# CONTROL CIRCUIT FOR LIGHTING DEVICE OF LIGHT EMITTING DIODE

Patent Number:

JP2001244087

Publication date:

2001-09-07

Inventor(s):

OKAMOTO TOMOHIRO

Applicant(s):

ICHIKOH IND LTD

Requested Patent:

JP2001244087

Application Number: JP20000055754 20000301

Priority Number(s):

IPC Classification:

H05B37/02

EC Classification:

Equivalents:

### Abstract

PROBLEM TO BE SOLVED: To provide a simple and low power consumption control circuit for lighting device of light emitting diodes.

SOLUTION: The control circuit consists of a rectangular wave control circuit A which outputs a rectangular current for lighting device D using light emitting diodes. The rectangular current with a constant period is output from the control circuit A for a prescribed time after receiving the lighting signal, while increasing the duty ratio of the current in multi -step or continuously.

Data supplied from the esp@cenet database - 12

(19)日本国特許庁(JP)

# (12)公開特許公報 (A)

(11)特許出願公開番号

特開2001-244087

(P2001-244087A) (43)公開日 平成13年9月7日(2001.9.7)

(51) Int. Cl. 7

H05B 37/02

識別記号

F I H05B 37/02 テーマコート (参考)

Z 3K073

審査請求 未請求 請求項の数3 OL (全3頁)

(21)出願番号

特願2000-55754(P2000-55754)

(22)出願日

平成12年3月1日(2000.3.1)

(71)出願人 000000136

市光工業株式会社

東京都品川区東五反田5丁目10番18号

(72)発明者 岡本 智博

神奈川県伊勢原市板戸80番地 市光工業株

式会社伊勢原製造所内

(74)代理人 100083806

弁理士 三好 秀和 (外8名)

Fターム(参考) 3K073 AA65 CG06 CG10 CG19 CM07

(54) [発明の名称] 発光ダイオード灯具の制御回路

## (57)【要約】

【課題】 回路が簡単で、消費電力の小さい発光ダイオード灯具の制御回路を提供する。

【解決手段】 発光ダイオードを用いた灯具Dに対し、 点灯信号を受けてから所定時間、デューティー比を多段 階又は連続的に増しながら、一定周期で矩形電流を出力 する矩形波制御回路Aにより構成される。



【特許請求の範囲】

【請求項1】 発光ダイオードを用いた灯具に対し、点 灯信号を受けてから所定時間、デューティー比を多段階 又は連続的に増しながら、一定周期で矩形電流を出力す る矩形波制御回路により構成される発光ダイオード灯具 の制御回路。

【請求項2】 発光ダイオードを用いた灯具に対し、消 灯信号を受けてから所定時間、デューティー比を多段階 又は連続的に減らしながら、一定周期で矩形電流を出力 する矩形波制御回路により構成される発光ダイオード灯 10 具の制御回路。

【請求項3】 請求項1又は請求項2に記載の発光ダイ オード灯具の制御回路であって、

矩形電流を出力する一定周期が、人間の目で点滅と判断 できない周期であることを特徴とする発光ダイオード灯 具の制御回路。

【発明の詳細な説明】

(0001)

【発明の属する技術分野】この発明は、発光ダイオード 灯具の制御回路に関するものである。

[0002]

【従来の技術】発光ダイオードを光源として用いた灯具 で、明滅を繰り返し行うと、大光量の変化が瞬時のうち に起きるため、人間の目にとって負担が大きい。そこ で、省電力や意匠性等を重視し、高速応答性がそれほど 要求されない灯具の場合は、明滅の変化時に灯具に流す 電流値を電流値制御回路により連続的に変化させ、穏や かな発光にするようにしている。

[0003]

流す電流値を電流値制御回路により連続的に変化させる 従来の方式では、回路が複雑化すると共に、消費電力が 大きくなる。

【0004】この発明は、このような従来の技術に着目 してなされたものであり、回路が簡単で、消費電力の小 さい発光ダイオード灯具の制御回路を提供するものであ る。

[0005]

【課題を解決するための手段】請求項1に記載の発明 は、発光ダイオードを用いた灯具に対し、点灯信号を受 40 けてから所定時間、デューティー比を多段階又は連続的 に増しながら、一定周期で矩形電流を出力する矩形波制 御回路により構成される。

【0006】請求項1に記載の発明によれば、デューテ ィー比を増しながら一定周期で矩形電流を出力するた め、点号信号を受けてから、発光ダイオードの明るさが 徐々に増して点灯状態に至るため、人間の目に与える負 担が小さい。また、電流値を電流値制御回路により連続 的に変化させる従来の方式に比べ、回路が簡略で、消費 電力が小さい。

【0007】請求項2に記載の発明は、発光ダイオード を用いた灯具に対し、消灯信号を受けてから所定時間、 デューティー比を多段階又は連続的に減らしながら、一 定周期で矩形電流を出力する矩形波制御回路により構成 される。

【0008】請求項2に記載の発明によれば、デューテ ィー比を減らしながら一定周期で矩形電流を出力するた め、消灯信号を受けてから、発光ダイオードの明るさが 徐々に減って消灯状態に至るため、人間の目に与える負 担が小さい。

[0009]請求項3に記載の発明は、矩形電流を出力 する一定周期が、人間の目で点滅と判断できない周期で

【0010】請求項3に記載の発明によれば、人間の目 で点滅と判断できない周期で矩形電流を出力するため、 発光ダイオードの明るさが連続調光として変化する。

[0011]

【発明の実施の形態】本発明の好適な実施形態を、車両 用灯具の場合を例にして、図1及び図2基づいて説明す 20 る。

【0012】この実施形態に係る矩形波制御回路Aは、 矩形波発生回路A1と、該矩形波発生回路A1用の電源 回路A2と、灯具電流断続制御回路A3とから構成され る。矩形波発生回路A1は、電源回路A2、灯具電流断 続制御回路A3、及び灯具信号線Cに電気的に接続され る。車両電源線Bは、電源回路A2及び灯具電流断続制 - 御回路A3に電気的に接続される。灯具Dは、灯具電流 断続制御回路A3に電気的に接続される。

[0013] 矩形波発生回路A1は、図2におけるHレ [発明が解決しようとする課題] しかしながら、灯具に 30 ベルと、Lレベルで構成される矩形波を1サイクル発生 させる。図2中のSが1サイクルである。図2では、図 示の都合上、連続点灯状態の範囲Fに至るまで4サイク ルしか示されていないが、実際は多数のサイクルが存在 する。灯具電流断続制御回路A3は、矩形波発生回路A 1で発生した矩形波と同一波形の電流を灯具Dに流す。 灯具Dは矩形波のHレベル分の時間だけ発光する。尚、 1サイクルの周期は人間が点滅と判断できない周期にす る(例えば、50~60ヘルツ程度)。灯具信号線Cの Hレベルが点灯信号を示す。

> 【0014】そして、灯具信号線Cの電圧レベルが、L (消灯) →H (点灯) に変化した場合は、矩形波発生回 路A1は、矩形波の周期は変化せず、点灯信号を受けて から所定の時間だけ、1サイクル内におけるHレベルの 時間の割合(デューティー比)を多段階に増していく。 1 サイクルの周期が点滅と判断できない程度のものなの で、灯具Dの明るさは、図2の最下部のグラフに示すよ うに、連続調光として明るさを増し、1サイクルが全て Hレベル(即ち、Lレベルの時間が0)になった時点で 100%の点灯状態Fに至る。

【0015】従って、大光量の瞬時変化が解消され、視 50

3

覚的疲労の軽減、及びそれに起因する視認性の向上を図ることができる。また、従来の電流値制御回路と比較して、回路の簡素化及び消費電力の低減も図ることができる。更に、白熱球光源の発光と比較した際の違和感も低減できる。

【0016】最後に、灯具信号線Cの電圧レベルが、H (点灯)→L(消灯)に変化した場合は、1サイクル内 におけるHレベルの時間の割合(デューティー比)を徐 々に減らしていけば良い。

### [0017]

[発明の効果] この発明によれば、大光量の変化が瞬時のうちに起きるのを防げるため、人間の目に与える負担が小さい。また、従来の電流値制御回路と比較して、回

路の簡素化及び消費電力の低減を図ることができる。

【図面の簡単な説明】

【図1】矩形波制御回路を示すプロック図。

【図2】出力電圧レベルと明るさの変化を示すグラフ。 【符号の説明】

A 矩形波制御回路

A 1 矩形波発生回路

A 2 電源回路

A 3 灯具電流断続制御回路

10 B 車両電源線

C 灯具信号線

D 灯具

【図1】



[図2]

