Mathematical Model for Production Optimization

Parameters

- NumProducts: Number of different products
- NumMachines: Number of different machines
- $ProduceTime_{k,m}$: Time to produce one unit of product k on machine m, for k = 1, ..., NumProducts and m = 1, ..., NumMachines
- Available Time_m: Total available time on machine m, for m = 1, ..., NumMachines
- $Profit_k$: Profit from producing one unit of product k, for k = 1, ..., NumProducts

Decision Variables

• x_k : Quantity of product k to be produced, for k = 1, ..., NumProducts

Objective Function

Maximize the total profit:

$$\text{Maximize} \quad Z = \sum_{k=1}^{NumProducts} Profit_k \cdot x_k$$

Constraints

1. Non-negativity constraints for each product:

$$x_k \ge 0$$
 for $k = 1, \dots, NumProducts$

2. Production time constraints for each machine:

 $\sum_{k=1}^{NumProducts} ProduceTime_{k,m} \cdot x_k \leq AvailableTime_m \quad \text{for } m=1,\dots,NumMachines$