SVD - Definition

$$\mathbf{A}_{[m \times n]} = \mathbf{U}_{[m \times r]} \Sigma_{[r \times r]} (\mathbf{V}_{[n \times r]})^{\mathsf{T}}$$

- A: Input data matrix
 - m x n matrix (e.g., m documents, n terms)
- U: Left singular vectors
 - m x r matrix (m documents, r concepts)
- Σ: Singular values
 - r x r diagonal matrix (strength of each 'concept') (r: rank of the matrix A)
- V: Right singular vectors
 - n x r matrix (n terms, r concepts)

Singular Value Decomposition

SVD

σ_i ... scalar

ui ... vector

vi ... vector

SVD - Properties

It is **always** possible to decompose a real matrix \boldsymbol{A} into $\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\mathsf{T}}$, where

- **U**, Σ, **V**: unique
- U, V: column orthonormal
 - $U^T U = I$; $V^T V = I$ (I: identity matrix)
 - (Columns are orthogonal unit vectors)
- Σ: diagonal
 - Entries (singular values) are positive, and sorted in decreasing order ($\sigma_1 \ge \sigma_2 \ge ... \ge 0$)

A = $U \Sigma V^T$ - example: Users to Movies

• A = U Σ V^T - example: Users to Movies

• A = U Σ V^T - example:

SVD - Interpretation #1

'movies', 'users' and 'concepts':

- **U**: user-to-concept similarity matrix
- V: movie-to-concept similarity matrix
- Σ: its diagonal elements: 'strength' of each concept