${\bf Inverse\ Problems -- Summary}$

Lucas Riedstra

October 19, 2020

Contents

1	Generalised Solutions			
	1.1	Generalised inverses	3	
	1.2	Compact operators	Į.	

A direct problem is a problem where given an object or cause, we must determine the data or effect. In an inverse problem, we observe data and wish to recover the object.

A problem is called *well-posed* if a unique solution exists that depends continuously on the data. Most inverse problems are, unfortunately, ill-posed.

1 Generalised Solutions

Recap 1.1. 1. An linear operator $A: \mathcal{X} \to \mathcal{Y}$ is called *bounded* if

$$||A||_{\mathcal{L}(\mathcal{X},\mathcal{Y})} \coloneqq \sup_{u \neq 0} \frac{||Au||_{\mathcal{Y}}}{||u||_{\mathcal{X}}} = \sup_{||u||_{\mathcal{X}} \leq 1} < \infty.$$

It is known that a linear operator between normed spaces is continuous if and only if it is bounded. The set of bounded linear operators from \mathcal{X} to \mathcal{Y} is denotes $\mathcal{L}(\mathcal{X}, \mathcal{Y})$.

- 2. We let $\mathcal{D}(A)$, $\mathcal{N}(A)$ and $\mathcal{R}(A)$ denote the domain, null space, and range of A respectively.
- 3. We will assume \mathcal{X} and \mathcal{Y} are Hilbert spaces, so there is an inner product $\langle \cdot, \cdot \rangle$ and any bounded operator $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ has a unique adjoint $A^* \in \mathcal{L}(\mathcal{Y}, \mathcal{X})$ which satisfies

$$\langle Au, v \rangle_{\mathcal{Y}} = \langle u, A^*v \rangle_{\mathcal{X}}$$
 for all $u \in \mathcal{X}, v \in \mathcal{Y}$.

4. For any $\mathcal{X}' \subseteq \mathcal{X}$ we define the *orthogonal complement* of \mathcal{X}' as

$$(\mathcal{X}')^{\perp} := \{ u \in \mathcal{X} \mid \langle u, v \rangle_{\mathcal{X}} = 0 \ \forall v \in \mathcal{X}' \}.$$

It is known that $(\mathcal{X}')^{\perp}$ is a closed subspace of \mathcal{X} and that $\mathcal{X}' \subseteq ((\mathcal{X}')^{\perp})^{\perp}$, where equality holds if and only if \mathcal{X}' is a closed subspace of \mathcal{X} . For a non-closed subspace \mathcal{X}' we have $((\mathcal{X}')^{\perp})^{\perp} = \overline{\mathcal{X}'}$.

- 5. If \mathcal{X}' is a closed subspace of \mathcal{X} , then for any $u \in \mathcal{X}$ there exist unique $x_u \in \mathcal{X}'$, $x_u^{\perp} \in (\mathcal{X}')^{\perp}$ such that $u = x_u + x_u^{\perp}$. The map $u \mapsto x_u$ is denoted $P_{\mathcal{X}'}$ and is called the *orthogonal projection* on \mathcal{X}' . Properties are:
 - (a) $P_{\mathcal{X}'}$ is bounded and self-adjoint with norm 1;
 - (b) $P_{X'} + P_{(X')^{\perp}} = I;$
 - (c) $P_{\mathcal{X}'}u$ minimises the distance from u to \mathcal{X}' ;
 - (d) $x = P_{\mathcal{X}'}u$ if and only if $x \in \mathcal{X}'$ and $u x \in (\mathcal{X}')^{\perp}$.
- 6. For any $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ we have

$$\mathcal{R}(A)^{\perp} = \mathcal{N}(A^*)$$
 and $\mathcal{N}(A)^{\perp} = \overline{\mathcal{R}(A^*)}$

Lemma 1.2. For any $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$ we have $\overline{\mathcal{R}(A^*A)} = \overline{\mathcal{R}(A^*)}$.

Proof. It is trivial that $\overline{\mathcal{R}(A^*A)} \subseteq \overline{\mathcal{R}(A^*)}$.

Now, suppose $u \in \overline{\mathcal{R}(A^*)}$ and let $\varepsilon > 0$. Then there exists $v \in \mathcal{X}$ such that $||A^*v - u|| < \varepsilon/2$. Writing v = e + f with $e \in \mathcal{N}(A^*)$, $f \in \mathcal{N}(A^*)^{\perp} = \overline{\mathcal{R}(A)}$, we see that $||A^*f - u|| < \varepsilon/2$.

Since $f \in \overline{\mathcal{R}(A)}$, there exists $x \in \mathcal{X}$ such that $||Ax - f|| < \varepsilon/(2||A||)$. We now compute

$$\|A^*Ax-u\|\leq \|A^*Ax-A^*f\|+\|A^*f-u\|<\|A^*\|\frac{\varepsilon}{2\|A\|}+\frac{\varepsilon}{2}=\varepsilon,$$

and conclude that $u \in \overline{\mathcal{R}(A^*A)}$. This shows that $\overline{\mathcal{R}(A)} \subseteq \overline{\mathcal{R}(A^*A)}$.

1.1 Generalised inverses

We consider the equation

$$Au = f, (1)$$

 $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y}), f$ is known, and we wish to find u.

Definition 1.3. An element $u \in \mathcal{X}$ is called a *least-squares solution* of eq. (1) if u is a minimiser of the function $v \mapsto ||Av - f||_{\mathcal{Y}}$. It is called a *minimal-norm solution* of eq. (1) if it has minimal norm among all least-squares solutions.

Note that a least-squares solution may not exist. If a least-squares solution u exists, then the affine subspace of all least-squares solutions is given by $u + \mathcal{N}(A)$. By writing $u = u^{\dagger} + v$ for $u^{\dagger} \in \mathcal{N}(A)^{\perp}$, $v \in \mathcal{N}(A)$, we find that the space of least-squares solutions is given by $u^{\dagger} + \mathcal{N}(A)$, and it is now clear that u^{\dagger} is the unique minimum-norm solution.

Theorem 1.4. Let $f \in \mathcal{Y}$ and $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$. Then the following are equivalent:

- 1. $u \in \mathcal{X}$ satisfies $Au = P_{\overline{\mathcal{R}(A)}}f$;
- 2. u is a least-squares solution of eq. (1):
- 3. u solves the normal equation

$$A^*f = A^*Au. (2)$$

Proof. " $(1) \implies (2)$ ": We have

$$||Au - f||_{\mathcal{Y}} = \left||P_{\overline{\mathcal{R}(A)}}f - f\right|| = \inf_{g \in \overline{\mathcal{R}(A)}} ||g - f|| \le \inf_{g \in \overline{\mathcal{R}(A)}} ||g - f|| = \inf_{u \in \mathcal{X}} ||Au - f||.$$

"(2) \Longrightarrow (3)": Let $u \in \mathcal{X}$ be a least-squares solution and $v \in \mathcal{X}$ arbitrary. Define the quadratic polynomial

$$F: \mathbb{R} \to \mathbb{R}: \lambda \mapsto ||A(u + \lambda v) - f||^2$$

$$= \langle Au + \lambda Av - f, Au + \lambda Av - f \rangle$$

$$= \lambda^2 ||Av||^2 - 2\lambda \langle Av, f - Au \rangle + ||f - Au||^2.$$

As u is a least-squares solution, we know that F attains a minimum in $\lambda = 0$ and therefore that

$$0 = F'(0) = 2\langle Av, f - Au \rangle = 2\langle v, A^*(f - Au) \rangle.$$

Since v is arbitrary, we must have $A^*(f - Au) = 0$, so u satisfies eq. (2).

"(3) \implies (1)": From the normal equation we know that $A^*(f - Au) = 0$. For any $x \in \mathcal{X}$, we have

$$\langle Ax, f - Au \rangle = \langle x, A^*(f - Au) \rangle = \langle x, 0 \rangle = 0,$$

so $f - Au \in \mathcal{R}(A)^{\perp}$.

So we have $Au \in \overline{\mathcal{R}(A)}$ and $f - Au \in \mathcal{R}(A)^{\perp} = \overline{\mathcal{R}(A)}^{\perp}$, from which it follows that $Au = P_{\overline{\mathcal{R}(A)}}f$. \square

The following lemma gives a precise condition for when a least-squares solution exists:

Lemma 1.5. Equation (1) has a least-squares solution if and only if $f \in \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp}$.

Proof. " \Longrightarrow " Suppose u is a least-squares solution. Then $f - Au \in \mathcal{R}(A)^{\perp}$, so $f = Au + (f - Au) \in \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp}$.

" \Leftarrow " Suppose f = Au + g for some $u \in \mathcal{X}$, $g \in \mathcal{R}(A)^{\perp} = \overline{\mathcal{R}(A)}^{\perp}$. Then by the previous theorem, $Au = P_{\overline{\mathcal{R}(A)}}f$, so u is a least-squares solution.

Corollary 1.6. If $\mathcal{R}(A)$ is closed, then eq. (1) always has a least-squares solution.

In particular, this holds if $\mathcal{R}(A)$ is finite-dimensional. Therefore, if either \mathcal{X} or \mathcal{Y} is finite-dimensional, eq. (1) has a least-squares solution for any A.

We have already seen that if a least-squares solution u exists, then the affine subspace of all least-squares solutions is $u + \mathcal{N}(A)$, and the unique minimum-norm solution is the projection of 0 onto this affine subspace, which is the unique element of $u + \mathcal{N}(A)$ that lies in $\mathcal{N}(A)^{\perp}$.

Definition 1.7. Let $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$, and define

$$\tilde{A} := A \upharpoonright_{\mathcal{N}(A)^{\perp}} : \mathcal{N}(A)^{\perp} \to \mathcal{R}(A).$$

Clearly \tilde{A} is bijective and we define the Moore-Penrose inverse

$$A^{\dagger} \colon \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp} \to \mathcal{N}(A)^{\perp} \colon f \mapsto \tilde{A}^{-1} P_{\overline{\mathcal{R}(A)}} f.$$

Remark. Note that $\overline{\mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp}} = \overline{\mathcal{R}(A)} \oplus \mathcal{R}(A)^{\perp} = \overline{\mathcal{R}(A)} \oplus \overline{\mathcal{R}(A)}^{\perp} = \mathcal{Y}$, and therefore the operator \tilde{A} is densely defined, and it is defined on all of \mathcal{Y} if and only if $\mathcal{R}(A)$ is closed.

We will not prove the following theorem, but it is interesting:

Theorem 1.8. The Moore-Penrose inverse A^{\dagger} is continuous if and only if $\mathcal{R}(A)$ is closed.

The following characterises all important facts about the Moore-Penrose inverse:

Theorem 1.9 (Moore-Penrose equations). The operator A^{\dagger} satisfies the following equations:

- (1) $A^{\dagger}A = P_{\mathcal{N}(A)^{\perp}};$
- (2) $AA^{\dagger} = P_{\overline{\mathcal{R}(A)}} \upharpoonright_{\mathcal{D}(A^{\dagger})};$
- (3) $AA^{\dagger}A = A$;
- (4) $A^{\dagger}AA^{\dagger} = A^{\dagger}$.

Conversely, if any linear operator $B \colon \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp} \to \mathcal{N}(A)^{\perp}$ satisfies $BA = P_{\mathcal{N}(A)^{\perp}}$ and $AB = P_{\overline{\mathcal{R}(A)}} \upharpoonright_{\mathcal{D}(A^{\dagger})}$ then $B = A^{\dagger}$.

Proof. We have

$$A^{\dagger}Au = \tilde{A}^{-1}AP_{\mathcal{N}(A)^{\perp}}u = P_{\mathcal{N}(A)^{\perp}}u,$$

which proves (1). Furthermore, we have

$$AA^{\dagger}f = A\tilde{A}^{-1}P_{\overline{\mathcal{R}(A)}}f = P_{\overline{\mathcal{R}(A)}}f,$$

which proves (2). Finally, (3) follows from (1) and (4) follows from (2).

Now, suppose B satisfies (1) and (2). First we show that $B|_{\mathcal{R}(A)} = \tilde{A}^{-1}$, then we show that $B|_{\mathcal{R}(A)^{\perp}} = 0$. This shows that $B = A^{\dagger}$. Let $f = Au \in \mathcal{R}(A)$ with $u \in \mathcal{N}(A)^{\perp}$, then

$$Bf = BAu = P_{\mathcal{N}(A)^{\perp}}u = u = \tilde{A}^{-1}f, \text{ so } B \upharpoonright_{\mathcal{R}(A)} = \tilde{A}^{-1}.$$

Finally, let $f \in \mathcal{R}(A)^{\perp}$, then $ABf = P_{\overline{\mathcal{R}(A)}}f = 0$, and since $Bf \in \mathcal{N}(A)^{\perp}$ this implies Bf = 0. We conclude that $B \upharpoonright_{\mathcal{R}(A)^{\perp}} = 0$, and this concludes the proof.

The Moore-Penrose inverse has the important property that it maps every f in its domain to the corresponding minimum-norm least-squares solution:

Theorem 1.10. For every $f \in \mathcal{D}(A^{\dagger})$, the minimum-norm solution u^{\dagger} to eq. (1) is given by $u^{\dagger} = A^{\dagger}f$.

Proof. Since $f \in \mathcal{R}(A) \oplus \mathcal{R}(A)^{\perp}$, we know that there exists a unique minimum-norm solution $u^{\dagger} \in \mathcal{N}(A)^{\dagger}$. We write

$$u^\dagger = P_{\mathcal{N}(A)^\perp}(u^\dagger) = A^\dagger A u^\dagger = A^\dagger P_{\overline{\mathcal{R}(A)}} f = A^\dagger A A^\dagger f = A^\dagger f.$$

Remark. We can also consider the normal equation $A^*f = A^*Au$ as a least-squares problem, whose minimum-norm solution is $(A^*A)^{\dagger}A^*f$. It is clear that this expression must equal the minimum-norm solution u^{\dagger} from eq. (1).

1.2 Compact operators

Definition 1.11. Let $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$. Then A is called *compact* if for any bounded $B \subseteq \mathcal{X}$, the image A(B) is precompact in \mathcal{Y} . The set of compact operators in $\mathcal{L}(\mathcal{X}, \mathcal{Y})$ is denoted $\mathcal{K}(\mathcal{X}, \mathcal{Y})$.

Lemma 1.12. Let $A \in \mathcal{L}(\mathcal{X}, \mathcal{Y})$. Then A is compact if and only if, for every bounded sequence $(x_n) \subseteq X$, the sequence $(Ax_n) \subseteq Y$ has a convergent subsequence.

Theorem 1.13. Let $A \in \mathcal{K}(\mathcal{X}, \mathcal{Y})$ with $\dim(\mathcal{R}(A)) = \infty$. Then A^{\dagger} is discontinuous.

Proof. If dim $\mathcal{R}(A) = \infty$, then \mathcal{X} and $\mathcal{N}(A)^{\perp}$ are infinite-dimensional as well. Chose an orthonormal sequence $(x_n) \subseteq \mathcal{N}(A)^{\perp}$, then after taking a subsequence if necessary, we can assume that $f_n := Ax_n$ converges. However, we have

$$\|A^{\dagger}(f_n - f_m)\|^2 = \|A^{\dagger}A(x_n - x_m)\|^2 = \|P_{\mathcal{N}(A)^{\perp}}(x_n - x_m)\|^2 = \|x_n - x_m\|^2 = 2$$

and in particular the sequence $(A^{\dagger}f_n)$ does not converge. This shows that A^{\dagger} is discontinuous.

In particular, combining this with theorem 1.8 shows that the range of a compact operator is always open, and that not every element in \mathcal{Y} has a least-squares solution.

We will need the following theorem, an infinite-dimensional analogue of the spectral theorem:

Theorem 1.14 (Eigenvalue decomposition of self-adjoint compact operators). Let \mathcal{X} be a Hilbert space, and $A \in \mathcal{K}(\mathcal{X}, \mathcal{X})$ self-adjoint. Then there exists an orthonormal basis (x_j) of $\overline{\mathcal{R}(A)}$ and a sequence of eigenvalues $|\lambda_1| \geq |\lambda_2| \geq \cdots > 0$ such that for all $u \in \mathcal{X}$ we have

$$Au = \sum_{j=1}^{\infty} \lambda_j \langle u, x_j \rangle x_j.$$

The sequence (λ_i) is either finite or converges to θ .

The previous theorem gives rise to an infinite-dimensional analogue of the SVD:

Theorem 1.15. Let $A \in \mathcal{K}(\mathcal{X}, \mathcal{Y})$. Then there exists a (not necessarily infinite) sequence $\sigma_1 \geq \sigma_2 \geq \cdots > 0$ converging to 0, and orthonormal bases (x_j) , (y_j) of $\mathcal{N}(A)^{\perp}$ and $\overline{\mathcal{R}(A)}$ respectively, such that

$$Ax_j = \sigma_j y_j, \quad A^* y_j = \sigma_j x_j \quad \text{for all } j \in \mathbb{N},$$

and such that for all $u \in \mathcal{X}$ and $f \in \mathcal{Y}$ we have

$$Au = \sum_{j=1}^{\infty} \sigma_j \langle u, x_j \rangle y_j, \quad A^*f = \sum_{j=1}^{\infty} \sigma_j \langle f, y_j \rangle x_j.$$

The sequence $\{(\sigma_j, x_j, y_j)\}$ is called the <u>singular value decomposition</u> (SVD) of A.

Proof. Define $B := A^*A$ and $C := AA^*$, which are both compact, self-adjoint, and positive semi-definite operators. By the previous theorem, we can write

$$Cf = \sum_{j=1}^{\infty} \sigma_j^2 \langle f, y_j \rangle y_j,$$

where (y_j) is a basis of $\overline{\mathcal{R}(AA^*)} = \overline{\mathcal{R}(A)}$ and (σ_j) is a positive decreasing sequence converging to 0. Note that

$$BA^*y_j = A^*AAy_j = A^*Cy_j = A^*\sigma^2y_j = \sigma_j^2A^*y_j,$$

so A^*y_j is an eigenvector of B with eigenvector σ_i^2 .

We show that $\left(\frac{A^*y_j}{\sigma_j}\right)$ is an orthonormal basis of $\mathcal{R}(A)^{\perp}$. is an orthonormal basis of $\mathcal{N}(A)^{\perp}$: their inner product is given by

$$\left\langle \frac{A^* y_j}{\sigma_j}, \frac{A^* y_k}{\sigma_k} \right\rangle = \frac{1}{\sigma_j \sigma_k} \langle y_j, C y_k \rangle = \frac{\sigma_k}{\sigma_j} \langle y_j, y_k \rangle = 0,$$

and since the (y_j) are a basis of $\overline{\mathcal{R}(A)} = \mathcal{N}(A^*)^{\perp}$ it is clear that the span of (A^*y_j) is dense in $\overline{\mathcal{R}(A^*)} = \mathcal{N}(A)^{\perp}$.

If we choose $x_j = \frac{A^* y_j}{\sigma_i}$, we find by construction that $A^* y_j = \sigma_j x_j$ and

$$Ax_j = \frac{AA^*y_j}{\sigma_i} = \frac{Cy_j}{\sigma_i} = \sigma_j y_j.$$

Finally, we see that

$$Au = \sum_{j=1}^{\infty} \langle u, x_j \rangle Ax_j = \sum_{j=1}^{\infty} \sigma_j \langle u, x_j \rangle y_j \quad \text{and} \quad A^*f = \sum_{j=1}^{\infty} \langle f, y_j \rangle A^*y_j = \sum_{j=1}^{\infty} \sigma_j \langle f, y_j \rangle x_j.$$

Theorem 1.16. Let $A \in \mathcal{K}(\mathcal{X}, \mathcal{Y})$ with $SVD \{(\sigma_i, x_i, y_i)\}$ and let $f \in \mathcal{D}(A^{\dagger})$. Then

$$A^{\dagger} f = \sum_{j=1}^{\infty} \frac{1}{\sigma_j} \langle f, y_j \rangle x_j.$$

Remark. Note that this is comparable to $A^*f = \sum_{j=1}^{\infty} \sigma_j \langle f, y_j \rangle x_j$, except that A^* is a smoothing operator (since $\sigma_j \to 0$), while A^{\dagger} does the opposite. Furthermore, A^{\dagger} amplifies the right singular vectors corresponding to small singular values the most — intuitively, the corresponding left singular vectors are vectors where A doesn't "see much".

Proof. Define $Bf = \sum_{j=1}^{\infty} \frac{1}{\sigma_j} \langle f, y_j \rangle x_j$. Then by theorem 1.9, we must check that $BA = P_{\mathcal{N}(A)^{\perp}}$ and $AB = P_{\overline{\mathcal{R}(A)}} \upharpoonright_{\mathcal{D}(A^{\perp})}$.

For the first equation, we compute

$$BAu = \sum_{j=1}^{\infty} \frac{1}{\sigma_j} \left\langle \sum_{i=1}^{\infty} \sigma_i \langle u, x_i \rangle y_i, y_j \right\rangle x_j = \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} \frac{\sigma_i}{\sigma_j} \langle u, x_i \rangle \langle y_i, y_j \rangle x_j = \sum_{j=1}^{\infty} \langle u, x_j \rangle x_j.$$

Since (x_j) is a basis of $\mathcal{N}(A)^{\perp}$, this proves that $BA = P_{\mathcal{N}(A)^{\perp}}$.

For the second equation, an analogous computation gives $ABf = \sum_{i=1}^{\infty} \langle f, y_i \rangle y_i$, and since (y_i) is a basis of $\overline{\mathcal{R}(A)}$, this proves that $AB = P_{\overline{\mathcal{R}(A)}} \upharpoonright_{\mathcal{D}(A^{\dagger})}$.

Definition 1.17. Let $A \in \mathcal{K}(\mathcal{X}, \mathcal{Y})$ have SVD $\{(\sigma_j, x_j, y_j)\}$. We say that $f \in \mathcal{Y}$ satisfies the *Picard criterion* if

$$\sum_{j} \frac{\left| \langle f, y_j \rangle \right|^2}{\sigma_j^2} < \infty.$$

Note that the expression on the left corresponds to $\|A^{\dagger}f\|^2$ if $f \in \mathcal{D}(A^{\dagger})$.

Theorem 1.18. Let $f \in \overline{\mathcal{R}(A)}$. Then $f \in \mathcal{R}(A)$ if and only if f satisfies the Picard criterion.

Proof. ' \Longrightarrow ' Write f = Au, then

$$\sum_{j} \frac{\left| \langle f, y_{j} \rangle \right|^{2}}{\sigma_{j}^{2}} = \sum_{j} \frac{\left| \langle Au, y_{j} \rangle \right|^{2}}{\sigma_{j}^{2}} = \sum_{j} \frac{\left| \langle u, A^{*}y_{j} \rangle \right|^{2}}{\sigma_{j}^{2}} = \sum_{j} \left| \langle u, x_{j} \rangle \right|^{2} < \infty.$$

' \longleftarrow ' Define $u := \sum_{j=1}^{\infty} \frac{1}{\sigma_i} \langle f, y_j \rangle x_j$ (note that by assumption this sum converges). Then

$$Au = A\sum_{j=1}^{\infty} \frac{1}{\sigma_j} \langle f, y_j \rangle x_j = \sum_{j=1}^{\infty} \frac{1}{\sigma_j} \langle f, y_j \rangle Ax_j = \sum_{j=1}^{\infty} \langle f, y_j \rangle y_j = P_{\overline{\mathcal{R}(A)}} f = f,$$

so Au = f which implies $f \in \mathcal{R}(A)$.

We have seen that the stability of A^{\dagger} depends on the speed of decay of the singular values (σ_j) . We formalise this:

Definition 1.19. Let $A \in \mathcal{K}(\mathcal{X}, \mathcal{Y})$ have singular values (σ_j) . Then the ill-posed inverse problem Au = f is called *mildly ill-posed* if the σ_j decay polynomially (i.e., $\frac{1}{\sigma_n} \leq Cn^{\gamma}$ for some C, γ) and severely ill-posed otherwise.

Example 1.20. Consider the heat equation with initial conditions and boundary values:

$$\begin{cases} v_t - v_{xx} = 0 & (x,t) \in (0,\pi) \times \mathbb{R}_{>0}, \\ v(0,t) = v(\pi,t) = 0 & t \ge 0, \\ v(x,0) = u(x) & x \in (0,\pi), \\ v(x,T) = f(x) & x \in (0,\pi). \end{cases}$$

Then the forward problem is to determine f given u, while the inverse problem is to determine u given f. The solution for the foward problem is given by

$$f = Au := \sum_{j=1}^{\infty} e^{-j^2 T} \langle u, \sin(jx) \rangle \sin(jx),$$

and the eigenvalues are therefore $\sigma_j = e^{-j^2T}$. Since these clearly decay exponentially, this problem is severely ill-posed.