MP - Parallel Edition

Copyright 1985-2015 StataCorp LP

StataCorp

4905 Lakeway Drive

College Station, Texas 77845 USA

http://www.stata.com

800-STATA-PC 979-696-4600 stata@stata.com

979-696-4601 (fax)

Single-user 8-core Stata perpetual license:

Serial number: 10699393 Licensed to: Andong Yan

University of Southern California

Notes:

1. Unicode is supported; see helpunicode_advice.

- More than 2 billion observations are allowed; see help obs_advice.
 Maximum number of variables is set to 5000; see help set maxvar.
- . doedit "C:\Users\yadto\Dropbox\USC\ECON513\HW4\hw4 ye.do"
- . do "C:\Users\yadto\Dropbox\USC\ECON513\HW4\hw4 ye.do"
- . use "C:\Users\yadto\Dropbox\USC\ECON513\HW4\Card-Krueger.dta", clear

```
. //----question a -----
. // generate delta y
. gen deltay = EMPL1 - EMPL0
. //generate clusters by chains
. gen bk = 0
. replace bk = 1 if CHAIN == 1
(163 real changes made)
. gen kfc = 0
. replace kfc = 1 if CHAIN == 2
(80 real changes made)
. gen roy = 0
. replace roy = 1 if CHAIN == 3
(95 real changes made)
. gen wend = 0
. replace wend = 1 if CHAIN ==4
(53 real changes made)
. // reg changeiny d bk kfc roy wend no intercept
. reg deltay STATE bk kfc roy wend, nocon
     Source
                  SS
                                     MS
                                              Number of obs =
```

204200		W		T / E	2067	=	2.50
Model Residual	959.586342 29596.2262	5 386	191.917268 76.674161	Prob R-sq	F(5, 386) Prob > F R-squared		0.0301 0.0314
Total	30555.8125	391	78.1478581	_	R-squared MSE	=	0.0189 8.7564
deltay	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
STATE bk kfc roy wend	2.965651 -2.051036 -1.561428 -4.313903 -2.110868	1.12227 1.122164 1.366897 1.286916 1.471083	-1.83 -1.14 -3.35	0.009 0.068 0.254 0.001 0.152	.75912 -4.2573 -4.2489 -6.8441 -5.0032	55 24 45	5.172177 .1552819 1.126068 -1.78366 .7814698

391

```
. // coefficient of STATE is what we are interested % \left( 1\right) =\left( 1\right) \left( 1\right) \left
. // compared to result in lecture 11, p9, beta is slightly bigger in condiftional
. // --> dif-in-dif, and standard error seems to be no change.
```

```
. //----question b-----
. //store the residuals
. predict e, r
. //construct matrix Z, indicator dtc, t time, c chain
. gen d01 = 0
. gen d02 = 0
. gen d03 = 0
. gen d04 = 0
. gen d11 = 0
. \text{ gen d12} = 0
. gen d13 = 0
. gen d14 = 0
 . replace d01 = 1 if STATE == 0 & bk == 1
(34 real changes made)
. replace d02 = 1 if STATE == 0 & kfc == 1
(12 real changes made)
. replace d03 = 1 if STATE == 0 & roy == 1
(17 real changes made)
. replace d04 = 1 if STATE == 0 & wend == 1
(13 real changes made)
. replace d11 = 1 if STATE == 1 & bk == 1
(129 real changes made)
 . replace d12 = 1 if STATE == 1 & kfc == 1
(68 real changes made)
. replace d13 = 1 if STATE == 1 & roy == 1
(78 real changes made)
. replace d14 = 1 if STATE == 1 & wend == 1
(40 real changes made)
. mkmat d01 d02 d03 d04 d11 d12 d13 d14, mat(z) //this is matirx z
. mkmat e, mat(e) // this is vector e
. //number of observations in each cluster % \left( 1\right) =\left( 1\right) \left( 1\right) \left(
```

```
. forval i =1/4 {
 2. qui sum d0`i'
  3. qui gen n0`i' = r(sum)
 4. qui sum d1`i'
 5. qui gen n1'i' = r(sum)
  6. }
. sum n01 n02 n03 n04 n11 n12 n13 n14
   Variable
                     Obs
                                       Std. Dev.
                                Mean
                                                         Min
                                                                    Max
                      391
                                                          34
                                                                     34
        n01
                                   34
                                                0
                                                          12
                                                                     12
        n02
                      391
                                   12
                                                0
                      391
                                   17
                                                          17
                                                                     17
        n03
                                                0
        n 0 4
                      391
                                   13
                                                          13
                                                                     13
        n11
                      391
                                  129
                                                0
                                                         129
                                                                    129
        n12
                      391
                                   68
                                                0
                                                          68
                                                                     68
         n13
                      391
                                   78
                                                0
                                                          78
                                                                     78
         n14
                      391
                                   40
                                                0
                                                          40
                                                                     40
. mata:
                                            ---- mata (type end to exit) --
: z = st_matrix("z")
: e = st matrix("e")
: z2inv = invsym(z'*z)
: I = I(391)
: etilde = (I-z*z2inv*z')*e
: variance = (etilde'*etilde)/(391-8-1)
: st_matrix("var", variance)
: end
. scalar vartilde = var[1,1]
. mat list var
symmetric var[1,1]
r1 76.781702
. sum e
   Variable
                      Obs
                                Mean
                                         Std. Dev.
                                                       Min
                                                                    Max
                      391
                             1.51e-08 8.711358 -41.44896
                                                               34.14522
```

```
\cdot scalar sdbar = r(sd)
 . scalar varbar = sdbar^2
   . display varbar
75.887759
. //it appears that varbar is smaller than vartilde, which is weird, I take the
 . // --> absolute value of their difference
 . scalar rhohat = (vartilde - varbar)/varbar
. display rhohat
 .01177981
 . scalar varcluster = rhohat * varbar
 . scalar varindio = (1-rhohat)*varbar
 . // correction factor % \left( 1\right) =\left( 1\right) \left( 1\right) \left(
 . scalar L = 391/8
 . scalar correct = L*rhohat + (1-rhohat)
 . display correct
1.5639582
 . //corrected standard error
 . scalar correctvar = correct*rhohat
 . scalar correctsd = sqrt(correctvar)
  . display correctsd
 .1357318
 . //----question d-----
 . //I dont know how to set up matrix \mathbf{V}, so I did not do this one
 . //----question e -----
  . gen sbk = STATE*bk
 . gen skfc = STATE*kfc
 . gen sroy = STATE*roy
```

. gen swend = STATE*wend

. reg deltay STATE bk kfc roy wend sbk skfc sroy swend, nocon note: swend omitted because of collinearity $\,$

Source	SS	df	MS		er of obs	=	391
Model Residual	1225.20219 29330.6103	8 383	153.150274 76.581228		,	= =	2.00 0.0454 0.0401
				- 1	R-squared	. =	0.0200
Total	30555.8125	391	78.1478581	. Root	MSE	=	8.7511
deltay	Coef.	Std. Err.	t	P> t	[95% C	onf.	Interval]
STATE	3.583173	2.793814	1.28	0.200	-1.9099	59	9.076306
bk	-3.367647	1.500796	-2.24	0.025	-6.3184	78	4168159
kfc	2.041667	2.526216	0.81	0.419	-2.9253	22	7.008656
roy	-3.867647	2.122446	-1.82	0.069	-8.0407	52	.3054584
wend	-2.576923	2.42711	-1.06	0.289	-7.3490	52	2.195206
sbk	1.046102	3.263654	0.32	0.749	-5.370	82	7.463024
skfc	-4.856457	3.913229	-1.24	0.215	-12.550	56	2.837643
sroy	-1.161039	3.645817	-0.32	0.750	-8.3293	61	6.007284
swend	0	(omitted)					

. //Yes, we can estimate the clustered standard errors since each variable is

. //--> cluster specific, so we still can calculate

. //----question f -----

. reg deltay STATE bk kfc roy wend, nocon vce(boot)
(running regress on estimation sample)

deltay	Observed Coef.	Bootstrap Std. Err.	Z	P> z		-based Interval]
STATE	2.965651	1.511061	1.96	0.050	.0040244	5.927277
bk	-2.051036	1.598939	-1.28	0.200	-5.184899	1.082827
kfc	-1.561428	1.261104	-1.24	0.216	-4.033146	.9102901
roy	-4.313903	1.446553	-2.98	0.003	-7.149094	-1.478711
wend	-2.110868	1.744677	-1.21	0.226	-5.530372	1.308635

^{. //} the standard error grows bigger compared to a $\,$

end of do-file

.