Cálculo de la K_R

La fórmula que utilizamos para calcular el valor de la ganancia del regulador (K_R) es el criterio del módulo. En las transparencias de teoría se muestra de dónde procede:

G(s)H(s)
$$\frac{1}{1+k} \frac{\prod (s-z_i)}{\prod (s-p_i)} = 0$$

$$k \frac{\prod (s-z_i)}{\prod (s-p_i)} = -1$$

Criterio del módulo:

$$k \frac{\prod |s - z_i|}{\prod |s - p_i|} = 1$$

$$k = \frac{\prod |s - p_i|}{\prod |s - z_i|}$$

La k del criterio del módulo es el parámetro de ganancia que queda al descomponer numerador y denominador de G(s)H(s) en factores simples de la forma (s-p_i) y (s-z_i), respectivamente.

No es la ganancia estática G(0)H(0)

Ejemplo 1: Problema 2

Dado el sistema de la figura:

Diseñar el regulador más sencillo que cumpla las siguientes especificaciones:

• $M_p \leq 15\%$, t_s mínimo.

Ejemplo 1: Problema 2

Dado el sistema de la figura:

Diseñar el regulador más sencillo que cumpla las siguientes especificaciones:

• $M_p \leq 15\%$, t_s mínimo.

$$G(s)H(s) = \frac{3(s+8)}{(s+1)(s+4)(s+11)}$$

Todos los polos y los ceros ya están expresados como factores (s-p_i) y (s-z_i)

Al introducir el regulador trabajamos con R(s)G(s)H(s)

$$K_R \cdot 3 = \frac{\prod |s - p_i|}{\prod |s - z_i|}$$
 P. ej., para s=-9:

Ejemplo 2: Problema 4

Dado el sistema de la figura:

Diseñar el regulador más sencillo que cumpla las siguientes especificaciones:

•
$$M_p \le 15\%$$
, $t_s \le 1.5 \text{ s.}$, $e_p \le 10\%$

$$G(s)H(s) = \frac{8}{(s+1)(s+3)(s+6)}$$
 Todos los polos ya están expresados como factores (s-p

como factores (s-p;)

Al introducir el regulador trabajamos con R(s)G(s)H(s)

$$K_R \cdot 8 = \frac{\prod |s-p_i|}{\prod |s-z_i|}$$
 P. ej., para calcular el PD: