

KONKURS CHEMICZNY DLA UCZNIÓW SZKÓŁ PODSTAWOWYCH WOJEWÓDZTWA MAZOWIECKIEGO

ETAP REJONOWY

11 grudnia 2023 r. godz. 11:00

Uczennico/Uczniu:

- 1. Arkusz składa się z 23 zadań, na rozwiązanie których masz 90 minut.
- 2. Pisz długopisem/piórem dozwolony czarny lub niebieski kolor tuszu.
- 3. Nie używaj ołówka ani korektora. Jeżeli się pomylisz, przekreśl błąd i napisz inną odpowiedź.
- 4. Pisz czytelnie i zamieszczaj odpowiedzi w miejscu do tego przeznaczonym.
- 5. W rozwiązaniach zadań otwartych przedstawiaj swój tok rozumowania za napisanie samej odpowiedzi nie otrzymasz maksymalnej liczby punktów.
- 6. Pamiętaj, że zapisy w brudnopisie nie podlegają ocenie.

Życzymy powodzenia!

Maksymalna liczba punktów	40	100%
Uzyskana liczba punktów		%
Podpis Przewodniczącej/-ego RKK		

Zadanie 1.

Poniżej przedstawiono fotografie oraz skrócone charakterystyki czterech pierwiastków

chemicznych, które oznaczono symbolami X, Y, Z i W.

Pierwiastek X

Jest trzecim pod względem rozpowszechnienia pierwiastkiem, występującym w skorupie ziemskiej. Między innymi od jego symbolu wywodzi się dawna nazwa najbardziej zewnętrznej warstwy globu – sial.

Charakteryzuje się stosunkowo małą gęstością, jest kowalny i łatwy w obróbce oraz odlewaniu. Jego stopy mają wiele praktycznych zastosowań.

Źródło fotografii pierwiastków: commons.wikimedia.org

Pierwiastek Y

W temperaturze pokojowej jest brunatną cieczą, łatwo przechodzącą w stan gazowy (pary), o silnym, ostrym zapachu. Toksyczny. Związek tego pierwiastka ze srebrem był dawniej powszechnie wykorzystywany w fotografii.

Pierwiastek Z

Jest pierwiastkiem niezbędnym do życia – wchodzi w skład białek. Produkuje się z niego nawozy sztuczne oraz wykorzystuje do wulkanizacji gumy. Jest znany od czasów prehistorycznych.

Pierwiastek W

Bardzo miękki, można go kroić nożem. Gwałtownie reaguje z wodą, łatwo zapala się, emitując fioletowe światło. Jego jony (wraz z jonami sodu i jonami chlorkowymi) pełnią bardzo ważną rolę w organizmie człowieka: biorą udział w przewodnictwie impulsów nerwowych, kontrolują pracę mięśnia sercowego.

Zadanie 1.1. (0-1)

Pierwiastek X tworzy z pierwiastkiem Z związek chemiczny.

Wskaż wzór sumaryczny tego związku. Zaznacz poprawną odpowiedź.

- A. XZ
- B. XZ_2
- $C. XZ_3$
- D. X_2Z_3

Zadanie 1.2. (0-1)

Pierwiastek Y tworzy dwuatomowe czasteczki. Wskaż wzór elektronowy czasteczki pierwiastka Y2. Zaznacz poprawną odpowiedź.

B.
$$Y = Y$$
. C. $Y - Y$. D. $Y = Y$:

$$D.: Y = Y:$$

Zadanie 1.3. (0-1)

Wskaż pierwiastki będące dobrymi przewodnikami prądu elektrycznego. Zaznacz poprawną odpowiedź.

Zadanie 1.4. (0-1)

Wskaż liczbę protonów znajdująca się w jądrze atomu pierwiastka W. Zaznacz poprawną odpowiedź.

Zadanie 2. (0-1)

Szereg promieniotwórczy to zbiór radionuklidów powstających w wyniku kolejnych rozpadów promieniotwórczych. Promieniotwórczy szereg aktynowy rozpoczyna się od nuklidu uranu-235, a kończy na nuklidzie ołowiu-207.

Określ liczbę rozpadów α i liczbę rozpadów β występujących w opisanym szeregu aktynowym. Zaznacz poprawną odpowiedź.

A.
$$28 \beta^- i 18 \alpha$$
 B. $0 \beta^- i 7 \alpha$ C. $1 \beta^- i 8 \alpha$ D. $4 \beta^- i 7 \alpha$

B.
$$0 \beta^{-} i 7 \alpha$$

Zadanie 3. (0-1)

Fluorowodór jest w warunkach normalnych (0 °C, 1013 hPa) cieczą nieprzewodząca prądu elektrycznego. Pod ciśnieniem 1013 hPa jego temperatura wrzenia wynosi 19,5 °C. Fluorowodór, zarówno ciekły, jak i gazowy bardzo dobrze rozpuszcza się w wodzie. Jego roztwory wodne słabo przewodzą prąd elektryczny. Poniżej przedstawiono cztery propozycje modeli struktury stałego fluorowodoru.

Wskaż model przedstawiający właściwą strukturę kryształu fluorowodoru (ciała stałego). Zaznacz poprawną odpowiedź.

Zadanie 4.

Przygotowano dwie ampuły: o objętości 1 dm³ (**ampuła A**) oraz 2 dm³ (**ampuła B**). Z tych ampuł wypompowano powietrze. Następnie do **ampuły A** wprowadzono gazowy amoniak NH₃, a do **ampuły B** – wodór H₂. W obu ampułach panowały warunki normalne.

Zadanie 4.1. (0-1)

Rozstrzygnij, w której ampule znajduje się większa liczba <u>cząsteczek</u>. Zaznacz poprawną odpowiedź.

A. w ampule A

- B. w ampule B
- C. na podstawie podanych informacji nie można rozstrzygnąć, w której ampule znajduje się większa liczba cząsteczek
- D. w obu ampułach znajduje się taka sama liczba cząsteczek

Zadanie 4.2. (0-1)

Rozstrzygnij, w której ampule znajduje się większa liczba <u>atomów</u>. Zaznacz poprawną odpowiedź.

A. w ampule A

- B. w ampule B
- C. na podstawie podanych informacji nie można rozstrzygnąć, w której ampule znajduje się większa liczba atomów
- D. w obu ampułach znajduje się taka sama liczba atomów

Zadanie 4.3. (0-1)

Rozstrzygnij, w której ampule znajduje się większa <u>masa</u> gazu. Zaznacz poprawną odpowiedź.

A. w ampule A

- B. w ampule B
- C. na podstawie podanych informacji nie można rozstrzygnąć, w której ampule znajduje się większa masa gazu
- D. w obu ampułach znajduje się taka sama masa gazu

Zadanie 5.

Przygotowano 11 roztworów o ściśle określonych wartościach pH, od pH = 2 do pH = 12. Krople tych roztworów naniesiono na porcelanową płytkę z wgłębieniami w taki sposób, że w każdej kolumnie (pionowo) znajdował się roztwór o określonym pH. Do tych samych wgłębień dodano (kroplami) roztwory pięciu wybranych wskaźników kwasowo-zasadowych. Każdy ze wskaźników znajdował w osobnym rzędzie (poziomo). Zdjęcie wyniku doświadczenia, wraz z opisem kolumn i rzędów wgłębień w płytce, przedstawiono poniżej.

W drugiej części doświadczenia zbadano zachowanie się wskaźników (zmianę barwy) wobec dwóch roztworów: **Próbki A**. oraz **Próbki B**. Wynik tego doświadczenia zaprezentowano na poniższym zdjęciu.

Zadanie 5.1. (0-1)

Podaj wartość pH próbki A. Zaznacz poprawną odpowiedź.

A. 4

B. 8

C. 10

D. 12

Zadanie 5.2. (0-1)

Zaznacz poprawne dokończenie zdania:

Próbka B. mógł/mogło być

A. płyn do mycia szyb na bazie amoniaku.

B. mleko.

C. płyn do odrdzewiania.

D. płyn do mycia naczyń.

Zadanie 6. (0-1)

Na poniższych zdjęciach przedstawiono probówki zawierające rozcieńczone wodne roztwory czterech soli. Każdy roztwór zawiera dwa jony spośród podanych: Cu²⁺ (aq), Na⁺ (aq), SO₄²⁻ (aq) i CrO₄²⁻ (aq).

Wskaż, jaka barwa roztworu pochodzi od jonu chromianowego(VI) CrO₄²⁻. Zaznacz poprawną odpowiedź.

A. żółta

B. zielona

C. niebieska

D. ten jon nie nadaje barwy roztworom

Zadanie 7. (0-1)

Rozstrzygnij, który z poniższych schematów najlepiej przedstawia model wodnego, rozcieńczonego roztworu chlorku sodu. Uwzględnij oddziaływania występujące między drobinami w tym roztworze. Zaznacz poprawną odpowiedź.

Zadanie 8. (0-1)

Wskaż wzór substancji higroskopijnej, jaką należy umieścić na szkiełku zegarkowym aby wykryć obecność pary wodnej w powietrzu. Zaznacz poprawną odpowiedź.

A. NaOH (s)

B. $CuSO_4 \cdot 5H_2O(s)$

C. HCl (aq)

D. $MgSO_4 \cdot 7H_2O(s)$

Zadanie 9. (0-2)

W układzie okresowym pierwiastków chemicznych możemy wyróżnić grupy główne $(1.-2.\ i\ 13.-18.)$ oraz grupy poboczne.

Poniżej przedstawiono opis czterech grup głównych układu okresowego pierwiastków. Wpisz poprawne numery grup obok ich opisów.

Opis grupy	Numer grupy
W skład tej grupy wchodzą metale i niemetale. Niemetale należące do tej grupy tworzą aniony złożone o stechiometrii $XO_2^-, XO_3^-, XO_4^{3-}$.	
Niemetale tworzące tę grupę są pierwiastkami biernymi chemicznie, występują w przyrodzie w stanie wolnym, w formie pojedynczych atomów.	
W skład tej grupy wchodzą metale i niemetale. Te pierwiastki tworzą tlenki o stechiometrii XO i XO ₂ oraz wodorki typu XH ₄ .	
Metale tej grupy należą do pierwiastków aktywnych chemiczne; reagując z wodą mogą ulegać zapłonowi. Tworzą tlenki o wzorze ogólnym Me ₂ O oraz wodorotlenki o wzorze ogólnym MeOH.	

Zadanie 10. (0-2)

Z podanych zestawów atomów ułóż wzory sumaryczne wodorotlenku **0**, kwasu **2** i soli **3** oraz podaj ich nazwy. Wykorzystaj wszystkie dostępne atomy.

	Zestaw atomów	Wzór związku	Nazwa związku
0	HOO O		
9	OS OH		
8	OH NHON		

Zadanie 11.

Metale należące do drugiej grupy układu okresowego pierwiastków chemicznych różnią się aktywnością chemiczną. Przeprowadzono doświadczenie ilustrujące różnice w aktywności chemicznej berylu, magnezu, wapnia i strontu.

Do czterech probówek zawierających wodę destylowaną dodano kilka kropel alkoholowego roztworu fenoloftaleiny oraz wprowadzono, w <u>losowej kolejności</u> niewielkie porcje badanych metali: berylu, magnezu, wapnia i strontu. Wygląd tych probówek po upływie pewnego czasu przedstawiono na poniższych zdjęciach.

Zadanie 11.1. (0-2)

Uzupelnij poniższy tekst. Wybierz i podkreśl jedną odpowiedź spośród podanych w każdym nawiasie, aby każde zdanie zawierało prawdziwą informację.

- Spośród badanych metali najbardziej aktywnym jest (beryl magnez wapń stront).
 Ten metal wprowadzono do probówki nr (1 2 3 4). Metalem wprowadzonym do probówki nr 1 jest (beryl magnez wapń stront).
- 2. Wzrost aktywności metali należących do drugiej grupy układu okresowego pierwiastków chemicznych wynika ze (wzrastającego malejącego) promienia atomowego. Elektrony walencyjne w atomach metali bardziej aktywnych znajdują się (bliżej dalej od) jądra atomowego, co powoduje, że (łatwiej trudniej) jest je oderwać, przekształcając atom w jon.

Napisz, w formie cząsteczkowej, ogólne równanie reakcji badanych metali z wodą. W tym równaniu symbol metalu zastąp symbolem Me.

77 1	•	10	10	~ \
Lad	anie	12.	(U-	2

Próbkę pewnego związku <u>żelaza z siarką</u> o masie 9,60 g poddano reakcji spalania w atmosferze tlenu. W wyniku całkowitego spalenia tego związku powstał tlenek siarki(IV) oraz 6,40 g pewnego <u>tlenku żelaza</u>. W tym tlenku na 7 części masowych żelaza przypadają 3 części masowe tlenu.

Przeprowadź odpowiednie obliczenia i napisz wzory sumaryczne siarczku żelaza oraz tlenku żelaza biorących udział w opisanej reakcji. Do celów obliczeń przyjmij całkowite wartości mas molowych (atomowych) pierwiastków.

Oł	olic	cze	nia	:														
																	_	
																	_	
																	_	
																	-	
																	-	

Wzór siarczku żelaza	Wzór tlenku żelaza

Zadanie 13.

Uczeń przeprowadził doświadczenie, którego celem było określenie masy kwasu siarkowego(VI) zawartego w 1,00 cm³ elektrolitu akumulatorowego (przedstawionego na zdjęciu obok).

Uczeń napełnił strzykawkę o pojemności 20,0 cm³ roztworem wodorotlenku sodu NaOH o stężeniu 0,600 mol dm³. Do zlewki wprowadził dokładnie 1,00 cm³ badanego elektrolitu akumulatorowego, dodał kilka kropli alkoholowego roztworu fenoloftaleiny i tak otrzymany roztwór rozcieńczył przez dodanie 50 cm³ wody destylowanej.

Następnie uczeń dodawał do zlewki roztwór wodorotlenku sodu znajdujący się w strzykawce – powoli, kropla po kropli, cały czas mieszając zawartość zlewki.

W momencie, w którym uczeń zauważył pojawienie się jasnoróżowej barwy w zlewce, zakończył doświadczenie. Zmiana barwy fenoloftaleiny świadczyła o zmianie odczynu roztworu w zlewce, a więc o całkowitym zobojętnieniu kwasu siarkowego(VI) zawartego w próbce.

Zdjęcie elektrolitu akumulatorowego firmy CHEMIA BOMAR

Zadanie 13.1. (0-1)

Na poniższym zdjęciu przedstawiono wygląd strzykawki napełnionej całkowicie roztworem wodorotlenku sodu oraz jej wygląd po zakończeniu doświadczenia.

Oblicz liczbę moli wodorotlenku sodu zużytego w opisanym doświadczeniu (wprowadzonego ze strzykawki do zlewki). <u>Nie zaokraglaj</u> obliczeń pośrednich ani wyniku końcowego.

77 1	•	10		10	•
Zad	anie	13	. Z.	(()	-7.
Luu	ullic			10	_

W trakcie opisanego doświadczenia, w zlewce przebiegała reakcja pomiędzy kwasem siarkowym(VI) a wodorotlenkiem sodu, zachodząca według poniższego równania:

$$H_2SO_4 + 2NaOH \longrightarrow Na_2SO_4 + 2H_2O$$

Oblicz masę kwasu siarkowego(VI) zawartego w 1,00 cm³ badanego elektrolitu akumulatorowego. Wynik wyraź w miligramach i zaokraglij do liczb całkowitych.

Masa kwasu siarkowego(VI) w 1,00 cm³ elektrolitu, mg

☐ Informacja do zadań 14. i 15.

W czterech probówkach oznaczonych numerami 1. – 4., w losowej kolejności, znajdują się roztwory: siarczanu(VI) chromu(III) $Cr_2(SO_4)_3$, azotanu(V) ołowiu(II) $Pb(NO_3)_2$, kwasu jodowodorowego HI oraz węglanu sodu Na_2CO_3 . Te probówki przedstawiono na poniższych zdjęciach.

Przeprowadzono reakcje krzyżowe pomiędzy roztworami znajdującymi się w badanych probówkach. Wyniki tych reakcji przedstawiono na poniższych fotografiach.

Zadanie 14. (0-2)

Zidentyfikuj substancje obecne w probówkach 1. - 4. Uzupelnij poniższą tabelę, wpisując nazwę lub wzór związku w odpowiednie miejsce.

Probówka 1.	Probówka 2.	Probówka 3.	Probówka 4.

	Conkurs enemicing 202	3/2024. Liup rejonov	<i>y</i> .
Zadanie 15. (0-1)			
Kwas jodowodorowy H	II (aq) jest kwasem m	nocnym, co znaczy,	że w roztworze wodnym
dysocjuje całkowicie na	jony.		
Napisz, w formie jo	nowej skróconej, r	ównanie reakcji k	xwasu jodowodorowego
z roztworem węglanu s	odu.		
☐ Informacja do zada	ń 16. – 18.		
, and the second		Ten kwas dysocjuje	w roztworach wodnych
• , ,	•	• • •	iem wapnia, tworząc dwie
różne wodorosole.	3 ()	,	ι ,
Zadanie 16. (0-1)			
Zaznacz prawidłowy mo	odel przedstawiający b	oudowę cząsteczki kw	vasu ortofosforowego(V).
			
	Ц		
<u> </u>	D	C	n
A.	В.	C.	D.
Zadanie 17. (0-1)			
-	nowej, równanie re	akcji drugiego sto	pnia dysocjacji kwasu
ortofosforowego(V).			

Zadanie 18. (0-1)

Napisz wzory sumaryczne wodorosoli mogących powstawać w wyniku reakcji kwasu ortofosforowego(V) z wodorotlenkiem wapnia.

Wzór pierwszej wodorosoli	Wzór drugiej wodorosoli

☐ Informacja do zadań 19. – 23.

W poniższej tabeli przedstawiono dane na temat rozpuszczalności azotanu(V) potasu, KNO_3 i siarczanu(VI) miedzi(II), $CuSO_4$ w wodzie w różnych temperaturach.

Temperatura, °C	0	20	40	60	80	100
Rozpuszczalność KNO ₃ , $\frac{g}{100 \text{ g H}_2\text{O}}$	15	35	63	100		
Rozpuszczalność CuSO ₄ , $\frac{g}{100 \text{ g H}_2\text{O}}$	15	20	29	41	57	77

Na podstawie: J. Sawicka, A. Janich-Kilian, W. Cejner-Mania, G. Urbańczyk, *Tablice chemiczne*, Podkowa Bis, Gdańsk 2004.

Zadanie 19. (0-2)

Na podstawie danych podanych w tabeli, narysuj krzywe rozpuszczalności (zależność rozpuszczalności od temperatury) dla KNO $_3$ i CuSO $_4$, w zakresie temperatur 0 °C–100 °C. Obie krzywe narysuj na poniższym wykresie. Krzywe podpisz wzorami soli.

Zac	lan	ie 2	20.	(()-	-1)	1																								Г	
Pod roz	laj	ter	np	er	atı	ıre			u	u		-									v	vod	zie	je	est	ta	ka	sa	ma	L, j	ak
	••••	•••••	••••	••••	••••	••••	••••	• • • • •	••••	••••	••••	••••	••••		•••••	••••		••••	••••	••••		••••	••••	••••	••••	••••	••••	••••		••••	••••
Zac				•						<u>.</u>	a la		.da	<u>.</u>	7	·			D		. £15		- - 1 -			• o a t	4 -				
Occ alb		-						-		ZSZ	yen	1 2	zua	п.	L	azı	пас	:Z	г,	J	esn	l 2	zua	11116		jesi	ւ ֈ	pra	wu	IZIV	ve,
1.		oztv rzez					•	•							•							•		•	_	•		-	P		F
2.	przez dodanie wody do roztworu lub podwyższenie temperatury roztworu. 2. Stężenia procentowe nasyconych roztworów obu soli w temperaturze 0 °C są takie same.															P		F													
3.		tęże į tak					ve 1	nas	ycc	ony	ch	roz	two	oró	w	obu	l SC	oli v	v te	emj	per	atu	rze	0 9	°C				P		F
Zac	lan	io 2))	<u>(n</u>	_1)																										
Prz Ob l	ygc	otow	van	10 4	400) g		•		_			_						•			-							ry 2	20 '	°C.
Ol	olic	zen	ia:																												
Zac	lan	ie 2	23.	(0-	-2)																										_
Ob																															
Gęs do j													cn	n ³ •	W	ynı	lK	po	daj	W	је	an	ost	ce	dm	3 Z	do)Kła	adr	108	Cla
					J		P	, b.			114	1		ı		ı				I				I		I					
Ol	olic	zen	ia:																												
				_																											
	-		+	+																											
			\dagger	\dagger																											
			_	4																											

Brudnopis

(nie podlega ocenie)

Tablica Rozpuszczalności soli i wodorotlenków w wodzie

	\mathbf{OH}^-	\mathbf{F}^{-}	Cl ⁻	\mathbf{Br}^{-}	I-	NO ₃	S^{2-}	SO ₃ ²⁻	SO ₄ ²⁻	CO ₃ ²⁻	SiO ₃ ²⁻	PO ₄ ³⁻
Na ⁺	R	R	R	R	R	R	R	R	R	R	R	R
K ⁺	R	R	R	R	R	R	R	R	R	R	R	R
NH ₄ ⁺	R	R	R	R	R	R	R	R	R	R		R
Cu ²⁺	N	R	R	R	_	R	N	N	R	_	N	N
\mathbf{Ag}^{+}	_	R	N	N	N	R	N	N	T	N	N	N
Mg ²⁺	N	N	R	R	R	R	R	R	R	N	N	N
Ca ²⁺	T	N	R	R	R	R	T	N	T	N	N	N
Ba ²⁺	R	N	R	R	R	R	R	N	N	N	N	N
Zn ²⁺	N	N	R	R	R	R	N	T	R	N	N	N
Al ³⁺	N	R	R	R	R	R			R		N	N
Pb ²⁺	N	N	T	T	N	R	N	N	N	N	N	N
Mn ²⁺	N	R	R	R	R	R	N	N	R	N	N	N
Fe ²⁺	N	R	R	R	R	R	N	N	R	N	N	N
Fe ³⁺	N	R	R	R	_	R	N	_	R	_	N	N
Cr ³⁺	N	R	R	R	R	R	R	R	R	N	N	N

R – substancja dobrze rozpuszczalna

T – substancja trudno rozpuszczalna, osad może się strącić, jeżeli stężenia roztworów są duże $(0.01 - 0.2 \text{ mol} \cdot \text{dm}^{-3})$

N – substancja praktycznie nierozpuszczalna, osad może się strącić nawet z rozcieńczonych roztworów

symbol — oznacza, że w roztworze zachodzą złożone reakcje lub substancja nie została otrzymana

Szereg aktywności metali

Li K Ba Ca Na Mg Al Zn Fe Pb \mathbf{H}_2 Cu Ag Pt Au

	1															18			
1	1H wodór 1,0	Układ Okresowy Pierwiastków Chemicznych															₂ He hel 4.0	1	
	2,2	2	2										13	14	15	16	17	, -	l
2	3 Li lit 7,0 1,0	4Be beryl 9,0 1,5		liczba atomowa liczba atomowa wodór 1,0 średnia masa atomowa, u elektroujemność										6C węgiel 12,0 2,6	7N azot 14,0 3,0	80 tlen 16,0 3,4	9 F fluor 19,0 4,0	neon 20,2	2
3	11Na sód 23,0 0,9	12Mg magnez 24,3 1,3	3	4	5	6	7	8	9	10	11	12	13Al glin 27,0 1,6	14 Si krzem 28,1 1,9	15P fosfor 31,0 2,2	16 S siarka 32,1 2,6	17Cl chlor 35,5 3,2	18 Ar argon 40,0	3
4	19 K potas 39,1 0,8	20Ca wapń 40,1 1,0	21Sc skand 45,0 1,4	22 Ti tytan 47,9 1,5	23 V wanad 51,0 1,6	24 Cr chrom 52,0 1,7	25 Mn mangan 54,9 1,6	26Fe żelazo 55,9 1,8	27Co kobalt 58,9 1,9	28 Ni nikiel 58,7 1,9	29 Cu miedź 63,6 1,9	30Zn cynk 65,4 1,7	31Ga gal 69,7 1,8	32Ge german 72,6 2,0	33As arsen 74,9 2,0	34 Se selen 79,0 2,6	35Br brom 79,9 3,0	36Kr krypton 83,8	4
5	37 Rb rubid 85,5 0,8	38 S r stront 87,6 1,0	39 Y itr 88,9 1,2	40Zr cyrkon 91,2 1,3	41Nb niob 92,9 1,6	42 M O molibden 96,0 2,2	43Tc technet 97,9 2,1	44Ru ruten 101,1 2,2	45Rh rod 102,9 2,3	46Pd pallad 106,4 2,2	47 Ag srebro 107,9 1,9	48Cd kadm 112,4 1,7	49In ind 114,8 1,8	50Sn cyna 118,7 2,0	51Sb antymon 121,8 2,1	52Te tellur 127,6 2,1	53I jod 126,9 2, 7	54Xe ksenon 131,3	5
6	55 C S cez 132,9 0,8	56Ba bar 137,3 0,9	†	72 Hf hafn 178,5 1,3	73Ta tantal 181,0 1,5	74W wolfram 183,8 1,7	75 Re ren 186,2 1,9	76Os osm 190,2 2,2	77 Ir iryd 192,2 2,2	78Pt platyna 195,1 2,2	79 Au złoto 197,0 2,4	80 Hg rtęć 200,6 1,9	81Tl tal 204,4 1,8	82Pb ołów 207,2 1,8	83Bi bizmut 209,0 1,9	84Po polon 209,0 2,0	85At astat 210,0 2,2	86Rn radon 222,0	6
7	87 Fr frans 233,0 0,7	88Ra rad 226,0 0,9	‡	104Rf rutherford 267,1	105Db dubn 268,1	106Sg seaborg 271,1	107 Bh bohr 272,14	108Hs has 270,1	109 Mt meitner 276,2	110Ds darmsztadt (281)	111Rg rentgen (282)	112Cn kopernik (285)	113Nh nihon (286)	114 Fl flerow (289)	115Mc moskow (290)	116LV liwermor (293)	117 Ts tenes (294)	118Og oganeson (294)	7
† Lantanowce		57La lantan 138,9	58 Ce cer 140,1	59Pr prazeodym 140,9	60Nd neodym 144,2	61Pm promet 144,9	62Sm samar 150,4	63Eu europ 152,0	64Gd gadolin 157,3	65 Tb terb 158,9	66Dy dysproz 162,5	67H0 holm 164,9	68Er erb 167,3	69Tm tul 168,9	70 Yb iterb 173,0	71Lu lutet 175,0			
‡ Aktynowce		89Ac aktyn 227,0	90 Th tor 232,0	91Pa protaktyn 231,0	92 U uran 238,0	93Np neptun 237,1	94Pu pluton 244,1	95Am ameryk 243,1	96 Cm kiur 247,1	97 Bk berkel 247,1	98Cf kaliforn 251,1	99Es einstein 252,1	100Fm ferm 257,1	101Md mendelew 258,1	102No nobel 259,1	103Lr lorens 262,1			