LIMITS OF TRANSLATES OF DIVERGENT GEODESICS AND INTEGRAL POINTS ON ONE-SHEETED HYPERBOLOIDS

HEE OH AND NIMISH A. SHAH

ABSTRACT. For any non-uniform lattice Γ in $\operatorname{SL}_2(\mathbb{R})$, we describe the limit distribution of orthogonal translates of a divergent geodesic in $\Gamma\backslash\operatorname{SL}_2(\mathbb{R})$. As an application, for a quadratic form Q of signature (2,1), a lattice Γ in its isometry group, and $v_0 \in \mathbb{R}^3$ with $Q(v_0) > 0$, we compute the asymptotic (with a logarithmic error term) of the number of points in a discrete orbit $v_0\Gamma$ of norm at most T, when the stabilizer of v_0 in Γ is finite. Our result in particular implies that for any non-zero integer d, the smoothed count for number of integral binary quadratic forms with discriminant d^2 and with coefficients bounded by T is asymptotic to $c \cdot T \log T + O(T)$.

1. Introduction

1.1. **Motivation.** Let $Q \in \mathbb{Z}[x_1, \dots, x_n]$ be a homogeneous polynomial and set $V_m := \{x \in \mathbb{R}^n : Q(x) = m\}$ for an integer m. It is a fundamental problem to understand the set $V_m(\mathbb{Z}) = \{x \in \mathbb{Z}^n : Q(x) = m\}$ of integral solutions.

In particular, we are interested in the asymptotic of the number $N(T) := \#\{x \in V_m(\mathbb{Z}) : \|x\| < T\}$ as $T \to \infty$, where $\|\cdot\|$ is a fixed norm on \mathbb{R}^n .

The answer to this question depends quite heavily on the geometry of the ambient space V_m . We suppose that the variety V_m is homogeneous, i.e., there exist a connected semisimple real algebraic group G defined over \mathbb{Q} and a \mathbb{Q} -rational representation $\iota: G \to \mathrm{SL}_n$ such that $V_m = v_0.\iota(G)$ for some non-zero $v_0 \in \mathbb{Q}^n$.

Let $\Gamma < G(\mathbb{Q})$ be an arithmetic subgroup preserving $V_m(\mathbb{Z})$. By a theorem of Borel and Harish-Chandra [3], the co-volume of Γ in G is finite and there are only finitely many Γ -orbits in $V_m(\mathbb{Z})$. Hence understanding the asymptotic of N(T) is reduced to the orbital counting problem on $\#(v_0\Gamma \cap B_T)$ for $B_T = \{x \in V_m : ||x|| < T\}$ and $v_0 \in V_m(\mathbb{Z})$.

Theorem 1.1. Set H to be the stabilizer subgroup of v_0 in G. Suppose that H is either a symmetric subgroup or a maximal \mathbb{Q} -subgroup of G. If the

²⁰¹⁰ Mathematics Subject Classification. 11N45, 37A17, 22E40 (Primary).

Key words and phrases. Counting lattice points, mixing of geodesic flow, decay of matrix coefficients.

Oh was partially supported by NSF Grant #0629322.

Shah was partially supported by NSF Grant #1001654.

volume of $(H \cap \Gamma) \setminus H$ is finite, i.e., if $H \cap \Gamma$ is a lattice in H, we have

$$\#(v_0\Gamma \cap B_T) \sim \frac{\operatorname{vol}_H(H \cap \Gamma \backslash H)}{\operatorname{vol}_G(\Gamma \backslash G)} \operatorname{vol}_{H \backslash G}(B_T)$$

where the volumes on H,G and $v_0G \simeq H \setminus G$ are computed with respect to invariant measures chosen compatibly; that is, $d\operatorname{vol}_G = d\operatorname{vol}_H \times d\operatorname{vol}_{H \setminus G}$ locally.

This theorem was first proved by Duke, Rudnick, Sarnak [10] when H is symmetric and Eskin and McMullen gave a simplified proof in [11]. When H is a maximal \mathbb{Q} -subgroup, it is proved by Eskin, Mozes and Shah in [12].

As apparent from the main term of the asymptotic, it is crucial to assume $vol(H \cap \Gamma \backslash H) < \infty$ in Theorem 1.1. The main aim of this paper is to break this barrier; to investigate the counting problem in the case when $vol(H \cap \Gamma \backslash H) = \infty$.

We focus on the case when Q is a quadratic form of signature (n-1,1) with $n \geq 3$ and G is the special orthogonal group of Q. In this situation, the case of $\operatorname{vol}(H \cap \Gamma \backslash H) = \infty$ for $H = \operatorname{Stab}_G(v_0)$ arises only when n=3 and $Q(v_0) = m > 0$, that is, when the variety $V_m = \{x \in \mathbb{R}^3 : Q(x) = m\}$ is a one-sheeted hyperboloid. To prove this claim, note first that if H is a non-compact simple Lie group, then any closed $\Gamma \backslash \Gamma H$ in $\Gamma \backslash G$ must be of finite volume by Dani [6] and Margulis [15] (see also [18]). Any non-compact stabilizer H of $v_0 \in \mathbb{R}^n$ in G is either locally isomorphic to $\operatorname{SO}(n-2,1)$ (which is a simple Lie group except for n=3) or a compact extension of a horospherical subgroup. Since any orbit of a horospherical subgroup is either compact or dense in $\Gamma \backslash G$ (cf. [8]), it follows that the case of $\operatorname{vol}(H \cap \Gamma \backslash H) = \infty$ arises only when $H \simeq \operatorname{SO}(1,1)$; hence n=3 and $Q(v_0) > 0$.

In the next subsection, we state our main theorem in a greater generality, not necessarily in the arithmetic situation.

1.2. Counting integral points on a one-sheeted hyperboloid. Let $Q(x_1, x_2, x_3)$ be an real quadratic form of signature (2, 1). Denote by G the identity component of the special orthogonal group $SO_Q(\mathbb{R})$. Let $\Gamma < G$ be a lattice and $v_0 \in \mathbb{R}^3$ be such that $Q(v_0) > 0$ and the orbit $v_0\Gamma$ is discrete. As before, we fix a norm $\|\cdot\|$ on \mathbb{R}^3 and set $B_T := \{x \in v_0G : \|w\| < T\}$.

To present our theorem with a best possible error term, we consider the following smoothed counting function: fixing a non-negative function $\psi \in C_c^{\infty}(G)$ with integral one, let

$$\tilde{N}_T := \sum_{v \in v_0 \Gamma} (\chi_{B_T} * \psi)(v)$$

where $\chi_{B_T} * \psi(x) = \int_G \chi_{B_T}(xg)\psi(g) \ dg$, $x \in v_0G$, is the convolution of the characteristic function of B_T and ψ . Note that $\tilde{N}_T \simeq \#(v_0\Gamma \cap B_T)$ in the sense that their ratio is in between two uniform constants for all T > 1.

Denoting by $H \simeq \mathrm{SO}(1,1)^{\circ}$ the one-dimensional stabilizer subgroup of v_0 in G, note that $\mathrm{vol}(H \cap \Gamma \backslash H) < \infty$ if and only if $H \cap \Gamma$ is infinite.

In order to state our theorem, we write H as a one-parameter subgroup $\{h(s): s \in \mathbb{R}\}$ so that the Lebesgue measure ds defines a Haar measure on $H: \int_{-\log T}^{\log T} ds = \operatorname{vol}_H(\{h(s): |s| < \log T\}).$

Theorem 1.2. If the volume of $(H \cap \Gamma) \setminus H$ is infinite, we have the following: (1) As $T \to \infty$,

$$N_T \sim \frac{\int_{-\log T}^{\log T} ds}{\operatorname{vol}_G(\Gamma \backslash G)} \operatorname{vol}_{H \backslash G}(B_T)$$

where $d \operatorname{vol}_G = ds \times d \operatorname{vol}_{H \setminus G}$ locally.

(2) for $T \gg 1$,

$$\tilde{N}_T = c \cdot T \log T + O(T)$$
where $c = \lim_{T \to \infty} \frac{2 \operatorname{vol}_{H \setminus G}(B_T)}{T \operatorname{vol}_G(\Gamma \setminus G)}$.

We note that when $\operatorname{vol}(H \cap \Gamma \setminus H) < \infty$, $\tilde{N}_T = c \cdot T + O(T^{\alpha})$ for $0 < \alpha < 1$ is obtained in [10]. We believe, as suggested by Z. Rudnick to us, that $\tilde{N}_T = c \cdot T \log T + c' \cdot T + O(T^{\alpha})$ for some c' > 0 and $0 < \alpha < 1$ and hence the order of the second term for \tilde{N}_T cannot be improved.

Theorem 1.2 can be generalized to the orbital counting for more general representations of $SL_2(\mathbb{R})$ (see section 6).

Remark 1.3. In the case when $Q = x_1^2 + x_2^2 - d^2x_3^2$ for $d \in \mathbb{Z}$, $v_0 = (1,0,0)$, and $\Gamma = SO_Q(\mathbb{Z})$, it was pointed out in [10] that an elementary number theoretic computation of [17] leads to the asymptotic

$$\#\{(x_1, x_2, x_3) \in v_0\Gamma : \sqrt{x_1^2 + x_2^2 + d^2x_3^2} < T\} = c \cdot T \log T + O(T \log(\log T)).$$

However this deduction seems to work only for this very special case; for instance, we are not aware of any other approach than ours which can deal with non-arithmetic situations.

1.3. Arithmetic case and Integral binary quadratic forms. In the arithmetic case, Theorem 1.2 together with Theorem 1.1 implies the following:

Corollary 1.4. Let $Q(x_1, x_2, x_3)$ be an integral quadratic form with signature (2,1). Suppose that for some $v_0 \in \mathbb{Z}^3$ with $Q(v_0) > 0$, the stabilizer subgroup of v_0 is isotropic over \mathbb{Q} .

Then there exists $c = c(\|\cdot\|) > 0$ such that as $T \to \infty$,

$$\#\{x \in \mathbb{Z}^3 : Q(x) = Q(v_0), \|x\| < T\} \sim c \cdot T \log T.$$

For a binary quadratic form $q(x,y) = ax^2 + bxy + cy^2$, its discriminant $\operatorname{disc}(q)$ is defined to be b^2-4ac . The group $\operatorname{SL}_2(\mathbb{R})$ acts on the space of binary quadratic forms by $(g.q)(x,y) = q(g^{-1}(x,y))$ and preserves the discriminant. For $d \in \mathbb{Z}$, denote by $\mathcal{B}_d(\mathbb{Z})$ the space of integral binary quadratic forms with discriminant d. Note that $\mathcal{B}_d(\mathbb{Z}) \neq \emptyset$ if and only if d congruent to 0 or 1 mod 4. Now d is a square if and only if the stabilizer of every $q \in \mathcal{B}_d(\mathbb{Z})$

in $SL_2(\mathbb{Z})$ is infinite if and only if every $q \in \mathcal{B}_d(\mathbb{Z})$ is decomposable over \mathbb{Z} . (cf. [4]).

Therefore Corollary 1.4 implies the following:

Theorem 1.5. . For any non-zero square $d \in \mathbb{Z}$, there exists $c_0 > 0$ such that

$$\#\{q \in \mathcal{B}_d(\mathbb{Z}) : \operatorname{disc}(q) = d, \|q\| < T\} \sim c_0 \cdot T \log T$$

where $||ax^2 + bxy + cy^2|| = ||(a, b, c)||$.

1.4. Orthogonal translates of a divergent geodesic. Let $G = \mathrm{SL}_2(\mathbb{R})$ and Γ be a non-uniform lattice in G. For $s \in \mathbb{R}$, define

(1.1)
$$h(s) = \begin{bmatrix} \cosh(s/2) \sinh(s/2) \\ \sinh(s/2) \cosh(s/2) \end{bmatrix}, \ a(s) = \begin{bmatrix} e^{s/2} & 0 \\ 0 & e^{-s/2} \end{bmatrix}$$

and set $H = \{h(s) : s \in \mathbb{R}\}.$

In the case when the orbit $\Gamma \backslash \Gamma H$ is closed and of finite length, the limiting distribution of the translates $\Gamma \backslash \Gamma Ha(T)$ as $T \to \infty$ is described by the unique G-invariant probability measure $d\mu(g) = dg$ on $\Gamma \backslash G$ [10], that is, if s_0 is the period of $\Gamma \cap H \backslash H$, then for any $\psi \in C_c(\Gamma \backslash G)$,

$$\lim_{T \to \pm \infty} \frac{1}{s_0} \int_{s=0}^{s_0} \psi(h(s)a(T)) ds = \int_{\Gamma \setminus G} \psi \ dg.$$

Similarly, understanding the limit of the translates $\Gamma \backslash \Gamma Ha(T)$ when $\Gamma \backslash \Gamma H$ is divergent (and of infinite length) is the main new ingredient in our proofs of Theorem 1.2.

Theorem 1.6. Let $x_0 \in \Gamma \backslash G$ and suppose that $x_0h(s)$ diverges as $s \to +\infty$, that is, $x_0h(s)$ leaves every compact subset for all sufficiently large $s \gg 1$. For a given compact subset $K \subset \Gamma \backslash G$, there exist c = c(K) > 0 and M = M(K) > 0 such that for any $\psi \in C^{\infty}(\Gamma \backslash G)$ with support in K, we have, as $|T| \to \infty$,

$$\int_0^\infty \psi(x_0 h(s) a(T)) ds = \int_0^{T+M} \psi(x_0 h(s) a(T)) ds = |T| \int \psi \ d\mu + O(1)$$

where the implied constant depends only on K and a Sobolev norm of ψ .

Remark 1.7. Consider the hyperbolic plane \mathbb{H}^2 . A parabolic fixed point for Γ is a point in the geometric boundary $\partial_{\infty}(\mathbb{H}^2)$ fixed by a parabolic element of Γ . If $\mathcal{F} \subset \mathbb{H}^2$ is a finite sided Dirichlet region for Γ , then the parabolic fixed points of Γ are precisely the Γ -orbits of vertices of $\overline{\mathcal{F}}$ lying in $\partial_{\infty}(\mathbb{H}^2)$. Let $\pi: G \to \mathbb{H}^2$ denote the orbit map $g \mapsto g(i)$. For $x_0 = \Gamma g_0 \in \Gamma \setminus G$, the image $\pi(g_0 H)$ is a geodesic in \mathbb{H}^2 with two endpoints $g_0 H(+\infty) := \lim_{s \to \infty} \pi(g_0 h(s))$ and $g_0 H(-\infty) := \lim_{s \to -\infty} \pi(g_0 h(s))$ in $\partial_{\infty}(\mathbb{H}^2)$. We remark that $x_0 h(s)$ diverges as $s \to +\infty$ (resp. $s \to -\infty$) if and only if $g_0 H(+\infty)$ (resp. $g_0 H(-\infty)$) is a parabolic fixed point for Γ (cf. Theorem 2.1).

Corollary 1.8. Suppose that x_0H is closed and non-compact. For any $\psi \in C_c(\Gamma \backslash G)$,

$$\lim_{T\to\pm\infty}\frac{1}{2|T|}\int_{-\infty}^{\infty}\psi(x_0h(s)a(T))\,ds=\int_{\Gamma\backslash G}\psi\,d\mu.$$

Acknowledgements. We thank Zeev Rudnick for insightful comments.

2. Structure of cusps in $\Gamma \backslash G$ and divergent trajectory

Let $G = \mathrm{SL}_2(\mathbb{R})$ and Γ be a non-uniform lattice in G. We will keep the notation for h(s) and a(s) from (1.1) in the introduction. Let

$$N = \{ \left(\begin{smallmatrix} 1 & s \\ 0 & 1 \end{smallmatrix} \right) : s \in \mathbb{R} \} \quad \text{ and } \quad U = wNw^{-1}$$

where $w = \begin{bmatrix} \cos(\pi/4) & \sin(\pi/4) \\ -\sin(\pi/4) & \cos(\pi/4) \end{bmatrix}$. Note that $h(s) = wa(s)w^{-1}$ for all $s \in \mathbb{R}$. For $\eta > 0$, let

$$H_{\eta} = \{h(s) : s/2 > -\log \eta\}.$$

Let $K=\mathrm{SO}(2)=\{g\in G: gg^t=I\}$. Then the multiplication map $U\times H\times K\to G: (u,h,k)\mapsto uhk$ is a diffeomorphism.

The following classical result may be found at [13, Thm. 0.6] or [9]:

Theorem 2.1. There exists a finite set $\Sigma \subset G$ such that the following holds:

- (1) $\Gamma \backslash \Gamma \sigma U$ is compact for every $\sigma \in \Sigma$.
- (2) For any $\eta > 0$, the set

$$\mathcal{K}_{\eta} := \Gamma \backslash G \setminus \bigcup_{\sigma \in \Sigma} \Gamma \backslash \Gamma \sigma U H_{\eta} K$$

is compact; and any compact subset of $\Gamma \backslash G$ is contained in \mathcal{K}_{η} for some $\eta > 0$.

(3) There exists $\eta_0 > 0$ such that for i = 1, 2, if $\sigma_i \in \Sigma$, $u_i \in U$, $h_i \in H_{\eta_0}$, and $\Gamma \sigma_1 u_1 h_1 k_1 = \Gamma \sigma_2 u_2 h_2 k_2$, then $\sigma_1 = \sigma_2$, $k_1 = \pm k_2$ and $h_1 = h_2$.

Consider the standard representation of $G = \mathrm{SL}_2(\mathbb{R})$ on \mathbb{R}^2 : $((v_1, v_2), g) \mapsto (v_1, v_2)g$. Let $\|\cdot\|$ denote the Euclidean norm on \mathbb{R}^2 . Let

$$p = (0,1)w^{-1} = (-\sin(\pi/4), \cos(\pi/4)).$$

Then pU = p, and $ph(s) = (0,1)a(s)w^{-1} = e^{-s/2}p$ for all $s \in \mathbb{R}$. Also

$$(2.1) g \in UH_{\eta}K \Leftrightarrow ||pg|| < \eta.$$

Proposition 2.2 (Dani [7]). Let $x_0 \in \Gamma \backslash G$ be such that the trajectory $\{x_0h(s): s \geq 0\}$ is divergent. Then there exist $\sigma_0 \in \pm I\Sigma$, $s_0 \in \mathbb{R}$ and $u \in U$ such that $x_0 = \Gamma \sigma_0 uh(s_0)$.

Proof. By Theorem 2.1, there exists $s_1 > 0$ and $\sigma \in \Sigma$ such that $x_0 h(s) = \Gamma \sigma U H_{\eta_0/2} K$ for all $s \geq s_1$. Let $g_1 \in U H_{\eta_0/2} K$ be such that $x_0 h(s_1) = \Gamma \sigma g_1$. We claim that $pg_1 \in \mathbb{R}p$. If not, then $||ph(s)|| \to \infty$ as $s \to \infty$, and hence

there exists s > 0 such that $\eta_0/2||pg_1h(s)|| < \eta_0$. By (2.1), $g_1h(s) \in uhk$ for some $u \in U$, $h \in H_{\eta_0}$ and $k \in K$. Therefore

$$\Gamma \sigma uhk = \Gamma \sigma g_1 h(s) = x_0 h(s_1 + s) \in \Gamma \sigma U H_{n_0/2} K.$$

By Theorem 2.1(3), we have that $h \in H_{\eta_0/2}$. But then $||pg_1h(s)|| = ||puhk|| < \eta_0/2$, a contradiction. Therefore our claim that $pg_1 \in \mathbb{R}p$ is valid. Hence $g_1 = u_1h(s)\{\pm I\}$ for some $u_1 \in U$ and $s/2 \ge -\log(\eta_0/2)$. Thus $x_0h(s_1) = \Gamma \sigma u_1h(s)\{\pm I\}$, and hence $x_0 = \Gamma \sigma_0 u_1h(s-s_1)$, where $\sigma_0 = \pm I\sigma$.

Proposition 2.3. Let $x_0 \in \Gamma \backslash G$ be such that the trajectory $\{x_0h(s) : s \geq 0\}$ is divergent. Let $K \subset \Gamma \backslash G$ be a compact subset. There exists $M_1 = M_1(K) > 0$ such that

$$x_0h(s)a(T) \notin \mathcal{K}$$

for any $T \in \mathbb{R}$ and s > 0 satisfying $s > |T| + M_1$. In particular, for any $f \in C(\Gamma \backslash G)$ with support inside K,

$$\int_0^\infty f(x_0 h(s) a(T)) \, ds = \int_0^{|T| + M_1} f(x_0 h(s) a(T)) \, ds.$$

Proof. By Proposition 2.2, $x_0 = \Gamma \sigma_0 u h(s_0)$ for some $\sigma_0 \in \pm \Sigma, u \in U, s_0 \in \mathbb{R}$. By Theorem 2.1(2), let $\eta > 0$ be such that $\mathcal{K} \subset \mathcal{K}_{\eta}$. Let $M_1 = -s_0 - 2\log(\eta)$. Since $s - |T| > -s_0 - 2\log \eta$, we have

(2.2)
$$\|puh(s_0)h(s)a(T)\| = \|ph(s+s_0)a(T)\|$$

$$= e^{-(s+s_0)/2} \|pa(T)\|$$

$$< e^{-(s+s_0)/2} e^{|T|/2}$$

$$= e^{-(s+s_0-|T|)/2} < n.$$

Therefore by (2.1), $uh(s_0)h(s)a(T) \in UH_{\eta}K$, and hence

$$x_0 h(s) a(T) \in \Gamma \sigma_0 U H_\eta K \subset \Gamma \backslash G \setminus K_\eta.$$

3. Uniform mixing on compact sets

Let $G = \mathrm{SL}_2(\mathbb{R})$ and $\Gamma < G$ be a lattice. Let μ denote the G-invariant probability measure on $\Gamma \backslash G$. For an orthonormal basis X_1, X_2, X_3 of $\mathfrak{sl}(2, \mathbb{R})$ with respect to an Ad-invariant scalar product, and $\psi \in C^{\infty}(\Gamma \backslash G)$, we consider the Sobolev norm

$$S_m(\psi) = \max\{\|X_{i_1} \cdots X_{i_j}(\psi)\|_2 : 1 \le i_j \le 3, 0 \le j \le m\}.$$

The well-known spectral gap property for $L^2(\Gamma \backslash G)$ says that the trivial representation is isolated (see [2, Lemma 3]) in the Fell topology of the unitary dual of G. It follows that there exist $\theta > 0$ and c > 0 such that for any $\psi_1, \psi_2 \in C^{\infty}(\Gamma \backslash G)$ with $\int \psi_i d\mu = 0$, $\mathcal{S}_1(\psi_i) < \infty$ and for any T > 0,

(3.1)
$$|\langle a(T)\psi_1, \psi_2 \rangle| \le ce^{-\theta|T|} \mathcal{S}_1(\psi_1) \mathcal{S}_1(\psi_2)$$
 (cf. [5], [19])

Write $\mathcal{O}_{\epsilon} = \{g \in G : \|g - I\|_{\infty} \leq \epsilon\}$. For a compact subset $\mathcal{K} \subset \Gamma \backslash G$, let $0 < \epsilon_0(\mathcal{K}) \leq 1$ be the injectivity radius of \mathcal{K} , that is, $\epsilon_0(\mathcal{K})$ is the supremum of $0 < \epsilon \leq 1$ such that the multiplication map $\mathcal{K} \times \mathcal{O}_{\epsilon} \to \Gamma \backslash G$ is injective. For $s \in \mathbb{R}$, let

$$n_+(s) = \begin{pmatrix} 1 & 0 \\ s & 1 \end{pmatrix}$$
 and $n_-(s) = \begin{pmatrix} 1 & s \\ 0 & 1 \end{pmatrix}$.

Theorem 3.1. Let $K \subset \Gamma \backslash G$ be a compact subset and $\eta > 0$. There exists c = c(K) > 0 such that for any $\psi \in C^{\infty}(\Gamma \backslash G)$ with support in K, for any $|T| \geq 1$, $x \in K$, and $0 < r_0 < \epsilon_0(K)$, we have

(3.2)
$$\left| \int_0^{r_0} \psi(x n_{\nu}(s) a(T)) ds - r_0 \int \psi d\mu \right| \le c(\mathcal{S}_3(\psi) + 1) e^{-\theta_0 |T|}$$

for some θ_0 depending only on the spectral gap for $L^2(\Gamma \backslash G)$. Here and in what follows, the sign $\nu = +$ if T > 0 and $\nu = -$ if T < 0.

Proof. Consider the case when T > 0 and hence $\nu = +$. The other case can be proved similarly.

Let $\epsilon > 0$. Fix a non-negative function $\rho_{\epsilon} \in C_c^{\infty}(N^+)$ which is 1 on $n_+[0,r_0]$ and 0 outside $n_+[-\epsilon,r_0+\epsilon]$. Let $N^{\pm}=\{n_{\pm}(s):s\in\mathbb{R}\}$ and $W_{\epsilon}:=AN^-\cap\mathcal{O}_{\epsilon}$. Let μ_0 denote the right invariant measure on AN^- such that $d\mu_0\otimes dn=d\mu$. We choose a non-negative function $\phi_{\epsilon}\in C^{\infty}(AN^-)$ supported inside W_{ϵ} and $\int \phi_{\epsilon}d\mu_0=1$.

If we a consider a function $\tau_{x,\epsilon}$ on $\Gamma \backslash G$ which is defined to be $\tau_{x,\epsilon}(y) := \rho_{\epsilon}(n_{+}(s))\phi_{\epsilon}(w) \in C^{\infty}(\Gamma \backslash G)$ if $y = xn_{+}(s)w \in x \operatorname{supp}(\rho_{\epsilon})W_{\epsilon}$ and 0 otherwise, then $S_{1}(\tau_{x,\epsilon}) \ll \epsilon^{-3}$ where the implied constant is independent of x and

$$(3.3) \quad \langle a(T)\psi, \tau_{x,\epsilon} \rangle = \int_{y \in \Gamma \backslash G} \psi(ya(T))\tau_{x,\epsilon}(y)d\mu(y)$$

$$= \int_{u \in W_{\epsilon}, s \in \mathbb{R}} \psi(xn_{+}(s)wa(T))\phi_{\epsilon}(w)\rho_{\epsilon}(n_{+}(s))d\mu_{0}(w)ds.$$

As K is compact, the C^1 -norm of f supported inside K is bounded above by a uniform multiple of $S_3(\psi)$ (cf. [1, Thm 2.20]) and hence for some $c_1 > 0$,

$$\max\{\|\psi\|_{\infty}, C_{\psi}\} < c_1 \mathcal{S}_3(\psi)$$

where C_{ψ} is the Lipschitz constant of ψ .

Since for all T > 0, $W_{\epsilon}a(T) \subset a(T)\mathcal{O}_{2\epsilon}$, we have for all $w \in W_{\epsilon}$ and $T \gg 1$,

$$\left| \psi(xn_+(s)wa(T)) - \psi(xn_+(s)a(T)) \right| \le 2c_1 \mathcal{S}_3(\psi)\epsilon.$$

Hence by (3.3),

$$\begin{aligned} \left| \langle a(T)\psi, \tau_{x,\epsilon} \rangle - \int_{s \in \mathbb{R}} \psi(x n_+(s) a(T)) \rho_{\epsilon}(n_+(s)) ds \right| \\ &= \left| \int_{w,s} \psi(x n_+(s) w a(T)) \phi_{\epsilon}(w) \rho_{\epsilon}(n_+(s)) d\mu_0(w) ds \right| \\ &- \int_{s \in \mathbb{R}} \psi(x n_+(s) a(T)) \rho_{\epsilon}(n_+(s)) ds \right| \\ &\ll 2c_1 \mathcal{S}_3(\psi) \epsilon \|\rho_{\epsilon}\|_1 \le 2c_1 \mathcal{S}_3(\psi) \epsilon(r_0 + 2\epsilon). \end{aligned}$$

Since

$$\left| \langle a(T)\psi, \tau_{x,\epsilon} \rangle - \int \psi d\mu \cdot \|\rho_{\epsilon}\|_1 \right| \ll e^{-\theta T} \epsilon^{-3} \mathcal{S}_1(\psi),$$

we deduce

$$\left| \int_{0}^{r_{0}} \psi(xn_{+}(s)a(T))ds - r_{0} \int \psi d\mu \right|$$

$$\leq \left| \int_{s \in \mathbb{R}} \psi(xn_{+}(s)a(T))\rho_{\epsilon}(n_{+}(s))ds - r_{0} \int \psi d\mu \|\rho_{\epsilon}\|_{1} \right| + 4c_{1}\epsilon \mathcal{S}_{3}(\psi)$$

$$\leq \left| \langle a(T)\psi, \tau_{x,\epsilon} \rangle - r_{0} \int \psi d\mu \cdot \|\rho_{\epsilon}\|_{1} \right| + 6c_{1}\epsilon \mathcal{S}_{3}(\psi)$$

$$\leq 6c_{1}\epsilon \mathcal{S}_{3}(\psi) + c \cdot e^{-\theta T} \epsilon^{-3} \mathcal{S}_{3}(\psi)$$

for some c > 0. Hence for $\epsilon = e^{-\theta T/4}$ and some $c_2 > 0$,

$$\left| \int_0^{r_0} \psi(x n_+(s) a(T)) ds - r_0 \int \psi d\mu \right| \le c_2 (\mathcal{S}_3(\psi) + 1) e^{-\theta T/4}.$$

4. Translates of divergent orbits

Let $x_0 \in \Gamma \backslash G$ be such that $x_0 h(s)$ diverge as $s \to \infty$.

Theorem 4.1. For any |T| > 1 and any $\psi \in C_c^{\infty}(\Gamma \backslash G)$

$$\int_0^{|T|} \psi(x_0 h(s) a(T)) ds = |T| \int \psi d\mu + O(1) \mathcal{S}_3(\psi).$$

Proof. Let $R_0 = -\log \eta_0$. Due to Proposition 2.2, replacing x_0 by another point in x_0H , we may assume that $x_0 = \Gamma \sigma_0 h(R_0)$. For any S > 0, $\|ph(R_0)h(S)a(S)\| \in [\eta_0/\sqrt{2}, \eta_0]$. Hence $x_0h(R_0)h(S)a(S) \in K_{\eta_0/\sqrt{2}}$.

Let r_0 be the injectivity radius of $K_{\eta_0/\sqrt{2}}$, that is, $r_0 = \epsilon_0(K_{\eta_0/\sqrt{2}})$. Let $S_0 = 0$, and choose S_i such that $r_0e^{-S_i} \le \delta_i := S_{i+1} - S_i \le 2r_0e^{-S_i}$ for each i. We will choose $S_i = \log(2r_0i+1)$ for each i. Then $x_0h(S_i)a(S_i) \in K_{\eta_0/\sqrt{2}}$. We put $R_i = T - S_i$.

We will express $x_0h([S_i, S_{i+1}])a(T) = x_ih^{a(S_i)}([0, \delta_i])a(R_i)$, where $x_i = x_0h(S_i)a(S_i)$ and $h^{a(S_i)}(s) = a(-S_i)h(s)a(S_i) = n(e^{S_i}s/2)w_i(s)$, and $|w_i(s)| = O(e^{-2S_i})$. Note that $r_0/2 \le e^{S_i}\delta_i/2 \le r_0$.

By Theorem 3.1, we have

$$\int_0^{r_0} \psi(x_i n(s) a(R_i)) ds - r_0 \int \psi d\mu = \mathcal{S}_3(\psi) \cdot O(e^{-\theta_0 R_i})$$

and hence

$$\int_{S_i}^{S_{i+1}} \psi(x_0 h(s) a(T)) ds = \frac{\delta_i}{r_0} \int_0^{r_0} \psi(x_i n(s) a(R_i)) ds + \mathcal{S}_3(\psi) \cdot O(e^{-2S_i} \delta_i).$$

Let k=k(T) be such that $S_k \leq T < S_k + r_0 e^{-S_k}$. Therefore, since $\delta_i r_0^{-1} \leq 2e^{-S_i}$,

$$\begin{split} &\int_{0}^{T} \psi(xh(s)a(T))ds = \sum_{i=0}^{k-1} \int_{S_{i}}^{S_{i+1}} \psi(xh(s)a(T))ds + O(e^{-S_{k}}) \\ &= \sum_{i=0}^{k-1} \delta_{i} \frac{1}{r_{0}} \int_{0}^{r_{0}} \psi(x_{i}n(s)a(T))ds + \mathcal{S}_{3}(\psi) \cdot O(e^{-2S_{i}}\delta_{i}) + O(1) \\ &= \sum_{i=0}^{k-1} \delta_{i}\mu(\psi) + \sum_{i=0}^{k-1} \delta_{i}r_{0}^{-1}\mathcal{S}_{3}(\psi) \cdot O(e^{-\theta_{0}R_{i}}) + \mathcal{S}_{3}(\psi) \cdot O(e^{-2S_{i}}\delta_{i}) + O(1) \\ &= T\mu(\psi) + O(\sum_{i=1}^{k-1} e^{-S_{i}}e^{-\theta_{0}R_{i}} + \sum_{i=1}^{k} e^{-3S_{i}})\mathcal{S}_{3}(\psi) + O(1) \\ &= T\mu(\psi) + O(e^{-\theta_{0}T} \sum_{i=0}^{k-1} e^{(1-\theta_{0})S_{i}} + \sum_{i=0}^{k-1} e^{-3S_{i}})\mathcal{S}_{3}(\psi) + O(1). \end{split}$$

Since $S_i = \log(2r_0i+1)$, $0 < T - S_k < 2e^{-T}$ implies that $k < \frac{e^T - 1}{2r_0} < k + 1$, and hence

$$\sum_{i=0}^{k-1} e^{-3S_i} \ll \sum_{i=1}^{k-1} \frac{1}{(2r_0i+1)^3} = O(k^{-2}+1) = O(e^{-2T}+1) < \infty$$

and

$$\sum_{i=0}^{k-1} e^{(1-\theta_0)S_i} \ll \int_0^{e^T} \frac{1}{(2r_0x+1)^{1-\theta_0}} dx = O(e^{\theta_0T}).$$

Hence

$$e^{-\theta_0 T} \sum_{i=0}^{k-1} e^{(1-\theta_0)S_i} + \sum_{i=0}^{k-1} e^{-3S_i} = O(1).$$

Therefore

$$\int_0^T \psi(xh(s)a(T))ds = T\mu(\psi) + O(1)\mathcal{S}_3(\psi).$$

Theorem 1.6 follows from the following:

Theorem 4.2. Let $x_0h(s)$ diverge as $s \to \infty$. For a given compact subset $\mathcal{K} \subset \Gamma \backslash G$, and $\psi \in C^{\infty}(\Gamma \backslash G)$ with support in \mathcal{K} , we have

$$\int_0^\infty \psi(x_0 h(s) a(T)) ds = |T| \cdot \int \psi \ d\mu + O(1) \mathcal{S}_3(\psi).$$

Proof. Since $x_0h(s)$ diverges as $s \to \infty$, by Proposition 2.3, there exists $M_1 = M_1(\mathcal{K}) > 0$ such that

$$\int_0^\infty \psi(x_0 h(s) a(T)) ds = \int_0^{|T|+M_1} \psi(x_0 h(s) a(T)) ds$$
$$= (|T| + M_1) \int \psi \, d\mu + O(1) \mathcal{S}_3(\psi)$$
$$= |T| \int \psi \, d\mu + O(1) \mathcal{S}_3(\psi).$$

By a similar argument, we also deduce the following:

Corollary 4.3. If $x_0h(s)$ diverges as $s \to -\infty$, then

$$\int_{-\infty}^{0} \psi(x_0 h(s) a(T)) ds = |T| \int \psi d\mu + O(1) \mathcal{S}_3(\psi).$$

Lemma 4.4. If $x_0h(\mathbb{R})$ is closed and non-compact, then $x_0h(s)$ diverges as $s \to \pm \infty$.

Proof. We use a well-known fact that for a closed subgroup H of a locally compact second countable group G and a discrete subgroup Γ of G, if ΓH is closed in G, then the canonical projection map $H \cap \Gamma \setminus H \to \Gamma \setminus G$ is a proper map (cf. [16]). Since $x_0h(\mathbb{R})$ is non-compact and $h(\mathbb{R})$ is one-dimensional with no non-trivial finite subgroups, the stabilizer of x_0 in $h(\mathbb{R})$ is trivial. Therefore the map $h(\mathbb{R}) \to \Gamma \setminus G$ given by $h \to x_0h$ is a proper injective map. This implies that $x_0h(s)$ diverges as $s \to \pm \infty$.

Proof of Corollary 1.8. As the set $C_c^{\infty}(\Gamma \backslash G)$ is dense in $C_c(\Gamma \backslash G)$, the claim follows from Lemma 4.4, Theorem 4.1, and Corollary 4.3.

5. Counting: Proof of Theorem 1.2

Let Q be a real quadratic form in 3 variables of signature (2,1) and Γ_0 a lattice in the identity component G_0 of $SO_Q(\mathbb{R})$. We assume that $v_0\Gamma_0$ is discrete for some vector $v_0 \in \mathbb{R}^3$ with $Q(v_0) = d > 0$ and that the stabilizer H_0 of v_0 in G_0 is finite.

It suffices to prove Theorem 1.2 in the case when $Q = x^2 + y^2 - z^2$ and $v_0 = (\sqrt{d}, 0, 0)$ by the virtue of Witt's theorem.

Consider the spin double cover map $\iota:G:=\mathrm{SL}_2(\mathbb{R})\to G_0$ given by

$$\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \mapsto \left(\begin{smallmatrix} \frac{a^2 - b^2 - c^2 + d^2}{2} & ac - bd & \frac{a^2 - b^2 + c^2 - d^2}{2} \\ ab - cd & bc + ad & ab + cd \\ \frac{a^2 + b^2 - c^2 - d^2}{2} & ac + bd & \frac{a^2 + b^2 + c^2 + d^2}{2} \end{smallmatrix} \right).$$

For $s \in \mathbb{R}$, we set

$$h(s) = \begin{pmatrix} \cosh(s/2) \sinh(s/2) \\ \sinh(s/2) \cosh(s/2) \end{pmatrix};$$
 and $a(s) = \begin{pmatrix} e^{s/2} & 0 \\ 0 & e^{-s/2} \end{pmatrix}.$

Recall that $H := \{h(s) : s \in \mathbb{R}\}$, $A := \{a(t) : t \in \mathbb{R}\}$ and $K_1 := \{k(\theta) : \theta \in [0, 2\pi]\}$, here K_1 is half of the circle group. Observing that

$$\iota(h(s)) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cosh s & \sinh s \\ 0 & \sinh s & \cosh s \end{pmatrix} \quad \text{ and } \quad \iota(a(t)) = \begin{pmatrix} \cosh t & 0 & \sinh t \\ 0 & 1 & 0 \\ \sinh t & 0 & \cosh t \end{pmatrix},$$

the subgroup $\tilde{H} := \pm H$ is the stabilizer of v_0 in G. We have a generalized Cartan decomposition $G = \tilde{H}AK_1$ in the sense that every g is of the form hak for unique $h \in \tilde{H}, a \in A, k \in K_1$. And for $g = h(s)a(t)k, d\mu(g) = \sinh(t)dsdtdk$ defines a Haar measure on G, where $dk = (1/2\pi)dk(\theta)$, and ds, dt and $d\theta$ are Lebesgue measures. As $v_0G = \pm H \setminus G \simeq A \times K_1$, $\sinh(t)dtdk$ defines an invariant measure on v_0G . We consider the volume forms on G and v_0G with respect to these measures. Via the map ι , these define invariant measures on G_0 and v_0G_0 as well.

Denote by Γ the pre-image of Γ_0 under ι . Then $\operatorname{Stab}_{\Gamma}(v_0) = \tilde{H} \cap \Gamma = \{\pm I\}.$

For each T > 1, define a function on $\Gamma \backslash G$:

$$F_T(g) := \sum_{\gamma \in +I \setminus \Gamma} \chi_{B_T}(v_0 \gamma g).$$

Proposition 5.1. For any $\Psi \in C_c^{\infty}(\Gamma \backslash G)$,

$$\langle F_T, \Psi \rangle = \frac{T \log T \mu(\Psi)}{\operatorname{vol}(\Gamma \backslash G)} \cdot 2 \int_{K_1} \frac{1}{\|v^+ k\|} dk + O(T) \mathcal{S}_3(\psi)$$

where $v^{\pm} = \frac{\sqrt{d}}{2}(e_1 \pm e_3)$. Here the implied constant depends only on $S_3(\Psi)$ and the support of Ψ .

Proof. Then $v_0 = v^+ + v^-$ and $v_0 a(t) = e^t v^+ + e^{-t} v^-$. Since $B_T = \{v_0 a(t)k : \|v_0 a(t)k\| < T t \in \mathbb{R}, k \in K_1\}$, we have

$$\langle F_T, \Psi \rangle = \int_{\Gamma \backslash G} \sum_{\gamma \in \pm I \backslash \Gamma} \chi_{B_T}(v_0 \gamma g) \Psi(g) d\mu(g)$$

$$= \int_{k \in K_1} \int_{\|v_0 a(t)k\| < T} \left(\int_{h(s) \in \pm I \backslash \tilde{H}} \Psi(h(s) a(t)k) ds \right) \sinh(t) dt dk$$

$$= \int_{k \in K_1} \int_{\|v_0 a(t)k\| < T} \left(\int_{s \in \mathbb{R}} \Psi(h(s) a(t)k) ds \right) \sinh(t) dt dk.$$

Since $v_0\Gamma$ is discrete and $H \cap \Gamma$ is trivial, it follows that $\Gamma \backslash \Gamma H$ is closed and non-compact in $\Gamma \backslash G$. Now fix any $k \in K_1$. Hence by Theorem 4.2 and

Lemma 4.4,

$$\begin{split} &\int_{t\gg 1, \|v_0 a(t)k\| < T} \left(\int_{s\in\mathbb{R}} \Psi(h(s)a(t)k) ds \right) \sinh(t) dt \\ &= \frac{1}{\operatorname{vol}(\Gamma \backslash G)} \int_{t\gg 1, e^t \|v^+ k\| < T + O(1)} (2t\mu(\psi) + O(1)\mathcal{S}_3(\psi)) (e^t / 2 + O(1)) dt \\ &= \frac{T \log T \mu(\Psi)}{\operatorname{vol}(\Gamma \backslash G) \cdot \|v^+ k\|} + O(T)\mathcal{S}_3(\psi). \end{split}$$

Similarly,

$$\begin{split} &\int_{t \ll -1, \|v_0 a(t)k\| < T} \left(\int_{s \in \mathbb{R}} \Psi(h(s)a(t)k) ds \right) \sinh(t) dt \\ &= \int_{t \gg 1, \|v_0 a(-t)k\| < T} \left(\int_{s \in \mathbb{R}} \Psi(h(s)a(-t)k) ds \right) \sinh(t) dt \\ &= \frac{1}{\operatorname{vol}(\Gamma \backslash G)} \int_{t \gg 1, e^t \|v^- k\| < T + O(1)} (2t\mu(\psi) + O(1)\mathcal{S}_3(\psi)) (e^t / 2 + O(1)) dt \\ &= \frac{T \log T \mu(\Psi)}{\operatorname{vol}(\Gamma \backslash G) \|v^- k\|} + O(T)\mathcal{S}_3(\psi). \end{split}$$

Since $v^-k(\pi) = -v^+$,

$$\int_{k \in K_1} \|v^- k\|^{-1} dk = \int_{k \in K_1} \|v^+ k(\pi) k\|^{-1} dk = \int_{K_1} \|v^+ k\|^{-1} dk.$$

The required formula can be deduced in a straightforward manner from this

Fix a non-negative function $\psi \in C_c^{\infty}(G)$ whose support injects to $\Gamma \backslash G$ and with integral $\int \psi(g) \ d\mu(g) = 1$. Consider a function ξ_T on \mathbb{R}^3 defined by

$$\xi_T(x) = \int_{g \in G} \chi_{B_T}(xg) \psi(g) d\mu(g).$$

Then the sum $\sum_{\gamma \in \pm I \setminus \Gamma} \xi_T(v_0 \gamma)$ is a smoothed over counting satisfying

$$\sum_{\gamma \in \pm I \setminus \Gamma} \xi_T(v_0 \gamma) \asymp \# v_0 \Gamma \cap B_T.$$

Theorem 5.2. As $T \to \infty$,

$$\sum_{\gamma \in +I \setminus \Gamma} \xi_T(v_0 \gamma) = \frac{2T \log T}{\operatorname{vol}(\Gamma \setminus G)} \cdot \int_{k \in K_1} \frac{1}{\|v^+ k\|} dk + O(T) \mathcal{S}_3(\psi).$$

Proof. It is not hard to verify that

$$\sum_{\gamma \in \pm I \setminus \Gamma} \xi_T(v_0 \gamma) = \langle F_T, \Psi \rangle$$

where $\Psi(\Gamma g) = \sum_{\gamma \in \Gamma} \psi(\gamma g)$. Therefore the claim follows from Proposition 5.1.

Theorem 5.3. For $T \gg 1$, we have

$$\#\{w \in v_0 \Gamma : \|w\| < T\} = \frac{2T \log T}{\operatorname{vol}(\Gamma \setminus G)} \int_{K_1} \frac{1}{\|w^+ k\|} dk (1 + (\log T)^{-\alpha})$$

where $\alpha = -1/5.5$.

Proof. Note that $F_T(I) = \#\{w \in v_0\Gamma : \|w\| < T\}$. For each $\epsilon > 0$, let $\mathcal{O}_{\epsilon} = \{g \in G : \|g - I\|_{\infty} \le \epsilon\}$. There exists $0 < \ell \le 1$ such that for all small $\epsilon > 0$,

(5.1)
$$\mathcal{O}_{\ell\epsilon}B_T \subset B_{(1+\epsilon)T}, \quad B_{(1-\epsilon)T} \subset \cap_{u \in \mathcal{O}_{\ell\epsilon}} uB_T.$$

Let ψ^{ϵ} be a non-negative smooth function on G supported in $\mathcal{O}_{\ell\epsilon}$ and with integral $\int \psi^{\epsilon} d\mu = 1$ and define $\Psi^{\epsilon} \in C_c^{\infty}(\Gamma \backslash G)$ by $\Psi^{\epsilon}(\Gamma g) := \sum_{\gamma \in \Gamma} \psi^{\epsilon}(\gamma g)$. Using (5.1), we have

$$\langle F_{(1-\epsilon)T}, \Psi^{\epsilon} \rangle \leq F_T(I) \leq \langle F_{(1+\epsilon)T}, \Psi^{\epsilon} \rangle.$$

Therefore by Proposition 5.1

$$\langle F_{(1\pm\epsilon)T}, \Psi^{\epsilon} \rangle = \frac{2T \log T}{\operatorname{vol}(\Gamma \backslash G)} \int_{K_1} \frac{1}{\|w^+ k\|} dk + O(\epsilon T \log T) + O(\mathcal{S}_3(\Psi^{\epsilon})T)$$
$$= \frac{2T \log T}{\operatorname{vol}(\Gamma \backslash G)} \int_{K_1} \frac{1}{\|w^+ k\|} dk (1 + (\log T)^{-1/5.5},$$

where the last equality follows because $S_3(\Psi^{\epsilon}) = O(\epsilon^{-4.5})$, and if we put $\epsilon = (\log T)^{-1/5.5}$ then

$$O(S_3(\Psi^{\epsilon})T) = O(\epsilon T \log T) = (T \log T)(\log T)^{-1/5.5}.$$

Proof of Theorem 1.2. The above computation in the proof of Proposition 5.1 also shows that

(5.2)

$$\operatorname{vol}(B_T) = \int_{k \in K_1} \int_{\|v_0 a(t)k\| < T} \sinh(t) dt dk = T \int_{k \in K} \frac{1}{\|v^+ k\|} dk + O(\log T).$$

From Theorem 5.3, it follows that

(5.3)
$$F_T(I) = \frac{2\log T \operatorname{vol}(B_T)}{\operatorname{vol}(\Gamma \backslash G)} (1 + O(\log T)^{-\alpha})).$$

Since $F_T(I) = \#(v_0\Gamma \cap B_T)$, this completes the proof.

6. Orbital counting for general representations of $\mathrm{SL}_2(\mathbb{R})$

Let $G = \mathrm{SL}_2(\mathbb{R})$ and Γ be a non-uniform lattice in G. For $s \in \mathbb{R}$, define

$$h(s) = \begin{bmatrix} \cosh(s/2) \, \sinh(s/2) \\ \sinh(s/2) \, \cosh(s/2) \end{bmatrix}, \ a(s) = \begin{bmatrix} e^{s/2} & 0 \\ 0 & e^{-s/2} \end{bmatrix}, \ k(\theta) = \begin{bmatrix} \cos(\theta/2) & -\sin(\theta/2) \\ \sin(\theta/2) & \cos(\theta/2) \end{bmatrix}$$

Put $H = \{h(s) : s \in \mathbb{R}\}$, $A^+ = \{a(t) : t > 0\}$, and $K_1 = \{k(\theta) : \theta \in [0, 2\pi]\}$, here K_1 is half of the circle group. Put $w_0 = k(\pi)$. Then $\{\pm I\} \setminus G = HA^+K_1 \cup Hw_0A^+K_1$, $w_0^{-1}h(s)w_0 = h(-s)$ and $w_0^{-1}a(t)w_0 = a(-t)$.

Let V be any finite dimensional representation of G and $v_0 \in G$ be such that H is the stabilizer subgroup of v_0 in G, i.e., $H = G_{v_0}$ where $G_{v_0} = \{g \in G : v_0g = v_0\}$. Assume that V is linearly spanned by v_0G . Then if e^{mt} is the highest eigenvalue for a(t)-action on V, then $m \in \mathbb{N}$, and the G action factors through $\{\pm I\} \setminus G = \mathrm{PSL}_2(\mathbb{R}) \cong \mathrm{SO}(2,1)^0$.

For example, let V_m denote the (2m+1)-dimensional space of real homogeneous polynomials of degree 2m in two variables, and consider the standard right action of $g \in SL(2,\mathbb{R})$ on $P(x,y) \in V_m$ by (Pg)(x,y) = P((x,y)g), where $(x,y)\begin{bmatrix} a & b \\ c & d \end{bmatrix} = (ax+cy,bx+dy)$. Let $v_0(x,y) = (x^2-y^2)^m$. Then $G_{v_0} = H\mathcal{W}$, where $\mathcal{W} = \{\pm I\}$ if m is odd and $\mathcal{W} = \{\pm I, \pm w_0\}$ if m is even. Moreover, $\{P \in V_m : Ph = P, \text{ for all } h \in H\} = \mathbb{R}P_0$. A general finite dimensional representation of G with a nonzero H-fixed vector is a direct sum of such irreducible representations, and v_0 is a sum of one nonzero H-fixed vector from each of the irreducible representations; we assume that V is a span of v_0G .

Theorem 6.1. Let V, v_0 and m be as above. Suppose that Γ is a lattice in G, $v_0\Gamma$ is discrete, and $\Gamma_{v_0} := \Gamma \cap G_{v_0}$ is finite. Let $\|\cdot\|$ be any norm on V, and $v_0^+ = \lim_{t \to \infty} v_0 a_t / \|v_0 a_t\|$. Let C be an open subset of $\{v \in V : \|v\| = 1\}$ such that $\Theta = \{\theta \in [0, 2\pi] : v_0^+ k(\theta) \in \mathbb{R}C\}$ has positive Lebesgue measure, and $\{\theta \in [0, 2\pi] : v_0^+ k(\theta) \in \mathbb{R}(\overline{C} \setminus C)\}$ has zero Lebesgue measure. Then for $T \gg 1$,

(6.1)
$$\#(v_0\Gamma \cap [0, T]C)$$

$$= \frac{4(2\pi)^{-1} \int_{\Theta} ||v_0^+ k(\theta)||^{-1/m} d\theta}{|\Gamma_{v_0}| \cdot \operatorname{vol}_G(\Gamma \backslash G)} \times \frac{\log T}{m} T^{1/m} (1 + (\log T)^{-\alpha})$$

where vol_G is given by the Haar integral $dg = \sinh(t)dtdsd\theta$ on G, where $g = h(s)a(t)k(\theta)$, and $\alpha = \frac{1}{5.5}$.

Moreover, if
$$C \subset V$$
 satisfies $\mathbb{R}\overline{C} \cap v_0^+ K_1 = \emptyset$, then $\#(v_0\Gamma \cap \mathbb{R}C) < \infty$.

Proof. The result can be deduced by the arguments as in the proof of Theorem 5.3; one may also use the basic ideas from [16] about using the highest weight.

References

- [1] Thierry Aubin. Nonlinear analysis on manifolds. Monge-Ampère equations, volume 252 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, New York, 1982.
- [2] M. B. Bekka. On uniqueness of invariant means. *Proc. Amer. Math. Soc.*, 126(2):507–514, 1998.
- [3] Borel, Armand and Harish-Chandra Arithmetic subgroups of algebraic groups, Ann. of Math. (2), vol 75, 485–535, 1962
- [4] Buchmann, Johannes and Vollmer, Ulrich Binary quadratic forms: An algorithmic Approach, Springer-Verlag, Algorithms and Computation in Mathematics, Vol 20.
- [5] M. Cowling, U. Haagerup, and R. Howe. Almost L^2 matrix coefficients. J. Reine Angew. Math., 387:97–110, 1988.

- [6] S. G. Dani. On invariant measures, minimal sets and a lemma of Margulis. *Invent. Math.*, 51(3):239–260, 1979.
- [7] S. G. Dani. Divergent trajectories of flows on homogeneous spaces and Diophantine approximation. J. Reine Angew. Math., 359:5589, 1985.
- [8] S. G. Dani. Orbits of horospherical flows. Duke Math. J., 53(1):177–188, 1986.
- [9] S. G. Dani and John Smillie. Uniform distribution of horocycle orbits for Fuchsian groups. *Duke Math. J.*, 51(1):185–194, 1984.
- [10] W. Duke, Z. Rudnick, and P. Sarnak. Density of integer points on affine homogeneous varieties. *Duke Math. J.*, 71(1):143–179, 1993.
- [11] Alex Eskin and C. T. McMullen. Mixing, counting, and equidistribution in Lie groups. Duke Math. J., 71(1):181–209, 1993.
- [12] Alex Eskin, Shahar Mozes, and Nimish Shah. Unipotent flows and counting lattice points on homogeneous varieties. *Ann. of Math.* (2), 143(2):253–299, 1996.
- [13] H. Garland and M. S. Raghunathan. Fundamental domains for lattices in R-rank 1 semisimple Lie groups. Ann. of Math. (2), 92:279–326, 1970.
- [14] Alex Gorodnik, Hee Oh, and Nimish Shah. Integral points on symmetric varieties and Satake compactifications. *Amer. J. Math.*, 131(1):1–57, 2009.
- [15] G.A. Margulis. Dynamical and ergodic properties of subgroup actions on homogeneous spaces with applications to number theory. In *Proceedings of the International Congress of Mathematicians*, Vol. I, II (Kyoto, 1990), pages 193–215, Tokyo, 1991. Math. Soc. Japan.
- [16] Hee Oh and Nimish Shah. Equidistribution and counting for orbits of geometrically finite hyperbolic groups. arXiv:1001.2096.
- [17] E.J. Scourfield. The divisors of a quadratic polynomial. Proc. Glasgow Math. Assoc., 5:8–20, 1961.
- [18] N.A. Shah. Uniformly distributed orbits of certain flows on homogeneous spaces. Math. Ann., 289:315–334, 1991.
- [19] A. Venkatesh. Sparse equidistribution problem, period bounds, and subconvexity, 2007. Ann. of Math., 172:989-1094, 2010.

MATHEMATICS DEPARTMENT, BROWN UNIVERSITY, PROVIDENCE, RI, U.S.A AND KOREA INSTITUTE FOR ADVANCED STUDY, SEOUL, KOREA

E-mail address: heeoh@math.brown.edu

Department of Mathematics, The Ohio State University, Columbus, OH 43210, U.S.A

E-mail address: shah@math.osu.edu