FINE-TUNING GPT-2 TO GENERATE RESEARCH PA-PER ABSTRACTS

Chris Liu & Yiyun Zheng

University of California, Santa Cruz 1156 High Street Santa Cruz, CA 95064 {yliu298, yzheng63}@ucsc.edu

1 Introduction

GPT-2 is a Transformer with 1.5B parameters trained on approximately 40 billion tokens of text, which was obtained by scraping all outbound links from Reddit with at least three upvotes (Radford et al., 2019). We fine-tuned GPT-2 on a subset of the arXiv Archive dataset (Geiger, 2019). Our goal is to 1) observe how well GPT-2 would learn the language structure of the abstruse text and to what extent it can replicate it, 2) see if the model could extract the domain-specific knowledge without a dedicated extracting system, and 3) test if the model can have creativity based on the knowledge it acquired during training.

2 METHODOLOGY

2.1 Why Not GANs

We chose to use a language model (LM) instead of a generative adversarial network (GAN) because language models are generally superior to GANs in both text quality and diversity. A known problem with existing language GANs' (Guo et al., 2018; Dey et al., 2018; Yu et al., 2016; Che et al., 2017; Chen et al., 2018) poor sample quality is the exposure bias - a type of inconsistency during training and inference. The phenomenon happens when GANs look at the ground truth tokens during training but only relies on the previously generated tokens during inference (Caccia et al., 2018). Moreover, LMs are proven to be easier to train, cross-validate, and use less compute.

2.2 ARXIV PAPER DATASET

We selected a subset of the arXiv Archive dataset (Geiger, 2019) as the training and evaluation data to fine-tune GPT-2. The original arXiv Archive dataset contains a full archive of metadata about papers on arxiv.org, from the start of the site in 1993 to the end of 2019. Our subset includes all the paper titles (query) and abstracts (context) under the Artificial Intelligence (cs.AI), Machine Learning (cs.LG), Computation and Language (cs.CL), and Computer Vision and Pattern Recognition (cs.CV) categories. We provide the information of the sub-dataset and the distribution of the training and evaluation dataset as follows. The Byte Pair Encoding (BPE) tokens count is the number of tokens after performing BPE operations (Sennrich et al., 2015) in the particular set of data.

Category	Count	Percentage	BPE Tokens Count
AI	21,889	18.00%	4,791,146
LG	47,025	38.67%	11,078,662
CL	17,008	13.99%	3,549,625
CV	35,694	29.35%	8,687,225
Total	121,616	100.00%	28,106,658

Table 1: The information of the arXiv paper dataset.

Split	Count	Percentage	BPE Tokens Count
Train	109,454	90.00%	25,281,251
Eval	12,162	10.00%	2,825,411
Total	121,616	100.00%	28,106,662

Table 2: The distribution of training and evaluation splits.

The original dataset is in the format of a tab-separated value, so we wrote a simple preprocessing script to convert it into a text file format, which is the input file type (a document) of the GPT-2 model. An example of a paper's title and its abstract is shown below. We introduce three types of tokens for every instance in the dataset: category token, separation token, and end-of-text token.

<|CL|> Attention Is All You Need <|sep|> The dominant sequence transduction models are based on complex recurrent or convolutional neural networks in an encoder-decoder configuration.

. . .

We show that the Transformer generalizes well to other tasks by applying it successfully to English constituency parsing both with large and limited training data. <|endoftext|>

Figure 1: An example of a paper's title and its abstract. <|CL|> is a normal token, whereas <|sep|> and <|endoftext|> are special tokens. The shown text is from (Vaswani et al., 2017).

Category token: Category token is the name of the category of the paper, which is the same as the category names in Table 1, except that we replace ML with LG for machine learning. Category tokens are prepended at the front of the titles and belong to part of the query and context. In other words, all < |AI|>, < |ML|>, < |CL|>, and < |CV|> will be split by the BPE operations. So category tokens will not be treated as special tokens.

Separation token: A separation token < | sep | > separate query and context in an input sequence (a title-abstract pair). It will be treated as a special token and not be tokenized by the BPE operation.

End-of-text token: An end-of-text token < | endoftext | > indicates the end of a title-abstract pair. Like the separation token, the model will also treat it as a special token, which is ignored by the BPE operation.

2.3 Model

Due to the risk of being abused, OpenAI released neither the training nor the fine-tuning code of GPT-2, so we used the model implementation from HuggingFace's Transformers (Wolf et al., 2019). There are five GPT-2 model sizes, each with a different number of parameters: distill (82M), small (117M), medium (345M), large (774M), and extra-large (1558M). Based on our estimation, the 82M, 117M, and 345M model can be fine-tuned with a single 16GB memory GPU, while the 774M model requires more than 16GB memory. However, fine-tuning the 1558M model is not a part of this project, but it will be in our future work.

2.4 GENERATION

The decoding strategy is a key step in language model generation because the generation quality and diversity are largely affected by the sampled probability distribution. A common decoding strategy is maximization-based decoding, including beam search (Freitag & Al-Onaizan, 2017), top-k sampling (Fan et al., 2018; Holtzman et al., 2018; Radford et al., 2019), and temperature sampling (Ackley et al., 1985). However, a problem with these sampling methods is that the unreliable tail of the

sampling distribution will have a large number of candidates with very low probability that they as a whole can be over-represented.

We used Nucleus Sampling, which keeps the vast majority of probability mass in the "nucleus" and only samples from the top-p portion of the (dynamic) probability mass (Holtzman et al., 2019). Given a distribution $\mathcal{P}\left(x|x_{1:i-1}\right)$, we define the top-p portion of the vocabulary $V^{(p)}\subset V$ as the smallest set of vocabulary such that

$$\sum_{x \in V^{(p)}} P(x|x_{1:i-1}) \ge p \tag{1}$$

Let $p' = \sum_{x \in V^{(p)}} P(x|x_{1:i-1})$. Before the next word is sampled, we rescale the original distribution as follows, and the next word is then sampled from this new distribution.

$$P'(x|x_{1:i-1}) = \begin{cases} P(x|x_{1:i-1})/p' & \text{if } x \in V^{(p)} \\ 0 & \text{otherwise} \end{cases}$$
 (2)

In other words, because we only choose from the smallest possible set of words whose cumulative probability exceeds the probability p, we can make sure that the unlikely words are truncated from the tail and not to be over-represented during the whole decoding precedure.

3 EXPERIMENTS AND RESULTS

3.1 Training

During the initial training procedure, we used the default hyperparameter settings for all four models. However, the 345M and the 774M model cannot fit in a 16G RAM GPU, so we reduced the batch size of the two models to 2 and 1, respectively. For the 82M, 117M, and 345M models, we can fine-tune them with a single NVIDIA Tesla P100 GPU. But the 774M model requires more than 16GB GPU memory, so we trained it with a NVIDIA Quadro P6000 GPU with 24GB memory. Therefore, the training time of the 774M model is significantly longer (31 hours) compared to the other three (1, 2, and 12 hours) because of the inconsistent batch sizes and GPUs. We explored the effect of batch size on the model performance in a later section.

Model	Block Size	Batch Size	Grad Accum	LR	Epochs
82M*	512	8	1	5e-5	3
117M	512	8	1	5e-5	3
345M	512	2	1	5e-5	3
774M	512	1	1	5e-5	3

Table 3: The parameter setting of fine-tuning GPT-2 of different sizes. **Block size** is the input sequence length after tokenization, and the training dataset will be truncated in block of this size for training. **Gradient accumulation step** is the number of updates steps to accumulate before performing a backward/update pass. Other than the parameter setting in the table, all models are trained with their default hyperparameters.

3.2 Hyperparameters

Due to the size of the model and the high cost of computing, we were not able to perform a neural architecture search over all sets of hyperparameters. We did the tuning experiments using the smallest model, DistilGPT-2, with only 82M parameters and evaluated the effect of the hyperparameters separately.

3.2.1 Gradient Accumulation

We could only fit the 774M model in a 16GB GPU with two gradient accumulation steps during the initial experiments. We experimented with different step values on DistilGPT-2. We found that using a large gradient accumulation step can hurt the performance, especially the perplexity scores, which almost increases linearly after doubling the accumulation step every trial.

With a larger gradient accumulation step, while it can help reduce the memory usage and allow the model to train at a larger batch size, the weights of the model will not update until the next step. And because it sums the gradients of several backward operations before performing a step of gradient descent, the loss will be averaged by the number of accumulation steps, leading to a weaker backpropagation of the error signal.

Model	Grad Accum	Train Loss	Eval Loss	PPL
82M*	1	3.0831	3.0325	20.7482
82M	2	3.0807	3.1477	21.7742
82M	4	3.4063	3.1555	22.9729
82M	8	3.4366	3.1894	24.2736
82M	16	3.5676	3.2508	25.8111

Table 4: Fine-tuning DistilGPT-2 with different gradient accumulation steps.

3.2.2 Block Size

Compared to gradient accumulation step, block size has a more significant impact on the model performance. A possible reason is that the encoder window size of GPT-2 is 512, and while it is fine to use a sequence length less than 512, the original sequence is divided into smaller truncks and thus becomes less "informative."

Model	Block Size	Train Loss	Eval Loss	PPL
82M*	512	3.2031	3.032	20.7390
82M	256	3.2037	3.0420	20.9478
82M	128	3.1040	3.2537	22.2870
82M	64	3.3570	3.2216	25.0681
82M	32	3.5237	3.4082	30.2093

Table 5: Fine-tuning DistilGPT-2 with different block sizes.

3.2.3 WEIGHT DECAY

The weight decay rate has a positive effect on all three values, but it is too slight to be use in practice. So we decided to not use it in the later training.

Model	Weight Decay	Train Loss	Eval Loss	PPL
82M*	0	3.2031	3.0320	20.7390
82M	0.01	3.2029	3.0316	20.7308
82M	0.1	3.2006	3.0282	20.6603

Table 6: Fine-tuning DistilGPT-2 with different weight decay rates.

3.2.4 EPOCHS

Even if we trained the model 7 epochs, the model still did not converge. But we will still use epochs of 3 to lower the training cost.

Model	Epochs	Train Loss	Eval Loss	PPL
82M*	3	3.2031	3.0320	20.7390
82M	4	3.1533	2.9936	19.9578
82M	5	3.1119	2.9644	19.3834
82M	6	3.0787	2.9413	18.9397
82M	7	3.0501	2.9222	18.5826

Table 7: Fine-tuning DistilGPT-2 with different epochs.

3.2.5 BATCH SIZE

Using a smaller batch size also increases the metrics, but at the cost of doubling the training time.

Model	Batch Size	Train Loss	Eval Loss	PPL
82M*	8	3.2031	3.0320	20.7390
82M	4	3.1524	2.9900	19.8856
82M	2	3.1107	2.9534	19.1710
82M	1	3.0821	2.9306	18.7386

Table 8: Fine-tuning DistilGPT-2 with different batch sizes.

3.3 EVALUATION

3.3.1 PERPLEXITY

Model	Train Loss	Eval Loss	PPL
82M	3.2031	3.0320	20.7390
117M	2.8777	2.8563	17.3945
345M	2.4625	2.5929	13.3630
774M	1.9420	2.4870	12.2430

Table 9: Evaluation results of the models.

Above is the perplexity values of the 3.1 GPT-2 model on the evaluation dataset. While the 774M model has the lowest perplexity score, the improvement (perplexity drop) is not as significant compared to the drop from 82M to 117M and 117M to 345M.

3.4 GENERATED ABSTRACTS

We used twelve research paper titles from the four categories for the generation task, and for every title, an abstract was only generated once without any human cherry-picking. See Appendix A.

4 PROGRESS MANAGEMENT

After examining the generated text in A, we found that 1) GPT-2 learned the language structure so well that it sometimes mimics the tone of a real research paper; 2) it learned to use the knowledge in the training data (e.g., it recognizes word2vec algorithm from the given paper title, which does not include the token "word2vec," it also relates RoBERTa with BERT).

While we almost finished the project, we planned to proceed to closely examine the generation quality and diversity, types of errors in the texts, and possible explanations. We would also explore a way to let humans evaluate the generated text.

REFERENCES

- David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for boltzmann machines. *Cognitive science*, 9(1):147–169, 1985.
- Massimo Caccia, Lucas Caccia, William Fedus, Hugo Larochelle, Joelle Pineau, and Laurent Charlin. Language gans falling short. *arXiv preprint arXiv:1811.02549*, 2018.
- Tong Che, Yanran Li, Ruixiang Zhang, R Devon Hjelm, Wenjie Li, Yangqiu Song, and Yoshua Bengio. Maximum-likelihood augmented discrete generative adversarial networks. *arXiv preprint arXiv:1702.07983*, 2017.
- Liqun Chen, Shuyang Dai, Chenyang Tao, Haichao Zhang, Zhe Gan, Dinghan Shen, Yizhe Zhang, Guoyin Wang, Ruiyi Zhang, and Lawrence Carin. Adversarial text generation via feature-mover's distance. In *Advances in Neural Information Processing Systems*, pp. 4666–4677, 2018.
- Rahul Dey, Felix Juefei-Xu, Vishnu Naresh Boddeti, and Marios Savvides. Rankgan: A maximum margin ranking gan for generating faces. *arXiv preprint arXiv:1812.08196*, 2018.
- Angela Fan, Mike Lewis, and Yann Dauphin. Hierarchical neural story generation. *arXiv* preprint *arXiv*:1805.04833, 2018.
- Markus Freitag and Yaser Al-Onaizan. Beam search strategies for neural machine translation. *arXiv* preprint arXiv:1702.01806, 2017.
- R. Stuart Geiger. ArXiV Archive: A tidy and complete archive of metadata for papers on arxiv.org, 1993-2019, January 2019. URL https://doi.org/10.5281/zenodo.2533436.
- Jiaxian Guo, Sidi Lu, Han Cai, Weinan Zhang, Yong Yu, and Jun Wang. Long text generation via adversarial training with leaked information. In *Thirty-Second AAAI Conference on Artificial Intelligence*, 2018.
- Ari Holtzman, Jan Buys, Maxwell Forbes, Antoine Bosselut, David Golub, and Yejin Choi. Learning to write with cooperative discriminators. *arXiv preprint arXiv:1805.06087*, 2018.
- Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text degeneration. *arXiv preprint arXiv:1904.09751*, 2019.
- Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language models are unsupervised multitask learners. *OpenAI Blog*, 1(8):9, 2019.
- Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with subword units. *arXiv preprint arXiv:1508.07909*, 2015.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In *Advances in neural information processing systems*, pp. 5998–6008, 2017.
- Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, R'emi Louf, Morgan Funtowicz, and Jamie Brew. Huggingface's transformers: State-of-the-art natural language processing. *ArXiv*, abs/1910.03771, 2019.
- Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. Seqgan: Sequence generative adversarial nets with policy gradient. corr abs/1609.05473 (2016). *arXiv preprint arXiv:1609.05473*, 2016.

A GENERATED ABSTRACTS

A.1 ARTIFICIAL INTELLIGENCE PAPER ABSTRACTS

Prompt title 1: Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm

Generated abstract 1: We consider the problem of learning to play chess using self-play, where a self-playing agent learns how to play against a player without access to the game rules. To play against a good player, the agent has to learn a strategy by observing its actions and reward feedback from its own game-playing loss. This is a challenging problem, since it involves many states such as move selection, evaluation, and evaluation-correction. We show that with deep reinforcement learning techniques, it is possible to overcome the most challenging part of the problem, i.e., the evaluation phase, by directly optimizing the reward function and self-play loss. The solution we propose, DeepEO, improves the state-of-the-art reinforcement learning algorithm across a range of board games. For Go, it reduces the evaluation phase to just 5% of the original problem and reduces it to just about 2% of the original search phase. For chess, it improves the state-of-the-art reinforcement learning algorithm to just under 40% of the original algorithm, without using tabular evaluation or hand-coded evaluation functions.

Prompt title 2: BabyWalk: Going Farther in Vision-and-Language Navigation by Taking Baby Steps

Generated abstract 2: When navigationers attempt to follow a language route, they can improve their understanding of the world by taking additional steps that utilize visual information. The ability to take additional steps, known as 'BILITY', improves the quality of the experience and therefore the likelihood of success. This paper examines the ability of contemporary language and vision models to perform this ability. We introduce the baby walk, a new 'beta' ability model for natural language navigation inVR. Using the baby walk to navigate in aVR environment is challenging, since the agent has to reason about a continuous variable, the number of Baby Walk steps taken, as well as a continuous variable, the infant position. We find that state-of-the-art language models, when trained and evaluated on the same datasets, do not perform as well on our dataset, suggesting that baby steps can improve language grounding. Our results suggest that exploring Baby Walk capability can greatly facilitate the training of language and vision models for visual navigation inVR.

Prompt title 3: Knowledge Patterns

Generated abstract 3: Description Logics (DLs) allow for capturing large knowledge bases with logical rules, which allows for complex reasoning tasks. However, DLs do not capture well the type of knowledge patterns which humans use to efficiently reason about a domain. The key concept for representing and reasoning with patterns is what we call a pattern patterns are a kind of knowledge which, when used in a reasoning task, follow logical rules and which, as we show here, are central to many application areas. We show that the DL STED has pattern-like axioms, but it lacks generalization and many important kinds of soundness, completeness, and completeness of rules. The main idea for encoding and reasoning about pattern knowledge is that patterns can be composed and the result of such a composition should be accepted by the user. We present a new approach to representing and reasoning with pattern knowledge in a well-founded way. We describe an algorithm which transforms an ontology which is expressed as a graph, by a pattern-based reasoning algorithm, into a knowledge base. Pattern-based reasoning has been implemented in a knowledge base DL-Core. Pattern-based reasoning has been compared with other reasoning approaches, and with DLs encoding generalization of Horn Rules, in which generalization of a rule is equivalent to generalization of a pattern. Pattern-based reasoning has been successfully used in a number of application areas of practical importance, such as healthcare, collaborative decision making, and automatic processing of ontologies. Pattern-based reasoning has enabled the efficient construction of knowledge bases for domains with thousands of entities and tens of thousands of patterns.

A.2 MACHINE LEARNING

Prompt title 1: Deep Double Descent: Where Bigger Models and More Data Hurt

Generated abstract 1: We show that overparameterized models—trained with standard algorithms and differentially private stochastic gradient descent—consistently overfit to a small fraction of the data distribution, as measured by empirical risk minimization. Our construction provides a theoretical foundation for why larger and more data may make learning more efficient. We demonstrate the viability of this approach by studying data privacy-aid collaborative filtering, a fundamental machine learning problem. The data privacy-aid construction happens by exploiting the natural analog of *double descent* in the convex optimization setting: once we train a large (inverse covariance matrix) deep neural network on a large (inverse polynomial) random dataset, our algorithm produces a model with improved accuracy on its training data.

Prompt title 2: Learning to learn by gradient descent by gradient descent

Generated abstract 2: We propose an optimization algorithm for training neural networks based on the popular stochastic gradient descent algorithm. The algorithm uses a self-organizing map that, after a single training iteration, produces an optimal weight update by combining the gradient computed at a random point with the gradient computed at a set of m other points. The use of this map enables us to learn efficiently in $O(\log m)$ training time. This comes close to the best known rate that could be achieved using any learning algorithm that does not use the self-organizing map: $O(\log m)$ under reasonable assumptions. Our results indicate that if we can somehow remember the map after training, then the overall training time will be reduced to O(1). Experiments are performed to support our theoretical findings.

Prompt title 3: Backpropagation and the brain

Generated abstract 3: One of the most surprising and most prominent successes of deep learning has been obtained through backpropagation: a purely neural model (not any computer program) is able to reproduce the inputs and outputs of a highly optimized human brain. Even this remarkable result raises a number of profound questions, since one assumes that an entire brain is essential for computations that cannot be performed by a single neural circuit. However, it has recently been demonstrated that it is possible to build a machine that can learn to communicate, that can process natural images, and that can play the instrument. Is it possible to build a separate machine that learns the properties of its brain? If so, what would it look like? The answer to these questions would have many implications. For instance, could it be that the properties of the brain are in fact entirely characteristics of the brain, and that they do not emerge as a by-product of the computations that the brain performs? Or could it be that the properties of the brain emerged as a byproduct of the computations that the brain performs? We present an approach to answer these questions using backpropagation, where the brain is viewed as the supervisor that computes what other brains should do. The idea is that each brain component (e.g., cortex) acts as a brainfixed, and the supervisor maps its own circuit parameters to the other brain components. In effect, the teacher brainfixed provides the other brainfixed with information on the states of the other brainfixed. In this work, the learning process of the brain is seen as learning parameters of a two-stage backward algorithm. The key insight is that the teacher brainfixed is not a special kind of network: it is a special kind of fixedlength algorithm. In this model, the learning takes place not in a "top-down" manner, but in a bottom-up manner. It is demonstrated that the backward algorithm can solve many types of tasks that appear in experimentally observed brain computations.

A.3 COMPUTATION AND LANGUAGE

Prompt title 1: RoBERTa: A Robustly Optimized BERT Pretraining Approach

Generated abstract 1: Pre-training of language models is a crucial and effective method for improving both the model generalizability and efficiency. We present RoBERTa, a highly efficient BERT pretraining approach. To achieve more stable model training and better model performances, we improve the RoBERTa model structure using two contributions. First, we propose a new residual block that can effectively improve the optimization stability and stabilize the training. Second, we propose a coarse-to-fine optimization strategy, which samples more promising candidates for fine-tuning. In our experiments, we fine-tune RoBERTa on a wide range of representative tasks and demonstrate that the proposed approach achieves a large performance improvement while consistently achieving state-of-the-art or competitive results in terms of various evaluation metrics on these tasks. RoBERTa obtains a new state-of-the-art performance of 85.3 F1 on CoNLL-2009, which is the new CoNLL benchmark leader. We also show that RoBERTa can achieve similar performance to the state-of-the-art BERT model on many downstream tasks, which demonstrates the efficiency and effectiveness of the proposed approach. Our RoBERTa is publicly available at https://github.com/tensorflow/tpu/tree/master/models/official/bert.

Prompt title 2: Language GANs Falling Short

Generated abstract 2: Generative adversarial nets (GANs) have proven to be successful at learning data distributions through adversarial training. However, most of the existing models have failed to produce realistic samples from the learned data distribution and thus are not suitable for applications where the data distribution is important and real data is scarce. In this paper, we show that GANs can fall short in generating realistic samples from a target data distribution and investigate why. We study the effect of a variety of design choices such as model architectures, discriminators, and decoder loss functions on the performance of GANs. In particular, we show that GANs tend to capture asymptotically the same underlying data distribution as the target data distribution, but may have divergent natural language distributions. We also show that generators trained using multiple loss functions tend to be more aware of the natural language distribution and consequently generate samples with fewer diverse samples. Based on these observations, we introduce the novel GAN-OTS framework, which maximizes the probability of generating real data with a given distribution. We validate our model on various language generation tasks and show that it is capable of generating multiple coherent sentences.

Prompt title 3: Efficient Estimation of Word Representations in Vector Space

Generated abstract 3: Neural network architectures for word representation learning have proved highly effective in a wide range of NLP applications. In particular, deep learning architectures have outperformed more traditional methods such as bag-of-words, Fisher vectors and neural Turing machines. However, these methods do not scale well to large vocabulary size and suffer from computational inefficiency when applied to low-resource languages. We address these issues by introducing word2vec, a deep neural network for word representation learning. We evaluate the model on multiple tasks involving text classification, named entity recognition and emotion analysis. We show that word2vec can be applied to improve the quality of the learned word representations while requiring very little computational resources.

A.4 COMPUTER VISION AND PATTERN RECOGNITION

Prompt title 1: Deep Residual Learning for Image Recognition

Generated abstract 1: In this work we propose a novel deep residual learning based model for image classification. The model has low complexity and can be trained with even small image datasets. It is a residual extension of a well-known convolutional neural network, which is known for its high accuracy for classification problems. Our residual learning based model uses multiple resnet blocks that learn different filters. At each layer, one of the learned filters is dedicated to a class, while the rest of the filters are shared by several classes. A low pass version of this model has also been proposed to further improve performance. On the benchmark ILSVRC-12 data set, our model outperforms most of the compared residual learning methods. The code is available at: github.com/arif-bucil/residual-learning.

Prompt title 2: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

Generated abstract 2: To improve model performance and energy efficiency, CNNs have been scaled down in size, while maintaining accuracy. This trend is not sustainable for applications that require real-time performance, such as autonomous driving. Scaling back model size can lead to loss in accuracy, often necessitating retraining of the smaller model. We propose EfficientNet, a methodology for quantizing Convolutional Neural Networks (CNNs) to provide extremely fast and energy efficient inference on low-end devices. Specifically, we adapt three scaling approaches for a given network architecture: pruning, quantization, and quantization-shifting. We show that these methods collectively offer a better trade-off between accuracy and energy efficiency for energy-constrained environments. For ResNet-50 and MobileNetV2, EfficientNet reduces memory consumption by 1/4 of their original size, energy efficiency by 6/7 of its floating-point counterparts, while still providing accurate results. For GoogLeNet, EfficientNet reduces memory consumption by 1/4 of its size, energy efficiency by 3/4 of its floating-point counterparts, while still providing top-1 accuracy. Overall, EfficientNet represents a highly efficient inference engine that can be used to develop energy-efficient and fast CNNs for resource-constrained environments.

Prompt title 3: Big Transfer (BiT): General Visual Representation Learning

Generated abstract 3: Deep convolutional neural networks have significantly advanced the state of the art in various visual recognition tasks, however, these learned representations are still considered very heterogeneous and hard to interpret. In this paper, we present a simple yet very powerful method, called BiT (big transfer), that transforms a source deep convolutional network to a target one with a significantly reduced number of parameters. We theoretically show that the transformed deep convolutional network has a tighter generalization bound, and also empirically verify our theoretical results on different visual classification tasks and datasets. We also show that the number of parameters in the transformed deep convolutional network is only required to stay close to the original network. This allows us to remove much of the trainable parameters without any loss in accuracy.