Le protocole routé doit calculer le chemin optimal que M doit entreprendre en s'appuyant sur les hypothèses et les renseignements contenus dans les tables suscitées.

- a- Déterminer les différents chemins possibles, les enregistrer dans une table des chemins.
- b- Pour chaque chemin courant i, calculer le temps global de traversée $T_g(i)$. Celui-ci peut être déterminé par le calcul du cumul des temps de traversée T_t au niveau de chaque lien du chemin.
- c- Prendre comme chemin optimal le temps global de traversée $T_g(i)$ le plus petit $T_{gmin} = MIN \; \{ \; T_g(i) \}$
- d- Envoyer le message M

Annexe:

La matrice des liens

Le graphe peut être représenté par une matrice de dimension Nmax x Nmax contenant les valeurs 0,1. L'intersection d'une ligne et d'une colonne (i, j) représente le couple de nœud (i,j) ayant la valeur 1 si i et j sont liés et la valeur 0 sinon.

Sommets	S1	S2	S3	S4	S5	S6	S7
S1	8	1	1	0	0	0	0
S2	0	8	1	1	1	0	0
S3	1	1	8	1	0	1	0
S4	0	1	1	∞	1	1	0
S5	0	1	0	1	∞	1	1
S6	0	0	1	1	1	∞	1
S7	0	0	0	0	1	1	∞

Tel que:
$$|ij| = \begin{cases} 1 & \text{Si le nœud i et le nœud j sont voisins.} \\ 0 & \text{Sinon.} \end{cases}$$

$$\infty \quad \text{Si} \quad i=j$$

Dans cette matrice, on s'intéressera à la matrice triangulaire supérieure ou triangulaire inférieure parce que c'est un graphe non orienté et la matrice est symétrique.

Bon courage