2024- st-'27-39'

AI24BTECH11013-Geetha charani

- 1) Let $X_1, X_2,, X_n$ be a random sample of size $n \ge 11$) from a population with continuous and strictly increasing cumulative distribution function F(.) with an unknown median M. To test $H_0: M = 10$ against $H_1: M > 10$ at level α , let the statistic T denote the number of observations larger than 10. Let t_0 be the observed value of the test statistic T. Consider the test which rejects H_0 if $T \ge c$. Then the p-value of the test is
 - a) $\sum_{i=t_0}^{n} \frac{n!}{i!(n-i)!} (0.5)^n$ b) $\sum_{i=10}^{n} \frac{n!}{i!(n-i)!} (0.5)^n$ c) $\sum_{i=0}^{10} \frac{n!}{i!(n-i)!} (0.5)^n$ d) $\sum_{i=0}^{t_0} \frac{n!}{i!(n-i)!} (0.5)^n$
- 2) Consider the simple linear regression model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, i = 1, 2, ..., n,$$

where β_0 and β_1 are unknown parameters, ϵ_i 's are uncorrelated random errors with mean 0 and finite variance $\sigma^2 > 0$. Let $\bar{y} = \frac{1}{n} \sum_{i=1}^n y_i$ and $\hat{\beta_1}$ be the least squares estimator of β_1 . Then which of the following statements is true?

- a) The covariance between \bar{y} and $\hat{\beta}_1$ is less than 0
- b) The covariance between \bar{y} and β_1 is greater than 0
- c) The covariance between \bar{y} and $\hat{\beta_1}$ is equal 0
- d) The covariance between \bar{y} and $\hat{\beta_1}$ does not exist
- 3) Consider the simple linear regression model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, i = 1, 2, ..., n,$$

where β_0 and β_1 are unknown parameters, ϵ_i 's are uncorrelated random errors with mean 0 and finite variance $\sigma^2 > 0$. Let $\bar{y} = \frac{1}{n} \sum_{i=1}^n y_i$ and $\hat{y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i, i = 1, 2, ..., n$, where $\hat{\beta}_0$ and $\hat{\beta}_1$ represent least squares estimators of β_0 and β_1 , respectively. Let $T_1 = \frac{1}{n-2} \sum_{i=1}^n (y_i - \hat{y}_i)^2$ and $T_2 = \sum_{i=1}^n (\hat{y}_i - \bar{y})^2$. Then which one of the following statements is true?

- a) Both T_1 and T_2 are unbiased estimators of σ^2
- b) T_1 is an unbiased estimator of σ^2 , but T_2 is not an unbiased estimator of σ^2
- c) T_1 is not an unbiased estimator of σ^2 , but T_2 is an unbiased estimator of σ^2
- d) Neither T_1 and T_2 is an unbiased estimators of σ^2
- 4) Consider the power series $\sum_{n=0}^{\infty} a_n x^n$, where $a_{2n+1} = \frac{1}{2^{2n+1}}$ and $a_2 n = \frac{1}{3^{2n}}$ for n = 0, 1, 2, Then radius of convergence of the power series equals (integer).
- 5) Let X be a random variable having Poisson distribution with mean $\lambda > 0$ such that P(X = 4) =2P(X = 5). If $p_k = P(X = k)$, k = 0, 1, 2, ..., and $p_\alpha = maxp_k$, then α equals _____(integer).
- 6) Let X_1, X_2, X_3 be independent and identically distributed random variables with common probability density function $f(x) = \begin{cases} 2x & \text{if } 0 < x < 1 \\ 0 & \text{otherwise.} \end{cases}$

Then $P(\min\{X_1, X_2, X_3\} \ge E(X_1))$ equals (rounded off to two decimal places).

- 7) Let (X, Y) have a bivariate normal distribution with E(X) = E(Y) = 0. Denote the conditional variance of X given Y = 1 by Var(X|Y = 1) and the conditional variance of Y given X = 2 by Var(Y|X = 2). If $\frac{E(Y|X=2)}{E(X|Y=1)} = 8$ then $\frac{Var(Y|X=2)}{Var(X|Y=1)}$ equals _____(integer).
- 8) Let X be a random sample of size one from a population having $N(0, \sigma^2)$ distributing, where $\sigma > 0$ is an unknown parameter. Let Φ (.) denote the cumulative distribution function of a standard normal

random variable and let $\chi^2_{\nu,\alpha}$ denote the $(1-\alpha)$ -th quantile of the central chi-square distribution with ν degrees of freedom. It is given that $\Phi(1.96)=0.975$, $\Phi(1.64)=0.95$, $\chi^2_{1,0.05}$, $\chi^2_{2,0.05}=5.991$. To test $H_0: \sigma^2=1$ against $H_1: \sigma^2=2$, using the Neyman-Pearson most powerful test of size 0.05, the critical region is given by $\lambda(X)>c$, where $c\geq 0$ is a constant and $\lambda(x)=\frac{f(x;\sigma^2=2)}{f(x;\sigma^2=1)}$, where $f\left(x;\sigma^2\right)$

is the probability density function of a $N(0, \sigma^2)$ distribution. Then the value of c equal to _____

9) Consider the simple linear regression model

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, i = 1, 2, ..., n,$$

where β_1 are unknown parameter, $\epsilon_i's$ are uncorreleted random errors with mean 0 and finite variance $\sigma^2 > 0$. The five data points $(x_1, y_1) = (2, 5)$, $(x_2, y_2) = (1, 6)$, $(x_3, y_3) = (3, 4)$, $(x_4, y_4) = (2, 3)$, and $(x_5, y_5) = (4, 6)$ yield the least squares estimate of β_1 equal to ______.

10) Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by//

$$f(x, y) = 108xy - 2x^2y - 2xy^2.$$

Which one of the following statements is NOT true?

- a) f has four critical points
- b) f has a local minimum at (0,0)
- c) f has a local maximum at (18, 18)
- d) f has two or more saddle points

Consider the function $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x,y) = \begin{cases} \frac{x^3 - y^3}{x^2 + y^2} & \text{if } (x,y) \neq (0,0) \\ 0 & \text{otherwise} \end{cases}$

If f_x denotes the partial derivative of f with respect to x and f_y denotes the partial derivative of f with respect to y, then which one of the following statements is NOT true?

- a) f is continuous ai (0,0)
- b) $f_x(0,0) \neq f_y(0,0)$
- c) f_x is continuous at (0,0)
- d) f_y is not continuous at (0,0)
- 11) Let X be a random variable with probability density function $f(x) = \begin{cases} \frac{3}{8}(x+1)^2 & \text{if } -1 < x < 1 \\ 0 & \text{otherwise} \end{cases}$

If $Y = 1 - X^2$, then $P(Y \ge \frac{3}{4})$ equals

- a) $\frac{19}{30}$
- b) $\frac{9}{16}$
- c) $\frac{15}{32}$
- d) $\frac{3}{6}$
- 12) Let X be random variable with probability density function $f(x) = \begin{cases} \frac{c_1}{\sqrt{x}} & \text{if } 0 < x \le 1 \\ \frac{c_2}{x^2} & \text{if } 1 < x < \infty \text{ where } c_1 \text{ and } 0 \text{ otherwise} \end{cases}$

 c_2 are appropriate real constants. If $P(X \in \frac{1}{4}, 4]) = \frac{5}{8}$, then consider the following statements:

- (I) $P(X \in [3,5]) = \frac{1}{12}$
- (II) Both X as well as $\frac{1}{x}$ do not have finite expectations.

Which of the above statements is/are true?

- a) Only (*I*)
- b) Only (II)
- c) Both (I) and (II)
- d) Neither (I) nor (II)