Data cleaning and EDA

Qianying Wu

2023-11-21

Read in Data

```
diabetes_raw <- read_csv("data/Diabetes_012_data.csv") |>
  # factor Diabetes to 0, 1, 2
  mutate(Diabetes_012 = factor(Diabetes_012, levels = c(0, 1, 2)),
         HighBP = factor(HighBP, levels = c(0, 1), labels = c("No", "Yes")))
## Rows: 253680 Columns: 22
## -- Column specification -----
## Delimiter: ","
## dbl (22): Diabetes_012, HighBP, HighChol, CholCheck, BMI, Smoker, Stroke, He...
## i Use 'spec()' to retrieve the full column specification for this data.
## i Specify the column types or set 'show_col_types = FALSE' to quiet this message.
head(diabetes_raw)
## # A tibble: 6 x 22
    Diabetes_012 HighBP HighChol CholCheck
                                              BMI Smoker Stroke
##
     <fct>
                 <fct>
                            <dbl>
                                      <dbl> <dbl> <dbl> <dbl>
## 1 0
                 Yes
                                1
                                          1
                                               40
                                                       1
## 2 0
                                0
                                          0
                                               25
                 No
                                                       1
## 3 0
                 Yes
                                1
                                          1
                                               28
                                                       0
## 4 0
                 Yes
                                0
                                          1
                                               27
## 5 0
                 Yes
                                1
                                          1
                                               24
                                                       0
                                                              0
## 6 0
                 Yes
                                          1
                                               25
## # i 15 more variables: HeartDiseaseorAttack <dbl>, PhysActivity <dbl>,
      Fruits <dbl>, Veggies <dbl>, HvyAlcoholConsump <dbl>, AnyHealthcare <dbl>,
## #
      NoDocbcCost <dbl>, GenHlth <dbl>, MentHlth <dbl>, PhysHlth <dbl>,
      DiffWalk <dbl>, Sex <dbl>, Age <dbl>, Education <dbl>, Income <dbl>
```

Exploratory Data Analysis

Univariate Analysis

Frequency of Diabetes Categories

Diabetes Type

```
ggplot(data = diabetes_raw) +
  geom_bar(mapping = aes(x = HighBP), fill = "lightgreen") +
  labs(x = "High Blood Pressure", y = "Frequency", title = "Frequency of High Blood Pressure") +
  theme_minimal()
```


High Blood Pressure

```
# write a function to categorize bmi values to diverse weight status
categorize_bmi <- function(bmi) {
   if (bmi < 18.5) {
      return("Underweight")
   } else if (bmi >= 18.5 & bmi < 25) {
      return("Normal weight")
   } else if (bmi >= 25 & bmi < 30) {
      return("Overweight")
   } else {
      return("Obesity")
   }
}
# add a column named weight_status to the data set
diabetes_raw$weight_status <- sapply(diabetes_raw$BMI, categorize_bmi)</pre>
```

bmi categorization

```
ggplot(diabetes_raw, aes(x = Diabetes_012, fill = HighBP)) +
geom_bar(position = "fill") +
ylab("Blood Pressure Status") +
```

```
xlab("Diabetes Status") +
ggtitle("Association between Diabetes Status and Blood Pressure Status") +
scale_fill_brewer(palette = "Pastel1") +
theme_minimal()
```


Plot: Association between Diabetes Status and blood pressure status

```
ggplot(diabetes_raw, aes(x = Diabetes_012, fill = weight_status)) +
  geom_bar(position = "fill") +
  ylab("Proportion") +
  xlab("Diabetes Status") +
  ggtitle("Association between Diabetes Status and Weight Status") +
  scale_fill_brewer(palette = "Pastel1") +
  theme_minimal()
```


Plot: Association between Diabetes Status and Weight Status

Diabetes Pre-Diabetes No Diabetes No Diabetes

25

BMI Dist

Plot: Box plot distribution of BMI in different Diabetes status

```
plot_smoke =
   ggplot(diabetes_raw, aes(Smoker, ..count..)) +
   geom_bar(aes(fill = Diabetes_012), position = "dodge") +
   scale_fill_brewer(palette = 'Pastel1') +
   ylab("Frequencies") +
   xlab("Smoking Status") +
   ggtitle("Smoking Status Frequencies over Diabetes Status") +
   theme_minimal()

plot_smoke
```

Plot: Smoking Status over Diabetes Status

```
## Warning: The dot-dot notation ('..count..') was deprecated in ggplot2 3.4.0.
## i Please use 'after_stat(count)' instead.
## This warning is displayed once every 8 hours.
## Call 'lifecycle::last_lifecycle_warnings()' to see where this warning was
## generated.
```


Plot: Fruits or Veggies over different Diabetes Status

mosaicplot(Fruits~Veggies,data=diabetes_raw,col=c("Light Pink","Light Blue"))

diabetes_raw

Fruits

```
plot_education =
   ggplot(diabetes_raw, aes(x = Education, ..count..)) +
   geom_bar(aes(fill = Diabetes_012), position = 'dodge') +
   scale_fill_brewer(palette = 'Pastel1') +
   ylab("Frequencies") +
   xlab("Education Level") +
   ggtitle("Education Level Frequencies over Diabetes Status") +
   theme_minimal()

plot_education
```


Plot: Distribution of Education Level over different Diabetes Status

```
plot_income =
   ggplot(diabetes_raw, aes(Income, ..count..)) +
   geom_bar(aes(fill = Diabetes_012), position = "dodge") +
   scale_fill_brewer(palette = 'Pastel1') +
   ylab("Frequencies") +
   xlab("Income Level") +
   ggtitle("Income Level Frequencies over Diabetes Status") +
   theme_minimal()

plot_income
```

Income Level Frequencies o

Plot: Distribution of Income Level over different Diabetes Status

```
pvalue <- function(x, ...) {
    # Construct vectors of data y, and groups (strata) g
    y <- unlist(x)
    g <- factor(rep(1:length(x), times=sapply(x, length)))
    if (is.numeric(y)) {
        # For numeric variables, perform a one-side anova test
        p <- aov(y ~ g)$p.value
    } else {
        # For categorical variables, perform a chi-squared test of independence
        p <- chisq.test(table(y, g))$p.value
    }
    # Format the p-value, using an HTML entity for the less-than sign.
    # The initial empty string places the output on the line below the variable label.
    c("", sub("<", "&lt;", format.pval(p, digits=3, eps=0.001)))
}</pre>
```

Statistical Test 1.1 P-value function

```
## Rtable_1 shows the demographics stats
Rtable_1 =
```

```
table1(~ factor(Sex) + Age | Diabetes_012, data=diabetes_raw, overall=F, extra.col=list(`P-value`=pval-
Rtable_1
```

Create R table 1

Get nicer 'table1' LaTeX output by simply installing the 'kableExtra' package

-				
	No Diabetes	Pre-Diabetes	Diabetes	P-value
	(N=213703)	(N=4631)	(N=35346)	
factor(Sex)	,	,	,	
0	120959~(56.6%)	2604 (56.2%)	18411 (52.1%)	< 0.001
1	92744 (43.4%)	2027 (43.8%)	16935~(47.9%)	
Age	` '	` ,	, ,	
Mean (SD)	7.79 (3.10)	9.08(2.63)	9.38(2.33)	
Median [Min, Max]	8.00 [1.00, 13.0]	9.00 [1.00, 13.0]	10.0 [1.00, 13.0]	

```
## Rtable_2 shows the physiology status factor stats
Rtable_2 =
   table1(~ factor(HighBP) + factor(HighChol) + BMI + factor(weight_status) | Diabetes_012, data=diabete
Rtable_2
```

Get nicer 'table1' LaTeX output by simply installing the 'kableExtra' package

	No Diabetes	Pre-Diabetes	Diabetes	P-value
	(N=213703)	(N=4631)	(N=35346)	
factor(HighBP)	,	,	,	
No	134391 (62.9%)	1718 (37.1%)	$8742\ (24.7\%)$	< 0.001
Yes	79312 (37.1%)	2913~(62.9%)	26604~(75.3%)	
factor(HighChol)	, ,	, ,	, ,	
0	132673 (62.1%)	1756 (37.9%)	11660 (33.0%)	< 0.001
1	81030 (37.9%)	2875 (62.1%)	23686 (67.0%)	
BMI	, ,	, ,	, ,	
Mean (SD)	27.7(6.26)	30.7(6.96)	31.9(7.36)	
Median [Min, Max]	27.0 [12.0, 98.0]	30.0 [13.0, 96.0]	31.0 [13.0, 98.0]	
factor(weight_status)				
Normal weight	64336 (30.1%)	689 (14.9%)	3928 (11.1%)	< 0.001
Obesity	64906 (30.4%)	2388(51.6%)	20557(58.2%)	
Overweight	81531 (38.2%)	$1526 \ (33.0\%)$	10692 (30.2%)	
Underweight	2930 (1.4%)	28 (0.6%)	169 (0.5%)	

```
## Rtable_3 shows the social-economic factor stats
Rtable_3 =
  table1(~ factor(Education) + factor(Income) | Diabetes_012, data=diabetes_raw, overall=F, extra.col=1
```

Warning in chisq.test(table(y, g)): Chi-squared approximation may be incorrect

Get nicer 'table1' LaTeX output by simply installing the 'kableExtra' package

Rtable_3

	No Diabetes	Pre-Diabetes	Diabetes	P-value
	(N=213703)	(N=4631)	(N=35346)	
factor(Education)	,	,	,	
1	125~(0.1%)	2(0.0%)	47 (0.1%)	< 0.001
2	2699~(1.3%)	161 (3.5%)	$1183 \ (3.3\%)$	
3	6868 (3.2%)	314~(6.8%)	2296~(6.5%)	
4	50334 (23.6%)	$1350\ (29.2\%)$	11066 (31.3%)	
5	58223 (27.2%)	1333 (28.8%)	10354 (29.3%)	
6	95454 (44.7%)	1471 (31.8%)	10400 (29.4%)	
factor(Income)				
1	7114 (3.3%)	314~(6.8%)	2383~(6.7%)	< 0.001
2	8341 (3.9%)	356 (7.7%)	3086 (8.7%)	
3	12005~(5.6%)	421 (9.1%)	$3568 \ (10.1\%)$	
4	$15622 \ (7.3\%)$	459 (9.9%)	4054 (11.5%)	
5	20792 (9.7%)	587 (12.7%)	4504 (12.7%)	
6	30431 (14.2%)	748 (16.2%)	5291 (15.0%)	
7	37219 (17.4%)	735 (15.9%)	5265 (14.9%)	
8	82179 (38.5%)	$1011\ (21.8\%)$	7195 (20.4%)	

```
## Rtable_4 shows the physical-habits factor stats
Rtable_4 =
   table1(~ factor(Smoker) + factor(PhysActivity) + factor(Fruits) + factor(Veggies) + factor(HvyAlcohol
Rtable_4
```

Get nicer 'table1' LaTeX output by simply installing the 'kableExtra' package

	No Diabetes	Pre-Diabetes	Diabetes	P-value
	(N=213703)	(N=4631)	(N=35346)	
factor(Smoker)	,	,	,	
0	121879 (57.0%)	2349 (50.7%)	17029 (48.2%)	< 0.001
1	91824 (43.0%)	2282(49.3%)	18317 (51.8%)	
factor(PhysActivity)	, ,	, ,	,	
0	$47212\ (22.1\%)$	1489 (32.2%)	13059 (36.9%)	< 0.001
1	166491 (77.9%)	3142 (67.8%)	22287(63.1%)	
factor(Fruits)	,	, ,	,	
0	76287 (35.7%)	1842 (39.8%)	14653 (41.5%)	< 0.001
1	137416~(64.3%)	2789 (60.2%)	20693~(58.5%)	
factor(Veggies)	, ,	, ,	, ,	
0	38159 (17.9%)	1070 (23.1%)	8610 (24.4%)	< 0.001
1	175544 (82.1%)	3561 (76.9%)	26736 (75.6%)	
factor(HvyAlcoholConsump)	, ,	, ,	,	
0	200487 (93.8%)	4423 (95.5%)	34514 (97.6%)	< 0.001
1	13216 (6.2%)	$208 \ (4.5\%)$	832 (2.4%)	
factor(AnyHealthcare)	, ,	` '	` '	

	No Diabetes	Pre-Diabetes	Diabetes	P-value
0	10741 (5.0%)	254 (5.5%)	1422 (4.0%)	< 0.001
1	202962 (95.0%)	4377 (94.5%)	33924 (96.0%)	

```
## Rtable_5 shows the symptoms/disease related stats
Rtable_5 =
   table1(~ factor(Stroke) + factor(HeartDiseaseorAttack) + factor(DiffWalk) | Diabetes_012, data=diabet
Rtable_5
```

 $\hbox{\tt \#\# Get nicer `table1' LaTeX output by simply installing the `kableExtra' package}$

	No Diabetes	Pre-Diabetes	Diabetes	P-value
	(N=213703)	(N=4631)	(N=35346)	
factor(Stroke)	,	, ,	,	
0	206944 (96.8%)	4366 (94.3%)	32078 (90.8%)	< 0.001
1	$6759 \ (3.2\%)$	265 (5.7%)	3268 (9.2%)	
factor(HeartDiseaseorAttack)	, ,	,	,	
0	198352 (92.8%)	3967 (85.7%)	$27468 \ (77.7\%)$	< 0.001
1	15351 (7.2%)	664 (14.3%)	7878 (22.3%)	
factor(DiffWalk)	, ,	,	,	
0	185434 (86.8%)	3346 (72.3%)	22225 (62.9%)	< 0.001
1	28269 (13.2%)	$1285\ (27.7\%)$	13121 (37.1%)	

Bivariate Analysis

High Blood Pressure in Different Diabetes Status