Introduction to IoT

Internet of Things

Internet of Things

SoftUni TeamTechnical Trainers

Software University

https://softuni.bg

Have a Questions?

Table of Contents

- 1. What is IoT?
- 2. Steps of Designing IoT Product
- 3. MQTT vs Web-Services

What is IoT?

 Definition - The Internet of Things (IoT) refers to a network of physical objects ("things") embedded with sensors, and external controllables for the purpose of connecting and exchanging data with other systems over the Internet

What is IoT?

Key Points:

- Connectivity: IoT devices can connect to the internet and each other, creating a network of interlinked devices
- Interaction: These devices can collect, transmit, and act on data, enabling them to interact with the physical world in real time
- Automation: IoT facilitates the automation of daily tasks, improving efficiency and reducing human intervention

What is IoT?

Impact:

- The IoT is dramatically transforming various sectors by enabling smart homes and cities, enhancing healthcare and revolutionizing industrial operations with automated processes
- This technology makes environments more intelligent,
 measurable, and capable of sophisticated interactions

Sensors:

- Collect data from their environment
- This could be as simple as a temperature reading or as complex as a full video feed

Controllables:

 Manipulate the environment by regulating or turning on / off peripherals

Connectivity:

- Devices need to connect to an IoT platform to send and receive data
- This can be achieved via various forms of network protocols and connectivity options like Wi-Fi, Bluetooth, and cellular networks

Data Processing:

Once the data is collected, it needs to be processed either on the

device or in the cloud

 This step involves analysis and decision-making processes

User Interface:

The information needs to be available to the end-users in a usable way, which can involve alerts, dashboards, reports, or even automatically triggering actions based on the data

- Build a boundary diagram
- Identify key parameters of the system
- Define how the data flows
- Pick connectivity architecture
- Consider user installation process
- Define device states
- Start the implementation

- Build a boundary diagram
 - Identify system inputs
 - Identify system outputs

- Identify key parameters of the system
 - What needs to be specified to start looking for a concreate technical solution?

Key Parameters of an IoT System

- Reaction time how quick inputs are measured, how quick outputs are affected, how quick the device interprets commands
- Cost of operation Fixed and dynamical costs e.g.
 server time, data retention cost, electricity cost
- User experience how will the user control the device; sync within several endpoints

Key Parameters of an IoT System

- Power budget device power, battery life
- Security how easy it is to prevent external breaches? What will happen if data breach happens?
- Reliability How to recover from internal fail? How serious a fail would be?
- Scalability How many devices do you want connected? 10? 100? 10k? 100M?

 Define how the data flows – list what is affected by each parameter and design the flow

- Pick connectivity architecture connection over Internet is needed
 - Many options to consider, which shine in different situations
 - For prototypes, almost all possible architectures are feasible, but for mass production, this is the steppingstone decision, which can determine to make it or break it
 - Mostly used MQTT and Web-Services

- MQTT (Message Queuing Telemetry Transport) is a lightweight messaging protocol designed for small code footprints and minimal network bandwidth usage
- It is based on a publish / subscribe model, making it highly effective for remote communication in IoT networks
- Developed in 1999 for monitoring oil pipelines over satellite networks

- Broker The central server that manages message distribution
 - It receives all messages from the clients, filters them, decides who is interested in them, and publishes the message to subscribed clients
- Client Any device (like a sensor, smartphone, or computer)
 that connects to the broker. It can publish messages to the
 broker and subscribe to topics to receive messages from
 the broker

- Message The data sent between clients, which can include commands, information, or status updates
- Topic A string that the broker uses to filter messages for each connected client
 - Topics allow a high granularity in message handling, designed hierarchically to facilitate precise filtering

- Client 1 gets data from T1
- Client 1 gets data from T1 and T3
- Client 2 gets data from T2 ... and so on

- Clients can be subscribed to unlimited topics
- Topics can be used to send and to receive data by the clients
- Broker (normally) does not save messages

Web-Services as IoT Architecture

- Enable communication and data exchange across different systems and platforms using standard web protocols
- Mainly involves RESTful services and SOAP (Simple Object Access Protocol) for messaging in a platform-independent way
- Easily integrates with existing web technologies, facilitating the management and scalability of IoT applications

Web-Services as IoT Architecture

Web-Services as IoT Architecture

- Multiple servers in the environment
- Each server can have multiple services
- Each client can connect to multiple servers
- Clients know their result of the request
- Potential for Load balancers

Architecture Comparison vs Key Parameters

	MQTT	Web Services
Data Quality	Optimized for high-frequency, small-size data	Handles large and complex data well
Reaction Time	Very fast, suitable for real-time applications	Generally slower due to HTTP overhead
Cost of Operation	Lower due to minimal data transmission and overhead	Higher due to more data being sent and processed
User Experience	Smooth and efficient, especially in dynamic environments	Can be less responsive, especially wit h complex requests

Architecture Comparison vs Key Parameters

	MQTT	Web Services
Power Budget	Low power usage ideal for battery-operated devices	Higher power usage due to larger data requirements
Security	Provides fundamental levels but requires additional security measures	Often built with comprehensive security features like HTTPS
Reliability	High with Quality-of-Service options for message delivery guarantee	High, provided there is robust network infrastructure
Scalability	Excellent, can handle thousands of connections with low resource usage	Good, but may require more resources as scale increases

- Consider user installation process
 - How can the user connect his device to his phone?
 - How can the user connect his device to his network?

Web page

- Define device states before the implementation think of all the special cases the IoT device shall cover
 - What shall the device do if it is just turned on?
 - What shall the device do if connection is interrupted?
 - What shall the device do if you change your router password?
 - Would you update OTA (over the air)? What shall the device do during OTA?
 - What would you do with the devices if you change the servers / endpoints?

- Start the implementation
 - Build a physical device with several iterations
 - Wait for PCB designers
 - Wait for production
 - Something will burn during initial prototyping
 - Simulate as much as possible without physical prototype

Implement a Thing without a device

- WokWi online Electronics simulator
- You can use it to simulate Arduino, ESP32, STM32, and many other popular boards, parts and sensors

Why WokWi?

- Start right now
- No waiting for components or downloading large software
- Your browser has everything you need to start coding your next IoT project in seconds
- Mistakes are okay
- You can't destroy the virtual hardware
- Trust us, we tried
- So don't worry about frying your precious components
- And unlike real hardware, you can always undo
- Easy to get help and feedback

Why WokWi?

- Sharing a link to your Wokwi project is all you need
- Gain confidence in your code
- Separate hardware and software issues
- Unlimited hardware
- No need to scavenge parts from old projects
- Use as many parts as you need, without worrying about project price and stock
- Maker-friendly community
- A place for you to share your projects, ask for help, and get inspiration
- Wokwi Discord Community

Wokwi - Web

All your files

Text editor

WokWi – VS Code

During this Course

- We are going to use ESP-32 as main controller
- Any code, that is working in WokWi will work in real device –
 will be shown in later lectures
- Rainmaker for the end-to-end communication

Summary

- What is loT?
- Steps of designing IoT product
- MQTT vs Web-Services as an IoT architecture

Questions?

SoftUni Diamond Partners

Coca-Cola HBC Bulgaria

Решения за твоето утре

Trainings @ Software University (SoftUni)

- Software University High-Quality Education,
 Profession and Job for Software Developers
 - softuni.bg, about.softuni.bg
- Software University Foundation
 - softuni.foundation
- Software University @ Facebook
 - facebook.com/SoftwareUniversity

License

- This course (slides, examples, demos, exercises, homework, documents, videos and other assets) is copyrighted content
- Unauthorized copy, reproduction or use is illegal
- © SoftUni https://about.softuni.bg/
- © Software University https://softuni.bg

