Cyclic Codes

Saravanan Vijayakumaran sarva@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

August 18, 2015

Cyclic Codes

Definition

A cyclic shift of a vector $\begin{bmatrix} v_0 & v_1 & \cdots & v_{n-2} & v_{n-1} \end{bmatrix}$ is the vector $\begin{bmatrix} v_{n-1} & v_0 & v_1 & \cdots & v_{n-3} & v_{n-2} \end{bmatrix}$.

Definition

An (n, k) linear block code C is a cyclic code if every cyclic shift of a codeword in C is also a codeword.

Example

Consider the (7,4) code C with generator matrix

$$G = \begin{bmatrix} 1 & 0 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 & 1 & 1 & 1 \\ 0 & 0 & 0 & 1 & 1 & 0 & 1 \end{bmatrix}$$

Polynomial Representation of Vectors

For every vector $\mathbf{v} = \begin{bmatrix} v_0 & v_1 & \cdots & v_{n-2} & v_{n-1} \end{bmatrix}$ there is a polynomial

$$\mathbf{v}(X) = v_0 + v_1 X + v_2 X^2 + \dots + v_{n-1} X^{n-1}$$

Let $\mathbf{v}^{(i)}$ be the vector resulting from i cyclic shifts on \mathbf{v}

$$\mathbf{v}^{(i)}(X) = v_{n-i} + v_{n-i+1}X + \dots + v_{n-1}X^{i-1} + v_0X^i + \dots + v_{n-i-1}X^{n-1}$$

Example

Polynomial Representation of Vectors

• Consider $\mathbf{v}(X)$ and $\mathbf{v}^{(1)}(X)$

$$\mathbf{v}(X) = v_0 + v_1 X + v_2 X^2 + \dots + v_{n-1} X^{n-1}$$

$$\mathbf{v}^{(1)}(X) = v_{n-1} + v_0 X + v_1 X^2 + v_2 X^3 + \dots + v_{n-2} X^{n-1}$$

$$= v_{n-1} + X \left[v_0 + v_1 X + v_2 X^2 + \dots + v_{n-2} X^{n-2} \right]$$

$$= v_{n-1} (1 + X^n) + X \left[v_0 + \dots + v_{n-2} X^{n-2} + v_{n-1} X^{n-1} \right]$$

$$= v_{n-1} (1 + X^n) + X \mathbf{v}(X)$$

• In general, $\mathbf{v}(X)$ and $\mathbf{v}^{(i)}(X)$ are related by

$$X^{i}\mathbf{v}(X)=\mathbf{v}^{(i)}(X)+\mathbf{q}(X)(X^{n}+1)$$

where
$$\mathbf{q}(X) = v_{n-i} + v_{n-i+1}X + \cdots + v_{n-1}X^{i-1}$$

• $\mathbf{v}^{(i)}(X)$ is the remainder when $X^i\mathbf{v}(X)$ is divided by X^n+1

Hamming Code of Length 7

Codeword	Code Polynomial
0000000	0
1000110	$1 + X^4 + X^5$
0100011	$X + X^5 + X^6$
1100101	$1 + X + X^4 + X^6$
0010111	$X^2 + X^4 + X^5 + X^6$
1010001	$1 + X^2 + X^6$
0110100	$X+X^2+X^4$
1110010	$1 + X + X^2 + X^5$
0001101	$X^3 + X^4 + X^6$
1001011	$1 + X^3 + X^5 + X^6$
0101110	$X + X^3 + X^4 + X^5$
1101000	$1 + X + X^3$
0011010	$X^2 + X^3 + X^5$
1011100	$1 + X^2 + X^3 + X^4$
0111001	$X + X^2 + X^3 + X^6$
1111111	$1 + X + X^2 + X^3 + X^4 + X^5 + X^6$

Properties of Cyclic Codes (1)

Theorem

The nonzero code polynomial of minimum degree in a linear block code is unique.

Proof.

Suppose there are two code polynomials g(X) and g'(X) of minimum degree r.

What is the degree of their sum?

Properties of Cyclic Codes (2)

Let $\mathbf{g}(X) = g_0 + g_1 X + \cdots + g_{r-1} X^{r-1} + X^r$ be the nonzero code polynomial of minimum degree in an (n, k) binary cyclic code C.

Theorem

The constant term g_0 is equal to 1.

Proof.

Suppose $g_0 = 0$.

Then $g_1X + g_2X^2 + \cdots + X^r$ is a code polynomial.

What happens when we left shift the corresponding codeword?

Properties of Cyclic Codes (3)

Let $\mathbf{g}(X) = g_0 + g_1 X + \cdots + g_{r-1} X^{r-1} + X^r$ be the nonzero code polynomial of minimum degree in an (n, k) binary cyclic code C.

Theorem

A binary polynomial of degree n-1 or less is a code polynomial if and only if it is a multiple of $\mathbf{g}(X)$.

Proof.

- (\Leftarrow) A multiple of $\mathbf{g}(X)$ of degree n-1 or less is a linear combination of shifts of $\mathbf{g}(X)$.
- (\Rightarrow) Consider the remainder when a code polynomial is divided by $\mathbf{g}(X)$.
- g(X) is called the generator polynomial of the cyclic code.

Properties of Cyclic Codes (4)

Theorem

The degree of the generator polynomial of an (n, k) binary cyclic code is n - k.

Proof.

If the degree of $\mathbf{g}(X)$ is r, how many distinct multiples of $\mathbf{g}(X)$ of degree of n-1 or less exist?

Properties of Cyclic Codes (5)

Theorem

The generator polynomial of an (n, k) binary cyclic code is a factor of $X^n + 1$.

Proof.

 $\mathbf{g}(X)$ has degree n-k.

What is the remainder when $X^k \mathbf{g}(X)$ is divided by $X^n + 1$?

Properties of Cyclic Codes (6)

Theorem

If $\mathbf{g}(X)$ is a polynomial of degree n-k and is a factor of X^n+1 , then $\mathbf{g}(X)$ generates an (n,k) cyclic code.

Proof.

Multiples of $\mathbf{g}(X)$ of degree n-1 or less generate a (n,k) linear block code.

We need to show that the generated code is cyclic.

For a code polynomial $\mathbf{v}(X)$ consider the following equation

$$X\mathbf{v}(X) = v_{n-1}(X^n + 1) + \mathbf{v}^{(1)}(X)$$

What can we say about $\mathbf{v}^{(1)}(X)$?

Systematic Encoding of Cyclic Codes

• To encode a k-bit message $\begin{bmatrix} u_0 & u_1 & \cdots & u_{k-1} \end{bmatrix}$ construct the message polynomial

$$\mathbf{u}(X) = u_0 + u_1 X + \cdots + u_{k-1} X^{k-1}.$$

- Given a generator polynomial g(X) of an (n, k) cyclic code, the corresponding codeword is u(X)g(X). This is not a systematic encoding.
- A systematic encoding of the message can be obtained as follows
 - Divide $X^{n-k}\mathbf{u}(X)$ by $\mathbf{g}(X)$ to obtain remainder $\mathbf{b}(X)$
 - The code polynomial is given by $\mathbf{b}(X) + X^{n-k}\mathbf{u}(X)$

Circuits for Cyclic Code Encoding

A Shift Register Circuit

Let
$$\mathbf{g}(X) = 1 + g_1 X + g_2 X^2 + \dots + g_{r-1} X^{r-1} + X^r$$

 $\mathbf{s}(X) = s_0 + s_1 X + \cdots + s_{r-1} X^{r-1}$ is the current state polynomial The next state polynomial $\mathbf{s}'(X)$ is given by

$$\mathbf{s}'(X) = [a + X\mathbf{s}(X)] \mod \mathbf{g}(X)$$

Can we use this circuit to build an encoder for a cyclic code with generator polynomial g(X)?

Circuit for Systematic Encoding

• If the initial state polynomial is zero and the input is a sequence of bits $a_{m-1}, a_{m-2}, \ldots, a_1, a_0$, the final state polynomial is

$$\mathbf{a}(X) \bmod \mathbf{g}(X) = \left[\sum_{i=0}^{m-1} a_i X^i\right] \bmod \mathbf{g}(X)$$

For systematic encoding we need X^{n-k}u(X) mod g(X) which corresponds to input bit sequence

$$u_{k-1}, u_{k-2}, \ldots, u_1, u_0, \underbrace{0, 0, \ldots, 0, 0}_{p-k}$$

• Is there a way to avoid the delay of n - k clock ticks?

Another Shift Register Circuit

Let
$$\mathbf{g}(X) = 1 + g_1 X + g_2 X^2 + \dots + g_{r-1} X^{r-1} + X^r$$

 $\mathbf{s}(X) = s_0 + s_1 X + \cdots + s_{r-1} X^{r-1}$ is the current state polynomial The next state polynomial $\mathbf{s}'(X)$ is given by

$$\mathbf{s}'(X) = [aX^r + X\mathbf{s}(X)] \mod \mathbf{g}(X)$$

If the initial state polynomial is zero and the input is a sequence of bits $a_{m-1}, a_{m-2}, \dots, a_1, a_0$, the final state polynomial is

$$X^r$$
a $(X) \mod \mathbf{g}(X) = \left[\sum_{i=0}^{m-1} a_i X^{r+i}\right] \mod \mathbf{g}(X)$

Systematic Encoding Circuit for Cyclic Codes

Let
$$\mathbf{g}(X) = 1 + g_1 X + g_2 X^2 + \dots + g_{n-k-1} X^{n-k-1} + X^{n-k}$$

- Turn on the gate. Shift the message bits $u_{k-1}, u_{k-2}, \ldots, u_0$ into the circuit and channel simultaneously. Only Output1 is fed to the channel.
- Turn off the gate and shift the contents of the shift register into the channel. Only Output2 is fed to the channel.

Error Detection using Cyclic Codes

Syndrome Computation

- Errors are detected when the received vector is not a codeword
- For linear block codes, **r** is a codeword \iff **rH**^T = **0**
- $\mathbf{s} = \mathbf{r}\mathbf{H}^T$ is called the syndrome vector
- For cyclic codes, the received polynomial r(X) is a code polynomial ← r(X) mod g(X) = 0
- $\mathbf{s}(X) = \mathbf{r}(X) \mod \mathbf{g}(X)$ is called the syndrome polynomial
- The following circuit computes the syndrome polynomial

Detecting Odd Weight Error Patterns

 For received polynomial r(X) = v(X) + e(X) where v(X) is a code polynomial

$$\mathbf{r}(X) \bmod \mathbf{g}(X) = \mathbf{e}(X) \bmod \mathbf{g}(X)$$

- Error $\mathbf{e}(X) \neq 0$ is undetected if $\mathbf{e}(X) \mod \mathbf{g}(X) = 0$
- If an odd weight error pattern occurs, then

$$\mathbf{e}(X) = X^{i_1} + X^{i_2} + \cdots + X^{i_m}$$

where m is odd and $0 \le i_i \le n-1$

- If X + 1 is a factor of g(X), all odd weight error patterns are detected
- If $\mathbf{g}(X) = (X+1)\mathbf{a}(X)$, then $\mathbf{e}(X) \mod \mathbf{g}(X) = 0 \implies \mathbf{e}(X) = \mathbf{g}(X)\mathbf{b}(X) = (X+1)\mathbf{a}(X)\mathbf{b}(X)$

Detecting Double Bit Errors

- A double bit error pattern is of the form $\mathbf{e}(X) = X^i + X^j$ where $i \neq j$ and $0 \leq i, j \leq n-1$
- A polynomial over F₂ is said to be irreducible over F₂ if it
 has no factors other than 1 and itself
 - Examples: $X, X + 1, X^2 + X + 1, X^3 + X + 1, X^3 + X^2 + 1$
- A degree m irreducible polynomial is primitive if the smallest value of N for which it divides $X^N + 1$ is $2^m 1$
 - Examples: $X + 1, X^2 + X + 1$
- If $\mathbf{g}(X)$ is a primitive polynomial of degree m and the code length $n = 2^m 1$, then all double bit errors are detected

$$X^{i} + X^{j} = X^{i}(1 + X^{j-i})$$

In practice, g(X) is chosen to be (X + 1)p(X) where p(X) is a primitive polynomial

Example: CRC-16

The generator polynomial of CRC-16 is given by

$$\mathbf{g}(X) = X^{16} + X^{15} + X^2 + 1 = (X+1)(X^{15} + X + 1)$$

CRC = Cyclic Redundancy Check

- All odd weight error patterns are detected
- If the code length is $2^{15} 1 = 32767$, then all double bit errors are detected
- A burst error of length m occurs if the error locations are confined to a block of length m

$$e(X) = X^{i} + e_{i+1}X^{i+1} + e_{i+2}X^{i+2} + \dots + e_{i+m-2}X^{i+m-2} + X^{i+m-1}$$

 The CRC-16 code can detect all burst errors of length 16 or less, 99.997% of 17-length bursts, 99.998% of 18-length bursts...

Burst Error Detection

- An (n, k) cyclic code can detect burst errors of length n − k or less, including end-around bursts
- The fraction of undetectable bursts of length n k + 1 is $2^{-(n-k-1)}$
- For m > n k + 1, the fraction of undetectable bursts of length m is $2^{-(n-k)}$

CRC in Context

CRC is used along with Automatic Repeat reQuest (ARQ) to enable reliable communication

Questions? Takeaways?