Introducción a la programación dinámica La Programación Dinámica es un pradigna paa resolver problemas de optimitación en familias, la explicaremos mediante un ejemplo PROBLEMA: [Weighted independent set] Sea Gin grafo no dingido con pesos woo en los vértices. WIS (G) = max { \$\overline{\pi}(S): S \leq V(G) \} S independiente} dona w (S):= \(\sigma \text{w(s)}. Pau exphan programación dinamica nos en focavenos en "Cadmas" (n verhe V1 V2 ... Vn-1 Vn pesos W, W2 Wn-1 Wn usando programación dinámica constriemo, un algoritmo muy epiciente (de tiempo O(m+n)) para resolve Wis en caderas (avropre qui tiene una contriduction exponencial de conjuntos independientes)

IDEA CLAVE: Preguntamos: Si truiéramos
una solviión óptima, ¿ qué propiedades tendría?
¿Cómo se relaciona con solviiones óptimas de problemas
más pequeños?

Suponga que 5 * es ma solvaión óphina, es dear $\overline{w}(S^*) = \overline{w}IS(G_n)$ y nos pregentamos si el il timo vértice V_n pertenece o no a S^*

Este piner ejemplo funciono Muy BiEN porque los subpoblemas venían ordenados,
porque los sub poblemas venian os actividos del
lo que simplificó prentenente la aplicación del
metodo G E G2 E · · · · E Gn
La programación dinámica se prede aplicar
a muchos muchos oto, problemas.
PROBLEMA 2: [Knapsack o "de la maleta"]
Tenemos una tabla de items que tienen
un aerto volumen y un valor
item volumen valor 1 h. P. 2 h. P.
1 hi Pi
$\frac{2}{1}$
n hy Ph
y tenemos una maleta con capacidad total C.
d'éval es la colección de itemas más valiona
que cape en la maleta?
l = l(s) $l = l(n)$
Knapsack $(n,C) = \max \{ \bar{p}(5) : S \subseteq [n] \}$ $\sum_{s \in S} h_s \leq C$
con = (S) = Ps
s & S los items caben en la maleta
Aplicamos la idea clave:
¿Si S*⊆ [n] es una selección óptima
contiene al item N-ésimo?
NO 51
Lema: [Ecración de Bellman par Knapsack]
$K(n,C)=\max\left(K(n-1,C),p_n+K(n-1,C-h_n)\right)$