Nuclear binding energy Solution

1. Of the two hydrogen isotopes, deuterium, ${}_{1}^{2}H$, and tritium, ${}_{1}^{3}H$, which has the highest binding energy per nucleon?

mass defect mass of component neutrons and protons of nucleus mass $\{m(1 \text{ proton} + 1 \text{ neutron})\} - m(^{2}_{1}H)$ mass defect for ²₁H = 1.00728 + 1.00867 - 2.01350= 0.00245 u $0.00245 \times 1.6606 \times 10^{-27} \text{ kg}$ = 4.068 x 10⁻³⁰ kg = mc^2 Binding energy $4.068 \times 10^{-30} \times (3.00 \times 10^8)^2$ $3.662 \times 10^{-13} J$ = Binding energy per nucleon ²₁H 3.662 x 10⁻¹³ / 2 1.831 x 10⁻¹³ J = mass diff. for ³₁H $\{m(1 \text{ proton} + 2 \text{ neutrons})\} - m({}_{1}^{3}H)$ $1.00728 + 2 \times 1.00867 - 3.01550$ = = 0.00912 u $0.00912 \times 1.6606 \times 10^{-27} \text{ kg}$ = 1.514 x 10⁻²⁹ kg Binding energy mc^2 $1.514 \times 10^{-29} \times (3.00 \times 10^8)^2$

$$=$$
 1.363 x 10⁻¹² J

Binding energy per nucleon
$${}_{1}^{3}H = 1.363 \times 10^{-12} / 3$$

$$=$$
 4.54 x 10⁻¹³ J

Tritium has the higher binding energy per nucleon

2. A small proportion of all the carbon in living organisms is the radioactive isotope carbon-14. Calculate the binding energy per nucleon of both the carbon-12 and carbon-14 nuclei and state which one is the most stable. The atomic number of carbon is 6.

mass defect. for
$${}_{6}^{12}C$$
 = {m(6 proton + 6 neutrons)} - m(${}_{6}^{12}C$)

$$= 6 \times 1.00728 + 6 \times 1.00867 - 11.99671$$

$$= 0.09899 \times 1.6606 \times 10^{-27} \text{ kg}$$

$$=$$
 1.644 x 10⁻²⁸ kg

Binding energy = mc^2

$$= 1.644 \times 10^{-28} \times (3.00 \times 10^8)^2$$

$$= 1.4794 \times 10^{-12} J$$

Binding energy per nucleon ${}^{14}_{6}$ C = 1.4794 x 10⁻¹²/ 12

$$= 1.233 \times 10^{-12} J$$

mass defect for
$${}^{14}_{6}C$$
 = {m(6 proton + 8 neutrons)} - m(${}^{14}_{6}C$)

$$=$$
 6 x 1.00728 + 8 x 1.00867 - 13.99995

$$=$$
 0.11309 x 1.6606 x 10^{-27} kg

$$=$$
 1.878 x 10⁻²⁸ kg

Binding energy =
$$mc^2$$

$$= 1.878 \times 10^{-28} \times (3.00 \times 10^{8})^{2}$$

$$= 1.690 \times 10^{-12} J$$

Binding energy per nucleon
$${}^{14}_{6}$$
C = 1.690 x 10⁻¹² / 14

$$=$$
 1.207 x 10⁻¹² J

3. One of the simplest fusion reactions is

$$_{1}^{1}H$$
 + $_{1}^{1}H$ \rightarrow $_{1}^{2}H$ + $_{1}^{0}e$ + energy

a. What mass does a single fusion reaction convert to energy?

mass diff. for reaction =
$$m(_1^2H) + m(_{+1}^0e) - 2 m(_1^1H)$$

$$=$$
 2.01350 + 0.000549 - 2 x 1.00728

=
$$-0.000511 \times 1.6606 \times 10^{-27} \text{ kg}$$

$$=$$
 -8.49 x 10⁻³¹ kg

b. What energy does a single fusion reaction release?

energy change =
$$mc^2$$

=
$$-8.49 \times 10^{-31} \times (3.00 \times 10^8)^2$$

=
$$-7.64 \times 10^{-14} \text{ J}$$

energy released =
$$7.64 \times 10^{-14} \text{ J}$$

(note that if the masses in kg are used rounding errors give an answer of 7.1 x 10^{-14} J)

4. *Uranium-238 undergoes a series of radiocative decays, the first of which is:*

$$^{238}_{92}$$
U \rightarrow $^{234}_{90}$ Th + $^{4}_{2}$ He + *energy*

How much energy does each decay release?

mass diff. for reaction =
$$m({}^{234}_{90}\text{Th}) + m({}^{4}_{2}\text{He}) - m({}^{238}_{92}\text{U})$$

$$=$$
 -0.0146 x 1.6606 x 10⁻²⁷ kg

$$=$$
 -2.42 x 10⁻²⁹ kg

energy change =
$$mc^2$$

=
$$-2.42 \times 10^{-29} \times (3.00 \times 10^8)^2$$

=
$$-2.182 \times 10^{-12} \text{ J}$$

energy released =
$$2.182 \times 10^{-12} \text{ J}$$

- 5. Hydrogen and deuterium fuse to give the isotope ${}_{2}^{3}$ He.
 - a. How much energy does a single fusion release?

$$^{2}_{1}\text{H} + ^{1}_{1}\text{H} \rightarrow ^{3}_{2}\text{He}$$

mass diff. for reaction =
$$m(_2^3He) - m(_1^2H) - m(_1^1H)$$

=
$$-0.00585 \times 1.6606 \times 10^{-27} \text{ kg}$$

$$=$$
 -9.71 x 10⁻³⁰ kg

energy change =
$$mc^2$$

=
$$-9.71 \times 10^{-30} \times (3.00 \times 10^8)^2$$

=
$$-8.74 \times 10^{-13} \text{ J}$$

energy released

$$=$$
 8.74 x 10⁻¹³ J

b. How much energy does a kilogram of reactant release?

(2.01350 + 1.00728) x 1.6606 x
$$10^{-27}$$
 kg produces 8.74 x 10^{-13} J

1.000 kg produces
$$~8.74 \times 10^{\text{-}13}$$
 / ((2.01350 + 1.00728) x 1.6606 x 10^{\text{-}27}) J

$$=$$
 1.74 x 10¹⁴ J

7. Under certain circumstances, a gamma ray photon may suddenly change into an electron and a positron.

$${}^{0}_{0} \mathcal{Y} \rightarrow {}^{0}_{-1} e + {}^{0}_{+1} e$$

Calculate the minimum energy of the photon.

mass diff. for reaction = $m(_{-1}^{0}e) + m(_{-1}^{0}e) - m(_{0}^{0}\mathcal{Y})$

= 0.000549 + 0.000549 - 0.000000

= 0.001098 u

= $0.001098 \times 1.6606 \times 10^{-27} \text{ kg}$

= 1.823 x 10⁻³⁰ kg

energy change = mc^2

= $1.823 \times 10^{-30} \times (3.00 \times 10^8)^2$

= 1.641 x 10⁻¹³ J

minimum energy of photon = $1.641 \times 10^{-13} \text{ J}$

8. When 3.0000 MeV alpha particles bombard nitrogen 14, oxygen-17 forms and the reaction releases a proton. Calculate the energy this reaction releases.

$$^{14}_{7}\text{N} + ^{4}_{2}\text{He} \rightarrow ^{17}_{8}\text{O} + ^{1}_{1}\text{H}$$

mass diff. for reaction = $m({}_{1}^{1}H) + m({}_{8}^{17}O) - m({}_{2}^{4}He) - m({}_{7}^{14}N)$

= 1.00728 + 16.99474 - 4.00150 -

13.99923

= 0.00129 u

= 0.00129 x 1.6606 x 10^{-27} kg

= 2.142 x 10⁻³⁰ kg

energy change = mc^2

= $2.142 \times 10^{-30} \times (3.00 \times 10^8)^2$

= 1.928 x 10⁻¹³ J

input energy of ⁴₂He

13 **J**

 $= \qquad 3.0000 \ x \ 10^6 \ x \ 1.60 \ x \ 10^{-19} \ J = \quad 4.80 \ x \ 10^{-19} \ M_{\odot} = \quad 4.80$

energy released = $4.80 \times 10^{-13} - 1.928 \times 10^{-13} \text{ J}$

= 2.872 x 10⁻¹³ J