原始记录 次	<u> </u>		
测量值			
L (理线长)	92.2 cm 92.33cm 92.25c 21.45mm 21.38mm 21.43 21.449mm 21.45mm 21.450	m 92,18cm 92,20 cm	92. You
D(摆球直径)	21.43 mm 21.38 mm 21.43	nom 21.45 nm 21.43 mm	21.42n
	96.165 95.495 96.345		
	1.92325 1.90985 1.92685		
DAR = 0.05 cm	大系统统	(43	
△游村駅≈0.00			
DIGR 2000/		$\sigma: \mathbb{R}$, Zá
•	Q 0.0 5 \$ \$ \$ \$ 0.0 €	12 = 127 4 CO 1 O	
A/BZ ≈ 0. S			
/ / //			
9	9.93 Ws2		
-			
	Λ		
		7	
		7	
		-	

实验目的	
①测定当地重力加速度 重庆地区为 9.7914 m/s²), 并计算不确定度;	
②掌握于分尺、游标卡尺的使用和读数;	
③ 距解使用累积效大法;	
④掌握度拟仿真实验软件的使用方法。	
1. 处外交配方案。	
本人是一个人,我们这月光人观赏增加大区。 图》野观·安全	
1. 单理周期工术:单理自度较小的,我们可以将单理的运动近似为简谐活动。	
由早遇周期公司得, 9=4元尺, 共中尺=搜线长上十小两半径下。	
2. 净 B 及 数 形	. aT
2. 淡亮的5原理:由公司= 4元尺 10及不确定度介稿理论,可以得出。 4 - 4 - 1 10及不确定度介稿理论,可以得出。 4 - 4 - 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	+ 2 T
明書書 (1%,所以来 50.5%,即第 20.5%,可 50.20%).	
得出所需化品的不确定度要求为 oL ≤ 0.2/x L = 0.175 cm	
ar say/2 = 0.000 cm = 3 sh - 1 sh	
7 < 0. W/3×7 = 0.00425	
根据现有众器的不确定度企业20.05cm,从将和20.002cm	
Δ ₁₆₈ ≈ 0 00 cm, Δ ₁₆₈ ~ 0. 5	
搜长上月未尺测量,小球直径口用游松状测量即可满足需求	
可=3(下)= 等、代入得 N>47.05。因此我们取 50个周期为一组测量	
x 游戏 表	

ত্র	验	10	哭
一	711		HH

虚拟复造系统。包含:阜理仪(铁架台、摆球、铟铁)、游标卡尺,未尽

实验步骤与数据记录

1. 设计实验法案

根据误差均分理论,我们这用米厂测量摆练恢复上,用游标状测量小班直径口,用电动和测量车摆加了周期的时间也

2. 净层实验步骤

经行软件→阀整仪器→测量读数

3、测量

设置一次搜长,用来尽测量摆线长台次 转动小玩,用游标卡尺测量小球直径台次 利用电子形表测量卓摆了0个周期的时间,共台组

_	The second second				100 0 -	The same of the sa		
观量值	l _k j	2 2 F	113 g 15	:94 5	eki Fil (Star	最佳估计值。	3智长上同来尺3
L/cm	92.21	92.33	92.25	92.18	92.20	.92.25	192.24	= (- \f)&= TA
D/mm	21.45	21.38	21.42	21.45	21.43	21.42	21.38	医抗毒素
t1507)/s	96.16	95.49	91.34	96.27	96.17	95.55	96.00	W 1791W
T/s	1.92}2	1.9098	1.9268	1.9254	1.9234	1.9110	19199	

	a		
SILVE	百名	4 7H.	00 b
YNJ	12	XMD	

1	コム	1,1,	
头	验	1X	楍

虚拟复签系统。包含:阜理仪(铁架台、理球、组线)、游标卡尺,未尺

实验步骤与数据记录

1、设计实验方案

根据误差均为理论,我们这用米人测量摆练大度上,用游标状测量小班直径口,用电子的表测量车摆加了周期的时间也

2. 净 复复验步骤

经行软件→消费仪器→测量读数

3、测量

设置一次搜长,用来尽测量摆线长6次 轻劲小玩,用游标卡尺测量小球直径6次 利用电子形表测量单摆了0个周期的时间,共6级

沙岛的	let S	9.9.2VF	ग्रहेर वहुर्दे	:34 5%	100 JFI (最佳估计值。	少學长上同 老尺 >
L/cm	92.21	92.33	92.25	92.18	92.20	.92.25	92.74	(-4) b= TA
D/mm	21.45	21.38	21.42	21.45	21.43	21.42	21.38	5大皇武 元
t150T)/s	96.16				96.17	22.28	96.00	
		1.9098	1.9268	1.9254	1.9234	1.9110	19199	

A		-		
STATE OF	私	THE	ton	b
XV) A		ard	AD	V

实验数据处理 由已知数据及 $g = \frac{4\pi R}{T}$, $R = L + \frac{D}{2}$ 得到的起源。 $R = \frac{1}{2}$ $\overline{g} = \frac{4\pi^2(\overline{L} + \frac{\overline{D}}{2})}{\overline{\tau}^2} \approx 9.993 \text{ m/s}^2$ 1. 计算不确定度 ① 1. 由上的测量值可得,标准偏差。 Si= 16 平均值的标准不确定度 A(L) = デ ≈ 0.0218 cm B类不确定度 DBU 含於不确定度 DL=\DAU+DBU) ≈0.055 cm = 0.00055m $\Delta D = \sqrt{\Delta_{A(0)} + \Delta_{B(0)}} \approx 0.0056 \text{ cm} = 0.000056 \text{ m}$ $\Delta_{A(t)} = \frac{S_t}{\sqrt{\delta}} \approx 0.1534$ $\Delta_{B(t)} = \sqrt{\Delta_{B} t} + \Delta_{AB} \approx 1.0055$ D+ = VDAit) +OR(2) = 0.1835 . DT = 50 20.003665 E(%) = 2.06% 9 = 9 ± dg = 9.993 ± 0.038 m/s

实验结论	
, 掌握了 度 拟 矣 验 软件 的 伤	出现的教徒员自生态是 只是上午年间
2.理解并使用了累积放大法	
	9= 4700+= 1= 1993 m/s
	兴意无面凉意
实验讨论	
1.最如面面加速度测量结果	图的国基有哪些,弄证阿原因.
	数误差、零点的误差;2. 逻辑是挂点不明确。
	经测量误差;4.摆线不坚直或松弛
②周期下的误差: 1、人为按	秒表开始和停止时机不道;
2. 摆角运	过 校过处
	计影响,使测得的周期了变长
mo ET on	Aug Aug - To - To -
2. 其他测量力加速度的方法。	Charach around
① 自由落体法:测量的体	下落高度的和时间七月的三型红矿
②斜面法:测量物体在影	中面上的加速度 Q系列质面的用 g= 500 计算
m Reco	@ FOR: 18 1 Ditto 20,0
3、测量力如速度模型的修正	
丁=250/最为理想模型	交际理典多、基于一条键假设:
理角0.非常小、小到可以	直接用的代替SinO.
实际中的摆角不可能无可	RN、阿坎州教授的身套的真实值。
	更长的时间,所以实际测量的下层的
	致得出到了的真实值要小。
, , , , , , , , , , , , , , , , , , , ,	Sug Transition
因的,我们需要对计值信	出的了乘以一个修正国子,以更接近面美值
1 to a 2 2 2 1 1 1 1 1 2 2 a a 2 2 2 6	9
880.0	

E101 = 2.062

祖一日三月