

Lambda calculus 2

Štruktúra prednášok:

- úvod do syntaxe (gramatika + konvencie)
- sémantika (redukčné pravidlá)
- programovací jazyk nad λ-kalkulom

domáca úloha: interpreter λ-kalkulu, ...

- rekurzia a pevný bod
- de Bruijn indexy (miesto mien premenných)
- vlastnosti β-redukcie

4

Domáca úloha (nepovinná)

Pri práci s vašim interpretrom vám bude chýbať:

 vstup λ termu – funkcia fromString :: String -> LExp, ktorá vám vytvorí vnútornú reprezentáciu z textového reťazca, príklad:

```
from String "x.xx'' = (LAMBDA "x" (LExp [(Id "x"), (Id "x")]))
```

takejto funkcii sa hovorí syntaktický analyzátor a musíte sa vysporiadať s problémom, keď je vstupný reťazec nekorektný

 výstup λ termu – funkcia toString :: LExp -> String, ktorá vám vytvorí textovú (čitateľnú) reprezentáciu pre λ term.

F

Fold na termoch

```
foldLambda lambda var apl con cn lterm
   | Iterm == (LAMBDA str exp) =
                 lambda str (foldLambda lambda var apl con cn exp)
   | \text{Iterm} == (\text{VAR str}) = \text{var str}
   | \text{Iterm} == (APL exp1 exp2}) =
                 apl (foldLambda lambda var apl con cn exp1)
                         (foldLambda lambda var apl con cn exp2)
    Iterm == (CON str) = con str
   | \text{Iterm} == (CN \text{ int}) = cn \text{ int}
vars = foldLambda (\langle x, y-y \rangle) (\langle x-y \rangle) (++) (\langle -y \rangle)
show :: LExp -> String
show = foldLambda (x y->"(\"++x++"->"++y++")")
        (x->x) (x - x) (x - x) (x->x)
```

•

β a η-redukcia

- β-redukcia: $(\lambda x.B) E ->_{\beta} B[x:E]$
- η-redukcia: $\lambda x.(B x) ->_{\eta} B$ ak $x \notin Free(B)$ podmienka je podstatná, lebo ak napr. B=x, teda $x \in Free(B)$, $\lambda x.(x x) \neq x$
- $\rightarrow_{\beta\eta}$ je uzáver $\rightarrow_{\beta}\cup\rightarrow_{\eta}$ vzhľadom na podtermy, čo znamená:
 - ak M \rightarrow_{β} N alebo M \rightarrow_{η} N, potom M $\rightarrow_{\beta\eta}$ N,
 - ak M $\rightarrow_{\beta n}$ N, potom (P M) $\rightarrow_{\beta n}$ (P N) aj (M Q) $\rightarrow_{\beta n}$ (N Q),
 - ak M $\rightarrow_{\beta n}$ N, potom $\lambda x.M \rightarrow_{\beta n} \lambda x.N.$

,

Vlastnosti β-redukcie

- známe λ-termy
 - $\omega = \lambda x.xx$
 - $\Omega = \omega \omega$
 - $\omega_3 = \lambda x.xxx$
- existuje nekonečná sekvencia
 - $\bullet \quad \Omega \to_{\beta} \Omega \to_{\beta} \Omega \to_{\beta} \dots$
- existuje neobmedzene puchnúca sekvencia
 - $\bullet \quad \omega_3 \ \omega_3 \rightarrow_{\beta} \ \omega_3 \ \omega_3 \ \omega_3 \rightarrow_{\beta} \ \omega_3 \ \omega_3 \ \omega_3 \ \omega_3$
- nejednoznačný výsledok existuje term s konečným a nekonečným odvodením
 - $KI\Omega \rightarrow_{\beta} I$ ale aj
 - $KI\Omega \rightarrow_{\beta} KI\Omega \rightarrow_{\beta} KI\Omega \rightarrow_{\beta} ...$
- existuje term s dvomi rôznymi normálnymi formami ?

Stratégia redukcie

(na výber záleží)

- βη-redex je podterm λ-termu, ktorý môžeme prepísať β alebo η redukciou
- normálna forma λ-termu nemá redex
- reducibilný λ-term nie je v normálnej forme
- Stratégia redukcie μ je čiastočné zobrazenie λ -termov, že $M \rightarrow_{\beta \eta} \mu(M)$
- μ výpočet je postupnosť M, μ(M), ..., μⁱ(M), ... a môže byť (ne)konečná

Najznámejšie stratégie

- leftmost vyhodnotí funkciu skôr ako argumenty $(\lambda x.x)(\lambda y.(\lambda z.z) y) \rightarrow_{\beta} (\lambda y.(\lambda z.z) y) \rightarrow_{\beta} (\lambda y.y)$
- rightmost vyhodnotí argumenty skôr ako funkciu $(\lambda x.x)(\lambda y.(\lambda z.z) y) \rightarrow_{\beta} (\lambda x.x)(\lambda y.y) \rightarrow_{\beta} (\lambda y.y)$

Ako to programujeme

Extrémne drahé riešenie (prečo) ?

```
nf
   :: LExp -> LExp
nf t = if t == t' then t else nf t' where t'=oneStep_{\beta} t
oneStep_{\beta}(App (Lambda x m) n) = substitute m x n
oneStep<sub>\beta</sub> (App m n) = if m == m' then
                                  (App m (oneStep_{\beta}n))
                            else
                                  (App m' n)
                            where m' = oneStep_{\beta} m
oneStep<sub>\beta</sub> (Lambda x m) = (Lambda x (oneStep<sub>\beta</sub>m))
```

je to innermost či outermost ? Ako vyzerá to druhé ??

Stratégie \(\beta\)-redukcie

- kdekoľvek, až kým nie je v n.f.
- leftmost-innermost (nie je normalizujúca stratégia)
 - argumenty funkcie sú zredukované skôr ako telo funkcie
 - $KI\Omega \rightarrow_{\beta} KI\Omega \rightarrow_{\beta} KI\Omega \rightarrow_{\beta} ...$
 - $(\lambda x.x x) (\lambda x.x y) ->_{\beta} (\lambda x.x x)y ->_{\beta} yy$
- leftmost-outermost (je normalizujúca stratégia)
 - ak je možné dosadiť argumenty do tela funkcie, urobí sa tak ešte pred ich vyhodnotením, ale tým aj kopíruje redexy
 - $KI\Omega \rightarrow_{\beta} I$
 - $(\lambda x.x \ x) \ (\lambda x.x \ y) \ ->_{\beta} \ (\lambda x.x \ y) \ ->_{\beta} y \ (\lambda x.x \ y) \ ->_{\beta} y \ Call by need (lazy)$
 - pri aplikácii funkcie sa do jej tela nedosadzuje argument, ale pointer na hodnotu argumentu, ktorý sa časom event. vyhodnotí

Weak head normal form

(slabo hlavová normálna forma)

Head normal form (h.n.f)

- $(\lambda x_1, \lambda x_2, \dots, \lambda x_k, v) M_1 M_2 \dots M_n$
- v je premenná (resp. konštanta),
- pre ľubovoľné r \leq n, (...((v M_1) M_2)... M_r) nie je redex

Ak k=0, konštanta či premenná s málo argumentami

Ak k>0, λ-abstrakcia s nereducibilným telom

- v M₁ M₂... M_n
- v je premenná alebo λ-abstrakcia (resp. konštanta),
- pre ľubovoľné $r \le n$, (...(($v M_1) M_2$)... M_r) nie je redex .

Konštanta, premenná alebo λ-abstrakcia s málo argumentami.

 $\lambda x.((\lambda y.y) z)$ nie je h.n.f. (až po red. $((\lambda y.y) z) \rightarrow_{\beta} z)$, ale je w.h.n.f.

 $(k, n \in N)$

 $(n \in N)$

Najznámejšie stratégie

- weak leftmost outermost (call by need/output driven/lazy/full lazy)
 (λx. λy.(x y)) (λz.z) → β λy.((λz.z) y) w.h.n.f.
 redukuje argumenty funkcie, len ak ich treba
 Keďže w.h.n.f. môže obsahovať redex, tak nenormalizuje úplne...
- strong leftmost outermost (call by name/demand driven)
 (λx. λy.(x y)) (λz.z) → β λy.((λz.z) y) → β λy.y n.f.
 redukuje argumenty funkcie, len ak ich treba, ale pokračuje v hľadaní redexov, kým nejaké sú normalizuje úplne...
- eager argumenty najprv (call by value/data driven/strict)
 nenormalizuje...

Lazy

- $(\lambda x. \lambda y.(* (+ x x) y) ((\lambda x.x)(* 3 4))) (\lambda x.(+2 x) 6) \rightarrow_{\beta}$
- ($\lambda y.(* (+ ((\lambda x.x)(* 3 4)) ((\lambda x.x)(* 3 4))) y)) (\lambda x.(+2 x) 6) \rightarrow_{\beta}$
- (* (+ (($\lambda x.x$)(* 3 4)) (($\lambda x.x$)(* 3 4))) ($\lambda x.(+2 x) 6$)) \rightarrow_{β}
- (* (+ (* 3 4) (($\lambda x.x$)(* 3 4))) ($\lambda x.(+2 x) 6$)) \rightarrow_{β}
- (* (+ 12 (($\lambda x.x$)(* 3 4))) ($\lambda x.(+2 x) 6$)) \rightarrow_{β}
- (* (+ 12 (* 3 4)) ($\lambda x.(+2 x) 6$)) \rightarrow_{β}
- (* (+ 12 12) ($\lambda x.(+2 x) 6$)) \rightarrow_{β}
- (* 24 ($\lambda x.(+2 x) 6$)) \rightarrow_{β}
- (* 24 (+2 6)) \rightarrow_{β}
- (* 24 $\frac{8}{9}$) \rightarrow_{6}
- **192**

Full lazy

- $(\lambda x. \lambda y.(* (+ x x) y) ((\lambda x.x)(* 3 4))) (\lambda x.(+2 x) 6) \rightarrow_{\beta}$
- ($\lambda y.(* (+ ((\lambda x.x)(* 3 4)) ((\lambda x.x)(* 3 4))) y)) (\lambda x.(+2 x) 6) \rightarrow_{\beta}$
- (* (+ (($\lambda x.x$)(* 3 4)) (($\lambda x.x$)(* 3 4))) ($\lambda x.(+2 x) 6$)) \rightarrow_{β}
- (* (+ (* 3 4) (* 3 4)) ($\lambda x.(+2 x) 6$)) \rightarrow_{β}
- (* (+ 12 12) ($\lambda x.(+2 x) 6$)) \rightarrow_{β}
- (* 24 ($\lambda x.(+2 x) 6$)) \rightarrow_{β}
- (* 24 (+2 6)) \rightarrow_{β}
- (* 24 $\frac{8}{9}$) \rightarrow_{β}
- **192**

Strict

- $(\lambda x. \lambda y.(* (+ x x) y) ((\lambda x.x)(* 3 4))) (\lambda x.(+2 x) 6) \rightarrow_{\beta}$
- ($\lambda x. \lambda y.(* (+ x x) y) ((\lambda x.x)(* 3 4))) (+2 6) <math>\rightarrow_{\beta}$
- ($\lambda x. \lambda y.(* (+ x x) y) ((\lambda x.x)(* 3 4))) 8 \rightarrow_{\beta}$
- (λx . λy .(* (+ x x) y) (* 3 4)) 8 \rightarrow_{β}
- ($\lambda x. \lambda y.(* (+ x x) y) 12) 8 \rightarrow_{\beta}$
- $(\lambda y.(* (+ 12 12) y)) 8 \rightarrow_{\beta}$
- (* (+ 12 12) 8) \rightarrow_{β}
- (* 24 8) \rightarrow_{β}
- **192**

Eager

- ($\lambda x. \lambda y.(* (+ x x) y) ((\lambda x.x)(* 3 4))) (<math>\lambda x.(+2 x) 6) \rightarrow_{\beta}$
- $(\lambda x. \lambda y.(* (+ x x) y) ((\lambda x.x) 12)) (\lambda x.(+2 x) 6) \rightarrow_{\beta}$
- $(\lambda x. \lambda y.(* (+ x x) y) 12) (\lambda x.(+2 x) 6) \rightarrow_{\beta}$
- (λx . λy .(* (+ x x) y) 12) (+2 6) \rightarrow_{β}
- ($\lambda x. \lambda y.(* (+ x x) y) 12) 8 \rightarrow_{\beta}$
- ($\lambda y.(* (+ 12 12) y)) 8 \rightarrow_{\beta}$
- ($\lambda y.(*24 y)$) $8 \rightarrow_{\beta}$
- (* 24 8) \rightarrow_{β}
- **192**

Church-Rosser vlastnosť

(konzistentnosť λ-kaklulu)

pre ľubovoľnú trojicu termov M, M₁, M₂ takých, že

$$M \rightarrow {}_{\beta}^* M_1 a \rightarrow {}_{\beta}^* M_2$$

existuje R, že

$$M_1 \rightarrow {}_{\beta}{}^*R a M_2 \rightarrow {}_{\beta}{}^*R$$

Inak:

$$(\leftarrow_{\beta}^{*} \circ \rightarrow_{\beta}^{*}) \subseteq (\rightarrow_{\beta}^{*} \circ \leftarrow_{\beta}^{*})$$

teda ak M1 \leftarrow_{β}^{*} M \rightarrow_{β}^{*} M2, potom existuje R, že M1 \rightarrow_{β}^{*} R \leftarrow_{β}^{*} M2

Veta: β-redukcia spĺňa Church-Rosserovu vlastnosť Dôkazy sú technicky náročné:

- 1936 Church, Rosser: Some properties of conversion
- 1981 Barendregt
- 1981 Löf, Tait

Dôsledok:

ak term má normálnu formu vzhľadom na \rightarrow_{β} , potom je jednoznačne určená

β ekvivalenica

Slabá Church-Rosser vlastnosť

pre ľub.trojicu termov M, M₁, M₂ takých, že

$$M \rightarrow M_1 \ a \ M \rightarrow M_2$$

existuje R, že

$$M_1 \rightarrow {}^*R \text{ a } M_2 \rightarrow {}^*R$$

Inak:

$$(\leftarrow \circ \rightarrow) \subseteq (\rightarrow^* \circ \leftarrow^*)$$

teda ak M1 \leftarrow M \rightarrow M2, potom existuje R, že M1 \rightarrow *R \leftarrow * M2

- → má Church-Rosser vlastnosť (confluent) je ekvivalentné s
- → má slabú Church-Rosser vlastnosť (local confluent)

Dôkaz sporom (SCR implikuje CR, spor: SCR and \neg CR):

- Nech M má dve normálne formy, M1<>M2, t.j. M \rightarrow^* M₁ a M \rightarrow^* M_{2.}
- M nie je v normálnej forme (ak by bolo, M=M1=M2 a pritom M1<>M2),
- potom existuje M', že M → M',
- M' má tiež dve normálne formy, ak by nie, spor s lokálnou konfluentosťou,
- M", M"", M"", a t.d' (noetherovskosť relácie vyrobí spor).

Zamyslenie: je noetherovská podmienka podstatná, neplatí veta aj bez nej?

Churchove čísla

- $\underline{O} := \lambda f.\lambda x.x$
- $1 := \lambda f.\lambda x.f x$
- $\underline{2} := \lambda f.\lambda x.f(f x)$
- **...**
- $\underline{n} := \lambda f.\lambda x.f^n x$

- succ := $\lambda n.\lambda f.\lambda x.f(n f x)$
- plus := $\lambda m. \lambda n. \lambda f. \lambda x. m f (n f x)$

Domáca úloha definujte mult

```
mult := \lambda m.\lambda n.\lambda f.\lambda x. n (m f) x
lebo (m f) = \lambda x.(f^m x), potom (n (m f)) = \lambda x.((f^m)^n x) = \lambda x.(f^{m*n} x)
```

•definujte mⁿ

```
exp := \lambda m.\lambda n. n m
exp m n f = m n f = ((n m) f) = (m^n f)
```

definujte n-1 (na rozmýšľanie)

 $n f x = f^n x$

Testovanie domácej úlohy

Potrebujeme prirodzené čísla, použijeme konštrukciu podľa A.Churcha:

- $\theta := \lambda f.\lambda x.x$
- $1 := \lambda f.\lambda x.f x$
- $2 := \lambda f.\lambda x.f(f x)$
- succ := $\lambda n.\lambda f.\lambda x.f(n f x) = \lambda n.\lambda f.\lambda x.(f((n f) x))$
- plus := $\lambda m.\lambda n.\lambda f.\lambda x.$ m f (n f x) = $\lambda m.\lambda n.\lambda f.\lambda x.$ ((m f) ((n f) x)) -- idea: $f^m(f^n x) = f^{m+n} x$

Zadáme tieto dve konštrukcie:

```
zero = (LAMBDA "f" (LAMBDA "x" (ID "x")))
succ = (LAMBDA "n" (LAMBDA "f" (LAMBDA "x" (LExp [(ID "f"),(LExp [(LExp [(ID "n"),(ID "f")]), (ID "x")])))))
```

potom vypočítame:

```
one = (succ zero) = LAMBDA "f" (LAMBDA "x" (LExp [ID "f",ID "x"]))
two = (succ one) = LAMBDA "f" (LAMBDA "x" (LExp [ID "f",LExp [ID "f",ID "x"]]))
three = (succ two) = LAMBDA "f" (LAMBDA "x" (LExp [ID "f",LExp [ID "f",LExp [ID "f",ID "x"]]]))
```


Logika a predikáty

TRUE := $\lambda x. \lambda y. x := \lambda xy. x$ (vráti 1.argument) FALSE := $\lambda x. \lambda y. y := \lambda xy. y$ (vráti 2.argument)

AND $:= \lambda x.\lambda.y. x y FALSE := \lambda xy.x y FALSE$

OR := $\lambda x.\lambda y. x TRUE y := \lambda xy.x TRUE y$

NOT := λx . x FALSE TRUE

IFTHENELSE := $\lambda c. \lambda x. \lambda y. (c \times y)$

Príklad:

AND TRUE FALSE

 \equiv (λ x y. x y FALSE) TRUE FALSE \rightarrow_{β} TRUE FALSE FALSE

 \equiv (λ x y. x) FALSE FALSE \rightarrow_{β} FALSE

Domáca úloha: definujte XOR

Kartézsky súčin typov (pár)

```
PAIR := \lambda x. \lambda y. (\lambda c. c x y) := \lambda xyc. c x y
```

LEFT := $\lambda x.x$ TRUE

RIGHT := $\lambda x.x$ FALSE

TRUE := $\lambda x. \lambda y. x := \lambda xy. x$ FALSE := $\lambda x. \lambda y. y := \lambda xy. y$

```
LEFT (PAIR A B) \equiv

LEFT ((\lambdaxyc. c x y) A B) \rightarrow_{\beta}

LEFT (\lambdac. c A B) \rightarrow_{\beta}

(\lambdax.x TRUE) (\lambdac. c A B) \rightarrow_{\beta}

(\lambdac. c A B) (\lambdaxy.x) \rightarrow_{\beta}

((\lambdaxy.x) A B) \rightarrow_{\beta} A
```

Domáca úloha: definujte 3-ticu.

Konštrukcia n-tice nás oprávňuje písať n-árne funkcie, t.j. funkcie, ktorých argumentom je n-tica – tzv. currying, na počesť pána Haskell Curry:

$$\lambda(x,y).M$$
 vs. $(\lambda x.\lambda y.M)$

$$\lambda(x,y).M \rightarrow \lambda p. (\lambda x.\lambda y.M) (LEFT p) (RIGHT p)$$

Súčet typov (disjunkcia)

A+B reprezentujeme ako dvojicu Bool x (A|B)

```
konštruktor pre A
1st
            := \lambda x.PAIR TRUE x
2<sup>nd</sup>
            := \lambda y.PAIR FALSE y
                                                                            В
1^{\text{st}-1} := \lambda z.RIGHT z
                                                  deštruktor pre
2^{\text{nd}-1} := \lambda z.RIGHT z
                                                                            В
?1st<sup>-1</sup>
            := \lambda z.LEFT z
                                                  test, či A?
1^{\text{st}^{-1}} 1^{\text{st}} A \equiv
(\lambda z.RIGHT z) (\lambda x.PAIR TRUE x ) A \rightarrow_{\beta}
RIGHT (PAIR TRUE A) \rightarrow_{\beta} A
```

Zoznamy

```
List t = Nil | Cons t (List t)
```

```
Nil = \lambda z.z TRUE FALSE FALSE
```

Cons = $\lambda x. \lambda y. \lambda z. z$ FALSE x y

head = $\lambda p.p (\lambda x. \lambda y. \lambda z. y)$

tail = $\lambda p.p (\lambda x. \lambda y. \lambda z.z)$

isNil = $\lambda p.p (\lambda x. \lambda y. \lambda z. x)$

Odvod'me, napr.:

```
isNil Nil = (\lambda p.p (\lambda x.\lambda y.\lambda z.x)) (\lambda z.z TRUE FALSE FALSE) \rightarrow_{\beta} ((\lambda z.z TRUE FALSE FALSE) (\lambda x.\lambda y.\lambda z.x)) \rightarrow_{\beta} ((\lambda x.\lambda y.\lambda z.x) TRUE FALSE FALSE) \rightarrow_{\beta} TRUE
```

Domáca úloha (vašim interpretrom):

•null? (cons a Nil) \rightarrow_{β}^*

•head (cons a Nil) $\rightarrow_{\beta}^{\bullet}$

•tail (cons a Nil) \rightarrow_{β}^*

•head (tail (cons a (cons b Nil)))

Binárne stromy

BinTree t = Empty | Node t (BinTree t) (BinTree t)

```
Empty = \lambda g.g TRUE (\lambda x.x) (\lambda x.x) (\lambda x.x)
```

Node = $\lambda x. \lambda y. \lambda z. \lambda g. g$ FALSE x y z

isEmpty = $\lambda t.t (\lambda u.\lambda x.\lambda y.\lambda z.u)$

root = $\lambda t.t (\lambda u.\lambda x.\lambda y.\lambda z.x)$

left = $\lambda t.t (\lambda u.\lambda x.\lambda y.\lambda z.y)$

right = $\lambda t.t (\lambda u.\lambda x.\lambda y.\lambda z.z)$

Binárne stromy

```
Odvod'me, napr.: root (Node a Empty Empty) \rightarrow_{\beta} (\lambda t.t (\lambda u.\lambda x.\lambda y.\lambda z.x)) (Node a Empty Empty) \rightarrow_{\beta} ((Node a Empty Empty) (\lambda u.\lambda x.\lambda y.\lambda z.x)) \rightarrow_{\beta} (((\lambda x.\lambda y.\lambda z.\lambda g.g FALSE \ x\ y\ z) a Empty Empty) ((\lambda u.\lambda x.\lambda y.\lambda z.x)) \rightarrow_{\beta} (((\lambda u.\lambda x.\lambda y.\lambda z.x)) FALSE a Empty Empty) ((\lambda u.\lambda x.\lambda y.\lambda z.x)) \rightarrow_{\beta} (((\lambda u.\lambda x.\lambda y.\lambda z.x)) FALSE a Empty Empty)) \rightarrow_{\beta} a
```

where

M where
$$v = N$$

$$\rightarrow$$
 ($\lambda v.M$) N

M where
$$v_1 = N_1$$

$$v_2 = N_{2...}$$

$$v_n = N_n$$

M where
$$v_1 = N_1$$
 -> $(\lambda(v_1, v_2, ..., v_n).M) (N_1, ..., N_n)$

zložený where

$$n*(x+n)$$
 where

$$n = 3$$

$$x = 4*n+1$$

$$-> (\lambda n. (\lambda x.n*(x+n)) (4*n+1)) 3$$

Rekurzia

To, čo stále nevieme, je definovať rekurzívnu funkciu, resp. cyklus. Na to sa používa konštrukcia pomocou operátora pevného bodu.

```
Príklad:
FAC := \lambda n.(if (= n \ 0) \ 1 \ (* n \ (FAC \ (- n \ 1))))
FAC := \lambda n.if (n = 0) \ then \ 1 \ else \ (n \ * FAC \ (n - 1))
... trik: \ \eta\text{-redukcia} \ (\lambda x.M \ x) = M, \ ak \ x \ nie \ je \ Free(M)
FAC := (\lambda fac.(\lambda n.(if \ (= n \ 0) \ 1 \ (* n \ (fac \ (- n \ 1))))) \ FAC)
H' := \lambda fac.(\lambda n.(if \ (= n \ 0) \ 1 \ (* n \ (fac \ (- n \ 1)))))
h'adame \ funkciu \ FAC, \ ktorá \ má \ túto \ vlastnosť:
FAC := (H \ FAC)
h'adaná \ funkcia \ FAC \ je \ pevný \ bod \ funkcie \ H
```

Pevný bod

Potrebujeme trochu teórie:

Pre ľubovoľný λ -term F existuje pevný bod, t.j. X také, že X = F X.

```
Dar nebies (operátor pevného bodu):
```

$$Y = \lambda f.(\lambda x. f(x x)) (\lambda x. f(x x))$$

potom

(Y F) je pevný bod F, t.j. (Y F) = F (Y F).

Skúsme to (aspoň) overiť:

Y F =
$$(\lambda f.(\lambda x. f(x x)) (\lambda x. f(x x)))$$
 F = $(\lambda x. F(x x)) (\lambda x. F(x x)) \rightarrow_{\beta}$

- $F(x x)[x:\lambda x. F(x x)] \rightarrow_{\beta}$
- $F(\lambda x.F(x x) \lambda x.F(x x)) =$
- F (Y F)

preto (Y F) je naozaj pevný bod F

FAC := (H FAC) FAC := Y H H:= λ fac.(λ n.(if (= n 0) 1 (* n (fac (- n 1))))) Platí Y H = H (Y H)

Operátor Y Platí YH = H (YH)

Presvedčíme sa, že Y nám pomôže definovať rekurzívnu funkciu:

```
FAC = Y H = Y (\lambdafac.(\lambdan.(if (= n 0) 1 (* n (fac (- n 1))))))
(\lambda f.(\lambda x. f(x x)) (\lambda x. f(x x))) (\lambda fac.(\lambda n.(if (= n 0) 1 (* n (fac (- n 1))))))

    toto je faktoriál – verzia nevhodná pre slabšie povahy

FAC 1 = (Y H) 1
                                      ... z vlastnosti pevného bodu
         = H(YH)1
         = \lambda fac.(\lambda n.(if (= n 0) 1 (* n (fac (- n 1))))) (Y H) 1
         = \lambda n.(if (= n 0) 1 (* n ((Y H)(- n 1)))) 1
         = if (= 1 0) 1 (* 1 ((Y H) (- 1 1)))
         = (*1 ((Y H) (-11)))
         = (*1((Y H) 0))
         = (* 1 (H (Y H) 0)) ... trochu zrýchlene
         = (*11)
         = 1
```


1+2+3+...+n


```
SUM = \lambda s. \lambda n. if (= n 0) 0 (+ n (s (- n 1)))
```

(Y SUM) 2 =

- Y (λs.λn.if (= n 0) 0 (+ n (s (- n 1)))) 2
- (λs.λn.if (= n 0) 0 (+ n (s (- n 1)))) (Y SUM) 2
- (λn.if (= n 0) 0 (+ n ((Y SUM) (- n 1)))) 2
- if (= 2 0) 0 (+ 2 ((Y SUM) (- 2 1)))
- (+ 2 ((Y SUM) 1))
- (+ 2 ((λs.λn.if (= n 0) 0 (+ n (s (- n 1)))) (Y SUM) 1))
- (+ 2 ((λn.if (= n 0) 0 (+ n ((Y SUM) (- n 1)))) 1))
- (+ 2 ((if (= 1 0) 0 (+ n ((Y SUM) (- 1 1))))))
- (+ 2 (+ 1 ((Y SUM) 0)))
- $(+ 2 (+ 1 ((\lambda s.\lambda n.if (= n 0) 0 (+ n (s (- n 1)))) (Y SUM) 0)))$
- $(+ 2 (+ 1 ((\lambda n.if (= n 0) 0 (+ n ((Y SUM) (- n 1)))) 0)))$
- (+ 2 (+ 1 ((if (= 0 0) 0 (+ 0 ((Y SUM) (- 0 1)))))))
- + (+ 2 (+ 1 0)) = 3

Cvičenie

- (na zamyslenie) nájdite príklady funkcií s nekonečným počtom pevných bodov s práve jedným pevným bodom
- realizujte interpreter λkalkulu, pokračujte v kóde z minulého cvičenia tak, aby počítal hodnoty rekurzívnych funkcii

```
--sucet = \s -> \n -> (if (= n 0) 0 (+ n (s (- n 1))))
sucet = LAMBDA "s"

(LAMBDA "n"

(LExp [CON "if",

(LExp [CON "=", ID "n", CN 0]), CN 0,

(LExp [CON "+", ID "n",

(LExp [ID "s", (LExp [CON "-", ID "n", CN 1])])))))
```

Cvičenie

```
-- plati Y f = f(Y f)
y = LAMBDA "h"

(LExp [LAMBDA "x"

(LExp [ID "h", (LExp [ID "x", ID "x"])]),

LAMBDA "x"

(LExp [ID "h", (LExp [ID "x", ID "x"])])])

Vyhodnot'te LExp [LExp [y, sucet], CN 4]
1+2+3+4 = 10?
A čo faktorial?
```

Poznámka:

Obohaťte Váš interpreter o vstavané celé čísla so základnými operáciami (+1, -1, +, *), plus test (napr. na nulu). V opačnom prípade budete bojovať s Church.číslami a interpreter sa vám bude ťažšie ľadiť.

Viacnásobná rekurzia

Veta o pevnom bode: Pre ľubovoľné F_1 , F_2 , ..., F_n existujú X_1 , X_2 , ..., X_n , že $X_1 = F_1 X_1 X_2 ... X_n$ $X_2 = F_2 X_1 X_2 ... X_n$ $X_n = F_n X_1 X_2 \dots X_n$ vektorovo: $(X_1, X_2, ..., X_n) = (F_1 X_1 X_2 ... X_n, F_2 X_1 X_2 ... X_n, ..., F_n X_1 X_2 ... X_n)$ $\underline{\mathbf{X}} = (F_1(p_1 \underline{\mathbf{X}})(p_2 \underline{\mathbf{X}})...(p_n \underline{\mathbf{X}}), ..., F_n(p_1 \underline{\mathbf{X}})(p_2 \underline{\mathbf{X}})...(p_n \underline{\mathbf{X}}))$ $\underline{\mathbf{X}} = \lambda \underline{\mathbf{z}}.(F_1(p_1 \underline{\mathbf{z}})(p_2 \underline{\mathbf{z}})...(p_n \underline{\mathbf{z}}), ... F_n(p_1 \underline{\mathbf{z}})(p_2 \underline{\mathbf{z}})...(p_n \underline{\mathbf{z}})) \underline{\mathbf{X}}$ p_i = i-ta projekcia vektora. preto $\mathbf{X} = \mathbf{Y} \left(\lambda \underline{\mathbf{z}} . (\mathsf{F}_1 (\mathsf{p}_1 \underline{\mathbf{z}}) (\mathsf{p}_2 \underline{\mathbf{z}}) ... (\mathsf{p}_n \underline{\mathbf{z}}), ... \mathsf{F}_n (\mathsf{p}_1 \underline{\mathbf{z}}) (\mathsf{p}_2 \underline{\mathbf{z}}) ... (\mathsf{p}_n \underline{\mathbf{z}}) \right) \right)$

Primitívna rekurzia

Primitívne rekurzívna funkcia je:

- nulová funkcia Nⁿ→N,
- succ: N→N,
- projekcia p_i: $N^n \rightarrow N$, $p_i x_1 x_2 ... x_n = x_i$
- kompozícia f $x_1 x_2 ... x_n = g(h_1(x_1 x_2 ... x_n) ... h_m(x_1 x_2 ... x_n))$
- primitívna rekurzia g : $N^n \rightarrow N$, h : $N^{n+2} \rightarrow N$, potom f : $N^{n+1} \rightarrow N$

$$f 0 x_1 x_2 ... x_n = g(x_1 x_2 ... x_n)$$

 $f (n+1) x_1 x_2 ... x_n = h(f(n x_1 x_2 ... x_n) n x_1 x_2 ... x_n)$

Čiastočne vyčíslitelná (nemusí byť totálna):

• μ -rekurzia $r: N^{n+1} \rightarrow N$, potom $f: N^{n+1} \rightarrow N$ $f y x_1 x_2 ... x_n = min_z.(r(z x_1 x_2 ... x_n) = y)$

λ-vypočítateľná funkcia

Parciálna funkcia f : $N^n \rightarrow N$ je λ -vypočítateľná, ak existuje λ -term F taký, že $F \underline{x}_1 \underline{x}_2 \dots \underline{x}_n$ sa zredukuje na $\underline{f} \underline{x}_1 \underline{x}_2 \dots \underline{x}_n$, ak n-tica $\underline{x}_1 \underline{x}_2 \dots \underline{x}_n$ patrí do def.oboru f $F \underline{x}_1 \underline{x}_2 \dots \underline{x}_n$ nemá normálnu, ak n-tica $x_1 x_2 \dots x_n$ nepatrí do def.oboru f

Veta: Každá parciálne vyčíslitelná funkcia je λ-vypočítateľná. Dôkaz:

- nulová fcia, succ, projekcie p_{i,} kompozícia priamočiaro
- primitívna rekurzia g : $N^n \rightarrow N$, h : $N^{n+2} \rightarrow N$, potom f : $N^{n+1} \rightarrow N$ $x_1 x_2 ... x_n = g(x_1 x_2 ... x_n)$ f 0 $f(n+1) x_1 x_2 ... x_n = h(f(n x_1 x_2 ... x_n) n x_1 x_2 ... x_n)$ $F = \mathbf{Y} (\lambda f. \lambda y. \lambda x_1. \lambda x_2...\lambda x_n)$ (if (isZero y) $G(x_1 x_2...x_n)$ then

else H(f((pred y) $x_1 x_2 ... x_n$) (pred y) $x_1 x_2 ... x_n$)))

µ-rekurzia r : Nⁿ⁺¹→N $F = \lambda y \lambda x_1 \lambda x_2 \dots \lambda x_n$ ($\lambda x_n Y = \lambda y \lambda x_1 \lambda x_2 \dots \lambda x_n$) then z else h (succ z)))

Veta: Každá λ-vypočítateľná je parcialne vyčíslitelná funkcia.

de Bruijn index

čo robilo problémy pri substitúcii, sú mená premenných idea (pána de Brujin): premenné nahradíme <u>indexami</u>

•
$$\lambda x.(+ x 1)$$

• $\lambda.(+ 0 1)$

- $\lambda x.\lambda y.\lambda f.f((\lambda x.x) (+ x y))$
 - $\lambda.\lambda.\lambda.\underline{0}$ (($\lambda.\underline{0}$) (+ $\underline{2}$ $\underline{1}$))

<u>index</u>: neform.: cez koľko λ treba vyskákať, aby sme našli λ danej premennej

- a-konverzia neexistuje lebo premenné nemajú mená
- dôsledok: rôzne premenné môžu mať rovnaký index (v <> kontextoch)
- voľné premenné majú index > hľbku λ-vnorení

•
$$(\lambda.\lambda.((3\ 1)\ (\lambda.(0\ 2)))\ (\lambda.(4\ 0))$$

$$(\lambda.\lambda.3 \frac{1}{2})) (\lambda.4 \frac{0}{2})$$

β-redukcia s de Bruijn-indexami

Príklady:

- K=λx.λy.x
 - λ.λ.<u>1</u>
- $S=\lambda x.\lambda y.\lambda z.((x z) (y z))$
 - λ.λ.λ.((2 0) (1 0))
- $\lambda x.(+ x 1) 5$
 - $\lambda.(+ 0 1) 5 = (+ 5 1)$
- Kab = $(\lambda x.\lambda y.x)$ ab
 - $(\lambda.\lambda.\underline{1} \ a) \ b = \lambda.a \ b = a$

hypotéza, ako by to mohlo fungovať β -redukcia (λ .M) N = M[$\underline{0}$:N] ??? ale nefunguje...

skúsme intuitívne

- (λx.λy.((z x) (λu.(u x)))) (λx.(w x))
 - $(\lambda.\lambda.((3 1) (\lambda.(0 2)))) (\lambda.(4 0))$
 - $(\lambda.\lambda.((\underline{3} \square) (\lambda.(\underline{0} \square)))) (\lambda.(\underline{4} \square))$
 - $(\lambda.(\underline{2} (\lambda.\underline{5} \underline{0})) (\lambda.(\underline{0} (\lambda.\underline{6} \underline{0}))))$ $(\lambda y.\underline{z} (\lambda x.\underline{w} \underline{x}) (\lambda u.\underline{u} (\lambda x.\underline{w}' \underline{x})))$

označíme si miesta, kam sa substituuje nahrať, ale pozor na voľné premenné

β s de Bruijn.indexami

```
Substitúcia [t_0, t_1, ..., t_n] = [0:t_0][1:t_1]...[n:t_n]
 • \underline{k}[t_0, t_1, ..., t_n] = t_k, k <= n
 • (M N) [t_0, t_1, ..., t_n] = (M[t_0, t_1, ..., t_n] N[t_0, t_1, ..., t_n])
 • (\lambda M) [t_0, t_1, ..., t_n] = (\lambda M[\underline{0}, t_0^1, t_1^1, ..., t_n^1])
                                                    t^1 – pripočítaj 1 k voľným premenným
 β: (λM) N = M[N, 0, 1, 2, 3, ...]
 • (\lambda.\lambda.\underline{1} \text{ a}) \text{ b} = ((\lambda.\underline{1}) [a,\underline{0},\underline{1},\underline{2},...]) \text{b} = (\lambda.(\underline{1} [\underline{0}, a, \underline{1}, \underline{2},...])) \text{ b} =
                                                       - a, b sú konštanty neobs. premenné
       \lambda_a b=a
 Príklad z predošlého slajdu:
     (\lambda.\lambda.((3\ 1)\ (\lambda.(0\ 2))))\ (\lambda.(4\ 0)) =
        • \lambda.((3\ 1)\ (\lambda.(0\ 2)))\ [(\lambda.(4\ 0)),0,1,2,...] =
        • \lambda.(((3 \ 1)[0,(\lambda.(5 \ 0)),1,2,...]) ((\lambda.(0 \ 2))[0,(\lambda.(5 \ 0)),1,2,...])) =
        • \lambda.((2 (\lambda.(5 0))) (\lambda.(0 2)) [0,(\lambda.(5 0)),1,2,...])) =
```

• $\lambda.((2(\lambda.(50))) (\lambda.(02)[0,1,(\lambda.(60)),2,3,4,...])))$

•
$$\lambda.((\underline{2} (\lambda.(\underline{5} \underline{0}))) (\lambda.(\underline{0} (\lambda.(\underline{6} \underline{0}))))))$$

= $(\lambda y.(\underline{z} (\lambda x.(\underline{w} \underline{x}))) (\lambda u.(\underline{u} (\lambda x.(\underline{w}' \underline{x})))))$

SKK

- K=λx.λy.x
 - λ.λ.<u>1</u>
- S=λx.λy.λz.x z (y z)
 - λ.λ.λ.<u>2</u> <u>0</u> (<u>1</u> <u>0</u>)

Ďalší testovací príklad

- S K K = $((\lambda.\lambda.\lambda.2 \ 0 \ (1 \ 0)) \lambda.\lambda.1) \lambda.\lambda.1 =$
 - $(\lambda.\lambda.2 \ 0 \ (1 \ 0) \ [\lambda.\lambda.1, \ 0,1,2,...]) \ \lambda.\lambda.1 =$
 - $(\lambda.\lambda.(2\ 0\ (1\ 0))\ [0,1,\lambda.\lambda.1,\ 0,1,2,...]) \lambda.\lambda.1 =$
 - $(\lambda.\lambda.((\lambda.\lambda.\underline{1}) \underline{0} (\underline{1} \underline{0}))) \lambda.\lambda.\underline{1} =$
 - $(\lambda.((\lambda.\lambda.\underline{1}) \ \underline{0} \ (\underline{1} \ \underline{0}))) \ [\lambda.\lambda.\underline{1},\underline{0},\underline{1},\underline{2},...] =$
 - $\lambda.(((\lambda.\lambda.\underline{1})\ \underline{0}\ (\underline{1}\ \underline{0}))\ [\underline{0},\lambda.\lambda.\underline{1},\underline{0},\underline{1},\underline{2},...]) =$
 - $\lambda.((\lambda.\lambda.\underline{1}) \underline{0} (\lambda.\lambda.\underline{1} \underline{0})) =$
 - $\lambda \cdot \underline{0} = I$

Cvičenie

Prepiste do de Bruijn notácie

- λx.λy.y (λz.z x) x
- λx.(λx.x x) (λy.y (λz.x))
- $(\lambda x. + x ((\lambda y.y) (-x (\lambda z.3)(\lambda y.y y)))$

Definujte funkciu na prevod do de Bruijn notácie.

Implementujte β-redukciu s pomocnými funkciami