NETWORK THEORY (EC2001)

Assignment 2

1. i) Determine $i_1(0^+)$ for the circuit shown in figure

- ii) Let $I_1(S)$ and $I_2(S)$ are the laplace transform of $I_1(t)$ and $I_2(t)$ respectively then determine the expression of $I_1(S)$ and $I_2(S)$
- 2. Determine i_L and i_1 for $t \ge 0$

3. Determine the steady-state voltages across the capacitor for C1=1F, C2=1/2 F, $V_1(0)=2V$, $V_2(0)=1V$, R=1 Ω

4.

5. i) Find the value of t_0 which results in a transient free response

- ii) In the above case, if the excitation is $cos\;\omega_0 t,$ then t_0
- iii) In the above case, if the excitation is sin (ωt -10°), then t_0
- iv) Find the value of $t_{\rm 0}$

6. Determine the current $i_R(t)$, provided the network is in the steady state

7. Determin $I_1,\,I_2$, $E_0,\,E_2$ Network is in steady state and is in phasor domain

8.

ii) A_1 leads 6A, A_2 leads 12A, A_3 leads 20A then A leads

9. The angle between $V_{\scriptscriptstyle L}$ and $V_{\scriptscriptstyle S}$ is......The network is in steady state

10. Determine I, network is in steady state

11. The phasor I_1 leads I_2 by.....? The network is in steady state

12. Network is in steady state. What the value of C will result a unity P.F at the a.c source

13. Network is in steady state. If I $I_1I=I$ $I_2I=10A$ the I_L and I_R are ? Also find P.F

14. Network is in steady state, determine the average power dissipated and the P.F of the circuit.

15. Network is in steady state, determine the average power dissipated in 5Ω resistor is 10 watt, the the P.F of the circuit

16. A 159.23 μ F capacitor is in parallel with a resistor R draws a current of 25A from a 300V, 50Hz supply. Determine the frequency at which the circuit draws the same 25A from a 360V supply.

17. Let $i_1(t)$ = -sin ω t mA, $i_2(t)$ = cos ω t mA then $i_3(t)$ =?

18. Network is in steady state, determine the steady state current i_R and i_L

19. At resonance which one of the statement is true

- 20. In a series RLC circuit Vs=100, R=10 Ω , XL= 20 and Xc=20, the voltage across the capacitor is
- 21.i) In a series RLC circuit the Q factor is 100. If all the component are doubled then
 - ii) In the above case the circuit is parallel
- 22.i) In a series RLC circuit the P.F at f=F_L is
 - ii) In the above case the circuit is parallel RLC then $f=F_L$ is
- 23. In a series RLC circuit the phasor diagram at a certain frequency is shown in figure, the operating frequency is

- 24.At resonance, the parallel circuit of the figure is constituted by an iron cored coil and the capacitor will behaves like
- a) an open circuit
- b) a short circuit
- c) pure resistor of R
- d) a pure resistor of value much higher than R
- 25. Network is in steady state, determine ω_{0}

26. Network is in steady state, determine $\omega_0\,\text{what}$ happens when $L\text{--}CR^2$

27. Network is in steady state, determine the average power dissipated in the circuit at resonance

ii)

i (t) 2 9 4 H

i (t) 3 9 4 H

i (t) 4 H

i (t)

28. Network is in steady state, determine ω_{0}

29.

