SPC. Ćwiczenie 2. Charakterystyki częstotliwościowe. Sprawozdanie

Lev Sergeyev

25.10.2019, pt/TN 13:15

1 Charakterystyka amplitudowo-fazowa

Dany układ o transmitancji:

$$K(s) = \frac{ke^{-s\tau}}{Ts+1} \tag{1}$$

Przekształcono ukłąd na postać $K(j\omega)$, podzielono na część urojoną i rzeczywistą (3) aby utworzyć chrakterystykę amplitudowo-fazową (Rys. 1)

$$K(j\omega) = \frac{k(\cos(-\omega\tau) + j\sin(-\omega\tau)}{Tj\omega + 1} = -\frac{T\omega k\sin(\omega\tau) - k\cos(\omega\tau)}{T^2\omega^2 + 1} - j\frac{T\omega k\cos(\omega\tau) - k\sin(\omega\tau)}{T^2\omega^2 + 1}$$
(2)

Na charakterystyce wybrano dwa punkty, dla róźnych ω . Dla danego układu o dobranych k, τ i T jak na Rys. 1 kat przesunięcia ϕ rośnie a wzmocnienie A maleje wraz z wzrostem ω .

Rysunek 1: Charakterystyka Nyquista dla K(s)

2 Odpowiedź układu na wymuszenie

Sprawdzono, czy otrzymana charakterystyka rzeczywiście zachodzi dla ω_1 i ω_2 , podanego układu i jego parametrów k, τ, T . Za pomocą modelu simulink w którym część układu $e^{-s\tau}$ zastąpiono bloczkiem przesunięcia, przeprowadzono symulację odpowiedzi, kiedy na wejściu jest sygnał $u(t) = \sin(\omega t)$, z wybranymi z poprzedniego rozdziału ω_1 i ω_2 :

Rysunek 2: Odpowiedź układu K(s) na wymuszenie $u(t) = \sin(\omega t)$

3 Wnioski

Wykres odzyskanej odpowiedzi (Rys. 2) udowadnia to, że przesunięcie ϕ i wzmocnienie A wyznaczone na charakterystyce amplitudowo-fazowej rzeczywiście są takie same dla odpowiedzi na sygnał $u(t) = \sin(\omega t)$ dla wybranych pulsacji ω_1 i ω_2 . Zniekształcenia na początku odpowiedzi mogą się pojawiać przez opóźnienie przejścia systemu z stanu ustalonego na stan pobudzenia sygnałem wejściowym.