HAMILTONSche Quaternionen

Proseminar Mathematik

Leon Richardt

7. Juli 2020

Universität Osnabrück

Überblick

Reelle Algebren

Historisches

Die Quaternionenalgebra H

Der Imaginärraum von H

Bezug zu klassischen Vektorprodukten

Zentrum von H

Endomorphismen von H

Fundamentalsatz der Algebra für Quaternionen

Anmerkung

In dieser Präsentation stehen kleine griechische Buchstaben stets für reelle Zahlen; lateinische Buchstaben stehen für Elemente der momentan betrachteten Algebra.

Definition

Ein Vektorraum V über $\mathbb R$ mit einer Produktabbildung

$$V \times V \to V, (x,y) \mapsto xy$$

heißt Algebra über $\mathbb R$ (oder reelle Algebra), wenn die beiden Distributivgesetze

$$(\alpha x + \beta y)z = \alpha \cdot xz + \beta \cdot yz,$$

$$x(\alpha y + \beta z) = \alpha \cdot xy + \beta \cdot xz$$

für alle $\alpha, \beta \in \mathbb{R}$ und $x, y, z \in V$ erfüllt sind.

Definition

Eine Algebra heißt ...

- · ... assoziativ, wenn x(yz) = (xy)z für alle $x, y, z \in V$ gilt.
- · ... kommutativ, wenn xy = xy für alle $x, y \in V$ gilt.
- ... mit Einselement, wenn es ein Element $e \in V$ mit ex = xe = x für alle $x \in V$ gibt.

Definition

Ein Element x einer Algebra \mathcal{A} heißt Nullteiler, falls es ein Element $0 \neq y \in \mathcal{A}$ mit xy = 0 oder yx = 0 gibt.

Konsequenterweise heißt eine Algebra nullteilerfrei, falls sie keine Nullteiler $\neq 0$ besitzt.

Der Imaginärraum von ⊞

Der Imaginärraum von ⊞

Bezug zu klassischen Vektorprodukten

Fundamentalsatz der Algebra für Quaternionen