Application sur Super Mario Bros

Projet IFT - 7201

BOUCHERY Loïc BUIS Anh My

Structure de l'environnement Super Mario Bros (NES)

Environnement : Premier niveau de Super Mario Bros Librairie utilisée : gym-super-mario-bros (de OpenAl gym)

ESPACE D'ETATS	Tous les états possibles du jeu
ESPACE D'ACTIONS	Mouvements possibles de Mario

Position de Mario, obstacles, powerups, ennemis

Score courant

Direction des éléments mouvants

Attendre

Courir/Sauter à droite

Courir/sauter à gauche

Fonction de récompense

Fonction de récompense implémentée dans la librairie

RECOMPENSE	R = V + T + D
DEATH PENALTY	Si en vie : D = 0, sinon D = - 15
TEMPS	T = Temps0 - Temps1
VELOCITE	V = Position1 - Position0

Indice 0 : avant le step Indice 1 : après le step D'après https://pypi.org/

Mouvements possibles

Pas bouger V = 0

Aller à droite V > 0

Aller à gauche V < 0

Morts possibles

Tomber dans un trou

Toucher un ennemi

Manque de temps

Construction de l'agent : Mario

DOUBLE Q-LEARNING

$$Q_{T}(s_{t}, a_{t}) = r_{t+1} + \gamma \max_{a} Q_{T}(s_{t+1}, a_{t})$$

$$Q_l\left(s_t,\,a_t\right) \leftarrow \,Q_l\left(s_t,\,a_t\right) + \alpha\,\mathcal{L}\left[Q_T(s_t,a_t),Q_L(s_t,a_t)\right]$$

2 réseaux : cible (t) et local (l)

Prédiction des Q - r. local

Apprentissage - r. cible

REFERENCE

- https://pytorch.org/tutorials/intermediate/mario_rl_tutorial.html
- https://arxiv.org/pdf/1509.06461.pdf
- https://pypi.org/project/gym-super-mario-bros/

