

Tableau de variation et de signes

62

Déterminer le signe de chacune des fonctions polynomiales de degré 2 ci-dessous, en fonction des valeurs de x.

1.
$$f(x) = 4(x-2)(x+5)$$

2.
$$g(t) = -2(t+3)(t-7)$$

63

Déterminer le signe de chacune des fonctions polynomiales de degré 2 ci-dessous, en fonction des valeurs de x.

1.
$$h(x) = 2(4x - 24)(3x + 9)$$

2.
$$k(t) = -5(t+1)(5t-25)$$

64

Donner le tableau de signes des fonctions suivantes :

1.
$$f(x) = 2(x-3)(x-7)$$

2.
$$g(x) = -4(x-5)(x-8)$$

3.
$$h(x) = -8(x+4)(x-12)$$

4.
$$k(x) = 3(x+1)(x+9)$$

65

Donner le tableau de variations des fonctions suivantes :

1.
$$f(x) = (x-2)(x-5)$$

2.
$$g(x) = -5(x-1)(x-3)$$

3.
$$h(x) = 4(x+3)(x-10)$$

4.
$$k(x) = 7(x+2)(x+5)$$

Propriétés

66

Pour chacun des cas ci-dessous, indiquer quelle transformation permet de passer de la courbe représentative de la fonction f à celle de g.

1. f et g sont définies sur [-2; 4] par :

$$f(x) = 2x^2$$
 et $g(x) = 2x^2 - 5$.

2. f et g sont définies sur [-6; 6] par :

$$f(x) = -3x^2$$
 et $g(x) = -3x^2 + 10$.

67

Pour chacun des cas ci-dessous, indiquer quelle transformation permet de passer de la courbe représentative de la fonction f à celle de g.

1. f et g sont définies sur $[-10\ ;\ 10]$ par :

$$f(x) = -5x^2 + 10$$
 et $g(x) = -5x^2 + 5$.

2. f et g sont définies sur [-1; 9] par :

$$f(x) = 8x^2 + 3$$
 et $g(x) = 8x^2 - 2$.

68

Indiquer les transformations géométriques permettant de passer de la courbe représentative de la fonction r à celle de la fonction s.

1.
$$r(x) = x^2$$
 et $s(x) = x^2 - 4$

2.
$$r(x) = 2x^2$$
 et $s(x) = -2x^2$

3.
$$r(x) = -x^2 + 3$$
 et $s(x) = -x^2 - 2$

4.
$$r(x) = 3x^2 - 5$$
 et et $s(x) = 3x^2 + 1$

69

Donner l'expression de la fonction f dont on obtient une représentation graphique par la translation de vecteur $\vec{u} \begin{pmatrix} 0 \\ 3 \end{pmatrix}$ appliquée à la courbe représentative de la fonction $f(x) = -5x^2$.

70

Donner l'expression de la fonction g dont on obtient une représentation graphique par la translation de vecteur $\vec{u} \begin{pmatrix} 0 \\ -2 \end{pmatrix}$ appliquée à la courbe représentative de la fonction $g(x) = 4x^2$.

71

Soit f la fonction définie sur \mathbb{R} par $f(t)=at^2$. Déterminer la valeur de a sachant que f(3)=27.

72

Soit g la fonction définie sur \mathbb{R} par $g(t) = bt^2$. Déterminer la valeur de b sachant que g(4) = 15.

73

Soit h la fonction définie sur \mathbb{R} par $h(t)=at^2+b$ telle que h(1)=4 et h(-2)=-8. Déterminer les valeurs de a et b.

74

Soit k la fonction définie sur \mathbb{R} par $k(x)=ax^2+b$. Déterminer les valeurs de a et b sachant que k(1)=2 et k(-3)=10.

75

Associer chacune des fonctions ci-dessous, définies sur \mathbb{R} , à sa courbe représentative.

1.
$$f(x) = -0.8x^2 + 2$$

2.
$$g(x) = 1.5x^2 - 1$$

3.
$$h(x) = 3x^2 + 1$$

76

Associer chacune des fonctions ci-dessous, définies sur \mathbb{R} , à sa courbe représentative.

1.
$$f(x) = -0.2x^2 + 3$$

2.
$$g(x) = 1.25x^2 - 2$$

77

Classer chacune des paraboles par ordre croissant du coefficient a.

78

Chacune des fonctions ci-dessous est de la forme $ax^2 + b$. Donner le coefficient b pour chacune.

