Algoritmo de Knuth-Morris-Pratt

Clase 18

IIC2223 / IIC2224

Prof. Cristian Riveros

Problema de pattern matching de una palabra

Problema

Dado un patrón $w = w_1 \dots w_m$ y un documento $d = d_1 \dots d_n$, encontrar todos las posiciones donde aparece w en d, o sea, enumerar:

$$\{(i,j) \mid w = d_i d_{i+1} \dots d_j\}$$

Solución ingenua

¿es posible hacerlo mejor?

Outline

Autómata de un patrón

k-lookahead

Algoritmo de Knuth-Morris-Pratt

Outline

Autómata de un patrón

k-lookahead

Algoritmo de Knuth-Morris-Pratt

Autómata de un patrón

Definición

Dado un palabra $w = w_1 \dots w_m$, sea el NFA $A_w = (Q, \Sigma, \Delta, I, F)$ tal que:

- $Q = \{0, 1, \ldots, m\}$
- $\Delta = \{(0, a, 0) \mid a \in \Sigma\} \cup \{(i, w_{i+1}, i+1) \mid i < m\}$
- $I = \{0\} \text{ y } F = \{m\}.$

Ejemplo: palabra w = nano

¿cómo podemos usar A_w para encontrar todas las apariciones de w en d?

Determinización de A_w

Sea $\mathcal{A}_{w}^{\text{det}} = (Q^{\text{det}}, \Sigma, \delta^{\text{det}}, \{0\}, F^{\text{det}})$ la determinización de \mathcal{A}_{w} tal que Q^{det} contiene solo los estados alcanzables desde $\{0\}$.

Recordatorio

Para un autómata no-determinista $\mathcal{A} = (Q, \Sigma, \Delta, I, F)$, se define el autómata determinista (determinización de \mathcal{A}):

$$\mathcal{A}^{\mathsf{det}} = (Q^{\mathsf{det}}, \Sigma, \delta^{\mathsf{det}}, q_0^{\mathsf{det}}, F^{\mathsf{det}})$$

- $Q^{\text{det}} = 2^Q = \{ S \mid S \subseteq Q \}$
- $q_0^{\text{det}} = I.$
- $\delta^{\det}: 2^Q \times \Sigma \to 2^Q \text{ tal que:}$

$$\delta^{\text{det}}(S, a) = \{ q \in Q \mid \exists p \in S. (p, a, q) \in \Delta \}$$

 $F^{\text{det}} = \{ S \in 2^Q \mid S \cap F \neq \emptyset \}.$

Determinización de \mathcal{A}_w

Sea $\mathcal{A}_{w}^{\text{det}} = (Q^{\text{det}}, \Sigma, \delta^{\text{det}}, \{0\}, F^{\text{det}})$ la determinización de \mathcal{A}_{w} tal que Q^{det} contiene solo los estados alcanzables desde $\{0\}$.

¿cómo utilizamos A_w^{det} para encontrar todos los matches?

¿cuál es el tiempo de este algoritmo una vez construido $\mathcal{A}_{w}^{\text{det}}$?

Sea $w = w_1 \dots w_m$ y $\mathcal{A}_w^{\text{det}} = (Q^{\text{det}}, \Sigma, \delta^{\text{det}}, \{0\}, F^{\text{det}})$ la determ. de \mathcal{A}_w .

Teorema

Para todo $S \in Q^{\text{det}}$ y $i \in \{0, 1, \dots, m\}$ se cumple que:

 $i \in S$ si, y solo si, $w_1 \dots w_i$ es un sufijo de $w_1 \dots w_{\max(S)}$.

Demostración teorema

Sea $S \in Q^{\text{det}}$ un conjunto de estados cualquiera alcanzable desde $\{0\}$.

Entonces existe una palabra $u = a_1 \dots a_k$ tal que $\hat{\delta}^{\text{det}}(\{0\}, u) = S$.

Por la demostración que $\mathcal{L}(\mathcal{A}^{\text{det}}) = \mathcal{L}(\mathcal{A})$ para todo NFA \mathcal{A} (Clase 03), sabemos que $j \in S$ si, y solo si, existe una ejecución de \mathcal{A}_w sobre u:

$$0=q_0\stackrel{a_1}{\to}q_1\stackrel{a_2}{\to}\ldots\stackrel{a_k}{\to}q_k=j.$$

Por la definición de A_w esta ejecución es de la forma:

$$0 \stackrel{a_1}{\rightarrow} 0 \stackrel{a_2}{\rightarrow} \dots \stackrel{a(k-j)}{\rightarrow} 0 \underbrace{\stackrel{a(k-j)+1}{\rightarrow} 1 \stackrel{a(k-j)+2}{\rightarrow} 2 \dots \stackrel{a(k-j)+j}{\rightarrow}}_{w_1 \dots w_j} j.$$

Por lo tanto, $w_1 w_2 \dots w_j$ es sufijo de $a_1 \dots a_k$.

Usaremos este último hecho para demostrar ambas direcciones.

Propiedad

Para toda $u=a_1\ldots a_k$ tal que $\hat{\delta}^{\det}(\{0\},u)=S$, y para todo $j\leq m$:

$$j \in S$$
 si, y solo si, $w_1 \dots w_j$ es sufijo de $a_1 \dots a_k$

Demostración teorema

Como S es alcanzable desde $\{0\}$,

entonces existe $u=a_1\dots a_k$ tal que $\hat{\delta}^{\text{det}}(\{0\},u)=S$.

Como $\max(S) \in S$, entonces $w_1 \dots w_{\max(S)}$ es sufijo de $a_1 \dots a_k$.

Propiedad

Para toda $u = a_1 \dots a_k$ tal que $\hat{\delta}^{\text{det}}(\{0\}, u) = S$, y para todo $j \leq m$:

$$j \in S$$
 si, y solo si, $w_1 \dots w_j$ es sufijo de $a_1 \dots a_k$

Demostración teorema (⇒)

Como S es alcanzable desde $\{0\}$,

entonces existe $u = a_1 \dots a_k$ tal que $\hat{\delta}^{\text{det}}(\{0\}, u) = S$.

Como $\max(S) \in S$, entonces $w_1 \dots w_{\max(S)}$ es sufijo de $a_1 \dots a_k$.

Suponga que $i \in S$. Entonces $w_1 \dots w_i$ es sufijo de $a_1 \dots a_k$.

Como $i \leq \max(S)$, entonces:

$$a_1 a_2 \dots a_{k-\max(S)} \overbrace{a_{k-\max(S)+1} \dots a_{k-i}}^{w_1 \dots w_{\max(S)}} \underbrace{a_{k-i+1} \dots a_k}_{w_1 \dots w_1 \dots w_1}$$

Por lo tanto, $w_1 ldots w_i$ es sufijo de $w_1 ldots w_{\max(S)}$.

Propiedad

Para toda $u=a_1\ldots a_k$ tal que $\hat{\delta}^{\det}(\{0\},u)=S$, y para todo $j\leq m$:

 $j \in S$ si, y solo si, $w_1 \dots w_j$ es sufijo de $a_1 \dots a_k$

Demostración teorema (\Leftarrow)

Como S es alcanzable desde $\{0\}$,

entonces existe $u = a_1 \dots a_k$ tal que $\hat{\delta}^{\text{det}}(\{0\}, u) = S$.

Como $\max(S) \in S$, entonces $w_1 \dots w_{\max(S)}$ es sufijo de $a_1 \dots a_k$.

Suponga que $w_1 \dots w_i$ es sufijo de $w_1 \dots w_{\max(S)}$.

Como $w_1 \dots w_i$ es sufijo de $w_1 \dots w_{\max(S)}$ y $w_1 \dots w_{\max(S)}$ es sufijo de u, entonces $w_1 \dots w_i$ es sufijo de $u = a_1 \dots a_k$.

Por la "Propiedad", concluimos que $i \in S$.

Sea $w = w_1 \dots w_m$ y $\mathcal{A}_w^{\text{det}} = (Q^{\text{det}}, \Sigma, \delta^{\text{det}}, \{0\}, F^{\text{det}})$ la determ. de \mathcal{A}_w .

Teorema

Para todo $S \in Q^{\text{det}}$ y $i \in \{0, 1, ..., m\}$ se cumple que:

 $i \in S$ si, y solo si, $w_1 \dots w_i$ es un sufijo de $w_1 \dots w_{\max(S)}$.

Corolarios

- Para todo $S_1, S_2 \in Q^{\text{det}}$, si $\max(S_1) = \max(S_2)$, entonces $S_1 = S_2$.
- $\mathcal{A}_{w}^{\text{det}}$ tiene |w| + 1 estados y a lo más $\mathcal{O}(|w|^2)$ transiciones.

Por lo tanto, encontrar todos los substrings de w en d toma tiempo $\mathcal{O}(|d| + |w|^2)$

¿es posible hacerlo mejor?

Outline

Autómata de un patrón

k-lookahead

Algoritmo de Knuth-Morris-Pratt

Autómata finito con k-lookahead

Sea Σ un alfabeto finito.

Definiciones

Se definen los siguientes conjuntos de palabra:

- $\Sigma_{\bullet} = \Sigma^* \times \Sigma^*$

Notación

En vez de $(u, v) \in \Sigma_{\bullet}$, escribiremos $u.v \in \Sigma_{\bullet}$.

Ejemplos

Si $\Sigma = \{a, b\}$ entonces:

- $ab.ba \in \Sigma_{\bullet}$ y $.aba \in \Sigma_{\bullet}$
- $ab.ba \in \Sigma_{\bullet}^{4}$ y $.aba \in \Sigma_{\bullet}^{3}$

Autómata finito con k-lookahead

Definición

Un autómata finito determinista con k-lookahead es:

$$\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$$

- Q es un conjunto finito de estados.
- Σ es el alfabeto de input.
- q₀ es el estado inicial
- $F \subseteq Q$ es el conjunto de estados finales.

+

• $\delta: Q \times (\Sigma \cup \{\$\})^k_{\bullet} \rightharpoonup Q$ es una función parcial, tal que:

para todo $p \in Q$ y $w \in (\Sigma \cup \{\$\})^k$: $|\{u.v \mid \delta(p, u.v) = q \text{ y } uv = w\}| \le 1$.

Autómata finito con k-lookahead

Ejecución de DFA con k-lookahead

Sea $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ un DFA con k-lookahead.

Definiciones

- Un par $(q, w) \in Q \times (\Sigma \cup \{\$\})^*$ es una configuración de A.
- Una configuración $(q_0, w\$^k)$ es inicial.
- Una configuración $(q,\$^k)$ es **final** si $q \in F$.

El sufijo \$\frac{s}{k}\$ no sirve para marcar el final del input (y simplificar la definición de lookahead al leer el final de la palabra)

Ejecución de DFA con k-lookahead

Sea $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ un DFA con k-lookahead.

Definición

Se define la relación $\vdash_{\mathcal{A}}$ de **siguiente-paso** entre configuraciones de \mathcal{A} :

$$(p_1, w_1) \vdash_{\mathcal{A}} (p_2, w_2)$$

si, y solo si, $\delta(p_1, u.v) = p_2$ y existe $w \in \Sigma^*$ tal que $w_1 = uvw$ y $w_2 = vw$.

Se define $\vdash_{\mathcal{A}}^*$ como la clausura **refleja** y **transitiva** de $\vdash_{\mathcal{A}}$:

para toda configuración
$$(p,w)$$
: $(p,w) \vdash_{\mathcal{A}}^{*} (p,w)$

$$\mathsf{si} \quad \left(p_1, w_1 \right) \vdash_{\mathcal{A}}^{*} \left(p_2, w_2 \right) \quad \mathsf{y} \quad \left(p_2, w_2 \right) \vdash_{\mathcal{A}} \left(p_3, w_3 \right) \colon \qquad \left(p_1, w_1 \right) \; \vdash_{\mathcal{A}}^{*} \; \left(p_3, w_3 \right)$$

 $(p,u) \vdash_{\mathcal{A}}^* (q,v)$ si uno puede ir de (p,u) a (q,v) en **0 o más pasos**.

Ejecución de DFA con k-lookahead

Sea $\mathcal{A} = (Q, \Sigma, \delta, q_0, F)$ un DFA con *k*-lookahead.

Definiciones

A acepta w si existe una configuración inicial $(q_0, w\$^k)$ y una configuración final $(q_f, \$^k)$ tal que:

$$(q_0, w\$^k) \vdash_{\mathcal{A}}^* (q_f, \$^k)$$

■ El lenguaje aceptado por A se define como:

$$\mathcal{L}(\mathcal{A}) = \{ w \in \Sigma^* \mid \mathcal{A} \text{ acepta } w \}$$

Mismas definiciones que para ϵ -NFA.

k-lookahead y lenguajes regulares

Teorema

Para todo DFA con k-lookahead \mathcal{A} se tiene que $\mathcal{L}(\mathcal{A})$ es un lenguaje regular.

Demostración: ejercicio.

Definición

Llamaremos un lazy automata a un DFA con 1-lookahead.

¿cuál es la ventaja de un lazy autómata?

Outline

Autómata de un patrón

k-lookahead

Algoritmo de Knuth-Morris-Pratt

Sea $w = w_1 \dots w_m$ y $\mathcal{A}_w^{\text{det}} = (Q^{\text{det}}, \Sigma, \delta^{\text{det}}, \{0\}, F^{\text{det}})$ la determ. de \mathcal{A}_w .

Teorema

Para todo $S \in Q^{\text{det}}$ y $i \in \{0, 1, ..., m\}$ se cumple que:

$$i \in S$$
 si, y solo si, $w_1 \dots w_i$ es un sufijo de $w_1 \dots w_{\max(S)}$.

Para $i \in [0, m]$, sea S_i el **único estado** en Q^{det} tal que $i = \max(S_i)$. (¿por qué S_i es único?)

Sea $w = w_1 \dots w_m$ y $\mathcal{A}_w^{\text{det}} = (Q^{\text{det}}, \Sigma, \delta^{\text{det}}, \{0\}, F^{\text{det}})$ la determ. de \mathcal{A}_w .

Teorema

Para todo $S \in Q^{\text{det}}$ y $i \in \{0, 1, ..., m\}$ se cumple que:

$$i \in S$$
 si, y solo si, $w_1 \dots w_i$ es un sufijo de $w_1 \dots w_{\max(S)}$.

Para $i \in [0, m]$, sea S_i el único estado en Q^{det} tal que $i = \max(S_i)$.

Propiedad 2

Para todo $a \in \{w_1, ..., w_m\}$ y $i \in [0, m-1]$:

- 1. $S_i \setminus \{i\} \in Q^{\text{det}}$.
- 2. $a = w_{i+1}$, entonces $\delta^{\text{det}}(S_i, a) = S_{i+1}$.
- 3. $a \neq w_{i+1}$, entonces $\delta^{\text{det}}(S_i, a) = \delta^{\text{det}}(S_i \setminus \{i\}, a)$.

Propiedad 2

Para todo $a \in \{w_1, \dots, w_m\}$ y $i \in [0, m-1]$:

- 1. $S_i \setminus \{i\} \in Q^{\text{det}}$.
- 2. $a = w_{i+1}$, entonces $\delta^{\text{det}}(S_i, a) = S_{i+1}$.
- 3. $a \neq w_{i+1}$, entonces $\delta^{\text{det}}(S_i, a) = \delta^{\text{det}}(S_i \setminus \{i\}, a)$.

Ejemplo: palabra w = nano

Propiedad 2

Para todo $a \in \{w_1, \dots, w_m\}$ y $i \in [0, m-1]$:

- 1. $S_i \setminus \{i\} \in Q^{\text{det}}$.
- 2. $a = w_{i+1}$, entonces $\delta^{\text{det}}(S_i, a) = S_{i+1}$.
- 3. $a \neq w_{i+1}$, entonces $\delta^{\text{det}}(S_i, a) = \delta^{\text{det}}(S_i \setminus \{i\}, a)$.

Demostración: ejercicio.

¿cómo podemos construir un lazy autómata usando la Propiedad 2?

Construcción

Se define el lazy autómata $\mathcal{A}_{w}^{\text{lazy}} = (Q^{\text{det}}, \Sigma, \delta^{\text{lazy}}, \{0\}, F^{\text{det}})$ tal que:

- para todo $a \neq w_1$: $\delta^{lazy}(\{0\}, a.) = \{0\}$.
- para todo $a \in \{w_1, \ldots, w_m\}$ y $i \in [0, m-1]$:
 - si $a = w_{i+1}$, entonces $\delta^{lazy}(S_i, a.) = S_{i+1}$
 - si $a \neq w_{i+1}$ y $i \neq 0$, entonces $\delta^{\mathsf{lazy}}(S_i, .a) = S_i \setminus \{i\}$.

Construcción

Se define el lazy autómata $\mathcal{A}_{w}^{\text{lazy}} = (Q^{\text{det}}, \Sigma, \delta^{\text{lazy}}, \{0\}, \mathcal{F}^{\text{det}})$ tal que:

- para todo $a \neq w_1$: $\delta^{lazy}(\{0\}, a.) = \{0\}$.
- para todo $a \in \{w_1, \ldots, w_m\}$ y $i \in [0, m-1]$:
 - si $a = w_{i+1}$, entonces $\delta^{lazy}(S_i, a) = S_{i+1}$
 - si $a \neq w_{i+1}$ y $i \neq 0$, entonces $\delta^{\mathsf{lazy}}(S_i, .a) = S_i \setminus \{i\}$.

Teorema

Para todo w se cumple que $\mathcal{L}(\mathcal{A}_w^{\text{det}}) = \mathcal{L}(\mathcal{A}_w^{\text{lazy}})$.

Demostración: ejercicio. (usando Propiedad 2)

¿cuántos pasos toma $\mathcal{A}_{w}^{\mathsf{lazy}}$ sobre un documento d?

- Número de pasos que A_w^{lazy} consume letras = |d|
- Número de pasos que A_w^{lazy} retrocede $\leq |d|$
- Número de pasos totales de $\mathcal{A}_w^{\text{lazy}} \leq 2 \cdot |d|$

Por lo tanto, la cantidad de pasos es **lineal** en $\mathcal{O}(|d|)$.

Algoritmo de Knuth-Morris-Pratt

Algoritmo

Dado una palabra w y un documento d:

■ Construimos
$$\mathcal{A}_{w}^{\mathsf{lazy}}$$
 desde \mathcal{A}_{w} . $\mathcal{O}(|w|)$

■ Ejecutamos
$$\mathcal{A}_w^{\mathsf{lazy}}$$
 sobre d . $\mathcal{O}(|d|)$

Tiempo del algoritmo: $\mathcal{O}(|w| + |d|)$

Ejercicio: demuestre como construir $\mathcal{A}_w^{\mathsf{lazy}}$ en tiempo $\mathcal{O}(|w|)$

Cierre de clase

En esta clase vimos:

- 1. Entendimos la determinización de un patrón.
- 2. Autómatas con k-lookahead.
- 3. Estrategia de algoritmo de Knuth-Morris-Prat.

Próxima clase: Lenguajes libres de contexto.