Data QC and Exploratory Data Analysis

Olivier Delaneau
University of Geneva

21/04/2018

Outline

- Methods for genotyping
- File format for genotype data and standard data management tools
- QC at the genetic variant level
- QC at the sample level
- Population structure
- Information on the practical

How to get genotype data?

How to get genotype data?

Calling genetic variations

REF _____ A ____

Accounting for sequencing biases

These biases are either modeled in the genotype likelihoods (e.g. *FreeBayes*) or variants can be filtered out after calling (e.g. *samtools*) by statistical testing.

P(R | G)

Genotype likelihood

 $P(G|R) \sim P(R|G) \times P(G)$

Genotype probability Genotype likelihood Prior (Uniform,

Frequency or LD)

 $P(G|R) \sim P(R|G) \times P(G)$

Uniform prior:

 $P(G|R) \sim P(R|G) \times P(G)$

Uniform prior:

Frequency prior: (samtools)

Integrative Genomics Viewer

http://software.broadinstitute.org/software/igv/

How to get genotype data?

Approaches to call genotypes from intensities (GenomeStudio, APCA or Chiamo) Automated approaches to call genotypes at millions of SNPs prior to the analysis. Any finding need to be checked manually and carefully.

What does genotype probability mean?

Calibration plot

Genotype probability bins

We usually set as missing all genotypes with low prob. The threshold we use depends on the study design.

Can we afford some incorrect calls? Two scenarios:

- 1. Interest in global patterns, a value of 0.95 is okay,
- 2. Interest in some particular variants, a value 0.999 is more adapted.

Variant Call Format

Basic operations on VCF

- BCFtools (<u>www.htslib.org</u>)
 - Efficient data management
 - Excellent API to develop new tools
- VCFtools (<u>vcftools.sourceforge.net</u>)
 - Standard data analysis (frequency, LD, etc...)
- PLINK1.9 (www.cog-genomics.org/plink2)
 - Efficient implementation of all PLINK functionalities (e.g. association testing)

The goal of Quality Control

- Errors in genotype calling can introduce systematic bias in downstream analysis and can increase the chance of false discoveries
- Assess data quality to remove sub-standard genotypes, individuals and variants from subsequent analysis
- To do so, there are standardized QC procedures implemented in well-established software packages

Filter variants with low call rates

Apply threshold to genotype probabilities in order to call genotype, otherwise treated as missing. The choice of calling threshold will impact results:

- Too low: include poor quality genotypes.
- Too high: unnecessarily remove high quality genotypes, or may introduce bias by preferentially calling specific genotypes.

Variants with poor call rates (i.e. high missing data rates) likely result from poor genotype calling. They need to be removed from the data.

Check variant frequencies

To detect genotyping errors, one can also use large and high quality reference panels such as 1000 Genomes.

We compare the variant frequencies in our data to the frequencies in 1000 Genomes from a relevant population.

Then, one can test for massive differences and remove the corresponding variants.

ALT frequency in 1000 Genomes

Check Hardy Weinberg Equilibrium

Under the assumption of random mating between individuals in a population, we have the following relationships between allele frequencies and genotype frequencies.

This can also be used to assess the quality of the genotype data by statistical testing (*Wigginton, Cutler and Abecasis, 2005*).

Filter samples with low call rate

Sex check with chromosome X

Each individual plotted twice according to reported sex: females in red and males in blue.

Should these samples be removed from the study or the sex corrected based on heterozygosity? May impact on results if sex is adjusted for in the analysis or if sex specific analyses are to be undertaken.

Check relatedness

 Over M markers, the IBS between the ith and jth individuals is given by

$$IBS_{ij} = 1 - \frac{1}{2M} \sum_{k} \left| G_{ik} - G_{jk} \right|$$

where G_{ik} and G_{jk} denote the number of minor alleles (0, 1 or 2) carried by the *i*th and *j*th individuals at variant k.

- Identical samples will share IBS near to 100% (allowing for genotyping errors).
- Related individuals will share higher IBS than unrelated individuals.

Check relatedness

Alternative checks for relatedness

IBS can be used to estimate the proportion of the genome at which a pair of individuals share 0, 1 or 2 chromosomes IBD "identical by descent" (denoted z0, z1, or z2).

Once relative spotted, two options:

- 1. Accounting for relatedness in downstream analysis,
- 2. Remove close relatives.

Population structure

- PCA captures widespread sub-structure in allele frequencies.
 - Top PCs reflect genetic variations due to ancestry.
 - Plotting top PCs including 1000 genomes samples can be used to identify population outliers.
 - Top PCs can be used as covariates in downstream analysis to adjust for population stratification.
- Alternative methods exist such as MDS for instance as implemented in PLINK.

Population stratification

	Individuals					Individuals		
0/0 0/1 0/0	0/0 0/1 1/1		0/1 1/1 1/1	Dosages+ MAF/LD	0 1 0	0 1 2		1 2 2
 0/0	 0/0	 0/0	 0/1	filtering	0	0	0	 1

Population stratification

Population stratification

What do I do with my PCs?

1. Remove outliers from analysis

- 2. Account for structure
- By defining ethnic groups
- By using the PC loadings as covariates

Summary

- QC criteria are subjective and vary from one study to another
- Variant QC filters should eliminate the worst quality markers without "throwing the baby out with the bathwater"
- Sample QC filters should not be so stringent as to remove the majority of the analysis cohort
- Any finding should be followed up with visual inspection of the raw data (i.e. sequencing reads or cluster plots)

Practical

- The goal of the practical of this afternoon is to go from raw to ready-to-analyze data
- We will use multiple standard QC steps both at the variant and sample levels
- The resulting data set will be used as starting material for the afternoon practical
- Look at /home/delaneau, everything you need is there.