1. Shapes of closed curves

Our interest is in the completion of shapes of partially observed closed curves, and their classification. This first requires us to adopt a suitable representation for the shape of a fully observed curve. We adopt a parametric representation of a closed curve by representing as an absolutely continuous function $C: \mathbb{S} \to \mathbb{R}^2$, thus automatically ensuring that the curve is closed. The notion of a shape of such a curve requires invariances to transformations that represent nuisance information. Specifically, if $\Gamma := \{\gamma: S \to S \text{ is an orientation-preserving diffeomorphism}\}$ and SO(2) is the rotation group in \mathbb{R}^3 , the shape of a parameterized curve $C: D \to \mathbb{R}^2$ is defined to be the equivalence class

$$[C] := \Big\{ \sigma OC(\gamma(t)) + a, \gamma \in \Gamma, O \in SO(2), a \in \mathbb{R}^2, \sigma > 0 \Big\}.$$

Thus [C] is the set of all possible curves that can be obtained through a translation (C+a), rotation (OC), scale change (σC) , a reparametrization $(C(\gamma))$, or a combination of the transformations, of the curve C. In words, the shape of a curve C is what is left once variations due scale, translation, rotation and reparametrisation has been accounted for.

A key ingredient in several classification methods (e.g. linear/quadratic discriminant analysis; kernel-based methods) for functional data is the notion of similarity or distance between curves. A popular choice is the distance induced by the \mathbb{L}^2 norm of a Hilbert space of square-integrable functions. However, it is well known that the \mathbb{L}^2 is unsuitable for comparing curves in the presence of parameterisation variability [Kurtek et al., 2012, Srivastava and Klassen, 2016]. To this end we employ a suitable representation (transformation) of a curve C that allows us to compute distances easily while accounting for the necessary invariances.

- 1.1. **Notation.** A closed planar curve C is always an absolutely continuous mapping $C: \mathbb{S} \to \mathbb{R}^2$, and the set of planar closed curves will be denoted by C. The set C is equipped with the norm $||x||_{\mathbb{L}^2} := [\int_{\mathbb{S}} ||x(t)||_2 dt]^{1/2}$ where $||\cdot||_2$ is the Euclidean norm in \mathbb{R}^2 . SO(2) is the special orthogonal group of rotation matrices of \mathbb{R}^2 , and Γ is group of orientation-preserving diffeomorphisms of \mathbb{S} . The set Γ_I will denote the group $\{\gamma: [0,1] \to [0,1], \gamma' > 0, \gamma(0) = 0, \gamma(1) = 1\}$.
- 1.2. **Square-root velocity transform.** For a detailed introduction to the transform, its properties and advantages we refer to the reader to Chapter 6 of the book by Srivastava and Klassen [2016]. Here we briefly outline the important concepts required for our purposes. For an absolutely continuous

1

¹Upon identification of \mathbb{S} with $[0,1] \cong \mathbb{R}/2\pi\mathbb{Z}$, a curve $C:[0,1] \to \mathbb{R}^2$ is absolutely continuous if and only if there exists an integrable function $g:[0,1] \to \mathbb{R}^2$ such that $C(t) - C(0) = \int_0^t g(u) du, \forall t \in [0,1].$

curve $C: \mathbb{S} \to \mathbb{R}^2$ consider the transformation

$$C \mapsto \frac{C'}{\|C'\|_{\mathbb{L}^2}} =: Q_C,$$

where C' is the (vector) derivative of C(t) with respect to t, and $\|\cdot\|$ is the usual Euclidean norm in \mathbb{R}^2 .

The unique (up to translations) inverse of a square-root transformed curve Q_C is $\int_o^t Q_C(s) \|Q_C(s)\|_2 ds$. To ensure that the curves are closed we need to impose an additional constraint: $\int_{\mathbb{S}} \|C'(t)\|_2 dt = \int_{\mathbb{S}} Q_C(t) \|Q_C(t)\|_2 = 0$.

For a curve C, by taking its derivative and dividing by its length $\|C'\|_{\mathbb{L}^2}$, the transform accounts for translation and scale variabilities. Thus the image of the set of absolutely continuous closed curves with fixed lengths l, $\{C: \mathbb{S} \to \mathbb{R}^2: \int_{\mathbb{S}} \|C'(t)\|_2 dt = l\}$, under the square-root transform map $C \mapsto Q_C$ is the set

$$Q := \left\{ Q_C : \int_{\mathbb{S}} \|Q_C\|_2^2 = 1, \int_{\mathbb{S}} Q_C(t) \|Q_C(t)\|_2 dt = 0 \right\},\,$$

since $||Q_C||_{\mathbb{L}^2} = ||C'||_{\mathbb{L}^2}^{1/2}$. Thus the set \mathcal{Q} is a subset of $\mathbb{L}^2(\mathbb{S}, \mathbb{R}^2) := \{Q : \mathbb{S} \to \mathbb{R}^2 : \int_{\mathbb{S}} ||Q(t)||_2^2 < \infty\}$. It is referred to as the pre-shape space corresponding to the curves, since variations due to rotation and parameterization are yet to be accounted for. It is not a linear space and is a manifold [Srivastava and Klassen, 2016].

Before defining the shape space, we discuss the actions of groups Γ and SO(2) on the set \mathcal{Q} . The set Γ of reparameterisations (or warp maps) of \mathbb{S} is group with group action given by composition. Its action on \mathcal{Q} is defined by $(Q_C, \gamma) \mapsto Q_C(\gamma) \sqrt{|\gamma'|}$, where γ' is the derivative of γ (see Chapters 5 and 6 Srivastava and Klassen [2016] for more details). The derivative of $\gamma: \mathbb{S} \to \mathbb{S}$ needs to be viewed as a derivative of $\gamma: [0,1] \to [0,1]$ based on the identification $\mathbb{S} \cong \mathbb{R}/2\pi\mathbb{Z}$, and hence |z| is just the absolute value of the real number z. The action of the rotation group SO(2) is defined in the usual way as the map $SO(2) \times \mathcal{Q} \to \mathcal{Q}$ with $(O, Q_C) \mapsto \{OQ_C(t): t \in \mathbb{S}\}$.

Two important ramifications of the described framework, motivating its use in our work for analyzing shapes of curves, are the following. Under the square-root velocity framework:

- 1. The actions of SO(2) and Γ on \mathcal{Q} commute, i.e. they can be applied to a curve in any order. This ensures that their combined action is given by the product group $\Gamma \times SO(2)$.
- 2. The action of $\Gamma \times SO(2)$ on \mathcal{Q} is by isometries: Given two curves C_1 and C_2 , we have $\|OQ_{C_1}(\gamma)\sqrt{\gamma'} OQ_{C_2}(\gamma)\sqrt{\gamma'}\|_{\mathbb{L}^2} = \|Q_{C_1} Q_{C_2}\|_{\mathbb{L}^2}$, for every $(\gamma, O) \in \Gamma \times SO(2)$. This ensures that if two square-root velocity transformed curves are rotated and reparameterized the same way, their distance remains unchanged.

Starting with a curve C we can now define its shape to be the equivalence class or its orbit of its corresponding square-root transform:

$$[Q_C] = \text{closure}\{OQ_C(\gamma)\sqrt{\gamma'}: (\gamma, O) \in \Gamma \times SO(2)\},\$$

where the closure is with respect to the norm $\|\cdot\|_{\mathbb{L}^2}$ on Q. The shape space consequently is defined as $Q_s := \{[Q_C] : Q_C \in Q\}$. Property (2) ensures that the metric induced by the norm $\|\cdot\|_{\mathbb{L}^2}$ on Q descends onto a metric d on the shape space (quotient space) Q_s in a natural way. Given two curves C_1 and C_2 , the shape distance between them is defined as

$$(1) \quad d(C_{1}, C_{2}) := \inf_{(\gamma, O) \in \Gamma \times SO(2)} \|Q_{C_{1}} - OQ_{C_{2}}(\gamma) \sqrt{\gamma'}\|_{\mathbb{L}^{2}}$$

$$= \inf_{(\gamma, O) \in \Gamma \times SO(2)} \left[\int_{\mathbb{S}} \left\| Q_{C_{1}}(t) - OQ_{C_{2}}(\gamma(t)) \sqrt{\gamma'(t)} \right\|_{2}^{2} dt \right]^{1/2}$$

$$= \inf_{(\gamma, O) \in \Gamma \times SO(2)} \|OQ_{C_{1}}(\gamma) \sqrt{\gamma'} - Q_{C_{2}}\|_{\mathbb{L}^{2}}.$$

The symmetry with respect to the action either on Q_{C_1} or Q_{C_2} is an attractive feature and will be used profitably in the sequel.

2. Curve completion and classification

Suppose we are given closed planar curves $C_j^m: \mathbb{S} \to \mathbb{R}^2, j=1,\ldots,n$ each of which has been observed only on a region $\mathcal{R}_j \subset \mathbb{S}$, where \mathbb{S} is the unit circle in \mathbb{R}^2 . We assume that the curves are absolutely continuous. Additionally, a training sample $\{(y_i, C_i^o), 1, \ldots, N\}$ consisting of class labels $y_i \in \{0,1\}$ and $C_i^o: \mathbb{S} \to \mathbb{R}^2$, fully observed on a common domain \mathbb{S} , is provided. The set of fully observed curves are elements of the set \mathcal{C} ; denote by \mathcal{C}^m the set of all partially observed curves.

The problem at hand is to model the shape of and complete each partially observed curve C_j^m and assign it to one of G groups. We consider two approaches: one based on a variational formulation, and the other using kernel-based classifier. Before describing our approaches, some comments on the set Γ are in order.

2.1. The set of reparameterizations Γ . Elements of the group Γ of diffeomorphisms of $\mathbb S$ can be viewed in the following manner. The unit circle $\mathbb S$ can be identified with the quotient group $\mathbb R/2\pi\mathbb Z\cong [0,1]$. Through this identification, every continuous mapping $\beta:\mathbb R\to\mathbb R$ induces a continuous mapping of $\mathbb S$ onto itself such that $\beta(t+1)=\beta(t)+1$ for all $t\in\mathbb R$. If β is monotone increasing, we say that the induced map on $\mathbb S$ is orientation-preserving (based on a choice of clockwise or anti-clockwise orientation).

Consider now the set

$$\Gamma_{\mathbb{R}} := \{ \beta : \mathbb{R} \to \mathbb{R} : \beta(t+1) = \beta(t) + 1, \text{ continuous and increasing} \}.$$

Each member β of $W_{\mathbb{R}}$ induces a warp map $\tilde{\beta}: \mathbb{S} \to \mathbb{S}$ with $\tilde{\beta}(e^{2\pi it}) = e^{2\pi i\beta(t)}$, where β is referred to as the lift of $\tilde{\beta}$. This β satisfies $\beta(t+1) = \beta(t) + 1$ for all $t \in [0,1]$, and consequently we have, for $t \in [0,1]$, $\beta(t) = \gamma(t) + c$,

where γ is a warp map of [0,1] and $c \in (0,1]$ (through the identification of [0,1] with $\mathbb{R}/2\pi\mathbb{Z}$). This procedure can be viewed as one that produces a warp map of \mathbb{S} by 'unwrapping' \mathbb{S} at a chosen point s and generating a warp map of [0,1]. If $\Gamma_I := \{\gamma : [0,1] \to [0,1] : \gamma' > 0, \gamma(0) = 0, \gamma(1) = 1\}$ is the group of diffeomorphisms of [0,1], the map $\Gamma \mapsto \mathbb{S} \times \Gamma_I$ is a bijection². We will hence employ the product group $\mathbb{S} \times \Gamma_I$ in place of Γ . This ensures that the domain of each curve C_j^m and C_i^o can be identified with [0,1] upon unwrapping the circle.

2.2. Curve completion. The observed region \mathcal{R}_j associated with a partially observed curve C_j^m is the subinterval $[0, t_j]$ with $t_j < 1$ for all $j = 1, \ldots, N$. Suppose that $C_j^m(0) = \mathbf{a}_j := (a_{1j}, a_{2j})^T$ and $C_j^m(t_j) = \mathbf{b}_j := (b_{1j}, b_{2j})^T$. Then the set of curves comprising the missing segment of curve C_j^m is

$$\mathcal{X}_j := \{X : [t_j, 1] \to \mathbb{R}^2 : X(t_j) = \mathbf{b}, X(1) = \mathbf{a}\}.$$

For a partially observed $C_j^m:[0,t_j]$ and an $X \in \mathcal{X}_j$ with $j=1,\ldots,n$, define its completion to be the concatenated closed curve

$$C_j \circ X(t) := C_j^m(t) \mathbb{I}_{t \in [0,t_j]} + X(t) \mathbb{I}_{(t_j,1]}.$$

Denote by $Q_{C_j^m \circ X}$ the square-root transform of $C_j^m \circ X$. For each $j = 1, \ldots, n$, let $\Theta_j := \mathbb{S} \times \Gamma_I \times SO(2) \times \mathcal{X}_j$, and recall that \mathcal{C}^o and \mathcal{C}^m denote the sets of fully and partially observed curves, respectively. For a fixed $C \in \mathcal{C}$, for each $j = 1, \ldots, n$ define the cost functional $\Phi_{\theta_j} : \mathcal{C}^m \times \mathcal{C} \to \mathbb{R}$ by

$$\begin{split} \Phi_{\theta_j}(C_j^m,C) &:= d^2(C_j^m \circ X_j, OC(\gamma)), \quad \theta_j \in \Theta_j \\ &= \inf_{(s,\gamma,O) \in \mathbb{S} \times \Gamma_I \times SO(2)} \|Q_{C_j^m \circ X_j}, OQ_C(\gamma) \sqrt{\gamma'}\|_{\mathbb{L}^2}^2. \end{split}$$

The optimal shape completion of a partially observed curve $Q_{C_j^m}$, $j=1,\ldots,n$ is $Q_{C_j^m \circ X_j^*}$, where X_j^* is obtained from the solution set of:

(2)
$$\theta_j^* := (s_j^*, \gamma_j^*, O_j^*, X_j^*) = \operatorname*{argmin}_{\theta_j \in \Theta_j} \Phi_{\theta_j}(C_j^m, C).$$

In the expression above s_j^* corresponds to the optimal point at which $\mathbb S$ was unwrapped in order to identify Γ with $\mathbb S \times \Gamma_I$; $\gamma_j^* : [0,1] \to [0,1]$ and O_j^* represents the optimal reparameterization of the curve $C_j^m \circ X_j^*$. The use of a valid distance on the quotient shape space $\mathcal Q_s$ allows us to apply the shape transformations on $Q_{C_i}, i=1,\ldots,n$ in the variational problem with introducing any arbitrariness. The (product) group structure of $\mathbb S \times \Gamma_I \times SO(2)$, and its action on $\mathcal Q$, ensures that if the transformations were to have been applied to $Q_{C_j^m \circ X^*}$, the resulting solution set would instead contain the corresponding group inverses. (INSERT ILLUSTRATIVE FIGURE).

²Technically, this is not a bijection since for a $\gamma \in \Gamma$, the corresponding $\beta \in \Gamma_I$ has a jump discontinuity at the point $t_c \in [0,1]$ where $\beta(t_c) + c = 1$. This can be circumvented by assuming that the members of Γ and Γ_I are absolutely continuous (as opposed to diffeomorphims); then the map between to the sets is bijective a.e.

- 2.3. Classification. We outline two approaches for classification of partially observed curves $C_j^m, j = 1, ..., N$.
- 2.3.1. Combining completion and classification. The variational formulation for the completion of each curve C_j^m with respect to a fixed curve C can be augmented to address the classification task in the following manner. Using the training sample $\{(y_i, C_i^o), 1, \ldots N\}$ partition the set $\{C_i^o, i = 1, \ldots, N\}$ into $\bigcup_{g \in G} \{C_{ig}^o, i = 1, \ldots, N_g\}$ with $N_1 + \cdots + N_g = N$. Recall that the shape space of a given set of curves is the quotient metric space with the metric d in (1). Such a structure allows us to define the sample Fréchet mean shape curve for a given set of curves. Formally, for each $g \in G$, consider the sample Fréchet functional define on the set C as

$$F_g: C \to \mathbb{R}, \quad C \ni C \mapsto F_g(C) := \sum_{i=1}^{N_g} d^2(C, C_i^0).$$

The (local) minimizer of F_g is referred to as the Fréchet mean set, since d is a distance between two equivalence classes. We then select a member $\hat{M}_g: \mathbb{S} \to \mathbb{R}^2$ from set this and refer to it as the Fréchet mean of the group $\{C_{ig}^o, i=1\ldots, N_g\}$ with $g=1,\ldots,G$.

The variational classifier based on the augmented optimization problem in (2) is defined by the following rule:

Assign
$$C_j^m$$
 to group g^* where $(g^*, \theta_j^*) = \underset{g \in \{1, \dots, G\} \times \theta_j \in \Theta_j}{\operatorname{argmin}} \Phi_{\theta_j}(C_j^m, \hat{M}_g)$.

The classifier assigns C_j^m to the group whose Fréchet mean is closest to C_j^m . The advantage of this approach lies in the fact that completion and classification of partially observed curves are unified under the same metric (distance), and in a certain sense carried out simultaneously.

2.3.2. Kernel-based classifier. Consider curves $C_j^m \circ X_j : \mathbb{S} \to \mathbb{R}^2, j = 1, \ldots, n$ that have been completed using the variational formulation in (2). For each curve $C_j^m \circ X_j$ a nonparametric estimate of the (conditional) group probabilities $\pi_g := P(y_j = g | C_j^m \circ X_j), g = 1, \ldots, G$ can be constructed using the distance d on the shape space of curves. Using the estimate a curve $C_j^m \circ X_j$ is assigned to the group with the largest probability. We eschew the cumbersome notation involving the completed curves and outline the methodology for a generic curve $C : \mathbb{S} \to \mathbb{R}^2$ to belong to two groups based on the training sample; hence g = 1, 2 with labels 0 and 1. Extension to more than two groups is routine.

Assume that training sample $\{(y_i, C_i^0, i = 1..., N)\}$ consists of independent realizations of the random element (\mathbf{y}, \mathbf{C}) taking values in $\{0, 1\} \times \mathcal{C}$. For a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, the random element \mathbf{C} is the mapping $(t, \omega) \mapsto \mathbf{C}(t, \omega)$. Thus \mathbf{C} is an \mathbb{R}^2 -valued stochastic process $\{\mathbf{C}(t), t \in \mathbb{S}\}$. The kernel-based estimate (see for e.g. Chapter 8 of Ferraty and Vieu [2006])

of the probability of assignment for a curve C to group 1, $\pi(C)$, is given by

(3)
$$\hat{\pi}_N(C) = \frac{\sum_{i=1}^N y_i K_{i,h_N}}{\sum_{i=1}^N K_{i,h_N}},$$

where $K_{i,h_N} := K(h_N^{-1}d(C, C_i^o))$ for a given kernel K and a positive bandwidth sequence h_N . The distance d is defined on the quotient space of shape curves in (1).

The asymptotic properties of the estimator $\hat{\pi}_N(C)$ are intimately related to the (shifted) small-ball probability of the process \mathbf{C} under the metric d:

$$\phi(Q_C, h_N) := \mathbb{P}(d(\mathbf{C}, C) < h_N), \quad C \in \mathcal{C}, h_N > 0$$
$$= \mathbb{P}\left(\inf_{(O, \gamma) \in SO(2) \times \Gamma} \|\mathbf{Q}_C - OQ_C(\gamma)\sqrt{|\gamma'|}\|_{\mathbb{L}^2} < h_N\right),$$

where $\mathbf{Q}_{\mathbf{C}}$ is the (pathwise) square-root transform of the random curve \mathbf{C} . For a detailed account of small-ball and shifted small-ball probabilities of processes, and their role in kernel-based estimators involving functional data, see Ferraty and Vieu [2006], Changy and Roche [2016], Mas [2012], Li and Shao [2001] and references therein. To the best of our knowledge results regarding small-ball probabilities are available only for processes with values in linear function spaces (e.g. Hilbert space with \mathbb{L}^2 norm or Banach space with supremum norm). The process $\mathbf{Q}_{\mathbf{C}} = \frac{\mathbf{C}'}{\|\mathbf{C}'\|_{\mathbb{L}^2}}$ takes values in an infinite-dimensional manifold (pre-shape space) $\mathcal{Q} \subset \mathbb{L}^2(\mathbb{S}, \mathbb{R}^2)$, defined earlier. Moreover, d is on the quotient shape space, and is defined between orbits of $\mathbf{Q}_{\mathbf{C}}$ and $\mathbf{Q}_{\mathbf{C}}$ (with respect to the action of Γ and \mathbb{S}).

We can view the class probability π (conditional expectation of \mathbf{y} given \mathbf{C}) as a map from \mathcal{C} to [0,1]. We make the following assumptions.

- A1. The kernel K is supported on [0,1] and bounded away from 0 and 1.
- A2. The bandwidth $h_N \to 0$ as $N \to \infty$.
- A3. $\phi(C, h_N) > 0$ for every $h_N > 0$ with $N\phi(C, h_N) \to \infty$ as $N \to \infty$.
- A4. The conditional probability $\pi: \mathcal{C} \to [0,1]$ is α -Lipschitz, i.e. there exists a $\lambda > 0$ such that for every $\tilde{C} \in \mathcal{C}$, $|\pi(C) \pi(\tilde{C})| \leq \lambda ||C \tilde{C}||^{\alpha}$.

The following result relates the behaviour of $\phi(Q_C, h_N)$ to the small-ball probability $\phi(C, h_N) = \mathbb{P}(\|\mathbf{C} - C\| < h_N)$ of the process \mathbf{C} (taking values in a linear space), and establishes consistency and rate of convergence of the estimate $\hat{\pi}_N$, as $N \to \infty$.

Theorem 1. Under assumptions A1-A3, $\phi(Q_C, h_N) > 0$ for every $h_N > 0$ and $N\phi(Q_C, h_N) \to \infty$ as $N \to \infty$. As a consequence, $N \to \infty$:

1. $\hat{\pi}_N$ converges in probability to π ;

$$2. \ \hat{\pi}_N - \pi = O_{\mathbb{P}}(h_N^{\beta}).$$

Proof. The key argument is to demonstrate that $\phi(Q_C, h_N) > 0$ and $N\phi(Q_C, h_N) \to \infty$ under assumptions A1-A3. Proofs of consistency and rate of convergence follow using almost identical arguments as in the proofs of Theorems 6.1 (p. 63) and 8.2 (p. 123) of Ferraty and Vieu [2006], and are omitted.

The shifted small-ball probability satisfies

$$\phi(Q_{C}, h_{N}) = \mathbb{P}(d(\mathbf{C}, C) < h_{N}), \quad C \in \mathcal{C}, h_{N} > 0$$

$$= \mathbb{P}\left(\inf_{(O, \gamma) \in SO(2) \times \Gamma} \|\mathbf{Q}_{C} - OQ_{C}(\gamma)\sqrt{|\gamma'|}\|_{\mathbb{L}^{2}} < h_{N}\right)$$

$$= \mathbb{P}\left(\inf_{(O, \gamma) \in SO(2) \times \Gamma} \|\mathbf{Q}_{C} - OQ_{C}(\gamma)\sqrt{|\gamma'|}\|_{\mathbb{L}^{2}}^{2} < h_{N}^{2}\right)$$

$$= \mathbb{P}\left(\|\mathbf{Q}_{C} - \tilde{O}Q_{C}(\tilde{\gamma})\sqrt{|\tilde{\gamma}'|}\|_{\mathbb{L}^{2}}^{2} < h_{N}^{2} \text{ for some } (\tilde{O}, \tilde{\gamma}) \in SO(2) \times \Gamma\right)$$

under the assumption that the (unique) infimum is attained at $(\tilde{O}, \tilde{\gamma}) \in SO(2) \times \Gamma$. The infimum will be attained if the orbits of the elements of Q are closed under the action of the product group $SO(2) \times \Gamma$. While the orbit under SO(2) is closed, the same isn't generally true for Γ . A technical adjustment in the definition of Γ rectifies this; for details see Lahiri et al. [2015].³ Observe that $\{\omega \in \Omega : \|\mathbf{Q}_{\mathbf{C}}(\omega) - Q_{C}(\omega)\|_{\mathbb{L}^{2}}^{2} < h_{N}^{2}\} \subseteq \{\omega \in \Omega : \|\mathbf{Q}_{\mathbf{C}}(\omega) - \tilde{O}Q_{C}(\omega)(\tilde{\gamma})\sqrt{\tilde{\gamma}'}\|_{\mathbb{L}^{2}}^{2} < h_{N}^{2} \text{ for some } (\tilde{O},\tilde{\gamma}) \in SO(2) \times \Gamma\}$. This can be seen by noting that the relationship is trivially true if $\tilde{\gamma}$ is the identity map in Γ . Thus we have that

$$\phi(Q_C, h_N) \ge \mathbb{P}\left(\|\mathbf{Q}_C - Q_C\|_{\mathbb{L}^2}^2 < h_N^2\right).$$

Consider the square-root map $\mathfrak{C}:\mathcal{C}\to\mathcal{Q},\ \mathfrak{C}(C)=Q_C$. The map is a bijection between the two spaces [Srivastava and Klassen, 2016]. It is however a complicated map between two Hilbert spaces. Instead of directly dealing with the map in order to relate $\phi(Q_C,\cdot)$ to $\phi(C,\cdot)$, we adopt the following strategy.

Denote by \mathbb{S}^{∞} the unit sphere in $\mathbb{L}^{2}(\mathbb{S}, \mathbb{R}^{2})$. Note that the pre-shape space $Q = \left\{Q_{C}: \int_{\mathbb{S}} \|Q_{C}\|_{2}^{2} = 1, \int_{\mathbb{S}} Q_{C}(t) \|Q_{C}(t)\|_{2} dt = 0\right\}$ is proper subset of \mathbb{S}^{∞} . Thus we can view $\mathbf{C}(C) = \mathbf{Q}_{C}$ and $\mathfrak{C}(C) = Q_{C}$ as random elements taking values in \mathbb{S}^{∞} . Consider the radial map in a Hilbert space $\mathfrak{R}: \mathcal{C} \to \mathbb{S}^{\infty}$ given by

$$\Re C = \left\{ \begin{array}{ll} C & \text{if } ||C|| \le 1; \\ \frac{C}{||C||} & \text{if } ||C|| > 1. \end{array} \right.$$

The map \mathfrak{R} is the unique metric projection of \mathcal{C} onto \mathbb{S}^{∞} and is 1-Lipschitz and nonexpansive, that is,

$$\|\Re C_1 - \Re C_2\| \le \|C_1 - C_2\|, \quad C_1, C_2 \in \mathcal{C}.$$

Since the image of \mathfrak{C} (i.e. \mathcal{Q}) is contained in the image of \mathfrak{R} (i.e. \mathbb{S}^{∞}), and the noting that \mathfrak{C} is bijective and \mathfrak{R} is the unique projection on \mathbb{S}^{∞} , for $C \in \mathcal{C}$ we necessarily have $\mathfrak{C}(C) = \mathfrak{R}(C)$.

³The group Γ needs to extended to the semi-group $\tilde{\Gamma}$ that allows for derivatives to be 0 at some points. We could then alter the action of $\tilde{\Gamma}$ on \mathcal{Q} to be just the composition $Q_C(\gamma), \gamma \in \tilde{\Gamma}$, and the arguments in the proof remain valid.

From the definitions of the maps \mathfrak{C} and \mathfrak{R} , from equation (2.3.2) we have,

$$\phi(Q_C, h_N) \ge \mathbb{P}\left(\|\mathfrak{C}(\mathbf{C}) - \mathfrak{C}(C)\|_{\mathbb{L}^2}^2 < h_N^2\right)$$

$$= \mathbb{P}\left(\|\mathfrak{R}(\mathbf{C}) - \mathfrak{C}(C)\|_{\mathbb{L}^2}^2 < h_N^2\right)$$

$$\ge \mathbb{P}\left(\|\mathbf{C} - C\|_{\mathbb{L}^2}^2 < h_N^2\right)$$

$$= \phi(C, h_N),$$

since for a fixed N, $\{\omega \in \Omega : \|\mathbf{C}(\omega) - C\|_{\mathbb{L}^2} < h_N\} \subseteq \{\omega \in \Omega : \|\mathfrak{R}(\mathbf{C}(\omega)) - \mathfrak{R}(C)\|_{\mathbb{L}^2} < h_N\}$ with \mathfrak{R} being 1-Lipschitz. This completes the proof. \square

References

- G. Changy and A. Roche. Adaptive estimation in the functional nonparametric regression model. *Journal of Multivariate Analysis*, 146:105–118, 2016.
- F. Ferraty and P. Vieu. *Nonparametric Functional Data Analysis: Theory and Practice*. Springer Series in Statistics, 2006.
- S. Kurtek, A. Srivastava, E. Klassen, and Z. Ding. Statistical modeling of curves using shapes and related features. *Journal of the American Statistical Association*, 107(499):1152–1165, 2012.
- S. Lahiri, D. Robinson, and E. Klassen. Precise matching of PL curves in \mathbb{R}^n in the Square Root Velocity framework. *Geometry, Imaging and Computing*, pages 133–186, 2015.
- W. V. Li and Q. M. Shao. Gaussian process: inequalities, small ball probabilities and applications. *Stochastic process: theory and methods*, 19: 533–597, 2001.
- A. Mas. Lower bound in regression for functional data by representation of small ball probabilities. *Electronic Journal of Statistics*, 6:1745–1178, 2012.
- A. Srivastava and E. P. Klassen. Functional and Shape Data Analysis. Springer-Verlag, New York, 2016.