5.3: Connectivity

 We already discussed how graphs with cut-edges and cut-vertices are somehow "less connected" than other graphs.

• We can generalize this idea: Which of the graphs below is "more connected"?

Both need 3 edges deleted to disconnect

This needs 3 vertices deleted to disconnect it

This only needs 2

1/17

Vertex cuts

Definition

A *vertex cut* in a connected graph G is a set of vertices $U \subseteq V(G)$ such that G - U is disconnected. A vertex cut in G containing the fewest vertices is called a *minimum vertex cut*.

Question: Does every graph contain a vertex cut?

Well... almost.

In a complete graph, we can't disconnect the graph by deleting vertices.

MATH 3322 2/17

An important idea when proving things about cuts

What is the general structure of a graph with a vertex cut *U*?

All edges are within a single red blob, or between red and blue, or within blue.

Important new graph parameter

read: "kappa of G"

Definition

interesting cases

The connectivity of a connected, non-complete graph G, denoted $\kappa(G)$, is the cardinality of a minimum vertex cut of G. If $G = K_n$, then $\kappa(G) = n - 1$. If G is disconnected, then $\kappa(G) = 0$. Lame cases

Find $\kappa(G)$ for the graphs below:

K(G) = 3
There is a cut-set of size 3
There isn-ton of size 2

$$K(G) = 2$$

By definition

There isn't a cut-vertex = > < = > < = > < = > = > > = > > >

Find $\kappa(G)$ for the graphs below. What theorems are suggested by the examples?

Conjecture: K(T) &1 for any tree T.

Another definition

Definition

A graph *G* is *k*-connected if $\kappa(G) \ge k$.

Restated: You have to delete at least k vertices to disconnect the graph.

2-connected
1-connected
NOT 3-connected

6/17

Another definition

Definition

A graph *G* is *k*-connected if $\kappa(G) \ge k$.

Notes:

- If G is k-connected, then it is also t-connected for every nonnegative t < k.
- Another way to think of k-connected: You couldn't disconnect G
 by deleting fewer than k vertices, but you might disconnect G by
 deleting k vertices.
- Saying G is k-connected is LESS information than saying
 κ(G) = k. If κ(G) = k, then G DOES have a vertex cut of size k. If
 G is k-connected, it may or it may not.
- Connected graphs are all 1-connected. Graphs without cut-vertices are 2-connected.

Connectivity: Why do we care?

What are some applications of graphs for which we may care about the connectivity?

```
computer networks

flight networks

any networks...

roads

power grids (nodes = transformers)
```

8/17

MUM versus MAL

An important idea in graph theory: The difference between **minimum** versus **minimal**.

- MiniMUM means the very smallest, period.
- MimiMAL means it doesn't CONTAIN a smaller one.

Example:

Edge connectivity

We have the analogous idea for edges.

Definition

- A set of edges $X \subseteq E(G)$ in a connected graph G is an *edge-cut* in G if G X is disconnected.
- If X is an edge cut in G with the fewest number of edges, X is a minimum edge-cut.
- The edge connectivity of G, denoted λ(G), is the size of a minimum edge cut in G.
- *G* is *k*-edge-connected if $\lambda(G) \geq k$.

No exception needed for complete graphs: $\lambda(K_n) = n - 1$. (Proven in text.)

Section 5.3 MATH 3322 10/1

A key relationship between graph parameters

Theorem

For every graph G,

$$\kappa(G) \leq \lambda(G) \leq \delta(G)$$
.

Section 5.3 MATH 3322 12/17

Section 5.3 MATH 3322 13/17

Can equality hold?

Are there graphs where $\kappa(G) = \lambda(G) = \delta(G)$?

Section 5.3 MATH 3322 14/17

Can strict inequality hold?

Are there graphs where $\kappa(G) < \lambda(G) < \delta(G)$?

Section 5.3 MATH 3322 15/17

Sparse graphs can't be too connected

Theorem

If G is a graph of order n and size m, then

$$\kappa(G) \leq \left\lfloor \frac{2m}{n} \right\rfloor.$$

Section 5.3 MATH 3322 17/17