高雄市高雄高級中學 107 學年度第二學期高二第二次段考自然組數學試題

一、複選題(每題6分,錯一個給3分,錯兩個以上不給分)

1.設 $A = \left[a_{ij}\right]_{8\times8}, B = \left[b_{ij}\right]_{8\times8}, C = \left[c_{ij}\right]_{8\times8}$,若 $a_{ij} = i^2 + 2j$, $A = B + C 且 B^T = B$, $C^T = -C$,則下列敘述那些為真?

- (B) $\sum_{j=1}^{8} \sum_{i=1}^{8} a_{ij} + \uparrow \uparrow \uparrow \uparrow \sum_{j=1}^{8} \sum_{i=1}^{8} b_{ij}$
- (C) $\sum_{j=1}^{8} \sum_{i=1}^{8} c_{ij} = 0$
- (D) $a_{55} = b_{55}$
- (E) $b_{47} > 43$
- 2. 設 A, B, C 為二階方陣, I 為二階單位方陣, 則下列敘述何者為真?
 - (A) $\stackrel{\text{+-}}{=} AB = C \coprod \det A \neq 0$,則 $B = CA^{-1}$
 - (B) $\sum_{k=1}^{5} \det(kA) = 15 \det(A)$
 - (C)若A為轉移矩陣,則 $\frac{1}{16}(A+I)^4$ 亦為轉移矩陣
 - (D) 若 A 為轉移矩陣,且 $A \neq I$, $det(A) \neq 0$,則 A^{-1} 必不為轉移矩陣
 - (E)若P,Q為平面上二相異點,則經A變換後得P,Q亦為平面上二相異點
- 3. 設 $A(\sqrt{3},1)$, $B(-1,\sqrt{3})$ 為座標平面上兩點經二階方陣M之線性變換後變換為A'(0,4),B'(-4,0),則下列敘述那些為真?
 - (A) 點 $P(\sqrt{2},\sqrt{2})$ 經M變換後的點會落在第一象限
 - (B) 設點C為y軸上一點且C經M3變換為點C,則點C必落在y軸上
 - (C) 設O 為原點且D 經M 變換為點D ,若 \overline{OD} = 2 ,則 \overline{DD} > 3
 - (D) 滿足 M^n 為以原點為伸縮中心的伸縮變換之最小正整數n 為3
 - (E) EQ 為半徑為2的圓上異於A, B 的點且經M 變換為Q ,則 ΔA B Q 的面積必小於20
- 二、填充題

2. 設矩陣
$$A \cdot B$$
滿足 $A + B^{T} = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$, $A^{T} - B = \begin{bmatrix} 5 & -2 & 1 \\ -6 & 3 & 4 \\ 1 & 10 & -3 \end{bmatrix}$,若 $B = [b_{ij}]$,試求 $b_{12} + b_{23} = ?$

3. 設
$$A = [a_{ij}]_{i_{0\times 10}}$$
,其中 $a_{ij} = \begin{cases} i & i \geq j \\ j & i \leq j \end{cases}$,試求 A 之所有元總和?

4. 今將三元一次聯立方程式
$$\begin{cases} x+y-2z=1\\ 2x-y+az=4 \ge$$
 增廣矩陣做列運算得
$$\begin{bmatrix} 1 & 1 & -2 & 1\\ 0 & -3 & 10 & 2\\ 0 & 0 & 0 & 0 \end{bmatrix}$$
,試求數對 (a,b,c) 之值

5. 將矩陣
$$\begin{bmatrix} 3 & -a & 1 & 0 \\ b & -5 & 0 & 1 \end{bmatrix}$$
做數次列運算得矩陣 $\begin{bmatrix} 1 & 0 & -5 & 8 \\ 2 & 1 & -12 & 19 \end{bmatrix}$,則聯立方程式 $\begin{cases} 3x - ay = 3 \\ bx - 5y = 1 \end{cases}$ 的解為何?

7. 設
$$A = \begin{bmatrix} \sin \theta & -\cos \theta \\ \cos \theta & \sin \theta \end{bmatrix}$$
, $0^{\circ} \le \theta \le 90^{\circ}$,若滿足 $A^{10} = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$ 的所有 θ 總和為 k° ,試求 k 值

8. 設
$$a,m \in \mathbb{R}$$
,若平面變換 $\begin{bmatrix} a & 1 \\ -1 & 0 \end{bmatrix}$ 將直線 $2x-3y=7$ 變換成直線 $mx+5y=-7$,試求數對 (a,m)

9. 一袋中有編號1,2,3,4 共四顆球,今每次從袋中取出**兩顆**球紀錄其**數字和**後並放回袋中(假設任兩個號碼被取到的機會均相等),如此繼續n次,設 a_n 表示記錄到n次時,**點數和為奇數**的機率; b_n 表示記錄到n次時,

點數和為偶數的機率,若方陣
$$A$$
滿足 $\begin{bmatrix} a_{n+1} \\ b_{n+1} \end{bmatrix} = A \begin{bmatrix} a_n \\ b_n \end{bmatrix}$,則

- (1) A = ?
- (2) $a_4 = ?$

(3) 設
$$P = \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$$
,若 $P^{-1}A^4P = \begin{bmatrix} r & 0 \\ 0 & s \end{bmatrix}$,試求數對 (r,s)

(4) 若
$$a_{10} = \frac{1}{2} - q(\frac{1}{k})^{10}, q, k \in N, q \le 1000$$
,試求數對 (q, k) 之值

- 10. **科霸**學了矩陣運算後把地圖上的點和空間中的點做一個對應,首先他找了一個矩陣 $M_{3\times2}$ 滿足點(3,1)和點(5,2) 經 $M_{3\times2}$ 過變換後依序對應成點(1,2,3) 和點(-2,-3,-1),若今天點(m,n)對應成點(7,12,11),試求數對(m,n)
- 11.平面上將點A(10,-5)先以原點為中心逆時針旋轉 90° 後,再對直線y=2x作鏡射得點B,求B之座標

$$12. 設 A = \begin{bmatrix} \cos\theta & \sin\theta \\ \cos 2\theta & \sin 2\theta \end{bmatrix}, B = \begin{bmatrix} \cos 2\theta & \sin 2\theta \\ \sin 3\theta & \cos 3\theta \end{bmatrix} \\ \pm 0^{\circ} \le \theta \le 180^{\circ}, 求滿足(AB)^{-1}不存在之 \theta 個數$$

高雄市高雄高級中學 107 學年度第二學期高二第二次段考自然組數學答案卷

一、 複選題(每題6分,錯一個給3分,錯兩個以上不給分)

1.	ACDE	2.	С	3.	BCE

二、 填充題

格數	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
總分	8	16	24	30	35	40	45	50	55	60	65	70	75	79	82

$1. \qquad \begin{bmatrix} 5 & 17 \\ 12 & 21 \end{bmatrix}$	2. (3,2)	3. 715	4. $(6,\frac{3}{2},4)$
5. (-7,-3)	$6. \qquad \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}$	7. 108	8. (1,3)
9(1). $\begin{bmatrix} \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} \end{bmatrix}$	9(2). $\frac{40}{81}$	9(3). $(1,\frac{1}{81})$	9(4). (512,6)
10. (-1,-1)	11. (5,10)	12. 7	