© Conclusion	
•••••	
• • • • • • • • •	
• • • • • • • • •	
• • • • • • • • • • • • • • • • • • • •	
• • • • • • • • •	
• • • • • • • • •	
• • • • • • • • •	
• • • • • • • • •	

Série d'exercices

Exercice 1

Un véhicule de masse m=1,24tonne roule sur une route horizontale avec une vitesse constante V=80Km. h^{-1} par rapport à un référentiel terrestre supposé galiléen.

- 1 Donner l'expression de l'énergie cinétique du véhicule .
- 2 Calculer la valeur de l'énergie cinétique du véhicule.
- **3** Quelle est la valeur de la somme des travaux des forces extérieurs exercées sur le véhicule? Justifier la réponse .

Exercice 2

L'équation horaire de l'abscisse angulaire d'un point d'un cylindre est : $\theta = 40t + \frac{\pi}{4}$

On étudie le mouvement du cylindre par rapport à un référentiel terrestre supposé galiléen

- Quelle est la nature du mouvement du cylindre?
- **2** Donner l'expression de l'énergie cinétique du cylindre en fonction de ω , m et R.
- 3 Calculer la valeur de l'énergie cinétique du cylindre.
- **1** Quelle est la valeur de la somme des travaux des forces extérieurs exercées sur le cylindre? Justifier la réponse .

La masse du cylindre : m = 2,5Kg

Données : Le rayon du cylindre : R = 30cm

Le moment d'inertie du cylindre : $J_{\Delta} = \frac{1}{2} mR^2$

Série d'exercices

Exercice 3

On considère un corps solide (S) de masse m en mouvement sur un plan horizontal sous l'action d'une force constante d'intensité F = 10N. On étudie le mouvement du corps (S) par rapport à un repère $R(0,\vec{i},\vec{j})$ lié à un référentiel terrestre supposé galiléen.

À l'instant t=0, le center G du solide quitte le point O avec une vitesse initiale $V_0=20m.\,s^{-1}$, puis il s'arrête après avoir parcouru d'une distance : d=120m

- Déterminer les forces extérieures exercées sur (S).
- **2** Calculer le travail de la force \vec{F} lors du mouvement du corps (S).
- **©** Calculer la variation de l'énergie cinétique du corps (S) lors de son mouvement .
- En appliquent le théorème de l'énergie cinétique sur le corps (S) lors de son mouvement, montrer que le contact du ce corps et le plan horizontal se fait avec frottement.
- 6 Calculer la valeur de l'intensité de la force frottement exercée par le plan horizontal sur (S)

Exercice 4

Un disque (D) de rayon R=35cm et de masse M=4,5Kg tourne sans frottement autour d'un axe fixe (Δ) passant par son centre d'inertie avec un vitesse angulaire constante

 $\omega_0 = 50 rad. s^{-1}$. L'expression du moment d'inertie du disque est : $J_{\Delta} = \frac{1}{2} MR^2$

- 1 Calculer la valeur du moment d'inertie du disque .
- 2 Pour arrêter ce disque, on lui applique une force tangentielle \vec{F} d'intensité constante .

- a Déterminer les forces exercées sur le disque.
- b En appliquent le théorème de l'énergie cinétique sur le disque, déterminer le travail de la force \vec{F} .
- c Déduire l'intensité de la force \overrightarrow{F} sachant que le disque a effectué $20 \ tours$ au cours du freinage .
- d Calculer la variation de l'énergie cinétique du disque lors du freinage

Série d'exercices

Exercice 5

Cet exercice vise à étudier le mouvement d'un skieur sur une piste formée par deux parties

- \square Une pente AB incliné d'un angle $\alpha = 30^{\circ}$ par rapport au plan horizontal.
- ☐ Une piste BC horizontale.
 - Masse du skieur et ses accessoires m = 80kg
 - L'intensité du champ de pesanteur g = 10N/Kg

Données • La longueur de pente AB est : L = 20m

La longueur de la piste BC est: d = 30m

I-Etude du mouvement sur la pente AB

Etudions le mouvement de G centre d'inertie du skieur dans un repère $R'(A, \vec{i'}, \vec{j'})$ lié à un référentiel terrestre supposé galiléen. <u>Les frottements supposés négligeables</u>.

Le skieur part du point A sans vitesse initial à l'instant t = 0

- Quelles sont les forces appliquées sur le skieur et ses accessoires.
- **2** Exprimer le travail du poids du skieur en fonction de g, L, m et α .
- **©** En appliquant le théorème de l'énergie cinétique entre les positions A et B trouver l'expression de la vitesse V_B en fonction de g, L et α

II-Etude du mouvement sur la piste BC

Le centre d'inertie G du skieur passe par le point B à une instant considéré comme une nouvelle origine des dates (t=0). Etudions le mouvement de G dans le repère $R(B, \vec{i}, \vec{j})$

Par un système d'acquisition convenable on obtient la variation de vitesse V de G en fonction du temps

- Quelles sont les forces appliquées sur le skieur et ses accessoires sur la piste BC.
- Calculer l'énergie cinétique du skieur au point B
- **6** Le skieur passe par le point \mathbf{C} à un instant $t_{\mathcal{C}} = 6s$

b – Déduire la valeur de l'intensité de la force de frottement

