

Studying the feasibility of Domain Adaptation for Emerging Yelp Business Domains

Rafi Trad - Ali Hashaam - Imad Hajjar

Supervised by: M.Sc. Marcus Thiel

Scientific Project: Data and Knowledge Engineering

April 12, 2018

Table of Contents

Introduction and Motivation

Methodology

Dataset

Domain Selection

Preprocessing

Preprocessing - Baseline

Preprocessing - Gold Standard

Modelling

Models Used

Modelling Steps

Confusion Matrices of cross-domain Models

In-domain Evaluation

Domain Adaptation Evaluation

Motivation

For a domain of interest \mathcal{D} :

• Scarce labelled data in $\mathcal{D}\Rightarrow Domain\ Adaptation\ (transfer\ learning)$

Domain Adaptation Intuition

Resort to using $\mathcal{D}_{\mathcal{S}}$ labelled data (abundant) to address the lack of data in $\mathcal{D}_{\mathcal{T}}$

• Domain adaptation can be defined as a special case of the transductive transfer learning where the feature spaces between domains $\mathcal X$ are similar; viz.:

$$\mathcal{T}_S = \mathcal{T}_T \wedge \mathcal{D}_S \neq \mathcal{D}_T \wedge \mathcal{X}_S = \mathcal{X}_T$$

BUT..

The Discriminative Learning Methods' assumption does not hold any more..

- Train data and Test data no longer conform to the same distribution!
- ullet Acute effects on models' performance o A critical challenge

Methodology

Domain Adaptation can be performed in many ways

Feature Space Transformation

Prior Based Adaptation Instance Selection and Weighting

Feature space transformation - generalisable feature selection:

- Set of $\mathcal{D}_{\mathcal{S}}$ $\{d_k\}_{k=1}^K o$ train a model for a $\mathcal{D}_{\mathcal{T}}$
- $\mathcal{X}_{S} \cap \mathcal{X}_{T} \neq \phi$

In our setting: one $\mathcal{D}_S \to \mathsf{two} \ \mathcal{D}_T$, one of which $\mathcal{X}_S \cap \mathcal{X}_T \neq \phi$, and the other $\mathcal{X}_S \cap \mathcal{X}_T \approx \phi$

General Outline

 $\mathcal{T}=$ Sentiment Polarity Detection: Affection (negative or positive) towards the discussed aspects in textual inputs.

- Domain Selection
 - Select \mathcal{D}_S
 - Select the two $\mathcal{D}_{\mathcal{T}}$
- Domain Adaptation
 - Train ξ_{ST} with labelled \mathcal{X}_S
 - Apply ξ_{ST} in \mathcal{D}_T
 - Evaluate

To what extent is the domain adaptation for the sake of sentiment polarity detection profitable for new emerging domains?

• Yelp dataset (round 10).

INF

- 7.27M reviews
- 11 businesses

Selecting $\mathcal{D}_{\mathcal{S}}$ and $\mathcal{D}_{\mathcal{T}}$

 \mathcal{D}_S was selected so that $|\mathcal{X}_S|$ is maximal \Rightarrow Restaurants.

For \mathcal{D}_T : according to **similarity** to \mathcal{D}_S Similar domains \to to distinguish between them is difficult (proxy \mathcal{A} -distance, -PAD or $\hat{d}_{\mathcal{A}}$ -):

$$\hat{d}_A = 2(1-2\epsilon) .$$

- ullet Linear bag-of-words SVM classifier was used (its error is ϵ)
- The most similar domain to Restaurants was Bars
- The least similar was Home Services

Selecting $\mathcal{D}_{\mathcal{T}}$

Preprocessing

Two preprocessing pipelines:

- Preprocessing Pipeline for Baseline
- Preprocessing Pipeline for Gold Standard

Preprocessing - Baseline

For the baseline, we have applied standard preprocessing steps in following sequence:

- Dropping records with null values
- Replacing new line characters, slashes (/) and punctuation
- Case-folding
- Stopword Removal and Tokanisation
- Stemming

Preprocessing - Gold Standard (1)

Preprocessing steps, adopted in following sequence:

- Dropping records with null values (2 records)
- Replacing foreign accents with most likely letters by using Python's Unicode library, which provides the ASCII of transliterations Unicode words
- Case-folding
- Removing newlines, tabs, replacing " with '

Preprocessing - Gold Standard (2)

- Expanding the abbreviations before removing the punctuation, in order to pay attention to the linguistic abbreviations.
- Removing punctuations
- Tokenisation
- Adding PoS tags to tokens
- Lemmatising PoS tagged tokens

Preprocessing - Gold Standard (Feature Engineering)

- Detecting multi-word phrases inside a sentence (converting the common bi-grams into a single word by appending underscore between them).
- Feature Selection using ANalysis Of VAriance (ANOVA)

Modelling

• ξ_b : Baseline Model

• ξ : Advanced Model

• S: Source Domain

• T: Target Domain

• 3 or 5: The number of labels

Table 1: The Models required for our Experiments.

	Used In-Domain	Used Cross-Domain
Baseline	ξ_{bS3} , ξ_{bS5} , ξ_{bT}	ξ _b ST
Advanced	ξτ	ξsτ

Models Used

• Multinomial Naive Bayes (MNB)

$$s_{map} = \arg \max_{s \in S} P(s|r) = \arg \max_{s \in S} P(s) \prod_{t \in r} P(t|s)$$
.

• Stochastic Gradient Descend (SGD)

$$E(w,b) = \frac{1}{n} \sum_{i=1}^{n} L(y_i, f(x_i)) + \alpha R(w)$$
.

Modelling Steps

- Training set 70%, Test set 30%
- Parameter Optimization: Grid Search with Cross-validation
- 5-fold Cross-validation during training
- Determining neutral reviews:
 - MNB: when probability ∈]20%, 80%[
 - SGD: utilizing Hinge Loss function

Confusion Matrices of ξ_{ST}

(a) Bars

(b) Home Services

In-domain Evaluation Criteria

- Accuracy
- F1 score
- Cohen's Kappa

$$\kappa = \frac{p_o - p_e}{1 - p_e} .$$

In-domain Evaluation Results

In-domain Evaluation Results

$$\kappa = \frac{p_o - p_e}{1 - p_e} \ .$$

Most Frequent	Stratified
0	-0.02

Cross-domain Evaluation Criteria

• Transfer Loss:

$$Loss(S, T) = e(S, T) - e_b(T, T) = e(\xi_{ST}) - e(\xi_{bT})$$
.

• Adaptation Loss:

Adaptation Loss =
$$acc(\xi_T) - acc(\xi_{ST})$$
.

• Relative Reduction of Error:

Relative Reduction of Error =
$$\frac{acc(\xi_{ST}) - acc(\xi_{bST})}{acc(\xi_{T}) - acc(\xi_{bST})}$$
.

Cross-domain Evaluation Criteria cont.

• McNemar's Test:

$$P = 2 \sum_{m=n_{10}}^{k} {k \choose m} \left(\frac{1}{2}\right)^{k} : n_{10} > \frac{k}{2}.$$

$$P = 2\sum_{m=0}^{n_{10}} \binom{k}{m} \left(\frac{1}{2}\right)^k : n_{10} < \frac{k}{2}.$$

	Correct	Incorrect
Correct	N ₀₀	N ₀₁
Incorrect	N ₁₀	N_{11}

$$k = N_{10} + N_{01}$$

Cross-domain Evaluation Results

Cross-domain Evaluation Results cont.

(a) Bars

(b) Home Services

Cross-domain Evaluation Results cont.

Differences in classifiers' performance were *significant*, according to McNemar's test.

Thank You

Appendix - Determining MNB Neutral Reviews

Appendix - Determining SGD Neutral Reviews

