Dealing with Coins

- There are only 2 outcomes when you throw a coin Head or Tail. Set of all outcomes {H, T}
- When you throw 2 coins, you have 4 outcomes

```
{ HT, HH TT, TH }
```

You can view this in multiple ways:

- The first coin has 2 outcomes and the second coin has 2. So, total number of outcomes = $2 \times 2 = 2^2 = 4$
- If you throw 3 coins, you have 8 outcomes: $8 = 2 \times 2 \times 2 = 2^3$ You can visualize this as:

```
{ H { HT, HH, TT, TH }, T { HT, HH, TT, TH } } same as: { HHT, HHH, HTT, HTH, THT, THH, TTT, TTH }
```

• If you throw 4 coins, you have 16 outcomes: $16 = 2 \times 2 \times 2 \times 2 = 2^4$

Examples

1. One coin is thrown. Head is desired.

Total outcomes = 2 Favorable outcome = 1

2. Two coins are thrown. Head is desired on both

Total outcomes = 4
Favorable outcome = 1 { HH }

3. Two coins are thrown. At least one Head is desired

Total outcomes = 4

```
Favorable outcome = At least 1 head

= (1 Head and 1 Tail) OR (2 heads)

= \{HT, TH\} OR \{HH\} = 2 + 1 = 3
```

Note: OR implies +

4. Two coins are thrown one after the other. Head is desired on the first one and Tail on the second

Total outcomes = 4

Favorable outcomes: 1 { HT }

5. 3 coins are thrown. Head is desired on all 3.

Total outcomes = 8

Favorable outcomes = 1 {HHH}

6. 3 coins are thrown. At least 1 head is desired.

Total outcomes = 8

Favorable outcomes = At least 1 head = Total - (not a single Head) = Total - (all Tails) = 8 - 1 = 7

Points to Ponder

- What is the probability that the next 2 customers that walk into a store are both females?
 - Can you consider this as a problem of tossing 2 coins? Each person can be treated as coin that can assume 2 values {Male, Female} instead of {Heads, Tails}
 - Total outcomes : 4 {MM, MF, FM, FF } Favorable : 1 {FF}
- A painter needs to paint 3 rooms of a house. He has only 2 colors: **Blue** and **Pink**. What are the total number of ways in which he can paint the house, given that he has to paint a room in a single color.
 - Can you treat this as a problem of tossing 3 coins? Each room can be treated as coin that can assume 2 values {Blue, Pink} instead of {Heads, Tails}
 - $\blacksquare \quad \text{Total ways} : 8 = 2 \times 2 \times 2$
 - Number of ways that the rooms can be painted such that at least one room is Pink?

 Is this question mathematically same as Qn 6 above involving 3 coin?

Dealing with Dice

A Die can be treated as a Coin with 6 faces

- There are only 6 outcomes when you throw a Die Set of all outcomes $\{1, 2, 3, 4, 5, 6\}$
- When you throw 2 dice, you have 36 outcomes

You can view this in multiple ways:

- The first die has 6 outcomes and the second coin has 6. So, total number of outcomes = $6 \times 6 = 6^2 = 36$
- If you throw 3 dies, you have 216 outcomes: $216 = 6 \times 6 \times 6 = 6^3$ You can visualize this as:

```
{ 1{11, ...... 66}, 2{11, ...... 66},3{11, ...... 66},4{11, ...... 66},5{11, ...... 66}, 6{11, ...... 66}}
```

where $\{11, \dots, 66\}$ is same as the set:

Examples

(A die can be treated like a 6 sided coin. Check each Die question below with its counterpart in the coin section)

1. A die is thrown. Even number is desired

Total outcomes = 6 Favorable 3 {2, 4, 6}

2. Two dies are thrown. 6 is desired on both

Total outcomes = 36 Favorable outcome = 1 { 66 }

3. Two dies are thrown. At least one 6 is desired

Total outcomes = 36

Favorable outcome = At least one 6 = (1 six and any other non 6 number) OR (2 six) = { 61, 62, 63, 64, 65, 16, 26, 36, 46, 56} OR { 66 } = 10 + 1 = 11

4. Two dies are thrown one after the other. 1 is desired on the first one and 2 on the second. Total outcomes = 36

Favorable outcomes: 1 { 12 }

5. 3 dies are thrown. 4 is desired on all 3.

Total outcomes = 216Favorable outcomes = $1 \{444\}$

6. 3 coins are thrown. At least one 5 is desired.

Total outcomes = 216

Favorable outcomes = At least one 5

= Total - (not a single 5)

Not a single 5, implies: Die 1 can assume any of $\{1,2,3,4,6\}$ AND Die 2 can assume any of $\{1,2,3,4,6\}$ AND Die 3 can assume any of $\{1,2,3,4,6\}$

$$= 5 \times 5 \times 5 = 125$$
Total - (not a single 5) = 216 - 125 = 91

Points to Ponder

- An ATM pin consists of 4 digits. Each digit can assume any of the 10 values {0, 1, 2, 3 ...8, 9}. What are the number of Pins where not a single digit is 0?
 - Can you consider this as a problem of tossing 4 dice where each die has 10 faces bearing numbers from 0 to 9? Each ATM digit can be treated as die that can assume 10 values {0, 1, 2, ... 9} instead of {1, 2, 3, 4, 5, 6} like a die.
 - Total outcomes : $10 \times 10 \times 10 \times 10 = 10^4$

Favorable : $9 \times 9 \times 9 \times 9 = 9^4$

Quiz

(send your solutions to <u>support@greedge.com</u>)

1.		Two coins are thrown. Head is desired on exactly one Total outcomes = 4 Favorable outcome =
	2.	Two coins are thrown. At least one Tail is desired Total outcomes = 4 Favorable outcome =
	3.	Two coins are thrown one after the other. Head is desired on the first as well as on the second Total outcomes = 4 Favorable outcomes:
	4.	3 coins are thrown. Head is desired on exactly two. Total outcomes = 8 Favorable outcomes =
	5.	3 coins are thrown. At least 2 heads are desired. Total outcomes = 8 Favorable outcomes =
6.		A die is thrown. Prime number is desired Total outcomes = 6 Favorable outcomes =
7.		wo dies are thrown. It is desired that the sum of the numbers on the two faces ould be 9 Total outcomes = 36 Favorable outcomes =
8.		wo dies are thrown. It is desired that the sum of the numbers on the two faces tould be at least 11 Total outcomes = 36 Favorable outcomes =
	00	wo dies are thrown one after the other. Even number is desired on the first one and dd number on the second. outcomes = 36 Favorable outcomes:
1(). 3	3 dies are thrown. Even number is desired on all 3.

	Total outcomes = 216 Favorable outcomes =
11.	Three dies are thrown. It is desired that at the most two two faces should bear a 5 Total outcomes = 216 Favorable outcomes =