Fuzzy Rules and Fuzzy Reasoning

Feng-Cheng Yang 湯煙正

Enthusiasm • Leadership • Innovation • Teamwork • Excellence

Fuzzy Rules and Fuzzy Reasoning

- **Extension Principle**
- Fuzzy Relations
- Linguistic Variables and Values
- Fuzzy Rules
- Fuzzy Reasoning
- Compositional Rule of Inference
- Fuzzy Inference System
 - Automatic control, expert system, pattern recognition, time series prediction, data classification

Extension Principle

- Extension principle
 - Extend crisp domains of mathematical expressions to fuzzy domains
 - ◆Point-to-point mapping → fuzzy set mapping

Suppose f(.) is a function from X to Y and A is a fuzzy set on X,

$$A = \mu_A(x_1)/x_1 + \mu_A(x_2)/x_2 + \dots + \mu_A(x_n)/x_n$$

The Extension principle states that the image of fuzzy set A under the mapping f(.) can be expressed as a fuzzy set B

$$B = f(A) = \mu_B(y_1) / y_1 + \mu_B(y_2) / y_2 + \dots + \mu_B(y_n) / y_n,$$
where $y_i = f(x_i)$, $i = 1, 2, ..., n$

ા If *f*(.) is a many-to-one mapping, the membership grade is the maximum grade of the points *x*s that map to the same *y*.

$$\mu_B(y) = \max_{x=f^{-1}(y)} \mu_A(x)$$

Extension Principle

Definition 1: Extension Principle

Suppose that function f is a mapping from an n-dimensional Cartesian product space $X_1xX_2x...X_n$ to a one-dimensional universe Y such that $y=f(x_1,...,x_n)$, and suppose $A_1,...,A_n$ are n fuzzy sets in $X_1,...,X_n$, respectively. Then the extension principle asserts that the fuzzy set B induced by the mapping f is defined by

$$\mu_{B}(y) = \begin{cases} \max_{\forall (x_{i}, \dots, x_{n}) = f^{-1}(y)} \left(\min_{i} \left(\mu_{A_{i}}(x_{i}) \right) \right), & \text{if } f^{-1}(y) \neq \emptyset \\ 0, & \text{if } f^{-1}(y) = \emptyset \end{cases}$$

Application of Extension

- $f(x_1,...,x_n) \rightarrow map \rightarrow y$
- $X_1,...,X_n$ *n* discourses Y discourse
- $X_1,...,X_n+Y \rightarrow n+1$ dimensional discourses
- - Support fuzzy inference
 - From $x_1, ..., x_n$ infer Y

Fuzzy Relations

- Fuzzy relations are fuzzy sets that map an element to a membership grade
- Unary fuzzy relations are fuzzy sets with onedimensional MFs that map a one-dimensional point to a membership grade
- Binary fuzzy relations are fuzzy sets on XxY which map each element on XxY to a membership grade between 0 and 1
 - Two-dimensional MFs map an (x,y) point to a membership grade

Definition 2: Binary fuzzy relation

Let X and Y be two universes of discourse. Then

$$R = \{((x, y), \mu_R(x, y)) | (x, y) \in X \times Y\}$$

is a binary fuzzy relation in XxY.

- Relation is a fuzzy set with a membership function
- Relate an element in the universe to a membership grade

Examples of Binary Relations

- ϕ y is much greater than x (x, y are numbers)
- * x is close to y (x, y are numbers)
- \clubsuit X depends on y (x, y are events)
- X and y look alike (x, y are objects)
- ♣ If x is large, then y is small (x is reading and y is action) (simplest fuzzy rule)
 - Used frequently in fuzzy inference system

Relation Compositions

- Relation and relation can be combined by applying composition operations
- Best know composition operation is max-min composition proposed by Zadeh

Definition 3: Max-min Composition

Let R_1 and R_2 be two fuzzy sets defined on XxY and YxZ, respectively. The max-min composition of R_1 and R_2 is a fuzzy set defined by

$$R_1 \circ R_2 = \left\{ \left((x, z), \max_y \min \left(\mu_{R_1} (x, y), \mu_{R_2} (y, z) \right) \right) \middle| x \in X, y \in Y, z \in Z \right\}$$
 or, equivalently,

$$\mu_{R_1 \circ R_2}(x, z) = \max_{y} \min(\mu_{R_1}(x, y), \mu_{R_2}(y, z)) = \bigvee_{y} (\mu_{R_1}(x, y) \wedge \mu_{R_2}(y, z))$$

With the understanding that \vee and \wedge represent max and min.

- For discrete universes, fuzzy relations can be expressed as relation matrices
- Similar to matrix operation can be carried out to compute the composition relation matrix
- Operators × (multiplication) and + (sum) are replaced by ∧ (and) and ∨ (or)

Υ				Z			Z			
	0.0	0.3	0.8	0.9		0.6	0.8		0.3	0.3
Χ	0.1	0.2	0.7	0.8	Y	0.4	0.5	X /	0.3	0.3
	0.0	0.1	0.2	0.6		0.3	0.3		0.2	0.2
					•	0.1	0.0			

 $0.0^{\circ}0.6 \times 0.3^{\circ}0.4 \times 0.8 \wedge 0.3 \times 0.9 \wedge 0.1 = 0.0 \times 0.3 \times 0.3 \times 0.1 = 0.3$

Properties of Composition

Associativity: $R \circ (S \circ T) = (R \circ S) \circ T$

Distributivity over union: $R \circ (S \cup T) = (R \circ S) \cup (R \circ T)$

Distributivity over intersection: $R \circ (S \cap T) = (R \circ S) \cap (R \circ T)$

Monotonicity: $S \subseteq T \Rightarrow (R \circ S) \subseteq (R \circ T)$

Definition 4: Max product Composition

Let R_1 and R_2 be two fuzzy sets defined on XxY and YxZ, respectively. The max-product composition of R_1 and R_2 is a fuzzy set defined by

$$\mu_{R_{1} \circ R_{2}}(x, z) = \max_{y} \left(\mu_{R_{1}}(x, y) \cdot \mu_{R_{2}}(y, z) \right) = \bigvee_{y} \left(\mu_{R_{1}}(x, y) \cdot \mu_{R_{2}}(y, z) \right)$$

Y

X

0.0	0.3	0.8	0.9
0.1	0.2	0.7	8.0
0.0	0.1	0.2	0.6

Z

0.6	8.0
0.4	0.5
0.3	0.3
0.1	0.0

X 0.24

 $0.0 \times 0.6 \times 0.3 \times 0.4 \times 0.8 \times 0.3 \times 0.9 \times 0.1 = 0.0 \times 0.12 \times 0.24 \times 0.09 = 0.24$

- In general max, min (or union, intersection) operations are used in composition computation
- They can be replaced with various T-norm and S-norm computation to have various results

(0.0 T 0.6) S (0.3 T 0.4) S (0.8 T 0.3) S (0.9 T 0.1)

Linguistic Variables and Values

Definition 5: Linguistic variables and other related terminology

A linguistic variable is a quintuple (x,T(x),X,G,M), x is the name of the variable; T(x) is the term set of x—the set of linguistic values (terms); X is the universe of discourse; G is a syntactic rule which generates terms in T(x); and M is a semantic rule which associates with each linguistic value a its meaning M(a), where M(a) denotes a fuzzy set in X

X: age

T(x): {young, middle aged, old, not young, not very young, ... }

Primary terms: young, middle aged, old

Hedges: very, more, less, quite, extremely

Connectors: and, or, either, neither

G: [Hedges] Primary term [connector [Hedges] Primary term]

M: $\mu_{\text{young}}(x)$, $\mu_{\text{middle aged}}(x)$, $\mu_{\text{old}}(x)$, $\mu_{\text{not young}}(x)$

Definition 6: Concentration and dilation of linguistic values

Let A be a linguistic value characterized by a fuzzy set with membership function $\mu(.)$. Then A^k is interpreted as a modified version of the original linguistic value expressed as

 $A^{k} = \int_{X} \left(\mu_{A}(x) \right)^{k} / x$

In particular, concentration operation is defined as

$$CON(A) = A^2$$

dilation operation is defined as

$$DIL(A) = A^{0.5}$$

- CON(A) is resulted from applying hedges very
 - ■非常老
- DIL(A) is resulted from applying hedges more or less
 - 有些老 (多少有些)
- More or less Old, Old, very Old, very very Old, extremely Old
 - $\blacksquare A^{0.5}$, A, A^2 , A^4 , A^8

- Negation operator NOT and connectives AND and OR are used to connect primary linguistic terms to create composite linguistic values (terms)
 - Not very young and not very old
 - Young but not too young
- Linguistic values whose meanings are defined by M(.)
 - Linguistic value → Fuzzy Set
 - \blacksquare M(.)→Membership function

- **©** CON(.), DIL(.), ∩, ∪, ¬ are used to compose the membership functions of composite linguistic terms
- More or less (多少有些)old \rightarrow DIL(old) =(μ_{old} (age)) $^{0.5}$
- Not young and not old \rightarrow \neg young $\cap \neg$ old = $(1 - \mu_{young}(age))^{\wedge} (1 - \mu_{old}(age))$
- Young but not too young \rightarrow young $\cap \neg CON(young)$ = $(\mu_{young} (age)) \land (1- (\mu_{young} (age))^2)$
- Extremely = very very very Extremely old \rightarrow CON(CON(CON(old))) = $(\mu_{\text{old}} (age))$ 8

Definition 7: Contrast Intensification

The operation of contrast intensification on a linguistic value A is defined by

INT(A) =
$$\begin{cases} 2A^2, & 0 \le \mu_A(x) \le 0.5, \\ -2(-A)^2, & 0.5 \le \mu_A(x) \le 1.0 \end{cases}$$

$$CON(A) = A^2$$
 DIL(A) = $A^{0.5}$

- Intensifier the values of which are above 0.5
- Diminish those below this point
- Reduce the fuzziness of linguistic value A

The operation of contrast diminisher on a linguistic value A is defined by

$$DIM(A) = \begin{cases} ??, for \ 0 \le \mu_A(x) \le 0.5, \\ ??, for \ 0.5 \le \mu_A(x) \le 1.0 \end{cases}$$

$$CON(A) = A^2$$
such that $DIM(INT(A)) = A$

$$DIL(A) = A^{0.5}$$

Definition 8: Orthogonality

A term set $T = \{t_1, t_2, ..., t_n\}$ of a linguistic variable x on the universe X is orthogonal it fulfills the following property:

$$\sum_{i=1}^{n} \mu_{t_i}(x) = 1.0, \ \forall x \in X$$

where t_i 's are convex and normal fuzzy sets defined on X and these fuzzy sets make up the term set T.

- A fuzzy set is intuitively reasonable:
 - The terms in term set must be pertinent
 - The terms must cover the universe properly
 - The orthogonality must be hold by the membership functions of these terms

computer automation

Fuzzy If-Then Rules

- Fuzzy if-then rule ←→ fuzzy rule ←→ fuzzy implication ←→ fuzzy conditional statement
- **\$** Fuzzy if-then rule format:
 - \blacksquare If x is A then y is B
 - \blacksquare A, B are linguistic values defined by fuzzy sets on universes of discourse X and Y, respectively
 - $\blacksquare x \text{ is } A \rightarrow \text{antecedent or premise}$
 - $y ext{ is } B \rightarrow ext{consequence or conclusion}$

Fuzzy If-then Rules

- If pressure is high, then volume is small
- If the road is slippery, then driving is dangerous
- If a tomato is red, then it is ripe
- If the speed is high, then apply the brake a little

- If x is A then y is B
 - An expression describes a relation between two variables x and y
 - $\blacksquare A \rightarrow B$
- Fuzzy if-then rule
 - A fuzzy relation R between two linguistic variables x and y on the product space AxB
- An if-then fuzzy rule is expressed as a fuzzy relation characterized by a membership function
 - $\blacksquare A \rightarrow B : A \text{ coupled with } B$
 - $\blacksquare A \rightarrow B : A \text{ entails } B$

If-then rules:

- (1) A coupled with B
- (2) A entails B

(2) A **entails** B 接受非A 部分: 非A 部分沒有命題無其他法則可推論

⋄ A coupled with B

■ T-norm operator

$$A \rightarrow B = R = \int_{X \times Y} \mu_A(x) \tilde{*} \mu_B(x) / (x, y)$$

(1) A coupled with B 排斥 非 A 部分:上海人東京人是不是台灣人會另有命題,譬如:若是上海人,則是中國人。若是東京人則是日本人。

A entails B

Is not an S-norm operator for A and B (should be S-norm on Not A and B)

$$A \to B = R = \int_{X \times Y} \mu_A(x) \tilde{\oplus} \mu_B(y) / (x, y), \tilde{\oplus}$$
: entail relation operator

$$A \rightarrow B = R = \int_{X \times Y} (1 - \mu_A(x)) \tilde{+} \mu_B(y) / (x, y), \tilde{+}$$
: S-norm operator

(2) A entails B 接受非 A 部分:太空人、卡通人與垃圾落不落地沒有命題。 不會有若是卡通人則垃圾該如何的議題。

A entails B

$$R = A \rightarrow B = \neg(c)A \cup (c)B$$

◆ Material implication (實質蘊涵)

$$R = A \rightarrow B = \neg(c)A \cup ((c)A \cap (c)B)$$

♣ Propositional Calculus (命題演算):

$$R = A \rightarrow B = (\neg(c)A \cap \neg(c)B) \cup (c)B$$

Extended Propositional Calculus:

Fuzzy Implication

- ♣ Fuzzy implication function (蘊涵函數)
 - Transform the membership grades of x in A and y in B into (x, y) in $A \rightarrow B$
 - Fuzzy rule function
 - Fuzzy set membership function

$$\mu_{R}(x, y) = f(\mu_{A}(x), \mu_{B}(y)) = f(a, b)$$

34

Fuzzy Implication Function for A coupled with B

- $A \rightarrow B$, A coupled with B
- T-norm operators
 - **Examples:** the four T-norm

$$R_{\min} = A \times B = \int_{X \times Y} \mu_{A}(x) \wedge \mu_{B}(y) / (x, y); f_{\min}(a, b) = a \wedge b$$

$$R_{ap} = A \times B = \int_{X \times Y} \mu_{A}(x) \mu_{B}(y) / (x, y); f_{ap}(a, b) = ab$$

$$R_{bp} = A \times B = \int_{X \times Y} \mu_{A}(x) \otimes \mu_{B}(y) / (x, y); f_{bp}(a, b)$$

$$= \int_{X \times Y} 0 \vee (\mu_{A}(x) + \mu_{B}(y) - 1) / (x, y); f_{bp}(a, b) = 0 \vee (a + b - 1)$$

$$R_{dp} = A \times B = \int_{X \times Y} \mu_{A}(x) \cdot \mu_{B}(y) / (x, y);$$

$$f_{dp}(a, b) = a \cdot b = \begin{cases} a, if \ b = 1 \\ b, if \ a = 1 \\ 0, otherwise \end{cases}$$

Fuzzy Implication Function for A entails with B

- $A \rightarrow B$, A entails with B
- Not A and B Perform S-norm (T-conorm) operators
 - **Examples:** the four S-norm

$$R_{\max} = \neg(c)A \cup (c)B = \int_{X \times Y} \mu_{c(A)}(x) \vee \mu_{B}(y) / (x, y); f_{\max}(1 - a, b) = (1 - a) \vee b = \max(1 - a, b)$$

$$R_{as} = \neg(c)A \cup (c)B = \int_{X \times Y} \mu_{c(A)}(x) + \mu_{B}(y) / (x, y); f_{as}(1 - a, b) = (1 - a) + b - (1 - a)b = 1 - a + ab$$

$$R_{bs} = \neg(c)A \cup (c)B = \int_{X \times Y} \mu_{c(A)}(x) \oplus \mu_{B}(y) / (x, y); f_{bs}(1 - a, b) =$$

$$= \int_{X \times Y} 1 \wedge \left(\mu_{c(A)}(x) + \mu_{B}(y) \right) / (x, y); f_{bs}(a, b) = 1 \wedge \left((1 - a) + b \right)$$

$$R_{ds} = \neg(c)A \cup (c)B = \int_{X \times Y} \mu_{c(A)}(x) + \mu_{B}(y) / (x, y);$$

$$\left(1 - a, if b = 0 \right)$$

Another Fuzzy Implication Functions

- Zadeh's arithmetic rule
- Zadeh's max-min rule
- Booean fuzzy implication using max
- Goguen's fuzzy implication

$$R_{z} = \neg(c)A \cup (c)B = \int_{X \times Y} 1 \wedge (1 - \mu_{A}(x) + \mu_{B}(y)) / (x, y) = R_{bs}; f_{z}(a, b) = 1 \wedge (1 - a + b)$$

$$R_{mm} = \neg(c)A \cup (c)B = \int_{X \times Y} (1 - \mu_{A}(x)) \vee (\mu_{A}(x) \wedge \mu_{B}(y)) / (x, y); f_{mm}(a, b) = (1 - a) \vee (a \wedge b)$$

$$R_{s} = \neg(c)A \cup (c)B = \int_{X \times Y} (1 - \mu_{A}(x)) \vee \mu_{B}(y) / (x, y) = R_{max}; f_{s}(a, b) = (1 - a) \vee b$$

$$R_{\Delta} = \neg(c)A \cup (c)B = \int_{X \times Y} \mu_{A}(x) \tilde{>} \mu_{B}(y) / (x, y);$$

$$f_{\Delta}(a, b) = a \tilde{>} b = \begin{cases} 1, if \ a \leq b \\ b/a, if \ a > b \end{cases}$$

- ♣ Fuzzy reasoning ←→ approximate reasoning
 - Inference procedure derives conclusions from a set of fuzzy if-then rules and known facts

- \clubsuit Assume R is a fuzzy rule $A \rightarrow B$, defined on XxY
- ** R: fuzzy relation on XxY; 2-D membership function; 2-D fuzzy set
- A': a fuzzy set of $X \rightarrow$ fact
- * B': the resulting fuzzy set
- **\$\rightarrow\$ Form a cylindrical extension of** A': c(A')
- Intersect c(A') and $R: c(A') \cap R$
- Project the intersection to Y to form a fuzzy set B'
 - Usually non-normal fuzzy sets

$$\mu_{C(A)}(x, y) = \mu_{A}(x)$$

$$\mu_{C(A)\cap R}(x, y) = \min(\mu_{C(A)}(x, y), \mu_{R}(x, y))$$

$$= \min(\mu_{A'}(x), \mu_{R}(x, y))$$

$$\mu_{B}(y) = \max_{x} \min(\mu_{A'}(x), \mu_{R}(x, y))$$

$$= \bigvee_{x} (\mu_{A}(x) \land \mu_{R}(x, y))$$

$$B' = A \circ R$$

- Basic inference rule in two-valued logic
 - Modus ponens (若P則Q的離段邏輯推理)
 - lack if P then Q
 - $\bullet P \rightarrow Q$ implication
 - \blacksquare Rule: $x \text{ is } A \rightarrow y \text{ is } B$
 - **Fact:** x is A
 - \blacksquare Conclusion: y is B
- \bullet Fuzzy inference (A' is close to A, B' is close to B)
 - \blacksquare Rule: if x is A then y is B
 - Fact: x is A'
 - \blacksquare Conclusion: y is B'
- ♣ Approximate reasoning ← → Fuzzy reasoning ← → Generalized modus ponens (GMP)

Definition 9: Approximate reasoning (fuzzy reasoning)

Let A, A', and B be fuzzy sets of X, X, and Y, respectively. Assume that the fuzzy implication $A \rightarrow B$ is expressed as a fuzzy relation R on $X \times Y$. Then the fuzzy set B' induced by x is A' and the fuzzy rule if x is A then y is B is defined by

$$\mu_{B'}(y) = \max_{x} \min(\mu_{A'}(x), \mu_{R}(x, y)) = \vee_{x} (\mu_{A'}(x) \wedge \mu_{R}(x, y))$$
 or equivalently,

$$B' = A' \circ R = A' \circ (A \longrightarrow B)$$

Single Rule with Single Antecedent

Rule: if x is A then y is B

Fact: x is A'

Conclusion: *y* is *B*'

$$B' = A' \circ R = A' \circ (A \to B)$$

$$\mu_{B'}(y) = \max_{x} \min(\mu_{A'}(x), \mu_{R}(x, y))$$

$$= \bigvee_{x} (\mu_{A'}(x) \land \mu_{R}(x, y))$$

$$= \bigvee_{x} (\mu_{A'}(x) \land (\mu_{A}(x) \land \mu_{B}(y)))$$

$$= \bigvee_{x} ((\mu_{A'}(x) \land \mu_{A}(x)) \land \mu_{B}(y))$$

$$= \bigvee_{x} (\mu_{A'}(x) \land \mu_{A}(x)) \land \mu_{B}(y)$$

$$= \bigvee_{x} (\mu_{A'}(x) \land \mu_{A}(x)) \land \mu_{B}(y)$$

$$= \bigvee_{x} (\mu_{A'}(x) \land \mu_{A}(x)) \land \mu_{B}(y)$$

Find the degree of match w as the maximum of then MF of B is clipped by w

w: a measure of degree of belief for the antecedent part of the rule

w propagates by the if-then rule

The resulting degree of belief of MF for the consequent part B' should be no greater than w

Single Rule with Single Antecedent

Rule: If x is A then y is BNow x is A', y is?

Single Rule with Multiple Antecedents

Rule: if x is A and y is B then z is C

Fact: x is A and y is B'

Conclusion: z is C'

$$A \times B \rightarrow C$$

$$R_{m}(A,B,C) = (A \times B) \times C$$

$$= \int_{X \times Y \times Z} \mu_{A}(x) \wedge \mu_{B}(y) \wedge \mu_{C}(z) / (x,y,z)$$

$$C' = (A' \times B') \circ R_{m}(A,B,C) = (A' \times B') \circ (A \times B \to C)$$

$$\mu_{C'}(z) = \left(\bigvee_{x,y} \left(\mu_{A'}(x) \wedge \mu_{B'}(y) \right) \right) \wedge \left(\mu_{A}(x) \wedge \mu_{B}(y) \wedge \mu_{C}(z) \right)$$

$$= \bigvee_{x,y} \left(\left(\mu_{A'}(x) \wedge \mu_{B'}(y) \right) \wedge \left(\mu_{A}(x) \wedge \mu_{B}(y) \right) \right) \wedge \mu_{C}(z)$$

$$= \bigvee_{x,y} \left(\left(\mu_{A'}(x) \wedge \mu_{A}(x) \right) \wedge \left(\mu_{B'}(y) \wedge \mu_{B}(y) \right) \right) \wedge \mu_{C}(z)$$

$$= \left(\bigvee_{x} \left(\mu_{A'}(x) \wedge \mu_{A}(x) \right) \right) \wedge \left(\bigvee_{y} \left(\mu_{B'}(y) \wedge \mu_{B}(y) \right) \right) \wedge \mu_{C}(z)$$

- w_1 : degree of compatibility between A and A'
- w_2 : degree of compatibility between B and B'
- w₁ ^ w₂:
 - Firing strength of the fuzzy rule
 - Degree of fulfillment of the fuzzy rule

Theorem 1

Theorem 1: Decomposition method for calculating C'

$$C' = (A' \times B') \circ (A \times B \to C)$$
$$= (A' \circ (A \to C)) \cap (B' \circ (B \to C))$$

$$\mu_{C'}(z) = \bigvee_{x,y} \left[(\mu_{A'}(x) \wedge \mu_{B'}(y)) \wedge (\mu_{A}(x) \wedge \mu_{B}(y) \wedge \mu_{C}(z)) \right]$$

$$= \left\{ \bigvee_{x,y} \left[(\mu_{A'}(x) \wedge \mu_{A}(x)) \wedge (\mu_{B'}(y) \wedge \mu_{B}(y)) \right] \right\} \wedge \mu_{C}(z)$$

$$= \bigvee_{x} \left\{ \bigvee_{y} \left[(\mu_{A'}(x) \wedge \mu_{A}(x)) \wedge (\mu_{B'}(y) \wedge \mu_{B}(y)) \right] \right\} \wedge \mu_{C}(z)$$

$$= \bigvee_{x} \left\{ (\mu_{A'}(x) \wedge \mu_{A}(x)) \wedge \left[\bigvee_{y} (\mu_{B'}(y) \wedge \mu_{B}(y)) \right] \right\} \wedge \mu_{C}(z)$$

$$= \left\{ \bigvee_{x} \left[(\mu_{A'}(x) \wedge \mu_{A}(x)) \right] \wedge \left[\bigvee_{y} (\mu_{B'}(y) \wedge \mu_{B}(y)) \right] \right\} \wedge \mu_{C}(z)$$

$$= \left\{ \bigvee_{x} \left[\mu_{A'}(x) \wedge (\mu_{A}(x) \wedge \mu_{C}(z)) \right] \right\} \wedge \left\{ \bigvee_{y} \left[\mu_{B'}(y) \wedge (\mu_{B}(y) \wedge \mu_{C}(z)) \right] \right\}$$

$$= \left\{ \bigvee_{x} \left[\mu_{A'}(x) \wedge \mu_{C_{1}}(x, z) \right] \right\} \wedge \left\{ \bigvee_{y} \left[\mu_{B'}(y) \wedge \mu_{C_{2}}(y, z) \right] \right\}$$

$$= \mu_{C_{1}}(z) \wedge \mu_{C_{2}}(z)$$

$$= \mu_{A' \circ (A \to C)}(z) \wedge \mu_{B' \circ (B \to C)}(z)$$

Single Rule with Multiple Antecedents

Rule: If x is A and y is B, then z is CNow x is A' and y is B', z is ?

Multiple Rules with Multiple Antecedents

Rule1: if x is A_1 and y is B_1 then z is C_1

Rule2: if x is A_2 and y is B_2 then z is C_2

Fact: x is A' and y is B'

Conclusion: z is C'

$$R_{1} = A_{1} \times B_{1} \to C_{1}, R_{2} = A_{2} \times B_{2} \to C_{2}$$

$$C' = (A' \times B') \circ (R_{1} \cup R_{2})$$

$$= (A' \times B') \circ (R_{1}) \cup (A' \times B') \circ (R_{2})$$

$$= (A' \times B') \circ (A_{1} \times B_{1} \to C_{1}) \cup (A' \times B') \circ (A_{2} \times B_{2} \to C_{2})$$

 $=C_1'\cup C_2'$

Multiple Rules with Multiple Antecedents

Rule 1 Rule 2

Rule1: If x is A_1 and y is B_1 , then z is C_1 Rule2: If x is A_2 and y is B_2 , then z is C_2 Now x is A', y is B', z is ?

- Degrees of compatibility
 - Compare the facts with the antecedents to find the degree
- Firing strength
 - Using fuzzy AND OR operators to form a firing strength for each rule
- Qualified consequent MFs
 - Apply the firing strength to the consequent MF of a rule to generate a consequent MF
- Overall output MF
 - Aggregate all the qualified consequent MFs

Chapter 3 Exercises

Exercises:

1 (hint: separate the universe into 3 blocks),

5 (typos: new \rightarrow young; triangular MFs: \rightarrow Gaussian MFs:; $_{\rho}^{-\left(\frac{x}{20}\right)^2} \xrightarrow{}_{\rho}^{-\frac{1}{2}\left(\frac{x}{20}\right)^2}$

and
$$e^{-\left(\frac{x-100}{30}\right)^2} \rightarrow e^{-\frac{1}{2}\left(\frac{x-100}{30}\right)^2}$$
),

6 (typos: $small \rightarrow young$),

8,

9

Whenever you are asked to use MATLAB to do something, write your own programming code to generate the required charts

Chapter 3 Exercises

- Extra: Fully define two linguistic variables x, and y from your daily life that can separately serve as conditional and consequence terms. For each variable, define at least three values (fuzzy sets)
- Due in one week after the announcement (in hard copy)

