Contents

1	Week 5 Module 4: Part 1 Introduction to Filtering							
	1.1	Linear	Time-Invariant Systems	2				
		1.1.1	Linearity	2				
		1.1.2	Time invariance	2				
		1.1.3	Convolution	2				
	1.2	ng in the Time Domain	3					
		1.2.1	The convolution operator	4				
		1.2.2	Convolution and inner Product	4				
		1.2.3	Properties of the Impulse Response	4				
		1.2.4	Filtering by Example	5				
	1.3	Classifi	sification of Filters					
	1.4	Filter S	Stability					
	1.5							
		1.5.1	References	9				
		1.5.2	Eigensequence	9				
		1.5.3	Magnitude and phase	10				
		1.5.4	The convolution theorem	10				
		1.5.5	Frequency response	10				
		1.5.6	Example of Frequency Response: Moving Average Filter	11				
		1.5.7	Phase and signal shape	12				
		1.5.8	Linear Phase	13				
		1.5.9	Moving Average is linear Phase	13				
		1.5.10	Example of Frequency Response: Leaky Integrator	13				
		1.5.11	TODO Example of Frequency Response: Karplus Strong					
			Algorithm	15				
	1.6	Ideal F	Tilters	15				
		1.6.1	The ideal lowpass filter frequency response	16				
		1.6.2	Ideal lowpass filter impulse response	16				
		1.6.3	Example	18				
		1.6.4	TODO Ideal filters derived from the ideal low pass filter	19				
		1.6.5	TODO Demodulation revisted	19				
	1.7	MP3 E	Encoder	19				
		1.7.1	Psycho Acoustic Model, How it Works	20				
		1.7.2	Subband Filter	20				
	1.8	Progra	ming Assignment 1	21				

1 Week 5 Module 4: Part 1 Introduction to Filtering

Linear Time-Invariant Systems

LTI System

Linearity and Time Invariance taken together: A Linear Time Invariant System is completely charachterized by its response to the input in particular by its the Impulse Response.

1.1.1 Linearity

Linearity is expressed by the equivalence

$$\mathfrak{H}\{\alpha \ x_1[n] + \beta \ x_2[n]\} = \alpha \ \mathfrak{H}\{x_1[n]\} + \beta \ \mathfrak{H}\{x_2[n]\}$$
 (1)

• Fuzz-Box, example for a none linear device

TODO Add calculation examples

1.1.2 Time invariance

• The system behaves the same way independently of when a it's switched on

$$y[n] = \mathfrak{H}\{x[n]\} \Leftrightarrow \mathfrak{H}\{x[n-n_o]\} = y[n-n_o]$$
 (2)

• Wah-Pedal, example of a time variant device

TODO Add calculation examples

1.1.3 Convolution

The impulse response is the output of a filter when the input is the delta function.

$$h[n] = \mathfrak{H}\{\delta[n]\}\tag{3}$$

Impulse Response

Impulse response fully characterize the LTI system!

We can always write

$$x[n] = \sum_{k=-\infty}^{\infty} x[k]\delta[n-k]$$
 (4)

by linearity and time invariance

$$y[n] = \sum_{k=-\infty}^{\infty} x[k] h[n-k]$$
 (5)

$$=x[n]*h[n] \tag{6}$$

Performing the convolution algorithmically

$$x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k] \cdot h[n-k]$$

Ingredients

- a sequence x[m]
- a second sequence h[m]

The Recipe

- time-reverse h[m]
- at each step n (from $-\infty to \infty$):
 - center the time-reversed h[m] in n (i.e. by shift -n)
 - compute the inner product

Furthermore, the convolution can be defined in terms of the inner product between two sequencies.

$$(x * y)[n] = \langle x^*[k], y[n-k] \rangle$$
$$= \sum_{n=-\infty}^{\infty} x[k]y[n-k]$$

1.2 Filtering in the Time Domain

For the convolution of two sequencies to exist, the convolution sum must be finite i.e. the both sequencies must be absolutely summable

1.2.1 The convolution operator

Linearity
$$x[n] * (\alpha \cdot y[n] + \beta \cdot w[n]) = *\alpha \cdot x[n] * y[n] + \beta \cdot y[n] + y$$

$$x[n] * w[n]$$

$$w[n] = x[n] * y[n] \iff x[n] * y[n-k] =$$

$$w[n-k]$$

Commutative x[n] * y[n] = y[n] * x[n]

Associative (x[n] * y[n]) * w[n] = x[n] * (y[n] * w[n])

1.2.2 Convolution and inner Product

$$x[n] * h[n] = \langle h^*[n-k], x[k] \rangle$$

Filtering measures the time-localized similarity between the input sequence and a prototype sequence - the time reversed impulse response.

In general the convolution operator for a signal is defined with repsect to the inner product of its underlaying Hilbert space:

Square Summable Sequence $\ell_2(\mathbb{Z})$ $x[n] * h[n] = \langle h^*[n-k], x[k] \rangle$

N-Periodic Sequence
$$\tilde{x}[n] * \tilde{y}[n] \sum_{k=0}^{N-1} \tilde{x}[n-k]\tilde{y}[k]$$

Square Integrable Function
$$L_2([-\pi,\pi])$$
 $X(e^{j\omega})*Y(e^{\omega}) = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\sigma}) \cdot Y(e^{j(\omega-\sigma)})$

1.2.3 Properties of the Impulse Response

Causality A system is called causal if its output does not depend on futre values of the input. In practice a causual system is the only type of "real-time" syste we can actually implement.

Stability A system is called bounded-input bounded-output stabel (BIBO stable) if its output is bounded for all bounded input sequencies. FIR Filter are always stable, since only in the convolution sum only a finite number of terms are involved.

1.2.4 Filtering by Example

FIR Filter: Moving Average Typicale filtering scenario: denoising

- idea: replace each sample by the local average. Average are useually good to eliminate random variation from which you don't know mutch about it.
- for instance: y[n] = (x[n] + x[n-1])/2
- more generally:

$$y[n] = \frac{1}{M} \sum_{k=0}^{M-1} x[n-k]$$

Impulse Response

$$h[n] = \frac{1}{M} \sum_{k=0}^{M-1} \delta[n-k] \begin{cases} \frac{1}{M} & \text{for } 0 \le n < M \\ 0 & \text{otherwise} \end{cases}$$

```
function [x,n] = ma_impresp(M,n1,n2)
% Generates x(n) = delta(n); 0 <= M
% -------
% [x,n] = stepseq(n0,n1,n2)
%
    n = [n1:n2]; x = [ (n >= 0) & !((n-M) >= 0) ]./M;
end
```

Moving Average Impulse Response

Sample [n]

10

MA Analysis

• soomthin effect is proportional to M

-10

• number of operations and storage also proportional to M

-5

From the MA to first-order recursion

$$\begin{split} y_{M[n]} &= \sum_{k=0}^{M-1} x[n-k] = x[n] X \sum_{k=1}^{M-1} x[n-k] \\ M_{y_{M[n]}} &= x[n] + (M-1) y_{M-1}[n-1] \\ y_{M}[n] &= \frac{M-1}{M} y_{M-1}[n-1] + \frac{1}{M} x[n] \\ y_{M}[n] &= \lambda y_{M-1}[n-1] + (1-\lambda) x[n], \, \lambda = \frac{M-1}{M} \end{split}$$

IIR Filter: The Leaky Integrator

- when M is large, $y_{M-1}[n] \approx y_M[n]$ and $(\lambda \approx 1)$
- the filter becomes: $y[n] = \lambda y[n-1] + (1-\lambda)x[n]$

• the filter is now recursive, since it uses its previous output value

```
function y = lky_impresp(a,b,lambda,x)
% Generates x(n) = a^n
% ------
% [x,n] = lky_impresp(a,b, lambda, x)
% y[n] -lambda y[n-1] = (1-lambda) x[n]
% a = [1, -lambda];
% b = [(1-lambda)];

b = [1-lambda];
a = [1, -lambda];
y = filter(b,a,x);
end
```


Impulse Response For the impulse we just need to plug the delta function

$$h[n] = (\lambda y[n-1] + (1-\lambda))\delta[n]$$

= $(1-\lambda)\lambda^n u[n]$

The peak at n=0 is $1 - \lambda$.

The leaky integrator why the name

• Discrete Time integrator is a boundless accumulator

$$y[n] = \sum_{k=-\infty}^{n} x[k]$$

= $y[n-1] + x[n] \Rightarrow$ almost leaky integrator

To prevent "explosing" we scale the accumulator with λ :

$$\lambda y[n-1]$$
 keep only a fraction λ of the accumulated value so far and forget ("leak") a fraction $\lambda-1$

$$(1-\lambda)x[n]$$
 add only a fraction $1-\lambda$ of the current value to the accumulator.

So we get the leaky integrator from the accumulator

$$y[n] = \lambda \cdot y[n-1] + (1-\lambda) \cdot x[n] \Rightarrow \text{ almost leaky integrator}$$

1.3 Classification of Filters

FIR Finite Impulse Response Filter

- Impulse response has finite support
- only a finite number of samples are involved in the computation of each output
- Example: Moving Average Filter

IIR Infinite Impulse Response Filter

- Impulse response has inifinte support
- a potentially infinite number of samples are involved in the computation of each output sample
- surprisingly, in many cases the computation can still be performed in a finite amount of steps
- Example: The Leaky Integrator

• impulse response is zero for n < 0

- only past samples are involved in the computation of each output sample
- causul filters can work "on line" since they only need the past
- impulse response in nonzero for some (or all) n < 0
- can still be implemented in a offline fashing (e.g. image processing)

1.4 Filter Stability

Casual

Noncasual

FIR filters are always stable

because their impuls response only contains a finite number of non-zero values, and therefore the sum of their absolute values will always be finite.

1.5 Frequency Response

1.5.1 References

• Signal and System for Dummies: Frequency Response

1.5.2 Eigensequence

If a complex exponential is applied to a LTI filter its response is the DTFT of the impulse response of the LTI filter times the complex exponential.

$$\begin{split} x[n] &= e^{j\omega_0 n} \\ y[n] &= \mathfrak{H}\big\{x[n]\big\} \\ y[n] &= x[n] * h[n] \\ y[n] &= e^{j\omega_0 n} * h[n] \\ y[n] &= H(e^{j\omega_0})e^{j\omega_0 n} \end{split}$$

- DTFT of impulse response determinse the frequency characteristic of a filter
- Complex exponential are eignesequences of LTI systems, i.e. linear filters cannot change the frequency of a sinusoid.

1.5.3 Magnitude and phase

if
$$H(j^{j\omega_0}) = Ae^{j\theta}$$
, then $\mathfrak{H}\{e^{j\omega_0 n}\} = Ae^{j(\omega_0 n + \theta)}$

amplitude	\mathbf{A}	phase shift	θ
amplification	>1	delay	< 0
attenuation	$0 \le A < 1$	advancment	> 0

1.5.4 The convolution theorem

The convolution theorem summerizes this result in

$$DTFT\{x[n]*h[n]\} = X(e^{j\omega})H(e^{j\omega})$$

1.5.5 Frequency response

The DTFT of the impulse response is called the frequency response

$$H(e^{j\omega}) = DTFT\{h[n]\}$$

magnitude	$\mid H(e^{j\omega}\mid$	phase
amplification	> 1	overall shape and
attenuation	< 1	phase changes

1.5.6 Example of Frequency Response: Moving Average Filter

The difference equation from M-point averager is

$$y[n] = \frac{1}{M} \sum_{k=0}^{M-1} x[n-k]$$

The Frequency response of the moving average filter

$$H(e^{j\omega}) = \frac{1}{M} \sum_{k=0}^{M-1} e^{-j\omega k} = \frac{1}{M} \sum_{k=0}^{M-1} \left(e^{-j\omega} \right)^k$$
$$= \frac{1}{M} \frac{(1 - e^{-j\omega M})}{(1 - e^{j\omega})}$$

• The frequency response is composed of a linear term $e^{-j\omega\frac{M-1}{2}}$ and $\pm\pi$ due to the sign changes of $\frac{\sin(\frac{\omega}{2}M)}{\sin(\frac{\omega}{2}M)}$

The Magnetute response of the moving average filter

$$H(e^{j\omega}) = \frac{1}{M} \left| \frac{\sin(\frac{\omega}{2}M)}{\sin(\frac{\omega}{2})} \right|$$

1.5.7 Phase and signal shape

To understand the effects of the phase on a signal is to distinguish three different cases

• zero phase: the spectrum is real: $\angle H(e^{jw}) = 0$

• linear phase: the phase is proportional to the frequency via a real factor, d: $\angle H(e^{jw}) = d\omega$ the phase is proportional to the frequency of the sinusoid. The net effect is a shift of the signal if the phase component is porportional to the frequency.

• non linear phase: which covers all the other properties now the shape of the signal in the time domain changes.

The spectrum of all three signals $\mathbf{x}[\mathbf{n}]$ remains exactly the same in magnitude.

1.5.8 Linear Phase

$$y[n] = x[n-d]$$

 $Y(e^{j\omega}) = e^{-j\omega d} X(e^{j\omega})$
 $H(e^{j\omega}) = e^{-j\omega d} \Rightarrow linearphaseterm$

1.5.9 Moving Average is linear Phase

$$\begin{split} H(e^{j\omega}) &= A(e^{j\omega})e^{-j\omega d} \\ &\Rightarrow A(e^{j\omega}) \text{: pure real term} \\ &\Rightarrow e^{-j\omega d} \text{: pure phase term} \\ &= \frac{1}{M} \frac{\sin(\frac{\omega}{2}M)}{\sin(\frac{\omega}{2}M)} e^{-j\omega\frac{M-1}{2}} \Rightarrow \frac{M-1}{2} = d \end{split}$$

1.5.10 Example of Frequency Response: Leaky Integrator

The Frequency response of the leaky integrator

$$H(e^{j\omega}) = \frac{1 - \lambda}{1 - \lambda e^{j\omega}}$$

Finding the magnitude and phaser requires a little algebra From Complex Algebra

$$\frac{1}{a+jb} = \frac{1-jb}{a^2+b^2}$$

So that if $x = \frac{1}{a+jb}$

$$|x|^2 = \frac{1}{a^2 + b^2}$$

$$\angle x = tan^{-1} \left[-\frac{a}{b} \right]$$

$$H(e^{j\omega}) = \frac{1 - \lambda}{(1 - \lambda cos\omega) - jsin\omega}$$

so that:

$$|H(e^{j\omega})|^2 = \frac{(1-\lambda)^2}{1-2\lambda\cos\omega+\lambda^2}$$

$$\angle H(e^{j\omega}) = tan^{-1} \left[\frac{\lambda sin\omega}{1 - \lambda cos\omega} \right]$$

The phase is nonlinear in this case

1.5.11 **TODO** Example of Frequency Response: Karplus Strong Algorithm

$$y[n] = \alpha y[n - M] + x[n]$$

The Karplus-Strong algorithm is initialized with a finite support signal x of support M. And then we use a feedback loop with a delay of M taps. To approduce multiple copies of the original finite support signal, scaled by an exponentially decaying factor alpha.

With Sawtooth Wave

$$\tilde{X}(j\omega)W(j\omega) = e^{-j\omega} \left(\frac{M+1}{M-1}\right) \frac{1 - e^{-j(M-1)\omega}}{\left(1 - e^{j\omega}\right)^2} - \frac{1 - e^{-j(M+1)\omega}}{\left(1 - e^{j\omega}\right)^2}$$
$$X(j\omega)W(j\omega) = \frac{1}{1 - \alpha e^{-j\omega M}}$$

1.6 Ideal Filters

1.6.1 The ideal lowpass filter frequency response

1.6.2 Ideal lowpass filter impulse response

- Lets low frequencies go through
- Attenuates i.e. kills high frequencies

Cut off Frequency ω_c - the frequency response transitions from 1

to zero

Passband $\omega_b = 2\omega_c$

$$H(e^{j\omega}) = \begin{cases} 1 & \text{for } |\omega| \le \omega_c \\ 0 & \text{otherwise} \end{cases}$$

- perfectly flat passband
- infinite attenuation in stopband
- zero-phase (no delay)

Calculation of the impulse response from the frequency response of an

ideal low pass filter. Impulse Respones

$$h[n] = IDFT\{H(e^{j\omega})\}$$

$$= \frac{1}{2\pi} \int_{-\pi}^{\pi} H(e^{j\omega}) e^{j\omega n} d\omega$$

$$= \frac{1}{2\pi} \int_{-\omega_c}^{\omega_c} e^{j\omega n} d\omega$$

$$= \frac{1}{\pi} \frac{e^{j\omega_c} n - e^{-j\omega_c} n}{2j}$$

$$= \frac{\sin(\omega_c n)}{\pi n}$$

Impulse Response Ideal Low Pass Filter

- from Mathworks
- The impulse response has infinite support to the right and to the left
- Independant of how the convolution is computed, it will always take an inifintie number of operations.
- The impulse response decays slowly in time $\left(\frac{1}{n}\right)$, we need a lot of samples for a good approximation.

Impulse Response: From normlized Algorithm to Octave Implementation

$$\frac{\sin(\omega_c \ n)}{\pi \ n} = \frac{\omega_c}{\pi} \cdot \cdot \operatorname{sinc}(n \frac{\omega_c}{\pi});$$

$$= \frac{\frac{\pi}{c}}{\pi} \cdot \cdot \operatorname{sinc}(n \frac{\frac{\pi}{c}}{\pi});$$

$$= \frac{1}{c} \cdot \cdot \operatorname{sinc}(n \frac{1}{c});$$

$$= \frac{1}{c} \cdot \cdot \operatorname{sinc}(\frac{n}{c});$$

The sinc-rect pair:

$$rect(x) = \begin{cases} 1 & |x| \le \frac{1}{2} \\ 0 & |x| > \frac{1}{2} \end{cases}$$

$$sinc(x) = \begin{cases} \frac{\sin(\pi x)}{\pi x} & x \neq 0\\ 1 & x = 0 \end{cases}$$

- rect is the indicator function from $-\frac{1}{2}$ to $\frac{1}{2}$

Canonical form of the ideal low pass filter The sinct-rect pair can

be written in canonical form as follow: \$~\$

$$H(e^{j \omega}) = rect\left(\frac{\omega}{2 \omega_c}\right)$$
 \not $DTFT \longrightarrow \frac{\omega_c}{\pi} sinc\left(\frac{\omega_c}{\pi} n\right) = h[n]$

• The Impulse response is normalized by $\frac{\omega_c}{\pi}$

1.6.3 Example

Calculation of the impulse- and frequency response for an ideal low pass filter with ω_c $\frac{\pi}{3}$

1.6.4 TODO Ideal filters derived from the ideal low pass filter

1.6.5 TODO Demodulation revisted

1.7 MP3 Encoder

- Goal: Reduce number of bits to represent original signal x[n]
- MP3: Motion Picture Expert G3roup

- Lossy Compression: $x[n] \neq y[n]$
- Put noise where not perceptible by human ear
- *Example:*Raw Storage Consumption DVD
 - Sample Rate: 48kHz
 - Bits per Sample: 16
 - Bit Rate: $\frac{48000 \text{samples}}{second} \frac{16bits}{samples} = 768 kbits/s$
 - Duration: 60s
 - Mono Raw Data Storage Usage: 60s*76.8kbits/s = 46Mbit = 5.8MByte
 - Stereo Raw Data Storage Usage: 2 * 5.8 MBytes = 12 MBytes

- MP3 Compressed Storage Usage: 1.5MBytes

- Clever Quantiziation Scheme: Number of bits allocated to each subband is dependent on the perceptual importance of each sub-band with respect to overall quality of the audio wave-form
- Masking Effect of the human auditory system.

1.7.1 Psycho Acoustic Model, How it Works

- The psycho acoustic model is not part of the mp3 standard
- calculate the minimum number of bits that we need to quantize each of the 32 subband filter outputs, so that the perceptual distortion is as little as possible
- step 1 Use FFT to estimate the energy of the signal in each subband
- step 2 Distinguish beween tonal (sinusoid like) and non-tonal (nois-like) compnent
- step 3 Determine indicidual masking effect of tonal and non-tonal component in each critical band
- step 4 Determine the total masking effect by summing the individual continuous
- step 5 Map this total effect to the 32 subbands
- step 6 Determine bit alloction by allocating priority bits to subbands with lowest singal-to-mask ratio

1.7.2 Subband Filter

$$h_i[n] = h[n]cos(\frac{pi}{64}(2i+1)(n-16))$$

1.8 Programing Assignment 1

```
import matplotlib
import numpy as np
matplotlib.use('Agg')
import matplotlib.pyplot as plt
def scaled_fft_db(x):
     """ ASSIGNMENT 1:
         Module 4 Part 1:
         Apply a hanning window to len(x[n]) = 512
     HHHH
    N = len(x)
                            # number of samples
                            # time vector
    n = np.arange(N)
     # a) Compute a 512-point Hann window and use it to weigh the input data.
     sine_sqr = np.sin((np.pi*n)/(N-1))**2  # <math>sin(x)^2 = 1/2*(1 - cos(2x))
     c = np.sqrt(511/np.sum(sine_sqr))
     w = c/2 * (1 - np.cos((2 * np.pi * n)/(N - 1)))
     # b) Compute the DFT of the weighed input, take the magnitude in dBs and
          normalize so that the maximum value is 96dB.
    y = w * x
    Y = np.fft.fft(y) / N
     # c) Return the first 257 values of the normalized spectrum
     Y = Y[0: np.int(N/2+1)]
     # Take the magnitude of X
     Y_mag = np.abs(Y)
    nonzero_magY = np.where(Y_mag != 0)[0]
     # Convert the magnitudes to dB
    Y_db = -100 * np.ones_like(Y_mag)
                                         # Set the default dB to -100
     Y_db[nonzero_magY] = 20*np.log10(Y_mag[nonzero_magY]) # Compute the dB for non
     # Rescale to amx of 96 dB
     \max_{db} = np.amax(Y_{db})
     Y_db = 96 - max_db + Y_db
    return Y_db
```

```
def test():
    N = 512
    n = np.arange(N)
    x = np.cos(2*np.pi*n/10)

# Y = scaled_fft_db(x)
Y = scaled_fft_db(x)

fig=plt.figure(figsize=(6,3))
plt.semilogy(abs(Y))
plt.grid(True)

fig.tight_layout()
plt.savefig('image/python-matplot-fig-04.png')
    return 'image/python-matplot-fig-04.png' # return filename to org-mode
return test()
```