

Grundlagen der Elektrotechnik II

Frequenzanalyse periodischer Signale

Studien- und Versuchsaufgaben

Autor: Richard Grünert 23.5.2019

1 Vorbereitungsaufgaben

1.1

$$\underline{X}_{\nu} = \frac{1}{T_1} \cdot \int_{T_1} x(t) \cdot e^{-(j\nu \cdot \omega_1 t)} dt$$

$$= \frac{1}{T_1} \cdot \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} X_m \cdot e^{-(j\nu \cdot \omega_1 t)} dt$$

$$= -\frac{X_m}{T_1 \cdot j\nu \omega_1} \cdot \left[e^{-(j\nu \cdot \omega_1 t)} \right]_{-\frac{\tau}{2}}^{\frac{\tau}{2}}$$

$$= -\frac{X_m}{T_1 \cdot j\nu \omega_1} \cdot \left(e^{-j\nu \cdot \omega_1 \frac{\tau}{2}} - e^{j\nu \cdot \omega_1 \frac{\tau}{2}} \right)$$

 $\omega_1 = \frac{2\pi}{T_1}$ und Erweiterung mit $\frac{-1}{-1}$:

$$\underline{X}_{\nu} = \frac{X_m}{2j\pi\nu} \cdot \left(e^{j\nu \cdot \pi \frac{\tau}{T_1}} - e^{-j\nu \cdot \pi \frac{\tau}{T_1}} \right)$$
$$= \frac{X_m}{\pi\nu} \cdot \frac{\left(e^{j\nu \cdot \pi \frac{\tau}{T_1}} - e^{-j\nu \cdot \pi \frac{\tau}{T_1}} \right)}{2j}$$

mit
$$\frac{\left(e^{jx} - e^{-jx}\right)}{2j} = \sin(x)$$
 und $\frac{\tau}{T_1} = D$:
$$\underline{X}_{\nu} = \frac{X_m}{\pi\nu} \cdot \sin(\pi\nu D)$$

Erweitert man wieder mit $\frac{D}{D}$ erhält man das Bild einer Spaltfunktion $si(x) = \frac{\sin x}{x}$:

$$\underline{X}_{\nu} = D \cdot X_m \cdot \frac{\sin(\pi \nu D)}{\pi \nu D} = D \cdot X_m \cdot \sin(\pi \nu D)$$

Als reele Reihe:

$$x(t) = X_0 + \sum_{\nu=1}^{\infty} \hat{X}_{\nu} \cos(\nu \cdot \omega_1 t + \phi_{\nu})$$
$$X_0 = \frac{1}{T_1} \cdot \int_{T_1} x(t) dt = \frac{X_m}{2}$$

Aus der komplexen Reihendarstellung folgt

$$\hat{X}_{\nu} = \sqrt{a_{\nu}^{2} + b_{\nu}^{2}}$$

$$\phi_{\nu} = \arccos \frac{a_{\nu}}{\hat{X}_{\nu}}$$

$$a_{\nu} = 2 \cdot \text{Re}(\underline{X}_{\nu}) = 2DX_{m} \cdot \text{si}(\pi \nu D)$$

$$b_{\nu} = -2 \cdot \text{Im}(\underline{X}_{\nu}) = 0$$
also
$$a_{\nu} = \hat{X}_{\nu}, \quad \phi_{\nu} = 0$$

Somit ist

$$x(t) = \frac{X_m}{2} + \sum_{\nu=1}^{\infty} 2DX_m \cdot \sin(\pi\nu D) \cdot \cos(\nu \cdot \frac{2\pi}{T_1} \cdot t)$$

Reihenentwicklung von x(t) bis zur 16. Oberwelle

D=0.

Effektivwert:

$$X_{\text{eff}} = \sqrt{\frac{1}{T_1} \cdot \int_{T_1} x^2(t) \, dt} = \sqrt{\frac{X_m^2}{T_1} \cdot \int_{-\frac{\tau}{2}}^{\frac{\tau}{2}} 1 \, dt}$$
$$X_{\text{eff}} = X_m \cdot \sqrt{\frac{\tau}{T_1}} = X_m \cdot \sqrt{D}$$

$D = \frac{1}{2}$			
ν	\hat{X}_{ν}	$\phi_{ u}$	X_{eff}
0			
1			
2 3			
4			
5			
6 7			
8			
9			
10			
13			
14			
15			
16			

- 1.2
- 1.3
- 2 Versuchsaufgaben
- 2.1
- 2.2
- 2.3