	Model	CI	Bha	Can	${\rm Cheb}$	Czek	KD	Kul	Man	Ney	NI	SChi	${\rm SCho}$	VicCS
A	LOF	0.662	0.781	0.674	0.728	0.692	0.692	0.692	0.692	0.689	0.746	0.674	0.675	0.677
	IF	0.594	0.746	0.619	0.587	0.631	0.549	0.631	0.631	0.631	0.590	0.619	0.615	0.608
Energy	COPOD	0.892	0.957	0.902	0.919	0.901	0.864	0.901	0.901	0.914	0.867	0.902	0.925	0.947
ne	AE	0.687	0.810	0.716	0.731	0.716	0.695	0.697	0.705	0.727	0.744	0.714	0.698	0.699
臼	OCSVM	0.577	0.768	0.577	0.648	0.576	0.584	0.576	0.576	0.581	0.659	0.577	0.585	0.638
\overline{D}	LOF	0.709	0.770	0.707	0.717	0.706	0.688	0.739	0.739	0.748	0.770	0.705	0.706	0.685
_	IF	0.642	0.684	0.615	0.648	0.668	0.584	0.681	0.681	0.677	0.684	0.668	0.671	0.601
Energy	COPOD	0.854	0.870	0.853	0.896	0.866	0.866	0.866	0.866	0.876	0.870	0.866	0.871	0.861
ne	AE	0.756	0.812	0.757	0.758	0.758	0.735	0.778	0.778	0.791	0.819	0.768	0.739	0.741
푀	OCSVM	0.573	0.672	0.575	0.714	0.572	0.590	0.571	0.571	0.632	0.672	0.572	0.572	0.623
~	LOF	0.704	0.625	0.719	0.707	0.742	0.676	0.742	0.742	0.765	0.685	0.719	0.718	0.733
	IF	0.641	0.710	0.648	0.652	0.659	0.600	0.659	0.659	0.660	0.621	0.648	0.645	0.650
Energy	COPOD	0.908	0.957	0.914	0.970	0.915	0.889	0.915	0.915	0.932	0.903	0.914	0.919	0.950
ne	AE	0.726	0.705	0.761	0.751	0.778	0.707	0.789	0.770	0.792	0.719	0.761	0.747	0.775
臼	OCSVM	0.579	0.659	0.579	0.700	0.579	0.589	0.579	0.579	0.597	0.691	0.579	0.580	0.667
⋖	LOF	0.598	0.693	0.732	0.415	0.633	0.664	0.625	0.623	0.551	0.691	0.634	0.630	0.586
Ō	IF	0.835	0.839	0.615	0.730	0.798	0.825	0.792	0.792	0.898	0.786	0.789	0.815	0.890
3	COPOD	0.740	0.602	0.676	0.623	0.679	0.693	0.692	0.688	0.729	0.719	0.691	0.683	0.724
SLKDD	AE	0.882	0.857	0.829	0.787	0.859	0.867	0.847	0.845	0.887	0.789	0.823	0.843	0.898
Z	OCSVM	0.737	0.883	0.777	0.751	0.769	0.782	0.756	0.759	0.814	0.720	0.762	0.778	0.816
υ	LOF	0.593	0.644	0.580	0.644	0.606	0.629	0.606	0.606	0.683	0.623	0.607	0.607	0.594
Ō	IF	0.662	0.634	0.529	0.740	0.646	0.666	0.646	0.646	0.556	0.622	0.638	0.638	0.632
\mathbf{SLKDD}	COPOD	0.542	0.442	0.488	0.500	0.490	0.531	0.490	0.490	0.510	0.499	0.511	0.511	0.487
$\mathbf{S}\Gamma$	AE	0.661	0.591	0.479	0.737	0.595	0.641	0.618	0.610	0.527	0.554	0.576	0.595	0.630
Ż	OCSVM	0.604	0.625	0.505	0.778	0.609	0.627	0.609	0.609	0.555	0.610	0.594	0.594	0.624
2	LOF	0.613	0.600	0.702	0.568	0.640	0.626	0.624	0.643	0.625	0.631	0.627	0.627	0.559
Ō	IF	0.684	0.671	0.696	0.711	0.679	0.671	0.671	0.678	0.659	0.686	0.655	0.655	0.678
$_{ m SLKD}$	COPOD	0.518	0.439	0.502	0.450	0.484	0.482	0.488	0.496	0.528	0.493	0.490	0.490	0.469
\mathbf{SL}	AE	0.737	0.733	0.710	0.831	0.736	0.712	0.721	0.712	0.697	0.663	0.699	0.691	0.727
Ż	OCSVM	0.666	0.749	0.702	0.740	0.688	0.674	0.670	0.659	0.701	0.666	0.651	0.651	0.726

Table 1: Experimental results (naive strategy): Anomaly detection performance (ROC-AUC) in two learning settings: Concept-Incremental (CI) and Concept-Agnostic with different distance measures (columns), datasets (Energy, NSLKDD), scenarios (A, C, R), and models (LOF, IF, COPOD, AE, OCSVM).

	Model	CI	Bha	Can	Cheb	Czek	KD	Kul	Man	Ney	NI	SChi	SCho	VicCS
∀ !	LOF	0.593	0.694	0.639	0.590	0.629	0.635	0.629	0.629	0.673	0.619	0.629	0.638	0.634
:>	IF	0.526	0.580	0.491	0.493	0.497	0.526	0.497	0.497	0.562	0.492	0.497	0.493	0.645
$\mathbf{S}\mathbf{W}$	COPOD	0.588	0.543	0.567	0.528	0.579	0.594	0.579	0.579	0.560	0.569	0.579	0.574	0.553
Ž	AE	0.550	0.650	0.576	0.521	0.563	0.542	0.557	0.541	0.553	0.630	0.574	0.582	0.668
\supset	OCSVM	0.552	0.569	0.521	0.496	0.549	0.535	0.549	0.549	0.550	0.521	0.549	0.549	0.624
7)	LOF	0.629	0.732	0.725	0.592	0.700	0.717	0.700	0.700	0.691	0.695	0.700	0.698	0.694
>	IF	0.489	0.526	0.437	0.477	0.459	0.481	0.459	0.459	0.582	0.470	0.459	0.450	0.659
$\mathbf{S}\mathbf{W}$	COPOD	0.272	0.212	0.261	0.335	0.259	0.295	0.259	0.259	0.291	0.245	0.259	0.249	0.246
Ž	AE	0.555	0.681	0.537	0.482	0.598	0.584	0.550	0.606	0.658	0.611	0.589	0.566	0.627
\supset	OCSVM	0.548	0.590	0.511	0.515	0.541	0.526	0.541	0.541	0.570	0.517	0.541	0.541	0.662
~	LOF	0.694	0.767	0.686	0.829	0.670	0.736	0.670	0.670	0.459	0.695	0.670	0.662	0.649
	IF	0.619	0.591	0.591	0.716	0.599	0.610	0.599	0.599	0.605	0.633	0.599	0.594	0.742
$\mathbf{S}\mathbf{W}$	COPOD	0.477	0.408	0.468	0.581	0.441	0.472	0.441	0.441	0.579	0.454	0.441	0.451	0.593
Ž	AE	0.684	0.778	0.712	0.797	0.643	0.696	0.662	0.643	0.829	0.758	0.638	0.717	0.850
Þ	OCSVM	0.592	0.637	0.599	0.671	0.581	0.601	0.581	0.581	0.621	0.589	0.581	0.581	0.620
_	LOF	0.650	0.855	0.739	0.694	0.739	0.650	0.739	0.739	0.811	0.743	0.739	0.739	0.850
A	IF	0.730	0.744	0.727	0.785	0.727	0.730	0.727	0.727	0.723	0.715	0.727	0.727	0.711
ind	COPOD	0.903	0.936	0.896	0.933	0.896	0.903	0.896	0.896	0.887	0.917	0.896	0.896	0.919
۷. <u>:</u>	AE	0.717	0.805	0.775	0.764	0.768	0.730	0.767	0.713	0.871	0.831	0.736	0.753	0.865
-	OCSVM	0.626	0.747	0.629	0.667	0.629	0.626	0.629	0.629	0.687	0.664	0.629	0.629	0.680
	LOF	0.649	0.885	0.763	0.703	0.763	0.649	0.763	0.763	0.859	0.737	0.763	0.763	0.828
\circ	IF	0.817	0.764	0.752	0.807	0.752	0.817	0.752	0.752	0.767	0.779	0.752	0.752	0.812
$\mathbf{p}\mathbf{q}$	COPOD	0.893	0.910	0.890	0.900	0.890	0.893	0.890	0.890	0.885	0.905	0.890	0.890	0.909
Wind	AE	0.765	0.857	0.778	0.778	0.763	0.710	0.775	0.779	0.853	0.881	0.788	0.769	0.845
	OCSVM	0.621	0.815	0.626	0.727	0.626	0.621	0.626	0.626	0.683	0.632	0.626	0.626	0.704
	LOF	0.615	0.701	0.720	0.785	0.720	0.615	0.720	0.720	0.761	0.720	0.720	0.720	0.831
\mathbf{Z}	IF	0.742	0.729	0.688	0.732	0.688	0.742	0.688	0.688	0.675	0.688	0.688	0.688	0.739
ind	COPOD	0.887	0.899	0.877	0.917	0.877	0.887	0.877	0.877	0.855	0.877	0.877	0.877	0.923
٧	AE	0.694	0.832	0.736	0.795	0.691	0.691	0.719	0.711	0.745	0.695	0.695	0.727	0.856
-	OCSVM	0.622	0.644	0.629	0.667	0.629	0.622	0.629	0.629	0.685	0.629	0.629	0.629	0.699
4	LOF	0.573	0.544	0.573	0.614	0.575	0.674	0.575	0.575	0.636	0.571	0.575	0.554	0.645
vo.	IF	0.578	0.581	0.548	0.591	0.524	0.441	0.524	0.524	0.483	0.545	0.524	0.518	0.470
CID	COPOD	0.689	0.745	0.697	0.674	0.663	0.663	0.663	0.663	0.739	0.690	0.663	0.653	0.741
	AE	0.552	0.491	0.661	0.595	0.652	0.543	0.652	0.652	0.686	0.546	0.659	0.635	0.512
\mathbf{C}	OCSVM	0.532	0.500	0.539	0.384	0.527	0.483	0.527	0.527	0.556	0.523	0.527	0.524	0.559
\overline{c}	LOF	0.577	0.568	0.602	0.613	0.592	0.613	0.592	0.592	0.594	0.628	0.602	0.598	0.564
S	IF	0.599	0.532	0.565	0.581	0.541	0.515	0.541	0.541	0.591	0.574	0.544	0.551	0.526
	COPOD	0.450	0.424	0.475	0.466	0.453	0.473	0.453	0.453	0.409	0.447	0.451	0.454	0.446
CI	AE	0.596	0.608	0.568	0.717	0.622	0.586	0.622	0.622	0.683	0.685	0.624	0.605	0.493
$\mathbf{C}\mathbf{I}$	OCSVM	0.553						0.568					0.576	0.522
~	LOF	0.572	0.563	0.589	0.613			0.583			0.585	0.583	0.567	0.572
S	IF	0.580	0.574					0.527				0.527	0.548	0.489
Ã	COPOD	0.445	0.380					0.445					0.438	0.405
	AE	0.570	0.559	0.647	0.749	0.629	0.646	0.629	0.629	0.552	0.630	0.580	0.651	0.592
\mathbf{C}	OCSVM	0.573	0.587										0.593	0.603
			'											

Table 2: Experimental results (naive strategy): Anomaly detection performance (ROC-AUC) in two learning settings: Concept-Incremental (CI) and Concept-Agnostic with different distance measures (columns), datasets (UNSW, Wind, CICIDS), scenarios (A, C, R), and models (LOF, IF, COPOD, AE, OCSVM).

	Model	CI	Bha	Can	Cheb	Czek	KD	Kul	Man	Ney	NI	SChi	SCho	VicCS
A	LOF	0.965	0.781	0.947	0.919	0.945	0.913	0.946	0.944	0.957	0.833	0.947	0.948	0.961
	IF	0.748	0.746	0.736	0.717	0.734	0.729	0.735	0.731	0.745	0.675	0.729	0.736	0.743
Energy	COPOD	0.929	0.957	0.922	0.929	0.924	0.932	0.923	0.923	0.926	0.907	0.921	0.924	0.931
ne	AE	0.912	0.816	0.902	0.833	0.891	0.871	0.892	0.899	0.903	0.788	0.901	0.896	0.911
臼	OCSVM	0.779	0.768	0.765	0.762	0.769	0.766	0.768	0.767	0.772	0.694	0.765	0.769	0.778
\overline{D}	LOF	0.938	0.837	0.928	0.932	0.926	0.912	0.927	0.925	0.938	0.839	0.930	0.928	0.891
_	IF	0.817	0.752	0.803	0.816	0.799	0.818	0.800	0.798	0.808	0.759	0.799	0.811	0.799
50	COPOD	0.901	0.889	0.899	0.902	0.898	0.903	0.898	0.898	0.897	0.889	0.898	0.898	0.903
Energy	AE	0.910	0.861	0.896	0.904	0.894	0.895	0.898	0.894	0.904	0.875	0.900	0.904	0.889
도	OCSVM	0.779	0.718	0.758	0.776	0.763	0.775	0.767	0.767	0.771	0.715	0.762	0.766	0.769
~	LOF	0.954	0.625	0.934	0.953	0.929	0.897	0.931	0.929	0.934	0.791	0.937	0.935	0.942
	IF	0.785	0.710	0.771	0.780	0.766	0.752	0.767	0.765	0.779	0.698	0.768	0.775	0.781
\tilde{p}_0	COPOD	0.935	0.957	0.929	0.934	0.929	0.935	0.929	0.929	0.933	0.920	0.929	0.932	0.936
Energy	AE	0.926	0.698	0.920	0.924	0.902	0.861	0.903	0.899	0.917	0.814	0.908	0.920	0.921
囝	OCSVM	0.800	0.659	0.787	0.794	0.789	0.781	0.788	0.788	0.791	0.714	0.786	0.789	0.798
4	LOF	0.885	0.880	0.754	0.415	0.847	0.830	0.849	0.819	0.821	0.840	0.824	0.865	0.839
Ō	IF	0.942	0.943	0.936	0.730	0.937	0.924	0.941	0.925	0.928	0.942	0.930	0.943	0.935
δ	COPOD	0.881	0.882	0.869	0.623	0.881	0.873	0.883	0.872	0.873	0.883	0.878	0.884	0.879
SLKDD	AE	0.959	0.951	0.942	0.806	0.954	0.955	0.961	0.952	0.941	0.952	0.956	0.958	0.956
Ż	OCSVM	0.792	0.791	0.808	0.751	0.801	0.793	0.801	0.795	0.799	0.796	0.796	0.799	0.799
C	LOF	0.886	0.878	0.697	0.644	0.872	0.837	0.874	0.869	0.789	0.858	0.876	0.868	0.887
Ö	IF	0.860	0.849	0.844	0.740	0.849	0.840	0.847	0.849	0.843	0.844	0.849	0.849	0.848
\mathbf{SLKDD}	COPOD	0.697	0.691	0.604	0.500	0.698	0.695	0.697	0.697	0.686	0.691	0.695	0.695	0.700
\mathbf{SL}	AE	0.847	0.846	0.851	0.807	0.841	0.858	0.844	0.836	0.866	0.842	0.848	0.849	0.838
Ż	OCSVM	0.711	0.711	0.732	0.778	0.707	0.723	0.707	0.708	0.717	0.712	0.707	0.707	0.704
2	LOF	0.887	0.888	0.833	0.568	0.881	0.810	0.881	0.871	0.847	0.869	0.855	0.866	0.867
Ō	IF	0.804	0.809	0.824	0.711	0.803	0.788	0.807	0.810	0.804	0.804	0.798	0.805	0.808
$_{ m SLKD}$	${\rm COPOD}$	0.638	0.638	0.631	0.450	0.638	0.624	0.638	0.640	0.633	0.639	0.637	0.637	0.637
$\mathbf{s}_{\mathbf{r}}$	AE	0.866	0.879	0.877	0.779	0.875	0.873	0.869	0.871	0.851	0.879	0.870	0.875	0.873
Ż	OCSVM	0.756	0.756	0.758	0.740	0.760	0.753	0.760	0.758	0.771	0.764	0.759	0.760	0.760

Table 3: Experimental results (replay strategy): Anomaly detection performance (ROC-AUC) in two learning settings: Concept-Incremental (CI) and Concept-Agnostic with different distance measures (columns), datasets (Energy, NSLKDD), scenarios (A, C, R), and models (LOF, IF, COPOD, AE, OCSVM).

	Model	CI	Bha	Can	Cheb	Czek	KD	Kul	Man	Ney	NI	SChi	SCho	VicCS
	LOF	0.778	0.657	0.723	0.617	0.731	0.724	0.705	0.696	0.740	0.724	0.709	0.721	0.674
	IF	0.489	0.519	0.502	0.463	0.509	0.503	0.512	0.517	0.480	0.494	0.505	0.519	0.493
\mathbf{S}	COPOD	0.547	0.537	0.554	0.510	0.557	0.556	0.556	0.557	0.542	0.549	0.557	0.556	0.539
Z	AE	0.579	0.533	0.549	0.526	0.536	0.531	0.581	0.560	0.561	0.526	0.602	0.596	0.496
ב	OCSVM	0.531	0.523	0.520	0.486	0.525	0.541	0.525	0.524	0.526	0.509	0.526	0.528	0.521
7)	LOF	0.797	0.757	0.765	0.616	0.738	0.763	0.761	0.756	0.709	0.747	0.747	0.765	0.719
>	IF	0.539	0.536	0.523	0.455	0.540	0.515	0.533	0.543	0.514	0.527	0.537	0.535	0.494
$\mathbf{S}\mathbf{W}$	COPOD	0.279	0.281	0.289	0.347	0.293	0.299	0.293	0.293	0.277	0.286	0.294	0.291	0.267
Z	AE	0.630	0.609	0.593	0.548	0.596	0.578	0.603	0.619	0.544	0.541	0.597	0.589	0.541
<u> </u>	OCSVM	0.579	0.564			0.554					0.548	0.555	0.563	0.573
2	LOF	0.873	0.839	0.849	0.882	0.816	0.839	0.820	0.808	0.749	0.822	0.811	0.841	0.769
	IF	0.707	0.692	0.695	0.703	0.688	0.689	0.695	0.681	0.687	0.688	0.695	0.694	0.677
$\mathbf{S}\mathbf{W}$	COPOD	0.555	0.548	0.551	0.606	0.541	0.555	0.541	0.542	0.561	0.549	0.542	0.549	0.571
Z	AE	0.771	0.822	0.780	0.802	0.782	0.860	0.804	0.803	0.685	0.804	0.796	0.759	0.787
	OCSVM	0.746	0.718	0.726	0.674	0.721	0.726	0.722	0.721	0.727		0.720	0.730	0.733
_	LOF	0.973	0.855		0.971		0.973			0.822	0.954	0.927	0.921	0.889
∀	IF	0.906										0.832	0.836	0.864
ind	COPOD	0.948				0.933							0.933	0.951
Š	AE	0.939										0.893		0.932
	OCSVM	0.829	0.747	0.773		0.774							0.773	0.793
7.	LOF	0.968	0.885	0.933	0.955			0.936		0.870	0.955	0.936	0.935	0.889
C	IF	0.903				0.866							0.873	0.873
Wind	COPOD	0.933				0.919							0.919	0.925
<u> </u>	AE	0.945	0.873	0.915	0.938	0.915	0.941	0.913	0.909	0.874	0.920	0.922	0.903	0.917
	OCSVM	0.827	0.815	0.770	0.809	0.772	0.792	0.771	0.771	0.686	0.781	0.771	0.774	0.787
	LOF	0.968	0.943	0.908	0.926	0.905	0.967	0.911	0.907	0.781	0.907	0.907	0.906	0.845
R	IF	0.875	0.831	0.793	0.811	0.807	0.861	0.801	0.799	0.679	0.808	0.805	0.804	0.779
ind	COPOD	0.923	0.903	0.901	0.925	0.903	0.916	0.901	0.903	0.853	0.907	0.898	0.902	0.921
Ŋ.	AE	0.937	0.900	0.896	0.930	0.886	0.944	0.873	0.878	0.834	0.874	0.875	0.870	0.831
_	OCSVM	0.817	0.778	0.771	0.771	0.770	0.786	0.773	0.771	0.687	0.771	0.769	0.770	0.737
A	LOF	0.995	0.995	0.984	0.614	0.974	0.903	0.974	0.974	0.956	0.979	0.976	0.967	0.961
$\mathbf{D}\mathbf{S}$	IF	0.779	0.788	0.791	0.591	0.786	0.793	0.786	0.786	0.794	0.791	0.781	0.778	0.793
_	COPOD	0.614	0.614	0.615	0.674	0.616	0.620	0.616	0.616	0.624	0.611	0.616	0.615	0.623
\mathbf{C}	AE	0.966	0.975	0.947	0.687	0.915	0.903	0.915	0.915	0.938	0.956	0.953	0.951	0.952
Ö	OCSVM	0.595	0.595	0.595	0.384	0.579	0.573	0.579	0.579	0.587	0.584	0.579	0.571	0.594
C	LOF	0.996	0.983	0.944	0.613	0.976	0.934	0.976	0.976	0.965	0.974	0.976	0.984	0.976
$\mathbf{\tilde{\alpha}}$	IF	0.654	0.649	0.701	0.581	0.671	0.651	0.671	0.671	0.677	0.662	0.662	0.662	0.651
I	COPOD	0.449	0.450	0.437	0.466	0.442	0.451	0.442	0.442	0.470	0.455	0.441	0.442	0.447
\Box	AE	0.968	0.943	0.912	0.557	0.945	0.950	0.945	0.945	0.965	0.972	0.965	0.951	0.942
Ö	OCSVM	0.660	0.648	0.688	0.439	0.672	0.649	0.672	0.672	0.680	0.665	0.672	0.669	0.651
~	LOF	0.996	0.996	0.983	0.613	0.978	0.922	0.978	0.978	0.939	0.974	0.979	0.969	0.974
Š	IF	0.683	0.693	0.690	0.588	0.688	0.648	0.688	0.688	0.664	0.679	0.682	0.676	0.679
Ä	COPOD	0.426	0.427	0.431	0.375	0.449	0.421	0.449	0.449	0.439	0.435	0.449	0.446	0.437
\Box	AE	0.982	0.975	0.952	0.538	0.961	0.907	0.961	0.961	0.929	0.978	0.966	0.961	0.921
Ö	OCSVM	0.662	0.662	0.681	0.526	0.646	0.633	0.646	0.646	0.669	0.662	0.645	0.632	0.683

Table 4: Experimental results (replay strategy): Anomaly detection performance (ROC-AUC) in two learning settings: Concept-Incremental (CI) and Concept-Agnostic with different distance measures (columns), datasets (UNSW, Wind, CICIDS), scenarios (A, C, R), and models (LOF, IF, COPOD, AE, OCSVM).

	Model	CI	Bha	Can	${\rm Cheb}$	Czek	KD	Kul	Man	Ney	NI	SChi	${\rm SCho}$	VicCS
4	LOF	0.972	0.781	0.959	0.930	0.958	0.924	0.958	0.958	0.961	0.839	0.959	0.959	0.967
. 1	IF	0.754	0.746	0.753	0.733	0.753	0.755	0.753	0.753	0.749	0.706	0.753	0.753	0.749
Energy	COPOD	0.869	0.957	0.869	0.869	0.868	0.876	0.868	0.868	0.867	0.859	0.869	0.869	0.868
ne	AE	0.921	0.819	0.916	0.883	0.913	0.874	0.918	0.915	0.918	0.811	0.908	0.887	0.916
国	OCSVM	0.723	0.768	0.725	0.718	0.727	0.729	0.727	0.727	0.725	0.686	0.725	0.725	0.724
7)	LOF	0.953	0.841	0.941	0.945	0.940	0.922	0.940	0.940	0.950	0.841	0.940	0.940	0.907
> ×	IF	0.817	0.774	0.814	0.811	0.811	0.813	0.809	0.809	0.808	0.774	0.811	0.811	0.811
ខ្ម	COPOD	0.887	0.871	0.887	0.887	0.886	0.890	0.885	0.885	0.883	0.871	0.886	0.886	0.885
Energy	AE	0.909	0.853	0.891	0.904	0.908	0.885	0.900	0.902	0.904	0.855	0.901	0.894	0.895
교	OCSVM	0.715	0.684	0.710	0.714	0.716	0.715	0.717	0.717	0.716	0.684	0.716	0.716	0.707
2	LOF	0.963	0.625	0.943	0.963	0.940	0.905	0.940	0.940	0.941	0.800	0.943	0.943	0.952
	IF	0.781	0.710	0.777	0.774	0.771	0.761	0.771	0.771	0.771	0.727	0.777	0.777	0.775
nergy	COPOD	0.885	0.957	0.885	0.881	0.882	0.885	0.882	0.882	0.881	0.869	0.885	0.885	0.882
ne	AE	0.927	0.706	0.914	0.925	0.910	0.860	0.916	0.911	0.914	0.777	0.926	0.917	0.921
田	OCSVM	0.738	0.659	0.738	0.734	0.739	0.738	0.739	0.739	0.738	0.694	0.738	0.738	0.738
⋖	LOF	0.901	0.901	0.782	0.415	0.863	0.843	0.862	0.833	0.832	0.852	0.841	0.875	0.860
Q	IF	0.942	0.942	0.940	0.730	0.936	0.923	0.942	0.923	0.929	0.942	0.930	0.942	0.934
SLKDD	COPOD	0.921	0.921	0.914	0.623	0.913	0.901	0.919	0.901	0.905	0.918	0.908	0.919	0.913
\mathbf{SL}	AE	0.964	0.965	0.945	0.730	0.963	0.941	0.959	0.952	0.947	0.955	0.960	0.959	0.960
Z	OCSVM	0.721	0.721	0.709	0.751	0.727	0.730	0.720	0.731	0.718	0.718	0.730	0.721	0.728
Ö	LOF	0.897	0.880	0.691	0.644	0.877	0.857	0.877	0.877	0.803	0.856	0.869	0.869	0.880
Q	IF	0.855	0.851	0.834	0.740	0.850	0.846	0.850	0.850	0.844	0.848	0.851	0.851	0.848
NSLKDD	COPOD	0.791	0.789	0.735	0.500	0.787	0.783	0.787	0.787	0.778	0.781	0.786	0.786	0.789
$\mathbf{s}_{\mathbf{\Gamma}}$	AE	0.854	0.856	0.859	0.825	0.855	0.875	0.862	0.868	0.881	0.869	0.870	0.868	0.868
Z	OCSVM	0.670	0.671	0.636	0.778	0.668	0.682	0.668	0.668	0.675	0.670	0.668	0.668	0.665
Я	LOF	0.900	0.900	0.857	0.568	0.889	0.846	0.890	0.887	0.859	0.880	0.881	0.881	0.881
Q	IF	0.805	0.803	0.815	0.711	0.806	0.794	0.807	0.807	0.804	0.808	0.808	0.808	0.810
$_{ m SLKD}$	COPOD	0.721	0.721	0.714	0.450	0.720	0.701	0.720	0.720	0.715	0.719	0.719	0.719	0.720
\mathbf{SL}	AE	0.881	0.872	0.864	0.762	0.881	0.849	0.890	0.885	0.866	0.884	0.872	0.867	0.876
Z	OCSVM	0.709	0.709	0.707	0.740	0.708	0.717	0.708	0.708	0.705	0.708	0.709	0.709	0.713

Table 5: Experimental results (cumulative strategy): Anomaly detection performance (ROC-AUC) in two learning settings: Concept-Incremental (CI) and Concept-Agnostic with different distance measures (columns), datasets (Energy, NSLKDD), scenarios (A, C, R), and models (LOF, IF, COPOD, AE, OCSVM).

	Model	CI	Bha	Can	Cheb	Czek	KD	Kul	Man	Ney	NI	SChi	SCho	VicCS
4	LOF	0.833	0.726	0.798	0.617	0.782	0.776	0.782	0.782	0.788	0.778	0.782	0.795	0.732
.>	IF	0.496	0.466	0.474	0.463	0.479	0.475	0.479	0.479	0.474	0.471	0.479	0.486	0.466
$\mathbf{S}\mathbf{W}$	COPOD	0.522										0.516		0.507
Ž	AE	0.605	0.513	0.547	0.531	0.573	0.582	0.570	0.595	0.590	0.545	0.583	0.574	0.545
<u> </u>	OCSVM	0.526							0.516		0.511	0.516	0.517	0.510
Ŋ	LOF	0.837							0.791		0.783	0.857	0.800	0.739
8	IF	0.521										0.686		0.483
S	COPOD	0.430										0.651		0.396
Z	AE	0.599										0.747		0.560
_	OCSVM	0.563							0.547				0.551	0.551
2	LOF	0.896							0.857		0.857	0.857	0.869	0.822
\geqslant	IF	0.707										0.686		0.648
S	COPOD	0.674										0.651		0.647
Z	AE	0.849										0.747		0.761
_	OCSVM	0.695							0.681				0.684	0.677
⋖	LOF	0.977		0.955					0.955		0.955	0.955	0.955	0.881
	IF	0.902										0.862		0.852
ind	COPOD	0.910										0.901		0.908
≥	AE	0.954										0.929		0.869
	OCSVM	0.754										0.747		0.717
C	LOF	0.969	0.885	0.955	0.961			0.955	0.955		0.955	0.955	0.955	0.903
	IF	0.908							0.883				0.883	0.856
Wind	COPOD	0.916										0.910		0.909
>	AE	0.943										0.935		0.905
_	LOF	0.752							0.745				0.745	0.697
Ξ	IF IF	$0.967 \\ 0.873$		0.944					0.944		0.944	0.944 0.830	0.944	0.883 0.755
	COPOD	0.873										0.881		$0.755 \\ 0.869$
Wind	AE	0.892 0.951										0.001 0.935		0.851
>	OCSVM	0.931 0.747							0.919 0.743				0.919 0.743	0.693
	LOF	0.747							0.743		0.743	0.743	0.743 0.977	$\frac{0.093}{0.957}$
¥	IF	0.995 0.790										0.980		0.937 0.782
$\mathbf{D}\mathbf{S}$	COPOD	0.790 0.595							0.769				0.787	0.782 0.596
C	AE	0.992							0.974				0.968	0.959
CICID	OCSVM	0.566							0.559				0.556	0.563
_	LOF	0.995							0.982		0.982	0.983	0.983	$\frac{0.905}{0.975}$
C	IF	0.661										0.658		0.662
$\mathbf{D}\mathbf{S}$	COPOD	0.546							0.535				0.537	0.527
CID	AE	0.990										0.984		0.968
ĊĬ	OCSVM	0.623										0.623		0.620
_	LOF	0.995		0.980	0.433				0.023			0.023	0.984	$\frac{0.020}{0.974}$
\mathbf{S}	IF	0.698										0.697		0.693
	COPOD	0.549							0.546				0.539	0.540
CICID	AE	0.995										0.979		0.973
Ċ	OCSVM													0.646
_	O O D V 1V1	5.554	0.004	5.550	5.520	5.513	5.501	5.513	5.513	0.029	0.020	5.513	0.021	0.010

Table 6: Experimental results (cumulative strategy): Anomaly detection performance (ROC-AUC) in two learning settings: Concept-Incremental (CI) and Concept-Agnostic with different distance measures (columns), datasets (UNSW, Wind), scenarios (A, C, R), and models (LOF, IF, COPOD, AE, OCSVM).

	Model	CI	Bha	Can	Cheb	Czek	KD	Kul	Man	Ney	NI	SChi	SCho	VicCS
₹.	LOF	0.696	0.629	0.680	0.666	0.666	0.663	0.666	0.666	0.674	0.633	0.680	0.686	0.679
. 1	IF	0.558	0.596	0.561	0.554	0.549	0.575	0.549	0.549	0.543	0.567	0.561	0.560	0.542
Energy	COPOD	0.881	0.978	0.878	0.940	0.875	0.869	0.875	0.875	0.882	0.867	0.878	0.890	0.950
ne	AE	0.720	0.684	0.743	0.722	0.696	0.724	0.717	0.725	0.712	0.703	0.710	0.716	0.702
囝	OCSVM	0.488	0.670	0.488	0.644	0.488	0.488	0.488	0.488	0.503	0.561	0.488	0.497	0.630
7)	LOF	0.813	0.776	0.788	0.768	0.802	0.781	0.794	0.794	0.792	0.776	0.791	0.792	0.782
>	IF	0.611	0.626	0.614	0.613	0.628	0.620	0.620	0.620	0.612	0.626	0.629	0.628	0.610
Energy	COPOD	0.908	0.901	0.912	0.958	0.910	0.929	0.909	0.909	0.910	0.901	0.919	0.920	0.939
ne	AE	0.825	0.814	0.835	0.828	0.841	0.808	0.853	0.833	0.820	0.842	0.863	0.844	0.831
囝	OCSVM	0.505	0.583	0.510	0.825	0.503	0.562	0.503	0.503	0.538	0.583	0.550	0.553	0.659
R	LOF	0.727	0.653	0.653	0.697	0.649	0.691	0.649	0.649	0.673	0.638	0.654	0.662	0.716
	IF	0.533	0.535	0.528	0.529	0.527	0.543	0.527	0.527	0.516	0.533	0.534	0.529	0.516
Energy	COPOD	0.869	0.969	0.871	0.964	0.868	0.881	0.868	0.868	0.874	0.865	0.869	0.874	0.948
ne	AE	0.718	0.700	0.718	0.724	0.720	0.780	0.721	0.729	0.722	0.661	0.702	0.735	0.737
囝	OCSVM	0.485	0.690	0.485	0.706	0.484	0.485	0.484	0.484	0.502	0.551	0.485	0.486	0.564
4	LOF	0.505	0.699	0.444	0.361	0.515	0.499	0.488	0.494	0.334	0.556	0.494	0.518	0.529
	IF	0.791	0.794	0.723	0.718	0.712	0.728	0.768	0.700	0.827	0.758	0.720	0.776	0.794
NSLKDD	COPOD	0.679	0.550	0.656	0.539	0.598	0.603	0.666	0.598	0.637	0.716	0.622	0.667	0.609
\mathbf{SL}	AE	0.865	0.804	0.873	0.772	0.791	0.803	0.871	0.816	0.854	0.854	0.810	0.860	0.824
Z	OCSVM	0.692	0.866	0.747	0.755	0.714	0.704	0.705	0.697	0.727	0.625	0.687	0.707	0.761
<u>ں</u>	LOF	0.558	0.739	0.562	0.594	0.598	0.596	0.598	0.598	0.572	0.605	0.596	0.596	0.662
_	IF	0.764	0.760	0.610	0.854	0.754	0.809	0.754	0.754	0.745	0.747	0.753	0.753	0.782
SLKDD	COPOD	0.426	0.251	0.259	0.256	0.382	0.336	0.382	0.382	0.366	0.459	0.380	0.380	0.313
SLI	AE	0.854	0.851	0.809	0.832	0.800	0.823	0.870	0.836	0.757	0.809	0.830	0.812	0.875
Ż	OCSVM	0.701	0.863	0.750	0.865	0.701	0.770	0.701	0.701	0.706	0.638	0.700	0.700	0.822
-H	LOF	0.544	0.666	0.555	0.577	0.571	0.568	0.531	0.541	0.540	0.537	0.528	0.528	0.495
	IF	0.704	0.686	0.705	0.688	0.698	0.681	0.681	0.683	0.712	0.682	0.686	0.686	0.721
NSLKDD	COPOD	0.433	0.317	0.395	0.317	0.387	0.350	0.396	0.422	0.354	0.395	0.399	0.399	0.371
SLF	AE	0.738	0.724	0.703	0.718	0.718	0.671	0.707	0.719	0.703	0.718	0.707	0.719	0.749
ž	OCSVM	0.630	0.739	0.635	0.658	0.645	0.637	0.626	0.611	0.686	0.630	0.624	0.624	0.707
		1	1											

Table 7: Experimental results (naive strategy): Anomaly detection performance (forward transfer) in two learning settings: Concept-Incremental (CI) and Concept-Agnostic with different distance measures (columns), datasets (Energy, NSLKDD), scenarios (A, C, R), and models (LOF, IF, COPOD, AE, OCSVM).

	Model	CI	Bha	Can	Cheb	Czek	KD	Kul	Man	Ney	NI	SChi	SCho	VicCS
_	LOF	0.450	0.391	0.416	0.219	0.500	0.379	0.500	0.500	0.420	0.438	0.500	0.452	0.389
	IF	0.458	0.456	0.387	0.391	0.420	0.526	0.420	0.420	0.439	0.460	0.420	0.388	0.402
$\mathbf{S}\mathbf{W}$	COPOD	0.438	0.400	0.378	0.406	0.391	0.455	0.391	0.391	0.410	0.412	0.391	0.380	0.403
Ź	AE	0.435	0.383	0.399	0.367	0.456	0.393	0.400	0.383	0.420	0.464	0.438	0.438	0.425
	OCSVM	0.477	0.463	0.424	0.366	0.442	0.481	0.442	0.442	0.384	0.473	0.442	0.442	0.406
7)	LOF	0.424	0.388	0.357	0.171	0.437	0.348	0.437	0.437	0.306	0.391	0.437	0.399	0.355
<u> </u>	IF	0.422	0.470	0.381	0.335	0.353	0.503	0.353	0.353	0.480	0.415	0.353	0.377	0.410
$\mathbf{S}\mathbf{W}$	COPOD	0.276	0.224	0.234	0.205	0.239	0.273	0.239	0.239	0.199	0.258	0.239	0.245	0.215
Ž	AE	0.498	0.449	0.401	0.312	0.455	0.431	0.438	0.458	0.404	0.427	0.455	0.469	0.379
	OCSVM	0.499	0.468	0.450	0.372	0.472	0.507	0.472	0.472	0.407	0.503	0.472	0.472	0.526
2	LOF	0.490	0.510	0.444	0.393	0.595	0.477	0.595	0.595	0.278	0.542	0.595	0.481	0.456
	IF	0.513	0.538	0.480	0.444	0.530	0.614	0.530	0.530	0.333	0.561	0.530	0.490	0.390
$\mathbf{S}\mathbf{W}$	COPOD	0.226	0.180	0.224	0.236	0.228	0.267	0.228	0.228	0.192	0.267	0.228	0.222	0.242
Ñ	AE	0.516	0.602	0.506	0.399	0.572	0.557	0.542	0.569	0.498	0.559	0.540	0.518	0.488
	OCSVM	0.485	0.537	0.444	0.441	0.468	0.508	0.468	0.468	0.470	0.500	0.468	0.467	0.432
	LOF	0.497	0.693	0.498	0.590	0.498	0.497	0.498	0.498	0.551	0.498	0.498	0.498	0.538
⋖	IF	0.677	0.646	0.678	0.654	0.678	0.677	0.678	0.678	0.628	0.678	0.678	0.678	0.623
$_{\rm nd}$	COPOD	0.910	0.967	0.899	0.956	0.899	0.910	0.899	0.899	0.895	0.899	0.899	0.899	0.932
Wind	AE	0.636	0.614	0.604	0.666	0.649	0.636	0.575	0.622	0.614	0.637	0.676	0.578	0.659
	OCSVM	0.500	0.613	0.497	0.528	0.497	0.500	0.497	0.497	0.496	0.497	0.497	0.497	0.505
	LOF	0.581	0.820	0.613	0.683	0.613	0.581	0.613	0.613	0.667	0.613	0.613	0.613	0.634
Ö	IF	0.702	0.694	0.703	0.658	0.703	0.702	0.703	0.703	0.664	0.703	0.703	0.703	0.667
Wind	COPOD	0.893	0.933	0.887	0.940	0.887	0.893	0.887	0.887	0.894	0.887	0.887	0.887	0.918
Š	AE	0.714	0.775	0.773	0.775	0.683	0.798	0.646	0.713	0.581	0.815	0.791	0.786	0.792
	OCSVM	0.506	0.747	0.500	0.678	0.500	0.506	0.500	0.500	0.500	0.500	0.500	0.500	0.549
- 1	LOF	0.527	0.513	0.513	0.588	0.513	0.527	0.513	0.513	0.594	0.513	0.513	0.513	0.638
<u> </u>	IF	0.702	0.644	0.644	0.672	0.644	0.702	0.644	0.644	0.618	0.644	0.644	0.644	0.655
nd	COPOD	0.900	0.879	0.879	0.922	0.879	0.900	0.879	0.879	0.889	0.879	0.879	0.879	0.926
Wind	AE	0.742	0.661	0.658	0.785	0.668	0.712	0.615	0.639	0.624	0.505	0.666	0.608	0.778
	OCSVM	0.503	0.496	0.496	0.542	0.496	0.503	0.496	0.496	0.496	0.496	0.496	0.496	0.605
⋖	LOF	0.414	0.480	0.448	0.500	0.413	0.422	0.413	0.413	0.454	0.444	0.413	0.400	0.518
$\mathbf{\tilde{\omega}}$	IF	0.538	0.526	0.518	0.557	0.540	0.493	0.540	0.540	0.487	0.503	0.540	0.539	0.457
П	COPOD	0.646	0.712	0.655	0.676	0.652	0.655	0.652	0.652	0.631	0.650	0.652	0.646	0.660
\mathbf{IC}	AE	0.494									0.410			0.550
\mathcal{O}	OCSVM	0.478	0.449	0.496	0.408	0.470	0.492	0.470	0.470	0.452	0.481	0.470	0.464	0.469
\circ	LOF	0.487									0.468			0.540
	IF													0.450
CICID	COPOD													
Γ	AE													0.623
	OCSVM													0.603
	LOF										0.476			0.526
$\tilde{\mathbf{s}}$	IF										0.534			0.469
Ţ	COPOD													
	AE													0.569
O	OCSVM	0.503	0.538	0.535	0.615	0.508	0.527	0.508	0.508	0.519	0.508	0.508	0.501	0.518

Table 8: Experimental results (naive strategy): Anomaly detection performance (forward transfer) in two learning settings: Concept-Incremental (CI) and Concept-Agnostic with different distance measures (columns), datasets (UNSW, Wind, CICIDS), scenarios (A, C, R), and models (LOF, IF, COPOD, AE, OCSVM).

	Model	CI	Bha	Can	Cheb	Czek	KD	Kul	Man	Ney	NI	SChi	SCho	VicCS
	LOF	0.608	0.629	0.612	0.605	0.608	0.604	0.610	0.612	0.605	0.641	0.612	0.607	0.606
× ×	IF	0.581	0.596	0.566	0.583	0.565	0.592	0.568	0.567	0.567	0.574	0.567	0.574	0.579
Energy	COPOD	0.930	0.978	0.901	0.937	0.900	0.918	0.901	0.901	0.913	0.894	0.901	0.901	0.930
ne	AE	0.663	0.693	0.630	0.716	0.635	0.721	0.669	0.661	0.675	0.689	0.670	0.675	0.642
国	OCSVM	0.700	0.670	0.653	0.713	0.653	0.673	0.652	0.652	0.651	0.604	0.652	0.655	0.714
7)	LOF	0.781	0.793	0.773	0.772	0.782	0.767	0.782	0.784	0.785	0.795	0.784	0.776	0.761
>	IF	0.643	0.613	0.644	0.632	0.634	0.655	0.635	0.632	0.632	0.620	0.638	0.649	0.639
Energy	COPOD	0.939	0.916	0.936	0.941	0.922	0.943	0.922	0.922	0.923	0.916	0.931	0.932	0.941
ne	AE	0.853	0.844	0.832	0.841	0.829	0.835	0.794	0.846	0.838	0.842	0.859	0.855	0.852
国	OCSVM	0.759	0.628	0.705	0.774	0.699	0.727	0.700	0.698	0.696	0.627	0.725	0.724	0.777
R	LOF	0.622	0.653	0.619	0.611	0.632	0.632	0.632	0.625	0.625	0.642	0.626	0.626	0.622
	IF	0.527	0.535	0.508	0.518	0.510	0.544	0.512	0.513	0.503	0.508	0.516	0.519	0.511
50	COPOD	0.922	0.969	0.908	0.923	0.893	0.911	0.894	0.893	0.909	0.884	0.894	0.910	0.921
Energy	AE	0.665	0.702	0.663	0.660	0.669	0.688	0.666	0.660	0.670	0.673	0.670	0.651	0.670
团	OCSVM	0.674	0.690	0.636	0.697	0.637	0.663	0.637	0.636	0.634	0.590	0.638	0.637	0.666
	LOF	0.233	0.203	0.224	0.361	0.250	0.268	0.206	0.271	0.277	0.218	0.258	0.224	0.252
	IF	0.904	0.906	0.902	0.718	0.850	0.818	0.906	0.819	0.843	0.901	0.834	0.911	0.831
Ô	COPOD	0.734	0.736	0.739	0.539	0.699	0.669	0.734	0.667	0.702	0.748	0.687	0.742	0.705
NSLKDD	AE	0.877	0.896	0.890	0.768	0.890	0.849	0.897	0.856	0.817	0.869	0.866	0.886	0.858
Z	OCSVM	0.820	0.820	0.824	0.755	0.787	0.766	0.829	0.769	0.773	0.787	0.770	0.812	0.781
<u> </u>	LOF	0.375	0.377	0.453	0.594	0.372	0.443	0.344	0.356	0.401	0.381	0.366	0.363	0.378
-	IF	0.913	0.920	0.895	0.854	0.911	0.889	0.909	0.904	0.896	0.890	0.905	0.906	0.912
SLKDD	COPOD	0.565	0.569	0.490	0.256	0.576	0.501	0.575	0.576	0.560	0.573	0.574	0.574	0.548
$_{ m II}$	AE	0.914	0.925	0.892	0.855	0.930	0.917	0.920	0.911	0.919	0.923	0.925	0.920	0.921
Ż	OCSVM	0.827	0.830	0.860	0.865	0.821	0.828	0.821	0.820	0.804	0.810	0.820	0.822	0.839
<u>π</u>	LOF	0.404	0.380	0.421	0.577	0.397	0.460	0.400	0.393	0.425	0.392	0.399	0.412	0.386
	IF	0.804	0.807	0.808	0.688	0.805	0.753	0.805	0.809	0.796	0.808	0.798	0.810	0.814
NSLKDD	COPOD	0.500	0.502	0.506	0.317	0.506	0.446	0.509	0.513	0.466	0.502	0.508	0.508	0.501
SLF	AE	0.748	0.775	0.778	0.697	0.772	0.737	0.759	0.736	0.754	0.754	0.761	0.757	0.769
ž	OCSVM	0.733	0.731	0.724	0.658	0.723	0.693	0.720	0.713	0.708	0.722	0.720	0.720	0.727
		ı	ı											

Table 9: Experimental results (replay strategy): Anomaly detection performance (forward transfer) in two learning settings: Concept-Incremental (CI) and Concept-Agnostic with different distance measures (columns), datasets (Energy, NSLKDD), scenarios (A, C, R), and models (LOF, IF, COPOD, AE, OCSVM).

	Model	CI	Bha	Can	Cheb	Czek	KD	Kul	Man	Ney	NI	SChi	SCho	VicCS
√ !	LOF	0.283	0.315				0.289				0.299		0.297	0.313
>	IF	0.351	0.383	0.341	0.391	0.350	0.407	0.356	0.348	0.356	0.363	0.344	0.340	0.353
\mathbf{S}	COPOD	0.428	0.391	0.392	0.406	0.398	0.414	0.398	0.398	0.416	0.402	0.398	0.392	0.425
Z	AE	0.361	0.354	0.327	0.315	0.302	0.386	0.304	0.320	0.311	0.310	0.325	0.331	0.338
	OCSVM	0.480	0.457	0.454	0.366	0.461	0.492	0.460	0.460	0.442	0.470	0.460	0.456	0.439
\mathcal{O}	LOF	0.227	0.149	0.189			0.220					0.192	0.198	0.190
>	IF	0.379					0.420							0.325
\mathbf{S}	COPOD	0.217					0.239							0.216
Z	AE	0.346	0.282	0.323	0.329	0.262	0.368	0.297	0.349	0.238	0.309	0.298	0.320	0.277
	OCSVM	0.565					0.578				0.567		0.544	0.513
2	LOF	0.410					0.482				0.411	0.427	0.396	0.411
	IF	0.444	0.473	0.421	0.444	0.435	0.533	0.446	0.440	0.435	0.447	0.442	0.416	0.421
$\mathbf{S}\mathbf{W}$	COPOD	0.206	0.220	0.220	0.236	0.223	0.256	0.224	0.223	0.197	0.231	0.224	0.221	0.244
N	AE	0.400	0.419	0.422	0.490	0.386	0.467	0.440	0.404	0.413	0.456	0.415	0.394	0.448
ב	OCSVM	0.521	0.501	0.472	0.441	0.482	0.513	0.482	0.482	0.489	0.486	0.482	0.478	0.469
ı	LOF	0.584					0.552				0.551	0.551	0.551	0.586
₹	IF	0.640	0.646	0.656	0.641	0.637	0.661	0.650	0.655	0.628	0.639	0.644	0.648	0.622
nd	COPOD	0.958	0.967	0.908	0.960	0.908	0.923	0.908	0.908	0.895	0.908	0.908	0.908	0.957
Wind	AE	0.703	0.618	0.638	0.647	0.646	0.611	0.637	0.614	0.614	0.607	0.620	0.590	0.684
	OCSVM	0.568	0.613	0.525	0.547	0.525	0.566	0.525	0.526	0.496	0.525	0.525	0.525	0.570
•	LOF	0.657	0.820	0.651	0.668	0.654	0.648	0.655	0.651	0.667	0.649	0.649	0.649	0.672
0	IF	0.747	0.694	0.711	0.737	0.704	0.749	0.706	0.699	0.664	0.712	0.708	0.708	0.719
nd	COPOD	0.942	0.933	0.904	0.941	0.905	0.920	0.904	0.905	0.894	0.906	0.904	0.904	0.918
Wind	AE	0.775	0.763	0.730	0.850	0.659	0.745	0.748	0.775	0.831	0.727	0.739	0.736	0.798
_	OCSVM	0.609	0.747	0.536	0.597	0.536	0.585	0.537	0.537	0.500	0.537	0.537	0.537	0.581
د۔	LOF	0.636	0.588	0.587	0.631	0.585	0.602	0.598	0.589	0.594	0.586	0.585	0.590	0.636
R	IF	0.687	0.639	0.647	0.660	0.651	0.703	0.647	0.646	0.618	0.657	0.652	0.647	0.625
nd	COPOD	0.963	0.895	0.895	0.924	0.896	0.920	0.895	0.896	0.889	0.895	0.895	0.895	0.926
Wind	AE	0.778	0.655	0.619	0.721	0.685	0.632	0.525	0.668	0.723	0.618	0.671	0.569	0.732
_	OCSVM	0.587	0.536	0.536	0.579	0.536	0.586	0.536	0.535	0.496	0.536	0.536	0.535	0.548
⋖	LOF	0.459		0.452			0.442					0.458	0.442	0.460
	IF	0.629	1				0.632							0.627
П	COPOD	0.641					0.638						0.638	0.632
\mathbf{IC}	AE	0.606					0.592						0.545	0.490
Ö	OCSVM	0.475					0.479							0.466
\circ	LOF	0.490					0.511							0.533
	IF													0.633
	COPOD													
CICID	AE													0.743
	OCSVM													
	LOF													0.446
\mathbf{s}	IF													0.639
	COPOD													
	AE													
O	OCSVM	0.557	0.557	0.559	0.615	0.554	0.584	0.554	0.554	0.545	0.552	0.554	0.562	0.562

Table 10: Experimental results (replay strategy): Anomaly detection performance (forward transfer) in two learning settings: Concept-Incremental (CI) and Concept-Agnostic with different distance measures (columns), datasets (UNSW, Wind, CICIDS), scenarios (A, C, R), and models (LOF, IF, COPOD, AE, OCSVM).

	Model	CI	Bha	Can	Cheb	Czek	KD	Kul	Man	Ney	NI	SChi	SCho	VicCS
₹!	LOF	0.614	0.629	0.617	0.608	0.618	0.607	0.618	0.618	0.618	0.648	0.617	0.617	0.607
	IF	0.589	0.596	0.571	0.576	0.570	0.581	0.570	0.570	0.570	0.549	0.571	0.571	0.578
Energy	COPOD	0.832	0.978	0.832	0.853	0.831	0.841	0.831	0.831	0.829	0.842	0.832	0.832	0.846
ne	AE	0.644	0.704	0.660	0.675	0.680	0.687	0.612	0.654	0.651	0.698	0.663	0.652	0.658
国	OCSVM	0.612	0.670	0.608	0.654	0.608	0.621	0.608	0.608	0.605	0.579	0.608	0.608	0.651
7)	LOF	0.782	0.788	0.777	0.763	0.782	0.776	0.782	0.782	0.786	0.788	0.782	0.782	0.764
>	IF	0.642	0.618	0.636	0.632	0.638	0.630	0.637	0.637	0.629	0.618	0.638	0.638	0.630
Energy	COPOD	0.892	0.884	0.890	0.910	0.891	0.892	0.891	0.891	0.888	0.884	0.891	0.891	0.898
ne	AE	0.821	0.821	0.829	0.814	0.840	0.825	0.846	0.840	0.820	0.808	0.820	0.848	0.826
Ξ	OCSVM	0.636	0.593	0.636	0.706	0.632	0.642	0.632	0.632	0.628	0.593	0.632	0.632	0.688
R	LOF	0.644	0.653	0.640	0.622	0.639	0.648	0.639	0.639	0.643	0.648	0.640	0.640	0.645
	IF	0.514	0.535	0.523	0.523	0.521	0.535	0.521	0.521	0.522	0.512	0.523	0.523	0.527
Energy	COPOD	0.828	0.969	0.829	0.847	0.828	0.836	0.828	0.828	0.824	0.836	0.829	0.829	0.829
ne	AE	0.654	0.716	0.638	0.647	0.654	0.702	0.659	0.653	0.663	0.637	0.617	0.652	0.642
臣	OCSVM	0.601	0.690	0.597	0.635	0.597	0.610	0.597	0.597	0.595	0.571	0.597	0.597	0.600
4	LOF	0.231	0.230	0.239	0.361	0.252	0.268	0.232	0.267	0.264	0.225	0.259	0.229	0.257
	IF	0.905	0.906	0.905	0.718	0.849	0.817	0.908	0.818	0.845	0.904	0.833	0.910	0.834
Ô	COPOD	0.836	0.834	0.827	0.539	0.757	0.710	0.825	0.708	0.751	0.828	0.731	0.828	0.762
NSLKDD	AE	0.838	0.845	0.804	0.680	0.828	0.776	0.831	0.837	0.763	0.843	0.848	0.825	0.835
Ż	OCSVM	0.658	0.660	0.654	0.755	0.679	0.698	0.675	0.699	0.668	0.665	0.689	0.667	0.675
	LOF	0.345	0.353	0.428	0.594	0.329	0.426	0.329	0.329	0.385	0.345	0.329	0.329	0.343
_	IF	0.909	0.912	0.908	0.854	0.902	0.890	0.902	0.902	0.897	0.894	0.902	0.902	0.919
SLKDD	COPOD	0.777	0.775	0.704	0.256	0.762	0.595	0.762	0.762	0.664	0.734	0.761	0.761	0.747
SLE	AE	0.906	0.893	0.908	0.906	0.899	0.910	0.920	0.898	0.873	0.919	0.932	0.895	0.918
ž	OCSVM	0.670	0.672	0.679	0.865	0.677	0.755	0.677	0.677	0.718	0.683	0.677	0.677	0.693
~	LOF	0.406	0.397	0.399	0.577	0.394	0.451	0.393	0.391	0.413	0.390	0.393	0.393	0.409
	IF	0.808	0.810	0.800	0.688	0.803	0.755	0.806	0.806	0.792	0.805	0.806	0.806	0.807
NSLKDD	COPOD	0.619	0.618	0.604	0.317	0.607	0.498	0.607	0.607	0.547	0.603	0.607	0.607	0.590
SLF	AE	0.705	0.728	0.719	0.637	0.715	0.674	0.734	0.735	0.694	0.721	0.713	0.710	0.711
ž	OCSVM		0.625									0.630		0.641

Table 11: Experimental results (cumulative strategy): Anomaly detection performance (forward transfer) in two learning settings: Concept-Incremental (CI) and Concept-Agnostic with different distance measures (columns), datasets (Energy, NSLKDD), scenarios (A, C, R), and models (LOF, IF, COPOD, AE, OCSVM).

	Model	CI	Bha	Can	Cheb	Czek	KD	Kul	Man	Ney	NI	SChi	SCho	VicCS
_	LOF	0.347	0.355	0.332	0.219	0.332	0.333	0.332	0.332	0.339	0.332	0.332	0.332	0.300
	IF	0.346	0.364	0.335	0.391	0.342	0.396	0.342	0.342	0.354	0.342	0.342	0.336	0.357
$\mathbf{S}\mathbf{M}$	COPOD	0.384	0.377	0.371	0.406	0.380	0.394	0.380	0.380	0.380	0.379	0.380	0.372	0.397
Ź	AE	0.304	0.302	0.310	0.333	0.321	0.434	0.312	0.307	0.287	0.318	0.315	0.299	0.305
	OCSVM	0.490	0.454	0.464	0.366	0.468	0.477	0.468	0.468	0.468	0.467	0.468	0.465	0.430
7)	LOF	0.208	0.191	0.187	0.171	0.187	0.195	0.187	0.187	0.198	0.187	0.187	0.187	0.154
.>	IF	0.360	0.355	0.353	0.335	0.352	0.400	0.352	0.352	0.323	0.351	0.352	0.354	0.326
$\mathbf{S}\mathbf{W}$	COPOD	0.288	0.268	0.267	0.205	0.264	0.281	0.264	0.264	0.263	0.264	0.264	0.267	0.259
Ź	AE	0.297	0.266	0.263	0.311	0.274	0.355	0.250	0.265	0.268	0.252	0.243	0.307	0.219
\mathbf{c}	OCSVM	0.571	0.550	0.544	0.372	0.545	0.555	0.545	0.545	0.546	0.545	0.545	0.544	0.533
2	LOF	0.515	0.533	0.491	0.393	0.492	0.485	0.492	0.492	0.456	0.492	0.492	0.491	0.480
	IF	0.433	0.465	0.417	0.444	0.436	0.513	0.436	0.436	0.447	0.436	0.436	0.417	0.450
$\mathbf{S}\mathbf{W}$	COPOD	0.302	0.306	0.294	0.236	0.303	0.319	0.303	0.303	0.283	0.303	0.303	0.294	0.290
Ž	AE	0.411	0.404	0.384	0.361	0.369	0.414	0.376	0.412	0.442	0.398	0.438	0.397	0.427
\mathbf{c}	OCSVM	0.505	0.480	0.478	0.441	0.484	0.496	0.484	0.484	0.456	0.482	0.484	0.481	0.472
	LOF	0.519	0.693	0.530	0.538	0.530	0.519	0.530	0.530	0.551	0.530	0.530	0.530	0.534
₹	IF	0.654									0.645			0.612
nd	COPOD	0.893	0.967	0.891	0.914	0.891	0.893	0.891	0.891	0.895	0.891	0.891	0.891	0.912
Wind	AE	0.688									0.636			0.623
	OCSVM	0.543									0.524		0.524	0.531
7.	LOF	0.599	0.820	0.625	0.601	0.625	0.599	0.625	0.625	0.667	0.625	0.625	0.625	0.621
0	IF	0.748	0.694	0.711	0.710	0.711	0.748	0.711	0.711	0.664	0.711	0.711	0.711	0.684
Wind	COPOD	0.905	0.933	0.898	0.903	0.898	0.905	0.898	0.898	0.894	0.898	0.898	0.898	0.899
Š	AE	0.660									0.714			0.733
	OCSVM	0.556									0.534		0.534	0.516
دء	LOF	0.574									0.564		0.564	0.601
E	IF	0.682									0.659		0.659	0.618
Wind	COPOD	0.892									0.888		0.888	0.897
\rightarrow	AE	0.632									0.569			0.659
	OCSVM	0.557									0.533		0.533	0.500
A	LOF	0.458		0.458							0.446		0.460	0.461
	IF	0.639									0.610			0.614
Ü	COPOD	0.588									0.580			0.584
IC	AE	0.568									0.531		0.525	0.524
$\overline{\mathbf{O}}$	OCSVM	0.471									0.468			0.457
\circ	LOF	0.522									0.520			0.555
	IF												0.638	
CICID	COPOD													
ΣŢ	AE												0.718	
	OCSVM													
\mathbf{z}	LOF										0.456			0.473
\mathbf{S}	IF												0.643	
	COPOD													
ΊC	AE												0.653	
\cup	OCSVM	0.537	0.533	0.528	0.615	0.538	0.556	0.538	0.538	0.531	0.536	0.538	0.540	0.530

Table 12: Experimental results (cumulative strategy): Anomaly detection performance (forward transfer) in two learning settings: Concept-Incremental (CI) and Concept-Agnostic with different distance measures (columns), datasets (UNSW, Wind, CICIDS), scenarios (A, C, R), and models (LOF, IF, COPOD, AE, OCSVM).

	Model	CI	Bha	Can	Cheb	Czek	KD	Kul	Man	Ney	NI	SChi	SCho	VicCS
	LOF	-0.407	0.048	-0.326	-0.075	-0.304	-0.108	-0.304	-0.304	-0.320	0.088	-0.326	-0.333	-0.362
٦.	IF	-0.459	-0.008	-0.319	-0.095	-0.257	-0.219	-0.257	-0.257	-0.269	-0.112	-0.319	-0.323	-0.395
50	COPOD	-0.112	-0.025	-0.077	-0.004	-0.068	-0.055	-0.068	-0.068	-0.055	-0.020	-0.077	-0.052	-0.045
Energy	AE	-0.374	0.022	-0.296	-0.095	-0.286	-0.146	-0.296	-0.293	-0.297	0.042	-0.281	-0.320	-0.336
囝	OCSVM	-0.506	-0.015	-0.399	-0.104	-0.366	-0.167	-0.366	-0.366	-0.401	-0.018	-0.399	-0.401	-0.414
ט	LOF	-0.307	0.066	-0.252	-0.215	-0.249	-0.206	-0.208	-0.208	-0.244	0.066	-0.245	-0.249	-0.214
_	IF	-0.290	-0.071	-0.228	-0.253	-0.194	-0.262	-0.138	-0.138	-0.157	-0.071	-0.194	-0.186	-0.267
Į.	COPOD	-0.073	-0.010	-0.060	-0.015	-0.054	-0.038	-0.047	-0.047	-0.035	-0.010	-0.054	-0.047	-0.048
Energy	AE	-0.206	0.010	-0.163	-0.168	-0.180	-0.139	-0.152	-0.139	-0.154	0.016	-0.173	-0.198	-0.136
囝	OCSVM	-0.439	0.005	-0.296	-0.229	-0.339	-0.272	-0.306	-0.306	-0.273	0.005	-0.339	-0.342	-0.265
R	LOF	-0.355	0.072	-0.242	-0.345	-0.213	-0.080	-0.213	-0.213	-0.219	0.135	-0.242	-0.250	-0.281
	IF	-0.408	0.013	-0.246	-0.393	-0.171	-0.233	-0.171	-0.171	-0.188	-0.127	-0.246	-0.247	-0.336
50	COPOD	-0.092	-0.024	-0.030	-0.012	-0.006	-0.040	-0.006	-0.006	0.013	0.002	-0.030	-0.026	-0.034
Energy	AE	-0.319	0.045	-0.181	-0.289	-0.144	-0.165	-0.148	-0.155	-0.146	0.109	-0.208	-0.211	-0.209
囝	OCSVM	-0.494	0.009	-0.372	-0.351	-0.339	-0.180	-0.339	-0.339	-0.354	0.028	-0.372	-0.373	-0.349
4	LOF	-0.404	-0.307	-0.038	0.051	-0.124	0.032	-0.165	-0.023	-0.014	-0.111	-0.064	-0.225	-0.146
	IF	-0.177	-0.171	-0.128	0.023	-0.069	-0.009	-0.145	-0.007	0.073	-0.088	-0.035	-0.152	0.022
δĐ	COPOD	-0.084	-0.049	-0.042	0.036	-0.075	-0.015	-0.095	-0.009	0.022	-0.097	-0.050	-0.104	-0.040
NSLKDD	AE	-0.127	-0.154	-0.032	0.017	-0.101	-0.046	-0.128	-0.048	-0.003	-0.147	-0.121	-0.112	-0.086
Z	OCSVM	-0.286	-0.125	-0.002	-0.005	-0.160	-0.089	-0.130	-0.081	0.021	-0.018	-0.082	-0.110	-0.115
ט	LOF	-0.418	-0.330	-0.147	0.027	-0.275	-0.128	-0.275	-0.275	-0.104	-0.101	-0.273	-0.273	-0.307
-	IF	-0.341	-0.307	-0.262	0.009	-0.216	-0.083	-0.216	-0.216	-0.130	-0.128	-0.216	-0.216	-0.206
Ð	COPOD	-0.136	-0.029	0.014	0.048	-0.145	-0.013	-0.145	-0.145	-0.045	-0.081	-0.121	-0.121	-0.085
NSLKDD	AE	-0.354	-0.358	-0.301	0.011	-0.239	-0.176	-0.274	-0.299	-0.198	-0.177	-0.321	-0.306	-0.339
Z	OCSVM	-0.424	-0.356	-0.284	-0.015	-0.280	-0.218	-0.280	-0.280	-0.203	-0.115	-0.287	-0.287	-0.348
ъ.	LOF	-0.395	-0.393	-0.124	0.031	-0.319	-0.080	-0.247	-0.215	-0.047	-0.181	-0.240	-0.240	-0.286
	IF	-0.303	-0.318	-0.265	0.009	-0.278	-0.097	-0.272	-0.239	-0.109	-0.196	-0.278	-0.278	-0.261
NSLKDD	COPOD	-0.116	-0.043	-0.056	0.037	-0.087	0.014	-0.089	-0.124	0.021	-0.065	-0.089	-0.089	-0.052
$_{ m SL}$	AE	-0.243	-0.214	-0.232	0.004	-0.195	-0.157	-0.230	-0.229	-0.105	-0.289	-0.256	-0.257	-0.268
Z	OCSVM	-0.347	-0.256	-0.136	-0.001	-0.211	-0.144	-0.184	-0.153	-0.081	-0.201	-0.193	-0.193	-0.278

Table 13: Experimental results (naive strategy): Anomaly detection performance (backward transfer) in two learning settings: Concept-Incremental (CI) and Concept-Agnostic with different distance measures (columns), datasets (Energy, NSLKDD), scenarios (A, C, R), and models (LOF, IF, COPOD, AE, OCSVM).

	Model	CI	Bha	Can	Cheb	Czek	KD	Kul	Man	Ney	NI	SChi	SCho	VicCS
A	LOF	-0.454	0.149	-0.081	0.272	0.030	0.077	0.030	0.030	-0.076	0.056	0.030	-0.075	0.041
,	IF	-0.458	0.159	-0.204	0.081	-0.121	-0.112	-0.121	-0.121	-0.035	-0.141	-0.121	-0.211	0.112
$\mathbf{S}\mathbf{W}$	COPOD	-0.207	0.121	-0.059	0.033	-0.040	-0.015	-0.040	-0.040	-0.008	-0.047	-0.040	-0.063	0.028
Ž	AE	-0.468	0.195	-0.123	0.094	-0.005	0.043	0.002	-0.013	-0.101	-0.013	0.015	-0.096	0.113
\mathbf{c}	OCSVM	-0.405	0.130	-0.173	0.100	-0.081	-0.053	-0.081	-0.081	-0.121	-0.076	-0.081	-0.142	0.129
<u>၂</u>	LOF	-0.347	-0.068	-0.068	0.273	-0.026	0.160	-0.026	-0.026	0.146	0.068	-0.026	-0.104	0.069
_	IF	-0.301	-0.123	-0.221	0.131	-0.134	-0.207	-0.134	-0.134	0.004	-0.182	-0.134	-0.196	0.039
$\mathbf{S}\mathbf{W}$	${\rm COPOD}$	-0.191	-0.061	-0.118	0.124	-0.088	-0.104	-0.088	-0.088	0.051	-0.137	-0.088	-0.113	0.016
N	AE	-0.320	0.039	-0.141	0.101	-0.013	-0.050	-0.063	-0.035	0.060	-0.099	-0.072	-0.062	0.011
\supset	OCSVM	-0.262	-0.065	-0.110	0.091	-0.002	-0.049	-0.002	-0.002	0.034	-0.017	-0.002	-0.064	0.082
~	LOF	-0.354	-0.137	-0.076	-0.053	0.016	0.117	0.016	0.016	-0.059	0.047	0.016	-0.126	-0.035
	IF	-0.396	-0.215	-0.215	-0.011	-0.123	-0.121	-0.123	-0.123	-0.019	-0.054	-0.123	-0.233	-0.009
$\mathbf{S}\mathbf{W}$	COPOD	-0.238	-0.045	-0.082	0.061	-0.103	-0.043	-0.103	-0.103	0.118	-0.073	-0.103	-0.120	0.067
SNO	AE	-0.353	-0.214	-0.127	-0.019	-0.081	-0.006	-0.070	-0.111	-0.047	0.055	-0.048	-0.129	-0.062
\Box	OCSVM	-0.442											-0.196	
	LOF	-0.518	0.072	-0.245	-0.440	-0.245	-0.518	-0.245	-0.245	0.084	-0.241	-0.245	-0.245	0.009
Wind A	IF	-0.329	0.081	-0.063	-0.175	-0.063	-0.329	-0.063	-0.063	0.063	-0.066	-0.063	-0.063	-0.222
	COPOD	-0.104											-0.031	
	AE	-0.405											-0.220	
	OCSVM	-0.414											-0.257	
	LOF	-0.494											-0.235	
\circ	IF	-0.091											-0.064	
ηq	COPOD	-0.050											-0.023	
Wind	AE	-0.291											-0.206	
>	OCSVM	-0.385											-0.241	
	LOF	-0.570							-0.260				-0.260	
\mathbf{z}	IF	-0.324											-0.083	
	COPOD	-0.115											-0.028	
Wind	AE	-0.447											-0.221	
>	OCSVM	-0.430											-0.263	
	LOF	-0.481		-0.431									-0.346	
7	IF	-0.471											-0.345	
$\overline{\text{IDS}}$	COPOD	-0.333											-0.256	
ICI	AE	-0.506											-0.216	
CI	OCSVM	-0.531											-0.401	
	LOF	-0.475		-0.433									-0.401	
Ö													-0.310	
\mathbf{S}	IF COPOD													
CICID	COPOD												-0.386	
H	AE												-0.207	
_													-0.368	
\mathbf{z}	LOF												-0.314	
\mathbf{S}	IF COPOD AE OCSVM												-0.327	
H	COPOD												-0.377	
Ή	AE												-0.207	
J	OCSVM	-0.484	-0.469	-0.387	0.001	-0.378	-0.321	-0.378	-0.378	-0.288	-0.370	-0.378	-0.329	-0.333

Table 14: Experimental results (naive strategy): Anomaly detection performance (backward transfer) in two learning settings: Concept-Incremental (CI) and Concept-Agnostic with different distance measures (columns), datasets (UNSW, Wind, CICIDS), scenarios (A, C, R), and models (LOF, IF, COPOD, AE, OCSVM).

	Model	CI	Bha	Can	Cheb	Czek	KD	Kul	Man	Ney	NI	SChi	SCho	VicCS
	LOF	-0.018	0.048	0.037	0.098	0.041	0.147	0.043	0.048	0.031	0.138	0.038	0.034	-0.005
٦.	IF	-0.186	-0.008	-0.151	-0.019	-0.118	-0.086	-0.134	-0.125	-0.104	-0.026	-0.152	-0.144	-0.123
Energy	COPOD	-0.039	-0.025	-0.040	-0.021	-0.033	-0.028	-0.035	-0.034	-0.030	-0.018	-0.039	-0.033	-0.036
ne	AE	-0.048	0.024	-0.007	0.115	0.004	0.060	0.006	-0.007	-0.002	0.105	-0.014	-0.030	-0.039
囝	OCSVM	-0.128	-0.015	-0.126	-0.037	-0.118	-0.094	-0.118	-0.118	-0.111	-0.005	-0.127	-0.119	-0.099
ŭ	LOF	-0.012	0.099	0.058	0.049	0.025	0.102	0.030	0.025	-0.004	0.099	0.030	0.035	0.037
_	IF	-0.055	0.020	-0.039	-0.021	-0.033	-0.012	-0.021	-0.022	-0.029	0.018	-0.043	-0.029	-0.030
20	COPOD	-0.007	-0.003	-0.003	-0.004	-0.005	-0.004	-0.003	-0.002	-0.006	-0.003	-0.004	-0.003	-0.007
Energy	AE	-0.025	0.043	0.039	0.008	-0.003	0.054	0.000	0.013	-0.002	0.065	0.008	-0.003	-0.014
囝	OCSVM	-0.094	0.017	-0.074	-0.066	-0.087	-0.067	-0.075	-0.078	-0.082	0.016	-0.087	-0.080	-0.081
R	LOF	-0.009	0.072	0.087	-0.010	0.100	0.181	0.107	0.105	0.081	0.158	0.087	0.085	0.020
	IF	-0.131	0.013	-0.069	-0.091	-0.038	-0.047	-0.040	-0.036	-0.043	-0.024	-0.072	-0.067	-0.129
1	COPOD	-0.027	-0.024	-0.025	-0.018	-0.018	-0.010	-0.018	-0.018	-0.017	-0.005	-0.025	-0.021	-0.025
Energy	AE	-0.018	0.042	0.027	-0.032	0.064	0.181	0.075	0.043	0.045	0.140	0.043	0.024	0.003
囝	OCSVM	-0.088	0.009	-0.080	-0.057	-0.069	-0.053	-0.068	-0.068	-0.067	0.044	-0.079	-0.076	-0.106
⋖	LOF	-0.014	-0.009	0.213	0.051	0.272	0.313	0.285	0.365	0.349	0.359	0.333	0.169	0.290
	IF	-0.033	-0.032	-0.002	0.023	0.048	0.095	-0.027	0.097	0.075	-0.010	0.078	-0.026	0.076
NSLKDD	COPOD	0.063	0.056	0.058	0.036	0.058	0.125	0.039	0.122	0.080	0.058	0.081	0.041	0.062
\mathbf{SL}	AE	-0.024	-0.026	0.035	0.017	-0.024	0.033	-0.004	0.030	0.063	0.052	-0.008	-0.021	-0.018
Z	OCSVM	-0.088	-0.093	-0.066	-0.005	-0.114	-0.036	-0.119	-0.041	-0.028	-0.047	-0.048	-0.122	-0.080
ŭ	LOF	-0.055	0.004	0.056	0.027	0.106	0.201	0.093	0.075	0.168	0.207	0.114	0.080	0.014
_	IF	-0.114	-0.085	-0.085	0.009	-0.051	0.016	-0.078	-0.053	0.058	0.015	-0.033	-0.082	0.014
Ð	COPOD	0.025	0.024	0.017	0.048	0.015	0.037	0.016	0.018	0.054	0.060	0.014	0.015	0.011
NSLKDD	AE	-0.139	-0.125	-0.081	0.004	-0.079	0.007	-0.098	-0.113	-0.020	-0.033	-0.098	-0.088	-0.106
Z	OCSVM	-0.128	-0.114	-0.163	-0.015	-0.137	-0.076	-0.138	-0.135	-0.068	-0.086	-0.138	-0.137	-0.117
H	LOF	-0.010	-0.041	0.086	0.031	0.105	0.157	0.110	0.136	0.226	0.215	0.124	0.127	0.146
	IF	-0.090	-0.097	-0.098	0.009	-0.108	0.046	-0.106	-0.108	0.010	-0.047	-0.110	-0.103	-0.097
NSLKDD	COPOD	0.027	0.026	0.014	0.037	0.019	0.075	0.018	0.008	0.068	0.024	0.018	0.017	0.039
\mathbf{SL}	AE	-0.072	-0.050	-0.034	0.007	-0.034	0.019	-0.089	-0.041	-0.009	-0.019	-0.035	-0.071	-0.080
Z	OCSVM	-0.104	-0.111	-0.145	-0.001	-0.142	-0.048	-0.142	-0.107	-0.075	-0.110	-0.144	-0.144	-0.119

Table 15: Experimental results (replay strategy): Anomaly detection performance (backward transfer) in two learning settings: Concept-Incremental (CI) and Concept-Agnostic with different distance measures (columns), datasets (Energy, NSLKDD), scenarios (A, C, R), and models (LOF, IF, COPOD, AE, OCSVM).

	Model	CI	Bha	Can	Cheb	Czek	KD	Kul	Man	Ney	NI	SChi	SCho	VicCS
∀	LOF	-0.062	0.254	0.144	0.306	0.232	0.212	0.234	0.238	0.161	0.277	0.256	0.157	0.197
	IF	-0.070	0.188	0.012	0.057	0.059	0.112	0.054	0.077	0.029	0.049	0.060	0.014	0.114
$\mathbf{S}\mathbf{W}$	COPOD	-0.015	0.070	-0.007	0.017	0.002	0.021	0.002	0.003	0.001	-0.007	0.002	-0.005	0.005
Ž D	AE	0.114	0.142	0.024	0.089	0.131	0.073	0.186	0.131	0.104	0.156	0.214	0.073	0.203
	OCSVM	-0.093	0.133	0.021	0.093	0.057	0.048	0.058	0.056	-0.004	0.046	0.058	0.028	0.145
ر 2	LOF	0.005	0.259	0.180	0.305	0.258	0.225	0.225	0.247	0.094	0.278	0.249	0.209	0.136
	IF	-0.013	0.005	0.066	0.115	0.033	0.131	0.064	0.037	0.032	0.025	0.030	0.043	0.141
UNSW	COPOD	0.020	0.021	-0.020	0.153	-0.011	0.007	-0.010	-0.010	0.027	-0.026	-0.010	-0.016	0.035
	AE	0.034	0.006	0.087	0.113	0.168	0.154	0.237	0.116	0.126	0.160	0.184	0.107	0.050
\supset	OCSVM	-0.041	0.060	0.105	0.095	0.137	0.046	0.138	0.138	0.084	0.127	0.138	0.110	0.079
~	LOF	0.004	0.167	0.183	0.014	0.290	0.137	0.292	0.290	0.085	0.286	0.281	0.220	0.205
	IF	-0.015	0.072	0.055	-0.007	0.116	0.043	0.109	0.110	0.040	0.141	0.126	0.036	0.144
NSW	COPOD	0.023	0.065	-0.002	0.092	0.026	0.028	0.026	0.026	0.102	0.037	0.027	-0.005	0.059
Ž	AE	-0.021	0.016	0.178	-0.032	0.096	0.124	0.169	0.170	0.030	0.163	0.187	0.110	0.065
\Box	OCSVM	-0.038	0.132	0.084	0.021	0.124	0.073	0.124	0.124	0.082	0.136	0.122	0.087	0.161
	LOF	-0.021	0.072	0.042	-0.019	0.042	-0.023	0.041	0.040	0.101	0.082	0.041	0.034	0.058
⋖	IF	-0.059	0.081	0.062	-0.004	0.069	-0.121	0.083	0.058	0.088	0.101	0.070	0.075	-0.001
$_{ m ud}$	COPOD	-0.024	-0.043	0.026	-0.016	0.026	-0.034	0.025	0.025	-0.014	0.029	0.026	0.025	-0.016
Wind	AE	-0.051	0.072	0.025	-0.038	0.014	-0.054	0.057	-0.025	0.083	0.082	-0.051	0.030	0.013
	OCSVM	-0.105	0.003	-0.045	-0.021	-0.044	-0.151	-0.043	-0.042	0.053	-0.021	-0.043	-0.045	-0.060
	LOF	-0.008	0.046	0.023	0.032	0.030	-0.009	0.028	0.025	0.063	0.056	0.028	0.026	0.019
Ö	IF	-0.012	0.080	0.043	0.005	0.055	-0.051	0.048	0.044	0.078	0.076	0.061	0.063	0.020
nd	COPOD	0.003	-0.011	0.017	0.002	0.017	-0.011	0.017	0.019	0.002	0.026	0.017	0.017	-0.004
Wind	AE	-0.011	0.014	0.044	0.019	0.062	-0.019	0.024	0.026	0.037	0.049	0.011	0.046	-0.043
_	OCSVM	-0.105	-0.044	-0.051	-0.054	-0.046	-0.133	-0.049	-0.047	0.054	-0.026	-0.047	-0.046	-0.013
	LOF	-0.038	0.080	0.028	0.001	0.024	-0.032	0.032	0.026	0.113	0.027	0.027	0.028	-0.027
모	IF	-0.086	0.100	0.038	0.003	0.058	-0.141	0.050	0.047	0.103	0.063	0.056	0.054	0.024
nd	COPOD	-0.035	0.019	0.017	-0.020	0.019	-0.053	0.017	0.019	0.004	0.026	0.012	0.018	-0.025
Wind	AE	-0.069	0.018	0.010	0.003	-0.052	-0.070	0.075	0.014	0.072	0.078	-0.033	0.063	-0.021
	OCSVM	-0.095	-0.036	-0.052	0.010		-0.145			0.052	-0.054	-0.055	-0.056	0.041
A	LOF	-0.001	-0.002	0.055	0.058	0.083	0.083	0.083	0.083	0.157	0.103	0.066	0.158	0.110
$\mathbf{\tilde{\alpha}}$	IF	-0.124	-0.133	-0.148	0.008	-0.127	-0.098	-0.127	-0.127	0.023	-0.016	-0.129	-0.065	0.028
CID	COPOD	-0.074	-0.081	-0.131	-0.014	-0.134	-0.119	-0.134	-0.134		-0.066	-0.134	-0.122	-0.028
Γ	AE	-0.021	-0.008	0.008	0.044	0.022	0.025	0.022	0.022	0.222	0.116	0.041	0.117	0.178
\mathcal{O}	OCSVM	-0.136	-0.138	-0.122	0.019					0.041	-0.003	-0.109	-0.076	-0.011
\circ	LOF	-0.002	0.094	0.092	0.058	0.072	0.084	0.072	0.072	0.082	0.083	0.072	0.012	0.065
\mathbf{s}	IF						-0.222							
Ħ	COPOD						-0.170							
CICID	AE	-0.015					0.050							
	OCSVM						-0.024							
Ξ	LOF						0.058							
\mathbf{s}	IF						-0.265							
Ţ	COPOD						-0.092							
CICID	AE	-0.013					0.026							
\circ	OCSVM	-0.100	-0.107	-0.138	0.001	-0.142	-0.159	-0.142	-0.142	-0.062	-0.114	-0.145	-0.078	-0.126

Table 16: Experimental results (replay strategy): Anomaly detection performance (backward transfer) in two learning settings: Concept-Incremental (CI) and Concept-Agnostic with different distance measures (columns), datasets (UNSW, Wind), scenarios (A, C, R), and models (LOF, IF, COPOD, AE, OCSVM).

	Model	CI	Bha	Can	Cheb	Czek	KD	Kul	Man	Ney	NI	SChi	SCho	VicCS
₹:	LOF	-0.016	0.048	0.054	0.111	0.055	0.121	0.055	0.055	0.037	0.139	0.054	0.054	-0.002
٠,٦	IF	-0.180	-0.008	-0.094	-0.012	-0.076	-0.067	-0.076	-0.076	-0.080	0.003	-0.094	-0.094	-0.091
<u> </u>	COPOD	-0.062	-0.025	-0.040	-0.019	-0.038	-0.038	-0.038	-0.038	-0.035	-0.027	-0.040	-0.040	-0.036
$oldsymbol{C} \mid \mathbf{Energy}$	AE	-0.052	0.022	-0.019	0.096	0.002	0.122	-0.011	0.015	0.000	0.102	0.006	-0.014	-0.023
	OCSVM	-0.141	-0.015	-0.110	-0.048	-0.105	-0.074	-0.105	-0.105	-0.098	0.003	-0.110	-0.110	-0.085
	LOF	-0.009	0.110	0.058	0.056	0.049	0.100	0.049	0.049	0.010	0.110	0.049	0.049	0.052
	IF	-0.060	0.030	-0.018	-0.021	-0.013	-0.001	0.001	0.001	-0.009	0.030	-0.013	-0.013	-0.010
Energy	COPOD	-0.015	-0.007	-0.011	-0.010	-0.008	-0.001	-0.006	-0.006	-0.009	-0.007	-0.008	-0.008	-0.009
ne	AE	-0.018	0.069	0.040	0.006	-0.004	0.048	-0.004	0.015	0.000	0.045	0.025	0.048	-0.005
国	OCSVM	-0.115	0.012	-0.061	-0.063	-0.081	-0.054	-0.076	-0.076	-0.074	0.012	-0.081	-0.081	-0.062
H	LOF	-0.010	0.072	0.095	-0.010	0.100	0.172	0.100	0.100	0.090	0.161	0.095	0.095	0.019
	IF	-0.134	0.013	-0.041	-0.076	-0.015	-0.018	-0.015	-0.015	-0.021	-0.003	-0.041	-0.041	-0.101
Energy	COPOD	-0.038	-0.024	-0.010	-0.012	-0.004	-0.025	-0.004	-0.004	-0.005	-0.005	-0.010	-0.010	-0.031
ne	AE	-0.013	0.044	0.048	-0.043	0.054	0.190	0.054	0.062	0.040	0.171	0.013	0.025	0.020
团	OCSVM	-0.122	0.009	-0.086	-0.077	-0.079	-0.040	-0.079	-0.079	-0.073	0.036	-0.086	-0.086	-0.100
A	LOF	-0.018	-0.008	0.235	0.051	0.285	0.313	0.265	0.386	0.362	0.335	0.344	0.158	0.281
	IF	-0.034	-0.030	0.000	0.023	0.054	0.101	-0.016	0.102	0.065	-0.003	0.084	-0.019	0.080
NSLKDD	COPOD	0.037	0.040	0.051	0.036	0.057	0.128	0.036	0.128	0.073	0.043	0.089	0.039	0.056
\mathbf{SL}	AE	-0.018	-0.014	0.050	0.024	-0.004	0.108	-0.008	0.064	0.097	0.071	0.004	-0.016	-0.010
Z	OCSVM	-0.053	-0.053	0.043	-0.005	-0.030	-0.018	0.002	-0.018	0.011	0.010	-0.027	0.002	-0.027
<u>ں</u>	LOF	-0.060	-0.022	0.052	0.027	0.120	0.190	0.120	0.120	0.166	0.212	0.120	0.120	0.072
_	IF	-0.115	-0.080	-0.080	0.009	-0.044	0.024	-0.044	-0.044	0.055	-0.009	-0.043	-0.043	0.008
SLKDD	COPOD	0.003	0.016	0.008	0.048	0.031	0.062	0.031	0.031	0.042	0.053	0.030	0.030	0.030
\mathbf{SL}	AE	-0.142	-0.105	-0.061	0.004	-0.079	0.032	-0.050	-0.059	-0.025	0.003	-0.093	-0.081	-0.055
Z	OCSVM	-0.111	-0.106	-0.078	-0.015	-0.046	-0.040	-0.046	-0.046	-0.026	-0.032	-0.046	-0.046	-0.047
<u>بر</u>	LOF	-0.048	-0.048	0.096	0.031	0.080	0.189	0.090	0.114	0.239	0.173	0.109	0.109	0.127
	IF	-0.090	-0.086	-0.083	0.009	-0.087	0.067	-0.086	-0.086	0.005	-0.034	-0.084	-0.084	-0.088
SLKDD	COPOD	-0.021	-0.015	-0.018	0.037	-0.020	0.105	-0.020	-0.010	0.038	-0.002	-0.020	-0.020	-0.009
\mathbf{SL}	AE	-0.030	-0.036	-0.006	0.017	-0.041	0.091	-0.019	-0.031	-0.052	-0.004	-0.019	-0.040	-0.027
Z	OCSVM	-0.053	-0.054	-0.002	-0.001	-0.004	-0.012	-0.002	-0.002	0.009	0.005	-0.001	-0.001	-0.044

Table 17: Experimental results (cumulative strategy): Anomaly detection performance (backward transfer) in two learning settings: Concept-Incremental (CI) and Concept-Agnostic with different distance measures (columns), datasets (Energy, NSLKDD), scenarios (A, C, R), and models (LOF, IF, COPOD, AE, OCSVM).

	Model	CI	Bha	Can	Cheb	Czek	KD	Kul	Man	Ney	NI	SChi	SCho	VicCS
4	LOF	-0.049	0.287	0.206	0.306	0.301	0.279	0.301	0.301	0.224	0.305	0.301	0.223	0.242
MS.	IF	-0.072	0.138	0.054	0.057	0.092	0.116	0.092	0.092	0.019	0.090	0.092	0.048	0.136
	COPOD	-0.047	0.066	0.001	0.017	0.018	0.052	0.018	0.018	0.005	0.020	0.018	0.001	0.019
S N N	AE	-0.160	0.178	0.023	0.139	0.135	0.152	0.189	0.168	0.047	0.123	0.134	0.155	0.182
\Box	OCSVM	-0.066	0.084	0.023	0.093	0.032	0.016	0.032	0.032	-0.019	0.029	0.032	0.026	0.100
UNSW C	LOF	-0.003	0.189	0.208	0.305	0.282	0.311	0.282	0.282	0.208	0.291	0.282	0.226	0.224
	IF	-0.025	0.010	0.079	0.115	0.086	0.132	0.086	0.086	0.050	0.086	0.086	0.070	0.123
	COPOD	0.001	0.053	0.074	0.153	0.085	0.123	0.085	0.085	0.041	0.082	0.085	0.080	0.084
	AE	-0.066	0.098	0.057	0.128	0.109	0.175	0.183	0.152	0.073	0.187	0.126	0.085	0.073
	OCSVM	-0.011	0.047	0.094	0.095	0.102	0.028	0.102	0.102	0.054	0.100	0.102	0.098	0.108
~	LOF	-0.003	0.192	0.190	0.014	0.273	0.263	0.273	0.273	0.169	0.273	0.273	0.201	0.186
	IF	-0.010	0.089	0.086	-0.007	0.130	0.059	0.130	0.130	0.041	0.129	0.130	0.082	0.120
$\mathbf{S}\mathbf{W}$	COPOD	0.000	0.072	0.050	0.092	0.095	0.090	0.095	0.095	0.100	0.102	0.095	0.046	0.112
S N N	AE	-0.059	0.065	0.042	-0.024	0.251	0.130	0.157	0.185	-0.017	0.260	0.151	0.138	0.038
\mathbf{O}	OCSVM	-0.027	0.087	0.072	0.021	0.081	0.032	0.081	0.081	0.088	0.082	0.081	0.071	0.115
	LOF	-0.020	0.072	0.083	-0.018	0.083	-0.020	0.083	0.083	0.101	0.083	0.083	0.083	0.072
⋖	IF	-0.050	0.081	0.130	0.034	0.130	-0.050	0.130	0.130	0.088	0.130	0.130	0.130	0.026
$_{ m ud}$	COPOD	-0.055	-0.043	-0.009	-0.016	-0.009	-0.055	-0.009	-0.009	-0.014	-0.009	-0.009	-0.009	-0.027
Wind	AE	-0.030	0.068	0.075	-0.048	0.031	-0.036	0.058	0.032	0.049	0.070	0.058	0.073	0.049
	OCSVM	-0.089	0.003	-0.019	-0.031	-0.019	-0.089	-0.019	-0.019	0.053	-0.019	-0.019	-0.019	-0.002
	LOF	-0.010	0.046	0.056	0.019	0.056	-0.010	0.056	0.056	0.063	0.056	0.056	0.056	0.057
Ö	IF	-0.007	0.080	0.087	0.017	0.087	-0.007	0.087	0.087	0.078	0.087	0.087	0.087	0.045
$_{ m u}$	COPOD	-0.011	-0.011	0.008	-0.007	0.008	-0.011	0.008	0.008	0.002	0.008	0.008	0.008	-0.002
Wind	AE	-0.016	0.021	0.050	0.012	0.010	-0.035	0.025	0.062	0.018	0.106	0.059	0.079	0.006
	OCSVM	-0.081	-0.044	-0.019	-0.007	-0.019	-0.081	-0.019	-0.019	0.054	-0.019	-0.019	-0.019	0.039
_ ,	LOF	-0.035	0.082	0.082	0.001	0.082	-0.035	0.082	0.082	0.113	0.082	0.082	0.082	0.041
~	IF	-0.073	0.113	0.113	0.070	0.113	-0.073	0.113	0.113	0.103	0.113	0.113	0.113	0.057
nd	COPOD	-0.061	-0.006	-0.006	0.025	-0.006	-0.061	-0.006	-0.006	0.004	-0.006	-0.006	-0.006	-0.007
Wind	AE	-0.060	0.050	0.007	0.004	0.130	-0.065	0.051	0.015	0.090	0.034	0.009	0.040	0.041
_	OCSVM	-0.084	-0.026	-0.026	0.036	-0.026	-0.084	-0.026	-0.026	0.052	-0.026	-0.026	-0.026	0.056
⋖	LOF	-0.001	-0.	0.047	0.058	0.073	0.089	0.073	0.073	0.170	0.114	0.073	0.095	0.118
$\mathbf{\tilde{\omega}}$	IF	-0.133	-0.123	-0.113	0.008	-0.093	-0.076	-0.093	-0.093	0.032	0.007	-0.093	-0.068	0.080
CID	COPOD	-0.097	-0.078	-0.088	-0.014	-0.081	-0.073	-0.081	-0.081	-0.030	-0.056	-0.081	-0.060	-0.017
Γ	AE	0.000	-0.006	0.078	0.059	0.060	0.051	0.060	0.060	0.230	0.148	0.061	0.132	0.208
O	OCSVM	-0.164	-0.166	-0.140	0.019	-0.150	-0.162	-0.150	-0.150	-0.011	-0.052	-0.150	-0.137	-0.034
Ö	LOF	-0.001	0.091	0.107	0.058	0.082	0.080	0.082	0.082	0.131	0.058	0.082	0.082	0.067
$\mathbf{\tilde{\alpha}}$	IF	-0.237	-0.157	-0.148	-0.003	-0.157	-0.151	-0.157	-0.157	-0.099	-0.221	-0.157	-0.093	-0.121
	COPOD	-0.159	-0.138	-0.096	0.013	-0.110	-0.135	-0.110	-0.110	-0.053	-0.125	-0.110	-0.104	-0.125
Γ	AE	-0.011	0.091	0.126	0.071	0.123	0.071	0.123	0.123	0.043	0.089	0.080	0.078	0.161
Ö	COPOD AE OCSVM	-0.046	-0.031	-0.028	0.017	-0.064	-0.042	-0.064	-0.064	0.017	-0.008	-0.064	-0.035	-0.037
Ξ	LOF	-0.001								0.167				
$\tilde{\mathbf{x}}$	IF									-0.229				
	COPOD									-0.047				
CICID	AE									0.078				
Ö	OCSVM	-0.112	-0.104	-0.092	0.001	-0.109	-0.146	-0.109	-0.109	-0.048	-0.091	-0.109	-0.079	-0.092

Table 18: Experimental results (cumulative strategy): Anomaly detection performance (backward transfer) in two learning settings: Concept-Incremental (CI) and Concept-Agnostic with different distance measures (columns), datasets (UNSW, Wind, CICIDS), scenarios (A, C, R), and models (LOF, IF, COPOD, AE, OCSVM).