鲁棒性NLU预研

Snips数据上的效果

			Snips数据(13084-train;700-test;7-	-intents)	
Model				Trans	ASR
Baseline	TextCNN	(a)	Train on Trans	97. 40%	78. 40%
		(b)	Train on ASR	95. 40%	92. 71%
	BiLSTM	(c)	Train on Trans	96. 44%	74. 73%
		(d)	Train on ASR	95. 57%	92. 00%
数据增强	TextCNN	(e)	Train on Trans and ASR	96. 94%	93. 66%
基于预训练	BiLSTM	(f)	Pre-trained ELMo	96. 00%	80. 42%
		(g)	(f)+Fine-Tuning	96. 44%	87. 56%
		(h)	(f)+CA Fine-Tuning(sup-conf)	96. 70%	87. 13%
		(i)	(f)+CA Fine-Tuning(unsup-conf)	96. 57%	89. 71%
基于对抗训练	TextCNN	(j)	Add KL loss	97. 11%	93. 54%
		(k)	Add KL loss (9 times datas)	97. 47%	93. 51%
基于N-Best	TextCNN	(1)	Combined 10-Best Sentence	95. 40%	94. 77%
		(m)	AvgPooling 10-Best embedding	93. 31%	94. 51%
		(n)	MaxPooling 10-Best embedding	90. 40%	94. 20%

一. 背景

在传统的SLU(Spoken Language Understanding)中,主要包含ASR和NLU两个模块。ASR模块首先将用户语音转化成文本,NLU模块则对转化后的文本进行意 图识别。在之前的做法中,ASR输出和用户表达最接近的文本给NLU进行意图识别。但是,ASR系统会产生一定的错误,输出的文本并不一定是最优的,这样的 文本在NLU进行意图识别时会造成较大误差,引起识别结果的下降。因此,在NLU端,需要进一步融合ASR的错误,提升意图鲁棒性,以正确识别用户意图。

二. 基于N-Best的鲁棒性NLU

1. 论文: 《Improving Spoken Language Understanding by Exploiting Asr N-Best Hypotheses 》Mingda Li, Weitong Ruan et. al. (ICASSP 2020)

核心思想:用ASR输出的N-Best代替ASR top1,利用更多样的文本信息。并且提出多种方法利用ASR的N-Best,包含:(1)在输入端拼接N-Best文本,模型embedding后进行预测;(2)输入端还是单条文本,每个N-Best进行embedding后,采用Pooling的方式融合成一个embedding,然后进行预测。

2. 复现结果 (Snips数据集)

结论: 复现结果基本符合论文结果

	Snips数据(13084-train;700-test;7-intents)											
		Model	Trans	ASR								
1-best	(a)	Baseline	97.40% (0)	78.40% (0)								
	(b)	Train on ASR	95.40% (-2%)	92.71% (+14.31%)								
10-best	(c)	Combined Sentence	95.40% (-2%)	94.77% (+16.37%)								
	(d)	PoolingAvg	93.31% (-4.09%)	94.51% (+16.11%)								
	(e)	PoolingMax	90.40% (-7%)	94.20% (+15.80%)								

3. 实验分析

- 1. Snips数据集上,直接拼接N-Best文本能够带来更大的收益。其能够保证在ASR文本上有很大提升,并且在Trans数据上不会带来更大的下降
- 4. 外呼数据实验(大件外呼N-Best实验)

三. 基于预训练的鲁棒性NLU

1. 论文:《Learning Asr-Robust Contextualized Embeddings For Spoken Language Understanding》Huang, Chao Wei , and Chen, Yun-Nung. (ICASSP 2020)

核心思想:构建真实文本 和 ASR识别文本的(字-字)pair对,增加了对混淆字的loss(cosine_embedding_loss),即两句话中对应位置出现了不同的字,计算两个不同字的CosineEmbeddingLoss,优化的时候会拉近混淆字的embedding表征,从而使分类任务具有健壮性。

(a) Supervised confusion extraction with aligned utterances

(b) Unsupervised confusion extraction using a WCN generated by ASR

Fig. 2: Illustration of different extraction approaches. * denotes a blank symbol for alignment purpose.

$$\mathcal{L}_{\text{conf}} = \frac{1}{|C|} \sum_{c \in C} \sum_{i=0}^{1} 1 - \frac{h_{t_1,i}^{x_1} \cdot h_{t_2,i}^{x_2}}{\left\| h_{t_1,i}^{x_1} \right\| \left\| h_{t_2,i}^{x_2} \right\|},$$

2. 复现结果(Snips数据集)

结论: 复现结果大致符合论文结果

Mode	1	论文结果	复现结果
(b)	Context-independent	72. 70	74. 73
(c)	Pre-trained ELMo	77. 86	80. 42
(d)	(c)+fine-tune, L_LM only	87. 74	87. 56

(e)	(c)+fine-tune,	L_FT(sup-conf)	88. 52	87. 55
(f)	(c)+fine-tune,	L_FT(unsup-conf)	89. 55	89. 71

注:论文里面是5次平均值,复现是跑了一次的结果

	Snips数据(13084-train;700-test;7-intents)											
	Model	Trans	ASR									
(a)	Train on Trans	96.44% (0)	74.73% (0)									
(b)	Train on ASR	95.57% (-0.87)	92.00% (+17.27%)									
(c)	Pre-trained <u>ELMo</u>	96.00% (-0.44%)	80.42% (+5.69%)									
(d)	(c)+fine-tune, \mathcal{L}_{LM} only	96.44% (0)	87.56% (+12.83%)									
(e)	(c)+fine-tune, $\mathcal{L}_{FT}(\text{sup-conf})$	96.70% (+0.26%)	87.13% (+12.4%)									
(f)	(c)+fine-tune, \mathcal{L}_{FT} (unsup-conf)	96.57% (+0.13%)	89.71% (+14.98%)									

3. 实验分析

分析复现结果,发现了一系列问题:

- d实验效果优于或等于e实验,ca_finetune带来的效果不明显(e实验单独跑了3次,其最高值为当前值,未超过d实验结果)。
 f实验结果最好,但查看其finetune数据量是d,e实验的9倍,实验结果的提升是由ca_finetune带来的,还是通过增加数据提升的,原因不明确。
 d实验仅用真实文本的训练数据就能到达87.56的实验结果,如果将e实验的9倍数据进行finetune,效果可能超过e实验。

4. 备注(由于论文是基于allennlp的elmo模型进行训练的,该模型无开源中文预训练,中文数据无法进行实验。预训练后续可尝试 用拼音或文字+拼音的形式,同英文处理方式,做预训练)

四. 基于对抗训练的鲁棒性NLU

1. 论文: 《Towards an ASR error robust Spoken Language Understanding System》Ruan Weitong et. al. (INTERSPEECH 2020)

核心思想:对(语音识别文本,真实文本)二者的预测结果分布加入KL loss度量两句话的预测分布差异性,通过拉近ASR文本和正确文本预测分类的概率分 布,优化参数。

提出了SLU鲁棒性评估准则:模型对ASR误差的鲁棒性在有ASR错误的数据上预测结果提高,并且在没有ASR错误的数据上预测性能不能退化。

$$Loss(\mathbf{y}_{i}; \mathbf{X}_{i}, \mathbf{A}_{i}, \boldsymbol{\theta}) = \epsilon_{1} * CE(\mathbf{y}_{i}; \mathbf{X}_{i}, \boldsymbol{\theta})$$

$$+ \epsilon_{2} * CE(\mathbf{y}_{i}; \mathbf{A}_{i}, \boldsymbol{\theta})$$

$$+ \epsilon_{3} * KL(p(\mathbf{y}_{i}|\mathbf{A}_{i}), p(\mathbf{y}_{i}|\mathbf{X}_{i}))$$

论文实验结果:

Table 2: Relative classification performance (F1) w.r.t. baseline model performance on Alexa dataset (negative means performance degradation).

model	pa	rame	ters	Trans.(%)	ASR(%)
moder	ϵ_1	ϵ_2	ϵ_3	114113.(70)	ASK(70)
baseline	1.0	0.0	0.0	0	0
data augmentation	1.0	1.0	0.0	0	1.76
train on ASR	0.0	1.0	0.0	-3.76	1.41
proposed model	1.0	0.0	40.0	0.88	4.41

2. 复现结果 (Snips数据集)

结论: 复现结果大致符合论文结果

snips数据长度分布图:

snips数据 label 分布图:

论文中的AITS数据语音数据难以获取,采用已有的snips数据,使用TextCNN模型进行实验。

	Snips数据(13084-train;700-test)															
	Model	parameters			Tra	ans					A	ASR 3 test4 test5 mean 4% 79.43% 78.71% 78.4 7% 93.29% 94.14% 93.6				
	(trs, asr, kl)					test2	test3	test4	test5	mean	test1	test2	test3	test4	test5	mean
(a)	Baseline	1	0	0	96. 71%	97. 43%	97.71%	98.00%	97. 14%	97. 40%	77. 86%	77. 86%	78. 14%	79. 43%	78. 71%	78. 40%
(b)	Data augmentation	1	1	0	97. 14%	97.00%	96. 71%	97.00%	96.86%	96. 94%	93. 43%	93.86%	93. 57%	93. 29%	94. 14%	93. 66%
(c)	Train on ASR	0	1	0	95. 14%	95. 71%	95. 43%	95. 14%	95. 57%	95. 40%	93. 00%	92. 86%	92. 43%	92. 57%	92. 71%	92. 71%
(d)	Add KL loss	1	0	1	96. 71%	97. 14%	97.00%	97. 29%	97. 43%	97. 11%	93. 29%	93.71%	93. 57%	92.86%	94. 29%	93. 54%

统计分析结果(ε1,ε2,ε3分别代表真实文本loss、ASR文本loss、KL loss的权重大小):

	Snips数据(13084-train;700-test;7-intents)											
	Model	paran	neters	i	ASR							
		$arepsilon_1$	ε_2	ε_3								
(a)	Baseline	1.0	0.0	0.0	97.40% (0)	78.40% (0)						
(b)	Data augentation	1.0	1.0	0.0	96.94% (-0.46%)	93.66% (+15.2						
(c)	Train on ASR	0.0	1.0	0.0	95.40% (-2%)	92.71% (+14.3						
(d)	Add KL loss	1.0	0.0	1.0	97.11% (-0.29%)	93.54% (+15.1						

论文2实验,并未提供模型的超参数,在增加KL loss计算时,loss不稳定,超参数调整的时候出现过loss为nan的情况。实验在30个epoch和learning rate设置为0.003的时候得到当前实验结果。

实验d在取原文参数1, 0, 40的时候,极不稳定,loss出现nan,取ε3为1进行实验。

实验结果表明:

- 相比于baseline,增加KL loss的对抗训练能够在Trans数据上保持基本一致,并提高在ASR识别数据上的表现(实验(a) vs 实验(d)),符合论文提出结果。
- 数据增强提升鲁棒性实验与增加KL loss的对抗训练实验效果基本一致,都能够保持Trans的效果并提升ASR数据的表现(实验(b) vs 实验(d))
- 仅在ASR数据上进行模型训练和预测,在提升ASR数据表现的同时也降低了在Trans数据上的效果,符合论文提出结果(实验(a) va 实验(c))。
- 3. 外呼数据实验(训练集去重后 (asr: 1567, trs: 1666) , 测试集去重后(asr: 529, trs: 539))

结论:复现结果不太符合论文结果,主要原因是外呼数据的分布和Snips数据差别较大。对测试集进行长短切分后,发现在长文本上KL loss有所效果,在短文本上未带来效果。进一步扩充数据中

外呼数据长度分布图:

外呼数据 标签 分布图:

该部分分三个实验进行:

- 实验一,在train,test数量分别为6257条(去除特殊标记[SD]等)和1419条进行实验。
 实验二,去除了实验一中训练集里面的无意义badcase数据(喂-对,对-不对)等,测试集保持不变。
 实验三,训练集采用实验二的数据,将测试集划分为短文本(低于4个字)和长文本(高于4个字),实验在不同测试集上的效果。

实验一:

采用6257条训练数据(去除特殊标记[SD]等),1419条测试数据进行实验。

	外呼数据 (6257-train;1419-test)																
	Model parameters Trans											ASR					
		test1	test2	test3	test4	test5	mean		test1	test2	test3	test4	test5	mean			
(a)	Baseline	1	0 0	92. 04%	91. 26%	91.05%	92.04%	90. 91%	91.46%	0.00%	88. 23%	87. 74%	87. 46%	88. 65%	87. 53%	87. 92%	0.00%
(b)	Data augmentation	1	1 0	90. 77%	90. 27%	90. 63%	90. 42%	89. 99%	90. 42%	-1.04%	87. 17%	87. 32%	86. 75%	87. 32%	86. 75%	87.06%	-0.86%
(c)	Train on ASR	0	1 0	89. 92%	90. 70%	89. 15%	89. 29%	90.06%	89. 82%	-1.64%	86. 12%	86. 96%	86. 19%	86. 12%	86. 75%	86. 43%	-1.49%
(d)	Add KL loss	1	0 1	90. 27%	90. 56%	89. 78%	90. 35%	89. 64%	90. 12%	-1.34%	86. 82%	87. 39%	86. 68%	87. 10%	86. 61%	86. 92%	-1.00%

	外呼数据(6257-train;1419-test)										
	Model	paran	neters		Trans ASR						
		ε_1	ε_2	ε_3							
(a)	Baseline	1.0	0.0	0.0	91.46% (0)	87.92% (0)					
(b)	Data augmentation	1.0	1.0	0.0	90.42% (-1.04)	87.06% (-0.86)					
(c)	Train on ASR	0.0	1.0	0.0	89.82% (-1.64)	86.43% (-1.49)					
(d)	Add KL loss	1.0	0.0	1.0	90.12% (-1.34)	86.92% (-1.00)					

实验一结果分析:

• 论文提出的KL loss实验在外呼ASR数据上未达到预期结果(实验(a) vs 实验(d))。

实验二:

采用6120条训练数据(去除特殊标记[SD],去除(喂-对)这一类的无法纠正的badcase数据),在1419条测试数据上进行实验。

	外呼数据 (6120-train;1419-test)																	
	Model parameters Trans												ASR					
test1 test2 test3 test4 test5 mean test1 test2 tes							test3	test4	test5	mean								
(a)	Baseline	1	0	0	90. 35%	91. 19%	91. 12%	91.61%	91. 26%	91.11%	0.00%	86. 89%	87. 46%	87.67%	88. 02%	87. 74%	87. 56%	0.00%
(b)	Data augmentation	1	1	0	90. 84%	90. 20%	90. 35%	90. 77%	90. 20%	90. 47%	-0.63%	87. 32%	87. 32%	87. 39%	87. 81%	87. 32%	87. 43%	-0.12%
(c)	Train on ASR	0	1	0	89. 92%	90. 49%	90. 49%	90. 20%	90. 41%	90. 30%	-0.80%	86. 54%	87.46%	87. 32%	86. 82%	87. 32%	87. 09%	-0.46%
(d)	Add KL loss	1	0	1	89. 50%	90. 49%	89. 92%	90. 35%	90. 98%	90. 25%	-0.86%	86. 82%	87.66%	86. 96%	87. 03%	87. 32%	87. 16%	-0. 40%

	外呼数据(6120-train;1419-test)										
	Model	paran	neters		Trans	ASR					
		ε_1	ε_2	ε_3							
(a)	Baseline	1.0	0.0	0.0	91.11% (0)	87.56% (0)					
(b)	Data augmentation	1.0	1.0	0.0	90.47% (-0.64)	87.43% (-0.12)					
(c)	Train on ASR	0.0	1.0	0.0	90.30% (-0.81)	87.09% (-0.46)					
(d)	Add KL loss	1.0	0.0	1.0	90.25% (-0.86)	87.16% (-0.40)					

实验二结果分析:

• 论文提出的KL loss实验在外呼ASR数据上未达到预期结果(实验(a) vs 实验(d))。

实验三:

训练集6120训练集, 测试集1419条, 按数据长度大于4, 切分测试集1084条短文本和335条长文本进行实验。

• 短文本1084条数据实验结果

	NA1-	-1		arameters		Trans ASR													
	Model		paramete		test1	t	test2	test3	test4	test5	mean		test1	test2	test3	test4	test5	mean	
(a)	Ba	aseline	1	0 0	97.	1%	97.60%	97.97%	97.97%	97.799	97.77%	0.00%	94.10%	94.19%	94.00%	94.19%	94.10%	94.12%	0.00%
(d)	Ad	dd KL los	1	0 1	97.	2%	97.23%	96.86%	97.42%	96.869	97.16%	-0.61%	93.91%	94.10%	93.63%	94.19%	93.91%	93.95%	-0.17%

• 长文本335条数据实验结果

	外呼数据 (6120-train;335-long_test)																	
	Madal							Trans							ASR			
	Model		parameter		test1	test2	test3	test4	test5	mean		test1	test2	test3	test4	test5	mean	
(a)	Baseline	1	0	0	69.25%	70.45%	71.04%	71.64%	70.15%	70.51%	0.00%	64.78%	66.57%	65.37%	67.16%	65.07%	65.79%	0.00%
(d)	Add KL los	1	0	1	71.04%	69.85%	68.36%	70.15%	70.15%	69.91%	-0.60%	67.46%	66.87%	63.58%	65.67%	68.06%	66.33%	0.54%

• 测试集1419条总体实验结果

	外呼数据(6120-train,1419-test)																	
	Maralal	L						Trans					ASR					
	Model	pa	arameter		test1	test2	test3	test4	test5	mean		test1	test2	test3	test4	test5	mean	
(a)	Baseline	1	0	0	90.84%	91.19%	91.61%	91.75%	91.26%	91.33%	0.00%	87.18%	87.67%	87.24%	87.81%	87.25%	87.43%	0.00%
(d)	Add KL lo	s 1	0	1	91.19%	90.77%	90.13%	90.98%	90.55%	90.73%	-0.61%	87.67%	87.67%	86.54%	87.46%	87.81%	87.43%	0.00%

实验结果表明:

• KL loss在长文本上能够带来效果提升,在短文本上没有效果,主要是因为外呼数据中,短文本上下文参考信息较少,且大部分错误无法正确预测(ASR识别错误,如 喂-对)。

实验四:

在6120条训练数据上增加了1624条数据,测试集保持不变,得到以下实验结果:

• 短文本1084条数据实验结果

								t_test)											
									Trans			ASR							
	Model		parameters		neters	test1	test2	test3	test4	test5	mean		test1	test2	test3	test4	test5	mean	
(a)		Baseline	1	0	0	97.29%	97.02%	97.48%	97.20%	97.20%	97.24%	0.00%	93.78%	93.33%	94.14%	93.42%	93.24%	93.58%	0.00%
(d)		Add KL loss	1	0	1	97.20%	97.20%	96.57%	96.84%	97.02%	96.97%	-0.27%	93.87%	94.14%	93.42%	94.05%	94.14%	93.92%	0.34%

• 长文本335条数据实验结果

							_test)			•									
	N.41-1					Trans ASR													
1	Model	parameters		meters test1		test2	test3	test4	test5	mean		test1	test2	test3	test4	test5	mean		
(a)	Baseline	1	0	0	64.84%	65.48%	67.10%	67.10%	70.97%	67.10%	0.00%	61.94%	63.87%	65.16%	63.55%	66.77%	64.26%	0.00%	
(d)	Add KL loss	1	0	1	68.71%	70.00%	66.45%	69.03%	69.35%	68.71%	1.61%	64.84%	63.87%	63.23%	65.48%	64.52%	64.39%	0.13%	

• 测试集1419条总体实验结果

								est)										
	Maralat	Ι.																
	Model		parameters		test1	test2	test3	test4	test5	mean		test1	test2	test3	test4	test5	mean	
(a)	Baseline	1	0	0	89.63%	89.58%	90.30%	90.10%	91.01%	90.12%	0.00%	86.26%	86.37%	87.30%	86.37%	86.99%	86.66%	0.00%
(d)	Add KL loss	1	0	1	90.48%	90.78%	89.46%	90.28%	90.49%	90.30%	0.17%	87.01%	86.99%	86.29%	87.31%	87.15%	86.95%	0.29%