

FACULTY
OF COMPUTER
SCIENCE
UNIVERSITY
OF THE BASQUE
COUNTRY

Time series forecasting with AR, MA, AR(I)MA models

Usue Mori

30 de octubre de 2023

In this tutorial we will learnt to perform forecasts on time series using ARIMA models.

1. Simulation of ARIMA processes

In R, we can simulate or generate time series that follow different ARIMA processes using the function arima.sim from package forecast. In the following lines, you can find some examples of usage of this function:

 \blacksquare To simulate and plot an AR(2) process of parameters 0.9 and -0.2:

```
library(forecast)
set.seed(102)
```

```
ar2 <- arima.sim(model=list(ar=c(.9,-.2)), n=4000)
ts.plot(ar2)</pre>
```


■ To simulate and plot an MA(2) process of parameters -0.7 and 0.1:

■ To simulate an ARMA(2,2) process with AR parameters (0.4, 0.1) and MA parameters (0.5, 0.2):

arma22 < -arima.sim(list(order=c(2, 0, 2), ar=c(0.4, 0.1), ma=c(0.5, 0.2)), n=4000)ts.plot(arma22)

• Finally, let's simulate and ARIMA(1,1,1) with AR parameter 0.4 and MA parameter 0.5:

NOTE: If you write arima.sim in the R console, you can see the code of the arima.sim function and understand how these simulations are carried out by using the definitions of the different types of processes.

2. Fitting an AR(I)MA model to our series

In this section we will learn to fit ARMA models to time series. As simple examples, we will use the series we have simulated in the previous section.

Recall that in order to adjust a model of type AR, MA or ARMA, if necessary, we must first decompose the series in order to obtain a stationary time series. Additionally, once we obtain a stationary time series, if there is no temporal correlation between the observations (i.e. they are independent), it does not make sense to adjust a model of this type. We can analyze the temporal correlation between the observation by using the autocorrelation function, which analyzes the correlation between series X_t and its lagged versions X_{t-i} . This is implemented in the acf function in R:

acf(arma22)

Series arma22

In this plot, each vertical lines represents the autocorrelation at a certain lag k. We can see that lags 1 trhough 5 have a correlation that exceeds the confidence intervals, so we can conclude that there is some significant correlation between the observations of the series. In this context, it makes sense to adjust a temporal model to the data.

2.1. Fitting a MA model to our series

We can fit a MA model to our data easily by using the forecast package. Additionally, in order to decide which p parameter can be suitable, we can analyze the correlagram of the autocorrelation (ACF) function. This function, as stated previously, measures the correlation of a time series X_t with its lagged versions X_{t-i} . It can be proved that the ACF of a MA(q) process is 0 for all lags which are larger that q. So, if a MA(q) is suitable to represent our series, the sample ACF values should be inside the confidence interval for all lags k > q, and it makes sense to choose q as the smallest lag that fulfills this condition:

acf(ma2)

Series ma2

In this case, the ACF correlogram would suggest a model of type MA(2) because after lag 2, all the auto-correlation values are inside the confidence interval. Note that this is not an exact method and will not always provide clear candidates for q, especially for real data. Once we have decided the order of the model, we can fit it to our data as follows:

```
arima(ma2, order=c(0,0,2))
```

```
sigma^2 estimated as 1.018: log likelihood = -5712.08, aic = 11432.16
```

A more quantitative method to select the best parameters for our model is to use criteria based on goodness of fit, such as the Akaike Information Criterion (AIC) or the Bayesian Information Criterion (BIC). We can choose the parameter and fit the model automatically by using the auto.arima function:

```
model.ma <- auto.arima(ma2, max.q=5, max.p=0, d=0, seasonal=FALSE)
model.ma</pre>
```

Series: ma2
ARIMA(0,0,2) with zero mean

Coefficients:

ma1 ma2 -0.6996 0.0878 s.e. 0.0157 0.0161

sigma² = 1.019: log likelihood = -5712.25 AIC=11430.5 AICc=11430.5 BIC=11449.38

We confirm that the MA(2) model is the model that best fits the data.

2.2. Fitting an AR model to our series

Similar to what we have done for MA models, we can also fit AR models to our time series by using the forecast package. In order to choose a suitable p parameter for the model, we can use the partial autocorrelation function (PACF). This function measures the correlation of a time series X_t with its lagged versions X_{t-i} after removing the effect of more recent lags j < i. The partial autocorrelation of an AR(p) process is zero at lags greater than p. As such, if an AR(p) process is suitable to model my series, the sample partial autocorrelation should not be significant for lags k > p. and it makes sense to choose p as the smallest lag that fulfills this condition:

pacf(ar2)

Series ar2

As expected, the correlogram suggests a model of type AR(2), which can be fitted as follows:

```
arima(ar2, order=c(2,0,0))
```

Call:


```
arima(x = ar2, order = c(2, 0, 0))
Coefficients:
                   ar2
         ar1
                        intercept
              -0.1966
      0.9002
                           0.0241
s.e. 0.0155
                           0.0526
               0.0155
sigma^2 estimated as 0.9745: log likelihood = -5624.65, aic = 11257.3
   Now, we repeat the process but using goodness of fit:
model.ar <- auto.arima(ar2, max.q=0, max.p=5, d=0, seasonal=FALSE)</pre>
model.ar
Series: ar2
ARIMA(2,0,0) with zero mean
Coefficients:
         ar1
                   ar2
      0.9002 -0.1966
              0.0155
s.e. 0.0155
```

As can be seen, the same model has been chosen.

 $sigma^2 = 0.9751$: log likelihood = -5624.76

AICc=11255.53

AIC=11255.52

Series: arima111

2.3. Fitting an AR(I)MA model to our series

Finally, we can also fit models of type ARMA or ARIMA (for non stationary time series). For models with both p,q>0 the ACF and PACF plots are not usually helpful. As such we will search among some candidate models using goodness of fit. For example, for the arma11 model:

```
model.arima <-auto.arima(arima111, max.q=5, max.p=5, seasonal=FALSE)
model.arima</pre>
```

The method recommends an ARIMA(1,1,1) model.

residuals

3. Analyzing the residuals of the model

Before making any predictions with the fitted model, we must analyze the residual and see if they seem to follow a white noise process. The function checkresiduals analyzes the probability distribution and the ACF of the residuals and also performs the Ljung-Box test to check whether the residuals still contain any autocorrelation (H0: the data are independent). Additionally, we can also perform a Shapiro-Wilks test to check for normality.

checkresiduals(model.arima)

Ljung-Box test

data: Residuals from ARIMA(1,1,1) Q* = 3.2159, df = 8, p-value = 0.9201

10

20

Lag

30

Model df: 2. Total lags used: 10

shapiro.test(model.arima\$residuals)

Shapiro-Wilk normality test

data: model.arima\$residuals
W = 0.99958, p-value = 0.5667

As can be seen, all the autocorrelation values are inside the confidence intervals, which indicates that there is no evident autocorrelation. Additionally, the Ljung-Box test issues a high p-value which tells us that we can not discard independence. Finally, we can see in the histogram that the residuals seem to follow a normal distribution, and we reassure this with the high p-value of the Shapiro-Wilks test.

4. Making forecasts with a model of type AR(I)MA

To perform predictions using the fitted model, we can use the forecast function of the package with the same name. We must indicate the number of data points in the future for which we want to make forecasts (h or forecasting horizon). For example, to predict 50 future data points for the arimall1 series using the fitted model we can proceed as follows:

```
predictions <- forecast(model.arima, h = 50)
predictions</pre>
```

	Point	Forecast	Lo 80	Hi 80	Lo 95	Hi 95
4002		150.7368	149.4481	152.0255	148.7659	152.7077
4003		150.7544	147.9848	153.5241	146.5186	154.9902
4004		150.7617	146.7277	154.7957	144.5922	156.9312
4005		150.7647	145.6574	155.8720	142.9538	158.5757
4006		150.7660	144.7311	156.8008	141.5365	159.9955
4007		150.7665	143.9127	157.6203	140.2845	161.2485
4008		150.7667	143.1758	158.3577	139.1573	162.3761
4009		150.7668	142.5019	159.0317	138.1267	163.4069
4010		150.7668	141.8781	159.6556	137.1726	164.3610
4011		150.7668	141.2949	160.2388	136.2807	165.2530
4012		150.7669	140.7454	160.7883	135.4404	166.0933
4013		150.7669	140.2245	161.3092	134.6437	166.8900
4014		150.7669	139.7281	161.8056	133.8845	167.6492
4015		150.7669	139.2531	162.2806	133.1580	168.3757
4016		150.7669	138.7969	162.7368	132.4604	169.0733
4017		150.7669	138.3575	163.1762	131.7883	169.7454
4018		150.7669	137.9331	163.6006	131.1393	170.3944
4019		150.7669	137.5223	164.0114	130.5110	171.0227
4020		150.7669	137.1238	164.4099	129.9017	171.6320
4021		150.7669	136.7367	164.7970	129.3096	172.2241
4022		150.7669	136.3600	165.1737	128.7335	172.8002
4023		150.7669	135.9929	165.5408	128.1720	173.3617
4024		150.7669	135.6347	165.8991	127.6241	173.9096
4025		150.7669	135.2847	166.2490	127.0890	174.4447
4026		150.7669	134.9425	166.5912	126.5656	174.9681
4027		150.7669	134.6076	166.9261	126.0534	175.4803
4028		150.7669	134.2794	167.2543	125.5515	175.9822
4029		150.7669	133.9577	167.5760	125.0594	176.4743
4030		150.7669	133.6420	167.8917	124.5766	176.9571
4031		150.7669	133.3320	168.2017	124.1025	177.4312
4032		150.7669	133.0274	168.5063	123.6367	177.8970
4033		150.7669	132.7280	168.8057	123.1788	178.3549
4034		150.7669	132.4335	169.1002	122.7284	178.8054
4035		150.7669	132.1436	169.3901	122.2850	179.2487
4036		150.7669	131.8582	169.6756	121.8485	179.6852
4037		150.7669	131.5770	169.9567	121.4184	180.1153

4038	150.7669	131.2998	170.2339	120.9946	180.5391
4039	150.7669	131.0266	170.5071	120.5767	180.9570
4040	150.7669	130.7571	170.7766	120.1646	181.3692
4041	150.7669	130.4912	171.0425	119.7579	181.7759
4042	150.7669	130.2287	171.3050	119.3564	182.1773
4043	150.7669	129.9695	171.5642	118.9601	182.5737
4044	150.7669	129.7135	171.8202	118.5686	182.9651
4045	150.7669	129.4606	172.0731	118.1818	183.3519
4046	150.7669	129.2107	172.3230	117.7995	183.7342
4047	150.7669	128.9636	172.5701	117.4217	184.1120
4048	150.7669	128.7193	172.8144	117.0480	184.4857
4049	150.7669	128.4777	173.0560	116.6785	184.8552
4050	150.7669	128.2386	173.2951	116.3129	185.2208
4051	150.7669	128.0021	173.5316	115.9512	185.5825

plot(predictions)

Forecasts from ARIMA(1,1,1)

As can be seen, in addition to the point estimations we can also obtain the confidence intervals of the predictions.

5. Exercises

In the file named Data/ParoCCAA.Rdata we have the unenployment rates in the period 1977-2009 in the different autonomous communities. Take the column which corresponds to Catalonia and answer the following questions:

- Check if the series is stationary and if it is not, difference it until you obtain a stationary time series (done in previous lab).
- Draw the PACF correlogram to select a candidate order of an AR model for the stationary time series obtained in the previous section. Then, use the auto.arima function to select p automatically and fit a suitable AR model. What can you conclude?

FACULTY
OF COMPUTER
SCIENCE
UNIVERSITY
OF THE BASQUE
COUNTRY

Exploración y análisis de datos

- Draw the ACF correlogram to select a candidate order of an MA model for the stationary time series obtained in the previous section. Then, use the auto.arima function to select q automatically and fit a suitable MA model. What can you conclude?
- Use auto.arima to select the most suitable ARMA model. Compare the AIC_c values of the fitted AR, MA and ARMA models and select the most suitable.
- Use auto.arima to fit an ARIMA model to the initial time series (without differencing).
- Analyze the residuals of this last chosen model. What can you conclude?
- Calculate the predictions of the series for the following 5 trimesters and represent them graphically.

6. Extra work

■ Use the first 70 % of the unenployment time series of Catalonia to fit an ARIMA model and the leftover 30 % to evaluate the 1-step predictions. Use the RMSE to evaluate the predictions. See https://otexts.com/fpp2/forecasting-on-training-and-test-sets.html on information about how to do this in different ways. How is this procedure different to what we have done previously with the forecast function?

7. References

- P. J. Brockwell and R. A. Davis. Introduction to Time Series and Forecasting. Springer Verlag, 1996.
- P. S.P. Cowpertwait and A. V. Metcalfe. Introductory Time Series with R (Use R). Springer, 2009.
- R. H. Shumway and D. S. Stoffer. Time Series Analysis and Its Applications With R Examples. Springer Verlag, 2006.