Data Asymptotics

Dr. Jarad Niemi

Iowa State University

February 1, 2016

Normal approximation to the posterior

Suppose $p(\theta|y)$ is unimodal and roughly symmetric, then a Taylor series expansion of the logarithm of the posterior around the posterior mode $\hat{\theta}$ is

$$\log p(\theta|y) = \log p(\hat{\theta}|y) - \frac{1}{2}(\theta - \hat{\theta})^{\top} \left[-\frac{d^2}{d\theta^2} \log p(\theta|y) \right]_{\theta = \hat{\theta}} (\theta - \hat{\theta}) + \cdots$$

where the linear term in the expansion is zero because the derivative of the log-posterior density is zero at its mode.

Disregarding the higher order terms, this expansion provides a normal approximation to the posterior, i.e.

$$p(\theta|y) \stackrel{d}{\approx} N(\hat{\theta}, J(\hat{\theta})^{-1})$$

where $J(\hat{\theta})$ is the observed information, i.e.

$$J(\hat{\theta}) = -\frac{d^2}{d\theta^2} \log p(\theta|y)|_{\theta = \hat{\theta}}.$$

Binomial probability

Let $y \sim Bin(n, \theta)$ and $\theta \sim Be(a, b)$, then $\theta|y \sim Be(a + y, b + n - y)$ and the posterior mode is

$$\hat{\theta} = \frac{y'}{n'} = \frac{a+y-1}{a+b+n-2}.$$

Thus

$$J(\hat{\theta}) = \frac{n'}{\hat{\theta}(1-\hat{\theta})}.$$

Thus

$$p(\theta|y) \stackrel{d}{\approx} N\left(\hat{\theta}, \frac{\hat{\theta}(1-\hat{\theta})}{n'}\right).$$

Binomial probability

```
a = b = 1
n = 10
y = 3
par(mar=c(5,4,0.5,0)+.1)
curve(dbeta(x,a+y,b+n-y), lwd=2, xlab=expression(theta), ylab=expression(paste("p(", theta,"|y)")))

# Approximation
yp = a+y-1
np = a+b+n-2
theta_hat = yp/np
curve(dnorm(x,theta_hat, sqrt(theta_hat*(1-theta_hat)/np)), add=TRUE, col="red", lwd=2)
legend("topright",c("True posterior","Normal approximation"), col=c("black","red"), lwd=2)
```

Binomial probability

Large-sample theory

Consider a model $y_i \stackrel{iid}{\sim} p(y|\theta_0)$ for some true value θ_0 .

- Does the posterior distribution converge to θ_0 ?
- Does a point estimator (mode) converge to θ_0 ?
- What is the limiting posterior distribution?

Convergence of the posterior distribution

Consider a model $y_i \stackrel{iid}{\sim} p(y|\theta_0)$ for some true value θ_0 .

Theorem

If the parameter space Θ is finite and $Pr(\theta = \theta_0) > 0$, then $Pr(\theta = \theta_0|y) \to 1$ as $n \to \infty$.

Theorem

If the parameter space Θ is continuous and A is in a neighborhood around θ_0 with $Pr(\theta \in A) > 0$, then $Pr(\theta \in A|y) \to 1$ as $n \to \infty$.

```
library(smcUtils)
theta = seq(0.1,0.9, by=0.1); theta0 = 0.3
n = 1000
v = rbinom(n, 1, theta0)
p = matrix(NA, n,length(theta))
p[1,] = renormalize(dbinom(y[1],1,theta, log=TRUE), log=TRUE)
for (i in 2:n) {
  p[i,] = renormalize(dbinom(y[i],1,theta, log=TRUE)+log(p[i-1,]), log=TRUE)
plot(p[,1], vlim=c(0,1), type="l", xlab="n", ylab="Probability")
for (i in 1:length(theta)) lines(p[,i], col=i)
legend("right", legend=theta, col=1:9, ltv=1)
```



```
a = b = 1
e = 0.05
p = rep(NA,n)
for (i in 1:n) {
  yy = sum(y[1:i])
 zz = i - yy
  p[i] = diff(pbeta(theta0+c(-1,1)*e, a+yy, b+zz))
plot(p, type="1", ylim=c(0,1), ylab="Posterior probability of neighborhood",
     xlab="n", main="Continuous parameter space")
```

Continuous parameter space

Consistency of Bayesian point estimates

Suppose $y_i \stackrel{iid}{\sim} p(y|\theta_0)$ where θ_0 is a particular value for θ .

Recall that an estimator is consistent, i.e. $\hat{\theta} \stackrel{p}{\rightarrow} \theta_0$, if

$$\lim_{n\to\infty} P(|\hat{\theta}-\theta_0|<\epsilon)=1.$$

Recall, under regularity conditions that $\hat{\theta}_{MLF} \stackrel{\rho}{\to} \theta_0$. If Bayesian estimators converge to the MLE, then they have the same properties.

Binomial example

Consider $y \sim Bin(n, \theta)$ with true value $\theta = \theta_0$ and prior $\theta \sim Be(a, b)$. Then $\theta|y \sim Be(a + y, b + n - y)$.

Recall that $\hat{\theta}_{MLE} = y/n$. The following estimators are all consistent

- Posterior mean: $\frac{a+y}{a+b+n}$
- Posterior median: $\approx \frac{a+y-1/3}{a+b+n-2/3}$
- Posterior mode: $\frac{a+y-1}{a+b+n-2}$

since as $n \to \infty$, these all converge to $\hat{\theta}_{MLE} = y/n$.

```
a = b = 1
n = 1000
theta0 = 0.5
y = rbinom(n, 1, theta0)
yy = cumsum(y)
nn = 1:n
plot(0,0, type="n", xlim=c(0,n), ylim=c(0,1), xlab="Number of flips", ylab="Estimates")
abline(h=theta0)
lines((a+yy)/(a+b+nn), col=2)
lines((a+yy-1/3)/(a+b+nn-2/3), col=3)
lines((a+yy-1)/(a+b+nn-2), col=4)
legend("topright",c("Truth","Mean","Median","Mode"), col=1:4, lty=1)
```


Normal example

Consider $Y_i \stackrel{iid}{\sim} N(\theta, 1)$ with known and prior $\theta \sim N(c, 1)$. Then

$$\theta|y \sim N\left(\frac{1}{n+1}c + \frac{n}{n+1}\overline{y}, \frac{1}{n+1}\right)$$

Recall that $\hat{\theta}_{MLE} = \overline{y}$. Since the posterior mean converges to the MLE, then the posterior mean (as well as the median and mode) are consistent.

Jarad Niemi (Iowa State)

Asymptotic normality

Consider the Taylor series expansion of the log posterior

$$\log p(\theta|y) = \log p(\hat{\theta}|y) - \frac{1}{2}(\theta - \hat{\theta})^{\top} \left[-\frac{d^2}{d\theta^2} \log p(\theta|y) \right]_{\theta = \hat{\theta}} (\theta - \hat{\theta}) + R$$

where the linear term is zero because the derivative at the posterior mode $\hat{\theta}$ is zero and R represents all higher order terms.

The coefficient for the quadratic term can be written as

$$-\frac{d^2}{d\theta^2}[\log p(\theta|y)]_{\theta=\hat{\theta}} = -\frac{d^2}{d\theta^2}\log p(\theta)_{\theta=\hat{\theta}} - \sum_{i=1}^n \frac{d^2}{d\theta^2}[\log p(y_i|\theta)]_{\theta=\hat{\theta}}$$

where

$$E_y\left[-\frac{d^2}{d\theta^2}[\log p(y_i|\theta)]_{\theta=\hat{\theta}}\right]=\mathrm{I}(\theta_0)$$

where $I(\theta_0)$ is the expected Fisher information and thus, by the LLN, the second term converges to $-nI(\theta_0)$.

Asymptotic normality

Since for large n

$$\log p(\theta|y) \approx \log p(\hat{\theta}|y) - \frac{1}{2}(\theta - \hat{\theta})^{\top} [nI(\theta_0)](\theta - \hat{\theta})$$

and since $\hat{\theta} \rightarrow \theta_0$, we have

$$p(\theta|y) \propto \exp\left(-rac{1}{2}(\theta-\hat{ heta})^{ op}\left[n\mathrm{I}(\hat{ heta})
ight](\theta-\hat{ heta})
ight)$$

and thus, as $n \to \infty$

$$\theta|y \stackrel{d}{\to} N\left(\hat{\theta}, \frac{1}{n}I(\hat{\theta})^{-1}\right)$$

Thus, the posterior distribution is asymptotically normal.

Binomial example

Suppose $y \sim Bin(n, \theta)$ and $\theta \sim Be(a, b)$.

What can go wrong?

- Not unique to Bayesian statistics
 - Unidentified parameters
 - Number of parameters increase with sample size
 - Aliasing
 - Unbounded likelihoods
 - Tails of the distribution
 - True sampling distribution is not $p(y|\theta)$
- Unique to Bayesian statistics
 - Improper posterior
 - Prior distributions that exclude the point of convergence
 - Convergence to the edge of the parameter space

True sampling distribution is not $p(y|\theta)$

Suppose that f(y) the true sampling distribution does not correspond to $p(y|\theta)$ for some $\theta=\theta_0$.

Then the posterior $p(\theta|y)$ converges to a θ_0 that is the smallest in Kullback-Leibler divergence to the true f(y) where

$$KL(f(y)||p(y|\theta)) = E\left[\log\left(\frac{f(y)}{p(y|\theta)}\right)\right] = \int \log\left(\frac{f(y)}{p(y|\theta)}\right)f(y)dy.$$

That is, we do about the best that we can given that we have assumed the wrong sampling distribution $p(y|\theta)$.