Chapter 5 — "Numerical Methods"

HEWLETT-PACKARD

Applications Programs

00025 - 90011 Rev. B 7/75

CHAPTER 5 NUMERICAL METHODS

NEWTON'S METHOD SOLUTION TO f(x) = 0

One of the most common and frustrating problems in algebra is the solution of an equation like

$$\ln x + 3x = 10.8074$$

in which the x's refuse to conveniently migrate to one side of the equation and isolate themselves. That is, there is no simple algebraic solution. In this case, one of several root-finding algorithms may be employed to solve the equation f(x) = 0, where $f(x) = \ln x + 3x - 10.8074$. The following program uses Newton's method to find a solution for f(x) = 0, where f(x) is specified by the user.

The user must define the function f(x) by keying into program memory the keystrokes required to find f(x), assuming x is in the X-register. Fourteen program steps are available for defining f(x); the stack registers and storage registers R_5 through R_7 are also available to the user. In addition, the user must provide the program with an initial guess, x_1 , for the solution. The closer the initial guess is to the actual solution, the faster the program will converge to an answer. The program will halt when two successive approximations for x, say x_i and x_{i+1} , are within a tolerance ϵ , i.e., when $|x_{i+1} - x_i| < \epsilon$. The value for ϵ must be input by the user. In general a reasonable value for ϵ might be 10^{-6} x_1 .

Equations:

The basic formula used by Newton's method to generate the next approximation for the solution is

This program makes a numerical approximation for the derivative f'(x) to give the following equation:

$$x_{i+1} = x_i - \delta_i \left[\frac{f(x_i + \delta_i)}{f(x_i)} - 1 \right]^{-1}$$

where $\delta_i = 10^{-5} x_i$

Notes:

- 1. After the routine has finished calculating, the last value of f(x) may be displayed by pressing RCL 4. If this value is not close enough to zero, the program may be run again with a smaller value for ϵ .
- 2. The user can watch the function converge to zero by making a slight change in the program. If the <code>g</code> NOP in line 07 is replaced by an <code>f</code> PAUSE, the program will pause during each iteration, displaying successive values of f(x) which should be converging to zero. To make this change to a program that has already been keyed in, perform the following operations:
 - 1. Press **GTO** 0 6
 - 2. Switch to PRGM
 - 3. Press f PAUSE
 - 4. Switch to RUN
 - 5. Press f PRGM

Programming Remarks

This is one of the more complex programs in the book. The main difficulty is that at each iteration both f(x) and $f(x + \delta)$ need to be calculated, but the function f is keyed in in only one place in program memory. Large computers handle this problem by the use of a subroutine. This program simulates that technique by a number stored in R_0 known as a flag. The flag is set to 0 to indicate that f(x) is to be calculated, or to 1 if $f(x + \delta)$ is to be found. After the calculation of f, a test is made on the flag. If it is 0, the program will branch to an instruction which will store f(x); if it is 1, the program will go on to calculate a derivative based on $f(x + \delta)$. All operations connected with the flag occupy a total of 9 program steps.

D	ISPLAY	KEY	х	Υ	z	Т	COMMENTS	REGISTE
LINE	CODE	ENTRY	^	'		<u>'</u>	00	
00	///////////////////////////////////////	X/////////						R _O Flag
01	34	CLX	0				Set flag to 0 for f(x)	
02	23 00	STO 0	0					
03	24 01	RCL 1	×	0			Recall x and branch to	R ₁
04	13 17	GTO 17	×	0			calculate f(x)	·
05	22	R↓	f(x)				Roll down to remove flag	
06	23 04	STO 4	f(x)					R ₂
07	15 22	g NOP	f(x)				May Pause to see convergence	
08	01	1	1	f(x)			Set flag to 1 for $f(x + \delta)$	
09	23 00	STO 0	1	f(x)				R ₃ _δ
10	24 01	RCL 1	×	1	f(x)			
11	24 01	RCL 1	×	×	1	f(x)		
12	33	EEX	1, 00		x	1		R ₄ f(x)
13	05	5	1. 05	x	х	1		
14	- 71	÷	10 ⁻⁵ x	×	1	1		
15	23 03	STO 3	δ	×	1	1		R 5
16	51	+	x + δ	1	1	1		
17							Lines 17 through 30 are	
18							reserved for user	R 6
19							to define f(x)	
20								-
21							This section of pgm is	R 7
22							used to find f(x) and	{
23							$f(x + \delta)$. Flag in R_0 is	ļ
24							0 for f(x), 1 for	-
25							$f(x + \delta)$	1
26								-
27								1
28								1
29								1
30	45.74		(1.)(15)				1.6	1
31	15 71	g x = 0	$f(x)/(x+\delta)$				Is function value = 0?	1
32	13 49 24 00	GTO 49	$f(x)/(x + \delta)$	41			Yes, output solution	1
33		RCL 0	Flag	$f(x)/(x + \delta)$ $f(x)/(x + \delta)$			No, check flag Flag = 0?	1
34 35	15 71 13 05	g x = 0 GTO 05	Flag	f(x)/(x + 0)				1
	13 05	R↓	Flag $f(x + \delta)$	1(X)		Floo	Yes, have f(x)	1
36	24 04	RCL 4	f(x)	f(x + δ)		Flag	No, flag = 1, have $f(x + \delta)$	1
37	71	÷	R	1(x + 0)			$R = f(x + \delta)/f(x)$	1
38	01	1	1	R			n - 1(x + 0)/1(x)	1
39 40	41	-	R – 1	n			$R-1 = [f(x+\delta) - f(x)]/f(x)$	1
41	15 22	g 1/x	(R - 1) ⁻¹					
41	24 03	RCL 3	δ	(R - 1) ⁻¹			Approximate:	1
43	61	X	δ/(R – 1)	(n - ()			$f'(x) = [f(x+\delta) - f(x)]/\delta$ $\triangle = f(x)/f'(x)$	1
43	23 41 01	STO - 1	Δ		-		$x_{i+1} = x_i - \Delta$	
44	15 73	g ABS	Δ				^i+1 - ^i - \(\alpha \)	
	24 02	RCL 2	ϵ	IAI	-			
46	14 41	f x <y< td=""><td></td><td> Δ Δ </td><td>-</td><td></td><td> </td><td></td></y<>		Δ Δ	-			
47 48	13 01	GTO 01	ϵ	ΙΔΙ	-		$ x_{i+1} - x_i > \epsilon$? Yes, iterate again	1
	24 01	RCL 1	κ	ϵ	ΙΔΙ		No, display x and halt	
49	24 01	INCL I	^	l c	IΔI		ivo, display x and hait	1

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS				
1	Key in lines 1-16 of program						16	51
2	Key in function f(x)							
3	Key in a branch to line 31		GTO	31				
4	Press SST until display shows							
	line 30							
5	Key in lines 31-49 of program							
6	Switch to RUN							
7	Store initial guess for solution	x ₁	STO	1				
8	Store tolerance	ϵ	STO	2				
9	Compute solution	•	f	PRGM	R/S		×o	
10	To change x_1 or ϵ go to appro-							
	priate step and store new value.							

Example:

An equation often solved by gear designers is

$$tan x - x - I = 0$$

where x is an angle in radians and I is the *involute* of x. Find the angle x_0 corresponding to an involute of 0.0324.

Note:

Since a gear designer might want to calculate x for several values of I, it will be simpler to store I in R_7 for use by the function f(x).

Solution:

Example User Instructions

STEP	INSTRUCTIONS	INPUT DATA/UNITS		KEYS				
1	Key in lines 1-16 of program						16	51
2	Key in steps for $f(x) = \tan x -$							
	x – I		f	TAN			17	14 06
			f	LASTx			18	14.73
			_				19	41
			RCL	7			20	24 07
			_				21	41
3	Key in branch to 31		GTO	31			22	13 31
4	Press SST 8 times, until display							
	shows line 30							
5	Key in lines 31-49						49	24 01
6	Switch to RUN							
7	Set angular mode		g	RAD				
8	Store I	.0324	STO	7				
9	Guess x ₁ = 1	1	STO	1				
10	Set tolerance ϵ = 10^{-6}	10 ⁻⁶	STO	2				
11	Compute solution x ₀		f	PRGM	R/S			0.45
12	Convert the angle to degrees		180	х	g	π		
			÷					25.62
13	Display last value of f(x)		RCL	4			2.30	-09

$$x_0 = 25.62^{\circ}$$

Last $f(x) = 2.30 \times 10^{-9}$

NUMERICAL INTEGRATION, SIMPSON'S RULE

Let x_0 , x_1 , ..., x_n be equally spaced points such that $x_i = x_0 + ih$ for i = 0, 1, 2, ..., n at which corresponding values $f(x_0)$, $f(x_1)$, ..., $f(x_n)$ of a function f(x) are known. This function need not be known explicitly but if it is, these values can be found previously by writing the function into memory and evaluating at the various points. n must be an even positive integer.

Simpson's Rule is:

$$\int_{x_0}^{x_n} f(x) dx \approx \frac{h}{3} [f(x_0) + 4f(x_1) + 2f(x_2) + \dots + 4f(x_{n-3}) + 2f(x_{n-2}) + 4f(x_{n-1}) + f(x_n)].$$

Let the solution be indicated by I.

DI	SPLAY	KEY
LINE	CODE	ENTRY
00		
01	24 00	RCL 0
02	03	3
03	71	÷
04	23 00	STO 0
05	61	х
06	23 01	STO 1
07	74	R/S
08	24 00	RCL 0
09	61	х
10	24 01	RCL 1
11	51	+
12	23 01	STO 1
13	74	R/S
14	24 00	RCL 0
15	61	X,
16	04	4
17	61	х
18	24 01	RCL 1
19	51	+
20	23 01	STO 1
21	74	R/S
22	24 00	RCL 0
23	61	х
24	02	2

DI	KEY	
LINE	CODE	ENTRY
25	61	x
26	24 01	RCL 1
27	51	+
28	23 01	STO 1
29	13 13	GTO 13
30		
31		
32		
33		
34		
35		
36		
37		
38		
39		
40		
41		
42		
43		
44		
45		
46		
47		
48		
49		

	REGISTERS						
$R_o h/3$							
$R_1 \Sigma$							
R ₂							
R ₃							
R ₄							
R ₅							
R ₆							
R ₇							

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS			
1	Key in program						
2	Store increment	h	STO	0			
3	Enter first function value	f(x ₀)	f	PRGM	R/S		Partial sum
4	Enter last function value	f(x _n)	R/S				Partial sum
5	Enter values i = 1, 2,, n - 2	f(x _i)	R/S				Partial sum
6	Enter value i = n – 1	f(x _{n-1})	R/S				I

Example

Compute
$$\int_0^{\pi} \sin^2 x \, dx$$
 using Simpson's rule with $h = \pi/8$.

The following data must be found first:

i	0	1	2	3	4	5	6	7	8
Xi	0	$\pi/8$	$\pi/4$	$3\pi/8$	$\pi/2$	$5\pi/8$	$3\pi/4$	$7\pi/8$	π
f(x _i)	0	0.1464	0.5	0.8536	1	0.8536	0.5	0.1464	0

Solution:

$$\int_0^{\pi} \sin^2 x \, \mathrm{d}x \cong 1.5708$$

The exact solution is $\pi/2$.

NUMERICAL SOLUTION TO DIFFERENTIAL EQUATIONS

This program may be used to solve a wide variety of first order differential equations of the form

$$y' = f(x, y)$$

with initial values x_0, y_0 .

The solution is a numerical solution which calculates y_i for $x_i = x_0 + ih$, where h is an increment specified by the user and i = 1, 2, ...

The program uses a modified Euler method (predictor – corrector):

$$\hat{y}_{i+1} = y_i + h f(x_i, y_i)$$
 $y_{i+1} = y_i + \frac{h}{2} [f(x_i, y_i) + f(x_{i+1}, \hat{y}_{i+1})]$

f(x, y) is keyed into memory starting at line 18. The user has 13 program steps to write f(x, y); registers R_5 , R_6 , and R_7 are also available. The user should assume that x and y will be in the X- and Y-registers, respectively. The routine should return with the value of f(x, y) in the X-register and should end with a GTO 31.

DI	ISPLAY	KEY
LINE	CODE	ENTRY
00		
01	34	CLX
02	23 04	STO 4
03	24 02	RCL 2
04	24 01	RCL 1
05	13 18	GTO 18
06	22	R↓
07	23 03	STO 3
08	24 00	RCL 0
09	61	X
10	24 02	RCL 2
11	51	+
12	24 01	RCL 1
13	24 00	RCL 0
14	51	+
15	01	1
16	23 04	STO 4
17	22	R↓
18		
19		
20		
21		
22		
23		
24		

DI	SPLAY	KEY
LINE	CODE	ENTRY
25		
26		
27		
28		
29		
30		
31	24 04	RCL 4
32	15 71	g x=0
33	13 06	GTO 06
34	22	R↓
35	24 03	RCL 3
36	51	+
37	24 00	RCL 0
38	61	x
39	02	2
40	71	÷
41	24 02	RCL 2
42	51	+
43	23 02	STO 2
44	24 01	RCL 1
45	24 00	RCL 0
46	51	+
47	23 01	STO 1
48	14 74	f PAUSE
49	22	x y

	REGISTERS
R oh	
R _{1 X}	
R ₂ y	
R ₃ y'	
R ₄ Flag	
R ₅	
R ₆	
R ₇	

STEP	INSTRUCTIONS	INPUT DATA/UNITS KEYS					OUTPUT DATA/UNITS		
1	Key in lines 1-17 of program						17	22	
2	Key in function f(x, y)								
3	Key in branch to line 31		GTO	31					
4	Press SST repeatedly until dis-								
	play shows line 30								
5	Key in lines 31-49 of program						49	13 01	
6	Switch to RUN								
7	Store increment	h	STO	0					
8	Store initial conditions	x ₀	STO	1					
		Yo	STO	2	f	PRGM			
9	Display next x-value and cor-								
	responding y-value		R/S					(x _k)	
								Уk	
10	Repeat step 9 as often as desired								

Example:

Solve numerically the differential equation $y' = x \sqrt{y}$ with initial conditions $x_0 = 1$, $y_0 = 1$. Use a step size of h = 0.1.

Solution:

Key the function in as x≥y f √x x

x	1.0	1.1	1.2	1.3	1.4	1.5
y (by prgm)	1.0	1.1077	1.2319	1.3745	1.5372	1.7221
y (exact)	1.0	1.1078	1.2321	1.3748	1.5376	1.7227

LINEAR INTERPOLATION

If $(x_1, f(x_1))$ and $(x_2, f(x_2))$ are two points of a function f(x), then the function at x_0 can be approximated by the following formula:

$$f(x_0) \cong \frac{(x_2 - x_0) f(x_1) + (x_0 - x_1) f(x_2)}{(x_2 - x_1)}$$

This is called the linear interpolation formula. Of course, $\mathbf{x_2}$ cannot equal $\mathbf{x_1}$.

DISPLAY		KEY		DISPLAY		KEY	
LINE	CODE	ENTRY		LINE	CODE	ENTRY	
00				25			
01	23 04	STO 4		26			
02	24 00	RCL 0		27			
03	41	-		28			
04	24 03	RCL 3		29			
05	61	х		30			
06	24 02	RCL 2		31			
07	24 04	RCL 4		32			
08	41	-		33			
09	24 01	RCL 1		34			
10	61	x		35			
11	51	+		36			
12	24 02	RCL 2		37			
13	24 00	RCL 0		38			
14	41	-		39			
15	71	÷		40			
16	13 00	GTO 00		41			
17				42			
18				43			
19				44			
20				45			
21				46			
22				47			
23				48			
24				49			

REGISTERS
$R_0 \times_1$
\mathbf{R}_1 $f(\mathbf{x}_1)$
R ₂ x ₂
$\mathbf{R}_{3} f(\mathbf{x}_{2})$
$R_4 \times_0$
R 5
R ₆
R ₇

STEP	INSTRUCTIONS	INPUT DATA/UNITS		OUTPUT DATA/UNITS			
1	Key in program						
2	Store first point	x ₁	STO	0			
		f(x1)	STO	1			
3	Store second point	x ₂	STO	2			
		f(x ₂)	STO	3	f	PRGM	
4	Key in x_0 , find $f(x_0)$	x _o	R/S				f(x ₀)
5	Repeat step 5 for as many x-						
	values as desired.						

Example:

Given

$$f(7.3) = 1.9879$$

$$f(7.4) = 2.0015$$
,

find by linear interpolation f(7.37).

Solution:

$$f(7.37) = 1.9974$$