Mathematical analysis

Xuzhe Xia

January 2, 2023

Contents

1	Bas	sic Topology			
	1.1	Set	2		
	1.2	Metric space	3		
		1.2.1 Compactness in Metric Space	8		

Chapter 1

Basic Topology

1.1 Set

Notation.

- $\mathbb{N}_n = \{1, 2, \cdots, n\}$
- $A^n = \{(a_1, \cdots, a_n) : a_i \in A\}$

Definition 1 (Finite; Countable). Let A be a set.

- A is finite if $A \sim \mathbb{N}_n$ for some n.
- A is countable if $A \sim \mathbb{N}$ or A is finite.
- A is *infinite* if A is not finite.
- A is uncountable if A is not countable.
- *A is infinite if $\exists B \subset A, A \sim B$

Definition 2 (Cardinality). Sets A, B have the same Cardinality denoted $A \sim B$ if there is a bijection $f: A \to B$.

Remark. The relation \sim defined in Definition 2 is equivalent.

Definition 3 (Sequence). A sequence $\{x_n\}$ in X is $f: \mathbb{N} \to X$, where:

- $x_n \in X, n \in \mathbb{N}$
- $f(n) = x_n$

Proposition 1. Every subset of a countable set is countable.

(No uncountable set can be subset of a countable set)

Proof. Let A be a countable set,

If $E \subset A$ is finite, then countable.

If $E \subset A$ is infinite, then we construct a sequence to obtain a 1-1 correspondence between J and E.

Lemma 1.

- If $\exists f : \mathbb{N} \to S$ that is subjection, then S is countable.
- If $\exists g: S \to \mathbb{N}$ that is injection, then S is countable.

Proposition 2. Let $\{E_n : n \in \mathbb{N}\}$ be a countable collection of countable sets.

Then

$$\bigcup_{n=1}^{\infty} E_n$$

is countable.

Proposition 3. Let A be a countable set, then A^n is countable.

Corollary. The set of all rational numbers is countable.

Proposition 4. Let A be the set of all sequence $\{x_n\}$ in $\{0,1\}$, then A is uncountable.

Corollary.

- $\mathcal{P}(\mathbb{N})$ is uncountable.
- \mathbb{R} is uncountable.

1.2 Metric space

Definition 4 (Metric space; Points; Distance). Let X be a set. X is a metric space if: $\exists d: X \times X \to \mathbb{R}$ such that $\forall p, q \in X$:

- $d(p,q) > 0 \text{ if } p \neq q;$ d(p,p) = 0
- d(p,q) = d(q,p)
- $d(p,q) \le d(p,r) + d(r,q), \forall r \in X$

where p, q are called *points*, and d is called a *distence function*.

Remark. Every subset of a metric space is still a metric space.

Example. The distance function on \mathbb{R}^k is defined by

$$d(x,y) = |x - y| \qquad (x, y \in \mathbb{R}^k)$$

Definition 5 (Segment; Interval; k-cell).

- $segment(a,b) := \{x : a < x < b\}$
- $interval [a, b] := \{x : a \le x \le b\}$
- Let $a_i < b_i$ for $i = 1, \dots, k$. A k-cell is a set $\{(x_1, \dots, x_k) \in \mathbb{R}^k : a_i \le x_i \le b_i\}$

Definition 6 (Ball). Let (X, d) be a metric space.

A open ball centered at $\mathbf{x} \in X$ with radius r > 0 is a set $\{\mathbf{y} \in X : d(\mathbf{y} - \mathbf{x}) < r\}$. A closed ball contains the open ball and the boundary where $d(\mathbf{y} - \mathbf{x}) = r$.

Definition 7 (Convex). A set $E \subseteq \mathbb{R}^k$ convex if

$$\lambda \mathbf{x} + (1 - \lambda) \mathbf{y} \in E$$

for all $\mathbf{x} \in E$, $\mathbf{y} \in E$, $0 < \lambda < 1$.

Remark. • Balls and k-cells are convex.

Geometrically, E is convex means for any two points in E, the line segment connects them is in E.

Definition 8. Let X be a metric space. Let $p, q \in X$, $E \subseteq X$.

- A neighborhood of a point p is an open ball centered at p with radius r.
- A point p is a *limit point* of the set E if every neighborhood of p contains a point $q \neq p$ such that $q \in E$.
- If $p \in E$ and p is not a limit point of E, then p is called an *isolated point of E*.
- E is *closed* if every limit point of E is a point of E.
- A point p is an interior point of E if there is a neighborhood N of p such that $N \subseteq E$.
- E is open if every point of E is an interior point of E.

- The complement of E (denoted by E^c) is $\{p \in X : p \notin E\}$.
- E is perfect if E is closed and if every point of E is a limit point of E.
- E is bounded if there is a real number b, and a point $q \in X$ such that d(p,q) < b for all $p \in E$.
- E is dense in X if every point of X is a limit point of E, or a point of E, or both.

Figure 1.1: p_1, p_2 are limit points; p_3, p_4 are isolated points. Also, $p_1 \in E$ and p_1 is not interior point of E so E is not open. But E is closed.

Figure 1.2: p_1 is a limit point but not in E; p_2 is an interior point; all three are limit points. E is open but not closed.

Example. Let the following be subsets of \mathbb{R}^2 .

1. $\{z: z \in \mathbb{C}, |z| < 1\}$

- 2. $\{z : z \in \mathbb{C}, |z| \le 1\}$
- 3. A finite set.
- $4. \mathbb{Z}$
- $5. \ \left\{ \frac{1}{n} : n \in \mathbb{N} \right\}$
- 6. \mathbb{C} or \mathbb{R}^2
- 7. The segment (a, b)

Example	Closed	Open	Perfect	Bounded
1	No	Yes	No	Yes
2	Yes	No	Yes	Yes
3	Yes	No	No	Yes
4	Yes	No	No	No
5	No	No	No	Yes
6	Yes	Yes	Yes	No
7	No	†	No	Yes

† Yes if $(a,b) \subset \mathbb{R}$, No if $(a,b) \subset \mathbb{R}^2$

Definition 9 (Relatively Open). Let $E \subset Y \subset X$, where (X, d) is a metric space. Then E is open relative to Y if E is an open set of the metric space (Y, d).

Remark. The segment (a,b) is open relative to \mathbb{R} but not \mathbb{R}^2 .

Proposition 5.

- 1. Every neighborhood is an open set.
- 2. If p is a limit point of a set E, then every neighborhood of p contains infinitely many points of E.
 - 2.1. A finite point set has no limit points.
- 3. A set E is open if and only if its complement is closed.

Proof.

- 1. .
- 2. .
- 3. If E is open, assume $\exists x \in E^c$, such that x is a limit point of E^c and $x \notin E^c$. Then $x \in E$ and x is an interior point in E, implies there exists a neighborhood N of x, such that $N \subseteq E$, implies $N \not\subseteq E^c$, implies that x is not a limit point of E^c , which contradicts to the assumption. E^c is closed.

If E^c is closed, $\forall x \in E$, $x \notin E^c$, and x is not a limit point of E^c , implies there exists a neighbor N of x such that $N \nsubseteq E^c$, implies $N \subseteq E$. E is open.

Proposition 6.

- 1. For any collection $\{G_{\alpha}\}$ of open sets, $\bigcup_{\alpha} G_{\alpha}$ is open.
- 2. For any collection $\{F_{\alpha}\}$ of closed sets, $\bigcap_{\alpha} F_{\alpha}$ is closed.
- 3. For any finite collection $\{G_1, \dots, G_n\}$ of open sets, $\bigcap_{i=1}^n G_i$ is open.
- 4. For any finite collection $\{F_1, \dots, F_n\}$ of closed sets, $\bigcup_{i=1}^n F_i$ is closed.

Proof.

- 1. Trivial.
- 2. Follow from 1, apply De Morgen's Law and Proposition 5-3.
- 3. Trivial.
- 4. Follow from 3 as in 2.

Definition 10 (Closure). Let X be a metric space.

Let $E \subset X$, and E' be the set of all limit points of E, then the closure of E is $\bar{E} = E \cup E'$.

Proposition 7. Let X be a metric space and $E \subset X$, then

- 1. \bar{E} is closed.
- 2. $E = \bar{E} \Leftrightarrow E$ is closed.
- 3. $\bar{E} \subset F$ for every closed set $F \subset X$ such that $E \subset F$. (\bar{E} is the smallest closed set containing E)

Proof.

- 1. Let $x \in \bar{E}^c = E^c \cap E'^c$. Since $x \notin E$ and is not a limit point of E, so there exists a neighbor N of x, such that $N \cap E = \emptyset$, implies $N \cap E' = \emptyset$ (check this one using contradiction), implies $N \subset E^c \cap E'^c$. \bar{E}^c is open.
- 2. Trivial.
- 3. Let $F \subset X$ be closed and $E \subset F$, then $F' \subset F$. Since $E' \subset F'$, so $E' \subset F \Rightarrow \bar{E} = E \cup E' \subset F$.

Proposition 8. Let E be a nonempty subset of \mathbb{R} bounded above.

Then $\sup(E) \in \overline{E}$, and $(E \text{ is closed}) \Rightarrow (\sup(E) \in E)$

Proposition 9. Let $E \subset Y \subset X$ where (X, d) is a metric space.

E is open relative to Y if and only if $\exists G$, s.t. G is open relative to X and $E = G \cap Y$.

Proof. TODO

1.2.1 Compactness in Metric Space

Definition 11 (Open cover). Let X be a metric space.

An open cover of $E \subseteq X$ is $\{G_{\alpha}\}$, where G_{α} is an open subset of X, and $E \subseteq \bigcup_{\alpha} G_{\alpha}$.

Definition 12 (Compact). Let X be a metric space, and K a subset of X.

K is *compact* if every open cover of K contains a finite subcover that covers K.

Proposition 10. Suppose $K \subseteq Y \subseteq X$. Then K is compact relative to Y if and only if K is compact relative to X.