SPS Software Test Cases PFS-SPS-PRU300005-01

Hassan Siddiqui

September 9, 2019

Contents

1	Version and Changelog	5
2	Introduction	5
3	Test Case SPS-ALERT-CTHIGH-010: Cooler Temperature Too High 3.1 Description	6 6 6 6 6
4	3.6 Additional Notes	6
1	Range	7
	4.1 Description	7
	4.2 Pass/Fail Condition(s)	7
	4.3 Hardware constraints	7
	4.4 Initial conditions	7
	4.5 Procedure	7
	4.6 Additional Notes	7
5	Test Case SPS-ALERT-PPOWER2-030: PCM AUX Input Power Outside	
	Range	8
	5.1 Description	8
	5.2 Pass/Fail Condition(s)	8
	5.3 Hardware constraints	8
	5.4 Initial conditions	8
	5.5 Procedure	8
	5.6 Additional Notes	8

6	Test Case SPS-ALERT-PPOWER2-040: Ion Gauge Pressure Outside Range	e 9
U	6.1 Description	9
	6.2 Pass/Fail Condition(s)	9
	6.3 Hardware constraints	9
	6.4 Initial conditions	9
	6.5 Procedure	9
	6.6 Additional Notes	9
7	Test Case SPS-ALERT-TURBO-050: Turbo Speed Outside Range	10
	7.1 Description	10
	7.2 Pass/Fail Condition(s)	10
	7.3 Hardware constraints	10
	7.4 Initial conditions	10
	7.5 Procedure	10
	7.6 Additional Notes	10
8	Test Case SPS-ALERT-ION1-060: Ion Pump 1 Outside Range	11
	8.1 Description	11
	8.2 Pass/Fail Condition(s)	11
	8.3 Hardware constraints	11
	8.4 Initial conditions	11
	8.5 Procedure	11
	8.6 Additional Notes	11
9	Test Case SPS-ALERT-ION2-070: Ion Pump 2 Outside Range	12
	9.1 Description	12
	9.2 Pass/Fail Condition(s)	12
	9.3 Hardware constraints	12
	9.4 Initial conditions	12
	9.5 Procedure	12
	9.6 Additional Notes	12
10	Test Case SPS-ALERT-CTEMP-080: Cooler temperature Outside Range	13
	10.1 Description	13
	10.2 Pass/Fail Condition(s)	13
	10.3 Hardware constraints	13
	10.4 Initial conditions	13
	10.5 Procedure	13
	10.6 Additional Notes	13
11	Test Case SPS-ALERT-CPOWER-090: Cooler Power Outside Range	14
	11.1 Description	14
	11.2 Pass/Fail Condition(s)	14
	11.3 Hardware constraints	14
	11.4 Initial conditions	14

	11.5 Procedure	
12	Test Case SPS-LOG-110: Process logging	15
	12.1 Description	15
	12.2 Pass/Fail Condition(s)	
	12.3 Hardware constraints	
	12.4 Initial conditions	
	12.5 Procedure	
	12.6 Additional Notes	
13	Test Case SPS-IO-120: Test File I/O	16
	13.1 Description	16
	13.2 Pass/Fail Condition(s)	
	13.3 Hardware constraints	
	13.4 Initial conditions	
	13.5 Procedure	
	13.6 Additional Notes	
14	Test Case SPS-TPROBE-130: Check temperature probes	17
	14.1 Description	17
	14.2 Pass/Fail Condition(s)	
	14.3 Hardware constraints	
	14.4 Initial conditions	17
	14.5 Procedure	
	14.6 Additional Notes	
15	Test Case SPS-PGAUGE-140: Check pressure gauge probes	18
	15.1 Description	18
	15.2 Pass/Fail Condition(s)	18
	15.3 Hardware constraints	
	15.4 Initial conditions	18
	15.5 Procedure	18
	15.6 Additional Notes	18
16	Test Case SPS-SHUTTER-150: Shutter control	19
	16.1 Description	19
	16.2 Pass/Fail Condition(s)	19
	16.3 Hardware constraints	19
	16.4 Initial conditions	19
	16.5 Procedure	19
	16.6 Additional Notes	19

17	Test Case SPS-SLIT-160: Slit movement	20
	17.1 Description	20
	17.2 Pass/Fail Condition(s)	20
	17.3 Hardware constraints	20
	17.4 Initial conditions	20
	17.5 Procedure	20
	17.6 Additional Notes	20
18	Test Case SPS-REXM-170: Red exchange mechanism movement	21
	18.1 Description	21
	18.2 Pass/Fail Condition(s)	21
	18.3 Hardware constraints	21
	18.4 Initial conditions	21
	18.5 Procedure	21
	18.6 Additional Notes	21
19	Test Case SPS-BIA-180: Check Back Illumination Assembly Photoresis-	
	tance	22
	19.1 Description	22
	19.2 Pass/Fail Condition(s)	22
	19.3 Hardware constraints	22
	19.4 Initial conditions	22
	19.5 Procedure	22
	19.6 Additional Notes	22
20	Test Case SPS-CCD-190: Check CCD bias/darks	23
	20.1 Description	23
	20.2 Pass/Fail Condition(s)	23
	20.3 Hardware constraints	23
	20.4 Initial conditions	23
	20.5 Procedure	23
	20.6 Additional Notes	23
A	cronyms	24
α 1	lossary	24

1 Version and Changelog

The version of this document is 0.1.

Version	Date	Author	Description
0.1	2019-07-10	H Siddiqui	First version

2 Introduction

This document describes the test cases used for demonstrating the validity of the software used for SPS commanding, prior to delivery of the SM1 module to Subaru at the end of 2019.

The intention is for these test cases to be run at during the summer of 2019. A report of the outcome would then be provided to the Project Office, who would then decide whether the software is of an adequate level for use at Subaru.

3 Test Case SPS-ALERT-CTHIGH-010: Cooler Temperature Too High

3.1 Description

Checks that expected alarm is raised when the cooler temperature exceeds the allowed upper limit.

3.2 Pass/Fail Condition(s)

Pass Expected alert seen on GUI and written to log when temperature is above the allowed limit.

Fail Any result otherwise. For example:

- 1. The expected alert is *not* raised when the temperature exceeds the limit.
- 2. An unexpected alert raised when temperature is in fact within the allowed range.

3.3 Hardware constraints

Cryostat is cooled?

3.4 Initial conditions

SM module and temperature board deactivated. AlertsActor deactivated.

3.5 Procedure

- 1. Set temporary range override: alerts override key=coolerTemps field=0 limits=null,20 (see notes below)
- 2. Start alerts actor and SM module with temperature board activated
- 3. Monitor alerts
- 4. Restore nominal temperature range: alerts dropOverride key=coolerTemps field=0

3.6 Additional Notes

The temperature range is temporarily overridden to allow the alarm to be triggered without having to force a hardware change - ie., a change to the ambient temperature.

4 Test Case SPS-ALERT-PPOWER1-020: PCM UPS Input Power Outside Range

4.1 Description

Checks that expected alarm is raised when the PCM UPS Input Power is outside range.

4.2 Pass/Fail Condition(s)

Pass Expected alert seen on GUI and written to log when power is outside range

Fail Any result otherwise. For example:

- 1. No alert raised when voltage is outside range
- 2. Unexpected alert raised while power is in fact within allowed range

4.3 Hardware constraints

Cryostat is cooled?

4.4 Initial conditions

SM module and temperature board deactivated. AlertsActor deactivated.

4.5 Procedure

Repeat procedure described in 3.5, with key=pcmPower1 and limits=27, null.

4.6 Additional Notes

5 Test Case SPS-ALERT-PPOWER2-030: PCM AUX Input Power Outside Range

5.1 Description

Checks that expected alarm is raised when the PCM AUX Input Power is outside range.

5.2 Pass/Fail Condition(s)

Pass Expected alert seen on GUI and written to log when power is outside range

Fail Any result otherwise. For example:

- 1. No alert raised when voltage is outside range
- 2. Unexpected alert raised while power is in fact within allowed range

5.3 Hardware constraints

Cryostat is cooled?

5.4 Initial conditions

SM module and temperature board deactivated. AlertsActor deactivated.

5.5 Procedure

Repeat procedure described in 3.5, with key=pcmPower2 and limits=27, null.

5.6 Additional Notes

6 Test Case SPS-ALERT-PPOWER2-040: Ion Gauge Pressure Outside Range

6.1 Description

Checks that expected alarm is raised when the Ion Gauge Pressure is outside range.

6.2 Pass/Fail Condition(s)

Pass Expected alert seen on GUI and written to log when power is outside range

Fail Any result otherwise. For example:

- 1. No alert raised when ion gauge pressure is outside range
- 2. Unexpected alert raised while pressure is in fact within allowed range

6.3 Hardware constraints

Cryostat is cooled?

6.4 Initial conditions

SM module and temperature board deactivated. AlertsActor deactivated.

6.5 Procedure

Repeat procedure described in 3.5, with key=pressure and limits=1e-10, 1e-02.

6.6 Additional Notes

7 Test Case SPS-ALERT-TURBO-050: Turbo Speed Outside Range

7.1 Description

Checks that expected alarm is raised when the turbo speed is outside range.

7.2 Pass/Fail Condition(s)

Pass Expected alert seen on GUI and written to log when turbo speed is outside range
Fail Any result otherwise. For example:

- 1. No alert raised when turbo speed is outside range
- 2. Unexpected alert raised while turbo speed is in fact within allowed range

7.3 Hardware constraints

Cryostat is cooled?

7.4 Initial conditions

SM module and temperature board deactivated. AlertsActor deactivated.

7.5 Procedure

Repeat procedure described in 3.5, with key=turboSpeed and limits=89000, null.

7.6 Additional Notes

8 Test Case SPS-ALERT-ION1-060: Ion Pump 1 Outside Range

8.1 Description

Checks that expected alarm is raised when the ion pump 1 is outside range.

8.2 Pass/Fail Condition(s)

Pass Expected alert seen on GUI and written to log when ion pump 1 is outside range
Fail Any result otherwise. For example:

- 1. No alert raised when ion pump is outside range
- 2. Unexpected alert raised while ion pump is in fact within allowed range

8.3 Hardware constraints

Cryostat is cooled?

8.4 Initial conditions

SM module and temperature board deactivated. AlertsActor deactivated.

8.5 Procedure

Repeat procedure described in 3.5, with key=ionpump1 and 1e-10, 1e-05.

8.6 Additional Notes

9 Test Case SPS-ALERT-ION2-070: Ion Pump 2 Outside Range

9.1 Description

Checks that expected alarm is raised when the ion pump 2 is outside range.

9.2 Pass/Fail Condition(s)

Pass Expected alert seen on GUI and written to log when ion pump 2 is outside range

Fail Any result otherwise. For example:

- 1. No alert raised when ion pump is outside range
- 2. Unexpected alert raised while ion pump is in fact within allowed range

9.3 Hardware constraints

Cryostat is cooled?

9.4 Initial conditions

SM module and temperature board deactivated. AlertsActor deactivated.

9.5 Procedure

Repeat procedure described in 3.5, with key=ionpump2 and 1e-10, 1e-05.

9.6 Additional Notes

10 Test Case SPS-ALERT-CTEMP-080: Cooler temperature Outside Range

10.1 Description

Checks that expected alarm is raised when the cooler temperature is outside range.

10.2 Pass/Fail Condition(s)

Pass Expected alert seen on GUI and written to log when the cooler temperature is outside range

Fail Any result otherwise. For example:

- 1. No alert raised when cooler temperature is outside range
- 2. Unexpected alert raised while cooler temperature is in fact within allowed range

10.3 Hardware constraints

Cryostat is cooled?

10.4 Initial conditions

SM module and temperature board deactivated. AlertsActor deactivated.

10.5 Procedure

Repeat procedure described in 3.5, with key=coolerTemps and null, 32.

10.6 Additional Notes

11 Test Case SPS-ALERT-CPOWER-090: Cooler Power Outside Range

11.1 Description

Checks that expected alarm is raised when the cooler power is outside range.

11.2 Pass/Fail Condition(s)

Pass Expected alert seen on GUI and written to log when the cooler power is outside range

Fail Any result otherwise. For example:

- 1. No alert raised when cooler power is outside range
- 2. Unexpected alert raised while cooler power is in fact within allowed range

11.3 Hardware constraints

Cryostat is cooled?

11.4 Initial conditions

SM module and temperature board deactivated. AlertsActor deactivated.

11.5 Procedure

Repeat procedure described in 3.5, with key=coolerPowerXX and range XX, XX.

11.6 Additional Notes

12 Test Case SPS-LOG-110: Process logging

12.1 Description

Checks that logging is active for a typical process.

12.2 Pass/Fail Condition(s)

Pass Logging of INFO, FAIL and WARN messages are correctly written to the expected log file

Fail Any result otherwise.

12.3 Hardware constraints

None.

12.4 Initial conditions

/data and /software volumes are created.

12.5 Procedure

None..

Step	Description	Pass/FAIL	Comment
1	TBW		

12.6 Additional Notes

A test script installed in the /software folder would address this test effectively.

13 Test Case SPS-IO-120: Test File I/O

13.1 Description

Checks that data can be read and written from the input and output directories.

13.2 Pass/Fail Condition(s)

Pass Data can be written to and read from the /data volume, and software can be written to and read from the /software volume.

Fail Any result otherwise.

13.3 Hardware constraints

None.

13.4 Initial conditions

/data and /software volumes are created.

13.5 Procedure

For each volume:

Step	Description	Pass/FAIL	Comment
1	Create small files		
2	Read those files		
3	Copy those files to new lo-		
	cations within same volume		
	and check that they are		
	readable.		

13.6 Additional Notes

A test script installed in the /software folder would address this test effectively.

14 Test Case SPS-TPROBE-130: Check temperature probes

14.1 Description

Checks that the temperature probes for the CCD, cryostat and OBA are functioning.

14.2 Pass/Fail Condition(s)

Pass Temperature values read from the probes are in the expected range (1-100 K)

Fail If the temperature reads NaN or zero.

14.3 Hardware constraints

None.

14.4 Initial conditions

TBW.

14.5 Procedure

For each probe:

Step	Description	Pass/FAIL	Comment
1	On GUI check temperature		
	value.		

14.6 Additional Notes

15 Test Case SPS-PGAUGE-140: Check pressure gauge probes

15.1 Description

Checks that the pressure gauge is functioning correctly.

15.2 Pass/Fail Condition(s)

Pass The pressure gauge reads a realistic value.

Fail If the pressur reads NaN or zero.

15.3 Hardware constraints

None.

15.4 Initial conditions

TBW.

15.5 Procedure

For each probe:

Step	Description	Pass/FAIL	Comment
1	On GUI check pressure		
	gauge value.		

15.6 Additional Notes

16 Test Case SPS-SHUTTER-150: Shutter control

16.1 Description

Checks the SpS shutter movement

16.2 Pass/Fail Condition(s)

Pass Shutters open/close as expected

Fail Any result otherwise.

16.3 Hardware constraints

None.

16.4 Initial conditions

All shutter are in the closed position.

16.5 Procedure

For each shutter:

Step	Description	Pass/FAIL	Comment
1	Open Shutter		
2	Check that monitor shows		
	that the shutter door is		
	open		
3	Close shutter		
4	Check that the monitor con-		
	firms that the shutter door		
	is closed		

16.6 Additional Notes

17 Test Case SPS-SLIT-160: Slit movement

17.1 Description

Check the slit movement such that the expected positions are reached.

17.2 Pass/Fail Condition(s)

Pass The slit position is as intended, within the given tolerance.

Fail Any result otherwise.

17.3 Hardware constraints

None?

17.4 Initial conditions

None.

17.5 Procedure

- 1. for each position A, B, C, D, E:
 - (a) command slit to be moved to that position
 - (b) check whether the expected position is reached within tolerance 1 micron
 - (c) monitor slit movement throughout.

Step	Description	Pass/FAIL	Comment
1	Position A		
2	Position B		
3	Position C		
4	Position D		
5	Position E		

17.6 Additional Notes

18 Test Case SPS-REXM-170: Red exchange mechanism movement

18.1 Description

Checks that the red exchange mechanism moves as expected.

18.2 Pass/Fail Condition(s)

Pass The REXM switches to the expected mode.

Fail Any result otherwise.

18.3 Hardware constraints

None?

18.4 Initial conditions

None.

18.5 Procedure

Step	Description	Pass/FAIL	Comment
1	Move REXM to low resolu-		
	tion mode		
2	Check position		
3	Move REXM to high resolu-		
	tion mode		
4	Check position		

18.6 Additional Notes

19 Test Case SPS-BIA-180: Check Back Illumination Assembly Photoresistance

19.1 Description

Check photoresistance of BIA.

19.2 Pass/Fail Condition(s)

Pass The photoresistance is measured as expected.

Fail Any result otherwise.

19.3 Hardware constraints

None?

19.4 Initial conditions

None.

19.5 Procedure

Step	Description	Pass/FAIL	Comment
1	Check from the monitors		
	that the protoresistance is		
	'saturated'.		

19.6 Additional Notes

20 Test Case SPS-CCD-190: Check CCD bias/darks

20.1 Description

None.

20.2 Pass/Fail Condition(s)

Pass The CCD bias and darks are processed correctly.

Fail Processing fails.

20.3 Hardware constraints

None?

20.4 Initial conditions

None.

20.5 Procedure

Step	Description	Pass/FAIL	Comment
1	Take the bias and dark ex-		
	posures.		
2	Check the FITS headers of		
	the bias and dark files for		
	any non-conformance.		
3	Process the CCD bias and		
	darks against the 2D DRP		
	pipeline.		

20.6 Additional Notes

Acronyms

 \mathbf{SPS} Spectrograph System.

Glossary

Spectrograph System The software which commands cobra motions.