## Claims

1. A compound of the general formula (I)

wherein

G is a carbon atom or a nitrogen atom;

- 10 A is selected from
  - (i) phenyl substituted by any of -COOH, CONH<sub>2</sub>, COOCH<sub>3</sub>, -CN, NH<sub>2</sub> or -COCH<sub>3</sub>;
- 15 (ii) naphtyl, benzofuranyl, and quinolinyl; and

15

20

25

(iii)
$$R^{9} \longrightarrow R^{11} \longrightarrow R^{12} \longrightarrow R^{14} \longrightarrow R^{13}$$

$$R^{16} \longrightarrow R^{15} \longrightarrow R^{16} \longrightarrow R^{15} \longrightarrow R^{18} \longrightarrow R^{17} \longrightarrow R^{18} \longrightarrow R^{17} \longrightarrow R^{18} \longrightarrow R^{18} \longrightarrow R^{17} \longrightarrow R^{18} \longrightarrow R^{18} \longrightarrow R^{17} \longrightarrow R^{18} \longrightarrow R^{18} \longrightarrow R^{18} \longrightarrow R^{17} \longrightarrow R^{18} \longrightarrow R^{18$$

wherein the phenyl ring of each A substituent may be optionally and independently substituted by 1 or 2 substituents selected from hydrogen,  $CH_3$ ,  $(CH_2)_oCF_3$ , halogen,  $CONR^7R^8$ ,  $CO_2R^7$ ,  $COR^7$ ,  $(CH_2)_oNR^7R^8$ ,  $(CH_2)_oCH_3(CH_2)_oSOR^7$ ,  $(CH_2)_oSO_2R^7$  and  $(CH_2)_oSO_2NR^7R^8$  wherein o is 0, 1, or 2, and  $R^7$  and  $R^8$  are as defined below;

 $R^1$  is selected from hydrogen; a branched or straight  $C_1$ - $C_6$  alkyl,  $C_1$ - $C_6$  alkenyl,  $-CO(C_1$ - $C_6$  alkyl);  $(C_1$ - $C_6$  alkyl)-B wherein B is as defined below;  $C_3$ - $C_8$  cycloalkyl,  $C_4$ - $C_8$  (alkyl-cycloalkyl) wherein alkyl is  $C_1$ - $C_2$  alkyl and cycloalkyl is  $C_3$ - $C_6$  cycloalkyl;  $C_6$ - $C_{10}$  aryl; and heteroaryl having from 5 - 10 atoms selected from any of C, S, N and O; and whereby the  $C_6$ - $C_{10}$  aryl and the heteroaryl may optionally be substituted by 1 or 2 substituents selected from hydrogen,  $CH_3$ ,  $(CH_2)_0CF_3$ , halogen,  $CONR^7R^8$ ,  $CO_2R^7$ ,  $COR^7$ ,  $(CH_2)_0NR^7R^8$ ,  $(CH_2)_0CH_3(CH_2)_0SOR^7$ ,  $(CH_2)_0SO_2R^7$  and  $(CH_2)_0SO_2NR^7R^8$ ; wherein o is 0, 1, or 2, and  $R^7$  and  $R^8$  are as defined below;

R<sup>7</sup> and R<sup>8</sup> is each and independently as defined for R<sup>1</sup> above;

R<sup>2</sup> is selected from hydrogen, CH<sub>3</sub>, OR<sup>1</sup>, CO<sub>2</sub>R<sup>1</sup>, and CH<sub>2</sub>CO<sub>2</sub>R<sup>1</sup> wherein R<sup>1</sup> is as defined above;

 $R^9$ ,  $R^{10}$ ,  $R^{11}$ ,  $R^{12}$ ,  $R^{13}$ ,  $R^{14}$ ,  $R^{15}$ ,  $R^{16}$ ,  $R^{17}$ , and  $R^{18}$ , is each and independently as defined for R1 above;

B is a substituted or unsubstituted aromatic; an optionally substituted C<sub>5</sub>-C<sub>10</sub> hydroaromatic; a heteroaromatic or a heterohydroaromatic moiety, each having from 5 to 10 atoms selected from any of C, S, N and O, and each being optionally substituted by 1 or 2 substituents independently selected from hydrogen, CH<sub>3</sub>, CF<sub>3</sub>, halogen, (CH<sub>2</sub>)<sub>p</sub>CONR<sup>7</sup>R<sup>8</sup>, (CH<sub>2</sub>)<sub>p</sub>NR<sup>7</sup>R<sup>8</sup>, (CH<sub>2</sub>)<sub>p</sub>COR<sup>7</sup>, (CH<sub>2</sub>)<sub>p</sub>CO<sub>2</sub>R<sup>7</sup>, OR<sup>7</sup>, (CH<sub>2</sub>)<sub>p</sub>SOR<sup>7</sup>, (CH<sub>2</sub>)<sub>p</sub>SO<sub>2</sub>R<sup>7</sup>, and (CH<sub>2</sub>)<sub>p</sub>SO<sub>2</sub>NR<sup>7</sup>R<sup>8</sup>;

wherein p is 0, 1, 2 or 3 and wherein R<sup>7</sup> and R<sup>8</sup> are as defined above;

 $R^3$ ,  $R^4$ ,  $R^5$  and  $R^6$  is each and independently selected from  $R^7$ ,  $(CH_2)_pCONR^7R^8$ ,  $(CH_2)_pNR^7R^8$ ,  $(CH_2)_pCONR^7R^8$ ,  $(CH_2)_pCO_2R^7$ ,  $(CH_2)_pPh$ ,  $(CH_2)_p(p-OH\ Ph)$ ,  $(CH_2)_p-3$ -indolyl,  $(CH_2)_pSR^7$ , and  $(CH_2)_pOR^7$ ; wherein p is 0, 1, 2, 3, or 4, and  $R^7$  and  $R^8$  are as defined above;

as well as pharmaceutically acceptable salts of the compounds of the formula (I), isomers, hydrates, isoforms and prodrugs thereof;

with the proviso that when A is a phenyl ring substituted by a -CN group or by a -NH<sub>2</sub> group, B may not be

25

wherein

Z<sup>1</sup> is hydroxy, and esters thereof; hydroxymethyl, and esters thereof; or amino, and carboxamides and sulfonamides..

2. A compound of the formula I according to claim 1, wherein

G is a carbon atom or a nitrogen atom;

A is selected from

10

5

- (i) phenyl substituted by any of -COOH, CONH<sub>2</sub>, COOCH<sub>3</sub>, -CN, NH<sub>2</sub> or -COCH<sub>3</sub>;
- (ii) naphtyl, benzofuranyl, and quinolinyl; and

(iii)

15

20

wherein the phenyl ring of each A substituent may be optionally and independently substituted by 1 or 2 substituents selected from hydrogen, CH<sub>3</sub>, (CH<sub>2</sub>)<sub>0</sub>CF<sub>3</sub>, halogen CONR<sup>7</sup>R<sup>8</sup>, CO<sub>2</sub>R<sup>7</sup>, COR<sup>7</sup>, (CH<sub>2</sub>)<sub>0</sub>NR<sup>7</sup>R<sup>8</sup>, (CH<sub>2</sub>)<sub>0</sub>CH<sub>3</sub>(CH<sub>2</sub>)<sub>0</sub>SOR<sup>7</sup>, (CH<sub>2</sub>)<sub>0</sub>SO<sub>2</sub>R<sup>7</sup> and (CH<sub>2</sub>)<sub>0</sub>SO<sub>2</sub>NR<sup>7</sup>R<sup>8</sup>, wherein o is 0, 1, or 2, and R<sup>7</sup> and R<sup>8</sup> are as defined below;

 $R^1$ ,  $R^7$  and  $R^8$  is each and independently selected from hydrogen; a branched or straight  $C_1$ - $C_4$  alkyl, allyl, -CO-( $C_1$ - $C_6$  alkyl); ( $C_1$ - $C_6$  alkyl)-B wherein B is as defined below;  $C_3$ - $C_5$  cycloalkyl,  $C_4$ - $C_8$  (alkyl-cycloalkyl) wherein alkyl is  $C_1$ - $C_2$  alkyl and cycloalkyl is  $C_3$ - $C_6$  cycloalkyl; and phenyl;

R<sup>2</sup> is hydrogen, methyl, or OR<sup>1</sup> wherein R<sup>1</sup> is as defined above;

 $R^9$ ,  $R^{10}$ ,  $R^{11}$ ,  $R^{12}$ ,  $R^{13}$ ,  $R^{14}$ ,  $R^{15}$ ,  $R^{16}$ ,  $R^{17}$ , and  $R^{18}$ , is each and independently as defined for  $R^1$  above:

B is selected from phenyl, naphthyl, indolyl, benzofuranyl, dihydrobenzofuranyl; benzothiophenyl, pyrryl, furanyl, quinolinyl, isoquinolinyl, cyclohexyl, cyclohexenyl, cyclopentyl, cyclopentenyl, indanyl, indenyl, tetrahydronaphthyl, tetrahydroquinyl, tetrahydrofuranyl, pyrrolidinyl, indazolinyl, and

$$\begin{array}{c|c} & O \\ \hline \\ & O \\ \end{array} \longrightarrow R^7 \quad ;$$

20

each B group being optionally substituted by 1-2 substituents independently selected from hydrogen, CH<sub>3</sub>, CF<sub>3</sub>, halogen, (CH<sub>2</sub>) $_p$ CONR<sup>7</sup>R<sup>8</sup>, (CH<sub>2</sub>) $_p$ NR<sup>7</sup>R<sup>8</sup>, (CH<sub>2</sub>) $_p$ COR<sup>7</sup>, (CH<sub>2</sub>) $_p$ (CO<sub>2</sub>R<sup>7</sup>, and OR<sup>7</sup>,

wherein p is 0 or 1, and wherein R<sup>7</sup> and R<sup>8</sup> are as defined above; and

 $R^3$ ,  $R^4$ ,  $R^5$  and  $R^6$  is each and independently selected from hydrogen, CH<sub>3</sub>, CH(Me)<sub>2</sub>, CH<sub>2</sub>CH(Me)<sub>2</sub>, CH(Me)CH<sub>2</sub>CH<sub>3</sub> (CH<sub>2</sub>)<sub>p</sub>CONR<sup>7</sup>R<sup>8</sup>, (CH<sub>2</sub>)<sub>p</sub>NR<sup>7</sup>R<sup>8</sup>, (CH<sub>2</sub>)<sub>p</sub>CONR<sup>7</sup>R<sup>8</sup>, (CH<sub>2</sub>)<sub>p</sub>CO<sub>2</sub>R<sup>7</sup>, (CH<sub>2</sub>)<sub>p</sub>Ph, (CH<sub>2</sub>)<sub>p</sub>(p-OH Ph), (CH<sub>2</sub>)<sub>p</sub>-3-indolyl, (CH<sub>2</sub>)<sub>p</sub>SR<sup>7</sup>, and (CH<sub>2</sub>)<sub>p</sub>OR<sup>7</sup>, wherein p is 0, 1, 2, or 3, and wherein R<sup>7</sup> and R<sup>8</sup> are as defined above;

with the proviso that when A is a phenyl ring substituted by a -CN group or by a -NH<sub>2</sub> group, B may not be

10 wherein

Z<sup>1</sup> is hydroxy, and esters thereof; hydroxymethyl, and esters thereof; or amino, and carboxamides and sulfonamides.

10

3. A compound of the formula I according to claim 1, wherein

G is a nitrogen atom;

A is selected from

wherein

 $R^9$ ,  $R^{10}$ ,  $R^{11}$ ,  $R^{12}$ ,  $R^{13}$ ,  $R^{14}$ ,  $R^{15}$ ,  $R^{16}$ ,  $R^{17}$ , and  $R^{18}$  is each an ethyl group;

R<sup>1</sup> is selected from hydrogen, methyl, ethyl, allyl, or CH<sub>2</sub>-cyclopropyl;

R<sup>2</sup> is H, methyl, or OR<sup>1</sup>;

B is selected from phenyl, naphthyl, indolyl, benzofuranyl, dihydrobenzofuranyl, benzothiophenyl, furanyl, quinolinyl, isoquinolinyl, cyclohexyl, cyclohexenyl, cyclohexenyl, cyclopentyl, cyclopentenyl, indanyl, indenyl, tetrahydronaphthyl, tetrahydroquinyl, tetrahydrofuranyl, indazolinyl, and

$$+$$
  $0$   $R^7$ 

each B group being optionally substituted by 1-2 substituents independently selected from hydrogen, methyl, CF<sub>3</sub>, halogen,  $(CH_2)_pCONR^7R^8$ ,  $(CH_2)_pNR^7R^8$ ,  $(CH_2)_pCOR^7$ ,  $(CH_2)_pCO_2R^7$ , and  $OR^7$ ,

wherein p is 0, 1, or 2, and wherein R<sup>7</sup> and R<sup>8</sup> are as defined for R<sup>1</sup> above;

 $R^3$ ,  $R^4$ ,  $R^5$  and  $R^6$  is each and independently selected from H, CH<sub>3</sub>, CH(Me)<sub>2</sub>, CH<sub>2</sub>CH(Me)<sub>2</sub>, CH(Me)CH<sub>2</sub>CH<sub>3</sub> (CH<sub>2</sub>)<sub>p</sub>CONR<sup>7</sup>R<sup>8</sup>, (CH<sub>2</sub>)<sub>p</sub>NR<sup>7</sup>R<sup>8</sup>, (CH<sub>2</sub>)<sub>p</sub>CONR<sup>7</sup>R<sup>8</sup>, (CH<sub>2</sub>)<sub>p</sub>CONR

wherein p is 0, 1 or 2, and wherein R<sup>7</sup> and R<sup>8</sup> are as defined above.

15

- 4. A compound of the formula (I) of claim 1 above, being anyone of
- ( $\pm$ )-trans-1-(3-methoxy- $\alpha$ -(1-naphthyl)benzyl)-2,5-dimethylpiperazine (compound 3);
- ( $\pm$ )-3-(( $\alpha$ R\*/S\*)- $\alpha$ -((2S\*,5R\*)-4-Allyl-2,5-dimethyl-1-piperazinyl)-1-naphthyl)anisole (compound 4 and 5);
- $(\pm)$ -trans-1-(3-methoxy- $\alpha$ -(2-naphthyl)benzyl)-2,5-dimethylpiperazine (compound 8);
- ( $\pm$ )-3-(( $\alpha$ R\*/S\*)- $\alpha$ -((2S\*,5R\*)-4-Allyl-2,5-dimethyl-1-piperazinyl)-2-naphthyl)anisole (compound 9 and 10);
- ( $\pm$ )-trans-1-(3-methoxy- $\alpha$ -(2'-benzofuranyl)benzyl)-2,5-dimethylpiperazine (compound 13);
- ( $\pm$ )-3-(( $\alpha$ R\*/S\*)- $\alpha$ -((2S\*,5R\*)-4-Allyl-2,5-dimethyl-1-piperazinyl)-2-benzofuranyl)anisole (compound 14 and 15);
  - ( $\pm$ )-3-(( $\alpha$ R\*/S\*)- $\alpha$ -((2S\*,5R\*)-4-Cyclopropylmethyl-2,5-dimethyl-1-piperazinyl)-2-benzofuranyl)anisole (compound 16 and 17);
  - $(\pm)$ -trans-1-(3-methoxy- $\alpha$ -(6'-quinolinyl)benzyl)-2,5-dimethylpiperazine (compound 20 and 21);
  - ( $\pm$ )-3-(( $\alpha$ R\*/S\*)- $\alpha$ -((2S\*,5R\*)-4-Allyl-2,5-dimethyl-1-piperazinyl)-6-quinolinyl)anisole (compound 22);
  - (±)-3-(( $\alpha$ R\*/S\*)- $\alpha$ -((2S\*,5R\*)-4-Allyl-2,5-dimethyl-1-piperazinyl)-6-quinolinyl)anisole (compound 23);
- ( $\pm$ )-3-(( $\alpha$ R\*/S\*)- $\alpha$ -((2S\*,5R\*)-4-Cyclopropylmethyl-2,5-dimethyl-1-piperazinyl)-6-quinolinyl)anisole (compound 24 and 25);
  - (±)-trans-1-(3-methoxy-α-(4-quinolinyl)benzyl)-2,5-dimethyl-piperazine (compound 28);
  - $(\pm)$ -3- $((\alpha R*/S*)-\alpha-((2S*,5R*)-4-Allyl-2,5-dimethyl-1-piperazinyl)-4-quinolinyl)anisole (compound 29 and 30);$
- 25 ( $\pm$ ) 4-(( $\alpha$ -(1-Piperazinyl))-4-chlorobenzyl)-N,N-diethylbenzamide (compound 33);
  - (±) 4-((α-((4-Allyl)-1-piperazinyl))-4-chlorobenzyl)-N,N-diethylbenzamide 2hcl (compound 34);
  - (±) 4-((α-(1-Piperazinyl))-2-naphtylmethyl)-N,N-diethylbenzamide (compound 37);
  - ( $\pm$ ) 4-(( $\alpha$ -((4-Allyl)-1-piperazinyl))-2-naphtylmethyl)-N,N-diethylbenzamide (compound
- 30 38);

- ( $\pm$ ) 4-(( $\alpha$ -(1-Piperazinyl))-4-xylyl)-N,N-diethylbenzamide (compound 41);
- ( $\pm$ ) 4-(( $\alpha$ -((4-Allyl)-1-piperazinyl))-4-xylyl)-N,N-diethylbenzamide 2HCl (compound 42);
- (±) 4-((α-(1-Piperazinyl))-3-xylyl)-N,N-diethylbenzamide 2HCl (compound 45);
- ( $\pm$ ) 4-(( $\alpha$ -(1-Piperazinyl))-cyclohexylmethyl)-N,N-diethylbenzamide (compound 48);
- ( $\pm$ ) 4-(( $\alpha$ -(1-Piperazinyl))-3,4-dimethylbenzyl)-N,N-diethylbenzamide (compound 51);
  - $(\pm) \ 4 ((\alpha (1-Piperazinyl)) 1 naphtylmethyl) N, N-diethylbenzamide (compound 54);$
  - 4-(4-(2-Dimethyl-5-methyl-piperazinyl)-3-methoxybenzyl)-N,N-diethylbenzamide dihdrochloride (compound 57);
  - 4-(4-(1-Allyl-2-dimethyl-5-methyl-piperazinyl)-3-methoxybenzyl)-N,N-diethylbenzamide dihydrochloride (compound 58);
  - 4-(1-(4-Allyl-2-dimethyl-5-methyl-piperazinyl)-3-methoxybenzyl)- N,N-diethylbenzamide dihydrochloride (compound 60);
  - 4-(1-(2-dimethyl-5-methyl-piperazinyl)-3-methoxybenzyl)-N,N-diethylbenzamide dihydrochloride (compound 61);
- 4-((1-piperazinyl)-benzyl)- N,N-diethylbenzamide dihydrochloride (compound 64);
  4-((4-Allyl-1-piperazinyl)-benzyl)-N,N-diethylbenzamide dihydrochloride (compound 65);
  4-((4-Acetyl-1-piperazinyl)-benzyl)- N,N-diethylbenzamide hydrochloride (compound 77);
  4-(4-(2-Hydroxymethyl-5-methyl)piperazinyl-benzyl)-N,N-diethyl-benzamide
- 4-((4-(2-Hydroxymethyl-5-methyl)piperazinyl)-3-methoxybenzyl)-N,N-diethylbenzamide dihydrochloride (compound 70);
  - 4-((4-(1-Allyl-2-hydroxymethyl-5-methyl)piperazinyl)-3-methoxybenzyl)-N,N-diethylbenzamide dihydrochloride (compound 71);
  - Methyl 3-((2-naphtyl)-(3-methyl-piperazinyl)methyl)phenyl ether dihydrochloride
- 25 (compound 75);

dihydrochloride (compound 69);

- Methyl 3-((2-naphtyl)-(4-allyl-2-methyl-piperazinyl)methyl)phenyl ether dihydrochloride (compound 76);
- 4-((1-piperazinyl)-benzyl)-benzoic acid dihydrochloride (compound 79);
- 4-((1-piperazinyl)-benzyl)-N-ethylbenzamide hydrochloride (compound 83);
- Methyl 4-((4-t-butoxycarbonyl-1-piperazinyl)-benzyl)benzoate (compound 80);

25

Methyl 4-((1-piperazinyl)-benzyl)benzoate dihydrochloride (compound 81);

- 4-(1-piperazinyl-benzyl)-benzonitril dihydrochloride (compound 84);
- 4-(1-piperazinyl-benzyl)-acetophenone dihydrochloride (compound 85);
- 4-((α-4-piperidinyl)-benzyl)-N,N-diethylbenzamide (compound 88);
- 5 N,N-Diethyl-4-(3-methoxybenzyl-1-piperazinyl)-benzamide (Example 50);
  - N,N-Diethyl-4-[(4-allyl-1-piperazinyl)-3-methoxybenzyl]-benzamide (Example 51);
  - 4-[(N-benzyl-1-piperazinyl)-benzyl]-aniline (compound 91);
  - 4-[(N-benzyl-1-piperazinyl)-benzyl]-acetanilide (compound 92);
  - 4-[(N-benzyl-1-piperazinyl)-benzyl]-methanesulfonamide (Example 54);
- Methyl-N-4-[(N-benzyl-1-piperazinyl)-benzyl]-2-methylacetate (Example 55); and
  - 4-[(N-benzyl-1-piperazinyl)-3-fluorobenzyl]-acetanilide (compound 95).
  - 5. A compound according to any of claims 1-4, in form of its hydrochloride salt.
  - 6. A compound according to any of claims 1-5, for use in therapy.
  - 7. A compound according to claim 6, wherein the therapy is pain management.
- 8. A compound according to claim 6, wherein the therapy is directed towards gastrointestinal disorders.
  - 9. A compound according to claim 6, wherein the therapy is directed towards spinal injuries.
  - 10. A compound according to claim 6, wherein the therapy is directed to disorders of the sympathetic nervous system.
  - 11. Use of a compound according to any of claims 1-5 for the manufacture of a medicament for use in the treatment of pain.

15

- 12. Use of a compound according to any of claims 1-5 for the manufacture of a medicament for use in the treatment of gastrointestinal disorders.
- 13. Use of a compound according to any of claims 1-5 for the manufacture of a medicament for use in the treatment of spinal injuries.
  - 14. A compound according to any of claims 1-5, further characterized in that it is isotopically labelled.
  - 15. Use of a compound according to claim 14 as a diagnostic agent.
  - 16. A pharmaceutical composition comprising a compound according to any of claims
     1-5 as an active ingredient, together with a pharmaceutically acceptable carrier.
  - 17. A process for the preparation of a compound according to any of claims 1-5, whereby
- 20 A) (i) An aldehyde or ketone is treated with a nucleophile, giving the corresponding alcohol;
  - (ii) the alcohol is converted into a suitable leaving group, which in turn is displaced with a nucleophile; and
- (iii) a N-(4)-unsubstituted piperazine derivative is substituted via its organo halide or equivalent species, or acylated; or
  - B) (i) A N-protected amino acid ester is reacted with a second amino acid ester, and thereafter treated with an acid, giving a piparazinedione;
    - (ii) the dione is reduced to the corresponding piperazine; and
- 30 (iii) the piperazine is alkylated or acylated on one or more of the nitrogens.

18. A method for the treatment of pain, whereby an effective amount of a compound according to any of claims 1-5 is administered to a subject in need of pain management.