Student Number: Name: Bryan Hoang

3. (20 points)

(a) Answer:

Proof. Define

$$c = \left(\sum_{x^n \in \mathcal{X}^n} 2^{-l(x^n)}\right)^{-1}.$$

Then $q(x^n) = c2^{-l(x^n)}$ is a valid pmf on \mathcal{X}^n and since $c \ge 1$ by Kraft's inequality,

$$l(x^n) \ge -\log q(x^n). \tag{1}$$

Then the corresponding Shannon-Fano code has codeword lengths $l_q(x^n) = \lceil -\log q(x^n) \rceil$. Thus,

$$\frac{1}{n}E[l_q(X^n)] = \frac{1}{n} \sum_{x^n \in \mathcal{X}^n} p(x^n) \lceil -\log q(x^n) \rceil$$

$$\leq \frac{1}{n} \sum_{x^n \in \mathcal{X}^n} p(x^n) (-\log q(x^n) + 1)$$

$$\leq \frac{1}{n} \sum_{x^n \in \mathcal{X}^n} p(x^n) l(x^n) + \frac{1}{n} \qquad \text{by (1)}$$

$$= \frac{1}{n} E[l(X^n)] + \frac{1}{n}.$$

(b) Answer:

Proof.

Part 1. (\Rightarrow)

Assume that there exists a sequence $\{C_n\}$ of prefix codes $C_n: \mathcal{X}^n \to \{0,1\}^*$ which is universal with respect to \mathcal{P} . Then $\forall p \in \mathcal{P}$,

$$\lim_{n\to\infty} R(C_n, p) = 0.$$

By part (a), $\exists q \in \mathcal{P} : \frac{1}{n} E[l_q(X^n)] \le \frac{1}{n} E[l(X^n)] + \frac{1}{n}$, where $l(X^n) = |C_n|$.

Thus, $\lim_{n\to\infty} R(S_n, p) = 0$ for some sequence $\{S_n\}$ of Shannon-Fano codes, which means that $\{S_n\}$ is universal with respect to \mathcal{P} .

Therefore, by Corollary 6 on slide 49, we have that $\forall p \in \mathcal{P}$,

$$\lim_{n\to\infty}\frac{1}{n}D(p||q_n)=0.$$

Part 2. (⇐)

Assume that $\exists \{q_n\}$ a sequence of probability distributions such that $\forall p \in \mathcal{P}$,

$$\lim_{n \to \infty} \frac{1}{n} D(p||q_n) = 0.$$

Then by Corollary 6 on slide 49, we can get a sequence of Shannon-Fano codes $\{C_n\}$ obtained from $\{q_n\}$ which is universal with respect to \mathcal{P} . Since Shannon-Fano codes are also prefix codes, the proof is complete.