ONE HOUR THIRTY MINUTES

A list of constants is enclosed.

UNIVERSITY OF MANCHESTER

Complex Variables and Vector Spaces

24 May 2019, 09:45 - 11:15

Answer $\underline{\mathbf{ALL}}$ parts of question 1 and $\underline{\mathbf{TWO}}$ other questions

Electronic calculators may be used, provided that they cannot store text.

The numbers are given as a guide to the relative weights of the different parts of each question.

- 1. (a) For a function f(z) = u(x, y) + iv(x, y), where z = x + iy, state the Cauchy-Riemann conditions for f(z) to be differentiable. Show that they are satisfied for $f(z) = z^3$.

 [6 marks]
 - (b) Show by explicit integration that $\oint_C \frac{1}{z-1} dz = 2\pi i$, where C is a circle of radius r centred on z = 1.

[6 marks]

(c) Sketch the following three regions of the complex plane:

$$|z| > |z - 1 - i|$$
; $-\pi/4 < \text{Arg}[z - 1] < \pi/4$; $1 < |z - 1 + i| < 2$. [6 marks]

(d) The real functions $u_n(x)$ have the form $u_n(x) = e^{-x^2/2} H_n(x)$, where $H_n(x)$ is a polynomial of degree n in the real variable x. The scalar product is given by

$$\langle u_m | u_n \rangle = \int_{-\infty}^{\infty} u_m(x) u_n(x) dx.$$

Find $H_2(x)$, given that the functions u_0 , u_1 and u_2 are mutually orthogonal. (Your answer for H_2 does not need to be normalized.)

You may use without proof the standard integrals

$$\int_{-\infty}^{\infty} e^{-x^2} dx = \sqrt{\pi} \quad \text{and} \quad \int_{-\infty}^{\infty} x^2 e^{-x^2} dx = \sqrt{\pi}/2.$$
 [7 marks]

2 of 5 P.T.O

- **2.** (a) An analytic function f(z) = u + iv, where z = x + iy, has real part $u(x,y) = x^2 y^2 + 3y$.
 - (i) Show that u(x, y) is a harmonic function.

[2 marks]

- (ii) Find v(x, y), the imaginary part of f(z), given that v(1, 1) = 1. [6 marks]
- (iii) Express f(z) in terms of z.

[3 marks]

- (b) In the remainder of this question we consider the mapping w = u + iv = 1/z, where z = x + iy.
 - (i) Show that the line x = 0, $y \neq 0$ is mapped into a straight line in the w plane. [2 marks]
 - (ii) By considering the definition u = Re(1/z), show that lines of constant $u \neq 0$ are circles in the z plane: $(x x_0)^2 + y^2 = R^2$. Determine x_0 and R in terms of u.

[4 marks]

- (iii) Draw lines of constant u in the xy plane for the cases $u=0,\pm 1$ and ± 2 . [5 marks]
- (iv) Suggest **one** electrostatics problem for which u(x,y) would be the potential. Specify carefully any conductors and their potentials.

[3 marks]

3 of 5 P.T.O

- **3.** (a) Use Cauchy's residue theorem and a suitable choice of contour (which you should sketch) to evaluate **one** of the following integrals:
 - either (i) the principal value integral $\int_{-\infty}^{\infty} \frac{\cos(kx)}{x-1} dx$ for real k > 0;

or (ii)
$$\int_0^\infty \frac{\sqrt{x}}{x^2 + 9} \, \mathrm{d}x.$$

If Jordan's lemma is used, show that the conditions for its validity are satisfied.

[12 marks]

- (b) (i) Find the poles and residues of the function $f(z) = \frac{1}{z^3 \cos(\pi z)}$. [4 marks]
 - (ii) Use your results from (i) and a suitable contour integral to show that

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^3} = \frac{\pi^3}{32}.$$

[9 marks]

4 of 5 P.T.O

4. (a) Give short definitions of (i) the Hermitian conjugate (or adjoint) of a linear operator, (ii) an Hermitian operator, and (iii) a unitary operator.

[4 marks]

(b) For each of the following matrices, in which $\theta \neq 0$ is real, state whether the matrix is Hermitian, unitary, both, or neither:

(i)
$$\begin{pmatrix} 1 & \theta \\ 0 & 1 \end{pmatrix}$$
; (ii) $\begin{pmatrix} 0 & 1 \\ e^{i\theta} & 0 \end{pmatrix}$; (iii) $\begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$. [3 marks]

(c) A linear operator \widehat{A} is defined as follows by its action on square-integrable functions of a real variable x:

$$\langle x|\widehat{A}|f\rangle = f(x) - f(-x).$$

The scalar product of functions f and g is defined as

$$\langle f|g\rangle = \int_{-\infty}^{\infty} \overline{f}(x)g(x) \,\mathrm{d}x.$$

(i) By considering the action of \widehat{A}^2 on a function f(x), find an algebraic equation relating \widehat{A}^2 to \widehat{A} .

[5 marks]

(ii) Determine whether the operator \widehat{A} is Hermitian. Is it also unitary? Explain your answer.

[6 marks]

(iii) Calculate the eigenvalues of \widehat{A} . Give **one** explicit example of a normalizable eigenfunction for **each** eigenvalue. (The functions you give need not be normalized.)

[7 marks]

END OF EXAMINATION PAPER