Predicting Stroke through Machine Learning Models

Group: Neuro Ninjas

Presented by:

Aya Fakhri Kyle Goodwin Aparajita Mondal David Zigun

Outline

- Introduce Dataset
- Describe Approach to Data Cleaning
- Discuss Machine Learning Models
- Analysis Outcomes
- Implications
- Limitations
- Recommendations for Future Research

The Dataset

- Gender
- Age
- Heart Disease
- Hypertension
- Ever Married
- Work Type
- Residence Type
- Avg. Glucose
- BMI
- Smoking Status
- Stroke Status

Federico Soriano Palacios,

Associate @ Oliver Wyman

- Confidential Dataset from 2020
- https://www.kaggle.com/datasets/fedesoriano/stro ke-prediction-dataset/data

Basic Sample Pre-Processing

Comparison of Sample Gender and Reports of Stroke

SMOTE

HANDLE IMBALANCED DATASET

Synthetic Minority Oversampling Technique

Random Forest

	Accuracy Score : 0.8859470468431772 Classification Report						
	precision	recall	f1-score	support			
0 1	0.96 0.16	0.92 0.31	0.94 0.21	1401 72			
accuracy macro avg weighted avg	0.56 0.92	0.61 0.89	0.89 0.57 0.90	1473 1473 1473			

Random Forest

Random Forest - with work type removed

Classification Regression : Model Evaluation Results

Best Parameters: {'C': 1, 'solver': 'lbfgs'} Accuracy: 0.877127659574468							
Classification	n Report: precision	recall	f1-score	support			
0	0.87	0.88	0.87	922			
1	0.88	0.88	0.88	958			
accuracy			0.88	1880			
macro avg	0.88	0.88	0.88	1880			
weighted avg	0.88	0.88	0.88	1880			

Model Accuracy Report

Matplotlib Visualization: 1. Age Distribution of Stroke Patients

2. Average Glucose Levels by Stroke Outcome

3. BMI Distribution by Stroke Outcome

Support Vector Machine (SVM): Process Flow

Correlation and Data Distribution between different input data attributes

Interpretation

Tests		Confusion Matrix			Classification Report(for stroke only)					
(SVM)	Description	TN	FN	FP	TP	Accuracy	Precision	Recall	F1-Score	Support
Test1(A)	With all the features-('age','Average_glucose_level','bmi' not scaled)	782	27	178	35	0.8	0.16	0.56	0.25	62
Test1(B)	With all the features-(age','Average_glucose_level','bmi' scaled)	683	14	246	39	0.74	0.14	0.74	0.23	53
Test2	only With the Health_situation features-(age','Average_glucose_level','bmi' scaled)	689	11	271	51	0.72	0.16	0.82	0.27	62

Summary:

- out of the these three testings for **Test2** has superior recall and F1-Score, ensuring better detection of stroke cases.
- This choice aligns with the goal of minimizing the risk of missing stroke diagnoses while maintaining a reasonable balance of precision and recall.

Visualization of Data Sample - Tableau

Pre-process data for better visualization

 Bin BMI into groups based on CDC info (CDC BMI grouping)

Tableau Desktop

Public Edition 2024.3.0 (20243.24.1010.1014)

© 2024 Salesforce, Inc.

Viz art created by Louise Shorten

Principal Component Analysis (PCA)

3D Plotting of Stroke on PCA 1-3

2D Plotting of Stroke on PCA 1 & 2

Confusion Matrix and Classification

PCA Classification Report

	precision	recall	f1-score	support
0	0.99	0.69	0.81	960
1	0.15	0.87	0.26	62
accuracy			0.70	1022
macro avg	0.57	0.78	0.54	1022
weighted Avg	0.94	0.70	0.78	1022

Closer to 1 = better fit

Precision

True positives / true positives + false positives

Recall

True positives / true positives + false negatives

F1 Score

The closer the value of the F1 score is to 1.0, the better the expected performance of the model is.

Support

of actual occurrences of the class in the dataset.

Limitations

Challenge 1

Class Imbalance

- The dataset has significantly fewer instances of one class (e.g., Stroke = 1) compared to the other (Stroke = 0).
- This imbalance can lead to models being biased toward the majority class.

Challenge 2

Binary and Simplified Features

Features like Hypertension and Heart Disease are binary (0/1), which may oversimplify complex health conditions.

Challenge 3

Potential Data Bias

- The dataset may be collected from a specific region, healthcare system, or demographic.
- This limits the model's ability to generalize to other populations.

Recommendations

- Use techniques like oversampling (e.g., SMOTE)
- Incorporate additional data, such as medical history or lab results, if available.
- Use diverse data sources and perform bias analysis to ensure fairness.

Thank you