Sans documents ni calculatrice.

(tout traiter est une condition suffisante mais non nécessaire pour avoir une bonne note).

Exercice nº1.

On considère le déterminant D_n à n lignes et n colonnes, dont le terme d(i,j) de ligne i et de colonne i est égal à :

x sur la diagonale, soit d(i,i) = x pour i=1 à n.

x-1 juste « au-dessus » de cette diagonale : d(i,i+1) = x-1, pour i = 1 à n-1;

1 juste « en dessous » de la diagonale, soit d(i,i-1) = 1, pour i = 2 à n;

0 sinon.

Calculer en fonction de x les déterminants D_1 , D_2 et D_3 . En développant D_n selon sa première ligne, exprimer D_n en fonction de x, D_{n-1} et D_{n-2} . Résoudre cette (belle ?) double récurrence pour obtenir l'expression de D_n en fonction de n et de x, supposé différent de 2. Calculer D_n pour x=2.

Exercice n°2.

On considère les matrices
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 5 & -5 \\ 1 & 3 & -3 \end{pmatrix}$$
 et $P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & -1 & 3 \\ 1 & -1 & 2 \end{pmatrix}$.

Calculer les mineurs, cofacteurs, déterminant, trace, rang, inverse, polynôme caractéristique, valeurs propres et vecteurs propres de A.

Calculer P^{-1} (vérifier votre calcul en effectuant le produit P. P^{-1}) puis calculer le produit $P^{-1}AP$. Commenter ce résultat. Calculer A^n , pour tout entier naturel n.

On considère dans l'espace \mathbb{R}^3 , les points M_n de coordonnées $\begin{pmatrix} x_n \\ y_n \\ z_n \end{pmatrix}$ vérifiant le système

d'équations:

$$X_{n+1} = Z_n$$

$$y_{n+1} = x_n + 5y_n - 5z_n$$

$$\mathbf{z}_{n+1} = \mathbf{x}_n + 3\mathbf{y}_n - 3\mathbf{z}_n$$

avec x_1 , y_1 et z_1 fixés. Exprimer les coordonnées de M_n en fonction de celles de M_1 . Quelles sont-elles pour $x_1 = y_1 = z_1 = 1$? Puis pour $x_1 = 1$; $y_1 = -1$; $z_1 = -1$? Et enfin pour $x_1 = 1$; $y_1 = 3$; $z_1 = 2$? Commenter ces résultats.

Exercice nº3.

On considère le système de 3 équations à 3 inconnues x, y et z, à un paramètre réel m :

$$x + y + mz = m$$

$$x + my - z = 1$$

$$x + y - z = 1$$

Résoudre le système sous forme de déterminants dans le cas de Cramer ; calculer ensuite explicitement ces déterminants (si vous avez le temps..). Quelles sont les solutions lorsque l'on n'est pas dans le cas de Cramer.