Práctico 5 Matemática Discreta I – Año 2021/1 FAMAF

- (1) ¿Cuántas aristas tiene el grafo completo K_n ? ¿Para cuáles valores de n se puede encontrar un dibujo de K_n con la propiedad que las líneas representan las aristas sin cruzarse?
- (2) Encuentre un isomorfismo entre los grafos por las siguientes listas. (Ambas listas especifican versiones de un famoso grafo conocida como *grafo de Petersen*.)

a	b	C	d	e	f	g	h	i	j	0	1	2	3	4	5	6	7	8	9
b	a	b	С	d	а	b	С	d	e	1	2	3	4	5	0	1	0	2	6
e	C	d	e	a	h	i	i	f	q	5	0	1	2	3	4	4	3	5	7
f	g	h	i	j	i	j	f	g	ĥ	7	6	8	7	6	8	9	9	9	8

- (3) a) Encuentre todos los grafos de 5 vértices y 2 aristas no isomorfos entre sí.
 - b) ¿Cuál es el máximo número de aristas que puede tener un grafo de 5 vértices?
- (4) Para cada una de las siguientes secuencias, encuentre un grafo que tenga exactamente las valencias indicadas o demuestre que tal grafo no existe:
 - *a*) 3, 3, 1, 1
- *b*) 3, 2, 2, 1
- c) 3, 3, 2, 2, 1, 1

- d) 4, 1, 1, 1, 1
- e) 7, 3, 3, 3, 2, 2
- *f*) 4, 1, 1, 1
- (5) Demuestre que los siguientes pares de grafos son isomorfos (encuentre un isomorfismo):

(a)

(b)

(6) Sean G=(V,E) y G'=(V',E') dos grafos y sea $\alpha:V\mapsto V'$ una función tal que $\delta(v)=\delta(\alpha(v))$ $\forall~v\in V.$

1

- a) ¿Puede afirmar que α es un isomorfismo?.
- b) ¿Puede afirmarlo si |V| = 3 ó 4?.
- (7) Encuentre una función del grafo A al B que preserve valencias. ¿Es un isomorfismo?.

A :

B :

- (8) Pruebe que si G es un grafo con más de un vértice, entonces existen dos vértices con la misma valencia.
- (9) Si G = (V, E) grafo, el grafo complemento es G' = (V, E'), donde E' son todos los 2-subconjuntos de V que no están en E. Es decir, el grafo complemento tiene los mismos vértices que el grafo original y todas las aristas que le faltan a G para ser grafo completo.
 - a) Halle el complemento de los siguientes grafos:

- b) Si $V=\{v_1\dots v_n\}$ y $\delta(v_i)=d_i \ \forall \ i=1,\dots,n$, calcule las valencias de el grafo complemento.
- (10) Pruebe que los siguientes grafos no son isomorfos:

(11) Dados los siguientes grafos:

- a) Determine en cada caso si existen subgrafos completos de más de 2 vértices.
- b) Para el grafo (1), dé todos los caminos que unen a con b.
- c) Dé caminatas eulerianas en los grafos (4), (5) y (6).
- d) Para (2) y (3), decir si existen ciclos hamiltonianos.
- e) Determinar cuales de los siguientes pares de grafos son isomorfos:
 - (i) (4) y (2),
 - (ii) (5) y (6),
 - (iii) (5) y (1).
- f) Halle las componentes conexas del grafo (7).
- (12) Dado el siguiente grafo

0	1	2	3	4	5	6	7	8
1	0	1	0	3	0	1	0	1
3	2	3	2	5	4	5	2	3
5	6	7	4		6	7	6	5
7	8		8		8		8	7.

- encuentre un ciclo hamiltoniano (si existe). Determine si existe una caminata euleriana y en caso de ser así encuentre una.
- (13) Un ratón intenta comer un $3 \times 3 \times 3$ cubo de queso. Él comienza en una esquina y come un subcubo de $1 \times 1 \times 1$, para luego pasar a un subcubo adyacente. ¿Podrá el ratón terminar de comer el queso en el centro?
- (14) Dé todos los árboles de 5 vértices no isomorfos.
- § Ejercicios de repaso.
- (15) *a)* Probar que los siguientes grafos no son isomorfos.

b) Encontrar una caminata euleriana en el siguiente grafo.

(16) *a)* Probar que los siguientes grafos no son isomorfos.

- b) En el grafo de la derecha del ítem anterior, encontrar un circuito euleriano, es decir una caminata euleriana que comienza y termina en un mismo vértice.
- (17) *a)* Probar que los siguientes grafos no son isomorfos.

b) Encontrar una caminata euleriana en el siguiente grafo.

(18) *a)* Probar que los siguientes grafos no son isomorfos.

b) Encontrar una caminata euleriana en el siguiente grafo.

