

Stochastic Processes

Recurrence, Transience, Communicating Classes, Class Properties, Irreducibility, Periodicity

Karthik P. N.

Assistant Professor, Department of AI

Email: pnkarthik@ai.iith.ac.in

25 March 2025

Some Tidbits

• For $x, y \in \mathcal{X}$, let

$$f_{xy}^{(n)} := \mathbb{P}(\tau_y^{(1)} = n \mid X_0 = x).$$

 $f_{xy}^{(n)}$: probability of first visit to state y at time n, starting from state x.

• Let f_{xy} be defined as

$$f_{xy} = \mathbb{P}(\tau_{y}^{(1)} < +\infty \mid X_0 = x) = \sum_{n \in \mathbb{N}} f_{xy}^{(n)}.$$

 f_{xy} : probability of eventually visiting state y, starting from state x.

Some Tidbits

• By the law of total probability,

$$\mathbb{P}(\tau_{\mathbf{y}}^{(1)} < +\infty) = \sum_{\mathbf{x} \in \mathcal{X}} \mathbb{P}(\tau_{\mathbf{y}}^{(1)} < +\infty \mid X_0 = \mathbf{x}) \cdot \mathbb{P}(X_0 = \mathbf{x}) = \sum_{\mathbf{x} \in \mathcal{X}} f_{\mathbf{x}\mathbf{y}} \cdot \mathbb{P}(X_0 = \mathbf{x}).$$

- If $f_{xy}=1$ for all $x\in\mathcal{X}$, then $\mathbb{P}(\tau_y^{(1)}<+\infty)=1$, and hence $\tau_y^{(1)}$ is a stopping time.
- $1 f_{xy}$: probability that starting from x, the state y is **never** visited

Recurrent and Transient States

Definition (Recurrent and Transient States)

A state $x \in \mathcal{X}$ is called recurrent if $f_{xx} = 1$.

If $f_{xx} < 1$, then x is called a transient state.

Remarks:

The collection

$$\{f_{xx}^{(1)}, f_{xx}^{(2)}, \dots, 1 - f_{xx}\}$$

defines a valid PMF on $\mathbb{N} \cup \{+\infty\}$.

• The above PMF is called first recurrence time distribution.

Mean Recurrence Time

Definition (Mean Recurrence Time)

The mean recurrence time of a state $x \in \mathcal{X}$ is denoted by μ_{xx} and is defined by

$$\mu_{xx} := \mathbb{E}[\tau_x^{(1)} \mid X_0 = x].$$

Remarks:

- If *x* is transient, then $\mu_{xx} = +\infty$.
- If *x* is recurrent, then

$$\mu_{xx} = \sum_{n \in \mathbb{N}} n f_{xx}^{(n)}.$$

Positive Recurrent and Null Recurrent States

Definition (Positive / Null Recurrent States)

A recurrent state $x \in \mathcal{X}$ is called positive recurrent if $\mu_{xx} < +\infty$.

Else, if $\mu_{xx} = +\infty$, then x is called null recurrent.

Proposition

Proposition

Fix $x, y \in \mathcal{X}$. Let $N_y = \#$ visits to state y. Then,

$$\mathbb{P}(N_{\gamma}=k\mid X_0=x)=egin{cases} 1-f_{x\gamma}, & k=0,\ f_{x\gamma}\left(f_{\gamma\gamma}
ight)^{k-1}\left(1-f_{\gamma\gamma}
ight), & k\in\mathbb{N}. \end{cases}$$

Proposition

Fix $x, y \in \mathcal{X}$. Let $N_y = \#$ visits to state y. Then,

$$\mathbb{P}(N_{\gamma}=k\mid X_0=x)=egin{cases} 1-f_{x\gamma}, & k=0,\ f_{x\gamma}\left(f_{\gamma\gamma}
ight)^{k-1}\left(1-f_{\gamma\gamma}
ight), & k\in\mathbb{N}. \end{cases}$$

Corollary

For any $x, y \in \mathcal{X}$.

$$\mathbb{P}(N_{\nu} < +\infty \mid X_0 = x) =$$

Proposition

Fix $x, y \in \mathcal{X}$. Let $N_v = \#$ visits to state y. Then,

$$\mathbb{P}(N_{\gamma} = k \mid X_0 = x) = egin{cases} 1 - f_{xy}, & k = 0, \ f_{xy} \left(f_{yy} \right)^{k-1} \left(1 - f_{yy} \right), & k \in \mathbb{N}. \end{cases}$$

Corollary

For any $x, y \in \mathcal{X}$.

$$\mathbb{P}(N_{\gamma} < +\infty \mid X_0 = x) = \begin{cases} 1, & f_{\gamma\gamma} < 1, \\ 1 - f_{x\gamma}, & f_{\gamma\gamma} = 1. \end{cases}$$

Proposition

Fix $x, y \in \mathcal{X}$. Then,

$$\mathbb{P}(N_{y}=k\mid X_{0}=x)=\begin{cases}1-f_{xy}, & k=0,\\ f_{xy}\left(f_{yy}\right)^{k-1}\left(1-f_{yy}\right), & k\in\mathbb{N}.\end{cases}$$

Corollary

For any $x, y \in \mathcal{X}$,

$$\mathbb{P}(N_{\gamma} = +\infty \mid X_0 = x) = egin{cases} 0, & f_{\gamma\gamma} < 1, \ f_{x\gamma}, & f_{\gamma\gamma} = 1. \end{cases}$$

Proposition

Fix $x, y \in \mathcal{X}$. Then,

$$\mathbb{P}(N_{\gamma}=k\mid X_0=x)=egin{cases} 1-f_{x\gamma}, & k=0,\ f_{x\gamma}\left(f_{\gamma\gamma}
ight)^{k-1}\left(1-f_{\gamma\gamma}
ight), & k\in\mathbb{N}. \end{cases}$$

Corollary

For any $x, y \in \mathcal{X}$,

$$\mathbb{E}[N_{y} \mid X_{0} = x] =$$

Proposition

Fix $x, y \in \mathcal{X}$. Then,

$$\mathbb{P}(N_{\gamma}=k\mid X_0=x)=\begin{cases}1-f_{x\gamma},&k=0,\\f_{x\gamma}\left(f_{y\gamma}\right)^{k-1}\left(1-f_{\gamma\gamma}\right),&k\in\mathbb{N}.\end{cases}$$

Corollary

For any $x, y \in \mathcal{X}$,

$$\mathbb{E}[N_{\gamma} \mid X_0 = x] = egin{cases} rac{f_{x\gamma}}{1 - f_{\gamma\gamma}}, & f_{\gamma\gamma} < 1, \ +\infty, & f_{\gamma\gamma} = 1, f_{x\gamma} > 0, \ 0, & f_{\gamma\gamma} = 1, f_{x\gamma} = 0. \end{cases}$$

Proposition

Consider a time-homogeneous DTMC on a discrete state space $\mathcal X$ with TPM P.

- 1. A state $y \in \mathcal{X}$ is transient if and only if $\mathbb{E}[N_y \mid X_0 = y] < +\infty$.
- 2. A state $y \in \mathcal{X}$ is recurrent if and only if $\mathbb{E}[N_y \mid X_0 = y] = +\infty$.

Proposition

Consider a time-homogeneous DTMC on a discrete state space $\mathcal X$ with TPM P.

- 1. A state $y \in \mathcal{X}$ is transient if and only if $\mathbb{E}[N_y \mid X_0 = y] < +\infty$.
- 2. A state $y \in \mathcal{X}$ is recurrent if and only if $\mathbb{E}[N_y \mid X_0 = y] = +\infty$.

Remark: Note that $N_y = \sum_{n \in \mathbb{N}} \mathbf{1}_{\{X_n = y\}}$. Therefore,

$$\mathbb{E}[N_{\gamma} \mid X_0 = \gamma] = \mathbb{E}\left[\sum_{n \in \mathbb{N}} \mathbf{1}_{\{X_n = \gamma\}} \mid X_0 = \gamma\right] = \sum_{n \in \mathbb{N}} \mathbb{P}(X_n = \gamma \mid X_0 = \gamma) = \sum_{n \in \mathbb{N}} P_{\gamma, \gamma}^n.$$

• With probability 1, a transient state *y* is visited only finitely many times, no matter what initial state *x* the Markov chain starts in

- With probability 1, a transient state *y* is visited only finitely many times, no matter what initial state *x* the Markov chain starts in
- If y is recurrent and the Markov chain starts in y, then y will be visited infinitely many times with probability 1

- With probability 1, a transient state *y* is visited only finitely many times, no matter what initial state *x* the Markov chain starts in
- If y is recurrent and the Markov chain starts in y, then y will be visited infinitely many times with probability 1
- If y is recurrent, Markov chain starts in some state x, and $f_{xy} = 1$, then y will be visited infinitely many times with probability 1

- With probability 1, a transient state *y* is visited only finitely many times, no matter what initial state *x* the Markov chain starts in
- If y is recurrent and the Markov chain starts in y, then y will be visited infinitely many times with probability 1
- If y is recurrent, Markov chain starts in some state x, and $f_{xy} = 1$, then y will be visited infinitely many times with probability 1
- If $|\mathcal{X}| < +\infty$, then all states in \mathcal{X} cannot be transient

Example

• Consider a time-homogeneous DTMC with following transition graph.

Compute f_{00} , f_{11} , and f_{22} .

When $p \in (0, 1)$, classify the states into transient and positive/null recurrent.

Communicating Classes

Reachability

Definition (Reachability)

State $y \in \mathcal{X}$ is said to be reachable from state $x \in \mathcal{X}$ if there exists $n \in \mathbb{N} \cup \{0\}$ such that the probability of reaching y in n steps starting from x is strictly positive.

Notation: $x \longrightarrow y$.

Reachability

Definition (Reachability)

State $y \in \mathcal{X}$ is said to be reachable from state $x \in \mathcal{X}$ if there exists $n \in \mathbb{N} \cup \{0\}$ such that the probability of reaching y in n steps starting from x is strictly positive.

Notation: $x \longrightarrow y$.

Remark: For a time-homogeneous Markov chain with state space \mathcal{X} and TPM P,

 $x \longrightarrow y \iff \exists n \in \mathbb{N} \cup \{0\} \text{ such that } P_{x,y}^n > 0.$

Communication

Definition (Communication)

Two states x and y are said to communicate with each other if $x \longrightarrow y$ and $y \longrightarrow x$.

Notation: $x \longleftrightarrow y$.

Communication is an Equivalence Relation

Proposition (Communication is an Equivalence Relation)

 \longleftrightarrow defines an equivalence relation on $\mathcal{X} \times \mathcal{X}$. Formally:

- 1. (Reflexive): $x \longleftrightarrow x$ for all $x \in \mathcal{X}$.
- 2. (Symmetric): For all $x, y \in \mathcal{X}$,

$$x \longleftrightarrow y \iff y \longleftrightarrow x$$
.

3. (Transitive): For all $x, y, z \in \mathcal{X}$,

$$x \longleftrightarrow y$$
, $y \longleftrightarrow z \implies x \longleftrightarrow z$.