Número: Nome:

Sistemas Digitais 2012/2013

Departamento de Informática, Universidade de Évora

4° mini-teste

17 de Dezembro de 2012

Observações

• Duração: 45min

 \bullet $\it C\'alculos$: Todos os cálculos efectuados devem ser apresentados nas respostas

• Tabelas de excitação dos FF

Q*	Q	S	R
0	0	0	-
0	1	1	0
1	0	0	1
1	1	-	0

Q*	Q	D
0	0	0
0	1	1
1	0	0
1	1	1

Q*	Q	Т
0	0	0
0	1	1
1	0	1
1	1	0

Q*	Q	J	K
0	0	0	-
0	1	1	-
1	0	-	1
1	1	-	0

1. Considere o circuito da figura seguinte.

- (a) Complete o diagrama temporal para os pontos Q0, Q1 e Q2, assumindo que os flipflops são sensíveis à transição ascendente do relógio e que no instante inicial todos os flipflops estão em modo de reset.
- (b) Este circuito designa-se por contador de Johnson. Qual o nº estados distintos? Justifique apresentando a sequência de $Q_2Q_1Q_0$ que o circuito origina.
- 2. Considere um flip-flop LD com o seguinte comportamento:
 - transita do estado estado 0 para o estado 1 quando ambas as entradas estiverem a 1;
 - mantém-se no estado 1 sempre que ambas as entradas tiverem valores diferentes.
 - (a) Desenhe o diagrama de estados do flip-flop.
 - (b) Escreva a tabela de transição de estados correspondente.
 - (c) Obtenha as equações de entrada do flip-flop e da saída utilizando flip-flops JK.