

Bases de données

Chapitre 0 - Généralités

Source : Céline Rouveirol

CM0 du 21/09/2022

Chapitre 0: Généralités

Sources du cours

- Cours d'introduction aux BDs de L'Université Paris 11, François Goasdoué, Nicole Bidoit
- "A first course in Database systems", J. Ullman et J. Widom, Prentice Hall
- ▶ Bases de Données, de la modélisation au SQL, L. Audibert, Ellipses

Chapitre 0: Généralités

Galilée

Objectifs et plan du cours

- ► Maîtrise des concepts de base en Bases de Données Relationnelles + introduction programmation SQL
- ▶ Plan du cours
 - Chapitre 1 : Introduction
 - Chapitre 2 : Conception des BD Relationnelles
 - Modèle Entité/Association
 - Chapitre 3 : Théorie des BD Relationnelles
 - ► Modèle relationnel
 - Contraintes d'intégrité
 - Dépendances d'inclusion
 - Dépendances fonctionnelles
 - Passage du modèle E/A au schéma relationnel
 - Algèbre relationnelle
 - Chapitre 4 : Mise en oeuvre d'une BDR: SQL
 - ► Tables et contraintes
 - Requêtes, vues, ...

www.sup-galilee.univ-paris13.fr

Chapitre 0: Généralités

∢ 🗗 ▶

 $\leftarrow \equiv \rightarrow$

 $\leftarrow \Xi \rightarrow$

Bases de données

Chapitre 1 - Introduction

Source : Céline Rouveirol

CM1 du 21/09/2022

Chapitre 1: Introduction

- ▶ Un système de gestion de bases de données (SGBD) est un logiciel qui permet de manipuler des bases de données:
 - construction
 - maintenance
 - interrogation
 - sécurité
- Propriétés fondamentales d'un SGBD
 - Indépendance des données: données physiques / conceptuelles / applications
 - Accès efficace aux données (Langage de Manipulation de Données)
 - Partage des données (Accès concurrents + sécurité des données)
 - Intégrité et sécurité des données
 - Administration centralisée des données
 - Récupération sur «crash»

Chapitre 1 : Introduction

Galilée

Întroduction aux bases de données

▶ Une base de données (BD) est un ensemble structuré de données cohérentes

> ensemble: collection disponible, accessible, extensible d'informations

> > ajout, suppression, modification

structuré : collection organisée grâce à des structures logiques

■ tables, cubes, arbres....

données cohérentes : des contraintes peuvent être posées sur les données.

Chapitre 1: Introduction

Applications des SGBDs

- Applications de gestion
 - Banque Finance Assurance
 - Gestion du personnel / clients / stocks d'une entreprise
 - Système d'information d'une entreprise: ensemble organisé de ressources (données, procédures, matériels, logiciels, ...) permettant d'acquérir, de stocker, de structurer et de communiquer des informations sous forme de textes, images, sons, ou de données codées dans des organisations [Wikipedia].
- Applications transactionnelles
 - Gestion de réservations (transports, hotels, sepctacles, ...)
 - Consultations et modifications très fréquentes

Sorbonne

Chapitre 1 : Introduction

Pourquoi ne pas utiliser un simple système de gestion de fichiers?

- Les données dans les programmes qui les utilisent
 - duplication des données: pb de maintenance, de cohérence des données, accroissement de la masse des données
- Les données dans un fichier
 - performance (temps d'accès aux données)
 - coût d'exploitation des données: multiplications des programmes ad-hoc pour l'accès aux données (requêtes), la gestion de la cohérence, concurrence, confidentialité, etc.

Chapitre 1: Introduction

- Le modèle Relationnel (Codd, fin des années 60). Les données sont représentées dans des tables, sous forme de n-uplets. Modèle le plus utilisé : celui que nous considèrerons dans la suite. A donné lieu au langage SQL, extension de l'algèbre relationnelle, standardisation en 1987. Près de 80% des utilisations en entreprise.
- Le modèle Orienté Objet (géré par des OODBMS). Les données sont des objets, encore en phase de recherche, BD avancées en INFOA2.
- Le modèle Multidimensionnel. Les données sont représentées sous la forme d'un cube. Très utilisé en analyse de données.
- Le modèle Semi-structuré (fichiers XML). Les données sont représentées sous la forme d'arbre.
- Le modèle NoSQL (Not Only SQL). Remise en cause du principe ACID (transactions atomiques, cohérentes, isolées, et durables).

11/40

Chapitre 1 : Introduction

SGBD

- 3 niveaux de description
 - Niveau interne (gestion des accès): schéma physique
 - Niveau conceptuel (intégrité-cohérence): schéma logique, issu d'un processus de modélisation
 - Niveau externe (confidentialité), n schémas externes associés à n types d'utilisateurs
- ► Architecture client-serveur
 - Un serveur pour le SGBD: gérant les bases de données communes
 - De multiples clients pour accéder aux BDs:
 - gérant les interfaces serveur-utilisateurs/applications
 - permettant la distribution des applications.

Chapitre 1: Introduction

Quelques exemples de SGBD

► (O)RDBMS :

Oracle: actuellement en version 10g.

Microsoft : Access (inclus dans Office), SQL Server

■ IBM: DB2

Les libres : PostgreSQL, MySQL, . . .

Sorbonne

Evolution des besoins

1960:

Mémoire	Coûteuse
Applications	Gestion, stock
Données	alphanumérique

2000:

Mémoire	Bon marché
Applications	CAO, Génomique, Multi-média
Données	alphanumérique, image son, vidéo
Besoins	Tera-octets: 10^{12} octets ¹

 $^{1}1$ heure de vidéo = 1 Giga octet, images satellites = 10^{15} octets.

www.sun-galilee.univ-naris13 fr

4 🗗 ▶

< ≣ →

Chapitre 2 : Conception des BD relationnelles

Crédits

Ce cours s'appuie sur le cours de :

- ► François Goasdoué et Marie-Pierre Dorville, LRI, Université Paris 11
- ► Laurent Audibert, IUT Villetaneuse, Université Paris 13

Chapitre 1 : Introduction

Bases de données

Chapitre 2 - Conception des BD relationnelles

Source : Céline Rouveirol

CM2 du 21/09/2022

Chapitre 2 : Conception des BD relationnelle

Conception de bases de données relationnelles

- 1. La démarche de modélisation conceptuelle
- 2. Le modèle Entité Association (E/A)
- 3. Du modèle E/A au modèle relationnel

Une démarche de conception consiste à construire une représentation de la réalité à l'aide d'un modèle conceptuel de données ou modèle sémantique

représentation graphique

Le modèle conceptuel sera (ensuite) traduit dans un modèle logique de données

Conception de bases de données relationnelles

Outils de modélisation

modèle conceptuel « universel » E/A (entité/association) modèle sémantique

modèles logiques

- réseau
- hiérarchique
- relationnel

4 3 5

Chapitre 2 : Conception des BD relationnelles

- regroupement d'objets qui ont les mêmes caractéristiques ou propriétés
- ⇒ Exemple : les enseignants, les étudiants, les salles, les cours,... constituent différents types d'entités.
- une entité est identifiée par un nom et décrite par les propriétés des objets qu'elle représente, appelées attributs de l'entité
- ⇒ Exemple : un étudiant est caractérisé par un nom, un prénom,une date de naissance.

Chapitre 2 : Conception des BD relationne

Conception de bases de données relationnelles

le modèle entité/association (P. CHEN 1976)

Il repose sur 3 concepts fondamentaux

- l'entité : représentation d'un objet de la réalité
- l'association : lien entre entités
- l'attribut : caractéristique propre à une entité ou une association

Entité ou type d'entité (2/2)

- ▶ une occurrence d'entité est un objet particulier
- \Rightarrow Exemple: « Dupont , Jean , 15/12/1982 » est une occurrence de l'entité étudiant.
- la formalisme utilisé pour représenter une entité:

Attribut

- prend sa valeur dans un « domaine de valeurs »
- ▶ il peut être simple (ex: nom) ou composé (ex: date de naissance composée de jour, mois, année)
- identifiant : c'est un attribut ou un groupe d'attributs qui identifie de façon unique une occurrence d'entité.
- ⇒ *Exemple* : aucun des attributs nom, prénom, date de naissance (ou leur regroupement) ne peut être l'identifiant de l'entité étudiant; il faut donc créer un nouvel attribut numéro qui est unique pour chaque étudiant.

www.sup-galilee.univ-paris13.fr

Chapitre 2 : Conception des BD relationnelles

- ensemble de liens entre deux ou plusieurs entités où chaque entité joue un rôle déterminé
- ⇒ Exemple : l'association inscription représente tous les liens possibles entre les étudiants inscrits aux différents cours.
- une association est identifiée par un nom et des attributs qui lui sont propres
- $\Rightarrow \textit{Exemple}$: l'association inscription est caractérisée par l'année d'inscription.

23/40

Chapitre 2 : Conception des BD relationnel

Galilée

Représentation des entités

Étudiant

numéro

nom

prénom

date_naissance

Enseignant
numéro
nom
prénom
adresse

22/40

Chapitre 2 : Conception des BD relationnelles

Association (2/5)

- ► Cardinalité : traduit le type de liens entre les occurrences des entités de l'association. Elle s'exprime par un couple de 2 valeurs qui sont les nombres minimum et maximum de fois qu'une occurrence d'entité participe à l'association; les valeurs possibles sont 0, 1, n
- \Rightarrow *Exemple* :
- un étudiant est inscrit au moins à 1 cours et au plus à n cours \Rightarrow cardinalité 1,n
- dans un cours peuvent être inscrits 0 étudiant au moins et n étudiants au plus \Rightarrow cardinalité 0,n

Association (3/5)

Représentation d'une association

Le « type du lien » (ou de l'association) s'exprime au moyen de la valeur maximale de chaque cardinalité.

Dans l'exemple ci-joint, l'association est de type n-n (ou m-n ou plusieurs à plusieurs)

25/4

Chapitre 2 : Conception des BD relationnelles

Association (5/5)

Une association réflexive est une association binaire ou naire qui fait intervenir au moins deux fois la même entité.

Chapitre 2 : Conception des BD relationnelle

Association (4/5)

Différents types d'associations

Chapitre 2 : Conception des BD relationnelles

Entité faible

- Formalisée comme une entité mais son identification s'effectue relativement à une autre entité via une association.
- L'identifiant de l'entité faible est constituée de celui de l'entité faible et de celui de l'entité forte liée.
- \Rightarrow Exemple : On numérote les salles de cours indépendamment des bâtiments...difficile en pratique !

⇒ Exemple : On numérote les salles de cours relativement à un bâtiment.

4 🗇 ▶

 $\leftarrow \equiv \rightarrow$

 $\leftarrow \Xi \rightarrow$

4 🗗 ▶

< ≣ →

∢ ≣ →

Héritage

Le concept d'héritage fait état de sous-entités et d'une sur-entité.

Association d'héritage

29/40

www.sup-galilee.univ-paris13.fr

Chapitre 2 : Conception des BD relationnelle

Association n-aire

Association mettant en jeu plus de 2 entités:

numPilote

prénom

Chapitre 2 : Conception des BD relationnelles

Association n-aire, exemple

Trajet

aéroport_depart

numTrajet

Association n-aire, exemple

Modélisation correcte

4 🗗 ▶ < ≣ → 4 ∄ →

Galilée

un « bon » schéma E/R

▶ Il faut remplacer un attribut multiple par une association et une entité supplémentaires.

Galilée

Quelques principes pour concevoir un « bon » schéma E/R

Un bon schéma E/R limite les redondances et les incohérences : "chaque chose a une place".

Le nom d'une entité, d'une association ou d'un attribut doit être unique.

Exemples tirés du cours de L. Audibert

4 🗗 ▶

 $\leftarrow \equiv \rightarrow$

4 ≣ →

Sup Guelques principes pour concevoir un « bon » schéma E/R

▶ Il faut supprimer tout attribut dérivé d'autres attributs (de la même entité ou non).

Sup alilée Quelques principes pour concevoir un « bon » schéma E/R

▶ Il faut tenter de factoriser les types-entités et les types associations quand c'est possible, éventuellement en ajoutant un nouvel attribut.

Galilée

▶ Supprimer une association dont toutes les cardinalités sont toutes 1.

4 🗗 ▶

< ≣ →

4 ≣ →

Chapitre 2 : Conception des BD relationnelle Sup a lilée

Quelques principes pour concevoir un « bon » schéma E/R

► Tout type-entité qui peut être remplacé par une association doit

Galilée

Règlement

Sup a lilé e Quelques principes pour concevoir

Chapitre 2 : Conception des BD relationnelles

un « bon » schéma E/R

Attention aux redondances d'associations.

