### Outline

- Basics
- Market Basket Analysis: A Motivating Example
- Preliminaries
- Frequent Itemset Mining
- Apriori Algorithm
- Frequent Pattern growth (FP-growth) Algorithm
- Frequent Closed Itemset Mining
- Frequent Closed Itemset Mining from High Dimensional Data

### **Basics**

- Frequent patterns are patterns (such as itemsets, subsequences, or substructures) that appear in a data set frequently.
- A set of items, such as milk and bread, that appear frequently together in a transaction data set is a frequent itemset.
- A subsequence, such as buying first a PC, then a digital camera, and then a memory card, if it occurs frequently in a shopping history database, is a frequent sequential pattern.
- A substructure can refer to different structural forms, such as subgraphs, subtrees, or sublattices. If a substructure occurs frequently, it is called a frequent structured pattern.

## Market Basket Analysis: A Motivating Example



Figure 1. Apriori

## Market Basket Analysis

 Frequent itemset mining leads to the discovery of associations and correlations among items in large transactional or relational data sets.

A typical example of frequent itemset mining is market basket analysis.

- Data: collection of transactions of customers.
- Goal: find sets of products frequently occurring together.
- The discovery of associations helps in many business decision making processes, such as catalog design and customer shopping behavior analysis.

### Applications

- Market basket analysis.
- Catalog design.
- Customer shopping behavior analysis.
- Web log analysis.
- DNA sequence analysis.
- Sale campaign analysis.
- Software bug detection.
- Chemical Compound Prediction.
- Text analysis.

Let the Dataset D consist of m number of transactions (rows) and n of attributes or products (features)

- $R = \{r_1, r_2, \dots, r_m\}$
- $F = \{f_1, f_2, \dots, f_n\}$
- Each row  $r_i$  has unique row identifier, rid and consist of set of products (features).
- A non-empty subset of features  $X \subseteq F$  is defined as an itemset.
- Let  $r(f_j)$  signify the rows in which  $j^{th}$  feature of the dataset is present.
- A non-empty subset of rids  $Y \subseteq R$  is defined as rowset.
- Let  $f(r_i)$  signify the features present in the  $i^{th}$  row of the dataset.

#### Example 1

Table 1 shows an example of a Dataset D consisting of 8 rows, where each row is described with unique row identifier (rid),  $R = \{1, 2, 3, 4, 5, 6, 7, 8\}$  and 11 features,  $F = \{f_1, f_2, f_3, f_4, f_5, f_6, f_7, f_8, f_9, f_{10}, f_{11}\}$ .

Table 1
Dataset D

| row id (rid) | features                                         |
|--------------|--------------------------------------------------|
| 1            | $f_1$ , $f_2$ , $f_4$ , $f_6$ , $f_{10}$         |
| 2            | $f_1$ , $f_2$ , $f_4$ , $f_7$ , $f_8$            |
| 3            | $f_2$ , $f_4$ , $f_7$ , $f_8$                    |
| 4            | $f_1$ , $f_2$ , $f_6$ , $f_8$ , $f_9$ , $f_{10}$ |
| 5            | $f_1$ , $f_3$ , $f_4$ , $f_7$ , $f_8$ , $f_{10}$ |
| 6            | $f_2$ , $f_4$ , $f_9$                            |
| 7            | $f_5$ , $f_7$                                    |
| 8            | $f_5$ , $f_{11}$                                 |

#### Definition 1 (Support)

The number of rows in which an itemset X occurs is called the support of an itemset, denoted by sup(X).

#### Example 2

In Table 1, the support of an itemset  $X = \{f_2, f_4, f_7, f_8\}$ , sup(X) is 2.

### Definition 2 (Support Set)

The rows in which an itemset X occurs is called support set of an itemset, denoted by supset(X).

#### Example 3

In Table 1, the support set of an itemset  $X = \{f_2, f_4, f_7, f_8\}$ , supset(X) is 23.

#### Definition 3 (Cardinality)

The number of items in an itemset X is called as the cardinality of an itemset, denoted by card(X).

#### Example 4

In Table 1, the cardinality of an itemset  $X = \{f_2, f_4, f_7, f_8\}$ , card(X) is 4.

### Definition 4 (Frequent Itemset)

An itemset X is called frequent itemset if and only if  $sup(X) \ge minsup$ , where minsup is user specified least support threshold.

#### Example 5

In Table 1, the itemset  $X = \{f_2, f_8\}$  is frequent itemset with minimum support threshold set to 2,  $sup(X) \ge 2$ .

#### Definition 5 (Association Rule)

Let A and B be the set of items. An association rule is an implication of the form  $A\Rightarrow B$ , where  $A\subset F$ ,  $B\subset F$  and  $A\cap B=\emptyset$ . The association rule  $A\Rightarrow B$  holds in the dataset with **support** s and has **confidence** s.

**Support** s, is the percentage of transactions in D that contain A  $\cup$  B (i.e., the union of sets A and B, or say, both A and B).

**Confidence** c, is the percentage of transactions in D containing A that also contain B. This is taken to be the conditional probability, P(B|A).

$$support(A \Rightarrow B) = P(A \cup B)$$
 (1)

$$confidence(A \Rightarrow B) = P(B|A) = \frac{support(A \cup B)}{support(A)}$$
 (2)

## Frequent Itemset Mining

Table 2
Dataset D

| TID | Items Bought                    |
|-----|---------------------------------|
| 1   | Beer, Nuts, Chips               |
| 2   | Beer, Coffee, Chips             |
| 3   | Beer, Chips, Eggs               |
| 4   | Nuts, Eggs, Milk                |
| 5   | Nuts, Coffee, Chips, Eggs, Milk |

- Problem: To Mine the Frequent Itemsets with minimum support threshold (minsup) set to 50% and minimum confidence threshold (minconf) set to 50%.
- Frequent Itemsets are: Beer:3, Nuts:3, Chips:4, Eggs:3, {Beer, Chips}:3.
- Example of association rules Beer  $\rightarrow$  Chips (60%, 100%). Chips  $\rightarrow$  Beer (60%, 75%).

## Frequent Itemset Mining

- Frequent Itemset Mining Algorithms
  - Apriori Algorithm
  - Frequent Pattern growth (FP-growth) algorithm
- Frequent Closed Itemset Mining Algorithms
- Frequent Maximal Itemset Mining Algorithms
- Frequent Colossal Itemset Mining Algorithms
- Frequent Colossal Closed Itemset Mining Algorithms

- Apriori is an algorithm proposed by R. Agrawal and R. Srikant in 1994 for mining frequent itemsets from transactional datasets for generating association rules.
- The name of the algorithm is based on the fact that the algorithm uses prior knowledge of frequent itemset properties.
- ullet Apriori employs an iterative approach known as a level-wise search, where k-itemsets are used to explore (k+1)-itemsets.
- First, the set of frequent 1-itemsets is found by scanning the database to accumulate the count for each item, and collecting those items that satisfy minimum support.

- The resulting set is denoted  $L_1$ . Next,  $L_1$  is used to find  $L_2$ , the set of frequent 2-itemsets, which is used to find  $L_3$ , and so on, until no more frequent k-itemsets can be found.
- ullet The finding of each  $L_k$  requires one full scan of the database.
- To improve the efficiency of the level-wise generation of frequent itemsets, an important property called the Apriori property.
- Apriori property: All nonempty subsets of a frequent itemset must also be frequent.
- The property belongs to a special category of properties called antimonotone in the sense that if a set cannot pass a test, all of its supersets will fail the same test as well.

- Apriori Algorithm has two steps
  - The Join step
  - The Prune step

#### The Join step:

- To find  $L_k$ , a set of candidate k-itemsets is generated by joining  $L_{k-1}$  with itself. This set of candidates is denoted  $C_k$ .
- Apriori assumes that items within a transaction or itemset are sorted in lexicographic order.
- The join,  $L_{k-1} \bowtie L_{k-1}$ , is performed, where members of  $L_{k-1}$  are joinable if their first (k-2) items are in common.

#### • The Prune step:

- $C_k$  is a superset of  $L_k$ , that is, its members may or may not be frequent, but all of the frequent k-itemsets are included in  $C_k$ .
- A scan of the database to determine the count of each candidate in  $C_k$  would result in the determination of  $L_k$ .
- Any (k-1)-itemset that is not frequent cannot be a subset of a frequent k-itemset.
- If any (k-1)-subset of a candidate k-itemset is not in  $L_{k-1}$ , then the candidate cannot be frequent either and so can be removed from  $C_k$ .

Table 3
Dataset D

| TID | List of items  |
|-----|----------------|
| 1   | I1, I2, I5     |
| 2   | 12, 14         |
| 3   | 12, 13         |
| 4   | I1, I2, I4     |
| 5   | I1, I3         |
| 6   | 12, 13         |
| 7   | I1, I3         |
| 8   | I1, I2, I3, I5 |
| 9   | I1, I2, I3     |



Figure 2. Steps Apriori Algorithm

```
Join: C_3 = L_2 \times L_2 = \{\{11, 12\}, \{11, 13\}, \{11, 15\}, \{12, 13\}, \{12, 14\}, \{12, 15\}\} \times \{\{11, 12\}, \{11, 13\}, \{11, 15\}, \{12, 13\}, \{12, 14\}, \{12, 15\}\} 
= \{\{11, 12, 13\}, \{11, 12, 15\}, \{11, 13, 15\}, \{12, 13, 14\}, \{12, 13, 15\}, \{12, 14, 15\}\}.
```

Prune using the Apriori property: All nonempty subsets of a frequent itemset must also be frequent. Do any of the candidates have a subset that is not frequent?

- The 2-item subsets of  $\{11, 12, 13\}$  are  $\{11, 12\}$ ,  $\{11, 13\}$ , and  $\{12, 13\}$ . All 2-item subsets of  $\{11, 12, 13\}$  are members of  $L_2$ . Therefore, keep  $\{11, 12, 13\}$  in  $L_3$ .
- The 2-item subsets of {I1, I2, I5} are {I1, I2}, {I1, I5}, and {I2, I5}. All 2-item subsets of {I1, I2, I5} are members of L2. Therefore, keep {I1, I2, I5} in C3.
- The 2-item subsets of {11, 13, 15} are {11, 13}, {11, 15}, and {13, 15}. {13, 15} is not a member of L<sub>2</sub>, and so it is not frequent. Therefore, remove {11, 13, 15} from C<sub>3</sub>.
- The 2-item subsets of  $\{12, 13, 14\}$  are  $\{12, 13\}$ ,  $\{12, 14\}$ , and  $\{13, 14\}$ .  $\{13, 14\}$  is not a member of  $L_2$ , and so it is not frequent. Therefore, remove  $\{12, 13, 14\}$  from  $C_3$ .
- The 2-item subsets of  $\{12, 13, 15\}$  are  $\{12, 13\}$ ,  $\{12, 15\}$ , and  $\{13, 15\}$ .  $\{13, 15\}$  is not a member of  $L_2$ , and so it is not frequent. Therefore, remove  $\{12, 13, 15\}$  from  $C_3$ .
- The 2-item subsets of  $\{12, 14, 15\}$  are  $\{12, 14\}$ ,  $\{12, 15\}$ , and  $\{14, 15\}$ .  $\{14, 15\}$  is not a member of  $L_2$ , and so it is not frequent. Therefore, remove  $\{12, 14, 15\}$  from  $C_3$ .

Therefore,  $C_3 = \{\{11, 12, 13\}, \{11, 12, 15\}\}$  after pruning.

- $\bullet$  Generating association rules. The frequent itemset considered is {I1, I2, I5}
- The nonempty subsets of frequent itemset are {I1, I2}, {I1, I5}, {I2, I5}, {I1}, {I2}, and {I5}.
- The resulting association rules are as shown below, each listed with its confidence:
  - I1  $\wedge$  I2  $\Rightarrow$  I5, confidence = 2/4 = 50%
  - I1  $\wedge$  I5  $\Rightarrow$  I2, confidence = 2/2 = 100%
  - I2  $\wedge$  I5  $\Rightarrow$  I1, confidence = 2/2 = 100%
  - $11 \Rightarrow 12 \land 15$ , confidence = 2/6 = 33%
  - I2  $\Rightarrow$  I1  $\wedge$  I5, confidence = 2/7 = 29%
  - I5  $\Rightarrow$  I1  $\wedge$  I2, confidence = 2/2 = 50%

