

Identyfikacja i analiza barier przeciwko introgresji pomiędzy gatunkami roślin z rodzaju *Capsella* (Tasznik)

Krzysztof Stankiewicz^{1,2}

We współpracy z T. Kent³, Prof. S.I. Wright³, Prof. Yaniv Brandvain¹

- ¹ College of Biological Sciences, University of Minnesota-Twin Cities
- ² Faculty of Life Sciences, Imperial College London
- ³ Department of Ecology & Evolutionary Biology, University of Toronto

CAPSELLA

Rodzaj Capsella

- Blisko spokrewniony z Arabidopsis thaliana
- Powszechny chwast w Ameryce, Europie, Azji, i północnej Afryce

Ågren JA, Huang H, Wright SI. Am. J. Bot., 2016.

C. rubella i C. grandiflora

- C. rubella wyewoluowała samozgodność ok. 30 tys. lat temu
- C. rubella okazuje wiele oznak "syndromu samozgodności"
 - Zmniejszony rozmiar płatka (1.3 mm² vs. 8.4 mm²)
 - Węższy kąt otwarcia płatków (34.6° vs. 55.3°)
 - Inne zmiany morfologiczne

GENETYKA
GATUNKOWANIA I
INTROGRESJI

Bariera Geograficzna Rozbieżność Genetyczna

Ponowny Kontakt

Ponowny Kontakt

- Tworzenia stref hybrydowych
- W zależności od stopnia postępu zmian ewolucyjnych, krzyżowanie może być możliwe (mieszańce/hybrydy)
 - Muł, Lygrys
 - Mięta pieprzowa
- Nawet gdy krzyżowanie jest możliwe, hybrydy okazują niższy poziom dostosowania (bezpłodność, problemy zdrowotne)

Selekcja przeciwko introgresji

UKRYTE MODELE MARKOWA

Ukryte Modele Markowa (z ang. HMM)

- HMM-y to klasa modeli które składają się z ukrytego łańcucha Markowa który wydaje widoczne sygnały
- Zmiany pomiędzy stanami odbywają się z danym prawdopodobieństwem

Przykład

- Kasyno używa dwóch kostek, jedna sprawiedliwa a druga obciążona
 - Ukryty stan to która kostka jest używana
 - Prawdopodobieństwo przejścia pomiędzy stanami to prawdopodobieństwo zmiany kostki pomiędzy rzutami
 - Emisje to wyniki rzutów
- Można obliczyć wiarygodność kostki przy każdym rzucie obserwując ciąg emisji

Durbin, et al. Biological Sequence Analysis, 1998.

Rozpoznawanie Introgresji

- Można używać HMM-ów do analizy introgresji
 - Ukryty stan to genetyczne pochodzenie materiału genetycznego
 - Emisje to ciąg nukleotydów
- Porównując ciąg nukleotydów do znanych osobników z każdego gatunku, możemy obliczyć prawdopodobieństwo pochodzenia

WYNIKI

Analiza

- Porównaliśmy sekwencje DNA 182 osobników C. grandiflora z północnej Grecji do jednego osobnika C. rubella
- · Użyliśmy danych żeby przebadać introgresję w C. grandiflora
- Średnia introgresja = $3.84\% \pm 0.75\%$ (min. 2.27%; max. 6.06%)

Analiza

- Porównaliśmy sekwencje DNA 182 osobników C. grandiflora z północnej Grecji do jednego osobnika C. rubella
- · Użyliśmy danych żeby przebadać introgresję w C. grandiflora
- Średnia introgresja = $3.84\% \pm 0.75\%$ (min. 2.27%; max. 6.06%)

Mean Introgression across Chromosome 1

Introgresja i Częstotliwość Rekombinacji

Introgresja i Częstotliwość Rekombinacji

Introgresja i Gęstość Genów

• Lekko pozytywna korelacja (p=0.09)

Ecologiczne QTL: Kształt Liścia

0.116% introgresji ~ (p=0.0267)

Inne Analizy QTL

Trait	Admixture %	P-value
Zapach Kwiata	2.154%	0.380
Rozmiar Płatka	1.633%	0.299
Suma Cech Kwiatowych	1.220%	0.0655
Niekompatybilności	4.30%	0.683

Podziękowania

- Prof. Yaniv Brandvain, University of Minnesota
- Tyler Kent and Prof. Stephen I. Wright, University of Toronto
- Lenhard Group, University of Potsdam

DZIĘKUJĘ!