Übungsblatt 6 - Grundlagen der Logik

- 1. Geben Sie Werte für die Variablen in folgenenden Aussageformen an, damit diese jeweils wahre und falsche Aussagen werden:
 - (a) x ist größer als 2.
 - (b) Planet p ist weiter von der Sonne entfernt wie unsere Erde.
 - (c) Ein A ist schneller wie ein Auto.
 - (d) Es gibt mehr Menschen die Informatik studieren wie Y.
- 2. Implementieren Sie die logische Disjunktion, Negation, Implikation sowie die Äquivalenz in Python ohne die eingebauten Operatoren zu verwenden (siehe Beispielimplementierung der Konjunktion aus der Vorlesung).
- **3.** Überführen Sie folgende Sätze in logische Terme mit p und q, wobei p "heute ist Montag" und q "ich fahre nach Wien" bedeutet.
 - (a) Wenn es heute Montag ist, werde ich nicht nach Wien fahren.
 - (b) Heute ist Montag und ich fahre nach Wien.
 - (c) Heute ist Montag oder ich werde nach Wien fahren; aber nicht beides.
 - (d) Nur wenn heute kein Montag ist, werde ich nach Wien fahren.
- **4.** p stehe für "die Sonne scheint", q für "zwei mal zwei ist fünf". Geben Sie sprachliche Sätze für folgende logischen Terme an.
 - (a) $p \vee q$

(c) $\neg p \Rightarrow q$

(b) $\neg (q \land p)$

- (d) $\neg p \Leftrightarrow \neg q$
- 5. Welche der folgenden Bedinungen sind notwendig, welche hinreichend:
 - (a) Kaffeebohnen für das Kochen von Kaffee
 - (b) Brot essen für das Stillen von Hunger
 - (c) Bleistift für das Aufschreiben einer Aussage
 - (d) Jasskarten für das Jassen

Schreiben Sie die jeweiligen Implikationen auf und geben Sie für hinreichenden Bedingungen auch Beispiele an, wie die Implikation durch andere Bedingungen erfüllt werden kann.

6. Beweisen Sie mittels Wahrheitstafel, dass die Konjunktion $((p \Rightarrow q) \land (q \Rightarrow p))$ der beiden Implikationen $(p \Rightarrow q)$ und $(q \Rightarrow p)$ stets den gleichen Wahrheitswert wie die Äquivalenz $(p \Leftrightarrow q)$ von p und q hat. Also das die Aussagenverbindung

$$((p \Rightarrow q) \land (q \Rightarrow p)) \Leftrightarrow (p \Leftrightarrow q)$$

stets wahr ist.

- 7. Beweisen Sie mittels Wahrheitstafel, dass folgende zusammengesetzte Aussagen Tautologien sind:
 - (a) $(p \land q) \Rightarrow p$

(c) $(p \Rightarrow q) \Leftrightarrow (\neg p \lor q)$

(b) $(p \Rightarrow q) \lor (\neg q \Rightarrow p)$

- (d) $(p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p)$
- 8. Beweisen Sie mittels Wahrheitstafel, dass folgende Äquivalenzen stimmen:
 - (a) $(p \land (q \lor r)) \equiv ((p \land q) \lor (p \land r))$
 - (b) $(\neg(p \land q)) \equiv ((\neg p) \lor (\neg q))$
- 9. Verwenden Sie Python, um die beiden Äquivalenzen aus Aufgabe 8. nochmals programmatisch zu beweisen.
- 10. Schreiben Sie zwei Python-Funktionen Allquantor(A, M) und ExistenzquantorTwo(A, M1, M2). Allquantor(A, M) soll den Wahrheitswert der Aussage $\forall m \in M: A(x)$ ermitteln, ExistenzquantorTwo(A, M1, M2) den der Aussage $\exists m1 \in M1, \exists m2 \in M2: A(m1, m2)$ für eine als Funktion gegebene Aussage A (z.B. A = lambda x: x*x == x**2)
- 11. Schreiben Sie folgende Aussagen mittels Quantoren und geben Sie die Wahrheitswerte an:
 - (a) Es gibt mindestens ein $x \in \mathbb{N}$ mit $x^2 \le 1$
 - (b) Für alle $x \in \mathbb{N} \setminus \{0\}$ gilt, dass $x^2 \ge 1$
 - (c) Es gibt ein $x \in \mathbb{N}$ und ein $y \in \mathbb{N}$, so daß $x + y > x \cdot y$.
 - (d) Es gibt ein $x \in \mathbb{N}$, so daß $\forall y \in \mathbb{N} \ x \cdot y^2 < 0$ gilt.
 - (e) Für jedes $x \in \mathbb{N}$ gibt es eine natürliche Zahl, die genau um eins größer ist.

Hinweis: Sie dürfen zum Ermitteln der Wahrheitswerte natürlich ihre Funktionen aus Aufgabe 10 verwenden bzw. weitere Funktionen implementieren.

12. Formulieren Sie entsprechende sprachliche Sätze für folgende Aussagen:

(a)
$$x \in \mathbb{N} \setminus \{0\} : x^2 \ge 1$$

(b)
$$\forall x \in \mathbb{N} : x \le x + 1$$

(c)
$$\forall x \in \mathbb{N}, \exists y \in \mathbb{N} : y = x + 1$$

(d)
$$\forall x \in \mathbb{N}, \exists y \in \mathbb{N} : x/y \in \mathbb{N}$$

(e)
$$\forall x, a, b \in \mathbb{N}, (x \mid a \cdot b) \Rightarrow (x \mid a \vee x \mid b)$$

Geben Sie auch die entsprechenden Wahrheitswerte an.

Mögliche Theoriefragen:

- Was ist eine notwendige, was ein hinreichende Bedingung?
- Geben Sie eine logische Formel für eine Tautologie an.
- Geben Sie eine logische Formel für eine Kontradiktion an.
- Inwiefern können Sie ihr Wissen über logische Aussageformen bei der Programmierung von Bedinungen einsetzen?