Шар – интересная геометрическая фигура

Никитин Д.Д.*

Июль 2022

^{*}Факультет Компьютерных Наук НИУ ВШЭ

Аннотация

Данная работа предназначена для учеников 10-11 классов и первых курсов ВУЗов для ознакомления с геометрической фигурой — шар. Также здесь приводится история изучения данной фигуры. Прилагается интерактивная презентация. Все фотографии взяты из открытых источников.

Оглавление

1	Геометрия фигуры					
	1.1	Определения				
		Формулы				
		Свойства				
2 История изучения фигуры						
	2.1	История шара (сферы)				
	2.2	Изучение шара				

Глава 1

Геометрия фигуры

Счастье – это **шар**, за которым мы гоняемся, пока он катится, и который мы толкаем ногой, когда он останавливается.

Пьер Буаст (1765-1824) - французский лексикограф *

1.1 Определения шара

Шар – геометрическое тело, ограниченное сферической или шаровой поверхностью. Все нормали к поверхности сферы сходятся в центре шара, и все точки сферы отстоят на равных расстояниях от центра. [2]

Рис. 1.1: Шар

Рис. 1.2: Радиус шара

^{*}Сайт знаменитых цитат kartaslov.ru

1.2 Формулы для шара

 Φ ормула объёма n-мерного шара радиуса r в n-мерном евклидовом пространстве:

$$V_n(r) = \frac{\pi^{\frac{n}{2}}}{\Gamma(\frac{n}{2}+1)} \cdot r^n,$$

где Г – эйлеровская гамма-функция [1]

Далее мы приведём несколько формул для площади и объёма шара в трёх-мерном пространстве.

Формулы для метрик шара			
Площадь, S	$4\pi r^2$	πd^2	
Объём, V	$\frac{4}{3}\pi r^3$	$\frac{\pi d^3}{6}$	

Докажем формулу $V = \frac{4}{3}\pi r^3$.

Доказательство. Возьмём четверть круга радиуса r с центром в точке (0;0). Уравнение окружности этого круга: $x^2+y^2=r^2$. Откуда $y^2=r^2-x^2$. Функция $y=\sqrt{r^2-x^2}, x\in (0;r)$ непрерывная, убывающая, неотрицательная. При вращении четверти круга вокруг оси Ох

образуется полушар, следовательно:
$$\frac{1}{2}V = \pi \int_{0}^{r} (r^2 - x^2) dx =$$

$$= \pi \cdot (r^2 x - \frac{x^3}{3}) \Big|_{0}^{r} = \pi \cdot (r^3 - \frac{r^3}{3}) = \frac{2}{3} \pi r^3 \implies V = \frac{4}{3} \pi r^3 \qquad \Box$$

1. Пусть \mathbb{R}^d — евклидово пространство. Тогда

(a) если
$$d=2$$
, то $D_r((x_0,y_0))=\{(x,y)\in\mathbb{R}^2|\sqrt{(x-x_0)^2+(y-y_0)^2}\le\le r\}$

(b) если
$$d=3$$
, то $D_r((x_0,y_0,z_0))=\{(x,y,z)\in\mathbb{R}^3|\sqrt{(x-x_0)^2+(y-y_0)^2+(z-z_0)^2}\leq \leq r\}$

2. В иных метриках шар может иметь иную геометрическую форму. Например, определим в евклидовом пространстве \mathbb{R}^d метрику следующим образом:

$$\rho(x,y) = \sum_{i=1}^{d} ||x_i - y_i||, x = (x_1, x_2, \cdots, x_d)^\top, y = (y_1, y_2, \cdots, y_d)^\top \in \mathbb{R}^d$$
Тогла:

- (a) если d=2, то $U_r(x_0)$ это открытый $\kappa в a \partial p a m$ с центром в точке x_0 и сторонами длины $\sqrt{2}$, расположенными по диагонали к координатным осям.
- (b) если d=3, то $U_r(x_0)$ это открытый трёхмерный *октаэдр*.

Кол-во измерений	Объём шара радиуса R	Радиус шара объёма V
1	2R	V/2
2	πR^2	$\frac{V^{1/2}}{\sqrt{\pi}}$
3	$\frac{4\pi}{3}R^3$	$\left(\frac{3V}{4\pi}\right)^{1/3}$
4	$\frac{\pi^2}{2}R^4$	$\frac{(2V)^{1/4}}{\sqrt{\pi}}$

Таблица 1.1: Формулы объёма для некоторых пространств

Таблица 1.1 показывает нам изменение формул при увелечении размерности пространства.*

1.3 Свойства шара

Диаметрально противоположными точками называются любые две точки на поверхности шара, которые соединены диаметром.

Шар имеет следующие свойства:

- 1. Любое сечение шара плоскостью есть круг.
- 2. Через любые две *диаметрально противоположные точки* можно провести множество больших кругов для шара.
- 3. Через любые две точки, кроме *диаметрально противоположных точек*, можно провести только один большой круг для шара.
- 4. Любые два больших круга одного шара пересекаются по прямой, проходящей через центр шара, а окружности пересекаются в двух $\partial ua-$ метрально противоположных точках.
- 5. Если расстояние между центрами любых двух шаров меньше суммы их радиусов и больше модуля разности их радиусов, то такие шары **пересекаются**, а в плоскости пересечения образуется круг. **

^{*}Шар. (10 июля 2022). Википедия, свободная энциклопедия. Загружено 26 июля 2022 с https://ru.wikipedia.org.

^{**}https://ru.onlinemschool.com

Глава 2

История изучения фигуры

2.1 Шар (сфера) в древности

В древности сфера была в большом почете. Астрономические наблюдения над небесным сводом неизменно вызывали образ сферы.

Пифагорейцы учили о существовании десяти сфер Вселенной, по которым якобы двигаются небесные тела. Они утверждали, что расстояние этих тел друг от друга пропорциональны интервалам музыкальной гаммы. В этом усматривали элменты мировой гармонии. В подобных полумистических рассуждениях заключалась пифагорова "музыка сфер".

Аристотель считал, что шарообразная форма, как наиболее совершенная свойственна Луне, Солнцу, Земле и всем мировым телам. Развивая взгляды Евдокса, он полагал, что Земля окружена рядом концентрических сфер.

2.2 Изучение шара

В XI книге "Начал" Евклид определяет шар как фигуру, описанную вращающимся около неподвижного диаметра полукругом. Он доказывает только теорему о том, что объёмы двух шаров относятся как кубы их радиусов, но не выводит формулы и не дает никакого правила, которого, вероятно, и не знал для вычисления площади поверхности сферы или объема шара.

Вывод формулы объема шара и площади поверхности сферы – одно из величайших открытий Архимеда.

Рис. 2.1: История изучения шара в фото a) Аристотель, b0) Архимед, b0) Евклид, b0) Книга "Начал" Евклида.

В его произведении «О шаре и цилиндре» имеются следующие теоремы:

- Площадь поверхности сферы равна учетверенной площади ее большего круга.
- Объем шара равен учетверенному объёму конуса, основанием которого служит большой круг, а высотой радиус шара.
- Объём цилиндра в полтора раза больше объёма вписанного в него шара.
- Площадь поверхности цилиндра, включая основания, равна $\frac{3}{2}$ площади поверхности вписанной сферы. *

^{*}https://igspl.by

Литература

- [1] FWJ Olver, AB Olde Daalhuis, DW Lozier, BI Schneider, RF Boisvert, CW Clark, BR Miller, and BV Saunders. Nist digital library of mathematical functions http://dlmf. nist. gov. *Release*, 1:22, 2016.
- [2] Энциклопедический словарь Брокгауза. Ефрона: в 86 т.(82 т. и 4 доп.), 1800