# Beadandó dolgozat megoldások

ötödik osztály, 2019. április, 10/12

# 1. Összeadás és kivonás

# Megoldás 1.2

 $2 \cdot 5 = 10 \text{ pont}$ 

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek

770 és 77. Ha a kisebbik szám x, akkor a nagyobb 10x. Márpedig x+10x=11x, és így 11x=847, amiből x=77.

A feladat rendesen valószínűleg kevesebbet érne, de a cél a magasabb pontszámmal most az, hogy motiváljon arra, hogy foglalkozzanak vele, ami viszont előkészíti az egyenlettel való megoldás és így az egyenletek bemutatását.

# Megoldás 1.3

2 pont/db

| 2406 + 53887 = 56293    | 334166 + 62249 = 396415  |
|-------------------------|--------------------------|
| 71689 + 170310 = 241999 | 24792 + 9684 = 34476     |
| 62445 + 370578 = 433023 | 2851 + 3263 = 6114       |
| 44421 + 7092 = 51513    | 87512 + 70974 = 158486   |
| 57062 + 97454 = 154516  | 17147 + 844834 = 861981  |
| 525493 + 10342 = 515151 | 6857 - 2000 = 4857       |
| 82375 - 29705 = 52670   | 770662 - 284530 = 486132 |
| 38614 - 2304 = 36310    | 577518 - 291062 = 286456 |
| 25286 - 6848 = 18438    | 347522 - 1316 = 346206   |
| 62792 - 1321 = 61471    | 3253 - 1666 = 1587       |

# Megoldás 1.4

2 pont/db

$$(-4) - 726 - (-165) = -565 9 + 475 - (-12) = 496 9 + 613 + 0 = 622 (-824) + (-96) - (-61) = -859 952 + (-84) + (-4) = 864$$
 
$$86 - 8 + (-299) = -221 22 - (-497) + (-2) = 517 60 - (-47) - 31 = 76 (-74) + (-91) + (-12) = -177 (-69) - (-36) + (-72) = -105$$

# Megoldás 1.5

 $5 \cdot 2 = 10 \text{ pont}$ 

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.2.9)

Mivel:

$${f B} + {f B} < 19, \quad {
m az\'ert} \quad {f A} = 1;$$
  ${f E} + {f E} = {f E}, \quad {
m az\'ert} \quad {f E} = 0;$   ${f E} = 0, \quad {
m az\'ert} \quad {f B} + {f B} = 10 \quad {
m \'es} \quad {f B} = 5;$   ${f C} + {f A} = 5, \quad {
m az\'ert} \quad {f C} = 4;$   ${f C} = 4, \quad {
m az\'ert} \quad {f D} + {f D} = 4 \quad {
m \'es} \quad {f D} = 2.$ 

Az összeadás tehát:

$$5240 \\ +5210 \\ 10450$$

# Megoldás 1.6

20 pont

A megoldás 5050. Egy Gaussról szóló híres történet, amely a szájhagyomány útján átalakult, arról szól, hogy Gauss általános iskolai tanára, J. G. Büttner diákjait azzal akarta lefoglalni, hogy 1-től 100-ig adják össze az egész számokat. A fiatal Gauss mindenki megdöbbenésére másodpercek alatt előrukkolt a helyes megoldással, megvillantva matematikai éleselméjűségét: a számsor alá visszafele leírta a számokat, majd az oszlopokat összeadta, így azonos összegeket kapott:

$$1 + 100 = 2 + 99 = 3 + 98 = \dots = 50 + 51 = 101.$$

Ez összesen 50 darab számpárt jelentett, és így  $50 \cdot 101 = 5050$ .

A 20 pont a fáradságos munkát vagy a találékonyságot hivatott díjazni, valamint motivál a feladat elvégzésére és ezzel megágyaz a fenti történet és egyúttal a számtani sorok bemutatásának.

#### Megoldás 1.7

10 pont

A = 1, 
$$\acute{A}$$
 = 2, B = 3, C = 4, Cs = 5, D = 6, Dz = 7, Dzs = 8, E = 9,  $\acute{E}$  = 10, F = 11, G = 12, Gy = 13, H = 14, I = 15,  $\acute{I}$  = 16, J = 17, K = 18, L = 19, Ly = 20, M = 21, N = 22, Ny = 23, O = 24,  $\acute{O}$  = 25,  $\ddot{O}$  = 26,  $\ddot{O}$  = 27, P = 28, Q = 29, R = 30, S = 31, Sz = 32, T = 33, Ty = 34, U = 35,  $\acute{U}$  = 36,  $\ddot{U}$  = 37,  $\ddot{U}$  = 38, V = 39, W = 40, X = 41, Y = 42, Z = 43, Zs = 44.

A feladat burkoltan az is, hogy megtanuljuk, hogy mi a különbség a 40 betűs magyar ábécé és a 44 betűs kiterjesztett magyar ábécé között. Ez utóbbi tartalmazza a Q, W, X, Y betűket is. Az interneten a "magyar ábécé" keresőszó segítségével nyerhet az ember felvilágosítást erről. Emellet a adatok kódolásába is bevezet.

# 2. Prímszámok

### Megoldás 2.2

4 + 4 = 8 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek

(III.1.10)

Sárinak igaza volt és a kockák felső lapján 3, 3, és 5 vagy 5, 5 és 3 pötty lehetett.

A három kockával legfeljebb  $3 \cdot 6 = 18$ -at lehet dobni. Ennél kisebb, de 10-nél nagyobb törzsszámok: 11 és 13. A 11 három törzsszám összegeként csak mint 3+3+5 kapható, a 13 pedig mint 5+5+3. Más megoldás nincs.

| Megoldás 2.3 |     |     |     |     | 20 pont |
|--------------|-----|-----|-----|-----|---------|
| 2            | 3   | 5   | 7   | 11  | 13      |
| 17           | 19  | 23  | 29  | 31  | 37      |
| 41           | 43  | 47  | 53  | 59  | 61      |
| 67           | 71  | 73  | 79  | 83  | 89      |
| 97           | 101 | 103 | 107 | 109 | 113     |
| 127          | 131 | 137 | 139 | 149 | 151     |
| 157          | 163 | 167 | 173 | 179 | 181     |
| 191          | 193 | 197 | 199 |     |         |

# Megoldás 2.4

12 pont

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.5)

Az ötjegyű szám: 23572. Az egyjegyű törzsszámok: 2, 3, 5, 7 összege 17, és ha közülük a 2-t adjuk a 17-hez, csak akkor jutunk törzsszámhoz. Az  $\mathbf{M}\mathbf{A}$  csak 23 lehet, mert sem 25, sem 27 nem prímszám. Tehát  $\mathbf{M}=2$ ,  $\mathbf{A}=3$ . Az  $\mathbf{M}\mathbf{L}\mathbf{O}$  vagy 257 vagy 275 lehetne, de 275 nem törzsszám, ezért  $\mathbf{L}=5$ ,  $\mathbf{O}=7$ .

# Megoldás 2.5

2 pont/db

| $32 = 2^5$                                      | $9350 = 2 \cdot 5^2 \cdot 11 \cdot 17$         |
|-------------------------------------------------|------------------------------------------------|
| $204 = 2^2 \cdot 3 \cdot 17$                    | $416 = 2^5 \cdot 13$                           |
| $144 = 2^4 \cdot 3^2$                           | $11600 = 2^4 \cdot 5^2 \cdot 29$               |
| $4025 = 5^2 \cdot 7 \cdot 23$                   | $312 = 2^3 \cdot 3 \cdot 13$                   |
| $2310 = 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11$     | $16 = 2^4$                                     |
| $34580 = 2^2 \cdot 5 \cdot 7 \cdot 13 \cdot 19$ | $720 = 2^4 \cdot 3^2 \cdot 5$                  |
| $25259 = 13 \cdot 29 \cdot 67$                  | $14280 = 2^3 \cdot 3 \cdot 5 \cdot 7 \cdot 17$ |
| $540 = 2^2 \cdot 3^3 \cdot 5$                   | $61712 = 2^4 \cdot 7 \cdot 19 \cdot 29$        |
| $728 = 2^3 \cdot 7 \cdot 13$                    | $30184 = 2^3 \cdot 7^3 \cdot 11$               |
| $64 = 2^6$                                      | $1456 = 2^4 \cdot 7 \cdot 13$                  |

#### Megoldás 2.6

Forrás: Imrecze et al.: Fejtörő feladatok felsősöknek (III.1.27)

Egy kész törzszsámtáblázat segítségével (lásd Feladat 2.3) könnyen megoldhatjuk a feladatot – azonban e nélkül is célhoz érhetünk.

Az a) kérdésre a választ megtaláljuk a Prímszámok segédanyag Eratosztenész szitája című fejezetében. De a következőképpen is gondolkodhatunk: jelöljük n-nel a  $2\cdot 3\cdot 5\cdot 7\cdot 11$  számot, ekkor az  $n+2,\ n+3,\ n+4,\ ...,\ n+11$  tíz egymást

követő szám között nincs prímszám, hiszen mindegyiknek van 1-nél nagyobb és nála kisebb osztója, mert mindegyik osztható a 2, 3, 5, 7, 11 törzsszámok valamelyikével. A prímszámtáblázatból azt olvashatjuk ki, hogy először a 114-gyel kezdődő 10 (13) egymást követő szám között nem találunk prímet.

3 pont

- b) Például: 48, 49, 50, 51, 52, <u>53</u>, 54, 55, 56, 57; 3 pont
- c) Például:  $\underline{19}$ , 20, 21, 22,  $\underline{23}$ , 24, 25, 26, 57, 28; 3 pont
- d) Például: 7, 8, 9, 10, 11, 12, 13, 14, 15, 16;
- e) Például: 3, 4, 5, 6, 7, 8, 9, 10, 11, 12. 3 pont

Öt prímszám is előfordulhat tíz egymást követő szám között:  $\underline{2}, \underline{3}, 4, \underline{5}, 6, \underline{7}, 8, 9, 10, \underline{11},$  de ennél több nem, hiszen a 2-nél nagyobb páros számok nem törzsszámok és tíz egymást követő szám között öt páros van. 3 pont

Hosszúhetény, 2019. április 14.