Data Mining (Mining Knowledge from Data)

Model evaluation

Marcel Jiřina, Pavel Kordík

Classification

- Classification has 2 stages:
 - Learning (Training)
 - Recalling (Using, Applying the model)
- Our goal is to create a classifier with the best success in recalling stage
- The success of the recalling stage we can not measure, when we do not know all the data on which the classifier has been learned
- How to estimate the error of the classifier during the recall stage?

How to estimate error

- Calculating errors on the training data
 - We assume that the training data are a representative sample
 - But, learning of most of models is based on setting of parameters so that to minimize the error on the training data.
 - If we select a classifier that is the best for specific data, we can
 no longer use these data to evaluate the classifier -> risk of
 classifier overfitting.
 - This is not the appropriate method do not use it!

Overfitting

- More complex models adapt more to the training data and thereby reduce the error on the training data
- The model is then trained accurately on specific data and thus loses its ability of generalization - for additional data from the same distribution the error raises steeply

Overfitting

- More complex models are more susceptible to overfitting
- Simpler models have a lower risk of overfitting, but are not able to cover more complex dependencies in the data
- The decision to select a simpler or more complex model is ambiguous and depends on specific data
- How to recognize that a model is overfitted?
 - If there is an error on the training data much smaller than on the test data, then the model is overfitted.

How to estimate error

- By splitting the training data into 2 parts:
 - Training data The model is trained on the training data
 - Test data the error of classification is calculated on the test data
- How to divide the training set?
 - 80 % training and 20 % test ...
 - By reducing the training set it is harder to learn a classifier and the classifier error increases
 - On the contrary, a small test set does not allow an accurate error detection
 - We balance between a more accurate classification and a better estimate of the error

Distribution

		Species	Petal Width	Petal length	Sepal Width	Sepal length
	7	Setosa	0.2	1.4	3.5	5.1
train	-	Setosa	0.2	1.4	3.0	4.9
	J	setosa	0.2	1.3	3.2	4.7
	7	Versicolor	1.4	4.7	3.2	7.0
test	-	versicolor	1.5	4.5	3.2	6.4
		Versicolor	1.5	4.9	3.1	6.9

- Not this way!
- Data should be divided into training and test sets randomly.

Cross-validation (X-validation)

- By splitting data into training and test set, the ability to use a part of the data for learning is lost
- In cross-validation, the data are divided into N equal parts (folds)
- Repeat N-times:
 - Use N-1 parts for learning
 - Use 1 part for testing (error estimation)
- The resulting error is the average of N partial errors
- Each instance (pattern, case) is used N-1 times for learning, and once for the error calculation

Cross validation N=5

train	train	train	train	test	-> err ₁
train	train	train	test	train	-> err ₂
train	train	test	train	train	-> err ₃
train	test	train	train	train	-> err ₄
test	train	train	train	train	-> err ₅

$$err = \frac{\sum_{i=1}^{N} err_i}{N}$$

Cross validation

- How the previous method (50%) test (50%) differs from the 2x cross validation?
- Can the cross validation be used to test the error of a single model?
- The cross-validation is dedicated to test the quality of the algorithm, which generates the models.
- What if, despite the use of the cross-validation, we can not statistically significantly distinguish the algorithms?
 - Increase the number of parts to N = number of instances (leave-one-out CV)
 - Use the Bootstrap validation

What is Bootstrap?

X1=(1.57,0.22,19.67, 0,0,2.2,3.12)

Mean=4.13

X=(3.12, 0, 1.57, 19.67, 0.22, 2.20)

Mean=4.46

X2=(0, 2.20, 2.20, 2.20, 19.67, 1.57) Mean=4.64

Bootstrap distribution

Smooth bootstrap distribution

X3=(0.22, 3.12,1.57, 3.12, 2.20, 0.22) Mean=1.74

statistics:

confidence interval estimation

Examples of bootstrap (Opitz, 1999)

Training samples	1	2	3	4	5	6	7	8
Sample 1	2	7	8	3	7	6	3	1
Sample 2	7	8	5	6	4	2	7	1
								•••
Sample M	4	5	1	4	6	4	3	8

Bootstrap validation – it is necessary to ensure that the test data would not be used for the model learning

Validation data - problem

- Using the test data we test several models and choose the one with the smallest error.
- As we used the test data for model selection, we actually used them during the learning stage.
- Tis way, the test data become the validation data.
- The estimation of errors of the best model on these test data is no longer unbiased!
- If we want to compare this model with another model, new data has to be used.

Learn – validate – test

- Attention: In various books, parts of data are referred different ways...
- Variants a) without and b) with using validation data

How to measure success of classification

Direct solution:

•
$$accuracy = \frac{number\ of\ correctly\ clasified\ patterns}{total\ number\ of\ patterns}$$

Analogy:

$$\bullet \ \ error \ rate = \frac{number \ of \ incorrectly \ clasified \ patterns}{total \ number \ of \ patterns}$$

- Frequently used but inadequate if the classes are unbalanced (unequal representation of classes).
- Why? What does it mean?

Problem with "accuracy"

Example:

- We want to create a classifier, which decides whether the credit card transaction is fraudulent (stolen credit card)
- Fraudulent transactions are very small in comparison with other transactions - only 0.01 %
- A trivial classifier, which marks all transactions as correct, will have a very high success rate - 99.99 %
- Such a classifier is useless

confusion matrix (contingency table)

Binary classification is supposed

		Reality (observed values)		
		Р	N	
Classification	Р	TP	FP	
(predicted values)	N	FN	TN	

- TP true positives, correct classification to class P
- TN true negatives, correct classification to class N
- FP false positives, incorrect classification to class P (it should be N)
- FN false negatives, incorrect classification to class N (it should be P)

confusion matrix, derived characteristics

		Reality (observed values)	
		Р	N
Classification	Р	TP	FP
(predicted values)	N	FN	TN

$$TPr = \frac{TP}{TP + FN}$$

$$TNr = \frac{TN}{TN + FN}$$

$$FPr = \frac{FP}{FP + TN}$$

$$FNr = \frac{FN}{TN + FP}$$

$$spec = \frac{TN}{TN + FP}$$

$$pre = \frac{TP}{TP + FP}$$

$$accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

F-measure

F-measure is a compromise between precision and recall

$$\frac{2*Pre*TPr}{Pre+TPr}$$

- Calculate the F-measure for cases
 - Pre = TPr = 1 and
 - Pre = 0.1, TPr = 0.9

Example of a confusion matrix

• Iris data, 3 classes

accuracy: 91.33% +/- 9.45% (mikro: 91.33%)						
	true Iris-setosa	true Iris-versicolor	true Iris-virginica	class precision		
pred. Iris-setosa	50	0	0	100.00%		
pred. Iris-versicolor	0	47	10	82.46%		
pred. Iris-virginica	0	3	40	93.02%		
class recall	100.00%	94.00%	80.00%			

Example – classification of cars

- We have data with various pieces of information about 392 cars
- The goal is to determine whether the car has been made in USA

mpg	cylinders	displacement	horsepower	weight	acceleration	model year	origin
0	1	0,609819	0,798913	0,884321	0,625	0	am
0,026596	1	0,754522	0,918478	0,851148	0,357143	0	am
0,026596	1	0,617571	0,836957	0,783385	0,416667	0	am
0,053191	1	0,645995	0,891304	0,785086	0,327381	0	am
0,053191	1	0,932817	0,880435	0,856252	0,178571	0,166667	am
0,332447	0,2	0,136951	0,347826	0,279841	0,285714	0,583333	not_am
0,335106	0,2	0,136951	0,375	0,335129	0,458333	0,666667	not_am
0,398936	0,2	0,170543	0,271739	0,308761	0,327381	0,416667	not_am
0,398936	0,2	0,131783	0,277174	0,264247	0,535714	0,416667	not_am
0,404255	0,6	0,20155	0,402174	0,373405	0,345238	0,916667	not_am
							

Scatter plot for atributues

- mpg miles per gallon
- weight

- Comparison of results of two trivial classifiers:
 - 1. mpg < 0.35 => the origin of the car is USA
 - 2. All cars has been made in USA

1. classifier – based on the mpg attribute

- mpg < 0,35 => the origin of the car is USA
- Confusion matrix:

TP – American cars marked as American cars

FN – American cars incorrectly marked as non-American cars

		Reality		
		American	Non-American	
ol .t	American	169	24	
Classification	Non-American	75	124	

FP – Non-American cars incorrectly marked as American cars

TN – Non-American cars marked as Non-American cars

Percentage of correctly classified cars (accuracy)

•
$$\frac{169+124}{392} = 74,74 \%$$

- Values on the diagonal correct classification
- Values aside from the diagonal errors

		Reality		
		American	Non-American	
Classification	American	169	24	
	Non-American	75	124	

Precision

How many cars classified as American cars were really American cars?

•
$$precision_{american\ cars} = \frac{169}{169+24} = 0,875$$

 How many cars classified as non-American cars were really non-American cars?

•
$$precision_{non-american\ cars} = \frac{124}{124+75} = 0,623$$

Recall (completeness)

How many American cars has been marked as American cars?

•
$$recall_{american \ cars} = \frac{169}{169+75} = 0,692$$

How many non-American cars has been marked as non-American cars?

•
$$recall_{non-american\ cars} = \frac{124}{124+24} = 0.838$$

2. Classifier – All cars are American cars

Confusion matrix

TP – American cars correctly marked as American cars

FP – Non-American cars incorrectly marked as American cars

- Percentage of correctly marked cars (Accuracy)
 - $\frac{245+0}{392} = 62,24 \%$
 - > 50 % because there are more American cars in the data set than non-American cars

		Reality		
		American	Non- American	
Classification	American	245	148	
	Non- American	0	0	

Precision

How many cars classified as American cars were really American cars?

•
$$precision_{american\ cars} = \frac{245}{245+148} = 0,62$$

Recall (completeness)

How many American cars has been marked as American cars?

•
$$recall_{american\ cars} = \frac{245}{245+0} = 1$$

How many non-American cars has been marked as non-American cars?

•
$$recall_{non-american\ cars} = \frac{0}{0+148} = 0$$

Threshold

- We can usually easily increase TPr at the expense of TNr and vice versa.
- How?
- In k-NN classifier we can do it using a threshold instead of the majority.
- Similarly for the other classifiers.

 Let's change a threshold from 0 to 1 and count TPr and TNr:

ROC

Dependency of TPr on FPr is expressed by the ROC

What class is best separable?

AUC

- AUC = Area Under Curve
- 0,5 corresponds to random selection
- 1 corresponds to ideal (perfect) classifier

http://www.anaesthetist.com/mnm/stats/roc/

Cost Sensitive Learning – CSL

- CSL Learning that takes into account the fact that some errors are more serious than others.
- Is it better not to let enter a staff into a building or to let enter a terrorist?
- Cost matrix (function)
- Default form of the matrix is that there are zeros on the diagonal and ones off the diagonal

		Reality		
		Authorized	Denied	
Classification	Authorized	0	10	
	Denied	1	0	

 When calculating errors, values in the respective fields of the cost matrix and confusion matrix are multiplied.

Recapitulation

- Train, test (Split validation)
- Train, validation, test
- X-validation
- Leave-one-out CV
- Bootstrap validation
- FP, FN, TP, TN, precision, recall, specificity, sensitivity
- F-measure
- Confusion matrix
- ROC
- AUC
- Cost-sensitive learning, cost matrix