



2010 BIODIVERSITÀ

Segreteria organizzativa Valeria Spagnolo 3208050323 Teresa Nocera: 3471986459

Informazioni e prenotazioni mostra segreteria.mostra@palermoscienza.it

Informazioni e prenotazioni convegni segreteria.convegno apalermoscienza.it

www.palermoscienza.it

## Ebollizione dell'alcol etilico a temperatura ambiente

L'obiettivo di questa esperienza è verificare che l'ebollizione dell'alcol etilico (o di altri liquidi con punti di ebollizione elevati) possono avvenire a temperatura ambiente mediante abbassamento di pressione.

L'alcol etilico ( $C_2H_5OH$ ) è fra i più antichi composti organici usati dall'uomo ed è ancora uno dei più importanti. Industrialmente è utilizzato come solvente per profumi, aromi, per molte reazioni chimiche e costituisce un'importante materia prima per sintesi organiche.

L'alcol puro alla pressione di un'atmosfera bolle a circa 78 °C, così come l'acqua bolle a 100 °C.

Per potere illustrare l'esperimento è necessario richiamare alcuni concetti di Chimica:

fase o stato: forma di materia completamente uniforme per composizione chimica e stato fisico. Dunque si parla di stato solido o fase solida, stato liquido o fase liquida e stato gassoso o fase gassosa. E' necessario distinguere lo "stato gassoso" dallo "stato di vapore": un fluido si dice allo stato di vapore quando si trova ad una temperatura inferiore alla propria temperatura critica, se invece si riscalda ad una temperatura maggiore diventa gas.

**Passaggio di stato**: transizione da uno stato di aggregazione ad un altro che avviene ad una data pressione in corrispondenza ad una data temperatura.

**Temperatura di transizione:** temperatura alla quale le due fasi sono in equilibrio.

Il *diagramma di stato* riportato in figura è un esempio di grafico che descrive la relazione tra gli stati della materia e i valori di Pressione e



Temperatura. Nel grafico è evidenziato il punto triplo, dove i tre stati coesistono in equilibrio.

(Per l'acqua le coordinate del punto triplo sono T = 0.01 °C, p = 4.58 mmHg e per l'alcol etilico sono T = -114 °C, p = quasi 0.00 mmHg!).

































**2010 BIODIVERSITÀ** 

Segreteria organizzativa Valeria Spagnolo 3208050323 Teresa Nocera: 3471986459

Informazioni e prenotazioni mostra segreteria.mostra@palermoscienza.it

Informazioni e prenotazioni convegni segreteria.convegno apalermoscienza.it

www.palermoscienza.it

Nella seguente tabella vengono riportati alcuni valori della temperatura di ebollizione dell'alcol in relazione alla pressione:

| Temperatura di ebollizione (°C) | Pressione                                                   |
|---------------------------------|-------------------------------------------------------------|
| 78                              | 1 atm = 10 <sup>5</sup> bar = 10 <sup>5</sup> Pa = 760 mmHg |
| 68                              | 0,68 atm = 680 mbar = 680 hPa = 516 mmHg                    |
| 58                              | 0,45 atm = 451 mbar = 451 hPa = 337 mmHg                    |
| 38                              | 0,18 atm = 183 mbar = 183 hPa = 137 mmHg                    |
| 28                              | 0,11 atm = 111 mbar = 111 hPa = 83 mmHg                     |
| 18                              | 0,066 atm = 66 mbar = 66 hPa = 49 mmHg                      |
| 8                               | 0,037 atm = 37 mbar =37 hPa = 28 mmHg                       |
| 0                               | 0,023 atm = 23 mbar =23 hPa = 18 mmHg                       |

## Procedimento dell'esperienza:

- 1) connettere il supporto per la campana di vetro alla pompa da vuoto
- 2) riporre sotto la campana di vetro un becher di alcol.
- 3) attivare l'interruttore della pompa da vuoto.
- 4) verificare l'ebollizione dell'alcol dentro la campana di vetro.

Scuola: Liceo Scientifico Statale "Benedetto Croce" - Palermo

Disciplina: Fisica

Parole chiave: ebollizione, passaggio di stato, pressione, alcol

Ordine di scuola: Scuola secondaria di secondo grado



























