CHE260: Heat Transfer

October 2021

Contents

1	Introduction	1
2	Electronic Cooling	2
3	Radiation	3
4	Heat Conduction	4
5	Thermal Resistance	5
6	Thermal Resistance Networks	6
7	Conduction in cylinders and spheres, Insulation	7
8	Heat Transfer from Finned Surfaces	8
9	Heat transfer from finned surfaces (contd)	9
10	Transient Heat Conduction	10
11	Transient Heat Conduction in 2 and 3 Dimensions	11
12	Transient Heat Conduction in Semi-Infinite Solids	12
13	Forced convection, Velocity and Thermal boundary layers, Reynolds, Prand and Nusselt numbers	ltl 14
14	Forced Convection Currents	16

1 Introduction

• How is heat transfer different from thermodynamics? In thermodynamics, we assume quasi-equilibrium processes i.e. the time was not an important parameter. In heat

transfer, time is an important parameter and we are interested in the rate of heat transfer.

- What is the relationship between \dot{Q} and ΔT ? What are the mechanisms of heat transfer?
- Conduction: Transfer of heat through a medium that is stationary.
- Convection: Transfer of heat from a solid surface and an adjacent fluid that is moving. Example: a fan blowing air over a hot plate. There is heat transfer from the hot plate into the fluid.
- Radiation: Energy emitted by matter in the form of electromagnetic waves.
- Radiation does not need a medium. In a vacuum, we can have radiation but not convection or conduction.
- Different mechanisms of heat transfer can take place simultaneously.
- Applications
 - Power Generation
 - * Power plant: steam generation, condenser
 - * Automobiles: engine cooling, space heating/cooling
 - Buildings
 - * Heating / Cooling
 - * Hot water
 - Refrigeration
 - Manufacturing
 - * Casting / Heat treatment
 - * Injection Moulding

2 Electronic Cooling

- > 99 % of the electrical energy supplied to a circuit is dissipated as heat
- Heat has to be dissipated to the environment while keeping the temperature of the chip in a certain range
- Heat is lost from the surface of the chip
- Important parameter is heat flux = $\frac{\text{Heat Transfer Rate}}{\text{Unit Area}}$ (in $\frac{W}{\text{cm}^2}$)
- To reduce heat flux, we can reduce heat generation and increase the surface area
- As size increases, it becomes more difficult to lose heat
- Water cooling is more efficient for large systems compared to air cooling

3 Radiation

- Radiation is energy emitted by all matter in the form of e.m. radiation
- Thermal radiation is emitted by all bodies at a finite temperature
- Opaque objects emit only from the surface
- Amount of radiation depends on the surface temperature. Summarized by the Stefan Boltzmann Law: $\dot{Q}_{emit} = \sigma A T_s^4$ where σ is the Boltzmann constant $(5.67 \times 10^{-8} \frac{W}{m^2 k^4})$, T_s is the surface temperature in Kelvin and A is the surface area.
- A surface that emits as much radiation as this is called a "Blackbody". A real surface emits less than this.: $\dot{Q}_{emit} = \epsilon \sigma A T_s^4$ where ϵ is the emissivity and $0 \le \epsilon \le 1$
- Black paint has $\epsilon = 0.99$ which is very close to 1. Aluminum foil has a low emissivity of around 0.07.
- If radiation is incident on a surface some will be absorbed. The fraction absorbed is a surface property known as the absorptivity α such that $\dot{Q}_{absorbed} = \alpha \cdot \dot{Q}_{incident}$ and $\dot{Q}_{reflected} = (1 \alpha) \cdot \dot{Q}_{incident}$
- Kirchoff's law says that $\alpha = \epsilon$
- Note: α and ϵ vary over different wavelengths
- Consider a special case of radiation
 - Small surface which is completely surrounded by a much larger surface
 - $-T_s$, A_s are temperature and area of the small surface (which is also the boundary), T_{surr} is the temperature of the surrounding surface. Both surfaces are emitting and we are interested in the net emission
 - $-\dot{Q}_{rad} = \epsilon \sigma A_s (T_s^4 T_{surr}^4)$
- Example
 - Chip with an area of $15 \times 15mm$, $\epsilon = 0.6$, $T_{surr} = 25$.
 - Two methods of heat transfer
 - * Natural convection

$$h = c(T_s - T_\infty)^{\frac{1}{4}}$$

$$c = 4.2 \frac{W}{m^2 K^{\frac{5}{4}}}$$

$$q_{conv} = hA(T_S - T_\infty)$$

$$q_{rad} = \epsilon A(T_s^4 - T_{surr}^4)$$

* Forced convetion: h is constant at 250 $\frac{W}{m^2K}$

$$\cdot q_{conv} = hA(T_S - T_{\infty})$$

4 Heat Conduction

- Heat Conduction Equation
 - -x,y,z components of \dot{Q}
 - -T is a function of (x, y, z, t)
 - $\vec{\dot{Q}} = \dot{Q}_x \hat{i} + \dot{Q}_y \hat{j} + \dot{Q}_z \hat{k}$
 - $\dot{Q}_x = -kA_x \frac{dT}{dx}$ (similar expressions for \dot{Q}_y and \dot{Q}_z
- One dimensional heat conductivity can model more complicated situations. For example if $\Delta x << \Delta y, z, \frac{dT}{dx} >> \frac{dT}{dy}, \frac{dT}{dz}$ so that \dot{Q}_y and \dot{Q}_z can be neglected
- One dimensional heat conduction
 - Cross sectional area is A(x) where x is the coordinate along which heat transfer occurs
 - $-\dot{Q}_x$ at the entry and $\dot{Q}_{x+\Delta x}$ at the exit
 - Want to find T(x) inside the object
 - Rate of increase of enthalpy = $mc_p \frac{\partial T}{\partial t} = \rho V c_p \frac{\partial T}{\partial t} = \rho c_p A \Delta x \frac{\partial T}{\partial t}$
 - Energy balance:
 - * $\rho c_p A \Delta x \frac{\partial T}{\partial t} = \dot{Q}_x \dot{Q}_{x+\Delta x}$
 - * After simplifying and taking the limit as Δx approaches 0, we get $\rho c_p \frac{\partial T}{\partial t} = \frac{-1}{A} \frac{\partial (\dot{q}A)}{\partial x}$
 - * \hat{A} depends on the coordinate system and we use Fourier's law for \dot{q} : $\dot{q} = -k\frac{dT}{dx}$
- Cartesian Coordinates
 - A is a constant
 - $pc_p \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} [k \frac{\partial T}{\partial x}]$
 - Assume k is constant. Then $\frac{\partial T}{\partial t} = \alpha \frac{\partial^2 T}{\partial x^2}$ where $\alpha = \frac{k}{pc_n}$.
 - If steady state i.e. $\frac{\partial T}{\partial t} = 0$ then $\frac{d^2T}{dx^2} = 0$.
 - Units of $\alpha = \frac{k}{pc_p}$, the thermal diffusivity is $\frac{m^2}{s}$.
 - High k means the material conducts well. High pc_p means that the material stores energy
- Cylindrical Coordinates
 - Heat being conducted radially so $\dot{q}=-k\frac{\partial T}{\partial r}$ and $A=2\pi rL$
 - $pc_p \frac{\partial T}{\partial t} = \frac{-1}{2\pi rL} \left[\frac{\partial}{\partial r} \cdot \frac{\partial T}{\partial r} \right]$
 - $\frac{1}{\alpha} \frac{\partial T}{\partial t} = \frac{1}{r} \frac{\partial}{\partial r} (r \cdot \frac{\partial T}{\partial r})$
 - At steady state, $\frac{d}{dr}(r\frac{dT}{dr}) = 0$.

- Spherical Coordinates
 - $-\ A=4\pi r^2$ and $\dot{q}=-k\frac{\partial T}{\partial r}$ where r is the radial spherical coordinate
 - $-\frac{1}{\alpha}\frac{\partial T}{\partial t} = \frac{1}{r^2}\frac{\partial}{\partial r}(r^2\frac{\partial T}{\partial r})$
- In general $\frac{1}{r^n}\frac{\partial}{\partial r}(r^n\frac{\partial T}{\partial r}) = \frac{1}{\alpha}\frac{\partial T}{\partial t}$ where cartesian has n=0, cylindrical has n=1 and spherical has n=2.

5 Thermal Resistance

- At steady state, $\frac{d^2T}{dx^2} = 0$
- Heat flux: $\dot{q} = -k \frac{dT}{dx}$.
- Heat flux is a constant
- Heat transer rate: $\dot{Q} = \dot{q}A = \frac{-kA(T_2 T_1)}{L}$
- $\dot{Q} = \frac{T_1 T_2}{R_{wall}}$ where T_1 and T_2 are the temperatures of the walls
- $R_{cond} = R_{wall} = \frac{L}{kA}$
- Similar to current with voltage and Resistance
- $\dot{Q}_{conv} = hA(T_s T_{\infty})$
- $R_{conv} = \frac{T_s T_{\infty}}{Q_{conv}} = \frac{1}{hA}$
- Radiation is more complicated. $\dot{Q}_{rad} = \epsilon \sigma A (T_s^4 T_{sur}^4)$
- We need to define a heat transfer coefficient for radiation. $h_{rad} = \frac{\epsilon \sigma A(T_s^4 T_{sur}^4)}{A(T_s T_{sur})}$
- $h_{rad} = \epsilon \sigma (T_s^2 + T_{sur}^2)(T_s + T_{sur})$
- Can treat it as a resistance. $R_{rad} = \frac{T_s T_{sur}}{\dot{Q}_{rad}} = \frac{1}{h_{rad}A}$
- Multilayer Plane Wall
 - Each layer has the same surface Area
 - Layers have thicknesses L_i
 - Temperature varies as T_1 on the outside, T_2 , ..., T_{n+1} where n is the number of surfaces
 - Treat each layer seperately as resistances in series
 - For first wall $\dot{Q} = \frac{T_1 T_2}{R_1}$ so $T_1 T_2 = \dot{Q}R_1$. In general, $T_i T_{i+1} = \dot{Q}R_i$
 - Summing all of them gives $T_1 T_{n+1} = \dot{Q}(R_1 + ... + R_n)$ so that $\dot{Q} = \frac{T_1 T_4}{R_{total}}$
 - Therefore you can sum up resistances similar to electric circuits

- We can find each R_i as $\frac{L_i}{k_i A}$
- $\dot{Q} = UA(T_{\infty,1} T_{\infty,4})$ where U is the overall heat transfer
- Example: Refrigerator Wall
 - -1 mm thick insulation on the outside and width of refrigerator is L.
 - $-T_{room} = 25C$ and $T_{refrig} = 3C$
 - $-h_0 = 9 \frac{W}{m^2 C}$ and $h_i = 4 \frac{W}{m^2 C}$
 - $-k_{steel} = 15.1 \frac{W}{m^2 C}$ and $k = 0.035 \frac{W}{m^2 C}$ inside the refrigerator
 - Constraint is that $T_{s,out} > 20$. We assume heat transfer from the outside room to the inside of the refrigerator
 - What is L to ensure $T_{s,out} > 20$ to prevent condensation on the outside of the refrigerator
 - Thermal circuit consists of a convective resistance outside the refrigerator followed by 3 conductive resistance on the surfaces and then one convective resistance at the end
 - INSERT PICTURE FROM LEC NOTES

$$-\dot{Q} = \frac{T_{room} - T_{s,out}}{R_{conv,0}} = \frac{T_{room} - T_{s,out}}{\frac{1}{h_0 A}}$$

- Consider unit area. Then $\dot{Q} = h_0(T_{room} T_{s,out}) = 9(25 20) = 45W$
- $-R_{total} = \frac{1}{h} + (\frac{L}{k})_{metal} + (\frac{L}{k})_{insulation} + (\frac{L}{k})_{metal} + \frac{1}{h_i} = \frac{1}{9} + \frac{10^{-3}}{15.1} + \frac{L_2}{0.035} + \frac{10^{-3}}{15.1} + \frac{1}{4} = 0.361 + \frac{L_2}{0.035}$
- $-\dot{Q} = \frac{T_{room} T_{refrig}}{R_{total}} \rightarrow 45(0.361 + \frac{L_2}{0.035}) = 25 3$ so that L = 45mm

6 Thermal Resistance Networks

- Multiple layers e.g. in an electric chip each with different thermal properties
 - We are interested in $\dot{Q} = \dot{Q}_1 + \dot{Q}_2 + \dot{Q}_3 = \frac{T_1 T_2}{R_1} + \frac{T_1 T_2}{R_2} + \frac{T_1 T_2}{R_3}$
 - $= (T_1 T_2)(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}) = \frac{T_1 T_2}{R_{total}}$
 - This is the electrical analog to parallel resistances
- Thermal contact resistance
 - So far we have been assuming perfect contact between different boundaries
 - In reality, there is a rough surface at the boundary
 - We can always define a thermal contact resistance $R_c = \frac{T_2 T_1}{\dot{q}}$ (units are $\frac{m^2 C}{W}$ (Note: Resistanc per unit area)
 - The reciprocal of R_C is known as the thermal contact conductance h_c .

- $-h = \frac{1}{R_c} = \frac{\dot{q}}{\Delta T}$ so that $\dot{q} = h_c \Delta T$
- $-h_c$ is thus similar to the heat transfer coefficient
- Heat conduction in cylinders & spheres
 - INSERT DRAWING FROM THE SLIDES
 - For a long pipe, the main temperature gradient is in the radial direction i.e.
 - Therefore we can assume 1-D radial conduction
 - INSERT r_1 , r_2 diagram
 - Solve heat conduction equation in cylindrical coordinates to get T(r)
 - Steady state: $\frac{d}{dr}(r\frac{dT}{dr}) = 0$, at $r = r_1, T = T_1$ and at $r = r_2, T = T_2$
 - Integrate this to get $T(r) = c_1 \ln r + c_2$
 - Using the boundary conditions gives $c_1 = \frac{T_1 T_2}{\ln(\frac{T_1}{T_2})}$ and $c_2 = T_2 \frac{T_1 T_2}{\ln(\frac{T_1}{T_2})} \ln r_2$
- Define thermal resistance of a cylinder

$$-R_{cyl} = \frac{T_1 - T_2}{\dot{Q}_{cond}} = \frac{\ln(\frac{r_2}{r_1})}{2\pi LK}$$

Conduction in cylinders and spheres, Insulation

- Inner temperature and then two surface layers
- $R_C = \frac{1}{hA} = \frac{1}{2\pi r L h}$
- $R_{total} = R_{c,1} + R_{cond} + R_{c,2} = \frac{1}{2\pi r_1 L h_1} + \frac{\ln(\frac{r_2}{r_1})}{2\pi L R} + \frac{1}{2\pi r_2 L h_2}$
- Insulation
 - $-R_{total} = R_{c,1} + R_{cyl,1} + R_{cyl,2} + R_{c,2}$ where $R_{cyl,2}$ is for the insulation
 - For a sphere
 - * Insulation around a spherical metal tank

 - * $R_{total} = R_{c,1} + R_{sph,1} + R_{sph,2} + R_{c,2}$ * $= \frac{1}{4\pi r_1^2 h_1} + \frac{r_2 r_1}{4\pi r_1 r_2 k_1} + \frac{r_3 r_2}{4\pi r_3 r_2 k} + \frac{1}{4\pi r_3^2 h_2}$
- R-value
 - Thermal resistance. Thickness L, Surface area A and thermal conductivity k
 - $-R = \frac{L}{k}$ is the R-value
 - $-\dot{Q} = \frac{\Delta T}{R} \times A$
 - Units here are in imperial units i.e. L is in feet, k is in $\frac{Btu}{hftF}$

- Critical Radius of insulation
 - Consider the area for heat loss
 - Insulation: increase thickness, increasing conduction resistance and decreasing convective resistance
 - Can we increase heat transfer?
 - * Plot \dot{Q} against r_2 to find the critical value of Resistance
 - * Equivalently set $\frac{d\dot{Q}}{dr_2} = 0$ to find the critical radius

8 Heat Transfer from Finned Surfaces

- Read Chapter 17.6
- How to find $R_{heatsink}$ for finned surfaces e.g. heat sinks in computers
- Add diagram from notes: We have a cylinder with cross sectional area $A_c(x)$ and heat transfer coeff h.
 - Consider a thin slice of this with thickness Δx some distance x away from the end
 - Energy balance $\dot{Q}_{cond,x}$ in and $\dot{Q}_{cond,x+\Delta x}$ out
 - Energy in = Energy out: $\dot{Q}_{cond,x} = \dot{Q}_{cond,x+\Delta x} + \dot{Q}_{conv}$
 - Let the perimeter of fin be P. Then surface area of element is $P\Delta x$ so that $\dot{Q}_{conv}=hP\Delta x(T-T_{\infty})$
 - Simplifying the energy balance by taking the limit as $\Delta x \to 0$: $\frac{d\dot{Q}_{cond}}{dx} + hP(T T_{\infty}) = 0$
 - Using Fourier's law $\dot{Q}_{cond}=-kA_C\frac{dT}{dx}$: $\frac{d}{dx}(kA_c\frac{dT}{dx})-hP(T-T_\infty)=0$
 - Assuming A_C, k, P constant: $\frac{d^2T}{dx^2} \frac{hP}{kA_C}(T T_\infty) = 0$
 - Define $\Theta = T T_{\infty}$ and $a^2 = \frac{hP}{kA_c}$ (constant) so that $\frac{d^2\Theta}{dx^2} a^2\Theta = 0$ where the solution is $\Theta(x) = c_1 e^{ax} + c_2 e^{-ax}$
 - Boundary conditions: $T = T_b$ at the left end while on the right end as $L \to \infty$, $T = T_{\infty}$
 - Therefore we simplify by having $T = T_{\infty}$ at x = L
 - In terms of Θ : At $x=0, \, \Theta=T_b-T_\infty=\Theta_b$ and $\Theta(\infty)=0$
 - This gives $c_1 = 0$ and $c_2 = \Theta_b$ so that the solution is $\Theta(x) = \Theta_b e^{-ax}$
- What is the heat loss from the fin? $\dot{Q}_b = -kA_c \frac{dT}{dx}|_{x=0} \dot{Q}_{fin}$
- $\dot{Q}_{fin,long} = \sqrt{hPkA_C}(T_b T_\infty)$
- Finite fin length: What is the boundary condition at the open end

- We can heat transfer is negligible so that adiabatic and $\frac{dT}{dx} = 0$ at the boundary
- At x = L, $\frac{dT}{dx} = 0$ so that $\frac{d\Theta}{dx} = 0$: $c_1 e^{aL} c_2 e^{-aL} = 0$
- At x = 0, $\Theta = \Theta_b$
- Solve for c_1 & c_2 and the following solution will be obtained: $\frac{T(x)-T_{\infty}}{T_b-T_{\infty}}=\frac{\cosh a(L-x)}{\cosh aL}$
- Can do the same for $\dot{Q}_{fin,insulated} = -kA_C \frac{dT}{dx}|_{x=0}$ which will give $\dot{Q}_{fin,insulated} = \sqrt{hPkA_c}(T_b T_\infty) \tanh(aL)$ where $a = \sqrt{\frac{hP}{kA_c}}$
- To account for heat transfer from the tip, we can add a length ΔL at the end and the area there will be $A_c = \Delta LP$ (P is the perimeter of the fin) so that the corrected length is $L_c = L + \frac{A_c}{P}$

9 Heat transfer from finned surfaces (contd)

- Fin efficiency
 - $-\Delta T$ given by the difference between the fin temperature and the surrounding
 - Most efficient fin would have a uniform temperature T_b everywhere
 - This would imply an infinite thermal conductivity
 - In this case, $\dot{Q} = hA_{fin}(T_b T_{\infty}) = hPL(T_b T_{\infty})$
 - We define $\eta_{fin} = \frac{dotQ_{fin}}{\dot{Q}_{fin,max}}$
 - For an infinitely long fin, $\eta_{fin,long} = \frac{\sqrt{hPkA_c}(T_b T_\infty)}{hPL(T_b T_\infty)} = \frac{1}{L}\sqrt{\frac{kA_c}{hP}} = \frac{1}{aL}$ which is in terms of physical properties
 - $-\dot{Q}_{fin} = \eta_{fin}\dot{Q}_{fin,max} = \eta_{fin}hA_{fin}(T_b T_{\infty}) = h\eta_{fin}A_{fin}(T_b T_{\infty})$
 - $\eta_{fin}A_{fin}$ can be treated as the corrected area
 - For an insulated tip, perform the same steps with the original definition to get $\eta_{insulated tip} = \frac{\tanh aL}{aL}$
- Fin effectiveness
 - How much has the fin increased heat transfer by?

$$-\epsilon_{fin} = \frac{\dot{Q}_{fin}}{\dot{Q}_{nofin}}$$

$$- \dot{Q}_{nofin} = hA_c(T_b - T_{\infty})$$

$$-\dot{Q}_{longfin} = \sqrt{hPkA_c}(T_b - T_\infty)$$
 so that $\epsilon_{longfin} = \sqrt{\frac{kP}{hA_c}}$

- To increase the effectiveness, make k as large as possible and maximize $\frac{P}{A_c}$
- Fins are most effective with low h so they are used for gases, hot liquids
- Generally we use fins if $\epsilon \geq 2$

- When can we assume fins are infinitely long?
 - $-\frac{\dot{Q}_{fin,insulated}}{\dot{Q}_{fin,long}} = \tanh(aL)$. tanh asymptotically approaches 1 as aL approaches ∞
 - In practice, if $aL \geq 5$ we can assume an infinitely long fin. But even aL = 1 has $\tanh = 0.76$ so it gives 76 % of heat transfer of an infinitely long fin. Therefore $L = \frac{1}{a}$ is a reasonable length for a fin
- Designing a heat sink
 - $-\dot{Q}_{total} = \dot{Q}_{unfinned} + \dot{Q}_{fin}$
 - From the definition of efficience $\dot{Q}_{fin} = \eta_{fin} \cdot hA_{fin}(T_b T_{\infty})$
 - $\Rightarrow \dot{Q}_{total} = hA_{unfinned}(T_b T_{\infty}) + h\eta_{fin}A_{fin}(T_b T_{\infty}) = h\left[A_{unfinned} + \eta_{fin}A_{fin}\right](T_b T_{\infty})$
 - We can define a thermal resistance $R_{fin} = \frac{T_b T_\infty}{\dot{Q}_{total}} = \frac{1}{h[A_{unfinned} + \eta_{fin} A_{fin}]}$

10 Transient Heat Conduction

- Consider a solid at temperture T_i and a liquid at $T_{\infty} < T_i$. The solid is dropped into the liquid. How does T vary over time?
 - We would expect the temperature T to asymptotically approach T_{∞}
 - Heat Conduction equation: $\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$
 - We set the first three terms equal to 0 by using the lumped capacitance approximation i.e. no temperature gradient in the body
 - We would expect this to be valid when the object is small and has a high thermal conductivity
 - Using an energy balance: $\dot{E}_{store} = -\dot{Q}_{conv}$
 - $\dot{E}_{store} = mc_p \frac{dT}{dt} = \rho V c_p \frac{dT}{dt}$ and $\dot{Q}_{conv} = hA(T T_{\infty})$
 - Equating the two, we get $\frac{d(T-T_{\infty})}{T-T_{\infty}} = -\frac{hA}{\rho V c_p} dt$ so that $\ln(T-T_{\infty}) = \frac{-hA}{\rho V c_p} t + C_1$
 - Using $T = T_i$ at t = 0, we get $\ln \left[\frac{T T_{\infty}}{T_i T_{\infty}} \right] = \frac{-hA}{\rho V c_p} t$
 - We define a "time constant" $\tau = \frac{\rho V c_p}{hA}$ so that $\frac{T T_\infty}{T_i T_\infty} = \exp\left[\frac{-t}{\tau}\right]$
 - The LHS starts at 1 and decays to 0 as $t \to \infty$. Moreoever at $t = \tau$, the value is $\frac{1}{e} \approx 0.368$
- The response time of a thermometer is usually 3τ . However it is important to note that τ is a function of h so it varies in different environments
- Moreover τ depends on $\frac{V}{A} = \frac{r}{3}$ for a sphere so to get a fast response time you would make it very thin
- When is a lumped capacitance valid?

- At steady state, the conduction in a solid must be equal to the convection in a fluid i.e. $kA\frac{(T_1-T_2)}{L}=hA(T_2-T_\infty)$ i.e. $\frac{T_1-T_2}{T_2-T_\infty}=\frac{hL}{k}$
- $-\frac{hL}{k}$ is a dimensionless number and is known as a Biot number.
- Note: k is the thermal conductivity of the solid, L is the length scale in the direction of conduction
- Suppose the Biot number is large i.e. >> 1 so that $T_1-T_2 >> T_2-T_\infty$
- If Biot number is very small, then $T_1 T_2 << T_2 T_\infty$ so we can neglect T change inside the body (we assume uniform temp in the body) and use the lumped capacitance model
- By << we typically mean a Biot value <0.1
- In an irregular body, the length scale used is $L = \frac{V}{A}$

11 Transient Heat Conduction in 2 and 3 Dimensions

- ullet A ball of volume V, mass m and SA A and heat transfer coefficient h is droppped into a fluid
- Assume that the temperature T is uniform in the body
- We had previously assumed that if Bi < 0.1 we have a lumped capacitance
- Example: Steel shaft, $k=51.2, \, \rho=7832, \, c=541$ and $T_i=300$ is placed into a furnace with $T_\infty=1200$.
 - How long before the shaft temperature reaches 800?
 - We first calculate the Biot number as $Bi = \frac{hL}{k}$ where $L = \frac{V}{A} = \frac{\pi r^2 L}{2\pi r L} = \frac{r}{2}$
 - Then $Bi = \frac{h_{\frac{7}{2}}}{k} = \frac{100 \times \frac{0.05}{2}}{51.2} = 0.05$ so we can apply the lumped value
 - $-\frac{T-T_{\infty}}{T_i-T_{\infty}} = \exp\left[-\frac{hA}{\rho Vc}t\right]$ where $\frac{A}{V} = \frac{2}{r}$
 - This gives $\ln \left[\frac{800-1200}{300-1200} \right] = \dots$ and solving gives t = 859s
- Transient heat conduction in 3 dimensions e.g. plane walls, cylinders, spheres
 - What happens if Bi > 0.1?
 - In this case we cannot neglect the temperature gradients inside the body
 - Have to solve the complete heat conduction equation
 - Consider a solid wall with temperature T_i on one side which then instantly becomes lowered to a temperature T_{∞} as it is placed into a fluid.
 - As time increases, the temperature inside the wall e.g. at the center decreases
 - So in this case, T is a function of x and t
 - For a plane wall $\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$ where $\alpha = \frac{k}{\rho c_p}$ is the thermal diffusivity

- Second order wrt x so two boundary conditions are needed there. First order wrt t so one initial condition is needed there
- This can be solved analytically but we will not do that
- We instead consider the lumped capacitance solution $\ln \left[\frac{T T_{\infty}}{T_i T_{\infty}} \right] = \frac{-hA}{\rho V c_p} t$
- We take the characteristic length $L = \frac{V}{A}$.
- $-\frac{hA}{\rho V c_p} t = \frac{h}{\rho L c_p} t = \left(\frac{h}{\rho L c_p} t\right) \left(\frac{L}{L} \cdot \frac{k}{k}\right) = \left(\frac{hL}{k}\right) \left(\frac{k}{\rho c_p}\right) \left(\frac{t}{L^2}\right) = \left(\frac{hL}{k}\right) \left(\frac{\alpha t}{L^2}\right) \text{ where } Bi = \frac{hL}{k} \text{ which is unitless}$
- We define the Fourier number $Fo = \frac{\alpha t}{L^2}$ which is also dimensionless
- The dimensionless temperature $\Theta = \frac{T T_{\infty}}{T_i T_{\infty}}$ so that the lumped capacitance solution can be written as $\Theta = \exp(-Bi \cdot Fo)$
- A physical interpretation of the Fourier number can be found by considering a cube with side length L. Then $\dot{Q}_{cond} = kA\frac{\partial T}{\partial x} = kL^2\frac{\Delta T}{L} = kL\Delta T$
- $-\dot{Q}_{store} = mc_p \frac{\partial T}{\partial t} = \rho L^3 c_p \frac{\Delta T}{t}$ so that $\frac{\dot{Q}_{cond}}{\dot{Q}_{store}} = \frac{k}{\rho c_p} \cdot \frac{t}{L^2} = \frac{\alpha t}{L^2} = Fo$
- Even when we cannot assume lumped capacitance and get an exact solution of the heat conduction equation, the solution is of the form $\Theta = \Theta(Bi, Fo)$
- We can define $\Theta_0 = \frac{T_0 T_{\infty}}{T_i T_{\infty}}$ so that the solution is of the form $\Theta_0 = A_1 e^{-\lambda_1^2 Fo}$ where A_1, λ_1 are function of Bi
- Example: Carbon steel plate with $T_i = 440$ is placed in a furnace at $T_{\infty} = 600$. We need to heat to a minimum temperature of 520. What is the time t required.
 - $-h = 200, k = 40 \text{ and } \alpha = 8 \times 10^{-6}$
 - $-Bi = \frac{hL}{k} = \frac{200 \times 0.04}{40} = 0.2$
 - Since Bi > 0.1, we cannot use the lumped capacitance and instead use the analytical solution which we obtain from tables
 - From Table 18.2, $Bi = 0.2 \implies \lambda_1 = 0.4328, A_1 = 1.0311$
 - $-\Theta_0 = \frac{T_0 T_\infty}{T_i T_\infty} = A_1 e^{-\lambda_1^2 Fo}$
 - $-\Theta_0 = \frac{520-600}{440-600} = 0.5$ so that $0.5 = 1.0311 \exp(-(0.4328)^2 Fo)$ and so Fo = 3.864
 - $-Fo = \frac{\alpha t}{L^2} \implies t = \frac{FoL^2}{\alpha} = \frac{3.864 \times (0.04)^2}{8 \times 10^{-6}} = 773s$

12 Transient Heat Conduction in Semi-Infinite Solids

- The general problem consists of a body at temperature T_i with the surface temperature suddenly being changed to T_s .
 - Temperature variation would go from T_s down to T_i . δ corresponds to a skin depth and after that we are in the core
 - How does the skin depth δ vary with time?

- Heat conduction equation with one dimension: $\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$
- An estimate of $\frac{\partial^2 T}{\partial x^2}$ can be found as $\frac{(\frac{\partial T}{\partial x})_{x \sim \delta} (\frac{\partial T}{\partial x})_{x \sim 0}}{\delta}$
- $-(\frac{\partial T}{\partial x})_{x=0} \sim \frac{T_i T_s}{\delta}$ so that $\frac{\partial^2 T}{\partial x^2} \sim 0 \frac{T_i T_s}{\delta^2}$, $\frac{\partial T}{\partial t} \sim \frac{T_s T_t}{t}$
- From the heat conduction equation $-\frac{T_i-T_s}{\delta^2}\sim \frac{1}{\alpha}\frac{T_s-T_i}{t}$
- Time for effect to be felt throughout the body is $t_c \sim \frac{r_0^2}{\alpha}$
- $-\delta \sim \sqrt{\alpha t}$
- For a short time $t \ll t_c$, we can treat the body as being semi infinite
- The exact solution is given by $\frac{\partial^2 T}{\partial x^2} = \frac{1}{\alpha} \frac{\partial T}{\partial t}$
- $-\delta$ grows as a function of time
- Boundary conditions: At x = 0, $T(0,t) = T_s$ and as $x \to \infty T(\infty,t) = T_i$
- Initial conditions: $T(x,0) = T_i$
- Define a similarity variable $\eta = \frac{x}{\delta}$ such that $0 < \eta < 1$
- $-\eta = \frac{x}{2\sqrt{\alpha t}}$ so that $\frac{\partial T}{\partial t} = \frac{dT}{d\eta} \cdot \frac{\partial \eta}{\partial t} = \frac{d}{dt} \left[\frac{-x}{4t\sqrt{\alpha t}} \right]$
- $\frac{\partial T}{\partial x} = \frac{dT}{d\eta} \cdot \frac{\partial \eta}{\partial x} = \frac{dT}{d\eta} \left[\frac{1}{2\sqrt{at}} \right]$
- $\frac{\partial^2 T}{\partial x^2} = \frac{d}{d\eta} \left(\frac{\partial T}{\partial \eta} \right) \cdot \frac{\partial \eta}{\partial x} = \frac{d^2 T}{d\eta} = \frac{1}{4\alpha t}$
- Transforming the heat conduction equation, we get $\frac{d^2T}{d\eta^2} = \frac{1}{\alpha} \frac{dT}{d\eta} (\frac{-x}{4t\sqrt{\alpha t}}) = -2\eta \frac{dT}{d\eta}$
- The PDE is now an ODE
- At x = 0, $\eta = 0$, $T(0) = T_s$ and as $x \to \infty$, $\eta \to \infty$, $T(\infty) = T_i$
- Let $w = \frac{dT}{d\eta}$ so that $\frac{dw}{d\eta} = -2\eta w$ which gives $\ln w = -\eta^2 + c_0$
- $-\frac{dT}{d\eta} = w = c_0 e^{-\eta^2}$ and integrating, $T = c_0 \int_0^{\eta} e^{-u^2} du + c_1$
- Boundary conditions give $T_i = c_0 \int_0^\infty e^{-u^2} du + T_s$ which gives the solution $\frac{T T_s}{T_i T_s} = \frac{2}{\sqrt{\pi}} \int_0^\eta e^{-u^2} du = erf(\eta)$ where the RHS is the error function
- Can also be written as $1 \frac{T T_s}{T_i T_s} = 1 erf(\eta)$ or $\frac{T T_i}{T_s T_i} = erfc(\eta)$

• Heat Flux at Surface

$$-\dot{q}_s = -k\frac{\partial T}{\partial x}|_{x=0} = 0k\frac{\partial T}{\partial \eta}\frac{\partial \eta}{\partial x}|_{\eta=0}$$

$$- \frac{d\eta}{dx} = \frac{1}{2\sqrt{\alpha t}}$$

$$-\dot{q} = \frac{k(T_s - T_i)}{\sqrt{\pi \alpha t}}$$

• Contact of two semi-infinite bodies

– One body with temperature $T_{A,i}$ and conductivity k_A and the other with $T_{B,i}$ and k_B

- We require that $T_{S,A} = T_{S,B}$
- The heat flux must be the same i.e. $\dot{q}_{S,A} = \dot{q}_{S,B}$

$$- - \frac{k_A(T_s - T_{A,i})}{\sqrt{\pi(\alpha_a t)}} = \frac{k_B(T_s - T_{B,i})}{\sqrt{\pi(\alpha_B t)}}$$

$$- \implies \frac{T_{A,i} - T_s}{T_s - T_{B,i}} = \frac{\sqrt{(k\rho c)_B}}{\sqrt{(k\rho c)_A}}$$

– Define effusivity as $\gamma = \sqrt{k\rho c}$

13 Forced convection, Velocity and Thermal boundary layers, Reynolds, Prandtl and Nusselt numbers

- Forced Convection
 - Convection is the heat transfer from a surface to a moving fluid
 - Forced part means that motion is imposed by external means
 - A surface at a temperature T_s and a fluid with velocity V_{∞} and temperature T_{∞}
 - $-\dot{Q}_{conv} = hA(T_s T_{\infty})$
 - How do we determine h?
 - * Quite complicated
 - * Depends on physical properties of fluid: viscosity μ , density ρ , thermal conductivity k and specific heat c_p
 - * Depends on the fluid velocity V_{∞}
 - * Depends on the shape and size of body: Characteristic length i.e. for a plate it is the length L whereas for a cylinder of sphere it is the diameter D. Differences for objects of irregular shapes
 - * Type of flow laminar, turbulent
- Velocity Boundary layer
 - Incoming flow at velocity V_{∞} and temperature T_{∞} and a solid plate
 - There is a no slip condition at the interface between the fluid and the solid. i.e. the velocity at the interface must be 0 but if you move away, it will go back to V_{∞}
 - We can define a boundary layer thickness by choosing where the velocity is $0.99V_{\infty}$
 - At y=0 (plate surface), V=0. The heat transfer there is thus by conduction only so that Fouriers law applies
 - Here $\dot{q}_{cond} = -k_{fluid} \frac{\partial T}{\partial y}|_{y=0}$. We have also defined $\dot{q}_{conv} = h(T_s T_\infty)$
 - At y = 0, $\dot{q}_{conv} = \dot{q}_{cond}$ so that $h = \frac{-k_{fluid} \frac{\partial T}{\partial y}|_{y=0}}{T_s T_{\infty}}$

- Therefore h depends on k_{fluid} and the temperature gradient $\frac{\partial T}{\partial y}|_{y=0}$. This leads to thermal boundary layers

• Thermal Boundary layer

- Temperature of the surface is $T_s > T_{\infty}$
- Fluid coming at temperature T_{∞}
- When the fluid comes in contact with the plate, there cannot be a discontinuity so it must be equal to T_s at the contact point
- INSERT PIC FROM NOTES. We define the thermal boundary layer in a similar way to be the point where $T-T_s=0.99(T_\infty-T_s)$
- $-\frac{\partial T}{\partial y}|_{y=0}$ is the temperature gradient.
- h changes with position as the local $\frac{\partial T}{\partial y}|_{y=0}$ changes
- We define a local heat transfer coefficient h(x)
- We can average: $\bar{h} = \frac{1}{L} \int_0^L h(x) dx$
- Instead of worrying about local variations, we use the average value of h

• Velocity Boundary layer flow

- The difference between the boundary and the surfaces increases linearly as a straight path in laminar flow
- There is a transition region then where the path will start becoming unstable which eventually becomes a turbulent region with turbulent flow
- Fluid exerts a drag on the plate. Measured in terms of the shear stress (force per unit area)
- $\tau = \mu \frac{\partial V}{\partial y}|_{y=0}$ where μ is the fluid viscosity $(\frac{kg}{ms})$
- Velocity gradient can be solved but it is very complicated and practically we define a friction coefficient
- We imagine a fluid coming to rest at a stagnation point. Using Bernoulli's equation, $\frac{P}{\rho} = \frac{V_{\infty}^2}{2} + \frac{P_{\infty}}{\rho} \implies P P_{\infty} = \frac{\rho V_{\infty}^2}{2}$. This is the pressure rise and the force felt by plate
- We define the friction coefficient c_f so that $\tau = c_f \frac{\rho v_\infty^2}{2}$
- Generally we expect $c_f \sim 1$ but this depends on the shape

• Laminar & Turbulent Flow

- Heat transfer is greater in turbulent flow i.e. with an increased velocity
- However when the heat transfer goes up, shear goes up and so bigger fans (more energy) are needed
- The transition to turbulence depends on the ratio of fluid inertia to viscosity

- A high inertia drives random motion and therefore turbulence
- A high viscosity damps turbulence
- Consider a mass with diameter D and a fluid coming in around it at velocity V_{∞}
 - * There is an inertial force F_i and a viscous force F_v
 - * Take the characteristic distance to be D
 - * The inertial force $F_i = ma$ where the mass $m = \rho D^3$ and the acceleration $a = \frac{V_{\infty}^2}{D}$
 - * The viscous force $F_v = \tau A = \mu \frac{\partial V}{\partial v} \cdot A$
 - * $F_v \sim \mu \frac{V_\infty}{D} \cdot D^2 \implies \frac{F_i}{F_v} = \frac{\rho V_\infty D}{\mu}$
 - * This number is known as the Reynolds number: $Re = \frac{\rho V_{\infty} D}{\mu}$

14 Forced Convection Currents

- Fluid with velocity V_{∞} and density ρ_{mu} . What forces are exerted onto the body (with characteristic length being the diameter D)
 - Inertial force $F_i = ma$
 - * $m \sim \rho D^3$
 - * The fluid starts with velocity V_{∞} and is brought to rest over a distance D
 - * $t = \frac{D}{V_{\infty}}$
 - * $\Delta V = V_{\infty}$ so $a \sim \frac{\Delta v}{t} = \frac{V_{\infty}}{\frac{D}{V_{\infty}}} = \frac{V_{\infty}^2}{D}$
 - * Thus $F_i \sim \rho D^3(\frac{V_\infty^2}{D}) = \rho D^2 V_\infty^2$
 - Viscous Force
 - * $F_v = \tau A = \mu \frac{dV}{dy} \cdot A$
 - * $F_v \sim \mu \frac{V_\infty}{D} \cdot D^2$
 - We are interested in the ratio
 - * $\frac{F_i}{F_v} \sim \frac{\rho V_{\infty} D}{\mu}$
 - * This is a very important number called the Reynolds Number $Re = \frac{\rho V_{\infty} D}{\mu}$
 - * The kinematic viscosity is defined as $\nu = \frac{\mu}{\rho}$ so that he Reynolds number can also be written as $Re = \frac{V_{\infty}D}{\nu}$
 - * For small Re, viscous forces are dominant. Fluctuations in the flow are damped. This leads to laminar flow.
 - * For large Re, inertial forces are dominant. Fluctuations in the flow become amplified and this leads to turbulent flow
 - * For every geometry, there is a critical value of Re at which a transition to turbulence occurs e.g. $Re_{critical,flatplate} = 5 \times 10^5$
- Two boundary layers are developing velocity, thermal

- The velocity goes from V_{∞} down to 0 and the temperature goes down from T_{∞} to T_s
- Let δ_v be the velocity boundary layer and δ_t be the thermal boundary layer
- $-\delta_t$ may be smaller or larger than δ_v . How do we tell?
 - * This depends on the physical properties of the fluid
- Fluids with high viscosity ν (oils) have thick velocity BL i.e. δ_v is a large fraction of V_{∞}
- Fluids with high thermal diffusivity () $\alpha = \frac{k}{\rho c_p}$) have thick thermal BL
- The ratio $\frac{\delta_v}{\delta_t}$ is given by the ratio $\frac{\nu}{\alpha}$
- The Prandtl Number is defined to be this ratio: $Pr = \frac{\nu}{\alpha} = \frac{\mu c_p}{k}$
- -Pr is a fluid property
- For $Pr \ll 1$ (e.g. a liquid metal) $\delta_v \ll \delta_t$
- For $Pr \gg 1$ (e.g. oils) $\delta_v \gg \delta_t$
- For $Pr \sim 1$ (e.g. gases) $\delta_t \sim \delta_v$
- We have two dimensionless parameters $Re = \frac{\rho V_{\infty} D}{\mu}$ and $Pr = \frac{\nu}{\alpha}$
- \bullet Need to non dimensionalize h
 - $-\dot{Q}_{conv} = hA(T_s T_{\infty}) \sim hD^2(T_s T_{\infty})$
 - Suppose the fluid was not moving
 - Then heat transfer is by conduction only
 - $-\dot{Q}_{cond} = k_{fluid} A_{dr}^{dT} \sim k_{fluid} D^2 \frac{T_s T_{\infty}}{D}$
 - How much is heat transfer enhanced due to convection
 - This is given by the ratio $\frac{\dot{Q}_{conv}}{\dot{Q}_{cond}} = \frac{hD}{k_{fluid}}$ which is a dimensionless number
 - This ratio is known as the Nusselt number $Nu = \frac{hD}{k_{fluid}}$
 - Do not confuse with $Bi = \frac{hD}{k_{solid}}$
- We started with $h = f(D, V_{\infty}, \rho, \mu, c_p, k)$ and dependent on the geometry
- This can now be written as $\frac{hD}{k} = f\left(\frac{\rho DV_{\infty}}{\mu}, \frac{\mu c_p}{k}\right)$ and dependent on the geometry
- $\implies Nu = f(Re, Pr)$ and geometry
- Can do experiments
 - Consider a plate with a uniform heat flux due to an electrical current through it
 - Can put it into a wind tunnel with V_{∞} and T_{∞}
 - We know that $\dot{Q} = hA(T_s T_{\infty}) = P = EI$ (electrical power)

- We know the other variables and can thus solve for h and plot it as a function of V_{∞}
- Repeat for different plate sizes, different T_s and different T_∞
- Can plot Nu vs Re and all the data should fall on the same curve
- Repeat for different fluids to get different curves for different fluids
- Can then plot $\ln(\frac{Nu}{Pr^n})$ against $\ln Re$ and the data for different fluids will all lie on the same line
- $-\ln(\frac{Nu}{Pr^n})=m\ln Re+C$ or equivalently $Nu=cRe^mPr^n$ where n,m,C are determined experimentally for each geometry