Computing Assignment 3 **Equation A** Equation B Equation C Equation D n 0 1 1 1 1 The table represents the values of approximation at each 1 343 7 2.2 1.5 of 10 iterations; Equation C could get to the close enough 2 -2.25393e25 -335.857 1.819763677 1.450520833 approximation only after 6 iterations and Equation D is 3 -3.38385e253 3.78844e7 1.583474830 1.498749661 also getting close to the actual value, but it requires 163 4 1.489460974 -Inf -5.43726e22 1.451903535 iterations to have error within 1e-3. In other words, the convergence of Equation C is faster than the convergence 5 NaN 1.60746e68 1.476022436 1.497577067 of Equation D. Furthermore, Equation A and B do not 6 NaN -Inf 1.475773246 1.453192290 converge as you can observe in the table. 7 NaN 1.475773162 1.496475364 NaN 8 NaN NaN 1.475773162 1.454396119 **Speed of convergence** 9 NaN NaN 1.475773162 1.495438587 (C), (D)10 NaN 1.475773162 NaN 1.455522810 D١

в)	_			
n	Equation A	Equation B	Equation C	Equation D
0	0.475773162	0.475773162	0.475773162	0.475773162
1	341.5242268	5.524226838	0.724226838	0.024226838
2	-2.25393×10 ²⁵	337.3327732	0.343990515	0.025252329
3	3.38385×10 ²⁵³	37884398.52	0.107701668	0.022976499
4	Inf	5.43726×10 ²²	0.013687812	0.023869627
5	NaN	1.60746×10 ⁶⁸	2.4927x10 ⁻⁴	0.021803905
6	NaN	Inf	0	0.022580872
7	NaN	NaN	0	0.020702202
8	NaN	NaN	0	0.021377043
9	NaN	NaN	0	0.019665425
10	NaN	NaN	0	0.020250352
	1			

 $p = 7^{(1/5)} = 1.475773162$

This table shows the absolute error $|p_n - p|$ against n.

The convergence can be determined for the 4 different equations by looking at the table.

Equation A; diverges; the abs.error gets larger as n increases.

Equation B; diverges; the abs.error gets larger as n increases.

Equation C; converges; the abs.error gets smaller towards 0 as n increases.

Equation D; **converges**; the abs.error gets smaller towards 0 as n increases.

C) As Equation_A and Equation_B diverge, it is not possible for them to estimate the order of convergence α and the asymptotic error constant λ because the definition 2.7 has an assumption saying that if wanting to have positive constants λ and α exist, then the sequence must converge to p. Therefore, α and λ are going to be estimated only for Equation_C and Equation_D by the definition 2.7 in the textbook, $\lim_{n\to\infty}\frac{|p_{n+1}-p|}{|p_n-p|^\alpha}=\lambda. \text{ This definition can be manipulated to solve for }\alpha\text{ and }\lambda.$

 $e_{n+1} = \lambda |e_n|^{\alpha}$ where $|e_n| = |e_n - e|$ $e_n = \lambda |e_{n+1}|^{\alpha}$

For equation C,

$$\frac{p_n}{p_n} = p_{n-1} - \frac{p_{n-1}^5 - 7}{5p_{n-1}^4}$$

$$g(p) = p - \frac{p^5 - 7}{5p^5}$$

$$g'(p) = \frac{4(x^5 - 7)}{5p^5}$$

$$g''(p) = \frac{28}{7^6}$$

$$g''(7^{1/6}) \approx 2.71044$$

Theorem 2.9 says that if g'(p) = 0 and g''(p) \neq 0 is then the sequence is quadratically convergent with asymptotic error constant of $\frac{|g''(p)|}{2}$. It is shown that first derivative of Equation C is 0 at p and the second derivative is continuous having non-zero n

at p; therefore, the sequence is quadratically convergent having α =2 and error constant of 1.355. This have been proven by using the manipulated formula to compute α and λ at each iteration. (I omit some n)

**	* "		• •
1	2.2	-1.7719	0.1942
2	1.819763677	1.5598	0.5690
4	1.489460974	1.9418	1.0365
5	1.476022436	1.9955	1.3050

α

For equation d.

d. $p_{n} = p_{n-1} - \frac{p_{n-1}^{5} - 7}{12}$ $g(p) = P - \frac{p^{3} - 7}{12}$ $g'(p) = \left[-\frac{5p^{4}}{12} \right] \left[g'(7^{1/4}) \right] = 0.9764$

Theorem 2.8 says that if $g'(p)\neq 0$, the fixed-point iteration exhibits linear convergence with asymptotic error constant |g'(p)|. It is shown that the first derivative of Equation D is continuous having non-zero at p; therefore, the sequence is linearly

convergent having α =1 and error

n	P _n	α	λ
1	1.5	-0.0139	0.0240
163	1.4752763892	1.00000	0.9764

0.9764. This also have been proven by using the manipulated formula to compute α and λ at each iteration. (I omit some n)

	α	λ
Equation A	N/A	N/A
Equation B	N/A	N/A
Equation C	2	1.355
Equation D	1	0.9764