Universidad Nacional Autónoma de México Facultad de Ciencias Taller de Robótica 2024-1

Detección de paneles solares en ambientes virtuales

Integrantes y correos:

Del Moral Morales Francisco Emmanuel

fcoemmdmm@ciencias.unam.mx

Liprandi Cortes Rodrigo

godites@ciencias.unam.mx

1. Arquitectura del proyecto

El proyecto se conforma de 3 subsistemas para poder realizar la detección de los paneles y los movimientos del robot dentro del ambiente virtual.

Figura 1: Arquitectura del sistema representado como bloques

A continuación se muestra el árbol de directorios del proyecto:

1.1. Mundo virtual en Gazebo

El ambiente virtual se conforma de un archivo .sdf, que representa nuestro mundo virtual, que a su vez usa modelos en formato .dae para crear las mallas de los paneles solares y de el robot.

1. paneles.sdf - Mundo virtual, este es el archivo principal de nuestro ambiente virtual. Aquí definimos

propiedades del mundo así como los enlaces, colisiones y articulaciones del robot. También definimos propiedades de la interfaz para poder visualizar la cámara y otra información desde Gazebo.

- 2. panel_solar Directorio donde se encuentran los archivos del modelo de los paneles solares, estos fueron hechos en Blender y exportados a stl y dae.
 - panel_solar.dae archivo usado para crear las colisiones de los paneles solares.
 - panel_solar.stl archivo usado para la parte visual de los paneles solares.
- 3. robot Directorio donde se encuentram los archivos del modelo del robot
 - main_body.dae Archivo donde se define la parte visual del cuerpo del robot.
 - wheel.dae Archivo donde se define la parte visual de las llantas del robot.

1.2. Puentes de comunicación entre ROS2 y Gazebo

Los puentes nos sirven para establecer una comunicación entre ROS2 y Gazebo, de esta forma podemos enviar y recibir datos o comandos de ambas plataformas.

- ros_gz_bridge es el nodo que provee los puentes y permiten el intercambio de mensajes entre ROS2 y Gazebo, sólo tiene soporte para ciertos tipos de mensajes pero para este proyecto sólo necesitamos 3 tipos de mensajes:
 - 1. Mensajes de tipo Twist para poder mover al robot.
 - 2. Mensajes de tipo Image para la cámara virtual.
 - 3. Mensajes de tipo TF para conocer la posición del robot.

1.3. Nodo de ROS2 para ejecutar la rutina de movimiento y detección de paneles solares

El nodo usa mensajes de tipo Twist para el movimiento del robot. Además se usa la bilbioteca OpenCV para detectar los paneles solares.

2. Instalación

Se recomienda el uso de Ubuntu 22.04 ya que en este sistema operativo se desarrolló el proyecto y las tecnologías mencionadas abajo funcionan bien en este sistema.

2.1. Requerimientos

Python

Los nodos de ROS 2 para el movimiento están hechos en python, además se requiere de la biblioteca **Open CV** para la detección de paneles solares.

```
sudo apt update # Actualizar los paquetes del sistema
sudo apt install python3 # Instala python
pip install opencv-python # Instala OpenCV
pip install numpy # Dependencia
pip install empy # Dependencia
pip install lark # Dependencia
```

■ ROS 2

Se requiere de una instalación de ROS 2 para poder ejecutar el nodo de movimiento y reconocimiento de paneles solares, en el desarrollo de este proyecto se usó la distribución **Humble**.

En este enlace se encuentra un tutorial de cómo instalarlo.

Gazebo

Se requiere instalar Gazebo para poder visualizar el mundo virtual y poder obtener información del robot como su posición y las imágenes de la cámara virtual. En este proyecto se usó Gazebo Ignition.

En este enlace se encuentra un tutorial de cómo instalarlo.

2.2. Descargar el proyecto

El código se encuentra actualmente en el siguiente repositorio: https://github.com/ShadoRoca/Ambiente-Paneles
Para poder descargarlo:

```
git clone https://github.com/ShadoRoca/Ambiente-Paneles
```

2.3. Compilación

Compilar los paquetes de ROS

```
# Terminal 1
cd ambiente_panel
source /opt/ros2/humble
colcon build

# Terminal 2
cd ros2_ws
source /opt/ros2/humble
colcon build
```

3. Ejecución del proyecto

Usar nuevas terminales para los siguientes pasos

3.1. Ambiente virtual

1. Iniciar el ambiente virtual

```
# Terminal 1
cd ambiente_panel/src
ign gazebo paneles.sdf
```


2. Dar click en el ícono de play en la esquina inferior izquierda para iniciar la simulación

3.2. Puentes de comunicación

```
# Terminal 2
cd ros2_ws
source /opt/ros2/humble
source install/setup.bash

ros2 run ros_gz_bridge parameter_bridge /commands/velocity@geometry_msgs
/msg/Twist@ignition.msgs.Twist
```

```
# Terminal 3
cd ros2_ws
source /opt/ros2/humble
source install/setup.bash

ros2 run ros_gz_bridge parameter_bridge /camera@sensor_msgs/msg/
Image@ignition.msgs.Image
```

```
# Terminal 4
cd ros2_ws
source /opt/ros2/humble
source install/setup.bash

ros2 run ros_gz_bridge parameter_bridge /model/kobuki_standalone/
tf@tf2_msgs/msg/TFMessage@gz.msgs.Pose_V
```

3.3. Rutina de movimiento y detección de paneles

```
# Terminal 5
cd ambiente_panel
source /opt/ros2/humble
source install/setup.bash
ros2 run movement path_rutine
```