PHY407: Computational Physics Fall, 2017

Lecture 8: Partial differential equations, Part 1

Summary & Status

- ☑ Weeks 1-3: Programming basics, numerical errors, numerical integration and differntiation.
- ☑ Weeks 4-5: Solving linear & nonlinear systems and Fourier transforms.
- ☑ Week 6: ODEs Part 1: RK4, Leapfrog, Verlet, adaptive time stepping; customizing python output
- ✓ Week 7: ODEs Part 2: Bulirsch-Stoer, Boundary Value Problems/shooting,
- Week 8: PDEs Part 1
 - Intro, elliptic equation solvers, FTCS
- Week 9: PDEs Parts 2
- ☐ Weeks 10-11: Random numbers & Monte Carlo methods

PHY407: Computational Physics Fall, 2017

Lecture 8: Partial Differential Equations, Part 1

- Classifying PDEs
- Elliptic equations: Jacobi, Gauss-Seidel
- FTCS and stability

Solving PDEs

 Solving partial differential equations is one of the pinnacles of computational physics, bringing together many methods.

Solving PDEs

 Solving partial differential equations is one of the pinnacles of computational physics, bringing together many methods.

Elliptic equations:
$$\nabla^2 \Phi = \rho$$
 Poisson equation

Parabolic equations:
$$\frac{\partial T}{\partial t} = \kappa \nabla^2 T$$
 Diffusion equation

Hyperbolic equations:
$$\frac{\partial^2 \phi}{\partial t^2} = c^2 \nabla^2 \phi$$
 Wave equation

Solving PDEs

Solving partial differential equations is one of the pinnacles of computational physics, bringing together many methods.

Elliptic equations:
$$\nabla^2 \Phi = \rho$$
 Poisson equation

Parabolic equations:
$$\frac{\partial T}{\partial t} = \kappa \nabla^2 T$$
 Diffusion equation

Hyperbolic equations:
$$\frac{\partial^2 \phi}{\partial t^2} = c^2 \nabla^2 \phi$$
 Wave equation
• We are faced with design decisions on how to discretize and

- implement numerical methods.
- Stability is something we need to deal with a lot.

Calculating the Second Derivative

 Recall central difference calculation of second derivative (Section 5.10.5):

$$f''(x) = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2} - \frac{1}{12}h^2f''''(x) + \cdots$$

• Discretize system spatially and temporally.

- Discretize system spatially and temporally.
 Can use
 - Finite difference
 - Spectral coefficients
 - Gaussian quadrature
 - Etc.

- Discretize system spatially and temporally.
 Can use
 - Finite difference
 - Spectral coefficients
 - Gaussian quadrature
 - Etc.
- You obtain a set of coupled ODEs that you need to solve in an efficient way.

- Discretize system spatially and temporally.
 Can use
 - Finite difference
 - Spectral coefficients
 - Gaussian quadrature
 - Etc.
- You obtain a set of coupled ODEs that you need to solve in an efficient way.
- Coupling occurs because spatial derivatives bring information in from neighbouring points.

- Discretize system spatially and temporally.
 Can use
 - Finite difference
 - Spectral coefficients
 - Gaussian quadrature
 - Etc.
- You obtain a set of coupled ODEs that you need to solve in an efficient way.
- Coupling occurs because spatial derivatives bring information in from neighbouring points.
- Because of this coupling, errors depend on space and time and can get wave like characteristics.

• For solution of Laplace's equation or Poisson equation.

 For solution of Laplace's equation or Poisson equation.

 On regular grid, finite difference form of Laplacian is

- For solution of Laplace's equation or Poisson equation.
- On regular grid, finite difference form of Laplacian is

$$\nabla^2 \phi = \frac{\partial^2 \phi}{\partial x^2} + \frac{\partial^2 \phi}{\partial y^2},$$

$$\frac{\partial^2 \phi}{\partial x^2} \approx \frac{\phi(x+a,y) - 2\phi(x,y) + \phi(x-a,y)}{a^2}$$

$$\frac{\partial^2 \phi}{\partial y^2} \approx \frac{\phi(x,y+a) - 2\phi(x,y) + \phi(x,y-a)}{a^2}$$

$$x, y-a)-4\phi(x,y)+O(a^3)$$

$$0 \approx \phi(x+a,y) + \phi(x-a,y) + \phi(x,y+a) + \phi(x,y-a) - 4\phi(x,y) + O(a^3)$$

Put together a series of equations of the form

$$\phi(x+a,y) + \phi(x-a,y) + \phi(x,y+a) + \phi(x,y-a) - 4\phi(x,y) = 0$$

for each x and y, subject to boundary conditions.

Put together a series of equations of the form

$$\phi(x+a,y) + \phi(x-a,y) + \phi(x,y+a) + \phi(x,y-a) - 4\phi(x,y) = 0$$

for each x and y, subject to boundary conditions.

φ or derivative given on boundary. How would you handle these?

Put together a series of equations of the form

$$\phi(x+a,y) + \phi(x-a,y) + \phi(x,y+a) + \phi(x,y-a) - 4\phi(x,y) = 0$$

for each x and y, subject to boundary conditions.

- φ or derivative given on boundary. How would you handle these?
- If φ given, use this value for adjacent points.

• If φ derivative given, find algebraic relationship between points near to boundary using finite difference.

Put together a series of equations of the form

$$\phi(x+a,y) + \phi(x-a,y) + \phi(x,y+a) + \phi(x,y-a) - 4\phi(x,y) = 0$$

for each x and y, subject to boundary conditions.

- φ or derivative given on boundary. How would you handle these?
- If ϕ given, use this value for adjacent points.
- If φ derivative given, find algebraic relationship between points near to boundary using finite difference.
- Could solve using matrix methods:

$$\mathbf{L}\phi = \mathbf{R}\phi$$

But a simpler method is possible.

Jacobi Relaxation

Iterate the rule

$$\phi'(x,y) = \frac{\phi(x+a,y) + \phi(x-a,y) + \phi(x,y+a) + \phi(x,y-a)}{4}$$

Jacobi Relaxation

Iterate the rule

$$\phi'(x,y) = \frac{\phi(x+a,y) + \phi(x-a,y) + \phi(x,y+a) + \phi(x,y-a)}{4}$$

- For this problem it turns out that Jacobi Relaxation is always stable and so always gives a solution!
- Let's look at laplace.py

Other methods

Gauss Seidel: replace function on the fly as in

$$\phi(x,y) \leftarrow \frac{\phi(x+a,y) + \phi(x-a,y) + \phi(x,y+a) + \phi(x,y-a)}{4}$$

Other methods

Gauss Seidel: replace function on the fly as in

$$\phi(x,y) \leftarrow \frac{\phi(x+a,y) + \phi(x-a,y) + \phi(x,y+a) + \phi(x,y-a)}{4}$$

- This can be shown to run faster.
- Can also implement overrelaxation:

$$\phi(x,y) \leftarrow (1+\omega) \left[\frac{\phi(x+a,y) + \phi(x-a,y) + \phi(x,y+a) + \phi(x,y-a)}{4} \right] -\omega\phi(x,y)$$

FTCS Solution of Heat Equation

Consider the 1-D heat equation:

$$\frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial x^2},$$

BC:
$$T(0,t) = T_0, T(L,t) = T_L,$$

Initial condition:
$$T(x,0) = (T_L - T_0) \left(\frac{f(x) - f(x_0)}{f(x_L) - f(x_0)} \right) + T_0$$

FTCS Solution of Heat Equation

Consider the 1-D heat equation:

$$\frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial x^2},$$

BC:
$$T(0,t) = T_0, T(L,t) = T_L,$$

Initial condition:
$$T(x,0) = (T_L - T_0) \left(\frac{f(x) - f(x_0)}{f(x_L) - f(x_0)} \right) + T_0$$

STEP 1: Discretize in space

$$x_{j} = \frac{L}{J}j = aj, j = 0...J, a = L/J$$

$$T_{j}(t) = \left[T_{0}(t), \dots, T_{J}(t)\right]$$

$$\frac{\partial^2 T_j(t)}{\partial x^2} \approx \frac{T_{j+1} - 2T_j + T_{j-1}}{a^2}, \ j = 1, ..., J - 1$$

This is called centered spatial (CS) differencing.

FTCS Solution of Heat Equation

STEP 2: Discretize in time

$$\frac{\partial T}{\partial t} = \kappa \frac{\partial^2 T}{\partial x^2},$$

$$\frac{dT_j(t)}{dt} \approx \kappa \frac{\left(T_{j+1} - 2T_j + T_{j-1}\right)}{a^2}, \ j = 1, ..., J - 1$$

$$t_n = hn, \ h \text{ is time step.}$$

Forward Euler (Forward Time - FT): use RHS temperature at current time

$$T_{j}(t_{n}) \equiv T_{j}^{n}$$

$$\frac{dT_{j}^{n}}{dt} \approx \frac{\left(T_{j}^{n+1} - T_{j}^{n}\right)}{h} \equiv \kappa \left(\frac{T_{j+1}^{n} - 2T_{j}^{n} + T_{j-1}^{n}}{a^{2}}\right)$$

$$T_{j}^{n+1} = T_{j}^{n} + \frac{\kappa h}{a^{2}} \left(T_{j+1}^{n} - 2T_{j}^{n} + T_{j-1}^{n} \right)$$

This is the explicit FTCS method.

Introduction to Stability

How can we determine stability in PDEs?

How can we determine stability in PDEs?
 Consider a single spatial Fourier mode.

$$T(x_j, t_n) = T_j^n = \sum_{k} \hat{T}_k^n \exp(ikx_j)$$

How can we determine stability in PDEs?
 Consider a single spatial Fourier mode.

$$T(x_j, t_n) = T_j^n = \sum_{k} \hat{T}_k^n \exp(ikx_j)$$

For single Fourier mode $\hat{T}_{k}^{n} \exp(ikx_{j}) = \hat{T}_{k}^{n} \exp(iajk)$,

$$T_{j}^{n+1} = T_{j}^{n} + \frac{\kappa h}{a^{2}} \left(T_{j+1}^{n} - 2T_{j}^{n} + T_{j-1}^{n} \right)$$

How can we determine stability in PDEs?
 Consider a single spatial Fourier mode.

$$T(x_j, t_n) = T_j^n = \sum_{k} \hat{T}_k^n \exp(ikx_j)$$

For single Fourier mode $\hat{T}_{k}^{n} \exp(ikx_{j}) = \hat{T}_{k}^{n} \exp(iajk)$,

$$T_{j}^{n+1} = T_{j}^{n} + \frac{\kappa h}{a^{2}} \left(T_{j+1}^{n} - 2T_{j}^{n} + T_{j-1}^{n} \right)$$

$$\hat{T}_{k}^{n+1} \exp(iaj) = \hat{T}_{k}^{n} \exp(iajk) \left(1 - \frac{2\kappa h}{a^{2}}\right) + \frac{\kappa h}{a^{2}} \left(\hat{T}_{k}^{n} \exp(ia(j+1)k) - \hat{T}_{k}^{n} \exp(ia(j-1)k)\right)$$

$$\left|\frac{\hat{T}_{k}^{n+1}}{\hat{T}_{k}^{n}}\right| = 1 + \frac{\kappa h}{a^{2}} \left(e^{ika} + e^{-ika} - 2\right) = \left|1 - \frac{4h\kappa}{a^{2}} \sin^{2}\left(\frac{1}{2}ka\right)\right|$$

How can we determine stability in PDEs?
 Consider a single spatial Fourier mode.

$$T(x_j, t_n) = T_j^n = \sum_{k} \hat{T}_k^n \exp(ikx_j)$$

For single Fourier mode $\hat{T}_{k}^{n} \exp(ikx_{j}) = \hat{T}_{k}^{n} \exp(iajk)$,

$$T_{j}^{n+1} = T_{j}^{n} + \frac{\kappa h}{a^{2}} \left(T_{j+1}^{n} - 2T_{j}^{n} + T_{j-1}^{n} \right)$$

$$\hat{T}_{k}^{n+1}\exp(iajk) = \hat{T}_{k}^{n}\exp(iajk)\left(1 - \frac{2\kappa h}{a^{2}}\right) + \frac{\kappa h}{a^{2}}\left(\hat{T}_{k}^{n}\exp(ia(j+1)k) - \hat{T}_{k}^{n}\exp(ia(j-1)k)\right)$$

$$\left|\frac{\hat{T}_k^{n+1}}{\hat{T}_k^n}\right| = 1 + \frac{\kappa h}{a^2} \left(e^{ika} + e^{-ika} - 2\right) = \left|1 - \frac{4h\kappa}{a^2} \sin^2\left(\frac{1}{2}ka\right)\right|$$

This is the growth factor and it should be less than unity for stability:

$$h \le \frac{a^2}{2\kappa}$$
 Notice this is independent of k!

FTCS for the Wave Equation

$$\frac{\partial^2 \phi}{\partial t^2} = c^2 \frac{\partial^2 \phi}{\partial x^2},$$

(Subject to suitable boundary and initial conditions.)

FTCS for the Wave Equation

$$\frac{\partial^2 \phi}{\partial t^2} = c^2 \frac{\partial^2 \phi}{\partial x^2},$$

(Subject to suitable boundary and initial conditions.)

$$\frac{d^2\phi_j(t)}{dt^2} \approx \frac{c^2}{a^2} (\phi_{j+1} - 2\phi_j + \phi_{j-1}), \ j = 1, \dots, J-1$$

FTCS for the Wave Equation

$$\frac{\partial^2 \phi}{\partial t^2} = c^2 \frac{\partial^2 \phi}{\partial x^2},$$

(Subject to suitable boundary and initial conditions.)

$$\frac{d^2\phi_j(t)}{dt^2} \approx \frac{c^2}{a^2} (\phi_{j+1} - 2\phi_j + \phi_{j-1}), \ j = 1, \dots, J-1$$

Now transform to pairs of first order ODEs:

$$\frac{d\phi_j}{dt} = \psi_j$$

$$\frac{d\psi_j}{dt} = \frac{c^2}{a^2} (\phi_{j+1} - 2\phi_j + \phi_{j-1})$$

and discretize using Euler-Forward (so there about 2J ODEs).

Stability for this method.

$$\begin{pmatrix} \phi_{j}^{n+1} \\ \psi_{j}^{n+1} \end{pmatrix} = \begin{pmatrix} 1 & h \\ -2hc^{2} & 1 \end{pmatrix} \begin{pmatrix} \phi_{j}^{n} \\ \psi_{j}^{n} \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{c^{2}h}{a^{2}} (\phi_{j+1}^{n} + \phi_{j-1}^{n}) \end{pmatrix}$$

Now consider a single Fourier component with wavenumber k as before:

$$\left(egin{array}{c} \hat{\phi}_k^n \ \hat{\psi}_k^n \end{array}
ight) \exp(ikja)$$

and we obtain

$$\begin{pmatrix} \hat{\phi}_k^{n+1} \\ \hat{\psi}_k^{n+1} \end{pmatrix} = \mathbf{A} \begin{pmatrix} \hat{\phi}_k^n \\ \hat{\psi}_k^n \end{pmatrix}, \mathbf{A} = \begin{pmatrix} 1 & h \\ -hr^2 & 1 \end{pmatrix}, r^2 = \frac{2c}{a} \sin\left(\frac{ka}{2}\right)$$

which does depend on k.

Stability for this method.

$$\begin{pmatrix} \hat{\phi}_k^{n+1} \\ \hat{\psi}_k^{n+1} \end{pmatrix} = \mathbf{A} \begin{pmatrix} \hat{\phi}_k^n \\ \hat{\psi}_k^n \end{pmatrix}, \mathbf{A} = \begin{pmatrix} 1 & h \\ -hr^2 & 1 \end{pmatrix}, r^2 = \frac{2c}{a} \sin\left(\frac{ka}{2}\right)$$

Now the eigenvalues of **A** are $\lambda_{\pm} = 1 \pm ihr$ and $\left|\lambda_{\pm}\right|^2 = 1 + h^2 r^2 \ge 1$ with corresponding eigenvectors $\mathbf{v}_{+}, \mathbf{v}_{-}$.

Suppose initial condition is $\alpha_+ \mathbf{v}_+ + \alpha_- \mathbf{v}_-$. After m timesteps, this becomes $\alpha_+ \lambda_+^m \mathbf{v}_+ + \alpha_- \lambda_-^m \mathbf{v}_-$, which will grow without bound!

So, FTCS is never stable for the wave equation!

PHY407: Computational Physics Fall, 2017

Lecture 8: Partial Differential Equations, Part 1

- Classifying PDEs
- Elliptic equations: Jacobi, Gauss-Seidel
- FTCS and stability