Спектральное представление данных

Поскольку многие явления в природе имеют циклический характер, широкое практическое применение получила аппроксимация дискретных периодических функций тригонометрическими полиномами вида:

$$T(x) = \sum_{k} (a_k \cos(\alpha_k x) + b_k \sin(\alpha_k x)),$$

где $\alpha_k = \frac{2\pi k}{L}$ - частота k -ой гармоники, L - период, a_k , b_k - коэффициенты разложения.

Такой подход позволяет представить сложную циклическую структуру в виде суперпозиции простых периодических функций (элементарных гармоник).

Рассмотрим таблично заданную на периоде L функцию $y_i(x_i)$ с равномерным распределением узлов ($x_i = x_0 + ih$, h = L/n , i = 0, n).

x_i	x_0	x_1	•••	x_n
y_i	y_0	y_1	•••	y_n

Тогда, если n - четно (n=2m), существует единственный интерполяционный тригонометрический полином $T_m(x)$ степени m=n/2, удовлетворяющий условиям $T_m(x_i)=y_i$, $i=\overline{0,n}$:

$$T_m(x) = a_0 + \sum_{k=1}^{m} a_k \cos\left(\frac{2\pi k}{L}(x - x_0)\right) + b_k \sin\left(\frac{2\pi k}{L}(x - x_0)\right).$$

Коэффициенты разложения определяются следующим образом:

$$\begin{split} a_0 &= \frac{1}{n} \sum_{i=0}^{n-1} y_i \;, \\ a_k &= \frac{2}{n} \sum_{i=0}^{n-1} y_i \cos(2\pi k \frac{i}{n}) \;, \quad b_k = \frac{2}{n} \sum_{i=0}^{n-1} y_i \sin(2\pi k \frac{i}{n}) \;, \quad k = \overline{1, m-1} \;, \\ a_m &= \frac{1}{n} \sum_{i=0}^{n-1} y_i \cos(i\pi) \;. \end{split}$$

Отметим, что периодичность исходной функции $y_i(x_i)$ предполагает, что $y_0=y_n$. Если это условие не выполнено, то построенный тригонометрический полином будет удовлетворять условиям интерполяции во всех узлах, кроме последнего, т.е. $T_m(x_i)=y_i$, $i=\overline{0,n-1}$. В последнем узле будет выполняться условие периодичности $T_m(x_n)=T_m(x_0)$.