Jacob H. Seidman, PhD

POSTDOCTORAL RESEARCHER · APPLIED MATHEMATICS AND MACHINE LEARNING

Fducation University of Pennsylvania Philadelphia, PA Ph.D. Applied Mathematics and Computational Science 2016-2022 • Advisors: Dr. George J. Pappas and Dr. Victor M. Preciado • Dissertation: Machine Learning in Function Spaces **Harvard University** Boston, MA A.B. MATHEMATICS 2012-2016 Research Experience _____ **University of Pennsylvania** Philadelphia, PA Oct 2022 - Present POSTDOCTORAL RESEARCHER • Operator Learning: Investigating approximation theoretic limitations of operator learning architectures. Developing models for dimensionality reduction of PDE solution manifolds. • Automatic Differentiation: Developing tools to compute Lie derivatives and Lie brackets via automatic differentiation for use in control of nonlinear systems. **University of Pennsylvania** Philadelphia, PA Ph.D. Research Sep. 2016 - Present • Optimization: Studied convergence theory optimization algorithms. Gave a new and streamlined convergence proof of a classic operator splitting method, and proposed a novel distributed optimization algorithm with convergence proof. • Control Theory: Studied optimal control theory and its connections to the dynamics of machine learning architectures. Used this connection to give a convergence proof for an adversarial training algorithm. Programmed experiments validating theo-• Operator Learning: In collaboration with the group of Dr. Paris Perdikaris, proposed and proved universality of a novel parameterized family of operators between function spaces with applications to modeling of physical and controlled systems. **Harvard University** Boston, MA SUMMER RESEARCH Summer 2015 • Mathematical Biology: Studied mathematical population dynamics models for the emergence of multicellularity. Funded by grant from Harvard College Research Program. **Pennsylvania State University** State College, PA PENN STATE REU Summer 2014 • Dynamical Systems: Participated summer REU program studying the Livsic theorems for hyperbolic dynamical systems.

Presentations —

INVITED TALKS

Spring 2022. Supervised Learning in Function Spaces. Johns Hopkins University

 Co-presented 5 hr. practicum session at the Mathematical Institute for Data Science TRIPODS Winter School and Workshop on Interplay between Artificial Intelligence and Dynamical Systems. Videos available at https://github.com/PredictiveIntelligenceLab/TRIPODS_Winter_School_2022

Spring 2022. Supervised Operator Learning. UC Riverside

• Invited to give guest lecture in course "Multiscale Modeling and Machine Learning" on operator learning techniques and nonlinear representations of manifolds of functions.

Spring 2022. Learning Operators with Coupled Attention. Brown University

• Invited to present results on a new operator learning architecture to the CRUNCH group of Dr. George Karniadakis.

NOVEMBER 2022 JACOB H. SEIDMAN 1

Publications		

- **Seidman, Jacob H.***, Kissas, Georgios*, et al. "NOMAD: Nonlinear Manifold Decoders for Operator Learning." Advances in Neural Information Processing Systems. (2022).
- Kissas, Georgios*, **Seidman, Jacob H.***, et al. "Learning Operators with Coupled Attention." Journal of Machine Learning Research 23.215 (2022): 1-63. **NeurIPS Spotlight**
- Beckers, Thomas, **Seidman, Jacob H.**, et. al. "Gaussian Process Port-Hamiltonian Systems: Bayesian Learning with Physics Prior". Proceedings of the Conference on Decision and Control (CDC). IEEE, (2022).
- **Seidman, Jacob H.**, et al. "Robust deep learning as optimal control: Insights and convergence guarantees." Learning for Dynamics and Control. PMLR, (2020).
- **Seidman, Jacob H.**, et al. "A control-theoretic approach to analysis and parameter selection of douglas–rachford splitting." IEEE Control Systems Letters 4.1 (2019): 199-204.
- **Seidman, Jacob H.**, et al. "A chebyshev-accelerated primal-dual method for distributed optimization." 2018 IEEE Conference on Decision and Control (CDC). IEEE, (2018).

Teaching Experience _____

Fall 2017	Computer Methods in Mathematical Science, Grader
Spring 2018	Ideas in Mathematics, Teaching Assistant

Academic Service_____

- 2022 International Conference on Machine Learning, Reviewer
- 2021 IFAC Conference on Analysis and Design of Hybrid Systems, Reviewer
- 2021 IEEE Transactions on Automatic Control. Reviewer

^{*}authors contributed equally