

Infraestrutura de comunicação

2025 | MARÇO

Agenda

Serviços da camada de transporte

Serviços

- Fornece serviços de comunicação diretamente aos processos de aplicação em hospedeiros diferentes
 - a. Trata-se da comunicação lógica entre processos
- Protocolos de camada de transporte não executam em roteadores da rede

Serviços

- A camada de transporte trabalha com segmentos
 - a. O transmissor converte mensagens da camada de aplicação em segmentos
 - D. O receptor remonta segmentos em mensagens da camada de aplicação
- A Internet apresenta o TCP, o UDP e o QUIC na camada de transporte

Serviços

Transporte x redes

- Comunicação lógica entre processos X comunicação lógica entre hospedeiros
- Os serviços da camada de redes são estendidos pelos serviços providos pela camada de transporte

Protocolos de transporte

- UDP User Datagram Protocol
 - a. Não provê garantias
- TCP Transmission Control Protocol
 - a. Confiável, orientado à conexão, controle de congestionamento e fluxo
- QUIC Quick UDP Internet connections

Multiplexação e demultiplexação

O que é?

- A comunicação precisa ser identificada
- A multiplexação empacota mensagens da aplicação em segmentos de transporte a serem enviados
- A demultiplexação recebe segmentos, os desempacota e entrega mensagens à camada de aplicação

O que é?

O que é?

Não orientada à conexão

Orientada à conexão

Serviços WEB

UDP

- Protocolo de transporte mínimo
 - a. Serviço de melhor esforço
 - b. Sem conexão
- Qual o uso do UDP?
- É possível ter um transporte confiável com UDP?

Segmento UDP

Formato do segmento UDP

Por que o UDP existe?

- Não tem estabelecimento de conexão
- Não mantém estado da conexão
- Cabeçalho reduzido
- Não há controle de congestionamento

Soma de verificação

- A ideia é detectar segmentos transmitidos com erros
 - a. O campo no cabeçalho recebe o complemento de 1 da soma de todas as palavras de 16 bits do segmento
 - b. O receptor verifica se o valor total computado da soma de todas as palavras de 16 bits é igual a 11111111111111

Soma de verificação

- O que fazer quando um erro é detectado?
- Nesse caso, temos garantias da integridade do pacote?

Transferência confiável de dados

Transferência confiável de dados

- Trata-se de uma questão central para redes de computadores
 - a. Não está restrita a protocolos da camada de transporte
- Quanto menos confiável o canal de comunicação, mais complexo o protocolo que provê confiabilidade

Transferência confiável de dados

Transferência confiável de dados

- Qual a diferença entre uma comunicação unidirecional e bidirecional do ponto de vista da confiabilidade?
- É possível representar o comportamento do protocolo de transporte através de máquinas de estados
 - a. 0 emissor e o receptor podem ser representados

Um canal perfeitamente confiável

Um canal perfeitamente confiável

- Faz-se necessário o uso de reconhecimentos positivos e negativos
- Protocolos ARQ (Automatic Repeat Request solicitação automática de repetição)
 - a. Detecção de erros
 - b. Realimentação do destinatário
 - C. Retransmissão

- Qual o problema do modelo de protocolo apresentado?
- Quais as possíveis abordagens para contorná-los?

Um canal com perda e erros de

bits

Um canal com perda e erros de bits

Um canal com perda e erros de bits

Transferência confiável paralela

- Qual o problema das abordagens apresentadas até aqui?
- Como seria possível resolver esses problemas?

Transferência confiável paralela

Transferência confiável paralela

Go-Back-N

- O transmissor pode ter até N pacotes não reconhecidos no "tubo"
- Receptor envia apenas acks cumulativos
- Transmissor possui um temporizador para o pacote mais antigo ainda não reconhecido
 - **a.** Se o temporizador estourar, retransmite todos os pacotes ainda não reconhecidos

Repetição seletiva

- O transmissor pode ter até N pacotes não reconhecidos no "tubo"
- Receptor envia acks individuais para cada pacote
- Transmissor possui um temporizador para cada pacote ainda não reconhecido
 - **a.** Se o temporizador estourar, retransmite apenas o pacote correspondente

KAHOOT

