

09/646568

428 Recd PCT/PTO 20 SEP 2000

SEQUENCE LISTING

<110> ST GEORGE'S HOSPITAL MEDICAL SCHOOL

<120> DIAGNOSTICS AND VACCINES FOR MYCOBACTERIAL INFECTIONS
OF ANIMALS AND HUMANS

<130> N74368A DMG IJB DP

<140> PCT/ GB 99/ 00849

<141> 1999-03-18

<150> UK 9806093.2

<151> 1998-03-20

<160> 5

<170> PatentIn Ver. 2.1

<210> 1

<211> 1335

<212> DNA

<213> Mycobacterium avium

<400> 1

gtgactgaag ccaatgagtg caactcgccg tcgcgaaagg tttcagtcgc ggtttagcaa 60
gacacccgcaa gactactgga gtgcgtgcac aagcgcccc agctcgccg tgaaagcgg 120
tgcaaagggg ttcaagctt gagcaacatg cgaaggggag aacggctat gagcctggg 180
caggtttcg acccgccgcg gaatgcactt aatgcgtggc gcttgggtt ggcgagcggg 240
gtgatcctat ggcattcggtt tccgctcaact ggacgtatgc cgtggccgc gttcgtccag 300
ttgcttggcc ttggatgcgt tgatggttt tttgcggctt ccggctatct catcgtctcg 360
agctggcttc gcaacccgca tcccgcccaa tacttcaccc ctgcgtgtct tcgtattctc 420
ccgggtctgtt ggtatctgtct catcttgacg gcgtttgtca tcgctccgtt aggtgtggc 480
gcccaaggccg gttcggccgc gaaactactg atgtccggcg ctccgatcga gtatgtgcta 540
aaagacagtg cggtttggat gtttaagttt gatatcggtt gcacaccccg cgatattcca 600
gttgcgggta tttggAACGG ttctctgtgg acattgggtt gggaggtgct ttgttatata 660
ggcgttagcag tatttggat gtcggactt cttagtcgc gttgggtcg tccaggata 720
ttgatcctgg cgctgtcggtt gtcgggttcc ttgcggcat gggggccaaat acacgcgatc 780
gcctccaatg ctgcgcgatt cgctgtgatg ttttcggccg gagcgttgcgt gtatcaattc 840
cgtaacgtga ttccggctcg gtggcccttc gttgccgtcg gcctcattat cggtgtgg 900
tcctctgccc tgctgcccga ctaccgggtt gtggccggcc ttccgatggc gtacctaattc 960
atcgccctcg gttcgctcat ccacaatcaa aggatgaggt tccgcacccga tctatccat 1020
ggagtatata ttatgcgtt tccaatttcg caagtgcgtt ccctgtgtgg attcgccgag 1080
ataaaatccaa tcgtttctg cgccgatcttct gtcgcagcta ttttgcgcgtt cgccgcgtc 1140
agttgttctt tggtcgagaa acctgcgtt tcctggaga gtcgtctccg gcgaaaaac 1200
agttcaatttgcgtt ccgtggccaa tatggaaat ggtggatccg tcggccgtc aaatgacatt 1260
cccgaaaggc gggcccgctt tattggcgag aaagccgaag atcctccgc gccgagccca 1320
agaccggctt tgtaa 1335

<210> 2

<211> 444

<212> PRT

<213> Mycobacterium avium

<400> 2

Val Thr Glu Ala Asn Glu Cys Asn Ser Ala Ser Arg Lys Val Ser Val
1 5 10 15

Ala Val Glu Gln Asp Thr Ala Arg Leu Leu Glu Cys Val His Lys Arg
20 25 30

Pro Gln Leu Ala Ala Glu Ser Gly Cys Lys Gly Val Arg Ser Leu Ser
35 40 45

Asn Met Arg Arg Gly Glu Arg Pro Met Ser Leu Gly Gln Val Phe Asp
50 55 60

Pro Arg Ala Asn Ala Leu Asn Ala Trp Arg Leu Val Leu Ala Ser Gly
65 70 75 80

Val Ile Leu Trp His Ser Phe Pro Leu Thr Gly Arg Met Pro Trp Ala
85 90 95

Pro Phe Val Gln Leu Leu Gly Leu Gly Cys Val Asp Gly Phe Phe Ala
100 105 110

Val Ser Gly Tyr Leu Ile Val Ser Ser Trp Leu Arg Asn Pro His Pro
115 120 125

Ala Gln Tyr Phe Thr Ala Arg Cys Leu Arg Ile Leu Pro Gly Leu Trp
130 135 140

Ile Cys Leu Ile Leu Thr Ala Phe Val Ile Ala Pro Ile Gly Val Gly
145 150 155 160

Ala Gln Gly Gly Ser Ala Ala Lys Leu Leu Met Ser Gly Ala Pro Ile
165 170 175

Glu Tyr Val Leu Lys Asp Ser Ala Val Trp Met Val Lys Phe Asp Ile
180 185 190

Gly Gly Thr Pro Arg Asp Ile Pro Val Ala Gly Ile Trp Asn Gly Ser
195 200 205

Leu Trp Thr Leu Gly Trp Glu Val Leu Cys Tyr Ile Gly Val Ala Val
210 215 220

Phe Gly Met Leu Gly Leu Leu Ser Arg Arg Trp Phe Val Pro Gly Ile
225 230 235 240

Leu Ile Leu Ala Leu Ser Trp Ser Val Phe Leu Pro Ala Trp Gly Gly
245 250 255

Ile His Ala Ile Ala Ser Asn Ala Ala Arg Phe Ala Val Met Phe Ser
260 265 270

Ala Gly Ala Leu Leu Tyr Gln Phe Arg Asn Val Ile Pro Ala Arg Trp

275

280

285

Ser Phe Val Ala Val Gly Leu Ile Ile Val Val Val Ser Ser Ala Val
290 295 300

Leu Pro Asp Tyr Arg Leu Val Ala Ala Leu Pro Met Ala Tyr Leu Ile
305 310 315 320

Ile Ala Ser Gly Ser Leu Ile His Asn Gln Arg Met Arg Phe Arg Thr
325 330 335

Asp Leu Ser Tyr Gly Val Tyr Ile Tyr Ala Phe Pro Ile Gln Gln Val
340 345 350

Leu Val Leu Cys Gly Phe Ala Glu Ile Asn Pro Ile Ala Phe Cys Ala
355 360 365

Ile Ser Val Ala Ala Ile Leu Pro Leu Ala Ala Leu Ser Trp Phe Leu
370 375 380

Val Glu Lys Pro Ala Leu Ser Trp Lys Ser Arg Leu Arg Arg Lys Asn
385 390 395 400

Ser Ser Ile Ala Leu Ala Asn Met Glu Asp Gly Gly Ser Val Gly Arg
405 410 415

Ser Asn Asp Ile Pro Gly Arg Arg Ala Arg Phe Ile Gly Glu Lys Ala
420 425 430

Glu Asp Pro Pro Ala Pro Ser Pro Arg Pro Ala Leu
435 440

<210> 3

<211> 2543

<212> DNA

<213> Mycobacterium avium

<400> 3

atgcactgtc aatggccaag tagaagtccc cgctggtggc cagcagaagt ccccaactccg 60
ctgcgggtgg ttggctaatt ctggcgct cccttcttgc ggtccggcgtg ggcgcattccgg 120
taggactcgc cggagggtgac gacgatgcgt gcgtggtcga gcagccgatc gaggatgcgt 180
gcggcgggtgg tttgtctcgaa caggaatcgc cccattgtt cgaaggccca atgcgaggcg 240
atggccaggg agcggcgctc gttagccgca gcccacgagcc ggaacaacag ttgagtcccc 300
gtgtcgatca gcccggcgaa gccgatctcg tccaagatga ccagatccgc gcggagcagg 360
gtgtcgatca tcttgccgac ggtgttgcg gccaggccgc ggttagaggac ctcgatcagg 420
tcggcggcggtt tgaagtagcg gactttgaat ccggcgatggc cggcgcgtg cccgcaggccg 480
atgagcagggt gactttgcc cgtaccagggt gggccaaatga ccgcagggtt ctgttgtgcc 540
cgaatccatt ccaggctcgaa caggtatgcg aacgtggctg cggatcgatcgatccgggtg 600
acgtcgaacc cgtcgagggtt cttgggtgacc gggaaaggctg cggcccttgcg acggttggcg 660
gtgttggagg catcgccggc agcgatctcg gcctcaacca acgtccgcag gatctcctcc 720
ggtgtccagc gttgcgtctt ggcgacttgc aacacctcg gggcgatggc ggcacccgtg 780
gccagcttca accgcccgcg cggccgcgtca aggtcagcag ccagcggatgc cggcaggac 840

gggccaccgc gcttggcagc ggtggtcatg agggcgtccc gtcgggttg ttgtatcttg 900
aggcctccaa cgagcggtc tcgacggttg gcagatcgag cacgagtgcg tcgcggcgg 960
ggcggttgc tgggtgcgc gcgcggcgg ccaggatcgatcgacgcg 1020
accggcggaaa cgcaaccgc cggcgacgcg ctgtcaatcaa aaccgttgcg cctgtggcgg 1080
cgccaaggcc gagcagaatgc tgagttcg atttcagtcg ggtgttgcgc atcgacgcg 1140
caccgacgag gaactgctgc gcttgcgttgc ccaatgcgc aatcgtttc tctgttttgc 1200
ttttcggtgc aggaccacgc gaggggtgcgc gtctgggtcc gtctgtgttgc tcatcgagga 1260
tggcacccctc acctgggtcg acgacgtcgt gtcggccac gatcacaccgc gtcgcaggtt 1320
ccaacaggat cagggcgccca tgatcgacca ccacccgcac ggtggacccgc acgagccgc 1380
gaggcaccga gtaacgcgatc gagccgtaaac ggtgtgcacga gagggccgtcg accttacggc 1440
gcaccgcacc ctagccgatc gtcggccgc gcgaggccgc ctccctcaag acgggtgcgt 1500
cgtaacccaa gcgatcggtt ggcacccgcg agatctccga gtggaccgtg gcattgacct 1560
cgccgcacca tagttgcgc tgggtgttgc gggcacgtg gtcgacctgc tcaccggcta 1620
acgcagcttc ggtcagcgc ggcaccgcac ggtcgctctg acgttagccca cagaggttct 1680
ccacgatgcc ctgcatttgc ggatccgcac cgtggcagaa gtccggaaacg aagccatagt 1740
gggacgcgaa tcgcacataa tccgggttgc gaacaacaac attggcgcacg acaccaccc 1800
tgaggcagcc catccggcgc gccaggatct tggccggaaac cccaccgcac gcctcgagg 1860
cttcggctat catcgctgc gtgtcgagg ctttctcgatc ggcggcgaac cgctaaacc 1920
ggcaccgcga ataggccagc tccggcata acaccatcg ccccggtgccc gttccggccc 1980
aatccatcac cagatagtca cgggtgacc agaccgcgg acggcgttgc tgccggttag 2040
cggtgcgcac ccatacttcc tgctcgatc ccaggcggcgc gaaatgcgttgc gccgagccct 2100
gataccccggc agctcggcgc atcggcagca tccgcttcgc cgacatcttgc cgtgtgtatt 2160
tctcgactcg ggtggcgcact agatcggtga acgcgtcgag gttgcgtggc cgtggttccc 2220
gcggggcgc gccaccggcc tcggccgcgt cgatgaccgc cttgacccgtc ttgtgcgtac 2280
taccgcacag ctgcggccgc ccgcgatcgc accccgcacgc gttgatcgcc gaaatgtatg 2340
tcatacgctc cttgcacgc acgttcatagag ctccctgggc ggtgtatcaag tgacagttgg 2400
cgctatcacc gtcaccgcgc aggccctcgc ctcccgaaaa agacacgcgc agccgcataa 2460
ggagtgggaa cttctacctg gccaccagtg gggacttcct actggccaca gatggggact 2520
ttctcatggc catggacatgc cac 2543

<210> 4
<211> 2543
<212> DNA
<213> Mycob

<400> 4
gtgcatgtcc atggccatga gaaagtcccc atctgtggcc agtaggaagt ccccacttgt 60
ggccaggtag aagtccccac tccttagcgg gctcgctgt tctttccgg gagctgaggg 120
cctggcggt gacggtgata gcgcacaactg tcacattgatc accgcggcagg gagctctatt 180
gaagtctgca agggagcgta tgaacatcat ttccggctat caccaggctg ggtcgatcg 240
cggcgcggcc gagctgtgcg gtagtacgca caagacggtc aagcgggtca tcgagcggc 300
cgaggccggt ggcgcggcccc cgccggaaacc acggccacgc aacctcgacg cgttcaccca 360
tctagtcgcc acccgagatcg agaaatcaca cggcaagatg tccggcgaagc ggatgtcgcc 420
gatcgcccgaa gctgcccgggt atcagggtctc ggcccgtaac ttccggcccgcc tggtagccca 480
gcagggaaagta tggtggcgca acgctaaccg gcatcaacgc cgtcggccgg tctggtcacc 540
cggtgactat ctggtgatgg attgggcccga agcggcaccc gggctgatgg tgttatgcgc 600
ggagctggcc tattcgccggt ggcgggttga gcgggttcgccc gcccacgaga aaggctcgac 660
cacgcaggcg atgatagccg aagccctcgaa ggcgatcggt ggggttccgg ccaagatct 720
ggccgaccgg atgggctgccc tcaaagggtgg tgctgtcgccc aatgttggg tttcaacacc 780
ggattatgtg cgattcgctcccactatgg ctccgttccg gacttctgccc acggcgacg 840
tccgcaatcg aaggccatcg tggagaacct ctgtggctac gctcaggacg accttgcgt 900
ggcgctgtg accgaagctg cggttagccgg tgagcgggtc gacctacgtg ccctcaacgc 960
ccaggcgccaa ctatggtgcg ccgaggtaa tgccacggtc cacttcggaga tctgcggcgt 1020

gccccaaacgt cgcttgggtt acgagcgcac cgtcttgagg gagctgccct cgctgcggcc 1080
gacgatcgcc tcggggtcgg tgcgcgttaa ggtcgacggc ctctcgtca tccgttacgg 1140
ctcagctcg tactcggtgc ctcagcgct cgtcggtgcc accgtggcg tgggtggcga 1200
tcatggcgcct ctgatcctgt tggAACCTGC gaccgggtgt atcgtggccg agcacagact 1260
cgtcagccca ggtgagggtgt ccattcctcgta tgaacactac gacggaccca gacccgcacc 1320
ctcgcgttgt cctcgcccga aaacccaacg agagaaaacga ttctgcgcatt tggaaaccga 1380
acgcgcagcg ttccctcgatc gtgctgcgtc gatcgacac acccgactga aatccgaact 1440
cgacattctg ctgcgccttgc ggcgcggccca cggcgaacag gctttgattt acgcgcgtcg 1500
ccggcggtt cgcttcgcgc gggtccgcgc tgccgcgtg cgctcgatcc tgccgcgg 1560
cgccgcacc ccacaaccccc gccccggcccg cgacgcactc gtgctcgatc tgccaccgt 1620
cgagaccgc tcgttggagg cctacaagat caaacaccacc gacgggacgg cctcatgacc 1680
accgcgtccca agccgggtggc accgcgtcccgcc gccgcggccgc tggctgctga ccttgcgcg 1740
gcgcgtcgcc ggttgaagct ggccacgggt cgccgcacg ccggcgaggt gttgcaagtc 1800
gccaagacgc aacgcgtggac accggaggag atccctcgga cggtgggttga ggccgagatc 1860
gtgtcccgccg atgcctccaa caccgcacac cgtctcaagg ccgcagccctt cccggtcacc 1920
aagacccctcg acgggttcga cgtcacccggatc tggctgatca ccgcagccac gtgcactac 1980
ctgtcgagcc tggaaatggat tcgggcacaa cagaacctgg cggtcatttgcccacctgg 2040
acgggcaaaa gtcacctgtc catcggtgc gggcacgtc ccgtccacgc cggattcaaa 2100
gtccgcgtact tcaccgcgcg cgacgcgtatc gagggtccctt accgcggccct ggccgacaac 2160
accgcgtcgcc agatcatcgac caccctgtcc cgccgcggatc tggctcatctt ggacgagatc 2220
ggcttcggcc cgctcgacga caccgggact caactgttgt tccggctcgatc ggctgcggc 2280
tacgagcgcc gctccctggc catcgccctcg cattggccct tcgaaacaatg ggggcgatcc 2340
ctgcccggcc acaccaccgcg ccgcagccatc ctgcgtccgc tgctgcacca ccgcagccatc 2400
gtcgacccctt ccggcgagtc ctacccggatc cgccacccgc accacaagaa gggagccgc 2460
agaatttagc caaccaccccg cagcggtgt gggacttctg ctggccacca gcggggactt 2520
ctacttggcc attgacagtg cat 2543

<210> 5

<211> 526

<212> PRT

<213> Mycobacterium avium

<400> 5

Val Ser Phe Pro Gly Ala Glu Gly Leu Gly Gly Asp Gly Asp Ser Ala
1 5 10 15

Asn Cys His Leu Ile Thr Ala Gln Gly Ala Leu Leu Lys Ser Ala Arg
20 25 30

Glu Arg Met Asn Ile Ile Ser Ala Tyr His Gln Val Gly Ser Tyr Arg
35 40 45

Gly Ala Ala Glu Leu Cys Gly Ser Thr His Lys Thr Val Lys Arg Val
50 55 60

Ile Glu Arg Ala Glu Ala Gly Gly Ala Pro Pro Arg Glu Pro Arg Pro
65 70 75 80

Arg Asn Leu Asp Ala Phe Thr Asp Leu Val Ala Thr Arg Val Glu Lys
85 90 95

Ser His Gly Lys Met Ser Ala Lys Arg Met Leu Pro Ile Ala Arg Ala
100 105 110

Ala Gly Tyr Gln Gly Ser Ala Arg Asn Phe Arg Arg Leu Val Ala Glu
115 120 125

Gln Glu Val Trp Trp Arg Asn Ala Asn Arg His Gln Arg Arg Pro Ala
130 135 140

Val Trp Ser Pro Gly Asp Tyr Leu Val Met Asp Trp Ala Glu Ala Ala
145 150 155 160

Pro Gly Leu Met Val Leu Cys Ala Glu Leu Ala Tyr Ser Arg Trp Arg
165 170 175

Phe Glu Arg Phe Ala Ala Asp Glu Lys Ala Ser Thr Thr Gln Ala Met
180 185 190

Ile Ala Glu Ala Leu Glu Ala Ile Gly Gly Val Pro Ala Lys Ile Leu
195 200 205

Ala Asp Arg Met Gly Cys Leu Lys Gly Gly Val Val Ala Asn Val Val
210 215 220

Val Pro Thr Pro Asp Tyr Val Arg Phe Ala Ser His Tyr Gly Phe Val
225 230 235 240

Pro Asp Phe Cys His Gly Ala Asp Pro Gln Ser Lys Gly Ile Val Glu
245 250 255

Asn Leu Cys Gly Tyr Ala Gln Asp Asp Leu Ala Val Pro Leu Leu Thr
260 265 270

Glu Ala Ala Leu Ala Gly Glu Gln Val Asp Leu Arg Ala Leu Asn Ala
275 280 285

Gln Ala Gln Leu Trp Cys Ala Glu Val Asn Ala Thr Val His Ser Glu
290 295 300

Ile Cys Ala Val Pro Asn Asp Arg Leu Val Asp Glu Arg Thr Val Leu
305 310 315 320

Arg Glu Leu Pro Ser Leu Arg Pro Thr Ile Gly Ser Gly Ser Val Arg
325 330 335

Arg Lys Val Asp Gly Leu Ser Cys Ile Arg Tyr Gly Ser Ala Arg Tyr
340 345 350

Ser Val Pro Gln Arg Leu Val Gly Ala Thr Val Ala Val Val Asp
355 360 365

His Gly Ala Leu Ile Leu Leu Glu Pro Ala Thr Gly Val Ile Val Ala
370 375 380

Glu His Glu Leu Val Ser Pro Gly Glu Val Ser Ile Leu Asp Glu His
385 390 395 400

Tyr Asp Gly Pro Arg Pro Ala Pro Ser Arg Gly Pro Arg Pro Lys Thr
405 410 415

Gln Ala Glu Lys Arg Phe Cys Ala Leu Gly Thr Glu Ala Gln Gln Phe
420 425 430

Leu Val Gly Ala Ala Ala Ile Gly Asn Thr Arg Leu Lys Ser Glu Leu
435 440 445

Asp Ile Leu Leu Gly Leu Gly Ala Ala His Gly Glu Gln Ala Leu Ile
450 455 460

Asp Ala Leu Arg Arg Ala Val Ala Phe Arg Arg Phe Arg Ala Ala Asp
465 470 475 480

Val Arg Ser Ile Leu Ala Ala Gly Ala Gly Thr Pro Gln Pro Arg Pro
485 490 495

Ala Gly Asp Ala Leu Val Leu Asp Leu Pro Thr Val Glu Thr Arg Ser
500 505 510

Leu Glu Ala Tyr Lys Ile Asn Thr Thr Asp Gly Thr Ala Ser
515 520 525

SEQUENCE LISTINGS**Sequence ID No.1**

5 Total bases = 1,335

1	GTGACTGAAGCCAATGAGTGCAACTCGCGTCGCAGAAAGGTTTCAAGTCGC
51	GGTTGAGCAAGACACCGCAAGACTACTGGAGTGCCTGCACAAGCGCCCC
101	AGCTCGCGCTGAAAGCGGATGCAAAGGGGTTCGAAGCTTGAGCAACATG
10	CGAAGGGGAGAACGGCCTATGAGCCTGGGACAGGTTTCGACCCGCGCGC
151	GAATGCACTTAATGCGTGGCGCTTGGTGTGGCGAGCGGGGTGATCCTAT
201	GGCATTGCTTCCGCTCACTGGACGTATGCCGTGGCGCCGTTCGTCCAG
251	TTGCTTGGCCTTGGATGCCTGATGGTTCTTGCCTCTCCGGCTATCT
301	CATCGTCTCGAGCTGGCTTCGCAACCCGCATCCGCCAATACTTCACCG
351	CTCGATGTCTCGTATTCTCCGGGCTGTGGATCTGTCTCATCTTGACG
401	GCGTTTGTATCGCTCCGATAGGTGTGGCGCCAGGGCGGTTGGCCGC
451	GAAACTACTGATGTCGGCGCTCCGATCGAGTATGTGCTAAAAGACAGTG
501	CGGTTTGGATGGTAAGTCGATATCGGTGGCACACCTCGCGATATTCCA
551	GTTGCGGGTATTTGGAACGGTTCTGTGGACATTGGGTTGGGAGGTGCT
601	TTGCTATATCGCGTAGCAGTATTGGTATGCTCGGACTTCTAGTCGCC
651	GTTGGTTCGTTCAGGGATATTGATCCTGGCGCTGTGGTGGTGGTGTTC
701	TTGCCGGCATGGGCGGAATACACCGCATCGCTCCAATGCTCGCGATT
751	CGCTGTATGTTTGGCCGGAGCGTTGCTGTATCAATTCCGTAACGTGA
801	TTCCGGCTCGGTGGTCCTCGTTGCCGTCGGCCTCATTATCGTTGGTT
851	TCCCTGCCGTGCTGCCGGACTACCGGTTGGTGGCGGCCCTCCGATGGC
901	GTACCTAATCATCGCTCGGGTCGCTCATCCACAATCAAAGGATGAGGT
951	TCCGCACCGATCTATCCTATGGAGTATATATTATGCGTTCCAATTCA
1001	CAAGTGCTGGTCCTGTGTGGATTGCCGAGATAAAATCCAATCGCTTCTG
1051	CGCGATTTCTGCGCAGCTATTTGCCGTCGCCGCGCTCAGTTGGTTCT
1101	TGGTCGAGAACCTGCGTTGCTGGAAAGAGTCGTCGCCGGAAAAAC
30	1151

1201 AGTTCAATTGCGCTAGCCAATATGGAAGATGGTGGATCAGTCGGCCGCTC
 1251 AAATGACATTCCCGGAAGGCAGGGCCCGCTTATTGGCGAGAAAGCCGAAG
 1301 ATCCTCCCGCGCCGAGCCAAGACCAGCTTGTA

5

Sequence ID No.2

Total Residues = 444

10	1 VTEANECSASRKVSVAVEQDTARLLECVHKRPQLAESGCKGVRSLSNM
	51 RRGERPMSLGQVFDPRANALNAWRVLVLSGVILWHSFPLTGRMPWAPFVQ
	101 LLGLGCVDGFFAVSGYLIVSSWLRNPHPAQYFTARCLRILPGLWICLILT
	151 AFVIAPIGVGAQGGSAKLLMSGAPIEYVLKDSAVWMVKFDIGGTPRDIP
	201 VAGIWNGLWTLGWEVLCYIGVAVFGMLGLLSRRWFVPGILILALSWSVF
15	251 LPAWGGIHAIASNAARFAVMFSAGALLYQFRNVI PARWSFVAVGLIIVVV
	301 SSAVLVDYRLVAALPMAYLIIASGSLIHNRMRFRDLSYGVYIYAFPIQ
	351 QVLVLCGFAEINPIAFC AISVAAILPLAALSWFLVEKPALSWKSLRRKN
	401 SSIALANMEDGGSVGRSNDIPGRRARFIGEKAEDPPAPSPPAL

20

Sequence ID No. 3 = IS1612 positive strand.

1	ATGCACTGTCAATGGCCAAGTAGAACAGTCCCCGCTGGTGGCCAGCAGAACAGT
	51 CCCCACTCCGCTGCAGGGTGGTTGGCTAATTCTGGCGGCTCCCTTCTTGT
25	101 GGTGGCGTGGCGCATCCGGTAGGACTCGCCGGAGGTGACGACGATGCTG
	151 GCGTGGTGAGCAGCCGATCGAGGATGCTGGCGGCGGTGGTGTGCTCGGG
	201 CAGGAATCGCCCCATTGTTCGAAGGGCCAATGCGAGGCCGATGGCCAGGG
	251 AGCGGCGCTCGTAGCCGGCAGCCACGAGCCGGAACACAGTTGAGTCCCG
	301 GTGTCGTCAGCGGGCGAAGCCGATCTGTCCAAGATGACCAGATCCGC
30	351 GCGGAGCAGGGTGTGATGATCTTGGCACGGTGTGCGGCCAGGCCGC

401 GGTAGAGGACCTCGATCAGGTGGCGGCGGTGAAGTAGCGGACTTGAAT
451 CCGGCCTGGACGGCAGCGTGCCCGCAGCGATGAGCAGGTGACTTTGCC
501 CGTACCAAGGTGGCCAATGACCGCCAGGTTCTGTTGTGCCGAATCCATT
551 CCAGGGCTCGACAGGTAGTCGAACGTGGCTGCGGTGATCGACGATCCGGTG
5 601 ACGTCGAACCCGTCGAGGGTCTTGGTACCGGGAAAGGCTGCGGCCTTGAG
651 ACGGTTGGCGGTGTTGGAGGCATCGCGGCAGCGATCTGGCCTAACCA
701 ACGTCCGCAGGATCTCCTCCGGTGTCCAGCGTTGCGTCTTGGCGACTTGC
751 AACACCTCGGCGGCGTTGCGGCGCACCGTGGCCAGCTTAACCGCCGCAG
801 CGCCCGTCAAGGTCAAGGTCAAGCAGCCAGCGGTGCCGCCAGGACGGTGCCACCG
10 851 GCTTGGCAGCGGTGGTCATGAGGCCGTCCCGTCGGTGGTGTGATCTTGT
901 AGGCCTCCAACGAGCGGGTCTCGACGGTGGCAGATCGAGCACGAGTGC
951 TCGCCGGCGGGCGGGGTTGTGGGGTGCCTGGCGCCGGCGGCCAGGATCGA
1001 GCGCACGTCGGCAGCGCGAACCGCGAAACGCAACCGCCCGCGCAGCG
1051 CGTCAATCAAAGCCTGTTGCCGTGGCGGCCAAGGCCAGCAGAACATG
15 1101 TCGAGTTGGATTTCAAGTCGGGTGTTGCCATCGCAGCAGCACCGACGAG
1151 GAACTGCTGCGCTTCGGTCCCAATGCGCAGAACGTTCTGCTTGGG
1201 TTTTCGGCGAGGGACCACCGCAGGGTGCCTGGGTCCGTGCTAGTGT
1251 TCATCGAGGATGGACACCTCACCTGGCTGACGAGCTCGTGTCTGGCAC
1301 GATCACACCGGTCGCAAGGTTCAACAGGATCAGGGCGCCATGATCGACCA
20 1351 CCACCGCCACGGTGGCACCGACGAGCCGCTGAGGCACCGAGTAACGAGCT
1401 GAGCCGTAACGGATGCAAGAGAGGGCGTCGACCTTACGGCGCACCGACCC
1451 CGAGCCGATCGTCGGCGCAGCGAGGGCAGCTCCCTCAAGACGGTGC
1501 CGTCAACCAAGCGATCGTTGGCAGGGCAGATCTCGAGTGGACCGTG
1551 GCATTGACCTCGCGCACCATAGTTGCCCTGGCGTTGAGGGCACGTAG
25 1601 GTCGACCTGCTCACCGCTAACGAGCTCGGTAGCAGCGGCCACCGCAA
1651 GGTCGTCCTGAGCGTAGCCACAGAGGTTCTCCACGATGCCCTCGATTGC
1701 GGATCCGCACCGTGGCAGAACGAGTCCGGAACGAAGCCATAGTGGGACCGA
1751 TCGCACATAATCCGGTGTGGAACAACAACATTGGCAGCAGACACCACCT
1801 TGAGGCAGCCCACCGGTCGGCCAGGATCTTGGCCGGAACCCACCGATC
30 1851 GCCTCGAGGGCTTCGGCTATCATCGCCTGCGTGGTCAGGGCTTCTCGTC

1901	GGCGGCGAACCGCTAAACGCCACCGCGAATAGGCCAGCTCCGCGCATA
1951	ACACCATCAGCCCCGGTGCCGTTGGCCAATCCATCACCAAGATAGTCA
2001	CCGGGTGACCAGACCGCCGGACGGCGTTGATGCCGGTAGCGTTGCCA
2051	CCATACTTCCTGCTGGCTACCAGGGGGCGGAAGTTACGGGCCAGCCCT
5	2101 GATACCCAGCTCGGGCGATCGGCAGCATCCGCTCGCCGACATCTTG
	2151 CCGTGTGATTCTCGACTCGGGTGGCGACTAGATCGGTGAACCGCTCGAG
	2201 GTTGCCTGGCCGTGGTCCCGCGGGGGCGCGCACCGGCCTGGCCCGCT
	2251 CGATGACCCGCTTGACCGTCTTGTGCGTACTACCGCACAGCTGGCCGCG
	2301 CCGCGATACGACCCGACCTGGTGATACGCCGAAATGATGTTCATACGCTC
10	2351 CCTTGCAGACTTCAATAGAGCTCCCTGGCGGTGATCAAGTGACAGTTGG
	2401 CGCTATCACCGTCACCGCCCAGGCCCTCAGCTCCGGAAAAGACACGACG
	2451 AGCCCGCTAAGGAGTGGGACTTCTACCTGGCCACCAGTGGGACTTCCT
	2501 ACTGGCCACAGATGGGACTTCTATGGCCATGGACATGCAC
	(Total = 2543bp)

15

Sequence ID No.4 = IS1612 negative strand to SEQ ID No.3.

20	1	GTGCATGTCCATGGCCATGAGAAAGTCCCCATCTGTGGCCAGTAGGAAGT
	51	CCCCACTGGTGGCCAGGTAGAAGTCCCCACTCCTAGCGGGCTCGTCGTG
	101	TCTTTCCGGGAGCTGAGGGCCTGGCGGTGACGGTATAGCGCCAAGT
	151	TCACTTGATCACCGCCCAGGGAGCTCTATTGAAGTCTGCAAGGGAGCGTA
	201	TGAACATCATTCGGCGTATCACCAAGGTGGTGTATCGCGCGCGGCC
	251	GAGCTGTGCGGTAGTACGCACAAGACGGTCAAGCGGGTATCGAGCGGGC
25	301	CGAGGCCGGTGGCGCCCGGGAAACCACGGCCACGCCAACCTCGACG
	351	CGTTCACCGATCTAGTCGCCACCCGAGTCGAGAAATCACACGGCAAGATG
	401	TCGGCGAAGCGGATGCTGCCGATGCCCGAGCTGCCGGTATCAGGGCTC
	451	GGCCCGTAACCTCCGCCCTGGTAGCCGAGCAGGAAGTATGGTGGCGCA
	501	ACGCTAACCGGCATCACGCCGTCCGGCGGTCTGGTACCCGGTACTAT
30	551	CTGGTGATGGATTGGCCGAAGCGGCACCGGGCTGATGGTGTATGCGC

	601	GGAGCTGGCCTATTGCGGGTGGCGGTTGAGCGGTTGCGCCGCCGACGAGA
	651	AAGCCTCGACCACGCAGGCGATGATAGCCGAAGCCCTCGAGGCGATCGGT
	701	GGGGTTCGGCCAAGATCTGGCCGACCGGATGGCTGCCTCAAAGGTGG
	751	TGTCGTCGCCAATGTTGTTCCAACACCGGATTATGTGCGATTGCGT
5	801	CCCACATGGCTTCGTTCCGGACTTCTGCCACGGTGC GGATCCGCAATCG
	851	AAGGGCATCGTGGAGAACCTCTGTGGCTACGCTCAGGACGACCTGCGGT
	901	GCCGCTGCTGACCGAAGCTGCGTTAGCCGGTGAGCAGGTCGACCTACGTG
	951	CCCTCAACGCCAGGCGCAACTATGGTGCGCCGAGGTCAATGCCACGGTC
	1001	CACTCGGAGATCTGCGCCGTGCCAACGATCGCTTGGTTGACGAGCGCAC
10	1051	CGTCTTGAGGGAGCTGCCCTCGCTGCGGCCGACGATCGGCTGGGTCGG
	1101	TGCGCCGTAAGGTCGACGGCCTCTCGTCATCCGTTACGGCTCAGCTCGT
	1151	TACTCGGTGCCTCAGCGGCTCGTCGGTGCCACCGTGGCGGTGGTGGTCGA
	1201	TCATGGCGCCCTGATCCTGTTGAAACCTGCGACCGGTGTGATCGTGGCG
	1251	AGCACGAGCTCGTCAGCCCAGGTGAGGTGTCCATCCTCGATGAACACTAC
15	1301	GACGGACCCAGACCCGCACCCCTCGCGTGGTCCTCGCCCGAAAACCAAGC
	1351	AGAGAAACGATTCTGCGCATTGGGAACCGAAGCGCAGCAGTTCCTCGTCG
	1401	GTGCTGCTGCGATCGGCAACACCCGACTGAAATCGAACTCGACATTCTG
	1451	CTCGGCCTTGGCGCCGCCACGGCAACAGGCTTGATTGACGCGCTGCG
	1501	CCGGGCGGTTGCGTTGCCGGTTCGCGCTGCCACGTGCGCTCGATCC
20	1551	TGGCCGCCGGCGCCGGCACCCACAACCCCCGCCCCGCCGGCGACGCACTC
	1601	GTGCTGATCTGCCACCGTCGAGACCCGCTGTTGGAGGCCTACAAGAT
	1651	CAACACCACCGACGGGACGGCCTCATGACCACCGCTGCCAAGCCGGTGGC
	1701	ACCGTCCTCGCGGGCACCGCTGGCTGCTGACCTTGACGCGGGCTGCCGC
	1751	GGTTGAAGCTGGCCACGGTGCGCCAACGCCCGAGGTGTTGCAAGTC
25	1801	GCCAAGACGCAACGCTGGACACCGGAGGAGATCCTGCGGACGTTGGTTGA
	1851	GGCGGAGATCGCTGCCCGCGATGCCCTCAACACCGCCAACCGTCTCAAGG
	1901	CCGCAGCCTCCCGGTACCAAGACCCCTCGACGGGTTGACGTACCGGA
	1951	TCGTCGATCACCGCAGCCACGTTGACTACCTGTCGAGCCTGGAATGGAT
	2001	TCGGGCACAAAGAACCTGGCGGTATTGGCCCACCTGGTACGGGAAAAA
30	2051	GTCACCTGCTCATCGGCTGCGGGCACGCTGCCGTCCACGCCGGATTCAA

2101 GTCCGCTACTTCACCGCCGCCGACCTGATCGAGGT CCTTACCGCGGCCT
 2151 GGCGACAACACCGTCGGCAAGATCATCGACACCCCTGCTCCGCGCGGATC
 2201 TGGTCATCTTGGACGAGATCGGCTTGCCTCGACGACACCGGGACT
 2251 CAACTGTTGGCTCGTGGCTGCCGGCTACGAGCGCCGCTCCCTGGC
 5 2301 CATCGCCTCGCATTGGCCCTTCGAACAATGGGGCGATT CCTGCCGAGC
 2351 ACACCACCGCCGCCAGCATCCTCGATCGGCTGCTGCACCACGCCAGCATC
 2401 GTCGTCACCTCCGGCGAGTCCTACCGGATGCCACGCCGACCACAAGAA
 2451 GGGAGCCGCCAAGAATTAGCCAACCACCCGCAGCGGAGTGGGGACTTCTG
 2501 CTGGCCACCAGCGGGGACTTCTACTTGGCATTGACAGTGCAT

10 (Total = 2543bp)

Sequence ID No.5 = Amino acid sequence of polypeptide designated istA
encoded by Seq ID No.4.

15 1 VSFPGAEGLGGDGDSANCHLITAQGALLKSARERMNIISAYHQVGSYRGA
 51 AEI CGSTHKTVKRVIERAEAGGAPPREPRPRNLDFTDLVATRVEKSHGK
 101 MSAKMLPIARAAGYQGSARNFRLVAEQEVWWRNANRHQRRPAWSPGD
 151 YLVMDWAEAAPGLMVLCALAYS RWRFERFAADEKASTTQAMIAEALEAI
 20 201 GGVPAKILADRMGCLKGVVANVVPTPDYVRFASHYGFVPDFCHGADPQ
 251 SKGIVENLCGYAQDDLAVPLLTEAALAGEQVDLRALNAQQLWCAEVNAT
 301 VHSEICAVPNDRLVDERTVLRELPSLRPTIGSGSVRRKV DGLSCIRYGS
 351 RYSVPORLVGATVAVVVDHGALILLEPATGVIVAEHEL VSPGEVSILDEH
 401 YDGPRPAPSRGPRPKTQAEKRFCALGTEAQQFLVGAAAIGNTRLKSELDI
 25 451 LLGLGAAHGEQALIDALRRAVAFRRFRAADVRSILAAGAGTPQPRPAGDA
 501 LVLDLPTVETRSLEAYKINTTDGTAS

(Total = 526 aa)

Coded by nucleotides 98 - 1678 of seq ID No 4.