Little o notation

Math 205

1 Overview

There is no *new* mathematics in this handout, but there is a slightly different perspective. We think of the linear approximation (not the value of the derivative) as the fundamental object.

2 Introduction

Something that can make differentiation more beautiful is little o notation.

Definition 2.0.1. We say "f is little-oh of h as x approaches x_0 " and write

$$f(x) = o(h(x))$$
 as $x \to x_0$

to mean that

$$\lim_{x \to x_0} \frac{f(x)}{h(x)} = 0.$$

Intuitively, this means f(x) is much smaller than h(x) for x near x_0 .

Warning. If f(x) = o(h(x)), it is not the case that h(x) = o(f(x)).

Example 2.0.1. For instance,

- $x^2 = o(x)$ as $x \to 0$.
- $x \neq o(x^2)$ as $x \to 0$.
- $x \sin x = o(x)$ as $x \to 0$.
- $x \sin x = o(x^2)$ as $x \to 0$.

- $x \sin x = o(x^2)$ as $x \to 0$.
- $x \sin x \neq o(x^3)$ as $x \to 0$.

Definition 2.0.2. For two functions $f, g : \mathbb{R} \to \mathbb{R}$, we say that $f(x) \sim_{x_0} g(x)$ provided

$$f(x) - g(x) = o(x - x_0)$$
 as $x \to x_0$.

Unwrapping the definitions, this just means that

$$\lim_{x \to x_0} \frac{f(x) - g(x)}{x - x_0} = 0$$

Intuitively, $f(x) \sim_{x_0} g(x)$ means f and g look "linearly" the same around x_0 . More formally (or when trying to intimidate others), we might say that the "linear germ of f and g around x_0 is the same."

Exercise 2.0.1. Prove that \sim_{x_0} is an equivalence relation.

Definition 2.0.3. A linear approximation for f(x) at x_0 is a linear function

$$L(x) = ax + b$$

so that $f(x) \sim_{x_0} L(x)$.

Exercise 2.0.2. If $ax + b \sim_{x_0} cx + d$, then a = c and b = d.

Exercise 2.0.3. Let $f:(a,b)\to\mathbb{R}$. If f has a linear approximation at c, then it is unique.

Exercise 2.0.4. Let $f:(a,b)\to\mathbb{R}$. Then f is differentiable at c if and only if f has a linear approximation at c.

Exercise 2.0.5. Let f_i be functions, and L_i be linear functions, so that $f_1 \sim_{x_0} L_1$ and $f_2 \sim_{x_0} L_2$.

- $f_1 + f_2 \sim_{x_0} L_1 + L_2$.
- $\bullet \ f_1 \cdot f_2 \sim_{x_0} L_1 \cdot L_2.$

Remark 1. The latter "explains" the product rule:

$$f_1(x) \sim_{x_0} f_1'(x_0) (x - x_0) + f_1(x_0)$$

 $f_2(x) \sim_{x_0} f_2'(x_0) (x - x_0) + f_2(x_0),$

and therefore,

$$f_1(x) f_2(x) \sim_{x_0} (f_1'(x_0) (x - x_0) + f_1(x_0)) (f_2'(x_0) (x - x_0) + f_2(x_0))$$

$$f_1(x) f_2(x) \sim_{x_0} (f_1'(x_0) f_2(x_0) + f_1(x_0) f_2'(x_0)) (x - x_0) + f_1(x_0) f_2(x_0).$$

You might have noticed that the $f_1'(x_0)f_2'(x_0)(x-x_0)^2$ term is missing—why are we justified in ignoring it?

3 Higher derivatives

Definition 3.0.4. For two functions $f, g : \mathbb{R} \to \mathbb{R}$, we say that $f(x) \sim_{x_0}^n g(x)$ provided

$$f(x) - g(x) = o((x - x_0)^n)$$
 as $x \to x_0$.

Intuitively, this means that f and g are the "same" through degree n. Note that, as before, this is an equivalence relation.

Definition 3.0.5. A quadratic approximation for f(x) at x_0 is a quadratic function

$$L(x) = ax^2 + bx + c$$

so that $f(x) \sim_{x_0}^2 L(x)$.

Remark 2. The quadratic approximation packages together both the first and second derivative of f at x_0 .

Exercise 3.0.6. Let L_1 and L_2 be quadratic functions such that $L_1 \sim_{x_0}^2 L_2$. Prove $L_1 = L_2$.

Exercise 3.0.7. Let $f:(a,b)\to\mathbb{R}$. If f has a quadratic approximation at c, then it is unique.