1. NOTION DE VECTEUR

Sur la figure suivante, on a construit l'image \mathcal{F}' de la figure \mathcal{F} par la translation qui transforme A en B.

La flèche que l'on a tracée allant de A jusqu'à B indique la direction (celle de la droite (AB), le sens (de A vers B) et la longueur du déplacement que l'on doit effectuer pour construire l'image d'un point.

Définition. – La translation précédente s'appelle la translation de vecteur \overrightarrow{AB} . L'image du point A par cette translation est le point B.

Propriété. – Lorsque A et B sont distincts, le vecteur \overrightarrow{AB} est caractérisé par :

- sa direction (celle de la droite (AB));
- son sens (de A vers B);
- sa longueur (la longueur AB).

Remarque. – Lorsque A et B sont confondus, le vecteur \overrightarrow{AB} est appelé le vecteur nul. On le note \overrightarrow{o} . Le vecteur nul n'a ni direction, ni sens et sa longueur est égale à o.

2. ÉGALITÉ DE DEUX VECTEURS

Définition. – Des vecteurs (non nuls) égaux sont des vecteurs qui ont la même direction, le même sens et la même longueur.

Proposition. – Soient \overrightarrow{A} , \overrightarrow{B} , \overrightarrow{C} et \overrightarrow{D} quatre points. Dire que les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux signifie que \overrightarrow{D} est l'image de \overrightarrow{C} par la translation de vecteur \overrightarrow{AB} . On écrit $\overrightarrow{AB} = \overrightarrow{CD}$.

10 4

Proposition. – Soient A, B, C et D quatre points. Les vecteurs \overrightarrow{AB} et \overrightarrow{CD} sont égaux si, et seulement si, \overrightarrow{ABDC} est un parallélogramme (éventuellement aplati).

Exemple. – Représenter, sur la figure ci-dessous, le vecteur $\overrightarrow{u}+\overrightarrow{V}$.

Remarque. – Pour représenter la somme de deux vecteurs, il est souvent « pratique » de représenter les deux vecteurs « bout à bout » (ou encore « l'un à la suite de l'autre »).

3. SOMME DE DEUX VECTEURS

Définition. – En enchaînant la translation de vecteur \overrightarrow{u} et celle de vecteur \overrightarrow{v} , on obtient une nouvelle translation. Le vecteur de cette translation est appelé la somme des vecteurs \overrightarrow{u} et \overrightarrow{v} .

Remarque. – L'ordre n'a pas d'importance :

$$\overrightarrow{u} + \overrightarrow{v} = \overrightarrow{v} + \overrightarrow{u}$$
.

Remarque. – De la même façon, on peut définir (et représenter) la somme de trois vecteurs ou plus (exemples en exercices).

4. RELATION DE CHASLES

Proposition. – Quels que soient les points A, B et C :

$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$
.

Remarque. – De façon intuitive :

- si l'on se rend du point A au point B (vecteur \overrightarrow{AB});
- puis (addition +) du point B au point C (vecteur \overrightarrow{BC}), alors s'est rendu du point A au point C (vecteur \overrightarrow{AC}).

Exemples. – Compléter les égalités suivantes à l'aide de la relation de Chasles :

$$\blacksquare \overrightarrow{EU} + \overrightarrow{UH} = \overrightarrow{EH}$$

$$\blacksquare \overrightarrow{MB} + \overrightarrow{BL} = \overrightarrow{ML}$$

10 / 10