Normalization 1NF,4NF....etc anything in lab

Anything about exam

Databases - Tutorial 07 Normalization in SQL

Hamza Salem - Innopolis University

EMPLOYEE																
Fname Minit	Lname S	Ssn Bdate	Address	Sex	Salary	Super_ssn	Dno									
DEPARTMENT Dname Dnumber	er Mgr_ss	n Mgr_start	_date													
Dept_Locations Dnumber Dloca	-															
PROJECT Pname Pnumber	er Plocation	on Dnum				/ 14. Retr. 00 and \$40		ll em	ployee	es in d	epartn	nent 5	whos	se salai	ry is be	etweer
WORKS_ON Essn Pno H	Hours															
DEPENDENT Essn Depende	ent_name	Sex Bdate	Relation	ship												
					orde	ry 15. Retrered by depname, then	artme	nt and	d, with							

EMPLOYEE			
Fname Minit Lname <u>Ssn</u> Bdate Address Sex	Salary	Super_ssn Dno	
Department Dname Dnumber Mgr_ssn Mgr_start_date			
Dnumber Dlocation			
PROJECT Pname Pnumber Plocation Dnum		14. Retrieve a 0 and \$40,000.	all employees in department 5 whose salary is between
WORKS_ON Essn Pno Hours DEPENDENT	Q14:	SELECT FROM WHERE	* EMPLOYEE (Salary BETWEEN 30000 AND 40000) AND Dno = 5;
Essn Dependent_name Sex Bdate Relationship	order		a list of employees and the projects they are working on, ent and, within each department, ordered alphabetically by name.
	Q15:	SELECT FROM	D.Dname, E.Lname, E.Fname, P.Pname DEPARTMENT AS D, EMPLOYEE AS E, WORKS_ON AS W, PROJECT AS P
		WHERE	D.Dnumber = E.Dno AND E.Ssn = W.Essn AND W.Pno = P.Pnumber
		ORDER BY	D.Dname, E.Lname, E.Fname;

Students who missed ½ labs from the first 5 labs

Import DVDrental DB and Submit the following queries

DB link: https://www.postgresqltutorial.com/postgresql-sample-database/

Q1: Find customers that have rented movies priced \$14?

Q2: Find customers that have rented movies priced \$14 or that they spent more than \$2.99 on individual rentals, but have spent a total less than \$5?

Q3: what is the statement for this query..

SELECT a. customer id, a.first name, a.last name, b.total FROM customer a INNER JOIN (SELECT customer id, SUM(amount) as total FROM payment GROUP BY customer id ORDER BY total desc LIMIT 10) b ON a.customer id=b.customer id;

Q4: Display How Many Rentals Were Returned Late, On Time, Or Have Not Been Returned?

- Submit using github and add @enghamzasalem as collaborator.
- Full garde is **70**% of the first 5 labs.
- Q1,Q2,Q4 should include the output of the query as text file too.

Contents

- Normalization

Organizing

Normalization in Databases

Database Normalization is a technique of organizing the data in the database. Normalization is a systematic approach of **decomposing tables** to eliminate data redundancy(repetition) and undesirable characteristics like Insertion, Update and Deletion Anomalies. It is a multi-step process that puts data into tabular form, removing duplicated data from the relation tables.

Why ?What is the purpose?

- Eliminating redundant(useless) data.
- Ensuring data dependencies make sense i.e data is logically stored.

For Example:

Old Database

ID	Name	Value	Page
1	Model	Accord	Accord.html
2	Brand	Honda	Accord.html
3	Model	Civic	Civic.html
4	Brand	Honda	Civic.html
5	Model	CR-V	CR-V.html
6	Brand	Honda	CR-V.html

New Database

	ID	Brand	Model
	1	1	Accord
Car	2	1	Civic
U	3	1	CR-V
	3	1	CR-V

o	ID	Brand Name
Brand	1	Honda

Data Normalization form

- 1) First Normal Form
- 2) Second Normal Form
- 3) Third Normal Form
- 4) BCNF

First Normal Form (1NF)

- For a table to be in the First Normal Form, it should follow the following 4 rules:
 - It should only have single(atomic) valued attributes/columns.
 - Values stored in a column should be of the same domain
 - All the columns in a table should have unique names.
 - And the order in which data is stored, does not matter.

roll_no	name	subject	
101	Akon	OS, CN	
103	Ckon	Java	
102	Bkon	C, C++	
	roll_no	name	
	roll no	name	
	101	Akon	
	101	Akon	
	103	Ckon	
	102	Bkon	
	102	Bkon	

subject

OS

CN

Java

C++

Second Normal Form (2NF)

- For a table to be in the Second Normal Form,
 - o It should be in the First Normal form.
 - And, it should not have **Partial Dependency.**

Functional dependency

But what is "Dependency"?

student_id	name	reg_no	branch	address
10	Akon	07-WY	CSE	Kerala
11	Akon	08-WY	IT	Gujarat

Partial dependency

score_id	student_id	subject_id	marks	teacher
1	10	1	70	Java Teacher
2	10	2	75	C++ Teacher
3	11	1	80	Java Teacher

subject_id	subject_name	teacher				
1	Java	Java Teacher				
2	C++	C++ Teacher	score_id	student_id	subject_id	marks
3	Php	Php Teacher	1	10	1	70
			2	10	2	75
			3	11	1	80

Example:

TABLE_PURCHASE_DETAIL

CustomerID	Store ID	Purchase Location
1	1	Los Angeles
1	3	San Francisco
2	1	Los Angeles
3	2	New Y ork
4	3.	San Francisco

TABLE_PURCHASE

Customer ID	Store ID
1	1
1	3
2	1
3	2
4	3

TABLE_STORE

Store ID	Purchase Location
1	Los Angeles
2	New York
3	San Francisco

Third Normal Form (3NF)

A table is said to be in the Third Normal Form when,

- 1. It is in the Second Normal form.
- 2. And, it doesn't have Transitive Dependency.

UNIT CODE	UNITNAME	COURSE CODE	COURSE NAME
1234	DATABASE	T4TUTORIALS-CS1	COMPUTING
5678	C++	T4TUTORIALS-CS1	COMPUTING
7895	OPERATING SYSTEM	T4TUTORIALS-CS1	COMPUTING
4765	OOP	T4TUTORIALS-CS2	BUSINESS& COMPUTING

Transitive Dependency

Transitive Dependency

The advantage of removing transitive dependency is,

- Amount of data duplication is reduced.
- Data integrity achieved.

Let us try

Com id	Com Name	Prod id	Prod Name	Prod Quantity
New Electronics	T4Tutorials1	LCD	333	
	New Electronics	T4Tutorials2	LED	100
2.	Khan Electronic	T4Tutorials3	Monitor	140
3.	Neon Electronics	T4Tutorials3	UPS	565

Boyce-Codd Normal Form (BCNF)

For a table to satisfy the Boyce-Codd Normal Form, it should satisfy the following two conditions:

- 1. It should be in the Third Normal Form.
- 2. And, for any dependency A → B, A should be a super key.

Super key vs primary key

Dependency A → B, A should be a super key

This table satisfies the 1st Normal form because all the values are atomic, column names are unique and all the values stored in a particular column are of same domain.

This table also satisfies the 2nd Normal Form as there is no Partial Dependency.

And, there is no Transitive Dependency, hence the table also satisfies the 3rd Normal Form.

student_id	subject	professor
101	Java	P.Java
101	C++	Р.Срр
102	Java	P.Java2
103	C#	P.Chash
104	Java	P.Java

Dependency A → B, A should be a super key

student_id, subject form primary key

But, there is one more dependency, professor \rightarrow subject.

And while subject is a prime attribute, professor is a non-prime attribute, which is not allowed by BCNF

student_id	subject	professor
101	Java	P.Java
101	C++	Р.Срр
102	Java	P.Java2
103	C#	P.Chash
104	Java	P.Java

student_id	subject	professor		
101	Java	P.Java		
101	C++	Р.Срр		
102	Java	P.Java2		
103	C#	P.Chash		
104	Java	P.Java		
		P_	id	professor
		1		P.Java
		2		Р.Срр
stude	nt_id			p_id
101				1
101				2
,				

subject

Java

C++

Fourth Normal Form (4NF)

For a table to satisfy the Fourth Normal Form, it should satisfy the following two conditions:

- 1. It should be in the Boyce-Codd Normal Form.
- 2. And, the table should not have any **Multi-valued Dependency**.

Multi-valued Dependency

- For a dependency A → B, if for a single value of A, multiple value of B exists, then the table may have multi-valued dependency.
- 2. Also, a table should have at-least 3 columns for it to have a multivalued dependency.
- 3. And, for a relation R(A,B,C), if there is a multi-valued dependency between, A and B, then B and C should be independent of each other.

s_id	course	hobby
1	Science	Cricket
1	Maths	Hockey
2	C#	Cricket
2	Php	Hockey

s_id	course
1	Science
1	Maths
2	C#
2	Php

s_id	hobby
1	Cricket
1	Hockey
2	Cricket
2	Hockey

Useful links

- https://t4tutorials.com/third-normal-form-examples-3nf/
- https://www.geeksforgeeks.org/difference-between-primary-key-and-super-key/#:":text=1.-,Super%20Key%20is%20an%20attribute%20(or%20set%20of%20attributes)%20that,all%20attributes%20in%20a%20relation.

_