DESCRIPTION

The 8274 10-Bit Shift Register is an array of binary elements interconnected to perform the parallel-in serial-out shift function. The circuit has ten parallel inputs and a single true serial output. The D $_1$ input can also be used for serial entry. Two control inputs, S_0 and S_1 , determine the operating mode of the shift register as shown in the Truth Table. A single buffered clock line connects all ten flip-flops which are activated on the high-to-low transition of the clock pulse.

Guaranteed input clock frequency is 25MHz. With the exception of the Hold Mode, the control inputs may be changed when the clock is in either the high or low state without causing false triggering. The Hold Mode can be entered only when the clock is low. Applications for the 8274 Shift Register include Parallel-to-Serial conversion, Modem Data Transmission, Pseudo-Random Code generation and Modulo-N Frequency Division.

PIN CONFIGURATION

ORDERING CODE (See Section 9 for further Package and Ordering Information)

PACKAGES	COMMERCIAL RANGES V _{CC} =5V±5%; T _A =0°C to +75°C	MILITARY RANGES VCC=5V±5%; TA=-55°C to +125°C		
Plastic DIP	N8274N			
Ceramic DIP	N89274F	S8274F		
Flatpak		S8274W		

MODE SELECT— FUNCTION TABLE

s _o	s ₁	OPERATING MODE
L	L	Hold
L	н	Clear
н	L	Load
н	Н	Shift

H = HIGH voltage level L = LOW voltage level

LOGIC DIAGRAM

NOTE

 a. The slashed numbers indicate different parametric values for Military Commercial temperature ranges respectively.

signetics

576

DC CHARACTERISTICS OVER OPERATING TEMPERATURE RANGE

			8274		
	PARAMETER	TEST CONDITIONS	Min	Max	UNIT
VOH	Output HiGH voltage	$V_{CC} = 4.75V, I_{OH} = -800\mu A$	2.6		>
VOL	Output LOW voltage	V _{CC} = 4.75V, I _{OL} = 16mA		0.4	>
lн	Input HIGH current	V _{CC} = 5.25V, V _{IN} = 4.5V		40	μΑ
ŊĹ	Input LOW current D _n , S ₀ , S ₁ Clock	V _{CC} = 5.25V, V _{IN} = 0.4V	-0.2 -0.2	-1.2 -1.6	mA mA mA
V _{BD}	input breakdown voltage	V _{CC} = 5.0V, I _{IN} = 10mA	5.5		V
los	Output short circuit current	V _{CC} = 5.0V, V _{OUT} = OV	-20	-70	mA
Icc	Supply current	V _{CC} = 5.0V		108	mA

AC CHARACTERISTICS: T_A = 25° C (See Section 4 for Waveforms and Conditions)

PARAMETER			82	8274	
		TEST CONDITIONS	$C_L = 18pF$ $R_1 = \infty \Omega$ $R_2 = 84.5 \Omega$		UNITS
			Min	Max	
f _{Max}	Maximum clock frequency	Figure 1	25		MHz
tPLH tPHL	Propagation delay Clock to output	Figure 1		40 40	ns ns

signetics

AC SET-UP REQUIREMENTS $T_A = 25^{\circ}C$ (See Section 4 for Waveforms and Conditions)

			82	8274	
PARAMETER	TEST CONDITIONS	Min	Max	UNIT	
tw	Clock pulse width	Figure 1	20		ns
ts	Set-up time Dn S ₀ ,S ₁	Figure 1	10 25		ns ns

AC WAVEFORMS

