KOSHA GUIDE

C - 104 - 2023

건설공사 굴착면 안전기울기 기준에 관한 기술지침

2023. 8.

한국산업안전보건공단

안전보건기술지침은 산업안전보건기준에 관한 규칙 등 산업안전보건법령의 요구사항을 이행하는데 참고하거나 사업장 안전·보건 수준향상에 필요한 기술적 권고 지침임 안전보건기술지침의 개요

○ 작성자 : 한국안전학회 송창근

○ 개정자 : 한국산업안전보건공단 건설안전실 박주호

- 제·개정경과
- 2014년 11월 건설안전분야 제정위원회 심의(제정)
- 2023년 7월 건설안전분야 표준제정위원회 심의(개정)
- 관련규격 및 자료
- 건설공사 표준품셈(국토교통부)
- 도로설계기준 토공편(한국도로공사)
- 암판정기준(한국전력공사)
- 지반조사편람(서울특별시)
- 지반조사 표준품셈(한국엔지니어링 진흥협회)
- 지반설계기준·지반공사 표준시방서(국토교통부)
- 관련법규·규칙·고시 등
- 산업안전보건기준에 관한 규칙 제2편 제4장 제2절(굴착작업 등의 위험방지)
- 안전보건기술지침의 적용 및 문의
- 이 기술지침에 대한 의견 또는 문의는 한국산업안전보건공단 홈페이지 (www.kosha.or.kr)의 안전보건기술지침 소관 분야별 문의처 안내를 참고하시기 바랍니다.
- 동 지침 내에서 인용된 관련규격 및 자료, 법규 등에 관하여 최근 개정 본이 있을 경우에는 해당 개정본의 내용을 참고하시기 바랍니다.

공표일자 : 2023년 8월 24일

제 정 자 : 한국산업안전보건공단 이사장

목 차

1.	목적1
2.	적용범위1
3.	용어의 정의1
4.	굴착비탈면 안전 사항4
4.1	사전 검토사항4
4.2	일반 검토사항5
4.3	지반종류별 준수사항5
4.4	비탈면 안정해석 실시6
5.	굴착면 안전기울기7
5.1	안전기울기 기준7
5.2	안전기울기 준수를 위한 유의사항8
[부록	·] 토질 및 지반 분류 기준 ·····9

건설공사 굴착면 안전기울기 기준에 관한 기술지침

1. 목 적

이 지침은 산업안전보건기준에 관한 규칙(이하"안전보건규칙"이라 한다) 제2편 제4장 제2절(굴착작업 등의 위험방지)의 규정에 의거 건설공사 굴착면의 안전 기울기 기준에 관한 기술지침을 제시함을 목적으로 한다.

2. 적용범위

이 지침은 건설공사 현장의 굴착비탈면에 대하여 적용한다.

3. 용어의 정의

- (1) 이 지침에서 사용하는 용어의 정의는 다음과 같다.
 - (가) "굴착"이라 함은 인력이나 장비를 동원하여 지반을 파는 작업을 말한다.
 - (나) "안전기울기"라 함은 굴착비탈면의 전단파괴나 무너짐(붕괴)의 위험이 없는 상황 하에서 비탈면이 형성하는 연직방향과 수평방향 길이의 비를 말한다.
 - (다) "비탈면 안정해석"이라 함은 자중 및 외력에 의해 발생되는 비탈면 내부의 전단응력이 비탈면 토질이 갖고 있는 전단강도보다 크게 되면 비탈면 파괴가 생기게 되는데 전단응력과 전단강도에 따른 비탈면 파괴에 대한 안정성을 이론・실험・수치해석 등의 방법으로 검토하는 것을 말한다.
 - (라) "TCR"이라 함은 샘플링된 코아 중 암석부분의 총 길이를 시추공의 총길이로 나누어 백분율로 표기한 값을 말한다.
 - (마) "RQD"라 함은 암반 시추 후 10 cm 이상 되는 코아 채취 길이의 합계를 총 시추 길이로 나눈 백분율로 암반의 상태를 나타내는 암질지수를 말한다.

- (바) "N치"라 함은 63.5 kgf의 해머를 76 cm의 높이에서 자유낙하 시켜 로드 선단 샘플러를 지반에 30 cm 관입하는데 필요한 타격 횟수를 말한다.
- (사) "탄성파속도"라 함은 지반의 특정 지점에서 인위적으로 충격을 발생시켜, 주변에 설치된 감진기로 지반을 전파하는 탄성파의 빠르기를 수치로 표 현한 값을 말하며, 지반이 단단할수록 전달속도가 빠르게 나타나므로 이 값을 통해 지질의 종류를 판별할 수 있다.
- (아) "토사"라 함은 불도저가 유효하게 사용될 수 있는 정도의 흙, 모래, 자갈 및 호박돌이 섞인 지층을 말한다.
- (자) "습지"라 함은 지반 내부의 공극 함수비가 높은 고함수비 상태의 토사지 반으로, 지하수위가 지표면이나 지표면 근처에 위치해 있어 충분한 수분 공급이 가능한 경우 형성되며, 상부구조물의 하중을 충분히 지지할 수 없 고, 굴착공사 시 붕괴의 위험이 있어 비탈면 안전기울기를 충분히 유지 해야 한다.
- (차) "건지"라 함은 지반내부의 공극 함수비가 낮은 저함수비 상태의 토사지반으로, 우수나 지하수의 배수가 원활하며 함수비 변화에 따른 강도변화가 거의 없는 지반으로 굴착작업 시 소기의 전단강도 및 지반 지지력 확보가 가능하다.
- (카) "리핑암"이라 함은 불도저에 장착한 유압식 리퍼가 유효하게 사용될 수 있고, 풍화암 정도로 풍화가 상당히 진행된 지층을 말한다.
- (타) "풍화암"이라 함은 풍화가 많이 진행되어 절리나 균열 등의 불연속면의 발생빈도가 매우 높고 풍화가 암석내부까지 진행된 암으로 암석자체의 색조가 변색되어 있으며 망치 타격으로 쉽게 부수어지는 암을 말한다.
- (파) "발파암"이라 함은 발파를 사용하는 것이 가장 유효한 지층을 말한다.
- (하) "연암"이라 함은 풍화가 약간 진행되어 절리나 균열 등의 불연속면의 발생빈도가 낮으며 암석내부는 부분적으로 약한 풍화가 진행중이며 절리면 주변이 일부 변색되어 있으며 망치로 타격시 둔탁한 소리가 나면서 파괴되는 암을 말한다.

- (거) "경암"이라 함은 풍화가 거의 발생하지 않아 절리나 균열 등의 불연속면 이 관찰되지 않는 거의 신선한 암으로 망치로 타격시 맑은 소리가 나면 서 파괴되는 암을 말한다.
- (너) "슈미트값"이라 함은 반발 망치를 소정의 위치에 올려놓고, 암석 정면에 직각을 유지하면서 힘을 가했을 때 반발중추가 튀어 오른 거리에 대한 백분율을 말하며, 암석의 종류와 성질에 따라 다양한 범위의 값을 가진다.
- (더) "노두조사"라 함은 지표에 드러난 지각 구성 암석, 즉 표토 아래에 있는 기반암의 일부가 지표로 나와 있는 부분을 조사하는 것으로 삽과 곡괭이를 통한 일차적인 관찰을 말한다.
- (러) "일축압축강도"라 함은 수평방향 구속압이 없는 재료에 축방향으로 하중을 가하여 파괴가 이루어질 때의 응력을 말하는 것으로 단위 면적에 작용하는 하중을 의미한다.
- (머) "점하중강도"라 함은 암석의 일축압축강도를 추정하기 위해 시료에 점하 중을 가하여 시료 내에 압축력을 유발시켜 파괴하도록 하는 실내 암석시 험방법으로, 보정된 압축강도를 도출하여 지반의 강도분포를 산정할 수 있다.
- (버) "메탈크라운 비트"라 함은 지반 시추용 절삭날의 한 종류로 연암일 경우 절삭속도가 빠르며 경제적이나 단단한 암석의 경우 절삭이 불가능하며 마모가 빠른 단점이 있다.
- (서) "다이아몬드 비트"라 함은 메탈크라운 비트로는 굴착이 어려운 규암이나 각종 화성암의 굴착에 이용되는 암반절삭 날로 암석시료 채취율이 다른 시추법에 비해 우수한 장점이 있다.
- (2) 그밖에 이 지침에서 사용하는 용어의 정의는 이 지침에 특별한 규정이 있는 경우를 제외하고는 산업안전보건법, 같은 법 시행령, 같은 법 시행규칙 및 안전보건기준에 관한 규칙에서 정하는 바에 의한다.

4. 굴착비탈면 안전 사항

4.1 사전 검토사항

- (1) 굴착공사 전에 설계도면과 비탈면 안정해석 등의 내용을 검토하여 굴착 비탈면의 위치, 지반의 종류 및 특성, 함수량 정도 등의 설계조건과 현장조 건을 비교 검토하여 굴착면의 안전기울기의 적정성 여부를 파악한다.
- (2) 굴착비탈면의 안전기울기 사전검토 시 굴착장소 및 그 주변지반에 대하여 다음 각 목을 조사하여 평가한다.
- (가) 지반 형상·지질 및 지층의 상태
- (나) 균열·함수·용수 및 동결의 유무 또는 상태
- (다) 지하매설물 도면 확인 및 매설물 등의 유무 또는 상태
- (라) 지반의 지하수위 상태
- (마) 비탈면 보호공의 설치계획
- (3) 굴착시 굴착비탈면의 무너짐에 의한 재해를 방지하기 위하여 다음 각 목을 작업 전, 작업 중, 작업 이후, 우기 이후에 개별적으로 실시하여 점검하여 야 한다.
- (가) 비탈면 상부의 지표면 변화 확인
- (나) 비탈면의 지층 변화부 상황 확인
- (다) 부석의 상황 변화 확인
- (라) 결빙과 해빙에 대한 상황의 확인
- (마) 각종 비탈면 보호공의 변위 및 탈락 유무

4.2 일반 검토사항

- (1) 굴착작업 시 주변지반이 침하하는 것에 주의하고 관계자의 입회하에 굴착 비탈면의 안전에 필요한 조치를 취하여야 한다.
- (2) 굴착공사 진행 중 사전 조사된 결과와 상이한 상태가 발생한 경우 굴착면 의 안전기울기 보완을 위한 정밀조사를 실시하여야 하며, 그 결과에 따라 안전기울기를 변경해야 할 필요가 있을 때에는 안전기울기 기준이 결정될 때까지 해당 위험작업을 중지하여야 한다.
- (3) 굴착작업 시 지반의 지질 상태에 따라 굴착면의 기울기를 안전하게 유지하여 무너짐 위험에 대비하여야 한다.

4.3 지반종류별 준수사항

- (1) 지반의 종류에 따라 굴착면의 안전기울기를 준수하여야 하며, 필요시 충분한 보강을 실시해야 한다.
- (2) 자연지반은 매우 복잡하고 불균질하며, 굴착비탈면은 굴착후 시간이 경과 함에 따라 점차 불안정해지며, 강우 등의 주변 환경 변화에 따라 비탈면 안정성이 저하되므로 이들을 고려한 안정성 검토 및 보호·보강대책이 이 루어져야 한다.
- (3) 리핑암의 경우 비탈면 높이가 10 m 이상일 경우에는 매 5.0 m 마다 폭 1 m의 소단을 설치하도록 한다. 또한 비탈면 높이에 관계없이 흙과 암과의 경계나 투수층과 불투수층과의 경계에는 필요에 따라 소단을 설치하고, 용수발생 시소단에 유도 배수로를 설치하여야 한다.
- (4) 발파암은 굴착난이도 및 암반 강도에 따라 비탈면 기울기와 소단을 적절하게 적용하여야 하며, 연암 및 보통암인 경우 비탈면 높이 10 m 마다 1~2 m 폭의 소단을 설치하고, 경암질인 경우에는 비탈면 높이 20 m마다 폭 1~2 m의 소단을 설치하며, 리핑암과 발파암의 경계와 암반의 특성이 급격히 변화하는 곳에도 폭 1~2 m의 소단을 추가 설치한다.
- (5) 풍화가 빠른 암반, 균열이 많은 암반, 바둑판 모양의 균열이 있는 암반 등 붕괴위험이 있는 암반 굴착비탈면의 경우에는 반드시 이를 고려하여 안전 성을 검토하여 안전기울기를 결정해야 한다.

4.4 비탈면 안정해석 실시

- (1) 지반조건이 불명확하거나, 급격하게 변화하는 경우 굴착면의 안전기울기는 별도의 비탈면 안정해석을 통해 여유 있게 결정해야 한다.
- (2) 굴착면 기울기는 지반을 구성하는 지층의 종류, 상태 및 굴착 깊이 등에 따라 설계기준에 제시된 값을 표준으로 하나 붕괴 요인을 가진 굴착부는 별도로 검토하여 종합적으로 판단하여야 한다.
- (3) 암반 굴착의 경우 지표지질조사 및 시추조사에 의하여 파악된 절리의 방향 성과 발달 상태에 따라 안정해석을 실시하여 안전기울기를 결정하여야 한 다.
- (4) 굴착면의 기울기가 표준기울기와 다른 경우 별도의 안정해석을 통해 안전 기울기를 결정하여야 한다.
- (5) 굴착비탈면이 다음과 같은 조건일 경우에는 지질 및 토질조건, 절리 발달상태, 비탈면 내의 지하수 유출조건 등에 대하여 지표지질조사 및 정밀조사를 실시하고 그 결과에 따라 비탈면 안정해석을 실시하여 비탈면 안전기울기를 결정하며, 필요시 안정대책을 검토하여 시공하여야 한다.
- (가) 퇴적층이 두껍게 형성되어 불안정한 상태를 나타내는 구간
- (나) 붕괴 이력이 있고 산사태 발생 가능성이 있는 구간
- (다) 지하수위가 높고 용수가 많은 구간
- (라) 연약지반이 분포하여 침하 등의 우려가 있는 경우
- (마) 시설물이 인접하여 붕괴 시 복구에 상당기간이 소요되거나 막대한 손상을 초래하는 경우
- (바) 기타 불안정한 요인이 있는 것으로 판단되는 구간
- (6) 안정해석 결과 불안정한 것으로 판단되는 비탈면에 대하여는 비탈면 기울 기 완화 등 적정한 보강공법을 설계에 반영하여야 한다.

5. 굴착면 안전기울기

5.1 안전기울기 기준

(1) 산업안전보건기준에 관한 규칙 제338조(지반 등의 굴착 시 위험 방지) 제1항에 따라 사업주는 지반 등을 굴착하는 경우에는 굴착면의 기울기를 다음 표의 기준이상으로 완만한 기울기를 유지하여야 한다. 다만, 비탈면의 붕괴 방지를 위하여 적절한 조치를 한 경우에는 관계전문가 자문 및 안정성검토를 득한 후 변경할 수 있다.

구분	지반의 종류	기울기
보통 흙	습 지	1:1.0 ~ 1:1.5
보증 닭	건 지	1:0.5 ~ 1:1.0
	풍화암	1:1.0
암 반	연 암	1:1.0
	경 암	1:0.5

<표 1> 지반 종류별(보통흙 및 암반) 안전기울기

<그림 1> 지반 종류별(암반 및 보통흙) 안전기울기 모식도

(2) 굴착깊이, 굴착난이도 및 암반 강도 등에 따라 비탈면 기울기와 소단을 다르게 적용하며, 용수발생 시 소단에 유도 배수로를 설치하여야 한다.

KOSHA Guide C-104-2023

- (3) 굴착면의 기울기가 달라서 기울기를 계산하기가 곤란한 경우에는 해당 굴 착면에 대하여 붕괴의 위험이 증가하지 않도록 해당 각 부분의 기울기를 유지하여야 한다.
- (4) 상기 (1), (2) 및 (3) 항은 일반적인 사항이므로 현장여건 및 보강계획 등을 고려하여 현장 지반에 적합한 굴착면 기울기를 적용하여야 한다.

5.2 안전기울기 준수를 위한 유의사항

- (1) 준설 비탈면은 토질조건, 준설방법 등에 따라 준설공사 후 비탈면이 안정적으로 유지하기 위하여 준설 시 안전기울기를 규정할 필요가 있으며, 대단위 비탈면 형성구역에 대해서는 원호활동 검토 등을 수행하여 안전기울기를 결정하여야 한다.
- (2) 연암 이상 암반 굴착면의 기울기는 암반 내에 발달하는 단층 및 주요 불연속면의 기울기 및 방향을 고려하여 발생 가능한 파괴형태에 대한 안정해석을 실시하여 비탈면의 안전기울기를 결정하여야 한다. 다만, 해당 구간 불연속면 등의 암반특성을 정확히 파악할 수 없을 경우 시추조사에 의해 파악된 암반특성을 고려하여 암반 굴착면의 안전기울기를 결정할 수 있으나반드시 시공 중 조사 및 이를 반영한 안정해석을 통해 안정성을 확인하여야 한다.
- (3) 각기 다른 토질이 분포하여 상이한 소단 및 기울기로 접속되는 구간에는 연결을 위한 완화구간(접합부 중심 기준 좌우 약 5 m)을 둔다.
- (4) 비탈면 보호를 위한 배수시설 및 비탈면 보호시설 등은 별도 검토하여 반영 해야 하며 시설물의 설치 여건에 따라 비탈면의 기울기를 조정할 수 있다.

[부록] 토질 및 지반 분류 기준

토질 및 지반 분류에 대한 기준은 발주기관에 따라 상이하므로, 혼동이 발생하는 경우 암판정위원회의 결정에 따르는 것을 원칙으로 한다.

1. 국토교통부 건설공사 표준품셈(2014)

<표 1> 지반별 특징

구분	특징
풍화암	일부는 곡괭이를 사용할 수 있으나 암질(岩質)이 부식되고 균열 간격이 1~10 cm 정도로서 굴착 또는 절취에는 약간의 화약을 사용해야 할 암질
연암	혈암, 사암 등으로서 균열간격이 $10~30~cm$ 정도로서 굴착 또는 절취에는 화약을 사용해야 하나 석축용으로는 부적합한 암질
보통암	풍화상태는 엿볼 수 없으나 굴착 또는 절취에는 화약을 사용해야 하며 균열간격이 30~50 cm 정도의 암질
경암	화강암, 안산암 등으로서 굴착 또는 절취에 화약을 사용해야 하며 균열간격이 1 m 이내로서 석축용으로 쓸 수 있는 암질
극경암	암질이 아주 밀착된 단단한 암질

2. 한국도로공사 도로설계기준 토공편(2009)

- (1) 노두조사, 시추조사(코아회수율, RQD, 표준관입시험) 및 시공성을 충분히 검토한 후에 분류한다.
- (2) 토사와 리핑암은 N치 50타/100 mm를 경계로 구분한다.
- (3) 리핑암과 발파암은 암반의 굴착 특성을 결정하는 불연속면의 발달 빈도 (TCR, RQD)와 탄성파 속도를 기준으로 구분한다.

<표 2> 토사, 리핑암, 발파암의 분류

구 분		토 공 작 업		
		토 사(도저)	리 핑 암	발 파 암
N치 (회/mm)		50/10 미만	50/10 이상	
불연속면 발달빈도	BX 규격	_	TCR 5% 이하이고, RQD 0% 정도	TCR 5~10% 이상이고, RQD 5% 이상
원 된 번 도 -	NX 규격	_	TCR 25% 이하이고, RQD 0% 정도	TCR 25% 이상이고, RQD = 10% 이상

BX규격: 내경 62.71mm, 외경 73.03 mm의 공동 구경으로 시추하며, 구경장비 자체가 작고 힘이 약하기 때문에 통상 암반의 상부 지지층 확인용도로 사용됨

NX규격: 내경 77.79mm, 외경 88.90 mm의 공동 구경으로 시추하며, 유압식의 장비를 사용하여 암반 지층의 특성(대부분의 암석 core 시료가 회수되므로 암질상 태, 균열상태, 파쇄구간의 분포, 암석의 강도정수를 구할 수 있는 암석시험 시료의 확보 등)을 상세하게 파악하는데 사용

탄성파	A그룹	0.7 km/s 미만	0.7~1.2 km/s	1.2 km/s 이상
속도	B그룹	1.0 km/s 미만	1.0~1.8 km/s	1.8 km/s 이상

A그룹 암종 : 편마암, 사질편암, 녹색편암, 석회암, 안산암, 현무암, 유문암, 감람암, 화강암

B그룹 암종: 흑색편암, 휘록응회암, 셰일, 이암, 응회암, 집괴암

3. 한국전력공사 암판정기준(2010)

- (1) 암반분류가 비교적 명확히 판단될 경우에는 육안 및 현장시험에 의한 암판 정 기준을 적용한다.
- (2) 간편기준에 의한 암판정은 육안식별, 지질해머 타격, 슈미트 해머의 반발치를 확인하여 전반적인 경향에 따라 암을 분류한다.
- (3) 간편기준에 의한 암판정을 적용하기 어려운 개소나 상세한 기준을 적용하기 위한 개소는 현장에 적합한 상세기준을 정하고 암반분류를 수행한다.
- (4) 상세기준을 적용할 경우에는 국가공인 시험기관(전력연구원 포함)의 시험 결과(탄성파속도, 점하중강도, 일축압축강도시험)를 분석하여 암판정을 시 행한다.

<표 3> 지반 분류 방법

구분	육안식별	해머 타격	슈미트값 (MPa)
풍화암	균열은 많으나 점토화의 진행으로 거의 밀착상태암내부까지 풍화진행, 암의 구조 및 조직이 남아 있음	- 손으로 부서짐	50이하
연암	- 균열이 많이 발달 - 균열간격은 100 mm이내	- 해머로 치면 가볍게 부서짐	50~250
경암	- 균열의 발달이 적으며, 균열간격은 100 mm이상 - 대체로 밀착상태이나, 일부open됨 - 대체로 신선, 균열을 따라 약간 풍화됨, 암내부는 신선함	- 해머로 치면 금속성 소리를 냄 - 잘 부서지지 않으며 튀는 경향을 보임	250이상

4. 한국엔지니어링 진흥협회 지반조사 표준품셈(2004)

<표 4> 암반 분류

암반 분류	시추상황(비트기준)	점하중강도 (MPa)	일축압축강도 (MPa)	암반 탄성파속도 (km/s)
풍화암	메탈크라운 비트로 굴삭	0.1 이하	1.6 이하	1.2 이하
연암	메탈크라운 비트로 굴삭 용이	0.1~0.3	1.6~5.0	2.5 이하
중경암	다이아몬드 비트로 굴삭 코어 회수율 양호	0.3~1.0	5.0~16.0	2.5~3.5
경암	다이아몬드 비트로만 굴삭메탈 크라운 비트로 굴삭 비효율	1.0~3.0	16.0~60.0	3.5~4.5
극경암	다이아몬드 비트 마모율이 높은 암반	3.0 이상	60 이상	4.5 이상

5. 서울특별시 지반조사편람(2006)

<표 5> 노두조사법 및 지반 특징

구분	노두조사법 및 지반 특징	개략 현장 탄성파 속도(km/s)		
	원지반에서 분리·이동되어 다른 곳에 퇴적된 층으로			
퇴적토층	대체로 원지반보다 연약하며 입자의 크기나 구성에	-		
	따라 세분			
	조암광물이 대부분 완전풍화되어 암석으로서의 결합			
	력을 상실한 풍화잔류토로서 절리의 대부분은 풍화산			
풍화토층	물인 점토 등 2차 광물로 충진되어 흔적만 보이고 함	<1.2		
	수포화시에 전단강도가 현저히 저하되기도 하며, 손			
	으로 쉽게 부수어지는 지반			
	심한 풍화로 암석자체의 색조가 변색되었으며 충진물이			
· 공화암층	채워지거나 열린 절 리가 많고, 가벼운 망치 타격에	$1.0 \sim 2.5$		
0410	쉽게 부수어 지며 칼로 흠집을 낼수 있음. 절리간격	1.0~2.3		
	은 좁음 이하이며 시추시 암편만 회수되는 지반			
	절리면 주변의 조암광물은 중간풍화되어 변색되었으나			
연암층	암석내부는 부분적으로 약한 풍화가 진행 중이며 망	20~22		
긴급증	치 타격에 둔탁한 소리가 나면서 파괴되고, 일부 열린	2.0~3.2		
	절 리가 있으며 절리간격은 중간 정도인 지반			
	절리면에서 약한 풍화가 진행되어 일부 변색되었으나			
보통암층	암석은 강한 망치 타격에 다소 맑은 소리가 나면서	3.0~4.2		
모중심증	깨어지고, 절리면의 대부분이 밀착되어 있고 절리간			
	격이 넓음			
	조암광물의 대부분이 거의 신선하며 암석은 강한 망치			
경암층	타격에 맑은 소리를 내며 깨어지고, 절리면은 잘 밀착 4.0~			
	되어 있고 절리간격이 매우 넓음			
	거의 완전하게 신선한 암으로서 절리면은 잘 밀착되어			
극경암층	있고 강한 망치 타격에 맑은 소리가 나며 잘 깨어지지	>4.5		
	않으며 절리간격이 극히 넓음			

안전보건기술지침 개정 이력

□ 개정일 : 2023. 8. 24.

○ 개정자 : 안전보건공단 전문기술실 박주호

○ 개정사유 : 관련 법령 및 기준 등을 반영하여 지침 현행화

○ 주요 개정내용

- 관련규격 및 자료, 법규·규칙·고시 등 현행화, 용어의 정의 최신화, 암반의 안전기울기 현행 법령 기준 반영 등