Pembahasan Soal Tugas Metode Numerik Genap 2024/2025 Integrasi Numerik

Muchammad Yuda Tri Ananda NIM: 24060124110142 6 April 2025

Soal 1

SOAL

Diketahui kumpulan data sebagai berikut:

Keterangan: nilai f(x) digit terakhir adalah diganti dengan 10 digit terakhir NIM Saudara! (NIM: 24060124110142, 10 digit terakhir: 0124110142)

Dengan Metode Simpson 3/8, Tentukan $\int_{1,0}^{2,8} f(x)dx$ dan misalkan fungsi exactnya $y = f(x) = x^2 \sqrt{x}$, tentukan galatnya! Tolong diberikan langkah-langkahnya!

Teori Dasar

Metode Simpson 3/8 (Komposit): Digunakan ketika jumlah interval n adalah kelipatan 3.

$$\int_{x_0}^{x_n} f(x)dx \approx \frac{3h}{8} [f(x_0) + 3f(x_1) + 3f(x_2) + 2f(x_3) + 3f(x_4) + \dots + 2f(x_{n-3}) + 3f(x_{n-2}) + 3f(x_{n-1}) + f(x_n)]$$

dimana
$$h = (x_n - x_0)/n$$
.

Fungsi Sejati:
$$f(x) = x^2 \sqrt{x} = x^{5/2}$$
. Integral Sejati: $\int f(x) dx = \int x^{5/2} dx = \frac{x^{7/2}}{7/2} + C = \frac{2}{7}x^{7/2} + C$. $\int_a^b f(x) dx = \left[\frac{2}{7}x^{7/2}\right]_a^b = \frac{2}{7}(b^{7/2} - a^{7/2})$. Galat Relatif: $\epsilon_r = \left|\frac{\text{Nilai Sejati-Nilai Aproksimasi}}{\text{Nilai Sejati}}\right| \times 100\%$.

Pembahasan

NIM: 24060124110142. 10 digit terakhir: 0124110142. Modifikasi tabel:

X	1.0	1.2	1.4	1.6	1.8	2.0	2.2	2.4	2.6	2.8
f(x)	1.000	1.581	2.322	3.244	4.351	5.661	7.180	7.381	7.584	7.782

Diketahui $a=x_0=1.0$, $b=x_n=2.8$. Step size h=1.2-1.0=0.2. Jumlah interval n=(b-a)/h=(2.8-1.0)/0.2=1.8/0.2=9. Karena n=9 adalah kelipatan 3, Metode Simpson 3/8 dapat digunakan.

Aproksimasi Integral dengan Simpson 3/8:

$$\int_{1.0}^{2.8} f(x)dx \approx \frac{3h}{8} [f(x_0) + 3f(x_1) + 3f(x_2) + 2f(x_3) + 3f(x_4) + 3f(x_5) + 2f(x_6) + 3f(x_7) + 3f(x_8) + f(x_9)]$$

$$\approx \frac{3(0.2)}{8} [f(1.0) + 3f(1.2) + 3f(1.4) + 2f(1.6) + 3f(1.8) + 3f(2.0) + 2f(2.2) + 3f(2.4) + 3f(2.6) + f(2.8)]$$

$$\approx \frac{0.6}{8} [1.000 + 3(1.581) + 3(2.322) + 2(3.244) + 3(4.351) + 3(5.661) + 2(7.180) + 3(7.381) + 3(7.584) + 7.782]$$

$$\approx 0.075 [1.000 + 4.743 + 6.966 + 6.488 + 13.053 + 16.983 + 14.360 + 22.143 + 22.752 + 7.782]$$

$$\approx 0.075 [116.270]$$

$$\approx 8.72025$$

Nilai Integral Sejati: $f(x) = x^{5/2}$

$$\int_{1.0}^{2.8} x^{5/2} dx = \left[\frac{2}{7} x^{7/2} \right]_{1.0}^{2.8}$$

$$= \frac{2}{7} [(2.8)^{7/2} - (1.0)^{7/2}]$$

$$= \frac{2}{7} [(2.8)^{3.5} - 1]$$

$$\approx \frac{2}{7} [41.48936 - 1]$$

$$\approx \frac{2}{7} [40.48936]$$

$$\approx 11.56839$$

Galat Relatif:

$$\epsilon_r = \left| \frac{11.56839 - 8.72025}{11.56839} \right| \times 100\% = \left| \frac{2.84814}{11.56839} \right| \times 100\% \approx 0.2462 \times 100\% \approx 24.62\%$$

Soal 2

SOAL

Diberikan pasangan data berikut:

X	0.6	0.9	1.2	1.5	1.8	2.1	2.4
f(x)	2.49	62.61	52.72	42.83	32.93	23.03	13.130

Keterangan: nilai f(x) digit terakhir adalah diganti dengan 7 digit terakhir NIM Saudara! (NIM: 24060124110142, 7 digit terakhir: 1101421)

Misalkan fungsi exactnya $y = f(x) = \sqrt{2x+5}$. i. Dengan Metode Trapesium, Tentukan $\int_{0.6}^{2.4} f(x)dx$ dan tentukan galatnya! Tolong diberikan langkah-langkahnya! ii. Dengan Metode Simpson 1/3, Tentukan $\int_{0.6}^{2.4} f(x)dx$ dan tentukan galatnya! Tolong diberikan langkahlangkahnya! iii. Tentukan $\int_{0.6}^{2.4} f(x) dx$, dengan gabungan Metode Trapesium dan Metode Simpson 1/3, Tolong diberikan langkah-langkahnya!

Teori Dasar

Metode Trapesium (Komposit):

$$\int_{x_0}^{x_n} f(x)dx \approx \frac{h}{2} [f(x_0) + 2f(x_1) + 2f(x_2) + \dots + 2f(x_{n-1}) + f(x_n)]$$

Metode Simpson 1/3 (Komposit): Digunakan ketika jumlah interval n adalah genap.

$$\int_{x_0}^{x_n} f(x)dx \approx \frac{h}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + \dots + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)]$$

Fungsi Sejati: $f(x) = \sqrt{2x+5} = (2x+5)^{1/2}$. Integral Sejati: $\int \sqrt{2x+5} dx$. Misal $u = \sqrt{2x+5}$ $2x + 5, du = 2dx, dx = du/2. \int u^{1/2} \frac{du}{2} = \frac{1}{2} \frac{u^{3/2}}{3/2} + C = \frac{1}{3} u^{3/2} + C = \frac{1}{3} (2x + 5)^{3/2} + C.$ $\int_a^b f(x) dx = \left[\frac{1}{3} (2x + 5)^{3/2} \right]_a^b = \frac{1}{3} [(2b + 5)^{3/2} - (2a + 5)^{3/2}].$ Galat Relatif: $\epsilon_r = \left| \frac{\text{Nilai Sejati-Nilai Aproksimasi}}{\text{Nilai Sejati}} \right| \times 100\%.$

Galat Relatif:
$$\epsilon_r = \left| \frac{\text{Nilai Sejati-Nilai Aproksimasi}}{\text{Nilai Sejati}} \right| \times 100\%.$$

Gabungan Metode: Jika n ganjil, gunakan Simpson 1/3 untuk n-1 interval pertama (genap) dan Trapesium untuk interval terakhir. Jika n genap, biasanya hanya Simpson 1/3 yang digunakan. Namun, soal meminta "gabungan". Kita bisa interpretasikan sebagai penggunaan Simpson 1/3 pada sebagian interval dan Trapesium pada sisanya. Misal, Simpson 1/3 pada n-2 interval pertama dan Trapesium pada 2 interval terakhir.

Pembahasan

NIM: 24060124110142. 7 digit terakhir: 1101421. Modifikasi tabel:

X	0.6	0.9	1.2	1.5	1.8	2.1	2.4
f(x)	2.491	2.611	2.720	2.831	2.934	3.032	3.131

Diketahui $a=x_0=0.6,\ b=x_n=2.4.$ Step size h=0.9-0.6=0.3. Jumlah interval n = (b-a)/h = (2.4-0.6)/0.3 = 1.8/0.3 = 6. Jumlah titik data = n+1=7.

Nilai Integral Sejati: $f(x) = \sqrt{2x+5}$

$$\int_{0.6}^{2.4} \sqrt{2x+5} dx = \left[\frac{1}{3} (2x+5)^{3/2} \right]_{0.6}^{2.4}$$

$$= \frac{1}{3} [(2(2.4)+5)^{3/2} - (2(0.6)+5)^{3/2}]$$

$$= \frac{1}{3} [(4.8+5)^{3/2} - (1.2+5)^{3/2}]$$

$$= \frac{1}{3} [(9.8)^{1.5} - (6.2)^{1.5}]$$

$$\approx \frac{1}{3} [30.6816 - 15.4363]$$

$$\approx \frac{1}{3} [15.2453]$$

$$\approx 5.08177$$

i. Metode Trapesium

$$\int_{0.6}^{2.4} f(x)dx \approx \frac{h}{2} [f(x_0) + 2f(x_1) + 2f(x_2) + 2f(x_3) + 2f(x_4) + 2f(x_5) + f(x_6)]$$

$$\approx \frac{0.3}{2} [f(0.6) + 2f(0.9) + 2f(1.2) + 2f(1.5) + 2f(1.8) + 2f(2.1) + f(2.4)]$$

$$\approx 0.15 [2.491 + 2(2.611) + 2(2.720) + 2(2.831) + 2(2.934) + 2(3.032) + 3.131]$$

$$\approx 0.15 [2.491 + 5.222 + 5.440 + 5.662 + 5.868 + 6.064 + 3.131]$$

$$\approx 0.15 [33.878]$$

$$\approx 5.08170$$

Galat Relatif Trapesium:

$$\epsilon_r = \left| \frac{5.08177 - 5.08170}{5.08177} \right| \times 100\% = \left| \frac{0.00007}{5.08177} \right| \times 100\% \approx 0.00138\%$$

ii. Metode Simpson 1/3 Karena n=6 (genap), Simpson 1/3 dapat digunakan.

$$\int_{0.6}^{2.4} f(x)dx \approx \frac{h}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + 4f(x_3) + 2f(x_4) + 4f(x_5) + f(x_6)]$$

$$\approx \frac{0.3}{3} [f(0.6) + 4f(0.9) + 2f(1.2) + 4f(1.5) + 2f(1.8) + 4f(2.1) + f(2.4)]$$

$$\approx 0.1 [2.491 + 4(2.611) + 2(2.720) + 4(2.831) + 2(2.934) + 4(3.032) + 3.131]$$

$$\approx 0.1 [2.491 + 10.444 + 5.440 + 11.324 + 5.868 + 12.128 + 3.131]$$

$$\approx 0.1 [50.826]$$

$$\approx 5.08260$$

Galat Relatif Simpson 1/3:

$$\epsilon_r = \left| \frac{5.08177 - 5.08260}{5.08177} \right| \times 100\% = \left| \frac{-0.00083}{5.08177} \right| \times 100\% \approx 0.0163\%$$

iii. Gabungan Metode Trapesium dan Simpson 1/3 Karena n=6 (genap), Simpson 1/3 dapat diterapkan untuk seluruh interval. Soal meminta "gabungan". Interpretasi yang mungkin (meskipun tidak standar untuk n genap) adalah menggunakan Simpson 1/3 untuk

n-2=4 interval pertama (x=0.6 ke x=1.8) dan Trapesium untuk 2 interval terakhir (x=1.8 ke x=2.4).

Integral bagian 1 (Simpson 1/3, x = 0.6 to x = 1.8, n = 4):

$$I_1 \approx \frac{h}{3} [f(0.6) + 4f(0.9) + 2f(1.2) + 4f(1.5) + f(1.8)]$$

$$\approx \frac{0.3}{3} [2.491 + 4(2.611) + 2(2.720) + 4(2.831) + 2.934]$$

$$\approx 0.1 [2.491 + 10.444 + 5.440 + 11.324 + 2.934]$$

$$\approx 0.1 [32.633]$$

$$\approx 3.2633$$

Integral bagian 2 (Trapesium, x = 1.8 to x = 2.4, n = 2):

$$I_2 \approx \frac{h}{2} [f(1.8) + 2f(2.1) + f(2.4)]$$

$$\approx \frac{0.3}{2} [2.934 + 2(3.032) + 3.131]$$

$$\approx 0.15 [2.934 + 6.064 + 3.131]$$

$$\approx 0.15 [12.129]$$

$$\approx 1.81935$$

Integral Total Gabungan:

$$I_{total} = I_1 + I_2 \approx 3.2633 + 1.81935 = 5.08265$$

(Catatan: Hasil ini sangat dekat dengan hasil Simpson 1/3 murni, karena metode Simpson jauh lebih dominan dalam kontribusinya di sini. Galat relatif untuk metode gabungan ini akan mirip dengan Simpson 1/3).