Створення кернелів.

Нехай:

- K_1 та K_2 кернели над векторами $R_n \times R_n$.
- $a \in R^+$ дійсне додатне значення.
- $oldsymbol{\cdot} f: R^n \longmapsto R$ функція, що проектує вектор розмірністю n на дійсне число.
- $\phi: R^n \longmapsto R^d$ функція, що проектує вектор розмірністю п на вектор розмірністю d.
- K_3 кернел над векторами $R^d \times R^d$.
- p(x) многочлен зі змінною х та тільки додатними коефіцієнтами.

a)
$$K(x,z) = K_1(x,z) + K_2(x,z)$$

Необхідна і достатня умова для того, щоб бути правильним кернелом - функція K(x,z) може бути виражена як внутрішній добуток в деякому просторі ознак, а саме:

$$\int_{x} \int_{z} k(x, z)g(x)g(z)dxdz \ge 0$$

Оскільки K_1,K_2 задані як кернели над векторами $\int_x\int_z K_1(x,z)g(x)g(z)dxdz\geq 0, \int_x\int_z K_2(x,z)g(x)g(z)dxdz\geq 0$

$$\text{Tomy, } \int_x \int_z (K_1(x,z) + K_2(x,z))g(x)g(z)dxdz = \int_x \int_z K_1(x,z)g(x)g(z)dxdz + \int_x \int_z K_2(x,z)g(x)g(z)dxdz \geq 0$$

Є кернелом

b)
$$K(x,z) = K_1(x,z) - K_2(x,z)$$

 $\int_x \int_z (K_1(x,z) - K_2(x,z)) g(x) g(z) dx dz = \int_x \int_z K_1(x,z) g(x) g(z) dx dz - \int_x \int_z K_2(x,z) g(x) g(z) dx dz \geq 0$, лише при умові $K_1 \geq K_2$

Є кернелом за умовою $K_1 \ge K_2$

c)
$$K(x, z) = a * K_1(x, z)$$

 $\int_x \int_z aK_1(x,z)g(x)g(z)dxdz = a\int_x \int_z K_1(x,z)g(x)g(z)dxdz \geq 0$, оскільки а — дійсне додатне значення.

Є кернелом

d)
$$K(x,z) = -a * K_1(x,z)$$

 $\int_x \int_z -aK_1(x,z)g(x)g(z)dxdz = -a\int_x \int_z K_1(x,z)g(x)g(z)dxdz \le 0$, оскільки а — дійсне додатне значення.

Не є кернелом

e)
$$K(x, z) = K_1(x, z) * K_2(x, z)$$

Позначимо K_1 як а, та K_2 як b

$$K_1(x, z) = a(x)^{\top} * a(z)$$

$$K_2(x, z) = b(x)^{\top} * b(z)$$

$$K(x,z) = K_1(x,z) * K_2(x,z) = (\sum_{m=1}^M (a_m(x) * a_m(z)) (\sum_{n=1}^N (b_n(x) * b_n(z)) =$$

$$= \sum_{m=1}^{M} \sum_{n=1}^{N} [a_m(x) * b_n(x)] [a_m(z) * b_n(z)] = \sum_{m=1}^{M} \sum_{n=1}^{N} c_{mn}(x) c_{mn}(z) = c(x)^{\top} c(z)$$

Є кернелом

$$f) K(x,z) = f(x)f(z)$$

Оскільки, $\phi: x \to f(x) \in R, \phi: z \to f(z) \in R$ 1-вимірні вектори

Є кернелом

g)
$$K(x,z) = K_3(\phi(x)\phi(z))$$

Так як K_3 є кернелом, то матриця $K_3(\phi(x)\phi(z))$ є також невід'ємною

Є кернелом

h)
$$K(x, z) = p(K_1(x, z))$$

Оскільки р - многочлен зі змінною х та тільки додатними коефіцієнтами, то $K(x,z)=p(K_1(x,z))\geq 0$, що випливає з того, що суми та добуток кернелів також є кернелом (приклади a, e)

Є кернелом