#### Lecture 01

# What is Machine Learning? An Overview.

STAT 479: Machine Learning, Fall 2018
Sebastian Raschka

http://stat.wisc.edu/~sraschka/teaching/stat479-fs2018/

### **About this Course**

#### When

- Tue 8:00-9:15 am
- Thu 8:00-9:15 am

#### Where

• SMI 331

#### **Office Hours**

- Sebastian Raschka:
  - Tue 3:00-4:00, Room MSC 1171
- Shan Lu (TA):

Wed 3:00-4:00 pm, Room MSC B248

For details -> <a href="http://stat.wisc.edu/~sraschka/teaching/stat479-fs2018/">http://stat.wisc.edu/~sraschka/teaching/stat479-fs2018/</a>

## What is Machine Learning?

"Machine learning is the hot new thing"

— John L. Hennessy, President of Stanford (2000–2016)



"Machine learning is the field of study that gives computers the ability to learn without being explicitly programmed"

— Arthur L. Samuel, AI pioneer, 1959

(This is likely not an original quote but a paraphrased version of Samuel's sentence "Programming computers to learn from experience should eventually eliminate the need for much of this detailed programming effort.")

Arthur L Samuel. "Some studies in machine learning using the game of checkers". In: IBM Journal of research and development 3.3 (1959), pp. 210–229.

#### **The Traditional Programming Paradigm**



#### **The Traditional Programming Paradigm**



Machine Learning is the field of study that gives computers the ability to learn without being explicitly programmed – Arthur Samuel (1959)

#### **Machine Learning**



Sebastian Raschka, 2016

— Steven A. Cohen and Matthew W. Granade, The Wallstreet Journal, 2018

"A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

— Tom Mitchell, Professor at Carnegie Mellon University

Tom M Mitchell et al. "Machine learning. 1997". In: Burr Ridge, IL: McGraw Hill 45.37 (1997), pp. 870-877.

"A computer program is said to **learn** from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E."

— Tom Mitchell, Professor at Carnegie Mellon University

#### **Handwriting Recognition Example:**



- $\bullet$  Task T:
- $\bullet$  Performance measure P:
- Training experience E:

# Some Applications of Machine Learning (1):

# Some Applications of Machine Learning (2):

# Categories of Machine Learning

Supervised Learning

> Labeled data

> Direct feedback

> Predict outcome/future

# Supervised Learning: Classification



# Supervised Learning: Regression



# Categories of Machine Learning



# Unsupervised Learning -- Clustering



# **Unsupervised Learning** -- Dimensionality Reduction



# Categories of Machine Learning



# Reinforcement Learning



# Semi-Supervised Learning

# Supervised Learning (Formal Notation)

Training set: 
$$\mathcal{D} = \{ \langle \mathbf{x}^{[i]}, y^{[i]} \rangle, i = 1,..., n \},$$

Unknown function:  $f(\mathbf{x}) = y$ 

Hypothesis:  $h(\mathbf{x}) = \hat{\mathbf{y}}$ 

Classification

Regression

 $h: \mathbb{R}^m \to$ 

 $h: \mathbb{R}^m \to$ 

## Supervised Learning Workflow -- Overview



# Supervised Learning Workflow -- More Detailed Overview



$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

Feature vector

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^T \\ \mathbf{x}_2^T \\ \vdots \\ \mathbf{x}_n^T \end{bmatrix}$$

Feature vector

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^T \\ \mathbf{x}_2^T \\ \vdots \\ \mathbf{x}_n^T \end{bmatrix}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} \mathbf{x}_1^T \\ \mathbf{x}_2^T \\ \vdots \\ \mathbf{x}_n^T \end{bmatrix} \qquad \mathbf{X} = \begin{bmatrix} x_1^{[1]} & x_1^{[2]} & \cdots & x_1^{[m]} \\ x_1^{[2]} & x_2^{[2]} & \cdots & x_2^{[m]} \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{[n]} & x_2^{[n]} & \cdots & x_m^{[n]} \end{bmatrix}$$

Feature vector



$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} y^{[1]} \\ y^{[2]} \\ \vdots \\ y^{[n]} \end{bmatrix}$$

Input features

## Hypothesis Space

#### Entire hypothesis space



Particular hypothesis (i.e., a model/classifier)

algorithm can sample

## Hypothesis Space Size

| sepal length < 5 cm | sepal width < 5 cm | petal length < 5 cm | petal width < 5 cm | Class Label |
|---------------------|--------------------|---------------------|--------------------|-------------|
| True                | True               | True                | True               | Setosa      |
| True                | True               | True                | False              | Versicolor  |
| True                | True               | False               | True               | Setosa      |
| ***                 |                    | •••                 |                    |             |

#### How many possible hypotheses?

| 4 binary features:        | different feature com    | binations |
|---------------------------|--------------------------|-----------|
| 3 classes and (Setosa, Ve | rsicolor, Virginica) and | rules,    |
| that is                   | potential combinations   |           |

## Classes of Machine Learning Algorithms

- Generalized linear models (e.g.,
- Support vector machines (e.g.,
- Artificial neural networks (e.g.,
- Tree- or rule-based models (e.g.,
- Graphical models (e.g.,
- Ensembles (e.g.,
- Instance-based learners (e.g.,

# 5 Steps for Approaching a Machine Learning Application

- 1. Define the problem to be solved.
- 2. Collect (labeled) data.
- 3. Choose an algorithm class.
- 4. Choose an optimization metric for learning the model.
- 5. Choose a metric for evaluating the model.



## **Objective Functions**

- Maximize the posterior probabilities (e.g., naive Bayes)
- Maximize a fitness function (genetic programming)
- Maximize the total reward/value function (reinforcement learning)
- Maximize information gain/minimize child node impurities (CART decision tree classification)
- Minimize a mean squared error cost (or loss) function (CART, decision tree regression, linear regression, adaptive linear neurons, ...)
- Maximize log-likelihood or minimize cross-entropy loss (or cost) function
- Minimize hinge loss (support vector machine)

## **Optimization Methods**

- Combinatorial search, greedy search (e.g.,
- Unconstrained convex optimization (e.g.,
- Constrained convex optimization (e.g.,
- Nonconvex optimization, here: using backpropagation, chain rule, reverse autodiff. (e.g.,
- Constrained nonconvex optimization (e.g.,

### **Evaluation -- Misclassification Error**

$$L(\hat{y}, y) = \begin{cases} 0 & \text{if } \hat{y} = y \\ 1 & \text{if } \hat{y} \neq y \end{cases}$$

$$ERR_{\mathcal{D}_{test}} = \frac{1}{n} \sum_{i=1}^{n} L(\hat{y}^{[i]}, y^{[i]})$$

### Other Metrics in Future Lectures

- Accuracy (1-Error)
- **ROC AUC**
- Precision
- Recall
- (Cross) Entropy
- Likelihood
- Squared Error/MSE
- L-norms
- Utility
- **Fitness**

But more on other metrics in future lectures.

eager vs lazy;

- eager vs lazy;
- batch vs online;

- eager vs lazy;
- batch vs online;
- parametric vs nonparametric;

- eager vs lazy;
- batch vs online;
- parametric vs nonparametric;
- discriminative vs generative.

### Pedro Domingo's 5 Tribes of Machine Learning



Breiman, Leo. "Statistical modeling: The two cultures (with comments and a rejoinder by the author). " *Statistical science* 16.3 (2001): 199-231.



There are two goals in analyzing the data:

Prediction. To be able to predict what the responses are going to be to future input variables; Information. To extract some information about how nature is associating the response variables to the input variables.

Breiman, Leo. "Statistical modeling: The two cultures (with comments and a rejoinder by the author). " Statistical science 16.3 (2001): 199-231.

В The values of the parameters are estimated from the data and the model then used for information and/or prediction. Thus the black box is filled in like this:



Model validation. Yes-no using goodness-of-fit tests and residual examination.

Breiman, Leo. "Statistical modeling: The two cultures (with comments and a rejoinder by the author). "Statistical science 16.3 (2001): 199-231.

The analysis in this culture considers the inside of the box complex and unknown. Their approach is to find a function  $f(\mathbf{x})$ —an algorithm that operates on  $\mathbf{x}$  to predict the responses  $\mathbf{y}$ . Their black box looks like this:



Model validation. Measured by predictive accuracy.





Evolved antenna (Source: https://en.wikipedia.org/wiki/Evolved\\_antenna) via evolutionary algorithms; used on a 2006 NASA spacecraft.

# Black Boxes vs Interpretability

# Black Boxes vs Interpretability







"All models are wrong but some are useful."

George Box, professor emeritus of Statistics and of Industrial & Systems Engineering, died on Thursday, March 28, 2013, at the age of 93. Founder of the Department of Statistics...

# Different Motivations for Studying Machine Learning

Engineers:

Mathematicians, computer scientists, and statisticians:

Neuroscientists:

# The Relationship between Machine Learning and Other Fields

Machine Learning and Data Mining

## Machine Learning, AI, and Deep Learning





Image by Jake VanderPlas; Source: <a href="https://speakerdeck.com/jakevdp/the-state-">https://speakerdeck.com/jakevdp/the-state-</a>of-the-stack-scipy-2015-keynote?slide=8)

#### **TIOBE Index for September 2018**

| Sep 2018 | Sep 2017 | Change | Programming Language | Ratings | Change |
|----------|----------|--------|----------------------|---------|--------|
| 1        | 1        |        | Java                 | 17.436% | +4.75% |
| 2        | 2        |        | С                    | 15.447% | +8.06% |
| 3        | 5        | ^      | Python               | 7.653%  | +4.67% |
| 4        | 3        | ~      | C++                  | 7.394%  | +1.83% |
| 5        | 8        | ^      | Visual Basic .NET    | 5.308%  | +3.33% |
| 6        | 4        | ~      | C#                   | 3.295%  | -1.48% |
| 7        | 6        | •      | PHP                  | 2.775%  | +0.57% |
| 8        | 7        | ~      | JavaScript           | 2.131%  | +0.11% |
| 9        | -        | *      | SQL                  | 2.062%  | +2.06% |
| 10       | 18       | *      | Objective-C          | 1.509%  | +0.00% |
| 11       | 12       | ^      | Delphi/Object Pascal | 1.292%  | -0.49% |
| 12       | 10       | ~      | Ruby                 | 1.291%  | -0.64% |
| 13       | 16       | ^      | MATLAB               | 1.276%  | -0.35% |
| 14       | 15       | ^      | Assembly language    | 1.232%  | -0.41% |
| 15       | 13       | •      | Swift                | 1.223%  | -0.54% |
| 16       | 17       | ^      | Go                   | 1.081%  | -0.49% |
| 17       | 9        | *      | Perl                 | 1.073%  | -0.88% |
| 18       | 11       | *      | R                    | 1.016%  | -0.80% |
| 19       | 19       |        | PL/SQL               | 0.850%  | -0.63% |
| 20       | 14       | *      | Visual Basic         | 0.682%  | -1.07% |

Programming language "popularity"

https://www.tiobe.com/tiobe-index/

https://www.tiobe.com/tiobe-index/programming-languages-definition/

## Roadmap for this Course

http://stat.wisc.edu/~sraschka/teaching/stat479-fs2018/#schedule

## Reading Assignments

- Raschka and Mirjalili: Python Machine Learning, 2nd ed., Ch 1
- Elements of Statistical Learning, Ch 01 (<a href="https://web.stanford.edu/~hastie/ElemStatLearn/">https://web.stanford.edu/~hastie/ElemStatLearn/</a>)