

TEST REPORT

of the accredited test laboratory

TÜV Nr.:M/FG-16/121

Applicant:

BETSO ELECTRONICS s.r.o.

Elisky Premyslovny 1335

156 00, Prague 5, Czech Republic

Tested Product:

FHSS radio module Model: 'RFM1'

FCC-ID:

2AJWB-RFM1

IC-ID:

21968-RFM1

Manufacturer:

See applicant

Output power /

8,73 mW

power supply:

+3,0 to +5,5

field strength:

conducted

VDC

Frequency range:

903 - 927 MHz

Channel separation:

480 kHz

Standard:

FCC: 47 CFR Part 15 (October 1, 2015 edition)

RSS-247 Issue 1, May 2015; including modifications and

clarifications in CB Notice 2015-07

TUV Austria Services GmbH
Test laboratory for EMC

Supervisor of EMC-laboratory:

Rundslegel

checked by:

Ing. Wilhelm Seier

09.11.2016

Ing. Michael Emminger

Copy Nbr.: 01

A publication of this test report is only permitted literally.

Copying or reproduction of partial sections needs a written permission of TUV Austria Services GmbH.

The results of this test report only refer to the provided equipment.

TÜV AUSTRIA SERVIÇES GMBH

Office:

Deutschstrasse 10 1230 Vienna/Austria Tel.: +43 1 61091-0 Fax: +43 1 61091-6505 emv@tuv.at

Division: Industry & Energy

Department: Testing Body for Communication Technology/ EMC

TÜV ®

Akkreditiert als: Prüfstelle, Inspektionsstelle, Zertifizierungsstelle, Kalibrierstelle, Erst- und Kesselprüfstelle, Verifizierungsstelle

Notified Body 0408 IC 2932K-1

Vorsitzender des Aufsichtsrats: KR Dipl.-Ing. Johann MARIHART

Geschäftsführung: Dipl.-Ing. Dr. Stefan HAAS Mag. Christoph WENNINGER

Sitz: Krugerstraße 16 1015 Wien/Österreich

weltere Geschäftsstellen: Dornbirn, Graz, Innsbruck, Klagenfurt, Linz, Salzburg, St. Pölten, Wels, Wien, Brixen (I) und Filderstadt (D)

Firmenbuchgericht/ -nummer: Wien / FN 288476 f

Bankverbindungen: UC BA 52949 001 066 IBAN AT131200052949001066 BIC BKAUATWW RZB 001-04.093.282 IBAN AT153100000104093282 BIC RZBAATWW

Relative humidity: 36%

LIST OF MEASUREMENTS

The complete list of measurements called for in 47 CFR 15 and RSS-247 is given below.

SUBCLAUSE	PARAMETER TO BE MEASURED	PAGE
	Intentional Radiators	
	Test object data	3
15.247(a)(1) 5.1 (2) (4)	Number of channels and channel spacing	4
15.247(a)(1) 5.1 (2)	20 dB Bandwidth	5-7
15.247(b)(1) 5.4 (2)	Maximum Peak RF Power Output (eirp)	8
15.247(a)(1)(iii) 5.1 (4)	Average time of occupancy	9-14
15.247(d) 5.5	Out-of-band Emissions	15-23
15.209(a)	Emissions in restricted bands	24-35
15.247(i)	Maximum permissible exposure	36

Relative humidity: 36%

TEST OBJECT DATA

General EUT Description

This is a frequency hopping radio module.

- 2.1033 (c) Technical description
- 2.1033 (4) Type of emission: 46K6F1D Channel spacing 480 kHz.
- 2.1033 (5) Frequency range: 903,24 to 926,78 MHz (channel center frequencies). 50 channels.
- 2.1033 (6) Power range and Controls: The maximum peak output power is 8,73 mW and there is no power regulation.
- 2.1033 (7) Maximum output power rating: 8,73 mW conducted.
- 2.1033 (8) DC Voltage and Current: 3,0 to 5,5V DC maximum current consumption: 18 mA
- RSS-135 This standard does not apply to:
 - 1.1.(a) a receiver that scans radio frequencies for the purpose of enabling its associated transmitter to avoid transmitting in an occupied frequency but which does not have the capability of decoding the message (e.g. converting it to audio voice) contained in the radio signal

Tests were performed 7th October 2016.

Relative humidity: 36%

Number of channels and channel spacing

§ 15.247 (a) (1) 5.1 (2) (4)

Conducted Measurement

Rated output power: 8,73 mW

Date: 7.NOV.2016 09:28:29

There are 50 Channels used, starting at 903,24 till 926,78 each spaced by 480 kHz channel spacing.

LIMIT SUBCLAUSE 15.247(a) (1) - 5.1(4)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater.

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Relative humidity: 36%

20dB Bandwidth

§ 15.247 (a) (1) 5.1 (2)

Conducted Measurement

Rated output power: 8,73 mW 903,24 MHz

Date: 7.NOV.2016 09:32:40

20dB Bandwidth:

46,645 kHz

LIMIT

SUBCLAUSE 15.247(a) (1) – 5.1(2)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Relative humidity: 36%

20dB Bandwidth

§ 15.247 (a) (1) 5.1 (2)

Conducted Measurement

Rated output power: 8,73 mW 915,24 MHz

Date: 7.NOV.2016 09:36:29

20dB Bandwidth: 46,545 kHz

LIMIT SUBCLAUSE 15.247(a) (1) – 5.1(2)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Relative humidity: 36%

20dB Bandwidth

§ 15.247 (a) (1) 5.1 (2)

Conducted Measurement

Rated output power: 8,73 mW 926,78 MHz

Date: 7.NOV.2016 09:37:58

20dB Bandwidth:

46,545 kHz

LIMIT

SUBCLAUSE 15.247(a) (1) – 5.1(2)

Frequency hopping systems shall have hopping channel carrier frequencies separated by a minimum of 25 kHz or the 20 dB bandwidth of the hopping channel, whichever is greater. Alternatively, frequency hopping systems operating in the 2400-2483.5 MHz band may have hopping channel carrier frequencies that are separated by 25 kHz or two-thirds of the 20 dB bandwidth of the hopping channel, whichever is greater, provided the systems operate with an output power no greater than 125 mW.

Frequency hopping systems in the 2400–2483.5 MHz band shall use at least 15 channels.

Relative humidity: 36%

Maximum Peak RF Power Output (EIRP)

§ 15.247(b)(1) 5.4(2)

Conducted /radiated Measurement

Rated output power: 8,73 mW

Test conditions	-	Transmitter power (mW)	
	2402 MHz	2441 MHz	2480 MHz
Conducted	8,00	8,45	8,73
Radiated – Antenna: ANT-916-CHP	2,34	2,00	1,62
Radiated – Antenna: ANT-868-PW-LP	3,02	2,88	2,63
Radiated – Antenna: ANT-868-CW-RH	2,40	1,91	1,45
Measurement uncertainty		<u>+</u> 0,75 dB	

LIMIT

SUBCLAUSE 15.247(b)(1) - 5.4(2)

Under normal test conditions	1W conducted (4W eirp)
------------------------------	------------------------

Maximum Antenna Gain: 6dBi, eirp can be calculated by multiplying conducted value with factor 4.

Test Equipment used: EMV-100; EMV-101; EMV-102; EMV-103; EMV-105; EMV-112; EMV-200; EMV-205

Note: The module does not have integrated antenna. For testing the module was mounted on an evaluation board, that was constructed to support the different antennas and RP-SMA connector for conducted measurements.

Radiated emission measurements were made with the setup giving the highest EIRP in the measurement above.

Relative humidity: 36%

Average Time of Occupancy

§ 15.247(a)(1)(iii) 5.1(4)

Conducted Measurement

Rated output power: 8,73 mW 903,24 MHz

Date: 7.NOV.2016 09:42:57

The dwell time is constant 6,111 ms.

LIMIT SUBCLAUSE 15.247(a)(1)(iii) - 5.1(4)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Relative humidity: 36%

Average Time of Occupancy

§ 15.247(a)(1)(iii) 5.1(4)

Conducted Measurement

Rated output power: 8,73 mW 915,24 MHz

Date: 7.NOV.2016 09:43:09

The dwell time is constant 6,111 ms.

LIMIT SUBCLAUSE 15.247(a)(1)(iii) - 5.1(4)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Relative humidity: 36%

Average Time of Occupancy

§ 15.247(a)(1)(iii) 5.1(4)

Conducted Measurement

Rated output power: 8,73 mW 926,78 MHz

Date: 7.NOV.2016 09:43:22

The dwell time is constant 6,111 ms.

LIMIT

SUBCLAUSE 15.247(a)(1)(iii) - 5.1(4)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a period of 0.4 seconds multiplied by the number of hopping channels employed.

Relative humidity: 36%

Average Time of Occupancy

§ 15.247(a)(1)(iii) 5.1(4)

Conducted Measurement

Rated output power: 8,73 mW 903,24 MHz

Date: 7.NOV.2016 09:45:41

20 transmissions were counted in a 20 seconds period. Each transmission has a dwell time of 6,111ms, resulting in an average occupancy of 122,22 ms which is far below 0,4 seconds.

LIMIT SUBCLAUSE 15.247(a)(1)(iii) - 5.1(4)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20 seconds period.

Relative humidity: 36%

Average Time of Occupancy

§ 15.247(a)(1)(iii) 5.1(4)

Conducted Measurement

Rated output power: 8,73 mW 915,24 MHz

Date: 7.NOV.2016 09:45:09

20 transmissions were counted in a 20 seconds period. Each transmission has a dwell time of 6,111ms, resulting in an average occupancy of 122,22 ms which is far below 0,4 seconds.

LIMIT SUBCLAUSE 15.247(a)(1)(iii) – 5.1(4)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20 seconds period.

Relative humidity: 36%

Average Time of Occupancy

§ 15.247(a)(1)(iii) 5.1(4)

Conducted Measurement

Rated output power: 8,73 mW 926,78 MHz

Date: 7.NOV.2016 09:44:32

20 transmissions were counted in a 20 seconds period. Each transmission has a dwell time of 6,111ms, resulting in an average occupancy of 122,22 ms which is far below 0,4 seconds.

LIMIT SUBCLAUSE 15.247(a)(1)(iii) - 5.1(4)

The average time of occupancy on any channel shall not be greater than 0.4 seconds within a 20 seconds period.

Relative humidity: 36%

Out-of-band Emission

§ 15.247(d) 5.5

Measurement conducted: 903,24 MHz - frequency range 9 kHz to 150 kHz (reduced measurement bandwidth)

Date: 7.NOV.2016 09:48:41

LIMIT SUBCLAUSE 15.247(d) - 5.5

desired power.	In any 100 kHz bandwidth outside the frequency band in which the radio device is operating. At le	in the band that contains the highest level of the
----------------	--	--

Relative humidity: 36%

Out-of-band Emission

§ 15.247(d) 5.5

Measurement conducted: 903,24 MHz - frequency range 150 kHz to 1 GHz

Date: 7.NOV.2016 10:00:52

LIMIT

SUBCLAUSE 15.247(d) - 5.5

In any 100 kHz bandwidth outside the frequency band which the radio device is operating.	At least 20dB below the power in the 100 kHz bandwidth within the band that contains the highest level of the desired power.
--	--

Relative humidity: 36%

Out-of-band Emission

§ 15.247(d) 5.5

Measurement conducted: 903,24 MHz - frequency range 1 GHz to 10 GHz

Date: 7.NOV.2016 10:03:49

LIMIT SUBCLAUSE 15.247(d) - 5.5

which the radio device is operating. within the band that contains the highest level of the desired power.	
---	--

Relative humidity: 36%

Out-of-band Emission

§ 15.247(d) 5.5

Measurement conducted: 915,24 MHz – frequency range 9 kHz to 150 kHz (reduced measurement bandwidth)

Date: 7.NOV.2016 09:51:17

LIMIT SUBCLAUSE 15.247(d) - 5.5

which the radio device is operating. within the band that contains the highest level of desired power.

Relative humidity: 36%

Out-of-band Emission

§ 15.247(d) 5.5

Measurement conducted: 915,24 MHz - frequency range 150 kHz to 1 GHz

Date: 7.NOV.2016 10:00:02

LIMIT SUBCLAUSE 15.247(d) - 5.5

In any 100 kHz bandwidth outside the frequency band in which the radio device is operating.	At least 20dB below the power in the 100 kHz bandwidth within the band that contains the highest level of the
	desired power.

Relative humidity: 36%

Out-of-band Emission

§ 15.247(d) 5.5

Measurement conducted: 915,24 MHz - frequency range 1 GHz to 10 GHz

Date: 7.NOV.2016 10:04:49

LIMIT SUBCLAUSE 15.247(d) - 5.5

desired power.

Relative humidity: 36%

Out-of-band Emission

§ 15.247(d) 5.5

Measurement conducted: 926,78 MHz - frequency range 9 kHz to 150 kHz (reduced measurement bandwidth)

Date: 7.NOV.2016 09:52:08

LIMIT SUBCLAUSE 15.247(d) - 5.5

In any 100 kHz bandwidth outside the frequency band in which the radio device is operating.	At least 20dB below the power in the 100 kHz bandwidth within the band that contains the highest level of the desired power.
---	--

Relative humidity: 36%

Out-of-band Emission

§ 15.247(d) 5.5

Measurement conducted: 926,78 MHz - frequency range 150 kHz to 1 GHz

Date: 7.NOV.2016 09:59:08

LIMIT

SUBCLAUSE 15.247(d) - 5.5

In any 100 kHz bandwidth outside the frequency band which the radio device is operating.	At least 20dB below the power in the 100 kHz bandwidth within the band that contains the highest level of the desired power.
--	--

Relative humidity: 36%

Out-of-band Emission

§ 15.247(d) 5.5

Measurement conducted: 926,78 MHz - frequency range 1 GHz to 10 GHz

Date: 7.NOV.2016 10:05:59

LIMIT

SUBCLAUSE 15.247(d) - 5.5

In any 100 kHz bandwidth outside the frequency band in which the radio device is operating.

Relative humidity: 36%

TUV AUSTRIA

Emissions in restricted bands

§ 15.209(a)

LIMIT

SUBCLAUSE 15.209 - RSS-Gen

Frequency (MHz)	Field strength (microvolts/meter)	Measurement distance (meters)
0.009-0.490	2400/F(kHz)	300
0.490-1.705	24000/F(kHz)	30
1.705-30.0	30	30
30-88	100**	3
88-216	150**	3
216-960	200**	3
Above 960	500	3

^{**}Except as provided in paragraph (g), fundamental emissions from intentional radiators operating under this section shall not be located in the frequency bands 54-72 MHz, 76-88 MHz, 174-216 MHz or 470-806 MHz. However, operation within these frequency bands is permitted under other sections of this part, e.g., §§15.231 and 15.241.

- (b) In the emission table above, the tighter limit applies at the band edges.
- (c) The level of any unwanted emissions from an intentional radiator operating under these general provisions shall not exceed the level of the fundamental emission. For intentional radiators which operate under the provisions of other sections within this part and which are required to reduce their unwanted emissions to the limits specified in this table, the limits in this table are based on the frequency of the unwanted emission and not the fundamental frequency. However, the level of any unwanted emissions shall not exceed the level of the fundamental frequency.
- (d) The emission limits shown in the above table are based on measurements employing a CISPR quasipeak detector except for the frequency bands 9-90 kHz, 110-490 kHz and above 1000 MHz. Radiated emission limits in these three bands are based on measurements employing an average detector.
- (e) The provisions in §§15.31, 15.33, and 15.35 for measuring emissions at distances other than the distances specified in the above table, determining the frequency range over which radiated emissions are to be measured, and limiting peak emissions apply to all devices operated under this part.
- (f) In accordance with §15.33(a), in some cases the emissions from an intentional radiator must be measured to beyond the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator because of the incorporation of a digital device. If measurements above the tenth harmonic are so required, the radiated emissions above the tenth harmonic shall comply with the general radiated emission limits applicable to the incorporated digital device, as shown in §15.109 and as based on the frequency of the emission being measured, or, except for emissions contained in the restricted frequency bands shown in §15.205, the limit on spurious emissions specified for the intentional radiator, whichever is the higher limit. Emissions which must be measured above the tenth harmonic of the highest fundamental frequency designed to be emitted by the intentional radiator and which fall within the restricted bands shall comply with the general radiated emission limits in §15.109 that are applicable to the incorporated digital device.
- (g) Perimeter protection systems may operate in the 54-72 MHz and 76-88 MHz bands under the provisions of this section. The use of such perimeter protection systems is limited to industrial, business and commercial applications.

Relative humidity: 36%

Emissions in restricted bands

§ 15.209(a)

Measurement with transmitter activated at 903,24 MHz

LIMIT

SUBCLAUSE 15.209 - RSS-Gen

See page 24

Relative humidity: 36%

Emissions in restricted bands

§ 15.209(a)

Measurement with transmitter activated at 915,24 MHz

LIMIT

SUBCLAUSE 15.209 - RSS-Gen

See page 24

Relative humidity: 36%

Emissions in restricted bands

§ 15.209(a)

Measurement with transmitter activated at 926,78 MHz

LIMIT

SUBCLAUSE 15.209 - RSS-Gen

See page 24

Relative humidity: 36%

Emissions in restricted bands

§ 15.209(a)

Measurement with transmitter activated at 903,24 MHz

LIMIT

SUBCLAUSE 15.209 - RSS-Gen

See page 24

Relative humidity: 36%

Emissions in restricted bands

§ 15.209(a)

Measurement with transmitter activated at 915,24 MHz

LIMIT

SUBCLAUSE 15.209 - RSS-Gen

See page 24

Relative humidity: 36%

Emissions in restricted bands

§ 15.209(a)

Measurement with transmitter activated at 926,78 MHz

LIMIT SUBCLAUSE 15.209 - RSS-Gen

See page 24

Relative humidity: 36%

Emissions in restricted bands

§ 15.209(a)

Measurement with QuasiPeak-Detector:

Measurement on lowest, middle and highest cannel

Frequency MHz	Level dBµV/m	Limit dBµV/m	Margin dB	Exceed- Mark	Height cm	Azimuth deg	Polarization
528,00	37,49	46,00	8,51		113	22	٧
560,01	39,74	46,00	6,26		102	26	V
591,99	41,28	46,00	4,72		104	10	V
624,00	40,80	46,00	5,20		100	-4	V
752,01	38,07	46,00	7,93		100	-51	V
783,99	37,37	46,00	8,63		100	-118	V
903,24	99,06	N/A		æ	138	-101	V
915,24	98,86	N/A			138	-101	V
926,78	98,46	N/A			138	-101	V

LIMIT

SUBCLAUSE 15.209 - RSS-Gen

See page 24

Relative humidity: 36%

Emissions in restricted bands

§ 15.209(a)

Measurement with transmitter activated at 903,24 MHz Measurement with Peak-Detector (green line) and Average detector (magenta line):

LIMIT

SUBCLAUSE 15.209 - RSS-Gen

See page 24

Relative humidity: 36%

Emissions in restricted bands

§ 15.209(a)

Measurement with transmitter activated at 915,24 MHz
Measurement with Peak-Detector (green line) and Average detector (magenta line):

LIMIT SUBCLAUSE 15.209 – RSS-Gen

See page 24

Relative humidity: 36%

Emissions in restricted bands

§ 15.209(a)

Measurement with transmitter activated at 926,78 MHz
Measurement with Peak-Detector (green line) and Average detector (magenta line):

LIMIT

SUBCLAUSE 15.209 - RSS-Gen

See page 24

Relative humidity: 36%

Emissions in restricted bands

§ 15.209(a)

Measurement with Peak- and Average-Detector:

With one transmission of 6,111 ms and the worst case assumption that a maximum of 2 transmissions can occur in 100 ms, the Average value (measured with continuous transmission) was lowered by 18,25 dB (12,222/100).

Measurement with transmitter operating at 903,24 MHz

Frequency MHz	PK-Level dBµV/m	PK-Limit dBµV/m	AV-Level dBµV/m	AV-Limit dBµV/m	Margin dB	Exceed- Mark	Polarization
6322,75	65,21	74,00	46,96	54,00	7,04		Н

Measurement with transmitter operating at 903,24 MHz

Frequency MHz	PK-Level dBµV/m	PK-Limit dBµV/m	AV-Level dBµV/m	AV-Limit dBµV/m	Margin dB	Exceed- Mark	Polarization
6406,75	64,98	74,00	46,73	54,00	7,27		Н
7322,00	51,00	74,00	29,45	54,00	24,55		V

Measurement with transmitter operating at 903,24 MHz

Frequency MHz	PK-Level dBµV/m	PK-Limit dBµV/m	AV-Level dBµV/m	AV-Limit dBµV/m	Margin dB	Exceed- Mark	Polarization
6487,50	65,31	74,00	47,06	54,00	6,94		н
7414,25	51,19	74,00	30,94	54,00	23,06		V

LIMIT

SUBCLAUSE 15.209 - RSS-Gen

See page 24

Test Report Reference: M/FG-16/121

Ambient temperature: 22°C

Relative humidity: 36%

Maximum permissible Exposure

§ 15.247(i)

This kind of radio equipment is categorically excluded from routine environmental evaluation.

Appendix 1 Test equipment used

Anechoic Chamber with 3m measurement distance	NT-100	Power quality analyzer Fluke 1760 (complete set)	NT-160 - NT-173
Stripline according to ISO 11452-5	NT-108	Spectrumanalyzer – FSP7 9 kHz – 7 GHz	NT-200
MA4000 - Antenna mast 1 - 4 m height	NT-110/1	ESCI - Test receiver 9 kHz - 7 GHz	NT-203/1
DS - Turntable 0 - 400 ° Azimuth	NT-111/1	ESI26 – Test receiver 20 Hz – 26,5 GHz	NT-207
CO3000 Controller Mast+Turntable	NT-112/1	Digital Radio Tester CTS55	NT-208
HUF-Z3 - Log. Per. Antenna 200 - 1000 MHz	NT-121	Noise-gen., ITU-R 559-2 20 Hz – 20 kHz	NT-209
HFH-Z2 - Loop Antenna 9 kHz - 30 MHz	NT-122	CMTA - Radiocommunication analyzer; 0,1 - 1000 MHz	NT-210
HFH-Z6 - Rod Antenna 9 kHz - 30 MHz	NT-123	3271 - Spectrum analyzer 100 Hz - 26,5 GHz	NT-211
3121C - Dipole Antenna 28 - 1000 MHz	NT-124	Digital Radio Tester Aeroflex 3920	NT-212/1
3115 - Horn Antenna 1 - 18 GHz (immunity)	NT-125	Mixer M28HW 26,5 GHz - 40 GHz	NT-214
3116 - Horn Antenna 18 - 40 GHz	NT-126	RubiSource T&M Timing reference	NT-216
SAS-200/543 - Bicon. Antenna 20 MHz - 300 MHz	NT-127	Radiocommunicationanalyzer SWR 1180 MD	NT-217
AT-1080 - Log. Per. Antenna 80 - 1000 MHz	NT-128	Mixer M19HWD 40 GHz – 60 GHz	NT-218
HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-129	Mixer M12HWD 60 GHz – 90 GHz	NT-219
HK-116 - bicon. Antenna 20 MHz - 300 MHz	NT-130	DSO9104 Digital scope	NT-220/1
3146 - Log. Per. Antenna 200 – 1000 MHz	NT-131	TPS 2014 Digital scope	NT-222
VULB 9163 Trilog Antenna 30 – 3000 MHz	NT-131/1	Artificial Ear according to IEC 60318	NT-224
Loop Antenna H-Field	NT-132	1 kHz Sound calibrator	NT-225
Horn Antenna 500 MHz - 2900 MHz	NT-133	B10 - Harmonics and flicker analyzer	NT-232
Horn Antenna 500 MHz - 6000 MHz	NT-133/1	SRM-3000 Spectrumanalyzer	NT-233
Log. per. Antenna 800 MHz - 2500 MHz	NT-134	SRM-3006 Spectrumanalyzer	NT-233/1a
Log. per. Antenna 800 MHz - 2500 MHz	NT-135	E-field probe SRM 75 MHz – 3 GHz	NT-234
BiConiLog Antenna 26 MHz – 2000 MHz	NT-137	Field Meter NBM-500 incl. E- and H-Field probes	NT-240a-d
Conical Dipol Antenna PCD8250	NT-138	Hall-Teslameter ETM-1	NT-241
HF 906 - Horn Antenna 1 - 18 GHz (emission)	NT-139	EFA-3 H-field- / E-field probe	NT-243
HZ-1 Antenna tripod	NT-150	Field Meter EMR-200 100 kHz – 3 GHz	NT-244
BN 1500 Antenna tripod	NT-151	E-field probe 100 kHz – 3 GHz	NT-245
Ant. tripod for EN61000-4-3 Model TP1000A	NT-156	H-field probe 300 kHz – 30 MHz	NT-246

Division: Industry & Energy

Department: FG

Test report number: M/FG-16/121

Page: 1 of 4

Date: 09.11.2016

Checked by:

Appendix 1 (continued) Test equipment used

_			_		
	E-field probe 3 MHz – 18 GHz	NT-247	Ц	Oscillatory Wave Simulator incl. Coupling networks	NT- 328a+b+c
	H-field probe 27 MHz – 1 GHz	NT-248		BTA-250 - RF-Amplifier 9 kHz - 220 MHz / 250 W	NT-330
	ELT-400 1 Hz – 400 kHz	NT-249		T82-50 RF-Amplifier 2 GHz – 8 GHz	NT-331
	MDS 21 - Absorbing clamp 30 - 1000 MHz	NT-250		500W1000M7 - RF-Amplifier 80 - 1000 MHz / 500 W	NT-332
	FCC-203l EM Injection clamp	NT-251		AS0102-65R - RF-Amplifier 1 GHz - 2 GHz	NT-333
	FCC-203I-DCN Ferrite decoupling network	NT-252		APA01 – RF-Amplifier 0,5 GHz – 2,5 GHz	NT-334
	PR50 Current Probe	NT-253		Preamplifier 1 GHz - 4 GHz	NT-335
	i310s Current Probe	NT-254/1		Preamplifier for GPS MKU 152 A	NT-336
	Fluke 87 V True RMS Multimeter	NT-260		Preamplifier 100 MHz – 23 GHz	NT-337
	Model 2000 Digital Multimeter	NT-261		DC Block 10 MHz – 18 GHz Model 8048	NT-338
	Fluke 87 V Digital Multimeter	NT-262/1		2-97201 Electronic load	NT-341
	ESH2-Z5-U1 Artificial mains network 4x25A	NT-300		TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-344
	ESH3-Z5-U1 Artificial mains network 2x10A	NT-301		TSX3510P - Power supply 0-30 V / 0 - 10 A	NT-345
	ESH3-Z6-U1 Artificial mains network 1x100A	NT-302		VDS 200 Mobil-impuls-generator	NT-350
	ESH3-Z6-U1 Artificial mains network 1x100A	NT-302a		LD 200 Mobil-impuls-generator	NT-351
	PHE 4500/B Power amplifier	NT-304		MPG 200 Mobil-Impuls-Generators	NT-352
	EZ10 T-Artificial Network	NT-305		EFT 200 Mobil-impuls-generator	NT-353
	SMG - Signal generator 0,1 - 1000 MHz	NT-310		AN 200 S1 Artificial Network	NT-354
	SMA100A - Signal generator 9 kHz - 6 GHz	NT-310/1		FP-EFT 32M 3 ph. Coupling filter (Burst)	NT-400/1
	RefRad Reference generator	NT-312		PHE 4500 - Mains impedance network	NT-401
	SMP 02 Signal generator 10 MHz - 20 GHz	NT-313		IP 6.2 Coupling filter for data lines (Surge)	NT-403
	40 MHz Arbitrary Generator TGA1241	NT-315		TK 9421 High Power Volt. Probe 150 kHz - 30 MHz	NT-409
	Artificial mains network NSLK 8127-PLC	NT-316		ESH2-Z3 - Probe 9 kHz - 30 MHz	NT-410
	PEFT - Burst generator up to 4 kV	NT-320		IP 4 - Capacitive clamp (Burst)	NT-411
	ESD 30 System up to 25 kV	NT-321		Highpass-Filter 100 MHz – 3 GHz	NT-412
	PSURGE 4.1 Surge generator	NT-324		Highpass-Filter 600 MHz – 4 GHz	NT-413
	IMU4000 Immunity test system	NT-325/1		Highpass-Filter 1250 MHz – 4 GHz	NT-414
	VCS 500-M6 Surge-Generator	NT-326		Highpass-Filter 1800 MHz – 16 GHz	NT-415

Division: Industry & Energy

Department: FG

Test report number: M/FG-16/121

Page: 2 of 4

Date: 09.11.2016

Checked by:

Appendix 1 (continued) Test equipment used

Highpass-Filter	NT-416	FCC-801-S25	NT-462	Division: Industry & Energy
3500 MHz – 18 GHz RF-Attenuator 10 dB DC – 18 GHz / 50 W	NT-417	Coupling decoupling network FCC-801-T4 Coupling decoupling network	NT-463	Department: FG
RF-Attenuator 6 dB DC – 18 GHz / 50 W	NT-418	FCC-801-C1 Coupling decoupling network	NT-464	Test report number: M/FG-16/121
RF-Attenuator 3 dB DC – 18 GHz / 50 W	NT-419	SW 9605 - Current probe 150 kHz – 30 MHz	NT-465/1	Page: 3 of 4
RF-Attenuator 20 dB DC - 1000 MHz / 25 W	NT-421	95242-1 – Current probe 1 MHz – 400 MHz	NT-468	Date: 09.11.2016
RF-Attenuator 30 dB DC - 1000 MHz / 1 W	NT-423	94106-1L-1 – Current probe 100 kHz – 450 MHz	NT-471	Checked by:
RF-Attenuator 30 dB	NT-424	GA 1240 Power amplifier according to EN 61000-4-16	NT-480	
RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-425	Coupling networks according to EN 61000-4-16	NT-481 - NT-483	
RF-Attenuator 6 dB DC - 1000 MHz / 1 W	NT-426	Van der Hoofden Test Head	NT-484	
RF-Attenuator 6 dB	NT-428	PC P4 3 GHz Test computer	NT-500	
RF-Attenuator 0 dB - 81 dB	NT-429	PC P4 1700 MHz Notebook	NT-505	
WRU 27 - Band blocking 27 MHz	NT-430	Monitoring camera with Monitor	NT-511	
WHJ450C9 AA - High pass 450 MHz	NT-431	ES-K1 Version 1.71 SP2 Test software	NT-520	
WHJ250C9 AA - High pass 250 MHz	NT-432	EMC32 Version 10.01 Test software	NT-520/1	
RF-Load 150 W	NT-433	SRM-TS Version 1.3 software for SRM-3000	NT-522	
Impedance transducer 1:4; 1:9; 1:16	NT-435	SRM-TS Version 1.3.1 software for SRM-3006	NT-522/1	
RF-Attenuator DC – 18 GHz 6 dB	NT-436	Spitzenberger und Spies Test software V3.4	NT-525	
RF-Attenuator DC – 18 GHz 6 dB	NT-437	Noise power test apparatus according to EN 55014	NT-530	
RF-Attenuator DC – 18 GHz 10 dB	NT-438	Vertical coupling plane (ESD)	NT-531	
RF-Attenuator DC – 18 GHz 20 dB	NT-439	Test cable #4 for EN 61000-4-6	NT-553	
I+P 7780 Directional coupler 100 - 2000 MHz	NT-440	Test cable #3 for conducted emission	NT-554	
ESH3-Z2 - Pulse limiter 9 kHz - 30 MHz	NT-441	Test cable #5+#6 ESD-cable (2x470k)	NT-555 + NT-556	
Power Divider 6 dB/1 W/50 Ohm	NT-443	Test cable #8 Sucoflex 104EA	NT-559	
Directional coupler 0,1 MHz – 70 MHz	NT-444	Test cable #9 (for outdoor measurements)	NT-580	
Directional coupler 0,1 MHz – 70 MHz	NT-445	Test cable #10 (for outdoor measurements)	NT-581	
Tube imitations according to EN 55015	NT-450	Test cable #13 Sucoflex 104PE	NT-584	
FCC-801-M3-16A Coupling decoupling network	NT-458	Test cable #21 for SRM-3000	NT-592	
FCC-801-M2-50A Coupling decoupling network	NT-459	Shield chamber	NT-600	
FCC-801-M5-25 Coupling decoupling network	NT-460	Climatic chamber	M-1200	
FCC-801-AF10 Coupling decoupling network	NT-461			

Appendix 1 (continued) Test equipment used

Anechoic Chamber 3 m / 5 m measuring distance	EMV-100	Log.per Antenna 80-2700 MHz STLP 9128 E special	EMV-304	Division: Industry & Energy
Turntabel 6 m diameter	EMV-101	Log.per Antenna 0,7 – 9 GHz STLP9149	EMV-305	Department: FG
Antenna mast 1 – 4 m	EMV-102	Load Dump Generator LD 200N	EMV-350	Test report number:
Mast and Turntable controller FC-06	EMV-103	Ultra Compact Symulator UCS 200N100	EMV-351	M/FG-16/121 Page: 4 of 4
EMC Video/Audiosystem	EMV-104	Automotive Power fail module PFM 200N100.1	EMV-352	Date: 09.11.2016
EMC Software EMC32 Version 10.01	EMV-105	Voltage Drop Symulator VDS 200Q100	EMV-353	Checked by:
Hornantenna 1 – 18 GHz HF 907	EMV-110	Arb. Generator AutoWave	EMV-354	Ç
Antennapre.amp. 1 – 18 GHz ERZ-LNA0200-1800-30-2	EMV-111	Ultra Compact Symulator UCS 500N7	EMV-355	
Trilog Antenna 30-3000 MHz VULB9163	EMV-112	Coupling decoupling network CNI 503B7 / 32 A	EMV-356	
Monopol 9 kHz – 30 MHz VAMP 9243	EMV-113	Coupling decoupling network CNI 503B7 / 63 A	EMV-357	
Antennapre.amp 18 – 40 GHz BBV 9721	EMV-114	Telecom Surge Generator TSurge 7	EMV-358	
DC Artificial Network PVDC 8300	EMV-150	Coupling decoupling network CNI 508N2	EMV-359	
AC Artificial Network NNLK 8121 RC	EMV-151	Coupling decoupling network CNV 504N2.2	EMV-360	
EMI Receiver ESR26	EMV-200	Immunity generator NSG4060/NSG4060-1	EMV-361	
Signalgenerator 9 kHz – 40 GHz N5173B	EMV-201	Coupling network CDND M316-2	EMV-362	
GPS Frequency normal B-88	EMV-202	Coupling network CT419-5	EMV-363	
DC Power supply N5745A	EMV-203	ESD Generator NSG 437	EMV-364	
DC Power supply N5745A	EMV-204	Pulse Limiter VTSD 9561-F BNC	EMV-405	
Spektrum Analyzator FSV40	EMV-205	Transient emission BSM200N40+BS200N100	EMV- 450+451	
Thd Multimeter Model 2015	EMV-206	Cap. Coupling Clamp HFK	EMV-455	
Poweramplifier PAS15000	EMV- 207/abc	Mag. Field System MS100N+MC26100+MC2630	EMV- 456-458	
Inrush Current Source	EMV- 208/abc	Coupling network CDN M2-100A	EMV-459	
Arbgenerator Sycore	EMV-209	Coupling network CDN M3-32A	EMV-460	
Harmonics/Flicker analyzer ARS 16/3	EMV-210	Coupling network CDN M5-100A	EMV-461	
HF- Ampflifier 9 kHz-250 MHz BBA150	EMV-300	Current Clamp CIP 9136A	EMV-462	
HF- Amplifier 80 -1000 MHz BBA150	EMV-301	DC Artificial Network HV-AN 150	EMV- 464+465	
HF- Amplifier 0,8 - 6 GHz BBA150	EMV-302	Coupling Clamp EM 101	EMV-466	
High Power Ant. 20-200 MHz VHBD 9134	EMV-303	Decoupling Clamp FTC 101	EMV-467	
		Power attenuator DG 250 W 6 GHz 6 dB	EMV-469	