Introduction to Statistics and Data Science using eStat

Chapter 12 Correlation and Regression Analysis

12.2 Simple Linear Regression Analysis

Jung Jin Lee
Professor of Soongsil University, Korea
Visiting Professor of ADA University, Azerbaijan

12.1 Correlation Analysis

- 12.2 Simple Linear Regression Analysis
 - 12.2.1 Simple Linear Regression Model
 - 12.2.2 Estimation of Regression Coefficient
 - 12.2.3 Goodness of Fit for Regression Line
 - 12.2.4 Analysis of Variance for Regression
 - 12.2.5 Inference for Regression
 - 12.2.6 Residual Analysis
- 12.3 Multiple Linear Regression Analysis

- Regression analysis is a statistical method
 - establishes a mathematical model of relationships between variables,
 - estimates model using measured values of the variables,
 - uses estimated model to describe the relationship between variables, or to apply it to the analysis such as forecasting.
- Mathematical model ⇒ regression equation
- Variable affected by other variables is called a dependent variable.
 - ⇒ response variable
- Variables that affect dependent variable are called independent variables.
 - **⇒** explanatory variable

- Population Regression Model $Y_i = \alpha + \beta X_i + \epsilon_i$, i = 1, 2, ..., nEstimated Regression Equation $\widehat{Y}_i = \alpha + b X_i$ Residuals $e_i = Y_i - \widehat{Y}_i$
- Method of Least Squares Method

A method of estimating regression coefficients so that total sum of the squared errors occurring in each observation is minimized.

Find α and β which minimize $\sum_{i=1}^{n} \epsilon_i^2 = \sum_{i=1}^{n} (Y_i - \alpha - \beta X_i)^2$

• Least Square Estimator of α and β

$$b = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^{n} (X_i - \overline{X})^2}$$

$$a = \overline{Y} - b \overline{X}$$

[Example 12.2.1] In [Example 12.1.1], find the least squares estimate of the slope and intercept if the sales amount is a dependent variable and the advertising cost is an independent variable.

 Predict amount of sales when you have spent on advertising by 10.

<Answer>

$$b = \frac{\sum_{i=1}^{n} (X_i - \overline{X})(Y_i - \overline{Y})}{\sum_{i=1}^{n} (X_i - \overline{X})^2} = \frac{151.2}{60.4} = 2.503$$

$$a = \overline{Y} - b \overline{X} = 49.7 - 2.503 \times 8.4 = 28.672$$

• Forecasting $28.671 + 2.503 \times 10 = 53.705$

12.2.3 Goodness of Fit for Regression Line

 Residual standard error s is a measure of the extent to which observations are scattered around the estimated line.

$$s^2 = \frac{1}{n-2} \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2$$

The residual standard error s is defined as the square root of s^2 .

$$SST = \sum_{i=1}^{n} (Y_i - \overline{Y})^2 \qquad df \quad n-1$$

$$SSE = \sum_{i=1}^{n} (Y_i - \widehat{Y}_i)^2 \qquad df \quad n-2$$

$$SSR = \sum_{i=1}^{n} (\widehat{Y}_i - \overline{Y})^2 \qquad df \quad 1$$

[Example 12.2.2] Calculate the value of the residual standard error and the coefficient of determination in the data on advertising costs and sales.

<Answer>

$$\hat{Y}_{i} = 28.672 + 2.503 X_{i}$$

$$s^{2} = \frac{1}{n-2} \sum_{i=1}^{n} (Y_{i} - \hat{Y}_{i})^{2}$$

$$= \frac{17.622}{(10-2)} = 2.203$$

$$R^{2} = \frac{SSR}{SST} = \frac{378.429}{396.1} = 0.956$$

	Xi	Yi	$\widehat{\mathbf{Y}}_{\mathbf{i}}$	$\frac{SST}{\sum (Y_i - \overline{Y})^2}$	$\frac{SSR}{\sum (\widehat{Y}_i - \overline{Y})^2}$	$\frac{SSE}{\sum (Y_i - \widehat{Y}_i)^2}$
1	4	39	38.639	114.49	122.346	0.130
2	6	42	43.645	59.29	36.663	2.706
3	6	45	43.645	22.09	36.663	1.836
4	8	47	48.651	7.29	1.100	2.726
5	8	50	48.651	0.09	1.100	1.820
6	9	50	51.154	0.09	2.114	1.332
7	9	52	51.154	5.29	2.114	0.716
8	10	55	53.657	28.09	15.658	1.804
9	12	57	58.663	53.29	80.335	2.766
10	12	60	58.663	106.09	80.335	1.788
Sum	84	497	496.522	396.1	378.429	17.622
Average	8.4	49.7				

<Answer of Example 12.2.2>

	Regression Analysis				
	Regression	y =	28.672 +	2.503 x	
	Correlation Coefficient	r = 0.978	H ₀ : ρ = 0 H ₁ : ρ ≠ 0	t value = 13.117	p value < 0.0001
	Coefficient of Determination	r ² = 0.956			
	Standard Error	s = 1.483			
*					
	Variable	Variable Name	Observation	Mean	Std Dev
	Independent Variable x	Advertise	10	8.400	2.591
	Dependent Variable y	Sales	10	49.700	6.634
	Missing Observations	0			

[Example 12.2.3]

[ANOVA]					
Factor	Sum of Squares	deg of freedom	Mean Squares	F value	p value
Regression	378.501	1	378.501	172.052	< 0.0001
Error	17.599	8	2.200		
Total	396.100	9			

\square Inference for the parameter β

$$b = \frac{\sum_{i=1}^{n} (X_i - \bar{X})(Y_i - \bar{Y})}{\sum_{i=1}^{n} (X_i - \bar{X})^2} \sim N(\beta, \frac{\sigma^2}{\sum_{i=1}^{n} (X_i - \bar{X})^2})$$

• Standard error of estimate
$$b$$
: $SE(b) = \frac{s}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2}}$

• Confidence interval of
$$\beta$$
: $b \pm t_{n-2;\alpha/2} \times SE(b)$

Testing hypothesis:

$$H_0: \beta = \beta_0$$

$$= \frac{b - \beta_0}{GR(1)}$$

1)
$$H_1: \beta < \beta_0$$
 Reject H_0 if $t < -t_{n-2; \alpha}$

2)
$$H_1: \beta > \beta_0$$
 Reject H_0 if $t > t_{n-2; \alpha}$

3)
$$H_1: \beta \neq \beta_0$$
 Reject H_0 if $|t| > t_{n-2; \alpha/2}$

\Box Inference for the parameter α

$$a = \overline{Y} - b\overline{X} \sim N(\alpha, (\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^n (X_i - \overline{X})^2})\sigma^2)$$

• Standard error of estimate
$$a$$
: $SE(a) = s \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^n (X_i - \overline{X})^2}}$

• Confidence interval of
$$\beta$$
: $a \pm t_{n-2; \alpha/2} \times SE(a)$

Testing hypothesis:

Null hypothesis:
$$H_0: \alpha = \alpha_0$$

Test statistic:
$$t = \frac{a - \alpha_0}{SE(a)}$$

1)
$$H_1: \alpha < \alpha_0$$
 Reject H_0 if $t < -t_{n-2; \alpha}$

2)
$$H_1: \alpha > \alpha_0$$
 Reject H_0 if $t > t_{n-2; \alpha}$

3)
$$H_1: \alpha \neq \alpha_0$$
 Reject H_0 if $|t| > t_{n-2; \alpha/2}$

- \Box Inference for the average value $\mu_{Y|x} = \alpha + \beta X_0$
- Point estimate:

$$\widehat{Y}_0 = a + bX_0$$

- Standard error of estimate \widehat{Y}_0 : $SE(\widehat{Y}_0) = s \sqrt{\frac{1}{n} + \frac{(X_0 \overline{X})^2}{\sum_{i=1}^n (X_i \overline{X})^2}}$
- Confidence interval of $\mu_{Y|x}$: $\widehat{Y}_0 \pm t_{n-2; \alpha/2} \times SE(\widehat{Y}_0)$

[Example 12.2.4]

- 1) Inference for β
- b = 2.50333

$$SE(b) = \frac{s}{\sqrt{\sum_{i=1}^{n} (X_i - \overline{X})^2}} = \frac{1.484}{60.4} = 0.1908$$

• Confidence interval of β : $b \pm t_{n-2; \alpha/2} \times SE(b)$

$$2.5033 \pm 3.833 \times 0.1908 \Leftrightarrow (1.7720, 3.2346)$$

• Test statistic for H_0 : $\beta = 0$ H_1 : $\beta \neq 0$

Reject
$$H_0$$
 if $|t| > t_{n-2; \alpha/2}$
 $t = \frac{b - \beta_0}{SE(b)} = \frac{2.5033 - 0}{0.1908} = 13.22$

Since $t_{8; 0.025} = 3.833$, H_0 is rejected.

[Example 12.2.4]

- 2) Inference for α
- a = 29.672

$$SE(a) = s \sqrt{\frac{1}{n} + \frac{\overline{X}^2}{\sum_{i=1}^{n} (X_i - \overline{X})^2}} = 1.484 \sqrt{\frac{1}{10} + \frac{8.4^2}{60.4}} = 1.670$$

• Test statistic for H_0 : $\alpha = 0$ H_1 : $\alpha \neq 0$

Reject
$$H_0$$
 if $|t| > t_{n-2; \alpha/2}$
 $t = t = \frac{a - \alpha_0}{SE(a)} = \frac{29.672 - 0}{1.670} = 17.1657$

Since $t_{8; 0.025} = 3.833$, H_0 is rejected.

3) Confidence interval of $\mu_{Y|x}$: $\widehat{Y}_0 \pm t_{n-2; \alpha/2} \times SE(\widehat{Y}_0)$ if x = 8, $\widehat{Y}_0 = 49.699$, $\Rightarrow 49.699 \pm 3.833 \times 0.475$

<Answer of Example 12.2.4>

Parameter	Estimated Value	std err	t value	p value
Intercept	28.672	1.670	17.166	< 0.0001
Slope	2.503	0.191	13.117	< 0.0001

[Example 12.2.5] Residual Analysis

Simulation of Regression Analysis in eStatU

- Create points by click, then eStat finds a regression line.
- Move or erase a point. Watch change of the regression line.

Thank you