

Principles of Autonomy and Decision Making

(AI_PrincAutonomy_2808)

Week 7: Advanced Decision Making Under Uncertainty

Team:

- Prof. Dr. rer. nat. Lenz Belzner
- Chidvilas Karpenahalli Ramakrishna, M.Eng.
- · Adithya Mohan, M.Eng.
- Zahra Zeinaly, Ph.D.

Recap

4

- No Uncertainty
 - Uninformed Search
 - Depth-First Search (DFS) No consideration
 - Breadth-First Search (BFS) No consideration
 - Uniform Cost Search (UCS) Cost consideration
 - Informed Search
 - Greedy Search Goal information
 - A* algorithm Cost + Goal information
- Uncertainty in transition (MDPs)
 - Value-Iteration
 - Policy-Iteration
- What other forms of uncertainty can we consider?
 - Uncertainty in the state information
 - Uncertainty in modeling

Decision Making Under Uncertainty

- Involves choosing actions in environments where
 - Outcomes are not deterministic MPDs
 - States are not fully observable POMDPs
- Uncertainty types:
 - Transition Uncertainty
 - State Uncertainty
 - Model Uncertainty
- Importance:
 - Most real-world problems have some degree of uncertainty
 - We need a formulation that can capture these uncertainties
 - Examples:
 - Autonomous Vehicles: Decision making with uncertain sensor data
 - Robotics: Navigation and interation with dynamic environments
 - Healthcare: Diagnosis with uncertainty in test results
 - Finance: Investments with uncertain market conditions

Challenges

1. Stochastic Environments:

- Actions may lead to different outcomes, even when performed in the same state
- Problem formulation using Markov Decision Process (MDP)
- Probabilistic transitions
 - T(s,a,s') = P(s'|s,a)
 - Outcomes are described by probabilistic distributions rather than deterministic functions

2. Incomplete Information:

- Partial observability:
 - Lack of complete knowledge about the current state of the environment
 - Only indirect/ noisy observations of the state are available
- Problem formulation using Partially Observable Markov Decision Process (POMDP)

3. Computational Complexity:

- Algorithms should handle large state and action spaces under uncertainty
- Approximation techniques are used
 - Monte Carlo (MC) Methods
 - Particle Filtering

Partially Observable Markov Decision Process (POMDP)

- Extension / generalization of MDP where the agent does not have full observability of the state
- Components:
 - Set of states (S)
 - Set of actions (A)
 - Transition function/ probability (*T*)
 - Considers uncertainty in transition
 - T(s, a, s') = P(s'|s, a)
 - Probability of transitioning from state s to s' when choosing an action a
 - Reward function
 - R(s, a, s') or R(s, a)
 - Set of observations (Ω)
 - Observation model/ probability (O)
 - Considers uncertainty in the current state
 - O(o, s', a) = P(o|s', a) is the probability of observing o after taking action a and transitioning into s'
 - Here, $o \in \Omega$
- Goal:
 - Maximum expected cumulative reward over time

POMDP: Belief State and Observation

Belief state:

- It is a probability distribution over all possible states, representing the agent's uncertainty about the current state of the system
- Denoted as b(s)
- b(s) denotes the probability (belief) that the system is in state s

Observation:

It is information received by the agent that provides indirect evidence about the actual state of the system

Observation Model:

- Gives the probability of receiving observation o given the agent is in the state s' after taking action a
- Denoted as P(o|s',a)

NOTE:

Observations help update the belief state to better reflect the current state of the agent

POMDP: Bellman Equation

■ *MDP* Bellman equation:

$$V(s) = \max_{a \in A} \left[\sum_{s' \in S} P(s'|s,a) (R(s,a,s') + \gamma V(s')) \right]$$

POMDP Bellman equation:

$$V(b) = \max_{a \in A} \left[\sum_{s \in S} b(s) \left\{ \sum_{s' \in S} P(s'|s,a) \left| R(s,a,s') + \gamma \sum_{o \in O} P(o|s',a) V(b') \right| \right\} \right]$$

$$\pi^*(b) = \operatorname{argmax}_{a \in A} \left[\sum_{s \in S} b(s) \left\{ \sum_{s' \in S} P(s'|s,a) \left| R(s,a,s') + \gamma \sum_{o \in O} P(o|s',a) V(b') \right| \right\} \right]$$

Here,

- Red: Captures uncertainty in the current state
- Orange: Captures uncertainty in the transition
- Green: Captures uncertainty in the resulting state

Fig 1. Depiction of uncertainty in states

POMDP: Belief Update

- lacktriangle We update our belief of a state after taking an action a and receiving an observation o
- *Bayes'* rule for belief update:

$$b'(s') = \eta P(o|s', a) \sum_{s \in S} P(s'|s, a)b(s)$$

- Here,
 - b(s) is the probability that the system is in state s before taking any action given belief state b
 - b'(s') is the probability that the system is in state s' after taking an action a and receiving an observation o given belief state b'
 - η is a normalizing factor
 - P(o|s',a) is the observation probability
 - P(s'|s,a) is the transition probability

POMDP: Steps for Belief Update

Prediction step:

- For "each possible" new state s', predict the new belief state using the transition model
- Calculate intermediate belief $\hat{b}(s')$ by summing over "all possible" previous states s

$$\hat{b}(s') = \sum_{s \in S} P(s'|s, a)b(s)$$

Calculate normalization factor:

•
$$\eta$$
 is used to ensure that the belief is a valid probability distribution (i.e. it sums to 1)
$$\eta = \frac{1}{\sum_{s'} P(o|s',a) \hat{b}(s')} = \frac{1}{\sum_{s'} P(o|s',a) \sum_{s \in S} P(s'|s,a) b(s)}$$

Correction step:

Correct the intermediate belief based on the observation received

$$b'(s') = \eta P(o|s', a)\hat{b}(s')$$
$$b'(s') = \eta P(o|s', a) \sum_{s \in S} P(s'|s, a)b(s)$$

Fig 1. Depiction of uncertainty in states

Recap: Bayes' Theorem

Bayes' Theorem is used to update the probability of a hypothesis based on new evidence

$$P(H|E) = \frac{P(E|H).P(H)}{P(E)}$$

- Here,
 - P(H|E) is the posterior probability of the hypothesis H given the evidence E
 - P(E|H) is the likelihood of the evidence E given that the hypothesis H is true
 - P(H) is the prior probability of the hypothesis H
 - P(E) is the marginal probability of the evidence E

Bayesian Decision Making

Bayesian Belief Update in POMDPs:

$$b'(s') = \frac{P(o|s', a) \sum_{s \in S} P(s'|s, a)b(s)}{\sum_{s'} P(o|s', a) \sum_{s \in S} P(s'|s, a)b(s)}$$

- Here,
 - b'(s'): Captures the probability of the hypothesis that we are in state s' given the evidence/observation o
 - P(o|s',a): Captures the probability of the evidence o given the hypothesis s' and a
 - $\sum_{s \in S} P(s'|s,a)b(s)$: Captures the probability of the hypothesis
 - $\sum_{s'} P(o|s',a) \sum_{s \in S} P(s'|s,a)b(s)$: Captures the probability of the evidence/observation
- Example: Robot Navigation
 - 1. Initial belief:
 - Robot starts with a belief state b(s) representing its uncertain position
 - 2. Action taken:
 - The robot moves forward by taking action a and receives a sensor reading o
 - 3. Belief Update:
 - Using Bayesian Inference, the robot updates its belief state to b'(s')
- Summary:
 - Bayesian decision-making in POMDPs uses belief states to manage uncertainty
 - Belief states are updated through Bayesian inference after each action and observation
 - The value function and optimal policy are computed using the updated beliefs

Monte Carlo Methods

- MC methods are a class of algorithms that rely on "random sampling" to obtain numerical results
- Necessity:
 - The belief space is high dimensional and very complex to model
- MC methods:
 - 1. Monte Carlo Sampling for Belief States
 - Used to approximate the belief state distribution
 - Generates a large number of random samples (state-action-observation) from the belief state
 - Uses these samples to estimate the probability distribution of future states and observations
 - 2. Monte Carlo Integration
 - Used to evaluate expected rewards and value functions
 - 3. Monte Carlo Tree Search (MCTS)
 - Used to find the optimal policy by exploring the most promising actions

Particle Filtering (Sequential Monte Carlo Method)

- Particle Filtering is a specialized form of MC method specifically designed for sequential state estimation in uncertain environments
- Particle:
 - Samples from the belief state distribution
- Steps:
 - 1. Initialization:
 - Initialize N particles $\{s_1, s_2, ..., s_N\}$ according to the prior belief distribution $b_0(s)$
 - 2. Prediction (sampling):
 - For each particle s_i , sample a new state s'_i based on the transition model $P(s_i'|s_i,a)$
 - 3. Update (Weighting):
 - For each predicted particle s'_i , compute the weight w_i based on the observation model $P(o|s'_i, a)$ $w_i = P(o|s'_i, a)$
 - 4. Normalization:
 - Normalize the weights w_i by dividing each weight by the sum of all weights
 - 5. Resampling:
 - Focus on the most probable particles by resampling based on the weights
 - Resample N particles from the current set $\{(s'_i, w_i)\}$ with replacement, where the probability of selecting each particle is proportional to its weight
 - 6. Iteration:
 - Repeat the prediction, update, normalization, and resampling steps at each time step as new actions are taken and observations are received

Particle Filtering: Example

- Problem: Robot Localization Using Particle Filtering
- Scenario:
 - A robot navigates a building, updating its belief about its location using particle filtering
- Steps:
 - Initialization:
 - Start with particles uniformly distributed across possible locations
 - Prediction:
 - For each particle, predict the new location after the robot moves
 - Update:
 - Compute weights based on the likelihood of the robot's sensor readings
 - Normalization:
 - Normalize the weights to ensure they sum to 1
 - Resampling:
 - Resample particles to focus on the most likely locations
 - Iteration:
 - Continue the process as the robot moves and receives new sensor readings