SPRAWOZDANIE SYSY

Laboratorium 4

Jan Czechowski 337066 Bartłomiej Gromulski 331475

Zadanie 1

a)

Dla N = 16:

Rysunek 1 Transmitancje dla N = 16 metodą próbkowania w dziedzinie częstotliwości.

Rysunek 2 Transmitancje w dB dla N = 16 metodą próbkowania w dziedzinie częstotliwości.

Dla N = 32:

Rysunek 3 Transmitancje dla N = 32 metodą próbkowania w dziedzinie częstotliwości.

Rysunek 4 Transmitancje w dB dla N = 32 metodą próbkowania w dziedzinie częstotliwości.

Dla N = 64:

Rysunek 5 Transmitancje dla N = 64 metodą próbkowania w dziedzinie częstotliwości.

Rysunek 6 Transmitancje w dB dla N = 64 metodą próbkowania w dziedzinie częstotliwości.

N	Pasmo przejściowe	Wahania w p.	Tłumienie w p. zaporowym
		przepuszczania	[dB]
16	0,0938	0,1587	-15,20
32	0,0469	0,1874	-16,10
64	0,0234	0,2009	-16,65

Wraz ze zwiększaniem długości odpowiedzi impulsowej filtru (czyli wartości N), zauważalne jest wyraźne zmniejszenie szerokości pasma przejściowego. Oznacza to, że filtr staje się bardziej selektywny i lepiej oddziela pasmo przepuszczania od zaporowego. Jednocześnie obserwuje się nieznaczny wzrost wahań w paśmie przepuszczania oraz lekką poprawę tłumienia w paśmie zaporowym.

Parametrem, który najbardziej zależy od długości filtru N, jest szerokość pasma przejściowego. Wraz z jej wzrostem pasmo przejściowe wyraźnie się zawęża, co oznacza, że długość filtru ma kluczowy wpływ na zdolność dokładnego oddzielenia pasm. Pozostałe parametry, takie jak wahania w paśmie przepuszczania i tłumienie w paśmie zaporowym, zmieniają się w znacznie mniejszym stopniu.

b)

Aby uzyskać pasmo przejściowe mniejsze niż 0.05, należy użyć co najmniej **32 punktów DFT**. Przy tej długości odpowiedzi impulsowej szerokość pasma przejściowego wynosi już 0.0469, co spełnia wymaganie. Dalsze zwiększanie N pozwala jeszcze bardziej zawęzić to pasmo.

Zadanie 2

a)

Dla N = 16:

Rysunek 7 Transmitancje dla N = 16 metodą nakładania okna prostokątnego.

Rysunek 8 Transmitancje w dB dla N = 16 metodą nakładania okna prostokątnego.

Dla N = 32:

Rysunek 9 Transmitancje dla N=32 metodą nakładania okna prostokątnego.

Rysunek 10 Transmitancje w dB dla N=32 metodą nakładania okna prostokątnego.

Dla N = 64:

Rysunek 11 Transmitancje dla N = 64 metodą nakładania okna prostokątnego.

Rysunek 12 Transmitancje w dB dla N = 64 metodą nakładania okna prostokątnego.

N	Pasmo przejściowe	Wahania w p.	Tłumienie w p. zaporowym
		przepuszczania	[dB]
16	0,125	0,1813	-23.11
32	0,0625	0,159	-21,97
64	0,0312	0,1487	-21,46

Dla tej samej długości filtru (czyli tej samej wartości N) metoda próbkowania w dziedzinie częstotliwości zawsze daje węższe pasmo przejściowe niż filtr zaprojektowany z użyciem okna prostokątnego (np. dla N = 32: 0,0469 vs 0,0625). Oznacza to, że filtr zaprojektowany metodą próbkowania lepiej oddziela pasmo przepuszczania od zaporowego. Jeśli chodzi o tłumienie w paśmie zaporowym i wahania w paśmie przepuszczania, obserwujemy wyraźną różnicę w trendach: dla metody próbkowania obie wartości rosną wraz z N, natomiast dla okna prostokątnego obie wartości maleją wraz ze wzrostem N . Przykładowo, w filtrach z próbkowania tłumienie rośnie od 15,2 dB (dla N = 16) do 16,65 dB (dla N = 64), a wahania od 0,1587 do 0,2009. Natomiast w filtrach z oknem prostokątnym tłumienie maleje z 23,11 dB do 21,46 dB, a wahania z 0,1813 do 0,1487.

Uzyskanie tłumienia większego niż 30 dB w paśmie zaporowym **nie jest możliwe** przy długości odpowiedzi impulsowej w zakresie $16 \le N \le 256$, gdy stosuje się okno prostokątne. Wynika to z faktu, że tłumienie w tej metodzie maleje wraz ze zwiększaniem długości filtru. Największe tłumienie obserwujemy **dla najkrótszego filtru (N = 16) i wynosi ono jedynie 23,11 dB** – a więc nawet w najlepszym przypadku nie osiąga wymaganych 30 dB.

b)

Prostokatne:

Rysunek 13 Transmitancje dla N = 64 metodą nakładania okna prostokątnego.

Rysunek 14 Transmitancje w dB dla N = 64 metodą nakładania okna prostokątnego.

Hamming:

Rysunek 15 Transmitancje dla N = 64 metodą nakładania okna Hamminga.

Rysunek 16 Transmitancje w dB dla N = 64 metodą nakładania okna Hamminga.

Blackman:

Rysunek 17 Transmitancje dla N = 64 metodą nakładania okna Blackmana.

Rysunek 18 Transmitancje w dB dla N = 64 metodą nakładania okna Blackmana.

Okno	pasmo przejściowe	tłumienie w p. zaporowym [dB]
Prostokątne	0,0312	-21,46
Hamming	0,1094	-52,66
Blackman	0,1562	-75,38

Rodzaj okna wpływa zarówno na pasmo przejściowe, jak i tłumienie w paśmie zaporowym, ale **pasmo przejściowe zmienia się proporcjonalnie bardziej**. Dla okna Blackmana pasmo przejściowe jest 5 razy szersze niż dla prostokątnego, podczas gdy tłumienie jest 3,5 raza większe.

Aby uzyskać mocniejsze tłumienie, trzeba pogodzić się z szerszym pasmem przejściowym.

Rysunek 19 Transmitancje dla N = 248 metodą nakładania okna Blackmana

Rysunek 20 Transmitancje w dB dla N = 248 metodą nakładania okna Blackmana

Aby uzyskać tłumienie w paśmie zaporowym > 70 dB i jednocześnie pasmo przejściowe < 0.05 użyliśmy okna Blackmana i wartość N = 248. Uzyskaliśmy tłumienie w paśmie zaporowym równe 76,11 dB oraz jednocześnie pasmo przejściowe o wartości 0,039.

Zadanie 3

Liczba zer i biegunów	pasmo przejściowe
8	0.4219
16	0.2266
32	0.1270

Zwiększenie liczby zer i biegunów prowadzi do zmniejszenia szerokości pasma przejściowego.

Zadanie 4:

a)

Rozkład biegunów gwarantuje bardzo niskie wahania w paśmie przepuszczania. W paśmie przepuszczania występują niewielkie wahania charakterystyki, poniżej 0.1 dB, co jest widoczne na rysunku 21. Nierównomierny rozkład zer w zakresie pasma zaporowego zapewnia wysokie tłumienie. Zera znajdują się na okręgu jednostkowym i leżą w paśmie zaporowym. Ich obecność tworzy punkty tłumienia na tych konkretnych częstotliwościach w paśmie zaporowym. Bieguny znajdują się wewnątrz okręgu jednostkowego. Ich położenie kształtuje charakterystykę w paśmie przepuszczania. Im wyższy rząd filtru, tym węższe pasmo przejściowe można uzyskać.

Rysunek 21 Transmitancja w dB dla pasma przepuszczania

b)

Wymagane pasmo	0.05	0.005
przejściowe		
Otrzymany rząd filtru	13	20
Zmierzone pasmo przejściowe	0.0567	0.0059
Zmierzone wahania w paśmie przepuszczania [dB]	0.004475	0.01153
Otrzymane tłumienie w paśmie zaporowym [dB]	100	100

Filtry spełniają wymagania tłumienia, ale nie udało się uzyskać dokładnie tak wąskiego pasma przejściowego, jak zakładano, choć uzyskane wartości są bliskie wymaganym.

Spis treści:

Zadanie 1	2
a)	2
Dla N = 16:	2
Dla N = 32:	3
Dla N = 64:	4
b)	5
Zadanie 2	6
a)	6
Dla N = 16:	6
Dla N = 32:	7
Dla N = 64:	8
b)	9
Prostokątne:	9
Hamming:	10
Blackman:	. 11

c)13
Zadanie 314
Zadanie 4:14
a)14
b)16
Spis rysunków:
Rysunek 1 Transmitancje dla N = 16 metodą próbkowania w dziedzinie częstotliwości. 2
Rysunek 2 Transmitancje w dB dla N = 16 metodą próbkowania w dziedzinie
częstotliwości
Rysunek 3 Transmitancje dla N = 32 metodą próbkowania w dziedzinie częstotliwości. 3
Rysunek 4 Transmitancje w dB dla N = 32 metodą próbkowania w dziedzinie
częstotliwości
Rysunek 6 Transmitancje w dB dla N = 64 metodą próbkowania w dziedzinie
częstotliwości
Rysunek 7 Transmitancje dla N = 16 metodą nakładania okna prostokątnego6
Rysunek 8 Transmitancje w dB dla N = 16 metodą nakładania okna prostokątnego 6
Rysunek 9 Transmitancje dla N = 32 metodą nakładania okna prostokątnego7
Rysunek 10 Transmitancje w dB dla N = 32 metodą nakładania okna prostokątnego 7
Rysunek 11 Transmitancje dla N = 64 metodą nakładania okna prostokątnego8
Rysunek 12 Transmitancje w dB dla N = 64 metodą nakładania okna prostokątnego 8
Rysunek 13 Transmitancje dla N = 64 metodą nakładania okna prostokątnego9
Rysunek 14 Transmitancje w dB dla N = 64 metodą nakładania okna prostokątnego 10
Rysunek 15 Transmitancje dla N = 64 metodą nakładania okna Hamminga 10
Rysunek 16 Transmitancje w dB dla N = 64 metodą nakładania okna Hamminga 11
Rysunek 17 Transmitancje dla N = 64 metodą nakładania okna Blackmana11
Rysunek 18 Transmitancje w dB dla N = 64 metodą nakładania okna Blackmana 12
Rysunek 19 Transmitancje dla N = 248 metodą nakładania okna Blackmana13
Rysunek 20 Transmitancje w dB dla N = 248 metodą nakładania okna Blackmana 13