Individual Project: Exoplanets

Yi Chiew

NASA EXOPLANET ARCHIVE A SERVICE OF NASA EXOPLANET SCIENCE INSTITUTE

The Dataset

 Data on all Exoplanets discovered including data on the planet itself, the star it orbits, and the discovery method.

What are we looking at?

 Characterizing Earthlike planets (Radius <= 1.5 Earth Radii) and Super Earths (radius 1.5-5 Earth Radii) by discovery method and discovery facility

Data Cleaning: Removing Unused Data

- Starting dataset is 5458 rows x 25 columns.
- Remove: NAs for mass and radius,
- Remove: Radius >5 Earth Radii or >25 Earth Mass
- Discovery Method and Discovery Facility converted to factors
- Rechecking summary reveals many NAs for columns we don't care about but none for the columns we do care about.
- Dimensions now 3522 x 25

Data Cleaning: Classification

- Classify into Earthlike and Super Earth based on radius by creating a separate vector and then binding it to the dataframe.
- There are 28 discovery facilities but only 4 with more than 100 discoveries.
 - Using vectors with facility names and for loops we characterize all the facilities into: "Kepler", "TESS", "La Silla Observatory", "Multiple Observatories", "Other"
- There are 6 discovery methods but only 3 with more than 50 discoveries
 - Using vectors with method names and for loops we characterize all the discovery methods into: "Transit", "Radial Velocity", "Microlensing", "Other"
- Lastly, we want to look at the mass/radius ratio of the various planets, so we add mass/radius as a column.
 - Important to realize this means multiples of Earth's density

Summary Statistics

Comparisons by Discovery Facility

Mass of Planets by Discovery Facility

Histogram of Mass by Discovery Facilty

Comparisons Between Earthlike and Super Earths

Mass/Radius Ratio of Earthlike Planets v. Super Earths

Histogram of Mass/Radius Ratio

Plots of Mass versus Radius

Planet Mass by Radius

Planet Mass by Radius Squared

Planet Radius Squared (Earth Radii Squared)

Limitations

- The final dataset used for analysis was only 64.5% of the total dataset
- There are a number of outliers in the data set which could affect analysis
- Mass should rise as the third power of radius as volume does but in this data set it appeared to rise as the second part of radius which may represent a decrease in density in larger planets.

Conclusions

- While many different facilities and multiple methods are involved in discovery of exoplanets, the vast majority were discovered by
 - 1 space telescope
 - 1 method
- Earthlike planets represent a relatively small percentage of overall exoplanets discovered
- Mass of exoplanets rises as the square of the radius, with a steeper gradient for earthlike planets than super earths

