

# Using Machine Learning Models to Reveal Teleconnections -- A case study on the North American Monsoon

Shiheng Duan, David John Gagne, Paul Ullrich

UC Davis, NCAR

Nov 15, 2021

### Previous work on teleconnections

- Teleconnections are mostly defined as the mode of climate variables, such as sea surface temperature and sea level pressure. The popular indices include Nino34, Nino3, SOI, PAO.
- Saha, M., Mitra, P., & Nanjundiah, R. S. (2016) used an autoencoder to identify predictors of Indian monsoon.
- Tang, Y., & Duan, A. (2021) used a CNN model to predict the East Asian summer monsoon.

- Idea: Use ML models for the North America Monsoon (NAM) precipitation prediction.
- Can we reveal teleconnection areas from the interpretation of ML models?
- Can we show the physical causation from ML models?

## Research tasks

Identify the North American Monsoon Area. Build ML models
for daily
precipitation
prediction and
analyze the
possible
teleconnection
areas.

Build ML models for monthly scale and analyze the corresponding teleconnection effects.

## Identify the NAM domain

- Global monsoon domain identification:
  - Wind reversal
  - Precipitation pattern: local summer-minus-winter precipitation exceeds 300 mm, and the local summer precipitation exceeds 55% of the annual total.
  - NAM: from subtropical America, expanding to the southwestern of US.

Figure: Spatial pattern of the first EOF mode of the decadal variation of the summer monsoon precipitation over the NH land monsoon regions. (Wang et al., 2018)



## Identify the NAM domain

- Localized NAM domain: determined by the ensemble results from Selforganizing maps (SOMs).
  - CPC-global precipitation dataset is used. The cubic root of LTDM precipitation is first normalized to [0, 1], and then used for SOMs clustering. (Swenson and Grotjahn, 2019)
  - The number of nodes ranges from 10 to 20.



Figure: Different results from SOMs ensembles.

## Identify the NAM domain

The NAM domain is the intersection of 11 ensembles from SOMs, excluding Baja California (Englehart and Douglas, 2001) and any other singular points.



Figure: NAM region with 95<sup>th</sup> percentile precipitation rate.



Figure: Normalized cubic root of precipitation of the NAM region.

The rapid increase in precipitation signal after June shows the monsoon impact.

The identified domain is then used as the NAM mask and can be applied to any other dataset.

## NAM precipitation in climate datasets



Figure: Comparing NAM precipitation from CESM LENs and ECMWF (HighRes) against CPC.

| Dataset | 95 <sup>th</sup> percentile | 95 <sup>th</sup> percentile for each ensemble |
|---------|-----------------------------|-----------------------------------------------|
| CPC     | 4.343                       |                                               |
| CESM1   | 4.210                       | 4.082                                         |
|         |                             | 4.477                                         |
|         |                             | 4.322                                         |
|         |                             | 4.163                                         |
|         |                             | 4.001                                         |
|         |                             | 4.059                                         |
|         |                             | 4.188                                         |
|         |                             | 4.237                                         |
|         |                             | 4.353                                         |
| ECMWF   | 5.110                       | 4.913                                         |
|         |                             | 5.072                                         |
|         |                             | 5.028                                         |
|         |                             | 5.181                                         |
|         |                             | 5.153                                         |
|         |                             | 5.305                                         |

## Research tasks

Identify the North American Monsoon Area. Build ML models
for daily
precipitation
prediction and
analyze the
possible
teleconnection
areas.

Build ML models for monthly scale and analyze the corresponding teleconnection effects.

## Daily precipitation prediction model

#### Hypothesis:

The disturbance from a remote area will affect the meteorology conditions over the NAM area, and by ML models, we can trace back to the origin of the predictability. ML models:

PCA+LSTM

Use PCA to decompose high-dimensional meteorology fields and LSTM for time dependency

**CNN+LSTM** 

Use CNN to extract spatial patterns and LSTM for time dependency

Inputs: PSL, Z500, Q850 anomaly

Outputs: mean precipitation in the NAM

region.

## Daily PCA model

PCA model with no time dependency: Linear regression with different PCs.



Figure: Heatmap from the linear model. Heatmap = (Linear weight \* component)/# of PCs.

## Daily PCA model

PCA+LSTM

Time lag: 14 days.

day 0 to day 13 as inputs and day 14 as output.

#### Model architecture:

| Layer | Output Shape      |                                    |
|-------|-------------------|------------------------------------|
| Input | Batch, 14, PCs    | Day 0 – Day 13 PCA variables       |
| LSTM  | Batch, 14, Hidden | LSTM outputs                       |
| Dense | Batch, 14, 150    |                                    |
| Slice | Batch, 1, PCs     | Take the last frame, PC prediction |
| Dense | Batch, 1, 1       | Day 14 precipitation prediction    |

Loss function: 5\*MSE(PC\_true, PC\_pred) + MSE(Precip\_true, Precip\_pred) -2



Figure: Prediction result with PSL(up) and Z500(bottom). Precipitation on the left (R2=0.304 with PSL and 0.335 for Z500), PCs on the right.



## Daily PCA model

#### Integrated gradients of PC prediction



Figure: IG fields of PC prediction. Left for PC0 and right for PC10.

#### Integrated gradients of precipitation prediction



Figure: IG fields of Precipitation prediction.

#### Heatmap = PC x attr x sign sign = transformed / abs(transformed)



Figure: Heatmap from principal components.

## Daily CNN model

**CNN+LSTM** 

Time lag: 14 days.

day 0 to day 13 as inputs and day 14 as output.

#### Model architecture:

| Layer     | Output Shape             |                                 |
|-----------|--------------------------|---------------------------------|
| Input     | Batch, 14, (192, 288), 1 | Day 0 – Day 13 PSL or Z500      |
| Conv-Pool | Batch, 14, (16, 10), 16  | (16, 10) spatial                |
| Dense     | Batch, 14, 256           |                                 |
| LSTM      | Batch, 14, 512           |                                 |
| Dense     | Batch, 1, 1              | Day 14 precipitation prediction |



Figure: Prediction result with PSL(left) and Z500(right). R2=0.582 with PSL and 0.564 for Z500



Figure: mean of IGs from precipitation over 95<sup>th</sup> percentile.

## Research tasks

Identify the North American Monsoon Area. Build ML models
for daily
precipitation
prediction and
analyze the
possible
teleconnection
areas.

Build ML models for monthly scale and analyze the corresponding teleconnection effects.

## Monthly precipitation prediction model

The teleconnection impact is weak in daily scale. Switch to monthly field to focus on the longer time scale.

**CNN Model** 

Time lag: 1 month.

Month 0 as input and Month 1 as output.

#### Model architecture:

| Layer     | Output Shape |                                  |
|-----------|--------------|----------------------------------|
| Input     | 192, 288     | Spatial dimension for CESM       |
| Conv-pool | 9, 15        | Spatial size for feature map     |
| Dense     | 256          |                                  |
| Dense     | 1            | Precipitation anomaly prediction |

Input features: 'PSL', 'Z500', 'TMQ', 'Q850', 'TREFHT' R2 score: 0.095



|       | Positive | Negative |
|-------|----------|----------|
| True  | 1699     | 2025     |
| False | 1373     | 1089     |



Figure: Prediction skill with different month lags.

## Monthly precipitation prediction model







Figure: Mean of gradient (up) and mean of absolute gradient (bottom).

Figure: Mean of gradient in DJF (up) and mean of gradient in JJA (bottom).

Figure: Mean of gradient with concurrent month (up) and mean of gradient with one month lag (bottom).







## Monthly precipitation predictability

To show the predictability from these areas, we permute the samples and compare the drop in R2 score.



Compare with teleconnection indices, train and test with the same ensembles as CNN model:

**PSL** 

Nino34: 0.053

IOD: 0.009

| <b>Z</b> 500 | 2.39  |
|--------------|-------|
| TMQ          | -0.07 |
| Q850         | 0.83  |
| TREFHT       | 1.78  |

Figure: Permutation area (left) and r2 drop ratio (right).

**R2\_drop (%)** 

2.27

## Monthly precipitation causation

Partial dependency plot: permute the PSL in the South Asia and Pacific area and see the response of the predicted precipitation.



Figure: Response of prediction when perturb PSL in South Asia (left) and Pacific (middle).

Decrease the PSL over South Asia (Pacific) will decrease (increase) the precipitation in the NAM region.

## Monthly precipitation causation

Use Hovmoller diagram to check if there is any wave train from South Asia to the NAM area.



#### Composite daily fields



## Summary

- Teleconnection is hard to be detected with daily precipitation.
- With global features as input, the CNN model highlights the Pacific and South Asia area as the potential source of predictability.
- Nino34 can provide a better prediction compared with other indices, but with limited domain, it is not comparable to the CNN model.
- The interpretation can not reveal the causation of monthly precipitation prediction. We still need physical-based models to test our hypothesis.

## Thanks