

Active Learning with High Dimensional Inputs using Bayesian Convolutional Neural Networks

Riashat Islam

Supervisors: Zoubin Ghahramani and Yarin Gal

Outline of Experiments

- Performance using Dropout Acquisition Functions when used with Bayesian ConvNet and avoid over-fitting when using small datasets
- Comparison of Dropout Acquisition Functions with Other Baseline active learning acquisition functions
- Significance of Query Rate per acquisition
- Comparison of performance using only softmax and uncertainty estimates from test-time dropout
- Significance of model architecture and non-linearity for different uncertainty estimates for use of active learning with deep models
- Comparison with combination of SSL and AL (Minimum Bayes Risk for Binary Classification)
- Comparison of our approach with other recent methods for data-efficiency in deep learning
- Acquisition Functions using Dropout + Random uncertainty estimates in active learning

Acquisition Functions

Dropout Acquisition Functions

- Dropout Bayesian Active Learning By Disagreement
- Dropout Variation Ratio
- Dropout Bayes Segnet
- Dropout Maximum Entropy
- Dropout Least Confident

Other baseline acquisition functions used in active learning

- Uncertainty Sampling Maximum Entropy
- Uncertainty Sampling Best vs Second Best Search (BvSB)
- Maximum Entropy
- Random acquisition

Experimental Setup

- Number of Experiments = 3-5 for averaged results
- LeNet5 architecture
- Number of Epochs = 50
- Starting training data: 20 100 data points, using up to 1000 training labelled samples
- 10,000 test samples on MNIST
- Number of Queries made at each acquisition: 1, 5 or 10
- 100 Dropout MC Samples for uncertainty estimates
- Weighted inputs in the loss function
- ADAM optimizer

Dropout Bayesian Active Learning by Disagreement

Dropout Variation Ratio

Comparison of Acquisition Functions

Significance of Uncertainty Estimates

Significance of Uncertainty Estimates

Effect of test-time dropout more significant in small data settings

Non-Linearity

Kernel Filter Size

Significance of Query Rate for Computational Efficiency

Number of Hidden Units

Binary Classification – Comparing with Minimum Bayes Risk

Model Architectures

Comparison with SSL Methods

Test Error Results on MNIST for 1000 labelled training samples

Test error % on 10,000 samples with number of used training labels	1000
Semi-sup. Embedding (Weston et al., 2012)	5.73
MTC (Rifai et al., 2011)	3.64
Pseudo-label (Lee, 2013)	3.46
AtlasRBF (Pitelis et al.,2014)	3.68
DGN (Kingma et al., 2014)	2.40
Virtual Adversarial (Miyato et al., 2015)	1.32
SSL with Ladder Networks (Rasmus et al., 2015)	0.84
Dropout BALD	1.57
Dropout Variation Ratio	2.05
Dropout Maximum Entropy	2.37
Dropout Least Confident	2.14
Dropout Bayes Segnet	4.62

Summary of Results

Test Error Results on MNIST for 100, 1000 and 3000 labelled training samples

Test accuracy % on 10,000 test samples with number of used training labels	100	1000	3000
Dropout BALD	-	98.43	98.84
Dropout Variation Ratio	_	97.95	98.87
Dropout Maximum Entropy	_	97.63	98.84
Dropout Least Confident	_	97.86	98.87
Dropout Bayes Segnet	-	95.38	97.19
Random Acquisition	-	94.95	97.31
Uncertainty Sampling (Max Margin aka BvSB)	-	83.95	82.77
Uncertainty Sampling (Max Entropy)	_	53.28	36.10

Dropout + Random Uncertainty Estimates

