

Preliminary

1M X 16 CMOS DYNAMIC RAM WITH EDO PAGE MODE

Document Title

1M X 16 CMOS DYNAMIC RAM WITH EDO PAGE MODE

Revision History

Rev. No.	<u>History</u>	Issue Date	Remark
0.0	Initial issue	June 23, 1999	Preliminary
0.1	Modify AC, DC data	February 7, 2002	
0.2	Modify DC data and all parts guarantee self-refresh mode	June 10, 2002	

Preliminary

1M X 16 CMOS DYNAMIC RAM WITH EDO PAGE MODE

Features

- Organization: 1,048,576 words X 16 bits
- Part Identification
 - A420616 (1K Ref.)
- Single 5.0V power supply/built-in VBB generator
- Low power consumption
 - Operating: 120mA (-45 max)
 - Standby: 1.0mA (TTL), 1.0mA (CMOS)
 1.5mA (Self-refresh current)
- High speed
 - 45/50 ns RAS access time
 - 20/22 ns column address access time
 - 12/13 ns CAS access time
 - 18/20 ns EDO Page Mode Cycle Time

General Description

The A420616 is a new generation randomly accessed memory for graphics, organized in a 1,048,576-word by 16-bit configuration. This product can execute Byte Write and Byte Read operation via two $\overline{\text{CAS}}$ pins.

The A420616 offers an accelerated Fast Page Mode

Pin Configuration

- Industrial operating temperature range: -40°C to 85°C for -U
- Fast Page Mode with Extended Data Out
- Separate CAS (UCAS, LCAS) for byte selection
- 1K Refresh Cycle in 16ms
- Read-modify-write, RAS -only, CAS -before- RAS , Hidden refresh capability
- TTL-compatible, three-state I/O
- JEDEC standard packages
 - 400mil, 42-pin SOJ
 - 400mil, 44/50 TSOP type II package

This allow random access of up to 1024 words within a row at a 56/50 MHz EDO cycle, making the A420616 ideally suited for graphics, digital signal processing and high performance computing systems.

Pin Descriptions

1

Symbol	Description
A0 – A9	Address Inputs
I/O ₀ - I/O ₁₅	Data Input/Output
RAS	Row Address Strobe
LCAS	Column Address Strobe for Lower Byte
	(I/O ₀ – I/O ₇)
UCAS	Column Address Strobe for Upper Byte
	(I/O ₈ - I/O ₁₅)
WE	Write Enable
ŌĒ	Output Enable
VCC	5.0V Power Supply
VSS	Ground
NC	No Connection

cycle with a feature called Extended Data Out (EDO).

Selection Guide

Symbol	Description	-45	-50	Unit
trac	Maximum RAS Access Time	45	50	ns
taa	Maximum Column Address Access Time	20	22	ns
tcac	Maximum CAS Access Time	12	13	ns
toea	Maximum Output Enable (OE) Access Time	12	13	ns
trc	Minimum Read or Write Cycle Time	76	84	ns
tpc	Minimum EDO Cycle Time	18	20	ns

Functional Description

The A420616 reads and writes data by multiplexing an 20-bit address into a 10-bit row and 10-bit column address. RAS and CAS are used to strobe the row address and the column address, respectively.

The A420616 has two $\overline{\text{CAS}}$ inputs: $\overline{\text{LCAS}}$ controls I/O₀-I/O₇, and $\overline{\text{UCAS}}$ controls I/O₈ - I/O₁₅, $\overline{\text{UCAS}}$ and $\overline{\text{LCAS}}$ function in an identical manner to $\overline{\text{CAS}}$ in that either will generate an internal $\overline{\text{CAS}}$ signal. The $\overline{\text{CAS}}$ function and timing are determined by the first $\overline{\text{CAS}}$ ($\overline{\text{UCAS}}$ or $\overline{\text{LCAS}}$) to transition low and by the last to transition high. Byte Read and Byte Write are controlled by using $\overline{\text{LCAS}}$ and $\overline{\text{UCAS}}$ separately.

A Read cycle is performed by holding the \overline{WE} signal high during $\overline{RAS}/\overline{CAS}$ operation. A Write cycle is executed by holding the \overline{WE} signal low during $\overline{RAS}/\overline{CAS}$ operation; the input data is latched by the falling edge of \overline{WE} or \overline{CAS} , whichever occurs later. The data inputs and outputs are routed through 16 common I/O pins, with \overline{RAS} , \overline{CAS} , \overline{WE} and \overline{OE} controlling the in direction.

EDO Page Mode operation all 1024(1K) columns within a selected row to be randomly accessed at a high data rate. A EDO Page Mode cycle is initiated with a row address latched by RAS followed by a column address latched by CAS. While holding RAS low, CAS can be toggled to strobe changing column addresses, thus achieving shorter cycle times.

The A420616 offers an accelerated Fast Page Mode cycle through a feature called Extended Data Out, which keeps the output drivers on during the $\overline{\text{CAS}}$ precharge time (tep). Since data can be output after $\overline{\text{CAS}}$ goes high, the user is not required to wait for valid data to appear before starting the next access cycle. Data-out will remain valid as long as $\overline{\text{RAS}}$ and $\overline{\text{OE}}$ are low, and $\overline{\text{WE}}$ is high; this is the only characteristic which differentiates Extended Data Out operation from a standard Read or Fast Page Read.

A memory cycle is terminated by returning both RAS and CAS high. Memory cell data will retain its correct state by maintaining power and accessing all 1024(1K) combinations of the 10-bit row addresses, regardless of sequence, at least once every 16ms through any RAS cycle (Read, Write) or RAS Refresh cycle (RAS -only, CBR, or Hidden). The CBR Refresh cycle automatically controls the row addresses by invoking the refresh counter and controller.

Power-On

The initial application of the VCC supply requires a 200 μ s wait followed by a minimum of any eight initialization cycles containing a \overline{RAS} clock. During Power-On, the VCC current is dependent on the input levels of \overline{RAS} and \overline{CAS} . It is recommended that \overline{RAS} and \overline{CAS} track with VCC or be held at a valid V μ during Power-On to avoid current surges.

Block Diagram

Recommended Operating Conditions (Ta = 0° C to +70°C or -40°C to +85°C)

Symbol	Description	Min.	Тур.	Max.	Unit	Notes
VCC	Power Supply	4.5	5.0	5.5	V	1
VSS	Input High Voltage	0.0	0.0	0.0	V	1
Vih	Input High Voltage	2.4	-	VCC + 1.0	V	1
VIL	Input Low Voltage	-0.5	-	0.8	V	1

Truth Table

Function	RAS	<u>UCAS</u>	LCAS	WE	ŌĒ	Address	I/Os	Notes
Standby	Н	Н	Н	Х	Х	Х	High-Z	
Read: Word	L	L	L	Н	L	Row/Col.	Data Out	
Read: Lower Byte	L	Н	L	Н	L	Row/Col.	I/O ₀₋₇ = Data Out I/O ₈₋₁₅ = High-Z	
Read: Upper Byte	L	L	Н	Н	L	Row/Col.	I/O ₀₋₇ = High-Z I/O ₈₋₁₅ = Data Out	
Write: Word	L	L	L	L	Н	Row/Col.	Data In	
Write: Lower Byte	Г	Н	L	L	Н	Row/Col.	I/O ₀₋₇ = Data In I/O ₈₋₁₅ = X	
Write: Upper Byte	L	L	Н	L	Н	Row/Col.	I/O ₀₋₇ = X I/O ₈₋₁₅ = Data In	
Read-Write	L	L	L	H→L	L→H	Row/Col.	Data Out → Data In	1,2
EDO-Page-Mode Read: Hi-Z								
-First cycle	L	$H{ ightarrow} L$	H→L	Н	$H{ ightarrow} L$	Row/Col.	Data Out	2
-Subsequent Cycles	L	$H{ ightarrow} L$	H→L	Н	H→L	Col.	Data Out	2
EDO-Page-Mode Write								
-First cycle	L	$H{ ightarrow} L$	H→L	L	Н	Row/Col.	Data In	1
-Subsequent Cycles	L	$H{ ightarrow} L$	H→L	L	Н	Col.	Data In	1
EDO-Page-Mode Read-Write								
-First cycle	L	$H{ ightarrow} L$	H→L	$H{ ightarrow} L$	L→H	Row/Col.	$Data\;Out\toData\;In$	1, 2
-Subsequent Cycles	L	H→L	H→L	H→L	L→H	Col.	$Data\;Out\toData\;In$	1, 2
Hidden Refresh Read	$L{\rightarrow}H{\rightarrow}L$	L	L	Н	L	Row/Col.	Data Out	2
Hidden Refresh Write	$L{\rightarrow}H{\rightarrow}L$	L	L	L	Χ	Row/Col.	Data In → High-Z	1
RAS-Only Refresh	L	Н	Н	X	X	Row	High-Z	
CBR Refresh	H→L	L	L	Х	Х	Х	High-Z	3
Self Refresh	H→L	L	L	Н	Х	Х	High-Z	_

Note:

- 1. Byte Write may be executed with either \overline{UCAS} or \overline{LCAS} active.
- 2. Byte Read may be executed with either \overline{UCAS} or \overline{LCAS} active.
- 3. Only one $\overline{\text{CAS}}$ signal ($\overline{\text{UCAS}}$ or $\overline{\text{LCAS}}$) must be active.

Absolute Maximum Ratings*

nput Voltage (Vin) –1.0V to +7.0V
Output Voltage (Vout) –1.0V to +7.0V
Power Supply Voltage (VCC) −1.0V to +7.0V
Operating Temperature (Topk) 0°C to +70°C
Storage Temperature (Tsтс)55°C to +150°C
Soldering Temperature X Time (Tsolder)
260°C X 10sec
Power Dissipation (Pb)
Short Circuit Output Current (Iout) 50mA
_atch-up Current

*Comments

Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to this device. These are stress ratings only. Functional operation of this device at these or any other conditions above those indicated in the operational sections of these specification is not implied or intended. Exposure to the absolute maximum rating conditions for extended periods may affect device reliability.

DC Electrical Characteristics (VCC = $5.0V \pm 10\%$, VSS = 0V, Ta = 0° C to $+70^{\circ}$ C or -40° C to $+85^{\circ}$ C)

0		-4	4 5		50		Total Constitution	Negaria
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	Test Conditions	Notes
lı∟	Input Leakage Current	-5	+5	-5	+5	μΑ	0V ≤ Vin ≤ VCC Pins not under Test = 0V	
loL	Output Leakage Current	-5	+5	-5	+5	μΑ	Do∪⊤ disabled, 0V ≤ Vout ≤ VCC	
lcc1	Operating Power Supply Current	-	120	-	115	mA	RAS, UCAS, LCAS and Address cycling; trc = min.	1, 2
lcc2	TTL Supply Current Supply Current	-	1.0	-	1.0	mA	RAS=UCAS=LCAS=VIH	
Іссз	Average Power Supply Current, RAS Refresh Mode	-	120	-	115	mA	RAS and Address cycling, UCAS = LCAS = VIH, trc = min.	1
Icc4	EDO Page Mode Average Power Supply Current	-	120	-	115	mA	RAS and address = ViL, UCAS, LCAS and Address cycling; trc = min.	1, 2
lcc5	CAS -before- RAS Refresh Power Supply Current	-	120	-	115	mA	RAS and UCAS or LCAS cycling; trc = min.	1
Icc6	CMOS Standby Power Supply Current	-	1.0	-	1.0	mA	RAS=UCAS=LCAS = VCC - 0.2V	
Icc7	Self Refresh Mode Current	-	1.5	-	1.5	mA	RAS = CAS ≤VSS+0.2V All other input high levels are VCC-0.2V or input low levels are VSS +0.2V	
Vон	Output Voltage	2.4	-	2.4	-	V	louт = -5.0mA	
Vol		-	0.4	-	0.4	V	louт = 4.2mA	

AC Characteristics (VCC = $5.0V \pm 10\%$, VSS = 0V, Ta = 0° C to $+70^{\circ}$ C or -40° C to $+85^{\circ}$ C)

Test Conditions:

Input timing reference level: ViH/ViL=2.4V/0.8V Output reference level: VoH/VoL=2.0V/0.8V Output Load: 2TTL gate + CL (50pF)

Assumed tτ=2ns

	Std		-4	45		50	l lmit	
#	Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	Notes
	tτ	Transition Time (Rise and Fall)	1	50	1	50	ns	4, 5
1	trc	Random Read or Write Cycle Time	76	-	84	-	ns	
2	trp	RAS Precharge Time	27	-	30	-	ns	
3	tras	RAS Pulse Width	45	10K	50	10K	ns	
4	tcas	CAS Pulse Width	7	10K	8	10K	ns	
5	trcd	RAS to CAS Delay Time	10	33	11	37	ns	6
6	trad	RAS to Column Address Delay Time	8	25	9	28	ns	7
7	trsн	CAS to RAS Hold Time	7	-	8	-	ns	
8	tcsн	CAS Hold Time	35	-	37	-	ns	
9	tcrp	CAS to RAS Precharge Time	5	-	5	-	ns	
10	tasr	Row Address Setup Time	0	-	0	-	ns	
11	trah	Row Address Hold Time	7	-	8	-	ns	
12	tcLz	CAS to Output in Low Z	3	-	3	-	ns	8
13	trac	Access Time from RAS	-	45	-	50	ns	6,7
14	tcac	Access Time from CAS	-	12	-	13	ns	6, 13
15	taa	Access Time from Column Address	-	20	-	22	ns	7, 13
16	toea	OE Access Time	-	12	-	13	ns	
17	tar	Column Address Hold Time from RAS	40	-	45	-	ns	
18	trcs	Read Command Setup Time	0	-	0	-	ns	
19	tксн	Read Command Hold Time	0	-	0	-	ns	9

AC Characteristics (continued) (VCC = $5.0V \pm 10\%$, VSS = 0V, Ta = 0° C to $+70^{\circ}$ C or -40° C to $+85^{\circ}$ C)

Test Conditions:

Input timing reference level: ViH/ViL=2.4V/0.8V Output reference level: VoH/VoL=2.0V/0.8V Output Load: 2TTL gate + CL (50pF)

Assumed tτ=2ns

	Std	B	-4	45		50	Unit	Natas
#	Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	Notes
20	trrh	Read Command Hold Time Reference to RAS	0	-	0	-	ns	9
21	tral	Column Address to RAS Lead Time	20	-	22	-	ns	
22	tсон	Output Hold After CAS Low	2	-	3	-	ns	
23	toff	Output Buffer Turn-Off Delay Time	-	2	-	3	ns	8, 10
24	tasc	Column Address Setup Time	0	-	0	-	ns	
25	tcah	Column Address Hold Time	7	-	8	-	ns	
26	toes	OE Low to CAS High Set Up	10	-	10	-	ns	
27	twcs	Write Command Setup Time	0	-	0	-	ns	11
28	twсн	Write Command Hold Time	7	-	8	-	ns	11
29	twcr	Write Command Hold Time to RAS	40	-	45	-	ns	
30	twp	Write Command Pulse Width	7	-	8	-	ns	
31	trwL	Write Command to RAS Lead Time	12	-	13	-	ns	
32	tcwL	Write Command to CAS Lead Time	7	-	8	-	ns	
33	tos	Data-in setup Time	0	-	0	-	ns	12
34	tон	Data-in Hold Time	7	-	8	-	ns	12
35	tdhr	Data-in Hold Time to RAS	40	-	45	-	ns	
36	trwc	Read-Modify-Write Cycle Time	104	-	114	-	ns	
37	trwd	RAS to WE Delay Time (Read-Modify-Write)	59	-	65	-	ns	11
38	tcwp	CAS to WE Delay Time (Read-Modify-Write)	26	-	28	-	ns	11

AC Characteristics (continued) (VCC = $5.0V \pm 10\%$, VSS = 0V, Ta = 0° C to $+70^{\circ}$ C or -40° C to $+85^{\circ}$ C)

Test Conditions:

Input timing reference level: ViH/ViL=2.4V/0.8V Output reference level: VoH/VoL=2.0V/0.8V Output Load: 2TTL gate + CL (50pF)

Assumed tτ=2ns

	Std		-4	15	{	50	l lmit	Natas
#	Symbol	Parameter	Min.	Max.	Min.	Max.	Unit	Notes
39	tawd	Column Address to WE Delay Time (Read-Modify-Write)	34	-	37	-	ns	11
40	tоен	OE Hold Time from WE	7	-	8	-	ns	
41	toep	OE High Pulse Width	5	-	5	-	ns	
42	tpc	Read or Write Cycle Time (EDO Page)	18	-	20	-	ns	14
43	tcpa	Access Time from CAS Precharge (EDO Page)	-	21	1	23	ns	13
44	tcp	CAS Precharge Time	7	-	8	-	ns	
45	tрсм	EDO Page Mode RMW Cycle Time	46	-	50		ns	
46	tcrw	EDO Page Mode CAS Pulse Width (RMW)	35	-	38	-	ns	
47	trasp	RAS Pulse Width (EDO Page)	45	200K	50	200K	ns	
48	tcsr	CAS Setup Time (CAS -before-RAS)	5	-	5	-	ns	3
49	tchr	CAS Hold Time (CAS -before-RAS)	10	-	10	-	ns	3
50	trpc	RAS to CAS Precharge Time	10	-	10	-	ns	3
51	toez	Output Buffer Turn-off Delay from OE	-	2	-	3	ns	8
52	trass	RAS pulse width (C-B-R self refresh)	100	-	100	-	μs	
53	trps	RAS precharge time (C-B-R self refresh)	76	-	84	-	ns	
54	tcнs	CAS hold time (C-B-R self refresh)	-50	-	-50	-	ns	

Notes:

- 1. lcc1, lcc3, lcc4, and lcc5 depend on cycle rate.
- 2. Icc1 and Icc4 depend on output loading. Specified values are obtained with the outputs open.
- 3. An initial pause of 200µs is required after power-up followed by any 8 RAS cycles before proper device operation is achieved. In the case of an internal refresh counter, a minimum of 8 CAS -before-RAS initialization cycles instead of 8 RAS cycles are required. 8 initialization cycles are required after extended periods of bias without clocks.
- 4. AC Characteristics assume t_T = 2ns. All AC parameters are measured with a load equivalent to two TTL loads and 50pF, V_{IL} (min.) ≥ GND and V_{IH} (max.) ≤ VCC.
- 5. V_IH (min.) and V_IL (max.) are reference levels for measuring timing of input signals. Transition times are measured between V_IH and V_IL.
- 6. Operation within the trcp (max.) limit insures that trac (max.) can be met. trcp (max.) is specified as a reference point only. If trcp is greater than the specified trcp (max.) limit, then access time is controlled exclusively by tcac.
- 7. Operation within the trab (max.) limit insures that trac (max.) can be met. trab (max.) is specified as a reference point only. If trab is greater than the specified trab (max.) limit, then access time is controlled exclusively by trab.
- 8. Assumes three state test load (5pF and a 500Ω Thevenin equivalent).
- 9. Either trch or trrh must be satisfied for a read cycle.
- 10. toff (max.) defines the time at which the output achieves the open circuit condition; it is not referenced to output voltage levels.
- 11. twcs, twcн, trwb, tcwb and tawb are not restrictive operating parameters. They are included in the data sheet as electrical characteristics only. If twcs ≥ twcs (min.) and twcн ≥ twcн (min.), the cycle is an early write cycle and data-out pins will remain open circuit, high impedance, throughout the entire cycle. If trwb ≥ trwb (min.), tcwb ≥ tcwb (min.) and tawb ≥ tawb (min.), the cycle is a read-modify-write cycle and the data out will contain data read from the selected cell. If neither of the above conditions is satisfied, the condition of the data out at access time is indeterminate.
- 12. These parameters are referenced to UCAS and LCAS leading edge in early write cycles and to WE leading edge in read-modify-write cycles.
- 13. Access time is determined by the longer of taa or tcac or tcpa.
- 14. $tasc \ge tcp$ to achieve tpc (min.) and tcpa (max.) values.

Word Read Cycle

Word Write Cycle (Early Write)

Word Write Cycle (Late Write)

Word Read-Modify-Write Cycle

EDO Page Mode Word Read Cycle

: High or Low

EDO Page Mode Early Word Write Cycle

EDO Page Mode Word Read-Modify-Write Cycle

RAS Only Refresh Cycle

Note: $\overline{\text{WE}}$, $\overline{\text{OE}}$ = Don't care.

: High or Low

CAS Before RAS Refresh Cycle

Note: \overline{WE} , \overline{OE} , Address = Don't care.

Hidden Refresh Cycle (Word Read)

Hidden Refresh Cycle (Early Word Write)

: High or Low

EDO Page Mode Read-Early-Write Cycle (Pseudo Read-Modify-Write)

Self Refresh Mode

Note: $\overline{\text{WE}}$, $\overline{\text{OE}}$ = Don't care.

: High or Low

■ Self Refresh Mode.

a. Entering the Self Refresh Mode:

The A420616 Self Refresh Mode is entered by using CAS before RAS cycle and holding RAS and CAS signal "low" longer than $100\mu s$.

b. Continuing the Self Refresh Mode:

The Self Refresh Mode is continued by holding RAS "low" after entering the Self Refresh Mode.

It does not depend on CAS being "high" or "low" after entering the Self Refresh Mode continue the Self Refresh Mode.

c. Exiting the Self Refresh Mode:

The A420616 exits the Self Refresh Mode when the RAS signal is brought "high".

Capacitance (f = 1MHz, Ta = Room Temperature, VCC = $5.0V \pm 10\%$)

Symbol	Signals	Parameter	Max.	Unit	Test Conditions
CIN1	A0 – A9		5	pF	Vin = 0V
CIN2	$\overline{\text{RAS}}$, $\overline{\text{UCAS}}$, $\overline{\text{LCAS}}$, $\overline{\text{WE}}$, $\overline{\text{OE}}$	Input Capacitance	7	pF	Vin = 0V
Cı/o	I/Oo - I/O15	I/O Capacitance	7	pF	Vin = Vout = 0V

Ordering Codes

Package RAS Access Time	RAS Access Time 45ns 50ns		Refresh Cycle	Self-Refresh
SOJ 42L (400mil)	A420616S-45	A420616S-50	1K	Yes
TSOP 44/50L type II (400mil)	A420616V-45	A420616V-50	1K	Yes
TSOP 44/50L type II (400mil)	A420616V-45U	A420616V-50U	1K	Yes

Note: -U is for industrial operating temperature range.

unit: inches/mm

Package Information

SOJ 42L Outline Dimensions

Symbol	Dimensions in inches			Dimensions in mm		
	Min	Nom	Max	Min	Nom	Max
Α	0.132	0.138	0.145	3.35	3.51	3.68
A1	0.025	-	-	0.64	-	-
A2	0.105	0.110	0.115	2.67	2.79	2.92
b ₁	0.026	0.028	0.032	0.66	0.71	0.81
b	0.016	0.018	0.020	0.41	0.46	0.51
С	0.007	0.008	0.011	0.18	0.20	0.28
D	1.070	1.075	1.080	27.18	27.31	27.43
Е	0.395	0.400	0.405	10.03	10.16	10.29
e	-	0.050	-	-	1.27	-
e 1	0.360	0.370	0.380	9.14	9.40	9.65
HE	0.435	0.440	0.455	11.05	11.18	11.30
L	0.088	-	-	2.24	-	-
S	-	-	0.043	-	-	1.09
у	-	-	0.004	-	-	0.10
θ	0°	-	10°	0°	-	10°

2Notes:

- 1. The maximum value of dimension D includes end flash.
- 2. Dimension E does not include resin fins.
- 3. Dimension e₁ is for PC Board surface mount pad pitch design reference only.
- 4. Dimension S includes end flash.

Package Information

TSOP 44/50L (Type II) Outline Dimensions

unit: inches/mm

Symbol	Dimensions in inches			Dimensions in mm			
	Min	Nom	Max	Min	Nom	Max	
Α	-	-	0.048	-	-	1.20	
A1	0.002	-	0.006	0.05	-	0.15	
A2	0.037	0.039	0.042	0.95	1.00	1.05	
В	0.012	-	0.018	0.30	-	0.45	
С	0.005	-	0.008	0.12	-	0.21	
D	0.820	0.825	0.830	20.82	20.95	21.08	
Е	0.400 BSC			10.16 BSC			
HE	0.463 BSC			11.76 BSC			
L	0.016	0.020	0.024	0.40	0.50	0.60	
L1	0.031 REF			0.80 REF			
е	0.031 BSC			0.80 BSC			
R	0.005	-	0.010	0.12	-	0.25	
R1	0.005	-	-	0.12	-	-	
S	0.0435 REF			0.875 BSC			
θ	0°	-	5°	0°	-	5°	

Notes:

- 1. The maximum value of dimension D includes end flash.
- 2. Dimension E does not include resin fins.
- 3. Dimension S includes end flash.