ARIMA

Leobardo Enriquez

2022-05-30

Precios de referencia internacional del petr \tilde{A}^3 leo.

En la siguiente Grafica 1 se muestra la evolución de los precios de referencia internacional del petróleo desde enero de 2013 a marzo de 2020. Podemos observar una tendencia decreciente desde inicios del periodo hasta enero de 2016, a partir del cual se muestra una tendencia creciente hasta octubre de 2018. Esta tendencia se revierte desde finales de 2018 y persiste hasta finales del periodo analizado, a punto de alcanzar el nivel mínimo del periodo, observado en enero de 2016.

Evolución de los precios internacionales del barril de petróleo

En la siguiente Gráfica 2, se muestra la misma serie en logaritmos, para suevizar la escala.

Evolución de los precios internacionales del barril de petróleo

A continuación veremos la estacionariedad de la serie y el número de diferencias requeridas para que sea estacionaria. En este caso, la prueba al 5% de significancia estadística con las pruebas de KPSS, ADF y PP, tenemos que la estacionariedad se logra con el siguiente número de diferenciaciones:

[1] 1

con la prueba de Dickey Fuller (DF) podemos observar que la serie no es estacionaria, ya que se tiene el siguiente p-valor mayor a 0.05, considerando un nivel de significancia estadística.

```
##
## Augmented Dickey-Fuller Test
##
## data: Arimar.ts
## Dickey-Fuller = -1.6185, Lag order = 4, p-value = 0.7328
## alternative hypothesis: stationary
```

A continuación se grafica la serie diferenciada una vez.

A continuación se presenta la gráfica ACF.

Precio

A continuación se presenta el número de diferenciaciones necesarias para que la serie diferenciada una vez sea no estacionaria.

[1] 0

Se presenta la prueba Dickey Fuller c
para la serie con una diferencia. El p-valor muestra que es no estacionaria al 5% de nivel de significancia estadística.
sin embargo, parece ser no estacionaria el 10%.

```
## [1] 0
##
## Augmented Dickey-Fuller Test
##
## data: seriedif
## Dickey-Fuller = -3.3327, Lag order = 4, p-value = 0.07162
## alternative hypothesis: stationary
```

A continuación se presenta la gráfica de la serie con dos diferencias.

A continuación se presenta la prueba de Dickey Fuller con dos diferencias. Presenta un p-valor menor a 0.05, es decir, no se rechaza la hipótesis nula de no estacionariedad.

```
##
## Augmented Dickey-Fuller Test
##
## data: seriedif2
## Dickey-Fuller = -5.1673, Lag order = 4, p-value = 0.01
## alternative hypothesis: stationary
```

Analisis visual de las graficas.

Serie diferenciada (dif=2)

Ahora tenemos:

Precio

Series seriedif2

Ahora tenemos:

Precio

Series ts(seriedif2, frequency = 1)

Modelo ARIMA

```
##
## arima(x = Arimar.ts, order = c(1, 2, 1))
## Coefficients:
##
            ar1
                    ma1
         0.4173 -1.000
##
## s.e. 0.1100
                  0.047
## sigma^2 estimated as 17.51: log likelihood = -244.07, aic = 494.14
##
## Training set error measures:
                               RMSE
                                         MAE
                                                    MPE
                                                            MAPE
                                                                      MASE
## Training set -0.1842755 4.136183 3.135096 -0.2061955 6.279221 0.9152235
## Training set -0.02472726
```

Test

Standardized Residuals

ACF of Residuals

p values for Ljung-Box statistic

Test

##

Box-Ljung test

##

data: residuals(modelo1)

X-squared = 0.055051, df = 1, p-value = 0.8145

A continuación se muestra la gráfica de los errores.

Pronóstico ARIMA para 5 periodos

##			${\tt Point}$	${\tt Forecast}$	Lo 80	Hi 80	Lo 95	Hi 95
##	Apr	2020		21.85665	16.4633719	27.24994	13.608341	30.10497
##	May	2020		18.39819	8.9934192	27.80296	4.014833	32.78155
##	Jun	2020		16.44534	3.6136910	29.27699	-3.178974	36.06966
##	Jul	2020		15.12079	-0.6776994	30.91929	-9.040917	39.28251
##	Aug	2020		14.05845	-4.3652157	32.48211	-14.118113	42.23500

Gráfica del pronóstico ARIMA para 5 periodos

Forecasts from ARIMA(1,2,1)

Como podemos observar, el pronóstico en general tiene una tendencia decreciente.