nRF24L01 无线模块使用手册

NBC24L01_V2.0-----2011.9.8

合肥炜煌电子有限公司 www.hfwhdz.com

目录

一、 ;	产品简介	3
1、	功能简介	3
	主要参数	
二、	使用说明	4
	一种。 一种。一种,一种,一种,一种,一种,一种,一种,一种,一种,一种,一种,一种,一种,一	
	软件控制介绍	
	应用电路	
3、	巡川电路	6

一、产品简介

1、功能简介

NBC24L01_V2.0,是基于挪威NORDIC公司的最新封装改版NRF24L01+无线收发IC基础上优化设计的一款高性能工作于2.4~2.5GHz ISM频段无线收发模块。模块具有体积小,距离远,功耗低,通信稳定,抗干扰性强等特点。

	主	要领域有:
	?	□移动终端
	?	□无线局域网
	?	□远程抄表系统
	?	□无线监控
	?	□无线遥控
	?	□无线遥测
	?	□数据采集
	?	□ID识别
	?	□无线门禁
	?	□玩具
	?	□报警安防系统
	?	□家庭自动化
	?	□机器人
2、	主要	是参数
		C24L01_V2.0主要有如下参数特点:
		□尺寸: 37mm x 15mm
	?	□工作电压范围:DC1.9V-DC3.6V ,Power down 模式下状态仅为1uA
	?	□2.4Ghz 全球开放ISM 频段免许可证使用
	?	□最高工作速率2Mbps,高效GFSK调制,抗干扰能力强,特别适合工业控制场合
	?	□接收发送功能合一,收发完成中断标志
	?	□125个频道,满足多点通讯和跳频通讯需求,实现组网通讯,TDMA-CDMA-FDMA
	?	□内置硬件CRC校验,开发更简单,数据传输可靠稳定
	?	□130us 的快速切换和唤醒时间
	?	□每次最多可发送接收32字节,并可软件设置发送/接收缓冲区大小2/4/8/16/32字节
	?	□模块可软件设地址,只有收到本机地址时才会输出数据(提供中断指示),可直接接各种
		单片机使用,软件编程非常方便
	?	□内置2.4Ghz 天线,无须外加天线,节省成本,具有体积小,重量轻
	?	□2Mbit/s 1Mbit/s 250Kbit/s三种可选传输速率,在2Mbit/s速率下接收时的峰值电流12.5mA,

在2Mbit/s速率下@0dBm输出时的峰值电流11mA

二、使用说明

1、硬件介绍

NBC24L01_V2.0模块带有一个 8 针2.54mm间距的接口。

接口功能如下表所示:

76年14/777				
管脚编号	nRF905管脚	功能描述		
1	GND	地		
2		电源(1.9V-3.6V)		
	VCC	强调: nRF905的供电必须保		
		证不超过3.6V,否则将烧毁。		
3	CE	使能发射/接收		
4	CSN	SPI使能,低电平有效		
5	SCK	SPI时钟		
6	MOSI	SPI输入		
7	MISO	SPI输出		
8	IRQ	中断管脚		
	1-1111	11 H1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

该接口可以直接和 3.3V的MCU 相连接。对于5V的MCU,为防止I/O口的输出灌电流过大烧毁模块,该模块和 MCU 连接需作如下处理,即在IO与NRF24L01接口间加1个限流电阻来减小灌电流。模块原理图对应的硬件实物图如下图所示(图片未经过任何处理),请用户使用时务必注意接口管脚功能和序号对应插接,否则会烧毁模块。

实物对照图1

实物对照图2

2、软件控制介绍

工作模式

nRF2401有工作模式有四种:收发模式、配置模式、空闲模式和关机模式。nRF2401的工作模式由CE和内部寄存器PWR_UP、PRIM_RX三个引脚决定,详见表。

nRF2	101	工化	乍模式
HDF/4	+ (1 1	

模式	PWR_UP	PRIM_RX	CE	FIFO 寄存器状态
接收模式	1	1	1	-
发射模式	1	0	1	数据在 TX FIFO 寄存器中
发射模式	1	0	1→0	停留在发送模式,直至数据发送完
待机模式 2	1	0	1	TX FIFO 为空
待机模式 1	1	-	0	无数据传输
掉电模式	0	-	-	-

待机模式1主要用于降低电流损耗,在该模式下晶体振荡器仍然是工作的; 待机模式2则是在当FIFO寄存器为空且CE=1时进入此模式; 待机模式下, 所有配置字仍然保留。

在掉电模式下电流损耗最小,同时nRF24L01也不工作,但其所有配置寄存器的值仍然保留。(1)、收发模式

nRF2401的收发模式有ShockBurstTM收发模式和直接收发模式两种,收发模式由器件配置字决定,具体配置将在器件配置部分详细介绍。

工作原理

发射数据时,首先将nRF24L01配置为发射模式:接着把接收节点地址TX_ADDR和有效数据TX_PLD按照时序由SPI口写入nRF24L01缓存区,TX_PLD必须在CSN为低时连续写入,而TX_ADDR在发射时写入一次即可,然后CE置为高电平并保持至少10 μ s,延迟130 μ s后发射数据;若自动应答开启,那么nRF24L01在发射数据后立即进入接收模式,接收应答信号(自动应答接收地址应该与接收节点地址TX_ADDR一致)。如果收到应答,则认为此次通信成功,TX_DS置高,同时TX_PLD从TX_FIFO中清除;若未收到应答,则自动重新发射该数据(自动重发已开启),若重发次数(ARC)达到上限,MAX_RT置高,TX FIFO中数据保留以便在次重发;MAX_RT或TX_DS置高时,使IRQ变低,产生中断,通知MCU。最后发射成功时,若CE为低则nRF24L01进入空闲模式1;若发送堆栈中有数据且CE为高,则进入下一次发射;若发送堆栈中无数据且CE为高,则进入下一次发射;若发送堆栈中无数据且CE为高,则进入空闲模式2。

接收数据时,首先将nRF24L01配置为接收模式,接着延迟130 μ s进入接收状态等待数据的到来。当接收方检测到有效的地址和CRC时,就将数据包存储在RX FIFO中,同时中断标志位RX_DR置高,IRQ变低,产生中断,通知MCU去取数据。若此时自动应答开启,接收方则同时进入发射状态回传应答信号。最后接收成功时,若CE变低,则nRF24L01进入空闲模式1。

配置字

SPI口为同步串行通信接口,最大传输速率为10 Mb/s,传输时先传送低位字节,再传送高位字节。但针对单个字节而言,要先送高位再送低位。与SPI相关的指令共有8个,使用时这些控制指令由nRF24L01的MOSI输入。相应的状态和数据信息是从MISO输出给MCU。

nRF24L0I所有的配置字都由配置寄存器定义,这些配置寄存器可通过SPI口访问。nRF24L01的配置寄存器共有25个,常用的配置寄存器如表所示。

地址 (H)	寄存器名称	功能
00	CONFIG	设置 24L01 工作模式
01	EN_AA	设置接收通道及自动应答
02	EN_RXADDR	使能接收通道地址
03	SETUP_AW	设置地址宽度
04	SETUP_RETR	设置自动重发数据时间和次数
07	STATUS	状态寄存器,用来判定工作状态
0A~0F	RX_ADDR_P0~P5	设置接收通道地址
10	TX_ADDR	设置接收接点地址
11~16	RX_PW_P0~P5	设置接收通道的有效数据宽度

3、应用电路

引脚功能及描述

nRF24L01 的封装及引脚排列如图所示。各引脚功能如下:

CE: 使能发射或接收;

CSN, SCK, MOSI, MISO: SPI 引脚端, 微处理器可通过此引脚配置 nRF24L01;

IRQ:中断标志位; VDD:电源输入端;

VSS: 电源地;

XC2, XC1: 晶体振荡器引脚;

VDD PA: 为功率放大器供电,输出为 1.8 V;

ANT1,ANT2: 天线接口;

IREF:参考电流输入。

THEI. D. J. BUILDING CO.			
引脚	名称	引脚功能	描述
1	CE	数字输入	RX 或 TX 模式选择
2	CSN	数字输入	SPI 片选信号
3	SCK	数字输入	SPI 时钟
4	MOSI	数字输入	从 SPI 数据输入脚
5	MISO	数字输入	从 SPI 数据输出脚
6	IRQ	数字输入	可屏蔽中断脚
7	VDD	电源	电源(+3V)
8	VSS	电源	接地 (0V)
9	XC2	模拟输出	晶体振荡器 2 脚
10	XC1	模拟输入	晶体振荡器 1 脚/外部时钟输入脚
11	VDD-PA	电源输出	给 RF 的功率放大器提供的+1.8V 电源
12	ANT1	天线	天线接口1
13	ANT2	天线	天线接口 2
14	VSS	电源	接地 (0V)
15	VDD	电源	电源(+3V)
16	IREP	模拟输入	参考电流
17	VSS	电源	接地 (0V)
18	VDD	电源	电源(+3V)
19	DVDD	电源输出	去耦电路电源正极端
20	VSS	电源	接地(0V)

电路原理图

图为 nRF2401 的典型应用电路,由图可知,其只需要很少外围元件。nRF2401 应用电路一般工作于 3V,它可用多种低功耗微控制器进行控制。在设计过程中,设计者可使用单鞭天线或环形天线,下图为 50 欧姆单鞭天线的应用电路。在使用不同的天线时,为了得到尽可能大的收发距离,电感电容的参数应适当调整。

