Permutation Graph

https://vjudge.csgrandeur.cn/problem/CodeForces-1696D

A permutation is an array consisting of n distinct integers from 1 to n in arbitrary order. For example, [2,3,1,5,4] is a permutation, but [1,2,2] is not a permutation (2 appears twice in the array) and [1,3,4] is also not a permutation (n=3 but there is 4 in the array).

You are given a permutation of $1,2,\ldots,n$, $[a_1,a_2,\ldots,a_n]$. For integers i,j such that $1\leq i < j \leq n$, define $\min(i,j)$ as $\min_{k=i}^j a_k$, and define $\max(i,j)$ as $\max_{k=i}^j a_k$.

Let us build an undirected graph of n vertices, numbered 1 to n. For every pair of integers $1 \le i < j \le n$, if $\min(i,j) = a_i$ and $\max(i,j) = a_j$ both holds, or $\min(i,j) = a_j$ and $\max(i,j) = a_i$ both holds, add an undirected edge of length 1 between vertices i and j.

In this graph, find the length of the shortest path from vertex 1 to vertex n. We can prove that 1 and n will always be connected via some path, so a shortest path always exists.

Input

Each test contains multiple test cases. The first line contains the number of test cases t ($1 \le t \le 5 \cdot 10^4$). Description of the test cases follows.

The first line of each test case contains one integer n ($1 \leq n \leq 2.5 \cdot 10^5$).

The second line of each test case contains n integers $a_1, a_2, ..., a_n$ ($1 \le a_i \le n$). It's guaranteed that a is a permutation of 1, 2, ..., n.

It is guaranteed that the sum of n over all test cases does not exceed $5 \cdot 10^5$.

Output

For each test case, print a single line containing one integer — the length of the shortest path from 1 to n.

Sample 1

Input	Output
5	0
1	1
1	1
2	4
1 2	6
5	
1 4 2 3 5	
5	
2 1 5 3 4	
10	
7 4 8 1 6 10 3 5 2 9	

Note

The following are illustrations of constructed graphs in example test cases.

the constructed graph in test case 1

the constructed graph in test case 2

the constructed graph in test case 3

the constructed graph in test case 4

the constructed graph in test case 5