

What Is Claimed Is:

1 1. A method for aligning a micro-gyroscope having closed
2 loop control of drive, output and sense axes, said method comprising the steps
3 of:

4 detecting misalignment of said micro-gyroscope; and
5 correcting misalignment to zero by an electrostatic bias
6 adjustment.

1 2. The method as claimed in claim 1 wherein said step of
2 detecting misalignment further comprises detecting misalignment by way of
3 quadrature signal amplitude obtained by demodulation of a signal of said output
4 axis using a signal in quadrature to rate signal for said drive axis.

1 3. The method as claimed in claim 1 further comprising the
2 step of nulling an in-phase bias.

1 4. The method as claimed in claim 3 wherein said step of
2 nulling an in-phase bias further comprises nulling by electronically coupling a
3 torque component of said drive axis with said output axis.

1 5. A method for tuning a cloverleaf micro-gyroscope having
2 closed loop control of drive, output and sense axes, said method comprising the
3 steps of:
4 detecting residual mistuning by way of a signal; and
5 correcting said residual mistuning to zero by way of electrostatic
6 bias adjustment.

00000000000000000000000000000000

1 6. The method as claimed in claim 5 wherein said step of
2 detecting residual mistuning further comprises detecting by way of a quadrature
3 signal noise level.

1 7. The method as claimed in claim 5 wherein said step of
2 detecting residual mistuning further comprises detecting by way of a transfer
3 function test signal.

1 8. A method for independently aligning and tuning a
2 cloverleaf micro-gyroscope having closed loop control of drive, output and
3 sense axes, said method comprising the steps of:

4 detecting misalignment of said micro-gyroscope by way of a
5 quadrature signal amplitude;
6 correcting said misalignment to zero by way of an electrostatic
7 bias adjustment;
8 detecting residual mistuning by way of a signal; and
9 correcting said residual mistuning by way of an electrostatic bias
10 adjustment.

1 9. The method as claimed in claim 8 wherein said step of
2 detecting a residual mistuning further comprises detecting a residual mistuning
3 by way of a quadrature signal noise level.

1 10. The method as claimed in claim 8 wherein said step of
2 detecting a residual mistuning further comprises detecting a residual mistuning
3 by way of a transfer function test signal.

1 11. The method as claimed in claim 8 further comprising the
2 step of nulling in-phase bias.

106080-85842660

1 12. The method as claimed in claim 11 wherein said step of
2 nulling further comprises electronically coupling a torque component of said
3 drive axis with said output axis.

1 13. The method as claimed in claim 8 wherein said micro-
2 gyroscope closed loop control further comprises:
3 using separate sensors and actuators for said step of correcting
4 said misalignment and said step of correcting said residual mistuning.

1 14. The method as claimed in claim 8 wherein said step of
2 correcting said misalignment further comprises the step of introducing an
3 electrostatic cross-coupling spring, K_{xy}^e for canceling said misalignment.

1 15. The method as claimed in claim 14 further comprising
2 the step of applying a bias voltage to a drive electrode on said drive axis that is
3 different from a bias voltage to another drive electrode on said drive axis.

1 16. The method as claimed in claim 8 further comprising the
2 step of introducing a relative gain mismatch, $\delta_T \neq 0$, to each drive electrode on
3 said drive axis.

1 17. The method as claimed in claim 8 further comprising the
2 step of maximizing a stiffness matrix K.

1 18. The method as claimed in claim 8 wherein said step of
2 correcting said residual mistuning to zero further comprises adjusting a total
3 stiffness of said micro-gyroscope.