WHAT IS CLAIMED IS:

1	1. A circuit arrangement for generating test-traffic on a digital data path having at		
2	least one other traffic source, comprising:		
3	a data-generation circuit adapted to provide a first data stream;		
4	a memory arrangement adapted to buffer a plurality of programmable		
5	commands, the programmable commands indicative of at least one of test-traffic type,		
6	pattern and behavior-in-time;		
7	state machine circuitry coupled between the memory arrangement, the data-		
8	generation circuit and the digital data path, the state machine circuitry adapted to		
9	assemble portions of the first data stream into test-traffic wherein at least one of type,		
10	pattern and behavior-in-time is selected responsive to the programmable commands,		
11	and further adapted to generate test-traffic on the digital data path; and		
12	a status and feedback circuit adapted to monitor the digital data path for test-		
13	traffic and generate a feedback signal indicative of at least one of test-traffic throughput		
14	and test-traffic quality.		
1	2. The circuit arrangement of claim 1, wherein		
2	the state machine circuitry includes a command state machine and a bus master		
3	state machine, the command state machine being coupled to the memory arrangement		
4	and data-generation circuit, and adapted to direct the bus master state machine to		
5	assemble portions of the first data stream into test-traffic having pre-defined type,		
6	pattern and behavior-in-time responsive to the programmable commands, and		
7	the bus master state machine is coupled to the digital data path and adapted to		
8	communicate the test-traffic onto the digital data path responsive to the command state		
9	machine.		

- 1 3. The circuit arrangement of claim 1, wherein the state machine circuitry is
- 2 adapted to assemble portions of the first data stream into a test-traffic type selected from
- 3 a group consisting of 1, 2, 4, 8, 16, 32, and 64 words per burst.

- 1 4. The circuit arrangement of claim 1, wherein the state machine circuitry is
- 2 adapted to assemble portions of the first data stream into a test-traffic type selected from
- a group consisting of other than 1, 2, 4, 8, 16, 32, and 64 transfers per burst.
- 1 5. The circuit arrangement of claim 1, wherein the state machine circuitry is further
- 2 adapted to receive the first data stream from the data-generation circuit without
- 3 generating test-traffic on the digital data path.
- 1 6. The circuit arrangement of claim 1, wherein the state machine circuitry is
- 2 adapted to pause in response to programmable commands.
- 1 7. The circuit arrangement of claim 1, further comprising a bus interface circuit
- 2 coupled between the memory arrangement and the digital data path, the bus interface
- 3 circuit adapted to pass programmable commands received via the digital data path to the
- 4 memory arrangement.
- 1 8. The circuit arrangement of claim 1, wherein the first data stream is a repeatable
- 2 sequence of binary data.
- 1 9. The circuit arrangement of claim 8, wherein the data-generation circuit is a
- 2 second memory arrangement, the first data stream being stored in the second memory
- 3 arrangement.
- 1 10. The circuit arrangement of claim 8, wherein the first data stream comprises a
- 2 sequence of pseudo-random numbers.
- 1 11. The circuit arrangement of claim 10, wherein the data-generation circuit is a
- 2 second memory arrangement, the first data stream being stored in the second memory
- 3 arrangement.

- 1 12. The circuit arrangement of claim 10, wherein the data-generation circuit is a
- 2 linear feedback shift register (LFSR) circuit, the first data stream comprising a sequence
- 3 of LFSR values.
- 1 13. The circuit arrangement of claim 12, wherein the state machine circuitry is
- 2 configured and arranged to seed the LFSR and control content of the first data stream.
- 1 14. The circuit arrangement of claim 13, wherein the status and feedback circuit is
- 2 further adapted to verify monitored test-traffic against corresponding LFSR values, and
- 3 the feedback signal being an interrupt generated indicative of the test-traffic
- 4 verification.
- 1 15. The circuit arrangement of claim 1, wherein the status and feedback circuit is
- 2 further adapted to verify monitored test-traffic against a corresponding first data stream,
- and the feedback signal being an interrupt generated indicative of the test-traffic
- 4 verification.
- 1 16. The circuit arrangement of claim 15, wherein the memory arrangement includes
- 2 command registers adapted to store programmable commands, configuration registers
- adapted to store traffic generation process control information and status registers
- 4 adapted to store test-traffic verification information.
- 1 17. The circuit arrangement of claim 1, wherein the status and feedback circuit
- 2 includes a counter adapted to specify a number of command repetitions, and a loop
- 3 timer adapted to specify a period within which a set of programmable commands must
- 4 execute.
- 1 18. The circuit arrangement of claim 1, wherein the digital data path is an AHB
- 2 protocol bus.

1	19.	A computer system, comprising:
2		a digital data path;
3		a plurality of traffic sources, each traffic source coupled to the digital data path
4	and ac	dapted to communicate non-test-traffic onto the digital data path; and
5		a circuit arrangement for generating test-traffic coupled to the digital data path,
6	the ci	rcuit arrangement including,
7		a data-generation circuit adapted to provide a first data stream,
8		a memory arrangement adapted to buffer a plurality of programmable
9		commands, the programmable commands indicative of at least one of test-traffic
10		type, pattern and behavior;
11		state machine circuitry coupled between the memory arrangement, the
12		data-generation circuit and the digital data path, the state machine circuitry
13		adapted to assemble portions of the first data stream into test-traffic wherein at
14		least one of type, pattern and behavior-in-time is selected responsive to the
15		programmable commands, and further adapted to generate test-traffic on the
16		digital data path; and
17	a stat	us and feedback circuit adapted to monitor the digital data path for test-traffic and
18	gener	ate a feedback signal indicative of at least one of test-traffic throughput and test-
19	traffic	e quality, wherein at least one of the plurality of traffic sources is a processor
20	circui	t.

- 1 20. The circuit arrangement of claim 19, wherein the data-generation circuit is a
- 2 linear feedback shift register (LFSR) circuit, the first data stream consists of a sequence
- 3 of pseudo-randomly generated binary numbers representing LFSR values.
- 1 21. The circuit arrangement of claim 20, wherein the status and feedback circuit is
- 2 further adapted to verify monitored test-traffic against a corresponding first data stream,
- 3 and the feedback signal is an interrupt generated indicative of the test-traffic
- 4 verification.

- 1 22. A method of generating test-traffic on a digital data path having at least one
- 2 other traffic source, comprising:
- 3 coupling a dedicated test-traffic source to the digital data path;
- 4 providing a first data stream, the first data stream being replicatable;
- storing a plurality of programmable commands, the programmable commands
- 6 indicative of at least one of test-traffic type, pattern and behavior;
- 7 assembling portions of the first data stream into test-traffic wherein at least one
- 8 of type, pattern and behavior-in-time is selected responsive to the programmable
- 9 commands;
- generating test-traffic on the digital data path;
- monitoring the digital data path for the test-traffic;
- verifying the monitored test-traffic against a corresponding first data stream; and
- generating a feedback signal indicative of the test-traffic verification.
- 1 23. The method of claim 22, wherein the first data stream is a sequence of pseudo-
- 2 random numbers each representative of a linear feedback shift register (LFSR) value.
- 1 24. The method of claim 23, further comprising, verifying monitored test-traffic
- 2 against a corresponding LFSR value, wherein the feedback signal is an interrupt
- 3 indicative of each test-traffic verification.
- 1 25. The method of claim 22, further comprising:
- 2 counting a pre-determined number of command-execution repetitions;
- 3 timing each command-execution repetition against an associated programmable
- 4 period; and
- 5 generating a feedback signal indicative a command-execution repetition
- 6 exceeding the associated programmable period.
- 1 26. The method of claim 22, wherein the digital data path is an AHB protocol bus.

1	27.	The method of claim 26, wherein	
2		test-traffic type is one of a group consisting of 1, 2, 4, 8, 16, 32, and 64 transfers	
3	per burst.		
1	28.	A circuit arrangement for generating test-traffic on a digital data path having at	
2	least o	one other traffic source, comprising:	
3		means for coupling a dedicated test-traffic source to the digital data path;	
4		means for providing a first data stream, the first data stream being replicatable;	
5		means for storing a plurality of programmable commands, the programmable	
6	comm	nands indicative of at least one of test-traffic type, pattern and behavior;	
7		means for assembling portions of the first data stream into test-traffic wherein at	
8	least o	one of type, pattern and behavior-in-time is selected responsive to the	
9	progra	ammable commands;	
10		means for generating test-traffic on the digital data path;	
11		means for monitoring the digital data path for the test-traffic;	
12		means for verifying the monitored test-traffic against a corresponding first data	
13	stream	n; and	
14		means for generating a feedback signal indicative of the test-traffic verification.	