j_0 must exist). To improve numerical stability we average over the following sets of indices. Let I_{λ} and I_{μ} be the set of indices given by

$$I_{\lambda} = \{ i \in \{1, \dots, p\} \mid \lambda_i > 0 \}$$

$$I_{\mu} = \{ j \in \{1, \dots, q\} \mid \mu_j > 0 \},$$

and let $p_m = |I_{\lambda}|$ and $q_m = |I_{\mu}|$. We obtain the formula

$$b = \left(w^{\mathsf{T}} \left(\left(\sum_{i \in I_{\lambda}} u_i \right) / p_m + \left(\sum_{j \in I_{\mu}} v_j \right) / q_m \right) + \left(\sum_{i \in I_{\lambda}} \epsilon_i \right) / p_m - \left(\sum_{j \in I_{\mu}} \xi_j \right) / q_m \right) / 2.$$

We now prove that for a fixed K_s , the solution to Problem (SVM_{s4}) is unique and independent of the value of ν .

Theorem 54.8. For K_s and ν fixed, if Problem (SVM_{s4}) succeeds, then it has a unique solution. If Problem (SVM_{s4}) succeeds and returns $(\lambda, \mu, \eta, w, b)$ for the value ν and $(\lambda^{\kappa}, \mu^{\kappa}, \eta^{\kappa}, w^{\kappa}, b^{\kappa})$ for the value $\kappa \nu$ with $\kappa > 0$, then

$$\lambda^{\kappa} = \kappa \lambda, \ \mu^{\kappa} = \kappa \mu, \ \eta^{\kappa} = \kappa \eta, \ w^{\kappa} = \kappa w, \ b^{\kappa} = \kappa b.$$

As a consequence, $\delta = \eta / \|w\| = \eta^{\kappa} / \|w^{\kappa}\| = \delta^{\kappa}$, and the hyperplanes $H_{w,b}$, $H_{w,b+\eta}$ and $H_{w,b-\eta}$ are independent of ν .

Proof. We already observed that for an optimal solution with $\eta > 0$, we have $\gamma = 0$. This means that (λ, μ) is a solution of the problem

minimize
$$\frac{1}{2} \begin{pmatrix} \lambda^{\top} & \mu^{\top} \end{pmatrix} \begin{pmatrix} X^{\top}X + \frac{1}{2K_s}I_{p+q} \end{pmatrix} \begin{pmatrix} \lambda \\ \mu \end{pmatrix}$$
 subject to
$$\sum_{i=1}^{p} \lambda_i - \sum_{j=1}^{q} \mu_j = 0$$

$$\sum_{i=1}^{p} \lambda_i + \sum_{j=1}^{q} \mu_j = \nu$$

$$\lambda_i \geq 0, \quad i = 1, \dots, p$$

$$\mu_j \geq 0, \quad j = 1, \dots, q.$$

Since $K_s > 0$ and $X^{\top}X$ is symmetric positive semidefinite, the matrix $P = X^{\top}X + \frac{1}{2K_s}I_{p+q}$ is symmetric positive definite. Let $\Omega = \mathbb{R}^{p+q}$ and let U be the convex set given by

$$U = \left\{ \begin{pmatrix} \lambda \\ \mu \end{pmatrix} \in \mathbb{R}_+^{p+q} \middle| \begin{pmatrix} \mathbf{1}_p^\top & -\mathbf{1}_q^\top \\ \mathbf{1}_p^\top & \mathbf{1}_q^\top \end{pmatrix} \begin{pmatrix} \lambda \\ \mu \end{pmatrix} = \begin{pmatrix} 0 \\ (p+q)K_s\nu \end{pmatrix} \right\}.$$