

(19) United States

(12) Patent Application Publication (10) Pub. No.: US 2004/0077574 A1

Klinghoffer et al.

Apr. 22, 2004 (43) Pub. Date:

(54) MODULATION OF BIOLOGICAL SIGNAL TRANSDUCTION BY RNA INTERFERENCE

(75) Inventors: Richard Klinghoffer, Seattle, WA

(US); Stephen Patrick Lewis, Mountlake Terrace, WA (US)

Correspondence Address: SEED INTELLECTUAL PROPERTY LAW **GROUP PLLC** 701 FIFTH AVE **SUITE 6300** SEATTLE, WA 98104-7092 (US)

Assignee: CEPTYR, Inc., Bothell, WA (US)

10/444,795 Appl. No.: (21)

(22)Filed: May 23, 2003

Related U.S. Application Data

Provisional application No. 60/462,942, filed on Apr. 14, 2003. Provisional application No. 60/383,249, filed on May 23, 2002.

Publication Classification

Int. Cl.⁷ A61K 48/00; C07H 21/02; C12N 15/85

(57)**ABSTRACT**

Compositions and methods relating to small interfering RNA (siRNA) polynucleotides are provided as pertains to modulation of biological signal transduction. Shown are siRNA polynucleotides that interfere with expression of members of the protein tyrosine phosphatase (PTP) class of enzymes that mediate signal transduction, and with certain MAP kinase kinases (MKK). In certain preferred embodiments siRNA modulate signal transduction pathways comprising SHP2, cdc14a/b, cdc25A/B/C, KAP, PTP- ϵ , PRL-3, CD45, dual specificity phosphatase-3 (DSP-3), MKK-4, and/or MKK-7. Modulation of PTP-mediated biological signal transduction has uses in diseases associated with defects in cell proliferation, cell differentiation and/or cell survival, such as metabolic disorders (including diabetes and obesity), cancer, autoimmune disease, infectious and inflammatory disorders and other conditions. The invention also provides siRNA polynucleotides that interfere with expression of chemotherapeutic target polypeptides, such as DHFR, thymidylate synthetase, and topoisomerase I.

HeLa cells, transfected with siRNA duplexes 24 hr before stimulation with FBS.

Fig.

Fig. 5

Fig. 6

Anti cdc14b IF

Fig. 10

 Mouse fibroblasts were transfected with 200 nM RNAi oligonucleotides for a total of six days.

"NT" is non-transfected fibroblasts.

Fig. 12A

Prototypical DSP-18pr encoded by 708 base pairs

GGCCCCCGTTCCCCGCCAGGCTGCAGGCGTCGGGCCTGGGCCGTCAGGCCAGCTGTGACCGGATCGCTTC CCGGGCGGCGAGCTGGGGGTGCACCCGGACCGCCCCCCGGGATCATGGCAATGGCATGACCAAGGTAC TTCCTGGACTCTACCTCGGAAACTTCATTGATGCCAAAGACCTGGATCAGCTGGGCCGAAATAAGATCACA TGATACCCCTGAGGTACCCATCAAAAAGCACTTCAAAGAATGTATCAACTTCATCCACTGCCGCCCTTA ATGGGGGGAACTGCCTTGTGCACTGCTTTGCAGGCATCTCTCGCAGCACCACGATTGTGACAGCGTATGTG ATGACTGTGACGGGGCTAGGCTGGCGGGACGTGCTTGAAGCCATCAAGGCCACCAGGCCCATCGCCAACCC CAACCCAGGCTTTAGGCAGCAGCTTGAAGAGTTTGGCTGGGCCAGTTCCCAGAAGCTTCGCCGGCAGCTGG TGCCGGCAGGCTCCGCGGCCTCCTCCGCCGGGCCGCACTCAGCAGCCTCCGAGGGAACCGTGCA TCTCTTGCCTCCCCGGTGTCTGTCCCGCAAGGGCGGCAAGTGAGGATGCAG

Fig. 12B

Prototypical DSP-18pr polypeptide sequence 235 amino acids

MGNGMTKVLPGLYLGNFIDAKDLDQLGRNKITHIISIHESPQPLLQDITYLRIPVADTPEVPIKKHFKECI NFIHCCRLNGGNCLVHCFAGISRSTTIVTAYVMTVTGLGWRDVLEAIKATRPIANPNPGFRQQLEEFGWAS SQKLRRQLEERFGESPFRDEEELRALLPLCKRCRQGSATSASSAGPHSAASEGTVQRLVPRTPREAHRPLP LLARVKQTFSCLPRCLSRKGGK*

Fig. 13A

DSP-18a cDNA

GGCCCCCGTTCCCCGCCAGGCTGCAGGCGTCGGGCCTGGGCCGTCAGGGCAGCTGTGACCGGATCGCTTC CCGGGCGGCGAGCTGGGGTGCACCCGGACCGCCCCCGGGATCATGGCAATGGCATGACCAAGGTAC TTCCTGGACTCTACCTCGGAAACTTCATTGATGCCAAAGACCTGGATCAGCTGGGCCGAAATAAGATCACA TGATACCCCTGAGGTACCCATCAAAAAGCACTTCAAAGAATGTATCAACTTCATCCACTGCTGCCGCCTTA ATGGGGGGAACTGCCTTGTGCACTGCTTTGCAGGCATCTCTCGCAGCACCACGATTGTGACAGCGTATGTG ATGACTGTGACGGGGCTAGGCTGGCGGGACGTGCTTGAAGCCATCAAGGCCACCAGGCCCATCGCCAACCC CAACCCAGGCTTTAGGCAGCAGCTTGAAGAGTTTGGCTGGGCCAGTTCCCAGAAGGGTGCCAGACATAGGA CCTCAAAAACCTCTGGTGCCCAATGCCCTCCGATGACTTCAGCAACCTGGATGGTCACCGGACCCAAAGTA CGGACGTGCAGGTGCAGCTTCGGCCTGGGAGCTCGTCCTGCACTCTAAGTGCCTCAACCGAGCGCCCAGAT GGGTCCTCAACCCCTGGCAACCCCGATGGCATCACTCACCTTCAATGCAGCTGCCTCCATCCTAAGCGAGC CACACTAAGCCCATAGACTTGGGGCCTCCCCCGGCACATCACCCCAGGTCTGCCGGACGGCAGAGGTGGATC GCGGCCTTCCACTCCTGTCACGGGGCCCCGGAACTCGAGAGTAGGCCACACCGCCCCCAGCTGGGCAT GGGGCTTCGGCAGGAAACTGAACTTGATCTTGAGGCCCCAGAAAGGCAGCAACTGGAGCAGAAGCAAGACT CATTAAAACGTTTGCTTAAAGTTTTTTACCAATAATTAGATCATCAGGGTTGTTTAGTGTGGGATCAAGCCA TTCTTTATTCTGGGGGCTGGGAAGGATCCCAAAACAGGGAACTTGGCCGAACCCTGGGCTTTGGATGCTAA CCACTGAAGTACCAGCACCTGTAGGATGCTGTCTTTGAAGAAACTGAGGCGGACCTCCAAATGCAGCCCTA AGGCAGAGGTCAACGTGGAAGACCAGCCCTTCTCCAAGCCCCACTGGTCTTTGCAAGCTGTACGTTGTAGG CAATCTGAGAACTGGAAAGGGGGACTACAACCAGAAAGTTGGTTACCCTGCCATGGGAATAAAGTAGCTGT TTTCCACCCCAAAAAAAAAAAAAAAAAAAAAA

Fig. 13B

DSP-18a polypeptide (181 amino acids)

MGNGMTKVLPGLYLGNFIDAKDLDQLGRNKITHIISIHESPQPLLQDITYLRIPVADTPEVPIKKHFKECI NFIHCCRLNGGNCLVHCFAGISRSTTIVTAYVMTVTGLGWRDVLEAIKATRPIANPNPGFRQQLEEFGWAS SQKGARHRTSKTSGAQCPPMTSATWMVTGPKVPDLSVLR*

Fig. 14A

DSP-18b cDNA

GGCCCCCGTTCCCCGCCAGGCTGCAGGCGTCGGGCCTGGGCCGTCAGGGCAGCTGTGACCGGATCGCTTC CCGGGCGGCGAGCTGGGGTGCACCCGGACCGCCCCCCGGGATCATGGCAATGGCATGACCAAGGTAC TTCCTGGACTCTACCTCGGAAACTTCATTGATGCCAAAGACCTGGATCAGCTGGGCCGAAATAAGATCACA TGATACCCCTGAGGTACCCATCAAAAAGCACTTCAAAGAATGTATCAACTTCATCCACTGCCGCCTTA ATGGGGGGAACTGCCTTGTGCACTGCTTTGCAGGCATCTCTCGCAGCACCACGATTGTGACAGCGTATGTG ATGACTGTGACGGGGCTAGGCTGCGGGGACGTGCTTGAAGCCATCAAGGCCACCAGGCCCATCGCCAACCC CAACCCAGGCTTTAGGCAGCAGCTTGAAGAGTTTGGCTGGGCCAGTTCCCAGAAGGGTGCCAGACATAGGA CTTCTCCGCAGCGCTGGTGCGCGAAGCCACCGGGCGCACAGCCCAGCGCTGTCGTCTGAGTCCGCGGGC GGCCGCCGAGCGCCTGCTGGGGCCGCCACCTCACGTTGCAGCAGGATGGTCACCGGACCCAAAGTACCAGA GTGCAGGTGCAGCTTCGGCCTGGGAGCTCGTCCTGCACTCTAAGTGCCTCAACCGAGCGCCCAGATGGGTC CTCAACCCCTGGCAACCCCGATGGCATCACTCACCTTCAATGCAGCTGCCTCCATCCTAAGCGAGCCGCTT TAAGCCCATAGACTTGGGGCCTCCCCGGCGCACATCACCCAGGTCTGCCGGACGCAGAGGTGGATCGCG GCCTTCCACTCCTCTGTCACGGGGCCCCGGAACTCGAGAGTAGGCCACACCGCCCCCAGCTGGGCATGGG GCTTCGGCAGGAAACTGAACTTGATCTTGAGGCCCCAGAAAGGCAGCAACTGGAGCAGAAGCAAGACTTCA TAAAACGTTTGCTTAAAGTTTTTTACCAATAATTAGATCATCAGGGTTGTTTAGTGTGGGATCAAGCCATAA TTTATTCTGGGGGCTGGGAAGGATCCCAAAACAGGGAACTTGGCCGAACCCTGGGCTTTGGATGCTAACCA CTGAAGTACCAGCACCTGTAGGATGCTGTCTTTGAAGAAACTGAGGCGGACCTCCAAATGCAGCCCTAAGG CAGAGGTCAACGTGGAAGACCAGCCCTTCTCCAAGCCCCACTGGTCTTTGCAAGCTGTACGTTGTAGGCAA TCTGAGAACTGGAAAGGGGGACTACAACCAGAAAGTTGGTTACCCTGCCATGGGAATAAAGTAGCTGTTTT CCACCCCAAAAAAAAAAAAAAAAAAAAAA

Fig. 14B

DSP-18b polypeptide (298 amino acids)

MGNGMTKVLPGLYLGNFIDAKDLDOLGRNKITHIISIHESPOPLLODITYLRIPVADTPEVPIKKHFKEC1 NFIHCCRLNGGNCLVHCFAGISRSTTIVTAYVMTVTGLGWRDVLEAIKATRPIANPNPGFRQQLEEFGWAS SQKGARHRTSKTSGAQCPPMTSATCLLAARVALLSAALVREATGRTAQRCRLSPRAAAERLLGPPPHVAAG WSPDPKYQICLCFGEEDPGPT0HPKE0LIMADV0V0LRPGSSSCTLSASTERPDGSSTPGNPDG1THL0CS CLHPKRAASSSCTR*

DSP-18c cDNA

Fig. 15A

GGCCCCCGTTCCCCGCCAGGCTGCAGGCGTCGGGCCTGGGCCGTCAGGGCAGCTGTGACCGGAT CGCTTCCCGGGCGGCGAGCTGGGGGTGCACCCGGACCGCCCCCGGGATCATGGCAATGGCA TGACCAAGGTACTTCCTGGACTCTACCTCGGAAACTTCATTGATGCCAAAGACCTGGATCAGCTG GGCCGAAATAAGATCACACACACATCATCTCTATCCATGAGTCACCCCAGCCTCTGCTGCAGGATAT CACCTACCTTCGCATCCCGGTCGCTGATACCCCTGAGGTACCCATCAAAAAGCACTTCAAAGAAT GTATCAACTTCATCCACTGCTGCCGCCTTAATGGGGGGAACTGCCTTGTGCACTGCTTTGCAGGC ATCTCTCGCAGCACCACGATTGTGACAGCGTATGTGATGACTGTGACGGGGCTAGGCTGGCGGGA CGTGCTTGAAGCCATCAAGGCCACCAGGCCCATCGCCAACCCCAACCCAGGCTTTAGGCAGCAGC TTGAAGAGTTTGGCTGGGCCAGTTCCCAGAAGGGTGCCAGACATAGGACCTCAAAAACCTCTGGT GCCCAATGCCCTCCGATGACTTCAGCAACCTGGATGGTCACCGGACCCAAAGTACCAGATCTGTC GTGCAGGTGCAGCTTCGGCCTGGGAGCTCGTCCTGCACTCTAAGTGCCTCAACCGAGCGCCCAGA AAGCGAGCCGCTTCCTCTTCTTGTACCCGCTGAAGGCAAGCCCCCAACAGGGGGGCTCCCTACTC CCACCCAACCCTGCCCACACTAAGCCCATAGACTTGGGGCCTCCCCCGGCACATCACCCAGGTCT GCCGGACGCAGAGGTGGATCGCGGCCTTCCACTCCTCTGTCACGGGGCCCCGGAACTCGAGAGT AGGCCTCACCGCCCCCAGCTGGGCATGGGGCTTCGGCAGGAAACTGAACTTGATCTTGAGGCCA GCAGAAAGGCAGCAACTGGAGCAGAAGCAAGACTTCATCTCTTGCTGACAGCCCAATTTGTCAAT -AGCGCTTTCCTCAGAGCCAGCCTTAACCTGCTGTTGAGTCCATTAAAACGTTTGCTTAAAGTTTT TACCAATAAAAAAAAAAAAAAAAAAAAAAA

Fig. 15B

DSP-18d cDNA

GGCCCCCGTTCCCCGCCAGGCTGCAGGCGTCGGGCCTGGGCCGTCAGGGCAGCTGTGACCGGATCGCTTC CCGGGCGGCGAGCTGGGGGTGCACCCGGACCGCCCCCGGGATCATGGCAATGGCATGACCAAGGTAC TTCCTGGACTCTACCTCGGAAACTTCATTGATGCCAAAGACCTGGATCAGCTGGGCCGAAATAAGATCACA TGATACCCCTGAGGTACCCATCAAAAAGCACTTCAAAGAATGTATCAACTTCATCCACTGCCGCCTTA ATGGGGGGAACTGCCTTGTGCACTGCTTTGCAGGCATCTCTCGCAGCACCACGATTGTGACAGCGTATGTG ATGACTGTGACGGGGCTAGGCTGGCGGGACGTGCTTGAAGCCATCAAGGCCACCAGGCCCATCGCCAACCC CAACCCAGGCTTTAGGCAGCAGCTTGAAGAGTTTGGCTGGGCCAGTTCCCAGAAGGGTGCCAGACATAGGA CCTCAAAAACCTCTGGTGCCCAATGCCCTCCGATGACTTCAGCAACCTGGATGGTCACCGGACCCAAAGTA CGGACCTAGTCTCTTTTATTCTGGGGGCTGGGAAGGATCCCAAAACAGGGAACTTGGCCGAACCCTG GGCTTTGGATGCTAACCACTGAAGTACCAGCACCTGTAGGATGCTGTCTTTGAAGAAACTGAGGCGGACCT CCAAATGCAGCCCTAAGGCAGAGGTCAACGTGGAAGACCAGCCCTTCTCCAAGCCCCACTGGTCTTTGCAA GCTGTACGTTGTAGGCAATCTGAGAACTGGAAAGGGGGGACTACAACCAGAAAGTTGGTTACCCTGCCATGG

Fig. 16A

DSP-18e cDNA

GGCCCCCGTTCCCCGCCAGGCTGCAGGCGTCGGGCCTGGGCCGTCAGGGCAGCTGTGACCGGATCGCTTC CCGGGCGGCGAGCTGGGGGTGCACCCGGGACCGCCCCCGGGATCATGGCCAATGGCATGACCAAGGTAC TTCCTGGACTCTACCTCGGAAACTTCATTGATGCCAAAGACCTGGATCAGCTGGGCCGAAATAAGATCACA TGATACCCCTGAGGTACCCATCAAAAAGCACTTCAAAGAATGTATCAACTTCATCCACTGCTGCCGCCTTA ATGGGGGGAACTGCCTTGTGCACTGCTTTGCAGGCATCTCTCGCAGCACCACGATTGTGACAGCGTATGTG ATGACTGTGACGGGGCTAGGCTGGCGGGACGTGCTTGAAGCCATCAAGGCCACCAGGCCCATCGCCAACCC CAACCCÁGGCTTTAGGCÁGCAGCTTAAGAGTTTGGCTGGGCCAGTTCCCAGAAGGATGGTCACCGGÁCCCA CATGGCGGACCTAGTCTCTTTTATTCTGGGGGCTGGGAAGGATCCCAAAACAGGGAACTTGGCCGAA CCCTGGGCTTTGGATGCTAACCACTGAAGTACCAGCACCTGTAGGATGCTGTCTTTGAAGAAACTGAGGCG GACCTCCAAATGCAGCCCTAAGGCAGAGGTCAACGTGGAAGACCAGCCCTTCTCCAAGCCCCACTGGTCTT TGCAAGCTGTACGTTGTAGGCAATCTGAGAACTGGAAAGGGGGGACTACAACCAGAAAGTTGGTTACCCTGC

Fig. 16B

DSP-18e polypeptide (159 amino acids)

MGNGMTKVLPGLYLGNFIDAKDLDQLGRNKITHIISIHESPQPLLQDITYLRIPVADTPEVPIKKHFKECI NFIHCCRLNGGNCLVHCFAGISRSTTIVTAYVMTVTGLGWRDVLEAIKATRPIANPNPGFROOLKSLAGPV PRRMVTGPKVPDLSVLR*

Fig. 17A

DSP-18f cDNA

GGCCCCCGTTCCCCGCCAGGCTGCAGGCGTCGGGCCTGGGCCGTCAGGGCAGCTGTGACCGGATCGCTTC CCGGGCGGCGAGCTGGGGGTGCACCCGGACCGCCCCCGGGATCATGGCAATGGCATGACCA**AGG**TAC TTCCTGGACTCTACCTCGGAAACTTCATTGATGCCAAAGACCTGGATCAGCTGGGCCGAAATAAGATCACA TGATACCCCTGAGGTACCCATCAAAAAGCACTTCAAAGAATGTATCAACTTCATCCACTGCTGCCGCCTTA ATGGGGGAACTGCCTTGTGCACTGCTTTGCAGGCATCTCTCGCAGCACCACGATTGTGACAGCGTATGTG ATGACTGTGACGGGGCTAGGCTGGCGGGACGTGCTTGAAGCCATCAAGGCCACCAGGCCCATCGCCAACCC CAACCCAGGCTTTAGGCAGCAGCTTGAAGAGTTTGGCTGGGCCAGTTCCCAGAAGGGCTTTTACCAACCTC ATAAGCTGTTGTGAGAACCAATTGAGACACTGCAGGAAAGTGTTTAGCCAGGCCCAGCACTGATGAGCAGT CGGATGGTCACCGGACCCAAAGTACCAGATCTGTCTGTGCTTCGGTGAGGAGGACCCGGGCCCCACACAGC ACCCCAAGGAGCAGCTCATCATGGCGGACCTAGTCTCTTCTTTATTCTGGGGGGCTGGGAAGGATCCCAA AACAGGGAACTTGGCCGAACCCTGGGCTTTGGATGCTAACCACTGAAGTACCAGCACCTGTAGGATGCTGT CTITGAAGAAACTGAGGCGGACCTCCAAATGCAGCCCTAAGGCAGAGGTCAACGTGGAAGACCAGCCCTTC TCCAAGCCCCACTGGTCTTTGCAAGCTGTACGTTGTAGGCAATCTGAGAACTGGAAAGGGGGACTACAACC

Fig. 17B

DSP-18f polypeptide (154 amino acids)

MGNGMTKVLPGEYLGNFIDAKDLDQLGRNKITHIISIHESPQPLLQDITYLRIPVADTPEVPIKKHFKECI NFIHCCRLNGGNCLVHCFAGISRSTTIVTAYVMTVTGLGWRDVLEAIKATRPIANPNPGFRQQLEEFGWAS SOKGFYOPHKLL*

Fig. 20A

Fig. 20B

HepG2 Control +siRNA INS: 0 1 2 5 10 20 0 1 2 5 10 20 (min) p-AKT AKT TC45 PTP1B

Fig. 20C

Fig. 21A

Fig. 21B

Fig. 21C

Fig. 22A

Fig. 24A

Fig. 25

DSP-13 Encoding Polynucleotide

cctgggaaga agttatctat ctctcgagtg acattcaaga tataccgtac ccctcggttc 60 tgtaagteet etaagttgga ggeatteeat tetgageegg eeceatgace etgageaegt 120 tggcccgcaa gaggaaggcg cccctcgctt gcacctgcag cctcggtggc cccgacatga 180 tteettaett eteegeeaac geggteatet egeagaacge eateaaceag eteateageg 240 agagetttet aaetgteaaa ggtgetgeee tttttetace aeggggaaat ggeteateea 300 caccaagaat cagccacaga cggaacaagc atgcaggcga tctccaacag catctccaag 360 caatgtteat tttaeteege eeagaagaca acateagget ggetgtaaga etggaaagta 420 cttaccagaa tcgaacacgc tatatggtag tggtttcaac taatggtaga caagacactg 480 aagaaagcat cgtcctagga atggatttct cctctaatga cagtagcact tgtaccatgg 540 gcttagtttt gcctctctgg agcgacacgc taattcattt ggatggtgat ggtgggttca 600 gtgtatcgac ggataacaga gttcacatat tcaaacctgt atctgtgcag gcaatgtggt 660 ctgcactaca gagcttacac aaggcttgtg aagtcgccag agcgcataac tactacccag 720 geagectatt teteaettgg gtgagttatt atgagageca tateaaetea gateaateet 780 cagteaatga atggaatgea atgeaagatg taeagteeca eeggeeegae teteeagete 840 tetteacega catacetaet gaacgtgaac gaacagaaag getaattaaa accaaattaa 900 gggagatcat gatgcagaag gatttggaga atattacatc caaagagata agaacagagt 960 1020 tagtgatect tggteaaatg gatageeeta eacagatatt tgageatgtg tteetggget 1080 cagaatggaa tgcctccaac ttagaggact tacagaaccg aggggtacgg tatatcttga 1140 atgtcactcg agagatagat aacttcttcc caggagtctt tgagtatcat aacattcggg 1200 tatatgatga agaggcaacg gatctcetgg cgtactggaa tgacacttac aaattcatct 1260 ctaaagcaaa gaaacatgga tctaaatgcc ttgtgcactg caaaatgggg gtgagtcgct 1320 cagecteeae egtgattgee tatgeaatga aggaatatgg etggaatetg gaeegageet 1380 atgactatgt gaaagaaaga cgaacggtaa ccaagcccaa cccaagcttc atgagacaac 1440 tggaagagta tcaggggatc ttgctggcaa gettectagg cttgattcat ggagggaggg 1500 acaagccetg gggagagaaa agcacagaat ttgagtcagt agatctggtt tecatteetg 1560 gttcacccte ttgetgeaac cetgagaagt tacttcacat ttctcatcct tacctgaccc 1620 catctataaa atgaaaatca agagatccat ctcacagggt tattgtgaat aaaaatgtgt 1680 ttgaatgttt ataaaaaaaa aaaaaaaaaa a 1711

Met Thr Leu Ser Thr Leu Ala Arg Lys Arg Lys Ala Pro Leu Ala Cys Thr Cys Ser Leu Gly Gly Pro Asp Met Ile Pro Tyr Phe Ser Ala Asn Ala Val Ile Ser Gln Asn Ala Ile Asn Gln Leu Ile Ser Glu Ser Phe Leu Thr Val Lys Gly Ala Ala Leu Phe Leu Pro Arg Gly Asn Gly Ser Ser Thr Pro Arg Ile Ser His Arg Arg Asn Lys His Ala Gly Asp Leu Gln Gln His Leu Gln Ala Met Phe Ile Leu Leu Arg Pro Glu Asp Asn Ile Arg Leu Ala Val Arg Leu Glu Ser Thr Tyr Gln Asn Arg Thr Arg Tyr Met Val Val Ser Thr Asn Gly Arg Gln Asp Thr Glu Glu Ser Ile Val Leu Gly Met Asp Phe Ser Ser Asn Asp Ser Ser Thr Cys Thr Met Gly Leu Val Leu Pro Leu Trp Ser Asp Thr Leu Ile His Leu Asp Gly Asp Gly Gly Phe Ser Val Ser Thr Asp Asn Arg Val His Ile Phe Lys Pro Val Ser Val Gln Ala Met Trp Ser Ala Leu Gln Ser Leu His Lys Ala Cys Glu Val Ala Arg Ala His Asn Tyr Tyr Pro Gly Ser Leu Phe Leu Thr Trp Val Ser Tyr Tyr Glu Ser His Ile Asn Ser Asp Gln Ser Ser Val Asn Glu Trp Asn Ala Met Gln Asp Val Gln Ser His Arg Pro Asp Ser Pro Ala Leu Phe Thr Asp lle Pro Thr Glu Arg Glu Arg Thr Glu Arg Leu Ile Lys Thr Lys Leu Arg Glu Ile Met Met Gln Lys Asp Leu Glu Asn Ile Thr Ser Lys Glu Ile Arg Thr Glu Leu Glu Met Gln Met Val Cys Asn Leu Arg Glu Phe Lys Glu Phe Ile Asp Asn Glu Met Ile Val Ile Leu Gly Gln Met Asp Ser Pro Thr Gln Ile Phe Glu His Val Phe Leu Gly Ser Glu Trp Asn Ala Ser Asn Leu Glu Asp Leu Gln Asn Arg Gly Val Arg Tyr Ile Leu Asn Val Thr Arg Glu Ile Asp Asn Phe Pro Gly Val Phe Glu Tyr His Asn Ile Arg Val Tyr Asp Glu Glu Ala Thr Asp Leu Leu Ala Tyr Trp Asn Asp Thr Tyr Lys Phe Ile Ser Lys Ala Lys Lys His Gly Ser Lys Cys Leu Val His Cys Lys Met Gly Val Ser Arg Ser Ala Ser Thr Val Ile Ala Tyr Ala Met Lys Glu Tyr Gly Trp Asn Leu Asp Arg Ala Tyr Asp Tyr Val Lys Glu Arg Arg Thr Val Thr Lys Pro Asn Pro Ser Phe Met Arg Gln Leu Glu Glu Tyr Gln Gly Ile Leu Leu Ala Ser Phe Leu Gly Leu Ile His Gly Gly Arg Asp Lys Pro Trp Gly Glu Lys Ser Thr Glu Phe Glu Ser Val Asp Leu Val Ser Ile Pro Gly Ser Pro Ser Cys Cys Asn Pro Glu Lys Leu Leu His Ile Ser His Pro Tyr Leu Thr Pro Ser Ile Lys

DSP-14 Encoding Polynucleotide

ggccagtggg ggtggctggg cgtgcggctg ctacatgccc cacggaccag aacctcccga 60 cgcggccagg ccccggcaca cccagctgca gaaaggagag aaaatccctt ggctctaaaa 120 tracatetgg agaagtgaag acaagcetea agaatgeeta eteatetgee aagaggetgt 180 cgccgaagat ggaggaggaa ggggaggagg aggactactg cacccetgga gcctttgagc 240 tggagegget ettetggaag ggeagteece agtacaceca egteaacgag gtetggeeca 300 agetetacat tggcgatgag gegaeggege tggaeegeta taggetgeag aaggeggggt 360 teacgeacgt getgaacgeg geceaeggee getggaacgt ggacactggg eecgactact 420 accgcgacat ggacatccag taccacggcg tggaggccga cgacctgccc accttcgacc 480 teagtgtett ettetaceeg geggeageet teategaeag agegetaage gaegaeeaea 540 gtaagateet ggtteaetge gteatgggee geageeggte ageeaecetg gteetggeet 600 acctgatgat ccacaaggac atgaccetgg tggacgccat ccagcaagtg gccaagaacc 660 getgegteet eeegaacegg ggetttttga ageageteeg ggagetggae aageagetegg 720 tgcagcagag gcgacggtcc cagcgccagg acggtgagga ggaggatggc agggagctgt 780 aggecegact cacagggeca geagaggeae ttggggacag aggggagagg cagaacatag 840 ccctggccta ggactccaga gaagggatgg tgaaaccgaa getegaetet tecaaaccat 900 cttgttcaac ttccccatgt gtgctgggga cagggaggac ccagagctgc ccccgggcag 960 agetgagege teageetete ageaaaatgg gagggaeggg eteeeegget etgggteaea 1020 gaggagcatg ccacgctgca ccaagtetee tgetttggtt ttgttttttt ggtgagaagg 1080 aagaggaaa aagatttta aaatgtgtag gcagtatgtt gtgattaaac gtttggcttt 1140 1165 gtccaaaaaa aaaaaaaaaa aaaaa

Fig. 30A

DSP-14 Polypeptide Sequence

Met Thr Ser Gly Glu Val Lys Thr Ser Leu Lys Asn Ala Tyr Ser Ser Ala Lys Arg Leu Ser Pro Lys Met Glu Glu Glu Glu Glu Glu Glu Glu Asp Tyr Cys Thr Pro Gly Ala Phe Glu Leu Glu Arg Leu Phe Trp Lys Gly Ser Pro Gln Tyr Thr His Val Asn Glu Val Trp Pro Lys Leu Tyr Ile Gly Asp Glu Ala Thr Ala Leu Asp Arg Tyr Arg Leu Gln Lys Ala Gly Phe Thr His Val Leu Asn Ala Ala His Gly Arg Trp Asn Val Asp Thr Gly Pro Asp Tyr Tyr Arg Asp Met Asp Ile Gln Tyr His Gly Val Glu Ala Asp Asp Leu Pro Thr Phe Asp Leu Ser Val Phe Phe Tyr Pro Ala Ala Ala Phe Ile Asp Arg Ala Leu Ser Asp Asp His Ser Lys Ile Leu Val His Cys Val Met Gly Arg Ser Arg Ser Ala Thr Leu Val Leu Ala Tyr Leu Met Ile His Lys Asp Met Thr Leu Val Asp Ala Ile Gln Gln Val Ala Lys Asn Arg Cys Val Leu Pro Asn Arg Gly Phe Leu Lys Gln Leu Arg Glu Leu Asp Lys Gln Leu Val Gln Gln Arg Arg Arg Ser Gln Arg Gln Asp Gly Glu Glu Glu Asp Gly Arg Glu Leu

Fig. 30B

MODULATION OF BIOLOGICAL SIGNAL TRANSDUCTION BY RNA INTERFERENCE

CROSS-REFERENCE TO RELATED APPLICATION

[0001] This application claims the benefit of U.S. Provisional Patent Application No. 60/383,249 filed May 23, 2002, and U.S. Provisional Patent Application No. 60/462, 942 filed Apr. 14, 2003, which are incorporated herein by reference in their entirety.

BACKGROUND OF THE INVENTION

[0002] 1. Technical Field

The present invention relates generally to compositions and methods useful for treating conditions associated with defects in cell proliferation, cell differentiation, and cell survival. The invention is more particularly related to double-stranded RNA polynucleotides that interfere with expression of protein tyrosine phosphatases, and polypeptide variants thereof. The invention is also particularly related to double-stranded RNA polynucleotides that interfere with expression of MAP kinases and MAP kinase kinases and chemotherapeutic target polypeptides, and polypeptide variants thereof. The present invention is also related to the use of such RNA polynucleotides to alter activation of signal transduction pathway components or to alter cellular metabolic processes that lead to proliferative responses, cell differentiation and development, and cell survival.

[0004] 2. Description of the Related Art

Reversible protein tyrosine phosphorylation, coordinated by the action of protein tyrosine kinases (PTKs) that phosphorylate certain tyrosine residues in polypeptides, and protein tyrosine phosphatases (PTPs) that dephosphorylate certain phosphotyrosine residues, is a key mechanism in regulating many cellular activities. It is becoming apparent that the diversity and complexity of the PTPs and PTKs are comparable, and that PTPs are equally important in delivering both positive and negative signals for proper function of cellular machinery. Regulated tyrosine phosphorylation contributes to specific pathways for biological signal transduction, including those associated with cell division, cell survival, apoptosis, proliferation and differentiation. Defects and/or malfunctions in these pathways may underlie certain disease conditions for which effective means for intervention remain elusive, including for example, malignancy, autoimmune disorders, diabetes, obesity and infection.

[0006] The protein tyrosine phosphatase (PTP) family of enzymes consists of more than 100 structurally diverse proteins in vertebrates, including almost 40 human PTPs that have in common the conserved 250 amino acid PTP catalytic domain, but which display considerable variation in their non-catalytic segments (Charbonneau and Tonks, 1992 Annu. Rev. Cell Biol. 8:463-493; Tonks, 1993 Semin. Cell Biol. 4:373-453; Andersen et al., Mol. Cell Biol. 21:7117-36 (2001)). This structural diversity presumably reflects the diversity of physiological roles of individual PTP family members, which in certain cases have been demonstrated to have specific functions in growth, development and differentiation (Desai et al., 1996 Cell 84:599-609; Kishihara et al., 1993 Cell 74:143-156; Perkins et al., 1992

Cell 70:225-236; Pingel and Thomas, 1989 Cell 58:1055-1065; Schultz et al., 1993 Cell 73:1445-1454). The PTP family includes receptor-like and non-transmembrane enzymes that exhibit exquisite substrate specificity in vivo and that are involved in regulating a wide variety of cellular signaling pathways (Andersen et al., Mol. Cell. Biol. 21:7117 (2001); Tonks and Neel, Curr. Opin. Cell Biol. 13:182 (2001)). PTPs thus participate in a variety of physiologic functions, providing a number of opportunities for therapeutic intervention in physiologic processes through alteration (i.e., a statistically significant increase or decrease) or modulation (e.g., up-regulation or down-regulation) of PTP activity.

[0007] Although recent studies have also generated considerable information regarding the structure, expression and regulation of PTPs, the nature of many tyrosine phosphorylated substrates through which the PTPs exert their effects remains to be determined. Studies with a limited number of synthetic phosphopeptide substrates have demonstrated some differences in the substrate selectivities of different PTPs (Cho et al., 1993 Protein Sci. 2: 977-984; Dechert et al., 1995 Eur. J. Biochem. 231:673-681). Analyses of PTP-mediated dephosphorylation of PTP substrates suggest that catalytic activity may be favored by the presence of certain amino acid residues at specific positions in the substrate polypeptide relative to the phosphorylated tyrosine residue (Salmeen et al., 2000 Molecular Cell 6:1401; Myers et al., 2001 J. Biol. Chem. 276:47771; Myers et al., 1997 Proc. Natl. Acad. Sci. USA 94:9052; Ruzzene et al., 1993 Eur. J. Biochem. 211:289295; Zhang et al., 1994 Biochemistry 33:2285-2290). Thus, although the physiological relevance of the substrates used in these studies is unclear, PTPs display a certain level of substrate selectivity in vitro.

[0008] The PTP family of enzymes contains a common evolutionarily conserved segment of approximately 250 amino acids known as the PTP catalytic domain. Within this conserved domain is a unique signature sequence motif, CX₅R (SEQ ID NO: ___), that is invariant among all PTPs. In a majority of PTPs, an 11 amino acid conserved ([IIV]HCXAGXXR[S/T)G sequence (SEO NO:)) containing the signature sequence motif is found. The cysteine residue in this motif is invariant in members of the family and is essential for catalysis of the phosphotyrosine dephosphorylation reaction. It functions as a nucleophile to attack the phosphate moiety present on a phosphotyrosine residue of the incoming substrate. If the cysteine residue is altered by site-directed mutagenesis to serine (e.g., in cysteine-to-serine or "CS" mutants) or alanine (e.g., cysteine-to-alanine or "CA" mutants), the resulting PTP is catalytically deficient but retains the ability to complex with, or bind, its substrate, at least in vitro.

[0009] The CS mutant of one PTP, PTP1B (PTP-1B), is an example of such a PTP. Catalytically deficient mutants of such enzymes that are capable of forming stable complexes with phosphotyrosyl polypeptide substrates may be derived by mutating a wildtype protein tyrosine phosphatase catalytic domain invariant aspartate residue and replacing it with an amino acid that does not cause significant alteration of the Km of the enzyme but that results in a reduction in Kcat, as disclosed, for example, in U.S. Pat. Nos. 5,912,138 and 5,951,979, in U.S. application Ser. No. 09/323,426 and in PCT/US97/13016 and PCT/JUS00/14211. For instance,

mutation of Asp 181 in PTP1B to alanine to create the aspartate-to-alanine (D to A or DA) mutant PTP1B-D181A results in a PTP1B "substrate trapping" mutant enzyme that forms a stable complex with its phosphotyrosyl polypeptide substrate (e.g., Flint et al., 1997 *Proc. Natl. Acad. Sci.* 94:1680). Substrates of other PTPs can be identified using a similar substrate trapping approach, for example substrates of the PTP family members PTP-PEST (Garton et al., 1996 *J. Mol. Cell. Biol.* 16:6408), TCPTP (Tiganis et al., 1998 *Mol. Cell Biol.* 18:1622), PTP-HSCF (Spencer et al., 1997 *J. Cell Biol.* 138:845), and PTP-H1 (Zhang et al., 1999 *J. Biol. Chem.* 274:17806).

[0010] Mitogen-activated protein kinases (MAP-kinases) are components of conserved cellular signal transduction pathways that have a variety of conserved members and that that are integral to the cell's response to stimuli such as growth factors, hormones, cytokines, and environmental stresses. MAP-kinases are activated by phosphorylation by MAP-kinase kinases at a dual phosphorylation motif that has the sequence Thr-X-Tyr, in which phosphorylation at the tyrosine and threonine residues is required for activity. Activated MAP-kinases phosphorylate several transduction targets, including effector protein kinases and transcription factors. Inactivation of MAP-kinases is mediated by dephosphorylation at the Thr-X-Tyr site by dual-specificity phosphatases referred to as MAP-kinase phosphatases. In higher eukaryotes, the physiological role of MAP-kinase signaling has been correlated with cellular events such as proliferation, oncogenesis, development, and differentiation. Accordingly, the ability to regulate signal transduction via these pathways could lead to the development of treatments and preventive therapies for human diseases associated with MAP-kinase signaling, such as cancer.

[0011] Dual-specificity protein tyrosine phosphatases (dual-specificity phosphatases) dephosphorylate both phosphotyrosine and phosphothreonine/serine residues (Walton et al., Ann. Rev. Biochem. 62:101-120, 1993). More than 50 dual-specificity phosphatases that dephosphorylate and inactivate a MAP-kinase have been identified (Shen et al., Proc. Natl. Acad. Sci. USA 98:13613-18 (2001)), including MKP-1 (WO 97/00315; Keyse and Emslie, Nature 59:644-647 (1992)); MKP-2 (WO97/00315); MKP-4, MKP-5, MKP-7, Hb5 (WO 97/06245); PAC1 (Ward et al., Nature 367:651-654 (1994)); HVH2 (Guan and Butch, J. Biol. Chem. 270:7197-7203 (1995)); and PYST1 (Groom et al., EMBO J. 15:3621-3632 (1996)). These dual-specificity phosphatases differ in expression, tissue and subcellular distribution, and specificity for MAP-kinase family members. Expression of certain dual-specificity phosphatases is induced by stress or mitogens, but others appear to be expressed constitutively in specific cell types. The regulation of dual-specificity phosphatase expression and activity is critical for control of MAP-kinase mediated cellular functions, including cell proliferation, cell differentiation and cell survival. For example, dual-specificity phosphatases may function as negative regulators of cell proliferation. It is likely that there are many such dual-specificity phosphatases, with varying specificity with regard to cell type or activation.

[0012] In contrast to the role of most dual-specificity phosphatases to inactivate MAP-kinases, one enzyme, herein referred to as dual-specificity phosphatase 3 (DSP-3), has been reported to have the capability to function as a

selective activator of the JNK MAP-kinase signaling pathway (Shen et al., supra; WO 01/21812). DSP-3 appears also to affect the activity of other kinases involved in the JNK pathway (Shen et al., supra; WO 01/21812). For example, overexpression of DSP-3 leads to activation of MKK4, a MAP-kinase kinase that functions upstream of JNK (Shen et al., supra; Lawler et al., Curr. Biol. 8:1387-90 (1998); Yang et al., Proc. Natl. Acad. Sci. USA 94: 3004-3009 (1997)).

[0013] Activation of JNK is believed to be involved in several physiological processes, including embryonic morphogenesis, cell survival, and apoptosis. A number of JNK signaling pathway substrates have been identified, including c-Jun, ATF2, ELK-1 and others. JNK signaling has also been associated with various disease conditions, such as tumor development, ischemia and reperfusion injury, diabetes, hyperglycemia-induced apoptosis, cardiac hypertrophy, inflammation, and neurodegenerative disorders.

[0014] One non-transmembrane PTP, PTP1B, recognizes several tyrosine-phosphorylated proteins as substrates, many of which are involved in human disease. For example, therapeutic inhibition of PTP1B in the insulin signaling pathway may serve to augment insulin action, thereby ameliorating the state of insulin resistance common in Type II diabetes patients. PTP1B acts as a negative regulator of signaling that is initiated by several growth factor/hormone receptor PTKs, including p210 Bcr-Abl (LaMontagne et al., Mol. Cell Biol. 18:2965-75 (1998); LaMontagne et al., Proc. Natl. Acad. Sci. USA 95:14094-99 (1998)), receptor tyrosine kinases, such as EGF receptor, PDGF receptor, and insulin receptor (IR) (Tonks et al., Curr. Opin. Cell Biol. 13:182-95 (2001)), and JAK family members such as Jak2 and others (Myers et al., J. Biol. Chem. 276:47771-74 (2001)), as well as signaling events induced by cytokines (Tonks and Neel, 2001). Activity of PTP1B is regulated by modifications of several amino acid residues, such as phosphorylation of Ser residues (Brautigan and Pinault, 1993; Dadke et al., 2001; Flint et al., 1993), and oxidation of the active Cys residue in its catalytic motif (Lee et al., 1998; Meng et al., 2002) which is evolutionary conserved among protein tyrosine phosphatases and dual phosphatase family members (Andersen et al., 2001).

[0015] Disruption of the murine PTP1B gene homolog in a knock-out mouse model results in PTP1B^{-/-} mice exhibiting enhanced insulin sensitivity, decreased levels of circulating insulin and glucose, and resistance to weight gain even on a high-fat diet, relative to control animals having at least one functional PTP1B gene (Elchebly et al., Science 283:1544 (1999)). Insulin receptor hyperphosphorylation has also been detected in certain tissues of PTP1B deficient mice, consistent with a PTP1B contribution to the physiologic regulation of insulin and glucose metabolism (Id.). PTP-1B-deficient mice exhibit decreased adiposity (reduced fat cell mass but not fat cell number), increased basal metabolic rate and energy expenditure, and enhanced insulin-stimulated glucose utilization (Klaman et al., 2000 Mol. Cell. Biol. 20:5479). Additionally, altered PTP activity has been correlated with impaired glucose metabolism in other biological systems (e.g., McGuire et al., Diabetes 40:939 (1991); Myerovitch et al., J. Clin. Invest. 84:976 (1989); Sredy et al., Metabolism 44:1074 (1995)), including PTP involvement in biological signal transduction via the insulin receptor (see, e.g., WO 99/46268 and references cited therein).

[0016] An integration of crystallographic, kinetic, and PTP1B-peptide binding assays illustrated the interaction of PTP1B and insulin receptor (IR) (Salmeen et al., Mol. Cell 6:1401-12 (2000)). The insulin receptor (IR) comprises two extracellular α subunits and two transmembrane β subunits. Activation of the receptor results in autophosphorylation of tyrosine residues in both β subunits, each of which contains a protein kinase domain. Extensive interactions that form between PTP1B and insulin receptor kinase (IRK) encompass tandem pTyr residues at 1162 and 1163 of IRK, such that pTyr-1162 is located in the active site of PTP1B (id.). The Asp/Glu-pTyr-pTyr-Arg/Lys motif has been implicated for optimal recognition by PTP1B for IRK. This motif is also present in other receptor PTKs, including Trk, FGFR, and Axl. In addition, this motif is found in the JAK family of PTKs, members of which transmit signals from cytokine receptors, including a classic cytokine receptor that is recognized by the satiety hormone leptin (Touw et al., Mol. Cell. Endocrinol. 160:1-9 (2000)).

[0017] Changes in the expression levels of PTP1B have been observed in several human diseases, particularly in diseases associated with disruption of the normal patterns of tyrosine phosphorylation. For example, the expression of PTP1B is induced specifically by the p210 Bcr-Abl oncoprotein, a PTK that is directly responsible for the initial manifestations of chronic myelogenous leukemia (CML) (LaMontagne et al., Mol. Cell. Biol. 18:2965-75 (1998); LaMontagne et al., Proc. Natl. Acad. Sci. USA 95:14094-99 (1998)). Expression of PTPB1 in response to this oncoprotein is regulated, in part, by transcription factors Sp1, Sp3, and Egr-1 (Fukada et al., J. Biol. Chem. 276:25512-19 (2001)). These transcription factors have been shown to bind to a p210 Bcr-Abl responsive sequence (PRS) in the human PTP1B promoter, located between 49 to -37 base pairs from the transcription start site, but do not appear to mediate certain additional, independent PTP1B transcriptional events, for which neither transcription factor(s) nor transcription factor recognition element(s) have been defined (id.).

[0018] Diabetes mellitus is a common, degenerative disease affecting 5-10% of the human population in developed countries, and in many countries, it may be one of the five leading causes of death. Approximately 2% of the world's population has diabetes, the overwhelming majority of cases (>97%) being type 2 diabetes and the remainder being type 1. In type 1 diabetes, which is frequently diagnosed in children or young adults, insulin production by pancreatic islet beta cells is destroyed. Type 2 diabetes, or "late onset" or "adult onset" diabetes, is a complex metabolic disorder in which cells and tissues cannot effectively use available insulin; in some cases insulin production is also inadequate. At the cellular level, the degenerative phenotype that may be characteristic of late onset diabetes mellitus includes, for example, impaired insulin secretion and decreased insulin sensitivity, i.e., an impaired response to insulin.

[0019] Studies have shown that diabetes mellitus may be preceded by or is associated with certain related disorders. For example, an estimated forty million individuals in the U.S. suffer from late onset impaired glucose tolerance (IGT). IGT patients fail to respond to glucose with increased insulin secretion. Each year a small percentage (5-10%) of IGT individuals progress to insulin deficient non-insulin dependent diabetes (NIDDM). Some of these individuals further

progress to insulin dependent diabetes mellitus (IDDM). NIDDM and IDDM are associated with decreased release of insulin by pancreatic beta cells and/or a decreased response to insulin by cells and tissues that normally exhibit insulin sensitivity. Other symptoms of diabetes mellitus and conditions that precede or are associated with diabetes mellitus include obesity, vascular pathologies, and various neuropathies, including blindness and deafness.

[0020] Type 1 diabetes is treated with lifelong insulin therapy, which is often associated with undesirable side effects such as weight gain and an increased risk of hypoglycemia. Current therapies for type 2 diabetes (NIDDM) include altered diet, exercise therapy, and pharmacological intervention with injected insulin or oral agents that are designed to lower blood glucose levels. Examples of such presently available oral agents include sulfonylureas, biguanides, thiazolidinediones, repaglinide, and acarbose, each of which alters insulin and/or glucose levels. None of the current pharmacological therapies, however, controls the disease over its full course, nor do any of the current therapies correct all of the physiological abnormalities in type 2 NIDDM, such as impaired insulin secretion, insulin resistance, and excessive hepatic glucose output. In addition, treatment failures are common with these agents, such that multi-drug therapy is frequently necessary.

[0021] In certain metabolic diseases or disorders, one or more biochemical processes, which may be either anabolic or catabolic (e.g., build-up or breakdown of substances, respectively), are altered (e.g., increased or decreased in a statistically significant manner) or modulated (e.g., up- or down-regulated to a statistically significant degree) relative to the levels at which they occur in a disease-free or normal subject such as an appropriate control individual. The alteration may result from an increase or decrease in a substrate, enzyme, cofactor, or any other component in any biochemical reaction involved in a particular process. Altered (i.e., increased or decreased in a statistically significant manner relative to a normal state) PTP activity can underlie certain disorders and suggests a PTP role in certain metabolic diseases.

[0022] RNA interference (RNAi) is a polynucleotide sequence-specific, post-transcriptional gene silencing mechanism effected by double-stranded RNA that results in degradation of a specific messenger RNA (mRNA), thereby reducing the expression of a desired target polypeptide encoded by the mRNA (see, e.g., WO 99/32619; WO 01/75164; U.S. Pat. No. 6,506,559; Fire et al., Nature 391:806-11 (1998); Sharp, Genes Dev. 13:139-41 (1999); Elbashir et al. *Nature* 411:494-98 (2001); Harborth et al., *J*. Cell Sci. 114:4557-65 (2001)). RNAi is mediated by doublestranded polynucleotides as also described hereinbelow, for example, double-stranded RNA (dsRNA), having sequences that correspond to exonic sequences encoding portions of the polypeptides for which expression is compromised. RNAi reportedly is not effected by double-stranded RNA polynucleotides that share sequence identity with intronic or promoter sequences (Elbashir et al., 2001). RNAi pathways have been best characterized in Drosophila and Caenorhabditis elegans, but "small interfering RNA" (siRNA) polynucleotides that interfere with expression of specific polypeptides in higher eukaryotes such as mammals (including humans) have also been considered (e.g., Tuschl, 2001 Chembiochem. 2:239-245; Sharp, 2001 Genes Dev. 15:485;

Bernstein et al., 2001 RNA 7:1509; Zamore, 2002 Science 296:1265; Plasterk, 2002 Science 296:1263; Zamore 2001 Nat. Struct. Biol. 8:746; Matzke et al., 2001 Science 293:1080; Scadden et al., 2001 EMBO Rep. 2:1107).

[0023] According to a current non-limiting model, the RNAi pathway is initiated by ATP-dependent, processive cleavage of long dsRNA into double-stranded fragments of about 18-27 (e.g., 19, 20, 21, 22, 23, 24, 25, 26, etc.) nucleotide base pairs in length, called small interfering RNAs (siRNAs) (see review by Hutvagner et al., Curr. Opin. Gen. Dev. 12:225-32 (2002); Elbashir et al., 2001; Nykänen et al., Cell 107:309-21 (2001); Zamore et al., Cell 101:25-33 (2000); Bass, Cell 101:235-38 (2000)). In Drosophila, an enzyme known as "Dicer" cleaves the longer doublestranded RNA into siRNAs; Dicer belongs to the RNase III family of dsRNA-specific endonucleases (WO 01/68836; Bernstein et al., Nature 409:363-66 (2001)). Further according to this non-limiting model, the siRNA duplexes are incorporated into a protein complex, followed by ATPdependent unwinding of the siRNA, which then generates an active RNA-induced silencing complex (RISC) (WO 01/68836). The complex recognizes and cleaves a target RNA that is complementary to the guide strand of the siRNA, thus interfering with expression of a specific protein (Hutvagner et al., supra).

[0024] In C. elegans and Drosophila, RNAi may be mediated by long double-stranded RNA polynucleotides (WO 99/32619; WO 01/75164; Fire et al., 1998; Clemens et al., Proc. Natl. Acad. Sci. USA 97:6499-6503 (2000); Kisielow et al., Biochem. J. 363:1-5 (2002); see also WO 01/92513 (RNAi-mediated silencing in yeast)). In mammalian cells, however, transfection with long dsRNA polynucleotides (i.e., greater than 30 base pairs) leads to activation of a non-specific sequence response that globally blocks the initiation of protein synthesis and causes mRNA degradation (Bass, Nature 411:428-29 (2001)). Transfection of human and other mammalian cells with double-stranded RNAs of about 18-27 nucleotide base pairs in length interferes in a sequence-specific manner with expression of particular polypeptides encoded by messenger RNAs (mRNA) containing corresponding nucleotide sequences (WO 01/75164; Elbashir et al., 2001; Elbashir et al., Genes Dev. 15:188-200 (2001)); Harborth et al., J. Cell Sci. 114:4557-65 (2001); Carthew et al., Curr. Opin. Cell Biol. 13:244-48 (2001); Mailand et al., Nature Cell Biol. Advance Online Publication (Mar. 18, 2002); Mailand et al. 2002 Nature Cell Biol. 4:317).

[0025] siRNA polynucleotides may offer certain advantages over other polynucleotides known to the art for use in sequence-specific alteration or modulation of gene expression to yield altered levels of an encoded polypeptide product. These advantages include lower effective siRNA polynucleotide concentrations, enhanced siRNA polynucleotide stability, and shorter siRNA polynucleotide oligonucleotide lengths relative to such other polynucleotides (e.g., antisense, ribozyme or triplex polynucleotides). By way of a brief background, "antisense" polynucleotides bind in a sequence-specific manner to target nucleic acids, such as mRNA or DNA, to prevent transcription of DNA or translation of the mRNA (see, e.g., U.S. Pat. No. 5,168,053; U.S. Pat. No. 5,190,931; U.S. Pat. No. 5,135,917; U.S. Pat. No. 5,087,617; see also, e.g., Clusel et al., 1993 Nuc. Acids Res. 21:3405-11, describing "dumbbell" antisense oligonucle-

otides). "Ribozyme" polynucleotides can be targeted to any RNA transcript and are capable of catalytically cleaving such transcripts, thus impairing translation of mRNA (see, e.g., U.S. Pat. No. 5,272,262; U.S. Pat. No. 5,144,019; and U.S. Pat. Nos. 5,168,053, 5,180,818, 5,116,742 and 5,093, 246; U.S. 2002/193579). "Triplex" DNA molecules refers to single DNA strands that bind duplex DNA to form a colinear triplex molecule, thereby preventing transcription (see, e.g., U.S. Pat. No. 5,176,996, describing methods for making synthetic oligonucleotides that bind to target sites on duplex DNA). Such triple-stranded structures are unstable and form only transiently under physiological conditions. Because single-stranded polynucleotides do not readily diffuse into cells and are therefore susceptible to nuclease digestion, development of single-stranded DNA for antisense or triplex technologies often requires chemically modified nucleotides to improve stability and absorption by cells. siRNAs, by contrast, are readily taken up by intact cells, are effective at interfering with the expression of specific polypeptides at concentrations that are several orders of magnitude lower than those required for either antisense or ribozyme polynucleotides, and do not require the use of chemically modified nucleotides.

[0026] Importantly, despite a number of attempts to devise selection criteria for identifying oligonucleotide sequences that will be effective in siRNA based on features of the desired target mRNA sequence (e.g., percent GC content, position from the translation start codon, or sequence similarities based on an in silico sequence database search for homologues of the proposed siRNA) it is presently not possible to predict with any degree of confidence which of myriad possible candidate siRNA sequences that can be generated as nucleotide sequences that correspond to a desired target mRNA (e.g., dsRNA of about 18-27 nucleotide base pairs) will in fact exhibit siRNA activity (i.e., interference with expression of the polypeptide encoded by the mRNA). Instead, individual specific candidate siRNA polynucleotide or oligonucleotide sequences must be generated and tested to determine whether interference with expression of a desired polypeptide target can be effected. Accordingly, no routine method exists in the art for designing a siRNA polynucleotide that is, with certainty, capable of specifically altering the expression of a given PTP polypeptide, and thus for the overwhelming majority of PTPs no effective siRNA polynucleotide sequences are presently known.

[0027] Currently, therefore, desirable goals for the rapeutic regulation of biological signal transduction include modulation of PTP (e.g., PTP-1B, DSP-3, SHP-2, KAP, PRL-3, cdc14 or cdc25 or other PTP)-mediated cellular events include, inter alia, inhibition or potentiation of interactions among PTP-binding molecules, substrates and binding partners, or of other agents that regulate PTP activities. Accordingly, a need exists in the art for an improved ability to intervene in the regulation of phosphotyrosine signaling, including regulating PTPs by altering PTP catalytic activity, PTP binding to PTP substrate molecules, and/or PTP-encoding gene expression. An increased ability to so regulate PTPs may facilitate the development of methods for modulating the activity of proteins involved in phosphotyrosine signaling pathways and for treating conditions associated with such pathways. The present invention fulfills these needs and further provides other related advantages.

SUMMARY OF THE INVENTION

[0028] Briefly stated, the present invention provides siRNA compositions and methods for modulating biological signal transduction. In one aspect the present invention provides isolated small interfering RNA (siRNA) polynucleotide, comprising at least one nucleotide sequence selected from the sequences set forth in SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, or 490-493, and the complementary polynucleotide thereto. The small interfering RNA polynucleotide is capable of interfering with expression of a polypeptide, which polypeptide comprises an amino acid sequence as set forth in a sequence SEQ ID NO: 779, SEQ ID NO 789, SEQ ID NO 791, SEQ ID NO 797, SEQ ID NO 799, SEQ ID NO 801, SEQ ID NO 803, SEQ ID NO 805, SEQ ID NO 807, SEQ ID NO 809, SEQ ID NO 811, or SEQ ID NO 813.

[0029] In certain embodiments, the nucleotide sequence of the siRNA polynucleotide differs by one, two, three or four nucleotides at any of positions 1-19 of a sequence selected from the sequences set forth in SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, or 490-493. In other embodiments, the nucleotide sequence of the siRNA polynucleotide differs by at least two, three or four nucleotides at any of positions 1-19 of a sequence selected from the sequences set forth in SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, or 490-493. In particular embodiments the invention provides an isolated siRNA polynucleotide comprising a nucleotide sequence selected from SEQ ID NOS: 4, or the complement thereof; from SEQ ID NOS: 100, 105, or the complement thereof; from SEQ ID NOS: 120, 125, or 130; or the complement thereof, from SEQ ID NOS: 140, 145, or 150, or the complement thereof; from SEQ ID NOS: 440 or 445, or the complement thereof; from SEQ ID NOS: 455 or 460; from SEQ ID NO: 465, or the complement thereof; from SEQ ID NOS: 470 or 475, or the complement thereof; from SEQ ID NOS: 480, 485, or 490, or the complement thereof.

[0030] In certain embodiments the invention provides the above siRNA polynucleotides that comprise at least one synthetic nucleotide analogue of a naturally occurring nucleotide. In certain other embodiments, the siRNA polynucleotide is linked to a detectable label, wherein the detectable label is a reporter molecule. In particular embodiments, the reporter molecule is a dye, a radionuclide, a luminescent group, a fluorescent group, or biotin. In other particular embodiments, the fluorescent group is fluorescein isothiocyanate and in other particular embodiments, the detectable label is a magnetic particle.

[0031] The invention also provides a pharmaceutical composition comprising an siRNA polynucleotide selectted from the sequences set forth in SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, or 490-493, and a physiologically acceptable carrier. In particular embodiments, the the carrier comprises a liposome.

[0032] The invention also provides a recombinant nucleic acid construct comprising a polynucleotide that is capable of directing transcription of a small interfering RNA (siRNA), the polynucleotide comprising: (i) a first promoter; (ii) a second promoter; and (iii) at least one DNA polynucleotide segment comprising at least one nucleotide sequence selected from SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, or 490-493, or a complement thereto, wherein each DNA polynucleotide segment and its complement are operably linked to at least one of the first and second promoters, and wherein the promoters are oriented to direct transcription of the DNA polynucleotide segment and its reverse complement. In certain embodiments, the recombinant nucleic acid construct comprises at least one enhancer that is selected from a first enhancer operably linked to the first promoter and a second enhancer operably linked to the second promoter. In certain other embodiments, the recombinant nucleic acid construct comprises at least one transcriptional terminator that is selected from (i) a first transcriptional terminator that is positioned in the construct to terminate transcription directed by the first promoter and (ii) a second transcriptional terminator that is positioned in the construct to terminate transcription directed by the second promoter. The invention also provides that the siRNA transcribed from the recombinant nucleic acid construct is capable of interfering with expression of a polypeptide, wherein the polypeptide comprises an amino acid sequence as set forth in a sequence selected from SEQ ID NO: 779, SEQ ID NO 789, SEQ ID NO 791, SEQ ID NO 797, SEQ ID NO 799, SEQ ID NO 801, SEQ ID NO 803, SEQ ID NO 805, SEQ ID NO 807, SEQ ID NO 809, SEQ ID NO 811, or SEQ ID NO 813.

[0033] The present invention also provides a recombinant nucleic acid construct comprising a polynucleotide that is capable of directing transcription of a small interfering RNA (siRNA), the polynucleotide comprising at least one promoter and a DNA polynucleotide segment, wherein the DNA polynucleotide segment is operably linked to the promoter, and wherein the DNA polynucleotide segment comprises (i) at least one DNA polynucleotide that comprises at least one nucleotide sequence selected from SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, or 490-493, or a complement thereto; (ii) a spacer sequence comprising at least 4 nucleotides operably linked to the DNA polynucleotide of (i); and (iii) the reverse complement of the DNA polynucleotide of (i) operably linked to the spacer sequence. In certain embodiments, the siRNA polynucleotide transcribed from the recombinant nucleic acid construct comprises an overhang of at least one and no more than four nucleotides, the overhang being located immediately 3' to (iii). In certain particular embodiments, the spacer sequence comprises at least 9 nucleotides. In certain other specific embodiments the spacer sequence comprises two uridine nucleotides that are contiguous with (iii). In one embodiment, the recombinant nucleic acid construct comprises at least one transcriptional terminator that is operably linked to the DNA polynucleotide segment. The invention also provides a host cell that is transformed or transfected with such a recombinant nucleic acid construct as disclosed herein.

[0034] In one embodiment, the invention provides a pharmaceutical composition comprising an siRNA polynucleotide and a physiologically acceptable carrier, wherein the siRNA polynucleotide is selected from (i) an RNA polynucleotide that comprises at least one nucleotide sequence selected from SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, or 490-493; (ii) an RNA polynucleotide that comprises at least one nucleotide sequence selected from SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, or 490-493, and the complementary polynucleotide thereto; (iii) an RNA polynucleotide according to (i) or (ii) wherein the nucleotide sequence of the siRNA polynucleotide differs by one, two or three nucleotides at any of positions 1-19 of a sequence selected from SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, or 490-493, or (iv) an RNA polynucleotide according to (i) or (ii) wherein the nucleotide sequence of the siRNA polynucleotide differs by two, three or four nucleotides at any of positions 1-19 of a sequence selected from the sequences set forth in SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, or 490-493. In certain particular embodiments, the physiologically acceptable carrier comprises a liposome.

[0035] The present invention also provides a method for interfering with expression of a polypeptide, or variant thereof, comprising contacting a subject that comprises at least one cell which is capable of expressing the polypeptide with a siRNA polynucleotide for a time and under conditions sufficient to interfere with expression of the polypeptide, wherein: (a) the polypeptide comprises an amino acid sequence as set forth in a sequence selected from SEQ ID NO: 779, SEQ ID NO 789, SEQ ID NO 791, SEQ ID NO 797, SEQ ID NO 799, SEQ ID NO 801, SEQ ID NO 803, SEO ID NO 805, SEO ID NO 807, SEO ID NO 809, SEO ID NO 811, or SEQ ID NO 813, (b) the siRNA polynucleotide is selected from (i) an RNA polynucleotide which comprises at least one nucleotide sequence selected from SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, or 490-493, (ii) an RNA polynucleotide that comprises at least one nucleotide sequence selected from the group consisting of SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, or 490-493, and the complementary polynucleotide thereto, (iii) an RNA polynucleotide according to (i) or (ii) wherein the nucleotide sequence of the siRNA polynucleotide differs by one, two or three nucleotides at any of positions 1-19 of a sequence selected from SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, or 490-493, or (iv) an RNA polynucleotide according to (i) or (ii) wherein the nucleotide sequence of the siRNA polynucleotide differs by two, three or four nucleotides at any of positions 1-19 of a sequence selected from the group consisting of the sequences set forth in SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, or 490-493.

[0036] In another embodiment, the invention provides a method for interfering with expression of a polypeptide that comprises an amino acid sequence as set forth in a sequence selected from SEQ ID NO: 779, SEQ ID NO 789, SEQ ID NO 791, SEQ ID NO 791, SEQ ID NO 801, SEQ ID NO 803, SEQ ID NO 805, SEQ ID NO 807, SEQ ID NO 809, SEQ ID NO 811, or SEQ ID NO 813, or a variant of said polypeptide, said method comprising contacting, under conditions and for a time sufficient to interfere with expression of the polypeptide, (i) a subject that comprises at least one cell that is capable of expressing the polypeptide, and (ii) a recombinant nucleic acid construct according to the present invention as described herein.

[0037] In another embodiment, the invention provides a method for identifying a component of a signal transduction pathway comprising: (A) contacting a siRNA polynucleotide and a first biological sample comprising at least one cell that is capable of expressing a target polypeptide, or a variant of said polypeptide, under conditions and for a time sufficient for target polypeptide expression when the siRNA polynucleotide is not present, wherein (i) the target polypeptide comprises an amino acid sequence as set forth in a sequence selected from SEQ ID NO: 779, SEQ ID NO 789, SEQ ID NO 791, SEQ ID NO 797, SEQ ID NO 799, SEQ ID NO 801, SEQ ID NO 803, SEQ ID NO 805, SEQ ID NO 807, SEQ ID NO 809, SEQ ID NO 811, SEQ ID NO 813, SEQ ID NO 823, SEQ ID NO 825, or SEQ ID NO:827; (2) the siRNA polynucleotide is selected from (i) an RNA polynucleotide which comprises at least one nucleotide sequence selected from SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, or 490-493, (ii) an RNA polynucleotide that comprises at least one nucleotide sequence selected from SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, or 490-493, and the complementary polynucleotide thereto; (iii) an RNA polynucleotide according to (i) or (ii) wherein the nucleotide sequence of the siRNA polynucleotide differs by one, two or three nucleotides at any of positions 1-19 of a sequence selected from the group consisting of the sequences set forth in SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, or 490-493, (iv) an RNA polynucleotide according to (i) or (ii) wherein the nucleotide sequence of the siRNA polynucleotide differs by two, three or four nucleotides at any of positions 1-19 of a sequence selected from the group consisting of the sequences set forth in SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, or 490-493; and (B) comparing a level of phosphorylation of at least one protein that is capable of being phosphorylated in the cell with a level of phosphorylation of the protein in a control sample that has not been contacted with the siRNA polynucleotide, wherein an altered level of phosphorylation of the protein in the presence of the siRNA polynucleotide relative to the level of phosphorylation of the protein in an absence of the siRNA polynucleotide indicates that the protein is a component of a signal transduction pathway. The invention also provides a small interfering RNA (siRNA) polynucleotide, comprising an RNA polynucleotide which comprises at least one nucleotide sequence selected from SEQ ID NOS:4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, or 490-493. Certain further embodiments relate to isolated siRNA polynucleotides that comprise nucleotide sequences having the above recited SEQ ID NOS, including compositions and methods for producing and therapeutically using such siRNA.

[0038] These and other embodiments of the present invention will become apparent upon reference to the following detailed description and attached drawings. All references disclosed herein are hereby incorporated by reference in their entireties as if each was incorporated individually. Also incorporated by reference are co-pending application Ser. No. _____ and Ser. No. _____ (attorney docket numbers 200125.441 and 200125.448, respectively), which have been filed concurrently.

BRIEF DESCRIPTION OF THE DRAWINGS

[0039] FIG. 1 presents an immunoblot analysis of the expression of MKP-1 polypeptide in HeLa cells co-transfected with sequence-specific siRNA polynucleotides (MKPsi.1 (MKP.1, SEQ ID NO:_____), lanes 1-3; MKPsi.2 (MKP.2, SEQ ID NO:_____), lanes 4-6) and a non-specific sequence siRNA (CD45si.1, lanes 7-9). The immunoblot of HeLa cell extracts was probed with an anti-MKP-1 antibody (upper). A second SDS-PAGE gel in which the HeLa cell extracts were separated was stained with Coomassie Blue (lower).

[0040] FIG. 2 shows an immunoblot analysis of 292-HEK cell lysates from cells co-transfected with FLAG®-DSP-11, FLAG®-DSP-18, FLAG®-DSP-3, and FLAG®-cdc14b expression vectors and siRNAs specific for DSP-11 or DSP-18. The presence of each polypeptide was detected using an anti-FLAG® antibody (Sigma-Aldrich, St. Louis, Mo.). The upper immunoblot shows the level of expression of FLAG®-DSP-11 in untransfected 293-HEK cells (lane 1); 293-HEK cells transfected with FLAG®-DSP-11 vector DNA only (buffer) (lane 2), siRNA DSP11.2 (lane 3), siRNA DSP11.4 (lane 4), siRNA DSP18.2 (lane 5), and siRNA DSP18.2 (lane 6); and the level of expression of 293-HEK cells transfected with FLAG®-DSP-18 vector DNA only (buffer) (lane 7); 293-HEK cells co-transfected with siRNA DSP11.2 (lane 8), siRNA DSP11.4 (lane 9), siRNA DSP18.2 (lane 10), and siRNA DSP18.2 (lane 11). The lower immunoblot shows the level of FLAG®-DSP-3 in untransfected 293-HEK cells (lane 1); 293-HEK cells transfected with FLAG®-DSP-3 vector DNA only (buffer) (lane 2); 293-HEK cells co-transfected with siRNA DSP11.2 (lane 3), siRNA DSP11.4 (lane 4), siRNA DSP18.2 (lane 5), and siRNA DSP18.2 (lane 6); and the level of expression of FLAG®-cdc14b in 293-HEK cells transfected with FLAG®-cdc14b vector DNA only (buffer) (lane 7); 293-HEK cells co-transfected with siRNA DSP11.2 (lane 8), siRNA DSP11.4 (lane 9), siRNA DSP18.2 (lane 10), and siRNA DSP18.2 (lane 11).

[0041] FIG. 3 shows the effect on JNK activation by sequence-specific siRNA interference of DSP-3 polypeptide expression. HeLa cells were co-transfected with a DSP-3 recombinant expression vector and DSP3.1 siRNA (SEQ ID NO:1) or 60 pmoles (100 nM final) CD45.2 (SEQ ID NO:_____). After transfection, cells were stimulated with either tumor necrosis factor-alpha (TNF- α) or epidermal growth factor (EGF) or were unstimulated (Unstim.).

[0042] FIG. 4 shows the effect on JNK activation by sequence-specific siRNA interference of DSP-3 polypeptide expression. HeLa cells were co-transfected with a DSP-3 recombinant expression vector and DSP3.1 siRNA (SEQ ID NO:_____) or 60 pmoles (100 nM final) CD45.2 (SEQ ID NO:_____). After transfection, cells were stimulated with sorbitol.

[0043] FIG. 5 presents an immunoblot analysis of ERK phosphorylation in HeLa cells co-transfected with a DSP-3 recombinant expression vector and DSP-3 specific siRNA DSP3.1, non-specific CD45.2 siRNA, or siRNA annealing buffer and then stimulated with TNF-α, EGF, sorbitol, and anisomycin. Lane 1: unstimulated cells transfected with DSP3.1 siRNA; lane 2: unstimulated cells transfected with CD45.2 siRNA; lane 3: cells transfected with DSP3.1 siRNA and stimulated with TNF- α ; lane 4: cells transfected with CD45.2 siRNA and stimulated with TNF-α; lane 5: cells transfected with DSP3.1 siRNA and stimulated with EGF; lane 6: cells transfected with CD45.2 siRNA and stimulated with EGF; lane 7: unstimulated cells transfected with CD45.2 siRNA; lane 8: unstimulated cells transfected with siRNA annealing buffer; lane 9: cells transfected with DSP3.1 siRNA and stimulated with sorbitol; lane 10: cells transfected with CD45.2 siRNA and stimulated with sorbitol; lane 11; cells transfected with siRNA annealing buffer and stimulated with sorbitol; lane 12: cells transfected with DSP3.1 siRNA and stimulated with anisomycin; lane 13: cells transfected with CD45.2 siRNA and stimulated with anisomycin; lane 14: cells transfected with siRNA annealing buffer and stimulated with anisomycin.

[0044] FIG. 6 shows an immunoblot analysis of FLAG®-tagged cdc14a expression in 293-HEK cells co-transfected with cdc14a.2 (lane 3); cdc14a.3 (lane 4); cdc14a.4 (land 5); cdc14a.5 (lane 6); DSP3.1 (lane 7); DSP3.2 (lane 8); cdc14b.3 (lane 9); cdc14b.4 (lane 10); MKP.2 (lane 11); CD45.3 (lane 12); no siRNA (lane 2). Untransfected cells were prepared as a control (lane 1). Expression was detected using an anti-FLAG® antibody (Sigma-Aldrich).

[0045] FIG. 7 presents an immunoblot of expression of FLAG®-tagged dual specificity phosphatases in 293-HEK cells that were co-transfected with cdc14a.3 siRNA (denoted by +). Lanes 2 and 3: expression of FLAG®-tagged cdc14a; lanes 4 and 5: expression of FLAG®-tagged DSP-3; lanes 6 and 7: expression of FLAG®-tagged cdc14b; lanes 8 and 9: FLAG®-tagged DSP-11. The immunoblot to the right is an over-exposure of the immunoblot on the left to detect low concentrations of expressed polypeptides.

[0046] FIG. 8 shows an immunoblot analysis of FLAG®-tagged cdc14b expression in 293-HEK cells co-transfected with cdc14b.3 (lane 3); cdc14b.4 (lane 4); cdc14a.3 (land 5); cdc14a.5 (lane 6); DSP3.1 (lane 7); DSP3.2 (lane 8); MKP.2 (lane 9); CD45.3 (lane 10); no siRNA (lane 2). Untransfected cells were prepared as a control (lane 1). Expression was detected using an anti-FLAG® antibody (Sigma-Aldrich).

[0047] FIG. 9 presents an immunoblot of expression of FLAG®-tagged dual specificity phosphatases in 293-HEK cells co-transfected with either cdc14a or cdc14b specific siRNAs. Expression of the phosphatases was detected with an anti-FLAG® antibody. 293-HEK cells were transfected as follows: no expression vector or siRNA (lane 1); FLAG®-tagged cdc14b only (lane 2); FLAG®-tagged cdc14b and cdc14b.3 siRNA (lane 3); FLAG®-tagged cdc14b and cdc14b.4 (lane 5); FLAG®-tagged DSP-3 only (lane 5); FLAG®-tagged DSP-3 and cdc14b.3 siRNA (lane 6); FLAG®-tagged DSP3 and cdc14b.4 siRNA (lane 7); FLAG®-tagged DSP-3 and cdc14a.5 siRNA (lane 8); FLAG®-tagged DSP-11 only (lane 9); FLAG®-tagged DSP-11 and cdc14b.3 siRNA (land 10); FLAG®-tagged DSP-11 and cdc14b.4 siRNA (lane 11); and FLAG®-tagged DSP-11 and cdc14a.5 siRNA.

[0048] FIG. 10 depicts the expression of cdc14b polypeptide in HeLa cells co-transfected with cdc14b.4 siRNA detected by immunocytochemistry (top right, 10x magnification; bottom right, 40x magnification) and in the absence of a specific siRNA (top left, 10x magnification; bottom right, 40x magnification).

[0049] FIG. 11 depicts an immunoblot of the effect on endogenous expression of murine PTP1B by siRNAs specific for the murine PTP1B or the human PTP1B polynucleotide sequences. Expression was detected using a murine anti-PTP1B monoclonal antibody. Data are presented for two different clones of C57B16 #3 murine cells. Both clones were transfected with mPTP1B1.1 siRNA (lanes 3 and 8); MPTP1B1.2 (lanes 4 and 9); mPTP1B1.3 (lanes 5 and 10). One clone, C57B16 #3 clone 3, was transfected with hPTP1B1.1 (lane 6). Lane 2: untransfected C57B16 #3, clone 3; lane 7: untransfected C57B16 #3, clone 10.

[0050] FIG. 12 presents an extended consensus cDNA sequence encoding prototypical DSP-18 (DSP-18pr) (FIG. 12A) [SEQ ID NO:_____] and the deduced DSP-18pr amino acid sequence (FIG. 12B) [SEQ ID NO:_____]. In FIG. 12A, initiating methionine (ATG) and stop (TGA) codons and intron/exon splice junctions are depicted in bold type with the splice donor sequences in bold without underscore, and the splice acceptor sequences in bold with underscore. In FIG. 12B, initiating methionine and the phosphatase active site are depicted in bold type.

[0051] FIG. 13 presents nucleotide and amino acid sequences for a DSP-18 isoform, DSP-18a. FIG. 13A presents a cDNA sequence for DSP-18a [SEQ ID NO:____], with the start (ATG) and stop (TGA) codons and intron/exon splice junctions indicated in bold; intron/exon splice junctions are depicted in bold type with the splice donor sequences in bold without underscore and the splice acceptor sequences in bold with underscore. FIG. 13B presents the amino acid sequence of the DSP-18a polypeptide [SEQ ID NO:_____] encoded by SEQ ID NO:_____, with the phosphatase active site depicted in bold type.

[0052] FIG. 14 presents nucleotide and amino acid sequences for a DSP-18 isoform, DSP-18b. FIG. 14A presents a cDNA sequence for DSP-18b [SEQ ID NO:____], with the start (ATG) and stop (TGA) codons and intron/exon splice junctions indicated in bold; intron/exon splice junctions are depicted in bold type with the splice donor sequences in bold without underscore and the splice acceptor sequences in bold with underscore. FIG.

14B presents the amino acid sequence of the DSP-18b polypeptide [SEQ ID NO:____] encoded by SEQ ID NO:____, with the phosphatase active site depicted in bold type.

[0053] FIG. 15 presents nucleotide sequences for DSP-18 isoforms, DSP-18c and DSP-18d. FIG. 15A presents a cDNA sequence for DSP-18c [SEQ ID NO:_____ with the start (ATG) and stop (TGA) codons and intron/exon splice junctions indicated in bold. FIG. 15B presents a cDNA sequence for DSP-18d [SEQ ID NO:____], with the start (ATG) and stop (TGA) codons and intron/exon splice junctions indicated in bold. DSP-18c [SEQ ID NO:____] encoded by SEQ ID NO:____, and DSP-18d [SEQ ID NO:____] encoded by SEQ ID NO:____, both share the 181 amino acid sequence encoded by the open reading frame of DSP-18a (see FIG. 15).

[0054] FIG. 16 presents nucleotide and amino acid sequences for DSP-18 isoforms, DSP-18e and DSP-18f. FIG. 16A presents a cDNA sequence for DSP-18e [SEQ ID NO:____], with the start (ATG) and stop (TGA) codons and intron/exon splice junctions indicated in bold. FIG. 16 presents the amino acid sequence of DSP-18e polypeptide [SEQ ID NO:____] encoded by SEQ ID NO:____, with the phosphatase active site sequence in boldface type.

[0055] FIG. 17A presents nucleotide and amino acid sequences for DSP-18f. FIG. 17A presents a cDNA sequence for DSP-18f [SEQ ID NO: _____], with the start (ATG) and stop (TGA) codons and intron/exon splice junctions indicated in bold. FIG. 17B presents the amino acid sequence of DSP-18f polypeptide [SEQ ID NO: _____] encoded by SEQ ID NO: _____, with the phosphatase active site sequence in boldface type.

[0056] FIG. 18 represents an immunoblot of cleavage of poly(ADP-ribose) polymerase (PARP) in HeLa cells transfected with cell division cycle protein sequence specific siRNA polynucleotides (10 nM). The upper immunoblot was probed with an antibody that specifically binds to cleaved PARP, and the lower immunoblot was probed with an anti-PARP antibody. The siRNA polynucleotides transfected into the HeLa cells were as follows: lanes 1 and 2, no siRNA; lanes 3 and 4, cdc14a.5; lanes 5 and 6, cdc14b.4; lanes 7 and 8 Cdc25A.2; lanes 9 and 10, Cdc25B.4; and lanes 11 and 12, Cdc25C.1.

[0057] FIG. 19 depicts an immunoblot analysis of the expression of human PTP-1 B co-transfected into 1BKO+HIR murine fibroblasts with human PTP-1B siRNA hairpin vectors. Expression was detected with an anti-human PTP1B antibody (h1B) (lower portion of immunoblot). As a protein expression control, cell lysates were probed with an anti-human insulin receptor (IR) antibody (upper portion of immunoblot).

[0058] FIG. 20 illustrates insulin-induced activation of PKB/Akt in HepG2 cells following ablation of TC45 by RNA interference. FIG. 20A represents an immunoblot of serum-deprived Rat-1 and HEPG2 cells that were exposed to varying concentrations of insulin (INS) as shown. The insulin receptor (IR) was immunoprecipitated from cell lysates with an anti-IR- β antibody followed by immunoblotting with an anti-phosphotyrosine antibody (pY) (top panel); an anti-pYpY^{1162/1163}-IR- β antibody (middle panel); and an anti-IR β antibody. FIG. 20B represents an immu-

noblot of HepG2 cell lysates prepared from cells that were untransfected (control) or transfected with TCPTP1 siRNA (SEQ ID NO:_____) (+siRNA). The lysates were immunoblotted with an anti-phospho-PKB/Akt antibody (p-AKT) (first immunoblot); anti-PKB/Akt antibody (AKT) (second immunoblot); anti-TC45 (TC45) antibody (third immunoblot); and an anti-PTP1B antibody (PTP1B). FIG. 20C represents a densitometric analysis of the gel image to illustrate the ratio of phosphorylated PKB/Akt to total PKB/Akt.

[0059] FIG. 21 provides an immunoblot indicating that tyrosine phosphorylated IR-β is a substrate of TC45. HepG2 cells overexpressing wild-type (WT) or substrate trapping mutant (DA) forms of PTP1B (1B) and TC45 were either not treated with insulin (-INS) or stimulated with insulin for 5 minutes (+INS), lysed, separated by SDS-PAGE, and immunoprecipitated with anti-PTP1B antibody (FG6) or anti-TC45 antibody (CF4). The immunoprecipitates were immunoblotted with an anti-IR-β antibody (top panel, FIG. 21A); anti-PTP1B antibody FG6 (middle panel, FIG. 21A); and anti-TCPTP antibody CF4 (bottom panel, FIG. 21A). FIG. 21B depicts immunoblots of HepG2 cells that were serumstarved and untransfected (control) or transfected with TC45 siRNA (100 nM) and then stimulated with 10 nM insulin (INS) for the indicated times. The insulin receptor was immunoprecipitated from cell lysates with an anti-IR-β antibody, which was then immunoblotted with the following antibodies: anti-phosphotyrosine (p-Tyr) (first immunoblot); anti-p Y^{972} -IR- β (second immunoblot); anti-p $Y^{1162/1163}$ -IR-β (third immunoblot); and anti-IR-β (fourth immunoblot). FIG. 21C presents densitometric analyses of the gel image to show the ratio of phosphorylated IR-β to total IR-β for total phosphotyrosine (top panel); phosphorylation of Tyr 972 (middle panel); and phosphorylation of the activation loop tyrosines 1162 and 1163 (lower panel).

[0060] FIG. 22 presents the results of an ELISA in which the level of insulin receptor (IR) phosphorylated tyrosine was measured in 293-HEK HIR cells transfected with 0, 0.5, 3, or 10 nM hPTP1B1.3 (H1.3, SEQ ID NO:______) (FIG. 22A) or mPTP1B1.1b (M1.1, SEQ ID NO:______) (FIG. 22B) siRNAs. The level of expression of human PTP1B in the cells was compared by immunoblot (see tables to right of each figure).

[0061] FIG. 23 depicts the results of an ELISA in which the level of insulin receptor (IR) phosphorylated tyrosine was measured in 293-HEK HIR cells transfected with 0, 0.5, 3, or 10 nM siRNAs. The siRNA polynucleotides transfected into the cells included hPTP1B1.2 (H1.2, SEQ ID NO:_____); hPTP1B1.3 (H1.3, SEQ ID NO:_____); mPTP1B1.1b (M1.1, SEQ ID NO:_____); and rPTP1B1.2 (R1.2, SEQ ID NO:_____). Seventy-two hours after transfection, cells were exposed to insulin for 7 minutes at the designated concentrations. Cell lysates were prepared and coated onto 96-well plates and probed with an anti-pY-IR-β antibody.

[0062] FIG. 24 depicts the results of an ELISA in which the level of insulin receptor (IR) phosphorylated tyrosine was measured in 293-HEK HIR cells transfected with 0, 0.5, 3, or 10 nM hTCPTP1.4 siRNA (TC1.4, SEQ ID NO:_____) (FIG. 24A) and mPTP1B1.1b siRNA (M1.1, SEQ ID NO:_____) (FIG. 24B). Seventy-two hours after transfection, cells were exposed to insulin for 7 minutes at

the designated concentrations. Cell lysates were prepared and coated onto 96-well plates and probed with an anti-pY-IR- β antibody.

[0063] FIG. 25 represents ELISA data from three separate experiments that represent the level of insulin receptor phosphorylation in cells transfected with hPTP1B1.3 and stimulated with 50 nM insulin (Ins). Each data point represents the average optical density measured in duplicate wells.

[0064] FIG. 26 illustrates an MTT assay comparing proliferation of HCT-116 cells transfected with siRNAs specific for DSP-3 (dsp3.1 (SEQ ID NO:_____) and dsp3.4 (SEQ ID NO:_____)); cdc14a (a.3 (SEQ ID NO:_____) and a.5 (SEQ ID NO:_____)); SHP-2 (shp2.1 (SEQ ID NO:_____); and DHFR (DHFR.1 (SEQ ID NO:_____), and DHFR (DHFR.1 (SEQ ID NO:_____). As a control, HCT-116 cells were transfected with nonspecific siRNA (scr.2 (SEQ ID NO:_____)). Each bar represents the average optical density for six wells.

[0065] FIG. 27 illustrates an MTT assay comparing proliferation of T47D cells transfected with siRNAs specific for DSP-3 (dsp3.1 (SEQ ID NO:_____) and dsp3.4 (SEQ ID NO:_____); cdc14a (Cdc14a.3 (SEQ ID NO:_____) and Cdc14a.5 (SEQ ID NO:_____); SHP-2 (shp2.1 (SEQ ID NO:_____); and DHFR (DHFR.1 (SEQ ID NO:_____)). As a control, T47D cells were transfected with nonspecific siRNA (scr.2 (SEQ ID NO:_____)).

[0066] FIG. 28 represents an immunoblot of cleavage of PARP in HCT-116 cells (FIG. 28A) and T47D (FIG. 28B) transfected with buffer only (lane 1); (scrb1.2 (SEQ ID NO: _____) (lane 2); DSP3.1 (SEQ ID NO: _____) (lane 3); DSP3.4 (SEQ ID NO: _____) (lane 4); and DHFR.1 (lane 5).

[0067] FIG. 29 presents nucleotide and amino acid sequences for DSP-13. FIG. 29A presents a cDNA sequence for DSP-13 [SEQ ID NO:_____], with the start (ATG) and stop (TGA) codons indicated in bold and underlined. FIG. 29B presents the amino acid sequence of the DSP-13 polypeptide [SEQ ID NO:_____] encoded by SEQ ID NO:_____.

[0068] FIG. 30 presents nucleotide and amino acid sequences for DSP-14. FIG. 30A presents a cDNA sequence for DSP-14 [SEQ ID NO:_____], with the start (ATG) and stop (TGA) codons indicated in bold and underlined. FIG. 30B presents the amino acid sequence of the DSP-14 polypeptide [SEQ ID NO:_____] encoded by SEQ ID NO:_____.

DETAILED DESCRIPTION OF THE INVENTION

[0069] The present invention is directed in part to the unexpected discovery of short RNA polynucleotide sequences that are capable of specifically modulating expression of a desired polypeptide, such as a DSP-3, SHP-2, KAP, PRL-3, cdc14 or cdc25 polypeptide, or a variant of any such polypeptide. Without wishing to be bound by theory, the RNA polynucleotides of the present invention specifically reduce expression of a desired target polypeptide through recruitment of small interfering RNA (siRNA) mechanisms. In particular, and as described in

greater detail herein, according to the present invention there are provided compositions and methods that relate to the surprising identification of certain specific RNAi oligonucleotide sequences of 19, 20, 21, 22, 23, 24, 25, 26 or 27 nucleotides that can be derived from corresponding polynucleotide sequences encoding the desired DSP-3, SHP-2, KAP, PRL-3, cdc14, cdc25, or other specified target polypeptide. These sequences cannot be predicted through any algorithm, sequence alignment routine, or other systematic paradigm, but must instead be obtained through generation and functional testing for RNAi activity of actual candidate oligonucleotides, such as those disclosed for the first time herein.

[0070] In preferred embodiments of the invention, the siRNA polynucleotide interferes with expression of a DSP-3, SHP-2, KAP, PRL-3, cdc14, cdc25, or other herein specified target polypeptide or a variant thereof, and comprises a RNA oligonucleotide or RNA polynucleotide uniquely corresponding in its nucleotide base sequence to the sequence of a portion of a target polynucleotide encoding the target polypeptide, for instance, a target mRNA sequence or an exonic sequence encoding such mRNA. Hence, according to non-limiting theory, the siRNA polynucleotides of the present invention direct sequence-specific degradation of mRNA encoding a desired DSP-3, SHP-2, KAP, PRL-3, cdc14 or cdc25 target polypeptide, the expression of which is consequently compromised. As also described herein, certain embodiments of the invention relate to siRNA polynucleotides that specifically interfere with expression of PTPs that are dual specificity phosphatases, including DSP-3, DSP-11, DSP-13, DSP-14, and DSP-18; certain other embodiments relate to RNAi interference with expression of the MAP kinase kinase (MKK) target polypeptide MKK4; certain other embodiments relate to RNAi interference with expression of target polypeptides that interact with chemotherapeutic agents, for example, the target polypeptides dihydrofolate reductase (DHFR), thymidylate synthetase, and topoisomerase I. The invention relates in preferred embodiments to siRNA polynucleotides that interfere with expression of specific polypeptides in mammals, which in certain particularly preferred embodiments are humans and in certain other particularly preferred embodiments are non-human mammals.

[0071] Exemplary sequences for the target polypeptides described herein include, for instance, DSP-3 (WO 00/60092; SEQ ID NO:24 encoded by SEQ ID NO:23); cdc14A (e.g., GenBank Accession Nos. AF122013, AF064102, AF064103; Li et al., 1997 J. Biol. Chem. 272:29403; U.S. Pat. No. 6,331,614; e.g., SEQ ID NO:34 encoded by SEQ ID NO:33) or cdc14B (e.g., GenBank Accession Nos. AF064104, AF064105, AF023158; Li et al., 1997 J. Biol. Chem. 272:29403; e.g., SEQ ID NO:36 encoded by SEQ ID NO:35); cdc25A ((e.g., GenBank Accession Nos. NM_001789, AF527417, NM_133571); cdc25B (e.g., GenBank Accession Nos. NM_133572, NM_023117, NM_021872; NM_021872; M81934); and cdc25C (e.g., GenBank Accession Nos. NM_001790, NM_022809); PTPε (e.g., Genbank Accession Nos. NM_006504 (SEQ ID NOS: and NM 130435(SEO ID NOS:)); KAP (e.g., Genbank Accession No. L27711; Hannon et al., Proc. Natl. Acad. Sci. USA 91:1731-35 (1994); Demetrick et al., Cytogenet. Cell Genet. 69:190-92 (1995)); PRL-3 (e.g., Zhao et al., Genomics 35:172-81 (1996); Genbank Accession Nos.

(NM_003479 (SEQ ID NOS: NM_080392 (SEQ ID NOS: NM 080391 (SEQ ID NOS: NM_032611 (SEQ ID NOS: and NM_007079 (SEQ ID NOS: SHP-2 (GenBank Accession Nos. D13540 (SEQ ID NOS: _); L03535 (SEQ ID NOS:); L07527 (SEQ ID NOS:); X70766 (SEQ ID NOS:); L08807 (SEQ ID NO:); 78088); S39383 (SEQ ID NO: (SEQ ID NOS:); D84372 (SEQ ID NOS:); U09307); CD45 (e.g., (Charbonneau (SEO ID NOS: et al., Proc. Natl. Acad. Sci. USA 85:7182-86 (1988); Genbank Accession Nos. NM_080922 (SEQ ID NOS:), NM_080921 (SEQ ID NOS: NM_002838 (SEQ ID NOS: NM_080923) (SEQ ID NOS:); GenBank Ace. No. XM_16748; e.g., SEQ ID NO: 32 encoded by SEQ); DSP-11 (WO ID NO:31); SEQ ID NOS: 01/05983, SEQ ID NO:26 encoded by SEQ ID NO:25); DSP-18 (U.S. application Ser. No. 10/151,320, SEQ ID NO:28 encoded by SEQ ID NO:27); DSP-13 (U.S. application Ser. No. 09/775,925; SEQ ID NO: encoded by _); DSP-14 (U.S. application Ser. No. SEQ ID NO: 09/847,519; SEQ ID NO:_ encoded by SEQ ID); WO 01/46394); MKP-1 (WO 97/00315; Keyse et al., 1992 Nature 59:644; SEQ ID NO:30 encoded by SEQ ID NO:29). According to the contemplated invention, the siRNA polynucleotide expressly does not consist of a CDC14a.5 polynucleotide having a sequence set forth in SEQ ID NO:10 (Mailand et al., 2002 Nature Cell Biol. 4:317).

[0072] In certain embodiments of the invention, an siRNA polynucleotide interferes with expression of a component of a signaling transduction pathway, for example, components of the JNK signaling transduction pathway such as MKK4 (e.g., GenBank Accession Nos. L36870 (SEQ ID NO: and), NM_009157, and NM_009157; SEO ID NO: encoded by SEQ ID NO:)) and MKK7 (e.g., GenBank Accession Nos. AF013588 (SEQ ID encoded by SEQ ID NO: AF026216, and to related compositions and methods. (See also Shen et al., Proc. Natl. Acad. Sci. USA 98:13613-18 (2001)). In certain other embodiments of the invention, the siRNA polynucleotide interferes with expression of a cellular polypeptide or enzyme that is associated with a cellular malfunction or defect (e.g., in a cancer or malignancy, an enzyme that is overexpressed or constitutively expressed and is associated with cell survival, proliferation, apoptosis, cell division, and differentiation). For example, the siRNA polynucleotide may comprise a sequence specific for dihydrofolate reductase (DHFR) (e.g., GenBank Accession No: NM_000791; SEQ ID NO: _ ____ encoded by SEQ ID)); thymidylate synthetase e.g., GenBank Accession No: NM_001071 (SEQ ID NO:); topoisomerase I (e.g., GenBank SEQ ID NO: Accession No: J03250; SEQ ID NO: encoded by SEQ ID NO:_ _)); IkappaB kinase (IKK) alpha (e.g., GenBank Accession No. AF080157; SEQ ID NO: encoded by SEO ID NO:); GenBank Accession No. AF009225; GenBank Accession No. AF012890); IKKbeta e.g., GenBank Accession No. AF080158; SEQ ID NO: _); GenBank Accesencoded by SEQ ID NO: sion No. AF031416; GenBank Accession No. AF029684);

or IKKgamma e.g., GenBank Accession No. AF074382; SEQ ID NO: _____ encoded by SEQ ID NO: _____); GenBank Accession No. AF091453).

[0073] In another preferred embodiment, the siRNA polynucleotides provided interfere with expression of DSP-3, SHP-2, CD45, PTP ϵ , KAP, cdc14a, cdc14b, cdc25A, cdc25B, cdc25C, and PRL-3. According to non-limiting theory, the siRNA polynucleotides of the present invention direct sequence-specific degradation of mRNA encoding a PTP such as SHP2, PTP ϵ , or a dual specificity phosphatase (e.g., DSP-3, KAP, cdc14a, cdc14b, cdc25A, cdc25B, cdc25C, CD45, or PRL-3) by a mechanism known as RNA interference (RNAi). The invention is not intended, however, to be so limited, and certain embodiments relate to RNA interference of other PTPs and dual specificity phosphatases (e.g., DSP-11, DSP-13, DSP-14, and DSP-18), and to interference with expression of other polypeptides and components of signal transduction pathways including mitogen activated protein (MAP) kinases, which include a MAP kinase kinase (e.g., MAPKKK or MEKK) that activates a MAP/ERK kinase (e.g., MAPKK or MEK), which then stimulates a phosphorylation-dependent increase in the activity of the MAP kinase. Upon activation, a MAP kinase can phosphorylate a variety of intracellular targets including transcription factors, transcriptional adaptor proteins, membrane and cytoplasmic substrates, and other protein kinases. In certain preferred embodiments, a siRNA polynucleotide interferes with expression of a MAP kinase kinase that is a component of the JNK signal transduction pathway, for example, MKK4 or MKK7. In other preferred embodiments, a siRNA polynucleotide interferes with expression of a cellular polypeptide or enzyme that is associated with a cellular malfunction or defect in cancer or malignancy, and which may be overexpressed or constitutively expressed in the tumor cell.

[0074] In addition, other preferred polypeptides include polypeptides that are targets of chemotherapeutic agents or drugs. Examples of chemotherapeutic target polypeptides include enzymes in the folate metabolic pathway, for example, thymidylate synthetase, which is a target of fluoropyrmidines. Another enzyme in this pathway is dihydrofolate reductase (DHFR), which is targeted by antifolate agents, such as methotrexate. DNA processing enzymes, including topoisomerase I and topoisomerase II, are also targets of chemotherapeutic agents. Other examples of chemotherapeutic target polypeptides include microtubule polypeptides, which are chemotherapeutic targets of taxanes and vinca alkaloids. According to non-limiting theory, these chemotherapeutic target polypeptides may become resistant to a drug or agent, that is, resistance may be manifested by overexpression or constitutive expression of the chemotherapeutic target polypeptide in a target cell. The overexpression of such a target polypeptide may be reduced by introducing a specific siRNA polynucleotide into the cell. In certain embodiments of the invention, a siRNA polynucleotide interferes with expression of such chemotherapeutic target polypeptides. For example, siRNA polynucleotides of the present invention that interfere with expression of a chemotherapeutic target polypeptide comprise sequences specific for dihydrofolate reductase (DHFR), thymidylate synthetase, topoisomerase I, and IKKgamma.

[0075] SiRNA Polynucleotides

[0076] As used herein, the term "siRNA" means either: (i) a double stranded RNA oligonucleotide, or polynucleotide, that is 18 base pairs, 19 base pairs, 20 base pairs, 21 base pairs, 22 base pairs, 23 base pairs, 24 base pairs, 25 base pairs, 26 base pairs, 27 base pairs, 28 base pairs, 29 base pairs or 30 base pairs in length and that is capable of interfering with expression and activity of a PTP-1B polypeptide, or a variant of the PTP-1B polypeptide, wherein a single strand of the siRNA comprises a portion of a RNA polynucleotide sequence that encodes the PTP-1B polypeptide, its variant, or a complementary sequence thereto; (ii) a single stranded oligonucleotide, or polynucleotide of 18 nucleotides, 19 nucleotides, 20 nucleotides, 21 nucleotides, 22 nucleotides, 23 nucleotides, 24 nucleotides, 25 nucleotides, 26 nucleotides, 27 nucleotides, 28 nucleotides, 29 nucleotides or 30 nucleotides in length and that is either capable of interfering with expression and/or activity of a target polypeptide such as DSP-3, SHP-2, KAP, PRL-3, cdc14 or cdc25, or a variant of the target polypeptide, or that anneals to a complementary sequence to result in a dsRNA that is capable of interfering with target polypeptide expression, wherein such single stranded oligonucleotide comprises a portion of a RNA polynucleotide sequence that encodes the target polypeptide, its variant, or a complementary sequence thereto; or (iii) an oligonucleotide, or polynucleotide, of either (i) or (ii) above wherein such oligonucleotide, or polynucleotide, has one, two, three or four nucleic acid alterations or substitutions therein.

[0077] A siRNA polynucleotide is a RNA nucleic acid molecule that mediates the effect of RNA interference, a post-transcriptional gene silencing mechanism. A siRNA polynucleotide preferably comprises a double-stranded RNA (dsRNA) but is not intended to be so limited and may comprise a single-stranded RNA (see, e.g., Martinez et al. Cell 110:563-74 (2002)). A siRNA polynucleotide may comprise other naturally occurring, recombinant, or synthetic single-stranded or double-stranded polymers of nucleotides (ribonucleotides or deoxyribonucleotides or a combination of both) and/or nucleotide analogues as provided herein (e.g., an oligonucleotide or polynucleotide or the like, typically in 5' to 3' phosphodiester linkage). Accordingly it will be appreciated that certain exemplary sequences disclosed herein as DNA sequences capable of directing the transcription of the subject invention siRNA polynucleotides are also intended to describe the corresponding RNA sequences and their complements, given the well established principles of complementary nucleotide base-pairing. A siRNA may be transcribed using as a template a DNA (genomic, cDNA, or synthetic) that contains a RNA polymerase promoter, for example, a U6 promoter or the H1 RNA polymerase III promoter, or the siRNA may be a synthetically derived RNA molecule. In certain embodiments the subject invention siRNA polynucleotide may have blunt ends, that is, each nucleotide in one strand of the duplex is perfectly complementary (e.g., by Watson-Crick base-pairing) with a nucleotide of the opposite strand. In certain other embodiments, at least one strand of the subject invention siRNA polynucleotide has at least one, and preferably two nucleotides that "overhang" (i.e., that do not base pair with a complementary base in the opposing strand) at the 3' end of either strand, or preferably both strands, of the siRNA polynucleotide. In a preferred embodiment of the invention, each strand of the siRNA polynucleotide duplex has a two-nucleotide overhang at the 3' end. The two-nucleotide overhang is preferably a thymidine dinucleotide (TT) but may also comprise other bases, for example, a TC dinucleotide or a TG dinucleotide, or any other dinucleotide. The overhang dinucleotide may also be complementary to the two nucleotides at the 5' end of the sequence of the polynucleotide that is targeted for interference. For a discussion of 3' ends of siRNA polynucleotides see, e.g., WO 01/75164.

[0078] Preferred siRNA polynucleotides comprise doublestranded oligomeric nucleotides of about 18-30 nucleotide base pairs, preferably about 18, 19, 20, 21, 22, 23, 24, 25, 26, or 27 base pairs, and in other preferred embodiments about 19, 20, 21, 22 or 23 base pairs, or about 27 base pairs, whereby the use of "about" indicates, as described above, that in certain embodiments and under certain conditions the processive cleavage steps that may give rise to functional siRNA polynucleotides that are capable of interfering with expression of a selected polypeptide may not be absolutely efficient. Hence, siRNA polynucleotides, for instance, of "about" 18, 19, 20, 21, 22, 23, 24, or 25 base pairs may include one or more siRNA polynucleotide molecules that may differ (e.g., by nucleotide insertion or deletion) in length by one, two, three or four base pairs, by way of non-limiting theory as a consequence of variability in processing, in biosynthesis, or in artificial synthesis. The contemplated siRNA polynucleotides of the present invention may also comprise a polynucleotide sequence that exhibits variability by differing (e.g., by nucleotide substitution, including transition or transversion) at one, two, three or four nucleotides from a particular sequence, the differences occurring at any of positions 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, or 19 of a particular siRNA polynucleotide sequence, or at positions 20, 21, 22, 23, 24, 25, 26, or 27 of siRNA polynucleotides depending on the length of the molecule, whether situated in a sense or in an antisense strand of the double-stranded polynucleotide. The nucleotide substitution may be found only in one strand, by way of example in the antisense strand, of a double-stranded polynucleotide, and the complementary nucleotide with which the substitute nucleotide would typically form hydrogen bond base pairing may not necessarily be correspondingly substituted in the sense strand. In preferred embodiments, the siRNA polynucleotides are homogeneous with respect to a specific nucleotide sequence. As described herein, preferred siRNA polynucleotides interfere with expression of a DSP-3, SHP-2, KAP, PRL-3, cdc14 or cdc25 polypeptide. These polynucleotides may also find uses as probes or primers.

[0079] Polynucleotides that are siRNA polynucleotides of the present invention may in certain embodiments be derived from a single-stranded polynucleotide that comprises a single-stranded oligonucleotide fragment (e.g., of about 18-30 nucleotides, which should be understood to include any whole integer of nucleotides including and between 18 and 30) and its reverse complement, typically separated by a spacer sequence. According to certain such embodiments, cleavage of the spacer provides the single-stranded oligonucleotide fragment and its reverse complement, such that they may anneal to form (optionally with additional processing steps that may result in addition or removal of one, two, three or more nucleotides from the 3' end and/or the 5' end of either or both strands) the double-stranded siRNA polynucleotide of the present invention. In

certain embodiments the spacer is of a length that permits the fragment and its reverse complement to anneal and form a double-stranded structure (e.g., like a hairpin polynucleotide) prior to cleavage of the spacer (and, optionally, subsequent processing steps that may result in addition or removal of one, two, three, four, or more nucleotides from the 3' end and/or the 5' end of either or both strands). A spacer sequence may therefore be any polynucleotide sequence as provided herein that is situated between two complementary polynucleotide sequence regions which, when annealed into a double-stranded nucleic acid, comprise a siRNA polynucleotide. Preferably a spacer sequence comprises at least 4 nucleotides, although in certain embodiments the spacer may comprise 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21-25, 26-30, 31-40, 41-50, 51-70, 71-90, 91-110, 111-150, 151-200 or more nucleotides. Examples of siRNA polynucleotides derived from a single nucleotide strand comprising two complementary nucleotide sequences separated by a spacer have been described (e.g., Brummelkamp et al., 2002 Science 296:550; Paddison et al., 2002 Genes Develop. 16:948; Paul et al. Nat. Biotechnol. 20:505-508 (2002); Grabarek et al., BioTechniques 34:734-44 (2003)).

[0080] Polynucleotide variants may contain one or more substitutions, additions, deletions, and/or insertions such that the activity of the siRNA polynucleotide is not substantially diminished, as described above. The effect on the activity of the siRNA polynucleotide may generally be assessed as described herein, or using conventional methods. Variants preferably exhibit at least about 75%, 78%, 80%, 85%, 87%, 88% or 89% identity and more preferably at least about 90%, 92%, 95%, 96%, or 97% identity to a portion of a polynucleotide sequence that encodes a native DSP-3, SHP-2, KAP, PRL-3, cdc14 or cdc25. The percent identity may be readily determined by comparing sequences of the polynucleotides to the corresponding portion of the target polynucleotide, using any method including using computer algorithms well known to those having ordinary skill in the art, such as Align or the BLAST algorithm (Altschul, J. Mol. Biol. 219:555-565, 1991; Henikoff and Henikoff, Proc. Natl. Acad. Sci. USA 89:10915-10919, 1992), which is available at the NCBI website (see [online] Internet:<URL:http:// www/ncbi.nlm.nih.gov/cgi-bin/BLAST). Default parameters may be used.

[0081] Certain siRNA polynucleotide variants are substantially homologous to a portion of a native gene that encodes a desired target polypeptide. Single-stranded nucleic acids derived (e.g., by thermal denaturation) from such polynucleotide variants are capable of hybridizing under moderately stringent conditions to a naturally occurring DNA or RNA sequence encoding a native target polypeptide. In a preferred embodiment of the invention, a siRNA polynucleotide that detectably hybridizes under moderately stringent conditions to a target polypeptide-encoding polynucleotide comprises a nucleotide sequence other than SEQ ID NO:10, which is disclosed in Mailand et al. (2002 Nature Cell Biol. 4:317). A siRNA polynucleotide that detectably hybridizes under moderately stringent conditions may have a nucleotide sequence that includes at least 10 consecutive nucleotides, more preferably 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29 or 30 consecutive nucleotides that are complementary to a particular target polynucleotide. In certain preferred embodiments such a siRNA sequence (or its complement) will be unique to a single particular target

polypeptide for which interference with expression is desired, and in certain other embodiments the sequence (or its complement) may be shared by two or more related target polypeptides for which interference with polypeptide expression is desired.

[0082] Suitable moderately stringent conditions include, for example, pre-washing in a solution of 5×SSC, 0.5% SDS, 1.0 mM EDTA (pH 8.0); hybridizing at 50° C.-70° C., 5×SSC for 1-16 hours (e.g., overnight); followed by washing once or twice at 22-65° C. for 20-40 minutes with one or more each of 2x, 0.5x and 0.2xSSC containing 0.05-0.1% SDS. For additional stringency, conditions may include a wash in 0.1×SSC and 0.1% SDS at 50-60° C. for 15-40 minutes. As known to those having ordinary skill in the art, variations in stringency of hybridization conditions may be achieved by altering the time, temperature, and/or concentration of the solutions used for pre-hybridization, hybridization, and wash steps. Suitable conditions may also depend in part on the particular nucleotide sequences of the probe used, and of the blotted, proband nucleic acid sample. Accordingly, it will be appreciated that suitably stringent conditions can be readily selected without undue experimentation when a desired selectivity of the probe is identified, based on its ability to hybridize to one or more certain proband sequences while not hybridizing to certain other proband sequences.

[0083] Sequence specific siRNA polynucleotides of the present invention may be designed using one or more of several criteria. For example, to design a siRNA polynucleotide that has 19 consecutive nucleotides identical to a sequence encoding a polypeptide of interest (e.g., PTP1B and other polypeptides described herein), the open reading frame of the polynucleotide sequence may be scanned for 21-base sequences that have one or more of the following characteristics: (1) an A+T/G+C ratio of approximately 1:1 but no greater than 2:1 or 1:2; (2) an AA dinucleotide or a CA dinucleotide at the 5' end; (3) an internal hairpin loop melting temperature less than 55° C.; (4) a homodimer melting temperature of less than 37° C. (melting temperature calculations as described in (3) and (4) can be determined using computer software known to those skilled in the art); (5) a sequence of at least 16 consecutive nucleotides not identified as being present in any other known polynucleotide sequence (such an evaluation can be readily determined using computer programs available to a skilled artisan such as BLAST to search publicly available databases). Alternatively, a siRNA polynculeotide sequence may be designed and chosen using a computer software available commercially from various vendors (e.g., OligoEngine™ (Seattle, Wash.); Dharmacon, Inc. (Lafayette, Colo.); Ambion Inc. (Austin, Tex.); and QIAGEN, Inc. (Valencia, Calif.)). (See also Elbashir et al., Genes & Development 15:188-200 (2000); Elbashir et al., Nature 411:494-98 (2001); and [online] Internet: URLhttp://www.mpibpc.g- wdg.de/abteilungen/100/105/Tusch1 MIV2(3) 2002.pdf.) The siRNA polynucleotides may then be tested for their ability to interfere with the expression of the target polypeptide according to methods known in the art and described herein. The determination of the effectiveness of an siRNA polynucleotide includes not only consideration of its ability to interfere with polypeptide expression but also includes consideration of whether the siRNA polynucleotide manifests undesirably toxic effects, for example, apoptosis of a cell for which cell death is not a desired effect of RNA interference (e.g., interference of PTP1B expression in a cell).

[0084] It should be appreciated that not all siRNAs designed using the above methods will be effective at silencing or interfering with expression of a desired target polypeptide. And further, that the siRNAs will effect silencing to different degrees. Such siRNAs must be tested for their effectiveness, and selections made therefrom based on the ability of a given siRNA to interfere with or modulate (e.g., decrease in a statistically significant manner) the expression of the target. Accordingly, identification of specific siRNA polynucleotide sequences that are capable of interfering with expression of a desired target polypeptide requires production and testing of each siRNA, as demonstrated in greater detail below (see Examples).

[0085] Furthermore, not all siRNAs that interfere with protein expression will have a physiologically important effect. The inventors here have designed, and describe herein, physiologically relevant assays for measuring the influence of modulated target polypeptide expression, for instance, cellular proliferation, induction of apoptosis, and/ or altered levels of protein tyrosine phosphorylation (e.g., insulin receptor phosphorylation), to determine if the levels of interference with target protein expression that were observed using the siRNAs of the invention have clinically relevant significance. Additionally, and according to nonlimiting theory, the invention contemplates altered (e.g., decreased or increased in a statistically significant manner) expression levels of one or more polypeptides of interest, and/or altered (i.e., increased or decreased) phosphorylation levels of one or more phosphoproteins of interest, which altered levels may result from impairment of target protein expression and/or cellular compensatory mechanisms that are induced in response to RNAi-mediated inhibition of a specific target polypeptide expression.

[0086] Persons having ordinary skill in the art will also readily appreciate that as a result of the degeneracy of the genetic code, many nucleotide sequences may encode a polypeptide as described herein. That is, an amino acid may be encoded by one of several different codons and a person skilled in the art can readily determine that while one particular nucleotide sequence may differ from another (which may be determined by alignment methods disclosed herein and known in the art), the sequences may encode polypeptides with identical amino acid sequences. By way of example, the amino acid leucine in a polypeptide may be encoded by one of six different codons (TTA, TTG, CTT, CTC, CTA, and CTG) as can serine (TCT, TCC, TCA, TCG, AGT, and AGC). Other amino acids, such as proline, alanine, and valine, for example, may be encoded by any one of four different codons (CCT, CCC, CCA, CCG for proline; GCT, GCC, GCA, GCG for alanine; and GTT, GTC, GTA, GTG for valine). Some of these polynucleotides bear minimal homology to the nucleotide sequence of any native gene. Nonetheless, polynucleotides that vary due to differences in codon usage are specifically contemplated by the present invention.

[0087] Polynucleotides, including target polynucleotides, may be prepared using any of a variety of techniques, which will be useful for the preparation of specifically desired siRNA polynucleotides and for the identification and selec-

tion of desirable sequences to be used in siRNA polynucleotides. For example, a polynucleotide may be amplified from cDNA prepared from a suitable cell or tissue type. Such polynucleotides may be amplified via polymerase chain reaction (PCR). For this approach, sequence-specific primers may be designed based on the sequences provided herein and may be purchased or synthesized. An amplified portion may be used to isolate a full-length gene, or a desired portion thereof, from a suitable library (e.g., human skeletal muscle cDNA) using well known techniques. Within such techniques, a library (cDNA or genomic) is screened using one or more polynucleotide probes or primers suitable for amplification. Preferably, a library is size-selected to include larger molecules. Random primed libraries may also be preferred for identifying 5' and upstream regions of genes. Genomic libraries are preferred for obtaining introns and extending 5' sequences. Suitable sequences for a siRNA polynucleotide contemplated by the present invention may also be selected from a library of siRNA polynucleotide sequences.

[0088] For hybridization techniques, a partial sequence may be labeled (e.g., by nick-translation or end-labeling with ³²P) using well known techniques. A bacterial or bacteriophage library may then be screened by hybridizing filters containing denatured bacterial colonies (or lawns containing phage plaques) with the labeled probe (see, e.g., Sambrook et al., Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratories, Cold Spring Harbor, N.Y., 2001). Hybridizing colonies or plaques are selected and expanded, and the DNA is isolated for further analysis. Clones may be analyzed to determine the amount of additional sequence by, for example, PCR using a primer from the partial sequence and a primer from the vector. Restriction maps and partial sequences may be generated to identify one or more overlapping clones. A full-length cDNA molecule can be generated by ligating suitable fragments, using well known techniques.

[0089] Alternatively, numerous amplification techniques are known in the art for obtaining a full-length coding sequence from a partial cDNA sequence. Within such techniques, amplification is generally performed via PCR. One such technique is known as "rapid amplification of cDNA ends" or RACE. This technique involves the use of an internal primer and an external primer, which hybridizes to a polyAregion or vector sequence, to identify sequences that are 5' and 3' of a known sequence. Any of a variety of commercially available kits may be used to perform the amplification step. Primers may be designed using, for example, software well known in the art. Primers (or oligonucleotides for other uses contemplated herein, including, for example, probes and antisense oligonucleotides) are preferably 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 or 32 nucleotides in length, have a GC content of at least 40% and anneal to the target sequence at temperatures of about 54° C. to 72° C. The amplified region may be sequenced as described above, and overlapping sequences assembled into a contiguous sequence. Certain oligonucleotides contemplated by the present invention may, for some preferred embodiments, have lengths of 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33-35, 35-40, 41-45, 46-50, 56-60, 61-70, 71-80, 81-90 or more nucleotides.

[0090] A number of specific siRNA polynucleotide sequences useful for interfering with target polypeptide expression, and are presented in the Examples, the Drawings, and the Sequence Listing. SiRNA polynucleotides may generally be prepared by any method known in the art, including, for example, solid phase chemical synthesis. Modifications in a polynucleotide sequence may also be introduced using standard mutagenesis techniques, such as oligonucleotide-directed site-specific mutagenesis. Further, siRNAs may be chemically modified or conjugated to improve theur serum stability and/or delivery properties. Included as an aspect of the invention are the siRNAs described herein wherein the ribose has been removed therefrom. Alternatively, siRNA polynucleotide molecules may be generated by in vitro or in vivo transcription of suitable DNA sequences (e.g., polynucleotide sequences encoding a target polypeptide, or a desired portion thereof), provided that the DNA is incorporated into a vector with a suitable RNA polymerase promoter (such as T7, U6, H1, or SP6). In addition, a siRNA polynucleotide may be administered to a patient, as may be a DNA sequence (e.g., a recombinant nucleic acid construct as provided herein) that supports transcription (and optionally appropriate processing steps) such that a desired siRNA is generated in vivo.

[0091] Accordingly, a siRNA polynucleotide that is complementary to at least a portion of a target polypeptideencoding sequence may be used to modulate gene expression, or as a probe or primer. Identification of siRNA polynucleotide sequences and DNA encoding genes for their targeted delivery involves techniques described herein. Identification of such siRNA polynucleotide sequences and DNA encoding genes for their targeted delivery involves techniques that are also described herein. As discussed above, siRNA polynucleotides exhibit desirable stability characteristics and may, but need not, be further designed to resist degradation by endogenous nucleolytic enzymes by using such linkages as phosphorothioate, methylphosphonate, sulfone, sulfate, ketyl, phosphorodithioate, phosphoramidate, phosphate esters, and other such linkages (see, e.g., Agrwal et al., Tetrahedron Lett. 28:3539-3542 (1987); Miller et al., J. Am. Chem. Soc. 93:6657-6665 (1971); Stec et al., Tetrahedron Lett. 26:2191-2194 (1985); Moody et al., Nucleic Acids Res. 12:4769-4782 (1989); Uznanski et al., Nucleic Acids Res. (1989); Letsinger et al., Tetrahedron 40:137-143 (1984); Eckstein, Annu. Rev. Biochem. 54:367402 (1985); Eckstein, Trends Biol. Sci. 14:97-100 (1989); Stein, In: Oligodeoxynucleotides. Antisense Inhibitors of Gene Expression, Cohen, ed., Macmillan Press, London, pp. 97-117 (1989); Jager et al., Biochemistry 27:7237-7246 (1988)).

[0092] Any polynucleotide of the invention may be further modified to increase stability in vivo. Possible modifications include, but are not limited to, the addition of flanking sequences at the 5' and/or 3' ends; the use of phosphorothioate or 2' O-methyl rather than phosphodiester linkages in the backbone; and/or the inclusion of nontraditional bases such as inosine, queosine, and wybutosine and the like, as well as acetyl- methyl-, thio- and other modified forms of adenine, cytidine, guanine, thymine, and uridine.

[0093] Nucleotide sequences as described herein may be joined to a variety of other nucleotide sequences using established recombinant DNA techniques. For example, a polynucleotide may be cloned into any of a variety of

cloning vectors, including plasmids, phagemids, lambda phage derivatives, and cosmids. Vectors of particular interest include expression vectors, replication vectors, probe generation vectors, and sequencing vectors. In general, a suitable vector contains an origin of replication functional in at least one organism, convenient restriction endonuclease sites, and one or more selectable markers. (See, e.g., WO 01/96584; WO 01/29058; U.S. Pat. No. 6,326,193; U.S. 2002/0007051). Other elements will depend upon the desired use, and will be apparent to those having ordinary skill in the art. For example, the invention contemplates the use of siRNA polynucleotide sequences in the preparation of recombinant nucleic acid constructs including vectors for interfering with the expression of a desired target polypeptide such as a PTP polypeptide, a MAP kinase kinase polypeptide, or a chemotherapeutic target polypeptide in vivo; the invention also contemplates the generation of siRNA transgenic or "knock-out" animals and cells (e.g., cells, cell clones, lines or lineages, or organisms in which expression of one or more desired polypeptides (e.g., a target polypeptide) is fully or partially compromised). An siRNA polynucleotide that is capable of interfering with expression of a desired polypeptide (e.g., a target polypeptide) as provided herein thus includes any siRNA polynucleotide that, when contacted with a subject or biological source as provided herein under conditions and for a time sufficient for target polypeptide expression to take place in the absence of the siRNA polynucleotide, results in a statistically significant decrease (alternatively referred to as "knockdown" of expression) in the level of target polypeptide expression that can be detected. Preferably the decrease is greater than 10%, more preferably greater than 20%, more preferably greater than 30%, more preferably greater than 40%, 50%, 60%, 70%, 75%, 80%, 85%, 90%, 95% or 98% relative to the expression level of the polypeptide detected in the absence of the siRNA, using conventional methods for determining polypeptide expression as known to the art and provided herein. Preferably, the presence of the siRNA polynucleotide in a cell does not result in or cause any undesired toxic effects, for example, apoptosis or death of a cell in which apoptosis is not a desired effect of RNA interference.

[0094] Within certain embodiments, siRNA polynucleotides may be formulated so as to permit entry into a cell of a mammal, and expression therein. Such formulations are particularly useful for therapeutic purposes, as described below. Those having ordinary skill in the art will appreciate that there are many ways to achieve expression of a polynucleotide in a target cell, and any suitable method may be employed. For example, a polynucleotide may be incorporated into a viral vector using well known techniques (see also, e.g., U.S. 2003/0068821). A viral vector may additionally transfer or incorporate a gene for a selectable marker (to aid in the identification or selection of transduced cells) and/or a targeting moiety, such as a gene that encodes a ligand for a receptor on a specific target cell, to render the vector target specific. Targeting may also be accomplished using an antibody, by methods known to those having ordinary skill in the art.

[0095] Other formulations for therapeutic purposes include colloidal dispersion systems, such as macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. A preferred colloidal system for use as a delivery vehicle in vitro and in vivo is a liposome

(i.e., an artificial membrane vesicle). The preparation and use of such systems is well known in the art.

[0096] Within other embodiments, one or more promoters may be identified, isolated and/or incorporated into recombinant nucleic acid constructs of the present invention, using standard techniques. The present invention provides nucleic acid molecules comprising such a promoter sequence or one or more cis- or trans-acting regulatory elements thereof. Such regulatory elements may enhance or suppress expression of a siRNA. A 5' flanking region may be generated using standard techniques, based on the genomic sequence provided herein. If necessary, additional 5' sequences may be generated using PCR-based or other standard methods. The 5' region may be subcloned and sequenced using standard methods. Primer extension and/or RNase protection analyses may be used to verify the transcriptional start site deduced from the cDNA.

[0097] To define the boundary of the promoter region, putative promoter inserts of varying sizes may be subcloned into a heterologous expression system containing a suitable reporter gene without a promoter or enhancer. Suitable reporter genes may include genes encoding luciferase, betagalactosidase, chloramphenicol acetyl transferase, secreted alkaline phosphatase, or the Green Fluorescent Protein gene (see, e.g., Ui-Tei et al., FEBS Lett. 479:79-82 (2000). Suitable expression systems are well known and may be prepared using well known techniques or obtained commercially. Internal deletion constructs may be generated using unique internal restriction sites or by partial digestion of non-unique restriction sites. Constructs may then be transfected into cells that display high levels of siRNA polynucleotide and/or polypeptide expression. In general, the construct with the minimal 5' flanking region showing the highest level of expression of reporter gene is identified as the promoter. Such promoter regions may be linked to a reporter gene and used to evaluate agents for the ability to modulate promoter-driven transcription.

[0098] Once a functional promoter is identified, cis- and trans-acting elements may be located. Cis-acting sequences may generally be identified based on homology to previously characterized transcriptional motifs. Point mutations may then be generated within the identified sequences to evaluate the regulatory role of such sequences. Such mutations may be generated using site-specific mutagenesis techniques or a PCR-based strategy. The altered promoter is then cloned into a reporter gene expression vector, as described above, and the effect of the mutation on reporter gene expression is evaluated.

[0099] In general, polypeptides and polynucleotides as described herein are isolated. An "isolated" polypeptide or polynucleotide is one that is removed from its original environment. For example, a naturally occurring protein is isolated if it is separated from some or all of the coexisting materials in the natural system. Preferably, such polypeptides are at least about 90% pure, more preferably at least about 95% pure and most preferably at least about 99% pure. A polynucleotide is considered to be isolated if, for example, it is cloned into a vector that is not a part of the natural environment. A "gene" includes the segment of DNA involved in producing a polypeptide chain; it further includes regions preceding and following the coding region "leader and trailer," for example promoter and/or enhancer

and/or other regulatory sequences and the like, as well as intervening sequences (introns) between individual coding segments (exons).

[0100] As noted above, according to certain embodiments of the invention compositions and methods are provided that relate to altering or altered expression of a PTP as described herein (including DSPs) or of other target polypeptides as disclosed herein, and/or to a PTP associated disorder. A PTP associated disorder includes any disease, disorder, condition, syndrome, pathologic or physiologic state, or the like, wherein at least one undesirable deviation or departure from a physiological norm causes, correlates with, is accompanied by or results from an inappropriate alteration (i.e., a statistically significant change) to the structure, activity, function, expression level, physicochemical or hydrodynamic property, or stability of a PTP or of a molecular component of a biological signal transduction pathway that comprises a PTP, for instance, a MAP kinase such as JNK (e.g., Shen et al., 2001 Proc. Nat. Acad. Sci. USA 98:13613; see also U.S. Pat. No. 6,342,595), TYK2 or Jak2 (e.g., Myers et al., 2001. J. Biol. Chem. 276:47771), or a MAP kinase kinase MKK4 or MKK7 (e.g., Shen et al., Proc. Natl. Acad. Sci. USA 98:13613-18 (2001) and references cited therein), a receptor such as IR (Salmeen et al., 2000), or leptin receptor (e.g., Kalman et al. 2000 and references cited therein) or other such pathways comprising PTPs as known to the art. In preferred embodiments the molecular component may be a protein, peptide or polypeptide, and in certain other preferred embodiments the alteration may be an altered level of PTP expression. In certain other preferred embodiments the alteration may be manifest as an a typical or unusual phosphorylation state of a protein under particular conditions, for example, hypophosphorylation or hyperphosphorylation of a phosphoprotein, wherein those familiar with the art will appreciate that phosphorylated proteins typically comprise one or more phosphotyrosine, phosphoserine, or phosphothreonine residues.

[0101] PTP associated disorders therefore include, for example, diabetes mellitus, obesity, impaired glucose tolerance and other metabolic disorders wherein alteration of a biological signaling pathway component is associated with the disorder The effect of siRNA interference with expression of a component in the signal transduction pathway induced by insulin, for example, may be evaluated by determining the level of tyrosine phosphorylation of insulin receptor beta (IR-β) and/or of the downstream signaling molecule PKB/Akt and/or of any other downstream polypeptide that may be a component of a particular signal transduction pathway as provided herein. The invention is not intended, however, to be so limited and contemplates other disorders, such as JNK-associated disorders (e.g., cancer, cardiac hypertrophy, ischemia, diabetes, hyperglycemia-induced apoptosis, inflammation, neurodegenerative disorders), and other disorders associated with different signal transduction pathways, for instance, cancer, autoimmunity, cellular proliferative disorders, neurodegenerative disorders, and infectious diseases (see, e.g., Fukada et al., 2001 J. Biol. Chem. 276:25512; Tonks et al., 2001 Curr. Opin. Cell Biol. 13:182; Salmeen et al., 2000 Mol. Cell 6:1401; Hu et al., J. Neurochem. 85:432-42 (2003); and references cited therein).

[0102] Cancer is also associated with other dual specificity phosphatases, such as DSP-3, PRL-3 (see, e.g., Saha et al.,

Science 294:1343-46 (2001), PTP ϵ (Elson, Oncogene 18:7535-42 (1999)), and the cell cycle dual specificity phosphatases cdc25 (see, e.g., Donzelli et al., EMBO 21:4875-84 (2002), cdc14 (Wong et al., Genomics 59:248-51 (1999)), and KAP (see, e.g., Lee et al., Mol. Cell Biol. 20:1723-32 (2000); Yeh et al., Cancer Res. 60:4697-700 (2000); see also, e.g., Donato et al., J. Clin. Invest. 109:51-58 (2002)). Another dual specificity phosphatase believed to be involved in the cell cycle, cdc14, is reported to interact with the tumor suppressor protein p53 (Li et al., J. Biol. Chem. 275:2410014 (2000); see also Agami et al., Cell 102:55-66 (2000)). In normal cells, cdc14 is reported to be a part of the mitotic exit network, which involves intricate regulatory pathways that coordinate chromosome segregation and mitotic exit with physical separation of two nascent cells, and in cytokineses (see, e.g., Gruneberg et al., J. Cell Biol. 158:901-14 (2002); Trautman et al., Curr. Biol. 12:R733-R735 (2002); Visintin et al., Mol. Cell 2:709-18 (1998); see also Mailand et al., supra). Persons skilled in the art will be familiar with an array of criteria according to which it may be recognized what are, for instance, biological, physiological, pathological and/or clinical signs and/or symptoms of PTP associated and other disorders as provided herein (see, e.g., Irie-Sasaki et al., Curr. Top. Med. Chem. 3:783-96 (2003) (discussing role of CD45 in signal transduction pathways); Oh et al., Mol. Cell Biol. 19:3205-15 (1999) (describing regulation of early events in integrin signaling by SHP-2); Musante et al., Eur. J. Hum. Genet. 11:201-206 (2003), Tartaglia et al., Nat. Genet. 29:465-68 (2001), and Ion et al., Hum. Genet. 111:421-27 (2002) (discussing correlation between mutations in the PTPN11 gene that encodes SHP-2 and Noonan Syndrome)); Tanuma et al., Blood 98:3030-34 (2001) (reporting that PTPe inhibits IL-6 and IL-10 induced JAK-STAT signaling)).

[0103] Also contemplated by the invention are disorders associated with the NF-kappaB signaling pathway, for example, in cancer cells in which NF-kappaB is overexpressed or constitutively activated (see, e.g., Bayon et al., Mol. Cell Biol. 23:1061-74 (2003); Arsura et al., Oncogene 22:412-25 (2003)). Other disorders associated with the NF-kappaB signaling pathway include those associated with other components of the pathway, for example, inflammation associated with IkappaB kinase gamma (IKKgamma), which is an upstream regulator of NF-kappaB that is required for NF-kappaB activation by various stimuli (see, e.g., Makris et al., Mol. Cell Biol. 22:6573-81 (2002); Li et al., J. Biol. Chem. 277:45129-40 (2002); Sadikot et al., J. Immunol. 170:1091-98 (2003)).

[0104] As noted above, regulated tyrosine phosphorylation contributes to specific pathways for biological signal transduction, including those associated with cell division, cell survival, apoptosis, proliferation and differentiation, and "biological signal transduction pathways," or "inducible signaling pathways" in the context of the present invention include transient or stable associations or interactions among molecular components involved in the control of these and similar processes in cells. Depending on the particular pathway of interest, an appropriate parameter for determining induction of such pathway may be selected. For example, for signaling pathways associated with cell proliferation, a variety of well known methodologies are available for quantifying proliferation, including, for example, incorporation of tritiated thymidine into cellular DNA, monitoring of detectable (e.g., fluorimetric or calorimetric)

indicators of cellular respiratory activity (for example, conversion of the tetrazolium salts (yellow) 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) or 3-(4, 5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4sulphophenyl)-2H-tetrazolium (MTS) to formazan dyes (purple) in metabolically active cells), or cell counting, or the like. Similarly, in the cell biology arts, multiple techniques are known for assessing cell survival (e.g., vital dyes, metabolic indicators, etc.) and for determining apoptosis (for example, annexin V binding, DNA fragmentation assays, caspase activation, marker analysis, e.g., poly(ADP-ribose) polymerase (PARP), etc.). Other signaling pathways will be associated with particular cellular phenotypes, for example specific induction of gene expression (e.g., detectable as transcription or translation products, or by bioassays of such products, or as nuclear localization of cytoplasmic factors), altered (e.g., statistically significant increases or decreases) levels of intracellular mediators (e.g., activated kinases or phosphatases, altered levels of cyclic nucleotides or of physiologically active ionic species, etc.), altered cell cycle profiles, or altered cellular morphology, and the like, such that cellular responsiveness to a particular stimulus as provided herein can be readily identified to determine whether a particular cell comprises an inducible signaling pathway.

[0105] In addition, according to certain embodiments of the invention compositions and methods are provided that relate to altering or altered expression of chemotherapeutic target polypeptides. Sequence specific siRNA polynucleotides may be used as a conjunctive therapy with chemotherapeutic drugs or may provide an alternative therapy in circumstances when a cancer becomes refractory to chemotherapeutic treatment regimens. Resistance to chemotherapeutic drugs may develop when a chemotherapeutic target polypeptide is overexpressed or when its expression becomes constitutive. Overexpression or amplified expression of such a target polypeptide could be reduced by introducing a specific siRNA polynucleotide into the cell. In particular, chemotherapeutic target polypeptides that may become resistant to drug therapies include, for example, components of the thymidylate biosynthesis pathway, thymidylate synthetase and DHFR, which become refractory to anti-neoplastic drugs such as 5-FU and methotrexate, respectively, and contribute to a drug resistance phenotype. Also contemplated by the invention are sequence specific siRNA polynucleotides that interfere with expression of DNA-processing enzymes such as topoisomerase I and that would have anti-cancer or anti-bacterial effects. The effect of siRNA interference on expression of such chemotherapeutic target polypeptides may alter cell division, cell survival, apoptosis, proliferation, and differentiation, which may be assessed by any of the techniques and methods described herein.

[0106] PTPs

[0107] As used herein, a phosphatase is a member of the PTP family if it contains the signature motif CX₅R (SEQ ID NO: ______). Dual specificity PTPs, i.e., PTPs that dephosphorylate both phosphorylated tyrosine and phosphorylated serine or threonine, are also suitable for use in the invention. PTPs for use in the present invention include PTP1B (e.g., GenBank Accession Nos. M31724 (SEQ ID NOS: _______); NM_002827 (SEQ ID NOS: _______); M31724 (SEQ ID NOS: _______); M31724 (SEQ ID NOS: _______); M33689 (SEQ ID NOS: ________)

M33962 (SEQ ID)). In certain preferred embodiments, TC-PTP (e.g., GenBank Accession Nos. M25393 (SEQ ID NOS: _); M81478 (SEQ ID NO:); M80737 (SEQ ID NO:); M81477 (SEQ ID NOS:); X58<u>828</u> (SEQ ID NOS: NM_002828 (SEQ ID NOS: TC45 (e.g., NM_080422 (SEQ ID NOS:)) may be used. In certain other embodiments PTPs and DSPs for use in the present invention include DSP-3 (WO00/60092); SHP2, (e.g., GenBank Accession Nos. D13540 (SEQ ID NOS:); L03535 (SEQ ID _); L07527 (SEQ ID NOS:); L0<u>880</u>7); X70766 (SEQ ID NOS: (SEQ ID NO:); S78088 (SEQ ID NOS: _); S39383 (SEQ ID NO: _); D84372 (SEQ ID _); U09307 (SEQ ID NOS: 15-16)); cdc14 (which includes cdc14a (e.g., GenBank Accession _); AF064102 Nos. AF122013 (SEQ ID NOS:); AF064103 (SEQ ID NOS: (SEQ ID NOS:); Li et al., 1997 J. Biol. Chem. 272:29403; U.S. Pat. No. 6,331,614) and cdc14b (e.g., GenBank Accession Nos. AF064104 (SEQ ID NOS: AF064105 (SEQ ID NOS: ((e.g., GenBank Accession Nos. NM_001789 (SEQ ID _), AF527417 (SEQ ID NOS:]), NM_133571 (SEQ ID NOS: CDC25B (e.g., GenBank Accession Nos. NM_133572 _), NM_023117 (SEQ ID (SEQ ID NOS: _), NM_021872 (SEQ ID NOS: NOS:); NM_021872; M81934) (SEQ ID NOS:); and CDC25C (e.g., GenBank Accession Nos. NM_001790 (SEQ ID NOS: NM_022809 (SEQ ID NOS:)); CD45 (Charbonneau et al., Proc. Natl. Acad. Sci. USA 85:7182-86 (1988); Genbank Accession Nos. NM_080922 (SEQ ID _), NM_080921 (SEQ ID NOS: NOS:), NM_002838 (SEQ ID NOS: NM_080923) (SEQ and ID); GenBank Acc. No. XM_16748; SEQ ID NO:32 encoded by SEQ ID NO:31; KAP (Genbank Accession No. L27711 (SEQ ID NOS: et al., Proc. Natl. Acad. Sci. USA 91:1731-35 (1994)); PTP€ (e.g., Genbank Accession Nos. NM_006504 (SEQ ID NOS:) and NM_130435 (SEQ ID NOS:)); and PRL-3 (e.g., Zhao et al., Genomics 35:172-81 (1996); Genbank Accession Nos. (NM 003479 (SEQ ID _), NM_080392 (SEQ ID NOS: NOS: <u>), NM</u>_080391 (SEQ ID NOS:), NM_032611 (SEQ ID NOS: _ and NM_007079 (SEQ ID NOS: tain preferred embodiments PTPs and DSPs include, but are not limited to, U.S. application Ser. No. 10/151,320 (DSP18); WO 01/05983 (DSP-11); U.S. application Ser. No. 09/775,925 (DSP-12 and DSP-13); U.S. application Ser. No. 09/847,519 and WO 01/46394 (DSP-14); The invention also contemplates using mutated forms of the PTPs and DSPs, which may include PTPs and DSPs that contain single nucleotide polymorphisms (SNPs), or may include allelic forms.

[0108] Specific substitutions of individual amino acids through introduction of site-directed mutations are well-known and may be made according to methodologies with which those having ordinary skill in the art will be familiar.

The effects on catalytic activity of the resulting mutant PTP may be determined empirically by testing the resulting modified protein for the preservation of the Km and reduction of Kcat to less than 1 per minute as provided herein and as previously disclosed (e.g., WO98/04712; Flint et al., 1997 *Proc. Nat. Acad. Sci. USA* 94:1680). In addition, the effect on phosphorylatation of one or more tyrosine residues of the resulting mutant PTP molecule can also be determined empirically merely by testing such a mutant for the presence of phosphotyrosine, as also provided herein, for example, following exposure of the mutant to conditions in vitro or in vivo where it may act as a phosphate acceptor for a protein tyrosine kinase.

[0109] In particular, portions of two PTP polypeptide sequences are regarded as "corresponding" amino acid sequences, regions, fragments or the like, based on a convention of numbering one PTP sequence according to amino acid position number, and then aligning the sequence to be compared in a manner that maximizes the number of amino acids that match or that are conserved residues, for example, that remain polar (e.g., D, E, K, R, H, S, T, N, Q), hydrophobic (e.g., A, P, V, L, I, M, F, W, Y) or neutral (e.g., C, G) residues at each position. Similarly, a DNA sequence encoding a candidate PTP that is to be mutated as provided herein, or a portion, region, fragment or the like, may correspond to a known wildtype PTP-encoding DNA sequence according to a convention for numbering nucleic acid sequence positions in the known wildtype PTP DNA sequence, whereby the candidate PTP DNA sequence is aligned with the known PTP DNA such that at least 70%, preferably at least 80% and more preferably at least 90% of the nucleotides in a given sequence of at least 20 consecutive nucleotides of a sequence are identical. In certain preferred embodiments, a candidate PTP DNA sequence is greater than 95% identical to a corresponding known PTP DNA sequence. In certain particularly preferred embodiments, a portion, region or fragment of a candidate PTP DNA sequence is identical to a corresponding known PTP DNA sequence. As is well known in the art, an individual whose DNA contains no irregularities (e.g., a common or prevalent form) in a particular gene responsible for a given trait may be said to possess a wildtype genetic complement (genotype) for that gene, while the presence of irregularities known as mutations in the DNA for the gene, for example, substitutions, insertions or deletions of one or more nucleotides, indicates a mutated or mutant genotype. The invention need not be so limited, however, and contemplates other embodiments wherein two or more non-PTP polypeptides of interest (e.g., as siRNA targets), such as MAP kinase kinases or chemotherapeutic target polypeptides, are structurally related and have portions of polypeptide sequences that may be regarded as "corresponding" amino acid sequences, regions, fragments or the like, according to the alignment and identity criteria discussed above.

[0110] Modification of DNA may be performed by a variety of methods, including site-specific or site-directed mutagenesis of DNA encoding the polypeptide of interest (e.g., a siRNA target polypeptide) and the use of DNA amplification methods using primers to introduce and amplify alterations in the DNA template, such as PCR splicing by overlap extension (SOE). Site-directed mutagenesis is typically effected using a phage vector that has single-and double-stranded forms, such as M13 phage vectors, which are well-known and commercially available. Other

suitable vectors that contain a single-stranded phage origin of replication may be used (see, e.g., Veira et al., Meth. Enzymol. 15:3, 1987). In general, site-directed mutagenesis is performed by preparing a single-stranded vector that encodes the protein of interest (e.g., a member of the PTP family, a MAP kinase kinase, or a chemotherapeutic target polypeptide). An oligonucleotide primer that contains the desired mutation within a region of homology to the DNA in the single-stranded vector is annealed to the vector followed by addition of a DNA polymerase, such as E. coli DNA polymerase I (Klenow fragment), which uses the double stranded region as a primer to produce a heteroduplex in which one strand encodes the altered sequence and the other the original sequence. Additional disclosure relating to sitedirected mutagenesis may be found, for example, in Kunkel et al. (Methods in Enzymol. 154:367, 1987) and in U.S. Pat. Nos. 4,518,584 and 4,737,462. The heteroduplex is introduced into appropriate bacterial cells, and clones that include the desired mutation are selected. The resulting altered DNA molecules may be expressed recombinantly in appropriate host cells to produce the modified protein.

[0111] SiRNAs of the invention may be fused to other nucleotide molecules, or to polypeptides, in order to direct their delivery or to accomplish other functions. Thus, for example, fusion proteins comprising a siRNA oligonucleotide that is capable of specifically interfering with expression of a target polypeptide may comprise affinity tag polypeptide sequences, which refers to polypeptides or peptides that facilitate detection and isolation of the such polypeptide via a specific affinity interaction with a ligand. The ligand may be any molecule, receptor, counterreceptor, antibody or the like with which the affinity tag may interact through a specific binding interaction as provided herein. Such peptides include, for example, poly-His or "FLAG®" or the like, e.g., the antigenic identification peptides described in U.S. Pat. No. 5,011,912 and in Hopp et al., (1988 Bio/Technology 6:1204), or the XPRESS™ epitope tag (Invitrogen, Carlsbad, Calif.). The affinity sequence may be a hexa-histidine tag as supplied, for example, by a pBAD/His (Invitrogen) or a pQE-9 vector to provide for purification of the mature polypeptide fused to the marker in the case of a bacterial host, or, for example, the affinity sequence may be a hemagglutinin (HA) tag when a mammalian host, e.g., COS-7 cells, is used. The HA tag corresponds to an antibody defined epitope derived from the influenza hemagglutinin protein (Wilson et al., 1984 Cell 37:767).

[0112] The present invention also relates to vectors and to constructs that include or encode siRNA polynucleotides of the present invention, and in particular to "recombinant nucleic acid constructs" that include any nucleic acids that may be transcribed to yield target polynucleotide-specific siRNA polynucleotides (i.e., siRNA specific for a polynucleotide that encodes a target polypeptide, such as a mRNA) according to the invention as provided above; to host cells which are genetically engineered with vectors and/or constructs of the invention and to the production of siRNA polynucleotides, polypeptides, and/or fusion proteins of the invention, or fragments or variants thereof, by recombinant techniques. SiRNA sequences disclosed herein as RNA polynucleotides may be engineered to produce corresponding DNA sequences using well established methodologies such as those described herein. Thus, for example, a DNA polynucleotide may be generated from any siRNA sequence described herein (including in the Sequence Listing), such that the present siRNA sequences will be recognized as also providing corresponding DNA polynucleotides (and their complements). These DNA polynucleotides are therefore encompassed within the contemplated invention, for example, to be incorporated into the subject invention recombinant nucleic acid constructs from which siRNA may be transcribed.

[0113] According to the present invention, a vector may comprise a recombinant nucleic acid construct containing one or more promoters for transcription of an RNA molecule, for example, the human U6 snRNA promoter (see, e.g., Miyagishi et al, Nat. Biotechnol. 20:497-500 (2002); Lee et al., Nat. Biotechnol. 20:500-505 (2002); Paul et al., Nat. Biotechnol. 20:505-508 (2002); Grabarek et al., Bio-Techniques 34:73544 (2003); see also Sui et al., Proc. Natl. Acad. Sci. USA 99:5515-20 (2002)). Each strand of a siRNA polynucleotide may be transcribed separately each under the direction of a separate promoter and then may hybridize within the cell to form the siRNA polynucleotide duplex. Each strand may also be transcribed from separate vectors (see Lee et al., supra). Alternatively, the sense and antisense sequences specific for a PTP1B sequence may be transcribed under the control of a single promoter such that the siRNA polynucleotide forms a hairpin molecule (Paul et al., supra). In such an instance, the complementary strands of the siRNA specific sequences are separated by a spacer that comprises at least four nucleotides, but may comprise at least 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 94 18 nucleotides or more nucleotides as described herein. In addition, siRNAs transcribed under the control of a U6 promoter that form a hairpin may have a stretch of about four uridines at the 3' end that act as the transcription termination signal (Miyagishi et al., supra; Paul et al., supra). By way of illustration, if the target sequence is 19 nucleotides, the siRNA hairpin polynucleotide (beginning at the 5' end) has a 19-nucleotide sense sequence followed by a spacer (which as two uridine nucleotides adjacent to the 3' end of the 19-nucleotide sense sequence), and the spacer is linked to a 19 nucleotide antisense sequence followed by a 4-uridine terminator sequence, which results in an overhang. SiRNA polynucleotides with such overhangs effectively interfere with expression of the target polypeptide (see id.). A recombinant construct may also be prepared using another RNA polymerase III promoter, the H1 RNA promoter, that may be operatively linked to siRNA polynucleotide specific sequences, which may be used for transcription of hairpin structures comprising the siRNA specific sequences or separate transcription of each strand of a siRNA duplex polynucleotide (see, e.g., Brummelkamp et al., Science 296:550-53 (2002); Paddison et al., supra). DNA vectors useful for insertion of sequences for transcription of an siRNA polynucleotide include pSUPER vector (see, e.g., Brummelkamp et al., supra); pAV vectors derived from pCWRSVN (see, e.g., Paul et al., supra); and pIND (see, e.g., Lee et al., supra), or the like.

[0114] PTP polypeptides and other target polypeptides of interest can be expressed in mammalian cells, yeast, bacteria, or other cells under the control of appropriate promoters, providing ready systems for evaluation of siRNA polynucleotides that are capable of interfering with polypeptide expression as provided herein. Appropriate cloning and expression vectors for use with prokaryotic and eukaryotic hosts are described, for example, by Sambrook, et al.,

Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor, N.Y., (2001).

[0115] Generally, recombinant expression vectors for use in the preparation of recombinant nucleic acid constructs or vectors of the invention will include origins of replication and selectable markers permitting transformation of the host cell, e.g., the ampicillin resistance gene of E. coli and S. cerevisiae TRP1 gene, and a promoter derived from a highly-expressed gene to direct transcription of a downstream structural sequence (e.g., a siRNA polynucleotide sequence). Such promoters can be derived from operons encoding glycolytic enzymes such as 3-phosphoglycerate kinase (PGK), α-factor, acid phosphatase, or heat shock proteins, among others. For PTP polypeptide expression (including PTP fusion proteins and substrate trapping mutant PTPs), and for other expression of other polypeptides of interest, the heterologous structural sequence is assembled in appropriate phase with translation initiation and termination sequences. Optionally, the heterologous sequence can encode a fusion protein including an N-terminal identification peptide imparting desired characteristics, e.g., stabilization or simplified purification of expressed recombinant product.

[0116] Useful expression constructs for bacterial use are constructed by inserting into an expression vector a structural DNA sequence encoding a desired siRNA polynucleotide, together with suitable transcription initiation and termination signals in operable linkage, for example, with a functional promoter. The construct may comprise one or more phenotypic selectable markers and an origin of replication to ensure maintenance of the vector construct and, if desirable, to provide amplification within the host. Suitable prokaryotic hosts for transformation include *E. coli, Bacillus subtilis, Salmonella typhimurium* and various species within the genera Pseudomonas, Streptomyces, and Staphylococcus, although others may also be employed as a matter of choice. Any other plasmid or vector may be used as long as they are replicable and viable in the host.

[0117] As a representative but nonlimiting example, useful expression vectors for bacterial use can comprise a selectable marker and bacterial origin of replication derived from commercially available plasmids comprising genetic elements of the well known cloning vector pBR322 (ATCC 37017). Such commercial vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and GEM1 (Promega Biotec, Madison, Wis., USA). These pBR322 "backbone" sections are combined with an appropriate promoter and the structural sequence to be expressed.

[0118] Following transformation of a suitable host strain and growth of the host strain to an appropriate cell density, the selected promoter, if it is a regulated promoter as provided herein, is induced by appropriate means (e.g., temperature shift or chemical induction) and cells are cultured for an additional period. Cells are typically harvested by centrifugation, disrupted by physical or chemical means, and the resulting crude extract retained for further purification. Microbial cells employed in expression of proteins can be disrupted by any convenient method, including freezethaw cycling, sonication, mechanical disruption, or use of cell lysing agents; such methods are well know to those skilled in the art.

[0119] Thus, for example, the nucleic acids of the invention as described herein (e.g., DNA sequences from which

siRNA may be transcribed) herein may be included in any one of a variety of expression vector constructs as a recombinant nucleic acid construct for expressing a target polynucleotide-specific siRNA polynucleotide. Such vectors and constructs include chromosomal, nonchromosomal and synthetic DNA sequences, e.g., derivatives of SV40; bacterial plasmids; phage DNA; baculovirus; yeast plasmids; vectors derived from combinations of plasmids and phage DNA, viral DNA, such as vaccinia, adenovirus, fowl pox virus, and pseudorabies. However, any other vector may be used for preparation of a recombinant nucleic acid construct as long as it is replicable and viable in the host.

[0120] The appropriate DNA sequence(s) may be inserted into the vector by a variety of procedures. In general, the DNA sequence is inserted into an appropriate restriction endonuclease site(s) by procedures known in the art. Standard techniques for cloning, DNA isolation, amplification and purification, for enzymatic reactions involving DNA ligase, DNA polymerase, restriction endonucleases and the like, and various separation techniques are those known and commonly employed by those skilled in the art. A number of standard techniques are described, for example, in Ausubel et al. (1993 Current Protocols in Molecular Biology, Greene Publ. Assoc. Inc. & John Wiley & Sons, Inc., Boston, Mass.); Sambrook et al. (2001 Molecular Cloning, Third Ed., Cold Spring Harbor Laboratory, Plainview, N.Y.); Maniatis et al. (1982 Molecular Cloning, Cold Spring Harbor Laboratory, Plainview, N.Y.); and elsewhere.

[0121] The DNA sequence in the expression vector is operatively linked to at least one appropriate expression control sequences (e.g., a promoter or a regulated promoter) to direct mRNA synthesis. Representative examples of such expression control sequences include LTR or SV40 promoter, the E. coli lac or trp, the phage lambda PL promoter and other promoters known to control expression of genes in prokaryotic or eukaryotic cells or their viruses. Promoter regions can be selected from any desired gene using CAT (chloramphenicol transferase) vectors or other vectors with selectable markers. Two appropriate vectors are pKK232-8 and pCM7. Particular named bacterial promoters include lac, lacZ, T3, T7, gpt, lambda P_R, P_L and trp. Eukaryotic promoters include CMV immediate early, HSV thymidine kinase, early and late SV40, LTRs from retrovirus, and mouse metallothionein-I. Selection of the appropriate vector and promoter is well within the level of ordinary skill in the art, and preparation of certain particularly preferred recombinant expression constructs comprising at least one promoter or regulated promoter operably linked to a nucleic acid encoding a polypeptide (e.g., PTP, MAP kinase kinase, or chemotherapeutic target polypeptide) is described herein.

[0122] As noted above, in certain embodiments the vector may be a viral vector such as a retroviral vector. For example, retroviruses from which the retroviral plasmid vectors may be derived include, but are not limited to, Moloney Murine Leukemia Virus, spleen necrosis virus, retroviruses such as Rous Sarcoma Virus, Harvey Sarcoma virus, avian leukosis virus, gibbon ape leukemia virus, human immunodeficiency virus, adenovirus, Myeloproliferative Sarcoma Virus, and mammary tumor virus.

[0123] The viral vector includes one or more promoters. Suitable promoters which may be employed include, but are not limited to, the retroviral LTR; the SV40 promoter; and

the human cytomegalovirus (CMV) promoter described in Miller, et al., *Biotechniques* 7:980-990 (1989), or any other promoter (e.g., cellular promoters such as eukaryotic cellular promoters including, but not limited to, the histone, pol III, and β -actin promoters). Other viral promoters which may be employed include, but are not limited to, adenovirus promoters, thymidine kinase (TK) promoters, and B19 parvovirus promoters. The selection of a suitable promoter will be apparent to those skilled in the art from the teachings contained herein, and may be from among either regulated promoters or promoters as described above.

[0124] The retroviral plasmid vector is employed to transduce packaging cell lines to form producer cell lines. Examples of packaging cells which may be transfected include, but are not limited to, the PE501, PA317, \$\psi\$-2, \$\psi\$-AM, PA12, T19-14X, VT-19-17-H2, \$\psi\$CRE, \$\psi\$CRIP, GP+E-86, GP+envAm12, and DAN cell lines as described in Miller, Human Gene Therapy, 1:5-14 (1990), which is incorporated herein by reference in its entirety. The vector may transduce the packaging cells through any means known in the art. Such means include, but are not limited to, electroporation, the use of liposomes, and calcium phosphate precipitation. In one alternative, the retroviral plasmid vector may be encapsulated into a liposome, or coupled to a lipid, and then administered to a host.

[0125] The producer cell line generates infectious retroviral vector particles that include the nucleic acid sequence(s) encoding the PTP polypeptides or other polypeptide of interest and fusion proteins thereof. Such retroviral vector particles then may be employed, to transduce eukaryotic cells, either in vitro or in vivo. The transduced eukaryotic cells will express the nucleic acid sequence(s) encoding the siRNA polynucleotide that is capable of specifically interfering with expression of a polypeptide or fusion protein. Eukaryotic cells which may be transduced include, but are not limited to, embryonic stem cells, embryonic carcinoma cells, as well as hematopoietic stem cells, hepatocytes, fibroblasts, myoblasts, keratinocytes, endothelial cells, bronchial epithelial cells and various other culture-adapted cell lines.

[0126] In another aspect, the present invention relates to host cells containing the above described recombinant PTP expression constructs and to host cells containing the above described recombinant expression constructs comprising a (non-PTP) polypeptide of interest as described herein. Host cells are genetically engineered (transduced, transformed or transfected) with the vectors and/or expression constructs of this invention that may be, for example, a cloning vector, a shuttle vector, or an expression construct. The vector or construct may be, for example, in the form of a plasmid, a viral particle, a phage, etc. The engineered host cells can be cultured in conventional nutrient media modified as appropriate for activating promoters, selecting transformants or amplifying particular genes such as genes encoding siRNA polynucleotides or fusion proteins thereof. The culture conditions for particular host cells selected for expression, such as temperature, pH and the like, will be readily apparent to the ordinarily skilled artisan.

[0127] The host cell can be a higher eukaryotic cell, such as a mammalian cell, or a lower eukaryotic cell, such as a yeast cell, or the host cell can be a prokaryotic cell, such as a bacterial cell. Representative examples of appropriate host

cells according to the present invention include, but need not be limited to, bacterial cells, such as *E. coli*, Streptomyces, *Salmonella typhimurium*; fungal cells, such as yeast; insect cells, such as Drosophila S2 and Spodoptera S19; animal cells, such as CHO, COS or 293 cells; adenoviruses; plant cells, or any suitable cell already adapted to in vitro propagation or so established de novo. The selection of an appropriate host is deemed to be within the scope of those skilled in the art from the teachings herein.

Various mammalian cell culture systems can also be employed to produce siRNA polynucleotides from recombinant nucleic acid constructs of the present invention. The invention is therefore directed in part to a method of producing a siRNA polynucleotide, by culturing a host cell comprising a recombinant nucleic acid construct that comprises at least one promoter operably linked to a nucleic acid sequence encoding a siRNA polynucleotide specific for a desired target polypeptide. In certain embodiments, the promoter may be a regulated promoter as provided herein, for example a tetracylcine-repressible promoter. In certain embodiments the recombinant expression construct is a recombinant viral expression construct as provided herein. Examples of mammalian expression systems include the COS-7 lines of monkey kidney fibroblasts, described by Gluzman, Cell 23:175 (1981), and other cell lines capable of expressing a compatible vector, for example, the C127, 3T3, CHO, HeLa, HEK, and BHK cell lines. Mammalian expression vectors will comprise an origin of replication, a suitable promoter and enhancer, and also any necessary ribosome binding sites, polyadenylation site, splice donor and acceptor sites, transcriptional termination sequences, and 5' flanking nontranscribed sequences, for example as described herein regarding the preparation of recombinant siRNA polynucleotide constructs. DNA sequences derived from the SV40 splice, and polyadenylation sites may be used to provide the required nontranscribed genetic elements. Introduction of the construct into the host cell can be effected by a variety of methods with which those skilled in the art will be familiar, including but not limited to, for example, liposomes including cationic liposomes, calcium phosphate transfection, DEAF-Dextran mediated transfection, or electroporation (Davis et al., 1986 Basic Methods in Molecular Biology), or other suitable technique.

[0129] The expressed recombinant siRNA polynucleotides may be useful in intact host cells; in intact organelles such as cell membranes, intracellular vesicles or other cellular organelles; or in disrupted cell preparations including but not limited to cell homogenates or lysates, microsomes, uni- and multilamellar membrane vesicles or other preparations. Alternatively, expressed recombinant siRNA polynucleotides can be recovered and purified from recombinant cell cultures by methods including ammonium sulfate or ethanol precipitation, acid extraction, anion or cation exchange chromatography, phosphocellulose chromatography, hydrophobic interaction chromatography, affinity chromatography, hydroxylapatite chromatography and lectin chromatography. Finally, high performance liquid chromatography (HPLC) can be employed for final purification steps.

[0130] Samples

[0131] According to the present invention, a method is provided for interfering with expression of a desired target

polypeptide as provided herein, comprising contacting a siRNA polynucleotide with a cell that is capable of expressing the target polypeptide, typically in a biological sample or in a subject or biological source. A "sample" as used herein refers to a biological sample containing at least one protein tyrosine phosphatase or a MAP kinase kinase or a chemotherapeutic target polypeptide, and may be provided by obtaining a blood sample, biopsy specimen, tissue explant, organ culture or any other tissue or cell preparation from a subject or a biological source. A sample may further refer to a tissue or cell preparation in which the morphological integrity or physical state has been disrupted, for example, by dissection, dissociation, solubilization, fractionation, homogenization, biochemical or chemical extraction, pulverization, lyophilization, sonication or any other means for processing a sample derived from a subject or biological source. In certain preferred embodiments, the sample is a cell that comprises at least one PTP and/or at least one MAP kinase, and/or at least one MAP kinase kinase, and in certain particularly preferred embodiments the cell comprises an inducible biological signaling pathway, at least one component of which is a specific target polypeptidee. In particularly preferred embodiments the cell is a mammalian cell, for example, Rat-1 fibroblasts, COS cells, CHO cells, HEK-293 cells, HepG2, HII4E-C3, L6, and 3T3-L1, or other well known model cell lines, which are available from the American Type Culture Collection (ATCC, Manassas, Va.). In other preferred embodiments, the cell line is derived from PTP-1B knockout animals and which may be transfected with human insulin receptor (HIR), for example, 1BKO mouse embryo fibroblasts.

[0132] In certain other preferred embodiments the sample is a cell that comprises a chemotherapeutic target polypeptide, which includes, for example, a cell line that is derived from a tumor cell. The cell line may be a primary tumor cell line, that is, a cell line prepared directly from a tumor sample removed from a human or a non-human animal. Alternatively, the cell line may be one of several established tumor cell lines known in the art, including but not limited to MCF7, T47D, SW620, HS578T, MDA-MB-435, MDA MB 231, HCT-116, HT-29, HeLa, Raji, Ramos, and the like (see ATCC collection).

[0133] The subject or biological source may be a human or non-human animal, a primary cell culture or culture adapted cell line including but not limited to genetically engineered cell lines that may contain chromosomally integrated or episomal recombinant nucleic acid sequences, immortalized or immortalizable cell lines, somatic cell hybrid cell lines, differentiated or differentiatable cell lines, transformed cell lines and the like. Optionally, in certain situations it may be desirable to treat cells in a biological sample with hydrogen peroxide and/or with another agent that directly or indirectly promotes reactive oxygen species (ROS) generation, including biological stimuli as described herein; in certain other situations it may be desirable to treat cells in a biological sample with a ROS scavenger, such as N-acetyl cysteine (NAC) or superoxide dismutase (SOD) or other ROS scavengers known in the art; in other situations cellular glutathione (GSH) may be depleted by treating cells with L-buthionine-SR-sulfoximine (Bso); and in other circumstances cells may be treated with pervanadate to enrich the sample in tyrosine phosphorylated proteins. Other means may also be employed to effect an increase in the population of tyrosine phosphorylated proteins present in the sample,

including the use of a subject or biological source that is a cell line that has been transfected with at least one gene encoding a protein tyrosine kinase.

[0134] Additionally or alternatively, a biological signaling pathway may be induced in subject or biological source cells by contacting such cells with an appropriate stimulus, which may vary depending upon the signaling pathway under investigation, whether known or unknown. For example, a signaling pathway that, when induced, results in protein tyrosine phosphorylation and/or protein tyrosine dephosphorylation may be stimulated in subject or biological source cells using any one or more of a variety of well known methods and compositions known in the art to stimulate protein tyrosine kinase (PTK) and/or PTP activity. These stimuli may include, without limitation, exposure of cells to cytokines, growth factors, hormones, peptides, small molecule mediators, cell stressors (e.g., ultraviolet light; temperature shifts; osmotic shock; ROS or a source thereof, such as hydrogen peroxide, superoxide, ozone, etc. or any agent that induces or promotes ROS production (see, e.g., Halliwell and Gutteridge, Free Radicals in Biology and Medicine (3rd Ed.) 1999 Oxford University Press, Oxford, UK); heavy metals; alcohol) or other agents that induce PTK-mediated protein tyrosine phosphorylation and/or PTP-mediated phosphoprotein tyrosine dephosphorylation. Such agents may include, for example, interleukins (e.g., IL-1, IL-3), interferons (e.g., IFN-γ), human growth hormone, insulin, epidermal growth factor (EGF), platelet derived growth factor (PDGF), granulocyte colony stimulating factor (G-CSF), granulocyte-megakaryocyte colony stimulating factor (GM-CSF), transforming growth factor (e.g., TGF- β 1), tumor necrosis factor (e.g., TNF- α) and fibroblast growth factor (FGF; e.g., basic FGF (bFGF)), any agent or combination of agents capable of triggering T lymphocyte activation via the T cell receptor for antigen (TCR; TCR-inducing agents may include superantigens, specifically recognized antigens and/or MHC-derived peptides, MHC peptide tetramers (e.g., Altman et al., 1996 Science 274:94-96); TCR-specific antibodies or fragments or derivatives thereof), lectins (e.g., PHA, PWM, ConA, etc.), mitogens, G-protein coupled receptor agonists such as angiotensin-2, thrombin, thyrotropin, parathyroid hormone, lysophosphatidic acid (LPA), sphingosine-1-phosphate, serotonin, endothelin, acetylcholine, platelet activating factor (PAF) or bradykinin, as well as other agents with which those having ordinary skill in the art will be familiar (see, e.g., Rhee et al., [online] Oct. 10, 2000 Science's stke, Internet: URL<www.stke.org/cgl/content/full/OCsigtrans;2000/53/pel>), and references cited therein).

[0135] As noted above, regulated tyrosine phosphorylation contributes to specific pathways for biological signal transduction, including those associated with cell division, cell survival, apoptosis, proliferation and differentiation, and "inducible signaling pathways" in the context of the present invention include transient or stable associations or interactions among molecular components involved in the control of these and similar processes in cells. Depending on the particular pathway of interest, an appropriate parameter for determining induction of such pathway may be selected. For example, for signaling pathways associated with cell proliferation, a variety of well known methodologies are available for quantifying proliferation, including, for example, incorporation of tritiated thymidine into cellular DNA, monitoring of detectable (e.g., fluorimetric or colorimetric)

indicators of cellular respiratory activity, (e.g., MTT assay) or cell counting, or the like. Similarly, in the cell biology arts there are known multiple techniques for assessing cell survival (e.g., vital dyes, metabolic indicators, etc.) and for determining apoptosis (e.g., annexin V binding, DNA fragmentation assays, caspase activation, PARP cleavage, etc.). Other signaling pathways will be associated with particular cellular phenotypes, for example specific induction of gene expression (e.g., detectable as transcription or translation products, or by bioassays of such products, or as nuclear localization of cytoplasmic factors), altered (e.g., statistically significant increases or decreases) levels of intracellular mediators (e.g., activated kinases or phosphatases, altered levels of cyclic nucleotides or of physiologically active ionic species, etc.), altered cell cycle profiles, or altered cellular morphology, and the like, such that cellular responsiveness to a particular stimulus as provided herein can be readily identified to determine whether a particular cell comprises an inducible signaling pathway.

[0136] In preferred embodiments where a siRNA of the invention is being used to interfere with expression of a target polypeptide that is a PTP or that is a component of a biological signaling pathway that comprises a PTP, a PTP substrate may be any naturally or non-naturally occurring phosphorylated peptide, polypeptide or protein that can specifically bind to and/or be dephosphorylated by a PTP (including dual specificity phosphatases) as provided herein, or any other phosphorylated molecule that can be a substrate of a PTP family member as provided herein. Non-limiting examples of known PTP substrates include the proteins VCP (see, e.g., Zhang et al., 1999 J. Biol. Chem. 274:17806, and references cited therein), p130cas, EGF receptor, p210 ber:abl, MAP kinase, She (Tiganis et al., 1998 Mol Cell. Biol. 18:1622-1634), insulin receptor, lck (lymphocyte specific protein tyrosine kinase, Marth et al., 1985 Cell 43:393), T cell receptor zeta chain, and phosphatidylinositol 3,4,5triphosphate (Maehama et al., 1998 J. Biol. Chem. 273:13375).

[0137] Identification and selection of PTP substrates as provided herein, for use in the present invention, may be performed according to procedures with which those having ordinary skill in the art will be familiar, or may, for example, be conducted according to the disclosures of WO 00/75339, U.S. application Ser. No. 09/334,575, or U.S. application Ser. No. 10/366,547, and references cited therein. The phosphorylated protein/PTP complex may be isolated, for example, by conventional isolation techniques as described in U.S. Pat. No. 5,352,660, including salting out, chromatography, electrophoresis, gel filtration, fractionation, absorption, polyacrylamide gel electrophoresis, agglutination, combinations thereof or other strategies. PTP substrates that are known may also be prepared according to well known procedures that employ principles of molecular biology and/or peptide synthesis (e.g., Ausubel et al., Current Protocols in Molecular Biology, Greene Publ. Assoc. Inc. & John Wiley & Sons, Inc., Boston, Mass. (1993); Sambrook et al., Molecular Cloning, Third Ed., Cold Spring Harbor Laboratory, Plainview, N.Y. (2001); Fox, Molec. Biotechnol. 3:249 (1995); Maeji et al., Pept. Res. 8:33 (1995)).

[0138] The PTP substrate peptides of the present invention may therefore be derived from PTP substrate proteins, polypeptides and peptides as provided herein having amino acid sequences that are identical or similar to tyrosine

phosphorylated PTP substrate sequences known in the art. For example by way of illustration and not limitation, peptide sequences derived from the known PTP substrate proteins referred to above are contemplated for use according to the instant invention, as are peptides having at least 70% similarity (preferably 70% identity), more preferably 80% similarity (more preferably 80% identity), more preferably 90% similarity (more preferably 90% identity) and still more preferably 95% similarity (still more preferably 95% identity) to the polypeptides described in references cited herein and in the Examples and to portions of such polypeptides as disclosed herein. As known in the art "similarity" between two polypeptides is determined by comparing the amino acid sequence and conserved amino acid substitutes thereto of the polypeptide to the sequence of a second polypeptide (e.g., using GENEWORKS, Align or the BLAST algorithm, or another algorithm, as described above).

[0139] In certain preferred embodiments of the present invention, the siRNA polynucleotide and/or the PTP substrate is detectably labeled, and in particularly preferred embodiments the siRNA polynucleotide and/or PTP substrate is capable of generating a radioactive or a fluorescent signal. The siRNA polynucleotide and/or PTP substrate can be detectably labeled by covalently or non-covalently attaching a suitable reporter molecule or moiety, for example a radionuclide such as ³²P (e.g., Pestka et al., 1999 Protein Expr. Purif. 17:203-14), a radiohalogen such as iodine [125] or ¹³¹I] (e.g., Wilbur, 1992 *Bioconjug. Chem.* 3:433-70), or tritium [3H]; an enzyme; or any of various luminescent (e.g., chemiluminescent) or fluorescent materials (e.g., a fluorophore) selected according to the particular fluorescence detection technique to be employed, as known in the art and based upon the present disclosure. Fluorescent reporter moieties and methods for labeling siRNA polynucleotides and/or PTP substrates as provided herein can be found, for example in Haugland (1996 Handbook of Fluorescent Probes and Research Chemicals—Sixth Ed., Molecular Probes, Eugene, Oreg.; 1999 Handbook of Fluorescent Probes and Research Chemicals-Seventh Ed., Molecular Probes, Eugene, Oreg., Internet: http://www.probes.com/ lit/) and in references cited therein. Particularly preferred for use as such a fluorophore in the subject invention methods are fluorescein, rhodamine, Texas Red, AlexaFluor-594, AlexaFluor-488, Oregon Green, BODIPY-FL, umbelliferone, dichlorotriazinylamine fluorescein, dansyl chloride, phycoerythrin or Cy-5. Examples of suitable enzymes include, but are not limited to, horseradish peroxidase, biotin, alkaline phosphatase, β-galactosidase and acetylcholinesterase. Appropriate luminescent materials include luminol, and suitable radioactive materials include radioactive phosphorus [32P]. In certain other preferred embodiments of the present invention, a detectably labeled siRNA polynucleotide comprises a magnetic particle, for example a paramagnetic or a diamagnetic particle or other magnetic particle or the like (preferably a microparticle) known to the art and suitable for the intended use. Without wishing to be limited by theory, according to certain such embodiments there is provided a method for selecting a cell that has bound, adsorbed, absorbed, internalized or otherwise become associated with a siRNA polynucleotide that comprises a magnetic particle. For example, selective isolation of a population or subpopulation of cells containing one or more PTP-specific siRNA polynucleotide-magnetic particle conjugates may offer certain advantages in the further characterization or regulation of PTP signaling pathways.

[0140] In certain embodiments of the present invention, particular PTP-specific siRNA polynucleotides of interest may be identified by contacting a candidate siRNA polynucleotide with a sample comprising a cell that comprises a target polypeptide-encoding gene and that is capable of target polypeptide gene transcription or expression (e.g., translation), under conditions and for a time sufficient to detect such gene transcription or expression, and comparing target transcription levels, polypeptide expression and/or functional expression (e.g., PTP catalytic activity) in the absence and presence of the candidate siRNA polynucleotide. Preferably target transcription or expression is decreased in the presence of the siRNA polynucleotide, which in the case of targets that are PTPs provides an alternative to PTP active site directed approaches to modulating PTP activity. (The invention need not be so limited, however, and contemplates other embodiments wherein transcription and/or expression levels of a signal transduction component other than that which is specifically targeted by the siRNA may be increased in the presence of a certain target-specific siRNA polynucleotide. By way of non-limiting theory, such an increase may result from a cellular compensatory mechanism that is induced as a result of the siRNA.)

[0141] Activity of a siRNA target polypeptide of interest may also be measured in whole cells transfected with a reporter gene whose expression is dependent upon the activation of an appropriate substrate. For example, appropriate cells (i.e., cells that express the target polypeptide and that have also been transfected with a target-specific siRNA polynucleotide that is either known or suspected of being capable of interfering with target polypeptide expression) may be transfected with a substrate-dependent promoter linked to a reporter gene. In such a system, expression of the reporter gene (which may be readily detected using methods well known to those of ordinary skill in the art) depends upon activation of the substrate via its interaction with the target polypeptide. For example, dephosphorylation of substrate may be detected based on a decrease in reporter activity in situations where the target polypeptide regulates substrate phosphorylation.

[0142] Within other aspects, the present invention provides animal models in which an animal, by virtue of introduction of an appropriate target polypeptide-specific siRNA polynucleotide, for example, as a transgene, does not express (or expresses a significantly reduced amount of) a functional PTP. Such animals may be generated, for example, using standard homologous recombination strategies, or alternatively, for instance, by oocyte microinjection with a plasmid comprising the siRNA-encoding sequence that is regulated by a suitable promoter (e.g., ubiquitous or tissue-specific) followed by implantation in a surrogate mother. Animal models generated in this manner may be used to study activities of PTP signaling pathway components and modulating agents in vivo.

[0143] Therapeutic Methods

[0144] One or more siRNA polynucleotides capable of interfering with target polypeptide expression and identified according to the above-described methods may also be used to modulate (e.g., inhibit or potentiate) target polypeptide

activity in a patient. As used herein, a "patient" may be any mammal, including a human, and may be afflicted with a condition associated with undesired target polypeptide activity or may be free of detectable disease. Accordingly, the treatment may be of an existing disease or may be prophylactic. Conditions associated with signal transduction and/or with inappropriate activity of specific siRNA target polypeptides described herein include obesity, impaired glucose tolerance and diabetes and cancer, disorders associated with cell proliferation, including cancer, graft-versushost disease (GVHD), autoimmune diseases, allergy or other conditions in which immunosuppression may be involved, metabolic diseases, abnormal cell growth or proliferation and cell cycle abnormalities.

[0145] For administration to a patient, one or more specific siRNA polynucleotides, either alone, with or without chemical modification or removal of ribose, or comprised in an appropriate vector as described herein (e.g., including a vector which comprises a DNA sequence from which a specific siRNA can be transcribed) are generally formulated as a pharmaceutical composition. A pharmaceutical composition may be a sterile aqueous or non-aqueous solution, suspension or emulsion, which additionally comprises a physiologically acceptable carrier (i.e., a non-toxic material that does not interfere with the activity of the active ingredient). Such compositions may be in the form of a solid, liquid or gas (aerosol). Alternatively, compositions of the present invention may be formulated as a lyophilizate or compounds may be encapsulated within liposomes using well known technology. Pharmaceutical compositions within the scope of the present invention may also contain other components, which may be biologically active or inactive. Such components include, but are not limited to, buffers (e.g., neutral buffered saline or phosphate buffered saline), carbohydrates (e.g., glucose, mannose, sucrose or dextrans), mannitol, proteins, polypeptides or amino acids such as glycine, antioxidants, chelating agents such as EDTA or glutathione, stabilizers, dyes, flavoring agents, and suspending agents and/or preservatives.

[0146] Any suitable carrier known to those of ordinary skill in the art may be employed in the pharmaceutical compositions of the present invention. Carriers for therapeutic use are well known, and are described, for example, in Remingtons Pharmaceutical Sciences, Mack Publishing Co. (A. R. Gennaro ed. 1985). In general, the type of carrier is selected based on the mode of administration. Pharmaceutical compositions may be formulated for any appropriate manner of administration, including, for example, topical, oral, nasal, intrathecal, rectal, vaginal, sublingual or parenteral administration, including subcutaneous, intraveintramuscular, intrasternal, intracavernous, intrameatal or intraurethral injection or infusion. For parenteral administration, the carrier preferably comprises water, saline, alcohol, a fat, a wax or a buffer. For oral administration, any of the above carriers or a solid carrier, such as mannitol, lactose, starch, magnesium stearate, sodium saccharine, talcum, cellulose, kaolin, glycerin, starch dextrins, sodium alginate, carboxymethylcellulose, ethyl cellulose, glucose, sucrose and/or magnesium carbonate, may be employed.

[0147] A pharmaceutical composition (e.g., for oral administration or delivery by injection) may be in the form of a liquid (e.g., an elixir, syrup, solution, emulsion or

suspension). A liquid pharmaceutical composition may include, for example, one or more of the following: sterile diluents such as water for injection, saline solution, preferably physiological saline, Ringer's solution, isotonic sodium chloride, fixed oils such as synthetic mono or diglycerides which may serve as the solvent or suspending medium, polyethylene glycols, glycerin, propylene glycol or other solvents; antibacterial agents such as benzyl alcohol or methyl paraben; antioxidants such as ascorbic acid or sodium bisulfite; chelating agents such as ethylenediaminetetraacetic acid; buffers such as acetates, citrates or phosphates and agents for the adjustment of tonicity such as sodium chloride or dextrose. A parenteral preparation can be enclosed in ampoules, disposable syringes or multiple dose vials made of glass or plastic. The use of physiological saline is preferred, and an injectable pharmaceutical composition is preferably sterile.

[0148] The compositions described herein may be formulated for sustained release (i.e., a formulation such as a capsule or sponge that effects a slow release of compound following administration). Such compositions may generally be prepared using well known technology and administered by, for example, oral, rectal or subcutaneous implantation, or by implantation at the desired target site. Sustained-release formulations may contain an agent dispersed in a carrier matrix and/or contained within a reservoir surrounded by a rate controlling membrane. Carriers for use within such formulations are biocompatible, and may also be biodegradable; preferably the formulation provides a relatively constant level of active component release. The amount of active compound contained within a sustained release formulation depends upon the site of implantation, the rate and expected duration of release and the nature of the condition to be treated or prevented.

[0149] Within a pharmaceutical composition, a therapeutic agent comprising a polypeptide-directed siRNA polynucleotide as described herein (or, e.g., a recombinant nucleic acid construct encoding a siRNA polynucleotide) may be linked to any of a variety of compounds. For example, such an agent may be linked to a targeting moiety (e.g., a monoclonal or polyclonal antibody, a protein or a liposome) that facilitates the delivery of the agent to the target site. As used herein, a "targeting moiety" may be any substance (such as a compound or cell) that, when linked to an agent enhances the transport of the agent to a target cell or tissue, thereby increasing the local concentration of the agent. Targeting moieties include antibodies or fragments thereof, receptors, ligands and other molecules that bind to cells of, or in the vicinity of, the target tissue. An antibody targeting agent may be an intact (whole) molecule, a fragment thereof, or a functional equivalent thereof. Examples of antibody fragments are F(ab')2, Fab', Fab and F[v] fragments, which may be produced by conventional methods or by genetic or protein engineering. Linkage is generally covalent and may be achieved by, for example, direct condensation or other reactions, or by way of bi- or multifunctional linkers. Targeting moieties may be selected based on the cell(s) or tissue(s) toward which the agent is expected to exert a therapeutic benefit.

[0150] Pharmaceutical compositions may be administered in a manner appropriate to the disease to be treated (or prevented). An appropriate dosage and a suitable duration and frequency of administration will be determined by such

factors as the condition of the patient, the type and severity of the patient's disease, the particular form of the active ingredient and the method of administration. In general, an appropriate dosage and treatment regimen provides the agent(s) in an amount sufficient to provide therapeutic and/or prophylactic benefit (e.g., an improved clinical outcome, such as more frequent complete or partial remissions, or longer disease-free and/or overall survival, or a lessening of symptom severity). For prophylactic use, a dose should be sufficient to prevent, delay the onset of or diminish the severity of a disease associated with cell proliferation.

[0151] Optimal dosages may generally be determined using experimental models and/or clinical trials. In general, the amount of siRNA polynucleotide present in a dose, or produced in situ by DNA present in a dose (e.g., from a recombinant nucleic acid construct comprising a siRNA polynucleotide), ranges from about 0.01 µg to about 1001 g per kg of host, typically from about 0.1 µg to about 10 µg. The use of the minimum dosage that is sufficient to provide effective therapy is usually preferred. Patients may generally be monitored for therapeutic or prophylactic effectiveness using assays suitable for the condition being treated or prevented, which will be familiar to those having ordinary skill in the art. Suitable dose sizes will vary with the size of the patient, but will typically range from about 10 mL to about 500 mL for 10-60 kg animal.

[0152] The following Examples are offered by way of illustration and not by way of limitation.

EXAMPLE 1

Interference of Dual Specificity Phosphatase Expression by Small Interfering RNA

[0153] This example describes the effect on dual specificity phosphatase (DSP) expression in cells transfected with sequence-specific small interfering RNA (siRNA) polynucleotides. Interference with expression of MKP-1 and DSP-3 was examined by transfecting sequence-specific siR-NAs into mammalian cells expressing the DSP polypeptide and then detecting expression by immunoblot.

[0154] The siRNA nucleotide sequences specific for each DSP were chosen by first scanning the open reading frame of the target cDNA for 21-base sequences that were flanked on the 5' end by two adenine bases (AA) and that had A+T/G+C ratios that were nearly 1:1. Twenty-one-base sequences with an A+T/G+C ratio greater than 2:1 or 1:2 were excluded. If no 21-base sequences were identified that met this criteria, the polynucleotide sequence encoding the DSP was searched for a 21-base sequence having the bases CA at the 5' end. The polynucleotide sequences examined were the sequences encoding DSP-3 polypeptide (SEQ ID) and MKP-1 (SEQ ID NO: __). For the selection of sequences for some of the siRNA polynucleotides, the sense and antisense sequences of each 21-mer that met the above criteria were then analyzed to determine if the sequence had the potential to form an internal hairpin loop or homodimer. Such an analysis can be performed using computer software programs known to those in the art. Any 21-mer that had an internal hairpin loop melting temperature of greater than 55° C. and a homodimer melting temperature of greater than 37° C. was excluded. The specificity of each 21-mer was determined by performing a BLAST search of public databases. Sequences that contained at least 16 of 21 consecutive nucleotides with 100% identity with a polynucleotide sequence other than the target sequence were not used in the experiments. In each of the Examples provided herein, each siRNA sequence represents the sense strand of the siRNA polynucleotide and its corresponding sequence identifier. "Related sequence identifiers" referred to in the Examples identify sequences in the sequence listing that contain the same nucleotides at positions 1-19 of the siRNA sequence with and without two additional nucleotides (NN) at the 3' end (which would correspond to a two-nucleotide overhang in a double stranded polynucleotide), and the reverse complement of each. Unless otherwise stated, it is to be understood that the siRNA transfected into a cell is composed of the sense strand and its complementary antisense strand, which form a duplex siRNA polynucleotide. The sequences chosen for these experiments were as follows.

[0155] DSP-3 Specific:

25

```
DSP3.1:
5'-cgauagugccaggccuaugtt-3' [SEQ ID NO:__]
DSP3.2:
5'-gcaugagguccaucaguautt-3' [SEQ ID NO:__]
DSP3.3:
5'-cgauacugccaggccaugtt-3' [SEQ ID NO:__]
```

[0156] MKP-1 Specific:

```
MKP.1: 5'-auccugeccuuucuguacett-3' [SEQ ID NO:___]

MKP.2: 5'-gcagaggcaaagcaucauctt-3' [SEQ ID NO:___]
```

[0157] Sense and antisense oligonucleotides for MKP.1, MKP.2, DSP3.1, DSP3.2, and DSP3.3 were synthesized according to the standard protocol of the vendor (Dharmacon Research, Inc., Lafayette, Colo.). For some experiments described in this and other examples, the vendor gel-purified the double-stranded siRNA polynucleotide, which was then used. In the instances when the vendor did not prepare double-stranded siRNA, just before transfection, double-stranded siRNAs were prepared by annealing the sense and anti-sense oligonucleotides in annealing buffer (100 mM potassium acetate, 30 mM HEPES-KOH, pH 7.4, 2 mM magnesium acetate) for 1 minute at 90° C., followed by a 60 minute incubation at 37° C.

[0158] Recombinant nucleic acid expression vectors containing encoding sequences for the MKP-1 polypeptide and DSP-3 polypeptide were prepared according to standard molecular biology techniques. Polynucleotides comprising the MKP-1 coding sequence of SEQ ID NO: ____ and comprising the DSP-3 coding sequence of SEQ ID NO: ____ were cloned into recombinant expression vectors according to methods known to those skilled in the molecular biology art.

[0159] HeLa cells (ATCC, Manassas, Va.) were maintained in Dulbecco's modified Eagle's medium (DMEM, Life Technologies, Inc., Gaithersburg, Md.) plus 10% fetal bovine serum (FBS), 100 units/ml penicillin, and 100 μ g/ml streptomycin. Cells were plated in 6-well tissue culture plates at a density of approximately 5×10^4 cells per well at the time of transfection.

[0160] HeLa cells were transfected with 60 pmoles of MKP.1, MKP.2, or CD45.1 (SEQ ID NO: For each cell culture well, the siRNA polynucleotides were diluted into 250 μ l of O_{PTI}MEM® Reduced Serum Medium (Gibco™, Life Technologies), and 15 µl Oligofectamine™ (Invitrogen Life Technologies, Carlsbad, Calif.) was diluted into 250 μ l of O_{PTI}MEM®. A control solution without siRNA was also prepared. Each solution was incubated at room temperature for 5 minutes. The two solutions were mixed and then incubated for 20 minutes at room temperature to allow the liposome-nucleic acid complexes to form. FBS-containing media was removed from the HeLa cell cultures and replaced with OPTIMEM®. The liposomenucleic acid mixture then was added to the HeLa cell culture, and the transfected cells incubated at 37° C. for 22-24 hours. Media were removed from the cell cultures and replaced with DMEM containing 10% FBS. Cells were incubated at 37° C. in the media plus FBS solution for 0, 1, or 4 hours.

[0161] Expression of MKP-1 was analyzed by immunoblotting HeLa cell extracts. The cells were rinsed twice in phosphate buffered saline (PBS) (4° C.) and then lysed in 250 µl of ice-cold RIPA buffer RIPA buffer (150 mM NaCl, 10 mM NaPO₄, 2 mM EDTA, 1% deoxycholate, 1% Nonidet® P40, 0.1% SDS, 5 mM NaF, 14.3 mM beta-mercaptoethanol, and Complete Protease Inhibitor (Roche Applied Bioscience, Indianapolis, Ind.). The lysates were centrifuged and aliquots of supernatant (10 μ l) from each transfected cell culture sample were combined with 10 μ l of 2×SDS-PAGE reducing sample buffer. The samples were heated at 95° C. for five minutes, and then applied to a 14% Tris-glycine SDS-PAGE gel (NOVEX® from Invitrogen Life Technologies, Carlsbad, Calif.). After electrophoresis, the separated proteins were electrophoretically transferred from the gel onto an Immobilon-P polyvinylidene fluoride (PVDF) membrane (Millipore, Bedford, Mass.). The PVDF membrane was blocked in 5% milk in TBST (20 mM Tris pH 7.5, 150 mM NaCl, 0.05% Tween-20), incubated with an anti-MKP-1 antibody (Santa Cruz Biotechnology, Inc., Santa Cruz, Calif.) for 2-16 hours at room temperature, washed 3×10 minutes with TBST, and then incubated with an appropriate horseradish peroxidase (HRP) conjugate IgG (1:10,000) (Amersham Biosciences, Piscataway, N.J.) for 30 minutes at room temperature. Binding was detected with the ECL chemiluminescent reagent used according to the manufacturer's instructions (Amersham Biosciences, Piscataway, N.J.) as shown in FIG. 1 (upper). A second SDS-PAGE gel in which the HeLa cell extracts were separated was stained with Coomassie Blue (FIG. 1, lower).

[0162] Interference with DSP-3 polypeptide expression was analyzed in HeLa cells transfected with siRNA polynucleotides. To determine the transfection efficiency of a siRNA polynucleotide, HeLa cells cultured as described above were plated at different cell densities and then transfected with a sequence-specific siRNA. DSP3.1 siRNA (SEQ ID NO:) was synthesized and conjugated to fluorescein isothiocyanate (FITC) according to the vendor's standard methods (Synthetic Genetics, San Diego, Calif.). HeLa cells plated at varying cell densities to achieve approximately 1×10⁴ cells/well, 3×10⁴ cells/well, 5×10⁴ cells/well, 1×10⁵ cells/well, 2×10⁵ cells/well, and 4×10⁵ cells/well were transfected with FITC-DSP3.1 as described above. Controls included HeLa cells exposed to Lipofectamine™ 2000 alone and to media alone. The transfected cells were harvested after 24-48 hours and analyzed by a fluorescence-activated cell sorter (FACS). Transfection was more efficient at cell densities of 5×10^4 cells/well or less.

[0163] Interference of DSP-3 expression by two different DSP-3 sequence specific siRNA polynucleotides, DSP3.1 (SEQ ID NO: _____) and DSP3.2 (SEQ ID NO: _____). Transfection of HeLa cells was performed as described for MKP-1. As controls, HeLa cells were transfected with non-specific MKP.1 (SEQ ID NO: _____) and with transfection solution not containing the expression vector or siRNA.

[0164] Twenty-four hours after transfection, cell extracts were prepared either using RIPA buffer (see above) or 1% Triton X-100®. The extracts were analyzed by immunoblot (see above) using an anti-DSP-3 monoclonal antibody, clone 17, diluted 1:10,000 in TBST and binding was detected with HRP-conjugated anti-mouse IgG. DSP3.1 effectively decreased expression of DSP-3, whereas the level of expression in cells transfected with siRNA DSP3.2 was comparable to expression in the cells transfected with the nonspecific MKP.1 siRNA. The cell extracts were also immunoblotted against an anti-PTP1B antibody, which demonstrated that protein expression of another protein expressed in the cells was not affected by the presence of siRNA polynucleotides. The data suggest that the decrease in the level of DSP-3 expression varies depending upon the particular sequence of the siRNA.

[0165] To evaluate the sensitivity of interference by specific siRNA polynucleotides, DSP3.1 siRNA (SEQ ID) was titrated in HeLa cells. HeLa cells were transfected as described above with DSP3.1 siRNA (SEQ ID NO:1) at a concentration of 1, 2, 5, 10, 20, and 100 nM. HeLa cells were also transfected at the same concentrations with non-specific siRNAs, cdc14a.1 (5'-caucgugcgaagguuccugtt-3' (SEQ ID NO:6)) and CD45.2 (5'-gccgagaacaaaguggaugtt-3' (SEQ ID NO: _)). An immunoblot of cell extracts prepared using RIPA buffer was probed with anti-DSP-3 monoclonal antibody clone 17. A second immunoblot was probed with an anti-JNK2 antibody. DSP-3 expression decreased to approximately the same level in cells transfected with 5, 10, 20, and 100 nM of the specific siRNA DSP3.1. The level of expression of DSP-3 also decreased in the presence of the lowest concentrations of siRNA DSP3.1 compared with DSP-3 expression in cells transfected with non-specific siRNAs. Expression of JNK2 was not affected.

[0166] The specificity of siRNA interference was demonstrated by co-transfecting HeLa cells with the DSP-3 expression vector and an siRNA, DSP3.3 (SEQ ID NO:____) that had two base differences from siDSP3.1. Transfection and immunoblotting were performed as described above for the titration experiment. The expression levels of DSP-3 polypeptide was effectively decreased in the presence of 1, 5, 10, 20, or 100 nM of DSP3.1 but not in cells transfected with DSP3.3. The level of expression of JNK2 was not affected.

EXAMPLE 2

Interference with Expression of Protein Tyrosine Phosphatases by Sequence-Specific Small Interfering RNA

[0167] This example describes RNA interference of transient and endogenous expression of various protein tyrosine phosphatases (PTPs).

[0168] Co-Transfection Assays to Determine Interference of PTP Expression by siRNA

[0169] DSP-11 and DSP-18

[0170] Interference of expression of FLAG®-tagged DSP-11 polypeptide and FLAG®-tagged DSP-18pr polypeptide (DSP-18) by sequence specific siRNA polynucleotides was determined. (FLAG® sequence: Asp-Tyr-Lys-Asp-Asp-Asp-Asp-Lys (SEQ ID NO:_____)) (Sigma Aldrich, St. Louis, Mo.). Two siRNA sequences that were specific for DSP-11 polynucleotide (SEQ ID NO: encoding a DSP-11 polypeptide (SEQ ID NO:) and two siRNA sequences specific for DSP-18pr polynucleotide (DSP-18, SEQ ID NO:_ ____) encoding a DSP-18 polypeptide (SEQ) were designed using the criteria described in Example 1. The following sequences were used in the experiments.

[0171] DSP-11 Specific:

```
DSP11.2:
5'-cuggcaccaugcuggccugtt-3' [SEQ ID NO:__]

DSP11.4:
5'-agcagucuuccaguucuactt-3' [SEQ ID NO:__]
```

[0172] DSP-18 Specific:

```
DSP18.2:
5'-cugccuugugcacugcuuutt-3' [SEQ ID NO:___]
DSP18.4:
5'-gaguuuggcugggccaguutt-3' [SEQ ID NO:___]
```

[0173] Vectors for expression of DSP-18 and DSP-11 were prepared as follows. Vector pCMVTag2B (Stratagene, La Jolla, Calif.) was digested with restriction endonuclease BamHI (New England Biolabs, Beverly, Mass.) for 3 hours at 37° C. The digested vector was then incubated with Klenow polymerase (New England Biolabs) for 15 minutes at 25° C. to fill in the recessed 3' termini, followed by an incubation of 30 minutes at 37° C. with calf intestinal phosphatase (New England Biolabs). The GATEWAYTM Reading Frame Cassette B (Invitrogen, Carlsbad, Calif.) was inserted into the pCMVTag2B vector by ligation with T4 DNA ligase (Invitrogen) overnight at 16° C. according to the supplier's instructions. DB3.1TM competent E. coli cells were transformed with the ligated vector (GWpCMVTag2), and DNA was isolated by standard molecular biology methods. DSP-11 and DSP-18 constructs were prepared by ligating a polynucleotide encoding DSP-11 (SEQ ID NO:25) and a polynucleotide encoding DSP-18 (SEQ ID NO:27) into a modified bacterial pGEX-6PKG expression vector (Amersham Biosciences), referred to as pGEX-6P1, according to standard methods known in the molecular biology art. DSP-11 and DSP18 constructs and the pENTR™ 1A entry vector (Invitrogen) were digested with EcoRI (New England Biolabs) for 3 hours at 37° C. The pENTR™ 1A clone was treated with calf intestinal phosphatase for 30 minutes at 37° C., and then DSP-11 and DSP-18 constructs were inserted into separate pENTRTM vectors by ligation overnight at 16° C. with T4 DNA ligase. Vector DNA was prepared from LIBRARY EFFICIENCY® DH5αTM cells (Invitrogen) that were transformed with each construct according to the supplier's recommendation.

[0174] FLAG® epitope-tagged DSP-11 and DSP-18 polypeptides were prepared by cloning the pENTR™ 1A-DSP-18 and substrate trapping mutant constructs into the GWpCMVTag2 vector. The pENTR™ 1A constructs containing the DSP-11 and the DSP-18 polynucleotides were linearized by digesting the constructs with Vsp I (Promega Corp., Madison, Wis.) for 2 hours at 37° C. The DNA was purified using a QIAGEN PCR Purification kit (QIAGEN, Inc., Valencia, Calif.), and $30 \mu l$ (100 ng/ μl) was combined in a GATEWAYTM LR reaction with 6 µl linearized pENTRTM 1A-DSP-11, pENTRTM 1A-DSP-18, 3 μ l TE buffer, 4 μ l ClonaseTM Enzyme, and 4 μ l LR reaction buffer (Invitrogen) for 1 hour at room temperature. After addition of Proteinase K (Invitrogen) to each reaction for 10 minutes, LIBRARY EFFICIENCY® DH5α[™] cells were transformed with each expression vector. For controls, FLAG®-DSP-3 and FLAG®-cdc14b were also prepared according to the above method.

[0175] 293-HEK cells, maintained in DMEM, 10% FBS at 37° C. and 5% CO₂, were co-transfected with the FLAG®-DSP-11, FLAG®-DSP-18, FLAG®-DSP-3, and FLAG®cdc14b expression vectors and DSP11.2, DSP11.4, DSP18.2, and DSP18.4 siRNAs (20 nM) (double-stranded RNA was prepared as described in Example 1) using the Lipofectamine™ 2000 reagent (Invitrogen). After incubating the transfected cells for 22-24 hours at 37° C., cells were rinsed twice in phosphate buffered saline (PBS) (4° C.) and then lysed in 250 μ l of ice-cold RIPA buffer (see Example 1). The cell debris was pelleted and aliquots of each supernatant were separated by SDS-PAGE and immunoblotted as described in Example 1. DSP-11 and DSP-18 polypeptides were detected by probing the immunoblots with an anti-FLAG® antibody (Sigma-Aldrich, St. Louis, Mo.) followed by probing with an HRP-conjugated goat anti-mouse reagent (see Example 1). Binding of the anti-FLAG® antibody was detected by chemiluminescence development (see Example 1). FIG. 2 shows that expression of FLAG®-DSP-11 and FLAG®-DSP-18 was inhibited in the presence of sequencespecific siRNA.

[0176] DSP-13 and DSP-14

[0177] Expression constructs of DSP-13 (SEQ ID) and DSP-14 (SEQ ID NO: FLAG® epitope-tagged DSP-13 and DSP-14 polypeptides (SEQ ID NO: and SEQ ID NO: _, respectively) were prepared essentially as described above. Four siRNA sequences specific for DSP-13 polynucleotide and four siRNA sequences specific for DSP-14 were designed according to the criteria described in Example 1 except that melting temperatures were not necessarily calculated. After performing the BLAST search to analyze the specificity of a sequence, sequences that contained at least 16 consecutive nucleotides with 100% identity with a polynucleotide sequence other than the target sequence were not used in the experiments. The siRNA polynucleotides were manufactured by Dharmacon Research Inc. The sequences of the siRNA polynucleotides are as follows.

[0178] DSP-13 Specific:

```
DSP13.1:
5'-cuugcgggaauucaaggaatt-3' (SEQ ID NO:____
```

-continued

DSP13.2: 5'-ccgagggguacgguauauctt-3'	(SEQ ID NO:)
DSP13.3: 5'-caucaggcuggcuguaagatt-3'	(SEQ ID NO:)
DSP13.4: 5'-cauggaucuaaaugccuugtt-3'	(SEQ ID NO:)

[0179] DSP-14 Specific:

DSP-14.1: 5'-gugaagacaagccucaagatt-3'	(SEQ	ID	NO:)
DSP-14.2: 5'-gcucuacauuggcgaugagtt-3'	(SEQ	ID	NO:)
DSP-14.3: 5'-gcgacgaccacaguaagautt-3'	(SEQ	ID	NO:)
DSP-14.4: 5'-ggacaugacccugguggactt-3'	(SEQ	ID	NO:)

[0180] 293-HEK cells were co-transfected with 1-2 µg of the FLAG®-DSP-13 or FLAG®-DSP-14 expression vector and 20 nM of siRNA and expression detected by immunoblot as described above. As controls, cells co-transfected with a DSP expression vector and a non-specific siRNA and untransfected 293-HEK cells were included in the analysis.

[0181] The amount of of FLAG®-DSP-13 polypeptide expressed in 293-HEK cells co-transfected with the FLAG®-DSP-13 construct and either DSP13.3 or DSP13.4 siRNA decreased more than 95% compared with cells transfected with the DSP-13 expression constructs only. Expression of the DSP-13 polypeptide in cells co-transfected with DSP13.2 siRNA was comparable to expression in cells co-transfected with a non-specific siRNA(DSP14.1). Expression of FLAG®-DSP-14 polypeptide decreased 70% in 293-HEK cells when the cells were co-transfected with DSP14.1 siRNA and decreased 90% when the cells were co-transfected with DSP-14.3 siRNA. Expression of DSP-14 in the presence of siRNA 14.4 was only slightly lower than observed with a non-specific siRNA (DSP13.1).

[0182] DSP-3

[0183] Transient co-transfection experiments in 293-HEK cells were also performed with DSP3.1 siRNA (SEQ ID NO:1) and a DSP-3 polypeptide recombinant expression vector (prepared according to standard molecular biology techniques). Expression of DSP-3 was determined by immunoblot probed with anti-DSP-3 monoclonal antibody clone 17. The results showed that the amount of DSP-3 polypeptide expressed in the 293-HEK cells decreased 80% in the presence of sequence specific siRNA.

[0184] SHP-2

[0185] Inhibition of expression of the protein tyrosine phosphatase (PTP) SHP-2 (src homology protein-2) was also examined in the 293-HEK co-transfection assay. Four different siRNAs specific for the polynucleotide sequence (SEQ ID NO:_____) encoding SHP-2 (SEQ ID NO:_____) were co-transfected with a FLAG®-SHP-2 expression construct prepared according to the molecular biology methods described above. SHP-2 specific siRNAs had the following sequences.

SHP2.1: 5'-gauucagaacacuggugautt-3'	(SEQ ID NO:
SHP2.2: 5'-gaauauggcgucaugcgugtt-3'	(SEQ ID NO:
SHP2.3: 5'-cggucuggcaauaccacuutt-3'	(SEQ ID NO:
SHP2.4: 5'-ugacggcaagucuaaagugtt-3'	(SEQ ID NO:

[0186] The siRNA SHP2.1 effectively impaired expression of SHP-2 in transfected 293-HEK cells, decreasing the amount of FLAG®-SHP-2 polypeptide detected by more than 95%. In the presence of siRNA SHP2.2, FLAG®-SHP-2 polypeptide expression decreased by 85%. SHP2-4 had no specific effect on SHP-2 expression.

[0187] PRL-3 and KAP

[0188] Inhibition of expression of the human protein tyrosine phosphatases (PTP) PRL-3 and KAP were also examined in the 293-HEK co-transfection assay. Four different siRNAs specific for the polynucleotide sequence (SEQ ID NO:) encoding PRL-3 (SEQ ID) were co-transfected with a FLAG®-PRL-3 expression construct prepared according to the molecular biology methods described above. Similarly, four different siRNAs specific for the polynucleotide sequence (SEQ ID) encoding KAP (SEQ ID NO: co-transfected with a FLAG®-KAP expression construct. The siRNA sequences and the percent decrease in the level of expression of the PTP in cells transfected with the each siRNA is presented in Table 1 below, and it is noted that each 21-mer sequence below contains a dinucleotide "overhang" at the 3' end, and that the invention herein should be considered to include the 19-mer polynucleotide sequences beginning at the 5' end therein as well as the 21-mer polynucleotide shown in the Table.

TABLE 1

		siRNA				E WITH E		 KAP	
Target	: siRNA Se	quence	(SEQ	ID	NO)	siRNA	Name	 lated ID NO	Decrease in Expression
KAP KAP KAP	5 '-GAGCC 5 '-GAGCU 5 '-GAGCU	GUGGUAU	ACAAG	ACT	'T-3'	KAP KAP KAP	.2		>90% >90% >90%

TABLE 1-continued

sirna interference with prL-3 and kap in co-transfection assays

Target siRNA Sequence (SEQ ID NO)	siRNA Name	Decrease in Expression
KAP 5'-UACACUGCUAUGGAGGACUTT-3' PRL-3 5'-GUGACCUAUGACAAAACGCTT-3' PRL-3 5'-GGCCAAGUUCUGUGAGGCCTT-3' PRL-3 5'-GUACGAGGACGCCAUCCAGTT-3' PRI-3 UACCGGCCCAAACAGAGGCTT	KAP.4 Pr13.1 Pr13.2 Pr13.3 Pr13.4	<10% 50% 50% 50% <10%

[0189] PTP€

[0190] Inhibition of expression of human PTP€ is examined in the 293-HEK co-transfection assay. Four different siRNAs specific for the polynucleotide sequence (SEQ ID NO:_____) encoding PTP€ (SEQ ID NO:_____) are co-transfected with a FLAG®-PTP€ expression construct prepared according to the molecular biology methods described above. The siRNA sequences that are analyzed have AA leader sequences (not included in the siRNA polynucleotide transfected into HEK cells) and the following sequences.

RPTPE.1:5'GCAGAGGAAAGCUGUGGUCTT3' (SEQ ID NO:___)

RPTPE.2:5'GUCUGCGACCAUCGUCAUGTT3' (SEQ ID NO:___)

RPTPE.3:5'GCCUUACUCGAGUACUACCTT3' (SEQ ID NO:___)

RPTPE.4:5'GGACUAUUUCAUCGCCACCTT3' (SEQ ID NO:___)

[0191] Interference by siRNA Polynucleotides of Endogenous PTP Expression

[0192] The effect of sequence specific siRNA polynucleotides on expression of protein tyrosine phosphatases endogenously expressed in cells was also determined. Inhibition of expression of SHP-2 in HeLa cells by specific siRNAs was examined. HeLa cells were transfected with 10 nM of SEQ ID NO:_____); SHP2.2 (SEQ ID _____); DSP13.3 (SEQ ID NO:______); DSP14.1 SHP2.1 (SEQ ID NO: (SEQ ID NO:); and DSP14.3 (SEQ ID NO: Each siRNA was diluted in 50 µl OptiMEM® to provide a final concentration of 10 nM per well of cells in six well tissue culture plate. In a separate tube, 3 μ l of LipofectamineTM was combined with 10 μ l OptiMEM®. Each solution was incubated for 7 minutes. The two solutions were then mixed and incubated at room temperature for 22 minutes. The final volume of the mixed solution was adjusted to 500 μ l and then was added to the HeLa cells. Cells were transfected with the siRNAs or with annealing buffer alone. The transfected cells were incubated with siRNAs for 60 hours.

[0193] Cell lysates were prepared by extracting the cells in RIPA buffer as described in Example 1. The lysates were separated by SDS-PAGE gel and analyzed by immunoblot according to the procedures described in Examples 1 and above in Example 2 using an anti-SHP-2 murine monoclonal antibody (Santa Cruz Biotechnology, Inc., Santa Cruz, Calif.). The levels of expression of endogenous SHP-2 decreased by 75% in the presence of SHP2.2 and by 90% in

the presence of SHP2.1. The expression of SHP-2 in the siRNAs presence of DSP13.3, DSP14.1, or DSP14.3 was comparable to the level of expression observed in cells treated with buffer only.

[0194] A similar experiment was performed to determine the level of endogenous expression of DSP-3 in HeLa cells and in MDA-MB-435 cells (ATCC) in the presence of sequence specific siRNA. DSP3.1 siRNA (SEQ ID NO:1) was transfected into each cell line as described above, and the level of expression of DSP-3 polypeptide was analyzed by immunoblot (see Example 1 for immunoblot procedure to detect DSP-3). Expression of DSP-3 polypeptide decreased 70-100% in HeLa cells and decreased 100% in MDA-MB-435 cells in the presence of the specific mRNA.

[0195] Particular siRNA polynucleotide sequences that are specific for CD45, SHP2, cdc14a, cdc14b, cdc25A, cdc25B, cdc25C, PRL-3, KAP, DSP-3, and PTP ϵ are provided below. The level of expression of each PTP and DSP in cells that are capable of expressing the PTP or DSP and that are transfected with any one of the following specific siRNA polynucleotides is determined according to methods and procedures described above. The siRNA sequences that are incorporated into a vector from which a hairpin vector is transcribed and/or that are transfected via liposomes according to methods described in Examples 1 and 2 are presented in the following tables. The human TCPTP target sequences were derived from a human TCPTP nucleotide sequence (see GenBank Accession No. M25393, NM 002828, NM_080422 (SEQ ID NOs:)); the CD45 target sequences were derived from a human CD45 nucleotide sequence, (see Charbonneau et al. (SEQ ID NO: the SHP-2 target sequences were derived from a human SHP-2 nucleotide sequence (see GenBank Accession No. L03535 and L07527 (SEQ ID NO:)); the cdc14a target sequences were derived from a human cdc14a nucleotide sequence (see GenBank Accession No. AF122013 _)); the cdc14b target sequences were (SEO ID NO: derived from a human cdc14b nucleotide sequence (Gen-Bank Accession No. AF023158 (SEQ ID NO:_ cdc25A target sequences were derived from a human cdc25A nucleotide sequence (see GenBank Accession No. NM_133571 and AF527417 (SEQ ID NO: cdc25B target sequences were derived from a human cdc25B nucleotide sequence (see GenBank Accession No. M81934 (SEQ ID NO:____ __)); the cdc25C target sequences were derived from a human cdc25C nucleotide sequence (see GenBank Accession No. NM_001790 (SEQ ID NO: _); the PRL-3 target sequences are derived from the human PRL-3 nucleotide sequence (see GenBank Accession No. NM_032611 and NM_003479 (SEQ ID

NO:______); the KAP target sequences are derived from the human KAP nucleotide sequence (see GenBank Accession No. L2711 (SEQ ID NO:_____)); the DSP-3 target sequences were derived from the human DSP-3 nucleotide sequence set forth in (SEQ ID NO:778); and the PTPε target sequences were derived from the human PTPε nucleotide sequence (see GenBank Accession No. NM_006504 and NM_130435 (SEQ ID NO:_____)).

[0196] siRNA polynucleotide sequences were selected using the Dharmacon siDESIGN system (Dharmacon Research). These sequences were generated using the following parameters: (1) leader sequences included dinucleotides AA, CA, TA, and GA; (2) the coding region (CR) was scanned; (4) the G+C content varied from approximately 31-63%; (5) overlaps of sequences within different 19 nucleotide sequences were permitted. These sequences were then compared to known human genome sequences using the BLAST program. Potential target sequences were eliminated if 16 or more consecutive nucleotides within the 19-nucleotide target sequence were identified in another human polynucleotide sequence. The remaining 19-nucleotide siRNA sequences are presented in the tables below. Each siRNA sequence represented in Tables 2-12 lists the sequence of the sense strand of the siRNA and its corresponding sequence identifier. For PRL-3, only one sequence (AGACCCGGUGCUGCGUUAU, SEQ ID NO: was identified by this method. An siRNA polynucleotide as described herein is understood to be composed of the 19 nucleotide sense strand and its complementary (or antisense) strand. In addition, a siRNA polynucleotide of the present invention typically has a dinucleotide overhang at the 3' end of each strand, which may be any two nucleotides. Accordingly, it is noted that each 21-mer sequence below contains a dinucleotide "overhang" at the 3' end, and that the invention herein should be considered to include the 19-mer polynucleotide sequences beginning at the 5' end therein as well as the 21-mer polynucleotide shown in the Tables.

TABLE 2

HUMAN CD45 SIRNA POLYNCULEOTIDE SEQUENCES

(POST-BLAST)	~		_
19-Nucleotide Target Sequence	Region	SEQ	ID	NO.
CCACCAUCACAGCGAACAC	CR			
AGCGCUGUCAUUUCAACCA	CR			
ACCACAACAAUAGCUACUA	CR			
GCUACUACUCCAUCUAAGC	CR			
AAUGCGUCUGUUUCCAUAU	CR			
AUGCGUCUGUUUCCAUAUC	CR			
UGCGUCUGUUUCCAUAUCU	CR			
ACCUUUACUUGUGAUACAC	CR			
CAGAUUUCAGUGUGGUAAU	CR			
ACCCGAACAUGAGUAUAAG	CR			
CCCGAACAUGAGUAUAAGU	CR			
CAAGUUUACUAACGCAAGU	CR			
GGAGUAAUUACCUGGAAUC	CR			
CAUGCCUACAUCAUUGCAA	CR			
AUAGUAUGCAUGUCAAGUG	CR			
UGAACGUUACCAUUUGGAA	CR			
AUGAGUCGCAUAAGAAUUG	CR			
UGAGUCGCAUAAGAAUUGC	CR			
GAAUUGCGAUUUCCGUGUA	CR			
AUUGCGAUUUCCGUGUAAA	CR			
GCCAAUCCAUGCAGAUAUU	CR			
UUAUAACCGUGUUGAACUC	CR			
UAACCGUGUUGAACUCUCU	CR			
ACGGAGAUGCAGGGUCAAA	CR			

TABLE 2-continued

19-Nucleotide Target Sequence Region SEQ II	NO.
GAUGCAGGGUCAAACUACA CR	
ACCCAGGAAAUACAUUGCU CR	
UGUCCAGAUUACAUCAUUC CR	
AUGCCUUCAGCAAUUUCUU CR	
CAGGAACCUAUAUCGGAAU CR	
GGAACCUAUAUCGGAAUUG CR	
ACCUAUAUCGGAAUUGAUG CR	
GUGGAUGUUUAUGGUUAUG CR	
GGCGACAGAGAUGCCUGAU CR	
GAGGCCCAGUACAUCUUGA CR	
GGCCCAGUACAUCUUGAUC CR	
GCUACUGGAAACCUGAAGU CR	
ACCUGAAGUGAUUGCU CR	
AGUUGACCUGAAAGACACA CR	
ACUUAUACCCUUCGUGUCU CR	
CUUAUACCCUUCGUGUCUU CR	
GGAAAGACUCUCGAACUGU CR	
ACCCAAGGAAUUAAUCUCU CR	
CCCAAGGAAUUAAUCUCUA CR	
UGAUUCAGGUCGUCAAACA CR	
GGGAUGGAUCUCAGCAAAC CR	
UCUCAGCAAACGGGAAUAU CR	
UUCGAGCAAUAUCAAUUCC CR	
CCUACCCUGCUCAGAAUGG CR	

[0197]

TABLE 3

HUMAN SHP-2 siRNA POLYNCULI (POST-BLAST		EQUEN	CES	.
19-Nucleotide Target Sequence	Region	SEQ	ID	NO.
AUGGAGCUGUCACCCACAU	CR			
UGGAACAUCACGGGCAAUU	CR			
GCAAUGACGGCAAGUCUAA	CR			
AUGACGGCAAGUCUAAAGU	CR			
UGACGGCAAGUCUAAAGUG	CR			
GUCUAAAGUGACCCAUGUU	CR			
UGAUUCGCUGUCAGGAACU	CR			
CGACGUUGGUGGAGGAGAA	CR			
ACGGUUUGAUUCUUUGACA	CR			
UUCUUUGACAGAUCUUGUG	CR			
GAAUCCUAUGGUGGAAACA	CR			
AUCCUAUGGUGGAAACAUU	CR			
UCCUAUGGUGGAAACAUUG	CR			
CAGUACUACAACUCAAGCA	CR			
UUUGAGACACUACAACAAC	CR			
AACUUCUCUACAGCCGAAA	CR			
ACAUCCUGCCCUUUGAUCA	CR			
UCAUACCAGGGUUGUCCUA	CR			
UACCAGGGUUGUCCUACAC	CR			
UUUGAAACCAAGUGCAACA	CR			
AGAGUUACAUUGCCACACA	CR			
GAGUUACAUUGCCACACAA	CR			
AAACACGGUGAAUGACUUU	CR			
CUGGCCUGAUGAGUAUGCU	CR			
UGGCGUCAUGCGUGUUAGG	CR			
UGCGUGUUAGGAACGUCAA	CR			
UGACUAUACGCUAAGAGAA	CR			
CUAUACGCUAAGAGAACUU	CR			
GGUUGGACAAGGGAAUACG	CR			
GAACGGUCUGGCAAUACCA	CR			
CGGUCUGGCAAUACCACUU	CR			
AAGGUGUUGACUGCGAUAU	CR			
AGGUGUUGACUGCGAUAUU	CR			
GGUGUUGACUGCGAUAUUG	CR			

31

TABLE 3-continued

TIBEE 9-cence	inaca			
HUMAN SHP-2 siRNA POLYNCULI (POST-BLAST		EQUEN	ICES	<u>. </u>
19-Nucleotide Target Sequence	Region	SEQ	ID	NO.
UAUGGCGGUCCAGCAUUAU	CR			
UGGCGGUCCAGCAUUAUAU	CR			
AACACUACAGCGCAGGAUU	CR			
ACACUACAGCGCAGGAUUG	CR			
GCGCAGGAUUGAAGAAGAG	CR			
GAGGAAAGGGCACGAAUAU	CR			
GGAAAGGGCACGAAUAUAC	CR			
GGGCACGAAUAUACAAAUA	CR			
AAACGUGGGCCUGAUGCAA	CR			
ACGUGGGCCUGAUGCAACA	CR			

[0198]

TABLE 4

HUMAN CDC14A siRNA POLYNCUL (POST-BLAST		EQUE	NCE	s
19-Nucleotide Target Sequence	Region	SEQ	ID	NO.
GCACAGUAAAUACCCACUA	CR			
CUAUUUCUCCAUCGAUGAG	CR			
ACUUGGCAAUGGUGUACAG	CR			
GGUGCCUAUGCAGUAAUCU	CR			
UCUCACCAUUCUCGACUGU	CR			
AAGGGAUUACAACAUGGAU	CR			
AGGGAUUACAACAUGGAUU	CR			
GGGAUUACAACAUGGAUUU	CR			
GAAUGGUUAUCCUCUUCAC	CR			
GCAUAAUGUGACUGCAGUU	CR			
CGCUGGCUUCGAGCACUAU	CR			
GCACACCCAGUGACAACAU	CR			
ACAUCGUGCGAAGGUUCCU	CR			
AGAACAGGGACAUUGAUAG	CR			
GAACAGGGACAUUGAUAGC	CR			
GGGACAUUGAUAGCCUGUU	CR			
CAUUGAUAGCCUGUUAUGU	CR			
CUACAGGUUUACACAUGCU	CR			
AAAUCGACCAUCCAGUGAA	CR			
AAUCGACCAUCCAGUGAAG	CR			
UCGACCAUCCAGUGAAGGA	CR			
AAAUUCUUUCUGGCCUAGA	CR			
UGUCUAUUGGUGGAAAUCU	CR			
ACGAUUUGGAGAGGUAAGU	CR			
CGAUUUGGAGAGGUAAGUU	CR			

[0199]

TABLE 5

HUMAN CDC14B SIRNA POLYNCULEOTIDE SEQUENCES (POST-BLAST)						
19-Nucteotide Target Sequence	Region	SEQ ID NO.				
GAGACAUCCUAUAUUCCUU	CR					
AUACCAGACCGAUUUAUUG	CR					
UACCAGACCGAUUUAUUGC	CR					
GACCGAUUUAUUGCCUUCU	CR					
AAGGAUGUAUGAUGCCAAA	CR					
AGGAUGUAUGAUGCCAAAC	CR					
GGAUGUAUGAUGCCAAACG	CR					
CGGAUGCUGGCUUCGAUCA	CR					
UGCCAUUGUCAAAGAAUUC	CR					
GGGUGCCAUUGCAGUACAU	CR					
GACCUGGCUCGGUGAUUGG	CR					

TABLE 5-continued

HUMAN CDC14B siRNA POLYNCULEOTIDE SEQUENCES (POST-BLAST)					
19-Nucteotide Target Sequence	Region	SEQ ID NO.			
CCCGAACCGUACAGUGAUG	CR				
ACCGUACAGUGAUGAC	CR				
UAGACUUCGGGCCUUGAAA	CR				
ACAAACGCUAUUCCUCUCA	CR				

[0200]

TABLE 6

HUMAN CDC25A siRNA POLYNCUI (POST-BLAST		SEQUENCE	es —
19-Nucleotide Target Sequence	Region	SEQ ID	NO.
GGGUCUGGGCAGUGAUUAU	CR		
GCAACCACUGGAGGUGAAG	CR		
AUCCUAUGAGAAGAAUACA	CR		
UCCUAUGAGAAGAAUACAU	CR		
AAAGCUGUUGGGAUGUAGU	CR		
UUCUGAUUCUCUUGACCAU	CR		
GAAGCCAGUAAGACCUGUA	CR		
CAGCCACUUUGUCUGAUGA	CR		
AACCUUGACAACCGAUGCA	CR		
CAACCGAUGCAAGCUGUUU	CR		
ACCGAUGCAAGCUGUUUGA	CR		
CUCGGUCAGUGUUGAAGAG	CR		
ACGUUCUCAAGAGGAGUCU	CR		
GUCAACUAAUCCAGAGAAG	CR		
AGGCCCAUGAGACUCUUCA	CR		
AGGGACCUUAUAGGAGACU	CR		
GGGACCUUAUAGGAGACUU	CR		
GACUUCUCCAAGGGUUAUC	CR		
GUUUGUUAUCAUCGACUGU	CR		
CUGUCGAUACCCAUAUGAA	CR		
GAAGCCCAUUGUACCUACU	CR		
AGCCCAUUGUACCUACUGA	CR		
GCCCAUUGUACCUACUGAU	CR		
UGGCAAGCGUGUCAUUGUU	CR		
AGCGUGUCAUUGUUGUUU	CR		
UGUGCCGGUAUGUGAGAGA	CR		
GAGAGAUCGCCUGGGUAAU	CR		
GAGAUCGCCUGGGUAAUGA	CR		
GAUCGCCUGGGUAAUGAAU	CR		

[0201]

TABLE 7		
HUMAN CDC25B siRNA POLYNCUL (POST-BLAST		SEQUENCES
19-Nucleotide Target Sequence	Region	SEQ ID NO.
AUCCUCCCUGUCGUCUGAA	CR	
UCCUCCCUGUCGUCUGAAU	CR	
UGGCGGAGCAGACGUUUGA	CR	
CGUUUGAACAGGCCAUCCA	CR	
GCCGGAUCAUUCGAAACGA	CR	
UCAUUCGAAACGAGCAGUU	CR	
GUCUAUGCCGGAUGGAUUU	CR	
UGCCGGAUGGAUUUGUCUU	CR	
AAAGGACCUCGUCAUGUAC	CR	
AAUCACUGUGUCACGAUGA	CR	
AUCACUGUGUCACGAUGAG	CR	
GAGCUGAUUGGAGAUUACU	CR	
GCUGAUUGGAGAUUACUCU	CR	

TABLE 7-continued

HUMAN CDC25B siRNA POLYNCUL (POST-BLAST		EQUENCES
19-Nucleotide Target Sequence	Region	SEQ ID NO.
CUCUAAGGCCUUCCUCCUA	CR	
CAGACAGUAGACGGAAAGC	CR	
AGCACCAAGACCUCAAGUA	CR	
GAAACGAUGGUGGCCCUAU	CR	
AACGAUGGUGGCCCUAUUG	CR	
CGCCGAGAGCUUCCUACUG	CR	

[0202]

TABLE 8

HUMAN CDC25C siRNA POLYNCUL (POST-BLAST		EQUEN	CES
19-Nucleotide Target Sequence	Region	SEQ :	ID NO.
GAACUCCAGUGGGCAAAUU	CR		
UUUAGCUGGGAUGACAAUG	CR		
UUCAAGGACAACACAAUAC	CR		
ACACAAUACCAGAUAAAGU	CR		
CACAAUACCAGAUAAAGUU	CR		
GGAAGGGCUUAUGUUUAAA	CR		
CACCAAGAUCUGAAGUAUG	CR		
AGUAUGUCAACCCAGAAAC	CR		
GUAUGUCAACCCAGAAACA	CR		
UGUCAUUGAUUGUCGCUAU	CR		
UUGAUUGUCGCUAUCCAUA	CR		
UUGUCGCUAUCCAUAUGAG	CR		
UCCAGGGAGCCUUAAACUU	CR		
GGGAGCCUUAAACUUAUAU	CR		
GUCAGGAAGAACUGUUUAA	CR		
AGAAGCCCAUCGUCCCUUU	CR		
GAAGCCCAUCGUCCCUUUG	CR		
AGCCCAUCGUCCCUUUGGA	CR		
CACCCAGAAGAAUAAUC	CR		
UUGUACUACCCAGAGCUAU	CR		
CUACCCAGAGCUAUAUAUC	CR		
CCCAGAGCUAUAUAUCCUU	CR		
UAUAUGGAACUGUGUGAAC	CR		
UAUGGAACUGUGUGAACCA	CR		
CAGAGCUACUGCCCUAUGC	CR		
GAGCUACUGCCCUAUGCAU	CR		
GCUACUGCCCUAUGCAUCA	CR		

[0203]

TABLE 9

HUMAN KAP siRNA POLYNCULE (POST-BLAST		QUENCES
19-Nucleotide Target Sequence	Region	SEQ ID NO.
GAUGAAGAGCCUAUUGAAG	CR	
AGAUGAACAGACUCCAAUU	CR	
GAUGAACAGACUCCAAUUC	CR	
UCACCCAUCAUCAUCCAAU	CR	
GAGCUUACAACCUGCCUUA	CR	
CACUGCUAUGGAGGACUUG	CR	
UCACCAGAGCAAGCCAUAG	CR	
CCAGAGCAAGCCAUAGACA	CR	
CAGCCUGCGAGACCUAAGA	CR	
GUUUCGGGACAAAUUAGCU	CR	
AAUUAGCUGCACAUCUAUC	CR	

TABLE 9-continued

	HUMAN KAP		POLYNCULE OST-BLAST		QUENCES	
19-N	Nucleotide	Target	Sequence	Region	SEQ ID	NO.
	AUUAGCUG	CACAUCU	AUCA	CR		
	UUAGCUGC	ACAUCUA	UCAU	CR		

[0204]

TABLE 10

HUMAN DSP-3 siRNA POLYNCULEOTIDE SEQUENCES (POST-BLAST)			
19-Nucleotide Target Sequence	Region	SEQ ID NO.	
GAGACGCGGAACAAUUGAG	CR		
AGAACAAGGUGACACAUAU	CR		
GAACAAGGUGACACAUAUU	CR		
GCAGCGGAUUCACCAUCUC	CR		
GCGGAUUCACCAUCUCAAA	CR		
CACUGGUGAUCGCAUACAU	CR		
GUAUCGGCAGUGGCUGAAG	CR		

[0205]

TABLE 11

HUMAN PTP EPSILON SIRNA POLYN (POST-BLAST		E SEÇ	UEN	ICES
19-Nucleotide Target Sequence	Region	SEQ	ID	NO.
GAUCCGCCGACGACUGCAA	CR			
GUUUCGGGAGGAGUUCAAC	CR			
AUGACCAUUCUAGGGUGAU	CR			
CCAUUCUAGGGUGAUUCUG	CR			
CAUAGAUGGUUACAAAGAG	CR			
AACAGGAAACGGUUAACGA	CR			
GGAAACGGUUAACGACUUC	CR			
CCAUCGUCAUGUUAACAAA	CR			
CUACACCAUCCGGAAGUUC	CR			
UCCGGAAGUUCUGCAUACA	CR			
GAAAGUAAAGACGCUCAAC	CR			
GCGCCCUCAGAUGGUUCAA	CR			
CGGAUAUGCAGUACACGUU	CR			
CCACCCACUUCGACAAGAU	CR			
CAAAUGUCCGGAUCAUGAA	CR			
CAUGAGGACGGCAACUUG	CR			
UGACUUCAACCGAGUGAUC	CR			
ACCGAGUGAUCCUUUCCAU	CR			
AGAAUACACAGACUACAUC	CR			
GACUACAUCAACGCAUCCU	CR			
UCAACGCAUCCUUCAUAGA	CR			
CACACGGUUGAGGACUUCU	CR			
AAUCCCACACUAUCGUGAU	CR			
AUCCCACACUAUCGUGAUG	CR			
ACCGAGGGCUCAGUUACUC	CR			
CCGAGGGCUCAGUUACUCA	CR			
CUCAUGGAGAAAUAACGAU	CR			
UGGAGAAAUAACGAUUGAG	CR			
GCCAUCAGUAUACGAGACU	CR			
UCAGUAUACGAGACUUUCU	CR			
GGGCAAAGGCAUGAUUGAC	CR			
GCUGGGCGAACAGGUACAU	CR			
CUUCAGAGACCACAUAUGG	CR			

EXAMPLE 3

Decreased Activation of JNK in the Presence of siRNA Specific for DSP-3

[0206] This Example describes the effect on JNK activation by sequence-specific siRNA interference of DSP-3 polypeptide expression.

[0207] HeLa cells were transfected with 60 pmoles of DSP3.1 siRNA (SEQ ID NO:1) or 60 pmoles CD45.2 (SEQ ID NO:13) as described in Example 1. After the incubation following transfection, cells were stimulated with 10 ng/ml TNF-α or 10 ng/ml EGF for 10 minutes or with 500 mM sorbitol for 30 minutes, which are known stimulators of the JNK signal transduction pathway (WO 01/21812; Shen et al. Proc. Natl. Acad. Sci. 98:13613-18 (2001)). After the stimulators were decanted, the 6-well plate of cells was frozen. The cells were treated with 0.5 ml Extraction Buffer (20 mM Tris, pH 8, 136 mM NaCl, 50 mM NaF; 1 mM V04; 0.2 mM EDTA, 0.2 mM EGTA, 20 nM Calyculin, 10% glycerol, 0.5% nonidet P40, 1 μ g/ml of aprotinin, pepstatin, and leupeptin; and 1 mM Benzamidine) (4° C.). When the cells had partially thawed, the wells of the plates were scraped and the cells were collected. The wells were washed 3x with Extraction Buffer and the washes were combined with the cells. After centrifugation of the extracted cells, the supernatants were decanted. The protein concentration of each extract was determined by the Bradford protein assay. Volumes of the different extracts were adjusted with Extraction Buffer to the concentration of the extract having the lowest protein concentration.

[0208] JUN, a substrate of JNK, conjugated to glutathione (GSH) (GST-cJUN) (Shen et al., supra) in 20 mM Tris, pH 7.2, 1 nM EDTA, and 150 mM NaCl was combined with 200-250 μ l of Glutathione-Sepharose (Amersham Biosciences, Piscataway, N.J.). After mixing for 45 minutes at 4° C., the conjugated sepharose beads were washed twice in Extraction Buffer and then resuspended in 1 ml of Extraction Buffer.

[0209] cJUN-Sepharose (20 μ l) was added to each cell extract sample. The mixtures were gently mixed for 2 hours at 4° C., followed by one wash in 1 ml Extraction Buffer and once in 1 ml kinase buffer (20 mM Pipes, pH 7.2, 10 mM MgCl₂, 1 mM DTT, 0.1% Triton X-100, and 1 MM sodium vanadate). The mixtures were centrifuged and the pellets were kept on ice. ATP mix (300° C./ml of $[\gamma^{-32}P]$ ATP (3000 Ci/mmole) in kinase buffer) was incubated in a heat block to bring the solution to 30° C. ATP mix (15 µl) was added to each cold cJUN-Sepharose pellet at time intervals of 20 seconds. After the ATP mix was added, each sample was vortexed gently for 5 seconds and then placed in the 30° C. heat block. Each sample was gently mixed again for 5 seconds at 20-second intervals. After 20 minutes, the reactions were stopped at 20-second intervals with 15 µl 2×SDS-PAGE sample buffer. The samples were immediately heated at 100° C. for 5 minutes, then mixed and frozen at -20° C. The extracts were thawed and applied to 8-16% NOVEX® gels. After electrophoresis, the gels were dried and the cJUN band was cut from the gel and the radioactivity was counted (Cerenkov measurement). As shown in FIGS. 3 and 4, JNK activation as measured by the presence of phosphorylated JUN was mediated less by cells transfected with siRNA specific for DSP-3 than in cells transfected with a nonspecific siRNA.

[0210] Because EGF induces a signaling pathway involving the ERK MAP kinase family, the effect on ERK phosphorylation in HeLa cells transfected with DSP-3 specific siRNA was determined. Transfection of HeLa cells and stimulation of the JNK signaling pathway was performed as in the previous experiment. Additional transfected cell cultures were stimulated with anisomycin. Phosphorylation of ERK was determined in a similar manner as described above for cJUN except that after electrophoresis of the cell extract samples, the proteins separated in the gel were transferred to a PVDF membrane. The immunoblot was probed with an anti-phospho-ERK antibody (1:1000) followed by incubation with the appropriate HRP-conjugated reagent and detection by chemiluminescence. As shown in FIG. 5, phosphorylation of ERK induced by stimulation of the cells with EGF and sorbitol was not affected by interference of DSP-3 polypeptide expression by specific siRNA DSP3.1.

EXAMPLE 4

Interference of Expression and Function of Cell Division Cycle Proteins by Specific siRNA

[0211] This example describes interference of expression of cell division cycle (cdc) proteins, cdc14a, cdc14b, and cdc25A, cdc25B, and cdc25C polypeptides by sequence specific siRNA polynucleotides. The effect on the function of these polypeptides in the presence of siRNA was also determined.

[0212] Interference with Cell Division Cycle Protein Expression by Specific siRNA

[0213] Two siRNA sequences that were specific for cdc14a polynucleotide (SEQ ID NO:33) encoding a cdc14a polypeptide (SEQ ID NO: 34) and two siRNA sequences specific for cdc14b polynucleotide (SEQ ID NO:35) encoding a cdc14b polypeptide (SEQ ID NO:36) were designed using the criteria described in Example 1. Recombinant expression vectors containing polynucleotide sequences encoding FLAG®-tagged cdc14a polypeptide and FLAG®tagged cdc14b polypeptide were prepared essentially according to methods described in Example 2 with the following exceptions. 293-HEK cells were cultured in 35 mm culture dishes and were transfected with FLAG vectors at a concentration of 1 µg per well. 293-HEK cells were co-transfected with FLAG®-tagged cdc14a expression vector and the following siRNAs at 20 nM per well: cdc14a.2 (5'-caucugugagaacaccgaatt-3', SEQ ID NO: cdc14a.3 (5'-cuuggcaaugguguacagatt-3', SEQ), cdc14a.5 (5'-); cdc14a.4, SEQ ID NO: NO: gcacaguaaauacccacuatt-3', SEQ ID NO:); DSP3.1 (SEQ ID NO:); DSP3.2 (SEQ ID NO: cdc14b.3 (5'-caagcaaaugcugccuucctt-3', **SEQ** IDNO: _); cdc14b.4 (5'-gagccagacuugaaaguggtt-3', SEQ); and CD45.3); MKP.2 (SEQ ID NO: (negative control). Controls included 293-HEK cells that were not transfected with any vector or siRNA and 293-HEK cells transfected with FLAG®-tagged cdc14a in the presence of siRNA annealing buffer. The level of expression in each sample was analyzed by immunoblot as described in Example 2 using an anti-FLAG® antibody. As shown in FIG. 6, specific siRNAs, cdc14a.2, cdc14a.3, and cdc14a.5 interfered with expression of cdc14a polypeptide most effectively.

[0214] Specificity of cdc14a.3 siRNA for interfering with expression of cdc14a and not other dual specificity phos-

phatases was shown by co-transfecting cdc14a.3 siRNA with FLAG®-tagged cdc14a (1 µg per 35 mm well of cells), FLAG®-tagged DSP-3, FLAG®tagged cdc14b, and FLAG®-tagged DSP-11. A FLAG® recombinant expression construct containing a polynucleotide sequence (SEQ ID NO:_____) encoding a DSP-3 polypeptide (SEQ ID NO:_____) was prepared as described for constructing other FLAG vectors. 293-HEK cell transfections and analysis of polypeptide expression levels were performed as described in Example 2. FIG. 7 shows that siRNA cdc14a.3 interfered with expression of only the cdc14a dual specificity phosphatase.

[0215] 293-HEK cells were co-transfected with FLAG®tagged cdc14b expression vector (2 μ g/35 mm well) and the following siRNAs at 20 nM per well: cdc14b.3 (SEQ ID NO:); cdc14b.4 (SEQ ID NO:_ (SEQ ID NO: ____)); cdc14a.5 (SEQ ID NO: DSP3.1 (SEQ ID NO: ____); DSP3.2 (SEQ ID NO: _____);); DSP3.2 (SEQ ID); MKP.2 (SEQ ID NO:); and CD45.3. Controls included 293-HEK cells that were not transfected with any vector or siRNA and 293-HEK cells transfected with FLAG®-tagged cdc14b in the presence of siRNA annealing buffer. The level of expression in each sample was analyzed by immunoblot as described in Example 2 using an anti-FLAG® antibody. As shown in FIG. 8, only specific siRNAs, cdc14b.3 and cdc14b.4 interfered with expression of cdc14b polypeptide.

[0216] Specificity of cdc14b.3 and cdc14b.4 siRNAs for interfering with expression of cdc14b and not other dual specificity phosphatases was shown by co-transfecting the siRNAs with FLAG®-tagged cdc14b (2 µg per 35 mm well), FLAG®-tagged DSP-3, and FLAG®-tagged DSP-11. Cells transfected with FLAG®-tagged DSP-3 and FLAG®-tagged DSP-11 were also co-transfected with cdc14a.5 siRNA. 293-HEK cell transfections and analysis of polypeptide expression levels were performed as described in Example 2. FIG. 9 shows that cdc14b.3 and cdc14b.4 siRNAs interfered with expression of only the cdc14b dual specificity phosphatase.

[0217] Expression of cdc14b polypeptide co-transfected with cdc14b.4 siRNA in HeLa cells was analyzed by immunocytochemistry. HeLa cells were co-transfected with a cdc14b recombinant expression vector and siRNA. Expression of cdc14b was detected by standard immunocytochemistry methods. As shown in FIG. 10, cdc14b.4 siRNA interfered with expression of cdc 14b polypeptide (top and bottom right panels).

[0218] The efficacy of RNAi against FLAG®-tagged Cdc25A expression in 293-HEK cells was also determined. Cells were co-transfected with a FLAG®-Cdc25A expression construct (prepared as described in Example 2) and specific siRNAs 25A.1, 25A.2, 25A.3, and 25A.4 (20 nM) and non-specific siRNAs (25B.1-0.4 and 25C.1-0.4). The level of expression of Cdc25A was determined by immunoblotting with an anti-FLAG® antibody. Only siRNA 25A.2 (5'-gaggagccauucugauucutt-3' (SEQ ID NO:_____)) effectively inhibited expression of Cdc25A.

[0219] The effect of RNAi on endogenous expression of Cdc25B and Cdc25C was examined in HeLa cells. The experiments were performed essentially as described in Example 2, except that HeLa cells were exposed to 10 nM siRNA polynucleotides for 48 hours. Four siRNAs specific

for Cdc25A: 25A.1, 25A.2, 25A.3, and 25A.4 (20 nM); four siRNAs specific for Cdc25B: 25B.1, 25B.2, 25B.3, and 25B.4 (20 nM); and four siRNAs specific for Cdc25C: 25C.1, 25C.2, 25C.3, and 25C.4 (20 nM) were transfected into HeLa cells and expression was analyzed by immunoblotting cell lysates separated by SDS-PAGE using a Cdc25B antibody (Santa Cruz Biotechnololgy, Cat. No. c-20) and a Cdc25C antibody (Santa Cruz Biotechnololgy, Cat. No. h-85). The level of expression of Cdc25B was decreased 40-50% in HeLa cells transfected with siRNA cdc25B.2 (5'-aggcggcuacaaggaguuctt-3')), and 50-60% in cells transfected with NO: cdc25B.4 siRNA 5'-gaugecauggaageceacatt-3' (SEQ ID)). In HeLa cells transfected with siRNAs spe-NO: cific for Cdc25C, the level of expression of Cdc25C decreased 90% in HeLa cells transfected with cdc25C.1 (5'-cugceacucageuuaceactt-3' (SEQ ID NO: decreased 70-80% in cells transfected with cdc25C.3 (5'cccagaaacaguggcugcctt-3' (SEQ ID NO: decreased 70-80% in cells transfected with Cdc25C.4 (5'aggcggcuacagagacuuctt-3' (SEQ ID NO:_

[0220] The ability of cancer cell lines to mediate RNA interference was examined by co-transfecting several cancer cell lines with a FLAG® cdc14b expression construct and specific siRNAs. The cell lines included SW620 (colon cancer); MCF7 (breast cancer); HS578T (breast cancer); MDA MB 231 (breast cancer); and T47D (breast cancer) (ATCC, NCI 60 panel). The FLAG® cdc14b expression construct (1-2 µg) was co-transfected with 20 nM of 14b.3 siRNA (SEQ ID NO:); 14b.4 siRNA (SEQ ID); or MKP.2 siRNA (SEQ ID NO:) (nonspecific control) into each cell line as described in Example 2. The level of expression was analyzed by immunoblotting with an anti-FLAG® antibody according to the method described in Example 2. Expression of cdc14b was decreased in each of the five cell lines that were cotransfected with a cdc14b specific siRNA polynucleotide.

[0221] Effect of CDC-Specific siRNA on Cell Prolifera-

[0222] Proliferation of cancer cells in the presence of siRNA polynucleotides specific for cdc14a, cdc14b, and Cdc25A, Cdc25B, and Cdc25C was determined. Cell proliferation was assessed according to a quantitative metabolic assay that measures the enzymatic conversion by cellular dehydrogenase in viable cells of a yellow tetrazolium salt (methylthiazoletetrazolium (MTT)) to purple formazan crystals. MDA-MB-231, SW620, and HeLa cell lines were transfected according to the procedures described in Examples 1 and 2 with the following siRNA polynucleotides (5 nM): cdc14a.3 (5'-cuuggcaaugguguacagatt-3' (SEQ ID)); cdc14a.5 (5'-gcacaguaaauacccacuatt-3' (SEQ ID $\overline{\text{NO}}$: _)); cdc14b.3 (5'-caagcaaaugcugccuucctt-3' SEQ ID \overline{NO} :); cdc14b.4 (5'-gagccagacuugaaaguggtt-); cdc25A.2 (SEQ ID NO: 3' SEQ ID NO: __); cdc25C.1 (SEQ ID cdc25B.4 (SEQ ID NO:). The transfected cells were seeded at in a tissue culture plate and maintained for 5 days. A MTT assay was performed according to manufacturer's instructions (ATCC MTT Cell Proliferation Assav Kit, Cat. NO. 30-1010K, ATCC). The MTT-containing media was removed from the wells and was added to solubilize the formazan. The amount of formazan formed was determined by measuring absorbance at 570 m. Compared to the buffer only control, a

significant decrease in proliferation was observed in MDA-MB-231 cells transfected with cdc14a.3, cdc14a.5, cdc14b.3, cdc14b.4, and cdc25B.4, and in HeLa cells transfected with cdc14a.3, cdc14a.5, cdc14b.4, and cdc25B.4. A significant decrease in cell proliferation of SW620 cells transfected with cdc14a.3 or cdc14a.5 was also observed.

[0223] Effect of CDC-Specific siRNA on Proapoptotic Signaling

[0224] Poly(ADP-ribose) polymerase (PARP) is a nuclear DNA binding protein that participates in genome repair, DNA replication, and the regulation of transcription. Cleavage of PARP (approximately 115 kDa) by members of the caspase family into polypeptide fragments of approximately 85 kDa and 25 kDa prevents PARP from performing its normal repair functions and appears to be an early event in apoptotic cell death. The cleaved PARP fragments can be detected by a variety of immunodetection methods.

[0225] HeLa cells were transfected with cdc14a.5 (SEO _); cdc14b.4 (SEQ ID NO:_ _); cdc25A.2 ID NO: (SEQ ID NO: ____); cdc25B.4 (SEQ ID NO:____ __); and cdc25C.1 (SEQ ID NO:_____) at a concentration of 10 nM. After incubating the transfected cells for at 37° C., cell lysates were prepared and an immunoblot performed an antibody that that specifically binds to cleaved PARP and an antibody that binds to PARP (Cell Signaling Technology, Beverly, Mass.). The results are presented in FIG. 24. The data indicated that inhibiting expression of cdc14a by specific siRNA induces proapoptotic signaling to a greater extent than inhibition of expression of the other cell division cycle proteins.

EXAMPLE 5

Interference of PTP-1B and TC-PTP Expression by Specific siRNA

[0226] This Example describes interference with expression of two protein tyrosine phosphatases, PTP-1B and TC-PTP, using sequence specific siRNA polynucleotides.

[0227] Interference of Endogenous Expression of Murine PTP-1B in Mouse Fibroblasts by Sequence Specific siRNA Polynucleotides

[0228] Three siRNA sequences that were specific for murine PTP-1B polynucleotide (GenBank Acc. No. NM_011201, SEQ ID NO:) encoding a murine PTP-1B polypeptide (GenBank Acc. No. NM_011201, SEQ ID NO: and one siRNA sequences specific for human PTP-1B polynucleotide (GenBank Ace. No. NM_02827, SEQ ID NO:) encoding a human PTP-1B polypeptide (GenBank Ace. No. NM_02827, SEQ ID) were designed using the criteria described in Examples 1 and 2. Mouse C57B16 #3 cells, clones 3 and 10, were maintained in cell culture according to standard cell culture methods. Each C57B16 #3 clone was transfected with 200 nM of the following siRNAs: mPTP1B.1 (SEQ ID _), mPTP1B.2 (SEQ ID NO:_ _), mPTP1B.3 (SEQ ID NO:), and hPTP1B.1 (SEQ ID). Each siRNA was diluted in 50 μ l O_{PTI}MEM® to provide a final concentration of 200 nM per well. In a separate tube, 3 μ l of LipofectamineTM was combined with 10 μ l O_{PTI}MEM®. Each solution was incubated for 7 minutes. The two solutions were then mixed and incubated at room temperature for 22 minutes. The final volume of the mixed solution was adjusted to $100 \,\mu$ l and then the C57B16 #3 cells were added. Cells were transfected with the specific siRNAs, the human PTP1B siRNA, or annealing buffer alone. The transfected cells were incubated with siRNAs for six days.

[0229] Cell lysates were prepared by extracting the cells in ELISA extraction buffer (50 mM Tris-HCl, pH 7.5 (room temperature); 2 mM EDTA, pH 7-8; 1 mM phosphate (polyphosphate); 1 mM NaVO4 (monomeric), pH 10; 0.1% Triton X-100; Protease Inhibitor Cocktail set III, (Calbiochem, San Diego, Calif., catalog #539134)). The lysates were separated by SDS-PAGE gel and analyzed by immunoblot according to the procedures described in Examples 1 and 2 using an anti-PTP1B murine monoclonal antibody (Dr. Ben Neel, Harvard University, Cambridge, Mass.). As shown in FIG. 11, the levels of expression of endogenous PTP1B were decreased only in C57B16 cells transfected with the murine PTP1B sequence specific siRNAs.

[0230] The effect of RNAi on endogenous expression of murine PTP1B in a second murine cell line was examined. Mouse PTP1B:3T31R fibroblasts were transfected with 20 nM mPTP1B1.1 (SEQ ID NO:_____); mPTP1B1.6 (SEQ ID NO:_____); and mPTP1B1.8 (SEQ ID NO:_____) according to the method described above. The level of murine PTP1B expression in the cells transfected with mPTPB11.1 decreased approximately 80% compared with cells transfected with a non-specific siRNA (hPTP1B1.3 (SEQ ID NO:_____)); cells transfected with mPTP1B1.6 decreased approximately 40%; and cells transfected with mPTP1B1.8 decreased approximately 60%.

[0231] Interference with Murine PTP1B Expression by siRNA in Co-Transfection Assays

[0232] A recombinant expression construct was prepared that encodes wild-type murine PTP1B (mPTP1B) (GenBank Accession No. NM_011201, SEQ ID NOs:_____ and _____). The following oligonucleotide primers were used for the wild-type construct. The sequences of the BamHI and EcoRI restriction sites are underlined.

mPTP1B-sense (mPTP1B 5'BamHI)

(SEQ ID NO:___)
5'-GGGGGGGATCCATGGAGATGGAGAAGGAGTTCGAGG-3'

mPTP1B anti sense (mPTP1B 3'EcoRI)

(SEQ ID NO:___)
5'-GGGGGAATTCTCAGTGAAAACACACCCGGTAGCAC-3'

[0233] Vector pCMVTag2B (Stratagene, La Jolla, Calif.) was digested with restriction endonuclease BamHI (New England Biolabs, Beverly, Mass.) for 3 hours at 37° C. The digested vector was then incubated with Klenow polymerase (New England Biolabs) for 15 minutes at 25° C. to fill in the recessed 3' termini, followed by an incubation of 30 minutes at 37° C. with calf intestinal phosphatase (New England Biolabs). The GATEWAYTM Reading Frame Cassette B (Invitrogen Life Technologies, Carlsbad, Calif.) was inserted into the pCMVTag2B vector by ligation with T4 DNA ligase (Invitrogen Life Technologies) overnight at 16° C. according to the supplier's instructions. DB3.1TM competent *E. Coli* cells were transformed with the ligated vector (GWpCMVTag2) and DNA was isolated by standard molecular biology methods.

[0234] Vectors for expression of mPTP1 B wild type were prepared as follows. The mPTP1B construct was subcloned into a GATEWAYTM entry vector pENTR3 CTM (Invitrogen Life Technologies) by digesting $20 \mu l$ of the mPTP1B cDNA or 20 µl of the pENTR3CTM vector with 1 µl of BamHI (New England Biolabs); 1 μl of EcoRI (New England Biolabs); 5 μl 10×EcoRI buffer (New England Biolabs); 5 μl 10×BSA (New England Biolabs); and $18 \mu l$ distilled water for 3 hours at 37° C. Digested DNA was run on a 1% agarose gel, digested bands were excised, and the DNA was gel-purified using a QIAGEN Gel Extraction kit (QIAGEN, Inc., Valencia, Calif.). Four microliters of the mPTP1B cDNA was ligated into 2 μ l of the pENTR3CTM vector overnight at 16° C. with 1 μ l 10× Ligation Buffer (Invitrogen Life Technologies), 1 µl T4 DNA Ligase (4U/µl) (Invitrogen, Carlsbad, Calif.), and 2 μ l distilled water. The construct was transformed into LIBRARY EFFICIENCY® DH5α™ cells. The FLAG® epitope-tagged mPTP1B construct was prepared by cloning the pENTR3 CTM mPTP1B WT construct into the GWpCMVTag2 vector. The pENTR3C™ construct containing the mPTP1B polynucleotide was linearized by digesting the construct with Vsp I (Promega Corp., Madison, Wis.) at 37° C. for 2 hours. The DNA was purified using a QIAGEN PCR Purification kit (QIAGEN, Inc.). Three microliters (100 ng/µl) of the GWpCMVTag2 vector were combined in a GATEWAYTM LR reaction with 6 μl linearized pENTR3CTM mPTP1B WT, 3 μl TE buffer, 4 μl ClonaseTM Enzyme, and 4 μ l LR reaction buffer (Invitrogen Life Technologies) for 1 hour at room temperature. After addition of Proteinase K (Invitrogen Life Technologies) to the reaction for 10 minutes, LIBRARY EFFICIENCY® DH5a™ cells were transformed with the expression construct.

[0235] The murine PTP1B expression vector (0.5 µg) was co-transfected with 20 nM murine PTP1B sequence-specific siRNA polynucleotides into PTP1B knockout mouse fibroblasts (PTP1B KO mouse embryonic fibroblasts were prepared from 13-day embryos from PTP1B knock out mice to establish the cell line, which was then transfected with human insulin receptor (1BKO+HIR) (HIR, Julie Moyers, Eli Lilly and Company, Indianapolis, Ind.)). Transfections were performed as described in Example 1. After incubating the transfected cells for 18 hours at 37° C., cell lysates were prepared, separated by 4-12% SDS-PAGE, and immunoblotted using the anti-PTP1B murine monoclonal antibody (see above). The results are summarized in Table 13.

[0236] Interference with Rat PTP1B Expression by siRNA in Co-Transfection Assays

[0237] A co-transfection assay was performed as described above in which 1BKO+HIR mouse fibroblasts were co-transfected with an expression vector containing the sequence encoding the peptide FLAG® in frame with a nucleotide sequence (SEQ ID NO: __) that encoded a rat PTP1B polypeptide (SEQ ID NO:) (GenBank Accession No. NM_102637) and a sequence specific siRNA, rPTP1B1.1 (5'-agaagaaaaagagaugguctt-3' (SEQ ID NO:)) (20 nM). Additional rat PTP1B specific siRNA polynucleotides examined in the co-transfection assay included rPTP1B1.2 (5'-cggauggugguggagguctt-3' (SEQ ID NO:)); rPTP1B1.3 (5'-uggcaagugcaaggagcuett-3' (SEQ ID NO:)); and rPTP1B1.4 (5'cuacaccaccuggccugactt-3' (SEQ ID NO: of expression of the rat PTP1B polypeptide was determined by immunoblotting cell lysates with an anti-human PTP1B antibody that also specifically binds to rat PTP1B ((PHO2, Oncogene Research Products™, Inc. San Diego, Calif.). Expression of rat PTP1B decreased approximately 50% in cells transfected with rPTP1B1.1.

[0238] Interference with Human PTP-1B Expression by siRNA in Co-Transfection Assays

[0239] Human PTP1B encoding sequence was cloned into a Pmt vector according to standard molecular biology procedures (see Flint et al., *EMBO J.* 12:1937-46 (1993)). 1BKO+HIR cells were co-transfected with the human PTP-1B expression vector and siRNA polynucleotides (20 nM) specific for human PTP-1B sequences overnight using Lipofectamine 2000. Cells were lysed as described above, and the lysates were separated by 4-12% SDS-PAGE and transferred onto a PDVF membrane. The level of expression of human PTP-1B was determined by immunoblotting with an anti-human PTP-1B antibody (PHO2, Oncogene Research Products™, Inc. San Diego, Calif.). Interference with expression of human PTP-1B was observed with four siRNA polynucleotides as indicated in Table 14.

TABLE 12

_	sirna interference with muri		(PRESSION	_
Target	siRNA Sequence (SEQ ID NO)	siRNA Name	Related SEQ ID NO:	Decrease in Expression
Murine PTP1B	5'-gaagccagaggagcuauatt-3' 5'-cuacaccacauggccugactt-3' 5'-gacugccgaccagcugcgctt-3' 5'-gguaccgagaugucagccctt-3' 5'-ugacuauaucaaugccagctt-3' 5'-agaagaaaaggagaugguctt-3' 5'-cgggaagugcaaggagcuctt-3'	mPTP1B1.1 mPTP1B1.2 mPTP1B1.3 mPTP1B1.4 mPTP1B1.5 mPTP1B1.6 mPTP1B1.7		95% Not analyzed Not analyzed 25% Not analyzed 80% Not analyzed 80%

TABLE 13

	siRNA INTERFERENCE WITH HUM IN CO-TRANSFECTION		EXPRESSIO	N
Target	siRNA Sequence (SEQ ID NO)	siRNA Name	Related SEQ ID NO:	Decrease in Expression
Human PTP1B	5'-cuauaccacauggccugactt-3' 5'-gccaaaggaguuacauuctt-3' 5'-ggaagaaaaaggaagccctt-3' 5'-caaugggaaaugcagggagtt-3' 5'-ggaucaguggaaggagcuutc-3'	hPTP1B1.3 hPTP1B1.3	2 3 1	Not analyzed >95% >95% >95% >95%

[0240] Interference of Endogenous Expression of Human PTP-1B by siRNA

[0241] The effect of sequence specific siRNA on endogenous expression of human PTP-1B was examined in two different cell lines. HeLa cells were transfected as described above with HPTP1B1.1, hPTP1B1.2, hPTP1B1.3, hPTP1B1.4, and hPTP1B1.5 at 20 nM using Lipofectamine 2000, and after three days, the level of expression of PTP1B was analyzed by immunoblot. No significant decrease in

[0244] Interference with Expression of Human TCPTP by siRNA in Co-Transfection Assays

[0245] Co-transfection assays were performed essentially as described above for PTP1B expression analysis to determine siRNA inhibition of human TCPTP expression. A recombinant expression construct was prepared that encodes wild-type human TC45. The following oligonucleotide primers were used for the wild-type construct. The sequences of the BamHI and EcoRi restriction sites are underlined.

```
Human TC45 sense (TC45 5'BamHI)

5'-GGGGGGATCCATGCCCACCACCACCATGAGCGGGAGTT-3'

(SEQ ID NO___)

Human TC45 antisense (TC45 3'EcoRI)

5'-GGGGAATTCTTAGGTGTCTGTCAATCTTGGCCTTTTTCTTTTCGTTCA-3' (SEQ ID NO:___)
```

expression of human PTP-1B was observed in HeLa cells transfected with the siRNA hPTP1B1.1. In HeLa cells transfected with hPTP1B1.2 and hPTP1B1.4, the level of expression of human PTP-1B decreased 80%, and in cells transfected with hPTP1B1.3, the level of expression decreased 90%. Endogenous expression of human PTP-1B in the second cell line, 293-HEK-HIR, (gift from Julie Moyers, Eli Lilly and Company) transfected with sequence specific siRNAs hPTP1B1.2, hPTP1B1.3, hPTP1B1.4, hPTP1B1.5 (20 nM) was reduced by 90%.

[0242] Interference with Expression of Murine TCPTP by siRNA in Co-Transfection Assays

[0243] A co-transfection assay was performed in which 1BKO+HIR murine fibroblasts were co-transfected as described above with an expression vector comprising a polynucleotide sequence (SEQ ID NO:_) encoding murine TCPTP (SEQ ID NO:) and siRNA (SEQ mTCPTP1.1 (5'-guugucaugcuaaaccgaact-3')) (1 nM) or mTCPTP1.2 (5'-cagaacagagugaugguugag-3' (SEQ ID NO: __)) (20 nM). The level of TCPTP expression was determined by immunoblotting with an anti-human TCPTP antibody (Curt Diltz, CEPTYR, Inc.). The siRNA mTCPTP1.2 did not interfere with expression of murine TCPTP. Expression of murine TCPTP decreased more than 95% in cells transfected with siRNA, mTCPTP1.1.

[0246] Vector pCMVTag2B (Stratagene, La Jolla, Calif.) was digested with restriction endonuclease BamHI (New England Biolabs, Beverly, Mass.) for 3 hours at 37° C. The digested vector was then incubated with Klenow polymerase (New England Biolabs) for 15 minutes at 25° C. to fill in the recessed 3' termini, followed by an incubation of 30 minutes at 37° C. with calf intestinal phosphatase (New England Biolabs). The GATEWAYTM Reading Frame Cassette B (Invitrogen Life Technologies) was inserted into the pCMVTag2B vector by ligation with T4 DNA ligase (Invitrogen Life Technologies) overnight at 16° C. according to the supplier's instructions. DB3.1TM competent *E. coli* cells were transformed with the ligated vector (GWpCMVTag2) and DNA was isolated by standard molecular biology methods.

[0247] Vectors for expression of TC45 wild type were prepared as follows: The TC45 construct was subcloned into a GATEWAYTM entry vector pENTR3CTM (Invitrogen Life Technologies) by digesting 10 μ l of the TC45 cDNA with 1 μ l of BamHI (New England Biolabs), 1 μ l of EcoRI (New England Biolabs), 3 μ l 10×EcoRI buffer (New England Biolabs), 3 μ l 10×BSA (New England Biolabs), and 12 μ l distilled water for 3 hours at 37° C. Two microliters of the pENTR3CTM vector was digested with 0.5 μ l of BamHI (New England Biolabs), 0.5 μ l of EcoRI (New England Biolabs), 2 μ l 10×EcoRI buffer (New England Biolabs), 2 μ l 10×BSA (New England Biolabs), and 13 μ l distilled water for 3 hours at 37° C., followed by an incubation of 30

minutes at 37° C. with calf intestinal phosphatase (New England Biolabs). Digested DNA was run on a 1% agarose gel, digested bands were excised and gel purified using a QIAGEN Gel Extraction kit (QIAGEN, Inc.). Four microliters of the TC45 cDNA was ligated into 2 μ l of the pENTR3CTM vector overnight at 16° C. with 11 μl 10× Ligation Buffer (Invitrogen Life Technologies), 1 µl T4 DNA Ligase $(4U/\mu l)$ (Invitrogen Life Technologies), and 2 μ l distilled water. The construct was transformed into LIBRARY EFFICIENCY® DH5αTM cells. The FLAG® epitope-tagged TC45 construct was prepared by cloning the pENTR3CTM TC45 WT construct into the GWpCMVTag2 vector. The pENTR3C™ construct containing the TC45 polynucleotide was linearized by digesting the construct with Pvu I (New England Biolabs)) at 37° C. for 2 hours. The DNA was purified using a QIAGEN PCR Purification kit (QIAGEN, Inc.). Two microliters (150 ng/ μ l) of the GWpCMVTag2 vector were combined in a GATEWAY™ LR reaction with 3 μl linearized pENTR3CTM TC45 WT, 5 μ l TE buffer, 4 μ l ClonaseTM Enzyme, and 4 μ l LR reaction buffer (Invitrogen Life Technologies) overnight at room temperature. After addition of Proteinase K (Invitrogen Life Technologies) to the reaction for 10 minutes, LIBRARY EFFICIENCY® DH5 α^{TM} cells were transformed with the expression construct.

[0248] Cells (1BKO+HIR murine embryo fibroblasts) were co-transfected with an expression vector containing a nucleotide sequence encoding human TCPTP (SEQ ID NO:____) and siRNAs, hTCPTP1.4 (5'-guugu-caugcugaaccgcatt-3' (SEQ ID NO:____)) (20 nM); hTCPTP1.5 (5'-gcccauaugaucacagucgtg-3' (SEQ ID

human TCPTP was not affected by siRNA hTCPTP1.7. Expression levels decreased more than 95% in the cells co-transfected with hTCPTP1.4; 80% in cells co-transfected with hTCPTP1.5; and greater than 90% in cells transfected with hTCPTP1.6.

[0249] Interference of Endogenous Expression of Human TCPTP by siRNA

[0250] 293-HEK HIR cells were transfected with either hTCPTP1.4 (SEQ ID NO:_____) or rPTP1B1.2, a rat PTP1B sequence specific siRNA (5'-cggaugguggguggagguctt-3' (SEQ ID NO:_____), which was included as a nonspecific siRNA control, at concentrations of 2, 5, 10, 20 and 50 nM. Endogenous expression of human TCPTP in the cells transfected with sequence specific hTCPTP1.4 decreased 90%.

[0251] Transient Transfection of Human PTP1B and Sequence Specific Hairpin Vectors

[0252] Effectiveness of a human PTP1B sequence-specific siRNA in the form of a hairpin insert was examined in a transient co-transfection assay. Cells (1BKO+HIR mouse fibroblasts) were transfected with a human PTP1B expression vector (see above) and co-transfected with hPTP1B hairpin vectors (1, 0.5, and 0.25 µg) according to the transfection method described above. The human PTP1B specific sequences were inserted in frame with a human U6 small nuclear RNA promoter into a vector, which was a gift from David Engelke (University of Michigan, Ann Arbor, Mich.) (see also Paul et al., Nat. Biotechnol. 20:446-48 (2002)). The sequences of each strand inserted into the hairpin vectors are as follows.

hPTP1B H1.2-HP4
5'-tttGCCCAAAGGAGTTACATTCGTAAGAATGTAACTCCTTTGGGCtttt-3' (SEQ ID NO:___)
3' GGGTTTCCTCAATGTAAGCATTCTTACATTGAGGAAACCCGaaaaagatc-5' (SEQ ID NO:___)
hPTP1B H1.2-HP9
5'-tttGCCCAAAGGAGTTACATTCCCTGGGTAAGAATGTAACTCCTTTGGGCtttt-3' (SEQ ID NO:___)
3' GGGTTTCCTCAATGTAAGGGACCCATTCTTACATTGAGGAAACCCGaaaaagatc-5' (SEQ ID NO:___)

NO:______)) (10 nM); hTCPTP1.6 (5'-uegguuaaaugugca-caguac-3' (SEQ ID NO:_____)) (10 nM); or hTCPTP1.7 (5'-ugacuauccucauagaguggg-3' (SEQ ID NO:____)) (20 nM). Additional human TCPTP specific siRNA polynucle-otides were prepared; the sequences of each are as follows: hTCPTP1.1 (5'-agugagagaaucuggcucctt-3' (SEQ ID NO:____)); hTCPTP1.2 (5'-ggagagacuuaucuccugcctt-3' (SEQ ID NO:____)); and hTCPTP1.3 (5'-ggugac-cgauguacaggactt-3' (SEQ ID NO:____)). The level of TCPTP expression was determined by immunoblotting with an anti-human TCPTP antibody. The level of expression of

[0253] Twenty-four hours after the cells were transfected, cell lysates were prepared and expression of human PTP1B was determined by immunoblotting with an antihuman PTP1B antibody (see above). Cell lysates were also immunoblotted with an antibody specific for human insulin receptor beta chain (IR β) (Cat. No. C-19, Santa Cruz Biotechnology). The results are presented in **FIG. 19**.

[0254] Hairpin vectors are also prepared that contain sequences specific for murine PTP1B. The following sequences of each strand are inserted into a hairpin vector.

```
mPTP1BM1.1-HP4
5'-tttGAAGCCCAGAGGAGCTATAAGAATATAGCTCCTCTGGGCTTCtttt-3' (SEQ ID NO:__)
3' TTCGGGTCTCCTCGATATTCTTATATCGAGGAGACCCGAAGaaaaagatc-5' (SEQ ID NO:__)
mPTP1BM1.1-HP9
5'-tttGAAGCCCAGAGGAGCTATAGGGTGAGAATATAGCTCCTCTGGGCTTCtttt-3' (SEQ ID NO:__)
3' TTCGGGTCTCCTCGATATCCCACTCTTATATCGAGGAGACCCGAAGaaaaagatc-5' (SEQ ID NO:__)
```

EXAMPLE 6

Regulatory Role of TCPTP in Insulin Signaling

[0255] The protein tyrosine phosphatase TC-PTP exists in two alternatively spliced forms, TC45 and TC48, that share the same catalytic domain but differ at their extreme carboxy-termini (Mosinger et al., *Proc. Natl. Acad. Sci. USA* 89:499-503 (1992)). Insulin-induced oxidation and inactivation of TC45 suggested that it functions as a negative regulator of insulin signaling (see U.S. Ser. No. 10/366,547). This Example examines the regulatory role of TC45 in insulin signaling by inhibiting expression of the PTP by RNAi.

[0256] The specific siRNA duplexes were designed by first scanning through the open reading frame of TC45 mRNA and selecting sequences of 5'AA(N₁₉)3' (N=any nucleotide) for further characterization. The following 2 oligonucle-5'-AACAGAUACAwere chosen: GAGAUGUAAGC-3' (TCPTP1) (SEQ ID NO: 5'-AAGCCCA UAUGAUC ACAGUCG-3' (TCPTP2) (SEQ). These sequences were submitted to a BLAST search against human, rat, and mouse genome databases to ensure specificity for TC-PTP. The 21-nt siRNA duplexes were obtained in a deprotected and desalted form (Dharmacon Research). Rat-1 fibroblasts (Fischer rat fibroblast 3T3 like cell line) and HepG2 (human hepatocellular carcinoma) cells (American Type Culture Collection (ATCC), Manasass, Va.) were transfected with each siRNA at 100 nM. Both siRNA oligonucleotides suppressed expression of endogenous TC45 in the transfected HepG2 cells and Rat-1 fibroblasts, with TCPTP1 being more efficient.

[0257] Rat-1 (fibroblasts) and HepG2 (human hepatocellular carcinoma) cells were routinely maintained in DMEM supplemented with 10% FBS, 1% glutamine, 100 U/ml penicillin and 100 μ g/ml streptomycin. For stimulation with insulin, cells were plated in media containing 10% FBS for 48 hours, then serum-starved for 16 hours before treatment. For transient transfection, cells were plated in DMEM supplemented with 10% FBS for 16 hours, then in Opti-MEM (Invitrogen) without serum, after which the plasmid (5 μg/dish for Rat-1,30 μg/dish for HepG2) was introduced by LipofectAMINE and PLUS reagents (Invitrogen), according to the manufacture's recommendations. The transfection efficiency was routinely 40%. For RNAi experiments, cells were plated as above and the TCPTP siRNA duplexes were introduced by Oligofectamine (Invitrogen) according to the guidelines provided by Dharmacon Research Inc.

[0258] The potential regulatory role of TC45 in insulin signaling was investigated by examining the phosphorylation status of PKB/Akt, which is a critical effector in the P13 kinase pathway that mediates various intracellular responses to insulin, following ablation of the PTP by RNAi. The human hepatoma cell line HepG2 has been used extensively as a model to study insulin signaling (see Huang et al., *J. Biol. Chem.* 277:18151-60 (2002); Haj et al., *Science* 295 1708-11 (2002)). Serum-deprived Rat-I and HepG2 cells were exposed to 10 or 50 nM insulin for 5 min and lysed. The insulin receptor (IR) was immunoprecipitated from 500 μ g of cell lysate with anti-IR- β antibody 29B4 (Santa Cruz Biotechnology), then immunoblotted with anti-phosphotyrosine, anti-pYpY^{1162/1162}-IR- β (Biosource International,

Camarillo, Calif.) and anti-IR- β (C-19) (Santa Cruz Biotechnology) antibodies. HepG2 cells expressed higher levels of IR- β than Rat-1 cells as shown in **FIG. 20**A and displayed a robust response to insulin stimulation, as shown by the overall tyrosine phosphorylation level of IR- β and autophosphorylation of the activation loop tyrosines 1162 and 1163 (see **FIG. 20A**).

[0259] For the RNAi experiment, HepG2 cells were untransfected (control) or transfected (+siRNA) with 100 nM siRNA TCPTP1 oligonucleotide. Two days after transfection, cells were serum-starved for 16 hours and then stimulated with 10 nM insulin for 0, 1, 2, 5, 10, and 20 minutes. Total lysates (30 μ g) were immunoblotted with anti-phospho-PKB/Akt (Cell Signaling Technology, Beverly, Mass.); anti-PKB/Akt (Cell Signaling Technology); anti-TC45 (1910H (Lorenzen et al., J. Cell. Biol. 131:631-43 (1995))); and anti-PTP1B (FG6 (LaMontagne et al., Mol. Cell. Biol. 18:2965-75 (1998))) antibodies. The results presented in FIG. 20B indicate that depletion of TC45 enhanced both the intensity and duration of the signaling response. FIG. 20C illustrates a densitometric analysis of the gel image to show the ratio of phosphorylated PKB/Akt relative to total PKB/Akt. Similar results were observed in three independent experiments.

[0260] The role of TC45 in insulin signaling was further investigated by preparing a TC45 substrate trapping mutant. Substitution of an alanine residue for the invariant aspartate, which functions as a general acid in catalysis, into the vector expressing TC45 and into a vector expressing PTP1B was performed by standard site-directed mutagenesis protocols. HepG2 cells overexpressing wild type (WT) or trapping mutant (DA) forms of PTP1B and TC45 were either left untreated (-INS) or stimulated with 10 nM insulin for 5 min (+INS), then lysed in trapping buffer (20 mM Tris (pH 7.4), 1% NP-40, 150 mM NaCl, 10% glycerol, 10 mM IAA and 25 μ g/ml each of aprotinin and leupeptin). Aliquots (1 mg) of cell lysate were incubated with anti-PTP1B antibody (FG6) or anti-TC45 antibody (CF4). The immunocomplexes were washed with lysis buffer, subjected to SDS-PAGE then immunoblotted with anti-IR-β (C-19) antibody. An aliquot of lysate (30 μ g) was immunoblotted with anti-PTP1B antibody (FG6) or anti-TC-PTP antibody (CF4) to verify PTP expression. The data are shown in FIG. 21A and are representative of three independent experiments. These data suggest that TC45 recognizes IR-β as a substrate.

[0261] Serum starved, untransfected (control) or TC45 siRNA (100 nM) transfected (+siRNA) HepG2 cells were stimulated with 10 nM insulin for 0, 1, 2, 5, 10, and 20 minutes. The insulin receptor was immunoprecipitated from 750 μ g of cell lysate with anti-IR- β antibody 29B4 and immunoblotted with anti-phosphotyrosine (G104), anti-pY⁹⁷²- β (Biosource), anti-pYpY^{1162/1163}-IR- β , and anti-IR- β (C-19) antibodies as shown in FIG. 21B. FIG. 21C illustrates densitometric analyses of the gel image to show the ratio of phosphorylated IR- β relative to total IR- β for total phosphotyrosine (upper panel), phosphorylation of Tyr 972 (middle panel), and phosphorylation of the activation loop tyrosines 1162 and 1163 (lower panel). Similar results were observed in two independent experiments.

EXAMPLE 7

Effect of siRNAs Specific for PTP1B and TCPTP on Insulin Receptor Tyrosine Phosphorylation

[0262] This example illustrates the effect of RNAi on the function of components in a cell signaling pathway. The role of PTP1B in the down regulation of insulin signaling has been illustrated by data derived from a variety of approaches (Cheng et al., *Eur. J. Biochem.* 269:1050-59 (2002)), including the phenotype of the PTP1B knockout mouse (Elchebly et al., *Science* 283:1544-48 (1999); Klaman et al., *Mol. Cell Biol* 20:5479-89 (2000); see also U.S. patent application Ser. No. 10/366,547).

[0263] The effect of human PTP1B siRNA and of human TCPTP siRNA on the level of phosphorylation of IR-β was evaluated by ELISA. 292-HEK HIR cells were transfected with 0, 0.5, 3, or 10 nM siRNAs. The siRNA polynucleotides transfected into the cells included hPTP1B1.2 (SEQ), hPTP1B1.3 (SEQ ID NO: mPTP1B1.1 (SEQ ID NO:), rPTP1B1.2 (SEQ ID __), hTCPTP1.4 (SEQ ID NO:_ _), and the combination of hPTP1B1.3 and hTCPTP1.4. Seventy-two hours after transfection, cells were exposed to insulin for 7 minutes at concentrations of 0, 25, 50, 75, and 100 nM. Cell lysates were prepared as described in Example 1, and total cell protein was quantified by the Bio-Rad Protein Assay performed according to the manufacturer's instructions (BioRad, Hercules, Calif.). An ELISA was performed as follows. Dynex Immulon HB4X plates were coated with anti-insulin receptor antibody Ab-1 (1 mg/ml; NeoMarkers, Inc., Fremont, Calif.) that was diluted 1:1000 in CMF (calcium magnesium free)-PBS containing 5 µg/ml fatty acid free BSA (faf-BSA). The plates were incubated at 4° C. for at least four hours. The antibody solution was removed by aspiration, followed by the addition of 300 μ l of 3% faf-BSA+CMF-PBS. The plates were incubated for 1 hr with agitation on a vortex platform shaker (setting #5) at room temperature. After aspirating the 3% faf-BSA+CMF-PBS solution, approximately 10-20 µg of lysate were added to the wells and incubated at room temperature for one hour. Plates were washed three times with TBST (20 mM Tris-HCl, pH 7.5 150 mM NaCl; 0.05% Tween 20). An anti-insulin receptor phosphotyrosine specific antibody (pTyr 1162/63, Biosource International, Camarillo, Calif., Catalog #44-804) was diluted 1:2000 in TBST and added to the plates for one hour at room temperature. The plates were washed three times with TBST. HRP-conjugated anti-rabbit antibody (Amersham Biosciences, catalog #NA934V) (1:2000 in TBST) was then added to the wells and incubated at room temperature for one hour. The plates were washed three times with TBST and once with deionized, sterile water. TMB solution (Sigma Aldrich) (100 µl per well) was added and developed until a modest color change (10-30 minutes depending on cell type and insulin response). The reaction was stopped with 100 μ l of 1.8 N H₂SO₄ and then mixed. The optical density of each well was measured at 450 nM in a Spectramax plate reader (Molecular Devices Corp., Sunnyvale, Calif.). The data are presented in FIG. 22. The level of expression of PTP1B in each cell lysates was determined by immunoblot as described above. PTP1B polypeptide was detected using an anti-human PTP-1B antibody (PHO2, Oncogene Research Products™, Inc.). The amount of PTP1B expressed in cells transfected with varying concentrations of either siRNA was quantified by densitometric analysis of the immunoblot. The level of expression of human PTP1B is presented as a percent of the level of expression in cells that were not transfected with hPTP1B1.3 siRNA (i.e., the level of expression in untransfected cells equals 100%) (see tables in FIG. 22).

[0264] In a second experiment, 292-HEK HIR cells were transfected with 0, 0.5, 3, or 10 nM siRNAs. The siRNA polynucleotides transfected into the cells included), hPTP1B1.3 (SEQ ID hPTP1B1.2 (SEQ ID NO: mPTP1B1.1 (SEQ ID NO: hTCPTP1.4 (SEQ ID NO:_ _), and rPTP1B1.2 (SEQ ID). Seventy-two hours after transfection, cells were exposed to insulin for 7 minutes at concentrations of 0, 5, 10, 20, 50, and 100 nM. Cell lysates were prepared and total cell protein was quantified as described above. An ELISA was performed as described above. Cell lysates were coated onto 96-well plates, blocked, and probed with an anti-pYpY^{1162/1163}-IR-β antibody. Binding was detected using an enzyme conjugated secondary reagent. As shown in FIGS. 23 and 24, respectively, increased phosphorylation of the insulin receptor was observed in cells transfected with hPTP1B1.3 and with hTCPTP1.4.

[0265] The percent decrease in the level of PTP1B expression was compared with the level of phosphorylation of the insulin receptor. In three separate experements, 292-HEK HIR cells were transfected with 0, 0.5, 3, or 10 nM hPTP1B1.3 siRNA and then exposed to insulin for 7 minutes at concentrations of 0, 5, 10, 20, 50, and 100 nM. An ELISA and immunoblot of cell lysates were performed as described above. The effect of hPTP1B1.3 siRNA on the phosphorylation state of the insulin receptor is summarized in FIG. 25. Each data point represents the average optical density measured in duplicate wells.

EXAMPLE 8

Identification of Oncology Targets and Decreased Expression of the Targets by Specific siRNAs

[0266] This Example describes validation of DSP-3 as a target for oncology therapeutics. The Example also describes identification of siRNA polynucleotides that effectively interfere with expression of known chemotherapeutic target polypeptides.

[0267] Expression of DSP-3 polypeptide was evaluated in several cancer cell lines transfected with sequence specific DSP-3 siRNA polynucleotides and nonspecific siRNA polynucleotides. Cell lines included HeLa, HS578T; MDA-MB-231; MDA-MB-435 (breast cancer cell line that is ER-, Her²⁺, EGFR⁺, p53^{mut}, and invasive); MCF7 (breast cancer cell line that is ER⁺, Her2^{low}, EGFR^{low}, p53^{WT}, and non-invasive); T47D (breast cancer cell line that is ER⁺, Her2⁻, EGFR⁻, p53^{mut}, and non-invasive); HCT-116 (p53^{WT}); and HT-29 (p53^{mut}). Cells were transfected with 10 nM DSP3.1 ___), DSP3.4 (5'-ggugacacauauucugucutt-(SEQ ID NO: 3', (SEQ ID NO:____)), or Scr.2 (SEQ ID NO:_ (scrambled, a non-specific siRNA sequence not found in a human genome database), and then cell lysates were prepared and evaluated for expression of DSP-3 and inhibition of expression by specific siRNAs, as described in Example 1. Transfection efficiency of some cell lines with siRNA, for example, MC7 and T47D, was improved by using Lipofectamine™ 2000 according to manufacturer's recommendations (Invitrogen Life Technologies) rather than Oligofectamine™ (Invitrogen Life Technologies) for the transfection procedure. The level of expression of DSP-3 polypeptide in the presence of specific siRNA 4compared with the non-specific siRNA control was significantly decreased in MCF7, T47D, MD-MB-435, HCT-116, and HT-29 cells.

[0268] Interference with expression of known chemotherapeutic targets by RNAi was examined, and siRNA polynucleotides that effectively interfere with expression of the targets were identified. Targets included dihydrofolate reductase (DHFR) (GenBank Accession No. NM_000791) (SEQ ID NOs: and); thymidylate synthetase (GenBank Accession No. NM_001071) (SEQ ID); and topoisomerase I (GenBank and Accession No. J03250) (SEQ ID NOs: and The siRNA polynucleotides were designed according to methods described in Examples 1 and 2 and were manufactured by Dharmacon. Each siRNA was transfected into HeLa cells, and the effect of each on the endogenous expression of DHFR, thymidylate synthetase, and topoisomerase I was evaluated by immunoblotting of cell lysates as described in Example 1. The level of expression of the targets was determined by immunoblotting with an anti-DHFR monoclonal antibody (BD monoclonal antibody (diluted 1:250)); an anti-topoisomerase I antibody (Santa Cruz Biotechnology, Cat. No. sc-10783, diluted 1:200); and an anti-thymidylate synthetase antibody (Rockland sheep polyclonal antibody diluted 1:2000). The results are presented in Table 3.

[0271] A cell proliferation assay was also performed using a different cell line, T47D, and the same siRNAs. The data are presented in FIG. 27. The effect of silencing on proliferation was confirmed by cell counting. The number of T47D cells transfected with the nonspecific control siRNA scr.2 was approximately 200×10⁴. In T47D cells transfected with either DSP3.1 or DSP3.4 siRNA, the number of cells was approximately 75% of the negative control, and in the presence of DHFR.1, the number of cells was approximately 50% compared with cells transfected with the nonspecific control. Significantly decreased expression of DSP-3 and DHFR in cells transfected with the respective siRNAs was confirmed by immunoblot.

[0272] Silencing of DSP-3 in HCT-116 and T47D cells also induced proapoptotic signaling. HCT-116 cells and T47D cells were transfected with 10 nM of non-specific si RNA control scrb1.2 (SEQ ID NO:_____) (identical sequence to scr.2 described above), DSP3.1, DSP3.4, or DHFR.1. Three days after transfection of HCT-116 cells and

TABLE 14

SIRNA	siRNA	NA INTERFE	RENCE WIT	H ENDO	SENOUS	S EXPRESS	SION
OF DHFR,	F DHFR,	, THYMIDYL	ATE SYNTE	HETASE,	AND	TOPOISOM	ERASE

Target	siRNA Sequence (SEQ ID NO)	siRNA Name	Related SEQ ID NO:	Decrease in Expression
DHFR	5'-gaccugguucuccauuccutt-3'	DHFR.1		>90%
	5'-gcaguguauuugcuagguctt-3'	DHFR.3		>80%
	5'-gucagcgagcagguucucatt-3'	DHFR.4		>90%
Thymidylate Synthetase	5'-ccaaacguguguucuggaatt-3'	TYMS.1		>95%
	5'-ccaacccugacgacagaagtt-3'	TYMS.2		>90%
	5'-gccaggugacuuuauacactt-3'	TYMS.3		>95%
	5'-cccagaccuuucccaaagctt-3'	$\mathtt{TYMS.4}$		>90%
Topoisomerase I	5'-gauagagccuccuggacuutt-3'	TOP1.1		>90%
	5'-guccggcaugauaacaaggtt-3'	TOP1.2		>90%
	5'-ggagaaacagcggacacugtt-3'	TOP1.3		>80%
	5'-gcagcccgaggaugaucuutt-3'	TOP1.4		>80%

[0269] Interference of expression of another chemotherapeutic polypeptide target IKKgamma is performed according to the same procedures described above. The siRNA polynucleotides that are tested are IKK.1 (5'-gagucucucuggggaagett-3' (SEQ ID NO:_____)); IKK.2 (5'-gaguuccucaugugcaagtt-3' (SEQ ID NO:_____)); IKK.3 (5'-ggcucugugaaagcccagtt-3' (SEQ ID NO:_____)); and IKK.4 (5'-cacgcugcucuugauguggtt-3' (SEQ ID NO:_____)).

[0270] The effect of RNAi silencing on expression of DHFR was compared with silencing of DSP-3, Cdc14a, and SHP-2 polypeptide expression in a HCT-116 cell proliferation assay. HCT-116 cells were transfected with 2.5 nM of the following siRNA oligonucleotides: scr.2 (SEQ ID

five days after transfection of T47D cells, PARP assays were performed as described in Example 4. The results are presented in FIG. 28.

EXAMPLE 9

Inhibition of MAP Kinase Kinase Expression by RNAi

[0273] This Example describes interference of expression of MAP kinase kinases that are involved in the JNK signal transduction pathway in cells transfected with sequence specific siRNA polynucleotides.

[0274] Transient co-transfection experiments were performed as described in Example 2. 293-HEK cells were co-transfected with an expression vector that contained a polynucleotide sequence (GenBank Accession No. L36870)) that encoded FLAG®-tagged human (SEQ ID NO: MKK4 polypeptide (GenBank Accession No. L36870 (SEQ)) or with an expression vector that contained a polynucleotide sequence (GenBank Accession No. _)) that encoded FLAG®-AF013588 (SEQ ID NO:_ tagged human MKK7 polypeptide (GenBank Accession No. AF013588 (SEQ ID NO:)). The siRNA oligonucleotides were designed and prepared as described in Examples 1 and 2. The cells were transfected and the level of expression of each kinase was determined by immunoblotting with an anti-FLAG® monoclonal antibody as described in Example 2. The results are presented in Table 4.

[0283] Clemens et al., Proc. Natl. Acad. Sci. USA 97:6499-6503 (2000)

[0284] Elbashir et al., Genes & Development 15:188-200 (2001)

[0285] Elbashir, et al., *Nature* 411:494-498 (2001)

[**0286**] Fire et al., *Nature* 391:806-11 (1993)

[0287] Flint et al., Proc. Natl. Acad. Sci. USA 94:1680-1685 (1997)

[0288] Fukada et al., J. Biol. Chem. 276:25512-25519 (2001)

[0289] Harborth et al., J. Cell Sci. 114:4557-4565

TABLE 15

	sirna Interference WITH IN CO-TRANSFI			N
Target	siRNA Sequence (SEQ ID NO)	siRNA Name	Related SEQ ID NOs	Decrease in Expression
MKK4	5'-gugggcaaauaauggcagutt-3' 5'-cugugaaagcacuaaaccatt-3' 5'-ggagauccuccgcagcugatt-3' 5'-gcucuuuauacuuuggccutt-3' 5'-cacggacgucuucaucgcctt-3' 5'-gaagcggaugcagggccctt-3' 5'-cugcaagacggacuuugagtt-3'	MKK4 . 1 MKK4 . 2 MKK4 . 3 MKK4 . 4 MKK7 . 1 MKK7 . 2 MKK7 . 3 MKK7 . 4		80% 90% 90% 80% 10% 10%

EXAMPLE 10

Inhibition of Human P53 Expression by RNAi

[0275] An hairpin vector is prepared that contains a polynucleotide insert comprising a sequence that is a portion of a polynucleotide that encodes human p53 as described in Example 5. This sequence may be incorporated into a hairpin vector and transfected into a cell line known to express p53 (see Example 5). The level of expression of p53 is then determined by methods well known in the art, such as immunoblotting using an anti-p53 antibody (see Example 5). The p53 sequence incorporated into a hairpin vector is as follows.

[0276] HP53-HP9

[0277] 5'-tttGACTCCAGTGGTMTCTACTTCM-GAGAGTAGATTACCACTGGAGTCttttt-3' (SEQ ID NO:_____)

[0278] 3' tgaggtcaccattagatgaagttetetcatetaatggtgaceteagAAAAAGATC-5' (SEQ ID NO:)

ADDITIONAL REFERENCES

[0279] Agami et al., Cell 102:55-66 (2000)

[0280] Bass, Brenda L., Cell 101:235:238 (2000)

[0281] Brummelkamp et al., Science 296:550-53 (2002)

[0282] Carthew, Richard W., Current Opinion in Cell Biology 13:244-248 (2001)

[0290] Hutvagner et al., Curr. Opin. Gen. & Dev. 12:225-232 (2002)

[0291] Kisielow et al., Biochem. J. 363:1-5 (2002)

[0292] Paddison et al., Genes & Development 16:948-958 (2002)

[**0293**] Salmeen et al., *Moleular Cell* 6:1401-1412 (2000)

[0294] Scadden et al., EMBO Reports 2:1107-1111 (2001)

[**0295**] Sharp, Phillip A., Genes & Development 13:139-141 (1999)

[0296] Sharp, Phillip A., Genes & Development 15:485-490 (2001)

[0297] Shen et al., Proc. Natl. Acad. Sci. USA 24:13613-13618 (2001)

[0298] Sui et al., Proc. Natl. Acad. Sci. USA 99:5515-5520 (2002)

[0299] Tonks et al, Curr. Opin. Cell Biol. 13:182-195 (2001)

[0300] Tuschl, Thomas, *Chembiochem*. 2:239-245 (2001)

[0301] Ui-Tei et al., FEBS Letters 479:79-82 (2000)

[0302] Wen et al., Proc. Natl. Acad. Sci. 98:4622-4627 (2001)

[0303] Zamore et al., Cell 101:25-33 (2000)

[**0311**] WO 01/34815

[0312] WO 01/42443

[0304]	EP1 152 056	[0313] WO 01/68836
[0305]	U.S. Pat. No. 2001/0029617	[0314] WO 01/75164
[0306]	U.S. Pat. No. 2002/0007051	[0315] WO 01/92513
[0307]	U.S. Pat. No. 6,326,193	[0316] WO 01/96584
[0308]	U.S. Pat. No. 6,342,595	[0317] WO 99/32619
[0309]	U.S. Pat. No. 6,506,559	[0318] From the foregoi although specific embodim
[0310]	WO 01/29058	described herein for the

[0318] From the foregoing, it will be appreciated that, although specific embodiments of the invention have been described herein for the purpose of illustration, various modifications may be made without deviating from the spirit and scope of the invention. Accordingly, the present invention is not limited except as by the appended claims.

SEQUENCE LISTING

```
<160> NUMBER OF SEQ ID NOS: 842
<210> SEQ ID NO 1
<211> LENGTH: 7
<212> TYPE: PRT
<213> ORGANISM: Unknown
<220> FEATURE:
<223> OTHER INFORMATION: Unique signature sequence motif contained
      within the conserved domain of the PTP family of enzymes
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 2, 3, 4, 5, 6
<223> OTHER INFORMATION: Xaa = Any Amino Acid
<400> SEQUENCE: 1
Cys Xaa Xaa Xaa Xaa Arg
<210> SEQ ID NO 2
<211> LENGTH: 11
<212> TYPE: PRT
<213> ORGANISM: UNKNOWN
<220> FEATURE:
<223> OTHER INFORMATION: 11 amino acid conserved sequence conatining the
     signature sequence motif for the majority of PTPs.
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 1
<223> OTHER INFORMATION: Xaa = Ile or Val
<220> FEATURE:
<221> NAME/KEY: VARIANT <222> LOCATION: 4,7,8
<223> OTHER INFORMATION: Xaa = any amino acid
<220> FEATURE:
<221> NAME/KEY: VARIANT
<222> LOCATION: 10
<223> OTHER INFORMATION: Xaa = Ser or Thr
<400> SEQUENCE: 2
Xaa His Cys Xaa Ala Gly Xaa Xaa Arg Xaa Gly
<210> SEQ ID NO 3
<211> LENGTH: 21 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP3.1
<400> SEQUENCE: 3
                                                                         21
cgauagugcc aggccuaugt t
```

```
<210> SEQ ID NO 4 <211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP3.1
<400> SEQUENCE: 4
cgauagugcc aggccuaug
                                                                           19
<210> SEQ ID NO 5
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP3.1
<400> SEQUENCE: 5
cauaggccug gcacuaucg
                                                                           19
<210> SEQ ID NO 6
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP3.1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 6
cgauagugcc aggccuaugn n
                                                                           21
<210> SEQ ID NO 7
<211> LENGTH: 21 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP3.1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 7
nncauaggcc uggcacuauc g
                                                                           21
<210> SEO ID NO 8
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP3.2
<400> SEQUENCE: 8
gcaugagguc caucaguaut t
                                                                           21
<210> SEQ ID NO 9
<211> LENGTH: 19 <212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP3.2
```

<400> SEQUENCE: 9	
gcaugagguc caucaguau	19
<210> SEQ ID NO 10 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - DSP3.2	
<400> SEQUENCE: 10	
auacugaugg accucaugc	19
<pre><210> SEQ ID NO 11 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <222> OTHER INFORMATION: Small interfering RNA - DSP3.2 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 20, 21 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 11	
gcaugagguc caucaguaun n	21
<pre><210> SEQ ID NO 12 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - DSP3.2 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 1, 2 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 12	0.1
nnauacugau ggaccucaug c	21
<pre><210> SEQ ID NO 13 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - DSP3.3</pre>	
<400> SEQUENCE: 13 cqauacuqcc aggcccauqt t	21
<210> SEQ ID NO 14	2.1
<211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - DSP3.3	
<400> SEQUENCE: 14	
cgauacugcc aggcccaug	19
<210> SEQ ID NO 15 <211> LENGTH: 19	

46

```
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP3.3
<400> SEQUENCE: 15
caugggccug gcaguaucg
                                                                            19
<210> SEQ ID NO 16
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP3.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 16
cgauacugcc aggcccaugn n
                                                                            21
<210> SEQ ID NO 17
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP3.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 17
nncaugggcc uggcaguauc g
                                                                            21
<210> SEQ ID NO 18
<211> LENGTH: 21 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - MKP.1
<400> SEQUENCE: 18
auccugcccu uucuguacct t
                                                                            21
<210> SEQ ID NO 19
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - MKP.1
<400> SEQUENCE: 19
auccugcccu uucuguacc
                                                                            19
<210> SEQ ID NO 20
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - MKP.1
<400> SEQUENCE: 20
                                                                            19
qquacaqaaa qqqcaqqau
```

```
<210> SEQ ID NO 21 <211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - MKP.1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 21
auccugcccu uucuguaccn n
                                                                          21
<210> SEQ ID NO 22
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - MKP.1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 22
nngguacaga aagggcagga u
                                                                          21
<210> SEQ ID NO 23
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - MKP.2
<400> SEQUENCE: 23
gcagaggcaa agcaucauct t
                                                                          21
<210> SEO ID NO 24
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - MKP.2
<400> SEQUENCE: 24
gcagaggcaa agcaucauc
                                                                          19
<210> SEO ID NO 25
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - MKP.2
<400> SEQUENCE: 25
gaugaugcuu ugccucugc
                                                                          19
<210> SEQ ID NO 26
<211> LENGTH: 21 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - MKP.2
```

```
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 26
                                                                          21
gcagaggcaa agcaucaucn n
<210> SEQ ID NO 27
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - MKP.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 27
nngaugauge uuugeeueug e
                                                                          21
<210> SEQ ID NO 28
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc14a.1
<400> SEQUENCE: 28
caucgugcga agguuccugt t
<210> SEQ ID NO 29
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc14a.1
<400> SEOUENCE: 29
                                                                          19
caucgugcga agguuccug
<210> SEQ ID NO 30
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc14a.1
<400> SEQUENCE: 30
                                                                          19
caggaaccuu cgcacgaug
<210> SEQ ID NO 31
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc14a.1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 31
                                                                          21
caucquqcqa aqquuccuqn n
```

```
<210> SEQ ID NO 32 <211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc14a.1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 32
nncaggaacc uucgcacgau g
                                                                           21
<210> SEQ ID NO 33
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - CD45.2
<400> SEQUENCE: 33
gccgagaaca aaguggaugt t
                                                                           21
<210> SEQ ID NO 34
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - CD45.2
<400> SEQUENCE: 34
gccgagaaca aaguggaug
                                                                           19
<210> SEQ ID NO 35
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - CD45.2
<400> SEQUENCE: 35
cauccacuuu guucucggc
                                                                           19
<210> SEQ ID NO 36
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - CD45.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 36
gccgagaaca aaguggaugn n
                                                                           21
<210> SEQ ID NO 37
<211> LENGTH: 21 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - CD45.2
```

```
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEOUENCE: 37
                                                                        21
nncauccacu uuguucucgg c
<210> SEQ ID NO 38
<211> LENGTH: 8
<212> TYPE: PRT
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: FLAG sequence
<400> SEQUENCE: 38
Asp Tyr Lys Asp Asp Asp Lys
<210> SEQ ID NO 39
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP11.2
<400> SEQUENCE: 39
                                                                        21
cuggcaccau gcuggccugt t
<210> SEQ ID NO 40
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP11.2
<400> SEQUENCE: 40
cuggcaccau gcuggccug
                                                                        19
<210> SEQ ID NO 41
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Small interfering RNA - DSP11.2
<400> SEQUENCE: 41
caggccagca uggugccag
                                                                        19
<210> SEO ID NO 42
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP11.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 42
                                                                        21
cuqqcaccau qcuqqccuqn n
<210> SEQ ID NO 43
```

```
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP11.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 43
nncaggccag cauggugcca g
                                                                            21
<210> SEQ ID NO 44
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP11.4
<400> SEQUENCE: 44
agcagucuuc caguucuact t
                                                                            21
<210> SEQ ID NO 45
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP11.4
<400> SEQUENCE: 45
agcagucuuc caguucuac
                                                                            19
<210> SEQ ID NO 46
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP11.4
<400> SEQUENCE: 46
                                                                            19
guagaacugg aagacugcu
<210> SEQ ID NO 47
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP11.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 47
                                                                            21
agcagucuuc caguucuacn n
<210> SEQ ID NO 48
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP11.4
<220> FEATURE: <221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
```

```
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEOUENCE: 48
nnguagaacu ggaagacugc u
                                                                         21
<210> SEQ ID NO 49
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP18.2
<400> SEQUENCE: 49
                                                                         21
cugccuugug cacugcuuut t
<210> SEQ ID NO 50
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP18.2
<400> SEQUENCE: 50
cugccuugug cacugcuuu
                                                                         19
<210> SEQ ID NO 51
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP18.2
<400> SEQUENCE: 51
aaagcagugc acaaggcag
                                                                         19
<210> SEQ ID NO 52
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP18.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 52
cugccuugug cacugcuuun n
                                                                         21
<210> SEO ID NO 53
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP18.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 53
                                                                         21
nnaaaqcaqu qcacaaqqca q
<210> SEQ ID NO 54
```

```
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP18.4
<400> SEQUENCE: 54
                                                                           21
gaguuuggcu gggccaguut t
<210> SEQ ID NO 55
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP18.4
<400> SEQUENCE: 55
                                                                           19
gaguuuggcu gggccaguu
<210> SEQ ID NO 56
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP18.4
<400> SEQUENCE: 56
                                                                           19
aacuggccca gccaaacuc
<210> SEQ ID NO 57
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP18.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 57
                                                                           21
gaguuuggcu gggccaguun n
<210> SEQ ID NO 58
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP18.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 58
                                                                           21
nnaacuggcc cagccaaacu c
<210> SEQ ID NO 59
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP13.1
<400> SEOUENCE: 59
```

cuugcgggaa uucaaggaat t	21
<210> SEQ ID NO 60 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - DSP13.1	
<400> SEQUENCE: 60	
cuugcgggaa uucaaggaa	19
<210> SEQ ID NO 61 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - DSP13.1 <400> SEQUENCE: 61 uuccuugaau ucccgcaag	19
<pre><210> SEQ ID NO 62 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <222> OTHER INFORMATION: Small interfering RNA - DSP13.1 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 20, 21 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 62	
cuugcgggaa uucaaggaan n	21
<pre><210> SEQ ID NO 63 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - DSP13.1 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 1, 2 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 63	0.1
nnuuccuuga auuccegeaa g	21
<210> SEQ ID NO 64 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - DSP13.2	
<400> SEQUENCE: 64	
ccgaggggua cgguauauct t	21
<210> SEQ ID NO 65 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence	

```
<223> OTHER INFORMATION: Small interfering RNA - DSP13.2
<400> SEOUENCE: 65
ccgagggua cgguauauc
                                                                        19
<210> SEQ ID NO 66
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Small interfering RNA - DSP13.2
<400> SEQUENCE: 66
gauauaccgu accccucgg
                                                                        19
<210> SEQ ID NO 67
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP13.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 67
                                                                        21
ccgagggua cgguauaucn n
<210> SEQ ID NO 68
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP13.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 68
nngauauacc guaccccucg g
                                                                        21
<210> SEQ ID NO 69
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP13.3
<400> SEOUENCE: 69
caucaggcug gcuguaagat t
                                                                        21
<210> SEQ ID NO 70
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Small interfering RNA - DSP13.3
<400> SEQUENCE: 70
                                                                        19
caucaggcug gcuguaaga
<210> SEQ ID NO 71
```

```
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP13.3
<400> SEQUENCE: 71
ucuuacagee ageeugaug
<210> SEQ ID NO 72
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP13.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21 
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 72
                                                                          21
caucaggcug gcuguaagan n
<210> SEQ ID NO 73
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP13.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 73
nnucuuacag ccagccugau g
                                                                          21
<210> SEQ ID NO 74
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP13.4
<400> SEQUENCE: 74
cauggaucua aaugccuugt t
                                                                          21
<210> SEQ ID NO 75
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP13.4
<400> SEQUENCE: 75
                                                                          19
cauggaucua aaugccuug
<210> SEQ ID NO 76
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP13.4
<400> SEOUENCE: 76
```

caaggcauuu agauccaug	19
<210> SEQ ID NO 77	
<211> LENGTH: 21	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<pre><223> OTHER INFORMATION: Small interfering RNA - DSP13.4 <220> FEATURE:</pre>	
<221> NAME/KEY: misc_feature	
<222> LOCATION: 20, 21	
<223> OTHER INFORMATION: $n = A, T, C, G$ or U	
<400> SEQUENCE: 77	
cauggaucua aaugccuugn n	21
<210> SEQ ID NO 78	
<211> LENGTH: 21	
<212> TYPE: DNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Small interfering RNA - DSP13.4	
<pre><220> FEATURE: <221> NAME/KEY: misc_feature</pre>	
<222> LOCATION: 1, 2	
<223> OTHER INFORMATION: $n = A, T, C, G$ or U	
<400> SEQUENCE: 78	
nncaaggcau uuagauccau g	21
<210> SEQ ID NO 79 <211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - DSP14.1</pre>	
<400> SEQUENCE: 79	
gugaagacaa gccucaagat t	21
<210> SEQ ID NO 80	
<211> LENGTH: 19	
<212> TYPE: RNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interfering RNA - DSP14.1	
<400> SEQUENCE: 80	
gugaagacaa gccucaaga	19
<u> </u>	
<210> SEQ ID NO 81	
<211> LENGTH: 19	
<212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Small interfering RNA - DSP14.1	
<400> SEQUENCE: 81	
	10
ucuugaggcu ugucuucac	19
010 970 70 00	
<210> SEQ ID NO 82 <211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
NEZUY TERTURE.	

```
<223> OTHER INFORMATION: Small interfering RNA - DSP14.1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 82
                                                                            21
gugaagacaa gccucaagan n
<210> SEQ ID NO 83
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP14.1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2 
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 83
                                                                            21
nnucuugagg cuugucuuca c
<210> SEQ ID NO 84
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP14.2
<400> SEQUENCE: 84
gcucuacauu ggcgaugagt t
                                                                            21
<210> SEQ ID NO 85
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP14.2
<400> SEQUENCE: 85
                                                                            19
gcucuacauu ggcgaugag
<210> SEQ ID NO 86
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP14.2
<400> SEOUENCE: 86
cucaucgcca auguagagc
                                                                            19
<210> SEQ ID NO 87
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP14.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21 
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEOUENCE: 87
```

```
gcucuacauu ggcgaugagn n
                                                                           21
<210> SEQ ID NO 88
<211> LENGTH: 21 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP14.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 88
                                                                           21
nncucaucgc caauguagag c
<210> SEQ ID NO 89
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP14.3
<400> SEQUENCE: 89
gcgacgacca caguaagaut t
                                                                           21
<210> SEQ ID NO 90 <211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP14.3
<400> SEQUENCE: 90
gcgacgacca caguaagau
                                                                           19
<210> SEQ ID NO 91
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP14.3
<400> SEQUENCE: 91
aucuuacugu ggucgucgc
                                                                           19
<210> SEQ ID NO 92
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP14.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 92
gcgacgacca caguaagaun n
                                                                           21
<210> SEQ ID NO 93 <211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
```

<400> SEOUENCE: 98

```
<223> OTHER INFORMATION: Small interfering RNA - DSP14.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 93
nnaucuuacu guggucgucg c
<210> SEQ ID NO 94
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP14.4
<400> SEQUENCE: 94
                                                                           21
ggacaugacc cugguggact t
<210> SEQ ID NO 95
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP14.4
<400> SEQUENCE: 95
                                                                           19
ggacaugacc cugguggac
<210> SEQ ID NO 96
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP14.4
<400> SEQUENCE: 96
guccaccagg gucaugucc
                                                                           19
<210> SEQ ID NO 97
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP14.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEOUENCE: 97
ggacaugacc cugguggacn n
                                                                           21
<210> SEQ ID NO 98
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - DSP14.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
```

```
nnguccacca gggucauguc c
                                                                             21
<210> SEQ ID NO 99
<211> LENGTH: 21 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - SHP2.1
<400> SEQUENCE: 99
gauucagaac acuggugaut t
                                                                             21
<210> SEQ ID NO 100
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - SHP2.1
<400> SEQUENCE: 100
                                                                             19
gauucagaac acuggugau
<210> SEQ ID NO 101
<211> LENGTH: 19 <212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - SHP2.1
<400> SEQUENCE: 101
aucaccagug uucugaauc
                                                                             19
<210> SEQ ID NO 102
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - SHP2.1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 102
gauucagaac acuggugaun n
                                                                             21
<210> SEQ ID NO 103
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - SHP2.1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 103
nnaucaccag uguucugaau c
                                                                            21
<210> SEQ ID NO 104 <211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
```

```
<223> OTHER INFORMATION: Small interfering RNA - SHP2.2
<400> SEOUENCE: 104
gaauauggcg ucaugcgugt t
                                                                         21
<210> SEQ ID NO 105
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Small interfering RNA - SHP2.2
<400> SEQUENCE: 105
gaauauggcg ucaugcgug
                                                                         19
<210> SEQ ID NO 106
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - SHP2.2
<400> SEQUENCE: 106
cacgcaugac gccauauuc
                                                                         19
<210> SEQ ID NO 107
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - SHP2.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 107
                                                                         21
gaauauggcg ucaugcgugn n
<210> SEQ ID NO 108
<211> LENGTH: 21
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - SHP2.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2 
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEOUENCE: 108
nncacgcaug acgccauauu c
                                                                          21
<210> SEQ ID NO 109
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - SHP2.3
<400> SEQUENCE: 109
                                                                         21
cggucuggca auaccacuut t
<210> SEQ ID NO 110
```

```
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - SHP2.3
<400> SEQUENCE: 110
cggucuggca auaccacuu
                                                                          19
<210> SEQ ID NO 111
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - SHP2.3
<400> SEQUENCE: 111
                                                                         19
aagugguauu gccagaccg
<210> SEQ ID NO 112
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - SHP2.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 112
cggucuggca auaccacuun n
                                                                          21
<210> SEQ ID NO 113
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - SHP2.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 113
nnaaguggua uugccagacc g
                                                                          21
<210> SEQ ID NO 114
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - SHP2.4
<400> SEQUENCE: 114
                                                                          21
ugacggcaag ucuaaagugt t
<210> SEQ ID NO 115
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - SHP2.4
<400> SEQUENCE: 115
```

ugacggcaag ucuaaagug	19
<210> SEQ ID NO 116 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - SHP2.4	
<400> SEQUENCE: 116	
cacuuuagac uugccguca	19
<pre><210> SEQ ID NO 117 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - SHP2.4 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 20, 21 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 117	
ugacggcaag ucuaaagugn n	21
<pre><210> SEQ ID NO 118 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - SHP2.4 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 1, 2 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 118	
nncacuuuag acuugccguc a	21
<210> SEQ ID NO 119 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - KAP.1 <400> SEQUENCE: 119	
gagccuauug aagaugaact t	21
<210> SEQ ID NO 120 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - KAP.1	
<400> SEQUENCE: 120	
gagccuauug aagaugaac	19
<210> SEQ ID NO 121 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	

```
<223> OTHER INFORMATION: Small interfering RNA - KAP.1
<400> SEOUENCE: 121
guucaucuuc aauaggcuc
                                                                          19
<210> SEQ ID NO 122
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Small interfering RNA - KAP.1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 122
                                                                          21
qaqccuauuq aaqauqaacn n
<210> SEQ ID NO 123
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - KAP.1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2 
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 123
nnguucaucu ucaauaggcu c
                                                                          21
<210> SEQ ID NO 124
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - KAP.2
<400> SEQUENCE: 124
                                                                          21
gagcuguggu auacaagact t
<210> SEQ ID NO 125
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - KAP.2
<400> SEOUENCE: 125
gagcuguggu auacaagac
                                                                          19
<210> SEQ ID NO 126
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Small interfering RNA - KAP.2
<400> SEQUENCE: 126
                                                                          19
gucuuguaua ccacagcuc
<210> SEQ ID NO 127
```

```
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - KAP.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 127
gagcuguggu auacaagacn n
                                                                          21
<210> SEQ ID NO 128
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - KAP.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 128
nngucuugua uaccacagcu c
                                                                          21
<210> SEQ ID NO 129
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - KAP.3
<400> SEQUENCE: 129
gagcuuacaa ccugccuuat t
                                                                          21
<210> SEQ ID NO 130
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - KAP.3
<400> SEQUENCE: 130
gagcuuacaa ccugccuua
                                                                          19
<210> SEQ ID NO 131
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - KAP.3
<400> SEQUENCE: 131
                                                                          19
uaaggcaggu uguaagcuc
<210> SEQ ID NO 132
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - KAP.3
<220> FEATURE: <221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
```

```
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEOUENCE: 132
gagcuuacaa ccugccuuan n
                                                                         21
<210> SEQ ID NO 133
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Small interfering RNA - KAP.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 133
                                                                         21
nnuaaggcag guuguaagcu c
<210> SEQ ID NO 134
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - KAP.4
<400> SEQUENCE: 134
                                                                         21
uacacugcua uggaggacut t
<210> SEQ ID NO 135
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - KAP.4
<400> SEQUENCE: 135
                                                                         19
uacacugcua uggaggacu
<210> SEQ ID NO 136
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Small interfering RNA - KAP.4
<400> SEQUENCE: 136
aguccuccau agcagugua
                                                                         19
<210> SEO ID NO 137
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - KAP.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 137
                                                                         21
uacacuqcua uqqaqqacun n
<210> SEQ ID NO 138
```

```
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - KAP.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 138
nnaguccucc auagcagugu a
                                                                            21
<210> SEQ ID NO 139
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - Prl3.1
<400> SEQUENCE: 139
                                                                            21
gugaccuaug acaaaacgct t
<210> SEQ ID NO 140
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - Prl3.1
<400> SEQUENCE: 140
gugaccuaug acaaaacgc
                                                                            19
<210> SEQ ID NO 141
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - Prl3.1
<400> SEQUENCE: 141
                                                                            19
gcguuuuguc auaggucac
<210> SEQ ID NO 142
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - Prl3.1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 142
                                                                            21
gugaccuaug acaaaacgcn n
<210> SEQ ID NO 143
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - Prl3.1
<220> FEATURE: <221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
```

```
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEOUENCE: 143
nngcguuuug ucauagguca c
                                                                         21
<210> SEQ ID NO 144
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - Prl3.2
<400> SEQUENCE: 144
                                                                         21
ggccaaguuc ugugaggcct t
<210> SEQ ID NO 145
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - Prl3.2
<400> SEQUENCE: 145
ggccaaguuc ugugaggcc
                                                                         19
<210> SEQ ID NO 146
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - Prl3.2
<400> SEQUENCE: 146
ggccucacag aacuuggcc
                                                                         19
<210> SEQ ID NO 147
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - Prl3.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 147
ggccaaguuc ugugaggccn n
                                                                         21
<210> SEO ID NO 148
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - Prl3.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 148
                                                                         21
nnggccucac agaacuuggc c
<210> SEQ ID NO 149
```

```
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - Prl3.3
<400> SEQUENCE: 149
                                                                           21
guacgaggac gccauccagt t
<210> SEQ ID NO 150
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - Prl3.3
<400> SEQUENCE: 150
                                                                           19
guacgaggac gccauccag
<210> SEQ ID NO 151
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - Prl3.3
<400> SEQUENCE: 151
                                                                           19
cuggauggcg uccucguac
<210> SEQ ID NO 152
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - Prl3.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 152
                                                                           21
guacgaggac gccauccagn n
<210> SEQ ID NO 153
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - Prl3.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 153
                                                                           21
nncuggaugg cguccucgua c
<210> SEQ ID NO 154
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - Prl3.4
<400> SEQUENCE: 154
```

uaccggccca aacagaggct t	21
<210> SEQ ID NO 155	
<211> LENGTH: 19	
<212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Small interfering RNA - Prl3.4	
<400> SEQUENCE: 155	
uaccggccca aacagaggc	19
<210> SEQ ID NO 156	
<211> LENGTH: 19	
<212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<pre><223> OTHER INFORMATION: Small interfering RNA - Prl3.4</pre>	
<400> SEQUENCE: 156	
C4007 SEQUENCE: 130	
gccucuguuu gggccggua	19
<210> SEQ ID NO 157 <211> LENGTH: 21	
<211> LENGIH: 21 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<pre><223> OTHER INFORMATION: Small interfering RNA - Prl3.4</pre>	
<220> FEATURE:	
<pre><221> NAME/KEY: misc_feature <222> LOCATION: 20, 21</pre>	
<223> OTHER INFORMATION: n = A,T,C,G or U	
<400> SEQUENCE: 157	
uaccggccca aacagaggcn n	21
<210> SEQ ID NO 158 <211> LENGTH: 21	
<211> LENGIN: 21 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interfering RNA - Prl3.4	
<pre><220> FEATURE: <221> NAME/KEY: misc_feature</pre>	
<pre><221> NAME/RET: misc_leature <222> LOCATION: 1, 2</pre>	
<223> OTHER INFORMATION: n = A,T,C,G or U	
<400> SEQUENCE: 158	
nngccucugu uugggccggu a	21
010 GTG TD NO 150	
<210> SEQ ID NO 159 <211> LENGTH: 21	
<211> LENGTH: 21 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interfering RNA - RPTPE.1	
<400> SEQUENCE: 159	
gcagaggaaa gcugugguct t	21
<210> SEQ ID NO 160	
<211> LENGTH: 19	
<212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
CLUS LEMIONE:	

72

```
<223> OTHER INFORMATION: Small interfering RNA - RPTPE.1
<400> SEOUENCE: 160
gcagaggaaa gcugugguc
                                                                        19
<210> SEQ ID NO 161
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Small interfering RNA - RPTPE.1
<400> SEQUENCE: 161
gaccacagcu uuccucugc
                                                                        19
<210> SEQ ID NO 162
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - RPTPE.1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 162
                                                                        21
gcagaggaaa gcuguggucn n
<210> SEQ ID NO 163
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - RPTPE.1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 163
                                                                         21
nngaccacag cuuuccucug c
<210> SEQ ID NO 164
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - RPTPE.2
<400> SEOUENCE: 164
gucugcgacc aucgucaugt t
                                                                         21
<210> SEQ ID NO 165
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Small interfering RNA - RPTPE.2
<400> SEQUENCE: 165
                                                                        19
gucugcgacc aucgucaug
<210> SEQ ID NO 166
```

```
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - RPTPE.2
<400> SEQUENCE: 166
caugacgaug gucgcagac
                                                                          19
<210> SEQ ID NO 167
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - RPTPE.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 167
gucugcgacc aucgucaugn n
                                                                          21
<210> SEQ ID NO 168
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - RPTPE.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 168
nncaugacga uggucgcaga c
                                                                          21
<210> SEQ ID NO 169
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - RPTPE.3
<400> SEQUENCE: 169
gccuuacucg aguacuacct t
                                                                          21
<210> SEQ ID NO 170
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - RPTPE.3
<400> SEQUENCE: 170
                                                                          19
gccuuacucg aguacuacc
<210> SEQ ID NO 171
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - RPTPE.3
<400> SEQUENCE: 171
```

gguaguacuc gaguaaggc	19
<210> SEQ ID NO 172	
<211> LENGTH: 21	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<pre><223> OTHER INFORMATION: Small interfering RNA - RPTPE.3 <220> FEATURE:</pre>	
<221> NAME/KEY: misc_feature	
<pre><222> LOCATION: 20, 21 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 172	
gccuuacucg aguacuaccn n	21
<210> SEQ ID NO 173	
<211> LENGTH: 21	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<pre><223> OTHER INFORMATION: Small interfering RNA - RPTPE.3 <220> FEATURE:</pre>	
<221> NAME/KEY: misc_feature	
<222> LOCATION: 1, 2	
<223> OTHER INFORMATION: n = A,T,C,G or U	
<400> SEQUENCE: 173	
nngguaguac ucgaguaagg c	21
<210> SEQ ID NO 174	
<211> LENGTH: 21	
<212> TYPE: DNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Small interfering RNA - RPTPE.4	
<400> SEQUENCE: 174	
ggacuauuuc aucgccacct t	21
<210> SEQ ID NO 175	
<211> LENGTH: 19 <212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interfering RNA - RPTPE.4	
<400> SEQUENCE: 175	
ggacuauuuc aucgccacc	19
gguounuuu naogoonoo	
<210> SEQ ID NO 176	
<211> LENGTH: 19	
<212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - RPTPE.4</pre>	
<400> SEQUENCE: 176	
gguggcgaug aaauagucc	19
<210> SEQ ID NO 177	
<211> LENGTH: 21	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	

```
<223> OTHER INFORMATION: Small interfering RNA - RPTPE.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 177
ggacuauuuc aucgccaccn n
<210> SEQ ID NO 178
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - RPTPE.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2 
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 178
                                                                           21
nngguggcga ugaaauaguc c
<210> SEQ ID NO 179
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA
<400> SEQUENCE: 179
ccaccaucac agcgaacac
                                                                           19
<210> SEQ ID NO 180
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA
<400> SEQUENCE: 180
                                                                           19
agcgcuguca uuucaacca
<210> SEQ ID NO 181
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA
<400> SEOUENCE: 181
accacaacaa uaqcuacua
                                                                           19
<210> SEQ ID NO 182
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA
<400> SEQUENCE: 182
                                                                           19
gcuacuacuc caucuaagc
<210> SEQ ID NO 183
```

<212> <213>	LENGTH: 19 TYPE: RNA ORGANISM: Artificial Sequence FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 183	
aaugc	gucug uuuccauau	19
<211>	SEQ ID NO 184 LENGTH: 19	
<213>	TYPE: RNA ORGANISM: Artificial Sequence	
	FEATURE: OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 184	
augcgu	ucugu uuccauauc	19
	SEQ ID NO 185	
	LENGTH: 19 TYPE: RNA	
	ORGANISM: Artificial Sequence FEATURE:	
	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 185	
ugcgud	cuguu uccauaucu	19
	SEQ ID NO 186 LENGTH: 19	
<212>	TYPE: RNA	
<220>	ORGANISM: Artificial Sequence FEATURE:	
	OTHER INFORMATION: Small interfering RNA	
	SEQUENCE: 186	
accuu	nacuu gugauacac	19
	SEQ ID NO 187 LENGTH: 19	
	TYPE: RNA ORGANISM: Artificial Sequence	
<220>	FEATURE: OTHER INFORMATION: Small interfering RNA	
	SEQUENCE: 187	
	ucag ugugguaau	19
	SEQ ID NO 188	
	LENGTH: 19 TYPE: RNA	
	ORGANISM: Artificial Sequence FEATURE:	
	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 188	
acccga	aacau gaguauaag	19
	SEQ ID NO 189	
	LENGTH: 19 TYPE: RNA	
<213>	ORGANISM: Artificial Sequence	

<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 189	
cccgaacaug aguauaagu	19
<210> SEQ ID NO 190 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 190	
caaguuuacu aacgcaagu	19
<pre><210> SEQ ID NO 191 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 191</pre>	
ggaguaauua ccuggaauc	19
<pre><210> SEQ ID NO 192 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA</pre>	
<400> SEQUENCE: 192	
caugccuaca ucauugcaa	19
<pre><210> SEQ ID NO 193 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 193</pre>	
auaguaugca ugucaagug	19
<210> SEQ ID NO 194 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 194	
ugaacguuac cauuuggaa	19
<pre><210> SEQ ID NO 195 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 195</pre>	

augagucgca uaagaauug	19
<210> SEQ ID NO 196	
<211> LENGTH: 19 <212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Small interfering RN</pre>	A
<400> SEQUENCE: 196	
ugagucgcau aagaauugc	19
<210> SEQ ID NO 197	
<211> LENGTH: 19 <212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Small interfering RN</pre>	A
<400> SEQUENCE: 197	
gaauugcgau uuccgugua	19
<210> SEQ ID NO 198	
<211> LENGTH: 19	
<212> TYPE: RNA <213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Small interfering RN</pre>	Δ.
<400> SEQUENCE: 198	••
auugcgauuu ccguguaaa	19
<210> SEQ ID NO 199	
<211> LENGTH: 19 <212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<pre><220> FEATORE: <223> OTHER INFORMATION: Small interfering RN</pre>	A
<400> SEQUENCE: 199	
gccaauccau gcagauauu	19
<210> SEQ ID NO 200	
<211> LENGTH: 19	
<212> TYPE: RNA <213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Small interfering RN</pre>	Δ.
<pre><400> SEQUENCE: 200</pre>	
uuauaaccgu guugaacuc	19
<210> SEQ ID NO 201	
<211> LENGTH: 19 <212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Small interfering RN	A
<400> SEQUENCE: 201	
uaaccguguu gaacucucu	19
<210> SEQ ID NO 202	

<211>	LENGTH: 19	
<212>	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE: OTHER INFORMATION: Small interfering RNA	
\ZZ 32	OTHER INTORNATION. SMALL INCOLLECTING RAW	
<400>	SEQUENCE: 202	
acgga	gaugc agggucaaa	19
<210>	SEQ ID NO 203	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence FEATURE:	
	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 203	
dallac	addil casacilaca	19
gauge	agggu caaacuaca	19
	SEQ ID NO 204	
	LENGTH: 19 TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
-400-	CECHENCE - 204	
<400>	SEQUENCE: 204	
accca	ggaaa uacauugcu	19
010	and the working	
	SEQ ID NO 205 LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 205	
ugucc	agauu acaucauuc	19
<210>	SEQ ID NO 206	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence FEATURE:	
	OTHER INFORMATION: Small interfering RNA	
	•	
<400>	SEQUENCE: 206	
augeei	uucag caauuucuu	19
aagoo	auoug ouduuuouu	
	SEQ ID NO 207	
	LENGTH: 19 TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
-400-	CECUENCE - 207	
<400>	SEQUENCE: 207	
cagga	accua uaucggaau	19
-210-	CEO ID NO 200	
	SEQ ID NO 208 LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
<220>	FEATURE:	

19	
19	
10	
19	
19	
19	
19	
	19 19 19

gcuacuggaa accugaagu	19
<210> SEQ ID NO 215 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 215	
accugaagug augauugcu	19
<210> SEQ ID NO 216 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 216	
aguugaccug aaagacaca	19
<pre><210> SEQ ID NO 217 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA</pre>	
<400> SEQUENCE: 217	
acuuauaccc uucgugucu	19
<pre><210> SEQ ID NO 218 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA</pre>	
<400> SEQUENCE: 218	
cuuauacccu ucgugucuu	19
<pre><210> SEQ ID NO 219 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA</pre>	
<400> SEQUENCE: 219	
ggaaagacuc ucgaacugu	19
<pre><210> SEQ ID NO 220 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA</pre>	
<400> SEQUENCE: 220	
acccaaggaa uuaaucucu	19
<210> SEQ ID NO 221	

<212>	LENGTH: 19 TYPE: RNA ORGANISM: Artificial Sequence	
<220>	FEATURE: OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 221	
cccaa	ggaau uaaucucua	19
	SEQ ID NO 222	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence FEATURE:	
	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 222	
ugauu	caggu cgucaaaca	19
	SEQ ID NO 223	
	LENGTH: 19 TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 223	
gggau	ggauc ucagcaaac	19
<210>	SEQ ID NO 224	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE: OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 224	
ucucaç	gcaaa cgggaauau	19
<210>	SEQ ID NO 225	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE: OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 225	
uucga	gcaau aucaauucc	19
<210>	SEQ ID NO 226	
	LENGTH: 19	
<212>	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE: OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 226	
ccuaco	ccugc ucagaaugg	19
<210>	SEQ ID NO 227	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence FEATURE:	

<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 227	
auggagcugu cacccacau	19
<210> SEQ ID NO 228 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 228	
uggaacauca cgggcaauu	19
<210> SEQ ID NO 229 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 229	
gcaaugacgg caagucuaa	19
SEQ ID NO 2 30 <211> LENGTH: 19 <212> TYPE: RNA ORGANISM: Artificial Sequen ce <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 230	
augacggcaa gucuaaagu	19
<210> SEQ ID NO 231 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 231	
ugacggcaag ucuaaagug	19
<210> SEQ ID NO 232 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 232	
gucuaaagug acccauguu	19
<210> SEQ ID NO 233 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 233	

ugauucgcug ucaggaacu	19
	
<210> SEQ ID NO 234	
<211> LENGTH: 19	
<212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 234	
cgacguuggu ggaggagaa	19
<210> SEQ ID NO 235	
<211> LENGTH: 19	
<pre><212> TYPE: RNA <213> ORGANISM: Artificial Sequence</pre>	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 235	
acgguuugau ucuuugaca	19
,,,,	
<210> SEQ ID NO 236	
<211> LENGTH: 19	
<212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 236	
uucuuugaca gaucuugug	19
<210> SEQ ID NO 237	
<211> LENGTH: 19	
<212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 237	
	10
gaauccuaug guggaaaca	19
<210> SEQ ID NO 238	
<211> SEQ 1D NO 230 <211> LENGTH: 19	
<212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA</pre>	
<400> SEQUENCE: 238	
auccuauggu ggaaacauu	19
010 GEO TR NO 020	
<210> SEQ ID NO 239 <211> LENGTH: 19	
<211> HENGIN: 19 <212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 239	
uccuauggug gaaacauug	19
<210> SEQ ID NO 240	

-continued	
<211> LENGTH: 19	
<212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 240	
caguacuaca acucaagca	19
y	
<210> SEQ ID NO 241	
<211> LENGTH: 19	
<212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<pre><223> OTHER INFORMATION: Small interfering RNA</pre>	
<400> SEQUENCE: 241	
uuugagacac uacaacaac	19
<210> SEQ ID NO 242	
<211> LENGTH: 19	
<212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 242	
(400) BEGOENCE. 242	
aacuucucua cagccgaaa	19
<210> SEQ ID NO 243	
<211> LENGTH: 19	
<212> TYPE: RNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 243	
acauccugcc cuuugauca	19
acadecayee cadayadea	13
<210> SEQ ID NO 244	
<211> LENGTH: 19	
<212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence</pre>	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 244	
ucauaccagg guuguccua	19
<210> SEQ ID NO 245	
<210> SEQ 1D NO 245 <211> LENGTH: 19	
<212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 245	
<400> SEQUENCE: 245	
uaccaggguu guccuacac	19
<210> SEQ ID NO 246	
<211> LENGTH: 19	
<212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
NELOV I BILLONE.	

<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 246	
uuugaaacca agugcaaca	19
<210> SEQ ID NO 247 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 247	
agaguuacau ugccacaca	19
<210> SEQ ID NO 248 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 248	
gaguuacauu gecacacaa	19
<210> SEQ ID NO 249 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 249	
aaacacggug aaugacuuu	19
<210> SEQ ID NO 250 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 250	
cuggccugau gaguaugcu	19
<210> SEQ ID NO 251 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 251	
uggcgucaug cguguuagg	19
<210> SEQ ID NO 252 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 252	

	1.0	
ugcguguuag gaacgucaa	19	
010 000 000 000		
<210> SEQ ID NO 253 <211> LENGTH: 19		
<212> TYPE: RNA		
<213> ORGANISM: Artificial Sequence		
<pre><220> FEATURE:</pre>		
<223> OTHER INFORMATION: Small interfering RNA		
<400> SEQUENCE: 253		
ugacuauacg cuaagagaa	19	
<210> SEQ ID NO 254		
<211> LENGTH: 19		
<212> TYPE: RNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Small interfering RNA		
<400> SEQUENCE: 254		
cuauacgcua agagaacuu	19	
<210> SEQ ID NO 255		
<211> LENGTH: 19		
<212> TYPE: RNA		
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>		
<223> OTHER INFORMATION: Small interfering RNA		
<400> SEQUENCE: 255		
gguuggacaa gggaauacg	19	
3344334444 33344444		
<210> SEQ ID NO 256		
<211> LENGTH: 19		
<212> TYPE: RNA		
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>		
<pre><223> OTHER INFORMATION: Small interfering RNA</pre>		
<400> SEQUENCE: 256		
CAOON SECONNEE. 230		
gaacggucug gcaauacca	19	
<210> SEQ ID NO 257 <211> LENGTH: 19		
<211> LENGTH: 19 <212> TYPE: RNA		
<213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Small interfering RNA		
<400> SEQUENCE: 257		
cggucuggca auaccacuu	19	
<210> SEQ ID NO 258		
<211> LENGTH: 19		
<212> TYPE: RNA <213> ORGANISM: Artificial Sequence		
<220> FEATURE:		
<223> OTHER INFORMATION: Small interfering RNA		
<400> SEQUENCE: 258		
aagguguuga cugcgauau	19	
<210> SEQ ID NO 259		

<212>	LENGTH: 19 TYPE: RNA	
<220>	ORGANISM: Artificial Sequence FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 259	
aggugi	uugac ugcgauauu	19
-210>	SEQ ID NO 260	
<211>	LENGTH: 19	
	TYPE: RNA ORGANISM: Artificial Sequence	
<220>	FEATURE: OTHER INFORMATION: Small interfering RNA	
	· ·	
	SEQUENCE: 260	
gguguı	agacu gcgauauug	19
	SEQ ID NO 261	
	LENGTH: 19 TYPE: RNA	
	ORGANISM: Artificial Sequence FEATURE:	
	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 261	
uauggo	ogguo cagcauuau	19
	SEQ ID NO 262 LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence FEATURE:	
	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 262	
uggcg	gucca gcauuauau	19
	SEQ ID NO 263	
	LENGTH: 19 TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE: OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 263	
aacacı	nacag cgcaggauu	19
	SEQ ID NO 264	
	LENGTH: 19 TYPE: RNA	
<213>	ORGANISM: Artificial Sequence	
	FEATURE: OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 264	
acacua	acago goaggauug	19
	SEQ ID NO 265	
	LENGTH: 19 TYPE: RNA	
<213>	ORGANISM: Artificial Sequence FEATURE:	

<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 265	
gcgcaggauu gaagaagag	19
<210> SEQ ID NO 266 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 266	
gaggaaaggg cacgaauau	19
<210> SEQ ID NO 267 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 267	
ggaaagggca cgaauauac	19
<210> SEQ ID NO 268 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 268	
gggcacgaau auacaaaua	19
<210> SEQ ID NO 269 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 269	
aaacgugggc cugaugcaa	19
<210> SEQ ID NO 270 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 270	
acgugggccu gaugcaaca	19
<210> SEQ ID NO 271 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 271	

qcacaquaaa uacccacua	19
, ,	
<210> SEQ ID NO 272 <211> LENGTH: 19 <212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 272	
cuauuucucc aucgaugag	19
<210> SEQ ID NO 273 <211> LENGTH: 19	
<212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 273	
acuuggcaau gguguacag	19
<210> SEQ ID NO 274 <211> LENGTH: 19	
<212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 274	
ggugccuaug caguaaucu	19
<210> SEQ ID NO 275 <211> LENGTH: 19	
<212> TYPE: RNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 275	
ucucaccauu cucgacugu	19
<210> SEQ ID NO 276 <211> LENGTH: 19	
<211> LENGTH: 19 <212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 276	
aagggauuac aacauggau	19
<210> SEQ ID NO 277	
<211> LENGTH: 19 <212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA</pre>	
<400> SEQUENCE: 277	
agggauuaca acauggauu	19
<210> SEQ ID NO 278	

<212> <213>	LENGTH: 19 TYPE: RNA ORGANISM: Artificial Sequence FEATURE:	
	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 278	
gggauı	nacaa cauggauuu	19
<211>	SEQ ID NO 279 LENGTH: 19 TYPE: RNA	
<220>	ORGANISM: Artificial Sequence FEATURE:	
	OTHER INFORMATION: Small interfering RNA	
	SEQUENCE: 279	
gaaug	guuau ccucuucac	19
	SEQ ID NO 280 LENGTH: 19	
<213>	TYPE: RNA ORGANISM: Artificial Sequence	
	FEATURE: OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 280	
gcauaa	augug acugcaguu	19
<211>	SEQ ID NO 281 LENGTH: 19 TYPE: RNA	
	ORGANISM: Artificial Sequence FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
	SEQUENCE: 281	
cgcug	gcuuc gagcacuau	19
<211> <212>	SEQ ID NO 282 LENGTH: 19 TYPE: RNA	
<220>	ORGANISM: Artificial Sequence FEATURE:	
	OTHER INFORMATION: Small interfering RNA	
	SEQUENCE: 282	19
gcacac	cecag ugaeaacau	19
<211>	SEQ ID NO 283 LENGTH: 19 TYPE: RNA	
	ORGANISM: Artificial Sequence FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 283	
acauc	gugeg aagguueeu	19
	SEQ ID NO 284 LENGTH: 19	
<212>	TYPE: RNA ORGANISM: Artificial Sequence	
	FEATIBE.	

<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 284	
agaacaggga cauugauag	19
<210> SEQ ID NO 285 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 285	
gaacagggac auugauagc	19
<pre><210> SEQ ID NO 286 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 286</pre>	
gggacauuga uagccuguu	19
<210> SEQ ID NO 287 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 287	
cauugauagc cuguuaugu	19
<pre><210> SEQ ID NO 288 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 288</pre>	
cuacagguuu acacaugcu	19
<210> SEQ ID NO 289 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 289	
aaaucgacca uccagugaa	19
<210> SEQ ID NO 290 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 290	

aaucgaccau ccagugaag	19
<210> SEQ ID NO 291 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 291	
ucgaccaucc agugaagga	19
<210> SEQ ID NO 292 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 292	
aaauucuuuc uggccuaga	19
<210> SEQ ID NO 293 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 293	
ugucuauugg uggaaaucu	19
<210> SEQ ID NO 294 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 294	
acgauuugga gagguaagu	19
<210> SEQ ID NO 295 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 295	
cgauuuggag agguaaguu	19
<pre><210> SEQ ID NO 296 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA</pre>	
<400> SEQUENCE: 296	
gagacauccu auauuccuu	19
<210> SEQ ID NO 297	

<211>	LENGTH: 19	
<212>	TYPE: RNA	
<213>	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 297	
		10
auacca	agacc gauuuauug	19
-210>	SEQ ID NO 298	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
<220>	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 298	
		10
uacca	gaccg auuuauugc	19
-210>	SEQ ID NO 299	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 299	
gaccga	auuua uugccuucu	19
-2105	SEQ ID NO 300	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 300	
aaggaı	iguau gaugccaaa	19
-210>	SEQ ID NO 301	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 301	
		10
aggaug	guaug augccaaac	19
-210>	SEQ ID NO 302	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 302	
		10
ggaugi	lauga ugccaaacg	19
<210>	SEQ ID NO 303	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	

<223> OTHER INFORMATION: Small interfer:	ing RNA
<400> SEQUENCE: 303	
cggaugcugg cuucgauca	19
<210> SEQ ID NO 304 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfer:	ing RNA
<400> SEQUENCE: 304	
ugccauuguc aaagaauuc	19
<pre><210> SEQ ID NO 305 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfer: <400> SEQUENCE: 305</pre>	ing RNA
gggugccauu gcaguacau	19
<210> SEQ ID NO 306 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfer:	ing RNA
<400> SEQUENCE: 306	
gaccuggcuc ggugauugg	19
<pre><210> SEQ ID NO 307 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfer: <400> SEQUENCE: 307</pre>	ing RNA
cccgaaccgu acagugaug	19
<210> SEQ ID NO 308 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfer:	ing RNA
<400> SEQUENCE: 308	
accguacagu gaugaugac	19
<pre><210> SEQ ID NO 309 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfer: <400> SEQUENCE: 309</pre>	ing RNA

uagacuucgg gccuugaaa	19
J JJ J	
<210> SEQ ID NO 310	
<211> LENGTH: 19	
<212> TYPE: RNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 310	
acaaacgcua uuccucuca	19
•	
<210> SEQ ID NO 311	
<211> LENGTH: 19	
<212> TYPE: RNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 311	
gggucugggc agugauuau	19
5550005550 050500000	
<210> SEO ID NO 312	
<211> LENGTH: 19	
<212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 312	
gcaaccacug gaggugaag	19
g-unu	
<210> SEQ ID NO 313	
<211> LENGTH: 19	
<212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 313	
auccuaugag aagaauaca	19
adoodaayay aagaaaaca	
<210> SEQ ID NO 314	
<211> LENGTH: 19	
<212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 314	
Wagneya a garaya ay	19
uccuaugaga agaauacau	19
-210- GEO TD NO 215	
<210> SEQ ID NO 315 <211> LENGTH: 19	
<212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<pre><220> FLATORE: <223> OTHER INFORMATION: Small interfering RNA</pre>	
<400> SEQUENCE: 315	
aaagcuguug ggauguagu	19
<210> SEQ ID NO 316	

<211>	LENGTH: 19	
<212>	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 316	
	-	
uucuga	auucu cuugaccau	19
010	470 TD NO 217	
	SEQ ID NO 317 LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
<220>	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
-100-	SEQUENCE: 317	
\400 >	SEQUENCE: 517	
qaaqc	cagua agaccugua	19
, ,		
	SEQ ID NO 318	
	LENGTH: 19 TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 318	
cagcc	acuuu gucugauga	19
ougos.	and the second s	
	SEQ ID NO 319	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence FEATURE:	
	OTHER INFORMATION: Small interfering RNA	
	•	
<400>	SEQUENCE: 319	
220011	Acada addesinada	19
aaccui	ngaca accgaugca	19
<210>	SEQ ID NO 320	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence FEATURE:	
	OTHER INFORMATION: Small interfering RNA	
	,	
<400>	SEQUENCE: 320	
		1.0
Caacc	gauge aageuguuu	19
<210>	SEQ ID NO 321	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence FEATURE:	
	OTHER INFORMATION: Small interfering RNA	
	,	
<400>	SEQUENCE: 321	
accgai	agcaa gcuguuuga	19
<210>	SEQ ID NO 322	
<211>	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence FEATURE:	
	4 11444 VANU 9	

<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 322	
cucggucagu guugaagag	19
<210> SEQ ID NO 323 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 323	
acguucucaa gaggagucu	19
<pre><210> SEQ ID NO 324 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 324</pre>	
gucaacuaau ccagagaag	19
<210> SEQ ID NO 325 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 325	
aggcccauga gacucuuca	19
<pre><210> SEQ ID NO 326 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <2223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 326</pre>	
agggaccuua uaggagacu	19
<210> SEQ ID NO 327 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 327	
gggaccuuau aggagacuu	19
<210> SEQ ID NO 328 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 328	

gacuucucca aggguuauc	19
J mjjjmmm-	
<210> SEQ ID NO 329	
<211> LENGTH: 19	
<212> TYPE: RNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 329	
guuuguuauc aucgacugu	19
<210> SEQ ID NO 330	
<211> LENGTH: 19	
<212> TYPE: RNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 330	
cugucgauac ccauaugaa	19
<210> SEQ ID NO 331	
<211> LENGTH: 19	
<212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 331	
gaageeeauu guaeeuaeu	19
gaageeeaaa gaaeeaaea	
<210> SEQ ID NO 332	
<211> LENGTH: 19	
<212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 332	
agcccauugu accuacuga	19
ageecaaaga aeeaaeaga	
<210> SEQ ID NO 333	
<211> LENGTH: 19	
<212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 333	
gcccauugua ccuacugau	19
geceautyta cetaetyat	19
<210> SEQ ID NO 334	
<211> LENGTH: 19	
<212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 334	
	10
uggcaagcgu gucauuguu	19
-210- GEO TD NO 225	
<210> SEQ ID NO 335	

	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE: OTHER INFORMATION: Small interfering RNA	
\ZZ 32	OTHER INTORMATION: BREATT INCESSESSING RAWA	
<400>	SEQUENCE: 335	
agcgu	gucau uguuguguu	19
-210-	SEQ ID NO 336	
	LENGTH: 19	
	TYPE: RNA	
<213>	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
-100-	CECHENCE - 226	
<400>	SEQUENCE: 336	
uauac	eggua ugugagaga	19
, ,		
	SEQ ID NO 337	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence FEATURE:	
	OTHER INFORMATION: Small interfering RNA	
	,	
<400>	SEQUENCE: 337	
gagaga	aucgc cuggguaau	19
-210>	SEQ ID NO 338	
	LENGTH: 19	
<212>	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
-400>	SEQUENCE: 338	
74002	ELZOMOL. 330	
gagau	egecu ggguaauga	19
	SEQ ID NO 339	
	LENGTH: 19 TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 339	
a au ca	ממוממ מוופפוומפפוו	19
gaucy	ccugg guaaugaau	17
<210>	SEQ ID NO 340	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE: OTHER INFORMATION: Small interfering RNA	
-2232	January and January and American Strains International Int	
<400>	SEQUENCE: 340	
auccu	eccug ucgucugaa	19
<210~	SEQ ID NO 341	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
<220>	FEATURE:	

<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 341	
uccucccugu cgucugaau	19
<210> SEQ ID NO 342 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 342	
uggcggagca gacguuuga	19
<210> SEQ ID NO 343 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 343	
cguuugaaca ggccaucca	19
<210> SEQ ID NO 344 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 344	
gccggaucau ucgaaacga	19
<210> SEQ ID NO 345 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 345	
ucauucgaaa cgagcaguu	19
<210> SEQ ID NO 346 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 346	
gucuaugccg gauggauuu	19
<pre><210> SEQ ID NO 347 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 347</pre>	

	Oncinded
ugccggaugg auuugucuu	19
<210> SEQ ID NO 348	
<211> LENGTH: 19	
<212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<pre><220> FEATORE: <223> OTHER INFORMATION: Small interfering RNA</pre>	
<400> SEQUENCE: 348	
aaaggaccuc gucauguac	19
<210> SEQ ID NO 349	
<211> LENGTH: 19	
<212> TYPE: RNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 349	
2211020110110 110200021102	1.0
aaucacugug ucacgauga	19
<210> SEQ ID NO 350 <211> LENGTH: 19	
<211> LENGTH: 19 <212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA</pre>	
2220 OTHER INTORMITON. SMALL INCELLECTING KINA	
<400> SEQUENCE: 350	
aucacugugu cacgaugag	19
<210> SEQ ID NO 351	
<211> LENGTH: 19	
<212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA</pre>	
<400> SEQUENCE: 351	
gagcugauug gagauuacu	19
<210> SEQ ID NO 352	
<211> LENGTH: 19	
<212> TYPE: RNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 352	
	19
gcugauugga gauuacucu	13
<210> SEQ ID NO 353	
<211> LENGTH: 19 <212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 353	
cucuaaggcc uuccuccua	19
sasaaaggoo aassassaa	•
-210- CEO TD NO 254	
<210> SEQ ID NO 354	

	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence FEATURE:	
	OTHER INFORMATION: Small interfering RNA	
-100>	CECULENCE - 254	
<400>	SEQUENCE: 354	
cagaca	aguag acggaaagc	19
-210-	CEO ID NO 255	
	SEQ ID NO 355 LENGTH: 19	
	TYPE: RNA	
<213>	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 355	
agcac	caaga ccucaagua	19
-210>	SEQ ID NO 356	
	LENGTH: 19	
<212>	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 356	
gaaac	gaugg uggcccuau	19
<210>	SEQ ID NO 357	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE: OTHER INFORMATION: Small interfering RNA	
LLUZ	original interest of the control of	
<400>	SEQUENCE: 357	
220021	nggug geceuauug	19
aacyai	rgyug geecuauug	19
	SEQ ID NO 358	
	LENGTH: 19	
	TYPE: RNA ORGANISM: Artificial Sequence	
	FEATURE:	
	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 358	
cqccq	agage uuccuacug	19
, ,		
	SEQ ID NO 359 LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 359	
	~	
gaacu	ccagu gggcaaauu	19
<210>	SEQ ID NO 360	
	LENGTH: 19	
	TYPE: RNA	
~213~		
	ORGANISM: Artificial Sequence FEATURE:	

<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 360	
uuuagcuggg augacaaug	19
<210> SEQ ID NO 361 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 361	
uucaaggaca acacaauac	19
<210> SEQ ID NO 362 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 362	
	19
acacaauacc agauaaagu	19
<210> SEQ ID NO 363 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 363	
cacaauacca gauaaaguu	19
<210> SEQ ID NO 364 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 364	
ggaagggcuu auguuuaaa	19
<210> SEQ ID NO 365 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 365	
caccaagauc ugaaguaug	19
<210> SEQ ID NO 366 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 366	

aguaugucaa cccagaaac	19
<210> SEQ ID NO 367 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 367	19
guaugucaac ccagaaaca	19
<pre><210> SEQ ID NO 368 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA</pre>	
<400> SEQUENCE: 368	
ugucauugau ugucgcuau	19
<210> SEQ ID NO 369 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 369	
uugauugucg cuauccaua	19
<210> SEQ ID NO 370 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 370	
uugucgcuau ccauaugag	19
<pre><210> SEQ ID NO 371 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 371</pre>	
value Sequence: 3/1	19
assagggage caaaaacaa	• •
<pre><210> SEQ ID NO 372 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 372</pre>	
gggagccuua aacuuauau	19
<210> SEQ ID NO 373	

<212> <213>	LENGTH: 19 TYPE: RNA ORGANISM: Artificial Sequence FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 373	
gucago	gaaga acuguuuaa	19
<211>	SEQ ID NO 374 LENGTH: 19 TYPE: RNA	
<220>	ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: Small interfering RNA	
	SEQUENCE: 374	
	cccau cgucccuuu	19
agaage	occur egueceau	19
<211>	SEQ ID NO 375 LENGTH: 19	
<213>	TYPE: RNA ORGANISM: Artificial Sequence FEATURE:	
	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 375	
gaagco	ccauc gucccuuug	19
<211>	SEQ ID NO 376 LENGTH: 19 TYPE: RNA	
<220>	ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: Small interfering RNA	
	SEQUENCE: 376	
	aucgu cccuuugga	19
<211>	SEQ ID NO 377 LENGTH: 19 TYPE: RNA	
	ORGANISM: Artificial Sequence FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 377	
caccca	agaag agaauaauc	19
<211>	SEQ ID NO 378 LENGTH: 19 TYPE: RNA	
<213>	ORGANISM: Artificial Sequence FEATURE:	
	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 378	
uuguad	cuacc cagagcuau	19
	SEQ ID NO 379 LENGTH: 19	
<212>	TYPE: RNA ORGANISM: Artificial Sequence	
	FFATIRE:	

<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 379	
cuacccagag cuauauauc	19
<210> SEQ ID NO 380 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 380	
cccagagcua uauauccuu	19
<pre><210> SEQ ID NO 381 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 381</pre>	
uauauggaac ugugugaac	19
uauauggaac ugugugaac	19
<210> SEQ ID NO 382 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 382	
uauggaacug ugugaacca	19
<pre><210> SEQ ID NO 383 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 383</pre>	
cagageuacu geceuauge	19
<210> SEQ ID NO 384 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 384	
gagcuacugc ccuaugcau	19
<210> SEQ ID NO 385 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 385	

gcuacugccc uaugcauca	19
<210> SEQ ID NO 386 <211> LENGTH: 19 <212> TyPE: RNA <213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA</pre>	
<400> SEQUENCE: 386	
gaugaagagc cuauugaag	19
<pre><210> SEQ ID NO 387 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA</pre>	
<400> SEQUENCE: 387	
agaugaacag acuccaauu	19
<210> SEQ ID NO 388 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 388	
gaugaacaga cuccaauuc	19
<pre><210> SEQ ID NO 389 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA</pre>	
<400> SEQUENCE: 389	
ucacccauca ucauccaau	19
<pre><210> SEQ ID NO 390 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA</pre>	
<pre><400> SEQUENCE: 390 gagcuuacaa ccugccuua</pre>	19
<210> SEQ ID NO 391 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 391	
cacugcuaug gaggacuug	19
<210> SEQ ID NO 392	

<211>	LENGTH: 19	
<212>	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 392	
ucacca	agagc aagccauag	19
	SEQ ID NO 393 LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
<220>	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
-100-	CECHENCE . 202	
\400 >	SEQUENCE: 393	
ccaqa	gcaag ccauagaca	19
,	, , ,	
	SEQ ID NO 394	
	LENGTH: 19 TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 394	
cageei	ngcga gaccuaaga	19
	-g-ggg	
	SEQ ID NO 395	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence FEATURE:	
	OTHER INFORMATION: Small interfering RNA	
	•	
<400>	SEQUENCE: 395	
a	Tagged assumaged	19
guuuc	gggac aaauuagcu	19
<210>	SEQ ID NO 396	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence FEATURE:	
	OTHER INFORMATION: Small interfering RNA	
	•	
<400>	SEQUENCE: 396	
		19
aauua	geuge acaucuaue	19
<210>	SEQ ID NO 397	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE: OTHER INFORMATION: Small interfering RNA	
	·,	
<400>	SEQUENCE: 397	
		10
auuag	cugca caucuauca	19
<210>	SEQ ID NO 398	
<211>	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence FEATURE:	
	4 11444 VANU 9	

<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 398	
uuagcugcac aucuaucau	19
<210> SEQ ID NO 399 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 399	
gagacgcgga acaauugag	19
<210> SEQ ID NO 400 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 400	
agaacaaggu gacacauau	19
<210> SEQ ID NO 401 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 401	
gaacaaggug acacauauu	19
<210> SEQ ID NO 402 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 402	
gcagcggauu caccaucuc	19
<210> SEQ ID NO 403 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 403	
gcggauucac caucucaaa	19
<210> SEQ ID NO 404 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 404	

cacuggugau cgcauacau	19
<210> SEQ ID NO 405 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
•	
<400> SEQUENCE: 405	10
guaucggcag uggcugaag	19
<210> SEQ ID NO 406 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 406	
gauccgccga cgacugcaa	19
<210> SEQ ID NO 407 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 407	
guuucgggag gaguucaac	19
<pre><210> SEQ ID NO 408 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA</pre>	
<400> SEQUENCE: 408	
augaccauuc uagggugau	19
<210> SEQ ID NO 409 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 409	10
ccauucuagg gugauucug	19
<pre><210> SEQ ID NO 410 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 410</pre>	
cauagauggu uacaaagag	19
<210> SEQ ID NO 411	

<211>	LENGTH: 19	
<212>	TYPE: RNA	
<213>	ORGANISM: Artificial Sequence	
<220>	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 411	
		4.0
aacag	gaaac gguuaacga	19
-210>	SEQ ID NO 412	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
<220>	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 412	
		10
ggaaa	egguu aacgacuuc	19
-210>	SEQ ID NO 413	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 413	
ccauc	gucau guuaacaaa	19
-2105	SEQ ID NO 414	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 414	
cuacao	ccauc cggaaguuc	19
-210>	SEQ ID NO 415	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 415	
		10
uccgga	aaguu cugcauaca	19
-210>	SEQ ID NO 416	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 416	
		10
gaaagı	aaaag acgcucaac	19
<210>	SEQ ID NO 417	
	LENGTH: 19	
	TYPE: RNA	
	ORGANISM: Artificial Sequence	
	FEATURE:	

<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 417	
gcgcccucag augguucaa	19
<210> SEQ ID NO 418 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 418	
cggauaugca guacacguu	19
<210> SEQ ID NO 419 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 419	
	19
ccacccacuu cgacaagau	19
<210> SEQ ID NO 420 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 420	
caaauguccg gaucaugaa	19
<210> SEQ ID NO 421 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 421	
caugaggacg ggcaacuug	19
<210> SEQ ID NO 422 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 422	
ugacuucaac cgagugauc	19
<210> SEQ ID NO 423 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA <400> SEQUENCE: 423	

accgagugau ccuuuccau	19
<210> SEQ ID NO 424 <211> LENGTH: 19	
<212> TYPE: RNA <213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA</pre>	
<400> SEQUENCE: 424	
	19
agaauacaca gacuacauc	19
<210> SEQ ID NO 425	
<211> LENGTH: 19 <212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 425	
gacuacauca acgcauccu	19
<210> SEQ ID NO 426	
<211> LENGTH: 19	
<212> TYPE: RNA <213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA</pre>	
<400> SEQUENCE: 426	
ucaacgcauc cuucauaga	19
<210> SEQ ID NO 427	
<211> LENGTH: 19	
<212> TYPE: RNA <213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA</pre>	
<400> SEQUENCE: 427	
cacacgguug aggacuucu	19
cacacgguug aggacuucu	19
<210> SEQ ID NO 428 <211> LENGTH: 19	
<212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 428	
aaucccacac uaucgugau	19
<210> SEQ ID NO 429	
<211> LENGTH: 19 <212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 429	
aucccacacu aucgugaug	19
<210> SEQ ID NO 430	

<212> <213>	LENGTH: 19 TYPE: RNA ORGANISM: Artificial Sequence FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 430	
accga	gggcu caguuacuc	19
<211> <212>	SEQ ID NO 431 LENGTH: 19 TYPE: RNA ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 431	
cccaac	TAGUA PAUNBANGP	19
ccgage	ggcuc aguuacuca	19
	SEQ ID NO 432 LENGTH: 19	
	TYPE: RNA ORGANISM: Artificial Sequence	
	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 432	
cucauç	ggaga aauaacgau	19
<211> <212>	SEQ ID NO 433 LENGTH: 19 TYPE: RNA ORGANISM: Artificial Sequence	
<220>	FEATURE:	
<223>	OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 433	
uggaga	aaaua acgauugag	19
<211> <212> <213>	SEQ ID NO 434 LENGTH: 19 TYPE: RNA ORGANISM: Artificial Sequence	
	FEATURE: OTHER INFORMATION: Small interfering RNA	
-400>	CECITENCE • 424	
<400 >	SEQUENCE: 434	
gccau	cagua uacgagacu	19
	SEQ ID NO 435	
	LENGTH: 19 TYPE: RNA	
<213>	ORGANISM: Artificial Sequence	
	FEATURE: OTHER INFORMATION: Small interfering RNA	
<400>	SEQUENCE: 435	
ucagua	auacg agacuuucu	19
	SEQ ID NO 436	
	LENGTH: 19 TYPE: RNA	
<213>	ORGANISM: Artificial Sequence	

<pre></pre> <pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><pre></pre><p< th=""><th></th></p<></pre>	
<400> SEQUENCE: 436	
gggcaaaggc augauugac	19
<210> SEQ ID NO 437 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA	
<400> SEQUENCE: 437	
gcugggcgaa cagguacau	19
<pre><210> SEQ ID NO 438 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA</pre>	
<400> SEQUENCE: 438	
cuucagagac cacauaugg	19
<210> SEQ ID NO 439 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - cdc14a.2	
<400> SEQUENCE: 439	
caucugugag aacaccgaat t	21
<210> SEQ ID NO 440 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - cdc14a.2	
<400> SEQUENCE: 440	
caucugugag aacaccgaa	19
<pre><210> SEQ ID NO 441 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - cdc14a.2</pre>	
<400> SEQUENCE: 441	
uucgguguuc ucacagaug	19
<210> SEQ ID NO 442 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - cdc14a.2 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 20, 21	

```
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEOUENCE: 442
caucugugag aacaccgaan n
                                                                         21
<210> SEQ ID NO 443
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Small interfering RNA - cdc14a.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 443
                                                                         21
nnuucggugu ucucacagau g
<210> SEQ ID NO 444
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc14a.3
<400> SEQUENCE: 444
                                                                         21
cuuggcaaug guguacagat t
<210> SEQ ID NO 445
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc14a.3
<400> SEQUENCE: 445
                                                                         19
cuuggcaaug guguacaga
<210> SEQ ID NO 446
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Small interfering RNA - cdc14a.3
<400> SEQUENCE: 446
ucuguacacc auugccaag
                                                                         19
<210> SEO ID NO 447
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc14a.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 447
                                                                         21
cuuqqcaauq ququacaqan n
<210> SEQ ID NO 448
```

```
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc14a.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 448
nnucuguaca ccauugccaa g
                                                                            21
<210> SEQ ID NO 449
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc14a.5
<400> SEQUENCE: 449
                                                                            21
gcacaguaaa uacccacuat t
<210> SEQ ID NO 450
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc14a.5
<400> SEQUENCE: 450
gcacaguaaa uacccacua
                                                                            19
<210> SEQ ID NO 451
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc14a.5
<400> SEQUENCE: 451
                                                                            19
uaguggguau uuacugugc
<210> SEQ ID NO 452
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc14a.5
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 452
                                                                            21
gcacaguaaa uacccacuan n
<210> SEQ ID NO 453
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc14a.5
<220> FEATURE: <221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
```

```
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEOUENCE: 453
nnuagugggu auuuacugug c
                                                                         21
<210> SEQ ID NO 454
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc14b.3
<400> SEQUENCE: 454
caagcaaaug cugccuucct t
                                                                         21
<210> SEQ ID NO 455
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc14b.3
<400> SEQUENCE: 455
caagcaaaug cugccuucc
                                                                         19
<210> SEQ ID NO 456
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc14b.3
<400> SEQUENCE: 456
ggaaggcagc auuugcuug
                                                                         19
<210> SEQ ID NO 457
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc14b.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 457
caagcaaaug cugccuuccn n
                                                                         21
<210> SEO ID NO 458
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc14b.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 458
                                                                         21
nnqqaaqqca qcauuuqcuu q
<210> SEQ ID NO 459
```

```
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc14b.4
<400> SEQUENCE: 459
                                                                           21
gagccagacu ugaaaguggt t
<210> SEQ ID NO 460
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc14b.4
<400> SEQUENCE: 460
                                                                           19
qaqccaqacu uqaaaquqq
<210> SEQ ID NO 461
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc14b.4
<400> SEQUENCE: 461
                                                                           19
ccacuuucaa qucuqqcuc
<210> SEQ ID NO 462
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc14b.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 462
                                                                           21
gagccagacu ugaaaguggn n
<210> SEQ ID NO 463
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc14b.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 463
                                                                           21
nnccacuuuc aagucuggcu c
<210> SEQ ID NO 464
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - 25 A.2
<400> SEQUENCE: 464
```

gaggagccau ucugauucut t	21
<210> SEQ ID NO 465	
<211> LENGTH: 19	
<212> TYPE: RNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interfering RNA - 25 A.2	
<400> SEQUENCE: 465	
gaggagccau ucugauucu	19
5m55m500mm	
<210> SEQ ID NO 466	
<211> LENGTH: 19	
<212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - 25 A.2</pre>	
<400> SEQUENCE: 466	
agaaucagaa uggcuccuc	19
<210> SEQ ID NO 467	
<211> LENGTH: 21	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interfering RNA - 25 A.2	
<220> FEATURE:	
<pre><221> NAME/KEY: misc_feature</pre>	
<pre><222> LOCATION: 20, 21 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 467	
gaggagccau ucugauucun n	21
<210> SEQ ID NO 468	
<211> LENGTH: 21	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interfering RNA - 25 A.2	
<220> FEATURE:	
<pre><221> NAME/KEY: misc_feature</pre>	
<pre><222> LOCATION: 1, 2 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 468	
nnagaaucag aauggcuccu c	21
<210> SEQ ID NO 469	
<211> LENGTH: 21	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<pre><223> OTHER INFORMATION: Small interfering RNA - cdc25B.2</pre>	
<400> SEQUENCE: 469	
aggcggcuac aaggaguuct t	21
4990990440 4499494400 C	~ *
<210> SEQ ID NO 470	
<210> SEQ 1D NO 470 <211> LENGTH: 19	
<212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence</pre>	
<220> FEATURE:	

<223> OTHER INFORMATION: Small interfering RNA - cdc25B.2	
<400> SEQUENCE: 470	
aggcggcuac aaggaguuc	19
<pre><210> SEQ ID NO 471 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - cdc25B.2</pre>	
<400> SEQUENCE: 471	
gaacuccuug uagccgccu	19
<pre><210> SEQ ID NO 472 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - cdc25B.2 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 20, 21 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 472	21
aggcggcuac aaggaguucn n	21
<pre><210> SEQ ID NO 473 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - cdc25B.2 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 1, 2 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 473	
nngaacuccu uguagccgcc u	21
<210> SEQ ID NO 474 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - cdc25B.4 <400> SEQUENCE: 474	
gaugecaugg aageceacat t	21
<210> SEQ ID NO 475 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - cdc25B.4	
<pre><400> SEQUENCE: 475 gaugccaugg aagcccaca</pre>	19
gaageeaagg aageeeaea	
<210> SEQ ID NO 476	

```
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc25B.4
<400> SEQUENCE: 476
ugugggcuuc cauggcauc
<210> SEQ ID NO 477
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc25B.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 477
                                                                          21
gaugccaugg aagcccacan n
<210> SEQ ID NO 478
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc25B.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 478
nnugugggcu uccauggcau c
                                                                          21
<210> SEQ ID NO 479
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc25C.1
<400> SEQUENCE: 479
cugccacuca gcuuaccact t
                                                                          21
<210> SEQ ID NO 480
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc25C.1
<400> SEQUENCE: 480
                                                                          19
cugccacuca gcuuaccac
<210> SEQ ID NO 481
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc25C.1
<400> SEQUENCE: 481
```

gugguaagcu gaguggcag	19
<210> SEQ ID NO 482	
<211> LENGTH: 21 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<pre><223> OTHER INFORMATION: Small interfering RNA - cdc25C.1 <220> FEATURE:</pre>	
<pre><221> NAME/KEY: misc_feature</pre>	
<222> LOCATION: 20, 21 <223> OTHER INFORMATION: n = A,T,C,G or U	
400. GROUPINGS. 400	
<400> SEQUENCE: 482	
cugccacuca gcuuaccacn n	21
<210> SEQ ID NO 483	
<211> LENGTH: 21 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - cdc25C.1</pre>	
<220> FEATURE:	
<pre><221> NAME/KEY: misc_feature <222> LOCATION: 1, 2</pre>	
<pre><223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
AOO. CEOUENCE. AO2	
<400> SEQUENCE: 483	
nngugguaag cugaguggca g	21
<210> SEQ ID NO 484	
<211> LENGTH: 21 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - cdc25C.3</pre>	
<400> SEQUENCE: 484	
cccagaaaca guggcugcct t	21
<210> SEQ ID NO 485	
<211> LENGTH: 19 <212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - cdc25C.3</pre>	
(223) OTHER INFORMATION. SMALL INCOLLERING RAW - CAC230.3	
<400> SEQUENCE: 485	
cccagaaaca guggcugcc	19
<210> SEQ ID NO 486	
<211> LENGTH: 19	
<212> TYPE: RNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interfering RNA - cdc25C.3	
<400> SEQUENCE: 486	
ggcagccacu guuucuggg	19
<210> SEQ ID NO 487	
<211> LENGTH: 21	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	

```
<223> OTHER INFORMATION: Small interfering RNA - cdc25C.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 487
                                                                            21
cccagaaaca guggcugccn n
<210> SEQ ID NO 488
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc25C.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2 
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 488
                                                                            21
nnggcagcca cuguuucugg g
<210> SEQ ID NO 489
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc25C.4
<400> SEQUENCE: 489
aggeggeuac agagacuuct t
<210> SEQ ID NO 490
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc25C.4
<400> SEQUENCE: 490
                                                                            19
aggcggcuac agagacuuc
<210> SEQ ID NO 491
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc25C.4
<400> SEOUENCE: 491
gaagucucug uagccgccu
                                                                            19
<210> SEQ ID NO 492
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - cdc25C.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21 
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEOUENCE: 492
```

aggeggeuae agagaeuuen n	21
<pre><210> SEQ ID NO 493 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - cdc25C.4 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 1, 2 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 493	
nngaagucuc uguageegee u	21
<210> SEQ ID NO 494 <211> LENGTH: 36 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer mPTP1B-sense <400> SEQUENCE: 494	
gggggggatc catggagatg gagaaggagt tcgagg	36
<210> SEQ ID NO 495 <211> LENGTH: 35 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide primer mPTP1B anti-sense	
<400> SEQUENCE: 495	
gggggaattc tcagtgaaaa cacacccggt agcac	35
<210> SEQ ID NO 496 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.1 <400> SEQUENCE: 496	
gaagcccaga ggagcuauat t	21
<210> SEQ ID NO 497 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.1 <400> SEQUENCE: 497	
gaagcccaga ggagcuaua	19
<pre><210> SEQ ID NO 498 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.1</pre>	
<400> SEOUENCE: 498	

uauagcuccu cugggcuuc	19
<pre><210> SEQ ID NO 499 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.1 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 20, 21 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 499	21
gaagcccaga ggagcuauan n	21
<pre><210> SEQ ID NO 500 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.1 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 1, 2 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 500	
nnuauagcuc cucugggcuu c	21
<pre><210> SEQ ID NO 501 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.2</pre>	
<400> SEQUENCE: 501	
cuacaccaca uggccugact t	21
<pre><210> SEQ ID NO 502 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.2 <400> SEQUENCE: 502</pre>	
cuacaccaca uggecugac	19
<pre><210> SEQ ID NO 503 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.2</pre>	
<400> SEQUENCE: 503	
gucaggccau gugguguag	19
<210> SEQ ID NO 504 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	

```
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 504
                                                                            21
cuacaccaca uggccugacn n
<210> SEQ ID NO 505
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2 
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 505
                                                                            21
nngucaggcc auguggugua g
<210> SEQ ID NO 506
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.3
<400> SEQUENCE: 506
gacugeegac cageugeget t
                                                                            21
<210> SEQ ID NO 507
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.3
<400> SEQUENCE: 507
                                                                            19
gacugeegac cageugege
<210> SEQ ID NO 508
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.3
<400> SEOUENCE: 508
gcgcagcugg ucggcaguc
                                                                            19
<210> SEQ ID NO 509
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21 
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEOUENCE: 509
```

```
gacugecgae cageugegen n
                                                                           21
<210> SEQ ID NO 510
<211> LENGTH: 21 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 510
                                                                           21
nngcgcagcu ggucggcagu c
<210> SEQ ID NO 511
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.4
<400> SEQUENCE: 511
gguaccgaga ugucagccct t
                                                                           21
<210> SEQ ID NO 512 <211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.4
<400> SEQUENCE: 512
gguaccgaga ugucagccc
                                                                           19
<210> SEQ ID NO 513
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.4
<400> SEQUENCE: 513
gggcugacau cucgguacc
                                                                           19
<210> SEQ ID NO 514
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 514
gguaccgaga ugucagcccn n
                                                                           21
<210> SEQ ID NO 515 <211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
```

```
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 515
nngggcugac aucucgguac c
<210> SEQ ID NO 516
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.5
<400> SEQUENCE: 516
                                                                           21
ugacuauauc aaugccagct t
<210> SEQ ID NO 517
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.5
<400> SEQUENCE: 517
                                                                           19
ugacuauauc aaugccagc
<210> SEQ ID NO 518
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.5
<400> SEQUENCE: 518
gcuggcauug auauaguca
                                                                           19
<210> SEQ ID NO 519
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.5
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEOUENCE: 519
ugacuauauc aaugccagcn n
                                                                           21
<210> SEQ ID NO 520
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.5
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEOUENCE: 520
```

nngcuggcau ugauauaguc a	21
<210> SEQ ID NO 521 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.6	
<400> SEQUENCE: 521	
agaagaaaag gagaugguct t	21
<210> SEQ ID NO 522 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.6 <400> SEQUENCE: 522	
agaagaaaag gagaugguc	19
<pre><210> SEQ ID NO 523 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.6 <400> SEQUENCE: 523</pre>	
	19
gaccaucucc uuuucuucu	19
<pre><210> SEQ ID NO 524 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.6 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 20, 21 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 524	
agaagaaaag gagauggucn n	21
<210> SEQ ID NO 525 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.6 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 1, 2 <223> OTHER INFORMATION: n = A,T,C,G or U	
<400> SEQUENCE: 525	
nngaccaucu ccuuuucuuc u	21
<210> SEQ ID NO 526 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	

```
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.7
<400> SEOUENCE: 526
cgggaagugc aaggagcuct t
                                                                         21
<210> SEQ ID NO 527
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.7
<400> SEQUENCE: 527
cgggaagugc aaggagcuc
                                                                         19
<210> SEQ ID NO 528
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.7
<400> SEQUENCE: 528
gagcuccuug cacuucccg
                                                                         19
<210> SEQ ID NO 529
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.7
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 529
                                                                         21
cgggaagugc aaggagcucn n
<210> SEQ ID NO 530
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.7
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2 
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEOUENCE: 530
nngagcuccu ugcacuuccc g
                                                                          21
<210> SEQ ID NO 531
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.8
<400> SEQUENCE: 531
                                                                         21
ggaucagugg aaggagcuct c
<210> SEQ ID NO 532
```

```
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.8
<400> SEQUENCE: 532
ggaucagugg aaggagcuc
                                                                          19
<210> SEQ ID NO 533
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.8
<400> SEQUENCE: 533
                                                                         19
gageuccuuc cacugaucc
<210> SEQ ID NO 534
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.8
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 534
ggaucagugg aaggagcucn n
                                                                          21
<210> SEQ ID NO 535
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mPTP1B1.8
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2 
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 535
nngagcuccu uccacugauc c
                                                                          21
<210> SEQ ID NO 536
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - rPTP1B1.1
<400> SEQUENCE: 536
                                                                          21
agaagaaaaa gagaugguct t
<210> SEQ ID NO 537
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - rPTP1B1.1
<400> SEQUENCE: 537
```

agaagaaaaa gagaugguc	19
<210> SEQ ID NO 538 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - rPTP1B1.1	
<400> SEQUENCE: 538	
gaccaucucu uuuucuucu	19
<pre><210> SEQ ID NO 539 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - rPTP1B1.1 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 20, 21 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 539	
agaagaaaaa gagauggucn n	21
<pre><210> SEQ ID NO 540 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - rPTP1B1.1 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 1, 2 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 540	
nngaccaucu cuuuuucuuc u	21
<210> SEQ ID NO 541 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - rPTP1B1.2 <400> SEQUENCE: 541	
cggauggugg guggagguct t	21
<pre><210> SEQ ID NO 542 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - rPTP1B1.2</pre>	
<400> SEQUENCE: 542	
cggauggugg guggagguc	19
<210> SEQ ID NO 543 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	

```
<223> OTHER INFORMATION: Small interfering RNA - rPTP1B1.2
<400> SEOUENCE: 543
gaccuccacc caccauccg
                                                                         19
<210> SEQ ID NO 544
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Small interfering RNA - rPTP1B1.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 544
                                                                         21
cggauggugg guggaggucn n
<210> SEQ ID NO 545
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - rPTP1B1.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2 
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 545
nngaccucca cccaccaucc g
                                                                          21
<210> SEQ ID NO 546
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - rPTP1B1.3
<400> SEQUENCE: 546
                                                                          21
uggcaagugc aaggagcuct t
<210> SEQ ID NO 547
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - rPTP1B1.3
<400> SEOUENCE: 547
uggcaagugc aaggagcuc
                                                                          19
<210> SEQ ID NO 548
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Small interfering RNA - rPTP1B1.3
<400> SEQUENCE: 548
                                                                         19
qaqcuccuuq cacuuqcca
<210> SEQ ID NO 549
```

```
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - rPTP1B1.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 549
uggcaagugc aaggagcucn n
                                                                          21
<210> SEQ ID NO 550
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - rPTP1B1.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 550
nngagcuccu ugcacuugcc a
                                                                          21
<210> SEQ ID NO 551 <211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - rPTP1B1.4
<400> SEQUENCE: 551
cuacaccacc uggccugact t
                                                                          21
<210> SEQ ID NO 552
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - rPTP1B1.4
<400> SEQUENCE: 552
cuacaccacc uggccugac
                                                                          19
<210> SEQ ID NO 553
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - rPTP1B1.4
<400> SEQUENCE: 553
                                                                          19
gucaggccag gugguguag
<210> SEQ ID NO 554
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - rPTP1B1.4
<220> FEATURE: <221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
```

```
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEOUENCE: 554
cuacaccacc uggccugacn n
                                                                         21
<210> SEQ ID NO 555
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Small interfering RNA - rPTP1B1.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 555
                                                                         21
nngucaggcc agguggugua g
<210> SEQ ID NO 556
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hPTP1B1.1
<400> SEQUENCE: 556
                                                                         21
cuauaccaca uggccugact t
<210> SEQ ID NO 557
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hPTP1B1.1
<400> SEQUENCE: 557
cuauaccaca uggccugac
                                                                         19
<210> SEQ ID NO 558
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Small interfering RNA - hPTP1B1.1
<400> SEQUENCE: 558
gucaggccau gugguauag
                                                                         19
<210> SEO ID NO 559
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hPTP1B1.1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 559
                                                                         21
cuauaccaca uggccugacn n
<210> SEQ ID NO 560
```

```
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hPTP1B1.1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 560
nngucaggcc augugguaua g
                                                                            21
<210> SEQ ID NO 561
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hPTP1B1.2
<400> SEQUENCE: 561
                                                                            21
gcccaaagga guuacauuct t
<210> SEQ ID NO 562
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hPTP1B1.2
<400> SEQUENCE: 562
gcccaaagga guuacauuc
                                                                            19
<210> SEQ ID NO 563
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hPTP1B1.2
<400> SEQUENCE: 563
                                                                            19
gaauguaacu ccuuugggc
<210> SEQ ID NO 564
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hPTP1B1.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 564
                                                                            21
gcccaaagga guuacauucn n
<210> SEQ ID NO 565
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hPTP1B1.2
<220> FEATURE: <221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
```

139

```
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEOUENCE: 565
nngaauguaa cuccuuuggg c
                                                                        21
<210> SEQ ID NO 566
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hPTP1B1.3
<400> SEQUENCE: 566
ggaagaaaaa ggaagcccct t
                                                                        21
<210> SEQ ID NO 567
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hPTP1B1.3
<400> SEQUENCE: 567
ggaagaaaaa ggaagcccc
                                                                        19
<210> SEQ ID NO 568
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hPTP1B1.3
<400> SEQUENCE: 568
ggggcuuccu uuuucuucc
                                                                        19
<210> SEQ ID NO 569
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hPTP1B1.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 569
ggaagaaaaa ggaagccccn n
                                                                        21
<210> SEO ID NO 570
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hPTP1B1.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 570
                                                                        21
nnggggcuuc cuuuuucuuc c
<210> SEQ ID NO 571
```

```
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hPTP1B1.4
<400> SEQUENCE: 571
                                                                           21
caaugggaaa ugcagggagt t
<210> SEQ ID NO 572
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hPTP1B1.4
<400> SEQUENCE: 572
                                                                           19
caaugggaaa ugcagggag
<210> SEQ ID NO 573
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hPTP1B1.4
<400> SEQUENCE: 573
                                                                           19
cucccuqcau uucccauuq
<210> SEQ ID NO 574
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hPTP1B1.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 574
                                                                           21
caaugggaaa ugcagggagn n
<210> SEQ ID NO 575
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hPTP1B1.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 575
                                                                           21
nncucccugc auuucccauu g
<210> SEQ ID NO 576
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hPTP1B1.5
<400> SEQUENCE: 576
```

ggaucagugg aaggagcuut c	21
<210> SEQ ID NO 577 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - hPTP1B1.5	
<400> SEQUENCE: 577	
ggaucagugg aaggagcuu	19
<pre><210> SEQ ID NO 578 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - hPTP1B1.5 <400> SEQUENCE: 578 aagcuccuuc cacugaucc</pre>	19
<pre><210> SEQ ID NO 579 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - hPTP1B1.5 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 20, 21 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 579	
ggaucagugg aaggagcuun n	21
<pre><210> SEQ ID NO 580 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <220> OTHER INFORMATION: Small interfering RNA - hPTP1B1.5 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 1, 2 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 580	
nnaagcuccu uccacugauc c	21
<pre><210> SEQ ID NO 581 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - mTCPTP1.1</pre>	
<400> SEQUENCE: 581	
guugucaugc uaaaccgaac t	21
<210> SEQ ID NO 582 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	

```
<223> OTHER INFORMATION: Small interfering RNA - mTCPTP1.1
<400> SEOUENCE: 582
guugucaugc uaaaccgaa
                                                                        19
<210> SEQ ID NO 583
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Small interfering RNA - mTCPTP1.1
<400> SEQUENCE: 583
uucgguuuag caugacaac
                                                                        19
<210> SEQ ID NO 584
<211> LENGTH: 21
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mTCPTP1.1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 584
                                                                        21
quuqucauqc uaaaccqaan n
<210> SEQ ID NO 585
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mTCPTP1.1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 585
                                                                        21
nnuucgguuu agcaugacaa c
<210> SEQ ID NO 586
<211> LENGTH: 21
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mTCPTP1.2
<400> SEOUENCE: 586
cagaacagag ugaugguuga g
                                                                        21
<210> SEQ ID NO 587
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Small interfering RNA - mTCPTP1.2
<400> SEQUENCE: 587
                                                                        19
cagaacagag ugaugguug
<210> SEQ ID NO 588
```

```
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mTCPTP1.2
<400> SEQUENCE: 588
caaccaucac ucuguucug
                                                                         19
<210> SEQ ID NO 589
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mTCPTP1.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 589
                                                                         21
cagaacagag ugaugguugn n
<210> SEQ ID NO 590
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - mTCPTP1.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 590
nncaaccauc acucuguucu g
                                                                         21
<210> SEQ ID NO 591
<211> LENGTH: 36
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer (TC45 5' BamHI)
<400> SEQUENCE: 591
ggggggatcc atgcccacca ccatcgagcg ggagtt
                                                                         36
<210> SEQ ID NO 592
<211> LENGTH: 49
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Oligonucleotide primer (TC45 3' EcoRI)
<400> SEQUENCE: 592
                                                                         49
ggggaattct taggtgtctg tcaatcttgg cctttttctt tttcgttca
<210> SEQ ID NO 593
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.4
<400> SEOUENCE: 593
```

quuqucaugc ugaaccgcat t	21
210. CEO TD NO FOA	
<210> SEQ ID NO 594 <211> LENGTH: 19	
<212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.4</pre>	
(223) OTHER INFORMATION. SMAIL INTESTIGETING RWA - INTESTIGET.	
<400> SEQUENCE: 594	
#W#W##################################	19
guugucaugc ugaaccgca	19
<210> SEQ ID NO 595	
<211> LENGTH: 19 <212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.4	
<400> SEQUENCE: 595	
^	
ugcgguucag caugacaac	19
<210> SEQ ID NO 596	
<211> LENGTH: 21	
<212> TYPE: DNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<pre><223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.4</pre>	
<220> FEATURE:	
<pre><221> NAME/KEY: misc_feature</pre>	
<pre><222> LOCATION: 20, 21 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
12237 OTHER INTORMITORS II - ATTICIO OF O	
<400> SEQUENCE: 596	
guugucaugc ugaaccgcan n	21
yyyy	
010, GTO TD NO 507	
<210> SEQ ID NO 597 <211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<pre><223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.4 <220> FEATURE:</pre>	
<221> NAME/KEY: misc_feature	
<222> LOCATION: 1, 2	
<223> OTHER INFORMATION: $n = A, T, C, G$ or U	
<400> SEQUENCE: 597	
nnugcgguuc agcaugacaa c	21
<210> SEQ ID NO 598	
<211> LENGTH: 21	
<212> TYPE: DNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<pre><223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.5</pre>	
400. GEOUTHOR. 500	
<400> SEQUENCE: 598	
gcccauauga ucacagucgt g	21
<210> SEQ ID NO 599	
<211> LENGTH: 19	
<212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence</pre>	
<220> FEATURE:	

```
<223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.5
<400> SEOUENCE: 599
gcccauauga ucacagucg
                                                                        19
<210> SEQ ID NO 600
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.5
<400> SEQUENCE: 600
cgacugugau cauaugggc
                                                                        19
<210> SEQ ID NO 601
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.5
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 601
                                                                        21
qcccauauqa ucacaqucqn n
<210> SEQ ID NO 602
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.5
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 602
                                                                         21
nncgacugug aucauauggg c
<210> SEQ ID NO 603
<211> LENGTH: 21
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.6
<400> SEOUENCE: 603
ucgguuaaau gugcacagua c
                                                                         21
<210> SEQ ID NO 604
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.6
<400> SEQUENCE: 604
                                                                        19
ucqquuaaau quqcacaqu
<210> SEQ ID NO 605
```

```
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.6
<400> SEQUENCE: 605
acugugcaca uuuaaccga
<210> SEQ ID NO 606
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.6
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 606
                                                                          21
ucgguuaaau gugcacagun n
<210> SEQ ID NO 607
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.6
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 607
nnacugugca cauuuaaccg a
                                                                          21
<210> SEQ ID NO 608
<211> LENGTH: 21
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.7
<400> SEQUENCE: 608
ugacuauccu cauagagugg g
                                                                          21
<210> SEQ ID NO 609
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.7
<400> SEQUENCE: 609
                                                                          19
ugacuauccu cauagagug
<210> SEQ ID NO 610
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.7
<400> SEOUENCE: 610
```

cacucuauga g	rgauaguca	19
<210> SEQ ID	NO 611	
<211> LENGTH		
<212> TYPE:	DNA SM: Artificial Sequence	
<220> FEATUR	-	
	INFORMATION: Small interfering RNA - hTCPTP1.7	
<220> FEATUR		
<221> NAME/K <222> LOCATI	EY: misc_feature ON. 20 21	
	INFORMATION: $n = A, T, C, G$ or U	
<400> SEQUEN	CE: 611	
ugacuauccu c	auagagugn n	21
•		
-210. GEO TD	NO 612	
<210> SEQ ID <211> LENGTH		
<212> TYPE:		
<213> ORGANI	SM: Artificial Sequence	
<220> FEATUR		
<223> OTHER <220> FEATUR	INFORMATION: Small interfering RNA - hTCPTP1.7	
	EY: misc_feature	
<222> LOCATI		
<223> OTHER	INFORMATION: $n = A, T, C, G$ or U	
<400> SEQUEN	CF • 612	
C400> BEQUEN	CE. 012	
nncacucuau g	aggauaguc a	21
<210> SEQ ID	NO 613	
<211> LENGTH		
<212> TYPE:		
	SM: Artificial Sequence	
<220> FEATUR	E: INFORMATION: Small interfering RNA - hTCPTP1.1	
12207 0211211		
<400> SEQUEN	CE: 613	
agugagagaa u	cuagaict t	21
agagagaa a		
<210> SEQ ID		
<211> LENGTH <212> TYPE:		
	SM: Artificial Sequence	
<220> FEATUR		
<223> OTHER	INFORMATION: Small interfering RNA - hTCPTP1.1	
<400> SEQUEN	CE: 614	
agugagagaa u	cuggcucc	19
<210> SEQ ID	NO 615	
<211> LENGTH		
<212> TYPE:		
<213> ORGANI <220> FEATUR	SM: Artificial Sequence E:	
	INFORMATION: Small interfering RNA - hTCPTP1.1	
400 272	OD . 615	
<400> SEQUEN	CF: 013	
ggagccagau u	cucucacu	19
-		
<210> SEQ ID	NO 616	
<211> SEQ 1D		
<212> TYPE:		
	SM: Artificial Sequence	
<220> FEATUR	.E. •	

```
<223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 616
                                                                            21
agugagagaa ucuggcuccn n
<210> SEQ ID NO 617
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2 
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 617
                                                                            21
nnggagccag auucucucac u
<210> SEQ ID NO 618
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.2
<400> SEQUENCE: 618
ggaagacuua ucuccugcct t
                                                                            21
<210> SEQ ID NO 619
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.2
<400> SEQUENCE: 619
                                                                            19
ggaagacuua ucuccugcc
<210> SEQ ID NO 620
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.2
<400> SEOUENCE: 620
ggcaggagau aagucuucc
                                                                            19
<210> SEQ ID NO 621
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21 
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEOUENCE: 621
```

ggaagacuua ucuccugcen n	21
<210> SEQ ID NO 622	
<211> LENGTH: 21 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.2</pre>	
<pre><220> FEATURE:</pre>	
<pre><221> NAME/KEY: misc_feature <222> LOCATION: 1, 2</pre>	
<pre><222> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 622	
C4007 SEQUENCE: 022	
nnggcaggag auaagucuuc c	21
<210> SEQ ID NO 623 <211> LENGTH: 21	
<212> TYPE: DNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<pre><223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.3</pre>	
<400> SEQUENCE: 623	
	0.1
ggugaccgau guacaggact t	21
010 070 77 19 604	
<210> SEQ ID NO 624 <211> LENGTH: 19	
<212> TYPE: RNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.3	
<400> SEQUENCE: 624	
ggugaccgau guacaggac	19
ggugacegau guacaggae	17
<210> SEQ ID NO 625	
<211> LENGTH: 19	
<212> TYPE: RNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<pre><223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.3</pre>	
<400> SEQUENCE: 625	
guccuguaca ucggucacc	19
<210> SEQ ID NO 626	
<211> LENGTH: 21	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<pre><223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.3 <220> FEATURE:</pre>	
<221> NAME/KEY: misc_feature	
<pre><222> LOCATION: 20, 21 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 626	
ggugaccgau guacaggacn n	21
<210> SEQ ID NO 627	
<210> SEQ 1D NO 627 <211> LENGTH: 21	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	

```
<223> OTHER INFORMATION: Small interfering RNA - hTCPTP1.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 627
nnguccugua caucggucac c
                                                                           21
<210> SEQ ID NO 628
<211> LENGTH: 50
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Hairpin vector - hPTP1B H1.2-HP4
<400> SEQUENCE: 628
tttgcccaaa ggagttacat tcgtaagaat gtaactcctt tgggcttttt
                                                                           50
<210> SEQ ID NO 629
<211> LENGTH: 50
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Hairpin vector - hPTP1B H1.2-HP4
<400> SEQUENCE: 629
ctagaaaaag cccaaaggag ttacattctt acgaatgtaa ctcctttggg
                                                                           50
<210> SEQ ID NO 630
<211> LENGTH: 50
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Hairpin vector - hPTP1B H1.2-HP4
<400> SEQUENCE: 630
uuugcccaaa ggaguuacau ucguaagaau guaacuccuu ugggcuuuuu
                                                                           50
<210> SEQ ID NO 631
<211> LENGTH: 50
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<223> OTHER INFORMATION: Hairpin vector - hPTP1B H1.2-HP4
<400> SEQUENCE: 631
cuagaaaaag cccaaaggag uuacauucuu acgaauguaa cuccuuuggg
                                                                           50
<210> SEO ID NO 632
<211> LENGTH: 55
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Hairpin vector - hPTP1B H1.2-HP9
<400> SEQUENCE: 632
tttgcccaaa ggagttacat tccctgggta agaatgtaac tcctttgggc ttttt
                                                                           55
<210> SEQ ID NO 633 <211> LENGTH: 55
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
```

<223>	OTHER INFORMATION: Hairpin vector - hPTP1B H1.2-HP9	
<400>	SEQUENCE: 633	
ctaga	aaag cccaaaggag ttacattott acccagggaa tgtaactoot ttggg	55
<211><212><213><220>	SEQ ID NO 634 LENGTH: 55 TYPE: RNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: Hairpin vector - hPTP1B H1.2-HP9	
<400>	SEQUENCE: 634	
uuugc	caaa ggaguuacau ucccugggua agaauguaac uccuuugggc uuuuu	55
<211><212><213><223>	SEQ ID NO 635 LENGTH: 55 TYPE: RNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: Hairpin vector - hPTP1B H1.2-HP9 SEQUENCE: 635	
cuaga	aaaag cccaaaggag uuacauucuu acccagggaa uguaacuccu uuggg	55
<211> <212> <213> <220>	SEQ ID NO 636 LENGTH: 50 TYPE: DNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: Hairpin vector - mPTP1B M1.1-HP4	
<400>	SEQUENCE: 636	
tttga	agece agaggageta taagaatata geteetetgg gettettttt	50
<211><212><213><220><223>	SEQ ID NO 637 LENGTH: 50 TYPE: DNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: Hairpin vector - mPTP1B M1.1-HP4 SEQUENCE: 637	
ctaga	aaaag aagcccagag gagctatatt cttatagctc ctctgggctt	50
<211><212><213><223>	SEQ ID NO 638 LENGTH: 50 TYPE: RNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: Hairpin vector - mPTP1B M1.1-HP4 SEQUENCE: 638	
uuuga		
	agece agaggageua uaagaauaua geueeucugg geuucuuuuu	50
<211><212><213><223>	SEQ ID NO 639 LENGTH: 50 TYPE: RNA ORGANISM: Artificial Sequence FEATURE: OTHER INFORMATION: Hairpin vector - mPTP1B M1.1-HP4	50

cuagaaaaag aagcccagag gagcuauauu cuuauagcuc cucugggcuu	50
<210> SEQ ID NO 640 <211> LENGTH: 55 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Hairpin vector - mPTP1B M1.1-HP9	
<400> SEQUENCE: 640	
tttgaagccc agaggagcta tagggtgaga atatagctcc tctgggcttc ttttt	55
<210> SEQ ID NO 641 <211> LENGTH: 55 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Hairpin vector - mPTP1B M1.1-HP9	
<400> SEQUENCE: 641	
ctagaaaaag aagcccagag gagctatatt ctcaccctat agctcctctg ggctt	55
<210> SEQ ID NO 642 <211> LENGTH: 55 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Hairpin vector - mPTP1B M1.1-HP9 <400> SEQUENCE: 642	
uuugaagccc agaggagcua uagggugaga auauagcucc ucugggcuuc uuuuu	55
<210> SEQ ID NO 643 <211> LENGTH: 55 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Hairpin vector - mPTP1B M1.1-HP9 <400> SEQUENCE: 643	
cuagaaaaag aagcccagag gagcuauauu cucacccuau agcuccucug ggcuu	55
<210> SEQ ID NO 644 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide selected from scanning open reading frame of TC45 mRNA	
<400> SEQUENCE: 644	
aacagauaca gagauguaag c	21
<210> SEQ ID NO 645 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Oligonucleotide selected from scanning open reading frame of TC45 mRNA	
<400> SEQUENCE: 645	
aaqcccauau qaucacaquc q	21

```
<210> SEQ ID NO 646
<211> LENGTH: 21 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - DSP3.4
<400> SEQUENCE: 646
ggugacacau auucugucut t
                                                                          21
<210> SEQ ID NO 647
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - DSP3.4
<400> SEQUENCE: 647
ggugacacau auucugucu
<210> SEQ ID NO 648
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - DSP3.4
<400> SEOUENCE: 648
agacagaaua ugugucacc
                                                                          19
<210> SEQ ID NO 649
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - DSP3.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 649
ggugacacau auucugucun n
                                                                          21
<210> SEQ ID NO 650
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - DSP3.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 650
nnagacagaa uaugugucac c
                                                                          21
<210> SEQ ID NO 651
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - DHFR.1
```

<400> SEQUENCE: 651	
gaccugguuc uccauuccut t	21
<210> SEQ ID NO 652 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE:	
<pre><223> OTHER INFORMATION: Small interefering RNA - DHFR.1</pre>	
<400> SEQUENCE: 652	
gaccugguuc uccauuccu	19
<pre><210> SEQ ID NO 653 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interefering RNA - DHFR.1</pre>	
<400> SEQUENCE: 653	
aggaauggag aaccagguc	19
<pre><210> SEQ ID NO 654 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <222> OTHER INFORMATION: Small interefering RNA - DHFR.1 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 20, 21 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 654	
gaccugguuc uccauuccun n	21
<pre><210> SEQ ID NO 655 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interefering RNA - DHFR.1 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 1, 2 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 655	
nnaggaaugg agaaccaggu c	21
<pre><210> SEQ ID NO 656 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interefering RNA - DHFR.3 <400> SEQUENCE: 656</pre>	
gcaguguauu ugcuagguct t	21
<210> SEQ ID NO 657 <211> LENGTH: 19 <212> TYPE: RNA	

```
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - DHFR.3
<400> SEQUENCE: 657
                                                                           19
gcaguguauu ugcuagguc
<210> SEQ ID NO 658
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - DHFR.3
<400> SEOUENCE: 658
gaccuagcaa auacacugc
                                                                           19
<210> SEQ ID NO 659
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - DHFR.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<22> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEOUENCE: 659
gcaguguauu ugcuaggucn n
                                                                           21
<210> SEQ ID NO 660
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - DHFR.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 660
nngaccuagc aaauacacug c
                                                                           21
<210> SEQ ID NO 661
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - DHFR.4
<400> SEOUENCE: 661
                                                                           21
gucagcgagc agguucucat t
<210> SEQ ID NO 662
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - DHFR.4
<400> SEQUENCE: 662
                                                                           19
qucaqcqaqc aqquucuca
```

```
<210> SEQ ID NO 663
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - DHFR.4
<400> SEQUENCE: 663
ugagaaccug cucgcugac
                                                                         19
<210> SEQ ID NO 664
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - DHFR.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 664
gucagegage agguucucan n
                                                                         21
<210> SEQ ID NO 665
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - DHFR.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 665
nnugagaacc ugcucgcuga c
                                                                         21
<210> SEO ID NO 666
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TYMS.1
<400> SEQUENCE: 666
ccaaacgugu guucuggaat t
                                                                         21
<210> SEQ ID NO 667
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TYMS.1
<400> SEQUENCE: 667
ccaaacgugu guucuggaa
                                                                         19
<210> SEQ ID NO 668
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TYMS.1
```

4005 CEOUENCE • 669	
<400> SEQUENCE: 668	
uuccagaaca cacguuugg	19
<210> SEQ ID NO 669 <211> LENGTH: 21	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE: <223> OTHER INFORMATION: Small interefering RNA - TYMS.1 <220> FEATURE:	
<pre><221> NAME/KEY: misc_feature <222> LOCATION: 20, 21</pre>	
<223> OTHER INFORMATION: $n = A, T, C, G$ or U	
<400> SEQUENCE: 669	
ccaaacgugu guucuggaan n	21
<210> SEQ ID NO 670 <211> LENGTH: 21	
<pre><212> TYPE: DNA <213> ORGANISM: Artificial Sequence</pre>	
<pre><220> FEATURE: <223> OTHER INFORMATION: Small interefering RNA - TYMS.1</pre>	
<pre><220> FEATURE: <221> NAME/KEY: misc_feature</pre>	
<222> LOCATION: 1, 2 <223> OTHER INFORMATION: n = A,T,C,G or U	
<400> SEQUENCE: 670	
nnuuccagaa cacacguuug g	21
<210> SEQ ID NO 671	
<211> LENGTH: 21 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence <220> FEATURE:	
<pre><223> OTHER INFORMATION: Small interefering RNA - TYMS.2 <400> SEQUENCE: 671</pre>	
ccaacccuga cgacagaagt t	21
<210> SEQ ID NO 672 <211> LENGTH: 19	
<212> TYPE: RNA <213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Small interefering RNA - TYMS.2</pre>	
<400> SEQUENCE: 672	
ccaacccuga cgacagaag	19
<210> SEQ ID NO 673	
<211> LENGTH: 19 <212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Small interefering RNA - TYMS.2</pre>	
<400> SEQUENCE: 673	
cuucugucgu caggguugg	19
<210> SEQ ID NO 674	
<211> LENGTH: 21 <212> TYPE: DNA	

```
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TYMS.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 674
ccaacccuga cgacagaagn n
                                                                            21
<210> SEQ ID NO 675
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TYMS.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 675
nncuucuguc gucaggguug g
                                                                            21
<210> SEQ ID NO 676
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TYMS.3
<400> SEQUENCE: 676
gccaggugac uuuauacact t
                                                                            21
<210> SEQ ID NO 677
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TYMS.3
<400> SEQUENCE: 677
gccaggugac uuuauacac
                                                                            19
<210> SEQ ID NO 678
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TYMS.3
<400> SEQUENCE: 678
                                                                            19
ququauaaaq ucaccuqqc
<210> SEQ ID NO 679
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TYMS.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21 
<223> OTHER INFORMATION: n = A,T,C,G or U
```

<400> SEQUENCE: 679	
gccaggugac uuuauacacn n	21
<pre><210> SEQ ID NO 680 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interefering RNA - TYMS.3 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 1, 2 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 680	
nnguguauaa agucaccugg c	21
<210> SEQ ID NO 681 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interefering RNA - TYMS.4 <400> SEQUENCE: 681	
cccagaccuu ucccaaagct t	21
<210> SEQ ID NO 682 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interefering RNA - TYMS.4	
<400> SEQUENCE: 682	
cccagaccuu ucccaaagc	19
<210> SEQ ID NO 683 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interefering RNA - TYMS.4 <400> SEQUENCE: 683	
gcuuugggaa aggucuggg	19
<pre><210> SEQ ID NO 684 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interefering RNA - TYMS.4 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 20, 21 <223> OTHER INFORMATION: n = A,T,C,G or U <400> SEQUENCE: 684</pre>	
cccagaccuu ucccaaagcn n	21
<210> SEQ ID NO 685 <211> LENGTH: 21 <212> TYPE: DNA	

```
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TYMS.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 685
                                                                           21
nngcuuuggg aaaggucugg g
<210> SEQ ID NO 686
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TOP1.1
<400> SEQUENCE: 686
                                                                           21
gauagagccu ccuggacuut t
<210> SEQ ID NO 687
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TOP1.1
<400> SEOUENCE: 687
gauagagccu ccuggacuu
                                                                          19
<210> SEQ ID NO 688
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TOP1.1
<400> SEQUENCE: 688
                                                                          19
aaguccagga ggcucuauc
<210> SEQ ID NO 689
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TOP1.1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEOUENCE: 689
gauagagccu ccuggacuun n
                                                                           21
<210> SEQ ID NO 690
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TOP1.1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
```

<400> SEQUENCE: 690	
nnaaguccag gaggcucuau c	21
<210> SEQ ID NO 691 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interefering RNA - TOP1.2	
<400> SEQUENCE: 691	
guccggcaug auaacaaggt t	21
<pre><210> SEQ ID NO 692 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interefering RNA - TOP1.2</pre>	
<400> SEQUENCE: 692	
guccggcaug auaacaagg	19
<210> SEQ ID NO 693 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interefering RNA - TOP1.2	
<400> SEQUENCE: 693	
ccuuguuauc augccggac	19
<pre><210> SEQ ID NO 694 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interefering RNA - TOP1.2 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 20, 21 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 694	
guccggcaug auaacaaggn n	21
<pre><210> SEQ ID NO 695 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interefering RNA - TOP1.2 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 1, 2 <223> OTHER INFORMATION: n = A,T,C,G or U <400> SEQUENCE: 695</pre>	
nnccuuguua ucaugccgga c	21
<210> SEQ ID NO 696 <211> LENGTH: 21 <212> TYPE: DNA	

```
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TOP1.3
<400> SEQUENCE: 696
                                                                         21
ggagaaacag cggacacugt t
<210> SEQ ID NO 697
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TOP1.3
<400> SEOUENCE: 697
ggagaaacag cggacacug
                                                                         19
<210> SEQ ID NO 698
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TOP1.3
<400> SEQUENCE: 698
caguguccgc uguuucucc
                                                                         19
<210> SEQ ID NO 699
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TOP1.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 699
                                                                         21
ggagaaacag cggacacugn n
<210> SEQ ID NO 700
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TOP1.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEOUENCE: 700
                                                                         21
nncagugucc gcuguuucuc c
<210> SEQ ID NO 701
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TOP1.4
<400> SEQUENCE: 701
gcagcccgag gaugaucuut t
                                                                         21
```

```
<210> SEQ ID NO 702
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TOP1.4
<400> SEQUENCE: 702
                                                                           19
gcagcccgag gaugaucuu
<210> SEQ ID NO 703
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TOP1.4
<400> SEQUENCE: 703
aagaucaucc ucgggcugc
<210> SEQ ID NO 704
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TOP1.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 704
                                                                           21
gcagcccgag gaugaucuun n
<210> SEQ ID NO 705
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TOP1.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 705
nnaagaucau ccucgggcug c
                                                                          21
<210> SEQ ID NO 706
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - IKK.1
<400> SEQUENCE: 706
gagucuccuc uggggaagct t
                                                                           21
<210> SEQ ID NO 707
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - IKK.1
```

<400> SEQUENCE: 707	
gagucuccuc uggggaagc	19
<pre><210> SEQ ID NO 708 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interefering RNA - IKK.1</pre>	
<400> SEQUENCE: 708	10
gcuuccccag aggagacuc	19
<pre><210> SEQ ID NO 709 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interefering RNA - IKK.1 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 20, 21 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 709	
gagucuccuc uggggaagen n	21
<pre><210> SEQ ID NO 710 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interefering RNA - IKK.1 <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 1, 2 <223> OTHER INFORMATION: n = A,T,C,G or U <400> SEQUENCE: 710</pre>	
nngcuucccc agaggagacu c	21
<210> SEQ ID NO 711 <211> LENGTH: 21 <212> TYPE: DNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interefering RNA - IKK.2	
<400> SEQUENCE: 711	
ggaguuccuc augugcaagt t	21
<210> SEQ ID NO 712 <211> LENGTH: 19 <212> TYPE: RNA <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Small interefering RNA - IKK.2 <400> SEQUENCE: 712	
ggaguuccuc augugcaag	19
<210> SEQ ID NO 713 <211> LENGTH: 19 <212> TYPE: RNA	

```
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - IKK.2
<400> SEQUENCE: 713
                                                                           19
cuugcacaug aggaacucc
<210> SEQ ID NO 714
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - IKK.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21 
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 714
                                                                           21
ggaguuccuc augugcaagn n
<210> SEQ ID NO 715
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - IKK.2
<220> FEATURE:
<221> NAME/KEY: misc_feature <222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 715
nncuugcaca ugaggaacuc c
                                                                           21
<210> SEQ ID NO 716
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - IKK.3
<400> SEQUENCE: 716
ggccucugug aaagcccagt t
                                                                           21
<210> SEQ ID NO 717
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - IKK.3
<400> SEOUENCE: 717
                                                                           19
ggccucugug aaagcccag
<210> SEQ ID NO 718
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - IKK.3
<400> SEOUENCE: 718
                                                                           19
cugggcuuuc acagaggcc
```

```
<210> SEQ ID NO 719
<211> LENGTH: 21 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - IKK.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 719
ggccucugug aaagcccagn n
                                                                         21
<210> SEQ ID NO 720
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - IKK.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 720
                                                                         21
nncuqqqcuu ucacaqaqqc c
<210> SEQ ID NO 721
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - IKK.4
<400> SEQUENCE: 721
cacgcugcuc uugauguggt t
                                                                         21
<210> SEO ID NO 722
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - IKK.4
<400> SEQUENCE: 722
cacgcugcuc uugaugugg
                                                                         19
<210> SEQ ID NO 723
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - IKK.4
<400> SEQUENCE: 723
ccacaucaag agcagcgug
                                                                         19
<210> SEQ ID NO 724
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - IKK.4
<220> FEATURE:
```

```
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 724
                                                                          21
cacgcugcuc uugauguggn n
<210> SEQ ID NO 725
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - IKK.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 725
                                                                          21
nnccacauca agagcagcgu g
<210> SEQ ID NO 726
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK4.1
<400> SEOUENCE: 726
gugggcaaau aauggcagut t
                                                                          21
<210> SEQ ID NO 727
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK4.1
<400> SEQUENCE: 727
                                                                          19
gugggcaaau aauggcagu
<210> SEQ ID NO 728
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK4.1
<400> SEQUENCE: 728
                                                                          19
acugccauua uuugcccac
<210> SEQ ID NO 729
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK4.1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 729
                                                                          21
gugggcaaau aauggcagun n
```

```
<210> SEQ ID NO 730
<211> LENGTH: 21 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK4.1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 730
nnacugccau uauuugccca c
                                                                          21
<210> SEQ ID NO 731
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK4.2
<400> SEQUENCE: 731
cugugaaagc acuaaaccat t
                                                                          21
<210> SEQ ID NO 732
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK4.2
<400> SEQUENCE: 732
                                                                          19
cugugaaagc acuaaacca
<210> SEQ ID NO 733
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK4.2
<400> SEQUENCE: 733
ugguuuagug cuuucacag
                                                                          19
<210> SEQ ID NO 734
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK4.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 734
cugugaaagc acuaaaccan n
                                                                          21
<210> SEQ ID NO 735
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK4.2
<220> FEATURE:
```

```
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 735
                                                                         21
nnugguuuag ugcuuucaca g
<210> SEQ ID NO 736
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK4.3
<400> SEOUENCE: 736
ggagauccuc cgcagcugat t
                                                                         21
<210> SEQ ID NO 737
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK4.3
<400> SEQUENCE: 737
qqaqauccuc cqcaqcuqa
                                                                         19
<210> SEQ ID NO 738
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK4.3
<400> SEQUENCE: 738
ucagcugcgg aggaucucc
                                                                         19
<210> SEO ID NO 739
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK4.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 739
                                                                         21
ggagauccuc cgcagcugan n
<210> SEQ ID NO 740
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK4.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 740
                                                                         21
nnucagcugc ggaggaucuc c
```

```
<210> SEQ ID NO 741
<211> LENGTH: 21 <212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK4.4
<400> SEQUENCE: 741
gcucuuuaua cuuuggccut t
                                                                          21
<210> SEQ ID NO 742
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK4.4
<400> SEQUENCE: 742
gcucuuuaua cuuuggccu
<210> SEQ ID NO 743
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK4.4
<400> SEOUENCE: 743
aggccaaagu auaaagagc
                                                                          19
<210> SEQ ID NO 744
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK4.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 744
gcucuuuaua cuuuggccun n
                                                                          21
<210> SEQ ID NO 745
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK4.4
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 745
nnaggccaaa guauaaagag c
                                                                          21
<210> SEQ ID NO 746
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK7.1
```

<400> SEQUENCE: 746	
-	0.1
gcagacgggc uaccugacct t	21
<210> SEQ ID NO 747 <211> LENGTH: 19	
<212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interefering RNA - MKK7.1	
<400> SEQUENCE: 747	
gcagacgggc uaccugacc	19
555555	
<210> SEQ ID NO 748	
<211> LENGTH: 19	
<212> TYPE: RNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Small interefering RNA - MKK7.1	
<400> SEQUENCE: 748	
ggucagguag cccgucugc	19
<210> SEQ ID NO 749	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE:</pre>	
<pre><223> OTHER INFORMATION: Small interefering RNA - MKK7.1 <220> FEATURE:</pre>	
<pre><221> NAME/KEY: misc_feature</pre>	
<222> LOCATION: 20, 21	
<223> OTHER INFORMATION: $n = A,T,C,G$ or U	
<400> SEQUENCE: 749	
200202222 USBANGS N	21
gcagacgggc uaccugaccn n	21
010. GTO TD NO 750	
<210> SEQ ID NO 750 <211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<pre><223> OTHER INFORMATION: Small interefering RNA - MKK7.1</pre>	
<pre><220> FEATURE: <221> NAME/KEY: misc_feature</pre>	
<222> LOCATION: 1, 2	
<223> OTHER INFORMATION: n = A,T,C,G or U	
<400> SEQUENCE: 750	
ATOUN DESCRIPCE. 100	
nnggucaggu agcccgucug c	21
<210> SEQ ID NO 751	
<211> LENGTH: 21	
<212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Small interefering RNA - MKK7.2</pre>	
<400> SEQUENCE: 751	
	2.1
cacggacguc uucaucgcct t	21
<210> SEQ ID NO 752	
<211> LENGTH: 19	
<212> TYPE: RNA	

```
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK7.2
<400> SEQUENCE: 752
cacggacguc uucaucgcc
                                                                           19
<210> SEQ ID NO 753
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK7.2
<400> SEOUENCE: 753
ggcgaugaag acguccgug
                                                                          19
<210> SEQ ID NO 754
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK7.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<22> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEOUENCE: 754
cacggacguc uucaucgccn n
                                                                          21
<210> SEQ ID NO 755
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK7.2
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A,T,C,G or U
<400> SEQUENCE: 755
nnggcgauga agacguccgu g
                                                                           21
<210> SEQ ID NO 756
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK7.3
<400> SEQUENCE: 756
                                                                           21
qaaqcqqauq caqqqccct t
<210> SEQ ID NO 757
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK7.3
<400> SEQUENCE: 757
                                                                          19
gaagcggaug cagggcccc
```

```
<210> SEQ ID NO 758
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK7.3
<400> SEQUENCE: 758
ggggcccugc auccgcuuc
                                                                         19
<210> SEQ ID NO 759
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK7.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 759
gaageggaug cagggeeeen n
                                                                         21
<210> SEQ ID NO 760
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK7.3
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 760
nnggggcccu gcauccgcuu c
                                                                         21
<210> SEQ ID NO 761
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK7.4
<400> SEQUENCE: 761
cugcaagacg gacuuugagt t
                                                                         21
<210> SEQ ID NO 762
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK7.4
<400> SEQUENCE: 762
cugcaagacg gacuuugag
                                                                         19
<210> SEQ ID NO 763
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - MKK7.4
```

<400> SEQUENCE: 763	
cucaaaguce gucuugcag	19
<210> SEQ ID NO 764	
<211> LENGTH: 21 <212> TYPE: DNA	
<213> ORGANISM: Artificial Sequence	
<pre><220> FEATURE: <223> OTHER INFORMATION: Small interefering RNA - MKK7.4</pre>	
<pre><220> FEATURE:</pre>	
<221> NAME/KEY: misc_feature	
<pre><222> LOCATION: 20, 21 <223> OTHER INFORMATION: n = A,T,C,G or U</pre>	
<400> SEQUENCE: 764	
cugcaagacg gacuuugagn n	21
<210> SEQ ID NO 765	
<211> LENGTH: 21	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<pre><223> OTHER INFORMATION: Small interefering RNA - MKK7.4 <220> FEATURE:</pre>	
<pre><221> NAME/KEY: misc_feature</pre>	
<222> LOCATION: 1, 2	
<223> OTHER INFORMATION: n = A,T,C,G or U	
<400> SEQUENCE: 765	
nncucaaagu ccgucuugca g	21
<210> SEQ ID NO 766	
<211> LENGTH: 55	
<212> TYPE: DNA	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Hairpin Vector - HP53-HP9	
<400> SEQUENCE: 766	
tttgactcca gtggtaatct acttcaagag agtagattac cactggagtc ttttt	55
<210> SEQ ID NO 767	
<211> LENGTH: 55	
<212> TYPE: DNA <213> ORGANISM: Artificial Sequence	
<220> FEATURE:	
<223> OTHER INFORMATION: Hairpin Vector - HP53-HP9	
<400> SEQUENCE: 767	
ctagaaaaag actccagtgg taatctactc tcttgaagta gattaccact ggagt	55
<210> SEQ ID NO 768	
<211> LENGTH: 55	
<212> TYPE: RNA <213> ORGANISM: Artificial Sequence	
<pre><213> ORGANISM: Artificial Sequence <220> FEATURE:</pre>	
<223> OTHER INFORMATION: Hairpin Vector - HP53-HP9	
<400> SEQUENCE: 768	
uuugacucca gugguaaucu acuucaagag aguagauuac cacuggaguc uuuuu	55
<210> SEQ ID NO 769	
<211> LENGTH: 55	
<212> TYPE: RNA	

```
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Hairpin Vector - HP53-HP9
<400> SEQUENCE: 769
cuagaaaaag acuccagugg uaaucuacuc ucuugaagua gauuaccacu ggagu
                                                                        55
<210> SEQ ID NO 770
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TCPTP1
<400> SEOUENCE: 770
aacagauaca gagauguaa
                                                                        19
<210> SEQ ID NO 771
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TCPTP1
<400> SEQUENCE: 771
uuacaucucu quaucuquu
                                                                        19
<210> SEQ ID NO 772
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TCPTP1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 20, 21
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEQUENCE: 772
aacagauaca gagauguaan n
                                                                        21
<210> SEQ ID NO 773
<211> LENGTH: 21
<212> TYPE: DNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TCPTP1
<220> FEATURE:
<221> NAME/KEY: misc_feature
<222> LOCATION: 1, 2
<223> OTHER INFORMATION: n = A, T, C, G or U
<400> SEOUENCE: 773
                                                                         21
nnuuacaucu cuquaucuqu u
<210> SEQ ID NO 774
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interefering RNA - TCPTP2
<400> SEQUENCE: 774
                                                                        19
aagcccauau gaucacagu
```

<211><212><213><220>	LENGT TYPE: ORGAN FEATU	RNA NISM: Artific DRE:	_	ce nterefering	RNA - TCPTE	2	
	-	NCE: 775					19
	,						
<211><212><212><213><220><223><220><221><221><221><221><222>	LENGT TYPE: ORGAN FEATU OTHER FEATU NAME/ LOCAT	NISM: Artific DRE: R INFORMATIC	ON: Small in	nterefering	RNA - TCPTE	22	
<400>	SEQUE	ENCE: 776					
aagcco	cauau	gaucacagun	n				21
<211> <212>	LENGT	DNA					
<213>		NISM: Artific DRE:	cial Sequenc	ce			
			ON: Small ir	nterefering	RNA - TCPTE	2	
<220> <221>		KEY: misc_f	eature				
		TION: 1, 2 R INFORMATIO	и• n – A П	C G or II			
		ENCE: 777	N. 11 - A,1,	.c,			
nnacuç	gugau	cauaugggcu	u				21
<211> <212> <213>	LENGT TYPE: ORGAN	NISM: Homo s	sapiens				
<400>	SEQUE	ENCE: 778					
ccccg	ecgct	cctcctccct	gtaacatgcc	atagtgcgcc	tgcgaccaca	cggccggggc	60
gctago	cgttc	gccttcagcc	accatgggga	atgggatgaa	caagatcctg	cccggcctgt	120
acatc	ggcaa	cttcaaagat	gccagagacg	cggaacaatt	gagcaagaac	aaggtgacac	180
atatto	ctgtc	tgtccacgat	agtgccaggc	ctatgttgga	gggagttaaa	tacctgtgca	240
tccca	gcagc	ggattcacca	tctcaaaacc	tgacaagaca	tttcaaagaa	agtattaaat	300
tcatto	cacga	gtgccggctc	cgcggtgaga	gctgccttgt	acactgcctg	gccggggtct	360
ccagga	agcgt	gacactggtg	atcgcataca	tcatgaccgt	cactgacttt	ggctgggagg	420
atgcco	ctgca	caccgtgcgt	gctgggagat	cctgtgccaa	ccccaacgtg	ggcttccaga	480
gacago	ctcca	ggagtttgag	aagcatgagg	tccatcagta	tcggcagtgg	ctgaaggaag	540
aatato	ggaga	gagccctttg	caggatgcag	aagaagccaa	aaacattctg	gccgctccag	600
gaatto	ctgaa	gttctgggcc	tttctcagaa	gactgtaatg	tacctgaagt	ttctgaaata	660
ttgcaa	aaccc	gcagagttta	ggctggtgct	gccaaaaaga	aaagcaacat	agagtttaag	720

-continued			
tatccagtag tgatttgtaa acttgtttt catttgaagc tgaatatata cgtagtcatg	780		
tttatgttga gaactaagga tattctttag caagagaaaa tattttcccc ttatccccac	840		
tgctgtggag gtttctgtac ctcgcttgga tgcctgtaag gatcccggga gccttgccgc	900		
actgccttgt gggtggcttg gcgctc	926		
<210> SEQ ID NO 779 <211> LENGTH: 184 <212> TYPE: PRT <213> ORGANISM: Homo sapiens			
<400> SEQUENCE: 779			
Met Gly Asn Gly Met Asn Lys Ile Leu Pro Gly Leu Tyr Ile Gly Asn 1 5 10 15			
Phe Lys Asp Ala Arg Asp Ala Glu Gln Leu Ser Lys Asn Lys Val Thr 20 25 30			
His Ile Leu Ser Val His Asp Ser Ala Arg Pro Met Leu Glu Gly Val 35 40 45			
Lys Tyr Leu Cys Ile Pro Ala Ala Asp Ser Pro Ser Gln Asn Leu Thr 50 55 60			
Arg His Phe Lys Glu Ser Ile Lys Phe Ile His Glu Cys Arg Leu Arg 65 70 75 80			
Gly Glu Ser Cys Leu Val His Cys Leu Ala Gly Val Ser Arg Ser Val 85 90 95			
Thr Leu Val Ile Ala Tyr Ile Met Thr Val Thr Asp Phe Gly Trp Glu 100 105 110			
Asp Ala Leu His Thr Val Arg Ala Gly Arg Ser Cys Ala Asn Pro Asn 115 120 125			
Val Gly Phe Gln Arg Gln Leu Gln Glu Phe Glu Lys His Glu Val His 130 135 140			
Gln Tyr Arg Gln Trp Leu Lys Glu Glu Tyr Gly Glu Ser Pro Leu Gln 145 150 155 160			
Asp Ala Glu Glu Ala Lys Asn Ile Leu Ala Ala Pro Gly Ile Leu Lys 165 170 175			
Phe Trp Ala Phe Leu Arg Arg Leu 180			
<210> SEQ ID NO 780 <211> LENGTH: 707 <212> TYPE: DNA <213> ORGANISM: Homo sapiens			
<400> SEQUENCE: 780			
tgacccgctg tcctgtgccc tttcccagcg atgggcgtgc agccccccaa cttctcctgg	60		
gtgcttccgg gccggctggc gggactggcg ctgccgcggc tccccgccca ctaccagttc	120		
ctgttggacc tgggcgtgcg gcacctggtg tccctgacgg agcgcgggcc ccctcacagc	180		
gacagetgee eeggeeteac eetgeacege etgegeatee eegaettetg eeegeeggee	240		
cccgaccaga tcgaccgctt cgtgcagatc gtggacgagg ccaacgcacg gggagaggct	300		
gtgggagtgc actgtgctct gggctttggc cgcactggca ccatgctggc ctgttacctg	360		
gtgaaggage ggggettgge tgeaggagat geeattgetg aaateegaeg actaegaece	420		
ggctccatcg agacctatga gcaggagaaa gcagtcttcc agttctacca gcgaacgaaa	480		

-continued											
taaggggcct tagtaccctt ctaccaggcc ctcactcccc ttccccatgt tgtcgatggg	540										
gccagagatg aagggaagtg gactaaagta ttaaaccctc tagctcccat tggctgaaga	600										
cactgaagta gcccacccct gcaggcaggt cctgattgaa ggggaggctt gtactgcttt	660										
gttgaataaa tgagttttac gaaccaaaaa aaaaaaaaa aaaaaaa	707										
<210> SEQ ID NO 781 <211> LENGTH: 150 <212> TYPE: PRT <213> ORGANISM: Homo sapiens											
<400> SEQUENCE: 781											
Met Gly Val Gln Pro Pro Asn Phe Ser Trp Val Leu Pro Gly Arg Leu 1 5 10 15											
Ala Gly Leu Ala Leu Pro Arg Leu Pro Ala His Tyr Gln Phe Leu Leu 20 25 30											
Asp Leu Gly Val Arg His Leu Val Ser Leu Thr Glu Arg Gly Pro Pro 35 40 45											
His Ser Asp Ser Cys Pro Gly Leu Thr Leu His Arg Leu Arg Ile Pro 50 55 60											
Asp Phe Cys Pro Pro Ala Pro Asp Gln Ile Asp Arg Phe Val Gln Ile 65 70 75 80											
Val Asp Glu Ala Asn Ala Arg Gly Glu Ala Val Gly Val His Cys Ala 85 90 95											
Leu Gly Phe Gly Arg Thr Gly Thr Met Leu Ala Cys Tyr Leu Val Lys 100 105 110											
Glu Arg Gly Leu Ala Ala Gly Asp Ala Ile Ala Glu Ile Arg Arg Leu 115 120 125											
Arg Pro Gly Ser Ile Glu Thr Tyr Glu Gln Glu Lys Ala Val Phe Gln 130 135 140											
Phe Tyr Gln Arg Thr Lys 145 150											
<210> SEQ ID NO 782 <211> LENGTH: 833 <212> TYPE: DNA <213> ORGANISM: Homo sapiens											
<400> SEQUENCE: 782											
ggccccccgt tccccgccag gctgcaggcg tcgggcctgg gccgtcaggg cagctgtgac	60										
eggategett ecegggegge gagetggggg tgeaceegga eegeegeece egggateatg	120										
ggcaatggca tgaccaaggt acttcctgga ctctacctcg gaaacttcat tgatgccaaa	180										
gacctggatc agctgggccg aaataagatc acacacatca tototatcca tgagtcaccc	240										
cagoctotgo tgcaggatat cacotacott ogcatocogg togotgatac cootgaggta	300										
cccatcaaaa agcacttcaa agaatgtatc aacttcatcc actgctgccg ccttaatggg	360										
gggaactgcc ttgtgcactg ctttgcaggc atctctcgca gcaccacgat tgtgacagcg	420										
tatgtgatga ctgtgacggg gctaggctgg cgggacgtgc ttgaagccat caaggccacc	480 540										
aggcccatcg ccaaccccaa cccaggcttt aggcagcagc ttgaagagtt tggctgggcc agttcccaga agcttcgccg gcagctggag gagcgcttcg gcgagagccc cttccgcgac	600										
gaggaggagt tgcgcgctt gctgccgctt tgcaagcgct gccggcaggg ctccgcgacc	660										

teggeeteet eegeegggee geacteagea geeteegagg gaacegtgea gegeetggtg	720
ccgcgcacgc cccgggaage ccaccggccg ctgccgctgc tggcgcgcgt caagcagact	780
ttetettgcc teeeceggtg tetgteeege aagggeggea agtgaggatg cag	833
<210> SEQ ID NO 783 <211> LENGTH: 235 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 783	
Met Gly Asn Gly Met Thr Lys Val Leu Pro Gly Leu Tyr Leu Gly Asn 1 5 10 15	
Phe Ile Asp Ala Lys Asp Leu Asp Gln Leu Gly Arg Asn Lys Ile Thr 20 25 30	
His Ile Ile Ser Ile His Glu Ser Pro Gln Pro Leu Leu Gln Asp Ile 35 40 45	
Thr Tyr Leu Arg Ile Pro Val Ala Asp Thr Pro Glu Val Pro Ile Lys 50 55 60	
Lys His Phe Lys Glu Cys Ile Asn Phe Ile His Cys Cys Arg Leu Asn 65 70 75 80	
Gly Gly Asn Cys Leu Val His Cys Phe Ala Gly Ile Ser Arg Ser Thr 85 90 95	
Thr Ile Val Thr Ala Tyr Val Met Thr Val Thr Gly Leu Gly Trp Arg	
Asp Val Leu Glu Ala Ile Lys Ala Thr Arg Pro Ile Ala Asn Pro Asn 115 120 125	
Pro Gly Phe Arg Gln Gln Leu Glu Glu Phe Gly Trp Ala Ser Ser Gln 130 135 140	
Lys Leu Arg Arg Gln Leu Glu Glu Arg Phe Gly Glu Ser Pro Phe Arg 145 150 155 160	
Asp Glu Glu Glu Leu Arg Ala Leu Leu Pro Leu Cys Lys Arg Cys Arg 165 170 175	
Gln Gly Ser Ala Thr Ser Ala Ser Ser Ala Gly Pro His Ser Ala Ala 180 185 190	
Ser Glu Gly Thr Val Gln Arg Leu Val Pro Arg Thr Pro Arg Glu Ala 195 200 205	
His Arg Pro Leu Pro Leu Leu Ala Arg Val Lys Gln Thr Phe Ser Cys 210 215 220	
Leu Pro Arg Cys Leu Ser Arg Lys Gly Gly Lys 225 230 235	
<210> SEQ ID NO 784 <211> LENGTH: 1711 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 784	
cctgggaaga agttatctat ctctcgagtg acattcaaga tataccgtac ccctcggttc	60
tgtaagtcct ctaagttgga ggcattccat tctgagccgg ccccatgacc ctgagcacgt	120
tggcccgcaa gaggaaggcg cccctcgctt gcacctgcag cctcggtggc cccgacatga	180
ttccttactt ctccgccaac gcggtcatct cgcagaacgc catcaaccag ctcatcagcg	240
agagetttet aactgteaaa ggtgetgeee tttttetace aeggggaaat ggeteateea	300

caccaagaat	cagccacaga	cggaacaagc	atgcaggcga	tctccaacag	catctccaag	360
caatgttcat	tttactccgc	ccagaagaca	acatcaggct	ggctgtaaga	ctggaaagta	420
cttaccagaa	tcgaacacgc	tatatggtag	tggtttcaac	taatggtaga	caagacactg	480
aagaaagcat	cgtcctagga	atggatttct	cctctaatga	cagtagcact	tgtaccatgg	540
gcttagtttt	gcctctctgg	agcgacacgc	taattcattt	ggatggtgat	ggtgggttca	600
gtgtatcgac	ggataacaga	gttcacatat	tcaaacctgt	atctgtgcag	gcaatgtggt	660
ctgcactaca	gagcttacac	aaggcttgtg	aagtcgccag	agcgcataac	tactacccag	720
gcagcctatt	tctcacttgg	gtgagttatt	atgagagcca	tatcaactca	gatcaatcct	780
cagtcaatga	atggaatgca	atgcaagatg	tacagtccca	ccggcccgac	tctccagctc	840
tcttcaccga	catacctact	gaacgtgaac	gaacagaaag	gctaattaaa	accaaattaa	900
gggagatcat	gatgcagaag	gatttggaga	atattacatc	caaagagata	agaacagagt	960
tggaaatgca	aatggtgtgc	aacttgcggg	aattcaagga	atttatagac	aatgaaatga	1020
tagtgatcct	tggtcaaatg	gatagcccta	cacagatatt	tgagcatgtg	ttcctgggct	1080
cagaatggaa	tgcctccaac	ttagaggact	tacagaaccg	aggggtacgg	tatatcttga	1140
atgtcactcg	agagatagat	aacttcttcc	caggagtctt	tgagtatcat	aacattcggg	1200
tatatgatga	agaggcaacg	gatctcctgg	cgtactggaa	tgacacttac	aaattcatct	1260
ctaaagcaaa	gaaacatgga	tctaaatgcc	ttgtgcactg	caaaatgggg	gtgagtcgct	1320
cagcctccac	cgtgattgcc	tatgcaatga	aggaatatgg	ctggaatctg	gaccgagcct	1380
atgactatgt	gaaagaaaga	cgaacggtaa	ccaagcccaa	cccaagcttc	atgagacaac	1440
tggaagagta	tcaggggatc	ttgctggcaa	gcttcctagg	cttgattcat	ggagggaggg	1500
acaagccctg	gggagagaaa	agcacagaat	ttgagtcagt	agatctggtt	tccattcctg	1560
gttcaccctc	ttgctgcaac	cctgagaagt	tacttcacat	ttctcatcct	tacctgaccc	1620
catctataaa	atgaaaatca	agagatccat	ctcacagggt	tattgtgaat	aaaaatgtgt	1680
ttgaatgttt	ataaaaaaaa	aaaaaaaaa	a			1711

<210> SEQ ID NO 785

<211> LENGTH: 509

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 785

Met Thr Leu Ser Thr Leu Ala Arg Lys Arg Lys Ala Pro Leu Ala Cys 1 $$ 10 $$ 15

Thr Cys Ser Leu Gly Gly Pro Asp Met Ile Pro Tyr Phe Ser Ala Asn 20 25 30

Ala Val Ile Ser Gln Asn Ala Ile Asn Gln Leu Ile Ser Glu Ser Phe 35 40 45

Leu Thr Val Lys Gly Ala Ala Leu Phe Leu Pro Arg Gly Asn Gly Ser 50 60

Ser Thr Pro Arg Ile Ser His Arg Arg Asn Lys His Ala Gly Asp Leu 65 70 75 80

Gln Gln His Leu Gln Ala Met Phe Ile Leu Leu Arg Pro Glu Asp Asn 85 90 95

Ile Arg Leu Ala Val Arg Leu Glu Ser Thr Tyr Gln Asn Arg Thr Arg

			100					105					110		
Tyr	Met	Val 115	Val	Val	Ser	Thr	Asn 120	Gly	Arg	Gln	Asp	Thr 125	Glu	Glu	Ser
Ile	Val 130	Leu	Gly	Met	Asp	Phe 135	Ser	Ser	Asn	Asp	Ser 140	Ser	Thr	Cys	Thr
Met 145	Gly	Leu	Val	Leu	Pro 150	Leu	Trp	Ser	Asp	Thr 155	Leu	Ile	His	Leu	Asp 160
Gly	Asp	Gly	Gly	Phe 165	Ser	Val	Ser	Thr	Asp 170	Asn	Arg	Val	His	Ile 175	Phe
Lys	Pro	Val	Ser 180	Val	Gln	Ala	Met	Trp 185	Ser	Ala	Leu	Gln	Ser 190	Leu	His
Lys	Ala	Cys 195	Glu	Val	Ala	Arg	Ala 200	His	Asn	Tyr	Tyr	Pro 205	Gly	Ser	Leu
Phe	Leu 210	Thr	Trp	Val	Ser	Tyr 215	Tyr	Glu	Ser	His	Ile 220	Asn	Ser	Asp	Gln
Ser 225	Ser	Val	Asn	Glu	Trp 230	Asn	Ala	Met	Gln	Asp 235	Val	Gln	Ser	His	Arg 240
Pro	Asp	Ser	Pro	Ala 245	Leu	Phe	Thr	Asp	Ile 250	Pro	Thr	Glu	Arg	Glu 255	Arg
Thr	Glu	Arg	Leu 260	Ile	Lys	Thr	Lys	Leu 265	Arg	Glu	Ile	Met	Met 270	Gln	Lys
Asp	Leu	Glu 275	Asn	Ile	Thr	Ser	Lys 280	Glu	Ile	Arg	Thr	Glu 285	Leu	Glu	Met
Gln	Met 290	Val	Cys	Asn	Leu	Arg 295	Glu	Phe	Lys	Glu	Phe 300	Ile	Asp	Asn	Glu
Met 305	Ile	Val	Ile	Leu	Gly 310	Gln	Met	Asp	Ser	Pro 315	Thr	Gln	Ile	Phe	Glu 320
His	Val	Phe	Leu	Gly 325	Ser	Glu	Trp	Asn	Ala 330	Ser	Asn	Leu	Glu	Asp 335	Leu
Gln	Asn	Arg	Gly 340	Val	Arg	Tyr	Ile	Leu 345	Asn	Val	Thr	Arg	Glu 350	Ile	Asp
Asn	Phe	Phe 355	Pro	Gly	Val	Phe	Glu 360	Tyr	His	Asn	Ile	Arg 365	Val	Tyr	Asp
Glu	Glu 370	Ala	Thr	Asp	Leu	Leu 375	Ala	Tyr	Trp	Asn	Asp 380	Thr	Tyr	Lys	Phe
Ile 385	Ser	Lys	Ala	Lys	Lys 390	His	Gly	Ser	Lys	С у в 395	Leu	Val	His	Cys	Lys 400
Met	Gly	Val	Ser	Arg 405	Ser	Ala	Ser	Thr	Val 410	Ile	Ala	Tyr	Ala	Met 415	Lys
Glu	Tyr	Gly	Trp 420	Asn	Leu	Asp	Arg	Ala 425	Tyr	Asp	Tyr	Val	Lys 430	Glu	Arg
Arg	Thr	Val 435	Thr	Lys	Pro	Asn	Pro 440	Ser	Phe	Met	Arg	Gln 445	Leu	Glu	Glu
Tyr	Gln 450	Gly	Ile	Leu	Leu	Ala 455	Ser	Phe	Leu	Gly	Leu 460	Ile	His	Gly	Gly
Arg 465	Asp	Lys	Pro	Trp	Gly 470	Glu	Lys	Ser	Thr	Glu 475	Phe	Glu	Ser	Val	Asp 480
Leu	Val	Ser	Ile	Pro 485	Gly	Ser	Pro	Ser	Cys 490	Cys	Asn	Pro	Glu	Lys 495	Leu
Leu	His	Ile	Ser 500	His	Pro	Tyr	Leu	Thr 505	Pro	Ser	Ile	Lys			

<210> SEQ ID NO 786

-continued

<211> LENGTH: 1165 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 786 ggccagtggg ggtggctggg cgtgcggctg ctacatgccc cacggaccag aacctcccga cgcggccagg ccccggcaca cccagctgca gaaaggagag aaaatccctt ggctctaaaa tgacatctgg agaagtgaag acaagcctca agaatgccta ctcatctgcc aagaggctgt 180 cgccgaagat ggaggaggaa ggggaggagg aggactactg cacccctgga gcctttgagc 240 tggagegget ettetggaag ggeagteece agtacaceca egteaaegag gtetggeeca 300 360 agetetacat tggegatgag gegaeggege tggaeegeta taggetgeag aaggeggggt 420 tcacqcacqt qctqaacqcq qcccacqqcc qctqqaacqt qqacactqqq cccqactact accgcgacat ggacatccag taccacggcg tggaggccga cgacctgccc accttcgacc 540 tcagtgtctt cttctacccg gcggcagcct tcatcgacag agcgctaagc gacgaccaca gtaagateet ggtteaetge gteatgggee geageeggte ageeaecetg gteetggeet 600 acctgatgat ccacaaggac atgaccctgg tggacgccat ccagcaagtg gccaagaacc 660 gctgcgtcct cccgaaccgg ggctttttga agcagctccg ggagctggac aagcagctgg 720 780 tqcaqcaqaq qcqacqqtcc caqcqccaqq acqqtqaqqa qqaqqatqqc aqqqaqctqt 840 aggecegact cacagggeca geagaggeac ttggggacag aggggagagg cagaacatag ccctggccta ggactccaga gaagggatgg tgaaaccgaa gctcgactct tccaaaccat 960 cttgttcaac ttccccatgt gtgctgggga cagggaggac ccagagctgc ccccgggcag agctgagcgc tcagcctctc agcaaaatgg gagggacggg ctccccggct ctgggtcaca 1020 1080 gaggagcatg ccacgctgca ccaagtctcc tgctttggtt ttgttttttt ggtgagaagg aagagggaaa aagattttta aaatgtgtag gcagtatgtt gtgattaaac gtttggcttt 1140 gtccaaaaaa aaaaaaaaaa aaaaa 1165 <210> SEQ ID NO 787 <211> LENGTH: 220 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEOUENCE: 787 Met Thr Ser Gly Glu Val Lys Thr Ser Leu Lys Asn Ala Tyr Ser Ser Ala Lys Arg Leu Ser Pro Lys Met Glu Glu Glu Glu Glu Glu Asp Tyr Cys Thr Pro Gly Ala Phe Glu Leu Glu Arg Leu Phe Trp Lys Gly Ser Pro Gln Tyr Thr His Val Asn Glu Val Trp Pro Lys Leu Tyr Ile Gly Asp Glu Ala Thr Ala Leu Asp Arg Tyr Arg Leu Gln Lys Ala Gly Phe Thr His Val Leu Asn Ala Ala His Gly Arg Trp Asn Val Asp Thr Gly Pro Asp Tyr Tyr Arg Asp Met Asp Ile Gln Tyr His Gly Val Glu

60

											-	con	tin	ued	
			100					105					110		
Ala	Asp	Asp 115	Leu	Pro	Thr	Phe	Asp 120	Leu	Ser	Val	Phe	Phe 125	Tyr	Pro	Ala
Ala	Ala 130	Phe	Ile	Asp	Arg	Ala 135	Leu	Ser	Asp	Asp	His 140	Ser	Lys	Ile	Leu
Val 145	His	Сув	Val	Met	Gl y 150	Arg	Ser	Arg	Ser	Ala 155	Thr	Leu	Val	Leu	Ala 160
Tyr	Leu	Met	Ile	His 165	Lys	Asp	Met	Thr	Leu 170	Val	Asp	Ala	Ile	Gln 175	Gln
Val	Ala	Lys	Asn 180	Arg	Сув	Val	Leu	Pro 185	Asn	Arg	Gly	Phe	Leu 190	Lys	Gln
Leu	Arg	Glu 195	Leu	Asp	Lys	Gln	Leu 200	Val	Gln	Gln	Arg	Arg 205	Arg	Ser	Gln
Arg	Gln 210	Asp	Gly	Glu	Glu	Glu 215	Asp	Gly	Arg	Glu	Leu 220				
<210> SEQ ID NO 788 <211> LENGTH: 2276 <212> TYPE: DNA <213> ORGANISM: Homo sapiens															
<400	O> SE	EQUE	ICE:	788											
ctg	cccc	gcg t	taag	gtcc	eg a	gegg	gaato	c cct	cggg	gcca	gcc	gat	gtg	accga	agccca
gcggagcctg agcaaggagc gggtccgtcg cggagccgga gggcgggagg aacatgac										gacat					
cgc	ggaga	atg 🤉	gttt	cacco	ca aa	atato	cacto	ggt	gtgga	aggc	agaa	aaac	cta (ctgtt	gacaa
gag	gagti	tga 1	tggca	agtt	tt ti	tggc	aaggo	cta	agtaa	aaag	taad	cact	gga	gactt	cacac
ttt	ccgtt	tag a	aagaa	aatg	ga go	ctgt	cacco	c aca	atcaa	agat	tca	gaaca	act (ggtga	attact
- 4															+

120 180 240 300 atgacctgta tggagggag aaatttgcca ctttggctga gttggtccag tattacatgg 360 aacatcacgg gcaattaaaa gagaagaatg gagatgtcat tgagcttaaa tatcctctga 420 480 actgtgcaga tcctacctct gaaaggtggt ttcatggaca tctctctggg aaagaagcag agaaattatt aactgaaaaa ggaaaacatg gtagttttct tgtacgagag agccagagcc 540 accctggaga ttttgttctt tctgtgcgca ctggtgatga caaaggggag agcaatgacg gcaagtctaa agtgacccat gttatgattc gctgtcagga actgaaatac gacgttggtg 660 gaggagaacg gtttgattct ttgacagatc ttgtggaaca ttataagaag aatcctatgg 720 tggaaacatt gggtacagta ctacaactca agcagcccct taacacgact cgtataaatg 780 ctgctgaaat agaaagcaga gttcgagaac taagcaaatt agctgagacc acagataaag 840 tcaaacaagg cttttgggaa gaatttgaga cactacaaca acaggagtgc aaacttctct 900 960 acagccgaaa agagggtcaa aggcaagaaa acaaaaacaa aaatagatat aaaaacatcc tgccctttga tcataccagg gttgtcctac acgatggtga tcccaatgag cctgtttcag 1020 attacatcaa tgcaaatatc atcatgcctg aatttgaaac caagtgcaac aattcaaagc 1080 ccaaaaagag ttacattgcc acacaaggct gcctgcaaaa cacggtgaat gacttttggc 1140 ggatggtgtt ccaagaaaac tcccgagtga ttgtcatgac aacgaaagaa gtggagagag 1200 1260 gaaagagtaa atgtgtcaaa tactggcctg atgagtatgc tctaaaagaa tatggcgtca 1320 tgcgtgttag gaacgtcaaa gaaagcgccg ctcatgacta tacgctaaga gaacttaaac tttcaaaggt tggacaaggg aatacggaga gaacggtctg gcaataccac tttcggacct 1380

ggccggacca	cggcgtgccc	agcgaccctg	ggggcgtgct	ggacttcctg	gaggaggtgc	1440
accataagca	ggagagcatc	atggatgcag	ggccggtcgt	ggtgcactgc	agtgctggaa	1500
ttggccggac	agggacgttc	attgtgattg	atattcttat	tgacatcatc	agagagaaag	1560
gtgttgactg	cgatattgac	gttcccaaaa	ccatccagat	ggtgcggtct	cagaggtcag	1620
ggatggtcca	gacagaagca	cagtaccgat	ttatctatat	ggcggtccag	cattatattg	1680
aaacactaca	gcgcaggatt	gaagaagagc	agaaaagcaa	gaggaaaggg	cacgaatata	1740
caaatattaa	gtattctcta	gcggaccaga	cgagtggaga	tcagagccct	ctcccgcctt	1800
gtactccaac	gccaccctgt	gcagaaatga	gagaagacag	tgctagagtc	tatgaaaacg	1860
tgggcctgat	gcaacagcag	aaaagtttca	gatgagaaaa	cctgccaaaa	cttcagcaca	1920
gaaatagatg	tggactttca	ccctctccct	aaaaagatca	agaacagacg	caagaaagtt	1980
tatgtgaaga	cagaatttgg	atttggaagg	cttgcaatgt	ggttgactac	cttttgataa	2040
gcaaaatttg	aaaccattta	aagaccactg	tattttaact	caacaatacc	tgcttcccaa	2100
ttactcattt	cctcagataa	gaagaaatca	tctctacaat	gtagacaaca	ttatatttta	2160
tagaatttgt	ttgaaattga	ggaagcagtt	aaattgtgcg	ctgtattttg	cagattatgg	2220
ggattcaaat	tctagtaata	ggcttttta	tttttatttt	tataccctta	accagg	2276

<210> SEQ ID NO 789

<211> LENGTH: 593 <212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 789

Met Thr Ser Arg Arg Trp Phe His Pro Asn Ile Thr Gly Val Glu Ala 1 5 10 15

Glu Asn Leu Leu Thr Arg Gly Val Asp Gly Ser Phe Leu Ala Arg 20 25 30

Pro Ser Lys Ser Asn Pro Gly Asp Phe Thr Leu Ser Val Arg Arg Asn 35 40

Gly Ala Val Thr His Ile Lys Ile Gln Asn Thr Gly Asp Tyr Tyr Asp 50 60

Leu Tyr Gly Gly Glu Lys Phe Ala Thr Leu Ala Glu Leu Val Gln Tyr 65 70 75 80

Tyr Met Glu His His Gly Gln Leu Lys Glu Lys Asn Gly Asp Val Ile $85 \hspace{1cm} 90 \hspace{1cm} 95$

Glu Leu Lys Tyr Pro Leu Asn Cys Ala Asp Pro Thr Ser Glu Arg Trp \$100\$ \$105\$ \$110\$

Phe His Gly His Leu Ser Gly Lys Glu Ala Glu Lys Leu Leu Thr Glu 115 120 125

Lys Gly Lys His Gly Ser Phe Leu Val Arg Glu Ser Gln Ser His Pro $130 \ \ 135 \ \ 140$

Gly Asp Phe Val Leu Ser Val Arg Thr Gly Asp Asp Lys Gly Glu Ser 145 150155155160

Asn Asp Gly Lys Ser Lys Val Thr His Val Met Ile Arg Cys Gln Glu 165 170 175

Leu Lys Tyr Asp Val Gly Gly Gly Glu Arg Phe Asp Ser Leu Thr Asp 180 180 185

Leu Val Glu His Tyr Lys Lys Asn Pro Met Val Glu Thr Leu Gly Thr

Arg

		195					200					205			
Val	Leu 210	Gln	Leu	Lys	Gln	Pro 215	Leu	Asn	Thr	Thr	Arg 220	Ile	Asn	Ala	Ala
Glu 225	Ile	Glu	Ser	Arg	Val 230	Arg	Glu	Leu	Ser	Lys 235	Leu	Ala	Glu	Thr	Thr 240
Asp	Lys	Val	Lys	Gln 245	Gly	Phe	Trp	Glu	Glu 250	Phe	Glu	Thr	Leu	Gln 255	Gln
Gln	Glu	Сув	Lys 260	Leu	Leu	Tyr	Ser	Arg 265	Lys	Glu	Gly	Gln	Arg 270	Gln	Glu
Asn	Lys	Asn 275	Lys	Asn	Arg	Tyr	L y s 280	Asn	Ile	Leu	Pro	Phe 285	Asp	His	Thr
Arg	Val 290	Val	Leu	His	Asp	Gly 295	Asp	Pro	Asn	Glu	Pro 300	Val	Ser	Asp	Tyr
Ile 305	Asn	Ala	Asn	Ile	Ile 310	Met	Pro	Glu	Phe	Glu 315	Thr	Lys	Cys	Asn	Asn 320
Ser	Lys	Pro	Lys	Lys 325	Ser	Tyr	Ile	Ala	Thr 330	Gln	Gly	Сув	Leu	Gln 335	Asn
Thr	Val	Asn	Asp 340	Phe	Trp	Arg	Met	Val 345	Phe	Gln	Glu	Asn	Ser 350	Arg	Val
Ile	Val	Met 355	Thr	Thr	Lys	Glu	Val 360	Glu	Arg	Gly	Lys	Ser 365	Lys	Сув	Val
Lys	Ty r 370	Trp	Pro	Asp	Glu	Tyr 375	Ala	Leu	Lys	Glu	Tyr 380	Gly	Val	Met	Arg
Val 385	Arg	Asn	Val	Lys	Glu 390	Ser	Ala	Ala	His	Asp 395	Tyr	Thr	Leu	Arg	Glu 400
Leu	Lys	Leu	Ser	Lys 405	Val	Gly	Gln	Gly	Asn 410	Thr	Glu	Arg	Thr	Val 415	Trp
Gln	Tyr	His	Phe 420	Arg	Thr	Trp	Pro	Asp 425	His	Gly	Val	Pro	Ser 430	Asp	Pro
Gly	Gly	Val 435	Leu	Asp	Phe	Leu	Glu 440	Glu	Val	His	His	Lys 445	Gln	Glu	Ser
Ile	Met 450	Asp	Ala	Gly	Pro	Val 455	Val	Val	His	Сув	Ser 460	Ala	Gly	Ile	Gly
Arg 465	Thr	Gly	Thr	Phe	Ile 470	Val	Ile	Asp	Ile	Leu 475	Ile	Asp	Ile	Ile	Arg 480
Glu	Lys	Gly	Val	Asp 485	Сув	Asp	Ile	Asp	Val 490	Pro	Lys	Thr	Ile	Gln 495	Met
Val	Arg	Ser	Gln 500	Arg	Ser	Gly	Met	Val 505	Gln	Thr	Glu	Ala	Gln 510	Tyr	Arg
Phe	Ile	Tyr 515	Met	Ala	Val	Gln	His 520	Tyr	Ile	Glu	Thr	Leu 525	Gln	Arg	Arg
Ile	Glu 530	Glu	Glu	Gln	Lys	Ser 535	Lys	Arg	Lys	Gly	His 540	Glu	Tyr	Thr	Asn
Ile 545	Lys	Tyr	Ser	Leu	Ala 550	Asp	Gln	Thr	Ser	Gly 555	Asp	Gln	Ser	Pro	Leu 560
Pro	Pro	Сув	Thr	Pro 565	Thr	Pro	Pro	Сув	Ala 570	Glu	Met	Arg	Glu	Asp 575	Ser
Ala	Arg	Val	Tyr 580	Glu	Asn	Val	Gly	Leu 585	Met	Gln	Gln	Gln	Ly s 590	Ser	Phe

<210> SEQ ID NO 790

-continued

<211> LENGTH: 2121 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 790 cgccaggcct ggagggggt ctgtgcgcgg ccggctggct ctgccccgcg tccggtcccg 60 120 agegggeete cetegggeea geeegatgtg acegageeea geggageetg ageaaggage 180 gggtccgtcg cggagccgga gggcgggagg aacatgacat cgcggagatg gtttcaccca aatatcactg gtgtggaggc agaaaaccta ctgttgacaa gaggagttga tggcagtttt 240 ttggcaaggc ctagtaaaag taaccctgga gacttcacac tttccgttag aagaaatgga 300 qctqtcaccc acatcaaqat tcaqaacact qqtqattact atqacctqta tqqaqqqqaq 360 aaatttgcca ctttggctga gttggtccag tattacatgg aacatcacgg gcaattaaaa 420 gagaagaatg gagatgtcat tgagcttaaa tatcctctga actgtgcaga tcctacctct gaaaggtggt ttcatggaca tctctctggg aaagaagcag agaaattatt aactgaaaaa 540 600 ggaaaacatg gtagttttct tgtacgagag agccagagcc accctggaga ttttgttctt tctgtgcgca ctggtgatga caaaggggag agcaatgacg gcaagtctaa agtgacccat 660 qttatqattc qctqtcaqqa actqaaatac qacqttqqtq qaqqaqaacq qtttqattct 720 780 ttgacagatc ttgtggaaca ttataagaag aatcctatgg tggaaacatt gggtacagta ctacaactca aqcaqcccct taacacqact cqtataaatq ctqctqaaat aqaaaqcaqa 840 gttcgagaac taagcaaatt agctgagacc acagataaag tcaaacaagg cttttgggaa 960 gaatttgaga cactacaaca acaggagtgc aaacttctct acagccgaaa agagggtcaa aggcaagaaa acaaaaacaa aaatagatat aaaaacatcc tgccctttga tcataccagg 1020 gttgtcctac acgatggtga tcccaatgag cctgtttcag attacatcaa tgcaaatatc 1080 atcatgcctg aatttgaaac caagtgcaac aattcaaagc ccaaaaagag ttacattgcc 1140 1200 acacaaqqct qcctqcaaaa cacqqtqaat qacttttqqc qqatqqtqtt ccaaqaaaac 1260 tcccgagtga ttgtcatgac aacgaaagaa gtggagagag gaaagagtaa atgtgtcaaa tactggcctg atgagtatgc tctaaaagaa tatggcgtca tgcgtgttag gaacgtcaaa 1320 1380 gaaagcgccg ctcatgacta tacgctaaga gaacttaaac tttcaaaggt tggacaaggg aatacggaga gaacggtctg gcaataccac tttcggacct ggccggacca cggcgtgccc 1440 agcgaccetg ggggcgtgct ggactteetg gaggaggtge accataagea ggagagcate 1500 1560 atggatgcag ggccggtcgt ggtgcactgc agtgctggaa ttggccggac agggacgttc attqtqattq atattcttat tqacatcatc aqaqaqaaaq qtqttqactq cqatattqac 1620 1680 qttcccaaaa ccatccaqat qqtqcqqtct caqaqqtcaq qqatqqtcca qacaqaaqca cagtaccgat ttatctatat ggcggtccag cattatattg aaacactaca gcgcaggatt 1740 gaagaagagc agaaaagcaa gaggaaaggg cacgaatata caaatattaa gtattctcta 1800 gcggaccaga cgagtggaga tcagagccct ctcccgcctt gtactccaac gccaccctgt 1860 gcagaaatga gagaagacag tgctagagtc tatgaaaacg tgggcctgat gcaacagcag 1920 aaaaqtttca qatqaqaaaa cctqccaaaa cttcaqcaca qaaataqatq tqqactttca 1980 ccctctccct aaaaagatca agaacagacg caagaaagtt tatqtqaaqa caqaatttqq 2040

atttq	gaag	a ct	tac	aato	at ac	atta	actac	c cti	ttaa	ıtaa	qcaa	aat	tta a	aaac	cattta	2100
aagac						, ,			,		,		,			2121
<210><211><212><213>	LENC TYPI	GTH: E: P	59 RT	3	sap	oiens	š									
<400>	SEQ	JENC	E :	791												
Met T	hr S	er A	rg	Arg 5	Trp	Phe	His	Pro	Asn 10	Ile	Thr	Gly	Val	Glu 15	Ala	
Glu A	sn L		eu 0	Leu	Thr	Arg	Gly	Val 25	Asp	Gly	Ser	Phe	Leu 30	Ala	Arg	
Pro S	er L		er	Asn	Pro	Gly	Asp	Phe	Thr	Leu	Ser	Val 45	Arg	Arg	Asn	
Gly A	la V	al T	hr	His	Ile	L y s 55	Ile	Gln	Asn	Thr	Gly 60	Asp	Tyr	Tyr	Asp	
Leu T	yr G	l y G	ly	Glu	Lys 70	Phe	Ala	Thr	Leu	Ala 75	Glu	Leu	Val	Gln	Ty r 80	
Tyr M	let G	lu H	is	His 85	Gly	Gln	Leu	Lys	Glu 90	Lys	Asn	Gly	Asp	Val 95	Ile	
Glu L	eu L		yr 00	Pro	Leu	Asn	Cys	Ala 105	Asp	Pro	Thr	Ser	Glu 110	Arg	Trp	
Phe H		lу Н 15	is	Leu	Ser	Gly	L y s 120	Glu	Ala	Glu	Lys	Leu 125	Leu	Thr	Glu	
Lys G	ly L:	ys H	is	Gly	Ser	Phe 135	Leu	Val	Arg	Glu	Ser 140	Gln	Ser	His	Pro	
Gly A 145	sp P	he V	al	Leu	Ser 150	Val	Arg	Thr	Gly	Asp 155	Asp	Lys	Gly	Glu	Ser 160	
Asn A	sp G	ly L	ys	Ser 165	Lys	Val	Thr	His	Val 170	Met	Ile	Arg	Cys	Gln 175	Glu	
Leu L	ys T		qa.	Val	Gly	Gly	Gly	Glu 185	Arg	Phe	Asp	Ser	Leu 190	Thr	Asp	
Leu V		lu H 95	is	Tyr	Lys	Lys	Asn 200	Pro	Met	Val	Glu	Thr 205	Leu	Gly	Thr	
Val L 2	eu G	ln L	eu	Lys	Gln	Pro 215	Leu	Asn	Thr	Thr	Arg 220	Ile	Asn	Ala	Ala	
Glu I 225	le G	lu S	er	Arg	Val 230	Arg	Glu	Leu	Ser	L y s 235	Leu	Ala	Glu	Thr	Thr 240	
Asp L	ys V	al L	ys	Gln 245	Gly	Phe	Trp	Glu	Glu 250	Phe	Glu	Thr	Leu	Gln 255	Gln	
Gln G	lu C		y s 60	Leu	Leu	Tyr	Ser	Arg 265	Lys	Glu	Gly	Gln	Arg 270	Gln	Glu	
Asn L		sn L 75	ys	Asn	Arg	Tyr	L y s 280	Asn	Ile	Leu	Pro	Phe 285	Asp	His	Thr	
Arg V	al V	al L	eu	His	Asp	Gl y 295	Asp	Pro	Asn	Glu	Pro 300	Val	Ser	Asp	Tyr	
Ile A 305	sn A	la A	sn	Ile	Ile 310	Met	Pro	Glu	Phe	Glu 315	Thr	Lys	Cys	Asn	Asn 320	
Ser L	ys P	ro L	ys	L y s 325	Ser	Tyr	Ile	Ala	Thr 330	Gln	Gly	Cys	Leu	Gln 335	Asn	
Thr V	al A	sn A	sp	Phe	Trp	Arg	Met	Val	Phe	Gln	Glu	Asn	Ser	Arg	Val	

340

-continued

			340					345					350				
Ile	Val	Met 355	Thr	Thr	Lys	Glu	Val 360	Glu	Arg	Gly	Lys	Ser 365	Lys	Cys	Val		
Lys	Tyr 370	Trp	Pro	Asp	Glu	Tyr 375	Ala	Leu	Lys	Glu	Tyr 380	Gly	Val	Met	Arg		
Val 385	Arg	Asn	Val	Lys	Glu 390	Ser	Ala	Ala	His	Asp 395	Tyr	Thr	Leu	Arg	Glu 400		
Leu	Lys	Leu	Ser	Lys 405	Val	Gly	Gln	Gly	Asn 410	Thr	Glu	Arg	Thr	Val 415	Trp		
Gln	Tyr	His	Phe 420	Arg	Thr	Trp	Pro	Asp 425	His	Gly	Val	Pro	Ser 430	Asp	Pro		
Gly	Gly	Val 435	Leu	Asp	Phe	Leu	Glu 440	Glu	Val	His	His	Lys 445	Gln	Glu	Ser		
Ile	Met 450	Asp	Ala	Gly	Pro	Val 455	Val	Val	His	Сув	Ser 460	Ala	Gly	Ile	Gly		
Arg 465	Thr	Gly	Thr	Phe	Ile 470	Val	Ile	Asp	Ile	Leu 475	Ile	Asp	Ile	Ile	Arg 480		
Glu	Lys	Gly	Val	Asp 485	Cys	Asp	Ile	Asp	Val 490	Pro	Lys	Thr	Ile	Gln 495	Met		
Val	Arg	Ser	Gln 500	Arg	Ser	Gly	Met	Val 505	Gln	Thr	Glu	Ala	Gln 510	Tyr	Arg		
Phe	Ile	Tyr 515	Met	Ala	Val	Gln	His 520	Tyr	Ile	Glu	Thr	Leu 525	Gln	Arg	Arg		
Ile	Glu 530	Glu	Glu	Gln	Lys	Ser 535	Lys	Arg	Lys	Gly	His 540	Glu	Tyr	Thr	Asn		
Ile 545	Lys	Tyr	Ser	Leu	Ala 550	Asp	Gln	Thr	Ser	Gly 555	Asp	Gln	Ser	Pro	Leu 560		
Pro	Pro	Cys	Thr	Pro 565	Thr	Pro	Pro	Cys	Ala 570	Glu	Met	Arg	Glu	Asp 575	Ser		
Ala	Arg	Val	Tyr 580	Glu	Asn	Val	Gly	Leu 585	Met	Gln	Gln	Gln	Lys 590	Ser	Phe		
Arg																	
<211 <212	l> LE 2> TY	Q II NGTH	1: 26 DNA	554													
					sap	ens	5										
		QUEN													1		
_															gctag	60	
															cctctg	120	
cgcg	gtcco	eeg o	cgaco	cctt	et to	egege	cccg	g ega	aagad	cagc	cgg	gege	ccc é	ggagg	ggcggc	180)

gggcaggege cegggagatg eggageetee getgeagege gatetgegeg accagacegg

ccccccgag actatagect teaettteec teggtecace atggagecet tgtgtecaet cctgetggtg ggttttaget tgccgetege cagggetete aggggeaacg agaccaetge

cgacagcaac gagacaacca cgacctcagg ccctccggac ccgggcgcct cccagccgct gctggcctgg ctgctactgc cgctgctgct cctcctcctc gtgctccttc tcgccgccta

cttcttcagg ttcaggaagc agaggaaagc tgtggtcagc accagcgaca agaagatgcc

caacggaatc ttggaggagc aagagcagca aagggtgatg ctgctcagca ggtcaccctc

240

360 420

480

540 600

345

agggcccaag	aagtatttc	ccatccccgt	ggagcacctg	gaggaggaga	tccgtatcag	660
atccgccgac	gactgcaagc	agtttcggga	ggagttcaac	tcattgccat	ctggacacat	720
acaaggaact	tttgaactgg	caaataaaga	agaaaacaga	gaaaaaaaca	gatatcccaa	780
catccttccc	aatgaccatt	ctagggtgat	tctgagccaa	ctggatggaa	ttccctgttc	840
agactacatc	aatgcttcct	acatagatgg	ttacaaagag	aagaataaat	tcatagcagc	900
tcaaggtccc	aaacaggaaa	cggttaacga	cttctggaga	atggtctggg	agcaaaagtc	960
tgcgaccatc	gtcatgttaa	caaacttgaa	agaaaggaaa	gaggaaaagt	gccatcagta	1020
ctggcccgac	caaggctgct	ggacctatgg	aaacatccgg	gtgtgcgtgg	aggactgcgt	1080
ggttttggtc	gactacacca	tccggaagtt	ctgcatacag	ccacagetee	ccgacggctg	1140
caaagccccc	aggctggtct	cacagctgca	cttcaccagc	tggcccgact	tcggagtgcc	1200
ttttaccccc	attgggatgc	tgaagttcct	caagaaagta	aagacgctca	accccgtgca	1260
cgctgggccc	atcgtggtcc	actgtagcgc	gggcgtgggc	cggacgggca	ccttcattgt	1320
gatcgatgcc	atgatggcca	tgatgcacgc	ggagcagaag	gtggatgtgt	ttgaatttgt	1380
gtctcgaatc	cgtaatcagc	gccctcagat	ggttcaaacg	gatatgcagt	acacgttcat	1440
ctaccaagcc	ttactcgagt	actacctcta	cggggacaca	gagctggacg	tgtcctccct	1500
ggagaagcac	ctgcagacca	tgcacggcac	caccacccac	ttcgacaaga	tcgggctgga	1560
ggaggagttc	aggaaattga	caaatgtccg	gatcatgaag	gagaacatga	ggacgggcaa	1620
cttgccggca	aacatgaaga	aggccagggt	catccagatc	atcccgtatg	acttcaaccg	1680
agtgatcctt	tccatgaaaa	ggggtcaaga	atacacagac	tacatcaacg	catccttcat	1740
agacggctac	cgacagaagg	actatttcat	cgccacccag	gggccactgg	cacacacggt	1800
tgaggacttc	tggaggatga	tctgggaatg	gaaatcccac	actatcgtga	tgctgacgga	1860
ggtgcaggag	agagagcagg	ataaatgcta	ccagtattgg	ccaaccgagg	gctcagttac	1920
tcatggagaa	ataacgattg	agataaagaa	tgataccctt	tcagaagcca	tcagtatacg	1980
agactttctg	gtcactctca	atcagcccca	ggcccgccag	gaggagcagg	tccgagtagt	2040
gcgccagttt	cacttccacg	gctggcctga	gatcgggatt	cccgccgagg	gcaaaggcat	2100
gattgacctc	atcgcagccg	tgcagaagca	gcagcagcag	acaggcaacc	accccatcac	2160
cgtgcactgc	agtgccggag	ctgggcgaac	aggtacattc	atagccctca	gcaacatttt	2220
ggagcgagta	aaagccgagg	gacttttaga	tgtatttcaa	gctgtgaaga	gtttacgact	2280
tcagagacca	catatggtgc	aaaccctgga	acagtatgaa	ttctgctaca	aagtggtaca	2340
agattttatt	gatatattt	ctgattatgc	taatttcaaa	tgaagattcc	tgccttaaaa	2400
tatttttaa	tttaatggtc	agtatattt	gtaaaaatca	tgttaattta	tttcatagtt	2460
gacattaata	tcttccctaa	tttctttgta	tatattttgt	tatgccttaa	aggccacctg	2520
ctatacagtt	gttaaatctt	aaatatgctt	tttaaaaatt	ggaataatgt	attaaggtca	2580
aataatatcc	cataaaatat	atatttctgc	taatattagt	aaatatctta	atttttaaaa	2640
aaaaaaaaa	aaaa					2654

<210> SEQ ID NO 793 <211> LENGTH: 700 <212> TYPE: PRT <213> ORGANISM: Homo sapiens

<400> SEQUENCE:	793			
Met Glu Pro Leu 1	Cys Pro Leu 5	Leu Leu Val 10	Gly Phe Ser	Leu Pro Leu 15
Ala Arg Ala Leu 20	Arg Gly Asn	Glu Thr Thr 25	Ala Asp Ser	Asn Glu Thr 30
Thr Thr Thr Ser	Gly Pro Pro	Asp Pro Gly	Ala Ser Gln 45	Pro Leu Leu
Ala Trp Leu Leu 50	Leu Pro Leu 55	Leu Leu Leu	Leu Leu Val	Leu Leu Leu
Ala Ala Tyr Phe 65	Phe Arg Phe	Arg Lys Gln	Arg Lys Ala 75	Val Val Ser 80
Thr Ser Asp Lys	Lys Met Pro 85	Asn Gly Ile 90	Leu Glu Glu	Gln Glu Gln 95
Gln Arg Val Met 100	Leu Leu Ser	Arg Ser Pro 105	Ser Gly Pro	Lys Lys Tyr 110
Phe Pro Ile Pro 115	Val Glu His	Leu Glu Glu 120	Glu Ile Arg 125	Ile Arg Ser
Ala Asp Asp Cys 130	Lys Gln Phe 135		Phe Asn Ser 140	Leu Pro Ser
Gly His Ile Gln 145	Gly Thr Phe 150	Glu Leu Ala	Asn Lys Glu 155	Glu Asn Arg 160
Glu Lys Asn Arg	Tyr Pro Asn 165	Ile Leu Pro 170		Ser Arg Val 175
Ile Leu Ser Gln 180	Leu Asp Gly	Ile Pro Cys 185	Ser Asp Tyr	Ile Asn Ala 190
Ser Tyr Ile Asp 195	Gly Tyr Lys	Glu Lys Asn 200	Lys Phe Ile 205	Ala Ala Gln
Gly Pro Lys Gln 210	Glu Thr Val 215	Asn Asp Phe	Trp Arg Met 220	Val Trp Glu
Gln Lys Ser Ala 225	Thr Ile Val 230	Met Leu Thr	Asn Leu Lys 235	Glu Arg Lys 240
Glu Glu Lys Cys	His Gln Tyr 245	Trp Pro Asp 250		Trp Thr Tyr 255
Gly Asn Ile Arg 260	Val Cys Val	Glu Asp Cys 265	Val Val Leu	Val Asp Tyr 270
Thr Ile Arg Lys 275	Phe Cys Ile	Gln Pro Gln 280	Leu Pro Asp 285	Gly Cys Lys
Ala Pro Arg Leu 290	Val Ser Gln 295	Leu His Phe	Thr Ser Trp 300	Pro Asp Phe
Gly Val Pro Phe 305	Thr Pro Ile 310	Gly Met Leu	Lys Phe Leu 315	Lys Lys Val
Lys Thr Leu Asn	Pro Val His 325	Ala Gly Pro 330		His Cys Ser 335
Ala Gly Val Gly 340	Arg Thr Gly	Thr Phe Ile 345	Val Ile Asp	Ala Met Met 350
Ala Met Met His 355	Ala Glu Gln	Lys Val Asp 360	Val Phe Glu 365	Phe Val Ser
Arg Ile Arg Asn 370	Gln Arg Pro 375		Gln Thr Asp 380	Met Gln Tyr
Thr Phe Ile Tyr	Gln Ala Leu	Leu Glu Tyr	Tyr Leu Tyr	Gly Asp Thr

385 390 395 400	
Glu Leu Asp Val Ser Ser Leu Glu Lys His Leu Gln Thr Met His Gly 405 410 415	
Thr Thr Thr His Phe Asp Lys Ile Gly Leu Glu Glu Glu Phe Arg Lys 420 425 430	
Leu Thr Asn Val Arg Ile Met Lys Glu Asn Met Arg Thr Gly Asn Leu 435 440 445	
Pro Ala Asn Met Lys Lys Ala Arg Val Ile Gln Ile Ile Pro Tyr Asp 450 455 460	
Phe Asn Arg Val Ile Leu Ser Met Lys Arg Gly Gln Glu Tyr Thr Asp 465 470 475 480	
Tyr Ile Asn Ala Ser Phe Ile Asp Gly Tyr Arg Gln Lys Asp Tyr Phe 485 490 495	
Ile Ala Thr Gln Gly Pro Leu Ala His Thr Val Glu Asp Phe Trp Arg 500 505 510	
Met Ile Trp Glu Trp Lys Ser His Thr Ile Val Met Leu Thr Glu Val 515 520 525	
Gln Glu Arg Glu Gln Asp Lys Cys Tyr Gln Tyr Trp Pro Thr Glu Gly 530 535 540	
Ser Val Thr His Gly Glu Ile Thr Ile Glu Ile Lys Asn Asp Thr Leu 545 550 560	
Ser Glu Ala Ile Ser Ile Arg Asp Phe Leu Val Thr Leu Asn Gln Pro 565 570 575	
Gln Ala Arg Gln Glu Glu Gln Val Arg Val Val Arg Gln Phe His Phe 580 585 590	
His Gly Trp Pro Glu Ile Gly Ile Pro Ala Glu Gly Lys Gly Met Ile 595 600 605	
Asp Leu Ile Ala Ala Val Gln Lys Gln Gln Gln Gln Thr Gly Asn His 610 615 620	
Pro Ile Thr Val His Cys Ser Ala Gly Ala Gly Arg Thr Gly Thr Phe 625 630 635 640	
Ile Ala Leu Ser Asn Ile Leu Glu Arg Val Lys Ala Glu Gly Leu Leu 645 650 655	
Asp Val Phe Gln Ala Val Lys Ser Leu Arg Leu Gln Arg Pro His Met 660 665 670	
Val Gln Thr Leu Glu Gln Tyr Glu Phe Cys Tyr Lys Val Val Gln Asp 675 680 685	
Phe Ile Asp Ile Phe Ser Asp Tyr Ala Asn Phe Lys 690 695 700	
<210> SEQ ID NO 794 <211> LENGTH: 2263 <212> TYPE: DNA <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 794	
ctgagaggct gggtggctgg gcctgggaga cacacagagg ccaggcctta gcgcggctca 60	
gccatgagca acaggagtag cttttcccgg ctcacctggt tcaggaagca gaggaaagct 120	
gtggtcagca ccagcgacaa gaagatgccc aacggaatct tggaggagca agagcagcaa 180	

240

300

agggtgatgc tgctcagcag gtcaccctca gggcccaaga agtattttcc catccccgtg

gagcacctgg aggaggagat ccgtatcaga tccgccgacg actgcaagca gtttcgggag

gagttcaact	cattgccatc	tggacacata	caaggaactt	ttgaactggc	aaataaagaa	360
gaaaacagag	aaaaaaacag	atatcccaac	atccttccca	atgaccattc	tagggtgatt	420
ctgagccaac	tggatggaat	tccctgttca	gactacatca	atgcttccta	catagatggt	480
tacaaagaga	agaataaatt	catagcagct	caaggtccca	aacaggaaac	ggttaacgac	540
ttctggagaa	tggtctggga	gcaaaagtct	gcgaccatcg	tcatgttaac	aaacttgaaa	600
gaaaggaaag	aggaaaagtg	ccatcagtac	tggcccgacc	aaggctgctg	gacctatgga	660
aacatccggg	tgtgcgtgga	ggactgcgtg	gttttggtcg	actacaccat	ccggaagttc	720
tgcatacagc	cacageteee	cgacggctgc	aaagccccca	ggctggtctc	acagctgcac	780
ttcaccagct	ggcccgactt	cggagtgcct	tttaccccca	ttgggatgct	gaagttcctc	840
aagaaagtaa	agacgctcaa	ccccgtgcac	gctgggccca	tcgtggtcca	ctgtagcgcg	900
ggcgtgggcc	ggacgggcac	cttcattgtg	atcgatgcca	tgatggccat	gatgcacgcg	960
gagcagaagg	tggatgtgtt	tgaatttgtg	tctcgaatcc	gtaatcagcg	ccctcagatg	1020
gttcaaacgg	atatgcagta	cacgttcatc	taccaagcct	tactcgagta	ctacctctac	1080
ggggacacag	agctggacgt	gtcctccctg	gagaagcacc	tgcagaccat	gcacggcacc	1140
accacccact	tcgacaagat	cgggctggag	gaggagttca	ggaaattgac	aaatgtccgg	1200
atcatgaagg	agaacatgag	gacgggcaac	ttgccggcaa	acatgaagaa	ggccagggtc	1260
atccagatca	tcccgtatga	cttcaaccga	gtgatccttt	ccatgaaaag	gggtcaagaa	1320
tacacagact	acatcaacgc	atccttcata	gacggctacc	gacagaagga	ctatttcatc	1380
gccacccagg	ggccactggc	acacacggtt	gaggacttct	ggaggatgat	ctgggaatgg	1440
aaatcccaca	ctatcgtgat	gctgacggag	gtgcaggaga	gagagcagga	taaatgctac	1500
cagtattggc	caaccgaggg	ctcagttact	catggagaaa	taacgattga	gataaagaat	1560
gatacccttt	cagaagccat	cagtatacga	gactttctgg	tcactctcaa	tcagccccag	1620
gcccgccagg	aggagcaggt	ccgagtagtg	cgccagtttc	acttccacgg	ctggcctgag	1680
atcgggattc	ccgccgaggg	caaaggcatg	attgacctca	tcgcagccgt	gcagaagcag	1740
cagcagcaga	caggcaacca	ccccatcacc	gtgcactgca	gtgccggagc	tgggcgaaca	1800
ggtacattca	tagccctcag	caacattttg	gagcgagtaa	aagccgaggg	acttttagat	1860
gtatttcaag	ctgtgaagag	tttacgactt	cagagaccac	atatggtgca	aaccctggaa	1920
cagtatgaat	tctgctacaa	agtggtacaa	gattttattg	atatatttc	tgattatgct	1980
aatttcaaat	gaagattcct	gccttaaaat	atttttaat	ttaatggtca	gtatattttg	2040
taaaaatcat	gttaatttat	ttcatagttg	acattaatat	cttccctaat	ttctttgtat	2100
atattttgtt	atgccttaaa	ggccacctgc	tatacagttg	ttaaatctta	aatatgcttt	2160
ttaaaaattg	gaataatgta	ttaaggtcaa	ataatatccc	ataaaatata	tatttctgct	2220
aatattagta	aatatcttaa	tttttaaaaa	aaaaaaaaa	aaa		2263

Met Ser Asn Arg Ser Ser Phe Ser Arg Leu Thr Trp Phe Arg Lys Gln

<210> SEQ ID NO 795 <211> LENGTH: 642 <212> TYPE: PRT <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 795

1				5					10					15	
Arg	Lys	Ala	Val 20	Val	Ser	Thr	Ser	Asp 25	Lys	Lys	Met	Pro	Asn 30	Gly	Ile
Leu	Glu	Glu 35	Gln	Glu	Gln	Gln	Arg 40	Val	Met	Leu	Leu	Ser 45	Arg	Ser	Pro
Ser	Gly 50	Pro	Lys	Lys	Tyr	Phe 55	Pro	Ile	Pro	Val	Glu 60	His	Leu	Glu	Glu
Glu 65	Ile	Arg	Ile	Arg	Ser 70	Ala	Asp	Asp	Cys	Lys 75	Gln	Phe	Arg	Glu	Glu 80
Phe	Asn	Ser	Leu	Pro 85	Ser	Gly	His	Ile	Gln 90	Gly	Thr	Phe	Glu	Leu 95	Ala
Asn	Lys	Glu	Glu 100	Asn	Arg	Glu	Lys	Asn 105	Arg	Tyr	Pro	Asn	Ile 110	Leu	Pro
Asn	Asp	His 115	Ser	Arg	Val	Ile	Leu 120	Ser	Gln	Leu	Asp	Gly 125	Ile	Pro	Cys
Ser	Asp 130	Tyr	Ile	Asn	Ala	Ser 135	Tyr	Ile	Asp	Gly	Tyr 140	Lys	Glu	Lys	Asn
Lys 145	Phe	Ile	Ala	Ala	Gln 150	Gly	Pro	Lys	Gln	Glu 155	Thr	Val	Asn	Asp	Phe 160
Trp	Arg	Met	Val	Trp 165	Glu	Gln	Lys	Ser	Ala 170	Thr	Ile	Val	Met	Leu 175	Thr
Asn	Leu	Lys	Glu 180	Arg	Lys	Glu	Glu	Lys 185	Cys	His	Gln	Tyr	Trp 190	Pro	Asp
Gln	Gly	Cys 195	Trp	Thr	Tyr	Gly	Asn 200	Ile	Arg	Val	Сув	Val 205	Glu	Asp	Cys
Val	Val 210	Leu	Val	Asp	Tyr	Thr 215	Ile	Arg	Lys	Phe	Cys 220	Ile	Gln	Pro	Gln
Leu 225	Pro	Asp	Gly	Суѕ	Lys 230	Ala	Pro	Arg	Leu	Val 235	Ser	Gln	Leu	His	Phe 240
Thr	Ser	Trp	Pro	Asp 245	Phe	Gly	Val	Pro	Phe 250	Thr	Pro	Ile	Gly	Met 255	Leu
Lys	Phe	Leu	Lys 260	Lys	Val	Lys	Thr	Leu 265	Asn	Pro	Val	His	Ala 270	Gly	Pro
Ile	Val	Val 275	His	Суѕ	Ser	Ala	Gly 280	Val	Gly	Arg	Thr	Gly 285	Thr	Phe	Ile
Val	Ile 290	Asp	Ala	Met	Met	Ala 295	Met	Met	His	Ala	Glu 300	Gln	Lys	Val	Asp
Val 305	Phe	Glu	Phe	Val	Ser 310	Arg	Ile	Arg	Asn	Gln 315	Arg	Pro	Gln	Met	Val 320
Gln	Thr	Asp	Met	Gln 325	Tyr	Thr	Phe	Ile	Tyr 330	Gln	Ala	Leu	Leu	Glu 335	Tyr
Tyr	Leu	Tyr	Gly 340	Asp	Thr	Glu	Leu	Asp 345	Val	Ser	Ser	Leu	Glu 350	Lys	His
Leu	Gln	Thr 355	Met	His	Gly	Thr	Thr 360	Thr	His	Phe	Asp	Lys 365	Ile	Gly	Leu
Glu	Glu 370	Glu	Phe	Arg	Lys	Leu 375	Thr	Asn	Val	Arg	Ile 380	Met	Lys	Glu	Asn
Met 385	Arg	Thr	Gly	Asn	Leu 390	Pro	Ala	Asn	Met	Lys 395	Lys	Ala	Arg	Val	Ile 400
Gln	Ile	Ile	Pro	Tyr 405	Asp	Phe	Asn	Arg	Val 410	Ile	Leu	Ser	Met	Lys 415	Arg

Gly	Gln	Glu	Tyr 420	Thr	Asp	Tyr	Ile	Asn 425	Ala	Ser	Phe	Ile	Asp 430	Gly	Tyr	
Arg	Gln	L y s 435	Asp	Tyr	Phe	Ile	Ala 440	Thr	Gln	Gly	Pro	Leu 445	Ala	His	Thr	
Val	Glu 450	Asp	Phe	Trp	Arg	Met 455	Ile	Trp	Glu	Trp	Lys 460	Ser	His	Thr	Ile	
Val 465	Met	Leu	Thr	Glu	Val 470	Gln	Glu	Arg	Glu	Gln 475	Asp	Lys	Cys	Tyr	Gln 480	
Tyr	Trp	Pro	Thr	Glu 485	Gly	Ser	Val	Thr	His 490	Gly	Glu	Ile	Thr	Ile 495	Glu	
Ile	Lys	Asn	Asp 500	Thr	Leu	Ser	Glu	Ala 505	Ile	Ser	Ile	Arg	Asp 510	Phe	Leu	
Val	Thr	Leu 515	Asn	Gln	Pro	Gln	Ala 520	Arg	Gln	Glu	Glu	Gln 525	Val	Arg	Val	
Val	Arg 530	Gln	Phe	His	Phe	His 535	Gly	Trp	Pro	Glu	Ile 540	Gly	Ile	Pro	Ala	
Glu 545	Gly	Lys	Gly	Met	Ile 550	Asp	Leu	Ile	Ala	Ala 555	Val	Gln	Lys	Gln	Gln 560	
Gln	Gln	Thr	Gly	Asn 565	His	Pro	Ile	Thr	Val 570	His	Cys	Ser	Ala	Gly 575	Ala	
Gly	Arg	Thr	Gly 580	Thr	Phe	Ile	Ala	Leu 585	Ser	Asn	Ile	Leu	Glu 590	Arg	Val	
Lys	Ala	Glu 595	Gly	Leu	Leu	qaA	Val 600	Phe	Gln	Ala	Val	L y s 605	Ser	Leu	Arg	
Leu	Gln 610	Arg	Pro	His	Met	Val 615	Gln	Thr	Leu	Glu	Gln 620	Tyr	Glu	Phe	Cys	
Tyr 625	Lys	Val	Val	Gln	Asp 630	Phe	Ile	Asp	Ile	Phe 635	Ser	Asp	Tyr	Ala	Asn 640	
Phe	Lys															
<211 <211	l> LE 2> TY	EQ II ENGTH PE: RGANI	1: 84 DNA	14	sap	oiens	s									
<400)> SE	QUEN	ICE:	796												
gca	gago	ctg o	cagaç	ggga	gg c	ggcad	tggt	cto	cgaco	gtgg	ggc	ggcca	agc q	gatga	aagccg	60
ccca	agtto	caa t	tacaa	aacaa	ag to	gagtt	tgad	c tca	atcaç	gatg	aaga	agcct	tat 1	tgaag	gatgaa	120
caga	actco	caa t	tcat	tatat	c at	ggct	atct	t ttg	gtcad	gag	tgaa	attgt	tc 1	cagt	ttctc	180
ggti	tate	gtg d	ctctt	tcca	gg tt	gtaa	attt	. aaa	agato	gtta	gaag	gaaat	gt o	ccaaa	aaagat	240
aca	gaaga	aac t	taaaq	gagct	g to	ggtat	cacaa	a gad	catat	ttg	tttt	ctgo	cac o	cagag	ggggaa	300
ctg	caaa	aat a	ataga	agtco	cc aa	acct	tctc	g gat	ctct	acc	agca	aatgi	gg a	aatta	atcacc	360
cato	catca	atc o	caato	cgca	ga to	ggagg	ggact	c cct	gaca	atag	ccaç	gatgo	ctg 1	tgaaa	ataatg	420
gaag	gagct	ta o	caaco	etge	ct ta	aaaaa	attac	c cga	aaaa	acct	taat	cacac	ctg o	ctato	ggagga	480
ctt	ggga	gat o	ettgt	tctt	gt aç	gctgo	ttgt	cto	cctac	tat	acct	gtct	ga o	cacaa	atatca	540
cca	gagca	aag o	ccata	agaca	ag co	etge	gagad	c cta	aagaq	ggat	ccg	gggc	aat a	acaga	accatc	600
aago	caata	aca a	attat	tctt	ca to	gagtt	teg	g gad	caaat	tag	ctgo	cacat	ct a	atcat	caaga	660

gattcacaat caagatctgt atcaagataa aggaattcaa atagcatata tatgaccatg

720

tctc	raaat	at o	cagtt	ctct	a qo	cataa	attto	r tat	tgaa	atq	aaac	caco	ag t	gtta	itcaac	780
_		_	_		_		_		_	_			_	-	aaaaa	840
aaaa	_		•		, ,				,		-	•				844
<211 <212)> SE .> LE ?> TY 8> OF	NGTH	1: 21 PRT		sap	oiens	ı									
<400)> SE	QUEN	ICE:	797												
Met 1	Lys	Pro	Pro	Ser 5	Ser	Ile	Gln	Thr	Ser 10	Glu	Phe	Asp	Ser	Ser 15	Asp	
Glu	Glu	Pro	Ile 20	Glu	Asp	Glu	Gln	Thr 25	Pro	Ile	His	Ile	Ser 30	Trp	Leu	
Ser	Leu	Ser 35	Arg	Val	Asn	Сув	Ser 40	Gln	Phe	Leu	Gly	Leu 45	Cys	Ala	Leu	
Pro	Gly 50	Cys	Lys	Phe	Lys	Asp 55	Val	Arg	Arg	Asn	Val 60	Gln	Lys	Asp	Thr	
Glu 65	Glu	Leu	Lys	Ser	Cys 70	Gly	Ile	Gln	Asp	Ile 75	Phe	Val	Phe	Cys	Thr 80	
Arg	Gly	Glu	Leu	Ser 85	Lys	Tyr	Arg	Val	Pro 90	Asn	Leu	Leu	Asp	Leu 95	Tyr	
Gln	Gln	Cys	Gly 100	Ile	Ile	Thr	His	His 105	His	Pro	Ile	Ala	Asp 110	Gly	Gly	
Thr	Pro	Asp 115	Ile	Ala	Ser	Cys	Cys 120	Glu	Ile	Met	Glu	Glu 125	Leu	Thr	Thr	
Сув	Leu 130	Lys	Asn	Tyr	Arg	Lys 135	Thr	Leu	Ile	His	Cys 140	Tyr	Gly	Gly	Leu	
Gly 145	Arg	Ser	Cys	Leu	Val 150	Ala	Ala	Cys	Leu	Leu 155	Leu	Tyr	Leu	Ser	Asp 160	
Thr	Ile	Ser	Pro	Glu 165	Gln	Ala	Ile	Asp	Ser 170	Leu	Arg	Ąsp	Leu	Arg 175	Gly	
Ser	Gly	Ala	Ile 180	Gln	Thr	Ile	Lys	Gln 185	Tyr	Asn	Tyr	Leu	His 190	Glu	Phe	
Arg	Asp	Lys 195	Leu	Ala	Ala	His	Leu 200	Ser	Ser	Arg	Asp	Ser 205	Gln	Ser	Arg	
Ser	Val 210	Ser	Arg													
<211 <212)> SE -> LE ?> TY 3> OR	NGTH	I: 13 DNA		sap	oiens	i									
<400)> SE	QUEN	ICE:	798												
tgac	tato	ca c	gatat	gaga	ag ac	ggga	igttt	gga	gttg	Jaca	gctt	tact	tt c	ggttg	ggttg	60
gggg	aggg	gg c	gggg	ctgtt	t to	gttcc	tttt	ctt	tttt	aag	agtt	gggt	tt t	cttt	tttaa	120
ttat	ccaa	ac a	agtg	ggcag	gc tt	cata	cccc	aca	ccca	agt	attt	gcac	aa t	attt	gtgcg	180
gggt	atgo	iaa a	gtgg	gttt	t aa	aatct	cgtt	tct	ctto	gac	aago	acaç	igg a	atcto	gttct	240
cctc	attt	tt t	gggg	ggtgt	g to	ggggē	actto	tca	iggto	gtg	tccc	cago	ct t	ctct	gcagt	300
ccct	tctg	icc c	ctgc	gggg	cc cg	gtcg	gagg	ggd	cato	ggct	cgga	tgaa	icc c	accc	ldcccc	360

ggtggaggtg	agctacaaac	acatgcgctt	cctcatcacc	cacaacccca	ccaacgccac	420
gctcagcacc	ttcattgagg	acctgaagaa	gtacggggct	accactgtgg	tgcgtgtgtg	480
tgaagtgacc	tatgacaaaa	cgccgctgga	gaaggatggc	atcaccgttg	tggactggcc	540
gtttgacgat	ggggcgcccc	cgcccggcaa	ggtagtggaa	gactggctga	gcctggtgaa	600
ggccaagttc	tgtgaggccc	ccggcagctg	cgtggctgtg	cactgcgtgg	cgggcctggg	660
ccgggctcca	gtccttgtgg	cgctggcgct	tattgagagc	gggatgaagt	acgaggacgc	720
catccagttc	atccgccaga	agegeegegg	agccatcaac	agcaagcagc	tcacctacct	780
ggagaaatac	cggcccaaac	agaggctgcg	gttcaaagac	ccacacacgc	acaagacccg	840
gtgctgcgtt	atgtagctca	ggaccttggc	tgggcctggt	cgtcatgtag	gtcaggacct	900
tggctggacc	tggaggccct	gcccagccct	gctctgccca	gcccagcagg	ggctccaggc	960
cttggctggc	cccacatcgc	cttttcctcc	ccgacacctc	cgtgcacttg	tgtccgagga	1020
gcgaggagcc	cctcgggccc	tgggtggcct	ctgggccctt	tctcctgtct	ccgccactcc	1080
ctctggcggc	gctggccgtg	gctctgtctc	tctgaggtgg	gtcgggcgcc	ctctgcccgc	1140
cccctcccac	accagccagg	ctggtctcct	ctagcctgtt	tgttgtgggg	tgggggtata	1200
ttttgtaacc	actgggcccc	cagcccctct	tttgcgaccc	cttgtcctga	cctgttctcg	1260
gcaccttaaa	ttattagacc	ccggggcagt	caggtgctcc	ggacacccga	aggcaataaa	1320
acaggagccg	tgaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	aaaaaaaaa	1380
aaaaaaaaa	aaaaaa					1396

<210> SEQ ID NO 799

<211> LENGTH: 173

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 799

Met Ala Arg Met Asn Arg Pro Ala Pro Val Glu Val Ser Tyr Lys His 1 $$ 5 $$ 10 $$ 15

Met Arg Phe Leu Ile Thr His Asn Pro Thr Asn Ala Thr Leu Ser Thr 20 25 30

Phe Ile Glu Asp Leu Lys Lys Tyr Gly Ala Thr Thr Val Val Arg Val 35 40 45

Cys Glu Val Thr Tyr Asp Lys Thr Pro Leu Glu Lys Asp Gly Ile Thr 50 60

Val Val Asp Trp Pro Phe Asp Asp Gly Ala Pro Pro Pro Gly Lys Val 65 70 75 80

Val Glu Asp Trp Leu Ser Leu Val Lys Ala Lys Phe Cys Glu Ala Pro 85 90 95

Gly Ser Cys Val Ala Val His Cys Val Ala Gly Leu Gly Arg Ala Pro $100 \hspace{1.5cm} 105 \hspace{1.5cm} 105$

Val Leu Val Ala Leu Ala Leu Ile Glu Ser Gly Met Lys Tyr Glu Asp 115 120 125

Ala Ile Gln Phe Ile Arg Gln Lys Arg Arg Gly Ala Ile Asn Ser Lys 130 140

Gln Leu Thr Tyr Leu Glu Lys Tyr Arg Pro Lys Gln Arg Leu Arg Phe 145 150 155 160

Lys Asp Pro His Thr His Lys Thr Arg Cys Cys Val Met

170 165

<210> SEQ ID NO 800 <211> LENGTH: 3925 <212> TYPE: DNA <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 800

agcggggctg	cgcgaagtca	tcgctgttcc	agacagcgat	gactcgagag	cggtgggggt	60
ggcggcgcga	teggeeggge	tgtaaccgtc	gtctgtccgg	gagcggctgg	agcggcagcg	120
gcggccgggc	acggcgcgag	gtgacgccac	agggcagcgg	cggcagcgga	ggcagcggcg	180
gcagcaggag	acgcagcggc	ggccgcagca	gcagcagcaa	gacggactcg	tggagacgcg	240
ccgccgccgc	cgccgccggg	ccgggccggg	tgtcgcgcgc	cgaggctggg	ggggagtcgt	300
cgccgccgcc	gccaccgcta	ccgccgccgc	cgccgccgcc	gaggtgactg	aggagagagg	360
cgcctcctcg	ctcccgccac	cgccggactt	caatgcccag	tccccagctc	gccagcgttt	420
ttcgttggaa	tatacgttgc	acatttatgg	cgattctgag	tgtgagggca	gacttctgcc	480
aggctcagca	cagcattttc	gctgacaagt	gagcttggag	gttctatgtg	ccataattaa	540
cattgccttg	aagactcctg	gacaccgaga	ctggcctcag	aaatagttgg	ctttttttt	600
tttttaattg	caagcatatt	tcttttaatg	actccagtaa	aattaagcat	caagtaaaca	660
agtggaaagt	gacctacact	tttaacttgt	ctcactagtg	cctaaatgta	gtaaaggctg	720
cttaagtttt	gtatgtagtt	ggatttttg	gagtccgaat	atttccatct	gcagaaattg	780
aggcccaaat	tgaatttgga	ttcaagtgga	ttctaaatac	tttgcttatc	ttgaagagag	840
aagcttcata	aggaataaac	aagttgaata	gagaaaacac	tgattgataa	taggcatttt	900
agtggtcttt	ttaatgtttt	ctgctgtgaa	acatttcaag	atttattgat	tttttttt	960
cactttcccc	atcacactca	cacgcacgct	cacacttttt	atttgccata	atgaaccgtc	1020
cagcccctgt	ggagatctcc	tatgagaaca	tgcgttttct	gataactcac	aaccctacca	1080
atgctactct	caacaagttc	acagaggaac	ttaagaagta	tggagtgacg	actttggttc	1140
gagtttgtga	tgctacatat	gataaagctc	cagttgaaaa	agaaggaatc	cacgttctag	1200
attggccatt	tgatgatgga	gctccacccc	ctaatcagat	agtagatgat	tggttaaacc	1260
tgttaaaaac	caaatttcgt	gaagagccag	gttgctgtgt	tgcagtgcat	tgtgttgcag	1320
gattgggaag	ggcacctgtg	ctggttgcac	ttgctttgat	tgaatgtgga	atgaagtacg	1380
aagatgcagt	tcagtttata	agacaaaaaa	gaaggggagc	gttcaattcc	aaacagctgc	1440
tttatttgga	gaaataccga	cctaagatgc	gattacgctt	cagagatacc	aatgggcatt	1500
gctgtgttca	gtagaaggaa	atgtaaacga	aggctgactt	gattgtgcca	tttagaggga	1560
actcttggta	cctggaaatg	tgaatctgga	atattacctg	tgtcatcaaa	gtagtgatgg	1620
attcagtact	cctcaaccac	tctcctaatg	attggaacaa	aagcaaacaa	aaaagaaatc	1680
tctctataaa	atgaataaaa	tgtttaagaa	aagagaaaga	gaaaaggaat	taattcagtg	1740
aaggatgatt	ttgctcctag	ttttggagtt	tgaatttctg	ccaggattga	attattttga	1800
aatctcctgt	ctttttaaac	ttttcaaaa	taggtctcta	aggaaaacca	gcagaacatt	1860
aggcctgtgc	aaaaccatct	gtttggggag	cacactcttc	cattatgctt	ggcacataga	1920
tctccctgtg	gtgggatttt	ttttttccct	ttttttgtgg	gggagggttg	gtggtatatt	1980

tttcccctct tttttccttc ctctcctaca tctccctttt cccccgatcc aagttgtaga 2040 2100 tggaatagaa gcccttgttg ctgtagatgt gcgtgcagtc tggcagcctt aagcccacct gggcactttt agataaaaa aaaaaaaaac aaaaaacaac accaaaaaaa cagcagtgat 2160 2220 atatatattc caggtggttt ttagtcttta ctgatgaaag ggtgttcatg ttagtttctt 2280 2340 ataaattagt ggagaaatgg cattttaaga ggagtctctt ctcaacttac ctgagagtcg aattottoto ttooctaaco aatgaagota agtggttato coagaaactt gtottotaaa 2400 agggaggact ccaggccatc aataaagatg tccaggcagt gagcgtactt tttacaccct 2460 qtaqaattqt qqqctqtaqc qttactctqa ttttctqtct aqtatcaqaq aatqctqqta 2520 qcttaaaatt tttatttaq qacttqtact ctqaattttc aqqaaccqtc aaaqqaqcaq 2580 cagcaaattc acatattttc gacttgagaa atgcttgtgg tatgtgtttt ccaaactgcc 2640 ccctatatgt aaagttcagt ttaaccactg attgccttgt tattactagg ttttttgaga 2700 ttaaaaaaaa aaaatccctg gtttaaaacc aacaatgatg cctagtgagt atgtgtccac 2760 aggccataac agggtagaag agagacatcg tgcaacccaa tgagtagtga agggactgtg 2820 ttgcttgtga agcggtgtag tagcattttt gcagattctt ggctgggttt agtgtactga 2880 tctagaaaag ctgtttttct gctcctttgt ggaaggcagt tatgatcagg ctgcatggac 2940 aaagcaggta gaggggcacc atcaggggct cttgcactat tttcacctct aaatattacg 3000 tactcagtag tgccctgctt ctagggctct gaatacgggc ttaaagtcat cttgtcctgc 3060 tggaatttgc tgtgcagagc cataagcctc ccattttgtt agcgtcagct aggccaatag 3120 3180 gaacagaccg ggaccttgtc tcacactgat gatacctcac atgttgaccg gctatgtgaa ctgcctattt cctatgctgg agttttgatt tttaactaaa cgcaaatctg tagattctct 3240 cctctcccat cccagaaaac aaaacaaaat aatgcttttc gaaattgttt ctaggacttt 3300 aaaacataat ggtatatcca aaattcttta tttcagaatg caacaataga ttccattaat 3360 ataqactcaa qatcaaaaca qcatacctqc taaqctaaqa taqatqqtqt tqattccact 3420 qqqttttqat caatacaata acaaaccttt ttcctttqac atactctqaa ttttqttqtt 3480 3540 tgcacgcgca gtgtccatca gtatcagtgc ctgcctgagt taggaaaatt acattcctgg 3600 ttctgtattg aggagaagga tgtataaagc aacatgaaac attagccctc cttttatttt 3660 aaagactaat gttaattgtt cttaaaactg gattttttt ccttaaagca attttttct 3720 3780 tttcgattta atgaagtatt gctagctgaa gccagtttga catagagaga tgtcagattg atttgaaagg tgtgcagcct gatttaaaac caaaccctga acccttttaa agaacaataa 3840 3900 aaaaaaaaa aaaaaaaaa aaaaa 3925

```
<210> SEQ ID NO 801
```

<211> LENGTH: 167

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 801

Met Asn Arg Pro Ala Pro Val Glu Ile Ser Tyr Glu Asn Met Arg Phe 1 5 10 15

Leu Ile Thr His Asn Pro Thr Asn Ala Thr Leu Asn Lys Phe Thr Glu Glu Leu Lys Lys Tyr Gly Val Thr Thr Leu Val Arg Val Cys Asp Ala Thr Tyr Asp Lys Ala Pro Val Glu Lys Glu Gly Ile His Val Leu Asp Trp Pro Phe Asp Asp Gly Ala Pro Pro Pro Asn Gln Ile Val Asp Asp 65 70 75 80 Trp Leu Asn Leu Lys Thr Lys Phe Arg Glu Glu Pro Gly Cys Cys 85 90 95 Val Ala Val His Cys Val Ala Gly Leu Gly Arg Ala Pro Val Leu Val 100 105 110Ala Leu Ala Leu Ile Glu Cys Gly Met Lys Tyr Glu Asp Ala Val Gln 115 120 125 Phe Ile Arg Gln Lys Arg Arg Gly Ala Phe Asn Ser Lys Gln Leu Leu Tyr Leu Glu Lys Tyr Arg Pro Lys Met Arg Leu Arg Phe Arg Asp Thr Asn Gly His Cys Cys Val Gln <210> SEQ ID NO 802 <211> LENGTH: 1785 <212> TYPE: DNA

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 802

60 atggcagcgg agtcagggga actaatcggg gcttgtgagt tcatgaaaga tcggttatat tttgctactt taaggaatag accaaaaagc acagtaaata cccactattt ctccatcgat 120 gaggagctgg tctatgaaaa tttctatgca gattttggac cgctgaactt ggcaatggtg 180 tacagatatt gctgcaaact aaacaagaaa ctaaaatcat acagtttgtc aagaaagaaa 240 atagtgcact acacctgttt tgaccaacgg aaaagagcaa atgcagcatt tttgataggt 300 qcctatqcaq taatctattt aaaqaaqaca ccaqaaqaaq cctacaqaqc actcctqtct ggctcaaacc ccccctatct tccattcagg gatgcttcct ttggaaattg cacttacaat ctcaccattc tcgactgttt gcagggaatc agaaagggat tacaacatgg attttttgac 480 tttgagacat ttgatgtgga tgaatatgaa cattatgagc gagttgaaaa tggtgacttc 540 aactggattg ttccaggaaa atttttagca tttagtggac cacatcctaa aagcaaaatt 600 gagaatggtt atcctcttca cgcccctgaa gcctactttc cttatttcaa aaagcataat 660 720 gtgactgcag ttgtgaggct aaacaaaaag atttatgagg caaagcgctt cacagacgct 780 ggcttcgagc actatgacct cttcttcata gatggcagca cacccagtga caacatcgtg cgaaggttcc tgaacatctg tgagaacacc gaaggggcca tcgccgttca ctgcaaagct ggtcttggaa gaacagggac attgatagcc tgttatgtaa tgaaacacta caggtttaca 900 catgctgaaa taattgcttg gattagaata tgccggccag gctctattat aggaccccag 960 cagcacttcc tggaagaaaa acaagcatcg ttgtgggtcc aaggagacat tttccgatcc 1020 1080 aaactgaaaa atcgaccatc cagtgaagga agtattaata aaattctttc tggcctagat 1140 qatatqtcta ttqqtqqaaa tctttcaaaa acacaaaaca tqqaacqatt tqqaqaqqat

aacttagaag	atgatgatgt	ggaaatgaaa	aatggtataa	cccagggaga	caaactacgt	1200
gccttaaaaa	gtcagagaca	gccacgtacc	tcaccatcct	gtgcatttag	gtcagatgat	1260
acaaaaggac	atccaagagc	agtgtcccag	cctttcagat	taagttcatc	cctgcaagga	1320
tctgcagtta	ctttgaagac	atcaaaaatg	gcactgtccc	cttcagcaac	ggccaagagg	1380
atcaacagaa	cttctttgtc	ttcgggtgcc	actgtaagaa	gcttttccat	aaactcccgg	1440
ctagccagtt	ctctagggaa	cttgaatgct	gcaacagatg	atccagagaa	caaaaagacc	1500
tcctcatcct	ctaaggcagg	cttcacagcc	agcccgttta	ccaacctctt	gaatggcagc	1560
tcccagccaa	ctaccagaaa	ttaccctgag	ctcaacaata	atcagtacaa	cagaagcagc	1620
aacagcaacg	ggggcaacct	gaacagcccc	ccaggccccc	acagcgccaa	gacagaggag	1680
cacaccacca	tcctccgacc	ctcctacacc	gggctttctt	cttcttcagc	gagattcctg	1740
agccgttcta	tcccttccct	tcagtctgaa	tatgttcatt	actaa		1785
<210> SEQ]						

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 803

Met Ala Ala Glu Ser Gly Glu Leu Ile Gly Ala Cys Glu Phe Met Lys 1 $$ 10 $$ 15

Asp Arg Leu Tyr Phe Ala Thr Leu Arg Asn Arg Pro Lys Ser Thr Val 20 25 25 30

Asn Thr His Tyr Phe Ser Ile Asp Glu Glu Leu Val Tyr Glu Asn Phe $35 \hspace{1cm} 40 \hspace{1cm} 45$

Tyr Ala Asp Phe Gly Pro Leu Asn Leu Ala Met Val Tyr Arg Tyr Cys 50 60

Cys Lys Leu Asn Lys Lys Leu Lys Ser Tyr Ser Leu Ser Arg Lys Lys 65 70 75 80

Ile Val His Tyr Thr Cys Phe Asp Gln Arg Lys Arg Ala Asn Ala Ala 85 90 95

Phe Leu Ile Gly Ala Tyr Ala Val Ile Tyr Leu Lys Lys Thr Pro Glu 100 $$105\$

Glu Ala Tyr Arg Ala Leu Leu Ser Gly Ser Asn Pro Pro Tyr Leu Pro

Phe Arg Asp Ala Ser Phe Gly Asn Cys Thr Tyr Asn Leu Thr Ile Leu 130 135 140

Asp Cys Leu Gln Gly Ile Arg Lys Gly Leu Gln His Gly Phe Phe Asp 145 150 155 160

Phe Glu Thr Phe Asp Val Asp Glu Tyr Glu His Tyr Glu Arg Val Glu 165 170 175

Asn Gly Asp Phe Asn Trp Ile Val Pro Gly Lys Phe Leu Ala Phe Ser 180 \$180\$

Gly Pro His Pro Lys Ser Lys Ile Glu Asn Gly Tyr Pro Leu His Ala 195 200205

Pro Glu Ala Tyr Phe Pro Tyr Phe Lys Lys His Asn Val Thr Ala Val 210 215 220

Val Arg Leu Asn Lys Lys Ile Tyr Glu Ala Lys Arg Phe Thr Asp Ala 225 230 235 240

Gly	Phe	Glu	His	Tyr 245	Asp	Leu	Phe	Phe	Ile 250	Asp	Gly	Ser	Thr	Pro 255	Ser
Asp	Asn	Ile	Val 260	Arg	Arg	Phe	Leu	Asn 265	Ile	Сув	Glu	Asn	Thr 270	Glu	Gly
Ala	Ile	Ala 275	Val	His	Сув	Lys	Ala 280	Gly	Leu	Gly	Arg	Thr 285	Gly	Thr	Leu
Ile	Ala 290	Сув	Tyr	Val	Met	L y s 295	His	Tyr	Arg	Phe	Thr 300	His	Ala	Glu	Ile
Ile 305	Ala	Trp	Ile	Arg	Ile 310	Cys	Arg	Pro	Gly	Ser 315	Ile	Ile	Gly	Pro	Gln 320
Gln	His	Phe	Leu	Glu 325	Glu	Lys	Gln	Ala	Ser 330	Leu	Trp	Val	Gln	Gly 335	Asp
Ile	Phe	Arg	Ser 340	Lys	Leu	Lys	Asn	Arg 345	Pro	Ser	Ser	Glu	Gly 350	Ser	Ile
Asn	Lys	Ile 355	Leu	Ser	Gly	Leu	Asp 360	Asp	Met	Ser	Ile	Gly 365	Gly	Asn	Leu
Ser	Lys 370	Thr	Gln	Asn	Met	Glu 375	Arg	Phe	Gly	Glu	Asp 380	Asn	Leu	Glu	Asp
Asp 385	Asp	Val	Glu	Met	Lys 390	Asn	Gly	Ile	Thr	Gln 395	Gly	Asp	Lys	Leu	Arg 400
Ala	Leu	Lys	Ser	Gln 405	Arg	Gln	Pro	Arg	Thr 410	Ser	Pro	Ser	Сув	Ala 415	Phe
Arg	Ser	Asp	Asp 420	Thr	Lys	Gly	His	Pro 425	Arg	Ala	Val	Ser	Gln 430	Pro	Phe
Arg	Leu	Ser 435	Ser	Ser	Leu	Gln	Gly 440	Ser	Ala	Val	Thr	Leu 445	Lys	Thr	Ser
Lys	Met 450	Ala	Leu	Ser	Pro	Ser 455	Ala	Thr	Ala	Lys	Arg 460	Ile	Asn	Arg	Thr
Ser 465	Leu	Ser	Ser	Gly	Ala 470	Thr	Val	Arg	Ser	Phe 475	Ser	Ile	Asn	Ser	Arg 480
Leu	Ala	Ser	Ser	Leu 485	Gly	Asn	Leu	Asn	Ala 490	Ala	Thr	Asp	Asp	Pro 495	Glu
Asn	Lys	Lys	Thr 500	Ser	Ser	Ser	Ser	L y s 505	Ala	Gly	Phe	Thr	Ala 510	Ser	Pro
Phe	Thr	Asn 515	Leu	Leu	Asn	Gly	Ser 520	Ser	Gln	Pro	Thr	Thr 525	Arg	Asn	Tyr
	Glu 530					535					540				
Gly 545	Asn	Leu	Asn	Ser	Pro 550	Pro	Gly	Pro	His	Ser 555	Ala	Lys	Thr	Glu	Glu 560
His	Thr	Thr	Ile	Leu 565	Arg	Pro	Ser	Tyr	Thr 570	Gly	Leu	Ser	Ser	Ser 575	Ser
Ala	Arg	Phe	Leu 580	Ser	Arg	Ser	Ile	Pro 585	Ser	Leu	Gln	Ser	Glu 590	Tyr	Val
His	Tyr														

<210> SEQ ID NO 804 <211> LENGTH: 2646 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <220> FEATURE: <221> NAME/KEY: misc_feature <222> LOCATION: 2300

<pre><223> OTHER INFORMATION: n = A,T,C or G</pre>	
<400> SEQUENCE: 804	
	60
atgaagegga aaagegageg geggtegage tgggeegeeg egeceeetg etegeggege	60
tgctcgtcga cctcgccggg tgtgaagaag atccgcagct ccacgcagca agacccgcgc	120
cgccgggacc cccaggacga cgtgtacctg gacatcaccg atcgcctttg ttttgccatt	180
ctctacagca gaccaaagag tgcatcaaat gtacattatt tcagcataga taatgaactt	240
gaatatgaga acttctacgc agattttgga ccactcaatc tggcaatggt ttacagatat	300
tgttgcaaga tcaataagaa attaaagtcc attacaatgt taaggaagaa aattgttcat	360
tttactggct ctgatcagag aaaacaagca aatgctgcct tccttgttgg atgctacatg	420
gttatatatt tggggagaac cccagaagaa gcatatagaa tattaatctt tggagagaca	480
tcctatattc ctttcagaga tgctgcctat ggaagttgca atttctacat tacacttctt	540
gactgttttc atgcagtaaa gaaggcaatg cagtatggct tccttaattt caactcattt	600
aaccttgatg aatatgaaca ctatgaaaaa gcagaaaatg gagatttaaa ttggataata	660
ccagaccgat ttattgcctt ctgtggacct cattcaagag ccagacttga aagtggttac	720
caccaacatt ctcctgagac ttatattcaa tattttaaga atcacaatgt tactaccatt	780
attcgtctga ataaaaggat gtatgatgcc aaacgcttta cggatgctgg cttcgatcac	840
catgatettt tetttgegga tggeageace eetaetgatg eeattgteaa agaatteeta	900
gatatctgtg aaaatgctga gggtgccatt gcagtacatt gcaaaagctgg ccttggtcgc	960
acgggcactc tgatagcctg ctacatcatg aagcattaca ggatgacagc agccgagacc	1020
attgcgtggg tcaggatctg cagacctggc tcggtgattg ggcctcagca gcagtttttg	1080
gtgatgaagc aaaccaacct ctggctggaa ggggactatt ttcgtcagaa gttaaagggg	1140
caggagaatg gacaacacag agcagcette tecaaactte tetetggegt tgatgacatt	1200
tccataaatg gggtcgagaa tcaagatcag caagaacccg aaccgtacag tgatgatgac	1260
gaaatcaatg gagtgacaca aggtgataga cttcgggcct tgaaaagcag aagacaatcc	1320
aaaacaaacg ctattcctct cactctctcc atttcaagga ctaaaacagt cttgcgttaa	1380
gtaaaaaacct gtgaccagag ctgaaggaag actctaggac tgaaaactgc aacagaaatt	1440
agcacaattt gaaaacaaaa caaaattgca aaagccttag ttgctttttc cacctaagaa	1500
gttgatcaat ggagaaaatg tccactggag tttgaataat gaactttgag tttgggtgca	1560
agcaaatgac tcagagaagg gtccagctct caagctgaat gacaaacatg ctgttgtaaa	1620
tttagtctca ggtgtaaata cccaagccct ctggtaccca gggagctggc tggtctgtgg	1680
tgcatgtgtg tccctgtgat ggcaatcatt gtagttgctg gccttcagaa gaattgagga	1740
totgatggag gttttttatg tatttatttt otgttcacct tgtgaccotg tgtcaaaatt	1800
tataaagata caaaaggcat tactgaaatg gtactttctg taatttgata ctatttggct	1860
taatcatctt cacttqacta tttqtaatac tqttqtaatq ttaactctqt taaqtaccca	1920
agctgcttgt cttccaccaa agagtgcttt attaacaaga atctgtgaaa atcacattta	1980
aacactgttg catgttgtaa gaccaggtgg taccttagta acctaaaact tgcaagagaa	2040
tattaatggt agctttagaa gactcaggag gagaaactga cttcagagtt ggaagatgtt	2100
gcaagtcgtt ccttttctg tccttcaggg actgaagaac tgggaggctg cccattgttt	2160
genageegee coefficient focuseagys actionaged tryingly coefficient	2100

ggttgccagt	catacaaatt	aaaatcatat	ttccttccat	gaatggaaga	aacacactat	2220
tggtttttcc	ccttggaaac	agcaatccca	aataatgtcg	gcttacaaaa	aaaaaagtta	2280
ccacttttt	agagtccttn	ccctgtaaca	ttggattttt	ttttccctta	tgagatccac	2340
ctaaggccat	tgacgtggcc	tgcgatctca	gtgacaatga	tctgctttct	ggatctcact	2400
gttgcctttg	gttagggaac	acagagtgct	tctcccgcag	ccctactgga	acacagcaga	2460
gtctgtgcca	tgaagcagtt	acagaaacag	aattgatgtg	ctgctaaaaa	aaaaaaaaa	2520
aatggggccc	gggggggcgt	ccgccggccc	tgcgggccgc	cggtgaaata	ccactactct	2580
gatcgttttt	tcactgaccc	ggtgaggcgg	gggggcgagc	cccgaggggc	tctcgcttct	2640
ggcgcg						2646

<210> SEQ ID NO 805

<211> LENGTH: 459

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 805

Met Lys Arg Lys Ser Glu Arg Arg Ser Ser Trp Ala Ala Ala Pro Pro

Cys Ser Arg Arg Cys Ser Ser Thr Ser Pro Gly Val Lys Lys Ile Arg 20 25 30

Ser Ser Thr Gln Gln Asp Pro Arg Arg Arg Asp Pro Gln Asp Asp Val 35 40 45

Tyr Leu Asp Ile Thr Asp Arg Leu Cys Phe Ala Ile Leu Tyr Ser Arg 50 60

Pro Lys Ser Ala Ser Asn Val His Tyr Phe Ser Ile Asp Asn Glu Leu 65 70 75 80

Glu Tyr Glu Asn Phe Tyr Ala Asp Phe Gly Pro Leu Asn Leu Ala Met 85 90 95

Val Tyr Arg Tyr Cys Cys Lys Ile Asn Lys Lys Leu Lys Ser Ile Thr 100 105 110

Met Leu Arg Lys Lys Ile Val His Phe Thr Gly Ser Asp Gln Arg Lys 115 120 125

Gln Ala Asn Ala Ala Phe Leu Val Gly Cys Tyr Met Val Ile Tyr Leu 130 135 140

Gly Arg Thr Pro Glu Glu Ala Tyr Arg Ile Leu Ile Phe Gly Glu Thr 145 150155160

Ser Tyr Ile Pro Phe Arg Asp Ala Ala Tyr Gly Ser Cys Asn Phe Tyr 165 170 175

Ile Thr Leu Leu Asp Cys Phe His Ala Val Lys Lys Ala Met Gln Tyr 180 \$180\$

Gly Phe Leu Asn Phe Asn Ser Phe Asn Leu Asp Glu Tyr Glu His Tyr 195 200200205

Glu Lys Ala Glu Asn Gly Asp Leu Asn Trp Ile Ile Pro Asp Arg Phe 210 215 220

Ile Ala Phe Cys Gly Pro His Ser Arg Ala Arg Leu Glu Ser Gly Tyr 225 230 235 240

His Gln His Ser Pro Glu Thr Tyr Ile Gln Tyr Phe Lys Asn His Asn

Val Thr Thr Ile Ile Arg Leu Asn Lys Arg Met Tyr Asp Ala Lys Arg 260 265 270

Phe Thr Asp Ala Gly Phe Asp His His Asp Leu Phe Phe Ala Asp Gly 285 Ser Thr Pro Thr Asp Ala Ile Val Lys Glu Phe Leu Asp Ile Cys Glu 295 Asn Ala Glu Gly Ala Ile Ala Val His Cys Lys Ala Gly Leu Gly Arg 305 310 320 Thr Gly Thr Leu Ile Ala Cys Tyr Ile Met Lys His Tyr Arg Met Thr 325 335 Ala Ala Glu Thr Ile Ala Trp Val Arg Ile Cys Arg Pro Gly Ser Val 340 340 Ile Gly Pro Gln Gln Gln Phe Leu Val Met Lys Gln Thr Asn Leu Trp 355 360 Leu Glu Gly Asp Tyr Phe Arg Gln Lys Leu Lys Gly Gln Glu Asn Gly 370 Gln His Arg Ala Ala Phe Ser Lys Leu Leu Ser Gly Val Asp Asp Ile 395 400 Ser Ile Asn Gly Val Glu Asn Gln Asp Gln Gln Glu Pro Glu Pro Tyr 405 405 Ala Leu Lys Ser Arg Arg Gln Ser Lys Thr Ala Ile Pro Leu Thr 435 Ala Leu Lys Ser Arg Thr Lys Thr Val Leu Arg 445 Leu Ser Ile Ser Arg Thr Lys Thr Val Leu Arg 450 -210 SEQ ID NO 806 -211																		
Asn Ala Glu Gly Ala Ile Ala Val His Cys Lys Ala Gly Leu Gly Arg 305 310 310 320 Thr Gly Thr Leu Ile Ala Cys Tyr Ile Met Lys His Tyr Arg Met Thr 325 335 335 335 335 335 335 336 336 336 33	Phe	Thr		Ala	Gly	Phe	Asp		His	Asp	Leu	Phe	Phe 285	Ala	Asp	Gly		
Thr Gly Thr Leu Ile Ala Cys Tyr Ile Met Lys His Tyr Arg Met Thr 325 Ala Ala Glu Thr Ile Ala Trp Val Arg Ile Cys Arg Pro Gly Ser Val 340 Ile Gly Pro Gln Gln Gln Phe Leu Val Met Lys Gln Thr Asn Leu Trp 355 Leu Glu Gly Asp Tyr Phe Arg Gln Lys Leu Lys Gly Gln Glu Asn Gly 370 Gln His Arg Ala Ala Phe Ser Lys Leu Leu Ser Gly Val Asp Asp Ile 385 Ser Ile Asn Gly Val Glu Asn Gln Asp Gln Gln Glu Pro Glu Pro Tyr 405 Ser Asp Asp Asp Glu Ile Asn Gly Val Thr Gln Gly Asp Arg Leu Arg 420 Ala Leu Lys Ser Arg Arg Gln Ser Lys Thr Asn Ala Ile Pro Leu Thr 435 Leu Ser Ile Ser Arg Thr Lys Thr Val Leu Arg 455 **C210> SEQ ID NO 806 **211> LENGTH: 3415 **212> TYPFE: DNA 213> Asp Glogadgag aagcacggt gctgtgtgt ctgaaccgc ggggccdgg	Ser		Pro	Thr	Asp	Ala		Val	Lys	Glu	Phe		Asp	Ile	Cys	Glu		
Ala Ala Glu Thr Ile Ala Trp Val Arg Ile Cys Arg Pro Gly Ser Val 340 340 345 345 345 350 Ile Gly Pro Gln Gln Gln Phe Leu Val Met Lys Gln Thr Asn Leu Trp 355 365 360 360 360 365 365 365 365 365 360 365 365 365 360 365 365 365 360 365 365 360 365 365 360 365 360 365 360 365 360 365 360 365 360 365 360 365 360 365 360 365 360 365 360 365 360 360 365 360 360 360 360 360 360 360 360 360 360		Ala	Glu	Gly	Ala		Ala	Val	His	Cys		Ala	Gly	Leu	Gly			
Ile Gly Pro Gln Gln Gln Phe Leu Val Met Lys Gln Thr Asn Leu Trp 355 Leu Glu Gly Asp Tyr Phe Arg Gln Lys Leu Lys Gly Gln Glu Asn Gly 370 Gln His Arg Ala Ala Phe Ser Lys Leu Leu Ser Gly Val Asp Asp Ile 385 Ser Ile Asn Gly Val Glu Asn Gln Asp Gln Gln Glu Pro Glu Pro Tyr 405 Ser Asp Asp Asp Glu Ile Asn Gly Val Thr Gln Gly Asp Arg Leu Arg 425 Ala Leu Lys Ser Arg Arg Gln Ser Lys Thr Asn Ala Ile Pro Leu Thr 435 Leu Ser Ile Ser Arg Thr Lys Thr Val Leu Arg 455 <pre> </pre> cle Ser Arg Arg Gln Ser Lys Thr Asn Ala Ile Pro Leu Thr 445 Leu Ser Ile Ser Arg Thr Lys Thr Val Leu Arg 455 cle Ser Arg Thr Lys Thr Val Leu Arg 455 cle Ser Arg Thr Lys Thr Val Leu Arg 455 cle Ser Arg Thr Lys Thr Val Leu Arg 455 cle Ser Arg Thr Lys Thr Val Leu Arg 455 cle Ser Arg Thr Lys Thr Val Leu Arg 455 clear Ser Lys Thr Val Leu Arg 455 clear Ser Lys Thr Asn Ala Ile Pro Leu Thr 445 clear Thr Asn Ala Ile Pro Leu Thr 445 clear Thr Asn Ala Ile Pro Leu Thr 445 clear Thr Asn Ala Ile Pro Leu Thr 445 clear Thr Asn Ala Ile Pro Leu Thr 445 clear Thr Asn Ala Ile Pro Leu Thr 445 clear Thr Asn Ala Ile Pro Leu Thr 445 clear Thr Asn Ala Ile Pro Leu	Thr	Gly	Thr	Leu		Ala	Cys	Tyr	Ile		Lys	His	Tyr	Arg		Thr		
Leu Glu Gly Asp Tyr Phe Arg Gln Lys Leu Lys Gly Gln Glu Asn Gly 370 Gln His Arg Ala Ala Phe Ser Lys Leu Leu Ser Gly Val Asp Asp Ile 385 Ser Ile Asn Gly Val Glu Asn Gln Asp Gln Glu Pro Glu Pro Tyr 405 Ser Asp Asp Asp Glu Ile Asn Gly Val Thr Gln Gly Asp Arg Leu Arg 425 Ala Leu Lys Ser Arg Arg Gln Ser Lys Thr Asn Ala Ile Pro Leu Thr 435 Leu Ser Ile Ser Arg Thr Lys Thr Val Leu Arg 455 <a href="#</td><td>Ala</td><td>Ala</td><td>Glu</td><td></td><td>Ile</td><td>Ala</td><td>Trp</td><td>Val</td><td></td><td>Ile</td><td>Cys</td><td>Arg</td><td>Pro</td><td></td><td>Ser</td><td>Val</td><td></td><td></td></tr><tr><td>Gln His Arg Ala Ala Phe Ser Lys Leu Leu Ser Gly Val Asp Asp Ile 385 390 395 400 Ser Ile Asn Gly Val Glu Asn Gln Asp Gln Gln Glu Pro Glu Pro Tyr 405 410 415 Ser Asp Asp Asp Asp Glu Ile Asn Gly Val Thr Gln Gly Asp Arg Leu Arg 425 430 Ala Leu Lys Ser Arg Arg Gln Ser Lys Thr Asn Ala Ile Pro Leu Thr 435 440 455 Leu Ser Ile Ser Arg Thr Lys Thr Val Leu Arg 450 455 <td>Ile</td><td>Gly</td><td></td><td>Gln</td><td>Gln</td><td>Gln</td><td>Phe</td><td></td><td>Val</td><td>Met</td><td>Lys</td><td>Gln</td><td></td><td>Asn</td><td>Leu</td><td>Trp</td><td></td><td></td>	Ile	Gly		Gln	Gln	Gln	Phe		Val	Met	Lys	Gln		Asn	Leu	Trp		
Ser Ile Asn Gly Val Glu Asn Gln Asp Gln Gln Glu Pro Glu Pro Tyr 405 Ser Asp Asp Asp Glu Ile Asn Gly Val Thr Gln Gly Asp Arg Leu Arg 420 Ala Leu Lys Ser Arg Arg Gln Ser Lys Thr Asn Ala Ile Pro Leu Thr 435 Leu Ser Ile Ser Arg Thr Lys Thr Val Leu Arg 450 <pre> </pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre> <pre> </pre> <pre> <p< td=""><td>Leu</td><td></td><td>Gly</td><td>Asp</td><td>Tyr</td><td>Phe</td><td></td><td>Gln</td><td>Lys</td><td>Leu</td><td>Lys</td><td></td><td>Gln</td><td>Glu</td><td>Asn</td><td>Gly</td><td></td><td></td></p<></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>	Leu		Gly	Asp	Tyr	Phe		Gln	Lys	Leu	Lys		Gln	Glu	Asn	Gly		
Ser Asp Asp Asp Glu Ile Asn Gly Val Thr Gln Gly Asp Arg Leu Arg 420 Ala Leu Lys Ser Arg Arg Gln Ser Lys Thr Asn Ala Ile Pro Leu Thr 435 Leu Ser Ile Ser Arg Thr Lys Thr Val Leu Arg 450 <pre> <pre> </pre> <pre> </pre> <pre> </pre> <pre> <pre> </pre> <pre> <pre> <pre> <pre></pre></pre></pre></pre></pre></pre>		His	Arg	Ala	Ala		Ser	Lys	Leu	Leu		Gly	Val	Asp	Asp			
Ala Leu Lys Ser Arg Arg Gln Ser Lys Thr Asn Ala Ile Pro Leu Thr 435 Leu Ser Ile Ser Arg Thr Lys Thr Val Leu Arg 450 <pre> <210> SEQ ID NO 806 <211> LENGTH: 3415 <212> TYPE: DNA <213> ORGANISM: Rattus norvegicus </pre> <d> <pre> </pre> <pre> <pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></d>	Ser	Ile	Asn	Gly		Glu	Asn	Gln	Asp		Gln	Glu	Pro	Glu		Tyr		
Leu Ser Ile Ser Arg Thr Lys Thr Val Leu Arg 450 C210> SEQ ID NO 806 C211> LENGTH: 3415 C212> TYPE: DNA C213> ORGANISM: Rattus norvegicus C400> SEQUENCE: 806 Ctcgcgggac acagagagag aagcaccggt gcttgtgcct ggcgcctgcc gagtccccga 60 Cgctcgccg tccgcgcgc tgcccgtggc ggccgctct ctgaaccgcg gggtcgtgtt 120 tgtgtttgac ccgcgggcgc tggcgcgtgg cacgggctga agcgtgcagc ggggcgggg 180 Ccggcgcacg gaggcggag aagacgagcg ggagtccgg caggcccggc ggcgccatgg 240 aactgggccc ggagccccc caccgccgc gcctgctct cacttgcagc cccactcctg 300 Cgccgcagcc cacggggaag gtgcagttg gcgcgtcacg tgctggcgga ctgtcccctg 360 tcaccaacct gacggtcacc atggaccagc tggaagggct gggcagtgac tatgagaaac 420 caatggacgt gagaaatagc agcagtctac agagaatggg ctcctctgaa tcgactgatt 480 caggtttctg tctagattct cctgggcct ttggacagtaa agaaaacctt gaaatttccc 540 tgaggagaat aaattgccta cctcagaagc tcttggggtg tagcccagcg ctaaagagga 600	Ser	Asp	Asp		Glu	Ile	Asn	Gly		Thr	Gln	Gly	Asp		Leu	Arg		
<pre>450</pre>	Ala	Leu		Ser	Arg	Arg	Gln		Lys	Thr	Asn	Ala		Pro	Leu	Thr		
<pre><211> LENGTH: 3415 <212> TYPE: DNA <213> ORGANISM: Rattus norvegicus </pre> <pre><400> SEQUENCE: 806 ctcgcgggac acagagagag aagcaccggt gcttgtgcct ggcgcctgcc gagtccccga 60 cgctcgcccg tccgcgccgc tgcccgtggc ggccgcgtct ctgaaccgcg gggtcgtgtt 120 tgtgtttgac ccgcgggcgc tggcgcgtgg cacgggctga agcgtgcagc ggggcggggg 180 ccggcgcacg gaggcggagg aagacgagcg ggagtccggg caggcccggc ggcgccatgg 240 aactgggccc ggagccccc caccgccgcc gcctgctctt cacttgcagc cccactcctg 300 cgccgcagcc cacggggaag gtgcagtttg gcgcgtcacg tgctgggaa ctgtcccctg 360 tcaccaacct gacggtcacc atggaccagc tggaagggct gggcagtgac tatgagaaac 420 caatggacgt gagaaatagc agcagtctac agagaatggg ctcctctgaa tcgactgatt 480 caggtttctg tctagattct cctgggccct tggacagtaa agaaaacctt gaaatttccc 540 tgaggagaat aaattgccta cctcagaagc tcttggggtg tagcccagcg ctaaagagga 600</pre>	Leu		Ile	Ser	Arg	Thr		Thr	Val	Leu	Arg							
cgctcgcccg tccgcgccgc tgcccgtggc ggccgcgtct ctgaaccgcg gggtcgtgtt 120 tgtgtttgac ccgcgggcgc tggcgcgtgg cacgggctga agcgtgcagc ggggcggggg 180 ccggcgcacg gaggcggagg aagacgagcg ggagtccggg caggcccggc ggcgccatgg 240 aactgggccc ggagccccc caccgccgcc gcctgctctt cacttgcagc cccactcctg 300 cgccgcagcc cacggggaag gtgcagtttg gcgcgtcacg tgctggcga ctgtccctg 360 tcaccaacct gacggtcacc atggaccagc tggaagggct gggcagtgac tatgagaaac 420 caatggacgt gagaaatagc agcagtctac agagaatggg ctcctctgaa tcgactgatt 480 caggtttctg tctagattct cctgggccct tggacagtaa agaaaacctt gaaatttccc 540 tgaggagaat aaattgccta cctcagaagc tcttggggtg tagcccagcg ctaaagagga 600	<211 <212 <213	l> LE 2> TY 3> OF	NGTH PE:	H: 34 DNA ESM:	115 Ratt	cus r	norve	egicu	ıs									
tgtgtttgac ccgcgggcgc tggcgcgtgg cacgggctga agcgtgcagc ggggcggggg 180 ccggcgcacg gaggcggagg aagacgagcg ggagtccggg caggcccggc ggcgccatgg 240 aactgggccc ggagccccc caccgccgcc gcctgctctt cacttgcagc cccactcctg 300 cgccgcagcc cacggggaag gtgcagtttg gcgcgtcacg tgctggcgga ctgtccctg 360 tcaccaacct gacggtcacc atggaccagc tggaagggct gggcagtgac tatgagaaac 420 caatggacgt gagaaatagc agcagtctac agagaatggg ctcctctgaa tcgactgatt 480 caggtttctg tctagattct cctgggccct tggacagtaa agaaaacctt gaaatttccc 540 tgaggagaat aaattgccta cctcagaagc tcttggggtg tagcccagcg ctaaagagga 600	ctc	geggg	gac a	acaga	agaga	ag aa	agcad	ccggt	gct	ttgt	ject	ggc	gaat	gcc (gagto	cccga		50
coggogoacg gaggoggagg aagacgagcg ggagtcoggg caggocoggc ggogocatgg 240 aactgggooc ggagcococc caccgoogce gcctgotott cacttgoagc cocactcotg 300 cgccgcagcc cacggggaag gtgcagtttg gcgcgtcacg tgctggcgga ctgtccctg 360 tcaccaacct gacggtcacc atggaccagc tggaagggct gggcagtgac tatgagaaac 420 caatggacgt gagaaatagc agcagtctac agagaatggg ctcctctgaa tcgactgatt 480 caggtttotg tctagattot cctgggccct tggacagtaa agaaaacctt gaaatttccc 540 tgaggagaat aaattgccta cctcagaagc tcttggggtg tagcccagcg ctaaagagga 600	cgct	cgcc	ccg 1	tccg	egee	gc to	gaaa	gtggd	gg g	ccgc	gtct	ctga	aacc	geg '	gggto	gtgtt	1:	20
aactgggccc ggagccccc caccgccgcc gcctgctctt cacttgcagc cccactcctg 300 cgccgcagcc cacggggaag gtgcagtttg gcgcgtcacg tgctggcgga ctgtcccctg 360 tcaccaacct gacggtcacc atggaccagc tggaagggct gggcagtgac tatgagaaac 420 caatggacgt gagaaatagc agcagtctac agagaatggg ctcctctgaa tcgactgatt 480 caggtttctg tctagattct cctgggccct tggacagtaa agaaaacctt gaaatttccc 540 tgaggagaat aaattgccta cctcagaagc tcttggggtg tagcccagcg ctaaagagga 600	tgt	gttt	gac o	caga	gggc	gc to	ggcgo	egtg	g cad	eggge	ctga	agc	gtgca	agc ·	gggg	agggg	1:	30
cgccgcagcc cacggggaag gtgcagtttg gcgcgtcacg tgctggcgga ctgtccctg 360 tcaccaacct gacggtcacc atggaccagc tggaagggct gggcagtgac tatgagaaac 420 caatggacgt gagaaatagc agcagtctac agagaatggg ctcctctgaa tcgactgatt 480 caggtttctg tctagattct cctgggccct tggacagtaa agaaaacctt gaaatttccc 540 tgaggagaat aaattgccta cctcagaagc tcttgggtg tagcccagcg ctaaagagga 600	ccg	gegea	acg o	gaggo	cgga	gg aa	agac	gagc	g gga	agtco	ggg	cag	gaaa	ggc '	ggcgo	catgg	2	40
tcaccaacct gacggtcacc atggaccagc tggaagggct gggcagtgac tatgagaaac 420 caatggacgt gagaaatagc agcagtctac agagaatggg ctcctctgaa tcgactgatt 480 caggtttctg tctagattct cctgggccct tggacagtaa agaaaacctt gaaatttccc 540 tgaggagaat aaattgccta cctcagaagc tcttggggtg tagcccagcg ctaaagagga 600	aact	gggg	ccc (ggag	cccc	cc c	accgo	ccgc	c gco	ctgct	ctt	cact	ttgc	agc (ccca	ctcctg	3	0 0
caatggacgt gagaaatagc agcagtctac agagaatggg ctcctctgaa tcgactgatt 480 caggtttctg tctagattct cctgggccct tggacagtaa agaaaacctt gaaatttccc 540 tgaggagaat aaattgccta cctcagaagc tcttggggtg tagcccagcg ctaaagagga 600	cgcc	cgcaç	gcc (cacg	ggga	ag g	gcaç	gttt	g gc	gcgto	cacg	tgc	tggc	gga (ctgto	ccctg	3	50
caggtttctg tctagattct cctgggccct tggacagtaa agaaaacctt gaaatttccc 540 tgaggagaat aaattgccta cctcagaagc tcttggggtg tagcccagcg ctaaagagga 600	tcac	ccaac	cct o	gacg	gtca	cc at	ggad	ccago	t t g	gaag	ggct	ggg	cagt	gac ·	tatga	agaaac	4:	20
tgaggagaat aaattgccta cctcagaagc tcttggggtg tagcccagcg ctaaagagga 600	caat	ggad	gt	gaga	aata	gc a	gcagt	tctac	c aga	agaat	ggg	ctc	ctct	gaa ·	tcgad	ctgatt	4	3 0
	cago	gtttc	ctg +	tcta	gatto	ct c	ctgg	gadat	t tg	gacaç	gtaa	agaa	aaac	ctt ·	gaaat	ttccc	5	40
gccattctga ttctctagac cacgacatct ttcaactcat tgaccaggat gaaaataaag 660	tgag	ggaga	aat a	aaat	tgcct	ta co	ctcaç	gaago	e tet	ttgg	ggtg	tago	ccca	gcg (ctaaa	agagga	6	0 0
	gcca	attct	ga 1	ttct	ctaga	ac ca	acgao	catct	tto	caact	cat	tgad	ccag	gat ·	gaaaa	ataaag	6	50

aaaatgaagc atttgaattt aaaaagccaa taagacctgc atctcgtggc tgcctgaatg

ctcacgttca cgaggaaagt aaggaccct ttacacacag gcagaattca gccccagctc ggatgctgtc ttcaaatgaa agtgacatta gtgaatcagg aaatttcagt cctctttta

caccccagtc acctgtgaaa gcgagtttgt ctgatgagga tgatggcttc atagaccttc

tggatggaga gaatctgaag aatgatgagg agaccccgtc gtgcatgtca agcctctgga

780

900

960

ccgctcccct	tgtcatgaga	agacctacaa	accttgccga	tcgatgtgga	ctgtttgact	1020
ccccttcccc	gtgcagctcc	accagcagct	gcagcactcg	ggcagtgaag	agagcagacc	1080
gatctcatga	ggagtctcct	cgaggtacaa	agcggaggaa	gagcagtgag	gccagtccag	1140
tgaaggcaga	tgttccggag	ccaacgcagc	ttccacacca	gtctctctcc	ctgacatctt	1200
tccccaaagg	aaccattgag	aacattttcc	acagtgaccc	aagagacctt	ataggggatt	1260
tctccaaggg	ttacctcttt	catacggtct	ctgggaagca	tcaggatttg	aaatatattt	1320
ctccagaaat	tatggcatct	gttttgaatg	gcaagtttgc	caatctcatt	aaagagtttg	1380
ttatcattga	ctgccgatac	ccatatgaat	atgaaggagg	gcacatcaag	ggtgccgtga	1440
acttgcacat	ggaagaagag	gttgaggagt	tcttactcaa	gaaacctatc	gtgcccgctg	1500
acggcaagcg	tgtcattgtc	gtgttccact	gtgagttctc	ctctgagaga	ggccctcgga	1560
tgtgccgata	tgtacgggaa	cgagataggc	ttggcaatga	ataccccaaa	ctccactacc	1620
ctgagctgta	tgtcctgaag	gggggataca	aggagttctt	tttgaaatgc	cagtctcact	1680
gtgaaccccc	cagctaccga	ccgatgcacc	atgaagactt	taaagaagac	ctaaagaagt	1740
tccgcaccaa	gagccggacc	tgggcagggg	agaagagcaa	aagggagatg	tacagtcgcc	1800
tgaagaagct	ttgaggccaa	atggcagtga	cctgagcttc	cctccgccct	gtccctttgt	1860
ccctttgctg	tagagcagta	agcaaagggg	ccagctatac	ggcacctgga	ccctggagaa	1920
aaacctgggc	cttccatgcc	ttgaacctcc	tacactccca	ggttggagcc	caggcatcct	1980
gccgtcacac	tcttctgtga	gagtccttcc	ctgtcaggac	tgtctgccaa	agctggacaa	2040
gctcggcaca	ggctggcaca	ggctcgagtc	tagtctggaa	cgccacgtca	ggctgctccg	2100
actaagcatc	ccctgaagaa	gtgcccaggc	ctctcatgag	gggagagaag	ccactgaagt	2160
gctgctggcc	aaataccaaa	gataggctgg	aaggggagag	gtcctcatgg	atgactcttt	2220
aatttattca	gcctcatcaa	ttattttatt	attgttttaa	ttcctcaaga	cttttacttt	2280
actgcttcaa	agtcaaaata	ctgccattct	aggtagagtt	ttatcatcct	aggaactacc	2340
tctactttta	atttaaaaaa	aaaacatggg	gcagggataa	gaaaaaaggc	aaacctgtta	2400
agtgtgggca	gcgcaaggaa	ctcagtcacc	cctaggaggc	gctgtagact	ggtattgctg	2460
ctattcaaag	tcaaggactg	agatgctggt	cagageetge	accaaccaga	tccaggcttg	2520
gctacaggac	ataagctaac	cttcccagac	ctacttctgc	cctttgtgag	ttcctttggg	2580
gagagtcttg	tctgtactcc	tggtcccagg	tccccgtgac	agtgactggt	gtgggagttg	2640
caggaaggca	catcaagcca	ccccaggcc	agtactggaa	tgttgaagtg	taccccaagg	2700
tgggagtggg	gaggcatgga	aaagtggagt	ccacagagta	agggaggagc	atgcccactg	2760
aatgtccttt	agaaaaaaaa	aaaagtcatt	ttatgagtca	gagtatccaa	tcagtgttgg	2820
gtgggcacct	aagcttgagc	agggggcggg	aagcccgggc	tgttacagac	gactgtagaa	2880
tttctcagga	gggcgtagta	aattttgaag	tcaaaagttc	tgggtttcat	catgttttaa	2940
ttgagggaca	gagtggtgaa	acacatcagt	taccccctaa	tctaaccccg	tggaagtgag	3000
gctctgggga	atgcctccca	tctaaggagc	tggcccgttt	tgattctgtc	agtgtcctcg	3060
ggcaccagcc	tccctgccat	ctgtgctcca	ttggggtcat	gccaggtttt	tcttaggaag	3120
agtctcccct	cttaacctct	gctttctatt	ctgggggtgg	ggagggaatc	aatgatattg	3180
aagatggcta	gttgctttgt	taagggtttg	agtttgcatt	tggctataaa	acaaatcttg	3240

3300

			, -, 5,	-9-9		9994		,	,			22.2	-,-		,	
ccta	agtti	ttc o	ccct	ggtc	tg g	tttg	taga	g att	tctgt	tag	ttg	aatg	cct t	tcaaq	ggagaa	3360
tgaa	atggo	ett 1	tcaga	attg	ta co	cagc	ttago	c tag	gcatt	tgtt	aac	cagc	tgc 1	tgca	a	3415
<210> SEQ ID NO 807 <211> LENGTH: 525 <212> TYPE: PRT <213> ORGANISM: Rattus norvegicus																
<400)> SE	EQUE	ICE:	807												
Met 1	Glu	Leu	Gly	Pro 5	Glu	Pro	Pro	His	Arg 10	Arg	Arg	Leu	Leu	Phe 15	Thr	
Cys	Ser	Pro	Thr 20	Pro	Ala	Pro	Gln	Pro 25	Thr	Gly	Lys	Val	Gln 30	Phe	Gly	
Ala	Ser	Arg 35	Ala	Gly	Gly	Leu	Ser 40	Pro	Val	Thr	Asn	Leu 45	Thr	Val	Thr	
Met	Asp 50	Gln	Leu	Glu	Gly	Leu 55	Gly	Ser	Asp	Tyr	Glu 60	Lys	Pro	Met	Asp	
Val 65	Arg	Asn	Ser	Ser	Ser 70	Leu	Gln	Arg	Met	Gly 75	Ser	Ser	Glu	Ser	Thr 80	
Asp	Ser	Gly	Phe	Cys 85	Leu	Asp	Ser	Pro	Gly 90	Pro	Leu	Asp	Ser	Lys 95	Glu	
Asn	Leu	Glu	Ile 100	Ser	Leu	Arg	Arg	Ile 105	Asn	Cys	Leu	Pro	Gln 110	Lys	Leu	
Leu	Gly	Cys 115	Ser	Pro	Ala	Leu	Lys 120	Arg	Ser	His	Ser	Asp 125	Ser	Leu	Asp	
His	Asp 130	Ile	Phe	Gln	Leu	Ile 135	Asp	Gln	Asp	Glu	Asn 140	Lys	Glu	Asn	Glu	
Ala 145	Phe	Glu	Phe	Lys	Lys 150	Pro	Ile	Arg	Pro	Ala 155	Ser	Arg	Gly	Cys	Leu 160	
Asn	Ala	His	Val	His 165	Glu	Glu	Ser	Lys	Asp 170	Pro	Phe	Thr	His	Arg 175	Gln	
Asn	Ser	Ala	Pro 180	Ala	Arg	Met	Leu	Ser 185	Ser	Asn	Glu	Ser	Asp 190	Ile	Ser	
Glu	Ser	Gly 195	Asn	Phe	Ser	Pro	Leu 200	Phe	Thr	Pro	Gln	Ser 205	Pro	Val	Lys	
Ala	Ser 210	Leu	Ser	qaA	Glu	Asp 215	Asp	Gly	Phe	Ile	Asp 220	Leu	Leu	Asp	Gly	
Glu 225	Asn	Leu	Lys	Asn	Asp 230	Glu	Glu	Thr	Pro	Ser 235	Сув	Met	Ser	Ser	Leu 240	
Trp	Thr	Ala	Pro	Leu 245	Val	Met	Arg	Arg	Pro 250	Thr	Asn	Leu	Ala	Asp 255	Arg	
Cys	Gly	Leu	Phe 260	Asp	Ser	Pro	Ser	Pro 265	Сув	Ser	Ser	Thr	Ser 270	Ser	Cys	
Ser	Thr	Arg 275	Ala	Val	Lys	Arg	Ala 280	Asp	Arg	Ser	His	Glu 285	Glu	Ser	Pro	
Arg	Gly 290	Thr	Lys	Arg	Arg	Lys 295	Ser	Ser	Glu	Ala	Ser 300	Pro	Val	Lys	Ala	
Asp 305	Val	Pro	Glu	Pro	Thr 310	Gln	Leu	Pro	His	Gln 315	Ser	Leu	Ser	Leu	Thr 320	
Ser	Phe	Pro	Lys	Gly	Thr	Ile	Glu	Asn	Ile	Phe	His	Ser	Asp	Pro	Arg	

ttaaaaatat gtggagagca agggaatgag cagcctcttc ttcggtgtgt tgaagtatgt

										-	con	tin	ued					
			325					330					335					
Asp Leu	Ile	Gly 340	Asp	Phe	Ser	Lys	Gly 345	Tyr	Leu	Phe	His	Thr 350	Val	Ser				
Gly Lys	His 355	Gln	Asp	Leu	Lys	Tyr 360	Ile	Ser	Pro	Glu	Ile 365	Met	Ala	Ser				
Val Leu 370	Asn	Gly	Lys	Phe	Ala 375	Asn	Leu	Ile	Lys	Glu 380	Phe	Val	Ile	Ile				
Asp Cys 385	Arg	Tyr	Pro	Tyr 390	Glu	Tyr	Glu	Gly	Gly 395	His	Ile	Lys	Gly	Ala 400				
Val Asn	Leu	His	Met 405	Glu	Glu	Glu	Val	Glu 410	Glu	Phe	Leu	Leu	Lys 415	Lys				
Pro Ile	Val	Pro 420	Ala	Asp	Gly	Lys	Arg 425	Val	Ile	Val	Val	Phe 430	His	Cys				
Glu Phe	Ser 435	Ser	Glu	Arg	Gly	Pro	Arg	Met	Cys	Arg	Tyr 445	Val	Arg	Glu				
Arg Asp		Leu	Gly	Asn	Glu 455		Pro	Lys	Leu	His	Tyr	Pro	Glu	Leu				
Tyr Val	Leu	Lys	Gly			Lys	Glu	Phe			Lys	Cys	Gln					
465 His Cys	Glu	Pro	Pro	470 Ser	Tvr	Ara	Pro	Met	475 His	His	Glu	Asp	Phe	480 Lvs				
HID OFF	oru	110	485	DOL	-7-	111.9	110	490			Olu	пър	495	Lyb				
Glu Asp	Leu	Lys 500	Lys	Phe	Arg	Thr	Lys 505	Ser	Arg	Thr	Trp	Ala 510	Gly	Glu				
Lys Ser	Lys 515	Arg	Glu	Met	Tyr	Ser 520	Arg	Leu	Lys	Lys	Leu 525							
<210> SI <211> LI <212> TI <213> OI <400> SI	ENGTI YPE : RGAN	H: 31 DNA [SM:	1868 Homo	o sal	piens	5												
ccagggt	ctg ·	tgago	ccct	cc a	gagt	tggg	c cct	tggt	ggtc	gagt	tccaç	gtc	ctgg	gggtca	60	0		
ttgcatt	aca ·	taca	tcat	ta t	aaaa	tggg	g cct	tgga	ggcc	cgg	ggcg	gaa q	gaaaq	ggggtc	120	O		
cacaata	ctg	cacg	gtta	ga g	gccg	agcca	a ago	gctg	gatc	cgg	ccaga	acc t	tccad	caggtc	180	O		
ttcctta	gcc ·	tcca	catt	gc c	tcaga	agtgt	t ggg	ggcg	cccg	gct	3 3 33	gcg a	aggta	agcgga	240	D		
ggcccaa	agg (gggc	cgaa	gc t	aact	ggac	g gca	agcto	cgcg	atg	ggaad	cta o	egett	cccag	300	0		
catgcga	cgg (ggca	aagg	gg c	cttt	cagco	c gc	gagc	agcg	cct	cgcaq	ggt 1	tctg	ctggga	360	0		
gttttca	ttg (acct	ctgc	tc c	ccct	ctcat	t tti	tgato	cccc	gct	cttct	tgc 1	tctg	ggctcc	420			
gccccct	tct (gaga	gccg	at g	acct	ggca	g agt	taaa	gcga	gcc	gctti	tct 1	tctto	ccctc	480			
tcattgg															540			
ggattcc	gtt ·	tggc	gcca	ac t	agga	aagg	9 999	gcgg	ggca	gca	gctg	gee o	ccact	gagcc	600	3		

720

780

840 900

gctattaccg cgaaaggccg gcctggctgc gacagcctgg gtaagaggtg taggtcggct tggttttctg ctacccggag ctgggcaagc gggtgggaga acagcgaaga cagcgtgagc

ctgggccgtt gcctcgaggc tctcgcccgg cttctcttgc cgacccgcca cgtttgtttg

gatttaatct tcaggttgcc ggcgcccgcc cgcccgctgg cctcgcggtg tgagagggaa

gcacccgtgc ctgtggctgg tggctggcgc ctggagggtc cgcacacccg cccggccgcg

ccgcttgccc gcggcagccg cgtccctgaa ccgcggagtc gtgtttgtgt ttgacccgcg	960
ggcgccggtg gcgcgcggcc gaggccggtg tcggcggggc ggggcggtcg cggcggaggc	1020
agaggaagag ggagcgggag ctctgcgagg ccggggcgccg ccatggaact gggcccggag	1080
cccccgcacc gccgccgcct gctcttcgcc tgcagccccc ctcccgcgtc gcagcccgtc	1140
gtgaaggege tatttggege tteageegee gggggaetgt egeetgteae caacetgaee	1200
gtcactatgg accagetgca gggtctgggc aggtaaggag agaceggegg geggtgetee	1260
gggcccctgg cctcggtgtc ggcctcggag agatcaggcc aggaaacgga ccgggagaag	1320
ggcgagaccc gtccgtccgg gttcgccgct cggggacagc cgggctaggg cctgccatgt	1380
gcacccccgc ccgggcggaa tgttgggcgg gagaggccgt cgggaccttc caggggaaga	1440
ggtggagatc cttgggccta agcccgagcc aggcccacct tcaccccttt cggattgctc	1500
cgtactctcc ttctatctct atccctggaa gctctttgga atctaccccc gcggggaaaa	1560
teaggetett etaggeacte actiteacce titigetaaac cateeteagg ateitegitt	1620
gctgtgatct ttgttccttc tcaacaaagg accatggcat tttctttcct ggcgtttatg	1680
taaaatcatc tcagtccctc gccctgtgca cattcctgat gtccactctg ctgctttcct	1740
aaggccaggt ctttttaccc aactttcaga aagcttcctg ggcttttcct gatagcaaaa	1800
aatgcatccc acggtgtttc ccgcggaaga gctactttcc cttcaatctc tggcatcccg	1860
tttgctaagc acatgtcttg tgcgtttccc aacttctgaa aagcagaaag tgtcctgttc	1920
aactttcatc ccgactctgt ctcagtactt agaacacatg cttttatttt aggaaatacc	1980
ccaacatttg ccatagccat cataacctgc aatgtggtcc aaggccatgc ccacccactc	2040
cttttttctc ctttgcccaa gtgctaattg ggtgttcaga gtggcaaagt gggatctttg	2100
ccacttgtgg tgtggcctag aaatggtttc tggcagcctg gctgcttctt aatctcatgg	2160
cctatctcct gcatgtgacc ttttaattat atcctataaa tcattcatgg tttatttctg	2220
ttggtttcag tgattatgag caaccactgg aggtgaagaa caacagtaat ctgcagagaa	2280
tgggctcctc cgagtcaaca gattcaggta tttaagtctg ctgtgtgggg agcaatactc	2340
tgaatttcct gaaacatgcc ttttcaccca ggaggttagt tttggtgaga acttgaggaa	2400
gtcatggcat tgggtgataa acttttttt ttttttttt gagacagagt ttcgctcttg	2460
togoccaggo tggagtgcaa tggcatgato toagotoaot gtaacotoca cotocogggt	2520
tcaagtgatt ctcctgcctc agcctcccga gtagctggga ttacaggcat gcaccaccac	2580
acceggetaa ttttgtattt tttagtagag acagggttte tteatgttgg teageetggt	2640
ctcgaattca caacctcagg tgatccgcct tcctcggcct cccaaagtgc tgggattaca	2700
gcgtgagcca ccgcgcccgg tgataaacat tattgagaac aatacaaagg agcccttgtg	2760
gctgtttatg aagaaaggaa ataggtttca aatgtctata aggaggtggt gtgtgcttgc	2820
ccttgaagga tgggtagtaa agtataattc accataccac tgtaagtggc attcaggcaa	2880
tottactggt taaaatacag gatcaaatga ttggaagtac agtgtcatga aatcatttca	2940
gtgatgctgc tatggaggaa attgccagtg catttcattc ttcatgaatt catattactg	3000
cagagtttat ctgtatttgt acagataaga ccattggtgc aaagatcctt taggttaaag	3060
gaactgcaag agcaagtctt aaaatgtaat gtaggcttct gtatgtagaa tgtaatttaa	3120
tatagaactg gggataggat tatcacttgt agcagtgtgg tgagcaaggg ctgtaacacc	3180

tcactttcca taaggctgta tagacacatg agctatgggt gggtgggtct gcgtcatctg	3240
agetggcata ttagtaatge tgaacagtgt etcetteace etgetgeett ttgtgagatg	3300
gacaccttgg tgtcattttg ttaaaggcag caagtgcttg ccttgcatgt catgaccagt	3360
agttgtattt ttctttttca ttttgagaca aggtctcaac tctgtcaccc aggcaacctc	3420
tgcctcccag atttagagaa ttcttctgcc tcagcttccc tagtagctgg aattacaggt	3480
gtgggtctca aacttetgat etcaggtgat ecaeceaett egaecteeca aagtgetgag	3540
attacagggg tgagctactg cacctggcct ttttttttt tttttttga gacagggtct	3600
tgctctgttt tccaggtctc aggctggtgt acagtggcac aatcagggtt cactgtagct	3660
tcaactttcc gagctcaagc gaacctccca ctccagcctc cccaagtagc tgggactaca	3720
gacacgtgcc accacaccca actaattttt tttttaactt tggtagagtc aagtctcact	3780
atgttgcccc aggcttgttt tgaacttgtg gcctcaagcc atcagcctgc ctcagcctcc	3840
caaagtattg gaatcacagg tgtgagccac tgtgcctggt cagtagttgt attttcaag	3900
cctcatatga tttgacaagg taaaacgttt aaaaactatg ccaagaaaat ctggtaccta	3960
ttgtttctat ggttggaact cacagaaagt tatctgggtc acctctatct gaataaccaa	4020
acaatcatga tatgaatcag ttttattcac cctcttctca aatcctattt cccttgatgt	4080
tatttgcaaa taggagaaaa aacagtaaat acgctatgaa aatattaaga cttgtacaaa	4140
catgacattt ttgacaatct aatagacgta acatcaattc tggcaaaagt acaagccatg	4200
aatatttgtt gcctgactta aataaagacc caggtacttt gtttagtgtt ttaattttaa	4260
tgacaaaatg gtgttttttg tattatttct tgagaggttt tttttttccc cataggtttc	4320
tgtctagatt ctcctgggcc attggacagt aaagaaaagt atgtattcac tgctttcaaa	4380
tgtttatatg tagaaaaaac gtgtctaaac ttaaatacct tatttaaatg aagttcttca	4440
tacactggac tggagccctg gatttacctg tgcctagaaa cactctggaa tctcaagaat	4500
gaatagtttg tgtcagcaat tttcagaact ttttctcctt tattttagct ataattttgg	4560
tgttctgttt gggtcttacc caaaccctta ctctgtgctc tgacatcata gccttacaag	4620
aacatgtggg gtttttttgt ttgtttgttt gtttgtttct gaggcagagt ctcactctgc	4680
cgcccagget agagtgcagt ggctcactgc aacctccacc teccaggtte aactgattet	4740
cctgcctcag cctcccgagt agctgggact acaggagtgc accaccacac ccggttaatt	4800
tttgtatttt tagtagacac gaggtttcat cgtgttggcc aggccaggag ttcgagactc	4860
ctgagactee tgacetegtg atataceete eteggeetee catagtgeee atagtgetgg	4920
gattacatgt gtgagccacc gcgcccagcc gaatgtgtgt attttaagaa aagacatggg	4980
tttgtttttt ttcacctaga agtctagtgt tgggggtgct cctgagaaca ggacagcttc	5040
agaaatttat totoocatot ottgootaaa atgggagtot gtgactgtac occoaagota	5100
caggotaaac actatototo tgotaatatg aatacotott tacttgtttt attotoatta	5160
tttaccttct gatctcatta cagccttgaa aatcctatga gaagaataca ttccctacct	5220
gtaagttagt toottgttta ttttgagota atacotgtta totgttoott agotacoago	5280
atgaccttga taggagactt aatttagaga gtaaaaactg cttttcttta gtctcttttg	5340
agacaaggte ttgetetgte acceaggetg gagtgeagtg geaaaatett ggeteactge	5400
aacetetget teeetggete aagtgateet eecaeeteaa etteeagagg agetgggaet	5460

atatataggt	gcacaccatc	acacccggct	gatttttgta	ttttttgtag	acatgggggt	5520
ctcactctgt	tgcccaggct	ggtttcaaac	tcctgcctcg	gcctcccaaa	gtgctaggat	5580
tataggcaag	agccactatt	cccagccttt	ccttagtctc	ataagtactc	aagatgttcg	5640
gtctggagga	atttgtcctc	catctctaac	agagctttat	taaaccagga	agggttcttt	5700
tgatgcaaat	gttatttggg	gattgatttg	gcactgtaat	ccctgttgag	gggggcactg	5760
tagaccttgt	gaggttagct	gtaaacccat	ggaatggaaa	cttctatgct	gtgtcctggc	5820
tgtgtcctgg	caaggtggat	tcctggccac	atttactggt	tacctactgc	agtgtgtgag	5880
gagctagtct	accccctatt	caacccccct	ttttttctt	ttgagaactg	aattttccac	5940
tgaaatttta	tttgtgtgcc	ttaattattt	tcctttttta	ctttgatagc	agaagctgtt	6000
gggatgtagt	ccagctctga	agaggagcca	ttctgattct	cttgaccatg	acatctttca	6060
gctcatcgac	ccagatgaga	acaaggaaaa	tgtgagtgtg	acttcaatgt	actaacctga	6120
ggcagaggtg	aaacccacag	gctgtcagtg	gcttagaagt	ggctgggctg	ctttctggga	6180
gactaaactt	ggccattatg	tgcggtcttt	ggagtcagag	aattctgggt	ttggatcctg	6240
cttactagct	gtgtgatgtt	ggcaaattct	tctcttttta	atctttgctc	ttttgtaaaa	6300
taggagtagt	aatacctttt	agggatgttg	tggcaataag	taagattatg	tatgaagtat	6360
tgaaaatggt	gcctgacagg	cgggagttgc	tcagattgta	gctcacagga	gtaattacat	6420
gtacaaatag	tgtttgtctg	gaaggctctg	cccaggctgt	ccttgcctct	ttgctctgac	6480
cctgaaatga	attgtaagct	taggaaaagg	ctctttggca	gtatttgtaa	gaacggggtc	6540
aacaagttct	agggaatctc	agagtaactg	aaatggtggc	ttggaaggtg	aatttctggt	6600
tatctaccct	gaatgagcct	ggctttttg	ttcttttaga	cattgcacag	agtaggcatc	6660
caaaacagtt	gtaattttt	cagccttctc	tctactgtat	ttctatatat	ttactttctc	6720
cccttttcca	ttcctgctga	aatgccacag	ttcataatcc	ttgtccttac	aatcttcagg	6780
tttagtgtga	aacccactgc	ctccatgaac	tctcctgatg	atttctttat	caacctggga	6840
agtgtcatga	gaaagaatat	ggaaatgagt	tccagccttg	agtgcttgga	acagtgtatc	6900
agcctctagt	gctttttacc	agggcaaagc	tgtactgatg	cctggttttc	ccccgaaata	6960
gcttctcagg	gttgcttgcc	tggagctttg	ttttaaaggg	aaaacagcat	agatggtggt	7020
taaagagctc	tcactctgga	gttgtcctgt	tttacttcaa	tattttgggc	acattcctta	7080
acctgcaagg	tctagttttc	tcacctgtaa	aatcgggaca	atcaggttgt	atttgatggt	7140
taaaaagtta	atgcacagaa	agtacttagt	actgtgttgg	catagaaatc	actgtaatat	7200
tagccattac	tgctttttt	tttttttga	ttcttcatgg	ttttatttct	ctcagaactt	7260
taaaatgtga	acattctata	attcagccag	tctttacttc	caggtaactt	ctttattggg	7320
tegeaatace	cttttaaata	acatgetett	gttccggaag	gtagttagcc	gttcatcact	7380
ctttctgtct	aaataacatc	cagtgacaaa	tcccataggg	acaagaacat	gaacccagtg	7440
gtcccgcaca	atctgaagta	agttcaccat	gatagctgca	gcctcagtgc	cgaccgcgac	7500
cccgagacca	agggcaacgg	ggaactcagc	cacccacgcc	agtgctagcc	attactgctt	7560
ttaatactta	attatgagtt	cttaagtgaa	tattttaggg	caagggacct	gtgagtgttt	7620
tcattccata	aagtggaatc	atacgatatg	tattctatca	tatctggctt	taaaaaacat	7680
tatgcttgta	agaatcgtcc	acgttgagta	aaccagtagg	gcttttttt	ttttcattgc	7740

211

Apr. 22, 2004

ttttagtata gaatagaata attataagta gaaaaaatta tctccagttg gtaggaagag	7800
gtggaaaata tgaagccctg aaacagatgg acctagatgg aaaattttga caactattca	7860
caggcaatta tattagattt tatttatttt tgctttagat ttcagaaagt ttgtgattta	7920
gcttattcat cgtgttttgt atatttggca gatacttgtg ttaggaaata cagtatgaca	7980
agaaaaagat gttactttag aagttagctg ttgacagagc cttggaaatt cttagttacg	8040
cagatctatt gttggaatta ggtgaaactt taatttggag gcagaaaggt gatcagtgcc	8100
cactttcttg cctctttcac ccaagctgag gcctgagttg gttttcatgg acagtagatg	8160
tctcaactat gtcttgcagg aagcctttga gtttaagaag ccagtaagac ctgtatctcg	8220
tggctgcctg cactctcatg gactccagga gggtaaagat ctcttcacac agaggcagaa	8280
ctctgcccca gctcggatgg tatgtgctct ggctttcata ggggaattcc tgacaggaag	8340
aaaggattaa aacaccttct ttcatccaga attgaaggca ctacagtagc actagctgtt	8400
tttaccttga ctttgtcttt tgaaattaga ctgtcaagca ttcttggtgg ttttgctgtg	8460
tctggagaac agacaggcgg tagtaagagt gggagatggt gtttgaaata ttggagttgt	8520
gcaaggaata atcgaccttg ttaatctggg aaatcctggg tcatcctaaa tgtatgtatg	8580
gtgggattat atctcttcct attttttct ttttttctt tttttttt	8640
tggcaaaaac cggaaagcct gcgagacaaa ttttaaaaga gccgtaacac tagatctctt	8700
acttaaaact tggtctttac tatgcattct aagtgcttct caaggaactg gagagagac	8760
acttgacttc ttccaaaggt ggtttgttaa gaacagttat gggccaggtg ccatggctca	8820
tgcctataat ctcagcactt tggaaaactg agacaggagg atcgcttgag tcctgggcag	8880
catagtgaga ccacatctct attitttta titttaattt tittaaagaa ctattatgga	8940
ttacagtgaa tgctcaggct gctgggcagt tttggggtca ctcgtttcag ggctatgtat	9000
ttgccagaca gggactgtca ttacttccaa agtttcctgc tgttggtctg aattggatta	9060
actgatagca tctatagatt ggagaggccc aacttgagca agatgaccac atttggcttc	9120
caggtttacc taggatetta aatetgaaaa tatacettte caatetgett tgtgttetga	9180
ggttcagcca gtattgttac tctgtctatc atttgcacaa agcactttta tatgttcttg	9240
tcttgtgaag tggagttaat ccacttgaac agattaggaa agtaccacta gagaggtttg	9300
gatgatttac caaaggatat acataagtag gaaaccagga tttaatgatc tctggctggg	9360
tgtggtggct catggctgta atcccagcac tttgggaggc cgaggtggga ggatcacatg	9420
aggtcaggag ttcaagacag cctgggtaac atagtgagac cctatctgta caaagttaaa	9480
aaataagctg agtgtggtgg cttgttccta tagtcccaat tagtcgggag gctgaagtgg	9540
gaggattgct tgagcccaag aattcgaggc tgcagtgagc tatgatcaga ccactgtact	9600
ccagcctgga caatgaatcc ctgtctcaat aaacaatctc taaattccca agtacacagt	9660
aatgotttaa gagttgggta toagaaacaa tatatttggt gtgtgottag ogactagago	9720
ctgtatcaca tctgcaccta ggaatcccag aacatacctc acaaatgttg gtgtgatata	9780
gtgtgagctt tcgtgataaa ggtactgccc cataataaag ttatctaccc ctaggctaaa	9840
aaaatttgcc atttcccaga gtgtgcactt ggggaggact agagactgct cagaacttgt	9900
tttatattgt gaagcaaagc taatgccaga accagaatag gccagctgca gagaggattc	9960
cttggtgcat gatccactca gaaaatcaga gggccactta actaacaaca gattcatacc	10020

ccaaagagat	ttggatttta	aggattactt	gtaggtcata	acattgggac	taccctgcta	10080
ctgtgaaaaa	aataactcta	aactttttt	tctggatttg	aaagtgccta	gaaaataaat	10140
aattcagtat	tagcagtgtt	tgtattggta	ggatttatct	tcaggtgtgg	atttatgagc	10200
agtttttcta	aattttctat	attccatgtt	tagaggtttc	ccaaaaaaag	tatgactata	10260
ggttggctaa	tgaggtaccg	ccattttaat	tccaggaatg	gttttctcct	agggagatag	10320
tgtggtgaga	agagtttgga	ttttggagtc	aaacagatga	ggtgtataat	cttggtaacc	10380
tcttaagcac	cagtttcctg	atttgctaaa	gaaaaaggaa	aggattagct	acctttagtg	10440
tattgtgagg	cttctattgg	attatatgta	taaagattat	atcgtagtat	ctggcacaca	10500
gtaattcctc	gtttaaaaac	tgagcattta	aatcccaagt	ctaaagaacg	aggatagatt	10560
ttatagaagg	aagttaccct	ttattcccc	ctgtcagaac	tggagttata	tataagtgca	10620
ttctctaggc	cattttatgg	tctttataga	gatttgcatc	tgcttgccct	aactcatttc	10680
agcagattct	catactgtca	cagtcctcaa	tgctgatcgg	tgttcactga	tgcaaccttc	10740
taataaaaga	aaccttgttc	ttcacaagag	gctatctcta	gtacccatta	taaggtgaat	10800
tgcttctggc	aagagttctc	tgtaaaggct	actgactact	cagggctgtg	tgtggtcatc	10860
aaatcattta	taatcttggg	atacattttc	atataatcag	taatggctaa	aattttgctt	10920
tgtataacaa	gtataacata	gtatgttttc	atcataaaaa	ctagtgaccc	attcaaggaa	10980
atgaaagtgg	atcagagctc	tcattattaa	tccatgaatt	ttgtcttaca	gctttcctca	11040
aatgaaagag	atagcagtga	accagggaat	ttcattcctc	tttttacacc	ccagtcacct	11100
gtgacagcca	ctttgtctga	tgaggatgat	ggcttcgtgg	accttctcga	tggagagaat	11160
ctgaaggtac	cgtgtgtgtg	tgtgtgtgtt	cctatttgtt	ctactaatta	attacctctg	11220
gagaaggcat	gtgatgtgaa	aaagaacagc	aacagcagtt	ccccggggct	tgcttagctg	11280
atatttttgt	tcatttggtg	ataattcatt	taataatagg	gctaccagcc	ttattaaatc	11340
ctttggattg	ggggatgggg	gcatcaaaag	aagacacatg	atccttctta	ccctgaagga	11400
gctaactaac	aatctatatg	caagaaacat	gaaatcagaa	cggtatagga	tggtacatta	11460
aggatacttc	ctatccaggc	ctatctggta	ttgttcaggg	agaaacacac	ctaaagcact	11520
taaacaaatg	ttagtctcta	caggctcttt	ttaaaatcag	tttttctgtt	tctttagaat	11580
gaggaggaga	cccctcgtg	catggcaagc	ctctggacag	ctcctctcgt	catgagaact	11640
acaaaccttg	tgagttgttc	tagtgtgtct	ggaggaagcc	ctgcgtgatt	ggggcactgg	11700
acagagtagt	ccttagttga	gtatagccaa	agattgaaat	gcatgatagg	atttggggat	11760
ctgggtttta	ggcctcactt	tggctaccta	caaattatga	cctttagtca	tgatatctct	11820
ctgcatgtct	cctgatgtat	aaggagtgtg	ggttaggagg	gaccatggtc	attcctagct	11880
tttaccatct	agtcagtttg	aaaaaagcct	atctgaagcc	tttagcctga	atactttact	11940
ttttttaggt	tattctcatt	tatattccac	agaacctagc	ataaaattag	acaagcaaca	12000
gtaactcaca	ggatttttt	tgtttctgtg	ttttttgttt	tttttttga	gacggagtct	12060
cgctcttgtt	gcccattcta	gagtgcagtg	gcacaatctt	ggctcactgc	aacctctgcc	12120
tcccaggttc	aagtgattct	cctgcctcag	cctcccgagt	agctgggatt	acaggtgcct	12180
gccaccacac	ccagctaatc	tttgtatttt	cagtagagac	ggggttacat	tatgttggcc	12240
aggctagtct	cgatctcctg	acctcaggtg	atctgcccac	ctcgacctcc	caaagtgctg	12300

ggattacagg	catgagccac	tgtgcctggc	tggatgtttt	ttgttgctgt	tttgtttgtt	12360
tgttttgttt	tgttttgttt	ttcattgaaa	atacctacct	gaggctgggt	attttcaggt	12420
agatattttc	gattttaaaa	attatatata	atatatattt	tatatatata	tatatatata	12480
tatactcaca	cacacacata	cacagtatag	atttgtgttt	ccatcaggga	tactttcaaa	12540
cagaaagcat	agtatatgta	gatacagaat	ctatagtgta	tgtgtgtata	tatattcaaa	12600
atcacatata	tatacacaca	catacacatg	ctatagattc	gtgttttcat	catagggata	12660
ctttcaaagt	tagaagcaag	aatgtgccta	tacagatata	tacacctgta	tgttcagaga	12720
tatacaccct	taggtacaca	tctaaattga	taagttcata	ttttttaatt	ctcaataacc	12780
tgaactataa	ttacagaaca	aatgagctac	agttttttg	tttgtttgtt	ttgttttgtt	12840
tttgagacag	agtctccctc	tgttgcccag	gctggggtgc	agtgcagtgg	tgtagtcttg	12900
acttgctgca	acctctgcct	cctgggttca	agtgcttctt	ctggctcagc	cttctgagta	12960
gctgggacta	caggcttacg	ccaccactcc	cggctaattt	ttttggtatt	tttagtagag	13020
acgaggtttc	actatgttgg	ccaggctggt	ctcgaactct	tgacctcagg	tgatccatcc	13080
acctgcctcc	caaagtgctg	ggattacagg	catgagccac	cgtgcccagc	caagctacag	13140
ttttgagatc	acttatggat	tatagtacat	tcatgtgcat	agcttttgag	aaaatatgtt	13200
aacgcagtac	aaatgttatg	agtaaattta	ccaggtcatt	ttgataggca	taaaattaca	13260
taaaatgtga	gaacactttg	gaagtggctg	ttagttttat	agatttgatt	ttagagtcat	13320
aagcatgggc	ttgtaagctc	ttaatagtgg	ggaaatgtct	tccacaaatg	gttattacaa	13380
actaaccatt	gctgggagct	gtaatggaaa	ataaacttca	cacaaaagag	gaagaaaatc	13440
cccggtctct	atgggagcag	atgtgggagt	gatccattct	actggggact	atcaggaaga	13500
tttcaaagaa	gtgacattga	aatgttagca	tcaacttgaa	aatgaatggt	ttactgagat	13560
gtgaaaggac	attctgtgca	gaaggaaaag	ccaggccaag	acacatggag	tcgagaatag	13620
gctgagatgc	gtttagagag	ctgactcttg	ctaccactgg	tcagattggc	ttcccttggg	13680
ctctggaaaa	tttgtcttta	tttatttatt	tatttattga	gacagagtct	tgctctgtca	13740
cccaggctgg	agtgcagtgg	tgcaaatctt	agctcactgc	aaccaccacc	tcctggtttc	13800
aagtgattct	cgtgcctcag	cctcctgggt	agctgggatt	aaaggcacgc	accaccacac	13860
ctggctaatt	tttttgtatt	tttaatagag	atggggtttc	ttcatgttgg	ccaggctgtt	13920
attgaacttg	tgacctcaag	tgatcccaca	gtgttgggat	tacaggcgtg	agccaccgcg	13980
cccagcctgg	gaaattagtc	tttaaaagac	caagtagaaa	aaaagacttt	gaacacaatt	14040
ttgaaaggca	tttgctactc	tgcccatccc	cactccctcc	aaatttacca	tcttaactat	14100
accttaacca	aagatgcccc	catttttatt	ataacctggc	tactgtgcat	cttttctgga	14160
tttaagtggg	gtatttaaac	ccgttgacct	gcttaattaa	gcaaggtgca	agtaataaaa	14220
tggaggggaa	gataggcaag	ccaaaaatgt	gttcctgact	ggaaggtcac	acttctcttg	14280
acgcaggatt	atgtagacag	tttttgtgag	ggcaaaggac	gttttgctca	tctctatata	14340
atgtcagctg	agtatatatt	cattgagcac	taagtgctca	gtgcctacta	tgtgccaggc	14400
cctgtgagag	ttgctaggac	tagatgaatc	ggcagtgtct	gttggctaat	ttagaattga	14460
tcttagatca	tcccaggaaa	ccttcggttt	atttgtctta	ccattcaagt	gaacaggttt	14520
taatgaaaga	tgggtctgtc	tgttttttt	cctgtaagga	caaccgatgc	aagctgtttg	14580

actccccttc	cctgtgtagc	tccagcactc	ggtcagtgtt	gaagagacca	gaacgatctc	14640
aagaggagtc	tccacctgga	agtacaaaga	ggaggaagag	catgtctggg	gccagcccca	14700
aagagtcaac	taatccagag	aaggcccatg	aggttagttt	cctaggttcc	tttttgctct	14760
agcacagata	ctgtatttt	cagttctaaa	aatttctact	tagtggttca	tttattttct	14820
ttgctaagat	ttgctggggt	tttgtggggt	tgtgtgtgtg	tgtgggtgtg	tgtgtgttc	14880
ttttaataga	gatgggatct	agcgatgttg	cccacgctgg	tcctgaactc	ctagcctcaa	14940
gtgatcctcc	tgccttggcc	tcccaaagca	ctgggattac	aagtgtgagc	caccacacct	15000
ggctgatact	tggctgtttt	catgttggtt	tttcatttgc	tttgagtatg	ttcataattg	15060
cctgttgaag	catttttaag	atggctgctt	taaaatcttt	gtaagacaaa	tccaacatcc	15120
atccatagtg	ttgttggcat	ctgttgattg	tcttttcctg	ttcaagttgg	gatttttctg	15180
gttcttggta	tgaccggtga	ttcttccatt	gtctcctgta	tatttgtgag	tctccggtct	15240
atgtaaattt	tacgttttag	caggcttcct	ctgatactgc	aagaaaggca	tgggtggaag	15300
tccgggttcc	ccagcacaaa	ctccattgac	accttgggtg	gggacttgtc	tcattattgc	15360
tgggagggag	tggaagttca	ttccatcccc	gtggggtggt	gactggggca	ctgtatgaca	15420
gctgggcaaa	ggtggaggcc	cccgcttgct	gttggccata	attgtttctg	tgttgactag	15480
tagaatgatt	attgtctaaa	agtcttctgc	ctcaataggc	catcctttgc	ctagggagag	15540
caggcttttc	ttggggcttg	ttgtgttgct	gtctccagct	tcatgagttg	aatggttaac	15600
tcattcgttt	ttaattttct	tatttctgga	taaatctatt	tgaatctatg	aatttcccac	15660
tgctttagat	ttgtctcata	acttttgacc	tgaaatgttt	ttattatcat	ttgttgtaga	15720
tattttattt	ccttttaatc	cagacctatc	atggcctatt	aaatacttga	tttttataaa	15780
ggtctgtctt	tttttttt	ttttttgaga	cgctctgtcg	cccaggctgg	agtgcagtgg	15840
cgcgatctca	gctcactgca	agctctgcct	cccgggttca	tgccattctc	ctgcttcagc	15900
ctcccagtag	ctgggactac	aggaccccgc	caccacgcct	ggctaatttt	ttgtattttt	15960
agtagagacg	gggtttcaca	gtgttagcta	ggatggtctc	catctcctga	ccttgtgatc	16020
cgcccgcctc	agcctcctaa	agtgctggaa	ttacaggcgt	gagccactgc	gcccagccct	16080
gtctgtctaa	ttcttcaagt	taattcattg	cattgctcat	agttgtatag	gctgttttgt	16140
tgtttcctgt	ttctgagaca	gggtctctct	gtcacccagg	ctggagtgca	gtggcatgat	16200
ctccgctcac	tgcactctcc	acctcccagg	ctcaagcagt	cctcccacct	caggctctca	16260
agcagctggg	actataggtg	tgtgccacca	aacccagcta	atttttgtat	tttttgtaga	16320
gacaggcttt	cgccatgttg	cgcaggctgg	tctcaaactc	ctgggctcag	ggcaatcctc	16380
ccgccttggc	ctcccaaagt	gccaggatca	taggtgttag	acacagcacc	tggcatgggt	16440
gagctagtgt	catggttgtc	tgggcctaag	tcctatggtc	ctttgtgtta	ttttttctat	16500
ttattctgtg	gctagacaca	caaaacactg	gtttatttgt	atgtttttcc	ttcattatac	16560
tgtccttata	ttgaggtttg	gtattaagca	ttataaaatg	gtgaactacc	tgtgttttct	16620
gtggcatgaa	aaggtttaag	taaatctcat	cacagtctta	aaaggttaga	gagatgacag	16680
ctaggaaaac	atttagcatt	taggcctact	gccttatcgt	atctgctttt	gtttttaatg	16740
ctttatgaat	gtttttaaag	tattgttcta	aaagaatatt	ttaataattg	catagtattt	16800
ttgttttggg	agagttgttt	ggttttggtt	tttgttcttt	ttgtttgtgg	ggggcacagg	16860

gtctagcgct	gtcactcagg	ctggagtgca	ctagcacgat	cacagctcag	tacageetee	16920
atgggctcaa	gcactcctcc	cgcctcagcc	cccctagcag	ctgggactac	aggcatgcac	16980
caccatgccc	agttaattta	aaaaaaattt	ttttttattt	tttgtagaaa	agaggtctta	17040
ctgtgttgcc	caggctggcc	ttgaattcct	gggctcaagc	agtcctccca	cctcagcctc	17100
caaagtatct	gggactacag	gcacaggcca	gtgcacctgg	ccgatagtgt	tttgacttac	17160
aagtatacta	gaaataattg	aataaatcac	cttctggaca	tttagaattt	cccttcccct	17220
gattttcctt	ttatttctaa	ttaaaaatga	aattctgggt	tataagggca	agaacatttg	17280
tgaaacttta	cattgtatac	atgtcagaaa	atatctatca	atatttaata	atattctggc	17340
tgagtgctgt	ggttcactcc	tgtaatccca	gcactttggg	aggacaaggc	gggtggatca	17400
cgaggtcagg	agttccatac	cagcctggcc	aatatggtga	aaccctgtct	ctactgaaaa	17460
tacaaaaaat	agctgggtgt	ggtggtatga	gcctgtaatc	ccagctgctc	aggaggctga	17520
ggcaggagaa	tegettgaac	ccgggaaatg	gaggttgcag	tgagcagaga	tcacgccact	17580
gcactccagc	ctgggtgata	gagtgagatt	tcatctcaaa	aaaaaaaaa	aaagaatatt	17640
cattttcttt	ttctttcttt	ttgagacacg	ctggagtgca	gtggcaggat	cttggctcac	17700
ggcaacctcc	gcctccccag	ttcaagcaag	tctctgcctc	agcctcctga	gtagctggga	17760
ttacaggtgc	ccactgccac	gcctggctaa	tttttttgt	atttttagta	gaggcggagt	17820
ttcaccaagt	tggccaggct	ggtcttgaac	tcctgacctc	aggtgatata	tccgccttgg	17880
cctcccaaag	tgctggggtt	acaggtgtga	gccactgtgc	ccggccagaa	tattcatttt	17940
cttttaccgt	aatagagatt	gaccttttta	tttccatatt	tgtaaaactt	tttttggata	18000
aaataatact	gttaataatt	attttgtata	tatattggcc	ctcatgtttt	ggtttatttt	18060
catatatttt	aatttttagt	attttaaatt	ccattgtgga	gaaaatgtca	agcattgcta	18120
gagtacagtt	atcatacctg	tgatattgtg	aaatatatat	ttagtcttct	tccccttctg	18180
tcatataact	cctaaaatct	ttggaatatc	caaggtcata	tctttttgta	tactaatgat	18240
tgatagette	agggtgggac	tggtcactgg	aaagacagag	acatgattag	aggttggaac	18300
tttcagcccc	accctccaat	gtctacggaa	aggagagggg	ctaaaggtca	agttgatcac	18360
tcatggccaa	tggtttaatc	aatcatttct	atgtaatgaa	gcctccctaa	aaccttgaaa	18420
ggacagggtt	cagagagctt	ctggatagct	gaacacatgg	aggttcctgg	aggttggggc	18480
acccaaggag	agcatggcag	ctccatgtcc	cttctcccat	acctcaccct	atgcatgtct	18540
tcttctatat	cctttgaata	tccttcataa	taaactggta	aatgtgtttt	cttgagttct	18600
gtgagccact	tctagcaaat	taaacccaaa	gaaggggtca	tgggaacccc	tacttaaagc	18660
tggtggtcgt	agatcagaag	atccagaggc	ccaactggtg	tctgaagggt	ggtgtggttt	18720
tgaggactgg	gccctcaact	tcctgatctg	acgctctgca	ggtagatagt	gtcagaattg	18780
aattggacgg	cacccagcta	ttttccactg	cagaactgct	tgcttgcttg	cttgcttgct	18840
ggtagggaga	aatcccctca	tatctggggg	taacagcact	tctgtcttct	gttgctgttg	18900
agtgagggaa	taagaaaaat	cactttgagt	ttgtggggtg	ttttcctcac	acaaacatat	18960
catacagggc	taaatttctg	ggtgttttt	tgtttgtttt	tttttttgag	accaagtctc	19020
gctctgtcgc	ccagactgga	gtgccatggg	tcgatctctg	ctcactgcaa	cctccgcctc	19080
tcaggttcca	gcaattctcc	cgcctcagcc	tcccaagtag	ctgggactac	aggcgcccac	19140

caccacgcct	ggctaatttt	ttatatttt	agtagagacg	gggtttcacc	atgttggcaa	19200
ggctggtctc	gaacccctga	catcaagtga	tccactcacc	teggeeteee	aaagtgctgg	19260
gattacaggc	atgagccacc	acgcccggca	gagctaaatt	tcttactatc	aaatgtcaaa	19320
tatccagtct	gggttcagtt	ttccccagtt	gtctcctaag	tacttttaca	gtttatttgt	19380
taaaatctgg	atccaaataa	agtctataca	ctgtagttgg	tcaataggtc	tcttactctt	19440
cagatttcag	tgctccatct	gtttccctct	tgcatatttt	tatttgttga	agagctcaag	19500
tcatttgtcc	tgcaaaggtt	cccacagtcc	tgtggggtct	tcagacattg	tcttctatcc	19560
cctatattgc	cttaacctaa	ctctggaaag	gatggattga	attccagttc	tatttgtttg	19620
gcaagaatat	cacataggtg	attttgtcta	ctttgatcag	gaagtataat	gtgccaggca	19680
gccattggtg	attgctgccc	agattttta	cttcatttca	ccagggtttc	agaaagatga	19740
tactgcagtt	tttacattct	ttcctcatta	attagctaga	atatatctat	aaagagaaac	19800
ttacactcat	caaacactgt	ggttaccctt	gggaaaggca	ggatgaatat	tggatctctt	19860
tatttgccag	tttccaaata	atgccctacc	aagcatcttc	caaagttgaa	agcaagactt	19920
atagttgttt	ttcaataata	atcaggaatt	catgggttaa	aacatttaat	gtgtttctgt	19980
gtattacaag	tattatcctt	ttactcaaat	tatccccttt	ttaacagctg	gcttcctctt	20040
ctcattgaat	aaagctaaga	cgtaggccgg	gcgcggtggc	tcacacctgt	aatcccagca	20100
ctttgggagg	ccaaggcagg	cagatcacct	gaggccagga	gttcaagacc	atctggccaa	20160
catggtgaaa	ccccgtctct	actaaaaata	caaaaattag	ctgggcgtgg	tggcgcacac	20220
ctatagtctc	agctgctctg	gaggctgcgg	cagaatcgct	tgaacctggg	aggcagaggt	20280
tacagtgagc	caagatcact	gtactccagc	ctgcactcca	ctcctgtact	ccactgcact	20340
ccagcctgag	cgacagagcg	agactctgtc	tttttaaaaa	aaaaaaaaa	aaaaagttaa	20400
gacatacttt	ttctaaactt	aatcctagtt	ttaacccccc	ttgtttcttt	ctcttttct	20460
ggagatagtt	tcagtctgtc	acccaggctg	gagtgcagtg	gcaccatcac	cacttgctgt	20520
agcctcgacc	tccccaggct	caggtgatcc	tcccacttca	gcctcccaag	tagctgggac	20580
tacaggcaca	caccaccatg	cccagcttgt	gtgtgtgtgt	gtgtgtgtgt	gtgtgtgtgt	20640
gtgtgtgtgt	gtgtgtggac	agggtcttgc	tctttgatct	ggtctggaac	tcctgggctc	20700
aagcgattca	cctgccttgc	ccaggctggt	ctggaactcc	tgggctcaag	tgagtaaccc	20760
accttggcct	cccaaagtgc	tgggattaca	ggcatgagcc	aaaccacctg	cacccccttt	20820
tttttttt	ttttttaagg	aaggaaggaa	aacttagttt	cagagcaatt	cggttagaca	20880
ctggaataat	aggagaccta	gtcaataacc	cacatctgtt	tttgttcact	ccagattcaa	20940
taaaataaaa	taaaaacttc	ttactaaatg	taggcattaa	cattttagtc	tcctcgagac	21000
atgctccaag	tgaatgtttt	cagaagttcc	attcagaacc	cttgtctcat	tctctacctt	21060
tgatttgtta	cagactcttc	atcagtcttt	atccctggca	tcttccccca	aaggaaccat	21120
tgagaacatt	ttggacaatg	acccaaggga	ccttatagga	gacttctcca	aggtaattgc	21180
aagcagagct	gctctggcaa	gtgtaggagg	gagtgtgggt	atttagaatc	ccactcagcc	21240
tgtctccctc	cccagggtgg	ttcctggcat	acctccaaaa	ggacacagtt	aaaagaatgt	21300
taaaggtagg	gaagcaaact	tagtttctca	tgatcaggta	tatgttggtt	tctgagactg	21360
tagatatcac	tatagctgat	gggcagtttt	aggtagggag	ctgtccacca	accaccttga	21420

ttgtaaccca	aagactaggc	tctctgggaa	ctgtgttatt	ataaaaatag	taattagcag	21480
gatagtgtac	agcagaaata	aatctgtagc	cacactacaa	gtctgcatgt	tgaaaggtta	21540
tcttagaagg	tctgggattg	agactgaatt	tctccgttca	gagaagcttg	gccattgagg	21600
gaaaagaccc	tccaggaagt	ctagaggaag	atcttctaat	agcctgatat	actacatgaa	21660
ggcttggctg	cagtaaaata	caaggctagg	acagggaatg	tgtcaatagc	agcttcttta	21720
atcacatttt	gacttgaagg	ttaccagatc	aatgttttat	tcattaattt	agttaacatt	21780
tattgaagca	cttatgtgtt	aggcagagat	tccaaaatga	gatacagttc	cttccctcaa	21840
agaatttagc	atgtggttgg	agaggtgaga	cgtgaactac	atgtaccaca	tggtagactg	21900
aaataaattt	tagtgaggtg	taaacataaa	cagcatgccg	tgagaagtaa	aagggtttat	21960
cttggctagg	gggttgggga	acgtctgggg	ttgggccgtt	gatatttcag	cccaaatggg	22020
ttttgaagga	acggagaatg	aagagaacaa	gcaaagatcc	agctgtatcc	tcagttttgg	22080
aaccttctct	tgtttggcag	ggagagatgt	ggtcttacta	tgttgctcag	gctgtagtgc	22140
agtggctatt	cgcacatgct	atcatagtac	actgtagcct	caaacttatg	gcctcaagtg	22200
ctcccctgc	ctcagcctcc	caagtagctg	ggactacagg	catgcaccac	cacactcagt	22260
ggaattttca	acttgaattg	aggcctggtt	atatttgtct	taatgggcct	atgcatgggg	22320
atagatgaac	tcttggctca	gccagtcacc	ctaatgagta	attgctaatg	tgtgcatctt	22380
cctcctcaag	gctgggctag	gtctctttt	ttcctatccc	cagtgcctgg	caccatgctg	22440
gacatagcag	gtgctcagta	aatgagtgaa	atctgtatgt	ttaagtgcta	ttcgcagtct	22500
aactactgac	gtgtggattc	ttgacaaaag	caggaggaaa	atgagattac	ctgaggtttc	22560
tttatttaaa	tctgccttac	tagctaggta	accttggata	aggtgctcaa	aatggggata	22620
atatacctca	ttggtttgtg	tgaaaattaa	atgtcaggat	gttaatgaag	taactagaag	22680
agtaactagt	gtgtactaac	taatgtttgt	ttgcttgttt	gtttgtttgt	tttttgagag	22740
ggagtcttgc	tctgtcaccc	aggctggagt	gcagtggtgc	aatctcagct	cactgcaacc	22800
tccgcctcct	gtgattcaag	cgattttccc	actccagcct	tccgagtagc	tgggactata	22860
ggtgcatgct	aacgcccggc	taatttttgt	atttttaaaa	gagttggggt	ttcaccatgt	22920
tggccaggct	tgtctcgaac	tcctgacctc	aggtgatcca	ctagcctcgg	cctcccaaag	22980
tgctgggatt	acaggtgtga	gccaccgtgc	ctggccatta	atgtttgttt	tttaaaagat	23040
gcctcctacc	agccagacaa	aacagtataa	gtgtgaataa	tatataggct	ttcagattct	23100
ctaagtatct	ttttttcttt	ttaagggtta	tctctttcat	acagttgctg	ggaaacatca	23160
ggatttaaaa	tacatctctc	cagaaattgt	aagtccatcc	ttttgaaacc	caccacacat	23220
cgggtacttg	aatctagttt	tccctgacgg	tcaaagttga	ttctccctaa	ttttctctca	23280
acagatggca	tctgttttga	atggcaagtt	tgccaacctc	attaaagagt	ttgttatcat	23340
cgactgtcga	tacccatatg	aatacgaggg	aggccacatc	aaggtatgga	ttcctgagac	23400
ttgctgtaga	aggagcccta	aacaggatct	gtggttttaa	agtggggagg	acagtgacac	23460
ctggccactt	agctcatatg	ctagttgtta	gaattttgaa	acaatacagt	gagtgtggaa	23520
ggcatttgat	tccgggtgct	cttaacgaat	gttcccttgt	ctgcaatact	ctctaccacc	23580
ttgtgctaca	gttattcttc	atgtttgtcc	ctcacaccat	cattatcaag	gacacttgta	23640
ggaggtaccc	actgatgttt	aagtcattcg	ggggacaaga	atgggtttca	tagcatttaa	23700

gaggcttggg	taccaatgtc	tgagcacccc	agggctcctg	atgaggagaa	gaccatctct	23760
ggcaacatgt	cctggtgtct	gtgccaggct	tagtgatgcc	tccaaagttg	attgttcagc	23820
aagctgcctg	gtggaggggc	gtgttgggac	acacgttccc	aagaagaaag	gaactgattt	23880
tgccatttta	atctttttt	tttttttt	tttgagacag	agtccgctct	gtcgccaggc	23940
tggagtgcag	tggcatgatc	tcggatcacc	acaacctctg	cctcctgggt	tcaagcaatt	24000
ctcctgcctc	agccttccaa	gtagctggga	ctacaggtgc	acgctgccac	gcccggctaa	24060
tttttttt	tttttagtag	agacggggtt	tcaccatgtt	gcccgggctg	gtctcaaact	24120
cctgagctca	ggcaaaccgc	ccgcctcagc	ctcccaaagt	gctaggatta	caggcatgag	24180
ccacggcgcc	tggcctgcca	ttttaatgtt	ttacccgatt	aatagtgttt	aaatatagta	24240
aggaggtact	ttaaatacga	tgttactgtt	tgccattgtc	ttgtggcttt	tgaaaatccc	24300
caaatttata	aaactaccta	taaagtgtac	cattgtcata	tttgaattgc	ccatttccag	24360
tccccatgtg	cattactgta	tgatgaacgt	gtacggaccc	acaaagctcc	attgagatac	24420
aggtgccaaa	tggtctactg	ggctattcag	ctagaagaac	tgcaaaaatc	acaaactggt	24480
cttgtggact	taaagatcac	tcttgatgaa	tcattacatc	ttgctgaatc	attacttcat	24540
gtgtgaaacg	tgcaggttcc	aagggtctct	gttgtcttca	cagggtgcag	tgaacttgca	24600
catggaagaa	gaggttgaag	acttcttatt	gaagaagccc	attgtaccta	ctgatggcaa	24660
gcgtgtcatt	gttgtgtttc	actgcgagtt	ttcttctgag	agaggtcccc	gcatgtgagt	24720
gctgcacgga	actgggttct	ggggcacagg	ctccatgatg	cttttgtggg	acatggtggt	24780
ttgtggcttg	cacttggagc	atattttagc	atatcaagca	acctctggca	cataacaagc	24840
cattttcata	tgtaatttta	tcctgaggtg	aactttggct	cttccagtct	ccccgactgt	24900
ccttagtctg	atctgtgggg	ctactgttct	catgtgacct	ccttcaagta	caaagtgacc	24960
gttccttatg	caaatgccag	aaaagtgtga	agttctcatt	ctgtaaaacc	tcatatgata	25020
tgatgctttg	aaacacttga	tattattacc	aatttcaggg	tgaaaagaaa	aaagggggcc	25080
aaagagctgc	ccatcagtca	tctgtgtcca	ttctaaaagg	attgcaagcc	tgctgtttgt	25140
caggcactga	caataaaaat	gtaactacag	taaaacacag	tacagtaaaa	ataccacagc	25200
gagcaggacc	aacaaggacc	ctactgcagc	agagatccaa	gtggggatcc	gtataaatgc	25260
taggaggaca	ggcagagagg	taggacagag	agtgcagctt	aactaggatg	gtccaaggga	25320
gacttctgca	ggaccacgtt	cttatgccac	ctttttattt	tgaaccaatt	tattttaaaa	25380
aacatttta	aattaaaaaa	tttcaatttt	tttttttga	cggagttttg	ctcttgttgc	25440
ccaggctgga	gtgcagtggc	acaatctctt	ctcactgcaa	cctctgcctc	ccaggttcaa	25500
gcagttctcc	tgcctcagcc	tcccaagtag	ctgggattac	aggcatgcgc	catcacgccc	25560
ggctaatttt	gtatttttag	tagaggcagg	gtttctacat	gttggtcagg	ctggtcttga	25620
actcccgacc	ttaggtgatc	cgcctgcctc	agcctcccaa	agtagtggga	ttacaggcgt	25680
gagccactgc	acctggcttt	ttctttcttt	ctttcttct	tttttttt	tttttttgag	25740
gcagaggcac	actgttttca	cccagactgg	aatgcagtgg	catgatctcg	gctcactgca	25800
acctccacct	cctgggttca	agcgattctc	ctgcctcagc	ctcctgagta	gctgggataa	25860
caggcgtgca	ccaccacacc	cggctaattt	ttgtatttgt	agtagagatg	ggggtttcac	25920
catgttggcc	gggctggtct	tgaactcctg	acctcaggtg	atccacccgc	cttgacctcc	25980

caaagtgctg	ggattacagg	tgtgagccac	cacgcccagc	agaaatttca	aattttgaga	26040
tggggtctta	atatattggc	caggttggtc	tcaaactcct	ggcctcaagc	aatcctctct	26100
ccttggcctc	caaagtgcta	ggattgcagg	catgagccac	tgtgcccacc	cctttgaacc	26160
tttttttt	tttgagacgg	agtctcgctc	tgtcacccag	gctggagtgc	agtggcacaa	26220
tctcgactta	ctgcaagctc	cgcctcctgg	gttcatgcca	ttctcctgcc	tcagcctccc	26280
gagtagctgg	gactacaggt	gcccaccatc	acgcctggct	aattttttg	tatttttagt	26340
agagacaggg	tttcaccatt	ttagccagga	tggtctccat	ctcctgacct	tgcgatctgc	26400
ccgtctcggc	ctcccaaagt	gcttggatta	caggcgtgag	ccactgcgcc	tgacctgaac	26460
cattttaaag	ctcaagaaga	ggtgaggtta	tggctgggca	cagtggcacc	tgtaatccca	26520
acactttggg	aggccgaggc	aggaggatca	cttgctcggg	agtttcagac	cagaccaacc	26580
tgggtaacac	agtgggacca	cacctctaca	aaaaatagga	ggtgggagga	tcgtttgagc	26640
ccagcaggtc	gaggctgtgg	tgagccatga	tcatgccact	gtactccagc	ctaggtgaca	26700
gagtgagatt	ctgtctctct	ctcacacaca	cacacacaca	cacacacaca	cacacaaagg	26760
ttatacttgc	acacacttca	cctgatttta	ttaattttta	acattttgtc	acatttgtat	26820
gtacatgctc	tacacacagg	caactacagt	acaacttgac	acttttgact	gtcatctcat	26880
aagtccttca	aacatctgtc	tccaaaggat	gctcattcat	gaatggaatt	attcactcag	26940
cagtttttt	gtttgtttgt	ttgagatgta	gtcttgctct	gccacccaga	ctggagtgca	27000
gtggtgcgat	ctcggatcac	tgcaacctcc	acctcccggg	ttcaagcaat	tctcctgcct	27060
caggctccca	agtagctggg	actacgggtg	catgccacca	tgccaagcta	atgtttgtat	27120
ttttagtaga	gacggggttt	tgctacattg	gccaggctgg	tctcgaactc	ctgacctcaa	27180
gtgatctacc	cgcctcagcc	tcccaaagtg	ctgggattat	aggcctgaaa	caaactaatc	27240
tggacacaca	tacacacaca	tgtaaattgt	ttttaaaccc	acaaaagatg	ctgctctctt	27300
tttttttat	ttttgagtca	gggtcagtct	ctgttgtcca	ggctggagta	cagtggcagg	27360
agcacagctc	actgtagcct	ctgcctccca	ggctcaagtg	attctcccac	ctcagcctcc	27420
caggaagcta	ggaccacaaa	catgcatcac	catgcctggc	taatttttgt	atttttata	27480
gagacagggt	ctcactgtgt	tgcccaggct	ggtctcaaac	tcctgggctc	aggcaatcct	27540
ggcctcccaa	agtgcttgga	ttacaggtgt	gagccgccat	gcccagccca	aaagatgcta	27600
ttctcttaat	ctctcatttc	cccatcttcc	tctttaacac	ctctaatata	aaggacatta	27660
ttataccata	ttgaaacttc	acctagatat	acagaaaacg	ccccatctct	gtattctgta	27720
tttgcaagct	gcatgtttat	atcaccatct	acagataccc	cttacacttc	gttccccact	27780
tgagtttcgc	catcactggc	tttctgttgt	tccactgggg	aaagatttgg	gattcacagg	27840
tgaactcttt	tttttttt	tttttttt	tgagttggaa	tctcgccctt	tcgcccaggc	27900
tggaatgcag	tggcacaatc	teggeteact	gcagcctcct	cctcccgggt	tcaagcattt	27960
ctctgcctca	gcctcccaag	tagctgggat	tacaggcacc	tgccaccacg	cccagctaat	28020
tttttgtagt	tttagtagac	acagggtttc	actatcttgg	ccaggctggt	ctcgaactcc	28080
tgacctcgtg	atccaccgcc	tcagcctccc	aaagtgctgg	aattacaggt	gtgagccacc	28140
gcgcccagcc	aaactccttt	taaccacagg	caaatggttt	aagctacgtg	ctgcagagga	28200
agctgctgcc	catccctcat	gagcagctaa	caaaggcccc	aaaccactga	gcttcaagag	28260

aaaatcagca	gatactcttg	gctcttgtgt	accagatacc	tttctagata	ctgagggaga	28320
agagcagtga	acaaaacaga	ccaaaaaatc	tctgccttca	tggaacttac	atttcggagt	28380
ggacaggaga	tcgagaccag	cctggccaac	atggtgaaat	cccgtctcta	ctaaaaatac	28440
aaaaattagc	caggcgtggt	ggcggacacc	tgtaatccca	gctactttgg	aggctgaggc	28500
aggagcatcc	cttgaaccca	ggaggcagag	gttgcagtga	gccgagatcg	cgccagtgca	28560
ctccagcctg	ggcgacagag	tgagactcca	tctcaaaaaa	aaaaaaaaa	aggtgactgg	28620
gtgcggtggc	taactcctgt	aatcccaaca	ctttgggagg	ccaaggcagg	tggatcacaa	28680
ggtcaagagg	tcgagaccat	cctggccaac	atggtgaagc	cccatctcta	ctaaacatac	28740
aaaaatcagc	tgggcggtgg	cacgcgcctg	tagtcccagc	tatttgggag	gctgaggcag	28800
gagaattgct	tgaacccggg	agacggagat	tgcagtgagc	ctgaggtcac	gcccttgcac	28860
tccagcctgg	tgacagagtg	agattctgtc	tcagaaaaaa	gaaggtgctt	cagaggaaaa	28920
taaggccagt	ggtggagctc	ccaggcaggc	tggaggaaca	gtagtggggc	tgcaggggct	28980
ggcgtggggt	gaacaagggg	cagagcagca	gtaggggcct	gtagagctgt	aggcctctga	29040
aggacttggg	gcctcgggct	ttttcaccaa	gggcgaggca	gtaagcagcc	attggctgga	29100
tattgaagac	cattcagtcc	aagtagagga	tagaaacagg	gccccgaggc	aggagcaagt	29160
tcagcctctt	taaaagccac	agaaagaaac	aagcccactt	atgtagaagg	aggtgagtga	29220
gggagcctgg	ctgaagagaa	ggctggggtg	gagaaagcaa	ggggaagctg	gctcatatag	29280
tgaaaacttg	ccacaaactg	tggtggtgaa	ggtgctgggc	aggactcaga	tgctaggatt	29340
gttggagaaa	ggaaaattgg	ggaagagacc	atctactggc	actggctgtg	agtgctgctc	29400
atgtggccag	gaacttgcaa	ctcagcactg	attgtttcta	agaataaatg	tcaagttggg	29460
aagatgtgta	taagggggac	ttagaccaca	actgctgctt	tgactgcgtt	gccttgttgc	29520
tgtgctggaa	aagctaaccc	tgctttggcc	ttccttcccc	tgactaggtg	ccggtatgtg	29580
agagagagag	atcgcctggg	taatgaatac	cccaaactcc	actaccctga	gctgtatgtc	29640
ctgaaggggg	gatacaagga	gttctttatg	aaatgccagg	taagactggg	gttgtggaga	29700
gcatctctcc	tcccctgccc	ccagtggtag	actaatggat	ctgtctggtg	gtcatgactt	29760
tctttccagg	ggtcggggga	caaggtgggt	atctgctgaa	cccaaagaaa	gcccctgtag	29820
aactggctcc	ctaggtctgc	ctggccgctt	tcagccttgt	agccctaggc	agagaggaaa	29880
ccaggttgtg	ggtgtgaggc	aggtgtaccc	taaccttatt	ctctcctgtc	ccctcagtct	29940
tactgtgagc	cccctagcta	ccggcccatg	caccacgagg	actttaaaga	agacctgaag	30000
aagttccgca	ccaagagccg	gacctgggca	ggggagaaga	gcaagaggga	gatgtacagt	30060
cgtctgaaga	agctctgagg	gcggcaggac	cagccagcag	cagcccaagc	ttccctccat	30120
cccctttac	cctctttgct	gcagagaaac	ttaagcaaag	gggacagctg	tgtgacattt	30180
ggagaggggg	cctgggactt	ccatgcctta	aacctacctc	ccacactccc	aaggttggag	30240
cccagggcat	cttgctggct	acgcctcttc	tgtccctgtt	agacgtcctc	cgtccatatc	30300
agaactgtgc	cacaatgcag	ttctgagcac	cgtgtcaagc	tgctctgagc	cacagtggga	30360
tgaaccagcc	ggggccttat	cgggctccag	ccatctcatg	aggggagagg	agacggaggg	30420
gagtagagaa	gttacacaga	aatgctgctg	gccaaatagc	aaagacaacc	tgggaaggaa	30480
aggtctttgt	gggataatcc	atatgtttaa	tttattcaac	ttcatcaatc	actttatttt	30540

atttttttt	ctaactcctg	gagacttatt	ttactgcttc	attaggttga	aatactgcca	30600
ttctaggtag	ggttttatta	tcccagggac	tacctcggct	tttaatttaa	aaaaaaaaa	30660
gaagtgggta	agaaaatgca	aacctgttat	aagttatcgg	acagaaagct	aggtgctctg	30720
tcacccccag	gaggcgctgt	ggtactgggg	ctgctgctat	ttaagccaag	aactgaggtc	30780
ctggtgagag	cgttggaccc	aggcttggct	gcctgacata	agctaaatct	cccagaccca	30840
ccactggcta	ccgatatcta	tttggtggga	ggtgtggccc	tgttcttcct	caccccagtt	30900
ccatgacatt	ggctggtata	ggagccacag	tcaggaaagc	acttgaggca	gcatctgttg	30960
ggccaccccc	ggctcagtgc	tggaatgttg	cagtgtaggt	ttcccaggga	aggggggtgg	31020
gggtaggtgg	gctccacagg	atgggggagg	agcatgtcca	ctgagtatct	tccttatgtt	31080
gctgtgatat	tgatagcttt	tattttctaa	ttttaaaaa	atggtcatat	tatgagtcaa	31140
agagtatcaa	atcagtgttg	gatggaccac	ccaagggtga	ggagaggggc	tggaagccct	31200
gggcattagg	agaagggagt	gggtgctggc	atggacatga	ctggatagaa	ttttctcagg	31260
agggagcttg	gtggattttg	aaggtaaaac	tttctgggtt	tatcatgttt	taattttaga	31320
gacagggagt	gatgaatcat	caccggttgt	ccccttatct	aactccataa	aagtgggaat	31380
ttcaaaagaa	cacctcatcc	aaggagctgg	ggcagacttc	attgattcta	gagagacctg	31440
tttcagtgcc	tactcatccc	tgccctctgg	tgccagcctc	cttaccatca	cggcttcact	31500
gaggtgtagg	tgggttttc	ttaaacagga	gacagtctct	cccctcttac	ctcaacttct	31560
tggggtggga	atcagtgata	ctggagatgg	ctagttgctg	tgttacgggt	ttgagttaca	31620
tttggctata	aaacaatctt	gttgggaaaa	atgtggggga	gaggacttct	tcctacacgc	31680
gcattgagac	agattccaac	tggttaatga	tattgtttgt	aagaaagaga	ttctgttggt	31740
tgactgccta	aagagaaagg	tgggatggcc	ttcagattat	accagcttag	ctagcattac	31800
taaccaactg	ttggaagctc	tgaaaataaa	agatcttgaa	cccatgctct	ctgcctagtt	31860
cttgatgg						31868

<210> SEQ ID NO 809

<211> LENGTH: 524

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 809

Met Glu Leu Gly Pro Glu Pro Pro His Arg Arg Arg Leu Leu Phe Ala 1 5 10 15

Cys Ser Pro Pro Pro Ala Ser Gln Pro Val Val Lys Ala Leu Phe Gly 20 25 30

Ala Ser Ala Ala Gly Gly Leu Ser Pro Val Thr Asn Leu Thr Val Thr 35 40 45

Met Asp Gln Leu Gln Gly Leu Gly Ser Asp Tyr Glu Gln Pro Leu Glu 50 55 60

Val Lys Asn Asn Ser Asn Leu Gln Arg Met Gly Ser Ser Glu Ser Thr 65 70 75 80

Asp Ser Gly Phe Cys Leu Asp Ser Pro Gly Pro Leu Asp Ser Lys Glu 85 90 95

Asn Leu Glu Asn Pro Met Arg Arg Ile His Ser Leu Pro Gln Lys Leu 100 105 110

Leu Gly Cys Ser Pro Ala Leu Lys Arg Ser His Ser Asp Ser Leu Asp

		115					120					125			
His	Asp 130	Ile	Phe	Gln	Leu	Ile 135	Asp	Pro	Asp	Glu	Asn 140	Lys	Glu	Asn	Glu
Ala 145	Phe	Glu	Phe	Lys	Lys 150	Pro	Val	Arg	Pro	Val 155	Ser	Arg	Gly	Сув	Leu 160
His	Ser	His	Gly	Leu 165	Gln	Glu	Gly	Lys	Asp 170	Leu	Phe	Thr	Gln	Arg 175	Gln
Asn	Ser	Ala	Pro 180	Ala	Arg	Met	Leu	Ser 185	Ser	Asn	Glu	Arg	Asp 190	Ser	Ser
Glu	Pro	Gly 195	Asn	Phe	Ile	Pro	Leu 200	Phe	Thr	Pro	Gln	Ser 205	Pro	Val	Thr
Ala	Thr 210	Leu	Ser	Asp	Glu	Asp 215	Asp	Gly	Phe	Val	Asp 220	Leu	Leu	Asp	Gly
Glu 225	Asn	Leu	Lys	Asn	Glu 230	Glu	Glu	Thr	Pro	Ser 235	Cys	Met	Ala	Ser	Leu 240
Trp	Thr	Ala	Pro	Leu 245	Val	Met	Arg	Thr	Thr 250	Asn	Leu	Asp	Asn	Arg 255	Cys
Lys	Leu	Phe	Asp 260	Ser	Pro	Ser	Leu	Cys 265	Ser	Ser	Ser	Thr	Arg 270	Ser	Val
Leu	Lys	Arg 275	Pro	Glu	Arg	Ser	Gln 280	Glu	Glu	Ser	Pro	Pro 285	Gly	Ser	Thr
Lys	Arg 290	Arg	Lys	Ser	Met	Ser 295	Gly	Ala	Ser	Pro	Lys 300	Glu	Ser	Thr	Asn
Pro 305	Glu	Lys	Ala	His	Glu 310	Thr	Leu	His	Gln	Ser 315	Leu	Ser	Leu	Ala	Ser 320
Ser	Pro	Lys	Gly	Thr 325	Ile	Glu	Asn	Ile	Leu 330	Asp	Asn	Asp	Pro	Arg 335	Asp
Leu	Ile	Gly	Asp 340	Phe	Ser	Lys	Gly	Tyr 345	Leu	Phe	His	Thr	Val 350	Ala	Gly
Lys	His	Gln 355	Asp	Leu	Lys	Tyr	11e 360	Ser	Pro	Glu	Ile	Met 365	Ala	Ser	Val
	Asn 370					375					380				
Cys 385	Arg	Tyr	Pro	Tyr	Glu 390	Tyr	Glu	Gly	Gly	His 395	Ile	Lys	Gly	Ala	Val 400
Asn	Leu	His	Met	Glu 405	Glu	Glu	Val	Glu	Asp 410	Phe	Leu	Leu	Lys	Lys 415	Pro
	Val		420					425					430		
Phe	Ser	Ser 435	Glu	Arg	Gly	Pro	Arg 440	Met	Cys	Arg	Tyr	Val 445	Arg	Glu	Arg
	450					455					460				Tyr
Val 465	Leu	Lys	Gly	Gly	Tyr 470	Lys	Glu	Phe	Phe	Met 475	Lys	Cys	Gln	Ser	Tyr 480
	Glu			485					490					495	
Asp	Leu	Lys	Lys 500	Phe	Arg	Thr	Lys	Ser 505	Arg	Thr	Trp	Ala	Gly 510	Glu	Lys
Ser	Lys	Arg 515	Glu	Met	Tyr	Ser	Arg 520	Leu	Lys	Lys	Leu				

<210> SEQ ID NO 810 <211> LENGTH: 2940 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEOUENCE: 810 gccagctgtg ccggcgtttg ttggctgccc tgcgcccggc cctccagcca gccttctgcc 60 ggccccgccg cgatggaggt gccccagccg gagcccgcgc caggctcggc tctcagtcca 120 gcaggcgtgt gcggtggcgc ccagcgtccg ggccacctcc cgggcctcct gctgggatct 180 catggcctcc tggggtcccc ggtgcgggcg gccgcttcct cgccggtcac caccctcacc 240 300 cagaccatge acqueetege eggetegge agecgeagee geetgaegea ectatecetg 360 totogacqqq catccqaatc ctccctqtcq totqaatcct ccqaatcttc tqatqcaqqt 420 ctctqcatqq attcccccaq ccctatqqac ccccacatqq cqqaqcaqac qtttqaacaq gccatccagg cagccagccg gatcattcga aacgagcagt ttgccatcag acgcttccag 540 totatgccgg tgaggctgct gggccacagc cccgtgcttc ggaacatcac caactcccag gcgcccgacg gccggaggaa gagcgaggcg ggcagtggag ctgccagcag ctctggggaa 600 gacaaggaga atgatggatt tgtcttcaag atgccatgga agcccacaca tcccagctcc 660 accoatgete tggcagagtg ggccageege agggaageet ttgeccagag acceageteg 720 qcccccqacc tqatqtqtct caqtcctqac cqqaaqatqq aaqtqqaqqa qctcaqcccc 780 ctggccctag gtcgcttctc tctgacccct gcagaggggg atactgagga agatgatgga 840 tttgtggaca tcctagagag tgacttaaag gatgatgatg cagttccccc aggcatggag 900 960 agtctcatta gtgccccact ggtcaagacc ttggaaaagg aagaggaaaa ggacctcgtc atgtacagca agtgccagcg getettecge tetecgteca tgccetgcag egtgatecgg 1020 cccatcctca agaggctgga gcggccccag gacagggaca cgcccgtgca gaataagcgg 1080 aggeggageg tgacccctcc tgaggageag caggaggetg aggaacctaa agcccgcgtc 1140 ctccgctcaa aatcactgtg tcacgatgag atcgagaacc tcctggacag tgaccaccga 1200 qaqctqattq qaqattactc taaqqccttc ctcctacaqa caqtaqacqq aaaqcaccaa 1260 gacctcaagt acatctcacc agaaacgatg gtggccctat tgacgggcaa gttcagcaac 1320 atcgtggata agtttgtgat tgtagactgc agatacccct atgaatatga aggcgggcac 1380 atcaagactg cggtgaactt gcccctggaa cgcgacgccg agagcttcct actgaagagc 1440 cccatcgcgc cctgtagcct ggacaagaga gtcatcctca ttttccactg tgaattctca 1500 tetgagegtg ggeeeegeat gtgeegttte ateagggaac gagacegtge tgteaacgae 1560 1620 taccccagcc tctactaccc tgagatgtat atcctgaaag gcggctacaa ggagttcttc 1680 cctcagcacc cgaacttctg tgaaccccag gactaccggc ccatgaacca cgaggccttc aaggatgagc taaagacctt ccgcctcaag actcgcagct gggctgggga gcggagccgg 1740 cgggagetet gtagecgget geaggaceag tgaggggeet gegeeagtee tgetacetee 1800 cttgcctttc gaggcctgaa gccagctgcc ctatgggcct gccgggctga gggcctgctg 1860 1920 cagattcccc tgtgtcatcc catcattttc catatcctgg tgccccccac ccctggaaga 1980

gcccagtctg ttgagttagt taagttgggt taataccagc ttaaaggcag tattttgtgt

2040

cctccaggag	cttcttgttt	ccttgttagg	gttaaccctt	catcttcctg	tgtcctgaaa	2100
cgctcctttg	tgtgtgtgtc	agctgaggct	ggggagagcc	gtggtccctg	aggatgggtc	2160
agagctaaac	tccttcctgg	cctgagagtc	agctctctgc	cctgtgtact	tcccgggcca	2220
gggctgcccc	taatctctgt	aggaaccgtg	gtatgtctgc	catgttgccc	ctttctcttt	2280
tcccctttcc	tgtcccacca	tacgagcacc	tccagcctga	acagaagctc	ttactctttc	2340
ctatttcagt	gttacctgtg	tgcttggtct	gtttgacttt	acgcccatct	caggacactt	2400
ccgtagactg	tttaggttcc	cctgtcaaat	atcagttacc	cactcggtcc	cagttttgtt	2460
gccccagaaa	gggatgttat	tatccttggg	ggctcccagg	gcaagggtta	aggcctgaat	2520
catgagcctg	ctggaagccc	agcccctact	gctgtgaacc	ctggggcctg	actgctcaga	2580
acttgctgct	gtcttgttgc	ggatggatgg	aaggttggat	ggatgggtgg	atggccgtgg	2640
atggccgtgg	atgcgcagtg	ccttgcatac	ccaaaccagg	tgggagcgtt	ttgttgagca	2700
tgacacctgc	agcaggaata	tatgtgtgcc	tatttgtgtg	gacaaaaata	tttacactta	2760
gggtttggag	ctattcaaga	ggaaatgtca	cagaagcagc	taaaccaagg	actgagcacc	2820
ctctggattc	tgaatctcaa	gatgggggca	gggctgtgct	tgaaggccct	gctgagtcat	2880
ctgttagggc	cttggttcaa	taaagcactg	agcaagttga	gaaaaaaaaa	aaaaaaaaa	2940

<210> SEQ ID NO 811

<211> LENGTH: 566

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 811

Met Glu Val Pro Gl
n Pro Glu Pro Ala Pro Gly Ser Ala Leu Ser Pro 1 $$ 5 $$ 10 $$ 15

Ala Gly Val Cys Gly Gly Ala Gln Arg Pro Gly His Leu Pro Gly Leu 20 25 30

Leu Leu Gly Ser His Gly Leu Leu Gly Ser Pro Val Arg Ala Ala Ala 35 4045

Ser Ser Pro Val Thr Thr Leu Thr Gln Thr Met His Asp Leu Ala Gly 50 60

Leu Gly Ser Arg Ser Arg Leu Thr His Leu Ser Leu Ser Arg Arg Ala 65 70 75 80

Ser Glu Ser Ser Leu Ser Ser Glu Ser Ser Glu Ser Ser Asp Ala Gly 85 90 95

Leu Cys Met Asp Ser Pro Ser Pro Met Asp Pro His Met Ala Glu Gln $100 \hspace{1.5cm} 105 \hspace{1.5cm} 105 \hspace{1.5cm} 110 \hspace{1.5cm}$

Thr Phe Glu Gln Ala Ile Gln Ala Ala Ser Arg Ile Ile Arg As
n Glu 115 120 125

Gln Phe Ala Ile Arg Arg Phe Gln Ser Met Pro Val Arg Leu Leu Gly 130 135 140

His Ser Pro Val Leu Arg Asn Ile Thr Asn Ser Gln Ala Pro Asp Gly 145 150 155 160

Arg Arg Lys Ser Glu Ala Gly Ser Gly Ala Ala Ser Ser Gly Glu 165 170 175

Asp Lys Glu Asn Asp Gly Phe Val Phe Lys Met Pro Trp Lys Pro Thr 180 \$180\$

His Pro Ser Ser Thr His Ala Leu Ala Glu Trp Ala Ser Arg Arg Glu

		195					200					205			
Ala	Phe 210	Ala	Gln	Arg	Pro	Ser 215	Ser	Ala	Pro	Asp	Leu 220	Met	Cys	Leu	Ser
Pro 225	Asp	Arg	Lys	Met	Glu 230	Val	Glu	Glu	Leu	Ser 235	Pro	Leu	Ala	Leu	Gly 240
Arg	Phe	Ser	Leu	Thr 245	Pro	Ala	Glu	Gly	Asp 250	Thr	Glu	Glu	Asp	Asp 255	Gly
Phe	Val	Asp	Ile 260	Leu	Glu	Ser	Asp	Leu 265	Lys	Asp	Asp	Asp	Ala 270	Val	Pro
Pro	Gly	Met 275	Glu	Ser	Leu	Ile	Ser 280	Ala	Pro	Leu	Val	Lys 285	Thr	Leu	Glu
Lys	Glu 290	Glu	Glu	Lys	Asp	Leu 295	Val	Met	Tyr	Ser	Lys 300	Cys	Gln	Arg	Leu
Phe 305	Arg	Ser	Pro	Ser	Met 310	Pro	Cys	Ser	Val	Ile 315	Arg	Pro	Ile	Leu	Lys 320
Arg	Leu	Glu	Arg	Pro 325	Gln	Asp	Arg	Asp	Thr 330	Pro	Val	Gln	Asn	Lys 335	Arg
Arg	Arg	Ser	Val 340	Thr	Pro	Pro	Glu	Glu 345	Gln	Gln	Glu	Ala	Glu 350	Glu	Pro
Lys	Ala	Arg 355	Val	Leu	Arg	Ser	Lys 360	Ser	Leu	Cys	His	Asp 365	Glu	Ile	Glu
Asn	Leu 370	Leu	Asp	Ser	Asp	His 375	Arg	Glu	Leu	Ile	Gly 380	Asp	Tyr	Ser	Lys
Ala 385	Phe	Leu	Leu	Gln	Thr 390	Val	Asp	Gly	Lys	His 395	Gln	Asp	Leu	Lys	Tyr 400
Ile	Ser	Pro	Glu	Thr 405	Met	Val	Ala	Leu	Leu 410	Thr	Gly	Lys	Phe	Ser 415	Asn
Ile	Val	Asp	Lys 420	Phe	Val	Ile	Val	Asp 425	Суѕ	Arg	Tyr	Pro	Tyr 430	Glu	Tyr
Glu	Gly	Gly 435	His	Ile	Lys	Thr	Ala 440	Val	Asn	Leu	Pro	Leu 445	Glu	Arg	Asp
Ala	Glu 450	Ser	Phe	Leu	Leu	Lys 455	Ser	Pro	Ile	Ala	Pro 460	Cys	Ser	Leu	Asp
Lys 465	Arg	Val	Ile	Leu	Ile 470	Phe	His	Cys	Glu	Phe 475	Ser	Ser	Glu	Arg	Gly 480
Pro	Arg	Met	Сув	Arg 485	Phe	Ile	Arg	Glu	Arg 490	Asp	Arg	Ala	Val	Asn 495	Asp
Tyr	Pro	Ser		Tyr	Tyr	Pro	Glu		Tyr			Lys	Gly 510		Tyr
Lys	Glu	Phe 515	Phe	Pro	Gln	His	Pro 520	Asn	Phe	Сув	Glu	Pro 525	Gln	Asp	Tyr
Arg	Pro 530	Met	Asn	His	Glu	Ala 535	Phe	Lys	Asp	Glu	Leu 540	Lys	Thr	Phe	Arg
Leu 545	Lys	Thr	Arg	Ser	Trp 550	Ala	Gly	Glu	Arg	Ser 555	Arg	Arg	Glu	Leu	Cys 560
Ser	Arg	Leu	Gln	Asp 565	Gln										
<210)> SE	Q II	NO NO	812											

<210> SEQ ID NO 812 <211> LENGTH: 2115 <212> TYPE: DNA <213> ORGANISM: Homo sapiens

<400> SEQUE	ENCE: 812					
ggtcaacgcc	tgcggctgtt	gatattcttg	ctcagaggcc	gtaactttgg	ccttctgctc	60
agggaagact	ctgagtccga	cgttggccta	cccagtcgga	aggcagagct	gcaatctagt	120
taactacctc	ctttccccta	gatttccttt	cattctgctc	aagtcttcgc	ctgtgtccga	180
tccctatcta	ctttctctcc	tcttgtagca	agcctcagac	tccaggcttg	agctaggttt	240
tgtttttctc	ctggtgagaa	ttcgaagacc	atgtctacgg	aactcttctc	atccacaaga	300
gaggaaggaa	gctctggctc	aggacccagt	tttaggtcta	atcaaaggaa	aatgttaaac	360
ctgctcctgg	agagagacac	ttcctttacc	gtctgtccag	atgtccctag	aactccagtg	420
ggcaaatttc	ttggtgattc	tgcaaaccta	agcattttgt	ctggaggaac	cccaaaatgt	480
tgcctcgatc	tttcgaatct	tagcagtggg	gagataactg	ccactcagct	taccacttct	540
gcagaccttg	atgaaactgg	tcacctggat	tcttcaggac	ttcaggaagt	gcatttagct	600
gggatgaatc	atgaccagca	cctaatgaaa	tgtagcccag	cacagcttct	ttgtagcact	660
ccgaatggtt	tggaccgtgg	ccatagaaag	agagatgcaa	tgtgtagttc	atctgcaaat	720
aaagaaaatg	acaatggaaa	cttggtggac	agtgaaatga	aatatttggg	cagtcccatt	780
actactgttc	caaaattgga	taaaaatcca	aacctaggag	aagaccaggc	agaagagatt	840
tcagatgaat	taatggagtt	ttccctgaaa	gatcaagaag	caaaggtgag	cagaagtggc	900
ctatatcgct	ccccgtcgat	gccagagaac	ttgaacaggc	caagactgaa	gcaggtggaa	960
aaattcaagg	acaacacaat	accagataaa	gttaaaaaaa	agtattttc	tggccaagga	1020
aagctcagga	agggcttatg	tttaaagaag	acagtctctc	tgtgtgacat	tactatcact	1080
cagatgctgg	aggaagattc	taaccagggg	cacctgattg	gtgattttc	caaggtatgt	1140
gcgctgccaa	ccgtgtcagg	gaaacaccaa	gatctgaagt	atgtcaaccc	agaaacagtg	1200
gctgccttac	tgtcggggaa	gttccagggt	ctgattgaga	agttttatgt	cattgattgt	1260
cgctatccat	atgagtatct	gggaggacac	atccagggag	ccttaaactt	atatagtcag	1320
gaagaactgt	ttaacttctt	tctgaagaag	cccatcgtcc	ctttggacac	ccagaagaga	1380
ataatcatcg	tgttccactg	tgaattctcc	tcagagaggg	gcccccgaat	gtgccgctgt	1440
ctgcgtgaag	aggacaggtc	tctgaaccag	tatcctgcat	tgtactaccc	agagctatat	1500
atccttaaag	gcggctacag	agacttcttt	ccagaatata	tggaactgtg	tgaaccacag	1560
agctactgcc	ctatgcatca	tcaggaccac	aagactgagt	tgctgaggtg	tcgaagccag	1620
agcaaagtgc	aggaagggga	gcggcagctg	cgggagcaga	ttgcccttct	ggtgaaggac	1680
atgagcccat	gataacattc	cagccactgg	ctgctaacaa	gtcaccaaaa	agacactgca	1740
gaaaccctga	gcagaaagag	gccttctgga	tggccaaacc	caagattatt	aaaagatgtc	1800
tctgcaaacc	aacaggctac	caacttgtat	ccaggcctgg	gaatggatta	ggtttcagca	1860
gagctgaaag	ctggtggcag	agtcctggag	ctggctctat	aaggcagcct	tgagttgcat	1920
agagatttgt	attggttcag	ggaactctgg	cattcctttt	cccaactcct	catgtcttct	1980
cacaagccag	ccaactcttt	ctctctgggc	ttcgggctat	gcaagagcgt	tgtctacctt	2040
ctttctttgt	attttccttc	tttgtttccc	cctctttctt	ttttaaaaat	ggaaaaataa	2100
acactacaga	atgag					2115

<211)> SE l> LE 2> TY	NGTH	1: 47												
	3> OF			Homo	sar	oiens	5								
<400)> SE	EQUE1	ICE:	813											
Met 1	Ser	Thr	Glu	Leu 5	Phe	Ser	Ser	Thr	Arg 10	Glu	Glu	Gly	Ser	Ser 15	Gly
Ser	Gly	Pro	Ser 20	Phe	Arg	Ser	Asn	Gln 25	Arg	Lys	Met	Leu	Asn 30	Leu	Leu
Leu	Glu	Arg 35	Asp	Thr	Ser	Phe	Thr 40	Val	Сув	Pro	Asp	Val 45	Pro	Arg	Thr
Pro	Val 50	Gly	Lys	Phe	Leu	Gly 55	Asp	Ser	Ala	Asn	Leu 60	Ser	Ile	Leu	Ser
Gly 65	Gly	Thr	Pro	Lys	C ys 70	Cys	Leu	Asp	Leu	Ser 75	Asn	Leu	Ser	Ser	Gly 80
Glu	Ile	Thr	Ala	Thr 85	Gln	Leu	Thr	Thr	Ser 90	Ala	Asp	Leu	Asp	Glu 95	Thr
Gly	His	Leu	Asp 100	Ser	Ser	Gly	Leu	Gln 105	Glu	Val	His	Leu	Ala 110	Gly	Met
Asn	His	Asp 115	Gln	His	Leu	Met	Lys 120	Cys	Ser	Pro	Ala	Gln 125	Leu	Leu	Cys
Ser	Thr 130	Pro	Asn	Gly	Leu	Asp 135	Arg	Gly	His	Arg	Lys 140	Arg	Asp	Ala	Met
C y s 145	Ser	Ser	Ser	Ala	Asn 150	Lys	Glu	Asn	Asp	Asn 155	Gly	Asn	Leu	Val	Asp 160
Ser	Glu	Met	Lys	Tyr 165	Leu	Gly	Ser	Pro	Ile 170	Thr	Thr	Val	Pro	Lys 175	Leu
Asp	Lys	Asn	Pro 180	Asn	Leu	Gly	Glu	Asp 185	Gln	Ala	Glu	Glu	Ile 190	Ser	Asp
	Leu	195					200					205			
	Gly 210		_			215					220				
225	Leu				230	_		_	_	235					240
	Lys			245					250					255	
-	Leu	-	260					265	-				270		
	Glu	275					280					285			
	C y s 290					295		_			300	_		_	_
Val 305	Asn	Pro	Glu	Thr	Val 310	Ala	Ala	Leu	Leu	Ser 315	Gly	Lys	Phe	Gln	Gly 320
Leu	Ile	Glu	Lys	Phe 325	Tyr	Val	Ile	Asp	Cys 330	Arg	Tyr	Pro	Tyr	Glu 335	Tyr
Leu	Gly	Gly	His 340	Ile	Gln	Gly	Ala	Leu 345	Asn	Leu	Tyr	Ser	Gln 350	Glu	Glu
Leu	Phe	Asn 355	Phe	Phe	Leu	Lys	Lys 360	Pro	Ile	Val	Pro	Leu 365	Asp	Thr	Gln

												COII	- 111	ueu			
_	Arg 370	Ile	Ile	Ile	Val	Phe 375	His	Cys	Glu	Phe	Ser 380	Ser	Glu	Arg	Gly		
Pro 385	Arg	Met	Cys	Arg	C y s 390	Leu	Arg	Glu	Glu	Asp 395	Arg	Ser	Leu	Asn	Gln 400		
Tyr	Pro	Ala	Leu	Tyr 405	Tyr	Pro	Glu	Leu	Tyr 410	Ile	Leu	Lys	Gly	Gly 415	Tyr		
Arg	Asp	Phe	Phe 420	Pro	Glu	Tyr	Met	Glu 425	Leu	Cys	Glu	Pro	Gln 430	Ser	Tyr		
Cys	Pro	Met 435		His	Gln	Asp	His		Thr	Glu	Leu	Leu 445	Arg	Cys	Arg		
			Lys	Val	Gln	Glu 455		Glu	Arg	Gln	Leu 460	Arg	Glu	Gln	Ile		
	450 Leu	Leu	Val	Lys	Asp		Ser	Pro			400						
<210 <211 <212 <213	> LE > TY	NGTH PE:	1: 18 DNA		sar	oiens	5										
<400					_												
ggtc	aacg	rcc t	gag	gctgt	t ga	atati	tette	g cto	agaç	ggcc	gtaa	acttt	gg (cctto	ctgctc	60	
aggg	aaga	ct o	ctgaç	gtccc	ga c	gttg	gccta	cc	cagto	egga	aggo	cagag	ct	gcaat	ctagt	120	
taac	tacc	tc o	ctttc	cccct	ta ga	attto	ccttt	cat	tctg	gctc	aagt	tcttc	gc (ctgtg	gtccga	180	
tccc	tato	ta o	ettte	ctctc	cc to	cttgi	tagca	ago	cctca	agac	tcca	aggct	tg a	agcta	aggttt	240	
_						_	_								acaaga	300	
							_							_	taaac	360	
_				-				_	_	_	_		_		ccagtg	420 480	
				-				-		-					gaaatg	540	
															ctagga	600	
gaag	acca	ıgg d	cagaa	agaga	at t	tcaga	atgaa	ı tta	aatgo	gagt	ttto	ccctg	aa a	agato	caagaa	660	
gcaa	aggt	ga ç	gcaga	aagto	gg co	ctata	atogo	tco	cccgt	cga	tgc	cagag	aa o	cttga	aacagg	720	
ccaa	gact	ga a	agcaç	ggtg	ga aa	aaatt	tcaag	g gad	caaca	acaa	taco	cagat	aa a	agtta	aaaaaa	780	
aagt	attt	tt d	etggo	ccaaç	gg aa	aagct	tcago	g aag	gggct	tat	gttt	taaag	aa q	gacaç	gtctct	840	
ctgt	gtga	ıca t	tact	tatca	ac to	cagat	tgctg	g gag	ggaag	gatt	ctaa	accag	gg (gcaco	ctgatt	900	
ggtg	attt	tt o	ccaaq	ggtat	g to	gagat	gcca	aco	gtgt	cag	ggaa	aacac	ca a	agato	ctgaag	960	
															attgag	1020	
															caggga	1080	
															atcgtc	1140	
															gagagg	1200 1260	
															gaatat	1320	
															actgag	1380	
					٠,									- 3-	J J		

ttgctgaggt gtcgaagcca gagcaaagtg caggaagggg agcggcagct gcgggagcag 1440

attgcccttc tggtgaagga catgagccca tgataacatt ccagccactg gctgctaaca	1500
agtcaccaaa aagacactgc agaaaccctg agcagaaaga ggccttctgg atggccaaac	1560
ccaagattat taaaagatgt ctctgcaaac caacaggcta ccaacttgta tccaggcctg	1620
ggaatggatt aggtttcagc agagctgaaa gctggtggca gagtcctgga gctggctcta	1680
taaggcagcc ttgagttgca tagagatttg tattggttca gggaactctg gcattccttt	1740
toccaactoo toatgtotto toacaagoca gocaactott totototggg ottogggota	1800
tgcaagagcg ttgtctacct tctttctttg tattttcctt ctttgtttcc ccctctttct	1860
tttttaaaaa tggaaaaata aacactacag aatgag	1896
<210> SEQ ID NO 815 <211> LENGTH: 400 <212> TYPE: PRT <213> ORGANISM: Homo sapiens	
<400> SEQUENCE: 815	
Met Ser Thr Glu Leu Phe Ser Ser Thr Arg Glu Glu Gly Ser Ser Gly 1 5 10 15	
Ser Gly Pro Ser Phe Arg Ser Asn Gln Arg Lys Met Leu Asn Leu Leu 20 25 30	
Leu Glu Arg Asp Thr Ser Phe Thr Val Cys Pro Asp Val Pro Arg Thr 35 40 45	
Pro Val Gly Lys Phe Leu Gly Asp Ser Ala Asn Leu Ser Ile Leu Ser 50 55 60	
Gly Ser Pro Gly Phe Phe Arg Thr Ser Gly Ser Ala Phe Ser Trp Asp 75 80	
Asp Asn Gly Asn Leu Val Asp Ser Glu Met Lys Tyr Leu Gly Ser Pro 85 90 95	
Ile Thr Thr Val Pro Lys Leu Asp Lys Asn Pro Asn Leu Gly Glu Asp 100 105 110	
Gln Ala Glu Glu Ile Ser Asp Glu Leu Met Glu Phe Ser Leu Lys Asp 115 120 125	
Gln Glu Ala Lys Val Ser Arg Ser Gly Leu Tyr Arg Ser Pro Ser Met 130 135 140	
Pro Glu Asn Leu Asn Arg Pro Arg Leu Lys Gln Val Glu Lys Phe Lys 145 150 155 160	
Asp Asn Thr Ile Pro Asp Lys Val Lys Lys Lys Tyr Phe Ser Gly Gln 165 170 175	
Gly Lys Leu Arg Lys Gly Leu Cys Leu Lys Lys Thr Val Ser Leu Cys 180 185 190	
Asp Ile Thr Ile Thr Gln Met Leu Glu Glu Asp Ser Asn Gln Gly His 195 200 205	
Leu Ile Gly Asp Phe Ser Lys Val Cys Ala Leu Pro Thr Val Ser Gly 210 215 220	
Lys His Gln Asp Leu Lys Tyr Val Asn Pro Glu Thr Val Ala Ala Leu 225 230 235 240	
Leu Ser Gly Lys Phe Gln Gly Leu Ile Glu Lys Phe Tyr Val Ile Asp 245 250 255	
Cys Arg Tyr Pro Tyr Glu Tyr Leu Gly Gly His Ile Gln Gly Ala Leu 260 265 270	

												<u> </u>	C ±11	aca		
Asn	Leu	Ty r 275	Ser	Gln	Glu	Glu	Leu 280	Phe	Asn	Phe	Phe	Leu 285	Lys	Lys	Pro	
Ile	Val 290	Pro	Leu	Asp	Thr	Gln 295	Lys	Arg	Ile	Ile	Ile 300	Val	Phe	His	Cys	
Glu 305	Phe	Ser	Ser	Glu	Arg 310	Gly	Pro	Arg	Met	Cys 315	Arg	Cys	Leu	Arg	Glu 320	
Glu	Asp	Arg	Ser	Leu 325	Asn	Gln	Tyr	Pro	Ala 330	Leu	Tyr	Tyr	Pro	Glu 335	Leu	
Tyr	Ile	Leu	Lys 340		Gly	Tyr	Arg	Asp 345		Phe	Pro	Glu	Tyr 350		Glu	
Leu	Cys	Glu 355		Gln	Ser	Tyr	Cys 360		Met	His	His	Gln 365		His	Lys	
Thr	Glu 370		Leu	Arg	Сув	Arg 375		Gln	Ser	Lys	Val 380		Glu	Gly	Glu	
Arg 385	Gln	Leu	Arg	Glu	Gln 390		Ala	Leu	Leu	Val 395		Asp	Met	Ser	Pro 400	
<210	0> SE 1> LE															
<212	2> TY 3> OR	PE:	DNA		sap	piens	3									
<400	0> SE	QUEN	ICE:	816												
gtga	atgcg	gta ç	gttco	egget	tg c	cggt.	tgaca	a tga	aagaa	agca	gca	gegg	cta ç	gggc	gggggt	60
agct	tgcag	199 <u>9</u>	gtcgg	gggat	tt g	cagc	gggc	e teg	99999	ctaa	gago	egega	acg o	egged	ctagag	120
cgg	cagac	egg o	egeag	gtgg	gc c	gaga	agga	g gc	gcago	cagc	cgc	cctg	gcc o	egte	atggag	180
atg	gaaaa	agg a	gtto	gago	ca ga	atcg	acaa	g tc	ggga	agct	ggg	egge	cat 1	taco	caggat	240
atco	cgaca	atg a	aagco	cagt	ga ci	ttcc	catg	t aga	agtg	gcca	agct	ttcc	taa q	gaaca	aaaac	300
cgaa	aatag	ggt a	acaga	agac	gt ca	agtc	cctt	t gad	ccata	agtc	ggat	ttaaa	act a	acato	aagaa	360
gata	aatga	act a	atato	caac	gc ta	agtt	tgata	a aaa	aatg	gaag	aago	ccca	aag q	gagtt	acatt	420
ctt	accca	agg g	gadat	ttg	cc ta	aaca	catgo	c ggt	cact	ttt	ggg	agat	ggt (gtgg	gagcag	480
aaaa	agcaç	agg g	gtgto	gtc	at go	ctca	acaga	a gto	gatgo	gaga	aag	gttc	gtt a	aaaat	gegea	540
caat	tacto	ggc o	cacaa	aaaa	ga a	gaaa	aaga	g ato	gatct	ttg	aaga	acaca	aaa 1	ttga	aaatta	600
acat	ttgat	ct o	ctgaa	agata	at ca	aagt	cata	t tat	acaç	gtgc	gaca	agcta	aga a	attg	gaaaac	660
ctte	acaac	ccc a	aagaa	aacto	cg a	gaga [.]	tctt	a cat	ttc	cact	atad	ccaca	atg q	geet	gacttt	720
gga	gtccc	tg a	aatca	acca	gc ct	tcat	tctt	g aac	ctttc	ttt	tcaa	aagto	ccg a	agagt	caggg	780
tcad	ctcag	gee o	ggag	gcac	gg g	cccg.	ttgt	g gto	gcact	gca	gtg	caggo	cat o	egge	aggtct	840
ggaa	acctt	ct o	gtata	ggct	ga ta	acct	gcct	e tte	gctga	atgg	acaa	agag	gaa a	agaco	ccttct	900
tcc	gttga	ata t	caaç	gaaa	gt go	ctgt [.]	tagaa	a ato	gagga	aagt	ttc	ggat	aaa 9	gctga	atccag	960
aca	gccga	acc a	agcto	geget	tt c	tcct	acct	g gct	gtga	atcg	aag	gtgc	caa a	attca	atcatg	1020
ggg	gacto	ett o	ccgto	gcag	ga to	cagt	ggaaq	g gaç	gcttt	ccc	acga	agga	cct o	ggago	cccca	1080
ccc	gagca	ata t	cccc	ccca	cc to	cccc	ggcc	a cco	caaac	cgaa	tcct	tgga	gcc a	acaca	aatggg	1140
aaat	tgcag	ggg a	agtto	ette	cc aa	aatc	acca	g tg	ggtga	aagg	aaga	agaco	cca ç	ggag	gataaa	1200
gact	tgaad	cca t	caaç	ggaag	ga aa	aaag	gaago	2 220	cttaa	aatg	ccg	cacco	cta d	egge	atcgaa	1260

agcatgagtc aagacactga agttagaagt cgggtcgtgg ggggaagtct tcgaggtgcc 1320

caggctgcct	ccccagccaa	aggggagccg	tcactgcccg	agaaggacga	ggaccatgca	1380
ctgagttact	ggaagccctt	cctggtcaac	atgtgcgtgg	ctacggtcct	cacggccggc	1440
gcttacctct	gctacaggtt	cctgttcaac	agcaacacat	agcctgaccc	tcctccactc	1500
cacctccacc	cactgtccgc	ctctgcccgc	agagcccacg	cccgactagc	aggcatgccg	1560
cggtaggtaa	gggccgccgg	accgcgtaga	gagccgggcc	ccggacggac	gttggttctg	1620
cactaaaacc	catcttcccc	ggatgtgtgt	ctcacccctc	atccttttac	ttttgcccc	1680
ttccactttg	agtaccaaat	ccacaagcca	ttttttgagg	agagtgaaag	agagtaccat	1740
gctggcggcg	cagagggaag	gggcctacac	ccgtcttggg	gctcgcccca	cccagggctc	1800
cctcctggag	catcccaggc	gggcggcacg	ccaacagccc	cccccttgaa	tctgcaggga	1860
gcaactctcc	actccatatt	tatttaaaca	atttttccc	caaaggcatc	catagtgcac	1920
tagcattttc	ttgaaccaat	aatgtattaa	aattttttga	tgtcagcctt	gcatcaaggg	1980
ctttatcaaa	aagtacaata	ataaatcctc	aggtagtact	gggaatggaa	ggctttgcca	2040
tgggcctgct	gcgtcagacc	agtactggga	aggaggacgg	ttgtaagcag	ttgttattta	2100
gtgatattgt	gggtaacgtg	agaagataga	acaatgctat	aatatataat	gaacacgtgg	2160
gtatttaata	agaaacatga	tgtgagatta	ctttgtcccg	cttattctcc	tccctgttat	2220
ctgctagatc	tagttctcaa	tcactgctcc	cccgtgtgta	ttagaatgca	tgtaaggtct	2280
tcttgtgtcc	tgatgaaaaa	tatgtgcttg	aaatgagaaa	ctttgatctc	tgcttactaa	2340
tgtgccccat	gtccaagtcc	aacctgcctg	tgcatgacct	gatcattaca	tggctgtggt	2400
tcctaagcct	gttgctgaag	tcattgtcgc	tcagcaatag	ggtgcagttt	tccaggaata	2460
ggcatttgcc	taattcctgg	catgacactc	tagtgacttc	ctggtgaggc	ccagcctgtc	2520
ctggtacagc	agggtcttgc	tgtaactcag	acattccaag	ggtatgggaa	gccatattca	2580
cacctcacgc	tctggacatg	atttagggaa	gcagggacac	cccccgcccc	ccacctttgg	2640
gatcagcctc	cgccattcca	agtcaacact	cttcttgagc	agaccgtgat	ttggaagaga	2700
ggcacctgct	ggaaaccaca	cttcttgaaa	cagcctgggt	gacggtcctt	taggcagcct	2760
gccgccgtct	ctgtcccggt	tcaccttgcc	gagagaggcg	cgtctgcccc	accctcaaac	2820
cctgtggggc	ctgatggtgc	tcacgactct	tcctgcaaag	ggaactgaag	acctccacat	2880
taagtggctt	tttaacatga	aaaacacggc	agctgtagct	cccgagctac	tctcttgcca	2940
gcattttcac	attttgcctt	tctcgtggta	gaagccagta	cagagaaatt	ctgtggtggg	3000
aacattcgag	gtgtcaccct	gcagagctat	ggtgaggtgt	ggataaggct	taggtgccag	3060
gctgtaagca	ttctgagctg	ggcttgttgt	ttttaagtcc	tgtatatgta	tgtagtagtt	3120
tgggtgtgta	tatatagtag	catttcaaaa	tggacgtact	ggtttaacct	cctatccttg	3180
gagagcagct	ggctctccac	cttgttacac	attatgttag	agaggtagcg	agctgctctg	3240
ctatatgcct	taagccaata	tttactcatc	aggtcattat	tttttacaat	ggccatggaa	3300
taaaccattt	ttacaaaa					3318

<210> SEQ ID NO 817 <211> LENGTH: 435 <212> TYPE: PRT <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 817

Met 1	Glu	Met	Glu	Lys 5	Glu	Phe	Glu	Gln	Ile 10	Asp	Lys	Ser	Gly	Ser 15	Trp
Ala	Ala	Ile	Tyr 20	Gln	Asp	Ile	Arg	His 25	Glu	Ala	Ser	Asp	Phe 30	Pro	Cys
Arg	Val	Ala 35	Lys	Leu	Pro	Lys	Asn 40	Lys	Asn	Arg	Asn	Arg 45	Tyr	Arg	Asp
Val	Ser 50	Pro	Phe	Asp	His	Ser 55	Arg	Ile	Lys	Leu	His 60	Gln	Glu	Asp	Asn
Asp 65	Tyr	Ile	Asn	Ala	Ser 70	Leu	Ile	Lys	Met	Glu 75	Glu	Ala	Gln	Arg	Ser 80
Tyr	Ile	Leu	Thr	Gln 85	Gly	Pro	Leu	Pro	Asn 90	Thr	Сув	Gly	His	Phe 95	Trp
Glu	Met	Val	Trp	Glu	Gln	Lys	Ser	Arg 105	Gly	Val	Val	Met	Leu 110	Asn	Arg
Val	Met	Glu 115	Lys	Gly	Ser	Leu	Lys 120	Cys	Ala	Gln	Tyr	Trp 125	Pro	Gln	Lys
Glu	Glu 130	Lys	Glu	Met	Ile	Phe 135	Glu	Asp	Thr	Asn	Leu 140	Lys	Leu	Thr	Leu
Ile 145	Ser	Glu	Asp	Ile	Lys 150	Ser	Tyr	Tyr	Thr	Val 155	Arg	Gln	Leu	Glu	Leu 160
Glu	Asn	Leu	Thr	Thr 165	Gln	Glu	Thr	Arg	Glu 170	Ile	Leu	His	Phe	His 175	Tyr
Thr	Thr	Trp	Pro 180	Asp	Phe	Gly	Val	Pro 185	Glu	Ser	Pro	Ala	Ser 190	Phe	Leu
Asn	Phe	Leu 195	Phe	Lys	Val	Arg	Glu 200	Ser	Gly	Ser	Leu	Ser 205	Pro	Glu	His
Gly	Pro 210	Val	Val	Val	His	Cys 215	Ser	Ala	Gly	Ile	Gly 220	Arg	Ser	Gly	Thr
Phe 225	Cys	Leu	Ala	Asp	Thr 230	Cys	Leu	Leu	Leu	Met 235	Asp	Lys	Arg	Lys	Asp 240
Pro	Ser	Ser	Val	Asp 245	Ile	Lys	Lys	Val	Leu 250	Leu	Glu	Met	Arg	Lys 255	Phe
Arg	Met	Gly	Leu 260	Ile	Gln	Thr	Ala	Asp 265	Gln	Leu	Arg	Phe	Ser 270	Tyr	Leu
Ala	Val	Ile 275	Glu	Gly	Ala	Lys	Phe 280	Ile	Met	Gly	Asp	Ser 285	Ser	Val	Gln
Asp	Gln 290	Trp	Lys	Glu	Leu	Ser 295	His	Glu	Asp	Leu	Glu 300	Pro	Pro	Pro	Glu
His 305	Ile	Pro	Pro	Pro	Pro 310	Arg	Pro	Pro	Lys	Arg 315	Ile	Leu	Glu	Pro	His 320
Asn	Gly	Lys	Cys	Arg 325	Glu	Phe	Phe	Pro	Asn 330	His	Gln	Trp	Val	Lys 335	Glu
Glu	Thr	Gln	Glu 340	Asp	Lys	Asp	Cys	Pro 345	Ile	Lys	Glu	Glu	Lys 350	Gly	Ser
Pro	Leu	Asn 355	Ala	Ala	Pro	Tyr	Gly 360	Ile	Glu	Ser	Met	Ser 365	Gln	Asp	Thr
Glu	Val 370	Arg	Ser	Arg	Val	Val 375	Gly	Gly	Ser	Leu	Arg 380	Gly	Ala	Gln	Ala
Ala 385	Ser	Pro	Ala	Lys	Gly 390	Glu	Pro	Ser	Leu	Pro 395	Glu	Lys	Asp	Glu	Asp 400
His	Ala	Leu	Ser	Tyr	Trp	Lys	Pro	Phe	Leu	Val	Asn	Met	Cys	Val	Ala

405 410 415

Thr Val Leu Thr Ala Gly Ala Tyr Leu Cys Tyr Arg Phe Leu Phe Asn 420 425 430

Ser Asn Thr 435

<210> SEQ ID NO 818

<211> LENGTH: 2346 <212> TYPE: DNA

<213> ORGANISM: Mus musculus

<400> SEQUENCE: 818

gaattcggga tccttttgca cattcctagt tagcagtgca tactcatcag actggagatg 60 tttaatqaca tcaqqqaacc aaacqqacaa cccataqtac ccqaaqacaq qqtqaaccaq 120 acaatcqtaa qcttqatqqt qttttccctq actqqqtaqt tqaaqcatct catqaatqtc 180 agccaaattc cgtacagttc ggtgcggatc cgaacgaaac acctcctgta ccaggttccc gtgtcgctct caatttcaat cagctcatct atttgtttgg gagtcttgat tttatttacc 300 gtgaagacct tctctggctg gccccgggct ctcatgttgg tgtcatgaat taacttcaga 360 atcatccagg cttcatcatg ttttcccacc tccagcaaga accgaggget ttctggcatg 420 aaqqtqaqaq ccaccacaqa qqaqacqcat qqqaqcqcac aqacqatqac qaaqacqcqc 480 540 cacqtqtqqa actqqtaqqc tqaacccatq ctqaaqctcc acccqtaqtq qqqaatqatq qcccaqqcat qqcqqaqqct aqatqccqcc aatcatccaq aacatqcaqa aqccqctqct 600 660 qqqqaqcttq qqqctqcqqt qqtqqcqqqt qacqqqcttc qqqacqcqqa qcqacqcqqc ctagcgcggc ggacggccgt gggaactcgg gcagccgacc cgtcccgcca tggagatgga 720 gaaggagttc gaggagatcg acaaggctgg gaactgggcg gctatttacc aggacattcg 780 acatgaagcc agcgacttcc catgcaaagt cgcgaagctt cctaagaaca aaaaccggaa 840 caggtaccga gatgtcagcc cttttgacca cagtcggatt aaattgcacc aggaagataa 900 tgactatatc aatgccagct tgataaaaat ggaagaagcc cagaggagct atattctcac 960 1020 ccagggccct ttaccaaaca catgtgggca cttctgggag atggtgtggg agcagaagag caggggcgtg gtcatgctca accgcatcat ggagaaaggc tcgttaaaat gtgcccagta 1080 1140 ttggccacag caagaagaaa aggagatggt ctttgatgac acaggtttga agttgacact aatctctgaa gatgtcaagt catattacac agtacgacag ttggagttgg aaaacctgac 1200 taccaaggag actcgagaga tcctgcattt ccactacacc acatggcctg actttggagt 1260 1320 ccccqaqtca ccqqcttctt tcctcaattt ccttttcaaa qtccqaqaqt caqqctcact caqcctqqaq catqqccca ttqtqqtcca ctqcaqcqcc qqcatcqqqa qqtcaqqqac 1380 1440 cttctqtctq qctqacacct qcctcttact qatqqacaaq aqqaaaqacc catcttccqt ggacatcaag aaagtactgc tggagatgcg caggttccgc atggggctca tccagactgc 1500 cgaccagetg cgcttctcct acctggctgt catcgagggc gccaagttca tcatgggcga 1560 ctcgtcagtg caggatcagt ggaaggagct ctcccgggag gatctagacc ttccacccga 1620 gcacgtgccc ccacctcccc ggccacccaa acgcacactg gagcctcaca acgggaagtg 1680 caaggagete ttetecagee accagtgggt gagegaggag acctgtgggg atgaagacag 1740 cctqqccaqa qaqqaaqqca qaqcccaqtc aaqtqccatq cacaqcqtqa qcaqcatqaq 1800

1860

tgtccccacc gaggaagagc tgtcctccac tgaggaggaa cacaaggcac attg	gccaag 1920
tcactggaag cccttcctgg tcaatgtgtg catggccacg ctcctggcca ccgg	regegta 1980
cttgtgctac cgggtgtgtt ttcactgaca gactgggagg cactgccact gccc	agctta 2040
ggatgcggtc tgcggcgtct gacctggtgt agagggaaca acaactcgca agcc	tgctct 2100
ggaactggaa gggcctgccc caggagggta ttagtgcact gggctttgaa ggag	gecetg 2160
gtcccacgaa cagagtctaa tctcagggcc ttaacctgtt caggagaagt agag	gaaatg 2220
ccaaatactc ttcttgctct cacctcactc ctcccctttc tctgattcat ttgt	ttttgg 2280
aaaaaaaaaa aaaaagaatt acaacacatt gttgttttta acatttataa aggc	aggccc 2340
gaattc	2346
<210> SEQ ID NO 819 <211> LENGTH: 432 <212> TYPE: PRT <213> ORGANISM: Mus musculus <400> SEQUENCE: 819	
Met Glu Met Glu Lys Glu Phe Glu Glu Ile Asp Lys Ala Gly Asn	ı Trp
1 5 10 15	_
Ala Ala Ile Tyr Gln Asp Ile Arg His Glu Ala Ser Asp Phe Pro 20 25 30	o Cys
Lys Val Ala Lys Leu Pro Lys Asn Lys Asn Arg Asn Arg Tyr Arg 35 40 45	, Asp
Val Ser Pro Phe Asp His Ser Arg Ile Lys Leu His Gln Glu Asp 50 55 60) Asn
Asp Tyr Ile Asn Ala Ser Leu Ile Lys Met Glu Glu Ala Gln Arg	Ser 80
Tyr Ile Leu Thr Gln Gly Pro Leu Pro Asn Thr Cys Gly His Phe 85 90 95	Trp
Glu Met Val Trp Glu Gln Lys Ser Arg Gly Val Val Met Leu Asn 100 105 110	Arg
Ile Met Glu Lys Gly Ser Leu Lys Cys Ala Gln Tyr Trp Pro Gln 115 120 125	Gln
Glu Glu Lys Glu Met Val Phe Asp Asp Thr Gly Leu Lys Leu Thr 130 135 140	Leu
Ile Ser Glu Asp Val Lys Ser Tyr Tyr Thr Val Arg Gln Leu Glu 145 150 155	Leu 160
Glu Asn Leu Thr Thr Lys Glu Thr Arg Glu Ile Leu His Phe His 165 170 175	
Thr Thr Trp Pro Asp Phe Gly Val Pro Glu Ser Pro Ala Ser Phe 180 185 190	e Leu
Asn Phe Leu Phe Lys Val Arg Glu Ser Gly Ser Leu Ser Leu Glu 195 200 205	His
Gly Pro Ile Val Val His Cys Ser Ala Gly Ile Gly Arg Ser Gly 210 215 220	Thr

Phe Cys Leu Ala Asp Thr Cys Leu Leu Leu Met Asp Lys Arg Lys Asp 225 235 236 236 237

Pro Ser Ser Val Asp Ile Lys Lys Val Leu Leu Glu Met Arg Arg Phe 245 250

tccagacact gaagttagga gacggatggt gggtggaggt cttcaaagtg ctcaggcgtc

-continued	
Arg Met Gly Leu Ile Gln Thr Ala Asp Gln Leu Arg Phe Ser Tyr Leu 260 265 270	
Ala Val Ile Glu Gly Ala Lys Phe Ile Met Gly Asp Ser Ser Val Gln 275 280 285	
Asp Gln Trp Lys Glu Leu Ser Arg Glu Asp Leu Asp Leu Pro Pro Glu 290 295 300	
His Val Pro Pro Pro Pro Arg Pro Pro Lys Arg Thr Leu Glu Pro His 305 310 315 320	
Asn Gly Lys Cys Lys Glu Leu Phe Ser Ser His Gln Trp Val Ser Glu 325 330 335	
Glu Thr Cys Gly Asp Glu Asp Ser Leu Ala Arg Glu Glu Gly Arg Ala 340 345 350	
Gln Ser Ser Ala Met His Ser Val Ser Ser Met Ser Pro Asp Thr Glu 355 360 365	
Val Arg Arg Met Val Gly Gly Leu Gln Ser Ala Gln Ala Ser 370 375 380	
Val Pro Thr Glu Glu Glu Leu Ser Ser Thr Glu Glu Glu His Lys Ala 385 390 395 400	
His Trp Pro Ser His Trp Lys Pro Phe Leu Val Asn Val Cys Met Ala 405 410 415	
Thr Leu Leu Ala Thr Gly Ala Tyr Leu Cys Tyr Arg Val Cys Phe His 420 425 430	
<210> SEQ ID NO 820 <211> LENGTH: 4127 <212> TYPE: DNA <213> ORGANISM: Rattus novegicus	
<400> SEQUENCE: 820	
agccgctgct ggggaggttg gggctgaggt ggtggcgggc gacgggcctc gagacgcgga 60	
gcgacgcggc ctagcgcggc ggacggccga gggaactcgg gcagtcgtcc cgtcccgcca 120	
tggaaatgga gaaggaattc gagcagatcg ataaggctgg gaactgggcg gctatttacc 180	
aggatattcg acatgaagcc agtgacttcc catgcagaat agcgaaactt cctaagaaca 240	
aaaaccggaa caggtaccga gatgtcagcc cttttgacca cagtcggatt aaattgcatc 300	
aggaagataa tgactatatc aatgccagct tgataaaaat ggaggaagcc cagaggagct 360	
atatecteae ecagggeeet ttaccaaaca egtgegggea ettetgggag atggtgtggg 420	
agcagaagag caggggcgtg gtcatgctca accgcatcat ggagaaaggc tcgttaaaat 480	
gtgcccagta ttggccacag aaagaagaaa aagagatggt cttcgatgac accaatttga 540	
agctgacact gatctctgaa gatgtcaagt catattacac agtacggcag ttggagttgg 600	
agaacctggc tacccaggag gctcgagaga tcctgcattt ccactacacc acctggcctg 660	
actttggagt ccctgagtca cctgcctctt tcctcaattt cctattcaaa gtccgagagt 720	
caggeteact cageceagag caeggeeeca ttgtggteea etgeagtget ggeattggea 780	
ggtcagggac cttctgcctg gctgacacct gcctcttact gatggacaag aggaaagacc 840	

cgtcctctgt ggacatcaag aaagtgctgt tggagatgcg caggttccgc atggggctca

tccagacggc cgaccaactg cgcttctcct acctggctgt gatcgagggt gcaaagttca

tcatgggcga ctcgtcagtg caggatcagt ggaaggagct ttcccatgaa gacctggagc

ctcccctga gcacgtgccc ccacctcccc ggccacccaa acgcacattg gagcctcaca

900

960

1020

1080

atggcaagtg	caaggagctc	ttctccaacc	accagtgggt	gagcgaggag	agctgtgagg	1140
atgaggacat	cctggccaga	gaggaaagca	gagccccctc	aattgctgtg	cacagcatga	1200
gcagtatgag	tcaagacact	gaagttagga	aacggatggt	gggtggaggt	cttcaaagtg	1260
ctcaggcatc	tgtccccact	gaggaagagc	tgtccccaac	cgaggaggaa	caaaaggcac	1320
acaggccagt	tcactggaag	cccttcctgg	tcaacgtgtg	catggccacg	gccctggcga	1380
ctggcgcgta	cctctgttac	cgggtatgtt	ttcactgaca	gactgctgtg	aggcatgagc	1440
gtggtgggcg	ctgccactgc	ccaggttagg	atttggtctg	cggcgtctaa	cctggtgtag	1500
aagaaacaac	agcttacaag	cctgtggtgg	aactggaagg	gccagcccca	ggaggggcat	1560
ctgtgcactg	ggctttgaag	gageceetgg	tcccaagaac	agagtctaat	ctcagggcct	1620
taacctgttc	aggagaagta	gaggaaatgc	caaatactct	tcttgctctc	acctcactcc	1680
tcccctttct	ctggttcgtt	tgtttttgga	aaaaaaaaa	aaagaattac	aacacattgt	1740
tgtttttaac	atttataaag	gcaggttttt	gttatttta	gagaaaacaa	aagatgctag	1800
gcactggtga	gattctcttg	tgccctttgg	catgtgatca	gattcacgat	ttacgtttat	1860
ttccggggga	gggtcccacc	tgtcaggact	gtaaagttcc	tgctggcttg	gtcagccccc	1920
ccacccccc	accccgagct	tgcaggtgcc	ctgctgtgag	gagagcagca	gcagaggctg	1980
cccctggaca	gaagcccagc	tctgcttccc	tcaggtgtcc	ctgcgtttcc	atcctccttc	2040
tttgtgaccg	ccatcttgca	gatgacccag	tcctcagcac	cccacccctg	cagatgggtt	2100
tctccgaggg	cctgcctcag	ggtcatcaga	ggttggctgc	cagcttagag	ctggggcttc	2160
catttgattg	gaaagtcatt	actattctat	gtagaagcca	ctccactgag	gtgtaaagca	2220
agactcataa	aggaggagcc	ttggtgtcat	ggaagtcact	ccgcgcgcag	gacctgtaac	2280
aacctctgaa	acactcagtc	ctgctgcagt	gacgtccttg	aaggcatcag	acagatgatt	2340
tgcagactgc	caagacttgt	cctgagccgt	gatttttaga	gtctggactc	atgaaacacc	2400
gccgagcgct	tactgtgcag	cctctgatgc	tggttggctg	aggctgcggg	gaggtggaca	2460
ctgtgggtgc	atccagtgca	gttgcttttg	tgcagttggg	tccagcagca	cagcccgcac	2520
tccagcctca	gctgcaggcc	acagtggcca	tggaggccgc	cagagcgagc	tggggtggat	2580
gcttgttcac	ttggagcagc	cttcccagga	cgtgcagctc	ccttcctgct	ttgtccttct	2640
gcttccttcc	ctggagtagc	aagcccacga	gcaatcgtga	ggggtgtgag	ggagctgcag	2700
aggcatcaga	gtggcctgca	gcggcgtgag	gccccttccc	ctccgacacc	cccctccaga	2760
ggagccgctc	cactgttatt	tattcacttt	gcccacagac	acccctgagt	gagcacaccc	2820
tgaaactgac	cgtgtaaggt	gtcagcctgc	acccaggacc	gtcaggtgca	gcaccgggtc	2880
agtcctaggg	ttgaggtagg	actgacacag	ccactgtgtg	gctggtgctg	gggcaggggc	2940
aggagctgag	ggtcttagaa	gcaatcttca	ggaacagaca	acagtggtga	catgtaaagt	3000
ccctgtggct	actgatgaca	tgtgtaggat	gaaggctggc	ctttctccca	tgactttcta	3060
gatcccgttc	cccgtctgct	ttccctgtga	gttagaaaac	acacaggctc	ctgtcctggt	3120
ggtgccgtgt	gcttgacatg	ggaaacttag	atgcctgctc	actggcgggc	acctcggcat	3180
cgccaccact	cagagtgaga	gcagtgctgt	ccagtgccga	ggccgcctga	ctcccggcag	3240
gactcttcag	gctctggcct	gccccagcac	accccgctgg	atctcagaca	ttccacaccc	3300
acacctcatt	ccctggacac	ttgggcaagc	aggcccgccc	ttccacctct	ggggtcagcc	3360

cctccattcc	gagttcacac	tgctctggag	caggccagga	ccggaagcaa	ggcagctggt	3420
gaggagcacc	ctcctgggaa	cagtgtaggt	gacagtcctg	agagtcagct	tgctagcgct	3480
gctggcacca	gtcaccttgc	tcagaagtgt	gtggctcttg	aggctgaaga	gactgatgat	3540
ggtgctcatg	actcttctgt	gaggggaact	tgaccttcac	attgggtggc	ttttttaaa	3600
ataagcgaag	gcagctggaa	ctccagtctg	cctcttgcca	gcacttcaca	ttttgccttt	3660
cacccagaga	agccagcaca	gagccactgg	ggaaggcgat	ggccttgcct	gcacaggctg	3720
aggagatggc	tcagccggcg	tccaggctgt	gtctggagca	gggggtgcac	agcagcctca	3780
caggtggggg	cctcagagca	ggcgctgccc	tgtcccctgc	cccgctggag	gcagcaaagc	3840
tgctgcatgc	cttaagtcaa	tacttactca	gcagggcgct	ctcgttctct	ctctctctct	3900
ctctctctct	ctctctctct	ctctctctct	ctctaaatgg	ccatagaata	aaccatttta	3960
caaaaataaa	agccaacaac	aaagtgctct	ggaatagcac	ctttgcagga	gcggggggtg	4020
tctcagggtc	ttctgtgacc	tcaccgaact	gtccgactgc	accgtttcca	acttgtgtct	4080
cactaatggg	tctgcattag	ttgcaacaat	aaatgttttt	aaagaac		4127

<210> SEQ ID NO 821

<211> LENGTH: 432

<212> TYPE: PRT

<213> ORGANISM: Rattus norvegicus

<400> SEQUENCE: 821

Met Glu Met Glu Lys Glu Phe Glu Gln Ile Asp Lys Ala Gly Asn Trp 1 $$ 10 $$ 15

Ala Ala Ile Tyr Gln Asp Ile Arg His Glu Ala Ser Asp Phe Pro Cys $20 \hspace{1cm} 25 \hspace{1cm} 30$

Arg Ile Ala Lys Leu Pro Lys Asn Lys Asn Arg Asn Arg Tyr Arg Asp $35 \hspace{1cm} 40 \hspace{1cm} 45$

Val Ser Pro Phe Asp His Ser Arg Ile Lys Leu His Gln Glu Asp Asn 50 60

Asp Tyr Ile Asn Ala Ser Leu Ile Lys Met Glu Glu Ala Gln Arg Ser 65 70 75 80

Tyr Ile Leu Thr Gln Gly Pro Leu Pro Asn Thr Cys Gly His Phe Trp 85 90 95

Glu Met Val Trp Glu Gln Lys Ser Arg Gly Val Val Met Leu Asn Arg 100 105 110

Ile Met Glu Lys Gly Ser Leu Lys Cys Ala Gln Tyr Trp Pro Gln Lys $115 \hspace{1.5cm} 120 \hspace{1.5cm} 125 \hspace{1.5cm}$

Glu Glu Lys Glu Met Val Phe Asp Asp Thr Asn Leu Lys Leu Thr Leu 130 140

Ile Ser Glu Asp Val Lys Ser Tyr Tyr Thr Val Arg Gln Leu Glu Leu 145 $$ 150 $$ 155 $$ 160

Glu Asn Leu Ala Thr Glu Glu Ala Arg Glu Ile Leu His Phe His Tyr $165 \hspace{1cm} 170 \hspace{1cm} 175$

Thr Trp Pro Asp Phe Gly Val Pro Glu Ser Pro Ala Ser Phe Leu
180 185 190

Asn Phe Leu Phe Lys Val Arg Glu Ser Gly Ser Leu Ser Pro Glu His

Phe 225	Cys	Leu	Ala	Asp	Thr 230	Сув	Leu	Leu	Leu	Met 235	Asp	Lys	Arg	Lys	Asp 240
Pro	Ser	Ser	Val	Asp 245	Ile	Lys	Lys	Val	Leu 250	Leu	Glu	Met	Arg	A rg 255	Phe
Arg	Met	Gly	Leu 260	Ile	Gln	Thr	Ala	Asp 265	Gln	Leu	Arg	Phe	Ser 270	Tyr	Leu
Ala	Val	Ile 275	Glu	Gly	Ala	Lys	Phe 280	Ile	Met	Gly	Asp	Ser 285	Ser	Val	Gln
Asp	Gln 290	Trp	Lys	Glu	Leu	Ser 295	His	Glu	Asp	Leu	Glu 300	Pro	Pro	Pro	Glu
His 305	Val	Pro	Pro	Pro	Pro 310	Arg	Pro	Pro	Lys	Arg 315	Thr	Leu	Glu	Pro	His 320
Asn	Gly	Lys	Сув	Lys 325	Glu	Leu	Phe	Ser	Asn 330	His	Gln	Trp	Val	Ser 335	Glu
Glu	Ser	Сув	Glu 340	Asp	Glu	Asp	Ile	Leu 345	Ala	Arg	Glu	Glu	Ser 350	Arg	Ala
Pro	Ser	Ile 355	Ala	Val	His	Ser	Met 360	Ser	Ser	Met	Ser	Gln 365	Asp	Thr	Glu
Val	Arg 370	Lys	Arg	Met	Val	Gly 375	Gly	Gly	Leu	Gln	Ser 380	Ala	Gln	Ala	Ser
Val 385	Pro	Thr	Glu	Glu	Glu 390	Leu	Ser	Pro	Thr	Glu 395	Glu	Glu	Gln	Lys	Ala 400
His	Arg	Pro	Val	His 405	Trp	Lys	Pro	Phe	Leu 410	Val	Asn	Val	Сув	Met 415	Ala
Thr	Ala	Leu	Ala 420	Thr	Gly	Ala	Tyr	Leu 425	Сув	Tyr	Arg	Val	Cys 430	Phe	His

<210> SEQ ID NO 822

<211> LENGTH: 2287

<212> TYPE: DNA <213> ORGANISM: Homo sapiens

<400> SEQUENCE: 822

ggggggcctg agcctctccg ccggcgcagg ctctgctcgc gccagctcgc tcccgcagcc 60 atgcccacca ccatcgagcg ggagttcgaa gagttggata ctcagcgtcg ctggcagccg ctgtacttgg aaattcgaaa tgagtcccat gactatcctc atagagtggc caagtttcca 180 gaaaacagaa atcgaaacag atacagagat gtaagcccat atgatcacag tcgtgttaaa 240 ctgcaaaatg ctgagaatga ttatattaat gccagtttag ttgacataga agaggcacaa 300 aggagttaca tcttaacaca gggtccactt cctaacacat gctgccattt ctggcttatg 360 gtttggcagc agaagaccaa agcagttgtc atgctgaacc gcattgtgga gaaagaatcg 420 480 gttaaatgtg cacagtactg gccaacagat gaccaagaga tgctgtttaa agaaacagga ttcagtgtga agctcttgtc agaagatgtg aagtcgtatt atacagtaca tctactacaa ttagaaaata tcaatagtgg tgaaaccaga acaatatctc actttcatta tactacctgg 600 ccagattttg gagtccctga atcaccagct tcatttctca atttcttgtt taaagtgaga 660 gaatctggct ccttgaaccc tgaccatggg cctgcggtga tccactgtag tgcaggcatt 720 gggcgctctg gcaccttctc tctggtagac acttgtcttg ttttgatgga aaaaggagat 780 840 gatattaaca taaaacaagt gttactgaac atgagaaaat accgaatggg tcttattcag

accccagatc	aactgagatt	ctcatacatg	gctataatag	aaggagcaaa	atgtataaag	900
ggagattcta	gtatacagaa	acgatggaaa	gaactttcta	aggaagactt	atctcctgcc	960
tttgatcatt	caccaaacaa	aataatgact	gaaaaataca	atgggaacag	aataggtcta	1020
gaagaagaaa	aactgacagg	tgaccgatgt	acaggacttt	cctctaaaat	gcaagataca	1080
atggaggaga	acagtgagag	tgctctacgg	aaacgtattc	gagaggacag	aaaggccacc	1140
acagctcaga	aggtgcagca	gatgaaacag	aggctaaatg	agaatgaacg	aaaaagaaaa	1200
aggtggttat	attggcaacc	tattctcact	aagatggggt	ttatgtcagt	cattttggtt	1260
ggcgcttttg	ttggctggag	actgttttt	cagcaaaatg	ccctataaac	aattaatttt	1320
gcccagcaag	cttctgcact	agtaactgac	agtgctacat	taatcatagg	ggtttgtctg	1380
cagcaaacgc	ctcatatccc	aaaaacggtg	cagtagaata	gacatcaacc	agataagtga	1440
tatttacagt	cacaagccca	acatctcagg	actcttgact	gcaggttcct	ctgaacccca	1500
aactgtaaat	ggctgtctaa	aataaagaca	ttcatgtttg	ttaaaaactg	gtaaattttg	1560
caactgtatt	catacatgtc	aaacacagta	tttcacctga	ccaacattga	gatatccttt	1620
atcacaggat	ttgtttttgg	aggctatctg	gattttaacc	tgcacttgat	ataagcaata	1680
aatattgtgg	ttttatctac	gttattggaa	agaaaatgac	atttaaataa	tgtgtgtaat	1740
gtataatgta	ctattgacat	gggcatcaac	acttttattc	ttaagcattt	cagggtaaat	1800
atattttata	agtatctatt	taatcttttg	tagttaactg	tactttttaa	gagctcaatt	1860
tgaaaaatct	gttactaaaa	aaaaaaattg	tatgtcgatt	gaattgtact	ggatacattt	1920
tccatttttc	taaaaagaag	tttgatatga	gcagttagaa	gttggaataa	gcaatttcta	1980
ctatatattg	catttcttt	atgttttaca	gttttcccca	ttttaaaaag	aaaagcaaac	2040
aaagaaacaa	aagtttttcc	taaaaatatc	tttgaaggaa	aattctcctt	actgggatag	2100
tcaggtaaac	agttggtcaa	gactttgtaa	agaaattggt	ttctgtaaat	cccattattg	2160
atatgtttat	ttttcatgaa	aatttcaatg	tagttggggt	agattatgat	ttaggaagca	2220
aaagtaagaa	gcagcatttt	atgattcata	atttcagttt	actagactga	agttttgaag	2280
taaaccc						2287

```
<210> SEQ ID NO 823
```

<211> LENGTH: 415

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 823

Arg Trp Gln Pro Leu Tyr Leu Glu Ile Arg Asn Glu Ser His Asp Tyr 20 25 30

Pro His Arg Val Ala Lys Phe Pro Glu Asn Arg Asn Arg Asn Arg Tyr 35 40 45

Arg Asp Val Ser Pro Tyr Asp His Ser Arg Val Lys Leu Gln Asn Ala 50 60

Glu Asn Asp Tyr Ile Asn Ala Ser Leu Val Asp Ile Glu Glu Ala Gln 65 70 75 80

Arg Ser Tyr Ile Leu Thr Gln Gly Pro Leu Pro Asn Thr Cys Cys His $85 \hspace{1cm} 90 \hspace{1cm} 95$

Phe	Trp	Leu	Met 100	Val	Trp	Gln	Gln	Lys 105	Thr	Lys	Ala	Val	Val 110	Met	Leu
Asn	Arg	Ile 115	Val	Glu	Lys	Glu	Ser 120	Val	Lys	Сув	Ala	Gln 125	Tyr	Trp	Pro
Thr	Asp 130	Asp	Gln	Glu	Met	Leu 135	Phe	Lys	Glu	Thr	Gly 140	Phe	Ser	Val	Lys
Leu 145	Leu	Ser	Glu	Asp	Val 150	Lys	Ser	Tyr	Tyr	Thr 155	Val	His	Leu	Leu	Gln 160
Leu	Glu	Asn	Ile	Asn 165	Ser	Gly	Glu	Thr	Arg 170	Thr	Ile	Ser	His	Phe 175	His
Tyr	Thr	Thr	Trp 180	Pro	Asp	Phe	Gly	Val 185	Pro	Glu	Ser	Pro	Ala 190	Ser	Phe
Leu	Asn	Phe 195	Leu	Phe	Lys	Val	Arg 200	Glu	Ser	Gly	Ser	Leu 205	Asn	Pro	Asp
His	Gly 210	Pro	Ala	Val	Ile	His 215	Cys	Ser	Ala	Gly	Ile 220	Gly	Arg	Ser	Gly
Thr 225	Phe	Ser	Leu	Val	Asp 230	Thr	Cys	Leu	Val	Leu 235	Met	Glu	Lys	Gly	Asp 240
Asp	Ile	Asn	Ile	Lys 245	Gln	Val	Leu	Leu	Asn 250	Met	Arg	Lys	Tyr	Arg 255	Met
Gly	Leu	Ile	Gln 260	Thr	Pro	Asp	Gln	Leu 265	Arg	Phe	Ser	Tyr	Met 270	Ala	Ile
Ile	Glu	Gly 275	Ala	Lys	Сув	Ile	Lys 280	Gly	Asp	Ser	Ser	Ile 285	Gln	Lys	Arg
Trp	Lys 290	Glu	Leu	Ser	Lys	Glu 295	Asp	Leu	Ser	Pro	Ala 300	Phe	Asp	His	Ser
Pro 305	Asn	Lys	Ile	Met	Thr 310	Glu	Lys	Tyr	Asn	Gly 315	Asn	Arg	Ile	Gly	Leu 320
Glu	Glu	Glu	Lys	Leu 325	Thr	Gly	Asp	Arg	Cys 330	Thr	Gly	Leu	Ser	Ser 335	Lys
Met	Gln	Asp	Thr 340	Met	Glu	Glu	Asn	Ser 345	Glu	Ser	Ala	Leu	Arg 350	Lys	Arg
Ile	Arg	Glu 355	Asp	Arg	Lys	Ala	Thr 360	Thr	Ala	Gln	Lys	Val 365	Gln	Gln	Met
Lys	Gln 370	Arg	Leu	Asn	Glu	Asn 375	Glu	Arg	Lys	Arg	Lys 380	Arg	Trp	Leu	Tyr
Trp 385	Gln	Pro	Ile	Leu	Thr 390	Lys	Met	Gly	Phe	Met 395	Ser	Val	Ile	Leu	Val 400
Gly	Ala	Phe	Val	Gly 405	Trp	Arg	Leu	Phe	Phe 410	Gln	Gln	Asn	Ala	Leu 415	
<211 <212)> SE L> LE 2> TY 3> OF	NGTH PE:	I: 24 DNA		sa <u>r</u>	oiens	3								
<400)> SE	QUE	ICE :	824											
gctcgggcgc cgagtctgcg cgctgacgtc cgacgctcca ggtactttcc ccacggccga															
cag	cagggettgg egtggggeg gggegeggeg egeagegege atgegeegea gegeeagege														
tcto	cccc	gga t	tegt	gegg	gg co	ctgag	geete	c to	egec	ggcg	cag	gete	cgc t	cgc	gccagc

togotocogo agocatgoco accaccatog agogggagtt ogaagagttg gatactcago

gtcgctggca gccgctgtac ttggaaattc gaaatgagtc ccatgactat cctcatagag	300
tggccaagtt tccagaaaac agaaatcgaa acagatacag agatgtaagc ccatatgatc	360
acagtcgtgt taaactgcaa aatgctgaga atgattatat taatgccagt ttagttgaca	420
tagaagaggc acaaaggagt tacatcttaa cacagggtcc acttcctaac acatgctgcc	480
atttctggct tatggtttgg cagcagaaga ccaaagcagt tgtcatgctg aaccgcattg	540
tggagaaaga atcggttaaa tgtgcacagt actggccaac agatgaccaa gagatgctgt	600
ttaaagaaac aggattcagt gtgaagctct tgtcagaaga tgtgaagtcg tattatacag	660
tacatctact acaattagaa aatatcaata gtggtgaaac cagaacaata tctcactttc	720
attatactac ctggccagat tttggagtcc ctgaatcacc agcttcattt ctcaatttct	780
tgtttaaagt gagagaatct ggctccttga accctgacca tgggcctgcg gtgatccact	840
gtagtgcagg cattgggcgc tctggcacct tctctctggt agacacttgt cttgttttga	900
tggaaaaagg agatgatatt aacataaaac aagtgttact gaacatgaga aaataccgaa	960
tgggtcttat tcagacccca gatcaactga gattctcata catggctata atagaaggag	1020
caaaatgtat aaagggagat tctagtatac agaaacgatg gaaagaactt tctaaggaag	1080
acttatctcc tgcctttgat cattcaccaa acaaaataat gactgaaaaa tacaatggga	1140
acagaatagg totagaagaa gaaaaactga caggtgaccg atgtacagga otttootota	1200
aaatgcaaga tacaatggag gagaacagtg agagtgctct acggaaacgt attcgagagg	1260
acagaaaggc caccacagct cagaaggtgc agcagatgaa acagaggcta aatgagaatg	1320
aacgaaaaag aaaaaggtgg ttatattggc aacctattct cactaagatg gggtttatgt	1380
	1440
cagtcatttt ggttggcgct tttgttggct ggagactgtt ttttcagcaa aatgccctat	
aaacaattaa ttttgcccag caagcttctg cactagtaac tgacagtgct acattaatca	1500
aaacaattaa ttttgcccag caagcttctg cactagtaac tgacagtgct acattaatca	1500
aaacaattaa ttttgcccag caagcttctg cactagtaac tgacagtgct acattaatca taggggtttg tctgcagcaa acgcctcata tcccaaaaac ggtgcagtag aatagacatc	1500 1560
aaacaattaa ttttgcccag caagcttctg cactagtaac tgacagtgct acattaatca taggggtttg tctgcagcaa acgcctcata tcccaaaaac ggtgcagtag aatagacatc aaccagataa gtgatattta cagtcacaag cccaacatct caggactctt gactgcaggt	1500 1560 1620
aaacaattaa ttttgcccag caagcttctg cactagtaac tgacagtgct acattaatca taggggtttg tctgcagcaa acgcctcata tcccaaaaac ggtgcagtag aatagacatc aaccagataa gtgatattta cagtcacaag cccaacatct caggactctt gactgcaggt tcctctgaac cccaaactgt aaatggctgt ctaaaataaa gacattcatg tttgttaaaa	1500 1560 1620 1680
aaacaattaa ttttgcccag caagcttctg cactagtaac tgacagtgct acattaatca taggggtttg tctgcagcaa acgcctcata tcccaaaaac ggtgcagtag aatagacatc aaccagataa gtgatattta cagtcacaag cccaacatct caggactctt gactgcaggt tcctctgaac cccaaactgt aaatggctgt ctaaaataaa gacattcatg tttgttaaaa actggtaaat tttgcaactg tattcataca tgtcaaacac agtatttcac ctgaccaaca	1500 1560 1620 1680
aaacaattaa ttttgcccag caagcttctg cactagtaac tgacagtgct acattaatca taggggtttg tctgcagcaa acgcctcata tcccaaaaac ggtgcagtag aatagacatc aaccagataa gtgatattta cagtcacaag cccaacatct caggactctt gactgcaggt tcctctgaac cccaaactgt aaatggctgt ctaaaataaa gacattcatg tttgttaaaa actggtaaat tttgcaactg tattcataca tgtcaaacac agtatttcac ctgaccaaca ttgagatatc ctttatcaca ggatttgtt ttggaggcta tctggattt aacctgcact	1500 1560 1620 1680 1740
aaacaattaa ttttgcccag caagcttctg cactagtaac tgacagtgct acattaatca taggggtttg tctgcagcaa acgcctcata tcccaaaaac ggtgcagtag aatagacatc aaccagataa gtgatattta cagtcacaag cccaacatct caggactctt gactgcaggt tcctctgaac cccaaactgt aaatggctgt ctaaaataaa gacattcatg tttgttaaaa actggtaaat tttgcaactg tattcataca tgtcaaacac agtattcac ctgaccaaca ttgagatatc ctttatcaca ggatttgtt ttggaggcta tctggattt aacctgcact tgatataagc aataaatat gtggtttat ctacgttatt ggaaagaaaa tgacatttaa	1500 1560 1620 1680 1740 1800
aaacaattaa ttttgcccag caagcttctg cactagtaac tgacagtgct acattaatca taggggtttg tctgcagcaa acgcctcata tcccaaaaac ggtgcagtag aatagacatc aaccagataa gtgatattta cagtcacaag cccaacatct caggactctt gactgcaggt tcctctgaac cccaaactgt aaatggctgt ctaaaataaa gacattcatg tttgttaaaa actggtaaat tttgcaactg tattcataca tgtcaaacac agtatttcac ctgaccaaca ttgagatatc ctttatcaca ggatttgtt ttggaggcta tctggattt aacctgcact tgatataagc aataaatatt gtggtttat ctacgttatt ggaaagaaaa tgacatttaa ataatgtgtg taatgtataa tgtactattg acatgggcat caacacttt attctaagc	1500 1560 1620 1680 1740 1800 1860
aaacaattaa ttttgcccag caagcttctg cactagtaac tgacagtgct acattaatca taggggtttg tctgcagcaa acgcctcata tcccaaaaac ggtgcagtag aatagacatc aaccagataa gtgatattta cagtcacaag cccaacatct caggactctt gactgcaggt tcctctgaac cccaaactgt aaatggctgt ctaaaataaa gacattcatg tttgttaaaa actggtaaat tttgcaactg tattcataca tgtcaaacac agtattcac ctgaccaaca ttgagatatc ctttatcaca ggatttgtt ttggaggcta tctggattt aacctgcact tgatataagc aataaatatt gtggttttat ctacgttatt ggaaagaaaa tgacatttaa ataatgtgtg taatgtataa tgtactattg acatgggcat caacacttt attcttaagc attcagggt aaatatatt tataagtatc tatttaatct tttgtagtta actgtacttt	1500 1560 1620 1680 1740 1800 1860
aaacaattaa ttttgcccag caagcttctg cactagtaac tgacagtgct acattaatca taggggtttg tctgcagcaa acgcctcata tcccaaaaac ggtgcagtag aatagacatc aaccagataa gtgatattta cagtcacaag cccaacatct caggactctt gactgcaggt tcctctgaac cccaaactgt aaatggctgt ctaaaataaa gacattcatg tttgttaaaa actggtaaat tttgcaactg tattcataca tgtcaaacac agtattcac ctgaccaaca ttgagatatc ctttatcaca ggatttgtt ttggaggcta tctggattt aacctgcact tgatataagc aataaatatt gtggtttat ctacgttatt ggaaagaaaa tgacatttaa ataatgtgtg taatgtataa tgtactattg acatgggcat caacactttt attcttaagc attcagggt aaatatatt tataagtac tatttaatct tttgtagtta actgtactt ttaagagctc aatttgaaaa atctgttact aaaaaaaaaa	1500 1560 1620 1680 1740 1800 1860 1920 1980 2040
aaacaattaa ttttgcccag caagcttctg cactagtaac tgacagtgct acattaatca taggggtttg tctgcagcaa acgcctcata tcccaaaaac ggtgcagtag aatagacatc aaccagataa gtgatattta cagtcacaag cccaacatct caggactctt gactgcaggt tcctctgaac cccaaactgt aaatggctgt ctaaaataaa gacattcatg tttgttaaaa actggtaaat tttgcaactg tattcataca tgtcaaacac agtattcac ctgaccaaca ttgagatatc ctttatcaca ggatttgtt ttggaggcta tctggattt aacctgcact tgatataagc aataaatatt gtggttttat ctacgttatt ggaaagaaaa tgacatttaa ataatgtgtg taatgtataa tgtactattg acatgggcat caacacttt attctaagc attcagggt aaatatatt tataagtac tatttaatct tttgtagtta actgtactt ttaagagctc aatttgaaaa atctgttact aaaaaaaaaa	1500 1560 1620 1680 1740 1800 1860 1920 1980 2040
aaacaattaa ttttgcccag caagcttctg cactagtaac tgacagtgct acattaatca taggggtttg tctgcagcaa acgcctcata tcccaaaaac ggtgcagtag aatagacatc aaccagataa gtgatattta cagtcacaag cccaacatct caggactctt gactgcaggt tcctctgaac cccaaactgt aaatggctgt ctaaaataaa gacattcatg tttgttaaaa actggtaaat tttgcaactg tattcataca tgtcaaacac agtattcac ctgaccaaca ttgagatatc ctttatcaca ggatttgtt ttggaggcta tctggattt aacctgcact tgatataagc aataaatatt gtggtttat ctacgttatt ggaaagaaaa tgacatttaa ataatgtgtg taatgtataa tgtactattg acatgggcat caacactttt attctaagc attcagggt aaatatatt tataagtac tatttaatct tttgtagtta actgtactt ttaagagctc aatttgaaaa atctgttact aaaaaaaaaa	1500 1560 1620 1680 1740 1800 1860 1920 1980 2040 2100 2160
aaacaattaa ttttgcccag caagcttctg cactagtaac tgacagtgct acattaatca taggggtttg tctgcagcaa acgcctcata tcccaaaaac ggtgcagtag aatagacatc aaccagataa gtgatattta cagtcacaag cccaacatct caggactctt gactgcaggt tcctctgaac cccaaactgt aaatggctgt ctaaaataaa gacattcatg tttgttaaaa actggtaaat tttgcaactg tattcataca tgtcaaacac agtattcac ctgaccaacattgagatatc ctttatcaca ggatttgtt ttggaggcta tctggattt aacctgcact tgatataagc aataaatatt gtggtttat ctacgttatt ggaaagaaaa tgacatttaa ataatgtgtg taatgtataa tgtactattg acatgggcat caacacttt attctaagc attcagggt aaatatatt tataagtac tatttaatct tttgtagtta actgtactt ttaagagctc aatttgaaaa atctgttact aaaaaaaaaa	1500 1560 1620 1680 1740 1800 1860 1920 1980 2040 2100 2160 2220
aaacaattaa ttttgcccag caagcttctg cactagtaac tgacagtgct acattaatca taggggtttg tctgcagcaa acgcctcata tcccaaaaac ggtgcagtag aatagacatc aaccagataa gtgatattta cagtcacaag cccaacatct caggactctt gactgcaggt tcctctgaac cccaaactgt aaatggctgt ctaaaataaa gacattcatg tttgttaaaa actggtaaat tttgcaactg tattcataca tgtcaaacac agtattcac ctgaccaaca ttgagatatc ctttatcaca ggatttgtt ttggaggcta tctggattt aacctgcact tgatataagc aataaatatt gtggtttat ctacgttatt ggaaagaaaa tgacatttaa ataatgtgtg taatgtataa tgtactattg acatgggcat caacactttt attctaagc attcagggt aaatatatt tataagtac tatttaatct tttgtagtta actgtactt ttaagagctc aatttgaaaa atctgttact aaaaaaaaaa	1500 1560 1620 1680 1740 1800 1860 1920 1980 2040 2100 2160 2220
aaacaattaa ttttgcccag caagcttctg cactagtaac tgacagtgct acattaatca taggggtttg tctgcagcaa acgcctcata tcccaaaaac ggtgcagtag aatagacatc aaccagataa gtgatattta cagtcacaag cccaacatct caggactctt gactgcaggt tcctctgaac cccaaactgt aaatggctgt ctaaaataaa gacattcatg tttgttaaaa actggtaaat tttgcaactg tattcataca tgtcaaacac agtattcac ctgaccaaca ttgagatatc ctttatcaca ggatttgtt ttggaggcta tctggattt aacctgcact tgatataagc aataaatatt gtggttttat ctacgttatt ggaaaagaaaa	1500 1560 1620 1680 1740 1800 1860 1920 1980 2040 2100 2160 2220 2280

<211)> SE .> LE ?> TY	NGTH	: 41												
<213	3> OR	GANI	SM:	Homo	sap	iens	s								
<400)> SE	QUEN	ICE :	825											
Met 1	Pro	Thr	Thr	Ile 5	Glu	Arg	Glu	Phe	Glu 10	Glu	Leu	Asp	Thr	Gln 15	Arg
Arg	Trp	Gln	Pro 20	Leu	Tyr	Leu	Glu	Ile 25	Arg	Asn	Glu	Ser	His 30	Asp	Tyr
Pro	His	Arg 35	Val	Ala	Lys	Phe	Pro 40	Glu	Asn	Arg	Asn	Arg 45	Asn	Arg	Tyr
Arg	Asp 50	Val	Ser	Pro	Tyr	Asp 55	His	Ser	Arg	Val	Lys 60	Leu	Gln	Asn	Ala
Glu 65	Asn	Asp	Tyr	Ile	Asn 70	Ala	Ser	Leu	Val	Asp 75	Ile	Glu	Glu	Ala	Gln 80
Arg	Ser	Tyr	Ile	Leu 85	Thr	Gln	Gly	Pro	Leu 90	Pro	Asn	Thr	Сув	Cys 95	His
Phe	Trp	Leu	Met 100	Val	Trp	Gln	Gln	Lys 105	Thr	Lys	Ala	Val	Val 110	Met	Leu
Asn	Arg	Ile 115	Val	Glu	Lys	Glu	Ser 120	Val	Lys	Сув	Ala	Gln 125	Tyr	Trp	Pro
Thr	Asp 130	Asp	Gln	Glu	Met	Leu 135	Phe	Lys	Glu	Thr	Gly 140	Phe	Ser	Val	Lys
Leu 145	Leu	Ser	Glu	Asp	Val 150	Lys	Ser	Tyr	Tyr	Thr 155	Val	His	Leu	Leu	Gln 160
Leu	Glu	Asn	Ile	Asn 165	Ser	Gly	Glu	Thr	Arg 170	Thr	Ile	Ser	His	Phe 175	His
Tyr	Thr	Thr	Trp 180	Pro	Asp	Phe	Gly	Val 185	Pro	Glu	Ser	Pro	Ala 190	Ser	Phe
Leu	Asn	Phe 195	Leu	Phe	Lys	Val	Arg 200	Glu	Ser	Gly	Ser	Leu 205	Asn	Pro	Asp
His	Gly 210	Pro	Ala	Val	Ile	His 215	Cys	Ser	Ala	Gly	Ile 220	Gly	Arg	Ser	Gly
Thr 225	Phe	Ser	Leu	Val	Asp 230	Thr	Cys	Leu	Val	Leu 235	Met	Glu	Lys	Gly	Asp 240
Asp	Ile	Asn	Ile	L y s 245	Gln	Val	Leu	Leu	Asn 250	Met	Arg	Lys	Tyr	Arg 255	Met
Gly	Leu	Ile	Gln 260	Thr	Pro	Asp	Gln	Leu 265	Arg	Phe	Ser	Tyr	Met 270	Ala	Ile
Ile	Glu	Gly 275	Ala	Lys	Cys	Ile	L y s 280	Gly	Asp	Ser	Ser	Ile 285	Gln	Lys	Arg
Trp	L y s 290	Glu	Leu	Ser	Lys	Glu 295	Asp	Leu	Ser	Pro	Ala 300	Phe	Asp	His	Ser
Pro 305	Asn	Lys	Ile	Met	Thr 310	Glu	Lys	Tyr	Asn	Gly 315	Asn	Arg	Ile	Gly	Leu 320
Glu	Glu	Glu	Lys	Leu 325	Thr	Gly	Asp	Arg	Cys 330	Thr	Gly	Leu	Ser	Ser 335	Lys
Met	Gln	Ąsp	Thr 340	Met	Glu	Glu	Asn	Ser 345	Glu	Ser	Ala	Leu	Arg 350	Lys	Arg
Ile	Arg	Glu 355	Asp	Arg	Lys	Ala	Thr 360	Thr	Ala	Gln	Lys	Val 365	Gln	Gln	Met

Lys Gln Arg Leu Asn Glu Asn Glu Arg Lys Arg Lys Arg Trp Leu Tyr Trp Gln Pro Ile Leu Thr Lys Met Gly Phe Met Ser Val Ile Leu Val 385 Gly Ala Phe Val Gly Trp Arg Leu Phe Phe Gln Gln Asn Ala Leu <210> SEQ ID NO 826 <211> LENGTH: 1714 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 826 gctcqqqcqc cqaqtctqcq cqctqacqtc cqacqctcca qqtactttcc ccacqqccqa 60 120 caqqqcttqq cqtqqqqcq qqqcqcqcq cqcaqcqcc atqcqccqca qcqccaqcqc teteccegga tegtgegggg cetgageete teegeeggeg caggetetge tegegecage 180 tegeteeege agecatgeee accaecateg agegggagtt egaagagttg gatacteage gtcgctggca gccgctgtac ttggaaattc gaaatgagtc ccatgactat cctcatagag 300 tggccaagtt tccagaaaac agaaatcgaa acagatacag agatgtaagc ccatatgatc 360 acaqtcqtqt taaactqcaa aatqctqaqa atqattatat taatqccaqt ttaqttqaca 420 tagaaqaqqc acaaaqqaqt tacatcttaa cacaqqqtcc acttcctaac acatqctqcc 480 atttctqqct tatqqtttqq caqcaqaaqa ccaaaqcaqt tqtcatqctq aaccqcattq 540 tggagaaaga atcggttaaa tgtgcacagt actggccaac agatgaccaa gagatgctgt 600 ttaaagaaac aggattcagt gtgaagctct tgtcagaaga tgtgaagtcg tattatacag 660 tacatctact acaattagaa aatatcaata gtggtgaaac cagaacaata tctcactttc 720 attatactac ctggccagat tttggagtcc ctgaatcacc agcttcattt ctcaatttct 780 tgtttaaagt gagagaatct ggctccttga accctgacca tgggcctgcg gtgatccact 840 qtaqtqcaqq cattqqqcqc tctqqcacct tctctctqqt aqacacttqt cttqttttqa 900 960 tggaaaaagg agatgatatt aacataaaac aagtgttact gaacatgaga aaataccgaa tgggtcttat tcagacccca gatcaactga gattctcata catggctata atagaaggag 1020 1080 caaaatgtat aaagggagat tctagtatac agaaacgatg gaaagaactt tctaaggaag acttatctcc tgcctttgat cattcaccaa acaaaataat gactgaaaaa tacaatggga 1140 acagaatagg totagaagaa gaaaaactga caggtgaccg atgtacagga otttootota 1200 1260 aaatgcaaga tacaatggag gagaacagtg agagtgctct acggaaacgt attcgagagg acaqaaaqqc caccacaqct caqaaqqtqc aqcaqatqaa acaqaqqcta aatqaqaatq 1320 1380 aacqaaaaaq aaaaaqqcca aqattqacaq acacctaata ttcatqactt qaqaatattc tgcagctata aattttgaac cattgatgtg caaagcaaga cctgaagccc actccggaaa 1440 ctaaagtgag gctcgctaac cctctagatt gcctcacagt tgtttgttta caaagtaaac 1500 tttacatcca ggggatgaag agcacccacc agcagaagac tttgcagaac ctttaattgg 1560 atgtgttaag tgtttttaat gagtgtatga aatgtagaaa gatgtacaag aaataaatta 1620

qqaqaqatta ctttqtattq tactqccatt cctactqtat ttttatactt tttqqcaqca

ttaaatattt ttgttaaata aaaaaaaaaa aaaa

1680 1714

<213	0> SE 1> LE 2> TY 3> OE	ENGTH	1: 38 PRT	37	sap	oiens	5								
<400	O> SE	EQUE	ICE:	827											
Met 1	Pro	Thr	Thr	Ile 5	Glu	Arg	Glu	Phe	Glu 10	Glu	Leu	Asp	Thr	Gln 15	Arg
Arg	Trp	Gln	Pro 20	Leu	Tyr	Leu	Glu	Ile 25	Arg	Asn	Glu	Ser	His 30	Asp	Tyr
Pro	His	Arg 35	Val	Ala	Lys	Phe	Pro 40	Glu	Asn	Arg	Asn	Arg 45	Asn	Arg	Tyr
Arg	Asp 50	Val	Ser	Pro	Tyr	Asp 55	His	Ser	Arg	Val	Lys 60	Leu	Gln	Asn	Ala
Glu 65	Asn	Asp	Tyr	Ile	Asn 70	Ala	Ser	Leu	Val	Asp 75	Ile	Glu	Glu	Ala	Gln 80
Arg	Ser	Tyr	Ile	Leu 85	Thr	Gln	Gly	Pro	Leu 90	Pro	Asn	Thr	Сув	С у в 95	His
Phe	Trp	Leu	Met 100	Val	Trp	Gln	Gln	L y s 105	Thr	Lys	Ala	Val	Val 110	Met	Leu
Asn	Arg	Ile 115	Val	Glu	Lys	Glu	Ser 120	Val	Lys	Cys	Ala	Gln 125	Tyr	Trp	Pro
Thr	Asp 130	Asp	Gln	Glu	Met	Leu 135	Phe	Lys	Glu	Thr	Gly 140	Phe	Ser	Val	Lys
Leu 145	Leu	Ser	Glu	Asp	Val 150	Lys	Ser	Tyr	Tyr	Thr 155	Val	His	Leu	Leu	Gln 160
Leu	Glu	Asn	Ile	Asn 165	Ser	Gly	Glu	Thr	Arg 170	Thr	Ile	Ser	His	Phe 175	His
Tyr	Thr	Thr	Trp 180	Pro	Asp	Phe	Gly	Val 185	Pro	Glu	Ser	Pro	Ala 190	Ser	Phe
Leu	Asn	Phe 195	Leu	Phe	Lys	Val	Arg 200	Glu	Ser	Gly	Ser	Leu 205	Asn	Pro	Asp
His	Gly 210	Pro	Ala	Val	Ile	His 215	Сув	Ser	Ala	Gly	Ile 220	Gly	Arg	Ser	Gly
Thr 225	Phe	Ser	Leu	Val	Asp 230	Thr	Сув	Leu	Val	Leu 235	Met	Glu	Lys	Gly	Asp 240
Asp	Ile	Asn	Ile	Lys 245	Gln	Val	Leu	Leu	Asn 250	Met	Arg	Lys	Tyr	Arg 255	Met
Gly	Leu	Ile	Gln 260	Thr	Pro	Asp	Gln	Leu 265	Arg	Phe	Ser	Tyr	Met 270	Ala	Ile
Ile	Glu	Gly 275	Ala	Lys	Сув	Ile	L y s 280	Gly	Asp	Ser	Ser	Ile 285	Gln	Lys	Arg
Trp	Lys 290	Glu	Leu	Ser	Lys	Glu 295	Asp	Leu	Ser	Pro	Ala 300	Phe	Asp	His	Ser
Pro 305	Asn	Lys	Ile	Met	Thr 310	Glu	Lys	Tyr	Asn	Gly 315	Asn	Arg	Ile	Gly	Leu 320
Glu	Glu	Glu	Lys	Leu 325	Thr	Gly	Asp	Arg	Cys 330	Thr	Gly	Leu	Ser	Ser 335	Lys
Met	Gln	Asp	Thr 340	Met	Glu	Glu	Asn	Ser 345	Glu	Ser	Ala	Leu	Arg 350	Lys	Arg
Ile	Arg	Glu 355	Asp	Arg	Lys	Ala	Thr 360	Thr	Ala	Gln	Lys	Val 365	Gln	Gln	Met

Lys Gln Arg Leu Asn Glu Asn Glu Arg Lys Arg Lys Arg Pro Arg Leu 370 375 380

Thr Asp Thr 385

<210> SEQ ID NO 828 <211> LENGTH: 1555

<211> LENGTH: 1555 <212> TYPE: DNA

<213> ORGANISM: Mus musculus

<400> SEQUENCE: 828

tctccccgga tagagcgggg cccgagcctg tccgctgtgg tagttccgct cggctgcccc 60 gccgccatgt cggcaaccat cgagcgggag ttcgaggaac tggatgctca gtgtcgctgg 120 cagoogttat acttqqaaat toqaaatqaa toocatqact atcotcataq aqtqqocaaq 180 tttccaqaaa acaqaaaccq aaacaqatac agaqatqtaa qcccatatqa tcacaqtcqt 240 gttaaactgc aaagtactga aaatgattat attaatgcca gcttagttga catagaagag 360 gcacaaagaa gttacatctt aacacagggc ccacttccga acacatgctg ccatttctgg ctcatggtgt ggcagcaaaa gaccaaagca gttgtcatgc taaaccgaac tgtagaaaaa 420 gaatcggtta aatgtgcaca gtactggcca acggatgaca gagaaatggt gtttaaggaa 480 acgggattca gtgtgaagct cttatctgaa gatgtaaaat catattatac agtacatcta 540 ctacaqttaq aaaatatcaa tactqqtqaa acqaqaacca tatctcactt ccattatacc 600 acctggccag attttggggt tccagagtca ccagcttcat ttctaaactt cttgtttaaa 660 gttagagaat ctggttgttt gacccctgac catggacctg cagtgatcca ttgcagtgcg ggcatcgggc gctctggcac cttctctctt gtagatacct gtcttgttct gatggaaaaa 780 ggagaggatg ttaatgtgaa acaattatta ctgaatatga gaaagtatcg aatgggactt 840 attcagacac cggaccaact cagattctcc tacatggcca taatagaagg agcaaagtac 900 acaaaaggag attcaaatat acagaaacgg tggaaagaac tttctaaaga agatttatct 960 cctatttgtg atcattcaca gaacagagtg atggttgaga agtacaatgg gaagagaata 1020 ggttcagaag atgaaaagtt aacagggctt ccttctaagg tgcaggatac tgtggaggag 1080 agcagtgaga gcattctacg gaaacgtatt cgagaggata gaaaggctac gacggctcag 1140 aaggtgcagc agatgaaaca gaggctaaat gaaactgaac gaaaaagaaa aaggccaaga 1200 ttgacagaca cctaaatgtt catgacttga gactattctg cagctataaa atttgaacct 1260 ttgatgtgca aagcaagacc tgaagcccac tccggaaact aaagtgaggc ttgctaaccc 1320 tgtagattgc ctcacaagtt gtctgtttac aaagtaagct ttccatccag gggatgaaga 1380 acgccaccag cagaagactt gcaaaccctt taatttgatg tattgttttt taacatgtgt 1440 atgaaatgta gaaagatgta aaggaaataa attaggagcg actactttgt attgtactgc 1500 cattcctaat gtatttttat actttttggc agcattaaat atttttatta aatag 1555

<210> SEQ ID NO 829

<211> LENGTH: 382

<212> TYPE: PRT

<213> ORGANISM: Mus musculus

<400> SEOUENCE: 829

Met Ser Ala Thr Ile Glu Arg Glu Phe Glu Glu Leu Asp Ala Gln Cys

1				5					10					15	
Arg	Trp	Gln	Pro 20	Leu	Tyr	Leu	Glu	Ile 25	Arg	Asn	Glu	Ser	His 30	Asp	Tyr
Pro	His	Arg 35	Val	Ala	Lys	Phe	Pro 40	Glu	Asn	Arg	Asn	Arg 45	Asn	Arg	Tyr
Arg	Asp 50	Val	Ser	Pro	Tyr	Asp 55	His	Ser	Arg	Val	Lys 60	Leu	Gln	Ser	Thr
Glu 65	Asn	Asp	Tyr	Ile	Asn 70	Ala	Ser	Leu	Val	Asp 75	Ile	Glu	Glu	Ala	Gln 80
Arg	Ser	Tyr	Ile	Leu 85	Thr	Gln	Gly	Pro	Leu 90	Pro	Asn	Thr	Сув	С у в 95	His
Phe	Trp	Leu	Met 100	Val	Trp	Gln	Gln	Lys 105	Thr	Lys	Ala	Val	Val 110	Met	Leu
Asn	Arg	Thr 115	Val	Glu	Lys	Glu	Ser 120	Val	Lys	Cys	Ala	Gln 125	Tyr	Trp	Pro
Thr	Asp 130	Asp	Arg	Glu	Met	Val 135	Phe	Lys	Glu	Thr	Gly 140	Phe	Ser	Val	Lys
Leu 145	Leu	Ser	Glu	Asp	Val 150	Lys	Ser	Tyr	Tyr	Thr 155	Val	His	Leu	Leu	Gln 160
Leu	Glu	Asn	Ile	Asn 165	Thr	Gly	Glu	Thr	Arg 170	Thr	Ile	Ser	His	Phe 175	His
Tyr	Thr	Thr	Trp 180	Pro	Asp	Phe	Gly	Val 185	Pro	Glu	Ser	Pro	Ala 190	Ser	Phe
Leu	Asn	Phe 195	Leu	Phe	Lys	Val	Arg 200	Glu	Ser	Gly	Сув	Leu 205	Thr	Pro	Asp
His	Gly 210	Pro	Ala	Val	Ile	His 215	Cys	Ser	Ala	Gly	Ile 220	Gly	Arg	Ser	Gly
Thr 225	Phe	Ser	Leu	Val	Asp 230	Thr	Cys	Leu	Val	Leu 235	Met	Glu	Lys	Gly	Glu 240
Asp	Val	Asn	Val	Lys 245	Gln	Leu	Leu	Leu	Asn 250	Met	Arg	Lys	Tyr	A rg 255	Met
Gly	Leu	Ile	Gln 260	Thr	Pro	Asp	Gln	Leu 265	Arg	Phe	Ser	Tyr	Met 270	Ala	Ile
Ile	Glu	Gly 275	Ala	Lys	Tyr	Thr	Lys 280	Gly	Asp	Ser	Asn	Ile 285	Gln	Lys	Arg
Trp	Lys 290	Glu	Leu	Ser	Lys	Glu 295	Asp	Leu	Ser	Pro	Ile 300	Cys	Asp	His	Ser
Gln 305	Asn	Arg	Val	Met	Val 310	Glu	Lys	Tyr	Asn	Gly 315	Lys	Arg	Ile	Gly	Ser 320
Glu	Asp	Glu	Lys	Leu 325	Thr	Gly	Leu	Pro	Ser 330	Lys	Val	Gln	Asp	Thr 335	Val
Glu	Glu	Ser	Ser 340	Glu	Ser	Ile	Leu	Arg 345	Lys	Arg	Ile	Arg	Glu 350	Asp	Arg
Lys	Ala	Thr 355	Thr	Ala	Gln	Lys	Val 360	Gln	Gln	Met	Lys	Gln 365	Arg	Leu	Asn
Glu	Thr 370	Glu	Arg	Lys	Arg	Lys 375	Arg	Pro	Arg	Leu	Thr 380	Asp	Thr		

<210> SEQ ID NO 830 <211> LENGTH: 1666 <212> TYPE: DNA <213> ORGANISM: Homo sapiens

```
<400> SEQUENCE: 830
ggccccccgt tccccgccag gctgcaggcg tcgggcctgg gccgtcaggg cagctgtgac
                                                                      60
cggatcgctt cccgggcggc gagctggggg tgcacccgga ccgccqcccc cgggatcatg
                                                                     120
qqcaatqqca tqaccaaqqt acttcctqqa ctctacctcq qaaacttcat tqatqccaaa
gacctggatc agctgggccg aaataagatc acacacatca tctctatcca tgagtcaccc
cagectetge tgcaggatat cacetacett egeateeegg tegetgatae eeetgaggta
                                                                     300
cccatcaaaa agcacttcaa agaatgtatc aacttcatcc actgctgccg ccttaatggg
                                                                     360
gggaactgcc ttgtgcactg ctttgcaggc atctctcgca gcaccacgat tgtgacagcg
                                                                     420
tatgtgatga ctgtgacggg gctaggctgg cgggacgtgc ttgaagccat caaggccacc
                                                                     480
aggcccatcg ccaaccccaa cccaggcttt aggcagcagc ttgaagagtt tggctgggcc
                                                                     540
agttcccaga agggtgccag acataggacc tcaaaaacct ctggtgccca atgccctccg
                                                                     600
atgacttcag caacctggat ggtcaccgga cccaaagtac cagatctgtc tgtgcttcgg
                                                                     720
tgaggaggac ccgggcccca cacagcaccc caaggagcag ctcatcatgg cggacgtgca
ggtgcagctt cggcctggga gctcgtcctg cactctaagt gcctcaaccg agcgcccaga
                                                                     780
tgggtcctca acccctggca accccgatgg catcactcac cttcaatgca gctgcctcca
                                                                     840
tectaagega geegetteet ettettgtae eegetgaagg eageeeceaa eagggggget
                                                                     900
                                                                     960
ccctactccc acccaaccct qcccacacta aqcccataqa cttqqqqcct ccccqqcac
atcacccagg tctgccggac ggcagaggtg gatcgcggcc ttccactcct ctgtcacggg
                                                                    1020
gccccggaac tcgagagtag gccacaccgc cccccagctg ggcatggggc ttcggcagga
                                                                     1140
aactgaactt gatcttgagg ccccagaaag gcagcaactg gagcagaagc aagacttcat
ctcttgctga cagcccaatt tgtcaatagc gctttcctca gagccagcct taacctgctg
                                                                    1200
ttgagtccat taaaacgttt gcttaaagtt tttaccaata attagatcat cagggttgtt
                                                                    1260
tagtqtqqqa tcaaqccata acaaaactqc ctaqcctctc aqqqqcctaq aatttacaqa
                                                                    1320
accttcctcc tccctgcagc aagtctctct tctttattct gggggctggg aaggatccca
                                                                    1380
aaacaqqqaa cttqqccqaa ccctqqqctt tqqatqctaa ccactqaaqt accaqcacct
                                                                    1440
gtaggatgct gtctttgaag aaactgaggc ggacctccaa atgcagccct aaggcagagg
                                                                    1500
tcaacgtgga agaccagccc ttctccaagc cccactggtc tttgcaagct gtacgttgta
                                                                    1560
ggcaatctga gaactggaaa gggggactac aaccagaaag ttggttaccc tgccatggga
                                                                    1620
ataaagtagc tgttttccac cccaaaaaaa aaaaaaaaa aaaaaa
                                                                    1666
```

```
<210> SEQ ID NO 831
```

<211> LENGTH: 181

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 831

Met Gly Asn Gly Met Thr Lys Val Leu Pro Gly Leu Tyr Leu Gly Asn

Phe Ile Asp Ala Lys Asp Leu Asp Gln Leu Gly Arg Asn Lys Ile Thr 20 25 30

His Ile Ile Ser Ile His Glu Ser Pro Gln Pro Leu Leu Gln Asp Ile 35 40 45

Thr Tyr Leu Arg Ile Pro Val Ala Asp Thr Pro Glu Val Pro Ile Lys Lys His Phe Lys Glu Cys Ile Asn Phe Ile His Cys Cys Arg Leu Asn 65 70 75 80 Gly Gly Asn Cys Leu Val His Cys Phe Ala Gly Ile Ser Arg Ser Thr $85 \hspace{1cm} 90 \hspace{1cm} 95$ Thr Ile Val Thr Ala Tyr Val Met Thr Val Thr Gly Leu Gly Trp Arg $100 \hspace{1.5cm} 105 \hspace{1.5cm} 105$ Asp Val Leu Glu Ala Ile Lys Ala Thr Arg Pro Ile Ala Asn Pro Asn Pro Gly Phe Arg Gln Gln Leu Glu Glu Phe Gly Trp Ala Ser Ser Gln Lys Gly Ala Arg His Arg Thr Ser Lys Thr Ser Gly Ala Gln Cys Pro Pro Met Thr Ser Ala Thr Trp Met Val Thr Gly Pro Lys Val Pro Asp Leu Ser Val Leu Arg <210> SEO ID NO 832 <211> LENGTH: 1807 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 832 ggccccccgt tccccgccag gctgcaggcg tcgggcctgg gccgtcaggg cagctgtgac 60 cggatcgctt cccgggcggc gagctggggg tgcacccgga ccgccgcccc cgggatcatg ggcaatggca tgaccaaggt acttcctgga ctctacctcg gaaacttcat tgatgccaaa gacctggatc agctgggccg aaataagatc acacacatca tctctatcca tgagtcaccc 240 cagectetge tgcaggatat cacetacett egcatecegg tegetgatae eeetgaggta 300 cccatcaaaa agcacttcaa agaatgtatc aacttcatcc actgctgccg ccttaatggg 360 gggaactgcc ttgtgcactg ctttgcaggc atctctcgca gcaccacgat tgtgacagcg 420 tatqtqatqa ctqtqacqqq qctaqqctqq cqqqacqtqc ttqaaqccat caaqqccacc aggcccatcg ccaaccccaa cccaggcttt aggcagcagc ttgaagagtt tggctgggcc 600 agttcccaga agggtgccag acataggacc tcaaaaacct ctggtgccca atgccctccg atgacttcag caacctgcct gctggctgca cgtgtggctc ttctctccgc agcgctggtg 660 cgcgaagcca ccgggcgcac agcccagcgc tgtcgtctga gtccgcgggc ggccgccgag 720 780 cgcctgctgg ggccgccacc tcacgttgca gcaggatggt caccggaccc aaagtaccag atetytetyt getteggtga ggaggaeeeg ggeeeeacae ageaeeecaa ggageagete 840 atcatggegg acgtgcaggt gcagcttegg cetgggaget egteetgeac tetaagtgee tcaaccgagc gcccagatgg gtcctcaacc cctggcaacc ccgatggcat cactcacctt caatgcagct gcctccatcc taagcgagcc gcttcctctt cttgtacccg ctgaaggcag 1020

cccccaacag gggggctccc tactcccacc caaccctgcc cacactaagc ccatagactt

ggggcctccc cggcggcaca tcacccaggt ctgccggacg gcagaggtgg atcgcggcct

tocactcotc tgtcacgggg coccggaact cgagagtagg ccacaccgcc ccccagetgg

qcatqqqqct tcqqcaqqaa actqaacttq atcttqaqqc cccaqaaaqq caqcaactqq

1080

1140 1200

1260

agcagaagca	agacttcatc	tcttgctgac	agcccaattt	gtcaatagcg	ctttcctcag	1320
agccagcctt	aacctgctgt	tgagtccatt	aaaacgtttg	cttaaagttt	ttaccaataa	1380
ttagatcatc	agggttgttt	agtgtgggat	caagccataa	caaaactgcc	tagcctctca	1440
ggggcctaga	atttacagaa	ccttcctcct	ccctgcagct	agtctctctt	ctttattctg	1500
ggggctggga	aggatcccaa	aacagggaac	ttggccgaac	cctgggcttt	ggatgctaac	1560
cactgaagta	ccagcacctg	taggatgctg	tctttgaaga	aactgaggcg	gacctccaaa	1620
tgcagcccta	aggcagaggt	caacgtggaa	gaccagccct	tctccaagcc	ccactggtct	1680
ttgcaagctg	tacgttgtag	gcaatctgag	aactggaaag	ggggactaca	accagaaagt	1740
tggttaccct	gccatgggaa	taaagtagct	gttttccacc	ccaaaaaaaa	aaaaaaaaa	1800
aaaaaaa						1807

<210> SEQ ID NO 833

<211> LENGTH: 298

<212> TYPE: PRT

<213> ORGANISM: Homo sapiens

<400> SEQUENCE: 833

Met Gly Asn Gly Met Thr Lys Val Leu Pro Gly Leu Tyr Leu Gly Asn 1 5 10 10 15

Phe Ile Asp Ala Lys Asp Leu Asp Gln Leu Gly Arg Asn Lys Ile Thr \$20\$

His Ile Ile Ser Ile His Glu Ser Pro Gln Pro Leu Leu Gln Asp Ile 35 4045

Thr Tyr Leu Arg Ile Pro Val Ala Asp Thr Pro Glu Val Pro Ile Lys 50 60

Lys His Phe Lys Glu Cys Ile Asn Phe Ile His Cys Cys Arg Leu Asn 65 70 75 80

Gly Gly Asn Cys Leu Val His Cys Phe Ala Gly Ile Ser Arg Ser Thr 85 90 95

Asp Val Leu Glu Ala Ile Lys Ala Thr Arg Pro Ile Ala Asn Pro Asn 115 120 125

Pro Gly Phe Arg Gln Gln Leu Glu Glu Phe Gly Trp Ala Ser Ser Gln 130 135 140

Lys Gly Ala Arg His Arg Thr Ser Lys Thr Ser Gly Ala Gln Cys Pro 145 150 155 160

Pro Met Thr Ser Ala Thr Cys Leu Leu Ala Ala Arg Val Ala Leu Leu 165 \$170\$

Arg Leu Ser Pro Arg Ala Ala Ala Glu Arg Leu Leu Gly Pro Pro Pro 195 200 205

His Val Ala Ala Gly Trp Ser Pro Asp Pro Lys Tyr Gln Ile Cys Leu 210 215 220

Cys Phe Gly Glu Glu Asp Pro Gly Pro Thr Gln His Pro Lys Glu Gln 225 235 240

Leu Ile Met Ala Asp Val Gln Val Gln Leu Arg Pro Gly Ser Ser Ser 245 250 255

Cys Thr Leu Ser Ala Ser Thr Glu Arg Pro Asp Gly Ser Ser Thr Pro Gly Asn Pro Asp Gly Ile Thr His Leu Gln Cys Ser Cys Leu His Pro Lys Arg Ala Ala Ser Ser Ser Cys Thr Arg <210> SEQ ID NO 834 <211> LENGTH: 1268 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 834 ggccccccgt tccccgccag gctgcaggcg tcgggcctgg gccgtcaggg cagctgtgac 60 cqqatcqctt cccqqqcqqc qaqctqqqqq tqcacccqqa ccqccqccc cqqqatcatq 120 ggcaatggca tgaccaaggt acttcctgga ctctacctcg gaaacttcat tgatgccaaa gacctggatc agctgggccg aaataagatc acacacatca tctctatcca tgagtcaccc cagoctotgo tgcaggatat cacotacott cgcatcccgg tcgctgatac ccctgaggta 300 cccatcaaaa agcacttcaa agaatgtatc aacttcatcc actgctgccg ccttaatggg 360 qqqaactqcc ttqtqcactq ctttqcaqqc atctctcqca qcaccacqat tqtqacaqcq 420 480 tatgtgatga ctgtgacggg gctaggctgg cgggacgtgc ttgaagccat caaggccacc 540 aggcccatcq ccaaccccaa cccaggcttt aggcagcagc ttgaagagtt tggctqggcc 600 agttcccaqa agggtqccaq acataggacc tcaaaaacct ctggtqccca atgccctccq atgacttcag caacctggat ggtcaccgga cccaaagtac cagatctgtc tgtgcttcgg 660 tgaggaggac ccgggcccca cacagcaccc caaggagcag ctcatcatgg cggacgtgca 720 ggtgcagctt cggcctggga gctcgtcctg cactctaagt gcctcaaccg agcgcccaga 780 tgggtcctca acccctggca accccgatgg catcactcac cttcaatgca gcttgcctcc 840 atcctaaqcq aqccqcttcc tcttcttqta cccqctqaaq qcaaqccccc aacaqqqqqq 900 ctccctactc ccacccaacc ctgcccacac taagcccata gacttggggc ctccccggc 960 acatcaccca ggtctgccgg acggcagagg tggatcgcgg ccttccactc ctctgtcacg 1020 1080 gggccccgga actcgagagt aggcctcacc gcccccagc tgggcatggg gcttcggcag 1140 gaaactgaac ttgatcttga ggccagcaga aaggcagcaa ctggagcaga agcaagactt catctcttgc tgacagccca atttgtcaat agcgctttcc tcagagccag ccttaacctg 1200 ctgttgagtc cattaaaacg tttgcttaaa gtttttacca ataaaaaaaa aaaaaaaaa 1260 1268 aaaaaaaa <210> SEQ ID NO 835 <211> LENGTH: 181 <212> TYPE: PRT <213> ORGANISM: Homo sapiens <400> SEOUENCE: 835 Met Gly Asn Gly Met Thr Lys Val Leu Pro Gly Leu Tyr Leu Gly Asn Phe Ile Asp Ala Lys Asp Leu Asp Gln Leu Gly Arg Asn Lys Ile Thr 20 25 30

His Ile Ile Ser Ile His Glu Ser Pro Gln Pro Leu Leu Gln Asp Ile Thr Tyr Leu Arg Ile Pro Val Ala Asp Thr Pro Glu Val Pro Ile Lys 50 60Lys His Phe Lys Glu Cys Ile Asn Phe Ile His Cys Cys Arg Leu Asn 65 70 75 80 Gly Gly Asn Cys Leu Val His Cys Phe Ala Gly Ile Ser Arg Ser Thr $85 \hspace{1cm} 90 \hspace{1cm} 95$ Thr Ile Val Thr Ala Tyr Val Met Thr Val Thr Gly Leu Gly Trp Arg Asp Val Leu Glu Ala Ile Lys Ala Thr Arg Pro Ile Ala Asn Pro Asn Pro Gly Phe Arg Gln Gln Leu Glu Glu Phe Gly Trp Ala Ser Ser Gln Lys Gly Ala Arg His Arg Thr Ser Lys Thr Ser Gly Ala Gln Cys Pro 145 150 155 160Pro Met Thr Ser Ala Thr Trp Met Val Thr Gly Pro Lys Val Pro Asp Leu Ser Val Leu Arg <210> SEQ ID NO 836 <211> LENGTH: 1045 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 836 ggccccccgt tccccgccag gctgcaggcg tcgggcctgg gccgtcaggg cagctgtgac cggatcgctt cccgggcggc gagctggggg tgcacccgga ccgccgcccc cgggatcatg 120 ggcaatggca tgaccaaggt acttcctgga ctctacctcg gaaacttcat tgatgccaaa 180 gacctggatc agctgggccg aaataagatc acacacatca tctctatcca tgagtcaccc 240 cagectetge tgcaggatat cacetacett egeateeegg tegetgatae eeetgaggta 300 cccatcaaaa agcacttcaa agaatgtatc aacttcatcc actgctgccg ccttaatggg 360 gggaactgcc ttgtgcactg ctttgcaggc atctctcgca gcaccacgat tgtgacagcg tatgtgatga ctgtgacggg gctaggctgg cgggacgtgc ttgaagccat caaggccacc 480 aggcccatcg ccaaccccaa cccaggcttt aggcagcagc ttgaagagtt tggctgggcc 540 agttcccaga agggtgccag acataggacc tcaaaaacct ctggtgccca atgccctccg 600 atgacttcag caacctggat ggtcaccgga cccaaagtac cagatctgtc tgtgcttcgg 660 tqaqqaqqac ccqqqcccca cacaqcaccc caaqqaqcaq ctcatcatqq cqqacctaqt 720 780 ctctcttctt tattctqqqq qctqqqaaqq atcccaaaac aqqqaacttq qccqaaccct gggctttgga tgctaaccac tgaagtacca gcacctgtag gatgctgtct ttgaagaaac tgaggcggac ctccaaatgc agccctaagg cagaggtcaa cgtggaagac cagcccttct 900

ccaagcccca ctggtctttg caagctgtac gttgtaggca atctgagaac tggaaagggg

gactacaacc agaaagttgg ttaccctgcc atgggaataa agtagctgtt ttccacccca

960

1020

1045

taaaaaaaaa aaaaaaaaaa aaaaa

780

<211> LENGTH: 181 <212> TYPE: PRT <213> ORGANISM: Homo sapiens																
<400)> SI	EQUEN	ICE:	837												
Met 1	Gly	Asn	Gly	Met 5	Thr	Lys	Val	Leu	Pro 10	Gly	Leu	Tyr	Leu	Gly 15	Asn	
Phe	Ile	Asp	Ala 20	Lys	Asp	Leu	Asp	Gln 25	Leu	Gly	Arg	Asn	Lys 30	Ile	Thr	
His	Ile	Ile 35	Ser	Ile	His	Glu	Ser 40	Pro	Gln	Pro	Leu	Leu 45	Gln	Asp	Ile	
Thr	Tyr 50	Leu	Arg	Ile	Pro	Val 55	Ala	Asp	Thr	Pro	Glu 60	Val	Pro	Ile	Lys	
Lys 65	His	Phe	Lys	Glu	Cys 70		Asn	Phe	Ile	His 75	Сув	Сув	Arg	Leu	Asn 80	
	Gly	Asn	Cys	Leu 85		His	Сув	Phe	Ala 90		Ile	Ser	Arg	Ser 95		
Thr	Ile	Val	Thr		Tyr	Val	Met	Thr		Thr	Gly	Leu	Gly 110	Trp	Arg	
Asp	Val	Leu 115		Ala	Ile	Lys	Ala 120		Arg	Pro	Ile	Ala 125		Pro	Asn	
Pro	Gly 130	Phe	Arg	Gln	Gln	Leu 135	Glu	Glu	Phe	Gly	Trp 140	Ala	Ser	Ser	Gln	
Lys 145		Ala	Arg	His	Arg 150		Ser	Lys	Thr	Ser 155		Ala	Gln	Cys	Pro 160	
Pro	Met	Thr	Ser	Ala 165	Thr	Trp	Met	Val	Thr 170	Gly	Pro	Lys	Val	Pro 175	Asp	
Leu	Ser	Val	Leu 180	Arg												
<210> SEQ ID NO 838 <211> LENGTH: 982 <212> TYPE: DNA <213> ORGANISM: Homo sapiens																
		EQUEN														
		-		-		-	-							•	gtgac	60
															tcatg	120
															caccc	240
															gaggta	300
															atggg	360
															cagcg	420
tato	gtga-	tga d	ctgt	gacgo	ad do	tago	gatgo	ı agg	gacg	ıtgc	ttga	aagco	cat o	caago	JCCACC	480
aggo	cca	tag d	ccaac	ccca	aa co	cago	jettt	agg	cago	agc	ttaa	agagt	tt q	ggctg	ggcca	540
gtto	cca	gaa q	ggato	ggtca	ac co	gaco	caaa	gta	ccag	fatc	tgto	etgto	get 1	cggt	gagga	600
ggad	ccg	ggc o	cccac	cacaç	gc ac	ccca	agga	gca	gata	atc	atgo	gegga	acc 1	agto	tctct	660
tctt	tat	tct q	gggg	gatgo	gg aa	ıggat	ccca	a aaa	cago	gaa	ctt	gcc	gaa d	cacto	ggctt	720

tggatgctaa ccactgaagt accagcacct gtaggatgct gtctttgaag aaactgaggc

-continued								
ggacctccaa atgcagccct aaggcagagg tcaacgtgga agaccagccc ttctccaagc	840							
cccactggtc tttgcaagct gtacgttgta ggcaatctga gaactggaaa gggggactac	900							
aaccagaaag ttggttaccc tgccatggga ataaagtagc tgttttccac cccccaaaaa	960							
aaaaaaaaa aaaaaaaaa aa	982							
<210> SEQ ID NO 839 <211> LENGTH: 159 <212> TYPE: PRT <213> ORGANISM: Homo sapiens								
<400> SEQUENCE: 839								
Met Gly Asn Gly Met Thr Lys Val Leu Pro Gly Leu Tyr Leu Gly Asn 1 5 10 15								
Phe Ile Asp Ala Lys Asp Leu Asp Gln Leu Gly Arg Asn Lys Ile Thr 20 25 30								
His Ile Ile Ser Ile His Glu Ser Pro Gln Pro Leu Leu Gln Asp Ile 35 40 45								
Thr Tyr Leu Arg Ile Pro Val Ala Asp Thr Pro Glu Val Pro Ile Lys 50 55 60								
Lys His Phe Lys Glu Cys Ile Asn Phe Ile His Cys Cys Arg Leu Asn 65 70 75 80								
Gly Gly Asn Cys Leu Val His Cys Phe Ala Gly Ile Ser Arg Ser Thr 85 90 95								
Thr Ile Val Thr Ala Tyr Val Met Thr Val Thr Gly Leu Gly Trp Arg								
Asp Val Leu Glu Ala Ile Lys Ala Thr Arg Pro Ile Ala Asn Pro Asn 115 120 125								
Pro Gly Phe Arg Gln Gln Leu Lys Ser Leu Ala Gly Pro Val Pro Arg 130 135 140								
Arg Met Val Thr Gly Pro Lys Val Pro Asp Leu Ser Val Leu Arg 145 150 155								
<210> SEQ ID NO 840 <211> LENGTH: 1064 <212> TYPE: DNA <213> ORGANISM: Homo sapiens <400> SEQUENCE: 840								
ggccccccgt tccccgccag gctgcaggcg tcgggcctgg gccgtcaggg cagctgtgac	60							
cggatcgctt cccgggcggc gagctggggg tgcacccgga ccgccgcccc cgggatcatg	120							
ggcaatggca tgaccaaggt acttcctgga ctctacctcg gaaacttcat tgatgccaaa	180							
gacctggatc agctgggccg aaataagatc acacacatca tctctatcca tgagtcaccc	240							
cagcetetge tgcaggatat cacctacett cgcatecegg tegetgatae eeetgaggta	300							
cccatcaaaa agcacttcaa agaatgtatc aacttcatcc actgctgccg ccttaatggg 360								
gggaactgcc ttgtgcactg ctttgcaggc atctctcgca gcaccacgat tgtgacagcg	420							
tatgtgatga ctgtgacggg gctaggctgg cgggacgtgc ttgaagccat caaggccacc	480							
aggeceateg ceaaccecaa cecaggettt aggeageage ttgaagagtt tggetgggee	540							
agttcccaga agggctttta ccaacctcat aagctgttgt gagaaccaat tgagacactg	600							

caggaaagtg tttagccagg cccagcactg atgagcagtc ggatggtcac cggacccaaa

660

720

```
gtaccagatc tgtctgtgct tcggtgagga ggacccgggc cccacacagc accccaagga
gcagctcatc atggcggacc tagtctctct tctttattct gggggctggg aaggatccca
                                                                              780
aaacagggaa cttggccgaa ccctgggctt tggatgctaa ccactgaagt accagcacct
                                                                              840
gtaggatgct gtctttgaag aaactgaggc ggacctccaa atgcagccct aaggcagagg
                                                                              900
tcaacqtqqa aqaccaqccc ttctccaaqc cccactqqtc tttqcaaqct qtacqttqta
                                                                              960
ggcaatctga gaactggaaa gggggactac aaccagaaag ttggttaccc tgccatggga
                                                                             1020
                                                                             1064
ataaagtagc tgttttccaa aaaaaaaaaa aaaaaaaaa aaaa
<210> SEQ ID NO 841
<211> LENGTH: 154
<212> TYPE: PRT
<213> ORGANISM: Homo sapiens
<400> SEQUENCE: 841
Met Gly Asn Gly Met Thr Lys Val Leu Pro Gly Leu Tyr Leu Gly Asn 1 \phantom{\bigg|} 5 \phantom{\bigg|} 10 \phantom{\bigg|} 15
Phe Ile Asp Ala Lys Asp Leu Asp Gln Leu Gly Arg Asn Lys Ile Thr 20 \hspace{1.5cm} 25 \hspace{1.5cm} 30
His Ile Ile Ser Ile His Glu Ser Pro Gln Pro Leu Leu Gln Asp Ile
35 40 45
Thr Tyr Leu Arg Ile Pro Val Ala Asp Thr Pro Glu Val Pro Ile Lys 50 60
Lys His Phe Lys Glu Cys Ile Asn Phe Ile His Cys Cys Arg Leu Asn 65 70 75 80
Gly Gly Asn Cys Leu Val His Cys Phe Ala Gly Ile Ser Arg Ser Thr
Thr Ile Val Thr Ala Tyr Val Met Thr Val Thr Gly Leu Gly Trp Arg
Asp Val Leu Glu Ala Ile Lys Ala Thr Arg Pro Ile Ala Asn Pro Asn 115 120 125
Pro Gly Phe Arg Gln Gln Leu Glu Glu Phe Gly Trp Ala Ser Ser Gln 130 \, 135 \, 140 \,
Lys Gly Phe Tyr Gln Pro His Lys Leu Leu
<210> SEQ ID NO 842
<211> LENGTH: 19
<212> TYPE: RNA
<213> ORGANISM: Artificial Sequence
<220> FEATURE:
<223> OTHER INFORMATION: Small interfering RNA - PRL-3
<400> SEOUENCE: 842
                                                                               19
agacccqquq cuqcquuau
```

What is claimed is:

- 1. An isolated small interfering RNA (siRNA) polynucleotide, comprising at least one nucleotide sequence selected from the group consisting of SEQ ID NOS:4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, and 490-493.
- 2. The small interfering RNA polynucleotide of claim 1 that comprises at least one nucleotide sequence selected
- from the group consisting of SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, and 490-493 and the complementary polynucleotide thereto.
- 3. A small interfering RNA polynucleotide of either claim 1 or claim 2 that is capable of interfering with expression of a polypeptide, which polypeptide comprises an amino acid sequence as set forth in a sequence selected from the group

- consisting of SEQ ID NO: 779, SEQ ID NO:789, SEQ ID NO:791, SEQ ID NO:797, SEQ ID NO:809, SEQ ID NO:801, SEQ ID NO:803, SEQ ID NO:805, SEQ ID NO:807, SEQ ID NO:809, SEQ ID NO:811, and SEQ ID NO:813.
- 4. The siRNA polynucleotide of either claim 1 or claim 2 wherein the nucleotide sequence of the siRNA polynucleotide differs by one, two, three or four nucleotides at any of positions 1-19 of a sequence selected from the group consisting of the sequences set forth in SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, and 490-493.
- 5. The siRNA polynucleotide of either claim 1 or claim 2 wherein the nucleotide sequence of the siRNA polynucleotide differs by at least two, three or four nucleotides at any of positions 1-19 of a sequence selected from the group consisting of the sequences set forth in SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, and 490-493.
- 6. An isolated siRNA polynucleotide comprising a nucleotide sequence according to SEQ ID NO: 4, or the complement thereof.
- 7. An isolated siRNA polynucleotide comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS: 100 and 105, or the complement thereof.
- **8**. An isolated siRNA polynucleotide comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS: 120, 125, and 130, or the complement thereof.
- 9. An isolated siRNA polynucleotide comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS: 140, 145, and 150, or the complement thereof.
- 10. An isolated siRNA polynucleotide comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS: 440 and 445, or the complement thereof.
- 11. An isolated siRNA polynucleotide comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS: 455 and 460, or the complement thereof.
- 12. An isolated siRNA polynucleotide comprising a nucleotide sequence according to SEQ ID NO: 465, or the complement thereof.
- 13. An isolated siRNA polynucleotide comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS: 470 and 475, or the complement thereof.
- 14. An isolated siRNA polynucleotide comprising a nucleotide sequence selected from the group consisting of SEQ ID NOS: 480, 485, and 490, or the complement thereof.
- 15. The siRNA polynucleotide of claim 1 or claim 2 wherein the polynucleotide comprises at least one synthetic nucleotide analogue of a naturally occurring nucleotide.
- **16.** The siRNA polynucleotide of claim 1 or claim 2 wherein the polynucleotide is linked to a detectable label.
- 17. The siRNA polynucleotide of claim 16 wherein the detectable label is a reporter molecule.
- 18. The siRNA of claim 17 wherein the reporter molecule is selected from the group consisting of a dye, a radionuclide, a luminescent group, a fluorescent group, and biotin.
- 19. The siRNA polynucleotide of claim 18 wherein the fluorescent group is fluorescein isothiocyanate.
- 20. The siRNA polynucleotide of claim 16 wherein the detectable label is a magnetic particle.

- 21. A pharmaceutical composition comprising the siRNA polynucleotide of either claim 1 or claim 2 and a physiologically acceptable carrier.
- **22**. The pharmaceutical composition of claim 22 wherein the carrier comprises a liposome.
- 23. A recombinant nucleic acid construct comprising a polynucleotide that is capable of directing transcription of a small interfering RNA (siRNA), the polynucleotide comprising:
 - (i) a first promoter; (ii) a second promoter; and (iii) at least one DNA polynucleotide segment comprising at least one nucleotide sequence selected from the group consisting of SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, and 490-493, or a complement thereto, wherein each DNA polynucleotide segment and its complement are operably linked to at least one of the first and second promoters, and wherein the promoters are oriented to direct transcription of the DNA polynucleotide segment and its reverse complement.
- 24. The recombinant nucleic acid construct of claim 23, comprising at least one enhancer that is selected from a first enhancer operably linked to the first promoter and a second enhancer operably linked to the second promoter.
- 25. The recombinant nucleic acid construct of claim 23, comprising at least one transcriptional terminator that is selected from (i) a first transcriptional terminator that is positioned in the construct to terminate transcription directed by the first promoter and (ii) a second transcriptional terminator that is positioned in the construct to terminate transcription directed by the second promoter.
- 26. The recombinant nucleic acid construct of claim 24 wherein the siRNA is capable of interfering with expression of a polypeptide, wherein the polypeptide comprises an amino acid sequence as set forth in a sequence selected from the group consisting of SEQ ID NO: 779, SEQ ID NO:789, SEQ ID NO:791, SEQ ID NO:797, SEQ ID NO:799, SEQ ID NO:801, SEQ ID NO:803, SEQ ID NO:805, SEQ ID NO:807, SEQ ID NO:809, SEQ ID NO:811, and SEQ ID NO:813.
- 27. A recombinant nucleic acid construct comprising a polynucleotide that is capable of directing transcription of a small interfering RNA (siRNA), the polynucleotide comprising at least one promoter and a DNA polynucleotide segment, wherein the DNA polynucleotide segment is operably linked to the promoter, and wherein the DNA polynucleotide segment comprises (i) at least one DNA polynucleotide that comprises at least one nucleotide sequence selected from the group consisting of SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, and 490-493, or a complement thereto; (ii) a spacer sequence comprising at least 4 nucleotides operably linked to the DNA polynucleotide of (i); and (iii) the reverse complement of the DNA polynucleotide of (i) operably linked to the spacer sequence.
- 28. The recombinant nucleic acid construct of claim 27 wherein the siRNA comprises an overhang of at least one and no more than four nucleotides, the overhang being located immediately 3' to (iii).

- 29. The recombinant nucleic acid construct of claim 27 wherein the spacer sequence comprises at least 9 nucleotides.
- **30**. The recombinant nucleic acid construct of claim 27 wherein the spacer sequence comprises two uridine nucleotides that are contiguous with (iii).
- 31. The recombinant nucleic acid construct of claim 27 comprising at least one transcriptional terminator that is operably linked to the DNA polynucleotide segment.
- 32. A host cell transformed or transfected with the recombinant nucleic acid construct of any one of claims 23-31.
- 33. A pharmaceutical composition comprising an siRNA polynucleotide and a physiologically acceptable carrier, wherein the siRNA polynucleotide is selected from the group consisting of:
 - (i) an RNA polynucleotide which comprises at least one nucleotide sequence selected from the group consisting of SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, and 490-493,
 - (ii) an RNA polynucleotide that comprises at least one nucleotide sequence selected from the group consisting of SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, and 490-493 and the complementary polynucleotide thereto,
 - (iii) an RNA polynucleotide according to (i) or (ii) wherein the nucleotide sequence of the siRNA polynucleotide differs by one, two or three nucleotides at any of positions 1-19 of a sequence selected from the group consisting of the sequences set forth in SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, and 490-493, and
 - (iv) an RNA polynucleotide according to (i) or (ii) wherein the nucleotide sequence of the siRNA polynucleotide differs by two, three or four nucleotides at any of positions 1-19 of a sequence selected from the group consisting of the sequences set forth in SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, and 490-493.
- **34**. The pharmaceutical composition of claim 33 wherein the carrier comprises a liposome.
- 35. A method for interfering with expression of a polypeptide, or variant thereof, comprising contacting a subject that comprises at least one cell which is capable of expressing the polypeptide with a siRNA polynucleotide for a time and under conditions sufficient to interfere with expression of the polypeptide, wherein:
 - (a) the polypeptide comprises an amino acid sequence as set forth in a sequence selected from the group consisting of SEQ ID NO: 779, SEQ ID NO:789, SEQ ID NO:791, SEQ ID NO:797, SEQ ID NO:799, SEQ ID NO:801, SEQ ID NO:803, SEQ ID NO:805, SEQ ID NO:807, SEQ ID NO:809, SEQ ID NO:811, and SEQ ID NO:813,

- (b) the siRNA polynucleotide is selected from the group consisting of
 - (i) an RNA polynucleotide which comprises at least one nucleotide sequence selected from the group consisting of SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, and 490-493,
 - (ii) an RNA polynucleotide that comprises at least one nucleotide sequence selected from the group consisting of SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, and 490-493 and the complementary polynucleotide thereto,
 - (iii) an RNA polynucleotide according to (i) or (ii) wherein the nucleotide sequence of the siRNA polynucleotide differs by one, two or three nucleotides at any of positions 1-19 of a sequence selected from the group consisting of the sequences set forth in SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, and 490-493, and
- (iv) an RNA polynucleotide according to (i) or (ii) wherein the nucleotide sequence of the siRNA polynucleotide differs by two, three or four nucleotides at any of positions 1-19 of a sequence selected from the group consisting of the sequences set forth in SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, and 490-493.
- 36. A method for interfering with expression of a polypeptide that comprises an amino acid sequence as set forth in a sequence selected from the group consisting of SEQ ID NO: 779, SEQ ID NO:789, SEQ ID NO:791, SEQ ID NO:797, SEQ ID NO:799, SEQ ID NO:801, SEQ ID NO:803, SEQ ID NO:805, SEQ ID NO:807, SEQ ID NO:809, SEQ ID NO:811, and SEQ ID NO:813, or a variant of said polypeptide, said method comprising contacting, under conditions and for a time sufficient to interfere with expression of the polypeptide, (i) a subject that comprises at least one cell that is capable of expressing the polypeptide, and (ii) a recombinant nucleic acid construct according to either claim 23 or claim 27.
- **37.** A method for identifying a component of a signal transduction pathway comprising:
 - A. contacting a siRNA polynucleotide and a first biological sample comprising at least one cell that is capable of expressing a target polypeptide, or a variant of said polypeptide, under conditions and for a time sufficient for target polypeptide expression when the siRNA polynucleotide is not present, wherein
 - (1) the target polypeptide comprises an amino acid sequence as set forth in a sequence selected from the group consisting of SEQ ID NO: 779, SEQ ID NO: 789, SEQ ID NO: 791, SEQ ID NO: 797, SEQ ID NO: 799, SEQ ID NO: 801, SEQ ID NO: 803, SEQ ID NO: 805, SEQ ID NO: 807, SEQ ID NO: 809, SEQ ID NO: 811, and SEQ ID NO: 813,

- (2) the siRNA polynucleotide is selected from the group consisting of
 - (i) an RNA polynucleotide which comprises at least one nucleotide sequence selected from the group consisting of SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, and 490-493,
 - (ii) an RNA polynucleotide that comprises at least one nucleotide sequence selected from the group consisting of SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, and 490-493 and the complementary polynucleotide thereto,
 - (iii) an RNA polynucleotide according to (i) or (ii) wherein the nucleotide sequence of the siRNA polynucleotide differs by one, two or three nucleotides at any of positions 1-19 of a sequence selected from the group consisting of the sequences set forth in SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458,

- 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, and 490-493, and
- (iv) an RNA polynucleotide according to (i) or (ii) wherein the nucleotide sequence of the siRNA polynucleotide differs by two, three or four nucleotides at any of positions 1-19 of a sequence selected from the group consisting of the sequences set forth in SEQ ID NOS: 4-7, 100-103, 105-108, 120-123, 125-128, 130-133, 140-143, 145-148, 150-153, 440-443, 445-448, 455-458, 460-463, 465-468, 470-473, 475-478, 480-483, 485-488, and 490-493; and
- B. comparing a level of phosphorylation of at least one protein that is capable of being phosphorylated in the cell with a level of phosphorylation of the protein in a control sample that has not been contacted with the siRNA polynucleotide,
- wherein an altered level of phosphorylation of the protein in the presence of the siRNA polynucleotide relative to the level of phosphorylation of the protein in an absence of the siRNA polynucleotide indicates that the protein is a component of a signal transduction pathway.

* * * * *