PATENT ABSTRACTS OF JAPAN

(11)Publication number:

2000-264713

(43)Date of publication of application: 26.09.2000

(51)Int.CI.

CO4B 28/36

/(CO4B 28/36

CO4B 18:08

(21)Application number: 11-073221

(71)Applicant: TAIHEIYO CEMENT CORP

)

(22)Date of filing:

18.03.1999

(72)Inventor: OSHIMA KIYOSHI

MISAKI NORIHIKO

FUJII SATORU

(54) PRODUCTION OF SULFUR COMPOSITION

(57)Abstract:

PROBLEM TO BE SOLVED: To obtain a sulfur composition less liable to fire, containing a uniformly dispersed filler and used for obtaining a high density and high strength hardened body by mixing sulfur and a mineral powder in a specified weight ratio at a specified temperature. SOLUTION: Sulfur and a mineral powder are mixed in a weight ratio of 1:(1-4) at 120-160° C to obtain the objective sulfur composition. Part of the mineral powder may be substituted by an aggregate, preferably a fine aggregate for concrete and the temperature of the sulfur is preferably 120-160° C. A hardened body of the sulfur composition consists of sulfur and the mineral powder as a filler. The sulfur may be powdery or flaky free sulfur or molten sulfur and sulfur obtained as a byproduct in an oil refining step or sulfur commercially available as a reagent may also be used. The mineral powder is preferably fine powder having 0.1 μm average particle diameter and fly ash, silica or blast furnace slag may be used.

(19)日本国特許庁(JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-264713 (P2000-264713A)

(43)公開日 平成12年9月26日(2000.9.26)

(51) Int.Cl.7

識別記号

FΙ

テーマコード(参考)

C04B 28/36 // (C04B 28/36

18:08)

C 0 4 B 28/36

4G012

審査請求 未請求 請求項の数3 OL (全 3 頁)

(21)出願番号	特顧平11-73221	(71)出顧人 00000240
		太平洋セメント株式会社
(22)出顧日	平成11年3月18日(1999.3.18)	東京都千代田区西神田三丁目8番1号
		(72)発明者 大嶋 清
		山口県小野田市大字小野田6276番地 太平
		洋セメント株式会社内
		(72)発明者 三崎 紀彦
	0	山口県小野田市大字小野田6276番地 太平
		洋セメント株式会社内
		(72) 発明者 藤井 悟
	2	山口県小野田市大字小野田6276番地 太平
		祥セメント株式会社内
		Fターム(参考) 4C012 PA27 PC12 PD01 PE03 PE07

(54) 【発明の名称】 硫黄組成物の製造方法

(57)【要約】

【解決課題】 硫黄よりもフィラーの含有量が多い硫黄 組成物であって、硬化した際に高い強度発現性を示す一 方でブリージングも起こり難い、均質な硫黄組成物を製 造する。

【解決手段】 重量比で溶融硫黄1と鉱物質粉末1~4を120~160℃で混合する。

1

【特許請求の範囲】

【請求項1】 重量比で硫黄1と鉱物質粉末1~4を1 20~160℃で混合することを特徴とする硫黄組成物 の製造方法。

【請求項2】 鉱物質粉末の一部をコンクリート用骨材 に置換して混合することを特徴とする請求項 1 記載の硫 黄組成物の製造方法。

【請求項3】 混合に用いる硫黄の温度が120~16 0℃であることを特徴とする請求項1又は2記載の硫黄 組成物の製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は硫黄と鉱物質粉末か らなる硫黄組成物の製造方法に関する。より詳しくは、 均質で高強度の硬化体を得るための硫黄組成物の製造方 法に関する。

[0002]

【従来の技術】硫黄に骨材を配合し、硫黄が溶融する温 度で混練した後、冷却固化させた硫黄モルタルないし硫 黄コンクリートが知られている。硫黄モルタルや硫黄コ 20 ンクリートを製造する場合、硫黄が結合材となって骨材 と分離するのを防止し、また冷却固化の際の収縮や空隙 を少なくするため、硫黄に対しその溶融温度以下で不活 性なフライアッシュ、シリカ、粘土鉱物などの鉱物質粉 末からなるフィラーを配合することが行われている。こ のフィラーは配合量を多くする程、前記効果を増進する ことができる。

【0003】その反面、フィラー自体は殆どが硬化性を 有しない物質であるため、フィラーの配合量が多くなる と、得られる硫黄コンクリートなどの硬化体の強度が低 30 下すること、更に充填性が低下するため空隙が留まり易 く高密強固な硬化体が得られ難くなるといった問題が発 生する。このため、硫黄とフィラーを常温で混合粉砕 し、この混合粉砕物を加熱することで硫黄分を溶融さ せ、また必要に応じてこれに骨材を混合し、溶融硫黄に よって混合物が流動性を有する間に成形又は現場打ちす ることが行われていた。しかるに、原料として硫黄乾粉 又はフレークを用い、これを粉砕混合すると空気中で発 火することがあるため、その作業は慎重にならざるを得 ず、均一にフィラーが分散した混合物が得られ難い。ま た高密な硬化体を得るには充填時に於ける充填物の流動 性が高いものほど良いが、フィラー含有量が多い溶融硫 黄組成物は粘性が髙くなり易く、流動性が不十分である と均質な髙密硬化体を得ることが困難になる。

[0004]

【発明が解決しようとする課題】本発明は、硫黄とフィ ラー又は硫黄とフィラーと骨材からなる硫黄組成物であ って、特に含有フィラー又は含有フィラーと骨材が含有 硫黄成分よりも多い硫黄組成物に対し、高緻密で高強度

ィラーが均一に分散された硫黄組成物の製造方法を提供 することを目的とする。

[0005]

【課題を解決するための手段】本発明者らは前記目的遂 行のため、硫黄よりも鉱物質粉末の含有量が多い種々の 配合割合での硫黄と鉱物質粉末からなる混合物の粘性と 温度の関係を詳細に調べ検討を行った結果、何れの配合 物においても約160℃を超えると混合物の粘性が急激 に上昇するという知見を得、また更に、予め加温した硫 黄を鉱物質粉末に加えて混合することで混合操作手法の 10 如何に拘わらず発火等を起こさず、従って高い混合効果 を奏する操作も行うことができるので極めて均質な混合 物が容易に得られ、その結果フィラーが硫黄によって斑 無く緻密に結合された高強度の硬化体になるという知見 を得、本発明を完成するに至った。

【0006】即ち、本発明は下記(1)~(3)で表さ れる硫黄組成物の製造方法である。

(1)重量比で硫黄1と鉱物質粉末1~4を120~1 60℃で混合することを特徴とする硫黄組成物の製造方 法。(2)鉱物質粉末の一部をコンクリート用骨材に置 換して混合することを特徴とする前記(1)の硫黄組成 物の製造方法。(3)混合に用いる硫黄の温度が120 ~160℃であることを特徴とする前記(1)又は (2)の硫黄組成物の製造方法。

[0007]

【発明の実施形態】以下、本発明を具体的に説明する。 本発明の硫黄組成物硬化体とは、硫黄とフィラーとして の鉱物質粉末からなるものであるが、フィラーの一部を 公知のコンクリート用骨材、望ましくは細骨材に置換し たものを用いることができる。本発明で用いる硫黄は、 粉末状又はフレーク状の単体硫黄や溶融硫黄を挙げると とができるが、この硫黄は何れの製造方法で得られたも のでも良く、例えば石油精製の工程で副産された硫黄で も試薬として市販されているものであっても良い。鉱物 質粉末としては、平均粒径0.1μm以下の微粉が望ま しく、フライアッシュ、シリカ、髙炉スラグなどの他、 従来の硫黄コンクリートで用いられている粘土鉱物など の公知フィラー材であれば特に限定されない。

【0008】とのような硫黄と鉱物質粉末を重量比で硫 40 黄1に対し、鉱物質粉末1~4、好ましくは1~3配合 し混合する。鉱物質粉末の一部を公知フィラー材と置換 させる場合は概ね鉱物質粉末のおよそ半分までの体積を 公知フィラー材とすることができる。鉱物質粉末の重量 比が硫黄 1 に対し4を超える場合は、硫黄の結合材とし ての作用が少なくなる為、強固な成形体が得られないの で好ましくなく、また鉱物質粉末の重量比が硫黄1に対 し1未満の場合は、硫黄が冷却固化する際かなりの収縮 を伴い亀裂が発生し易くなるので好ましくない。混合に 用いる硫黄は、溶融状態の硫黄とする。粉状又はフレー の硬化体を得るための、発火等が極めて起こり難く、フ 50 ク状などの硫黄を原料とする場合は、これを120~1

3

60℃に加温し、溶融させて用いる。更に望ましくは混 合に用いる鉱物質粉末も硫黄と概ね同様の温度で加熱し たものが良い。加温は、例えば該当原料を入れたステン レス容器などの200℃程度の耐熱容器を髙温槽で加熱 すれば容易に行うことができる。このような硫黄と鉱物 質粉末との混合を120~160℃で行う。120℃未 満の混合温度では硫黄が溶融しないため混合効率が低 く、硫黄が均一に分散した混合物が得難くなるので好ま しくない。また、160℃を超える温度では硫黄の粘性 が急激に上昇するため、やはり混合効率が低下し、均一 10 混合が困難になるため好ましくない。混合方法は特に限 定されないが、例えば加熱チャンバーを有するミキサー に鉱物質粉末を入れて120~160℃で加熱し、別に 耐熱容器等で120~160℃に加熱溶融された硫黄を 該ミキサー中に序々に加えながら前記温度範囲で混合を 行うことができる。該混合に当たってはミキサー混合 後、ニーダー等を用いて混練りを行うとより混合効果が 髙まるので望ましい。混合時間は処理量や混合装置に応 じ適宜選定すれば良いが、概ね1分~30分が適当であ

【0009】得られた混合物は、所望形状の型枠に充填するか、構築物や路盤等の現場打ち作業などに供し、何れも冷却固化すると比較的強固で緻密な硬化物となる。尚、該混合物を型枠に充填して成形する際は、充填物が冷却する前に加圧成形を行うとより一層高密度、高強度の硬化成形物を得ることができる。

[0010]

*

*【実施例】硫黄粉を140℃で溶融し、この溶融硫黄の 粘度をB型粘度計で測定したところ、5mPa・sであ った。この粘度の溶融硫黄と、別に140℃に加熱した 平均粒子径20μmのフライアッシュとを表1に表す配 合重量比となるように、まず加熱フライアッシュを表 1 に記した温度に加熱されたレディゲミキサーに入れ、次 いで溶融硫黄を該ミキサーに徐々に入れながら混合を行 った。混合中はレディゲミキサーの加熱温度を維持しつ つ約10分混合を行い、加熱混合物を、金型成形機を用 いて直ちに直径50mm、高さ100mmの円柱形状に 面圧100Kg/cm'で一軸加圧成形した。加圧後、 金型中で自然放冷し、脱型するととにより、円柱形状の 硬化体を得た。得られた硬化体の嵩密度(JIS Z8 401に準拠した測定方法)及び圧縮強度 (JIS A 1108に準拠した測定方法)を表1に記す。また、硬 化体の目視による亀裂発生有無等の外観観察も行った。 その結果を併せて表1に記す。尚、参考として、共に無 加熱の硫黄粉100重量部と平均粒子径20μmのフラ イアッシュ250重量部を常温で混合し、混合物を直径 20 50 mm、高さ100 mmの円柱形状の金型に充填し、 次いでとの混合物が充填された金型を140℃に加熱 し、面圧100Kg/cm²で加圧し、これを自然放冷 後脱型して得た硬化体の嵩密度、圧縮強度、外観観察の 測定結果も比較例2として表1に記した。

【0011】 【表1】

	配名	1 ·		合時の 硬化体	圧縮強度	
	i i	オライアッシュ	加熱温度	英密度	N / mm t	亀裂発生 有・無
実施例 1	1	2	1 4 0	1. 98	4 8	無
実施例 2	1	2. 5	140	1. 90	4 0	無
実施例 9	1	2	1,55	1.99	4 9	無
実施例 4	1	2	1 2 5	1. 98	4 7	無
比較例 1	1	2	170	1.90	2 5	湉
比較例 2	1	2. 6.	2 0	1.82	2 1	無

[0012]

【発明の効果】本発明の硫黄組成物の製造方法は、硫黄 が高い流動状態のもとでフィラーと混合されるので混合 を容易に行うことができ、しかも混合の際、発火等を起 こすこともないので作業性に優れる。得られた混合物も 硫黄が均一分散された状態のものとなり、この混合物の 硬化体はブリージングが発生し難いという特性を有する と共に高密均質であって、高い強度を発現する。