590 HW1

Austin Turvy Derek Holste Mason Carhart

4/13/2021

```
# Load data
af = read_dta(here("afghanistan_anonymized_data.dta"))
```

1. An outlier observation is someone who had more than 50 sheep or goats owned by the household in 2007 and in the fall of 2007 or had more than 10 jeribs of land owned by the household in the fall of 2007 or had more than 20 poeple in the houdcount in fall of 2007 or a person that has number of people in a household greater than 20 and are observed in summer of 2008. Or if number of jerribs of land counted is more than 10 and are observed in summer of 2008. Lastly if the number of sheep and goats is above 50 and they are observed in summer of 2008.

```
mytable <- table(af$nonoutlier,af$nonoutlier)
mytable</pre>
```

There are 76 non-outliers in the data given the specifications prior.

Table 1: Regression Results

	Dependent variable: Girl Enrolled in Formal School Fall 2007		
	(1)	(2)	
Treatment	0.517***	0.372***	
	(0.091)	(0.094)	
chagcharan	0.178**	0.086	
	(0.085)	(0.090)	
Constant	0.087^{*}	0.328***	
	(0.051)	(0.057)	
Observations	667	707	
\mathbb{R}^2	0.335	0.167	
Note:		*p<0.1; **p<0.05; ***p<0.01	
		S.E Clustered by village	

f07_test_observed == 1))

```
# Run girls regression table 4 column 1 with controls
reg5 = felm(f07_formal_school ~ treatment + chagcharan + f07_heads_child_cnt +
              f07_age_cnt + f07_duration_village_cnt +
              f07_farsi_cnt + f07_tajik_cnt + f07_farmer_cnt +
              f07_age_head_cnt + f07_yrs_ed_head_cnt + f07_num_ppl_hh_cnt +
              f07_jeribs_cnt + f07_num_sheep_cnt +
              f07_nearest_scl| 0 | 0 | clustercode,
            data = af %>% filter(f07_girl_cnt == 1 &
                                 nonoutlier == 1 &
                                 f07_test_observed == 1))
# Run girls regression table 4 column 1 with controls
reg6 = felm(f07_formal_school ~ treatment + chagcharan + f07_heads_child_cnt +
              f07_age_cnt + f07_duration_village_cnt +
              f07_farsi_cnt + f07_tajik_cnt + f07_farmer_cnt +
              f07_age_head_cnt + f07_yrs_ed_head_cnt + f07_num_ppl_hh_cnt +
              f07_jeribs_cnt + f07_num_sheep_cnt +
              f07_nearest_scl| 0 | 0 | clustercode,
            data = af %>% filter(f07_girl_cnt == 0 &
                                 nonoutlier == 1 &
                                 f07_test_observed == 1))
```

Table 2: Regression Results

$Dependent\ variable:$			
Girls			
(1)	(2)	(3)	
0.517***	0.372***	0.511***	
(0.091)	(0.094)	(0.083)	
0.178**	0.086	0.156*	
(0.085)	(0.090)	(0.082)	
0.087^{*}	0.328***	-0.159	
(0.051)	(0.057)	(0.256)	
667	707	667	
0.335	0.167	0.366	
	(1) 0.517*** (0.091) 0.178** (0.085) 0.087* (0.051)	$\begin{array}{c cccc} & & & & & & \\ \hline (1) & & (2) & & \\ \hline 0.517^{***} & 0.372^{***} \\ (0.091) & (0.094) & \\ \hline 0.178^{**} & 0.086 \\ (0.085) & (0.090) & \\ \hline 0.087^* & 0.328^{***} \\ (0.051) & (0.057) & \\ \hline 667 & 707 & \\ \hline \end{array}$	

Question 3:

Question 4:

```
# girls regression column 4
reg9 = felm(f07_both_norma_total ~ treatment + chagcharan + f07_heads_child_cnt +
```

```
f07_age_cnt + f07_duration_village_cnt +
              f07_farsi_cnt + f07_tajik_cnt + f07_farmer_cnt +
              f07_age_head_cnt + f07_yrs_ed_head_cnt + f07_num_ppl_hh_cnt +
              f07_jeribs_cnt + f07_num_sheep_cnt +
              f07_nearest_scl| 0 | 0 | clustercode,
            data = af %>% filter(f07_girl_cnt == 1 &
                                 nonoutlier == 1 &
                                 f07_test_observed == 1))
# boys regression column 4
reg10 = felm(f07_both_norma_total ~ treatment + chagcharan + f07_heads_child_cnt +
              f07_age_cnt + f07_duration_village_cnt +
              f07_farsi_cnt + f07_tajik_cnt + f07_farmer_cnt +
              f07_age_head_cnt + f07_yrs_ed_head_cnt + f07_num_ppl_hh_cnt +
              f07_jeribs_cnt + f07_num_sheep_cnt +
              f07_nearest_scl| 0 | 0 | clustercode,
            data = af %>% filter(f07_girl_cnt == 0 &
                                 nonoutlier == 1 &
                                 f07_test_observed == 1))
```

Question 4b:

```
# girls regression for column 6
reg11 = felm(s08_both_norma_total ~ treatment + chagcharan | 0 | 0 | clustercode,
            data = af %>% filter(s08_girls_cnt == 1 &
                                 nonoutlier == 1 &
                                 s08 test observed == 1))
# boys regression for column 6
reg12 = felm(s08_both_norma_total ~ treatment + chagcharan | 0 | 0 | clustercode,
            data = af %>% filter(s08_girls_cnt == 0 &
                                 nonoutlier == 1 &
                                 s08_test_observed == 1))
# girls regression for column 7
reg13 = felm(s08_both_norma_total ~ treatment + chagcharan +
               s08_heads_child_cnt + s08_age_cnt +
               s08_duration_village_cnt + s08_farsi_cnt + s08_tajik_cnt +
               s08_farmer_cnt + s08_age_head_cnt + s08_yrs_ed_head_cnt +
               s08_num_ppl_hh_cnt + s08_jeribs_cnt + s08_num_sheep_cnt +
               s08_nearest_scl | 0 | 0 | clustercode,
            data = af %>% filter(s08_girls_cnt == 1 &
                                 nonoutlier == 1 &
                                 s08_test_observed == 1))
# boys regression for column 7
reg14 = felm(s08_both_norma_total ~ treatment + chagcharan +
               s08_heads_child_cnt + s08_age_cnt +
               s08_duration_village_cnt + s08_farsi_cnt + s08_tajik_cnt +
               s08_farmer_cnt + s08_age_head_cnt + s08_yrs_ed_head_cnt +
               s08_num_ppl_hh_cnt + s08_jeribs_cnt + s08_num_sheep_cnt +
               s08_nearest_scl | 0 | 0 | clustercode,
```

```
# Getting mean values for column 1
col 1 = af \%
  filter(treatment == 1 & nonoutlier == 1 & f07 observed == 1) %>%
  select(
    c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl)
  ) %>%
  mutate(
  across(.cols = c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl), mean, na.rm = TRUE)
  ) %>% head(., 1) %>% unlist(.)
# Getting mean values for column 2
col 2 = af %>%
  filter(treatment == 0 & nonoutlier == 1 & f07 observed == 1) %>%
    c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl)
  ) %>%
  mutate(
  across(.cols = c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl), mean, na.rm = TRUE)
  ) %>% head(., 1) %>% unlist(.)
# Create regression functions for column 3
reg_function_coef = function(x){
   reg = felm(x ~ treatment | 0 | 0 | clustercode,
               data = af %>% filter(nonoutlier == 1 & f07_observed == 1))
    coef = coef(reg)[2]
   return(coef)
}
# Regression function for SE
reg_function_se = function(x){
 reg = felm(x ~ treatment | 0 | 0 | clustercode,
            data = af %>% filter(nonoutlier == 1 & f07_observed == 1))
  se = sqrt(diag(vcov(reg)))[2]
 return(se)
```

```
}
# Obtain column 3 coefficients
col 3 coefs = af \%>%
  filter(nonoutlier == 1 & f07_observed == 1) %>%
    c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl)
  ) %>%
  mutate(
  across(.cols = c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl), reg_function_coef)
  ) %>% head(., 1) %>% unlist(.)
# Obtain column 3 SE
col_3_se = af \%
  filter(nonoutlier == 1 & f07_observed == 1) %>%
  select(
    c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl)
  ) %>%
  mutate(
  across(.cols = c(f07_heads_child_cnt, f07_girl_cnt, f07_age_cnt, f07_duration_village_cnt,
                   f07_farsi_cnt, f07_tajik_cnt, f07_farmer_cnt,
                   f07_age_head_cnt, f07_yrs_ed_head_cnt, f07_jeribs_cnt,
                   f07_num_sheep_cnt, f07_nearest_scl), reg_function_se)
  ) %>% head(., 1) %>% unlist(.)
# Regression for column 7
col_7 = felm(f07_formal_school ~ f07_heads_child_cnt +
               f07_girl_cnt + f07_age_cnt + f07_duration_village_cnt +
               f07_farsi_cnt + f07_tajik_cnt + f07_farmer_cnt +
               f07_age_head_cnt + f07_yrs_ed_head_cnt + f07_num_ppl_hh_cnt +
               f07_jeribs_cnt + f07_num_sheep_cnt + f07_nearest_scl
             | 0 | 0 | clustercode,
             data = af \%
               filter(nonoutlier == 1 & f07_observed == 1 & treatment == 0))
# Regression for column 8
col_8 = felm(f07_both_norma_total ~ f07_heads_child_cnt +
               f07_girl_cnt + f07_age_cnt + f07_duration_village_cnt +
               f07_farsi_cnt + f07_tajik_cnt + f07_farmer_cnt +
               f07_age_head_cnt + f07_yrs_ed_head_cnt + f07_num_ppl_hh_cnt +
               f07_jeribs_cnt + f07_num_sheep_cnt + f07_nearest_scl
             | 0 | 0 | clustercode,
```

```
# Quant regression function to gather coefficients at different percentiles
quant_coef = function(x, inter = FALSE, is_girl = FALSE){
  nearest scl = vector()
  interaction = vector()
  grl_count = vector()
  for (i in x) {
          qr <- rq(f07_formal_school ~ f07_nearest_scl*f07_girl_cnt +</pre>
                    f07_nearest_scl + f07_girl_cnt, data= af %>%
                      nonoutlier == 1 & f07_observed == 1 & treatment == 0
                      ),
                    tau = i
          scl = coef(qr)[2]
          grl = coef(qr)[3]
          int = coef(qr)[4]
          nearest_scl = append(nearest_scl, scl)
          grl_count = append(grl_count, grl)
          interaction = append(interaction, int)
  if (inter == TRUE){
    return(interaction)
  } else if (is_girl == TRUE){
    return(grl_count)
  } else{
    return(nearest_scl)
}
# Gathering coefficients
interaction = quant_coef(seq(0, 1, .001), int = TRUE)
nearest_school = quant_coef(seq(0, 1, .001))
grl_count = quant_coef(seq(0, 1, .001), is_girl = TRUE)
# Creating coefficient dataframe
quant_df = tibble(
  scl_girl = interaction,
 nearest_scl = nearest_school,
 grl_count = grl_count,
  tau = seq(0, 1, .001)
) %>% mutate(difference = scl_girl + nearest_scl)
# Plotting coefficients
ggplot(quant_df, aes(x = tau)) +
  geom_line(aes(y = scl_girl), color = "dark blue", size = 1.5) +
  labs(x = "Percentile", y = "Interaction")
```



```
ggplot(quant_df, aes(x = tau)) +
  geom_line(aes(y = nearest_school), color = "dark red", size = 1.5) +
  labs(x = "Percentile", y = "Nearest School")
```



```
ggplot(quant_df, aes(x = tau)) +
  geom_line(aes(y = difference), color = "dark red", size = 1.5) +
  labs(x = "Percentile", y = "Nearest School")
```



```
ggplot(quant_df, aes(x = tau)) +
  geom_line(aes(y = grl_count), color = "dark red", size = 1.5) +
  labs(x = "Percentile", y = "Nearest School")
```


summary(af\$f07_nearest_scl)

Min. 1st Qu. Median Mean 3rd Qu. Max. NA's ## 0.01841 2.33871 2.91533 3.00122 3.85273 6.82849 233

ggplot(af, aes(x=f07_nearest_scl)) + geom_histogram()

'stat_bin()' using 'bins = 30'. Pick better value with 'binwidth'.

Warning: Removed 233 rows containing non-finite values (stat_bin).

