Evolution of Elasticity of Demand for Coal in China and the United States¹

Cedric Elkouh and Matthew Zhao

ECON 21110, Winter 2023 Final Project

February 24, 2023

Where we are

1 Motivation and research questions

2 Replication

3 Extension

Motivation

- Coal is the largest source of electricity generation globally (just over a third of total electricity generation according to the International Energy Agency)
- ... but coal is also the largest single source of carbon dioxide emissions!
- Knowing the elasticity of demand for coal helps inform creation of policies that provide incentives for substitute energy sources, etc.

Research questions

■ Research questions: What is the price elasticity of demand for coal? How has price elasticity of demand for coal changed over time?

■ Replication

- Burke and Liao (2015), "Is the price elasticity of demand for coal in China increasing?"
- As of 2012, estimates via OLS with selection on observables strategy that price elasticity of demand for coal was in the range -0.3 to -0.7
- Finds that price elasticity of demand for coal in Chine became more elastic from 1998 to 2012

Extension

- Understand external validity of Burke and Liao (2015) results by estimating elasticity of demand for coal in the United States
- Use "better" (i.e., more granular) data: coal mine-power plant contracts instead of aggregated data
- Employ an IV strategy alongside the selection on observables approach from the replication

Where we are

1 Motivation and research questions

2 Replication

3 Extension

Data

- Yearly provincial panel data for 1998–2012 covering 30 provincial-level divisions in Mainland China: 22 (formal) provinces, 4 municipalities (Beijing, Tianjin, Shanghai, and Chongqing), and 4 autonomous regions (Inner Mongolia, Guangxi, Ningxia, and Xinjiang)
- There are some missing observations in the replication file provided by authors (see figures on next slide)

	mean	sd	\min	max
Ln Coal consumption	4.106663	.9305527	.5247285	5.997397
Ln Real coal price index	4.098127	.4318536	2.793868	4.774778
Time trend	7	4.325147	0	14
Ln GDP	8.222613	1.110345	4.524124	10.45717
Observations	465			

Figure

Empirical strategy

Main OLS regression specifications:

$$\begin{split} \log(C_{pt}) &= \beta_1 \log(P_{pt}) + \beta_2 \ln(Y_{pt}) + \beta_3 t + \delta_p + \epsilon_{pt} \\ \log(C_{pt}) &= \beta_1 \log(P_{pt}) + \beta_2 \log(Y_{pt}) + \beta_3 t + \beta_4 \left(t \times \log(P_{pt})\right) + \delta_p + \epsilon_{pt} \\ \log(C_{pt}) &= \beta_1 \log(P_{pt}) + \beta_2 \log(Y_{pt}) + \beta_3 t + \beta_4 \left(t \times \log(P_{pt})\right) + \beta_5 \log(P_{pt-2}) + \beta_6 \log(t \times P_{pt-2}) + \delta_p + \epsilon_{pt} \end{split}$$

- time period $t \in \{0, ..., T\}$, province p
- \blacksquare C_{pt} : primary coal consumption
- \blacksquare P_{pt} : output price index
- Y_{pt}: real GDP
- δ_{P} : province fixed effect

Empirical results

* p < 0.10, ** p < 0.05, *** p < 0.01

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Ln Real coal price index_p,t	-0.0254	0.0795	-0.179**	0.0692	0.159*	0.162	0.0523	-0.183***	0.0740
	(0.1382)	(0.1303)	(0.0718)	(0.1407)	(0.0809)	(0.0993)	(0.0952)	(0.0657)	(0.1361)
Ln GDP_p,t	1.186***	1.420***	1.291***	1.269***	1.111***	1.112***	1.256***	1.234***	1.088***
1,	(0.2697)	(0.2967)	(0.3550)	(0.2548)	(0.2969)	(0.2896)	(0.4221)	(0.3050)	(0.2711)
Time trend_t	-0.0365	-0.0555**	-0.0605	0.0869*	-0.0224	-0.0225	-0.0212	-0.0323	0.215***
	(0.0230)	(0.0246)	(0.0388)	(0.0471)	(0.0267)	(0.0264)	(0.0396)	(0.0304)	(0.0684)
Ln Real coal price index_p,t \times Time trend_t	(/	(/	()	-0.0301**	(/	()	()	()	-0.0284*
				(0.0114)					(0.0147)
Ln Real coal price index_p,t-1				(0.0)	0.00883				(0.0221)
					(0.0740)				
Ln Real coal price index_p,t-2					-0.263***	-0.259***	-0.0722	-0.237***	0.0267
					(0.0624)	(0.0840)	(0.1247)	(0.0817)	(0.1831)
Ln Real coal price index_p,t-2 \times Time trend_t					(0.00-1)	(0.0020)	(0.2227)	(0.002.)	-0.0243
									(0.0171)
Constant	-5.211***	-7.492***	-5.194*	-6.252***	-4.381**	-4.388**	-5.892**	-3.926*	-5.069***
	(1.6401)	(1.9029)	(2.6460)	(1.6893)	(1.8495)	(1.8143)	(2.7218)	(2.2306)	(1.8172)
Province fixed effects	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Observations	379	255	124	379	320	320	196	124	320
R^2	0.975	0.981	0.994	0.977	0.979	0.979	0.985	0.994	0.982
Adjusted R^2	0.972	0.978	0.992	0.974	0.976	0.976	0.981	0.992	0.980
Standard errors in parentheses	5.512	2.310	2.302	2.311	2.310	2.310	2.301		2.000

-0.179 (mean); (4) -0.3522 (in 2012); etc.

Note: Columns 1, 4, 5, 6, and 9 use the full sample; columns 2 and 7 use 1998-2007 ("early"); columns 3 and 8 use 2008-2012 ("late"). Standard errors clustered at Province level.

 $[\]Rightarrow$ Price elasticity point estimates are: (1) -0.0254 (mean); (2) 0.0795 (mean); (3) -0.179 (mean); (4) -0.3522 (in 2012); etc.

Empirical results

Where we are

1 Motivation and research questions

2 Replication

3 Extension

Data

■ S&P Capital IQ: coal mine-level power plant contracts and coal seam height data

■ FRED: Monthly Producer Price Index for coal mining

■ BEA: State-level real GDP data

	mean	sd	min	max	count
Ln Coal contract quantity (tons)	2.8096	1.377317	-6.907755	8.282483	135315
Ln Real contract coal price per ton	3.55144	.3352458	-1.94591	6.861505	135315
Time trend	6.743687	4.946114	0	19	135315
Ln GDP	12.54432	.7256892	10.83782	14.87147	135315
Coal seam height (in.)	82.63363	22.40209	0	168	32290
Observations	135315				

Figure

Empirical strategy - linear time trend, OLS

Full OLS specification with selection on observables:

$$\log(\textit{Quantity}_{it}) = \beta_1 \log(\textit{Price}_{it}) + \gamma_t \left(t \times \log(\textit{Price}_{it})\right) + \tilde{\gamma}_t t + \theta_i + X'_{it} \beta_2 + \epsilon_{it}$$

- time period $t \in \{0, ..., T\}$, contract i
- Quantity_{it}: quantity in tons of coal in contract
- *Price_{it}*: price per ton of coal in contract
- lacksquare θ_i : contracting power plant fixed effect
- X_{it} : covariates (GDP, etc.)

Empirical results - linear time trend, OLS

	(1)	(2)	(3)	(4)
Ln Real coal price per ton	-0.281**	-0.190**	-0.306	-0.280**
	(0.1254)	(0.0933)	(0.3027)	(0.1308)
Ln GDP	-0.0148	0.765^{*}	-1.312	-0.0145
	(0.4494)	(0.4610)	(1.1596)	(0.4443)
Time trend	0.00115	-0.0329***	0.0199	0.00182
	(0.0090)	(0.0109)	(0.0205)	(0.0690)
L n Real coal price per ton \times Time trend				-0.000196
				(0.0195)
Constant	4.814	-5.401	21.36	4.805
	(5.6320)	(5.7299)	(14.9995)	(5.4895)
Power plant fixed effects	Yes	Yes	Yes	Yes
Observations	135315	92481	42834	135315
R^2	0.338	0.359	0.360	0.338
Adjusted R^2	0.336	0.357	0.357	0.336

Standard errors in parentheses

^{*} p < 0.10, ** p < 0.05, *** p < 0.01

Empirical strategy - linear time trend, IV

Structural equation:

$$\log(\textit{Quantity}_{\textit{it}}) = \beta_1 \log(\textit{Price}_{\textit{it}}) + \gamma_t \left(t \times \log(\textit{Price}_{\textit{it}})\right) + \tilde{\gamma}_t t + X'_{\textit{it}} \beta_2 + \epsilon_{\textit{it}}$$

Reduced form equations for the first-stage:

$$\begin{split} \log(\textit{Price}_{\textit{it}}) &= \pi_{01}\textit{SeamHeight}_{\textit{it}} + \alpha_{0t}\left(t \times \textit{SeamHeight}_{\textit{it}}\right) + \tilde{\alpha}_{0t}t + X'_{\textit{it}}\pi_{02} + \nu_{0\textit{it}} \\ t \times \textit{log}(\textit{Price}_{\textit{it}}) &= \pi_{11}\textit{SeamHeight}_{\textit{it}} + \alpha_{1t}\left(t \times \textit{SeamHeight}_{\textit{it}}\right) + \tilde{\alpha}_{1t}t + X'_{\textit{it}}\pi_{12} + \nu_{1\textit{it}} \end{split}$$

- time period $t \in \{0, ..., T\}$, contract i
- Quantity_{it}: quantity in tons of coal in contract
- Price_{it}: price per ton of coal in contract
- $SeamHeight_{it}$: contracting mine coal seam height in inches
- X_{it}: covariates (GDP, etc.)

Empirical results - linear time trend, IV

- . ivregress 2sls lncoalqty lnrealgdp t (lnrealcoalprice c.lnrealcoalprice#c.t = seam_height_in c.seam_height_
- > in#c.t), robust first

First-stage regressions

Number of obs F(4, 3228) Prob > F R-squared Adj R-squared	= = = =	1440.61 0.0000 0.1384 0.1382
Root MSE	=	0.2974

lnrealcoalprice	 Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
lnrealgdp t seam_height_in	.0925013 0402758 0037298	.002295 .0012027 .0001564	40.31 -33.49 -23.85	0.000 0.000 0.000	.0880031 0426331 0040363	.0969996 0379185 0034233
c.seam_height_in#c.t	.0003089	.0000145	21.29	0.000	.0002804	.0003373
_cons	2.717818	.0314011	86.55	0.000	2.65627	2.779365

Number of	obs =	32,290
F(4, 3228	5) =	291754.12
Prob > F	=	0.0000
R-squared	=	0.9750
Adj R-squ	ared =	0.9750
Root MSE	=	2.8592

c. lnrealcoalprice#c.t	 Coefficient	Robust std. err.	t	P> t	[95% conf.	interval]
lnrealgdp t seam_height_in	.8116657 3.107188 0129057	.0225328 .013436 .0010074	36.02 231.26 -12.81	0.000 0.000 0.000	.7675005 3.080853 0148801	.8558309 3.133523 0109312
c.seam_height_in#c.t	.0015935	.0001582	10.08	0.000	.0012835	.0019035
_cons	-7.776669	.3007634	-25.86	0.000	-8.366176	-7.187161

Empirical results - linear time trend, IV

Relevance:

Exogeneity: variation in coal seam can be treated as an exogeneous supply shock

Empirical results - linear time trend, IV

```
Instrumental variables 2SLS regression
                                                Wald chi2(4)
                                                                     586.67
                                                Prob > chi2
                                                                     0.0000
                                                R-squared
                                                                     1.7253
                                                Root MSE
                                    Robust
           lncoalqty | Coefficient std. err. z P>|z|
                                                                [95% conf. interval]
     lnrealcoalprice
                       -6.541249
                                   .3664515 -17.85 0.000
                                                               -7.259481
                                                                           -5.823017
c.lnrealcoalprice#c.t
                         .7910052
                                   .0965278
                                                8.19
                                                       0.000
                                                                 .6018143
                                                                            .9801962
           lnrealgdp
                        -.0350992
                                   .0628476
                                               -0.56
                                                       0.577
                                                               -.1582781
                                                                            .0880797
                        -2.628501
                                   .3165763 -8.30 0.000
                                                               -3.248979
                                                                           -2.008023
                         25,68733
                                    1.61848
                                               15.87
                                                       0.000
                                                                22,51517
                                                                            28,85949
               _cons
```

Number of obs

Instrumented: Inrealcoalprice c.lnrealcoalprice#c.t

Instruments: lnrealgdp t seam_height_in c.seam_height_in#c.t

32,290

Empirical strategy - time dummies, OLS

Full OLS specification with selection on observables:

$$\log(\textit{Quantity}_{it}) = \beta_1 \log(\textit{Price}_{it}) + \sum_{t=0}^{T} \gamma_t \left(\tau_t \times \log(\textit{Price}_{it})\right) + \sum_{t=0}^{T} \tilde{\gamma}_t \tau_t + \theta_i + X'_{it} \beta_2 + \epsilon_{it}$$

- \blacksquare time period t, contract i
- Quantity_{it}: quantity in tons of coal in contract
- *Price_{it}*: price per ton of coal in contract
- \blacksquare τ_t : time period dummy
- \blacksquare θ_i : contracting power plant fixed effect
- X_{it}: covariates (GDP, etc.)

Empirical strategy - time dummies, IV

Structural equation:

$$\log(\textit{Quantity}_{\textit{it}}) = \beta_1 \log(\textit{Price}_{\textit{it}}) + \sum_{t=0}^{T} \gamma_t \left(\tau_t \times \log(\textit{Price}_{\textit{it}})\right) + \sum_{t=0}^{T} \tilde{\gamma}_t \tau_t + X'_{\textit{it}} \beta_2 + \epsilon_{\textit{it}}$$

T+1 reduced form equations for the first-stage:

$$\tau_{T} \times log(\textit{Price}_{iT}) = \pi_{T1} \textit{SeamHeight}_{it} + \sum_{t=0}^{I} \alpha_{Tt} \left(\tau_{t} \times \textit{SeamHeight}_{it} \right) + \sum_{t=0}^{I} \tilde{\alpha}_{Tt} \tau_{t} + X'_{it} \pi_{T2} + \nu_{Tit}$$

- time period t, contract i
- Quantity_{it}: quantity in tons of coal in contract
- *Price_{it}*: price per ton of coal in contract
- $SeamHeight_{it}$: contracting mine coal seam height in inches
- \blacksquare τ_t : time period dummy
- X_{it}: covariates (GDP, etc.)

Replication vs. extension

[Figure: Normalize all estimates to 0 in 2000 and plot evolution of elasticities for replication, OLS extension, and IV extension]

Conclusions

■ Burke and Liao (2015) results are not externally valid