Recommending Movies from User Ratings

Sue Lim September 11, 2023

I. PROJECT BACKGROUND

Goal: Take Advantage of Existing User Ratings

Our client is a movie recommendation website

• It has millions of user ratings to take advantage of

It wants make personalized recommendations to its customers

Recommendation

Use model-based collaborative filtering (vs memory-based)

It gives the best performance

It scales well once trained

Use known predictors as much as possible

MovieLens Dataset

- **100,000 ratings** between 1996 and 2018
 - 600 users
 - 9,000 movies

Example

userId	movieId	rating	timestamp
1	1	4	1225734739
1	110	4	1225865086
1	158	4	1225733503
1	260	4.5	1225735204
1	356	5	1225735119

II. MAIN MODEL

Training: Different Models

Two Model-Based Models

- Singular Value Decomposition ("SVD")
- Alternating Least Squares ("ALS")

Three Memory-Based Models

- KNNBasic
- KNN-w-Means
- KNN-w-Baseline

Model-Based Collaborative Filtering

Memory-Based Collaborative Filtering

User-Based Collaborative Filtering

Result: RMSE and MAE Comparison

Result: Model-Based vs Memory-Based Methods

Memory-Based	Model-Based	
complete input data is required	abstraction (model) that represents input data	
does not scale well	scales well	
pre-computation not possible	pre-computation possible	
relies on similarity metrics between users and items	relies on matrix factorization	

ALS: Pre-Defined Predictors

Movie Genres

Movie Year

Rating Year

Result: ALS Example

Title	Genres	Rating
Out of Sight (1998)	Comedy Crime Drama Romance Thriller	5.0
Like Water for Chocolate (Como agua para choco	Drama Fantasy Romance	5.0
Iron Giant, The (1999)	Adventure Animation Children Drama Sci-Fi	5.0
Usual Suspects, The (1995)	Crime Mystery Thriller	5.0
Young Frankenstein (1974)	Comedy Fantasy	5.0
Brazil (1985)	Fantasy Sci-Fi	5.0
Enemy of the State (1998)	Action Thriller	4.0
Jungle Book, The (1967)	Animation Children Comedy Musical	4.0
Metropolitan (1990)	Comedy	4.0
Elizabeth (1998)	Drama	4.0
Independence Day (a.k.a. ID4) (1996)	Action Adventure Sci-Fi Thriller	4.0
Sex, Lies, and Videotape (1989)	Drama	4.0
Crying Game, The (1992)	Drama Romance Thriller	4.0
Star Wars: Episode I - The Phantom Menace (1999)	Action Adventure Sci-Fi	4.0
Midnight in the Garden of Good and Evil (1997)	Crime Drama Mystery	3.0
My Best Friend's Wedding (1997)	Comedy Romance	2.0

Result: ALS Example

Comedy -

Factor	Coefficient	
user_factor_1	0.020771	
user_factor_2	-0.010140	
user_factor_3	0.000579	
user_factor_4	0.003673	
user_factor_5	0.027567	
user_factor_6	-0.005106	
user_factor_7	0.002362	
user_factor_8	0.001284	
user_factor_9	-0.001211	
user_factor_10	-0.010920	
user_factor_11	0.000000	
user_factor_12	-0.009925	
user factor 13	0.039773	
user_factor_14	-0.051627	
user_factor_15	0.024520	

		_
user_factor_16	-0.021288	
user factor 17	0.013482	
user_factor_18	0.060813	← Thriller
user_factor_19	0.038530	
user_factor_20	0.005831	
user_factor_21	0.005831	
user_factor_22	0.000000	
user_factor_23	0.000000	
user factor 24	0.049703	
user_factor_25	0.067923	← Fantasy
user_factor_26	0.000000	
user_factor_27	0.000000	
user_factor_28	-0.014799	
user_factor_29	-0.008877	
user_factor_30	0.000000	
user_factor_intercept	0.396125	

II. CONCLUSION

Recommendation & Key Takeaways

Use model-based collaborative filtering

It gives the best performance

It scales well once trained	complete input data is required	abstraction (model) that represents input dat
	does not scale well	scales well
	pre-computation not possible	pre-computation possible

Memory-Based

relies on similarity metrics between users and items

Use known predictors

Model-Based

relies on matrix factorization

Next Steps

 Look for ways to gather meaningful predictors for users and movies

• E.g., gender, race, etc. for users and features for movies

Thank You

Sue Lim

- Email: <u>sue.suyeonlim@gmail.com</u>
- GitHub: https://github.com/suesuyeonlim
- LinkedIn: https://www.linkedin.com/in/suelim/