

Part C

Decimal places

c) What is the number of decimal places for the measured values?

Quantity being measured

Gameboard Physics Skills Uncertainties Essential Pre-Uni Physics E1.4

Essential Pre-Uni Physics E1.4

Number of decimal places for

measured values

A time where you are manually operating a stopwatch that reads to the nearest hundredth of a second.	(a)	(b)	(c)
art A Absolute uncertainty			
a) What is the absolute uncertainty in the time?			
\bigcirc ±0.1 s			
\bigcirc ±1s			
\bigcirc $\pm 0.1\mathrm{ms}$			
art B Column heading			
Part B Column heading b) What is the heading of the column in the results table?			
b) What is the heading of the column in the results table?			

Absolute

uncertainty

Heading of column in results table (with units)

Gameboard Physics Skills Uncertainties Essential Pre-Uni Physics E1.5

Essential Pre-Uni Physics E1.5

You measure the time taken for a pendulum to complete 20 full swings, using an electronic timer accurate to the nearest 0.1 s. You then divide your answer by 20 to get the time for just 1 swing. What is the absolute uncertainty on your value for just 1 swing?

Gameboard:

STEM SMART Physics 37 - Uncertainties

Gameboard Physics Skills Uncertainties Essential Pre-Uni Physics E1.9

Essential Pre-Uni Physics E1.9

If you measured a resistance using an ohmmeter and obtained the following results, what would you do next? Give a value for the absolute uncertainty and the average you would use for this set of results: 10.5Ω , 10.3Ω , 10.9Ω , 14.7Ω , 10.6Ω .	ge that
Repeat the anomalous 14.7Ω reading. Absolute uncertainty $=0.3\Omega$. Average reading $=10.6\Omega$	
Repeat the whole experiment. Absolute uncertainty $=0.2\Omega$. Average reading $=10.5\Omega$	
Repeat the anomalous 14.7Ω reading. Absolute uncertainty $=0.2\Omega$. Average reading $=10.5\Omega$	
Repeat the whole experiment. Absolute uncertainty $=0.3\Omega$. Average reading $=10.6\Omega$	

Gameboard:

STEM SMART Physics 37 - Uncertainties

Gameboard Physics Skills Uncertainties Essential Pre-Uni Physics E2.6

Essential Pre-Uni Physics E2.6

Your answer will be marked incorrect for an inappropriate number of significant figures (e.g. giving an uncertainty to 3 significant figures, or giving a measurement to 2 decimal places if the uncertainty is $\pm\ 0.1$ would be inappropriate).

Please make sure that the unit of absolute uncertainty is clear - so $20.34\,\mathrm{mA} \pm 20\,\mu\mathrm{A}$ or $(20.34\pm0.02)\,\mathrm{mA}$ are both appropriate, but $20.34\,\mathrm{mA} \pm 20$ would not be clear. Note that 'nearest millimetre' implies an absolute uncertainty of $\pm~0.5\,\mathrm{mm}$ not $\pm~1\,\mathrm{mm}$.

An experiment is conducted to find the acceleration of a dropped object (which should be $9.81\mathrm{ms^{-2}}$). The measurement obtained is $9.62\mathrm{ms^{-2}}\pm1.5\%$. Is the experiment
accurate?
Yes
○ No

Gameboard:

STEM SMART Physics 37 - Uncertainties

Gameboard Physics Skills Uncertainties Essential Pre-Uni Physics E3.1

Essential Pre-Uni Physics E3.1

You will be penalized for an inappropriate number of significant figures (e.g. giving an uncertainty to 3 significant figures, or giving a measurement to 2 decimal places if the uncertainty is $\pm~0.1$).

Please make sure that the unit of absolute uncertainties is clear - so $20.34\,\mathrm{mA} \pm 20\,\mu\mathrm{A}$ or $(20.34\pm0.02)\,\mathrm{mA}$ are both appropriate, but $20.34\,\mathrm{mA} \pm 20$ would not be clear. Note that 'nearest millimetre' implies an absolute uncertainty of $\pm~0.5\,\mathrm{mm}$ not $\pm~1\,\mathrm{mm}$.

Calculate the relative uncertainty, in percent, of a resistance which is worked out from a voltage known to 3% and a current known to 7%. (Equation: $R = \frac{V}{I}$)

Gameboard:

STEM SMART Physics 37 - Uncertainties

<u>Home</u> <u>Gameboard</u> Physics Skills Uncertainties Essential Pre-Uni Physics E3.3

Essential Pre-Uni Physics E3.3

You will be penalized for an inappropriate number of significant figures (e.g. giving an uncertainty to 3 significant figures, or giving a measurement to 2 decimal places if the uncertainty is \pm 0.1).

Please make sure that the unit of absolute uncertainties is clear - so $20.34\,\mathrm{mA} \pm 20\,\mu\mathrm{A}$ or $(20.34\pm0.02)\,\mathrm{mA}$ are both appropriate, but $20.34\,\mathrm{mA} \pm 20$ would not be clear. Note that 'nearest millimetre' implies an absolute uncertainty of \pm $0.5\,\mathrm{mm}$ not \pm $1\,\mathrm{mm}$.

Calculate the relative uncertainty, in percent, of the density of a cuboid block of iron whose lengths are known to $2\,\%$ and whose mass is known to $0.1\,\%$. (Equation: $\frac{mass}{volume}$)

Gameboard:

STEM SMART Physics 37 - Uncertainties

Gameboard Physics Skills Uncertainties Essential Pre-Uni Physics E3.4

Essential Pre-Uni Physics E3.4

You will be penalized for an inappropriate number of significant figures (e.g. giving an uncertainty to 3 significant figures, or giving a measurement to 2 decimal places if the uncertainty is $\pm~0.1$).

Please make sure that the unit of absolute uncertainties is clear - so $20.34\,\mathrm{mA} \pm 20\,\mu\mathrm{A}$ or $(20.34\pm0.02)\,\mathrm{mA}$ are both appropriate, but $20.34\,\mathrm{mA} \pm 20$ would not be clear. Note that 'nearest millimetre' implies an absolute uncertainty of $\pm~0.5\,\mathrm{mm}$ not $\pm~1\,\mathrm{mm}$.

Calculate the relative uncertainty, in percent, of the time taken for a marble to fall by a distance known to 4%. (Equation: $distance = \frac{1}{2}gt^2$)