

tor	new	ork	. 7		Par	rt i	2																
Pro	blea	m Z	· .	Gi	ven	vec	tors	heio	ght,	gir	th.	, 0	ınd	٧o	lumo	2 1	that	re	.fle	its	th	05C	
	trai Cir	ts wm	or fe	r Tenc	n = .e	31 0f	col the	heiq umns ba	at se	a t	nisti the	oric o	al Olum	bui nn.	lding	3.	Here	gi	rth	is	the	2	
								f							~	birt	h)						
																		xrlu	def	ine	all	notatio	ת
								Kj. + (,		J					
								/pre								0							
				32 =	hov	ארו מ	uch t	he es	timat	ed t	reigh	t w	ill j	ncreo	se/	decre	use	per	1	nit	ino	iease,	1
					: ti	e s	ando	n <i>C</i> r heigh	JOL	tem	n	ith	col	uma	\								
								the					ω,	Q, I I I									
	A	SSW	npti	ons	of	the	line	K M	odel	:					1			1					
								re a city											pend	lent			
				· en	rors nea	; E rity	i ~ , th	N (e e reli	o tion	-z) 6hip	bet	rwe(zn i	X 6	i m	zan	of	γ;	s \	inea	r		
b)	W	rite						assv															
	3	it 3	, =	Y		X	β +	E															
	١	uhen	٠	Y	= =	the	vect	O 0	f ol	been	red	TC:	pon:	se	valu	ks	(heig	ghts)				
				(Hirk	n b	heid																
						eo	rdh	bonon	neter	•		rs	ind	udin	g th	e i	ntoru	ept	4 5	lope	to.	Γ	
				ϵ	, =	th	e ve	otor	of	emo	ns												

$$\alpha = 0.01$$
.

Ho: $\beta_z = 0$ Ha: $\beta_z \neq 0$

The second section is the second section in the second section in the second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

 $\beta_z = 0.01$.

Funder Ho

For Figure 1. The second section is $\beta_z = 0$.

 $\beta_z = 0.01$.

For Figure 1. The second section is $\beta_z = 0$.

 $\beta_z = 0$

For Figure 1. The second section is $\beta_z = 0$.

 $\beta_z = 0$

For Figure 1. The second section is $\beta_z = 0$.

 $\beta_z = 0$

For Figure 1. The second section is $\beta_z = 0$.

 $\beta_z = 0$

Resp. 1. The second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

Figure 1. The second section is $\beta_z = 0$.

Figure 2. The second section is $\beta_z = 0$.

Figure 2. The second section is $\beta_z = 0$.

Figure 2. The second section is $\beta_z = 0$.

Figure 2. The second section is $\beta_z = 0$.

Figure 2. The second section is $\beta_z = 0$.

Figure 2. The second section is $\beta_z = 0$.

Figure 2. The second section is $\beta_z = 0$.

Figure 2. The second section is $\beta_z = 0$.

Figure 3. The second section is $\beta_z =$

and fail to reject the o.w.

Problem 3: For homoskedastic (constant variance) uncorrelated Gaussian linear reg., you wrote models as... Y = XB + & where 6 in N(0, 52) a) If X is $n \times p$ where p = 6, $n \times p$, $n \times p$, and rank (X) = 5, No, we cannot estimate the parameter vector B uniquely by OLS since a rank of 5 indicates that one of the columns of X is linearly dependent, and since it is less than parameters p the matrix is not invertible. Therefore, the linear system does not have a unique solution. b) What link function does the model use? n: - g(ui), ui = Xi B which implies the link is the identity func. c) What is the natural exponential family parameter Ø in terms of notation above. $f(y; \theta, \phi) = exp\left(\frac{\theta \theta - b(\theta)}{a(\phi)} + c(y, \phi)\right)$ β corresponds to the variance σ^z of the error terms d) What is the distribution of the ith element of random vector Y, where X^T is the ith row of matrix XYi~ (XiTB, oz)