SEAPODYM Source Code Documentation 4.01

Generated by Doxygen 1.8.17

1	Hierarchical Index	1
	1.1 Class Hierarchy	1
2	Class Index	3
	2.1 Class List	3
3	Class Documentation	5
	3.1 CBord Class Reference	5
	3.2 CCalpop Class Reference	5
	3.2.1 Detailed Description	8
	3.2.2 Member Function Documentation	8
	3.2.2.1 Calrec_juv()	8
	3.2.2.2 Ctot_proportion_fishery_comp()	8
	3.2.2.3 Precaldia_Caldia()	8
	3.2.2.4 Precalrec_Calrec_adult()	9
	3.2.2.5 Precalrec_juv()	9
	3.2.2.6 precalrec_juv_comp()	9
	3.2.2.7 precalrec_total_mortality_comp()	9
	3.2.2.8 Precalrec_total_mortality_comp()	10
	3.2.2.9 Predicted_Catch_Fishery()	10
	3.2.2.10 Predicted_Catch_Fishery_no_effort()	10
	3.2.2.11 total_exploited_biomass_comp()	11
	3.2.2.12 Total_exploited_biomass_comp()	11
	3.2.2.13 total_obs_catch_age_comp()	11
	3.2.2.14 Total_obs_catch_age_comp()	12
	3.2.2.15 xbet_comp()	12
	3.2.2.16 Xbet_comp1()	12
	3.3 CMatrices Class Reference	13
	3.4 CNumfunc Class Reference	13
	3.4.1 Detailed Description	14
	3.5 CParam Class Reference	14
	3.5.1 Detailed Description	20
	3.5.2 Member Function Documentation	20
	3.5.2.1 dfselectivity()	20
	3.5.3 Member Data Documentation	20
	3.5.3.1 length	20
	3.5.3.2 life_stage	21
	3.6 CReadWrite Class Reference	21
	3.6.1 Detailed Description	23
	3.6.2 Member Function Documentation	23
	3.6.2.1 read_lf_EPO()	23
	3.6.2.2 read_lf_WCPO()	23
	3.6.2.3 read_pred_frq_data()	23

3.6.2.4 write_frq_data()		24
3.7 CSaveTimeArea Class Reference		24
3.7.1 Detailed Description		24
3.8 CSimtunaFunc Class Reference		25
3.8.1 Detailed Description		25
3.9 Date Class Reference		25
3.10 Dimensions Class Reference		26
3.11 fishery_record Class Reference		27
3.11.1 Detailed Description		27
3.12 fishing_effort Class Reference		28
3.12.1 Detailed Description		28
3.13 PMap Class Reference		28
3.13.1 Detailed Description		29
3.14 CParam::region Struct Reference		29
3.15 SeapodymCoupled Class Reference		30
3.15.1 Detailed Description		30
3.15.2 Member Function Documentation		31
3.15.2.1 OnRunCoupled()		31
3.15.2.2 OnRunDensity()		31
3.16 SeapodymDocConsole Class Reference		32
3.16.1 Detailed Description		33
3.17 tag_release Class Reference		33
3.18 Utilities Class Reference		34
3.19 VarMatrices Class Reference		35
3.19.1 Detailed Description		35
3.20 VarParamCoupled Class Reference		36
3.20.1 Detailed Description		38
3.20.2 Member Function Documentation		38
3.20.2.1 read()		38
3.21 VarSimtunaFunc Class Reference		39
3.21.1 Detailed Description		40
3.21.2 Member Function Documentation		40
3.21.2.1 Faccessibility()		40
3.21.2.2 Feeding_Habitat_Index()		40
3.21.2.3 Juvenile_Habitat()		41
3.21.2.4 M_sp_comp()		41
3.21.2.5 Mortality_Sp()		41
3.21.2.6 Seasonal_switch()		41
3.21.2.7 Spawning_Habitat()		42

Chapter 1

Hierarchical Index

1.1 Class Hierarchy

This inheritance list is sorted roughly, but not completely, alphabetically:

CBord	5
CCalpop	5
CMatrices	13
VarMatrices	. 35
CNumfunc	13
CParam	14
VarParamCoupled	. 36
CReadWrite	21
CSaveTimeArea	24
CSimtunaFunc	25
VarSimtunaFunc	. 39
Date	25
Dimensions	26
fishery_record	27
fishing_effort	28
PMap	28
CParam::region	29
SeapodymDocConsole	32
SeapodymCoupled	. 30
tag_release	33
Utilities	34

2 Hierarchical Index

Chapter 2

Class Index

2.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

CBord	5
CCalpop	
This is main computational class: all functions and variables to solve ADR equations are here .	5
CMatrices	
Seapodym matrices class	13
CNumfunc	
Class for computing various mathematical functions	13
CParam	
Seapodym parameter class	14
CReadWrite	
IO class	21
The class to aggregate variables to the regional structure	24
CSimtunaFunc	
The simulation function which do not use dvariables	25
Date	25
Dimensions	26
fishery_record	
Class that reads and stores all fishing data	27
fishing_effort	
Class that reads and stores redistributed fishing effort data	28
PMap	
Class has information about spatial domain: the land mask, the indexing and the boundaries .	28
CParam::region	29
SeapodymCoupled	
The main simulation class	30
SeapodymDocConsole	
This class derives all necessary classes for the main simulation class	32
tag_release	33
Utilities	34
VarMatrices	0.5
Seapodym DVAR matrices class	35
VarParamCoupled	00
Seapodym DVAR parameter class	36
All SEAPODYM functions including DVAR parameters	30

4 Class Index

Chapter 3

Class Documentation

3.1 CBord Class Reference

Public Member Functions

int cotex ()int cotey ()

Public Attributes

```
union {
 unsigned short int b
 struct {
 char x
 char y
 } cote
};
```

The documentation for this class was generated from the following file:

• src/Map.h

3.2 CCalpop Class Reference

This is main computational class: all functions and variables to solve ADR equations are here.

```
#include <calpop.h>
```

Public Member Functions

- void InitCalPop (CParam ¶m, const PMap &map)
- void precaldia (const CParam ¶m, const PMap &map, CMatrices &mat)
- void precaldia_comp (const PMap &map, CParam ¶m, CMatrices &mat, const dmatrix &habitat, const dmatrix &total_pop, double MSS, double MSS_size_slope, double sigma_species, double c_diff_fish, const int sp, const int age, const int jday)
- void Precaldia_Caldia (const PMap &map, VarParamCoupled ¶m, VarMatrices &mat, dvar_matrix &habitat, dvar_matrix &total_pop, const int sp, const int age, const int t count, const int jday)
- void caldia (const PMap &map, const CParam ¶m, const DMATRIX &diffusion_x, const DMATRIX &diffusion_y, const DMATRIX &advection_y)
- void **caldia_GO** (const PMap &map, const CParam ¶m, const DMATRIX &diffusion_x, const DMATRIX &diffusion_y, const DMATRIX &advection_y)
- void **starvation_penalty** (const PMap &map, VarParamCoupled ¶m, VarMatrices &mat, dvar_matrix &mortality, dvar_matrix &total_pop, dvar3_array &nF_ratio, dvar_matrix &uu, const int sp, const int age)
- void precalrec (PMap &map, const dmatrix &mortality)
- void Precalrec_juv (const PMap &map, CMatrices &mat, dvar_matrix &mortality, const int t_count)
- void precalrec_juv_comp (const PMap &map, dmatrix &bm, const dmatrix &mortality)
- void Precalrec_total_mortality_comp (const PMap &map, VarParamCoupled ¶m, VarMatrices &mat, CReadWrite &rw, dvar_matrix &mortality, const int age, const int sp, const int t_count, const int year, const int month, const int step_count)
- void Recomp_total_mortality_comp (const PMap &map, CParam ¶m, CMatrices &mat, CReadWrite &rw, dmatrix &mortality, const int age, const int sp, const int year, const int month, const int step_count)
- void precalrec_total_mortality_comp (const imatrix carte, const dmatrix effort, dvar_matrix &mortality, const double sq, const dvector lat_correction)
- void Precalrec_Calrec_adult (const PMap &map, VarMatrices &mat, VarParamCoupled ¶m, CReadWrite &rw, dvar_matrix &uu, dvar_matrix &mortality, const int t_count, const bool fishing, const int age, const int sp, const int year, const int month, const int jday, const int step_count, const int no_mortality)
- void calrec (const PMap &map, dmatrix &uu, const dmatrix &mortality)
- void calrec1 (const PMap &map, dvar_matrix &uu, const dmatrix &mortality)
- void calrec_with_catch (const PMap &map, CParam ¶m, dvar_matrix &uu, const dmatrix &C_obs, dvar_matrix &C_est)
- void calrec_GO (const PMap &map, dvar_matrix &uu)
- void calrec_GO_with_catch (const PMap &map, CParam ¶m, dvar_matrix &uu, const dmatrix &C_obs, dvar_matrix &C_est)
- void Calrec_juv (const PMap &map, CMatrices &mat, dvar_matrix &uu, dvar_matrix &mortality, const int t_← count)
- void Calrec_adult (const PMap &map, dvar_matrix &uu, dvar_matrix &mortality)
- void Recomp_abc_coef (const PMap &map, CMatrices &mat, const int t_count, const dmatrix &mortality, dmatrix &aa, dmatrix &bbm, dmatrix &cc)
- void Recomp_DEF_UV_coef (const PMap &map, CParam ¶m, CMatrices &mat, dmatrix &u, dmatrix &v, const dmatrix &habitat, dmatrix &dd, dmatrix &ee, dmatrix &ff, dmatrix &advection_x, dmatrix &advection_y, const int sp, const int age, const double MSS, const double c_diff_fish, const double sigma
 _species, const int jday)
- void RecompDiagCoef_juv (const PMap &map, CMatrices &mat, const int t_count, const dmatrix mortality, dmatrix &a, dmatrix &bm, dmatrix &c, dmatrix &d, dmatrix &e, dmatrix &f)
- void RecompDiagCoef_adult (const PMap &map, CParam ¶m, CMatrices &mat, const int t_count, const int jday, const dmatrix &mortality, const dmatrix &habitat, dmatrix &aa, dmatrix &bbm, dmatrix &cc, dmatrix &dd, dmatrix &ee, dmatrix &ff, const int sp, const int age, const double MSS, const double c_diff_fish, const double sigma_species)
- void RecompDiagCoef_UV_adult (const PMap &map, CParam ¶m, CMatrices &mat, const int t_count, const int jday, const dmatrix &mortality, const dmatrix &habitat, dmatrix &aa, dmatrix &bbm, dmatrix &cc, dmatrix &dd, dmatrix &ee, dmatrix &ff, const int sp, const int age, const double MSS, const double c_diff_fish, const double sigma_species)

- void RecompM_sp (const PMap &map, const CParam ¶m, dmatrix &M, const dmatrix &H, const double age, const int sp)
- void Predicted_Catch_Fishery (const PMap &map, VarParamCoupled ¶m, VarMatrices &mat, CReadWrite &rw, const int sp, const int f, const int k, const int year, const int month, const int t_count, const int step_count)
- void **predicted_catch_fishery_comp** (const PMap &map, CParam ¶m, VarMatrices &mat, const int f, const int k, const int sp, const int age, const dmatrix &uu, const int step_count)
- void Total_obs_catch_age_comp (const PMap &map, VarParamCoupled ¶m, VarMatrices &mat, CReadWrite &rw, const int age, const int sp, const int year, const int month, const int t_count)
- void Ctot_proportion_fishery_comp (const PMap &map, CParam ¶m, CMatrices &mat, CReadWrite &rw, const int year, const int month, const int sp)
- void **Recomp_C_fishery_proportion_in_Ctot** (const PMap &map, CParam ¶m, CReadWrite &rw, dmatrix &Ctot proportion fishery, const int year, const int month, const int sp, const int k)
- void Total_exploited_biomass_comp (const PMap &map, VarParamCoupled ¶m, VarMatrices &mat, const int sp, const int t count)
- void Selectivity comp (CParam ¶m, const int nb fishery, const int a0, const int nb ages, const int sp)
- void Predicted_Catch_Fishery_no_effort (const PMap &map, VarParamCoupled ¶m, VarMatrices &mat, CReadWrite &rw, const int sp, const int year, const int month)
- void **predicted_catch_fishery_no_effort_comp** (const PMap &map, CParam ¶m, VarMatrices &mat, const int f, const int k, const int sp, const int age)
- void total_exploited_biomass_comp (const imatrix carte, const dmatrix &uu, const dmatrix &Cobs, const int f, const int fne, const int age, const int sp)
- void Recomp_total_exploited_biomass (const PMap &map, CParam ¶m, CMatrices &mat, dmatrix &EB, const dmatrix &Cobs, const dvector &selectivity, const int f, const int sp, const int t count)
- void total_obs_catch_age_comp (const PMap &map, const CParam ¶m, CMatrices &mat, const dmatrix &uu, const dmatrix &Cobs, dvar_matrix &Ctot_age_obs, const int f, const int fne, const int k, const int age, const int sp, const double C2Dunits)
- void **Recomp_total_obs_catch_age** (const PMap &map, CParam ¶m, CMatrices &mat, CReadWrite &rw, dmatrix &Ctot age obs, const int age, const int sp, const int year, const int month, const int t count)
- int get_iterationN ()
- int get_maxn ()
- int get_Vinf ()
- void Xbet comp1 (const PMap &map, int dt)
- void xbet_comp (const PMap &map, dmatrix &xbet, dmatrix &a, dmatrix &bm, dmatrix &c, int dt)
- void ybet_comp (const PMap &map, dmatrix &ybet, dmatrix &d, dmatrix &e, dmatrix &f, int dt)
- void time_reading_init ()

Public Attributes

- dvar matrix dvarsA
- dvar matrix dvarsB
- · dvar matrix dvarsBM
- · dvar matrix dvarsC
- dvar_matrix dvarsD
- dvar_matrix dvarsE
- dvar_matrix dvarsF
- dvar_matrix **Xbet** dvar matrix **Ybet**
- dvar3 array dvarsSNsum
- · d3 array Selectivity
- DMATRIX uuint
- double elapsed_time_reading

3.2.1 Detailed Description

This is main computational class: all functions and variables to solve ADR equations are here.

3.2.2 Member Function Documentation

3.2.2.1 Calrec_juv()

Forward main function called in simulation mode only for: calrec for larval and juvenile life stages, i.e. with passive drift only. See calrec_adre.cpp

3.2.2.2 Ctot_proportion_fishery_comp()

Forward functions for: predicting catch by fishery without using the effort data. They compute local proportions of catch by fishery in the total catch over 'no effort' fisheries. Note, the catches being used need to have the same units.

3.2.2.3 Precaldia_Caldia()

Forward main function called in simulation mode only for: precaldia and caldia functions. See caldia.cpp

3.2.2.4 Precalrec_Calrec_adult()

```
void CCalpop::Precalrec_Calrec_adult (
            const PMap & map,
             VarMatrices & mat,
             VarParamCoupled & param,
             CReadWrite & rw,
             dvar_matrix & uu,
             dvar_matrix & mortality,
             const int t_count,
             const bool fishing,
             const int age,
             const int sp,
             const int year,
             const int month,
             const int jday,
             const int step_count,
             const int no_mortality )
```

Forward main function called in simulation mode only for: precalrec and calrec for adults functions. See calrec_ precalrec.cpp

3.2.2.5 Precalrec_juv()

Forward main function called in simulation mode only for: precalrec for larval and juvenile life stages. See precalrec_juv.cpp

3.2.2.6 precalrec_juv_comp()

Forward function for: precalrec for larval and juvenile life stages. This routine precomputes diagonal coefficient for calrec_adre

3.2.2.7 precalrec_total_mortality_comp()

Forward functions for: computing the sum of natural and fishing mortalities

3.2.2.8 Precalrec_total_mortality_comp()

Forward main function called in simulation mode only for: computing the sum of natural and fishing mortalities See total_mortality_comp.cpp

3.2.2.9 Predicted_Catch_Fishery()

Forward main function called in simulation mode only for: predicting catch by fishery based on fishing effort. See predicted catch.cpp

3.2.2.10 Predicted_Catch_Fishery_no_effort()

Forward main function called in simulation mode only for: predicting catch by fishery without using the effort data. See predicted_catch_without_effort.cpp

3.2.2.11 total_exploited_biomass_comp()

```
void CCalpop::total_exploited_biomass_comp (
    const imatrix carte,
    const dmatrix & uu,
    const dmatrix & Cobs,
    const int f,
    const int fne,
    const int age,
    const int sp )
```

Forward functions for: computing total exploited biomass at age, which is used to split the observed catch of fisheries without effort data among age classes, and then used in computation of predicted catch without effort

3.2.2.12 Total_exploited_biomass_comp()

Forward main function called in simulation mode only for: computing total exploited biomass at age, which is used to split the observed catch of fisheries without effort data among age classes, and then used in computation of predicted catch without effort See total_exploited_biomass.cpp

3.2.2.13 total_obs_catch_age_comp()

Forward functions for: computing the total (sum over fisheries without effort) observed catch at age.

3.2.2.14 Total_obs_catch_age_comp()

Forward main function called in simulation mode only for: computing the total (sum over fisheries without effort) observed catch at age. See total_obs_catch_age.cpp

3.2.2.15 xbet_comp()

```
void CCalpop::xbet_comp (
    const PMap & map,
    dmatrix & xbet,
    dmatrix & a,
    dmatrix & bm,
    dmatrix & c,
    int dt )
```

Forward functions for: tridag_bet function. This routine precomputes an operator in the Gaussian solver of the tridiagonal linear system, which does not change during iterations.

3.2.2.16 Xbet comp1()

Forward main function called in simulation mode only for: tridag_bet function. See tridag_bet.cpp

The documentation for this class was generated from the following files:

- · src/calpop.h
- src/caldia.cpp
- src/Calpop_caldia.cpp
- src/Calpop_calrec.cpp
- src/Calpop InitCalPop.cpp
- src/Calpop_precaldia.cpp
- src/Calpop_precalrec.cpp
- src/Calpop_recompute_coefs.cpp
- src/Calpop_tridag.cpp
- src/calrec_adre.cpp
- src/calrec_precalrec.cpp
- src/dv_caldia.cpp
- src/dv_calrec_adre.cpp

- src/dv_calrec_precalrec.cpp
- src/dv_precalrec_juv.cpp
- src/dv_predicted_catch.cpp
- src/dv_predicted_catch_without_effort.cpp
- src/dv_total_exploited_biomass.cpp
- src/dv_total_mortality_comp.cpp
- src/dv_total_obs_catch_age.cpp
- src/dv_tridag_bet.cpp
- · src/fd caldia.cpp
- src/fd_calrec_adre.cpp
- src/fd_calrec_precalrec.cpp
- src/fd_precalrec_juv.cpp
- src/fd_predicted_catch.cpp
- src/fd_predicted_catch_without_effort.cpp
- src/fd_total_exploited_biomass.cpp
- · src/fd_total_mortality_comp.cpp
- src/fd_total_obs_catch_age.cpp
- src/fd_tridag_bet.cpp
- src/precalrec_juv.cpp
- src/predicted_catch.cpp
- src/predicted_catch_without_effort.cpp
- src/total_exploited_biomass.cpp
- src/total_mortality_comp.cpp
- src/total_obs_catch_age.cpp
- src/tridag_bet.cpp
- src/VarCalpop_caldia.cpp
- src/VarCalpop_calrec.cpp

3.3 CMatrices Class Reference

Seapodym matrices class.

#include <Matrices.h>

Inheritance diagram for CMatrices:

3.4 CNumfunc Class Reference

Class for computing various mathematical functions.

#include <Numfunc.h>

Public Member Functions

• void **corcatch** (DMATRIX &xx, DMATRIX &yy, const int imin, const int imax, const ivector jinf, const ivector jsup, int &nn, double &cor, double &z, double &prob, const IMATRIX &mask, double missval)

- void **corcpue** (DMATRIX &xx, DMATRIX &yy, dmatrix &eff, const int imin, const int imax, const ivector jinf, const ivector jsup, int &nn, double &cor, double &prob, const IMATRIX &mask, double missval)
- void **corlin** (const DMATRIX &xx, const DMATRIX &yy, const int imin, const int imax, const ivector jinf, const ivector jsup, int &nn, double &cor, double &z, double &prob, double missval)
- void **summat** (const DMATRIX &xx, double &sx, const int imin, const int imax, const ivector jinf, const ivector jsup, int &nn, const double missval)
- void sumdif (const DMATRIX &xx, const DMATRIX &yy, const int imin, const int imax, const ivector jinf, const ivector jsup, const int nn, double sx, double sy, double &sxx, double &sxy, double &sxy, const double missval)
- double **gammin** (const double xx)
- double **betacf** (double a, double b, double x)
- double **betai** (double a, double b, double x)
- void **pearsn** (const double sxx, const double syy, const double sxy, const int n, double &r, double &prob, double &z)
- double **deplete** (double fish, double f, double m)

Public Attributes

- double sx
- · double sy
- double sxx
- · double syy
- double sxy
- · double nn
- · double missval

3.4.1 Detailed Description

Class for computing various mathematical functions.

The documentation for this class was generated from the following files:

- src/Numfunc.h
- src/Numfunc.cpp

3.5 CParam Class Reference

Seapodym parameter class.

#include <Param.h>

Inheritance diagram for CParam:

Collaboration diagram for CParam:

Classes

struct region

Public Member Functions

- void init_param ()
- void init_param_dym ()
- void delete_param (bool flag)
- void read param (bool &file found)
- void write_param (char runtype)
- void rbin_input2d (string file_in, const imatrix &carte, DMATRIX &mat2d, int nbi, int nbj, int nbytetoskip)
- void rbin_input2d (string file_in, DMATRIX &mat2d, int nbi, int nbj, int nbytetoskip)
- void rbin_mat2d (string file_in, const imatrix &carte, DMATRIX &mat2d, int nlat, int nlong, int nbytetoskip)
- void rbin_mat2d (string file_in, DMATRIX &mat2d, int nlat, int nlong, int nbytetoskip)
- double correction_lat (double lat)
- double lastlat (int j)
- double cell_surface_area (int j)
- double jtolat (int j)
- double itolon (int i)
- int lattoj (double lat)
- int lontoi (double lon)
- double func_limit_one (const double m)
- double dffunc_limit_one (const double x, const double dfy)
- · void afcoef (const double lon, const double lat, dmatrix &a, int &ki, int &kj, const int reso)
- double selectivity_comp (const int sp, const int age, const int f, const int k)
- void dfselectivity (double &dfslope, double &dflength, double &dfasympt, const int sp, const int age, const int f, const int k)
- void define_regions ()
- float fdate (float year, float month)
- int get_month (double fdate)
- int get_year (double fdate)
- int get_nbi () const
- int get_nbj () const
- void set_nbt (int nbt)
- int get_nbt ()
- int get_nbspecies ()
- int get_nbfishery () const
- int get_nbforage () const
- void time_reading_init ()

Public Attributes

- · bool flag coupling
- · bool build forage
- · bool flag_twin
- bool connectivity_comp
- int tuna_spinup
- · int wbin_flag
- int mpa_simulation
- · int nb mpa
- int type_oxy
- int use_sst

- · int use_vld
- · int use_ph1
- · int maxfn
- · double crit
- · ivector vert movement
- ivector food_requirement_in_mortality
- ivector uncouple_sst_larvae
- ivector gaussian_thermal_function
- · ivector cannibalism
- · string idformat
- · int idfunc
- imatrix like_types
- · bool cpue
- dmatrix like param
- dmatrix prob_zero
- · ivector tag like
- ivector stock like
- dvector mean_stock_obs
- dvector stock_lonmin
- dvector stock_lonmax
- dvector stock_latmin
- dvector stock_latmax
- · ivector frq_like
- dvector eff_units_converter
- dvector cpue_mult
- · double total_like
- int fdata_rm
- int use_lf_regstruc
- int use_mask_catch
- $\bullet \quad \text{string} * \textbf{parfile_names}$
- int nb_varproj
- ivector varproj_nsteps
- vector< string > varproj
- · dvector statpars
- int _nstatpars
- adstring_array statpar_names
- double longitudeMin
- double longitudeMax
- · double latitudeMin
- · double latitudeMax
- · double deltaX
- · double deltaY
- · int deltaT
- int nlevel
- · double startdate
- · double enddate
- int ndatini
- · int ndatfin
- int date_mode
- · ivector rundates
- · int nbytetoskip
- double save_first_yr
- double save_last_yr
- int first_recruitment_date
- int nb_yr_forecast

- · int nbsteptoskip
- int nlong
- · int nlat
- · int iterationNumber
- int nb_layer
- DVECTOR source_frg
- IVECTOR day_layer
- IVECTOR night_layer
- · double lambda
- double E
- double c_pp
- double pp_transform
- · double sigma_fcte
- int inv lambda max
- double inv_lambda_curv
- int Tr max
- double Tr exp
- · string str file mask
- string str_file_topo
- string str_file_maskEEZ
- · string str_file_maskMPA
- string str_file_param
- · string str dir
- string str_dir_forage
- string str_dir_init
- string str_dir_fisheries
- string str_dir_tags
- string strfile_pp
- · string strfile sst
- · string strfile_vld
- string strfile_ph1
- vector< string > frg_name
- vector< string > sp_name
- vector< string > strfile_F
- vector< string > strfile_Fmc
- vector< string > strfile_S
- vector< string > strfile_Smc
- string strfile_ppmc
- · string strfile_sstmc
- · string strfile_vldmc
- vector< string > strfile_u
- vector< string > strfile_v
- vector< string > strfile_t
- vector< string > strfile_oxy
- vector< string > strfile_umc
- vector< string > strfile_vmc
- $\bullet \ \ \mathsf{vector} \! < \mathsf{string} > \mathbf{strfile_tmc}$
- $\bullet \ \ \mathsf{vector} \! < \mathsf{string} > \mathbf{strfile_oxymc}$
- string strdir_output
- int write_all_cohorts_dym
- · int write all fisheries dym
- vector< string > life_stage
- ivector sp_nb_cohort_life_stage
- ivector sp_nb_cohorts
- ivector sp_nb_cohort_lv

- ivector sp_nb_cohort_jv
- ivector sp_nb_cohort_ad
- ivector sp_a0_adult
- · imatrix sp unit cohort
- DMATRIX length
- DMATRIX length_bins
- DMATRIX weight
- DVECTOR M_inc_ph_a
- DVECTOR M_inc_ph_b
- DVECTOR Mp mean max
- DVECTOR Mp mean exp
- · DVECTOR Ms mean slope
- DVECTOR Ms_mean_max
- DVECTOR M_mean_range
- dvector residual_competition
- int habitat run type
- · int nb habitat run age
- · ivector habitat run age
- int migrations_by_maturity_flag
- IVECTOR age_mature
- DMATRIX maturity_age
- IVECTOR age_autonomous
- IVECTOR age recruit
- imatrix age_compute_habitat
- · DVECTOR nb recruitment
- DVECTOR a_adults_spawning
- · ivector seasonal migrations
- dvector spawning_season_peak
- dvector spawning_season_start
- DVECTOR a_sst_spawning
- DVECTOR b_sst_spawning
- DVECTOR a sst larvae
- DVECTOR b_sst_larvae
- DVECTOR alpha_hsp_prey
- DVECTOR alpha_hsp_predator
- DVECTOR beta_hsp_predator
- DVECTOR a_sst_habitat
- DVECTOR b_sst_habitat
- DVECTOR T_age_size_slope
- · dmatrix thermal func delta
- DVECTOR a oxy habitat
- DVECTOR b_oxy_habitat
- dmatrix eF_habitat
- DVECTOR hp_cannibalism
- DVECTOR forage_ration
- DVECTOR sigma_species
- DVECTOR MSS_species
- DVECTOR MSS_size_slope
- DVECTOR c_diff_fish
- · dmatrix sigma_ha
- · dmatrix temp age
- string * list_fishery_name
- dvector fishery_reso
- float catch_reso
- · ivector fishery_catch_units

- IVECTOR nb_fishery_by_sp
- IMATRIX mask_fishery_sp
- · IMATRIX mask fishery sp no effort
- IMATRIX mask_fishery_sp_like
- int nb_fishery_type
- ivector fisheries_no_effort_exist
- · int actual_eff
- ivector mpa_scenario
- ivector mpa ID
- ivector mpa S1 X
- ivector mpa_fishery
- IVECTOR type each fishery
- IVECTOR list_fishery_type
- IVECTOR nb_fishery_type_sp
- IMATRIX list_fishery_type_sp
- DMATRIX q_sp_fishery
- dvector q_dyn_fishery
- ivector s_func_type
- DMATRIX s_slope_sp_fishery
- DMATRIX s_length_sp_fishery
- DMATRIX s_asympt_sp_fishery
- D3_ARRAY selectivity_sp_fishery_age
- vector< vector< string >> name_sp_by_file
- vector< string > file_catch_data
- vector< string > file_frq_data
- vector< string > file tag data
- · int nb catch files
- int nb_frq_files
- · int nb_tag_files
- int tag_gauss_kernel_on
- int dx_tags
- int dy_tags
- float lonmin_tags
- · float lonmax_tags
- · float latmin tags
- float latmax_tags
- · bool tags_only
- string m_file_in_str
- string m_file_out_str
- · double m_f
- int nb_region
- IVECTOR nb_region_sp_B
- IVECTOR nb_region_fishery
- IMATRIX area sp B
- region ** area
- int nb_EEZ
- IVECTOR EEZ_ID
- string * EEZ name
- double elapsed_time_reading

Protected Attributes

- int nbt_total
- int **nbi**
- int **nbj**
- int nb_species
- · int nb_forage
- · int nb fishery

3.5.1 Detailed Description

Seapodym parameter class.

All static SEAPODYM parameters are defined and described here. However for DVAR parameters see class VarParamCoupled

3.5.2 Member Function Documentation

3.5.2.1 dfselectivity()

Adjoint code for selectivity functions (Param class) Forward functions are in Param.cpp

3.5.3 Member Data Documentation

3.5.3.1 length

```
DMATRIX CParam::length
```

DMATRIX juv_length; // length by age for each species (cm) for the first three months of live DMATRIX juv_weight; // weight by age for each species (kg) for the first three months of live

3.5.3.2 life_stage

```
vector<string> CParam::life_stage
```

IVECTOR sp_nb_age_class_ad; // number of age classes for each species [sp] IVECTOR sp_unit_age_class_ad; // time step used for the population of the species [sp] (0= pas de calcul de pop; 1=month;2=quarter) IMATRIX sp_unit_age_class; // time step (in days) used for the population of the species [sp] and cohort [a] IVECTOR sp_ on b_age_class_jv; // number of age classes for each species [sp] IVECTOR sp_unit_age_class_jv; // time step used for the population of the species [sp] (0= pas de calcul de pop; 1=month;2=quarter) int max_age_class; // max number of age classes over all species

The documentation for this class was generated from the following files:

- src/Param.h
- · src/dv_selectivity.cpp
- · src/Param.cpp
- · src/VarParamCoupled.cpp

3.6 CReadWrite Class Reference

IO class.

#include <ReadWrite.h>

Collaboration diagram for CReadWrite:

Public Member Functions

- void rbin_headpar (string file_in, int &nlong, int &nlat, int &nlevel)
- void rtxt_headpar (string file_in, int &nlong, int &nlat, int &nlevel)
- void rwbin_minmax (string file_io, double minvalstep, double maxvalstep)
- void rtxt_mat2d (string file_in, DMATRIX &mat2d, int &nlong, int &nlat)
- void **rbin_header** (string file_in, string &idformat, int &idfunc, double &minval, double &maxval, int nlong, int nlat, int nlevel, double &startdate, double &enddate, DMATRIX &xlon, DMATRIX &ylat, DVECTOR &zlevel, IMATRIX &msksp)
- void wbin_header (string file_out, string &idformat, int &idfunc, double &minval, double &maxval, int nlong, int nlat, int nlevel, double &startdate, double &enddate, const DMATRIX &xlon, const DMATRIX &ylat, const DVECTOR &zlevel, const IMATRIX &msksp)
- void rtxt_header (string file_in, int nlong, int nlat, int nlevel, double &startdate, double &enddate, DVECTOR &xlon, DVECTOR &ylat, DVECTOR &zlevel, IMATRIX &msksp)
- void rbin_mat2d (string file_out, PMap &map, DMATRIX &mat2d, int nlat, int nlong, int nbytetoskip)
- void rbin_input2d (string file_in, PMap &map, DMATRIX &mat2d, int nbi, int nbj, int nbytetoskip)
- void wbin_mat2d (string file_out, const DMATRIX &mat2d, int nlat, int nlong, bool FILEMODE)
- void wbin_transpomat2d (string file_out, const DMATRIX &mat2d, int nlong, int nlat, bool FILEMODE)
- void wtxt_header (string file_out, int nlong, int nlat, int nlevel, double &startdate, double &enddate, const DVECTOR &xlon, const DVECTOR &ylat, const DVECTOR &zlevel, const IMATRIX &msksp)
- · void wtxt mat2d (string file out, const DMATRIX &mat2d, int nlat, int nlong, bool FILEMODE)
- void **rtxt_col_lonlat** (string file_in, DMATRIX &mat2d, int nlong, int nlat, DVECTOR &xlon, DVECTOR &ylat, int nbvar, int var)
- void **wbin fishery** (string file in, string file out, int nbvar)
- void rbin_fishery (string file_in, DMATRIX &mat2d, CParam ¶m, int nbvar, int nvar, int yyyy, int mm)

void InitSepodymFileDym (CParam ¶m, CMatrices &mat, int nb_mo, DVECTOR &zlevel, const IMA
 — TRIX &msksp)

- void SaveSepodymFileDym (CParam ¶m, PMap &map, CMatrices &mat)
- void SaveDymFile (PMap &map, CMatrices &mat, string file, const dmatrix &data, const int nlon, const int nlat)
- void InitFluxesCohortsFileTxt (CParam ¶m)
- void SaveFluxesCohortsFileTxt (CParam ¶m, CMatrices &mat, PMap &map, int day, int month, int year)
- void InitSepodymFileTxt (CParam ¶m)
- void SaveSepodymFileTxt (CParam ¶m, CMatrices &mat, PMap &map, dvector sumP, DVECTOR &sumF, DVECTOR &sumF_area_pred, DVECTOR &sumF_required_by_sp, DV
 ECTOR &mean omega sp, int day, int mois2, int yr2, int t total, int gtr1, int gtr2, int nbi, int nbj)
- void rbin_fishery_header (CParam ¶m)
- void rtxt_fishery_data (CParam ¶m, const PMap &map, const int nbt, const int jday_spinup)
- void set_effort_rm (CParam ¶m, PMap &map, const int nbt, const int jday_spinup)
- void degrade_fishery_reso (CParam ¶m, PMap &map, const int nbt, const int jday_spinup)
- void set_frec_rm (CParam ¶m, const PMap &map, const int nbt, const int jday_spinup)
- void set_frec_rm_no_effort_fisheries (CParam ¶m, const PMap &map, const int nbt, const int jday
 —spinup)
- void delete fisheries rec (void)
- void get catch (CParam ¶m, dmatrix &catch obs, const int f, int y, const int m, const int sp)
- void **get_effort** (CParam ¶m, dmatrix &effort, const int f, int y, const int m)
- void get_effort_lonlat (CParam ¶m, dmatrix &effort, dmatrix &efflon, dmatrix &efflat, const int f, int y, const int m)
- void get_effort_rm (CParam ¶m, dmatrix &effort, const int f, int y, const int m)
- void get fishery data (CParam ¶m, D3 ARRAY &effort, D4 ARRAY &catch obs, int y, const int m)
- void get_fishery_data (CParam ¶m, D3_ARRAY &effort, D4_ARRAY &catch_obs, D3_ARRAY &efflon, D3_ARRAY &efflat, int y, const int m)
- void get_average_effort (CParam ¶m, D3_ARRAY &effort, D3_ARRAY &efflon, D3_ARRAY &eff
- void get average effort rm (CParam ¶m, dmatrix &effort, const int f, const int nby, const int m)
- void **get_average_selectivity** (PMap &map, CParam ¶m, dvector &swa, const ivector fisheries, const int nbf, const int nbt, const int nb_ages, const int sp, const int step_count)
- void get_fishery_data_mpa (PMap &, CParam &, d3_array &, d4_array &, d3_array &, d3_array &, int, int)
- void mpa areas comp (PMap &, CParam &)
- void inc_obs_catch_mpa (PMap &map, CParam ¶m, dmatrix &catch_obs, const int sp)
- int **get_numrec** (const int f, const int y, const int m)
- void read If WCPO (CParam ¶m, string filename, const float startdate, const float enddate, const int sp)
- void read_lf_EPO (CParam ¶m, string filename, const float startdate, const float enddate, const int sp)
- void read If fine (CParam ¶m, string filename, const float startdate, const float enddate, const int sp)
- void read_frq_data (CParam ¶m, PMap &map, const float startdate, const float enddate, const int sp)
- void get LF qtr data (CParam ¶m, d4 array LF qtr obs, int y, const int q)
- void write frq data (CParam ¶m, int sp, int year, int gtr, d3 array frq, bool FILEMODE)
- void read_pred_frq_data (CParam ¶m, string filename, const float startdate, const float enddate, const int sp)

Public Attributes

- vector< string > dymFileSpPred
- vector< string > dymFileSpC
- vector< string > dymFileSpLF
- vector< string > dymFileSumSpLF
- vector< string > dymFileSpCorr
- vector< string > FileSpFR

Friends

- · class fishery_record
- · class fishing_effort

3.6.1 Detailed Description

IO class.

Class functions are accessible through all computational classes. All types of input data are read here, any new output writing routines must be placed here as well.

3.6.2 Member Function Documentation

3.6.2.1 read_lf_EPO()

const int nb_ages = param.sp_nb_age_class_ad[sp];

3.6.2.2 read_lf_WCPO()

double L_pr = param.juv_length(sp,param.sp_nb_age_class_iv[sp]-1);

3.6.2.3 read_pred_frq_data()

int nb_ages = param.sp_nb_age_class_ad[sp];

3.6.2.4 write_frq_data()

int nb_ages = param.sp_nb_age_class_ad[sp];

The documentation for this class was generated from the following files:

- · src/ReadWrite.h
- src/ReadWrite_DYM.cpp
- · src/ReadWrite_fisheries.cpp
- src/ReadWrite_TXT.cpp
- src/SaveSeapodymFileTxt.cpp

3.7 CSaveTimeArea Class Reference

The class to aggregate variables to the regional structure.

```
#include <SaveTimeArea.h>
```

Public Member Functions

- void SumByArea (const PMap &map, const dmatrix &mask_catch, const dmatrix &mat2d, dvector &sum
 —area, const dvector cell_area, const int nb_reg, const int nbt)
- void SumByEEZ (const CParam ¶m, const PMap &map, const DMATRIX &mat2d, DVECTOR &sum
 — EEZ, const dvector cell_area)
- double SumByEEZ (const PMap &map, const int EEZ_ID, const DMATRIX &mat2d, const dvector cell_area, const int nlon, const int nlat)
- int NobsByEEZ (const PMap &map, const int EEZ_ID, const DMATRIX &mat2d, const int nlon, const int nlat)
- double **SumByEEZ** (const PMap &map, const int EEZ_ID, const DMATRIX &C, const DMATRIX &E, const int nlon, const int nlat)
- double StdCPUEByEEZ (const PMap &map, const int EEZ_ID, const DMATRIX &C, const DMATRIX &E, const double mean, const int nobs, const int nlon, const int nlat)

3.7.1 Detailed Description

The class to aggregate variables to the regional structure.

The documentation for this class was generated from the following files:

- src/SaveTimeArea.h
- src/SaveTimeArea.cpp

3.8 CSimtunaFunc Class Reference

The simulation function which do not use dvariables.

#include <SimtunaFunc.h>

Inheritance diagram for CSimtunaFunc:

Public Member Functions

- double function_lambda (CParam ¶m, CMatrices &mat, int n, int i, int j)
- · double daylength (double lat, int jday)
- double daylength_twilight (double lat, int jday, const double p)
- double grad_daylength (double lat, int jday)
- double f_accessibility_comp (const double Od, const double On, const double Td, const double Tn, double twosigsq, double temp mean, double oxy teta, double oxy cr, const double DL)

3.8.1 Detailed Description

The simulation function which do not use dvariables.

The documentation for this class was generated from the following files:

- · src/SimtunaFunc.h
- src/SimtunaFunc.cpp

3.9 Date Class Reference

Static Public Member Functions

- static void **init_time_variables** (CParam ¶m, int &Tr_step, int &nbt_spinup_tuna, int &jday_run, int &jday_spinup, int &nbstot, const int info, const int flagsimu)
- static void **update_time_variables** (const int t_count, const int deltaT, const int date_mode, const int jday ← _spinup, int &jday, int &day, int &month, int &year, int &newyear)
- static int **get_nbstot** (const int ndat000, const int ndatfin, const int jdays_run, const int deltaT, const int date_mode, ivector &rundates)
- static int **get_nbt_before_first_recruitment** (const int first_recruitment_date, const int ndatini, const int deltaT, const int date_mode)
- static int dym_startdate_run (CParam ¶m, const dvector zlevel_dym, const int nbstot)
- static void **zlevel_run** (CParam ¶m, const dvector zlevel_dym, const int nbstot, dvector &zlevel, const int nbt_start_series)
- static int leapYear (int year)
- · static int dayWithinMonth (int day, int month, int year)
- · static unsigned long julday (int day, int month, int year)
- static unsigned long clmjulday (int day, int month, int year)
- static unsigned long **nlyjulday** (int day, int month, int year)
- static unsigned long **juldayy** (int day, int month, int year)
- static unsigned long clmjuldayy (int day, int month, int year)
- static unsigned long **nlyjuldayy** (int day, int month, int year)
- static void dmy (unsigned long julnum, int &d, int &m, int &y)

- · static void clmdmy (unsigned long julnum, int &d, int &m, int &y)
- static void **nlydmy** (unsigned long julnum, int &d, int &m, int &y)
- static void idatymd (const int ndat, int &year, int &month, int &day)
- static string **MakeDate** (int yr, int mo, int jr)
- static string MakeDate (int yr, int mo)
- static string MonthName (int mo)
- static int **Update_now_time** (int yr, int month, int day)
- static string Update_now_time_str (int yr, int month, int day)
- static string Update_now_time_str_spinup (int month)

The documentation for this class was generated from the following files:

- · src/Date.h
- · src/Date.cpp

3.10 Dimensions Class Reference

Public Member Functions

- unsigned get_nbi ()
- unsigned get_nbj ()
- unsigned get_nbz ()
- unsigned get_nbt ()
- unsigned get_nb_species ()
- unsigned get_nb_forage ()
- unsigned get_nb_cohorts ()
- unsigned **get_nbc_lv** ()
- unsigned get_nbc_jv ()
- unsigned get nbc yn ()
- unsigned get_nbc_ad ()
- unsigned get_i0_ad ()
- unsigned get_nb_region ()
- unsigned get_nb_fleet ()

Static Public Member Functions

• static Dimensions & getInstance ()

Public Attributes

- · unsigned nbt
- · unsigned nbi
- unsigned nbj
- · unsigned nbz
- unsigned nb_species
- unsigned nb_forage
- unsigned nb_fishery
- unsigned nb_region
- unsigned nb_cohorts
- unsigned nbc lv
- unsigned nbc_jv
- · unsigned nbc_yn
- · unsigned nbc_ad
- unsigned i0_ad

The documentation for this class was generated from the following files:

- · src/Dimensions.h
- · src/Dimensions.cpp

3.11 fishery_record Class Reference

Class that reads and stores all fishing data.

```
#include <ReadWrite.h>
```

Public Member Functions

- int get_i ()
 - 2015: catch for a single species, can be modified to multispecies if needed
- int **get_j** ()
- double get_lon ()
- double get_lat ()
- double get_effort (void)
- · double get efflon (void)
- double get_efflat (void)
- double get_catch (void)
- void set_record (double longitude, double latitude, int ii, int jj, double ee, double cc)
- void change_coord (double longitude, double latitude, int ii, int jj)

3.11.1 Detailed Description

Class that reads and stores all fishing data.

Fishing data to be stored in SEAPODYM: i,j indices, lon/lat coordinates (center of the fishing area), effort and catch

The documentation for this class was generated from the following file:

• src/ReadWrite.h

3.12 fishing_effort Class Reference

Class that reads and stores redistributed fishing effort data.

```
#include <ReadWrite.h>
```

Public Member Functions

```
int get_i ()fishing effort
```

- int **get_j** ()
- double get_effort (void)
- void set_effort (int ii, int jj, double ee)

3.12.1 Detailed Description

Class that reads and stores redistributed fishing effort data.

Fishing effort redistributed to the model resolution will be read and used in Calpop class for each i,j to compute fishing mortality rates.

The documentation for this class was generated from the following file:

· src/ReadWrite.h

3.13 PMap Class Reference

Class has information about spatial domain: the land mask, the indexing and the boundaries.

```
#include <Map.h>
```

Public Member Functions

- void lit_map (CParam ¶m)
- void delete_map (const CParam ¶m)
- void reg_indices (CParam ¶m)

Public Attributes

- IMATRIX bord cell
- IMATRIX nbl_bord_cell
- · IMATRIX carte
- DMATRIX itopo
- IMATRIX maskEEZ
- IMATRIX maskMPA
- int imin
- int imax
- int jmin
- int jmax
- int imin1
- int imax1
- int global
- IVECTOR iinf
- IVECTOR isup
- IVECTOR jinf
- IVECTOR jsup
- IVECTOR jinf1
- IVECTOR jsup1
- · ivector regimin
- ivector regimax
- ivector regimin
- · ivector regimax

3.13.1 Detailed Description

Class has information about spatial domain: the land mask, the indexing and the boundaries.

This class reads land mask, EEZ mask (if exist) and topographic indices. The boundary conditions are defined here as well using the land mask information. Also, the ragged array indices are computed and stored in this class.

The documentation for this class was generated from the following files:

- · src/Map.h
- src/Map.cpp

3.14 CParam::region Struct Reference

Public Attributes

- int area_id
- · double Igmin
- double Igmax
- double Itmin
- double Itmax

The documentation for this struct was generated from the following file:

· src/Param.h

3.15 SeapodymCoupled Class Reference

The main simulation class.

#include <SeapodymCoupled.h>

Inheritance diagram for SeapodymCoupled:

Collaboration diagram for SeapodymCoupled:

Public Member Functions

- SeapodymCoupled (const char *parfile)
- int nvarcalc () const
- void xinit (dvector &x, adstring_array &names)
- double run coupled (dvar vector x, const bool writeoutputfiles=false)
- double run_habitat (dvar_vector x, const bool writeoutputfiles=false)
- double **run_density** (dvar_vector x, const bool writeoutputfiles=false)
- dvariable reset (dvar_vector x)
- void write (const char *parfile)
- void **save_statistics** (const string dirout, const adstring_array x_names, double likelihood, dvector g, double elapsed_time, int status, int iter, int nvars)
- int EditRunCoupled (const char *parfile)
- double OnRunCoupled (dvar_vector x, const bool writeoutputfiles=false)

The tuna population main loop is in this function.

- void OnSimulationEnd ()
- double OnRunHabitat (dvar_vector x, const bool writeoutputfiles=false)

The main loop of habitat simulations.

- void ReadHabitat ()
- double OnRunDensity (dvar_vector x, const bool writeoutputfiles=false)

The tuna population simulation without fishing and density fitting.

- · void ReadDensity ()
- void OnRunFirstStep ()
- void OnBuildForage ()
- double get_total_time_reading ()
- int get_maxfn ()
- · double get_crit ()

Friends

· class tag_release

Additional Inherited Members

3.15.1 Detailed Description

The main simulation class.

3.15.2 Member Function Documentation

3.15.2.1 OnRunCoupled()

The tuna population main loop is in this function.

This is the main loop function including the calculation of biomass exchange between regions, based on the one time step simulations with non-zero biomass only in the donor region and quantification of biomass changes in all. See SeapodymCoupled_OnRunCoupled.cpp for the description of the main loop

This is the main loop function. It includes the following calls: 1- Initialising population density 2- Reading all forcing data (once in optimization mode, at every time step in simulation mode) 3- Reading fisheries data 4- Reading tagging data if tag_like is activated 5- Age/lifestage loop calling the ADRE solvers and ageing 6- Predicting observed variables (catch, LF and density of tags) 7- Likelihood computation 8- Writing outputs (in simulation mode only)

This is the main loop function for the SAVE-BEFORE-FISHING simulation mode. The default function includes the following calls: 1- Initialising population density 2- Reading all forcing data (once in optimization mode, at every time step in simulation mode) 3- Reading fisheries data 4- Reading tagging data if tag_like is activated 5- Age/lifestage loop calling the ADRE solvers and ageing 6- Predicting observed variables (catch, LF and density of tags) 7-Likelihood computation 8- Writing outputs (in simulation mode only) Here to the default function added the second ADRE solver in order to: 1) Solve the ADREs without fishing using the state vector of model with fishing at T-1 2) Save the outputs, which correspond to the model solution without fishing mortality 3) Restore the model-with-fishing state vector and get the ADRE solution for T. Note, to activate this simulation mode, use this file instead of SeapodymCoupled_OnRunCoupled in Makefile or Makefile.clt. If latter, only simulation mode is supported for this run.

```
if (t_count > nbt_spinup_forage + nt_jv){ SPINUP TO BE FIXED OR REMOVED!!!
}
```

if (t_count > nbt_spinup_forage + nt_yn){ TO BE FIXED!!! for (int age=0; age<=nb_age_built[sp]; age++){///TO BE FIXED!!!

3.15.2.2 OnRunDensity()

The tuna population simulation without fishing and density fitting.

This is the main loop for the model without fishing and fitting of density. Similar to the default function, it includes the following calls: 1- Initialising population density 2- Reading all forcing data (once in optimization mode, at every time step in simulation mode) 3- Age/lifestage loop calling the ADRE solvers and ageing 4- Computing model density -> used as predictions 5- Likelihood computation using input density as observations 6- Writing outputs (in simulation mode only) Note, there is no modelling of tagged cohorts here! if (t_count > nbt_spinup_forage + nt_yn){ TO BE FIXED!!! for (int age=0; age<=nb_age_built[sp]; age++){///TO BE FIXED!!!

The documentation for this class was generated from the following files:

- · src/SeapodymCoupled.h
- src/dv_food_requirement_index.cpp
- src/dv_spawning.cpp
- src/dv_survival.cpp
- · src/dv_total_pop.cpp
- src/fd_food_requirement_index.cpp
- src/fd spawning.cpp
- src/fd_survival.cpp
- src/fd_total_pop.cpp
- · src/food requirement index.cpp
- · src/like.cpp
- src/Seapodym OnRunDensity.cpp
- src/Seapodym_OnRunHabitat.cpp
- src/SeapodymCoupled_EditRunCoupled.cpp
- src/SeapodymCoupled_Forage.cpp
- src/SeapodymCoupled_Funcs.cpp
- src/SeapodymCoupled OnCompFluxes.cpp
- src/SeapodymCoupled_OnReadForcing.cpp
- src/SeapodymCoupled_OnRunCoupled.cpp
- src/SeapodymCoupled_OnRunFirstStep.cpp
- src/SeapodymCoupled_OnWriteOutput.cpp
- src/SeapodymCoupled_ReadTags.cpp
- src/SeapodymCoupled_SaveBeforeFishing.cpp
- · src/spawning.cpp

3.16 SeapodymDocConsole Class Reference

This class derives all necessary classes for the main simulation class.

#include <SeapodymDocConsole.h>

Inheritance diagram for SeapodymDocConsole:

 $Collaboration\ diagram\ for\ Seapodym Doc Console:$

Public Attributes

- · CReadWrite rw
- VarParamCoupled * param
- VarMatrices mat
- PMap map
- VarSimtunaFunc func
- CNumfunc nfunc
- CSaveTimeArea save
- int **nbi**
- int **nbj**
- · int nlon
- int **nlat**
- int deltaT
- int nlon_input
- int nlat input
- · double deltaX

- · double deltaY
- double SUM_CATCH
- · int nb_fishery
- int nb_species
- int nb_forage
- int nb_layer
- int tuna_spinup
- · string date_str
- char runtype
- · int t count
- int t_series
- double sumP
- DVECTOR sumF
- DVECTOR sumFprime
- DVECTOR sumF area pred
- DVECTOR sumF_required_by_sp
- DVECTOR mean_omega_sp

Protected Member Functions

void UpdateDisplay ()

Protected Attributes

CCalpop pop

3.16.1 Detailed Description

This class derives all necessary classes for the main simulation class.

The documentation for this class was generated from the following files:

- src/SeapodymDocConsole.h
- src/SeapodymDocConsole_UpdateDisplay.cpp

3.17 tag_release Class Reference

Public Member Functions

- int **get_i** ()
- int **get_j** ()
- int get_age (void)
- void set_release (int ii, int jj, int aa)

The documentation for this class was generated from the following file:

• src/SeapodymCoupled.h

3.18 Utilities Class Reference

Static Public Member Functions

- static string MakeDate (int yr, int mo, int jr)
- static string MakeDate (int yr, int mo)
- · static string MonthName (int mo)
- · static string itoa (int i)
- static int MyMax (int a, int b)
- static double MyMax (double a, double b)
- static short **MyMax** (short a, short b)
- static char MyMax (char a, char b)
- static int MyMin (int a, int b)
- static double MyMin (double a, double b)
- · static short MyMin (short a, short b)
- static char **MyMin** (char a, char b)
- static int * create1d (int *mat, const int n1, const int val=0)
- static double * create1d (double *mat, int n1, double val=0)
- static string * create1d (string *mat, int n1, string val="")
- static double ** create2d (double **mat, int n1, int n2, double val=0)
- static double ** create2d (double **mat, int n1, const IVECTOR &n2, double val=0)
- static string ** create2d (string **mat, int n1, const IVECTOR &n2, string val="")
- static int ** create2d (int **mat, int n1, int n2, int val=0)
- static int ** create2d (int **mat, int n1, const IVECTOR &n2, int val=0)
- static double *** create3d (double ***mat, int n1, int n2, int n3, double val=0)
- static double *** create3d (double ***mat, int n1, const IVECTOR &n2, const IVECTOR &n3, double val=0)
- static int *** create3d (int ***mat, int n1, int n2, int n3, int val=0)
- static double **** create4d (double ****mat, int n1, int n2, int n3, int n4, double val=0)
- static double **** create4d (double ****mat, int n1, const IVECTOR &n2, int n3, int n4, double val=0)
- static double **** **create4d** (double ****mat, int n1, const IVECTOR &n2, const IVECTOR &n3, const IVECTOR &n4, double val=0)
- static double **** create5d (double ****mat, int n1, const IVECTOR &n2, int n3, const IVECTOR &n4, const IVECTOR &n5, double val=0)
- static void delete1d (string *mat)
- static void delete1d (const IVECTOR &mat)
- static void delete1d (double *mat)
- static void **delete2d** (double **mat, int n1)
- static void delete2d (int **mat, int n1)
- static void delete2d (string **mat, int n1)
- static void delete3d (double ***mat, int n1, int n2)
- static void delete3d (double ***mat, int n1, const IVECTOR &n2)
- static void **delete3d** (int ***mat, int n1, int n2)
- static void delete4d (double ****mat, int n1, int n2, int n3)
- static void delete4d (double ****mat, int n1, const IVECTOR &n2, int n3)
- static void delete4d (double ****mat, int n1, const IVECTOR &n2, const IVECTOR &n3)
- static void delete5d (double *****mat, int n1, const IVECTOR &n2, int n3, const IVECTOR &n4)

The documentation for this class was generated from the following file:

· src/Utilities.h

3.19 VarMatrices Class Reference

Seapodym DVAR matrices class.

#include <VarMatrices.h>

Inheritance diagram for VarMatrices:

Collaboration diagram for VarMatrices:

Public Member Functions

- void CreateMatHabitat (PMap &map, const int nb_species, const int nforage, const int nblayer, const int nb
 _ages, int t0, int nbt, const int nbi, const int nbj, const ivector sp_adult_age0, const ivector sp_nb_age_class, const imatrix age_compute_habitat)
- void CreateMatTransport (PMap &map, const int nbi, const int nbj)
- void CreateMatSpecies (PMap &map, int t0, int nbt, int nbj, int nbj, int nb_species, const ivector a0_adult, const ivector &sp_nb_cohorts)

void CreateMatSpecies(PMap& map, int nbi, int nbj, int nb_species, const ivector& sp_nb_age_class_jv, const ivector& sp_nb_age_class) {

 void CreateMatCatch (PMap &map, int nbi, int nbj, int nb_species, const IVECTOR &nb_fleet, const ivector a0_adult, const IVECTOR &nb_cohorts, const IVECTOR &nb_region)

Public Attributes

- dvar matrix dvarsU
- dvar matrix dvarsV
- DVAR4_ARRAY dvarF_access
- DVAR4 ARRAY dvarZ access
- DVAR4_ARRAY dvarDensity
- DVAR4_ARRAY dvarCatch_est
- DVAR4_ARRAY dvarLF_est
- dvar4_array dvarCtot_age_obs
- dvar4_array dvarCtot_age_est
- dvar3_array dvarSeasonSwitch
- dvar3_array dvarSigmaSeason
- dvar_matrix dvarsDiffusion_x
- dvar_matrix dvarsDiffusion_y
- dvar_matrix dvarsAdvection_x
- dvar_matrix dvarsAdvection_y

3.19.1 Detailed Description

Seapodym DVAR matrices class.

The documentation for this class was generated from the following file:

· src/VarMatrices.h

3.20 VarParamCoupled Class Reference

Seapodym DVAR parameter class.

#include <VarParamCoupled.h>

Inheritance diagram for VarParamCoupled:

Collaboration diagram for VarParamCoupled:

Public Member Functions

- · int nvarcalc () const
- · bool gcalc ()
- void set_gradcalc (bool flag)
- · bool scalc ()
- · void set scalc (bool flag)
- void xinit (dvector &x, adstring_array &x_names)
- dvariable reset (dvar_vector x)
- void getparam (void)
- double **get_parval** (int idx)
- · dvector get_parvals (void)
- void outp_param (adstring_array x_names, const int nvars)
- void get_param_index (ivector &ix, dmatrix &xy, dmatrix &pars)
- double par_init_lo (int ix, double eps)
- double par_init_up (int ix, double eps)
- double par_init_step (int ix, double delta)
- double par_init_step_left (int ix)
- double par_init_step_right (int ix)
- void set all false (string *pnames)
- int set_var_parameters (ivector phase_par_flags, string *pnames)
- bool read (const string &parfile)
- void re read varparam ()
- void write (const char *parfile)
- void save_statistics (const string dirout, const adstring_array x_names, double likelihood, dvector g, double elapsed_time, int status, int iter, int nvars)

Public Attributes

- double Mp_mean_max_min
- · double Mp mean max max
- dvar_vector dvarsMp_mean_max
- · double Mp mean exp min
- · double Mp mean exp max
- dvar_vector dvarsMp_mean_exp
- · double Ms mean max min
- double Ms_mean_max_max
- dvar_vector dvarsMs_mean_max
- · double Ms mean slope min
- double Ms_mean_slope_max
- · dvar vector dvarsMs mean slope
- double M_mean_range_min

- double M_mean_range_max
- dvar_vector dvarsM_mean_range
- · double a_sst_spawning_min
- double a_sst_spawning_max
- dvar_vector dvarsA_sst_spawning
- double b_sst_spawning_min
- · double b sst spawning max
- dvar_vector dvarsB_sst_spawning
- double a_sst_larvae_min
- · double a sst larvae max
- · dvar vector dvarsA sst larvae
- · double b sst larvae min
- double b_sst_larvae_max
- dvar vector dvarsB sst larvae
- double alpha_hsp_prey_min
- · double alpha hsp prev max
- dvar_vector dvarsAlpha_hsp_prey
- double alpha hsp predator min
- double alpha_hsp_predator_max
- dvar_vector dvarsAlpha_hsp_predator
- double beta_hsp_predator_min
- double beta_hsp_predator_max
- dvar vector dvarsBeta hsp predator
- double a_sst_habitat_min
- · double a sst habitat max
- dvar_vector dvarsA_sst_habitat
- double b_sst_habitat_min
- · double b sst habitat max
- · dvar vector dvarsB sst habitat
- double T_age_size_slope_min
- · double T age size slope max
- dvar vector dvarsT age size slope
- dvector thermal_func_delta_min
- · dvector thermal func delta max
- dvar_matrix dvarsThermal_func_delta
- · double a oxy habitat min
- double a_oxy_habitat_max
- dvar_vector dvarsA_oxy_habitat
- double b_oxy_habitat_min
- · double b oxy habitat max
- · dvar vector dvarsB oxy habitat
- dvector eF_habitat_min
- dvector eF_habitat_max
- dvar_matrix dvarsEF_habitat
- double hp_cannibalism_min
- double hp_cannibalism_max
- dvar_vector dvarsHp_cannibalism
- double sigma_species_min
- · double sigma_species_max
- dvar_vector dvarsSigma_species
- · double MSS species min
- · double MSS species max
- · dvar vector dvarsMSS species
- · double MSS size slope min
- double MSS_size_slope_max

- dvar_vector dvarsMSS_size_slope
- double c diff fish min
- double c_diff_fish_max
- · dvar vector dvarsC diff_fish
- · double nb recruitment min
- · double nb_recruitment_max
- dvar_vector dvarsNb_recruitment
- · double a adults spawning min
- double a_adults_spawning_max
- dvar_vector dvarsA_adults_spawning
- · double spawning season peak min
- double spawning_season_peak_max
- dvar_vector dvarsSpawning_season_peak
- · double spawning season start min
- · double spawning season start max
- dvar_vector dvarsSpawning_season_start
- dmatrix q_sp_fishery_min
- dmatrix q_sp_fishery_max
- · dvar matrix dvarsQ sp fishery
- dmatrix s_slope_sp_fishery_min
- dmatrix s_slope_sp_fishery_max
- dmatrix s_asympt_sp_fishery_min
- dmatrix s_asympt_sp_fishery_max
- dvar_matrix dvarsSslope_sp_fisherydvar matrix dvarsSlength sp fishery
- dvar matrix dvarsSasympt sp fishery
- · uvai_matiix uvaissasympt_sp_nsiit
- dvar_matrix dvarsLike_param
- dvar_matrix dvarsProb_zero

Additional Inherited Members

3.20.1 Detailed Description

Seapodym DVAR parameter class.

In this class we read the XML parameter file, initialize and reset variable parameters.

3.20.2 Member Function Documentation

3.20.2.1 read()

create vectors of model parameters sp_unit_age_class_jv.allocate(0, nb_species - 1); sp_nb_age_class_jv. ⇔ allocate(0, nb_species - 1); juv_length.allocate(0, nb_species - 1); juv_weight.allocate(0, nb_species - 1); sp_ ⇔ nb_age_class_ad.allocate(0, nb_species - 1); sp_unit_age_class_ad.allocate(0, nb_species - 1); sp_unit_age_⇔ class.allocate(0, nb_species - 1);

The documentation for this class was generated from the following files:

- src/VarParamCoupled.h
- src/VarParamCoupled.cpp
- src/VarParamCoupled_reset.cpp
- src/VarParamCoupled_xinit.cpp

3.21 VarSimtunaFunc Class Reference

All SEAPODYM functions including DVAR parameters.

#include <VarSimtunaFunc.h>

Inheritance diagram for VarSimtunaFunc:

Collaboration diagram for VarSimtunaFunc:

Public Member Functions

- void Spawning_Habitat (VarParamCoupled ¶m, CMatrices &mat, const PMap &map, dvar_matrix &Hs, const double sigma_sp_var, int sp, const int t_count, const int jday)
- void **Hs_comp** (VarParamCoupled ¶m, CMatrices &mat, const PMap &map, dvar_matrix &Hs, double a, double b, double c, double d, double e, const double sigma_sp_var, const int jday, int t_count)
- double **Hs_comp_elem** (CMatrices &mat, dvector F, const double pp_transform, const double a, const double b, const double c, const double d, const double e, const double sigma_sp_var, const int nb_forage, ivector day_layer, ivector night_layer, const int jday, const int t, const int j)
- void Juvenile_Habitat (VarParamCoupled ¶m, CMatrices &mat, const PMap &map, dvar_matrix &Hs, int sp, const int t_count)
- void Juvenile_Habitat_cannibalism (VarParamCoupled ¶m, CMatrices &mat, const PMap &map, dvar_matrix &Hs, dvar_matrix &total_pop, int sp, const int t_count)
- void Hj_comp (VarParamCoupled ¶m, CMatrices &mat, const PMap &map, dvar_matrix &Hj, double a, double b, const int t)
- void **Hj_cannibalism_comp** (VarParamCoupled ¶m, CMatrices &mat, const PMap &map, dvar_matrix &Hj, const dmatrix &total_pop, double a, double b, double c, const int t)
- void Faccessibility (VarParamCoupled ¶m, VarMatrices &mat, const PMap &map, const int sp, const int jday, const int t_count, const int pop_built, const int tags_only, const ivector tags_age_solve)
- void Vars at age precomp (CParam ¶m, const int sp)
- double Topt_at_age_comp (CParam ¶m, const double teta_min, const double teta_max, const int sp, const int age)
- void Faccessibility_comp (VarParamCoupled ¶m, VarMatrices &mat, const PMap &map, double teta
 —max, double oxy_teta, double oxy_cr, const int sp, const int age, const int jday, const int t)
- void **Average_currents** (VarParamCoupled ¶m, VarMatrices &mat, const PMap &map, int age, const int t_count, const int pop_built)
- void Average_currents_comp (VarParamCoupled ¶m, VarMatrices &mat, const PMap &map, const int age, const int t)
- double **Tmean_comp** (VarParamCoupled ¶m, VarMatrices &mat, const PMap &map, const int sp, const int age, const int t)
- void **Feeding_Habitat** (VarParamCoupled ¶m, VarMatrices &mat, const PMap &map, dvar_matrix &Ha, int sp, int age, const int jday, const int t_count, const int migration_flag)
- void **Hf_comp** (VarParamCoupled ¶m, VarMatrices &mat, const PMap &map, dvar_matrix &Hf, const int sp, const int age, const int jday, const int t)
- void Feeding_Habitat_Index (VarParamCoupled ¶m, VarMatrices &mat, const PMap &map, dvar_matrix &Ha, int sp, int age, const int jday, const int t_count)
- void Seasonal_Habitat_Index (VarParamCoupled ¶m, VarMatrices &mat, const PMap &map, dvar_←
 matrix &Hs, dvar_matrix &Ha, int sp, int age, const int jday, const int t_count)
- void Ha_comp (VarParamCoupled ¶m, VarMatrices &mat, const PMap &map, const dmatrix Hs, dvar
 matrix &Ha, const int sp, const int jday)
- void Seasonal_switch (VarParamCoupled ¶m, VarMatrices &mat, const PMap &map, const int jday, int sp)
- void **Seasonal_switch_comp** (VarParamCoupled ¶m, VarMatrices &mat, const PMap &map, double season_peak, double season_start, const int jday, const int sp)

 void Seasonal_switch_year_precomp (CParam ¶m, CMatrices &mat, const PMap &map, double season_peak, double season_start, const int sp)

- void Mortality_Sp (VarParamCoupled ¶m, CMatrices &mat, const PMap &map, dvar_matrix &M, dvar
 —matrix &H, int sp, double mean_age_in_dtau, const int age, const int t_count)
- void M_sp_comp (const PMap &map, dvar_matrix &M, const dmatrix &H, double, double
- void M_PH_juv_comp (VarParamCoupled ¶m, const PMap &map, CMatrices &mat, dvar_matrix &M, const dmatrix &PH, double mean age in dtau)
- · void allocate dvmatr (const int imin, const int imax, const ivector jinf, const ivector jsup)
- dvariable adv_diff (const double H, dvariable &c)
- void time reading init ()

Public Attributes

double elapsed_time_reading

3.21.1 Detailed Description

All SEAPODYM functions including DVAR parameters.

3.21.2 Member Function Documentation

3.21.2.1 Faccessibility()

```
void VarSimtunaFunc::Faccessibility (
    VarParamCoupled & param,
    VarMatrices & mat,
    const PMap & map,
    const int sp,
    const int jday,
    const int t_count,
    const int pop_built,
    const int tags_only,
    const ivector tags_age_solve )
```

Forward main functions called in simulation mode only for: 1) accessibility to forage components (f_accessibility) or to their respective layers (f_accessibility_layer). 2) average currents given the accessibility to the layer. See accessibility.cpp

3.21.2.2 Feeding_Habitat_Index()

Forward main function called in simulation mode only for: feeding habitat for young and adult life stages, with or without seasonal switch between habitats depending on the migration flag. See feeding_habitat.cpp

3.21.2.3 Juvenile_Habitat()

```
void VarSimtunaFunc::Juvenile_Habitat (
    VarParamCoupled & param,
    CMatrices & mat,
    const PMap & map,
    dvar_matrix & Hj,
    int sp,
    const int t_count )
```

Forward main function called in simulation mode only for: juvenile habitat functions. See juvenile_habitat.cpp

3.21.2.4 M_sp_comp()

Forward functions for: mortality rates at age. These functions include fixed natural mortality rate and variable component, depending on habitat indices defined for the life stage

3.21.2.5 Mortality_Sp()

Forward main function called in simulation mode only for: mortality rates at age. See mortality_sp.cpp

3.21.2.6 Seasonal_switch()

Forward main function called in simulation mode only for: computing the seasonal switch function used to switch between habitats. See seasonal_switch.cpp

3.21.2.7 Spawning_Habitat()

Forward main function called in simulation mode only for: spawning habitat functions. See spawning_habitat.cpp

The documentation for this class was generated from the following files:

- src/VarSimtunaFunc.h
- · src/accessibility.cpp
- src/dv_accessibility.cpp
- src/dv_feeding_habitat.cpp
- src/dv_juvenile_habitat.cpp
- src/dv_mortality_sp.cpp
- src/dv_seasonal_switch.cpp
- · src/dv spawning habitat.cpp
- · src/fd_accessibility.cpp
- · src/fd feeding habitat.cpp
- src/fd_juvenile_habitat.cpp
- src/fd_mortality_sp.cpp
- src/fd_seasonal_switch.cpp
- src/fd_spawning_habitat.cpp
- src/feeding_habitat.cpp
- src/juvenile_habitat.cpp
- src/mortality_sp.cpp
- src/seasonal_switch.cpp
- · src/spawning_habitat.cpp