ГЛОБАЛЬНЫЕ СЕТИ СВЯЗИ

Глобальная сеть (WAN — Wide Area Network) — любая сеть связи, которая охватывает всю Землю. Она представляет собой систему связанных между собой локальных сетей и ПК пользователей, расположенных на удаленных расстояниях, для общего использования мировых информационных ресурсов. В качестве среды распространения сигналов в глобальной сети используется первичная сеть связи.

Первичная сеть состоит из **многоканальных систем связи (МСС),** построенной на основе типовых физических линий и каналов, сетевых узлов распределения и коммутации сигналов. Предназначена для доставки сообщений между любыми абонентами сети. Обобщенная схема многоканальной системы связи имеет вид:

ГЛОБАЛЬНАЯ СЕТЬ СВЯЗИРФ

Глобальные сети используются преимущественно как транзитная транспортная система. Структура глобальной сети Российской Федерации изображена на рисунке.

Магистральные линии связывают области, крупные города и стыкуются с международными линиями.

Зоновый уровень обеспечивает внутриобластную связь и имеет выход на магистральные линии.

Местные сети - проводные и оптические линии, городская телефонная сеть.

ПРОВАЙДЕРЫ ИНТЕРНЕТ-сети

Пользователи подключаются к сети благодаря провайдерам — организациям, оказывающим услуги доступа в Интернет и другие услуги, связанные с Интернетом, например выделение дискового пространства для хранения и обеспечения работы сайтов (хостинг); поддержка работы почтовых ящиков или виртуального почтового сервера; содержание линий связи, то есть поддержание их в рабочем состоянии, и другие.

Существует несколько типов провайдеров доступа: локальные, региональные, магистральные.

Локальные провайдеры имеют постоянное подключение к Интернету через региональных провайдеров и работают, как правило, в пределах одного города.

Региональный провайдер подключается к магистральному провайдеру, который, в свою очередь, охватывает крупные регионы, например, **страну, континент**.

Магистральные имеют магистральные **каналы связи в собственности**, а региональные арендуют у них каналы связи. Взаимоотношения между провайдерами осуществляются на основе соглашений об обмене трафиком.

Структура сети ИНТЕРНЕТ

Предприятие, которое владеет сетью и поддерживает ее работу, называется **оператором связи.**

Сети операторов связи (поставщиков услуг) оказывают общедоступные услуги, а корпоративные сети — услуги сотрудникам только того предприятия, которое владеет сетью.

Для подключения оборудования клиентов операторы связи организуют точки присутствия РОР (Point Of Presents) - это здания или помещения, в которых размещается оборудование доступа

NAP - Network Access Point (Центр обмена сообщениями с другими операторами — помещение с коммутационным оборудованием); ILEC - Incumbent Local-Exchange Carrier (Традиционный местный оператор телефонной связи)

Точка присутствия РОР

Отдельные компьютеры и локальные сети подключаются к интернет-провайдеру в точке присутствия. **POP** — это точка соединения между сетью интернет-провайдера и конкретным географическим регионом, который обслуживает POP.

ИНТЕРНЕТ-провайдеры Крыма и Севастополя

Компанию «Миранда-Медиа» создал в 2014 году «Ростелеком» для развития сети связи в Крыму. Ей принадлежат магистральные каналы связи в Крыму.

Объединение региональных сетей ИНТЕРНЕТ в глобальную

Схема глобальных кабельных связей

Подводный кабель

Первый трансатлантический телеграфный кабель начал функционировать с августа 1852 года. Волоконно-оптический кабель был проложен в 1988 году. Современные кабели для глубоководных участков (которые составляют большую часть линии) обычно имеют диаметр около 25 мм и весят около 1.4 тонны на км.

ГЛОБАЛЬНЫЕ ЦИФРОВЫЕ СЕТИ СВЯЗИ

Глобальные цифровые сети - совокупность узлов коммутации и высокоскоростных цифровых каналов связи, расположенных на территории региона (области, страны, континента или всего земного шара). Обеспечивают услуги связи большому количеству абонентов, расположенных в пределах региона. **Выделенные цифровые каналы** первичной сети связи, созданы на основе плезиохронной цифровой иерархии каналов **PDH** и новых коммуникационных технологий - цифровая синхронная иерархия **SDH** (Synchronous Digital Hierarchy).

Уровень	Модуль	Скорость передачи		
1	STM-1	155.52 Мбит/с		
4	STM-4	622 Мбит/с		
16	STM-16	2,5 Гбит/с		
64	STM-64	10 Гбит/с		
256	STM-256	40 Гбит/с		

Каналообразующая аппаратура с временным разделением каналов. Временное мультиплексирование.

б)

 $\mathsf{T}_\mathsf{\Pi}$

Tп = Тд= 125 мкс

Каналообразующая аппаратура с временным разделением каналов. Структура сигналов потоков Т1 и Е1

Структура кадра при скорости 1,544 Мбит/с

$$1$$
 кадр = 193 бит = 125 мкс

Тайм-слот 1	Тайм-слот 2	Тайм-слот 3	Тайм-слот 24
В	В	В	D
F12345678	12345678	12345678	 12345678

Структура кадра при скорости 2,048 Мбит/с

1 кадр = 256 бит = 125 мкс

Taŭw-cπom 1	Тайм-слот 2	Taŭm-c nor 3	Тайм-слот 31
В	B	В	D D
1 2 3 4 5 6 7 8	1 2 3 4 5 6 7 8	12345678	12345678

Synch

Среда передачи – оптическое волокно. Передача фрагментами по 2430 байт.

Для работы SDH требуется строгая синхронизация приемников и передатчиков. Цезиевые или рубидиевые генераторы. Нестабильность **10**⁻¹³

Первоначально технология называлась «Синхронные оптические сети» SONET в США.

Международная – SDH. Цель создания – обеспечить возможность передачи потоков всех

цифровых систем; американских Т1-Т4 и европейских Е1-Е4.

ровень	Модуль	Скорость передачи		
1	STM-1	155.52 Мбит/с		
4	STM-4	622 Мбит/с		
16	STM-16	2,5 Гбит/с		
64	STM-64	10 Гбит/с		
256	STM-256	40 Гбит/с		

Обозначение контейнера	Скорость передачи, Мбит/с	Соответствующа я скорость PDH, Мбит/с
C1.1	1,648	1,544
C1.2	2,224	2,048 и 1,544
C2	6,832	6,312
С3	48,384	44,734 и 34,368
C4	149,760	139,264

VC-Virtual Container; TU-Tributary Unit; AU-Administrative Unit; AUG-групповой административный блок.

Мультисервисный мини-SDH мультиплексор **OME 6110**

8 портов E1, STM-1 под оптический или коаксиальный кабель

Электрический интерфейс STM-1 имеет параметры:

Скорость передачи: 155,52 Мбит/с

Код: CMI (Coded Mark Inversion)

Уровни: **1,0** VSS ± 0,1 В

Оптический интерфейс STM-1 и STM-N:

Скорость передачи: N×155,52 Мбит/с

Код: Скремблированный NRZ

Схема включения мультиплексоров

Двойное кольцо (две пары – основное и резервное. Позволяет сети самовосстанавливаться при обрывах линии или отказе узла.

Используется на первых двух уровнях иерархии: 155 и 622 Мбит/с.

Мультиплексор — основное звено сети SDH. Порты мультиплексора SDH делятся на **агрегатные** и **трибутарные**. **Tributary** дословно означает «приток».

Трибутарные порты часто называют также портами ввода/вывода, а агрегатные — линейными.

КАСКАДНОЕ СОЕДИНЕНИЕ КОЛЕЦ

Кроме мультиплексоров в состав сети SDH могут входить регенераторы, они необходимы для преодоления ограничений по расстоянию между мультиплексорами, зависящих от мощности оптических передатчиков, чувствительности приемников и затухания волоконно-оптического кабеля. Регенератор преобразует оптический сигнал в электрический и обратно, восстанавливая при этом форму сигнала и его временные параметры.

Сети спектрального мультиплексирования

WDM (Wave Division Multiplexing) 4 до 16 каналов, скорость до 2,5 Гбит/с

- DWDM ($Dense\ WDM$) > 100 каналов на одном оптоволокне.
- Стандартный частотный интервал 100 ГГц (0,8 нм длина волны).
- Созданы системы с 50 и 25 ГГц частотным интервалом.
- Скорости передача 2,5; 10 Гбит/с.
- Расстояние между регенераторами 80-150 км.

ГЛОБАЛЬНЫЕ СЕТИ СВЯЗИ на основе DWDM

Технология плотного волнового мультиплексирования DWDM (Dense Wave Division Multiplexing).

Количество каналов: 16, 32 и более (до 102 каналов).

Стандартное расстояние между соседними каналами 100 ГГц.

Скорость передачи на канал — 2,4 Гбит/с (STM-16) или 10 Гбит/с (STM-64).

Сети спектрального мультиплексирования

WDM (Wave Division Multiplexing) – от 4 до 16 каналов, скорость передачи до 2,5 Гбит/с

Преимущества сетей спектрального мультиплексирования в ПОН

Обеспечение независимости канала абонента - персональная длина волны оптического канала связи - Wave Division Multiplexing (WDM).

Ключевые преимущества технологии WDM PON:

 Выделение персональной длины волны на абонента (обеспечивает безопасность передачи информации), требует использования AWG вместо пассивных сплиттеров,

- Доступность абоненту всей ширины полосы канала,
- Возможность использования на разных длинах волн разных протоколов передачи данных и разных скоростей передачи информации.

Недостатки «чистого» WDM PON:

 Невозможность использовать длину волны абонента в случае, когда абонент не пользуется услугой связи.

Frame relay (FR) — это усовершенствованная технология быстрой коммутации пакетов переменной длины. Кадры при передаче через коммутатор не подвергаются преобразованию, из-за чего собственно технология и получила такое название.

На канальном уровне сети Frame relay передача данных между двумя соседними коммутаторами регламентируется протоколом LAP-F (Link Access Procedure for Frame mode), обозначаемый по рекомендации ITU-T номером Q.922.

Адрес Frame Relay - идентификатор подключения канального уровня (Data Link Connection Identifier — **DLCI**).

Frame relay - это:

- ❖ Осуществляется только ретрансляция кадров. Скорость передачи > 1,544 Мбит/с.
- Статистическое мультиплексирование кадров.
- ❖ Устанавливается двухточечные соединение с использованием постоянного виртуального канала
- ❖ Усовершенствованная технология быстрой коммутации пакетов переменной длины.

DLCI (data link connection identifier - идентификат ор канального уровня)

Установлен ряд параметров качества:

- ❖ согласованная скорость, с которой будут передаваться данные;
- ❖ согласованный объем пульсаций скорости;
- ❖ дополнительный объем пульсаций.

Управление доступом к сети Frame relay возлагается на интерфейс локального управления LMI (Local Management Interface). Доступ в сеть FR обеспечивают **порты FR** и FR-адаптеры - сборщики/разборщики кадров FR.

Добиться высокой эффективности использования пропускной способности физических линий и каналов связи, а также исключения перегрузок узлов связи и всей сети FR позволяет метод статистического мультиплексирования кадров, в соответствии с которым выполняется следующее:

- постоянное "наблюдение" аппаратурой канала данных (АКД) за потоком заявок от пользователей на передачу сообщений и за текущей загрузкой сети (линий, каналов и узлов связи);
- перераспределение свободного (и высвобождающегося) ресурса пропускной способности в соответствии с реальными потребностями абонентов;
- предоставление пользователям каналов информационного обмена, удовлетворяющих их требованиям.

Управление обменом информацией по LMI регламентируется стандартом ANSI (American National Standards Institute) либо стандартом ITU-T.

LMI (Local Management Interface) - специальный протокол LMI, который в сетях Frame Relay регламентирует взаимодействие между DTE и DCE.

Пример. Настроить маршрутизатор, обладающий последовательным интерфейсом Serial 1, для подключения его к сети коммутации пакетов Frame Relay, если интерфейс LMI имеет тип ansi.

```
Router(config)# interface serial1
Router(config-if)# ip address 192.168.38.40 255.255.255.0
Router(config-if)# encapsulation frame-relay
Router(config-if)# frame-relay lmi-type ansi
Router (config-if)# bandwidth скорость передачи // указание скорости передачи
Router(config-if)# frame-relay inverse-arp // Преобразование IP-в-DLCI
```

Асинхронная сеть передачи сообщений АТМ

Технология ATM разрабатывалась как для построения высокоскоростных локальных сетей, так и магистралей, объединяющих традиционные локальные сети. Одно из главных преимуществ ATM - возможность задавать для различных потоков трафика тот или иной уровень обслуживания QoS (Quality of Service), определяющий, по существу, степень приоритетности трафика при передаче его по сети.

Схема мультиплексирования информационных потоков в сети АТМ

Асинхронная сеть передачи сообщений АТМ

В АТМ-сетях для создания информационных магистралей между передающим и принимающим узлами используются виртуальные пути и виртуальные каналы.

Виртуальный путь VP (*Virtual Path*)— это путь между двумя коммутаторами, который существует постоянно, независимо от того, установлено ли соединение.

Виртуальный канал VC представляет собой некоторый тракт (путь) передачи между двумя узлами коммутируемой сети, представляет собой выделенное двухточечное соединение, "прозрачное" для пользователя.

В ATM-сетях существуют три типа виртуальных каналов: **постоянные**, коммутируемые и интеллектуальные постоянные виртуальные каналы.

Уровни асинхронной сети передачи АТМ

Модель АТМ состоит из трех уровней:

Физического (SDH/SONET); устанавливает способ передачи битов через среду, типы линий связи и скорости передачи.

Уровня ATM (VP, VC, PVC,SVC); регламентирует способ передачи сигналов, установление соединения и управление передачей.

Уровня адаптации ATM (ATM Adaptation Layer, *AAL***)** - **SoQ.** Формирование ячеек, предотвращение перегрузки. **AAL-5** — для передачи IP-пакетов.

Формат ячейки сети АТМ

53 байта, из которых **48** информационные, а **5** — заголовок.

Бит 8	Бит 7	Бит б	Бит 5	Бит 4	Бит 3	Бит 2	Бит 1	Байты
Управление потоком (GFC)			Идентификатор виртуального пути (VPI)			1		
Идентиф икатор виртуального Идентиф икатор виртуаль: пути VPI (продолжение) канала (VCI)				ильного	2			
	Идентиф икатор виртуального канала VCI (продолжение)					3		
-	Идентиф икатор виртуального канала VCI (продолжение)			Тип да (Р	анных ГГ)	Приоритет потери ячейки (CLP)		4
Контроль ошибок в заголовке (НЕС)					5			
Помума можете				6				
Данные пакета (Playload)								
<u> </u>				52				
					53			

Тип данных **PTI** (*Playload Type Indicator*) занимает 3 бита после поля VCI. Цифровые значения индикатора от 0 до 3 указывают на то, что в ячейке передаются данные пользователя, значения 4 и 5 — управляющая информация, а 6 и 7 — зарезервированы.

ГЛОБАЛЬНАЯ АСИНХРОННАЯ ЦИФРОВАЯ СЕТЬ (АТМ)

Asynchronous Transfer Mode — асинхронный способ передачи данных) — высокопроизводительная технология коммутации и мультиплексирования пакетов (ячеек). Размер ячейки (cell) фиксированный 53 байта. Скорость от 1,5 Мбит/С до 40 Гбит/с. Применение преимущественно в глобальных сетях.

Установление соединения в сети АТМ

Для передачи пакетов по сетям ATM от источника к получателю информации отправитель должен сначала установить соединение с получателем информации. Сначала посылается запрос с нулевым номером виртуального пути VPI=0 и пятым номером виртуального канала VCI=5. Если процедура завершилась успешно, то можно начинать формирование виртуального канала. При создании канала возможно использование 6 разновидностей сообщений:

setup (адрес места назначения) — запрос формирования канала; call proceeding — запрос в процессе исполнения; connect — соединение установлено; connect ACK — подтверждение получения connect; release — сообщение о завершении; release compleate — подтверждение получения сообщения release.

Преимуществом наличия процедуры установления соединений является гарантированность для данного соединения определенной пропускной способности и запрошенного качества сервиса (допустимое количество потерянных пакетов, допустимое изменение интервалов между ячейками и т.д.).

Установление соединения в сети АТМ

При установлении соединения коммутаторы определяют оптимальный маршрут. После установления соединения коммутаторы начинают функционировать как мосты, просто пересылая пакеты. Отличие состоит лишь в том, что если мосты отправляют пакеты по всем достижимым адресам, то коммутаторы пересылают ячейки только следующему узлу заранее выбранного маршрута.

Адресация в сетях АТМ

Для открытых сетей ATM стандарт ITU-Т основан на использовании адресов типа **E.164** (аналогичных телефонным номерам). Применяется формат **NSAP** (Network Service Access Point), который определяет **20-байтовые ATM-адреса**, предназначенные для использования в частных сетях ATM. Первые **13 байтов адреса** NSAP — номер коммутатора. Следующие **6 байтов**, называемые идентификатором конечной станции (End Station Identifier — **ESI**), определяют элемент сети ATM, подключенный к коммутатору.

Последний байт, называемый **байтом селектора** (**SEL**), определяет процесс в устройстве, с которым осуществляется соединение.

Пример. Сконфигурировать порт реализации постоянного виртуального канала с номером 1 (PVC1) сети АТМ для соединений уровня **AAL5** со значениями идентификаторов виртуального пути **VPI 0** и виртуального канала **VCI 100**. Метод адресации - **NSAP**:

```
Router(config) #int atm 2/0
Router(config-if) #atm pvc 1 0 100 aal5 nsap
Router(config-if) #exit
```

Коммутатор АТМ операторского класса

Alcatel-Lucent 7470

ATM UNI/NNI

8-портовая плата E1/T1 ATM с поддержкой инверсного мультиплексир-я (разделение потока на несколько низкоскоростных); 8-портовая плата T3;

4-портовая плата OC3/STM-1;

3-портовая плата Е3/Т3 АТМ, электрический интерфейс;

1-портовая плата STM-1/OC-3 ATM, электрический интерфейс, MMF, SMF, IR/LR/ELR.

Frame Relay

1-портовая плата STM-4/OC-12 SMF;

16-портовая плата E1/T1 с 1 потоком FR на порт;

16-портовая плата E1/T1 до 31 потока FR на порт;

8-портовая плата E1/T1 с 1 потоком FR на порт;

4-портовая плата E1/T1 до 31 потоков FR, HDLC или PPP на каждом порту. В каждом потоке FR поддерживается до 991 виртуального соединения;

1-портовая плата E3/T3 Frame Relay

ІР-технологии в глобальных сетях

«Чистые" IP-сети — с использованием каналов PDH/SDH/DWDM. Соединение IP-маршрутизаторов осуществляется посредством выделенных линий или каналов первичных цифровых глобальных сетей (PDH/SDH/DWDM).

Для управления передачей применяются преимущественно два типа канальных протоколов: HDLC и PPP.

ІР-СЕТИ, РАБОТАЮЩИЕ ПОВЕРХ АТМ

Между сетевым и канальным уровнями функционирует сеть ATM. Протокол IP целесообразно поддерживать "поверх" ATM только в том случае, когда большинство компьютеров в организации не подключены напрямую к сети ATM. Для управления передачей применяются канальные протоколы: HDLC и PPP.

Наложенная ІР-сеть поверх АТМ

MPLS-технология

MPLS-сеть состоит из множества соединенных между собой узлов, поддерживающих технологию MPLS. Узлы такой сети называются **LSR-маршрутизаторы** (*Label Switching Router*). Эти узлы обладают свойством коммутировать пакеты **различных протоколов** на основании специальных идентификаторов – *меток*, добавленных в заголовок к каждому пакету.

Кроме LSR-маршрутизаторов в сети установлены пограничные коммутирующие по меткам маршрутизаторы LER (Label switch Edge Routers).

Достоинства MPLS-технологии

Основным преимуществом MPLS являются:

- независимость от особенностей технологий канального уровня, таких как ATM, Frame Relay, SONET/SDH или Ethernet;
- отсутствие необходимости **поддержания** нескольких сетей второго уровня, необходимых для передачи различного рода трафика. По виду коммутации MPLS относится к сетям с коммутацией пакетов.

Для решения идентичных задач ранее были разработаны такие технологии, как **Frame Relay и ATM**. Предполагается, что технология ATM будет заменена другими протоколами с меньшими накладными расходами на передачу данных, в частности, в будущем **MPLS** полностью **вытеснит данные технологии**, как более простая и более дешевая.

Каждый **путь** в сети представляет собой **однонаправленный виртуальный канал**. Поэтому для передачи сообщений между двумя **LER**-узлами **устанавливаются два пути** коммутации по меткам, т.е. по одному в каждом направлении. Если результирующий путь по MPLS-сети состоит из нескольких участков, относящихся к соответствующим уровням иерархии, то **для каждого участка задается своя метка**. Группа меток составного пути объединяется в **стек меток**.

MPLS-технология. Формат кадра.

Для определения путей доставки пакетов LSP и установления параметров качества обслуживания вдоль этих путей применяется либо типовой протокол маршрутизации (OSPF), используемый для обмена сведениями между узлами о достижимости и маршрутах, либо сетевой администратор явно указывает маршруты и назначает им соответствующие значения меток.

Особенности MPLS-технологии

- ❖ В MPLS-сети пакеты объединяются в группы (классы), перемещаемые по одному и тому же маршруту и с одним и тем же качеством обслуживания.
- ❖ Группы пакетов получили название "класс эквивалентности продвижения данных" FEC (Forwarding Equivalence Class). Для каждого класса эквивалентности продвижения данных FEC определяется маршрут через сеть узлов LSR-маршрутизаторов (Label Switching Router).
- ❖ В MPLS-сети установлены пограничные коммутирующие по меткам маршрутизаторы LER (Label switch Edge Routers).
- ❖ В **MPLS-маршрутизаторе** пакет с MPLS-меткой коммутируется на следующий порт после поиска метки в **таблице коммутации** вместо поиска по **таблице маршрутизации**. При разработке MPLS поиск меток и коммутация по меткам выполнялись **быстрее**, чем поиск по таблице маршрутизации.

Протокол PPP (Point-To-Point Protocol)

РРР (протокол «точка-точка») является наиболее широко используемым методом транспортировки IP-пакетов по последовательной связи между пользователем и поставщиком интернет-услуг (ISP). Первоначально протокол PPP используется для передачи данных по коммутируемым телефонным линиям. В настоящее время протокол используется для передачи IP-трафика по последовательным каналам передачи данных. Разработаны также варианты **PPoE** (PPP over Ethernet) и **PPoA** (PPP over ATM), которые расширяют область применения PPP.

В его состав входят три основных компонента:

- 1) метод инкапсуляции дейтаграмм в последовательных каналах;
- 2) протокол *LCP* (*Link Control Protocol*), который используется для **установления** канала, конфигурирования и тестирования связи;
- 3) семейство протоколов *NCP* (*Network Control Protocols*) для установки и конфигурирования различных протоколов сетевого уровня.

Функционирование протокола РРР

Процедура работы РРР состоит их нескольких этапов, каждый из которых обрабатывается отдельным протокольным модулем.

- 1 этап соединение на физическом уровне.
- **2 этап** после получения сигнала, что соединение на физическом уровне установлено, запускается протокольный модуль LCP (Link Control Protocol). С его помощью согласовываются последующие процедуры, например, будет ли выполняться аутентификация и какой из встроенных протоколов (РАР, СНАР и т.п.) будет использоваться для этой цели. В начале отправляются кадры LCP для создания, настройки и тестирования канала данных.
 - 3 этап состоит из нескольких процедур.
- **3.1** аутентификация. Каждая из сторон может потребовать от другой стороны аутентифицировать себя с помощью имени и пароля. Используются протоколы РАР, CHAP, MS-CHAP или MS-CHAPv2.

Функционирование протокола РРР

Процедура 3.2 — согласование параметров IP. Обе стороны должны иметь для работы PPP какие-либо IP-адреса. Каждая из сторон может иметь заранее установленные (статические) IP-адреса для себя и для удаленной станции, или одна сторона может запрашивать их у другой.

Процедура 3.3 — **согласование параметров сжатия.** По умолчанию, все алгоритмы сжатия являются **опциональными**, поэтому процедура может считаться успешно завершенной, если стороны договорились работать без сжатия.

После установления связи на канальном уровне и согласования дополнительных параметров с использованием LCP, отправляются кадры **NCP** для выбора и настройки одного или нескольких протоколов сетевого уровня, который должен быть инкапсулирован и передан по линии PPP (IP, Novell IPX, IDP Xerox NS и др.).

Формат кадра протокола РРР

Флаг Адрес Управление Протокол Информация		
7E FF 03 до 1500 байт	CRC	Флаг 7Е
Протокол IP-дейтограмма 0021		
СО21 Управляющая информация канала		
8021 Сетевая управляющая информация		

Поле *адрес* всегда содержит байт **0xff**. Это указывает на то, что все станции должны принять этот кадр, и исключает необходимость выделения каких-то специальных адресов. Байт управления всегда равен **0x03**, что указывает на ненумерованный тип кадра. Значение **0x0021** этого поля говорит о том, что последующее информационное поле содержит в себе **IP-дейтограмму**.

DSL- МОДЕМ В КОМПЬЮТЕРНОЙ СЕТИ

DSL (Digital Subscibe Line – цифровая абонентская линия)

ADSL- МОДЕМ В КОМПЬЮТЕРНОЙ СЕТИ

(Asymmetric Digital Subscriber Line)

Используется OFDM - доступная полоса пропускания (25-2200 кГц) разделена на подканалы (25 на передачу и 224 на прием). По каждому из подканалов передается сигналы с квадратурной амплитудной модуляцией QAM;

- ✓ Скорость передачи: 48 Мбит/с вниз и 7 Мбит/с вверх.
- ✓ ADSL-модем для аналоговых линий.
- √Доступ к Интернету до 4-х PC.
- √ 10/100 Мбит/с интерфейс.
- **√** Защитный экран.
- ✓Трансляция адресов/
- **√**Дальность связи 5,5 км.

SDSL- MOДЕМ. Дифференциальная система.

(Single-line Digital Subscriber Line)

Симметричная цифровая *абонентская линия*, работающая *по* одной паре. Вариант DSL для работы со скоростью **1,544 Мбит/с** или **2,048 Мбит/с** (потоки **T1/E1**) по одной паре медных проводов.

SDSL- MOДЕМ. Эхокомпенсация.

Эхокомпенсатор представляет собой цифровой адаптивный фильтр, на вход которого поступает сигнал передатчика, а выходной сигнал которого вычитается из входного сигнала приемника, представляющего собой смесь полезного сигнала (сигнала дальнего передатчика) и помехи (сигнала собственного передатчика).

Эхокомпенсатор настраивается по критерию минимума энергии сигнала передатчика на входе собственного приемника.

