

An Introduction to Reinforcement Learning and Multi-arm Bandits

Explore-Exploit Dilemma

B. Ravindran

Reconfigurable and Intelligent Systems (RISE) Group
Department of Computer Science and Engineering
Indian Institute of Technology Madras

Learning to Control

- Familiar models of machine learning
 - Supervised: Classification, Regression, etc.
 - Unsupervised: Clustering, Frequent patterns, etc.
- How did you learn to cycle?
 - Neither of the above
 - Trial and error!
 - Falling down hurts!

Reinforcement Learning

- A trial-and-error learning paradigm
 - Rewards and Punishments
- Not just an algorithm but a new paradigm in itself
- Learn about a system through interaction
- Inspired by behavioural psychology!

ISI, TMW RL and Bandits 5

RL Framework

- Learn from close interaction
- Stochastic environment
- Noisy delayed scalar evaluation
- Maximize a measure of long term performance

Not Supervised Learning!

- Very sparse "supervision"
- No target output provided
- No error gradient information available
- Action chooses next state
- Explore to estimate gradient Trail and error learning

Not Unsupervised Learning

- Sparse "supervision" available
- Pattern detection not primary goal

The Agent-Environment Interface

Agent and environment interact at discrete time steps: t = 0, 1, 2, ...

Agent observes state at step t: $s_t \in S$

produces action at step t: $a_t \in A(s_t)$

gets resulting reward: $r_{t+1} \in \Re$

and resulting next state: S_{t+1}

$$S_{t} = \underbrace{r_{t+1}}_{a_{t}} \underbrace{s_{t+1}}_{a_{t+1}} \underbrace{r_{t+2}}_{a_{t+2}} \underbrace{s_{t+2}}_{a_{t+2}} \underbrace{s_{t+3}}_{a_{t+3}} \underbrace{s_{t+3}}_{a_{t+3}}$$

The Agent Learns a Policy

Policy at step t, π_t :

a mapping from states to action probabilities $\pi_t(s, a) = \text{probability that } a_t = a \text{ when } s_t = s$

- Reinforcement learning methods specify how the agent changes its policy as a result of experience.
- Roughly, the agent's goal is to get as much reward as it can over the long run.

Goals and Rewards

- Is a scalar reward signal an adequate notion of a goal?—maybe not, but it is surprisingly flexible.
- A goal should specify what we want to achieve, not how we want to achieve it.
- A goal must be outside the agent's direct control
 —thus outside the agent.
- The agent must be able to measure success:
 - explicitly;
 - frequently during its lifespan.

Returns

Suppose the sequence of rewards after step *t* is:

$$r_{t+1}, r_{t+2}, r_{t+3}, \dots$$

What do we want to maximize?

In general,

we want to maximize the **expected return**, $E\{R_t\}$, for each step t.

Episodic tasks: interaction breaks naturally into episodes, e.g., plays of a game, trips through a maze.

$$R_{t} = r_{t+1} + r_{t+2} + \cdots + r_{T}$$
,

where *T* is a final time step at which a **terminal state** is reached, ending an episode.

Returns for Continuing Tasks

Continuing tasks: interaction does not have natural episodes.

Discounted return:

$$R_t = r_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1},$$

where γ , $0 \le \gamma \le 1$, is the **discount rate**.

shortsighted $0 \leftarrow \gamma \rightarrow 1$ farsighted

An Example

Avoid **failure:** the pole falling beyond a critical angle or the cart hitting end of track.

As an episodic task where episode ends upon failure:

reward = +1 for each step before failure

 \Rightarrow return = number of steps before failure

As a **continuing task** with discounted return:

reward =-1 upon failure; 0 otherwise

 \Rightarrow return = $-\gamma^k$, for k steps before failure

In either case, return is maximized by avoiding failure for as long as possible.

The Markov Property

- "the state" at step t, means whatever information is available to the agent at step t about its environment.
- The state can include immediate "sensations", highly processed sensations, and structures built up over time from sequences of sensations.
- Ideally, a state should summarize past sensations so as to retain all "essential" information, i.e., it should have the Markov Property:

$$\Pr\left\{s_{t+1} = s', r_{t+1} = r \mid s_t, a_t, r_t, s_{t-1}, a_{t-1}, \dots, r_1, s_0, a_0\right\} =$$

$$\Pr\left\{s_{t+1} = s', r_{t+1} = r \mid s_t, a_t\right\}$$

for all s', r, and histories s_t , a_t , r_t , s_{t-1} , a_{t-1} , ..., r_1 , s_0 , a_0 .

Markov Decision Processes

- If a reinforcement learning task has the Markov Property, it is basically a Markov Decision Process (MDP).
- If state and action sets are finite, it is a finite MDP.
- To define a finite MDP, you need to give: $M = \langle S, A, P, R \rangle$
 - state and action sets
 - one-step "dynamics" defined by transition probabilities:

$$P_{ss'}^a = \Pr\{s_{t+1} = s' \mid s_t = s, a_t = a\} \text{ for all } s, s' \in S, a \in A(s).$$

– reward expectations:

$$R_{ss'}^a = E\{r_{t+1} \mid s_t = s, a_t = a, s_{t+1} = s'\}$$
 for all $s, s' \in S$, $a \in A(s)$.

Markov Decision Processes

- MDP, M, is the tuple: $M = \langle S, A, \Psi, P, R \rangle$
 - S: set of states.
 - A : set of actions.
 - $-\Psi \subset S \times A$: set of admissible state-action pairs.
 - $-P:\Psi\times S\to [0,1]$: probability of transition.
 - $-R: \Psi \rightarrow \mathfrak{R}$: expected reward.
- Policy $\pi: S \to A$ (can be stochastic)
- Maximize total expected reward.

Example

$$M = \langle S, A, \Psi, P, R \rangle$$

Optimal Policies

$$M = \langle S, A, \Psi, P, R \rangle$$

Solution Methods

- Temporal Difference Methods
 - $-TD(\lambda)$
 - Q-learning
 - SARSA
 - Actor-Critic
- Policy Search
 - Policy Gradient Methods
 - Evolutionary algorithms
- Stochastic Dynamic Programming

Applications of RL

- Optimal Control
 - Robot Navigation
 - Helicopters!
 - Chemical Plants
- Combinatorial Optimization
 - Elevator Dispatching
 - VLSI placement and routing
 - Job-shop scheduling
 - Routing algorithms
 - Call admission control
- More
 - Intelligent Tutoring Systems

- Computational Neuroscience
 - Primary mechanism of learning
- Psychology
 - Behavioral and operant conditioning
 - Decision making
- Operations Research
 - Approximate Dynamic Programming
- More
 - Game Playing
 - Dialogue systems

Reinforcement Learning Lecture 8

Gillian Hayes

1st February 2007

Algorithms for Solving RL: Monte Carlo Methods

- What are they?
- Monte Carlo Policy Evaluation
- First-visit policy evaluation
- Estimating Q-values
- On-policy methods
- Off-policy methods

Monte Carlo Methods

- Learn value functions
- **Discover** optimal policies
- Don't require environmental knowledge: $P^a_{ss'}$, $R^a_{ss'}$, cf. Dynamic Programming
- Experience : sample sequences of states, actions, rewards s, a, r : real experience, simulated experience
- Attains optimal behaviour

How Does Monte Carlo Do This?

- Divide experience into episodes
 - all episodes must terminate
 e.g. noughts-and-crosses, card games
- Keep estimates of value functions, policies
- Change estimates/policies at end of each episode
- \Rightarrow Keep track of $s_1, a_1, r_1, s_2, a_2, r_2, \ldots s_{T-1}, a_{T-1}, r_{T-1}, s_T$ $s_T =$ terminating state
- Incremental episode-by-episode
 NOT step-by-step cf. DP
- Average complete returns NOT partial returns

Returns

- Return at time t: $R_t = r_{t+1} + r_{t+2} + \dots r_{T-1} + r_T$ for each episode r_T is a terminating state
- ullet Average the returns over many episodes starting from some state s.

This gives the value function $V^{\pi}(s)$ for that state for policy π since the state value $V^{\pi}(s)$ is the expected cumulative future discounted reward starting in s and following policy π .

Monte Carlo Learning of V^{π}

MC methods estimate from experience: generate many "plays" from s, observe total reward on each play, average over many plays

1. Initialise

- $\pi =$ arbitrary policy to be evaluated
- \bullet V = arbitrary value function
- \bullet Returns(s) an empty list, one for each state s

2. Repeat till values converge

- Generate an episode using π
- For each state appearing in the episode
 - -R =return following first occurrence of s
 - Append R to Returns(s)
 - -V(s) = average Returns(s)

Backup Diagram for MC

State s – estimate V(s)Policy $\pi(s,a)$ Action a
reward r(t+1)State s'

One Episode – full episode needed before back-up. cf DP which backs up after one move Monte Carlo does **not** bootstrap but Monte Carlo does sample

Terminal state s_T

- Play many games
- Average returns (first-visit MC) following each state
- ⇒ True state-value functions
 - * Easier than DP \Rightarrow That needs $P^a_{ss'}, R^a_{ss'}$
 - * Easier to generate episodes than calculate probabilities

Policy Iteration (Reminder)

- Policy evaluation: Estimate V^{π} or Q^{π} for fixed policy π
- Policy improvement: Get a policy better than π

Iterate until optimal policy/value function is reached

So we can do Monte Carlo as the Policy Evaluation step of Policy Iteration because it computes the value function for a given policy. (There are other algorithms we can use.)

First-visit MC vs. Every-visit MC

In each episode observe return following **first** visit to state s

Number of first visits to s must $\to \infty$

Converges to $V^{\pi}(s)$

cf. Every-visit MC

Calculate V as the average over return following **every** visit to state s in a set of episodes

Good Properties of MC

Estimates of V for each state are independent

no bootstrapping

Compute time to calculate changes (i.e. V of each state) is independent of number of states

If values of only a few states needed, generate episodes from these states \Rightarrow can ignore other states

Can learn from actual/simulated experience

Don't need $P_{ss'}^a$, $R_{ss'}^a$,

Estimating Q-Values

 $Q^{\pi}(s,a)$ – similarly to V

Update by averaging returns following first visit to that state-action pair

Problem

If π deterministic, some/many (s,a) never visited

MUST EXPLORE!

So...

- * Exploring starts: start every episode at a different (s, a) pair
- * Or always use ϵ -greedy or ϵ -soft policies
 - stochastic, where $\pi(s, a) > 0$

Optimal Policies – Control Problem

Policy Iteration on Q

$$\pi_0 \to_{PE} Q^{\pi^0} \to_{PI} \pi_1 \to_{PE} Q^{\pi^1} \to_{PI} \pi_2 \dots \to_{PI} \pi^* \to_{PE} Q^*$$

- ullet Policy Improvement: Make π greedy w.r.t. current Q
- ullet Policy Evaluation: As before, with ∞ episodes

Or episode-by-episode iteration. After an episode:

- policy evaluation (back-up)
- improve policy at states in episode
- eventually converges to optimal values and policy

Can use exploring starts: MCES – Monte Carlo Exploring Starts to ensure coverage of state/action space

Algorithm: see e.g. S+B Fig. 5.4

Monte Carlo: Estimating $Q^{\pi}(s, a)$

- If π deterministic, some (s,a) not visited \Rightarrow can't improve their Q estimates MUST MAINTAIN EXPLORATION!
- Use exploring starts → optimal policy
- Use an ϵ -soft policy ON-POLICY CONTROL $\to \epsilon$ -greedy policy OFF-POLICY CONTROL \to optimal policy

On-Policy Control

Evaluate and improve the policy used to generate behaviour Use a soft policy:

$$\begin{split} \pi(s,a) &> 0 \ \ \forall s, \forall a & \text{GENERAL SOFT POLICY DEFINITION} \\ \pi(s,a) &= \frac{\epsilon}{|A|} \quad \text{if } a \text{ not greedy} \quad \epsilon\text{-GREEDY} \\ &= 1 - \epsilon + \frac{\epsilon}{|A|} \quad \text{if } a \text{ greedy} \\ \pi(s,a) &\geq \frac{\epsilon}{|A|} \ \ \forall s, \forall a & \epsilon\text{-SOFT} \end{split}$$

POLICY ITERATION

Evaluation: as before Improvement: move towards ϵ -greedy policy (not greedy) Avoids need for exploring starts ϵ -greedy is "closer" to greedy than other ϵ -soft policies

Off-Policy Control

- Behaviour policy π' generates moves
- But in off-policy control we learn an Estimation policy π . How?

We need to:

- compute the weighted average of returns from behaviour policy
- the weighting factors are the probability of them being in estimation policy,
- ullet i.e. weight each return by relative probability of being generated by π and π' In detail...

Reinforcement Learning Lecture 10

Gillian Hayes

8th February 2007

Algorithms for Solving RL: Temporal Difference Learning (TD)

- Incremental Monte Carlo Algorithm
- TD Prediction
- TD vs MC vs DP
- TD for control: SARSA and Q-learning

Incremental Monte Carlo Algorithm

Our first-visit MC algorithm had the steps:

R is the return following our first visit to sAppend R to Returns(s)V(s) = average(Returns(s))

We can implement this incrementally:

$$V(s) = V(s) + \frac{1}{n(s)}[R - V(s)]$$

where n(s) is the number of first visits to s

We can also formulate a constant- α Monte Carlo update:

$$V(s) = V(s) + \alpha [R - V(s)]$$

useful when tracking a non-stationary problem (why?).

Model-Based vs Model-Free Learning

- In RL we're generally trying to learn an optimal policy
- ullet If a model is available, $P^a_{ss'}$, $R^a_{ss'}$, we can calculate optimal policy via dynamic programming
- If no model, either:

learn model and then derive optimal policy (model-based methods) or learn optimal policy without learning model (model-free methods)

• Temporal difference (TD) learning is a model-free, bootstrapping method based on sampling the state-action space

Temporal Difference Prediction

Policy Evaluation is often referred to as the Prediction Problem: we are trying to predict how much return we'll get from being in state s and following policy π by learning the state-value function V^{π} .

Monte-Carlo update:

$$V(s_t) \to V(s_t) + \alpha [R_t - V(s_t)]$$

Target: actual return from s_t to end of episode

Simplest temporal difference update TD(0):

$$V(s_t) \rightarrow V(s_t) + \alpha [r_{t+1} + \gamma V(s_{t+1}) - V(s_t)]$$
 Target: estimate of the return

Both have the same form

Temporal Difference Learning

- \bullet Doesn't need a model $P^a_{ss'}$, $R^a_{ss'}$
- Learns directly from experience
- \bullet Updates estimates of V(s) based on what happens after visiting state s

TD(0) update:

$$V(s_t) \to V(s_t) + \alpha[r_{t+1} + \gamma V(s_{t+1}) - V(s_t)]$$

cf Dynamic Programming update:

$$V^{\pi}(s) = E_{\pi}\{r_{t+1} + \gamma V^{\pi}(s_{t+1}) \mid s_t = s\}$$

$$= \sum_{a} \pi(s, a, \sum_{s'} P_{ss'}^{a}[R_{ss'}^{a} + \gamma V^{\pi}(s')]$$

Advantages of TD Learning Methods

- Don't need a model of the environment
- On-line and incremental so can be fast don't need to wait till the end of the episode so need less memory, computation
- Updates are based on actual experience (r_{t+1})
- ullet Converges to $V^\pi(s)$ but must decrease step size lpha as learning continues
- Compare backup diagrams of TD, MC and DP

Bootstrapping, Sampling

TD **bootstraps**: it updates its estimates of V based on other estimates of V

DP also bootstraps

MC does not bootstrap: estimates of complete returns are made at the end of the episode

TD samples: its updates are based on one path through the state space

MC also samples

DP does not sample: its updates are based on all actions and all states that can be reached from the updating state

Examples: see e.g. random walk example S+B sect. 6.2

MC vs TD updating: see e.g. S+B sect. 6.3

Difference Between TD and MC Estimates

See S+B Example 6.4:

Suppose you observe the following 8 episodes:

A, 0, B, 0	B, 1
B, 1	B, 1
B, 1	B, 1
B, 1	B, 0

First episode starts in state A, transitions to B getting a reward of 0, and terminates with a reward of 0. Second episode starts in state B and terminates with a reward of 1, etc.

What are the best values for the estimates V(A) and V(B)?

Modelling the Underlying Markov Process

$$V(A) = ?$$

TD and MC Estimates

- Batch Monte Carlo (updating after all these episodes are done) gets V(A) = 0.
 - This best matches the training data
 - It minimises the mean-square error on the training set
- Consider sequentiality, i.e. A goes to B goes to terminating state; then V(A) = 0.75.
 - This is what TD(0) gets
 - Expect that this will produce better estimate of future data even though
 MC gives the best estimate on the present data

- Is correct for the maximum-likelihood estimate of the model of the Markov process that generates the data, i.e. the best-fit Markov model based on the observed transitions
- Assume this model is correct; estimate the value function "certaintyequivalence estimate"

TD(0) tends to converge faster because it's moving towards a "better" estimate.

TD for Control: Learning Q-Values

Learn action values $Q^{\pi}(s,a)$ for the policy π

SARSA update rule:

$$\Delta Q_t(s_t, a_t) = \alpha [r_{t+1} + \gamma Q_t(s_{t+1}, a_{t+1}) - Q_t(s_t, a_t)]$$

- Choose a behaviour policy π and estimate the Q-values (Q^{π}) using the SARSA update rule. Change π towards greediness wrt Q^{π} .
- Use ϵ -greedy or ϵ -soft policies.
- Converges with probability 1 to optimal policy and Q-values if visit all stateaction pairs infinitely many times and policy converges to greedy policy, e.g. by arranging for ϵ to tend towards 0.

Remember: learning optimal Q-values is useful since it tells us immediately which is (are) the optimal action(s) – have the highest Q-value

SARSA Algorithm

- Initialise Q(s,a)
- Repeat many times
 - Pick s, a
 - Repeat each step to goal
 - * Do a, observe r, s'
 - * Choose a' based on Q(s', a') ϵ -greedy
 - * $Q(s, a) = Q(s, a) + \alpha[r + \gamma Q(s', a') Q(s, a)]$
 - * s = s', a = a'
 - Until s terminal (where Q(s', a') = 0)

Use with policy iteration, i.e. change policy each time to be greedy wrt current estimate of ${\cal Q}$

Example: windy gridworld, S+B sect. 6.4

Q-Learning

SARSA is an example of **on-policy** learning. Why?

Q-LEARNING is an example of **off-policy** learning Update rule:

$$\Delta Q_t(s_t, a_t) = \alpha[r_{t+1} + \gamma \max_a Q_t(s_{t+1}, a) - Q_t(s_t, a_t)]$$

Always update using maximum Q value available from next state: then $Q\Rightarrow Q*$, optimal action-value function

Q-Learning Algorithm

- Initialise Q(s,a)
- Repeat many times
 - Pick s start state
 - Repeat each step to goal
 - * Choose a based on Q(s,a) ϵ -greedy
 - * Do a, observe r, s'
 - * $Q(s, a) = Q(s, a) + \alpha[r + \gamma \max_{a'} Q(s', a') Q(s, a)]$
 - * s = s'
 - Until s terminal

Backup Diagrams for SARSA and Q-Learning

SARSA backs up using the action a' actually chosen by the behaviour policy.

Q-LEARNING backs up using the Q-value of the action a'^* that is the *best* next action, i.e. the one with the highest Q value, $Q(s', a'^*)$. The action actually chosen by the behaviour policy and followed is not necessarily a'^*

Example: The cliff S+B sect. 6.5

Q-Learning vs SARSA

QL:
$$Q(s, a) = Q(s, a) + \alpha[r + \gamma \max_{a'} Q(s', a') - Q(s, a)]$$
 off-policy

SARSA:
$$Q(s,a) = Q(s,a) + \alpha[r + \gamma Q(s',a') - Q(s,a)]$$
 on-policy

In the cliff-walking task:

QL: learns optimal policy along edge

SARSA: learns a safe non-optimal policy away from edge

 ϵ -greedy algorithm

For $\epsilon \neq 0$ **SARSA** performs better online. Why?

For $\epsilon \to 0$ gradually, both converge to optimal.