# $12n_{0014} (K12n_{0014})$



#### Ideals for irreducible components<sup>2</sup> of $X_{par}$

$$\begin{split} I_1^u &= \langle -3.93906 \times 10^{169} u^{53} + 8.11692 \times 10^{169} u^{52} + \dots + 2.56580 \times 10^{172} b + 5.59119 \times 10^{173}, \\ &2.70535 \times 10^{172} u^{53} + 1.41390 \times 10^{173} u^{52} + \dots + 1.43685 \times 10^{174} a + 5.91275 \times 10^{175}, \\ &u^{54} + 5 u^{53} + \dots + 2048 u + 1024 \rangle \end{split}$$

$$I_1^v = \langle a, 8286v^9 - 14092v^8 + \dots + 8095b + 12581,$$
  
$$v^{10} - v^9 - 2v^8 - 19v^7 + 12v^6 + 35v^5 + 50v^4 + 34v^3 + 17v^2 + 5v + 1 \rangle$$

\* 2 irreducible components of  $\dim_{\mathbb{C}} = 0$ , with total 64 representations.

<sup>&</sup>lt;sup>1</sup>The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

<sup>&</sup>lt;sup>2</sup> All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I. 
$$I_1^u = \langle -3.94 \times 10^{169} u^{53} + 8.12 \times 10^{169} u^{52} + \dots + 2.57 \times 10^{172} b + 5.59 \times 10^{173}, \ 2.71 \times 10^{172} u^{53} + 1.41 \times 10^{173} u^{52} + \dots + 1.44 \times 10^{174} a + 5.91 \times 10^{175}, \ u^{54} + 5 u^{53} + \dots + 2048 u + 1024 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -0.0188284u^{53} - 0.0984027u^{52} + \dots - 57.6613u - 41.1508 \\ 0.00153522u^{53} - 0.00316351u^{52} + \dots + 2.45774u - 21.7912 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -0.0323517u^{53} - 0.147501u^{52} + \dots - 88.1255u - 23.7227 \\ 0.0109343u^{53} + 0.0438860u^{52} + \dots + 26.5354u - 2.82844 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} -u \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -0.0118561u^{53} - 0.0590764u^{52} + \dots - 36.2368u - 21.2553 \\ 0.0134039u^{53} + 0.0620483u^{52} + \dots + 36.4660u + 13.4608 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.00441031u^{53} + 0.0172727u^{52} + \dots + 10.8004u - 5.96037 \\ 0.00533450u^{53} + 0.0282151u^{52} + \dots + 13.6825u + 15.5729 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.00441031u^{53} + 0.0172727u^{52} + \dots + 10.8004u - 5.96037 \\ 0.00669340u^{53} + 0.0361984u^{52} + \dots + 18.9533u + 20.4664 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.00154779u^{53} - 0.00297199u^{52} + \dots - 0.229176u + 7.79450 \\ 0.0169009u^{53} + 0.0786020u^{52} + \dots + 44.6438u + 18.3421 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -0.00933751u^{53} - 0.0594844u^{52} + \dots - 30.9568u - 43.0824 \\ -0.0225428u^{53} - 0.0990264u^{52} + \dots - 54.4975u - 12.8121 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -0.0399571u^{53} - 0.175227u^{52} + \dots - 100.366u - 19.0531 \\ 0.00625323u^{53} + 0.0325196u^{52} + \dots + 12.5340u + 17.1289 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes =  $-0.00845297u^{53} 0.0644904u^{52} + \cdots 23.1790u 60.4595$

### (iv) u-Polynomials at the component

| Crossings      | u-Polynomials at each crossing                  |
|----------------|-------------------------------------------------|
| $c_1$          | $u^{54} + 14u^{53} + \dots - 53u + 1$           |
| $c_2, c_5$     | $u^{54} + 6u^{53} + \dots + 15u + 1$            |
| $c_3$          | $u^{54} - 6u^{53} + \dots + 11895099u + 596177$ |
| $c_4, c_7$     | $u^{54} + 5u^{53} + \dots + 2048u + 1024$       |
| $c_{6}, c_{9}$ | $u^{54} + 3u^{53} + \dots + 4u^2 + 1$           |
| $c_8, c_{11}$  | $u^{54} + 3u^{53} + \dots - 2u + 1$             |
| $c_{10}$       | $u^{54} - 3u^{53} + \dots - 8544u + 1217$       |
| $c_{12}$       | $u^{54} + 23u^{53} + \dots + 8u + 1$            |

## (v) Riley Polynomials at the component

| Crossings      | Riley Polynomials at each crossing                            |
|----------------|---------------------------------------------------------------|
| $c_1$          | $y^{54} + 58y^{53} + \dots + 2411y + 1$                       |
| $c_2, c_5$     | $y^{54} + 14y^{53} + \dots - 53y + 1$                         |
| $c_3$          | $y^{54} + 102y^{53} + \dots - 14429377332621y + 355427015329$ |
| $c_4, c_7$     | $y^{54} - 55y^{53} + \dots - 4194304y + 1048576$              |
| $c_{6}, c_{9}$ | $y^{54} - 5y^{53} + \dots + 8y + 1$                           |
| $c_8, c_{11}$  | $y^{54} + 23y^{53} + \dots + 8y + 1$                          |
| $c_{10}$       | $y^{54} + 15y^{53} + \dots + 18080344y + 1481089$             |
| $c_{12}$       | $y^{54} + 19y^{53} + \dots - 160y + 1$                        |

# (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.968225 + 0.607102I |                                       |                     |
| a = -0.164875 - 0.865628I | -3.62207 - 1.88435I                   | 0                   |
| b = 0.789588 + 0.453320I  |                                       |                     |
| u = -0.968225 - 0.607102I |                                       |                     |
| a = -0.164875 + 0.865628I | -3.62207 + 1.88435I                   | 0                   |
| b = 0.789588 - 0.453320I  |                                       |                     |
| u = 0.556588 + 0.619363I  |                                       |                     |
| a = 0.901194 + 0.566536I  | 0.99939 + 1.40813I                    | 3.91416 - 3.69919I  |
| b = 0.051996 - 0.642624I  |                                       |                     |
| u = 0.556588 - 0.619363I  |                                       |                     |
| a = 0.901194 - 0.566536I  | 0.99939 - 1.40813I                    | 3.91416 + 3.69919I  |
| b = 0.051996 + 0.642624I  |                                       |                     |
| u = -0.661385 + 0.335932I |                                       |                     |
| a = 1.52538 - 0.28332I    | -0.24598 + 2.82121I                   | 1.02280 - 2.27971I  |
| b = -0.395578 + 0.434236I |                                       |                     |
| u = -0.661385 - 0.335932I |                                       |                     |
| a = 1.52538 + 0.28332I    | -0.24598 - 2.82121I                   | 1.02280 + 2.27971I  |
| b = -0.395578 - 0.434236I |                                       |                     |
| u = -0.569346 + 0.474090I |                                       |                     |
| a = 1.99530 - 0.80720I    | 0.611788 + 1.006080I                  | -3.88173 - 0.39430I |
| b = 0.663565 - 0.017228I  |                                       |                     |
| u = -0.569346 - 0.474090I |                                       |                     |
| a = 1.99530 + 0.80720I    | 0.611788 - 1.006080I                  | -3.88173 + 0.39430I |
| b = 0.663565 + 0.017228I  |                                       |                     |
| u = 0.511621 + 0.452929I  |                                       |                     |
| a = -0.55984 - 1.59306I   | -1.18484 - 1.48546I                   | -2.98046 + 1.14168I |
| b = 0.023415 + 0.808214I  |                                       |                     |
| u = 0.511621 - 0.452929I  |                                       |                     |
| a = -0.55984 + 1.59306I   | -1.18484 + 1.48546I                   | -2.98046 - 1.14168I |
| b = 0.023415 - 0.808214I  |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -0.423245 + 0.528845I |                                       |                     |
| a = 0.207901 + 0.031710I  | -2.63355 + 1.15153I                   | -2.76262 + 2.47931I |
| b = 1.208630 - 0.192759I  |                                       |                     |
| u = -0.423245 - 0.528845I |                                       |                     |
| a = 0.207901 - 0.031710I  | -2.63355 - 1.15153I                   | -2.76262 - 2.47931I |
| b = 1.208630 + 0.192759I  |                                       |                     |
| u = -0.362967 + 0.571541I |                                       |                     |
| a = 0.026420 + 0.236077I  | -6.34508 - 2.87510I                   | -9.60101 + 6.45832I |
| b = -1.351430 - 0.085409I |                                       |                     |
| u = -0.362967 - 0.571541I |                                       |                     |
| a = 0.026420 - 0.236077I  | -6.34508 + 2.87510I                   | -9.60101 - 6.45832I |
| b = -1.351430 + 0.085409I |                                       |                     |
| u = -0.376666 + 0.551588I |                                       |                     |
| a = -3.09962 + 1.34006I   | 0.57291 - 3.72246I                    | -7.65423 + 7.89265I |
| b = -0.581470 + 0.039436I |                                       |                     |
| u = -0.376666 - 0.551588I |                                       |                     |
| a = -3.09962 - 1.34006I   | 0.57291 + 3.72246I                    | -7.65423 - 7.89265I |
| b = -0.581470 - 0.039436I |                                       |                     |
| u = -0.443126 + 0.469766I |                                       |                     |
| a = 0.023144 - 0.202231I  | -5.84105 + 5.81566I                   | -4.21669 + 1.36326I |
| b = -1.41853 + 0.34093I   |                                       |                     |
| u = -0.443126 - 0.469766I |                                       |                     |
| a = 0.023144 + 0.202231I  | -5.84105 - 5.81566I                   | -4.21669 - 1.36326I |
| b = -1.41853 - 0.34093I   |                                       |                     |
| u = 0.604914 + 0.174580I  |                                       |                     |
| a = -0.76546 - 3.52241I   | -0.60959 + 4.26256I                   | 4.62783 - 4.73451I  |
| b = 0.255821 + 0.548310I  |                                       |                     |
| u = 0.604914 - 0.174580I  |                                       |                     |
| a = -0.76546 + 3.52241I   | -0.60959 - 4.26256I                   | 4.62783 + 4.73451I  |
| b = 0.255821 - 0.548310I  |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape          |
|---------------------------|---------------------------------------|---------------------|
| u = -1.41543 + 0.25569I   |                                       |                     |
| a = 0.548000 - 0.556665I  | 0.04114 + 3.00401I                    | 0                   |
| b = -0.535084 + 0.575642I |                                       |                     |
| u = -1.41543 - 0.25569I   |                                       |                     |
| a = 0.548000 + 0.556665I  | 0.04114 - 3.00401I                    | 0                   |
| b = -0.535084 - 0.575642I |                                       |                     |
| u = 1.44011 + 0.26608I    |                                       |                     |
| a = -0.018030 + 0.946466I | 3.23271 + 1.00154I                    | 0                   |
| b = 0.96835 - 1.18906I    |                                       |                     |
| u = 1.44011 - 0.26608I    |                                       |                     |
| a = -0.018030 - 0.946466I | 3.23271 - 1.00154I                    | 0                   |
| b = 0.96835 + 1.18906I    |                                       |                     |
| u = -1.43048 + 0.47132I   |                                       |                     |
| a = 0.048317 - 0.972966I  | 2.63538 - 7.17562I                    | 0                   |
| b = 1.15296 + 1.07758I    |                                       |                     |
| u = -1.43048 - 0.47132I   |                                       |                     |
| a = 0.048317 + 0.972966I  | 2.63538 + 7.17562I                    | 0                   |
| b = 1.15296 - 1.07758I    |                                       |                     |
| u = 0.365593 + 0.176466I  |                                       |                     |
| a = -2.89742 - 7.37153I   | -0.056183 - 0.359580I                 | 11.4178 - 26.2253I  |
| b = -0.313165 + 0.318803I |                                       |                     |
| u = 0.365593 - 0.176466I  |                                       |                     |
| a = -2.89742 + 7.37153I   | -0.056183 + 0.359580I                 | 11.4178 + 26.2253I  |
| b = -0.313165 - 0.318803I |                                       |                     |
| u = 0.086973 + 0.349018I  |                                       |                     |
| a = 0.92423 + 1.33854I    | -0.22325 + 1.43278I                   | -1.54657 - 5.02280I |
| b = 0.377234 - 0.508733I  |                                       |                     |
| u = 0.086973 - 0.349018I  |                                       |                     |
| a = 0.92423 - 1.33854I    | -0.22325 - 1.43278I                   | -1.54657 + 5.02280I |
| b = 0.377234 + 0.508733I  |                                       |                     |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|---------------------------|---------------------------------------|------------|
| u = 1.63008 + 0.27442I    |                                       |            |
| a = -0.070772 - 0.883996I | 7.40537 + 7.44620I                    | 0          |
| b = 1.03860 + 1.15294I    |                                       |            |
| u = 1.63008 - 0.27442I    |                                       |            |
| a = -0.070772 + 0.883996I | 7.40537 - 7.44620I                    | 0          |
| b = 1.03860 - 1.15294I    |                                       |            |
| u = -1.65228 + 0.05485I   |                                       |            |
| a = 0.080653 + 0.885577I  | 7.65653 - 0.97520I                    | 0          |
| b = 1.16375 - 1.00098I    |                                       |            |
| u = -1.65228 - 0.05485I   |                                       |            |
| a = 0.080653 - 0.885577I  | 7.65653 + 0.97520I                    | 0          |
| b = 1.16375 + 1.00098I    |                                       |            |
| u = -1.72238 + 0.16170I   |                                       |            |
| a = -0.086105 + 0.916649I | 9.40334 - 4.97639I                    | 0          |
| b = -1.15021 - 1.02233I   |                                       |            |
| u = -1.72238 - 0.16170I   |                                       |            |
| a = -0.086105 - 0.916649I | 9.40334 + 4.97639I                    | 0          |
| b = -1.15021 + 1.02233I   |                                       |            |
| u = 1.73138 + 0.06809I    |                                       |            |
| a = 0.043882 + 0.891061I  | 9.47308 + 1.61822I                    | 0          |
| b = -1.01279 - 1.15273I   |                                       |            |
| u = 1.73138 - 0.06809I    |                                       |            |
| a = 0.043882 - 0.891061I  | 9.47308 - 1.61822I                    | 0          |
| b = -1.01279 + 1.15273I   |                                       |            |
| u = -1.76374 + 0.21792I   |                                       |            |
| a = -0.360469 - 0.631007I | -1.14583 - 7.63336I                   | 0          |
| b = 0.631595 + 0.625797I  |                                       |            |
| u = -1.76374 - 0.21792I   |                                       |            |
| a = -0.360469 + 0.631007I | -1.14583 + 7.63336I                   | 0          |
| b = 0.631595 - 0.625797I  |                                       |            |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|---------------------------|---------------------------------------|------------|
| u = -1.71169 + 0.70638I   |                                       |            |
| a = -0.103752 + 0.988152I | 9.11085 - 9.64421I                    | 0          |
| b = -1.11053 - 1.06013I   |                                       |            |
| u = -1.71169 - 0.70638I   |                                       |            |
| a = -0.103752 - 0.988152I | 9.11085 + 9.64421I                    | 0          |
| b = -1.11053 + 1.06013I   |                                       |            |
| u = -1.65609 + 0.87083I   |                                       |            |
| a = 0.109961 - 1.010800I  | 7.1548 - 15.5018I                     | 0          |
| b = 1.09592 + 1.06931I    |                                       |            |
| u = -1.65609 - 0.87083I   |                                       |            |
| a = 0.109961 + 1.010800I  | 7.1548 + 15.5018I                     | 0          |
| b = 1.09592 - 1.06931I    |                                       |            |
| u = 1.84254 + 0.55471I    |                                       |            |
| a = -0.024388 - 0.899775I | 10.02790 + 2.89871I                   | 0          |
| b = -0.96048 + 1.13369I   |                                       |            |
| u = 1.84254 - 0.55471I    |                                       |            |
| a = -0.024388 + 0.899775I | 10.02790 - 2.89871I                   | 0          |
| b = -0.96048 - 1.13369I   |                                       |            |
| u = 0.32734 + 1.90477I    |                                       |            |
| a = 0.068219 + 0.161006I  | 2.99545 + 1.06109I                    | 0          |
| b = 0.209333 - 0.729341I  |                                       |            |
| u = 0.32734 - 1.90477I    |                                       |            |
| a = 0.068219 - 0.161006I  | 2.99545 - 1.06109I                    | 0          |
| b = 0.209333 + 0.729341I  |                                       |            |
| u = 1.80022 + 0.78166I    |                                       |            |
| a = 0.046975 + 0.901747I  | 8.36288 + 8.76828I                    | 0          |
| b = 0.94658 - 1.12324I    |                                       |            |
| u = 1.80022 - 0.78166I    |                                       |            |
| a = 0.046975 - 0.901747I  | 8.36288 - 8.76828I                    | 0          |
| b = 0.94658 + 1.12324I    |                                       |            |

| Solutions to $I_1^u$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape |
|---------------------------|---------------------------------------|------------|
| u = -0.27509 + 2.02948I   |                                       |            |
| a = 0.062934 - 0.138328I  | 2.55849 + 5.96109I                    | 0          |
| b = -0.268730 + 0.724836I |                                       |            |
| u = -0.27509 - 2.02948I   |                                       |            |
| a = 0.062934 + 0.138328I  | 2.55849 - 5.96109I                    | 0          |
| b = -0.268730 - 0.724836I |                                       |            |
| u = 2.03479 + 0.31103I    |                                       |            |
| a = 0.038225 + 0.499273I  | 3.81792 + 2.50371I                    | 0          |
| b = 0.020667 - 0.781951I  |                                       |            |
| u = 2.03479 - 0.31103I    |                                       |            |
| a = 0.038225 - 0.499273I  | 3.81792 - 2.50371I                    | 0          |
| b = 0.020667 + 0.781951I  |                                       |            |

II. 
$$I_1^v = \langle a, 8286v^9 - 14092v^8 + \dots + 8095b + 12581, v^{10} - v^9 + \dots + 5v + 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -1.02359v^{9} + 1.74083v^{8} + \dots - 2.14256v - 1.55417 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} 1.02359v^{9} - 1.74083v^{8} + \dots + 2.14256v + 1.55417 \\ -1.02359v^{9} + 1.74083v^{8} + \dots - 2.14256v - 1.55417 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 0.566770v^{9} - 0.910562v^{8} + \dots + 1.12069v - 2.46844 \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} 0.343792v^{9} - 0.433107v^{8} + \dots + 6.30229v + 0.566770 \\ -1.56677v^{9} + 1.91056v^{8} + \dots - 18.1207v - 2.53156 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} 0.433107v^{9} - 0.556763v^{8} + \dots + 6.45448v + 0.910562 \\ -1.56677v^{9} + 1.91056v^{8} + \dots - 18.1207v - 2.53156 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.566770v^{9} + 0.910562v^{8} + \dots - 18.1207v - 2.53156 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.566770v^{9} + 0.910562v^{8} + \dots - 1.12069v + 2.46844 \\ -0.515256v^{9} + 0.785300v^{8} + \dots - 0.966523v + 2.10241 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -1.96479v^{9} + 3.18777v^{8} + \dots - 3.92341v + 1.99444 \\ 1.39802v^{9} - 2.27721v^{8} + \dots + 2.80272v - 0.526004 \end{pmatrix}$$

#### (ii) Obstruction class = 1

(iii) Cusp Shapes = 
$$-\frac{20287}{1619}v^9 + \frac{28878}{1619}v^8 + \frac{30807}{1619}v^7 + \frac{368475}{1619}v^6 - \frac{403029}{1619}v^5 - \frac{583117}{1619}v^4 - \frac{710653}{1619}v^3 - \frac{322767}{1619}v^2 - \frac{137041}{1619}v - \frac{22786}{1619}$$

### (iv) u-Polynomials at the component

| Crossings             | u-Polynomials at each crossing        |
|-----------------------|---------------------------------------|
| $c_1, c_3, c_5$       | $(u^2 - u + 1)^5$                     |
| $c_2$                 | $(u^2 + u + 1)^5$                     |
| $c_4, c_7$            | $u^{10}$                              |
| <i>C</i> <sub>6</sub> | $(u^5 + u^4 - 2u^3 - u^2 + u - 1)^2$  |
| <i>c</i> <sub>8</sub> | $(u^5 - u^4 + 2u^3 - u^2 + u - 1)^2$  |
| $c_9,c_{10}$          | $(u^5 - u^4 - 2u^3 + u^2 + u + 1)^2$  |
| $c_{11}$              | $(u^5 + u^4 + 2u^3 + u^2 + u + 1)^2$  |
| $c_{12}$              | $(u^5 + 3u^4 + 4u^3 + u^2 - u - 1)^2$ |

# (v) Riley Polynomials at the component

| Crossings             | Riley Polynomials at each crossing     |
|-----------------------|----------------------------------------|
| $c_1, c_2, c_3$ $c_5$ | $(y^2+y+1)^5$                          |
| $c_4, c_7$            | $y^{10}$                               |
| $c_6, c_9, c_{10}$    | $(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)^2$ |
| $c_8, c_{11}$         | $(y^5 + 3y^4 + 4y^3 + y^2 - y - 1)^2$  |
| $c_{12}$              | $(y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)^2$ |

# (vi) Complex Volumes and Cusp Shapes

| Solutions to $I_1^v$      | $\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$ | Cusp shape           |
|---------------------------|---------------------------------------|----------------------|
| v = -0.337181 + 0.584015I |                                       |                      |
| a = 0                     | -2.40108 + 2.02988I                   | -0.15429 - 4.97460I  |
| b = 1.21774               |                                       |                      |
| v = -0.337181 - 0.584015I |                                       |                      |
| a = 0                     | -2.40108 - 2.02988I                   | -0.15429 + 4.97460I  |
| b = 1.21774               |                                       |                      |
| v = -0.104500 + 0.473819I |                                       |                      |
| a = 0                     | -5.87256 - 2.37095I                   | -0.67715 - 1.65320I  |
| b = -1.41878 - 0.21917I   |                                       |                      |
| v = -0.104500 - 0.473819I |                                       |                      |
| a = 0                     | -5.87256 + 2.37095I                   | -0.67715 + 1.65320I  |
| b = -1.41878 + 0.21917I   |                                       |                      |
| v = -0.358089 + 0.327409I |                                       |                      |
| a = 0                     | -5.87256 + 6.43072I                   | -5.14480 - 10.95886I |
| b = -1.41878 + 0.21917I   |                                       |                      |
| v = -0.358089 - 0.327409I |                                       |                      |
| a = 0                     | -5.87256 - 6.43072I                   | -5.14480 + 10.95886I |
| b = -1.41878 - 0.21917I   |                                       |                      |
| v = -1.20942 + 2.19910I   |                                       |                      |
| a = 0                     | -0.32910 - 3.56046I                   | 2.94328 + 13.07994I  |
| b = 0.309916 + 0.549911I  |                                       |                      |
| v = -1.20942 - 2.19910I   |                                       |                      |
| a = 0                     | -0.32910 + 3.56046I                   | 2.94328 - 13.07994I  |
| b = 0.309916 - 0.549911I  |                                       |                      |
| v = 2.50919 + 0.05217I    |                                       |                      |
| a = 0                     | -0.329100 - 0.499304I                 | -6.96704 - 1.22174I  |
| b = 0.309916 - 0.549911I  |                                       |                      |
| v = 2.50919 - 0.05217I    |                                       |                      |
| a = 0                     | -0.329100 + 0.499304I                 | -6.96704 + 1.22174I  |
| b = 0.309916 + 0.549911I  |                                       |                      |

## III. u-Polynomials

| Crossings             | u-Polynomials at each crossing                                                  |
|-----------------------|---------------------------------------------------------------------------------|
| $c_1$                 | $((u^2 - u + 1)^5)(u^{54} + 14u^{53} + \dots - 53u + 1)$                        |
| $c_2$                 | $((u^2 + u + 1)^5)(u^{54} + 6u^{53} + \dots + 15u + 1)$                         |
| $c_3$                 | $((u^2 - u + 1)^5)(u^{54} - 6u^{53} + \dots + 1.18951 \times 10^7 u + 596177)$  |
| $c_4, c_7$            | $u^{10}(u^{54} + 5u^{53} + \dots + 2048u + 1024)$                               |
| <i>C</i> <sub>5</sub> | $((u^2 - u + 1)^5)(u^{54} + 6u^{53} + \dots + 15u + 1)$                         |
| <i>C</i> <sub>6</sub> | $((u^5 + u^4 - 2u^3 - u^2 + u - 1)^2)(u^{54} + 3u^{53} + \dots + 4u^2 + 1)$     |
| <i>C</i> <sub>8</sub> | $((u^5 - u^4 + 2u^3 - u^2 + u - 1)^2)(u^{54} + 3u^{53} + \dots - 2u + 1)$       |
| <i>c</i> <sub>9</sub> | $((u^5 - u^4 - 2u^3 + u^2 + u + 1)^2)(u^{54} + 3u^{53} + \dots + 4u^2 + 1)$     |
| $c_{10}$              | $((u^5 - u^4 - 2u^3 + u^2 + u + 1)^2)(u^{54} - 3u^{53} + \dots - 8544u + 1217)$ |
| $c_{11}$              | $((u^5 + u^4 + 2u^3 + u^2 + u + 1)^2)(u^{54} + 3u^{53} + \dots - 2u + 1)$       |
| $c_{12}$              | $((u^5 + 3u^4 + 4u^3 + u^2 - u - 1)^2)(u^{54} + 23u^{53} + \dots + 8u + 1)$     |

# IV. Riley Polynomials

| Crossings       | Riley Polynomials at each crossing                                                               |
|-----------------|--------------------------------------------------------------------------------------------------|
| $c_1$           | $((y^2 + y + 1)^5)(y^{54} + 58y^{53} + \dots + 2411y + 1)$                                       |
| $c_2, c_5$      | $((y^2 + y + 1)^5)(y^{54} + 14y^{53} + \dots - 53y + 1)$                                         |
| $c_3$           | $(y^2 + y + 1)^5$ $\cdot (y^{54} + 102y^{53} + \dots - 14429377332621y + 355427015329)$          |
| $c_4, c_7$      | $y^{10}(y^{54} - 55y^{53} + \dots - 4194304y + 1048576)$                                         |
| $c_6, c_9$      | $((y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)^2)(y^{54} - 5y^{53} + \dots + 8y + 1)$                      |
| $c_{8}, c_{11}$ | $((y^5 + 3y^4 + 4y^3 + y^2 - y - 1)^2)(y^{54} + 23y^{53} + \dots + 8y + 1)$                      |
| $c_{10}$        | $(y^5 - 5y^4 + 8y^3 - 3y^2 - y - 1)^2$ $\cdot (y^{54} + 15y^{53} + \dots + 18080344y + 1481089)$ |
| $c_{12}$        | $((y^5 - y^4 + 8y^3 - 3y^2 + 3y - 1)^2)(y^{54} + 19y^{53} + \dots - 160y + 1)$                   |