DM nº3

Marche aléatoire dans un labyrinthe

Un labyrinthe est constitué de cinq salles, numérotées de 1 à 5, qui communiquent par des tubes selon le schéma ci-dessous

Un rat se déplace dans ce labyrinthe, et on relève sa position en des instants numérotés $0, 1, 2, \ldots, k, \ldots$ $(k \in \mathbb{N})$. On admet que, si le rat se trouve à l'instant k $(k \in \mathbb{N})$ dans la salle numéro i $(1 \le i \le 5)$, alors il empruntera aléatoirement l'un des tubes de la salle i et se trouvera donc, à l'instant k+1, avec équiprobabilité, dans l'une quelconque des salles communiquant avec la salle i. On admet que l'on peut introduire, pour tout k entier naturel, une variable aléatoire S_k donnant le numéro de la salle où se trouve le rat à l'instant k. A titre d'exemple, on aura donc pour tout entier $k \ge 0$,

$$\mathbb{P}(S_{k+1} = 1 | S_k = 2) = \mathbb{P}(S_{k+1} = 3 | S_k = 2) = \mathbb{P}(S_{k+1} = 5 | S_k = 2) = \frac{1}{3}$$

Pour tout $k \in \mathbb{N}$, on introduit la matrice colonne

$$X_k = \begin{pmatrix} \mathbb{P}(S_k = 1) \\ \mathbb{P}(S_k = 2) \\ \mathbb{P}(S_k = 3) \\ \mathbb{P}(S_k = 4) \\ \mathbb{P}(S_k = 5) \end{pmatrix} \in \mathcal{M}_{5,1}(\mathbb{R})$$

1 Premiers pas

- 1. Montrer que $\mathbb{P}(S_{k+1}=1)$ s'écrit comme combinaison linéaire des $\mathbb{P}(S_k=i)$ pour $i=1,\ldots,5$.
- 2. Expliciter la matrice carrée $B \in \mathcal{M}_5(\mathbb{R})$ telle que $X_{k+1} = BX_k$ pour tout entier naturel k.
- 3. Montrer que le réel 1 est valeur propre de ${}^t\!B$ et expliciter un vecteur propre associé.

On suppose que la loi de la variable S_0 est donnée par

$$X_0 = \begin{pmatrix} 1/4\\ 3/16\\ 3/16\\ 3/16\\ 3/16 \end{pmatrix} \tag{1}$$

- 4. Montrer qu'alors les variables alétoires S_k ont toutes la même loi.
- 5. Est-ce que S_0 et S_1 sont indépendantes?

2 Convergence dans $\mathcal{M}_n(\mathbb{R})$

Soit u un endomorphisme d'un \mathbb{R} -espace vectoriel E de dimension finie. On suppose qu'il existe une norme $\|.\|$ sur E telle que l'inégalité suivante soit satisfaite pour tout $x \in E$,

$$||u(x)|| \le ||x||$$

Pour tout entier naturel k non nul, on considère l'endomorphisme

$$r_k = \frac{1}{k} \sum_{l=0}^{k-1} u^l = \frac{1}{k} (I_E + u + u^2 + \dots + u^{k-1})$$

où I_E représente l'endomorphisme identité de E.

- 6. Soit $x \in \ker(u I_E)$. Déterminer $\lim_{k \to +\infty} r_k(x)$.
- 7. Soit $x \in \text{Im}(u I_E)$. Montrer que $\lim_{k \to +\infty} r_k(x) = 0_E$.
- 8. En déduire que $E = \ker(u I_E) \oplus \operatorname{Im}(u I_E)$.
- 9. Soit x un vecteur quelconque. Montrer que la suite $(r_k(x))_{k\in\mathbb{N}^*}$ converge vers un vecteur de E, que l'on notera p(x). Interpréter géométriquement l'application $p:E\to E$ ainsi définie.

Soit $A \in \mathcal{M}_n(\mathbb{R})$ une matrice carrée d'ordre n à coefficients réels. On suppose qu'il existe une norme, aussi notée $\|\cdot\|$ sur l'espace vectoriel $\mathcal{M}_{n,1}(\mathbb{R})$ identifié à \mathbb{R}^n , telle que, pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$, on ait $\|AX\| \leq \|X\|$. Pour tout k entier naturel non nul, on considère la matrice

$$R_k = \frac{1}{k} \sum_{l=0}^{k-1} A^l = \frac{1}{k} (I_n + A + A^2 + \dots + A^{k-1})$$
 (2)

où I_n est la matrice identité de $\mathcal{M}_n(\mathbb{R})$.

10. Montrer que la suite de matrices $(R_k)_{k\in\mathbb{N}^*}$ converge dans $\mathcal{M}_n(\mathbb{R})$ vers une matrice P, telle que $P^2=P$.

3 Matrices stochastiques

On fixe dans cette partie un entier $n \geq 2$.

Définition 1 On notera $U \in \mathcal{M}_{n,1}(\mathbb{R})$ la matrice colonne dont tous les coefficients valent 1.

Définition 2 Une matrice carrée $A=(a_{i,j})\in \mathcal{M}_n(\mathbb{R})$ est dite **stochastique** si elle vérifie les conditions suivantes :

$$\forall (i,j) \in [|1,n|]^2, \ a_{i,j} \ge 0 \tag{3}$$

$$\forall i \in [|1, n|], \ \sum_{j=1}^{n} a_{i,j} = 1$$
 (4)

Nous dirons aussi qu'une matrice ligne $L = (\lambda_1, \ldots, \lambda_n) \in \mathcal{M}_{1,n}(\mathbb{R})$ est stochastique lorsque ses coefficients λ_i sont tous positifs ou nuls, et de somme égale à 1.

- 11. Vérifier que la condition (4) équivaut à la condition AU = U.
- 12. En déduire que l'ensemble \mathcal{E} des matrices stochastiques (carrées d'ordre n) est stable pour le produit matriciel.

- 13. Montrer que cet ensemble \mathcal{E} est une partie fermée ¹ et convexe ² de l'espace vectoriel $\mathcal{M}_n(\mathbb{R})$.
 - On munit l'espace $\mathcal{M}_{n,1}(\mathbb{R})$ de la norme $\|.\|_{\infty}$ définie par $\|X\|_{\infty} = \max_{1 \leq i \leq n} |x_i|$ où les x_i sont les coefficients de X.
- 14. Montrer que si $A \in \mathcal{M}_n(\mathbb{R})$ est stochastique, alors on a $||AX||_{\infty} \leq ||X||_{\infty}$ pour tout $X \in \mathcal{M}_{n,1}(\mathbb{R})$.

Dans les question 15 à 22, on note $A \in \mathcal{M}_n(\mathbb{R})$ une matrice stochastique, et on suppose qu'il existe un entier naturel non nul p tel que A^p ait tous ses coefficients strictement positifs. Pour tout k entier naturel non nul, on posera

$$R_k = \frac{1}{k} \sum_{l=0}^{k-1} A^l$$

- 15. Montrer que $\ker(A^p I_n)$ est de dimension 1. $Indication : soit \ X = (x_i)_{1 \le i \le n} \in \ker(A^p - I_n)$, $soit \ s \in [|1, n|]$ un indice tel que $x_s = \max_{1 \le j \le n} x_j$, on montrera que $x_j = x_s$ pour tout j.
- 16. En déduire que $\ker(A I_n) = \operatorname{Vect}(U)$.
- 17. Montrer que, pour tout $k \in \mathbb{N}^*$, la matrice R_k est stochastique.
- 18. Montrer que la suite $(R_k)_{k\in\mathbb{N}^*}$ converge dans $\mathcal{M}_n(\mathbb{R})$ vers une matrice P, stochastique de rang 1.
- 19. En déduire que l'on peut écrire P = UL, où $L = (\lambda_1, \ldots, \lambda_n) \in \mathcal{M}_{n,1}(\mathbb{R})$ est une matrice ligne stochastique.
- 20. Montrer que PA = P. En déduire que L est la seule matrice ligne stochastique vérifiant LA = L.
- 21. Montrer que les coefficients de la matrice ligne L sont tous strictement positifs.
- 22. Montrer que le réel 1 est valeur propre simple de A. On pourra utiliser la question 8.

4 Application au labyrinthe

On approfondit l'étude commencée dans la partie 1 en exploitant les résultats de la partie 3.

On pose $A = {}^{t}B$ où B est la matrice construite dans la partie 1.

Un calcul qui n'est pas demandé montre que les coefficients de la matrice A^2 sont tous strictement positifs.

- 23. Expliciter la limite P de la suite de matrices $(R_k)_{k\in\mathbb{N}^*}$ définie en (2).
- 24. Montrer qu'il existe une unique loi de probabilité sur l'ensemble [|1,5|] telle que, si la variable aléatoire S_0 suit cette loi, alors les variables S_k suivent toutes la même loi (autrement dit, telle la présence du rat dans une salle soit la même à tous les instants).

^{1.} C'est-à-dire que pour toute suite de matrices stochastiques convergeante, sa limie est stochastique.

^{2.} C'est-à-dire pour tout couple (A, B) de matrice stochastiques et tout élément t de [0, 1], tA + (1 - t)B est stochastique.

Indications pour le DM n°1 Marche aléatoire dans un labyrinthe

5 Premiers pas

- 1. $(S_k = i)_{1 \le i \le 5}$ est un système complet d'événements, on utilise La formule des probabilités totales.
- 2. Matriciellement par

$$X_{k+1} = BX_k \text{ avec } B = \begin{pmatrix} 0 & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{1}{4} & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{3} & 0 & \frac{1}{3} & 0 \\ \frac{1}{4} & 0 & \frac{1}{3} & 0 & \frac{1}{3} \\ \frac{1}{4} & \frac{1}{3} & 0 & \frac{1}{3} & 0 \end{pmatrix}$$

- 3. Regarder ${}^{t}B$! X_{0} vecteur ayant que des 1 comme composante est un vecteur peropre
- 4. Un calcul immédiat donne $BX_0 = X_0$ et, par récurrence immédiate, $X_k = B^k X_0 = X_0$, pour tout entier k. X_k donnant la loi de S_k ,
- 5. Non! calculer $\mathbb{P}(S_0 = 1 \cap S_1 = 1)$.

${f 6}$ Convergence dans ${\cal M}_n(\mathbb{R})$

- 6. $\forall x \in \ker(u I_E), r_k(x) \to x$
- 7. Soit $x \in \text{Im}(u I_E)$. On dispose de y tel que x = u(y) y. On montre

$$r_k(x) = \frac{1}{k} \sum_{l=0}^{k-1} (u^{l+1}(x) - u^l(x)) = \frac{1}{k} (u^k(x) - x)$$

On en déduit que $||r_k(x)|| \leq \frac{1}{k}(||u^k(x)|| + ||x||)$. Or, u contractant les normes...

- 8. $E = \ker(u I_E) \oplus \operatorname{Im}(u I_E)$ car la somme est directe par la question précédente et l'on conclut par la dimension.
- 9. Soit $x \in E$. Il existe $y \in \ker(u I_E)$ et $z \in \operatorname{Im}(u I_E)$ tels que x = y + z. On a alors $r^k(x) = r^k(y) + r^k(z) \to y$. $x \mapsto y$ est la projection sur $\ker(u I_E)$ de direction $\operatorname{Im}(u I_E)$. Soit $x \in E$, $r_k(x) \to p(x)$ avec p projection sur $\ker(u I_E)$ de direction $\operatorname{Im}(u I_E)$.
- 10. La précédente question avec $E = \mathcal{M}_{n,1}$ et u l'endomorphisme canoniquement associé à A dit que pour tout $x \in \mathcal{M}_{n,1}$,

$$R_k X \to P X$$
,

où P est la matrice (dans la base canonique) de la projection sur $\ker(A-I_n)$ de direction $\operatorname{Im}(A-I_n)$

En prenant pour X les n vecteurs de la base canonique on montre que chaque suite coefficient de R_k converge vers le coefficient de P associé. Ou encore que $R_k \to P$ au sens de la norme "maximum du module des coefficients". On a donc convergence de (R_k) vers P.

7 Matrices stochastiques

- (a) Facile!
- (b) Facile!

 \mathcal{E} est stable par multiplication

(c) Très facile (les 5/2 peuvent utiliser le fait que l'ensemble des matrices stochastiques se définit par des formes linéaires).

\mathcal{E} est convexe

(d)

(e) Notons $B = A^p = (b_{i,j})$. B est une matrice stochastique (question 12) à coefficients > 0. Soit $X \in \ker(B - I_n)$ et s un indice tel que x_s est le maximum des x_i . On a BX = X et, en regardant le coefficient d'indice s de cet élément de \mathbb{R}^n ,

$$x_s = \sum_{j=1}^n b_{i,j} x_j \le x_s \sum_{j=1}^n b_{i,j} = x_s$$

(on a utilisé la positivité des $b_{i,j}$ pour dire que $b_{i,j}x_j \leq b_{i,j}x_s$). Le résultat en découle

- (f) On sait déjà que $\operatorname{Vect}(U) \subset \ker(A I_n)$ car A est stochastique. Si AX = X alors par récurrence $A^k X = X$ pour tout k et en particulier $A^p X = X$. la question précédente montre que $X \in \operatorname{Vect}(U)$...
- (g) Les A^l sont toutes stochastiques (question 12). R_k est donc à coefficients positifs comme somme de telles matrices. De plus facilement

$$R_k U == U$$

On aurait aussi pu utiliser la convexité de $\mathcal E$ puisque $\mathcal E$ est isobarycentre de matrices stochastiques.

- (h) Les questions 10 et 14 montrent que (R_k) est convergente de limite P telle que $P^2 = P$
- (i) Toutes les colonnes de P sont ainsi multiples de U...

P = UL avec L matrice ligne stochastique

(j) Remarquons que

$$R_k A = \dots \frac{k+1}{k} R_{k+1} - \frac{1}{k} I_n$$

En faisant tendre k vers $+\infty$, on obtient

$$PA = P$$

P est une matrice dont toutes les lignes sont égale à L. PA est ainsi une matrice dont toutes les lignes sont LA. L'égalité PA = P donne ainsi LA = L.

Reste à transposé YA = A et utiliser que $A - I_n$ est de rang n - 1...

L est la seule ligne stochastique telle que LA = L

- (k) On montre que $LA^k = L$ $LA^p = L$. Si, par l'absurde, on avait $\lambda_i = 0$ alors en regardant le i^e coefficient de $LA^p = L$, on aurait une contradiction
- (1) On sait que $\ker(A I_n) \oplus \operatorname{Im}(A I_n) = \mathbb{R}^n$. Les espaces $F = \ker(A I_n)$ et $G = \operatorname{Im}(A I_n)$ sont stables par l'endomorphisme canoniquement associé à A. En notant $u_F \in \mathcal{L}(F)$ et $u_G \in \mathcal{L}(G)$ les endomorphismes induits, comme $F \oplus G = \mathbb{R}^n$,

$$\chi_u = \chi_{u_F} \chi_{u_G}$$

F est de dimension 1 et $u_F = \operatorname{Id}_F$ donc $\chi_{u_F} = (X - 1)$. Comme $F \cap G = \{0\}$, $u_G - \operatorname{Id}_G$ est inversible et 1 n'est pas racine de χ_{u_G} . De tout cela, on déduit que 1 est racine simple de χ_u , c'est- à-dire : 1 est valeur propre simple de A.

8 Application au labyrinthe

(a)
$$P = \frac{1}{16} \begin{pmatrix} 4 & 3 & 3 & 3 & 3 \\ 4 & 3 & 3 & 3 & 3 \\ 4 & 3 & 3 & 3 & 3 \\ 4 & 3 & 3 & 3 & 3 \\ 4 & 3 & 3 & 3 & 3 \end{pmatrix}$$

(b) Supposons que S_0 suive une loi convenable. On montre que $S_0 = B^k S_0$. On en déduit ${}^tS_0A = {}^tS_0$. Comme tS_0 est stochastique, la question 20 montre que ${}^tS_0 = L$ trouvé ci-dessus. La réciproque a été traitée en question 4.

e a été traitée en question 4. Le seul cas où les
$$S_k$$
 ont la même loi est donnée par
$$\begin{pmatrix} 1/4\\3/16\\3/16\\3/16\\3/16\end{pmatrix}$$