

MHA

VISUALIZATION ANALYSIS & DESIGN

TASK ABSTRACTION (CH 3)

1

FROM DOMAIN TO ABSTRACTION

- lacksquare Domain characterization: details of application domain
 - > group of users, target domain, their questions & data
 - varies wildly by domain
 - must be specific enough to get traction
 - domain questions/problems
 - break down into simpler abstract tasks
- ☐ Abstraction: data & task
 - > map what and why into generalized terms
 - identify tasks that users wish to perform, or already do
 - find data types that will support those tasks
 - o possibly transform /derive if need be

DESIGN PROCESS

TASK ABSTRACTION: ACTIONS AND TARGETS

TASK ABSTRACTION: ACTIONS AND TARGETS

- ☐ Very high-level pattern
- □ Actions
 - analyze
 - o high-level choices
 - > search
 - o find a known/unknown item
 - > query
 - o find out about characteristics of item
- □ Targets
 - > what is being acted on

- ☐ {action, target} pairs
 - discover distribution
 - compare trends
 - locate outliers
 - browse topology

ACTIONS: ANALYZE

ACTIONS: ANALYZE

- ☐ consume
 - discover vs present
 - classic split
 - aka explore vs explain
 - > enjoy
 - newcomer
 - aka casual, social
- ☐ produce
 - > annotate, record
 - > derive
 - crucial design choice

- → Analyze
 - → Consume
 - → Discover
- → Present

→ Enjoy

- → Produce
 - → Annotate

→ Record

→ Derive

ACTIONS: SEARCH

→ Search

ACTIONS: SEARCH

- What does user know
 - target, location
- Lookup
 - ex: word in dictionary
 - o alphabetical order
- Locate
 - ex: keys in your house
 - ex: node in network
- Browse
 - ex: books in bookstore
- Explore
 - ex: find cool neighborhood in new city

ACTIONS: SEARCH

- ☐ How much of the data matters
 - one: identify
 - some: compare
 - all: summarize

ACTIONS

- Independent choices for each of these three levels
 - analyze, search, query
 - mix and match

→ Analyze

→ Produce

→ Search

	Target known	Target unknown
Location known	·.•• Lookup	: Browse
Location	⟨`ฺ⊙ੑ∙> Locate	₹ Explore

Query

TASK ABSTRACTION: TARGETS

TASK ABSTRACTION: TARGETS

- → All Data
 - → Trends → Outliers → Features

 | |
- **→** Attributes
 - → One → Many
 → Distribution → Dependency → Correlation → Similarity
 → Extremes

TASK ABSTRACTION: TARGETS

- → All Data
 - → Trends
- → Outliers → Features

- **→** Attributes
 - → One
- → Many
- → Distribution

 - → Extremes

- → Dependency → Correlation → Similarity

- → Network Data
 - → Topology

→ Paths

- → All Data
 - → Trends
- → Outliers → Features

- **→** Attributes
 - → One
- → Many
- → Distribution
- .11/11...
- → Extremes
 - ullu.
- → Dependency → Correlation → Similarity

- **Network Data**
 - → Topology

→ Paths

- Spatial Data
 - → Shape

ABSTRACTION

- ☐ These {action, target} pairs are good starting point for vocabulary
 - But sometimes you'll need more precision!
- Rule of thumb
 - systematically remove all domain jargon
- ☐ Interplay: task and data abstraction
 - need to use data abstraction within task abstraction
 - to specify your targets!
 - but task abstraction can lead you to transform the data
- Iterate back and forth
 - first pass data, first pass task, second pass data, ...

MEANS AND ENDS

Dependency

- ☐ {action, target} pairs
 - o discover distribution
 - compare trends
 - locate outliers
 - browse topology

→ Analyze

→ Produce

→ Search

	Target known	Target unknown
Location known	·.••• Lookup	:. Browse
Location unknown	₹`@.> Locate	₹ Explore

Query

Targets → All Data

→ Attributes

→ Network Data

.athr.

→ Topology

→ Paths

→ Spatial Data

→ Shape

