MODIFICATION D'UNE SÉRIE STATISTIQUE

Un professeur a relevé les notes de ses élèves à un DST :

10; 11; 11; 9; 8; 8; 11; 12; 14; 8; 9; 10; 10; 11; 14; 13; 12; 11; 9; 10; 13; 12; 11; 9

1. Présenter ces résultats sous forme d'un tableau des effectifs.

A- Tableau des effectifs de la série statistiques Notes des devoirs sur table

xi = Notes	8	9	10	11	12	13	14
Effectifs	3	4	4	6	4	2	2
ECC (Effectif cumulés croisants)	3	7	11	17	21	23	25

2. Calculer la moyenne, la médiane, les premier et troisième quartiles de cette série statistique.

Moyenne

M(A) = (3*8) + (4*9) + (4*10) + (6*11) + (4*12) + (2*13) + (2*14) / 25 = 268/25 = 10,72La pour le 1er contrôle est 10,72 arrondie 10,7

Médiane

Médiane A = Q2 = 11

l'individu médian étant : 25 /2 + 0,5 = 13è individu de l'effectif ; la médiane, la valeur de la variable correspondant au 13è individu est la note 11

Premier quartile A : Q1 = 9

25*1/4 = 6,25, arrondi à 7 correspondant à la **note 9**

Troisième quartile A : Q3 = 12

25*3/4 = 18,75 arrondi à 19 correspondant à la **note 12**

3. Trouvant les notes trop rapprochées les unes des autres, le professeur décide de les ajuster en remplaçant la note x par la note x' = ax + b

Comment doit-il choisir a et b de façon à ce que le meilleur élève obtienne la note de 18 et le plus mauvais la note de 6 ? Utilisons la démarche d'une résolution d'un système d'équations à 2 inconnues :

x' = ax + b soit x' la valeur qui remplace x du départ.

$$a = ? et b = ?$$

$${ax + b = 18}$$

 ${ax + b = 6}$

Nous connaissons le nombre à augmenter ainsi que celui à diminuer \Rightarrow soit : x = 14 et x = 8

x' = 2x - 10

La fonction f(x) = 2x - 10 sera utilisée pour modifier la série statistique.

4. Calculer la moyenne, la médiane, les premier et troisième quartiles de la série des notes après ajustement.

f(x) = 2a - 10

Remplaçons tous les valeurs x de la distribution A pour obtenir les valeur x' de la nouvelle distribution B

f(9) = 8f(10) = 10

f(11) = 12

f(12) = 14f(13) = 16

f(14) = 18

APRÈS MODIFICATION: B - Tableau des effectifs de la série statistiques Notes des DST

x'i = Notes	6	8	10	12	14	16	18
Effectifs	3	4	4	6	4	2	2
ECC (Effectif cumulés croissants)	3	7	11	17	21	23	25

Moyenne B = M(B) = ((3*6) + (4*8) + (4*10) + (6*12) + (4*14) + (2*16) + (2*18))/25 = 286/25 = 11,44 soit 11,5 arrondie

Médiane B = Q2 = 12

l'individu médian : 25/2 + 0,5 = 13è individu ; ainsi Q2 est la note 12

Premier quartile B : Q1 = 8

25*1/4 = 6,25 arrondi à 7 et qui correspond à la **note 8**

Troisième quartile B : Q3 = 14

25*3/4 = 18,75 arrondi à 19 et qui correspond à la note 14

5. Représenter, sur le même graphique, le diagramme en boîte des notes avant et après ajustement.

