

Relatório do Projeto de Data Warehouse "Análise do serviço docente"

Realizado por:

Catarina Rodrigues nº201501626;

Eduardo Palma nº201900054;

Nuno Melo nº201700465;

Ricardo Santos nº201700524;

Docente: Norberto Albino

Unidade Curricular: Data Warehouse

Curso: Licenciatura em Bioinformática, 2º ano

Ano Letivo: 2020/2021

Instituição: Escola Superior de Tecnologia do Barreiro

Índice

1	. Intr	odução1
	1.1	Data Warehouse1
	1.2	Modelo de Dados 1
	1.3	Modelo Dimensional1
	1.4	Fases do Modelo Dimensional
	1.5	Matriz Bus3
	1.6	Matriz Prioridades4
	1.7	Processo de negócio4
	1.8	Granularidade4
	1.9	Descrição das dimensões 5
	1.10	Star Schema6
2	. Aud	litoria para o Processo ETL10
	2.1	O que é o Processo ETL?10
	2.1	.1 Primeira Etapa – Extração11
	2.1	.2 Segunda Etapa – Transformação11
	2.1	.3 Terceira Etapa – Carregamento11
	2.2	Tabela Auditoria
3	. Ex	olicação do Processo ETL
	3.1	Package Início
	3.2	Tabelas de Dimensão
	3.3	Tabela de Factos
4	. Bib	liografia

Índice de Tabelas

Tabela 1 - Matriz Bus	. 3
Tabela 2 - Descrição das dimensões presentes no processo de negócio	. 5

Índice de Figuras

Figura 1 - Matriz Prioridades4
Figura 2 - Star Schema6
Figura 3 - Tabela de dimensão Unidade Curricular7
Figura 4- Tabela de dimensão da Habilitação Académica7
Figura 5 - Tabela de Dimensão do Docente8
Figura 6 - Tabela de Dimensão do Regime Contratual8
Figura 7 - Tabela de Dimensão da Turma8
Figura 8- Tabela de Dimensão de Curso
Figura 9 - Tabela de Dimensão da Data9
Figura 10 - Tabela de Factos da Análise da Docência10
Figura 11 – Esquema do Processo ETL10
Figura 12 - Tabela Auditoria com exemplos12
Figura 13 - Package Início12
Figura 14 - Variáveis criadas13
Figura 15 - Inserção Inicial da Auditoria13
Figura 16 - Configuração da Task "Inserção Inicial da Auditoria"13
Figura 17 – Ficheiro .txt com a inserção dos values na tabela Auditoria 14
Figura 18 - Mapeamento dos parâmetros da task "Inserção Inicial da Auditoria"
14
Figura 19 - Result Set da task "Inserção Inicial da Auditoria"
Figura 20 - Progressão da task "Inserção Inicial da Auditoria" para a task
"Execute Package DimDocente"16
Figura 21 - Configuração da task "DimDocente"
Figura 22 - Relacionamento dos parâmetros da task "DimDocente" 17
Figura 23 Variáveis da task "DimDocente"17
Figura 24 - Result Set da task "ContarRegistosIniciais"18
Figura 25 Configuração da task "Contar Registos Iniciais"
Figura 26 - Progressão da task "Contar Registos Iniciais" para a task "Task Inser
Auditoria Inicial"19

Figura 27 - Ficheiro .txt com o script para fazer a inserção das variáveis inic	cias
na tabela auditoria	. 19
Figura 28 - Configuração da task "Task Insert Auditoria Inicial"	. 19
Figura 29 Configuração da task "Task Insert Auditoria Inicial"	. 19
Figura 30 - Progressão da task "Task Insert Auditoria Inicial" para o data-f	low
"PDW_DimDocente"	. 20
Figura 31-Ole DB Source	. 20
Figura 32-Colunas retiradas da tabela de funcionários	. 20
Figura 33 Script utilizado para retirar os valores necessários da tab	ela
Funcionários	. 21
Figura 34-Slowly Changing Dimension	. 21
Figura 35 Slowly Changing Dimension	. 21
Figura 36- Contagem dos registos extraídos	. 21
Figura 37- Configuração do tipo de Coluna para cada registo	. 23
Figura 38- Configurações para as colunas tipo Historical	. 23
Figura 39 Configurações para as colunas tipo Fixed e Changing	. 23
Figura 40- Slowly Changing Dimension concluido com as contagens de tipo) de
coluna	. 24
Figura 41- Contagem das alterações de tipo	. 24
Figura 42Contagem das alterações de tipo 1	. 25
Figura 43- Configuração do OLE DB Destination	. 25
Figura 44- Mapeamento das colunas de entrada com as da tabela de destino	26
Figura 45- Conexão entre o data-flow e task "Contar Registos Finais"	. 26
Figura 46- Configuração da task "Registos Finais"	. 27
Figura 47- Result Set da task "Registos Finais"	. 27
Figura 48- Ligação da task " Contar Registos Finais" à task "Updade Audito	ria"
	. 28
Figura 49- Configuração da task "Update Auditoria"	. 28
Figura 50- Script em formato .txt do update da tabela auditoria	. 29
Figura 51- Variáveis que vão ser inseridas na tabela auditoria	. 29
Figura 52 – Tasks SQL	. 30
Figura 53 – Staging Table	. 31
Figura 54 – Data Flow do Carregar Staging Table	.31

Figura 55 – Foreach Loop Container	32
Figura 56 – Update da Dim_Auditoria	33
Figura 57-Data Flow Task com as verificações dos Lookups	33
Figura 58- Data Flow Task com as verificações dos Lookups	34

1. Introdução

1.1 Data Warehouse

Data Warehouse é uma ferramenta de suporte ao processo analítico de uma organização. Esta ferramenta possibilita a análise de grandes volumes de dados, recolhidos dos sistemas transacionais OLTP (*Online Transaction Processing*).

1.2 Modelo de Dados

Um modelo de dados é utilizado para organização dos dados de uma base de dados. Este modelo define um conjunto de conceitos para a representação de dados (por exemplo entidades, tabelas, atributos, etc.) e podem existir diferentes níveis de abstração de representação.

1.3 Modelo Dimensional

No modelo dimensional podemos armazenar a informação com base na estrutura em estrela – o *star-schema*.

Esta estrutura tem como objetivo facilitar a obtenção das 3 caraterísticas fundamentais do DWH:

- Compreensão da informação pelo utilizador;
- Performance das consultas efetuadas;
- Resistência à mudança.

Esta estrutura possui ainda algumas características que a tornam mais adequada:

- Forma simples e simétrica a organização por entidades de negócio facilita a compreensão;
- Melhoria da performance a elevada desnormalização alivia a necessidade de uniões entre tabelas. A pré-agregação da informação é outro fator que contribui para a melhoria da performance;
- Capacidade de atualização como as tabelas têm uma estrutura similar, é possível alterar o modelo (adicionar colunas ou tabelas) com uma quantidade de esforço reduzida.

1.4 Fases do Modelo Dimensional

- Encontrar os processos de negócio é um conjunto de atividades ou tarefas estruturadas relacionadas que produzem um serviço ou produto específico para os seus clientes. Serve para identificar e categorizar os seus processos de negócio, utilizando a matriz BUS.
- 2. Definir a granularidade da informação o grão é o menor nível da informação e é definido de acordo com as necessidades definidas no início do projeto. É determinado para cada Tabela de Factos, já que normalmente os Factos possuem informações e granularidades distintas. Deve utilizar-se o nível mais atómico possível, para maximizar as potencialidades do DWH.
- Definir as tabelas de dimensão tabelas que representam as entidades que participam no processo de negócio e que contêm os descritivos do negócio.
- 4. Definir as tabelas de factos é o último elemento a ser definido, contêm os atributos do processo de negócio que contribuam para a análise do que estamos a medir. Estabelecem a ligação com as tabelas de dimensão.

1.5 Matriz Bus

A matriz Bus é a ferramenta utilizada para criar, documentar e comunicar a arquitetura do *Data Warehouse*. A matriz é uma tabela em que as linhas representam os processos diretamente associados aos fluxos de informação no centro de uma organização e as colunas representam as dimensões conforme.

Tabela 1 - Matriz Bus

Processos de negócio	Data	Entidade/Serviço	Docente	Funcionário	Aluno	Curso	Estatuto	Habilitação Académica	Regime Contratual	Unidade Curricular	Produto Transacionável	Turma	Total
Análise do docente	Х		Х			Х		Х	Х	Х		Х	7
Matrícula na instituição	Х			Х	Х	Х	Х	Х		Х	Х	Х	9
Transação de produto/serviço	х	х		х	Х		х				х		6
Gestão de infraestrutura	Х	Х	Х								Х		4
Aproveitamento académico	х		х		х	х	х			х		Х	7
Promoção institucional	х	Х	Х		Х	Х							5

1.6 Matriz Prioridades

Permite definir a importância dos processos de negócio a serem implementados assim como a sua facilidade de implementação.

Figura 1 - Matriz Prioridades

1.7 Processo de negócio

Um processo de negócio é o conjunto de ações ou tarefas sequenciais e inter-relacionadas que transformam os *input*s em *output*s. O processo de negócio que nos foi atribuído foi a "Análise do serviço docente", em que consiste analisar todas as tarefas desempenhadas pelos docentes, com base nos dados disponíveis.

1.8 Granularidade

A granularidade definida para a nossa tabela de factos é elevada, dado que a informação utilizada tem um nível de detalhe baixo.

1.9 Descrição das dimensões

Em seguida, vamos apresentar na tabela 2 um breve resumo de cada uma das dimensões utilizadas no processo de negócio "Análise do serviço docente", no seu nível mais baixo de detalhe.

Tabela 2 - Descrição das dimensões presentes no processo de negócio

Análise do serviço docente						
Dimensão	Caracterização da dimensão					
Data	Data Permite registar a data das alterações temporais nos dados.					
Dimensão que carateriza os docentes e regista a informa						
Docente pessoal dos mesmos.						
	Dimensão que regista as informações académicas para cada					
Habilitação Académica	docente.					
Regime Contratual	Dimensão que regista as horas estipuladas em contrato.					
Unidade Curricular Dimensão com as características das unidades curriculares.						
Turma Dimensão que regista o número de alunos.						
Curso	Curso Dimensão com as características dos cursos.					

Agora vamos explicar cada dimensão mais detalhadamente:

<u>Dimensão Data</u> - A dimensão Data foi criada de forma a conter todas as datas que aparecem nos dados dos sistemas operacionais. O carregamento da dimensão Data é efetuado apenas na primeira vez, após a criação da *Data Warehouse* ou quando esta tabela se encontra vazia.

<u>Dimensão Docente</u> – A dimensão Docente contém todas as informações pessoais relevantes dos docentes, que posteriormente irão ser importantes no nosso processo de negócio.

<u>Dimensão Habilitação Académica</u> – A dimensão Habilitação Académica foi criada para conter toda a informação relativa à formação académica do docente.

<u>Dimensão Regime Contratual</u> – A dimensão Regime Contratual contém os detalhes do contrato laboral de cada docente, as horas contratuais.

<u>Dimensão Unidade Curricular</u> – A dimensão Unidade Curricular contém todas as informações de cada uma das unidades curriculares, relacionadas com as unidades curriculares lecionadas pelos docentes.

<u>Dimensão Turma</u> — A dimensão Turma foi criada para armazenar toda a informação sobre cada turma e o total de alunos de cada uma delas, pertinente aos alunos de cada curso.

<u>Dimensão Curso</u> – A dimensão Curso contém todas as informações de cada curso.

1.10 Star Schema

Um Star Schema é um tipo de modelo de dados de desenho de data Warehouse, e consiste em modelar os dados em tabelas dimensionais ligadas a uma tabela de factos. As **tabelas dimensionais** contêm as características de um evento. A **tabela de factos** armazena os factos ocorridos e as chaves para as características correspondentes, nas tabelas dimensionais.

Podemos observar na seguinte figura 2 como é geralmente representado este modelo.

Figura 2 - Star Schema

☐ Unidade Curricular					
PK	CodigoUnidadeCurricular	Varchar(7)	<u>Ex:1</u>		
	ChaveUnidadeCurricular	int	Ex:1		
	NomeUnidadeCurricular	Varchar(100)	Ex:Data Warehouse		
	Abreviatura	Varchar(50)	Ex:DW		
	AnoCurricular	Varchar(50)	Ex:2020		
ÁreaCientifica		Varchar(50)	Ex:Ciências		
	Semestre	Varchar(50)	Ex:1		
	Creditos	Varchar(50)	Ex:40		
	Opcional	Varchar(50)	Ex:1		
	Estado	Varchar(50)	Ex:Ativo		
	DataInicio	smalldatetime	Ex: 2021-01-09 21:07:00		
	DataFim	smalldatetime	Ex: 2021-01-09 21:07:01		

<u>Figura 3 - Tabela de dimensão Unidade</u> <u>Curricular</u>

Habilitação Académica					
PK	CodigoHabilitacao	Inteiro	Ex: 1		
	ChaveHabilitacao	Inteiro	Ex:1		
	DataObtenção	date	Ex:01-01-20		
	CursoObtido	varchar	Ex: Bioinformática		
	ÁreaDeConhecimento	varchar	Ex: Ciência		
	InstituiçãoFrequentada	varchar	Ex: IPS		
	ClassificaçãoObtida	double	Ex: 18		
	TítuloDaTese	varchar	Ex: "Análises de dados"		

Figura 4- Tabela de dimensão da Habilitação Académica

Docente							
PK CodigoDocente Inteiro Ex: 1							
	ChaveDocente		Ex: 1				
	Nome	Varchar(80)	Ex: Nuno				
	DataNascimento	Varchar(50)	Ex: 29-01-1998				
	Localidade	Varchar(50)	Ex: Alverca				
	Concelho	Varchar(100)	Ex: Vila Franca de Xira				
	Distrito	Varchar(100)	Ex: Lisboa				
	Nacionalidade	Varchar(50)	Ex:Portuguesa				
	Númeroldentificação	Varchar(20)	Ex: 12345678				
	TipoID	Varchar(50)	Ex: CC				
	EstadoCivil	Varchar(50)	Ex: Solteiro				
	Dependentes	Varchar(50)	Ex: 1				
	Sexo	Varchar(50)	Ex: M				
	CódigoGabinete	Varchar(50)	Ex: 1234				
	ExtensãoTelefónica	Varchar(50)	Ex: 1234				
	DataInicio	smalldatetime	Ex: 2021-01-09 21:07:00				
	DataFim	smalldatetime	Ex: 2021-01-09 21:07:01				

<u>Figura 5 - Tabela de Dimensão do</u> <u>Docente</u>

Regime Contratual							
PK	CodigoRegime	Inteiro	Ex:1				
	ChaveRegime	int	Ex:1				
	Designação	Varchar(50)	Ex:21				
	HorasContrato	Varchar(50)	Ex:100				
	HorasLetivas	Varchar(50)	Ex:100				
	ETITotal	Varchar(50)	Ex:100				
	DataInicio	smalldatetime	Ex: 2021-01-09 21:07:01				
	DataFim	smalldatetime	Ex: 2021-01-09 21:07:02				

<u>Figura 6 - Tabela de Dimensão do Regime</u> <u>Contratual</u>

	Turma									
PK	<u>CodigoTurma</u>	Inteiro	Ex:1							
	ChaveTurma	int	Ex:1							
	DesignacaoDaTurma	Varchar(50)	Ex:21							
	MáximoNovos	Varchar(50)	Ex:100							
	MáximoRepetentes	Varchar(50)	Ex:50							
	DataInicio	smalldatetime	Ex: 2021-01-09 21:07:00							
	DataFim	smalldatetime	Ex: 2021-01-09 21:07:01							

Figura 7 - Tabela de Dimensão da Turma

	Curso					
PK	CodigoCurso	Varchar(50)	<u>Ex:1</u>			
	ChaveCurso	int	Ex:1			
	Ciclo	Varchar(50)	Ex:1			
	Regime	Varchar(50)	Ex:misto			
	CódigoRegime	Varchar(50)	Ex:1			
	NomeCurso	Varchar(50)	Ex:Bioinformática			
	Abreviatura	Varchar(50)	Ex:Bioinf			
	Acronimo	Varchar(50)	Ex:bioinf			
	GrauAcadémico	Varchar(50)	Ex:mestrado			
	Estado	Varchar(50)	Ex:Ativo			
	PrincipaisAreasEstudoEN	Varchar(50)	Ex:InglÊs			
	DesignaçãoEstatutoInstituição	Varchar(50)	Ex:1			
	LinguasAprendizagem	Varchar(50)	Ex:Francês			
	NivelQualificação	Varchar(50)	Ex:20			
	DuraçãoOficial	Varchar(50)	Ex:1200			
	SistemaQualificação	Varchar(50)	Ex:ECTS			
	ECTS	Varchar(50)	Ex:100			
	Datalnicio	smalldatetime	Ex: 2021-01-09 21:07:00			
	DataFim	smalldatetime	Ex: 2021-01-09 21:07:01			

Figura 8- Tabela de Dimensão de Curso

□ Data					
PK	CodigoData	Inteiro	Ex:1		
	ChaveData	int	Ex:1		
	DataSQL	date	Ex:20		
	DescriçãoData	Varchar(50)	Ex:20		
	DiaDaSemana	Varchar(50)	Ex:quarta		
	MêsDoAno	Varchar(50)	Ex:janeiro		
	DiaDoAno	Varchar(50)	Ex:12		
	DiaDoMês	Varchar(50)	Ex:12		
	NúmeroDaSemana	Varchar(50)	Ex:1		
	IndicadorFeriado	Varchar(50)	Ex:F		
	IndicadorFimDeSemana	Varchar(50)	Ex:FDS		
	SemestreEscolar	Varchar(50)	Ex:1		
	SemestreEfetivo	Varchar(50)	Ex:1		
	AnoEscolar	Varchar(50)	Ex:2020/2021		
	AnoCivil	Varchar(50)	Ex:2020		

Figura 9 - Tabela de Dimensão da Data

=	Análise da Docência					
PK	CodigoDocencia	Inteiro	Ex:1			
	ChaveDocente	int	Ex:1			
	ChaveHabilitacao	int	Ex:1			
	ChaveRegime	int	Ex:1			
	ChaveCurso	int	Ex:1			
	ChaveDisciplina	int	Ex:1			
	ChaveTurma	int	Ex:1			
	ChaveData	int	Ex:1			
	NumHorasLecionadas	int	Ex:1			
	NumHorasRegimeNoturno	int	Ex:1			

Figura 10 - Tabela de Factos da Análise da Docência

2. Auditoria para o Processo ETL

2.1 O que é o Processo ETL?

É um processo onde são utilizadas ferramentas de software cuja função é a **extração** de dados de diversos sistemas, **transformação** desses dados conforme as regras dos negócios e por fim o **carregamento** dos dados para um sistema da organização, como mostra na figura 11.

Figura 11 - Esquema do Processo ETL

2.1.1 Primeira Etapa – Extração

Nesta primeira fase procedemos á extração dos dados que pretendemos utilizar, extraídos de vários sistemas de origem com formatos ou organizações que podem ser diferentes ou então comuns (*flat files*).

A extração converte para um determinado formato para a entrada no processamento da transformação transferindo-os de seguida para o *Data Warehouse*.

2.1.2 Segunda Etapa – Transformação

Nesta fase de transformação são aplicados um conjunto de regras ou funções aos dados anteriormente extraídos, onde pode existir muita ou pouca manipulação de dados. Esta manipulação é essencial pois irá melhorar a qualidade dos dados e consolidá-los.

Em alguns casos podem ser necessárias algumas transformações como por exemplo a junção de dados provenientes de várias fontes, a seleção de apenas algumas colunas e a tradução de valores codificados.

2.1.3 Terceira Etapa – Carregamento

Esta última etapa consiste em estruturar e carregar os dados já alterados de acordo com os requisitos exigidos da empresa dentro da camada de apresentação seguindo o modelo *star schema*.

Alguns DW podem atualizar as informações existentes semanalmente, enquanto que outros podem adicionar dados novos de hora em hora. A latência e o alcance de reposição ou acréscimo constituem opções de projeto estratégicas que dependem do tempo disponível e das necessidades de negócio

2.2 Tabela Auditoria

Na tabela auditoria é efetuado um rastreamento de qualquer operação que ocorre nos dados de cada uma das tabelas de dimensões, ou seja, sempre que um dado é inserido, bem ou mal, obter-se-á um registo nesta tabela.

Figura 12 - Tabela Auditoria com exemplos

3. Explicação do Processo ETL

3.1 Package Início

O *Package* Início, Figura 13, contém várias *tasks* (tarefas) que irão inicializar os *packages* que posteriormente irão adicionar os valores da DB(Base de Dados) SI_ESTBarreiro nas nossas tabelas de dimensões e na tabela de auditoria na DB CatarinaNunoRicardoEduardo.

Figura 13 - Package Início

Criou-se também várias variáveis que vão ser utilizadas ao longo do package, Figura 14, como por exemplo a Chave_Auditoria que vai servir de indicador para cada auditoria feita e o GUID, que vai servir de indicador específico para cada package que vai se executado.

<u> Figura 14 - Variáveis criadas</u>

Figura 15 - Inserção Inicial da Auditoria

Primeiro criou-se uma *task* do tipo *execute SQL* com o nome "Inserção Inicial da Auditoria" com a conexão do tipo ADO.Net e conectada á nossa DB que vai receber um ficheiro *.txt*.

Figura 16 - Configuração da Task "Inserção Inicial da Auditoria"

No *task* "Inserção Inicial da Auditoria" inseriu-se na tabela Auditoria os valores da Chave_AuditPAI, Nome_Package, GUID_Package, Nome_Utilizador e do Inicio_Processo, que foram definidos nas variáveis, exceto a Chave_AuditPAI que se forneceu um valor de -1, através do ficheiro .txt, como demonstra a figura 17.

```
INS_Auditoria - Bloco de notas

Ficheiro Editar Formatar Ver Ajuda

INSERT INTO [PDW].[Auditoria](Chave_AuditPAI,Nome_Package,GUID_Package,Nome_Utilizador,Inicio_Processo) VALUES (-1,@Nome_Package,@GUID_Package,@Nome_Utilizador,@Inicio_Processo)

SELECT cast(IDENT_CURRENT( '[PDW].[Auditoria]') AS int) AS Chave_Auditoria
```

Figura 17 – Ficheiro .txt com a inserção dos values na tabela Auditoria

Depois procedeu-se ao mapeamento dos parâmetros onde se colocou os valores anteriormente referidos nas suas variáveis corretas como demonstra a figura 18.

Figura 18 - Mapeamento dos parâmetros da task "Inserção Inicial da Auditoria"

Quando a variável utiliza o prefixo *System* quer dizer que se usa dados do próprio sistema, ou seja, para a data de início do processo, *UserName* e *VersionGUID*, não foi necessário fornecer nenhum valor pois foram preenchidos automaticamente. Quando se usa o prefixo *User* quer dizer que lhe foi atribuído um valor pelo utilizador e quando é empregue o prefixo *\$Package* utiliza-se uma variável que está sempre definido ao longo do *package*, não sendo necessária criá-la quando se cria uma *task*.

Ao criar-se esta *task* definiu-se também que esta terá um *result set*, como se pode verificar na figura 19, que será a Chave_Auditoria, como mostra a figura 18, que será utilizada para que todas a *task*s subsequentes dentro deste *package* terão como Chave_AuditPai o valor desta.

Figura 19 - Result Set da task "Inserção Inicial da Auditoria"

3.2 Tabelas de Dimensão

Após se dar início à auditoria pode-se prosseguir à inserção de dados. Como mostra a figura 20, logo após a *task* "Inserção Inicial da Auditoria" vai-se dar início à *task* "Execute Package DimDocente" que, como o nome indica, vai executar o *package* DimDocente.

<u>Figura 20 - Progressão da task "Inserção Inicial da Auditoria" para a task "Execute Package DimDocente"</u>

Quando se cria esta *task* do tipo execute *Package* vai-se referenciar o *package* escolhido, neste caso foi referenciado o DimDocente, como mostra a figura 21.

Figura 21 - Configuração da task "DimDocente"

Depois procedeu-se ao relacionamento dos parâmetros onde definiu-se a Child package e o parâmetro de ligação que, como foi referido anteriormente vai

fazer com que a Chave_AuditPai tenha o valor da Chave_Auditoria para que todas as *tasks* que vão ser executadas possam ser relacionadas à auditoria em específico, como mostra a figura 22.

<u>Figura 22 - Relacionamento dos parâmetros da task</u> <u>"DimDocente"</u>

Após a *task* estar criada criou-se as variáveis que iram ser utilizadas, como demonstra a figura 23.

Figura 23 Variáveis da task "DimDocente"

A primeira *task* que se criou foi do tipo *execute* SQL, com o nome "Contar Registos Iniciais" tipo de conexão ADO.Net e conectada à nossa DB CatarinaNunoRicardoEduardo, onde se vai efetuar uma contagem dos registos na tabela Docente para se saber quantos registos iniciais estão presentes, como mostra a figura 25, sendo este valor colocado numa variável num *result set*, referencia á figura 24.

<u>Figura 25 - Result Set da task</u> "ContarRegistosIniciais"

Figura 24 Configuração da task "Contar Registos Iniciais"

De seguida criou-se uma outra *task* do mesmo tipo e com a mesma conexão, figura 28, onde se vai, a partir de um ficheiro *.txt*, referencia à figura 26 e figura 27, vai introduzir os valores das variáveis presentes na figura 29 na tabela auditoria.

<u>Figura 26 - Progressão da task "Contar Registos Iniciais" para a task "Task Insert Auditoria Inicial"</u>

```
INS_PackagesAudit-Bloco de notas

Ficheiro Editar Formatar Ver Ajuda

INSERT INTO [PDW].[Auditoria]([Nome_Utilizador],[Inicio_Processo],[Nome_Package] ,GUID_Package,[Chave_AuditPAI])

VALUES (@Nome_Utilizador,@Inicio_Processo,@Nome_Package,@GUID_Package,@Chave_AuditPAI)

SELECT cast(IDENT_CURRENT( '[PDW].[Auditoria]') AS int) AS Chave_Auditoria
```

<u>Figura 27 - Ficheiro .txt com o script para fazer a inserção das variáveis inicias na tabela auditoria</u>

<u>Figura 29 Configuração da task "Task Insert Auditoria</u> <u>Inicial"</u>

<u>Figura 28 - Configuração da task "Task Insert</u> <u>Auditoria Inicial"</u>

De seguida criou-se um data-flow como mostra a figura 30.

Figura 30 - Progressão da task "Task Insert Auditoria Inicial" para o data-flow "PDW_DimDocente"

Dentro do data-flow criou-se um OLE DB fonte, figura 31, que se conectou à DB SI_ESTBarreiro onde se retirou os dados da tabela Funcionário, recorrendo a um script, figura 32 e figura 33.

Figura 31 - OLE DB Source

Figura 32-Colunas retiradas da tabela de funcionários

<u>Figura 33 Script utilizado para retirar os valores</u> <u>necessários da tabela Funcionários</u>

Depois utilizou-se um *multicast* para fazer uma contagem dos valores extraídos que iram para um ficheiro à parte, figura 36, e também para aplicar uma *Slowly Changing Dimension (SCD)*, figura 34.

Figura 34-Slowly Changing Dimension

Figura 36- Contagem dos registos extraídos

Ao inicializar-se o SCD foi necessário atribuir a que tabela esta iria colocar os nossos valores foi escolhida a tabela Docente do nosso DB pessoal. Para além disso foi também necessário escolher a *business key* a que foi atribuída á coluna Código de Funcionário, figura 35.

Figura 35- Atribuição da business key na Slowly Changing Dimension

Depois é necessário definir o tipo atributo de cada coluna, sendo o tipo *Fixed* valores que nunca mudam, *Changing* valores que devem de ser atualizados por cima dos valores antigos, descartando estes, e por fim *Historical* que são como os *changing* mas mantêm um registos dos valores antigos, sendo estes marcados como antigos, como demonstra a figura 37.

Figura 37- Configuração do tipo de Coluna para cada registo

Após se ter feito a atribuição dos tipos de coluna, é necessário definir o que acontece caso se encontre alterações nas colunas para todos os tipos, como exemplifica as figuras 38 e 39.

<u>Figura 38- Configurações para as colunas tipo</u> <u>Historical</u>

Figura 39 Configurações para as colunas tipo Fixed e Changing

Assim que se conclui o SCD, este devolve nos uma figura parecida á figura 39. As únicas alterações efetuadas foi a inclusão de dois *row-counts* para contar o número de alterações do tipo 1 (*Changing*) e do tipo dois (*Historical*), como evidencia as figuras 40, 41 e 42.

Figura 40- Slowly Changing Dimension concluido com as contagens de tipo de coluna

<u>Figura 41- Contagem das</u> <u>alterações de tipo</u>

<u>Figura 42--Contagem das alterações de tipo</u>
<u>1</u>

Apesar do SCD fornecer um OLE DB *Destination* é preciso ainda conferirlhe a DB e tabela corretas. Neste caso foi escolhida a tabela Docentes na nossa DB pessoal, como mostra a figura 43.

Figura 43- Configuração do OLE DB Destination

Depois realizou-se o mapeamento correto das colunas que o SCD fornece com as da tabela Docente, como exemplifica a figura 44.

Figura 44- Mapeamento das colunas de entrada com as da tabela de destino

E com isto termina-se o *data-flow*. De seguida criou-se no *control-flow* uma nova task da mesma forma que a da contagem de registos iniciais, mas que vai contar os registos inseridos na tabela destino pelo *data-flow* e vai ter como *result set* os registos finais, figuras 45,46 e 47.

Figura 45- Conexão entre o data-flow e task "Contar Registos Finais"

Figura 46- Configuração da task "Registos Finais"

Figura 47- Result Set da task "Registos Finais"

Após a contagem estar realizada é necessário fazer um *update* á tabela auditoria, por isso cria-se uma *task execute* SQL para o fazer, figura 48.

Figura 48- Ligação da task " Contar Registos Finais" à task "Updade Auditoria"

Esta *task* vai estar conectada á DB CatarinaNunoRicardoEduardo, figura 49, e vai correr um script de um ficheiro .txt, figura 50, que vai fazer a inserção dos valores das variáveis, figura 51.

Figura 49- Configuração da task "Update Auditoria"


```
Audit_UPD-Bloco de notas
Ficheiro Editar Formatar Ver Ajuda
UPDATE PDW.Auditoria SET

Fim_Processo = getdate(),
Nome_Package = @Nome_Package,
Registos_Iniciais = @Registos_Iniciais,
Registos_Finais = @Registos_Finais,
Num_RegInseridos = @Registos_Finais - @Registos_Iniciais,
Num_RegExtraidos = @Num_RegExtraidos,
Registos_Erro = @Registos_Erro,
Alt_Tipo1 = @Alt_Tipo1,
Alt_Tipo2 = @Alt_Tipo2

WHERE Chave_Auditoria = @Chave_Auditoria
```

<u>Figura 50- Script em formato .txt do update da</u> <u>tabela auditoria</u>

Figura 51- Variáveis que vão ser inseridas na tabela auditoria

Assim concluímos a *task* DimDocente. Todas as outras *tasks* foram criadas de igual modo apenas mudando os valores e as tabelas.

3.3 Tabela de Factos

A tabela *StagingTable_AnáliseDaDocencia* tem como objetivo carregar a tabela de factos através de *lookups* que verificam a conexão entre o nível operacional e a *star schema*.

Carregamos então a *staging table* com as chaves do nível operacional de modo a referenciá-las para subirmos e associarmos ao nível das *surrogate keys*.

Começámos por fazer um SQLStmt para mais tarde fazer as *views*, figura 52, também uma *task* para limpar os registos da tabela de factos, um *count* do número de registos iniciais e um *insert* da Chave_Auditoria.

Então começamos por criar uma *execute SQL task* que irá primeiramente fazer um *insert* dos valores da tabela auditoria para posteriormente ligarmos um *data flow task, figura 53.*

Figura 52 - Tasks SQL

Em seguida, o processo de carregar a Staging Table, figura 53.

Figura 53 - Staging Table

Figura 54 - Data Flow do Carregar Staging Table

De seguida está representado na figura 54 o carregamento da *staging table* para juntar com a DB CatarinaNunoRicardoEduardo, em que de seguida é divido com o multicast que faz com que seja usado um row count dos registos extraídos e com que os dados sejam agregados para um row count "destino".

Figura 55 - Foreach Loop Container

Este ciclo vai selecionar em todos os registos de cada data de inscrição e criar *views* temporárias com os registos que estavam em vigor nesses dias para cada dimensão. Depois carrega na tabela de factos final as *surrogates* de cada dimensão.

De seguida é feito um carregamento dos registos finais para posteriormente ser feito um *update* da Dim_Auditoria como representado na figura 56.

Figura 56 - Update da Dim Auditoria

Um *Lookup* é basicamente uma tabela de consulta que habilita o desempenho de junções por igualdade simples entre a entrada e o conjunto de dados de referência, por isso criámos *Lookups* para cada uma das tabelas de dimensão, como está representado nas figuras 57 e 58.

Caso ocorra algum erro esse erro irá ser enviado para um *flat file destination* onde os dados irão ser colocados num ficheiro á parte que identificará os erros.

Figura 57-Data Flow Task com as verificações dos Lookups

Figura 58- Data Flow Task com as verificações dos Lookups

Conclusão

Com este projeto conseguimos aperfeiçoar e melhorar o nosso conhecimento em *Data Warehouse*, que futuramente serão essenciais no mercado de trabalho.

Neste projeto utilizámos dois *softwares* utilizados como ambiente de trabalho (*Visual Studio* (SSIS) e *SQL Management Studio* (SSMS)) e também utilizámos alguns ficheiros de apoio em formato *Excel*. Conseguimos superar as diversas dificuldades que surgiram ao longo da realização do trabalho.

Concluindo, através da implementação e modelação dimensional do processo de negócio e criação do processo ETL do mesmo, percebemos melhor como se desenvolve esta área.

4. Bibliografia

Kimball, Ralph; Ross, Margy – The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling – Wiley

https://moodle.ips.pt/2021/course/view.php?id=2225

https://www.oracle.com/pt/database/what-is-a-data-warehouse/

https://www.edureka.co/blog/dimension-table-in-data-warehousing/

https://www.zentut.com/data-warehouse/fact-table/

https://canaltech.com.br/business-intelligence/a-granularidade-de-dados-no-data-warehouse-26310/