Lecture -1 Sequential Circuit Design: Latches and Flip-Flops

Prepared By: Asif Mahfuz

- A latch is a temporary storage device that has two stable states (bi-stable).
- It is a basic form of temporary storage device which can reside in either 1 or 0.
- The S-R (Set-Reset) latch is the most basic type.
- It can be constructed from two cross-coupled NOR gates or NAND gates.
- With NOR gates the latch responds to active-HIGH inputs.
- With NAND gates the latch responds to active-LOW inputs.

An Active-LOW S-R Latch

Block diagram of an Active-HIGH S-R Latch

 For an Active-HIGH S-R Latch there are no bubbles in the inputs. Block diagram of an Active-LOW S-R Latch

 For an Active-LOW S-R Latch there are bubbles in the inputs.

Operation of an Active-HIGH S-R Latch

STARTING CONDITION Q=0 AND $\overline{Q}=1$

- WHEN S=1, R=0, Q=0 AND \overline{Q} =1 (SET OPERATION)
 - \overline{Q} =0. AS \overline{Q} =0 AND R=0, Q=1.
- WHEN S=0, R=0, Q=1 AND \overline{Q} =0 (MEMORY OPERATION)
 - AS S=0 AND Q=1, \overline{Q} =0.
 - AS \overline{Q} =0 AND R=0, Q=1.
- WHEN S=0, R=1, Q=1 AND \overline{Q} =0 (RESET OPERATION)
 - AS R=1, Q=0.
 - AS Q=0 AND S=0, \overline{Q} =1
- When both inputs are 1, the operation is INVALID

A	В	Y
0	0	1
0	1	0
1	0	0
1	1	0

Truth-table for NOR gate

Table of operation of an Active-HIGH S-R Latch

In	put	Outputs		
S	R	Q	Q	Comments
0	0	NC	NC	MEMORY
0	1	0	1	RESET
1	0	1	0	SET
1	1			INVALID

Operation of an Active-LOW S-R Latch

STARTING CONDITION Q=0 AND $\overline{Q}=1$

- WHEN S=0, R=1, Q=0 AND \overline{Q} =1 (SET OPERATION)
 - Q=1. AS Q=1 AND R=1, \overline{Q} =0.
- WHEN S=1, R=1, Q=1 AND \overline{Q} =0 (MEMORY OPERATION)
 - AS S=1 AND \overline{Q} =0, Q=1.
 - AS Q=1 AND R=1, \overline{Q} =0.
- WHEN S=1, R=0, Q=1 AND \overline{Q} =0 (RESET OPERATION)
 - AS R=0, \overline{Q} =1.
 - AS \overline{Q} =1 AND S=1, Q=0
- When both inputs are 0, the operation is INVALID

A	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

Truth-table for NAND gate

Table of operation of an Active-LOW S-R Latch

Inj	Input C		puts	_
Ī	R	Q	Q	Comments
1	1	NC	NC	MEMORY
1	0	0	1	RESET
0	1	1	0	SET
0	0			INVALID

Exercise 1:

If the \overline{S} and \overline{R} waveforms in Figure 7–5(a) are applied to the inputs of the latch in Figure 7–4(b), determine the waveform that will be observed on the Q output. Assume that Q is initially LOW.

Gated S-R Latches

THE MATION OF THE PARTY OF THE

- A gated latch is a variation of basic latch.
- A gated latch has an extra input "ENABLE" (EN).
- The latch responds to S and R if and only if EN is HIGH.
- So the extra input brings more control over the operation.
- Gated Latches are level sensitive.

A gated S-R Latch

Block diagram of a gated S-R Latch

Gated S-R Latches

I	Input		Input		Outputs			
S	R	Е	Ŝ	R	Q	Q	Comments	
1	1	0	1	1	NC	NC	MEMORY	
0	0	1	1	1	NC	NC	MEMORY	
0	1	1	1	0	0	1	RESET	
1	0	1	0	1	1	0	SET	
1	1	1	0	0			INVALID	

Logic Circuit of a gated S-R Latch

m . 1. 1 .	. C		C		C D	T - 4 - 1.
lable	от оре	eration	ior a	gatea	5-K	Latch

Α	В	Y
0	0	1
0	1	1
1	0	1
1	1	0

Truth table for a NAND gate

Gated S-R Latches

Exercise 2:

Determine the Q output waveform if the inputs shown in Figure 7–9(a) are applied to a gated S-R latch that is initially RESET.

Gated D Latches

- The D latch is another variant of latches
- It combines the S and R input into a single input D.
- When D and EN is HIGH, the latch is SET.
- When D is LOW and EN is HIGH, the latch is RESET.

A gated D-Latch

A simple rule is, when EN is HIGH, the Q follows the input D

Gated D Latches

In	put	Outputs		~	
D	EN	Q Q		Comments	
X	0	NC	NC	MEMORY	
0	1	0	1	RESET	
1	1	1	0	SET	

Table of operation for Gated D-Latch

Logic Circuit of a Gated D-Latch

Gated D Latches

Exercise 3:

Determine the Q output waveform if the inputs shown in Figure 7–11(a) are applied to a gated D latch, which is initially RESET.

Flip-Flops

- Flip-Flops are synchronous bi-stable devices, also know as bi-stable multi-vibrator.
- Synchronous means the output changes only at the triggering of a control input "Clock".
- Compared to gated latches, flip-flops are edge triggered devices.
- Edge triggered means, the output only changes at "Rising Edge" or "Falling Edge" of a clock.
- A rising edge triggered device is also called a positive edge triggered device.
- A falling edge triggered device is also called a negative edge triggered device.

D Flip-Flops

- The D input is a synchronous input, as the input is only transferred at the triggering of a clock pulse (positive or negative).
- The operation is almost similar to that of a D latch.
- At a clock pulse, if D is HIGH, the flip-flop is SET, so Q=1 and $\overline{Q}=0$.
- At a clock pulse, if D is LOW, the flip-flop is SET, so Q=0 and $\overline{Q}=1$.

Positive edge triggered D-flip flop

Negative edge triggered D-flip flop

D Flip-Flops

In	Inputs		Outputs		
D	CLK	Q	$\overline{\mathcal{Q}}$	Comments	
0	<u> </u>	0	1	RESET	
1	†	1	0	SET	

a) Operation table of positive edge triggered D flipflop

b) Positive edge triggered D flip-flop

- In the operation table, the arrow indicates the rising edge, and thus it is a positive edge triggered D flip-flop.
- Rising edge is indicated by an upward arrow, likewise, a falling edge is indicated by a downward value.
- The circuit diagram of a D flip-flop is also similar to a gated D Latch, except for an additional pulse transition detector.
- The pulse transition detector is used to produce the triggering edge.

D Flip-Flops

Exercise 4:

Given the waveforms in Figure 7–22(a) for the D input and the clock, determine the Q output waveform if the flip-flop starts out RESET.

JK Flip-Flops

- The JK Flip-Flop is a more versatile and widely used type of Flip-Flop.
- The J and K inputs are synchronous inputs.
- The JK flip-flop eradicates the problem of SR flip-flop.
- JK flip-flops does not have the invalid state.
- When both J and K are HIGH, a JK flip-flop performs the toggle operation.
- JK flip-flops are widely used to make counters.

Block diagram of positive-edge triggered J-K flip-flop

Logic circuit of positive-edge triggered J-K flip-flop

JK Flip-Flops

Set Operation

Reset Operation

Toggle Operation

Memory Operation

	Inp	ut	Outputs		-
J	K	Clk	Q	Q	Comments
X	Χ	Х	NC	NC	MEMORY
0	0	†	NC	NC	MEMORY
0	1	1	0	1	RESET
1	0	1	1	0	SET
1	1	↑	$\overline{Q_0}$	Q_0	TOGGLE

Characteristic table of positive-edge triggered J-K flip-flop

JK Flip-Flops

Exercise 5:

The waveforms in Figure 7–18(a) are applied to the J, K, and clock inputs as indicated. Determine the Q output, assuming that the flip-flop is initially RESET.

JK Flip-Flops with Asynchronous Inputs

- Most flip-flops also have asynchronous inputs other than their synchronous inputs.
- The asynchronous inputs affect the output independent of the presence of clock edge.
- Two such inputs are Preset and Clear.
- Both are Active-LOW, that is, they affect the output when they are LOW.
- When Preset is LOW, it sets the flip-flop, irrespective of the synchronous inputs.
- When Clear is LOW, it resets the flip-flop, irrespective of the synchronous inputs.

JK Flip-Flops with Asynchronous Inputs

Exercise 6:

DATA STORAGE

- D flip-flops can be used as parallel data storage devices.
- Multiple D flip-flops are connected in parallel.
- For a N-bit data, N no. of flip-flops are required.
- The data is stored at the triggering edge of the clock pulse.
- Figure shows a 4-bit positive edge triggered data storage device.
- The same clock is parallel connected to all the flip-flops.
- The input of the flip-flops are connected to the data bus.
- At every clock pulse, the data in the data bus gets stored in the flip-flops.
- The device also has common asynchronous Clear input.
- When the memory is needed to emptied, the Clear input is set to LOW.

THE PROPERTY OF THE PARTY OF TH

FREQUENCY DIVISION

- JK flip-flops can be used to slow down clocks.
- It is also known as frequency division.
- The JK flip-flop is operated in the toggle mode.
- Each flip-flop divides the frequency by 2.
- There fore, N flip-flops can be connected in series to divide the frequency by 2^N.
- A benefit of using flip-flops for frequency division is that the duty cycle is exactly 50%.
- The figure shows the arrangement to divide the clock frequency by 4.

Develop the f_{out} waveform for the circuit in Figure 7–39 when an 8 kHz square wave input is applied to the clock input of flip-flop A.

COUNTING

- Flip-flops can also be used to make digital counters.
- JK flip-flops are used to make counters.
- JK flip-flop is operated in the toggle mode.
- N flip-flops are required for N-bit counters.
- Counters can be synchronous or asynchronous.

References

1. Thomas L. Floyd, "Digital Fundamentals" 11th edition, Prentice Hall – Pearson Education.

Thank You