

UNIVERSITÀ DEGLI STUDI DI PADOVA

Dipartimento di Fisica e Astronomia "Galileo Galilei" Corso di Laurea in Fisica

Tesi di Laurea

Relativistic non-ideal flows

Relatore Laureando

Prof. Roberto Turolla Jacopo Tissino

Anno Accademico 2018/2019

Abstract

Stuff emits radiation when it falls into a black hole. I'd like to see exactly how much of it,

1 Notational preface

I will use greek indices (μ , ν , ρ ...) to denote 4-dimensional indices ranging from 0 to 3, and latin indices (i, j, k...) to denote 3-dimensional indices ranging from 1 to 3.

I will use the "mostly plus" metric for flat Minkowski space-time, $\eta_{\mu\nu}={\rm diag}\,-,+,+,+$. I will use Einstein summation convention: if an index appears multiple times in the same monomial, it is meant to be summed over

Take a diffeomorphism $x \to y$, with Jacobian matrix $\partial y^{\mu}/\partial x^{\nu}$. The indices of contravariant vectors, trasforming as

$$V^{\mu} \rightarrow \left(\frac{\partial y^{\mu}}{\partial x^{\nu}}\right) V^{\nu}$$
 (1.1)

will be denoted as upper indices, while the indices of covariant vectors, trasforming as

$$V_{\mu} \rightarrow \left(\frac{\partial x^{\nu}}{\partial y^{\mu}}\right) V_{\nu}$$
 (1.2)

will be denoted as lower indices; the same applies to higher rank tensors.

Unless otherwise specified, I will work in geometrized units, where c = G = 1.

Take a tensor with many indices, T_{IJ} , where I is shorthand for the n indices $\mu\nu\rho\dots$ and the same applies to J. These indices can be symmetrized and antisymmetrized, and I will use the following conventions:

$$T_{(I)J} = \sum_{\sigma \in S_n} T_{\sigma(I)J} \tag{1.3}$$

$$T_{[I]J} = \sum_{\sigma \in S_n} \operatorname{sign} \sigma T_{\sigma(I)J}$$
(1.4)

where S_n is the group of permutations of n elements, and sign σ is 1 if σ is an even permutation (it can be obtained in an even number of pair swaps) and -1 otherwise.

2 Useful formulas

2.1 Nobili

Tensor calculus The covariant derivative keeps account of the shifting of the basis vectors:

$$\nabla_{\mu}A^{\nu} = \partial_{\mu}A^{\nu} + \Gamma^{\nu}_{\alpha\mu}A^{\alpha} \tag{2.1}$$

The rank-3 objects Γ are called Christoffel symbols. They are not tensors! they depend on the choice of basis e_{α} , and they satisfy $\nabla_{\mu}e_{\alpha}=\Gamma^{\nu}_{\mu\alpha}e_{\nu}$.

If we have the metric, they can be calculated as:

$$\Gamma^{\mu}_{\nu\rho} = \frac{1}{2} g^{\mu\alpha} \left(\partial_{\rho} g_{\alpha\nu} + \partial_{\nu} g_{\alpha\rho} - \partial_{\alpha} g_{\nu\rho} \right) \tag{2.2}$$

This also tells us that they are symmetric in the lower two indices: $\Gamma^{\mu}_{\nu\rho} = \Gamma^{\mu}_{(\nu\rho)}$.

The divergence of a vector field A^{μ} can be calculated as:

$$\nabla_{\mu}A^{\mu} = \frac{1}{\sqrt{-g}}\partial_{\mu}\left(\sqrt{-g}A^{\mu}\right) \tag{2.3}$$

where g is the determinant of the metric.

We can also define the Dalambertian operator $\Box = \nabla_{\mu} \nabla^{\mu} = \nabla_{\mu} \partial^{\mu}$, which can only act on scalars, and it does so like:

$$\Box A = \nabla_{\mu}(\partial^{\mu}A) = \frac{1}{\sqrt{-g}}\partial_{\mu}\left(\sqrt{-g}\partial^{\mu}A\right) \tag{2.4}$$

If we differentiate and antisymmetryze (so, take the rotor of) an antisymmetric tensor $F_{[\mu\nu]}$, the Christoffel symbols cancel:

$$\nabla_{[\mu} F_{\nu\rho]} = \partial_{[\mu} F_{\nu\rho]} \tag{2.5}$$

The derivative with respect to proper time is $\frac{d}{d\tau} = u^{\mu} \partial_{\mu}$.

Covariant acceleration is defined as:

$$a^{\nu} = u^{\mu} \nabla_{\mu} u^{\nu} \tag{2.6}$$

Geodesics If we have a path $x^{\mu}(\lambda)$, we would like to see if it is a geodesic, that is, if it is stationary with respect to path length. To do this we can stationarize the action corresponding to the lagrangian $\mathcal{L}(x,\dot{x}) = g_{\mu\nu}\dot{x}^{\mu}\dot{x}^{\nu}$ (where we use $\dot{x} = \mathrm{d}x/\mathrm{d}\lambda$). The Lagrange equations then are:

$$\ddot{x}^{\mu} + \Gamma^{\mu}_{\nu\rho}\dot{x}^{\nu}\dot{x}^{\rho} = 0 \tag{2.7}$$

Where Γ are the Christoffel symbols, which can be calculated by differentiating the metric, as shown in (2.2). \mathcal{L} is an integral of these Lagrange equations.

If the parameter λ is taken to be the proper time s, then the equation is

$$\frac{\mathrm{d}u^{\mu}}{\mathrm{d}s} + \Gamma^{\mu}_{\nu\rho}u^{\nu}u^{\rho} = 0 \tag{2.8}$$

Tetrads and projectors We want to work in a reference in which the velocity u^{μ} is purely timelike. This can always be found by the equivalence principle. Such a reference is called a tetrad. It also allows the metric to become the Minkowski metric in a neighbourhood of the point we consider.

It is useful to project tensors onto the and space-like and time-like subspaces defined by our tetrad (and we wish to do so in a coordinate-independent manner, so just taking the 0th and *i*-th components in the tetrad will not suffice). We therefore define the projectors:

$$h_{\mu\nu} = u_{\mu}u_{\nu} + g_{\mu\nu} \qquad \pi_{\mu\nu} = -u_{\mu}u_{\nu}$$
 (2.9)

respectively onto the space- and time-like subspaces.

Metrics The simplest one is the Schwarzschild metric. It describes a spherically symmetric object of mass M, in spherical coordinates. Defining $\Phi = -M/r$, we have:

$$ds^{2} = -(1+2\Phi) dt^{2} + \frac{1}{1+2\Phi} dr^{2} + r^{2} \left(d\theta^{2} + \sin^{2}\theta d\varphi \right)$$
 (2.10)

or, equivalently,

$$g_{\mu\nu} = \text{diag} - (1 + 2\Phi), \, \frac{1}{1 + 2\Phi}, \, r^2, \, r^2 \sin^2 \theta$$
 (2.11)

We can see that it approaches the flat metric $\eta_{\mu\nu}={\rm diag}\,-,+,+,+$ in the limit $M\to 0$. Its determinant is $g=-r^4\sin^2\theta$.

Fluid mechanics In usual relativistic single-body mechanics, we use the 4-velocity u^{μ} and the corresponding 4-momentum $p^{\mu} = mu^{\mu}$. The 0-th component of this vector is the energy of the body, while the *i*-th components are its momentum: we then have $p^{\mu}p_{\mu} = m^2 = E^2 - |p|^2$.

When dealing with a continuum, we will have a certain density of particle per unit of volume, we call this n. The current of particles is then $N^{\mu} = nu^{\mu}$. If these particles have a certain rest mass m_0 , we can then define the vector $\rho_0 u^{\mu} = m_0 n u^{\mu} = m_0 N^{\mu}$.

This satisfies a conservation equation: $\nabla_{\mu}(\rho_0 u^{\mu}) = 0$.

Particles in a fluid can have three kinds of energy we concern ourselves with: mass, kinetic energy and other forms of energy (thermal, chemical, nuclear...). We can always perform a change of coordinates to bring us to a frame in which the kinetic energy is zero. We write the sum of the other two forms of energy as $\rho = \rho_0(1 + \epsilon)$. So, ϵ is the ratio of the internal non-mass energy to the mass.

Now, the vector ρu^{μ} describes the flux of energy. We can then write the equation for the conservation of momentum:

$$f^{\mu} = \nabla_{\nu} (\rho u^{\mu} u^{\nu}) \tag{2.12}$$

Spherical accretion We work with the Schwarzschild metric (2.10); we treat a fluid with 4-velocity u^{μ} in spherical coordinates, since the problem we are looking at is stationary and spherically symmetric the velocity is:

$$u^{\mu} = \begin{pmatrix} \gamma^2/y \\ yv \\ 0 \\ 0 \end{pmatrix} \tag{2.13}$$

where we define $\gamma = \left(1 - v^2\right)^{-1/2}$, $y = \gamma \sqrt{1 + 2\Phi}$.

The conservation of mass holds: if ρ_0 is the rest mass density of the fluid, we must have $\nabla_{\mu}(\rho_0 u^{\mu}) = 0$. This, using the formula for covariant divergence (2.3), yields:

$$\frac{\mathrm{d}}{\mathrm{d}r}\Big(\rho_0 y v r^2\Big) = 0 \tag{2.14}$$

In the newtonian limit both γ and y approach 1; also, the infalling mass rate \dot{M} at a certain radius is $\rho_0(r)v(r)4\pi r^2$. Then, by continuity to the newtonian limit, the quantity which is constant wrt the radius must be $\dot{M}/(4\pi)$.

We also have the Euler equation:

$$(p+\rho)a^{\mu} = -h^{\mu\nu}\partial_{\nu}p \tag{2.15}$$

And the equation for ???

$$\frac{\mathrm{d}\rho}{\mathrm{d}\tau} = \frac{p + \rho}{\rho_0} \frac{\mathrm{d}\rho_0}{\mathrm{d}\tau} \tag{2.16}$$

From these we can show that the quantity $\gamma h \sqrt{1+2\Phi}$ (where $h=(p+\rho)/\rho_0$ is the specific enthalpy), is a constant of motion. In the nonrelativistic, weak-field limit this becomes

$$\gamma h \sqrt{1+2\Phi} \approx \frac{p}{\rho_0} + \frac{v^2}{2} - \frac{M}{r} + \epsilon = \text{const}$$
 (2.17)

2.2 Taub

This section summarizes my study of A. H. Taub's review of relativistic fluid dynamics, [Tau78].

Nonrelativistic fluid mechanics are described by the equations:

$$\partial_t \rho + \partial_i (\rho v^i) = 0 \tag{2.18a}$$

$$\rho\left(\partial_t v^i + v^j \partial_j v^i\right) = \partial_j T^{ij} \tag{2.18b}$$

$$\rho \partial_t E + v^i \partial_i E = \partial_i \left(T^{ij} v_j + \lambda \partial^i T \right)$$
 (2.18c)

where ρ is the density of the fluid, v^i are the components of its velocity, T^{ij} is the stress tensor (or, equivalently, the space-like components of the energy-momentum tensor), E is the energy of the fluid, λ is the thermal conductivity, T is the temperature of the fluid.

The nonrelativistic stress tensor can be written as:

$$T_{ij} = -(p + \xi \partial_k v^k) \delta_{ij} + \eta \partial_{(i} v_{j)}$$
(2.19)

where p is the (isotropic) pressure, η the viscosity, ξ is the compression viscosity. We are assuming that the normal stresses are only those exerted by pressure, so the diagonal terms T_{ii} (not summed) must just be -p. So, the term $-\xi \partial_k v^k$ must equal $\eta \partial_{(i} v_{i)} = 2\eta \partial_i v_i$ (not summed). Therefore, by isotropy, $\xi = 2\eta/3$.

Note that we are working in Euclidean 3D space, so the metric is the identity and upper and lower indices are equivalent.

The energy is a sum of kinetic and specific energy:

$$E = v^i v_i / 2 + \varepsilon \tag{2.20}$$

where ε is the specific energy (of a type that is different from kinetic) per unit mass.

Figure 1: Test

Bibliography

[Tau78] A H Taub. "Relativistic Fluid Mechanics". In: Annual Review of Fluid Mechanics 10.1 (1978), pp. 301–332. URL: https://doi.org/10.1146/annurev.fl.10.010178.001505.