Universität Konstanz

Skriptum zur Vorlesung

Einführung in die Algebra

Private Mitschrift

gelesen von:

Prof. Dr. Markus Schweighofer

Wintersemester 2014/15Stand vom 17. Januar 2015

Inhaltsverzeichnis

1	Gru	ppen	5		
	1.1	Gruppen und Untergruppen	5		
	2.2	Polynomringe $[\rightarrow LA \S 3.2]$	11		
	2.4	Primideale und maximale Ideale	16		
4	Körı	per [→ LA § 4]	19		
	4.1	Endliche und algebraische Körpererweiterungen	19		
	4.2	Der algebraische Abschluss	23		
Li	Literaturverzeichnis 2				

§ 1 Gruppen

§ 1.1 Gruppen und Untergruppen

1.1.1 Definition Eine Gruppe ist ein geordnetes Paar (G, \cdot) , wobei G eine Menge ist und $\cdot: G \times G \to G$ eine meist infix (und manchmal gar nicht) notierte Abbildung mit folgenden Eigenschaften ist:

- (A) $\forall a, b, c \in G : a(bc) = (ab)c$ "assoziativ"
- (N) $\exists e \in G \ \forall a \in G : ae = a = ea$ "neutrales Element"
- (I) $\forall a \in G \ \exists g \in G : ab = 1 = ba$ "inverse Elemente"

"·" heißt Gruppenmultiplikation oder Gruppenverknüpfung. Gilt zusätzlich

(K) $\forall a, b \in G : ab = ba$

so heißt (G, \cdot) abelsch oder kommutativ.

Anmerkung Sind $e, e' \in G$ neutral, so e = ee' = e'. Daher gibt es genau ein neutrales Element, für welches man oft "1" schreibt.

1.1.2 Bemerkung

(a) Sei (G, \cdot) eine Gruppe und $a \in G$. Seien b, b' invers zu a. Dann

$$b \stackrel{(N)}{=} b \cdot 1 \stackrel{(I)}{=} b(ab') \stackrel{(A)}{=} (ba)b' \stackrel{(I)}{=} 1 \cdot b \stackrel{(N)}{=} b'.$$

Daher gibt es zu jedem $a \in G$ genau ein inverses Element in G, welches wir mit a^{-1} bezeichnen.

1 Gruppen

- (b) (N) und (I) kann man wie folgt schreiben:
 - (N) $\forall a \in G : a1 = a = 1a$
 - (I) $\forall a \in G : aa^{-1} = 1 = a^{-1}a$
- (c) Oft: "Sei G eine Gruppe", statt: "Sei (G, \cdot) eine Gruppe."
- (d) Sei G eine Gruppe, $n \in \mathbb{N}_0$ und $a_1, ..., a_n \in G$. Dann definiert man $\prod_{i=1}^n a_i := a_1 \cdot ... \cdot a_n$ als 1 für n=0 und indem man $a_1 \cdot ... \cdot a_n$ sinnvoll mit Klammern versieht, sonst. Dies hängt nicht von der Wahl der Klammerung da, wie (A) für n=3 besagt. Für n>3 siehe $[\to LA \ 2.1.6]$ oder mache es als Übung per Induktion. Falls G additiv geschrieben ist, schreibt man $\sum_{i=1}^n a_i$, statt $\prod_{i=1}^n a_i$.
- (e) Sei G eine Gruppe, $n \in \mathbb{Z}$ und $a \in G$. Dann definiert man

$$a^{n} := \begin{cases} \prod_{i=1}^{n} a, & \text{für } n \ge 0, \\ \prod_{i=1}^{n} (a^{-1}), & \text{für } n \le 0. \end{cases}$$

Fall G additiv geschrieben ist, schreibt man na, statt a^n .

1.1.3 Definition Ist (G, \cdot) eine Gruppe, so nennt man $\#G \in \mathbb{N}_0 \cup \{\infty\}$ die Ordnung von (G, \cdot) .

1.1.4 Beispiel

(a) Für jede Menge M bildet die Menge $S_M := \{f \mid f : M \to M \text{ bijektiv}\}$ mit der durch $fg := f \circ g$ $(f, g \in S_M)$ gegebenen Multiplikation eine Gruppe. Man nennt sie die symmetrische Gruppe auf M. Das neutrale Element von S_M ist die Identität auf M und das zu einem $f \in S_M$ inverse Element ist die Umkehrfunktion von f, wodurch die Notation f^{-1} nicht zweideutig ist.

Für $n \in \mathbb{N}_0$ ist $S_n := S_{\{1,\dots,n\}}$ eine Gruppe der Ordnung $n! := \prod_{i=1}^n i$ "n Fakultät". Für $n \geq 3$ ist die nicht abelsch, dann die Transpositionen $\tau_{1,2}$ und $\tau_{2,3}$ konvertieren nicht, d.h. $\tau_{1,2}\tau_{2,3} \neq \tau_{2,3}\tau_{1,2}$. In der Tat: $(\tau_{1,2}\tau_{2,3})(1) = \tau_{1,2}(1) = 2$ und $(\tau_{2,3}\tau_{1,2})(1) = \tau_{2,3}(2) = 3$.

- (b) Für jeden Vektorraum V ist die Menge $\operatorname{Aut}(V) := \{f \mid f : V \to V \text{ linear und bijektiv}\}$ mit der Hintereinanderschaltung als Multiplikation eine Gruppe.
- (c) Ist R ein kommutativer Ring (z. B. $R = \mathbb{Z}$), so ist $GL_n(R) := \{A \in R^{n \times n} \mid A \text{ invertierbar}\} = \{A \in R^{n \times n} \mid \det A \in R^{\times}\}$ eine Gruppe.
- **1.1.5 Proposition** Sei G eine Gruppe und $a, b \in G$.

(a)
$$ab = 1 \iff a = b^{-1} \iff b = a^{-1}$$

(b)
$$(a^{-1})^{-1} = a$$

(c)
$$(ab)^{-1} = b^{-1}a^{-1}$$

Beweis:

- (a) Gilt ab = 1, so $a \stackrel{(N)}{=} a1 \stackrel{(I)}{=} a(bb^{-1}) \stackrel{(A)}{=} (ab)b^{-1} = 1b \stackrel{(N)}{=} b^{-1}$. Gilt $a = b^{-1}$, so $b \stackrel{(N)}{=} 1b \stackrel{(I)}{=} (a^{-1}a)b \stackrel{(A)}{=} a^{-1}(ab) = a^{-1}(b^{-1}b) \stackrel{(I)}{=} a^{-1}1 \stackrel{(N)}{=} a^{-1}$. Gilt $b = a^{-1}$, so ab = 1.
- (b) Aus $aa^{-1} \stackrel{(I)}{=} 1$ folgt mit (a) $(a^{-1})^{-1} = a$.

(c) Aus
$$(ab)(b^{-1}a^{-1}) \stackrel{(A)}{=} a(b(b^{-1}a^{-1})) \stackrel{(A)}{=} a((bb^{-1})a^{-1}) \stackrel{(I)}{=} a(1a^{-1}) \stackrel{(N)}{=} aa^{-1} \stackrel{(I)}{=} 1$$
 folgt mit (a) $(ab)^{-1} = b^{-1}a^{-1}$.

1.1.6 Definition Seien (G, \cdot_G) und (H, \cdot_H) Gruppen. Dann heißt (H, \cdot_H) eine Untergruppe von (G, \cdot_G) , wenn $H \subseteq G$ und $\forall a, b \in H : a \cdot_H b = a \cdot_G b$.

1.1.7 Proposition Sei $(G, \cdot_G$ eine Gruppe und H eine Menge. Dann ist H genau dann Trägermenge einer Untergruppe von (G, \cdot_g) , wenn $H \subseteq G$, $1_S \in H$, $\forall a, b \in H : a \cdot_S b \in H$ und $\forall a \in H : a^{-1} \in H$.

In diesem Fall gibt es genau eine Abbildung $\cdot_H : H \times H \to H$ derart, dass (H, \cdot_H) eine Untergruppe von (G, \cdot_G) ist. Es gilt dann $1_H = 1_G$, $\forall a, b \in H : a \cdot_H b = a \cdot_G b$ und $a^{-1} = a^{-1}$ (je in G und H gebildet).

Beweis: Klar oder vgl. LA § 2. □

1.1.8 Bemerkung

- (a) Ist (H, \cdot_H) Untergruppe von (G, \cdot_G) , so schreibt man meist \cdot statt \cdot_H . Oft erwähnt man \cdot_H gar nicht mehr und schreibt einfach "H ist Untergruppe von G" oder $H \leq G$.
- (b) Untergruppen abelscher Gruppen sind abelsch.

1.1.9 Beispiel

(a) Für $n \in \mathbb{N}_0$ ist $A_n := \{ \sigma \in S_n \mid \operatorname{sgn} \sigma = 1 \}$ eine Untergruppe von S_n , die man

alternierende Gruppe nennt. $[\rightarrow LA \S 9.1]$

Hier fehlt noch etwas ...

2.1.4 Beispiel

- (a) Für jeden Vektorraum V ist die Menge $\operatorname{End}(V) = \{f \mid f : V \to V \text{ linear}\}$ der Endomorphismen von V mit der punktweisen Addition und der Hintereinanderschaltung als Multiplikation ein Ring mit Einheitengruppe $\operatorname{End}(V)^{\times} = \operatorname{Aut}(V)$. $[\to \operatorname{LA} \S 7.1]$
- (b) Ist R ein kommutativer Ring, so ist $R^{n \times n}$ ein Ring mit $(R^{n \times n})^{\times} = GL_n(R)$.
- **2.1.5 Definition** Seien $(A, +_A, \cdot_A)$ und $(B, +_B, \cdot_B)$ Ringe. Dann heißt $(A, +_A, \cdot_A)$ ein Unterring von $(B, +_B, \cdot_B)$, wenn $A \subseteq B$, $1_B \in A$, $\forall a, b \in A : a +_A b = a +_B b$, $\forall a, b \in A : a \cdot_A b = a \cdot_B b$.
- **2.1.6 Proposition** Sei $(B, +, \cdot)$ ein Ring und A eine Menge. Genau dann ist A Trägermenge eines Unterrings von $(B, +, \cdot)$, wenn $\{0, 1\} \subseteq A \subseteq B$, $\forall a, b \in A : a+b \in A, a \cdot b \in A$.

2.1.7 Beispiel

- (a) Sei R ein kommutativer Ring und $n \in \mathbb{N}_0$. Dann sind $\P_R^{n \times n} = \{A \in R^{n \times n} \mid A \text{ obere Dreiecksmatrix}\}$, $\blacktriangle_R^{n \times n} = \{A \in R^{n \times n} \mid A \text{ untere Dreiecksmatrix}\}$ und $\blacktriangle_R^{n \times n} \cap \P_R^{n \times n} = \{A \in R^{n \times n} \mid A \text{ Diagonalmatrix}\}$ Unterringe von $R^{n \times n}$ mit Einheitengruppen $(\P_R^{n \times n})^{\times} = \P_n(R)$, $(\blacktriangle_R^{n \times n})^{\times} = \blacktriangle_n(R)$ und $(\blacktriangle_R^{n \times n} \cap \P_R^{n \times n})^{\times} = \P_n(R) \cap \blacktriangle_n(R)$.
- (b) $\{0\}$ ist kein Unterring von \mathbb{Z} , denn $1 \notin \{0\}$.
- **2.1.8 Definition** Seien A und B Ringe. Dann heißt $f:A\to B$ ein (Ring-)Homomorphismus von A nach B, wenn

f ein Gruppenhomomorphismus von A nach B ist, f(1) = 1 und $\forall a, b \in A : f(ab) = f(a)f(b)$ gilt. Ein Ringhomomorphismus heißt

- **2.1.9 Bemerkung** Ist $f: A \to B$ ein Ringhomomorphismus, so ist im f ein Unterring von B, jedoch ker f in aller Regel kein Unterring von A. (Denn $1 \in \ker f \iff f(1) = 0$ in $B \iff 1 = 0$ in B. 4)
- **2.1.10 Bemerkung** Analog zu 1.2.7 und 1.2.8 führt man das *direkte Produkt* von Ringen durch punktweise Addition und Multiplikation ein.
- **2.1.11 Definition und Proposition** $[\rightarrow \S ??]$, $[\rightarrow LA \S 3.3]$ Sei R ein Ring. Eine Kongruenzrelation auf R ist eine Kongruenzrelation \equiv auf der additiven Gruppe von R $[\rightarrow ??]$, für die zusätzlich gilt:

$$\forall a, a', b, b' \in A : ((a \equiv a' \& b \equiv b') \implies ab \equiv a'b')$$

Ist \equiv ein Kongruenzrelation auf R, so wird R/\equiv vermöge $\overline{a}+\overline{b}=\overline{a+b}$ und $\overline{ab}=\overline{ab}$ $(a,b\in A)$ zu einem Ring ("Quotientenring" "Faktorring", "Restklassenring").

2.1.12 Definition Sei R ein Ring. Eine Untergruppe I der additiven Gruppe von R heißt (beidseitiges) Ideal von R, wenn:

$$\forall a \in R \ \forall b \in I : ab, ba \in I$$

2.1.13 Satz $[\rightarrow ??]$ $[\rightarrow LA \S 3.3]$ Sei R ein Ring. Die Zuordnungen

$$\equiv \mapsto \overline{0}$$
$$\equiv I \leftrightarrow I$$

vermitteln eine Bijektion zwischen der Menge der Kongruenzrelationen auf R und der Menge der Ideale von R.

Beweis. Wenn wir zeigen, dass beide Abbildungen wohldefiniert sind, dann folgt mit ??, dass sie auch invers zueinander sind. Also zu zeigen:

(a) \equiv ist Kongruenzrelation auf $R \implies \overline{0}$ ist Ideal von R

1 Gruppen

(b) I ist Ideal von $R \implies \equiv_I$ ist Kongruenzrelation auf R

Zu (a). Sei \equiv eine Kongruenzrelation auf R. Aus \ref{A} : wissen wir schon, dass $\overline{0}$ eine Untergruppe von R ist. Noch zu zeigen: $\forall a \in A : \forall b \in \overline{0} : ab \in \overline{0}$. Sei also $a \in R$ und $b \in \overline{0}$. Dann $ab \stackrel{b\equiv 0}{\equiv} a0 \stackrel{2.1.2(e)}{\equiv} 0$, also $ab \in \overline{0}$ und $ba \equiv 0a \equiv 0$, also $ba \in \overline{0}$.

Zu (b). Sei I eine Ideal von R. Aus \ref{A} wissen wir schon, dass \equiv_I eine Kongruenzrelation der additiven Gruppe von R ist. Noch zu zeigen: $\forall a, a', b, b' \in A$: ($(a \equiv a' \& b \equiv b') \implies ab \equiv a'b'$). Seien also $a, a', b, b' \in R$ mit $a \equiv_I a'$ und $b \equiv_I b'$. Dann $ab - a'b' = a\underbrace{(b-b')}_{\in I} + b'\underbrace{(a-a')}_{\in I} \in I$, also $ab \equiv_I a'b'$.

2.1.14 Notation & Sprechweise Sei I ein Ideal des Ringes R. Schreibe $R/I := R/\equiv_I := \{a+I \mid a \in R\}$. Man bezeichnet die Kongruenzklasse $\overline{a}^I = a+I$ von $a \in R$ auch als Restklasse von a modulo I.

2.1.15 Bemerkung

- (a) Sei I ein Ideal des Ringes R. Dann ist die Abbildung $R \to R/I, a \mapsto \overline{a}^I$ nach Definition 2.1.11 ein Ringhomomorphismus, genannt kanonischer Epimorphismus.
- (b) Sei $f: A \to B$ ein Ringhomomorphismus. Dann ist ker f ein Ideal von A, aber im f im Allgemeinen kein Ideal von B. (Betrachte zum Beispiel $\mathbb{Z} \hookrightarrow \mathbb{Q}, a \mapsto a$.)

2.1.16 Homomorphiesatz für Ringe Seien A, B Ringe, I ein Ideal von A und φ : $A \to B$ ein Homomorphismus mit $I \subseteq \ker \varphi$. Dann gibt es genau eine Abbildung $\overline{\varphi}$: $A/I \to B$ mit $\overline{\varphi}(\overline{a}^I) = \varphi(a)$ für alle $a \in A$. Diese Abbildung $\overline{\varphi}$ ist ein Homomorphismus. Weiter gilt $\overline{\varphi}$ injektiv $\iff I = \ker \varphi$ und $\overline{\varphi}$ surjektiv $\iff B = \operatorname{im} \varphi$.

Beweis. Mit ?? ist nur noch $\overline{\varphi}(1)=1$ und $\overline{\varphi}(\overline{a}^I\overline{b}^I)=\overline{\varphi}(\overline{a}^I)\overline{\varphi}(\overline{b}^I)$ f.a. $a,b\in A$ zz zeigen.

$$\overline{\varphi}(1) = \overline{\varphi}(\overline{1}^I) = \varphi(1) = 1 \quad \text{und}$$

$$\overline{\varphi}(\overline{a}^I \overline{b}^I) = \overline{\varphi}(\overline{a}\overline{b}^I) = \varphi(ab) = \varphi(a)\varphi(b) = \overline{\varphi}(\overline{a}^I)\overline{\varphi}(\overline{b}^I) \quad \text{für alle } a, b \in A.$$

Dies ist klar:

2.1.17 Isomorphiesatz für Ringe Seien A, B Ringe und $\varphi : A \to B$ ein Homomorphismus. Dann ist $\ker \varphi$ ein Ideal von A und $\overline{\varphi} : A/\ker \varphi \to \operatorname{im} \varphi$ mit $\overline{\varphi}(\overline{a}^{\ker \varphi}) = \varphi(a)$ für $a \in A$ ein Isomorphismus. Insbesondere $A/\ker \varphi \cong \operatorname{im} \varphi$.

Beweis. Direkt aus 2.1.16.

$\S~2.2~$ Polynomringe [ightarrow LA $\S~3.2$]

- **2.2.1 Notation** Sei R ein kommutativer Ring, $n \in \mathbb{N}_0$, $a = (a_1, ..., a_n) \in R^n$ und $\alpha = (\alpha_1, ..., \alpha_n) \in \mathbb{N}_0^n$. Schreibe dann $|\alpha| = \alpha_1 + ... + \alpha_n$ und $a^{\alpha} := a_1^{\alpha_1} + ... + a_n^{\alpha_n}$.
- **2.2.2 Definition & Satz** Sei A ein Unterring des kommutativen Ringes B.
 - (a) Sei $n \in \mathbb{N}_0$ und $b = (b_1, ..., b_n) \in B^n$.

$$A[b] := A[b_1, ..., b_n] := \left\{ \sum_{\substack{\alpha \in \mathbb{N}_0^n, \\ |\alpha| < d}} a_{\alpha} b^{\alpha} \mid d \in \mathbb{N}_0, a_{\alpha} \in A \right\}$$

ist der kleinste Unterring C von B mit $A \cup \{b_1, ..., b_n\} \subseteq C$.

(b) Sei $E \subseteq B$. $A[E] = \bigcup \{A[b] \mid n \in \mathbb{N}_0, b \in B^n\}$ ist der kleinste Unterring C von B mit $A \cup E \subseteq C$.

Beweis. Dass die angegeben Mengen jeweils in jedem solchen Unterring C enthalten sind, ist klar. Zu zeigen ist dann nur noch, dass sie jeweils einen Unterring bilden. Dies ist einfach und wir zeigen exemplarisch nur, dass A[b] aus (a) unter Multiplikation abgeschlossen ist. Seien also $d, d' \in \mathbb{N}_0$, $a_{\alpha} \in A$ für alle $\alpha \in \mathbb{N}_0^n$ mit $|\alpha| \leq d$ und $a'_{\alpha} \in A$ für alle $\alpha \in \mathbb{N}_0^n$ mit $|\alpha| \leq d'$. Dann

$$\left(\sum_{|\alpha| \le d} a_{\alpha} b^{\alpha}\right) \left(\sum_{|\alpha| \le d'} a'_{\alpha} b^{\alpha}\right) = \sum_{|\gamma| \le d + d'} \left(\sum_{\alpha + \beta = \gamma} a_{\alpha} a'^{\beta}\right) b^{\gamma} \in A[b],$$

wobei man $a_{\alpha} := 0$ für $d < |\alpha| \le d + d'$ und $a'_{\alpha} := 0$ für $d' < |\alpha| \le d + d'$ setzt.

- **2.2.3 Definition** Sei A ein Unterring des kommutativen Ringes B.
 - (a) Sei $n \in \mathbb{N}_0$ und $b = (b_1, ..., b_n) \in B^n$. Es heißen $b_1, ..., b_n$ algebraisch unabhängig über A (in B), wenn für alle $d \in \mathbb{N}_0$ und alle $a_{\alpha} \in A(\alpha \in \mathbb{N}_0^n, |\alpha| \leq d)$ gilt:

$$\sum_{\substack{\alpha \in \mathbb{N}_0^n, \\ |\alpha| < d}} a_{\alpha} b^{\alpha} = 0 \implies \forall \alpha \in \mathbb{N}_0 : (|\alpha| \le d \implies a_{\alpha} = 0)$$

Es heißt B Polynomring über A in $b_1,...,b_n$, wenn $B = A[b_1,...,b_n]$ und $b_1,...,b_n$ algebraisch unabhängig über A sind.

(b) Sei $E \subseteq B$. Es heißt E algebraisch unabhängig über A (in B), wenn für alle $n \in \mathbb{N}_0$ alle paarweise verschiedenen Elemente $b_1, ..., b_n \in E$ algebraisch unabhängig über A sind.

Es heißt B Polynomring über A in E, wenn B = A[E] und E algebraisch unabhängig über A ist.

2.2.4 Beispiel

- (a) Jeder kommutative Ring A ist ein Polynomring über sich selbst in \emptyset .
- (b) Der Nullring {0} ist ein Polynomring über sich selbst in 0.

2.2.5 Satz Sei A ein kommutativer Ring mit $0 \neq 1$. Sei E eine Menge mit $A \cap E = \emptyset$. Dann gibt es einen Polynomring über A in E.

Beweis. Bezeichne $\mathbb{N}_0^{(E)}$ die Menge aller $\alpha: E \to \mathbb{N}_0$ mit endlichem Träger $supp(\alpha) = \{e \in E \mid \alpha(e) \neq 0\}$. Mache die abelsche Gruppe $A^{\mathbb{N}_0^{(E)}}$ zu einem kommutativen Ring mit der "Faltung" * als Multiplikation, welche gegeben ist durch

$$(f * g)(\gamma) := \sum_{\substack{\alpha, \beta \in \mathbb{N}_0^{(E)}, \\ \alpha + \beta = \gamma}} f(\alpha)g(\beta) \qquad \qquad \left(f, g \in A^{\mathbb{N}_0^{(E)}}, \gamma \in \mathbb{N}_0^{(E)}\right)$$

(Es handelt sich um eine endliche Summe, da $supp(\gamma)$ endlich. Man sieht sofort $f*g=g*f,\ f*(g+h)=f*g+f*h$ und 1*f=f für

$$\begin{split} 1: \mathbb{N}_0^{(E)} &\to A \\ \alpha &\mapsto \begin{cases} 1, & \alpha = 0 \\ 0, & sonst \end{cases} \end{split}$$

und rechnet

$$((f * g) * h)(\gamma) = \sum_{\alpha + \beta = \gamma} (f * g)(\alpha)h(\beta) = \sum_{\alpha + \beta = \gamma} \left(\sum_{\delta + \varepsilon = \alpha} f(\delta)g(\varepsilon)\right)h(\beta)$$
$$= \sum_{\delta + \varepsilon + \beta = \gamma} f(\delta)g(\varepsilon)h(\beta) = \dots = (f * (g * h))(\gamma)$$

für alle $f, g, h \in A^{\mathbb{N}_0^{(E)}}, \gamma \in \mathbb{N}_0^{(E)}$.

Hier fehlt noch etwas ...

2.3.6 Satz Sei A ein kommutativer Ring und $S \subseteq A$ eine multiplikative Menge, die keine Nullteiler von A enthält. Dann gibt es einen kommutativen Oberring B von A mit $S \subseteq B^{\times}$ und $B = S^{-1}A$.

Beweis. Durch $(a,s) \sim (b,t)$: \iff $at = bs \ (a,b \in A,s,t \in S)$ wird eine Äquivalenzrelation \sim auf $A \times S$ definiert. [Reflexiv und symmetrisch ist klar, transitiv: Seien $a,b,c \in A$ und $s,t,u \in S$ mit $(a,s) \sim (b,t) \sim (c,u)$. Dann at = bs und bu = ct, also atu = bsu = bus = cts, das heißt t(au - cs) = 0 und daher au = cs, da $t \in S$ kein Nullteiler ist.] Der Leser zeigt als Übung, dass + und + durch

$$\widetilde{(a,s)} + \widetilde{(b,t)} := (at + bs, st)$$
 und $\widetilde{(a,s)} \cdot \widetilde{(b,t)} := \widetilde{(ab,st)}$

wohldefiniert ist und $(A \times S)/\sim$ zu einem kommutativen Ring mit 0 = (0,1), 1 = (1,1) machen.

Wegen $A \cong \tilde{A} := \{(\widetilde{a},1) \mid a \in A\} \subseteq (A \times S)/\sim$ reicht es zu zeigen, dass $\tilde{S} := \{(\widetilde{s},1) \mid s \in S\} \subseteq ((A \times S)/\sim))^{\times}$ und $(A \times S)/\sim = \tilde{S}^{-1}\tilde{A}$. Sei hierzu $a \in A, s \in S$. Dann $(\widetilde{s},1)(1,s) = (\widetilde{s},s) = (\widetilde{1},1) = 1$, also $(\widetilde{s},1)^{-1} = (\widetilde{1},s)$ und $(\widetilde{a},s) = (\widetilde{s},1)^{-1} = (\widetilde{a},1) \in \tilde{S}^{-1}\tilde{A}$.

2.3.7 Satz Sei A ein Unterring des kommutativen Ringes $B, S \subseteq A \cap B^{\times}$ multiplikativ und $B = S^{-1}A$. Sei C ein weiterer Ring und $\varphi : A \to C$ ein Homomorphismus. Genau dann gibt es einen Homomorphismus $\psi : S^{-1}A \to C$ mit $\varphi = \psi|_A$, wenn $\varphi(S) \subseteq C^{\times}$. In diesem Fall ist ψ eindeutig bestimmt, denn es gilt $\psi\left(\frac{a}{s}\right) = \frac{\psi(a)}{\psi(s)}$ für $a \in A, s \in S$.

Beweis. Übung.

¹Korrektur: Ist der Beweis vollständig? Hier fehlen noch 2.2.6, 2.2.7 und 2.2.8 aus dieser Vorlesung.

2.3.8 Satz Sei A ein Unterring des kommutativen Ringes $B, S \subseteq A \cap B^{\times}$ multiplikativ und $B = S^{-1}A$. Dasselbe gelte mit C statt B. Dann gibt es genau einen Isomorphismus $\psi: B \to C$ mit $\psi|_A = \mathrm{id}_A$.

Beweis. Wende 2.3.7 mit $\varphi: A \to C, a \mapsto a$ an, um zu sehen, dass id_A eine eindeutige Fotsetzung zu einem Homomorphismus $\psi: B \to C$ hat. Zu zeigen ist nur noch, dass ψ ein Isomorphismus ist. Mit 2.3.7 bekommt man aber auch einen Homomorphismus $\varphi: C \to B$ mit $\varphi|_A = \mathrm{id}_A$. Nun ist $\varphi \circ \psi: C \to C$ ein Homomorphismus mit $(\varphi \circ \psi)|_A = \mathrm{id}_A$ und daher $\varphi \circ \psi = \mathrm{id}_C$ nach 2.3.7. Ebenso $\psi \circ \varphi = \mathrm{id}_B$. Daher sind φ und ψ bijektiv. \square

2.3.9 Definition Sei A ein kommutativer Ring und $S \subseteq A$ eine multiplikative Menge, die keine Nullteiler von A enthält. Den (nach 2.3.6 existierenden und nach 2.3.8 im Wesentlichen eindeutigen) Oberring B von A mit $S \subseteq B^{\times}$ und $B = S^{-1}A$ nennt man Ring der Brüche mit Zählern aus A und Nennern aus S (oder Lokalisierung von A nach S).

Ist speziell S die Menge aller Nichtnullteiler von A (vgl. ??), so nennt man $Q(A) = S^{-1}A$ den totalen Quotientenring von A. Offenbar gilt: Q(A) ist Körper $\iff A$ ist Integritätsring. Ist A ein Integritätsring, so nennt man den Körper $qf(A) := Q(A) = (A \setminus \{0\})^{-1}A$ daher auch den Quotientenkörper von A.

2.3.10 Bemerkung Es folgt nun, dass Integritätsringe genau die Unterringe von Körpern sind.

2.3.11 Definition und Satz (Körperadjunktion, vgl. Ringadjunktion 2.2.2)

- (a) Ist K ein Unterring eines Körpers L und K ein Körper, so nennt man
 - -K einen Unterkörper von L,
 - -L einen Oberkörper von K und
 - -L|K ("über") eine Körpererweiterung.
- (b) Sei L|K eine Körpererweiterung. Sind $b_1, ..., b_n \in L$, so ist $K(b_1, ..., b_n) := (K[b_1, ..., b_n] \setminus \{0\})^{-1}K[b_1, ..., b_n] = \operatorname{qf}(K[b_1, ..., b_n]) \subseteq L$ der kleinste Unterkörper F von L mit $K \cup \{b_1, ..., b_n\} \subseteq F$.

Ist $E \subseteq L$, so ist $K(E) := (K[E] \setminus \{0\})^{-1}K[E] = \operatorname{qf}(K[E]) \subseteq L$ der kleinste Unterkörper F von L mit $K \cup E \subseteq F$.

Beweis. Trivial. \Box

- **2.3.12 Definition** (vgl. ??) Sei L|K eine Körpererweiterung.
 - (a) Sei $n \in \mathbb{N}_0$ und $b_1, ..., b_n \in L$. Es heißt L ein Körper der rationalen Funktionen über K in $b_1, ..., b_n$, wenn $L = K[b_1, ..., b_n]$ und $b_1, ..., b_n$ algebraisch unabhängig über K1 sind.
 - (b) Sei $E \subseteq L$. Es heißt L ein Körper von rationalen Funktionen über K in E, wenn L = K[E] und E algebraisch unabhängig über K ist.²
- **2.3.13 Proposition** (vgl. ??) Sei L|K eine Körpererweiterung und $E \subseteq L$ mit L = K[E]. Sei R ein Ring und seiden $\varphi, \psi : L \to R$ Homomorphismen mit $\varphi|_{K \cup E} = \psi|_{K \cup E}$. Dann $\varphi = \psi$.

Beweis. $F := \{a \in L | \varphi(a) = \psi(a)\}$ ist ein Unterkörper von L, der $K \cup E$ enthält. Also F = L.

2.3.14 Definition und Proposition Seien K und F Körper.

- (a) K besitzt nur die trivialen Ideale K und $\{0\}$.
- (b) Ist $\varphi: K \to F$ ein (Ring-)Homomorphismus, so nennt man φ auch einen Körperhomomorphismus. In diesem Fall gilt: Da $\varphi(1) = 1 \neq 0$ in F, liegt 1 nicht im Ideal $\ker \varphi$ von K, womit $\ker \varphi = \{0\}$ nach (a). Es ist daher $\varphi: K \hookrightarrow F$ eine Einbettung und $\varphi: K \stackrel{\cong}{\to} \operatorname{im} \varphi$ ein Isomorphismus. Insbesondere ist das Bild von φ nicht nur ein Unterring, sondern sogar ein Unterkörper von F. Beachte auch, dass gelten muss $\varphi\left(-\frac{1}{a}\right) = \frac{1}{\varphi(a)}$ für alle $a \in K^{\times}$.
- **2.3.15 Satz** (vgl. ??) Seien K(E) und K(F) Körper von rationalen Funktionen über K in E bzw. F. Sei $f: E \to F$ eine Bijektion. Dann gibt es genau einen Isomorphismus $\psi: K(E) \to K(F)$ mit $\psi|_K = \mathrm{id}_K$ und $\psi|_E = f$.

Beweis. Zur Existenz: Nach ?? gibt es einen Isomorphismus $\varphi: K[E] \to K[F]$ mit $\varphi|_K = \mathrm{id}_K$ und $\varphi_E = f$. Da φ injektiv ist, gilt $\varphi(K[E] \setminus \{0\}) \subseteq K[F] \setminus \{0\} \subseteq K(F)^{\times}$ und 2.3.7 liefert einen Homomorphismus $\psi: K(E) \to K(F)$ mit $\psi|_{K[E]} = \varphi$. Da ψ ein Körperhomomorphismus ist, ist ψ injektiv und ψ ist ein Unterkörper von K(F). Es gilt aber $K \cup F \subseteq \mathrm{im} \varphi \subseteq \mathrm{im} \psi$, weswegen ψ surjektiv ist.

Die Eindeutigkeit folgt aus 2.3.13.

²An Korrektor: War mir hier bzgl. der Klammern und der Namen (Index!) nicht ganz sicher.

 $^{^3{\}rm An}$ Korrektor: Gehört da wirklich ein Minus hin?

⁴An Korrektor: Macht so keinen Sinn.

2.3.16 Notation und Sprechweise (vgl. ??) Sei K ein Körper. Schreibt man $K(X_1, ... X_n)$, so meint man dabei den (nach 2.3.15 im Wesentlichen eindeutig bestimmen und nach ?? und 2.3.9 existierenden) Körper der rationalen Funktionen in paarweise verschiedenen "unbestimmten" $X_1, ..., X_n$.⁵

2.3.17 Definition und Proposition Sei A ein kommutativer Ring und $S \subseteq A$ eine multiplikative Menge. Wenn S Nullteiler enthält (das heißt, wenn es $s \in S$ und $a \in A$ gibt mit sa = 0), dann können wir keinen Oberring $S^{-1}A$ wie in 2.3.6 konstruieren (siehe ??). In diesem Fall (und allgemein) setzten wir $I_S := \{a \in A \mid \exists s \in S : sa = 0\}$. Es ist I_S ein Ideal von A, das S multiplikativ ist. Es ist dann $\overline{S} := \{\overline{s} \mid s \in S\} \subseteq \overline{A} := A/I_S$ multiplikativ und ohne Nullteiler. Man nennt dann den Oberring $\overline{S}^{-1}\overline{A}$ von $\overline{A} = \overline{A/I_S}$ die Lokalisierung von A nach S, in Zeichen $A_S := \overline{S}^{-1}\overline{A}$. Man hat einen Homomorphismus 6 $\iota_S(S) \subseteq A_S^{\times}$ und ker $\iota_S = I_S$. Oft schreibt man schlampig wieder $S^{-1}A$ und $\frac{a}{s}$ ($a \in A, s \in S$) statt $\overline{S}^{-1}\overline{A}$ und $\frac{a}{s}$ ($a \in A, s \in S$).

2.3.18 Satz Sei A ein kommutativer Ring und $S \subseteq A$ multiplikativ. Sei B ein weiterer kommutativer Ring und $\varphi: A \to B$ ein Homomorphismus mit $\varphi(S) \subseteq B^{\times}$. Dann gibt es genau einen Homomorphismus $\psi: A_S \to B$ mit $\varphi = \psi \circ \iota_S$.

Beweis. Übung.

§ 2.4 Primideale und maximale Ideale

2.4.1 Wiederholung Sei R ein kommutativer Ring. Ist $E \subseteq R$, so ist $(E) := \{\sum_{i=1}^{n} a_i b_i \mid n \in \mathbb{N}, a_i \in R, b_i \in E\}$ das kleinste Ideal von R, welches E enthält und man nennt es das von E (in R) erzeugte Ideal $[\to LA 3.3.9, 3.3.10]$. Für $b_1, ..., b_n \in R$ schreibt man auch $(b_1, ..., b_n) := \{b_1, ..., b_n\} = \{\sum_{i=1}^{n} a_i b_i \mid a_i \in R\}$. Ideale der Form (b) mit $b \in R$ nennt man auch Hauptideale $[\to LA 3.3.11]$. Es heißt R ein Hauptidealring, wenn R ein Integritätsring ist, in dem jedes Ideal ein Hauptideal ist. \mathbb{Z} und K[X] (K ein Körper, K eine Unbekannte) sind Hauptidealringe $[\to LA 3.3.13, 10.2.2]$ oder $[1, \S 2.2, \S 2.4]$.

Ist $p \in R$, so heißt p irreduzibel (in R), wenn

$$p \notin R^{\times}$$
 & $\forall a, b \in R : (p = ab \Rightarrow (a \in R^{\times} \text{ oder } b \in R^{\times}))$

 $^{^5\}mathrm{An}$ Korrektor: Index für "Körper der rationalen Funktionen" anpassen.

 $^{^6\}mathrm{An}$ Korrektor: Wie sieht der aus? Habe ich mir nicht aufgeschrieben.

und prim (in R), wenn

$$p \notin R^{\times}$$
 & $\forall a, b \in R : (p|ab \Rightarrow (p|a \text{ oder } p|b)).$

In einem Integritätsring ist jedes Primelement $\neq 0$ irreduzibel. Die Äquivalenzrelation $\widehat{=}$ auf R ist definiert durch $a \widehat{=} b : \iff (a|b \& b|a) \iff (a) = (b) \ (a,b \in R)$.

Setze $\widehat{a}:=\widehat{\overline{a}}$ für $a\in R$. Fixiere $\mathbb{P}_R\subseteq R$ mit $\mathbb{P}_R\to\{a\in R\mid a\text{ prim}, a\neq 0\}/\ \widehat{=}, p\to \widehat{p}$ bijektiv. (Z. B. $\mathbb{P}_{\mathbb{Z}}=\mathbb{P}=\{2,3,5,7,11,13,\ldots\}$ für $R=\mathbb{Z}$.) Bezeichne $\mathbb{N}_0^{(\mathbb{P}_R)}$ die Menge der Funktionen $\alpha:\mathbb{P}_R\to\mathbb{N}_0$ mit endlichem Träger $\mathrm{supp}(\alpha):=\{p\in\mathbb{P}_R\mid \alpha(p)\neq 0\}$.

Für jedes $\alpha \in \mathbb{N}_0^{\mathbb{P}_R}$ setze $\mathbb{P}_R^{\alpha} := \prod_{p \in \text{supp}(\alpha)} p^{\alpha(p)}$. Man nennt $(c, \alpha) \in R \times \mathbb{N}_0^{(\mathbb{P}_R)}$ eine Primfaktorzerlegung von $a \in R$, wenn $a = c\mathbb{P}_R^{\alpha}$. In Integritätsringen sind Primfaktorzerlegungen eindeutig. Es heißt R ein faktorieller Ring, wenn er ein Integritätsring ist, in dem jedes $a \in R \setminus \{0\}$ eine Primfaktorzerlegung besitzt. Jeder Hauptidealring ist faktoriell. In einem faktoriellen Ring ist jedes irreduzible Element prim. $[1, \S 2.4]$

2.4.2 Definition Sei R ein kommutativer Ring. Ein Ideal $\mathfrak p$ von R heißt Primideal von R, wenn

$$1 \notin \mathfrak{p}$$
 & $\forall a, b \in R : (ab \in \mathfrak{p} \Rightarrow (a \in \mathfrak{p} \text{ oder } b \in \mathfrak{p})).$

Ein Ideal I von R heißt echt, wenn $1 \notin I$ (oder äquivalent $I \neq R$). Ein Ideal \mathfrak{m} von R heißt maximales Ideal von R, wenn \mathfrak{m} ein maximales Element der durch Inklusion halbgeordneten Menge aller echten Ideale von R ist.

2.4.3 Bemerkung Sei R ein kommutativer Ring. Die in 2.4.1 wiederholte Definition eines Primelements $p \in R$ kann man offensichtlich wie folgt lesen:

$$1 \notin (p)$$
 & $\forall a, b \in R : (ab \in (p) \Rightarrow (a \in (p) \text{ oder } b \in (p))).$

Es folgt für $p \in R$: p Primelement \iff (p) ist Primideal

- **2.4.4 Satz** Sei *I* ein Ideal des kommutativen Ringes *R*. Dann gilt
 - (a) I Primideal $\iff R/I$ Integritätsring und
 - (b) I maximales Ideal $\iff R/I$ Körper

Beweis. Übung. \Box

2.4.5	Korrolar	Jedes maxim	ale Ideal eine	s kommutativen	Rings ist	ein Primideal.
-------	----------	-------------	----------------	----------------	-----------	----------------

Beweis. Jeder Körper ist ein Integritätsring.

2.4.6 Korrolar Seien A, B kommutative Ringe und $\varphi : A \to B$ ein Homomorphismus. Sei \mathfrak{q} ein Primideal von B. Dann ist $\mathfrak{p} := \varphi^{-1}(\mathfrak{q})$ ein Primideal von A.

Beweis. $\psi:A\to B/\mathfrak{q}, a\mapsto \overline{\varphi(a)}^\mathfrak{q}$ ist Hintereinanderschaltung der Homomorphismen $A\stackrel{\varphi}{\longrightarrow} B\stackrel{b\to \overline{b}^\mathfrak{q}}{\longrightarrow} B/\mathfrak{q}$ und daher ein Homomorphismus. Nach Isomorphiesatz 2.1.17 ist $A/\ker\psi\cong \operatorname{im}\psi$. Es ist ψ ein Unterring des Integritätsrings B/\mathfrak{q} und daher auch ein Integritätsring. Somit ist auch $A/\ker\psi$ ein Integritätsring, das heißt $\ker\psi$ ein Primideal von A. Es gilt $\ker\psi=\{a\in A\mid \psi(a)=0\}=\Big\{a\in A\mid \overline{\psi(a)}^\mathfrak{q}=0\Big\}=\{a\in A\mid \varphi(a)\in\mathfrak{q}\}=\varphi^{-1}(\mathfrak{q})=\mathfrak{p}.$

2.4.7 Beispiel Sei K ein Körper. Im Polynomring K[X,Y] ist (X) ein Primideal, denn $K[X,Y]/(X) \cong K[Y]$ ist ein Integritätsring (betrachte den Einsetzungshomomorphismus $K[X,Y] \to K[Y], p \mapsto p(0,Y)$ und wende den Isomorphiesatz 2.1.17 an). Es ist (X) kein maximales Ideal, denn $K[X,Y]/(X) \cong K[Y]$ ist kein Körper. Dagegen ist (X,Y) ein maximales Ideal von K[X,Y], denn $K[X,Y]/(X,Y) \cong K$ ist ein Körper (betrachte $K[X,Y] \to K, p \mapsto (0,0)$).

2.4.8 Satz In einem Hauptidealring ist jedes Primideal $\neq \{0\}$ ein maximales Ideal.

Beweis. Sei R ein Hauptidealring und $\mathfrak{p} \neq \{0\}$ ein Primideal in R. Sei I ein Ideal von R mir $p \subseteq I$. Zu zeigen: $I = \mathfrak{p}$ oder I = R. Wähle $p, a \in R$ mit $\mathfrak{p} = (p)$ und I = (a). Die Bedingung $p \subseteq I$ bedeutet $(p) \subseteq (a)$, d. h. $p \in (a)$. Wähle $b \in R$ mit p = ab. Da p gemäß 2.4.3 prim ist und R ein Integritätsring ist, ist p irreduzibel in R. Also gilt $a \in R^{\times}$ oder $b \in R^{\times}$, also I = (a) = R oder $I = (a) = (b^{-1}p) \subseteq (p) = \mathfrak{p} \subseteq I$. Also I = R oder $I = \mathfrak{p}$ wie gewünscht.

Hier fehlt noch etwas ...

$\S 4 \text{ K\"{o}rper} \ [\rightarrow \text{LA } \S \ 4]$

§ 4.1 Endliche und algebraische Körpererweiterungen

4.1.1 Definition Sei L|K eine Körpererweiterung $[\to 2.3.11]$. Die Dimension $[L:K] := \dim_K L \in \mathbb{N} \cup \{\infty\}$ des K-Vektorraums L $[\to LA \S 6.1]$ nennt man den (Körper-)Grad von L über K (nicht zu verwechseln mit dem Index aus ??!). Ist $[L:K] < \infty$ ($[L:K] = \infty$), so nennt man L endlich (unendlich) über K und L|K eine endliche (unendliche) Körpererweiterung.

4.1.2 Beispiel

- (a) [K:K] = 1 für jeden Körper K.
- (b) $[K(X):K] = \infty$ für jeden Körper K.
- (c) $[\mathbb{C}:\mathbb{R}]=2$

4.1.3 Proposition Sei L|K eine Körpererweiterung von V ein L-Vektorraum (und damit auch ein K-Vektorraum). Sei A eine Basis des K-Vektorraums L und B eine Basis des L-Vektorraums V. Dann ist $A \times B \to AB := \{ab \mid a \in Ab \in B\}, \ (a,b) \mapsto ab$ bijektiv und AB eine Basis des K-Vektorraums V.

Beweis. Zu zeigen:

- (a) $\operatorname{span}_K AB = V$
- (b) Für paarweise verschiedene $a_1, ..., a_m \in A$ und paarweise verschiedene $b_1, ..., b_n \in B$ sind $a_1b_1, ..., a_1b_n, ..., a_mb_1, ..., a_mb_n$ linear unabhängig.

4 Körper $\rightarrow LA \S 4$

Zu (a). Für jedes $\lambda \in L$ und $b \in B$ gilt $\lambda \in \operatorname{span}_K A$ und daher $\lambda b \in \operatorname{span}_K Ab \subseteq \operatorname{span}_K AB$. Daraus folgt $V = \operatorname{span}_L B \subseteq \operatorname{span}_K AB \subseteq V$.

Zu (b). Seien
$$\lambda_{ij} \in K$$
 $(1 \leq i \leq m, 1 \leq j \leq n)$ mit $\sum_{i=1}^{m} \sum_{j=1}^{n} \lambda_{ij} a_i b_j = 0$. Dann $\sum_{j=1}^{n} (\sum_{i=1}^{m} \lambda_{ij} a_i) b_j = 0$ und daher $\sum_{i=1}^{m} \lambda_{ij} a_i = 0$ für alle j , also $\lambda_{ij} = 0$ für alle i, j .

- **4.1.4 Sprechweise** Ein Zwischenkörper einer Körpererweiterung L|K ist ein Unterkörper von L, der K enthält.
- **4.1.5 Korollar** Sei F ein Zwischenkörper der Körpererweiterung L|K. Dann ist L|K endlich genau dann, wenn L|F und F|K beide endlich sind, und in diesem Fall gilt die sogenannte "Gradformel"

$$[L:K] = [L:F][F:K].$$

4.1.6 Definition Sei L|K eine Körpererweiterung. Dann heißt $a \in L$ algebraisch über K, wenn es $f \in K[x] \setminus \{0\}$ gilt mit f(a) = 0 [das heißt, wenn a nicht algebraisch unabhängig über K ist, $[\to ??]$]. Es heißt L|K algebraisch, wenn jedes Element von L algebraisch über K ist.

4.1.7 Beispiel

- (a) $\sqrt{2}$ ist algebraisch über \mathbb{Q} , denn $(\sqrt{2})^2 2 = 0$.
- (b) i und i+1 sind algebraisch über \mathbb{Q} , denn $i^2+1=0$ und $(i+1)^2-2(i+1)+2=0$.
- (c) $K \in K(X)$ ist nicht algebraisch über K. (K ein Körper.)
- **4.1.8 Definition** Sei L|K eine Körpererweiterung und $a \in L$ algebraisch über K. Dann ist der Kern von $K[X] \to L$, $f \mapsto f(a)$ ein Ideal von K[X], welches von einem eindeutig bestimmten normierten Polynom erzeugt wird $[\to LA \ 10.2.4]$, dem sogenannten Minimalpolynom $\operatorname{irr}_K(a) \in K[X]$.
- **4.1.9 Proposition** Sei L|K eine Körpererweiterung und $a \in L$ algebraisch über K. Dann sind für $f \in K[X]$ äquivalent:
 - (a) $f = \operatorname{irr}_K(a)$
 - (b) f ist das normierte Polynom kleinsten Grades mit f(a) = 0.

- (c) f ist normiert und irreduzibel in K[X] und es gilt f(a) = 0.
- (d) f ist das Minimalpolynom des K-Vektorraumendomorphismus $\lambda_a: L \to L, b \mapsto ab$.

Beweis.

 $(a) \Longrightarrow (b)$: Klar

 $\underline{\text{(b)}} \Longrightarrow \underline{\text{(c)}}$: Gelte (b). Zu zeigen ist f irreduzibel. Es gilt $f \in K[X]^{\times} = K^{\times}$, da f(a) = 0. Seien $g, h \in K[X]$ mit f = gh. Zu zeigen ist $g \in K^{\times}$ oder $h \in K^{\times}$. Wegen g(a)h(a) = (gh)(a) = f(a) = 0 gilt g(a) = 0 oder h(a) = 0. Dann gilt aber $\deg g \geq \deg f$ oder $\deg h \geq \deg f$ und daher $h \in K^{\times}$ oder $g \in K^{\times}$.

 $\underline{(c) \Longrightarrow (a)}$: Gelte (c). Wegen f(a) = 0 gilt dann $f \in (irr_K(a))^1$, das heißt, es gibt $g \in K[X]$ mit $f = g irr_K(a) \in K^{\times}$. Letzteres ist unmöglich, also $g \in K^{\times}$ und sogar g = 1, da f und $irr_K(a)$ beide normiert sind.

(a) \iff (d): Es reicht zu zeigen, dass für alle $g \in K[X]$ gilt: $g(a) = 0 \iff g(\lambda_a) = 0$ \longrightarrow LA 10.2.18]. Dies folgt aus $(g(\lambda_a))(b) = (g(a))b$ für alle $b \in L$.

4.1.10 Proposition Sei L|K eine Körpererweiterung und $a \in L$ algebraisch über K. Dann ist $K[X]/(\operatorname{irr}_K(a))$ ein Körper und $K[X]/(\operatorname{irr}_K(a)) \to K[a]$, $\overline{f} \mapsto f(a)$ ein Isomorphismus. Insbesondere ist K[a] = K(a) auch ein Körper und deg $\operatorname{irr}_K(a) = [K(a) : K]$.

Beweis. Nach dem Isomorphiesatz für Ringe und für K-Vektorräume liefert der Einsetzungshomomorphismus K[X] oup K[a], $f \mapsto f(a)$ den Ring - und K-Vektorraumisomorphismus $K[X]/(\operatorname{irr}_K(a)) \to K[a]$, $\overline{f} \mapsto f(a)$.

Da $\operatorname{irr}_K(a)$ irreduzibel im Hauptidealring K[X] ist, ist $K[X]/(\operatorname{irr}_K(a))$ nach $\ref{Maintingard}$ (siehe auch $\ref{Maintingard}$) ein Körper. Daher ist auch der dazu isomorphe Ring K[a] ein Körper, das heißt $K[a] = K(a) \ [\to \ref{Maintingard}$. Setzt man nun $d := \operatorname{deg} \operatorname{irr}_K(a)$, so bilden $\overline{1}, \overline{X}, ..., \overline{X}^{d-1}$ offensichtlich eine Basis des K-Vektorraumes $K[X]/(\operatorname{irr}_K(a))$ und daher deren Bilder $1, a, ..., a^{d-1}$ eine Basis des K-Vektorraums K[a] = K(a). Insbesondere ist d = [K(a) : K].

4.1.11 Beispiel $\operatorname{irr}_{\mathbb{Q}}(\sqrt{2}) = X^2 - 2$, $\mathbb{Q}(\sqrt{2}) = \mathbb{Q}[\sqrt{2}] \cong \mathbb{Q}[X]/(X^2 - 2)$ und $1, \sqrt{2}$ bilden eine \mathbb{Q} -Basis von $\mathbb{Q}(\sqrt{2})$.

4.1.12 Satz Sei L|K eine Körpererweiterung und $a \in L$. Dann sind äquivalent:

¹Korrektur: Hier fehlt doch was um die Klammern?

- 4 Körper [→ LA § 4]
 - (a) a ist algebraisch über K
 - (b) K(a)|K ist endlich
 - (c) K[a] = K(a)

Beweis.

- (a) \Longrightarrow (b): Nach 4.1.10.
- $\underline{\text{(b)}} \Longrightarrow \underline{\text{(a)}}: \text{Ist } d := [K(a):K] < \infty, \text{ so sind } 1,a,...,a^d \text{ linear abhängig im } K\text{-}\overline{\text{Vektorraum }}K(a)$
- (a) \implies (c): Nach 4.1.10
- $\underline{\text{(c)}} \implies \text{(a)}$: Ist a nicht algebraisch über K, das heißt a algebraisch unabhängig über K, so ist K[a] ein Polynomring über K und daher $K[a]^{\times} = K^{\times} \neq K[a] \setminus \{0\}$. Insbesondere ist dann K[a] kein Körper und daher $K[a] \neq K(a)$.
- 4.1.13 Korollar Jede endliche Körpererweiterung ist algebraisch.
- **4.1.14 Proposition** Sei L|K eine Körpererweiterung und $a_1, ..., a_n \in L$ algebraisch über K mit $L = K(a_1, ..., a_n)$. Dann gilt $L = K[a_1, ..., a_n]$ und L|K ist endlich.

Beweis. Für jedes $i \in \{1, ..., n\}$ ist a_i insbesondere algebraisch über $K(a_1, ..., a_{i-1})$ und daher nach 4.1.12 auch $K(a_1, ..., a_i)$ über $K(a_1, ..., a_{i-1})$ endlich.

Es folgt mir 4.1.5, dass
$$L|K$$
 endlich ist und mit 4.1.12, dass $L=K(a_1)\cdots(a_n)=K[a_1]\cdots[a_n]=K[a_1,...,a_n].$

- **4.1.15 Definition** Eine Körpererweiterung L|K heißt endlich erzeugt, wenn es $n \in \mathbb{N}_0$ und $a_1, ..., a_n \in L$ gibt mit $L = K(a_1, ..., a_n)$.
- **4.1.16 Korollar** Sei L|K eine Körpererweiterung. Dann ist L|K endlich genau dann, wenn L|K endlich erzeugt und algebraisch ist.
- **4.1.17 Satz (Transitivität der Algebraizität)** Sei F ein Zwischenkörper von L|K und F|K algebraisch. Ist $a \in L$ algebraisch über F, so ist a auch algebraisch über K.

Beweis. Bezeichne die Koeffizienten von $\operatorname{irr}_F(a) \in F[X]$ mit $a_1, ..., a_n \in F$. Dann ist a sogar algebraisch über $K(a_1, ..., a_n)$.

Da die Körpererweiterung $K(a_1,...,a_n)|K$ endlich erzeugt und algebraisch ist, ist sie auch endlich. Da $K(a_1,...,a_n)(a)|K(a_1,...,a_n)$ auch endlich ist, ist nach 4.1.5 $K(a_1,...,a_n,a)|K$ endlich und damit algebraisch. Insbesondere ist a algebraisch über K.

- **4.1.18 Korollar** Sei F ein Zwischen Körper von L|K. Dann ist L|K algebraisch genau dann, wenn L|F beide algebraisch sind $[\rightarrow \text{vgl. } 4.1.5]$.²
- **4.1.19 Definition und Satz** Sei L|K eine Körpererweiterung. Dann ist $\overline{K}^L := \{a \in L \mid a \text{ algebraisch "über } K\}$ ein Zwischenkörper von L|K, genannt der (relative) algebraische Abschluss von K über L.

Beweis. Zu zeigen sind:

- (a) $L \subseteq \overline{K}^L$
- (b) $\forall a, b \in \overline{K}^L : a + b, a \cdot b \in \overline{K}^L$
- (c) $\forall a \in \overline{K}^L \setminus \{0\} : \frac{1}{a} \in \overline{K}^L$

Zu (a). Ist klar.

- **Zu** (b). Sind $a, b \in \overline{K}^L$, so ist K(a, b)|K endlich nach 4.1.14 und damit algebraisch und daher $a + b, a \cdot b \in K(a, b)$ algebraisch über K.
- Zu (c). Zeigt man genauso.
- **4.1.20 Beispiel** Den Körper $\overline{\mathbb{Q}}^{\mathbb{C}}$ ($\overline{\mathbb{Q}}^{\mathbb{R}}$) nennt man den Körper der algebraischen (reellen algebraischen) Zahlen.

§ 4.2 Der algebraische Abschluss

4.2.1 Satz von Kronecker Sei K ein Körper und $f \in K[X]$ irreduzibel und normiert. Dann gibt es eine endliche Körpererweiterung L|K und ein $a \in L$ mit L = K(a) und $irr_K(a) = f$.

²Korrektur: Aussage wahrscheinlich so nicht richtig?

Nach 4.1.10 ist klar, dass der gesuchte Körper, falls er existiert, isomorph zu K[X]/(f) sein muss. L := K[X]/(f) ist nach ?? ein Körper. $K' := \{\bar{b} \mid b \in K\}$ ist ein zu K isomorpher Unterkörper von L, da $K \hookrightarrow L$, $b \mapsto \bar{b}$ und $f' := \varphi(f) \in K'[X]$ mit $\varphi : K[X] \stackrel{\cong}{\to} K'[X]$, $b \mapsto \bar{b}$ $(b \in K)$, $X \mapsto X$.

Es reicht, die Behauptung für (K', f') statt (K, f) zu zeigen. Setzt man $a := \overline{X} \in L$, so ist $f' \in K'[X]$ irreduzibel mit $f'(a) = f'(\overline{X}) = \overline{f} = 0$ und daher $f' = \operatorname{irr}_{K'}(a)$ nach 4.1.9.

4.2.2 Korollar Sei K ein Körper und $f \in K[X] \setminus K$. Dann gibt es ein L|K und ein $a \in L$ mit $[L:K] \leq \deg f$ und f(a) = 0.

Beweis. Wähle $g \in K[X]$ irreduzibel mit g|f. Wende 4.2.1 auf g an.

- **4.2.3 Beispiel** $[\to LA \S 4.2]$ Sei K ein Körper, in dem es kein $a \in K$ gibt mit $a^2 = -1$. Dann ist $X^2 + 1$ irreduzibel in K[X] und es gibt L|K und $i \in L$ mit L = K(i) und $irr_K(i) = X^2 + 1$.
- **4.2.4 Definition** Ein Körper K heißt algebraisch abgeschlossen, wenn jedes Polynom aus $K[X] \setminus K$ eine Nullstelle in K hat.
- **4.2.5 Bemerkung** Der noch zu beweisende Fundamentalsatz der Algebra besagt, dass \mathbb{C} algebraisch abgeschlossen ist $[\rightarrow \text{LA } 4.2.12]$.
- **4.2.6 Proposition** Sei K ein Körper. Dann sind äquivalent:
 - (a) K ist algebraisch abgeschlossen.
 - (b) Jedes Polynom aus $K[X] \setminus \{0\}$ zerfällt $[\to LA 10.1.13]$.
 - (c) Jedes irreduzible Polynom aus K[X] hat den Grad 1.
 - (d) K ist der einzige über K algebraische Oberkörper von K.
 - (e) K ist der einzige über K endliche Oberkörper von K.

Beweis.

(a) \implies (b): Durch sukzessives Abspalten von Nullstellen [\rightarrow LA 4.2.10].

(b) \implies (c): Klar.

 $\underline{\text{(c)}} \implies \underline{\text{(d)}}$: Gelte (c). Sei L|K algebraisch. Zu zeigen ist L = K. Sei $a \in L$. Zu zeigen ist $a \in K$. Nach (c) gilt $\mathrm{irr}_K(a) = X - c$ für ein $c \in K$. Dann aber a - c = 0, also $a = c \in K$.

(d) \implies (e): Klar nach 4.1.13.

(e) \Longrightarrow (a): Gelte (e) und sei $f \in K[X] \setminus K$. Nach 4.2.2 gibt es eine endliche Erweiterung L von K und ein $a \in L$ mit f(a) = 0. Nach (e) gilt L = K und daher $a \in K$.

4.2.7 Lemma Sei K ein Körper. Dann gibt es eine algebraische Körpererweiterung L|K derart, dass jedes Polynom aus $K[X] \setminus K$ in L eine Nullstelle hat.

Beweis. Wir treiben die Beweisidee des Satzes von Kronecker 4.2.1 bis zum Exzess. Definiere $[\rightarrow ??]$

$$I := (\{ f \in X_f \mid f \in K[X] \setminus K \}) \subseteq K[X_f \mid f \in K[X] \setminus K] =: A^3$$

Wir zeigen 1 $not \in I$ und nehmen hierzu an $1 \in I$. Wähle $f_1, ..., f_n \in K[X] \setminus K$ und $g_1, ..., g_n \in A$ mit

$$1 = \sum_{i=1}^{n} g_i f_i X_{f_i}^{4} \tag{*}$$

alle f_i (und damit X_{f_i}) paarweise verschieden. Durch n-faches Anwenden von 4.2.2 erhält man sukzessive L|K und $a_1, ..., a_n \in L$ mit $f_i(a_i) = 0$ für $i \in \{1, ..., n\}$. Durch Einsetzen von a_i für X_{f_i} und zum Beispiel 0 für die übrigen Unbestimmten in (*), folgt 1 = 0.

Wegen $1 \notin I$ gibt es nach ?? ein maximales Ideal \mathfrak{m} von A mit $I \subseteq \mathfrak{m}$. Dann ist $L := A/\mathfrak{m}$ nach ?? ein Körper. Definiere $K' := \{\overline{b} \mid b \in K\} \cong K \subseteq L$. Es reicht zu zeigen:

- (a) L|K' ist algebraisch.
- (b) Jedes Polynom aus $K'[X] \setminus K'$ hat in L eine Nullstelle.

Beweis.

Zu (a). $L = K'[\overline{X}_f \mid f \in K[x] \setminus K] \subseteq \overline{K'}^L$, denn für alle $f \in K[X] \setminus K$ ist \overline{X}_f algebraisch über K'. In der Tat: Definiert man $f' \in K'[X] \setminus K'$ wie im Beweis von 4.2.1, so gilt $f'(\overline{X}_f) = \overline{f(X_f)} = 0$.

Zu (b). Dies zeigt auch (b).
$$\Box$$

³Korrektur: Kann ich nicht lesen.

⁴Korrektur: Kann ich nicht lesen.

- **4.2.8 Bemerkung** Man kann zeigen, dass in der Situation von 4.2.6 der Körper L automatisch algebraisch abgeschlossen ist [1, A 3.7.11] [4, A 8.8]. Dies ist für uns aber noch zu schwierig, weshalb wir den Trick anwenden werden, das Lemma zu iterieren, um die Existenz eines algebraischen Abschlusses im folgenden Sinn zu zeigen:
- **4.2.9 Definition** $[\rightarrow 4.1.19]$ Sei L|K eine algebraische Körpererweiterung und L algebraisch abgeschlossen. Dann heißt L ein algebraischer Abschluss von K.
- **4.2.10 Satz** [Ernst Steinitz, geb. 1871, gest. 1928] Jeder Körper besitzt einen algebraischen Abschluss.

Beweis. Sei K ein Körper. Nach 4.2.6 gibt es eine Folge $(K_n)_{n\in\mathbb{N}}$ von Körpern derart, dass $K_0=K$ und für jedes $n\in\mathbb{N}_0$ $K_{n+1}|K_n$ eine algebraische Körpererweiterung ist mit der Eigenschaft, dass jedes Polynom aus $K_n[X]|K_n$ in K_{n+1} eine Nullstelle hat. Definiere einen Körper L durch $L:=\bigcup\{K_n\mid n\in\mathbb{N}\}$ und $A+_Lb=a+_{K_n}b$ sowie $a\cdot_Lb=a\cdot_{K_n}b$ für alle $a,b\in L$ und $n\in\mathbb{N}$ mit $a,b\in K_n$.

Es ist L offensichtlich ein algebraischer Oberkörper von K (denn jedes K_n ist es nach 4.1.18). Schließlich ist L algebraisch abgeschlossen. Ist nämlich $f \in L[X] \setminus L$, so gibt es $n \in \mathbb{N}_0$ mit $f \in K_n[X] \setminus K_n$ und f hat in $K_{n+1} \subseteq L$ eine Nullstelle.

4.2.11 Beispiel Falls \mathbb{C} algebraisch abgeschlossen ist (was wir später beweisen werden), so ist \mathbb{C} ein algebraischer Abschluss von \mathbb{R} und $\overline{\mathbb{Q}}^{\mathbb{C}}$ [\rightarrow ??] ein algebraischer Abschluss von \mathbb{Q} .

Literaturverzeichnis

- [1] Bosch, Siegfried: Algebra -. 5. überarb. Aufl. Berlin, Heidelberg: Springer, 2004. ISBN 978-3-540-40388-3
- [2] JACOBSON, Nathan: Basic Algebra I Second Edition. Second Edition. Courier Corporation, 2012. ISBN 978-0-486-13522-9
- [3] JANTZEN, Jens C.; SCHWERMER, Joachim: *Algebra* -. 2. Aufl. Berlin Heidelberg New York: Springer-Verlag, 2014. ISBN 978–3–642–40533–4
- [4] LORENZ, Falko ; LEMMERMEYER, Franz: Algebra 1 Körper und Galoistheorie. 4. Aufl. 2007. Heidelberg : Spektrum Akademischer Verlag, 2007. ISBN 978–3–827–41609–4

Index

algebraisch	symmetrische, 6		
-e Körpererweiterung, 20	Unter-, 7		
-es Element, 20			
unabhängig, 12	Hauptideal, 16		
algebraisch abgeschlossen, 24	Hauptidealring, 16		
algebraischer Abschluss, 26	Homomorphiesatz		
relativer, 23	für Ringe, 10		
Automorphismus	Homomorphismus		
Vektorraum-, 6	Körper-, 15		
,	Ring-, 8		
Direktes Produkt			
von Ringen, 9	Ideal, 9		
	echtes, 17		
Einbettung	erzeugtes, 16		
Ring-, 9	maximales, 17		
Endomorphismus	irreduzibel, 16		
Vektorraum-, 8	Isomorphiesatz		
Epimorphismus	für Ringe, 11		
Ring-, 9	Isomorphismus		
kanonischer, 10	Ring-, 9		
Faktorring, 9	Körper		
Fakultät, 6	der (reellen) algebraischen Zahlen, 23		
,	der rationalen Funktionen, 15		
General Linear Group, 6	in Unbestimmten, 16		
Grad	Oberkörper, 14		
einer Körpererweiterung, 19	Unterkörper, 14		
Gradformel, 20	kleinster, 14		
Gruppe, 5	von rationalen Funktionen, 15		
-nmultiplikation, 5	Zwischenkörper, 20		
-nverknüpfung, 5	Körpererweiterung, 14		
abelsche, 5	endlich erzeugte, 22		
alternierende, 8	endliche, 19		
kommutative, 5	Grad, 19		

Index

```
unendliche, 19
Kongruenzrelation, 9
Lokalisierung, 16
Minimalpolynom, 20
Monomorphismus
    Ring-, 9
Nenner, 14
Ordnung, 6
Polynom
    Minimal-, 20
Polynomring, 12
prim, 17
Primfaktorzerlegung, 17
Primideal, 17
Produkt
    direktes
      von Ringen, 9
Quotientenring, 9
    totaler, 14
Restklasse, 10
Restklassenring, 9
Ring
    der Brüche, 14
    Faktor-, 9
    faktorieller, 17
    Polynom-, 12
    Quotienten-, 9
    Restklassen-, 9
    Unter-, 8
supp, 17
Träger, 7, 17
unabhängig
    algebraisch, 12
Unterring, 8
Zähler, 14
```