CSc 28

HW: combinational circuits

- 1. Minimize each of the following functions using K-Maps. For each one of the question first write the function using the min-terms and then use the k-map to simplify it.
 - a) $f(A,B,C) = \sum \min(1,3,4,6)$
- b) $f(A,B,C) = \Sigma min(0,6)$
- c) $f(A,B,C,D) = \Sigma min(0,2,5,7,8,10,13,15)$
- d) $f(A,B,C,D) = \Sigma min(1,4,11,14)$
- e) $f(A,B,C,D) = \sum \min(0,3,5,6,9,10,12,15)$
- 2. Use K-Maps to write a simplified minterm for each of the following functions. Also write each function in the form $\Sigma min(\ ,\ ,\ ,\)$
- a) f(A,B,C) = A'B'C + ABC' + AB'C + A'BC' + A'B'C'
- b) f(A,B,C) = A'B'C' + A'BC + AB'C' + ABC
- c) f(A,B,C) = A'BC' + ABC' + AB'C + A'BC
- d) f(A,B) = A'B + AB + A'B' + B'A

For the following two problems determine an un-normalized expression from the given truth tables and draw the corresponding logic circuit.

3.

X	У	f
0	0	1
0	1	0
1	0	1
1	1	0

4.

X	y	Z	f
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	1
			•

For the following twp problems determine a minimal SOP (sum of product) expression and draw its circuit. 5. Problem 1.a 6. Problem 2.a 7. Given that $f(w, x, y, z) = \sum (0, 2, 5, 8, 9, 11, 12, 13)$. That is f is the sum of the given min-terms. $xz + xy\bar{z} + w\bar{x}\bar{y}$ find a minimal SOP expression for f. 8. Given f(w, x, y, z) = $a \oplus b$ using only NAND gates 9. Design the circuit for f = 10. show that NOR gate is a complete set 11. show that {OR, NOT} is a complete set 12. show that {AND, NOT} is a complete set 13. design a circuit to add two bits(half adder) discussed in class 14. write the following logical expression in its complete form f(a,b,c,d) = ab + cd' + bd + abc + bcd'15. Use KMap to minimize the following function: f(x,y,z) = xy + xyz + yz' + x'z' + x'y'z'

CSC 28 - 01 22 SU

24 JUNE 2022

11

10

f(A,B,C,D) = A'B'C'D + A'BC'D'+ AB'CD + ABCD'

(e)
$$f(A,B,C,D) = \sum min(0,3,5,6,9,10,12,15)$$

= $A'B'C'D' + A'B'CD + A'BC'D + A'BCD' + AB'C'D$
+ $AB'CD' + ABC'D' + ABC'D$

AB	00	01	11	10	
00	-		•		
01				1	f(A,B,C,D)= A'B'C'D' + A'B'CD + A'BC'D
11	1		1		+ A'BCD' + AB'C'D + AB'CD'
10				1	+ A8C'D'+ A8C'D

(d)
$$f(A,B) = A'B + AB + A'B' + B'A$$

= $\sum min(0,1,2,3)$

3. f(x,y) = x'y' + xy'

4. f(x,y,z) = X'y'z' + X'y'z + xy'z' + xyz' + xyz

- 5. $f(A,B,C) = \sum min(1,3,4,6)$ = $A'C + AC' = A \oplus C$ $C \longrightarrow C$
- 6. f(A, B,C) = A'B'C + ABC' + AB'C + A'BC' + A'B'C' = A'B' + B'C + BC' = (A+B)' + (A⊕B)

7. $f(w,x,y,z) = \Sigma(0,2,5,8,9,11,12,13)$

8. $f(w,x,y,z) = xz + xy\overline{z} + w\overline{x}\overline{y}$

WXY		01	11	10
00				
01		1	1	1
11		1	1	1
10	1	1		

$$f(w,x,y,z) = xz + xy + w\overline{x}\overline{y}$$

$$= (\overline{ab})a \cdot (\overline{ab})b = (\overline{ab})a + (\overline{ab})b$$

10. NOR gate is a complete set of every gate

$$\overline{(x+x)} = \overline{x} \cdot \overline{x} = \overline{x}$$

• AND gate

$$(\overline{X+X})+(\overline{Y+Y})$$

$$=(X+X)(\overline{Y+Y})$$

$$=(X+X)(Y+Y)=XY$$

• OR gate

$$\frac{\overline{(X+Y)} + \overline{(X+Y)}}{\overline{(X+Y)}} = \overline{(X+Y)} \cdot \overline{(X+Y)} = X+Y$$

11. {OR, NOT} is a complete set

AND gate

$$\overline{\overline{X} + \overline{Y}} = \overline{\overline{X}} \cdot \overline{\overline{Y}} = XY$$

12. {AND, NOT } is a complete set

OR gate

$$\overline{\overline{\chi} \cdot \overline{\gamma}} = \overline{\overline{\chi}} + \overline{\overline{\gamma}} = x + \gamma$$

13. Half adder

TRUTH TABLE

×	٧	С	S
0	0	0	0
0	1	0	1
1	0	0	1
1	1	1	0

x/4	6	1
0	0	1
1	-	0

$$S = \overline{X}Y + X\overline{Y}$$
$$= X \oplus Y$$

14. f(a,b,c,d) = ab + cd' + bd + abc + bcd'

- = qb(c+c')(d+d') + cd'(a+a')(b+b')+bd(a+a')(c+c')
 +abc(d+d') + (a+a')bcd'
- = abcd + abcd' + abc'd + abc'd' + abcd' + ab'cd' +a'bcd' + a'b'cd' + abcd + abc'd + a'bcd + a'bc'd + abcd + abcd' + abcd' + a'bcd'
- = a'b'cd' + a'bc'd + a'bcd' + a'bcd + ab'cd' + abc'd' + abc'd + abcd' + abcd

15. f(x,y,z) = xy + xyz + yz' + x'z' + x'y'z'

x YZ		01	11	10	
O	1			1	
1			-	1	

$$f(x,y,z): \overline{xz} + xy$$