Bonusuppgift 1

David Tonderski

1 Lösning

1a. Graf

1b. Kopplingsmatrisen A

Kopplingsmatrisen är

$$A = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 0 \end{bmatrix}$$
 (1)

1c. A^2 med förklaring

$$A^{2} = \begin{bmatrix} 0 & 1 & 1 & 2 & 0 \\ 2 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 2 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 1 \end{bmatrix}$$
 (2)

Varje 'etta' som adderas för att få elementet på plats (i,j) i A^2 betyder att det finns ett flyg från i till k och från k till j, där $k \in \{1,2,3,4,5\}$. Ta t.ex. i=2,j=1. Elementet på (2,1) i A^2 är lika med två, och det fås genom att multiplicera den andra raden i A med den första kolonnen i A:

$$\begin{bmatrix} 0 & 0 & 1 & 1 & 0 \end{bmatrix} * \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \\ 0 \end{bmatrix} = 2 \tag{3}$$

Resultatet är två eftersom elementen på plats (i=2,k) och (k,j=1) i matrisen A är nollskilda för två k, k=3 och k=4. Det finns alltså två sätt att flyga med exakt ett byte från San Francisco (2) till Los Angeles (1), via Monterey (3) och Fresno (4).

1d. $A^2 + A$

$$A^{2} + A = \begin{bmatrix} 0 & 2 & 1 & 2 & 1 \\ 2 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 2 & 0 & 1 & 2 \\ 1 & 1 & 1 & 2 & 1 \end{bmatrix}$$
 (4)

Elementet på plats (i, j) i $A^2 + A$ betyder antalet sätt det finns att flyga från stad i till stad j med **högst** ett byte.

1e. Antal flygningar mellan två godtyckliga städer

Låt oss titta på matrisen A^2+A . Som vi ser så kan man inte flyga mellan städerna 3 (Monterey) och 4 (Fresno) om man får byta högst en gång. Vi måste därför beräkna matrisen A^3 , vars element på plats (i,j) betecknar antalet sätt att flyga från stad i till stad j med exakt två byten enligt samma logik som användes i avsnitt 1c. Elementet på plats (i,j) i matrisen A^3+A^2+A kommer alltså att beteckna antalet sätt att flyga från stad i till stad j med högst två byten.

$$A^{3} = \begin{bmatrix} 3 & 0 & 1 & 1 & 2 \\ 0 & 3 & 0 & 1 & 2 \\ 0 & 1 & 1 & 2 & 0 \\ 1 & 1 & 2 & 3 & 1 \\ 2 & 2 & 0 & 1 & 2 \end{bmatrix}$$

$$A^{3} + A^{2} + A = \begin{bmatrix} 3 & 2 & 2 & 3 & 3 \\ 2 & 3 & 1 & 2 & 3 \\ 1 & 2 & 1 & 2 & 1 \\ 2 & 3 & 2 & 4 & 3 \\ 3 & 3 & 1 & 3 & 3 \end{bmatrix}$$

$$(5)$$

Som vi ser finns det inga nollor kvar i matrisen. Det betyder att det går att flyga mellan två godtyckliga städer med högst två byten. Man behöver två byten för att flyga mellan Monterey (3) och Fresno (4).

1f. Utan Sacramento - San Francisco

Nu blir de intressanta matriserna:

$$A' = \begin{bmatrix} 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

$$(A')^{2} + A' = \begin{bmatrix} 0 & 1 & 1 & 2 & 1 \\ 2 & 0 & 1 & 1 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 & 2 \\ 1 & 0 & 0 & 1 & 1 \end{bmatrix}$$

$$(A')^{3} + (A')^{2} + A' = \begin{bmatrix} 3 & 1 & 1 & 2 & 3 \\ 2 & 1 & 2 & 3 \\ 1 & 1 & 1 & 2 & 1 \\ 2 & 1 & 1 & 3 & 3 \\ 1 & 1 & 0 & 2 & 2 \end{bmatrix}$$

$$(A')^{4} + (A')^{3} + (A')^{2} + A' = \begin{bmatrix} 3 & 4 & 1 & 4 & 6 \\ 3 & 2 & 3 & 6 & 4 \\ 4 & 1 & 1 & 2 & 3 \\ 5 & 2 & 1 & 4 & 6 \\ 2 & 1 & 1 & 4 & 3 \end{bmatrix}$$

Den här gången räcker inte två byten, för man kan inte komma från stad 5 (Sacramento) till stad 3 (Monterey) på två byten. Den sista matrisen visar dock att tre byten räcker, så svaret från uppgift e ändras till 3.

1g. Räcker det att addera en enkel flygning?

Matrisen A^2+A visar att det inte går att flyga mellan städerna 3 och 4 med högst två byten. Det är alltså elementen på plats (3,4) och (4,3) som är intressanta.

För att få elementet på plats (4,3) i $A^2 + A$ att bli större än noll genom att lägga till en etta (ett flyg) i A så skulle vi behöva lägga in den på plats (1,3), (4,2), eller (5,3).

För att få elementet på plats (3,4) i $A^2 + A$ att bli större än noll genom att lägga till en etta i A så skulle vi behöva lägga in den på plats (3,2), (4,1) eller (3,5).

Som vi ser så finns det ingen plats i matrisen A som skulle få både elementet på plats (3,4) och (4,3) i matrisen A^2+A att bli 1. Därmed räcker det inte med att lägga till en flygning. Svaret blir alltså att man måste lägga till minst två flygningar.