

CAP 3. COMPRESSÃO DE DADOS MULTIMÍDIA

INE5431 Sistemas Multimídia Prof. Roberto Willrich (INE/UFSC) roberto.willrich@ufsc.br

Aula 1: Necessidades e Princípios da Compressão

Cap 3. Compressão de Dados Multimídia

UFSC

Conteúdo:

- Necessidade de compressão
- Entropia: Teorema da codificação da fonte
- Princípios da compressão
- Classificação das técnicas de compressão
- Medição do desempenho de compressão
- Técnicas de compressão sem perdas
 - RLE, Huffman, LZW (GIF), (A)DPCM
- Técnicas de compressão de áudio, vídeo e imagens
- Padrões de compressão multimídia
 - JPEG, MPEG, MPEG-4, H.261, H.263

- UFSC
- Técnicas de compressão são essenciais para as aplicações multimídia, devido
 - ao grande requisito de espaço para armazenamento de dados multimídia
 - ao fato que a largura de banda da rede e de dispositivos de armazenamento que não permite a transmissão de dados multimídia de alta qualidade em tempo-real

- Requisitos de espaço para armazenamento

Aplicações	Requisitos de Armazenamento (MBytes)
Livro de 500 páginas	1
100 imagens monocr.	7
100 imagens coloridas	100
1h de áudio qual. telefone	28,8
1h de Áudio-CD	635
1h Vídeo qual. VHS	24300
1h TV	97000
1h HDTV	389000

 É necessária a utilização de técnicas de compressão de dados multimídia para viabilizar o armazenamento

- Requisitos de largura de banda

Aplicações	Taxa de bits (Kbps)
CD-Audio	1.411
DAT	1.536
Telefone Digital	64
Radio digital, long play DAT	1.024
DVD	249.600
SDTV	486.600
HDTV	2.986.000

- Transmissão de som de qualidade CD não compactado
 - é possível em redes locais
 - 10, 100, 1000 Mbps
 - redes de media e longa distância depende da taxa de upload
- Transmissão de vídeo de qualidade televisão
 - incompatível com qualquer rede local e transmissão em WAN

- Pequena largura de banda dos dispositivos de armazenamento
 - Dispositivo de armazenamento deveria ter uma taxa de 30 MBytes/s para apresentar um vídeo em tempo real de 620x560 pixeis a 24 bits por pixel a 30 fps
 - 1x no CD = 150 kBps (velocidade para cd áudio)
 - 1x no DVD = 1,385 MBps
 - Tecnologia de CD-ROM de hoje fornece uma taxa de transferência de 7,62 MBps (x52) a 10,8 MBps (x70)
 - Drivers de DVD convencionais são de 16x (22,16 MBps)

- Não é possível apresentar vídeo não compactado em tempo-real devido a taxa de bits insuficiente de alguns dispositivos de armazenamento
 - Única solução é compactar o dado

UFSC

-/Conclusão

- É necessário compactação afim de armazenar, apresentar e transmitir informações multimídia
 - técnicas de compressão modernas reduzem os requisitos de armazenamento e portanto os requisitos de largura de banda da rede e do dispositivo de armazenamento

Teorema de codificação da fonte

- Teorema de Shannon
 - Estabelece os limites da compressão de dados
- Informação (amostra de áudio, pixel de imagem, etc.) deve ser codificadas para fins de transmissão e armazenamento
 - Representada por um número de símbolos
 - Eficiência do codificador: uso de uma menor quantidade de símbolos médios possíveis

Teorema de codificação da fonte

Dado um alfabeto com s símbolos, quantos bits (n) são necessários para codificá-los?

R:
$$n = \lceil \log_2 s \rceil \Leftrightarrow 2^n = s$$

- Ex.: Se precisamos representar 200 símbolos, é necessário $\log_2(200)=7,64 => 8$ bits.
- Verdadeiro se...
 - Não for conhecida a distribuição de probabilidades...
 - Se a probabilidade da ocorrência de cada símbolo for idêntica (distribuição uniforme)

Teorema de codificação da fonte

UFSC

- Shannon (1948) definiu uma medida chamada de entropia, definida como:
 - Seja um alfabeto $X = \{x_1, x_2, ..., x_n\}$, cujos símbolos apresentam probabilidades de ocorrência $P = \{p_1, p_2, ..., p_n\}$, a entropia H(X) é definida como:

$$H(X) = -\sum_{i=1}^{n} p_i \times \log_2\left(\frac{1}{p_i}\right)$$

Entropia é a média da quantidade de dados mínima para representar a informação

Base 2 fornece o resultado em bits, ou shannons...

A entropia do lance de uma moeda é de 1 bit $(p_{cara} = p_{coroa} = 0.5)$ $H(x) = -1*(0.5*log_2(1/0.5) + 0.5*log_2(1/0.5)) = 1$

Princípios da Compressão de Dados

- Fatores explorados pelas técnicas de compressão
 - Redundância de dados
 - Propriedades da percepção humana
- Redundância de Dados
 - Representação de dados multimídia
 - áudio digital é uma série de valores amostrados
 - imagem é uma matriz de valores amostrados (píxeis)
 - vídeo é uma sequência de imagens apresentadas numa certa taxa
 - Amostras vizinhas não são inteiramente diferentes
 - valores vizinhos são de algum modo relacionados (redundância)
 - Remoção da redundância não altera o significado do dado

Princípios da Compressão de Dados

- Redundância em áudio digital
 - Amostragens adjacentes são similares:
 - próximo valor pode ser previsto baseado no valor atual
 - técnicas de compressão: Codificação preditiva
 - Exemplo ilustrativo:
 - Original (amostras de 8bits)
 - 23, 24, 26, 25, 27 (8*5 = 40 bits)
 - Compactado com função de predição $a_i = a_{i-1} + erro$
 - 23, +1, +2, -1, +2
 - Tamanho: 8 + 4*4 = 24 bits

Princípios de Compressão: Redundância

- Redundância em imagem digital
 - Amostras vizinhas são similares
 - chamada de redundância espacial
 - removida utilizando técnicas de codificação preditiva ou outras

22	23	24
21	21	22

22	+1	+1
-1	0	+1

Princípios de Compressão: Redundância

- Redundância em vídeo digital
 - Vídeo é uma sequência de imagens
 - imagens tem redundância espacial
 - Imagens vizinhas são normalmente similares
 - redundância temporal
 - removida utilizando técnicas de codificação preditiva ou outras

Princípios de Compressão: Percepção Humana

- Humanos não são perfeitos
 - Não percebemos todas as informações sonoras e visuais
 - Podem tolerar alguma perda de informação sem afetar a efetividade da comunicação
 - versão compactada não necessita representar exatamente a informação original
- Algumas informações são mais importantes para a percepção humana que outras
 - Técnicas de compressão podem remover informações desnecessárias
 - áudios mascarados, intensidade luminosas/cor

Pontos Importantes

Teorema da codificação da fonte

• Entender a Entropia

Princípios da compressão

- Redundância de dados
- Limitações da percepção humana

CAP 3. COMPRESSÃO DE DADOS MULTIMÍDIA

INE5431 Sistemas Multimídia Prof. Roberto Willrich (INE/UFSC) roberto.willrich@ufsc.br

Aula 2: Classificação e Medidas de desempenho da compressão

Cap 3. Compressão de Dados Multimídia

UFSC

Conteúdo:

- Necessidade de compressão
- Entropia: Teorema da codificação da fonte
- Princípios da compressão
- Classificação das técnicas de compressão
- Medição do desempenho de compressão
- Técnicas de compressão sem perdas
 - RLE, Huffman, LZW (GIF)
- Técnicas de compressão de áudio, vídeo e imagens
 - Técnicas de compressão de voz
 - Técnicas de compressão de som
- Padrões de compressão multimídia
 - JPEG, MPEG, MPEG-4, H.261, H.263

Classificação das Técnicas de Compressão

- Sem perda (Codificação por Entropia):
 - Dado original pode ser exatamente reconstruído (reversível)
 - Técnica genérica: trata cadeias de bytes sem levar em conta seu significado
 - técnicas de compressão sem perda exploram apenas estatísticas de dados (redundância de dados)
 - baixas taxa de compressão

Classificação das Técnicas de Compressão

- Com perda (codificação na origem)
 - Utilizado em dados multimídia onde erros e perdas são toleráveis
 - Utiliza propriedades da percepção humana
 - altas taxa de compressão
 - Leva em consideração a semântica dos dados
 - removendo dados irrelevantes compactando o dado original

Classificação das Técnicas de Compressão

- Codificações Híbridas
 - Combinam técnicas com perda e sem perdas
 - várias técnicas são agrupadas para formar uma nova técnica de codagem
 - Taxa de compressão mais altas

- Taxa de compressão
 - Tamanho do dado original/tamanho do dado após a compressão
 - para sem perdas: quanto maior esta taxa melhor é a técnica

Lena Original (bmp)= 147.766 bytes

Recodificação

**Recodificação

Lena png = 71.167 bytes

Compactou 2,08x (2,08:1)

Lena gif = 88.065 bytes

Compactou 1,68x (1,68:1)

- Qualidade da mídia reconstituída (técnicas com perdas)
 - medida em SNR (Razão Sinal/Ruído)
 - maior SNR melhor é a qualidade

- Qualidade da mídia reconstituída
 - Há diversas formas para medir o erro gerado pelo codificador
 - Uma delas é a Média dos Erros Quadráticos (MSE Mean Squared Error)
 - Considerando que tanto Ori quanto Dec tenham tamanho n, cada

MSE(Orig,Dec)=
$$\frac{1}{n}\sum_{i=1}^{n}(ori_i - dec_i)^2$$

• No exemplo:
$$MSE = \frac{1}{4}((11-12)^2+(12-12)^2+(12-12)^2+(14-15)^2)=0,5$$

- Qualidade da mídia reconstituída

 Relação Sinal-Ruído de Pico (PSNR – Peak Signal-to-Noise Ratio), definida (em dB)

PSNR(Orig,Dec)=
$$10x log_{10} \left(\frac{(2^{b-1})^2}{MSE(Orig-Dec)} \right)$$

- b = número de bits por símbolo
- Assumindo 8 bits no exemplo anterior:
 - PSNR(Orig, Dec) = $10x \log_{10} \left(\frac{(2^8 1)^2}{0.5} \right) = 27.08 \text{ db}$
- Se não há perdas (Orig = Dec)
 - $PSNR(Orig,Dec) = \infty$

- Complexidade de implementação e velocidade de compressão
 - Importante para aplicações tempo-real (como videoconferência)
 - compressão e descompressão devem ser realizadas em tempo-real

- Complexidade de implementação e velocidade de compressão
 - Para aplicações de streaming ou não tempo-real
 - Tempo de codificação não é muito importante
 - Tempo de decodificação é importante

Pontos Importantes

Tipos de técnicas de compressão

• Entender os três tipos de compressão

Parâmetros de desempenho das técnicas de compressão

- Taxa de Compressão
- Relação SNR
- Complexidade do algoritmo vs atraso de codificação

CAP 3. COMPRESSÃO DE DADOS MULTIMÍDIA

INE5431 Sistemas Multimídia Prof. Roberto Willrich (INE/UFSC) roberto.willrich@ufsc.br

Aula 3: Técnicas de Codificação sem perdas: RLE e Codificação de Huffman

Cap 3. Compressão de Dados Multimídia

UFSC

Conteúdo:

- Necessidade de compressão
- Entropia: Teorema da codificação da fonte
- Princípios da compressão
- Classificação das técnicas de compressão
- Medição do desempenho de compressão
- Técnicas de compressão sem perdas
 - RLE, Huffman, LZW (GIF)
- Técnicas de compressão de áudio, vídeo e imagens
 - Técnicas de compressão de voz
 - Técnicas de compressão de som
- Padrões de compressão multimídia
 - JPEG, MPEG, MPEG-4, H.261, H.263

- Codificação RLE (Codificação por entropia)
 - Técnica simples de compressão de dados: dados podem ser compactados através da supressão de sequências de mesmos símbolos
 - Aplicação: formatos padrões como PCX, BMP (RLE) e Photoshop
 - BMP RLE suporta 256 cores
 - Um exemplo simples
 - Original: 12 12 12 12 09 09 09 21 21 23 24 25 25 25 25 25 25 25 25 25
 - Compactado: 04 12 03 09 02 21 01 23 01 24 08 25
 - Cada repetição é codificada como:
 (número de repetição, símbolo repetindo)

- Codificação RLE (Codificação por entropia)
 - Tem diversas variações
 - Sequências idênticas são substituídas por um símbolo especial, número de ocorrências e o símbolo repetido
 - Original: UHHHHHHIMMG1223 Compactado: U!6HIMMG1223
 - Se o símbolo especial ocorrer no dado de entrada, ele deve ser substituído por dois símbolos
 - entrada: U!HIIIID saída: U!!H!5ID
 - Técnica não é utilizada para sequências menores que 4
 - exemplo: U!6HI!2MG1223 (não a compactação)
 - Algoritmo pode ser facilmente otimizado
 - pode-se substituir sequências maiores que um
 - requer que o tamanho da sequência seja codificado ou pode-se usar um caractere especial de fim
 - entrada: UFYUGDUFHUFHUFHUFHUFHBFD
 - saída: UFYUGD!5UFH\$BFD

- Codificação RLE (Codificação por entropia)
 - Fator de compressão depende do dado de entrada
 - Demonstração usando BMP RLE

Nome 📤	Tamanho Tipo
Ninféias24bits.bmp	1.407 KB Imagem de bitmap
Ninféias8bits.bmp	470 KB Imagem de bitmap
Ninféias8bitsRLE.bmp	389 KB Imagem de bitmap
Nazz Man24bits.bmp	1.650 KB Imagem de bitmap
📐 Jazz Man8bits.bmp	552 KB Imagem de bitmap
📐 Jazz Man8bitsRLE.bmp	210 KB Imagem de bitmap

- Codificação Run-Length
 - Só traz ganhos relevantes se houver grandes agrupamentos de símbolos iguais
 - As principais aplicações são imagens bitmap
 - em imagens com grandes espaços envolvendo uma só cor
 - em imagens geradas por computador
 - onde os dados estão agrupados de forma mais geometricamente definida

Nome 📤	Tamanho	Tipo
Ninféias24bits.bmp	1.407 KB	Imagem de bitmap
Ninféias8bits.bmp	470 KB	Imagem de bitmap
Ninféias8bitsRLE.bmp	389 KB	Imagem de bitmap
Nazz Man24bits.bmp	1.650 KB	Imagem de bitmap
📐 Jazz Man8bits.bmp	552 KB	Imagem de bitmap
Nazz Man8bitsRLE.bmp	210 KB	Imagem de bitmap

- Codificação de Huffman (Codificação Estatística)
 - Método que atribui menos bits a símbolos que aparecem mais frequentemente e mais bits para símbolos que aparecem menos
 - Ideia usada no código de Morse

\mathbf{A}	8 1 1720	\mathbf{M}	343074	Y		6	_****
В		N	(- 4)	Z		7	
C		О	12000	Ä	• •	8	
D	### f	P		Ö	5 5555 .	9	8
E	*	Q		Ü	<u>252</u> 88.5	2.	
F		R		Ch	(2000)	,	
G		S	•••	0	SCALABOANAS	?	
H		T	758	1	•	!	•••
I		U		2	••	:	
J	3• (500,000)	V	***776	3	•••	"	••-
K	en Çen	W	•	4		•	
L	71	X		5		= 3	77

- Codificação de Huffman (Codificação Estatística)
 - Exemplo de funcionamento:
 - Suponha um arquivo de 1000 símbolos: e, t, x, z.
 - Frequência de ocorrência: e = 0.8, t = 0.16, x = 0.02 e z = 0,02
 - Original: eeeteeeezeteeteeteeeetexeeeeeeeteteee.....
 - Necessitamos de 2 bits para representar cada um dos 4 símbolos
 - e = 00, t = 01, x = 10 e z = 11

 - Tamanho: 2*1000=2000 bits
 - Usando codificação de Huffman podemos usar quantidades diferentes para representar estes símbolos (de acordo com a frequência de ocorrência)
 - e = 0, t = 10, x = 110 e z = 111

 - Tamanho: 1000*(1*0.8+2*0.16+3*0.02+3*0.02) = 1240
 - apesar de x e z terem sido representados com um maior número de bits

- Codificação de Huffman (Original)
 - Geração dos códigos Huffman
 - a) colocação dos símbolos ao longo de uma linha de probabilidade acumulada (probabilidade aumenta de baixo para cima)
 - símbolos de mesma frequência: colocar em qualquer ordem

- Codificação de Huffman
 - Geração dos códigos Huffman
 - b) Junta-se os dois símbolos de menor probabilidade a um nó para formar dois ramos na árvore

- Codificação de Huffman
 - Geração dos códigos Huffman
 - b) Junta-se os dois símbolos de menor probabilidade a um nó para formar dois ramos na árvore

- Codificação de Huffman
 - Geração dos códigos Huffman
 - c) Nova árvore formada é tratada como um símbolo único com a probabilidade igual a soma dos símbolos ramos

- Codificação de Huffman
 - Geração dos códigos Huffman
 - d) Repita b) e c) até que todos os símbolos sejam inseridos na árvore
 - último nó é chamado de raiz

- Codificação de Huffman
 - Geração dos códigos Huffman
 - d) Repita b) e c) até que todos os símbolos sejam inseridos na árvore
 - último nó é chamado de raiz

- Codificação de Huffman
 - Geração dos códigos Huffman
 - e) Partindo do nó raiz, atribua bit o ao ramo de maior prioridade e bit 1 ao ramo de menor prioridade de cada nó

UFSC

- Codificação de Huffman
 - Geração dos códigos Huffman
 - f) Código para cada símbolo é obtido montando códigos ao longo do caminho entre nó raiz ao símbolo

Codebook

Símbolo	Código	
е	0	
t	10	
X	110	
Z	111	

- Outro exemplo de codificação de Huffman
 - Frequências dos caracteres
 - Gere a tabela de Huffman para o arquivo.

Char	Freq	Fixo
Е	125	0000
T	93	0001
A	80	0010
О	76	0011
I	73	0100
N	71	0101
S	65	0110
R	61	0111
Н	55	1000
L	41	1001
D	40	1010
C	31	1011
U	27	1100
Total	838	4.00

Outro exemplo de codificação de Huffman

E

80

76

95

.25

2

40

41

61

65

71

73

C

U

(H)

31

27

- Outro exemplo de codificação de Huffman

125

76

S

 \bigcirc

40

41

R

61

- Exemplo de codif. de Huffman

Char	Freq	Huff
Е	125	000
T	93	100
A	80	110
О	76	111
I	73	0100
N	71	0101
S	65	0110
R	61	0111
Н	55	0011
L	41	1010
D	40	1011
C	31	00100
U	27	00101
Total	838	3.62

- Exemplo de codif. de Huffman

Char	Freq	Fixo	Huff
E	125	0000	000
T	93	0001	100
A	80	0010	110
O	76	0011	111
I	73	0100	0100
N	71	0101	0101
S	65	0110	0110
R	61	0111	0111
H	55	1000	0011
L	41	1001	1010
D	40	1010	1011
C	31	1011	00100
U	27	1100	00101
Média		4.00	3.62
Total	383	3352	3036

- Codificação de Huffman
 - Operação computacional mais custosa na codificação
 - No decodificador
 - realiza uma simples verificação na tabela de Huffman
 - tabela de Huffman é parte do fluxo de dados ou é conhecida pelo decodificador
 - Tabelas de Huffman padrões são muito usadas
 - usada para vídeo em tempo-real
 - tabelas são conhecidas pelo codificador e decodificador
 - codificação e decodificação são mais rápidas
 - desvantagem: tabelas padrões obtém fator de compressão um pouco menores
 - elas não são necessariamente ótimas

UFSC

- Huffman otimalidade
 - Huffman é ótimo para codificação símbolo-a-símbolo com uma distribuição de probabilidade conhecida, porém como trabalha com números binário inteiros há algumas redundâncias.
 - Ainda assim, é garantido que:
 - $H(X) \le Huffman(X) \le H(X) + 1$

Entropia

Média de bits por símbolo após a codificação por Huffman

- Outros métodos
 - É possível melhorar ainda mais a codificação de Huffman
 - Huffman adaptativo:
 - Constrói a árvore dinamicamente
 - Cálculo das probabilidades são dinâmicas com base nas frequências recentes na sequência de símbolos, e altera a estrutura da árvore para atualizar probabilidades estimadas.
 - Estado-da-arte: Codificação aritmética!

Pontos Importantes

RLE e Codif. de Huffmann

• Entender o princípio geral, vantagens e desvantagens

CAP 3. COMPRESSÃO DE DADOS MULTIMÍDIA

INE5431 Sistemas Multimídia Prof. Roberto Willrich (INE/UFSC) roberto.willrich@ufsc.br

Aula 4: Técnicas de Codificação sem perdas: (A)DPCM e LZ*

Cap 3. Compressão de Dados Multimídia

UFSC

- Conteúdo:

- Necessidade de compressão
- Entropia: Teorema da codificação da fonte
- Princípios da compressão
- Classificação das técnicas de compressão
- Medição do desempenho de compressão
- Técnicas de compressão sem perdas
 - RLE, Huffman, (A)DPCM, LZ*
- Técnicas de compressão de áudio, vídeo e imagens
- Padrões de compressão multimídia
 - JPEG, MPEG, MPEG-4, H.261, H.263

Codificação Predictiva

- DPCM (PCM diferencial)
 - Técnica mais simples de codificação preditiva
 - Compara símbolos adjacentes e apenas erros de predição são quantizados e codificados
 - Exemplo ilustrativo:
 - Original (amostras de 8bits)
 - 23, 24, 26, 25, 27 (8*5 = 40 bits)
 - Compactado com função de predição $a_i = a_{i-1} + erro$
 - 23, +1, +2, -1, +2
 - Erro de predição tem uma alta probabilidade de ser menor que o valor sendo codificado
 - Erro pode ser expresso com uma quantidade menor de bits
 - No exemplo, usando 4 bits para codificar o erro, o tamanho será 8 + 4*4 = 24 bits
 - Na descompressão
 - Função de previsão e erro são usados para restaurar o dado original

- Codificação Predictiva
 - ADPCM (DPCM Adaptativo)
 - Existem várias maneiras de implementar ADPCM, a mais comum é variar o tamanho de passo de quantização representado pelos erros
 - Quando o erro é grande, o passo de quantização é maior (gerando perdas de qualidade)
 - Exemplo: se um passo preto-para-branco for detectado, pode-se aumentar o passo de quantificação antes deste passo chegar

- Lempel-Ziv (LZ)
 - Algoritmos de codificação baseada em dicionário
 - Proposta no final dos anos 70, Jacob Ziv e Abraham Lempel
 - Muitas variantes com objetivo de solucionar limitações das versões originais

- Codificação derivadas do Lempel-Ziv (LZ): Aplicações
 - UNIX Compression
 - O algoritmo LZC é usado pelo utilitário "compress" do sistema operativo UNIX.
 - GIF (Graphics Interchange Format)
 - Muito similar ao "compress" do UNIX, também usa o algoritmo LZW.
 - Protocolo V.42bis (compressão de dados em Modem)
 - Usa uma variante do LZW (LZT).
 - Zip e o gzip usam uma variante do LZ77 combinada com Huffman estático.
 - ARJ usa a codificação de Huffman e o algoritmo LZSS.
 - WINRAR usa o LZ77 e Huffman.
 - WINZIP entre outros algoritmos usa o LZW.

- Codificações derivadas do Lempel-Ziv (LZ)
 - Explora a redundância de dados -> a repetição de padrões de símbolos no arquivo
 - Baseada na construção de um dicionário de símbolos (grupos de um ou mais símbolos) a partir do fluxo de entrada
 - Ilustração em um arquivo de texto
 - Quando uma nova "frase" é encontrada
 - a máquina de compressão adicionada a "frase" no dicionário
 - um token que identifica a posição da "frase" no dicionário substitui a frase no documento
 - Se a "frase" já foi registrada
 - ela é substituída pelo token de sua posição no dicionário

- Codificações derivadas do Lempel-Ziv (LZ)
 - Explora a redundância de dados -> a repetição de padrões de símbolos no arquivo
 - Baseada na construção de um dicionário de símbolos (grupos de um ou mais símbolos) a partir do fluxo de entrada
 - Exemplo ilustrativo

- Codificações derivadas do Lempel-Ziv (LZ)
 - Exemplo do poder da codificação
 - Arquivo original de 10000 caracteres (8 bits/caractere)
 - arquivo requer 80000 bits para representá-lo
 - Assumindo que arquivo tem 2000 palavras ou frases das quais 500 são diferentes
 - necessitamos 9 bits como token para identificar cada palavra ou frase
 - precisamos de 9*2000 bits para codificar o arquivo
 - obtemos uma taxa de compressão de 4,4
 - Dicionário armazenando todas as frases únicas deve ser armazenado também

UFSC

LZW e o formato de imagem GIF

- GIF utiliza a técnica LZW
- GIF é um dos formatos de armazenamento de imagens 256 cores sem perdas
 - imagens com um máximo de 256 cores
 - ao converter imagem true color, com 24 bits/pixel, para o formato GIF, estamos perdendo grande parte da informação de cor
- Taxas de compressão não são grandes
 - em geral 4:1
- Extensão GIF89a permite
 - definir uma cor transparente
 - entrelaçamento
 - animação

- LZW e o formato de imagem GIF
 - Extensão GIF89a permite
 - definir uma cor transparente
 - entrelaçamento
 - animação

Técnicas

-/Cabeçalh

UFSC

LZW e o formato de imagem GIF

- Algoritmo LZW do GIF era propriedade da Unisys
 - Era do domínio público e a Unisys resolveu passar a cobrar uma taxa pela sua utilização
 - Patentes estão espiradas desde 2006 (pode ser usado livremente)
- Este motivo provocou a definição de uma alternativa válida ao formato GIF
 - formato PNG (Portable Network Graphics)
 - Suporta múltiplos níveis de transparência
 - Correção gama para ajuste da exibição da imagem às características do monitor
 - Entrelaçamento mais avançado que o GIF
 - suporta 48-bit truecolor ou 16-bit escalas de cinza
 - não suporta animação
 - usa os algoritmos LZ77 e de Huffman (DEFLATE)
 - Formatos MNG (Multiple-Image Network Graphics) e APNG
 - Extensões do PNG que suportam animações

Pontos Importantes

(A)DPCM e LZ*

• Entender o princípio geral, vantagens e desvantagens

GIF e PNG

• Saber comparar esses formatos

CAP 3. COMPRESSÃO DE DADOS MULTIMÍDIA

INE5431 Sistemas Multimídia Prof. Roberto Willrich (INE/UFSC) roberto.willrich@ufsc.br

Aula 5: Técnicas de compressão de áudio, vídeo e imagens

Compressão de Dados Multimídia

-/Conteúdo:

- Necessidade de compressão
- Princípios da compressão
- Classificação das técnicas de compressão
- Medição do desempenho de compressão
- Técnicas de compressão sem perdas
 - RLE, Huffman, LZW (GIF), Codificação Preditiva
- Técnicas de compressão de áudio, vídeo e imagens
- Padrões de compressão multimídia
 - JPEG, MPEG, MPEG-4, H.261, H.263

- Codificação PCM

Amostras são quantificadas com mesmo passo

UFSC

- Codificação PCM não linear
 - Passo de quantificação aumenta com o aumento da amplitude do sinal
 - Pode ser visto como compressão, pois melhora qualidade com a mesma taxa do PCM

Técnicas de compressão de áudio

- DPCM (Codificação Preditiva)

- Amostragens adjacentes são similares:
 - próximo valor pode ser previsto baseado no valor atual
 - Exemplo ilustrativo:
 - Original (amostras de 8bits)
 - 23, 24, 26, 25, 27 (8*5 = 40 bits)
 - Compactado com função de predição ai = ai-1 + erro
 - 23, +1, +2, -1, +2 (8 + 4*4 = 24 bits)

- UFSC
- Áudio DPCM: Quantização e codificação do erro de predição
 - Exemplo de DPCM para áudio com função de predisão $a_i = a_{i-1} + erro$

- No LPC (Linear Predictive Coding)
 - Uma amostra de áudio é prevista com base nas amostras anteriores

$$x[n] = \sum_{k=1}^{P} a_k x[n-k] + e[n]$$

- x[n-k]: amostras anteriores
- p: ordem do modelo
- a_k: coeficiente de previção
- e[n]: erro de predição

- Codificação ADPCM (DPCM adaptativo)
 - Existem várias maneiras de implementar ADPCM, a mais comum é variar o tamanho de passo representado pelos erros
 - tamanho passo de quantificação aumenta com o aumento da variação do sinal
 - Se o sinal passa bruscamente de uma tensão elevada a uma tensão baixa, o valor do passo será grande; ao contrário, se o sinal de entrada apresenta variações de tensão baixas, o tamanho do passo será pequeno

- Imagens digitais puras são codificadas em PCM
 - Representados por matrizes de píxeis

Também é possível compactar usando DPCM e ADPCM

- UFSC
- Um vídeo é uma sequência de imagens amostradas rapidamente
 - A velocidade da amostragem engana o cérebro, criando a ilusão de movimento

Foreman 30fps

UFSC

- Técnicas de compressão de vídeo e imagens
 - Baseiam-se na alta redundância das imagens e vídeos
 - Certas áreas de figuras são uniformemente coloridas ou altamente correlatas (podendo formar padrões)
 - redundância espacial ou correlação espacial
 - removida tanto quanto possível para uma certa qualidade de apresentação
 - Não existem grandes diferenças entre quadros de um vídeo
 - redundância temporal ou correlação temporal
 - alta taxa de compressão

- Técnica de Redução da Resolução Geométrica
 - Redução da resolução das imagens
 - Redução de linhas e colunas do bitmap

UFSC

- Técnica de Truncagem
 - Consiste em truncar dados arbitrariamente baixando o número de bits por pixel (imagem) ou taxa de quadros (vídeo)
 - feito pela eliminação dos bits menos significativos de cada pixel (imagem) e imagens por segundo (vídeo)
 - Técnica é atrativa pois ela é simples

Exemplo: imagens coloridas com 24 bits por pixel poderiam ser reduzidas para 8 bits

UFSC

- Codificação Preditiva
 - Imagem original e imagem com apenas o erro de predição
 - Se os pixeis tiverem valores muito próximos, pode-se usar um número menor de bits para armazenar o erro de predição do que aquele usado para codificar o valor absoluto

- Codificação Preditiva

Preditores típicos

 $s_{n} = 0.97s_{n-1}$ Preditor de 1^a ordem, 1D $s_{m,n} = 0.48s_{m,n-1} + 0.48s_{m-1,n}$ Preditor de 2^a ordem, 2D $s_{m,n} = 0.8s_{m,n-1} - 0.62s_{m-1,n-1} + 0.8s_{m-1,n}$ Preditor de 3^a ordem, 2D

S _{m-1,n-1}	S _{m,n-1}	
S _{m-1,n}	S _{m,n}	

- Codificação Preditiva
 - Usar para a primeira fila e primeira coluna o preditor de 1^a ordem

$$s_n = 0.97 s_{n-1}$$
 Preditor de 1^a ordem, 1D

Para as outras filas e colunas o de 3ª ordem.

^
$$s_{m,n} = 0.8s_{m,n-1} - 0.62s_{m-1,n-1} + 0.8s_{m-1,n}$$
 Preditor de 3^a ordem, 2D

Saída DPCM calculada subtraindo a saída predita com os valores originais

 	1] [20 19.4	20.37 21.34		1.6	1.63	-0.34	
18 19 20 1	9 19.4 18.8	19.78 19.16	-1.4	0.20	0.22	-0.16	
19 15 14 1	6 17.46 19.24	16.22 14.00	1.54	-4.24	-2.22	2.00	
17 16 15 1	$\begin{bmatrix} 18.43 & 13.82 \end{bmatrix}$	14.70 16.2	$\begin{bmatrix} -1.43 \end{bmatrix}$	2.18	0.30	-3.12	
Original	l Saída prevista			Saída DPCM			

Preenchimento Condicional

- Explora redundância temporal em vídeos
 - animação de imagens implica que píxeis na imagem anterior estão em diferentes posições que na imagem atual

Preenchimento Condicional

- Imagem é segmentada em áreas estacionarias e com movimento
 - são transmitidos apenas os dados de áreas com movimento
 - detector de movimento localiza diferenças interquadros significantes
- Uma forma particular de DPCM onde se envia o erro de predição se este for superior a um dado limite

Preenchimento Condicional

Quadro Preditor

Quadro Atual

Diferença

- Estimativa e Compensação de Movimento
 - Imagem é dividida em blocos de tamanho fixos
 - um casamento para cada bloco é procurado na imagem anterior
 - deslocamento entre estes dois blocos é chamado vetor de movimento
 - uma diferença de blocos é obtida calculando diferenças pixel a pixel
 - Vetor de movimento e a diferença de bloco é codificado e transmitido

- Exemplo simples: Compara a similaridade entre blocos

- Mantém a diferença entre os blocos (resíduo);
- Cria o vetor de movimento, referenciando o bloco do quadro anterior;

Pontos Importantes

Técnicas gerais de compressão de áudio, imagens e vídeos

• Entender o princípio geral

CAP 3. COMPRESSÃO DE DADOS MULTIMÍDIA

INE5431 Sistemas Multimídia Prof. Roberto Willrich (INE/UFSC) roberto.willrich@ufsc.br

Aula 6: Padrões de compressão multimídia - JPEG

Compressão de Dados Multimídia

-/Conteúdo:

- Necessidade de compressão
- Princípios da compressão
- Classificação das técnicas de compressão
- Medição do desempenho de compressão
- Técnicas de compressão sem perdas
 - RLE, Huffman, LZW (GIF), Codificação Preditiva
- Técnicas de compressão de áudio, vídeo e imagens
- Padrões de compressão multimídia
 - JPEG, MPEG, MPEG-4, H.261, H.263

Padrões de Compressão Multimídia

- Várias técnicas e produtos para compressão são disponíveis
 - Utilização de padrões promove a compatibilidade entre diferentes equipamentos/aplicações (interoperabilidade)
- Exemplos de padrões
 - TIFF: padrão independente de fabricante para imagens
 - PNG: padrão de imagens alternativo ao GIF
 - ISO JPEG para compressão de imagens;
 - ISO JBIG para compressão sem perda de imagens bi-níveis (1 bit/píxel) para transmissão fac-símile
 - ITU-TS H.261 para videofonia e aplicações de teleconferências na taxa de bits múltiplos de 64 Kbps;
 - ITU-TS H.263 para aplicações de videofonia na taxa abaixo de 64 Kbps;
 - ISO MPEG para compressão de vídeo e áudio associado;

- UFSC
- JPEG colaboração entre a ISO/IEC e a ITU-TS (1992)
 - Uma das melhores tecnologia de compressão de imagem
 - Implementado em software e hardware
 - Codificação/decodificação JPEG tempo-real tem sido implementada para vídeo (Motion JPEG - MJPEG)
- Possui versões diferentes:
 - Versões para compressão sem perdas
 - Versões para compressão com perdas

UFSC

- Codificação JPEG sem perda
 - Reprodução é exata
 - Necessária em aplicações que não toleram perdas (médicas e legais)
 - Existem variações
 - JPEG sem perdas original, que se baseia no DPCM e o uso de codificação por entropia (de Huffman ou aritmética)
 - JPEG-LS utiliza a técnica de codificação de Golomb-Rice e RLE
 - JPEG 2000 utiliza técnica de compressão wavelets

UFSC

- JPEG com perdas

- Se baseia nas limitações da percepção humana e na codificação por entropia
- Compressão parametrizável
 - JPEG cobre grande faixa de qualidades de imagens e permite especificar o comportamento do codificador a partir de parâmetros
 - Quatro modos de operação:
 - Codificação sequencial (baseline)
 - Codificação progressiva
 - Codificação sem perda
 - Codificação hierárquica

UFSC

- Codificação Sequencial (baseline)
 - Suportado por toda implementação JPEG
 - Modo com perdas baseada em DCT
 - Componentes de imagem são codificados em uma única varredura da esquerda para direita e de cima para baixo
- Codificação progressiva
 - Com perdas baseada em DCT expandido
 - Fornece avanços ao modo baseline
 - Varreduras sucessivas
 - imagem é compactada em um processo de múltiplas linhas de varredura
 - Geralmente utilizada em arquivos que são transmitidos pela Internet
 - pois possibilita a visualização da imagem inteira, em menor resolução, enquanto o restante da imagem esta sendo enviada

UFSC

- Codificação hierárquica
 - Oferece uma codificação progressiva que aumenta de resolução espacial entre estágios progressivos
 - Versões podem ser acessadas sem a necessidade de primeiro descompactar a imagem na resolução completa
 - Os elementos de imagem das resoluções já recebidas são utilizados na próxima resolução, diminuindo desta forma o tamanho do arquivo
 - Taxa de compressão é mais baixa que ter uma resolução única

Operações a compressão JPEG (Sequencial)

- Transformação do espaço de cores para YCrCb
 - Componentes "RGB" da imagem são convertidos para componentes de luminância ("Y") e crominância ("Cr" e "Cb")
 - Y: Luminância é uma escala de representação numérica do cinza,
 - CrCb: Crominância são duas escalas numéricas, que juntas representam as cores.

$$\begin{bmatrix} Y \\ U \\ V \end{bmatrix} = \begin{bmatrix} 0.2990 & 0.5870 & 0.1140 \\ -0.1687 & -0.3313 & 0.5000 \\ 0.5000 & -0.4187 & -0.0813 \end{bmatrix} * \begin{bmatrix} R \\ G \\ B \end{bmatrix}$$

 YCbCr permite uma maior compressão sem um efeito significante na qualidade da imagem percebida.

UFSC

- Transformação do espaço de cores para YCrCb
 - Veja o tutorial em https://cgjennings.ca/articles/jpeg-compression/

Operações a compressão JPEG (Sequencial)

UFSC

Subamostragem

- Onde é feita uma redução da resolução das matrizes YCbCr.
- Taxas de subamostram que são normalmente aplicados no JPEG
 - 4:4:4 (sem subamostragem)
 - 4:2:2 onde as matrizes de crominância são reduzidas na taxa de 2:1 horizontalmente (cada duas linhas é convertida em uma),
 - 4:2:0 mais comumente adotada, onde a uma redução do fator 2 nas direções horizontais e verticais.
- A matriz de luminância geralmente não é reduzida
 - pois o olho humano é mais sensível à luminância (tonalidade de cinza) do que à crominância (tonalidades das cores), o que permite maior taxa de perda de crominância sem que esta perda seja percebida
- No resto do processo de compressão, Y, Cb e Cr são processadas separadamente de maneira muito similar.

Padrão ISO/IEC MPEG-1 Vídeo

- Subamostragens YCbCr

Operações a compressão JPEG

- Decomposição das matrizes Y,Cb,Cr
 - Decompostas em blocos de 8x8 píxels

8x8 pixels = 64 pixels

Operações a compressão JPEG (Sequencial)

- Transformação discreta de co-seno (DCT) dos blocos
 - Blocos 8x8 são transformado para o domínio da frequência espacial usando a transformada DCT
 - Similar a transformada de Fourier (representação de sinal com somatório de senos de diferentes frequências, fases e amplitudes)

No espaço bidimensional de uma imagem de 8x8 pixels, a transformada discreta de co-senos (FDCT: Forward Discrete Cosine Transform) é dada por:

$$F(u,v) = \frac{1}{4}C(u)C(v)\sum_{x=0}^{7} \sum_{y=0}^{7} f(x,y)\cos\left[\frac{(2x+1)u\pi}{16}\right]\cos\left[\frac{(2y+1)v\pi}{16}\right]$$

$$C(w) = \frac{1}{\sqrt{2}} para \ w = 0$$

$$C(w) = 1 \quad para \ w = 1, 2, ..., 7$$

E a transformada inversa (IDCT: Inverse Discrete Cosine Transform) por:

$$f(x,y) = \frac{1}{4} \sum_{u=0}^{7} \sum_{v=0}^{7} C(u)C(v)F(u,v) \cos\left[\frac{(2x+1)u\pi}{16}\right] \cos\left[\frac{(2y+1)v\pi}{16}\right]$$

- UFSC
- Transformação discreta de co-seno (DCT) dos blocos
 - Sinal discreto de 64 pontos (um para cada bloco) transformado é uma função de duas dimensões espaciais, x e y
 - estas componentes são chamadas de frequências espaciais ou coeficientes DCT

- Transformação discreta de co-seno (DCT) dos blocos
 - Mudanças abruptas que acontecem nos contornos de uma figura estão concentradas nas frequências mais altas.
 - uma imagem com poucos contornos deve concentrar seus coeficientes nas frequências baixas.
 - Coeficientes das frequências altas são menos importantes e perdas nesses coeficientes podem diminuir um pouco a nitidez da imagem, mas para muitas aplicações isto pode ser aceitável

- Operações a compressão JPEG

- Quantificação (escolha da qualidade)
 - Alta frequência é desprezada de acordo com a taxa de compressão desejada:
 - Utilizando duas tabelas de quantização, que variam de acordo com a qualidade desejada

UFSC

- Quantificação (escolha da qualidade)
 - Tabelas de quantização são divisores: Em cada bloco 8x8 terá seus coeficientes DCT divididos pelo número correspondente em sua tabela de quantização.
 - O resultado de cada divisão é arredondado para o número inteiro mais próximo e as partes fracionárias são jogadas fora

α	•	$\mathbf{D} \mathbf{Q} \mathbf{\Pi}$
COATI	cientes	
COCII		\mathcal{L}

55	50	45	20	12	2	2	1
55	48	•••	•••	•••	•••	•••	•••
	•••	•••	•••	•••	•••	•••	•••
	•••	•••	•••	•••	•••	•••	•••
		•••	•••	•••	•••	•••	•••
		•••	.,	•••	•••	•••	•••
					•••	•••	•••
		•••		•••	•••	•••	•••

				•	~
Taha	\mathbf{a}	$\mathbf{a} \circ$	mon.	179	α
Tabe!			шан	11/11	Cau
_ 0000 0				<u> </u>	3

1	2	3	3	3	6	6	12
1	3	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••	•••
•••				•••	•••	•••	•••
•••					•••	•••	
•••	•••	•••	•••	•••	•••	•••	•••
•••	•••	•••	•••	•••	•••	•••	•••
		•••	•••	•••	•••	•••	•••

Coeficientes DCT quantizado

55	25	15	20	6	O	O	O
55	16	•••	•••	•••	•••	•••	
•••	•••	•••	•••	•••			:
	•••			<i>/</i>	•••	•••	
•••	•••		<i>[</i>	•••			
	•••	./		•••			
•••	•••	ļ	•••	•••		•••	
•••	•••		•••	•••		•••	

UFSC

- Quantificação (escolha da qualidade)
 - Alta frequência é desprezada de acordo com a taxa de compressão desejada:
 - maior é taxa de compressão, maior é o número de componentes de alta frequência desprezados

Alta qualidade preserva os coeficientes de alta e baixa frequência

UFSC

- Quantificação (escolha da qualidade)
 - Alta frequência é desprezada de acordo com a taxa de compressão desejada:
 - maior é taxa de compressão, maior é o número de componentes de alta frequência desprezados

Média qualidade descarta coeficientes de mais alta frequência

UFSC

- Quantificação (escolha da qualidade)
 - Quantificação prioriza a baixa frequência
 - os coeficientes gerados são quantizados de forma diferenciada, usando uma maior precisão para as frequências mais baixas.

UFSC

- Quantificação (escolha da qualidade)
 - Alta frequência é desprezada de acordo com a taxa de compressão desejada:
 - maior é taxa de compressão, maior é o número de componentes de alta frequência desprezados

Baixa qualidade descarta muitos coeficientes DCTs, gerando o efeito bloco

UFSC

- Quantificação (escolha da qualidade)
 - Alta frequência é desprezada de acordo com a taxa de compressão desejada:
 - maior é taxa de compressão, maior é o número de componentes de alta frequência desprezados

Baixa qualidade descarta muitos coeficientes DCTs, gerando o efeito bloco

Operações a compressão JPEG

- Ordenação dos coeficientes DCT
 - Coeficientes DCT são ordenados em uma sequência zig-zag
 - para obter uma sequência unidimensional de dados para ser usado na codificação por entropia

coeficiente 0

Ordenação dos coeficientes DCT

- Propósito do escaneamento zig-zag é ordenar os coeficientes em ordem decrescente de frequências espectral
 - coeficientes de alta frequências (no canto direito inferior) tem valores mais próximos a zero
 - isto leva a uma maior eficiência da codificação por entropia

1055	86	40	22	15	10	7	5
53	37	25	17	11	8	6	4
21	21	19	13	9	7	5	4
12	12	11	9	7	5	4	3
7	7	7	7	5	4	3	3
5	5	5	4	4	3	3	3
3	3	3	3	3	3	3	3
3	3	3	3	3	3	3	2

Operações a compressão JPEG

- Codificação por entropia
 - Esta etapa fornece uma compressão adicional
 - JPEG define dois métodos de codificação por entropia
 - Codificação de Huffman
 - única especificado no modo baseline
 - Codificação aritmética
 - normalmente 10% mais eficiente que a codificação de Huffman

Taxas de compressão obtidas

- Quanto maior for a taxa de compressão maior será o número de componentes de alta frequência desprezados
 - para obter taxas de compressão muito elevadas é descartado um número significativo de componentes de alta frequência
 - levando ao aparecimento do efeito de bloco (perda de definição nos contornos das imagens).

Valores médios

- Taxas de compressão de 10:1 a 20:1 Alta qualidade de imagem
- Taxas de compressão de 30:1 a 50:1 Média qualidade de imagem
- Taxas de compressão de 60:1 a 100:1 Fraca qualidade de imagem

- Taxas de compressão obtidas e qualidades
 - Alta qualidade
 - Taxa de 2.6:1

- Boa qualidade
 - Taxa de 15:1

- Taxas de compressão obtidas e qualidades
 - Qualidade média
 - Taxa de 23:1

- Baixa qualidade
 - Taxa de 46:1

- Taxas de compressão obtidas e qualidades
 - Mais baixa qualidade
 - Taxa de 144:1

- Demonstração:
 - https://cgjennings.ca/articles/jpeg-compression/

UFSC

- JPEG é para imagens fotográficas
 - JPEG apresenta ótimas taxas de compressão para imagens fotográficas naturais multitonais
 - Qualidade diminui consideravelmente quando aplicado a
 - imagens gráficas com contornos e áreas bem definidas de cor, ou
 - imagens com texto, como é o caso dos logotipos

- JPEG é para imagens fotográficas

 JPEG apresenta ótimas taxas de compressão para imagens fotográficas naturais multitonais

JPEG (50kB)

PNG (177KB)

- JPEG é para imagens fotográficas
 - Qualidade diminui consideravelmente quando aplicado a
 - imagens gráficas com contornos e áreas bem definidas de cor, ou
 - imagens com texto, como é o caso dos logotipos

UFSC

- Para imagens gráficas e com texto
 - JPEG introduz ruído nas zonas de imagem compostas por cores sólidas
 - pode distorcer o aspecto geral da imagem
 - Imagem PNG compactam mais eficazmente que JPEG e apresenta uma melhor definição dos contornos do texto

Pontos Importantes

Algoritmo JPEG

• Saber descrever cada etapa do algoritmo de compressão JPEG

CAP 3. COMPRESSÃO DE DADOS MULTIMÍDIA

INE5431 Sistemas Multimídia Prof. Roberto Willrich (INE/UFSC) roberto.willrich@ufsc.br

Aula 7: Padrões de compressão multimídia – Codec de Voz

Compressão de Dados Multimídia

-/Conteúdo:

- Necessidade de compressão
- Princípios da compressão
- Classificação das técnicas de compressão
- Medição do desempenho de compressão
- Técnicas de compressão sem perdas
 - RLE, Huffman, LZW (GIF), Codificação Preditiva
- Técnicas de compressão de áudio, vídeo e imagens
- Padrões de compressão multimídia
 - JPEG, Codecs de Voz, MPEG, MPEG-4, H.261, H.263

Recomend.	Técnica de Compressão	Largura de banda da voz (kHz)	Taxa de amostragem (kHz)	Taxa de bit compactado (kbps)	Duração do payload (ms)	Tamanho do payload (bytes)
G.711	PCM não linear	3,4	8	64	20	160
G.721	ADPCM	3,4	8	32		
G.722	ADPCM sub-banda	7	16	48, 56, 64		
G.723.1m	MP-MLQ	3,4	8	6.4	30	24
G.723.1a	ACELP	3,4	8	5,3	30	20
G.726	ADPCM	3,4	8	16, 24, 32, 40	15	60
G.728	LD-CELP	3,4	8	16	20	40
G.729A	CS-CELP	3,4	8	8	20	20

Codecs e Quadro de Voz

Quadro de voz

- A maioria dos codificadores de voz se baseia em quadros
 - Quadros de voz ou pacotes de voz
 - Cada quadro de voz tem uma duração de 1 a 30 ms
- Codecs compactam quadros de voz
 - Contendo um número fixo de amostras
 - Número de amostras depende do codec utilizado

CODECS E QUADRO DE VOZ

- Montagem do quadro
 - Fluxo de dados de áudio precisa ser acumulado
 - até que ele atinja o tamanho do bloco antes de ser processado pelo codificador
 - Acumulação de amostra leva tempo
 - soma-se ao atraso fim-a-fim.

Codecs e Quadro de Voz

CAD

Amostra

Codecs e Quadro de Voz

UFSC

CAD

Amostra

Amostra Amostra

Amostra

Amostra

Amostra

Amostra

Amostra

Amostra

Amostra

Amostra

Amostra Amostra

Amostra

Quadro compactado

Codecs e QUADRO de Voz

Tamanho do quadro de voz (payload)

- Tamanho do payload (em bytes)
 - Taxa do Codec (em bits/sec) x tempo do quadro de voz (s)
 - Exemplo 1:
 - Codec G.711 => 64 kbps
 - Tamanho do pacotes = 20ms
 - Tamanho do payload = $(64000 \times 0.02)/8 = 160$ bytes
 - Teríamos (1000/20) = 50 pacotes de 160 B de dados a cada segundo

• Exemplo 2:

- Codec G.711 => 64 kbps
- Tamanho do pacotes = 3oms
- Tamanho do payload = $(64000 \times 0.03)/8 = 240$ bytes
- Teríamos 33 pacotes de 240 B de dados a cada segundo

Codecs e QUADRO de Voz

Problema da sobrecarga de protocolos

- Para ser transmitido na rede, o quadro de voz deve ser encapsulado em diversos protocolos
 - Até chegar à camada de enlace, aos pacotes de voz vão ser adicionados 40 bytes: RTP (12 bytes) + UDP (8 bytes) + IP (20 bytes) = 40 bytes.
 - Se o quadro é pequeno, a sobrecarga de protocolos é maior:
 - Quadro de voz de 160B: pacote IP será de 40+160=200B, sobrecarga de 40/200 = 20%
 - Quadro de voz de 240B: pacote IP será de 280B, sobrecarga de 40/280 = 14%

Codecs, Quadros e Pacotes de Voz

- Relação entre tamanho de quadro de voz e atraso
 - Para redução do atraso, o codec escolhido deveria ter um quadro de quadro pequeno
 - Exemplo 1:
 - Codec G.711 => 64 kbps
 - Tamanho do pacotes = 20ms
 - Tempo de empacotamento será 20ms
 - Exemplo 2:
 - Codec G.711 => 64 kbps
 - Tamanho do pacotes = 30ms
 - Tempo de empacotamento será de 30ms

Codecs, Quadros e Pacotes de Voz

- Relação entre tamanho de quadro de voz e taxa de transmissão
 - Quadro pequeno (i.e. menor atraso) gera uma maior taxa de bits devido a sobrecarga dos protocolos
 - Exemplo 1: Codec G.711 => 64 kbps
 - Tamanho do pacote de voz = 20ms
 - Tamanho do Pacote IP 40+160 = 200 B
 - Teríamos 50 pacotes IP de 200 B de dados a cada segundo
 - Taxa de bits é de 50*200*8 = 80 kbps
 - Exemplo 2: Codec G.711 => 64 kbps
 - Tamanho do pacote de voz = 30ms
 - Tamanho do pacote IP = 40 + 240 = 280 B
 - Teríamos 33 pacotes de 280 B de dados a cada segundo
 - Taxa de bits é de 33*280*8 = 73,9 kbps

Codecs, Quadros e Pacotes de Voz

- Relação entre tamanho de quadro de voz e qualidade na ocorrência de perda de pacotes
 - Se o pacote de voz é maior, a perda gera um tempo maior de ausência de som na saída
 - Maior o pacote, pior a tolerância à perda de pacoets.

G.711

- Usa PCM compandido (escala não linear)
 - Serve para aumentar a resolução de sinais de baixa amplitude
 - Mais importante para os humanos
 - Operando de forma análoga ao ouvido humano
- Dois tipos de escala
 - A-law (Europa e Brasil)
 - μ-law (EUA e Japão)

- Usado na maioria dos backbones telefônicos digitais
- Fluxo de bits de 64 kbps
 - 8 bits por amostra, 8000 amostras/s (uma amostra a cada 125µs)
- Supressão de silêncio é opcional
 - Reduz a taxa de bits gerada

Recomend.	Técnica de Compressão	Largura de banda da voz (kHz)	Taxa de amostragem (kHz)	Taxa de bit compactado (kbps)	Duração do payload (ms)	Tamanho do payload (bytes)
G.711	PCM não linear	3,4	8	64	20	160

- Tamanho do Payload
 - Quanto menor o payload de voz maior é a sobrecarga dos diversos protocolos de transmissão da voz
 - Quanto maior o payload maior é o atraso na aplicação
 - para aguardar a montagem do payload

Recomendação	Taxa de bit compactado (kbps)	Duração do payload (ms)	Tamanho do payload (bytes)
G.711	64	20	160
G.723.1m	6.4	30	24
G.723.1a	5.3	30	20
G.726	16, 24, 32, 40	15	60
G.728	16	20	40
G.729A	8	20	20

- -/G.721
 - Converte um fluxo de 64 kbps em um fluxo de 32 kbps aplicando uma compressão ADPCM
 - A previsão e o tamanho do passo altera com o histórico do sinal
 - Está obsoleto e substituído pelo G.726

Recomend.	Técnica de Compressão	Largura de banda da voz (kHz)	Taxa de amostragem (kHz)	Taxa de bit compactado (kbps)	Duração do payload (ms)	Tamanho do payload (bytes)
G.711	PCM não linear	3,4	8	64	20	160
G.721	ADPCM	3,4	8	32		
G.722	ADPCM sub-banda	7	16	48, 56, 64		

or storage

Multiplexa

- G.722
 - Fornece uma melhor qualidade que o G.711 e G.721: Utiliza 14 bits por amostra
 - ADPCM Sub-banda: sinal de voz é dividido em duas sub-bandas: alta (4-8kHz) e baixa (0-4kHz), no 64kbps:

OMF filter

- 2 bits/amostra para banda alta (16 kbps)
- 6 bits/amostra para banda baixa (48 kbps)
- Próprio para aplicações de videoconferência uma vez que telefones comuns não respondem na faixa de 7kHz

Recomend.	Técnica de Compressão	Largura de banda da voz (kHz)	Taxa de amostragem (kHz)	Taxa de bit compactado (kbps)	Duração do payload (ms)	Tamanho do payload (bytes)
G.711	PCM não linear	3,4	8	64	20	160
G.721	ADPCM	3,4	8	32		
G.722	ADPCM sub-banda	7	16	48, 56, 64		

G.723.1

- Opera a 6,4 kbps (Multipulse-Maximum Likelihood Quantification) e a 5,3 kbps (Algebraic-Code-Excited Linear Prediction)
- Em cada janela de 30 ms do sinal de voz
 - são analisadas 240 amostras de 16 bits do sinal de voz (tomadas a 8kHz) para identificação de padrões repetitivos (pitches) e são gerados 12 ou 10 códigos de 16 bits, conforme o algoritmo esteja configurado para uma taxa de 6,3 ou 5,3 kbps
- Valor típico de tamanho do pacote de voz (payload) é de 30ms (20 ou 24 bytes)

Recomend.	Técnica de Compressão	Largura de banda da voz (kHz)	Taxa de amostragem (kHz)	Taxa de bit compactado (kbps)	Duração do payload (ms)	Tamanho do payload (bytes)
G.711	PCM não linear	3,4	8	64	20	160
G.723.1m	MP-MLQ	3,4	8	6.4	30	24
G.723.1a	ACELP	3,4	8	5.3	30	20

- G.726
 - O G.726 utiliza o ADPCM a 40, 32, 24 e 16 kbps
 - Sinal de voz é amostrado a 8kHz, codificado em 8 bits (leis A ou m) e são transmitidas diferenças entre amostras com 5, 4, 3 ou 2 bit em quantificação adaptativa
 - Valor típico de tamanho do pacote de voz (payload) é de 15ms (60 bytes)

Recomend.	Técnica de Compressão	Largura de banda da voz (kHz)	Taxa de amostragem (kHz)	Taxa de bit compactado (kbps)	Duração do payload (ms)	Tamanho do payload (bytes)
G.711	PCM ñ linear	3,4	8	64	20	160
G.723.1m	MP-MLQ	3,4	8	6.4	30	24
G.723.1a	ACELP	3,4	8	5.3	30	20
G.726	ADPCM	3,4	8	16, 24, 32, 40	15	60
G.728	LD-CELP	3,4	8	16	20	40
G.729A	CS-CELP	3,4	8	8	20	20

- **G.728**

- Técnica de codificação LD-CELP (Low-Delay, Code-Excited Linear Prediction), gerando uma taxa de bits de 16 kbps
- Tabela (codebook) utilizada é formada por 1024 (2¹º) valores
 - contém os valores de códigos (vetores) que representam as possíveis amostras do sinal de voz
- Em cada janela de 0,625ms do sinal de voz são analisadas 5 amostras de 8 bits e é gerado 1 código de 10 bits

Recomend.	Técnica de Compressão	Largura de banda da voz (kHz)	Taxa de amostragem (kHz)	Taxa de bit compactado (kbps)	Duração do payload (ms)	Tamanho do payload (bytes)
G.711	PCM ñ linear	3,4	8	64	20	160
G.723.1m	MP-MLQ	3,4	8	6.4	30	24
G.723.1a	ACELP	3,4	8	5.3	30	20
G.726	ADPCM	3,4	8	16, 24, 32, 40	15	60
G.728	LD-CELP	3,4	8	16	20	40
G.729A	CS-CELP	3,4	8	8	20	20

-/G.729

- Bastante popular em aplicações de voz sobre frame relay e em modems
 V.70 para voz e dados
- G.729 Técnica de codificação LD-CELP gerando uma taxa de bits de 8 kpbs e G.729A a codificação CS-ACELP (Algebraic-ACELP)

Recomend.	Técnica de Compressão	Largura de banda da voz (kHz)	Taxa de amostragem (kHz)	Taxa de bit compactado (kbps)	Duração do payload (ms)	Tamanho do payload (bytes)
G.711	PCM ñ linear	3,4	8	64	20	160
G.723.1m	MP-MLQ	3,4	8	6.4	30	24
G.723.1a	ACELP	3,4	8	5.3	30	20
G.726	ADPCM	3,4	8	16, 24, 32, 40	15	60
G.728	LD-CELP	3,4	8	16	20	40
G.729A	CS-CELP	3,4	8	8	20	20

- -/G.729
 - Em cada janela de 10ms do sinal de voz são analisadas 80 amostras de 8 bits para geração de 10 códigos de 8 bits
 - Valor típico de tamanho do pacote de voz é de 20ms (20 bytes)

Recomend.	Técnica de Compressão	Largura de banda da voz (kHz)	Taxa de amostragem (kHz)	Taxa de bit compactado (kbps)	Duração do payload (ms)	Tamanho do payload (bytes)
G.711	PCM ñ linear	3,4	8	64	20	160
G.723.1m	MP-MLQ	3,4	8	6.4	30	24
G.723.1a	ACELP	3,4	8	5.3	30	20
G.726	ADPCM	3,4	8	16, 24, 32, 40	15	60
G.728	LD-CELP	3,4	8	16	20	40
G.729A	CS-CELP	3,4	8	8	20	20

Supressão de Silêncio e remoção de sons repetitivos

- UFSC
- Compressão da voz via remoção dos períodos de silêncio e de informações redundantes encontradas na fala humana
 - Existem informações na fala humana que não são necessárias para que uma comunicação efetiva exista através de uma rede
- Sons repetitivos, inerentes à voz, são causados pela vibração das cordas vocais
 - transmissão destes sons idênticos não é necessária para efetivação da comunicação e a sua remoção resulta em um aumento de eficiência na utilização da banda de rede
- Composição da fala
 - 22% do que se fala são componentes essenciais da comunicação
 - devem ser transmitidos para o entendimento do diálogo
 - 22% são padrões repetitivos
 - 56% representa as pausas entre falas

Supressão do silêncio: Componentes

- VAD (Detector de Presença de Voz)
 - Responsável por determinar quando o usuário está conversando e quando ele está em silêncio
 - É útil para economizar energia no caso de dispositivos que funcionam a bateria
 - Deve ser bastante sensível
 - Caso contrário, o início das palavras podem ser perdidas e um silêncio inútil pode ser incluído no final das sentenças
 - Mas ao mesmo terro de la la la constanta de la constanta de

Supressão do silêncio: Componentes

- DTX (Discontinuous Transmission)
 - Capacidade de um codec de parar de transmitir quadros quando o VAD tiver detectado um período de silêncio
 - VAD + DTX: modo eficiente de liberar dinamicamente a banda
 - proporcionando uma economia de até 50% da banda
 - Alguns codecs avançados não vão interromper a transmissão completamente
 - Em vez disso, vão para um modo de silêncio no qual usam muito menos largura de banda e enviam apenas os parâmetros mínimos para que o receptor possa restituir o ruído de fundo

Supressão de Silêncio e remoção de sons repetitivos

- Alguns pontos devem ser considerados na supressão do silêncio
 - Quando a fala é muito frequente, contínua, os ganhos com a supressão do silêncio não são alcançados;
 - Como a detecção da presença de voz na transmissão não é imediata
 - Pode ocorrer o corte das primeiras sílabas da locução
 - Fenômeno é denominado de clipping;
 - Quando o ruído de fundo é muito alto
 - Torna-se difícil distinguir entre o que é ruído e o que realmente é fala
 - Corre-se o perigo de empacotamento de ruído.

Pontos Importantes

Codecs de Voz

• Entender o que são pacotes de voz e a relação do tamanho do pacote de voz com taxa de bits, atraso e impacto na qualidade quando da perda de pacotes

Supressão de Silêncio

• Entender as vantagens e limitações

CAP 3. COMPRESSÃO DE DADOS MULTIMÍDIA

INE5431 Sistemas Multimídia Prof. Roberto Willrich (INE/UFSC) roberto.willrich@ufsc.br

Aula 8: Padrões de compressão multimídia – MPEG Áudio

Compressão de Dados Multimídia

- Conteúdo:

- Necessidade de compressão
- Princípios da compressão
- Classificação das técnicas de compressão
- Medição do desempenho de compressão
- Técnicas de compressão sem perdas
 - RLE, Huffman, LZW (GIF), Codificação Preditiva
- Técnicas de compressão de áudio, vídeo e imagens
- Padrões de compressão multimídia
 - JPEG, Codecs de Voz, MPEG Áudio, MPEG Vídeo, MPEG-4, H.261, H.263

- Padrão de compressão de áudio genérico (até 20 kHz)
 - E não apenas para voz (de 3,4 a 7 kHz)
 - Explora a percepção humana e não as características da fonte do áudio
- Princípio de Compressão
 - Faixa de frequência audível humana
 - Filtra sons acima de 20 KHz

UFSC

Princípio de Compressão

- Limiar de audição na faixa de frequência audível
 - Explora a curva de percepção da audição humana dentro da faixa de frequências audíveis (limiar de audição)
 - Sensibilidade para sons dentro desta faixa não é uniforme (depende da frequência)
 - O que se faz é descartar amostras que se encontrem abaixo deste limiar.

Princípio de Compressão

- Mascaragem: um som pode tornar outro impossível de ser ouvido, ou pode tornar o outro sem peso
 - tipos de mascaragem: total ou parcial
 - sons mascarados podem ser descartados (não são audíveis)
 - característica explorada pelo padrão MPEG-Áudio
 - explora as limitações perceptivas do sistema auditivo humano

- Principais características do MPEG-1 Audio:
 - Sequência de bits compactada pode suportar um ou dois canais
 - um canal único
 - dois canais independentes
 - um sinal estéreo
 - Três taxas de amostragens
 - 32, 44.1 ou 48 kHz
 - MPEG-2.5 (não oficial) 8, 11.025, 12, 16, 22.05 e 24 kHz.
 - Fluxo compactado pode ter uma das várias taxas de bits fixas e predefinidas variando de 32 a 320 kbps
 - Padrão MPEG-2.5 (não oficial)
 - Taxa de bits de 8, 16, 24, e 144 kbps
 - Razão de compressão: 2,7 a 24 (depende da taxa de amostragem)
 - 6:1 ouvintes experientes não detectam diferenças

Um codificador básico MPEG-Áudio

- Bloco mapeamento tempo-frequência
 - Divide a entrada em sub-bandas de frequências múltiplas
- Bloco modelo psico-acústico
 - Cria um conjunto de dados para controlar a operação do bloco quantificador e codificador
 - Considera limiar de audição, sons mascarados, etc.

Um codificador básico MPEG-Áudio

- Bloco quantificador e codificador
 - Cria um conjunto de símbolos de código
 - sub-bandas menos importantes e áudios inaudíveis são removidos
- Bloco Empacotamento de quadros
 - Monta e formata os símbolos de código e adiciona outras informações

- MPEG Audio especifica uma família de 3 esquemas de codificação de áudio
 - Chamadas de Layer-1, Layer-2 e Layer-3
 - de Layer-1 a Layer-3, a complexidade e desempenho (qualidade de som e taxa de bits) aumentam
 - Os três codificadores são compatíveis no modo hierárquico
 - decodificador Layer-N é capaz de decodificar um fluxo de bits fluxo codificado com codificador Layer-N e abaixo de N
 - MP3 é MPEG-1 Layer-3
- Padrão especifica o formato do fluxo de bits e o decodificador para cada esquema de codificação
 - não especifica o codificador para avanços futuros

MPEG-2 Áudio

- Estende as funcionalidades do MPEG-1 Áudio
 - cinco canais (esquerdo, direito, centro, e dois canais surround)
 - mais um canal de baixa frequência
 - ou sete canais multilíngues/comentários
 - tem taxas de amostragens adicionais

Pontos Importantes

MPEG Áudio

• Entender os princípios gerais da compressão

CAP 3. COMPRESSÃO DE DADOS MULTIMÍDIA

INE5431 Sistemas Multimídia Prof. Roberto Willrich (INE/UFSC) roberto.willrich@ufsc.br

Aula 9: Padrões de compressão multimídia – MPEG Vídeo

Compressão de Dados Multimídia

-/Conteúdo:

- Necessidade de compressão
- Princípios da compressão
- Classificação das técnicas de compressão
- Medição do desempenho de compressão
- Técnicas de compressão sem perdas
 - RLE, Huffman, LZW (GIF), Codificação Preditiva
- Técnicas de compressão de áudio, vídeo e imagens
- Padrões de compressão multimídia
 - JPEG, Codecs de Voz, MPEG Áudio, MPEG Vídeo, H.261, H.263

UFSC

Motion Picture Expert Group

- Grupo de padrões de representação codificada de vídeos, áudios e suas combinações
 - armazenados e recuperados em Digital Storage Media (DSM)
 - dispositivos de armazenamento convencionais, CD-ROMs, drivers de fita, HDs, drivers ótico escrevíveis e canais de telecomunicação (redes de longa distância, locais, etc.)

Características

- MPEG usa a compressão intra e inter-quadros de vídeos
 - obtém altas taxas de compressão devido a alta redundância dos vídeos
- Especificações MPEG também incluem um algoritmo para compressão de áudio
 - Compressão do áudio associado e a sincronização áudio-visual não podem ser independente da compressão do vídeo

Vários itens de trabalho

- MPEG-1 (1993)
 - Vídeo pode codificar imagens de até 4096x4096 pixels e 60 fps.
 - A maioria das aplicações usam o formato SIF, com 240x352 pixels e 30fps, e subamostragem de crominância 4:2:0.
- MPEG-2 (1994)
 - Pode codificar imagens de até 16.383 x 16.383 pixels
 - Padrão organizado em perfis e níveis. Exemplos:
 - Nível baixo (240 x 352 pixels x 30 fps idêntico ao SIF MPEG 1),
 - Nível principal, visando a codificação com qualidade de TV (720 x 480 e 30 fps), e
 - Níveis alto, visando a TV de alta resolução HDTV, e a produção de filmes (em geral 1280 x 720 e 30fps; 1920 x 1080 e 30 fps ou 1440 x 1152 e 30 fps).
 - O padrão permite subamostragem de crominância 4:2:0, 4:2:2 e 4:4:4.

UFSC

Vários itens de trabalho

- MPEG-3
 - Para vídeo com qualidade HDTV na taxa de 40 Mbps
 - interrompido em julho 1992
- MPEG-4 (1998)
 - Objetivo inicia: codificação para audiovisual com muito baixa taxa de transmissão (variando de 4,8 a 64 Kbps)
 - Hoje: oferece soluções para vários tipos de aplicações com qualidades diferentes
- MPEG-7 (2001)
 - Interface de Descrição de Conteúdo Multimídia: um padrão de descrição de dados multimídia (informações audiovisuais)
 - Permitindo a busca e filtragem

- MPEG 1 (ISO/IEC-11172) tem cinco partes

- ISO/IEC-11172-1 MPEG-Sistemas
 - Sincronização e multiplexação de fluxos de áudio e vídeo compactados
- ISO/IEC-11172-2 MPEG-Vídeo
 - Compressão de sinais de vídeo;
- ISO/IEC-11172-3 MPEG-Áudio
 - Compressão de um sinal de áudio digital
- ISO/IEC-11172-4 Teste de Conformidade
 - Especifica procedimento para determinar as características dos fluxos codificados e para testar a conformidade com os requisitos identificados no Áudio, Vídeo e Sistemas
- ISO/IEC-11172-5 Simulação de Software
 - Oferece uma implementação de referência.
- MPEG separa áudio e vídeo
 - Compressão em três camadas: a camada de sistema, de áudio e de vídeo

- MPEG especifica a sintaxe dos fluxos codificados para que decodificadores possam decodificar
 - como gerar o bitstream não é padronizado
 - permite inovações no projeto e implementação de codificadores

- É a unidade elementar para a codificação do vídeo
- Imagens são representadas no espaço de cores YCbCr
 - Grupo de três matrizes retangulares que representam a luminância (Y) e a crominância (Cr e Cb)
 - É preferível YCrCb pois o olho é mais sensível a luminosidade que a crominância
 - Podem ser feita subamostragens nas matrizes Cb e Cr

UFSC

- Subamostragens YCbCr

UFSC

- Compactação MPEG-1 Video
 - Em vídeo existem dois tipos de redundância: espacial e temporal
 - MPEG-1 explora estes duas redundâncias
- Redundância espacial
 - Pode ser explorada pela simples codificação em separado de cada quadro
 - Blocos de 8x8 pixeis são compactados similar a uma compressão JPEG

- Hierarquia do fluxo de dados MPEG-1

Fluxo de vídeo MPEG-1:

- GOP (Grupo de imagens): fornece um ponto de acesso aleatório
- Camada de imagem contem todas as informações codificadas de uma imagem
 - cabeçalho contem a referência temporal de uma imagem, o tipo de codificação, etc..

- Fluxo de vídeo

- Imagens (Quadro do Vídeo)
 - Podem ser codificadas com diferentes I-Frame, P-Frame, B-Frame
 - Compactados eliminando redundância espacial (I-Frame) ou espacial/temporal (P e B-Frames)
 - Compactados descartando informações pouco relevantes para a percepção humana

NESC.

- Fluxo de vídeo

- Imagens são divididas em pedaços (slices):
 - Número de pedaços podem ser variáveis
 - Cada pedaço consiste de um número variável de macroblocos (16x16 pixeis)
 - Cada pedaço pode ser codificados de maneira diferente
 - Importante para o controle de erro
 - Se existe um erro no fluxo de dados, o decodificador pode saltar um pedaço
 - Maior o número de pedaços, melhor é o tratamento de erro

- Fluxo de vídeo

- Macrobloco
 - Usado na estimativa e compensação do movimento
- Bloco de Imagem
 - um bloco é uma matriz 8x8 pixeis tratados como unidades e entrada para o DCT

UFSC

- Grupo de Imagem consiste de quatro tipos de quadros:
 - Quadros I (Intracoded)
 - imagens estáticas, independentes e codificadas com o JPEG.
 - Quadro P (Predictive)
 - diferença bloco a bloco com o quadro I ou P anterior
 - Quadro B (Birectional)
 - diferença com o último quadro e com o quadro seguinte
- 0 1 2 3 4 5 6 7 8

- Quadro D (DC-coded)
 - Médias de bloco usadas para o avanço rápido (fast forward).

UFSC

- Quadro I
 - Imagens estáticas, independentes e codificadas com o JPEG
 - É necessário que quadros I apareçam periodicamente no fluxo de saída
 - no caso de transmissão multicast
 - receptores podem entrar no grupo em tempos distintos, requerendo um quadro I para começar a decodificação MPEG-1
 - se um quadro for recebido com erro
 - decodificação não será mais possível
 - Quadros I são inseridos na saída uma ou duas vezes por segundo

- Compressão dos blocos 8x8 píxeis

- Quadros P e B exploram a redundância temporal
 - Compactação adicional pode ser obtida explorando o fato de que dois quadros consecutivos são, com frequência, quase idêntico
 - MPEG faz compensação de movimento
 - Calcula o vetor de movimento dos macroblocos e a diferença macrobloco a macrobloco

Exemplo simples: Compara a similaridade entre blocos

- Mantém a diferença entre os blocos (resíduo);
- Cria o vetor de movimento, referenciando o bloco do quadro anterior;

Quadro P

- Codificam as diferenças entre os quadros
 - 50% do tamanho de um quadro I
- Se baseiam na idéia dos macroblo de 16x16 pixeis
 - macrobloco é codificado da seguint
 - tentando-se localizá-lo, ou algo pare com ele, no quadro anterior

- Decodificar quadros P requer que o decodificador armazene o quadro I ou P anterior em um buffer
 - a partir do qual o novo quadro é construído baseado em macroblocos completamente codificados e macroblocos contendo diferenças com o quadro anterior

- Quadro P

Estimativa e compensação do movimento

UFSC

- Quadro P
 - Estimativa e compensação do movimento

UFSC

Quadro B

- Codificam as diferenças com o último quadro I ou P e com o quadro seguinte
 - 15% do tamanho de um quadro I
 - permitem que o macrobloco de referência esteja tanto no quadro anterior quanto no quadro seguinte
 - acarreta uma melhoria na compensação do movimento
- Para decodificar quadros B
 - decodificador precisa manter três quadros decodificados na memória ao mesmo tempo: o quadro anterior, o atual e o próximo

- Quadro B
 - Estimativa e compensação do movimento

Quadro D

- Só são usado para possibilitar a apresentação de uma imagem de baixa resolução quando um avanço rápido ou um retrocesso
- Um fluxo MPEG-1
 - Uma sequência de quadros codificados teria a seguinte forma:
 - IBBPBBPBBPBBIBBPBBPBBPB......
- Codificação MPEG-2
 - É fundamentalmente semelhante à codificação MPEG-1
 - com quadros I, P e B
 - quadros D não são aceitos
 - Transformação discreta de co-seno é de 10x10 em vez de 8x8
 - para proporcionar mais 50 por cento de coeficientes
 - melhor qualidade

MPEG-1 Sistemas

UFSC

- Define uma estrutura para:
 - Combinar fluxos elementares, incluindo áudio, vídeo e outros fluxos de dados
 - chamado de Fluxo MPEG
 - até 32 fluxos de áudio MPEG e 16 fluxos de vídeo MPEG podem ser multiplexados juntamente com 2 fluxos de dados de diferentes tipos
- Especifica o modo de representar as informações temporais necessárias para reprodução de sequências sincronizadas em tempo real
 - sincronização de fluxos elementares
 - gerenciamento de buffer nos decodificadores
 - acesso aleatório
 - identificação do tempo absoluto do programa codificado

Pontos Importantes

MPEG Vídeo (1 e 2)

• Conhecimentos dos princípios da compressão: redundância espacial (similar a JPEG) e temporal (estimativa e compensação do movimento)

CAP 3. COMPRESSÃO DE DADOS MULTIMÍDIA

INE5431 Sistemas Multimídia Prof. Roberto Willrich (INE/UFSC) roberto.willrich@ufsc.br

Aula 10: Padrões de compressão multimídia – MPEG-4 e H.26*

Compressão de Dados Multimídia

-/Conteúdo:

- Necessidade de compressão
- Princípios da compressão
- Classificação das técnicas de compressão
- Medição do desempenho de compressão
- Técnicas de compressão sem perdas
 - RLE, Huffman, LZW (GIF), Codificação Preditiva
- Técnicas de compressão de áudio, vídeo e imagens
- Padrões de compressão multimídia
 - JPEG, Codecs de Voz, MPEG Áudio, MPEG Vídeo, MPEG-4, H.26*

- Padrão MPEG-4

- Começou a ser concebido em julho de 1993, tendo sido aprovado como padrão internacional em 2000.
- MPEG-4 absorve muita das características do MPEG-1 e MPEG-2 e outros padrões relacionados, adicionando novas características

Uso

- Vários vídeos transmitidos pela Internet fazem uso deste padrão, assim como telefones celulares que utilizam imagens
- Também é utilizado em diversos padrões de transmissão de TV digital, especialmente os de alta definição (HDTV)

UFSC

- Partes (padrões)

Parte	Data	Título	Descrição
Part 1	2010	NVCTAMC	Descreve sincronização e multiplexação de áudio e vídeo. Especifica o MPEG-TS (Transport Stream)
Part 2	2004	Visual	Compressão de vídeo.
Part 3	2009	Audio	Formatos de compressão de áudio: AAC, ALS, SLS.
Part 4	2004	Conformance testing	Procedimento para testes de conformidade
Part 5	2001	Reference software	Software de referência.
Part 6	$\Omega \Omega \Omega \Omega = 0$	Delivery Multimedia Integration Framework (DMIF)	Interface entre a aplicação e o transporte
Part 7	9004	Optimized reference software for coding of audio- visual objects	Exemplos de como melhorar implementação.
Part 8	ソロロオー・コ	Carriage of ISO/IEC 14496 contents over IP networks	Métodos para transportar conteúdo MPEG-4 em redes IP.
Part 9	2009	Reference hardware description	Provê projetos de hardware
Part 10	2012	Advanced Video Coding (AVC)	Um formato de compressão para vídeo (ITU-T H.264).

Fonte: https://en.wikipedia.org/wiki/MPEG-4

- Partes (padrões)

Parte	Data	Título	Descrição
Part 11	2005	Scene description and application engine	BIFS, XMT, MPEG-J. Define posicionamento de objetos, representação de objetos sintéticos 2D e 3D,
Part 12	2012	ISO base media file format	Um formato de arquivo para armazenar conteúdo de mídia baseado em tempo
Part 13	2004	Intellectual Property Management and Protection (IPMP) Extensions	Gerenciamento de propriedade intelectual e proteção
Part 14	2003	MP4 file format	Formato de arquivo MPEG-4 versão 2
Part 15	2010	Advanced Video Coding (AVC) file format	Formato de arquivo MPEG-4 Parte 10
Part 16	2011	Animation Framework eXtension (AFX)	Especifica o modelo MPEG-4 AFX para representação de conteúdos gráficos 3D
Part 17	2006	Streaming text format	Formato de legenda
Part 18	2004	Font compression and streaming	
Part 19	2004	Synthesized texture stream	
Part 20	2008	Lightweight Application Scene Representation (LASeR) and Simple Aggregation Format (SAF)	Baseado no SVG Tiny. Para portais interativos, TV móvel, desenhos 2D, mapas gráficos interativos, etc.

UFSC

- Partes (padrões)

Parte	Data	Título	Descrição
Part 21	2006	MPEG-J Graphics Framework eXtensions (GFX)	Descreve um ambiente programático leve para aplicações multimídia interativas.
Part 22	2009	Open Font Format	
Part 23	2008	Symbolic Music Representation (SMR)	
Part 24	2008	Audio and systems interaction	
Part 25	2009	3D Graphics Compression Model	
Part 26	2010	Audio Conformance	
Part 27	2009	3D Graphics conformance	
Part 28	2012	Composite font representation	
Part 29	2014	Web video coding	
Part 30	2014	Timed text and other visual overlays in ISO base media file format	
Part 31	Em desenvol.	Video Coding for Browsers (VCB)	Codec para browsers
Part 33	Em desenvol.	Internet video coding	

- MPEG-4 Parte 2

- Um padrão de compressão de vídeo DCT similar aos padrões MPEG-1 e MPEG-2
- 21 Perfis (Profiles)
 - Agrupam características em perfis (profiles) e níveis.
 - Para permitir seu uso em várias aplicações, variando de câmeras de segurança de baixa qualidade, baixa resolução a HDTVs e DVDs,
 - Perfil Simple Profile (SP): usado em situações onde a baixa taxa de bits e baixa resolução são mandatórios devido a largura de banda da rede, tamanho do dispositivo, etc
 - telefones celulares, sistemas de segurança, etc.
 - Perfil Advanced Simple Profile (ASP): muito similar ao H.263, incluindo suporte para a quantificação do estilo MPEG, suporte a vídeo entrelaçado, suporte a imagens do tipo B, compensação de movimento QPel (Quarter Pixel) e Global (GMC).

MPEG-4 Parte 2

- Perfil Simple Studio Profile (SStP)
 - Tem 6 níveis indo de SDTV até a resolução 4K
 - Permite até profundidade de píxel de 12-bits e subamostragem de crominância 4:4:4

Nível	Max bit depth and chroma subsampling	Max resolution and frame rate	Max data rate (Mbit/s)
1	10-bit 4:2:2	SDTV (e.g. 704x480)	180
2	10-bit 4:2:2	1920×1080 30p/30i	600
3	12-bit 4:4:4	1920×1080 30p/30i	900
4	12-bit 4:4:4	2K×2K 30p	1.350
5	12-bit 4:4:4	4K×2K 30p	1.800
6	12-bit 4:4:4	4K×2K 60p	3.600

Varredura Progressiva (p)

- "Varre" a tela inteira em uma única passada, transmitindo e exibindo todas as linhas da tela a cada atualização
- Varredura entrelaçada (i)
 - Monta em cada passagem metade das linhas da tela, as linhas pares ou impares

- MPEG-4 Parte 10

- Também conhecidos como H.264 ou AVC (Advanced Video Coding)
- Um padrão de codec de vídeo digital que tem a característica de alta taxa de compressão
- O padrão define 7 perfis, voltada a classes de aplicações específicas. Por exemplo:
 - Baseline Profile (BP) é voltado para aplicações de custo mais baixo com limitado recursos computacionais, usado em aplicações de videoconferência e móveis.
 - Extended Profile (XP) é voltado para streaming de vídeo, com alta taxa de compressão e robustez para perda de dados.
 - High Profile (HiP) é o principal perfil para aplicações de armazenamento em disco e broadcast, particularmente para aplicações de HDTV e adotado pelos discos HD-DVD e Blu-ray.

MPEG-4 BIFS

- BIFS - Binary Format for Scenes

- MPEG-4 é um sistema baseado em objetos.
- BIFS permite a organização no tempo e espaço de vários tipos de mídia:
 - Uma descrição de cena compõe estes objetos
 - Descreve interatividade com objetos
 - Anima objetos

- Origem

- Necessidade de fornecer serviços de vídeo onipresentes na Rede Digital de Serviços Integrados (ISDN)
- ISDN: Tecnologia de transmissão digital de voz, vídeo e dados e outros serviços sobre a rede pública de telefonia comutada
 - Cada circuito garantindo 64 kbps sem variação de atrasos.
- Um dos padrões da família H.320 para videofonia e teleconferência na taxa de 64 Kbps a 2 Mbps

Padrão ITU-T

- Ratificado em novembro de 1988
- Influenciou o H.263, MPEG 1 a 4, etc.

- H.261 foi projetado para usar toda a capacidade do canal ISDN
 - p*64 Kbps (p=1 a 30)
 - p = 1 ou 2 é apropriado para comunicação visual face-a-face e baixo movimento (videofonia)
 - p > 5 melhor qualidade (videoconferência)
 - Máxima taxa de bits disponível é 1,92 Mbps (p=30)
 - suficiente para obter imagens de qualidade VHS

- Principais características
 - Para aplicações de videofonia e teleconferência
 - Algoritmo de compressão de vídeo opera em tempo-real com atraso mínimo
 - Fornece uma resolução cerca de oito vezes mais baixa que a qualidade TV PAL/SECAM
 - É para aplicações usualmente sem movimentos intensos
 - algoritmo usa uma limitada estratégia de busca e estimação de movimento para obter taxas de compressão mais altas

- Algoritmo de compressão
 - Dois tipos de quadros: intraquadros (quadros I)
 e interquadros (quadros P)
 - I fornece um ponto de acesso e usa basicamente JPEG
 - P usa estimativa e compensação do movimento do quadro anterior

UFSC

- -/Algoritmo de compressão
 - Quadros I
 - Usa o conceito de macrobloco: área de 16x16 píxeis no Y e 8x8 no Cb e Cr (4:2:0)

UFSC

- Quadros P
 - Usa o conceito de macrobloco: área de 16x16 pixeis no Y e 8x8 no Cb e Cr (4:2:0)

- **■**/Formatos de imagens
 - H.261 opera com dois formatos de imagem
 - CIF (Common Intermediate Format) 320x288
 - permite usar um formato único dentro e entre regiões usando padrões de TV de 625 e 525 linhas
 - QCIF (quarter-CIF) 160x144
 - mais útil em taxas de bit menores (p<6).

ITU-T H.26*

- -/H.262
 - MPEG-2 pela ISO/IEC
- H.263 (1995)
 - Padrão de vídeo a baixa taxa de bits para aplicações de teleconferência que opera a taxas abaixo de 64 Kbps
- H.263 v1 H.263 v2 (H.263+, 1997),
- H.263 v3 (H.263++, 2000), H.26L (2002)
- H.264/AVC (2003)
- H.265/HEVC (MPEG-H Part 2)
 - 25% a 50% mais compressão que AVC na mesma qualidade