Степенные ряды

Пусть у нас есть некоторая функция f(x), очень часто хочется её представить в виде суммы простых функций (в некотором роде разложить по базису функций $\{\varphi_n(x)\}_{n=0}^{\infty}$):

$$f(x) = \sum_{n=0}^{\infty} c_n \varphi_n(x)$$

Поскольку функция сложная, то сумма будет до бесконечности. Встает вопрос, что за разумные $\varphi_n(x)$ могут здесь использоваться? Первое, что приходит на ум - многочлены \Rightarrow разумно рассматривать следующую систему:

$$\{1, x, x^2, \dots, x^n, \dots\}$$

Вместо такой системы можно рассматривать систему со сдвигом:

$$\{1, x - x_0, (x - x_0)^2, \dots, (x - x_0)^n, \dots\}$$

Но всегда можно сделать обратный сдвиг, поэтому не будем её рассматривать (будем смотреть системы с центром в нуле). Мы хотим уметь раскладывать любую функцию по таким системам. Рассмотрим следующий пример:

$$f(x) = \frac{1}{1+x^2}, f(x) \in C^{\infty}(\mathbb{R})$$

f(x) это гладкая, хорошая функция на всём \mathbb{R} , попробуем разложить её в ряд:

$$f(x) = 1 - x^2 + x^4 - \dots = \sum_{n=0}^{\infty} (-1)^n x^{2n}, |x| < 1$$

Это обычная геометрическая прогрессия, но такой ряд сходится только лишь при |x| < 1, при этом сама функция f(x) является бесконечно гладкой на всем \mathbb{R} . Проблема заключается в том, что у этой функции на комплексной плоскости есть особенности: $x = \pm i$.

Рис. 1: Круг сходимости у ряда $\sum_{n=0}^{\infty} (-1)^n x^{2n}$.

Таким образом, нам разумно рассматривать разложение в степенные ряды в С.

Опр: 1. Ряд вида $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ называется степенным рядом с центром в z_0 , где $\forall n, \, c_n, z, z_0 \in \mathbb{C}$.

Далее везде считаем, что $z_0 = 0$.

Комплексные числа

Как уже проходили на алгебре, будем рассматривать комплексные числа следующим образом:

$$\forall z \in \mathbb{C}, z = x + iy$$

В комплексной плоскости топология наследуемая метрикой (даже нормой) \mathbb{R}^2 :

$$\forall z \in \mathbb{C}, |z| = \rho(z, 0) = \sqrt{x^2 + y^2}, \, \rho(z_1, z_2) = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}$$

Сходимость в $\mathbb C$ задается этой же метрикой: $(\mathbb C, \rho)$ - метрическое пространство.

Опр: 2. Последовательность $\{z_n\}$ сходится к $z\colon z_n\to z$, если $\rho(z_n,z)\to 0$.

Дифференцируемость будет определяться в чем-то сложнее, в чем-то проще случая для вещественных пространств. Пусть есть функция в комплексозначной плоскости:

$$f: \mathbb{C} \to \mathbb{C} \longleftrightarrow g: \mathbb{R}^2 \to \mathbb{R}^2$$

Ей будет соответствовать некоторая функция g из \mathbb{R}^2 в \mathbb{R}^2 . Хотелось бы понять, как будет связано комплексное дифференцирование с вещественным.

Комплексное дифференцирование

Опр: 3. Функция f(z) - \mathbb{C} -дифференцируема в z_0 , если существует предел:

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{\Delta z \to 0} \frac{f(z_0 + \Delta_z) - f(z_0)}{\Delta z} = f'(z_0)$$

Теорема 1. (о связи дифференцируемости в \mathbb{C} и \mathbb{R}^2) Функция f(z) = u(z) + iv(z) - \mathbb{C} -дифференцируема тогда и только тогда, когда выполнены два условия:

- 1) $\begin{pmatrix} u \\ v \end{pmatrix} : \mathbb{R}^2 \to \mathbb{R}^2$ дифференцируема;
- 2) Выполнены условия Коши-Римана: $\begin{cases} u_x(z) = v_y(z) \\ u_y(z) = -v_x(z) \end{cases};$
- □ По определению С-дифференцируемости:

$$f(z_0 + \Delta z) - f(z_0) = f'(z_0)\Delta z + \overline{o}(|\Delta z|)$$

где \overline{o} - комплексное. Поскольку $f'(z_0) = a + ib$ -комплексное число и $\Delta z = \Delta x + i\Delta y$ - тоже комплексное, то перепишем всё в виде:

$$(u(z_0 + \Delta z) - u(z_0)) + i\left(v(z_0 + \Delta z) - v(z_0)\right) = (a + ib)(\Delta x + i\Delta y) + \overline{o}\left(\sqrt{\Delta x^2 + \Delta y^2}\right)$$

Распишем отдельно комплексную часть и отдельно вещественную:

$$u(z_0 + \Delta z) - u(z_0) = a\Delta x - b\Delta y + \overline{o}\left(\sqrt{\Delta x^2 + \Delta y^2}\right)$$

$$v(z_0 + \Delta z) - v(z_0) = b\Delta x + a\Delta y + \overline{o}\left(\sqrt{\Delta x^2 + \Delta y^2}\right)$$

Таким образом, приращение функций u и v есть локально линейное отображение плюс малая часть, а это означает, что векторная функция $\begin{pmatrix} u \\ v \end{pmatrix}$ - дифференцируема по определению. Матрица её производных соответственно равна:

$$\begin{pmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{pmatrix} = \begin{pmatrix} u_x & u_y \\ v_x & v_y \end{pmatrix} = \begin{pmatrix} a & -b \\ b & a \end{pmatrix} \Rightarrow u_x = v_y \land u_y = -v_x$$

Поскольку все действия были равносильными, то мы получаем утверждение в обе стороны.

Rm: 1. Условия Коши-Римана можно запомнить как растяжение плюс поворот. Мы знаем, что матрица поворота это:

$$\begin{pmatrix}
\cos \alpha & -\sin \alpha \\
\sin \alpha & \cos \alpha
\end{pmatrix}$$

Тогда, полученная в теореме матрица может быть представлена, как:

$$\begin{pmatrix} a & -b \\ b & a \end{pmatrix} = \sqrt{a^2 + b^2} \begin{pmatrix} \frac{a}{\sqrt{a^2 + b^2}} & -\frac{b}{\sqrt{a^2 + b^2}} \\ \frac{b}{\sqrt{a^2 + b^2}} & \frac{a}{\sqrt{a^2 + b^2}} \end{pmatrix}$$

Пример: Рассмотрим $f(z) = z^n$, найдем производную. По определению:

$$f'(z) = \lim_{\Delta z \to 0} \frac{(z + \Delta z)^n - z^n}{\Delta z} = \lim_{\Delta z \to 0} \frac{\Delta z \left(\sum_{k=0}^{n-1} (z + \Delta z)^k z^{n-1-k} \right)}{\Delta z} = \sum_{k=0}^{n-1} z^k z^{n-1-k} = nz^{n-1}$$

Пример: Рассмотрим $f(z)=\overline{z}$, существует ли у неё производная? По определению:

$$\lim_{\Delta z \to 0} \frac{\overline{z + \Delta z} - \overline{z}}{\Delta z} = \lim_{\Delta z \to 0} \frac{\overline{z} - \overline{z} + \overline{\Delta z}}{\Delta z} = \lim_{\Delta z \to 0} \frac{\overline{\Delta z}}{\Delta z}$$

Этот предел не существует, поскольку по разным траекториям мы получим различные пределы. Пусть $\Delta z = \Delta x$, тогда:

$$\lim_{\Delta z \to 0} \frac{\overline{\Delta x}}{\Delta x} = \lim_{\Delta x \to 0} \frac{\Delta x}{\Delta x} = 1$$

Пусть $\Delta z = i\Delta y$, тогда:

$$\lim_{\Delta z \to 0} \frac{\overline{i\Delta y}}{i\Delta y} = \lim_{\Delta y \to 0} \frac{-i\Delta y}{i\Delta y} = -1$$

По одному направлению получили один предел, по-другому - другой \Rightarrow предела не существует и функция не является \mathbb{C} -дифференцируемой.

Сходимость степенных рядов

Рассмотрим степенной ряд $\sum_{n=0}^{\infty} c_n z^n$ в нуле (поскольку сделали сдвиг). Возникает вопрос, где он может сходиться? Вспоминая, что

$$\overline{\lim}_{n \to \infty} c_n = \lim_{n \to \infty} \sup_{k > n} c_k, \ \underline{\lim}_{n \to \infty} c_n = \lim_{n \to \infty} \inf_{k > n} c_k$$

И признак Коши имел следующий вид:

Утв. 1. (признак Коши) Пусть $a_n \ge 0$, тогда:

- (1) Если $\overline{\lim}_{n\to\infty} \sqrt[n]{a_n} = q < 1$, то ряд $\sum_{n=1}^{\infty} a_n$ сходится;
- (2) Если $\overline{\lim}_{n\to\infty} \sqrt[n]{a_n} = q > 1$, то ряд $\sum_{n=1}^{\infty} a_n$ расходится;
- (3) Если q = 1, то ничего сказать нельзя;

Рассмотрим следующий верхний предел в контексте степенных рядов:

$$q = \overline{\lim}_{n \to \infty} \sqrt[n]{|c_n| \cdot |z|^n} = |z| \cdot \overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|}$$

Если q < 1, то ряд абсолютно сходится (ряд из модулей поскольку) \Rightarrow сходится. Если q > 1, то расходится ряд из модулей (формально ничего про исходный сразу не видно), следовательно не сходятся к нулю слагаемые (см. признак Коши) $|c_n| \cdot |z|^n \Rightarrow$ исходный ряд расходится.

Опр: 4. Радиусом сходимости R будем называть следующее число:

$$R = \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n]{|c_n|}}} \in [0, \infty]$$

Опр: 5. Кругом сходимости будем называть множество $\{z\colon |z|< R\}$.

 \mathbf{Rm} : 2. Включение 0 и ∞ в определении радиуса сходимости подразумевается следующем образом:

$$R = 0 \Leftrightarrow \overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|} = \infty, \ R = \infty \Leftrightarrow \overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|} = 0$$

Теорема 2. (формула Коши-Адамара) Для степенного ряда вида $\sum_{n=0}^{\infty} c_n z^n$, если |z| < R, то ряд сходится, если значение |z| > R, то ряд расходится.

 \square Пусть $0<\varlimsup_{n\to\infty}\sqrt[n]{|c_n|}<\infty,$ тогда по признаку Коши ряд сходится, если:

$$q = |z| \cdot \overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|} < 1 \Leftrightarrow |z| < \frac{1}{\overline{\lim} \sqrt[n]{|c_n|}} = R$$

и ряд расходится, если:

$$q = |z| \cdot \overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|} > 1 \Leftrightarrow |z| > \frac{1}{\overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|}} = R$$

Если $\overline{\lim}_{n\to\infty} \sqrt[n]{|c_n|} = 0$, то q=0 и сходимость всегда есть $\Rightarrow R=\infty$ и $\forall z, |z|<\infty$.

Если $\overline{\lim}_{n\to\infty} \sqrt[n]{|c_n|} = \infty$ и $z\neq 0$, то тогда мы получаем в пределе ∞ и ряд расходится всегда $\Rightarrow R=0$.

Rm: 3. Теорема не говорит ничего про то, что может происходить на границе круга сходимости. Там может быть всё что угодно.

Примеры применения теоремы Коши-Адамара

1) Пример: $\sum_{n=0}^{\infty} z^n$, вычислим радиус сходимости:

$$\forall n, c_n = 1 \Rightarrow \overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|} = \overline{\lim}_{n \to \infty} \sqrt[n]{1} = 1 \Rightarrow R = \frac{1}{1} = 1$$

Таким образом, круг сходимости это множество $\{z\colon |z|<1\}$. На границе круга сходимости ряд расходится, поскольку:

$$|z| = 1 \Rightarrow |z^n| = 1 \nrightarrow 0$$

что должно было быть верным для сходящегося ряда. Область сходимости: $\{z\colon |z|<1\}$.

2) Пример: $\sum_{n=1}^{\infty} \frac{z^n}{n}$, вычислим радиус сходимости:

$$\forall n, \ c_n = \frac{1}{n} \Rightarrow \overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|} = \overline{\lim}_{n \to \infty} \sqrt[n]{\frac{1}{n}} = \overline{\lim}_{n \to \infty} \frac{1}{\sqrt[n]{n}} = 1 \Rightarrow R = \frac{1}{1} = 1$$

То есть всё, как и в прошлом примере. Единственный вопрос, что происходит на границе: |z|=1:

$$z = \cos \varphi + i \sin \varphi \Rightarrow z^n = \cos n\varphi + i \sin n\varphi \Rightarrow \sum_{n=0}^{\infty} \frac{z^n}{n} = \sum_{n=0}^{\infty} \frac{\cos n\varphi}{n} + i \sum_{n=0}^{\infty} \frac{\sin n\varphi}{n}$$

Эти ряды сходятся только при $\varphi \neq 2\pi k$ (см. лекцию 4 про признак Дирихле), то есть при $z \neq 1$. Область сходимости: $\{z \colon |z| \leq 1 \land z \neq 1\}$.

3) Пример: $\sum_{n=1}^{\infty} \frac{z^n}{n^2}$, вычислим радиус сходимости:

$$\forall n, \ c_n = \frac{1}{n:2} \Rightarrow \overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|} = \overline{\lim}_{n \to \infty} \sqrt[n]{\frac{1}{n^2}} = \overline{\lim}_{n \to \infty} \frac{1}{\sqrt[n]{n^2}} = 1 \Rightarrow R = \frac{1}{1} = 1$$

То есть всё, как и в прошлом примере. Но на границе |z|=1 имеет место следующее: $\frac{|z^n|}{n^2}=\frac{1}{n^2}\Rightarrow$ ряд из модулей просто сходится \Rightarrow сам ряд сходится. Область сходимости: $\{z\colon |z|\leq 1\}$

4) Пример: $\sum_{n=0}^{\infty} \frac{z^n}{n!}$, вычислим радиус сходимости используя формулу Стирлинга:

$$\forall n, \ c_n = \frac{1}{n!} \Rightarrow \overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|} = \overline{\lim}_{n \to \infty} \sqrt[n]{\frac{1}{n!}} \approx \overline{\lim}_{n \to \infty} \frac{1}{\sqrt[n]{\frac{n^n \sqrt{2\pi}n}{e^n}}} = 0 \Rightarrow R = \frac{1}{0} = \infty$$

 \mathbf{Rm} : 4. Заметим, что рассматриваемый ряд есть разложение комплексной экспоненты e^z .

Таким образом, этот ряд сходится $\forall z \in \mathbb{C}$. Область сходимости: $\{z \colon z \in \mathbb{C}\}$.

5) Пример: $\sum_{n=0}^{\infty} z^n n!$, вычислим радиус сходимости используя формулу Стирлинга:

$$\forall n, c_n = n! \Rightarrow \overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|} = \overline{\lim}_{n \to \infty} \sqrt[n]{n!} \approx \overline{\lim}_{n \to \infty} \sqrt[n]{\frac{n^n \sqrt{2\pi}n}{e^n}} = \infty \Rightarrow R = \frac{1}{\infty} = 0$$

Таким образом, этот ряд нигде не сходится (кроме точки z=0). Область сходимости: $\{z\colon z=0\}$.

Rm: 5. Заметим, что при работе с радиусами сходимости и теоремой Коши-Адамара надо быть всегда аккуратным, например, рассмотрим ряд:

$$\sum_{n=0}^{\infty} 2^n z^{n^2} \Rightarrow R = \frac{1}{\overline{\lim_{n \to \infty} \sqrt[n^2]{|2^n|}}} = 1$$

где степень корня уже не n, а n^2 из-за строения ряда.

Упр. 1. Построить пример, когда на границе круга сходимости три точки расходимости.

Упр. 2. Построить пример, когда на границе круга сходимости ровно одна точка сходимости (см. конспект с задачами).

Теоремы Абеля о сходимости степенных рядов

Теорема 3. (**І-ая теорема Абеля** (1)) Если степенной ряд $\sum_{n=0}^{\infty} c_n z^n$ сходится в точке $z_1 \neq 0$, то он также сходится $\forall z \colon |z| < |z_1|$ и сходится абсолютно и равномерно на множестве $\{z \colon |z| \leq q|z_1|\}, \, \forall q \in (0,1).$

Rm: 6. Если $\exists z_2$ в которой степенной ряд не сходится, то $\forall z \colon |z| > |z_2|$ ряд также будет не сходится.

Rm: 7. Под равномерной сходимостью в данном случае понимаем такую же, как и для обычных рядов:

$$\sup_{z \in Z} \left| \sum_{n=N}^{\infty} c_n z^n \right| \xrightarrow[N \to \infty]{} 0$$

 \square Пусть $|z| \leq q|z_1|, q \in (0,1).$ Ряд $\sum_{n=0}^{\infty} c_n z_1^n$ - сходится, тогда $c_n z_1^n \to 0$ по необходимому условию сходимости ряда $\Rightarrow c_n z_1^n$ - ограничена:

$$\exists M > 0 \colon \forall n, |c_n z_1^n| \leq M$$

Рассмотрим отдельно слагаемые ряда, по условию:

$$|c_n z^n| \le |c_n| \cdot |z_1|^n q^n \le M q^n, \ q \in (0,1) \Rightarrow \sum_{n=0}^{\infty} |c_n z^n|$$
 - сходится

Более того, ряд сходится равномерно по признаку Вейерштрасса для каждого q.

Теорему можно переформулировать для радиусов сходимости.

Следствие 1. Если R - радиус сходимости ряда $\sum_{n=0}^{\infty} c_n z^n$, то $\forall R_1 < R$ на круге $\{z \colon |z| < R_1\}$ ряд сходится равномерно и абсолютно.

$$|c_n z^n| \le |c_n| \cdot R_1^n < |c_n| \cdot R^n \Rightarrow \sum_{n=0}^{\infty} |c_n z^n| < \infty$$

По І-ой теореме Абеля сразу получаем требуемое.

Теорема 4. (**ІІ-ая теорема Абеля**) Если степенной ряд $\sum_{n=0}^{\infty} c_n z^n$ сходится в точке $z_1 \neq 0$, то он сходится равномерно на отрезке $[0, z_1] = \{z_1 t \colon t \in [0, 1]\}.$

 \square Надо проверить ряд вида $\sum_{n=0}^{\infty} (c_n z_1^n) t^n$ на отрезке [0,1] на равномерную сходимость. Семейство функций $a_n(t)=t^n$ - монотонное, равномерно ограниченное на [0,1]. Ряд $\sum_{n=0}^{\infty} c_n z_1^n$ - сходится равномерно на [0,1], поскольку не зависит от t. Тогда по признаку Абеля получаем требуемое.

Пример: Из формулы Тейлора мы знаем, что:

$$x \in \mathbb{R}, |x| < 1 \Rightarrow \ln(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} x^n, R = 1$$

Перейдем пределом по x слева к 1. Можно ли переставлять предел и сумму? Для этого необходимо, чтобы один из пределов был равномерным. По второй теореме Абеля заданный ряд сходится равномерно на отрезке [0,1] поскольку при R<1 ряд сходится, а при x=1 мы получаем ряд Лейбница. Тогда:

$$\ln 2 = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$$

Но у этого ряда очень долгая сходимость хвостов ⇒ вычислять так 2 очень долго. Рассмотрим:

$$\ln\left(\frac{1+x}{1-x}\right) = \ln\left(1+x\right) - \ln\left(1-x\right) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1}x^n}{n} + \sum_{n=1}^{\infty} \frac{x^n}{n} = 2\sum_{k=1}^{\infty} \frac{x^{2k-1}}{2k-1}$$

Возьмем $x=\frac{1}{3},$ тогда мы получим:

$$\ln 2 = 2\sum_{k=1}^{\infty} \left(\frac{1}{3}\right)^{2k-1} \frac{1}{2k-1}$$

И уже в этом случае скорость сходимости будет порядка $\left(\frac{1}{3}\right)^N$ и слагаемых понадобится в разы меньше (вместо 100 слагаемых хватит 4-5), чем для наивного подхода.

Rm: 8. Во втором томе Фихтенгольца есть большое обсуждение про методы усиления сходимости.

Пример: Полезно знать, как можно вычислить число π . Поскольку $\frac{\pi}{4} = \arctan 1$, то можно попробовать разложить арктанегис в степенной ряд. Это сделать сложно, поэтому вспомним следующее:

$$\operatorname{arctg} x = \int_{0}^{x} \frac{dt}{1+t^{2}} = \int_{0}^{x} \sum_{n=0}^{\infty} (-1)^{n} t^{2n} dt$$

Будем считать, что 0 < x < 1, тогда ряд на [0,x] сходится равномерно \Rightarrow можно поменять интеграл и степенной ряд:

$$\arctan x = \int_{0}^{x} \sum_{n=0}^{\infty} (-1)^{n} t^{2n} dt = \sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2n+1}}{2n+1}$$

Rm: 9. Аналогичным образом можно получать разложение в степенной ряд у любых разумных обратных функций, поскольку их производные устроены обычно лучше, чем сама обратная функцию.

Полученный выше ряд сходится в x = 1 (как ряд Лейбница) \Rightarrow есть равномерная сходимость на $[0,1] \Rightarrow$ можно поменять местами предел и сумму:

$$\frac{\pi}{4} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}$$

Опять получили крайне медленную сходимость. Можно вместо $\frac{\pi}{4}$ искать $\frac{\pi}{6}$ и с подстановкой $\frac{1}{\sqrt{3}}$. Но можно сделать ещё лучше.

Упр. 3. Воспользоваться формулой:

$$\operatorname{arctg} x + \operatorname{arctg} y = \operatorname{arctg} \frac{x+y}{1-xy}$$

И подобрать x и y, чтобы в правой части получили $\arctan 1$ (подходят $\frac{1}{2}$ и $\frac{1}{3}$).

Свойства суммы степенного ряда

Прежде чем перейдем к рассмотрению свойств суммы, уточним некоторый момент относительно верхних пределов последовательностей.

Утв. 2. Пусть последовательности $\{a_n\},\ a_n>0$ и $\{b_n\},\ b_n>0$ такие, что:

$$\exists a = \overline{\lim}_{n \to \infty} a_n, b = \overline{\lim}_{n \to \infty} b_n$$
:

Тогда:

$$\overline{\lim}_{n\to\infty} a_n \cdot \overline{\lim}_{n\to\infty} b_n \ge \overline{\lim}_{n\to\infty} a_n \cdot b_n$$

И если у последовательности $\{a_n\}$ существует конечный предел $a=\lim_{n\to\infty}a_n$, то будет верно равенство:

$$\overline{\lim}_{n\to\infty} a_n \cdot \overline{\lim}_{n\to\infty} b_n = \lim_{n\to\infty} a_n \cdot \overline{\lim}_{n\to\infty} b_n = a \cdot \overline{\lim}_{n\to\infty} b_n = \overline{\lim}_{n\to\infty} a_n \cdot b_n$$

□ По определению:

$$\overline{\lim}_{n \to \infty} a_n = \lim_{n \to \infty} \sup_{k > n} a_k, \ \overline{\lim}_{n \to \infty} a_n = \lim_{n \to \infty} \sup_{k > n} b_k$$

Поскольку $a_n, b_n > 0$, то:

$$\sup_{k>n} a_k \sup_{k>n} = \sup_{m,k>n} a_k b_m \ge \sup_{k>n} a_k b_k \Rightarrow \lim_{n\to\infty} \sup_{k>n} a_k \lim_{n\to\infty} \sup_{k>n} b_k \ge \lim_{n\to\infty} \sup_{k>n} a_k b_k$$

В случае, если у $\{a_n\}$ существует предел a, то возьмем $a>\varepsilon>0$ такое, что:

$$\exists N : \forall n > N, \ a_n \ge a - \varepsilon \Rightarrow \forall n > N, \ \sup_{k > n} a_n b_n \ge \sup_{k > n} (a - \varepsilon) b_n = (a - \varepsilon) \sup_{k > n} b_n$$

Перейдем к пределу:

$$\lim_{n \to \infty} \sup_{k > n} a_n b_n \ge (a - \varepsilon) \lim_{n \to \infty} \sup_{k > n} b_n \Leftrightarrow \overline{\lim}_{n \to \infty} a_n b_n \ge (a - \varepsilon) \overline{\lim}_{n \to \infty} b_n$$

А в силу произвольности $\varepsilon > 0$ мы получим:

$$\overline{\lim}_{n\to\infty} a_n b_n \ge a \overline{\lim}_{n\to\infty} b_n \Rightarrow \overline{\lim}_{n\to\infty} a_n b_n = \overline{\lim}_{n\to\infty} a_n \cdot \overline{\lim}_{n\to\infty} 7b_n$$

Обозначим $f(z) = \sum_{n=0}^{\infty} c_n z^n$, $f \colon \mathbb{C} \to \mathbb{C}$. Хотим показать, что это дифференцируемая функция.

Теорема 5.

- 1) Радиусы сходимости рядов $\sum_{n=0}^{\infty} c_n z^n$ и $\sum_{n=1}^{\infty} n c_n z^{n-1}$ совпадают: R = R'.
- 2) Если радиус сходимости R>0, то внутри круга сходимости сумма $f(z)=\sum_{n=0}^{\infty}c_{n}z^{n}$ дифференцируема

и вычисляется следующим образом: $f'(z) = \sum_{n=1}^{\infty} nc_n z^{n-1}, \, \forall z \in \{z \colon |z| < R\}.$

Rm: 10. На границе сходимость может теряться, но внутри круга сходимости ничего не теряется.

1) Заметим, что ряды: $\sum_{n=1}^{\infty} nc_n z^{n-1}$, $\sum_{n=1}^{\infty} nc_n z^n$ сходятся или расходятся одновременно: первый ряд сходится \Rightarrow домножив на ненулевую константу получим сходящийся ряд, второй ряд сходится \Rightarrow поделив на ненулевую константу получим сходящийся ряд, при z=0 оба ряда сходятся \Rightarrow сходимость рядов одинакова \Rightarrow радиусы сходимости этих рядов совпадают по І-ой теореме Абеля, иначе нашлась бы точка, где сходимости не совпадают. Следовательно: R'=R'' Посчитаем радиус сходимости второго ряда:

$$\frac{1}{R''} = \overline{\lim}_{n \to \infty} \sqrt[n]{n|c_n|} = \lim_{n \to \infty} \sqrt[n]{n} \cdot \overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|} = 1 \cdot \overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|} = \overline{\lim}_{n \to \infty} \sqrt[n]{|c_n|} = \frac{1}{R}$$

где второе равенство верно, поскольку какую бы подпоследовательность ни взяли, у нас будет произведение подпоследовательности которая стремится к 1 и нашей $|c_n|$. Следовательно: R' = R'' = R. Или можно посчитать в явном виде (учитывая, что e^x и $\log x$ - непрерывные, возрастающие функции):

$$\frac{1}{R'} = \overline{\lim}_{n \to \infty} \sqrt[n-1]{n|c_n|} = \overline{\lim}_{n \to \infty} n^{\frac{1}{n-1}} \cdot \left(|c_n|^{\frac{1}{n}} \right)^{\frac{n}{n-1}} = \lim_{n \to \infty} \sqrt[n-1]{n} \cdot \lim_{n \to \infty} \sup_{k > n} e^{\frac{k}{k-1} \log \left(|c_k|^{\frac{1}{k}} \right)} = \lim_{n \to \infty} \frac{1}{n} \cdot \left(|c_n|^{\frac{1}{n}} \right)^{\frac{n}{n-1}} = \lim_{n \to \infty} \sqrt[n-1]{n} \cdot \lim_{n \to \infty} \sup_{k > n} e^{\frac{k}{k-1} \log \left(|c_k|^{\frac{1}{k}} \right)} = \lim_{n \to \infty} \frac{1}{n} \cdot \lim_{n \to \infty} \sup_{k > n} e^{\frac{k}{n-1} \log \left(|c_k|^{\frac{1}{n}} \right)} = \lim_{n \to \infty} \frac{1}{n} \cdot \lim_{n \to \infty} \sup_{k > n} e^{\frac{k}{n-1} \log \left(|c_k|^{\frac{1}{k}} \right)} = \lim_{n \to \infty} \frac{1}{n} \cdot \lim_{n \to \infty} \sup_{k > n} e^{\frac{k}{n-1} \log \left(|c_k|^{\frac{1}{k}} \right)} = \lim_{n \to \infty} \frac{1}{n} \cdot \lim_{n \to \infty} \sup_{k > n} e^{\frac{k}{n-1} \log \left(|c_k|^{\frac{1}{k}} \right)} = \lim_{n \to \infty} \frac{1}{n} \cdot \lim_{n \to \infty} \sup_{k > n} e^{\frac{k}{n-1} \log \left(|c_k|^{\frac{1}{k}} \right)} = \lim_{n \to \infty} \frac{1}{n} \cdot \lim_{n \to \infty} \sup_{k > n} e^{\frac{k}{n-1} \log \left(|c_k|^{\frac{1}{k}} \right)} = \lim_{n \to \infty} \frac{1}{n} \cdot \lim_{n \to \infty} \sup_{k > n} e^{\frac{k}{n-1} \log \left(|c_k|^{\frac{1}{k}} \right)} = \lim_{n \to \infty} \frac{1}{n} \cdot \lim_{n \to \infty} \sup_{k \to \infty} e^{\frac{k}{n-1} \log \left(|c_k|^{\frac{1}{k}} \right)} = \lim_{n \to \infty} \frac{1}{n} \cdot \lim_{n \to \infty} \sup_{k \to \infty} e^{\frac{k}{n-1} \log \left(|c_k|^{\frac{1}{k}} \right)} = \lim_{n \to \infty} \frac{1}{n} \cdot \lim_{n \to \infty} \sup_{k \to \infty} e^{\frac{k}{n-1} \log \left(|c_k|^{\frac{1}{k}} \right)} = \lim_{n \to \infty} \frac{1}{n} \cdot \lim_{n \to \infty} \sup_{k \to \infty} e^{\frac{k}{n-1} \log \left(|c_k|^{\frac{1}{k}} \right)} = \lim_{n \to \infty} \frac{1}{n} \cdot \lim_{n \to \infty} \sup_{k \to \infty} e^{\frac{k}{n-1} \log \left(|c_k|^{\frac{1}{k}} \right)} = \lim_{n \to \infty} \frac{1}{n} \cdot \lim_{n \to \infty} \sup_{k \to \infty} e^{\frac{k}{n-1} \log \left(|c_k|^{\frac{1}{k}} \right)} = \lim_{n \to \infty} \frac{1}{n} \cdot \lim_{n \to \infty} e^{\frac{k}{n}} \cdot \lim_{n \to \infty}$$

$$=1 \cdot e^{\lim_{n \to \infty} \sup_{k > n} \frac{k}{k-1} \log \left(|c_k|^{\frac{1}{k}} \right)} = e^{1 \cdot \log \left(\lim_{n \to \infty} \sup_{k > n} |c_k|^{\frac{1}{k}} \right)} = \lim_{n \to \infty} \sup_{k > n} \sqrt[k]{|c_k|} = \lim_{n \to \infty} \sqrt[n]{|c_k|} = \frac{1}{R}$$

2) Пусть R>0, тогда по доказанному 1) верно, что $\forall z,\, |z|< R$ сходятся абсолютно ряды:

$$\sum_{n=0}^{\infty} c_n z^n, \sum_{n=1}^{\infty} n c_n z^{n-1}$$

Возьмем $z_0: |z_0| < R \Rightarrow \exists R_1: |z_0| < R_1 < R$. При $z \to z_0$ будем рассматривать $z: |z| < R_1$, поскольку при вычислении предела достаточно смотреть любую достаточно маленькую окрестность z_0 . Тогда по определению \mathbb{C} -производной:

$$f'(z_0) = \left(\sum_{n=0}^{\infty} c_n z^n\right)' \bigg|_{z=z_0} = \lim_{z \to z_0} \frac{\sum_{n=0}^{\infty} c_n z^n - \sum_{n=0}^{\infty} c_n z_0^n}{z - z_0} = \lim_{z \to z_0} \sum_{n=0}^{\infty} c_n \frac{z^n - z_0^n}{z - z_0}$$

Хотим предел вне суммы занести под сумму, это можно сделать лишь при равномерной сходимости. Рассмотрим слагаемые ряда:

$$\left| \frac{z^n - z_0^n}{z - z_0} \right| = \left| \frac{(z - z_0)(z^{n-1} + z^{n-2}z_0 + \dots + z_0^{n-1})}{z - z_0} \right| \le |z^{n-1}| + |z^{n-2}z_0| + \dots + |z_0^{n-1}| \le nR_1^{n-1}$$

Следующий ряд $\sum_{n=1}^{\infty} |c_n| n R_1^{n-1}$ - сходится, поскольку это $\sum_{n=1}^{\infty} c_n n z^{n-1}$, где $z=R_1 < R$, который по следствию из І-ой теоремы Абеля сходится абсолютно \Rightarrow по признаку Вейерштрасса ряд перед пределом сходится равномерно, тогда можно переставить предел и сумму местами:

$$\lim_{z \to z_0} \sum_{n=0}^{\infty} c_n \frac{z^n - z_0^n}{z - z_0} = \sum_{n=0}^{\infty} \lim_{z \to z_0} c_n \frac{z^n - z_0^n}{z - z_0} = \sum_{n=1}^{\infty} c_n n z_0^{n-1}$$

Rm: 11. Второй пункт можно было показать немного другим способом.

2) Рассмотрим следующую разность:

$$\sum_{n=0}^{\infty} c_n (z + \Delta z)^n - \sum_{n=0}^{\infty} c_n z^n - \Delta z \sum_{n=1}^{\infty} n c_n z^{n-1} = (*)$$

Хотим показать, что это при делении на Δz было $o(\Delta z)$, то есть по модулю стремилось к нулю. Возьмем $\varepsilon > 0, |z| < R_1 < R, |z + \Delta z| < R_1 < R$, тогда:

$$\sum_{n=0}^{\infty} |c_n| R_1^n < \infty, \sum_{n=1}^{\infty} n |c_n| R_1^{n-1} < \infty \Rightarrow \exists N : \sum_{n=N}^{\infty} n |c_n| R_1^n < \varepsilon$$

Тогда оценим рассматриваемую разность:

$$|(*)| \le \left| \sum_{n=0}^{N-1} c_n \left((z + \Delta z)^n - z^n - \Delta z \cdot nz^{n-1} \right) \right| + |\Delta z| \cdot \sum_{n=N}^{\infty} n |c_n| \cdot |z|^{n-1} + \sum_{n=N}^{\infty} |c_n| \cdot |(z + \Delta z)^n - z^n|$$

где мы можем раскрыть скобки внутри последнего слагаемого:

$$\sum_{n=N}^{\infty} |c_{n}| \cdot |(z + \Delta z)^{n} - z^{n}| \leq |\Delta z| \cdot \sum_{n=N}^{\infty} |c_{n}| \cdot \sum_{k=0}^{n-1} |z + \Delta z|^{k} \cdot |z|^{n-1-k} \leq |\Delta z| \cdot \sum_{n=N}^{\infty} |c_{n}| \sum_{k=0}^{n-1} R_{1}^{n-1-k} \cdot R_{1}^{k}$$

$$|\Delta z| \cdot \sum_{n=N}^{\infty} |c_{n}| \sum_{k=0}^{n-1} R_{1}^{n-1-k} \cdot R_{1}^{k} = |\Delta z| \cdot \sum_{n=N}^{\infty} n|c_{n}| R_{1}^{n-1} \leq |\Delta z| \varepsilon$$

$$|\Delta z| \cdot \sum_{n=N}^{\infty} n|c_{n}| \cdot |z|^{n-1} \leq |\Delta z| \cdot \sum_{n=N}^{\infty} n|c_{n}| \cdot R_{1}^{n-1} \leq |\Delta z| \varepsilon$$

Разделим нашу оценку на $|\Delta z|$ и рассмотрим, что получится:

$$\frac{1}{|\Delta z|}|(*)| \le \left| \sum_{n=0}^{N-1} \frac{c_n \left((z + \Delta z)^n - z^n - \Delta z \cdot nz^{n-1} \right)}{|\Delta z|} \right| + 2\varepsilon$$

В первом слагаемом находится производная для $f(z)=z^n$ выше мы её уже вычисляли, поэтому при значении $|\Delta z|<\delta$ это слагаемое будет сколь угодно маленькое. А поскольку в сумме конечное число слагаемых и каждое слагаемое можно сделать сколь угодно маленьким, то найдем такое δ , что будет верно:

$$\left| \sum_{n=0}^{N-1} \frac{c_n \left((z + \Delta z)^n - z^n - \Delta z \cdot nz^{n-1} \right)}{|\Delta z|} \right| < \varepsilon \Rightarrow \frac{1}{|\Delta z|} |(*)| < 3\varepsilon$$

Rm: 12. Почему не стали ссылаться на теорему о дифференцировании ряда? Ряд из производных сходится равномерно, сам ряд сходится ⇒ он сходится равномерно, его сумма дифференцируема и равна сумме производных. Но здесь нельзя её применить, поскольку мы находимся в ℂ и теорема Лагранжа больше не работает. В ℝ можно было сослаться на ту теорему.

Следствие 2. Пусть радиус сходимости ряда $f(z) = \sum_{n=0}^{\infty} c_n z^n$, R > 0. Тогда на $\{z \colon |z| < R\}$ сумма этого ряда бесконечное число раз дифференцируема и её k-ая производная вычисляется следующим образом:

$$f^{(k)}(z) = \sum_{n=k}^{\infty} c_n n(n-1) \cdot \dots \cdot (n-k+1) z^{n-k}$$

В частности, будет верно: $\forall k \in \mathbb{N}, \ c_k = \frac{f^{(k)}(0)}{k!}$ и степенной ряд является рядом Тейлора своей суммы.

Поскольку радиус сходимости не изменяется, то продифференцировав один раз, по теореме мы получим тот же радиус сходимости \Rightarrow можем сделать это ещё раз внутри круга сходимости и взять производную почленно. Следовательно $f(z) \in C^{\infty}(\{z:|z|< R\})$. Формула для $f^{(k)}(z)$ получается из почленного дифференцирования ряда. Формула для c_k получается подстановкой коэффициентов.

Заметим, что не любая функция раскладывается в ряд Тейлора.

Пример: Пусть $f(z)=e^{-\frac{1}{z^2}}$, в $\mathbb R$ это бесконечно дифференцируемая функция, но все её производные в нуле равны нулю. Сама функция не нулевая \Rightarrow не может разложиться в ряд Тейлора. В $\mathbb C$ если мы возьмем z=iy, то получим $f(z)=e^{\frac{1}{y^2}}\Rightarrow\lim_{y\to 0}e^{\frac{1}{y^2}}=\infty$. То есть функция даже не непрерывная, поэтому она комплексно-дифференцируемой быть не может. А если функция разлагается в степенной ряд, то она разлагается в $\mathbb C$ -степенной ряд. Если на $\mathbb R$ ряд сходился, то сразу в круге $\mathbb C$ будет сходиться \Rightarrow функция f(z) должна быть хотя бы непрерывной, а она не непрерывна.

Следствие 3. Пусть радиус сходимости ряда $\sum_{n=0}^{\infty} c_n z^n$, R > 0. Тогда радиус сходимости ряда $\sum_{n=0}^{\infty} \frac{c_n}{n+1} z^{n+1}$ равен R и его производная равна исходному ряду внутри круга сходимости:

$$\forall z \in \{z : |z| < R\}, \left(\sum_{n=0}^{\infty} \frac{c_n z^{n+1}}{n+1}\right)' = \sum_{n=0}^{\infty} c_n z^n$$

Или, что тоже самое, можно записать так:

$$\forall z \in \{z : |z| < R\}, \int \left(\sum_{n=0}^{\infty} c_n z^n\right) dz = \sum_{n=0}^{\infty} \frac{c_n}{n+1} z^{n+1} + C, C \in \mathbb{C}$$

 \square Радиус сходимости ряда $\sum_{n=0}^{\infty} c_n z^n$ равен радиусу сходимости $\sum_{n=0}^{\infty} \frac{c_n}{n+1} z^{n+1}$, иначе мы получили бы противоречие с теоремой о дифференцируемости степенного ряда, поскольку первый ряд есть почленная производная второго.

Rm: 13. Таким образом, если степенной ряд дифференцируем, то можно сколь угодно раз брать производную и сколь угодно раз интегрировать ряд.