|                           | Ulech                    |
|---------------------------|--------------------------|
| Name:                     | (4)                      |
| Roll No.:                 | To Demonity 2nd Exclored |
| Invigilator's Signature : |                          |

### CS/B.Tech/(ICE-Old)/SEM-6/IC-601/2013 2013

### **PROCESS CONTROL**

Time Allotted: 3 Hours Full Marks: 70

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

### **GROUP - A**

### (Multiple Choice Type Questions)

- 1. Choose the correct alternatives for any ten of the following :  $10 \times 1 = 10$ 
  - i) For frequency domain analysis of any system ...... is applied.
    - a) step input
- b) ramp input
- c) sinusoidal input
- d) impulse input.
- ii) ON-OFF control system is recommended where
  - a) PRR is low and DSC is high
  - b) PRR is low and DSC is low
  - c) PRR is high and DSC is low
  - d) PRR is high and DSC is also high

where PRR: Process Reaction Rate &

DSC: Demand side capacity.

6024 (O) Turn over

## CS/B.Tech/(ICE-Old)/SEM-6/IC-601/2013

| iii)  | -                                                 | proportional contoller  | can    | be act as an on-off           |  |
|-------|---------------------------------------------------|-------------------------|--------|-------------------------------|--|
|       | con                                               | troller when            |        | A Annua (y Kanalula Kalifaria |  |
|       | a)                                                | $K_p$ is zero           | b)     | PB is infinity                |  |
|       | c)                                                | $K_p$ tends to infinity | d)     | $K_p$ is 0.5.                 |  |
| iv)   | Which of the following is nown as rate control?   |                         |        |                               |  |
|       | a)                                                | Proportional control    | b)     | Integral control              |  |
|       | c)                                                | Derivative control      | d)     | Multi step control.           |  |
| v)    | 3C method of controller tuning was recommended by |                         |        |                               |  |
|       | a)                                                | Bode                    | b)     | Ziegler & Nichols             |  |
|       | c)                                                | Cohen & Coon            | d)     | Routh.                        |  |
| vi)   | Inte                                              | gral action reduces     |        |                               |  |
|       | a)                                                | peak overshoot          | b)     | offset                        |  |
|       | c)                                                | settling time           | d)     | rising time.                  |  |
| vii)  | For                                               | a non-self-regulation   | ng T   | process the damping           |  |
|       | co-efficient $\xi$ will be                        |                         |        |                               |  |
|       | a)                                                | 1                       | b)     | > 1                           |  |
|       | c)                                                | < 0                     | d)     | > 0 but < 1.                  |  |
| viii) | In a                                              | a proportional controll | er if  | proportional gain is 2,       |  |
|       | then proportional band is                         |                         |        |                               |  |
|       | a)                                                | 50%                     | b)     | 2%                            |  |
|       | c)                                                | 200%                    | d)     | 500.                          |  |
| ix)   | The                                               | order of two non-intera | acting | g tank level system is        |  |
|       | a)                                                | first                   | b)     | second                        |  |
|       | c)                                                | third                   | d)     | zero.                         |  |
|       |                                                   |                         |        |                               |  |



- x) in which control system input is measured and manipulated?
  - a) Feedback
- b) Open loop
- c) Feed-forward
- d) Close loop.
- xi) The example of ratio control in boiler is
  - a) Combustion control
  - b) Drum level control
  - c) Master steam pressure control
  - d) Furnace pressure control.
- xii) The maximum phase change observed in a first order system when sinusoidal input is applied
  - a) 0°

b) 90°

c) 180°

d) - 90°.

#### **GROUP - B**

### (Short Answer Type Questions)

Answer any *three* of the following.

 $3 \times 5 = 15$ 

- 2. How the controllability of a process can be assessed from process reaction curve?
- 3. How three position controllers improve control accuracy over two position controllers ?
- 4. What is meant by a self-regulating process ? Explain with an example. Draw the output response of a self-regulating process when unit step disturbance is applied to the process. 2+2+1

### CS/B.Tech/(ICE-Old)/SEM-6/IC-601/2013

- 5. When tuning a three mode controller by ultimate cycle method it was found that oscillation begin when the proportional band decreased to 30%. The oscillation has a periodic time of 500s. What are the suitable values of proportional gain, integral gain and derivative gain?
- 6. What is the function of an actuator? Give a labelled sketch of a pneumatic actuator. 2 + 3

# **GROUP - C** ( Long Answer Type Questions )

Answer any *three* of the following.  $3 \times 15 = 45$ 

- 7. Define manipulated variables and disturbances with example. Derive the transfer function of a mixing process involving energy balance. Calculate the time constant and steady state gain. 4 + 10 + 1
- 8. What is offset? Explain how offset is created in a process. Calculate the value of offset in a process. How the offset will be reduced? 1 + 3 + 9 + 2
- 9. Define Cv. Why control valve sizing is required? Discuss the methodology of control valve sizing. 2 + 5 + 8
- 10. What is ratio control system? Draw the block diagram of such system. Explain this control scheme with a suitable example. 3+4+8
- 11. Discuss pneumatic "PD" controller with a schematic. What is reset wind up? A derivative controller has a set point of 50% and derivative constant  $K_D$  of 0.4% s/%. What will be the controller output when the error (i) change at 1%/sec and (ii) is constant at 4%. 7 + 3 + 5

6024 (O)