ML in Physics

Outline

Some resources

https://github.com/sraeisi/MachineLearning_Physics

Machine Learning For Physicists

A hands-on approach

Sadegh Raeisi Sedighe Raeisi

ML in Science: Protein Folding

nature

Explore content
About the journal
Publish with us

nature
articles
Article | Open Access | Published: 15 July 2021

Highly accurate protein structure prediction with AlphaFold

T1049 / 6y4f 93.3 GDT (adhesin tip)

```
Experimental resultComputational prediction
```

ML in Science: Protein Folding

ML in Science: Drug discovery

noture reviews agetraenteral agy

nature biomedical engineering

nature communication	nature reviews gastroenterology	Explore content × About the journal × Publish with us × Subscribe
Explore content > About the journal	Explore content Y About the journal Y Publish with	nature > nature biomedical engineering > articles > article
nature > nature communications > article	nature > nature reviews gastroenterology & hepatology > r	Article Published: 15 April 2021
protective therapy in i	Review Article Published: 03 January 2020 Harnessing big 'omics' data and in hepatocellular carcinoma	Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning
Barra E Branadinata Courtney Tindle Mad		Derek M. Mason, Simon Friedensohn, Cédric R. Weber, Christian Jordi, Bastian Wagner, Simon M. Meng, Roy A. Ehling, Lucia Bonati, Jan Dahinden, Pablo Gainza, Bruno E. Correia & Sai T. Reddy [™]
	Nature Reviews Gastroenterology & Hepatology 17, 238–251 (4354 Accesses 24 Citations 48 Altmetric Metrics	Nature Biomedical Engineering 5, 600–612 (2021) Cite this article 4788 Accesses 2 Citations 145 Altmetric Metrics

ML in Science: Mathematics

NewScientist

Volume 242, Issue 3228, 4 May 2019, Page 9

News & Technology Machine learning

Google's AI mathematician

Leah Crane

HOList: An Environment for Machine Learning of Higher-Order Theorem Proving

Kshitij Bansal, Sarah M. Loos, Markus N. Rabe, Christian Szegedy, Stewart Wilcox

We present an environment, benchmark, and deep learning driven automated theorem prover for higher-order logic. Higher-order interactive theorem provers enable the formalization of arbitrary mathematical theories and thereby present an interesting, open-ended challenge for deep learning. We provide an open-source framework based on the HOL Light theorem prover that can be used as a reinforcement learning environment. HOL Light comes with a broad coverage of basic mathematical theorems on calculus and the formal proof of the Kepler conjecture, from which we derive a challenging benchmark for automated reasoning. We also present a deep reinforcement learning driven automated theorem prover, DeepHOL, with strong initial results on this benchmark.

Comments: Accepted at ICML 2019

ects: Logic in Computer Science (cs.LO); Artificial Intelligence (cs.AI); Machine Learning (cs.LG)

Cite as: arXiv:1904.03241 [cs.LO]

(or arXiv:1904.03241v3 [cs.LO] for this version)

[1904.03241] HOList: An Environment for Machine Learning of Higher-Order Theorem Proving (arxiv.org)

Artificial intelligence trained by google learns to prove 1200 theorems.

ML in Science: writing books

Lithium-lon Batteries

A Machine-Generated Summary of Current Research

Can machines replace scientists?

What are the key aspects that cannot

be replaced?

ML in Physics

ML in Physics

Some of my works

Cosmology: Structure formationCollaboration with Dr. Baghram

Classification of variable stars Collaboration with Dr. Rahvar

Quantum Machine Learning: Path to a Better Artificial Intelligence? - QML

Silva, F., and L. da F. Costa. "Visualizing Complex Networks (CDT-5)." Costa's Didactic Texts-CDTs (2018).

Quantum States

Entanglement is a MAGIC property that is of interest in many Quant. Tech.

Entanglement

Entanglement Detection

15 measurements are needed to decide!

(for the smallest case)

Problem:

15 measurement is too many!!

Can we do it with fewer measurements?

Problem:

Which measurements are most informative for Entanglement detection?

Autoencoder Neural Network

Neural Network

Information flows in forward direction only

Neural Network for entanglement

Neural Network for entanglement

99.7% Accuracy

Autoencoder NN

Autoencoder NN

Autoencoder NN

99% Accuracy

Autoencoder NN: Linear Measurements

80% Accuracy

Results

Conclusion

Accuracy
99.7%
99 %
80%
99%
96 %
93~%
90 %

M. Yosefpor, M. R. Mostaan, **S. Raeisi** "Finding Semi-optimal Measurements for Entanglement Detection Using Autoencoder Neural Networks", Quantum Sci. Technol. **5** 045006 (2020) https://doi.org/10.1088/2058-9565/aba34c

Some of my works

Collaboration with Dr. Ghanbarnejad

Cosmology: Structure formationCollaboration with Dr. Baghram

Classification of variable stars Collaboration with Dr. Rahvar

Quantum Machine Learning: Path to a Better Artificial Intelligence? - QML

Silva, F., and L. da F. Costa. "Visualizing Complex Networks (CDT-5)." Costa's Didactic Texts-CDTs (2018).

Some resources

https://github.com/sraeisi/MachineLearning_Physics

Machine Learning For Physicists

A hands-on approach

