Assignment -4

Assignment Date	22 October 2022
Student Name	Balamurugan p
Student Roll Number	732219CS007
Maximum Marks	2 Marks

Problem Statement: Customer Segmentation Analysis

Problem Statement

You own the mall and want to understand the customers who can quickly converge [Target Customers] so that the insight can be given to the marketing team and plan the strategy accordingly.

1. Download the dataset:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns

import warnings
warnings.filterwarnings('ignore')
```

2. Load the dataset.

196

197

197

Female

Male

45

32

126

126

```
In [2]: data= pd.read csv("F:Mall Customers.csv")
In [3]: data.head()
Out[3]:
             CustomerID Gender Age Annual Income (k$) Spending Score (1-100)
          0
                           Male
                                  19
                                                    15
                                                                         81
          1
                      2
                           Male
                                  21
                                                    15
          2
                                                    16
                                                                          6
                      3 Female
                                  20
          3
                      4 Female
                                  23
                                                    16
                                                                         77
                                                    17
                                                                         40
                      5 Female
                                  31
In [4]: data.tail()
Out[4]:
               CustomerID Gender Age Annual Income (k$) Spending Score (1-100)
          195
                      196 Female
                                    35
                                                     120
                                                                           79
```

28

74

In [4]: data.tail()

Out[4]:

	CustomerID	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
195	196	Female	35	120	79
196	197	Female	45	126	28
197	198	Male	32	126	74
198	199	Male	32	137	18
199	200	Male	30	137	83

In [5]: data=data.iloc[:,1:]

In [6]: data.head()

Out[6]:

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	Male	19	15	39
1	Male	21	15	81
2	Female	20	16	6
3	Female	23	16	77
4	Female	31	17	40

3. Perform Below Visualizations

Univariate Analysis

```
In [7]: sns.boxplot(data['Age'])
```

Out[7]: <AxesSubplot:xlabel='Age'>


```
In [8]: plt.hist(data['Age'])
```



```
In [9]: sns.barplot(data['Gender'], data['Age'])
```

Out[9]: <AxesSubplot:xlabel='Gender', ylabel='Age'>

In [10]: plt.plot(data['Age'])

Out[10]: [<matplotlib.lines.Line2D at 0x1f4220bceb0>]


```
In [11]: plt.pie(data['Age'].head(10), autopct="%.2f")
Out[11]: ([<matplotlib.patches.Wedge at 0x1f42212d970>,
           <matplotlib.patches.Wedge at 0x1f42213e130>,
           <matplotlib.patches.Wedge at 0x1f42213e850>,
           <matplotlib.patches.Wedge at 0x1f42213ef70>,
           <matplotlib.patches.Wedge at 0x1f42214b6d0>,
           <matplotlib.patches.Wedge at 0x1f42214bdf0>,
           <matplotlib.patches.Wedge at 0x1f422157550>,
           <matplotlib.patches.Wedge at 0x1f422157c70>,
           <matplotlib.patches.Wedge at 0x1f422165370>,
           <matplotlib.patches.Wedge at 0x1f422165a90>],
          [Text(1.07645875087365, 0.22635493736064408,
           Text(0.8799412198934483, 0.6600783662054303,
           Text(0.5079234694833851, 0.975711919138001,
           Text(0.011998880619069147, 1.099934555718607,
           Text(-0.6011141928104972, 0.9212283795030332,
           Text(-1.006842632792316, 0.4430213457519151,
           Text(-1.07645875087365, -0.22635493736064374,
           Text(-0.7342584950726593, -0.8190631614311766,
           Text(0.23808358650393244, -1.0739256053551496,
           Text(1.0416231452033553, -0.35358340370649477, '')]
          [Text(0.5871593186583546, 0.12346632946944221, '6.60'),
           Text(0.47996793812369903, 0.3600427452029619, '7.29'),
           Text(0.27704916517275546, 0.5322065013480005, '6.94'),
           Text(0.006544843974037716, 0.5999643031192401, '7.99'),
           Text(-0.3278804688057257, 0.5024882070016544, '10.76'),
           Text(-0.5491868906139904, 0.24164800677377185, '7.64'),
           Text(-0.5871593186583546, -0.12346632946944203, '12.15'),
           Text(-0.4005046336759959, -0.4467617244170054, '7.99'),
           Text(0.12986377445669042, -0.5857776029209907, '22.22'),
           Text(0.5681580792018301, -0.19286367474899713, '10.42')])
```


In [12]: sns.distplot(data['Age'].head(200))

Out[12]: <AxesSubplot:xlabel='Age', ylabel='Density'>

BI - Variate Analysis

```
In [13]: plt.scatter(data['Annual Income (k$)'].head(100),data['Age'].head(100))
```

Out[13]: <matplotlib.collections.PathCollection at 0x1f42225e4c0>

Multi - Variate Analysis

In [15]: sns.barplot('Spending Score (1-100)','Age',hue='Gender', data=data.head(10))

Out[15]: <AxesSubplot:xlabel='Spending Score (1-100)', ylabel='Age'>

In [16]: sns.heatmap(data.head().corr(), annot = True)

Out[16]: <AxesSubplot:>

4. Perform descriptive statistics on the dataset.

```
In [17]: data.mean()
Out[17]: Age
                                    38.85
         Annual Income (k$)
                                    60.56
         Spending Score (1-100)
                                   50.20
         dtype: float64
In [18]: data.median()
Out[18]: Age
                                    36.0
         Annual Income (k$)
                                    61.5
         Spending Score (1-100)
                                    50.0
         dtype: float64
In [19]: data.mode()
Out[19]:
            Gender Age Annual Income (k$) Spending Score (1-100)
                                     54
                                                        42.0
          0 Female 32.0
               NaN NaN
                                     78
                                                       NaN
In [20]: data.std()
Out[20]: Age
                                    13.969007
         Annual Income (k$)
                                    26.264721
         Spending Score (1-100)
                                    25.823522
         dtype: float64
In [21]: data.var()
Out[21]: Age
                                    195.133166
         Annual Income (k$)
                                    689.835578
         Spending Score (1-100)
                                   666.854271
         dtype: float64
```

```
In [22]:
          data.describe()
Out[22]:
                            Annual Income (k$) Spending Score (1-100)
           count 200.000000
                                   200.000000
                                                         200.000000
           mean
                  38.850000
                                    60.560000
                                                          50.200000
                   13.969007
                                    26.264721
                                                          25.823522
             std
                   18.000000
                                                           1.000000
             min
                                    15.000000
                   28.750000
            25%
                                    41.500000
                                                          34.750000
                   36.000000
                                    61.500000
                                                          50.000000
            50%
            75%
                   49.000000
                                    78.000000
                                                          73.000000
            max
                  70.000000
                                   137.000000
                                                          99.000000
In [23]:
          data.skew()
Out[23]: Age
                                       0.485569
          Annual Income (k$)
                                       0.321843
          Spending Score (1-100)
                                      -0.047220
          dtype: float64
In [24]:
          data.kurt()
Out[24]: Age
                                      -0.671573
          Annual Income (k$)
                                      -0.098487
          Spending Score (1-100)
                                      -0.826629
          dtype: float64
In [25]: quantile= data['Age'].quantile(q=[0.75, 0.25])
          quantile
Out[25]: 0.75
                   49.00
                   28.75
          0.25
          Name: Age, dtype: float64
```

5. Handle the Missing values.

6. Find the outliers and replace the outliers

```
In [28]: sns.boxplot(data['Age'])
Out[28]: <AxesSubplot:xlabel='Age'>
```



```
In [29]: sns.boxplot(data['Spending Score (1-100)'])
```



```
In [30]: sns.boxplot(data['Annual Income (k$)'])
```

Jut[30]: <AxesSubplot:xlabel='Annual Income (k\$)'>


```
In [31]: data['Annual Income (k$)'].mean()
```

Out[31]: 60.56

```
In [32]: qut= data.quantile(q=[0.25,0.75])
   qut
```

Out[32]:

Age Annual Income (k\$) Spending Score (1-1

0.25	28.75	41.5	34.75
0.75	49.00	78.0	73.00

```
Out[35]: Age 79.375
Annual Income (k$) 132.750
Spending Score (1-100) 130.375
dtype: float64
```

```
In [36]: data['Annual Income (k$)']=np.where(data['Annual Income (k$)']>131,60.56, data['Annual Income (k$)'])
In [37]: sns.boxplot(data['Annual Income (k$)'])
```

Out[37]: <AxesSubplot:xlabel='Annual Income (k\$)'>

7. Check for Categorical columns and perform encoding.

```
In [38]: data.info()
         <class 'pandas.core.frame.DataFrame'>
         RangeIndex: 200 entries, 0 to 199
         Data columns (total 4 columns):
                                       Non-Null Count Dtype
          #
              Column
              Gender
                                       200 non-null
                                                        object
          1
              Age
                                       200 non-null
                                                        int64
              Annual Income (k$)
                                       200 non-null
                                                        float64
          3 Spending Score (1-100) 200 non-null
                                                        int64
         dtypes: float64(1), int64(2), object(1)
         memory usage: 6.4+ KB
In [39]: data.Gender.unique()
Out[39]: array(['Male', 'Female'], dtype=object)
In [40]: data['Gender'].replace({'Female':0, 'Male': 1 }, inplace=True)
In [41]: data.head()
Out[41]:
             Gender Age Annual Income (k$) Spending Score (1-100)
                     19
                                     15.0
                                                         39
                                                         81
                                     16.0
                                                          6
                 0
                     20
                                     16.0
                                                         77
          3
                 0
                     23
                 0
                     31
                                     17.0
                                                         40
```

8. Scale the data

```
In [42]: from sklearn.preprocessing import MinMaxScaler
In [43]: sc=MinMaxScaler()
In [44]: data1=sc.fit_transform(data)
         data1
                            , 0.48076923, 0.5045045 , 0.34693878],
                 11.
                [1.
                           , 0.42307692, 0.5045045 , 0.95918367],
                ſ1.
                           , 0.78846154, 0.5045045 , 0.10204082],
                           , 0.38461538, 0.5045045 , 0.75510204],
                [1.
                           , 0.55769231, 0.5045045 , 0.08163265],
                [1.
                [1.
                           , 0.40384615, 0.5045045 , 0.75510204],
                [0.
                           , 0.13461538, 0.51351351, 0.33673469],
                                      , 0.51351351, 0.71428571],
                ſΘ.
                           , 0.25
                           , 0.03846154, 0.52252252, 0.04081633],
                [1.
                [0.
                           , 0.21153846, 0.52252252, 0.8877551 ],
                           , 0.5
                                      , 0.52252252, 0.06122449],
                ſΘ.
                           , 0.26923077, 0.52252252, 0.73469388],
                [1.
                           , 0.01923077, 0.53153153, 0.09183673],
                [1.
                           , 0.32692308, 0.53153153, 0.7244898 ],
                [0.
                           , 0.75
                                       , 0.54054054, 0.04081633],
                [0.
                [1.
                           , 0.26923077, 0.54054054, 0.93877551],
                           , 0.19230769, 0.54954955, 0.39795918],
                [0.
                [0.
                           , 0.26923077, 0.54954955, 0.87755102],
                           , 0.13461538, 0.55855856, 0.1122449 ],
                [1.
                [1.
                           , 0.19230769, 0.55855856, 0.97959184],
```

9. Perform any of the clustering algorithms

```
In [45]:
         from sklearn.cluster import KMeans
In [46]:
         TWSS=[]
         k=list(range(2,9))
         for i in k:
              kmeans=KMeans(n_clusters=i,init='k-means++')
              kmeans.fit(data1)
              TWSS.append(kmeans.inertia_)
In [47]: TWSS
Out[47]: [38.256100195670456,
           30.535982817704678,
           23.373803580051828,
           20.099663171218396,
           17.095717979699913,
           14.90873757676125,
           12.635266048983096]
In [49]: #scree plot
         plt.plot(k,TWSS,'ro--')
         plt.xlabel('no of cluster')
         plt.ylabel('TWSS')
Out[49]: Text(0, 0.5, 'TWSS')
            35
            30
            25
            20
            15
                        3
                                      5
                                  no of cluster
```

```
In [50]: #selecting 4 clusters
         model=KMeans(n_clusters=4)
         model.fit(data1)
Out[50]:
                 KMeans
          KMeans(n_clusters=4)
In [51]: model.labels_
Out[51]: array([3, 3, 2, 0, 0, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 3, 2, 3, 1, 0, 1, 3,
                2, 3, 2, 3, 2, 3, 2, 0, 1, 0, 1, 3, 2, 0, 2, 0, 2, 0, 2, 3, 1, 0,
                2, 0, 2, 0, 0, 0, 2, 3, 0, 1, 2, 1, 2, 1, 0, 1, 1, 3, 2, 2, 1, 3,
                2, 2, 3, 0, 1, 2, 2, 2, 1, 3, 2, 1, 0, 2, 1, 3, 1, 2, 0, 1, 2, 0,
                0, 2, 2, 3, 1, 2, 0, 3, 2, 0, 1, 3, 0, 2, 1, 3, 1, 0, 2, 1, 1, 1,
                1, 0, 2, 3, 0, 0, 2, 2, 2, 2, 3, 2, 0, 3, 0, 0, 1, 3, 1, 3, 1, 3,
                0, 0, 1, 0, 2, 3, 1, 0, 2, 3, 0, 0, 1, 3, 1, 0, 2, 3, 1, 3, 2, 0,
                2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 1, 0, 2, 3, 1, 3, 1, 3, 2, 0,
                1, 3, 1, 3, 2, 0, 1, 0, 2, 3, 2, 3, 2, 0, 2, 0, 1, 0, 2, 0, 2, 3,
                1, 3])
In [52]: mb=pd.Series(model.labels_)
```

10. Add the cluster data with the primary dataset

```
In [53]: data.head()
Out[53]:
              Gender Age Annual Income (k$) Spending Score (1-100)
            0
                    1
                        19
                                         15.0
                                                                 39
                                         15.0
                                                                 81
                        21
                    1
                                          16.0
                    0
                        20
                                                                  6
            3
                                          16.0
                                                                 77
                    0
                        23
                                         17.0
                                                                 40
                    0
                        31
In [54]: #creating a new column with labels
           data['clust']=mb
In [55]: data.head()
Out[55]:
              Gender Age Annual Income (k$) Spending Score (1-100) clust
                                                                        3
                        19
                                         15.0
                    1
            1
                    1
                        21
                                         15.0
                                                                 81
                                                                        3
                                                                        2
                    0
                                          16.0
                        20
            3
                    0
                        23
                                          16.0
                                                                 77
                                                                        0
                    0
                                          17.0
                                                                 40
                                                                        0
                        31
```

11. Split the data into dependent and independent variables.

Out[149]:

	Gender	Age	Annual Income (k\$)	Spending Score (1-100)
0	1	19	15.00	39
1	1	21	15.00	81
2	0	20	16.00	6
3	0	23	16.00	77
4	0	31	17.00	40
195	0	35	120.00	79
196	0	45	126.00	28
197	1	32	126.00	74
198	1	32	60.56	18
199	1	30	60.56	83

200 rows × 4 columns

```
In [150]: y
Out[150]: 0
                  3
          1
                  3
          2
                  2
          3
                  0
          4
                  0
          195
                 0
          196
                  2
          197
                  3
          198
                  1
          199
                  3
          Name: clust, Length: 200, dtype: int32
In [151]: from sklearn.preprocessing import MinMaxScaler
          sc=MinMaxScaler()
In [152]: x=sc.fit_transform(data1)
          Х
Out[152]: array([[1.
                             , 0.01923077, 0.
                                                     , 0.3877551 ],
                             , 0.05769231, 0.
                                                     , 0.81632653],
                  [1.
                             , 0.03846154, 0.00900901, 0.05102041],
                  [0.
                             , 0.09615385, 0.00900901, 0.7755102 ],
                  [0.
                                      , 0.01801802, 0.39795918],
                  [0.
                             , 0.25
                             , 0.07692308, 0.01801802, 0.76530612],
                  [0.
                             , 0.32692308, 0.02702703, 0.05102041],
                  [0.
                  [0.
                             , 0.09615385, 0.02702703, 0.94897959],
                             , 0.88461538, 0.03603604, 0.02040816],
                  [1.
                  [0.
                             , 0.23076923, 0.03603604, 0.7244898 ],
                             , 0.94230769, 0.03603604, 0.13265306],
                  [1.
                             , 0.32692308, 0.03603604, 1.
                  [0.
                             , 0.76923077, 0.04504505, 0.14285714],
                  [0.
                             , 0.11538462, 0.04504505, 0.7755102 ],
                  [0.
                             , 0.36538462, 0.04504505, 0.12244898],
                  [1.
                             , 0.07692308, 0.04504505, 0.79591837],
                  [1.
                  [0.
                             , 0.32692308, 0.05405405, 0.34693878],
                             , 0.03846154, 0.05405405, 0.66326531],
                  [1.
                             , 0.65384615, 0.07207207, 0.28571429],
                  [1.
```

12. Split the data into training and testing

13. Build the Model

```
In [157]: from sklearn.tree import DecisionTreeRegressor
    regr_1 = DecisionTreeRegressor(max_depth=5)
```

14. Train the Model

15. Test the Model

16. Measure the performance using Evaluation Metrics.

```
In [160]: from sklearn.metrics import r2_score
    acc=r2_score(y_test,y_predict)
    acc
Out[160]: 0.9206349206349207
```

RandomForest