Contents

For	reword		<i>page</i> xi
Pre	eface		xiii
1	Intro	duction – a Tour of Multiple View Geometry	1
	1.1	Introduction – the ubiquitous projective geometry	1
	1.2	Camera projections	6
	1.3	Reconstruction from more than one view	10
	1.4	Three-view geometry	12
	1.5	Four view geometry and <i>n</i> -view reconstruction	13
	1.6	Transfer	14
	1.7	Euclidean reconstruction	16
	1.8	Auto-calibration	17
	1.9	The reward I: 3D graphical models	18
	1.10	The reward II: video augmentation	19
PA	RT 0:	The Background: Projective Geometry, Transformations an	d Esti-
	tion	The Buenground Trojective Geometry, Trumstormutions un	23
	Outlin	e	24
2	Proie	ective Geometry and Transformations of 2D	25
	2.1	Planar geometry	25
	2.2	The 2D projective plane	26
	2.3	Projective transformations	32
	2.4	A hierarchy of transformations	37
	2.5	The projective geometry of 1D	44
	2.6	Topology of the projective plane	46
	2.7	Recovery of affine and metric properties from images	47
	2.8	More properties of conics	58
	2.9	Fixed points and lines	61
	2.10	Closure	62
3	Proje	ective Geometry and Transformations of 3D	65
	3.1	Points and projective transformations	65
	3.2	Representing and transforming planes, lines and quadrics	66

vi Contents

2.4 The letered Control	
3.4 The hierarchy of transformations	77
3.5 The plane at infinity	79
3.6 The absolute conic	81
3.7 The absolute dual quadric	83
3.8 Closure	85
4 Estimation – 2D Projective Transformations	87
4.1 The Direct Linear Transformation (DLT) al	gorithm 88
4.2 Different cost functions	93
4.3 Statistical cost functions and Maximum Lik	telihood estimation 102
4.4 Transformation invariance and normalization	on 104
4.5 Iterative minimization methods	110
4.6 Experimental comparison of the algorithms	115
4.7 Robust estimation	116
4.8 Automatic computation of a homography	123
4.9 Closure	127
5 Algorithm Evaluation and Error Analysis	132
5.1 Bounds on performance	132
5.2 Covariance of the estimated transformation	138
5.3 Monte Carlo estimation of covariance	149
5.4 Closure	150
PART I: Camera Geometry and Single View Geome	try 151
Outline	152
6 Camera Models	153
6.1 Finite cameras	153
6.2 The projective camera	158
6.3 Cameras at infinity	166
6.4 Other camera models	174
6.5 Closure	176
7 Computation of the Camera Matrix P	178
7.1 Basic equations	178
7.2 Geometric error	180
7.3 Restricted camera estimation	184
7.4 Radial distortion	189
7.5 Closure	193
8 More Single View Geometry	195
8.1 Action of a projective camera on planes, lin	
8.2 Images of smooth surfaces	200
8.3 Action of a projective camera on quadrics	201
8.4 The importance of the camera centre	202
8.5 Camera calibration and the image of the ab	

		Contents	vii
	8.6	Vanishing points and vanishing lines	213
	8.7	Affine 3D measurements and reconstruction	220
	8.8	Determining camera calibration K from a single view	223
	8.9	Single view reconstruction	229
	8.10	The calibrating conic	231
	8.11	Closure	233
PA]	RT II: T	Гwo-View Geometry	237
	Outline	•	238
9	Epipo	lar Geometry and the Fundamental Matrix	239
	9.1	Epipolar geometry	239
	9.2	The fundamental matrix F	241
	9.3	Fundamental matrices arising from special motions	247
	9.4	Geometric representation of the fundamental matrix	250
	9.5	Retrieving the camera matrices	253
	9.6	The essential matrix	257
	9.7	Closure	259
10	3D Re	econstruction of Cameras and Structure	262
	10.1	Outline of reconstruction method	262
	10.2	Reconstruction ambiguity	264
	10.3	The projective reconstruction theorem	266
	10.4	Stratified reconstruction	267
	10.5	Direct reconstruction – using ground truth	275
	10.6	Closure	276
11	Comp	outation of the Fundamental Matrix F	279
	11.1	Basic equations	279
	11.2	The normalized 8-point algorithm	281
	11.3	The algebraic minimization algorithm	282
	11.4	Geometric distance	284
	11.5	Experimental evaluation of the algorithms	288
	11.6	Automatic computation of F	290
	11.7	Special cases of F-computation	293
	11.8	Correspondence of other entities	294
	11.9	Degeneracies	295
		A geometric interpretation of F-computation	297
		The envelope of epipolar lines	298
		Image rectification	302
		Closure	308
12	1		310
	12.1	Problem statement	310
	12.2	Linear triangulation methods	312
	12.3	Geometric error cost function	313
	12.4	Sampson approximation (first-order geometric correction)	314

viii Contents

	12.5	An optimal solution	315
	12.6	Probability distribution of the estimated 3D point	321
	12.7	Line reconstruction	321
	12.8	Closure	323
13	Scene	planes and homographies	325
	13.1	Homographies given the plane and vice versa	326
	13.2	Plane induced homographies given F and image correspondences	329
	13.3	Computing F given the homography induced by a plane	334
	13.4	The infinite homography H_{∞}	338
	13.5	Closure	340
14	Affin	e Epipolar Geometry	344
	14.1	Affine epipolar geometry	344
	14.2	The affine fundamental matrix	345
	14.3	Estimating F _A from image point correspondences	347
	14.4	Triangulation	353
	14.5	Affine reconstruction	353
	14.6	Necker reversal and the bas-relief ambiguity	355
		Computing the motion	357
	14.8	Closure	360
PA	RT III:	Three-View Geometry	363
	Outlin	·	364
15	The T	Trifocal Tensor	365
		The geometric basis for the trifocal tensor	365
	15.2	The trifocal tensor and tensor notation	376
	15.3	Transfer	379
	15.4	The fundamental matrices for three views	383
	15.5	Closure	387
16	Comp	outation of the Trifocal Tensor ${\mathcal T}$	391
	16.1	Basic equations	391
	16.2	The normalized linear algorithm	393
	16.3	The algebraic minimization algorithm	395
	16.4	Geometric distance	396
	16.5	Experimental evaluation of the algorithms	399
	16.6	Automatic computation of \mathcal{T}	400
	16.7	Special cases of \mathcal{T} -computation	404
	16.8	Closure	406
PA	RT IV:	N-View Geometry	409
	Outlin	•	410
17	N-Li	nearities and Multiple View Tensors	411
-	17.1	Bilinear relations	411
		Trilinear relations	414

		Contents	ix
	17.3	Quadrilinear relations	418
	17.4	Intersections of four planes	421
	17.5	Counting arguments	422
	17.6	Number of independent equations	428
	17.7	Choosing equations	431
	17.8	Closure	432
18	N-Vie	ew Computational Methods	434
	18.1	Projective reconstruction – bundle adjustment	434
	18.2	Affine reconstruction – the factorization algorithm	436
	18.3	Non-rigid factorization	440
	18.4	Projective factorization	444
	18.5	Projective reconstruction using planes	447
	18.6	Reconstruction from sequences	452
	18.7	Closure	456
19	Auto-	Calibration	458
	19.1	Introduction	458
	19.2	Algebraic framework and problem statement	459
	19.3	Calibration using the absolute dual quadric	462
	19.4	The Kruppa equations	469
	19.5	A stratified solution	473
	19.6	Calibration from rotating cameras	481
	19.7	Auto-calibration from planes	485
	19.8	Planar motion	486
	19.9	Single axis rotation – turntable motion	490
	19.10	Auto-calibration of a stereo rig	493
	19.11	Closure	497
20	Dualit	tv	502
		Carlsson–Weinshall duality	502
		Reduced reconstruction	508
	20.3	Closure	513
21	Cheir	ality	515
-1	21.1	Quasi-affine transformations	515
	21.2	Front and back of a camera	518
	21.2	Three-dimensional point sets	519
	21.4	Obtaining a quasi-affine reconstruction	520
	21.5	Effect of transformations on cheirality	521
	21.6	Orientation	523
	21.7	The cheiral inequalities	525
		- 110 The fire qualities	525

528

530

531

21.8 Which points are visible in a third view

21.9 Which points are in front of which

21.10 Closure

x Contents

22 Dogg	navata Canfigurations	522
	nerate Configurations	533
22.1	Camera resectioning	533
22.2	Degeneracies in two views	539
22.3	Carlsson–Weinshall duality	546
22.4	Three-view critical configurations	553
22.5	Closure	558
PART V	Appendices	561
Appendix 1Tensor NotationAppendix 2Gaussian (Normal) and χ^2 Distributions		562 565
Appendix	4 Matrix Properties and Decompositions	578
Appendix	5 Least-squares Minimization	588
Appendix	6 Iterative Estimation Methods	597
Appendix	7 Some Special Plane Projective Transformations	628
Bibliograp	phy	634
Index		646