Exercise 1.5.i Let $\phi: 0 \to 1$ be the single nonidentity morphism in **2**. Then consider the category $C \times \mathbf{2}$ and pick a morphism $f: x \to y$ in C. We have

$$\begin{array}{c} (x,0) \xrightarrow{(\mathrm{id}_x,\phi)} (x,1) \\ (f,\mathrm{id}_0) \downarrow & (f,\phi) \downarrow \\ (y,0) \xrightarrow[(\mathrm{id}_y,\phi)]{} (y,1) \end{array}$$

A quick check shows that this diagram commutes. Now apply H to $C \times \mathbf{2}$. Observe that because $F = Hi_0$, we have $H(f, \mathrm{id}_0) = Ff$. Similarly for G, we have $H(f, \mathrm{id}_1) = Gf$. Now because H is itself a single functor, it preserves compositions of morphisms. Hence the above square is lifted to D where it forms a naturality square for f for some natural transformation where $H(\mathrm{id}_x, \phi)$ and $H(\mathrm{id}_y, \phi)$ are the components.

Let \mathcal{H} be the set of all functors $C \times \mathbf{2} \to D$ that restrict along i_0 and i_1 to F and G and \mathcal{A} be the set of natural transformations from F to G. Observe then that applying H defines a function $\mathcal{F}: \mathcal{H} \to \mathcal{A}$.

We may now define \mathcal{F}^{-1} . For any $\alpha: F \Rightarrow G$, map the component α_x to (id_x, ϕ) . This is enough to define a particular functor in \mathcal{H} as the other mappings are constrained by F and G.

Hence $\mathcal{H} \cong \mathcal{A}$. ///

Exercise 1.5.iii Let the two ismorphisms be $g: a \to a'$ and $h: b \to b'$ and let the leftmost diagram define f'. Then $f' = hfg^{-1}$. Hence the second diagram commutes because f'g = hf, the third because $h^{-1}f' = fg^{-1}$, and the fourth because $h^{-1}f'g = f$. ///

Exercise 1.5.iv

- (i) Because F is fully faithful, $C(y, x) \cong D(Fy, Fx)$. Hence $(Ff)^{-1}$ has a preimage in C, say g. Thus $Ff \circ Fg = \mathrm{id}_y = F(fg) = F\mathrm{id}_y$. Hence $fg = \mathrm{id}_y$. Similar reasoning shows that $gf = \mathrm{id}_x$. Therefore f is an isomorphism. ///
- (ii) Because F is fully faithful, we know that for any $x, y \in C$, $C(x, y) \cong D(Fx, Fy)$. There is at least one morphism in D(Fx, Fy), namely the isomorphism Ff. Thus there is a morphism $f \in C(x, y)$. Now apply (i) to see that f is an isomorphism so $x \cong y$. ///

Exercise 1.5.ix Theorem 1.5.9 says that a functor defining an equivalence of categories is fully faithful. Hence, for a category to be equivalent to a locally small category, the hom sets of each category must be isomorphic. Sets are only isomorphic to other sets; therefore the equivalent category is also locally small. ///

Exercise 1.5.xi Consider the inclusion $Ab \to Group$. It is fully faithful because the hom sets between abelian groups are the same in each category. It is not essentially surjective because nonabelian groups are not isomorphic to abelian groups. ///