1. cvičení

- procvičená témata: binární relace na množině a jejich vlastnosti, uzavřená binární operace, grupoid, asociativita, pologrupa, jednotkový prvek, monoid, inverzní prvky, grupa, komutativita

- 1) Na množina $A = \{a, b, c\}$ nalezněte relace tak, aby splňovaly následující podmínky:
 - a) R₁ není reflexivní, není symetrická, není antisymetrická, není tranzitivní
 - b) R₂ není reflexivní, není symetrická, je antisymetrická, je tranzitivní
 - c) R₃ není reflexivní, je symetrická, je antisymetrická, je tranzitivní
 - d) R₄ je reflexivní, je symetrická, je antisymetrická, je tranzitivní
 - e) R₅ je reflexivní, je symetrická, není antisymetrická, není tranzitivní
- 2) Zjistěte, zda následující algebraické struktury tvoří grupoidy. Pokud ano, určete, zda se jedná o monoidy, pologrupy, grupy, a zda jsou komutativní:
 - a) $(\{0, 1\}, \rightarrow)$, kde \rightarrow je logická spojka implikace
 - b) $(\{0, 1\}, \Lambda)$, kde Λ je logická spojka konjunkce
 - c) ($\{0, 1\}, \cdot$), kde · je operace násobení
 - d) (N, -), kde N je množina přirozených čísel a je operace odečítání
 - e) (M, *), kde M je množina bodů v rovině a A * B je střed úsečky AB

2. cvičení

- procvičená témata: grupy (pokračování), homomorfismus grup

- 3) Dokažte, že množina všech zákrytových pohybů rovnostranného trojúhelníka spolu s operací skládání zobrazení tvoří grupu. Je tato grupa abelovská?
- 4) Nechť $K = \{a, b, c, e\}$ a nechť operace násobení · je definována podle následující Cayleyho tabulky. Ověřte, zda (K, \cdot) je abelovská grupa.

•	a	b	С	e
a	e	С	b	a
b	С	е	a	b
С	b	a	е	С
e	a	b	С	e

- 5) Nechť $\mathbf{R}_0 = \mathbf{R} \setminus \{0\}$. Dokažte, že zobrazení f(x) = sgn(x) je homomorfismem grupy (\mathbf{R}_0, \cdot) do grupy $(\{-1, 1\}, \cdot)$. Co je jádrem tohoto homomorfismu?
- 6) Nechť (\mathbf{R}_+, \cdot) je multiplikativní grupa všech kladných reálných čísel. Dokaže, že zobrazení $h(x)=2^x$ je surjektivní homomorfismus grupy (\mathbf{R}_+, \cdot) na grupu (\mathbf{R}_+, \cdot) .
- 7) Nechť (G, \cdot) je grupa. Dokažte, že zobrazení $h(x) = x^{-1}$ je izomorfismus z (G, \cdot) do (G, \cdot) právě tehdy, když (G, \cdot) je abelovská.

3. cvičení

- procvičené téma: podgrupy
 - 8) Nalezněte všechny podgrupy grupy z příkladu 3).

- 9) Nechť A, B jsou podgrupy v (G, ·). Dokažte, že A·B je podgrupa v G, právě když platí, že $A \cdot B = B \cdot A$.
- 10) Nechť (G, \cdot) je abelovská grupa, $n \in \mathbb{N}$. Dokaže, že množina $\{a \in G \mid a^n = e\}$ tvoří podgrupu grupy (G, \cdot) .
- 11) Zjistěte, zda je množina H podgrupou grupy G:
 - a) $H = \mathbf{Q}^+, G = (\mathbf{Q} \setminus \{0\}, \cdot)$
 - b) $H = \mathbb{Z}_2$, $G = (\mathbb{Z}_4, \bigoplus)$...pozn. \bigoplus je zde chápáno jako sčítání modulo 4
 - c) $H = \{1, -1\}, G = (R, +)$
 - d) $H = \{1, -1\}, G = (\mathbf{R} \setminus \{0\}, \cdot)$