Здесь будет титульник, листай ниже

# СОДЕРЖАНИЕ

| 1 ПОСТАНОВКА ЗАДАЧИ                               | 5  |
|---------------------------------------------------|----|
| 1.1 Описание входных данных                       | 6  |
| 1.2 Описание выходных данных                      | 7  |
| 2 МЕТОД РЕШЕНИЯ                                   | 8  |
| 3 ОПИСАНИЕ АЛГОРИТМОВ                             | 10 |
| 3.1 Алгоритм конструктора класса MeineKlasse      | 10 |
| 3.2 Алгоритм деструктора класса MeineKlasse       | 10 |
| 3.3 Алгоритм метода ArrayInput класса MeineKlasse | 11 |
| 3.4 Алгоритм метода PairSumm класса MeineKlasse   | 11 |
| 3.5 Алгоритм метода PairMult класса MeineKlasse   | 11 |
| 3.6 Алгоритм метода ArraySumm класса MeineKlasse  | 12 |
| 3.7 Алгоритм конструктора класса MeineKlasse      | 13 |
| 3.8 Алгоритм конструктора класса MeineKlasse      | 13 |
| 3.9 Алгоритм функции main                         | 14 |
| 4 БЛОК-СХЕМЫ АЛГОРИТМОВ                           | 16 |
| 5 КОД ПРОГРАММЫ                                   | 23 |
| 5.1 Файл main.cpp                                 | 23 |
| 5.2 Файл MeineKlasse.cpp                          | 23 |
| 5.3 Файл MeineKlasse.h                            | 24 |
| 6 ТЕСТИРОВАНИЕ                                    | 26 |
| СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ                  | 27 |

## 1 ПОСТАНОВКА ЗАДАЧИ

Дан объект следующей конструкции:

В закрытом доступе имеется массив целого типа и поле его длины. Количество элементов массива четное и больше двух. Объект имеет функциональность:

- Конструктор по умолчанию, в начале работы выдает сообщение;
- Параметризированный конструктор, передается целочисленный параметр. По значению параметра определяется размерность целочисленного массива из закрытой области. Массив создается. В начале работы выдает сообщение;
- Метод деструктор, который выдает сообщение что он отработал;
- Метод ввода данных для созданного массива;
- Метод 1, который суммирует значения очередной пары элементов и сумму присваивает первому элементу пары. Далее суммирует элементы полученного массива и возвращает это значение. Например, пусть массив состоит из элементов {1,2,3,4}. В результате суммирования пар получим массив {3,2,7,4};
- Метод 2, который умножает значения очередной пары элементов и результат присваивает первому элементу пары. Далее суммирует элементы полученного массива и возвращает это значение. Например, пусть массив состоит из элементов {1,2,3,4}. В результате умножения пар получим массив {2,2,12,4};
- Метод который, суммирует значения элементов массива и возвращает это значение.

Разработать функцию, которая в качестве параметра получает объект по значению. Функция вызывается метод 2, далее выводит сумму элементов массива с новой строки.

В основной функции реализовать алгоритм:

- 1. Ввод размерности массива. Размер должен иметь значение больше 2 и быть четным.
- 2. Если размерность массива некорректная, вывод сообщения и завершить работу алгоритма.
- 3. Вывод значения размерности массива.
- 4. Создание объекта с аргументом размерности массива.
- 5. Вызов метода для ввода значений элементов массива.
- 6. Вызов функции передача в качестве аргумента объекта.
- 7. Вызов метода 1 от имени объекта.
- 8. Вывод суммы элементов массива объекта с новой строки.

Разработать конструктор копии объекта для корректного выполнения вычислений. В начале работы конструктор копии выдает сообщение с новой строки.

### 1.1 Описание входных данных

```
Первая строка:
«целое число»

Вторая строка:
«целое число» «целое число» . . . .

Пример:
```

1 2 3 4 5 6 7 8

#### 1.2 Описание выходных данных

Если введенная размерность массива допустима, то в первой строке выводится это значение:

«Целое число»

Если введенная размерность массива не больше двух или нечетная, то в первой строке выводится некорректное значение и вопросительный знак:

«Целое число»?

Конструктор по умолчанию в начале работы с новой строки выдает сообщение:

Default constructor

Параметризированный конструктор в начале работы с новой строки выдает сообщение:

Constructor set

Конструктор копирования в начале работы с новой строки выдает сообщение:

Copy constructor

Деструктор в начале работы с новой строки выдает сообщение:

Destructor

#### Пример вывода:

8 Constructor set Copy constructor 120 Destructor 56 Destructor

## 2 МЕТОД РЕШЕНИЯ

Для решения задачи используется:

- объект obj класса MeineKlasse предназначен для создания полей объекта класса;
- функция MultiplyFunction для вызова метода копии объекта, дальнейшего вызова метода копии объекта, дальнейшего вызова метода перемножения парных элементов;
- сіп оператор стандартного потока ввода;
- cout оператор стандратного потока вывода.

#### Класс MeineKlasse:

- свойства/поля:
  - о поле размер целочисленного массива:
    - наименование size;
    - тип int;
    - модификатор доступа private;
  - о поле указатель на целочисленный массив:
    - наименование Array;
    - тип int\*;
    - модификатор доступа private;
- функционал:
  - о метод MeineKlasse стандартный конструктор;
  - о метод MeineKlasse параметаризированный конструктор;
  - о метод MeineKlasse конструктор копии;
  - метод ~MeineKlasse деструктор;
  - о метод ArrayInput ввод значений массива;
  - о метод PairSumm нахождение суммы пар значений массива;

- о метод PairMult нахождение разности пар значений массива;
- о метод ArraySumm сумма всех элементов массива.

### 3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

### 3.1 Алгоритм конструктора класса MeineKlasse

Функционал: создание объекта класса MeineKlasse, вывод сообщения об отработке.

Параметры: нет.

Алгоритм конструктора представлен в таблице 1.

Таблица 1 – Алгоритм конструктора класса MeineKlasse

| N₂ | Предикат | Действия                                                        | N₂       |
|----|----------|-----------------------------------------------------------------|----------|
|    |          |                                                                 | перехода |
| 1  |          | создание указателя Аггау на массив с целого типа со значением 0 | 2        |
| 2  |          | вывод сообщения "Default Constructor"                           | 3        |
| 3  |          | переход на новую строку                                         | Ø        |

### 3.2 Алгоритм деструктора класса MeineKlasse

Функционал: деструктор.

Параметры: нет.

Алгоритм деструктора представлен в таблице 2.

Таблица 2 – Алгоритм деструктора класса MeineKlasse

| N₂ | Предикат | Действия                     | N₂       |
|----|----------|------------------------------|----------|
|    |          |                              | перехода |
| 1  |          | удаление указателя Аггау     | 2        |
| 2  |          | вывод сообщения "Destructor" | Ø        |

#### 3.3 Алгоритм метода ArrayInput класса MeineKlasse

Функционал: ввод значений массива, затем подсчёт суммы элементов.

Параметры: нет.

Возвращаемое значение: int - сумма значений.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода ArrayInput класса MeineKlasse

| No | Предикат | Действия                                     | No       |
|----|----------|----------------------------------------------|----------|
|    |          |                                              | перехода |
| 1  |          | инициализация целочисленной переменной i = 0 | 2        |
| 2  | i < size | ввод значения і массива по указателю Array   | 3        |
|    |          |                                              | Ø        |
| 3  |          | увеличение значения переменной і на 1        | 2        |

#### 3.4 Алгоритм метода PairSumm класса MeineKlasse

Функционал: нахождение суммы пар значений массива.

Параметры: нет.

Возвращаемое значение: int - сумма элементов массива.

Алгоритм метода представлен в таблице 4.

Таблица 4 – Алгоритм метода PairSumm класса MeineKlasse

| N₂ | Предикат | Действия                                        | No       |
|----|----------|-------------------------------------------------|----------|
|    |          |                                                 | перехода |
| 1  |          | инициализация целочисленной переменной i = 1    | 2        |
| 2  | i < size | присвоение i-1 элементу по указателю Array      | 3        |
|    |          | значения равному сумме парных элементов і и i-1 |          |
|    |          | возврат значения метода ArraySumm               | Ø        |
| 3  |          | увеличение значения переменной і на 2           | 2        |

#### 3.5 Алгоритм метода PairMult класса MeineKlasse

Функционал: нахождение разности пар значений массива.

Параметры: нет.

Возвращаемое значение: int - сумма элементов массива.

Алгоритм метода представлен в таблице 5.

Таблица 5 – Алгоритм метода PairMult класса MeineKlasse

| No | Предикат | Действия                                     | No       |
|----|----------|----------------------------------------------|----------|
|    |          |                                              | перехода |
| 1  |          | инициализация целочисленной переменной i = 1 | 2        |
| 2  | i < size | присвоение i-1 элементу по указателю Array   | 3        |
|    |          | значения равному произведению парных         |          |
|    |          | элементов і и і-1                            |          |
|    |          | возврат значения метода ArraySumm            | Ø        |
| 3  |          | увеличение значения переменной і на 2        | 2        |

### 3.6 Алгоритм метода ArraySumm класса MeineKlasse

Функционал: подсчёт суммы всех элементов массива.

Параметры: нет.

Возвращаемое значение: int - сумма элементов массива.

Алгоритм метода представлен в таблице 6.

Таблица 6 – Алгоритм метода ArraySumm класса MeineKlasse

| N₂ | Предикат | Действия                                     | No       |
|----|----------|----------------------------------------------|----------|
|    |          |                                              | перехода |
| 1  |          | инициализация целочисленной переменной sum = | 2        |
|    |          | 0                                            |          |
| 2  |          | инициализация целочисленной переменной i = 0 | 3        |
| 3  | i < size | к значению переменной sum прибавляется       | 4        |
|    |          | значение переменной і массива по указателю   |          |

| No | Предикат | Действия                        | No       |
|----|----------|---------------------------------|----------|
|    |          |                                 | перехода |
|    |          | Array                           |          |
|    |          | возврат значения переменной sum | Ø        |
| 4  |          | увеличение значения і на 1      | 3        |

## 3.7 Алгоритм конструктора класса MeineKlasse

Функционал: создания указателя Аггау на целлочисленный массив.

Параметры: int, size, размер массива.

Алгоритм конструктора представлен в таблице 7.

Таблица 7 – Алгоритм конструктора класса MeineKlasse

| N₂ | Предикат | Действия                                                                |          |
|----|----------|-------------------------------------------------------------------------|----------|
|    |          |                                                                         | перехода |
| 1  |          | вывод "Set Constructor"                                                 | 2        |
| 2  |          | переход на новую строчку                                                | 3        |
| 3  |          | создания указателя Array на целочисленный массив размером<br>comes_size | 4        |
| 4  |          | присовение полю size, значения comes_size                               | Ø        |

### 3.8 Алгоритм конструктора класса MeineKlasse

Функционал: копирование всех полей объекта obj.

Параметры: const MeineKlasse& obj.

Алгоритм конструктора представлен в таблице 8.

Таблица 8 – Алгоритм конструктора класса MeineKlasse

| N₂ | Предикат | Действия                                         | No       |
|----|----------|--------------------------------------------------|----------|
|    |          |                                                  | перехода |
| 1  |          | создание указателя Array на целочисленный        | 2        |
|    |          | массив размером, равный полю size объекта obj    |          |
| 2  |          | присвоение полю size, равному значению поля size | 3        |

| N₂ | Предикат | Действия                                      | No       |
|----|----------|-----------------------------------------------|----------|
|    |          |                                               | перехода |
|    |          | объекта obj                                   |          |
| 3  |          | инициализация целочисленной переменной i = 0  | 4        |
| 4  | i < size | іму элементу по указателю Аггау присваивается | 5        |
|    |          | значение, равное іму элемементу массива по    |          |
|    |          | указателю Array объекта obj                   |          |
|    |          |                                               | 6        |
| 5  |          | увеличение значения і на 1                    | 6        |
| 6  |          | вывод "Copy constructor" и переход на новую   | 7        |
|    |          | строку                                        |          |
| 7  |          | возврат 0                                     | Ø        |

## 3.9 Алгоритм функции main

Функционал: выполнение постановленной задачи.

Параметры: нет.

Возвращаемое значение: int - индикатор успешности выполнения программы.

Алгоритм функции представлен в таблице 9.

Таблица 9 – Алгоритм функции таіп

| N₂ | Предикат               | Действия                                        | No<br>No             |
|----|------------------------|-------------------------------------------------|----------------------|
| 1  |                        | объявление целочисленной переменной size        | <b>перехода</b><br>2 |
| 2  |                        | ввод size                                       | 3                    |
| 3  | size > 2 и size чётное | вывод size                                      | 4                    |
|    |                        | вывод "size?"                                   | 9                    |
| 4  |                        | создание объекта obj класса MeineKlasse с       | 5                    |
|    |                        | агрументом size                                 |                      |
| 5  |                        | вызов метода ArrayInput для объекта obj         | 6                    |
| 6  |                        | вызов функции MultiplyFunction с аргументом obj | 7                    |

| No | Предикат | Действия                                |          |
|----|----------|-----------------------------------------|----------|
|    |          |                                         | перехода |
| 7  |          | вывод результата вызова метода PairSumm | 8        |
|    |          | объекта obj                             |          |
| 8  |          | вызов метода ArraySumm для объека obj   | 9        |
| 9  |          | возврат 0                               | Ø        |

## 4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-7.





Рисунок 2 – Блок-схема алгоритма



Рисунок 3 – Блок-схема алгоритма



Рисунок 4 – Блок-схема алгоритма



Рисунок 5 – Блок-схема алгоритма



Рисунок 6 – Блок-схема алгоритма



Рисунок 7 – Блок-схема алгоритма

## 5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

### 5.1 Файл таіп.срр

Листинг 1 – таіп.срр

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include "MeineKlasse.h"
void MultiplyFunction(MeineKlasse obj){
  std::cout << obj.PairMult() << "\n";</pre>
}
int main()
  int size;
  std::cin >> size;
  if ((size > 2) \&\& (size % 2 == 0)){}
     std::cout << size << "\n";</pre>
     MeineKlasse obj(size);
     obj.ArrayInput();
     MultiplyFunction(obj);
     std::cout << obj.PairSumm() << "\n";</pre>
     obj.ArraySumm();
  else{
     std::cout << size << "?\n";
  return(0);
}
```

### 5.2 Файл MeineKlasse.cpp

Листинг 2 – MeineKlasse.cpp

```
#include "MeineKlasse.h"
#include <iostream>
```

```
MeineKlasse::MeineKlasse(){
  Array = nullptr;
  std::cout << "Default constructor\n";</pre>
MeineKlasse::MeineKlasse(const MeineKlasse & obj){
  Array = new int[obj.size];
  size = obj.size;
  for (int i = 0; i < size; ++i){
     Array[i] = obj.Array[i];
  std::cout << "Copy constructor\n";</pre>
MeineKlasse::MeineKlasse(int comes_size){
  std::cout << "Constructor set\n";</pre>
  Array = new int[comes_size];
  size = comes_size;
MeineKlasse::~MeineKlasse(){
  delete[] Array;
  std::cout << "Destructor\n";</pre>
void MeineKlasse::ArrayInput(){
  for (int i = 0; i < size; i++){
     std::cin >> Array[i];
  }
int MeineKlasse::PairSumm(){
  for (int i = 1; i < size; i+=2){
     Array[i-1] = Array[i] + Array[i-1];
  return (ArraySumm());
int MeineKlasse::PairMult(){
  for (int i = 1; i < size; i+=2){
     Array[i-1] = Array[i] * Array[i-1];
  return (ArraySumm());
int MeineKlasse::ArraySumm(){
  int summ = 0;
  for (int i = 0; i < size; i++){
     summ += Array[i];
  return summ;
}
```

#### 5.3 Файл MeineKlasse.h

Листинг 3 – MeineKlasse.h

```
#ifndef __MEINEKLASSE__H
```

```
#define __MEINEKLASSE__H
class MeineKlasse{
public:
  MeineKlasse();
  MeineKlasse(const MeineKlasse & obj);
  MeineKlasse(int size);
  ~MeineKlasse();
  void ArrayInput();
  int PairSumm();
  int PairMult();
  int ArraySumm();
private:
  int size;
  int* Array;
};
#endif
```

## 6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 10.

Таблица 10 – Результат тестирования программы

| Входные данные       | Ожидаемые выходные                                                                | Фактические выходные                                                              |  |
|----------------------|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--|
|                      | данные                                                                            | данные                                                                            |  |
| 8<br>1 2 3 4 5 6 7 8 | 8<br>Constructor set<br>Copy constructor<br>120<br>Destructor<br>56<br>Destructor | 8<br>Constructor set<br>Copy constructor<br>120<br>Destructor<br>56<br>Destructor |  |

#### СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. ГОСТ 19 Единая система программной документации.
- 2. Методическое пособие студента для выполнения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe\_posobie\_dlya\_laboratornyh\_ra bot\_3.pdf (дата обращения 05.05.2021).
- 3. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye\_k\_methodichke.pdf (дата обращения 05.05.2021).
- 4. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2019. 624 с.
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).