Variabilidade

	Fórmula	Example	
Variance	$SS = \frac{\sum_{i=0}^{n} (x_i - \bar{x})^2}{n}$	xı: registro x: média n: numero de registros	
Standard Deviation	$\sigma = \sqrt{\frac{\sum_{i=0}^{n} (x_i - \bar{x})^2}{n}}$		Desvio Padrão da Amostra
	$s = \sqrt{\frac{\sum_{i=0}^{n} (x_i - \bar{x})^2}{n-1}}$		Estimar o Desvio Padrão da População a partir da amostra (Bessel's Correction)

7.	c	CO	ro

	Fórmula	Legenda		
Usado quando se possui os parâmetros da população				
Z-Score	$z = \frac{(x - \mu)}{\sigma}$	x: registro μ: média da população σ: desvio padrão	Distância em Stardard Deviations Cria-se Standard Normal Distribution com média = 0 e desvio padrão = 1	
	$z = \frac{\sigma}{\frac{(\bar{x} - \mu)}{\sqrt{n}}}$	x: média da amostra a ser estudada μ : média da sampling distribution σ / \sqrt{n} : desvio padrão da sampling distribution		
Central Limit Theorem	$SE = \frac{\sigma}{\sqrt{n}}$	SE: desvio padrão da distribuição da média das amostras (Standard Error) σ: desvio padrão da população n: tamanho das amostras	Dada uma população com distribuição de qualquer formato: A distribuição das médias de n amostras será uma distribuição normal e Média da distribuição das amostras = Média da População	
Margin of Error	$ME = z \frac{\sigma}{\sqrt{n}}$		Margem de Erro é metade da largura do Intervalo de Confiança	
Confidence Interval Range	$CI = \left(\bar{x} - z \frac{\sigma}{\sqrt{n}}, \bar{x} + z \frac{\sigma}{\sqrt{n}}\right)$	x: média da amostra a ser estudada z: z-score (1.96 para Cl de 95%) (2.33 para Cl de 98%)	Quanto maior o tamanho da amostra, menor será o CI Range	
Alpha Level (a)	$\begin{cases} \alpha = 0.05 \to z = 1.65 \\ \alpha = 0.01 \to z = 2.32 \\ \alpha = 0.001 \to z = 3.08 \end{cases}$		One-Tailed Test	
	$\begin{cases} \alpha = 0.05 \to z = \pm 1.96 \\ \alpha = 0.01 \to z = \pm 2.57 \\ \alpha = 0.001 \to z = \pm 3.27 \end{cases}$		Two-Tailed Test	

Links

	Link
Z-table	https://s3.amazonaws.com/udacity-hosted-downloads/ZTable.jpg
T-table	https://s3.amazonaws.com/udacity-hosted-downloads/t-table.jpg
F-table	http://www.socr.ucla.edu/Applets.dir/F Table.html
Q-table	https://www2.stat.duke.edu/courses/Spring98/sta110c/qtable.html
Chi-table	https://people.richland.edu/james/lecture/m170/tbl-chi.html
GraphPad	https://www.graphpad.com/quickcalcs/