编译原理

预测分析程序

编译原理

回顾LL(1)分析法

自上而下分析

- ▶基本思想
 - ▶ 从文法的开始符号出发,向下推导,推出句子
 - ▶ 针对输入串, 试图用一切可能的办法, 从文法开始符号(根结点)出发, 自上而下地为输入串建立一棵语法树

LL(1)分析法

▶ 假设要用非终结符A进行匹配,面临的输入符号为a, A的所有产生式为

$$A \rightarrow \alpha_1 \mid \alpha_2 \mid \dots \mid \alpha_n$$

- 1. 若a∈ FIRST(α_i),则指派 α_i 执行匹配任务;
- 2. 若a不属于任何一个候选首符集,则:
 - (1) 若 ϵ 属于某个FIRST(α_i)且 $a \in FOLLOW(A)$, 则让A与 ϵ 自动匹配。
 - (2) 否则, a的出现是一种语法错误。

编译原理

预测分析程序的工作原理

预测分析程序构成

- 计算思维的典型方法
 - 知识与控制的分离
 - ■自动化
- ▶ 总控程序,根据现行栈顶符号和当前输入符号, 执行动作
- ▶ 分析表 M[A, a]矩阵, A ∈ V_N, a ∈ V_T是终 结符或 '#'
- ▶ 分析栈 STACK 用于存放文法符号

预测分析过程

预测分析过程

- ▶ 总控程序根据当前栈顶符号X和输入符号a,执 行下列三动作之一:
- 1. 若X = a = '#',则宣布分析成功,停止分析。
- 2. 若X = a ≠ '#' ,则把X从STACK栈顶逐出,让a指向下一个输入符号。
- 3. 若X是一个非终结符,则查看分析表M。
- 若M[X, a]中存放着关于X的一个产生式,把X逐出 STACK栈顶,把产生式的右部符号串按反序——推进 STACK栈(若右部符号为ε,则意味不推什么东西进栈)。
- ▶ 若M[X, a]中存放着"出错标志",则调用出错诊察程序ERROR。

总控程序实现

```
BEGIN
 首先把'#'然后把文法开始符号推进STACK栈;
 把第一个输入符号读进a;
 FLAG:=TRUE;
 WHILE FLAG DO
  BEGIN
   把STACK栈顶符号上托出去并放在X中;
   IF X \in V_T THEN
     IF X= a THEN 把下一输入符号读进a
            ELSE ERROR
```

总控程序实现

END

```
ELSE IF X= '#' THEN
         IF X=a THEN FLAG:=FALSE
                   ELSE ERROR
     ELSE IF M[X,a]=\{X \rightarrow X_1 X_2 ... X_k\}THEN
       把X<sub>k</sub>,X<sub>k-1</sub>,...,X<sub>1</sub>——推进STACK栈
        /* 若X<sub>1</sub>X<sub>2</sub>...X<sub>k</sub>=ε,不推什么进栈 */
     ELSE ERROR
   END OF WHILE;
STOP /*分析成功,过程完毕*/
```

编译原理

预测分析示例

预测分析示例

▶ 对于文法G(E):
 E→TE'
 E'→+TE' | ε
 T→FT'
 T'→*FT' | ε
 F→(E) | i
 输入串为i₁*i₂+i₃,利用分析表进行预测分析

	i	+	*	()	#
Е	E→TE′			E→TE′		
E'		E′→+TE′			E'→ε	E′→ε
Т	T→FT′			T→FT′		
T'		T′→ε	T′→*FT′		T′→ε	T′→ε
F	F→i			$F \! \to (E)$		

预测分析示例

対于文法G(E):
 E→TE'
 E'→+TE' | ε
 T→FT'
 T'→*FT' | ε
 F→(E) | i
 输入串为i₁*i₂+i₃,利用分析表进行预测分析

	i	+	*)	#
Е	E→TE′			E→TE′		
E'		E′→+TE′			Ε' →ε	E′→ε
Т	T→FT′			T→FT′		
T'		T′→ε	T′→*FT′		T′→ε	T′→ε
F	F→i			$F \rightarrow (E)$		

编译原理

构造预测分析表

预测分析程序构成

- 计算思维的典型方法
 - 知识与控制的分离
 - 自动化

分析表M[A, a]的构造

- ▶ 构造FIRST(α)和FOLLOW(A)
- ▶构造分析表M[A, a]

分析表的构造思想

▶ 对于文法G(E):

E→TE′

 $E' \rightarrow + TE' \mid \epsilon$

T→FT′

T'→*FT' | ε

F→(E) | i['] 输入串为i₁*i₂+i₃,利用分析表进行预

	i	+	*	()	#
E	E→TE′			E→TE′		
E'		$E' {\to} {+} TE'$			E′→ε	E′→ε
T	T→FT′			$T \rightarrow FT'$		
T'		T′→ε	$T' {\to}^* FT'$		T′→ε	T′→ε
F	F→i			F→ (E)		

步骤	符号栈	输入串	所用产生式
0	#E	i ₁ *i ₂ +i ₃ #	
1	#E'T	i ₁ *i ₂ +i ₃ #	E→TE'
2	#E'T'F	i ₁ *i ₂ +i ₃ #	T→FT'
3	#E'T'i	i ₁ *i ₂ +i ₃ #	F→i
4	#E'T'	*i ₂ +i ₃ #	
5	#E'T'F*	*i ₂ +i ₃ #	T'→*FT'
6	#E'T'F	$i_2 + i_3 \#$	
7	#E'T'i	i ₂ +i ₃ #	F→i
8	#E'T'	+i ₃ #	
9	#E'	+i ₃ #	T'→ε
10	#E'T+	+i ₃ #	E'→+TE'
11	#E'T	i ₃ #	
11	#E'T	i ₃ #	
12	#E'T'F	i ₃ #	T→FT'
13	#E'T'i	i ₃ #	F→i
14	#E'T'	#	
15	#E'	#	T'→ε
16	#	#	E'→ε

分析表M[A, a]的构造算法

- ► 构造G的分析表M[A, a], 确定每个产生式 A→α在表中的位置
- 1. 对文法G的每个产生式A→α执行第2步和第3步;
- 2. 对每个终结符a ∈ FIRST(α),把A→ α 加至M[A, a]中;
- 3. 若ε∈ FIRST(α),则对任何b∈ FOLLOW(A)把A→α加至M[A, b]中。
- 4. 把所有无定义的M[A, a]标上"出错标志"。

练习:分析表的构造

```
    対于文法G(E):
    E→TE'
    E'→+TE' | ε
    T→FT'
    T'→*FT' | ε
    F→(E) | i
```

构造每个非终结符的FIRST和FOLLOW集合:

FIRST(E) =
$$\{(,i)\}$$
 FOLLOW(E) = $\{(,i)\}$ FIRST(E') = $\{(,i)\}$ FOLLOW(E') = $\{(,i)\}$ FOLLOW(T) = $\{(,i)\}$ FIRST(T') = $\{(,i)\}$ FOLLOW(T') = $\{(,i)\}$ FOLLOW(F) = $\{(,i)\}$

分析表的构造

FIRST(E) ={(,i) FIRST(E')={+, ε} FIRST(T) ={(,i) FIRST(T')={*, ε} FIRST(F) ={(,i) FOLLOW(E) = {),#}
FOLLOW(E') = {),#}
FOLLOW(T) = {+,),#}
FOLLOW(T') = {+,),#}
FOLLOW(F) = {*,+,),#}

构造该文法的预测分析表。

- 1. 对文法G的每个产生式A→ α 执行第2步和第3步;
- 2. 对每个终结符a ∈ FIRST(α),把A $\rightarrow \alpha$ 加至M[A, a]中;
- 3. 若ε∈ FIRST(α),则对任何b∈ FOLLOW(A)把A→α加至M[A,b]中。
- 4. 把所有无定义的M[A, a]标上"出错标志"。

分析表的构造

FIRST(E) = $\{(,i)\}$ FOLLOW(E) = $\{(,i)\}$ FIRST(E') = $\{(+, \epsilon)\}$ FOLLOW(E') = $\{(,i)\}$ FIRST(T) = $\{(,i)\}$ FOLLOW(T) = $\{(+,), \#\}$ FIRST(T') = $\{(,i)\}$ FOLLOW(T') = $\{(+,), \#\}$ FIRST(F) = $\{(,i)\}$ FOLLOW(F) = $\{(+, +,), \#\}$

 $E' \rightarrow \epsilon E' \rightarrow \epsilon$

 $T' \rightarrow \epsilon T' \rightarrow \epsilon$

▶ 对于文法G(E): $E \to TE'$ $E' \to +TE' \mid \epsilon$ $T \to FT'$ $T' \to *FT' \mid \epsilon$ $F \to (E) \mid i$ $E \to TE'$ $E \to TE'$ $E' \to +TE'$ $E' \to +TE'$ $E' \to +TE'$

构造该文法的预测分析表。

- 1. 对文法G的每个产生式A→ α 执行第2步和第3步;
- 2. 对每个终结符a ∈ FIRST(α),把A $\rightarrow \alpha$ 加至M[A, a]中;
- 3. 若ε∈ FIRST(α),则对任何b∈ FOLLOW(A)把A→α加至 M[A,b]中。
- 4. 把所有无定义的M[A, a]标上"出错标志"。

预测分析示例

対于文法G(E):
 E→TE'
 E'→+TE' | ε
 T→FT'
 T'→*FT' | ε
 F→(E) | i
 输入串为i₁*i₂+i₃,利用分析表进行预

	į	+	*	(#
Е	E→TE′			E→TE′		
E'		$E' {\to} {+} TE'$			E′→ε	E′→ε
T	T→FT′			$T \rightarrow FT'$		
T'		T′→ε	$T' {\to}^* FT'$		T′→ε	T′→ε
F	Fi			$F \rightarrow \langle F \rangle$		

步骤	符号栈	输入串	所用产生式
0	#E	i ₁ *i ₂ +i ₃ #	
1	#E'T	i ₁ *i ₂ +i ₃ #	E→TE'
2	#E'T'F	i ₁ *i ₂ +i ₃ #	T→FT'
3	#E'T'i	i ₁ *i ₂ +i ₃ #	F→i
4	#E'T'	*i ₂ +i ₃ #	
5	#E'T'F*	*i ₂ +i ₃ #	T'→*FT'
6	#E'T'F	i ₂ +i ₃ #	
7	#E'T'i	i ₂ +i ₃ #	F→i
8	#E'T'	+i ₃ #	
9	#E'	+i ₃ #	T'→ε
10	#E'T+	+i ₃ #	E'→+TE'
11	#E'T	i ₃ #	
11	#E'T	i ₃ #	
12	#E'T'F	i ₃ #	T→FT'
13	#E'T'i	i ₃ #	F→i
14	#E'T'	#	
15	#E'	#	T'→ε
16	#	#	E'→ε

LL(1)文法与二义性

- ▶ 如果G是左递归或二义的,那么,M至少含有一个多重定义入口。因此,消除左递归和提取左因子将有助于获得无多重定义的分析表M。
- ▶ 可以证明,一个文法G的预测分析表M不含多 重定义入口,当且仅当该文法为LL(1)的。
- ▶ LL(1)文法不是二义的。

LL(1)文法与二义性

```
► G(S):
        S \rightarrow iCtS \mid iCtSeS \mid a
        C \rightarrow b
提取左因子之后, 改写成:
► G(S):
        S \rightarrow iCtSS' | a
        S' \rightarrow eS \mid \epsilon
        C \rightarrow b
```

LL(1)文法与二义性

G(S):
 S → iCtS | iCtSeS | a
 C → b

提取左因子之后,改写成:

► G(S):

 $S \rightarrow iCtSS'$ | a

 $S' \rightarrow eS \mid \epsilon$

 $C \rightarrow b$

if then	if then else
if then	if then else
if then else	ifthen

	а	b	е	i	t	#
S	S→a			S→iCtSS'		
S'			S'→eS S'→ε			S′→ε
С		$C \rightarrow p$				

小结

- ▶ 预测分析程序的结构
- ▶ 预测分析程序的原理
- ▶ 预测分析表的构造
 - ▶ 消除左递归,消除回溯
 - ▶ 计算FIRST、FOLLOW集合
 - ▶ 构造预测分析表