기말과제_201821479_황혜린

201821479_황혜린 2019 5 12

목차

- 0. 가설
- 0-1. 가설 수립 배경
- 1. 데이터
- 1-1. 데이터 구하기 트위터 크롤링
- 1-2. 데이터 정제
- 1-3. 데이터 시각화
- 2. 통계분석
- 2-1. 기술통계
- 2-2. 추론통계 분산분석
- 2-3. siPlot패키지를 이용한 분산분석 그래프
- 2-4. 사후검증
- 3. 제언

0. 가설

연습생들 순위에 따라 프로듀스X101 공식 트위터 계정에서의 연습생 별 언급횟수는 다를 것이다

0-1. 가설 수립 배경

요즘 프로듀스101의 새로운 시즌이 시작하면서 많은 화제를 불러모으고 있다. 본인도 바쁜 와중에 틈틈이 영상을 찾아보며 이번엔 누가 데뷔를 하게 될지 기대하고 있다.

프로듀스X101 공식 트위터를 보던 중 문득 연습생들 순위에 따라 연습생을 언급하는 횟수가 얼마나 차이나고, 만약 차이가 난다면 그 얼마나 영향을 미치는지 궁금해졌다. 공식계정은 특정 연습생을 홍보하는 용도가 아닌 방송 내용과 연습생들의 프로필, 소식, 연습생들의 간단한 동영상이 올라오기 때문이다. 따라서 8화 순위식까지의 프로듀스X101 공식계정을 크롤링해 가설을 검증해 보았다.

1. 데이터

1-1. 데이터 구하기 - 트위터 크롤링

```
#install.packages("twitteR")
library(twitteR)
library(ggplot2)
library(RColorBrewer)
library(tm)
```

```
## Loading required package: NLP
```

```
## Attaching package: 'NLP'
```

```
## The following object is masked from 'package:ggplot2':
##
## annotate
```

```
library(syuzhet)
```

```
CONSUMER_SECRET <- "QrvUamEiqsPTVo9bXhSIcgUNWvDQyJdq2h9wj1zB4StPEkaKB1"

CONSUMER_KEY <- "d6ZZZQ7OKjDN9mq9x7Crkvh8W"

ACCESS_SECRET <- "xcVnyG0ejY3bykPvUnJfexoccEd3rpEaeSmRao8co3bvr"

ACCESS_TOKEN <- "1122681466649862152-66720Say10XNvfNbVyJU1asomSzySF"

setup_twitter_oauth(consumer_key=CONSUMER_KEY, consumer_secret = CONSUMER_SECRET, access_token = ACCESS_TOKEN, access_secret = ACCESS_SECRET)
```

[1] "Using direct authentication"

```
#프로듀스101 공식 트위터 계정 트윗 모두 크롤링
twitterUser <- getUser("mnet_produce101")
tweet.prdc <- userTimeline(twitterUser, n=2000)
tweet.prdc[[1]]$getClass()
```

```
## Reference Class "status":
## Class fields:
##
## Name:
                   text
                            favorited favoriteCount
                                                         replyToSN
## Class:
              character
                              logical
                                             numeric
                                                         character
##
## Name:
                created
                            truncated
                                         replyToSID
                                                                id
## Class:
                P0S1Xct
                              logical
                                          character
                                                         character
##
## Name:
             replyToUID statusSource
                                          screenName retweetCount
## Class:
              character
                            character
                                          character
                                                           numeric
##
## Name:
                                          lonaitude
              isRetweet
                            retweeted
                                                          latitude
## Class:
              logical
                              logical
                                          character
                                                         character
##
## Name:
                   urls
## Class:
             data.frame
##
## Class Methods:
        "setUrls", "getRetweets", "getRefClass", "getUrls", "setTruncated",
##
##
        "setText", "getReplyToSID", "getText", "export", "setCreated",
##
        "setFavoriteCount", "getCreated", "initialize", "callSuper",
##
        "getRetweeters", "initFields", "getClass", "setReplyToUID", "import",
##
        "setLatitude", "setIsRetweet", "getFavoriteCount", "getRetweetCount",
        "getlsRetweet", "setld", "setScreenName", "getLatitude",
##
##
        "getScreenName", "toDataFrame#twitterObj", "setRetweetCount",
        "setReplyToSID", "getId", "getReplyToUID", "setFavorited",
##
        "getRetweeted", "getFavorited", "toDataFrame", "setStatusSource",
##
##
        "setReplyToSN", "copy", "usingMethods", "setRetweeted", "field",
        ".objectParent", "getTruncated", "untrace", "trace", "setLongitude",
##
        "getLongitude", "getStatusSource", ".objectPackage", "getReplyToSN",
##
##
        "show"
##
## Reference Superclasses:
        "twitterObj", "envRefClass"
##
```

```
tweet.prdc <- twListToDF(tweet.prdc)
#프로듀스X101 트윗만 분류(다른 시즌을 제외 + 방영 첫날부터 순위발표식이 있던 날짜까지)
prdcX101 <- tweet.prdc[16:610,]
```

1-2. 데이터 정제

```
x <- c("김우석", "송형준", "김민규", "이진우", "김요한", "이은상", "남도현", "구정모", "송유빈", "함원
   "이진혁", "손동표", "한승우", "최병찬", "차준호", "금동현", "이한결", "김국헌", "조승연", "이세
진", "황윤성", "강현수", "강민희", "토니", "김시훈", "박선호", "김현빈", "최수환", "김동윤", "백진",
"주창욱", "권태은", "유리", "강석화", "윤정환", "이원준", "김동빈", "이미담", "문현빈", "이협", "최준
성", "이우진", "박윤솔", "김성현", "위자월", "한기찬", "정재훈", "원혁", "김성연", "우제원", "픽", "권
희준", "이유진", "김민서", "이태승", "홍성준", "남동현", "히다카 마히로", "문준호", "왕군호")
#데이터 프레임 생성
prdcX101.anov <- data.frame(matrix(nrow = 60, ncol = 0))</pre>
rownames(prdcX101.anov) <- x
#sapply에 적용시키기 위해 연습생들 이름으로 이뤄진 열 생성
prdcX101.anov$boys <- x</pre>
#연습생 별 언급횟수 구하기
prdcX101.anov$mention <- sapply(prdcX101.anov$boys, function(x){</pre>
 b \leftarrow grep(x, prdcX101\$text)
 length(b)
})
#픽을 포함하는 단어의 횟수를 추출할 때, 연습생 "픽"만 나오는 것이 아닌 "원픽"과 "사심픽"도 나오므로 두
단어의 횟수를 제거하여 연습생의 언급횟수만 남긴다
prod1 <- function(x){</pre>
 b \leftarrow grep(x, prdcX101\$text)
 lenath(b)
p <- prod1("픽") - prod1("원픽") - prod1("사심픽")
prdcX101.anov[51,2] <- p</pre>
#실제 순위
36,30,34,40,35,38,47,42,37,32,26,46,41,48,45,43,57,39,33,44,54,50,56,55,52,53,51,60,49,59,58)
```

1-3. 데이터 시각화

```
#연습생들 별 언급 횟수
library(ggplot2)
theme_set(theme_bw())
ggplot(data = prdcX101.anov,aes(x=boys, y=mention)) + geom_point(size=2)+ geom_segment(aes(x=boys, xen
d=boys, y=0, yend=mention)) + theme(text = element_text(size=7)) + coord_flip()
```


#연습생들 별 언급횟수(내림차순) ggplot(data = prdcX101.anov, aes(x=reorder(boys,-mention), y=mention)) + geom_bar(stat = "identity", f ill="tomato3") + theme(text = element_text(size=7)) + coord_flip()

#언급 횟수별 연습생 수 ggplot(data = prdcX101.anov, aes(factor(mention))) + geom_bar(aes(fill=mention, colour="black"))

2. 통계분석

```
## Factor w/ 6 levels "15-105", "115-205",...: 1 1 1 1 1 1 1 2 2 ...
```

2-1. 기술통계

```
#빈도수
table(prdcX101.anov$mention)
```

```
## 2 3 4 5 6 8 9
## 8 12 15 16 7 1 1
```

```
#5 number summary
summary(prdcX101.anov)
```

```
##
                       mention
                                                    rank.grade
       boys
                                        rank
## Lenath:60
                     Min.
                           :2.000
                                         : 1.00
                                                  Min. :1.0
                                   Min.
                                   1st Qu.:15.75
  Class :character
                     1st Qu.:3.000
                                                  1st Qu.:2.0
  Mode :character
                     Median :4.000
                                   Median :30.50
                                                  Median :3.5
##
                     Mean
                          :4.183
                                   Mean
                                         :30.50
                                                  Mean :3.5
##
                     3rd Qu.:5.000
                                   3rd Qu.:45.25
                                                  3rd Qu.:5.0
##
                     Max.
                           :9.000
                                   Max.
                                         :60.00
                                                  Max. :6.0
## rank.grade.factor
## 1등-10등 :10
## 11등-20등:10
## 21등-30등:10
## 31등-40등:10
## 41등-50등:10
## 51등-60등:10
```

```
##
    빈도 누적빈도
                      비율 누적비율
## 2
      8
              8 0.13333333 0.1333333
      12
              20 0.20000000 0.3333333
## 3
## 4
      15
              35 0.25000000 0.5833333
## 5
      16
             51 0.26666667 0.8500000
## 6
              58 0.11666667 0.9666667
## 8
              59 0.01666667 0.9833333
## 9
              60 0.01666667 1.0000000
```

2-2. 추론통계 - 분산분석

```
#분산분석 실행
anov <- aov(mention ~ rank.grade.factor, data = prdcX101.anov)
anova(anov)
```

- 집단 간 제곱합은 23.883이고, 자유도는 5이므로 집단 간 평균 제곱합은 4.7767
- 집단 내 제곱합은 103.100이고, 자유도는 54이므로 집단 내 평균 제곱합은 1.9093
- 유의도는 0.04142로 0.05보다 작으므로 영가설을 기각한다.

따라서 "연습생들 순위에 따라 프로듀스X101 공식 트위터 계정에서의 연습생 별 언급 횟수는 다를 것이다"는 연구가설을 채택한다.

2-3. sjPlot패키지를 이용한 분산분석 그래프

library(siPlot)

Install package "strengejacke" from GitHub (`devtools::install_github("strengejacke/strengejacke")
`) to load all sj-packages at once!

```
set_theme(axis.textsize =1, geom.label.size =3)
sjp.aov1(prdcX101.anov$mention, prdcX101.anov$rank.grade.factor, meansums = T,
show.summary = T, show.p =F, geom.size
= 3)
```

rank.grade.factor by mention

- 각 집단에 표시된 선의 길이는 신뢰구간을 의미한다.
- 집단의 순위의 평균이 표시되어 출력된다.

2-4. 사후검증

```
#사후검증
library(agricolae)
scheffe.test(anov, "rank.grade.factor", alpha = 0.05, console = T)
```

```
##
## Study: anov ~ "rank.grade.factor"
## Scheffe Test for mention
##
## Mean Square Error : 1.909259
##
## rank.grade.factor, means
##
##
           mention
                       std r Min Max
## 11등-20등
              3.8 1.135292 10 2
## 1등-10등
              5.5 1.779513 10
## 21등-30등
              3.9 1.449138 10 2 6
## 31등-40등
            4.4 1.264911 10 2
## 41등-50등 3.8 1.316561 10 2 6
## 51등-60등
               3.7 1.251666 10 2 5
##
## Alpha: 0.05; DF Error: 54
## Critical Value of F: 2.38607
## Minimum Significant Difference: 2.134391
## Means with the same letter are not significantly different.
##
##
           mention groups
## 1등-10등
              5.5
               4.4
## 31등-40등
## 21등-30등
               3.9
## 11등-20등
               3.8
## 41등-50등
              3.8
## 51등-60등
              3.7
```

• 사후검증 결과, 집단은 a로만 나누어졌다. 즉, 독립변수의 6집단의 평균이 유의한 차이를 보이지 않는다.

3. 제언

연구가설을 채택하는 결과가 나왔다. 예상은 했지만 연습생들의 순위에 따라 언급 횟수가 다르다는 사실이 어쩔 수 없나 싶으면서도 씁쓸하다.

보통 예측만 하고 지나가는 경우가 대부분인데, 직접 데이터를 구하여 프로그래밍 언어로 지표를 시각화하고 통계기법을 활용한 분석으로 내 의견을 뒷받침해줄 수 있다는 것이 데이터 분석의 장점인 것 같다.앞으로도 해결할 문제가 있다면 데이터 분석을 통해 문제를 해결해보고 싶다.