>> IN THE NAME OF GOD <<

Analysis of 1st order and 2nd order Nonlinear Semi-Rigid Connection Frame subjected to Pushover lateral displacement (Displacement Control) In MATLAB

This program is written by Salar Delavar Ghashghaei -2015.05.19 E-mail: salar.d.ghashghaei@gmail.com

Define Parameters:

```
W1=.003; % [kN/mm] % Distributed load Value (+ : Down)
W2=.005; % [kN/mm] % Distributed load Value (+ : Down)
h= 3000; % [mm]
L = 6000; % [mm]
L1 = 1000; % [mm] % Distance of Distributed load from edge
L2 = 1000; % [mm] % Distance of Distributed load from edge
EIc = 200*100^4/12; % [kN.mm^2] column
EAc = 200*10000; % [kN] column
EIb = 200*50^4/12; % [kN.mm^2] beam
EAb = 200*(50)^2; % [kN] beam
D7=.1;% [mm] Initial Displacement [DOF (7)]Incremantal Displacement
```

Nonlinear Rotational Spring of columns:

```
tyc=.001; % Yield rotation
Myc=40e+3; % Yield moment
tuc=.025; % Ultimate rotation
Muc=1.25*Myc; % Ultimate moment
nc = 9; % Moment-rotation shape parameter
Rkic=Myc/tyc;
Rkpc=(Muc-Myc)/(tuc-tyc);
% Notice: Semi-Rigid Spring for column Connection Number 2
```

Semi-Rigid Connection Number 1

Elastic Perfect Plastic Nonlinear Moment-Rotation Relation

$$M(\theta) = \frac{R_{ki}\theta}{\left(1 + \left(\left|\frac{R_{ki}\theta}{M_u}\right|\right)^n\right)^{\frac{1}{n}}} \therefore R_{ki} = \frac{M_u}{\theta_0}$$
Inlinear stiffness-Rotation Relation

Nonlinear stiffness-Rotation Relation

$$K(\theta) = \frac{R_{ki}}{\left(1 + \left(\left|\frac{R_{ki}\theta}{M_u}\right|\right)^n\right)^{\frac{1}{n}}}$$

Semi-Rigid Connection Number 2

Elasto-plastic with hardening Nonlinear Moment-Rotation Relation

$$\mathsf{M}(\theta) = \frac{(R_{ki} - R_{kp})\theta}{(1 + (\left|\frac{R_{ki}\theta}{M_{y}}\right|)^{n})^{\frac{1}{n}}} + R_{kp}\theta \quad \therefore R_{ki} = \frac{M_{y}}{\theta_{y}} \quad \therefore R_{kp} = \frac{M_{u} - M_{y}}{\theta_{u} - \theta_{y}}$$

$$\therefore R_{ki} = \frac{My}{\theta y} \quad \therefore \quad R_{kp} = \frac{M_u - M_y}{\theta_u - \theta_y}$$

Nonlinear stiffness-Rotation Relation

$$K(\theta) = \frac{(R_{ki} - R_{kp})}{(1 + (\left|\frac{R_{ki}\theta}{M_y}\right|)^n)^{\frac{1}{n}}} + R_{kp}$$

Analysis Report:

First-order Nonlinear Analysis

(+)It is converged in 4 iterations for increment 1

(+)It is converged in 4 iterations for increment 2

(+)It is converged in 4 iterations for increment 3

(+)It is converged in 4 iterations for increment 4

(+)It is converged in 5 iterations for increment 5

(+)It is converged in 5 iterations for increment 6

(+)It is converged in 5 iterations for increment 7

(+)It is converged in 5 iterations for increment 8

(+)It is converged in 5 iterations for increment 9

(+)It is converged in 5 iterations for increment 10

(+)It is converged in 24 iterations for increment 1539

(+)It is converged in 23 iterations for increment 1540

(+)It is converged in 24 iterations for increment 1541

spring at support [DOF (6)] reached to Ultimate Rotation

Second-order Nonlinear Analysis ***********************************

(+)It is converged in 4 iterations for increment 1

(+)It is converged in 4 iterations for increment 2

(+)It is converged in 4 iterations for increment 3

(+)It is converged in 4 iterations for increment 4

(+)It is converged in 5 iterations for increment 5

(+)It is converged in 5 iterations for increment 6

(+)It is converged in 5 iterations for increment 7

(+)It is converged in 5 iterations for increment 8

(+)It is converged in 5 iterations for increment 9

(+)It is converged in 5 iterations for increment 10

(+)It is converged in 24 iterations for increment 1541

(+)It is converged in 24 iterations for increment 1542

(+)It is converged in 23 iterations for increment 1543

spring at support [DOF (6)] reached to Ultimate Rotation

=== 1st-Order Nonlinear ==+== 2nd-Order Nonlinear =====

Disp.(D7) Base Shear(D1+D4) Disp.(D7) Base Shear(D1+D4)

tep(i) 1		(£9)	lst-order No (f13)	onlinear == (f14)	(f6)	(f12)
	53.335	-0.002	5000.002	5000.002	53.225	-0.000
2		-0.000	5000.002		106.450	-0.000
3 4	160.004 213.338	-0.000	5000.002 5000.002			-0.000
5	266.673	-0.000 -0.000	5000.002			-0.000 -0.000
6	320.007	-0.000	5000.002			-0.000
7	373.342	-0.000	5000.001			-0.000
8	426.676	-0.000	5000.001			-0.000
9	480.011	-0.000	5000.000			-0.000
10	533.345	-0.000	5000.000	4999.992	532.251	-0.000
•						
1107	20068.909	-0.606	4999.992	4999.992	20108.135	-0.000
	20013.140	-0.607			20052.236	-0.000
1109	19957.370	-0.609			19996.336	-0.000
		:	2nd-order No	onlinear ==		+
tep(i)	(£3)	(£9)	(f13)	(f14)	(f6)	(f12)
1	53.056	0.001	5000.392	4999.613	52.953	-0.000
2	106.112	0.002	5000.382	4999.603	105.905	-0.000
3	159.168	0.002	5000.381		158.858	-0.000
4	212.224	0.003	5000.381			-0.000
5	265.280	0.004	5000.380			-0.000
6	318.337	0.005	5000.380	4999.605		-0.000
7	371.393	0.006	5000.380			-0.000
8	424.449	0.007	5000.380			-0.000
9 10	477.505 530.561	0.007 0.008	5000.380 5000.380	4999.605 4999.605		-0.000 -0.000
•	330.301	0.008	3000.380	4999.003	329.320	-0.000
	20010.679	166.932	5070.793	4929.192	20101.804	0.000
1109		167.384	5070.921		20045.594	0.000
	19954.353				19989.385	0.000

Plotting:

