High Performance Linear System Solvers with Focus on Graph Laplacians

Richard Peng Georgia Tech

Based on work joint with: Serban Stan, Shen Chen Xu, Saurabh Sawlani, John Gilbert, Kevin Deweese, Gary Miller, Hui Han Chin

OUTLINE

- Laplacian solvers and applications
- Combinatorial preconditioning
- Numerics of tree preconditioners

GRAPH LAPLACIAN MATRIX

- Diagonal: weighted degrees
 Off-diagonal: -edge weights

FEW ITERATIONS OF Lx = b

- [Tutte `61]: graph drawing,
- [ZGL `03], [ZHS `05] [KRS `15]: learning/inference

Inverse powering: eigenvectors / heat kernel:

- [AM `85] [OSV `12]: clustering
- [SM `01] [KMST `09]: image segmentation

MANY ITERATIONS OF Lx = b

[Karmarkar, Ye, Renegar, Nesterov, Nemirovski ...]: convex optimization via. solving O(m^{1/2}) linear systems

[DS `08][CKMST `11][LS `14][AKPS `19][APS`19][AS `20]: graph problems → Laplacian linear systems

LINEAR SYSTEMS SOLVERS

General systems:

- Matrix multiplication: O(n^{2,372864...})
- Conjugate gradient: O(nnz k^{1/2})
 where k is condition number
- In practice: Jacobi iteration, Gauss-Siedel iteration, multigrid

Lx = b in Practice

- Multigrid methods widely used in scientific computing
- Good runtimes for systems with as many as 10⁹ nonzeros
- MATLAB: pcg(L, ichol(L), b, ε) 'works' for 106 nonzeros

COMBINATORIAL PRECONDITOINING

- [Vaidya `89]: use graph theory to build preconditioners for L
- [ST`04]: O(mlog^cnlog(1/ε)) time
- 2004 2014: c halved every 2 years

COMPARE? NEW BENCHMARKS:

Structured graphs

- Grids / cubes
- Cayley graphs
- Graph products

Hard graph problems

- Maxflow problems from DIMACS implementation challenges
- Linear systems arising from secondorder optimization (IPM)

[KRS\15] + DIFFERENT SOLVERS

README file at https://github.com/sac
hdevasushant/Isotonic
we suggest rerunning the program a few

times and / or using a

different solver.

Disclaimer: this behavior is also depend heavily on numerics / termination conditions

OUTLINE

- Laplacian solvers and applications
- Combinatorial preconditioning
- Numerics of tree preconditioners

TREE BASED PRECONDITIONERS

Gradually transform a tree-based solution to a solution on the entire graph

Method	Cycle Toggle	Precondition
Cost / Iter	logn	$m + (m/k)^2$
# Iters	mlog ^{1/2} nlog(1/ε)	$k^{1/2}log(1/\epsilon)$
Related to	SGD	Grad. descent
Primitives	Data structures	Mat-Vec

MOVING PIECES

- Trees: MST / bottom-up / top-down / adaptive
- Data structures: offline / static / dynamic
- Numerics: batched / local, accelerated / CG
- Initialization: tree solution / recursive

[CSC `16] BENCHMARK FOR TREE BASED ALGOS: HEAVY PATH GRAPHS

Pick a Hamiltonian path, weight all other edges so each has stretch 1

[CSC `16] BENCHMARK FOR TREE BASED ALGOS: HEAVY PATH GRAPHS

Pick a Hamiltonian path, weight all other edges so each has stretch 1

- Bad case for PCG,
- 'easy' for tree data structures

DOING BETTER THAN CG

https://arxiv.org/abs/1609.02957 https://github.com/sxu/cycleToggling

HOW TO GO FROM GRAPHS TO TREES?

https://arxiv.org/abs/1609.02957 https://github.com/sxu/cycleToggling

OUTLINE

- Laplacian solvers and applications
- Combinatorial preconditioning
- Numerics of tree preconditioners

[CSC `20] NUMERICAL DIFFICULTIES OF COMBINATORIAL PRECONDITIONING

CG with a low-stretch tree as preconditioner

ONE FIX: BATCHED PROCESSING

 Add some edges to a tree to form a `batched' preconditioner

 Use direct methods to factorize preconditioner explicitly

COMPARISON ON 3D CUBE

COMPARISON ON IPM MATRIX

EVALUATING LAPLACIAN SOLVERS

- We have a much better idea of what are the instances to test on now:
 - Weighted grid graphs
 - Inner loops of optimization algorithms
 - [Deweese-Gilbert `18]: evolve them!
- Measuring numerical behaviors?
- Benchmark w.r.t. applications: ground-truth instead of residual error?