# Implementation of SIMON 32/64 and 64/128 block cipher and Study of Cross-Correlation between Input and Output Sets and Linear Span.

Ahmad Sghaier Omar

ECE 628 Computer Network Security Project Report

Department of Electrical and Computer Engineering, University of Waterloo,

Email: a2sqhaie@uwaterloo.ca

**Abstract:** In this project, a lightweight cryptography block cipher SIMON, which is designed towards hardware efficient implementations, is realized in C/C++ language (SIMON 32/64 & 64/128) and an analysis was performed to check on its feature of cross correlation between input/output sets and among output sets, based on a message block generated by an 8 and 9 degree LFSR for 255 and 511 m-sequences. Computations of lower bound and upper bound in both cases have shown degree of correlation with maximum value for the upper bound set around 70 in SIMON 32/64 and upper bound set at 111 in SIMON 64/128. The cipher ,based on the linear span computation using Berlekamp-Massy algorithm, was declared not immune to linear span attacks as the computation has shown a linear span for certain components to be less than N/2, with a profile of probability of 1/3 in 1 million iterations.

#### 1- Introduction

Lightweight cryptography has emerged as a domain that focuses on the design of cryptography algorithms that can satisfy the constraints in environments imposed by limited computing capability in devices such as smart sensors, RFID tags, wearable technology and many other devices falling into the category of sensor networks and Internet of Things devices. Those devices with small footprint, limited computing capability, low-power and being attached closer to humans has put more challenges on ensuring being secure and immune to attacks. Based on these two opposing situations of limited capability and requirement of efficient and secure cryptography, a number of lightweight cryptography algorithms were proposed. Among those, in June 2013 [1], the U.S. National Security Agency (NSA) has announced the specifications of two families of algorithms, SIMON and SPECK, that are ,as intended by the NSA, respectively, optimized lightweight cryptographic algorithms for hardware and software implementations given the silicon area occupied or code size required for certain performance metric. In this report, the implementation and analysis will focus on SIMON algorithm and will be further narrowed on two variants which are SIMON 32/64 and SIMON 64/128.

### 2- SIMON Structure Explained

The SIMON algorithm, as stated above, is an NSA approved algorithm with 10 variants known in the form of SIMON 2n/tn, where n is the word size and has lengths of (16, 24, 32,48 or 64 bits), while 2n is the block size and tn is the key size. In this project, we are concerned about the variants SIMON32/64 and SIMON 64/128, such that n=16 and 32, block size is 32 and 64 bits and the key is 64 and 128 bits, respectively [1].

The algorithm in all its variants is classified as a low cost, small foot-print Feistel structure-based block cipher, where in each round this structure is composed of one nonlinear operation and number of left shift and bitwise addition operations, as depicted in Figure 1, [1].



Figure 1 - SIMON one round Feistel Structure

Each block message of length 2n bits is divided into two n bit words treated as left word  $(x_{i+1})$  and right word  $(x_i)$ , in each round the left word  $(x_{i+1})$  is swapped into the right word of next round and the left word of the next round  $(x_{i+2})$  is obtained by executing the shifting, AND and XOR operations of  $(x_{i+1})$  with  $(x_i)$  and the round key  $(k_i)$ .

The round keys ( $k_i$ 's) are generated using key schedule function based on a master key and with three different functions structures that is built from two, three or four words, each of length n. In this project, as we are using the SIMON 32/64 and SIMON 64/128 where the key schedule function is built from four words of 16 or 32 bits as shown in figure 2, [1].



Figure 2 – Key Scheduling Function

### 3- Objectives of this project

Since SIMON was introduced lately, less than two years ago, so definitely many characteristics of this block cipher are not yet analyzed, even though some studies related to linear and differential cryptanalysis were performed to test further the proposed algorithm, [2], [3], [4] and [5]. In this project, the aim is to implement the SIMON32/64 and SIMON 64/128 algorithm variants in C/C++ language and study the cross correlation between the input and output of the algorithm as well as the cross correlation between sets of the output. Furthermore, the linear span of the output sets will be analyzed to check the cipher block immunity against linear span attacks.

The project suggests a configuration of the block cipher to be used with an LFSR of degree set to generate an m-sequence of period 255 or 511, this configuration will mimic the use of the block cipher as a key derivation function where the LFSR acts as PRSG and with the use of master key and the block cipher the output stream can be used as session keys or used also to build a stream cipher.

#### 4- Project setup

Henceforth, the setup will be described based on SIMON 32/64 and later the setup for the SIMON 64/128 will highlight only the changes in the main setup. In the case of SIMON 32/64, the key is set as K = (0x80000000000000000000000), while the message block is generated by an LFSR of degree 8 with a primitive polynomial  $x^8 + x^7 + x^2 + x + 1$ , and an initial state  $(a_0, a_1, ..., a_7) = (1,0,...,0)$  to produce an m-sequence  $a = (a_0, a_1,..., a_{254})$ . The message block of 32-bit each is derived from slicing the 255 bits m-sequence into 32-bits messages by using a sliding window with a step of 1-bit, to ensure building an array of 255\*32 where none of these messages are repeated, where each message block  $(y_i)$  is given by:

$$y_i = (a_i, a_{i+1}, ..., a_{i+31}), i = 0,1,...,254$$

The output of the 32-bit key stream vector for the fed message blocks is given by:

$$s_i = Enc_{Simon,k}(y_i), i = 0,1,...,254.$$

$$Y = \begin{pmatrix} y_0 \\ y_1 \\ \vdots \\ y_{2.54} \end{pmatrix} \stackrel{Enc}{\Longrightarrow} S = \begin{pmatrix} s_0 \\ s_1 \\ \vdots \\ s_{2.54} \end{pmatrix}$$

Based on this configuration the analysis will focus on studying the cross correlation between

the 32 columns of the key stream matrix S with those in the message block matrix Y, where

each is a sequence of 255 bits, and each column in Y is an m-sequence that is generated by

the LFSR or a shifted version. Also, the cross correlation between the 32 columns of S will

also be studied to investigate the upper and lower bound of each pair cross correlation.

In case of SIMON 64/128, a similar setup was used, except for the modifications needed to

accommodate the different word and key lengths. The key is chosen as per the standard

document test vector. The Y matrix was generated in the same approach with the use of an

LFSR defined by the primitive polynomial  $x^9 + x^4 + 1$ , and an initial state  $(a_0, a_1, ..., a_8) =$ 

(1,0,...,0) to produce an m-sequence  $a=(a_0,a_1,...,a_{511})$ . The message block is formed

through extracting 64 bits words from the 511 m-sequence to build an array of 64\*511, where

each  $y_i$  is given by:  $y_i = (a_i, a_{i+1}, ..., a_{i+63}), i = 0,1, ...,511$ 

The analysis was performed first on a single iteration using the given key. However, to draw a

general conclusion both the cross correlation and linear span computations were performed

over 10\*4 and 10\*6 different keys and the frequency of occurrence for each component was

recorded.

5- Description of Implementation

The algorithm in this project was implemented in C/C++ language according to the standard

document [1]. Here also, the description of the implementation will focus on the SIMON

32/64 given that the only difference will be in the parameters listed in previous section.

The implementation was structured to create the message block through a function that

implements the 8 degree LFSR and extracts the 32 bit messages in an array of 255 elements.

Similarly, the function key scheduling function named KeyLUT was used to construct a look-

up table of 32 elements each of width 16 bits through the NLFSR structure. These two

functions are called at the beginning of the program to build the two arrays, and Figure 3

describes the implementation approach.

The main encryption function was built as per the algorithm specifications and was tested

along with the key scheduling function using the test vectors supplied in the specification

document [1], which are given here.

SIMON 32/64

Key: 1918 1110 0908 0100,

Plaintext: 6565 6877, Ciphertext: c69b e9bb

SIMON 64/128

Key: 1b1a1918 13121110 0b0a0908 03020100

Plaintext: 656b696c 20646e75 Ciphertext: 44c8fc20 b9dfa07a



Figure 3 - Description of the Implementation Approach

### 6- Cross Correlation Computations Results and Analysis

In this section we discuss the results of the implementation and the focus will be on the analysis of the computation of cross-correlation between the input and output sets, and among the output sets then deriving the conclusion based on this.

Firstly, as per the above mentioned setup, the detailed content of message block array Y and the output key stream vectors S for the two variants are listed in appendix A.2.

#### SIMON 32/64

#### Input-Output sets cross-correlation

For this part of cross-correlation analysis, the two matrices Y and S where serialized to generate a 32 columns per each matrix, the analysis then performed by applying the cross correlation equation between each column in S and the m-sequence of the 8 degree LFSR since it represents the first column in Y matrix since the rest of columns in Y are shifted versions of column1.

$$C_{\tau}(y_{a_i}s_b) = \sum_{i=0}^{254} (-1)^{y_i+s_{i+\tau}} ; \tau = 0,1,...,254$$

The analysis lists the upper and lower bound for the cross-correlation of each vector in S with the m-sequence vector and highlights the range of values for the upper bound. The detailed values are found in Appendix A.1, while herein figure 4 depicts those values.

The values show that the maximum value of cross-correlation is at 69 while the lower bound is set at 1, and the range of the upper bound is between 41 and 69. According to the relationship of cross correlation and sequence length ( $Cross\ correlation \le c\sqrt{N}$ ), it is found that c is in the range of 2.5675 and 4.32. This indicates that the SIMON block cipher has a significant degree of correlation between input and output sets.



Figure 4 – Cross-Correlation Upper bound and lower bound values between key stream matrix columns and message block matrix columns for SIMON 32/64

#### • Output sets cross-correlation

In addition to calculating the cross-correlation between the m-sequence input vector and the columns of key stream matrix, also in this subsection we comment on the calculations performed for the cross-correlation among the columns of the key stream matrix. This calculations were performed by using the above mentioned cross correlation function and by iterating through the S matrix columns as in the pseudo code below

Loop 
$$I = 0.30$$
  
Loop  $J=I+1.31$   
Loop  $Tao = 0.254$   
 $C = cross-correlation(S_i, S_{j+tao})$ 

This will ensure calculating the cross-correlation among all vectors without the need for repeating the calculations for the cases when the indexes are exchanged (e.g.  $C(S_1,S_2)$  and  $C(S_2,S_1)$ ).

The results of these calculations are represented by Figure 5, which plots them as a twodimensional heat map. According to the figure below and the detailed results, it is found that the lower bound is set at 1 and the upper bound between all columns pairs is 67, ranging between 35 and 67, which also shows a significant degree of correlated output sets.



Figure 5 – Cross-Correlation Upper bound values among key stream matrix columns for SIMON 32/64.

A run of 10\*4 different keys was performed and the maximum value of the upper bound was recorded and its frequency of occurrence. The distribution showed concentration around the values of 37 to 69 with the lowest value was recorded at 35 occurring 72 times and highest value was 89 occurred only once in 10,000 iterations. The figure below plots the frequency of occurrence of each cross correlation value. In the case of SIMON 64/128 similar behavior was captured over a run of 10\*4 keys with highest value at 131 and lowest at 53 with approximately the same shape of frequency distribution, the figure for the case of SIMON 64/128 can be found in appendix A.4.



Figure 6 - Cross-Correlation Upper bound values Frequency Distribution over 10K runs.

#### SIMON 64/128

In the case of SIMON 64/128, the same analysis approach was applied on the first 32 columns of the Y and S matrices. It was found that for input-output cross correlation the maximum value of upper bound is 93 with a range between 61 and 93, while the lower bound is set at 1. Furthermore, the cross correlation between output sets was upper bounded by a maximum value of 111 and ranging between 53 and 111, while also it is lower bounded by a value equals 1.

The two figures below, Figure 6 and 7 depict the results for the SIMON 64/128. Here also, it is clear that cross correlation values are indicating correlation between input and output sets and among output sets, and it is noticed also that the cross correlation value did not double as per the block size but it increased by not more than 1.65 times than the values obtained in the case of SIMON 32/64.



Figure 4 – Cross-Correlation Upper bound and lower bound values between key stream matrix columns and message block matrix columns for SIMON 32/64



Figure 7 – Cross-Correlation Upper bounds among key stream columns for SIMON 64/128.

### 7- Linear Span Results and Analysis

The stream of output columns for the case of SIMON32/64 were further analyzed by computing the linear span of each column, being a sequence of 255 bits, using the Berlekamp-Massey algorithm [6]. The analysis first looked at few keys and listed the different values obtained for the linear span. For the SIMON 32/64, the results for certain columns has shown a linear span values of 124, 125, 126 and 127 which means that those output sets of columns have a linear span LS=n, where 2n<N.

This indicates that by observing 2n consecutive bits the LFSR that can generate the whole sequence can be derived using the Berlekamp-Massy algorithm and this results that the cipher is not considered immune against linear span attacks. The results of computations using the Berlekamp-Massy algorithm over four keys are shown in the figure below.



Figure 8 – Linear Span Computations over 4 different keys.

To further conclude the results, a run using 10\*6 different keys was performed to list the frequency of linear span occurrence per each column. The linear span computations confirm the linear span attack likelihood on SIMON32/64, where it presents values of linear span as low as 113. In addition a run for a subset of 10\*4 keys and using double the sequence length (N=510) affirmed those results, where the maximum linear span value did not exceed 255. Similarly, the case of SIMON 64/128 as illustrated in appendix A.4 showed similar results with linear span values as low as 247.

Moreover, the probability distribution of the frequency of occurrence of the linear span values is shown hereafter for the case of SIMON32/64. The graph indicates with probability of 1/3 to have a linear span less than N/2. These results could be attributed to the simple design and in specific the simple non-linear function (AND operation) which is a quadratic function. However, further analysis is required to identify and relate that to the Fiestel structure used.



Figure 9 – Linear Span Probability Mass Function derived from 1M iterations.



Figure 10 - Linear Span PMF (10K iterations using double length sequence - N=510).

## 8- Analysis on the Evaluation of Lightweight Crypto Systems

In this section, answers to the three questions of evaluating lightweight crypto systems are provided.

Firstly, adversary model that should be considered in the reality of lightweight cryptography derives mainly from the applications that are related to small devices with limited capabilities. These adversary models could be: impersonation attack, cloning attack, replay attack, eavesdropping attack, data correlation and association attacks, physical attacks, denial-of-service attack, tracking and location-related attack. Furthermore, the adversary model can be classified as being either passive such as in eavesdropping or active as in replay attacks or DoS attacks.

Secondly, regarding the argument that the amount of data encrypted by a single lightweight device, e.g., Simon32/64, during its functional lifetime will be tiny, and data to which an adversary has access will likely remain small might not be enough to assume a relaxed security environment. Actually having a tiny amount of information exchanged which is in most cases repetitive and very well known in its format and given the simplicity of deign lightweight crypto such as SIMON, this makes the adversary capability to perform cryptanalysis or side channel attacks easier with minimum data sets and computing power.

Thirdly, the point that there is a price to be paid (with every encryption) for making lightweight cryptography theoretical resistance on all known cryptanalytic attacks can be related to different techniques that can be applied but the price for these techniques will impose prices either on financial cost, time, complexity or equipment design and its constrained environment definition. For example, a price would come from device tampering to resist physical attacks which will result increase of cost and design. Also, introducing extra clocks or some background noise to defend against side channel attacks will result complexity of design and could also affect performance.

#### 9- Conclusion

In this project, a lightweight cryptography algorithm was implemented in C/C++ language, which is a new algorithm specified by the NSA in 2013 named SIMON. The algorithm as promised by the standard document is a lightweight algorithm that was implemented in less than 100 lines of code for the core functions.

The setup proposed in this project to study the cross correlation characteristics revealed that the algorithm has shown a significant degree of correlation between input and output sets as well as among output sets.

The results show that the upper bound for input-output cross correlation (in SIMON 32/64 and 64/128) was upper bounded by a maximum values at 69 and 93, respectively. While the cross correlation among output sets is at maximum upper bounded by 67 in the case of SIMON 32/64 and it is at 111 in SIMON 64/128. Iterations of 10K different keys confirmed those findings, and also showed the frequency of occurrence of those correlation factors.

Furthermore, the linear span computations on the output sequence showed susceptibility of the proposed block cipher for linear span attack, where a linear span of values less than half the sequence length were obtained in both cases with probability of 1/3.

The primary conclusion is that the studied cipher showed that its behavior does not provide the required randomness features which are essential for block ciphers, while future work is needed to design practical attacks based on those findings and study the other cipher SPECK using the same approach to compare with its associate SIMON.

# References

- 1. Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., and Wingers, L. The Simon and Speck Families of Lightweight Block Ciphers. Cryptology e-Print Archive, Report 2013/404 (2013). <a href="http://eprint.iacr.org/">http://eprint.iacr.org/</a>.
- 2. Abdelraheem, M., Alizadeh, J., Alkhzaimi, H., Reza Aref, M., Bagheri, N., Gauravaram, P., and Lauridsen, M. Improved Linear Cryptanalysis of Reduced-round SIMON. Cryptology e-Print Archive, Report 2014/681 (2014). <a href="https://eprint.iacr.org/">http://eprint.iacr.org/</a>.
- 3. Alkhzaimi, H., Lauridsen, M. Cryptanalysis of the SIMON Family of Block Ciphers. Cryptology e-Print Archive, Report 2013/543 (2013). <a href="https://eprint.iacr.org/">http://eprint.iacr.org/</a>.
- 4. Alizadeh, J., Alkhzaimi, H., Reza Aref, M., Bagheri, N., Gauravaram, P., Kumar, A., Lauridsen, M., and Sanadhya, S. Cryptanalysis of SIMON Variants with Connections. Cryptology e-Print Archive, Report 2013/663 (2013). http://eprint.iacr.org/.
- 5. Abed, F., List, E., Lucks, S., Wenzel, J. Differential Cryptanalysis of Reduced-Round Simon. Cryptology e-Print Archive, Report 2013/526 (2013). <a href="https://eprint.iacr.org/">http://eprint.iacr.org/</a>.
- 6. Chen, L., and Guang, G. Communication System Security, Chapman & Hall/CRC, (2012).

Appendix A.1 - Cross Correlation Values (Between Input and Output streams)

## **SIMON 32/64**

| 0 {max: 45, min: 1}  | 1 {max: 43, min: 1}  | 2 {max: 45, min: 1}  | 3 {max: 49, min: 1}  |
|----------------------|----------------------|----------------------|----------------------|
| 4 {max: 49, min: 1}  | 5 {max: 43, min: 1}  | 6 {max: 41, min: 1}  | 7 {max: 45, min: 1}  |
| 8 {max: 45, min: 1}  | 9 {max: 69, min: 1}  | 10 {max: 61, min: 1} | 11 {max: 49, min: 1} |
| 12 {max: 47, min: 1} | 13 {max: 43, min: 1} | 14 {max: 55, min: 1} | 15 {max: 47, min: 1} |
| 16 {max: 45, min: 1} | 17 {max: 51, min: 1} | 18 {max: 53, min: 1} | 19 {max: 59, min: 1} |
| 20 {max: 47, min: 1} | 21 {max: 47, min: 1} | 22 {max: 47, min: 1} | 23 {max: 51, min: 1} |
| 24 {max: 47, min: 1} | 25 {max: 47, min: 1} | 26 {max: 49, min: 1} | 27 {max: 51, min: 1} |
| 28 {max: 53, min: 1} | 29 {max: 51, min: 1} | 30 {max: 43, min: 1} | 31 {max: 43, min: 1} |

#### **SIMON 64/128**

| 0 {max: 81, min: 1}  | 1 {max: 69, min: 1}  | 2 {max: 73, min: 1}  | 3 {max: 67, min: 1}  |
|----------------------|----------------------|----------------------|----------------------|
| 4 {max: 67, min: 1}  | 5 {max: 77, min: 1}  | 6 {max: 65, min: 1}  | 7 {max: 87, min: 1}  |
| 8 {max: 71, min: 1}  | 9 {max: 69, min: 1}  | 10 {max: 67, min: 1} | 11 {max: 69, min: 1} |
| 12 {max: 61, min: 1} | 13 {max: 69, min: 1} | 14 {max: 73, min: 1} | 15 {max: 87, min: 1} |
| 16 {max: 77, min: 1} | 17 {max: 71, min: 1} | 18 {max: 73, min: 1} | 19 {max: 69, min: 1} |
| 20 {max: 69, min: 1} | 21 {max: 63, min: 1} | 22 {max: 69, min: 1} | 23 {max: 93, min: 1} |
| 24 {max: 69, min: 1} | 25 {max: 63, min: 1} | 26 {max: 63, min: 1} | 27 {max: 81, min: 1} |
| 28 {max: 65, min: 1} | 29 {max: 79, min: 1} | 30 {max: 67, min: 1} | 31 {max: 67, min: 1} |

# Appendix A.2 - Results of Y matrix and S Matrix

#### SIMON 32/64 (KEY = 0x800000000000000)

| IDX      | Yi                   | Si                   | IDX      | Yi                   | Si                   | IDX        | Yi                   | Si                   |
|----------|----------------------|----------------------|----------|----------------------|----------------------|------------|----------------------|----------------------|
| 0        | f5a53f01             | aed087a9             | 53       | e2e99549             | 7d895fae             | 106        | 721eef41             | 5306735d             |
| 1        | fad29f80             | 8a992db3             | 54       | 7174caa4             | 3ef88bd6             | 107        | b90f77a0             | eaf352ed             |
| 2        | 7d694fc0             | 9ff21273             | 55       | b8ba6552             | 391b61a3             | 108        | 5c87bbd0             | f858781e             |
| 3        | 3eb4a7e0             | 27d0551d             | 56       | dc5d32a9             | f51b0d26             | 109        | ae43dde8             | 172879f2             |
| 4        | 1f5a53f0             | 9c9d0cc7             | 57       | 6e2e9954             | 2707cf65             | 110        | d721eef4             | b6e4fc67             |
| 5        | 8fad29f8             | c0192016             | 58       | 37174caa             | 03e7e586             | 111        | 6b90f77a             | db31f94e             |
| 6        | 47d694fc             | 2b2dcb31             | 59       | 9b8ba655             | c2c28e6c             | 112        | 35c87bbd             | 828aa077             |
| 7        | a3eb4a7e             | e302d4ad             | 60       | cdc5d32a             | 52baec5b             | 113        | 1ae43dde             | c2e1d738             |
| 8        | d1f5a53f             | 9b9fbed9             | 61       | e6e2e995             | 388573b7             | 114        | 8d721eef             | 511b8214             |
| 9        | 68fad29f             | 1729592f             | 62       | f37174ca             | 2a41a28b             | 115        | c6b90f77             | 9291b116             |
| 10       | 347d694f             | 1f0173af             | 63       | f9b8ba65             | 002cdce6             | 116        | e35c87bb             | 926a5731             |
| 11       | 9a3eb4a7             | 851ab670             | 64       | 7cdc5d32             | 1c4ea5dc             | 117        | f1ae43dd             | e8173715             |
| 12       | 4d1f5a53             | 3f6efd95             | 65       | be6e2e99             | 830b84af             | 118        | 78d721ee             | f7ee3ee1             |
| 13       | 268fad29             | 6ed8efeb             | 66       | df37174c             | 1dc7f4d8             | 119        | 3c6b90f7             | 643c0da9             |
| 14       | 1347d694             | fdb8282a             | 67       | 6f9b8ba6             | 7e0a1248             | 120        | 9e35c87b             | a97a9624             |
| 15       | 09a3eb4a             | 2d9a8728             | 68       | b7cdc5d3             | 3f33d0f9             | 121        | cf1ae43d             | b45f5ab5             |
| 16       | 84d1f5a5             | 97c06452             | 69       | 5be6e2e9             | 99eb5dfa             | 122        | 678d721e             | f426db92             |
| 17       | 4268fad2             | 4a29bf1c             | 70       | 2df37174             | 4134fa28             | 123        | b3c6b90f             | a0935ca1             |
| 18       | a1347d69             | 80cc7675             | 71       | 16f9b8ba             | 0205741f             | 124        | d9e35c87             | 69b7bfce             |
| 19       | 509a3eb4             | 72fb898b             | 72       | 0b7cdc5d             | 5c232f58             | 125        | 6cf1ae43             | 2eaeab2f             |
| 20       | 284d1f5a             | 4af5319b             | 73       | 05be6e2e             | 37bbeb73             | 126        | b678d721             | e30702fc             |
| 21       | 14268fad             | 8c3c5b5f             | 74       | 02df3717             | 214fdf2b             | 127        | db3c6b90             | fc2a2563             |
| 22       | 8a1347d6             | afd7c49e             | 75       | 816f9b8b             | 8015d70d             | 128        | ed9e35c8             | bbdf5b0e             |
| 23<br>24 | 4509a3eb<br>2284d1f5 | c09a293e             | 76<br>77 | 40b7cdc5             | 7349681d             | 129<br>130 | f6cf1ae4<br>fb678d72 | c53cd99f<br>d442d2af |
| 25       | 914268fa             | 7594b578<br>fac74c93 | 78       | 205be6e2<br>102df371 | 36528065<br>634719f7 | 131        | fdb3c6b9             | 7bf9f268             |
| 26       | 48a1347d             | 876674b6             | 79       | 0816f9b8             | bd0e2ba1             | 132        | fed9e35c             | 8b69ffec             |
| 27       | 24509a3e             | 1d057a88             | 80       | 040b7cdc             | 3fa67f9b             | 133        | ff6cf1ae             | c62c812b             |
| 28       | 92284d1f             | bf1878e7             | 81       | 8205be6e             | 4817c080             | 134        | 7fb678d7             | 47de32d8             |
| 29       | 4914268f             | 1bff8cab             | 82       | 4102df37             | d91543d4             | 135        | bfdb3c6b             | f9d4d5b0             |
| 30       | a48a1347             | b3c561f9             | 83       | a0816f9b             | 51800a19             | 136        | 5fed9e35             | e98bf682             |
| 31       | 524509a3             | 2171f9f9             | 84       | d040b7cd             | 602c98b0             | 137        | aff6cf1a             | 98c68ea8             |
| 32       | a92284d1             | 7459af64             | 85       | e8205be6             | 4432158c             | 138        | 57fb678d             | d9a13ff5             |
| 33       | 54914268             | da03f7d7             | 86       | f4102df3             | 1d55be61             | 139        | abfdb3c6             | 0440b2bd             |
| 34       | aa48a134             | ebaaac55             | 87       | 7a0816f9             | 837fbc5b             | 140        | d5fed9e3             | bb7c4037             |
| 35       | 5524509a             | 86744536             | 88       | bd040b7c             | 1cbeac6e             | 141        | eaff6cf1             | 5a168dd1             |
| 36       | 2a92284d             | 25445403             | 89       | de8205be             | 9c9a827b             | 142        | 757fb678             | 7.60E+12             |
| 37       | 95491426             | d9acf44c             | 90       | ef4102df             | 4d77e810             | 143        | 3abfdb3c             | 399e8cfe             |
| 38       | caa48a13             | 1526c106             | 91       | 77a0816f             | 4f603dda             | 144        | 9d5fed9e             | 6c496c1b             |
| 39       | 65524509             | 6045f736             | 92       | bbd040b7             | 0da2c0c3             | 145        | ceaff6cf             | 6e1c3027             |
| 40       | 32a92284             | 4259f44e             | 93       | dde8205b             | da3045f2             | 146        | e757fb67             | 2651ac5a             |
| 41       | 99549142             | 971b92a2             | 94       | eef4102d             | 9645033b             | 147        | 73abfdb3             | 1893a981             |
| 42       | 4caa48a1             | 933a261b             | 95       | f77a0816             | af07af0f             | 148        | 39d5fed9             | 94422f07             |
| 43       | a6552450             | 9f501128             | 96       | 7bbd040b             | 5df9220d             | 149        | 9ceaff6c             | 8ca905c2             |
| 44       | d32a9228             | 4058520c             | 97       | 3dde8205             | e698c251             | 150        | 4e757fb6             | 42271ef0             |
| 45       | e9954914             | 6c2f0ae1             | 98       | 1eef4102             | 9801bc1c             | 151        | 273abfdb             | ee2683ea             |
| 46       | 74caa48a             | 75cd6d38             | 99       | 0f77a081             | a88514f2             | 152        | 939d5fed             | b971bc04             |
| 47       | ba655245             | 3e2db655             | 100      | 87bbd040             | 69d342ee             | 153        | c9ceaff6             | 51234c26             |
| 48       | 5d32a922             | 88cc1ef0             | 101      | 43dde820             | 64ae8051             | 154        | 64e757fb             | 1cc1d4a2             |
| 49       | 2e995491             | c0eae7ad             | 102      | 21eef410             | 88d9ed9b             | 155        | b273abfd             | 03a8d0fd             |
| 50       | 174caa48             | e2aa8e56             | 103      | 90f77a08             | 7071dffc             | 156        | 5939d5fe             | b5c3bc18             |
| 51       | 8ba65524             | d774c45d             | 104      | c87bbd04             | 5de267cb             | 157        | ac9ceaff             | bd7121cf             |
| 52       | c5d32a92             | ace12b31             | 105      | e43dde82             | f7c150bf             | 158        | 564e757f             | a0e00f62             |

| IDX        | Yi                   | Si                   | IDX        | Yi                                      | Si                   | IDX | Yi | Si |
|------------|----------------------|----------------------|------------|-----------------------------------------|----------------------|-----|----|----|
| 159        | 2b273abf             | 208f8a9a             | 211        | 2f2c4663                                | 20df033a             |     |    |    |
| 160        | 15939d5f             | 0d125913             | 212        | 97962331                                | b7cd5990             |     |    |    |
| 161        | 0ac9ceaf             | 25cacdbf             | 213        | 4bcb1198                                | 7605eeb2             |     |    |    |
| 162        | 8564e757             | 859faa09             | 214        | 25e588cc                                | 8499ab39             |     |    |    |
| 163        | c2b273ab             | 91ecd8c3             | 215        | 12f2c466                                | 4257e75b             |     |    |    |
| 164        | 615939d5             | 30ba6d6e             | 216        | 89796233                                | 584d47d4             |     |    |    |
| 165        | b0ac9cea             | 56d8882b             | 217        | 44bcb119                                | 5f1437ed             |     |    |    |
| 166        | d8564e75             | a47d4c73             | 218        | a25e588c                                | 6b392ec5             |     |    |    |
| 167        | ec2b273a             | f79ff84f             | 219        | 512f2c46                                | 39843aff             |     |    |    |
| 168        | 7615939d             | 3b62ffd1             | 220        | a8979623                                | 959c9f69             |     |    |    |
| 169        | 3b0ac9ce             | 0477af55             | 221        | d44bcb11                                | 6c2cecdf             |     |    |    |
| 170        | 1d8564e7             | 0dcf4695             | 222        | 6a25e588                                | 01feff62             |     |    |    |
| 171        | 0ec2b273             | e2fb85ff             | 223        | b512f2c4                                | 0e61fbda             |     |    |    |
| 172        | 7615939              | ec73795c             | 224        | da897962                                | 4f75a7f6             |     |    |    |
| 173        | 83b0ac9c             | 9a450bec             | 225        | 6d44bcb1                                | 0fa0ab6f             |     |    |    |
| 174        | c1d8564e             | 9279c92f             | 226        | 36a25e58                                | a1a0d647             |     |    |    |
| 175        | 60ec2b27             | 958ecda2             | 227        | 1b512f2c                                | 591b95bc             |     |    |    |
| 176        | 30761593             | 3b5c5094             | 228        | 0da89796                                | 88eeba1b             |     |    |    |
| 177        | 183b0ac9             | e702843f             | 229        | 06d44bcb                                | 87e251fb             |     |    |    |
| 178        | 0c1d8564             | 4f5b1c55             | 230        | 036a25e5                                | 98228b06             |     |    |    |
| 179        | 860ec2b2             | ba7a3f0c             | 231        | 01b512f2                                | 50e833b1             |     |    |    |
| 180        | c3076159             | 66a6cfd8             | 232        | 80da8979                                | a99ddf8d             |     |    |    |
| 181        | e183b0ac             | 7dbf47af             | 233        | c06d44bc                                | c3a5c592             |     |    |    |
| 182        | 70c1d856             | 3fde7ec4             | 234        | e036a25e                                | e6f2e6f4             |     |    |    |
| 183        | 3860ec2b             | 9758297f             | 235        | f01b512f                                | f9bb2ea7             |     |    |    |
| 184        | 1c307615             | 6b1e0ff5             | 236        | f80da897                                | a931950e             |     |    |    |
| 185        | 8e183b0a             | 958b6a8b             | 237        | fc06d44b                                | b46c9ed4             |     |    |    |
| 186        | c70c1d85             | 241ba6ca             | 238        | 7e036a25                                | 4d5e3fa3             |     |    |    |
| 187        | 63860ec2             | 56697c3b             | 239        | 3f01b512                                | 62bfe427             |     |    |    |
| 188        | 31c30761             | 5bf8a7af             | 240        | 9f80da89                                | deb313f9             |     |    |    |
| 189        | 98e183b0             | e24bc96c             | 241<br>242 | 4fc06d44                                | ba4a4d0d             |     |    |    |
| 190        | cc70c1d8             | e82d3ede             |            | a7e036a2                                | f6e21cda             |     |    |    |
| 191<br>192 | 663860ec             | 84c4fb15             | 243<br>244 | 53f01b51                                | 1ca0a004             |     |    |    |
| 192        | 331c3076<br>198e183b | 9658f6ba<br>cf92d369 | 245        | 29f80da8<br>94fc06d4                    | f6dc8448<br>fb7de31f |     |    |    |
| 194        | 8cc70c1d             | 9da586d2             | 246        | 4a7e036a                                | c662f104             |     |    |    |
| 195        | 4663860e             | f97b2d72             | 247        | a53f01b5                                | 3baaa255             |     |    |    |
| 196        | 2331c307             | 99ea0814             | 248        | d29f80da                                | 37b362f8             |     |    |    |
| 197        | 1.20E+186            | b95c5144             | 249        | 694fc06d                                | 90138379             |     |    |    |
| 198        | 88cc70c1             | 1acf0a26             | 250        | b4a7e036                                | b68e5145             |     |    |    |
| 199        | c4663860             | ab721c80             | 251        | 5a53f01b                                | 8d0dc747             |     |    |    |
| 200        | 62331c30             | 84faaac2             | 252        | ad29f80d                                | 5a86903c             |     |    |    |
| 201        | b1198e18             | 8ba21706             | 253        | d694fc06                                | 5ef62654             |     |    |    |
| 202        | 588cc70c             | 3a50b8f9             | 254        | eb4a7e03                                | 2826cbe8             |     |    |    |
| 203        | 2c466386             | a9e95799             |            | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 |                      |     |    |    |
| 204        | 962331c3             | 6580dd59             |            |                                         |                      |     |    |    |
| 205        | cb1198e1             | b183090c             |            |                                         |                      |     |    |    |
| 206        | e588cc70             | b577cd9d             |            |                                         |                      |     |    |    |
| 207        | f2c46638             | 38698bff             |            |                                         |                      |     |    |    |
| 208        | 7962331c             | 6ff33f50             |            |                                         |                      |     |    |    |
| 209        | bcb1198e             | 2487cdf7             |            |                                         |                      |     |    |    |
| 210        | 5e588cc7             | e0c93364             |            |                                         |                      |     |    |    |

## SIMON 64/128 (KEY = 0x1b1a1918131211100b0a090803020100)

| IDX      | Yi                                   | Si                                   | IDX        | Yi                                   | Si                                   |
|----------|--------------------------------------|--------------------------------------|------------|--------------------------------------|--------------------------------------|
| 0        | 9D97B0D5390C4201                     | 389C408B9886E191                     | 54         | 93F6926FCB50A276                     | 8312DCC613ECAD24                     |
| 1        | 4ECBD86A9C862100                     | 83B539220153D4AE                     | 55         | C9FB4937E5A8513B                     | 5141AC3411987BA5                     |
| 2        | 2765EC354E431080                     | 659AC6BE09824748                     | 56         | 64FDA49BF2D4289D                     | A26D0D4B15CBCC6E                     |
| 3        | 13B2F61AA7218840                     | E59F748C3D1E25E7                     | 57         | B27ED24DF96A144E                     | E763CE0F236392ED                     |
| 4        | 89D97B0D5390C420                     | 3CD5C2937324868A                     | 58         | 593F6926FCB50A27                     | 4A9E79BD9E582262                     |
| 5        | 44ECBD86A9C86210                     | 319C95CCA479AC1                      | 59         | AC9FB4937E5A8513                     | 03AFCFECADFF8EB7                     |
| 6        | A2765EC354E43108                     | 2F9FA35B97C9FC0                      | 60         | 564FDA49BF2D4289                     | 4B6A2A5ABAC0FFAC                     |
| 7        | 513B2F61AA721884                     | 644A06EDAAE0E30                      | 61         | 2B27ED24DF96A144                     | F856E677DD8AED2F                     |
| 8        | 289D97B0D5390C42                     | A4872D29812FE4AD                     | 62         | 9593F6926FCB50A2                     | CF26FF30F3EF9168                     |
| 9        | 144ECBD86A9C8621                     | FA11D21C66F42E6D                     | 63         | CAC9FB4937E5A851                     | 4C39F0126CE3E4A6                     |
| 10       | 0A2765EC354E4310                     | 7295633C0CC1F5E5                     | 64         | 6564FDA49BF2D428                     | D81E4D01843425B9                     |
| 11       | 8513B2F61AA72188                     | F966B570E414FF2B                     | 65         | 32B27ED24DF96A14                     | 5896212FF7C72BA2                     |
| 12       | 4289D97B0D5390C4                     | 30CD701FC81D63E                      | 66         | 99593F6926FCB50A                     | 88D25A923F726FD2                     |
| 13       | A144ECBD86A9C862                     | 185D072416686FC6                     | 67         | CCAC9FB4937E5A85                     | 9713344CB0DDF24F                     |
| 14       | 50A2765EC354E431                     | 6DDE6FE348EAECD                      | 68         | 66564FDA49BF2D42                     | 9C2ABFB2E7F98A7B                     |
| 15       | A8513B2F61AA7218                     | 026E88801619E226                     | 69         | 332B27ED24DF96A1                     | D2FA32F9FE8FD37E                     |
| 16       | D4289D97B0D5390C                     | E4B4AE72BEFDBBD                      | 70         | 199593F6926FCB50                     | D4A68E1B1D805059                     |
| 17       | 6A144ECBD86A9C86                     | 35BEE43D5B1CB9E1                     | 71         | 0CCAC9FB4937E5A8                     | 3FCBA5E1A1C8C99C                     |
| 18       | B50A2765EC354E43                     | 4F9119757787F208                     | 72         | 066564FDA49BF2D4                     | 71CCFF41E8287B91                     |
| 19       | 5A8513B2F61AA721                     | 961C56C4698D6083                     | 73         | 0332B27ED24DF96A                     | 6A23CDD8A30FA34F                     |
| 20       | 2D4289D97B0D5390                     | D947ECA3BB620F4                      | 74         | 0199593F6926FCB5                     | EB58FCABE8A75292                     |
| 21<br>22 | 96A144ECBD86A9C8<br>CB50A2765EC354E4 | A4CD6A6A5EE09B75<br>E1224626CF82E262 | 75<br>76   | 80CCAC9FB4937E5A<br>C066564FDA49BF2D | D456CDE60E5DA303<br>BA7B317F952765F6 |
| 23       | E5A8513B2F61AA72                     | 6B120E5CF396D87C                     | 77         | 60332B27ED24DF96                     | ED2CF1F8BD5AD553                     |
| 24       | F2D4289D97B0D539                     | 004CBF8EDA35E811                     | 78         | 30199593F6926FCB                     | 6CF1CE57460E4CEF                     |
| 25       | F96A144ECBD86A9C                     | 5226B70B90C2F9FC                     | 79         | 180CCAC9FB4937E5                     | DB878EBE47026DA3                     |
| 26       | FCB50A2765EC354E                     | 9450F2B81953ECDC                     | 80         | 8C066564FDA49BF2                     | 98FB38E94EC48D34                     |
| 27       | 7E5A8513B2F61AA7                     | 742B75D3CAAF9028                     | 81         | C60332B27ED24DF9                     | 534D43A01D91CC5F                     |
| 28       | BF2D4289D97B0D53                     | E9468E7D1C0DA7B6                     | 82         | 630199593F6926FC                     | 2DCABFBB3DFD18B1                     |
| 29       | DF96A144ECBD86A9                     | EB8F69C6C0DAD125                     | 83         | 3180CCAC9FB4937E                     | 1CC1D80A00827F3D                     |
| 30       | 6FCB50A2765EC354                     | 0EAF784332661FDE                     | 84         | 98C066564FDA49BF                     | 236B2DECA6D105E8                     |
| 31       | 37E5A8513B2F61AA                     | DC520903F808115D                     | 85         | 4C60332B27ED24DF                     | 5A6F6A3996D5C89C                     |
| 32       | 9BF2D4289D97B0D5                     | ECAFB0C3BB6A8500                     | 86         | A630199593F6926F                     | BE447EC77233D184                     |
| 33       | 4DF96A144ECBD86A                     | A46123A535318742                     | 87         | 53180CCAC9FB4937                     | C002795B4B9DCD75                     |
| 34       | 26FCB50A2765EC35                     | 87D9534BE0FA97CB                     | 88         | 298C066564FDA49B                     | D197A9365263AD5D                     |
| 35       | 937E5A8513B2F61A                     | AA0BA6BF24368348                     | 89         | 14C60332B27ED24D                     | B4D2CE8CD72F97F0                     |
| 36       | 49BF2D4289D97B0D                     | 86D34465954FD305                     | 90         | 8A630199593F6926                     | 8DDC5B9D77745833                     |
| 37       | 24DF96A144ECBD86                     | 94118C86A36D2563                     | 91         | C53180CCAC9FB493                     | 716C7451D07C03A1                     |
| 38       | 926FCB50A2765EC3                     | 2ACB9514D255A1B6                     | 92         | 6298C066564FDA49                     | D92274832B6881A8                     |
| 39       | 4937E5A8513B2F61                     | 22949C6DFC860D9D                     | 93         | B14C60332B27ED24                     | 2F9DC327A02C8097                     |
| 40       | A49BF2D4289D97B0                     | B8B784E277583EBF                     | 94         | 58A630199593F692                     | B6254FD76D321E99                     |
| 41       | D24DF96A144ECBD8                     | 8F1932E277433FFE                     | 95         | 2C53180CCAC9FB49                     | 83DA62C359DA0058                     |
| 42       | 6926FCB50A2765EC                     | 248465829EC04BC3                     | 96         | 96298C066564FDA4                     | 2BE7347D54A9E80B                     |
| 43       | B4937E5A8513B2F6                     | DE34E3300213440D                     | 97         | 4B14C60332B27ED2                     | A3EE02586A919B73                     |
| 44       | DA49BF2D4289D97B                     | 72E12E60002EEFD5                     | 98         | A58A630199593F69                     | C2D74AE3AC5BED17                     |
| 45       | ED24DF96A144ECBD                     | D27AD29B54AB5C97                     | 99         | D2C53180CCAC9FB4                     | 2C4191BA3885DABF                     |
| 46       | F6926FCB50A2765E                     | 6DA4E0089C79F9EA                     | 100        | E96298C066564FDA                     | 16CBCDB20D0D0B91                     |
| 47       | FB4937E5A8513B2F                     | 59110C59A02222B8                     | 101        | F4B14C60332B27ED                     | E1AA5F40B133D0BC                     |
| 48       | FDA49BF2D4289D97                     | 0D0AD817AE17696B                     | 102        | FA58A630199593F6                     | 638EC8AB4C214D3C                     |
| 49       | 7ED24DF96A144ECB                     | AC0B5B6286700323                     | 103        | FD2C53180CCAC9FB                     | 18B1DF26A53AA4E4                     |
| 50<br>51 | 3F6926FCB50A2765                     | DC18101491245F29                     | 104<br>105 | FE96298C066564FD<br>7F4B14C60332B27E | BA2AEF298D38D180                     |
| 52       | 9FB4937E5A8513B2<br>4FDA49BF2D4289D9 | 387FFFA62450EFA8<br>23297FE8AF446504 | 105        | BFA58A630199593F                     | 53A3B0B2430DA6BE<br>CD574A6974B7019D |
| 53       |                                      |                                      |            |                                      | 68B2CCB0E54AC490                     |
| 33       | 27ED24DF96A144EC                     | 6ED25B26D999B746                     | 107        | 5FD2C53180CCAC9F                     | 00D2CCDUE34AC490                     |

| IDX        | Yi                                   | Si                                   | IDX         | Yi                                   | Si                                   |
|------------|--------------------------------------|--------------------------------------|-------------|--------------------------------------|--------------------------------------|
| 108        | 2FE96298C066564F                     | A8280AD90D2E7181                     | 165         | DAC177C79A6B8D17                     | 6A33CF32D1C63BBD                     |
| 109        | 17F4B14C60332B27                     | BAF7EE3A8827BD76                     | 166         | 6D60BBE3CD35C68B                     | 61170E040AD89361                     |
| 110        | 8BFA58A630199593                     | 0FC3EDE2C02DA037                     | 167         | B6B05DF1E69AE345                     | 4AF921E2D721B16B                     |
| 111        | 45FD2C53180CCAC9                     | 491C719EFAA1F443                     | 168         | DB582EF8F34D71A2                     | F89FE95DCB052AFC                     |
| 112        | A2FE96298C066564                     | 4AC99D5A19042119                     | 169         | EDAC177C79A6B8D1                     | CC9EA9F2C4330DD1                     |
| 113        | D17F4B14C60332B2                     | BF4FBABC8548B9F0                     | 170         | 76D60BBE3CD35C68                     | A9D6D5E9E13CF811                     |
| 114        | 68BFA58A63019959                     | EA6694CF73F8856C                     | 171         | BB6B05DF1E69AE34                     | 9DBCE72B69FD84E6                     |
| 115        | 345FD2C53180CCAC                     | 9CB8134695A74344                     | 172         | DDB582EF8F34D71A                     | EE15A0361E2248F6                     |
| 116        | 1A2FE96298C06656                     | C040E70839F43006                     | 173         | 6EDAC177C79A6B8D                     | 534DE9E6C902400C                     |
| 117        | 8D17F4B14C60332B                     | 9F6EA277C3D76D67                     | 174         | 376D60BBE3CD35C6                     | AA4BB10FF9FF5C10                     |
| 118        | C68BFA58A6301995                     | 81123AA6AF406234                     | 175         | 1BB6B05DF1E69AE3                     | E8CEF33BB7712A7C                     |
| 119        | E345FD2C53180CCA                     | 3C690650CA9887BE                     | 176         | 0DDB582EF8F34D71                     | 68A2C2A26D3CA6BC                     |
| 120        | 71A2FE96298C0665                     | 6315DEFD44A0284A                     | 177         | 06EDAC177C79A6B8                     | 72B5F77FDF00DB17                     |
| 121        | B8D17F4B14C60332                     | 73B3B60D9D138971                     | 178         | 8376D60BBE3CD35C                     | DDD161EB0DB2B865                     |
| 122        | 5C68BFA58A630199                     | FCACFAD07DDAB574                     | 179         | 41BB6B05DF1E69AE                     | B1C51A123A7CCCB7                     |
| 123        | AE345FD2C53180CC                     | 291196182886D0DE                     | 180         | A0DDB582EF8F34D7                     | E16B738A3650E8E8                     |
| 124        | D71A2FE96298C066                     | 63F2990B575EE3E7                     | 181         | D06EDAC177C79A6B                     | 86EDB365A4D67A54                     |
| 125        | 6B8D17F4B14C6033                     | D72EE8BD7C9CE14C                     | 182         | 68376D60BBE3CD35                     | 7737692EF95ED809                     |
| 126        | 35C68BFA58A63019                     | 9C2BB1B429AB2E96                     | 183         | B41BB6B05DF1E69A                     | CC056A56FBFE4473                     |
| 127        | 9AE345FD2C53180C                     | 93E2CD1EC05C7432                     | 184         | 5A0DDB582EF8F34D                     | 8BA86DFB0052699C                     |
| 128        | 4D71A2FE96298C06                     | 563CD62EA1CF3454                     | 185         | AD06EDAC177C79A6                     | 121511C468EF5269                     |
| 129        | A6B8D17F4B14C603                     | EB9104AA38FC8B65                     | 186         | D68376D60BBE3CD3                     | 378C846FDE3B0F0B                     |
| 130        | D35C68BFA58A6301                     | BEC7704631705038                     | 187         | EB41BB6B05DF1E69                     | 736AA3F76FB4E4F3                     |
| 131        | 69AE345FD2C53180                     | 43416C6AF5A4E81B                     | 188         | F5A0DDB582EF8F34                     | 3526A80721C6CB19                     |
| 132        | 34D71A2FE96298C0                     | D3F66D626B6291EB                     | 189         | FAD06EDAC177C79A                     | 69D53B2B61404BB6                     |
| 133        | 9A6B8D17F4B14C60                     | 30FEDC61413B15E5                     | 190         | 7D68376D60BBE3CD                     | F1951371CA434F49                     |
| 134        | CD35C68BFA58A630                     | 99BD7841295C3D54                     | 191         | BEB41BB6B05DF1E6                     | AD11B3BE2C12B1E2                     |
| 135        | E69AE345FD2C5318                     | C2AD3262B04A908D                     | 192         | 5F5A0DDB582EF8F3                     | E1D0C0ECB7080573                     |
| 136        | F34D71A2FE96298C                     | 04F54BE664C3B5A9                     | 193         | AFAD06EDAC177C79                     | AF1364E021E80A31                     |
| 137<br>138 | 79A6B8D17F4B14C6<br>3CD35C68BFA58A63 | CCB00866CDE93D0B<br>2205358E41E93312 | 194<br>195  | 57D68376D60BBE3C<br>ABEB41BB6B05DF1E | 435117C42D15980B<br>4D04185BF70E35F9 |
| 139        | 1E69AE345FD2C531                     | 500F7F5703872DFC                     | 196         | 55F5A0DDB582EF8F                     | E1E3B799DDE1A3DB                     |
| 140        | 8F34D71A2FE96298                     | 25DAC8DC815B6C5B                     | 197         | AAFAD06EDAC177C7                     | 8E30A329D9BCB487                     |
| 141        | C79A6B8D17F4B14C                     | E440258580A9B39C                     | 198         | 557D68376D60BBE3                     | 82E1BE6063C7AA69                     |
| 142        | E3CD35C68BFA58A6                     | 82006D381535671A                     | 199         | 2ABEB41BB6B05DF1                     | F033039DD5D6649A                     |
| 143        | F1E69AE345FD2C53                     | 0230A7BAD98953AD                     | 200         | 155F5A0DDB582EF8                     | 0B4BF55BB808A368                     |
| 144        |                                      | 9A34ACED8CEE98B7                     | 201         | 0AAFAD06EDAC177C                     | FE23149F28E2EF2C                     |
| 145        | 7C79A6B8D17F4B14                     | 43E65444E28D7BC1                     | 202         | 0557D68376D60BBE                     | 283DB670B7DFAF2B                     |
| 146        | BE3CD35C68BFA58A                     | 7C3B162582187ADD                     | 203         | 02ABEB41BB6B05DF                     | CF9C89F680A99D62                     |
| 147        | DF1E69AE345FD2C5                     | B49FB4D82CCCD061                     | 204         | 8155F5A0DDB582EF                     | E1B488F6D0269E7C                     |
| 148        | EF8F34D71A2FE962                     | 42D1054F2D85AA94                     | 205         | 40AAFAD06EDAC177                     | 9C5BB288B626DE4D                     |
| 149        | 77C79A6B8D17F4B1                     | DA4D67ADAADD078E                     | 206         | A0557D68376D60BB                     | 9A4C5AF54BAA3B0E                     |
| 150        | BBE3CD35C68BFA58                     | AB800AB239F4905E                     | 207         | 502ABEB41BB6B05D                     | F2ADA59BCFFB9AAB                     |
| 151        | 5DF1E69AE345FD2C                     | 2D41DC2CAC99EC8E                     | 208         | 28155F5A0DDB582E                     | 6E0B132626ACEF11                     |
| 152        | 2EF8F34D71A2FE96                     | 6AB0F4ABB76EBE64                     | 209         | 940AAFAD06EDAC17                     | 1CE26DE15831D630                     |
| 153        | 177C79A6B8D17F4B                     | BA6771D64704C491                     | 210         | 4A0557D68376D60B                     | DF4C483BA35FAD3D                     |
| 154        | 0BBE3CD35C68BFA5                     | 386B8A7A41194937                     | 211         | A502ABEB41BB6B05                     | 71E85CAE44BF3482                     |
| 155        | 05DF1E69AE345FD2                     | 16A4B1F10932A8A4                     | 212         | 528155F5A0DDB582                     | EBCCAE1494706629                     |
| 156        | 82EF8F34D71A2FE9                     | B5464ADFFD535E43                     | 213         | A940AAFAD06EDAC1                     | 666E1666A82515BC                     |
| 157        | C177C79A6B8D17F4                     | 60CA144EE6353890                     | 214         | D4A0557D68376D60                     | B0ED90EA159D5BDF                     |
| 158        | 60BBE3CD35C68BFA                     | FAB076B245C9A692                     | 215         | EA502ABEB41BB6B0                     | 540498B374287B73                     |
| 159        | B05DF1E69AE345FD                     | FA42C96FED74618B                     | 216         | F528155F5A0DDB58                     | 24A0E8ED1D922E0A                     |
| 160        | 582EF8F34D71A2FE                     | F1403D4F5BEDCFBF                     | 217         | 7A940AAFAD06EDAC                     | 07442F68124FACB8                     |
| 161<br>162 | AC177C79A6B8D17F<br>D60BBE3CD35C68BF | D0048DF3E1042834<br>368F58885B220711 | 218<br>219  | 3D4A0557D68376D6                     | E394BD2139A9AAD8<br>F339E1F4E65C2D05 |
| 163        | 6B05DF1E69AE345F                     | 8D34874F3691DE76                     | 219         | 9EA502ABEB41BB6B<br>4F528155F5A0DDB5 | 271870FF4232E570                     |
| 164        | B582EF8F34D71A2F                     | DD8736FE9489ADE6                     | 221         | A7A940AAFAD06EDA                     | 77C7B16BF4EF3F53                     |
| 104        | DJOZEFOFJ4D1 IAZF                    | DD0130FE3403ADE0                     | <b>44</b> I | AT ASHUMAP ADUCEDA                   | 110101005455353                      |

| IDX        | Yi                                   | Si                                   | IDX        | Yi                                   | Si                                   |
|------------|--------------------------------------|--------------------------------------|------------|--------------------------------------|--------------------------------------|
| 222        | D3D4A0557D68376D                     | 775B2CA46D0D1768                     | 279        | CC24575E4B9C0EE9                     | D8A04F040D696013                     |
| 223        | E9EA502ABEB41BB6                     | 1A4DCACBF7A484A4                     | 280        | E6122BAF25CE0774                     | 7E96BFBA8496562D                     |
| 224        | 74F528155F5A0DDB                     | F9B32033DBC6E2D3                     | 281        | 730915D792E703BA                     | 298BFAF05150461E                     |
| 225        | BA7A940AAFAD06ED                     | 6A3D736249E0AF9D                     | 282        | 39848AEBC97381DD                     | 3092A122A623AB76                     |
| 226        | DD3D4A0557D68376                     | 30127904F375C91F                     | 283        | 1CC24575E4B9C0EE                     | F43F058869127867                     |
| 227        |                                      |                                      |            |                                      |                                      |
|            | EE9EA502ABEB41BB                     | EC681949C8F07F6E                     | 284        | 0E6122BAF25CE077                     | 111B1EE2C95B2F52                     |
| 228<br>229 | 774F528155F5A0DD<br>3BA7A940AAFAD06E | 8B5AE5C3966012FD<br>B9C334FA58B743B9 | 285<br>286 | 8730915D792E703B<br>439848AEBC97381D | 490E08893633DCAA<br>66D559D99FF0FD65 |
| 230        | 1DD3D4A0557D6837                     | 1E9AFEA09F29D67F                     | 287        | A1CC24575E4B9C0E                     | 827A5665111507C8                     |
| 231        | 0EE9EA502ABEB41B                     | 41BFD5F3B03CF11C                     | 288        | D0E6122BAF25CE07                     | EABA7088F3696CB2                     |
|            |                                      |                                      |            |                                      |                                      |
| 232        | 0774F528155F5A0D                     | 6A987AE72C5D69C5                     | 289        | E8730915D792E703                     | CE6AC5C3F7097F12                     |
| 233        | 03BA7A940AAFAD06<br>81DD3D4A0557D683 | A1E57D08E23A32D4<br>48F222BFCF94F0D4 | 290<br>291 | F439848AEBC97381<br>7A1CC24575E4B9C0 | 9B4BC274F85E62DB<br>4B710B92B7CC87C3 |
|            |                                      |                                      |            |                                      |                                      |
| 235        | C0EE9EA502ABEB41                     | 64568E8358F5E4D9                     | 292        | BD0E6122BAF25CE0                     | 0228D63C98A181AB                     |
| 236        | E0774F528155F5A0                     | 8928C3D51AA25B51                     | 293        | DE8730915D792E70                     | 85526AC0FE51BB79                     |
| 237        | 703BA7A940AAFAD0                     | 74414DDFE7E02A5F                     | 294        | 6F439848AEBC9738                     | AAF060967678D804                     |
| 238        | 381DD3D4A0557D68                     | F33C920DEE5F9039                     | 295        | B7A1CC24575E4B9C                     | 4EC6FB81281AE192                     |
| 239        | 9C0EE9EA502ABEB4                     | 1B982C38DAA12008                     | 296        | DBD0E6122BAF25CE                     | 6F06F3E08C6461A7                     |
| 240        | CE0774F528155F5A                     | 81D51A86CDDB0288                     | 297        | 6DE8730915D792E7                     | 2CBCB783A03056BA                     |
| 241        | E703BA7A940AAFAD                     | D92E2DF6EBAF05DB                     | 298        | 36F439848AEBC973                     | D606309C27138BE2                     |
| 242        | 7381DD3D4A0557D6                     | 6F4379C3BB7398A1                     | 299        | 9B7A1CC24575E4B9                     | 55A81A7E22B070FE                     |
| 243        | B9C0EE9EA502ABEB                     | 01F9D1B4C301F1A7                     | 300        | CDBD0E6122BAF25C                     | E79C8B447C580777                     |
| 244        | 5CE0774F528155F5                     | 7DDABA1D0AB183DF                     | 301        | 66DE8730915D792E                     | 86784C57CF056BCA                     |
| 245        | 2E703BA7A940AAFA                     | 4337EB0FB2A2DFF3                     | 302        | B36F439848AEBC97                     | 6DD168F5F33E3FA5                     |
| 246        | 97381DD3D4A0557D                     | 36AEC0EC4B3AED9A                     | 303        | 59B7A1CC24575E4B                     | 7BEE1C6FC44CEFC5                     |
| 247        | 4B9C0EE9EA502ABE                     | 1A89A7B15D744AB5                     | 304        | 2CDBD0E6122BAF25                     | 42C41485739299CB                     |
| 248        | 25CE0774F528155F                     | E755628C77BD33FE                     | 305        | 166DE8730915D792                     | 8007772D6D59C921                     |
| 249        | 92E703BA7A940AAF                     | 874FD3C52C8AD8EA                     | 306        | 0B36F439848AEBC9                     | 8886487A92DA7DBF                     |
| 250        | C97381DD3D4A0557                     | ED8D457CEAA088F8                     | 307        | 859B7A1CC24575E4                     | 14B5C6AB76BE32C4                     |
| 251        | E4B9C0EE9EA502AB                     | 3C1953EDC8051867                     | 308        | C2CDBD0E6122BAF2                     | B0D286ECF0BDBE03                     |
| 252        | F25CE0774F528155                     | 431A9BC66B3CFB04                     | 309        | E166DE8730915D79                     | 471A3D7F5C7FEE46                     |
| 253        | 792E703BA7A940AA                     | 138D9B61D5B6B1BA                     | 310        | 70B36F439848AEBC                     | FFAF6000D38F0D49                     |
| 254        | BC97381DD3D4A055                     | C87A601C630F873F                     | 311        | B859B7A1CC24575E                     | 381103BF205EA791                     |
| 255        | 5E4B9C0EE9EA502A                     | C9A9C736138DA8FF                     | 312        | DC2CDBD0E6122BAF                     | 9743B94982BFACD3                     |
| 256        | AF25CE0774F52815                     | 36507987564FAA6B                     | 313        | EE166DE8730915D7                     | 029D812AD2E31381                     |
| 257        | D792E703BA7A940A                     | 74C2C7358F717F12                     | 314        | F70B36F439848AEB                     | E661631CC8AD9760                     |
| 258        |                                      | F264A4EF6E52B45D                     | 315        |                                      | B816FC762CAC3DD1                     |
| 259        | 75E4B9C0EE9EA502                     | 71B4B053DD732F26                     | 316        | 3DC2CDBD0E6122BA                     | 4EBBA51F37C858B3                     |
| 260        | BAF25CE0774F5281                     | 1AC50F8690DC2B8F                     | 317        | 1EE166DE8730915D                     | 03084F565311BEB9                     |
| 261        | 5D792E703BA7A940                     | 0F8AE9D922E7E68F                     | 318        |                                      | E2C8E1287DC35047                     |
| 262        | AEBC97381DD3D4A0                     | 6675B3DF7A7A4146                     | 319        |                                      | 530072F65A54151D                     |
| 263        | 575E4B9C0EE9EA50                     | 7868F78DEFD4AA1F                     | 320        | C3DC2CDBD0E6122B                     | 36811CB39469F8F7                     |
| 264        | 2BAF25CE0774F528                     | EEEC0599D150EBF8                     | 321        | E1EE166DE8730915                     | 7CB6DE5133FC5607                     |
| 265<br>266 | 15D792E703BA7A94                     | 3E7C938758FE3E09<br>8E7C0C461653797A | 322<br>323 | F0F70B36F439848A<br>F87B859B7A1CC245 | C77FA77DE867D957<br>FD636166FD8573A6 |
|            | 8AEBC97381DD3D4A                     |                                      |            |                                      |                                      |
| 267        | 4575E4B9C0EE9EA5                     | DF8D791AFA2A496A                     | 324        |                                      | A5D57D3BB3FD8823                     |
| 268        | 22BAF25CE0774F52                     | EBEA31AA27EDB851                     | 325        | FE1EE166DE873091                     | 9A5F23044BDE587A                     |
| 269        | 915D792E703BA7A9                     | 55C4090681478AA3                     | 326        |                                      | 9D5EF4E3DDE4B719                     |
| 270        | 48AEBC97381DD3D4                     | 409F3435E613760E                     | 327        | FF87B859B7A1CC24                     | F05F3D987134CE20                     |
| 271        | 24575E4B9C0EE9EA                     | 32DF5BE59C01114D                     | 328        | 7FC3DC2CDBD0E612                     | 786DBC586D7B7055                     |
| 272        | 122BAF25CE0774F5                     | 94C2BA694A2D2B2D                     | 329        | 3FE1EE166DE87309                     | 8562853E59F4630D                     |
| 273        | 0915D792E703BA7A                     | C1C851D3BF4A7DCC                     | 330        | 1FF0F70B36F43984                     | 54645B0AC1EDAF24                     |
| 274        | 848AEBC97381DD3D                     | C02D90ABACC049EF                     | 331        | 0FF87B859B7A1CC2                     | 576F363E38C97833                     |
| 275        | C24575E4B9C0EE9E                     | 316CF0214C671866                     | 332        |                                      | D1D69B5FA1EBF3CE                     |
| 276        | 6122BAF25CE0774F                     | CD3C6EA472279319                     | 333        | 83FE1EE166DE8730                     | 9E003F100DB0C1BD                     |
| 277        | 30915D792E703BA7                     | 0CE7447A3B6618A0                     | 334        |                                      | AF20B610ED6F0348                     |
| 278        | 9848AEBC97381DD3                     | 5FB1895F5E29D445                     | 335        | E0FF87B859B7A1CC                     | 63043789D0CCD77D                     |

| IDV        | Yi                                   | Si                                   | IDV        | Yi                                   | Si                                   |
|------------|--------------------------------------|--------------------------------------|------------|--------------------------------------|--------------------------------------|
| 336        | F07FC3DC2CDBD0E6                     | C6741A48F8857CBB                     | 393        | 7CF16E52099D1F78                     | A109CF8BC1E2EDD1                     |
| 337        | 783FE1EE166DE873                     | E21EB839DC2D827C                     |            |                                      |                                      |
|            |                                      |                                      | 394        | 3E78B72904CE8FBC                     | 69A1D5947D786C7F                     |
| 338        | BC1FF0F70B36F439                     | 8C0A748325CEFEED                     | 395        | 9F3C5B94826747DE                     | 848FC9436B45ECDC                     |
| 339        | DE0FF87B859B7A1C                     | F7BD795F96A356B2                     | 396        | CF9E2DCA4133A3EF                     | EADF66D7550A89E5                     |
| 340        | EF07FC3DC2CDBD0E                     | A2BFD6402EB708D9                     | 397        | 67CF16E52099D1F7                     | DB0C9FD132684BDB                     |
| 341        | F783FE1EE166DE87                     | 2735A4BE0E6C2E3D                     | 398        | B3E78B72904CE8FB                     | 3C4FD72CDE46A4F1                     |
| 342        | FBC1FF0F70B36F43                     | A48CC1C29C74FF1D                     | 399        | D9F3C5B94826747D                     | 9C4136C457A91E44                     |
| 343        | 7DE0FF87B859B7A1                     | 165AEFA1D2240291                     | 400        | 6CF9E2DCA4133A3E                     | 285485069A599DEF                     |
| 344        | 3EF07FC3DC2CDBD0                     | 0637DC7386BDC409                     | 401        | 367CF16E52099D1F                     | 830C2A2FE43333B2                     |
| 345        | 1F783FE1EE166DE8                     | 10ACBA8716459537                     | 402        | 1B3E78B72904CE8F                     | 4C9D75160419B58D                     |
| 346        | 8FBC1FF0F70B36F4                     | F108C5502A588274                     | 403        | 8D9F3C5B94826747                     | EAB818E0D8329A6F                     |
| 347        | 47DE0FF87B859B7A                     | A822BF6C6B9152C3                     | 404        | 46CF9E2DCA4133A3                     | 4B4C3E7503C9A1B9                     |
| 348        | A3EF07FC3DC2CDBD                     | 595407E627B6CDB2                     | 405        | A367CF16E52099D1                     | 909B65ED9B498507                     |
| 349        | D1F783FE1EE166DE                     | CC4DAB7AE2BF9649                     | 406        | 51B3E78B72904CE8                     | 7ADE4A8822CDA512                     |
| 350        | E8FBC1FF0F70B36F                     | F1D11105E36491B0                     | 407        | A8D9F3C5B9482674                     | 5912FA785DE6FB19                     |
| 351        | 747DE0FF87B859B7                     | B7758AB3ED029350                     | 408        | 546CF9E2DCA4133A                     | 9BF2D2D127FC7A9B                     |
| 352        | 3A3EF07FC3DC2CDB                     | 29FBD97225E7BFB1                     | 409        | 2A367CF16E52099D                     | 69B1CE6FF18E3F49                     |
| 353        | 9D1F783FE1EE166D                     | 5179786434BC2E52                     | 410        | 951B3E78B72904CE                     | D4BDBB280BD556E3                     |
| 354        | CE8FBC1FF0F70B36                     | BBB2ADCB4A40A306                     | 411        | 4A8D9F3C5B948267                     | E0EF8BA92FAAEBAE                     |
| 355        | 6747DE0FF87B859B                     | C118CB3389D08447                     | 412        | 2546CF9E2DCA4133                     | 75182AE174CD8FEE                     |
| 356        | 33A3EF07FC3DC2CD                     | 771CB88F4E3B7623                     | 413        | 12A367CF16E52099                     | A1290C277F9E5751                     |
| 357        | 99D1F783FE1EE166                     | 6EB1CF03FEFDB7B2                     | 414        | 8951B3E78B72904C                     | CD8298B0EAFD09B1                     |
| 358        | 4CE8FBC1FF0F70B3                     | 9BF5B0ACBBE0EC1A                     | 415        | C4A8D9F3C5B94826                     | 71C074DC28210041                     |
| 359        | 26747DE0FF87B859                     | 1BA4C19873276163                     | 416        | E2546CF9E2DCA413                     | A2D863DA7FB806D0                     |
| 360        | 133A3EF07FC3DC2C                     | 1DCC8AC4F39FAF41                     | 417        | 712A367CF16E5209                     | 79CD0C5F90D0A169                     |
| 361        | 099D1F783FE1EE16                     | 39DB8927535C41FA                     | 418        | 38951B3E78B72904                     | 25A4946F6C4E7D2B                     |
| 362        | 04CE8FBC1FF0F70B                     | D87011747DF7FB42                     | 419        | 1C4A8D9F3C5B9482                     | 8ED2016051EB0CFD                     |
| 363        | 826747DE0FF87B85                     | DCB4DE84C69594F1                     | 420        | 8E2546CF9E2DCA41                     | E9D48E7A05571B40                     |
| 364        | 4133A3EF07FC3DC2                     | 99C545C88EF47685                     | 421        | C712A367CF16E520                     | 395A8C05C75CD38D                     |
| 365        | 2099D1F783FE1EE1                     | FAD32A4FB2F3FA9B                     | 422        | 638951B3E78B7290                     | 4B4411056B9FECF2                     |
| 366        | 904CE8FBC1FF0F70                     | 6AE85D38E1E50954                     | 423        | B1C4A8D9F3C5B948                     | DD27FD92D2CBE434                     |
| 367        | 4826747DE0FF87B8                     | 4F067D6FDB5B1C1E                     | 424        | D8E2546CF9E2DCA4                     | 5F7EB736D6CAE1F3                     |
| 368        | A4133A3EF07FC3DC                     | A003D15D6D7ABD26                     | 425        | 6C712A367CF16E52                     | 2F09E0BE088B2413                     |
| 369        | 52099D1F783FE1EE                     | EE78D2BB24474D99                     | 426        | B638951B3E78B729                     | 401893101BFE3E4B                     |
| 370        | 2904CE8FBC1FF0F7                     | 28936114F0DFBA62                     | 427        | 5B1C4A8D9F3C5B94                     | 4D0AEE32BBC2E786                     |
| 371        | 94826747DE0FF87B                     | 9F9681F1FD6A0B34                     | 428        | AD8E2546CF9E2DCA                     | 734E8F8A412BA851                     |
| 372        |                                      | ABF295684A4E58F0                     | 429        |                                      | 1911D4F21DAF0579                     |
| 373        | E52099D1F783FE1E                     | 42F0B7D409477EAB                     | 430        | AB638951B3E78B72                     | 3B1C3A5F644FE893                     |
| 374        | 72904CE8FBC1FF0F                     | 69D8877DA5A592EF                     | 431        | D5B1C4A8D9F3C5B9                     | 21DDED94D0384190                     |
| 375        | B94826747DE0FF87                     | E7DAAED06C67689A                     | 432        | EAD8E2546CF9E2DC                     | 06E6FCD25C3B1D7A                     |
| 376        | DCA4133A3EF07FC3                     | 4955D08C6615F769                     | 433        | 756C712A367CF16E                     | 5D5040522A238852                     |
| 377        | 6E52099D1F783FE1                     | 06E2B1D074A1C41A                     | 434        | 3AB638951B3E78B7                     | 0E9DE483B4D6F704                     |
| 378        | B72904CE8FBC1FF0                     | 806C15A6FAD53A38                     | 435        | 1D5B1C4A8D9F3C5B                     | D592669CE0CE696F                     |
| 379<br>380 | 5B94826747DE0FF8                     | FC8FEA02B29CF0F7                     | 436<br>437 | 8EAD8E2546CF9E2D<br>4756C712A367CF16 | D6545D61788AF665                     |
| 381        | 2DCA4133A3EF07FC                     | B184B9330F882EF3                     |            |                                      | 19ED4F6846242BC8                     |
| 382        | 16E52099D1F783FE                     | BD15F7D7E272FE2C                     | 438<br>439 | 23AB638951B3E78B                     | 2D29DD3F34DAD458                     |
| 383        | 8B72904CE8FBC1FF<br>C5B94826747DE0FF | 55A7176D3BDA0B59                     | 440        | 91D5B1C4A8D9F3C5                     | 85261654938E820F                     |
| 384        |                                      | 810D487D1BFC8B2C                     | 441        | C8EAD8E2546CF9E2                     | EB1BF42124B757F5                     |
| 385        | E2DCA4133A3EF07F<br>F16E52099D1F783F | 0686DECADC9460CD<br>1019FEF9B1F024DA | 441        | 64756C712A367CF1                     | 5D669DA29C5F9BBD                     |
| 386        | 78B72904CE8FBC1F                     | BFAA8FD42C2CF6FF                     | 442        | 323AB638951B3E78<br>191D5B1C4A8D9F3C | 49EBCAC048C9C682<br>D6652FE9FB11D31D |
| 387        | 3C5B94826747DE0F                     | 36C516366C187063                     | 444        | 8C8EAD8E2546CF9E                     | FF1EB9266BD80154                     |
| 388        | 9E2DCA4133A3EF07                     | 047BE4BEA0E1DF99                     | 444        | 464756C712A367CF                     | ADCDDD35730C2FA3                     |
| 389        | CF16E52099D1F783                     | 39CE3A7F5690500C                     | 446        | 2323AB638951B3E7                     | 2ABAD2BC986E95A0                     |
| 390        | E78B72904CE8FBC1                     | 4C77EB798E215ACA                     | 447        | 1191D5B1C4A8D9F3                     | 8EF98359B73E7889                     |
| 391        | F3C5B94826747DE0                     | 8EE3E886511289C3                     | 448        | 88C8EAD8E2546CF9                     | 278B0C4E5A8BBEB7                     |
| 392        | F9E2DCA4133A3EF0                     | 21DAC59D72484EA2                     | 449        | 4464756C712A367C                     | BBCEB1F1C69577AC                     |
| JJZ        | I BEZDONA IBBNOEFU                   | 21DA033D12404EAZ                     | ++3        | TTUTI JUUI 12/1301 C                 | PPOED II 1009311 MC                  |

| IDX | Yi               | Si               | IDX | Yi               | Si               |
|-----|------------------|------------------|-----|------------------|------------------|
| 450 | 22323AB638951B3E | 618D2527A32345DC | 491 | 0D5390C42011191D | BA1E81F8D05EE382 |
| 451 | 11191D5B1C4A8D9F | A4C59B1A4A09D921 | 492 | 86A9C86210088C8E | 3B929AB864E203A5 |
| 452 | 088C8EAD8E2546CF | 925AB5C02358A0F6 | 493 | C354E43108044647 | 8BC5B29A53C632D2 |
| 453 | 04464756C712A367 | 6BF809C1B711390E | 494 | 61AA721884022323 | C24A9389D3B95E67 |
| 454 | 022323AB638951B3 | 725E055955ED2941 | 495 | B0D5390C42011191 | 90ED5949E7E1A96E |
| 455 | 011191D5B1C4A8D9 | 5B8AC4B9908DDA47 | 496 | D86A9C86210088C8 | 7F7C860E5E92BD8F |
| 456 | 0088C8EAD8E2546C | D5B77C771A4BCF75 | 497 | EC354E4310804464 | E6168162134B1948 |
| 457 | 804464756C712A36 | 6A39A4D0F42AE266 | 498 | F61AA72188402232 | B8ABA5344AE3FE81 |
| 458 | 4022323AB638951B | 304FA547BF996525 | 499 | 7B0D5390C4201119 | 999B48295220BD2B |
| 459 | 2011191D5B1C4A8D | A54FAB8637E3A1D0 | 500 | BD86A9C86210088C | 4E78E5FF4532E346 |
| 460 | 10088C8EAD8E2546 | 647BBF53DEAE5012 | 501 | 5EC354E431080446 | 64FB887329CB60A0 |
| 461 | 0804464756C712A3 | 6AD83BBC86CF348E | 502 | 2F61AA7218840223 | 21E399F53F697EE8 |
| 462 | 84022323AB638951 | B748279C022F8B5E | 503 | 97B0D5390C420111 | 291A39BCD3F3F1A9 |
| 463 | 42011191D5B1C4A8 | B58C8C6F89DC4FB3 | 504 | CBD86A9C86210088 | D6FA8C5105525BAE |
| 464 | 210088C8EAD8E254 | E17D63E28A3CC0B9 | 505 | 65EC354E43108044 | 9F340FC9DE50877A |
| 465 | 10804464756C712A | C10D404BFEE92944 | 506 | B2F61AA721884022 | 565847F04A335555 |
| 466 | 884022323AB63895 | 0D6FE7511C5971BF | 507 | D97B0D5390C42011 | 6D3E61E3797FE2D9 |
| 467 | C42011191D5B1C4A | 8D7C5D774D7328E4 | 508 | ECBD86A9C8621008 | 2C19CF924184314A |
| 468 | 6210088C8EAD8E25 | D58DAF10EE827EB1 | 509 | 765EC354E4310804 | 817BEFE7A5A6A716 |
| 469 | 310804464756C712 | E03242B83E2CDE57 | 510 | 3B2F61AA72188402 | CC925EBEEB4E39CC |
| 470 | 1884022323AB6389 | EB74038EA1033261 |     |                  |                  |
| 471 | 0C42011191D5B1C4 | 55CF23BA998BE5A0 |     |                  |                  |
| 472 | 86210088C8EAD8E2 | 219DFBE447BFDB9B |     |                  |                  |
| 473 | 4310804464756C71 | 0D7A7021CB3142C4 |     |                  |                  |
| 474 | 21884022323AB638 | E6F62B591D6A303D |     |                  |                  |
| 475 | 90C42011191D5B1C | 8573523FF26AE067 |     |                  |                  |
| 476 | C86210088C8EAD8E | F1EEC4D6047D18C8 |     |                  |                  |
| 477 | E4310804464756C7 | 4A681A9543151BFF |     |                  |                  |
| 478 | 721884022323AB63 | 41C93B16BA1BBC28 |     |                  |                  |
| 479 | 390C42011191D5B1 | 60F506802A5B6AAA |     |                  |                  |
| 480 | 9C86210088C8EAD8 | 6A5C0C9C7FDCA2E2 |     |                  |                  |
| 481 | 4E4310804464756C | DA78574487CA5118 |     |                  |                  |
| 482 | A721884022323AB6 | 5F1BAC9234589E24 |     |                  |                  |
| 483 | 5390C42011191D5B | 248B708A4352F25C |     |                  |                  |
| 484 | A9C86210088C8EAD | 3933AA202705408F |     |                  |                  |
| 485 | 54E4310804464756 | 624489740BCCFDD4 |     |                  |                  |
| 486 | AA721884022323AB | 2CB721BA97C88B66 |     |                  |                  |
| 487 | D5390C42011191D5 | 715A0CEC3A15AFB2 |     |                  |                  |
| 488 | 6A9C86210088C8EA | 355D06ABD23BC8EC |     |                  |                  |
| 489 | 354E431080446475 | B646CFA2CB1FE176 |     |                  |                  |
| 490 | 1AA721884022323A | FBEA77DAB1E38B46 |     |                  |                  |

Appendix A.3 – Linear Span Frequency Computations for SIMON 32/64 (over 1M runs for 32 vectors)

| LS  | Freq.    | Average   | Probability |
|-----|----------|-----------|-------------|
| 110 | 0        | 0.00      | 0.00000     |
| 111 | 0        | 0.00      | 0.00000     |
| 112 | 0        | 0.00      | 0.00000     |
| 113 | 1        | 0.03      | 0.00000     |
| 114 | 0        | 0.00      | 0.00000     |
| 115 | 0        | 0.00      | 0.00000     |
| 116 | 1        | 0.03      | 0.00000     |
| 117 | 6        | 0.19      | 0.00000     |
| 118 | 33       | 1.03      | 0.00000     |
| 119 | 105      | 3.28      | 0.00000     |
| 120 | 491      | 15.34     | 0.00002     |
| 121 | 1983     | 61.97     | 0.00006     |
| 122 | 7824     | 244.50    | 0.00024     |
| 123 | 31290    | 977.81    | 0.00098     |
| 124 | 125378   | 3918.06   | 0.00392     |
| 125 | 500432   | 15638.50  | 0.01564     |
| 126 | 1999772  | 62492.88  | 0.06249     |
| 127 | 7998286  | 249946.44 | 0.24995     |
| 128 | 15998460 | 499951.88 | 0.49995     |
| 129 | 4001721  | 125053.78 | 0.12505     |
| 130 | 1001017  | 31281.78  | 0.03128     |
| 131 | 249855   | 7807.97   | 0.00781     |
| 132 | 62466    | 1952.06   | 0.00195     |
| 133 | 15592    | 487.25    | 0.00049     |
| 134 | 3975     | 124.22    | 0.00012     |
| 135 | 982      | 30.69     | 0.00003     |
| 136 | 251      | 7.84      | 0.00001     |
| 137 | 57       | 1.78      | 0.00000     |
| 138 | 17       | 0.53      | 0.00000     |
| 139 | 4        | 0.13      | 0.00000     |
| 140 | 1        | 0.03      | 0.00000     |
| 141 | 0        | 0.00      | 0.00000     |
| 142 | 0        | 0.00      | 0.00000     |
| 143 | 0        | 0.00      | 0.00000     |
| 144 | 0        | 0.00      | 0.00000     |
| 145 | 0        | 0.00      | 0.00000     |
| 146 | 0        | 0.00      | 0.00000     |
| 147 | 0        | 0.00      | 0.00000     |
| 148 | 0        | 0.00      | 0.00000     |
| 149 | 0        | 0.00      | 0.00000     |

Appendix A.4 – Correlation and Linear Span Frequency Computations for SIMON 64/128



