

Método Mestre para resolver recorrências

- Além dos métodos de "Desenrolar" a recursão (recurrence trees) e "Chute" inicial (substitution method) existe um método alternativo para solucionar problemas genéricos de recorrência.
- O método mestre foi apresentado incialmente por Jon Bentley, Dorothea Blostein e James B. Saxe em 1980, como um método unificado para resolver recorrências.
- O Método Mestre provê uma "receita de bolo" para resolver recorrências de forma:

$$T(n) = aT(n/b) + f(n)$$

onde $a \ge 1$ e b > 1 são constantes e f(n) é uma função assintoticamente positiva.

• Para aplicar o método mestre precisamos memorizar três casos e com eles seremos capazes de resolver muitos problemas de recorrência facilmente.

Método Mestre para resolver recorrências

TEOREMA T.1 O método mestre

• Permita que $a \ge 1$ e b > 1 sejam constantes, f(n) é uma função e deixe que T(n) seja definido por uma recorrência em inteiros não negativos.

$$T(n) = aT(n/b) + f(n)$$

onde interpretamos que n/b pode significar $\lfloor n/b \rfloor$ ou $\lceil n/b \rceil$. Então T(n) possuí os seguintes limites assintóticos:

- Caso 1: Se $f(n) = O(n^{\log_b a \epsilon})$ para alguma constante $\epsilon > 0$, então $T(n) = O(n^{\log_b a})$.
- Caso 2: Se $f(n) = \Theta(n^{\log_b a})$, então $T(n) = \Theta(n^{\log_b a} \log_2 n)$.
- Caso 3: Se $f(n) = \Omega(n^{\log_b a + \epsilon})$ para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$ para alguma constante c < 1 e todos os n suficientemente grandes, então $T(n) = \Theta(f(n))$.

Método Mestre para resolver recorrências

- ightharpoonup Caso 1: Se $f(n) = O(n^{\log_b a \epsilon})$ para alguma constante $\epsilon > 0$, então $T(n) = O(n^{\log_b a})$.
- ightharpoonup Caso 2: Se $f(n) = \Theta(n^{\log_b a})$, então $T(n) = \Theta(n^{\log_b a} \log_2 n)$.
- * Caso 3: Se $f(n) = \Omega(n^{\log_b a + \epsilon})$ para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$ para alguma constante c < 1 e todos os n suficientemente grandes, então $T(n) = \Theta(f(n))$.
- Dada a recorrência T(n) = aT(n/b) + f(n), em cada um dos casos acima comparamos a função f(n) com a função $n^{\log_b a}$ que nada mais é do que o custo todas de todas as folhas da nossa recorrência.
- O maior valor entre as duas funções determina a solução da recorrência.

Método Mestre para resolver recorrências

- riangle Caso 1: Se $f(n) = O(n^{\log_b a \epsilon})$ para alguma constante $\epsilon > 0$, então $T(n) = O(n^{\log_b a})$.
- \Leftrightarrow Caso 2: Se $f(n) = \Theta(n^{\log_b a})$, então $T(n) = \Theta(n^{\log_b a} \log_2 n)$.
- * Caso 3: Se $f(n) = \Omega(n^{\log_b a + \epsilon})$ para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$ para alguma constante c < 1 e todos os n suficientemente grandes, então $T(n) = \Theta(f(n))$.
- No caso 1, $n^{\log_b a}$ é maior que f(n), então o resultado é $T(n) = \Theta(n^{\log_b a})$.

- T(n) = aT(n/b) + f(n) = 4T(n/2) + nonde a = 4, b = 2, f(n) = n
- Então temos que $n^{\log_b a} = n^{\log_2 4} = n^2 = \Theta(n^2)$
- Como $f(n) = O(n^{\log_b a \epsilon})$, onde $\epsilon = 1$, pois $n^{\log_b a \epsilon} = n^{\log_2 4 1} = n^{2 1} = n$.
- Portanto, $n^{\log_b a} > f(n)$, a solução é $T(n) = \Theta(n^2)$.

Método Mestre para resolver recorrências

- ightharpoonup Caso 1: Se $f(n) = O(n^{\log_b a \epsilon})$ para alguma constante $\epsilon > 0$, então $T(n) = O(n^{\log_b a})$.
- \Leftrightarrow Caso 2: Se $f(n) = \Theta(n^{\log_b a})$, então $T(n) = \Theta(n^{\log_b a} \log_2 n)$.
- * Caso 3: Se $f(n) = \Omega(n^{\log_b a + \epsilon})$ para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$ para alguma constante c < 1 e todos os n suficientemente grandes, então $T(n) = \Theta(f(n))$.
- No caso 2, se as duas funções são do mesmo tamanho o resultado é $T(n) = \Theta(n^{\log_b a} \log_2 n) = \Theta(f(n) \log_2 n)$.

- $T(n) = aT(n/b) + f(n) = 4T(n/2) + n^2$ onde $a = 4, b = 2, f(n) = n^2$
- Então temos que $n^{\log_b a} = n^{\log_2 4} = n^2 = \Theta(n^2)$
- Como $f(n) = O(n^{\log_b a})$, pois $n^{\log_b a} = n^{\log_2 4} = n^2$.
- Portanto, $n^{\log_b a} = f(n)$, a solução é $T(n) = \Theta(n^2 \log_2 n) = \Theta(f(n) \log_2 n)$.

Método Mestre para resolver recorrências

- riangle Caso 1: Se $f(n) = O(n^{\log_b a \epsilon})$ para alguma constante $\epsilon > 0$, então $T(n) = O(n^{\log_b a})$.
- \Leftrightarrow Caso 2: Se $f(n) = \Theta(n^{\log_b a})$, então $T(n) = \Theta(n^{\log_b a} \log_2 n)$.
- * Caso 3: Se $f(n) = \Omega(n^{\log_b a + \epsilon})$ para alguma constante $\epsilon > 0$, e se $af(n/b) \le cf(n)$ para alguma constante c < 1 e todos os n suficientemente grandes, então $T(n) = \Theta(f(n))$.
- No caso 3, $n^{\log_b a}$ é menor que f(n), então o resultado é $T(n) = \Theta(f(n))$.

- $T(n) = aT(n/b) + f(n) = 4T(n/2) + n^3$ onde $a = 4, b = 2, f(n) = n^3$
- Então temos que $n^{\log_b a} = n^{\log_2 4} = n^2 = \Theta(n^2)$
- Como $f(n) = \Omega(n^{\log_b a + \epsilon})$, onde $\epsilon = 1$, pois $n^{\log_b a + \epsilon} = n^{\log_2 4 + 1} = n^{2+1} = n^3$.
- $af(n/b) \le cf(n) \to 4(n/2)^3 \le cn^3 \to \frac{1}{2}n^3 \le cn^3$ onde $c = \frac{1}{2} < 1$.
- Portanto, $n^{\log_b a} < f(n)$, a solução é $T(n) = \Theta(n^3) = \Theta(f(n))$.