• Mi a belső pont definíciója?

Definíció.

Legyen $\emptyset \neq A \subset \mathbb{R}$. Az $a \in A$ pont az A halmaz belső pontja, ha

$$\exists r > 0, hogy K_r(a) = (a - r, a + r) \subset A.$$

$$Jel\"{o}l\acute{e}s: [int A] := \{ a \in A \mid a \text{ bels \'o pontja } A\text{-nak} \}.$$

• Mikor mondja azt, hogy egy $f \in R \rightarrow R$ függvény differenciálható valamely $a \in I$ int Df pontban?

Definíció.

 $Az \ f \in \mathbb{R} \to \mathbb{R} \ f\ddot{u}ggv\acute{e}ny \ az \ a \in \operatorname{int} \mathcal{D}_f \ pontban \ differenci\acute{a}lhat\acute{o}$ $(vagy \ deriv\acute{a}lhat\acute{o}), \ ha$

$$\exists$$
 és véges a $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$ határérték.

Ezt f'(a)-val jelöljük, és az f függvény a **pontbeli deriváltjának** (vagy **differenciálhányadosának**) nevezzük, azaz

$$f'(a) := \lim_{h \to 0} \frac{f(a+h) - f(a)}{h} \in \mathbb{R}.$$

Ezt a tényt a következőképpen fogjuk jelölni: $f \in D\{a\}$.

• Mi a kapcsolat a pontbeli differenciálhatóság és a folytonosság között?

3. A folytonosság és a derivált kapcsolata

Tétel.

Tegyük fel, hogy $f \in \mathbb{R} \to \mathbb{R}$ és $a \in \text{int } \mathcal{D}_f$. Ekkor

$$1^o \ f \in D\{a\} \implies f \in C\{a\},$$

2º Az állítás megfordítása nem igaz.

• Adjon példát olyan függvényre, ami az a ∈ R pontban folytonos, de nem differenciálható!

R-en folytonos, de sehol sem deriválható függvények

$$f(x) := \sum_{n=0}^{+\infty} \frac{\cos(15^n \pi x)}{2^n} (x \in \mathbb{R})$$

T. Takagi (1903)

B.L. van der Waerden (1930)

$$f(x) := \sum_{n=0}^{+\infty} \frac{\langle 10^n x \rangle}{10^n} \quad (x \in \mathbb{R})$$

$$\langle \alpha := \min\{|\alpha - k| \mid k \in \mathbb{Z}\}$$

• Milyen tételt ismer két függvény szorzatának valamely pontbeli differenciálhatóságáról és a deriváltjáról?

T.f.h. $f, g \in D\{a\}$ valamilyen $a \in \text{int } (\mathcal{D}_f \cap \mathcal{D}_g)$ pontban. Ekkor

3°
$$f \cdot g \in D\{a\}$$
 és
$$(f \cdot g)'(a) = f'(a) \cdot g(a) + f(a) \cdot g'(a),$$

• Milyen tételt ismer két függvény hányadosának valamely pontbeli differenciálhatóságáról és a deriváltjáról?

T.f.h. $f, g \in D\{a\}$ valamilyen $a \in \text{int } (\mathcal{D}_f \cap \mathcal{D}_g)$ pontban. Ekkor

4º ha még a
$$g(a) \neq 0$$
 feltétel is teljesül, akkor
$$\frac{f}{g} \in D\{a\} \quad \text{és}$$

$$\left(\frac{f}{g}\right)'(a) = \frac{f'(a) \cdot g(a) - f(a) \cdot g'(a)}{g^2(a)}.$$

• Milyen tételt ismer két függvény kompozíciójának valamely pontbeli differenciálhatóságáról és

a deriváltjáról?

T.f.h. $f,g \in \mathbb{R} \to \mathbb{R}$, $\mathcal{R}_g \subset \mathcal{D}_f$ és egy $a \in \operatorname{int} \mathcal{D}_g$ pontban $g \in D\{a\}$, továbbá $f \in D\{g(a)\}$. Ekkor $f \circ g \in D\{a\}$, és

$$(f \circ g)'(a) = f'(g(a)) \cdot g'(a)$$
.

• Fogalmazza meg a hatványsorok összegfüggvényének deriválhatóságáról szóló tételt!

T.f.h. hogy a $\sum_{n=0}^{\infty} \alpha_n(x-a)^n$ $(x \in \mathbb{R})$ hatványsor R konvergenciasugara pozitív, és legyen

$$f(x) := \sum_{n=0}^{+\infty} \alpha_n (x - a)^n \qquad (x \in K_R(a)).$$

Ekkor minden $x \in K_R(a)$ pontban $f \in D\{x\}$ és

$$f'(x) = \sum_{n=1}^{+\infty} n\alpha_n (x-a)^{n-1} \qquad (\forall x \in K_R(a)).$$

• Mi az exp, sin, cos függvények derivált függvénye?

$$\exp'(x) = (e^x)' = e^x \qquad (x \in \mathbb{R})$$

$$\sin'(x) = \cos(x) \quad (x \in \mathbb{R})$$

$$cos'(x) = -sin(x) \quad (x \in \mathbb{R})$$

• Elemi függvények deriváltjai (vö. deriválási táblázat).