

Busan science high school

2023 Ocean ICT Festival **2023 BOIF**

39

Youtube 영상 QR

후쿠시마 원전 오염수 방류 시 이동 경로 및 피해 정도 예측

팀명: 근성

3108 박준현, 3407 권성원, 3510 이상민

연구 동기

현재 일본의 후쿠시마 원전 오염수 방류를 결정하면서 다양한 문제가 제기되고 있다. 이에 우리는 일본이 원 전 오염수를 방류하게 되면 입을 수 있는 피해를 예측해 보기 위해 오염수의 예상 이동 경로를 이용하여 시간 에 따른 해양 생명체 내 방사능의 농축 정도를 계산하기로 결정했다.

이론적 배경

현재, 주위 국가들의 많은 반대에도 불구하고 일본 정부가 공식적으 로 후쿠시마 원전 오염수를 방류하기로 결정하였다. 원전 오염수의 실질적 위험에 대해 궁금해진 우리는 후쿠시마 오염수 방류 시 오염 수의 이동 경로를 예측한 자료를 이용해 오염수가 사람에게 실제로 미치는 영향을 파악하는 프로그램을 만들어 방류가 얼마나 심각한 문제인지 알리고자 한다.

융합 분야

정보과학

Mathplotlib과 numpy 모 듈을 이용해 삼중수소 농도 가 표현된 그림으로부터 hsv 를 인식하여 행렬을 얻고 오 염수 방류 후 특정일에서의 삼중수소 농도를 구하는 프 로그램을 제작한다.

해양물리학

SciTech Daily의 후쿠시마 근처 삼중 수소의 양을 시각 적으로 표현한 애니매이션 을 통해 오염수 방류일을 시 작으로 20일 마다의 삼중수 소 농도 그림을 얻는다.

생명과학

방사능이 사람에게 축적되 는 양과 생체 내에서 절반으 로 줄어드는 기간인 생물학 적 반감기를 구해 일정 기간 동안 축적된 방사능의 양을 계산한다.

연구 과정 및 결과

I. 알고리즘의 전제

정확한 방사능 붕괴 및 체외로 빠져나가는 과정을 알 수 없기에 방사능이 체내에 들어온 후 감소하는 반 응을 1차 반응으로 생각한다. 또한 해양 생물이 이동하지 않고 항상 같은 위치에 머문다고 생각한다.

Ⅱ. 알고리즘

가상 오염수 확산에 대한 논문에서 시뮬 레이션 결과를 참조 한다.

가상 오염수 확산에 대한 논문에서 시뮬 레이션 결과를 참조 한다.

Python 및 OpenCV를 이용해 시뮬레이션 이미지를 분석한다

1.범례를 참고해 색 상에 대응하는 농도 를 찾아 구역의 농도 를 정한다.

1.생물학적 반감기 를 고려해 행렬을 연 산하여 특정일 이후

농도를 얻는다.

III. 코드와 결과

1. 시뮬레이션 이미지 분석 코드

시뮬레이션 이미지 파일1

2. 실제 삼중수소 농도 출력 코드

시뮬레이션 이미지 파일2

삼중수소 농도 출력 결과

```
4020일째 농축된 방사선 양
[[4.00000000e-03 0.00000000e+00 0.00000000e+00 0.00000000e+00
 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
 4.00000000e-03 1.26491106e-04 4.00000000e-03 4.00000000e-03
 4.00000000e-03 4.00000000e-03 4.0000000e-03 4.00000000e-03
 4.00000000e-03 4.00000000e-03 4.00000000e-03 4.00000000e-03
 4.00000000e-03 4.00000000e-03]
 [0.0000000e+00 0.0000000e+00 0.000000e+00 0.000000e+00
 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
 0.0000000e+00 0.0000000e+00 0.0000000e+00 0.0000000e+00
 0.0000000e+00 0.0000000e+00 0.000000e+00 0.0000000e+00
 4.00000000e-03 1.26491106e-04 4.00000000e-03 4.00000000e-03
 4.00000000e-03 4.00000000e-03 4.00000000e-03 4.00000000e-03
 4.00000000e-03 4.00000000e 03 4.00000000e-03 4.00000000e-03
 4.00000000e-03 4.00000000e-03]
```

3. 생물 축적량 분석 코드

개체수 파악 코드

eturn Mac_p(t)-Mac_p(t-1) f Anc_abs(t) : return Concen(t)*(0.05)*Anc_p(t) _abs(t) : t<u>urn_</u>Concen(t)*(0.05)*Mac_p(t) f Anc_half(t) : return Anc_T[t]*((1/2)**(1/12)) riod = int(input('예측하고자 하는 기간(days):')) $\label{eq:continuous_continuous$ Anc_r_eff_p.append(Anc_r_eff_p[t-1]-Anc_diff(t)) Anc_T.append(Anc_abs(t)+Anc_half(t-1)) Anc_r.append(Anc_ex(t)) Anc_r_eff_p.append(Anc_r_eff_p[t-1]) Anc_T.append(Anc_abs(t)+Anc_half(t-1)) f.append(Anc_r_eff[t-1]) f p.append(Anc_r_eff p[t-1])

축적량 파악 코드

Anchovy 0.08 0.07 0.06 SV) 0.05 0.04 0.03 0.02 0.01 0.00 1000 2000 3000 4000 5000 6000 date

포식자의 축적량

결론

후쿠시마 삼중수소 가상 시뮬레이션에 관한 논문에서 제공한 4020일까지의 시뮬레이션을 분석하여 총 30x30 크기의 행 렬이 출력하였다. 오염수 방류 4020일째에서 얻어낸 농도 중 가장 높은 방사선 양은 $4x10^{-3} Bq/m^3$ 이다. 이를 토대로 해 양 생태계를 모델링한 결과 포식자 생선 1마리 당 $40\mu Sv$ 로 X-ray 사진을 찍는 것과 비슷한 양이기에 결코 무시할 수 없는 수준이다.