COMPSCI 762 Advanced ML

Sunday, 14 June 2020 10:22 AM

Association Rule Mining

- Frequent itemset generation (support ≥ minsup)
 - Apriori [generate-and-test]
 - supersets of an infrequent itemset must be infrequent (pruned)
 - FP-Tree & FP-Growth [projection-based]
 - scan1: order each row by support, remove infrequent single items

Github: cwgavin

- scan2: construct FP-tree (compression), build header table
- for each item in header table
 - construct its conditional pattern base
 - construct its conditional FP-tree, remove infrequent nodes
 - generate frequent patterns
- Rules generation (confidence ≥ minconf)
 - Apriori
 - for same itemset, confidence = / ↓ when #RHS ↑ (pruned)
- Pattern evaluation
 - Interestingness measures
 - confidence, lift / interest, PS, ...
 - Simpson's paradox

Clustering

- Partitional clustering
 - K-means
 - DBSCAN [density-based]
- Hierarchical clustering (dendrogram)
 - Agglomerative
 - Inter-cluster distance
 - min (single link)
 - max (complete link)
 - group average
 - between centroids
 - ward's method (use squared error between point and centroid)
 - Divisive
- Measures of cluster validity
 - entropy (with labels)
 - o SSE
 - cohesion within cluster sum of squares
 - separation between cluster sum of squares
 - silhouette coefficient

Data Preprocessing

- Data cleaning
 - Missing data
 - imputation
 - global constant
 - average
 - class average
 - most probable value (train a model to predict)
 - matrix decomposition, expectation maximization, ...
 - Noise
 - binning
 - regression
 - Outliers
 - clustering
- Data reduction
 - Dimensionality reduction
 - PCA (only for numeric data)
 - feature selection
 - correlation
 - nominal data: chi-squared test
 - numeric data: pearson's correlation coefficient
 - heuristic search (greedy)
 - Relief (considers all attribtues)
- Data transformation
 - Normalization
 - min-max, z-score, decimal scaling, ...
 - Discretization (continuous → intervals)
 - binning
 - histogram analysis
 - clustering
 - correlation analysis (chi-squared)
 - decision tree
- Imbalanced data
 - undersample majority class
 - oversample minority class
 - cluster-based oversampling
 - SMOTE (create new minority class instance)

Instance-based Learning

- K-Nearest Neighbour (kNN)
 - voronoi diagram
- Support Vector Machine (SVM)

- o complexity parameter C (for noise)
- nonlinear
 - Kernel trick
 - calculate distance between points as if transformation is done
- can be applied to regression

Bayesian Learning

- Maximum A Posteriori (MAP)
 - arg max $_{h \in H} P(h|D) \approx arg max _{h \in H} P(D|h)P(h)$
- Maximum Likelihood (ML)
 - when every hypothesis is equally probable apriori
 - \circ arg max $h \in H$ P(D|h)
- Minimum description length
 - \circ arg max $h \in H$ P(D|h)P(h)
 - = $arg min_{h \in H} log_2 P(h) log_2 P(D|h)$
 - = arg min (length of optimal code for H + ... for D)
 - = arg min (complexity of h + #errors made by h)
 - shorter hypothesis is preferred (occam's razor)
 - trade off complexity for #errors -> prevent overfitting
- Bayes optimal classifier (like ensemble)
- Naive bayes classifier
 - laplace smoothing
 - gaussian NBC
 - multinomial NBC
- Bayesian network
 - a directed acyclic graph showing dependencies between attributes

Reinforcement Learning

- Markov decision process (S, A, R, P, γ) memoryless
 - S: possible states
 - A: possible actions
 - R: reward for state & action
 - P: gives the next state for current state & action
 - ∘ γ : discount factor (0 ≤ γ < 1)
- Goal: find optimal action policy π^* : $S \to A$
 - ⇔ find optimal value function V* (gives value of the state)
- Value Iteration (for learning V*)
- Q-learning (without knowing P)
 - iteratively simulate markov decision process & update Q matrix

Data Stream

- Sampling
 - reservoir sampling
- Find frequent items
 - lossy counting
 - counting within a sliding window
 - exponential histogram
- Concept drift
 - drift detector
 - CUSUM alarm when mean differs from 0
 - DDM monitor error rate
 - ADWIN based on exponential histogram
 - DDD ensemble of detectors
- Performance evaluation
 - holdout
 - test-then-train
 - prequential
- Algorithm
 - Hoeffding tree
 - VFDT with a tie threshold
 - CVFDT deal with concept drift
 - Hoeffding adaptive tree
 - Hoeffding tree + ADWIN
 - OzaBag
 - Adaptive random forest

Anomaly Detection

- Outliers vs noise
 - Noise: random error or variance, remove first
 - Outliers: violates the normal mechanism that generates the normal data and is interesting
- Statistical (model-based)
 - assume the normal data follow a statistical model (a stochastic model)
 - parametric method
 - univariate data
 - multivariate data
 - non-parametric method
- Proximity-based
 - o an object is an outlier if the nearest neighbours are far away
 - distance-based
 - distance/fraction threshold

- density-based
 - Local Outlier Factor (LOF)
- Clustering-based
 - o not belong to any cluster
 - density-based clustering, e.g. DBSCAN
 - far from its closest cluster
 - k-means
 - belong to a small/sparse cluster
 - Cluster-based Local Outlier Factor (CBLOF)
- Classification
 - One-class model, e.g. SVM
 - Semi-supervised
 - clustering-based + one-class model
- Unsupervised
 - Isolation forest
 - Assume anomalies are more easily isolated (shorter path from root)
- Evaluation
 - accuracy is not sufficient
 - use ROC curve (recall vs. FP)