Mathematical Logic (VIII)

Yijia Chen

1 Completeness

1.1 Henkin's Theorem

Recall that we fix a set Φ of S-formulas.

Definition 1.1. (i) Φ is negation complete if for every S-formula φ

$$\Phi \vdash \varphi$$
 or $\Phi \vdash \neg \varphi$.

(ii) Φ contains witnesses if for every S-formula ϕ and every variable x there is a term $t \in T^S$ with

$$\Phi \vdash \left(\exists x \phi \to \phi \frac{t}{x}\right).$$

Theorem 1.2 (Henkin's Theorem). Let $\Phi \subseteq L^S$ be consistent, negation complete, and contain witnesses. Then for every S-formula ϕ

$$\mathfrak{I}^{\Phi} \models \varphi \iff \Phi \vdash \varphi.$$

Corollary 1.3. Let $\Phi \subseteq L^S$ be consistent, negation complete, and contain witnesses. Then

$$\mathfrak{I}^{\Phi} \models \Phi$$
.

In particular, Φ is satisfiable.

1.2 The countable case

We fix a symbol set S which is at most countable. As a consequence, both T^S and L^S are countable. Let $\Phi \subseteq L^S$ we define

$$free(\Phi) := \bigcup_{\phi \in \Phi} free(\phi).$$

We will prove the following two lemmas.

Lemma 1.4. Let $\Phi \subseteq L^S$ be consistent with **finite** free (Φ) . Then there is a consistent Ψ with $\Phi \subseteq \Psi \subseteq L^S$ such that Ψ contains witnesses.

Lemma 1.5. Let $\Psi \subseteq L^S$ be consistent. Then there is a consistent Θ with $\Psi \subseteq \Theta \subseteq L^S$ such that Θ is negation complete. Negative (applete \mathcal{L}_S) is \mathcal{L}_S free (a) is \mathcal{L}_S .

Corollary 1.6. Let $\Phi \subseteq L^S$ consistent with finite free (Φ) . Then there is a Θ such that

- $\Phi \subset \Theta \subset L^S$;
- Θ is consistent, negation complete, and contains witnesses.

Corollary 1.7. Let $\Phi \subset L^S$ be consistent with finite free(Φ). Then Φ is satisfiable.

Proof: By Corollary 1.6 and Corollary 1.3.

Proof of Lemma 1.4: Recall L^S is countable, thus we can enumerate all S-formulas

 $\exists x_0 \varphi_0, \exists x_1 \varphi_1, \ldots,$

which start with an existential quantifier. Then we define inductively for every $n \in \mathbb{N}$ an S-formula ψ_n as follows. Assume that ψ_m has been defined for all m < n. Let

 $i_n := \min \big\{ i \in \mathbb{N} \ \big| \ \nu_i \not\in \text{free} \big(\Phi \cup \{ \psi_m \ | \ m < n \} \cup \{ \exists x_n \phi_n \} \big) \big\}. \quad \text{fig. all mallest index } i \text{ such that } \nu_i \text{ is not for in } \Phi \cup \{ \exists h \ | \ m < n \} \big)$ That is, i_n is the smallest index i such that v_i is not fee in $\Phi \cup \{\psi_m \mid m < n\} \cup \{\exists x_n \phi_n\}$. Then we

 $\psi_n := \left(\exists x_n \varphi_n \to \varphi_n \frac{v_{i_n}}{x_n}\right).$

with the following deduction.

Now by taking $\chi := \exists \nu_0 \nu_0 \equiv \nu_0$ and $\chi := \neg \exists \nu_0 \nu_0 \equiv \nu_0$ we conclude that $\overset{\bullet}{\bullet}$ is inconsistent, which contradicts our assumption.

contradicts our assumption. $\begin{picture}(20,0) \put(0,0){\line(1,0){15}} \put$ induction. First $\Theta_0 := \Psi$. Then,

$$\Theta_{n+1} := \begin{cases} \Theta_n \cup \{\phi_n\} & \text{if } \Theta_n \cup \{\phi_n\} \text{ is consistent,} \\ \Theta_n & \text{otherwise.} \end{cases}$$

It is immediate that every Θ_n is consistent, and the consistency of

$$\Theta := \bigcup_{n \in \mathbb{N}} \Theta_n$$

follows. To see that Θ is negation complete, let $\phi \in L^S$, in particular $\phi = \phi_n$ for some $n \in \mathbb{N}$. Assuming $\Theta \not\vdash \neg \varphi_n$, we conclude $\Theta_n \not\vdash \neg \varphi_n$ by $\Theta_n \subseteq \Theta$. Therefore, $\Theta_n \cup \{\varphi\}$ is consistent. It follows that $\varphi \in \Theta_{n+1} \subseteq \Theta$, and thus $\Theta \vdash \varphi$.

In the next step we eliminate the condition free(Φ) being finite.

Corollary 1.8. Let S be countable and $\Phi \subseteq L^S$ consistent. Then Φ is satisfiable.

Proof: First, we let

$$S' := S \cup \{c_0, c_1, \ldots\}$$
. \rightarrow every Ci is a new constant

For every $\varphi \in L^S$ we define

$$n(\varphi) := \min\{n \mid free(\varphi) \subseteq \{\nu_0, \dots, \nu_{n-1}\}, i.e., \varphi \in L_n^S\},\$$

and let

$$\varphi' := \varphi \frac{c_0 \dots c_{n(\varphi)-1}}{v_0 \dots v_{n(\varphi)-1}}.$$

Then we set

$$\Phi' := \left\{ \phi' \mid \phi \in \Phi \right\} \subseteq L^{S'}$$

Note free(Φ') = \emptyset .

Claim. Φ' is consistent.

Once we establish the claim, together with free(Φ') = \emptyset , Corollary 1.6 implies that there is an S'interpretation $\mathfrak{I}'=(\mathcal{A}',\beta')$ such that $\mathfrak{I}'\models\Phi'$. Applying the Coincidence Lemma with free $(\Phi')=$ Ø, we can assume without loss of generality that

$$\beta'(\nu_i) = c_i^{A'} = \Im'(c_i).$$
 ϕ' the S-sentence (1)

It follows that for every $\varphi \in \Phi$

 $\mathfrak{I}' \models \varphi' \iff \mathfrak{I}' \models \varphi \frac{c_0 \dots c_{\mathfrak{n}(\varphi)-1}}{v_0 \dots v_{\mathfrak{n}(\varphi)-1}}$

 $\iff \mathfrak{I}'\frac{\mathfrak{I}'(c_0)\dots\mathfrak{I}'(c_{\mathfrak{n}(\phi)-1})}{\nu_0\dots\nu_{\mathfrak{n}(\phi)-1}}\models \phi$ (by the Substitution Lemma)

$$\iff \mathfrak{I}' \frac{\beta'(\nu_0) \dots \beta'(\nu_{n(\varphi)-1})}{\nu_0 \dots \nu_{n(\varphi)-1}} \models \varphi$$
 (by (1))

We conclude that Φ is satisfiable. > coincidence lemma + (中航信三) 重任5中

Now we prove the claim. It suffices to show that every finite subset of Φ' is satisfiable. To that end, let

$$\Phi_0' := \big\{\phi_1', \ldots, \phi_n'\big\},$$

where $\varphi_1, \ldots, \varphi_n \in \Phi$. Clearly free $\{ \{ \varphi_1, \ldots, \varphi_n \} \}$ is finite, and $\{ \varphi_1, \ldots, \varphi_n \}$ is consistent by the consistency of Φ . By Corollary 1.6 there is an S-interpretation $\mathfrak{I}=(\mathcal{A},\beta)$ such that for every $i \in [n]$

$$\mathfrak{I} \models \varphi_{\mathfrak{i}}.$$
 (2)

We expand the S-structure A to an S'-structure A' by setting for every $i \in \mathbb{N}$

$$c_i^{\mathcal{A}'} := \beta(v_i). \tag{3}$$

Then for the S'-interpretation $\mathfrak{I}':=(\mathcal{A}',\beta)$ and any $\phi\in L^S$

$$\begin{split} \mathfrak{I}' &\models \phi' \iff \mathfrak{I}' \models \phi \frac{c_0 \dots v_{n(\phi)-1}}{v_0 \dots v_{n(\phi)-1}} \text{ definition of } \phi' \\ &\iff \mathfrak{I}' \frac{\mathfrak{I}'(c_0) \dots \mathfrak{I}'(v_{n(\phi)-1})}{v_0 \dots v_{n(\phi)-1}} \models \phi \qquad \text{ (by the Substitution Lemma)} \\ &\iff \mathfrak{I}' \frac{c_0^{\mathcal{A}'} \dots v_{n(\phi)-1}^{\mathcal{A}'}}{v_0 \dots v_{n(\phi)-1}} \models \phi \\ &\iff \mathfrak{I}' \frac{\beta(v_0) \dots \beta(v_{n(\phi)-1})}{v_0 \dots v_{n(\phi)-1}} \models \phi \\ &\iff \mathfrak{I}' \models \phi \\ &\iff \mathfrak{I} \models \phi \qquad \text{ (by the Coincidence Lemma)}. \end{split}$$

It follows that $\mathfrak{I}' \models \Phi_0'$ by (2). Thus Φ_0' is satisfiable.

2 Exercises

Exercise 2.1. Let $\Phi \subseteq L^S$ be finite, and let $\varphi \in L^S$ with $\Phi \vdash \varphi$. Note that a proof might use formulas built on any symbol in S.

Define $S_0 \subseteq S$ to be the set of symbols that occur in Φ and φ . Show that there is a proof for $\Phi \vdash \varphi$ such that every formula occurs in the proof is an S_0 -formula.