Chern Classes

Deepak Badarinath

June 17 2020

\mathbb{CP}^n Facts

\mathbb{CP}^n Facts

- $\mathbb{CP}^n := \frac{\mathbb{C}^{n+1} \{0\}}{\sim}$, where $z \sim w$ iff $z = \lambda w$, where $\lambda \in \mathbb{C}^*$
- ullet $\mathbb{CP}^n=S^{2n+1}/\sim$ where $z\sim w$, iff $z=e^{i heta}w$, implies \mathbb{CP}^n is compact.
- Let $U_i \subset \mathbb{CP}^n$, $U_i = \{[z_0 : z_1 :: ... : z_n] | z_i \neq 0\}$ $\phi_i : U_i \to \mathbb{C}^n$, $[z_0 : z_1 :: ... : z_n] \mapsto (\frac{z_0}{z_i}, \frac{z_1}{z_i}, ..., \frac{z_i}{z_i}, ..., \frac{z_n}{z_i})$
- ϕ_i give \mathbb{CP}^n , a complex manifold structure
- \mathbb{CP}^n is thus orientable
- The subspace $[0:z_1:z_2:...:z_n]\cong \mathbb{CP}^{n-1}\subset \mathbb{CP}^n$ and $\mathbb{CP}^n/\mathbb{CP}^{n-1}\cong S^{2n}$
- ullet $\mathbb{CP}^1\cong \mathcal{S}^2$

Deepak Badarinath

Cohomology groups of \mathbb{CP}^n

Theorem

The cohomology groups, with coefficients in $\mathbb R$ of $\mathbb C\mathbb P^n$ vanish on odd dimensions and are one dimensional $\mathbb R$ vector spaces on all even dimensions $\leq 2n$

Cohomology groups of \mathbb{CP}^n

Theorem

The cohomology groups, with coefficients in \mathbb{R} of \mathbb{CP}^n vanish on odd dimensions and are one dimensional \mathbb{R} vector spaces on all even dimensions < 2n

$$H^{2k+1}(\mathbb{CP}^n)=0\forall k$$

$$H^{2i}(\mathbb{CP}^n) \cong \mathbb{R}, i = 0, 1, ...n$$

Computing the Cohomology groups of $\mathbb{CP}^n(Sketch)$

- Assume inductively that we know the cohomology groups of $\mathbb{CP}^m \ \forall \ 1 \leq m < n$ and it is given by $H^{2i}(\mathbb{CP}^m) \cong \mathbb{R} \ \forall i \leq m$ and $H^{2k+1}(\mathbb{CP}^m) = 0$
- $\bullet \ \mathbb{CP}^{n-1} \subset \mathbb{CP}^n \to (\mathbb{CP}^n, \mathbb{CP}^{n-1})$
- Exicision and homotopy axiom implies that $H^i(\mathbb{CP}^n, \mathbb{CP}^{n-1}) \cong H^i(S^{2n}) \ \forall i \geq 1$
- Long exact sequence axiom (with coefficients in $\mathbb R$) gives us:

$$H^{2n}(\mathbb{CP}^{n-1}) = 0 \leftarrow H^{2n}(\mathbb{CP}^n) \leftarrow H^{2n}(S^{2n}) \cong \mathbb{R} \stackrel{\delta}{\leftarrow} H^{2n-1}(\mathbb{CP}^{n-1}) = 0$$

◆ロト ◆個ト ◆差ト ◆差ト 差 めなべ

Computing the Cohomology groups of $\mathbb{CP}^n(Sketch)$

- Assume inductively that we know the cohomology groups of $\mathbb{CP}^m \ \forall \ 1 \leq m < n$ and it is given by $H^{2i}(\mathbb{CP}^m) \cong \mathbb{R} \ \forall i \leq m$ and $H^{2k+1}(\mathbb{CP}^m) = 0$
- $\bullet \ \mathbb{CP}^{n-1} \subset \mathbb{CP}^n \to (\mathbb{CP}^n, \mathbb{CP}^{n-1})$
- Exicision and homotopy axiom implies that $H^i(\mathbb{CP}^n, \mathbb{CP}^{n-1}) \cong H^i(S^{2n}) \ \forall i \geq 1$
- ullet Long exact sequence axiom (with coefficients in $\mathbb R$) gives us:

$$H^{2n}(\mathbb{CP}^{n-1}) = 0 \leftarrow H^{2n}(\mathbb{CP}^n) \leftarrow H^{2n}(S^{2n}) \cong \mathbb{R} \stackrel{\delta}{\leftarrow} H^{2n-1}(\mathbb{CP}^{n-1}) = 0$$

$$0 \leftarrow H^k(\mathbb{CP}^{n-1}) \leftarrow H^k(\mathbb{CP}^n) \leftarrow 0$$

$$\forall k < 2n-1$$

• $H^{2i}(\mathbb{CP}^n)\cong \mathbb{R}, i=0,1,...n$ and $H^{2k+1}(\mathbb{CP}^n)=0 orall$ k \blacksquare

Deepak Badarinath Chern Classes June 17 2020 4/31

Ring structure on DeRham Cohomology

Ring structure on DeRham Cohomology

• Given a manifold M, let $\Omega^n(M)$ be the set of smooth n forms on M. Define a bilinear map-:

$$\Omega^{n}(M) \times \Omega^{m}(M) \to \Omega^{n+m}(M)$$

$$(\omega, \tau) \to \omega \wedge \tau$$

This induces a map -:

$$H^{n}(M) \otimes H^{m}(M) \to H^{n+m}(M)$$

 $([\omega], [\tau]) \to [\omega \wedge \tau]$

• $H^*(M) := \bigoplus_{i=0}^{\infty} H^i(M)$ is a graded commutative ring.

Deepak Badarinath

Ring structure on DeRham Cohomology

• Given a manifold M, let $\Omega^n(M)$ be the set of smooth n forms on M. Define a bilinear map-:

$$\Omega^{n}(M) \times \Omega^{m}(M) \to \Omega^{n+m}(M)$$

$$(\omega, \tau) \to \omega \wedge \tau$$

This induces a map -:

$$H^{n}(M) \otimes H^{m}(M) \to H^{n+m}(M)$$

 $([\omega], [\tau]) \to [\omega \wedge \tau]$

- $H^*(M) := \bigoplus_{i=0}^{\infty} H^i(M)$ is a graded commutative ring.
- If f a smooth map from $M \to N$, then $f^* : H^*(N) \to H^*(M)$ is a map of graded commutative rings.
- In particular, if $M \cong N$, then $H^*(M) \cong H^*(N)$ as graded commutative rings

Recap

Recap

Thom Class and Direct Sum-Proposition 6.19

Let E_1, E_2 be two oriented vector bundles over M with canonical projections $\pi_i: E_1 \oplus E_2 \to E_i$ and let the Thom class of E be given by $\Phi(E)$, then

$$\Phi(E_1 \oplus E_2) = \pi_1^* \Phi(E_1) \wedge \pi_2^* \Phi(E_2)$$

Proof Idea: $\pi_1^*\Phi(E_1) \wedge \pi_2^*\Phi(E_2)$ is a class in $H_{cv}^{m+n}(E_1 \oplus E_2)$ whose restriction to each fiber, generates the compact cohomology of the fiber

Poincare Dual and Thom class- Proposition 6.24a)

The Poincare dual of a closed oriented submanifold S in an oriented Riemannian manifold M and the Thom class of the normal bundle of S can be represented by the same forms(in cohomology).

$$[\omega_S] = \Phi(N_S)$$

6/31

Transversal Intersection

Deepak Badarinath Chern Classes June 17 2020 7/3

Transversal Intersection

Definition

Let S, P be submanifolds of a manifold M, then S and P are said to intersect transversally, if $\forall x \in S \cap T$, $T_xS + T_xP = T_xM$

- Let S and P be closed oriented submanifolds of an oriented Riemannian manifold M.
- Assume S and P intersect transversally in M, then we can show that, $codim(S \cap P) = codim(S) + codim(P)$, where codim(S) := dim(M) dim(S)
- Thus the normal bundle of $S \cap P$ in M is the direct sum of the normal bundles of S and P, ie $N_{P \cap S} = N_S \oplus N_P$

0

$$\Phi(N_{P\cap S}) = \Phi(N_S \oplus N_P) = \Phi(N_S) \wedge \Phi(N_P)$$
$$\omega_{S\cap P} = \omega_S \wedge \omega_P$$

Geometric interpretation of wedge product

Deepak Badarinath Chern Classes June 17 2020 8/31

Geometric interpretation of wedge product

Theorem-Geometric interpretation of wedge product

Let M be a closed oriented manifold and S,P be closed oriented submanifolds of M which meet transversally, let $[\omega_S], [\omega_P]$ be the cohomology classes of the Poincare dual of S,P. Then the Poincare dual of $S\cap P$ is $[\omega_S]\wedge [\omega_P]$

Cohomology Ring of \mathbb{CP}^n

Cohomology Ring of \mathbb{CP}^n

Theorem

The cohomology ring (with coefficients in \mathbb{R}) of \mathbb{CP}^n is isomorphic to $\mathbb{R}[X]/(X^{n+1})$

Computing the Cohomology ring of \mathbb{CP}^n

Deepak Badarinath Chern Classes June 17 2020 10 / 31

Computing the Cohomology ring of \mathbb{CP}^n

- ullet Let $M:=\mathbb{CP}^n$ and $[\omega]$ be a generator of $H^2_{dR}(M)$
- We show that $\omega^n = \omega \wedge \omega ... \wedge \omega \neq [0] \in H^{2n}_{dR}(M)$
- Let $N_i = [z_0 : z_1 : ... : z_{i-1} : 0 : z_{i+1} : ... : z_n] \cong \mathbb{CP}^{n-1} \subset M$ $\forall i \in \{1, 2, 3, ... n\}$
- Let $[\omega_i] \in H^2(M)$ be the Poincare dual of N_i , since $H^2(M) \cong \mathbb{R}$, $\exists \lambda_i \in \mathbb{R}$ s.t $[\omega_i] = \lambda_i \omega$
- Note that N_i meets $\bigcap_{j \neq i} N_j$ transversally $\forall i$ and $\bigcap_i N_i = [1:0:0...0] := x$
- We know that the Poincare dual of any point $\{x\}$ is $dV_M \neq 0$
- ullet By previous theorem, Poincare dual of $\{x\}=dV_M=(\Pi_i\lambda_i)\omega^n
 eq 0$

◆ロト ◆部ト ◆恵ト ◆恵ト ・恵 ・ 釣へ○

Cohomology ring of \mathbb{CP}^n

Cohomology ring of \mathbb{CP}^n

- Define $\Gamma: H^*_{dR}(\mathbb{CP}^n) \to \mathbb{R}[X]/(X^{n+1})$, $[\omega] \to X$, then Γ is a well defined ring isomorphism
- Hence $H^*_{dR}(\mathbb{CP}^n) \cong \mathbb{R}[X]/(X^{n+1})$
- Define the Poincare series of a manifold M to be $P_t(M) = \sum_{n \in \mathbb{Z}} dim(H^n_{dR}(M))t^n$

Deepak Badarinath

Cohomology ring of \mathbb{CP}^n

- Define $\Gamma: H^*_{dR}(\mathbb{CP}^n) \to \mathbb{R}[X]/(X^{n+1})$, $[\omega] \to X$, then Γ is a well defined ring isomorphism
- Hence $H^*_{dR}(\mathbb{CP}^n) \cong \mathbb{R}[X]/(X^{n+1})$
- Define the Poincare series of a manifold M to be $P_t(M) = \sum_{n \in \mathbb{Z}} dim(H^n_{dR}(M))t^n$
- The Poincare series of $\mathbb{CP}^n=1+t^2+...+t^{2n}=rac{1-t^{2n}}{1-t^2}$

Complex Vector Bundles

Deepak Badarinath Chern Classes June 17 2020 12/3

Complex Vector Bundles

Definition

A Complex Vector Bundle of complex dimension n over a manifold M is a fiber bundle over M with fibres \mathbb{C}^n and structure group $GL_n(\mathbb{C})$

A complex line bundle is a $\mathbb C$ vector bundle of rank 1

Remarks

- Can reduce structure group of a complex vector bundle to U(n), similar to how we reduced the structure group to O(n) in the real case
- \mathbb{C} -vector bundles of dim n are \mathbb{R} -vector bundles of dim 2n
- Since $U(1) \cong SO(2)$, we have a bijection between $\{\mathbb{C} \text{ line bundles}\} \cong \{\mathbb{R} \text{ Oriented 2 dim vector bundles}\}$

12/31

First Chern Class and some properties

Deepak Badarinath Chern Classes June 17 2020 13 / 31

First Chern Class and some properties

Definition

The First Chern Class of a complex line bundle(L) over M, is defined as the Euler Class of it's underlying real 2 dimensional bundle($L_{\mathbb{R}}$)

$$c_1(L) := e(L_{\mathbb{R}})$$

13 / 31

Deepak Badarinath Chern Classes June 17 2020

First Chern Class and some properties

Definition

The First Chern Class of a complex line bundle(L) over M, is defined as the *Euler Class* of it's underlying real 2 dimensional bundle($L_{\mathbb{R}}$)

$$c_1(L) := e(L_{\mathbb{R}})$$

- If L, L' are $\mathbb C$ line bundles with transition maps $\{g_{\alpha\beta}, g'_{\alpha\beta}\}$ and $g_{\alpha\beta}, g'_{\alpha\beta} : U_{\alpha} \cap U_{\beta} \to \mathbb C^*$
- $L \otimes L'$ is the $\mathbb C$ line bundle with transition maps $\{g_{\alpha\beta}.g'_{\alpha\beta}\}$
- Recall the formula for the Euler class for 2 dim vector bundles $e(E) = -(2\pi i)^{-1} \sum_{\gamma} d(\rho_{\alpha} d(\log(g_{\gamma\alpha})))$ on U_{α}
- $c_1(L \otimes L') = c_1(L) + c_1(L')$

◆ロト ◆個ト ◆ 恵ト ◆ 恵 ・ から(で)

13 / 31

Properties of first chern class ctd

Deepak Badarinath Chern Classes June 17 2020 14/31

Properties of first chern class ctd

- Let L^* be the dual of the $\mathbb C$ line bundle L, then we have $L\otimes L^*=Hom(L,L)$
- Hom(L, L) has a nowhere vanishing section, namely the identity map
- Thus $0 = e(L \otimes L^*) = c_1(L \otimes L^*) = c_1(L) + c_1(L^*)$
- $c_1(L) = -c_1(L^*)$
- If $f: M \to N$ and E a rank 2 vector bundle over N, then $c_1(f^{-1}(E)) = f^*(c_1(E))$ (Naturality of Euler Class)

Deepak Badarinath Chern Classes June 17 2020 14/31

Examples of complex vector bundles

Deepak Badarinath Chern Classes June 17 2020 15 / 31

Examples of complex vector bundles

Let V be a complex vector space of dim n and let $P(V) := \{1 \text{ dim subspaces of } V\}$, P(V) is the projectivization of V. On P(V) there are several natural vector bundles.

- Product bundle: $\hat{V} := V \times P(V)$
- Universal Subbundle: S which is the subbundle of \hat{V} defined as, $S:=\{(I,v)\in P(V)\times V|v\in I\}$ Note that the fibre of S over a point $I\in P(V)$ is the I considered as a complex line in V
- Universal Quotient Bundle: Q which is defined by the exact sequence of bundles,

$$0 \to S \to \hat{V} \to Q \to 0$$

This short exact sequence is called the Tautological Exact Sequence over P(V)

 S^* is called the Hyperplane Bundle

4 D > 4 D > 4 D > 4 D > 3 D 9 Q

15/31

Euler class of the universal subbundle over \mathbb{CP}^n

Deepak Badarinath Chern Classes June 17 2020 16 / 31

Euler class of the universal subbundle over \mathbb{CP}^n

- Let $e(S_{\mathbb{CP}^n}) :=$ Euler class of $S_{\mathbb{CP}^n}$. We claim that $[e(S_{CP^n})] \in H^2(\mathbb{CP}^n)$ generates the cohomology ring of $H^*(\mathbb{CP}^n)$.
- ullet Enough to show that $[e(S_{\mathbb{CP}^n})]
 eq 0$
- Let $N:=[z_0:z_1:0:0,..:0],\ N\hookrightarrow\mathbb{CP}^n$ and $N\cong\mathbb{CP}^1$
- Note that $\iota^{-1}S_{\mathbb{CP}^n}=S_N$ where ι is the inclusion map
- ullet By naturality of the Euler class, we get that $\iota^*(e(S_{\mathbb{CP}^n}))=e(S_N)$
- ullet $N\cong \mathbb{CP}^1$ and also this will induce a bundle iso $S_N\cong S_{\mathbb{CP}^1}$
- ullet Enough to show that $e(S_{\mathbb{CP}^1})$ is not zero

Deepak Badarinath Chern Classes June 17 2020 16 / 31

Euler class of the universal subbundle over $\mathbb{CP}^1(\mathsf{Sketch})$

Deepak Badarinath Chern Classes June 17 2020 17/3

Euler class of the universal subbundle over $\mathbb{CP}^1(\mathsf{Sketch})$

- Since the dimension of \mathbb{CP}^1 is equal to the (real)dimension of the line bundle $S_{\mathbb{CP}^1}$, we can use the Hopf index theorem to calculate the Euler number of $S_{\mathbb{CP}^1}$
- ullet We define a section to the sphere bundle of $S_{\mathbb{CP}^1}$ with a singularity.
- ullet We show that the local degree around the singularity is \neq 0, then we are done by the Index theorem
- Let $U_i := \{[z_0 : z_1] : z_i \neq 0\}, i \in \{0, 1\}$
- Define a section with a singularity at [0:1] by $s:U_0 \to S|_{U_0}$, $[1:z] \to ([1:z],(1,z))$
- Find index of the singularity at [0:1] using the coordinate chart on U_1 , $[z_0:z_1] \xrightarrow{\phi_1} \frac{z_0}{z_1}$
- $s|_{U_1\cap U_0}$ in local coordinates on U_1 is the map $\tilde{s}:\mathbb{C}-0\to\mathbb{C}-0\times\mathbb{C}-0$, $z\to(z,\frac{1}{z})$
- Local degree of the map $S^1 \to S^1, z \to \frac{1}{z}$ is -1
- ullet Euler class of the univ subbundle over \mathbb{CP}^1 is not 0

Remark

Deepak Badarinath Chern Classes June 17 2020 18

Remark

- After making a choice of basis for any $\mathbb C$ vector space(V) of dimension n, we have $V \cong \mathbb C^n$, $P(V) \cong \mathbb C\mathbb P^n$ and a bundle isomorphism of their universal subbundles, $S_{P(V)} \cong S_{\mathbb C\mathbb P^n}$
- By naturality of the Euler Class, we then see that $H^*(P(V))$ is generated by $e(S_{P(V)})$

18 / 31

Deepak Badarinath Chern Classes June 17 2020

Projectivization of a Complex Vector Bundle

19/31

Deepak Badarinath Chern Classes June 17 2020

Projectivization of a Complex Vector Bundle

- Let $\rho: E \to M$ a $\mathbb C$ vector bundle, transition functions $g_{\alpha\beta}: U_{\alpha} \cap U_{\beta} \to GL(n,\mathbb C)$
- $E_p := \text{fibre over p}$, $PGL(n, \mathbb{C}) := GL(n, \mathbb{C})/\{\text{scalar matrices}\}$
- Projectivization of E is defined as the fibre bundle $\pi: P(E) \to M$ whose fibres are $P(E_p)$ and transition maps are $\overline{g_{\alpha\beta}}: U_{\alpha} \cap U_{\beta} \to PGL(n,\mathbb{C})$ induced by $g_{\alpha\beta}$
- A point in P(E) corresponds to a line I_p in E_p

Tautological Exact Sequence

We construct \mathbb{C} vector bundles over P(E)

Deepak Badarinath Chern Classes June 17 2020 20 / 31

Tautological Exact Sequence

We construct \mathbb{C} vector bundles over P(E)

• Pullback bundle: $\pi^{-1}E$, a bundle over P(E) obtained by pulling back the vector bundle E over M via π Fibre of pullback bundle over $I_p \in P(E)$ is E_p When restricted to $\pi^{-1}(p)$, it becomes the trivial bundle,

$$\pi^{-1}E|_{P(E)_p}=P(E)_p\times E_p$$

as $\rho: E_p \to p$ is a trivial bundle

• Universal Subbundle: S over P(E) is defined as,

$$S = \{(I_p, v) \in \pi^{-1}E | v \in I_p\}$$

It's fibre at I_p is all the points in I_p

Deepak Badarinath

• Universal Quotient Bundle: $Q := Coker(S \to \pi^{-1}E)$

4 D > 4 B > 4 B > 4 B > 4 B > 4 B > 6 B > 9 C C

June 17 2020

20 / 31

Chern Classes

Commutative diagram

$$0 \to S \to \pi^{-1}E \to Q \to 0$$

< ロ ト ∢ 個 ト ∢ 直 ト ∢ 直 ト) 直 ・ 夕 Q (^

Defining Chern Classes

Deepak Badarinath Chern Classes June 17 2020 22 / 31

Defining Chern Classes

- Define $x := c_1(S^*)$ then x is a cohomology class in $H^2(P(E))$
- Let \tilde{S} be the universal subbundle of the projectivized vector space $P(E_p)$ and S the universal subbundle of P(E)
- Notice that S restricted to $P(E_p)$ is \tilde{S}
- Using naturality of the Euler class, to the inclusion map of $P(E_p) \to P(E)$ we get $c_1(\tilde{S})$ is the restriction of -x to $P(E_p)$
- But we have seen that $\{1,-c_1(\tilde{S}),...,(-c_1(\tilde{S}))^{n-1}\}$ generates the cohomology of $P(E_p)$
- Thus, the cohomology classes $1, x, ..., x^{n-1}$ on P(E) restricted to each fiber $P(E_p)$ freely generate the cohomology of that fibre

22 / 31

Defining Chern Classes ctd

Deepak Badarinath Chern Classes June 17 2020 23 / 31

Defining Chern Classes ctd

- By the Leray-Hirsch Thm, $H^*(P(E))$ is a free module over $H^*(M)$ with basis $\{1, x, ..., x^{n-1}\}$
- So, x^n can be written as a unique linear combination of $1, x, ..., x^{n-1}$ with coefficients in $H^*(M)$
- These coefficients are by definition the Chern classes of the complex vector bundle E:

$$x^{n} + c_{1}(E)x^{n-1} + ... + c_{n}(E) = 0$$
 $c_{i}(E) \in H^{2i}(M)$

In this equation by $c_i(E)$ we really mean $\pi^*c_i(E)$

- The ith Chern class of E is defined as $c_i(E)$
- The total Chern class $c(E) := 1 + c_1(E) + ... + c_n(E) \in H^*(M)$
- The polynomial $x^n + c_1(E)x^{n-1} + ... + c_n(E)$ is called the Chern polynomial of E

Deepak Badarinath Chern Classes June 17 2020 23 / 31

Observations

Deepak Badarinath Chern Classes June 17 2020 24/3

Observations

• Cohomology ring of P(E) is given by-:

$$H^*(P(E)) \cong H^*(M)[x]/(x^n + c_1(E)x^{n-1} + ... + c_n(E))$$

where $x = c_1(S^*)$ and n is rank of E

- $H^*(P(E)) \cong H^*(M) \otimes H^*(\mathbb{C}P^{n-1})$ (By Leray Hirsch)
- This implies that the Poincare Series of P(E) is given by-:

$$P_t(P(E)) = P_t(M) \frac{1 - t^{2n}}{1 - t^2}$$

Deepak Badarinath

First Chern class of a line bundle

Deepak Badarinath Chern Classes June 17 2020 25/3

First Chern class of a line bundle

- We have 2 definitions of the first chern class of a line bundle L, as the Euler class of $L_{\mathbb{R}}$ and as a coefficient in the polynomial from the previous slide
- These two definitions can be seen to agree. (Bott and Tu Pg 271)

Deepak Badarinath Chern Classes June 17 2020 26 / 3

• Naturality: If $f: Y \to X$ and E is a complex vector bundle over X, then $c(f^{-1}(E)) = f^*c(E)$

$$f^{-1}E \qquad E$$

$$\downarrow \qquad \downarrow$$

$$Y \xrightarrow{f} X$$

Proof: Let S_E be the universal subbundle over P(E). $f^{-1}PE=P(f^{-1}E)$ and $f^{-1}S_E^*=S_{f^{-1}E}^*$, if $x_E=c_1(S_E^*)$, then

Deepak Badarinath

• Naturality: If $f: Y \to X$ and E is a complex vector bundle over X, then $c(f^{-1}(E)) = f^*c(E)$

Proof: Let S_E be the universal subbundle over P(E). $f^{-1}PE = P(f^{-1}E)$ and $f^{-1}S_E^* = S_{f^{-1}E}^*$, if $x_E = c_1(S_E^*)$, then $x_{f^{-1}E} = c_1(S_{f^{-1}E}^*) = c_1(f^{-1}S_E^*) = f^*x_E$

Deepak Badarinath Chern Classes June 17 2020 26 / 31

Proof of Naturality Ctd

Deepak Badarinath Chern Classes June 17 2020 27 / 3

Proof of Naturality Ctd

• Applying f^* to

$$x_E^n + c_1(E)x_E^{n-1} + ... + c_n(E) = 0$$

Deepak Badarinath Chern Classes June 17 2020

Proof of Naturality Ctd

• Applying f^* to

$$x_E^n + c_1(E)x_E^{n-1} + ... + c_n(E) = 0$$

we get

$$x_{f^{-1}E}^n + f^*c_1(E)x_{f^{-1}E}^{n-1} + ... + f^*c_n(E) = 0$$

Hence,

$$c_i(f^{-1}E) = f^*c_i(E)$$

Naturality Consequences

Deepak Badarinath Chern Classes June 17 2020 28 / 3

Naturality Consequences

- 1) If E and F are isomorphic vector bundles over X, then c(E) = c(F)
- 2) If E is a trivial complex vector bundle over M then $c_i(E) = 0$ for all i (E would be the pullback of a vector bundle over a point)
- Therefore, Chern classes measure "twisting" of a vector bundle.

Deepak Badarinath Chern Classes June 17 2020 28 / 31

Deepak Badarinath Chern Classes June 17 2020 29 / 31

- Let V be a complex vector space. If S^* is the hyperplane bundle over P(V), then $c_1(S^*)$ generates the algebra $H^*(P(V))$
- Whitney Product Formula: $c(E \oplus F) = c(E)c(F)$ (Proof in next talk)
- If E is a rank n complex vector bundle, then $c_i(E) = 0$ for i > n

Deepak Badarinath Chern Classes June 17 2020 29 / 31

Deepak Badarinath Chern Classes June 17 2020 30 / 31

- If E has a nonvanishing section then the top Chern class $c_n(E)$ is 0
- Proof: We get a section s_1 of P(E) as follows, $\forall p$ in X(the base manifold) define $s_1(p)$ as the line connecting the origin to s(p) in E_p

$$P(E)$$

$$s_1 \stackrel{\wedge}{\downarrow}_{\pi}$$

$$X$$

- $s_1^{-1}S_E$ is a line bundle on X with a non vanishing section. Hence it is trivial
- ullet From naturality of Chern classes, we get $s_1^*c_1(S_E)=0$
- Implies $s_1^* x = 0$
- Applying s_1^* to, $x^n + c_1(E)x^{n-1} + ... + c_n(E) = 0$,we get $s_1^*c_n = 0$
- By our abuse of notation we really mean, $s_1^*\pi^*c_n(E)=0$ then $c_n(E)=0$

Final Property of Chern class

Deepak Badarinath Chern Classes June 17 2020 31 / 31

Final Property of Chern class

• The top Chern class of a complex vector bundle E is the Euler class of it's realization $c_n(E) = e(E_{\mathbb{R}})$, where n = rank(E)

Proof in later talks

4□ > 4□ > 4 = > 4 = > = 90

31/31

Deepak Badarinath Chern Classes June 17 2020