Sketching with Hardware

04: Elektronik 02 + Digitale Schaltungen

Parallel- and Reihenschaltung

Reihenschaltung

• Der Gesamtwiderstand R_{total} ist die Summe aller Teilwiderstände in einer Reihenschaltung

$$R_{total} = R_1 + R_2 + ... + R_n = \sum_{i=1}^{n} R_i$$

- Die Spannung $U_{\it total}$ wird in n Teilspannungen aufgeteilt
- Die Stromstärke I ist an allen Stellen der Reihenschaltung konstant

Parallelschaltung

• Der Kehrwert des Gesamtwiderstands R_{total} entspricht der Summe der Kehrwerte aller Teilwiderstände einer Parallelschaltung

$$\frac{1}{R_{total}} = \frac{1}{R_1} + \frac{1}{R_2} + \dots + \frac{1}{R_n} = \sum_{i=1}^{n} \frac{1}{R_i}$$

- Der Strom I_{total} wird in n Teilströme aufgeteilt
- Der Spannungsabfall über jeden Widerstand der Parallelschaltung ist konstant

Spannungsteiler

- Reihenschaltung von Widerständen
- Teilt die Spannung in mehrere Teilspannungen auf
- Das Verhältnis des Spannungsabfalls über einen Widerstand zur Gesamtspannung entspricht dem Verhältnis dieses Widerstands zum Gesamtwiderstand

$$U_{total} = U_1 + U_2 + ... + U_n \qquad \frac{U_i}{R_i} = \frac{U_{total}}{R_{total}}$$

• Übung: $R1 = 100\Omega$, $R2 = 400\Omega \rightarrow \text{berechnen Sie } U1$

Noch Fragen?

Sie versorgen eine rote LED (\sim 2 V) über ein USB-Kabel (5 V) mit Strom. Um die LED nicht zu beschädigen, ist sie mit einem Vorwiderstand (220 Ω) in Reihe geschaltet.

Was tun Sie, wenn Sie die Helligkeit der LED reduzieren wollen?

Sie wollen einen Motor (9 V) mit Strom versorgen, haben aber nur AA-Batterien (1,5 V) zur Verfügung.

Der Motor aus der letzten Aufgabe läuft jetzt, aber leider werden die Batterien zu schnell leer. Wie kann man dieses Problem lösen?

Wie können Sie zwölf LEDs (~2 V) mit Strom versorgen, wenn Sie nur eine Stromquelle haben, die 5 V liefert?

Der Vorwiderstand aus dem letzten Beispiel wird sehr heiß. Wie verändern Sie die Schaltung, um dies zu vermeiden?

Kondensatoren – |-

- Speichern elektrische Ladung (Q)
- Gespeicherte Ladung pro Volt = Kapazität (C)
- Einheit der Kapazität: Farad (F)
 - -C=Q/U
- Polarität kann wichtig sein!
- Verwendung:
 - Ladung speichern
 - Signale filtern (z.B. Rauschen)
 - Spannungsspitzen ausgleichen

Transistor

- Elektronisch gesteuerter Schalter
- Wenn eine Spannung an der base anliegt, kann Strom vom collector zum emitter fließen
- Anwenung:
 - Große Lasten schalten
 - Logikgatter
 - Grundbaustein für digitale Schaltungen

TODO: Source

Transistor: MOSFET

- Zwei Typen:
 - Normal geöffnet
 - Normal geschlossen
- Kann wie ein spannungsgesteuerter Widerstand verwendet werden
- Kann große Lasten mit wenig Spannung schalten

Last mit MOSFET schalten

Pull-Down-Widerstand

- Wenn der Schalter geschlossen ist, kann Strom von 5 V über Gate und Source zu GND fließen
- Wenn der Schalter geöffnet wird, bleibt ein Restpotential zwischen dem Schalter und GND
 - → Über einen großen Widerstand zwischen *Gate* und *GND* kann dieses Potential abfließen

Integrated Circuits

- Spezielle Komponenten, die einen bestimmten Schaltkreis enthalten und in sich geschlossenes Bauteil hergestellt werden
- Können millionen von Transistoren, Widerständen und Kondensatoren enthalten
- Werden als "black box" verwendet
- Beispiele:
 - Logikgatter, Verstärker, Timer, Register, Speicher, Sensoren, ...

Beispiel: Das AND-Gatter

```
+V_{CC}
and(a, b){}
    if (a == 1)
    and (b == 1):
         return 1
                                                  out
    else:
         return 0
```

Example: LM555

Wie funktioniert ein 555 Timer-IC? vcc

- Verschiedene Betriebsmodi / mögliche Schaltungen
- Grundprinzip: Lade einen Kondensator und mach etwas, sobald dieser voll ist. Beispiel: astable multivibrator:
 - 1) C_1 wird geladen. THRES misst die Spannung an C_1 .
 - 1) \rightarrow die Spannung an *THRES* beginnt bei 0 V, da die gesamte Spannung verwendet wird, um C_1 zu laden. Je weiter C_1 geladen wird, umso höher die Spannung an *THRES*.
 - 2) Sobald die Spannung an *THRES* 2/3 V_{CC} erreicht, wird *DISCH* mit *GND* verbunden und *OUT* auf *high* (V_{CC}) geschalten.
 - → C₁ entlädt sich
 - 3) Sobald die Spannung an *THRES* wieder 1/3 of V_{CC} erreicht, wird die Verbindung zwischen *DISCH* und *GND* getrennt und *OUT* auf *low* (*GND*) geschalten.
 - → gehe zu Schritt 1

555: Astable Multivibrator

Reading Data Sheets

Tutorial 03 – Elektronik 02