ANÁLISIS NUMÉRICO II — Práctico N°5 - 2025 Valores singulares

- 1. Demuestre que si $A \in \mathbb{R}^{m \times n}$ tiene valores singulares $\sigma_1 \geq \ldots \geq \sigma_n > 0$, entonces $\|(A^TA)^{-1}\|_2 = \sigma_n^{-2}, \|(A^TA)^{-1}A^T\|_2 = \sigma_n^{-1}, \|A(A^TA)^{-1}\|_2 = \sigma_n^{-1} \text{ y } \|A(A^TA)^{-1}A^T\|_2 = 1.$
- 2. Demuestre que dados $\varepsilon > 0$ y $A \in \mathbb{R}^{m \times n}$ de rango $r < \min\{m, n\}$, existe $A_{\varepsilon} \in \mathbb{R}^{m \times n}$ de rango mín $\{m, n\}$ tal que $||A - A_{\varepsilon}||_2 < \varepsilon$.
- 3. Dada $A \in \mathbb{R}^{m \times n}$, defina $B(\lambda) = (A^T A + \lambda I)^{-1} A^T$ con $\lambda > 0$. Demuestre que si p = $\min\{m,n\}, \, \sigma_1 \geq \ldots \geq \sigma_r > \sigma_{r+1} = \ldots = \sigma_p = 0 \text{ son los valores singulares de } A \text{ y } A^{\dagger} \text{ es su}$ pseudo inversa, entonces

$$||B(\lambda) - A^{\dagger}||_2 = \frac{\lambda}{\sigma_r(\sigma_r^2 + \lambda)}.$$

Concluya que $B(\lambda) \to A^{\dagger}$ si $\lambda \to 0^+$.

NOTA: Para ejercicios 4 al 6 pueden obtener la descomposición SVD con Numpy (np.linalg.svd)

- 4. Implemente una función llamada cuad_min_svd que reciba una matriz A y un vector b y resuelva el problema de cuadrados mínimos min $\|Ax-b\|_2^2$ mediante la descomposición SVD, dando como salida x y $||Ax - b||_2$. Probar la implementación leyendo A y b desde A_p5e4.txt y b_p5e4.txt, respectivamente. Comparar la norma 2 de esta solución, con la solución obtenida mediante cuadrados mínimos con QR.
- 5. Implemente una función llamada im_aprox_svd que reciba como entradas una matriz $A \in \mathbb{R}^{m \times n}$ y una tolerancia tol (este número puede no ser pequeño) y que realice lo siguiente:
 - Obtener la descomposición SVD de A,
 - Hallar $k \in \{1, ..., \min\{m, n\}\}$ tal que $\sigma_{k+1} \leq \text{tol}$.
 - Calcular $A_k = \sum_{i=1}^k \sigma_i u^i(v^i)^T$, aproximación hasta el valor singular k de A. Note que $\|A A_k\|_2 \le \mathsf{tol}$.
 - Mostrar ambas matrices en pantalla como imágenes (usar plt.imshow).
 - Probar la función implementada con la matriz en p5e5.txt, con tol= 2000.
- 6. Reducción de Dimensionalidad para Visualización: El archivo iris.data contiene un conjunto de datos de plantas de la familia Iris, donde la última columna indica a qué variedad de Iris pertenece la planta estudiada (0-setosa, 1-versicolour o 2-virginica). Para cada planta se obtuvieron 4 atributos (longitud y ancho del sépalo, longitud y ancho del pétalo, respectivamente). Conseguir la descomposición SVD de la matriz de los datos (sin la columna de la clase) y graficar los puntos formados por las primeras dos columnas de U(un punto por fila). Colorear cada punto de acuerdo a la clase que le corresponde.
- 7. Sea $A \in \mathbb{R}^{m \times n}$ de rango r. Si $U = [u^1 \dots u^m] \in \mathbb{R}^{m \times m}, \ V = [v^1 \dots v^n] \in \mathbb{R}^{n \times n}$ y Σ diagonal con entradas $\sigma_1 \geq \ldots \geq \sigma_r > 0$ corresponden a la descompsición SVD de A, entonces la matriz A^{\dagger} (pseudoinversa de A) satisface

$$A^{\dagger}u^i = \begin{cases} v^i\sigma_i^{-1} & i=1,\ldots,r\\ 0 & i=r+1,\ldots,n. \end{cases}$$

1