NASA/TM-2003-212429/VOL1

Compendium of NASA Data Base for the Global Tropospheric Experiment's Transport and Chemical Evolution Over the Pacific (TRACE-P)

Volume 1: DC-8

Mary M. Kleb and A. Donald Scott, Jr. Langley Research Center, Hampton, Virginia Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peerreviewed formal professional papers, but having less stringent limitations on manuscript length and extent of graphic presentations.
- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.
- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.
- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.
- TECHNICAL TRANSLATION. Englishlanguage translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office's diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results ... even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at http://www.sti.nasa.gov
- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA STI Help Desk at (301) 621-0134
- Phone the NASA STI Help Desk at (301) 621-0390
- Write to: NASA STI Help Desk NASA Center for AeroSpace Information 7121 Standard Drive Hanover, MD 21076-1320

NASA/TM-2003-212429/VOL1

Compendium of NASA Data Base for the Global Tropospheric Experiment's Transport and Chemical Evolution Over the Pacific (TRACE-P)

Volume 1: DC-8

Mary M. Kleb and A. Donald Scott, Jr. Langley Research Center, Hampton, Virginia

National Aeronautics and Space Administration

Langley Research Center Hampton, Virginia 23681-2199

Available from:

COMPENDIUM OF NASA DATA BASE FOR THE GLOBAL TROPOSPHERIC EXPERIMENT'S TRANSPORT AND CHEMICAL EVOLUTION OVER THE PACIFIC (TRACE-P), VOLUME 1: DC-8

By Mary M. Kleb and A. Donald Scott, Jr.

Langley Research Center

SUMMARY

This report provides a compendium of NASA aircraft data that are available from NASA's Global Tropospheric Experiment's (GTE) Transport and Chemical Evolution over the Pacific (TRACE-P) Mission conducted from late February through early April 2001 in the western Pacific. The broad goal of TRACE-P was to characterize the transit and evolution of the Asian outflow over the western Pacific. It provided the scientific community an opportunity to investigate the impact of the rapid industrialization in Asia and compare the current conditions with those observed during the Pacific Exploratory Missions in the western Pacific (PEM-West missions), A in 1991 and B in 1994. Conducted from February 24 through April 10, 2001, TRACE-P integrated airborne, satellite- and ground-based observations, as well as forecasts from aerosol and chemistry models. PEM-West A (fall 1991) and PEM-West B (early spring 1994) examined the impact of natural and human activities on the chemistry of the troposphere over the northwestern Pacific from 10°N to 50°N. TRACE-P was conducted in early spring when there was strong continental outflow, as was the case with PEM-West B. The two main operational bases were Hong Kong and Yokota Air Force Base in Fussa, Japan. Additional operational sites included Okinawa; Kona, Hawaii; and Guam. The transit sites were Palmdale, California; Wake Island; and Midway Island.

TRACE-P was conducted as part of the National Aeronautics and Space Administration's (NASA) Global Tropospheric Experiment (GTE). The GTE has been an ongoing

element of the Tropospheric Chemistry Program, a Research and Analysis (R&A) program within the Science Division of NASA's Office for Earth Science Enterprise. The major thrust of GTE has been to utilize NASA's DC-8 and P-3B aircraft to carry multi-instrument payloads into regions of the global troposphere where natural and/or human impacts are believed to be particularly significant in effecting chemical composition changes and/or where the troposphere is still relatively unaffected. This was the case with TRACE-P as well, however in addition, data from satellites, ground–based stations, and chemistry and aerosol models were integrated and comprised an important aspect of the mission in the planning, execution and analysis of results.

The format of this compendium utilizes data plots (time series and altitude profiles) of selected data acquired aboard the NASA/Dryden DC-8 (vol. 1) and NASA/Wallops P-3B (vol. 2) aircraft during TRACE-P. The purpose of this document is to provide a representation of aircraft data that are available in archived format via NASA Langley's Atmospheric Sciences Data Center (ASDC) and through the GTE Project Office archive. The data format is not intended to support original research/analyses, but to assist the reader in identifying data that are of interest. This compendium is for only the NASA aircraft data. The ASDC archived databases includes numerous supporting data including meteorological observations/products, results from surface studies, satellite observations, and data from ozonesonde and FTIR stations.

INTRODUCTION

The goal of the NASA Tropospheric Chemistry Program is to develop an understanding of the chemical cycles that control the composition of the troposphere and to assess the susceptibility of the global atmosphere to chemical change. A major component of the NASA program has been the Global Tropospheric Experiment (GTE). GTE has consisted of a series of field experiments designed to (1) evaluate the capability of instrument techniques to measure, under field conditions, the minute concentrations of key chemical species in the troposphere; and (2) systematically address tropospheric chemistry issues relevant to global change, through airborne sampling expeditions, coupled with modeling and laboratory studies. GTE has been primarily an aircraft-based program supplemented by ground-based measurements. Satellite data also played important roles (however TRACE-P was a more integrative mission). Space Shuttle observations of tropospheric carbon monoxide distributions have been used to plan and direct the course of expeditions, for example, over tropical rain forests and for continental outflow into the tropical Atlantic Ocean. LANDSAT land-surface images have facilitated the extrapolation of regional Arctic-tundra measurements into global-scale conclusions. Total Ozone Measurements from Satellites (TOMS) has helped place GTE observed ozone distributions/budgets into a global perspective (temporal and spatial) and has been used to guide intensive aircraft studies over the tropical Atlantic Ocean. Weather data returned by environmental satellites have guided flight planning for research flights. During TRACE-P chemical and aerosol models participated in flight planning and execution. The Atmospheric Sciences Data Center (ASDC) data include many of the satellite, surface, and meteorological products used to support GTE missions or analyses.

The GTE airborne expeditions have focused on studies of the remote global atmosphere in order to provide well-documented baseline measurements of the unperturbed environment and to fully understand the chemical cycles underlying the natural environment. Table 1 and Figure 1 summarize GTE missions conducted through 2001. The GTE expeditions have been conducted in a diverse range of environments and with

different scientific goals. The Chemical Instrument Test and Evaluation (CITE) series was designed to study the ability to measure key tropospheric gaseous species by exposing selected instrumentation to a wide range of measurement conditions. The Atmospheric Boundary Layer Experiments (ABLE) were designed to study the emission, chemical processes, and dynamics of the boundary layer, and have been conducted over ecosystems known to have significant influence on the global troposphere. importance of long-range transport of natural and anthropogenic emissions on the global troposphere has been investigated in the Pacific Exploratory Missions (PEM) and the Transport and Atmospheric Chemistry near the Equator – Atlantic (TRACE-A). The Pacific Exploratory Missions in the Western Pacific Ocean (PEM-West) Phases A and B focused on the impact of emissions from the Asian continent over the northwest Pacific Ocean during contrasting meteorological conditions. The Pacific Exploratory Missions over the Tropical Pacific (PEM-Tropics) Phases A and B studied the oxidizing power of the atmosphere and sulfur chemistry over the Pacific basin also during contrasting seasons. The Transport and Chemical Evolution over the Pacific (TRACE-P) mission focused on the composition and evolution of Asian outflow.

The GTE, managed as part of the Tropospheric Chemistry Program in the Mission to Planet Earth Office, NASA Headquarters, was initiated in the early 1980s. Implementation of the GTE Project is via a Project Office at the NASA Langley Research Center, Atmospheric Sciences Competency.

SYMBOLS AND UNITS

ABLE	Atmospheric and Boundary Layer Experiment
ASDC	Atmospheric Sciences Data Center
CITE	Chemical Instrument Test and Evaluation
FTIR	Fourier Transform Infrared Spectrometer
GTE	Global Tropospheric Experiment
ITCZ	Inter-Tropical Convergence Zone

LaRC Langley Research Center

NASA National Aeronautics and Space Administration

PEM Pacific Exploratory Mission
ppbv parts per billion, by volume
ppmv parts per million, by volume
pptv parts per trillion, by volume

SPCZ South Pacific Convergence Zone

TOMS Total Ozone Measurements from Satellites

TRACE-A Transport and Atmospheric Chemistry near the Equator –

Atlantic

TRACE-P Transport and Chemical Evolution over the Pacific

PROGRAM AND DATA DESCRIPTION

The National Aeronautics and Space Administration's TRACE-P mission, conducted from late February through early April 2001, was a major component of the Global Tropospheric Experiment, a project within the Earth Sciences Enterprise program. The long-range goal of the GTE has been to contribute substantially to scientific understanding of human impacts on the chemistry of the global troposphere. Changes in chemical composition of the troposphere on a global scale have been well documented during these last two decades. This has given rise to considerable concern that these chemical changes in the troposphere, which are expected to increase as population increases and economic activity expands, will lead to changes in the earth's climate. The TRACE-P campaign had two main objectives, (1) to determine the chemical composition of the Asian outflow over the western Pacific in spring in order to understand and quantify the export of chemically and radiatively important gases and aerosols, and their precursors, from the Asian continent, and (2) to determine the chemical evolution of the Asian outflow over the western Pacific in the spring and to understand the ensemble of processes that control this evolution. Within this framework, 5 specific tasks were identified: (1) to identify and quantify the contributions to Asian outflow from industrial sources in Asia, Europe, and North America, as well as from biomass burning sources in Southeast Asia and northern Africa, (2) to demonstrate the potential for synergistic integration of aircraft and satellite observations, together with three-dimensional models, to quantify the chemical outflow from a major continental source, (3) to determine the importance of natural processes (lightning, stratospheric down welling) contributing to the Asian outflow, (4) to understand the long-range transport and chemical aging of Asian pollution over the North Pacific, and to assess the implications for global influence and for intercontinental transport of pollutants, and (5) to determine the role of heterogeneous chemistry in controlling the chemical evolution of the Asian outflow over the Pacific.

The broad design of the TRACE-P campaign employed a series of flights utilizing the NASA Dryden DC-8 and NASA Wallops P-3B aircraft from two main operational sites in the western Pacific (Hong Kong and Yokota Air Force Base in Fussa, Japan). Additional operational and/or transit sites for the DC-8 included Kona, Hawaii; Guam; and Kadena Air Force Base, Okinawa. The P-3B's additional operational/transit sites were Kona, Hawaii; Wake Island; Guam; Kadena Air Force Base, Okinawa; and Midway Island. Geographic coverage of flights originating from the intensive bases ranged from 110E to 150E in longitude approximately 10N to 45N in latitude. Tables 2a and 2b summarize the DC-8 and P-3B flights, respectively as well as briefly describe the science objectives of each flight. Figure 2a shows the TRACE-P transit flights for both aircraft while Figure 2b shows the intensive flights during the mission. Flights 1 through 3 for the DC-8 and P-3B, all test flights, are not included in Figure 2a or 2b.

The overall objective in using two aircraft was to maximize geographical coverage of Asian outflow. The DC-8 had a higher ceiling, greater payload capacity, and longer range than the P-3B. Instrumentation on the DC-8 measured ozone, and aerosol structure above and below flight altitude, ozone photochemical precursors, and airmass characterization. The P-3B however, could fly for longer periods of time at low altitude (below 3km) than the DC-8 so it focused more on hydroxyl radicals, aerosol microphysics, sulfur chemistry, and eddy flux measurements. Table 3 summarizes the

measurement characteristics for the parameters measured aboard both aircraft. Figures 3a and 3b show the mission payloads for the DC-8 and P-3B, respectively. Additional measured quantities (e.g., Project measurements) and some calculated quantities (liquid water content) not listed in Table 3 are available from the ASDC and GTE archives.

The TRACE-P data available on the Langley ASDC and GTE archive include (1) data taken aboard the DC-8 aircraft; (2) data taken aboard the P-3B aircraft; (3) ozonesonde data; (4) FTIR data; (5) merged data; (6) satellite data products; and (7) meteorological data products. The ozonesonde data include releases from the following locations: Trinidad Head, CA (40.8N, 124.2W); Hilo, HI (19.4N, 155.0W); Sapporo (43.1N, 141.3E), Tsukuba (Tateno) (36.1N, 140.1E), Naha (26.2N, 127.7E), and Kagoshima (31.6N, 130.6E), Japan; Hong Kong (22.3N, 114.2E); Taipei, Taiwan (25.0N, 121.4E); and Cheju Island, Korea (33.5N, 126.5E). FTIR measurements were made at Moshiri (44.4N, 142.3E) and Rikubetsu (43.5N, 143.8E) Observatories and Tsukuba (36.1N, 140.1E), Japan.

The data plots for TRACE-P are given in Appendix A. For each DC-8 flight, 19 pages of time series plots followed by altitude profiles of dewpoint, temperature, ozone, and carbon monoxide are provided. The order of the species in the time series plots is given in Table 4. Table 5 lists the parameters plotted and their chemical formulas. The species were selected to provide the reader with information on both the source characteristics and photochemical history of air. There are no plots prior to flight 4 for the DC-8 or the P-3B, as these were test flights and data archival was not required. Data plots are in standardized format as discussed in Appendix A.

CONCLUDING REMARKS

This compendium of data from NASA's Global Tropospheric Transport and Chemical Evolution over the Pacific (TRACE-P) provides only a graphical representation of aircraft data that are available in archived format from NASA Langley's Atmospheric Sciences Data Center (ASDC) and from the GTE Project Office archive. The plots are not intended to support original research/analysis, but serve as an overview of the TRACE-P aircraft data and provide some assistance to the reader in identifying data that are of interest and which may be obtained from Langley's ASDC archive or GTE's Project Office archive. This compendium volume covers only selected NASA P-3B aircraft data. The DC-8 aircraft data is contained in volume 1 of the compendium. The GTE archived database includes other data measured on board the aircraft as well as supporting including meteorological observations/products, numerous data photochemical modeling products, surface station observations, satellite observations, and ozonesonde and FTIR measurements. GTE-sponsored analyses/results from the TRACE-P expedition have been accepted for publication to a Special Issue of the *Journal* of Geophysical Research – Atmospheres and will be published in two parts, October 27, 2003 and November 16, 2003.

Questions or information regarding the Langley ASDC archive should be directed to Langley ASDC User and Data Services, Mail Stop 157D, NASA Langley Research Center, Hampton, Virginia, 23681-2199. A brief description of the ASDC, log on procedures, and databases is given in Appendix B.

Table 1. GTE Field Expeditions Through 2001

Expedition	Date	General Geographic Region	Time of Year
CITE-1	1983	Hawaii	November
CITE-1	1984	Eastern North Pacific – off the California coast	April
ABLE-1	1984	Barbados, French Guyana	June
ABLE-2A	1985	Amazon Basin	August
CITE-2	1986	Western USA	August
ABLE-2B	1987	Amazon Basin	May
ABLE-3A	1988	Alaska – Barrow, Bethel, Cold Bay	July/August
CITE-3	1989	Western North Atlantic - Virginia coast and	August/September
		Western South Atlantic – Brazil coast	
ABLE-3B	1990	Canada – Hudson Bay, Schefferville	July/August
PEM-West A	1991	Western Pacific Rim	October
TRACE-A	1992	Brazil, South Atlantic, Southwest Africa	September
PEM-West B	1994	Western Pacific Rim	February/March
PEM-Tropics A	1996	South Pacific Basin	August/September
PEM-Tropics B	1999	South Pacific Basin	March/April
TRACE-P	2001	Western Pacific	February-April

Table 2(a). Summary of DC-8 Aircraft Flights For TRACE-P Mission

Flight	Start Date.	Julian.	Start	Ston	Lat.	Lat. Max.	Lon. Min.	Lon.	Flight Location and Description
Number	GMT		Time,	Time,	Min, degree	degree	degree	Max,	
10*	2/14/01	45	18:20:10	22:16:16	26.7700	35.2800	-121.6717	-117.8633	DFRC Test Flight 1
2D*	2/16/01	47	18:10:00	22:25:36	27.0217	35.2817	-124.5117	-117.3283	DFRC Test Flight 2
3D*	2/21/01	52	23:02:50	04:13:34	25.0483	35.2983	-124.1117	-116.9850	DFRC Test Flight 3
4D	2/26/01	<i>LS</i>	17:36:52	01:50:43	19.5133	40.3950	-156.7900	-117.8183	DFRC to Kona, Hawaii – Aged Asian Pollution and MOPITT mid-latitude validation
5D	2/27/01	58	20:02:16	04:53:06	13.5633	19.7533	-156.0417	144.8650	Kona, Hawaii to Guam – Asian Pollution Subsidence and MOPITT tropical validation
(D)	3/03/01	62	23:52:36	08:48:43	13.5717	27.7600	-113.9117	145.0450	Guam to Hong Kong – Asian Outflow: Frontal, Convective, S. China Sea
7D	3/07/01	99	01:10:04	10:52:39	20.0067	30.5367	113.7817	140.2000	Hong Kong Local 1 - China Outflow and Frontal Crossing
8D	3/09/01	89	01:01:17	10:21:26	20.0000	26.3600	113.8983	149.9233	2
Q6	3/10/01	69	01:49:18	09:08:21	19.9983	37.2033	113.7267	129.0150	Hong Kong Local 3 (from Okinawa) – China Outflow to Yellow Sea
10D	3/13/01	72	02:15:28	10:25:14	18.4183	25.9467	113.7633	135.8950	Hong Kong Local 4 - Aged Asian Outflow
11D	3/17/01	92	00:55:07	08:36:20	19.2150	30.1983	113.8983	138.9167	Hong Kong to Kadena AFB, Okinawa – MOPITT Validation and China Outflow
12D	3/18/01	77	00:50:58	08:17:47	22.5050	35.7533	117.6833	139.4567	Kadena AFB, Okinawa to Yokota AFB, Japan – Formosa Strait and China Outflow
13D	3/20/01	62	22:54:37	08:22:26	21.8100	35.9683	124.5133	139.5167	Yokota Local 1 – Frontal Lifting and Dust Outflow
14D	3/23/01	82	23:21:34	08:19:19	21.2900	35.9750	134.8083	150.1850	Yokota Local 2 - Convective Outflow
15D	3/26/01	\$8	23:36:04	08:55:26	23.4850	37.3050	124.3550	139.5233	Yokota Local 3 – Convective Outflow and Stratospheric Influence
16D	3/29/01	88	18:15:05	03:37:24	27.7517	35.8817	124.1433	139.4367	Yokota Local 4 - Sunrise Photochemistry of Asian Outflow
17D	3/31/01	06	00:12:09	07:37:10	34.2367	45.5350	131.6683	149.8783	Yokota Local 5 – Warm Conveyor Belt and Cyclonic Recirculation
18D	4/03/01	93	22:38:47	07:46:36	19.5350	36.1567	-156.0150	139.3250	Yokota AFB, Japan to Kona, Hawaii – High Altitude Asian Outflow and Sunset MBL Chemistry
19D	4/06/01	96	17:56:26	04:12:33	18.8617	37.1850	-156.1333	136.0100	Kona, Hawaii Local 1 – Subsidence over E. Pacific and MOPITT Transect
20D	4/09/01	66	17:14:56	00:03:13	19.7233	35.1717	-156,0467	-117.5067	Kona, Hawaii to DFRC – A/C Intercomparison, Stratus Chemistry and Jet Stream Transport
* ontional	* ontional data archival required for other flights	· required	for other fli	ahte					

* optional data archival; required for other flights

Table 2(b). Summary of P-3B Aircraft Flights For TRACE-P Mission

	7		2	2	7		1.1		
rugiit	Start	Junan	Start E:	dore.	Lat.	Lat. Max,	LOIL IVIIII,	L'OII.	Figur Location and Description
Number	Date, GMT	Day, GMT	I me, GMT	Ime, GMT	Min, degree	degree	degree	Max, degree	
1P*	2/09/01	40	16:34:50	19:35:46	34.8738	37.9827	- 75.8625	72.8816	WFF Test Flight 1
2P*	2/13/01	44	20:29:36	22:59:46	34.7859	37.9724	- 75.8612	73.2178	WFF Test Flight 2
3P*	2/17/01	48	19:52:25	00:37:38	37.1159	38.5590	- 75.6416	73.0761	WFF Test Flight 3
4P	2/24/01	55	14:36:15	22:15:18	33.5966	37.6096	-118.0862	- 75.9491	WFF to Palmdale, California – Stratospheric Intrusion
5P	2/26/01	57	17:34:21	00:51:59	19.7055	34.6774	-156.0717	-118.0731	Palmdale, California to Kona, Hawaii - Aged Asian Pollution
6P	2/27/01	58	19:52:12	02:41:40	19.2236	21.2348	-156.1263	166.5762	Kona, Hawaii to Wake Island - Asian Pollution Subsidence
7P	3/01/01	09	21:56:23	04:19:33	9.9016	19.2866	144.8860	166.7067	Wake Island to Guam - Tropical/Subtropical Gradient
8P	3/04/01	63	00:34:00	08:25:00	13.5731	22.4097	113.9184	145.0026	Guam to Hong Kong – A/C Intercomparison; Asian Outflow
db	3/07/01	99	02-17-02	10.07.56	20 0490	28 5091	113 7464	124 2517	Hope Kong Local 1 – Post-Frontal Asian Outflow
10P	3/09/01	89	01:07:16	08:39:50	19,9987	22.3419	113.7484	131.2688	1
11P	3/10/01	69	00:55:45	09:00:53	6.8956	22.3185	111.9539	116.4651	3-
12P	3/13/01	72	00:53:42	09:05:30	17.0386	27.6039	113.7251	124.9838	4
									Burning Outflow
13P	3/17/01	92	00:58:41	28:20:60	20.0514	37.2261	113.8976	127.9529	Hong Kong to Kadena AFB, Okinawa - Low Level Outflow
									to Yellow Sea
14P	3/18/01	77	01:58:04	09:17:05	26.3539	37.0393	124.3366	139.4325	Kadena AFB, Okinawa to Yokota AFB, Japan - Surface
									Outflow to Yellow Sea; Volcanic Plume
15P	3/21/01	80	00:21:00	07:56:40	32.9998	40.9278	139.3278	155.0006	Yokota Local 1 – Frontal Boundary Profile
16P	3/23/01	82	23:06:58	07:23:48	30.9409	39.9699	132.9872	140.0680	Yokota Local $2 - A/C$ Intercomparison; Japan North-South
17P	3/27/01	98	00:27:51	08:41:41	32.1353	35.9329	139.3172	146.4258	Yokota Local 3 – Air-Sea Exchange; Volcanic Plume;
									TERKA Underpass
18P	3/30/01	68	23:13:30	06:25:35	28.9584	37.9434	127.9982	139.6035	Yokota Local 4 – ACE Asia; Asian Outflow to Sea of Japan; TERRA Underpass
19P	4/02/01	92	00:23:07	08:31:21	35.6250	40.9494	131.7143	139.3511	Yokota Local 5 – ACE Asia; Moist Conveyor Belt; TERRA Underpass
20P	4/03/01	93	23:23:05	07:12:34	28.1442	36.1534	-177.3796	139.3075	Yokota AFB, Japan to Midway Island – High Altitude Asian Outflow
21P	4/06/01	96	06:53:24	14:21:21	20.0282	28.2473	-177.2093	164.9640	Midway Island Local 1 – Aged Asian Pollution; Stratospheric Influence
22P	4/07/01	26	16:18:40	23:06:02	16.0089	28.2231	-177.5010	-155.5967	Midway Island to Kona, Hawaii - Sunrise Photochemistry;
									Stratospheric Influence
23P	4/09/01	66	16:57:44	01:03:30	19.7240	34.9655	-156.0468	-117.7267	Kona, Hawaii to NASA- DFRC – A/C Intercomparison
24P	4/10/01	100	15:33:28	22:05:41	30.4674	37.9393	-118.0146	- 75.4597	DFRC to WFF - Transport of Clean Tropical Air
* ontional	* ontional data archival: required for other flights	l require	d for other	flights					

* optional data archival; required for other flights

Table 3. TRACE-P Aircraft Measurement Characteristics

Investigator	Aircraft	Species/	Technique	Averaging	Accuracy	Precision	TOD
	DC-8 P-3B	B Parameter		Time			
B. Anderson ⁽¹⁾	×	Aerosol absorption at	PSAP	30 to 180 s	%07	20%	$5 \times 10^{-7} \text{ m}^{-1}$
	×	Single scatter albedo	Nenhelometer	30 to 180 s	ΑN	Ϋ́	ĄZ
	×	Equivalent BC mass	PSAP	30 to 180 s	30%	20%	0.1 µg m ⁻³
	×	CN>4nm	Condensation nuclei	1 s	10%	10%	1 cm ⁻³
		Unheated CN>14nm	counter				
	×	Ratio Heated/Unheated	Condensation nuclei	1 s	20%	20%	NA
			counter				
	X	Scatter at 450nm	Nephelometer	1 s	%01	%01	$1x10^{-7}m^{-1}$
		Scatter at 550nm Scatter at 700nm					
	×	Angstrom exponent:	Nephelometer	1 s	NA	NA	NA
		450-550nm					
		450-700nm					
		330-700nm					·
	×	Number:	PCASP aerosol probe,	1 s	20%	20%	0 cm ⁻³
		.175, .75-2, 2-5, 5-20,	FSSP-300, Cloud, aerosol,				
		20-50, 50-1550	and precipitation				
			spectrometer (CAPS)				
	×	Surface:	PCASP aerosol probe,	1 s	%05	%05	$0 \mu \text{m}^{-2} \text{m}^{-3}$
		.175, .75-2, 2-5, 5-20,	FSSP-300, CAPS				
		20-50, 50-1550					
		Volume dry:					
		.175, .75-2, 2-5, 5-20,					
		20-50, 50-1550					
E. Apel ⁽²⁾	×	CH ₃ CHO	GC/MS	10-60 s	±4%	∓7%	40 pptv
	X	Methanol	GC/MS	10-60 s	%€∓	%L∓	50 pptv
	X	Acetone	GC/MS	10-60 s	%€∓	%Z +	50 pptv
	X	Ethanol	GC/MS	10-60 s	%€∓	%61∓	5 pptv
	X	Butanal	GC/MS	10-60 s	+3%	±5%	5 pptv
	×	Methyl ethyl ketone	GC/MS	10-60 s	+3%	+3%	5 pptv
	X	Propanal	GC/MS	10-60 s	+3%	%9 ∓	15 pptv

Table 3. Continued

Investigator	Aircraft	Species/	Technique	Averaging	Accuracy	Precision	аот
DC-8	-8 P-3B		•	Time	•		
×		Aerosol wavelength	Derived from IR and VIS	Horizontal: 1			
		dependence profiles (1064nm/587nm)	lidar backscatter data	min; Vertical: 30 m ^(a)			
×		IR aerosol scattering ratio profiles (1064nm)	Normalized IR lidar backscattering	Horizontal: 1 min; Vertical:	10% or ±0.05 ^(b)	0.05	0.01
×		Ozone profiles	UV DIAL	Horizontal: 5 min; Vertical: 300m(c)	10% or ±2 ppbv ^(b)	5% or 1 ppbv	NA
×		Trop. heights and ozone columns	Derived from UV DIAL ozone data	5 min ^(d)	Derived	Derived	NA
×		Visible aerosol	Normalized VIS lidar	Horizontal: 1	$10\% \text{ or } \pm 0.03^{(b)}$	0.03	.01
		scattering ratio profiles (587 nm)	backscattering	min; Vertical: 30 m ^(a)			
×		Visible aerosol	VIS lidar backscatter	Horizontal: 1	10% relative or	0.2%	NA
		depolarization profiles	depolarization	min;	±0.2%		
				Vertical: 150 m ^(a)	absolute ^(b)		
×		НО	LIF	20 s	±40% at 2 sigma	1 km 10 ppq, > 5 km 4 ppq	bdd 01
×		НО2	LIF	20 s	±40% at 2	1 km 100 ppq,	100 ppq
1			;	4	Sigma	> 5 km 40 ppq	())
X		$ m CH_2O$	Tunable diode laser absorption spectrometer	60 s	12 to 15% (e)	66 pptv	66 pptv ⁽¹⁾
×		$\mathrm{H}_{2}\mathrm{O}_{2}$	HPLC	30 s	± 15 ppt or ± 0.15 x value	± 15 ppt or ± 0.15 x value	15 pptv
×		СН3ООН	HPLC	30 s	±25 ppt or ±0.25 x value	± 25 ppt or ± 0.25 x value	25 pptv
×		$\mathrm{CH_2O}$	Flow Injection Analysis (FIA)	s 09	$\pm 50 \text{ ppt } \pm 0.15 \text{ x}$ value	$\pm 50 \text{ ppt } \pm 0.15 \text{ x}$ value	sydd 05
×		N_2O	DACOMIR Laser Spectrometer	5 s	1%	0.15% (1σ)	$NA^{(g)}$
×		H ₂ O	DLH NIR Laser Spectrometer	50 ms	1 ppmv or 10%	0.1 ppmv or 1% conc. (b) (1 σ)	$NA^{(g)}$

Table 3. Continued

Investigator	Aircraft	Species/	Technique	Averaging	Accuracy	Precision	TOD
	DC-8 P-3B			Time			
S. Sandholm ⁽⁵⁾	X	NO	TP-LIF	s 09	±20%	>10%	2 pptv
	×	NO_2	TP-LIF	s 09	±40%	>20%	5 pptv or $10\%^{(h)}$
H. Singh ⁽⁶⁾	X	PAN	GC	120 s	±20%	±10%	1 pptv
	X	Acetone	CC	180 s	750%	±10%	5 pptv
	X	Acetaldehyde	CC	180 s	±25%	±10%	10 pptv
	X	Propionaldehyde	GC	180 s	+25%	±15%	10 pptv
	X	Methyl Ethyl Ketone	GC	180 s	+20%	±10%	10 pptv
	X	Methanol	GC	180 s	+25%	±15%	15 pptv
	X	Ethanol	GC	180 s	+25%	±20%	20 pptv
	X	Acetonitrile	O.S.	180 s	+25%	±15%	30 pptv
	×	HCN	GC	180 s	+25%	±15%	30 pptv
	X	PPN	GC	120 s	±30%	±20%	1 pptv
	×	Methyl nitrate	CC	120 s	±15%	±10%	1 pptv
	X	i-propyl + ethyl nitrate	GC	120 s	±15%	±10%	1 pptv
B. Talbot ⁽⁷⁾	×	Chloride	Filter collection	2.7-42.5 min	20%	15% + 23 pptv	25 pptv
	×	Nitrate	Filter collection	2.7-42.5 min	20%	15% + 2.5 pptv	3 pptv
	X	Sulfate	Filter collection	2.7-42.5 min	20%	15% + 2.1 pptv	3 pptv
	×	Oxalate	Filter collection	2.7-42.5 min	20%	15% + 4.4 pptv	5 pptv
	×	Sodium	Filter collection	2.7-42.5 min	20%	15% + 18.4 pptv	20 pptv
	X	Ammonium	Filter collection	2.7-42.5 min	20%	15% + 5.7 pptv	6 pptv
	X	Potassium	Filter collection	2.7-42.5 min	20%	15% + 8.6 pptv	9 pptv
	X	Magnesium	Filter collection	2.7-42.5 min	20%	15% + 3.8 pptv	4 pptv
	X	Calcium	Filter collection	2.7-42.5 min	20%	15% + 3.2 pptv	4 pptv
	×	Beryllium-7	Filter collection	2.7-42.5 min	10%	50%/25%/15% ⁽ⁱ⁾	30 fCi sem ⁻
	X	HNO ₃	Mist Chamber-Ion Chromatography	130-140 s	15%	15%	3 pptv
	X	SO_2	Mist Chamber-Ion Chromatography	130-140 s	20%	20%	3 pptv
	X	Fine aerosol NSS	Mist Chamber-Ion Chromatography	130-140 s	20%	20%	4 pptv
	×	SO_4	Mist Chamber-Ion Chromatography	130-140 s	20%	20%	4 pptv
			,				7

Table 3. Continued

Investigator	Air	Aircraft	Species/	Technique	Averaging	Accuracy	Precision	LOD
	DC-8	P-3B			Time			
E. Atlas ⁽²⁾	X	X	CH ₃ ONO ₂ n-C ₃ H ₇ ONO ₂ 2-C ₄ H ₉ ONO ₂	GC/MS	40-150 s	10-20%	2-10%	0.10 pptv
	×	×	C ₂ H ₅ ONO ₂ i-C ₃ H ₇ ONO ₂	GC/MS	40-150 s	10-20%	5-10%	0.14 pptv
	X	X	3-C ₅ H ₁₁ ONO ₂ 2- C ₅ H ₁₁ ONO ₂ 3-CH ₃₋ 2-C ₄ H ₈ ONO ₂	GC/MS	40-150 s	10-20%	2-10%	0.30 pptv
	X	X	HFC-134a	GC/MS	40-150 s	5-10%	5-10%	0.30 pptv
	X	X	HCFC-141b HCFC-142b CHCl ₃	GC/MS	40-150 s	2-10%	2-10%	0.10 pptv
	×	X	HCFC-22	GC/MS	40-150 s	5-10%	5-10%	0.20 pptv
	×	×	HCFC-21 HCFC-123	GC/MS	40-150 s	10-20%	10-20%	0.10 pptv
	×	×	HCFC-124	GC/MS	40-150 s	10-20%	10-20%	0.20 pptv
	×	X	Halon-1211	GC/MS	40-150 s	10-20%	10-20%	0.07 pptv
	×	×	Halon-2402 Halon-1301	GC/MS	40-150 s	5-10%	5-10%	0.15 pptv
	×	X	Halon-1202	GC/MS	40-150 s	5-10%	20% or 0.02 pptv	0.02 pptv
	X	X	CH ₃ Br	GC/MS	40-150 s	10-20%	5-10%	0.20 pptv
	X	X	C ₃ H ₇ Br	GC/MS	40-150 s	10-20%	10-20%	0.54 pptv
	X	X	CH ₃ Cl OCS	GC/MS	40-150 s	%5	5-10%	1.00 pptv
	×	X	C ₂ H ₅ Cl	GC/MS	40-150 s	10-20%	5-10%	0.50 pptv
	X	X	C_2H_3Cl	GC/MS	40-150 s	10-20%	5-10%	0.18 pptv
	X	X	CH_2Cl_2	GC/MS	40-150 s	5%	5-10%	0.40 pptv
	X	X	1_2 -C ₂ H ₄ Cl ₂	GC/MS	40-150 s	10-20%	5-10%	0.40 pptv
	×	X	C ₂ HCl ₃	GC/MS	40-150 s	10-20%	5-10%	0.05 pptv
	×	X	C ₂ Cl ₄	GC/MS	40-150 s	5-10%	5-10%	0.16 pptv
	X	X	CH_2Br_2	GC/MS	40-150 s	10-20%	5-10%	0.08 pptv
	X	X	CHClBr ₂	GC/MS	40-150 s	10-20%	10% or 0.02 pptv	0.02 pptv
	X	X	CHBr ₃	GC/MS	40-150 s	10-20%	5-10%	0.14 pptv
M. Avery ⁽¹⁾	×	×	Ozone	Nitric oxide chemiluminescense	1 s	5% or 2 ppbv	2% or 0.8 ppbv	0.8 ppbv
]						

Table 3. Continued

Investigator	Airc	Aircraft	Species/	Technique	Averaging	Accuracy	Precision	TOD
	DC-8	P-3B			Time	,		
D. Blake ⁽⁸⁾	X	X	Ethane Propane	ЭĐ	40-150 s	5%	1% or 2 pptv ^(b)	3 pptv
	X	×	trans-2-Butene	GC GC	40-150 s	10%	2% or 3 pptv ^(b)	3 pptv
	X	×	Benzene	39	40-150 s	2%	2% or $3 \text{ pptv}^{(b)}$	3 pptv
			Toluene					
			o-Xylene					
			m-Aylene n Vylene					
			p-Aylene Ethylbenzene					
	X	X	CHCIBr ₂	GC	40-150 s	10-20%	5-10%	0.005 pptv
	X	X	Ethyne	29	40-150 s	%5	1% or $2 \text{ pptv}^{(b)}$	2 pptv
			n-Butane					
			i-Butane					
			n-Pentane					
			i-Pentane					
	X	X	H-1211	GC	40-150 s	5%	2%	0.1 pptv
	X	X	CH_3I	GC	40-150 s	10-20%	5-10%	0.05 pptv
	X	X	Methyl nitrate	OS OS	40-150 s	10-20%	1-5%	0.05 pptv
			Ethyl nitrate					
			2-Butyl nitrate					
	X	X	CH ₃ CCl ₃	GC	40-150 s	2%	1%	3 pptv
	X	X	CCI ₄	GC	40-150 s	2%	1%	3 pptv
	X	X	Ethene	29	40-150 s	10%	2% or $3 \text{ pptv}^{(b)}$	3 pptv
	X	X	Propene	GC	40-150 s	10%	2% or $3 \text{ pptv}^{(b)}$	2 pptv
	X	X	CFC-12	GC	40-150 s	2%	0.7%	1 pptv
	X	X	CFC-11	GC	40-150 s	2%	0.8%	3 pptv
	X	X	CFC-113	GC	40-150 s	2%	1.4%	3 pptv
	X	X	CFC-114	GC	40-150 s	5%	1.5%	1 pptv
	X	X	HCFC-22	OD OD	40-150 s	%5	1.5%	10 pptv
	X	X	H-2402	GC	40-150 s	%5	5%	0.1 pptv
	X	X	C ₂ Cl ₄	GC	40-150 s	10%	1-5%	0.05 pptv
	X	X	$\mathrm{CH_2Cl_2}$	GC	40-150 s	10%	5%	2 pptv
	X	X	CHBrCl ₂	GC	40-150 s	10-20%	5-10%	0.05 pptv
	X	X	CH ₃ Cl	GC	40-150 s	5%	5-10%	100 pptv
	X	X	CHCl ₃	GC	40-150 s	5%	5-10%	2 pptv
	X	X	CHBr ₃	GC	40-150 s	10%	5-10%	0.1 pptv

Table 3. Continued

Investigator	Air	Aircraft	Species/	Technique	Averaging	Accuracy	Precision	LOD
	DC-8	DC-8 P-3B			Time			
D. Blake (cont.)	X	X	CH ₃ Br	CC 29	40-150 s	5%	4%	1 pptv
	X	X	$\mathrm{CH}_2\mathrm{Br}_2$	GC	40-150 s	10-20%	5-10%	0.4 pptv
	X	X	CH_4	GC	40-150 s	1%	0.1%	NA
	X	X	SOO	29	40-150 s	10%	5%	NA
	Χ	×	H-134a DMS	GC	40-150 s	10%	50% or 2mpty(b)	1 mpts
	: >	< >	HCFC-141h	2	40-150 s	10%	3% Ct 2pprv	I PPU
	<	<	HCFC-1419	00	40-1-04 s	10 / 0	3/0	MA
	X	X	C_2HCl_3	29	40-150 s	20%	5%	0.02 pptv
	X	X	CH ₂ BrCl	GC 25	40-150 s	20%	5%	NA
	X	X	$\mathrm{C}_2\mathrm{H}_5\mathrm{Cl}$	GC 3	40-150 s	20%	5%	0.3 pptv
	X	X	C_2H_5I	GC	40-150 s	20%	10%	0.01 pptv
	×		$2-C_5H_{11}ONO_2$	GC C	40-150 s	10-20%	1-5%	0.01 pptv
			3-C ₅ H ₁₁ ONO ₂ n-C ₃ H ₇ ONO ₂					
	X	×	$i-C_3H_7ONO_2$	GC	40-150 s	10-20%	10%	0.02 pptv
	×		CS_2	GC	40-150 s	20%	5%	0.5%
	X	X	1,2-Dichloroethane	29	40-150 s	20%	10%	0.05 pptv
	X		n-Hexane	GC	40-150 s	5%	5%	3 pptv
Project (J. Barrick ⁽¹⁾)	X	X	J(NO ₂) zenith J(NO ₂) nadir	Filter radiometer (PMT)	1 s	10%	4%	1.5x10 ⁻⁶ mv ⁻¹
	×	X	Dew/Frost point	Chilled mirror hygrometer	1-10 s	±0.5°C	±0.2°C	±75°C
G. Sachse ⁽¹⁾	X	X	00	DACOM IR Laser Spectrometer	1 s	2%	1 ppbv or 1% conc. (b) (1σ)	$NA^{(g)}$
	×	×	CH_4	DACOM IR Laser Spectrometer	1 s (DC-8) 5 s (P-3B)	1%	0.15% (1σ)	$NA^{(g)}$
R. Shetter ⁽²⁾	X	X	J[O3->02+O(1D)] J[CH2O->H+HCO]	SAFS	10 s	~10%	~3%	<0.05mW cm ⁻² nm ⁻¹
			J[CH2O->H2+CO]					
	×	×	J[NO2->NO+O(3P)] J[H2O2->2OH] J[HNO2->OH+NO] J[HNO3->OH+NO2]	SAFS	10 s	%8~	~3%	<0.05mW cm²nm¹
			J[HNO4->HO2+NO2]					

Table 3. Continued

Investigator	Airc	Aircraft	Species/	Technique	Averaging	Accuracy	Precision	ТОВ
R Shetter (cont.)	ν X	K-3B	ICH3CHO-> CH3+	SAFS	10 s	~8%	~3%	<0.05mW
	;	;	HCO] J[CH3CHO->CH4+CO] J[CH3CHO->CH4+CO] J[CH3CHO-> C2H5+ HCO] J[CH3COCHO] J[CH3COCHO] J[CH3COCHO] J[CH3COCH3] J[CH3COCH3] J[CH3ONO2-> CH3O+ OH] J[CH3ONO2-> CH3O+ OH] J[CH3CH2CH2CHO-> C3H7+HCO] J[CH3CH2CH2CHO-> C2H4+CH2CHOH] J[CH3CH2CH2CHO-> C2H4+CH2CHOH] J[CH3CH2CH2CHO-> C2H4+CH2CHOH] J[CH3CH2CH2CHO-> C2H4+CH2CHOH] J[CH3CH2CH2CHO] J[CH3CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2CH2C					cm²nm¹
S. Vay ⁽¹⁾	X	X	CO ₂	Non-dispersive IR Spectrometer	1 s	0.25 ppmv	0.07 ppmv (1 Hz)	0.5 ppmv
A. Bandy ⁽⁹⁾		×	SO ₂	Atmospheric Pressure Ionization Mass Spectrometry	1 s	2-5% ⁽ⁱ⁾	2 pptv or 2% ^(k)	1 pptv
C. Cantrell ⁽²⁾		×	HO ₂ HO ₂ +RO ₂	Chemical ionization mass spectrometry	8 09	±35%	±10%	$3x10^{-7}$ molec cm ⁻³
A. Clarke ⁽¹⁰⁾		X	Condensation Nuclei cold	CN counter	5 s	5-10%	5%	1 particle cm ⁻³
		X	Condensation Nuclei hot	CN with 300C heater	5 s	5-10%	5%	1 particle cm ⁻³
		X	Cloud liquid water content	PVM optical probe	5 s	5-10%	5%	0.002g-m ⁻³
		×	APS integral number, area, volume ^(l)	Aerodynamic particle sizing	s 09	20%	5%	$NA^{(m)}$
		×	FSSP integral number, area, volume ⁽ⁿ⁾	FSSP probe	15 s	20%	5%	$NA^{(m)}$

Table 3. Continued

Investigator		raft	9 2 -	Technique	Averaging	Accuracy	Precision	ПОД
	DC-8	F-3B	rarameter		rime			
A. Clarke (cont.)		×	Scatter (all part) at 450nm, 550nm, 700nm	3 Wavelength integrating nephelometer	25 s	±0.2 Mm ⁻¹	±0.1 Mm ⁻¹	±0.2 Mm ⁻¹
			Backscatter (all part) at 450nm, 550nm, 700nm					
		×	Scatter (submicron) at	< 1µm Dp aerodynamic	25 s	±0.2 Mm ⁻¹	±0.1 Mm ⁻¹	±0.2 Mm ⁻¹
			450nm, 550nm, 700nm					
			Backscatter					
			(submicron) at 450nm, 550nm, 700nm					
		×	Light Absorption (all	PSAP- light transmission	65 s	15% ^(p)	%9>	$\pm 0.5 \mathrm{Mm}^{-1(q)}$
			part) 565nm	through filter ⁽⁰⁾				
			Absorption (submicron) 565nm					
		×	DMA number, surface	Differential Mobility	20 s grab	20%	5%	NA ^(m)
			area and volume at 50C(r)	Analyzer	samples			
		X	OPC number, surface	Optical Particle Counter	s 09	15%	%5	$NA^{(m)}$
			area and volume at 50C(s)	effective optical particle				
F. Eisele ⁽⁵⁾		×	НО	CIMS	30 s	%09	20%	1x10 ⁵ OH
								cm ⁻³
		× ×	H_2SO_4	CIMS	30 s	%09	20%	$2x10^{5} \text{ cm}^{-3}$
		< ×	HNO,	CIMS	20.8	+25% ^(t)	%02	5 notv
W. Flocke ⁽²⁾		: ×	PAN	GC	2.5 min ^(u)	-10% to +5%	1% or 1 potv ^(v)	5 pptv
		:	PPN				LL	FF
		X	MPAN	GC 35	2.5 min ^(u)	-10% to +10%	$\pm 15\%$ or ± 2.5	5 pptv
		×	PiBN				$pptv^{(b)}$	
Y. Kondo ⁽¹¹⁾		×	NO	Chemiluminescence	1 s	16%	6 pptv	12 pptv
			NO_{Y}		1s	35%	16pptv	28pptv
		X	NO_2	Chemiluminescence	10 s	32%/60% ^(w)	4 pptv/3 pptv $^{(w)}$	$13 \text{ pptv}^{(x)}$
Project		X	Air Temp	RTD sensor	1 s	±0.3°C	±0.2°C	$\pm 100^{\circ} \mathrm{C}^{(\mathrm{y})}$
(J. Barrick ⁽¹⁾)		X	Surface temp	IR Pyroelectrics (chopped	1 s	±0.7°C	J°2.0±	-50° to 70°
				radiation)		,		$C^{(y)}$
Project		×	Latitude, longitude	TAMMS	$20 \mathrm{s}^{-1}$	0.4 nm hr ⁻¹	NA	0.1 min
(L. Thornhill ⁽¹⁾)		X	Pressure altitude	TAMMS	20 s ⁻¹	0.4%	7 ft	0.5 ft
		×	Static pressure	TAMMS	20 s ⁻¹	0.2 hPa	0.05 hPa	0.008 hPa

Table 3. Concluded

Investigator	Airc	Aircraft	Species/	Technique	Averaging	Accuracy	Precision	TOD
	DC-8 P-3B	P-3B	Parameter		Time			
Project (cont.)		X	Impact pressure	TAMMS	$20 s^{-1}$	0.4 hPa	0.05 hPa	0.008 hPa
(L. Thornhill)		X	Pitch, roll	TAMMS	20 s^{-1}	0.2 deg	0.1 deg	0.04 deg
		X	True heading	TAMMS	20 s^{-1}	0.1 deg	0.1 deg	0.04 deg
		X	U, V	TAMMS	20 s^{-1}	0.5 m s ⁻¹	0.1 m s^{-1}	0.01 m s ⁻¹
		X	M	TAMMS	20 s^{-1}	0.1 m s^{-1}	0.05 m s^{-1}	0.01 m s ⁻¹
		X	$MR^{(z)}$	TAMMS	20 s^{-1}	0.6 deg C	0.2 deg C	-50° C
		X	MR (LymanAlpha)	TAMMS	20 s^{-1}	%5	2%	1%
		X	Virtual potential	TAMMS	20 s^{-1}	0.5 deg K	0.1 deg K	173° to 373°
			temperature (theta v)					$K^{(y)}$
R. Weber ⁽⁵⁾		X	Sodium	PILS-Ion Chromatography	3 min	710%	∓5%	21 pptv
		X	Ammonium	PILS-Ion Chromatography	3 min	710%	72%	27 pptv
		X	Calcium	PILS-Ion Chromatography	3 min	710%	72%	12 pptv
		X	Potassium	PILS-Ion Chromatography	3 min	±10%	∓2%	13 pptv
		X	Magnesium	PILS-Ion Chromatography	3 min	±10%	±5%	15 pptv
		X	Chloride	PILS-Ion Chromatography	3 min	%01 ∓	%S T	3 pptv
			Sulfate					
		X	Nitrate	PILS-Ion Chromatography	3 min	±10%	±5%	4 pptv
		X	Total UCN (> 3 nm)	Condensation particle	1 s	710%	+ 2%	NA
				counter and Pulse Height				
				Analysis (PHA)				
		×	Total UCN	Condensation particle	s 09	±10%	±10%	NA
				counter and Pulse Height				
				Analysis (PHA)				
			UCN 3-8nm					
			UCN 3-4nm					

Notes:

Horizontal sample interval: 10 seconds; Vertical sample interval: 30 meters.

а. Ь.

Whichever is greater. Horizontal sample interval 60 meters. Horizontal sample interval: 1 minute; Vertical sample interval 1 minute.

Percentage of the ambient concentration. However, as the ambient levels decrease, the accuracy estimate can be somewhat higher. Replicate measurements during constant air mass periods provides realistic assessment of how LOD improves with averaging time. These measurements indicate that LOD does in fact improve by roughly the square root of averaging time out to time periods as 10 minutes. For 5 minutes of averaging, based on median 1 min LOD of 66 pptv, 5 min LOD is around 30 pptv. Concentration in the troposphere or lower stratosphere never reaches the LOD. Of the NO value, whichever is greater. т. е. с. т.

ல் ப்

- of radioactive decays. Precision increases notably with higher activity. For samples less than 200 fCi scm⁻¹ the mean and median uncertainty was 50%, this improves to 25% for samples between 200 and 600 fCi scm⁻¹ and to 15% for samples more active than 600 fCi scm⁻¹. (Note that 52% of all samples with reported Be-7 were in this last group For Be-7 there is still some uncertainty due to measured air flow (on the order of 5% max) but this is generally dwarfed by the statistical uncertainty inherent in the counting and only 24% were less than 200 fCi scm⁻¹). It is estimated an LOD of 30 fCi scm⁻¹ (though this also depends on the volume of air sampled). . **.**:
 - Below 3 ppbv is 2-3%, and above 3 ppbv is about 5%. · - ' 주 ' - : 뭐
- Below 200 pptv is 2 pptv, and above 200 pptv is about 2%.
 - $0.7 \text{ um} \le Dp \le 20.0 \text{ um}.$
- The overall performance (accuracy, precision & LOD) of the size distribution measurements (DMA, OPC, APD & FSSP) are size dependent and are difficult to generalize. The 3 latter instruments are single particle counters making them sensitive to low concentrations limited primarily by count statistics at a given size. Particle losses in sample inlet become significant for sizes larger than about 4 µm.
 - $0.3 \, \mu m \le Dp \le 1.0 \, \mu m$, $1.0 \, \mu m \le Dp \le 20.0 \, \mu m$, $0.3 \, \mu m \le Dp \le 20.0 \, \mu m$.
 - Longer averaging times are generally required for low absorption environments.
 - At typical atmospheric absorption levels and 60 s averages. р. г. s. г.
 - For 60 s average but lower with larger averaging time.
 - 0.007 <=Dp<=0.1µm.
- $0.1 <= Dp <= 20.0 \mu m, 0.1 <= Dp <= 0.75 \mu m, 0.75 <= Dp <= 20.0 \mu m.$
- The overall accuracy is estimated to be $\pm 25\%$ for < 100 pptv, $\pm 20\%$ for 100-200 pptv, and $\pm 15\% > 200$ pptv.
 - One discreet sample (which is an average of 2.5 seconds) is taken every 2-2.5 minutes. ä >
- $Altitude < 2 \ km \ / \ Altitude > 2 \ km; (NO_2 \ median \ 70 \ pptv \ for \ altitude < 2 \ km \ / \ NO_2 \ median \ 30 \ pptv \ for \ altitude > 2 \ km) \ .$ Short term (duration of flight), whichever is greater. Long term (over the entire mission), larger of 5% or 1 pptv ×.
- Precision and LOD of NO and NO_v were estimated for a 1 s integration time, while for NO₂, a 10 s integration time was used. ×
 - Lower number is minimum LOD, higher number is maximum LOD. × v
 - Derived from dew point (GE 1011).
- NASA Langley Research Center
- National Center for Atmospheric Research (NCAR) -1.5.6.4.6.9.7.8.6.
 - Pennsylvania State University
 - University of Rhode Island
 - Georgia Institute of Technology
- NASA Ames Research Center
- University of New Hampshire
- University of California-Irvine
 - Drexel University
- University of Hawaii
 - University of Tokyo

Table 4. DC-8 Time Series Plot Order

Plate	Panel	Parameter	Plate	Panel	Parameter
1	1	Lat, Lon	11	1	Chloride
	2	AltP		2	Nitrate
	3	TS, ProjDP		3	Oxalate
	4	WNS		4	Sodium
	5	WND		5	Ammonium
2	1	Ozone	12	1	Potassium
	2	Carbon Monoxide		2	Calcium
	3	Methane		3	Magnesium
	4	Carbon Dioxide		4	Beryllium-7
	5	Water Vapor Mixing Ratio		5	Sulfate
3	1	NO	13	1	Sulfur Dioxide
	2	NO2		2	Fine aerosol NSS Sulfate
	3	HNO3		3	OCS
	4	PAN, PPN		4	DMS
	5	HCN, Acetonitrile		5	Methyl Iodide
4	1	OH	14	1	Methyl Chloride
	2	HO2		2	Chloroform
	3	CH2O		3	CN>4nm
	4	Hydrogen Peroxide		4	Unheated CN>14nm
	5	Methylhydroperoxide		5	Heated/Unheated
5	1	Ethane	15	1	LWC Calc
	2	Propane		2	Aerosol absorption 565 nm
	3	i-Butane, n-Butane		3	Equivalent BC mass
	4	i-Pentane, n-Pentane		4	Scatter 450 nm
	5	Ethyne		5	Angstrom exponent 450-700
6	1	Ethene	16	1	Number dry (.1 to .75 um)
	2	C3H8/C2H6		2	Number (.75 to 2 um)
	3	C2H4/C2H6		3	Number (2 to 5 um)
	4	C2H2/CO		4	Number (5 to 20 um)
	5	C2H6/CO		5	Number (20 to 50 um)
7	1	Benzene	17	1	Surface dry (.1 to .75 um)
	2	Perchloroethylene		2	Surface (.75 to 2 um)
	3	1-2-Dichloroethane		3	Surface (2 to 5 um)
	4	Acetone		4	Surface (5 to 20 um)
	5	Methyl Ethyl Ketone		5	Surface (20 to 50 um)
8	1	Methanol	18	1	O3 Col
	2	Ethanol		2	SZA
	3	Acetaldehyde		3	J(O3)
	4	Propanal		4	J(H2O2)
	5	Butanal		5	J(NO2)

Table 4. Concluded

Plate	Panel	Parameter	Plate	Panel	Parameter
9	1	Methyl Nitrate	19	1	J(NO2)N + J(NO2)Z
	2	Ethyl Nitrate		2	J(NO2)N/J(NO2)Z
	3	i-Propyl Nitrate		3	Roll
	4	n-Propyl Nitrate		4	AltCab
	5	2-Butyl Nitrate			
10	1	CFC-12			
	2	H-1211			
	3	HCFC-142b			
	4	HCFC-22			
	5	CH3CCl3			

Table 5. Plotted Chemical Names and Formulas: DC-8

Variable Name	Other Names
Lat	Latitude
Lon	Longitude
AltP	Pressure altitude
TS	Static temperature
ProjDP	Project dew point
WNS	Wind speed
WND	Wind direction
Ozone	O3
Carbon Monoxide	СО
Methane	CH4
Carbon Dioxide	CO2
Water Vapor Mixing Ratio	H2O mixing ratio
NO	Nitric oxide
NO2	Nitrogen dioxide
HNO3	Nitric acid
PAN	CH3C(O)OONO2
PPN	C2H5C(O)OONO2
HCN	Hydrogen cyanide
Acetonitrile	CH3CN
ОН	Hydroxyl radical
HO2	Hydroperoxyl radical
CH2O	Formaldehyde
Hydrogen peroxide	H2O2
Methylhydroperoxide	СН3ООН
Ethane	C2H6
Propane	C3H8
i-Butane	i-C4H10
n-Butane	n-C4H10
i-Pentane	i-C5H12
n-Pentane	n-C5H12
Ethyne	C2H2
Ethene	C2H4
C3H8/C2H6	Propane/Ethane ratio
C2H4/C2H6	Ethene/Ethane ratio
C2H2/CO	Ethyne/Carbon monoxide ratio
С2Н6/СО	Ethane/Carbon monoxide ratio
Benzene	С6Н6
Perchloroethylene	C2C14
1-2-Dichloroethane	1-2-C2H4Cl2
Acetone	СН3СОСН3
Methyl Ethyl Ketone	С2Н5СОСН3

Table 5. Continued

Variable Name	Other Names		
Methanol	CH3OH		
Ethanol	С2Н5ОН		
Acetaldehyde	СНЗСНО		
Propanal	С2Н5СНО		
Butanal	СЗН7СНО		
Methyl Nitrate	CH3ONO2		
Ethyl Nitrate	C2H5ONO2		
i-Propyl Nitrate	i-C3H7ONO2		
n-Propyl Nitrate	n-C3H7ONO2		
2-Butyl Nitrate	2-C4H9NO3		
CFC-12	CCl2F2		
H-1211	CBrClF2		
HCFC-142b	CH3CF3Cl- Freon 142b		
HCFC-22	CHF2Cl- Freon 22		
CH3CCl3	Trichloroethane		
Chloride	Cl ⁻		
Nitrate	NO3 ⁻		
Oxalate	C2H2O4		
Sodium	Na		
Ammonium	NH4 ⁺		
Potassium	K		
Calcium	Ca ⁺		
Magnesium	Mg		
Beryllium-7	⁷ Be		
Sulfate	SO4		
Sulfur Dioxide	SO2		
Fine aerosol NSS sulfate	Fine aerosol non-sea-salt sulfate		
OCS	Carbonyl Sulfide		
DMS	Dimethyl Sulfide		
Methyl Iodide	CH3I		
Methyl Chloride	CH3Cl		
Chloroform	CH3Cl3		
CN>4 nm	Condensation nuclei		
Unheated CN>14nm	Condensation nuclei		
Heated/Unheated	Condensation nuclei		
LWC calc	Liquid water content		
Aerosol absorption 565 nm	Aerosol optical properties		
Equivalent BC mass	Aerosol optical properties		
Scatter 450 nm	Aerosol optical properties		
Angstrom exponent 450-700 nm	Aerosol optical properties		
Number dry (.1 to .75um)	Aerosol number density		

Table 5. Concluded

Variable Name	Other Names
Number (.75 to 2um)	Aerosol number density
Number (2 to 5um)	Aerosol number density
Number (5 to 20um)	Aerosol number density
Number (20 to 50um)	Aerosol number density
Surface dry (.1 to .75um)	Aerosol surface area
Surface (.75 to 2um)	Aerosol surface area
Surface (2 to 5um)	Aerosol surface area
Surface (5 to 20um)	Aerosol surface area
Surface (20 to 50um)	Aerosol surface area
O3 Col	Ozone column
SZA	Solar zenith angle
J[O3->O2+O(1D)]	Photolysis frequency
J[H2O2->2OH]	Photolysis frequency
J[NO2->NO+O(3P)]	Photolysis frequency
J(NO2)Nadir + $J(NO2)$ Zenith	Photolysis frequency
J(NO2)Nadir/J(NO2)Zenith	Photolysis frequency
Roll	Roll angle
AltCab	Cabin altitude

Figure 1. GTE missions through 2001.

Figure 2(a). TRACE-P transit flight tracks.

Figure 2(b). TRACE-P intensive flight tracks.

Figure 3(a). TRACE-P DC-8 mission payload.

Figure 3(b). TRACE-P P-3B mission payload.

APPENDIX A

Transport and Chemical Evolution over the Pacific (TRACE-P)

Plots are presented in a standardized format, and the data (unedited) are from the Langley GTE archive. Relative humidity is calculated from measurements made on the aircraft. In some cases (mostly for moist, boundary layer conditions) relative humidity may exceed 100% (not plotted) as dew point temperature exceeded air temperature by a few degrees (assumed to be the result of instrument measurement/calibration uncertainty). For time series plots, abscissa time scales for given flights are identical. Ordinate scales were selected to best represent all the data for specie measured during the flight. In order to maintain the standardized format, plots for flights in which a specie data were not reported are plotted with the axes and a "NO DATA" entry. On a panel with multiple curves, if a particular curve is missing, it may be assumed that the data for that particular specie for that particular flight is not available ("NO DATA" will not appear on a multicurve panel). The time series plots are followed by altitude profiles of temperature, dew point, ozone, and carbon monoxide. In general altitude profiles are shown for ascent/descent portions of the flights. As a result the number of altitude profiles shown varies on a flight by flight basis.

Given below are the beginning page numbers for each flight's sequence of plots:

Flight 4D – page 33

Flight 5D – page 63

Flight 6D – page 93

Flight 7D – page 123

Flight 8D – page 155

Flight 9D – page 185

Flight 10D – page 213

Flight 11D – page 241

Flight 12D – page 273

Flight 13D – page 303

Flight 14D – page 335

Flight 15D – page 363

Flight 16D – page 397

Flight 17D – page 425

Flight 18D – page 453

Flight 19D – page 483

Flight 20D – page 513

CHEMICAL and METEOROLOGICAL DATA

TRACE-P

Flight 4D

Transit: NASA-DFRC to Kona, HI

Aged Asian Pollution and MOPITT Mid-Latitude Validation

February 26, 2001

CHEMICAL and METEOROLOGICAL DATA

TRACE-P

Flight 5D

Transit: Kona, HI to Guam

Asian Pollution Subsidence and MOPITT Tropical Validation

February 27, 2001

CHEMICAL and METEOROLOGICAL DATA

TRACE-P

Flight 6D

Transit: Guam to Hong Kong

Asian Outflow: Frontal, Convective, and South China Sea

March 3, 2001

CHEMICAL and METEOROLOGICAL DATA

TRACE-P

Flight 7D

Local: Hong Kong No. 1

China Outflow and Frontal Crossing

March 7, 2001

CHEMICAL and METEOROLOGICAL DATA

TRACE-P

Flight 8D

Local: Hong Kong No. 2

Chemical Evolution of Frontal Outflow

March 9, 2001

CHEMICAL and METEOROLOGICAL DATA

TRACE-P

Flight 9D

Local: Hong Kong No. 3

China Outflow to Yellow Sea

March 10, 2001

CHEMICAL and METEOROLOGICAL DATA

TRACE-P

Flight 10D

Local: Hong Kong No. 4

Aged Asian Outflow

March 13, 2001

CHEMICAL and METEOROLOGICAL DATA

TRACE-P

Flight 11D

Transit: Hong Kong to Okinawa

MOPITT Validation and China Outflow

March 17, 2001

CHEMICAL and METEOROLOGICAL DATA

TRACE-P

Flight 12D

Transit: Okinawa to Yokota AFB, Japan

Formosa Strait and China Outflow

March 18, 2001

CHEMICAL and METEOROLOGICAL DATA

TRACE-P

Flight 13D

Local: Yokota No. 1

Frontal Lifting and Dust Outflow

March 20, 2001

CHEMICAL and METEOROLOGICAL DATA

TRACE-P

Flight 14D

Local: Yokota No. 2

Convective Outflow

March 23, 2001

CHEMICAL and METEOROLOGICAL DATA

TRACE-P

Flight 15D

Local: Yokota No. 3

Convective Outflow and Stratospheric Influence

March 26, 2001

CHEMICAL and METEOROLOGICAL DATA

TRACE-P

Flight 16D

Local: Yokota No. 4

Sunrise Photochemistry of Asian Outflow

March 29, 2001

CHEMICAL and METEOROLOGICAL DATA

TRACE-P

Flight 17D

Local: Yokota No. 5

Warm Conveyor Belt and Cyclonic Recirculation

March 31, 2001

CHEMICAL and METEOROLOGICAL DATA

TRACE-P

Flight 18D

Transit: Yokota AFB, Japan to Kona, HI

High Altitude Asian Outflow and Sunset MBL Chemistry

April 3, 2001

CHEMICAL and METEOROLOGICAL DATA

TRACE-P

Flight 19D

Local: Kona No. 1

Subsidence Over East Pacific and MOPITT Transect

April 6, 2001

CHEMICAL and METEOROLOGICAL DATA

TRACE-P

Flight 20D

Transit: Kona, HI to NASA-DFRC

Aircraft Intercomparison, Stratus Chemistry and Jet Stream Transport

April 9, 2001

APPENDIX B: LANGLEY ASDC DATA ARCHIVE

System Description

The Langley Atmospheric Sciences Data Center (ASDC), located at the NASA Langley Research Center in Hampton, Virginia, is responsible for archiving and distributing NASA science data in the areas of radiation budget, clouds, aerosols, and tropospheric chemistry. This ASDC will also archive some on the data sets, which result from the EOS program and other elements of the Earth Science Enterprise. The ASDC data can be accessed and ordered on line through the website:

(http://eosweb.larc.nasa.gov/index.html). Users who cannot access the web or who have any questions concerning the Langley ASDC may contact:

Langley ASDC User and Data Services

Mail Stop 157D

NASA Langley Research Center

Hampton, VA 23681-0001

Phone: (757) 864-8656 (M-F 8amñ4:30pm, Eastern Time)

FAX: (757) 864-8807

Email: larc@eos.nasa.gov

REPORT DOCUMENTATION PAGE

Form Approved OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number.

PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

I. REPORT DATE (DD-IVIIVI-YYYY)	2. REPORT TYPE		3. DATES COVERED (From - 10)	
01- 10 - 2003	Technical Memorandum			
4. TITLE AND SUBTITLE			5a. CONTRACT NUMBER	
Compendium of NASA Data Base	for the Global Tropospheric			
Experiment's Transport and Chemical Evolution Over the Pacific			5b. GRANT NUMBER	
(TRACE-P)				
Volume 1: DC-8			5c. PROGRAM ELEMENT NUMBER	
6. AUTHOR(S)			5d. PROJECT NUMBER	
Mary M. Kleb and A. Donald Scot	tt, Jr.			
		5e. TA	ASK NUMBER	
		5f. WC	ORK UNIT NUMBER	
		622-6	3-06-70	
7. PERFORMING ORGANIZATION	NAME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER	
NASA Langley Research Center			REPORT NOMBER	
Hampton, VA 23681-2199			L-18260A	
			L-18200A	
9. SPONSORING/MONITORING AG	RENCY NAME(S) AND ADDRESS(ES)		10. SPONSOR/MONITOR'S ACRONYM(S)	
National Aeronautics and Space Administration			NASA	
Washington, DC 20546-0001				
			11. SPONSOR/MONITOR'S REPORT NUMBER(S)	
			NASA/TM-2003-212429/VOL1	
12. DISTRIBUTION/AVAILABILITY S	TATEMENT			

Unclassified - Unlimited Subject Category 42

Availability: NASA CASI (301) 621-0390 Distribution: Standard

13. SUPPLEMENTARY NOTES

An electronic version can be found at http://techreports.larc.nasa.gov/ltrs/ or http://ntrs.nasa.gov

14. ABSTRACT

This report provides a compendium of NASA aircraft data that are available from NASA's Global Tropospheric Experiment's (GTE) Transport and Chemical Evolution over the Pacific (TRACE-P) Mission. The broad goal of TRACE-P was to characterize the transit and evolution of the Asian outflow over the western Pacific. Conducted from February 24 through April 10, 2001, TRACE-P integrated airborne, satellite- and ground-based observations, as well as forecasts from aerosol and chemistry models. The format of this compendium utilizes data plots (time series) of selected data acquired aboard the NASA/Dryden DC-8 (vol. 1) and NASA/Wallops P-3B (vol. 2) aircraft during TRACE-P. The purpose of this document is to provide a representation of aircraft data that are available in archived format via NASA Langley's Distributed Active Archive Center (DAAC) and through the GTE Project Office archive. The data format is not intended to support original research/analyses, but to assist the reader in identifying data that are of interest.

15. SUBJECT TERMS

Tropospheric chemical composition; Aircraft tropospheric measurements

16. SECURITY CLASSIFICATION OF:		17. LIMITATION OF ABSTRACT OF		19a. NAME OF RESPONSIBLE PERSON	
a. REPORT	b. ABSTRACT	c. THIS PAGE	ABOTTIAOT	PAGES	STI Help Desk (email: help@sti.nasa.gov)
	1				19b. TELEPHONE NUMBER (Include area code)
U	U	U	UU	546	(301) 621-0390