Universidad Nacional de Colombia Departamento de Matemáticas

Sistemas Numéricos

Examen 1 (II-2017) Prof. José L. Ramírez

- 1. Sea $\mathbb Z$ el conjunto de los números enteros.
 - (0.5) Demuestre que $(\mathbb{Z},*)$, donde $\mathfrak{a}*\mathfrak{b}=\mathfrak{a}+\mathfrak{b}-1$ es un grupo abeliano.
 - (0.5) Demuestre que $(\mathbb{Z},+)$ y $(\mathbb{Z},*)$ son grupos isomorfos.
- 2. Sea (G,*) un grupo. Definimos el conjunto $H_G:=\{h\in G:h'=h\}$.
 - lacksquare (0.5) Demuestre que si G es un grupo abeliano entonces H_G es un subgrupo de G.
 - $(\underline{0.5})$ Si la definición de H_G se extiende para una estructura algebraica cualquiera, encuentre H_G para $G = (\mathbb{Z}_6, \cdot)$.
- 3. (1.0) Demostrar que si $\mathfrak{m}, \mathfrak{n} \in \mathbb{N}$ con $\mathfrak{m} < \mathfrak{n}$ entonces para todo número natural $\mathfrak{p} \neq \mathfrak{0}$,

$$mp < np$$
.

- 4. Considere la sucesión $\{P_n\}_{n\geq 0}$ definida por $P_n=2P_{n-1}+P_{n-2}$ para $n\geq 2$, con los valores iniciales $P_0=0$ y $P_1=1$.
 - \bullet (0.5) Demuestre que para todo número natural $n \ge 0$ se tiene que

$$\sum_{k=0}^{n} P_{2k+1} = \frac{1}{2} P_{2n+2}.$$

■ (0.5) Sea Q_n el número de formas de teselar una cinta de tamaño $2 \times n (n \ge 1)$ con las siguientes tres baldosas:

Demuestre que $Q_n = P_{n+1}$ para todo $n \ge 1$.

5. Sea F_n el n-ésimo número de Fibonacci. Demuestre que $F_{n+1} < \left(\frac{7}{4}\right)^n$ para todo número natural $n \ge 1$.