UNIVERSITY OF OULU

Department of Computer Science and Engineering

Dr. Tapio Seppänen

Pattern Recognition and Neural Networks (521497S, 5 cp / 3 cu) Examination 13.12.2011

NEITHER PROGRAMMABLE/GRAPHICAL CALCULATORS NOR COURSE MATERIAL ARE ALLOWED IN THE EXAM!

1. Structure of Pattern Recognition Systems

In general, a pattern recognition system can be partitioned into several components. Describe what kinds of components there usually are and what the tasks of these components are! (6p)

2. Bayes Decision Rule

You have one real-valued feature x that can attain values in the range [0,4]. Within this range, the class-conditional density functions for classes c_1 and c_2 are

$$p(x|c_1) = \frac{1}{2} - \frac{1}{8}x$$
 and $p(x|c_2) = \begin{cases} \frac{2}{9}x & \text{when } x \le 3\\ 0 & \text{when } x > 3 \end{cases}$.

In accordance with the Bayes decision rule, derive a classifier when the a priori probabilities for the classes are $P(c_1) = \frac{2}{5}$, and $P(c_2) = \frac{3}{5}$! (6p)

3. Estimating Distributions

In Bayesian classification, it is essential to know the distributions. What are the differences between parametric and non-parametric density estimation techniques and when should one use the former or the latter method (pros and cons)? To make a case in point, give a short description of one parametric and one non-parametric technique! (6p)

4. Perceptrons

Figure 1 below shows a two Perceptron network with weights and bias values. The output y of the net can attain either the value 0 or 1 when the features x_1 and x_2 are real-valued. Determine the decision regions in the feature space (x_1,x_2) , i.e. calculate what feature values lead to the output being 0 or 1! (6p)

Figure 1. Multilayer Perceptron for the Question 4.