UFRS - Universidado Federal do Rio de Saneiro Aio de Saneiro, 11 de Maio de 2017 TEOREMA: Se m e n são inteiros positivos tais que MDC (m,n) = 1, então Ø(ma) = Ø(m) · Ø(n) Para provar este teorema preciso de um lema auxiliar. LEMA: Seja X & Zmn tal que X = a (mod m) e X = b (mod n). Então, X & U (mn) se e somente se à « U(m) e b « U(n) DEHONSTRACED: (1) Se à E U(m), existe à tal que a à = 1 (mod m). Se b E U(n), existe b tal que 6.61 = 1 (mod n). Monto e resolvo o seguinte sistema: Y= at (mod m) (Y = b-1 (mod n) Como MDC (m, n) = 1, esse sistema tem solução. Vamos mostrar que a solução y é o inverso de x módulo mn. XY = a. a = 1 (mod m) L> m divide xy-1 xy = b . b = = 1 (mod n) L'> n divide xy-1

tilibra

	(a hard b 2 x x 2 b x
m divide xy-1	
	(m. U 2 3
MDC(m,n)=1	
xy = 1 (mod mn)	
11	most a rentemental among somel
y é o inverso de x	I in atmosts what and stag
	Insmile muse a malebon (all ed
(1) Seja x o inverso de x módulo mn.	ye saturnals (m.) majorna with
Suponha que X1 = c (mod m) e x1=	d (mod n) a best trang a god
Vamos mostrar que e é o inverso de módulo n	,
-> ā @ U(m)	· Systematics
e- = x x = 1 (mod m)	. 1
er (+ i) so equipus me à (+ H) sup sumante	DOTWIETE Sega (6, 4) un prigu.
Sei que x·x ¹ =1 (mod mn)	who feeter and who have going who were an
•	stayonado mu à H (1) Courses
mn divide xx1-1 Ha source à	56 while utmosta 0 (2)
m divide xx -1	
	(a) 6 p. 9 EH cate h.
(m bam) t = 1 xx	
portable and let 113"d	the End State
Analogamente X-x=1 = 1 (mod n)	JIE & 2 . W. 18 . J
	tilibra

bd = x · x = 1 (mod n)		
<u>"</u>		Jan Daniel Branch
b a Um	ya alah nm	- Lya bolo 17
	11	h hundigh
	Tom bon I to yx	
Vamos agora demonstrar o teo	rema.	
	do mana de x	
Pelo lema, cada elemento de Z	Zmn que tem inverso é	congruente a um elemento
de Uin) modulo m e a um eleme	nto de Ucat módulo a:	
Mas existem firms elementos e	m Uml e Oons elem	entos de em Uent.
Logo, a quantidada dé element	us de Ima que tem inv	iciso é o produto dessas
	V, 20	•
dvas quantidades:	3 134	a surface V
d d		a okubian
9 (mn) = 0 cm) . 9 cm)		
	1-NO.5 =	
- SUBGRAMOS:	- /	m 6 m 1 N = "x x = 3 - 0
SFINIGHT: Seja (G, H) um grupo.		
MEINIGAD: Jeja (G, 41 om gropo:	Vac · loo	and to 'k & exp is
as seguintes propriadudes são catisfei	ias i	
.		× 360 6 000
Subserved {(1) H é um sub conjun	10 de G.	s guir a rein
		Annal at a to a
(2) O Elemento Neutro d	e G pertence a H.	A S S A S S S S S S S S S S S S S S S S
	A- XX sbrit m	
(2) O Elemento Neutro d (3) Se hi, hz EH, então (4) Se h EH, então exis	h, x hz & H	m divide mn
	(m 60m) / = "x.	X
	1.4 - 11 - 1 - 1	-1 - 0
(4) So heH, então exis	de h & H tal que h x h	

tilibra

Teoner	AA	De	LAGR	AN	bE'.

Seja (G, X) um grupo finito e (H, *) um subgrupo de (G, *). Então, a ordom de (H, x) divide a ordem de (6, x).

- Exe HOLO DE APLICAÇÃO:

G= U(8) = {1 3 5 7}

H= {7, 5, 7}

(H,x) não pode ser subgrupo de (6, x) porque 3 não divide 4.

E Hz = {1,3} ? É subgrupo ?

2 divide 4. Então pode ser subgrupo. Preciso tostari

(4) Hz = G

(2) T E H2 DK

(3) 1. T = 1 6 Hz

7.3 = 3 6 H2 OK

3.7 = 3 & H2

3.3 = 9 = 16 H2

(4) Inverso de T é T E Hz

Inverso de 3 é 3 e Hz ox

Sim Hz & subgripo.

/ / E Ha = {3, \$} ?	· La An Al B All A
C ma - (3,5)	
Não satisfaz a propriedade (2). Não á subgrupo.	142 au (x 2) 42 2
(K 2) -	h maling a short (x H) s
E H4 = { 1, 5} ?	
	Books 34 o dishex3
(1) H4 C G OK	
	[# B B] = 1910 = 0
12) I E H4 0x	17 E F E H
(9) 7.7 =7 6 Hy 18 14 07 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	water see obey con (4 H)
1.5 = 5 6 H4 OK	1 (E. F.) - H 3
5.5 = 15 = 7 EH4	1 5
7-5-725 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	1 - JAN 1 - 11 6 2
(1) 0. 1. 7. 7	
(4) O inverso de 7 é T.	≈ 3 3 + 03
0 inversus de 5 é 5. ok	
	≈ H 3 F (5)
Sim, Hy é subgrupo.	
	Marin Fra
	7 3 = 5 G H.
:05M3K3 09TU	H = 8 = 1-8
$G = V(16) = \{\overline{1}, \overline{3}, \overline{5}, \overline{7}, \overline{9}, \overline{11}, \overline{13}, \overline{15}\}$	33-92164
ORDEM 8	
1 > 1/1 > 3 / > 4	ell & P & P ab constitution
ϕ (46) = ϕ (24) = 23 (2-4) = 8	H3 F a E sharrown
	. 12 5
	me grades & set as a
	= 6/1
ibra	

a site to the manage of the side of the same	May colored agreed a white it
Possivers Ordens 2	Augus who
PARA SUBGRUPOS DE 4	
U (16)? (8)	May 6 or compute product
1	
Divisores de 8	some refere and one or finger and
(LAGRANGE)	° 0 = °° 0
Possivers Substitutes De Orden 1	
{ī}	Superbayer man.
Possivers Subgrapos de bacem 8.	TO F TOPE OF
U(16)	
	0= "(=) = 0 = 1 (") = "0
erivição: Seja (G,X) um grupo de ordem Y nos que (H,X) é um subgrupo próprio so	•
	H = EV C C C C
GRUPOS & SUBERUPOS Cícuzos	saturado A
(11.0	
	~ € G. 2 2 2 42 - (× 2) 42
	~ € G. 2 2 2 42 - (× 2) 42
H= { a a a a a a 3 } -> Conjunto	das potências de a.
H= { a, a ² , a ³ ,} -> Conjunto L>Elemento neutro	das potências de a.
H= { a, a ² , a ³ ,} -> Conjunto L>Elemento neutro	das potências de a. (x 2) es aquelle de (x 1) 2 2 4 (1)
H= { 2, a, a ² , a ³ ,} -> Conjunto L>Elemento neutro a ⁰ = 2	das potências de a. (xxx) do squade (xxx)

in 0: 11.	a, entro 11 é aparensemente un
infinito.	A A more of tension
N	So Zalamas cin
Mas G é um conjunto pinito e H =	G. Logo, Horrecisa ser finito.
Isso significa que vão existir expoentes r	n+n tois que
$a^m = a^n$	1007.984
	PROPERTY OF SUPERING
Suponha que m>n.	{ F }
$a^m = a^n$	Marin of Marine Comment
	(old)
$a^{m} * (a^{-1})^{n} = a^{m} * (a^{-1})^{n} = a^{m}$	
as the comment of the man of the man	mat agent of Thems
a ^{m-n} = 2	
11	& makes the specialist was a second
·	
Voi existir uma potôncia ak talque ak =	2. I can me (b) I work to be
	and the many of (x h) six.
2 3 X-4	
H= { e a a a a a x-1}	
$H = \left\{ 2, \alpha, \alpha^2, \alpha^3, \dots, \alpha^{K-1} \right\}$ K elementos	- Lacron Conces
	cosos D social o cos
K elementos	s a ordem de a como o menor i
K elementos Seja (G,*) um grupo e a E.G. Definimo	s a ordem de a como o menor:
K elementos Seja (G,*) um grupo e a E.G. Definimo tivo K. dal que a K = 2 em G.	
K elementos Seja (G,*) um grupo e a E.G. Definimo tivo K. dal que a K = 2 em G.	j ← {
K elementos Seja (G,*) um grupo e a E.G. Definimo tivo K. dal que a K = 2 em G.	
K elementos Seja (6,*) um grupo e a E.G. Definimo tivo K. dal que a K = 2 em G. (H,*) é um subgrupo de (G,*)	j <- { 50 ° 0 , 0 , 0 } =n
K elementos Seja (G,*) um grupo e a E.G. Definimo tivo K. dal que a K = 2 em G.	j <- { 50 ° 0 , 0 , 0 } =n
K elementos Seja (6,*) um grupo e a E.G. Definimo tivo K. dal que a K = 2 em G. (H,*) é um subgrupo de (G,*)	j ← {

91 = 9	111 = 11	1 13'=13	15 1 = 15	A (:)
92 = 81 = T	$11^2 = 121 = 9$	13 = 169 = 9	75° = 7	4
1a = {1, a}	$\frac{11}{11^3} = \frac{121}{99} = \frac{1}{3}$		[
4 61,45	41 = 44 = 8 41 = 33 = 7		•	
	Hai= {7,3,9,7		9,13}=	O
	= H ₃	= H6	6 - Nu - 108	- 0
	- ⁿ 3	1- 115	,	
1) (1)	, , , , , , , , , , , , , , , , , , ,	1	and so should	s (x 11)
U (16) mão é	cíclico	s cicled grade	Total III	
			land the Objection	da = 0
-		(x H) equalis of	NORDE OF	
				42
-10 mot mid	I so my clus	ce makin agent	due a marine at	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
			N 1-14 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	G } - H
		· v	0,0,0,0,0,0	~ <u>}</u>
			zotacnole X	
Sta how for	the same than the	yes un a den	a or fund don	Sulpac -
	<u></u>		who is storal about	my 16 20
		·		
11 9 1 3 6	Feelow 1		and the both of the care	V , m
				3.7
			4 1-1-1-1	
	Fire	3:12	8=3	F = 1
	- PF - F	8 = 85 = 9	j - 5	1 /1/3=,1
	F. T & = .11	7 5	T = 15 = °E	
		7 = 85 = 72	7 = LE - "E	
		F1. F1. F. F. F. 13	ET PEFF	