2. INVERSES AND TRANSPOSES

Definition 48 A square matrix is a matrix with an equal number of rows and columns. The **diagonal** of an $n \times n$ matrix A comprises the entries $a_{11}, a_{22}, \ldots, a_{nn}$ – that is, the n entries running diagonally from the top left to the bottom right. A **diagonal** matrix is a square matrix whose non-diagonal entries are all zero. We shall write $\operatorname{diag}(c_1, c_2, \ldots, c_n)$ for the $n \times n$ diagonal matrix whose (i, i)th entry is c_i .

Definition 49 Given an $m \times n$ matrix A, then its **transpose** A^T is the $n \times m$ matrix such that the (i, j)th entry of A^T is the (j, i)th entry of A.

Proposition 50 (Properties of Transpose)

(a) (Addition and Scalar Multiplication Rules) Let A, B be $m \times n$ matrices and λ a real number. Then

$$(A+B)^T = A^T + B^T; \qquad (\lambda A)^T = \lambda A^T.$$

- (b) (**Product Rule**) Let A be an $m \times n$ matrix and B be an $n \times p$ matrix. Then $(AB)^T = B^T A^T$.
- (c) (Involution Rule) Let A be an $m \times n$ matrix. Then $(A^T)^T = A$.
- (c) (Inverse Rule) A square matrix A is invertible if and only if A^T is invertible. In this case $(A^T)^{-1} = (A^{-1})^T$.

Proof. These are left to Sheet 2, Exercise 3.

Definition 51 A square matrix $A = (a_{ij})$ is said to be

- symmetric if $A^T = A$.
- skew-symmetric (or antisymmetric) if $A^T = -A$.
- upper triangular if $a_{ij} = 0$ when i > j. Entries below the diagonal are zero.
- strictly upper triangular if $a_{ij} = 0$ when $i \ge j$. Entries on or below the diagonal are zero.
- lower triangular if $a_{ij} = 0$ when i < j. Entries above the diagonal are zero.
- strictly lower triangular if $a_{ij} = 0$ when $i \leq j$. Entries on or above the diagonal are zero.
- triangular if it is either upper or lower triangular.

Example 52 Let

$$A = \begin{pmatrix} 1 & 2 \\ 0 & 3 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 0 \\ 2 & -1 \\ 1 & -1 \end{pmatrix}, \qquad C = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \qquad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

Then

$$A^T = \begin{pmatrix} 1 & 0 \\ 2 & 3 \end{pmatrix}, \qquad B^T = \begin{pmatrix} 1 & 2 & 1 \\ 0 & -1 & -1 \end{pmatrix}, \qquad C^T = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \qquad D^T = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3 \end{pmatrix}.$$

Note that A is upper triangular and so A^T is lower triangular. Also C and C^T are skew-symmetric. And D is diagonal and so also symmetric, upper triangular and lower triangular.

We return now to the issue of determining the invertibility of a square matrix. There is no neat expression for the inverse of an $n \times n$ matrix in general – we have seen that the n=2 case is easy enough (Proposition 33) though the n=3 case is already messy – but the following method shows how to determine efficiently, using EROs, whether an $n \times n$ matrix is invertible and, in such a case, how to find the inverse.

Algorithm 53 (Determining Invertibility) Let A be an $n \times n$ matrix. Place A side-by-side with I_n as an augmented $n \times 2n$ matrix $(A \mid I_n)$. There are EROs that will reduce A to a matrix R in RRE form. We will simultaneously apply these EROs to both sides of $(A \mid I_n)$ until we arrive at $(R \mid P)$.

- If $R = I_n$ then A is invertible and $P = A^{-1}$.
- If $R \neq I_n$ then A is singular.

Proof. Denote the elementary matrices representing the EROs that reduce A as E_1, E_2, \ldots, E_k , so that $(A | I_n)$ becomes

$$(E_k E_{k-1} \cdots E_1 A | E_k E_{k-1} \cdots E_1) = (R | P)$$
(2.1)

and we see that R = PA and $E_k E_{k-1} \cdots E_1 = P$. If $R = I_n$ then

$$(E_k E_{k-1} \cdots E_1) A = I_n \implies A^{-1} = E_k E_{k-1} \cdots E_1 = P$$

as elementary matrices are (left and right) invertible. If $R \neq I_n$ then, as R is in RRE form and square, R must have at least one zero row. It follows that $(1,0,\ldots,0)(PA) = \mathbf{0}$. As P is invertible, if A were also invertible, we could postmultiply by $A^{-1}P^{-1}$ to conclude $(1,0,\ldots,0) = \mathbf{0}$, a contradiction. Hence A is singular; indeed we can see from this proof that as soon as a zero row appears when reducing A then we know that A is singular.

Example 54 Determine whether the following matrices are invertible, finding any inverses that exist.

$$A = \begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 0 \\ 1 & 3 & 1 \end{pmatrix}, \qquad B = \begin{pmatrix} 1 & 3 & -1 & 0 \\ 0 & 2 & 1 & 1 \\ 3 & 1 & 2 & 1 \\ 0 & 1 & 5 & 3 \end{pmatrix}.$$

Solution. Quickly applying a sequence of EROs leads to

$$(A|I_3) \overset{A_{12}(-2)}{\overset{A_{13}(-1)}{\longrightarrow}} \left(\begin{array}{ccc|c} 1 & 2 & 1 & 1 & 0 & 0 \\ 0 & -3 & -2 & -2 & 1 & 0 \\ 0 & 1 & 0 & -1 & 0 & 1 \end{array} \right)$$

$$\overset{A_{31}(-2)}{\overset{A_{32}(3)}{\longrightarrow}} \left(\begin{array}{ccc|c} 1 & 0 & 1 & 3 & 0 & -2 \\ 0 & 1 & 0 & -1 & 0 & 1 \end{array} \right) \overset{M_3(-1/2)}{\overset{A_{31}(-1)}{\longrightarrow}} \left(\begin{array}{ccc|c} I_3 & 1/2 & 1/2 & -1/2 \\ -1 & 0 & 1 \\ 5/2 & -1/2 & -3/2 \end{array} \right).$$

Hence

$$\begin{pmatrix} 1 & 2 & 1 \\ 2 & 1 & 0 \\ 1 & 3 & 1 \end{pmatrix}^{-1} = \begin{pmatrix} 1/2 & 1/2 & -1/2 \\ -1 & 0 & 1 \\ 5/2 & -1/2 & -3/2 \end{pmatrix}.$$

For B we note

$$(B|I_4) \xrightarrow{A_{13}(-3)} \begin{pmatrix} 1 & 3 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 5 & 3 & 0 & 0 & 0 & 1 \\ 0 & -8 & 5 & 1 & -3 & 0 & 1 & 0 \\ 0 & 2 & 1 & 1 & 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\xrightarrow{A_{23}(8)} \begin{pmatrix} 1 & 3 & -1 & 0 & 1 & 0 & 0 & 0 \\ 0 & 1 & 5 & 3 & 0 & 0 & 0 & 1 \\ A_{34}(1/5) & 0 & 0 & 45 & 25 & -3 & 0 & 1 & 8 \\ 0 & 0 & 0 & 0 & 0 & -3/5 & 1 & 1/5 & -2/5 \end{pmatrix}.$$

The left matrix is not yet in RRE form, but the presence of a zero row is sufficient to show that B is singular. \blacksquare

Remark 55 We have defined matrix multiplication in such a way that we can see how to implement it on a computer. But how long will it take for a computer to run such a calculation? To multiply two $n \times n$ matrices in this way, for each of the n^2 entries we must multiply n pairs and carry out n-1 additions. So the process takes around n^3 multiplications and $n^2(n-1)$

additions. When n is large, these are very large numbers!

In 1969, Strassen gave a faster algorithm, which has since been improved on. It is not known whether these algorithms give the fastest possible calculations. Such research falls into the field of **computational complexity**. drawing on ideas from both mathematics and computer science.

Finally we define the *orthogonal matrices*, matrices important to the geometry of \mathbb{R}^n .

Definition 56 An $n \times n$ matrix is **orthogonal** if $A^T = A^{-1}$.

Proposition 57 Let A and B be orthogonal $n \times n$ matrices. Then:

- (a) AB and A^{-1} are othogonal. Consequently the $n \times n$ orthogonal matrices form a group O(n).
- (b) A is orthogonal if and only if its columns (or rows) are n unit length, mutually perpendicular vectors.
 - (c) A preserves the dot product. If $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n_{col}$ then $A\mathbf{x} \cdot A\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$.

Proof. (a) We have that

$$(AB)^T = B^T A^T = B^{-1} A^{-1} = (AB)^{-1},$$

by the product rules for transposes and inverses, showing that AB is orthogonal. Similarly

$$(A^{-1})^T = (A^T)^{-1} = (A^{-1})^{-1},$$

showing that A^{-1} is orthogonal.

The reason that orthogonal matrices are important in geometry is that the orthogonal matrices are precisely those matrices that preserve the dot product.

Proposition 58 Let A be an $n \times n$ matrix. Then A is orthogonal if and only if $A\mathbf{x} \cdot A\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$ for all $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n_{\text{col}}$.

Proof. Note that $\mathbf{x}^T\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$. So

$$A\mathbf{x} \cdot A\mathbf{y} = \mathbf{x} \cdot \mathbf{y}$$

$$\iff (A\mathbf{x})^T A\mathbf{y} = \mathbf{x}^T \mathbf{y}$$

$$\iff \mathbf{x}^T A^T A\mathbf{y} = \mathbf{x}^T \mathbf{y}.$$

If $A^T A = I_n$ then the above is clearly true. Conversely, by choosing $\mathbf{x} = \mathbf{e}_i$ and $\mathbf{y} = \mathbf{e}_j$, from the standard basis of $\mathbb{R}^n_{\text{col}}$ the above implies

the
$$(i,j)$$
 th entry of $A^T A = \delta_{ij}$ = the (i,j) th entry of I_n .

As this is true for all i, j then this implies $A^T A = I_n$.