

VLSI-EDA

Fakultät Informatik, Institut für Technische Informatik, Professur VLSI-Entwurfssysteme, Diagnostik und Architektur

Einführung in die Technische Informatik VLSI-Systementwurf

Modellierung Simulation

Rainer G. Spallek Martin Zabel

TU Dresden, 07.08.2013

Martin.Zabel@tu-dresden.de

http://vlsi-eda.inf.tu-dresden.de

Gliederung

- 1 Wiederholung
- 2 Begriffe
- 3 M&S auf verschiedenen Ebenen
- 4 Modellvalidierung
- 5 Parameterextraktion
- 6 Effizienzanalysen und Optimierung
- 7 Zusammenfassung

1 Wiederholung

- Y-Diagramm nach Gajski
- Entwurfsablauf

Entwurfsablauf

Allgemein: Transformation einer Aufgabenstellung (Pflichtenheft) in einen fertigen Schaltkreis.

Top-Down-Strategie:

- Systemebene → Schaltkreisebene.
- Vorteil: Parallele Entwicklung auf unteren Ebenen.
- Nachteil: Systemspezifikation zu Projektbeginn oft zu ungenau.

Bottom-Up-Strategie:

- Analyse vorhandener Komponenten.
- Zusammensetzen von neuen Komponenten auf höherer Ebene im Sinne der Aufgabenstellung.
- Nachteil: Globales Ziel wird nicht immer erreicht.

Meet-in-the-Middle

Entwurfsschritt:

- Generierende Aktivität.
- Überprüfende Aktivität.

Syntheseschritt:

- Abbildung eines Entwurfsschrittes in Richtung auf das Entwurfsziel.
- Abstraktionsgrad sinkt, Detailliertheitsgrad steigt.
- Einbringung neuer Informationen.

Analyseschritt:

- Abbildung eines Entwurfsschrittes in umgekehrter Richtung zum Syntheseschritt.
- Gewinnung abstrakter Informationen durch Zusammenfassen und Generalisieren von Details (Extraktionsprozess).
- Beispiel: Validierung eines Syntheseschrittes.

2 Begriffe

System:

- Beobachtungsgegenstand
- Zusammenschaltung mehrere Komponenten, die zusammen agieren und interagieren, um eine Aufgabe zu erfüllen.
- Umfang des Systems ist abhängig vom zu untersuchenden Aspekt.

Modell:

- Menge von Annahmen mit dem Ziel die Funktionsweise des Systems zu verstehen.
- Annahmen: i.d.R. in mathematischer oder logischer¹ Form
 - → mathematisches / formales Modell

¹z.B. Aussagenlogik, Prädikatenlogik

Untersuchung eines Systems

Untersuchung am mathematischen Modell

Mathematische Verfahren (Algebra, Analysis, Wahrscheinlichkeitstheorie)

→ Exakte Informationen

Numerische Verfahren (Iterative Berechnung des Modells)

→ Näherungslösung

Simulation

Definition in VDI-Richtlinie 3633:

"Simulation ist das Nachbilden eines Systems mit seinen dynamischen Prozessen in einem experimentierfähigen Modell, um zu Erkenntnissen zu gelangen, die auf die Wirklichkeit übertragbar sind."

Anwendung:

- Komplexe Modelle, für die analytische Lösung nicht praktikabel ist.
- In der Technischen Informatik z.B.:
 Netzwerksimulation, Logiksimulation, Fehlersimulation,
 Verlustleistungssimulation

Simulationsmodell: Modell, welches mittels Simulation untersucht wird.

Klassifikation von Simulationsmodellen

Statisch vs. dynamisch:

- Statisch: Betrachtung eines Zeitpunkts oder ohne zeitlichen Bezug
- Dynamisch: Betrachtung der Entwicklung über die Zeit

Deterministisch vs. stochastisch:

- Deterministisch: Modell ohne Zufallsgrößen
- Stochastisch: Modell mit Zufallsgrößen, z.B. zur Abdeckung vieler verschiedener Eingaben (auch zu unterschiedlichen Zeitpunkten)

Kontinuierlich vs. diskret:

- Zeitkontinuierlich: Zustandsänderung zu beliebigen Zeitpunkten (Differentialgleichungen)
- Zeitdiskret: Zustandsänderung nur zu diskreten Zeitpunkten (Differenzengleichungen)

Anwendung in Technischen Informatik

Ereignisorientierte Simulation (engl.: discrete-event simulation)

- Simulationsmodell ist dynamisch, stochastisch und diskret.
- Schließt deterministische Modelle ein.
- Beispiel: Logiksimulation, Fehlersimulation

Kontinuierliche Simulation (engl.: continuous simulation)

- Simulationsmodell ist dynamisch, deterministisch und kontinuierlich.
- Differentialgleichungen (DGL)
- Beispiel: Simulation elektrischer Netzwerke
- Analytische Lösung theoretisch möglich, wenn DGL-System lösbar.

Modellierung in der Praxis

Begrenzung des Modellierungsaufwandes durch Vereinfachung:

- System mit konzentrierten Parametern statt verteilten Parametern (z.B. nur Massepunkte, punktförmige Bauelemente)
 - → gewöhnliche statt partielle Differentialgleichungen
- Idealisierte Komponenten:
 - Physik: starre statt elastische K\u00f6rper, masselose statt massebehaftete Federn
 - Technische Informatik: ideale Bauelemente, ideales Schaltverhalten

Ziel: Modell soll nur so genau wie nötig sein!

Beispiel: Charakterisierung von Bauelementen mittels Kennlinien.

H. Scherf: Modellbildung und Simulation dynamischer Systeme, Oldenbourg-Verlag, 2010. – ISBN 978-3-486-59655-7

3 M&S auf verschiedenen Ebenen

Analog Ebenen des Schaltkreisentwurfs:

- Systemebene
- Algorithmenebene
- Register-Transfer-Ebene
- Gatterebene
- Schaltkreisebene (Schalterebene)
- Schaltkreisebene (Schaltungsebene)

3.1 Systemebene

Modell: formale Spezifikation mittels

- Aussagenlogik
- Prädikatenlogik
- Temporaler Logik

Formaler Nachweis bestimmter Eigenschaften, z.B.

- Vollständigkeit
- Widerspruchsfreiheit
- ...

Beispiel: SAT-Solver

3.2 Algorithmenebene

Merkmal: Beschreibung des funktionalen und teils auch zeitlichen Verhaltens mittels Hochsprachen

Ansätze:

- Modellierung des Datenpfades:
 - Gleichungssysteme, z.B. MatLab / Simulink
 - Unterstützung für High-Level-Synthese nach RTL-Modell,
 z.B. Xilinx System Generator for DSP, Altera DSP Builder
- Modellierung der Kommunikation:
 - Transaction-Level Modeling
 - Bus Functional Model
- Beides: High-Level-Synthese, z.B. AutoESL

Transaction-Level Modeling

Genauer: Transaction-Based Modeling

Merkmale:

- Trennung von Kommunikation und Verarbeitung
- Hochsprachen, z.B. SystemC:
 - Klasse = HW-Modul
 - Klassen definieren Schnittstellen
 - Methodenaufruf führt Transaktion aus
 - Verarbeitung innerhalb Methode (C++ -Code)
 - Simulator = Kompilat des SystemC-Programms
- Optional: Modellierung eines Taktsignals
 - → Taktzyklen-akkurate Simulation

Kommunikation in SystemC

Signalbasierte Kommunikation:

- Direkte Verbindung der Ein- und Ausgänge von Komponenten
- Eigenes "Protokoll"

Kanalbasierte Kommunikation:

- Zusätzliche Komponente repräsentiert Verbindungskanal, z.B. FIFO
- Protokoll definiert durch Kanal

Beispiel: Signalbasierte Kommunikation in SystemC

```
#include "systemc.h"
SC_MODULE(adder) // module (class) declaration
 sc in<int> a, b;
                      // ports
 sc_out<int> sum;
 void do_add()
                     // process
   sum.write(a.read() + b.read()); //or just sum = a + b
 SC CTOR(adder)
                    // constructor
   SC_METHOD(do_add); // register do_add to kernel
   sensitive << a << b; // sensitivity list of do_add</pre>
};
```


Bus Functional Model

auch: Transaction Verification Model

Merkmale:

- Typisch: Vereinfachte Modelle von Mikroprozessoren mit einem oder mehreren externen Bussen
 - Modellierung der Kommunikation auf dem Bus
 - Befehlsabarbeitung nur vereinfacht
- Zweck: Überprüfung der Funktionalität und des Zeitverhaltens von Bussystemen
- Als Zwischenschritt zum vollständigen Modell auf Algorithmenebene oder detaillierteren Ebenen

High-Level-Synthese

AutoESL:

- Modell in C, C++, SystemC
- Zielplattform: FPGAs
- Automatische Nutzung von IP-Cores
- Simulation mit ModelSim und Aldec

Angestrebte Vorteile:

- Reduktion Verifikationszeit
- Bessere Performance als bei manuellem RTL-Design (bei Datenpfad-intensiven Designs)
- Portabilität

BDTi: The AutoESL AutoPilot High-Level Syntheses Tool, Berkely Design Technology Inc., 2010.

3.3 Register-Transfer-Ebene

Modell:

- Hardwarebeschreibung mit VHDL, Verilog u.a.
- Verhaltensbeschreibung mit Abweichungen in Synthese möglich

Simulation:

- nur logische Funktion (je Taktperiode)
- taktgenau
- Signaländerung → Ereignis → ereignisorientierte Simulation

Ereignisorientierte Simulation: Allgemeines

Ereignisse:

- Signaländerung = Ereignis
- Abarbeitung der Ereignisse entsprechend ihrer zeitlichen Reihenfolge
 - → Ereignisgesteuerte Simulation

Zeitsteuerung der Simulation: Fortschreibung der Simulationszeit

- bis zum nächsten Ereignis (next-event time-advance), oder
- in festen Zeitabständen (fixed-increment time-advance)
 - = Bearbeitung der Ereignisse zum Ende der Zeitscheibe.

VHDL:

- 2-dimensionale Simulationszeit mit Delta-Zyklen
- Signalzuweisung nach Δt oder fester Zeit t

Ereignisorientierte Simulation: Ablauf

Initialisierung:

- Simulationszeit = 0
- Setze System in Startzustand
- Initialisiere Ereignisliste

Zeitschritt:

- Hole nächstes Ereignis E_i aus Liste
- Schreibe Simulationszeit bis zum n\u00e4chsten Ereignis fort

Ereignisroutine E_i:

- Aktualisiere Systemzustand
- Erzeuge neue Ereignisse

Bericht: Werte Simulation aus

3.4 Gatterebene

Modell:

- aus RTL-Modell synthetisierte Netzliste
- Berücksichtigung Schaltverhalten einzelner Gatter auf Basis Fan-out möglich

Bauelementemodellierung:

- Schaltfunktion entsprechend Hardware
- Schaltverhalten, approximativ; VITAL

Abweichung zu RTL-Simulation: aufgrund Synthese

- Schaltfunktion von integrierten Speichern
- teils asynchrone Eingänge
- fehlerhafte Sensitivitätslisten → abweichende Synthese

3.5 Schaltkreisebene (Schalterebene)

Modell:

- Schalter, Widerstände, Kapazitäten
- Variante: Back-Annotation der Netzliste durch Technologiesynthese
- Berücksichtigt Schaltverhalten auf Basis der konkreten Verdrahtung
 - → Analyse Verlustleistung möglich

Abweichung zu Simulation auf Gatterebene aufgrund zusätzlicher Verzögerungszeit durch konkrete Verdrahtung; betrifft:

- Verhalten asynchroner Eingänge
- Cross-Clock-Designs

3.6 Schaltkreisebene (Schaltungsebene)

SPICE (Simulation Program with Integrated Circuit Emphasis)

- Statische und kontinuierliche Simulation elektrischer Netzwerke
- Eingabe: Schaltplan (Schematic) → Netzliste
- Ausgabe: Tabelle mit Strömen / Spannungen an den Messpunkten, ggf. in Abhängigkeit von Zeit und Frequenz → Diagramme, Statistik
- Typische Analysen:
 - Eingeschwungener Zustand: DC Analysis,
 DC Transfer-Curve Analysis, Transfer-Function Analysis
 - Frequenzbereich: AC Analysis
 - Zeitbereich: Transient Analysis
 - Rauschen: Noise Analysis
- Vertreter: PSpice, LTspice, TINA, Multisim, ngspice und weitere

Schaltplan

- Grafische Eingabe
- Auswahl aus einer Bauelementebibliothek

Beispiel: OPV als Impedanzwandler

Netzliste

- Manuelle Eingabe oder Generierung aus Schaltplan
- Baulement: Anschlussknoten und Paramter
- Implizite Definition der Knotenmenge, Knoten 0 = Masse

Beispiel: OPV als Impedanzwandler

```
R R1
         $N 0001 Ub+ 7.5k
        0 Ub- DC 15V
V Ub2
V Ub1 Ub+ 0 DC 15V
Q T2
         $N_0001 Ua $N_0002 [Ub-] N1 1
D D1
       Ua $N 0003 ZD69
Q T3
         Ub+ $N 0001 $N 0003 [Ub-] N1 10
R R2
       Ub- Ua 3k
I lb2
        $N 0002 Ub- DC 1mA
I lb1
        $N 0002 Ub- DC 1mA
Q T1
       Ub+ UP $N 0002 [Ub-] N1 1
V Ue
         UP 0 DC 0 AC 1
+ PULSE -1V 1V 0 2ns 2ns {0.5/10MegaHz-2ns} {1/10MegaHz}
```


Bauelementemodellierung

DGL für Grundkomponenten:

Widerstände, unabhängige und gesteuerte Spannungs-/ Stromquellen, Induktivitäten (auch gekoppelt), Kapazitäten

Komplexe Modelle für Halbleiterbauelemente:

- Bestehend aus Grundkomponenten
- Parametrierbare Modelle: Standardwerte hinterlegt in Bauelementebibliothek, Abweichungen in Netzliste spezifiziert
- Diode
- Bipolartransitor: kombiniertes Ebers-Moll + Gummel-Poon-Modell
- MOSFET: Level 1 bis 3, BSIM und weitere
- JFET

Komplexe Modelle für eigene Komponenten: Teilschaltungen

DC Analysis

- Nichtlineare Berechnung des eingeschwungenen Zustands (Arbeitspunkt)
- Statisches, deterministisches Modell
- Lösung eines nichtlinearen Gleichungssystems zur Berechnung von Knotenspannungen und Zweigströmen

DC Transfer-Curve Analysis

- Wiederholte (nichtlineare) Arbeitspunktberechnung unter Variation von Bauelementeparametern
- **Beispiel:** Variation Eingangsspannung → Großsignalkennlinie

Transfer Function Analysis (DC)

Ablauf:

- 1. Berechnung des Arbeitspunktes (AP)
- 2. Linearisierung der Kennlinien aller Bauelemente entsprechend AP
- 3. Berechnung Verstärkung und Ein-/Ausgangswiderstand bei angenommener kleiner Variation von Eingangsgrößen (Strom, Spannung)

Unterschied zu DC Transfer-Curve Analysis:

- Nur Kleinsignalverhalten
- Schneller, da Schritt 3 nur lineare Berechnung statt wiederholter Lösung eines nichtlinearen Gleichungssystems umfasst.

Anwendung: Gleichstrom-/Gleichspannungsverstärker

AC Analysis (1)

Ablauf:

- 1. Berechnung des Arbeitspunktes (AP)
- 2. Linearisierung der Kennlinien aller Bauelemente entsprechend AP
- 3. Wiederholte Berechnung des frequenzabhängigen Kleinsignalverhaltens für einen Frequenzbereich (statisch, deterministisches Modell)

Anwendung: Signalverstärker im NF-Bereich

AC Analysis (2)

Beispiel: OPV als Impedanzwandler

- Lineares Verhalten nur bis 100 MHz
- Mittkopplung bei 400 MHz aufgrund Transistorlaufzeiten
- Ab 600 MHz Tiefpassverhalten

Transient Analysis (1)

Eigenschaften:

- Nichtlineare Berechnung des zeitlichen Großsignalverhaltens
- Dynamisches, deterministisches, kontinuierliches Modell
- Nichtlineares Differentialgleichungssystem
 - → allg. nicht geschlossen lösbar
- Numerische Simulation von Knotenspannungen und Zweigströmen
 - → automatische Bestimmung der Zeitschritte

Anwendung:

- Einschwingvorgänge
- Schaltverhalten allgemein

Transient Analysis (2)

Beispiel: OPV als Impedanzwandler

Rechteckimpuls am Eingang → Einschwingvorgang in Sprungantwort

4 Modellvalidierung

Vergleich der Simulationsergebnisse mit:

- Messungen am System
- Spezifikation

Anpassung des Modells:

- Weitere Detaillierung
- Anpassen von Modellparametern

Automatisierung:

- Berechnung der Abweichung von Sollkurven
- Assertions (z.B. VHDL)
- Kalibrierung von Modellparametern

5 Parameterextraktion

Ziel: Vereinfachung von Modellen

→ Gewinnung von Parametern für einfache Modelle aus der Simulation von Modellen desselben Systems mit komplexen Parametern

Ausgangspunkt: validiertes Simulationsmodell

Ansatz: Approximation vieler Simulationsergebnisse → Kennlinie

Beispiele:

- OPV als Impedanzwandler → RC-Tiefpass
- RTL-Modell eines Prozessors → zyklengenaues Befehlssatzmodell

6 Effizienzanalysen und Optimierung

Ziel: Optimierung des Systems

Ausgangspunkt: validiertes Simulationsmodell

Ansatz: Analyse der Effizienz auf Basis der Simulationsergebnisse

- → Iterative Optimierung des Modells
- → Optimierung des Systems

Beispiele:

- Optimierung des Frequenzgangs von Verstärkern
- Optimierung von Prozessoren bzgl. Verlustleistung, Zeitverhalten, Funktionales Verhalten (Verarbeitungsleistung)

7 Zusammenfassung

Begriffe:

- System, physisches Modell, mathematisches Modell
- Analytische Lösung, Simulation (statisch oder dynamisch, deterministisch oder stochastisch, kontinuierlich oder diskret)

Modellierung und Simulation: auf den Ebenen des Schaltkreisentwurfs

- Formale Spezifikation
- Transaction-Level-Modeling, Bus Functional Model, High-Level-Synthese
- RTL-Modell und ereignisorientierte Simulation
- Gattermodell mit vereinfachtem Zeitverhalten
- Schaltkreismodell mit detailliertem Zeitverhalten

Modellvalidierung: Überprüfung des Modells

Parameterextraktion: Vereinfachung von Modellen

Effizienzanalysen: Optimierung des Systems