CSI 5155 Project Report

Name: Alim Manjiyani

Student Number: 300229095

11th December 2021

Contents

1	Introduc	ction	3
2	Dataset	Generation	3
3	Selectin	g base learners for self-training and semi-supervised ensembles	4
4	Self-Tra	ining Algorithm	5
	4.1 Res	ults	5
	4.1.1	Average ROC Graph	6
	4.1.2	Runtime Graph	7
	4.1.3	Accuracy and F1-Score Graph	7
5	Semi-Su	upervised Ensembles	8
	5.1 Res	ults	8
	5.1.1	Average ROC Graph	10
	5.1.2	Runtime Graphs	10
	5.1.3	Accuracy and F1-Score Graphs	10
6	Intrinsic	Semi-Supervised Method (S3VM)	11
	6.1 Res	ults	11
	6.1.1	Average ROC Graph	12
	6.1.2	Runtime Graphs	13
	6.1.3	Accuracy and F1-Score Graphs	13
7	Statistic	ally Significant Test	14
	7.1 Ner	nenyi Test and Friedman's Test	14
	7.1.1	Shopper Imbalanced	14
	7.1.2	Oversampled Shopper	15
	7.1.3	ReMix Shopper	16
	7.1.4	Imbalanced Market	17
	7.1.5	Oversampled Market	17
	7.1.6	ReMix Market	18

	7.1	.7 Imbalanced Heart	19
	7.1	.8 Oversampled Heart	20
	7.1	.9 ReMix Heart	21
	7.2	Result	21
8	Ob	servations and Comments	22
	8.1	ROC and AUROC (Class-Imbalance vs Unlabelled percentage)	22
	8.2	Runtime	22
	8.3	Accuracy and F1-Score	23
	8.4	Tests to determine statistically significant difference	23
9	Co	nclusion	24

1 Introduction

This project deals with the nuances of semi-supervised learning. For this project, I have implemented three different inductive semi-supervised approaches on 3 datasets (Online Shoppers Intention, Marketing Campaign, Heart Disease), the ratio of unlabelled to labelled data varies from 10% to 95% (10%, 20%, 50%, 90%, 95%). The aim is to learn and understand the interplay between class imbalance and semi-supervised learning, the relationship between the runtime and the size of unlabelled data, and to provide an accurate evaluation metric so that these algorithms can be compared for any statistical difference

2 Dataset Generation

One of the challenges faced during generating unlabelled dataset is that one of the datasets (Online Shoppers Intention) is highly imbalanced and a naïve approach for removing the class labels may lead to only 1 type of class for the learner resulting in completely neglecting the presence of a second-class label. To tackle this challenge, I reserve some part of the two class labels for training and testing. For example, If there is a need to create 90% unlabelled data points, then from the remaining 10% datapoints I reserve 5% of the class 1 label and 5% of the class 2 label, this way the learner will have both the class labels at the beginning of the semi-supervised training.

Moreover, I used a new strategy to handle class-imbalance as suggested by Dr. Colin Bellinger during his guest lecture, namely the ReMix (Resampling with data and label mixing). Not to be surprised I achieved very good results with the use of this strategy.

3 Selecting base learners for self-training and semi-supervised ensembles

To decide which algorithms to use as base estimators, I evaluated the scores of Random Forest, Decision Tree, K-NN, SVM, MLP, Gradient Boosting Algorithms with respect to all the three datasets as shown in Figure 1.

Algorithm	Shopper Dataset	Marketing dataset	Heart dataset
Random Forest	0.9051951375559821	0.8830357142857143	0.8533333333333334
Decision Tree	0.852758668305279	0.8553571428571428	0.806666666666666
KNN	0.8508823651251743	0.5910714285714286	0.8433333333333334
SVM	0.8455610406108894	0.7825892857142858	0.83000000000000001
MLP	0.8801963112811094	0.5977678571428572	0.8566666666666667
Gradient Boosting	0.9543242104972451	0.9035714285714286	0.806666666666666

Figure 1 Algorithm Scores with respect to datasets

To conclude, I decided to go with Gradient Boosting Algorithm for Shopper and Marketing Dataset and decided to go with Random Forest for the Heart Dataset because of its good performance and easy implementation.

4 Self-Training Algorithm

For implementation of the self-training algorithm, I used SelfTrainingClassifier library from the scikit learn package. This class allows a given supervised classifier to function as a semi-supervised classifier, allowing it to learn from unlabelled data. It does this by iteratively predicting pseudo-labels for the unlabelled data and adding them to the training set.

4.1 Results

Table 1 Self-Training Results

Class-Label	Percent of	Accuracy	F1-Score	AUROC	Runtime				
Distribution	Unlabelled	Accuracy	11-30010	AUROC	Kullulle				
Distribution	datapoints								
	Dataset: Online Shoppers Intention								
0% 0.84793 0.59671 0.886 8.485									
†	10%	0.88104	0.59558	0.878	35.639				
	20%	0.86915	0.57394	0.833	64.449				
Imbalanced	50%	0.85536	0.63531	0.897	37.096				
	90%	0.85158	0.62980	0.895	27.548				
	95%	0.86482	0.51361	0.875	28.255				
	0%	0.95518	0.94738	0.986	13.226				
 	10%	0.95075	0.95252	0.980	74.015				
-	20%	0.94403	0.93232	0.989	94.864				
Oversampled	50%	0.92244	0.94633	0.968	88.130				
	90%	0.92244	0.86047	0.908	51.570				
	95%	0.83786	0.83687	0.920	42.546				
	0%			0.897					
-	-	0.98030	0.97615		22.557				
-	10% 20%	0.97412 0.97159	0.97445 0.97196	0.996 0.995	158.051 167.069				
ReMix	50%			0.993					
-		0.95689	0.95759		112.831				
	90%	0.89990	0.90121	0.948	118.149				
	95%	0.87944	0.88129	0.938	95.944				
	00/	Dataset: Marke		0.056	0.700				
	0%	0.90223	0.88335	0.956	0.709				
	10%	0.90029	0.89644	0.954	3.475				
Imbalanced	20%	0.89732	0.89269	0.953	5.716				
misulanoca	50%	0.90625	0.90410	0.955	5.468				
ļ <u></u>	90%	0.83630	0.84057	0.927	5.139				
	95%	0.83482	0.83936	0.922	5.931				
	0%	0.90717	0.90014	0.963	2.672				
	10%	0.88489	0.88235	0.955	7.805				
Oversampled	20%	0.90503	0.90149	0.962	8.153				
Oversampled	50%	0.87338	0.86249	0.946	7.085				
[90%	0.77122	0.75117	0.863	5.346				
	95%	0.69352	0.67776	0.750	4.728				
ReMix	0%	0.96677	0.95577	0.988	2.374				

	10%	0.94732	0.94720	0.983	12.437
	20%	0.94892	0.94880	0.982	17.563
	50%	0.93774	0.93769	0.976	16.036
	90%	0.87869	0.87955	0.943	25.089
	95%	0.80766	0.81673	0.884	24.877
		Dataset: He	eart Disease		
	0%	0.84666	0.80412	0.909	0.109
	10%	0.81111	0.84112	0.879	0.277
Imbalanced	20%	0.83333	0.84848	0.916	0.279
Imbalanced	50%	0.78888	0.82242	0.902	0.829
	90%	0.81111	0.83495	0.894	0.182
	95%	0.54444	0.70503	0.500	0.187
	0%	0.85558	0.87999	0.967	0.203
	10%	0.77551	0.78431	0.891	0.750
Oversampled	20%	0.85714	0.86274	0.923	1.098
Oversampled	50%	0.81632	0.833333	0.891	1.474
	90%	0.79591	0.81481	0.871	0.373
	95%	0.5000	0.66666	0.500	0.381
	0%	0.90178	0.90000	0.962	0.124
	10%	0.87050	0.86153	0.957	0.592
ReMix	20%	0.89928	0.89705	0.962	0.400
INCIVITA	50%	0.89208	0.89208	0.967	0.574
	90%	0.82733	0.85185	0.902	1.038
	95%	0.76978	0.80487	0.879	1.011

4.1.1 Average ROC Graph

4.1.2 Runtime Graph

Figure 3: Runtime over unlabelled percent for Self-Training Algorithm

4.1.3 Accuracy and F1-Score Graph

Figure 4: Accuracy and F1-Score over unlabelled percent for Self-Training Algorithm

5 Semi-Supervised Ensembles

I used Bagging algorithm (Figure 2) to create an ensemble with 3 self-training semisupervised algorithms. For the predictions, I used max-voting criterion to decide the final prediction.

Since I hand-coded the algorithm, one of the challenges was to create the roc-curve. All the estimators had different roc curves with uneven datapoints, so I had to come up with a strategy to get the mean of the 3 curves with uneven datapoints. The solution was to set a specific linspace and interpolate the graphs to find their midpoints.

```
Algorithm Bagging(D,T,\mathscr{A}) – train an ensemble of models from bootstrap samples.

Input : data set D; ensemble size T; learning algorithm \mathscr{A}.

Output : ensemble of models whose predictions are to be combined by voting or averaging.

1 for t=1 to T do

2 | build a bootstrap sample D_t from D by sampling |D| data points with replacement;

3 | run \mathscr{A} on D_t to produce a model M_t;

4 end

5 return \{M_t|1\leq t\leq T\}
```

Figure 5 Bagging Algorithm

5.1 Results

Table 2 Semi-Supervised Ensemble Results

Class-Label	Percent of	Accuracy	F1-Score	AUROC	Runtime
Distribution	Unlabelled				
	datapoints				
	D	ataset: Online S	hoppers Intention	on	
	0%	84.793	0.59671	0.886	8.485
	10%	87.861	0.58617	0.853	97.592
Imbalanced	20%	88.294	0.58325	0.842	104.512
imbalanced	50%	87.023	0.64391	0.892	103.203
	90%	83.536	0.60065	0.870	65.612
	95%	85.915	0.53105	0.827	58.669
	0%	95.518	0.94738	0.986	13.226
	10%	93.124	0.92352	0.980	181.793
Ozzamanalad	20%	92.069	0.94635	0.974	175.212
Oversampled	50%	89.590	0.89864	0.953	215.110
	90%	84.330	0.83849	0.907	106.788
	95%	78.381	0.73562	0.883	109.652

	0%	98.030	0.97615	0.997	22.557
	10%	96.251	0.96156	0.993	301.272
D - M'	20%	96.080	0.97196	0.990	359.240
ReMix	50%	93.958	0.94122	0.978	329.396
	90%	88.923	0.89160	0.936	198.599
	95%	86.820	0.86795	0.919	223.908
		Dataset: Marke	eting Campaign		`
	0%	90.223	0.88335	0.956	0.709
	10%	87.053	0.86212	0.942	8.266
T1	20%	86.309	0.85846	0.933	11.078
Imbalanced	50%	81.250	0.81524	0.904	13.659
	90%	82.440	0.82388	0.893	11.694
	95%	75.000	0.74233	0.814	7.984
	0%	90.717	0.90014	0.963	2.672
	10%	89.496	0.89088	0.956	17.614
0	20%	89.496	0.88888	0.957	19.130
Oversampled	50%	82.733	0.80327	0.915	19.415
	90%	72.086	0.68910	0.779	11.537
	95%	71.942	0.71698	0.717	8.775
	0%	96.677	0.95577	0.988	2.374
	10%	93.948	0.94072	0.987	35.072
ReMix	20%	93.328	0.93281	0.979	38.820
Kelviix	50%	92.397	0.92403	0.977	47.857
	90%	86.268	0.86310	0.935	36.213
	95%	76.183	0.76830	0.871	29.480
		Dataset: He	eart Disease		
	0%	84.666	0.80412	0.909	0.109
	10%	82.222	0.83673	0.913	1.026
Imbalanced	20%	83.333	0.84848	0.926	1.281
Imbalanced	50%	82.222	0.84000	0.882	1.880
	90%	77.777	0.76190	0.836	2.437
	95%	72.222	0.75247	0.799	2.180
	0%	85.558	0.87999	0.967	0.203
	10%	78.571	0.80373	0.894	1.203
0	20%	84.693	0.84848	0.943	1.206
Oversampled	50%	86.734	0.85714	0.935	1.977
	90%	72.448	0.64935	0.874	2.614
	95%	72.448	0.76106	0.802	2.387
	0%	90.178	0.90000	0.962	0.124
[10%	93.006	0.92753	0.971	1.258
ReMix	20%	88.811	0.88732	0.959	1.046
KCIVIIX	50%	87.412	0.87142	0.953	1.758
[90%	80.419	0.78124	0.884	2.777
	95%	72.027	0.76190	0.739	2.352

5.1.1 Average ROC Graph

Figure 6: Average ROC Curve for Semi-Supervised Ensemble

5.1.2 Runtime Graphs

Figure 7: Runtime over unlabelled percent for Semi-Supervised Ensemble

5.1.3 Accuracy and F1-Score Graphs

Figure 8: Accuracy and F1-Score over unlabelled percent for Semi-Supervised Ensemble

6 Intrinsic Semi-Supervised Method (S3VM)

S3VM stands for Semi-Supervised Support Vector Machines, objective of which is to maximize the distance between the dense regions where the samples must be. It is also known as a maximum-margin algorithm. I implemented this algorithm using semisupervised library available at pypi.

In lay-man terms, this algorithm follows the self-training approach but instead of choosing kbest labels or setting a threshold for confidence level, it tries to maximize the geometric margins of the SVM.

6.1 Results

Table 3 S3VM Results

Class-Label	Percent of	Accuracy	F1-Score	AUROC	Runtime
Distribution	Unlabelled				
	datapoints				
			hoppers Intention	i -	,
	0%	0.84793	0.59671	0.886	8.485
	10%	0.87050	0.43447	0.866	298.250
Imbalanced	20%	0.87807	0.44932	0.862	291.140
inibalanced	50%	0.86726	0.40772	0.835	289.275
	90%	0.84130	0.22045	0.742	280.181
	95%	0.83563	0.18059	0.748	253.154
	0%	0.95518	0.94738	0.986	13.226
	10%	0.86040	0.86365	0.931	520.414
Oversameled	20%	0.85305	0.85811	0.931	589.522
Oversampled	50%	0.84873	0.85378	0.921	587.356
	90%	0.78046	0.79325	0.884	751.246
	95%	0.72833	0.75856	0.835	674.959
	0%	0.98030	0.97615	0.997	22.557
	10%	0.91125	0.91022	0.954	2137.230
ReMix	20%	0.90488	0.90624	0.954	2184.052
Kelviix	50%	0.90784	0.90691	0.950	2141.056
	90%	0.84637	0.85021	0.920	2353.277
	95%	0.79307	0.81033	0.895	2381.770
		Dataset: Marke	eting Campaign		
	0%	0.90223	0.88335	0.956	0.709
	10%	0.51636	0.0	0.505	0.897
Imbalanced	20%	0.51636	0.0	0.512	0.936
imbalanced	50%	0.51636	0.0	0.498	1.140
	90%	0.51636	0.0	0.489	1.406
	95%	0.51636	0.0	0.497	1.257
Oversampled	0%	0.90717	0.90014	0.963	2.672
Oversampled	10%	0.54244	0.15425	0.538	1.180

	20%	0.53093	0.11891	0.524	1.390
	50%	0.52517	0.09836	0.519	1.496
	90%	0.50647	0.02279	0.502	1.302
	95%	0.50359	0.01709	0.509	1.411
	0%	0.96677	0.95577	0.988	2.374
	10%	0.78169	0.82080	0.918	4.787
ReMix	20%	0.75665	0.80403	0.896	5.142
Reiviix	50%	0.72769	0.63445	0.833	5.444
	90%	0.57355	0.30749	0.628	4.958
	95%	0.52503	0.65609	0.569	4.865
		Dataset: He	eart Disease		
	0%	84.666	0.80412	0.909	0.109
	10%	0.54444	0.70503	0.789	0.099
Imbalanced	20%	0.57777	0.72058	0.828	0.078
imbalanced	50%	0.58888	0.72180	0.773	0.121
	90%	0.55555	0.70588	0.433	0.115
	95%	0.45555	0.0	0.829	0.107
	0%	85.558	0.87999	0.967	0.203
	10%	0.60204	0.71532	0.847	0.093
Overgomenlad	20%	0.58163	0.70503	0.766	0.136
Oversampled	50%	0.62244	0.49315	0.788	0.109
	90%	0.51020	0.66666	0.738	0.136
	95%	0.61224	0.38709	0.763	0.107
	0%	90.178	0.90000	0.962	0.124
	10%	0.77777	0.71428	0.955	0.160
ReMix	20%	0.78472	0.82285	0.919	0.137
Kelviix	50%	0.71527	0.77837	0.889	0.229
	90%	0.60416	0.70466	0.645	0.156
	95%	0.55555	0.67999	0.591	0.169

(a) Shopper Dataset

(c) Heart Dataset

(b) Market Dataset
Figure 9: Average ROC Curve for S3VM

6.1.2 Runtime Graphs

Figure 10: Runtime over unlabelled percent for S3VM

6.1.3 Accuracy and F1-Score Graphs Accuracy over various levels of unlabelled data Accuracy Accuracy

Figure 11: Accuracy and F1-Score over unlabelled percent for S3VM

7 Statistically Significant Test

7.1 Nemenyi Test and Friedman's Test

7.1.1 Shopper Imbalanced

				Semi-
	Unlabelled		Semi-	Supervised
Dataset Name	Percent	Self-Training	Supervised	Support Vector
	Percent		Ensembles	Machine
				(S3VM)
	10	0.88104(1)	0.87861(2)	0.87050(3)
Online Shopper	20	0.86915 (3)	0.88294(1)	0.87807 (2)
Intention	50	0.85536 (3)	0.87023 (1)	0.86726 (2)
(Imbalanced)	90	0.85158 (1)	0.83536 (3)	0.84130 (2)
	95	0.86482 (1)	0.85915 (2)	0.83563 (3)
Average Rank		1.8	1.8	2.4

Figure 12 Nemenyi and Friedman Graph for Shopper Imbalanced Dataset

Result: No Significant Difference

7.1.2 Oversampled Shopper

Dataset Name	Unlabelled Percent	Self-Training	Semi- Supervised Ensembles	Semi- Supervised Support Vector Machine (S3VM)
	10	0.95075 (1)	93.124 (2)	0.86040(3)
Online Shopper	20	0.94403 (1)	92.069 (2)	0.85305 (3)
Intention	50	0.92244 (1)	89.590 (2)	0.84873 (3)
(Oversampled)	90	0.85865 (1)	84.330 (2)	0.78046 (3)
	95	0.83786 (1)	78.381 (2)	0.72833 (3)
Average Rank		1	2	3

FriedmanchisquareResult(statistic=10.0, pvalue=0.006737946999085468)

```
print("alpha:0.05 has critical value: 6.4")
print("since statistic > critical value, we say there is statistically significant difference")
```

alpha:0.05 has critical value: 6.4 since statistic > critical value, we say there is statistically significant difference

cd= 1.4822866628828582

Figure 13 Nemenyi and Friedman's graph for shopper Oversampled Dataset

7.1.3 ReMix Shopper

Dataset Name	Unlabelled Percent	Self-Training	Semi- Supervised Ensembles	Semi- Supervised Support Vector Machine (S3VM)
	10	0.97412 (1)	96.251 (2)	0.91125 (3)
Online Shopper	20	0.97159 (3)	96.080 (2)	0.90488 (3)
Intention	50	0.95689(1)	93.958 (2)	0.90784 (3)
(ReMix)	90	0.89990(1)	88.923 (2)	0.84637 (3)
	95	0.87944 (1)	86.820 (2)	0.79307 (3)
Average Rank		1	2	3

FriedmanchisquareResult(statistic=10.0, pvalue=0.006737946999085468)

```
print("alpha:0.05 has critical value: 6.4")
print("since statistic > critical value, we say there is statistically significant difference")
alpha:0.05 has critical value: 6.4
since statistic > critical value, we say there is statistically significant difference
```

cd= 1.4822866628828582

Figure 14 Nemenyi and Friedman's Test on Shopper ReMix

7.1.4 Imbalanced Market

			a .	Semi-
Dataset Name	Unlabelled Percent	C-16 T:-:	Semi-	Supervised
		Self-Training	Supervised Ensembles	Support Vector Machine
			Ensembles	(S3VM)
	10	0.90029 (1)	87.053 (2)	0.51636 (3)
Marketing	20	0.89732 (3)	86.309 (2)	0.51636 (3)
Dataset	50	0.90625 (1)	81.250 (2)	0.51636 (3)
(Imbalanced)	90	0.83630(1)	82.440 (2)	0.51636 (3)
	95	0.83482 (1)	75.000 (2)	0.51636 (3)
Average Rank		1	2	3

FriedmanchisquareResult(statistic=10.0, pvalue=0.006737946999085468)

```
print("alpha:0.05 has critical value: 6.4")
print("since statistic > critical value, we say there is statistically significant difference")
```

alpha:0.05 has critical value: 6.4 since statistic > critical value, we say there is statistically significant difference

cd= 1.4822866628828582

Result: Statistically Significant difference between Self-Training and S3VM

7.1.5 Oversampled Market

				Semi-
	Unlabelled		Semi-	Supervised
Dataset Name	Percent	Self-Training	Supervised	Support Vector
	Percent		Ensembles	Machine
				(S3VM)
	10	0.88489 (2)	89.496 (1)	0.54244 (3)
Marketing	20	0.90503 (1)	89.496 (2)	0.53093 (3)
Dataset	50	0.87338 (1)	82.733 (2)	0.52517 (3)
(Oversampled)	90	0.77122 (1)	72.086 (2)	0.50647 (3)
	95	0.69352 (2)	71.942 (1)	0.50359(3)
Average Rank		1.4	1.6	3

FriedmanchisquareResult(statistic=10.0, pvalue=0.006737946999085468)

print("alpha:0.05 has critical value: 6.4")
print("since statistic > critical value, we say there is statistically significant difference")

alpha:0.05 has critical value: 6.4
since statistic > critical value, we say there is statistically significant difference

cd= 1.4822866628828582

Result: Statistically Significant difference between Self-Training and S3VM

7.1.6 ReMix Market

				Semi-
	Unlabelled		Semi-	Supervised
Dataset Name	Percent	Self-Training	Supervised	Support Vector
	reicent		Ensembles	Machine
				(S3VM)
	10	0.94732 (1)	93.948 (2)	0.78169 (3)
Marketing	20	0.94892 (1)	93.328 (2)	0.75665 (3)
Dataset	50	0.93774 (1)	92.397 (2)	0.72769 (3)
(ReMix)	90	0.87869 (1)	86.268 (2)	0.57355 (3)
	95	0.80766(1)	76.183 (2)	0.52503 (3)
Average Rank		1	2	3

FriedmanchisquareResult(statistic=10.0, pvalue=0.006737946999085468)

```
print("alpha:0.05 has critical value: 6.4")
print("since statistic > critical value, we say there is statistically significant difference")
alpha:0.05 has critical value: 6.4
since statistic > critical value, we say there is statistically significant difference
```

cd= 1.4822866628828582

7.1.7 Imbalanced Heart

Dataset Name	Unlabelled Percent			Semi-
			Semi-	Supervised
		Self-Training	Supervised	Support Vector
	1 Cleciit		Ensembles	Machine
				(S3VM)
Heart Dataset (Imbalanced)	10	0.81111 (2)	82.222 (1)	0.68888 (3)
	20	0.83333 (1)	83.333 (2)	0.55555 (3)
	50	0.78888 (2)	82.222 (1)	0.71111 (3)
	90	0.81111 (1)	77.777 (2)	0.55555 (3)
	95	0.54444 (2)	72.222 (1)	0.5 (3)
Average Rank		1.6	1.4	3

FriedmanchisquareResult(statistic=10.0, pvalue=0.006737946999085468)

```
print("alpha:0.05 has critical value: 6.4")
print("since statistic > critical value, we say there is statistically significant diffe
alpha:0.05 has critical value: 6.4
since statistic > critical value, we say there is statistically significant difference
```

cd= 1.4822866628828582

7.1.8 Oversampled Heart

Dataset Name	Unlabelled Percent		Semi-	Semi- Supervised
		Self-Training	Supervised	Support Vector
			Ensembles	Machine
				(S3VM)
Heart Dataset (Oversampled)	10	0.77551 (2)	78.571 (1)	0.58163 (3)
	20	0.85714(1)	84.693 (2)	0.58163 (3)
	50	0.81632 (2)	86.734 (1)	0.63265 (3)
	90	0.79591 (1)	72.448 (2)	0.51020 (3)
	95	0.5 (2)	72.448 (1)	0.5 (3)
Average Rank		1.6	1.4	3

FriedmanchisquareResult(statistic=9.578947368421062, pvalue=0.00831683351100441)

```
print("alpha:0.05 has critical value: 6.4")
print("since statistic > critical value, we say there is statistically significant difference")
alpha:0.05 has critical value: 6.4
since statistic > critical value, we say there is statistically significant difference
```

cd= 1.4822866628828582

7.1.9 ReMix Heart

Dataset Name	Unlabelled Percent	Self-Training	Semi- Supervised Ensembles	Semi- Supervised Support Vector Machine (S3VM)
	10	0.87050(2)	93.006 (1)	0.78832 (3)
Marketing	20	0.89928 (1)	88.811 (2)	0.78832 (3)
Dataset	50	0.89208 (1)	87.412 (2)	0.67153 (3)
(ReMix)	90	0.82733 (1)	80.419 (2)	0.57664 (3)
	95	0.76978 (1)	72.027 (2)	0.43065 (3)
Average Rank		1	2	3

FriedmanchisquareResult(statistic=10.0, pvalue=0.006737946999085468)

```
print("alpha:0.05 has critical value: 6.4")
print("since statistic > critical value, we say there is statistically significant difference")
```

alpha:0.05 has critical value: 6.4 since statistic > critical value, we say there is statistically significant difference

cd= 1.4822866628828582

Result: Statistically Significant difference between Self-Training and S3VM

7.2 Result

Through the two tests we find out that there is statistically significant difference between the Self-Training and S3VM algorithms for Oversampled and ReMix version of Shopper Dataset and all variations of the market dataset

8 Observations and Comments

Since each dataset had 3 variation of class ratios (Imbalanced, Oversampled and ReMix) which in turn had 6 variations of unlabelled class percentage (0%, 10%, 20%, 50%, 90%, 95%), It was a challenge to visually represent the results. For, example for each dataset generated 6 ROC graphs.

8.1 ROC and AUROC (Class-Imbalance vs Unlabelled percentage)

To summarize the ROC Graphs I used interpolation to get the mean graph, to be able to visualize the results properly.

In almost all the ROC curves, I have noticed that the ReMix version of the dataset always had the best result. The Imbalanced versions outperformed the Oversampled versions when the level of imbalance was low (Market and Heart Dataset), but Oversampled was always better when it came to highly imbalanced/skewed dataset (Shopper Dataset)

Moreover, there were some configurations where Oversampled and Imbalanced datasets proved to be beneficial than the ReMix dataset (Figure 16)

Figure 16 Heart Dataset used by Semi-Supervised Ensemble

8.2 Runtime

It can be noticed from the results above (Figure 10,7,3) that ReMix dataset almost always had the highest runtime, followed by oversampled. This result can be attributed to the size of the dataset, since ReMix dataset is huge, it requires more time to train.

Moreover the relation between the runtime and unlabelled percentage was not clear, meaning that sometimes runtime would increase with increase in the percent of unlabelled data, but sometimes it would decrease as well.

8.3 Accuracy and F1-Score

F1-Score can sometimes prove to be a better metric of evaluation, example for highly imbalanced dataset, because it leverages precision and recall.

Like ROC, ReMix dataset's accuracy was better than the others most of the time, but during the testing for the market dataset by self-training algorithm at 95% of unlabelled classes, the Imbalanced dataset outperformed the ReMix and Oversampled (Figure 4.b), complying to the "No Lunch Theorem" for class-balancing strategies.

8.4 Tests to determine statistically significant difference

I performed Friedman's test followed by Nemenyi's test and found out that there was statistically significant different between the Self-Training and ReMix algorithms for Oversampled and ReMix version of Shopper dataset and all versions of Market dataset at alpha=0.05.

9 Conclusion

I herby conclude the project after stating my observations, comments and techniques used to overcome the challenges I faced. To Recapitulate, Class-Balancing plays a huge role in the performance of a machine learning model and is a very crucial aspect. Also, it is to be noted there exists a possibility of trade-off between the runtime and accuracy, as found out in the experiment, that although ReMix datasets had high runtimes, they were also the one with the best accuracies. Moreover, it is not plausible to admit that an algorithm is significantly better than the other by just looking at the accuracies and the f1-scores, one must perform tests such as Friedman's test or Nemenyi's test to reach to a conclusion.

Finally, I would like to thank prof. Herna Viktor for being such an amazing teacher and guide, and to the TA Farnaz Sadeghi for always being cooperative and supportive.