

planetmath.org

Math for the people, by the people.

Chinese remainder theorem for rings, noncommutative case

 ${\bf Canonical\ name} \quad {\bf Chinese Remainder Theorem For Rings Noncommutative Case}$

Date of creation 2013-03-22 16:53:45

Last modified on 2013-03-22 16:53:45

Owner polarbear (3475)

Last modified by polarbear (3475)

Numerical id 16

Author polarbear (3475)

Entry type Theorem Classification msc 13A15 Classification msc 11D79

Synonym chinese remainder theorem

Theorem 1. (Chinese Remainder Theorem) Let R be a ring and $I_1, I_2, ..., I_n$ http://planetmath.org/Comaximal pairwise comaximal ideals such that $R = I_j + R^2$ for all j. The homomorphism:

$$f: R \to R/I_1 \times R/I_2 \times ... \times R/I_n$$

 $f(a) = (a + I_1, a + I_2, ..., a + I_n)$

is surjective and $kerf = I_1 \cap I_2 \cap \cdots \cap I_n$.

Proof. Clearly f is a homomorphism with kernel $I_1 \cap I_2 \cap \cdots \cap I_n$. It remains to show the surjectivity.

We have:

$$R = I_1 + R^2 = I_1 + (I_1 + I_2)(I_1 + I_3)$$

$$\subseteq I_1 + I_1^2 + I_1I_3 + I_2I_1 + I_2I_3$$

$$\subseteq I_1 + (I_2 \cap I_3).$$

Moreover,

$$R = I_1 + R^2 = I_1 + (I_1 + I_2 \cap I_3)(I_1 + I_4)$$

= $I_1 + I_1I_4 + (I_2 \cap I_3)I_1 + (I_2 \cap I_3)I_4$
 $\subseteq I_1 + (I_2 \cap I_3 \cap I_4).$

Continuing, we obtain that $R = I_1 + \bigcap_{j \neq 1} I_j$. We show similarly that:

$$R = I_2 + \bigcap_{j \neq 2} I_j = I_3 + \bigcap_{j \neq 3} I_j = \dots = I_n + \bigcap_{j \neq n} I_j.$$

Given elements $a_1, a_2, ..., a_n$, we can find $x_j \in I_j$ and $y_j \in \bigcap_{j \neq k} I_k$ such that $a_i = x_i + y_i$.

$$a_j = x_j + y_j.$$

Take $a := \sum_{i=1}^n x_i = a_j \pmod{I_j}.$

Hence

$$f(a) = (a_1 + I_1, a_2 + I_2, ..., a_n + I_n),$$

and we conclude that f is surjective as required.

Notes 1. The relation $R = I_j + R^2$ is satisfied when R is ring with unity. In that case $R^2 = R$.

2. The http://planetmath.org/ChineseRemainderTheoremChinese Remainder Theorem case for integers is obtained from the above result. For this, take $R = \mathbb{Z}$ and $I_j = (p_j) = p_j \mathbb{Z}$. The fact that two solutions of the set of congruences must $x = x_0 \pmod{p_1...p_n}$ is a consequence of:

$$I_1 \cap I_2 \cap \cdots \cap I_n = (p_1) \cap (p_2) \cap \cdots \cap (p_n) = (p_1 p_2 \dots p_n) \mathbb{Z}.$$