Gaya Math

SoG

Juillet 2025

0.1	exercise[60]																				1
0.1	CYCLCIPCION									•							•				J

exercise[59]

Énoncé

Soit n un entier naturel tel que $n \geq 2$.

Soit E l'espace vectoriel des polynômes à coefficients dans \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$) de degré inférieur ou égal à n.

On pose : $\forall P \in E, \ f(P) = P - P'.$

- 1. Démontrer que f est bijectif de deux manières :
 - (a) sans utiliser de matrice de f,
 - (b) en utilisant une matrice de f.
- 2. Soit $Q \in E$. Trouver P tel que f(P) = Q. Indication : si $P \in E$, quel est le polynôme $P^{(n+1)}$?
- 3. f est-il diagonalisable?

Solution

- 1. $f(E) \subset E$: $\forall P \in E \setminus \{0\}, \deg(P P') = ?$
 - (a) $\ker f$. Si $P \in \ker f$ alors P - P' = 0. $\deg(P - P') = ?$
 - (b) La matrice de f dans e est :

$$A = \begin{pmatrix} 1 & -1 & & & 0 \\ & 1 & \ddots & & \\ & & \ddots & -n & \\ 0 & & & 1 & \end{pmatrix}$$

- 2. Soit P tel que f(P) = Q. écrire P = Q + P' et calculer $P^{(n+1)}$
- 3. Quelles sont les valeurs propres de f ? Qu'implique rait la diagonalisabilité ?

$0.1 \quad \text{exercise}[60]$

Énoncé

Soit la matrice $A = \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ et f l'endomorphisme de $\mathcal{M}_2(\mathbb{R})$ défini par : f(M) = AM.

- 1. Déterminer une base de $\ker f$.
- 2. f est-il surjectif?

Énoncé (suite)

- 3. Déterminer une base de Im f.
- 4. A-t-on $\mathcal{M}_2(\mathbb{R}) = \ker f \oplus \operatorname{Im} f$?

Solution

- 1. Posons $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathcal{M}_2(\mathbb{R}).$ $f(M) = 0 \Rightarrow M = \begin{pmatrix} -2c & -2d \\ c & d \end{pmatrix}$
- 2. $\ker f \neq \{0\} \Rightarrow f$ non injectif. f est un endomorphisme d'un espace de dimension finie donc f non surjectif.
- 3. la formule du rang, comment sont les colonnes de la matrice?
- 4. Décomposer M dans la base de $\ker f$ et de Im

Exercice 65

Énoncé

Soit u un endomorphisme d'un espace vectoriel E sur le corps \mathbb{K} ($\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$). On note $\mathbb{K}[X]$ l'ensemble des polynômes à coefficients dans \mathbb{K} .

- 1. Démontrer que : $\forall (P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X], \ (PQ)(u) = P(u) \circ Q(u).$
- 2. (a) Démontrer que : $\forall (P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X], \ P(u) \circ Q(u) = Q(u) \circ P(u).$
 - (b) Démontrer que, pour tout $(P,Q) \in \mathbb{K}[X] \times \mathbb{K}[X]$: $(P \text{ polynôme annulateur de } u) \Rightarrow (PQ \text{ polynôme annulateur de } u)$
- 3. Soit $A = \begin{pmatrix} 1 & -1 \\ 2 & 2 \end{pmatrix}$.

Écrire le polynôme caractéristique de A, puis en déduire que le polynôme $R = X^4 + 2X^3 + X^2 - 4X$ est un polynôme annulateur de A.

Solution

$$P_A(X) = \det \begin{pmatrix} X - 1 & 1 \\ -2 & X - 2 \end{pmatrix} = (X - 1)(X - 2) + 2 = X^2 - 3X + 4.$$

Exercice 67

Énoncé

Soit la matrice

$$M = \begin{pmatrix} 0 & a & c \\ b & 0 & c \\ b & -a & 0 \end{pmatrix}$$

où a, b, c sont des réels.

M est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{R})$? M est-elle diagonalisable dans $\mathcal{M}_3(\mathbb{C})$?

Solution

$$\chi_M(\lambda) = \lambda \left(\lambda^2 + ca - ba - bc\right)$$

— Premier cas : ca - ba - bc < 0.

— Deuxième cas : ca - ba - bc = 0.

— Troisième cas : ca - ba - bc > 0.

Exercice 68

Énoncé

Soit la matrice

$$A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & -1 \\ 1 & -1 & 1 \end{pmatrix}.$$

- 1. Montrer que A est diagonalisable de quatre manières :
 - (a) sans calcul,
 - (b) en calculant directement le déterminant $\det(\lambda I_3 A)$ et en déterminant les sous-espaces propres,
 - (c) en utilisant le rang de la matrice,
 - (d) en calculant A^2 .
- 2. On note f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est A. Trouver une base orthonormée dans laquelle la matrice de f est diagonale.

Solution

1. (a)

$$\chi_A(\lambda) = \det(\lambda I_3 - A) = \lambda^2(\lambda - 3).$$

Solution (suite)

$$E_3(A) = \text{Vect}\left(\begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}\right), \quad E_0(A) = \{(x, y, z) \in \mathbb{R}^3 : x - y + z = 0\}.$$

- (b) dim $E_0(A) = ?$.
- (c) Calcul de A^2 :

$$A^2 = 3A,$$

2. Une base orthonormée de $E_3(f)$ est

$$u = \frac{1}{\sqrt{3}}(1, -1, 1).$$

Deux vecteurs orthogonaux de $E_0(f)$ sont

$$(1,1,0), (1,-1,-2).$$

En les normalisant, on pose

$$v = \frac{1}{\sqrt{2}}(1, 1, 0), \quad w = \frac{1}{\sqrt{6}}(1, -1, -2).$$

Exercice 69

Énoncé

On considère la matrice

$$A = \begin{pmatrix} 0 & a & 1 \\ a & 0 & 1 \\ a & 1 & 0 \end{pmatrix}$$

où a est un réel.

- 1. Déterminer le rang de A.
- 2. Pour quelles valeurs de a, la matrice A est-elle diagonalisable?

Solution

1. Calcul du rang de A.

$$\det A = a(a+1).$$

Premier cas: $a \neq 0$ et $a \neq -1$

Alors det $A \neq 0$ donc A est inversible.

Donc rg(A) = 3.

Solution (suite)

Deuxième cas : a = 0

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

On remarque que les deux premières lignes sont colinéaires, donc rg(A) = 2.

Troisième cas : a = -1

$$A = \begin{pmatrix} 0 & -1 & 1 \\ -1 & 0 & 1 \\ -1 & 1 & 0 \end{pmatrix}$$

Les deux premières colonnes de A sont non colinéaires, donc $\operatorname{rg}(A) \geq 2$. En calculant le déterminant : $\det A = a(a+1) = (-1)(0) = 0$, donc A n'est pas inversible.

Donc rg(A) = 2.

2. Étude de la diagonalisabilité de A

On note $\chi_A(X)$ le polynôme caractéristique de A. On a :

$$\chi_A(X) = (X - a - 1)(X + a)(X + 1).$$

Les racines sont donc a + 1, -a, et -1.

On étudie les cas où ces racines sont égales ou distinctes :

— Premier cas : $a \neq 1$, $a \neq -2$ et $a \neq -\frac{1}{2}$.

Les trois racines sont distinctes, donc A possède trois valeurs propres distinctes.

 $\Rightarrow A$ est diagonalisable.

— Deuxième cas : a = 1.

Alors $\chi_A(X) = (X-2)(X+1)^2$.

A est diagonalisable si et seulement si dim $E_{-1} = 2$, i.e. $rg(A + I_3) = 1$.

$$A + I_3 = \begin{pmatrix} 1 & 1 & -1 \\ 1 & 1 & -1 \\ 1 & 1 & -1 \end{pmatrix} \Rightarrow \operatorname{rg}(A + I_3) = 1.$$

Donc dim $E_{-1} = 2$, A est diagonalisable.

— Troisième cas : a = -2.

Alors $\chi_A(X) = (X+1)^2(X-2)$.

$$A + I_3 = \begin{pmatrix} 1 & 2 & -1 \\ 2 & 1 & -1 \\ 2 & 1 & -1 \end{pmatrix} \Rightarrow \operatorname{rg}(A + I_3) = 2.$$

Donc dim $E_{-1} = 1 < 2$.

Or -1 est de multiplicité 2 dans χ_A .

 \Rightarrow A n'est pas diagonalisable.

Solution (suite)

— Quatrième cas : $a = -\frac{1}{2}$. Alors $\chi_A(X) = \left(X + \frac{1}{2}\right)^2 (X+1)$.

$$A + \frac{1}{2}I_3 = \begin{pmatrix} \frac{1}{2} & -\frac{1}{2} & -1\\ -\frac{1}{2} & \frac{1}{2} & -1\\ -\frac{1}{2} & 1 & \frac{1}{2} \end{pmatrix} \Rightarrow \operatorname{rg}\left(A + \frac{1}{2}I_3\right) = 2.$$

Donc dim $E_{-\frac{1}{2}}=1<2$, et $-\frac{1}{2}$ est de multiplicité 2 dans χ_A . $\Rightarrow A$ n'est pas diagonalisable.

Exercice 70

Énoncé

Soit

$$A = \begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \in \mathcal{M}_3(\mathbb{C}).$$

- 1. Déterminer les valeurs propres et les vecteurs propres de A. A est-elle diagonalisable?
- 2. Soit $(a, b, c) \in \mathbb{C}^3$ et $B = aI_3 + bA + cA^2$, où I_3 désigne la matrice identité d'ordre 3.

Déduire de la question 1. les éléments propres de B.

Solution

1.

$$\chi_A(X) = X^3 - 1 \quad \Rightarrow \quad \operatorname{Sp}(A) = \{1, j, j^2\},$$

$$E_1(A) = \ker(A - I_3) = \operatorname{Vect}\left(\begin{pmatrix} 1\\1\\1 \end{pmatrix}\right),$$

$$E_j(A) = \ker(A - jI_3) = \operatorname{Vect}\left(\begin{pmatrix} 1\\j^2\\j \end{pmatrix}\right),$$

$$E_{j^2}(A) = \ker(A - j^2I_3) = \operatorname{Vect}\left(\begin{pmatrix} 1\\j\\j \end{pmatrix}\right).$$

2.

$$P = \begin{pmatrix} 1 & 1 & 1 \\ 1 & j^2 & j \\ 1 & j & j^2 \end{pmatrix}, \quad D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & j & 0 \\ 0 & 0 & j^2 \end{pmatrix}.$$

Solution (suite)

On a alors:

$$A = PDP^{-1}$$
 \Rightarrow $B = aI_3 + bA + cA^2 = P(aI_3 + bD + cD^2)P^{-1}.$
= $P \cdot \text{diag}(Q(1), Q(j), Q(j^2)) \cdot P^{-1}.$

Premier cas : les valeurs $Q(1), Q(j), Q(j^2)$ sont toutes distinctes.

Deuxième cas : deux valeurs propres égales parmi les trois.

Troisième cas : $Q(1) = Q(j) = Q(j^2)$.

Exercice 71

Énoncé

Soit P le plan d'équation x+y+z=0 et D la droite d'équation $x=\frac{y}{2}=\frac{z}{3}$.

- 1. Vérifier que $\mathbb{R}^3 = P \oplus D$.
- 2. Soit p la projection vectorielle de \mathbb{R}^3 sur P parallèlement à D. Soit $u=(x,y,z)\in\mathbb{R}^3$. Déterminer p(u) et donner la matrice de p dans la base canonique de \mathbb{R}^3 .
- 3. Déterminer une base de \mathbb{R}^3 dans laquelle la matrice de p est diagonale.

Solution

- 1. $1 + 2 + 3 \neq 0$. $\dim D + \dim P = 1 + 2 = 3 = \dim \mathbb{R}^3$.
- 2. Par définition $u p(u) \in D$. Donc il existe $\alpha \in \mathbb{R}$ tel que :

$$u - p(u) = \alpha(1, 2, 3) \Rightarrow p(u) = (x - \alpha, y - 2\alpha, z - 3\alpha).6(x + y + z). \quad (1)$$
$$p(u) = \frac{1}{6}(5x - y - z, -2x + 4y - 2z, -3x - 3y + 3z).$$

$$A = \frac{1}{6} \begin{pmatrix} 5 & -1 & -1 \\ -2 & 4 & -2 \\ -3 & -3 & 3 \end{pmatrix}.$$

3. :
$$e_1' = (1,2,3), \quad e_2' = (1,-1,0), \quad e_3' = (0,1,-1).$$

Exercice 72

Énoncé

Soit n un entier naturel non nul.

Soit f un endomorphisme d'un espace vectoriel E de dimension n, et soit $e = (e_1, \ldots, e_n)$ une base de E.

On suppose que $f(e_1) = f(e_2) = \cdots = f(e_n) = v$, où v est un vecteur donné de E.

- 1. Donner le rang de f.
- 2. f est-il diagonalisable? (Discuter en fonction du vecteur v.)

Solution

1.

2. < Si f non nul $\chi_f(X) = X^{n-1}(X - \lambda)$ avec $\lambda \neq 0$. Premier sous-cas : $\lambda \neq 0$

Deuxième sous-cas : $\lambda = 0$

Exercice 73 algèbre

Énoncé

On pose $A = \begin{pmatrix} 2 & 1 \\ 4 & -1 \end{pmatrix}$.

- 1. Déterminer les valeurs propres et les vecteurs propres de A.
- 2. Déterminer toutes les matrices qui commutent avec la matrice $\begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}$. En déduire que l'ensemble des matrices qui commutent avec A est $\text{Vect}(I_2, A)$.

Solution

1.
$$\chi_A = (X - 3)(X + 2)$$
, donc $Sp(A) = \{-2, 3\}$. $AX = 3X$ et $AX = -2X \Rightarrow$

$$E_3 = \operatorname{Vect}\left(\begin{pmatrix} 1\\1 \end{pmatrix}\right) \quad \text{et} \quad E_{-2} = \operatorname{Vect}\left(\begin{pmatrix} 1\\-4 \end{pmatrix}\right).$$

2. Soit
$$N = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
.
$$D = \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix} ND = DN \Rightarrow$$

Solution (suite)

$$\begin{cases}
-2b = 3b \\
3c = -2c
\end{cases}$$

$$A = PDP^{-1}$$

$$P = \begin{pmatrix} 1 & 1 \\ 1 & -4 \end{pmatrix}, \quad D = \begin{pmatrix} 3 & 0 \\ 0 & -2 \end{pmatrix}.$$

$$AM = MA \iff P^{-1}MP = \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \iff M = P \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} P^{-1}.$$

Exercice 74 algèbre

Énoncé

- 1. On considère la matrice $A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{pmatrix}$.
 - (a) Justifier sans calcul que A est diagonalisable.
 - (b) Déterminer les valeurs propres de A puis une base de vecteurs propres associés.
- 2. On considère le système différentiel :

$$\begin{cases} x' = x + 2z \\ y' = y \\ z' = 2x + z \end{cases}$$
 x, y, z désignant trois fonctions de la variable t ,

dérivables sur \mathbb{R} .

En utilisant la question 1. et en le justifiant, résoudre ce système.

Solution

1.

$$\chi_A(\lambda) = (\lambda - 1)(\lambda + 1)(\lambda - 3)$$

$$E_1 = \text{Vect}\left(\begin{pmatrix} 0\\1\\0 \end{pmatrix}\right), \quad E_{-1} = \text{Vect}\left(\begin{pmatrix} 1\\0\\-1 \end{pmatrix}\right), \quad E_3 = \text{Vect}\left(\begin{pmatrix} 1\\0\\1 \end{pmatrix}\right)$$

On pose donc la base propre:

$$e_1' = (0, 1, 0), \quad e_2' = (1, 0, -1), \quad e_3' = (1, 0, 1)$$

La base $e' = (e'_1, e'_2, e'_3)$ est une base de vecteurs propres de A.

Solution (suite)

2.

$$X'(t) = AX(t) \iff P^{-1}X' = DP^{-1}X$$

On pose:

$$X_1(t) = \begin{pmatrix} x_1(t) \\ y_1(t) \\ z_1(t) \end{pmatrix} = P^{-1}X(t)$$

On résout :

$$\begin{cases} x_1(t) = ae^t \\ y_1(t) = be^{-t} \\ z_1(t) = ce^{3t} \end{cases} \text{ avec } (a, b, c) \in \mathbb{R}^3$$

On remonte à $X(t) = PX_1(t)$, ce qui donne :

$$\begin{cases} x(t) = be^{-t} + ce^{3t} \\ y(t) = ae^{t} \\ z(t) = -be^{-t} + ce^{3t} \end{cases} \text{ avec } (a, b, c) \in \mathbb{R}^{3}$$

Exercice 75 algèbre

Énoncé

On considère la matrice $A = \begin{pmatrix} -1 & -4 \\ 1 & 3 \end{pmatrix}$.

- 1. Démontrer que A n'est pas diagonalisable.
- 2. On note f l'endomorphisme de \mathbb{R}^2 canoniquement associé à A. Trouver une base (v_1, v_2) de \mathbb{R}^2 dans laquelle la matrice de f est de la forme

$$\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$$
.

On donnera explicitement les valeurs de a, b, c.

3. En déduire la résolution du système différentiel

$$\begin{cases} x' = -x - 4y \\ y' = x + 3y \end{cases}$$

Solution

1.

$$\chi_A(X) = (X - 1)^2 \Rightarrow \text{Sp}A = \{1\}$$

2.

$$E_1(A) = \operatorname{Vect}\left(\begin{pmatrix} 2\\-1\end{pmatrix}\right)$$

On choisit:

$$v_1 = (2, -1), \quad v_2 = (-1, 0)$$

la matrice de f

$$T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

et la matrice de passage est :

$$P = \begin{pmatrix} 2 & -1 \\ -1 & 0 \end{pmatrix}, \quad A = PTP^{-1}$$

3.

$$X' = AX \iff Y' = TY$$

ou:

$$\begin{cases} a'(t) = a(t) + b(t) \\ b'(t) = b(t) \end{cases}$$

De solution générale :

$$\begin{cases} b(t) = \mu e^t \\ a(t) = \lambda e^t + \mu t e^t \end{cases} \text{ avec } (\lambda, \mu) \in \mathbb{R}^2$$

X = PY donne:

$$\begin{cases} x(t) = ((2\lambda - \mu) + 2\mu t)e^t \\ y(t) = (-\lambda + \mu t)e^t \end{cases} \text{ avec } (\lambda, \mu) \in \mathbb{R}^2$$