4 ПРОГРАМУВАННЯ ОДНОВИМІРНИХ МАСИВІВ

Мета: здобути навички програмування обчислювальних процесів з використанням одновимірних масивів.

4.1 Короткі теоретичні відомості

Масив це структура даних, яка представлена у вигляді групи осередків одного типу, об'єднаних під одним єдиним ім'ям. Масиви використовуються для обробки великої кількості однотипних даних. Ім'я масиву є покажчиком. Окремий осередок даних масиву називається елементом масиву. Елементами масиву можуть бути дані будь-якого типу. Масиви можуть мати як одне, так і більше одного вимірювань. Залежно від кількості вимірювань масиви діляться на одномірні масиви, двовимірні масиви, тривимірні масиви і так далі до пмірного масиву. Найчастіше в програмуванні використовуються одномірні і двовимірні масиви.

Одновимірний масив – масив, з одним параметром, характеризує кількість елементів одновимірного масиву. Фактично одновимірний масив – це масив, у якого може бути тільки один рядок, і п стовпців. Стовпці в одновимірному масиві – це елементи масиву.

4.2 Завдання

Знайти найбільший елемент вектора $\vec{a} = (a_1, a_2, a_3, ..., a_n)$, а також добуток всіх його координат.

4.3 Хід роботи

4.3.1 Постановка задачі

Дано:
$$n$$
, $\vec{x} = (x_1, x_2, x_3, ..., x_n)$, $\vec{x} = (x_1, x_2, x_3, ..., x_n)$, $a_i \in \mathbb{R}$.

Визначити: scalar - скалярний добуток двох векторів.

4.3.2 Математична модель інформаційного процесу

$$P = \prod_{i=1}^{n} a_i = a_1 \cdot a_2 \cdot \dots \cdot a_n \tag{4.1}$$

4.3.3 Метод реалізації інформаційного процесу

Для знаходження величин скористаємось наступною формулою:

$$axb=0$$
 — скалярний добуток двух векторів дорівнює 0. (4.2)

4.3.4 Алгоритм реалізації інформаційного процесу

Рисунок 8.1 — Алгоритм розв'язку задачі

4.3.5 Програмування

Побудова таблиці ідентифікаторів.

Таблиця 8.1 — Таблиця ідентифікаторів

№ 3/П	Змінна або константа	Ідентифікатор	№ 3/П	Змінна або константа	Ідентифікатор
1	i	i	4	y	У
2	n	n	5	scalar	scalar
3	x	X			

Введення тексту програми:

```
#include <cstdlib>
#include <iostream>
#include <iomanip>
#include <math.h>
using namespace std;
int main() {
    int n, scalar, i;
    scalar = 0;
    cout << "Enter array lenght: n = ";</pre>
    cin >> n;
    int* x = new int[n];
    int* y = new int[n];
    for (i = 0; i < n; i++) {
        cout << "Input x(" << i << ") = ";</pre>
        cin >> x[i];
    }
    for (i = 0; i < n; i++) {
        cout << "Input y(" << i << ") = ";</pre>
        cin >> y[i];
    }
    for (i = 0; i < n; i++) scalar += x[i]*y[i];
    scalar? cout << "Arrays aren't perpendicular." << endl: cout << "Arrays are</pre>
perpendicular." << endl;</pre>
    system("PAUSE");
    return 0;
```

4.3.6 Тестування та виявлення помилок

Для виявлення алгоритмічних помилок та вирішення проблеми достовірності отриманих результатів можна виконати обчислення у електронній таблиці і порвняти отримані розв'язки.

Для цього у електронній книзі "Обчислення функцій" Лист4

перейменовуємо на ЛР8 та виконуємо обчислення за формою:

Α	В	C	D	E		
	in .	Розв'я	зок	задачі		
Вхідні дані				Виведення		
X i	y i	scalar		Are arrays perpendicular?		
•	1 2	=A5*B5+A6*B6		=IF(C5 = 0; "true"; "false")		
2	2 -1					

Рисунок 8.2 — Розв'язок задачі у ЕТ

4.3.7 Обчислення, обробка і аналіз результатів

У ході виконання даної роботи отримано наступні результати:

```
Enter array lenght: n = 2
Input x(0) = 1
Input x(1) = 2
Input y(0) = 2
Input y(1) = -1
Arrays are perpendicular.
sh: PAUSE: command not found
Program ended with exit code: 0
```

Рисунок 8.3 — Результат обчислень

		Роз	в'язок задачі	
Вхідні дані			Виведення	
X i	y i	scalar	Are arrays perpendicular?	
1	2	0	true	
2	-1			

Рисунок 8.4 — Результат обчислень у електронній таблиці

Порівнюючи результати, отримані трьома різними способами з високою вірогідністю можна стверджувати, що обчислення виконано правильно, так як отримані значення співпали.

4.4 Програми та обладнання.

Xcode, OpenOffice Calc

4.5 Висновки.

Під час виконання данної лабороторної роботи були здобуті навички програмування обчислювальних процесів з використанням одновимірних масивів.