MEF I

Lecture 3: Galerkin approximation

Pr. Ismail MERABET

Univ. K-M-Ouargla

November 3, 2024

Given a linear variational problem

find $u \in V$ such that a(u, v) = F(v) for all $v \in V$,

we form its Galerkin approximation over a closed subspace $V_h \subset V$

find $u_h \in V_h$ such that $a(u_h, v_h) = F(v_h)$ for all $v_h \in V_h$.

Given a linear variational problem

find
$$u \in V$$
 such that $a(u, v) = F(v)$ for all $v \in V$,

we form its Galerkin approximation over a closed subspace $V_h \subset V$

find
$$u_h \in V_h$$
 such that $a(u_h, v_h) = F(v_h)$ for all $v_h \in V_h$.

We first consider its approximation properties over *arbitrary* subspaces V_h , then in subsequent lectures consider V_h constructed via finite elements.

Let a and F satisfy the hypothesis of the Lax–Milgram Theorem. Then the Galerkin approximation is well-posed for any closed subspace $V_h \subset V$.

Let a and F satisfy the hypothesis of the Lax–Milgram Theorem. Then the Galerkin approximation is well-posed for any closed subspace $V_h \subset V$.

Proof.

As $V_h \subset V$, $a: V_h \times V_h \to \mathbb{R}$ is bounded and coercive on V_h , with the same continuity and coercivity constants.

Let a and F satisfy the hypothesis of the Lax–Milgram Theorem. Then the Galerkin approximation is well-posed for any closed subspace $V_h \subset V$.

Proof.

As $V_h \subset V$, $a:V_h \times V_h \to \mathbb{R}$ is bounded and coercive on V_h , with the same continuity and coercivity constants. $F:V_h \to \mathbb{R}$ is linear and bounded.

Let a and F satisfy the hypothesis of the Lax–Milgram Theorem. Then the Galerkin approximation is well-posed for any closed subspace $V_h \subset V$.

Proof.

As $V_h \subset V$, $a: V_h \times V_h \to \mathbb{R}$ is bounded and coercive on V_h , with the same continuity and coercivity constants. $F: V_h \to \mathbb{R}$ is linear and bounded. Thus, by Lax–Milgram, the variational problem defining the Galerkin approximation is well-posed.

Let a and F satisfy the hypothesis of the Lax–Milgram Theorem. Then the Galerkin approximation is well-posed for any closed subspace $V_h \subset V$.

Proof.

As $V_h \subset V$, $a: V_h \times V_h \to \mathbb{R}$ is bounded and coercive on V_h , with the same continuity and coercivity constants. $F: V_h \to \mathbb{R}$ is linear and bounded. Thus, by Lax–Milgram, the variational problem defining the Galerkin approximation is well-posed.

For coercive problems, well-posedness is inherited. *This is not true for noncoercive problems.* This makes discretising noncoercive problems much harder.

$$Ax = b$$
,

where

$$u_h = \sum_i x_i \phi_i, \quad b_i = F(\phi_i), \quad A_{ji} = a(\phi_i, \phi_j).$$

$$Ax = b$$
,

where

$$u_h = \sum_i x_i \phi_i, \quad b_i = F(\phi_i), \quad A_{ji} = a(\phi_i, \phi_j).$$

The linear system we must solve for our Galerkin approximation inherits useful properties of the underlying problem.

$$Ax = b$$
,

where

$$u_h = \sum_i x_i \phi_i, \quad b_i = F(\phi_i), \quad A_{ji} = a(\phi_i, \phi_j).$$

The linear system we must solve for our Galerkin approximation inherits useful properties of the underlying problem.

If a is symmetric, so is A:

$$A_{ji} = a(\phi_i, \phi_j) = a(\phi_j, \phi_i) = A_{ij}.$$

$$Ax = b$$
,

where

$$u_h = \sum_i x_i \phi_i, \quad b_i = F(\phi_i), \quad A_{ji} = a(\phi_i, \phi_j).$$

The linear system we must solve for our Galerkin approximation inherits useful properties of the underlying problem.

If a is symmetric, so is A:

$$A_{ji} = a(\phi_i, \phi_j) = a(\phi_j, \phi_i) = A_{ij}.$$

If a is coercive (hence positive-definite), so is A:

$$c^{\top}Ac = a\left(\sum_{i} c_{i}\phi_{i}, \sum_{i} c_{i}\phi_{i}\right) \geq 0.$$

$$a(u,v) = F(v)$$
 for all $v \in V$,

and thus in particular

$$a(u, v_h) = F(v_h)$$
 for all $v_h \in V_h \subset V$.

$$a(u,v) = F(v)$$
 for all $v \in V$,

and thus in particular

$$a(u, v_h) = F(v_h)$$
 for all $v_h \in V_h \subset V$.

The Galerkin approximation $u_h \in V_h$ satisfies

$$a(u_h, v_h) = F(v_h)$$
 for all $v_h \in V_h \subset V$.

$$a(u,v) = F(v)$$
 for all $v \in V$,

and thus in particular

$$a(u, v_h) = F(v_h)$$
 for all $v_h \in V_h \subset V$.

The Galerkin approximation $u_h \in V_h$ satisfies

$$a(u_h, v_h) = F(v_h)$$
 for all $v_h \in V_h \subset V$.

Subtracting, we find

$$a(u - u_h, v_h) = 0$$
 for all $v_h \in V_h$.

$$a(u,v) = F(v)$$
 for all $v \in V$,

and thus in particular

$$a(u, v_h) = F(v_h)$$
 for all $v_h \in V_h \subset V$.

The Galerkin approximation $u_h \in V_h$ satisfies

$$a(u_h, v_h) = F(v_h)$$
 for all $v_h \in V_h \subset V$.

Subtracting, we find

$$a(u - u_h, v_h) = 0$$
 for all $v_h \in V_h$.

This is called Galerkin orthogonality.

Lemma (Céa's Lemma)

The Galerkin approximation $u_h \in V_h$ to $u \in V$ is quasi-optimal, in that it satisfies

$$||u - u_h||_V \le \frac{C}{\alpha} \min_{v_h \in V_h} ||u - v_h||_V.$$

Lemma (Céa's Lemma)

The Galerkin approximation $u_h \in V_h$ to $u \in V$ is quasi-optimal, in that it satisfies

$$||u - u_h||_V \le \frac{C}{\alpha} \min_{v_h \in V_h} ||u - v_h||_V.$$

Proof.

$$\alpha \|u - u_h\|_V^2 \le a(u - u_h, u - u_h)$$

Lemma (Céa's Lemma)

The Galerkin approximation $u_h \in V_h$ to $u \in V$ is quasi-optimal, in that it satisfies

$$||u - u_h||_V \le \frac{C}{\alpha} \min_{v_h \in V_h} ||u - v_h||_V.$$

Proof.

$$\alpha \|u - u_h\|_V^2 \le a(u - u_h, u - u_h)$$

= $a(u - u_h, u - v_h) + a(u - u_h, v_h - u_h)$

Lemma (Céa's Lemma)

The Galerkin approximation $u_h \in V_h$ to $u \in V$ is quasi-optimal, in that it satisfies

$$||u - u_h||_V \le \frac{C}{\alpha} \min_{v_h \in V_h} ||u - v_h||_V.$$

Proof.

$$\alpha \|u - u_h\|_V^2 \le a(u - u_h, u - u_h)$$

$$= a(u - u_h, u - v_h) + a(u - u_h, v_h - u_h)$$

$$= a(u - u_h, u - v_h)$$

Lemma (Céa's Lemma)

The Galerkin approximation $u_h \in V_h$ to $u \in V$ is quasi-optimal, in that it satisfies

$$||u - u_h||_V \le \frac{C}{\alpha} \min_{v_h \in V_h} ||u - v_h||_V.$$

Proof.

$$\alpha \|u - u_h\|_V^2 \le a(u - u_h, u - u_h)$$

$$= a(u - u_h, u - v_h) + a(u - u_h, v_h - u_h)$$

$$= a(u - u_h, u - v_h)$$

$$\le C \|u - u_h\|_V \|u - v_h\|_V.$$

Lemma (Céa's Lemma)

The Galerkin approximation $u_h \in V_h$ to $u \in V$ is quasi-optimal, in that it satisfies

$$||u - u_h||_V \le \frac{C}{\alpha} \min_{v_h \in V_h} ||u - v_h||_V.$$

Proof.

For any $v_h \in V_h$,

$$\alpha \|u - u_h\|_V^2 \le a(u - u_h, u - u_h)$$

$$= a(u - u_h, u - v_h) + a(u - u_h, v_h - u_h)$$

$$= a(u - u_h, u - v_h)$$

$$\le C \|u - u_h\|_V \|u - v_h\|_V.$$

Dividing by α and minimising over $v_h \in V$, we obtain the result.

Remark

This quasi-optimality result relates (the error in the PDE approximation) with (the approximating power of the space V_h). This decouples the error analysis from the specific PDE and turns the focus to constructing V_h with good approximation properties.

Remark

This quasi-optimality result relates (the error in the PDE approximation) with (the approximating power of the space V_h). This decouples the error analysis from the specific PDE and turns the focus to constructing V_h with good approximation properties.

This leads to the question: given $u \in V$, what is

$$\min_{v_h \in V_h} \|u - v_h\|_V?$$

In the finite element context, the answer will depend on the smoothness of u, the mesh size h, and the polynomial degree p.

Remark

This quasi-optimality result relates (the error in the PDE approximation) with (the approximating power of the space V_h). This decouples the error analysis from the specific PDE and turns the focus to constructing V_h with good approximation properties.

This leads to the question: given $u \in V$, what is

$$\min_{v_h \in V_h} \|u - v_h\|_V?$$

In the finite element context, the answer will depend on the smoothness of u, the mesh size h, and the polynomial degree p.

Remark

The ratio C/α is crucial. If $C/\alpha=5$, things are fine. But if $C/\alpha=1000$, our discretisation won't be very useful.

Now let's also assume that \boldsymbol{a} is symmetric.

Now let's also assume that a is symmetric.

Recall that a defines a norm $\|v\|_a := \sqrt{a(v,v)}$ on V , with

$$\alpha \|v\|_V^2 \le \|v\|_a^2 \le C\|v\|_V^2$$

where the continuity and coercivity constants are measured in the ${\cal V}$ norm.

Now let's also assume that a is symmetric.

Recall that a defines a norm $\|v\|_a := \sqrt{a(v,v)}$ on V, with

$$\alpha ||v||_V^2 \le ||v||_a^2 \le C||v||_V^2,$$

where the continuity and coercivity constants are measured in the ${\cal V}$ norm.

When we measure the continuity and coercivity constants in the energy norm, we get that C=1 (by Cauchy–Schwarz) and $\alpha=1$ (by definition).

Apply Céa's Lemma in the energy norm:

$$||u - u_h||_a \le \frac{C}{\alpha} \min_{v_h \in V_h} ||u - v_h||_a$$

= $\min_{v_h \in V_h} ||u - v_h||_a$.

Apply Céa's Lemma in the energy norm:

$$||u - u_h||_a \le \frac{C}{\alpha} \min_{v_h \in V_h} ||u - v_h||_a$$

= $\min_{v_h \in V_h} ||u - v_h||_a$.

Since $u_h \in V_h$, we must have equality, and thus the error is optimal in the norm induced by the problem:

$$||u - u_h||_a = \min_{v_h \in V_h} ||u - v_h||_a.$$

Apply Céa's Lemma in the energy norm:

$$||u - u_h||_a \le \frac{C}{\alpha} \min_{v_h \in V_h} ||u - v_h||_a$$

= $\min_{v_h \in V_h} ||u - v_h||_a$.

Since $u_h \in V_h$, we must have equality, and thus the error is optimal in the norm induced by the problem:

$$||u - u_h||_a = \min_{v_h \in V_h} ||u - v_h||_a.$$

The Galerkin approximation u_h is the *projection* of u onto V_h in the a-inner product!

Using the equivalences

$$\alpha \|v\|_V^2 \le \|v\|_a^2 \le C \|v\|_V^2,$$

we have

$$||u - u_h||_V \le \frac{1}{\sqrt{\alpha}} ||u - u_h||_a$$

Using the equivalences

$$\alpha \|v\|_V^2 \le \|v\|_a^2 \le C \|v\|_V^2,$$

we have

$$||u - u_h||_V \le \frac{1}{\sqrt{\alpha}} ||u - u_h||_a$$

= $\frac{1}{\sqrt{\alpha}} \min_{v_h \in V_h} ||u - v_h||_a$

Using the equivalences

$$\alpha \|v\|_V^2 \le \|v\|_a^2 \le C\|v\|_V^2$$

we have

$$||u - u_h||_V \le \frac{1}{\sqrt{\alpha}} ||u - u_h||_a$$

$$= \frac{1}{\sqrt{\alpha}} \min_{v_h \in V_h} ||u - v_h||_a$$

$$\le \sqrt{\frac{C}{\alpha}} \min_{v_h \in V_h} ||u - v_h||_V$$

Using the equivalences

$$\alpha \|v\|_V^2 \le \|v\|_a^2 \le C \|v\|_V^2,$$

we have

$$||u - u_h||_V \le \frac{1}{\sqrt{\alpha}} ||u - u_h||_a$$

$$= \frac{1}{\sqrt{\alpha}} \min_{v_h \in V_h} ||u - v_h||_a$$

$$\le \sqrt{\frac{C}{\alpha}} \min_{v_h \in V_h} ||u - v_h||_V$$

so we improve the constant of quasi-optimality by a square root!