Numerical Computations Project Phase#1

Fall Semester 2021

Veronica Romany Hanna 19016156

Norah Ahmed Hassan 19016810

Mariam Tarek Mostafa 19016637

Mariam Mohamed Ahmed 19017274

Yara Hossam Abdelaziz 19016871

Problem Statement

- Implementation of a program which takes an input of a system of linear equations and solves it using the desired method.
- Compare and analyze the behavior of the different numerical methods used for solving system of linear equations:
 - 1. Gauss Elimination.
 - 2. Gauss Jordan.
 - 3. LU Decomposition.
 - 4. Gauss Seidel.
 - 5. Jacobi Iteration.

Design Decisions

- 1. The program is written in Python.
- 2. The equations can be of any format.
- 3. Number of equations must be equal to the number of variables. Otherwise, an error will be displayed.
- 4. Invalid input format generates an error.
- 5. Partial pivoting is applied when applicable.
- 6. Users can set the decimal rounding value. If not chosen, the default value is 4.
- Coefficients must be numbers.
- 8. Each variable can be of any combination of letters and numbers but it must start with a letter.

- 9. Any operator out of (+,-,/,..,=) is considered invalid.
- In Gauss Seidel and Jacobi methods, the diagonal elements must be nonzero. Otherwise, an error will be displayed.

Pseudocode for each method

1. Gauss Elimination

Start

Get A,B, numberofunknowns,noofdecimal

If rankA != rankAug

Return System is inconsistent and there is no solution

Else if rankA equals rankAug but less than number of unknowns

Return system has infinite number of solution

Else

For counter i in matrix A

Get the maximum abs element in column i

If(the element in the diagonal !=maxelement)

for k in range(i+1,n): //pivoting is applied

if abs(A[k,i]) > abs(A[i,i]):

A[[i,k]] = A[[k,i]]

f[[i,k]] = f[[k,i]]

End if

```
For j in range(i+1,n) //elimination  m = A[j,i]/A[i,i] //get the multiply \\  roundm=round(m,noofdecimal) \\  A[j,:] = A[j,:] - roundm*A[i,:] \\  f[j] = f[j] - roundm*f[i]
```

End For

Return Back_Subs(A,f,noofdecimal) //after finishing pivioting and forward elimination we call backward substitution function

Function Back_Subs(A,f,noofdecimal):

- Start
- Get A,f,noofdecimal
- Declare x the solution vector

```
 x[last index] = round(f[n-1]/A[n-1,n-1],noofdecimal)  for i in range(n-2,-1,-1):  sum_{\_} = 0  for j in range(i+1,n):  sum_{\_} = round(sum_{\_} + A[i,j]*x[j],noofdecimal)   x[i] = round((f[i] - sum_{\_})/A[i,i],noofdecimal)  End for
```

return x

2. Gauss Jordan

Gauss Jordan

Start

Get A,B, numberofunknowns,noofdecimal

If rankA != rankAug

Return System is inconsistent and there is no solution

Else if rankA equals rankAug but less than number of unknowns

Return system has infinite number of solution

Else

For counter i in matrix A

Get the maximum abs element in column i

If(the element in the diagonal !=maxelement)

For k in range(i+1,n): //pivoting is applied

if abs(A[k,i]) > abs(A[i,i]):

A[[i,k]] = A[[k,i]]

f[[i,k]] = f[[k,i]]

End if

End for

End if

End For

return 0,x,A,runtime

```
For counter i in matrix A
              For counter j in matrix A
            If i not equal j
                  pro = A[j][i] / A[i][i];
                   roundmo=round(pro,noofdecimal)
                   for k in range(n):
                         A[j][k] = A[j][k] - (A[i][k]) * roundmo;
                End For
                      f[j]=f[j]-f[i]*roundmo
                   End IF
                   End For
            End For
for i in matrix A:
            f[i] = f[i]/A[i][i]
End For
      x = np.zeros(n)
For i in range(n):
      x[i] = round(f[i],noofdecimal)
End for
```

End

3. LU Decomposition

Function forward_substitution(L, b ,sigFigs):

$$X[0] = b[0] / L[0]$$
For i=0 to n-1

Temp = Temp -
$$(L[i,j] * x[j])$$

Return X

Function backward_substitution(U, d, sigFigs)

Temp =
$$d[i]$$

Temp
$$-=$$
 U[i,j] * x[j]

Return x

 $\textbf{Function} \ doolittle (A, \ b, sigFigs, \ unknownsNumber):$

U = zero matrix

L = identity matrix

If rankA != rankAug

Return System is inconsistent and there is no solution

Else if rankA equals rankAug but less than number of unknowns

Return system has infinite number of solution

Else

For counter i in matrix A

Get the maximum abs element in column i

If(the element in the diagonal !=maxelement)

For k=i+1 to n-1: //pivoting is applied

if abs(A[k,i]) > abs(A[i,i]):

A[[i,k]] = A[[k,i]]

f[[i,k]] = f[[k,i]]

For k=i+1 to n-1

A[k,i] = A[k,i]/A[i,i]

For j=i+1 to n-1

A[k,j] = A[k,i]*A[i,j]

Extract L and U from compact representation of A

d = forward_substitution(L, b, sigFigs)

x =backward_substitution(U, d, sigFigs)

Return L,U,x

Function crout(A, b, sigFigs, unknownsNumber):

L = zero matrix

U = identity matrix

If rankA != rankAug

Return System is inconsistent and there is no solution

Else if rankA equals rankAug but less than number of unknowns

Return system has infinite number of solution

Else

For i=0 to n-1

For j=i to n-1

Lower sum = 0

For k=0 to j-1

Lower sum += L[j,k] * U[k,i]

L[j,i] = A[j,i] - Lower sum

For j=i+1 to n-1

Upper sum = 0

For k=0 to i-1

Upper sum += L[i,k] * U[k,j]

U[i,j] = (A[i,j] -Upper sum) / L[i, i]

d = forward_substitution(L, b, sigFigs)

x =backward_substitution(U, d, sigFigs)

Return L, U, x

Function chelosky(A, b, sigFigs, unknownsNumber):

If rankA != rankAug

Return System is inconsistent and there is no solution

Else if rankA equals rankAug but less than number of unknowns

Return system has infinite number of solution

Else if matrixA equals matrix A transpose

L = zero matrix

For j=0 to n-1

Fo r=j to n-1

If diagonal element

summation = 0

For k=0 to j-1

```
summation+= L[i,k] power 2
      L[i,j] =squareroot(A[i,j]-summation)
     Else:
      summation = 0
      For k=0 ti j-1
             summation += L[i,k]*L[j,k]
      L[i,j] = (A[i,j] - summation) / L[j,j]
   d = forward_substitution(L, b, sigFigs)
  x =backward_substitution(U, d, sigFigs)
  Return L,L transpose,x
 Else:
  Return "System is not symmetric"
   4. Gauss Seidel
for i=0 to length Array
      for j=0 to length Array-i-1
         if A[j][0] < A[j + 1][0]
             swap A[j] with A[j+1]
while iteration < maximum numbers of iterations
      for i=0 to length Array
             new initial guess [i] = B[i] - A[i][j]*old intialGuess[j] / A[i][i]
```

```
old initial guess[i] = new initial guess[i]

Ea = norm of new initial guess and old initial guess

If (Ea < Absoluter relative error)

Return new initial guess
```

Return new initial guess

```
5. Jacobi Iteration
function jacobi(x, A, b ,tolerance ,maxIteraions, precision):
 FOR k = 0 to maxIteraions:
  FOR i = 0 to n-1
    sum \leftarrow 0
    FOR j = 0 to n-1
     IF i == j:
       sum = sum + b<sub>i</sub> rounded to the specified precision
     ENDIF
       IF i != j:
       sum \leftarrow sum - x_j^*A_{ij} rounded \ to \ the \ specified \ precision
     ENDIF
       IF A_{ii} == 0:
     return x, Error
```

ENDIF

 $x_new_i\!\leftarrow\!sum$ / A_{ii} rounded to the specified precision

ENDFOR

Ea \leftarrow calculate norm of x-new - x

IF Ea < tol

return x_new, noError

ENDIF

ENDFOR

 $x \leftarrow x_new$

ENDFOR

return x, noError

Sample runs

1. Gauss Elimination

2. Gauss Jordan

- 3. LU Decomposition
 - a. Doolittle

b. Crout

c. Cholesky

4. Gauss Seidel

5. Jacobi Iteration

Solving System of Linear Equations Solving System of Linear Equations	S	
	2x+y+z=5 3x+2z=15 2x+y+4z=8	
Enter your equations :		
)	Solve
Choose precision :	3 🔻	Submit
Choose method to solve your equations :	Jacobi ▼	Runtime : 0.000000
Error! Division by zero	Enter initial guess	000
	Enter Number of iterations Enter Absolute relative error	25 0.001

6. Input Validation

Comparison between different methods

P.O.C	Time Complexity	Convergence	Best Case	Approximate error
Gauss Elimination	O (n³)	Naive Gauss method will converge as it's a Direct Method with a constraint that the Coefficient Matrix is not Singular.	When the absolute of the pivot element is bigger than the absolute of the other elements under it, so it will do the same steps which are equal in complexity	A direct method so it calculates an exact solution for equations

Gauss-Jord an	O (n³)	Gauss-Jordan method will converge as it's a Direct Method with a constraint that the Coefficient Matrix is not Singular.	it will always do the same steps for any matrix so all the cases are equal in complexity	a direct method so it calculates an exact solution for equations but there may be some errors due to round off errors in floating point arithmetic
------------------	----------	--	--	--

LU Decompositi on

Gauss-Seid el	O (n ²)	Iterations are repeated until the convergence criterion is satisfied. As any other iterative method, the Gauss-Seidel method has problems. It may not converge or it converges very slowly. If the coefficient matrix A is Diagonally Dominant Gauss-Seidel is guaranteed to converge.	If the solution is converging & the coefficient matrix A is diagonally dominant, the best available estimates will be employed	More iteration will give more precision so the approximate errors will decreased
------------------	----------------------	--	--	--

Jacobi-Iterat ion	t O(n²)	Iterations are repeated until the convergence criterion is satisfied. It may not converge or it converges very slowly.	if the solution is converging, the best available estimates will be employed	More iteration will give more precision so the approximate errors will decreased
		If the coefficient matrix A is diagonally dominant, Jacobi is guaranteed to converge.		

Data structures used

- Arrays, Lists: used for storing the matrix form of the equations and results.
- Sets: Used while filtering the variables from equations to avoid repetition.