STATMECH (PRACTICAL)

B)
$$\gamma^2$$
 DISTRO:
$$\frac{(0.5)^{\frac{1}{2}}}{\Gamma(\frac{1}{2})} \chi^{\frac{1}{2}-1} = \frac{2}{2}$$

$$-\frac{2}{2}$$

$$-\frac{2}{2}$$

$$-\frac{2}{2}$$

$$-\frac{2}{2}$$

$$-\frac{2}{2}$$

$$-\frac{2}{2}$$

$$-\frac{2}{2}$$

$$-\frac{2}{2}$$

C) EXPONENTIAL:
$$\beta e^{-2/\beta}$$
 $\gamma = \beta^{-1}$ rate parameter DISTRO.

D) GAMMA:
$$\chi^{K-1} = \frac{-40}{6}$$
 K = shape $0 = \frac{1}{6}$ $0 = \frac{1}{6}$ $0 = \frac{1}{6}$

$$M_{M} = \langle X^{M} \rangle = \int_{X}^{M} X^{M} P(X) dX = \int_{S}^{M} X^{M} P(X)$$

$$\sigma^2 = \langle (x - \langle x \rangle)^2 = \langle x^2 \rangle - \langle x \rangle^2$$

= $\mu_2 - \mu_1^2 = \text{variance }/\text{dispersion}$

of the standard deviation; $\mu_2 > \mu_1^2$

for $\sigma > 0$. $\sigma^2 = 0$ for Cauchy distribution

 $P(x) = \frac{1}{x[(x-a)^2 + x^2]}$; $-\alpha < x < \alpha$, $\mu_1 = a$

FT (ikx) (ikx) (ikx) (ik) (ik) (ik)

the G(K) = < e > =] e project / mi m

Characteristic function

(ik) m

(ik) m

Function

function

cumulants $R_1 = \mu_1$; $R_2 = \sigma^2$, $R_3 = \mu_3 - 3\mu_1\mu_2 + 2\mu_1^3$ $R_4 = \mu_4 - 4\mu_1\mu_3 - 3\mu_2^2 + 12\mu_1^2\mu_2 - 6\mu_1^4$ P(X₁, X₂, ..., X_s) = $\int P_r(X_1, X_2, ..., X_s, X_{s+1}, ..., X_r)$ dx_{s+1}...dx_r b Marginal distribution joint probability distribution Pr(X1, X2, ..., Xr) = Prs (Xs+1, ..., Xr) X PS17-S (X1, X2, ..., XS | XS+1", Xr) or, Joint PDF = Marginal PDF x Conditional PDF (Baye's theorem)

If Pr factorizes, such that $P_{x}(x_{1},...,x_{r}) = P_{x-s}(x_{s+1},...,x_{r}) P_{s}(x_{1},...,x_{s})$ =) Statistically Independent (Marginal PDF = Conditional PDF) Moments Mm, mp = < x1 x2 ... xr>

 $= \int_{X_{1}}^{M_{1}} X_{2}^{M_{2}} ... X_{r}^{M_{r}} P(X_{1}, X_{2}, ..., X_{r}) dX_{1} dX_{2} ... dX_{r}$ $G(K_{1},...,k_{r}) = \langle e^{i(K_{1}X_{1}+...+K_{r}X_{r})} \rangle$ $= \sum_{m_{i}=0}^{\infty} \frac{(iK_{1})^{m_{1}}(iK_{2})^{m_{2}}...(iK_{r})}{m_{1}! m_{2}! ... m_{r}!} \mu_{m_{1}},...,\mu_{r}$ of $M = M_{1} =$ Covariance matrix: << x:x;>>> 2nd moment $= \langle (x_i^2 - \langle x_i^2 \rangle)(x_j^2 - \langle x_j^2 \rangle) \rangle = \langle x_i^2 x_j^2 \rangle - \langle x_i^2 \rangle \langle x_j^2 \rangle$ diagonal components = variance / off diagonal components = covariance Correlation Coefficient > (x:x;> - <x;>(x;)) (x:2> - <x;) ((x;)-(x;)) Statistical Independence here means (i) All moments factorize $\langle x_1, x_2 \rangle = \langle x_1, x_2 \rangle = \langle x_1, x_2 \rangle$ (ii) Characteristic function factorizes G(K1, K2) = G(K1) G(K2) (iii) Cumulants = 0 when m1, m2 differ from 0. X, X2 uncorrelated =) covariance = 0.

If
$$Y = X_1 + X_2$$
 then

 $P_{Y}(Y) = \int S(X_1 + X_2 - Y) P_{X}(X_1, X_2) dX_1 dX_2$
 $= \int P_{X}(X_1, Y - X_1) dX_1 = \int P_{X_1}(X_1) P_{Y_1} dX_2$

independence

 $Y = \int P_{X_1}(X_1, Y - X_2) dX_1 dX_2$

independence

 $Y = \int P_{X_1}(X_1, Y - X_2) dX_1 dX_2$

independent or not

independent or not

independent or not

 $Y = \int P_{X_1}(X_1, Y_2) dX_1 dX_2$

independent or not

independent

inde

Negative Binomal
$$P_{N}=(1-Y)$$
 $(\frac{1}{7}-1)! N!$
Maxwell Distro. $P(V)=4\pi \left(\frac{m}{2\pi k_{B}T}\right)^{3/2} \cdot 1 = \frac{mv^2}{2k_{B}T}$
X^2 or Y^2 Distribution $P(E)=\sqrt{2\pi k_{B}T}$ Y^2 Y^2

mean is good enough. Alap $Y_{x}(t) = f(x,t)$ STOCHASTIC PROCESS: La Sample time X = Stochastic variable 1 st moment: $\langle Y(t) \rangle = \left(Y_{\chi}(t) P_{\chi}(x) dx \right)$ n_moment: <Y(ti)Y(t2)...Y(tn)> = \Yx(t1)Yx(t2) ... Yx(tn)Px(x)dx. Autocorrelation function (ACF): $K(t_1,t_2) = \langle Y(t_1)Y(t_2)\rangle - \langle Y(t_1)\rangle\langle Y(t_2)\rangle$ = o (t) for t1=t2. When < y(t,+ () Y(t2+ () ... Y (tn+ ()) = <Y(t1) Y(t2)... Y(tn)> =) Stationary

process. « K(t1,t2) = f(|t1-t2|) for stationary process. for several components $K_{ij}(t_1, t_2) = \langle Y_i(t_1) Y_j(t_2) \rangle$ which for zero mean stationary $-\langle Y_i(t_1) \rangle \langle Y_j(t_2) \rangle$ process is $R_{ij}(\tau) = R_{ji}(-\tau) = \langle Y_{ij}(t)Y_{j}(t+\tau) \rangle$ $= \langle Y_{i}(0) Y_{j}(1) \rangle$ If set & independent & Stationary \$

Wiener Khinchin Theorem & losine transform Campbests frecas $S(\omega) = \frac{2}{\pi} \int_{-\infty}^{\infty} \cos(\omega \tau) R(\tau) d\tau$ Spectral density ACF of fluctuations Markov Process: Brownian Motion; velocity of polen particle damps out in ACF time. Two successive positions measured in interval >> ACF time. Position is then Markov process. Velocity is non-Markovian for Brownian Motion under external field. & Position of a Brownian particle #Wiener Process (non-stationary Markov Process): $P_{1}(y,t) = \frac{1}{\sqrt{2\pi}t} e^{-\frac{y}{2}t} \frac{1}{5} P_{1}(y_{1},0) = \frac{8(y_{1})}{2(y_{2}-y_{1})^{2}} - \frac{(y_{2}-y_{1})^{2}}{2(t_{2}-t_{1})} P_{1/1}(y_{2},t_{2}|y_{1},t_{1}) = \frac{1}{\sqrt{2\pi}(t_{2}-t_{1})} P_{1/1}(y_{2},t_{2}|y_{1},t_{1}) = \frac{1}{\sqrt{2\pi}(t_$ # Ornstein-Uhlenbeck Process (stationery

Markov process): Velocity of a Brownian Particle $P_1(y) = \frac{1}{\sqrt{27}} e^{-y_1/2}$ $(x = t_2 - t_1)$ $P_{1/1}(y_{2},t_{2}|y_{1}t_{1}) = T_{\gamma}(y_{2}|y_{1}) \qquad (y_{2}-y_{1}e^{-\gamma_{2}})$ $= \sqrt{2\pi(1-e^{-2\gamma_{2}})}e^{-\frac{(y_{2}-y_{1}e^{-\gamma_{2}})^{2}}{2(1-e^{-\gamma_{2}})}}$

Average = 0, ACF K(z) = e . mis is the only process which is stationary, Gaussian & Markovian & Doob's theorem. Converse is also true, if Y(t) is stationary, Gaussian l'exponential ACF R(T) = k(o) e then Y(t) is OU process 2 hence Markovian. For Markov, $K(t_3,t_1) = K(t_3,t_2)K(t_2,t_1)$ (T satisfies forward/backward Kolmogorov equations) Lequation of Motion: $v(t) = -\Gamma v(t) + F(t)$ Property of Random Noise W(t):- Gaussian $F(t) = \sqrt{2K_BT\Gamma}N(0,1); \quad \langle F(t) \rangle = 0$ <F(ti)F(t2)>=2KBTT 8(t1-t2) correlated For |t_-t2| >/ 70 (collision time) stationary $\langle w(t_1)w(t_2)\rangle = \langle w(t_1)\rangle \langle w(t_2)\rangle = 0$ A Markov WHITE NOISE Variance (v) = KAT, ACF < v(t) v(t+ T) > = KBTE

#N Random Variables X1, X2, ..., XN

Mean
$$X = \frac{1}{N} \sum_{i=1}^{N} \alpha_i$$

Variance $G_{xx}^2 = \frac{1}{N} \sum_{i=1}^{N} (\alpha_i - \bar{x})^2$
 $= \frac{1}{N} \sum_{i=1}^{N} (\alpha_i - \bar{x})^2$
 $= \frac{1}{N} \sum_{i=1}^{N} (\alpha_i - \bar{x})^2$
 $= \frac{1}{N} \sum_{i=1}^{N} (\alpha_i - \bar{x})(\alpha_i - \bar{x})$

#Two sets of Random Variables (α, y)
 $(x_1, x_2, ..., x_N) \downarrow (y_1, y_2, ..., y_N) \downarrow$

Covariance $G_{xy} = \frac{1}{N} \sum_{i=1}^{N} (\alpha_i - \bar{x})(y_i - \bar{y})$

Pearson a Correlation coefficient $Y = \frac{G_{xy}}{G_x G_y}$
 $= \sum (\alpha_i - \bar{x})(y_i - \bar{y})^2 \quad \text{if } [-1 \le r \le 1]$

For ACF we take part of same set

 $X_1^2 X_1, X_2, X_3, ..., X_{N-1}, (x_2, x_3, ..., x_N) \not= X$
 $N = \sum_{i=1}^{N-1} (\alpha_i - \bar{x}^{(1)})(\alpha_{i+1} - \bar{x}^{(2)})$
 $\sum_{i=1}^{N-1} (\alpha_i - \bar{x}^{(1)})^2 \sum_{i=1}^{N-1} (\alpha_{i+1} - \bar{x}^{(2)})^2$

Similarly $Y_2, Y_3, Y_4, ...$

For very large data set, $X = \overline{X} = \overline{X} = \overline{\lambda}$ $\sum_{i=1}^{n} (x_i - \bar{x})(x_{i+1} - \bar{x})$ $\gamma_1 = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$ $\sum_{i=1}^{N-1} (x_{i} - \bar{x})(x_{i+1} - \bar{x}) \qquad (\log 1)$ ~ ZN (x; -x)2 N-K i=1 ACF $\gamma_{K} = \sum_{i=1}^{N} (x_{i} - \bar{x})(x_{i+K} - \bar{x})$ $\frac{1}{\sqrt{K}} = \frac{\sum_{i=1}^{N} (2i - \bar{z})^2}{\text{where}} = \frac{\text{Auto Covariance}}{\text{Self Covariance}}$ $C_{K} = \frac{1}{N} \sum_{i=1}^{N-K} (x_{i} - \overline{x})(x_{i+K} - \overline{x}) = \frac{1}{N}$ Auto covanance Monte Carlo (Nuclear Decay) P = & At with & At <<1 or dN = - dat or N(t) = Noe = Noe $N(t) = N_0(\frac{1}{2})^{t/t} \rightarrow Half life$

$$\frac{1}{7} = \frac{1}{7} \ln(\frac{1}{2}) = \frac{1}{7} \frac{$$

MC intersation any Limension of In As or of or more accurate as <53 = <57 (constant function) $= \int_{a}^{b} f(x) dx = (b-a) \int_{a}^{b} f(b-a) x + a dx$ by change of variables X = (b-a)x + a. $\delta = \frac{b-a}{n} \sum_{i=1}^{\infty} f[(b-a)x_i+a]$ Importance Sampling = variance reduction Positive weight function $\int_{0}^{1} \omega(x) dx = 1$. So $I = \int_{a}^{b} f(x) dx = (b-a) \int_{a}^{b} f[(b-a)x + a] dx$ $= (b-a) \int_{0}^{1} \frac{f[(b-a)x+a]}{\omega(x)} \omega(x) dx$ $= (b-a) \int_{0}^{1} \frac{f[(b-a)x(\xi)+a]}{\omega[x(\xi)]} d\xi$ where change of variable $\xi(x) = \int \omega(x) dx'$ 12(x) dx: 5(0) = 0, 8(1) = 1 6

 ω dS = $\omega(x)$ dx 3 Sept 3 performed. So evaluating interval using MC method means averaging f/ω over uniform sample points S. in [0,1). Les month Listoury $I \simeq \frac{b-a}{n} \int_{i=1}^{n} \frac{f[(b-a)x(\xi_i)+a]}{\omega[x(\xi_i)]}$ Note: $\alpha_0 = \alpha(3:)$ & nonuniform, 3:'s are uniform, so points are weighted by $\omega(x_i)$. Multidimensional Integrals D'is fairly complex domain, so Jofdv = V<f> ± r is intractable. Choice an extended domain & with V $f(\bar{x}) = f(\bar{x}) \, \hat{f} \, \bar{x} \in D, \, \hat{f}(\bar{x}) = 0 \, \hat{f} \, \bar{x} \notin D$ on Mc guadrature $\int_{0}^{\infty} f dv \approx \sqrt{\langle f \rangle} \pm \sqrt{\int}$ be extended volume $T = \int_{0}^{\infty} dx dy = 4 \int_{0}^{\infty} dx \int_{0}^{\infty} dy = \pi$ d = circle in 1st quadrant

De = unit square [0,17 / L'son H(x) = 0 f x<0 8. I = 4 \ da \ dy H [1 - (22 y)] ~ 4 \[|- (x; + y;)] = 4 \frac{n}{n} n uniform sample points (x;, y:)

in square extended domain D n; are interior sample points in circle