Apunte Único: Álgebra Lineal Computacional - Práctica $2\,$

Por alumnos de ALC Facultad de Ciencias Exactas y Naturales UBA

última actualización 06/04/25 @ 19:03

Choose your destiny:

(dobleclick en el ejercicio para saltar)

- Notas teóricas
- ⊕ Ejercicios de la guía:

1.	5.	9.	13.	17.	21.	25.
2.	6.	10.	14.	18.	22.	
3.	7.	11.	15.	19.	23.	
4.	8.	12 .	16.	20.	24.	

\(\)??.

Esta Guía 2 que tenés se actualizó por última vez: $\frac{06/04/25 @ 19:03}{}$

Escaneá el QR para bajarte (quizás) una versión más nueva:

El resto de las guías repo en github para descargar las guías con los últimos updates.

Si querés mandar un ejercicio o avisar de algún error, lo más fácil es por Telegram <a>.

Notas teóricas:

Transformaciones lineales

* Dados V y W dos K-espacio vectoriales, una $f:V\to W$ es transformación lineal si cumple:

•
$$f(v_1 + v_2) = f(v_1) + f(v_2) \quad \forall v, w \in V$$

•
$$f(\alpha \cdot v_1) = \alpha \cdot f(v_1) \quad \forall \alpha \in K, v \in V$$

 $f: K^n \to K^m$ si transformo:

$$f(x_1, \dots, x_n) = f\left(\sum_{k=1}^n x_i \underbrace{e_i}_{\in K^{n \times 1}}\right) \stackrel{\text{TL}}{=} \sum_{k=1}^n x_i \underbrace{f(e_i)}_{\in K^{m \times 1}} = \underbrace{\left(f(e_1) \mid \dots \mid f(e_n)\right)}_{A \in K^{m \times n}} \cdot \begin{pmatrix} x_i \\ \vdots \\ x_n \end{pmatrix} = \underbrace{A \cdot x}_{\in K^{m \times 1}}$$

* Matriz de una transformación lineal:

Dados V y W dos K-espacios vectoriales y $f:V\to W$ una t.l. Sean $B=\{v_1,\cdots,v_2\}$ base de V y $B'=\{w_1,\cdots,w_m\}$ se llama matriz de la transformación lineal de la base B en la base B' a aquella matriz $[f]_{BB'}$ que satisface:

$$[f]_{BB'}[v]_B = [f(v)]_{B'} \quad \forall v \in V$$

- * Sea V un K-espacio vectorial y $B = \{v_1, \ldots, v_n\}$ base de V. Podemos definir en forma única una t.l. de V en W definiendo cada $f(v_i) \in W$ con $i = 1, \ldots n$.
- * Sea $A \in K^{m \times n}$, define $f: K^n \to K^m$. El Nu(A) = $\{x \in K^n / Ax = 0\}$
- Sea $A \in K^{m \times n}$, define $f: K^n \to K^m$. La $\text{Im}(A) = \{Ax \in K^m \text{ con } x \in K^n\} = \langle c_1(A), \dots, c_n(A) \rangle$. También $\text{rg}(A) = \dim(\text{Im}(A))$
- * Propiedades de una transformación lineal:

Sea $f: V \to W$ una t.l. y $B = \{v_1, \ldots, v_n\}$ un conjunto de generadores de V. Entonces $\{f(v_1), \ldots, f(v_n)\}$ es un conjunto generador para la imagen de f.

- f se dice monomorfismo si es inyectiva. Si f es mono, dim(Nu(f)) = 0
- f se dice *epimorfismo* si es survectiva. Si f es epi, $\dim(\operatorname{Im}(f)) = \dim(W)$
- f se dice isomorfismo si es mono y epi. Si f es iso es inversible.
- * Norma Sea $\|\cdot\|: K^n \to \mathbb{R} \ge 0$. Entonces $\|\cdot\|$ es norma si cumpe:
 - 1) $||x|| \ge 0$ y $||x|| = 0 \Leftrightarrow x = 0, x \in K^n$
 - 2) $\|\alpha x\| = \alpha \|x\|$ con $\alpha \in K$ y $x \in K^n$
 - 3) $||x + y|| \le ||x|| + ||y|| \cos x, y \in K$
- * Ejemplos:

• Norma 2:
$$||x||_2 = \sqrt{\sum_{k=0}^n |x_k|^2} \xrightarrow{\text{por ejemplo}} ||x||_2 = 1$$

• Norma
$$p: ||x||_p = \sqrt{\sum_{k=0}^n |x_k|^p} \quad \xrightarrow{\text{por ejemplo}} ||x||_p = 1$$

• Norma ∞ : $\lim_{p \to \infty} \|x\|_p = \max_{1 \le i \le n} |x_i| \xrightarrow{\text{por ejemplo}} \|x\|_{\infty} = 1$

Aritmética de punto flotante:

* Escribir 0.25 en base 10:

Base 10 es obviamente nuestra base favorita:

$$\begin{cases}
0.25 \cdot 10 &= 2 + 0.5 \\
0.5 \cdot 10 &= 5 + 0 \\
0 \cdot 10 &= 0 + 0
\end{cases}
\rightarrow (0.25)_{10} = (2 \cdot 10^{-1} + 5 \cdot 10^{-2} + 0 \cdot 10^{-3} + 0)_{10} = 0.25$$

Escribir 0.25 en base 2:

$$\begin{cases} 0.25 \cdot 2 &= 0 + 0.5 \\ 0.5 \cdot 2 &= 1 + 0 \\ 0 \cdot 2 &= 0 + 0 \end{cases} \rightarrow (0.25)_2 = (0 \cdot 2^{-1} + 1 \cdot 2^{-2} + 0 \cdot 2^{-3} + 0)_2 = 0.01$$

Escribir 0.3 en base 2:

$$\begin{cases} 0.3 \cdot 2 &= 0 + 0.6 \\ 0.6 \cdot 2 &= 1 + 0.2 \\ 0.2 \cdot 2 &= 0 + 0.4 \\ 0.4 \cdot 2 &= 0 + 0.8 \\ 0.8 \cdot 2 &= 1 + 0.6 \\ 0.6 \cdot 2 &= 1 + 0.2 \\ 0.2 \cdot 2 &= 0 + 0.4 \\ 0.4 \cdot 2 &= 0 + 0.4 \\ 0.8 \cdot 2 &= 0 + 0.4 \\ 0.4 \cdot 2 &= 0 + 0.8 \\ 0.8 \cdot 2 &= 1 + 0.6 \\ 0.8 \cdot 2 &= 1 + 0.6 \\ 0.8 \cdot 2 &= 0 + 0.8 \\ 0.8 \cdot$$

Para escribir al 0.3 en base 2 voy a necesitar infinitos números en la mantisa, la máquina no puede y ahí aparecen los errores de redondeo o truncamiento.

Errores:

Tengo que un número de máquina, número posta que la máquina representa, con la notación mantisa, exponente:

En base
$$10 \to x = 0, a_1 a_2 a_3 \dots a_m \cdot 10^{exp}$$
 con $0 \le a_i \le 9(a_1 \ne 0)$
En base $2 \to x = 0, a_1 a_2 a_3 \dots a_m \cdot 2^{exp}$ con $0 \le a_i \le 1(a_1 \ne 0)$

Por ejemplo si $m=3 \implies x=0, a_1a_2a_3 \cdot 2^{exp}$. Para cada valor de exp voy a tener un total de $1 \cdot 2 \cdot 2 = 4$

posibles valores de máquina. La separación entre 2 valores x_1 y x_2 consecutivos es de 2^m , por eso para órdenes grandes la separación entre un número y otro es mayor.

Si el número real, real que quiero es x=0.3, la máquina no puede representarlo de forma exacta. Puedo acotar el error en forma absoluta como:

$$|x - x^*| \le \frac{1}{2} \frac{1}{2^m} \cdot 2^{exp}$$

Y en forma relativa como:

$$\frac{|x - x^*|}{|x|} \le 5 \cdot 2^{-m}$$

Deducción matriz de rotación 2d (ponele):

Quiero que:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \cdot \begin{pmatrix} u \\ v \end{pmatrix} = \underbrace{\begin{pmatrix} a \\ c \end{pmatrix} \cdot u_0}_{1} + \underbrace{\begin{pmatrix} b \\ d \end{pmatrix} \cdot v_0}_{2} = \begin{pmatrix} u_{\theta} \\ v_{\theta} \end{pmatrix}$$

En el gráfico veo lo que quiero lograr.

Entre el gráfico y \star^1 :

$$\begin{pmatrix} a \\ c \end{pmatrix} \cdot u_0 = \begin{pmatrix} u_{x\theta} \\ u_{y\theta} \end{pmatrix} \stackrel{!}{\underset{\text{solicators}}{\rightleftharpoons}} \begin{pmatrix} u_0 \cdot \cos(\theta) \\ u_0 \cdot \sin(\theta) \end{pmatrix} \Leftrightarrow \begin{pmatrix} a \\ c \end{pmatrix} = \begin{pmatrix} \cos(\theta) \\ \sin(\theta) \end{pmatrix}$$

Entre el gráfico y ★²:

$$\left(\begin{array}{c} b \\ d \end{array}\right) \cdot v_0 = \left(\begin{array}{c} v_{x\theta} \\ v_{y\theta} \end{array}\right) \stackrel{!}{\underset{\text{schooler}}{=}} \left(\begin{array}{c} -v_0 \cdot \sin(\theta) \\ v_0 \cdot \cos(\theta) \end{array}\right) \Leftrightarrow \left(\begin{array}{c} b \\ d \end{array}\right) = \left(\begin{array}{c} -\sin(\theta) \\ \cos(\theta) \end{array}\right)$$

Juntando esos resultados:

$$R_{\theta} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix}$$

Ejercicios de la guía:

Ejercicio 1. Determinar cuáles de las siguientes aplicaciones son lineales.

(a)
$$f(x_1, x_2, x_3) = (x_2 - 3x_1 + \sqrt{2}x_3, x_1 - \frac{1}{2}x_2)$$

(b)
$$f(x_1, x_2) = (x_1 + x_2, |x_1|)$$

(c)
$$f\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = a_{11}a_{22} - a_{12}a_{21}$$

(d)
$$f\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a_{22} & 0 & a_{12} + a_{21} \\ 0 & a_{11} & a_{22} - a_{11} \end{pmatrix}$$

(a) Primero veamos que la suma es lineal. Tomemos dos vectores cualesquiera:

$$v = (x_1, y_1, z_1), \quad w = (x_2, y_2, z_2)$$

Entonces,

$$f(v+w) = f(x_1 + x_2, y_1 + y_2, z_1 + z_2)$$

=
$$(y_1 + y_2 - 3(x_1 + x_2) + \sqrt{2}(z_1 + z_2), x_1 + x_2 - \frac{1}{2}(y_1 + y_2))$$

Ahora veo:

$$f(v) + f(w) = (y_1 - 3x_1 + \sqrt{2}z_1, x_1 - \frac{1}{2}y_1) + (y_2 - 3x_2 + \sqrt{2}z_2, x_2 - \frac{1}{2}y_2)$$
$$= (y_1 + y_2 - 3(x_1 + x_2) + \sqrt{2}(z_1 + z_2), x_1 + x_2 - \frac{1}{2}(y_1 + y_2))$$

Son iguales, la suma es lineal

Veamos que el producto es lineal. Tomemos un escalar $\alpha \in \mathbb{R}$ y un vector v = (x, y, z). Entonces,

$$f(\alpha v) = f(\alpha x, \alpha y, \alpha z)$$

$$= (\alpha y - 3\alpha x + \sqrt{2}\alpha z, \alpha x - \frac{1}{2}\alpha y)$$

$$= \alpha (y - 3x + \sqrt{2}z, x - \frac{1}{2}y) = \alpha f(x, y, z)$$

El producto es lineal

f es una transformación lineal.

(b) Tomemos dos vectores cualesquiera y veamos la suma:

$$v = (x_1, y_1), \quad w = (x_2, y_2)$$

Entonces,

$$f(v+w) = f(x_1 + x_2, y_1 + y_2)$$

$$=(x_1+x_2+y_1+y_2,|x_1+x_2|)$$

Ahora veamos:

$$f(v) + f(w) = (x_1 + y_1, |x_1|) + (x_2 + y_2, |x_2|)$$

$$=(x_1+x_2+y_1+y_2,|x_1|+|x_2|)$$

 $|x_1 + x_2| \neq |x_1| + |x_2|$, la suma no es lineal.

 $\Rightarrow f$ no es una transformación lineal.

(c) Veamos que vale la suma, tomo dos matrices cualesquiera A y B:

$$f(A+B) = f\left(\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} + \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}\right)$$
$$= f\left(\begin{matrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{pmatrix}$$

$$= (a_{11} + b_{11})(a_{22} + b_{22}) - (a_{12} + b_{12})(a_{21} + b_{21})$$

Ahora vemos:

$$f(A) + f(B) = (a_{11}a_{22} - a_{12}a_{21}) + (b_{11}b_{22} - b_{12}b_{21})$$
$$= a_{11}a_{22} - a_{12}a_{21} + b_{11}b_{22} - b_{12}b_{21}$$

Se ve que:

$$(a_{11} + b_{11})(a_{22} + b_{22}) - (a_{12} + b_{12})(a_{21} + b_{21}) \neq a_{11}a_{22} - a_{12}a_{21} + b_{11}b_{22} - b_{12}b_{21}$$

La suma no es lineal.

 $\Rightarrow f$ no es una transformación lineal.

(d) Veo que valga la suma:

Sea A, B matrices cualesquiera:

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, \quad B = \begin{pmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{pmatrix}$$
$$f(A+B) = \begin{pmatrix} (a_{22} + b_{22}) & 0 & (a_{12} + b_{12}) + (a_{21} + b_{21}) \\ 0 & (a_{11} + b_{11}) & (a_{22} + b_{22}) - (a_{11} + b_{11}) \end{pmatrix}$$

Ahora miro,

$$f(A) + f(B) = \begin{pmatrix} a_{22} & 0 & a_{12} + a_{21} \\ 0 & a_{11} & a_{22} - a_{11} \end{pmatrix} + \begin{pmatrix} b_{22} & 0 & b_{12} + b_{21} \\ 0 & b_{11} & b_{22} - b_{11} \end{pmatrix}$$

$$= \begin{pmatrix} a_{22} + b_{22} & 0 & (a_{12} + a_{21}) + (b_{12} + b_{21}) \\ 0 & a_{11} + b_{11} & (a_{22} - a_{11}) + (b_{22} - b_{11}) \end{pmatrix}$$

La suma es lineal.

Ahora veo el producto:

$$f(\alpha A) = f\begin{pmatrix} \alpha a_{11} & \alpha a_{12} \\ \alpha a_{21} & \alpha a_{22} \end{pmatrix} = \begin{pmatrix} \alpha a_{22} & 0 & \alpha(a_{12} + a_{21}) \\ 0 & \alpha a_{11} & \alpha(a_{22} - a_{11}) \end{pmatrix} = \alpha f(A)$$

El producto y la suma son lineales, f es transformacion lineal

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

🞖 Juan D Elia 😯

Ejercicio 2. Escribir la matriz de las siguientes transformaciones lineales en base canónica. Interpretar geométricamente cada transformación.

- (a) f(x,y) = (x,0)
- (b) f(x,y) = (x,-y)
- (c) $f(x,y) = (\frac{1}{2}(x+y), \frac{1}{2}(x+y))$
- (d) $f(x,y) = (x\cos t y\sin t, x\sin t + y\cos t)$
- (a) Para la base canónica:

$$f(1,0) = (1,0), \quad f(0,1) = (0,0)$$

Entonces, la matriz asociada es:

$$M = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Geométricamente estamos proyectando al eje x_0 .

(b) Para la base canónica:

$$f(1,0) = (1,0), \quad f(0,1) = (0,-1)$$

Entonces, la matriz asociada es:

$$M = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

Geométricamente estamos haciendo una reflexión respecto del eje x_0 .

(c) Para la base canónica:

$$f(1,0) = \left(\frac{1}{2}, \frac{1}{2}\right), \quad f(0,1) = \left(\frac{1}{2}, \frac{1}{2}\right)$$

Entonces, la matriz asociada es:

$$M = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

Geométricamente estamos haciendo, llevando (mejores palabras serán bienvenidas) todo a la dirección (1,1), ponele.

$$f(x_0, x_1) = \frac{1}{2}(x_0 + x_1) \cdot (1, 1) \approx \lambda \cdot (1, 1)$$

(d) Para la base canónica:

$$f(1,0) = (\cos t, \sin t), \quad f(0,1) = (-\sin t, \cos t)$$

Entonces, la matriz asociada es:

$$M = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix}$$

Geométricamente estamos rotando en sentido antihorario al eje x_2

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 Juan D Elia 😯

👸 naD GarRaz 😯

Ejercicio 3.

- (a) Probar que existe una única transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que f(1,1) = (-5,3) y f(-1,1) = (5,2). Para dicha f, determinar f(5,3) y f(-1,2).
- (b) ¿Existirá una transformación lineal $f: \mathbb{R}^2 \to \mathbb{R}^2$ tal que f(1,1)=(2,6), f(-1,1)=(2,1) y f(2,7)=(5,3)?
- (c) Sean $f,g:\mathbb{R}^3\to\mathbb{R}^3$ transformaciones lineales tales que

$$f(1,0,1) = (1,2,1), f(2,1,0) = (2,1,0), f(-1,0,0) = (1,2,1)$$

 $g(1,1,1) = (1,1,0), g(3,2,0) = (0,0,1), g(2,2,-1) = (3,-1,2)$

De la teoría se tiene que:

Sea V un K-espacio vectorial y $B = \{v_1, \ldots, v_n\}$ base de V. Podemos definir en forma única una t.l. de V en W definiendo cada $f(v_i) \in W$ con $i = 1, \ldots n$.

(a) Sale casi solo usando propiedades de transformación lineal:

$$\begin{cases} f(1,1) &= (-5,3) \\ f(-1,1) &= (5,2) \end{cases} F_2 + F_1 \to F_2 \begin{cases} f(1,1) &= (-5,3) \\ f(0,2) &= (0,5) \\ f(1,1) &= (-5,3) \\ f(1,1) &= (-5,3) \\ f(0,1) &= (0,\frac{5}{2}) \\ f(1,0) &= (-5,\frac{1}{2}) \\ f(0,1) &= (0,\frac{5}{2}) \end{cases}$$

Si bien no es necesario, puedo escribir a la transformación lineal como:

$$f\left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{cc} -5 & 0 \\ \frac{1}{2} & \frac{5}{2} \end{array}\right) \cdot \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} -5x \\ \frac{1}{2}x + \frac{5}{2}y \end{array}\right)$$

Y ahora calculo lo más pancho:

$$f(5,3) = \begin{pmatrix} -25\\10 \end{pmatrix} \quad \text{y} \quad f(-1,2) = \begin{pmatrix} 5\\\frac{9}{2} \end{pmatrix}$$

(b) Se llega a un absurdo con algunas operaciones.

Las operaciones de triangulación aplicadas en la triangulación son lineales y se usó todo el tiempo la definición de linealidad.

(c) Ataco igual que al anterior, la idea es poder compararlos con la misma base del espacio de partida V:

$$\begin{cases} f(1,0,1) &= (1,2,1) \\ f(2,1,0) &= (2,1,0) \\ f(-1,0,0) &= (1,2,1) \end{cases} \xrightarrow{\begin{subarray}{c} \end{subarray}} \begin{cases} f(1,0,0) &= (1,2,1) \\ f(0,1,0) &= (0,-3,-2) \\ f(0,0,1) &= (2,4,2) \end{cases}$$

Ahora con g:

$$\begin{cases} g(1,0,1) &= (1,2,1) \\ g(2,1,0) &= (2,1,0) \\ g(-1,0,0) &= (1,2,1) \end{cases} F_2 - 3F_1 \to F_1 \begin{cases} g(1,1,1) &= (1,1,0) \\ g(0,-1,-2) &= (-3,-3,1) \\ g(0,0,-3) &= (1,-3,2) \end{cases}$$

Podría seguir triangulando y llegar hasta que me queden ambas expresiones en la canónica de \mathbb{R}^3 , pero pajilla. Resalté en azul dos filas que me gritan que si:

$$(0,0,1) \xrightarrow{f} (2,4,2) \implies (0,0,-3) \xrightarrow{f} (-6,-12,-6)$$

No obstante:

$$(0,0,-3) \xrightarrow{g} (1,-3,2) \neq (0,0,0)$$

Así se concluye que :

$$f \neq g$$

Dale las gracias y un poco de amor 💛 a los que contribuyeron! Gracias por tu aporte:

👸 naD GarRaz 📢

Ejercicio 4. Hallar todos los $a \in \mathbb{R}$ para los cuales exista una transformación lineal

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$

que satisfaga:

$$f(1,-1,1) = (2,a,-1),$$

$$f(1,-1,2) = (a^2,-1,1),$$

$$f(1,-1,-2) = (5,-1,-7).$$

Si los vectores de la salida son linealmente independientes, la transformación lineal existe para cualquier a. Si alguno de ellos es linealmente dependiente, hay que buscar a para que no indetermine el sistema.

$$\begin{bmatrix} 1 & -1 & 1 \\ 1 & -1 & 2 \\ 1 & -1 & -2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & -1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & -3 \end{bmatrix}$$

Como el tercer vector es LD se puede escribir:

$$\alpha(1,-1,1) + \beta(1,-1,2) = (1,-1,-2).$$

Hallamos α y β resolviendo:

$$\begin{bmatrix} 1 & 1 \\ -1 & -1 \\ 1 & 2 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \\ -2 \end{bmatrix}$$

Resolviendo tenemos $\alpha = 4$, $\beta = -3$.

Entonces:

$$f(1,-1,-2) = f(4(1,-1,1) - 3(1,-1,2)) = = 4(2,a,-1) - 3(a^2,-1,1) = (8 - 3a^2, 4a + 3, -7)$$

Solo es T.L si ese vector es igual al (5,-1,-7) Esto da el sistema:

$$8 - 3a^2 = 5$$
.

$$4a + 3 = -1$$
.

Resolviendo:

$$4a = -4 \Rightarrow a = -1$$
.

$$8 - 3(-1)^2 = 5 \Rightarrow 8 - 3 = 5$$
, (se cumple).

Por lo tanto, la transformación lineal existe si y solo si a = -1.

Ejercicio 5. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IAT $_{\rm P}$ X \rightarrow una pull request al \bigcirc .

Ejercicio 6. O... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram , o mejor aún si querés subirlo en LATEX→ una pull request al

Aritmética de punto flotante

Ejercicio 7. Algunos experimentos: Realizar las siguientes operaciones en Python \clubsuit . En todos los casos, pensar: ¿Cuál es el resultado esperado? ¿Coincide con el obtenido? ¿A qué se debe el problema (si lo hay)? (Notamos ϵ al épsilon de la máquina. Puede obtenerse importando la librería numpy como np y ejecutando el comando np.finfo(float).eps).

- a) Tomando p = 1e34, q = 1, calcular p + q p.
- b) Tomando p=100, q=1e-15, calcular (p+q)+q y ((p+q)+q)+q. Comparar con p+2q y con p+3q respectivemente.
- c) 0.1 + 0.2 == 0.3
- g) $\frac{\epsilon}{2}$

k) $(1 + (\frac{\epsilon}{2} + \frac{\epsilon}{2})) - 1$

- d) 0.1 + 0.3 == 0.4
- h) $(1 + \frac{\epsilon}{2}) + \frac{\epsilon}{2}$

e) 1e - 323

i) $1 + (\frac{\epsilon}{2} + \frac{\epsilon}{2})$

f) 1e - 324

- j) $((1 + \frac{\epsilon}{2}) + \frac{\epsilon}{2}) 1$
- m) $\sin(\frac{\pi}{2} + \pi 10^j)$ para $1 \le j \le 25$.

l) $\sin(10^{j}\pi)$ para $1 \le j \le 25$.

a) El epsilon sería el número más chico tal que:

$$1 + \epsilon \neq 1$$

En el ejercicio estamos haciendo una cuenta fuera del rango de precisión de la máquina:

$$\epsilon = 2.220446049250313 \cdot 10^{-16} = 0.2220446049250313 \cdot 10^{-15}$$
 $\stackrel{\triangle}{\blacktriangle} \rightarrow \text{así } \underline{\text{noto}} \text{ la precisión}$

Con una mantisa m de 16 números significativos, puedo hacer la cuenta:

Primero p + 1:

Segundo p + 1 - p:

Bueh:

$$\underbrace{p-1}_{p} - p \stackrel{!}{=} p - p = 0$$

 Δ Si hacés un copy paste de este código debería funcionar lo más bien Δ

import numpy as np
epsilon = np.finfo(float).eps

b) Acá el problema es parecido al anterior:

Comparando:

```
import numpy as np
epsilon = np.finfo(float).eps

print(f"epsilon = {epsilon}")  # epsilon = 2.220446049250313e-16

p = 100
q = 1e-15

calculo1 = (p + q) + q
calculo2 = ((p + q) + q) + q
calculo3 = p + 2*q
calculo4 = p + 3*q

print(f"p = {p}\nq = {q}")
print(f"(p + q) + q) + q = {calculo1}")
print(f"(p + q) + q) + q = {calculo2}")
print(f"p + 2q = {calculo3}")
print(f"p + 3q = {calculo4}")
```

```
C) ... hay que hacerlo! ...
Si querés mandá la solución → al grupo de Telegram ...
Q, o mejor aún si querés subirlo en IATEX→ una pull request al ...
d) ... hay que hacerlo! ...
Si querés mandá la solución → al grupo de Telegram ...
Q, o mejor aún si querés subirlo en IATEX→ una pull request al ...
```

e) ¿Qué onda este ejercicio? Creo que está bueno notar que ese número no es igual a 0

```
a = 1e-323
print(f"r: {a}\na == 0 => {a == 0}")
```

f) ¿Qué onda este ejercicio? Creo que está bueno notar que ese número justo con ese exponente se llega al límite de qué tan pequeño puede representarse un número, porque en este caso python lo toma como 0.

```
a = 1e-324
print(f"r: {a}\na == 0 => {a == 0}")
```

```
g) ②... hay que hacerlo! ③
Si querés mandá la solución → al grupo de Telegram ③, o mejor aún si querés subirlo en IATEX→ una pull request al ④.

h) ③... hay que hacerlo! ④
Si querés mandá la solución → al grupo de Telegram ③, o mejor aún si querés subirlo en IATEX→ una pull request al ④.

i) ④... hay que hacerlo! ④
Si querés mandá la solución → al grupo de Telegram ③, o mejor aún si querés subirlo en IATEX→ una pull request al ④.

j) ④... hay que hacerlo! ⑤
Si querés mandá la solución → al grupo de Telegram ③, o mejor aún si querés subirlo en IATEX→ una pull request al ④.

k) ④... hay que hacerlo! ⑥
Si querés mandá la solución → al grupo de Telegram ③, o mejor aún si querés subirlo en IATEX→ una pull request al ④.

l) ④... hay que hacerlo! ⑥
Si querés mandá la solución → al grupo de Telegram ③, o mejor aún si querés subirlo en IATEX→ una pull request al ④.

m) ④... hay que hacerlo! ⑥
Si querés mandá la solución → al grupo de Telegram ③, o mejor aún si querés subirlo en IATEX→ una pull request al ④.

m) ④... hay que hacerlo! ⑥
Si querés mandá la solución → al grupo de Telegram ③, o mejor aún si querés subirlo en IATEX→ una pull request al ④.
```

Ejercicio 8. Q... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IAT_FX \rightarrow una pull request al \bigcirc

Ejercicio 9. O... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram $rac{1}{2}$, o mejor aún si querés subirlo en IATEXo una pull request al $rac{1}{2}$

Ejercicio 10. S... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram , o mejor aún si querés subirlo en IATEX→ una pull request al

Ejercicio 11. S... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram 3, o mejor aún si querés subirlo en IATEX→ una pull request al 😱

Ejercicio 12. O... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram , o mejor aún si querés subirlo en IATEX→ una pull request al

Ejercicio 13. O... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram $rac{1}{2}$, o mejor aún si querés subirlo en LATEXo una pull request al $rac{1}{2}$

Ejercicio 14. O... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram $rac{1}{2}$, o mejor aún si querés subirlo en LATEXo una pull request al $rac{1}{2}$

Ejercicio 15. O... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram , o mejor aún si querés subirlo en IATEX→ una pull request al

Ejercicio 16. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en \LaTeX una pull request al \bigcirc .

Ejercicio 17. O... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram , o mejor aún si querés subirlo en IATEX→ una pull request al

Ejercicio 18. O... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram $rac{1}{2}$, o mejor aún si querés subirlo en LATEXo una pull request al $rac{1}{2}$

Ejercicio 19. O... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram , o mejor aún si querés subirlo en IATEX→ una pull request al

Ejercicio 20. O... hay que hacerlo!

Si querés mandá la solución → al grupo de Telegram , o mejor aún si querés subirlo en IATEX→ una pull request al

Ejercicio 21. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en LATEX \rightarrow una pull request al \bigcirc .

Ejercicio 22. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IAT $_{\rm E}$ X \rightarrow una pull request al \bigcirc .

Ejercicio 23. S... hay que hacerlo!

Si querés mandá la solución o al grupo de Telegram $rac{1}{2}$, o mejor aún si querés subirlo en IATEXo una pull request al $rac{1}{2}$.

Ejercicio 24. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IATEX \rightarrow una pull request al \bigcirc .

Ejercicio 25. O... hay que hacerlo!

Si querés mandá la solución \rightarrow al grupo de Telegram \bigcirc , o mejor aún si querés subirlo en IAT $_{\rm E}$ X \rightarrow una pull request al \bigcirc .

Ligercicios de parciales: