

Discrete Fourier Transform

Larry Doolittle, LBNL USPAS Houston, January 25, 2023

Lawrence Berkeley National Lab

$$X_k = \sum_{n=0}^{N-1} x_n \cdot e^{\frac{2\pi j}{N}kn}$$

where x_n is the input time series of N complex numbers, and X_k are the N output frequency bins of complex numbers.

The very nature of the analysis assumes that the N input points represent one period of a periodic signal.

In many cases, the input waveform is a slice of non-periodic data. These slides explain how that shows up in the spectrum, and a couple of ways to mitigate problems.

2

Example spectrum

Periodicity

$$256/23\approx11.13$$

$$23 * 11 = 253$$

Example spectrum

Diversion: How fast is a Fast Fourier Transform?

$$X_k = \sum_{n=0}^{N-1} x_n \cdot e^{\frac{2\pi i}{N}kn}$$

has n^2 multiplications as written.

FFTs come from tricky factorization of that $N \times N$ matrix. Computation effort usually written as $N \log_2 N$ when N is a power of two, That's a special case: if N has a prime factorization such that

$$N = \prod_k p_k$$

generalized FFT techniques can compute the N-point using about

$$N \cdot \sum_{k} p_{k}$$

multiplications. Examples:

- 256-point DFT: 256*256 multiplies
- 256-point FFT: 256*(2+2+2+2+2+2+2) = 256*16 multiplies
- 253-point FFT: 256*(23+11) = 256*34 multiplies

Some, but not all, modern DFT software takes advantage of this.