PHASE II

PREDITING HOUSE PRICES USING ARTIFICIAL INTELLIGENCE BY M.KANISH PRETHIVE

INTRODUCTION

- Artificial intelligence (AI) is rapidly transforming many industries, and real
 estate is no exception. Al-powered house price prediction models are
 becoming increasingly popular, as they can help buyers, sellers, and investors
 make more informed decisions.
- These models work by analyzing large datasets of historical home sales data.
 This data includes a variety of factors, such as the property's location, size,
 condition, and amenities. The AI model then uses this data to learn the
 relationships between these factors and home prices.
- Once the model is trained, it can be used to predict the price of a new property. This can be done by simply providing the model with the property's features. The model will then output a prediction of the property's value.
- Al-powered house price prediction models have several advantages over traditional methods. First, they can consider a much larger number of factors than traditional methods. This allows them to produce more accurate predictions. Second, Al models can be updated with new data as it becomes available. This means that their predictions can improve over time.

Content for Project phase 2

Consider Exploring advanced regression techniques like Gradient Boosting or XGBoost for improved predioction accuracy.

Data Source

A good data source for house price prediction using machine learning should be accurate, complete, Covering geographic area of interest, Accessible

Dataset link(https://www.kaggle.com/datasets/vedavyasv/usa-housing/data)

Avg. Area	Avg. Area	Avg. Area	Avg. Area	Area Popu	Price	Address
79545.46	5.682861	7.009188	4.09	23086.8	1059034	208
79248.64	6.0029	6.730821	3.09	40173.07	1505891	188
61287.07	5.86589	8.512727	5.13	36882.16	1058988	9127
63345.24	7.188236	5.586729	3.26	34310.24	1260617	USS
59982.2	5.040555	7.839388	4.23	26354.11	630943.5	USNS
80175.75	4.988408	6.104512	4.04	26748.43	1068138	06039
64698.46	6.025336	8.14776	3.41	60828.25	1502056	4759
78394.34	6.98978	6.620478	2.42	36516.36	1573937	972 Joyce
59927.66	5.362126	6.393121	2.3	29387.4	798869.5	USS
81885.93	4.423672	8.167688	6.1	40149.97	1545155	Unit 9446
80527.47	8.093513	5.042747	4.1	47224.36	1707046	6368
50593.7	4.496513	7.467627	4.49	34343.99	663732.4	911
39033.81	7.671755	7.250029	3.1	39220.36	1042814	209
73163.66	6.919535	5.993188	2.27	32326.12	1291332	829
69391.38	5.344776	8.406418	4.37	35521.29	1402818	PSC 5330,
73091.87	5.443156	8.517513	4.01	23929.52	1306675	2278
79706.96	5.06789	8.219771	3.12	39717.81	1556787	064
61929.08	4.78855	5.09701	4.3	24595.9	528485.2	5498
63508.19	5.947165	7.187774	5.12	35719.65	1019426	Unit 7424
62085.28	5.739411	7.091808	5.49	44922.11	1030591	19696
86295	6.627457	8.011898	4.07	47560.78	2146925	030 Larry
60835.09	5.551222	6.517175	2.1	45574.74	929247.6	USNS
64490.65	4.210323	5.478088	4.31	40358.96	718887.2	95198
60697.35	6.170484	7.150537	6.34	28140.97	743999.8	9003 Jay
59748.86	5.33934	7.748682	4.23	27809.99	895737.1	24282
56974.48	8.287562	7.31288	4.33	40694.87	1453975	61938
82173.63	4.018525	6.992699	2.03	38853.92	1125693	3599

Model Evaluation and Selection:

- Split the dataset into training and testing sets
- Evaluate models using appropriate metrics (eg, Mean Absolute Error, Mean Squared
- Enor, R-squared) to assess their performance.
- Use cross-validation techniques to tune hyperparameters and ensure model stability.
- Compare the results with traditional linear regression models to highlight
- improvements.

• Select the best-performing model for further analysis.

Model Interpretability:

- Explain how to interpret feature importance from Gradient Boosting and XGBoost models.
- Discuss the insights gained from feature importance analysis and their relevance to house price prediction
- Interpret feature importance from ensemble models like Random Forest and Gradient
- Boosting to understand the factors influencing house prices.

Deployment and Prediction:

- Deploy the chosen regression model to predict house prices.
- Develop a user-friendly interface for users to input property features and receive price predictions

Program:

House Price Prediction

Importing Dependencies

```
import pandas as pd
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.model selection import train test split
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import r2_score,
mean_absolute_error,mean_squared_error from sklearn.linear_model import LinearRegression
from sklearn.linear_model import Lasso
from sklearn.ensemble import RandomForestRegressor
from sklearn.svm import SVR
import xgboost as xg
%matplotlib inline
import warnings
warnings.filterwarnings("ignore")
/opt/conda/lib/python3.10/site-packages/scipy/ init .py:146:
UserWarning: A NumPy version >=1.16.5 and <1.2\overline{3.0} is required for this
version of SciPy (detected version 1.23.5
  warnings.warn(f"A NumPy version >={np minversion} and
<{np maxversion}"</pre>
```

Loading Dataset

```
dataset = pd.read_csv('/kaggle/input/usa-housing/USA_Housing.csv')
```

Model 1 - Linear Regression

Predicting Prices

In [26]:

sns.histplot((Y_test-Prediction1), bins=50)

Out[26]:

<Axes: xlabel='Price', ylabel='Count'>


```
print(mean_squared_error(Y_test, Prediction1))
0.9182928179392918
82295.49779231755
10469084772.975954
```

Model 2 - Support Vector Regressor

Predicting Prices

```
In [30]:
Prediction2 = model_svr.predict(X_test_scal)
```

Evaluation of Predicted Data

```
In [31]:
    plt.figure(figsize=(12,6))
    plt.plot(np.arange(len(Y_test)), Y_test, label='Actual Trend')
    plt.plot(np.arange(len(Y_test)), Prediction2, label='Predicted Trend')
    plt.xlabel('Data')
    plt.ylabel('Trend')
    plt.legend()
    plt.title('Actual vs Predicted')

Out[31]:
```


Model 3 - Lasso Regression

Predicting Prices

```
In [36]:
```

```
Prediction3 = model lar.predict(X test scal)
```

Evaluation of Predicted Data

```
In [37]:
```

```
plt.figure(figsize=(12,6))
plt.plot(np.arange(len(Y_test)), Y_test, label='Actual Trend')
plt.plot(np.arange(len(Y_test)), Prediction3, label='Predicted Trend')
plt.xlabel('Data')
plt.ylabel('Trend')
plt.legend()
plt.title('Actual vs Predicted')
```


Out[37]:

Text(0.5, 1.0, 'Actual vs Predicted')

In [38]:

sns.histplot((Y_test-Prediction3), bins=50)

Out[38]:

<Axes: xlabel='Price', ylabel='Count'>

In [39]:

```
print(r2_score(Y_test, Prediction2))
print(mean_absolute_error(Y_test, Prediction2))
print(mean_squared_error(Y_test, Prediction2))
```

-0.0006222175925689744 286137.81086908665 128209033251.4034

Model 4 - Random Forest Regressor

```
In [40]:
```

model_rf = RandomForestRegressor(n_estimators=50)

In [41]:

model_rf.fit(X_train_scal, Y_train)

Out[41]:

V

RandomForestRegressor

RandomForestRegressor(n_estimators=50)

Predicting Prices

In [42]:

```
Prediction4 = model rf.predict(X test scal)
```

Evaluation of Predicted Data

```
In [43]:
    plt.figure(figsize=(12,6))
    plt.plot(np.arange(len(Y_test)), Y_test, label='Actual Trend')
    plt.plot(np.arange(len(Y_test)), Prediction4, label='Predicted Trend')
    plt.xlabel('Data')
    plt.ylabel('Trend')
    plt.legend()
    plt.title('Actual vs Predicted')
Out[43]:
```

Text(0.5, 1.0, 'Actual vs Predicted')

In [44]:

sns.histplot((Y_test-Prediction4), bins=50)
Out[44]:


```
print(r2 score(Y test, Prediction2))
         print(mean_absolute_error(Y_test, Prediction2))
         print(mean_squared_error(Y_test, Prediction2))
-0.0006222175925689744
286137.81086908665
128209033251.4034
Model 5 - XGboost Regressor
In [46]:
          model_xg = xg.XGBRegressor()
In [47]:
          model_xg.fit(X_train_scal, Y_train)
Out[47]:
   XGBRegressor
XGBRegressor(base score=None, booster=None, callbacks=None,
             colsample bylevel=None, colsample bynode=None,
             colsample_bytree=None, early_stopping_rounds=None,
             enable categorical=False, eval metric=None,
feature types=None,
             gamma=None, gpu id=None, grow policy=None,
importance_type=None,
             interaction constraints=None, learning rate=None,
max bin=None,
             max_cat_threshold=None, max_cat_to_onehot=None,
             max delta step=None, max depth=None, max leaves=None,
             min child weight=None, missing=nan,
monotone constraints=None,
             n_estimators=100, n_jobs=None, num_parallel_tree=None,
             predictor=None, random state=None, ...)
```

Predicting Prices

In [45]:

```
In [48]:
           Prediction5 = model xg.predict(X test scal)
```

Evaluation of Predicted Data

```
In [49]:
    plt.figure(figsize=(12,6))
```

```
plt.plot(np.arange(len(Y_test)), Y_test, label='Actual Trend')
plt.plot(np.arange(len(Y_test)), Prediction5, label='Predicted Trend')
plt.xlabel('Data')
plt.ylabel('Trend')
plt.legend()
plt.title('Actual vs Predicted')

Out[49]:
```

Text(0.5, 1.0, 'Actual vs Predicted')

In [51]:

print(r2_score(Y_test, Prediction2))
print(mean_absolute_error(Y_test, Prediction2))
print(mean_squared_error(Y_test, Prediction2))

-0.0006222175925689744 286137.81086908665 128209033251.4034