Advanced Calculus

Functions of Several Variables

GR Phaijoo, PhD

Department of Mathematics
School of Science, Kathmandu University
Kavre, Dhulikhel

September 10, 2023

Partial Derivatives

Partial Derivatives

Horizontal axis in the plane $y = y_0$

FIGURE The intersection of the plane $y = y_0$ with the surface z = f(x, y),

DEFINITION The partial derivative of f(x, y) with respect to x at the point

 (x_0, y_0) is

$$\left. \frac{\partial f}{\partial x} \right|_{(x_0, y_0)} = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h},$$

provided the limit exists.

An equivalent expression for the partial derivative is

 $\frac{d}{dx} f(x, y_0) \Big|_{x = x_0}$

Partial Derivatives

We use several notations for the partial derivative:

$$\frac{\partial f}{\partial x}(x_0, y_0) \text{ or } f_x(x_0, y_0), \qquad \frac{\partial z}{\partial x}\Big|_{(x_0, y_0)}, \quad \text{and} \quad f_x, \frac{\partial f}{\partial x}, z_x, \text{ or } \frac{\partial z}{\partial x}.$$

The definition of the partial derivative of f(x, y) with respect to y at a point (x_0, y_0) is similar to the definition of the partial derivative of f with respect to x. We hold x fixed at the value x_0 and take the ordinary derivative of $f(x_0, y)$ with respect to y at y_0 .

DEFINITION The partial derivative of f(x, y) with respect to y at the point (x_0, y_0) is

$$\left. \frac{\partial f}{\partial y} \right|_{(x_0, y_0)} = \left. \frac{d}{dy} f(x_0, y) \right|_{y = y_0} = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h},$$

provided the limit exists.

Examples

- A. Find the derivatives $\frac{\partial f}{\partial x}$, $\frac{\partial f}{\partial y}$, $\frac{\partial f}{\partial z}$ using definition (from the first principle)
 - 1. $f(x,y) = 1 x^2 y^2 2xy$ at (1,1).
 - 2. $f(x, y, z) = x^2y^2z^2$ at (1, 2, 3).
- B. Find f_x , f_y if
 - $1. \ f(x,y) = xy^2$
 - 2. $f(x,y) = e^{-x} \sin(x+y)$
- C. Find $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at (1,2) if $f(x,y) = 1 x + y 3x^2y$.

Second Order Partial Derivatives

$$\frac{\partial^2 f}{\partial x^2} \text{ or } f_{xx}, \qquad \qquad \frac{\partial^2 f}{\partial y^2} \text{ or } f_{yy}$$

$$\frac{\partial^2 f}{\partial x \partial y} \text{ or } f_{yx}, \qquad \qquad \frac{\partial^2 f}{\partial y \partial x} \text{ or } f_{xy}$$

In fact,

$$f_{xy} = \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = (f_x)_y$$

• Show that $f(x, y, z) = e^{3x+4y} \cos 5z$ satisfies the Laplace equation

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0.$$

Mixed Derivative Theorem (Clairaut's Theorem)

Theorem:

If f(x, y) and its partial derivatives f_x , f_y , f_{xy} and f_{yx} are defined throughout an open region containing a point (a, b) and are all continuous at (a, b), then

$$f_{xy}(a,b)=f_{yx}(a,b).$$

Example

- Verify mixed derivative theorem if
 - a. f(x,y) = y + x/y
 - b. $w = x \sin y + y \sin x + xy$

Linearization

Definition

The linearization of a function f(x, y) at a point (x_0, y_0) when f is differentiable is the function

$$L(x,y) = f(x_0,y_0) + f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0).$$

The approximation $f(x,y) \approx L(x,y)$ is the standard linear approximation of f at (x_0,y_0) .

• Find the linearization L(x, y) of the function

$$f(x,y) = x^2 + y^2 + 1$$
 at $(1,1)$.

Total Differential

If we move from (x_0, y_0) to a point $(x_0 + dx, y_0 + dy)$ nearby, the resulting differential in f is

$$df = f_x(x_0, y_0)dx + f_y(x_0, y_0)dy$$

This change in linearization of f is called the total differential of f.

Function of more thant two variables: Linearization and Differential

$$L(x,y,z) = f(P_0) + f_x(P_0)(x-x_0) + f_y(P_0)(y-y_0) + f_z(P_0)(z-z_0)$$

$$df = f_x(P_0)dx + f_y(P_0)dy + f_z(P_0)dz$$