ : $\Diamond C \subset X$ 是被 f 压缩的曲线,那么

$$\mu:=-\frac{H.C}{(K_X+B).C}$$

 $\exists \mathbb{I} \ K_X + B + \frac{1}{\mu} H \equiv_S 0;$

• θ -典范阈值 $\frac{1}{\lambda}$: 若 H 无基点则定义 $\lambda = 0$; 否则定义

$$\frac{1}{\lambda} := \max\{t : a_{\theta}(E; X, B + tH) \geqslant 0, \forall X \bot 例外除子 E\}$$

• $(K_X + B_X + \frac{1}{\mu}H)$ -无差别除子个数: e = 0 若 H 无基点 (此时 $\lambda = 0$) 则定义 e = 0; 否则定义

$$e = \#\{E; E \ \mathcal{E}\sigma$$
-例外除子,且 $a_{\theta}(E; X, B + \frac{1}{\lambda}H) = 0\}$

- 注. (1) Sarkisov 次数取决于 A', H' 和 θ 的选取。
- (2) 取公共算术解消 $(W, B_W) \in C_\theta$,其中 $B_W = \sum \theta(E)E$,并且有射影双有理态射 $\sigma: W \to X, \sigma': W \to X'$ 。由于 $\sigma^* \mathcal{H} = \mathcal{H}_W + \sum f_l F_l$,所以有分歧等式:

$$K_W + B_W + tH_W = \sigma^*(K_X + B + tH) + \sum (a_l - tf_l)E_l$$

其中 $\sum a_l E_l$ 是有效除子且支撑在 $\operatorname{Exc} \sigma$ 上。那么 $\lambda := \max\{\frac{f_l}{a_l}\}$ 。如果 \mathcal{H} 是 无基点的,那么 $\sum f_l F_l = 0$ 且 $\lambda = 0$ 。

(3) e 是公式

$$K_W + B_W + \frac{1}{\lambda} H_W = \sigma^* (K_X + B + \frac{1}{\lambda} H) + \sum_{l} (a_l - \frac{1}{\lambda} f_l) E_l.$$

中系数 $\sum (a_l - \frac{1}{\lambda}f_l)E_l$ 为 0 的部分的个数。这样的素除子 E_1, \ldots, E_e 称作 $(K_X + B + \frac{1}{\lambda}H) - \theta$ -无差别的。

需要构造在集合 C_{θ} 中的解压态射:

引理 1.2. 使用定义I.3中的记号,并假设 $\lambda \neq 0$,那么存在压缩态射 $f: Z \to X$ 满足:

- $(Z, B_Z) \in C_\theta$ and $(Z, B_Z + \frac{1}{\lambda}H_Z)$ is θ -terminal and \mathbb{Q} -factorial;
- $\rho(Z) = \rho(X) + 1$;
- f is $(K_X + B + \frac{1}{\lambda}H)$ -crepant, that is

$$K_Z + B_Z + \frac{1}{\lambda} H_Z = f^* (K_X + B + \frac{1}{\lambda} H).$$

证明. We follow the idea of the proof in [4, Proposition 1.6]. Let $(W, B_W) \in \mathcal{C}_\theta$ and $\sigma: W \to X, \sigma': W \to X'$ be the common resolution as in Definition 1.3, and suppose E_1, \ldots, E_e are $(K_X + B + \frac{1}{\lambda}H)$ - θ -crepant divisors after renumbering. Then we have

$$K_W + B_W + \frac{1}{\lambda} H_W = \sigma^* (K_X + B + \frac{1}{\lambda} H) + \sum_{l=1}^e 0 \cdot E_l + \sum_{l>e} (a_l - \frac{1}{\lambda} f_l) E_l.$$

We run the $(K_W + B_W + \frac{1}{\lambda}H_W)$ -MMP over X with scaling of some ample divisor, then the MMP ends with a minimal model $p:(Y,B_Y+\frac{1}{\lambda}H_Y)\to X$ for $(W,B_W+\frac{1}{\lambda}H_W)$ over X and the exceptional locus of p is exactly $\cup_{i=1}^e E_i$ and p is crepant:

$$K_Y + B_Y + \frac{1}{\lambda} H_Y = p^* (K_X + B + \frac{1}{\lambda} H).$$

Then we run the $(K_Y + B_Y)$ -MMP over X with scaling of some ample divisor. This ends with the minimal model (X, B) of (Y, B_Y) over X. Let $f : Z \to X$ be the last contraction in the MMP, and f is the required extraction map.

1.1.2 Flowchart for the Sarkisov program

We follow [4, §1] in this subsection.

If $\lambda \leq \mu$ and $K_X + B + \frac{1}{\mu}H$ is nef, the two Mori fibre spaces are isomorphic by following Theorem and the program stops:

定理 1.3. (Noether-Fano-Iskovskikh Criterion): Notations as in the definition of Sarkisov degree, then

- (1) $\mu \geqslant \mu'$;
- (2) If $\mu \ge \lambda$ and $(K_X + B + \frac{1}{\mu}H)$ is nef, then Φ is an isomorphism of Mori fibre spaces. That is, we have a commutative diagram:

$$X \xrightarrow{\sim} X'$$

$$f \downarrow \qquad \qquad \downarrow f'$$

$$S \xrightarrow{\sim} S'$$

证明. We follow the ideas of the proofs in [6, Claim 13.20], [7, Theorem 5.1] and [3, Theorem 4.2]:

(1) We only need to show $(K_X + B + \frac{1}{\mu'}H)$ is f-nef. Let $\sigma: W \to X$ and $\sigma': W \to X'$ be a common resolution. Consider the ramification formulas:

$$\begin{split} K_W + B_W + \frac{1}{\mu'} H_W = & \sigma'^* (K_{X'} + B' + \frac{1}{\mu'} H') + \sum e_j' E_j + \sum g_k' G_k' \\ = & \sigma^* (K_X + B + \frac{1}{\mu'} H) + \sum g_i G_i + \sum e_j E_j \end{split}$$

Here $\{G_i\}$, $\{E_j\}$ are σ -exceptional divisors, and $\{E_j\}$, $\{G'_k\}$ are σ' -exceptional divisors. Since $H_W = {\sigma'}^*H'$, $g'_k > 0$ or there is no such G'_k . Then take a general curve $C \subset X$ contracted by f, such that its strict transform \tilde{C} on W is disjoint from G_i , E_j , and is not contained in G'_k . Then we have:

$$\begin{split} C.\left(K_X+B+\frac{1}{\mu'}H\right) = &\tilde{C}.\left(\sigma^*\left(K_X+B+\frac{1}{\mu'}H\right)+\sum g_iG_i+\sum e_jE_j\right) \\ = &\tilde{C}.\left(\sigma'^*\left(K_{X'}+B'+\frac{1}{\mu'}H'\right)+\sum e_j'E_j+\sum g_k'G_k'\right) \\ = &\tilde{C}.\sigma'^*f'^*A'+\tilde{C}.\left(\sum g_k'G_k'\right) \geqslant 0. \end{split}$$

This implies $(K_X + B + \frac{1}{\mu'}H)$ is f-nef and $\mu \geqslant \mu'$;

(2) First we show that $\mu = \mu'$. By (1), we only need to show $(K_{X'} + B' + \frac{1}{\mu}H')$ is f'-nef. Indeed, same as (1), we can take a general curve C' on X' contracted by f', such that its strict transform \tilde{C}' on W is disjoint from G'_k , E_j , and is not contained in G_i and C'. $\left(K_{X'} + B' + \frac{1}{\mu}H'\right) \geqslant 0$.

Then we show they are isomorphic. Take a very ample divisor D on X and let D' be its strict transform on X'. Then D' is f'-ample, thus there exists $0 < d \ll 1$ such that the following holds:

- $K_X + B + \frac{1}{u}H + dD$ is ample;
- $K_{X'} + B' + \frac{1}{\mu}H' + dD'$ is ample.

Therefore, X and X' are both log canonical models of $(W, B_W + \frac{1}{\mu}H_W + dD_W)$, hence $X \cong X'$. Furthermore, f and f' are contractions of the same numerical curve class, thus the two log Mori fibre spaces are isomorphic.

Otherwise, if the condition of the Noether-Fano-Iskovskikh Criterion does not hold:

- (1) If $\lambda \leq \mu$ and $K_X + B + \frac{1}{\mu}H$ is not nef, then there is a contraction $f: X \to T$ and a Sarkisov link $\psi_1: X \dashrightarrow X_1$ of type III or IV;
- (2) If $\lambda > \mu$, then there is a divisorial extraction $p: Z \to X$ and a Sarkisov link $\psi_1: X \dashrightarrow X_1$ of type I or II.
- 证明. (1) By assumption, $\lambda \leqslant \mu$ and $K_X + B + \frac{1}{\mu}H$ is not nef. Suppose f is the contraction of a $(K_X + B)$ -negative extremal ray $R = \overline{\mathrm{NE}}(X/S)$, then $(K_X + B + \frac{1}{\mu}H).R = 0$ by definition of μ . There is an extremal ray $P \subset \overline{\mathrm{NE}}(X)$ such that $(K_X + B + \frac{1}{\mu}H).P < 0$ and F := P + R is an extremal face (see [3, 5.4.2] for the details). Take $0 < \delta \ll 1$ such that $(K_X + B + (\frac{1}{\mu} \delta)H).P < 0$, then $(K_X + B + (\frac{1}{\mu} \delta)H).R < 0$ since H is f-ample. Therefore, F is a $(K_X + B + (\frac{1}{\mu} \delta)H)$ -negative extremal face. Since $(X, B + (\frac{1}{\mu} \delta)H)$ is klt, there is a contraction $g: X \to T$ with respect to F factoring through $f: X \to S$. Since $(X, B + \frac{1}{\mu}H)$ is klt, and $\rho(X/T) = 2$, we can run the $(K_X + B + \frac{1}{\mu}H)$ -MMP over T with scaling of some ample divisor. Since $B + \frac{1}{\mu}H$ is relatively big, the MMP terminates. There are the following cases:
 - (1).1 After finitely many flips $X \longrightarrow Z$, the first non-flip contraction is a divisorial contraction $p: Z \to X_1$, which is then followed by a log Mori fibre space $f_1: (X_1, B_1 + \frac{1}{\mu}H_1) \to S_1$. The contraction f_1 is also a log Mori fibre space of (X_1, B_1) . This is a link of type III.
 - (1).2 After finitely many flips $X \dashrightarrow X_1$, the first non-flip contraction is a log Mori fibre space $f_1: (X_1, B_1 + \frac{1}{\mu}H_1) \to S_1$. The contraction f_1 is also a log Mori fibre space of (X_1, B_1) . This is a link of type IV.
 - (1).3 After finitely many flips $X \longrightarrow Z$, the first non-flip contraction is a divisorial contraction $p: Z \to X_1$ with

$$K_Z + B_Z + \frac{1}{\mu}H_Z = p^*(K_{X_1} + B_1 + \frac{1}{\mu}H_1) + eE$$

where e>0 and $E=\operatorname{Exc} p$ and $f_1:(X_1,B_1+\frac{1}{\mu}H_1)\to T$ is a log minimal model of $(X,B+\frac{1}{\mu}H)$ over T. In fact the only ray of $\overline{\operatorname{NE}}(X_1/T)$ is $(K_{X_1}+B_1+\frac{1}{\mu}H_1)$ -trivial and hence is $(K_{X_1}+B_1)$ -negative. Therefore, $f_1:(X_1,B_1)\to T$ is a log Mori fibre space. Take $S_1=T$. This is a link of type III.

(1).4 After finitely many flips $X \dashrightarrow X_1$, the $(K_X + B + \frac{1}{\mu}H)$ -MMP ends with a log minimal model $(X_1, B_1 + \frac{1}{\mu}H_1)$ over T. Then there is an extremal ray R of $\overline{\text{NE}}(X_1/T)$, which is $(K_{X_1} + B_1 + \frac{1}{\mu}H_1)$ -trivial and $(K_{X_1} + B_1)$ -negative.

Let $f_1: X_1 \to S_1$ be the contraction with respect to R. This is a link of type IV.

- (2) By assumption, $\lambda > \mu$. Take an extraction $p: (Z, B_Z + \frac{1}{\lambda}H_Z) \to (X, B + \frac{1}{\lambda}H)$ as in Lemma 1.2. That is, (Z, B_Z) is θ -terminal and $p^*(K_X + B + \frac{1}{\lambda}H) = K_Z + B_Z + \frac{1}{\lambda}H_Z$ where $B_Z = \sum \theta(E_v)E_v$. Then we run the $(K_Z + B_Z + \frac{1}{\lambda}H_Z)$ -MMP over S with scaling of some ample divisor. Since Z is covered by $(K_Z + B_Z + \frac{1}{\lambda}H_Z)$ -negative curves, $(K_Z + B_Z + \frac{1}{\lambda}H_Z)$ is not relatively pseudo-effective. Hence, this MMP ends with a log Mori fibre space by Theorem $\ref{eq:main_scale}$. There are two cases:
 - (2).1 After finitely many flips $Z \dashrightarrow Z'$, the first non-flip contraction is a divisorial contraction $q: Z' \to X_1$, which is then followed by a log Mori fibre space $f_1: (X_1, B_1 + \frac{1}{\lambda}H_1) \to S$. Let $S_1 = S$, then the contraction f_1 is also a log Mori fibre space of (X_1, B_1) . This is a link of type II.
 - (2).2 After finitely many flips $Z \dashrightarrow X_1$, the first non-flip contraction is a log Mori fibre space $f_1: (X_1, B_1 + \frac{1}{\lambda}H_1) \to S_1$. Since $(K_{X_1} + B_1 + \frac{1}{\lambda}H_1)$ is anti-ample over S_1 and H_1 is f_1 -ample, $(K_{X_1} + B_1)$ is anti-ample over S_1 . Therefore, $f_1: (X_1, B_1) \to S_1$ is a log Mori fibre space. This is a link of type I.

We replace (X, B) with (X_1, B_1) and Φ with $\Phi \circ \psi_1^{-1}$, and repeat the above process.

注. The Sarkisov degree decreases in the flowchart of the Sarkisov program:

- (1) (1).1 For the case 1a and 1b, since $K_{X_1} + B_1 + \frac{1}{\mu}H_1$ is anti-ample over S_1 , we have $\mu_1 < \mu$.
 - (1).2 For the case 1c and 1d, since $(K_{X_1} + B_1 + \frac{1}{\mu}H_1)$ is trivial on the ray $R = \overline{\text{NE}}(X_1/S_1)$ for both cases, we have $\mu_1 = \mu$. Notice that $(X_1, B_1 + \frac{1}{\mu}H_1)$ stays θ -canonical, we have $\lambda_1 \leq \mu = \mu_1$, thus next link stays in the case 1. Furthermore, for case 1c we have $\rho(X_1) = \rho(X) 1$.
- (2) For the case 2, we have $\mu_1 \leq \mu$ and $\lambda_1 \leq \lambda$ and if $\lambda_1 = \lambda$, then $e_1 < e$.

1.1.3 Termination

The original method needs the following to prove the termination:

- (1) the discreteness of nef thresholds μ ;
- (2) the termination of flips;
- (3) the ascending chain condition of log canonical thresholds;

(4) the finiteness of local log canonical thresholds for the Sarkisov program for terminal varieties, and the finiteness of local θ -canonical thresholds for the Sarkisov program for the klt pairs.

Suppose there is an infinite sequence, that is, there are infinitely many X_i and birational maps obtained from the program:

$$X = X_0 \longrightarrow X_1 \longrightarrow \cdots \longrightarrow X_i \longrightarrow \cdots \longrightarrow X'$$

- (1) Discreteness of nef thresholds holds for all dimensions, by the boundedness of δ -lc Fano varieties ([5, Theorem 1.1]). Therefore, we may assume μ_i is constant, that is, $\mu = \mu_0 = \mu_i$ for all i.
- (2) We can now suppose μ_i is constant. If there is a Sarkisov link ψ_i of type III or IV in the sequence, then any the Sarkisov link ψ_j , j > i is of type III or IV by Remark 1.1.2. There are only finitely many Sarkisov links of type III since the Picard numbers drop. The case of ψ_j , $j \gg 0$ being of type IV contradicts the termination of flips. But the termination of flips only holds for threefolds and pesudo-effective fourfolds.
- (3) Suppose all the links are of type I and II. The ascending chain condition of log canonical thresholds holds for all dimensions [?]. Therefore, there is a positive number α such that $(X_i, B_i + \alpha H_i)$ are klt for $i \gg 0$, and every Sarkisov link $\psi_i, i \gg 0$ comes from the $(K_{Z_i} + B_{Z_i} + \alpha H_{Z_i})$ -MMP over S_i . This is a contradiction to the finiteness of local θ -canonical thresholds ([4, Claim 2.2]).

参考文献

- [1] Sarkisov V G. BIRATIONAL AUTOMORPHISMS OF CONIC BUNDLES [J/OL]. Mathematics of the USSR-Izvestiya, 1981, 17(1): 177-202. DOI: 10.1070/IM1981v017n01ABEH001326.
- [2] Sarkisov V G. On conic bundle structures [J]. Izv. Akad. Nauk SSSR Ser. Mat., 1982, 46(2): 371-408, 432.
- [3] Corti A. Factoring birational maps of threefolds after Sarkisov [J]. Journal of Algebraic Geometry, 1995, 1995(4): 223-254.
- [4] Bruno A, Matsuki K. Log Sarkisov program [J/OL]. Internat. J. Math., 1997, 8(4): 451-494. https://doi.org/10.1142/S0129167X97000238.
- [5] Birkar C. Singularities of linear systems and boundedness of Fano varieties [J/OL]. Annals of Mathematics, 2021, 193(2): 347 405. https://doi.org/10.4007/annals.2021.193.2.1.
- [6] Hacon C D. The Minimal model program for Varieties of log general type [J/OL]. Wiadomości Matematyczne, 2012, 48(2): 49. DOI: 10.14708/wm.v48i2.317.
- [7] Liu J. Sarkisov program for generalized pairs [J]. Osaka J. Math., 2021, 58(4): 899-920.
- [8] Hacon C, McKernan J. The Sarkisov program [J/OL]. Journal of Algebraic Geometry, 2012, 22(2): 389-405. DOI: 10.1090/S1056-3911-2012-00599-2.
- [9] Miyamoto K. The sarkisov program on log surfaces [J]. arXiv: Algebraic Geometry, 2019, 2019: 114-114.