

TEST REPORT

Reference No. WTS17S0270211E

FCC ID...... 2ALEUM0E10XPX

Applicant Zhejiang Mylinks intelligence Technology Co., Ltd.

Address 2410. Building 2, YaZhong Road, Nanhu District, Jiaxing City,

Zhejiang Province, China

Manufacturer The same as above

Address The same as above

Product Name: Wi-Fi Module

Model No. : M0E10XPX

Standards FCC CFR47 Part 15 C Section 15.247:2016

Date of Receipt sample..... Feb. 08, 2017

Date of Test..... Feb. 09 – Mar. 17, 2017

Date of Issue : Mar. 20, 2017

Test Result Pass

Remarks:

The results shown in this test report refer only to the sample(s) tested, this test report cannot be reproduced, except in full, without prior written permission of the company.

The report would be invalid without specific stamp of test institute and the signatures of compiler and approver.

Prepared By:

Waltek Services (Shenzhen) Co., Ltd.

Address: 1/F., Fukangtai Building, West Baima Road, Songgang Street, Baoan District, Shenzhen,

Guangdong, China Tel:+86-755-83551033 Fax:+86-755-83552400

Tested by: Approved by:

Jack Wen / Test Engineer

STREPORT

Philo Zhong / Manager

2 Test Summary

Test Items	Test Requirement	Result
TITE RITE WILL WALL TO	15.247	L st
Radiated Emissions	15.205(a)	PASS
	15.209(a)	
Conducted Emissions	15.207(a)	PASS
6dB Bandwidth	15.247(a)(2)	PASS
Maximum Peak Output Power	15.247(b)(3),(4)	PASS
Power Spectral Density	15.247(e)	PASS
Band Edge	15.247(d)	PASS
Antenna Requirement	15.203	PASS
Maximum Permissible Exposure (Exposure of Humans to RF Fields)	1.1307(b)(1)	PASS

3 Contents

	THE WITE WALL MALL MAN WE SET LET	Page
10	COVER PAGE	
2	TEST SUMMARY	
3	CONTENTS	
4	REPORT REVISION HISTORY	
5	GENERAL INFORMATION	
	5.1 GENERAL DESCRIPTION OF E.U.T.	
	5.2 DETAILS OF E.U.T. 5.3 CHANNEL LIST	
	5.4 TEST MODE	
	5.5 TEST FACILITY	7
6	EQUIPMENT USED DURING TEST	
	6.1 EQUIPMENTS LIST	
	6.2 DESCRIPTION OF SUPPORT UNITS	
	6.3 MEASUREMENT UNCERTAINTY	
7	CONDUCTED EMISSION	
نامار.	7.1 E.U.T. OPERATION	
	7.2 EUT SETUP	10
	7.3 MEASUREMENT DESCRIPTION	
المالما	7.4 CONDUCTED EMISSION TEST RESULT	
8		
	8.1 EUT OPERATION	
	8.3 SPECTRUM ANALYZER SETUP	
	8.4 TEST PROCEDURE	
	8.5 CORRECTED AMPLITUDE & MARGIN CALCULATION	
9	BAND EDGE MEASUREMENT	
M	9.1 Test Produce	
	9.2 TEST RESULT	
10	6 DB BANDWIDTH MEASUREMENT	
	10.1 Test Procedure:	
	10.2 TEST RESULT:	
11	MAXIMUM PEAK OUTPUT POWER	36
	11.1 TEST PROCEDURE:	
	11.2 TEST RESULT:	
12	POWER SPECTRAL DENSITY	
	12.1 TEST PROCEDURE:	
164	12.2 TEST RESULT:	
13	RF EXPOSURE	
	13.1 REQUIREMENTS	
	13.3 MPE CALCULATION METHOD	
14	ANTENNA REQUIREMENT	50
15	PHOTOGRAPHS - MODEL M0E10XPX TEST SETUP	51

Page 4 of 56

	15.1 RADIATED EMISSION	51
	15.2 CONDUCTED EMISSION AT TEST SITE 1#	54
16	PHOTOGRAPHS - CONSTRUCTIONAL DETAILS	55
	16.1 MODEL MOE10YPY _PHOTOS	55

The same of the sa

Page 5 of 56

4 Report Revision History

Report No.	Date of Receipt sample	Date of issue	Purpose	Comment	Approved
WTS17S0270211E	Feb. 08, 2017	Mar. 20, 2017	Original		Valid

5 General Information

5.1 General Description of E.U.T.

Product Name: Wi-Fi Module
Model No.: M0E10XPX

Model Difference: N/A

Operation Frequency: 802.11b/g/n HT20: 2412MHz ~ 2462MHz,

The Lowest Oscillator: 26MHz

Antenna Gain: 2.0dBi

Type of modulation: IEEE 802.11b (CCK/QPSK/BPSK,11Mbps max.)

IEEE 802.11g (BPSK/QPSK/16QAM/64QAM,54Mbps max.)
IEEE 802.11n (BPSK/QPSK/16QAM/64QAM,HT20:72Mbps max.)

5.2 Details of E.U.T.

Technical Data: DC 3.3V

5.3 Channel List

Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)	Channel No.	Frequency (MHz)
S ¹¹ 1 ^	2412	2	2417	3.	2422	4	2427
5	2432	6	2437	7	2442	8	2447
9	2452	10	2457	11 9	2462	12	

5.4 Test Mode

Table 1 Tests Carried Out Under FCC part 15.247

Test Items	Mode	Data Rate	Channel	TX/RX
EX TEX STER STER WITE WAL	802.11b	11 Mbps	1/6/11	TX
Maximum Peak Output Power	802.11g	54 Mbps	1/6/11	TX
	802.11n HT20	108 Mbps	1/6/11	TX
Mar Mr Mr Mr	802.11b	11 Mbps	1/6/11	TX
Power Spectral Density	802.11g	54 Mbps	1/6/11	TX
	802.11n HT20	108 Mbps	1/6/11	TX
TER THE STIFF WITE SINTE SUN	802.11b	11 Mbps	1/11	TX
Band Edge	802.11g	54 Mbps	1/11	TX
	802.11n HT20	108 Mbps	1/11	TX
my my my	802.11b	11 Mbps	1/6/11	TX
6dB Bandwidth	802.11g	54 Mbps	1/6/11	TX
	802.11n HT20	108 Mbps	1/6/11	TX
at the text of other	802.11b	11 Mbps	1/11	TX
Transmitter Spurious Emissions	802.11g	54 Mbps	1/11	TX
	802.11n HT20	108 Mbps	1/11	TX

Note :Parameters set by test software during channel & power tests, the software provided by the customer was used to set the operating channels as well as the output power level. The RF output power set is the power expected by the manufacturer and is going to be fixed on the firmware of the final product .

5.5 Test Facility

The test facility has a test site registered with the following organizations:

• IC - Registration No.: 7760A

Waltek Services(Shenzhen) Co., Ltd. Has been registered and fully described in a report filed with the Industry Canada. The acceptance letter from the Industry Canada is maintained in our files. Registration number 7760A, October 15, 2015.

FCC Test Site 1# Registration No.: 880581

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 880581, April 29, 2014.

FCC Test Site 2# Registration No.: 328995

Waltek Services(Shenzhen) Co., Ltd. EMC Laboratory `has been registered and fully described in a report filed with the (FCC) Federal Communications Commission. The acceptance letter from the FCC is maintained in our files. Registration 328995, December 3, 2014.

6 Equipment Used during Test

6.1 Equipments List

Condu	cted Emissions Test	Site 1#	1 LET	TEX ITE	ملتا الالتا	ne me
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	100947	Sep.12, 2016	Sep.11, 2017
2.	LISN	R&S	ENV216	101215	Sep.15,2016	Sep.14,2017
3.	3. Cable Top		TYPE16(3.5M)	111 - 111	Sep.12, 2016	Sep.11, 2017
Condu	cted Emissions Test	Site 2#	et Jet	LIEK OLIE	White white	MUT. MUT.
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
1.	EMI Test Receiver	R&S	ESCI	101155	Sep.12, 2016	Sep.11, 2017
2.	LISN	SCHWARZBECK	NSLK 8128	8128-289	Sep.12, 2016	Sep.11, 2017
3.	Limiter	York	MTS-IMP-136	261115-001- 0024	Sep.12, 2016	Sep.11, 2017
4.	Cable	LARGE	RF300	-21/1/2	Sep.12, 2016	Sep.11, 2017
3m Sei	mi-anechoic Chamber	for Radiation Emis	ssions Test site	1#	WIFE WITE	WALL WALL
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
<u>,</u> 1	EMC Analyzer	Agilent	E7405A	MY45114943	Sep.15,2016	Sep.14,2017
2	Active Loop Antenna	Beijing Dazhi	ZN30900A	ALTE MIT	Oct.17, 2016	Oct.16, 2017
3	Trilog Broadband Antenna	SCHWARZBECK	VULB9163	336	Apr.09, 2016	Apr.08, 2017
4	Coaxial Cable (below 1GHz)	Тор	TYPE16(13M)	Vii. Aur.	Sep.12, 2016	Sep.11, 2017
5	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9120 D	667	Apr.09, 2016	Apr.08, 2017
6	Broad-band Horn Antenna	SCHWARZBECK	BBHA 9170	335	Apr.09, 2016	Apr.08, 2017
7	Broadband Preamplifier	COMPLIANCE DIRECTION	PAP-1G18	2004	Apr.13, 2016	Apr.12, 2017
8	Coaxial Cable (above 1GHz)	Тор	1GHz-25GHz	EW02014-7	Apr.13, 2016	Apr.12, 2017
3m Sei	mi-anechoic Chamber	for Radiation Emis	ssions Test site	2#	WALTER WALTER	White while
Item	Equipment	Manufacturer	Model No.	Serial No	Last Calibration Date	Calibration Due Date
1 ب	Test Receiver	R&S	ESCI	101296	Apr.13, 2016	Apr.12, 2017
2/0	Trilog Broadband Antenna	SCHWARZBECK	VULB9160	9160-3325	Apr.09, 2016	Apr.08, 2017
W3.1E	Amplifier	Compliance pirection systems inc	PAP-0203	22024	Sep.15,2016	Sep.14,2017
4	Cable	HUBER+SUHNER	CBL2	525178	Apr.13, 2016	Apr.12, 2017

RF Co	nducted Testing	me m	With the same	TEX TEX	ALTEK MITE	MALTERNALIE
Item	Equipment	Manufacturer	Model No.	Serial No.	Last Calibration Date	Calibration Due Date
5EX 1.	EMC Analyzer (9k~26.5GHz)	Agilent	E7405A	MY45114943	Sep.15,2016	Sep.14,2017
2.	Spectrum Analyzer (9k-6GHz)	R&S	FSL6	100959	Sep.12, 2016	Sep.11, 2017
on 3.	Signal Analyzer (9k~26.5GHz)	Agilent	N9010A	MY50520207	Apr.29, 2016	Apr.28, 2017

6.2 Description of Support Units

Equipment	Description	Model No.	Series No.	
M0-WIFI-USB-EVK	Zhejiang Mylinks intelligence	Alburt Mari	Mr. Mr.	
WO-WIFI-OSB-EVIC	Technology Co., Ltd.	at at	TEX TEX	

6.3 Measurement Uncertainty

Parameter	Uncertainty
Radio Frequency	± 1 x 10 ⁻⁶
RF Power	± 1.0 dB
RF Power Density	± 2.2 dB
TE WITH WILL WILL W	± 5.03 dB (30M~1000MHz)
Radiated Spurious Emissions test	± 5.47 dB (1000M~25000MHz)
Conducted Spurious Emissions test	± 3.64 dB (AC mains 150KHz~30MHz)

6.4 Test Equipment Calibration

All the test equipments used are valid and calibrated by CEPREI Certification Body that address is No.110 Dongguan Zhuang RD. Guangzhou, P.R.China.

7 Conducted Emission

Test Requirement: FCC CFR 47 Part 15 Section 15.207

Test Method: ANSI C63.10:2013

Test Result: PASS

Frequency Range: 150kHz to 30MHz

Class/Severity: Class B

Limit: 66-56 dB_µV between 0.15MHz & 0.5MHz

 $56~dB\mu V$ between 0.5MHz~&~5MHz $60~dB\mu V$ between 5MHz~&~30MHz

Detector: Peak for pre-scan (9kHz Resolution Bandwidth)

7.1 E.U.T. Operation

Operating Environment:

Temperature: 21.5 °C Humidity: 51.9 % RH Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in Transmitting mode, the test data were shown in the report.

7.2 EUT Setup

The conducted emission tests were performed using the setup accordance with the ANSI C63.10:2013.

7.3 Measurement Description

The maximised peak emissions from the EUT was scanned and measured for both the Live and Neutral Lines. Quasi-peak & average measurements were performed if peak emissions were within 6dB of the average limit line.

7.4 Conducted Emission Test Result

An initial pre-scan was performed on the live and neutral lines.

Live line:

8

9

10

11

12

0.3220

0.3940

0.3940

4.3140

4.3140

19.73

27.92

17.44

27.12

18.80

9.64

9.64

9.64

9.97

9.97

49.65

57.98

47.98

56.00

46.00

-20.28

-20.42

-20.90

-18.91

-17.23

AVG

QP

AVG

QP

AVG

29.37

37.56

27.08

37.09

28.77

8 Radiated Emissions

Test Requirement: FCC CFR47 Part 15 Section 15.209 & 15.247

Test Method: ANSI C63.10:2013

Test Result: PASS
Measurement Distance: 3m

Limit:

LIIIII.					
- A	Field Strei	ngth	Field Strength Limit at 3m Measurement Dist		
Frequency (MHz)	uV/m	Distance (m)	uV/m	dBuV/m	
0.009 ~ 0.490	2400/F(kHz)	300	10000 * 2400/F(kHz)	20log ^{(2400/F(kHz))} + 80	
0.490 ~ 1.705	24000/F(kHz)	30	100 * 24000/F(kHz)	20log ^{(24000/F(kHz))} + 40	
1.705 ~ 30	30	30	100 * 30	20log ⁽³⁰⁾ + 40	
30 ~ 88	100	3	100	20log ⁽¹⁰⁰⁾	
88 ~ 216	150	3 4	150	20log ⁽¹⁵⁰⁾	
216 ~ 960	200	3	200	20log ⁽²⁰⁰⁾	
Above 960	500	3	500	20log ⁽⁵⁰⁰⁾	

8.1 EUT Operation

Operating Environment:

Temperature: 23.5 °C

Humidity: 52.1 % RH

Atmospheric Pressure: 101.2kPa

EUT Operation:

The test was performed in transmitting mode, the test data were shown in the report.

8.2 Test Setup

The radiated emission tests were performed in the 3m Semi- Anechoic Chamber test site, using the setup accordance with the ANSI C63.10:2013.

The test setup for emission measurement below 30MHz.

The test setup for emission measurement from 30 MHz to 1 GHz.

The test setup for emission measurement above 1 GHz.

8.3 Spectrum Analyzer Setup

Below 30M	Hz	
	Sweep Speed	Auto
	IF Bandwidth	10kHz
	Video Bandwidth	10kHz
	Resolution Bandwidth	10kHz
30MHz ~ 1	GHz	
	Sweep Speed	
	Detector	PK
	Resolution Bandwidth	
	Video Bandwidth	300kHz
Above 1GH	IZIEK OLIEK MITE WALL WALL	
	Sweep Speed	Auto
	Detector	PK
	Resolution Bandwidth	1MHz
	Video Bandwidth	3MHz
	Detector	Ave.
	Resolution Bandwidth	1MHz
	Video Bandwidth	10Hz

Reference No.: WTS17S0270211E Page 16 of 56

8.4 Test Procedure

- 1. The EUT is placed on a turntable, which is above ground plane.
- 2. The turntable shall be rotated for 360 degrees to determine the position of maximum emission level.
- 3. EUT is set 3m away from the receiving antenna, which is moved from 1m to 4m to find out the maximum emissions.
- 4. Maximum procedure was performed on the six highest emissions to ensure EUT compliance.
- 5. And also, each emission was to be maximized by changing the polarization of receiving antenna both horizontal and vertical.
- 6. Repeat above procedures until the measurements for all frequencies are complete.
- 7. The radiation measurements are performed in X,Y and Z axis positioning(X denotes lying on the table, Y denotes side stand and Z denotes vertical stand),the worst condition was tested putting the eut in X axis,so the worst data were shown as follow.
- 8. A 2.4GHz high -pass filter is used druing radiated emissions above 1GHz measurement.

8.5 Corrected Amplitude & Margin Calculation

The Corrected Amplitude is calculated by adding the Antenna Factor and Cable Factor, and subtracting the Amplifier Gain from the Amplitude reading. The basic equation is as follows:

Corr. Ampl. = Indicated Reading + Antenna Factor + Cable Factor - Amplifier Gain

The "Margin" column of the following data tables indicates the degree of compliance with the applicable limit. For example, a margin of -7dB means the emission is 7dB below the maximum limit for Class B. The equation for margin calculation is as follows:

Margin = Corr. Ampl. - Limit

8.6 Summary of Test Results

Test Frequency: 26MHz to 30MHz

The measurements were more than 20 dB below the limit and not reported.

Test Frequency: 30MHz ~ 18GHz

_JEX ~U	Receiver	MALTEX MALTER	Turn	RX An	tenna	Corrected		FCC F 15.247/2	200
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
MULLE	inco in	10 J	11b: Lo	w Chann	el 2412	MHz	ynlite wnli	MULIT	NVE .
224.20	39.39	QP	101.99	1.64	Н	11.02	28.37	46.00	-17.63
224.20	34.18	QP	225.24	1.78	V	11.02	23.16	46.00	-22.84
4824.00	49.34	PK	251.28	1.66	V	1.09	48.25	74.00	-25.75
4824.00	43.62	Ave	251.28	1.66	V	1.09	42.53	54.00	-11.47
7236.00	40.46	PK	46.31	1.33	Н	1.33	41.79	74.00	-32.21
7236.00	40.61	Ave	46.31	1.33	Н	1.33	41.94	54.00	-12.06
2325.32	45.08	PK	277.83	1.76	V	13.16	31.92	74.00	-42.08
2325.32	39.91	Ave	277.83	1.76	V	13.16	26.75	54.00	-27.25
2387.74	44.93	PK	203.91	1.02	Н	13.69	31.24	74.00	-42.76
2387.74	36.58	Ave	203.91	1.02	Н	13.69	22.89	54.00	-31.11
2487.51	44.15	PK	358.91	1.36	V	13.26	30.89	74.00	-43.11
2487.51	38.92	Ave	358.91	1.36	V	13.26	25.66	54.00	-28.34

IEX WITEX	Receiver	CIED WALTER V	Turn	RX An	tenna	Corrected	OLITER AND	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
W. W.	- CH	TEN TEN	11b: Mid	dle Chan	nel 243	7MHz	, w	m m	
224.20	38.35	QP	190.61	1.09	ÆΉ	11.62	26.73	46.00	-19.27
224.20	35.18	QP	237.00	1.44	V su	11.62	23.56	46.00	-22.44
4874.00	50.60	PK	273.85	1.25	V	0.62	49.98	74.00	-24.02
4874.00	42.58	Ave	273.85	1.25	V	0.62	41.96	54.00	-12.04
7311.00	39.44	PK	169.91	1.36	Н	2.21	41.65	74.00	-32.35
7311.00	39.41	Ave	169.91	1.36	H-	2.21	41.62	54.00	-12.38
2328.39	45.58	PK	77.59	1.45	V	13.19	32.39	74.00	-41.61
2328.39	37.69	Ave	77.59	1.45	V	13.19	24.50	54.00	-29.50
2366.65	42.75	PK	315.48	1.04	Н	13.14	29.61	74.00	-44.39
2366.65	37.65	Ave	315.48	1.04	Н	13.14	24.51	54.00	-29.49
2492.48	43.56	PK	11.20	1.81	V	13.08	30.48	74.00	-43.52
2492.48	36.35	Ave	11.20	1.81	V	13.08	23.27	54.00	-30.73

EK WALTER	Receiver	NO N	Turn	RX An	tenna	Corrected	Company of	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
et et	TEX	SLIEK MLIEK	11b: Hi	gh Chanr	nel 2462	2MHz	77	it il	t JEY
224.20	37.51	QP	117.26	1.29	H	11.08	26.43	46.00	-19.57
224.20	35.52	QP	256.16	1.49	V	11.08	24.44	46.00	-21.56
4924.00	52.02	PK	268.14	1.96	V	0.56	51.46	74.00	-22.54
4924.00	42.94	Ave	268.14	1.96	Vol	0.56	42.38	54.00	-11.62
7386.00	39.42	PK	26.95	1.07	Н	2.84	42.26	74.00	-31.74
7386.00	37.98	Ave	26.95	1.07	JH /	2.84	40.82	54.00	-13.18
2322.67	46.88	PK	169.27	1.69	V	13.55	33.33	74.00	-40.67
2322.67	39.17	Ave	169.27	1.69	V	13.55	25.62	54.00	-28.38
2381.52	42.01	PK	28.57	1.32	H	13.24	28.77	74.00	-45.23
2381.52	37.93	Ave	28.57	1.32	H	13.24	24.69	54.00	-29.31
2499.52	42.19	PK	312.10	1.27	V	13.03	29.16	74.00	-44.84
2499.52	38.69	Ave	312.10	1.27	V	13.03	25.66	54.00	-28.34

EN MALIE	Receiver	War M	Turn	RX An	tenna	Corrected	UNITER WAL	FCC I 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
LET LET	TEX	LIEK WIFE	11g: Lo	w Chann	el 2412	MHz	70		- JEY
224.20	38.91	QP	221.12	1.54	H	11.20	27.71	46.00	-18.29
224.20	35.38	QP	192.41	1.99	V	11.20	24.18	46.00	-21.82
4824.00	51.94	PK	286.48	1.13	V	1.08	50.86	74.00	-23.14
4824.00	43.86	Ave	286.48	1.13	V	1.08	42.78	54.00	-11.22
7236.00	39.59	PK	146.30	1.29	Н	1.33	40.92	74.00	-33.08
7236.00	38.46	Ave	146.30	1.29	J'H	1.33	39.79	54.00	-14.21
2321.58	45.31	PK	241.12	1.13	V	13.50	31.81	74.00	-42.19
2321.58	39.22	Ave	241.12	1.13	V	13.50	25.72	54.00	-28.28
2388.56	44.68	PK	340.77	1.50	Н	13.30	31.38	74.00	-42.62
2388.56	38.31	Ave	340.77	1.50	H	13.30	25.01	54.00	-28.99
2492.80	42.79	PK	135.91	1.59	V	13.90	28.89	74.00	-45.11
2492.80	38.29	Ave	135.91	1.59	V	13.90	24.39	54.00	-29.61

EK WALTER	Receiver	July W	Turn	RX An	tenna	Corrected	William Mari	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
et set	TEX	ALTEK MLTER	11g: Mid	dle Chan	nel 243	7MHz			LIEN
224.20	39.11	QP	270.23	1.50	H	11.50	27.61	46.00	-18.39
224.20	34.13	QP	336.27	1.01	V	11.62	22.51	46.00	-23.49
4874.00	50.48	PK	81.35	1.19	V	0.62	49.86	74.00	-24.14
4874.00	44.68	Ave	81.35	1.19	Vol	0.62	44.06	54.00	-9.94
7311.00	39.02	PK	29.49	1.11	Н	2.21	41.23	74.00	-32.77
7311.00	38.24	Ave	29.49	1.11	√H	2.21	40.45	54.00	-13.55
2348.94	45.98	PK	300.14	1.17	V	13.19	32.79	74.00	-41.21
2348.94	38.31	Ave	300.14	1.17	V	13.19	25.12	54.00	-28.88
2371.46	44.58	PK	93.16	1.67	H	13.14	31.44	74.00	-42.56
2371.46	36.39	Ave	93.16	1.67	H	13.14	23.25	54.00	-30.75
2488.20	43.99	PK	161.74	1.87	V	13.08	30.91	74.00	-43.09
2488.20	36.77	Ave	161.74	1.87	V	13.08	23.69	54.00	-30.31

EK WALTER	Receiver	June W	Turn	RX An	tenna	Corrected	Will Mar	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
et set	TEX	SLIEK MLIER	11g: Hig	gh Chann	el 2462	MHz	The state of the s	it it	- TEX
224.20	39.03	QP	176.77	1.14	H	11.62	27.41	46.00	-18.59
224.20	35.54	QP	62.18	1.40	V	11.62	23.92	46.00	-22.08
4924.00	51.36	PK	77.65	1.06	V	0.24	51.12	74.00	-22.88
4924.00	45.98	Ave	77.65	1.06	Vet	0.24	45.74	54.00	-8.26
7386.00	39.79	PK	9.19	1.01	Н	2.84	42.63	74.00	-31.37
7386.00	38.08	Ave	9.19	1.01	Ϋ́H	2.84	40.92	54.00	-13.08
2321.97	45.55	PK	236.27	1.89	V	13.19	32.36	74.00	-41.64
2321.97	38.24	Ave	236.27	1.89	V	13.19	25.05	54.00	-28.95
2376.84	44.58	PK	89.39	1.72	H	13.14	31.44	74.00	-42.56
2376.84	38.35	Ave	89.39	1.72	H	13.14	25.21	54.00	-28.79
2498.28	44.60	PK	242.51	1.53	V	13.08	31.52	74.00	-42.48
2498.28	38.50	Ave	242.51	1.53	V	13.08	25.42	54.00	-28.58

TER WALTER	Receiver	Water the w	Turn	RX An	tenna	Corrected	Writek Wal	FCC F 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
at let	JEX	ALTEK MLTEK	n20: Lo	w Chann	el 2412	MHz	7,14		L JEY
224.20	38.26	QP	191.46	1.16	H	11.62	26.64	46.00	-19.36
224.20	34.55	QP	205.39	1.61	V	11.62	22.93	46.00	-23.07
4824.00	51.28	PK	288.53	1.51	V	1.06	50.22	74.00	-23.78
4824.00	46.56	Ave	288.53	1.51	Vet	1.06	45.50	54.00	-8.50
7236.00	38.84	PK	64.45	1.52	Н	1.33	40.17	74.00	-33.83
7236.00	39.28	Ave	64.45	1.52	Ϋ́H	1.33	40.61	54.00	-13.39
2316.78	45.27	PK	314.52	1.85	V	13.19	32.08	74.00	-41.92
2316.78	37.50	Ave	314.52	1.85	V	13.19	24.31	54.00	-29.69
2352.52	43.11	PK	263.02	1.02	H	13.14	29.97	74.00	-44.03
2352.52	37.28	Ave	263.02	1.02	H	13.14	24.14	54.00	-29.86
2492.12	43.98	PK	242.50	1.33	V	13.08	30.90	74.00	-43.10
2492.12	38.26	Ave	242.50	1.33	V	13.08	25.18	54.00	-28.82

EK WALTER	Receiver	Whi w	Turn	RX An	tenna	Corrected	Desire Albert	FCC I 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
et et	TEX	LIEK MITER	n20: Mid	dle Chan	nel 243	7MHz		et et	TEX
224.20	37.80	QP	125.38	1.78	H	11.62	26.18	46.00	-19.82
224.20	34.57	QP	180.08	1.22	V	11.62	22.95	46.00	-23.05
4874.00	51.71	PK	224.94	1.95	V	0.62	51.09	74.00	-22.91
4874.00	47.32	Ave	224.94	1.95	V	0.62	46.70	54.00	-7.30
7311.00	40.33	PK	30.58	1.74	Н	2.21	42.54	74.00	-31.46
7311.00	39.32	Ave	30.58	1.74	JEH .	2.21	41.53	54.00	-12.47
2339.74	46.79	PK	28.26	1.70	V	13.19	33.60	74.00	-40.40
2339.74	37.73	Ave	28.26	1.70	V	13.19	24.54	54.00	-29.46
2380.31	43.98	PK	286.01	1.88	H	13.14	30.84	74.00	-43.16
2380.31	37.59	Ave	286.01	1.88	H	13.14	24.45	54.00	-29.55
2493.74	43.90	PK	90.00	1.73	V	13.08	30.82	74.00	-43.18
2493.74	36.59	Ave	90.00	1.73	V	13.08	23.51	54.00	-30.49

EK WALTER.	Receiver	Walter W	Turn	RX An	tenna	Corrected	UNLITED ANDLE	FCC I 15.247/2	
Frequency	Reading	Detector	table Angle	Height	Polar	Factor	Corrected Amplitude	Limit	Margin
(MHz)	(dBµV)	(PK/QP/Ave)	Degree	(m)	(H/V)	(dB)	(dBµV/m)	(dBµV/m)	(dB)
LET LET	TEX	LIEY WITER	n20: Hiç	gh Chann	el 2462	MHz	, the	LET LEY	- JEX
224.20	36.80	QP	112.35	1.96	H	11.62	25.18	46.00	-20.82
224.20	35.45	QP	356.03	1.91	V	11.62	23.83	46.00	-22.17
4924.00	50.26	PK	204.77	1.81	V	0.24	50.02	74.00	-23.98
4924.00	46.34	Ave	204.77	1.81	V	0.24	46.10	54.00	-7.90
7386.00	39.04	PK	233.69	1.11	Н	2.84	41.88	74.00	-32.12
7386.00	38.76	Ave	233.69	1.11	ΛΉ	2.84	41.60	54.00	-12.40
2343.30	46.30	PK	30.45	1.30	V	13.19	33.11	74.00	-40.89
2343.30	39.93	Ave	30.45	1.30	V	13.19	26.74	54.00	-27.26
2360.00	42.84	PK	328.83	1.53	H	13.14	29.70	74.00	-44.30
2360.00	38.30	Ave	328.83	1.53	ALL H	13.14	25.16	54.00	-28.84
2489.08	44.64	PK	313.87	1.44	V	13.08	31.56	74.00	-42.44
2489.08	36.78	Ave	313.87	1.44	V	13.08	23.70	54.00	-30.30

Test Frequency: 18GHz~25GHz

The measurements were more than 20 dB below the limit and not reported.

Reference No.: WTS17S0270211E Page 26 of 56

9 Band Edge Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v03r05

Test Limit: Regulation 15.247 (d), In any 100 kHz bandwidth outside the

frequency band in which the spread spectrum or digitally modulated intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement, provided the transmitter demonstrates compliance with the peak conducted power limits. If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB. Attenuation below the general limits specified in §15.209(a) is not required. In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limits specified in §15.209(a) (see §15.205(c)).

Test Mode: Transmitting

9.1 Test Produce

- 1. Check the calibration of the measuring instrument using either an internal calibrator or a known signal from an external generator.
- 2. Position the EUT without connection to measurement instrument. Turn on the EUT and connect its antenna terminal to measurement instrument via a low loss cable. Then set it to any one measured frequency within its operating range, and make sure the instrument is operated in its linear range.
- Set RBW to 100 kHz and VBW of spectrum analyzer to 300 kHz with a convenient frequency span including 100 kHz bandwidth from band edge.
- 4. Measure the highest amplitude appearing on spectral display and set it as a reference level. Plot the graph with marking the highest point and edge frequency.
- 5. Repeat above procedures until all measured frequencies were complete.

9.2 Test Result

Test result plots shown as follows:

TX 11b: Band edge-right side

Waltek Services (Shenzhen) Co.,Ltd. http://www.waltek.com.cn

TX 11n HT20: Band edge-right side

Reference No.: WTS17S0270211E Page 30 of 56

10 6 dB Bandwidth Measurement

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v03r05

10.1 Test Procedure:

1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum;

2. Set the spectrum analyzer: RBW = 100kHz, VBW = 300kHz

10.2 Test Result:

Operation mode	Et TET E	Bandwidth (MH	z) TELL NALTE O
THE STEET STEET WITTER STREET	Channel 1	Channel 6	Channel 11
TX 11b	8.970	8.970	8.970
the little with the state of th	Channel 1	Channel 6	Channel 11
TX 11g	16.467	16.467	16.401
atter mitter mit	Channel 1	Channel 6	Channel 11
TX 11n HT20	17.665	17.665	17.665

Test result plot as follows:

-80 dBm

CF 2.412 GHz

Span 27.0 MHz

The state of the s

Reference No.: WTS17S0270211E Page 36 of 56

11 Maximum Peak Output Power

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v03r05

11.1 Test Procedure:

558074 D01 DTS Meas Guidance v03r05 section 9.1.2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 1 MHz. VBW = 3 MHz. Sweep = auto; Detector Function = Peak, Set the span to fully encompass the DTS bandwidth.
- 3. Keep the EUT in transmitting at lowest, medium and highest channel individually. Record the max value.

11.2 Test Result:

	Test mode :TX 11b	W 24 2
e alter white and	10 Maximum Peak Output Pow	er (dBm)
2412MHz	2437MHz	2462MHz
9.23	9.24	9.09
Why Mr. M.	Limit: 1W/30dBm	ER STEE WITE SPITE WALL

14, 14, 21	Test mode :TX 11g	
	10 Maximum Peak Output Po	ower (dBm)
2412MHz	2437MHz	2462MHz
9.07	9.33	9.11
CEX JEX JIE	Limit: 1W/30dBm	

Test mode :TX 11n HT20		
10 Maximum Peak Output Power (dBm)		
2412MHz	2437MHz	2462MHz
9.34	9.23	9.19
*	Limit: 1W/30dBm	Mr. Mr. Mr. Mr. Mr.

Mode: TX 11g channel 1

Mode: TX 11n HT20 channel 1

The state of the s

Reference No.: WTS17S0270211E Page 42 of 56

12 Power Spectral density

Test Requirement: FCC CFR47 Part 15 Section 15.247

Test Method: 558074 D01 DTS Meas Guidance v03r05

12.1 Test Procedure:

558074 D01 DTS Meas Guidance v03r05 section 10.2

- 1. Remove the antenna from the EUT and then connect a low RF cable from the antenna port to the spectrum.
- 2. Set the spectrum analyzer: RBW = 3kHz. VBW = 10kHz , Span = 1.5 times the DTS channel bandwidth(6 dB bandwidth). Sweep = auto; Detector Function = Peak. Trace = Max hold.
- 3. Allow the trace to stabilize. Use the marker-delta function to determine the separation between the peaks of the adjacent channels. The limit is specified in one of the subparagraphs of this Section Submit this plot.

12.2 Test Result:

THE RIFE OF	Test mode :TX 11b	
Mr. Mr. Mr.	Power Spectral (dBm per 3k	HZ)
2412MHz	2437MHz	2462MHz
-14.27	-14.78	14.27
22	Limit: 8dBm per 3kHz	WILL MAN WAY IN

et tet ite lite	Test mode :TX 11g	· · · · · · · · · · · · · · · · · · ·		
Power Spectral (dBm per 3kHz)				
2412MHz	2437MHz	2462MHz		
-24.66	-24.64	-23.05		
20, 0	Limit: 8dBm per 3kHz	Any Any Any		

Test mode :TX 11n HT20				
TEX TEX LIFE OUT	Power Spectral (dBm per 3k	(Hz)		
2412MHz	2437MHz	2462MHz		
-24.53	-24.52	-25.13		
WILL WALL MALE	Limit: 8dBm per 3kHz	the text the street me		

Page 44 of 56

Mode: TX 11n HT20 channel 6

THE THE SECOND S

13 RF Exposure

Test Requirement: FCC Part 1.1307
Evaluation Method: FCC Part 2.1091

13.1 Requirements

Systems operating under the provisions of this section shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess limit for maximum permissible exposure. In accordance with 47 CFR FCC Part 2 Subpart J, section 2.1091 this device has been defined as a mobile device whereby a distance of 0.2 m normally can be maintained between the user and the device.

13.2 The procedures / limit

(A) Limits for Occupational / Controlled Exposure

Frequency Range (MHz)	Electric Field Strength (E) (V/m)	Magnetic Field Strength (H) (A/m)	Power Density (S) (mW/ cm ²)	Averaging Time E ², H ²or S (minutes)
0.3-3.0	614	1.63	(100)*	6
3.0-30	1842 / f	4.89 / f	(900 / f)*	6
30-300	61.4	0.163	1.0	6
300-1500	2/ 20.	et	F/300	6
1500-100,000	t ITE	WI, A	5	6

(B) Limits for General Population / Uncontrolled Exposure

Frequency Range (MHz)			Power Density (S) (mW/ cm ²)	Averaging Time E ² , H ² or S (minutes)	
0.3-1.34	614	1.63	(100)*	30	
1.34-30	824/f	2.19/f	(180/f)*	30	
30-300	27.5	0.073	0.2	30	
300-1500	- TEX TEX	White While W	F/1500	30	
1500-100,000	MUL MIL		± <1.0 5 th	30	

Note: f = frequency in MHz; *Plane-wave equivalent power density

13.3 MPE Calculation Method

$$\mathbf{S} = \frac{P \times G}{4 \times \pi \times R^2}$$

S = power density (in appropriate units, e.g. mW/cm²)

P = output power to the antenna (in appropriate units, e.g., mW).

G = power gain of the antenna in the direction of interest relative to an isotropic radiator, the power gain factor, is normally numeric gain.

R = distance to the center of radiation of the antenna (appropriate units, e.g., cm)

From the peak EUT RF output power, the minimum mobile separation distance, R=20cm, as well as the gain of the used antenna, the RF power density can be obtained

Antenna Gain (dBi)	Antenna Gain (numeric)	Max. Peak Output Power (dBm)	Peak Output Power (mW)	Power Density (mW/cm ²)	Limit of Power Density (mW/cm²)
2.00	1.585	9.34	8.59	0.002708	

The late of the la

14 Antenna Requirement

According to the FCC Part 15 Paragraph 15.203, an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. This product has a PCB printed Antenna fulfill the requirement of this section.

15 Photographs - Model M0E10XPX Test Setup

15.1 Radiated Emission

Page 53 of 56

15.2 Conducted Emission at Test Site 1#

16 Photographs - Constructional Details

16.1 Model M0E10XPX - Photos

Page 56 of 56

=====End of Report=====