Windmill & Fusion & Zahnräder

- Windmill & Fusion & Zahnräder
- Aufgabe
- Holz-Getriebe
- UMT-Getriebe
- PLA-Getriebe
- Getriebe
- Modul
- Nomenklatur
- Zahnradberechnung
- Evolventenverzahnung
- Evolventenfunktion

- Eingriffswinkel
- Zahndicken berechnen
- Zahndicke berechnen
- Fusion-Parameter
- Zahnkonstruktion
- Fusion Mustergetriebe
- Konstruktion I II
- Fusion Windmill
- Animation
- Kontakt & Dokumente
- Links

Aufgabe

Windmill Modell EWA

- Bausatz:
 - Bausatz aus Holz mit Gummibandantrieb.
- Idee:
 - Gummibandantrieb durch modifizierten Servo ersetzen.
- Problem:
 - Zahnräder aus Holz neigen zum klemmen.
- Lösung:
 - Zahnräder aus PLA-Kunststoff mit 3D-Drucker erstellen.

Holz-Getriebe

UMT-Getriebe

PLA-Getriebe

Getriebe

Wälzkreise => Teilkreise

Stellen wir uns 2 sich berührende Zylinder im Durchmesser der **Teilkreise** vor.

Die Zylinder wälzen ohne Schlupf aneinander ab. Deshalb werden sie auch **Wälzkreise** genannt.

Die Summe der Teilkreise devidiert durch 2 ergibt den Achsenabstand.

Quelle: https://www.tec-science.com/de/getriebe-technik/grundlagen/funktionsweise/

Modul

Modul = Teilkreis \emptyset /Zähnezahl; m = d/z

Das Modul ist eine Kenngröße des Zahnrades.

Das Modul ist ein Maß für die Zahngröße.

Nur gleichgroße Zähne können miteinander gepaart werden.

Ein Getriebe besteht aus Zahnrädern mit gleichen Modulen.

Quelle: https://www.tec-science.com/de/getriebe-technik/evolventenverzahnung/evolventen-zahnrad-geometrie/

Nomenklatur

- Teilkreis
- Kopfkreis
- Grundkreis
- Fußkreis

Kraftübertragung um den Teilkreis.

Der Grundkreis dient zur Konstruktion der Zahnform, der Evolvente.

Quelle: https://www.tec-science.com/de/getriebe-technik/evolventenverzahnung/evolventen-zahnrad-geometrie/

Zahnradberechnung

Evolventenverzahnung

Der Zahn hat die Form einer Evolvente.

Die Evolvente wird ausgehend vom Grundkreis konstruiert.

Der Verlauf der Evolvente ist für alle Module gleich.

Quelle: https://www.tec-science.com/de/getriebe-technik/evolventenverzahnung/evolventen-zahnrad-geometrie/

Evolventenfunktion

Quelle: https://www.tec-science.com/de/getriebe-technik/evolventenverzahnung/evolventen-zahnrad-geometrie/

Eingriffswinkel

Quelle: https://www.tec-science.com/de/getriebe-technik/evolventenverzahnung/berechnung-von-zahnrader/

Zahndicken berechnen

Teilkreis $lpha_0=0,349~{
m rad}~(=20^\circ)$ ${
m inv}(lpha_0)= an(lpha_0)-lpha_0=arphi_0$ $lpha=rccos\left(rac{d_0}{d}\cdot\cos(lpha_0)
ight)$ für "d" da, d, db einsetzen ${
m inv}(lpha)= an(lpha)-lpha=arphi$

Teilkreis s
$$_0 \; | s_0 = m \cdot \left(rac{\pi}{2} \,
ight)$$

$$s = d\left(rac{s_0}{d_0} + \mathrm{inv}(lpha_0) \!\!-\! \mathrm{inv}(lpha)
ight)$$

$$S = \frac{s}{r}$$
 $= \varphi_0$

Quelle: https://www.tec-science.com/de/getriebe-technik/evolventenverzahnung/berechnung-von-zahnrader/

7ahndicke berechnen

Gesucht:

- s Zahndicke (als Bogen)
- d für beliebigen ∅

$$\fbox{6} s = d \left(rac{s_0}{d_0} + \mathrm{inv}(lpha_0) \mathrm{-inv}(lpha)
ight)$$

Bekannt:

m Modul

do hier der Teilkreis (sonst d)

s_o Zahndicke am Teilkreis

① Eingriffswinkel 20°

mit

$$\boxed{\mathbb{S}\left[s_0=m\cdot\left(rac{\pi}{2}
ight)
ight]}$$

Rechnung:

- ② Involutfunktion von 20°
- ④ Involutfunktion von ③
- ⑤ Zahndicke (Bogen) TK
- © Zahndicke (Bogen) für beliebigen \varnothing

 $|\operatorname{col}(\alpha_0)| = \tan(\alpha_0) - \alpha_0$

$$\bigcirc ext{inv}(lpha) = an(lpha) - lpha \qquad ext{mit } \bigcirc lpha = rccosigg(rac{d_0}{d} \cdot \cos(lpha_0)igg)$$

 $mit \cap |\alpha_0 = 0,349 \text{ rad } (=20^\circ)$

Quelle: https://www.tec-science.com/de/getriebe-technik/evolventenverzahnung/berechnung-von-zahnrader/

Fusion-Parameter

EXCEL-Tabelle: Wird als csv-Datei gespeichert.

Spalten in den von Fusion erwarteten Spalten.

p_z		10	Anzahl
p_m	mm	5.0	Modul
p_p	mm	15.71	Teilung
p_d	mm	50.0	Teilkreis
p_da	mm	60.0	Kopfkreis
p_db	mm	47.0	Grundkreis
p_ha	mm	5.0	Kopfhoehe
p_c	mm	1.25	Kopfspiel
p_hf	mm	6.25	Fusshoehe
p_df	mm	37.5	Fusskreis
p_sp	mm	7.85	TK-Bogen
p_wRad	mm	4	Dicke
p_invAlpha0	rad	0.0149	invAlpha0
p_da_Alpha	rad	0.671	da_Alpha
p_da_invAlpha	rad	0.1230	da_invAlpha
p_s_da	mm	2.94	K-Bogen
p_db_Alpha	rad	0.000	db_Alpha
p_db_invAlpha	rad	0.000	db_invAlpha
p_s_db	mm	8.1	G-Bogen
p_delta_K	deg	2.8	delta-Kopf
p_delta_TK	deg	9.0	delta-Teilkreis
p_delta_G	deg	9.9	delta-Grundkreis

Zahnkonstruktion

Muster-Konstruktion

Gegeben:

$$z = 10$$

m = 5

Berechnet:

da = 60	$\delta_{\rm K}$ = 2.8 °	Kopfkreis
d = 50	$\delta_{TK} = 9.0$ °	Teilkreis
db = 47	$\delta_{\rm G}$ = 9.9 °	Grundkreis
df = 37.5		Fußkreis

Konstruktion:

- Kopfkreis, Teilkreis und Grundkreis als Kreis konstruieren.
- Fußkreis zeichnen.
- (Konstruktions)-Linien für Winkel.
- Punkte ①②③ über Bogen verbinden.

Fusion Mustergetriebe

EBW_Zahn_Parameter v2*

Konstruktion I

	Zähne z	Teilkreis d	Modul m=d/z
Flügel-Zahnrad	9	25 mm	~2,78
Zwischen- Zahnrad	18	50 mm	~2,78
Mühlenwerk	5	14 mm	~2,78

Konstruktion II

	Zähnezahl	Teilkreis	Modul		
	z = d/m	d	m		
Flügel-Zahnrad	27	27 mm	1		
Servo-Zahnrad	50	50 mm	1		
Mühlenwerk	14	14 mm	1		
Forderungen • •	Teilkreis-∅ müssen dem Original entsprechen. Teilkreis-∅ müssen gleich sein. Zähnezahlen müssen ganzzahlig sein.				
Modul •	Je größer der Modul-Wert, desto geringer die Anzahl der Zähne.				
•	Je größer der Modul-Wert, desto größer die				

Abmessungen der Zähne.

Fusion Windmill

EBW_Windmill

Animation

Kontakt & Dokumente

E-Mail: <u>H39@email.de</u>

GitHub: https://github.com/EKlatt/Experiences

Verzeichnis "WindMill"

Links

https://www.tec-science.com/de/getriebe-technik/grundlagen/funktionsweise/

https://www.tec-science.com/de/getriebe-technik/evolventenverzahnung/evolventen-zahnrad-geometrie/

https://www.tec-science.com/de/getriebe-technik/evolventenverzahnung/berechnung-von-zahnrader/

Muster