The first step is to embed a real vector space E into a complex vector space $E_{\mathbb{C}}$. A quick but somewhat bewildering way to do so is to define the complexification of E as the tensor product $\mathbb{C} \otimes E$. A more tangible way is to define the following structure.

Definition 26.13. Given a real vector space E, let $E_{\mathbb{C}}$ be the structure $E \times E$ under the addition operation

$$(u_1, u_2) + (v_1, v_2) = (u_1 + v_1, u_2 + v_2),$$

and let multiplication by a complex scalar z = x + iy be defined such that

$$(x+iy)\cdot(u,\,v)=(xu-yv,\,yu+xv).$$

It is easily shown that the structure $E_{\mathbb{C}}$ is a complex vector space. It is also immediate that

$$(0, v) = i(v, 0),$$

and thus, identifying E with the subspace of $E_{\mathbb{C}}$ consisting of all vectors of the form (u, 0), we can write

$$(u, v) = u + iv.$$

Given a vector w = u + iv, its *conjugate* \overline{w} is the vector $\overline{w} = u - iv$. Then conjugation is a map from $E_{\mathbb{C}}$ to itself that is an involution. If (e_1, \ldots, e_n) is any basis of E, then $((e_1, 0), \ldots, (e_n, 0))$ is a basis of $E_{\mathbb{C}}$. We call such a basis a *real basis*.

Given a linear map $f: E \to E$, the map f can be extended to a linear map $f_{\mathbb{C}}: E_{\mathbb{C}} \to E_{\mathbb{C}}$ defined such that

$$f_{\mathbb{C}}(u+iv) = f(u) + if(v).$$

We define the *complexification* of $\mathbf{P}(E)$ as $\mathbf{P}(E_{\mathbb{C}})$. If (E, \overrightarrow{E}) is a real affine space, we define the *complexified projective completion of* (E, \overrightarrow{E}) as $\mathbf{P}(\widehat{E}_{\mathbb{C}})$ and denote it by $\widetilde{E}_{\mathbb{C}}$. Then \widetilde{E} is naturally embedded in $\widetilde{E}_{\mathbb{C}}$, and it is called the set of *real points* of $\widetilde{E}_{\mathbb{C}}$.

If E has dimension n+1 and (e_1, \ldots, e_{n+1}) is a basis of E, given any homogeneous polynomial $P(x_1, \ldots, x_{n+1})$ over \mathbb{C} of total degree m, because P is homogeneous, it is immediately verified that

$$P(x_1,\ldots,x_{n+1})=0$$

iff

$$P(\lambda x_1, \dots, \lambda x_{n+1}) = 0,$$

for any $\lambda \neq 0$. Thus, we can define the hypersurface V(P) of equation $P(x_1, \ldots, x_{n+1}) = 0$ as the subset of $\widetilde{E}_{\mathbb{C}}$ consisting of all points of homogeneous coordinates (x_1, \ldots, x_{n+1}) such that $P(x_1, \ldots, x_{n+1}) = 0$. We say that the hypersurface V(P) of equation $P(x_1, \ldots, x_{n+1}) = 0$ is real whenever $P(x_1, \ldots, x_{n+1}) = 0$ implies that $P(\overline{x}_1, \ldots, \overline{x}_{n+1}) = 0$.