

"APZOROC'S PCTIPTO 07 JUL 2006

Haplotypes and Polymorphisms linked to human Thiopurine S-Methyltransferase

Deficiencies

Description

BACKGROUND OF THE INVENTION

5 Field of the Invention

The present invention is in the field of cancer and immunosuppressive therapeutics, diagnostics, and drug metabolism. In particular, the present invention relates to characterization of the genetic basis for thiopurine methyltransferase deficiency. A number of single nucleotide polymorphisms are, at least in part, responsible for severe hematopoietic toxicity in cancer, Crohn's disease, autoimmune diseases (like rheumatoid arthritis or lupus erythematodes), multiple sclerosis or organ transplant recipient patients who are treated with standard dosages of 6-mercaptopurine, 6-thioguanine or azathioprine (thiopurines in general or other drugs that are substrates of the TPMT enzyme).

Related Art

10

15

20

25

30

Thiopurine methyltransferase (TPMT, E.C. 2.1.1.67) is a cytoplasmic enzyme that preferentially catalyzes the S-methylation of aromatic and heterocyclic sulfhydryl compounds, including the anticancer agents 6-mercaptopurine (6MP) and 6-thioguanine, and the immunosuppressant azathioprine collectively termed as thiopurines. TPMT activity exhibits genetic polymorphism, with approximately 90 % of Caucasians and African-Americans having high TPMT activity, 10 % intermediate activity (due to heterozygosity), and 0.3 % inheriting TPMT-deficiency as an autosomal recessive trait. (Weinshilboum, R. M. and Sladek, S. L., Am. J. Hum. Genet. 32:651-662 (1980); McLeod, H. L. et al., Clin. Pharmacol. Ther. 55:15-20 (1994)). TPMT activity can be measured in erythrocytes, as the level of TPMT activity in human liver, kidney, lymphocytes and leukemic lymphoblast correlates with that in erythrocytes (Van Loon, J. A. and Weinshilboum, R. M., Biochem. Genet. 20:637-658 (1982); Szumlanski, C. L., et al., Pharmacogenetics 2:148-159 (1992); McLeod, H. L. et al., Blood 85:1897-1902 (1995)).

Mercaptopurine, thioguanine, and azathioprine are prodrugs with no intrinsic activity, requiring intracellular conversion to thioguanine nucleotides (TGN), with subsequent incorporation into DNA, as one mechanism of their antiproliferative effect (Lennard, L., Eur. J. Clin. Pharmacol 43:329-339 (1992)). Alternatively, these drugs are metabolized to 6-methyl-mercaptopurine (MeMP) or 6-methyl-thioguanine (MeTG) by TPMT or to 6-thiouric acid (6TU) by xanthine oxidase; MeMP, MeTG, and 6TU are inactive metabolites. Thus, metabolism of 6MP,

10

15

20

25

30

35

azathioprine, or thioguanine by TPMT shunts drug away from the TGN activation pathway. Clinical studies with 6MP and azathioprine have established an inverse correlation between erythrocyte TPMT activity and erythrocyte TGN accumulation, indicating that patients who less efficiently methylate these thiopurines have more extensive conversion to thioguanine nucleotides (Lennard, L., et al., Lancet 336:225-229 (1990); Lennard, L. et al., Clin. Pharmacol. Ther. 46:149-154 (1989)). Moreover, patients with TPMT deficiency accumulate significantly higher erythrocyte TGN if treated with standard dosages of 6MP or azathioprine, leading to severe hematopoietic toxicity, unless the thiopurine dosage is lowered substantially (e.g. 8-15 fold reduction) (Evans, W. E., et al., J. Pediatr. 19:985-989 (1991); McLeod, H. L., et al., Lancet 341:1151 (1993); Lennard, L., et al., Arch. Dis. Child. 69:577-579 (1993)) or the converting enzyme hypoxanthine-guanine phosphoribosyltransferase (HGPRT) has a functional defect due to SNPs in promotor, splice or coding regions that reduce activity of HGPRT and by this reduces amounts of thiopurines in the body. The majority of such patients are identified only after experiencing severe toxicity, even though prospective measurement of erythrocyte TPMT activity has been advocated by some (Lennard, L. et al., Clin. Pharmacol. Ther. 41:18-25 (1987)).

Unfortunately, TPMT assays are not widely available and newly diagnosed patients with leukemia or organ transplant recipients are frequently given erythrocyte transfusions, precluding measurement of their constitutive TPMT activity before thiopurine therapy is initiated. Alternatively, several mutant alleles responsible for TPMT deficiency have been described and the relationship between TPMT geno- and phenotype has been most clearly defined for the clinically relevant TPMT alleles *2, *3A and *3C (represented in this file by reference SNPs 44, 47, and 50 respectively) in patients and healthy subjects (Evans et al. J. Clin. Oncol. 19 (2001), 2293-2301, Evans et al. U.S. Patent 5,856,095). Whereupon the heterocygote form of the SNPs correlate to a deficient TPMT activity (reduced activity) and the mutant form of the three SNPs correlate to a more deficient TPMT activity (very reduced or very low activity, sometimes absent activity). Although the several mutant alleles are known to be associated with intermediate or low activity, molecular diagnosis by genotyoping can predict the TPMT phenotype only to 85-95 % (McLeod, Leukemia 14 (2000), 567-572; Yates, Ann. Intern. Med. 126 (1997), 608-614).

A further relationship between genotype and phenotype was found in differences in the variable number of tandem repeats (VNTR) within the 5' untranslated region of the TPMT gene (Alves, S. et al., Clinical Pharmacology and Therapeutics 70 (2001), 165-174. The VNTR is composed of 3 repeat elements A, B, and C, differing in length of the unit core (17 or 18 bp) and in nucleotide sequence. Repeats A and B usually can be repeated in the VNTR 1-6 times, repeat C usually is present only ones in the VNTR. Depending on the number of repeats the expression rate of the TPMT protein differs. There seems to be an inverse correlation between the sum of the number of

repeats and the VNTR and the level of TPMT activity but this correlation is not very strong and not well studied.

Thus, means and methods for diagnosing and treating diseases, drug responses and disorders based on dysfunction or dysregulations of TPMT are not reliably available yet and lack the needed sensitivity and specificity of a diagnostic test. Thus, the technical problem underlying the present invention is to comply with the above-specified needs.

Identification of the here described single nucleotide polymorphisms at the TPMT locus together with the here disclosed algorithm for combining the respective genotypes of several single nucleotide polymorphism in a patient to one distinct information about the TPMT phenotype would enable a treating physician to prospectively identify TPMT-deficient patients based on their genotype, prior to treatment with potentially toxic dosages of thiopurines like mercaptopurine, azathioprine or thioguanine.

SUMMARY OF THE INVENTION

5

10

15

20

25

The invention relates to the discovery of single nucleotide polymorphisms in the TPMT gene together with an algorithm that can predict TPMT enzyme deficiencies. The presence of these mutant alleles is directly correlated with potentially fatal hematopoietic toxicity when patients are treated with standard dosages of mercaptopurine, azathioprine, or thioguanine.

Based on the discovery of these single nucleotide polymorphisms together with an algorithm, methods have been developed for detecting these inactivating mutations in genomic DNA isolated from individual patients (subjects), to make a diagnosis of TPMT-deficiency, or to identify heterozygous individuals (i.e., people with one mutant gene and one normal gene), having reduced or total deficient TPMT activity. The present invention, therefore, provides a diagnostic test to identify patients with reduced TPMT activity based on their genotype. Such diagnostic test to determine TPMT genotype of patients is quite advantageous because measuring a patient's TPMT enzyme activity has many limitations. Based on this information, we identified here a set of single nucleotide polymorphisms that are new in this combination. Together with a newly developed algorithm these SNPs are able to predict TPMT activity. These tests involve PCR-based amplification of a region of the TPMT gene where the single nucleotide polymorphisms of interests are found. Following amplification, the amplified fragment is assayed for the presence or absence of the specific single nucleotide polymorphisms of interest. Although much of these assays can be done "by hand", e.g. sequencing oligonucleotide PCR primers, using a thermocycler and protocol to assay for the presence or absence of a single nucleotide polymorphism, automated procedures and kits are designed that contain all the reagents, primers, solutions, et cetera for the genotyping test to facilitate the procedure for use in general clinical laboratories such as those found in a typical hospital, clinic or commercial reference labs.

A preferred embodiment of the present invention relates to the presence of a highly homologues pseudogene in the human genome. Whenever primers were designed to be allele-specific for the TPMT gene we compared both sequences (TPMT gene and pseudogene with bioinformatics programs like MegAlignTM (from DNA Star or other programs) to identify sequences that are unique to the TPMT gene. These are for example the introns of the TPMT gene where allele specific primers for the TPMT gene can be located. For the few differences between the exons of the TPMT gene and the pseudogene primers are located in such a way that the 3' part of the primer ends exactly on the TPMT gene where there is a difference between the two genes.

5

10

In particular, the invention relates to isolated polynucleotide molecules comprising one or more mutant alleles of thiopurine S-methyltransferase (TPMT) or a fragment thereof, which is at least ten consecutive bases long and contains one or more single nucleotide polymorphisms. The single nucleotide polymorphisms are summarized in Table 1.

An aspect of the invention relates to polynucleotide molecules complementary to any one of the polynucleotide molecules described above.

A different aspect of the invention relates to a diagnostic assay for determining thiopurine S-methyl-transferase (TPMT) genotype of a person which comprises isolating nucleic acid from said person, amplifying for a thiopurine S-methyltransferase (TPMT) PCR fragment from said nucleic acid, which includes at least one preferably two or three and in an other aspect more than three of SNPs 1-41 of Table 1, thereby obtaining an amplified fragment. The size of the amplified fragment needs only be large enough so that it is detectable and useful for the genotyping methods described in this file. A preferred range of the amplified fragment size is from 14 nucleotides to several hundreds, more preferably from 75 to 400, and most preferably from 80 to 260.

A further aspect of the invention relates to an isolated polynucleotide molecule having one, two or more SNPs on one or more fragments. Moreover, the invention relates to an isolated polynucleotide molecule complementary to the polynucleotide molecules having a sequence of SNPs 1-41 of Table 1.

An other preferred aspect of the invention relates to genotyping of the amplified fragments with methods described in this file but are not limited to these examples.

An other preferred aspect of the invention is to sequence the VNTR region to identify the number of A, B, and C repeats that correlate to TPMT activity.

Yet another aspect of the invention combines information about the TPMT genotype and the HGPRT genotypes. As inactivating SNPs of the HGPRT gene will produce less, no or deficient HGPRT enzyme, there will be less toxic intermediates produced when a patient is under thiopurine therapy and the treating physician could adjust the dosage of thiopurines in a therapy scheme more precisely.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

10

15

20

25

30

The autosomal recessive trait of thiopurine S-methyltransferase (TPMT) deficiency is associated with potentially fatal hematopoietic toxicity when patients are treated with standard dosages of mercaptopurine, azathioprine or thioguanine (thiopurines in general or other drugs that are substrates of the TPMT enzyme). A number of different single nucleotide polymorphisms in the TPMT gene are described herein that we found to be associated to TPMT deficiencies either alone or preferably in combinations (SNPs 1-41 of Table 1).

Based on the sequence of the mutant alleles provided herein, PCR primers are constructed that are complementary to the region of the mutant allele encompassing the single nucleotide polymorphism. A primer consists of a consecutive sequence of polynucleotides complementary to a region in the allele encompassing the position which is mutated in the mutant allele but that does not amplify the pseudogene. PCR primers complementary to a region in the wild-type allele corresponding to the mutant PCR primers are also made to serve as controls in the diagnostic methods of the present invention. The size of these PCR primers ranges anywhere from five bases to hundreds of bases. However, the preferred size of a primer is in the range from 10 to 40 bases, most preferably from 14 to 32 bases.

To amplify the region of the genomic DNA of the individual patient who may be a carrier for the mutant allele, primers to one or both sides of the targeted position, i.e. the SNPs of Table 1; are made and used in a PCR amplification reaction, using known methods in the art (e.g. Massachusetts General Hospital & Harvard Medical School, Current Protocols In Molecular Biology, Chapter 15 (Green Publishing Associates and Wiley-Interscience 1991) and the primers and probes of Table 2. For example for SNP1 the primers SP900295F and SP900295R are used. For the preferred protocols and methods see the Materials and Methods section and Examples.

According to the method of the present invention, once an amplified specific TPMT fragment is obtained (without amplifying the pseudogene), it can be analyzed in several ways to determine whether the patient has one or more of the here described mutant alleles of the TPMT gene. For example, the amplified fragment can be simply sequenced and its sequence compared with the wild-type cDNA sequence of TPMT. If the amplified fragment contains one or more of the single

20

25

number of repeats A and/or B (for example 3 or more B repeats), the patient is likely to have TPMT-deficiency or be a heterozygote (i.e., reduced activity) and therefore, develop hematopoietic toxicity when treated with standard amounts of mercaptopurine, azathioprine, or thioguanine. Alternatively, a combination of PCR fragment amplification and TaqMan or other genotyping analysis is used to determine TPMT genotype of the individual.

In a preferred embodiment of the invention, a fragment of the genomic DNA of the patient is amplified by TaqMan (Lee et al., Nucleic Acids Research 1993, 21: 3761-3766) analysis using the primers and probes of Table 2 of a respective SNP.

- To determine whether the individual is homozygous or heterozygous for TPMT, the mutation sites on the genomic DNA are amplified separately by using wild-type and mutant primers. If only a wild-type or a mutant-type fragment is amplified, the individual is homozygous for the wild-type or the particular mutant-type TPMT. However, presence of more than one type of fragment indicates that the individual is heterozygous for TPMT allele.
- An example of a diagnostic assay that is carried out according to the present invention to determine the TPMT genotype of a person is as follows. This example is provided for illustrative purposes and is not meant to be limiting.
 - Tissue containing DNA (e.g., not red blood cells) from the subject is obtained. Examples of such tissue include white blood cells, mucosal scrapings of the lining of the mouth, epithelial cells, et cetera. Genomic DNA of the individual subject is isolated from this tissue by the known methods in the art, such as phenol/chloroform extraction or commercially available kits like QiaAmpTM DNA kits from Qiagen, Hilden, Germany. An aliquot of the genomic DNA of the subject can be used for PCR amplification of the TPMT gene. PCR primers encompassing the SNPs 1-50 are listed in Table 2 and are marked with an F or R in the ID name (forward and reverse primer) For each specific SNP one primer pair is chosen for example SNP1 can be amplified with SP900295 F and SP900295R. The listed primers are examples for amplification, other primers can be designed by those skilled in the art. Next, the amplicons are analyzed by the various methods described above, which include Taqman analysis, sequencing, mutation-specific amplification, PyrosequencingTM, or other methods that are known to those in the art to measure genotypes.
- Hence, an efficient and simple method of obtaining information regarding the TPMT genotype in the patient is now made available which aids the physician in choosing the therapeutic modality for the patient.

Definitions

For convenience, the meaning of certain terms and phrases employed in the specification, examples, and appended claims are provided below. Moreover, the definitions by itself are intended to explain a further background of the invention.

The term "algorithm" in this file refers to a sequential analyzing of a number of SNPs in their respective genotypes and defines which genotype of each SNP will have a predictive meaning for TPMT deficiency. For clarification an example is given for 4 SNPs:

	SNP-A	SNP-B	SNP-C	SNP-D
Polymorphism	G/A	G/A	C/T	A/C
Algotrihm1	GG	+ G/A or AA	+ CC	+ CC
Algotrihm2	GG		+ CC	+ AC

Results:

10

15

20

25

Algorithm1 (combination of 4 SNPs) predicts i.e. reduced enzymatic activity when SNP-A is GG and SNP-B is G/A or AA and SNP-C is CC and SNP-D is CC.

Algorithm2 (combination of 3 SNPs) predicts i.e. total deficient activity when SNP-A is GG and SNP-C is CC and SNP-D is AC.

Identified algorithms are called in this file haplotypes (haplotype 1, 2 etc.)

The term "allele", which is used interchangeably herein with "allelic variant" refers to alternative forms of a gene or portions thereof. Alleles occupy the same locus or position on homologous chromosomes. When a subject has two identical alleles of a gene, the subject is said to be homozygous for the gene or allele. When a subject has two different alleles of a gene, the subject is said to be heterozygous for the gene. Alleles of a specific gene can differ from each other in a single nucleotide, or several nucleotides, and can include substitutions, deletions, and insertions of nucleotides. An allele of a gene can also be a form of a gene containing a mutation.

The term "allelic variant of a polymorphic region of a gene" refers to a region of a gene having one of several nucleotide sequences found in that region of the gene in other individuals.

"Homology" or "identity" or "similarity" refers to sequence similarity between two peptides or between two nucleic acid molecules. Homology can be determined by comparing a position in each sequence, which may be aligned for purposes of comparison. When a position in the compared sequence is occupied by the same base or amino acid, then the molecules are homologous at that position. A degree of homology between sequences is a function of the number of matching or homologous positions shared by the sequences.

The term "pseudogene" refers to sequences that have a high homology to identified genes and are generally untranscribed and untranslated due to non-functional promotors, missing start codons or other defects. Most Pseudogenes are intronless and represent mainly the coding sequence of the parent gene. For some cases it has been shown that in different organisms or tissues functional activation may occur.

The term "intronic sequence" or "intronic nucleotide sequence" refers to the nucleotide sequence of an intron or portion thereof.

The term "locus" refers to a specific position in a chromosome. For example, a locus of a gene refers to the chromosomal position of the gene.

The term "molecular structure" of a gene or a portion thereof refers to the structure as defined by the nucleotide content (including deletions, substitutions, additions of one or more nucleotides), the nucleotide sequence, the state of methylation, and/or any other modification of the gene or portion thereof.

15

20

25

30

The term "mutated gene" refers to an allelic form of a gene, which is capable of altering the phenotype of a subject having the mutated gene relative to a subject, which does not have the mutated gene. If a subject must be homozygous for this mutation to have an altered phenotype, the mutation is said to be recessive. If one copy of the mutated gene is sufficient to alter the genotype of the subject, the mutation is said to be dominant. If a subject has one copy of the mutated gene and has a phenotype that is intermediate between that of a homozygous and that of a heterozygous (for that gene) subject, the mutation is said to be co-dominant.

As used herein, the term "nucleic acid" refers to polynucleotides such as deoxyribonucleic acid (DNA), and, where appropriate, ribonucleic acid (RNA). The term should also be understood to include, as equivalents, derivatives, variants and analogs of either RNA or DNA made from nucleotide analogs, including peptide nucleic acids (PNA), morpholino oligonucleotides (J. Summerton and D. Weller, Antisense and Nucleic Acid Drug Development 7:187 (1997)) and, as applicable to the embodiment being described, single (sense or antisense) and double-stranded polynucleotides. Deoxyribonucleotides include deoxyadenosine, deoxycytidine, deoxyguanosine, and deoxythymidine. For purposes of clarity, when referring herein to a nucleotide of a nucleic acid, which can be DNA or an RNA, the term "adenosine", "cytidine", "guanosine", and

"thymidine" are used. It is understood that if the nucleic acid is RNA, a nucleotide having a uracil base is uridine.

The term "polymorphism" refers to the coexistence of more than one form of a gene or portion thereof. A portion of a gene of which there are at least two different forms, i.e., two different nucleotide sequences, is referred to as a "polymorphic region of a gene". A polymorphic region can be a single nucleotide, the identity of which differs in different alleles. A polymorphic region can also be several nucleotides long.

A "polymorphic gene" refers to a gene having at least one polymorphic region.

To describe a "polymorphic site" in a nucleotide sequence often there is used an "ambiguity code"
that stands for the possible variations of nucleotides in one site: The list of ambiguity codes is summarized in the following table:

Ambiguity Codes						
(IUPAC N	(IUPAC Nomenclature)					
Code	Nucleotides					
В	c/g/t					
D	a/g/t					
H	a/c/t					
K	g/t					
M	a/c					
N	a/c/g/t					
R	a/g					
S	c/g					
.V	a/c/g					
W	a/t					
Y	c/t					

For example, a "R" in a nucleotide sequence means that either an "a" or a "g" nucleotide could be at that position.

The terms "protein", "polypeptide" and "peptide" are used interchangeably herein when referring to a gene product.

A "regulatory element", also termed herein "regulatory sequence is intended to include elements which are capable of modulating transcription from a basic promoter and include elements such as enhancers and silencers. The term "enhancer", also referred to herein as "enhancer element", is intended to include regulatory elements capable of increasing, stimulating, or enhancing transcription from a basic promoter. The term "silencer", also referred to herein as "silencer element" is intended to include regulatory elements capable of decreasing, inhibiting, or repressing transcription from a basic promoter. Regulatory elements are typically present in 5' flanking regions of genes. However, regulatory elements have also been shown to be present in other regions of a gene, in particular in introns. Thus, it is possible that genes have regulatory elements located in introns, exons, coding regions, and 3' flanking sequences. Such regulatory elements are also intended to be encompassed by the present invention and can be identified by any of the assays that can be used to identify regulatory elements in 5' flanking regions of genes.

10

15

As used herein, the term "specifically hybridizes" or "specifically detects" refers to the ability of a nucleic acid molecule of the invention to hybridize to at least approximately 6, 12, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130 or 140 consecutive nucleotides of either strand of a gene.

The term "wild-type allele" refers to an allele of a gene which, when present in two copies in a subject results in a wild-type phenotype. There can be several different wild-type alleles of a specific gene, since certain nucleotide changes in a gene may not affect the phenotype of a subject having two copies of the gene with the nucleotide changes.

20 "Adverse drug reaction" (ADR) as used herein refers to an appreciably harmful or unpleasant reaction, resulting from an intervention related to the use of a medicinal product, which

predicts hazard from future administration and warrants prevention or specific treatment, or alteration of the dosage regimen, or withdrawal of the product. In it's most severe form an ADR might lead to the death of an individual.

The term "drug response" is intended to mean any response that a patient exhibits upon drug administration. Specifically drug response includes beneficial, i.e. desired drug effects, ADR or no detectable reaction at all. More specifically the term drug response could also have a qualitative meaning, i.e. it embraces low or high beneficial effects, respectively and mild or severe ADR, respectively. An individual drug response includes also a good or bad metabolizing of the drug, meaning that "bad metabolizers" accumulate the drug in the body and by this could show side effects of the drug due to accumulative overdoses.

The term "haplotype" as used herein refers to a group of two or more SNPs that are functionally and/or spatially linked. Haplotypes of this file are described by an algorithm. Haplotypes are expected to give better predictive/diagnostic information than a single SNP.

The term "haplotype block" as used herein refers to the observable linkage of SNPs between recombination hot spots the locations where homologous recombination between maternal and paternal chromosomes takes place during meiosis. Hot spots on chromosomes have distances between roughly 5000 to 100,000 base pairs. SNPs between hot spots are in higher linkage than SNPs outside the blocks. Haplotypes blocks can experimentally be identified through genotyping a number of neighboring SNPs on a chromosome and analyzing which SNPs are linked (have a comparable genotype pattern).

The term "deficient TPMT activity" in a person can mean absent or very low TPMT activity or it can mean intermediate activity, which is between very low, and the low-end of normal TPMT activity.

Diagnostic and Prognostic Assays

10

30

The present invention provides methods for determining the molecular structure of at least one polymorphic region of a gene, specific allelic variants and haplotypes of said polymorphic region being associated with TPMT deficiencies. In one embodiment, determining the molecular structure of a polymorphic region of a gene comprises determining the identity of the allelic variant. A polymorphic region of a gene, of which specific alleles are associated with TPMT deficiencies can be located in an exon, an intron, at an intron/exon border, or in the promoter or other 5' or 3' flanking regions of the coding sequence of the gene.

In case of analyzing TPMT gene polymorphisms a TPMT gene-specific amplification is recommended to omit interference of sequences from the TPMT pseudogene as discussed above.

The invention provides methods for determining whether a subject has a functional defect in metabolizing thiopurines or structural analogues that are metabolized by TPMT.

In preferred embodiments, the methods of the invention can be characterized as comprising detecting, in a sample of cells from the subject, the presence or absence of specific allelic variants of one or more polymorphic regions of a gene. The allelic differences can be: (i) a difference in the identity of at least one nucleotide or (ii) a difference in the number of nucleotides, which difference can be a single nucleotide or several nucleotides.

10

15

20

25

30

35

Due to the presence of a TPMT pseudogene in the human genome, which is highly homologues to the exons of the TPMT gene most detection methods, need first to amplify at least a portion of a gene prior to identifying the allelic variant. An example is given in the following: Primers for gene-specific amplification have to be located in sequences on the gene of interest that show no homology to the pseudogene, for example the intron sequences of the gene of interest or other sequences that are unique to the gene of interest. Those skilled in the art find those unique sequences through pairwise alignment of homologous sequences of the gene of interest with the help of bioinformatics tools like MegAlignTM (DNA Star) or ClustalWTM from the Wisconsin Genetics Computer Group or other programs. Amplification of the gene fragments can be performed, e.g., by PCR and/or by ligase chain reaction (LCR), according to methods known in the art. In one embodiment, genomic DNA of a cell is exposed to two PCR primers and amplification for a number of cycles sufficient to produce the required amount of amplified DNA. In preferred embodiments, the primers are located between 40 and 350 base pairs apart. Preferred primers for amplifying gene fragments of genes of this file are listed in Table 2 in the Examples.

A preferred detection method is allele specific hybridization using probes overlapping the polymorphic site and having about 5, 10, 20, 25, or 30 nucleotides around the polymorphic region. Examples of probes for detecting specific allelic variants of the polymorphic region are probes comprising a nucleotide sequence set forth in any of SNPs 1-41 in Table 1. In a preferred embodiment of the invention, several probes capable of hybridizing specifically to allelic variants are attached to a solid phase support, e.g., a "chip". Oligonucleotides can be bound to a solid support by a variety of processes, including lithography. For example a chip can hold up to 250,000 oligonucleotides (GeneChip, Affymetrix). Mutation detection analysis using these chips comprising oligonucleotides, also termed "DNA probe arrays" is described e.g., in Cronin et al. (1996) Human Mutation 7:244 and in Kozal et al. (1996) Nature Medicine 2:753. In one embodiment, a chip comprises all the allelic variants of at least one polymorphic region of a gene. The solid phase support is then contacted with a test nucleic acid and hybridization to the specific probes is detected. Accordingly, the identity of numerous allelic variants of one or more genes can be identified in a simple hybridization experiment. For example, the identity of the allelic variant of the nucleotide polymorphism of nucleotide G or A at position 16 of SNP1 in Table 1 and that of other possible polymorphic regions can be determined in a single hybridization experiment. In case of TPMT gene analysis prior to hybridization experiments a gene-specific amplification is needed to get rid of the pseudogene sequences which would interfere in hybridization experiments.

Alternative amplification methods include: self sustained sequence replication (Guatelli, J. C. et al., 1990, Proc. Natl. Acad. Sci. U.S.A. 87:1874-1878), transcriptional amplification system (Kwoh, D. Y. et al., 1989, Proc. Natl. Acad. Sci. U.S.A. 86:1173-1177), Q-Beta Replicase (Lizardi,

WO 2005/066362 - 13 - PCT/EP2005/000064

P. M. et al., 1988, Bio/Technology 6:1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.

In one embodiment, any of a variety of sequencing reactions known in the art can be used to 5 directly sequence at least a portion of a gene and detect allelic variants, e.g., mutations, by comparing the sequence of the sample sequence with the corresponding wild-type (control) sequence. Exemplary sequencing reactions include those based on techniques developed by Maxam and Gilbert (Proc. Natl Acad Sci USA (1977) 74:560) or Sanger (Sanger et al (1977) Proc. Nat. Acad. Sci 74:5463). It is also contemplated that any of a variety of automated sequencing 10 procedures may be utilized when performing the subject assays (Biotechniques (1995) 19:448), including sequencing by mass spectrometry (see, for example, U.S. Pat. No. 5,547,835 and international patent application Publication Number WO 94/16101, entitled DNA Sequencing by Mass Spectrometry by H. Koster; U.S. Pat. No. 5,547,835 and international patent application Publication Number WO 94/21822 entitled "DNA Sequencing by Mass Spectrometry Via 15 Exonuclease Degradation" by H. Koster), and U.S. Pat. No. 5,605,798 and International Patent Application No. PCT/US96/03651 entitled DNA Diagnostics Based on Mass Spectrometry by H. Koster; Cohen et al. (1996) Adv Chromatogr 36:127-162; and Griffin et al. (1993) Appl Biochem Biotechnol 38:147-159). It will be evident to one skilled in the art that, for certain embodiments, the occurrence of only one, two or three of the nucleic acid bases need be determined in the 20 sequencing reaction. For instance, A-track or the like, e.g., where only one nucleotide is detected, can be carried out.

Yet other sequencing methods are disclosed, e.g., in U.S. Pat. No. 5,580,732 entitled "Method of DNA sequencing employing a mixed DNA-polymer chain probe" and U.S. Pat. No. 5,571,676 entitled "Method for mismatch-directed in vitro DNA sequencing".

25

In some cases, the presence of a specific allele of a gene in DNA from a subject can be shown by restriction enzyme analysis. For example, a specific nucleotide polymorphism can result in a nucleotide sequence comprising a restriction site which is absent from the nucleotide sequence of another allelic variant.

In other embodiments, alterations in electrophoretic mobility are used to identify the type of gene allelic variant. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids (Orita et al. (1989) Proc Natl. Acad. Sci USA 86:2766, see also Cotton (1993) Mutat Res 285:125-144; and Hayashi (1992) Genet Anal Tech Appl 9:73-79). Single-stranded DNA fragments of sample and

control nucleic acids are denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In another preferred embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al. (1991) Trends Genet 7:5).

5

10

15

20

. 25

30

In yet another embodiment, the identity of an allelic variant of a polymorphic region is obtained by analyzing the movement of a nucleic acid comprising the polymorphic region in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al (1985) Nature 313:495). When DGGE is used as the method of analysis, DNA will be modified to insure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing agent gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner (1987) Biophys Chem 265:1275).

Examples of techniques for detecting differences of at least one nucleotide between 2 nucleic acids include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide probes may be prepared in which the known polymorphic nucleotide is placed centrally (allele-specific probes) and then hybridized to target DNA under conditions which permit hybridization only if a perfect match is found (Saiki et al. (1986) Nature 324:163); Saiki et al (1989) Proc. Natl Acad. Sci USA 86:6230; and Wallace et al. (1979) Nucl. Acids Res. 6:3543). Such allele specific oligonucleotide hybridization techniques may be used for the simultaneous detection of several nucleotide changes in different polymorphic regions of gene. For example, oligonucleotides having nucleotide sequences of specific allelic variants are attached to a hybridizing membrane and this membrane is then hybridized with labeled sample nucleic acid. Analysis of the hybridization signal will then reveal the identity of the nucleotides of the sample nucleic acid.

Alternatively, allele specific amplification technology which depends on selective PCR amplification may be used. Oligonucleotides used as primers for specific amplification may carry the allelic variant of interest in the center of the molecule (so that amplification depends on differential hybridization) (Gibbs et al (1989) Nucleic Acids Res. 17:2437-2448) or at the extreme 3' end of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (Prossner (1993) Tibtech 11:238; Newton et al. (1989) Nucl. Acids Res.

17:2503). This technique is also termed "PROBE" for Probe Oligo Base Extension. In addition it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection (Gasparini et al (1992) Mol. Cell Probes 6:1).

In another embodiment, identification of the allelic variant is carried out using an oligonucleotide ligation assay (OLA), as described, e.g., in U.S. Pat. No. 4,998,617 and in Landegren, U. et al., Science 241:1077-1080 (1988). The OLA protocol uses two oligonucleotides which are designed to be capable of hybridizing to abutting sequences of a single strand of a target. One of the oligonucleotides is linked to a separation marker, e.g., biotinylated, and the other is detectably labeled. If the precise complementary sequence is found in a target molecule, the oligonucleotides will hybridize such that their termini abut, and create a ligation substrate. Ligation then permits the labeled oligonucleotide to be recovered using avidin, or another biotin ligand. Nickerson, D. A. et al., have described a nucleic acid detection assay that combines attributes of PCR and OLA (Nickerson, D. A. et al., Proc. Natl. Acad. Sci. (U.S.A.) 87:8923-8927 (1990). In this method, PCR is used to achieve the exponential amplification of target DNA, which is then detected using OLA.

10

15

20

25

30

Several techniques based on this OLA method have been developed and can be used to detect specific allelic variants of a polymorphic region of a gene. For example, U.S. Pat. No. 5,593,826 discloses an OLA using an oligonucleotide having 3'-amino group and a 5'-phosphorylated oligonucleotide to form a conjugate having a phosphoramidate linkage. In another variation of OLA described in Tobe et al. ((1996)Nucleic Acids Res 24: 3728), OLA combined with PCR permits typing of two alleles in a single microtiter well. By marking each of the allele-specific primers with a unique hapten, i.e. digoxigenin and fluorescein, each LA reaction can be detected by using hapten specific antibodies that are labeled with different enzyme reporters, alkaline phosphatase or horseradish peroxidase. This system permits the detection of the two alleles using a high throughput format that leads to the production of two different colors.

The invention further provides methods for detecting single nucleotide polymorphisms in a gene. Because single nucleotide polymorphisms constitute sites of variation flanked by regions of invariant sequence, their analysis requires no more than the determination of the identity of the single nucleotide present at the site of variation and it is unnecessary to determine a complete gene sequence for each patient. Several methods have been developed to facilitate the analysis of such single nucleotide polymorphisms.

In one embodiment, the single base polymorphism can be detected by using a specialized exonuclease-resistant nucleotide, as disclosed, e.g., in Mundy, C. R. (U.S. Pat. No. 4,656,127). According to the method, a primer complementary to the allelic sequence immediately 3' to the polymorphic site is permitted to hybridize to a target molecule obtained from a particular animal or

human. If the polymorphic site on the target molecule contains a nucleotide that is complementary to the particular exonuclease-resistant nucleotide derivative present, then that derivative will be incorporated onto the end of the hybridized primer. Such incorporation renders the primer resistant to exonuclease, and thereby permits its detection. Since the identity of the exonuclease-resistant derivative of the sample is known, a finding that the primer has become resistant to exonucleases reveals that the nucleotide present in the polymorphic site of the target molecule was complementary to that of the nucleotide derivative used in the reaction. This method has the advantage that it does not require the determination of large amounts of extraneous sequence data.

In another embodiment of the invention, a solution-based method is used for determining the identity of the nucleotide of a polymorphic site. Cohen, D. et al. (French Patent 2,650,840; PCT Appln. No. WO91/02087). As in the Mundy method of U.S. Pat. No. 4,656,127, a primer is employed that is complementary to allelic sequences immediately 3' to a polymorphic site. The method determines the identity of the nucleotide of that site using labeled dideoxynucleotide derivatives, which, if complementary to the nucleotide of the polymorphic site will become incorporated onto the terminus of the primer.

10

20

25

30

An alternative method, known as Genetic Bit Analysis or GBA TM is described by Goelet, P. et al. (PCT Appln. No. 92/15712). The method of Goelet, P. et al. uses mixtures of labeled terminators and a primer that is complementary to the sequence 3' to a polymorphic site. The labeled terminator that is incorporated is thus determined by, and complementary to, the nucleotide present in the polymorphic site of the target molecule being evaluated. In contrast to the method of Cohen et al. (French Patent 2,650,840; PCT Appln. No. WO91/02087) the method of Goelet, P. et al. is preferably a heterogeneous phase assay, in which the primer or the target molecule is immobilized to a solid phase.

Recently, several primer-guided nucleotide incorporation procedures for assaying polymorphic sites in DNA have been described (Komher, J. S. et al., Nucl. Acids. Res. 17:7779-7784 (1989); Sokolov, B. P., Nucl. Acids Res. 18:3671 (1990); Syvanen, A. -C., et al., Genomics 8:684-692 (1990), Kuppuswamy, M. N. et al., Proc. Natl. Acad. Sci. (U.S.A.) 88:1143-1147 (1991); Prezant, T. R. et al., Hum. Mutat. 1:159-164 (1992); Ugozzoli, L. et al., GATA 9:107-112 (1992); Nyren, P. et al., Anal. Biochem. 208:171-175 (1993)). These methods differ from GBA TM in that they all rely on the incorporation of labeled deoxynucleotides to discriminate between bases at a polymorphic site. In such a format, since the signal is proportional to the number of deoxynucleotides incorporated, polymorphisms that occur in runs of the same nucleotide can result in signals that are proportional to the length of the run (Syvanen, A.-C., et al., Amer. J. Hum. Genet. 52:46-59 (1993)).

For determining the identity of the allelic variant of a polymorphic region located in the coding region of a gene, yet other methods than those described above can be used. For example, using an antibody specifically recognizing the mutant protein in, e.g., immunohistochemistry or immunoprecipitation can perform identification of an allelic variant, which encodes a mutated gene protein. Antibodies to wild-type gene protein are described, e.g., in Acton et al. (1999) Science 271:518 (anti-mouse gene antibody cross-reactive with human gene). Other antibodies to wild-type gene or mutated forms of gene proteins can be prepared according to methods known in the art. Alternatively, one can also measure an activity of a gene protein, such as binding to a lipid or lipoprotein. Binding assays are known in the art and involve, e.g., obtaining cells from a subject, and performing binding experiments with a labeled lipid, to determine whether binding to the mutated form of the receptor differs from binding to the wild-type of the receptor.

If a polymorphic region is located in an exon, either in a coding or non-coding region of the gene, the identity of the allelic variant can be determined by determining the molecular structure of the mRNA, pre-mRNA, or cDNA. The molecular structure can be determined using any of the above described methods for determining the molecular structure of the genomic DNA, e.g., sequencing and SSCP.

10

. 15

20

30

The methods described herein may be performed, for example, by utilizing pre-packaged diagnostic kits, such as those described above, comprising at least one probe or primer nucleic acid described herein, which may be conveniently used, e.g., to determine whether a subject is at risk of having TPMT deficiencies which can cause severe side effects when treated with thiopurines or analogues.

Sample nucleic acid for using in the above-described diagnostic and prognostic methods can be obtained from any cell type or tissue of a subject. For example, a subject's bodily fluid (e.g. blood or saliva) can be obtained by known techniques (e.g. venipuncture or swab, respectively) or from human tissues like heart (biopsies, transplanted organs). Alternatively, nucleic acid tests can be performed on dry samples (e.g. hair or skin).

Diagnostic procedures may also be performed in situ directly upon tissue sections (fixed and/or frozen) of patient tissue obtained from biopsies or resections, such that no nucleic acid purification is necessary. Nucleic acid reagents may be used as probes and/or primers for such in situ procedures (see, for example, Nuovo, G. J., 1992, PCR in situ hybridization: protocols and applications, Raven Press, New York).

10

15

20

25

30

In addition to methods which focus primarily on the detection of one nucleic acid sequence, profiles may also be assessed in such detection schemes. Fingerprint profiles may be generated, for example, by utilizing a differential display procedure, Northern analysis and/or RT-PCR.

In practicing the present invention, the distribution of polymorphic patterns in a large number of individuals exhibiting particular markers for thiopurine response is determined by any of the methods described above, and compared with the distribution of polymorphic patterns in patients that have been matched for age, ethnic origin, and/or any other statistically or medically relevant parameters, who exhibit quantitatively or qualitatively different status markers. Correlations are achieved using any method known in the art, including nominal logistic regression, chi square tests or standard least squares regression analysis. In this manner, it is possible to establish statistically significant correlations between particular polymorphic patterns and particular thiopurine response statuses (given in p values). It is further possible to establish statistically significant correlations between particular polymorphic patterns and changes in drug response such as, would result, e.g., from particular treatment regimens. In this manner, it is possible to correlate polymorphic patterns with responsivity to particular treatments.

In another embodiment of the present invention two or more polymorphic regions are combined to define so called 'haplotypes'. Haplotypes are groups of two or more SNPs that are functionally and/or spatially linked. It is possible to combine SNPs that are disclosed in the present invention either with each other or with additional polymorphic regions to form a haplotype. Haplotypes are expected to give better predictive/diagnostic information than a single SNP.

In a preferred embodiment of the present invention a panel of SNPs/haplotypes is defined that predicts drug response. This predictive panel is then used for genotyping of patients on a platform that can genotype multiple SNPs at the same time (Multiplexing). Preferred platforms are e.g. gene chips (Affymetrix) or the Luminex LabMAPTM reader. But also newer developments are under way like planar waveguides or nanoparticles that could be used for multiplex genotyping. Thin film planar waveguides (PWGs) as used by Zeptosens, Witterswil, Switzerland, for example consist of a 150 to 300 nm thin film of a material with high refractive index (e.g. Ta₂O₅ or TiO₂), which is deposited on a transparent support with lower refractive index (e.g. glass or polymer). A parallel laser light beam is coupled into the waveguiding film by a diffractive grating that is etched or embossed into the substrate. The light propagates within this film and creates a strong evanescent field perpendicular to the direction of propagation into the adjacent medium. The field strength decays exponentially with the distance from the waveguide surface, and its penetration depth is limited to about 400 nm. This effect can be utilized to selectively excite only fluorophores located at or near the surface of the waveguide.

For diagnostics applications, specific captures are immobilized on the waveguide surface. The presence of the analyte in a sample applied to a PWG chip is detected using fluorescent reporter molecules attached to the analyte or one of its binding partners in the assay. Upon fluorescence excitation by the evanescent field, excitation and detection of fluorophores is restricted to the sensing surface, whilst signals from unbound molecules in the bulk solution are not detected. Using this technology it is possible to detect polymorphisms in the TPMT gene but one has to be careful in designing the capture probes in respect to the pseudogene (see discussion above on identifying non-homologous sequences between gene and pseudogene.

Alternatively, nanoparticles could be used that emit different fluorescent colors so that a multiplexing can be set-up for several SNP assays in one reaction as discussed for example in (Expert Rev Mol Diagn. 2003; 3(2): 153-61).

The subsequent identification and evaluation of a patient's haplotype can then help to guide specific and individualized therapy.

For example the present invention can identify patients exhibiting genetic polymorphisms or haplotypes which indicate an increased risk for adverse drug reactions. In that case the drug dose should be lowered in a way that the risk for ADR is diminished.

It is self evident that the ability to predict a patient's individual drug response should affect the formulation of a drug, i.e. drug formulations should be tailored in a way that they suit the different patient classes (low/high responder, poor/good metabolizer, and ADR prone patients). Those different drug formulations may encompass different doses of the drug, i.e. the medicinal products contains low or high amounts of the active substance. In another embodiment of the invention the drug formulation may contain additional substances that facilitate the beneficial effects and/or diminish the risk for ADR (Folkers et al. 1991, US Pat. 5,316,765).

Isolated Polymorphic Nucleic Acids, and Probes

20

30

25 The present invention provides isolated nucleic acids comprising the polymorphic positions described herein for human genes. The invention also provides probes, which are useful for detecting these polymorphisms.

In practicing the present invention, many conventional techniques in molecular biology. Such techniques are well known and are explained fully in, for example, Sambrook et al., 2000, Molecular Cloning: A Laboratory Manual, Third Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York; DNA Cloning: A Practical Approach, Volumes I and II, 1985 (D. N. Glover ed.); Oligonucleotide Synthesis, 1984, (M. L.Gait ed.); Nucleic Acid Hybridization,

1985, (Hames and Higgins); Ausubel et al., Current Protocols in Molecular Biology, 1997, (John Wiley and Sons); and Methods in Enzymology Vol. 154 and Vol. 155 (Wu and Grossman, and Wu, eds., respectively).

The nucleic acids of the present invention find use as probes for the detection of genetic polymorphisms and as templates for the recombinant production of normal or variant peptides or polypeptides encoded by genes listed in the Examples.

Probes in accordance with the present invention comprise without limitation isolated nucleic acids of about 10-100 bp, preferably 14-75 bp and most preferably 15-25 bp in length, which hybridize at high stringency to one or more of the polymorphic sequences disclosed herein or to a sequence immediately adjacent to a polymorphic position. Furthermore, in some embodiments a full-length gene sequence may be used as a probe. In one series of embodiments, the probes span the polymorphic positions in genes disclosed herein. In another series of embodiments, the probes correspond to sequences immediately adjacent to the polymorphic positions.

Kits

10

25.

As set forth herein, the invention provides diagnostic methods, e.g., for determining the identity of the allelic variants of polymorphic regions present in the gene loci of genes disclosed herein, wherein specific allelic variants of the polymorphic region are associated with TPMT deficiencies. In a preferred embodiment, the diagnostic kit can be used to determine whether a subject is at risk suffering severe side effects when treated with thiopurines. This information could then be used, e.g., to optimize treatment of such individuals.

In preferred embodiments, the kit comprises probe and primers, which are capable of hybridizing to a gene and thereby identifying whether the gene contains an allelic variant of a polymorphic region which is associated with TPMT deficiencies. The kit further comprises an algorithm that identifies from a combination of SNPs the grade of TPMT deficiency. The kit preferably further comprises instructions for use in diagnosing a subject having TPMT deficiencies. The probe or primers of the kit can be any of the probes or primers described in this file.

Preferred kits for amplifying a region of a gene comprising a polymorphic region of interest comprise one, two or more primers.

Material and Methods

Genotyping using the ABI 7700/7900TM instrument (for TaqMan analysis)

Genotyping of patient DNA using the TaqMan (Applied Biosystems/Perkin Elmer) was performed according to the manufacturer's instructions. The TaqMan assay is discussed by Lee et al., Nucleic Acids Research 1993, 21: 3761-3766.

Human Subjects

5

Whole blood was obtained from a central diagnostic lab as waste material, individual labels on the tubs were removed irreversibly and replaced by a new number. DNA was isolated with commercially available kits (QIAamp DNA Blood Mini Kit) from Qiagen, Hilden, Germany.

Examples

The following examples are intended to further illustrate certain preferred embodiments of the invention and are not intended to be limiting in nature.

Genotyping Assays

5 DNA of ca. 1300 anonymyzed blood samples was genotyped for 50 SNPs that are listed in Table 1. The sequence of each SNP is given in the table with each SNP in the middle of the sequence. The position is also given in numbers where the SNP can be found on the sequence. As a reference the TPMT gene sequence was taken from the NCBI, accession number AL589723, the sequence was reversed and complemented as the coding sequence for the TPMT enzyme is not given in 5' - 3' direction. For all 50 SNPs a TaqMan assay was designed with PCR primers and TaqMan probes for each allele with different dyes as listed in Table 2. The general protocol for using TaqMan is mentioned above. One example protocol is given in Table 3 for describing concentrations of primers and probes, DNA, and other parameters like cycle temperatures and times.

Table 1: SNP sequences of SNPs 1-50 including surrounding sequence plus respective position in

Accession number AL589723 (reverse complement). Nine reference SNPs were included for benchmarking. SNPs 44, 47, and 50 have proven genotype to phenotype correlation (see above).

SNPs 42, 43, 45, 46, 48, and 49 are from a recent patent application, WO 03/066892 A1.

SEQ-ID	SNP-ID	Bay-SNP	Position	rs # (NCBI)	SNP Pos. in Seq.	Sequence around SNP
SEQ-1	SNP1	900295	14127	rs 1011620	C16T	CTAAGTATTTTTTCTYCTCCT
						TGCATTACCA
SEQ-2	SNP2	900294	19328	rs 942470	T16C	AAGGCATAGTGTTATYTGAA
						AGAGAAATTAA
SEQ-3	SNP3	900296	23375	rs 1886330	T16G	ATTTGTTTTCTCGATKTTATT
						GAACCTTAAC
SEQ-4	SNP4	900272	23670	rs 2328212	. C16T	GGTAGATATGGTTGGYTGGA
						TTTGAGGACAC
SEQ-5	SNP5	900297	29246	rs 3806961	T16C	CAACACCTGCAAGGCYGTGC
						GGGCTCCTGGC .
SEQ-6	SNP6	900273	29586	rs 3806962	C16T	CCTAGCCCGGGAATTYCCCC
						TTCTTCAGACA
SEQ-7	SNP7	900298	31089	rs 2842942	T16A	TTGTGGGCAGAAATTWTTGT
	1					GAAATTTCCCT

SEQ-ID	SNP-ID	Bay-SNP	Position	rs # (NCBI)	SNP Pos. in Seq.	Sequence around SNP
SEQ-8	SNP8	900338	32274		A16T	TATACATATTCAGTWAGCTG
						TAGGATGAC .
SEQ-9	SNP9	900314	33796	rs 2427790	A16C	AATAAATAAATAAATMAATC
-						TAGGTTTCCAA
SEQ-10	SNP10	900315	36499	rs 3931660	. T16A	TGCACATTTAATTCTWCACA
						TTTTTGTGTCT
SEQ-11	SNP11	900299	36905	rs 2842940	T16A	TGCTGAGTAAAGTGGWTGTT
						AGAGACATTCC
SEQ-12	SNP12	900300	37091	rs 2518471	C16T	TCTCAGGTTTACTTCYGAGG
						CTTGAGTACAC
SEQ-13	SNP13	900301	37210	rs 2518472	. A16T	TAATAAAGAATTTTCWAAAC
						ATCCCCAAGAA .
SEQ-14	SNP14	900274	37420	rs 3928922	T16A	AGTGTTCACCTACCAWACAA
						TTGTCCTAAAA
SEQ-15	SNP15	900337	37463		- T16C	TCCTCTTCAGGCTATYAAAG
	· .				-	AAGCATTTAG '
SEQ-16	SNP16	900316	37585	rs 4449636	C16T	AACAGAATTATCTTGYCTTA
	:					ATGATGAATTC
SEQ-17	SNP17	900336	37646		G16T	AAACTCCATTTTCÁGKAAAT
-		•		İ		ACACAGAAAT
SEQ-18	SNP18	900317	37824	rs 3898137	C16T	TTCCCTTTTACATTTYCTGGÄ
						TCCTTGTATG
SEQ-19	SNP19	900318	38079	rs7454407	G16A	GTAATTCTCTACAAARAGAA
						TTCACTTTAAC
SEQ-20	SNP20	900275	40232	rs 2518462	T16A	ATTTTAGGAAGGCACWTGTT
						ACATTATAGCA
SEQ-21	SNP21	900335	41703		G16T	GAACTTGGGATACAAKAATT
						TTTTACAGAG
SEQ-22	SNP22	900334	41750		C16T	AGAAGAACCAATCACYGAA
						ATTCCTGGAAC
SEQ-23	SNP23	900277	41835	rs 2518463	T16C	AAAAGTTTTTCTCAGYGTGA
				•		GTATTATGAGG
SEQ-24	SNP24	900340	44295		C13A	GGGCCCTGGCATMAGTACTG
						TTT
SEQ-25	SNP25	900303	45354	rs 2842936	A16G	TAGCAGAGTAAAAATRTCAC
						TCTGCTCGAGG
	ــــــــــــــــــــــــــــــــــــــ			L	<u> </u>	

SEQ-ID	SNP-ID	Bay-SNP	Position	rs # (NCBI)	SNP Pos. in Seq.	Sequence around SNP
SEQ-26	SNP26	900278	45429	rs 2842935 ·	A16G	CCAACTGATCTTCAARGTTG
						TCCTCTGTGAT
SEQ-27	SNP27	900319	46390	rs 2842934	C16T ·	AGCATTAGTTGCCATYAATC
			·			CAGGTGATCGC
SEQ-28	SNP28	900311	46777	rs 2859778	T16G	TGGTCACTTGCCTATKCCAG
						GTATTGTTCAA
SEQ-29	SNP29	900312	47890	rs 4712327	T16C	TATAGCATGGAAATAYTGAA
						TTACTTAGTTG
SEQ-30	SNP30	900292	48260	rs 2842955	A16C	AACAGGTTAGGCTCCMCATC
						AGTGAAATAAG
SEQ-31	SNP31	900313	48568	rs 2842952	A16G	CTTTTTTTCGAGACRGAGT
	•].			TTCGCTCTTGT
SEQ-32	SNP32	900304	49788	rs 2518467	· G16C	CGTGCCCAGCCTTATSTTAG
						TATTTTATATA
SEQ-33	SNP33	900305	49921	rs 2842951	A16G	CTCCTTAGATTGTACRTTGTC
						AAGTACTGAT
SEQ-34	SNP34	900293	50426	rs 2842950	A16G	GTCTAGCCAGGCTCCRTAGA
						AACTGGAGTGC
SEQ-35	SNP35	900324	51526	rs 6921269	G16T	GGGAAAGAAGTTTCAKTATC
					·	TCCTGTGTGTT
SEQ-36	SNP36	900280	52782	rs 2842947-	· G16A	CTGGAGGTGGAGTCTRAGGÄ
					1	TACTGCTCTTA
SEQ-37	SNP37	900281	54592	rs 1800584	G16A	CTCTTCTTGTTTCARGTAAA
÷					1	ATATGCAATA
SEQ-38	SNP38	900332	54648		T16G	TTTTGAAGAACGACAKAAAA
			ŀ			GTTGGGGAAT
SEQ-39	SNP39	900283	55383	rs 1802650	A16T	GGCCTGACATTCTTTWTGAA
						ATTTAGAATTG
SEQ-40	SNP40	900284	56323	rs 2842944	C16G	GGTCTCACTTTGTTGSCCAC
	ŀ	1		·	. ,	GCTGATGTTGA
SEQ-41	SNP41	900285	56945	rs 7886	A16T	CTTAGGTAGTTGATCWTTTA
						TGTAATATGTG
Doforce	ce SNPs:					
SEQ-42		900326	36369	1	C11G	TGCTTTTCATSAGGAACAAGG

SEQ-ID	SNP-ID	Bay-SNP	Position	rs # (NCBI)	SNP Pos. in Seq.	Sequence around SNP
SEQ-43	SNP43	900327	37528		G11A	TCCTCTTTGCRGAAAAGCGGT
SEQ-44	SNP44	900276	41649	rs 1800462	G16C	ATTTTATGCAGGTTTSCAGA CCGGGGACACA
SEQ-45	SNP45	900328	41767		A11C	CCTGGAACCAMAGTATTTAA GG
SEQ-46	SNP46	900329	45684		G11A	TCATTGTACTRTTGCAGTATT
SEQ-47	SNP47	900279	46376	rs 1800460	G16A	ATTTGGGATAGAGGARCATT AGTTGCCATTA
SÉQ-48	SNP48	900330	46404		G11A	CCAGGTGATCRCAAATGGTA A
SEQ-49	SNP49	900331	54679		A11G _.	TCTTTTGAARAGTTATATCT
SEQ-50	SNP50	900282	54686	rs 1142345	A16G	TTTTTGAAAAGTTATRTCTA CTTACAGAAAA

Table 2: Primer and probe sequences of SNPs 1- 50. The first column describes the SNP-ID for SNPs 1-50, the second column describes the primer and probe ID of each SNP. The nomenclature of primers and probes is as follows: SP900xxx stands for the respective SNP (for example SP900295 is SNP 1) followed by one or more alphabetic letters: F and R describe the forward and reverse primers, or one of the four base symbols A, C, G, T followed by a "+" or "-" describe the probes; the 5' dye type of the probes are symbolized by FAM, VIC, Tet. "+" probes have a MGB/DarkQuencher at 3' end, "-" probes use TAMRA as Quencher. "Out" at the end of the primer's name stands for first primers in nested PCR or outer primers. "AoD" stands for Assays-on-DemandTM from Applied Biosystems (commercially available assays).

SEQ-ID	SNP-ID	Primer/Probe-ID	Sequence	bp	Tm °C
SEQ_51	SNP1	SP900295C+Fam	TATTTTTCTcCTCCTTGCAT	21	66,4
SEQ_52	SNP1	SP900295F	TTCTCCAACCTGTTAGCAATCCTA	24	
SEQ_53	SNP1	SP900295R .	GTGAAAGTGAATTATATGGATGATGGTAA	29	
SEQ_54	SNP1	SP900295T+Vic	AGTATTTTTCTtCTCCTTGCA	22	66,4
SEQ_55	SNP2	SP900294A+Fam	TTTCTCTTTCA2ATAACACTAT	22	65,5
SEQ_56	SNP2	SP900294F	CAACATAGCAACACCCTGTATCAAG	25	
SEQ_57	SNP2	SP900294G+Vic	TCTCTTTCAgATAACACTAT	20	65,2
SEQ_58	SNP2	SP900294R	CCCATAAAACAGGCTGTCAGAAG	23	
SEQ_59	SNP3	SP900296F	CTGGCCCTCTTTGTGTTTAAAAA	23	
SEQ_60	SNP3	SP900296G+Fam	TCTCGATgTTATTGAAC	17	65,9
SEQ_61	SNP3	SP900296R	CAGAGGAAAATATTCAATTAAGGGTTAAG	29	

SEQ-ID	SNP-ID	Primer/Probe-ID	Sequence .	bp	Tm °C
SEQ_62	SNP3	SP900296T+Vic	TTTTCTCGATtTTATTGAAC	20	66,2
	SNP4	AoD	C1916835_10		
SEQ_63	SNP5	SP900297A-Fam	AGCCCGCACaGCCTTGCAG	19	65,6
SEQ_64	SNP5	SP900297F	TCTTCCCGGCCGATAGG	17	
SEQ_65	SNP5	SP900297g-Tet	CCCGCACgGCCTTGCAG	17	65,8
SEQ_66	SNP5	SP900297R	GCTGTGCCAGAGAATTACTACAACA	25	
SEQ_67	SNP6	SP900273C-Fam	TAGCCCGGGAATTcCCCCTTC	21	65,9
SEQ_68	SNP6	SP900273F2	GGCAACATCGCGACGAA	17	
SEQ_69	SNP6	SP900273R2	ATACCTCCTGCCCGGATTA	20	
SEQ_70	SNP6	SP900273T-Tet	TAGCCCGGGAATTICCCCTTCTT	23	65,5
SEQ_71	SNP7	SP900298A+Fam	ATTTCACAA2AATTTCT	17	66,6
SEQ_72	SNP7	SP900298F	GCACATTACAAGAATTAAGGAAGGG	25	
SEQ_73	SNP7	SP900298R	TTGAGGACTTTGTTGTGGGC	21	
SEQ_74	SNP7	SP900298T+Vic	AAATTTCACAATAATTTCT	19	66,5
SEQ_75	SNP8	SP900338A+Fam	TCCTACAGCTaACTGAATA	19	66,4
SEQ_76	SNP8	SP900338F	CATGGGTACITTCCTCCTTTCATAA	25	
SEQ_77	SNP8	SP900338R	TGAGGAAGGTGGCCAAATATACA	23	
SEQ_78	SNP8	SP900338T+Vic	TCCTACAGCTtACTGAATA	19	66,4
SEQ_79	SNP9	SP900314F	CTTATAATGTAGGGTGATGTGAGTGGAT	28	
SEQ_80	SNP9	SP900314g+Fam	AAACCTAGATTgATTTATTT	20	66,2
SEQ_81	SNP9	SP900314R	GCGAGACCCTGCCTCAAA	18	
SEQ_82	SNP9	SP900314T+Vic	AAACCTAGATTtATTTATTT	24	65,8
SEQ_83	SNP10	SP900315A+Fam	CACATTTAATTCTaCACATTT	21	66,3
SEQ_84	SNP10	SP900315F	TGTTCTATCAAAAAGTGACTTTGAGATAGA	30	
SEQ_85	SNP10	SP900315R	ATGCACTGTGACTCGGGAGAC ·	21	
SEQ_86	SNP10	SP900315T+Vic	CACATTTAATTCTtCACATTT	21	66,8
SEQ_87	SNP11	SP900299A+Fam	TCTAACAaCCACTTTACT	. 18	66
SEQ_88	SNP11	SP900299F	CTGCCCAGAACAAGGAATGTC	21	
SEQ_89	SNP11	SP900299R	AGTAGTCTTCATAGCAGCAATAAATCATG	29	
SEQ_90	SNP11	SP900299T+Vic	TCTAACAtCCACTTTACT	18	65,7
SEQ_91	SNP12	SP900300A+Fam	CAAGCCTCaGAAGTA	15	66,1
SEQ_92	SNP12	SP900300F	TCAACATTAATTTCATGGTACGTTCTC	27	
SEQ_93	SNP12	SP900300g+Vic	CAAGCCTCgGAAGTA	15	65,7
SEQ_94	SNP12	SP900300R	GAAACTACAGGAGTTACACTTCTCAGGTT	29	
SEQ_95	SNP13	SP900301A+Fam	AAAGAATTTTCaAAACATC	19	66,3
SEQ_96	SNP13	SP900301F	TCCATGGCTCCAGAGGCTC	19	
SEQ_97	SNP13	SP900301R	CAGGGCTTTCCTGATTAGTAATTAAAAATA	30	1

SEQ-ID	SNP-ID	Primer/Probe-ID	Sequence	bp	Tm °C
SEQ_98	SNP13	SP900301T+Vic	AAGAATTTTCIAAACATCC	19	66,3
SEQ_99	SNP14	SP900274A+Fam	CACCTACCA&ACAAT	15	66,7
SEQ_100	SNP14	SP900274F	GTTGGGAATATTAAGTGAGATAATGAATGA	30	
SEQ_101	SNP14	SP900274R ·	AGTCCACTCTTGCCTTTAAGGAAA .	24	
SEQ_102	SNP14	SP900274T+Vic	TTCACCTACCAtACAATT	18	66,4
SEQ_103	SNP15	SP900337C+Fam	CTTCAGGCTATcAAAGA	17	66
SEQ_104	SNP15	SP900337F	AATGAATGAAAAGTGTTCACCTACCA	26	
SEQ_105	SNP15	SP900337R	CATACCATTTCATCTCAACCGC	22	
SEQ_106	SNP15	SP900337T+Vic	TCTTCAGGCTATtAAAGA	18	66,1
SEQ_107	SNP16	SP900316C+Fam	ATTATCTTGcCTTAATGATGA	21	66,6
SEQ_108	SNP16	SP900316F	GCGGAAAAGCGGTTGAGAT.	19	
SEQ_109	SNP16	SP900316R	CACATCCTGTTAAATCACCCAAAG	24	
SEQ_110	SNP16	SP900316T+Vic	ATTATCTTGtCTTAATGATGAAT .	23	67
SEQ_111	SNP17	SP900336F	GGTGATTTAACAGGATGTGAGTTTTAAA	28	
SEQ_112	SNP17	SP900336G+Fam	CATTTTCAGgAAATACA	17	66,5
SEQ_113	SNP17	SP900336R	AAGACTTCATACCTGTTTCTGTTGTTTCT	29	
SEQ_114	SNP17	SP900336T+Vic	CCATTTTCAGtAAATACA	18	66,6
SEQ_115	SNP18	SP900317C+Fam	TTACATTTcCTGGATCCT	18	66,1
SEQ_116	SNP18	SP900317F	GAAGTCTTTCTGGATTGAGTTTTGAA	26	
SEQ_117	SNP18	SP900317R	CCACCTACAAAACTGAACCACAT	24	7.
SEQ_118	SNP18	SP900317T+Vic	TACATTTICTGGATCCTT	18	66,4
SEQ_119.	SNP19	SP900318A+Fam	CTCTACAAA2AGAATTC	17	66,7
SEQ_120	SNP19	SP900318F	ACCAGTGATTAAGAAAGTATTTCTTGTGA	29	
SEQ_121	SNP19	SP900318g+Vic	TCTACAAAgAGAATTCA	17	66,5
SEQ_122	SNP19	SP900318R	GGGTAACTCATAGTAAAAGTGGCTTGTT	28	
SEQ_123	SNP20	SP900275A+Fam	ATGTAACAaGTGCCTTC	17	66,5
SEQ. 124	SNP20	SP900275F	GCACAGTTATGATTTTATGTCAAGTGAA	28	
SEQ_125	SNP20	SP900275R	ATTTTTAGTGCGTGATTTAGCATAGTG	27	
SEQ_126	SNP20	SP900275T+Vic	ATGTAACAtGTGCCTTC	17	67
SEQ_127	SNP21	SP900335A+Fam	CTCTGTAAAAATTaTTGTATCC	23	66
SEQ_128	SNP21	SP900335C+Vic	TCTGTAAAAAATTcTTGTATCC	22	66
SEQ_129	SNP21	SP900335F	GGGATATGGATACAATTATTTACCCAAA	28	
SEQ_130	SNP21	SP900335R	TGGTGTGGAAATCAGTGAACTTG	23	
SEQ_131	SNP22	SP900334C+Fam	TCACcGAAATTC	12	65,9
	SNP22	SP900334F	= SP900328F	11	
	SNP22	SP900334R	= SP900328R	.11	
SEQ_132	SNP22	SP900334T+Vic	ACCAATCACIGAAATT	16	66,2

SEQ-ID	SNP-ID	Primer/Probe-ID	Sequence	bp	Tm °C
	SNP23	AoD	C396314_10		
SEQ.133	SNP24	SP900340A+Fam	CCTGGCATaAGTACTGT	17	66,1
SEQ_134	SNP24	SP900340C+Vic	CTGGCATcAGTACTGT	16.	66,1
SEQ_135	SNP24	SP900340F	CCCCAGGCCAATTATATCAGAA	22	
SEQ_136	SNP24	SP900340R	AACTTTGCCTGCAGATTGGAA	21	
SEQ_137	SNP25	SP900303A+Fam	AGTAAAAAT2TCACTCTGCTC	21	65,8
SEQ_138	SNP25	SP900303F	GATAATTGGTTGACCTGCAGATTTATC	27	
SEQ_139	SNP25	SP900303G+Vic ·	AGAGTAAAAATgTCACTCTG	20	66,1
SEQ_140	SNP25	SP900303R	GCTTGCTATAAAATTCTAACAATGTTTCC	29	
SEQ_141	SNP26	SP900278A+Fam	ATCTTCAAaGTTGTCCTC	18	66
SEQ_142	SNP26	SP900278F	CTCTGAAGTGAGTAACAGCCAACTG	25	
SEQ_143	SNP26	SP900278G+Vic	CTTCAAgGTTGTCCTC	16	66,2
SEQ_144	SNP26	SP900278R	GCACTTATTGGCACCTTATTTTTT	26	
SEQ_145	SNP27	SP900319C+Fam	TTAGTTGCCATcAATC	16	66,9
	SNP27	SP900319F	= SP900279R	14	
	SNP27	SP900319R	= SP900279Fout	14	1
SEQ_146	SNP27	SP900319T+Vic	TTAGTTGCCATtAATCCA	18	66,9
SEQ 147	SNP28	SP900311F	CACAATCATCACCACCTCCACTA	23	
SEQ 148	SNP28	SP900311g-Fam	TCACTTGCCTATgCCAGGTATTGTTCA	27	65,3
SEQ_149	SNP28	SP900311R	CCCAGCCCACATAAAGTATTTTG	23	. 1
SEQ_150	SNP28	SP900311T-Tet	CTGGTCACTTGCCTATtCCAGGTATTGTT	29	65
SEQ_151	SNP29	SP900312A+Fam	CTAAGTAATTCAaTATTTCCATGC	24	66,2
SEQ_152	SNP29	SP900312F	CAAGTGATGAGTCTGCTCCATACAA	25	
SEQ 153	SNP29	SP900312g+Vic	CTAAGTAATTCAgTATTTCCAT	22	66,
SEQ 154	SNP29	SP900312R	TGACCACATCTGTATACTCTTTCAATTAAA	30	
SEQ_155	SNP30	SP900292A+Fam	TAGGCTCCaCATCAG	1:5	65,
SEQ 156		SP900292C+Vic	TTAGGCTCCcCATCAG .	16	. 65,
SEQ_157	SNP30	SP900292F2	GGGCAACGGAGTGAGATTTC	20	
SEQ 158		SP900292R2	ATTAGGTTTGGCAGTAAGCCTTACTG	26	
SEQ_159	SNP31	SP900313C+Fam	CGAAACTCcGTCTCG	15	66,
SEQ_160		SP900313F	CCAGCCTGGGCAACAAGA	18	
SEQ_161	SNP31	SP900313R	GCCAATATTTGTCCTACCAGAAAGA	25	
SEQ_162		SP900313T+Vic	CGAAACTCIGTCTCGAA	17	66
SEQ 163			AGCCTTATgTTAGTATTTT	19	66
SEQ 164		2 SP900304F	CCAAAGTGCTGGGATTACAGATG	23	
SEQ_165		2 SP900304g+Vic	CCCAGCCTTATcTTAGTAT	19	66
SEQ_166			GTGCTAACATGGTAAGTACTGAGTACCA	28	3

SEQ-ID	SNP-ID	Primer/Probe-ID	Sequence .	bp	Tm °C
	SNP33	AoD	C396305_10		
SEQ_167	SNP34	SP900293C+Fam	CAGTTTCTAcGGAGCCT	17	66,6
SEQ_168	SNP34	SP900293F	TTCCCCACACTGAGGAAGGA	20	
SEQ_169	SNP34	SP900293R	GCACTTGCCTCCCCAACTT	19	
SEQ_170	SNP34	SP900293T+Vic	CCAGTTTCTAtGGAGCC	17	66,6
SEQ_171	SNP35	SP900324F	GCCTGTGTAGAGAAATGTAACAAATACC	28	
SEQ_172	SNP35	SP900324g+Fam	AAGTTTCAgTATCTCCTG	18	66,4
SEQ_173	SNP35	SP900324R	GGATGTTTAGTTGGATCATAAGAAAGAA	28	
SEQ_174	SNP35	SP900324T+Vic	AAGAAGTTTCAtTATCTCCT	20	66,7
SEQ_175	SNP36	SP900280C+Fam	AGTATCCTcAGACTCC	16	67
SEQ_176	SNP36	SP900280F	CTTCCGCCCCTTCTAAGAG	20	
SEQ_177	SNP36	SP900280R	AAAGAACCTTTGGGAAGAAAATACAG	26	
SEQ_178	SNP36	SP900280T+Vic	CAGTATCCTtAGACTCC	17	66,6
SEQ_179	SNP37	SP900281A+Fam	TCTTGTTTCA2GTAAAATA	19	66,5
SEQ_180	SNP37	SP900281F	CCTGATGTCATTCTTCATAGTATTTTAACA	30	
SEQ_181	SNP37	SP900281G+Vic	TCTTGTTTCAgGTAAAAT	18	66,1
SEQ_182	SNP37	SP900281R	CCTTCTCAAGACAACGTATATTGCA .	25	·
SEQ_183	SNP38	SP900332A+Fam	CCAACTTT2TGTCGTTCT	19	65,9
SEQ_184	SNP38	SP900332C+Vic	CAACTTTtcTGTCGTTCT	18	65,5
SEQ_185	SNP38	SP900332F	CATGTCAGTGTGATTTTATTTTATCTATGTCTC	33	۹.
SEQ_186	SNP38	SP900332R	CCTGATGTCATTCTTCATAGTATTTTAACA	30	
SEQ_187	SNP39	SP900283A+Fam	TTCTAAATTTCA2AAAGAATGT	22	65,8
SEQ_188	SNP39	SP900283F	GACCACCTTGAACCCTACTGAAA	23	
SEQ_189	SNP39	SP900283R	AGGCGTGAGCCACTGCA .	17	
SEQ_190	SNP39	SP900283T+Vic	ATTCTAAATTTCAtAAAGAATGT	23	65,8
SEQ_191	SNP40	SP900284c-Fam	TCTCACTTTGTTGcCCACGCTGAT	24	65,8
SEQ_192	SNP40	SP900284F	GGACCAACACAATTCTCTCCAGA	23	
SEQ_193	SNP40	SP900284g-Tet	TCTCACTTTGTTGgCCACGCTGAT	24	65,8
SEQ_194	SNP40	SP900284R	GGAGGACTGCTTGAGGCCTC ·	20	
	SNP41	AoD	C_12091548_10		
SEQ_195	SNP42	SP900326C+Fam	TCCTcATGAAAAGC .	14	66,5
SEQ_196	SNP42	SP900326F	CAAAGTCACTTTTTGATAGAACATTTCTC	29	
SEQ_197	SNP42	SP900326g+Vic	TCCTgATGAAAAGC	14	66,5
SEQ_198	SNP42	SP900326R	AAGTGGGTGAACGGCAAGAC	20	
SEQ_199	SNP43	SP900327C-Fam	CAACCGCTTTTCcGCAAAGAGG	22	65,7
SEQ_200	SNP43	SP900327F	TTCTGTTAATGTTTATCTGCTCATACCA	28	
SEQ_201	SNP43	SP900327R	GCAAGAGTGGACTGAGGGTATTTT	24	

SEQ-ID	SNP-ID	Primer/Probe-ID	Sequence	bp	Tm °C
SEQ_202	SNP43	SP900327T-Tet	TCAACCGCTTTTCIGCAAAGAGGAA	25	65,8
SEQ_203	SNP44	SP900276C-Fam	TCCCCGGTCTGcAAACCTGC	20	66,3
SEQ_204	SNP44	SP900276F	TCACTGATTTCCACACCAACTACA	24	
SEQ_205	SNP44	SP900276G-Tet	CCCCGGTCTGgAAACCTGCA	20	66,1
SEQ_206	SNP44	SP900276R	TGTTCTTGAAACCCTATGAACCTG	25	
SEQ_207	SNP45	SP900328A+Fam	CTGGAACCAaAGTATT	16	66,4
SEQ_208	SNP45	SP900328C+Vic	CTGGAACCAcAGTATT	16	66,5
SEQ_209	SNP45	SP900328F	ACAGAGCAGAATCTTTCTTACTCAGAAG	28	
SEQ_210	SNP45	SP900328R	GGGATATGGATACAATTATTTACCCAAA	28	
SEQ_211	SNP46	SP900329C+Fam	TACTGCAAcAGTACAATG	18	66,2
SEQ_212	SNP46	SP900329F	TCAACCTACCTGGGAAGATCAAA	23	
SEQ_213	SNP46	SP900329R	GGCCCTCTTTCCTTGACTATTCA	23.	
SEQ_214	SNP46	SP900329T+Vic	ATACTGCAAtAGTACAATGA	20	66,4
SEQ_215	SNP47	SP900279C+Fam	CAACTAATGeTCCTCTAT	18	66,5
SEQ_216	SNP47	SP900279Fout	GCTAAACAAAAAAGAAAAATTACTTACCAT	31	
SEQ_217	SNP47	SP900279F	TGCGATCACCTGGATTGATG	20	
SEQ_218	SNP47	SP900279Rout	TCTTAAAGATTTGATTTTTCTCCCATAAA	29	
SEQ_219	SNP47	SP900279R	TTCTGGTAGGACAAATATTGGCAA	24	
SEQ_220	SNP47	SP900279T+Vic	CAACTAATGITCCTCTATC	19	66,9
SEQ_221	SNP48.	SP900330A+Fam	ATCCAGGTGATCaCAAA	17	66,1
SEQ_222	SNP48	SP900330F	TTCTGGTAGGACAAATATTGGCAA	14	
SEQ_223	SNP48	SP900330g+Vic	CCAGGTGATCgCAAA	15	66,2
SEQ_224	SNP48	SP900330R	GCTAAACAAAAAAGAAAAATTACTTACCAT	14	
SEQ_225	SNP49	SP900331C+Fam	TAACTcTTCAAAAAGAC	17	66
SEQ_226	SNP49	SP900331F	CATGTCAGTGTGATTTTATTTTATCTATGTCTC	33	
SEQ_227	SNP49	SP900331R	GAGAAGGTTGATGCTTTTGAAGAAC	25	
SEQ_228	SNP49	SP900331T+Vic	ATAACTITCAAAAAGAC	1,8	65,7
SEQ_229	SNP50	SP900282A+Fam	TTTGAAAAGTTATaTCTACTTACA	24	65,1
SEQ_230	SNP50	SP900282F	TGATGCTTTTGAAGAACGACATAAA	25	
SEQ_231	SNP50	SP900282G+Vic	TTTTTGAAAAGTTATgTCTACTTA	24	65,3
SEQ_232	SNP50	SP900282R	TCCTCAAAAACATGTCAGTGTGATT	25	

Table 3: Example of a TaqMan PCR Protocol

TaqMa	n PCR Protocol		·	Experiment #	SSPif031028A
Primer #1	SP900282F			Probe #1	SP900282A+Fam
Primer #2	SP900282R			Probe #2	SP900282g+Vic
DNA plate	MDA 3			Primer #1	100 μΜ
DNA plate	MDA 10			Primer #2	100 μΜ
DNA plate	MDA 11			Probe #1	50 μΜ
DNA plate	MDA 12			Probe #2	50 μM
Quencher	MGB/non flu	orescent			
PCR machine	Biometra			Number of sar	mples
Taq Polymerase	qPCR Mastern Eurogentec	nix Fa.		. 440	
Reaction vol.	[µL]	Endkonz.	•	Mastermix [µL]	
H2O	3,318	·		1460	
TQMMM.	3,5	1x		1540	
Primer #1	0,063	0,9 μΜ		28	·
Primer #2	0,063	0,9 μΜ	•	28	·
Probe #1	0,028	0,2 μΜ		12,3	
Probe #2	0,028	0,2 μΜ		12,3	
Template DNA	3	2-20 ng		at 80°C 30' dri	ed down
Reaction vol.	7	each		3	μL Template (dried)
		and each		7	μL Mastermix
DCD Dragge	Town (9C)	Time	Step	Back to step	Number of cycles
PCR Program	Temp [°C]	Time	Breh	Dack to step	Transpor Or Cycles
Pre-incubation	95	10'	1		
Denaturing	94	15"	2		
Primer annealing	61	1'	3	2	54
Hold	8	8'	4		

TPMT Assay

Erythrocyte lysates were analyzed for TPMT activity by a HPLC method using 6-thioguanine as substrate described in Kroeplin, T. et al., Eur. J Clin. Pharmacol (1998) 54: 265-271.

Sequencing of VNTR

5 Sequencing of the VNTR of the TPMT gene was performed with an ABI PrismTM 3700 (Applied Biosystems) using a protocol as described by the manufacturer with the following primers:

VNTR-Seq1 gctccgccctgcccattt (forward) and

VNTR-Seq2 gtcattggtggcggaggc (reverse)

In general, molecular techniques were performed according to Sambrook et al. Molecular Cloning,

10 A Laboratory Manual, 3rd Ed. 2000, Cold Spring Harbor Laboratory Press.

The VNTR regions that were amplified with the primers VNTR-Seq1 + 2 ranged in length from 233 to 377 bp with 1-6 repeats of A (gtcattggtggcggaggc), 1-3 repeats of B (gaggcgggggggggggg), and 1 repeat of C (gaggcgggggggggggaga).

Results

- 15 From the ca. 1300 DNA samples we identified 135 unique haplotypes in the TPMT gene. Table 4a shows the allele frequencies of all polymorphic SNPs; 20 SNPs were found to be monomorphic in our 1300 DNA samples (listed in Table 4b). Surprisingly, 5 out of 9 reference SNPs were monomorphic in the tested population. Although 5 out of 6 SNPs were taken from one patent application as reference SNPs and were meant to be used as benchmark SNPs!
- Table 4a: Allele frequencies of all 30 polymorphic SNPs in ca.1300 samples. Reference SNPs are marked with a "R" in the second column, linked SNPs are shaded, other SNPs, which are mentioned particularly in the text are marked either with a comma (,) or a dash (-).

SNP-ID		Position	Allele 1	Allele 2	Freq. 1	Freq. 2
SNP1		-15874	2365	265	89,9	10,1
SNP2		-10673	1645	923	64,1	35,9
SNP3		-6625	2387	251	90,5	• 9,5
SNP4	Г	-6330	2110	166	92,7	7,3
SNP7	,	1089	1361	1281	51,5	48,5
SNP8	,	2274	1400	1218	53,5	46,5
SNP9		3796	2274	322	87,6	12,4
SNP10,		6499	2517	87	96,7	3.3
SNP12	-	7091	2383	179	93,0	7,0
SNP16		7585	1378	1210	53,2	46,8
SNP17	100	7646	- 2543	187	¥ 96;7	3,3
SNP18		7824	1557	1031	60,2	39,8
SNP20	,	10232	1394	1230	53,1	46,9
SNP44	R	11649	2651	9	99,7	0,3
SNP22	Τ	11750	2612	2 14	99,5	0,5
SNP45	R	11767	2622	2 4	99,8	0,2
SNP23	T	11835	1208	1060	53,3	46,7
SNP25	1	15354	178	853	67,6	32,4
SNP26	F	15429	190	72	72,	27,5
SNP47	Ŗ	16376	255	7	7 🗓 97,	2,9
SNP27	T	16390	200	1 . 55	78,2	.21,8
SNP28	T	16777	203	58:	5 . 77,	7 22,3
SNP29	-	17890	199	4 63:	2 75,	24,1
SNP31	T	18568	196	7 56	77,	7 22,3
SNP32	1	19788	204	6 59	0 77,	6 22,4
SNP33	T	19921	197	9 60	9 · 76,	23,5
SNP34		20426	203	6 58	8 77,	6 22,4
SNP36	T	22782	204	3 59	1 77,	6 22,4
SNP50	E	24686	255	2 8	6 96,	7 3,3
SNP41	Ť	26945	176	3 51	7 77,	3 22,7

Table 4b: 20 monomorphic SNPs were found in the 1300 DNA samples tested.

SNP-ID	Bay-SNP-ID										
SNP5	900297	monomorphic									
SNP6	900273	monomorphic									
SNP11	900299	monomorphic									
SNP13	900301	monomorphic									
SNP14	900274	monomorphic									
SNP15	900337	monomorphic									
SNP19	900318	monomorphic									
SNP21	900335	monomorphic									
SNP24	900340	monomorphic									
SNP30	900292	monomorphic									
SNP35	900324	monomorphic									
SNP37	900281	monomorphic									
SNP38	900332	monomorphic									
SNP39	900283	monomorphic									
SNP40	900284	monomorphic									
Reference SNPs:											
SNP42	900326	monomorphic									
SNP43	900327	monomorphic									
SNP46	· 900329	monomorphic									
SNP48	900330	monomorphic									
SNP49	900331	monomorphic									

Table 5 shows all different haplotypes of 30 polymorphic SNPs in 5' to 3' direction on the TPMT gene (from left to right in the table). Positions of SNPs are mentioned in reference to the accession number AL589723 (reverse complement). To get a better overview, the wild type genotype is symbolized in Table 5 with a comma (,), the heterocygote is marked with an (o) and the mutant homocygote is marked with an (X). The real genotypes can be read from the bottom of the table. It can be seen from the table that between SNP 47 and SNP 27 starts a transition of one haplotype block to another one, representing probably a crossover point of maternal and paternal chromosomes in meiosis. The downstream part of the TPMT gene, which starts in Table 5 with SNP 27, codes for the last four exons of the TPMT protein. This haplotype block contains SNPs that have in nearly all patients measured a similar allele frequency with very similar occurrences of wild type, heterocygote and mutant genotypes.

Table 5: All different haplotypes of 30 polymorphic SNPs in 5' to 3' direction on the TPMT gene (from left to right in the table). Reference SNPs are marked with a "R", linked SNPs are shaded, other SNPs, which are mentioned in the text are marked with a dash (-).

•	•																			
SNP41	SÞ697			0	• -]	-	-	-	-		-	٥	-	-	-	-	·	-	0
OSANS.	₹ 989 ₽ 7	A.	X.	٥	0	0,5	o	o;	o,	٠°	o.	0	o`	o.	o.	0	o.	ٽ م	٥,	Ô
SNP36	28722		•	٥	0	-	•	-	-	-	•	·	0	-	•	-	٠.	·	-	0
SNP34	97407		٠	0	•	-	•	٠	·	\cdot	-	-	٥	-	-	-	-	·	•	0
SNP33	17661		•	0	•	-	•	-	٠	-	-	٠	0	-	-	-	•	·	·	•
SNP32	88461		-	0	•	-	-	-	٠	-	٠	·	٥	-	٠	-	٠		-	<u></u>
SNP31	18268		•	0	-	-	-	-	-	-		-	0	:	-	•	-			
SNP29	068LI	•	·	0		-		·	•	٠	٠	•	0	-	-	Ŀ	٠			•
SNP28	LLL9I		-	٥	-	•	-	•	-	-	٠	-	0	•	Ŀ	_	٠	-	•	٥
SNP27	16390		·	0	0	-	-	-	•	٠	-	٠	0	-	Ŀ	Ŀ	٠	•	إ	٥
: LEINS	9/591	8	×	0	0	Ö.	O.	0	ρ	ó Î	ō,	o	o _i	ο	ο,	0	o	0	0	0
SNP26	12 4 56	<u> </u>	×	×	٥.	٥	٥	٥	٥	٥	0	٥	×	٥	٥	0	٥	0	٥	×
SNP25	12324		×	×	0	0	0	×	٥	٥	0	٥	×	٥	0	0	٥	0	٥	×
SNP23	58811		Ŀ	Ŀ	0	<u> </u>	Ŀ	-	-	٥		٥	٥	0	÷	0	٥	٥	٥	
SNP45	L9LTT	24	<u> </u> -	<u> </u>	Ŀ	<u>-</u>	Ŀ	-	-	Ŀ	٠	Ŀ	-	Ŀ	Ŀ	Ŀ	Ŀ	-	-	
SNP22	OSLII	·	ŀ	ŀ	-	·	<u> </u>	•	٠-	ŀ	Ŀ	Ŀ	-	·	·	·	Ŀ	·		
SNP44	64911	24	<u> </u> -	Ŀ	-	·	-	-	-	Ŀ	Ŀ	Ŀ	Ŀ	·	Ŀ	Ŀ	·	·	·	
SNP20	10232			Ŀ	0	-	Ŀ	Ŀ	Ŀ	٥	٥	٥	0	٥	Ŀ	0	٥	٥	٥	
SNP18	⊅ 787		-	0	·	0	0	٥	·	•		·	·	-	0	Ŀ	ŀ	·	·	٥
LIANS	9 1 9L	3.3	×	,o	ο.	ó	ó	ō.	ρ.	ō.	o	٥.	Ο.		ŏ	o	- 1	0.	0	o,
SNP16	585 <i>L</i>			-	0	Ŀ	ŀ	-	·	0	0	0	0	٥	<u> </u>	0	0	0	0	Ŀ
SNP12	1604		ŀ	-	0	·	·	٠.	ŀ	Ŀ		Ŀ	٥	Ŀ	-	Ŀ	ŀ	<u> </u> :	·	
SWPIO	6679	137	×	٥	o	o,	0	o,	0	o,	o.	o	0,	0,7	Ö.	0,	o s	0.	0	0
SNP9	9618		-	·	٠	·	-	•	Ŀ	ŀ	<u> </u>	0	·-	-	Ŀ	Ŀ	<u>.</u>	ŀ	Ŀ	Ŷ
SMP8	7777		•	0	-	0	0	0	0	Ŀ	Ŀ	Ŀ	ŀ	ŀ	0	-	ŀ	Ŀ	Ŀ	<u> </u>
LANS	6801	<u></u>	-	Ŀ	×	•	ŀ	-	-	×	×	×	×	×	Ŀ	×	×	×	×	Ŀ
SNP4	0669-		Ŀ	ŀ	0	ŀ	Ŀ		Ŀ	ŀ		-	0	·	Ŀ	<u> -</u>	ŀ	ŀ	ŀ	Ŀ
SNP3	S799-	<u> </u>	-	Ŀ	0	Ŀ	ŀ	Ŀ	Ŀ	ŀ	<u> </u> -	Ŀ	0	<u> </u> -	-	<u> </u> :	Ŀ	Ŀ	Ŀ	
SMP2	£L901-		•	-	Ŀ	·	0	ŀ	Ŀ	0	0	0	Ŀ	0	Ŀ	0	0	0	0	·
SNP1	₽L8SI-		ŀ	<u> </u> -	L	Ŀ	ŀ	Ŀ	<u> </u>	Ŀ	Ŀ	Ŀ	0	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	·
SNP:	Position Patient Sample	Reference SNP	PS_6327		3 PS_10081	t PS_10178	5 PS_10379		7 PS_11072	8 PS_11366	9 PS_11366	D PS_12017	1 PS_12177	2 PS_12180			5 PS_12359	6 PS_12409	7 PS_12633	8 PS_12778
1			1	2	6	4	5	9	1	۱۳	9	12	=	12	13	14	15	16	17	18

								·								i						_		
SNP41	26945		٠			٥				•		-	<i>z</i> .	-	-	735			٠	•	•	0	•	•
OS4MS		Z,	o	o,	ō	×	o.	0	o,	0	Ö.	o.	o.	o,	0.	ο.,	νÓ	o.	o°,	O	o,	o	0	٥
SNP36	78722		-	•	0		0		٠	٠	٠	-	•	•	-	-	٠	•	·	•	-	٥	•	_
SNP34	20426		•	-	0		o O	-	٠	٠	·	٠	•	·	÷	-	•	٠	·	٠		0	•	·
SNP33	17661		•	•	0	•	0	•	-		·	٠	٠	٠	•	•	٠	٠	Ŀ	٠	٠	٥	٠	•
SNP32	88791		٠	•	.0	•	0	- '	•	·		٠	·	•	•	-	-	٠	·	Ŀ	·	٥	•	
SNP31	18268		•	•	0	٠		-	-	-		•		·	٠		•		٠	ŀ	٠	0	٠	
SMP29	068LI	1	•	•	0	•	0	•	٠	0	•	•	-	-		-	٠	÷	·	·	٠	٥	٠	·
SNP28	<i>LLL</i> 91		•	•	0	•	0	•	٠	•		-	-	-	•	-	-		-	٠	•	٥	٠	•
SMP27	16390	•	٠	•	0	٠		•	•	-		•		٠	-		-		·	•	•	٥		٠
ZYANS	3, 92cot	R	.	Ó	, O	Ó	0	ā.	o.	0	o.	0	0	o .	o.	Ò	o.	3	0	o -	Ô	0,	o.	9.0
SNP26	12459	ı	0	0	×	×	×.	0	0	×	0	0	٥	٥	٥	0	0	٥	٥	0	٥	×	0	٥
SNP25	12324		0	٥	×		×	٥	٥	×	×	•	٥	٥	٥	0	٥	•	0	×	٥	×	o ·	×
SNP23	11835		Ŀ		L	<u>.</u>		٥		ŀ		Ŀ		·	•		٥		۰	٥	٥	Ŀ	-	٥
SNP45	<i>L</i> 9 <i>L</i> TT	~	:		·	٠			-	Ŀ	٠	٠	·	٠	·		Ŀ	·	-	•	Ŀ	·	•	Ŀ
SMP22	05/11		Ŀ	<u> </u>	<u> </u>	-		٠	٠	·	•	•	·		-	-	•	·	-	-	٠	·	-	·
SNP44	64911	~	-	Ŀ	Ŀ		-	_	-	Ŀ	٠	·	Ŀ	-			•	•	Ŀ	-		·	-	
SNP20	10232		<u> </u>	٥	Ŀ	Ŀ	0	۰	0	Ŀ	٥	·	٥	·	·	٠	٥	·	٥	٥	Ö	-	-	٥
SITMS	₽ 7 8 <i>L</i>		0	Ŀ	0	_	ŀ		ŀ	-	·	0	٠.	0	0	0	Ŀ	0	ŀ		·	· ·	0	1.
TIANS	9792		0	o	·ο΄	o.	o,	o.	O	o.	o.	Ö	o:	o '	O:	0	Q,	0	o/	Ö.	0	o:	0	o
SNP16	S8S <i>L</i>		٠	0		:		0	0				٥				0	Ŀ	0	٥	٥	·	٠	٥
SNP12	160 <i>L</i>		-	•	-			-	•	•		-	-	ŀ	-		-		-	-	ŀ	-	-	
: 01 TM2	6679	У.	0	O):	ço.	×	A.	Ö,	ζ ₍)	o _j	, G	o:	Ο,	ġ.	o		ο.	17	۰	Ö	ۈ.	0	0	ō.
SNP9	96LE		-	•		-		0		·	0	•	·	•	•	-		٠	-	-	-	·	:	0
SAN2	- ⊅ LZZ		0	·	٥	0	٠	٠	·	-	-	0	-	0	0	0	·	0	•		٠	0	0	-
LANS	6801		-	×	·	0	×	×	×	-	×	-	×	Ŀ	-	Ŀ	×	-	×	×	×	Ŀ	·	×
SNP4	0869-		-			-		-				-					٠		•	•	ŀ	·	٠	•
SNP3	S799-		·	·	·		0	Ŀ	-	0	Ŀ	Ŀ	Ŀ	<u> </u>	ŀ	·	·	-	-	•	Ŀ	·	Ŀ	•
SNP2	£4901-		ŀ	0	Ŀ	·		٥	0	Ŀ		Ŀ	٥	0	Ŀ		0		0	Ŀ	٥	Ŀ	•	٠
IANS	<i>†L8SI-</i>		·	Ŀ	-	·	0	Ŀ	<u> </u>	0		<u> </u>	-	<u> </u>	-	·	·	•	-	Ŀ	·	ŀ	-	·
SNP:	Position Patient Sample	Reference SNP	PS_12898	PS_13275	PS_13914	PS_14030	PS_14213	PS_14367		PS_14494	PS_14658	PS_14912	PS_14984	PS_15010	PS_15514	PS_15589	3 PS_15946	PS_16028	PS_16066	PS_16906	PS_17813	3 PS_18038	PS_18087	PS_18237
			19	20	21	22	23	24	25	56	27	28	29	30	3	32	33	34	35	36	37	38	39	9

	<u> </u>									_		•			-	_	_					 1	 i	
SNP41	S4697		٠	•	0	_		0	•	٥	·	ا ا	•		•	-	٥	rīa.	•	-	•	-	-	•
SŃPŚO	98972	₽,	, 0 1	ا ۾:	Φ.	o.	o _z	0	ο,	0		o ∵	۱.0	٥	ç,	Ö.	o	10.5	Ö.		3.4			2
SNP36	72782		٠	٠	٥	-	٥	٥	۰	٥	-	-	٠	٥	-		٥	٠	·	·	·	<u>·</u>	ᆜ	
SNP34	20426			-	٥	•	٥	<u> </u>	0	٥	٠	-	•	٥	-	•	0	•	-	-	·	·		ᅴ
SNP33	12661		•	-	٥	-	٥	۰	٥	٥	٠	•	·	٥	٠	٠	0	-	-	-	•	·		
SNP32	88 <i>L</i> 61		٠	•	٥	-	٥	٥	0	0	-	-	·	٥	٠	-	0		·	٠	-			
SNP31	18268		•	٠	0	-	0	0	0	٥	-	•	٠	٥	·	:	0	٠	-	-	•	٠		
SNP29	068LT	1	•		٥	•	0	٥	0	0	-	•	-	٥	٠	٠	0	·	•	٠	-	٠	·	
SNP28	LLL91		-		0	-	0	٥	٥	٥	-	٠	·	٥	٠	-	0		-	-	-	٠	_	
SNP27	06591		-	:	0	-	0	٥	0	٥	٠	٠	٠	٥	-	·	o.	Ŀ	٠	·	•	٠	•	
Z7dNS	*9LE9T	2.	o	Ö	ō.	o,	a.	٥	0	0.	0.8	o -	Ô	O.	0	a.	o	o	0	å,			÷.	
SNP26	-12456	١.	0	0	×	٥	×	×	×	×	٥	٥	٥	×	٥	٥	×	0	0		٠	·	-	-
SNP25	12324		0	0	×	٥	×	×	×	×	٥	٥	0	×	٥	0	×	0	×	•	·	-	-	٥
SNP23	11835		0	-	-	٥	-	Ŀ	<u> </u>	ŀ	0	·	0		٥	٥	-		0	Ŀ	٥	-	٥	0
2NP45	L9LTT	8	·	•	•	-	ŀ	Ŀ	-	-	Ŀ	·	Ŀ	Ŀ	Ŀ	Ŀ	·	Ŀ	Ŀ	Ŀ	Ŀ	·	•	·
SNP22	OSLIT		-	·	Ŀ		·	Ŀ	ŀ	Ŀ	·	<u> </u>	ŀ	Ŀ	<u>-</u>	Ŀ	Ŀ	·	-	Ŀ	<u> </u>	·	·	•
2Nb44	11649	~	-	<u> -</u>	Ŀ	·	Ŀ	<u> </u>	·	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	•	Ŀ		·	·	٥	0	٥	0	٥
SNP20	10232		0	-	ŀ	0	-	-	-	·	0	ŀ	0	Ŀ	ó	٥	Ŀ	-	0	Ŀ	٥	·	0	٥
SIGNS	₽ 78 <i>L</i>		ŀ	0	0	Ŀ	ŀ	Ŀ	0	·	Ŀ	٥	-	0	Ŀ	·	-	0	Ŀ	×	0	×	0	g.
LIANS	→9 1 9L →	F E	o	0	0	ο:	٥,	ο.	o.	o	o	0	0"	ō.	0	o	o _i		0	#S	1	- 2		. ;
SNP16	S8S <i>L</i>		۰		•	0	-	٠	•		0	ŀ	0	:	0	0	-	Ŀ	٥	Ŀ	٥	Ŀ	٥	٥
SNP12	160 <i>L</i>		-		•	-	ŀ	٠	ŀ	<u> -</u>	ŀ	•	·	ŀ	-	-	•	Ŀ	Ŀ	Ŀ	Ŀ		-	-
SNP10	6679	12.3	0	ο,	o.	0	ō	(o	οų	oʻ	0.	۪ڠ	0	0	o,	o.	o,	ő	Į.	3	10 m		¥ 6.	i,
SMP9	96/2		0	•	Ŀ	•	ŀ	Ŀ	Ŀ	Ŀ	ŀ	Ŀ	Ŀ	ŀ	0	<u> </u>	<u> </u>	-	0	Ŀ	Ŀ	Ŀ	:	٥
SMP8	· 4722		<u> </u>	0	•	-	0	-	0	-	-	0	Ŀ	0	ŀ	-	٥	0	Ŀ	×	٥	×	0	0
LANS	6801		×	<u> </u>	-	×	ŀ	-	ŀ	Ŀ	×	Ŀ	×	ŀ	×	×	Ŀ	Ŀ	×	Ŀ	0	Ŀ	0	0
2NP4	0559-		ŀ		-	ŀ	ŀ	-	ŀ			-	٠.		ŀ	-	-		-	Ŀ	Ŀ	ŀ	Ŀ	Ŀ
SNP3	5799-		-				·	-	-	0		-	-	<u> </u>	ŀ	ŀ	-	ŀ	·	Ŀ	<u> -</u>	<u> </u> -	Ŀ	<u> </u>
SNP2	£4901-		0	-	<u> </u>	0	-		Ŀ	•	0	-	٥	Ŀ	0	0	·	-	ŀ	·	0	Ŀ	0	Ŀ
Idns	<i>†L851-</i>		•		.	-	ŀ	0	•	0	<u> </u>		<u> -</u>	ŀ	Ŀ	Ŀ	-	<u> ·</u>	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ
SNP:	Position Patient Sample	Reference SNP	PS_18477	PS_18922		PS_24336	PS_24582	PS_36462		PS_46599		PS_47751		PS_8663	PS_8816	PS_8958	PS_9086	PS_9610	PS_9794	PS_11810	PS_12660	L	PS_16259	PS_19738
			41	42	43	44	45	46	47	48	49	20	51	52	53	54	55	26	57	28	59	9	61	62

																							<u> </u>	_
NP41	S+697		•	-		-		·		٠	•	×	-		0		0	·	-		_	×		_
05¶VS	74686	Ж.		جو	<u>:</u>		•	٠٠٠,	- ; ;	**			3		77.9			1.4	انج	·?.				
9£4N3	78722		٠	-	0	·	:	-	0	·	۰		<u>- </u>	•	۰	×	•	-		·	٠	×	\perp	<u> </u>
MP34	20426		•	•	•	-	-	·	0	٠	0	×	•	٠	٥	×	<u> </u>	•	·	·		×.		의
SETVE	17661		•	-	0	-	-	·	٥	-	٥	×	•	-	o	×	۰	-		<u>·</u>	•	×		<u></u>
SNP32	88761		٠	-	٥	·	·	·	٥	-	0	×	٠	٠	0	×	٥	-	-	·	•	×	•	٥
NP31	89581		•		٥	-	·	٠	0	-	0	×	•	•	0	×	٥	·	-	٠	-	×	·	0
3NP29	06871	'	·	٠	٥	-	·	•	0	-	0	×	·	• •	0	×	0	·	•	٠	_	×		0
874N	S LLL9T		-	-	٥	•	٠	١	0	·	٥	×	-	•	٥	×	0	-	-	٠.	-	×	•	0
LZAN	06891		-	٠	٥	٠	•	·	0	·	0	×	•		٥	×	0	-	-		-	×	٠	0
. ŁŁdN	9/591	r¥,	-	4			. يا. دوري	; 		3,:	ij.	713	支	3	37	1.24	£ 7.	.V:	Ę.,		, 24	7	P _i	£,
MP26	5 67 7 5T	<u>'</u>	-	·	٥	-	-	٠	0	Ŀ	0	×	Ŀ	Ŀ	0	×	٥	·	Ŀ	Ŀ	-	×	-	<u> </u>
NP25	12324		٥	Ŀ	٥	•	-	٠	۰	Ŀ	0	×	<u> </u>	·	×	×	٥	·	0	Ŀ	-	×		0
NP23	11832.		0	<u>-</u>		٠	0			Ŀ	٥	<u> </u> -	×	_	٥	0	Ŀ	0	٥	٥	-	•	<u> </u>	
Nb4S	S L9LTI	2	Ŀ	Ŀ	٥	٥	0	٥	Ŀ	·	·	Ŀ	Ŀ	Ŀ	Ŀ	•	Ŀ	Ŀ	·	Ŀ	Ŀ	·	•	
NP22	S OSLII	1	Ŀ	Ŀ	•	·	·	٠	Ŀ	:	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	·	·	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	·	
NP44	5 67911	24	0	0	·	Ŀ	Ŀ	-	Ŀ	Ŀ	Ŀ	ŀ	Ŀ	Ŀ		Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ		Ŀ
NP20	10232		0	ŀ	<u> </u>	-	•	0	0	<u>-</u>	٥	Ŀ	×.	Ŀ	0	0	·	0	0	0	-	•		Ŀ
NP18	S \$78L		0	×	×		٥	٥	٥	×	0	-	Ŀ	×	0	0	0	0	0	0	×	×	×	×
LIAN	S 9₱9L	1 1/2 12 .			虚:		1	*:	4	4-				36	1		9	N		4	150			
NP16	S 585 <i>L</i>		0	Ŀ	Ŀ	Ŀ	٥	0	0	Ŀ	0	Ŀ	×	Ŀ	0	0	<u> </u> :	°	0	0	-	Ŀ	Ŀ	•
NP12			Ŀ	<u> </u>	ŀ	<u> </u> -	Ŀ	<u> </u>	-	-	0		-	ŀ		0	-	Ŀ	-	-	Ŀ		1/5	-
≠ 014V	S 6679		1.5		Ç.	====	湿	*	15.	-		\mathcal{A}_{ji}	.:		i.y.		.,	Ţ.			Ģį.	×.		2.
NP9	S 96LE		Ŀ	Ŀ	ŀ	ŀ	Ŀ	Ŀ	Ŀ	ŀ	Ŀ	<u> · · </u>	Ŀ	Ŀ	0	Ŀ	Ŀ	•		Ŀ	ļ.	<u> </u> -	<u> </u> :	ŀ
NP8	S - PL77		0	×	×	×	0	0	0	×	0	_	Ŀ	×	l°	0	×	0	0	0	×	×	×	×
LdN	S 680I		Ö	Ŀ	ŀ	•	0	0	0	<u> </u> :	0	Ŀ	×	Ŀ	°	0	<u> </u>	0	°	l°	<u> </u>	1:	<u> </u>	<u> </u>
\psi \delta \de	S 0££9-		Ŀ	ŀ	<u> </u>	Ŀ	ŀ	L	_	<u> </u>	0	0	Ŀ		<u> </u> -	0	•	ŀ	<u> </u> -	<u> ·</u>	Ŀ	-	<u> </u> -	_
VP3	S 5799-		<u> </u> -	Ŀ	<u> </u> -	Ŀ	Ŀ	Ŀ	Ŀ	ŀ	0	0	-	<u> </u> :	<u> </u>	0	Ŀ	<u></u> •	<u> </u> :	<u> </u> -	Ŀ	Ŀ	Ŀ	<u> </u> -
MP2	S EL901-		<u> </u>	-	ŀ	-	٥	0	•	0	-	-	×	Ŀ	1:	ŀ	<u> </u>	0	-	°	Ŀ	-	1:	上
ITV	S \$1.851-		ŀ	Ŀ	·	<u> </u>	<u> </u> •	Ŀ	ŀ	-	0	0	Ŀ	Ŀ	<u> </u>	°	Ŀ	<u> </u>	1-	Ŀ	<u> </u>	Ŀ	Ŀ	Ŀ
SNP:	Patient Sample	Reference SNP	3 PS_20663	4 PS_46818	5 PS_11744			8 PS_9267	9 PS_10074]_			76 PS_10116			79 PS_10149	80 PS_10153	81 PS_10154			84 PS_10231
1		ļ	63	64	65	99	19	68	69	70	1	72	73	74	1	1	77	12	1	۵	8	۱۳	~	۳

SNP41	S7697	Т		-	0				•					0		0	0	×		×	٥	٥	0	
SAPSO	989+2	2	4	i i		_			řĘ"	5.1			1.0		ا جَيْ	2.5			50 a 4	1, 1	Ţ		7.	
SNP36	78722	1	*	0	0			- 4:	0	-		0	-	0	-	0	0	X		×	Ö	0	0	
SUP34	20426	+	-		0			_				0	-	0	-	0	0	×	0	×	0	0	0	H
SNP33	17661	+	-	•	0	\exists			0			٥		٥	_	0	0	×	٥	×	0	0	0	
SAP32	88461	-	-	0	0				-			0		0	_	0	0	×	0	×	0	0	0	
	89581	+-	-	0	0		_		•		-	0		0	_	0	0	×		×	0	٥		H
SNP29	06871	-	├-	0	0	_	-	_	0	\dashv	_	0	•		_	0	0	×	0	×	0	0	0	
		+	-	0	0	_		_	0	_	_	0			_	0	0	×		×	0	٥	•	H
SZANS SWEET	LLL9T	-	+		0					_		0	-			0	0	×	0		0	0	0	H
LZANS	06E9I 9 <i>L</i> E9I	×		1					11.	, e.,		36.		55			1			, i			إبسا	
LHAINS		1	3.3	- 3	0	3	3.5		0	1	\$. 7	0			(a. j.)	0	0	×	0	×	0	ः (o	0	- 5 4
SZAP26	12429	+-	-		0		_	_	0		_	0			_	0	0	×	0	×	×	0	0	\vdash
SNP25	12324	+-	-	۲	0	0	0	0	0	×	×	×			0	0	0	-	-	-	0	×	0	\vdash
SNP23	11835	H	-	-	-	-		_		_	<u> </u>	<u> </u>	-			-	-	-	 	-	-	-	<u> </u>	H
SNB45	L9LTT	124	╀.	Ė	-				<u> </u>	Ë	Ŀ	-	-			0		-	-	-	-	-	_	H
SNP22	OSLII	-	ŀ	ŀ	_	ŀ	•		-		Ŀ	-			Ľ.		H		 		-	-	-	Н
SNP44	64911	24	Ë	-	-		-	_						Ė	-	0	0	-		-		×	0	\mathbb{H}
SNP20	10232	-	l°	°	0	0	-	٥	0	×	×	×	×		0	-				<u> </u>	<u> </u>	Ĥ	0	g.
SIGNS	₱ 787		0	0	0	0	0	0	0		F	7/	133	×	0	0	i e	0	×	0	0	1 340	1	11
LTANS.	9 5 9L	1	1	15.		123.	, ,	., *,	4		-	áф.	 '	The same	ings V			-	34		-	1		
SNP16	\$8\$L	-	P	l°	l°	٥	٥	0	0	×	×	×	×	Ė	0	0	٥	-	ŀ	Ŀ	0	<u> ~</u>	°	Н
SIANS	T60 <i>L</i>		1 4 5			-		-	0		- 13 ·	0	-		54			. 40	-	3	_	0	-	20
\$014M2			1	-		38	, 3		F	٠.	¥ .	-			Ç.	1		1.70	-		. 7			
6dNS	96LE	ļ	Ŀ	Ŀ	<u> </u>	0	0	Ŀ	Ŀ	-	-	Ŀ	l°.	-	ŀ	°	ŀ		Ŀ	ļ.	l°.	<u> </u>	<u>°.</u>	-
SNP8	- \$L77	1	l°.	l°.	0	<u> </u>	0	°	°	Ŀ	•	•	Ŀ	×	٥	0	-	°	×	l°	°	Ŀ	P	×
LANS	6801		0	0	0	٥	٥	0	0	×	×	×	×	<u> </u>	°	0	0	Ŀ	Ŀ	<u> </u>	<u> ° </u>	×	0	•
SNP4	0559-		$oxed{\bot}$	_	ŀ	Ŀ	Ŀ	Ŀ	0	·	Ŀ	0	_	<u> -</u>	Ŀ	<u> </u> -	Ŀ	-	_	Ŀ	-	0	Ŀ	<u> </u> -
SNP3	S 7 99-		·	•	·	Ŀ	·	·	0	<u> </u> -	Ŀ	ò	Ŀ	<u> </u>	Ŀ	·	0	l°.	ļ:	<u> ·</u>	<u> </u>	•	<u> </u>	Ŀ
SMP2	· £L901-		×	0	0	0	0	0	-	×	×	0	×	Ŀ	0	0	0	-	-	Ŀ	<u> </u>	0	0	<u> -</u>
Idns	<i>₱</i> ∠8 S I-		<u> </u>	<u> -</u>	<u> </u> -	·	Ŀ	-	0	<u> </u>	-	0	Ŀ	<u> </u> -	<u> </u> -	-	0	0	<u> </u> :	0	·	0	1:	•
SNP:	Position Patient Sample	Reference SNP	PS_10258	PS_10260	PS_10267	BS_10273	PS_10290	PS_10293	PS_10294	PS_10297	BS_10324	PS_10328	5 PS_10342	5 PS_10371	7 PS_10376	3 PS_10377	9 PS_10409	DS_10410	1 PS_10454	2 PS_10458	3 PS_10485		5 PS_10504	5 PS_10519
			85	98	87	88	88	8	91	92	93	94	95	96	97	86	66	100	10	102	103	104	105	106

																						—т			
SNP41	S7697			×	•			-	•	·		ا	ا	0	•			0		0	:	•		<u> </u>	_
02ÝN2 _c	98917		Α,		i									č.	,	:34					3		<u>\</u>	*	
SNP36	7872			×	-	-	-	•	0	•		•	·	<u>。</u>		·		<u> </u>	<u>·</u>	٥	·	•	·	<u>•</u>	ᆜ
SNP34	20426			×	•	-	•	\cdot	٥	-	٠	·	·	0	·	·		•	·	٥	-	·		<u> </u>	
SNP33	17661			×	•	-		-	0	-				0	·	•	-	<u>。</u>	:	٥		·		•	
SMP32	88761			×	•	•	•	-	0	ا	-	·	·	<u>。</u>			-	0	_	٥		·	٠	<u> </u>	_
SNP31	18268			×	•			•	٥	١		·		<u> </u>			·	•	١	ò	·	·		0	ᅴ
SNP29	06871		1	×	-	-	٠		<u>。</u>	·	-	·	٥	٥	•	_	-	•	-	٥		•	٠	٥	
SNP28	LLL91			×		-	٠	•	٥	٠	-	-	-	0	٠	-		0	·	0		-	•	°	
LZ4NS	16390			×	•		•	-	٥	•		٠	٠	0	-	-	٠	0	-	0	-	-		٥	•
L#ANS#	9/691	1	ĸ"	•	1			ŗ.	1 A		1	;	1	14	1	, T.	1		14	***		1	18.5	H	7
SNP26	12459		1	×	·	·	•	-	٥	•	Ŀ	·	0	٥	·	-	-	٥	Ŀ	0	-	٠	٠	٥	
SNP25	12324			×		·	•	-	0	0	<u> </u>	Ŀ	×	٥	·	•		0	·	0	Ŀ	-	0	٥	•
SNP23	11832			<u> </u>	·			×	0	0		Ŀ	٥	Ŀ	×	×	0	٥.	×	·	×	×	×	<u> </u>	×
SVB45	L9LTT		4	ŀ	Ŀ	•	Ŀ	٠	·	Ŀ	-	-	Ŀ	·	Ŀ	Ŀ	•	•	Ŀ	Ŀ	Ŀ	Ŀ	<u> </u>	<u> </u>	٠
SNP22	05/11			Ŀ	Ŀ	·	Ŀ	<u> </u>	•	٠	·	Ŀ	·	·	ŀ	<u> </u>	٠	•	ŀ	Ŀ	<u> </u>	Ŀ	·	٠	-
SNP44	67911	j	~	-	Ŀ	Ŀ	<u> </u>	·	-	Ŀ	Ŀ	··	Ŀ	ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	<u> </u>	ŀ	Ŀ	Ŀ	·
SNP20	10232			Ŀ	·	×	0	×	٥	٥	0	·	0	Ŀ	×	×	0	٥	×	Ŀ	×	×	×	·	×
SNP18	₽ 787			0	×	٠	٥	١.		0	0	×	Ŀ	×	·	Ŀ	0	0	-	0	-	<u>:</u>	-	0	4.
:: LIANS	919L		r _b		***	12,		7	``÷;				_				Ž.			1		-			.: 5
SNP16	585 <i>L</i>			Ŀ	ŀ		0.	×	°	٥		Ŀ	°	ŀ	×	×	٥	0	×	<u> </u>	×	×	×	·	×
SNP12	160L			<u> ·</u>	ŀ		Ŀ	Ŀ		Ŀ	<u> </u>	٠	ŀ		ŀ	<u> </u>	·	•	ŀ	•	-	Ŀ	<u> </u>	<u> </u> -	-
SMETO	6619	2	11.	ļ, -		7		1		1.5	1.	(T.	11.5	Ş		4	×.		. 4			335	5	1	
SMP9	9628			<u> </u>	Ŀ	0	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	Ŀ	<u> </u>	<u> </u>	<u> </u>	Ŀ	0	Ŀ	Ŀ	Ŀ	ŀ	-	-	1:	Ŀ
SNP8	· 7/27			0	×	Ŀ	0	<u> ·</u>	0	0	0	×	<u> </u>	×	Ŀ	Ŀ	0	0	Ŀ	×	ŀ	•	Ŀ	×	Ŀ
LANS	6801			Ŀ	Ŀ	×	0	×	٥	0	0	<u> </u>	0	Ŀ	×	×	0	0	×	-	×	×	×	Ļ	×
2Nb¢	0889-			•	•		L	Ŀ	ŀ	Ŀ		Ŀ	<u> </u>	<u> </u> -	ŀ	<u> </u> -	Ŀ	<u> </u>	<u> </u> -	Ŀ	Ŀ	Ŀ	<u> </u> -	<u> </u>	<u> </u> -
SNP3	5799-			1.	-	1:	Ŀ	Ŀ	<u> </u>	Ŀ	Ŀ	•	0	-	Ŀ	1	-	ŀ	-	•	-	-	-	上	╀-
SMP2	£1901-			<u> </u> .	ŀ	\perp	0	×	0	Ŀ	$oxed{oldsymbol{oldsymbol{oldsymbol{eta}}}$	<u> </u>	<u> ·</u>	:	×	×	•	0	×	1:	×	×	0	Ļ	0
SNP1	\$L8SI-			0	-	.	ŀ	Ŀ	Ŀ	Ŀ	1:	<u> ·</u>	°	1:	╽-	Ŀ	╽.	<u> </u> :	Ŀ	上	╽:	1:	1:	1:	1
SNP:	Position Patient	Sample	Reference SNP	PS_10542		١.	PS_10548							PS_10628		<u> </u>	PS_10668	PS_10670			t PS_10739	5 PS_10754	<u>.</u>		B PS_10771
				107	108	109	110	=	112	113	114	115	116	117	118	119	120	121	122	123	124	125	126	127	128

				<u></u>					<u> </u>					
SNP41	54692		0	·	٥		-	-	×		₹	AT	F	
OSANS.	- 7 . 1686	R									\$ ``	AG.	9 ÷	
SNP36	78 <i>L</i> 77		0	-	•	×	•	-	×		99	AG	\$	
SNP34	20426		0	-	0	×	•	•	×		≨	AG	99	
SNP33	12661		0	-	0	×	•		×		ඉඉ	AG	≨	
SNP32	88 <i>L</i> 61		٥	•	0	×	•	•	×		99	၁ဗ	ဗ္ပ	
SNP31	89581		0	٠	0		•	•	×		99	AG	≨ ∙	
SNP29	068LI	-	٥	•	0	×	-	•	×		႘	7	F.	
SMP28	LLL9T		0	•	0	×	٠	•	×		99	GT	E	
SNP27	16390		0	٠	0		-	-	×		E	ည	႘	
[ANS]	€ 2 97 E91	R.		. ; <u>? ?</u> `.					-	Ŕ,	95 ^	Σ. X.	AA:	
SNP26	12459	1	0	-	0	×	•	<u> </u>	×		₹	AG	99	
SNP25	12324		0	-	0	×	•	:	×		99	AG	₹	
SNP23	11832		0	×	0		0	0	•		F	ည	ပ္ပ	
SNP45	L9LTT	R	. •	•	•	•	٠	-	ŀ		₹	AC AC	ဗ	
SNP22	OSLII		•	-	0	-	•	-			යි _.	J	F	
SNP44	67911	ጸ	•	•	•	-	-	-	ŀ		၁၉	ပ္ပ	ပ္ပ	
SMP20	10232	·	0	×	0	×	0	0	Ŀ		₹	AT	F	
SNP18	₽ 78 7		0	•	0		0	0	0		ဗ	5	E	
LIANS	9 † 94			3 ð.	3				i-	75.	Θ _{.1} ,	D.	E.	
SNP16	· 585 <i>L</i>		0	×	0		0	o	·		E	5	ဗ	
SNP12	160L		0	-			•	-	ŀ		E	ည	ဗ္ဗ	
SVIPIO	6679	4.1		.,			· .:	1			Ę,	¥.	₹.	
SMP9	9628		·	0	•	Ŀ	٥	ŀ	Ŀ	·	₹	ర	8	
SNP8	· ÞLZZ		0	Ŀ	٥	<u>·</u>	o	0	×		₹	ΑŢ	F	·
LANS	1089		0	×	ò	×	0	٥	Ŀ		₹	A_	F	tected
SNP4	-6330		0	-	-		-	ŀ	-	<u> </u>	F	ည	8	dete
SNP3	S799-		٥	Ŀ	·	×	Ŀ	Ŀ	ŀ		99	Ę	F	уре
SNP2	£L901-		-	×	0		0	٥	ŀ		F	ပ္	8	enot
SNP1	<i>\$L</i> 8\$I-		0	·	·	×	Ŀ	··	-		<u> </u> =_	2	8	30 g
SNP:	Position Patient Sample	Reference SNP	PS_10781	PS_10876	PS_10880	PS_10883	PS_10887	PS_10926	PS_10931		WT = ,	HT=0	MT = X	blanks = no genotype de
			129	130	5	132	133	134	135				-	

One exception in this haplotype block is SNP 50, which shows an independent pattern. The upstream part of the gene contains SNPs that show from patient to patient a more independent pattern of allele frequencies (probably a hot spot of recombination). Due to these two adjacent haplotype blocks within one gene it is a priori not possible to conclude linked SNPs merely from the fact that they are neighbors on a gene. But surprisingly we found that SNPs 10, 17, 47 and 50 are linked to each other; more precisely SNP 10 is highly linked to SNP 50 and SNP 17 is highly linked to SNP 47. Even more surprisingly we found that SNP 26 and 29 represent one haplotype that is linked to the reference SNPs 47 and 50 and to the SNPs 10 and 17 in the following way:

When SNP 26 being HT and SNP 29 being WT the TPMT enzyme is deficient.

When SNP 26 being MT and SNP 29 being WT the TPMT enzyme is more deficient.

When SNP 26 being MT and SNP 29 being HT the TPMT enzyme is deficient.

15

20

25

In a similar way one can identify from Table 5 other haplotypes that are linked to deficient TPMT enzyme activity:

When SNP 7 being MT and SNP 20 being HT the TPMT enzyme is deficient.

When SNP 7 being WT and SNP 8 being HT and SNP 20 being WT the TPMT enzyme is deficient.

In Table 5 other haplotypes can be identified to describe TPMT deficient individuals. For example any of the haplotypes from row 1 to 57 in Table 5 can be used to describe individuals who are TPMT enzyme deficient using two or up to all of the following SNPs: SNP1, 2, 3, 4, 7, 8, 9, 10, 12, 16, 17, 18, 20, 22, 23, 25, 26, 27, 28, 29, 31, 32, 33, 34, 36, 41. In Table 6 is an example of 10 individuals with their respective haplotypes from Table 5:

WO 2005/066362 - 43 - PCT/EP2005/000064

Table 6: Examples of haplotypes of TPMT deficient individuals

	SNP1	SNP2	SNP3	SNP4	SNP7	SNP8	SNP9	SNP10	SNP12	SNP16	SNP17	SNP18	SNP20	SNP22	SNP23	SNP25	SNP26	SNP27	SNP28	SNP29	SNP31	SNP32	SNP33	SNP34	SNP36	SNP41
			·																							
1	wt	wt	wt	wt	wt	Ϋ́	wt	MT	wt	wt	МТ	wt	wt	wt	wt	MT	MT	wt	¥							
2	wt.	wt	wt	wt	wt	ht	wt	ht	wt	wt	ht	ht	wt	wt	wt	MT	МТ	ht								
3	wt	wt	wt	wt	wt	ht	wt	ht	wt	wt	ht	ht	wt	wt	wt	ht	ht	wt	wt	,wt	wt	wt	wt	wt	wt	wt
4	wt	wt	wt	wt	wt	ht	wt	ht	wt	wt	ht	ht	wt	wt	wt	МТ	ht	wt								
5	wt	wt	wt.	wt	wt	ht	wt	ht	wt	wt	ht	wt	wt	wt	wt	ht	ht	wt								
. 6	wt	ht	wt	wt	МТ	wt	ht	ht	wt	ht	ht	wt	ht	wt	ht	ht	ht	wt								
7	ht	wt	ht	ht	мт	wt	wt	ht	ht	ht	ht	wt	ht	wt	ht	МТ	МТ	ht								
8	wt	wt	wt-	wt	wt	ht	wt	ht	wt	wt	ht	ht	wt	wt	wt	ht	ht	wt								
9	wt	ht	wt	wt	МТ	wt	wt	ht	wt	ht	ht	wt	ht	wt	ht	ht	ht	wt								
10	wt	wt	wt	wt	wt	ht	ht	ht	wt	wt	ht	ht	wt	wt	wt	мт	МТ	ht	ht	ħt	ht	ht	ht	ht	ht	ht
WT	π	П	GG	TT	AA	AA	AA	П	П	π	GG	CC	.AA	CC	П	GG	AA	Π.	GG	CC	GG	GG	GG	AA	GG	AA
HT.	TC	TC	GT	TC	AT	AT	CA	AT	TC	СТ	GT	тс	TA	TC	TC	AG	AG	TC	GT	TC	AG	GC	AG	AG	AG	AT
МТ	CC	CC	π	CC	TT	П	cc	AA	CC ·	CC	TT	11	П	П	CC	AA	GG	CC	П	П	AA	CC	AA	GG	AA	TT

Each SNP in one row has to be combined with another one from the same row, whereas combinations can be two, three, four or up to all SNPs. In most cases it will be sufficient to take one or two of the SNPs 27, 28, 29, 31, 32, 33, 34, 36, 41 because they are very tightly linked to each other. (See complete Table 5).

5

10

15

A further example is given in Table 7 that shows the correlation of TPMT enzyme activity measured in healthy volunteers together with their individual haplotype of 10 SNPs. Erythrocyte lysates were analyzed for TPMT activity by a HPLC method using 6-thioguanine as substrate. The method is described in Kroeplin, T. et al., Eur. J Clin. Pharmacol (1998) 54: 265-271. The enzyme activity was measured in nmol/gHb/h. The TPMT activity showed a range from 0 nmol/gHb/h to 106 nmol/gHb/h with a median of 46.6 nmol/gHb/h and a mean of 47.6. When setting the cutoff to 34.5 nmol/gHb/h the here presented haplotypes of patients whose TPMT value is below this cutoff have a sensitivity and specificity of 93 % respectively. With this example, the responding haplotypes are further examples of haplotypes that constitute the different TPMT phenotypes in

humans and can be used as an aid for therapy decision when respective patients have to be treated with thiopurines or derivatives.

Table 7: Correlation of SNPs and Haplotypes to TPMT Enzyme Activity

	TPMT		·								
ent	Enzyme	20	&	7	526	529	SNP10	SNP17	SNP44	SNP47	SNP50
Patient	Activity	SNP20	SNP8	SNP7	SNP26	SNP29	SINI	SN	SN	SN	SN
·	nmol/		Нар		Нар	1	Нар	3 .	Refere	nce Si	Ps.
	g H b/h		2						19 5		
976	0	īΤ	П	П	GG	ĄĄ	्राज्य - (१८)	- GG,r	a CG	gCC	. AA
979	0	AA .	TT	ΑA	AA	AA	AA	TT	CCG	π	GG
1	13,7	Ş.	AA	ΑA	AA	AA	AA	П	GG	П	GG
6	17,0		TT	AA	AG	AA.		i Gr	GG	CENTRAL CENTRAL	
7	17,2		Π	Π	ee .				GG	SEIGTAR SECTION	AA
9	18,7	AA	Π	AA TT	GG				GG		
16	20,3		π			AA	EEAEE		GG		- AA
20	21,0		П	П		AA	12 13 15 15 15 15 15 15 15 15 15 15 15 15 15	POSSESS	GG		
22	21,2	ATTE	π	π	GG	AGE	E AT		GG		
23	21,6		TT	TT	GG	AGE	TOBE CO.		GG		AA
24	21,7	AA.	CEA HUCK	AA.	GG				GG GG		
25		AA .	ELATER ELECTRICA	77 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	TAG	AA	NN	G	GG		
26		M .		AA.		AA AA	AA		NN		GG
28	1. Sec. 1.	Т	AA	AA	AA CPEA DELL		<u> </u>		GG		
30		- TT	TT	AA :		AA		6	GG		AA.
32			AA	AA.	AA	T AA	AA	TT	GG	177	GG
33		AT S	1.3	π	AS		,	E GT	<u> </u>	SEICHT.	a AG
34			ŢŢ	J _v AA.	AG	AA	CHELLER		GG	driction	
977			TT	π	AGI	AA	ECHEE		GG	PECTO	AA
37		1082525	7	117	.GG	AG				E # 2 # 2 # 2 # 2 # 2	
38	<u> </u>	AA	REALES				LEAT!	GT.	GG	OT	AG
41		П	- Conemin	- AA	GG:	E AGE	FOREGEE		;;;	17	AG
42			TT		1		AT		<u> </u>	HETA	
43		AA	i Plate	PET THE			AA	Π	GG	TT	GG
44	<u> </u>		-tonneren	I AA	AG			GT	GG	CT.	AA.,
1 —	7 20,1	ATE PPER	4	; ;	HREFER	B)	1821825	Cirrente	38	5-2253	園

45	26,3	AA I	ATER	AA.		AA		G			AC
46	26,5	AA .	ATE	AA 2	AG		ZOA LOS		·GG		AG
50	= 27,5	Π	П	TT	AA	AA	AA	. 11	GG	TT	GG
51	27,6	AA~	ATG	AA?	nG.	AA			GG		FAG.
52	27,6	AT:	AT	PER ATURE	AA	AA	AA	TT	GG	Π	GG
59	28,9		TT	AA		AA	PEATER		GG		PACHE
60	29,2,	ATH			AA	AA	AA	11	GG	П	GG
61	29,2	AT	Π	ΤĪ	.eg	EAGRE			GG		BAGE
63	29,4	A	ATER	ATE	i AG	AG	AA	TT	GG	П	GG
65	29,8	AA :	COAT OF	AA	GG	GG.	AA	Π	GG	Π	GG
66	29.8		TT :		AGE	AG	AA	TT	GG	TT	GG .
68	30,3		ATER STEERS		AGIII.		AA	Π	GG	П	GG
70	30,4.	AA	ALATER BELLESS	AA		AA		COCCO	GG		
71	30,6	Π	TT .	TT	AA	AA	. AA	Π	GG	TT	GG
74	31,2	π	11	AA	AA	AA	AA	TT	GG 	TT	GG
75	631,2	AA.	A.	AA .			AA	П.	GG 	π	GG
77	31.6	AAT	AA	ΑA	446	AG A	AA .	TT	GG	П	GG
78	31,7	A		CHARAGE	AA	AA	· AA	TT	GG	TT	GG
. 79	31,7				AG	AA	AA	Π	GG 	π	GG
81	31.9	Π	Π	П	AG		AA	π	GG	П	GG
83	32,1		ENATAS ESECUTIVO				AA	П	GG	π	GG
87	32.4	AA.		AA :-	RIAG:		AA	ΤŢ	GG	TT	GG
92	32,8					AA	AA	π	GG	Π	GG
93		Π	П	П	AA	AA	AA	π_	GG	TT	GG
95	32,8	jîr AA .	AA -		GG	-GG	AA	TT	GG	П	GG
96	32,8	AA		3/	GG	GG :	AA	π	GG	П	GG
97		A CHEE	i	TT .	AG Unite	AA		FIGURE 1			
98	100	П П	Π	AA	1000000	AG LENER		TT	GG	TT	GG
100		П	П	AA	AA	· AA	AA	II	GG	TT	GG
102	1	AT	tebesser.	AT	TENIER.	AG:		17	GG	11	GG
104		A. Land 11.3 31 11 11				HAG!	i	11	GG	TT museryear	GG
105	İ	AA		A		ii			GG		AGE:
107			AA,	ΑĄ		AA	AA	117	GG	11	GG
108		П	П	117	AA	AA	AA	TT	GG	π	GG
114		ELATINE CHECKER	IT	TT	GG .	Part Per		HAPPERE	4	П	AG III
11:	34,2	_ π	AT	AA		LEAG!	AA	TT	GG	π	GG

	ニュカサーン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	SECTION AND ADDRESS OF THE PERSON AND ADDRES		REDKODETE		EAGE:	AA	π	GG	π	GG
119	34,6	TT	TT	SAA ∴	AA	AA	AA	TT	GG	π	GG
135	35,5	'AA'	AX.	AA {		HAC!	AA	TT	GG	π	GG
B1	35,6	E AT E		1177	AA	AA	AA	TT	GG	π	GG
139	35,8			ATE	ing ic	AGE	AA	π	GG	π	GG
141	35,9	TT	TT	TT	AA	AA	AA	TT	GG	π	GG
142	_36,0 _c	TT	TT	TT		HAGE	AA	π·	GG	TT	GG
152	436,7	HATH	LEAT SE	SESATES:	.GG	GG:	AA	TT	GG	TT	GG
154	37,0	AA*	AA.	AA.	AA	AA	AA	π	GG	Π.	GĠ
155	37,0	AT CO		A TOP	AA	AA	AA	ΤT	GG	TT	GG
156	37:0	AA		AA (i AG	HAGE!	AA	TT	GG	TΤ	GG
158	37,2		EAT.	ATOUR COMMENTS	AC	AG	AA	Т	GG	ा .	-GG
165	37,5	AA	AA	ΑA	AC	ELECTION OF THE	AA	TT	GG	П	GG
170	37,7		TT	CATAL COLOR		DEAGUE	AA	TT	GG	Π.	GG
171	37,8	EUSECES	PATE		AA	ĀĀ	AA	П	GG	π	GG
172	37,8	CHARM.		ear Alce	GG.	GG.	AA	IT	GG	Π	GG ·
174	37,9	TT	TT	TT	GG,	, GG, t	AA	π	GG	11	GG
180	38,2	AA	a AA	/ AA	AA	AA	AA	π	GG	TT	GG
189	. 38,6	π	TT	TF	ELAG.	AG	AA	TT	GG .	ТТ	GG
190	38,7;		ECESSOR	A COLOR	ΑA	AA	AA	П	GG	π	GG
191	38,7		TANK				AA	TT	GG	TT	GG
198	39,0	AA	AA	AA "		AG	AA	П	GG _.	. 11	GG
209	39,3	π	IT	П	AA	. AA	· AA	П	GG	П	GG
214	39,5	1.5		** K	AA	AA	AA	Π	GG	TT	GG
218	39,6 *	HE LES	E ATE	PERMIT		AA	AA	Π	GG	TT	GG
222				"	GG			H GT	-	CHURCOR	AG:
246	J. 18 18 18 18	Π	COLEER	alicerent.	denember			Π π	GG	TT	GG
252	27 30 1	TARES!	11 2 2 2 2 C C		17 T	AA	AA ·	П	GG	11	GG
255	40,8	THE ATER	HOPAT			A S	AA AA	TT	GG	'' 	GG
262		Π_	π	π	AA .	AA	AA A	TT	GG	11	GG
278		*****		SHATE SHOULD	GG		AA AA	11	GG	11	GG
283	1 1 2	AA.	, AA	AA —	<u> </u>	• 1	1	111	GG	''	GG
284			T	TT	GG	. GG .	I AA	π	GG	117	GG
287		- Pacacas	E403025		Eq	AA AA	AA	'' 	GG	''	GG
288	1	П	117	l	AA			11	GG	· π	GG
289	41,5	, AA,	, AA	, AA		AG C				<u> </u>	

293	41,6	ATE	Π	π	GG,	AC	ZATE E	GT	GG		ACL
299	41,9	AA .	A COLOR	AA.	SAGE	AGE	AA	TT	GG	TT	GG
304	\$ 42,0	π	TT	Π	AG	AG	AA	Π.	GG	π	GG
305	42,0	AT	AT	ATE	AGE	AG	AA	11	GG	П	GG
320	42,5	AΑ	ΑΆ	AA.	GG	GG :	AA	Π	GG	11	GG
321	42.5	AA	AA.	AA	HAG	FAGRE	AA	П	GG	TT	GG
322	42,6	ATG	2555555	CATE	AA	AA	AA .	TT	GG	TT	GG
323	42,6		AT	ATOR	AG		AA	Π	GG	π	GG
324	42,6-	ĄΑ	AA	AA.	AA	AA	AA	П	GG	П	GG
326	42,6	TT	П	TT	AA	AA	AA	Π	GG	П	GG
331	42.9		TT		AG	BELLER	AA	TT	GG	TT	GG
335	(\$43,0	П	ÎΤ	Π	AG		AA	TT	GG	Π	GG
343	43,3	AA.		AA :		AA			GG		AG
350	#43.6	TT	TT		PAGE		AA	π	GG	π	GG
353	43,6	. тт	Т	TT	AA	AA	AA ·	Π	GG	П	GG
356	3.43,7			AT	AA	AA	AA	TT	GG	TT	GG
360	:43,8	AA 🕆	-AA	AA.	AA .	AA	AA	П	GG	π	GG
363	43.8		П	ATABE		EAGE!	AA	.TT	GG	П	GG
378	443	Π	_AA	AA.	.GG	GG.	AA	ΤŢ	GG	TT	GG
386	44,5	π	Π	` П	AA	AA	AA	TT	GG	П	GG
388	44,5	ECT ALC:	A Lec	DECEMBLE.	AG	PAGE	AA	. 11	GG	П	GG
396	2.5	ICENEY BE			AA	AA	AA	П	GG	П	GG
428	149.476	ETA DE	П	SEATER SECTION		HAGH	AA	П.	GG	П	GG
430	[1982] 117 198	TT :	TT	TT	GG.	.GG	AA ·	П	GG	П	GG
	45,5	TT	π	Π		10065203	AA	П	GG	П	GG
1	- 45,5	Leeccord				AG		TT	GG	π	GG
436	45,5				AA	AA	AA	TT	GG	π	GG
442	145,6	П	11	11	66.	GG	4	TT	GG	TT	GG
1	45,7	1	AA	AA		AG	AA	П	GG	TT	GG
	46,0	AA		1		HASS HASS	AA	П	GG	IT	GG
466				AA	GG	'GG	AA	TT	GG	П	GG
469		TT	TT	TT	AA	AA	AA	11	GG	'' 	GG
	46,3				. GG	GG	AA	11	GG	11	GG
<u> </u>	46,5	AA.	AA	AA	AA	AA	AA	'' 	NN	'' 	GG
477		NN	TT	ATE:	AA	AA	AA AA	'' 	GG	'' 	GG
479	46,6				AA	AA		<u> </u>			

481	≥ 46.6		ATES	EMTER	AGE	AG	AA	Π	GG	П	GG
483	46,6		TT		AS	neneneo Enclose	AA	TT	GG	TT	GG
484	46,6	AA	AA;	AA	AG	PAGE EAGE	AA	π	GG	TT	GG
489	46,7	π	π	Π	AA	AA	AA	П	GG	π	GG
490	46.7	A PER	11	PATE CO	GG	.GG.	AA	TT	GG	π	GG
523	47,5	CLATE:	CHATES CEEENS		AA	AA	AA	11	GG	TT	GG
530	47.8		~~~			CAGUE	AA	TT	GG	TT	GG
532	47,8	A	ESEATES!		AC	AG	AA	TT	GG	TT	GG
534	47,9	" AA	AA.	AA	AG	AG	AA	π	GG	Π	GG
546	48,4	ĪĪ	TT	π	AA	AA	AA	īΤ	GG	П	GG
553	48,6		Also	A	AA	AA	AA	TT	GG	TT	GG
554	48,6	AA.	AA	AA `	AA	AA.	AA	TT	GG	IT	GG
557	48,7	П	Γ	TT	AA	AA	AA	Π.	GG	11	GG
558	48,7					HACE	AA	TT	GG	TT	GG
560	48,7						AA	Π.	GG	Π.	GG
562	A 10 P. 10 P	ĪΤ	Π	. TT	AG		AA	П	GG	π	GG
589	1 49,3	Π	Π	π	ee *	#GG	AA	Π	GG	П	GG
592	49,5		E ATTE	E ATSE	AA	AA	AA	П	GG	П	GG
	77.1		120202021	BEBURE						UNIVERSE AND DEC	and the second
593		ATTE	π	TT		AA		Coercon	GG		
	49,6		TT	TT CCATEGO STREET	AG	AG I	AA	TT	GG		GG
594 595	49,6		TT	TT	AGE		AA	TT	GG GG	TT	GG GG
594 595 596	49,6		TT TT				AA AA AA	TT	GG GG	TT TT	GG GG GG
594 595 596 601	49.6 49.6 49.6 49.7	AT AT A A A A A A A A A A A A A A A A A	TT AA	TT			AA AA AA	TT .	GG GG GG	TT	GG GG GG GG
594 595 596 601 604	49,6 49,6 49,6 49,7 49,8	A A A A A A A A A A A A A A A A A A A	TT AA	TT AT COME			AA AA AA NN	TT TT	GG GG GG NN	TT	GG GG GG GG GG
594 595 596 601 604 616	49,6 49,6 49,6 49,7 49,8 50,2	A CONTROL OF THE PROPERTY OF T	TT AA	TT CEATER AND THE COLUMN TO TH			AA AA NN NN	11 TT TT TT TT TT TT TT TT TT TT TT TT T	GG GG GG GG NN	TT TT TT TT TT TT TT TT TT TT TT TT TT	GG GG GG GG GG
594 595 596 601 604 616	49,6 49,6 49,6 49,7 49,8 50,2	A CONTROL OF THE CONT	TT AA	TT AAAAAAATT TT TT	AA O	Grand Grand Grand A Gr	AA AA AA NN NN AA	TT TT TT TT TT TT TT TT TT TT TT TT TT	GG GG GG NN NN GG	TT TT TT TT TT TT TT TT TT TT TT TT TT	GG GG GG GG
594 595 596 601 604 616 630 631	49,6 49,6 49,6 49,7 49,8 50,2 50,6	A A TO TO TO TO TO TO TO TO TO TO TO TO TO	AA TT	TT AT COLUMN TO THE COLUMN TO	AA AA AA AA AA AA AA AA AA AA AA AA AA	Guidelle A Go	AA AA NN NN AA AA	TT TT TT TT TT TT TT TT TT TT TT TT TT	GG GG GG NN NN GG GG	TT TT TT TT TT	GG GG GG GG GG
594 595 596 601 604 616 630 631	49,6 49,6 49,6 49,7 49,8 50,6 50,6	A A A TT TT AA	П П П П П П П П П П П П П П П П П П П	TT TT AA	AA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Grand Grand A Grand A A A A A A A A A A A A A A A A A A A	AA AA NN AA AA AA AA	TT TT TT TT TT TT TT TT TT TT TT TT TT	GG GG GG NN NN GG GG	TT TT TT TT TT	GG GG GG GG GG GG
594 595 596 601 604 616 630 631 633	49,6 49,6 49,6 49,7 49,8 50,2 50,6 50,6	A A A A A A A A A A A A A A A A A A A		TT TT AAA	A CONTROL A A CONTROL A A A A A A A A A A A A A A A A A A A	4 A A A A A A A A A A A A A A A A A A A	AA AA AA AA AA AA	11 11 11 11 11 11 11 11 11 11 11 11 11	GG GG GG NN NN GG GG		GG GG GG GG GG
594 595 596 601 604 616 630 631 651	49,6 49,6 49,6 49,7 49,8 50,6 50,6 50,9 51,2	A TT T A GARAGE	П П П П П П П П П П П П П П П П П П П	TT AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	AA AA AA AA AA AA AA AA AA AA AA AA AA	Commonweal Commonweal	AA AA AA AA AA AA AA AA AA AA AA AA AA	TT TT TT TT	GG GG GG NN NN GG GG GG		GG GG GG GG GG GG
594 595 596 601 604 616 630 631 651 658 669	49,6 49,6 49,6 49,7 49,8 50,6 50,6 50,6 50,9 51,2	A TT TT AA T	TT TT TT AA	TT TT AAA	A A A A A A A A A A A A A A A A A A A	A GO A A A A A A A A A A A A A A A A A A	AA AA AA AA AA AA	11 11 11 11 11 11 11 11 11 11 11 11 11	GG GG GG NN NN GG GG GG GG		GG GG GG GG GG GG GG GG GG GG
594 595 596 601 604 616 630 631 658 669 670	49.6 49.6 49.6 49.8 50.6 50.6 50.6 50.9 51.6 51.6	A A TT AA TT AA TT AA	T AA	T AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	A GUILLA A GUILLA A A GUILLA A A A A A A A A A A A A A A A A A A	A GO A A A A A A A A A A A A A A A A A A	AA AA AA AA AA AA AA AA AA AA AA AA AA	TT TT TT TT TT TT TT TT TT TT TT TT TT	GG GG GG GG GG GG GG GG		GG GG GG GG GG GG GG GG GG GG GG GG GG
594 595 596 601 604 616 630 631 651 658 669 670	49,6 49,6 49,6 49,8 50,2 50,6 50,6 50,6 50,9 51,6 51,6 51,6	A A TT AA TT AA TT AA			A GUILLA A GUILLA A A GUILLA A A A A A A A A A A A A A A A A A A	A GO A A A A A A A A A A A A A A A A A A	AA AA AA AA AA AA AA AA AA AA AA AA AA		GG GG GG GG GG GG GG GG		GG GG GG GG GG GG GG G
594 595 596 601 604 616 630 631 651 658 669 670 670	49,6 49,6 49,6 49,7 49,8 50,6 50,6 50,9 51,6 51,6 51,6 51,6	A A A A A A A A A A A A A A A A A A A		TT TT AA AA AA AA AA AA AA AA AA AA AA A	A GUILLA A G	Guidelle Control of the Control of t	AA AA AA AA AA AA AA		GG GG GG GG GG GG GG GG GG		GG GG GG GG GG GG GG G
594 595 596 601 604 616 630 631 651 658 669 670	49,6 49,6 49,6 49,8 49,8 50,6 50,6 50,9 51,6 51,6 51,6 51,6 51,6	A A A A A A A A A A A A A A A A A A A			A GUILLA A G	Guidelle Control of the Control of t	A A A A A A A A A A A A A A A A A A A		GG GG GG GG GG GG GG GG GG		GG GG GG GG GG GG GG G

700	52,5	ATER ERECTE			PAGE		AA	TT	GG .	TT.	GG
.701	52,6°	AA	AA	AA	AA	AA	AA	П	GG	TT	GG
702	. 52,6	π	Π	π	AG	AGR	AA	TT	GG	ग	GG
703	752,7	ΤT	Π	π	AA	AA	AA	TT	GG _.	. 11	GG
707	52,9	AA	• AA	AA ,	AG	#AG#	,AA	ŢΤ	GG	ŤŤ	GG
718	53,2	AA /	AA.	·AA	GG .	GG	AA	îī	GG	TT	GG
726	,, 53.5%				ACHE	E AG	AA	TT	GG	TT	GG
729	53,6		AT	AT	AA	AA	AA	π	GG	TT	GG
746	54,0	TT	П	TT		HAGH	ÁA	Π.	GG	TT	GG
749	54,1	AA,	AA i	AA*	ĀA	AA	AA	TT	GG	TT	GG
754	54,5	EATE	TT	ATE	AG	HAGE	AA	TT	GG	π	GG
759	54,5	AT A	ATE	HE ATER	GG S	GG	AA _.	П	GG	TT	GG
764	54,7	AA.		AA.		AC	AA	TT	GG	TT	GG
765	54,8	π	TT	Tī	AA	AA	AA	Π	GG	π	GG
767	55.0	CUERT	TO COME CAR	ECATE:	AA	AA	AA	TT	GG	11	GG
779	55,6	AA	AAE	AA.		PAG	AA	П	. GG	11	GG
780	⇒ 55 , 6 ∴	E A E RO	ERATEGI GRATEGI GRATEGI GRATEGI		AG	AG	AA .	TT	GG	П	GG
782	55,8	TT	Π	Π·	AA	AA	AA	11 .	GG	11	GG
	56,0	ATOL		SECTION S	GG.	GG	AA	TT	GG	TT	GG
796	56,3				.GG₃	.GG	AA	Π	GG	TT	GG
798	56,5 °		AT S		AA	8	AA	П	GG	П	GG
80,4	56,84.,	TT	П	TT	AA	AA	AA	TT	GG	, IT	GG
807	2.57.1		E ATEU	SEATION OF	JAG.		AA	TT	GG	TT	GG ·
829	58,7	AA	AA	AA .	AA	AA	44	Π	GG	TT	GG
830	58.7	A	STATES	E ATE	AA	AA	AA	IT	GG	TT	GG
841				or ATCO	GG	GG :	AA	TT	GG	П	GG
	59,7 č	AA	·		AG :	JEFAGES JULIE	AA	TT	GG	TT	GG
	59,8	AA	E ATE	1	AG TO AG	HACTOLEN	AA .	П	GG	Π	GG
850		ATT		oncones:	kinggoor:	IS AG	AA	П	GG	π	GG
851	14.7		AA.	AA .	AA	. AA	AA	π	GG	Π	GG
852	1 1	10120200		FEETER!			AA	П	GG	П	GG
855		TΤ	TT	П	. AA	AA	AA	П	GG	Π.	GG
863	61,6	PERMISHIN	וספריפטתיה	E ATE	3	AA	AA	Π	GG	TT	GG
868		· •			AGE	AG	AA	IT	GG	П	GG
872	62,9	FGE CRU.L	4020CECA		AA	AA	AA	П	GG	TT	GG
877	63,2	, AA	.AA	AA	AG	AG	AA	П	GG	TT	GG

893	-:64,6	ĪΤ	Π	π	HAGI	EAGEE	AA	П	GG	П	GG
898	[₹] 165,6	П	TT .	TT	AA	AA	AA	Π	GG	П	GG
903	€ 66,4 🚁		CATOU	CEDHENCE	AA	AA	AA	TT	GG	П	GG
904	66,5	A Paris			AG I	AG	AA	Π	GG	П	GG
909	66,9	ΑA	AA.	AA	AA	AA	AA	TT	GG	77	·GG
910	67,4		CATE	CECATURE CECATOR	AA	AA	NN	G.			NN
913	67,4 - 67,5		EAT	CHAR	AA	AA	AA	TT	·GG	TT	GG
914	67,7.	TT	TT	Π	AA	AA	`AA	Η	GG	Π	GG
918	68,8	CAN CONTRACT	ES CELE			AA	AA	π	GG	11	GG
920	69,5	AT	PATER SERVER		Gerneer	AG	AA	π	GG	Π	GG
921	69,6	AA	AA.	AA.		G	AA	Π	GG	TT	GG
923	69,8	ΑΑ.	AA	AA	nascauco		AA	ŢŢ	GG	TT	GG
924	70,3		ATE	60/A700	AA	AA	AA	Π.	GG	TT	GG
925	70,6	TT	TT	TT	AA	AA	AA	П	GG	11	GG
928	71,7	AGAA		AA			ĄΑ	TT	GG	П	GG
931	72,6		ATS		AA	AA	AA	ii.	GG	π	GG
932	-73,1	П	П	TT	AGE	Bergarah	AA	TT	GG	77	GG
934	73,6	AA s	AA 7	L AA	. AA	AA	AA	П	GG	ТТ	GG
939	74,8	16526455	CERNALE	Hanning Ed	AG	EPAREOFE	AA	П.	GG	П	GG
944	76,1	AA	ATT	AA.		io AG	AA	П	GG	11	GG
947	1.077.13	TT	П	π	AA	AA	ΑA	П	GG	11	GG
949	78,1	AA:	AA.			GG.	AA	11	GG	П	GG
952	79,9	FEETS :			1	AA	AA	П	GG	П	GG
954	1.44 . 1 1 1 1 1 1	, AA	AA Ti	- AA	AA	AA	AA	П	GG	П	GG
957		PRESENT PARTY	*****	42112222	HAG!	ปริกิธิกัสกับชีก	AA	TT.	GG	П	GG
960	3.30	HEERO	BELEAUS!		AA	AA	AA	11	GG	π	GG
963	89,4	TT	11	11	^^	AA	AA	П	GG	TT	GG
980	1.15	LES ES	AT	ATE ATE		AG	AA	ii	GG	TT	GG
969	1 181	LEPERT ST	π	HL TATE	AG	AC	AA	11	GG	11	GG
970	94,0		E AT		AA	AA	. AA	П	GG	TT	GG
		1									
	WT	TT	TT	TT.	AA	AA	AA	П	GG	П	GG
		2 (0.30020	1 992952	::(20!:08 <u>0</u> :	inducted a			G			
	MT.	AA	AA.	AA.	GG	GG	III	GG	CC.	cc .	AA

Table 8 gives a detailed summary of haplotypes that are correlated to TPMT enzyme activity. Of special interests are haplotypes that identify absent, low or medium TPMT enzyme activity.

Table 8: Detailed Summary of Haplotypes correlated to TPMT Enzyme Activity

Нар 1	SNP26	SNP29	Activity
	MT and	WT	0
	MT and	HT	
•	MT and	MT	2
	HT and	HT	2
•	HT and	MT	2
	WT and	· WT	2

Hap 2	SNP20		SNP7		SNP8	SNP26	SNP29	Activity
	MT	and.	MT:	and	'≟WT and	WT and	WT	0.
•	HT	and	TM	and s	TWT			A THE
	MT	and	MT	and	MT	din at I he seeds		2
	HT	and	HT	and	· HT			2
	l wr	and	HT	and	HT			2
	WT	and	MT	and	MT		•	2 .
	WT	and	WT	and	WT			2

Нар 3	SNP10.	SNP17	. Activity
	MT and HT or and HT or and WT WT and WT and WT and	MT WI HT MT WT	9 3 1 1 1 1 94 1 2

Reference SNPs	SNP44	SNP47	SNP50	Activity ·
	HT c		nd MT	05
		HT an	d/or HT	
		HT a	nd MT	
		MT	or MT	1
•		WT 2	and WT	2

Table 8, continuation: The corresponding genotype of each SNP being WT, HT or MT can be read from the following table:

		SNP20	SNP8	SNP7	SNP26	SNP29	SNP10	SNP17	SNP44	SNP47	SNP50
	WT	TT	TT	TT	AA	AA	AA	TT	GG	TT	GG
		AT ST	ASTERS.	A	AO		ATE I	CHEE NEEDS	CEDUCAL	Cul	Pancaca
L	MT	AA.	AA	AA.	GG	GG *	跳"。	GG	CC.	CC	AA:

Legend of Table 8: SNP genotypes: WT = wildtype; HT = heterozygote; MT = mutant. TPMT enzyme activity: 0 = absent or low; 1 = medium; 2 = normal or high

A descriptive summary of the best haplotypes that are correlated to absent, low or medium TPMT activity are given below:

Haplotype group 1:

When SNP 26 being MUTANT and SNP 29 being WILDTYPE the TPMT enzyme activity is absent or low.

When SNP 26 being HETEROZYGOTE and SNP 29 being WILDTYPE the TPMT enzyme activity is medium.

When SNP 26 being MUTANT and SNP 29 being HETEROZYGOTE the TPMT enzyme activity is medium.

Haplotype group 2:

When SNP 20 being MUTANT and SNP 7 being MUTANT and SNP 8 being WILDTYPE and SNP 26 being WILDTYPE and SNP 29 being WILDTYPE the TPMT enzyme activity is absent or low.

When SNP 20 being HETEROZYGOTE and SNP 7 being MUTANT and SNP 8 being WILDTYPE the TPMT enzyme activity is medium.

When SNP 20 being WILDTYPE and SNP 7 being WILDTYPE and SNP 8 being 20 HETEROZYGOTE or MUTANT the TPMT enzyme activity is medium.

Haplotype group 3:

When SNP 10 being MUTANT and SNP 17 being MUTANT the TPMT enzyme activity is absent or low.

When SNP 10 being HETEROZYGOTE or MUTANT and SNP 17 being WILDTYPE the TPMT enzyme activity is medium.

When SNP 10 being MUTANT and SNP 17 being HETEROZYGOTE the TPMT enzyme activity is medium.

When SNP 10 being HETEROZYGOTE or WILDTYPE and SNP 17 being HETEROZYGOTE the TPMT enzyme activity is medium.

When SNP 10 being WILDTYPE and SNP 17 being MUTANT the TPMT enzyme activity is medium.

As a further embodiment of this invention one can combine the predictive power of the here

10 described genotype and haplotype correlations to the TPMT expression with the number of
VNTRs in the respective patients. Whereas a higher number of repeats responds inversely to the
TPMT activity.