Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/JP05/003544

International filing date: 24 February 2005 (24.02.2005)

Document type: Certified copy of priority document

Document details: Country/Office: JP

Number: 2004-049142

Filing date: 25 February 2004 (25.02.2004)

Date of receipt at the International Bureau: 14 April 2005 (14.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

24.02.2005

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出願年月日 Date of Application:

2004年 2月25日

出 願 番 号 Application Number:

特願2004-049142

[ST. 10/C]:

[JP2004-049142]

出 願 人
Applicant(s):

富士写真フイルム株式会社

2005年 3月31日

特許庁長官 Commissioner, Japan Patent Office ·) · [1]

【書類名】 特許願 【整理番号】 31-4038 【提出日】 平成16年 2月25日 【あて先】 特許庁長官殿 【国際特許分類】 CO8L 1/12 G02B 5/30 G02F 1/13 【発明者】 神奈川県南足柄市中沼210番地 富士写真フイルム株式会社内 【住所又は居所】 【氏名】 大谷 純生 【発明者】 【住所又は居所】 神奈川県南足柄市中沼210番地 富士写真フイルム株式会社内 【氏名】 西浦 陽介 【発明者】 神奈川県南足柄市中沼210番地 富士写真フイルム株式会社内 【住所又は居所】 【氏名】 川西 弘之 【特許出願人】 【識別番号】 000005201 【氏名又は名称】 富士写真フイルム株式会社 【代理人】 【識別番号】 100105647 【弁理士】 【氏名又は名称】 小栗 昌平 【電話番号】 03-5561-3990 【選任した代理人】 【識別番号】 100105474 【弁理士】 【氏名又は名称】 本多 弘徳 【電話番号】 03-5561-3990 【選任した代理人】 【識別番号】 100108589 【弁理士】 【氏名又は名称】 市川 利光 【電話番号】 03-5561-3990 【選任した代理人】 【識別番号】 100115107 【弁理士】 【氏名又は名称】 高松 猛 【電話番号】 03-5561-3990 【選任した代理人】 【識別番号】 100090343 【弁理士】 【氏名又は名称】 濱田 百合子 【電話番号】 03-5561-3990 【手数料の表示】 【予納台帳番号】 092740 【納付金額】 21,000円 【提出物件の目録】 【物件名】 特許請求の範囲 1

【物件名】

明細書 1

【物件名】図面 1【物件名】要約書 1【包括委任状番号】0003489

【書類名】特許請求の範囲

【請求項1】

セルロースを構成するグルコース単位の水酸基を炭素原子数が2以上のアシル基で置換 して得られたセルロースアシレートからなるフィルムであって、グルコース単位の2位の 水酸基のアシル基による置換度をDS2、3位の水酸基のアシル基による置換度をDS3 、6位の水酸基のアシル基による置換度をDS6としたときに、下記式(I)および(II)を満たし、且つ下記式(III)および(IV)で定義される R e (λ) および R t h (λ) が 、下記式(V)かつ(VI)を満たすことを特徴とする光学用セルロースアシレートフィル ム。

- (I) : 2. $0 \le D S 2 + D S 3 + D S 6 \le 3$. 0
- (II) : $DS6/(DS2+DS3+DS6) \ge 0.320$
- (III) : Re $(\lambda) = (n \times n y) \times d$
- (IV) : R t h (λ) = { (n x + n y) /2-n z} × d
- $: 4.6 \le Re (6.3.0) \le 2.0.0$ (V)
- (VI) $: 7.0 \le R t h (6.3.0) \le 3.5.0$

[式中、Re(λ)は波長 λ nmにおける正面レターデーション値(単位:nm)、Rt $h(\lambda)$ は波長 λ nmにおける膜厚方向のレターデーション値(単位:nm)である。また nxはフィルム面内の遅相軸方向の屈折率であり、nyはフィルム面内の進相軸方向の屈 折率であり、nzはフィルムの厚み方向の屈折率であり、dはフィルムの厚さである。]

【請求項2】

下記式(VII)を満たすことを特徴とする請求項1に記載の光学用セルロースアシレー トフィルム。

(VII) : $180 \le R t h (630) \le 350$

【請求項3】

該アシル基がアセチル基であることを特徴とする請求項1または2に記載の光学用セル ロースアシレートフィルム。

【請求項4】

棒状または円盤状化合物からなるレターデーション発現剤を少なくとも1種含むことこ とを特徴とする請求項1~3のいずれかに記載の光学用セルロースアシレートフィルム。

【請求項5】

可塑剤、紫外線吸収剤、及び剥離促進剤のうち少なくとも1種含むことことを特徴とす る請求項1~4のいずれかに記載の光学用セルロースアシレートフィルム。

【請求項6】

フィルムの膜厚が40~110μmであることを特徴とする請求項1~5のいずれかに 記載の光学用セルロースアシレートフィルム。

【請求項7】

添加剤の含有量がフイルム質量の10質量%以上30質量%以下であることを特徴とす る請求項1~6のいずれかに記載の光学用セルロースアシレートフィルム。

【請求項8】

25℃10%RHにおけるRe値と25℃80%RHにおけるRe値の差△Re(=R e 1 0 % R H − R e 8 0 % R H)が 1 2 n m以下であり、 2 5 ℃ 1 0 % R H における R t h値と25℃80%RHにおけるRth値の差ΔRthが32nm以下であることを特徴 とする請求項1~7のいずれかに記載の光学用セルロースアシレートフィルム。

【請求項9】

25℃80%RHにおける平衡含水率が3.4%以下である請求項1~8のいずれかに 記載の光学用セルロースアシレートフィルム。

【請求項10】

60℃、95%RH、24hrの透湿度(膜厚80μm換算)が、400g/m²・24 h r以上 $2 3 0 0 g/m^2 \cdot 2 4 h r$ 以下である請求項 $1 \sim 9$ のいずれかに記載の光学用セ ルロースアシレートフィルム。

【請求項11】

80℃、90% R H の条件下に48時間静置した場合の質量変化が、0~5%であることを特徴とする請求項1~10のいずれかに記載の光学用セルロースアシレートフィルム

【請求項12】

60℃、95%RHの条件下に24時間静置した場合の寸度変化および90℃、5%RHの条件下に24時間静置した場合の寸度変化が、いずれも0~5%であることを特徴とする請求項1~11のいずれかに記載の光学用セルロースアシレートフィルム。

【請求項13】

ガラス転移温度 T g が 8 0 ~ 1 8 0 $\mathbb C$ であることを特徴とする請求項 1 ~ 1 2 に記載の光学用セルロースアシレートフィルム。

【請求項14】

弾性率が、 $1500\sim5000$ MPaであることを特徴とする請求項 $1\sim13$ に記載の光学用セルロースアシレートフィルム。

【請求項15】

光弾性係数が、 $5.0 \times 1.0^{-13} \, \mathrm{cm^2/dyne}$ 以下であることを特徴とする請求項 $1 \sim 1.4$ のいずれかに記載の光学用セルロースアシレートフィルム。

【請求項16】

ヘイズが $0.01 \sim 2\%$ である請求項 $1 \sim 15$ のいずれかに記載の光学用セルロースアシレートフィルム。

【請求項17】

2 次平均粒子径が 0.2 以上 1.5 μ m以下の二酸化珪素微粒子を有することを特徴とする請求項 $1\sim1$ 6 のいずれかに記載の光学用セルロースアシレートフィルム。

【請求項18】

請求項 $1 \sim 1$ 7のいずれかに記載の光学用セルロースアシレートフィルムを少なくとも1枚、偏光子の保護膜として用いた偏光板。

【請求項19】

偏光板の液晶セルと反対側に配置される保護膜の表面にハードコート層、防眩層、反射 防止層の少なくとも一層を設けたことを特徴とする請求項18に記載の偏光板。

【請求項20】

防湿処理を施した袋に包装されており、包装した状態での袋内の湿度が25で43% RH \sim 65% RHであることを特徴する請求項18または19に記載の偏光板。

【請求項21】

防湿処理を施した袋に包装されており、包装した状態での袋内の湿度が偏光板を液晶パネルに貼り合せる際の湿度に対して15%RH以内の差であることを特徴とする請求項18または19に記載の偏光板。

【請求項22】

請求項 $1\sim13$ に記載の光学用セルロースアシレートフィルム、または請求項 $18\sim2$ 1に記載の偏光板のいずれかを少なくとも1枚用いたOCBまたはVAモード液晶表示装置。

【請求項23】

請求項 $1\sim1$ 3に記載の光学用セルロースアシレートフィルム、または請求項 $18\sim2$ 1に記載の偏光板のいずれかを1枚のみ用いたVAモード液晶表示装置。

【請求項24】

請求項1~13に記載の光学用セルロースアシレートフィルム、または請求項18~19に記載の偏光板のいずれか1枚をバックライト側に用いたVAモード液晶表示装置。

【書類名】明細書

【発明の名称】セルロースアシレートフィルム、偏光板及び液晶表示装置 【技術分野】

[0001]

本発明は、セルロースアシレートフィルム、それを用いた偏光板、及び液晶表示装置に 関する。

【背景技術】

[0002]

液晶表示装置は、低電圧・低消費電力で小型化・薄膜化が可能など様々な利点からパーソナルコンピューターや携帯機器のモニター、テレビ用途に広く利用されている。このような液晶表示装置は液晶セル内の液晶の配列状態により様々なモードが提案されているが、従来は液晶セルの下側基板から上側基板に向かって約90° 捩れた配列状態になるTNモードが主流であった。

一般に液晶表示装置は、液晶セル、光学補償シート、偏光子から構成される。光学補償シートは画像着色を解消したり、視野角を拡大するために用いられており、延伸した複屈折フィルムや透明フィルムに液晶を塗布したフィルムが使用されている。例えば、特許第2587398号公報ではディスコティック液晶をトリアセチルセルロースフィルム上に塗布し配向させて固定化した光学補償シートをTNモードの液晶セルに適用し、視野角を広げる技術が開示されている。しかしながら、大画面で様々な角度から見ることが想定されるテレビ用途の液晶表示装置は視野角依存性に対する要求が厳しく、前述のような手法をもってしても要求を満足することはできていない。そのため、IPS(In-Plane Switching)モード、OCB(Optically Compensatory Bend)モード、VA(Vertically Aligned)モードなど、TNモードとは異なる液晶表示装置が研究されている。特にVAモードはコントラストが高く、比較的製造の歩留まりが高いことからTV用の液晶表示装置として着目されている。

[0003]

セルロースアシレートフィルムは、他のポリマーフィルムと比較して、光学的等方性が高い(レターデーション値が低い)との特徴がある。従って、光学的等方性が要求される用途、例えば偏光板には、セルロースアセテートフィルムを用いることが普通である。

一方、液晶表示装置の光学補償シート(位相差フィルム)には、逆に光学的異方性(高いレターデーション値)が要求される。特にVA用の光学補償シートでは30乃至200mmの面内レターデーション(Re)、70乃至400mmの厚さ方向レターデーション(Rth)が必要とされる。従って、光学補償シートとしては、ポリカーボネートフィルムやポリスルホンフィルムのようなレターデーション値が高い合成ポリマーフィルムを用いることが普通であった。

以上のように光学材料の技術分野では、ポリマーフィルムに光学的異方性(高いレターデーション値)が要求される場合には合成ポリマーフィルムを使用し、光学的等方性(低いレターデーション値)が要求される場合にはセルロースアセテートフィルムを使用することが一般的な原則であった。

[0004]

特許文献1には、従来の一般的な原則を覆して、光学的異方性が要求される用途にも使用できる高いレターデーション値を有するセルロースアセテートフィルムが開示されている。該特許ではセルローストリアセテートで高いレターデーション値を実現するために、少なくとも2つの芳香環を有する芳香族化合物、中でも1,3,5ートリアジン環を有する化合物を添加し、延伸処理を行っている。

一般にセルローストリアセテートは延伸しにくい高分子素材であり、複屈折率を大きくすることは困難であることが知られているが、添加剤を延伸処理で同時に配向させることにより複屈折率を大きくすることを可能にし、高いレターデーション値を実現している。このフィルムは偏光板の保護膜を兼ねることができるため、安価で薄膜な液晶表示装置を提供することができる利点がある。

特許文献 2 には炭素数 $2\sim4$ のアシル基を置換基として有し、アセチル基の置換度をA とし、プロピオニル基またはブチリル基の置換度をBとしたとき、式2.0≤A+B≤3 . 0及び式A<2. 4を同時に満たすセルロースエステルを含有する光学フィルムであっ て、更に、波長590nmにおける遅相軸方向の屈折率Nx及び進相軸方向の屈折率Ny が式 0. 0 0 0 5 ≤ N x - N y ≤ 0. 0 0 5 0 を満たすことを特徴とする光学フィルムが 開示されている。特許文献3にはVAモード液晶表示装置に用いられる偏光板において、 該偏光板が、偏光子と光学的に二軸性の混合脂肪酸セルロースエステルフィルムとを有し 、液晶セルと偏光子の間に該光学的に二軸性の混合脂肪酸セルロースエステルフィルムが 配置されていることを特徴とする偏光板が開示されている。

[0005]

上記特許文献に記載の方法は、安価でかつ薄い液晶表示装置が得られる点で有効である 。しかしながら、近年、更に高いレターデーション値が要求され、レターデーション発現 剤の添加量を増やしたり、延伸倍率を高めたりすることが必要となってきたが、添加剤が ブリードアウトしたり、延伸時に破断したりするため所望のレターデーション値を実現す ることが困難となってきた。また、液晶表示装置が各種環境下で使用されることが多くな り、上記技術を用いたセルロールセステルフィルムではその環境下で光学補償機能が変化 するという問題があった。特に、液晶セルと貼り合せる際に、セルロースセステルフィル ムが環境の変化、特に湿度の影響を受け、そのReレターデーション値、Rthレターデ ーション値が変化し、光学補償能が変わるという問題があった。この問題の解決が要望さ れていた。

【特許文献1】欧州特許出願公開0911656A2号明細書

【特許文献2】特開2002-71957号公報

【特許文献3】特開2002-270442号公報

【発明の開示】

【発明が解決しようとする課題】

[0006]

本発明の目的は、面内及び厚さ方向レターデーションの発現性に優れ、環境湿度による レターデーション値の変動が少ないセルロースアシレートフィルム、このフィルムを用い た偏光板を提供することである。

本発明の第二の目的は、視野角特性変化の少ない液晶表示装置を提供することである。 【課題を解決するための手段】

[0007]

これらの目的は以下の手段によって達成された。

- 1. セルロースを構成するグルコース単位の水酸基を炭素原子数が2以上のアシル基で 置換して得られたセルロースアシレートからなるフィルムであって、グルコース単位の2 位の水酸基のアシル基による置換度をDS2、3位の水酸基のアシル基による置換度をD S3、6位の水酸基のアシル基による置換度をDS6としたときに、下記式(I)および (II) を満たし、且つ下記式 (III) および (IV) で定義される R e (λ)および R t h (λ)が、下記式(V)かつ(VI)を満たすことを特徴とする光学用セルロースアシレートフィ ルム。
 - : 2. $0 \le DS2 + DS3 + DS6 \le 3$. 0 (I)
 - : $DS6/(DS2+DS3+DS6) \ge 0.320$
 - (III) : Re $(\lambda) = (n x n y) \times d$
 - : R t h (λ) = { (nx+ny) / 2-nz} × d (IV)
 - (V) $: 4.6 \le \text{Re} (6.3.0) \le 2.0.0$
 - (VI) : $7.0 \le R t h (6.3.0) \le 3.5.0$

[式中、Re(λ)は波長 λ nmにおける正面レターデーション値(単位:nm)、Rt h(λ)は波長λ n m における膜厚方向のレターデーション値(単位: n m) である。また nxはフィルム面内の遅相軸方向の屈折率であり、nyはフィルム面内の進相軸方向の屈 折率であり、nzはフィルムの厚み方向の屈折率であり、dはフィルムの厚さである。]

2. 下記式 (VII) を満たすことを特徴とする上記 1 に記載の光学用セルロースアシレートフィルム。

(VII) : $180 \le R t h (630) \le 350$

- 3. 該アシル基がアセチル基であることを特徴とする上記1または2に記載の光学用セルロースアシレートフィルム。
- 4. 棒状または円盤状化合物からなるレターデーション発現剤を少なくとも 1 種含むことことを特徴とする上記 $1\sim3$ のいずれかに記載の光学用セルロースアシレートフィルム。
- 5. 可塑剤、紫外線吸収剤、及び剥離促進剤のうち少なくとも1種含むことことを特徴とする上記1~4のいずれかに記載の光学用セルロースアシレートフィルム。
- 6. フィルムの膜厚が $40 \sim 110 \, \mu$ m であることを特徴とする上記 $1 \sim 5$ のいずれかに記載の光学用セルロースアシレートフィルム。
- 7. 添加剤の含有量がフイルム質量の10質量%以上30質量%以下であることを特徴とする上記1~6のいずれかに記載の光学用セルロースアシレートフィルム。
- 8. 25 $\mathbb{C}10$ % R H における R e 値と 25 $\mathbb{C}80$ % R H における R e 値の差 Δ R e (= R e 10 % R H R e 80 % R H) が 12 n m以下であり、 25 $\mathbb{C}10$ % R H における R t h 値と 25 $\mathbb{C}80$ % R H における R t h 値の差 Δ R t h が 32 n m以下であることを特徴とする上記 $1\sim7$ のいずれかに記載の光学用セルロースアシレートフィルム。
- 9. 25 % 80 % RH における平衡含水率が3. 4%以下である上記 $1 \sim 8$ のいずれかに記載の光学用セルロースアシレートフィルム。
- 10.60℃、95%RH、24hrの透湿度(膜厚80μm換算)が、400g/m²・24hr以上2300g/m²・24hr以下である上記1~9のいずれかに記載の光学用セルロースアシレートフィルム。
- 11.80℃、90%RHの条件下に48時間静置した場合の質量変化が、0~5%であることを特徴とする上記1~10のいずれかに記載の光学用セルロースアシレートフィルム。
- 12.60 \mathbb{C} 、95% R H の条件下に24時間静置した場合の寸度変化および90 \mathbb{C} 、5% R H の条件下に24時間静置した場合の寸度変化が、いずれも0~5%であることを特徴とする上記1~11のいずれかに記載の光学用セルロースアシレートフィルム。
- 13. ガラス転移温度 T g が 80 \sim 180 \sim であることを特徴とする上記 $1\sim$ 12 に記載の光学用セルロースアシレートフィルム。
- 14. 弾性率が、 $1500\sim5000$ MPaであることを特徴とする上記 $1\sim13$ に記載の光学用セルロースアシレートフィルム。
- 15. 光弾性係数が、 $5.0 \times 1.0^{-13} \text{ cm}^2/\text{d}$ y n e 以下であることを特徴とする上記 $1 \sim 1.4$ のいずれかに記載の光学用セルロースアシレートフィルム。
- 16. ヘイズが 0. 01~2%である上記 1~15のいずれかに記載の光学用セルロースアシレートフィルム。
- 17. 2次平均粒子径が0.2以上 1.5μ m以下の二酸化珪素微粒子を有することを特徴とする上記 $1\sim16$ のいずれかに記載の光学用セルロースアシレートフィルム。
- 18. 上記 $1 \sim 1$ 7 のいずれかに記載の光学用セルロースアシレートフィルムを少なくとも 1 枚、偏光子の保護膜として用いた偏光板。
- 19. 偏光板の液晶セルと反対側に配置される保護膜の表面にハードコート層、防眩層、反射防止層の少なくとも一層を設けたことを特徴とする上記18記載の偏光板。
- 20. 防湿処理を施した袋に包装されており、包装した状態での袋内の湿度が25℃で 43%RH $\sim65\%$ RHであることを特徴する上記 18または 19 に記載の偏光板。
- 21. 防湿処理を施した袋に包装されており、包装した状態での袋内の湿度が偏光板を液晶パネルに貼り合せる際の湿度に対して15%RH以内の差であることを特徴とする上記18または19に記載の偏光板。
- 22. 上記1~13に記載の光学用セルロースアシレートフィルム、または上記18~ 21に記載の偏光板のいずれかを少なくとも1枚用いたOCBまたはVAモード液晶表示

装置。

23. 上記 $1 \sim 13$ に記載の光学用セルロースアシレートフィルム、または上記 $18 \sim 21$ に記載の偏光板のいずれかを 1 枚のみ用いた VA モード液晶表示装置。

24. 上記1~13に記載の光学用セルロースアシレートフィルム、または上記18~ 19に記載の偏光板のいずれか1枚をバックライト側に用いたVAモード液晶表示装置。

【発明の効果】

[0008]

本発明の偏光板は、面内及び厚さ方向レターデーションの発現性に優れ、環境湿度によるレターデーション値の変動が少ない。

また、本発明の液晶表示装置は、視野角特性変化が少ない。

【発明を実施するための最良の形態】

[0009]

以下、本発明を詳細に説明する。

(セルロースアシレート)

まず、本発明が好ましく用いられるセルロースアシレートについて詳細に記載する。セルロースを構成する $\beta-1$, 4結合しているグルコース単位は、2位、3位および6位に遊離の水酸基を有している。セルロースアシレートは、これらの水酸基の一部または全部を炭素数 2 以上のアシル基によりエステル化した重合体(ポリマー)である。アシル置換度は、2位、3位および6位それぞれについて、セルロースの水酸基がエステル化している割合(100%のエステル化は置換度1)を意味する。

全アシル置換度、即ち、DS2+DS3+DS6は2.00~3.00が好ましく、より好ましくは2.2~2.90であり、特に好ましくは2.40~2.82である。また、D6S/(DS2+DS3+DS6)は0.32以上が好ましく、より好ましくは0.32以上、特に好ましくは0.324~0.340である。ここで、DS2はグルコース単位の2位の水酸基のアシル基による置換度(以下、「2位のアシル置換度」とも言う)であり、DS3は3位の水酸基のアシル基による置換度(以下、「3位のアシル置換度」とも言う)であり、DS6は6位の水酸基のアシル基による置換度である(以下、「6位のアシル置換度」とも言う)。

[0010]

本発明のセルロースアシレートに用いられるアシル基は1種類だけでもよいし、あるいは2種類以上のアシル基が使用されていてもよい。2種類以上のアシル基を用いるときは、そのひとつがアセチル基であることが好ましい。2位、3位及び6位の水酸基のアセチル基による置換度の総和をDSAとし、2位、3位及び6位の水酸基のアセチル基以外のアシル基による置換度の総和をDSBとすると、DSA+DSBの値は、より好ましくは2.2~2.80である。また、DSBは12.2~2.80であり、特には1.7以上である。さらにDSBはその28%以上が6位水酸基の置換基であるが、より好ましくは30%以上が6位水酸基の置換基であり、31%がさらに好ましく、特には32%以上が6位水酸基の置換基であることも好ましい。また更に、セルロースアシレートの6位のDSA+DSBの値が0.75以上であり、さらには0.80以上であり特には0.85以上であるセルロースアシレートフィルムもあげることができる。これらのセルロースアシレートフィルムにより溶解性の好ましい溶液が作製でき、特に非塩素系有機溶媒において、良好な溶液の作製が可能となる。更に粘度が低くる過性のよい溶液の作成が可能となる。

[0011]

本発明のセルロースアシレートの炭素数2以上のアシル基としては、脂肪族基でもアリル基でもよく特に限定されない。それらは、例えばセルロースのアルキルカルボニルエステル、アルケニルカルボニルエステルあるいは芳香族カルボニルエステル、芳香族アルキルカルボニルエステルなどであり、それぞれさらに置換された基を有していてもよい。これらの好ましい例としては、プロピオニル、ブタノイル、ケプタノイル、ヘキサノイル、オクタノイル、デカノイル、ドデカノイル、トリデカノイル、テトラデカノイル、ヘキサ

デカノイル、オクタデカノイル、iso - ブタノイル、 t - ブタノイル、シクロヘキサンカ ルボニル、オレオイル、ベンゾイル、ナフチルカルボニル、シンナモイル基などを挙げる ことが出来る。これらの中でも、プロピオニル、ブタノイル、ドデカノイル、オクタデカ ノイル、 t ‐ ブタノイル、オレオイル、ベンゾイル、ナフチルカルボニル、シンナモイル などがより好ましく、特に好ましくはプロピオニル、ブタノイルである。

$[0\ 0\ 1\ 2]$

(セルロースアシレートの合成方法)

セルロースアシレートの合成方法の基本的な原理は、右田他、木材化学180~190 頁(共立出版、1968年)に記載されている。代表的な合成方法は、カルボン酸無水物 一酢酸一硫酸触媒による液相酢化法である。具体的には、綿花リンタや木材パルプ等のセ ルロース原料を適当量の酢酸で前処理した後、予め冷却したカルボン酸化混液に投入して エステル化し、完全セルロースアシレート(2位、3位および6位のアシル置換度の合計 が、ほぼ3.00)を合成する。上記カルボン酸化混液は、一般に溶媒としての酢酸、エ ステル化剤としての無水カルボン酸および触媒としての硫酸を含む。無水カルボン酸は、 これと反応するセルロースおよび系内に存在する水分の合計よりも、化学量論的に過剰量 で使用することが普通である。アシル化反応終了後に、系内に残存している過剰の無水カ ルボン酸の加水分解およびエステル化触媒の一部の中和のために、中和剤(例えば、カル シウム、マグネシウム、鉄、アルミニウムまたは亜鉛の炭酸塩、酢酸塩または酸化物)の 水溶液を添加する。次に、得られた完全セルロースアシレートを少量の酢化反応触媒(一 般には、残存する硫酸)の存在下で、50~90℃に保つことによりケン化熟成し、所望 のアシル置換度および重合度を有するセルロースアシレートまで変化させる。所望のセル ロースアシレートが得られた時点で、系内に残存している触媒を前記のような中和剤を用 いて完全に中和するか、あるいは中和することなく水または希硫酸中にセルロースアシレ ート溶液を投入(あるいは、セルロースアシレート溶液中に、水または希硫酸を投入)し てセルロースアシレートを分離し、洗浄および安定化処理によりセルロースアシレートを 得る。

$[0\ 0\ 1\ 3]$

本発明のセルロースアシレートフィルムは、フィルムを構成するポリマー成分が実質的 に上記の定義を有するセルロースアシレートからなることが好ましい。『実質的に』とは 、ポリマー成分の55質量%以上(好ましくは70質量%以上、さらに好ましくは80質 量%以上)を意味する。フィルム製造の原料としては、セルロースアシレート粒子を使用 することが好ましい。使用する粒子の90質量%以上は、0.5~5mmの粒子径を有す ることが好ましい。また、使用する粒子の50質量%以上が1~4mmの粒子径を有する ことが好ましい。セルロースアシレート粒子は、なるべく球形に近い形状を有することが 好ましい。

本発明で好ましく用いられるセルロースアシレートの重合度は、粘度平均重合度200 ~700、好ましくは250~550、更に好ましくは250~400であり、特に好ま しくは粘度平均重合度250~350である。平均重合度は、宇田らの極限粘度法(宇田 和夫、斉藤秀夫、繊維学会誌、第18巻第1号、105~120頁、1962年)により 測定できる。更に特開平9-95538号公報に詳細に記載されている。

[0014]

低分子成分が除去されると、平均分子量(重合度)が高くなるが、粘度は通常のセルロ ースアシレートよりも低くなるため有用である。低分子成分の少ないセルロースアシレー トは、通常の方法で合成したセルロースアシレートから低分子成分を除去することにより 得ることができる。低分子成分の除去は、セルロースアシレートを適当な有機溶媒で洗浄 することにより実施できる。なお、低分子成分の少ないセルロースアシレートを製造する 場合、酢化反応における硫酸触媒量を、セルロース100質量部に対して0.5~25質 量部に調整することが好ましい。硫酸触媒の量を上記範囲にすると、分子量部分布の点で も好ましい(分子量分布の均一な)セルロースアシレートを合成することができる。本発 明のセルロースアシレートの製造時に使用される際には、その含水率は2質量%以下であ

ることが好ましく、さらに好ましくは1質量%以下であり、特には0.7質量%以下の含水率を有するセルロースアシレートである。一般に、セルロースアシレートは、水を含有しており $2.5\sim5$ 質量%が知られている。本発明でこのセルロースアシレートの含水率にするためには、乾燥することが必要であり、その方法は目的とする含水率になれば特に限定されない。

[0015]

本発明のこれらのセルロースアシレートは、その原料綿や合成方法は発明協会公開技報(公技番号 2001-1745、2001年3月15日発行、発明協会)にて7頁~12頁に詳細に記載されている。

[0016]

(添加剤)

本発明のセルロースアシレート溶液には、各調製工程において用途に応じた種々の添加 剤(例えば、可塑剤、紫外線防止剤、劣化防止剤、レターデーション(光学異方性)調節 剤、微粒子、剥離促進剤、赤外吸収剤、など)を加えることができ、それらは固体でもよ く油状物でもよい。すなわち、その融点や沸点において特に限定されるものではない。例 えば20℃以下と20℃以上の紫外線吸収材料の混合や、同様に可塑剤の混合などであり 、例えば特開平2001-151901号公報などに記載されている。剥離促進剤として はクエン酸のエチルエステル類が例として挙げられる。さらにまた、赤外吸収染料として は例えば特開平2001-194522号公報に記載されている。またその添加する時期 はドープ作製工程において何れで添加しても良いが、ドープ調製工程の最後の調製工程に 添加剤を添加し調製する工程を加えて行ってもよい。更にまた、各素材の添加量は機能が 発現する限りにおいて特に限定されない。また、セルロースアシレートフィルムが多層か ら形成される場合、各層の添加物の種類や添加量が異なってもよい。例えば特開平200 1-151902号公報などに記載されているが、これらは従来から知られている技術で ある。これら添加剤の種類や添加量の選択によって、セルロースアシレートフィルムのガ ラス転移温度Tgを80~180℃に、引張試験機で測定する弾性率を1500~300 0MPaすることが好ましい。

さらにこれらの詳細は、発明協会公開技報(公技番号 2001-1745、2001年3月15日発行、発明協会)にて16 頁以降に詳細に記載されている素材が好ましく用いられる。

[0017]

(可塑剤)

本発明のフィルム中には可塑剤を含むことが好ましい。用いることのできる可塑剤としては特に限定しないが、リン酸エステル系では、トリフェニルホスフェート、トリクレジルホスフェート、クレジルジフェニルホスフェート、オクチルジフェニルホスフェート、ジフェニルボスフェート、トリオクチルホスフェート、トリブチルホスフェート、シフェニルビフェニルホスフェート、トリオクチルホスフェート、トリブチルホスフェート、シッカート、ジオトキシエチルフタレート、ジメトキシエチルフタレート、ジメチルフタレート、ジオクチルフタレート、ジブチルフタレート、ジー2ーエチルへキシルフタレート等、グリコール酸エステル系では、トリアセチン、トリブチリン、ブチルフタリルブチルグリコレート、エチルフタリルエチルグリコレート、メチルフタリルエチルグリコレート、ブチルフタリルブチルグリコレートよりも疎水的なものを単独あるいは併用するのが好ましい。可塑剤は必要に応じて、2種類以上を併用して用いてもよい。

[0018]

(レターデーション発現剤)

本発明ではレターデーション値を発現するため、少なくとも二つの芳香族環を有する化合物をレターデーション発現剤として好ましく用いることができる。レターデーション発現剤は、ポリマー100質量部に対して、0.05乃至20質量部の範囲で使用することが好ましく、0.1乃至10質量部の範囲で使用することがより好ましく、0.2乃至5質量部の範囲で使用することがさらに好ましく、0.5乃至2質量部の範囲で使用するこ

とが最も好ましい。二種類以上のレターデーション発現剤を併用してもよい。 レターデーション発現剤は、250万至400nmの波長領域に最大吸収を有すること が好ましく、可視領域に実質的に吸収を有していないことが好ましい。

[0019]

本明細書において、「芳香族環」は、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。

芳香族炭化水素環は、6 員環(すなわち、ベンゼン環)であることが特に好ましい。 芳香族性へテロ環は一般に、不飽和ヘテロ環である。芳香族性ヘテロ環は、5 員環、6 員環または7 員環であることが好ましく、5 員環または6 員環であることがさらに好ましい。芳香族性ヘテロ環は一般に、最多の二重結合を有する。ヘテロ原子としては、窒素原子、酸素原子および硫黄原子が好ましく、窒素原子が特に好ましい。芳香族性ヘテロ環の例には、フラン環、チオフェン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、フラザン環、トリアゾール環、ピラン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジス環および1,3,5-トリアジン環が含まれる。

芳香族環としては、ベンゼン環、フラン環、チオフェン環、ピロール環、オキサゾール環、チアゾール環、イミダゾール環、トリアゾール環、ピリジン環、ピリミジン環、ピラジン環および 1, 3, 5 ートリアジン環が好ましく、特に 1, 3, 5 ートリアジン環が好ましく用いられる。具体的には例えば特開 2 0 0 1 - 1 6 6 1 4 4 号公報に開示の化合物が好ましく用いられる。

[0020]

レターデーション発現剤が有する芳香族環の数は、2乃至20であることが好ましく、2乃至12であることがより好ましく、2乃至8であることがさらに好ましく、2乃至6であることが最も好ましい。

二つの芳香族環の結合関係は、(a)縮合環を形成する場合、(b)単結合で直結する場合および(c)連結基を介して結合する場合に分類できる(芳香族環のため、スピロ結合は形成できない)。結合関係は、(a)~(c)のいずれでもよい。

[0021]

(a)の縮合環(二つ以上の芳香族環の縮合環)の例には、インデン環、ナフタレン環、アズレン環、フルオレン環、フェナントレン環、アントラセン環、アセナフチレン環、ビフェニレン環、ナフタセン環、ピレン環、インドール環、イソインドール環、ベンゾフラン環、ベンゾチオフェン環、インドリジン環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾイミダゾール環、ベンゾトリアゾール環、プリン環、インダゾール環、クロメン環、キノリン環、イソキノリン環、キノリジン環、キナゾリン環、シンノリン環、キノキサリン環、フタラジン環、プテリジン環、カルバゾール環、アクリジン環、フェナントリジン環、キサンテン環、フェナジン環、フェノチアジン環、フェノキサチイン環、フェノキサジン環およびチアントレン環が含まれる。ナフタレン環、アズレン環、インドール環、ベンゾオキサゾール環、ベンゾチアゾール環、ベンゾイミダゾール環、ベンゾトリアゾール環およびキノリン環が好ましい。

[0022]

(b) の単結合は、二つの芳香族環の炭素原子間の結合であることが好ましい。二以上の単結合で二つの芳香族環を結合して、二つの芳香族環の間に脂肪族環または非芳香族性複素環を形成してもよい。

[0023]

(c)の連結基も、二つの芳香族環の炭素原子と結合することが好ましい。連結基は、アルキレン基、アルケニレン基、アルキニレン基、一CO一、一O一、一NHー、一S-またはそれらの組み合わせであることが好ましい。組み合わせからなる連結基の例を以下に示す。なお、以下の連結基の例の左右の関係は、逆になってもよい。

c 1 : -CO-O-

c 2 : -CO-NH-

- c 3:-アルキレン-O-
- c 4 : -NH CO NH -
- c5:-NH-CO-O-
- c6:-0-C0-0-
- c 7:-O-アルキレン-O-
- c8:-CO-アルケニレン-
- c 9:-CO-アルケニレン-NH-
- c10:-CO-アルケニレン-O-
- c11:-アルキレン-CO-O-アルキレン-O-CO-アルキレン-
- c12:-O-アルキレン-CO-O-アルキレン-O-CO-アルキレン-O-
- c13:-O-CO-アルキレン-CO-O-
- c14:-NH-CO-アルケニレン-
- c15:-O-CO-アルケニレン-

[0024]

芳香族環および連結基は、置換基を有していてもよい。

置換基の例には、ハロゲン原子(F、C1、Br、I)、ヒドロキシル、カルボキシル、シアノ、アミノ、ニトロ、スルホ、カルバモイル、スルファモイル、ウレイド、アルキル基、アルケニル基、アルキニル基、脂肪族アシル基、脂肪族アシルオキシ基、アルコキシ基、アルコキシカルボニルをノ基、アルキルチオ基、アルキルスルホニル基、脂肪族アミド基、脂肪族スルホンアミド基、脂肪族置換アミノ基、脂肪族置換カルバモイル基、脂肪族置換スルファモイル基、脂肪族置換ウレイド基および非芳香族性複素環基が含まれる。

[0025]

アルキル基の炭素原子数は、1万至8であることが好ましい。環状アルキル基よりも鎖状アルキル基の方が好ましく、直鎖状アルキル基が特に好ましい。アルキル基は、さらに置換基(例、ヒドロキシ、カルボキシ、アルコキシ基、アルキル置換アミノ基)を有していてもよい。アルキル基の(置換アルキル基を含む)例には、メチル、エチル、nーブチル、nーヘキシル、2ーヒドロキシエチル、4ーカルボキシブチル、2ーメトキシエチルおよび2ージエチルアミノエチルが含まれる。

アルケニル基の炭素原子数は、2乃至8であることが好ましい。環状アルケニル基よりも鎖状アルケニル基の方が好ましく、直鎖状アルケニル基が特に好ましい。アルケニル基は、さらに置換基を有していてもよい。アルケニル基の例には、ビニル、アリルおよび1ーヘキセニルが含まれる。

アルキニル基の炭素原子数は、2万至8であることが好ましい。環状アルキケニル基よりも鎖状アルキニル基の方が好ましく、直鎖状アルキニル基が特に好ましい。アルキニル基は、さらに置換基を有していてもよい。アルキニル基の例には、エチニル、1-ブチニルおよび1-ヘキシニルが含まれる。

[0026]

脂肪族アシル基の炭素原子数は、1乃至10であることが好ましい。脂肪族アシル基の例には、アセチル、プロパノイルおよびブタノイルが含まれる。

脂肪族アシルオキシ基の炭素原子数は、1乃至10であることが好ましい。脂肪族アシルオキシ基の例には、アセトキシが含まれる。

アルコキシ基の炭素原子数は、1万至8であることが好ましい。アルコキシ基は、さらに置換基(例、アルコキシ基)を有していてもよい。アルコキシ基の(置換アルコキシ基を含む)例には、メトキシ、エトキシ、ブトキシおよびメトキシエトキシが含まれる。

アルコキシカルボニル基の炭素原子数は、2万至10であることが好ましい。アルコキシカルボニル基の例には、メトキシカルボニルおよびエトキシカルボニルが含まれる。

アルコキシカルボニルアミノ基の炭素原子数は、2万至10であることが好ましい。アルコキシカルボニルアミノ基の例には、メトキシカルボニルアミノおよびエトキシカルボニルアミノが含まれる。

[0027]

アルキルチオ基の炭素原子数は、1乃至12であることが好ましい。アルキルチオ基の例には、メチルチオ、エチルチオおよびオクチルチオが含まれる。

アルキルスルホニル基の炭素原子数は、1万至8であることが好ましい。アルキルスルホニル基の例には、メタンスルホニルおよびエタンスルホニルが含まれる。

脂肪族アミド基の炭素原子数は、1乃至10であることが好ましい。脂肪族アミド基の例には、アセトアミドが含まれる。

脂肪族スルホンアミド基の炭素原子数は、1乃至8であることが好ましい。脂肪族スルホンアミド基の例には、メタンスルホンアミド、ブタンスルホンアミドおよびnーオクタンスルホンアミドが含まれる。

脂肪族置換アミノ基の炭素原子数は、1乃至10であることが好ましい。脂肪族置換アミノ基の例には、ジメチルアミノ、ジエチルアミノおよび2-カルボキシエチルアミノが含まれる。

脂肪族置換カルバモイル基の炭素原子数は、2乃至10であることが好ましい。脂肪族置換カルバモイル基の例には、メチルカルバモイルおよびジエチルカルバモイルが含まれる。

脂肪族置換スルファモイル基の炭素原子数は、1乃至8であることが好ましい。脂肪族置換スルファモイル基の例には、メチルスルファモイルおよびジエチルスルファモイルが含まれる。

脂肪族置換ウレイド基の炭素原子数は、2乃至10であることが好ましい。脂肪族置換ウレイド基の例には、メチルウレイドが含まれる。

非芳香族性複素環基の例には、ピペリジノおよびモルホリノが含まれる。

レターデーション発現剤の分子量は、300万至800であることが好ましい。

[0028]

本発明では1,3,5-トリアジン環を用いた化合物の他に直線的な分子構造を有する棒状化合物も好ましく用いることができる。直線的な分子構造とは、熱力学的に最も安定な構造において棒状化合物の分子構造が直線的であることを意味する。熱力学的に最も安定な構造は、結晶構造解析または分子軌道計算によって求めることができる。例えば、分子軌道計算ソフト(例、WinMOPAC2000、富士通(株)製)を用いて分子軌道計算を行い、化合物の生成熱が最も小さくなるような分子の構造を求めることができる。分子構造が直線的であるとは、上記のように計算して求められる熱力学的に最も安定な構造において、分子構造で主鎖の構成する角度が140度以上であることを意味する。

[0029]

少なくとも二つの芳香族環を有する棒状化合物としては、下記一般式(1)で表される 化合物が好ましい。

一般式(1): $A r^1 - L^1 - A r^2$

上記一般式(1)において、 $A r^1$ および $A r^2$ は、それぞれ独立に、芳香族基である。本明細書において、芳香族基は、アリール基(芳香族性炭化水素基)、置換アリール基、芳香族性ヘテロ環基および置換芳香族性ヘテロ環基を含む。

アリール基および置換アリール基の方が、芳香族性へテロ環基および置換芳香族性へテロ環基よりも好ましい。芳香族性へテロ環基のヘテロ環は、一般には不飽和である。芳香族性ヘテロ環は、5員環、6員環または7員環であることが好ましく、5員環または6員環であることがさらに好ましい。芳香族性ヘテロ環は一般に最多の二重結合を有する。ヘテロ原子としては、窒素原子、酸素原子または硫黄原子が好ましく、窒素原子または硫黄原子がさらに好ましい。

芳香族基の芳香族環としては、ベンゼン環、フラン環、チオフェン環、ピロール環、オキサゾール環、チアゾール環、イミダゾール環、トリアゾール環、ピリジン環、ピリミジン環およびピラジン環が好ましく、ベンゼン環が特に好ましい。

[0030]

置換アリール基および置換芳香族性ヘテロ環基の置換基の例には、ハロゲン原子(F、

出証特2005-3028453

C1、Br、I)、ヒドロキシル、カルボキシル、シアノ、アミノ、アルキルアミノ基(例、メチルアミノ、エチルアミノ、ブチルアミノ、ジメチルアミノ)、ニトロ、スルホ、 カルバモイル、アルキルカルバモイル基(例、N-メチルカルバモイル、N-エチルカル バモイル、N,Nージメチルカルバモイル) 、スルファモイル、アルキルスルファモイル 基(例、N-メチルスルファモイル、N-エチルスルファモイル、N, N-ジメチルスル ファモイル)、ウレイド、アルキルウレイド基(例、N-メチルウレイド、N,N-ジメ チルウレイド、N, N, N'-トリメチルウレイド)、アルキル基(例、メチル、エチル 、プロピル、ブチル、ペンチル、ヘプチル、オクチル、イソプロピル、sーブチル、tー アミル、シクロヘキシル、シクロペンチル)、アルケニル基(例、ビニル、アリル、ヘキ セニル)、アルキニル基(例、エチニル、ブチニル)、アシル基(例、ホルミル、アセチ ル、ブチリル、ヘキサノイル、ラウリル)、アシルオキシ基(例、アセトキシ、ブチリル オキシ、ヘキサノイルオキシ、ラウリルオキシ)、アルコキシ基(例、メトキシ、エトキ シ、プロポキシ、ブトキシ、ペンチルオキシ、ヘプチルオキシ、オクチルオキシ)、アリ ールオキシ基(例、フェノキシ)、アルコキシカルボニル基(例、メトキシカルボニル、 エトキシカルボニル、プロポキシカルボニル、ブトキシカルボニル、ペンチルオキシカル ボニル、ヘプチルオキシカルボニル)、アリールオキシカルボニル基(例、フェノキシカ ルボニル)、アルコキシカルボニルアミノ基(例、ブトキシカルボニルアミノ、ヘキシル オキシカルボニルアミノ)、アルキルチオ基(例、メチルチオ、エチルチオ、プロピルチ オ、ブチルチオ、ペンチルチオ、ヘプチルチオ、オクチルチオ)、アリールチオ基(例、 フェニルチオ)、アルキルスルホニル基(例、メチルスルホニル、エチルスルホニル、プ ロピルスルホニル、ブチルスルホニル、ペンチルスルホニル、ヘプチルスルホニル、オク チルスルホニル)、アミド基(例、アセトアミド、ブチルアミド基、ヘキシルアミド、ラ ウリルアミド)および非芳香族性複素環基(例、モルホリル、ピラジニル)が含まれる。

[0031]

なかでも、好ましい置換基としては、ハロゲン原子、シアノ、カルボキシル、ヒドロキシル、アミノ、アルキルアミノ基、アシル基、アシルオキシ基、アミド基、アルコキシカルボニル基、アルコキシ基、アルキルチオ基およびアルキル基が挙げられる。

アルキルアミノ基、アルコキシカルボニル基、アルコキシ基およびアルキルチオ基のアルキル部分とアルキル基とは、さらに置換基を有していてもよい。アルキル部分およびアルキル基の置換基の例には、ハロゲン原子、ヒドロキシル、カルボキシル、シアノ、アミノ、アルキルアミノ基、ニトロ、スルホ、カルバモイル、アルキルカルバモイル基、スルファモイル、アルキルスルファモイル基、ウレイド、アルキルウレイド基、アルケニル基、アルキニル基、アシル基、アシルオキシ基、アルコキシ基、アリールオキシ基、アルコキシカルボニルを、アリールオキシカルボニルを、アルコキシカルボニルを、アリールチオ基、アルキルスルホニル基、アミド基および非芳香族性複素環基が含まれる。アルキル部分およびアルキル基の置換基としては、ハロゲン原子、ヒドロキシル、アミノ、アルキルアミノ基、アシル基、アシルオキシ基、アシルアミノ基、アルコキシカルボニル基およびアルコキシ基が好ましい。

[0032]

アルキレン基の炭素原子数は、1乃至20であることが好ましく、より好ましくは1乃至15であり、さらに好ましくは1乃至10であり、さらに好ましくは1乃至8であり、最も好ましくは1乃至6である。

[0033]

アルケニレン基およびアルキニレン基は、環状構造よりも鎖状構造を有することが好ましく、分岐を有する鎖状構造よりも直鎖状構造を有することがさらに好ましい。

アルケニレン基およびアルキニレン基の炭素原子数は、好ましくは2乃至10であり、より好ましくは2乃至8であり、さらに好ましくは2乃至6であり、さらに好ましくは2 乃至4であり、最も好ましくは2(ビニレンまたはエチニレン)である。

アリーレン基は、炭素原子数は 6 乃至 2 0 であることが好ましく、より好ましくは 6 乃至 1 6 であり、さらに好ましくは 6 乃至 1 2 である。

[0034]

一般式(1)の分子構造において、 L^1 を挟んで、 $A r^1$ と $A r^2$ とが形成する角度は、140度以上であることが好ましい。

棒状化合物としては、下記式一般式 (2) で表される化合物がさらに好ましい。 一般式 (2) : $A r^1 - L^2 - X - L^3 - A r^2$

上記一般式(2)において、A r^1 およびA r^2 は、それぞれ独立に、芳香族基である。 芳香族基の定義および例は、一般式(I)のA r^1 およびA r^2 と同様である。

[0035]

一般式(2)において、 L^2 および L^3 は、それぞれ独立に、アルキレン基、-O-、-CO-およびそれらの組み合わせからなる基より選ばれる二価の連結基である。

アルキレン基は、環状構造よりも鎖状構造を有することが好ましく、分岐を有する鎖状構造よりも直鎖状構造を有することがさらに好ましい。

アルキレン基の炭素原子数は、1乃至10であることが好ましく、より好ましくは1乃至8であり、さらに好ましくは1乃至6であり、さらに好ましくは1乃至4であり、1または2(メチレンまたはエチレン)であることが最も好ましい。

 L^2 および L^3 は、-O-CO-または-CO-O-であることが特に好ましい。

[0036]

一般式(2)において、Xは、1, 4-シクロヘキシレン、ビニレンまたはエチニレンである。

以下に、一般式(1)で表される化合物の具体例を示す。

[0037]

【化1】

[0038]

【化2】

【0039】

$$(13) \quad \bigcap_{C_4H_9} (14) \quad O_{C_4H_2} \quad O_{C_4H_3} \quad O_{C_4H_2} \quad O_{C_4H_3} \quad O_{C$$

[0040]

[0041]

【化5】

[0042]

【化6】

【0043】 【化7】

[0044]

【化8】

出証特2005-3028453

【化9】

[0046]

具体例(1)~(3 4)、(4 1)、(4 2)は、シクロヘキサン環の1位と4位とにこつの不斉炭素原子を有する。ただし、具体例(1)、(4)~(3 4)、(4 1)、(4 2)は、対称なメソ型の分子構造を有するため光学異性体(光学活性)はなく、幾何異性体(トランス型とシス型)のみ存在する。具体例(1)のトランス型(1-trans)とシス型(1-cis)とを、以下に示す。

[0047]

【化10】

[0048]

前述したように、棒状化合物は直線的な分子構造を有することが好ましい。そのため、 トランス型の方がシス型よりも好ましい。

具体例(2)および(3)は、幾何異性体に加えて光学異性体(合計4種の異性体)を有する。幾何異性体については、同様にトランス型の方がシス型よりも好ましい。光学異性体については、特に優劣はなく、D、Lあるいはラセミ体のいずれでもよい。

具体例(43)~(45)では、中心のビニレン結合にトランス型とシス型とがある。 上記と同様の理由で、トランス型の方がシス型よりも好ましい。

[0049]

その他、好ましい化合物を以下に示す。

【化11】

$$(46) \qquad (47) \qquad (47) \qquad (48) \qquad (49) \qquad (49) \qquad (49) \qquad (50) \qquad (51) \qquad (51) \qquad (52) \qquad (52) \qquad (52) \qquad (53) \qquad (52) \qquad (54) \qquad (55) \qquad (55) \qquad (55) \qquad (55) \qquad (55) \qquad (56) \qquad (56) \qquad (56) \qquad (57) \qquad (56) \qquad (57) \qquad (57) \qquad (57) \qquad (58) \qquad (57) \qquad (57) \qquad (58) \qquad (57) \qquad (58) \qquad (57) \qquad (58) \qquad$$

【化12】

(61)
$${}^{n}C_{4}H_{9} \longrightarrow {}^{O}C$$

$${}^{n}C_{4}H_{9}^{n}$$

[0051]

溶液の紫外線吸収スペクトルにおいて最大吸収波長 (λ max) が 2 5 0 n m より短波長である棒状化合物を、二種類以上併用してもよい。

棒状化合物は、文献記載の方法を参照して合成できる。文献としては、Mol. Cryst. Li q. Cryst., 53巻、229ページ(1979年)、同89巻、93ページ(1982年)、同145巻、111ページ(1987年)、同170巻、43ページ(1989年)、J. Am. Chem. Soc., 113巻、1349ページ(1991年)、同118巻、5346ページ(1996年)、同92巻、1582ページ(1970年)、J. Org. Chem., 40巻、420ページ(1975年)、Tetrahedron、48巻16号、3437ページ(1992年)を挙げることができる。

レターデーション発現剤の添加量は、ポリマーの量の 0. 1 乃至 3 0 質量%であることが好ましく、0. 5 乃至 2 0 質量%であることがさらに好ましい。

[0052]

芳香族化合物は、セルロースアセテート100質量部に対して、0.01乃至20質量部の範囲で使用することが好ましい。芳香族化合物は、セルロースアセテート100質量部に対して、0.05乃至15質量部の範囲で使用することがより好ましく、0.1乃至10質量部の範囲で使用することがさらに好ましい。二種類以上の化合物を併用してもよい。

[0053]

次に、本発明のセルロースアシレートが溶解される有機溶媒について記述する。 (塩素系溶媒)

本発明のセルロースアシレートの溶液を作製するに際しては、主溶媒として塩素系有機 溶媒が好ましく用いられる。本発明においては、セルロースアシレートが溶解し流延,製

膜できる範囲において、その目的が達成できる限りはその塩素系有機溶媒の種類は特に限 定されない。これらの塩素系有機溶媒は、好ましくはジクロロメタン、クロロホルムであ る。特にジクロロメタンが好ましい。また、塩素系有機溶媒以外の有機溶媒を混合するこ とも特に問題ない。その場合は、ジクロロメタンは少なくとも50質量%使用することが 必要である。本発明で塩素系有機溶剤と併用される非塩素系有機溶媒について以下に記す 。すなわち、好ましい非塩素系有機溶媒としては、炭素原子数が3~12のエステル、ケ トン、エーテル、アルコール、炭化水素などから選ばれる溶媒が好ましい。エステル、ケ トン、エーテルおよびアルコールは、環状構造を有していてもよい。エステル、ケトンお よびエーテルの官能基(すなわち、-〇-、-C〇-および-C〇〇-)のいずれかを二 つ以上有する化合物も溶媒として用いることができ、たとえばアルコール性水酸基のよう な他の官能基を同時に有していてもよい。二種類以上の官能基を有する溶媒の場合、その 炭素原子数はいずれかの官能基を有する化合物の規定範囲内であればよい。炭素原子数が 3~12のエステル類の例には、エチルホルメート、プロピルホルメート、ペンチルホル メート、メチルアセテート、エチルアセテートおよびペンチルアセテート等が挙げられる 。炭素原子数が3~12のケトン類の例には、アセトン、メチルエチルケトン、ジエチル ケトン、ジイソブチルケトン、シクロペンタノン、シクロヘキサノンおよびメチルシクロ ヘキサノン等が挙げられる。炭素原子数が3~12のエーテル類の例には、ジイソプロピ ルエーテル、ジメトキシメタン、ジメトキシエタン、1,4-ジオキサン、1,3-ジオ キソラン、テトラヒドロフラン、アニソールおよびフェネトール等が挙げられる。二種類 以上の官能基を有する有機溶媒の例には、2-エトキシエチルアセテート、2-メトキシ エタノールおよび2-ブトキシエタノール等が挙げられる。

[0054]

また塩素系有機溶媒と併用されるアルコールとしては、好ましくは直鎖であっても分枝を有していても環状であってもよく、その中でも飽和脂肪族炭化水素であることが好ましい。アルコールの水酸基は、第一級〜第三級のいずれであってもよい。アルコールの例には、メタノール、エタノール、1ープロパノール、2ープロパノール、1ーブタノール、2ーブタノール、1ーブタノール、2ーブタノール、1ープロパノール、2ーメチルー2ーブタノールおよびシクロへキサノールが含まれる。なおアルコールとしては、フッ素系アルコールも用いられる。例えば、2ーフルオロエタノール、2,2,2ートリフルオロエタノール、2,2,3,3ーテトラフルオロー1ープロパノールなども挙げられる。さらに炭化水素は、直鎖であっても分岐を有していても環状であってもよい。芳香族炭化水素と脂肪族炭化水素のいずれも用いることができる。脂肪族炭化水素は、飽和であっても不飽和であってもよい。炭化水素の例には、シクロへキサン、ヘキサン、ベンゼン、トルエンおよびキシレンが含まれる。

本発明の好ましい主溶媒である塩素系有機溶媒の組合せとしては以下を挙げることができるが、これらに限定されるものではない。

[0055]

- ・ジクロロメタン/メタノール/エタノール/ブタノール (75/10/5/5/5、質量部)、
- ・ジクロロメタン/アセトン/メタノール/プロパノール(80/10/5/5、質量部)、
- ・ジクロロメタン/メタノール/ブタノール/シクロヘキサン(75/10/5/5)、質量部)、
- ・ジクロロメタン/メチルエチルケトン/メタノール/ブタノール (80/10/5/5)、質量部)、
- ・ジクロロメタン/アセトン/メチルエチルケトン/エタノール/イソプロパノール (75/10/10/5/7、質量部)、
- ・ジクロロメタン/シクロペンタノン/メタノール/イソプロパノール(80/10/5/8、質量部)、
 - ・ジクロロメタン/酢酸メチル/ブタノール(80/10/10、質量部)、

[0056]

- ・ジクロロメタン/シクロヘキサノン/メタノール/ヘキサン(70/20/5/5、 質量部)、
- ・ジクロロメタン/メチルエチルケトン/アセトン/メタノール/エタノール (50/ 20/20/5/5、質量部)、
- ・ジクロロメタン/1、3ジオキソラン/メタノール/エタノール(70/20/5/ 5、質量部)、
- ・ジクロロメタン/ジオキサン/アセトン/メタノール/エタノール(60/20/1 0/5/5、質量部)、
- ・ジクロロメタン/アセトン/シクロペンタノン/エタノール/イソブタノール/シク ロヘキサン(65/10/10/5/5/5、質量部)、
- ・ジクロロメタン/メチルエチルケトン/アセトン/メタノール/エタノール(70/ 10/10/5/5、質量部)、
- ・ジクロロメタン/アセトン/酢酸エチル/エタノール/ブタノール/ヘキサン 5/10/10/5/5/5、質量部)、
- ・ジクロロメタン/アセト酢酸メチル/メタノール/エタノール (65/20/10/ 5、質量部)、
- ・ジクロロメタン/シクロペンタノン/エタノール/ブタノール (65/20/10 /5、質量部)、
- などをあげることができる。

[0057]

(非塩素系溶媒)

次に、本発明のセルロースアシレートの溶液を作製するに際して好ましく用いられる非 塩素系有機溶媒について記載する。本発明においては、セルロースアシレートが溶解し流 延、製膜できる範囲において、その目的が達成できる限りは非塩素系有機溶媒は特に限定 されない。本発明で用いられる非塩素系有機溶媒は、炭素原子数が3~12のエステル、 ケトン、エーテルから選ばれる溶媒が好ましい。エステル、ケトンおよび、エーテルは、 環状構造を有していてもよい。エステル、ケトンおよびエーテルの官能基(すなわち、一 〇一、一C〇一および一C〇〇一)のいずれかを2つ以上有する化合物も、主溶媒として 用いることができ、たとえばアルコール性水酸基のような他の官能基を有していてもよい 。2種類以上の官能基を有する主溶媒の場合、その炭素原子数はいずれかの官能基を有す る化合物の規定範囲内であればよい。炭素原子数が3~12のエステル類の例には、エチ ルホルメート、プロピルホルメート、ペンチルホルメート、メチルアセテート、エチルア セテートおよびペンチルアセテートが挙げられる。炭素原子数が3~12のケトン類の例 には、アセトン、メチルエチルケトン、ジエチルケトン、ジイソブチルケトン、シクロペ ンタノン、シクロヘキサノンおよびメチルシクロヘキサノンが挙げられる。炭素原子数が 3~12のエーテル類の例には、ジイソプロピルエーテル、ジメトキシメタン、ジメトキ シエタン、1,4-ジオキサン、1,3-ジオキソラン、テトラヒドロフラン、アニソー ルおよびフェネトールが挙げられる。二種類以上の官能基を有する有機溶媒の例には、2 ーエトキシエチルアセテート、2-メトキシエタノールおよび2-ブトキシエタノールが 挙げられる。

[0058]

以上のセルロースアシレートに用いられる非塩素系有機溶媒については、前述のいろい ろな観点から選定されるが、好ましくは以下のとおりである。すなわち、本発明のセルロ ースアシレートの好ましい溶媒は、互いに異なる3種類以上の混合溶媒であって、第1の 溶媒が酢酸メチル、酢酸エチル、蟻酸メチル、蟻酸エチル、アセトン、ジオキソラン、ジ オキサンから選ばれる少なくとも一種あるいは或いはそれらの混合液であり、第2の溶媒 が炭素原子数が4~7のケトン類またはアセト酢酸エステルから選ばれ、第3の溶媒とし て炭素数が1~10のアルコールまたは炭化水素から選ばれ、より好ましくは炭素数1~ 8のアルコールである。なお第1の溶媒が、2種以上の溶媒の混合液である場合は、第2

の溶媒がなくてもよい。第1の溶媒は、さらに好ましくは酢酸メチル、アセトン、蟻酸メチル、蟻酸エチルあるいはこれらの混合物であり、第2の溶媒は、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、アセチル酢酸メチルが好ましく、これらの混合液であってもよい。

[0059]

第3の溶媒であるアルコールは、直鎖であっても分枝を有していても環状であってもよ く、その中でも飽和脂肪族炭化水素であることが好ましい。アルコールの水酸基は、第一 級~第三級のいずれであってもよい。アルコールの例には、メタノール、エタノール、1 ープロパノール、2ープロパノール、1ーブタノール、2ーブタノール、tーブタノール 、 1 - ペンタノール、 2 - メチルー 2 - ブタノールおよびシクロヘキサノールが含まれる 。なおアルコールとしては、フッ素系アルコールも用いられる。例えば、2-フルオロエ タノール、2, 2, 2-トリフルオロエタノール、2, 2, 3, 3-テトラフルオロー1ープロパノールなども挙げられる。さらに炭化水素は、直鎖であっても分岐を有していて も環状であってもよい。芳香族炭化水素と脂肪族炭化水素のいずれも用いることができる 。脂肪族炭化水素は、飽和であっても不飽和であってもよい。炭化水素の例には、シクロ ヘキサン、ヘキサン、ベンゼン、トルエンおよびキシレンが含まれる。これらの第3の溶 媒であるアルコールおよび炭化水素は単独でもよいし2種類以上の混合物でもよく特に限 定されない。第3の溶媒としては、好ましい具体的化合物は、アルコールとしてはメタノ ール、エタノール、1ープロパノール、2ープロパノール、1ーブタノール、2ーブタノ ール、およびシクロヘキサノール、シクロヘキサン、ヘキサンを挙げることができ、特に はメタノール、エタノール、1-プロパノール、2-プロパノール、1-ブタノールであ

[0060]

以上の3種類の混合溶媒は、第1の溶媒が20~95質量%、第2の溶媒が2~60質量%さらに第3の溶媒が2~30質量%の比率で含まれることが好ましく、さらに第1の溶媒が30~90質量%であり、第2の溶媒が3~50質量%、さらに第3のアルコールが3~25質量%含まれることが好ましい。また特に第1の溶媒が30~90質量%であり、第2の溶媒が3~30質量%、第3の溶媒がアルコールであり3~15質量%含まれることが好ましい。なお、第1の溶媒が混合液で第2の溶媒を用いない場合は、第1の溶媒が20~90質量%、第3の溶媒が5~30質量%の比率で含まれることが好ましく、ならに第1の溶媒が30~86質量%であり、さらに第3の溶媒が7~25質量%含まればらに第1の溶媒が30~86質量%であり、さらに第3の溶媒が7~25質量%含まれることが好ましい。以上の本発明で用いられる非塩素系有機溶媒は、さらに詳細には発明に12頁~16頁に詳細に記載されている。本発明の好ましい非塩素系有機溶媒の組合せは以下挙げることができるが、これらに限定されるものではない。

[0061]

- ・酢酸メチル/アセトン/メタノール/エタノール/ブタノール(75/10/5/5)、質量部)、
- ・酢酸メチル/アセトン/メタノール/エタノール/プロパノール(75/10/5/ 5/5、質量部)、
- ・酢酸メチル/アセトン/メタノール/ブタノール/シクロヘキサン(75/10/5/ 5/5、質量部)、
 - ・酢酸メチル/アセトン/エタノール/ブタノール(81/8/7/4、質量部)
 - ・酢酸メチル/アセトン/エタノール/ブタノール(82/10/4/4、質量部)
 - ・酢酸メチル/アセトン/エタノール/ブタノール(80/10/4/6、質量部)
- ・酢酸メチル/メチルエチルケトン/メタノール/ブタノール (80/10/5/5、質量部)、
- ・酢酸メチル/アセトン/メチルエチルケトン/エタノール/イソプロパノール(75/10/5/7、質量部)、
 - ・酢酸メチル/シクロペンタノン/メタノール/イソプロパノール(80/10/5/出証特2005-3028453

8、質量部)、

- ・酢酸メチル/アセトン/ブタノール(85/5/5、質量部)、
- ・酢酸メチル/シクロペンタノン/アセトン/メタノール/ブタノール(60/15/15/5/6、質量部)、
- ・酢酸メチル/シクロヘキサノン/メタノール/ヘキサン(70/20/5/5、質量部)、
- ・酢酸メチル/メチルエチルケトン/アセトン/メタノール/エタノール(50/20/20/5/5、質量部)、
- ・酢酸メチル/1、3ジオキソラン/メタノール/エタノール (70/20/5/5、質量部)、
- ・酢酸メチル/ジオキサン/アセトン/メタノール/エタノール (60/20/10/5/5、質量部)、
- ・酢酸メチル/アセトン/シクロペンタノン/エタノール/イソブタノール/シクロヘキサン(65/10/10/5/5/5、質量部)、

[0062]

- ・ギ酸メチル/メチルエチルケトン/アセトン/メタノール/エタノール(50/20/20/5/5、質量部)、
- ・ギ酸メチル/アセトン/酢酸エチル/エタノール/ブタノール/ヘキサン(6 5 / 1 0 / 1 0 / 5 / 5 / 5 、質量部)、
- ・アセトン/アセト酢酸メチル/メタノール/エタノール (65/20/10/5、質量部)、
- ・アセトン/シクロペンタノン/エタノール/ブタノール(65/20/10/5、質量部)、
- ・アセトン/1,3ジオキソラン/エタノール/ブタノール(65/20/10/5、質量部)、
- ・1、3ジオキソラン/シクロヘキサノン/メチルエチルケトン/メタノール/ブタノール (55/20/10/5/5/5、質量部) などをあげることができる。

更に下記の方法でセルロースアシレート溶液を用いることもできる。

- ・酢酸メチル/アセトン/エタノール/ブタノール(81/8/7/4、質量部)でセルロースアシレート溶液を作製しろ過・濃縮後に2質量部のブタノールを追加添加
- ・酢酸メチル/アセトン/エタノール/ブタノール(84/10/4/2、質量部)でセルロースアシレート溶液を作製しろ過・濃縮後に4質量部のブタノールを追加添加
- ・酢酸メチル/アセトン/エタノール(84/10/6、質量部)でセルロースアシレート溶液を作製しろ過・濃縮後に5質量部のブタノールを追加添加

[0063]

(セルロースアシレート溶液特性)

本発明のセルロースアシレート溶液は、有機溶媒に10~30質量%溶解していることが好ましいが、より好ましくは13~27質量%であり、特には15~25質量%溶解していることが好ましい。これらの濃度にセルロースアシレートを調製する方法は、溶解する段階で所定の濃度になるようにしてもよく、また予め低濃度溶液(例えば9~14質量%)として調製した後に後述する濃縮工程で所定の高濃度溶液に調整してもよい。さらに、予め高濃度のセルロースアシレート溶液とした後に、種々の添加物を添加することで所定の低濃度のセルロースアシレート溶液としてもよく、いずれの方法であっても、本発明のセルロースアシレートは上記溶液濃度範囲になるように調製されていれば特に問題ない

[0064]

次に、本発明ではセルロースアシレート溶液を同一組成の有機溶媒で $0.1\sim5$ 質量%にした希釈溶液のセルロースアシレートの会合体分子量が $15万\sim1500$ 万であることが好ましい。さらに好ましくは、会合体分子量が $18万\sim900$ 万である。この会合体分

出証特2005-3028453

ページ: 25/

子量は静的光散乱法で求めることができる。その際に同時に求められる慣性自乗半径は $10\sim200$ n mになるように溶解することが好ましい。さらに好ましい慣性自乗半径は $20\sim200$ n mである。更にまた、第2ビリアル係数が $-2\times10^{-4}\sim4\times10^{-4}$ となるように溶解することが好ましく、より好ましくは第2ビリアル係数が $-2\times10^{-4}\sim2\times10^{-4}$ である。

[0065]

[0066]

(ドープ調製)

次に本発明のセルロースアシレート溶液(ドープ)の調製については、その溶解方法は 特に限定されず、室温でもよくさらには冷却溶解法あるいは高温溶解方法、さらにはこれ らの組み合わせで実施される。これらに関しては、例えば特開平5-163301号公報 、特開昭61-106628号公報、特開昭58-127737号公報、特開平9-95 544号公報、特開平10-95854号公報、特開平10-45950、特開2000 -53784、特開平11-322946、さらに特開平11-322947、特開平2 -276830、特開2000-273239、特開平11-71463号公報、特開平 04-259511号公報、特開2000-273184号公報、特開平11-3230 17号公報、特開平11-302388号公報などにセルロースアシレート溶液の調製法 が記載されている。以上記載したこれらのセルロースアシレートの有機溶媒への溶解方法 は、本発明においても適宜本発明の範囲であればこれらの技術を適用できるものである。 これらの詳細は、特に非塩素系溶媒系については発明協会公開技報(公技番号 2001 一1745、2001年3月15日発行、発明協会)にて22頁~25頁に詳細に記載さ れている方法で行うことができる。さらに本発明のセルロースアシレートのドープ溶液は 、溶液濃縮、ろ過が通常実施され、同様に発明協会公開技報(公技番号 2001-17 45、2001年3月15日発行、発明協会)にて25頁に詳細に記載されている。なお 、高温度で溶解する場合は、使用する有機溶媒の沸点以上の場合がほとんどであり、その 場合は加圧状態で用いられる。

[0067]

本発明のセルロースアシレート溶液は、その溶液の粘度と動的貯蔵弾性率がある範囲であることが好ましい。試料溶液 $1\,\mathrm{mL}$ をレオメーター(CLS 500)に直径 $4\,\mathrm{c\,m/2}$ のSteel Cone(共にTA Instrumennts社製)を用いて測定した。測定条件はOscillation Step/Temperature Rampで $40\,\mathrm{C}\sim-10\,\mathrm{C}$ の範囲を $2\,\mathrm{C}/\mathrm{D}$ で可変して測定し、 $40\,\mathrm{C}$ の静的非ニュートン粘度 (n^* 、単位:Pa・s) および $-5\,\mathrm{C}$ の貯蔵弾性率 (G'、単位:Pa) を求めた。尚、試料溶液は予め測定開始温度にて液温一定となるまで保温した後に測定を開始した。本発明では、 $40\,\mathrm{C}$ での粘度が $1\sim40\,\mathrm{C}$ Pa・sであり、 $15\,\mathrm{C}$ での動的貯蔵弾性率

が500Pa以上が好ましく、より好ましくは40℃での粘度が10~200Pa·sで

[0068]

セルロースアシレート溶液の濃度は前述のごとく、高濃度のドープが得られるのが特徴であり、濃縮という手段に頼らずとも高濃度でしかも安定性の優れたセルロースアシレート溶液が得られる。更に溶解し易くするために低い濃度で溶解してから、濃縮手段を用いて濃縮してもよい。濃縮の方法としては、特に限定するものはないが、例えば、低濃度溶液を筒体とその内部の周方向に回転する回転羽根外周の回転軌跡との間に導くとともに、溶液との間に温度差を与えて溶媒を蒸発させながら高濃度溶液を得る方法(例えば、特開平4-259511号公報等)、加熱した低濃度溶液をノズルから容器内に吹き込み、溶液をノズルから容器内壁に当たるまでの間で溶媒をフラッシュ蒸発させるとともに、溶媒蒸気を容器から抜き出し、高濃度溶液を容器底から抜き出す方法(例えば、米国特許第2、541、012号、米国特許第2、858、229号、米国特許第4、414、341号、米国特許第4、504、355号各明細書等などに記載の方法)等で実施できる。

[0069]

溶液は流延に先だって金網やネルなどの適当な濾材を用いて、未溶解物やゴミ、不純物などの異物を濾過除去しておくのが好ましい。セルロースアシレート溶液の濾過には絶対濾過精度が $0.1\sim100~\mu$ mのフィルタが用いられ、さらには絶対濾過精度が $0.5\sim25~\mu$ mであるフィルタを用いることが好ましく用いられる。フィルタの厚さは、 $0.1\sim10~m$ mが好ましく、更には $0.2\sim2~m$ mが好ましい。その場合、ろ過圧力は 1.6~k g f /~c m²以下、より好ましくは 1.2~k g f /~c m²以下、更には 1.0~k g f /~c m²以下、特に好ましくは 2~k g f /~c c m²以下で濾過することが好ましい。濾材としては、ガラス繊維、セルロース繊維、濾紙、四フッ化エチレン樹脂などのフッ素樹脂等の従来公知である材料を好ましく用いることができ、特にセラミックス、金属等が好ましく用いられる。セルロースアシレート溶液の製膜直前の粘度は、製膜の際に流延可能な範囲であればよく、通常 1.0~p a 1.0~p a

[0070]

(製膜)

セルロースアシレート溶液を用いたフィルムの製造方法について述べる。本発明のセルロースアシレートフィルムを製造する方法及び設備は、従来セルローストリアセテートフィルム製造に供する溶液流延製膜方法及び溶液流延製膜装置が用いられる。溶解機(釜)から調製されたドープ(セルロースアシレート溶液)を貯蔵釜で一旦貯蔵し、ドープに含まれている泡を脱泡して最終調製をする。ドープをドープ排出口から、例えば回転数によって高精度に定量送液できる加圧型定量ギヤポンプを通して加圧型ダイに送り、ドープに上型ダイの口金(スリット)からエンドレスに走行している流延部の金属支持体の上に均一に流延され、金属支持体がほぼ一周した剥離点で、生乾きのドープ膜(ウェブとも呼ぶ)を金属支持体から剥離する。得られるウェブの両端をクリップで挟み、幅保持しながらテンターで搬送して乾燥し、続いて乾燥装置のロール群で搬送し乾燥を終了して巻きり機で所定の長さに巻き取る。テンターとロール群の乾燥装置との組み合わせはその目的により変わる。ハロゲン化銀写真感光材料や電子ディスプレイ用機能性保護膜に用いる溶液流延製膜方法においては、溶液流延製膜装置の他に、下引層、帯電防止層、ハレーション防止層、保護層等のフィルムへの表面加工のために、塗布装置が付加されることが多い。以下に各製造工程について簡単に述べるが、これらに限定されるものではない。

[0071]

まず、調製したセルロースアシレート溶液 (ドープ) は、ソルベントキャスト法により 出証特2005-3028453

セルロースアシレートフィルムを作製される際に、ドープはドラムまたはバンド上に流延し、溶媒を蒸発させてフィルムを形成する。流延前のドープは、固形分量が $5 \sim 4$ 0 質量%となるように濃度を調整することが好ましい。ドラムまたはバンドの表面は、鏡面状態に仕上げておくことが好ましい。ドープは、表面温度が 3 0 \mathbb{C} 以下のドラムまたはバンド上に流延することが好ましく用いられ、特には-1 0 \sim 2 0 \mathbb{C} 0 の金属支持体温度であることが好ましい。さらに特開 2 0 0 0 -3 0 1 5 5 5 号、特開 \mathbb{C} 2 0 0 0 -3 0 1 5 5 5 号、特開 \mathbb{C} 7 -0 3 2 3 9 1 号、特開 \mathbb{C} 9 3 3 1 6 号、特開 \mathbb{C} 9 5 -0 8 6 2 1 2 号、特開 \mathbb{C} 6 0 7 号、特開 \mathbb{C} 9 0 1 号、特開 \mathbb{C} 9 2 -1 1 1 5 1 1 号、および特開 \mathbb{C} 9 0 2 -2 0 8 6 5 0 号の各公報に記載の技術を本発明では応用できる。

[0072]

(重層流延)

セルロースアシレート溶液を、金属支持体としての平滑なバンド上或いはドラム上に単 層液として流延してもよいし、2層以上の複数のセルロースアシレート液を流延してもよ い。複数のセルロースアシレート溶液を流延する場合、金属支持体の進行方向に間隔を置 いて設けた複数の流延口からセルロースアシレートを含む溶液をそれぞれ流延させて積層 させながらフィルムを作製してもよく、例えば特開昭61-158414号、特開平1-122419号、および特開平11-198285号の各公報などに記載の方法が適応で きる。また、2つの流延口からセルロースアシレート溶液を流延することによってもフィ ルム化することでもよく、例えば特公昭60-27562号、特開昭61-94724号 、特開昭61-947245号、特開昭61-104813号、特開昭61-15841 3号、および特開平6-134933号の各公報に記載の方法で実施できる。また、特開 昭56-162617号公報に記載の高粘度セルロースアシレート溶液の流れを低粘度の セルロースアシレート溶液で包み込み、その高、低粘度のセルロースアシレート溶液を同 時に押出すセルロースアシレートフィルム流延方法でもよい。更にまた、特開昭61-9 4724号および特開昭61-94725号の各公報に記載の外側の溶液が内側の溶液よ りも貧溶媒であるアルコール成分を多く含有させることも好ましい態様である。或いはま た2個の流延口を用いて、第一の流延口により金属支持体に成型したフィルムを剥離し、 金属支持体面に接していた側に第二の流延を行なうことにより、フィルムを作製すること でもよく、例えば特公昭44-20235号公報に記載されている方法である。流延する セルロースアシレート溶液は同一の溶液でもよいし、異なるセルロースアシレート溶液で もよく特に限定されない。複数のセルロースアシレート層に機能を持たせるために、その 機能に応じたセルロースアシレート溶液を、それぞれの流延口から押出せばよい。さらに セルロースアシレート溶液は、他の機能層(例えば、接着層、染料層、帯電防止層、アン チハレーション層、UV吸収層、偏光層など)を同時に流延することも実施しうる。

[0073]

従来の単層液では、必要なフィルム厚さにするためには高濃度で高粘度のセルロースアシレート溶液を押出すことが必要であり、その場合セルロースアシレート溶液の安定性が悪くて固形物が発生し、ブツ故障となったり、平面性が不良であったりして問題となることが多かった。この解決として、複数のセルロースアシレート溶液を流延口から流延することにより、高粘度の溶液を同時に金属支持体上に押出すことができ、平面性も良化し優れた面状のフィルムが作製できるばかりでなく、濃厚なセルロースアシレート溶液を用いることで乾燥負荷の低減化が達成でき、フィルムの生産スピードを高めることができた。共流延の場合、内側と外側の厚さは特に限定されないが、好ましくは外側が全膜厚の1

一次加速の場合、内側と外側の厚さは特に限定されないが、好ましくは外側が全膜厚の1~50%であることが好ましく、より好ましくは2~30%の厚さである。ここで、3層以上の共流延の場合は金属支持体に接した層と空気側に接した層のトータル膜厚を外側の厚さと定義する。共流延の場合、前述の可塑剤、紫外線吸収剤、マット剤等の添加物濃度が異なるセルロースアシレート溶液を共流延して、積層構造のセルロースアシレートフィルムを作製することもできる。例えば、スキン層/コア層/スキン層といった構成のセルロースアシレートフィルムを作ることができる。例えば、マット剤は、スキン層に多く、

またはスキン層のみに入れることができる。可塑剤、紫外線吸収剤はスキン層よりもコア 層に多くいれることができ、コア層のみにいれてもよい。また、コア層とスキン層で可塑 剤、紫外線吸収剤の種類を変更することもでき、例えばスキン層に低揮発性の可塑剤及び /または紫外線吸収剤を含ませ、コア層に可塑性に優れた可塑剤、或いは紫外線吸収性に 優れた紫外線吸収剤を添加することもできる。また、剥離促進剤を金属支持体側のスキン 層のみ含有させることも好ましい態様である。また、冷却ドラム法で金属支持体を冷却し て溶液をゲル化させるために、スキン層に貧溶媒であるアルコールをコア層より多く添加 することも好ましい。スキン層とコア層のTgが異なっていても良く、スキン層のTgよ りコア層のTgが低いことが好ましい。また、流延時のセルロースアシレートを含む溶液 の粘度もスキン層とコア層で異なっていても良く、スキン層の粘度がコア層の粘度よりも 小さいことが好ましいが、コア層の粘度がスキン層の粘度より小さくてもよい。

[0074]

(流延)

溶液の流延方法としては、調製されたドープを加圧ダイから金属支持体上に均一に押し 出す方法、一旦金属支持体上に流延されたドープをブレードで膜厚を調節するドクターブ レードによる方法、或いは逆回転するロールで調節するリバースロールコーターによる方 法等があるが、加圧ダイによる方法が好ましい。加圧ダイにはコートハンガータイプやT ダイタイプ等があるがいずれも好ましく用いることができる。また、ここで挙げた方法以 外にも従来知られているセルローストリアセテート溶液を流延製膜する種々の方法で実施 でき、用いる溶媒の沸点等の違いを考慮して各条件を設定することによりそれぞれの公報 に記載の内容と同様の効果が得られる。本発明のセルロースアシレートフィルムを製造す るのに使用されるエンドレスに走行する金属支持体としては、表面がクロムメッキによっ て鏡面仕上げされたドラムや表面研磨によって鏡面仕上げされたステンレスベルト(バン ドといってもよい)が用いられる。本発明のセルロースアシレートフィルムの製造に用い られる加圧ダイは、金属支持体の上方に1基或いは2基以上の設置でもよい。好ましくは 1基または2基である。2基以上設置する場合には流延するドープ量をそれぞれのダイに 種々な割合にわけてもよく、複数の精密定量ギヤアポンプからそれぞれの割合でダイにド ープを送液してもよい。流延に用いられるセルロースアシレート溶液の温度は、-10~ 55℃が好ましくより好ましくは25~50℃である。その場合、工程のすべてが同一で もよく、あるいは工程の各所で異なっていてもよい。異なる場合は、流延直前で所望の温 度であればよい。

[0075]

(乾燥)

セルロースアシレートフィルムの製造に係わる金属支持体上におけるドープの乾燥は、 一般的には金属支持体(ドラム或いはベルト)の表面側、つまり金属支持体上にあるウェ ブの表面から熱風を当てる方法、ドラム或いはベルトの裏面から熱風を当てる方法、温度 コントロールした液体をベルトやドラムのドープ流延面の反対側である裏面から接触させ て、伝熱によりドラム或いはベルトを加熱し表面温度をコントロールする液体伝熱方法な どがあるが、裏面液体伝熱方式が好ましい。流延される前の金属支持体の表面温度はドー プに用いられている溶媒の沸点以下であれば何度でもよい。しかし乾燥を促進するために は、また金属支持体上での流動性を失わせるためには、使用される溶媒の内の最も沸点の 低い溶媒の沸点より1~10度低い温度に設定することが好ましい。尚、流延ドープを冷 却して乾燥することなく剥ぎ取る場合はこの限りではない。

[0076]

(延伸処理)

本発明のセルロースアセテートフィルムは、延伸処理によりレターデーションを調整す ることができる。更には、積極的に幅方向に延伸する方法もあり、例えば、特開昭62-115035号、特開平4-152125号、特開平4-284211号、特開平4-2 98310号、および特開平11-48271号の各公報などに記載されている。これは 、セルロースアシレートフィルムの面内レターデーション値を高い値とするためには、製

造したフィルムが延伸される。

フィルムの延伸は、常温または加熱条件下で実施する。加熱温度は、フィルムのガラス転移温度以下であることが好ましい。フィルムの延伸は、縦あるいは横だけの一軸延伸でもよく同時あるいは逐次 2 軸延伸でもよい。延伸は $1\sim2$ 0 0 %の延伸が行われる。好ましくは $1\sim1$ 0 0 %の延伸が、特に好ましくは 1 から 5 0 %延伸を行う。光学フィルムの複屈折は幅方向の屈折率が長さ方向の屈折率よりも大きくなることが好ましい。従って幅方向により多く延伸することが好ましい。また、延伸処理は製膜工程の途中で行ってもよいし、製膜して巻き取った原反を延伸処理しても良い。前者の場合には残留溶剤量を含んだ状態で延伸を行っても良く、残留溶剤量が 2 乃至 3 0 %で好ましく延伸することができる。

[0077]

本発明の出来上がり(乾燥後)のセルロースアシレートフィルムの厚さは、使用目的に よって異なるが、通常5から500μmの範囲であり、20~300μmの範囲が好まし く、30~150 μ mの範囲がより好ましく、40~110 μ mの範囲がさらに好ましい 。特に、VA液晶表示装置用には $40\sim110\mu$ mであることが好ましい。フィルム厚さ の調製は、所望の厚さになるように、ドープ中に含まれる固形分濃度、ダイの口金のスリ ット間隙、ダイからの押し出し圧力、金属支持体速度等を調節すればよい。以上のように して得られたセルロースアシレートフィルムの幅は0.5~3mが好ましく、より好まし くは $0.6 \sim 2.5$ m、さらに好ましくは $0.8 \sim 2.2$ mである。長さは 1 ロールあた り100~10000mで巻き取るのが好ましく、より好ましくは500~7000mで あり、さらに好ましくは1000~6000mである。巻き取る際、少なくとも片端にナ ーリングを付与するのが好ましく、幅は $3mm\sim50mm$ 、より好ましくは $5m\sim30m$ m、高さは 0. 5 \sim 5 0 0 μ m であり、より好ましくは 1 \sim 2 0 0 μ m である。これは片 押しであっても両押しであっても良い。全幅のRe値のばらつきが±5mmであることが 好ましく、±3 nmであることが更に好ましい。また、Rth値のバラツキは±10 nm が好ましく、±5 nmであることが更に好ましい。また、長さ方向のRe値、及びRth 値のバラツキも幅方向のバラツキの範囲内であることが好ましい。透明感を保つためヘイ ズは0.01~2%が好ましい。ヘイズを小さくするためには、添加する微粒子マット剤 の分散を十分に行い凝集粒子の数を少なくしたり、添加量を少なくするためにスキン層だ けにマット剤を使用したりする。

[0078]

(セルロースアシレートフィルムの光学特性)

本発明のセルロースアシレートフィルムの光学特性は、式(III)Re (λ) = $(n \times n \times y) \times d$ 、式(IV)Rth (λ) = $\{(n \times n \times y) / 2 - n \times z\} \times d$ で表されるRe レターデション値、Rthレターデーション値がそれぞれ、以下の式(V)及び(VI)を満たすことが好ましい。

(V) : $46 \text{ nm} \le \text{Re} (630) \le 200 \text{ nm}$

(VI): 70 n m \leq R t h (6 3 0) \leq 3 5 0 n m

[式中、Re(λ)は波長 λ nmにおける正面レターデーション値(単位:nm)、Rth(λ)は波長 λ nmにおける膜厚方向のレターデーション値(単位:nm)である。またnxはフィルム面内の遅相軸方向の屈折率であり、nyはフィルム面内の進相軸方向の屈折率であり、nzはフィルムの厚み方向の屈折率であり、dはフィルムの厚さである。]

さらに好ましくは、下記式 (VII) 及び (VIII) を満たすことである。

(VII) : $46 \text{ nm} \le \text{Re} (630) \le 100 \text{ nm}$

(VIII) : $180 \text{ nm} \le R \text{ th} (630) \le 350 \text{ nm}$

[0079]

湿度変化や高温経時による質量変化や寸法変化に伴いRe及びRthの光学特性値が変化する。Re及びRthの値が変化は少ないほど好ましい。湿度による光学特性変化を少なくするために6位アシル置換度の大きなセルロースアシレートを使用するほかに、疎水

性の各種添加剤(可塑剤、レターデーション発現剤、紫外線吸収剤など)を用いることによって、フィルムの透湿度や平衡含水率を小さくする。好ましい透湿度は60度C95% RH24時間で1平方メートル当たり400gから2300gである。好ましい平衡含水率は25度C80%RHにおける測定値が3.4%以下である。25度Cにおける湿度を10%RHから80%RHに変化させた時の光学特性の変化量がRe値で12nm以下、Rth値で32nm以下であることが好ましい。好ましい疎水性添加剤の量はセルロースアシレートに対して10から30%であり、12から25%がより好ましく、14.5%から20%が特に好ましい。添加剤に揮発性や分解性があってフィルムの質量変化や寸法変化が発生すると光学特性変化が起こる。従って80度С90%RHで48時間経時した後のフィルムの質量変化量は5%以下であることが好ましい。同様に60度С95%RHで24時間経時後の寸法変化量は5%以下であることが好ましい。また寸法変化や質量変化が少々あっても、フィルムの光弾性係数が小さいと光学特性の変化量は少なくなる。従ってフィルムの光弾性係数が50×10⁻¹³cm²/dyne以下であることが好ましい。

[0800]

(偏光板)

偏光板は、偏光子およびその両側に配置された二枚の透明保護膜からなる。一方の保護 膜として、本発明のセルロースアシレートフィルムを用いることができる。他方の保護膜 は、通常のセルロースアセテートフィルムを用いてもよい。偏光子には、ヨウ素系偏光子 、二色性染料を用いる染料系偏光子やポリエン系偏光子がある。ヨウ素系偏光子および染 料系偏光子は、一般にポリビニルアルコール系フィルムを用いて製造する。本発明のセル ロースアシレートフィルムを偏光板保護膜として用いる場合、偏光板の作製方法は特に限 定されず、一般的な方法で作製することができる。得られたセルロースアシレートフィル ムをアルカリ処理し、ポリビニルアルコールフィルムを沃素溶液中に浸漬延伸して作製し た偏光子の両面に完全ケン化ポリビニルアルコール水溶液を用いて貼り合わせる方法があ る。アルカリ処理の代わりに特開平6-94915号、特開平6-118232号公報に 記載されているような易接着加工を施してもよい。保護膜処理面と偏光子を貼り合わせる のに使用される接着剤としては、例えば、ポリビニルアルコール、ポリビニルブチラール 等のポリビニルアルコール系接着剤や、ブチルアクリレート等のビニル系ラテックス等が 挙げられる。偏光板は偏光子及びその両面を保護する保護膜で構成されており、更に該偏 光板の一方の面にプロテクトフィルムを、反対面にセパレートフィルムを貼合して構成さ れる。プロテクトフィルム及びセパレートフィルムは偏光板出荷時、製品検査時等におい て偏光板を保護する目的で用いられる。この場合、プロテクトフィルムは、偏光板の表面 を保護する目的で貼合され、偏光板を液晶板へ貼合する面の反対面側に用いられる。また 、セパレートフィルムは液晶板へ貼合する接着層をカバーする目的で用いられ、偏光板を 液晶板へ貼合する面側に用いられる。

[0081]

本発明のセルロスアシレートフィルムの偏光子への貼り合せ方は、偏光子の透過軸と本発明のセルロースアシレートフィルムの遅相軸を一致させるように貼り合せることが好ましい。なお、偏光板クロスニコル下で作製した偏光板の評価を行なったところ、本発明のセルロースアシレートフィルムの遅相軸と偏光子の吸収軸(透過軸と直交する軸)との直交精度が1° より大きいと、偏光板クロスニコル下での偏光度性能が低下して光抜けが生じることがわかった。この場合、液晶セルと組み合わせた場合に、十分な黒レベルやコントラストが得られないことになる。したがって、本発明のセルロースアシレートフィルムの主屈折率 n x の方向と偏光板の透過軸の方向とは、そのずれが1° 以内、好ましくは0. 5° 以内であることが好ましい。

[0082]

(防湿処理された袋)

本発明において「防湿処理された袋」はカップ法(JIS-Z208)に基づいて測定した透湿度によって規定する。 $40 \, \mathbb{C} \, 90 \, \mathbb{C} \, R$. H. での透湿度が $30 \, \mathbb{G} / \mathbb{C} \, \mathbb{C}$

湿度の影響を防止することができなくなる。 $10~\rm g/(m^2\cdot D~a~y)$ 以下であることが更に好ましく、 $5~\rm g/(m^2\cdot D~a~y)$ 以下であることが最も好ましい。

防湿処理された袋の材料は、前記記載の透湿度を満足する材料であれば特に制限は無く、公知の材料を用いることができる〔(包装材料便覧、日本包装技術協会(1995年);「包装材料の基礎知識」、(社)日本包装技術協会(2001年11月);「機能性包装入門」、21世紀包装研究境界(2002年2月28日 初版第1刷)等参照〕。本発明では、透湿度が低く、軽量で扱いやすい材料が望ましく、プラスチックフィルム上にシリカやアルミナ、セラミックス材料等を蒸着したフィルムやプラスチックフィルムとアルミ箔の積層フィルム等の複合材料を特に好ましく用いることができる。アルミ箔の厚さとしては、環境湿度に袋内の湿度が変化しない厚さであれば特に制限はないが、数 μ m~数100 μ mの厚さであることが好ましく、10 μ m~500 μ mであることが更に好ましい。本発明に用いる防湿処理を施した袋内の湿度は、以下のいずれかを満たすことが好ましい。

偏光板を包装した状態で25 Cにおいて43 % R H ~ 70 % R H であること、より好ましくは45 % ~ 65 %、さらに好ましくは45 % ~ 63 % であること。

偏光板を包装した状態での袋内の湿度が液晶パネルに偏光板を貼り合せる際の湿度に対して15%RH以内の差であること。

[0083]

(表面処理)

本発明のセルロースアシレートフィルムは、場合により表面処理を行うことによって、セルロースアシレートフィルムと各機能層(例えば、下塗層およびバック層)との接着の向上を達成することができる。例えばグロー放電処理、紫外線照射処理、コロナ処理、火炎処理、酸またはアルカリ処理を用いることができる。ここでいうグロー放電処理とは、 $10^{-3}\sim20$ Torrの低圧ガス下でおこる低温プラズマでもよく、更にまた大気圧下でのプラズマ処理も好ましい。プラズマ励起性気体とは上記のような条件においてプラズマ励起される気体をいい、アルゴン、ヘリウム、ネオン、クリプトン、キセノン、窒素、二酸化炭素、テトラフルオロメタンの様なフロン類及びそれらの混合物などがあげられる。これらについては、詳細が発明協会公開技報(公技番号 2001-1745、2001年3月15日発行、発明協会)にて30頁~32頁に詳細に記載されている。なお、近年注目されている大気圧でのプラズマ処理は、例えば $10\sim1000$ Ke v Fで $20\sim50$ Kg y の照射エネルギーが用いられる。これらの中でも特に好ましくは、アルカリ験化処理でありセルロースアシレートフィルムの表面処理としては極めて有効である。

[0084]

アルカリ鹸化処理は、セルロースアシレートフィルムを鹸化液の槽に直接浸漬する方法または鹸化液をセルロースアシレートフィルム塗布する方法で実施することが好ましい。塗布方法としては、ディップコーティング法、カーテンコーティング法、エクストルージョンコーティング法、バーコーティング法およびE型塗布法を挙げることができる。アルカリ鹸化処理塗布液の溶媒は、鹸化液の透明支持体に対して塗布するために濡れ性が良く、また鹸化液溶媒によって透明支持体表面に凹凸を形成させずに、面状を良好なまま保つ溶媒を選択することが好ましい。具体的には、アルコール系溶媒が好ましく、イソプロピルアルコールが特に好ましい。また、界面活性剤の水溶液を溶媒として使用することもできる。アルカリ鹸化塗布液のアルカリは、上記溶媒に溶解するアルカリが好ましく、KOH、NaOHがさらに好ましい。鹸化塗布液のpHは10以上が好ましく、12以上がらに好ましい。アルカリ鹸化時の反応条件は、室温で1秒以上5分以下が好ましく、5秒以上5分以下がさらに好ましく、20秒以上3分以下が特に好ましい。アルカリ鹸化反応後、鹸化液塗布面を水洗あるいは酸で洗浄したあと水洗することが好ましい。

[0085]

(反射防止層)

偏光板の、液晶セルと反対側に配置される透明保護膜には反射防止層などの機能性膜を 出証特2005-3028453 設けることが好ましい。特に、本発明では透明保護膜上に少なくとも光散乱層と低屈折率層がこの順で積層した反射防止層または透明保護膜上に中屈折率層、高屈折率層、低屈折率層がこの順で積層した反射防止層が好適に用いられる。以下にそれらの好ましい例を記載する。

[0086]

透明保護膜上に光散乱層と低屈折率層を設けた反射防止層の好ましい例について述べる。

本発明の光散乱層にはマット粒子が分散しており、光散乱層のマット粒子以外の部分の素材の屈折率は $1.50\sim2.00$ の範囲にあることが好ましく、低屈折率層の屈折率は $1.35\sim1.49$ の範囲にあることが好ましい。本発明においては光散乱層は、防眩性とハードコート性を兼ね備えており、1層でもよいし、複数層、例えば2層 ~4 層で構成されていてもよい。

[0087]

反射防止層は、その表面凹凸形状として、中心線平均粗さRaが $0.08\sim0.40\mu$ m、10点平均粗さRzがRaの10倍以下、平均山谷距離Smが $1\sim100\mu$ m、凹凸最深部からの凸部高さの標準偏差が 0.5μ m以下、中心線を基準とした平均山谷距離Smの標準偏差が 20μ m以下、傾斜角 $0\sim5$ 度の面が10%以上となるように設計することで、十分な防眩性と目視での均一なマット感が達成され、好ましい。

また、C光源下での反射光の色味が a^* 値 $-2\sim2$ 、 b^* 値 $-3\sim3$ 、380nm ~780 nmの範囲内での反射率の最小値と最大値の比 $0.5\sim0.99$ であることで、反射光の色味がニュートラルとなり、好ましい。またC光源下での透過光の b^* 値が $0\sim3$ とすることで、表示装置に適用した際の白表示の黄色味が低減され、好ましい。

また、面光源上と本発明の反射防止フィルムの間に 120μ m× 40μ mの格子を挿入してフィルム上で輝度分布を測定した際の輝度分布の標準偏差が20以下であると、高精細パネルに本発明のフィルムを適用したときのギラツキが低減され、好ましい。

[0088]

本発明の反射防止層は、その光学特性として、鏡面反射率 2. 5%以下、透過率 90%以上、60度光沢度 70%以下とすることで、外光の反射を抑制でき、視認性が向上するため好ましい。特に鏡面反射率は1%以下がより好ましく、0.5%以下であることが最も好ましい。ヘイズ 20%~50%、内部ヘイズ/全ヘイズ値(比)が0. 3~1、光散 乱層までのヘイズ値から低屈折率層を形成後のヘイズ値の低下が15%以内、くし幅0.5 mmにおける透過像鮮明度 20%~50%、垂直透過光/垂直から2度傾斜方向の透過率比が1.5~5.0とすることで、高精細LCDパネル上でのギラツキ防止、文字等のボケの低減が達成され、好ましい。

[0089]

(低屈折率層)

本発明の反射防止フィルムの低屈折率層の屈折率は、 $1.20\sim1.49$ であり、好ましくは $1.30\sim1.44$ の範囲にある。さらに、低屈折率層は下記数式 (IX) を満たすことが低反射率化の点で好ましい。

数式 (IX) : $(m/4) \times 0$. 7 < n 1 d 1 $< (m/4) \times 1$. 3

式中、mは正の奇数であり、n1は低屈折率層の屈折率であり、そして、d1は低屈折率層の膜厚 (nm) である。また、 λ は波長であり、500~550nmの範囲の値である。

[0090]

本発明の低屈折率層を形成する素材について以下に説明する。

本発明の低屈折率層には、低屈折率バインダーとして、含フッ素ポリマーを含む。フッ素ポリマーとしては動摩擦係数 $0.03\sim0.20$ 、水に対する接触角 $9.0\sim1.20$ °、純水の滑落角が 7.0°以下の熱または電離放射線により架橋する含フッ素ポリマーが好ましい。本発明の反射防止フィルムを画像表示装置に装着した時、市販の接着テープとの剥離力が低いほどシールやメモを貼り付けた後に剥がれ易くなり好ましく、5.00gf以下

ページ: 33/

が好ましく、300gf以下がより好ましく、100gf以下が最も好ましい。また、微 小硬度計で測定した表面硬度が高いほど、傷がつき難く、0.3GPa以上が好ましく、 0. 5 G P a 以上がより好ましい。

[0091]

低屈折率層に用いられる含フッ素ポリマーとしてはパーフルオロアルキル基含有シラン 化合物 (例えば (ヘプタデカフルオロー1, 1, 2, 2ーテトラヒドロデシル) トリエト キシシラン)の加水分解、脱水縮合物の他、含フッ素モノマー単位と架橋反応性付与のた めの構成単位を構成成分とする含フッ素共重合体が挙げられる。

[0092]

含フッ素モノマーの具体例としては、例えばフルオロオレフィン類(例えばフルオロエ チレン、ビニリデンフルオライド、テトラフルオロエチレン、パーフルオロオクチルエチ レン、ヘキサフルオロプロピレン、パーフルオロー2,2ージメチルー1,3ージオキソ ール等)、(メタ)アクリル酸の部分または完全フッ素化アルキルエステル誘導体類(例 えばビスコート6FM(大阪有機化学製)やM-2020(ダイキン製)等)、完全また は部分フッ素化ビニルエーテル類等が挙げられるが、好ましくはパーフルオロオレフィン 類であり、屈折率、溶解性、透明性、入手性等の観点から特に好ましくはヘキサフルオロ プロピレンである。

[0093]

架橋反応性付与のための構成単位としてはグリシジル(メタ)アクリレート、グリシジ ルビニルエーテルのように分子内にあらかじめ自己架橋性官能基を有するモノマーの重合 によって得られる構成単位、カルボキシル基やヒドロキシ基、アミノ基、スルホ基等を有 するモノマー(例えば(メタ)アクリル酸、メチロール(メタ)アクリレート、ヒドロキ シアルキル (メタ) アクリレート、アリルアクリレート、ヒドロキシエチルビニルエーテ ル、ヒドロキシブチルビニルエーテル、マレイン酸、クロトン酸等)の重合によって得ら れる構成単位、これらの構成単位に高分子反応によって(メタ)アクリルロイル基等の架 橋反応性基を導入した構成単位(例えばヒドロキシ基に対してアクリル酸クロリドを作用 させる等の手法で導入できる)が挙げられる。

[0094]

また上記含フッ素モノマー単位、架橋反応性付与のための構成単位以外に溶剤への溶解 性、皮膜の透明性等の観点から適宜フッ素原子を含有しないモノマーを共重合することも できる。併用可能なモノマー単位には特に限定はなく、例えばオレフィン類(エチレン、 プロピレン、イソプレン、塩化ビニル、塩化ビニリデン等)、アクリル酸エステル類(ア クリル酸メチル、アクリル酸メチル、アクリル酸エチル、アクリル酸2-エチルヘキシル)、メタクリル酸エステル類(メタクリル酸メチル、メタクリル酸エチル、メタクリル酸 ブチル、エチレングリコールジメタクリレート等)、スチレン誘導体(スチレン、ジビニ ルベンゼン、ビニルトルエン、 α - メチルスチレン等)、ビニルエーテル類(メチルビニ ルエーテル、エチルビニルエーテル、シクロヘキシルビニルエーテル等)、ビニルエステ ル類(酢酸ビニル、プロピオン酸ビニル、桂皮酸ビニル等)、アクリルアミド類(N-t ertーブチルアクリルアミド、Nーシクロヘキシルアクリルアミド等)、メタクリルア ミド類、アクリロニトリル誘導体等を挙げることができる。

[0095]

上記のポリマーに対しては特開平10-25388号および特開平10-147739 号各公報に記載のごとく適宜硬化剤を併用しても良い。

[0096]

(光散乱層)

光散乱層は、表面散乱および/または内部散乱による光拡散性と、フィルムの耐擦傷性 を向上するためのハードコート性をフィルムに寄与する目的で形成される。従って、ハー ドコート性を付与するためのバインダー、光拡散性を付与するためのマット粒子、および 必要に応じて高屈折率化、架橋収縮防止、高強度化のための無機フィラーを含んで形成さ れる。

[0097]

光散乱層の膜厚は、ハードコート性を付与する観点並びにカールの発生及び脆性の悪化の抑制の観点から、 $1\sim1$ 0 μ mが好ましく、 1. $2\sim6$ μ mがより好ましい。

[0098]

散乱層のバインダーとしては、飽和炭化水素鎖またはポリエーテル鎖を主鎖として有するポリマーであることが好ましく、飽和炭化水素鎖を主鎖として有するポリマーであることがさらに好ましい。また、バインダーポリマーは架橋構造を有することが好ましい。飽和炭化水素鎖を主鎖として有するバインダーポリマーとしては、エチレン性不飽和モノマーの重合体が好ましい。飽和炭化水素鎖を主鎖として有し、かつ架橋構造を有するバインダーポリマーとしては、二個以上のエチレン性不飽和基を有するモノマーの(共)重合体が好ましい。バインダーポリマーを高屈折率にするには、このモノマーの構造中に芳香族環や、フッ素以外のハロゲン原子、硫黄原子、リン原子、及び窒素原子から選ばれた少なくとも1種の原子を含むものを選択することもできる。

[0099]

二個以上のエチレン性不飽和基を有するモノマーとしては、多価アルコールと(メタ)アクリル酸とのエステル(例、エチレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、1,4ーシクロヘキサンジアクリレート、ペンタエリスリトールテトラ(メタ)アクリレート)、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、トリメチロールエタントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールへキサ(メタ)アクリレート、ジペンタエリスリトールへキサ(メタ)アクリレート、1,2,3ーシクロヘキサンテトラメタクリレート、ポリウレタンポリアクリレート、ポリエステルポリアクリレート)、上記のエチレンオキサイド変性体、ビニルベンゼンおよびその誘導体(例、1,4ージビニルベンゼン、4ービニル安息香酸ー2ーアクリロイルエチルエステル、1,4ージビニルシクロヘキサノン)、ビニルスルホン(例、ジビニルスルホン)、アクリルアミド(例、メチレンビスアクリルアミド)およびメタクリルアミドが挙げられる。上記モノマーは2種以上併用してもよい。

[0100]

高屈折率モノマーの具体例としては、ビス(4-メタクリロイルチオフェニル)スルフィド、ビニルナフタレン、ビニルフェニルスルフィド、4-メタクリロキシフェニル-4'-メトキシフェニルチオエーテル等が挙げられる。これらのモノマーも2種以上併用してもよい。

[0101]

これらのエチレン性不飽和基を有するモノマーの重合は、光ラジカル開始剤あるいは熱ラジカル開始剤の存在下、電離放射線の照射または加熱により行うことができる。

従って、エチレン性不飽和基を有するモノマー、光ラジカル開始剤あるいは熱ラジカル 開始剤、マット粒子および無機フィラーを含有する塗液を調製し、該塗液を透明支持体上 に塗布後電離放射線または熱による重合反応により硬化して反射防止膜を形成することが できる。これらの光ラジカル開始剤等は公知のものを使用することができる。

[0102]

ポリエーテルを主鎖として有するポリマーは、多官能エポシキシ化合物の開環重合体が好ましい。多官能エポシキ化合物の開環重合は、光酸発生剤あるいは熱酸発生剤の存在下、電離放射線の照射または加熱により行うことができる。

従って、多官能エポシキシ化合物、光酸発生剤あるいは熱酸発生剤、マット粒子および 無機フィラーを含有する塗液を調製し、該塗液を透明支持体上に塗布後電離放射線または 熱による重合反応により硬化して反射防止膜を形成することができる。

[0103]

二個以上のエチレン性不飽和基を有するモノマーの代わりにまたはそれに加えて、架橋性官能基を有するモノマーを用いてポリマー中に架橋性官能基を導入し、この架橋性官能

基の反応により、架橋構造をバインダーポリマーに導入してもよい。

架橋性官能基の例には、イソシアナート基、エポキシ基、アジリジン基、オキサゾリン基、アルデヒド基、カルボニル基、ヒドラジン基、カルボキシル基、メチロール基および活性メチレン基が含まれる。ビニルスルホン酸、酸無水物、シアノアクリレート誘導体、メラミン、エーテル化メチロール、エステルおよびウレタン、テトラメトキシシランのような金属アルコキシドも、架橋構造を導入するためのモノマーとして利用できる。ブロックイソシアナート基のように、分解反応の結果として架橋性を示す官能基を用いてもよい。すなわち、本発明において架橋性官能基は、すぐには反応を示すものではなくとも、分解した結果反応性を示すものであってもよい。

これら架橋性官能基を有するバインダーポリマーは塗布後、加熱することによって架橋 構造を形成することができる。

[0104]

光散乱層には、防眩性付与の目的で、フィラー粒子より大きく、平均粒径が $1\sim1$ 0 μ m、好ましくは 1 . $5\sim7$. 0 μ mのマット粒子、例えば無機化合物の粒子または樹脂粒子が含有される。

上記マット粒子の具体例としては、例えばシリカ粒子、TiO2粒子等の無機化合物の粒子;アクリル粒子、架橋アクリル粒子、ポリスチレン粒子、架橋スチレン粒子、メラミン樹脂粒子、ベンゾグアナミン樹脂粒子等の樹脂粒子が好ましく挙げられる。なかでも架橋スチレン粒子、架橋アクリル粒子、架橋アクリルスチレン粒子、シリカ粒子が好ましい。マット粒子の形状は、球状あるいは不定形のいずれも使用できる。

[0105]

また、粒子径の異なる2種以上のマット粒子を併用して用いてもよい。より大きな粒子径のマット粒子で防眩性を付与し、より小さな粒子径のマット粒子で別の光学特性を付与することが可能である。

[0106]

さらに、上記マット粒子の粒子径分布としては単分散であることが最も好ましく、各粒子の粒子径は、それぞれ同一に近ければ近いほど良い。例えば平均粒子径よりも20%以上粒子径が大きな粒子を粗大粒子と規定した場合には、この粗大粒子の割合は全粒子数の1%以下であることが好ましく、より好ましくは0.1%以下であり、さらに好ましくは0.01%以下である。このような粒子径分布を持つマット粒子は通常の合成反応後に、分級によって得られ、分級の回数を上げることやその程度を強くすることにより、より好ましい分布のマット剤を得ることができる。

[0107]

上記マット粒子は、形成された光散乱層のマット粒子量が好ましくは $10\sim1000\,\mathrm{m}$ g/m²、より好ましくは $100\sim700\,\mathrm{m}$ g/m²となるように光散乱層に含有される。マット粒子の粒度分布はコールターカウンター法により測定し、測定された分布を粒子数分布に換算する。

[0108]

光散乱層には、層の屈折率を高めるために、上記のマット粒子に加えて、チタン、ジルコニウム、アルミニウム、インジウム、亜鉛、錫、アンチモンのうちより選ばれる少なくとも1種の金属の酸化物からなり、平均粒径が 0.2μ m以下、好ましくは 0.1μ m以下、より好ましくは 0.06μ m以下である無機フィラーが含有されることが好ましい。また逆に、マット粒子との屈折率差を大きくするために、高屈折率マット粒子を用いた光散乱層では層の屈折率を低目に保つためにケイ素の酸化物を用いることも好ましい。好ましい粒径は前述の無機フィラーと同じである。

光散乱層に用いられる無機フィラーの具体例としては、 TiO_2 、 ZrO_2 、 Al_2O_3 、 In_2O_3 、ZnO、 SnO_2 、 Sb_2O_3 、ITOと SiO_2 等が挙げられる。 TiO_2 および ZrO_2 が高屈折率化の点で特に好ましい。該無機フィラーは表面をシランカップリング処理またはチタンカップリング処理されることも好ましく、フィラー表面にバインダー種と反応できる官能基を有する表面処理剤が好ましく用いられる。

これらの無機フィラーの添加量は、光散乱層の全質量の10~90%であることが好ましく、より好ましくは20~80%であり、特に好ましくは30~75%である。

なお、このようなフィラーは、粒径が光の波長よりも十分小さいために散乱が生じず、バインダーポリマーに該フィラーが分散した分散体は光学的に均一な物質として振舞う。

[0109]

光散乱層のバインダーおよび無機フィラーの混合物のバルクの屈折率は、 $1.48\sim2.00$ であることが好ましく、より好ましくは $1.50\sim1.80$ である。屈折率を上記範囲とするには、バインダー及び無機フィラーの種類及び量割合を適宜選択すればよい。どのように選択するかは、予め実験的に容易に知ることができる。

[0110]

光散乱層は、特に塗布ムラ、乾燥ムラ、点欠陥等の面状均一性を確保するために、フッ素系、シリコーン系の何れかの界面活性剤、あるいはその両者を防眩層形成用の塗布組成物中に含有する。特にフッ素系の界面活性剤は、より少ない添加量において、本発明の反射防止フィルムの塗布ムラ、乾燥ムラ、点欠陥等の面状故障を改良する効果が現れるため、好ましく用いられる。面状均一性を高めつつ、高速塗布適性を持たせることにより生産性を高めることが目的である。

[0111]

次に透明保護膜上に中屈折率層、高屈折率層、低屈折率層がこの順で積層した反射防止 層について述べる。

基体上に少なくとも中屈折率層、高屈折率層、低屈折率層(最外層)の順序の層構成から成る反射防止膜は、以下の関係を満足する屈折率を有する様に設計される。

高屈折率層の屈折率>中屈折率層の屈折率>透明支持体の屈折率>低屈折率層の屈折率また、透明支持体と中屈折率層の間に、ハードコート層を設けてもよい。更には、中屈折率ハードコート層、高屈折率層及び低屈折率層からなってもよい(例えば、特開平8-122504号公報、同8-110401号公報、同10-300902号公報、特開2002-243906号公報、特開2000-111706号公報等参照)。また、各層に他の機能を付与させてもよく、例えば、防汚性の低屈折率層、帯電防止性の高屈折率層としたもの(例、特開平10-206603号公報、特開2002-243906号公報等)等が挙げられる。

反射防止膜のヘイズは、5%以下あることが好ましく、3%以下がさらに好ましい。また膜の強度は、JISK5400に従う鉛筆硬度試験でH以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。

[0112]

(高屈折率層および中屈折率層)

反射防止膜の高い屈折率を有する層は、平均粒径100nm以下の高屈折率の無機化合物超微粒子及びマトリックスバインダーを少なくとも含有する硬化性膜から成る。

高屈折率の無機化合物微粒子としては、屈折率 1.65以上の無機化合物が挙げられ、好ましくは屈折率 1.9以上のものが挙げられる。例えば、Ti、Zn、Sb、Sn、Zr、Ce、Ta、La、In等の酸化物、これらの金属原子を含む複合酸化物等が挙げられる。

[0113]

マトリックスを形成する材料としては、従来公知の熱可塑性樹脂、硬化性樹脂皮膜等が挙げられる。

更に、ラジカル重合性及び/またはカチオン重合性の重合性基を少なくとも2個有する多官能性化合物含有組成物と、加水分解性基を有する有機金属化合物及びその部分縮合体を含有する組成物とから選ばれる少なくとも1種の組成物が好ましい。例えば、特開200-47004号公報、同2001-315242号公報、同2001-31871号公報、同2001-296401号公報等に記載の組成物が挙げられる。

また、金属アルコキドの加水分解縮合物から得られるコロイド状金属酸化物と金属アルコキシド組成物から得られる硬化性膜も好ましい。例えば、特開2001-293818 号公報等に記載されている。

[0114]

高屈折率層の屈折率は、一般に 1. $70\sim2$. 20である。高屈折率層の厚さは、 $5nm\sim10\mu$ mであることが好ましく、 $10nm\sim1\mu$ mであることがさらに好ましい。

中屈折率層の屈折率は、低屈折率層の屈折率と高屈折率層の屈折率との間の値となるように調整する。中屈折率層の屈折率は、 $1.50\sim1.70$ であることが好ましい。また、厚さは $5~n~m\sim10~m~\mu$ であることが好ましく、 $1~0~n~m\sim1~\mu$ mであることがさらに好ましい。

[0115]

(低屈折率層)

低屈折率層は、高屈折率層の上に順次積層して成る。低屈折率層の屈折率は 1. 20~1.50 である。好ましくは 1.30~1.50 である。

耐擦傷性、防汚性を有する最外層として構築することが好ましい。耐擦傷性を大きく向上させる手段として表面への滑り性付与が有効で、従来公知のシリコーンの導入、フッ素の導入等から成る薄膜層の手段を適用できる。

含フッ素化合物の屈折率は 1. $35 \sim 1$. 50 であることが好ましい。より好ましくは 1. $36 \sim 1$. 47 である。また、含フッ素化合物はフッ素原子を $35 \sim 80$ 質量%の範囲で含む架橋性若しくは重合性の官能基を含む化合物が好ましい。

例えば、特開平9-222503号公報明細書段落番号 [0018]~ [0026]、同11-38202号公報明細書段落番号 [0019]~ [0030]、特開2001-40284号公報明細書段落番号 [0027]~ [0028]、特開2000-284102号公報等に記載の化合物が挙げられる。

シリコーン化合物としてはポリシロキサン構造を有する化合物であり、高分子鎖中に硬化性官能基あるいは重合性官能基を含有して、膜中で橋かけ構造を有するものが好ましい。例えば、反応性シリコーン(例、サイラプレーン(チッソ(株)製等)、両末端にシラノール基含有のポリシロキサン(特開平11-258403号公報等)等が挙げられる。

[0116]

架橋または重合性基を有する含フッ素及び/またはシロキサンのポリマーの架橋または 重合反応は、重合開始剤、増感剤等を含有する最外層を形成するための塗布組成物を塗布 と同時または塗布後に光照射や加熱することにより実施することが好ましい。

また、シランカップリング剤等の有機金属化合物と特定のフッ素含有炭化水素基含有のシランカップリング剤とを触媒共存下に縮合反応で硬化するゾルゲル硬化膜も好ましい。

例えば、ポリフルオロアルキル基含有シラン化合物またはその部分加水分解縮合物(特開昭 58-142958 号公報、同58-147483 号公報、同58-147484 号公報、特開平 9-157582 号公報、同11-106704 号公報記載等記載の化合物)、フッ素含有長鎖基であるポリ「パーフルオロアルキルエーテル」基を含有するシリル化合物(特開 2000-117902 号公報、同2001-48590 号公報、同2002-53804 号公報記載の化合物等)等が挙げられる。

[0117]

低屈折率層は、上記以外の添加剤として充填剤(例えば、二酸化珪素(シリカ)、含フッ素粒子(フッ化マグネシウム,フッ化カルシウム,フッ化バリウム)等の一次粒子平均径が $1\sim150$ nmの低屈折率無機化合物、特開平 11-3820 公報の段落番号 $[00]\sim[0038]$ に記載の有機微粒子等)、シランカップリング剤、滑り剤、界面活

性剤等を含有することができる。

低屈折率層が最外層の下層に位置する場合、低屈折率層は気相法(真空蒸着法、スパッタリング法、イオンプレーティング法、プラズマCVD法等)により形成されても良い。 安価に製造できる点で、塗布法が好ましい。

低屈折率層の膜厚は、30~200nmであることが好ましく、50~150nmであることがさらに好ましく、60~120nmであることが最も好ましい。

[0118]

(反射防止層の他の層)

さらに、ハードコート層、前方散乱層、プライマー層、帯電防止層、下塗り層や保護層 等を設けてもよい。

[0119]

(ハードコート層)

ハードコート層は、反射防止層を設けた透明保護膜に物理強度を付与するために、透明支持体の表面に設ける。特に、透明支持体と前記高屈折率層の間に設けることが好ましい。ハードコート層は、光及び/または熱の硬化性化合物の架橋反応、または、重合反応により形成されることが好ましい。硬化性官能基としては、光重合性官能基が好ましく、また加水分解性官能基含有の有機金属化合物は有機アルコキシシリル化合物が好ましい。

これらの化合物の具体例としては、高屈折率層で例示したと同様のものが挙げられる。 ハードコート層の具体的な構成組成物としては、例えば、特開 2002-144913号 公報、同 2000-9908号 公報、WO00/46617号公報等記載のものが挙げられる。

高屈折率層はハードコート層を兼ねることができる。このような場合、高屈折率層で記載した手法を用いて微粒子を微細に分散してハードコート層に含有させて形成することが好ましい。

ハードコート層は、平均粒径 $0.2\sim10~\mu$ mの粒子を含有させて防眩機能(アンチグレア機能)を付与した防眩層(後述)を兼ねることもできる。

ハードコート層の膜厚は用途により適切に設計することができる。ハードコート層の膜厚は、 $0.2\sim10\,\mu$ mであることが好ましく、より好ましくは $0.5\sim7\,\mu$ mである。ハードコート層の強度は、JISK5400に従う鉛筆硬度試験で、H以上であることが好ましく、2H以上であることがさらに好ましく、3H以上であることが最も好ましい。また、JISK5400に従うテーバー試験で、試験前後の試験片の摩耗量が少ないほど好ましい。

[0120]

(帯電防止層)

帯電防止層を設ける場合には体積抵抗率が 10^{-8} (Ω c m $^{-3}$) 以下の導電性を付与する ことが好ましい。吸湿性物質や水溶性無機塩、ある種の界面活性剤、カチオンポリマー、 アニオンポリマー、コロイダルシリカ等の使用により 10^{-8} (Ωcm^{-3})の体積抵抗率の 付与は可能であるが、温湿度依存性が大きく、低湿では十分な導電性を確保できない問題 がある。そのため、導電性層素材としては金属酸化物が好ましい。金属酸化物には着色し ているものがあるが、これらの金属酸化物を導電性層素材として用いるとフィルム全体が 着色してしまい好ましくない。着色のない金属酸化物を形成する金属としてZn、Ti、 Al、In、Si、Mg、Ba、Mo、W、またはVをあげることができ、これを主成分 とした金属酸化物を用いることが好ましい。具体的な例としては、ZnO、TiO2、S nO2、Al2O3、In2O3、SiO2、MgO、BaO、MoO3、V2O5等、あるいは これらの複合酸化物がよく、特にΖηΟ、ΤίΟ2、及びSηΟ2が好ましい。異種原子を 含む例としては、例えばΖηΟに対してはΑ1、Ιη等の添加物、SηΟ2に対してはS である。更にまた、特公昭59-6235号公報に記載の如く、他の結晶性金属粒子ある いは繊維状物(例えば酸化チタン)に上記の金属酸化物を付着させた素材を使用しても良 い。尚、体積抵抗値と表面抵抗値は別の物性値であり単純に比較することはできないが、

体積抵抗値で 10^{-8} (Ω c m $^{-3}$) 以下の導電性を確保するためには、該導電層が概ね 10^{-10} (Ω / \square) 以下の表面抵抗値を有していればよく更に好ましくは 10^{-8} (Ω / \square) である。導電層の表面抵抗値は帯電防止層を最表層としたときの値として測定されることが必要であり、本特許に記載の積層フィルムを形成する途中の段階で測定することができる。

[0121]

(液晶表示装置)

本発明のセルロースアシレートフィルム、該フィルムからなる光学補償シート、該フィルムを用いた偏光板は、様々な表示モードの液晶セル、液晶表示装置に用いることができる。TN(Twisted Nematic)、IPS(In—Plane Switching)、FLC(Ferroelectric Liauid Crystal)、AFLC(Anti-ferroelectric Liauid Crystal)、OCB(Optically Compensatory Bend)、STN(Supper Twisted Nematic)、VA(Vertically Aligned)およびHAN(Hybrid Aligned Nematic)のような様々な表示モードが提案されている。このうち、OCBモードまたはVAモードに好ましく用いることができる。

[0122]

OCBモードの液晶セルは、棒状液晶性分子を液晶セルの上部と下部とで実質的に逆の方向に(対称的に)配向させるベンド配向モードの液晶セルを用いた液晶表示装置である。OCBモードの液晶セルは、米国特許第4583825号、同5410422号の各明細書に開示されている。棒状液晶分子が液晶セルの上部と下部とで対称的に配向しているため、ベンド配向モードの液晶セルは、自己光学補償機能を有する。そのため、この液晶モードは、OCB(Optically Compensatory Bend)液晶モードとも呼ばれる。ベンド配向モードの液晶表示装置は、応答速度が速いとの利点がある。

[0123]

VAモードの液晶セルでは、電圧無印加時に棒状液晶性分子が実質的に垂直に配向している。

VAモードの液晶セルには、(1)棒状液晶性分子を電圧無印加時に実質的に垂直に配向させ、電圧印加時に実質的に水平に配向させる狭義のVAモードの液晶セル(特開平 2 -176625 号公報記載)に加えて、(2)視野角拡大のため、VAモードをマルチドメイン化した(MVAモードの)液晶セル(SID97、Digest of tech. Papers(予稿集)28(1997)845記載)、(3)棒状液晶性分子を電圧無印加時に実質的に垂直配向させ、電圧印加時にねじれマルチドメイン配向させるモード(n-ASMモード)の液晶セル(日本液晶討論会の予稿集 $58\sim59$ (1998)記載)および(4)SURVAIVALモードの液晶セル(LCDインターナショナル 98 で発表)が含まれる。

VAモードの液晶表示装置は、液晶セルおよびその両側に配置された二枚の偏光板からなる。液晶セルは、二枚の電極基板の間に液晶を担持している。本発明の透過型液晶表示装置の一つの態様では、本発明の光学補償シートは、液晶セルと一方の偏光板との間に、一枚配置するか、あるいは液晶セルと双方の偏光板との間に二枚配置する。

本発明の透過型液晶表示装置の別の態様では、液晶セルと偏光子との間に配置される偏光板の透明保護膜として、本発明のセルロースアシレートフィルムからなる光学補償シートが用いられる。一方の偏光板の(液晶セルと偏光子との間の)透明保護膜のみに上記の光学補償シートを用いてもよいし、あるいは双方の偏光板の(液晶セルと偏光子との間の)二枚の透明保護膜に、上記の光学補償シートを用いてもよい。一方の偏光板のみに上記光学補償シートを使用する場合は、液晶セルのバックライト側偏光板の液晶セル側保護膜として使用するのが特に好ましい。液晶セルへの張り合わせは、本発明のセルロースアシレートフィルムはVAセル側にすることが好ましい。保護膜は通常のセルレートアシレートフィルムでも良く、本発明のセルロースアシレートフィルムより薄いことが好ましい。

ページ: 40/

たとえば、 $40~80~\mu$ mが好ましく、市販のKC4UX2M (コニカオプト株式会社製 40μm)、KC5UX (コニカオプト株式会社製60μm)、TD80 (富士写真フィ ルム製80μm)等が挙げられるが、これらに限定されない。

【実施例】

[0124]

以下、本発明を実施例に基づき具体的に説明するが、本発明は実施例に限定されない。 [測定法]

以下、セルロースアシレートフィルムの諸特性は以下の方法で測定して実施した。 (レターデーション Re)

セルロースアシレートフィルムを25℃60%RHにて24時間調湿後、エリプソメー ター(M-150:日本分光(株)製)を用い、He-Neレーザーを用いて測定した。 厚さ方向のレターデーション値(Rth)と面内レターデーション値(Re)とは、それ ぞれ下記式(2)および(3)にしたがって算出した。

式(2): $Re = (nx - ny) \times d$

式(3): Rth= $\{(nx+ny)/2-nz\}\times d$

(式中、 n x はフィルム平面内の x 方向の屈折率であり、 n y はフィルム平面内の y 方 向の屈折率であり、nzはフィルム面と直交する方向の屈折率であり、dはフィルムの厚 み(nm)である。

(含水率)

試料7mm×35mmを水分測定器、試料乾燥装置(CA-03、VA-05、共に三 菱化学(株)) にてカールフィッシャー法で測定。水分量(g)を試料質量(g)で除し て算出した。

[0125]

(熱収縮率)

試料30mm×120mmを90℃、5%RHで24、120時間経時させ、自動ピン ゲージ(新東科学(株))にて、両端に $6 \, \mathrm{mm} \, \phi$ の穴を $1 \, 0 \, 0 \, \mathrm{mm}$ 間隔に開けて、間隔の 原寸(L1)を最小目盛り1/1000mmまで測定した。さらに60℃、95%RHあ るいは90℃、5%RHにて24時間静置してパンチ間隔の寸法(L2)を測定。そして 、熱収縮率を {(L1-L2)/L1}×100により求めた。

(ガラス転移温度Tg)

フィルム試料(未延伸)5mm×30mmを、25℃60%RHで2時間以上調湿した 後に動的粘弾性測定装置(バイブロン:DVA-225(アイティー計測制御株式会社製))で 、つかみ間距離20mm、昇温速度2℃/分、測定温度範囲30℃~200℃、周波数1 Hzで測定し、縦軸に対数軸で貯蔵弾性率、横軸に線形軸で温度(℃)をとった時に、貯 蔵弾性率が固体領域からガラス転移領域へ移行する際に見受けられる貯蔵弾性率の急激な 減少を固体領域で直線1を引き、ガラス転移領域で直線2を引いたときの直線1と直線2 の交点を、昇温時に貯蔵弾性率が急激に減少しフィルムが軟化し始める温度であり、ガラ ス転移領域に移行し始める温度であるため、ガラス転移温度Tg(動的粘弾性)とした。

[0126]

(弾性率)

試料10mm×200mmを、25℃、60%RH、2時間調湿し、引張試験機(スト ログラフーR2(東洋精機製))にて、初期試料長100mm、引張速度100mm/分 で弾性率を引張初期の応力と伸びより算出した。

[0127]

(光弾性係数)

フィルム試料10mm×100mmの長軸方向に対して引っ張り応力をかけ、その際の R e レターデーションをエリプソメーター (M150、日本分光(株))で測定し、応力 に対するレターデーションの変化量から光弾性係数を算出した。 (ヘイズ)

試料40mm×80mmを、25℃,60%RHでヘイズメーター(HGM-2DP、

出証特2005-3028453

スガ試験機)でJIS K6714に従って測定した。

【0128】 「実施例1]

1. セルロースアシレートフィルムの製膜

(1) セルロースアシレート

(2) ドープ調製

表1に記載のセルロースアシレートに可塑剤(トリフェニルフォスフェイトとビフェニルジフェニルフォスフェイトの2対1の混合物)、下記構造のレターデーション発現剤を次の混合溶剤、ジクロロメタン/メタノール(87/13質量部)に固形分の質量濃度が19質量%となるように攪拌しながら投入して加熱攪拌し溶解させた。このとき、同時にセルロースアシレート100質量部に対してそれぞれ微粒子〔二酸化ケイ素(一次粒径20nm、モース硬度 約7)〕0.05質量部、紫外線吸収剤B(TINUVIN327 チバ・スペシャリティ・ケミカルズ製)0.375質量部、紫外線吸収剤C(TINUVIN328 チバ・スペシャリティ・ケミカルズ製)0.75質量部を投入し、加熱しながら攪拌した。可とかりでできたアーション発現剤の添加割合はセルロースアシレート量を100質量部とした時の質量部で表2に示した。このようにしてできたアプから下記方法でア1から下10及びF14からF19までのフィルムを作成した。

レターデーション発現剤

【0129】 【化13】

[0130]

また表 1 に記載のセルロースアシレート CA3 に可塑剤(トリフェニルフォスフェイトとビフェニルジフェニルフォスフェイトの 2 対 1 の混合物)、上記構造のレターデーション発現剤を次の混合溶剤、酢酸メチル/アセトン/エタノール/ブタノール(8 1/8/7/4 質量部)に固形分の質量濃度が 16.4 質量%となるように攪拌しながら投入して攪拌し膨潤させた。このとき、同時にセルロースアシレート 100 質量部に対してそれぞれ微粒子〔二酸化ケイ素(一次粒径 20 n m、モース硬度 約 7)〕 0.05 質量部、クエン酸エチルエステル(モノエステルとジエステルが 1:1 混合) 0.04 質量部を投入しながら攪拌した。可塑剤とレターデーション発現剤の添加割合はセルロースアシレート

量を100質量部としたときの質量部で表2に示した。膨潤した液を-70 $\mathbb C$ に冷却後加温し、40 $\mathbb C$ で溶解した。できたドープをろ過した後、120 $\mathbb C$ の温度をかけてフラッシュ濃縮を行い、ドープ中の固形分濃度を約21%に調整した。このようにしてできたドープから下記方法でF11からF13までのフィルムを作成した。

[0131]

(流延)

上述のドープをバンド流延機を用いて流延した。残留溶剤量が25から35質量%でバンドから剥ぎ取ったフィルムを、テンターを用いて15%~23%の延伸率(表2)で幅方向に延伸して、セルロースアシレートフィルムを製造した。テンターでは熱風を当てて搬送をしながら、幅方向に延伸した後、約5%収縮させ、その後テンター搬送からロール搬送に移行し、更に乾燥し、ナーリングし巻き取った。延伸率はテンター入口のフィルム幅とテンター出口のフィルム幅から算出した値を表2に示した。作製したセルロースアシレートフィルム(光学補償シート)について、エリプソメーター(M-150、日本分光(株)製)を用いて、25℃60%RHで波長630nmにおけるReレターデーション値およびRthレターデーション値を測定した。また、フィルムを25℃10%RH、210%RHに2時間以上調湿して2枚のガラス板間にシリコーンを介してサンプルタイルムを挟み込み密閉した状態で測定した。このときの80%RHから10%RHへのセルロースアシレートフィルムのレターデーションの変化量(Re(10%RH)ーRe(80%RH)、Rth(10%RH)ーRth(80%RH))を Δ Re、 Δ Rthとして表2に示す。

[0132]

【表1】

-	原料綿No	アセチル置換 度	プロピオニル	6 位置換 度	6位置換度/全置
					换度
実施例	CA1	2.849	0.000	0.934	0.328
実施例	CA2	2.847	0.000	0.947	0.333
·実施例	CA3	2.785	0.000	0.910	0.327
実施例	CA4	2.753	0.000	0.903	0.328
実施例	CA5	2.745	0.000	0.882	0.321
実施例	CA6	1.952	0.808	0.897	0.325
比較例	CA7	2.847	0.000	0.907	0.319
比較例	CA8	2.751	0.000	0.844	0.307

全置換度とは、2位、3位及び6位の各アシル置換度の合計である。また 全置換度は、アセチル置換度とプロピオニル置換度を足した値に等しい。

[0133]

【表2】

沙光湖 灣添古 量(%)	延伸率 (%)	テ マ (O。) (O。)	乾燥後 膜厚 (μm)	Re (nm)	Rth (nm)	ΔRe (nm)	∆Rth (nm)	の 大 名) (名)	透水率 (g/m²/day)	Tg(°C)	童
23		135	92	51	130	10.5	29.3	2.96	850	143	田林室
20		135	92	47	211	10.3	28.7	2.94	854	143	所
50	i	140	92	16	114	12.1	41.0	3.36	1500	145	大學
20		135	92	74	220	89 89	28.2	2.96	1144	142	N 被 括 金
15		135	92	67	237	8.3	26.6	2.95	1037	142	米 括金
25	- 1	135	110	140	303	10.1	31.8	2.95	867	142	果箱囱
15		145	92	89	274	8.4	29.1	2.95	1444	147	東施匈
15	•	130	80	63	223	8.2	26.4	2.95	1190	142	実施例
15	-	130	92	72	256	8.5	26.5	2.95	1035	142	実施例
23 1		135	90	48	132	7.5	24.6	2.96	1689	142	実施例
20 1:		135	80	17	155	10.3	44.2	3.36	1725	145	比較例
22 1:		135	98	28	275	10.2	27.9	2.96	1265	142	実施例
20 13	7	135	110	80	298	11,5	8.97	2.95	954	142	深插囱
20 1		35	92	51	274	8.8	28.4	3.17	1127	142	来施例
20 1	_	35	92	52	277	8.8	30.8	3.18	1130	142	米斯鱼
20	_	35	80	55	121	8.9	25.5	2.34	1420	138	米箱囱
23 1	_	135	92	49	135	8.6	34.1	2.94	1010	143	比較例
20		135	92	47	198	8.5	32.5	2.93	907	142	比数多
5		135	95	99	278	8.8	34.5	3.10	1136	141	李章

[0134]

作成したフィルムは更にガラス転移温度(Tg)、25 \mathbb{C} 80 \mathbb{C} R H 調湿後の含水率及び、60 \mathbb{C} 95 \mathbb{C} R H で24時間の水分透過率を測定し、表 2 に示した。またこれらのフィ

[0135]

[実施例2]

< 2 - 1 - 1 >

(偏光板の作製-1)

延伸したポリビニルアルコールフィルムにヨウ素を吸着させて偏光子を作製した。 実施例1で作製したセルロースアシレートフィルム(F1からF19:図1~3のTA C1に相当)をポリビニルアルコール系接着剤を用いて、偏光子の片側に貼り付けた。なお、ケン化処理は以下のような条件で行った。

1.5 Nの水酸化ナトリウム水溶液を調製し、55 \mathbb{C} に保温した。0.01 Nの希硫酸水溶液を調製し、35 \mathbb{C} に保温した。 作製したセルロースアシレートフィルムを上記の水酸化ナトリウム水溶液に2分間浸漬した後、水に浸漬し水酸化ナトリウム水溶液を十分に洗い流した。次いで、上記の希硫酸水溶液に1分間浸漬した後、水に浸漬し希硫酸水溶液を十分に洗い流した。 最後に試料を120 \mathbb{C} で十分に乾燥させた。

市販のセルローストリアシレートフィルム(フジタックTD80UF、富士写真フィルム(株)製:図2の機能性膜TAC2、図3のTAC2-1あるいは2-2に相当)にケン化処理を行い、ポリビニルアルコール系接着剤を用いて、偏光子の反対側に貼り付け、70℃で10分以上乾燥した。

偏光子の透過軸と実施例1で作製したセルロースアシレートフィルムの遅相軸とは平行になるように配置した(図1)。偏光子の透過軸と市販のセルローストリアシレートフィルムの遅相軸とは直交するように配置した。

このようにして作製した偏光板A1からA19(図2で機能性膜が無い形の光学補償膜一体型偏光板)を、その一部はそのまま防湿袋に入れて保管し、もう一部は25度C60%RHで2時間調湿後に防湿袋に入れて保管した。防湿袋はポリエチレンテレフタレート/アルミ/ポリエチレンの積層構造からなる包装材であり、透湿度は0.01mg/m²(24時間)以下であった。

[0136]

< 2 - 2 - 1 >

(光散乱層用塗布液の調製)

ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレートの混合物(PETA、日本化薬(株)製)50gをトルエン38.5gで希釈した。更に、重合開始剤(イルガキュア184、チバ・スペシャルティ・ケミカルズ(株)製)を2g添加し、混合攪拌した。 この溶液を塗布、紫外線硬化して得られた塗膜の屈折率は1.51であった。

さらにこの溶液にポリトロン分散機にて10000 r p m で 20 分分散した平均粒径 3 . 5μ m の架橋ポリスチレン粒子(屈折率 1 . 60 、 SX-350 、綜研化学(株)製)の 30% トルエン分散液を 1 . 7 g および平均粒径 3 . 5μ m の架橋 アクリルースチレン粒子(屈折率 1 . 55 、綜研化学(株)製)の 30% トルエン分散液を 13 . 3 g 加え、最後に、フッ素系表面改質剤(FP-1)0 . 75 g、シランカップリング剤(KBM-5103、信越化学工業(株)製)を 10 g を加え、完成液とした。

上記混合液を孔径 3 0 μ mのポリプロピレン製フィルターでろ過して光散乱層の塗布液を調製した。

[0137]

< 2 - 2 - 2 >

(低屈折率層用塗布液の調製)

屈折率1.42の熱架橋性含フッ素ポリマー(JN-7228、固形分濃度6%、JS 出証特2005-3028453 R(株)製)13g、シリカゾル(シリカ、MEK-STの粒子サイズ違い、平均粒径45nm、固形分濃度30%、日産化学(株)製)1.3g、ゾル液 a0.6g およびメチルエチルケトン5g、シクロヘキサノ0.6g を添加、攪拌の後、孔径 $1\mu m$ のポリプロピレン製フィルターでろ過して、低屈折率層用塗布液を調製した。

[0138]

< 2 - 2 - 3 >

(光散乱層付き透明保護膜01の作製)

80 μ mの厚さのトリアセチルセルロースフィルム(TAC-TD80 U、富士写真フィルム(株)製)をロール形態で巻き出して、上記の機能層(光散乱層)用途布液を線数 180本/インチ、深度 40 μ mのグラビアパターンを有する直径 50 mmのマイクログラビアロールとドクターブレードを用いて、グラビアロール回転数 30 r p m、搬送速度 30 m/分の条件で塗布し、60 $\mathbb C$ で 150 秒乾燥の後、さらに窒素パージ下で 160 W/c mの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度 400 mW/c m²、照射量 250 m J/c m²の紫外線を照射して塗布層を硬化させ、厚さ6 μ mの機能層を形成し、巻き取った。

[0139]

< 2 - 3 - 1 >

(偏光板の作製-2)

延伸したポリビニルアルコールフィルムにヨウ素を吸着させて偏光子を作製した。 作製した光散乱層付き透明保護膜01に<2-1-1>記載と同様のケン化処理を行い、ポリビニルアルコール系接着剤を用いて、機能性膜の無い側と偏光子の片側を貼り付けた。

実施例1で作製したセルロースアシレートフィルム(F1からF19:図1のTAC1に相当)に同様のケン化処理を行い、ポリビニルアルコール系接着剤を用いて、偏光子の反対側に貼り付け、70度Cで10分以上乾燥した(図2の構成が完成)。

偏光子の透過軸と実施例1で作製したセルロースアシレートフィルムの遅相軸とは平行になるように配置した(図1)。偏光子の透過軸と光散乱層付き透明反故膜01の遅相軸とは、直交するように配置した。このようにして偏光板(B1からB19:機能性膜、光学補償膜一体型偏光板(図2))を作製した。偏光板の作製<2-1-1>と同様に、25度C60%RHで2時間調湿後防湿袋に入れたものと、調湿せずに防湿袋に入れたものを作成した。

延伸したポリビニルアルコールフィルムにヨウ素を吸着させて偏光子を作製した。<2 -2-3>で作成した光散乱層付き透明保護膜01及び機能性層を塗布していない80 μ mの厚さのトリアセチルセルロースフィルム(TAC-TD80U、富士写真フィルム(株)製)を前述と同様のケン化処理を行い、ポリビニルアルコール系接着剤を用いて、前述と同様に偏光子に貼りあわせた。このようにして偏光板(B0:機能性膜、光学補償膜一体型偏光板(図2))を作成した。偏光板の作製<2-1-1>と同様に、調湿後防湿袋に入れたものと、調湿せずに防湿袋に入れたものを作成した。

分光光度計(日本分光(株)製)を用いて、380~780nmの波長領域において、入射角5°における分光反射率を機能性膜側から測定し、450~650nmの積分球平均反射率を求めたところ、2.3%であった。

< 2 - 4 - 1 >

(ハードコート層用塗布液の調製)

トリメチロールプロパントリアクリレート(TMPTA、日本化薬(株)製) 750.0質量部に、質量平均分子量 3000のポリ(グリシジルメタクリレート) 270.0質量部、メチルエチルケトン 730.0g、シクロヘキサノン 500.0g及び光重合開始剤(イルガキュア 184、日本チバガイギー(株)製) 50.0gを添加して攪拌した。孔径 0.4 μ mのポリプロピレン製フィルターで濾過してハードコート層用の塗布液を調製した。

[0141]

< 2 - 4 - 2 >

(二酸化チタン微粒子分散液の調製)

二酸化チタン微粒子としては、コバルトを含有し、かつ水酸化アルミニウムと水酸化ジルコニウムを用いて表面処理を施した二酸化チタン微粒子(MPT-129、石原産業(株)製)を使用した。

この粒子 2 5 7. 1 g に、下記分散剤 3 8. 6 g、およびシクロヘキサノン 7 0 4. 3 g を添加してダイノミルにより分散し、質量平均径 7 0 n m の二酸化チタン分散液を調製した。

[0142]

< 2 - 4 - 3 >

(中屈折率層用塗布液の調製)

上記の二酸化チタン分散液 8 8 . 9 g に、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールへキサアクリレートの混合物(DPHA)5 8 . 4 g、光重合開始剤(イルガキュア907)3 . 1 g、光増感剤(カヤキュアーDETX、日本化薬(株)製)1 . 1 g、メチルエチルケトン4 8 2 . 4 gおよびシクロヘキサノン1 8 6 9 . 8 gを添加して攪拌した。十分に攪拌ののち、孔径 0 . 4 μ mのポリプロピレン製フィルターで濾過して中屈折率層用塗布液を調製した。

[0143]

< 2 - 4 - 4 >

(高屈折率層用塗布液の調製)

上記の二酸化チタン分散液 5.8.6.8 gに、ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールへキサアクリレートの混合物(DPHA、日本化薬(株)製) 4.7.9 g、光重合開始剤(イルガキュア 9.0.7、日本チバガイギー(株)製) 4.0 g、光増感剤(カヤキュアーDETX、日本化薬(株)製) 1.3 g、メチルエチルケトン 4.5.5.8 g、およびシクロヘキサノン 1.4.2.7.8 gを添加して攪拌した。孔径 0.4.4.8 mのポリプロピレン製フィルターで濾過して高屈折率層用の塗布液を調製した。

[0144]

< 2 - 4 - 5 >

(低屈折率層用塗布液の調製)

下記構造の共重合体をメチルイソブチルケトンに7質量%の濃度になるように溶解し、末端メタクリレート基含有シリコーン樹脂X-22-164C(信越化学(株)製)を固形分に対して3%、光ラジカル発生剤イルガキュア907(商品名)を固形分に対して5質量%添加し、低屈折率層用塗布液を調製した。

[0145]

【化14】

< 2 - 4 - 6 >

(反射防止層付透明保護膜02の作製)

膜厚80 μ mのトリアセチルセルロースフィルム(TD-80 UF、富士写真フィルム(株)製)上に、ハードコート層用塗布液をグラビアコーターを用いて塗布した。100 $\mathbb C$ で乾燥した後、酸素濃度が1.0体積%以下の雰囲気になるように窒素パージしながら160 $\mathbb W$ /cmの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400 $\mathbb W$ /cm²、照射量300 $\mathbb W$ J/cm²の紫外線を照射して塗布層を硬化させ、厚さ8 μ mのハードコート層を形成した。

ハードコート層の上に、中屈折率層用塗布液、高屈折率層用塗布液、低屈折率層用塗布液を3つの塗布ステーションを有するグラビアコーターを用いて連続して塗布した。

[0147]

中屈折率層の乾燥条件は100 \mathbb{C} 、2 分間とし、紫外線硬化条件は酸素濃度が1.0 体積%以下の雰囲気になるように窒素パージしながら180 W/c mの空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度400 mW/c m 2、照射量400 m J/c m 2 の照射量とした。硬化後の中屈折率層は屈折率1.630、膜厚67 n mであった。

[0148]

高屈折率層および低屈折率層の乾燥条件はいずれも90%、1分の後、100%、1分とし、紫外線硬化条件は酸素濃度が1.04積%以下の雰囲気になるように窒素パージしながら240W/cm0空冷メタルハライドランプ(アイグラフィックス(株)製)を用いて、照度 $600mW/cm^2$ 、照射量 $600mJ/cm^2$ の照射量とした。

硬化後の高屈折率層は屈折率1.905、膜厚107nm、低屈折率層は屈折率1.4 40、膜厚85nmであった。このようにして、反射防止層付き透明保護膜02を作製した(図2の機能性膜TAC2あるいは図3のTAC2-1に相当)。

[0149]

< 2 - 5 - 1 >

(偏光板の作製-3)

分光光度計(日本分光(株)製)を用いて、380~780 nmの波長領域において、入射角5° における分光反射率を機能性膜側から測定し、450~650 nmの積分球平均反射率を求めたところ、0.4%であった。

[0150]

[実施例3]

(パネルへの実装)

[0151]

[実施例3-1]

(∨Aパネルへの実装) (1枚型)

図3の液晶表示装置を作製した。即ち、観察方向(上)から上側偏光板(TAC2-1 (機能性膜有り/なし)、偏光子、TAC1-1)、VAモード液晶セル、下側偏光板(TAC1-2、偏光子、TAC2-2)を積層し、さらにバックライト光源を配置した。以下の例では、上側偏光板に市販品の偏光板(HLC2-5618)を用いて、下側偏光板に光学補償フィルムと一体型になった偏光板を使用しているが、これが逆であっても機能的には何ら問題がない。ただし、一体型偏光板としては、下側偏光板として使用する場合が高い(上側偏光板として使用すると機能性膜を観察側(上側)に設ける必要性があり生産得率が下がる可能性があるため)と考えられ、より好ましい実施形態であると考えら

れる。

[0152]

<液晶セルの作製>

液晶セルは、基板間のセルギャップを3.6 μ mとし、負の誘電率異方性を有する液晶材料(「MLC6608」、メルク社製)を基板間に滴下注入して封入し、基板間に液晶層を形成して作製した。液晶層のリターデーション(即ち、記液晶層の厚さd(μ m)と屈折率異方性 Δ nとの積 Δ n・d)を300nmとした。なお、液晶材料は垂直配向するように配向させた。

[0153]

上記の垂直配向型液晶セルを使用した液晶表示装置(図3)の上側偏光板(観察者側)には、市販品のスーパーハイコントラスト品(例えば、株式会社サンリッツ社製HLC2-5618)を用いた。下側偏光板(バックライト側)には実施例1で作製した光学補償シートを使用(F4、F5、F7、F9及びF12)した実施例2の<2-1-1>で作製した偏光板(A4、A5、A7、A9及びA12)を、実施例1で作製したセルロースアシレートフィルム(図3のTAC1-2に相当)が液晶セル側となるように設置した。上側偏光板及び下側偏光板は粘着剤を介して液晶セルに貼りつけた。上側偏光板の透過軸が上下方向に、そして下側偏光板の透過軸が左右方向になるように、クロスニコル配置とした。使用する偏光板はあらかじめ25度C、60%RHの温湿度条件で2時間調湿防湿袋に封入して保管してあったものと、調湿しないで袋に封入し保管したものの両方を用いて液晶表示装置を作成した。

なお、ここでは、上側偏光板に市販品を、下側偏光板に本発明の一体型偏光板を用いているが、作製した液晶表示装置を観察した結果、正面方向および視野角方向もニュートラルな黒表示が実現できていた。また、測定機(EZ-Contrast160D、ELDIM社製)を用いて、黒表示(L1)から白表示(L8)までの8段階で視野角(コントラスト比が10以上で黒側の階調反転のない範囲)を測定した。

作製した液晶表示装置を観察した結果、正面方向および視野角方向もニュートラルな黒表示が実現できていた。また測定機(EZ-Contrast160D、ELDIM社製)を用いて、黒表示(L1)から白表示(L8)までの8段階で視野角(コントラスト比が10以上で黒側の階調反転のない範囲)を測定した。

次に液晶表示画面の横方向を基準に方位角45°、画面表面の法線方向を基準に極角60°の方位の黒表示時の色みを測定機(EZ-Contrast160D、ELDIM社製)を用いて測定し、これを初期値とした。次にこのパネルを、常温常湿(25℃60%RH程度で湿度制御無し)の部屋で1週間放置し、再度、黒表示時の色味を測定した。

下記表3に視野角と色味変化の測定を示す。本実施例はいずれも広い視野角を有し、色味変化も少なかった。液晶表示装置組み立て前に偏光板を調湿したものは、特に色味変化が少なかった。

[0154]

[実施例3-2]

上記の垂直配向型液晶セルを使用した液晶表示装置(図3)の下側偏光版に、実施例1で作製した光学補償シートを使用(F4、F5、F7、F9及びF12)した実施例2の<2-1-1>で作製した偏光板(A4、A5、A7、A9及びA12)を、上側偏光版に実施例2の<2-3-1>で作製した偏光板(B0)を、粘着剤を介して貼り付けた。観察者側の偏光板の透過軸が上下方向に、そして、バックライト側の偏光板の透過軸が左右方向になるように、クロスニコル配置とした。このとき、作業場の温度は20から25℃に、湿度は50から70%RHになるように空調されていた。使用する偏光板はあらかじめ25℃、60%RHの温湿度条件で2時間調湿防湿袋に封入して保管してあったものと、調湿しないで袋に封入し保管したものの両方を用いて液晶表示装置を作成した。

作製した液晶表示装置を観察した結果、正面方向および視野角方向もニュートラルな黒表示が実現できていた。また実施例 3-1 と同じように、視野角と色味変化の測定を行い、その結果を表 3 に示した。

[0155]

「実施例3-3]

上記の垂直配向型液晶セルを使用した液晶表示装置(図3)の下側偏光版に、実施例1で作製した光学補償シートを使用(F4、F5、F7、F9及びF12)した実施例2の<2-1-1>で作製した偏光板(A4、A5、A7、A9及びA12)を、上側偏光版に実施例2の<2-5-1>で作製した偏光板(C0)を粘着剤を介して貼り付けた。観察者側の偏光板の透過軸が上下方向に、そして、バックライト側の偏光板の透過軸が左右方向になるように、クロスニコル配置とした。このとき、作業場の温度は20から25℃に、湿度は50から70%RHになるように空調されていた。使用する偏光板はあらかじめ25℃、60%RHの温湿度条件で2時間調湿防湿袋に封入して保管してあったものと、調湿しないで袋に封入し保管したものの両方を用いて液晶表示装置を作成した。

作製した液晶表示装置を観察した結果、正面方向および視野角方向もニュートラルな黒表示が実現できていた。また実施例3-1と同じように、視野角と色味変化の測定を行い、その結果を表3に示した。

[0156]

[比較例 3-1]

実施例3-1の下側偏光板をA19、B19及びC19とすること以外は実施例3-1とまったく同様に行なった。なおここで使用した偏光板は調湿をしなかった。

作製した液晶表示装置を観察した結果、正面方向および視野角方向もニュートラルな黒表示が実現できていた。また実施例 3-1 と同じように、視野角と色味変化の測定を行い、その結果を表 3 に示した。

[0157]

【表3】

液晶	視野角		組み立て1週間後の	
表示装置	透過軸方向	透過軸から45°の方向	黒の色味変化(ΔE*)	
実施例3-1	>80°	>80°	調湿無し 0.010~0.013 、	
			調湿有り 0.002	
実施例3一2	(同上)	(同上)	(同上)	
実施例3一3	(同上)	(同上)	(同上)	
比較例3-1	>80°	>80°	調湿無し 0.020~0.032	

[0158]

[実施例3-4]

(VAパネルへの実装) (2枚型)

図3の液晶表示装置を作製した。即ち、観察方向(上)から上側偏光板(TAC2-1(機能性膜なし)、偏光子、TAC1-1)、VAモード液晶セル、下側偏光板(<math>TAC1-2、偏光子、TAC2-2)を積層し、さらにバックライト光源を配置した。

[0159]

<液晶セルの作製>

液晶セルは、基板間のセルギャップを3.6 μ mとし、負の誘電率異方性を有する液晶材料(「MLC6608」、メルク社製)を基板間に滴下注入して封入し、基板間に液晶層を形成して作製した。液晶層のリターデーション(即ち、記液晶層の厚さd(μ m)と屈折率異方性 Δ nとの積 Δ n・d)を300nmとした。なお、液晶材料は垂直配向するように配向させた。

[0160]

上記の垂直配向型液晶セルを使用した液晶表示装置(図3)の上側、下側偏光版に、実施例1で作製した光学補償シートを使用(F1、F10及びF16)した実施例2の<2ー1ー1>で作製した偏光板(A1、A1及びA16)を、実施例1で作製したセルロースアシレートフィルム(図3のTAC1ー1及びTAC1ー2)が液晶セル側となるように粘着剤を介して、観察者側およびバックライト側に一枚ずつ貼り付けた。観察者側の偏光板の透過軸が上下方向に、そして、バックライト側の偏光板の透過軸が左右方向になるように、クロスニコル配置とした。このとき、作業場の温度は20から25℃に、湿度は50から70%RHになるように空調されていた。使用する偏光板はあらかじめ25℃、60%RHの温湿度条件で2時間調湿防湿袋に封入して保管してあったものと、調湿しないで袋に封入し保管したものの両方を用いて液晶表示装置を作成した。

作製した液晶表示装置を観察した結果、正面方向および視野角方向もニュートラルな黒表示が実現できていた。また、測定機(EZ-Contrast160D、ELDIM社製)を用いて、黒表示(L1)から白表示(L8)までの8段階で視野角(コントラスト比が10以上で黒側の階調反転のない範囲)を測定した。

次に液晶表示画面の横方向を基準に方位角45°、画面表面の法線方向を基準に極角60°の方位の黒表示時の色みを測定機(EZ-Contrast160D、ELDIM社製)を用いて測定し、これを初期値とした。次にこのパネルを、常温常湿(25℃65%RH程度で湿度制御無し)の部屋で1週間放置し、再度、黒表示時の色味を測定した。

下記表4に視野角と色味変化の測定を示す。本実施例はいずれも広い視野角を有し、色味変化もほとんどなかった。液晶表示装置組み立て前に偏光板を調湿したものは、特に色味変化が少なかった。

[0161]

[比較例 3 - 4]

垂直配向型液晶セルを使用した液晶表示装置(図3)の上側、下側偏光板に、比較例で作製した光学補償シートを使用(F3及びF17)した実施例2の<2-1-1>で作製した偏光板(A3及びA17)を、実施例1で作製したセルロースアシレートフィルム(TAC1)が液晶セル側となるように粘着剤を介して、上側及び下側に一枚ずつ貼り付けた。上側の偏光板の透過軸が上下方向に、そして、下側の偏光板の透過軸が左右方向になるように、クロスニコル配置とした。

また垂直配向型液晶セルを使用した液晶表示装置(図3)の下側偏光板に、実施例1で作製した光学補償シートを使用(F3及びF17)した実施例2の<2-1-1>で作製した偏光板(A3及びA17)を、上側偏光板に実施例2の<2-3-1>で作製した偏光板(B3及びB17)を、実施例1で作製したセルロースアシレートフィルム(TAC1)が液晶セル側となるように粘着剤を介して、上側及び下側に一枚ずつ貼り付けた。上側の偏光板の透過軸が上下方向に、そして、下側の偏光板の透過軸が左右方向になるように、クロスニコル配置とした。

更に垂直配向型液晶セルを使用した液晶表示装置(図3)の下側偏光板に、実施例1で作製した光学補償シートを使用(F3及びF17)した実施例2の<2-1-1>で作製した偏光板(A3及びA17)を、上側偏光板に実施例2の<2-3-1>で作製した偏光板(C3及びC17)を、実施例1で作製したセルロースアシレートフィルム(TAC1)が液晶セル側となるように粘着剤を介して、上側及び下側に一枚ずつ貼り付けた。上側の偏光板の透過軸が上下方向に、そして、下側の偏光板の透過軸が左右方向になるように、クロスニコル配置とした。

このとき、作業場の温度は20から25℃に、湿度は50から70%RHになるように 空調されていた。なおここで使用した偏光板は調湿はしなかった。

結果を表4に示す。本発明の偏光板を用いた場合と比較して、本比較例の偏光板を用いた場合は色味変化が起こっていた。

[0162]

【表4】

				_
液晶		視野角	組み立て1週間後の	
表示装置	透過軸方向	透過軸から45°の方向	黒の色味変化(ΔΕ*)	
実施例3-4	>80°	>80°	調湿無し 0.010~0.013 、	
			調湿有り 0.002	
比較例3-4	>80°	>80°	調湿無し 0.020~0.032	

【図面の簡単な説明】

[0163]

【図1】本発明の偏光板の製造時におけるセルロースアシレートフィルムの貼り合わせ方法を示す模式図である。

【図2】本発明の偏光板の断面構造を模式的に示す断面図である。

【図3】本発明の偏光板の断面構造を模式的に示す断面図である。

【図2】

	機能性膜	
	TAC2	
	偏光子	
	TAC1	:
【図3】		

観察者側

TAC2-1
偏光子
TAC1-1
VAモード セル
TAC1-2
偏光子
TAC2-2

光源側

【要約】

【課題】 面内及び厚さ方向レターデーションの発現性に優れ、環境湿度によるレターデーション値の変動が少ないセルロースアシレートフィルム、このフィルムを用いた偏光板、及び視野角特性変化の少ない液晶表示装置を提供する。

【解決手段】下記式(I)、(II)を満たし、下記式(III)、(IV)で定義されるRe(λ)、Rth(λ)が下記式(V)、(VI)を満たすセルロースアシレートフィルム、このフィルムを用いた偏光板、液晶表示装置。(I)2.0 \leq DS2+DS3+DS6 \leq 3.0、(II)DS6/(DS2+DS3+DS6) \geq 0.320、(III)Re(λ) = (n x - n y) × d、(IV)Rth(λ) = $\{$ (n x + n y) / 2 - n z $\}$ × d、(V)46 \leq Re(630) \leq 200、(VI) 70 \leq Rth(630) \leq 350

【選択図】 なし

特願2004-049142

出願人履歴情報

識別番号

[000005201]

1. 変更年月日 [変更理由]

1990年 8月14日

(大型田) (大) 部 新規登録

住 所 氏 名 神奈川県南足柄市中沼210番地

富士写真フイルム株式会社