Practice Set 2, Problem I P(4) = 12, -. 34ng P(4) = 12ne-1 (Poisson) P(X) = Bd xd-1 e-Bx (Gamma) Amre = argmax [log P(Yn/) (i.i.d.data) Σlogp(yn/λ) = Σynlogλ - Nx+ Constant

n=1 (terms that

clon't depend on)

Taking derivative and setting it to zero Σyn x 1 - N = 0 Ame = Zyn MAP extimation will be almost identical with the extra logp(x) term. Amor = argmax [[[[] gp(yn|2) + logp(2)]

 $log P(\lambda) = (d-1) log \lambda - B\lambda + (Constant)$ don't depend on The MAP objective will be

Z Yolog 1 - N > + (d-1) log 2 - B> Maximizing wort. I will give the MAP solution Amar = N N+B Posterior distribution of A $P(\lambda|y) = P(\lambda)P(y|\lambda) - P(\lambda) \prod P(y|\lambda)$ $P(y) = P(y) \prod P(y)$ Since the prior (gamma) and the likelihood (Poisson) are Conjugate, the posterior let's multiply the terms P(1) and P(4n/1)
are try to "identify" this gamma distributions P(x/y) & P(y) TTP(yn/x)

α / d-1 = βλ N yn-λ N=1 / h-1 α / N=1 / h-1 α / N=1 / h-1 (ignoring the termse that don't depend on The above expression is clearly in form

of a gamma distribution with

Shape = \(\frac{\text{Y}}{\text{y}} \) to need to worry

sale = \(\text{B+N} \) about constant

of propositionality.

It must be a gamma P(y|x) = Gamma (Zyntd B+N) $I_{MAP} = \frac{N}{2}J_{n} + \frac{1}{2}J_{n} + \frac{1}{2}J_$ Posteriors mean:

Yn+d= Zyn

N+B N Priors mean MLE

(4) P(Y+|Y) = [P(Y+,) | 4) = [P(Y*/X)P(X/Y)dX ~ P(Y* | Nonte) (if using MILE) P(Yx) / Amap) (it using map)
In both these cases, P(Yx) y is simply
a poisson with parameters / mee or map If Using the full posterior, which is $P(\lambda|y) = Gamma(\sum_{n=1}^{N} y_{n} + d, \beta + N), P(y+|y) \text{ will be}$ P(y*/y) = P(y*/x) P(x/y)dx = \langle \frac{\frac}\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\f The above is actually a mixture of infinite many Poisson distributions. The result is actually not a Poisson but to the " Negative Binomial" dietribution. (if you are interested in knowing more about this result, you may refer to the wikipedia article of NB distribution). (This part was just for your "General knowledge" :-))

Scanned by CamScanner

Practice Set 2 (Problem 2) $\nabla_{w} N L L(w) = -\left[\sum_{n=1}^{N} y_n \chi_{n-1} - \frac{e_{xp}(w \chi_{n})}{1 + e_{xp}(w \chi_{n})} \chi_{n} \right]$ $P(y_n=1|w,\chi_n)$ $=\mu_n$ $g = -\left[\frac{N}{\Sigma}y_n\chi_n - \mu_n\chi_n\right] = -\frac{\Sigma}{N}(y_n - \mu_n)\chi_n$ The expression above can't be written by separating w on one side (like we "did for likear regression", Therefore we can't find a closed form solution; and need Herative methods (e-g. gradient descent). Intutive meaning of the gradient's expression & g= -\(\frac{7}{2}\left(\frac{1}{2}n-\frac{1}{2}\right)\)\(\frac{1}{2}\right)\) Contribution

The state of the which will happen if there is a LAGRE MISPREDICTION, then In will contribute more to the gradient (we actually discussed this also while discussing about gradient

Scanned by CamScanner