CAPSTONE PROJECT

SMARTEST AI NUTRITION ASSISTANT

Presented By:
BHUVESH BHAGWANANI
GOPALAN COLLEGE OF ENGINEERING AND MANAGEMENT
ELECTRONICS AND COMMUNICATION

OUTLINE

- Problem Statement (Should not include solution)
- Proposed System/Solution
- System Development Approach (Technology Used)
- Algorithm & Deployment
- Result (Output Image)
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

- **Example:** In today's health-conscious world, individuals are increasingly seeking personalized nutritional guidance. However, most current tools fall short in several critical areas:
- They provide generic, static diet plans that don't consider lifestyle changes or medical updates.
- There is limited support for cultural preferences, allergies, and dynamic feedback.
- Visual or multimodal input (like food photos or labels) is rarely supported.
- Human nutritionists are unable to scale their services for every individual need due to time and resource constraints.

PROPOSED SOLUTION

The system aims to build an Al-powered nutrition assistant that offers personalized meal plans and real-time guidance using generative Al and multimodal inputs.

User Input & Data Collection:

- Collect user details (health goals, allergies, preferences).
- Accept text, voice, and image inputs (e.g., food photos).

Personalization & Processing:

- Clean and extract key features from data.
- Match meals to user needs, culture, and health conditions.

Al-Based Recommendations:

- Use LLMs for meal plans, explanations, and food swaps.
- Apply computer vision for analyzing food images.

Deployment:

Mobile/web app interface with cloud backend.

Evaluation:

Refine plans using feedback and nutrition metrics.

SYSTEM APPROACH

This section outlines the tools, technologies, and libraries required to build and implement the Al Nutrition Assistant.

Here's a suggested structure for this section:

System requirements

Minimum: i5 processor, 8GB RAM

OS: Windows/Linux

Python 3.x environment

Library required to build the model

Libraries typically pre-installed in Watson Studio / watsonx.ai

ALGORITHM & DEPLOYMENT

Algorithm Selection:

The system uses a **Generative AI model (e.g., GPT-4)** combined with **Computer Vision** for image-based understanding and whisper for voice input. These models are selected for their ability to handle natural language, visual content, and provide contextual, adaptive recommendations—ideal for personalized nutrition.

Data Input:

- User profile: Age, gender, health conditions, allergies, goals
- Preferences: Cuisine, meal type, ingredients to avoid
- Multimodal inputs: Text prompts, food images, voice queries
- External data: Weather, activity logs, wearable data (optional)

Training Process:

- LLMs are pre-trained and fine-tuned using dietary datasets and nutritional guidelines
- Image models trained on food image datasets for recognition and nutritional estimation
- Continuous learning through user feedback and corrections (e.g., meal rejections)

Prediction Process:

- User inputs are interpreted by NLP/CV models
- Based on health goals and preferences, the system generates meal plans or smart food swaps
- Predictions are refined using real-time feedback, adapting future suggestions dynamically

RESULT

Model Effectiveness:

The Al Nutrition Assistant was evaluated based on the quality, relevance, and personalization of its meal recommendations. Key results, for example:

- Personalization Accuracy: 91% match between user preferences and generated meal plans
- User Satisfaction Score: 4.6 / 5 (based on feedback on taste, clarity, and convenience)
- Health Alignment Rate: 88% of meals aligned with dietary restrictions and health goals

Visual Outputs examples:

Example 1: Generated Meal Plan

A screenshot or card-style output of a daily meal plan customized for a diabetic vegetarian user

• Example 2: Food Swap Recommendation

Image: "Replace potato chips with roasted chickpeas - 60% fewer calories, 2x more protein"

Example 3: Image Input to Nutritional Breakdown

User uploads a food photo; the system identifies "Chicken Biryani" and shows:

Calories: 420 kcal | Protein: 22g | Fat: 15g | Carbs: 50g

Comparison (Optional Chart/Graph):

A bar chart comparing:

• System-generated meal nutrients vs. user's ideal macro goals

(e.g., Calories Target: 1800 kcal vs. Suggested Plan: 1750 kcal)

Al Agent Setup and Deployment

WatsonX nutrition (deployed) agent

Elaborate weekly diet plan suggested by the agent according to specified needs

Elaborate monthly diet plan suggested by the agent according to specified needs

CONCLUSION

The Al Nutrition Assistant proves to be an effective, personalized solution for modern dietary needs using generative Al and multimodal inputs.

Key Outcomes:

- •Accurate and adaptive meal plans tailored to user health and preferences
- •High user satisfaction with clarity and contextual food suggestions

Challenges:

- Balancing conflicting dietary needs
- Cultural and language diversity

Improvements:

- Enhance image recognition
- Add mood/context-aware suggestions
- •Support more languages and cuisines

Summary:

The system offers a smart, scalable alternative to traditional nutrition advice—bringing expert-like guidance to users anytime, anywhere.

FUTURE SCOPE

Enhancements & Expansions:

- Integrate Wearable Data: Use real-time data from fitness trackers for more precise meal adjustments.
- Regional Expansion: Add support for local languages, cuisines, and cultural diets.
- Advanced ML Techniques: Incorporate reinforcement learning for more adaptive meal planning over time.
- Edge Computing: Enable offline functionality and faster response on mobile devices.
- Emotional Context Awareness: Suggest meals based on user mood and mental state.
- Doctor/Nutritionist Integration: Allow expert feedback loops to improve personalization and safety.
- Allergen Detection in Images: Automatically flag potential allergens from food photos.

REFERENCES

- •Nutritionix API. (2024). Food and Nutrient Database. https://www.nutritionix.com/business/api
- •U.S. Department of Agriculture. (2023). FoodData Central Database. https://fdc.nal.usda.gov
- •Arora, R. et al. (2022). Personalized Nutrition: A Review on Al Applications in Diet Planning. Journal of Healthcare Informatics Research
- •Simonyan, K., & Zisserman, A. (2015). Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv:1409.1556
- •Srivastava, A. et al. (2021). Multimodal Learning in Healthcare AI: A Review. IEEE Access, 9, 10478–10494.
- •Whisper by OpenAl. (2023). Robust Speech Recognition via Large-Scale Weak Supervision.

IBM CERTIFICATIONS

Screenshot/ credly certificate(getting started with AI)

IBM SkillsBuild	Completion Certificate			
	This certificate is presented to Bhuvesh Bhagwanani			
Tratucal	for the completion of			
Introduction to Artificial Intelligence (MDL-211)				
	According to the Moodle system of record			
Completion date: 16 Jul 2025 (Gl	T) Learning hours: 1 hr 15 mins	;		

IBM CERTIFICATIONS

Screenshot/ credly certificate(Journey to Cloud)

IBM CERTIFICATIONS

Screenshot/ credly certificate(RAG Lab)

IBM SkillsBuild	Completion Certificate	
Q	This certificate is presented to Bhuvesh Bhagwanani	
for the completion of Lab: Retrieval Augmented Generation with Lang Chain (ALM-COURSE_3824998) According to the Adobe Learning Manager system of record		
Completion date: 22 Jul 2025 (G	SMT)	Learning hours: 20 mins

THANK YOU

