UNIVERSITATEA POLITEHNICA DIN BUCUREȘTI

Facultatea/Colegiul

CHESTIONAR DE CONCURS

Numărul legitimației de bancă
Numele
Prenumele tatălui
Prenumele

DISCIPLINA: Fizică FA

VARIANTA **F**

- 1. Pe un plan orizontal un corp de masă m_1 ciocnește elastic un corp de masă m_2 aflat în repaus. În urma ciocnirii, cele două corpuri se deplasează cu aceeași viteză, în sensuri opuse. Raportul $\frac{m_2}{m_1}$ este: (8 pct.)
 - a) 3; b) 4; c) $\frac{1}{3}$; d) 2; e) 7; f) 1.
- Randamentul unei maşini termice, funcționând după un ciclu Carnot cu gaz ideal este η = 64%. Raportul (subunitar) al vitezelor termice ale moleculelor de gaz corespunzătoare temperaturilor extreme ale ciclului este: (8 pct.)
 - a) 0,8; b) 0,89; c) 0,64; d) 0,6; e) 0,4; f) 0,5.
- 3. Două baterii A și B cu t. e. m. $E_A = 6 \text{ V}$ și $E_B = 3 \text{ V}$, având rezistențele interne $r_A = 1 \Omega$, respectiv $r_B = 2 \Omega$ sunt legate în serie la bornele unui rezistor de rezistență R. Pentru ce valoare a rezistenței R, tensiunea la bornele bateriei B va fi nulă? (8 pct.)
 - a) 6Ω ; b) $2k\Omega$; c) 3Ω ; d) 1.5Ω ; e) 2Ω ; f) $3k\Omega$.
- 4. Densitatea unui gaz ideal aflat la temperatura $T_1 = 300 \,\text{K}$ este $\rho_1 = 1 \,\text{kg/m}^3$. Care va fi densitatea gazului la temperatura $T_2 = 400 \,\text{K}$, presiunea rămânând constantă? (6 pct.)
 - a) $1,75 \, kg/m^3$; b) $0,65 \, kg/m^3$; c) $0,75 \, kg/m^3$; d) $0,5 \, kg/m^3$; e) $1,75 \, kg/m^3$; f) $0,86 \, g/cm^3$.
- 5. Sub acțiunea unei forțe F = 25 N, un resort elastic se comprimă cu x = 4 cm. Ce energie potențială dobândește resortul în urma acestei comprimări? (6 pct.)
 - a) $0.5 \,\mathrm{J}$; b) $8 \,\mathrm{N} \cdot \mathrm{m}$; c) $5 \,\mathrm{J}$; d) $12.5 \,\mathrm{J}$; e) $1 \,\mathrm{J}$; f) $7.4 \,\mathrm{N}$.
- 6. O baterie cu t. e. m. E = 24 V are curentul de scurtcircuit $I_s = 60 \text{ A}$. Ce rezistență are un consumator care conectat la această baterie face ca tensiunea la borne să fie U = 22 V? (6 pct.)
 - a) 4,2 Ω ; b) 4,4 Ω ; c) 8,8 Ω ; d) 2,2 Ω ; e) 6,5 Ω ; f) 3,4 Ω .
- 7. Doi moli de gaz cântăresc 64 g. Masa molară a gazului este: (4 pct.)
 - a) $128 \frac{\text{kg}}{\text{kmol}}$; b) $54 \frac{\text{kg}}{\text{kmol}}$; c) $12 \frac{\text{g}}{\text{mol}}$; d) $3.2 \frac{\text{kg}}{\text{kmol}}$; e) $32 \frac{\text{kg}}{\text{kmol}}$; f) $38 \frac{\text{kg}}{\text{kmol}}$.

- 8. Într-o mişcare uniform încetinită, viteza unui mobil la un anumit moment este de 40 m/s. Dacă după 8 s mobilul se opreste, accelerația de frânare are mărimea: (4 pct.)
 - a) 3.2 m/s^2 ; b) 6 m/s^2 ; c) 4.8 m/s^2 ; d) 0.2 m/s^2 ; e) 3 m/s^2 ; f) 5 m/s^2 .
- 9. Inducția magnetică pe axul unei bobine foarte lungi, parcursă de curent continuu este: (4 pct.)

a)
$$\frac{NI}{\mu 1}$$
; b) $\frac{\mu NI}{2R}$; c) $\frac{\mu I}{Nl}$; d) $\frac{\mu I}{2R}$; e) $\frac{\mu NI}{1}$; f) $\frac{N^2I}{\mu 1}$.

- 10. Două bile A şi B de mase $m_A = 100 \,\mathrm{g}$ şi $m_B = 200 \,\mathrm{g}$ se ciocnesc plastic. În urma ciocnirii bilele se opresc. Dacă bila A avea viteza $v_A = 5 \,\mathrm{m/s}$, bila B avea viteza: (4 pct.)
 - a) 4.5 m/s; b) 7.5 m/s; c) 2.5 m/s; d) 10 m/s; e) 10.5 m/s; f) 8 m/s.
- 11. În SI puterea se măsoară în (4 pct.)
 - a) $J; b) J/s^2; c) N; d) W; e) J·s; f) N·m.$
- 12. În SI constanta elastică a unui resort are ca unitate de măsură (4 pct.)
 - a) J/m; b) $N \cdot m$; c) N/m; d) $kg \cdot m$; e) N/m^2 ; f) $N \cdot m^2$.
- 13. Fie un circuit de curent continuu alcătuit dintr-o sursă cu t. e. m. $E = 102 \, \text{V}$ și un rezistor cu rezistența $R = 1 \, \text{k}\Omega$. Dacă tensiunea la borne este $U = 100 \, \text{V}$, rezistența internă a sursei are valoarea: (4 pct.)
 - a) 2Ω ; b) 60Ω ; c) 10Ω ; d) 20Ω ; e) $10 k\Omega$; f) $20 k\Omega$.
- 14. Un corp care primește căldura Q = 8 kJ își mărește temperatura cu $\Delta T = 40 \text{ K}$. Capacitatea calorică a corpului este: (4 pct.)
 - a) 420 J/K; b) 320 J/K; c) 200 J/K; d) $3 \cdot 10^3 \text{ J/K}$; e) 50 J/K; f) 80 J/K.
- 15. Expresia forței electromagnetice pentru un conductor filiform rectiliniu parcurs de curent și aflat în câmp magnetic uniform este: (4 pct.)
 - a) $\vec{1} \cdot \vec{B}$; b) $\vec{1}(\vec{1} \times \vec{B})$; c) $\vec{1}(\vec{1} \times \vec{B})$; d) $\vec{1}(\vec{B} \times \vec{I})$; e) $\vec{1}(\vec{B} \times \vec{I})$; f) $\vec{1}(\vec{I} \times \vec{I})$; f) $\vec{1}(\vec{$
- 16. Se leagă în paralel doi rezistori având rezistențele $R_1 = 6 \text{ k}\Omega$ și $R_2 = 4 \text{ k}\Omega$. Rezistența echivalentă este: (4 pct.)
 - a) $3.5 \,\mathrm{k}\Omega$; b) $24 \,\mathrm{k}\Omega$; c) $6.2 \,\mathrm{k}\Omega$; d) $10 \,\mathrm{k}\Omega$; e) $2.4 \,\mathrm{k}\Omega$; f) $48 \,\mathrm{k}\Omega$.
- 17. Randamentul unei mașini termice este: (4 pct.)

$$a)\; \frac{Q_1}{L}\,;\, b)\; \frac{L\, -\, Q_1}{Q_1}\,;\, c)\; \frac{Q_2}{Q_1}\,;\, d)\; \, Q_1\, -\, L\,;\, e)\; \frac{L}{Q_1}\,;\, f)\; \frac{Q_1\, -\, L}{L}\,.$$

18. Care dintre relațiile de mai jos reprezintă ecuația transformării adiabatice a unui gaz ideal? (4 pct.)

a)
$$\frac{V}{T} = const$$
; b) $pV = const$; c) $\frac{p}{T} = const$; d) $\frac{p_1V_1}{T_1} = \frac{p_2V_2}{T_2}$; e) $TV^{\gamma-1} = const$; f) $pV = \nu RT$.