Berechenbare Analysis SoSe 19

Benedikt Lüken-Winkels

April 12, 2019

Contents

1	1. \	/orlesung	2
2	2. \	/orlesung	2
	2.1	Berechenbarkeit	2
	2.2	Entscheidbarkeit	2
	2.3	Berechenbare Reelle Zahlen	2

1 1. Vorlesung

2 2. Vorlesung

2.1 Berechenbarkeit

Figure 1: g ist (ν_x, ν_y) berechenbar, wenn g von einer berchenbaren Funktion f realisiert wird

2.2 Entscheidbarkeit

Diagonalisierung Wären die Reellen Zahlen abzählbar, wäre die Diagonalzahl darin enthalten (!Widerspruch).

Table 1: Diagonialisierungsbeispiel: x_{∞} kann nicht in der Liste enthalten sein

x_0	0.500000
x_1	0.411110
x_2	0.312110
x_3	0.222220
x_4	0.233330

 $x_{\infty} = 0.067785....$

Definition Menge A Entscheidbar, wenn eine Funktion $f_A(x)$, die entscheidet, ob $x \in A$ berechenbar ist.

2.3 Berechenbare Reelle Zahlen

Konstruktive Mathematik Formulierung algorithmischen Rechnens: zB \exists neu definiert als "es existiert ein Algorithmus". Nicht mehr für "klassische Mathematiker" lesbar

Definition Für $x \in \mathbb{R}$ sind die Bedingungen äquivalent (wenn eine Bedingung erfüllt ist, sind alle Erfüllt):

- 1. Eine TM erzeugt eine unendlich lange binäre Representation von x auf dem Ausgabeband
- 2. **Fehlerabschätzung** Es gibt eine TM, die Approximationen liefert. Formal: $q: \mathbb{N} \to \mathbb{Q}$ $(q_i)_{i \in \mathbb{N}}$ ist Folge rationaler Zahlen, die gegen x konvergiert. Bedeutet, dass alle q_i innerhalb eines bestimmten beliebig kleinen Bereichs um x liegen.
- 3. Intervalschachtelung Es gibt eine berechenbare Intervallschachtelung: Angabe zweier Folgen rationaler Zahlen mit der Aussage, dass x dazwischen liegt. Ziel: Abstände von linker und rechter Schranke soll gegen null gehen.
- 4. **Dedekindscher Schnitt**Menge $\{q \in \mathbb{Q} | q < x\}$ ist entscheidbar. Beispiel $\sqrt{2}$ ist berechenbar. $\{q|q < \sqrt{2}\} = \{q|q^2 < 2\}$
- 5. $z \in \mathbb{Z}$ $A \subseteq \mathbb{N}$, $x_A = \sum i \in A2^{-1} i$, $x = z + x_A$
- 6. Es exisitert eine Kettenbruchentwicklung

Folgerungen

- \bullet \Rightarrow Für Berechenbarkeit muss nur eine der Bedingungen bewiesen werden. Menge der berechenbaren reelen Zahlen $= \mathbb{R}_c$
- Nicht berechenbare reele Zahlen durch Diagonalisierung konstruierbar
- e berechenbar, weil die Fehlerabschätzung (2) existiert
- \bullet π (Notiert als alternierede Reihe) berechenbar, weil Intervalschachtelung existiert
- $\sqrt{2}$ berechenbar, weil Dedekindscher Schnitt existiert.

Implementierung Ziel: zB Berechnung von Differentialgleichungen