1 The Foundations: Logic and Proofs

Consider the following argument:

i eat chocolate if i am depressed i am not depressed therefore i am not eating chocolate

Obviously, the logic is flawed...but how do we write this in a more formal way?

1.1 Propositional Logic

A statement is a senetence or mathematical expression that is either true or false—e.g.

- P: The number 3 is odd
- Q: The number 6 is even
- R: The number 4 is odd

Not a statement

- x > 2 (the true value depends on x)
- x = 2, t + 4q = 17

Combining statements

Given statements P and Q:

- "P and Q" is a statement $(P \wedge Q)$
- "P or Q" is a statement $(P \lor Q)$

We can construct a truth table to represent the truth values of $P \wedge Q$ and $P \vee Q$:

Table 1: Truth tables for conjunction (\land) and disjunction (\lor)

Conditional Statements

The expression:

If P, then
$$Q$$
 (or $P \Rightarrow Q$)

is a conditional statement.

$$\begin{array}{c|ccc} P & Q & P \Rightarrow Q \\ \hline T & T & T \\ T & F & F \\ F & T & T \\ F & F & T \end{array}$$

Table 2: Truth table for conditional statements

Example:

P(n): The integer n is odd

Q(n): The integer n^2 is odd

P(n) and Q(n) are not statements, but they are *predicates* (statements once n is determined). So the conditional statement is

 $P(n) \Rightarrow Q(n)$: If the integer n is odd, then the integer n^2 is odd

Proving a statement of the form $P \Rightarrow Q$

1. Direct proof: Assume P is true and "prove" that Q is also true

Example: Let's construct a truth table for $(P \lor Q) \Rightarrow R$

P	Q	R	$P \lor Q$	$(P \lor Q) \Rightarrow R$
$\overline{\mathrm{T}}$	T	T	Т	T
${ m T}$	F	Τ	Γ	T
${ m T}$	F	F	$_{ m T}$	F
F	Τ	Τ	$_{ m T}$	${ m T}$
F	F	Τ	F	T
\mathbf{F}	F	F	F	${ m T}$

Table 3: Truth table for $(P \lor Q) \Rightarrow R$

Where we want to prove

If n is odd, then n^2 is odd.

The first proposition is symbolically O(n): n is odd, and the conditional statement is

$$O(n) \Rightarrow O(n^2)$$

Def First we define and integer n odd if n = 2k + 1 for some integer k. An integer is even if n = 2k for some integer k.

Remark The set of integers

$$\mathbb{Z} = \{\ldots, -3, -2, -1, 0, 1, 2, 3, \ldots\}$$

where k is an integer is denoted as $k \in \mathbb{Z}$.

Proof Suppose n is odd. So by definition, n = 2k + 1 for some $k \in \mathbb{Z}$.

$$\implies n^2 = (2k+1)(2k+1) = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$$

Since $2k^2 + 2k$ is an integer, we have that n^2 is in fact odd. \square

Another Example (Because students love examples) Suppose x and y are positive numbers. Prove that if x < y then $x^2 < y^2$.

Sol Suppose x and y are positive real numbers and further suppose that x < y. A fundamental property of < on the real numbers is that if a < b and c > 0, then $a \cdot c < b \cdot c$ since if

$$a < b \implies 0 < b - a$$

and the product of the two positive numbers is positive, i.e.

$$0 < c(b-a) = cb - ca$$

Which now implies ca < cb. In this case, if a = x, b = y, c = x, then

$$x^2 = x \cdot x < x \cdot y$$

Now if we swap and use c = y, we have

$$x \cdot y < y \cdot y = y^2$$

Concatenating the two inequalities, we find that

$$x^2 = x \cdot x < x \cdot y < y \cdot y = y^2$$

Because x and y were arbitrary positive numbers, the conclusion holds. \square

1.2 Logical Equivalence

Two statements are logically equivalent if they have the same truth value, e.g. x & y are real numbers

$$P: x \cdot y = 0$$

$$Q:\ x=0\ {\rm or}\ y=0$$

are equivalence since they are either both T or both F.

If P and Q are equivalent we say P if and only if Q and we write

$$P \iff Q \quad \text{or} \quad P \equiv Q$$

which is a biconditional statement. Note that P & Q are predicates but $P \iff Q$ is a statement.

Example P, Q, and R are statements

$$((P \lor Q) \Rightarrow R) \iff ((P \Rightarrow R)) \land (Q \Rightarrow R)$$

P	Q	R	$P \lor Q$	$P \Rightarrow R$	$Q \Rightarrow R$	$\mid (P \vee Q) \Rightarrow R \mid$	$(P \Rightarrow R) \land (Q \Rightarrow R)$
T	T	Т	Т	Т	Т	T	${ m T}$
Τ	Τ	F	Т	F	F	F	F
Τ	F	Τ	Т	Т	Т	${ m T}$	T
\overline{T}	F	F	T	F	Т	F	F

Table 4: Truth table

Contrapositive The contrapositive state is

If not Q, then not P

Claim The statement $P \Rightarrow Q$ and its contrapositive $\neg Q \Rightarrow \neg P$ are logically equivalent.

Proof For fun watch the YouTube video Not Knot

P	Q	$P \Rightarrow Q$	$\neg Q$	$\neg P$	$\neg Q \Rightarrow \neg P$
Т	T	Т	F	F	${ m T}$
T T F	F	F	${ m T}$	F	F
\mathbf{F}	Τ	T	F	T	${ m T}$
\mathbf{F}	F	Τ	Τ	Τ	${ m T}$

Table 5: Truth table proof

Remark A proof of a condition statement by proving the contrapositive is called a *contrapositive proof*.

Example Let's prove the statement

Suppose x is a real number. If $x^2 + 5x < 0$, then x < 0 using a contrapositive proof.

Proof

$$P: x^2 + 5x < 0$$
$$Q: x < 0$$

So
$$\neg Q \Rightarrow \neg P$$
 is

If
$$x > 0$$
, then $x^2 + 5x > 0$

Suppose x is a real number satisfying $x \ge 0$. Then $5x \ge 0$ & $x^2 \ge 0$. Thus

$$x^2 + 5x \ge 0$$

Because $x \ge 0$ was arbitrary, we have $\neg Q \Rightarrow \neg P$.

Converse $Q \Rightarrow P$ is called the *converse* of $P \Rightarrow Q$.

Example

P: f is differentiable at x = 0

Q: f is continuous at x = 0

As an example, f = |x| is continuous at x = 0 but not differentiable at x = 0—so here

$$P \Rightarrow Q$$
 is true, but $Q \Rightarrow P$ is false

Another example is

 $P: A \text{ is an invertible } 2 \times 2 \text{ matrix}$

 $Q: \det A \neq 0$

Negation & Quantifiers

Example Let m and n be integers. If 4 divides the product mn (results in an integer), then 4 divides m or 4 divides n.

- \bullet Converse: If 4 divides m or 4 divides n, then 4 divides mn
- Contrapositive: If 4 does not divide m and 4 does not divide n, then 4 does not divide mn

This statement is False!

Proof If m = n = 2, then 4 divides mn = 4. But 4 does not divide m or n, thus the statement is F. \square The negation of a statement P is the statement whose truth values are opposite for those of P and is denoted as $\neg P$.

Claim Let P and Q be statements.

The negation of the conditional statement $P \Rightarrow Q$ is $P \land (\neg Q)$.

Proof We check that $\neg(P \Rightarrow Q)$ and $P \land (\neg Q)$ are logically equivalent with a truth table.

P	Q	$P \Rightarrow Q$	$\neg(P \Rightarrow Q)$	$\neg Q$	$P \wedge (\neg Q)$
Т	Т	Т	F	F	F
Т	F	F	${ m T}$	\mathbf{T}	T
F	Τ	Т	F	F	F
F	F	Т	F	Т	F

Table 6: Truth table for negation of a conditional statement

Discussion Let P and Q be statements and negate $P \vee Q$, and find what it is equivalent to.

P	Q	$P \lor Q$	$\mid \neg (P \lor Q) \mid$	$\neg P \wedge \neg Q$
$\overline{\mathrm{T}}$	Т	Т	F	F
T T F	F	${ m T}$	F	F
\mathbf{F}	Τ	Τ	F	\mathbf{F}
\mathbf{F}	F	F	$_{ m T}$	$^{\mathrm{T}}$

Table 7: Truth table for negation of a disjunction

So the two statements are logically equivalent $\neg(P \lor Q) \Longleftrightarrow \neg P \land \neg Q$. This is one of De Morgan's Laws:

$$\neg (P \lor Q) \Longleftrightarrow \neg P \land \neg Q$$

$$\neg (P \land Q) \Longleftrightarrow \neg P \lor \neg Q$$

Table 8: De Morgan's Laws

Example Every nonempty subset of $\mathbb N$ has a smallest element.

Notation $\mathbb{N} = \{0, 1, 2, 3, \dots\}$ is the set of natural numbers.

Definition The symbols \forall and \exists are called *quantifiers*.

- ullet stands for "for all" or "for every"
- $\bullet \ \exists$ stands for "there exists" or "there is"

thus we write the above statement as logical mathematical symbols is

$$\forall X \subset \mathbb{N} \text{ with } X \neq \phi, \, \exists x_0 \in X \text{ such that } x_0 \leq x \quad \forall x \in X$$

240 Lecture Notes*

1.3 Propositional Logic

Proposition = statement that has a <u>true value</u> (T or F)

$$p = "1 + 1 = 2"$$
: T

q = "St. Louis is the capial of MO": F

Negation NOT ¬

$$\neg p =$$
 "not p" or "p is false"

Or in a truth table:

$$\begin{array}{c|c} p & \neg p \\ \hline T & F \\ F & T \end{array}$$

e.g. from before:

- $\neg p = "1 + 1 \neq 2"$: F
- $\neg q =$ "St. Louis is *not* the capital of MO": T

Conjunction: AND \wedge

 $p \wedge q =$ "p and q" or "both p and q are true"

Or in a truth table:

$$\begin{array}{c|ccc} p & q & p \wedge q \\ \hline T & T & T \\ T & F & F \\ F & T & F \\ F & F & F \end{array}$$

e.g.

p = "Alan Turing was born in England": T

q= "Alan Turing was born in 1912": T

 $p \wedge q =$ "Alan Turing was born in England in 1912": T

Disjunction OR V

 $p \lor q = p$ or q or p is true or q is true (or both) (inclusive)

As a truth table:

$$\begin{array}{c|cccc} p & q & p \lor q \\ \hline T & T & T \\ T & F & T \\ F & T & T \\ F & F & F \\ \end{array}$$

e.g.

p = "2 is a prime number": T

q = "The Blues will win the Stanley Cup this year"

 $p \vee q = T$ (since p is true, we can't determine the truth value without knowing q)

To wrap this around our head listen to Conjunction Junction - Schoolhouse Rock.

Exclusive OR XOR \oplus

 $p \oplus q =$ "p x-or q" or "p or q is true but not both"

As a truth table:

$$\begin{array}{c|ccc} p & q & p \oplus q \\ \hline T & T & F \\ T & F & T \\ F & T & T \\ F & F & F \end{array}$$

Rather than using T or F we can use bits (1 or 0) to represent the truth values such that

$$1 \oplus 1 = 2 \equiv 0 \pmod{2}$$

Multiple Propositions

 $p \wedge q \wedge r =$ "All of p,q,r are true" $p \vee q \vee r =$ "At least one of p,q,r is true"

For the truth table:

p	q	r	$p \wedge q \wedge r$	$p \lor q \lor r$
T	Т	T	T	T
Τ	$\mid \mathrm{T} \mid$	F	F	T
${ m T}$	F	Т	F	T
${ m T}$	F	F	F	T
\mathbf{F}	$\mid T \mid$	Т	F	T
\mathbf{F}	$\mid T \mid$	F	F	T
\mathbf{F}	F	Т	F	T
F	F	F	F	F

which can be generalized to n propositions.

Truth Tables for Compound propositions

$$(p \lor q) \land (\neg q \lor r)$$

So filling out the truth table:

p	q	r	$ \neg q$	$p \lor q$	$\neg q \lor r$	$(p \lor q) \land (\neg q \lor r)$
$\overline{\mathrm{T}}$	T	T	F	T	Т	T
${ m T}$	Т	F	F	T	\mathbf{F}	F
${ m T}$	F	Τ	Τ	Т	Τ	${ m T}$
${ m T}$	F	F	Т	Т	Τ	T
F	${ m T}$	Т	F	${ m T}$	Τ	Т
F	Т	F	F	${ m T}$	\mathbf{F}	F
F	F	Τ	Т	F	${ m T}$	F
F	F	F	Т	F	Т	F

We don't always have to construct truth tables, especially when we are given the truth values of the propositions—e.g.

$$(\neg p \wedge q) \vee (q \wedge \neg r) \qquad p = T \ q = F \ r = T$$

$$(\neg T \wedge F) \vee (F \wedge \neg T) = (F \wedge F) \vee (F \wedge F) = F \vee F = F$$