Laporan Tugas Kecil 2 IF2211 Strategi Algortima

Semester II Tahun 2021/2022

Implementasi Convex Hull untuk Visualisasi Tes Linear Separability Dataset dengan Algoritma Divide and Conquer

Christopher Jeffrey 13520055

Algoritma

- 1. Hilangkan data yang kembar, karena tidak mungkin suatu point pada hull digunakan lebih dari satu kali
- 2. Urutkan seluruh list berdasarkan absisnya membesar. Jika absisnya sama, urutkan dari ordinat membesar
- 3. Bayangkan sebuah garis antara point terkecil dengan point terbesar, yang membagi kumpulan point menjadi dua
- 4. Untuk tiap bagian, jika hanya ada dua buah point pada bagian tersebut, maka kedua point tersebut bagian dari hull
- 5. Jika lebih dari dua point, bayangkan ada sebuah garis antara point terkecil dan terbesar. Cari point dengan jarak paling jauh dari keduanya, kita sebut point maksimum
- 6. Bayangkan sebuah garis antara point terkecil dengan point maksimum, yang akan membagi kumpulan point menjadi dua bagian. Begitu juga antara point maksimum dengan point terbesar.
- 7. Jika point maksimum berada diatas garis point terkecil dan point terbesar, kumpulan point yang akan digunakan adalah bagian atas dari hasil pembagian langkah nomor enam. Jika tidak, yang akan digunakan adalah bagian bawah.
- 8. Lakukan langkah nomor empat untuk masing-masing kumpulan point hingga tidak ada lagi bagian yang tersisa

Kode Program

```
import numpy as np
from numpy.linalg import norm

pointsReference = []

def myConvexHull(nppoints):
    global pointsReference
    pointsReference = nppoints.tolist()
```

```
nppoints = np.unique(nppoints, axis = 0) # hilangkan yang kembar, karena
tidak mungkin dua point yang sama ada di dalam hull(dan juga tidak efisien
membiarkan point kembar di algoritma)
    points = nppoints.tolist()
    sortPoints(points)
    pointsAbove, pointsBelow = divideFirstPoints(points)
    hull = DCConvexHull(pointsAbove, []) + DCConvexHull(pointsBelow, [])
    return formatedOutput(hull)
def pointToOriginalIndex(point):
    return pointsReference.index(point)
def sortPoints(points):
    quickSort(points, 0, len(points) - 1)
def partition(arr, low, high):
    i = (low-1) # index of smaller element
    pivot = arr[high] # pivot
    for j in range(low, high):
        # If current element is smaller than or
        # equal to pivot
        if arr[j][0] < pivot[0] or (arr[j][0] == pivot[0] and arr[j][1] <</pre>
pivot[1]):
            # increment index of smaller element
            i = i+1
            arr[i], arr[j] = arr[j], arr[i]
    arr[i+1], arr[high] = arr[high], arr[i+1]
    return (i+1)
def quickSort(arr, low, high):
    if len(arr) == 1:
        return arr
    if low < high:</pre>
        pi = partition(arr, low, high)
        quickSort(arr, low, pi-1)
        quickSort(arr, pi+1, high)
def DCConvexHull(points,hull):
```

```
if(len(points) == 2):
        return hull +[[pointToOriginalIndex(points[0]),
pointToOriginalIndex(points[1])]]
   else:
        setOfPoints1,setOfPoints2 = dividePoints(points)
        return hull + DCConvexHull(setOfPoints1, hull) +
DCConvexHull(setOfPoints2, hull)
def findPmaxIndex(points):
    p1= np.array(points[0])
   p2= np.array(points[-1])
   dmax = 0
   dmaxi = 0
   for i in range(0, len(points)):
        p3 = np.array(points[i])
        if(norm(p2-p1) != 0):
            d = norm(np.cross(p2-p1, p1-p3))/norm(p2-p1)
            if(d == dmax):
                if(angle(p1,p2, p3) > angle(p1, p2, points[dmaxi])):
                    dmaxi = i
                    dmax = d
            elif(d > dmax):
                dmaxi = i
                dmax = d
    return dmaxi
def angle(p1, p2, p3):
   v1 = (p2[0] - p1[0], p2[1] - p1[1])
   v2 = (p3[0] - p1[0], p3[1] - p1[1])
    if(np.linalg.norm(v1) == 0 or np.linalg.norm(v2) == 0):
        return 0
    unit_vector_1 = v1 / np.linalg.norm(v1)
    unit_vector_2 = v2 / np.linalg.norm(v2)
    dot_product = np.dot(unit_vector_1, unit_vector_2)
    angle = np.arccos(dot product)
    return angle
def divideFirstPoints(points):
```

```
return divideCustom(points[0],points[-1], points)
def dividePoints(points):
    p1 = points[0]
    p2 = points[-1]
    pmaxIndex = findPmaxIndex(points)
    pmax = points[pmaxIndex]
    pointsWithP1Above, pointsWithP1Below = divideCustom(p1, pmax, points)
    pointsWithP2Above, pointsWithP2Below = divideCustom(pmax, p2, points)
    if(crossProduct(p1, p2, pmax) > 0):
        return pointsWithP1Above, pointsWithP2Above
    else:
        return pointsWithP1Below, pointsWithP2Below
def divideCustom(p1, p2, points):
    pointsAbove = [p1,p2]
    pointsBelow = [p1,p2]
    for point in points:
        if(point != p1 and point != p2):
            checker = crossProduct(p1, p2, point)
            if checker < 0:</pre>
                pointsBelow.append(point)
            if checker > 0:
                pointsAbove.append(point)
    sortPoints(pointsAbove)
    sortPoints(pointsBelow)
    return pointsAbove, pointsBelow
def crossProduct(p1, p2, p3):
    v1 = (p2[0] - p1[0], p2[1] - p1[1])
    v2 = (p3[0] - p1[0], p3[1] - p1[1])
    x = np.cross(v1,v2)
    return x
class Hull:
    def __init__(self,simplices):
        self.simplices = simplices
```

```
def formatedOutput(hull):
    return Hull(hull)
```

Screenshot

a. visualisasi data iris, sepal width vs sepal length

```
Iris Data
(150, 5)
  sepal length (cm) sepal width (cm) petal length (cm) petal width (cm) \
                          3.5
                                                        0.2
                                         1.4
            4.9
                           3.0
                                         1.4
                                                        0.2
                                         1.3
2
            4.7
                           3.2
                                                        0.2
3
            4.6
                           3.1
                                         1.5
                                                        0.2
            5.0
                           3.6
                                         1.4
                                                         0.2
  Target
```


b. visualisasi data iris, petal width vs petal length

```
Iris Data
(150, 5)
 5.1
                  3.5
                            1.4
                                      0.2
        4.9
                  3.0
                            1.4
                                      0.2
        4.7
                  3.2
                            1.3
                                      0.2
3
                  3.1
                            1.5
                                      0.2
        5.0
                  3.6
                            1.4
                                      0.2
```

	Target
0	0
1	0
2	0
3	0
4	0

c. visualisasi data breast cancer, mean radius vs mean area

Br	east Cancer Data								
(5	669, 31)								
	mean radius mean	texture	mean per	imeter	mean area	mean :	smoothness	\	
0	17.99	10.38		122.80	1001.0		0.11840		
1	20.57	17.77		132.90	1326.0		0.08474		
2	19.69	21.25		130.00	1203.0		0.10960		
3	11.42	20.38		77.58	386.1		0.14250		
4	20.29	14.34		135.10	1297.0		0.10030		
	mean compactness	mean con	cavity m	nean con	cave points	mean	symmetry	\	
0	0.27760		0.3001		0.14710		0.2419		
1	0.07864		0.0869		0.07017		0.1812		
2	0.15990		0.1974		0.12790		0.2069		
3	0.28390		0.2414		0.10520		0.2597		
4	0.13280		0.1980		0.10430		0.1809		
	mean fractal dime	nsion	. worst	texture	worst per	imeter	worst are	ea \	
0	0.	07871		17.33		184.60	2019.	.0	
1	0.	05667		23.41		158.80	1956	.0	
2	0.	05999		25.53		152.50	1709	.0	
3	0.	09744		26.50		98.87	567	.7	
4	0.	05883		16.67		152.20	1575	.0	
	worst smoothness	worst co	npactness	worst	concavity	worst	concave po	oints	\setminus
0	0.1622		0.6656	5	0.7119		0.	2654	
•••									
2	0.3613		0.0	8758	0				
3	0.6638		0.1	17300	0				
4	0.2364		0.0	7678	0				

[5 rows x 31 columns]

d. visualisasi data breast cancer, mean smoothness vs mean compactness

Br	east Cancer Dat	ā							
(5	69, 31)								
	mean radius m	ean texture	mean peri	meter.	mean area	mean s	smoothness	\	
0	17.99	10.38	1	22.80	1001.0		0.11840		
1	20.57	17.77	1	32.90	1326.0		0.08474		
2	19.69	21.25	1	30.00	1203.0		0.10960		
3	11.42	20.38		77.58	386.1		0.14250		
4	20.29	14.34	1	35.10	1297.0		0.10030		
0	mean compactne		-	an con			-	\	
_			0.3001		0.14710		0.2419		
1	0.078		0.0869		0.07017		0.1812		
2	0.159		0.1974		0.12790		0.2069		
3	0.283		0.2414		0.10520		0.2597		
4	0.132	80	0.1980		0.10430		0.1809		
	mean fractal d	imension	. worst t	exture	worst per	imeter	worst are	a \	
0		0.07871		17.33		184.60			
1		0.05667		23.41		158.80	1956.		
2		0.05999		25.53		152.50			
3		0.09744							
4		0.05883		16.67		152.20			
	worst smoothne	ss worst co	mpactness	worst	concavity	worst	concave po	ints	\
0	0.16	22	0.6656		0.7119		0.	2654	
• • •									
2	0.3613		0.08	758	0				
3	0.6638		0.17	300	0				
4	0.2364		0.07	678	0				

[5 rows x 31 columns]

e. visualisasi data wine, alcohol vs magnesium

Wi	ne Data								
(1	78, 14)								
	alcohol ma	lic_acid	ash a	lcalinity_	of_ash	magnesium	total_phen	ols \	\
0	14.23	1.71	2.43		15.6	127.0	2	.80	
1	13.20	1.78	2.14		11.2	100.0	2	.65	
2	13.16	2.36	2.67		18.6	101.0	2	.80	
3	14.37	1.95	2.50		16.8	113.0	3	.85	
4	13.24	2.59	2.87		21.0	118.0	2	.80	
	flavanoids	nonflava	noid_phe	nols proa	nthocya	nins color	_intensity	hue	\
0	3.06		(0.28		2.29	5.64	1.04	
1	2.76		(0.26		1.28	4.38	1.05	
2	3.24		(0.30		2.81	5.68	1.03	
3	3.49		(0.24		2.18	7.80	0.86	
4	2.69		(0.39		1.82	4.32	1.04	
	od280/od315	_of_dilut	ed_wines	proline	Target				
0			3.92	1065.0	0				
1			3.40	1050.0	0				
2			3.17	1185.0	0				
3			3.45	1480.0	0				
4			2.93	735.0	0				

f. visualisasi data wine, petal flavanoids vs color intensity

Wi	ne Data							
(1	78, 14)							
	alcohol ma	alic_acid	ash a	lcalinity_	of_ash	magnesium	total_phen	ols \
0	14.23	1.71	2.43		15.6	127.0	2	.80
1	13.20	1.78	2.14		11.2	100.0	2	.65
2	13.16	2.36	2.67		18.6	101.0	2	.80
3	14.37	1.95	2.50		16.8	113.0	3	.85
4	13.24	2.59	2.87		21.0	118.0	2	.80
	flavanoids	nonflava	noid_phe	nols proa	nthocyan	ins color	_intensity	hue \
0	3.06			0.28	2	.29	5.64	1.04
1	2.76			0.26	1	.28	4.38	1.05
2	3.24			0.30	2	.81	5.68	1.03
3	3.49			0.24	2	.18	7.80	0.86
4	2.69			0.39	1	.82	4.32	1.04
	od280/od315	5_of_dilut	ed_wines	proline	Target			
0			3.92	1065.0	0			
1			3.40	1050.0	0			
2			3.17	1185.0	0			
3			3.45	1480.0	0			
4			2.93	735.0	0			

Alamat Drive

https://github.com/christojeffrey/convex-hull

Poin	Ya	Tidak
Pustaka myConvexHull berhasil dibuat dan tidak ada kesalahan	V	
Convex hull yang dihasilkan sudah	V	

	benar		
3.	Pustaka myConvexHull dapat digunakan untuk menampilkan convex hull setiap label dengan warna yang berbeda.	V	
4.	Bonus: program dapat menerima input dan menuliskan output untuk dataset lainnya.	V	

Referensi

 $\frac{https://www.kite.com/python/answers/how-to-get-the-angle-between-two-vectors-in-python}{https://informatika.stei.itb.ac.id/~rinaldi.munir/Stmik/2021-2022/Algoritma-Divide-and-Conquer-(2022)-Bagian4.pdf}$

https://www.geeksforgeeks.org/convert-python-list-to-numpy-arrays/https://www.geeksforgeeks.org/python-program-for-quicksort/