

Aritmética computacional

5. Representação de ponto flutuante

Ponto flutuante

- Representação de números não inteiros
 - Incluindo muito pequenos e muito grandes
- Parte da notação científica

■ -2.34×10^{56} normalizado

■ $+0.002 \times 10^{-4}$ não normalizado

■ $+987.02 \times 10^{9}$

- Em binário:
 - $\pm 1.xxxxxxx_2 \times 2^{yyyy}$
- Tipos float e double em C

Padrão de ponto flutuante

- Definido pela norma IEEE 754-1985
- Desenvolvido para padronizar as representações
 - Problemas de portabilidade para código científico
- Atualmente, é adotado mundialmente
- Duas representações
 - Precisão simples (32-bit)
 - Precisão dupla (64-bit)

Formato de ponto flutuante

simples: 8 bits duplo: 52 bits

S Exponent Fraction

$$x = (-1)^{S} \times (1 + Fraction) \times 2^{(Exponent - Bias)}$$

- S: bit de sinal (0 ⇒ não negativo, 1 ⇒ negativo)
- Significando normalizado: 1.0 ≤ |significando| < 2.0</p>
 - Fração: o que aparece à direita do ponto
 - Significando: o número completo, incluindo o 1.
 - Sempre possui o bit 1 à esquerda do ponto binário, portanto este não precisa ser representado explicitamente (bit escondido)
- Expoente: representação por excesso: expoente verdadeiro + Bias
 - Garante que o expoente é sempre sem sinal
 - Precisão simples: Bias = 127; precisão dupla: Bias = 1023

₹ M<

Capacidade da precisão simples

- Expoentes 00000000 e 11111111 são reservados para uma representação especial
- Menor valor representável
 - Exponent: 00000001
 - \Rightarrow expoente verdadeiro = 1 127 = –126
 - Fração: 000...00 ⇒ significando = 1.0
 - $\pm 1.0 \times 2^{-126} \approx \pm 1.2 \times 10^{-38}$
- Maior valor
 - expoente: 11111110
 - \Rightarrow expoente verdadeiro = 254 127 = +127
 - Fração: 111...11 ⇒ significando ≈ 2.0
 - $\pm 2.0 \times 2^{+127} \approx \pm 3.4 \times 10^{+38}$

Capacidade da precisão dupla

- Expoentes 0000...00 e 1111...11 são reservados para uma representação especial
- Menor valor
 - Expoente: 00000000001
 - \Rightarrow expoente verdadeiro = 1 1023 = –1022
 - Fração: 000...00 ⇒ significando = 1.0
 - $\pm 1.0 \times 2^{-1022} \approx \pm 2.2 \times 10^{-308}$
- Maior valor
 - Expoente: 11111111110
 - \Rightarrow expoente verdadeiro = 2046 1023 = +1023
 - Fração: 111...11 ⇒ significando ≈ 2.0
 - $\pm 2.0 \times 2^{+1023} \approx \pm 1.8 \times 10^{+308}$

Precisão de um ponto flutuante

- Precisão relativa
 - Todos os bits da fração são significantes
 - Precisão simples: aprox. 2⁻²³
 - Equivalente a 23 x log₁₀2 ≈ 23 x 0.3 ≈ 6 casas decimais de precisão
 - Precisão dupla: aprox. 2⁻⁵²
 - Equivalente a 52 x log₁₀2 ≈ 52 x 0.3 ≈ 16 casas decimais de precisão

Exemplo de ponto flutuante

- Representar -0.75
 - $-0.75 = (-1)^1 \times 1.1_2 \times 2^{-1}$
 - S = 1
 - Fração = 1000...00₂
 - Expoente = -1 + Bias
 - Simples: -1 + 127 = 126 = 011111110₂
 - Dupla: -1 + 1023 = 1022 = 011111111110₂
- Simples: 10111111101000...00
- Dupla: 10111111111101000...00

7 \Rightarrow \Rig

M<

Exemplo de ponto flutuante

- Que número é representado pelo ponto flutuante de precisão simples:
 - 11000000101000...00
 - S = 1
 - Fração = 01000...00₂
 - Expoente = 10000001₂ = 129
- $x = (-1)^{1} \times (1 + 01_{2}) \times 2^{(129 127)}$ $= (-1) \times 1.25 \times 2^{2}$ = -5.0

Infinito e NaNs

- Expoente = 111...1, Fração = 000...0
 - ±Infinito
 - Pode ser usado em cálculos para evitar a checagem de overflow
- Expoente = 111...1, Fração ≠ 000...0
 - Not-a-Number (NaN)
 - Indica uma operação ilegal ou um resultado não definido
 - e.g., 0.0 / 0.0

Representações IEEE 754

O padrão IEEE 754 especifica as seguintes representações especiais.

Precisão simples		Precisão dupla		Representação
Expoente	Fração	Expoente	Fração	
0	0	0	0	0
0	não zero	0	não zero	\pm número desnormalizado
1-254	qualquer coisa	1-2046	qualquer coisa	\pm número de ponto flutuante
255	0	2047	0	\pm infinito
255	não zero	2047	não zero	NaN (Not a Number)

Adição em ponto flutuante

- Exemplo:
 - $9.999 \times 10^{1} + 1.610 \times 10^{-1}$
- 1. Alinhar o ponto decimal (igualar os expoentes)
 - Dar shifts à direita no número com menor expoente:
 9.999 x 10¹ + 0.016 x 10¹
- 2. Somar os significandos
 - $9.999 \times 10^{1} + 0.016 \times 10^{1} = 10.015 \times 10^{1}$
- 3. Normalizar o resultado
 - 1.0015×10^{2}
- 4. Arredondar e renormalizar, se necessário
 - 1.002 × 10²

Adição em ponto flutuante

- Exemplo 2:
 - $1.000_2 \times 2^{-1} + -1.110_2 \times 2^{-2} (0.5 + -0.4375)$
- 1. Alinhar o ponto decimal
 - Dar shifts à direita no número com menor expoente
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1}$
- 2. Somar os significandos
 - $1.000_2 \times 2^{-1} + -0.111_2 \times 2^{-1} = 0.001_2 \times 2^{-1}$
- 3. Normalizar o resultado
 - 1.000₂ x 2⁻⁴, sem underflow/overflow
- 4. Arredondar e renormalizar, se necessário
 - $1.000_2 \times 2^{-4}$ (sem mudanças) = 0.0625

Multiplicação em ponto flutuante

- Exemplo
 - $1.110 \times 10^{10} \times 9.200 \times 10^{-5}$
- 1. Soma os expoentes
 - Novo expoente = 10 + -5 = 5
- 2. Multiplica os significandos
 - $1.110 \times 9.200 = 10.212 \Rightarrow 10.212 \times 10^5$
- 3. Normaliza o resultado e checa por overflow/underflow ■ 1.0212 × 10⁶
- 4. Arredonda e renormaliza, se necessário
 - 1.021 × 10⁶
- 5. Determina o sinal do resultado a partir dos sinais dos operandos
 - +1.021 x 10⁶

Multiplicação em ponto flutuante

- Exemplo
 - $1.000_2 \times 2^{-1} \times -1.110_2 \times 2^{-2} (0.5 \times -0.4375)$
- 1. Soma os expoentes
 - Sem o bias: -1 + -2 = -3
 - Com o bias: (-1 + 127) + (-2 + 127) = -3 + 254 127 = -3 + 127
- 2. Multiplica os significandos
 - $1.000_2 \times 1.110_2 = 1.1102 \implies 1.110_2 \times 2^{-3}$
- 3. Normaliza o resultado e checa por over/underflow
 - 1.110₂ x 2⁻³ sem overflom
- 4. Arredonda e renormaliza
 - 1.110₂ x 2⁻³ sem arredondamento
- 5. Determina o sinal: +ve x −ve ⇒ −ve
 - $-1.110_2 \times 2^{-3} = -0.21875$

Instruções em MIPS

- Há um hardware próprio para ponto flutuante: o coprocessador 1
 - Processador adjunto que expande a ISA
- Registradores separados
 - 32 registradores de 32 bits: \$f0, \$f1, ... \$f31
 - Precisão dupla aos pares: \$f0/\$f1, \$f2/\$f3, ...
- As instruções que vimos até agora não funcionam no coprocessador 1
 - O coprocessador 1 possui suas instruções próprias
- Instruções de acesso à memória
 - load wordeload double
 - lwc1. ldc1. swc1. sdc1 e.g., ldc1 \$f8, 32(\$sp)

Instruções em MIPS

- Aritmética de precisão simples
 - add.s, sub.s, mul.s, div.s e.g., add.s \$f0, \$f1, \$f6
- Aritmética de precisão dupla
 - add.d, sub.d, mul.d, div.d e.g., mul.d \$f4, \$f4, \$f6
- Comparação
 - c.xx.s, c.xx.d (xx is eq, lt, le, ...)
 - Recebe dois operações, e define o bit de condição e.g. c.lt.s \$f3, \$f4
- Faz o desvio baseado no bit de condição
 - bc1t, bc1f
 - e.g., bc1t TargetLabel

Exemplo: °F to °C

Código C: float f2c (float fahr) { return ((5.0/9.0)*(fahr - 32.0));