# Determining centroid of a composite with a portion cut out

#### Formulas to remember

• The coordinates of the centroid  $(\bar{x}, \bar{y})$  of a composite area are given by

$$\bar{x} = \frac{\sum a_i x_i}{\sum a_i}$$
  $\bar{y} = \frac{\sum a_i y_i}{\sum a_i}$ 

## Important points to remember and understand

- The coordinates of the centroid  $(\bar{x}, \bar{y})$  depend on the reference axes system chosen
- The centroid of rectangular or square area lies at the centre of these figures
- The centroid of a quarter circle lies at a distance of  $(4R/3\pi)$  from the radii encompassing it
- When a portion is cut out from a shape, the cut-out area must be deducted from the total area. To do this, the cut-out area is written with a negative sign (see the solved example below)

<u>Problem statement Q7:</u> Locate the centroid of the given area (Fig.1). The area shown is a square of sides 200mm with a quarter of a circle of radius R = 100mm cut out from the square.



Fig. 1: Given area (all dimensions in mm)

- Given composite area (section) whose centroid is to be located
- Observe that all the necessary dimensions are given
- The area is actually a square.
   However, a portion (a quarter circle) has been cut-out



**Fig. 2:** Given area with reference axes and divided into basic shapes

**Step 1 and 2:** Selecting reference axes system and dividing the area

- Choose a reference axis system such that all the necessary distances from the axes are known or can be determined
- There could be multiple options of an axes system for the same problem
- One must pick that option that reduces computation
- In the present problem the dashed green lines (Fig. 2) represent the reference axes system







Fig 4: Coordinates  $(x_2, y_2)$  of centroid of quarter-circle  $a_2$ 

### **Step 3:** Centroids of each basic geometric shape

- Determining distances to the centroid of each basic shape with respect to the reference axes system chosen
- In the present problem the centroid of square area  $a_1$  is marked (shown in Fig. 3). It is known that the centroid of a square lies at the geometric centre of the shape.
- From the reference x-axis the centroid of square  $a_1$  is at a distance of  $y_1 = 100$ mm and from the reference y-axis the centroid of rectangle  $a_1$  is at a distance of  $x_1 = 100$ mm (Fig. 3)
- Therefore, the coordinates of the centroid of area  $a_1$  are  $(x_1, y_1) = (100, 100)$  from the reference axes
- Similarly, the coordinates of the centroid of area  $a_2$  are  $(x_2, y_2) = (42.22, 157.56)$  from the reference axes



Fig. 5: Coordinates of centroid of the given area

The calculations shown below can be done in tabular form as follows:

| Area, a <sub>i</sub>                                    | Dist. from y- | Dist. from x-            | $a_i \times x_i$                                     | $a_i \times y_i$                    |
|---------------------------------------------------------|---------------|--------------------------|------------------------------------------------------|-------------------------------------|
| $a_1 = 200 \times 200 = 40000$                          | 100           | axis, y <sub>i</sub> 100 | 4×10 <sup>6</sup>                                    | 4×10 <sup>6</sup>                   |
| $a_2 =  (3.142 \times 100^2)/4 =$ $-7855$               | 42.44         | 157.56                   | -3.33×10 <sup>5</sup>                                | -1.24×10 <sup>6</sup>               |
| $\Sigma a_i = 32145$                                    |               |                          | $\Sigma a_i x_i = 3.667 \times 10^6$                 | $\Sigma a_i y_i = 2.76 \times 10^6$ |
| $\bar{x} = \frac{(3.667 \times 10^6)}{32145} = 114.077$ |               |                          | $\bar{y} = \frac{(2.76 \times 10^6)}{32145} = 85.86$ |                                     |

Therefore, the coordinated of the centroid of the given T-section is (114.077, 85.86) from the coordinate axes chosen

### **Step 4:** Determining the coordinates of the centroid of the given composite

• The coordinates of the centroid of the entire composite from the reference axes can be obtained by using the formulas

$$\bar{x} = \frac{\sum a_i x_i}{\sum a_i}$$
  $\bar{y} = \frac{\sum a_i y_i}{\sum a_i}$ 

• In the present problem, the composite was divided into two basic shapes of area  $a_1 = 200 \times 200 = 40000$ mm<sup>2</sup> and  $a_2 = -(3.142 \times 100^2)/4 = 7855$ mm<sup>2</sup>.  $x_1 = 100$ mm,  $y_1 = 100$ mm,  $x_2 = 42.44$ mm and  $y_2 = 157.56$ mm. Substituting in the above formula, we get,

$$\bar{x} = \frac{\sum a_i x_i}{\sum a_i} = \frac{a_1 x_1 + a_2 x_2}{a_1 + a_2} = \frac{(40000 \times 100) + (-7855 \times 42.44)}{40000 + (-7855)} = 114.077 mm \quad \text{(Shown in Fig. 5)}$$

$$\bar{y} = \frac{\sum a_i y_i}{\sum a_i} = \frac{a_1 y_1 + a_2 y_2}{a_1 + a_2} = \frac{(40000 \times 100) + (-7855 \times 157.56)}{40000 + (-7855)} = 85.86mm \quad \text{(Shown in Fig. 5)}$$