Cours de Relativité et principes variationnels (PHY 431) Ecole polytechnique – Ingénieur – 2ème année Année 2023-2024 Pr. Sylvain Chaty

PC3: Espace-temps de Minkowski (06/12/2023)

Notions : Introduction au calcul tensoriel en relativité, Géométrie de Minkowski, Genre d'un quadri-vecteur, Intervalle d'espace-temps, Quadrivitesse, Quadriaccélération, Mouvement uniformément accéléré

Exercice à rendre pour le 11/12/2023 : Non-commutativité des transformations de Lorentz

Vérifions que les transformations de Lorentz, en tant que rotations dans l'espace quadri-dimensionnel de Minkowski, ne sont en général pas commutatives.

- Ecrire sous forme matricielle la transformation de Lorentz, mettant en jeu deux référentiels \mathcal{R} et \mathcal{R}' , avec \mathcal{R}' en translation uniforme par rapport à \mathcal{R} , à la vitesse $\vec{v_1} = v_1 \vec{e_x}$, en notant $\Lambda(\vec{v_1})$ la matrice de passage de \mathcal{R} à \mathcal{R}' .
- Ecrire sous forme matricielle la transformation de Lorentz pour les référentiels \mathcal{R}' et \mathcal{R}'' , avec \mathcal{R}'' en translation uniforme par rapport à \mathcal{R}' , à la vitesse uniforme $\vec{v_2} = v_2 \vec{e_y}$, en notant $\Lambda(\vec{v_2})$ la matrice de passage de \mathcal{R}' à \mathcal{R}'' .
- Etablir la matrice de passage de la transformation composée. Montrer que cette matrice dépend de l'ordre dans lequel on effectue les transformations, i.e. $\Lambda(\vec{v_1})\Lambda(\vec{v_2})$ vs $\Lambda(\vec{v_2})\Lambda(\vec{v_1})$.