VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS

INTEGRACE SERVERU UNDERTOW SE SYSTÉMEM JENKINS CI

DIPLOMOVÁ PRÁCE MASTER'S THESIS

AUTOR PRÁCE AUTHOR Bc. JAKUB BARTEČEK

BRNO 2014

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ

FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS

INTEGRACE SERVERU UNDERTOW SE SYSTÉMEM JENKINS CI

INTEGRATION OF JENKINS CI WITH UNDERTOW

DIPLOMOVÁ PRÁCE

MASTER'S THESIS

AUTOR PRÁCE

AUTHOR

Bc. JAKUB BARTEČEK

VEDOUCÍ PRÁCE

SUPERVISOR

Ing. PETR MÜLLER

BRNO 2014

Abstrakt

Tento semestrální projekt se zabývá nahrazením webového serveru v systému Jenkins CI za server Undertow. Server Undertow by měl být potenciálně rychlejší než současné řešení a celkově lepší. V práci jsou popsány obecné informace o komponentách a programech, které se této problematiky týkají. Nejdůležitější částí práce je analýza současného stavu a návrh způsobu integrace. Samotná integrace není provedena v rámci semestrálního projektu, ale je předmětem navazujícího diplomového projektu.

Abstract

This term project deals with replacement of webserver in Jenkins CI by server Undertow. The Undertow should be potentially faster than actual state and in general better. In this project there are described general information about components and programs, which are related to this topic. The most important part is analysis of current state and a design of integration. The integration is not accomplished in this term project. Is is a subject of follow-up masters's thesis.

Klíčová slova

Jenkins, Undertow, servlet, servlet kontejner, integrace, kontinuální integrace, Winstone, Jetty, Java

Keywords

Jenkins, Undertow, servlet, servlet container, integration, continuous integration, Winstone, Jetty, Java

Citace

Jakub Barteček: Integrace serveru Undertow se systémem Jenkins CI, diplomová práce, Brno, FIT VUT v Brně, 2014

Integrace serveru Undertow se systémem Jenkins CI

Prohlášení

Prohlašuji, že jsem tento semestrální projekt vypracoval samostatně pod vedením pana inženýra Petra Müllera. Další informace mi poskytl pan doktor Vojtěch Juránek, který je zaměstnancem firmy Red Hat[®].

Jakub Barteček 17. května 2014

Poděkování

Děkuji panu inženýru Petru Müllerovi za vedení mého semestrálního projektu a panu doktoru Vojtěchu Juránkovi za odborné konzultace týkající se zpravovávané problematiky.

Tato práce vznikla jako školní dílo na Vysokém učení technickém v Brně, Fakultě informačních technologií. Práce je chráněna autorským zákonem a její užití bez udělení oprávnění autorem je nezákonné, s výjimkou zákonem definovaných případů.

[©] Jakub Barteček, 2014.

Obsah

1	Úvo	od	2	
2	Jenkins CI a související nástroje			
	2.1	Jenkins CI	3	
		2.1.1 Kontinuální integrace a využití Jenkins CI	4	
		2.1.2 Způsoby použití aplikace	4	
		2.1.3 Architektura serveru	5	
		2.1.4 Základy práce s Jenkins CI	6	
	2.2	Webový server a servlet kontejner	7	
		2.2.1 Webový server	7	
		2.2.2 Servlet kontejner	7	
		2.2.3 Architektura archivu webové aplikace	8	
	2.3	Nástroj Maven	8	
	2.4	Server Jetty	9	
	2.5	Servlet kontejner Winstone	10	
		2.5.1 Nedostatky servlet kontejneru Winstone	10	
	2.6	Vývoj servlet kontejneru v komunitě Jenkins CI	10	
	2.7	Server Undertow	11	
		2.7.1 Vlastnosti serveru	11	
		2.7.2 Architektura serveru	11	
		2.7.3 Srovnání serverů Undertow a Jetty	14	
3	Analýza současného stavu servlet kontejneru a návrh integrace 17			
	3.1	Aktuální stav architektury servlet kontejneru v Jenkins CI	17	
		3.1.1 Architektura Jenkins CI z pohledu servlet kontejneru	17	
		3.1.2 Průběh komunikace prostřednictvím servlet kontejneru	19	
	3.2	Zpětná kompatibilita servlet kontejner v Jenkins CI	20	
		3.2.1 Funkcionality servlet kontejneru	20	
	3.3	Návrh způsobu integrace serveru Undertow	21	
		3.3.1 Varianty integrace	21	
		3.3.2 Zvolení způsobu integrace	22	
		3.3.3 Zjištěné problémy	$\frac{1}{2}$	
	3.4	Implementace	23	
	3.5	Srovnání výkonu původní a nové implementace	23	
4	Záv	věr	24	

Kapitola 1

$\mathbf{\acute{U}vod}$

Tato diplomová práce se zabývá vylepšením serveru Jenkins CI, který je v praxi využíván pro potřeby průběžného testování softwaru a jeho kontinuální integraci. Vylepšení se týká především webového serveru a servlet kontejneru, který je v Jenkins CI integrován. V současném stavu tyto funkce vykonává kombinace serverů Winstone a Jetty.

Server Winstone je již neudržovaný a zastaralý nástroj a z tohoto důvodu byl z velké části nahrazen serverem Jetty, který potřebnou funkcionalitu poskytuje. Server Jetty je poměrně komplexní projekt a nabízí mnoho funkcionality, ale na druhou stranu jeho rozsah nedovoluje poskytovat maximální rychlost.

V současné době vznikl nový webový server Undertow, který si klade za cíl být co nejjednodušší a nejrychlejší a mohl by být přínosný a vhodný pro Jenkins CI. Jelikož tento server je nový a je sponzorován firmou Red Hat, tak lze předpokládat, že jeho vývoj bude nadále pokračovat a nebude zastarávat.

Cílem této práce je nahradit server Jetty a případně i server Winstone pomocí serveru Undertow a integrovat jej se serverem Jenkins CI. Při integraci je kladen důraz na snahu zachovat zpětnou kompatibilitu s původním řešením.

V rámci této diplomové práce jsou nejprve rozebírány potřebné informace týkající se jednotlivých nástrojů a plánované integrace. Následně je detailně analyzována architektura Jenkins CI a způsob jeho integrace se servery Winstone a Jetty. V navazující části je diskutována varianta nahrazení pouze serveru Jetty a varianta nahrazení serveru Jetty i Winstone pomocí serveru Undertow. Z provedené analýzy byla zvolena jedna varianta, která byla vybrána pro následnou integraci.

Kapitola 2

Jenkins CI a související nástroje

Tato kapitola se zaměřuje na teoretické základy práce, které je nutné nebo vhodné znát pro pochopení zpracovávané problematiky. Je zde detailněji popsán systém Jenkins CI (kapitola 2.1) ke kterému se tato práce přímo váže. S ním je spojeno seznámení se servery Winstone (kapitola 2.5) a Jetty (kapitola 2.4), jejichž kombinace je současně v Jenkins CI integrována. Po popisu těchto serverů je rozebírán průběh jejich využití v servlet kontejneru Jenkins CI a průběh jeho vývoje (kapitola 2.6). V kapitole 2.2 jsou vysvětleny často zde používané pojmy servlet kontejner a webový server.

Větší důraz je dále věnován serveru Undertow (kapitola 2.7), který byl vybrán jako nový webový server pro Jenkins CI. V tomto případě je provedena hlubší studie tohoto nástroje, aby na jejím základě bylo možné pochopit a provést samotnou integraci s Jenkins CI, která je jádrem této práce.

Uvedené informace mají spíše informativní charakter, aby poskytly ucelený úvod do zkoumané problematiky. Jsou zaměřeny především na informace týkající se samotné integrace. Pro případné získání detailnějších informací jsou uvedeny patřičné zdroje, kde je lze nalézt.

2.1 Jenkins CI

Jenkins CI je komunitní open source nástroj pro kontinuální integraci softwaru, který je vyvíjen pod svobodnou licencí MIT¹ [2]. Je velmi populární a využíván malými i velkými firmami jako je například firma Red Hat, kde tento program běží na stovkách serverů. Původní název tohoto projektu je Hudson². Když se jeho vývoje ujala firma Oracle, tak se projekt rozštěpil a vznikla jeho komunitní verze, kterou je projekt Jenkins CI. Přesto se v některých částech tohoto projektu stále objevuje název Hudson, ale jedná se pouze pozůstatek z původního projektu.

Zkratka CI je z anglického spojení continuous integration, což lze do češtiny přeložit jako kontinuální nebo průběžná integrace. Krátké seznámení s touto metodologií je v následující kapitole.

Informace v této kapitole byly čerpány především z knihy [7], kde lze nalézt další informace o serveru Jenkins CI, a také z webové stránky projektu [10].

¹Licence MIT: http://opensource.org/licenses/MIT

²Webové stránky projektu Hudson: http://hudson-ci.org/

2.1.1 Kontinuální integrace a využití Jenkins CI

V minulosti byla integrace programu do výsledného produktu velmi náročným procesem a často ztraceným časem. S vydáním každé verze programu se musel postup probíhající před vydáním produktu opakovat a pro vývojářský tým to prakticky znamenalo zdržení. Pokud se v tomto procesu odhalil nějaký problém (což bylo běžné), tak jeho řešení bylo z důvodu nedostatku času a jeho pozdního objevení mnohem problematičtější než kdyby byl tento problém odhalen dříve.

Kontinuální integrace je moderní přístup k vývoji softwaru, který mění způsob přemýšlení nad celým procesem vývoje a snaží se předcházet problémům popsaným výše a především ušetřit čas. V tomto přístupu je využíván nějaký kvalitní nástroj, který automatizovaně provádí specifikované kroky, které provázejí integraci softwaru a jeho vydání.

Jedním z nástrojů poskytujích podporu pro kontinuální integraci při vývoji softwaru je server Jenkins CI.

Základními možnostmi, které umožňuje Jenkins CI nakonfigurovat, jsou:

- Spouštění integračních a jednotkových testů v přesně definovaném čase (např. v noci, kdy jsou servery méně vytížené)
- Spuštění integračních a jednotkových testů při změně ve verzovacím systému. Jenkins
 CI dokáže zaznamenat změnu v repozitáři, stáhnout si změny a spustit testování
- Shromažďování a vyhodnocování metrik vývoje softwaru
- Spuštění akceptačních testů
- Informování e-mailem o testech, které skončily chybou
- Automatické nahrání nové verze produktu na server

Uživatelé mohou kdykoliv přidat využití libovolné funkcionality systému a neopakovat stále stejné kroky.

2.1.2 Způsoby použití aplikace

Celý program je napsán v jazyce Java a je tedy plně přenositelný mezi platformami. Architektura je navržena tak, aby byla lehce rozšiřitelná pomocí tzv. pluginů, kterých je pro něj vytvořené velké množství.

Jenkins CI je určen pro běh na serveru a je dostupný přes webové rozhraní (ale může být samozřejmě spuštěn na libovolném osobním počítači). Komunikuje pomocí protokolu HTTP, který je založen na modelu požadavek-odpověď (angl. request-response). Jelikož tento způsob komunikace je velmi běžný, tak není v programu přímo implementován, ale využívá k němu externí nástroje. Dalším nástrojem, který pro svou činnost Jenkins potřebuje, je servlet kontejner ve kterém samotná aplikace poběží. Tento pojem je blíže objasněn v kapitole 2.2.

Existují dvě možnosti jak spustit server Jenkins CI:

1. Může běžet na libovolném *Java EE* aplikačním serveru [1] jako jsou například servery JBoss³ anebo Glasfish⁴. Jenkins CI se standardně nasadí na server (dle zvyklostí

 $^{^3{}m V\'{i}ce}$ informací o serveru viz http://www.jboss.org/jbossas/

⁴Více informací o serveru viz http://www.oracle.com/technetwork/middleware/glassfish/

konkrétního serveru) a poté je s ním možné pracovat. V tomto případě veškerou nízkoúrovňovou komunikaci pomocí síťových protokolů i práci servlet kontejneru zajišťuje aplikační server.

2. Pokud nechceme nebo nemůžeme spouštět Jenkins CI na aplikačním serveru, tak jej lze spustit přímo z vytvořené .war archivu (překladem se zabývá kapitola 2.1.4). V tomto případě se o práci servlet kontejneru i webového serveru komunikujícího jedním ze standardních síťových protokolů stará kombinace nástrojů Winstone a Jetty, které jsou přímo integrovány do serveru Jenkins CI.

Nahrazení těchto dvou nástrojů (nebo pouze serveru Jetty) a zajištění vykonávání této činnosti je hlavním cílem této práce. Záměrem je tedy nahradit server Jetty a případně i server Winstone pomocí zvoleného nového serveru Undertow. Studie těchto nástrojů a jejich rozbor je předmětem následujícíh kapitol.

Pro tuto práci je důležitý druhý způsob používání Jenkins CI a proto další informace se budou přímo vázat k němu.

2.1.3 Architektura serveru

Architektura systému Jenkins CI je poměrně komplikovaná a pro tuto práci není nutné ji detailně celou znát. Bude popsána na vysoké úrovni abstrakce a zaměří se pouze na komponenty, které se přímo týkají této práce a budou dále v textu odkazovány nebo blíže rozebírány. Přehled architektury je na obrázku 2.1.

Obrázek 2.1: Přehled architektury serveru Jenkins CI [6]

Základem architektury je část Model, což jsou objekty, které obsahují stav a data aplikace. Každý model je přímo navázán na konkrétní URL adresu s tím, že kořenový model (dostupný pod URL "/") je pevně daná instance s názvem Hudson. Data z objektů modelu jsou následně zobrazovány ve webovém rozhraní aplikace. Pro toto zobrazování je využita techonologie Jelly.

Velmi podstatnou součástí aplikace je prvek *Stapler*. Tento objekt provádí konkrétní propojování požadavků dle zadané URL s patřičnými objekty z modelu a spouštění vykonávání jejich metod. Stapler je jediným servletem, který je v aplikaci Jenkins CI zaveden do servlet kontejneru při spuštění aplikace (pojmy servlet a servlet kontejner jsou vysvětleny v kapitole 2.2.2). Povědomí o jeho činnosti je potřebné, protože s ním bude v této práci dále pracováno. Průběh vybírání patřičných metod pomocí této komponenty je přesně definován a lze jej najít v uživatelské příručce⁵, ale není nutné jej zde rozebírat.

Architektura serveru je přizpůsobena tak, aby byla snadno rozšiřitelná pomocí rozšiřujících modulů (angl. *plugins*). Popis technologie Jelly i tvorba rozšiřujících modulů je nad rámec této práce a lze tyto informace najít v odkazované literatuře.

Informace v této kapitole byly čerpány z tohoto dokumentu [6] a z webových stránek projektu Stapler [9].

2.1.4 Základy práce s Jenkins CI

Pro přeložení a spuštění aplikace je potřeba pracovat z příkazové řádky nebo provést instalaci nějakým dávkovým souborem (skriptem). Aplikaci je možné stáhnout připravenou přímo ze stránek projektu [10], ale pro tuto práci je potřeba pracovat s aplikací ze zdrojových souborů. Aktuální verze aplikace je dostupná na serveru GitHub⁶.

Po stažení zdrojových souborů je potřeba provést překlad aplikace. Pro tento automatizovaný překlad se používá nástroj Maven⁷,který je krátce zmíněn v kapitole 2.3.

Překlad aplikace bez spuštění jednotkových testů i integračních testů lze provést tímto příkazem:

mvn clean install -pl war -am -DskipTests

Po úspěšném překladu aplikace vznikne v adresáři ./war/target/ archiv jenkins.war, který obsahuje celou přeloženou webovou aplikaci včetně nástrojů na kterých závisí. Z tohoto archivu je možné aplikaci přímo spustit pomocí příkazu:

java -jar jenkins.war

Chování aplikace lze upravit nastavením různých parametrů při spuštění programu, které lze vypsat pomocí přidání parametru --help.

Pro práci se spuštěnou instancí aplikace se používá především webové rozhraní. Standardně aplikace komunikuje pomocí protokolu *HTTP* na portu 8080. Je tedy možné se na lokálním počítači připojit do aplikace zadáním URL adresy http://localhost:8080 do webového prohlížeče.

 $^{^5 \ {\}it Zp} \\ \hbox{\it usob zpracov} \\ \hbox{\it ava\'in\'i po\'adavk\'u komponentou Stapler: http://stapler.kohsuke.org/reference.html}$

 $^{^6\}mathrm{Adresa}$ aktuální verze Jekins CI: www.github.com/jenkinsci

⁷Více informací o nástroji Maven lze získat na stránce http://maven.apache.org/

Pokud se aplikaci povede spustit, tak je již možné libovolně pracovat pouze s prohlížeče. Detaily práce s aplikací Jenkins CI lze nalézt v této knize [7], ale tyto informace jsou již nad rámec této publikace.

2.2 Webový server a servlet kontejner

V této kapitole jsou vysvětleny pojmy webový server a servlet kontejner, které se na mnoha místech této práce objevují. Porozumění těmto pojmům je důležité, protože bez jejich znalosti by následující kapitoly byly obtížněji pochopitelné.

Informace zde uvedené byly čerpány z článku [8].

2.2.1 Webový server

Webový server je program, který zprostředkovává komunikaci přes síť s klienty, kteří se k němu připojí a požadují po něm nějaká data. Tato komunikace běžně probíhá pomocí protokolu *HTTP* nebo jeho šifrované verze *HTTPS*, které jsou založeny na modelu *požadavekodpověd* (angl. request-response). Model této komunikace je zachycen na obrázku 2.2.

Typický způsob komunikace webového serveru je, že klient pomocí URL adresy specifikuje požadavek na nějaká data a server mu v odpovědi tato data pošle. Pokud by neexistoval za webovým serverem nějaký další program, tak by webový server vždy odpovídal na stejný požadavek stále stejnou odpovědí.

Obrázek 2.2: Model komunikace webového serveru s klientem [8]

2.2.2 Servlet kontejner

Jelikož dostávat stále stejná statická data při stejném požadavku není dostatečná funkcionalita serveru, tak existují způsoby jak zajistit dynamickou práci s daty na serveru a tudíž i poskytovat měnící se odpovědi na stejný dotaz. Jedním ze způsobů jak této funkce docílit je využití tzv. servletů, které jsou navrženy pro programovací jazyk Java.

Servlet je standardní program (konkrétně jedna třída) napsaný v jazyce Java, který implementuje rozhraní javax.servlet. Implementace tohoto rozhraní ho zavazuje k definování několika metod, ale jinak se jedná o běžnou třídu z které jsou při zpracovávání požadavků vytvářeny její instance. Po obdržení nějakého požadavku provádí zpracování vstupních dat a následně odeslání patřičné odpovědi.

Základní myšlenkou servlet kontejneru je umožnit dynamicky vytvářet odpovědi (často webové stránky) pomocí vykonávání servletů. Samotný servlet kontejner je program, který poskytuje běhové prostředí pro vykonávání servletů, zajišťuje jejich vytváření, vykonávání a odstraňování. Dále se také podílí na zpracovávání příchozích požadavků, které jsou mu předávány od webového serveru.

Popsaný způsob fungování servlet kontejneru je znázorněn na obrázku 2.3.

Obrázek 2.3: Ukázka způsobu činnosti servlet kontejneru a jeho spolupráce s webovým serverem [8]

2.2.3 Architektura archivu webové aplikace

2.3 Nástroj Maven

Pro vývoj a práci se serverem Jenkins CI v podobě zdrojových kódů je zapotřebí nástroj Maven. Jeho využití je také nutné při vytváření programu, který provede integraci serveru Undertow do Jenkins CI. V této kapitole budou o něm poskytnuty základní informace. Pro případné bližší seznámení s tímto nástrojem lze další informace získat z webových stránek projektu [13] z kterých byly čerpány informace v této kapitole.

Maven je nástroj, který provádí činnosti spojené s vytváření spustitelných aplikací ze zdrojových kódů Je zaměřen na aplikace vytvářené v jazyce Java. Hlavním cílem je umožnit uživatelům v co nejkratším čase provádět běžné a opakující se úkony při překladu aplikace. Především umožňuje provádění překladu aplikací, jejich spouštění automatizovaných jednotkových a integračních testů, uložení spustitelné podoby aplikace do lokálního repozitáře a případně i nahrání vytvořené aplikace na nějaký server.

Je dodáván jako aplikace, která se spouští z příkazové řádky příkazem mvn. Veškeré informace o projektu a definice činnosti, které má Maven provést, se specifikuje v XML souboru pom.xml. Mezi nejdůležitější patří definice výsledné podoby aplikace a způsob jejího překladu, informace o závislostech projektu na jiných knihovnách a definice serverů z kterých má stahovat potřebné knihovny pro svůj běh i pro běh aplikace. Po spuštění aplikace jsou tedy lokalizovány knihovny na kterých projekt závisí a uloženy v lokálním

repozitáři aniž by se o tuto činnost uživatel musel dále starat. Kromě těchto praktických činností také umožňuje zveřejnit podrobnější informace o projektu jako jsou informace o licenci, vývojářích, adrese systému pro správu verzí, atp.

Na příkladu 2.3.1 je ukázka části souboru pom.xml, který je vytvořen pro Jenkins CI:

Příklad 2.3.1. Ukázka souboru pom. xml

V části repository je definována cesta k serveru z kterého má Maven stahovat potřebné soubory a v těle značky dependency je pomocí hodnot groupId, artifactId, version jednoznačně definována potřebná knihovna. Na základě těchto informací poté Maven při překladu stáhne požadovanou knihovnu a při distribuci aplikace nemusí být tato knihovna k programu přibalena.

2.4 Server Jetty

Jednou z komponent, které jsou aktuálně integrovány do serveru Jenkins CI, je webový server Jetty. Tento server je open source projektem vyvíjeným pod licencemi Eclipse a Apache⁹. Je využíván velkým množstvím nástrojů jako jsou například $Eclipse\ IDE^{10}$ nebo $Google\ AppEngine^{11}$.

Jetty je webový server a poskytuje funkcionalitu servlet kontejneru dle specifikace verze 3.0. Je jej možné využít také jako webového klienta pro komunikaci se servery. Komunikace klientů i serverů využívajících Jetty probíhá asynchronně. Návrh serveru umožňuje samostatné spouštění aplikací i jeho integraci do jiné aplikace.

Kromě těchto základních možností obsahuje řadu souvisejících technologií jako jsou SPDY, webové sokety¹²(angl. *websocket*), JNDI, OSGi, JMX a další. Informace v této kapitole byly čerpány z webových stránek serveru Jetty [14], kde lze nalézt další informace o zmíněných technologiích a o tomto serveru.

Aktuální využití serveru Jetty v aplikaci Jenkins CI je podrobněji rozebráno v kapitole 2.6 a jeho srovnáním se serverem Undertow se zabývá kapitola 2.7.3.

⁸Licence Eclipse je dostupná na adrese http://www.eclipse.org/legal/epl-v10.html

⁹Licence Apache je dostupná na adrese http://www.apache.org/licenses/LICENSE-2.0.html

 $^{^{10}\}mathrm{Webov\acute{e}}$ stránky nástroje Eclipse IDE http://www.eclipse.org/

¹¹Webové stránky platformy Google AppEngine https://developers.google.com/appengine/

¹²Oficiální stránky specifikace webových soketů: http://www.websocket.org/

2.5 Servlet kontejner Winstone

Další komponentou serveru Jenkins CI je servlet kontejner Winstone. Winstone je velmi jednoduchý a poskytuje funkcionalitu servlet kontejneru aniž by byl zatížen velkým množstvím požadavků, které jsou ve specifikaci jazyka Java EE. Nikdy neposkytoval veškeré služby servlet kontejneru, které specifikace jazyka definuje. V jeho názvu je zahrnutý pouze pojem servlet kontejner, ale tato aplikace vykonává i služby webového serveru odpovídající popisu v kapitole 2.2.

Hlavními cíli projektu bylo poskytovat funkcionalitu servlet kontejneru pouze pro jednu aplikaci, což je opačný přístup než u běžných aplikačních serverů jako jsou Glasfish, JBoss, aj. Díky jeho omezeným službám je jeho velikost velmi malá a umožňuje jednoduchou integraci s cílovou aplikací.

Uvedené informace byly čerpány z oficiální stránky projektu Winstone [4].

2.5.1 Nedostatky servlet kontejneru Winstone

Původní myšlenka jednoduchého servlet kontejneru byla pro projekt Jenkins CI zajímavá, ale kontejner Winstone má několik zásadních nedostatků kvůli kterým bylo časem jeho využití v Jenkins CI problematické [3].

Vývoj projektu Winstone již před delší dobou ustal a tím pádem nebyla poskytována žádná další podpora pro řešení a opravování objevených nedostatků a chyb. Značné množství bezpečnostních chyb objevených v projektu Jenkins CI bylo právě způsobeno tímto servlet kontejnerem.

Zpočátku možnosti servlet kontejneru postačovaly, ale časem je potřeba, aby byly přidávány nové funkcionality, které odpovídají aktuálním trendům a novým specifikacím. Příkladem mohou být nové specifikace servlet kontejneru nebo vývoj nových technologií jako webové sokety.

2.6 Vývoj servlet kontejneru v komunitě Jenkins CI

Po ukončení vývoje projektu Winstone se musela o jeho potřebné úpravy starat komunita Jenkins CI. Takováto práce je pro komunitu velmi zatěžující a naprosto neefektivní. Byly prováděny především nutné opravy bezpečnostních chyb v kontejneru, ale jinak aplikace dále degenerovala. Pro tento vývoj vznikl v projektu Jenkins CI nový repozitář, který vycházel z původní verze servlet kontejneru Winstone¹³. Z tohoto zdroje a z článku o integraci Jetty s kontejnerem Winstone [3] jsou čerpány uváděné informace.

Vývoj původního servlet kontejneru Winstone probíhal uvedeným způsobem až do verze 0.9.10-jenkins-47. Následně byl tento způsob vývoje zastaven a do kontejneru Winstone byl integrován webový server a servlet kontejner Jetty. Tímto krokem vznikla interní verze servlet kontejneru Winstone 2.0. Velká část kódu kontejneru Winstone byla odstraněna a veškerá činnost webového serveru a servlet kontejneru je nyní vykonávána pomocí serveru Jetty. Z původního kontejneru Winstone zůstal způsob zpracovávání a nastavování parametrů. Tato změna proběhla poměrně narychlo a nebyla detailně otestována. Obsahuje zřejmě ještě množství nepotřebného kódu a samotná implementace je dosti nepřehledná.

 $^{^{13}{\}rm Repozit\'{a}\check{r}},$ kde komunita Jenkins CI provádí úpravy projektu Winstone: https://github.com/jenkinsci/winstone

Těsně před integrací serveru Jetty s Jenkins CI vznikalo zadání tohoto diplomového projektu, které mělo za cíl výrazně zlepšit aktuální stav servlet kontejneru v projektu Jenkins CI. Během formulace zadání byl servlet kontejner v projektu přepracován a proto muselo být zadání upraveno. I po této změně byly stále důvody pro nahrazení stávajícího servlet kontejneru serverem Undertow. Aktuální situace již není tak kritická jako v předchozí verzi, ale může přinést ještě další zlepšení.

2.7 Server Undertow

Undertow je webový server napsaný v jazyce Java, který vzniká za podpory firmy Red Hat a její sekce JBoss. Primárním účelem serveru Undertow je být výchozím webovým serverem v aplikačním serveru WildFly. Jeho první verze finální byla vydána teprve před nedávnem, takže se jedná o nově vytvořený server a jeho vývoj stále usilovně probíhá¹⁴. Pro stažení a využití tohoto serveru je nejjednodušší využít aplikaci Maven (kapitola 2.3) a nastavit patřičnou závislost¹⁵.

Informace v této kapitole byly čerpány především z webových stránek projektu [15] a jeho dokumentace [11], ale jelikož je aplikace poměrně nová, tak zveřejněná dokumentace je poměrně nedostatečná. Některé informace z této kapitoly musely být čerpány z vygenerované projektové dokumentace a z komunikace s vývojáři projektu na chatu IRC.

2.7.1 Vlastnosti serveru

Server Undertow je zaměřen na to, aby byl plně integrovatelný do libovolných aplikací a byl co nejmenší a nejjednodušší. Samotný archiv s jádrem aplikace je menší než 1MB a při běhu aplikace potřebuje méně než 4MB dynamicky alokované paměti.

Je navržen takovým způsobem, aby při implementaci mohl uživatel využít jen část aplikace, kterou nutně potřebuje, a patřičně si ji upravit pro své vlastní potřeby. Tohoto přístupu je dosaženo kombinováním a řetězením obslužných funkcí (angl. handler), které server poskytuje. Díky tomuto přístupu je server velmi flexibilní a v jeho důsledku také patřičně rychlý, protože uživatele nebrzdí funkcionality serveru, které nutně nepotřebuje a nevyužívá.

Při komunikaci umožňuje server podporu jak pro asynchronní, tak pro synchronní komunikaci. Dalšími funcionalitami, které server poskytuje, jsou možnost integrace servlet kontejneru odpovídajícího specifikaci verze 3.1, využití plné podpory webových soketů (angl. websockets) nebo podpory technologie HTTP upgrade.

2.7.2 Architektura serveru

V této kapitole jsou podrobněji rozebrány základní principy, jak Undertow funguje, a je zjednodušeně popsána jeho architektura z pohledu uživatele. Další podrobnější informace o serveru lze nalézt na webové dokumentaci projektu, která byla hlavním zdrojem této kapitoly [11]. Popis architektury serveru se přímo vzahuje k samotné integraci do Jenkins CI.

¹⁴Aktuální verzi serveru, lze najít na serveru GitHub: https://github.com/undertow-io/undertow

¹⁵Definice závilosti v aplikaci Maven pro stažení serveru Undertow: http://undertow.io/downloads.html

Webový server

Architektura serveru Undertow nevyužívá koncept jednoho velkého kontejneru, který se pomocí vysokoúrovňového rozhraní nastaví pro danou aplikaci a sám o sobě funguje. Naopak aplikace jsou sestavovány z množství tříd tzv. handlerů (viz níže), které spravují příchozí požadavky a samy o sobě utvářejí samotný webový server. Díky tomuto konceptu je možné využít jen tu funkcionalitu serveru, která je v aplikaci potřeba, a server není brzděn zbytečnou činností, která není pro konkrétní aplikaci potřebná.

Vstupním bodem aplikace jsou tzv. *listenery* (angl. *listener*), které naslouchají na určených síťových rozhraních a portech a zpracovávají příchozí požadavky. Jednotlivé *listenery* se liší dle protokolu, kterým komunikují. V Undertow jsou 3 základní typy *listenerů* pro protokoly HTTP, HTTPS, a AJP. Také je vytvořen podpora protokolu SPDY, ale v aktuální verzi ještě není zahrnuta. Pro uživatele poskytují abstrakci nad samotnými síťovými protokoly, takže v serveru lze stejným způsobem zpracovávat požadavky přicházejícími v různých protokolech. Jediným samozřejmým omezením je, že nelze v jednom protokolu používat informace specifické pouze pro protokol jiný.

Pro umožnění této abstrakce každý *listener* provádí překlad požadavku do objektu třídy HttpServerExchange. V něm je uchováván aktuální stav požadavku a vytvářené odpovědi a při odesílání odpovědi z tohoto objektu *listener* vytvoří odpověď, která je poslána klientovi.

Tyto listenery jsou těsně navázané na knihovnu XNIO¹⁶, která poskytuje pro Undertow abstrakci nad síťovou komunikací. Samotné listenery v Undertow je možné konfigurovat nastavením několika parametrů [12], ale lze také přímo konfigurovat síťové kanály knihovny XNIO.

Samotné jádro serveru tvoří již zmiňované handlery. Handler je třída, která definuje metodu handleRequest v níž je příchozí požadavek na serveru libovolně upraven a předán dalšímu handleru ke zpracování nebo je vytvořena odpověď a poslána zpět klientovi (tedy jsou vynechány následující handlery). Handlery jsou tedy za sebou napojeny a tvoří řetěz (angl. handler chain). Je možné si nadefinovat libovolný vlastní handler, který pouze musí implementovat patřičné rozhraní s metodou handleRequest nebo je možné využít již předpřipravených tříd. V těchoto předpřipravených třídách jsou běžně požadované funkce serveru jako úprava hlaviček příchozího požadavku, přesměrování požadavku apod. Pomocí jediného parametru (objekt třídy HttpServerExchange) metody handleRequest si handlery předávají aktuální stav požadavku a postupně vytvářené odpovědi.

Popisované handlery a listenery jsou základem architektury serveru Undertow, která je znázorněna na obrázku 2.4. Na příkladu 2.7.1 je ukázáno vytvoření jednoduchého webového serveru.

¹⁶Webové stránky projektu XNIO: http://xnio.jboss.org/

Obrázek 2.4: Zjednodušená architektura serveru Undertow

Příklad 2.7.1. Vytvoření jednoduché instance serveru Undertow

```
Undertow server = Undertow.builder()
   .addHttpListener(8080, "localhost")
   .setHandler(new HttpHandler() {
      @Override
      public void handleRequest(final HttpServerExchange exchange)
            throws Exception {
            exchange.getResponseHeaders()
                .put(Headers.CONTENT_TYPE, "text/plain");
            exchange.getResponseSender().send("Hello World");
      }
    }).build();
server.start();
```

Třída Undertow reprezentuje instanci samotného webového serveru a je ji nutné definovat prakticky vždy. Metodou addListener je přidán výše zmiňovaný listener, který naslouchá na zvoleném síťovém rozhraní a portu (při zvolení IP adresy 0.0.0.0 naslouchá na všech rozhraních). Tento jednoduchý příklad obsahuje pouze jeden handler přidaný metodou addHandler, který provádí veškerou činnost serveru a tou je odpovídání na všechny požadavky jednotným textem. Ve standardních aplikacích by následovalo volání dalšího handleru.

Integrace servlet kontejneru

Servlet kontejner obsažený v serveru Undertow je tvořen již implementovaným řetězcem handlerů, které poskytují potřebné funkcionality odpovídající specifikaci. Pro nastavení

základní funkcionality kontejneru existuje vysokoúrovňové rozhraní, ale opět je možné jeho funkce upravit nebo rozšířit pomocí vlastních *handlerů*.

Při inicializaci servlet kontejneru se nastavují požadované funkce v entitě DeploymentInfo a až po jeho kompletním nastavení se provede vytvoření řetězce handlerů, což dává prostor k vnitřním optimalizacím. Základní činností je potřeba nastavit prvky webové aplikace, které jsou definovány v souboru web.xml (viz. kapitola 2.2.3). Pro nastavení většiny možných prvků tohoto souboru je definováno několik statických metod ve třídě io.undertow.servlets.Servlets, které pomáhají servlet kontejner patřičně nastavit.

Nastavení jednoduchého servlet kontejneru je demonstrováno na příkladu 2.7.2.

Příklad 2.7.2. Konfigurace jednoduchého servlet kontejneru

V první části ukázky je vytvořená instance DeploymentInfo, která bude obsahovat jednoduchou konfiguraci s jediným servletem. Následně pomocí proběhne přidání do výchozího kontejneru a pomocí volání metody deploy se vytvoří celý řetězec *handlerů*, které budou poskytovat požadovanou funkčnost.

Celý proces je zakončen voláním metody start, kdy proběhnou poslední nastavení a obdržíme vstupní *handler* celého servlet kontejneru. Poté jej lze nastavit jako vstupní *handler* celé aplikace (viz metoda addHandler v příkladu 2.7.1), ale také mu může předcházet několik jiných handlerů, což je typičtější případ.

Pokročilá konfigurace servlet kontejneru

2.7.3 Srovnání serverů Undertow a Jetty

Stávající servlet kontejner v Jenkins CI je sice tvořen kombinací kontejneru Winstone a serveru Jetty, ale veškerou časově kriticky náročnou práci při běhu aplikace vykonává server Jetty. Proto pokud chceme srovnávat původní a plánované řešení servlet kontejneru v Jenkins CI, tak bychom měli srovnávat server Jetty se serverem Undertow.

Budeme tedy srovnávat servery Undertow a Jetty, jejich výhody a nevýhody vzhledem k využití v systému Jenkins CI:

• Rychlost: Server Undertow je sice nový, ale už přesto existují testy v kterých se ukázal být výkonnější než server Jetty. V tomto testování¹⁷ byl server Undertow v některých případech byl server Undertow i 3,5 krát rychlejší než server Jetty v počtu zpracovaných požadavků za jednotku času. Při porovnávání doby odezvy serveru na požadavek dosáhl server Undertow až třetinového času než server Jetty.

¹⁷Porovnání rychlosti, odezvy a celkové výkonnosti serverů Undertow, Jetty a jiných: http://www.techempower.com/benchmarks/#section=data-r8&hw=ec2&test=plaintext

Naopak při některých jiných konfiguracích byl server Jetty rychlejší a proto nelze definitivně určit, který server je rychlejší a podstatné je také způsob využití serveru. Dalším důležitým faktem je, že v Jenkins CI není využita nejnovější verze serveru Jetty (verze 9), ale jeho nižší verze 8, protože Jenkins CI aktuálně využívá starší verzi jazyka Java (verzi Java 6).

Lze tedy usuzovat, že server Undertow má potenciál být výkonnějším.

V rámci této práce bylo provedeno vlastní základní testování obou těch serverů a to ve vztahu přímo k systému Jenkins CI. Tímto testováním se zabýcá kapitola 3.5, kde jsou porovnávány implementace servlet kontejneru s využitím serveru Jetty a nové implementace postavené na serveru Undertow.

• **Spolehlivost:** Dalším důležitým aspektem je spolehlivost daného serveru. Server Jetty má za sebou již dlouhou historii a je integrován ve velkém množství různých aplikací¹⁸, což mu dodává velkou důvěryhodnost a lze očekávat, že bude pracovat velmi spolehlivě.

U serveru Undertow byla dokončena první finální verze teprve nedávno, takže lze předpokládat, že může obsahovat ještě drobné nedostatky, které budou časem opravovány. Jelikož tento server je integrován v novém aplikačním serveru WildFly 8, tak lze předpokládat, že postupem času bude také velmi spolehlivý. Nicméně v tomto aspektu je server Jetty zřejmě aktuálně lepší.

• Rychlost spuštění: Velmi často je u serverů hodnocena hlavně jejich rychlost a výkonnost v zátěži. Je běžné, že nebývá kladen důraz na velmi rychlé spuštění serveru. Pro standardní běh serveru, kdy bývá spuštěn jednou za několik týdnů či měsíců po nějakých úpravám aplikace, není doba spuštění zásadní. Pokud se na to podíváme z pohledu testování aplikace, kdy jsou spouštěny integrační testy a pro každý test musí být znovu spuštěn server, tak je rychlost nastartování serveru velmi podstatná. Cílem serveru Undertow je být minimalistickým a velmi rychlým řešením. Server Jetty poskytuje kvalitní podporu pro běh aplikací, ale je rozsáhlejší. Lze usuzovat, že rychlost spuštění bude u serveru Undertow výrazně nižší než u serveru Jetty.

V aktuálním stavu Jenkins CI běží integrační testy více než hodinu. Pokud by byl servlet kontejner spuštěn za výrazně kratší dobu, tak by mohla být doba testování také výrazně zkrácena.

• Velikost: Jelikož je servlet kontejner přímo integrován do archivu ve kterém je systém Jenkins CI distribuován, tak komunita dbá na to, aby přidávané komponenty nebyly příliš velké a průběžně sleduje aktuální velikost výsledného archivu¹⁹.

Po integraci Jetty vzrostla velikost servlet kontejneru o 1,5 MB na celkovou velikost 1,8 MB. U serveru Undertow je uváděno, že jeho archiv má méně než 1 MB, ale konečná velikost po integraci bude také záležet na využitých komponentách a rozsahu implementace. Přesto z pohledu velikosti výsledného archivu se jeví server Undertow jako výhodnější, ale rozdíl oproti serveru Jetty není zásadní.

• Konfigurovatelnost: Server Undertow je velmi flexibilní a způsob jeho návrhu, který byl popsán výše, umožňuje provádět mnoho různých úpravy své činnosti dle potřeby

¹⁸Aplikace, které využívají server Jetty: http://www.eclipse.org/jetty/powered/

¹⁹Stránka, kde je v systému Jenkins CI automatizovaně sledována velikost archivu aplikace:

a využít pouze ty části, které potřebujeme. Tato filozofie je velmi blízká filozofii projektu Jenkins CI.

Server Jetty je oproti tomu robustnější a rozsáhlejší, ale neumožňuje tak velké přizpůsobování potřebám uživatele jako například využití jen několika malých částí jeho funkčnosti či jejich kombinování.

• Snadnost použití: Server Jetty má již dlouhou historii a je v něm vše pečlivě dokumentováno a to jeho využití pro uživatele činí poměrně snadným. Podstatnou výhodou je, že server Jetty poskytuje velké množství vysokoúrovňových rozhraní pro různé konfigurace serveru.

Jelikož je server Undertow velmi mladým projektem a není tolik ustálený, tak postrádá některé věci, které jsou u serveru Jetty samozřejmostí. Dokumentace k serveru Undertow je poměrně strohá, místy ne úplně přesná a stále se vyvíjí. Jeho velká flexibilita při konfiguraci s sebou nese i jisté nevýhody a tím je právě jednoduchost jeho použití. Další nepříjemností je, že není dostupné tolik propracované rozhraní pro konfiguraci jako u serveru Jetty, což lze opět přičítat délce trvání projektu.

Je zjevné, že využití serveru Jetty je podstatně jednodušší než je tomu u serveru Undertow. Nicméně tato skutečnost je jen překážkou pro provedení integrace, ale následně nemusí činit další problémy a nijak neovlivňuje funkčnost výsledné aplikace.

Kapitola 3

Analýza současného stavu servlet kontejneru a návrh integrace

Tato kapitola se zabývá důkladnější analýzou a zkoumáním architektury aplikace Jenkins CI z pohledu jejího vestavěného kontejneru a jeho možných úprav (kapitola 3.1). V další části jsou konkretizovány jednotlivé činnosti, které současný servlet kontejner provádí a které musí nová implementace také poskytovat (kapitola 3.2). Poslední část této kapitoly diskutuje možné varianty integrace serveru Undertow do Jenkins CI, jejich výhody a nevýhody (kapitola 3.3). Jako výstup této analýzy je zvolen způsob integrace, který bude následně implementován.

Jelikož k této problematice je minimum oficiální zdrojů, které by danou problematiku blíže popisovaly, tak podstatná část zde uváděných informací byla čerpána přímo ze zdrojových kódů aplikace a komponent Jenkins CI.

3.1 Aktuální stav architektury servlet kontejneru v Jenkins CI

V následujících dvou podkapitolách bude blíže analyzována architektura Jenkins CI z pohledu servlet kontejneru. Tato analýza je velmi důležitá pro pochopení návazností jednotlivých komponent, které budou později upravovány.

Jak již bylo uvedeno v kapitole 2.6, současný servlet kontejner v Jenkins CI se skládá z nástojů Winstone a Jetty, které byly také popisovány v předchozích kapitolách. Velká část servlet kontejneru Winstone byla odstraněna a zůstala pouze část, která provádí zpracování parametrů programu po spuštění aplikace. Činnost webového serveru, servlet kontejneru a další vykonává server Jetty.

3.1.1 Architektura Jenkins CI z pohledu servlet kontejneru

Na vysoké úrovni pohledu lze architekturu serveru Jenkins CI rozdělit do tří částí:

- Jádro aplikace do kterého patří nejnutnější základní komponenty systému a části, které jsou pro Jenkins CI specifické a vznikají v rámci tohoto projektu.
- Přídavné moduly aplikace, které jsou do ní dynamicky přidávány jako archivy javových programů .jar. Tyto součásti jsou většinou nutné pro standardní běh aplikace a je s nimi aplikace běžně dodávána (teoreticky lze aplikaci spustit např. bez servlet kontejneru pomocí aplikačního serveru, ale toto je spíše ojedinělý případ).

Komponenty z této kategorie pocházejí typicky z externích projektů. Do této kategorie také spadá servlet kontejner, který je aktuálně do aplikace přidáván pod názvem winstone. jar.

• Rozšiřující moduly (angl. plugins) jsou samostatné menší programy, které nějakým způsobem přidávají funkcionalitu serveru Jenkins CI. Typicky nejsou dodávány s aplikací a uživatel si je může stáhnout nebo si nějaký vlastní modul vytvořit.

Samotná aplikace se dodává jen s těmi nejnutnějšími součástmi a ponechává na uživatelích, které další funkcionality si do systému doinstalují. V současné době již existují stovky takových modulů, které jsou volně ke stažení.

V následujícím textu bude při popisu interních součástí zdrojových kódů použita notace ve tvaru Název_třídy::Název_metody.

Architektura Jenkins CI z pohledu servlet kontejneru je znázorněna na obrázku 3.1. Jsou zde zachyceny především komponenty, které přímo souvisejí s jeho činností.

Obrázek 3.1: Přehled architektury systému Jenkins CI z pohledu vestavěného servlet kontejneru

Archiv winstone.jar obsahuje servlet kontejner pro Jenkins CI. Název je nyní sice mírně matoucí (způsoben předchozí implementací), ale aktuálně jsou součástí tohoto archivu komponenty Winstone a Jetty.

Velmi podstatnu součásti aplikace z pohledu servlet kontejneru je komponenta extras-executable-war. Tato součást aplikace je sice malá, ale obsahuje metodu main, kterou se aplikace spouští (pokud není spuštěna v aplikačním serveru). Hlavním úkolem této komponenty je právě spustit servlet kontejner a tím spustit i celou aplikaci. Tento proces spuštění aplikace je zobrazen na obrázku 3.2.

Nejprve je spuštěna vstupní metoda celé aplikace Main.java::main z komponenty extras-executable-war. Po počáteční inicializaci je předáno řízení aplikace metodě Launcher.java::main z archivu winstone.jar, která provede nastartování a zavedení servlet kontejneru. Následně je provedena inicializace a spuštění jediného servletu aplikace Jenkins CI a tím je servlet Stapler (bližší informace o tomto servletu jsou v kapitole 2.1.3).

Pokud se podaří úspěšně spustit tento servlet, tak je spuštění celé aplikace Jenkins CI z pohledu servlet kontejneru úspěšně provedené a aplikace běží.

Zjištění, které komponenty má servlet kontejner při svém startu zavést, se nachází v souboru web.xml, což je standardní konfigurační soubor pro webové aplikace v jazyce Java EE. Může se zde nacházet také konfigurace uživatelských účtů pro přístup k aplikaci a specifikování různých druhů přístupových práv.

Obrázek 3.2: Průběh spouštění aplikace Jekins CI při spouštění pomocí vestavěného servlet kontejneru

3.1.2 Průběh komunikace prostřednictvím servlet kontejneru

Po úspěšném zavedení a spuštění aplikace provádí servlet kontejner zpracovávání příchozích požadavků a předává je aplikaci Jenkins CI. Typický zjednodušený průběh komunikace servlet kontejneru s aplikací je znázorněn na obrázku 3.3.

Při komunikaci je příchozí HTTP požadavek zpracován pomocí servlet kontejneru a následně předán patřičnému servletu (dle nastavení pravidel pro směřování požadavků). Jelikož je v aplikaci pouze jediný servlet Stapler, tak je požadavek předán jemu. Tato komponenta následně provede netriviálním způsobem rozhodnutí, které části aplikace předat požadavek k vykonání nebo zda náleží nějakému rozšiřujícímu modulu. Následně stejnou cestou probíhá zaslání HTTP odpovědi zpět klientovi.

Byla zde zachycena pouze jedna z možných činností servlet kontejneru a tou je zpracovávání komunikace protokolem HTTP. Další činnosti kontejneru budou rozebírány později.

Obrázek 3.3: Průběh komunikace aplikace Jekins CI prostřednictvím vestavěného servlet kontejneru

3.2 Zpětná kompatibilita servlet kontejner v Jenkins CI

V této kapitole jsou blíže rozebírány a analyzovány jednotlivé funkce servlet kontejneru v Jenkins CI. Analýza jeho funkčnosti je zaměřena především na návrh nového servlet kontejneru, který vznikne integrací serveru Undertow. Z této kapitoly vyplynou hlavní požadavky, které bude potřeba řešit při samotné implementaci.

Stávající servlet kontejner je v Jenkins CI již dlouhou dobu a mnoho uživatelů a komponent systému přímo používá jeho specifické parametry, které pocházejí z kontejneru Winstone [3]. Nová implementace tudíž musí zachovat naprosto stejný formát parametrů, aby se výměnou servlet kontejneru nestala část aplikace nebo rozšiřujících modulů nefunkční. Také je potřeba zachovat výchozí hodnoty jednotlivých parametrů.

3.2.1 Funkcionality servlet kontejneru

Při spouštění aplikace je před předáním řízení aplikace servlet kontejneru část parametrů zpracována komponentou extras-executable-war (blíže rozebrána v kapitole 3.1) a zbylé parametry jsou přímo předány kontejneru, který podle nich nastaví svou činnost. Kompletní soupis parametrů, které jsou implementovatovány v servlet kontejneru, je v příloze ??. Jednotlivé parametry zde nejsou rozebírány, ale následující analýza se zaměřuje především na klíčové bodů funkčnosti servlet kontejneru.

Pro zachování zpětné kompatibility musí servet kontejner v aplikaci Jenkins CI poskytovat následující funkce:

- Komunikaci nešifrovaným protokolem HTTP
- Komunikaci šifrovaným protokolem HTTPS
- Komunikaci protokolem AJP13
- Umožnit přihlašování a správu přístupových práv
- Umožnit restartování a ukončování aplikace přes speciální port
- TODO: access logger, podrobnější popis činností
- TODO: Nastavení aplikace dle web.xml?

Protokoly HTTP a HTTPS jsou velmi běžnými protokoly používanými pro komunikaci aplikací ve webovém prostředí a v této práci je očekáváno, že čtenář je s němi již seznámen. Protokol AJP13 je speciálním typem protokolu, který se využívá především pro efektivnější komunikaci webového serveru a servlet kontejneru [5].

Další činností kontejneru, kterou může vykonávat je správa přístupových práv a umožnění autentizace uživatelů. Konkrétní uživatelské účty mohou být specifikovány při spouštění servlet kontejneru nebo načítány ze standardního konfiguračního souboru webové aplikace web.xml.

Poslední z hlavních funkcionalit, které nabízí servlet kontejner v Jenkins CI a je nutné ji zachovat, je možnost ukončit nebo restartovat aplikaci pomocí zaslání speciálního požadavku na zvolený port.

Po integraci serveru Jetty do servlet kontejneru byla přidána ještě možnost komunikace protokolem SPDY, ale tento protokol ještě není v Jenkins CI více využíván a tudíž jeho implementace není zásadní.

3.3 Návrh způsobu integrace serveru Undertow

Na základě analýzy, která proběhla v předchozích kapitolách, je v této kapitole zvolen způsob integrace serveru Undertow do systému Jenkins CI. Obě navržené možné varianty integrace jsou porovnány z různých hledisek a je zvolen způsob, kterým bude následně implementace provedena.

Na závěr kapitoly jsou popsány problémy, které byly objeny při analýze a mají dopad na samotnou integraci a její výsledky.

3.3.1 Varianty integrace

Pro integraci serveru Undertow do systému Jenkins CI jsou možné tyto dva přístupy:

- 1. Nahrazení pouze serveru Jetty v servlet kontejneru a ponechání zbytku implementace kontejneru Winstone, což by představovalo pouze úpravy části stávajícího kódu.
- 2. Nahrazení jak serveru Jetty tak kontejneru Winstone. Tento přístup v podstatě znamená provedení celé implementace servlet kontejneru pro Jenkins CI úplně znovu.

Obě varianty integrace mají své klady a zápory. Srovnáme je z hlediska výkonu, proveditelnosti a zpětné kompatibility implementace, abychom mohli následně zvolit vhodnější variantu:

- Srovnání výkonu: V první variantě integrace je ponechána stále velmi stará implementace kontejneru Winstone, která zřejmě stále ještě obsahuje nepotřebné součásti a samotný způsob inicializace není optimalizován pro potřeby serveru Undertow, takže by mohlo docházet ke zbytečnému zpomalování aplikace. Nová implementace může být přímo optimalizována pro potřeby serveru Undertow a poskytovat lepší výkon i kratší dobu spuštění aplikace, která není zanedbatelná při spouštění integračních testů.
- Srovnání proveditelnosti: První varianta představuje provedení úprav pouze v částech, kde je přímo integrován server Jetty, zatímco v druhé variantě je potřeba provést znovu celou implementaci integrace servlet kontejneru.

V tomto případě je úprava stávajícího kódu aplikace zřejmě snazším přístupem a také umožňuje provedení rychlejší implementace, protože není nutné návrhovat celý modul, ale pouze jeho části.

- Srovnání zpětné kompatibility: Dosažení zpětné kompatibility u první varianty je snazší, jelikož jsou viditelná místa, která je potřeba znovu implementovat a nezanedbat. Nicméně druhá varianta nemá žádné faktické nevýhody k dosažení stejné úrovně zpětné kompatibility jako varianta první.
- Další hlediska: Jelikož dlouhodobý vývoj servlet kontejneru v Jenkins CI je na okraji zájmu a jsou prováděny především nejnutnější úpravy, tak celý kód poněkud zdegeneroval a je obtížně čitelný, což je velká závada u open source projektu. Tato skutečnost může bránit dalším přispěvovatelům k provádění potřebných změn.

Z tohoto pohledu by nová implementace mohla přinést mnohem čitělnější způsob řešení a zbavit se zbytečností z původní realizace servlet kontejneru.

Bez ohledu na zvolený způsob integrace bude jeho výsledkem především nový archiv .jar, který bude obsahovat příslušnou integraci. Pro jeho využití v systému Jenkins CI je potřeba upravit několik konfigurací a případně upravit jeho načítání při spouštění aplikace v modulu extras-executable-war, což bylo rozebíráno v kapitole 3.1.

3.3.2 Zvolení způsobu integrace

Při výběru varianty integrace serveru Undertow do Jenkins CI byly zváženy výhody a nevýhody, které byly popsány v předchozí kapitole. Při nahrazení pouze serveru Jetty by provedení integrace zřejmě probíhalo podstatně snadněji než ve variantě druhé, ale z kvalitativního pohledu se tato varianta jeví jako méně vhodná.

Při implementaci budou tedy nahrazeny obě komponenty stávajícího servlet kontejneru a bude tudíž provedena celá implementace znovu s využitím serveru Undertow. Tato varianta by měla přinést lepší čitelnost zdrojového kódu a poskytnout lepší výkonnost celé aplikace než druhá varianta.

3.3.3 Zjištěné problémy

Při analyzování možností integrace byly zjištěny dva problémy.

Prvním problémem je, že server Undertow je určen pro běh pod virtuálním strojem, který odpovídá specifikaci jazyka Java verze 7, zatímco server Jenkins CI využívá verzi 6. Server Jenkins CI využívá starší verzi z důvodu zpětné kompatibility řešení.

Specifikace jazyka je plně zpětně kompatibilní, takže server Jenkins CI může být spuštěn s novější verzí virtuálního stroje, ale pro okamžité začlenění serveru Undertow do Jenkins CI je tato skutečnost problém. Pokud by ovšem provedená integrace poskytovala dobré výsledky, tak by bylo možné upravit kód serveru Undertow tak, aby odpovídal starší specifikaci. V těchto verzích jazyka není zásadní rozdíl a úprava by byla jistě možná, ale velmi pracná a stále by potřebovala údržbu při příchodu nových verzí serveru Undertow. Další možností je zvýšit tlak na přechod celé aplikace na novější verzi specifikace jazyka, což výhledově jistě nastane, ale není jisté kdy.

V této práci bude tento problém vyřešen převedením aplikace Jenkins CI na vyšší verzi, což představuje úpravu několika konfigurací.

Druhým problémem je, že při integraci serveru Jetty do Jenkins CI byla přidána možnost využít protokol SPDY, jehož implementace není v současné době v serveru Undertow dostupná. Nicméně tato možnost je zavedena jen krátce a zřejmě ještě není využívána žádnými komponentami, takže by neměl být problém, kdyby nová implementace neobsahovala tuto volbu.

Je důležité dodat, že požadavek na implementaci protokolu SPDY byl v komunitě serveru Undertow vznesen a je také zaznamenán v systému pro sledování chyb¹. Je tedy možné, že tato funkcionalita bude v blízké době do serveru Undertow přidána.

3.4 Implementace

3.5 Srovnání výkonu původní a nové implementace

Plánovaná implementace protokolu SPDY v serveru Undertow: https://issues.jboss.org/browse/UNDERTOW-9

Kapitola 4

Závěr

Začátek této práce se věnoval seznámení s integračním serverem Jenkins CI, se servery Jetty a Winstone, které jsou součástí jeho servlet kontejneru, a se serverem Undertow, jehož integrace do Jenkins CI je hlavní náplní této práce. V následující části byla analyzována architektura aplikace Jenkins CI a také stav servlet kontejneru, který je v něm integrován.

Po seznámení se s podmínkami pro integraci byly zkoumány možnosti provedení samotné integrace serveru Undertow do Jenkins CI. Byly zkoumány dva způsoby integrace. Jednou možností je nahrazení pouze komponenty Jetty, která vykonává většinu práce v aktuálním kontejneru, zatímco druhou variantou je nahrazení obou součástí. Po důkladném zvážení různých aspektů integrace byla zvolena varianta, kdy budou nahrazeny obě komponenty současného servlet kontejneru a tudíž proběhne zcela nová implementace.

Literatura

- [1] Kawaguchi, K.: Containers Jenkins Jenkins Wiki [online]. https://wiki.jenkins-ci.org/display/JENKINS/Containers, 2011-02-03 [cit. 2014-01-06].
- [2] Kawaguchi, K.: Governance Document Jenkins Jenkins Wiki [online]. https://wiki.jenkins-ci.org/display/JENKINS/Governance+Document, 2012-03-21 [cit. 2014-01-09].
- [3] Kawaguchi, K.: Winstone is now powered by Jetty [online]. https://groups.google.com/forum/#!topic/jenkinsci-dev/R1FhPki9z4c, 2013-10-04 [cit. 2014-01-11].
- [4] Knowles, R.: Winstone servlet container [online]. http://winstone.sourceforge.net/, cit. 2014-01-09.
- [5] Milstein, D.: The Apache Tomcat Connector AJP Protocol Reference [online]. http://tomcat.apache.org/connectors-doc/ajp/ajpv13a.html, cit. 2014-01-13.
- [6] Prakash, W.: Hudson Web Architecture [online]. http://hudson-ci.org/docs/HudsonArch-Web.pdf, 2010 [cit. 2014-01-11].
- [7] Smart, J. F.: *Jenkins: The Definite Guide*. O'Reily Media, Inc., 2011, ISBN 978-1-449-30535-2.
- [8] Wang, R.: What is a Servlet Container? [online]. http://java.dzone.com/articles/what-servlet-container, 2013-01-05 [cit. 2014-01-02].
- [9] What is Stapler? [online]. http://stapler.kohsuke.org/what-is.html, 2013-11-15 [cit. 2014-01-13].
- [10] Webové stránky projektu Jenkins CI [online]. http://jenkins-ci.org/.
- [11] Dokumentace serveru Undertow [online]. http://undertow.io/documentation/index.html, [cit. 2014-05-16].
- [12] Undertow listeners [online]. http://undertow.io/documentation/core/listeners.html, [cit. 2014-05-17].
- [13] What is Maven? [online]. http://maven.apache.org/what-is-maven.html, 2014-05-08 [cit. 2014-05-15].

- [14] Jetty Servlet Engine and Http Server [online]. http://www.eclipse.org/jetty/, 2014 [cit. 2014-01-02].
- [15] Webové stránky projektu Undertow [online]. http://undertow.io, [cit. 2014-05-16].