TIAN'S INVARIANT OF THE GRASSMANN MANIFOLD

JULIEN GRIVAUX

ABSTRACT. — We prove that Tian's invariant on the complex Grassmann manifold $G_{p,q}(\mathbb{C})$ is equal to 1/(p+q). The method introduced here uses a Lie group of holomorphic isometries which operates transitively on the considered manifolds and a natural imbedding of $(\mathbb{P}^1(\mathbb{C}))^p$ in $G_{p,q}(\mathbb{C})$.

RÉSUMÉ. — On prouve que l'invariant de Tian sur la grassmannienne $G_{p,q}(\mathbb{C})$ est 1/(p+q). La méthode présentée dans cet article utilise un groupe de Lie d'isométries holomorphes qui opère transitivement sur les variétés considérées ainsi qu'un plongement naturel de $(\mathbb{P}^1(\mathbb{C}))^p$ dans $G_{p,q}(\mathbb{C})$.

1. Introduction

On a complex manifold, an hermitian metric h is characterized by the 1-1 symplectic form ω defined by $\omega = i g_{\lambda \overline{\mu}} dz^{\lambda} \wedge d\overline{z}^{\mu}$, where $g_{\lambda \overline{\mu}} = h_{\lambda \overline{\mu}}/2$.

The metric is a Kähler metric if ω is closed, i. e. $d\omega = 0$; then M is a Kähler manifold. On a Kähler manifold, we can define the Ricci form by $R = i R_{\lambda \bar{\mu}} dz^{\lambda} \wedge d\bar{z}^{\mu}$, where $R_{\lambda \bar{\mu}} = -\partial_{\lambda \bar{\mu}} \log |g|$.

A Kähler manifold is Einstein with factor k if $R = k\omega$. For instance, choosing a local coordinate system $Z = (z_1, \ldots, z_m)$, the projective space $\mathbb{P}_m(\mathbb{C})$ with the Fubini-Study metric $\omega = i\partial \bar{\partial} \log(1 + ||Z||^2)$ is Einstein with factor m + 1.

On a Kähler manifold M, the first Chern class $C^1(M)$ is the cohomology class of the Ricci tensor, that is the set of the forms $R + i\partial \bar{\partial} \varphi$, where φ is C^{∞} on M. If there is a form in $C^1(M)$ which is positive (resp. negative, zero), then $C^1(M)$ is positive (resp. negative, zero). If a Kähler manifold is Einstein, then $C^1(M)$ and k are both positive (resp. negative, zero). In the negative case, it was proved by Aubin ([Au1], see also [Au4]), that there exists a unique Einstein-Kähler metric (E.K. metric) on M. It is so for the zero case too ([Au1], [Ya]). The question for the positive case is still open: some manifolds, such as the complex projective space blown up at one point, do not admit an E.K. metric (for obstructions, see [Li] and [Fu]). Aubin [Au2] and Tian [Ti] have shown that for suitable values of holomorphic invariants of the metric, there exists an E.K. metric on M.

¹⁹⁹¹ Mathematics Subject Classification. 53C55, 32M10.

Key words and phrases. Kähler manifold, Einstein-Kähler metric, first Chern class, admissible functions, Tian's invariant, grassmannian.

For $\omega/2\pi$ in $C^1(M)$, Tian's invariant $\alpha(M)$ is the supremum of the set of the real numbers α satisfying the following: there exists a constant C such that the inequality $\int_M e^{-\alpha\varphi} \leq C$ holds for all the C^{∞} functions φ with $\omega+i\partial\bar{\partial}\varphi>0$ and $\sup\varphi\geq 0$, where $\omega=i\,g_{\lambda\bar{\mu}}\,dz^{\lambda}\wedge d\bar{z}^{\mu}$ is the metric form. Such functions φ are said ω -admissible.

In [Ti], Tian established that if $\alpha(M) > m/(m+1)$, m being the dimension of M, there exists an E.K. metric on M. This condition is not necessary: it does not hold on the projective space, where Tian's invariant is 1/(m+1).

In the same paper, Tian introduces a more restrictive invariant $\alpha_G(M)$, considering only the admissible functions φ invariant by the action of a compact group G of holomorphic isometries. The sufficient condition for the existence of an E.K. metric on M remains $\alpha_G(M) > m/(m+1)$; it is more easily satisfied if the group G is rich enough.

In many cases, the group G is a non-discrete Lie group. The invariant $\alpha_G(M)$ can be computed using subharmonic functions methods and the maximum principle (for effective examples, see [Be1], [Be2], [Be-Ch1], [Be-Ch2], [Re]).

In this paper, we prove the following theorem:

Theorem 1.1. Tian's invariant on $G_{p,q}(\mathbb{C})$ is given by $\alpha(G_{p,q}(\mathbb{C})) = 1/(p+q)$.

This generalizes the known result on $\mathbb{P}^m(\mathbb{C})$ ([Ti], see also [Au3]). Let us also mention that Tian's invariant has been computed on $\mathbb{P}^m(\mathbb{C})$ blown up at one point and on certain Fermat hypersurfaces using Hörmander L^2 estimates for the $\overline{\partial}$ -equation ([Ti]).

We first compute the volume element of the metric $\mathscr{G}_{p,q}$; then we will establish some general preliminary results concerning Tian's invariant as well as imbeddings of $\{\mathbb{P}^1(\mathbb{C})\}^p$ in $G_{p,q}(\mathbb{C})$ which allow us to deduce $\alpha(G_{p,q}(\mathbb{C}))$ from $\alpha(\mathbb{P}^1(\mathbb{C}))$.

2. Basic properties of the Grassmann manifold

We propose here a short survey of the properties of Grassmann manifold (for more details, see [Ko-No]). We denote by $G_{p,q}(\mathbb{C})$ the set of the subspaces of dimension p in \mathbb{C}^{p+q} ; in particular, $G_{1,m}(\mathbb{C})$ is the complex projective space of dimension m. It is known (see [Au3]) that on $\mathbb{P}_m(\mathbb{C})$, the Fubini-Study metric is Einstein with factor m+1 and that Tian's invariant is 1/(m+1). Now, let $M^*(p+q,p)$ be the set of the matrices of rank p in $M_{p+q,p}(\mathbb{C})$. The group $Gl_p(\mathbb{C})$ acts by multiplication on the right on $M^*(p+q,p)$. More precisely $(M^*(p+q,p), \pi, G_{p,q}(\mathbb{C}))$ is a principal fiber bundle with group $Gl_p(\mathbb{C})$. The group $Gl_{p+q}(\mathbb{C})$ acts by multiplication on the left on $M^*(p+q,p)$ and induces an action on $G_{p,q}(\mathbb{C})$; so does the unitary group U(p+q). These groups act transitively on $G_{p,q}(\mathbb{C})$, which shows that $G_{p,q}(\mathbb{C})$ is compact.

We denote by \mathcal{I} the set of all increasing-ordered subsets of p elements in $\{1,\ldots,p+q\}$. Let P be an element of $M^*(p+q,p)$, $P=(p_{ij})_{\substack{1\leq i\leq p+q\\1\leq j\leq p}}$. By Cauchy-Binet formula we get: $\det({}^tP\overline{P})=\sum_{I\in\mathcal{I}}|\det m_I(P)|^2$, where $m_I(P)$ is the matrix $(p_{ij})_{\substack{i\in I\\1\leq j\leq p}}$. The form ω , where $\omega=i\,\partial\overline{\partial}\log\det({}^tP\overline{P})$, is invariant by the action of $Gl_p(\mathbb{C})$ on $M^*(p+q,p)$, and so it projects onto a form $\mathscr{G}_{p,q}$. The metric $\mathscr{G}_{p,q}$ is a Kähler metric form on $G_{p,q}(\mathbb{C})$. For p=1, this metric on $G_{1,m}(\mathbb{C})$ is the Fubini-Study metric on the complex projective space. The action of the unitary group U(p+q) on $G_{p,q}(\mathbb{C})$ preserves the metric $\mathscr{G}_{p,q}$ so that U(p+q) is a group of holomorphic isometries which operates transitively on $G_{p,q}(\mathbb{C})$. For I in \mathcal{I} , let U_I be the set of the matrices P in $M^*(p+q,p)$ such that $\det(m_I(P))$ is non-zero. Then $\pi(U_I)$ is a coordinate open set on $G_{p,q}(\mathbb{C})$, the matrix Z_I in $M_{q,p}(\mathbb{C})$ is the coordinate, the inverse of the chart φ_I sends $M^*(p+q,p)$ onto $\pi(U_I)$ and we have $m_I(\varphi_I^{-1}(Z_I))=I^{(p)}$ where $I^{(p)}$ is the $p\times p$ identity matrix, and $m_{I^c}(\varphi_I^{-1}(Z_I))=Z_I$.

Lemma 2.1. For I in \mathcal{I} , let λ_I be the map from $\pi(U_I)$ to \mathbb{R}_+ defined by

$$\lambda_I(Z_I) = \left| \det(\operatorname{Id} + {}^t Z_I \overline{Z}_I) \right|^{-(p+q)}.$$

Then $(\lambda_I)_{I\in\mathcal{I}}$ are the components of a maximal differential form η on $G_{p,q}(\mathbb{C})$, namely:

$$\eta = \lambda_I (i/2)^{pq} (dZ \wedge d\overline{Z})_I.$$

Proof. It suffices to show that the following transformation rule holds:

for every
$$I$$
, \widetilde{I} in \mathcal{I} , λ_I is equal to $\lambda_{\widetilde{I}} \times \left| \det \frac{\partial Z_{\widetilde{I}}}{\partial Z_I} \right|^2$ on $\pi(U_I) \cap \pi(U_{\widetilde{I}})$.

Let P_I be the matrix $\varphi_I^{-1}(Z_I)$. Then $P_I\{m_{\widetilde{I}}(P_I)\}^{-1} = P_{\widetilde{I}}$, so $Z_{\widetilde{I}} = m_{\widetilde{I}^c}(P_I)\{m_{\widetilde{I}}(P_I)\}^{-1}$. The differential of the map which sends Z_I on P_I is the map which sends H on H, where $m_{I^c}(H) = H$ and $m_I(H) = 0$. The change of charts sending Z_I on $Z_{\widetilde{I}}$, we obtain

$$\begin{split} D\,Z_{\widetilde{I}}(H) &= m_{\,\widetilde{I}^c}(\breve{H}) \left\{ m_{\widetilde{I}}(P_I) \right\}^{-1} - m_{\,\widetilde{I}^c}(P_I) \left\{ m_{\widetilde{I}}(P_I) \right\}^{-1} m_{\widetilde{I}}(\breve{H}) \left\{ m_{\widetilde{I}}(P_I) \right\}^{-1} \\ &= \left(m_{\,\widetilde{I}^c}(\breve{H}) - \gamma \, m_{\widetilde{I}}(\breve{H}) \right) \alpha^{-1}, \end{split}$$

where $\alpha = m_{\tilde{I}}(P_I)$, $\beta = m_{\tilde{I}^c}(P_I)$ and $\gamma = \beta \alpha^{-1}$.

Let us define a map u from $M_{q,p}(\mathbb{C})$ to $M_{q,p}(\mathbb{C})$ by $u(H) = m_{\tilde{I}^c}(\check{H}) - \gamma m_{\tilde{I}}(\check{H})$. We can choose $I = \{q+1,\ldots,q+p\}$ and $\tilde{I} = \{1,\ldots,r\} \cup \{q+1+r,\ldots,q+p\}$, where $0 \le r \le \inf(p,q)$. We define the $k \times l$ matrix $E_{i,j}^{(k \times l)}$ by $(E_{i,j}^{(k \times l)})_{\lambda \mu} = \delta_{i\lambda} \delta_{j\mu}$. We have

$$\begin{split} m_{\widetilde{I}}\big(\breve{E}_{i,j}^{(q\times p)}\big) &= E_{i,j}^{(p\times p)} \quad \text{if } i \leq r, \text{ and } 0 \text{ if } i > r, \\ \text{and} \quad m_{\widetilde{I}^c}\big(\breve{E}_{i,j}^{(q\times p)}\big) &= E_{i-r,j}^{(q\times p)} \quad \text{if } i > r, \text{ and } 0 \text{ if } i \leq r. \text{ Hence} \\ \big(\gamma \, m_{\widetilde{I}}(\breve{E}_{i,j}^{(q\times p)})\big)_{\alpha\beta} &= \gamma_{\alpha i} \, m_{\widetilde{I}}(\breve{E}_{i,j}^{(q\times p)})_{ij} \, \delta_{j\beta} = \gamma_{\alpha i} \, \delta_{j\beta} \quad \text{if } i \leq r, \text{ and } 0 \text{ elsewhere.} \end{split}$$

Now the map which sends H to $\gamma m_{\widetilde{I}}(\check{H})$ can be restricted if $1 \leq j \leq p$ to the span B_j of the $(E_{i,j})_{1 \leq i \leq q}$. The r first columns of its matrix are those of γ , the others are 0. The map which sends H to $\gamma m_{\widetilde{I}^c}(\check{H})$ maps also B_j into itself. The right upper block of its matrix is $I^{(q-r)}$, the other elements are 0. This allows us to compute the matrix of the restriction of u to B_j , whose determinant is $(-1)^{r \times (q-r)} \det(\gamma_{ij})_{\substack{q-r+1 \leq i \leq q \\ 1 \leq j \leq r}}$. So $\det u = (-1)^{p \times r \times (q-r)} \left[\det(\gamma_{ij})_{\substack{q-r+1 \leq i \leq q \\ 1 \leq j \leq r}}\right]^p$. For $1 \leq i \leq q$, let C_i be the span of the $(E_{i,j})_{1 \leq j \leq p}$. Each C_i is stable by the map from $M_{q,p}(\mathbb{C})$ to $M_{q,p}(\mathbb{C})$ which sends H to $H \alpha^{-1}$. The matrix of the restriction is α^{-1} , so the determinant of the map is $(\det \alpha)^{-q}$. Hence

$$\left|\det DZ_{\widetilde{I}}(H)\right|^{2} = \left|\det \left(\gamma_{i,j}\right)_{\substack{q-r+1 \leq i \leq q\\1 \leq j \leq r}}\right|^{2p} \times \left|\det \alpha\right|^{-2q}.$$

Let A be the right $r \times r$ upper block of α . The left $(p-r) \times (p-r)$ lower block of α is $I^{(p-r)}$ and the right $(p-r) \times r$ lower block is 0, so det $\alpha = (-1)^{r(p-r)}$ det A. The left $r \times (p-r)$ lower block of β is 0, the right $r \times r$ block is $I^{(r)}$ so that the left $r \times r$ lower block of γ is A^{-1} .

From this we deduce $\left|\det DZ_{\widetilde{I}}(H)\right|^2 = \left|\det \alpha\right|^{-2(p+q)}$. Since $P_I \alpha^{-1} = P_{\widetilde{I}}$, we have

$$\lambda_{\widetilde{I}} = \left| \det \left({}^{t}P_{\widetilde{I}} \overline{P}_{\widetilde{I}} \right) \right|^{-(p+q)} = \left| \det \alpha \right|^{2(p+q)} \lambda_{I} = \left| \det \frac{\partial Z_{\widetilde{I}}}{\partial Z_{I}} \right|^{-2} \lambda_{I}.$$

Lemma 2.2. The unitary group U(p+q) preserves η .

Proof. We call I the set $\{q+1,\ldots,q+p\}$. We define P_I in $\pi(U_I)$ by $P_I = \varphi_I^{-1}(Z_I)$. Let U be an element in U(p+q) such that $m_I(UP_I)$ is invertible. Let $\tilde{P}_I = UP_I \{m_I(UP_I)\}^{-1}$ and $\tilde{Z}_I = m_{I^c}(\tilde{P}_I)$. We have $\tilde{Z}_I = m_{I^c}(U) P_I \{m_I(U) P_I\}^{-1}$. So

$$D\tilde{Z}_{I}(H) = m_{I^{c}}(U) \left[\check{H} \left\{ m_{I}(U) P_{I} \right\}^{-1} - P_{I} \left\{ m_{I}(U) P_{I} \right\}^{-1} m_{I}(U) \, \check{H} \left\{ m_{I}(U) P_{I} \right\}^{-1} \right].$$

Thus $D\tilde{Z}_I(H) = X\check{H}\delta^{-1}$, where $\delta = m_I(U)P_I$ and $X = m_{I^c}(U)\big[I^{(p+q)} - P_I\delta^{-1}m_I(U)\big]$. Let X_1 be the $q \times q$ matrix of the q first columns of X. Then, $X\check{H} = X_1H$ and we get $D\tilde{Z}_I(H) = X_1H\delta^{-1}$. The determinant of the map from $M_{q,p}(\mathbb{C})$ to $M_{q,p}(\mathbb{C})$ which sends H to $H\delta^{-1}$ is $(\det \delta)^{-q}$. The determinant of the map from $M_{q,p}(\mathbb{C})$ to $M_{q,p}(\mathbb{C})$ which sends H to X_1H is $(\det X_1)^p$, so $\det D\tilde{Z}_I = (\det X_1)^p (\det \delta)^{-q}$. We divide U into four blocks:

$$U = \begin{pmatrix} U_q & U_{q,p} \\ U_{p,q} & U_p \end{pmatrix}, \quad U_q \in M_q(\mathbb{C}), \ U_p \in M_p(\mathbb{C}), \ U_{p,q} \in M_{p,q}(\mathbb{C}), \ U_{q,p} \in M_{q,p}(\mathbb{C}).$$

Then $\delta = U_{p,q} Z_I + U_p$, so $X_1 = U_q - (U_q Z_I + U_{q,p}) (U_{p,q} Z_I + U_p)^{-1} U_{q,p}$. Let Z in $M_{p+q,p+q}(\mathbb{C})$ be the matrix with blocks $Z_q = I^{(q)}$, $Z_{p,q} = 0$, $Z_{q,p} = Z_I$, $Z_p = I^{(p)}$, the notations being the same as above. Writing det $U = \det(UZ)$ and using the column transformation $C_1 \leftarrow C_1 - C_2 (U_{p,q} Z_I + U_p)^{-1} U_{p,q}$ where C_1 is made of the first q columns and C_2 of the remaining ones, we get

$$\det U = \det \left[U_q - \left(U_q Z_I + U_{q,p} \right) \left(U_{p,q} Z_I + U_p \right)^{-1} U_{p,q} \right] \times \det \left(U_{p,q} Z_I + U_p \right).$$

Hence $\left|\det D\tilde{Z}_I\right|^2 = \left|\det \delta\right|^{-2(p+q)}$. We have $\tilde{P}_I = AP_I\delta^{-1}$, so

$$\lambda_{\widetilde{I}} = \det\left({}^{t}\widetilde{P}_{I}\overline{\widetilde{P}}_{I}\right)^{-(p+q)} = \det\left({}^{t}P_{I}\overline{P}_{I}\right)^{-(p+q)} \times \left|\det\delta\right|^{2(p+q)} = \lambda_{I} \left|\det D\widetilde{Z}_{I}\right|^{-2},$$

which proves the result.

Proposition 2.3. 1. $dV\left(\mathcal{G}_{p,q}\right) = \eta$.

2. If
$$I \in \mathcal{I}$$
, $\left| \mathcal{G}_{p,q} \right|_I = \left\{ \det \left(I^{(p)} + {}^t Z_I \overline{Z}_I \right) \right\}^{-(p+q)}$.

3.
$$\mathcal{R}\left(\mathscr{G}_{p,q}\right) = (p+q)\mathscr{G}_{p,q}$$
.

Proof. 1. Let I in \mathcal{I} . It is easy to compute $\mathscr{G}_{p,q}$ at the point $Z_I=0$: $\mathscr{G}_{p,q}(H,K)=Tr(H\overline{K})$. Then $dV(\mathscr{G}_{p,q})_{\big|Z_I=0}=\left(i/2\right)^{pq}\left(dZ\wedge d\overline{Z}\right)_I=\eta_{\big|Z_I=0}$. Since $dV(\mathscr{G}_{p,q})$ and η are invariant by the transitive action of U(p+q), we have $dV(\mathscr{G}_{p,q})=\eta$.

- 2. Since $dV(\mathscr{G}_{p,q}) = \left|\mathscr{G}_{p,q}\right|_{I} (i/2)^{pq} \left(dZ \wedge d\overline{Z}\right)_{I}$, property 1 gives the result.
- 3. Remark that $\mathscr{G}_{p,q} = i \, \partial \overline{\partial} \, \log \{ \det(I^{(p)} + {}^t Z_I \overline{Z}_I) \}$. Since $\mathcal{R} \left(\mathscr{G}_{p,q} \right) = -i \, \partial \overline{\partial} \, \log \left| \mathscr{G}_{p,q} \right|_I$, we obtain $\mathcal{R} \left(\mathscr{G}_{p,q} \right) = (p+q) \mathscr{G}_{p,q}$, which expresses that $\mathscr{G}_{p,q}$ is Einstein, with factor p+q.
 - 3. Some general results about Tian's invariant
- 3.1. Tian's invariant with a normalization on a finite set. If X is a manifold, we will denote by μ_X a measure on X compatible with the manifold structure.

Theorem 3.1. Let M be a compact Kähler manifold. We suppose that there exists a compact Lie group G of holomorphic isometries. Let $\Delta_n = \{P_1, \ldots, P_n\}$ be a finite subset of M. Let $\alpha(\omega)$ (resp. $\alpha_{\Delta_n}(\omega)$) be the supremum of the set of the nonnegative real numbers α satisfying the condition: there exists a constant C such that the inequality $\int_M e^{-\alpha\varphi} \leq C$ holds for all the ω -admissible functions φ with $\sup \varphi \geq 0$ (resp. with $\varphi(P_i) \geq 0$ for $1 \leq i \leq n$). Suppose in addition that the orbit of each P_i under the action of G has positive measure. Then $\alpha(\omega) = \alpha_{\Delta_n}(\omega)$.

We first establish a few lemmas which will be useful for the proof.

Lemma 3.2. Let $(\varphi_n)_{n\geq 0}$ be a sequence of admissible functions with nonnegative maxima. Then there exists a subset Ω of M, with $\mu_M(\Omega) = \mu_M(M)$, and a subsequence φ_{n_k} of φ_n , such that for every p in Ω , the sequence $(\varphi_{n_k}(p))_{k\geq 0}$ has a finite lower bound (depending on p).

Proof. It is sufficient to assume that φ_n has null maxima. Let Q_n be a point such that $\varphi_n(Q_n)$ vanishes. Green's formula runs as follows:

$$\varphi_n(Q_n) = \frac{1}{V} \int_M \varphi_n + \int_M G(Q_n, R) \, \Delta \varphi_n(R) \, dV(R),$$

with $G(Q,R) \geq 0$ and $\int_M G(Q,R) dV(R) = C$, where C is a positive constant (see [Au4]). Since φ_n is admissible, $\Delta \varphi_n$ is less than m, m being the dimension of M. Thus $\int_M |\varphi_n| \leq C \, m \, V$. Furthermore, $\int_M \Delta \varphi_n = 0$, so $\int_M |\Delta \varphi_n| = 2 \int_{\{\Delta \varphi_n > 0\}} \Delta \varphi_n \leq 2 m V$. For every Q in M, we have $\nabla \varphi_n(Q) = \int_M \nabla_Q G(Q,R) \Delta \varphi_n(R) dv(R)$, so that

$$\int_{M} |\nabla \varphi_{n}| \leq \int_{M} \left[\int_{M} |\nabla_{Q} G(Q, R)| dv(Q) \right] |\Delta \varphi_{n}(R)| dv(R) \leq 2m \widetilde{C} V,$$

since $\int_M |\nabla_Q G(Q,R)| dv(Q)$ is a continuous, hence a bounded function on M. Thus $(\varphi_n)_{n\geq 0}$ is bounded in the Sobolev space $H^{1,1}(M)$. By Kondrakov's theorem, we can extract from $(\varphi_n)_{n\geq 0}$ a subsequence which converges in $L^1(M)$, and after an other extraction we can suppose that this sequence converges almost everywhere to a function φ of $L^1(M)$. Since φ is finite almost everywhere, we get the result.

Lemma 3.3. Let $(\varphi_n)_{n\geq 0}$ be a sequence of admissible functions with nonnegative maxima and suppose that there exists a compact group G of holomorphic isometries of M such that the orbit of each P_i has positive measure. Let $\Phi: G \to \mathbb{R} \cup \{-\infty\}$ be the map defined by $\Phi(g) = \inf_{\Delta_n} \inf_{k\geq 0} (\varphi_k \circ g)$. Then there exists g in G such that $\Phi(g)$ is finite.

Proof. Suppose that $\Phi \equiv -\infty$. For i = 1, ..., n, let A_i be the set of the g in G such that $\inf_{k \geq 0} (\varphi_k \circ g)(P_i) = -\infty$. The sets A_i are measurable and $\bigcup_{i=1}^n A_i = G$, so there exists i such that A_i has positive measure. From Lemma (3.2), $A_i.P_i$ is a subset of Ω^c . Since Ω and M have the same measure, the measure of $A_i.P_i$ vanishes. Let u_i be the map from G to M which sends g to $g(P_i)$. Then u_i has constant rank on G. Indeed, $u_i \circ L(g) = \sigma_g \circ u_i$, where L(g) is the left translation by g and σ_g the map from M to M which sends x to g.x. Since $G.P_i$ has positive measure, u_i is a submersion on G, so that $u_i(A_i)$ has positive measure. This is a contradiction since $u_i(A_i) = A_i.P_i$.

We can now prove Theorem (3.1).

Proof. It is clear that $\alpha(\omega) \leq \alpha_{\Delta_n}(\omega)$. Conversely, let $\varepsilon > 0$. There exists a sequence $(\varphi_n)_{n\geq 0}$ of admissible functions with positive maxima such that $\int_M e^{-(\alpha(\omega)+\varepsilon)\varphi_k}$ goes to infinity as k goes to infinity. Replacing φ_n by $\varphi_n - \sup \varphi_n$, we can take $\sup \varphi_n = 0$. First we apply Lemma(3.2). For the sake of simplicity, we take $\varphi_{n_k} = \varphi_k$. From Lemma (3.3), there exists an element g in G such that $\Phi(g)$ is finite; we define Ψ_k by $\Psi_k = \varphi_k \circ g - \Phi(g)$. Since g is an isometry, Ψ_k is ω -admissible, and from the very definition of Φ , $\Psi_k(P_i)$ is nonnegative. Furthermore, $\int_{M} e^{-(\alpha(\omega)+\varepsilon)\Psi_{k}} = e^{(\alpha(\omega)+\varepsilon)\Phi(g)} \int_{M} e^{-(\alpha(\omega)+\varepsilon)\varphi_{k}}$. This proves that $\int e^{-(\alpha(\omega)+\varepsilon)\Psi_k}$ goes to infinity as k goes to infinity. Then, $\alpha_{\Delta_n}(\omega) \leq \alpha(\omega) + \varepsilon$. This inequality holds for every positive ε , and so $\alpha_{\Delta_n}(\omega) \leq \alpha(\omega)$.

3.2. Tian's invariant on a product. For a Kähler form ω on a compact Kähler manifold $M, \alpha(\omega)$ is defined as in Theorem (3.1).

Proposition 3.4. Let $(M_i)_{1 \leq i \leq n}$ be compact Kähler manifolds with metric forms $(\omega_i)_{1 \leq i \leq n}$. We endow the product $M_1 \times \cdots \times M_n$ with the metric $\omega_1 \oplus \cdots \oplus \omega_n$. Then $\alpha(\omega_1 \oplus \cdots \oplus \omega_n) = 0$. $\inf_{1\leq i\leq n}\alpha(\omega_i).$

Proof. It suffices to make the proof when n=2, the general result will follow by induction.

- (1) Suppose that $\alpha(\omega_1) \leq \alpha(\omega_2)$, and let $\varepsilon > 0$. There exists a sequence $(\varphi_n)_{n \geq 0}$ of ω_1 admissible functions on M_1 with positive maxima such that $\int_{M_1} e^{-(\alpha(\omega_1)+\varepsilon)\varphi_n}$ goes to infinity when n goes to infinity. We define ψ_n on $M_1 \times M_2$ by $\psi_n(m_1, m_2) = \varphi_n(m_1)$. Thus ψ_n is $(\omega_1 \oplus \omega_2)$ -admissible on $M_1 \times M_2$, with positive maximum, and $\int_{M_1 \times M_2}^{m_1 \times m_2} e^{-(\alpha(\omega_1) + \varepsilon)\psi_n} = V(M_2) \int_{M_1}^{m_2} e^{-(\alpha(\omega_1) + \varepsilon)\psi_n}$, so that $\int_{M_1 \times M_2}^{m_2 \times m_2} e^{-(\alpha(\omega_1) + \varepsilon)\psi_n}$ goes to infinity when n goes to infinity. We have therefore $e^{-(\alpha(\omega_1) + \varepsilon)\psi_n}$
- (2) Let us now prove the opposite inequality. Let α be a real number such that α $\inf(\alpha(\omega_1), \alpha(\omega_2))$ and φ an $(\omega_1 \oplus \omega_2)$ -admissible function on $M_1 \times M_2$. If m_2 is in M_2 , the function which sends m_1 to $\varphi(m_1, m_2)$ is ω_1 -admissible. The same holds for M_1 . Let (u,v) in $M_1 \times M_2$ be such that $\varphi(u,v) \geq 0$. Then

infinity. We have therefore $\alpha(\omega_1 \oplus \omega_2) \leq \alpha(\omega_1) + \varepsilon$. This yields $\alpha(\omega_1 \oplus \omega_2) \leq \alpha(\omega_1)$

$$\int_{M_1 \times M_2} e^{-\alpha \varphi(m_1, m_2)} dV_1 dV_2 = \int_{M_1} e^{-\alpha \varphi(m_1, v)} \left(\int_{M_2} e^{-\alpha \left[\varphi(m_1, m_2) - \varphi(m_1, v) \right]} dV_2 \right) dV_1
\leq C_2 \int_{M_1} e^{-\alpha \varphi(m_1, v)} dV_1 \leq C_1 C_2.$$

Thus, $\alpha \leq \alpha(\omega_1 \oplus \omega_2)$ and we get $\inf(\alpha(\omega_1), \alpha(\omega_2)) \leq \alpha(\omega_1 \oplus \omega_2)$.

3.3. **Tian's invariant on** $G_{p,q}(\mathbb{C})$. Since there is a natural duality isomorphism between $G_{p,q}(\mathbb{C})$ and $G_{q,p}(\mathbb{C})$, we can assume that $p \leq q$ without loss of generality.

3.3.1. Imbedding of
$$\left\{\mathbb{P}^1(\mathbb{C})\right\}^p$$
 into $G_{p,q}(\mathbb{C})$ when $p \leq q$. For w in $\mathbb{C}^{p(q-1)}$, $w = \left(w_{i,j}\right)_{\substack{1 \leq i \leq q \\ i \neq j}}$,

we define the map $\tilde{\rho}_w$ from $\left\{\mathbb{C}^2\setminus(0,0)\right\}^p$ to $M_{p+q,p}(\mathbb{C})$ by

$$\tilde{\rho}_w\Big((\lambda_i, \mu_i)_{1 \le i \le p}\Big) = \begin{cases} \lambda_i \, \delta_{ij} & \text{if} \quad i \le p\\ w_{i-p,j} \, \lambda_j & \text{if} \quad i > p \text{ and } i \ne j+p\\ \mu_i & \text{if} \quad i > p \text{ and } i = j+p \end{cases}$$

We make, for $p+1 \leq i \leq p+q$, the following row transformations: $L_i \leftarrow L_i - \sum_{\substack{1 \leq j \leq p \\ i \neq j+p}} w_{i-p,j} L_j$. We get a matrix $(c_{ij})_{\substack{1 \leq i \leq p+q \\ 1 \leq j \leq p}}$ with $c_{ij} = \delta_{ij} \lambda_i$ if $1 \leq i \leq p$ and $c_{ij} = \delta_{i-p,j} \mu_j$ if $p+1 \leq i \leq p$

We get a matrix $(c_{ij})_{\substack{1 \leq i \leq p+q \\ 1 \leq j \leq p}}$ with $c_{ij} = \delta_{ij} \lambda_i$ if $1 \leq i \leq p$ and $c_{ij} = \delta_{i-p,j} \mu_j$ if $p+1 \leq i \leq p+q$, which has rank p. $\tilde{\rho}_w$ induces a map from $\{\mathbb{P}^1(\mathbb{C})\}^p$ into $G_{p,q}(\mathbb{C})$ as shown on the following diagram, where γ is the projection of the principal fiber bundle $\{\mathbb{C}^2 \setminus \{0,0\}\}^p$ onto $\{\mathbb{P}^1(\mathbb{C})\}^p$. Remark that $\tilde{\rho}_w$ sends $[0,1] \times \cdots \times [0,1]$ onto $\pi(A)$, where $m_{\{p+1,\dots,2p\}^c}(A) = I^{(p)}$ and $m_{\{p+1,\dots,2p\}^c}(A) = 0^{(q \times p)}$.

$$\left\{\mathbb{C}^2 \setminus (0,0)\right\}^p \xrightarrow{\tilde{\rho}_w} M^*(p+q,p)$$

$$\downarrow^{\pi}$$

$$\left\{\mathbb{P}^1(\mathbb{C})\right\}^p \xrightarrow{\rho_w} G_{p,q}(\mathbb{C})$$

We have

$$(\pi \circ \tilde{\rho}_{w})^{*}(\mathcal{G}_{p,q}) = i \, \partial \overline{\partial} \, \log \left(\det {t \tilde{\rho}_{w} \tilde{\rho}_{w}} \right)$$

$$= i \, \partial \overline{\partial} \, \log \left(\frac{\det {t \tilde{\rho}_{w} \tilde{\rho}_{w}}}{\prod_{k=1}^{p} (|\lambda_{k}|^{2} + |\mu_{k}|^{2})} \right) + \sum_{k=1}^{p} i \, \partial \overline{\partial} \, \log (|\lambda_{k}|^{2} + |\mu_{k}|^{2})$$

$$= i \, \partial \overline{\partial} \, \log \tilde{\Phi} + \gamma^{*} (FS_{1} \oplus \cdots \oplus FS_{1}),$$

where FS_1 is the Fubini-Study metric on $\mathbb{P}^1(\mathbb{C})$. $\widetilde{\Phi}$ is invariant by the action of the structural group $\mathbb{C}^* \times \cdots \times \mathbb{C}^*$, so it induces a map Φ from $\{\mathbb{P}^1(\mathbb{C})\}^p$ into \mathbb{C} . Note that $\Phi([0,1] \times \cdots \times [0,1]) = 1$. Then $(\pi \circ \widetilde{\rho}_w)^*(\mathscr{G}_{p,q}) = \pi^*(i \partial \overline{\partial} \log \Phi + FS_1 \oplus \cdots \oplus FS_1)$, so that $\rho_w^*(\mathscr{G}_{p,q}) = i \partial \overline{\partial} \log \Phi + FS_1 \oplus \cdots \oplus FS_1$.

3.3.2. Lower bound of $\alpha(\mathscr{G}_{p,q})$. For I in \mathcal{I} , we define P_I by $m_I(P_I) = I^{(p)}$ and $m_{I^c}(P_I) = 0^{(q \times p)}$. If $n = \binom{p+q}{p}$, we set $\Delta_n = \{P_I\}_{I \in \mathcal{I}}$. Since U(p+q) is a transitive group of holomorphic isometries of $G_{p,q}(\mathbb{C})$, we know from proposition (3.1), that $\alpha(\mathscr{G}_{p,q}) = \alpha_{\Delta_n}(\mathscr{G}_{p,q})$. We set $I = \{p+1,\ldots,2p\}$. Let φ be an admissible function on $G_{p,q}(\mathbb{C})$, nonnegative on Δ_n . The last equality of the precedent section shows that the function $\varphi \circ \rho_w + \log \Phi$ is $(FS_1 \oplus \cdots \oplus FS_1)$ -admissible for every w in $\mathbb{C}^{p(q-1)}$. Furthermore, $(\varphi \circ \rho_w + \log \Phi)$ sends $[0,1] \times \cdots \times [0,1]$ to the nonnegative number $\varphi(P_I)$. It is known that $\alpha(FS_1) = 1$ (see [Au3]). Proposition (3.4) yields $\alpha(FS_1 \oplus \cdots \oplus FS_1) = 1$.

Let α be a real number such that $\alpha < 1$. There exists a constant C, independent of φ , such that $\int_{\{\mathbb{P}^1(\mathbb{C})\}^p} e^{-\alpha\varphi\circ\rho_w} \Phi^{-\alpha} \leq C$. We define the map F_I from $\pi(U_I)$ to \mathbb{R}_+ by $F_I(Z_I) = \det \left(Id + {}^tZ_I\overline{Z}_I\right)$. On $\{\mathbb{P}^1(\mathbb{C})\}^p$, we work with the coordinates μ_1, \ldots, μ_p in the chart $\lambda_1 = \cdots = \lambda_p = 1$. Thus

$$\Phi(\mu) = \frac{F_I \circ \rho_w(\mu)}{\prod_{k=1}^p \left(1 + |\mu_k|^2\right)}, \quad \text{so that} \quad \int_{\mu \in \mathbb{C}^p} e^{-\alpha \varphi \circ \rho_w(\mu)} \frac{dV_\mu(\mathbb{C}^p)}{\prod_{k=1}^p \left(1 + |\mu_k|^2\right)^{2-\alpha} \left(F_I \circ \rho_w(\mu)\right)^{\alpha}} \le C.$$

We have the inequality $\sum_{i=1}^{q} \sum_{j=1}^{p} |Z_{ij}|^2 \leq F_I(P_I)$. In particular, for every k in $\{1,\ldots,p\}$, $1+|\mu_k|^2 \leq F_I \circ \rho_w(\mu)$, and $f_I \circ \rho_w(\mu) \geq 1+\sum_{\substack{1 \leq i \leq p \\ 1 \leq j \leq p \\ i \neq j}} |w_{ij}|^2$. Thus, for $\kappa > 0$ and $w \in \mathbb{C}^{p(q-1)}$,

$$\frac{\prod_{k=1}^{p} (1 + |\mu_{k}|^{2})^{2-\alpha}}{(F_{I} \circ \rho_{w}(\mu))^{\kappa+p+q-\alpha}} \leq \frac{1}{(F_{I} \circ \rho_{w}(\mu))^{\kappa-p+q+\alpha(p-1)}} \leq \frac{1}{(1 + \sum_{\substack{1 \leq i \leq q \\ 1 \leq j \leq p \\ i \neq j}} |w_{ij}|^{2})^{\kappa}} = \frac{1}{(1 + ||w||^{2})^{\kappa}}.$$

We have, according to Proposition (2.3),

$$\int_{\pi(U_I)} \frac{e^{-\alpha\varphi}}{F_I^{\kappa}} = \int_{w \in \mathbb{C}^{p(q-1)}} \int_{\mu \in \mathbb{C}^p} \frac{e^{-\alpha\varphi\circ\rho_w(\mu)}}{\left(F_I \circ \rho_w(\mu)\right)^{\kappa+p+q}} dV_{\mu}(\mathbb{C}^p) dV_w(\mathbb{C}^{p(q-1)})$$

$$= \int_{w \in \mathbb{C}^{p(q-1)}} \int_{\mu \in \mathbb{C}^p} \left(\frac{e^{-\alpha\varphi\circ\rho_w(\mu)}}{\prod_{k=1}^p \left(1 + |\mu_k|^2\right)^{2-\alpha} \left(F_I \circ \rho_w(\mu)\right)^{\alpha}} \right)$$

$$\times \frac{\prod_{k=1}^p \left(1 + |\mu_k|^2\right)^{2-\alpha}}{\left(F_I \circ \rho_w(\mu)\right)^{\kappa+p+q-\alpha}} dV_{\mu}(\mathbb{C}^p) dV_w(\mathbb{C}^{p(q-1)})$$

$$= \int_{w \in \mathbb{C}^{p(q-1)}} \left(\int_{\mu \in \mathbb{C}^p} \frac{e^{-\alpha\varphi\circ\rho_w(\mu)}}{\prod_{k=1}^p \left(1 + |\mu_k|^2\right)^{2-\alpha} \left(F_I \circ \rho_w(\mu)\right)^{\alpha}} dV_{\mu}(\mathbb{C}^p) \right) \times \frac{dV_w(\mathbb{C}^{p(q-1)})}{\left(1 + \|w\|^2\right)^{\kappa}}$$

$$\leq C \int_{w \in \mathbb{C}^{p(q-1)}} \frac{dV_w(\mathbb{C}^{p(q-1)})}{\left(1 + \|w\|^2\right)^{\kappa}} \leq C' \quad \text{if } \kappa > p(q-1).$$

Thus, we obtain that for all I in \mathcal{I} , $\int_{\pi(U_I)} \frac{e^{-\alpha\varphi}}{F_I^{\kappa}} \leq C$, where C is independent of φ .

Since $G_{p,q}(\mathbb{C})$ is compact, there exists a family $(V_I)_{I\in\mathcal{I}}$ of open sets of $G_{p,q}(\mathbb{C})$ such that V_I is relatively compact in $\pi(U_I)$ for every $I\in\mathcal{I}$, and $\bigcup_{I\in\mathcal{I}}V_I=G_{p,q}(\mathbb{C})$. There exists M>0 such that $F_I\leq M$ on V_I for every $I\in\mathcal{I}$. Thus

$$\int_{G_{p,q}(\mathbb{C})} e^{-\alpha\varphi} \le \sum_{I \in \mathcal{I}} \int_{V_I} e^{-\alpha\varphi} \le \sum_{I \in \mathcal{I}} M^{\kappa} \int_{V_I} \frac{e^{-\alpha\varphi}}{F_I^{\kappa}} \le M^{\kappa} \sum_{I \in \mathcal{I}} \int_{\pi(U_I)} \frac{e^{-\alpha\varphi}}{F_I^{\kappa}} \le C M^{\kappa} \binom{p+q}{p}.$$

We deduce that $\alpha(\mathscr{G}_{p,q}) \geq 1$.

3.3.3. Upper bound of $\alpha(\mathscr{G}_{p,q})$. We use here a method which can be found in [Re] for the complex projective space. Let I in \mathcal{I} . We define \tilde{K} from $M^*(p+q,p)$ to $\mathbb{P}^1(\mathbb{R})$ by the relation $\tilde{K}(M) = \left[|\det m_I(H)|^2, \det {}^t M \overline{M} \right]$. \tilde{K} is invariant by the action of the structural group $G_p(\mathbb{C})$, so it induces a C^{∞} map K from $G_{p,q}(\mathbb{C})$ to $\mathbb{P}^1(\mathbb{R})$. Remark that $\psi = \log K$ is a Kähler potential on U_I for the metric $\mathscr{G}_{p,q}$.

Lemma 3.5. There exists a decreasing sequence $(\varphi_n)_{n\geq 0}$ of admissible functions with positive maxima which converges pointwise to $-\psi$ on $\pi(U_I)$.

Proof. We construct a decreasing sequence $(f_n)_{n\geq 0}$ of C^{∞} convex functions on \mathbb{R}_+ satisfying the conditions $1+f'_n>0$, $f_n(x)=-(1-1/n)x$ for x in [0,n] and $f_n(x)=-n$ for

 $x \geq 2n$. Let y be an element of $\pi(U_I)^c$ and Ω_n the set of the elements x in $\pi(U_I)$ such that $\psi(x) > 2n$. Since $F_I(y) = [0,1]$, there exists a neighborhood V of y such that the inequality $z > e^{2n}$ holds for every point [1,z] in $F_I(V)$. Thus $V \cap \pi(U_I)$ is included in Ω_n . We have proved that $W_n = \Omega_n \cup \pi(U_I)^c$, so that W_n is an open neighborhood of $\pi(U_I)^c$. We define φ_n by $\varphi_n = f_n \circ \psi$ on $\pi(U_I)$ and $\varphi_n = -n$ on W_n . Thus φ_n is well defined and $\varphi_n(0) = 0$. It remains to show that φ_n is admissible on $\pi(U_I)$. We have

$$\left(\mathscr{G}_{p,q}+i\,\partial\overline{\partial}\,\varphi_n\right)_{\lambda\overline{\mu}}=\partial_{\lambda\overline{\mu}}\psi+\partial_{\lambda}\big(f'_n\circ\psi\big)\partial_{\overline{\mu}}\psi=\big(1+f'_n\circ\psi\big)\partial_{\lambda\overline{\mu}}\psi+f''_n\circ\psi\,\partial_{\lambda}\psi\,\partial_{\overline{\mu}}\psi.$$

Hence the matrix of the metric $\mathscr{G}_{p,q} + i \partial \overline{\partial} \varphi_n$ is of the form A + T where A is positive definite and T has rank one and positive trace. So A + T is positive definite and we get the result.

Lemma 3.6. Let n in \mathbb{N}^* and r a positive real number. Then

$$\int_{||X|| \le r} \frac{dV_X(M_n(\mathbb{C}))}{\left| \det X \right|^2} = +\infty.$$

Proof. We can write

$$\int_{||X|| \le r} \frac{dV_X(M_n(\mathbb{C}))}{\left| \det X \right|^2} = \sum_{k=0}^{\infty} \int_{r/2^{k+1} \le ||X|| \le r/2^k} \frac{dV_X(M_n(\mathbb{C}))}{\left| \det X \right|^2} \cdot$$

We put $Y = 2^k X$, so

$$\int_{r/2^{k+1} \le ||X|| \le r/2^k} \frac{dV_X(M_n(\mathbb{C}))}{\left| \det X \right|^2} = \int_{1/2 \le ||Y|| \le 1} \frac{dV_Y(M_n(\mathbb{C}))}{\left| \det Y \right|^2} \cdot$$

The terms in the series are strictly positive and independent of k. The sum is therefore infinite.

We can now prove that $\alpha(\mathcal{G}_{p,q})$ is upper bounded by 1. Suppose that $\alpha(\mathcal{G}_{p,q}) > 1$. Then there exists a positive C such that for every integer n, $\int_{\pi(U_I)} e^{-\varphi_n} \leq C$. Using Lemma (3.5) and monotonous convergence, $\int_{\pi(U_I)} F_I \leq C$. Since $\pi(U_I)^c$ has zero measure, $\int_{G_{p,q}(\mathbb{C})} F_I \leq C$. Let \tilde{I} in \mathcal{I} be such that $I \cap \tilde{I} = \emptyset$ (this is possible since $p \leq q$). We have $P_{\tilde{I}} \{ m_I(P_{\tilde{I}}) \}^{-1} = P_I$. Remark that $m_I(P_{\tilde{I}}) = m_I(Z_{\tilde{I}})$. Thus $\det(Id + {}^tZ_I\overline{Z}_I) = \det({}^tP_{\tilde{I}}\overline{P}_{\tilde{I}}) |\det m_I(Z_{\tilde{I}})|^{-2}$. For $||Z_{\tilde{I}}|| \leq r$, $\det({}^tP_{\tilde{I}}\overline{P}_{\tilde{I}}) \leq M$, so that $\int_{||Z_{\tilde{I}}|| \leq r} \frac{dV_{Z_{\tilde{I}}}(M_{q,p}(\mathbb{C}))}{|\det m_I(Z_{\tilde{I}})|^2} < +\infty$. Integrating over the remaining variables $(Z_{ij})_{i \in \tilde{I}^c \cap I^c}$ yields

 $\int_{||Z|| \le r} \frac{dV_Z(M_p(\mathbb{C}))}{\left|\det Z\right|^2} < +\infty, \text{ which is in contradiction with the result of Lemma (3.6)}.$ Thus we obtain $\alpha(\mathcal{G}_{p,q}) \le 1$.

References

- [Au1] T. Aubin, Équations du type Monge-Ampère sur les variétés kählériennes compactes, Bull. Sci. Math. 102 (1978), 63-95.
- [Au2] T. Aubin, Réduction du cas positif de l'équation de Monge-Ampère sur les variétés Kählériennes compactes à la démonstration d'une inégalité, J. Funct. Anal. 57 (1984), 143-153.
- [Au3] T. Aubin, Métriques d'Einstein-Kähler et exponentiel de fonctions admissibles, J. Func. Anal. 88 (1990), 385-394.
- [Au4] T. Aubin, Some Non-linear Problems in Riemannian Geometry, Springer-Verlag, Berlin, 1998.
- [Be1] A. Ben Abdesselem, Lower bound of admissible functions on sphere, Bull. Sci. Math 126 (2002), 675-680.
- [Be2] A. Ben Abdesselem, Enveloppes inférieures de fonctions admissibles sur l'espace projectif complexe. Cas symétrique, To appear in Diff. Geom. and its App.
- [Be-Ch1] A. Ben Abdesselem, P. Cherrier, Einstein-Kähler metrics on a class of bundles involving integral weights, J. Math. Pures Appl. 3, vol 81, (2002), 259-281.
- [Be-Ch2] A. Ben Abdesselem, P. Cherrier, Estimations of Ricci tensor on certain Fano manifolds, Math. Z. 233, 2000, 481-505.
- [Fu] A. Futaki, An obstruction to the existence of Kähler-Einstein metrics, Invent. Math. 73, 1983, 437-443.
- [Ko-No] S. Kobayashi, K. Nomizu, Foundations of Differential Geometry, Volume II John Wiley (1969).
- [Li] A. LICHNEROWICZ, Sur les transformations analytiques des variétés kählériennes, Cr. Acac. Sci 244, 1957, 3011-3014.
- [Ma] Y. Matsushima, Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne, Nagoya Math. J. 11 (1957), 145-150.
- [Re] C. Real, Métriques d'Einstein-Kähler sur des variétés à première classe de Chern positive, J. Func. Anal. 106 (1992), 145-188.
- [Ti] G. Tian, On Kähler-Einstein metrics on certain Kähler manifolds with $C^1(M) > 0$, Invent. Math. 89 (1987), 225-246.
- [Ya] S. T. Yau, On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equations, I. Comm. Pure Appl. Math. 31 (1978), 339-411.

E-mail address: julien.grivaux@free.fr

Université Pierre et Marie Curie