## Master Degree in Computer Science

# Scientific and Large Data Visualization

Francesco Caprari:580154 Academic Year: 2023-2024

## Contents

| 1 | Intr | o.      | 2                                   |
|---|------|---------|-------------------------------------|
|   | 1.1  | Inform  | ation Visualization                 |
|   |      | 1.1.1   | Perchè la visualizzazione?          |
|   | 1.2  |         | mentals of 3D Computer Graphics     |
|   | 1.3  | Scienti | fic Visualization                   |
| 2 | Info | rmatic  | on Visualization 6                  |
|   | 2.1  | Data    |                                     |
|   | 2.2  | Tipi di | attributi                           |
|   | 2.3  | Seman   | tica degli attributi                |
|   | 2.4  | Grafici | Fondamentali (Bivariate data)       |
|   |      | 2.4.1   | Bar Charts                          |
|   |      | 2.4.2   | Histograms                          |
|   |      | 2.4.3   | Pie Charts                          |
|   |      | 2.4.4   | Donut Charts                        |
|   |      | 2.4.5   | Scatter plots                       |
|   |      | 2.4.6   | Slope Charts                        |
|   |      | 2.4.7   | Line Charts                         |
|   |      | 2.4.8   | Area Charts                         |
|   |      | 2.4.9   | Chropleth maps                      |
|   |      | 2.4.10  | Symbol maps                         |
|   | 2.5  | Grafici | Fondamentali (Attributi Multipli)   |
|   |      | 2.5.1   | Stacked Bar Charts                  |
|   |      | 2.5.2   | Grouped Bar Charts                  |
|   |      | 2.5.3   | Stacked Line Charts                 |
|   |      | 2.5.4   | Line Charts Series                  |
|   |      | 2.5.5   | Bubble Charts                       |
|   |      | 2.5.6   | Small multiples                     |
|   |      | 2.5.7   | Symbol Maps                         |
|   | 2.6  | Grafici | Fondamentali (Attributi Gerarchici) |
|   |      | 2.6.1   | Sunburst Charts                     |
|   |      | 262     | Treempas 16                         |

#### 1 Intro

#### Information Visualization

- Quando la rappresentazione visiva non è ovvia...
- Percezione visiva, migliori pratiche, dati multidimensionali, grafi e reti

#### 3D Computer Graphics

- Rappresentazione in 3D (mesh poligonali)
- Trasformazione dei dati 3D in immagini generate al computer: rendering, illuminazione, texturizzazione

#### Scientific Visualization

• Illustrazione grafica dei dati scientifici per estrapolare informazioni sui fenomeni

#### 1.1 Information Visualization

Consiste nella Trasformazione dei dati per estrarre informazioni utili, ci sono diverse definizioni:

- La visualizzazione delle informazioni è l'uso di rappresentazioni visive, computerizzate, i nterattive, di dati astratti per amplificare la cognizione [S. T. Card, 1999].
- Visualizzare significa rendere visibili e comprensibili certi fenomeni e parti della realtà; molti di questi fenomeni non sono naturalmente accessibili all'occhio nudo, e molti di essi non sono neanche di natura visiva [J. Costa, 1998].
- Visualizzazione delle informazioni vs visualizzazione scientifica: Nella visualizzazione scientifica esiste una relazione naturale tra ciò che viene rappresentato e la sua rappresentazione, mentre nella visualizzazione delle informazioni la relazione è convenzionale.

Ci sono due prospettive diverse nell'interpretare l'Information Visualization:

- Visualizzazione come scienza applicata: Il valore di una buona visualizzazione consiste nel permetterci di individuare pattern nei dati e quindi la scienza della percezione dei pattern può fornire una base per decisioni di design [C. Ware, Information Visualization. Perception for design, 2013].
- Visualizzazione come tecnologia: Gli infografici sono uno strumento visivo per la comunicazione, la comprensione e l'analisi [A. Cairo, The functional art, 2013]. Le limitazioni funzionali formano: come il design di un oggetto tecnologico deve dipendere dal compito che dovrebbe aiutare la forma grafica dovrebbe essere vincolata dalle funzioni della tua presentazione.



Figure 1: Visualizzazione dati di Netflix



Figure 2: Juan Colombata & Enzo Oliva La Voz del Interior

#### 1.1.1 Perchè la visualizzazione?

Le visualizzazioni esplicative sono strumenti per presentare informazioni, comunicare dati e messaggi, spiegare qualcosa a qualcun altro, ha tre scopi principali: Explanation, confirmation e exploration.

Siamo una specie visiva. Il sistema visivo umano è molto bravo nell'identificare e analizzare i pattern. Le visualizzazioni sono come artefatti cognitivi (strumenti che gli esseri umani hanno costruito per aiutare a pensare meglio, ad esempio l'abaco). La visualizzazione ha a che fare con la cognizione distribuita (il nostro sistema cognitivo non è esclusivamente composto dal nostro cervello, mente e sensori, ma anche dall'ambiente intorno a noi, che utilizziamo per memorizzare e manipolare informazioni). Le visualizzazioni permettono il trattamento parallelo delle informazioni, anziché sequenziale. Le visualizzazioni esplorative sono strumenti per i lettori per analizzare ciò che viene loro presentato. Molto spesso, l'esito dell'analisi esplorativa non è solo la risposta alle domande originali, ma la generazione di nuove domande.



Figure 3: Visualization pipeline

## 1.2 Fundamentals of 3D Computer Graphics

Animazioni e serious gaming, Progettazione assistita da computer (CAD) e modellazione di prodotti, Patrimonio culturale, Archeologia, Architettura, Fabbricazione digitale e stampa 3D, Biologia e monitoraggio ambientale, Medicina e sistemi di eHealth, Moda del futuro, Sicurezza e difesa...



Figure 4: Esempi di utlizzo dei modelli 3D

#### 1.3 Scientific Visualization

Tecniche informatiche per la generazione di rappresentazioni visuali interattive di dati spazio-temporali acquisiti o simulati (collegamento naturale con il mondo 3D+tempo in cui viviamo). Le illustrazioni a la communicazione visuale della conoscienza è parte della nostra storia, anche oggi l'incremento della quantità dei dait da analizzare è necessario un approccio grafico per la visualizzaione. La Visualizzazione Scientifica si applica in diversi campi come l'Ingegneria, la medicina E la Scienza. La Visualizzazione Scientifica riguarda anche la definizione di algoritmi efficienti per la manipolazione interattiva ed esplorazione dei dati e delle loro caratteristiche.



Figure 5: Esempi di Visualizzazione Scientifica

#### 2 Information Visualization

La visualizzazione delle informazioni è un modo per comunicare significativamente i dati e aiutare le persone a dare un senso a grandi quantità di informazioni. Le visualizzazioni come artefatti cognitivi che consentono il trattamento parallelo delle informazioni. Tre scopi principali della visulizzazione:

- Explanatory: Le visualizzazioni esplicative sono strumenti per presentare informazioni, comunicare dati e messaggi, spiegare qualcosa a qualcun altro.
- Exploratory: Le visualizzazioni esplorative sono strumenti per i lettori per analizzare ciò che viene loro presentato. Molto spesso, l'esito dell'analisi esplorativa non è solo la risposta alle domande originali, ma la generazione di nuove domande.
- Confirmatory: Nell'analisi confermativa, le visualizzazioni sono destinate a testare ipotesi.

Bisogna decidere cosa visualizzare



Figure 6: Visualization pipeline

#### 2.1 Data

Informazioni fattuali come misurazioni o statistiche, utilizzate come base per il ragionamento, la discussione o il calcolo. I dati sono collezioni di *items* e *attributes* degli items. Gli *Items* sono gli oggetti/entità che vogliamo viusalizzare. Gli *Attributi* sono le proèrietà degli oggetti/entità.

Una *Tabella* è una griaglia di colonne e righr, dove le righe rapresentanto gli item e le colonne gli attributi. Un *network* è una collezione di nodi che rappresentano gli item, connessi tramite dei link; entrambi nodi e link possono avere attributi.

## 2.2 Tipi di attributi

- Quantitativi: sono gli attributi dove i valori rappresentano quantità misurate, questi valori possono essere ordinati, ma può essere calcolata anche la distanza tra i valori.
- Categorici: sono gli attributi dove i valori descrivino le categorie, possono essere di tre tipi, Nominali se non hanno un ordine particolare, Ordinali se possono essere ordinati, Binary se hanno solo due stati.

### 2.3 Semantica degli attributi

- Spaziali e temporali: Esempio la location, latitudine e longitudine o la data di assunzione come attributo temporale.
- Sequnziali, ciclici divergenti: Esempio: i mesi dell'anno sono ciclici, la temperatura è un attributo divergente.
- Gerarchici: Tipi di prodotto con sottocategorie, un esempio sono i vestiti.

Si deve selezionare la visualizzazione appropriata a seconda del tipo e dalla semantica dell'attributo. Esempio:



Figure 7: Differenza di Visualizzazione

Figure 8: Differenza di Visualizzazione

## 2.4 Grafici Fondamentali (Bivariate data)

#### 2.4.1 Bar Charts

Visualizza come una quantità misurata si distribuisce tra categorie. Ogni barra rappresenta una categoria e la lunghezza della barra è una quantità misurata in quella categoria. Dati bivariati: nominale/ordinale e quantitativo. Non confondere con gli istogrammi



Figure 9: Bar Charts

#### 2.4.2 Histograms

Frequenza degli elementi. Dati bivariati: una variabile indipendente quantizzata in intervalli (blocchi) e una variabile dipendente.



Figure 10: Histograms

#### 2.4.3 Pie Charts

Mostrare proporzioni e percentuali tra le categorie. Utile per dare un'idea rapida e confrontare una fetta rispetto al totale, non adatto per confronti accurati. Altri svantaggi: numero limitato di valori, occupazione dello spazio.



| Data                 |                              |                       |       |  |  |  |
|----------------------|------------------------------|-----------------------|-------|--|--|--|
| Rock                 | Paper                        | Scissor               | TOTAL |  |  |  |
| 2                    | 3                            | 4                     | 9     |  |  |  |
|                      | To calculate percentages     |                       |       |  |  |  |
| 2/9=22%              | 3/9=33%                      | 4/9=44%               | 100%  |  |  |  |
|                      | Degrees for each "pie slice" |                       |       |  |  |  |
| (2/9) x 360<br>= 80° | (3/9) x 360<br>= 120°        | (4/9) x 360<br>= 160° | 360°  |  |  |  |

Figure 11: Pie Charts

## 2.4.4 Donut Charts

Grafici a torta con l'area centrale tagliata. Maggiore enfasi sulla lunghezza dell'arco rispetto all'area. Più efficienti in termini di spazio.



Figure 12: Donut Charts

#### 2.4.5 Scatter plots

Relazione tra attributi: visualizzazione di come una quantità è correlata a un'altra (e analisi di cluster, valori anomali, ecc.). Dati bivariati: due attributi quantitativi indipendenti.



Figure 13: Scatter plots

## 2.4.6 Slope Charts

Alternativa ai Scatter plots: assi paralleli, ogni elemento è una linea che collega due quantità.



Figure 14: Slope Charts

#### 2.4.7 Line Charts



Figure 15: Line Charts

#### 2.4.8 Area Charts

Line Charts dove l'area sotto alla linea è riempita.



Figure 16: Area Charts

#### 2.4.9 Chropleth maps

Come si distribuisce una quantità nelle diverse aree/geografiche/regioni. Colori, sfumature, pattern sono utilizzati per rappresentare la quantità associata alle aree/regioni. Buona panoramica (ma non confronto accurato). Rischio: confondere l'area geografica con i valori dei dati (prestare attenzione alla normalizzazione).



Figure 17: Chropleth maps

## 2.4.10 Symbol maps

Come si distribuisce una quantità lungo due coordinate spaziali. Un simbolo (spesso un disco o un quadrato) è posizionato in un punto e dimensionato in modo che la sua area sia proporzionale alla quantità associata al punto.



Figure 18: Symbol maps

## 2.5 Grafici Fondamentali (Attributi Multipli)

#### 2.5.1 Stacked Bar Charts



Figure 19: Stacked Bar Charts

#### 2.5.2 Grouped Bar Charts



Figure 20: Grouped Bar Charts

#### 2.5.3 Stacked Line Charts



Figure 21: Stacked Line Charts

## 2.5.4 Line Charts Series



Figure 22: Line Charts Series

#### 2.5.5 Bubble Charts



Figure 23: Bubble Charts

## 2.5.6 Small multiples



Figure 24: Small multiples

## 2.5.7 Symbol Maps



Figure 25: Symbol Maps

## 2.6 Grafici Fondamentali (Attributi Gerarchici)

## 2.6.1 Sunburst Charts



Figure 26: Sunburst Charts

## 2.6.2 Treempas



Figure 27: Treempas