28. Logistic Regression (Practical) (Binary Classification)

- Logistic Regression is one of the most popular Machine Learning algorithms, which comes under the Supervised Learning Technique
- It is used for predicting the **categorical dependent variables** using a given set of independent variables
- Therefore, the coutcome must be a categorical or discrete value. It can be either Yes or No, 0 or 1, true or false, etc. but instead of giving the exact value as 0 and 1, it gives the probablisitic values which lie b/w 0 and 1.
- The data should be linearly separable

Types of Logistic Regression

On the basis of **categories**, Logistic Regression can be classified into three types:

- 1. **Binomial:** In binomial logistic regression, there can be two possible types of the dependent variables, such as 0 or 1, Pass or Fail etc.
- Multinomial: In multinomial logistic regression, there can be 3 or more possible unordered types of the dependent variables, such as cat, dog or sheep
- 3. **Ordinal:** In ordinal logistic regression, there can be 5 or more possible **ordered** types of dependent variables, such as low, medium or high
- In logistic regression, the prediction is done through **Sigmoid algorithm**

No description has been provided for this image

Logistic Regression Equation

The logistic regression equation can be obtained from the Linear Regress Model. The mathematical steps to get Logistic Regression equation are given below:

$$y = \frac{1}{1 + e^{-x}}$$

where:

- y = dependent variable (Bought Product)
- x = independent variable (Salary) (x = m1x1 + m2x2 + b)
- e = Euler's constant-2.71828

```
In [ ]:
        import pandas as pd
In [3]:
        import matplotlib.pyplot as plt
        import seaborn as sns
In [5]: dataset = pd.read_csv(r'Data/Social_Network_Ads.csv')
        dataset.head(3)
Out[5]:
            Age EstimatedSalary Purchased
                          19000
                                         0
         0
             19
                          20000
                                         0
         1
             35
         2
             26
                                         0
                          43000
```

In [9]: # For now, we want to see effect of age on purchase and ignore EstimatedSalary, so
 dataset.drop(columns=['EstimatedSalary'], inplace=True)
 dataset.head(3)

Out[9]:		Age	Purchased
	0	19	0
	1	35	0
	2	26	0

To see if our data follows Logistic Regression or Not

Our data follows logistic regression

1. Next we will split the data into dependent (x) and independent (y) variables

```
In [13]: # Note that data should be in 2 dimension
         x = dataset[['Age']]
         y = dataset[['Purchased']]
           2. Now we will split the data into train and test data
In [14]: from sklearn.model_selection import train_test_split
In [15]: x_train, x_test, y_train, y_test = train_test_split(x,y,test_size=0.20, random_stat
           3. Apply Logistic Regression
In [17]: from sklearn.linear_model import LogisticRegression
In [18]: lr = LogisticRegression()
         lr.fit(x_train, y_train)
        C:\Users\rashi\AppData\Local\Programs\Python\Python39\lib\site-packages\sklearn\util
        s\validation.py:1111: DataConversionWarning: A column-vector y was passed when a 1d
        array was expected. Please change the shape of y to (n_samples, ), for example using
        ravel().
         y = column_or_1d(y, warn=True)
Out[18]:
         ▼ LogisticRegression
         LogisticRegression()
            5. Check the accuracy of model
In [19]: lr.score(x_test, y_test)*100
Out[19]: 91.25
           6. Perform predictions on built model
In [20]: lr.predict([[40]])
        C:\Users\rashi\AppData\Local\Programs\Python\Python39\lib\site-packages\sklearn\bas
        e.py:450: UserWarning: X does not have valid feature names, but LogisticRegression w
        as fitted with feature names
          warnings.warn(
Out[20]: array([0], dtype=int64)
 In [ ]:
```

```
In [ ]:
```

Age

0.0