Survey Experiments

POLSCI 4SS3

Winter 2023

Announcements

- Schedule group meetings before break!
- Need help with R? Check the Data Analysis Support Hub at Mac
- You can book virtual research consultations with an expert

Last week

- We discussed and explored techniques to reduce sensitivity bias
- Some techniques are observational (e.g. randomized response)
- Some techniques are experimental (e.g. list experiment)
- Today: Discuss surveys using experiments more generally

Survey experiments

Data strategy

Inquiry Observational Experimental

Descriptive

Causal

Data	strategy
------	----------

Inquiry	Observational	Experimental
Descriptive	Sample survey	
Causal		

Data strategy

Inquiry	Observational	Experimental
Descriptive	Sample survey	List experiment

Causal

Data strategy

Inquiry	Observational	Experimental
Descriptive	Sample survey	List experiment
Causal	Panel survey	

Data strategy

Inquiry	Observational	Experimental
Descriptive	Sample survey	List experiment
Causal	Panel survey	Survey experiment

Survey experiments are **experimental** data strategies that answer a **causal** inquiry

Survey experiments

- Assign respondents to conditions
- Usually by random assignment
- Each condition is a different version of a question or vignette
- Goal: Understand the effect of different conditions on the outcome question if interest
- How does this work?

Taking a step back

- Two ways to express functional relations
- 1. Structural causal models (two weeks ago)
- 2. Potential outcomes framework (today)

Potential outcomes framework

Notation

- *i*: unit of analysis (e.g. individuals, schools, countries)
- $Z_i = \{0,1\}$ indicates a condition (1: Treatment, 0: Control)
- $Y_i(Z_i)$ is the individual **potential outcome**
- $Y_i(0)$: Potential outcome under control
- $Y_i(1)$: Potential outcome under treatment

Toy example

ID	Female	$Y_i(1)$	$Y_i(0)$
1	0	0	0
2	0	1	0
3	1	1	0
4	1	1	1

ullet $au_i = Y_i(1) - Y_i(0)$ is the individual causal effect

Toy example

ID	Female	$Y_i(1)$	$Y_i(0)$	$ au_i$
1	0	0	0	0
2	0	1	0	1
3	1	1	0	1
4	1	1	1	0

- ullet $au_i = Y_i(1) Y_i(0)$ is the individual causal effect
- ullet $au=(1/n)\sum_{i=1}^n au_i=E[au_i]$ is the inquiry
- We call au the Average Treatment Effect (ATE)

A note on notation

Greek

- Letters like μ denote estimands
- A hat $\hat{\mu}$ denotes **estimators**

Latin

- Letters like X denote actual variables in our data
- A bar \bar{X} denotes an estimate calculated from our data

$$X o ar{X} o \hat{\mu} \stackrel{ ext{hopefully!}}{-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-\!\!\!\!-} \mu$$

Challenge

- We want to know the ATE au
- ullet This requires us to know $au_i = Y_i(1) Y_i(0)$
- But when we assign treatment conditions we only observe one of the potential outcomes $Y_i(1)$ or $Y_i(0)$
- Meaning that τ_i is impossible to calculate!
- This is the fundamental problem of causal inference

Continuing the example

Unobserved

ID	Female	$Y_i(1)$	$Y_i(0)$	$ au_i$
1	0	0	0	0
2	0	1	0	1
3	1	1	0	1
4	1	1	1	0

ullet We can randomly assign conditions Z_i

Continuing the example

		Unobserved			Obse	rved
ID	Female	$Y_i(1)$	$Y_i(0)$	$ au_i$	Z_{i}	Y_i
1	0	0	0	0	1	0
2	0	1	0	1	0	0
3	1	1	0	1	1	1
4	1	1	1	0	0	1

- ullet We observe outcome Y_i depending on assigned condition Z_i
- We can use this to approximate the ATE with an estimator

Estimator for the ATE

Additive property of expectations:

$$au = E[au_i] = E[Y_i(1) - Y_i(0)] \ = E[Y_i(1)] - E[Y_i(0)]$$

Difference in means between potential outcomes

• We cannot calculate this, but we can calculate

$$\hat{ au} = E[Y_i(1)|Z_i=1] - E[Y_i(0)|Z_i=0]$$

Difference in means between conditions

Randomization

- ullet If we can claim that units are selected into conditions Z_i independently from potential outcomes
- Then we can claim that $\hat{\tau}$ is a good approximation of τ
- In which case we say that $\hat{ au}$ is an **unbiased** estimator of the ATE
- Random assignment of units into conditions guarantees this in expectation

Assumptions

1. Ignorability

Assignment to conditions does not depend on potential outcomes. This is guaranteed if randomization works properly.

1 2. Non-interference

Individual potential outcomes do not depend on the treatment assignment of others. If they do, then we need a more complicated model.

 We cannot evaluate these assumptions with data but we can convince our audience with careful research design

Discussion

Tomz and Weeks (2013): "Public Opinion and the Democratic Peace"

- ullet Surveys in the UK (n=762) and US (n=1273)
- April-May 2010
- Outcome: Support for military strike
- 2x2x2 survey experiment

Vignette design UK

- Political regime:
 Democracy/not a democracy
- Military alliances: Ally/not an ally
- Military power: As strong/half as strong

- US
- Political regime:
 Democracy/not a democracy
- Military alliances: Ally/not an ally
- Trade: High level/not high level

Results for democracy

TABLE 1. The Effect of Democracy on Willingness to Strike

	United Kingdom (between)	United States (between)	United States (within)
Not a democracy	34.2	53.3	50.0
Democracy	20.9	41.9	38.5
Effect of democracy	–13.3	-11.4	–11.5
95% C.I.	(-19.6 to -6.9)	(-17.0 to -5.9)	(-14.7 to -8.3)

Results for other factors

TABLE 2. The Effect of Alliances, Power, and Trade

	United Kingdom	United States
No military alliance Military alliance Effect of alliance 95% C.I.	30.7 25.1 -5.7 (-12.0 to 0.6)	50.2 45.1 -5.1 (-10.7 to 0.5)
Half as strong As strong Effect of strength 95% C.I.	29.3 26.3 -3.0 (-9.4 to 3.2)	
No high trade High trade Effect of high trade 95% C.I.		50.3 45.1 -5.2 (-10.6 to 0.2)

Eggers et al (2017): "Corruption, Accountability, and Gender"

Constituency A

This is a marginal constituency won narrowly by the Conservatives at the last election. Based on polls, the only other party with a chance of winning this seat are Labour. Here are the details of the current Conservative MP and the Labour challenger:

Current MP:

Conservative 64 years old Female Formerly a business manager

Main challenger:

Labour 62 years old Female Formerly a business manager

Last year, the current MP was found to have inappropriately claimed over £10,000 on expenses.

If you were living in this constituency at the next general election, who would you vote for?

- The current Conservative MP
- The Labour challenger
- The Liberal Democrat candidate
- A candidate from another party
- O No one, I would not vote

Profile variants

Factor	MP	Challenger
Party	Labour, Conservative	Labour, Conservative, Liberal Democrat
Age	45, 52, 64	40, 52, 64
Gender	Male, Female	Male, Female
Previous job	General practitioner, journalist, political advisor, teacher, business manager	General practitioner, journalist, political advisor, teacher, business manager

Results

Next Week Convenience Samples

Focus on: Should findings generalize?

Break time!

Lab