VIDEO PROCESSING USING STYLE TRANSFER

WITH CONVOLUTIONAL NEURAL NETWORK

Burdziński, Bończyk, Sobkowiak, Świda dr hab. inż Wojciech Kotłowski

Overview

- 1. Project objective
- 2. Mobile Application
- 3. Server
- 4. Neural network
- 5. Pruning
- 6. Features
- 7. Results
- 8. Demo
- 9. Future work

Artistic Style Transfer

Motivation

- new possibilities in the domain of video processing
- neural style transfer approach is still fresh
- gap in the real-time video processing area
- existing algorithms are not fast enough
- deficit of availability of free and **easy-to-use** applications

Project objective

to enable fast real-time video processing using artistic style transfer by speeding up the existing convolutional neural network and ensure easy access by mobile application and lightweight server

Project objective

- reduce computational time by use of network pruning and TensorRT
- maintain good video quality (1024x576)
- achieve a comfortable frame rate (~24 FPS)
- create user-friendly and cross-platform mobile application
- develop server which connect application and algorithm without delays

Mobile application

Mobile application

Server

- real-time communication
- direct peer-to-peer
- for web browsers / Android / iOS
- supported by Google

Neural network

Dataset

- Pretrained model available at https://github.com/sunshineatnoon/LinearStyleTransfer
- Network pruning with distiller library <u>https://github.com/NervanaSystems/distiller</u>
- Inference speedup with NVIDIA TensorRT framework
- Network pruning requires retraining
- content MSCOCO, style Wikiart
- Training with 72000 sample pairs; validation with 8000 pairs
- Unsupervised learning

Loss function

Style scaling

Color preservation

Color preservation

Results

	940M	960	1080 Ti
Original model	0.75	5	23
Pruned model	4.2	22	79
Pruned + TensorRT	7.1	26	70

Mosaic

Demo

Future Works

- Feature encoding
- More sophisticated training
- Style interpolation
- Mixed styles using spatial control