```
class A{

} class B extends A{

} class Test1{
  public static void main(String[] args){
    //A a = new A();
    //B b = new B();
    //A c = new B();
    //B d = new A();

}
```

เกิดอะไรขึ้น

```
class A{
    int x = 1;
    int getX(){
        return x;
    }
}
class B extends A{
    int x = 30;
    int getX(){
        return x;
    }
}
public class Binding{
    public static void main(String args[]) {
        A a = new A();
        System.out.println(a.x + " " + a.getX());
        B b = new B();
```

```
System.out.println(b.x + " " + b.getX());
   A c = new B();
   System.out.println(c.x + " " + b.getX());
}
```

SataticBinding

```
class A{
   public int x = 1;
}
class B extends A{
   public int x = 2;
}
public class SataticBinding{
   static void test(A a) {
      System.out.println(a.x);
   }
   public static void main(String args[]){
      test(new A());
      test(new B());
   }
}
```

DynamicBinding

```
class A{
   void print(){
     System.out.println("A");
   }
} class B extends A{
   void print(){
     System.out.println("B");
   }
}
```

```
public class DynamicBinding{
    static void test(A a){
        a.print();
    }
    public static void main(String args[]){
        test(new A());
        test(new B());
    }
}
```

ตัวอย่าง

```
class A{
    int i=1;
    int f(){return i;}
  class B extends A{
    int i;
    int f(){
        i=super.i +1;
        return super.f()+i;
     }
  }
 class Test{
    public static void main(String[] args){
       B b = new B();
       System.out.println(b.i);
       System.out.println(b.f());
       A a = (A)b;
       System.out.println(a.i);
       System.out.println(a.f());
    }
 }
```

```
import javax.swing.*;
import java.awt.*;
class MenuBar extends JFrame
{
  JMenuBar mb:
  JMenu mFile,mEdit;
  ButtonGroup bGroup;
  public MenuBar(){
  mb
          = new JMenuBar();
  mFile = new JMenu("File");
  mEdit = new JMenu("Edit");
  mFile.add(new JMenuItem("New"));
  mFile.add(new JMenuItem("Open"));
  mFile.add(new JMenuItem("Close"));
  mFile.addSeparator();
  mFile.add(new JMenuItem("Save",new ImageIcon("test.jpg")));
  mFile.add(new JMenuItem("New"));
  mFile.addSeparator();
  mFile.add(new JMenuItem("Exit"));
  mEdit.add(new JMenuItem("Undo"));
  mEdit.add(new JMenuItem("Redo"));
  mEdit.addSeparator();
  mEdit.add(new JMenuItem("Cut"));
  mEdit.add(new JMenuItem("Copy"));
  mEdit.add(new JMenuItem("Paste"));
  mb.add(mFile);
  mb.add(mEdit);
  getContentPane().add(mb, BorderLayout.NORTH);
  setBounds(100,100,400,200);
  setVisible(true);
}
```

```
class TestMenuBar
{
  public static void main(String[] args){
    MenuBar f = new MenuBar();
  }
}
```

CARD

ฮูติน กับ สเรซี เล่นเกมหยิบการ์ดที่มีจำนวนไม่จำกัด โดยต้องสลับกันหยิบการ์ด ซึ่งฮูตินจะเป็นคนเริ่มหยิบ การ์ดก่อนเสมอ จากนั้น สเรซี จะเป็นคนหยิบการ์ดในครั้งถัดไป สลับกันไปจนกระทั่งครบ N ครั้ง ทั้งนี้ในการ หยิบการ์ดแต่ละรอบจะต้องหยิบการ์ดตามจำนวนรวมของ การหยิบการ์ด 2 ครั้งที่ผ่านมาเสมอ

ตัวอย่างเช่น กำหนดให้หยิบการ์ดได้ทั้งหมด 3 ครั้ง (N=3) และ ฮูติน กับ สเรซีมีการ์ดเริ่มต้น 2 ใบ และ 3 ใบ ตามลำดับ

```
ครั้งที่ 1 ฮูติน ต้องหยิบการ์ดเท่ากับ 2 + 3 ใบ รวมเป็น 5 ใบ
ครั้งที่ 2 สเรซี ต้องหยิบการ์ดเท่ากับ 3 + 5 ใบ รวมเป็น 8 ใบ
ครั้งที่ 3 ฮูติน ต้องหยิบการ์ดเท่ากับ 5 + 8 ใบ รวมเป็น 13 ใบ
ดังนั้นจำนวนไพ่ทั้งหมดที่ ฮูติน และ สเรซี หยิบมา คือ 20 ใบ และ 11 ใบ ตามลำดับ
```

คำสั่ง จงเขียนโปรแกรมแสดงจำนวนไพ่ทั้งหมดที่ ฮูติน และ สเรซี หยิบการ์ดทั้งหมด N ครั้ง

ข้อมูลนำเข้า

บรรทัดที่ 1	เลขจำนวนเต็มบวก N แทนจำนวนครั้งทั้งหมดที่หยิบการ์ด โดยที่ 1<= N <= 20
บรรทัดที่ 2	เลขจำนวนเต็มแทนจำนวนการ์ดเริ่มต้นของ ฮูติน ซึ่งไม่เกิน 10 ใบ
บรรทัดที่ 3	เลขจำนวนเต็มแทนจำนวนการ์ดเริ่มต้นของ สเรซี ซึ่งไม่เกิน 10 ใบ

ข้อมูลส่งออก

บรรทัดที่ 1	แสดงจำนวนการ์ดทั้งหมดในมือของ	ฮูติน
บรรทัดที่ 2	แสดงจำนวนการ์ดทั้งหมดในมือของ	ั สเรซี

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก
9	88
0	55
1	
3	20
2	11
3	
1	20
5	10
10	

ค่าเฉลี่ย (Mean) ค่ามัธยฐาน (Median) และฐานนิยม (Mode)

ค่าเฉลี่ย (Mean) ค่ามัธยฐาน (Median) และฐานนิยม (Mode) เป็นค่าที่ใช้บอกแนวโน้มศูนย์กลางของข้อมูล โดยที่ค่าเฉลี่ยเป็นสัดส่วนระหว่างผลรวมของชุดข้อมูลเทียบกับจำนวนข้อมูล ค่ามัธยฐานเป็นค่าตำแหน่งตรง กลางของข้อมูลที่เรียงลำดับจากน้อยไปมาก (หากจำนวนข้อมูลเป็นเลขคู่ ค่ามัธยฐานจะมีค่าเท่ากับค่าเฉลี่ยของ ข้อมูลที่อยู่ตำแหน่งกลางของสองจำนวน) และฐานนิยมเป็นค่าข้อมูลที่พบบ่อยที่สุดในชุดข้อมูล กำหนดให้ A เป็นเมตริกซ์จัตุรัสของเลขจำนวนเต็มบวกขนาด N*N จงเขียนโปรแกรมเพื่อคำนวณค่าเฉลี่ยในแนวทะแยง (Diagonal) ค่ามัธยฐานของข้อมูลที่อยู่ในพื้นที่สามเหลี่ยมด้านบน (Upper triangular area) และฐานนิยมของ ข้อมูลที่อยู่ในพื้นที่สามเหลี่ยมด้านล่าง (Lower triangular area)

ตัวอย่างเช่น เมตริกซ์จัตุรัส
$$A = \begin{bmatrix} 1 & 3 & 4 \\ 5 & 6 & 2 \\ 5 & 5 & 7 \end{bmatrix}$$

ค่าเฉลี่ยตามแนวทะแยงเท่ากับ (1+6+7) / 3 = 4.66 ค่ามัธยฐานในบริเวณสามเหลี่ยมด้านบน ได้แก่ 1, 6, 7, 3, 2, 4 เท่ากับ 3.50 และค่าฐานนิยมในบริเวณสามเหลี่ยมด้านล่าง ได้แก่ 1, 6, 7, 5, 5, 5 เท่ากับ 5

ข้อมูลนำเข้า

บรรทัดแรก เลขจำนวนเต็ม N แทนขนาดของเมตริกซ์จัตุรัส A โดยที่ 2 <= N <= 100

N บรรทัดถัดไป แต่ละบรรทัด I ประกอบไปด้วยรายการเลขจำนวนเต็มบวก N จำนวน แทนแถวที่ i

ของเมตริกซ์ A r_{i1} r_{i2} ... r_{iN} คั่นด้วยช่องว่าง

ข้อมูลส่งออก

ค่าเฉลี่ย ค่ามัธยฐาน และฐานนิยม ตามลำดับ ในรูปเลขทศนิยม 2 ตำแหน่ง คั่นด้วยช่องว่าง หากฐาน นิยมมี

มากกว่า	1	คำตอบ	ให้แสด	งค่าทีน้	อยที่สุด

ตัวอย่างข้อมูลนำเข้า	ตัวอย่างข้อมูลส่งออก		
3	4.66 3.50 5.00		
1 3 4			
5 6 2			
5 5 7			
2	2.50 2.00 1.00		
4 2			
3 1			