- —. Answer the questions. $(3' \times 6 = 18')$
- 1. L is the boundary of circle $x^2 + y^2 = 9$ with counterclockwise direction, then curve integral $\oint_L (2xy 2y) dx + (x^2 4x) dy = \underline{\qquad}$

2.
$$L: x^2 + y^2 = a^2 \oint_L \sqrt{x^2 + y^2} ds = \underline{\qquad}$$

3. Let $D: x^2 + y^2 \le 2x$, write the $\iint_D f(x, y) dxdy$ in polar coordinate,

then
$$\iint_D f(x, y) dxdy =$$

4. If
$$\vec{a} = \{-1, 2, 2\}, \vec{b} = \{2, -1, 2\}$$
, then $(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = \underline{\hspace{1cm}}$

- 5. The equation of plane through the three points $P_1(1,-2,3), P_2(4,1,-2), P_1(-2,-3,0)$ is
- 6. The divergence of $\vec{A} = e^{xy}\vec{i} + \cos(xy)\vec{j} + xz^2\vec{k} =$
 - \equiv Finish the following questions. (7-16: $7' \times 10 = 70'$; 17-18: $6' \times 2 = 12'$)
 - 7. Please show that $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{\sqrt{n}}$ is conditionally convergent.
- 8. Expand the function $f(x) = \arctan \frac{1+x}{1-x}$ into power series of x.
- 9. Line integral $\int_L xy^2 dx + y\varphi(x) dy$ is independent of path, and $\varphi(x)$ is derivative, $\varphi(0) = 0$, find $\int_{(0,0)}^{(1,1)} xy^2 dx + y\varphi(x) dy$.

10. Find
$$\int_{\frac{1}{4}}^{\frac{1}{2}} dx \int_{\frac{1}{2}}^{\sqrt{x}} e^{\frac{x}{y}} dy + \int_{\frac{1}{2}}^{1} dx \int_{x}^{\sqrt{x}} e^{\frac{x}{y}} dy$$
.

11. Find
$$\iiint_{\Omega} (x^2 + y^2 + z^2) dv$$
, Ω is bounded by $x^2 + y^2 + z^2 = 1$.

12. Find
$$\iiint_{\Omega} z dv$$
, and Ω is bounded by $x^2 + y^2 = 1$ and $z = 0$, $z = 1$.

Let
$$f(u, v)$$
 is differentiable, $z = z(x, y)$ is determined by $(x+1)z - y^2 = x^2 f(x-z, y)$
13. find $dz|_{(0,1)}$.

- 14. \sum is the surface $z = x^2 + y^2 (z \le 1)$ with upper side, please calculate $I = \iint_{\Sigma} (x-1)^3 dy dz + (y-1)^3 dz dx + (z-1) dx dy.$
- 15. Find the minimum distance between the original point and the surface $z^2 = x^2y + 4$.
- 16. Let $z = f(u, x, y), u = xe^y$, f has the second-order continuous partial derivative, find $\frac{\partial^2 z}{\partial x \partial y}$.
 - 17. Find $\oint_L \frac{(x-1)dy ydx}{(x-1)^2 + y^2}$, L represents a simple closed curve, including point (1,0) with counterclockwise direction.
- 18. Find convergent region and sum function of power series $\sum_{n=0}^{\infty} \frac{x^{2n+2}}{(n+1)(2n+1)}$.