Сьогодні 06.09.2024 Ypok №1

Повторення найважливіших понять курсу хімії 8 класу. Інструктаж з БЖД. Склад, класифікація та номенклатура основних класів неорганічних сполук

Повідомлення мети уроку

Ви зможете:

- згадати основні класи неорганічних сполук;
- класифікувати оксиди, солі, кислоти, основи;
 - користуватися сучасною номенклатурою неорганічних речовин;
- повторити правила безпеки під час роботи в хімічному кабінеті.

Організація класу

Із переліку слів, виберіть комплімент для свого товариша

добрий талановития добрий _доории красивий сміливий з СМІЛИВИЙ добрий шедрий-Щедрии скромнии

BCIM pptx

Інструктаж з БЖД

Джерело: youtu.be/akjdhsihstE

BCIM pptx

Актуалізація опорних знань

Чому речовини поділяються на органічні та неорганічні сполуки?

Чим вони відрізняються?

Навіщо вивчати неорганічні речовини?

Мотивація навчальної діяльності

Наш організм для підвищення імунітету потребує вітаміну С, тобто аскорбінової кислоти, що міститься у цитрусових, шипшині, смородині. Необхідно у свій раціон включити калорійні продукти такі як: м'ясо, рибу, різноманітні супи і бульйони, але не забувайте до них додати натрій хлориду.

Згадані сполуки належать до основних класів неорганічних сполук. Сьогодні ми згадаємо ці класи та зможемо виділити їх особливості.

Пригадай

Неорганічні сполуки

Сполуки, у складі яких є практично всі елементи періодичної системи. Неорганічні сполуки відносяться до неживої природи, більшість із них є мінералами.

Органічні сполуки

Сполуки, у складі яких визначили наявність атомів Карбону (С), які з'єднуються між собою. Багато перших таких сполук виявили у живих організмах (тварини, рослини) – називали органіка.

Формування вмінь і навичок

Хімічна номенклатура— це правила утворення назв хімічних сполук або система назв, що складається із формул і назв речовин.

В основі міжнародної номенклатури IUPAC неорганічних речовин лежить їх склад, причому кожна речовина має назву, відповідно до її формули:

- кожній структурній формулі має відповідати одна систематична назва;

- систематична назва хімічного елемента узгоджується з назвами його сполук.

Оксиди – бінарні сполуки, що складаються з атомів двох хімічних елементів, один з яких — Оксиген.

 E_xO_y

К₂О калій оксид

 Al_2O_3 алюміній оксид

СО карбон (II) оксид

CO₂ карбон (IV) оксид

Сьогодні

Класифікація оксидів

Оксиди

Несолетворні

N₂O NO CO SiO

Основні

оксиди металів з валентністю I,II,III

K₂O BaO

Солетворні

Амфотерні

ZnO BeO Al₂O₃

Кислотні

оксиди металів з валентністю IV і більше

MnO₂ CrO₃ оксиди неметалів

Cl₂O Br₂O₃ CO₂ P₂O₅

Сьогодні

Перевір себе

Кислоти

Молекула кислоти складається з атомів Гідрогену і кислотного залишку.

Склад молекули кислоти в загальному вигляді можна записати так: н Кислотний залишок

<u>Кислотний залишок</u>— це частина молекули кислоти, що сполучена з атомом (атомами) гідрогену.

Валентність кислотного залишку визначається кількістю атомів Гідрогену в кислоті, здатних заміщуватись на атоми металів.

HCI

HNO₃

H₂SO₄

H₂CO₃

H₂SiO₃

HNO₃ HCI Формула кислоти Нітратна Назва міжнародна Хлоридна Соляна Азотна Назва поширена $-NO_3$ Кислотний залишок - CI Назва залишку Нітрат **Хлорид**

Хвилинка-цікавинка

Чимало справ у соляної кислоти. У шлунку вона активує фермент пепсиноген, який розкладає білки, що потрапили з їжею, на складові частини. Соляная кислота - сильний бактерицид. Більшість бактерій, що потрапили в шлунок з їжею, гинуть під її дією. Так що лікарі не випадково тривожаться, якщо у пацієнта знижена кислотність шлункового соку. Цікаво, що у птахів, що харчуються відмерлими рештками, кислотність шлункового соку величезна. І це допомагає їм розправлятися з тими мільярдами мікробів, які буквально на них кишать.

Основи

Основи — це складні речовини, що складаються з атома металічного елемента, і однієї або декіль-кох гідроксильних груп *OH*.

Валентність ОН групи постійна і дорівнює 1.

Металічний елемент

гідроксильна група ОШ (о-аш)

(II) C--

Cu

OH

 $Cu(OH)_2$

Валентність елемента визначає кількість гідроксильних груп (ОН).

Модель молекули основи

Металічний елемент

гідроксильна Група ОН

Хімічна формула

Назва речовини

Na — • H

NaOH

Натрій гідроксид

Ca OH

 $Ca(OH)_2$

Кальцій гідроксид

AI OHH

 $AI(OH)_3$

Алюміній гідроксид

Назвіть гідроксиди

NaOH

— натрій гідроксид

Ca(OH)₂

— кальцій гідроксид

Ba(OH)₂

— барій гідроксид

Си(OH)₂

— купрум(II) гідроксид

Складіть формули гідроксидів елементів та назвіть.

Fe (III)

Fe (II)

Al

Zn

Mg

Ba

K

Fe(OH)₃

— ферум (III) гідроксид

Fe(OH)₂

— ферум (II) гідроксид

Сьогодні

Солі

Солі – складні речовини, що містять йони металічних елементів та кислотні залишки.

У формулах солей на першому місці пишуть символ металічного елемента, а потім — кислотний залишок.

Металічний елемент + кислотний залишок, наприклад BaSO₄, CaCl₂. Загальна формула солей – MeK3.

Для елементів зі сталою валентністю: K₂SO₃ — калій сульфат, CaCO₃ — кальцій карбонат.

Для елементів зі змінною валентністю: $FeSO_4$ — ферум (II) сульфат, $CuCl_2$ — купрум (II) хлорид.

Модель молекули солі

Металічний елемент

гідроксильна Група ОН Хімічна формула

Назва речовини

K₂CO₃

Калій карбонат

MgCO₃

Магній карбонат

Складіть формули солей

Натрій карбонат

Алюміній сульфат

Калій сульфат

Натрій силікат

Калій нітрат

Кальцій сульфат

Na₂CO₃

 $Al_2(SO_4)_3$

K₂SO₄

Na₂SiO₃

KNO₃

CaSO₄

Працюємо самостійно

Оксиди ЕхОу	Кислоти HxR	Основи Ме(ОН)х	Солі MexRy

Ca₃(PO₄)₂ BaO K₂SO₄ **PbO** Fe(OH)₃ **HNO**₃ P_2O_5 **KCI** Ca(NO₃)₂

KNO₃ SiO₂ H₂SO₄ Mg(OH)₂ H_2CO_3 NaOH Al_2O_3 Na₂SO₄ FeO

Робота в зошиті

У якій з речовин, ферум(III) оксиді чи ферум(III) хлориді, масова частка Феруму більша?

Дано:

Розв`язання:

Fe₂O₃

 $W = \frac{n \cdot Ar}{Mr} \cdot 100\%$

FeCl₃

 $Mr(Fe_2O_3)=2.56+3.16=160$

W1(Fe)-?

W1(Fe)= $\frac{2.56}{160}$ ·100%=70%

W2(Fe)-?

 $Mr(FeCl_3)=1.56+3.35,5=162,5$

W2(Fe)= $\frac{1.56}{162.5}$ ·100%=34%

Відповідь: W1>W2

Бесіда з учнями

На які класи поділяються всі хімічні речовини?

Які речовини називаються простими? Наведіть приклади.

Прості речовини, у свою чергу, поділяються ще на дві групи. Які саме?

Які речовини називають складними? Наведіть приклади.

Рефлексія

Сьогодні я дізнався...

Було цікаво...

Було важко...

Я виконував завдання...

Я зрозумів, що...

Тепер я можу...

Я відчув, що...

Я придбав...

Я навчився...

У мене вийшло...

Домашнє завдання

1. Опрацювати параграф №1;