# 9J Reconstruct a String from its Burrows-Wheeler Transform

### **Inverse Burrows-Wheeler Transform Problem**

Reconstruct a string from its Burrows-Wheeler transform.

**Input:** A string *Transform* (with a single "\$" symbol). **Output:** The string *Text* such that BWT(*Text*)=*Transform* 



## **Formatting**

**Input:** A string *Transform* 

**Output:** A string *Text* such that BWT(*Text*)=*Transform*.

### **Constraints**

• The length of *Transform* will be between 1 and  $10^3$ .

# Test Cases 🗘

### Case 1

**Description:** The sample dataset is not actually run on your code.

### Input:

TTCCTAACG\$A

### **Output:**

TACATCACGT\$

### Figure:



Above is a general overview of the BWT inversion process. TTCCTAACG\$A is BWT(Text), and we repeat the first-last traversal process until we have "filled" the top row of the BWT matrix. Lastly, we rotate the top row until the \$ is at the end of the string to obtain TACATCACGT\$.

| Case 2                                                                                               |
|------------------------------------------------------------------------------------------------------|
| <b>Description:</b> There are no repeat characters in <i>Text</i> .                                  |
| Input:                                                                                               |
| T\$ACG                                                                                               |
| Output:                                                                                              |
| ACGT\$                                                                                               |
| Case 3                                                                                               |
| <b>Description:</b> <i>Text</i> is made up of only one character.                                    |
| Input:                                                                                               |
| AAAAAAAAA\$                                                                                          |
| Output:                                                                                              |
| AAAAAAAAA\$                                                                                          |
| Case 4                                                                                               |
| <b>Description:</b> <i>Text</i> is palindromic or has substrings that are palindromic.               |
| Input:                                                                                               |
| TGCG\$AA                                                                                             |
| Output:                                                                                              |
| GAGCAT\$                                                                                             |
| Case 5                                                                                               |
| <b>Description:</b> A larger dataset of the same size as that provided by the randomized autograder. |