Interpolating polynomials

Sometimes we want to find a function that takes some prescribed values at certain given points, Polynomials help us to find such a function, which has no sharp corners.

Theorem (Interpolating polynomials)

For $n \in \mathbb{N}$, let $x_1, x_2, ..., x_n$ be distinct real numbers and $y_1, ..., y_{n}$ any real numbers. Then there is a unique polynomial p(n) of degree $\leq n-1$ such that $p(x_i) = y_i$ for all $i \in \{1, ..., n\}$.

Remark: If the n_i 's are not distinct, e.g. $n_1 = n_2$, then there may not be any function with $f(n_1) = y_1$ and $f(n_2) = y_2$, because we may have $y_1 \neq y_2$.

(Cf. "vertical line test")

Examples

* n=1: Given $x_i \in \mathbb{R}$ and $y_i \in \mathbb{R}$ we can find a constant function p(u) with $p(x_i) = y_1$, namely $p(x) = y_1$ for all $u \in \mathbb{R}$.

 $m = \frac{y_2 - y_1}{x_2 - x_1} \text{ and } k = \frac{y_1 x_2 - y_2 x_1}{x_2 - x_1}$

with $p(x_1)=1$ and $p(x_2)$.

* $n \ge 2$, $y_1 = 1$, $y_2 = y_3 = \dots = y_n = 0$; Taking products of the previous case we can take $p(a) = \frac{n - n_2}{n_1 - n_2} \cdot \frac{n - n_3}{n_1 - n_3} \cdot \dots \cdot \frac{n - n_n}{n_1 - n_n}$

Here each factor is a linear function. There are n-1 factors, so p(a) has degree = n-1. Each factor has value 1 at N_1 , so $\mu(N_1)=1$. Ear N_i with $i\geq 2$ there's a factor with value 0, so $\mu(N_i)=0$ if $i\geq 2$.

The polynomial in the last example is called a haguange basis polynomial. Given a distinct rumbers $\mathcal{H}_1, \ldots, \mathcal{H}_n$ there are a such haguange basis polynomials, which vanish at all \mathcal{H}_i 's except for one, where their value is 1,

broof of theorem on interpolating polynomials:

Uniqueness: Euppose that p(n) and q(n) are polynomials of degree $\leq n-1$ with $p(n_i) = y_i$ and $q(n_i) = y_i$ for all $i \in \{1, ..., n\}$. Then p-q is a polynomial of degree $\leq n-1$ with $(p-q)(R_i) = p(R_i) - q(R_i) = 0$ for all $i \in \{1,...,n\}$, so p-q has a roots. This can only happen when (p-q)(a) = 0 for all $x \in R$, i.e. p(a) = q(a), so p and q are the same function,

Existence: First consider the hagrange basis polynomials Mg(n), ..., Mala) with $N_1(n) = \frac{n - n_2}{n_1 - n_2}, \frac{n - n_3}{n_1 - n_3}, \dots, \frac{n - n_n}{n_1 - n_n},$ $\mu_1(n_1)=1, \ \mu(n_2)=..=\mu(n_n)=0$

12 (N2)=1, p(N1)=p(N3)===p(Rn)=0

 $\mu_{\Lambda}(n) = \frac{n - n_1}{n_1 - n_1}, \frac{n - n_2}{n_1 - n_2}, \dots, \frac{n - n_{\Lambda-1}}{n_{\Lambda} - n_{\Lambda-1}}$ m, (x)=1, p(n)= == p(n,-1)=0.

yn n (n), which has degree ≤ 1 We can take $p(u) = y_1 \cdot p_1(u) + y_2 \cdot p_2(u) + ... +$ a.E.D.

and $p(u_i) = y_i$ for all $i \in \{1, ..., n\}$.

Example Find the formula for the unique quadratic polynomial through (1,-3), (2,2) and (3,-1),

Solution: We first find the hagrange basis polynomials for the points 1,2,3:

$$N_1(n) = \frac{\chi - 2}{1 - 2}, \frac{\chi - 3}{1 - 3} = \frac{1}{2}(\chi - 2)(\chi - 3) = \frac{1}{2}\chi^2 - 2\frac{1}{2}\chi + 3,$$

$$n_2(u) = \frac{u-1}{2-1}, \frac{u-3}{2-3} = -(u-1)(u-3) = -u^2 + 4u - 3,$$

$$N_3(n) = \frac{n-1}{3-1}, \frac{n-2}{3-2} = \frac{1}{2}(n-1)(n-2) = \frac{1}{2}n^2 - 1\frac{1}{2}n + 1,$$

We then have $p(n) = -3 \cdot p_1(n) + 2 \cdot p_2(n) - 1 \cdot p_3(n)$ $= -3 \cdot (\frac{1}{2}n^2 - 2\frac{1}{2}n + 3) + 2 \cdot (-n^2 + 4n - 3) - (\frac{1}{2}n^2 - 1\frac{1}{2}n + 1)$ $= -1\frac{1}{2}n^2 + 7\frac{1}{2}n - 9 - 2n^2 + 9n - 6 - \frac{1}{2}n^2 + 1\frac{1}{2}n - 1$ $= -4n^2 + 17n - 16,$ Check: p(1) = -4 + 17 - 16 = -3, $p(2) = -4 \cdot 4 + 17 \cdot 2 - 16 = -16 + 34 - 16 = 2,$ $p(3) = -4 \cdot 9 + 17 \cdot 3 - 16 = -36 + 51 - 16 = -1,$ $(p(n) \text{ has a maximum at } 2\frac{1}{6}, \text{ where } p(2\frac{1}{6}) = 2\frac{1}{16},$

the roots of p are at $2\frac{7}{\theta} - \frac{\sqrt{337}}{\theta}$ and $2\frac{7}{\theta} + \frac{\sqrt{337}}{\theta}$

