DIALOG(R)File 347:JAPIO

(c) 1999 JPO & JAPIO. All rts. reserv.

05472657 **Image available**

COPOLYMER AND COPOLYMER COMPOSITION AND COATED MOLDED PRODUCT

PUB. NO.:

09-087457 [JP 9087457 A]

PUBLISHED:

March 31, 1997 (19970331)

INVENTOR(s): YAMAOKA HIROAKI

SANO SHIHO

APPLICANT(s): MITSUBISHI CHEM CORP [000596] (A Japanese Company or

Corporation), JP (Japan)

APPL. NO.:

08-081597 [JP 9681597] April 03, 1996 (19960403)

FILED:

ABSTRACT

PROBLEM TO BE SOLVED: To obtain a copolymer comprising specific repeating units, not only excellent in hydrophilicity but also good in compatibility with various kinds of binder resins, having high durability, and capable of the production of films to impart the excellent used for hydrophilicity to the films.

SOLUTION: This copolymer comprises repeating units of formula I (R(sup 1) is a 1-20C alkyl, aralkyl; R(sup 2) is an aliphatic hydrocarbon; R(sup 3) is a group of formula II, etc., (R(sup 5) is a 1-20C alkyl, H, a halogen; (m) is 1-4); R(sup 4) is H, methyl; (n) is 2-200), and repeating units of formulas III and IV (R(sup 6), R(sup 7) are each H, methyl; X(sub a) is an anionic hydrophilic group-containing group; X(sub b) is a 4-30C alkyl, a 4-20C perfluoroalkyl), wherein the weight ratio of formula I/(formula I + formula II) is 10:90 to 90:10, and the weight ratio of formula III/formula IV is 99.5:0.5 to 60:40, and has a number-average mol.wt. of 2000-100000 in polystyrene measured by a GPC measuring method terms of using tetrahydrofuran as a solvent.

THIS PAGE BLANK (USPTO)

. (19)日本国特許庁(JP)

(12)公開特許公報 (A) (11)特許出願公開番号

特開平9-87457

(43)公開日 平成9年(1997)3月31日

(51)Int. Cl. 6	識別記号	庁内整理番号	FI				技術表示箇所
C 0 8 L 33/0	4 LJA		C08L	33/04	LJA		
C 0 8 F 220/2	4 MMT	•	C08F	220/24	MMT		
220/2	8 MML			220/28	MML		
290/0	6 MRT			290/06	MRT		•
C08J 7/0	4		C08J	7/04		T	
	審査請求	未請求 請求項(の数3 O	L	•	(全16	頁) 最終頁に続く
(21)出願番号 (22)出願日 (31)優先権主張番号 (32)優先日 (33)優先権主張国	特願平8-815 平成8年(1996)4月3 特願平7-180 平7(1995) 日本(JP)	3日 3 3 7	(71)出願人 (72)発明者 (72)発明者 (74)代理人	三東山神三佐神三 佐神変明 一种 三佐神 三佐神 変野 一年	学株式会符 3千代田区 弘明 1県横浜市市 2学株式会行 志穂 1県横浜市市 本穂 1県株式会行	丸の内二 青葉区駅 社横浜網 青葉区駅	二丁目5番2号 基志田町1000番地 会合研究所内 基志田町1000番地 会合研究所内 (外6名)

(54) 【発明の名称】共重合体及び共重合体組成物並びに被覆成形物

(57)【要約】

【課題】 樹脂製品、金属製品等に対して高いレベルの 親水性を長期的に付与することができる共重合体及び共 重合体組成物、さらに該組成物が表面に被覆された成形 物を提供する。

【解決手段】 特定構造のポリエステルマクロモノマー ·[I] および2種類のピニル系単量体 (例えばヒドロキ シ (メタ) アクリレート及びアルキル基含有 (メタ) ア クリレート) [IIa] 及び [IIb] を [I] と [IIa] + [IIb] の比率が重量比で10:90~90:10の 範囲にあり、且つ [IIa] と [IIb] の比率が重量比で 99.5:0.5~60:40の範囲で共重合体するこ とにより得られ、そしてテトラヒドロフランを溶媒とす るGPC測定によるポリスチレン換算数平均分子量が2 000~10000である共重合体。該共重合体とバ インダー樹脂との組成物。

【請求項1】 下記一般式 [I] 、 [IIa] および [II b] で表される繰り返し単位から成り、 [I] と [II a] + [IIb] の比率が重量比で10:90~90:10の範囲にあり且つ [IIa] と [IIb] の比率が重量比*

*で99.5:0.5~60:40の範囲であり、そして テトラヒドロフランを溶媒とするGPC測定によるポリ スチレン換算数平均分子量が2000~10000で あることを特徴とする共重合体。

【化1】

$$\begin{array}{c}
O & \stackrel{R^4}{\leftarrow} C H_2 \\
R^1 - O & \stackrel{R^2}{\leftarrow} C R^2 - O \stackrel{R^3}{\rightarrow} R^3
\end{array}$$

[式 [I] 中、 R^1 は炭素数 $1 \sim 20$ のアルキル基またはアラルキル基、 R^2 は脂肪族炭化水素基、 R^4 は水素原子またはメチル基、nは $2 \sim 200$ の整数を示し、 R^3 は下記に示されるいずれかの基を示し、

【化2】

【化4】

〔式 [IIa] および [IIb] 中、R°及びR'はそれぞれ、水索原子またはメチル基を示し、Xaはノニオン性親水基含有基、Xbは炭索数 $4\sim30$ のアルキル基又は炭索数 $4\sim20$ のパーフルオロアルキル基含有基を示す。〕

【請求項2】 熱可塑性樹脂、紫外線硬化型樹脂または 熱硬化性樹脂50~99.9重量%および請求項1に記 50

※ (これらの基において、 R° は炭素数 $1 \sim 20$ のアルキル基、水素原子またはハロゲン原子、mは $1 \sim 4$ の整数、pは $1 \sim 10$ の整数を示す)、 R° 中の $-CONH-基は-(CO-R^2-O-)$ n の-O-と隣接してウレタン結合を形成する。〕

【化3】

[I a]

[Ib]

載の共重合体50~0.1重量%を含有することを特徴 とする共重合体組成物。

【請求項3】 請求項2に記載の共重合体組成物が表面に被覆された成形物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は親水性を有する共重

合体、およびそれを含有する組成物に関するものであり、詳しくは該共重合体組成物を樹脂製品や、金属製品に塗布することにより、親水性を長期的に付与することができ、しかも、樹脂製品からのブリードアウトが少ない共重合体組成物に関するものである。

[0002]

【従来の技術】従来、樹脂基材や金属基材に親水性を付与する方法として、基材の表面に界面活性剤(親水性付与剤)を塗布する方法が知られている。かかる方法は、簡便で速効性を有するが、樹脂基材や金属基材の面が粘 10 着性を帯びるという欠点があり、また、容易に親水性付与剤が剥離して耐久性に欠けるという問題がある。一方、長期にわたって安定した親水性を得る方法として、高分子量の親水性付与剤を用いる方法がある。しかしながら、従来の高分子量親水性付与剤は樹脂基材、金属基材への密着性が不十分であって、高いレベルの親水性を得る点でさらなる改良が望まれている。特開平4-161415号公報には、親水性基を有するグラフト重合体についての記載があるが、該重合体を用いる方法では親水性の性能が満足できるものではなく、また安定した親*20

$$R^{1}-O\left(C-R^{2}-O\right)_{R}^{R^{4}}$$

30

40

【0006】〔式 [I] 中、R¹ は炭素数 $1\sim20$ のアルキル基またはアラルキル基、R² は脂肪族炭化水素基、R⁴ は水素原子またはメチル基、n は $2\sim200$ の整数を示し、R³ は下記に示されるいずれかの基を示し、

[0007] [化6] *水性能が得られない。

[0003]

【発明が解決しようとする課題】本発明の目的は、樹脂製品、金属製品に対して高いレベルの親水性を長期的に付与することができる共重合体及び親水性共重合体組成物、さらには該組成物が表面に被覆された成形物を提供することにある。

[0004]

【課題を解決するための手段】即ち、本発明の第1は、下記一般式 [I]、 [IIa] および [IIb] で表される繰り返し単位から成り [I] と [IIa] + [IIb] の比率が重量比で10:90~90:10の範囲にあり、且つ [IIa] と [IIb] の比率が重量比で99.5:0.5~60:40の範囲であり、そしてテトラヒドロフランを溶媒とするGPC測定によるポリスチレン換算数平均分子量が2000~100000であることを特徴とする共重合体である。

【0005】 【化5】

[I]

【0008】 (これらの基において、 R^5 は炭素数 $1\sim 20$ のアルキル基、水素原子またはハロゲン原子、mは $1\sim 4$ の整数、pは $1\sim 10$ の整数を示す)、 R^3 中の $-CONH-基は-(CO-R^2-O-)n$ の-O-と 隣接してウレタン結合を形成する。〕

50 [0009]

[I a]

[0010]

[Ib]

【0011】〔式 [IIa] および [IIb] 中、R⁶ 及び R⁷ はそれぞれ、水素原子またはメチル基を示し、X a はノニオン性親水基含有基、X b は炭素数 $4\sim30$ のアルキル基又は炭素数 $4\sim20$ のパーフルオロアルキル基含有基を示す。〕

5

【0012】本発明の第2は、熱可塑性樹脂、紫外線硬化型樹脂または熱硬化性樹脂50~99.9重量%および上記共重合体50~0.1重量%を含有することを特徴とする共重合体組成物である。本発明の第3は、上記共重合体組成物が表面に被覆された成形物である。 ※20

%[0013]

*【化8】

【発明の実施の形態】

- (1) 共重合体
- (a) 共重合体を構成する単量体

本発明の共重合体は、下記一般式 [III] で表されるポリエステルマクロモノマー、下記一般式 [IVa] および [IVb] で表されるピニル系単量体の共重合により構成されるものである。

[0014]

【化9】

$$R^{1}-O\left(C-R^{2}-O\right)_{n}R^{3}-C=CH_{2}$$

[0015]

★ ★【化10】

[IV a]

[0016]

☆ ☆【化11】

$$CH_2 = CR^7$$
 $COOXb$

[Wb]

【0017】〔上記式中、R¹、R²、R³、R⁴、Rº、R²、Xa、Xb及びnは前記定義と同じ。〕

(i) ポリエステルマクロモノマー

上記一般式 [III] 中、 R^1 は炭素数 $1 \sim 200$ アルキル基またはアラルキル基であり、例えば、メチル基、エチル基、n-プチルス n- グラル n-

[0018]

【化12】

-сн₂снсн₂сн₂-

с₂н₅ -сн₂снсн₂сн₂-

-сн₂сн₂сн₂сн₂сн₂сн₂-

【0019】一般式 [III] 中、 R^3 は下記に示されるいずれかの基を示し、

[0020]

【化13】

$$-\overset{\mathbf{0}}{\overset{\mathbf{C}}{\overset{\mathbf{N}}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}}{\overset{\mathbf{N}}}}}{\overset{\mathbf{N}}}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{N}}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{N}}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}{\overset{\mathbf{N}}}{\overset{\mathbf{N}}{\overset{N}}}}{\overset{\mathbf{N}}{\overset{N}}}{\overset{N}}}}{\overset{\mathbf{N}}{\overset{N}}}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}}}{\overset{N}}}{\overset{N}}{\overset{N}}}{\overset{N}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}{\overset{N}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}{\overset{N}}}{\overset{N}}}{\overset{N}}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}}{\overset{N}}{\overset{N}}}{\overset{N}}}{\overset{N}$$

$$-C-N+CH_{2}\rightarrow 0$$

-c-

*【0021】そしてこれらの基において、R⁶ は、炭索数1~20のアルキル基、水素原子またはハロゲン原子、mは1~4の整数、pは1~10の整数を示す。そして、-CONH-基は、一般式 [III] 中の-CO-R²-O-部の-O-と隣接してウレタン結合を形成している。一般式 [III] 中、R⁴ は水素原子またはメチル基であり、前記のR⁸ が-CO-NH-基を有する基の場合は、R⁴ としてはメチル基が好ましい。また、nは2~200の整数を示し、ポリエステル構造の重合度を表す。好ましいnは2~100、特に好ましいnは2~50である。特に好適なポリエステルマクロモノマーは次の通りである。

【0022】 【化14】

$$\begin{array}{c|c}
CH_3 & CH_3 \\
N-C-C-CH_2 \\
H & CH_3
\end{array}$$

$$\begin{array}{c|c}
 & \text{O} & \text{CH}_3 \\
 & \text{NCH}_2\text{CH}_2\text{OC} - \text{C} = \text{CH}_2 \\
 & \text{H}
\end{array}$$

[0023]

0

【化15]

$$c_{13}(c_{13})_3c_{13}c_{14}c_{12}-o\left(c_{13}c_{14}c_$$

$$CH_3O(C+CH_2)_5-O_{\frac{1}{2}}C-N-CH_3$$
 CH_3
 CH_3
 CH_3

$$cH_{3}$$
 $cH-o(c+cH_{2})_{5}-o)_{n}$
 $c-c=cH_{2}$

[0024]

$$c_{H_3}c_{H_2}c_{H_2}c_{+c}c_{+c}c_{H_2}c_{-c}c_{+c}c_{H_2}c_{-c}c_{H_2}c_{+c}c_{H_2}$$

$$\text{CH}_{3}(\text{CH}_{2})_{3}\text{O} + \text{C} + \text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{CH}_{2}\text{O} + \text{C} + \text{C$$

$$CH_3(CH_2)_3CHCH_2-O\left(C-(CH_2)_5-O\right)_n^0C-N-CH=CH_2$$

$$C_2H_5O(-CH_2)_5-O(-N-C-C-C+CH_2)_1$$

【0025】一般式 [III] で表されるポリエステルマ クロモノマーは、例えば特開平4-161415号公報 に記載の方法に従い、以下の2工程により製造すること ができる。

(第1工程) R¹-OH (R¹は前記一般式 [I] の定義 40 と同じ)で表されるアルコール化合物 (例えばメタノー ル、n-ブタノール、n-ヘキサノール、n-オクタノ ール、2-エチルヘキサノール等)を開始剤とし、下記

の一般式 [V] で表されるラクトン化合物 (例えば ϵ -カプロラクトン、 $oldsymbol{eta}$ ーメチルー $oldsymbol{\delta}$ ーバレロラクトン、 $oldsymbol{eta}$ ーエチルーδーバレロラクトン等)を開環重合して下記 の一般式 [VI] で表されるポリエステルアルコールを得 る (各一般式におけるR'は前記一般式 [I] の定義と 同じであり、nは2~200の整数である)。

[0026] 【化17】

$$O = C R^2$$

$$R^{1}-O\left(C-R^{2}-O\right)H$$

[VI]

【0027】 (第2工程) ついで、一般式 [VI] で表さ *化合物とを反応させる。 れるポリエステルアルコールと下記の一般式 [VII] で 10 【0028】 表される化合物または下記の一般式 [VIII] で表される* 【化18】

$$\begin{array}{c}
R^4 \\
O = C = N - R^7 - C = CH_2
\end{array}$$

[W]

$$\begin{array}{ccc}
O & R^4 \\
Y - C - C = C H_1
\end{array}$$

【0029】上記式中、R⁴は、前記一般式[I]の定 義と同じであり、R'は下記に示される何れかの基を示 20 【0030】 し、これらの基において、R⁵、m及びpは、前記一般 式[I]の定義と同じであり、Yはハロゲン原子、炭素※

※数1~8のアルコキシ基またはフェノキシ基を示す。

【化19】

【0031】一般式 [VII] で表される化合物の具体例 としては、例えば、下記の化合物が挙げられる。

[0032]

【化20】

40

単量体

[0036] [化22]

*【0035】 (ii) 一般式 [IVa] で表されるピニル系

一般式 [IVa] で表されるピニル系単量体は、ノニオン性の親水性基を有する従来公知のラジカル重合性単量体

である。ノニオン性の親水性基含有基とは、ノニオン性であり且つ水酸基、アルコキシ基等の親水性基を有する基を意味する。ノニオン性の親水性基を有する単量体としては、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロビル(メタ)アクリレート等のヒドロキシ

10 (メタ) アクリレート、下記一般式 [IX] で表されるエチレングリコール (メタ) アクリレート等が挙げられる。これら単量体は 2 種以上を併用してもよい。

【0033】一般式 [VIII] で表される化合物の具体例 20 としては、例えば、下記の化合物が挙げられる。

[0034]

【化21】

$$C_{1} - C_{1} - C_{1} + C_{1} + C_{1}$$

$$C_{1} - C_{1} - C_{1} + C_{1} + C_{1}$$

$$C_{1} - C_{1} - C_{1} + C_{1} + C_{1}$$

$$C_{1} - C_{1} - C_{1} + C_{1} + C_{1}$$

$$C_{1} - C_{1} - C_{1} + C_{1} + C_{1}$$

$$C_{1} - C_{1} - C_{1} + C_{1} + C_{1}$$

$$C_{1} - C_{1} - C_{1} + C_{1} + C_{1}$$

$$C_{1} - C_{1} - C_{1} + C_{1$$

【0037】〔式中、 R^1 は水素原子又は炭素数 $1\sim2$ 0のアルキル基、 R^6 は水素またはメチル基、nは $1\sim200$ の整数を示す。〕

(iii) 一般式 [IVb] で表されるビニル単量体一般式 [IVb] 中、R⁷ は水素原子またはメチル基を示し、Xbは炭素数4~30、好ましくは4~20のアル 50

キル基又は炭素数4~20のパーフルオロアルキル基含有基を示す。一般式 [IVb] で表されるピニル単量体は、従来公知のラジカル重合性単量体である。Xbのアルキル基含有ピニル系単量体としては、例えば、下記のアルキル基含有(メタ)アクリレート等が挙げられる。【0038】

【化23】 $CH_2 = CHCOO(CH_2)_{17}CH_3$ $CH_2 = CHCOO(CH_2)_{15}CH_3$ $CH_2 = CHCOO(CH_2)_{13}CH_3$ $CH_2 = CHCOO(CH_2)_{11}CH_3$ $CH_2 = CHCOO(CH_2)_9CH_3$ СH2=ССH3СОО(СH2)17СH3 $CH_2 = CCH_3COO(CH_2)_{15}CH_3$ $CH_2 = CCH_3COO(CH_2)_{13}CH_3$ $CH_2 = CCH_3COO(CH_2)_{11}CH_3$ $CH_2 = CCH_3COO(CH_2)_9CH_3$

*【0039】パーフルオロアルキル基含有基ビニル系単 量体としては、例えば下記のパーフルオロアルキル基含 有(メタ)アクリレートが挙げられる。 [0040]

【化24】

10

 $CF_{3}(CF_{2})_{4}CH_{2}OCOC(CH_{3}) = CH_{2}$ $CF_3(CF_2)_5(CH_2)_2OCOCH = CH_2$ $(CF_3)_2CF(CF_2)_5(CH_2)_2OCOCH=CH_2$ $CF_3(CF_2)_7(CH_2)_7(CH_2)_4OCOCH = CH_2$ $CF_3(CF_2)_4CH_2CH_2OCONHCH_2CH_2OCOC(CH_3)=CH_2$ $CF_3(CF_2)_7SO_2N(C_3H_7)(CH_2)_2OCOCH=CH_2$ $CF_3(CF_2)_7SO_2N(C_3H_7)(CH_2)_2OCOC(CH_3)=CH_2$ $CF_3(CF_2)_7CONH(CH_2)_2OCOCH=CH_2$ $CF_{3}(CF_{2})_{7}CONH(CH_{2})_{2}OCOC(CH_{3})=CH_{2}$ $H(CF_2)_{10}CH_2OCOCH=CH_2$

【0041】本発明において、特に好ましいパーフルオ ロアルキル基含有基ビニル系単量体は下記のパーフルオ 0の整数を示す。

 $CF_2C1(CF_2)_{10}CH_2OCOCH=CH_2$

[0042] 【化25】

 \mathbb{C}

$$CH_2 = C - C - O - (CH_2)_2 - (CF_2)_n CF_3$$

(式中、R⁸は水素原子またはメチル基を示す)

【0043】(b) 共重合体の製造

本発明の共重合体は上記した一般式 [III] で表される ポリエステルマクロモノマーと一般式 [IVa] 及び [IV \mathbf{p} (\mathbf{x}, \mathbf{y}) アクリレートである。下記式中、 \mathbf{p} \mathbf{x} \mathbf{y} $\mathbf{y$ 下に共重合させることによって得られる。ポリエステル マクロモノマー [III] とピニル系単量体 [IVa] + [I Vb] の比率が重量比で10:90~90:10の範 囲、好ましくは10:90~70:30の範囲、より好」 ましくは10:90~50:50の範囲で共重合させら れる。ビニル系単量体の比率が10未満の場合は、親水 性の優れた共重合体が得られず、また、ピニル系単量体 の比率が90を越える場合は、得られる共重合体のバイ ンダー樹脂への親和性が悪くなる。

> 50 【0044】[IVa]と[IVb]の比率は、重量比で9

【0045】また、本発明の共重合体の分子量はテトラ ヒドロフランを溶媒とするGPC(ゲルパーミエイショ ンクロマトグラフィ) によるポリスチレン換算数平均分 子量が2000~100000、好ましくは3000~ 50000である。共重合体の分子量が2000未満の 場合は高分子量化したことによる利点が失われ、樹脂基 材から共重合体がブリードアウトし易くなり親水性能が 低下する。該分子量が100000を越える場合はバイ ンダー樹脂との相溶性が低下するので好ましくない。

【0046】(2)共重合体組成物

本発明の共重合体組成物は、上記の共重合体と、バイン ダー樹脂である熱可塑性樹脂、熱硬化性樹脂、紫外線硬 化型樹脂の中から選ばれる1種または2種以上を配合し てなるものである。上記のバインダー樹脂の熱可塑性樹 脂としては、溶媒に可溶ならば特に制限はなく、本発明 の共重合体組成物を塗布する成形物の各種基材の種類に 応じて適宜選択すればよい。熱可塑性樹脂の具体例とし ては、ポリ塩化ビニル、ポリスチレン、ポリスチレンー アクリロニトリル共重合体、ポリエステル、ポリアミ ド、ポリアクリル酸エステル、ポリウレタン等が挙げら 30 れる。

【0047】塗膜性能として、より高い強度、耐薬品性 などが要求される共重合体組成物の場合は、バインダー 樹脂として熱硬化性樹脂の使用が効果的である。具体的 には、ポリウレタン製造において一般に使用されるポリ オール類に本発明の共重合体を混合し、更に、イソシア ネート化合物を含む硬化剤と混合させた後、基材に塗布 し、硬化、乾燥すれば、より耐磨耗性に優れた耐久性の 高い塗膜を形成させることが出来る。この際、ポリウレ タン製造においては一般に使用される溶媒および硬化触 40 媒などの添加剤を使用してもよい。

【0048】また、塗膜性能として、速効性で高い硬度 が要求される共重合体組成物の場合は、バインダー樹脂 として紫外線硬化型樹脂の使用が効果的である。即ち、 公知の紫外線硬化型樹脂組成物に本発明の共重合体を配 合し、樹脂基材に塗布後、常法に従って紫外線で硬化さ せることにより、短時間で表面性のよい塗膜を形成させ ることができる。紫外線硬化型樹脂としては、特に制限 はなく、例えば、ブチルアクリレート、テトラヒドロフ ルフリルアクリレート、ピニルピロリドン等の単官能モ 50 ノマー、ポリウレタンアクリレート、ポリエステルアク リレート等の多官能オリゴマーが挙げられる。

【0049】本発明の共重合体組成物は、上記の各成分 の含有量が、ポリエステルマクロモノマー [III] とビ ニル系単量体 [IVa] および [IVb] からなる共重合体 (A) 0.1~50重量%、好ましくは0.5~40重 量%およびパインダー樹脂99.9~50重量%、好ま しくは99.5~60重量%(但し、各成分の合計量は 100重量%)である。共重合体(A)の含有量が0. 1 重量%未満の場合は十分な親水性が得られず、共重合 体(A)の含有量が50重量%を越える場合は塗膜形成 能が劣り、割れ、シワを発生する。

【0050】(3)共重合体により被覆された成形物 本発明の共重合体組成物を各種樹脂または金属を基材と する成形物の表面に塗布することにより共重合体組成物 が被覆された成形物を製造することができる。本発明の 共重合体組成物の塗膜は、共重合体 (A) 及びバインダ ー樹脂に対して共通の溶媒に共重合体組成物及びバイン ダー樹脂を溶解して各種基材に塗布した後、乾燥させる 20 ことにより形成される。塗布法は、公知の方法、例え ば、スプレー法、バーコート法、ロールコート法、スピ ンコート法、ディッピング法などを採用することが出来 る。形成する塗膜の厚みは 0.1~200 μm、好まし くは $0.1\sim20\mu$ mの範囲がよい。塗膜の厚みが0.1 μm未満では親水性能が劣り、200 μmを越える場 合は得られる性能に対してコスト高となるので好ましく ない。

【0051】本発明において、樹脂基材としては、熱可 塑性樹脂または、熱硬化性樹脂の各種の製品、例えば、 フィルムやシート等が挙げられる。熱可塑性樹脂として は、特に制限はなく、例えば、ポリエチレン、ポリプロ ピレン等のポリオレフィン樹脂、ポリスチレン樹脂、ポ リスチレンーアクリロニトリル共重合樹脂、ABS樹 脂、ポリエステル樹脂、ポリアミド樹脂、ポリアクリル 酸エステル樹脂、ポリウレタン樹脂などが挙げられる。 ポリアミド樹脂としては、ナイロン6、ナイロン6-6、ナイロン6-10、ナイロン11、ナイロン12等 が挙げられる。ポリエステル樹脂としては、ポリエチレ ンテレフタレート、ポリプチレンテレフタレート、ポリ カーボネート等が挙げられる。熱硬化性樹脂としては、 エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン 樹脂等が挙げられる。金属基材としては、特に制限され るものではないが、例えば鉄、アルミニウム、亜鉛、銅 等が挙げられる。

【0052】本発明の共重合体組成物は、種々のバイン ダー樹脂と高い相溶性を示すため、均一な塗膜を形成す る。従って、かかる塗膜を形成した樹脂フィルム、樹脂 シートまたは金属製品は堅牢であり、耐久性に優れる。 [0053]

【発明の効果】以上のようにして、本発明によって得ら

10

れる共重合体は、親水性に優れるばかりでなく、各種バインダー樹脂との相溶性が良いため、高い耐久性を有する。また、本発明の共重合体と各種バインダー樹脂よりなる樹脂組成物は、各種プラスチック材料、金属材料等の基材に塗布することにより、親水性、塗膜強度、密着性に優れた塗膜を容易に形成し、水拭きなどによってもその親水性が低下することがない。従って、各種フィルム製品、建材用塗料等など、親水性を必要とする製品に使用して、長期にわたって安定した親水性を付与できるため極めて重要である。

[0054]

【実施例】以下に示す実施例、参考例および比較例により、本発明をさらに詳しく説明する。

【0055】参考例A (ポリエステルアルコールの合成)

撹拌翼、滴下ロート及びガス導入口を備えたフラスコを 乾燥窒素で十分置換した後、2-x チルヘキサノール 5.7 gと金属ナトリウム0.1 gを仕込み、撹拌して金 属ナトリウムを溶解させた。次に、フラスコを40 $^{\circ}$ $^{\circ}$

*後、撹拌を停止し、フラスコの内容物を取り出し、精製したクロロホルム500mlに溶解した。得られた溶液を500mlの脱イオン水中に投入し、洗浄を行い、クロロホルム層を分液した。斯かる洗浄をもう一度繰り返した後、クロロホルム溶液から減圧下に溶媒を留去し、無色透明のポリエステルアルコールを得た。ポリエステルアルコールの水酸基価は、58.6KOHmg/g、酸価は、0.03KOHmg/gであった。

20

【0056】参考例B (ポリエステルマクロモノマーの 10 合成)

撹拌翼、還流冷却器を備えた反応器に参考例Aで合成したポリエステルアルコール20.00g、mーイソプロペニルーα, α'ージメチルペンジルイソシアナート4.25g、ジプチルスズジオクトエート(1重量%トルエン溶液)0.12gを仕込み、80℃に加温して9時間反応を行った。生成物のIRスペクトルとH−NMRの測定結果から、以下のような構造のポリエステルマクロモノマーが得られたことを確認した。

【0057】 20 【化26】

【0058】参考例C (ポリエステルアルコールの合成)

参考例Aにおいて、 β -メチル- δ -バレロラクトンを ϵ -カプロラクトンに変更した以外、参考例Aと同様の 方法でポリエステルアルコールを得た。得られたポリエステルアルコールの水酸基価は、56.78KOHmg/g、酸価は、0.50KOHmg/gであった。

【0059】参考例D(ポリエステルマクロモノマーの 合成)

撹拌翼、還流冷却器を備えた反応器に参考例 C で合成したポリエステルアルコール 20.00g、 $m-4ソプロペニル-<math>\alpha$, α -ジメチルペンジルイソシアナート 4.11g、ジブチルスズジオクトエート (11128) ルエン溶液 0.12gを仕込み、0.12gを代込み、0.12gを代込み、0.12g

※時間反応を行い、カプロラクトンをベースとするマクロ30 モノマーを合成した。

【0060】参考例E(バインダー樹脂の合成)

攪拌翼、還流冷却器、ガス導入口を備えたフラスコにメタクリル酸メチル200g、メタクリル酸ブチル200g、メタクリル酸ブチル200g、アゾピスイソブロニトリル6.1g及びテトラヒドロフラン1223gを仕込み、窒素気流下、65℃で7時間重合した。重合後、溶媒をエバポレータで除去し、更に65℃で減圧乾燥した。収率はほぼ100%であった。親水性の評価は、オリエンテック社のDCA-20を用いて、ウィルヘルミー(Wilhelmy)法による23℃40における後退接触角の値を測定した。

【0061】[実施例1]

攪拌翼、還流冷却器、ガス導入口を備えたフラスコに、

参考例Bで合成したポリエステルマクロモノマー 11.03g ポリエチレングリコールメタクリレート 20.7g (日本油脂(株)製 MAE400) 4-ヒドロキシブチルアクリレート 5.07g ヘプタデカフルオロデシルアクリレート 3.25g (大阪有機化学工業(株)製 ピスコート17F) tーブチルパーオキシイソプロピルカーポネート 1.3g

テルピノレン

メチルイソプチルケトン

を仕込み、窒素気流下で、110℃で8時間重合した。 重合後、反応液をヘキサン中に投入し、生成物 (イ) を 析出させ乾燥した。収率は88%であった。ここで得ら れた共重合体のテトラヒドロフランを溶媒とするGPC 測定によるポリスチレン換算数平均分子量は8900で あった。生成物(イ)(高分子量親水剤)を1gおよび 参考例Eで得られたパインダー樹脂20gをメチルイソ* 22

1:0g及び

93.5g

*ブチルケトン80gに溶解して溶液を調整した。この溶 液にポリエチレンテレフタルフィルム (16mm×50mm×0. 2㎜)を浸漬し、引上げた後、70℃で2時間乾燥して 厚さ8μmの塗膜を形成した。この塗膜の後退接触角は 0度であり、この値は40℃の温水にて300時間浸漬 後も変化がなかった。

【0062】 [実施例2]

攪拌翼、還流冷却器、ガス導入口を備えたフラスコに、

参考例Bで合成したポリエステルマクロモノマー 5.04g ポリエチレングリコールメタクリレート 26.86g

(共栄社化学 (株) 製 041MA)

4-ヒドロキシブチルアクリレート 1.89g ヘプタデカフルオロデシルアクリレート 2.97g

(大阪有機化学工業(株)製 ビスコート17F)

t-プチルパーオキシイソプロピルカーボネート

0.6g 0.46 g及び

テルピノレン メチルイソブチルケトン

93.5g

を仕込み、窒素気流下で、110℃で8時間重合した。 20※チルケトン80gに溶解して溶液を調整した。この溶液 重合後、反応液をヘキサン中に投入し、生成物 (ロ) を 析出させ乾燥した。収率は90%であった。ここで得ら れた共重合体のテトラヒドロフランを溶媒とするGPC 測定によるポリスチレン換算数平均分子量は9500で あった。生成物(口)(高分子量親水剤)1gおよび参 考例Eで得られたバインダー樹脂20gをメチルイソプ※

にポリエチレンテレフタルフィルムを浸漬し、引上げた 後、70℃で2時間乾燥して厚さ8μmの塗膜を形成し た。この塗膜の後退接触角は10度であり、40℃の温 水にて300時間浸漬後は、0度であった。

【0063】[実施例3]

攪拌翼、還流冷却器、ガス導入口を備えたフラスコに、

参考例Bで合成したポリエステルマクロモノマー 12.49g ポリエチレングリコールメタクリレート 23.40g

(日本油脂(株)製 MAE400)

4-ヒドロキシブチルアクリレート 6.53g ヘプタデカフルオロデシルアクリレート 1.06g

(大阪有機化学工業 (株) 製 ピスコート17F)

・t ープチルパーオキシイソプロピルカーポネート 1.47g テルピノレン 1.14g及び

メチルイソブチルケトン 101.3g

を仕込み、窒素気流下で、110℃で8時間重合した。 重合後、反応液をヘキサン中に投入し、生成物 (ハ) を 析出させ乾燥した。収率は89%であった。ここで得ら 測定によるポリスチレン換算数平均分子量は8900で あった。生成物(ハ) (高分子量親水剤) 1gおよび参 考例Eで得られたバインダー樹脂20gをメチルイソプ★

★チルケトン80gに溶解して溶液を調整した。この溶液 にポリエチレンテレフタルフィルムを浸漬し、引上げた 後、70℃で2時間乾燥して厚さ8µmの塗膜を形成し れた共重合体のテトラヒドロフランを溶媒とするGPC 40 た。この塗膜の後退接触角は25度であり、40℃の温 水にて300時間浸漬後は、15度であった。

【0064】 [実施例4]

攪拌翼、還流冷却器、ガス導入口を備えたフラスコに、

参考例Bで合成したポリエステルマクロモノマー 11.59g

ポリエチレングリコールメタクリレート 21.85g

(日本油脂(株)製 MAE400)

4-ヒドロキシブチルアクリレート 5.36g

ヘプタデカフルオロデシルアクリレート 3.45g

(大阪有機化学工業(株)製 ピスコート17F)

. 23

t-ブチルパーオキシイソプロビルカーポネート

0.34g

テルピノレン

0.27g及び

24

メチルイソプチルケトン

98.4g

を仕込み、窒素気流下で、110℃で8時間重合した。 重合後、反応液をヘキサン中に投入し、生成物(二)を 析出させ乾燥した。収率は87%であった。ここで得ら れた共重合体のテトラヒドロフランを溶媒とするGPC 測定によるポリスチレン換算数平均分子量は15500 であった。生成物 (二) (高分子量親水剤)を1g、参 考例Eで得られたバインダー樹脂20gをメチルイソブ*10

*チルケトン80gに溶解して溶液を調整した。この溶液 にポリエチレンテレフタルフィルムを浸漬し、引上げた 後、70℃で2時間乾燥して厚さ8µmの塗膜を形成し た。この塗膜の後退接触角は16度であった。この値は 40℃の温水にて300時間浸漬後も変化がなかった。

【0065】[実施例5]

攪拌翼、還流冷却器、ガス導入口を備えたフラスコに、

参考例Dで合成したポリエステルマクロモノマー 5.04g ポリエチレングリコールメタクリレート 26.86g

(共栄社化学 (株) 製 041MA)

4-ヒドロキシブチルアクリレート 1.89g ヘプタデカフルオロデシルアクリレート 2.97g

(大阪有機化学工業(株)製 ピスコート17F)

t-ブチルパーオキシイソプロビルカーポネート 0.6g

テルピノレン 0.46g及び

メチルイソプチルケトン

93.5g

を仕込み、窒素気流下で、110℃で8時間重合した。 重合後、反応液をヘキサン中に投入し、生成物(ホ)を 析出させ乾燥した。収率は91%であった。ここで得ら れた共重合体のテトラヒドロフランを溶媒とするGPC 測定によるポリスチレン換算数平均分子量は9100で あった。生成物(ホ)(高分子量親水剤)1gおよび参 考例Eで得られたパインダー樹脂20gをメチルイソブ※

※チルケトン80gに溶解して溶液を調整した。この溶液 にポリエチレンテレフタルフィルムを浸漬し、引上げた 後、70℃で2時間乾燥して厚さ8μmの塗膜を形成し た。この塗膜の後退接触角は10度であり、40℃の温 水にて300時間浸漬後は、0度であった。

【0066】[実施例6]

攪拌翼、還流冷却器、ガス導入口を備えたフラスコに、

参考例Bで合成したポリエステルマクロモノマー 12.42g ポリエチレングリコールメタクリレート 23.3g

(日本油脂(株)製 MAE400)

4-ヒドロキシブチルアクリレート 5.26g

ステアリルアクリレート 3.25g

t - プチルパーオキシイソプロビルカーポネート 1.46g テルピノレン 1.13g及び

メチルイソブチルケトン

103.5g

を仕込み、窒素気流下で、110℃で8時間重合した。 重合後、反応液をヘキサン中に投入し、生成物(へ)を 析出させ乾燥した。収率は89%であった。ここで得ら 測定によるポリスチレン換算数平均分子量は9100で あった。生成物(へ)(高分子量親水剤)1gおよび参 考例Eで得られたバインダー樹脂20gをメチルイソフ★

★チルケトン80gに溶解して溶液を調整した。この溶液 にポリエチレンテレフタルフィルムを浸漬し、引上げた 後、70℃で2時間乾燥して厚さ8μmの塗膜を形成し れた共重合体のテトラヒドロフランを溶媒とするGPC 40 た。この塗膜の後退接触角は0度であり、この値は40 ℃の温水にて300時間浸漬後も変化がなかった。

【0067】[比較例1]

攪拌翼、還流冷却器、ガス導入口を備えたフラスコに、

参考例Bで合成したポリエステルマクロモノマー 12.81g

ポリエチレングリコールメタクリレート 24.08g

(日本油脂 (株) 製 MAE 4 0 0)

4-ヒドロキシブチルアクリレート 6.99g

t-ブチルパ-オキシイソプロピルカ-ポネート 1.51g

テルピノレン 1.17g及び メチルイソブチルケトン

102.4g

を仕込み、窒素気流下で、110℃で8時間重合した。 重合後、反応液をヘキサン中に投入し、生成物(ト)を 析出させ乾燥した。収率は85%であった。ここで得ら れた共重合体のテトラヒドロフランを溶媒とするGPC 測定によるポリスチレン換算数平均分子量は8700で あった。生成物(ト)(高分子量親水剤)1gおよび参 考例Eで得られたバインダー樹脂20gをメチルイソフ* *チルケトン80gに溶解して溶液を調整した。この溶液 にポリエチレンテレフタルフィルムを浸漬し、引上げた 後、70℃で2時間乾燥して厚さ8μmの塗膜を形成し た。この塗膜の後退接触角は23度であったが、サンプ ル間のパラツキが大きかった。40℃の温水にて300 時間浸漬後の値は50度であった。

【0068】[比較例2]

攪拌翼、還流冷却器、ガス導入口を備えたフラスコに、

ポリエチレングリコールメタクリレート

23.67g

(日本油脂(株)製 MAE400)

t-ブチルパーオキシイソプロビルカーポネート

0.67g

テルピノレン

0.51g及び

メチルイソブチルケトン

101.3g

を仕込み、窒素気流下で、110℃で8時間重合した。 重合後、反応液をヘキサン中に投入し、生成物(チ)を 析出させ乾燥した。収率は84%であった。ここで得ら れた共重合体のテトラヒドロフランを溶媒とするGPC 測定によるポリスチレン換算数平均分子量は8700で あった。生成物(ポリエチレングリコールメタクリレー 20 水にて90時間浸漬後は、38度であった。

ト共重合体(チ)) 1gおよび参考例Eで得られたバイ※

※ンダー樹脂20gをメチルイソブチルケトン50gに溶 解して溶液を調整した。この溶液にポリエチレンテレフ タルシート (三菱化学社製)を浸漬し、引上げた後、7 0℃で 2時間乾燥して厚さ8μmの塗膜を形成した。 この塗膜の後退接触角は18度であったが、40℃の温

【0069】[比較例3]

攪拌翼、還流冷却器、ガス導入口を備えたフラスコに、

参考例Bで合成したポリエステルマクロモノマー

11.03g

ポリエチレングリコールメタクリレート

11.5g

(日本油脂(株)製 MAE400)

4-ヒドロキシブチルアクリレート

3.5g

ヘプタデカフルオロデシルアクリレート

15.0g

(大阪有機化学工業(株)製 ピスコート17F)

t-ブチルパーオキシイソプロピルカーポネート

1.3g

テルピノレン

1.0g及び

93.5g

メチルイソブチルケトン

にポリエチレンテレフタルフィルムを浸漬し、引上げた 後、70℃で2時間乾燥して厚さ8μmの塗膜を形成し た。この塗膜の後退接触角は70度であった。

を仕込み、窒素気流下で、110℃で8時間重合した。 重合後、反応液をヘキサン中に投入し、生成物(リ)を 析出させ乾燥した。収率は88%であった。ここで得ら れた共重合体のテトラヒドロフランを溶媒とするGPC 測定によるポリスチレン換算数平均分子量は8700で あった。生成物(リ)(高分子量親水剤)1gおよび参 考例Eで得られたバインダー樹脂20gをメチルイソブ

チルケトン80gに溶解して溶液を調整した。この溶液

【0070】上記実施例および比較例において使用され たモノマー類の比率を下表に示す。

[0071]

【表1】

	(I) (Ia)			(II b) :		
	ポリエステル マクロマー	ポリエチレン グリコールメタ	4ーヒドロキシ プチルアクリ レート	ヘプタデカフル オロデシルアク		
	(重量%)	クリレート (重量%)	(重量%)	リレート(重量%)		
実施例1	27. 5	51.7	12. 7	8. 1	-	
実施例2	13. 7	73. 1	5. 1	8. 1	_	
実施例3	28. 8	53. 8	15. 0	2. 4		
実施例4	27. 4	` 51. 7	12. 7	8. 2	-	
実施例5	13.7	73. 1	5. 1	8. 1	-	
実施例6	28. 1	52. 7	11. 9	-	7. 3	
比較例1	29. 2	54. 9	· 15. 9	· –	-	
比較例2	_	100	_		-	
比較例3	26. 9	28. 0	8. 5	36. 6	-	

【手続補正書】

【提出日】平成8年6月28日

【手続補正1】

【補正対象書類名】明細書

【補正対象項目名】0023

【補正方法】変更

*【補正内容】

[0023]

【化15】

$$c_{13}^{c_{2}H_{5}} = c_{13}^{c_{2}H_{5}} = c_{13}^{c_{13}} = c_$$

$$CH_3O + CH_2)_5 - O + CH_3 - CH_3 - CH_2$$

$$c_{2}H_{5}O+C+C+C+2)_{5}-O+C+C+2C+2C+C+C+C+2$$

$$CH_{3}$$
 $CH-O+CCH_{2}$
 CH_{3}
 $CH-O+CCH_{2}$
 CH_{3}
 $CH-O+CCH_{2}$

【手続補正2】

【補正対象書類名】明細書

【補正対象項目名】0036

※【補正内容】

[0036]

【化22】

[X]

【補正方法】変更

×

$$R^{1}-O-(CH_{2}CH_{2}-O-)n-C-C-C=CH_{2}$$

ו טיביו טיטונדקניו

【手続補正3】 【補正対象書類名】明細書 【補正対象項目名】0057 【補正方法】変更 【補正内容】 【0057】 【化26】

フロントページの続き

(51)Int.Cl. 6	識別	別記号 庁内整理都	番号 FI		技術表示箇所
C08L 5	7/12		C 0 8 L	57/12	
C 0 9 D	5/00 P	P G	C 0 9 D	5/00	PPG
	P	SD			PSD
133	3/04 P	GE		133/04	PGE -