Tentamen i FYSIK FÖR INGENJÖRER för I2 (tif190).

Lärare:

Åke Fäldt tel 070 567 9080

Hjälpmedel:

Physics Handbook, Beta, SMT, IEFYMA eller motsvarande gymnasietabell. Valfri kalkylator (tömd på för kursen relevant information) samt ett egenhändigt framställt

A4-blad med anteckningar.

Granskning:

2010-12-17 kl 13 00-13 45 i HB4

1 Ett block vars massa m₁ = 5,0 kg befinner sig på ett lutande plan som bildar vinkeln 37 grader mot horisontalplanet. Blocket är förbundet med en vertikalt hängade massa m₂ via ett snöre som löper över en trissa med friktionsfri yta. Den kinetiska friktionskoefficienten mellan block och ytan på det lutande planet är 0,100. När systemet släpps från vila finner man att den hängande massan accelereras <u>uppåt</u> med 2,00 m/s². Bestäm beloppet av spännkraften i snöret samt massan m₂

- 2. En koleldat kraftverk producerar elektrisk energi med takten 900 MW och har en verkningsgrad som är 25%. För att ta hand om den avgivna värmemängden används vatten, som ursprungligen har temperaturen 15 grader Celsius, från en närbelägen flod. Ett miljökrav är att detta vatten inte har en temperatur som är högre än 40 grader Celsius när det släpps ut i floden igen. Hur stor är den minsta mängden vatten som krävs per timma?
- 3. En trådrulle med massan M består av en inre cylinder med radien R_1 och två yttre "hjul" med radierna R_2 . Hela trådrullen har tröghetsmomentet I med avseende på en axel genom dess centrum. När en yttre kraft \mathbf{T} appliceras horisontellt kommer trådrullen att börja rulla utan glidning. Visa att beloppet av friktionskraften mellan trådrullen och underlaget ges av uttycket

 $f = T (I + MR_1R_2)/(I + MR_2^2)$

Ange också åt vilket håll som friktionskraften är riktad och motivera ditt svar

(4 p)

4. En mycket lång sträng består av två delar. Den ena delen (1) har en massa per längdenhet som är 5 g/m ch den andra (2) 10 g/m Figuren visar att en våg infaller mot skarven. I område 1 kan vågen skrivas

 $y(x, t) = 0.005 \sin (7.5x - 12.0 t)$

där alla storheter anges i SI-systemets grundenheter. Bestäm med hur stor kraft man har spänt strängen samt hur stor våglängden är i område 1 och hur stor den är i område 2. (4 p)

VG VÄND

5. En tunn oljefilm med varierande tjocklek flyter på en vattenyta. Ovanför oljefilmen är det luft. Oljefilmen belyses med vitt ljus rakt ovanifrån och när man betraktar den från samma sida som ljuset infaller ifrån ser man att det ljus som reflekteras skiftar i färg. I figuren anges den färg som syns starkast och där anges också brytningsindex. Proportionerna är överdrivna i figuren. Oljefilmen är så tunn att vinkeln mellan normalen till oljeytan och vattenytan är så liten att kan bortse från brytning

Hur tjock är oljefilmen vid punkten B?

Varför är det reflekterade ljuset vid A (d v s i ett område där oljefilmen är oerhört tunn) svagt att man uppfattar området där som mörkt?

6.

- a En elektron är instängd i en endimensionell potentiallåda med längden L. Som ett resultat av en excitationsmekanism befinner sig elektronen i det andra exciterade tillståndet, d v s det tillstånd som karakteriseras av att n = 3.
 - i Bestäm sannolikheten att hitta elektronen inom avståndet L/6 från någon av väggarna
 - ii Gör en uppskattning av hur stor sannolikheten är att hitta elektronen inom avståndet L/12 från någon av väggarna. De svar som du har att välja mellan är 1%, 3%, 4%, 8%, 14%, 20%, 26 %. Motivera svaret. (2 p)
- b Exciterade vätgasatomer emitterar ljus med våglängden 102 nm. Bestäm kvanttalen för begynnelse- respektive sluttillstånd för den övergång som ger upphov till ljuset. (2 p)

Skriv i ruta **7** på tentaomslaget hur många rätt (alltså <u>inte</u> hur många bonuspoäng detta medför) du har haft sammanlagt på årets duggor.

Ange i ruta 8 hur många av laborationerna i kursen som du har gjort.

hommentar 6 a ij En exant lændry ger inte ett svar som sæmmanfallemed något alternativ.

Lösningar HII Fysik för Ingenjörer för Dz. 2010-12-14

$$m_{2}\overline{j} = T - m_{2}j = m_{2}d$$

$$\Rightarrow m_{2} = T/(a+g) = 1 \cdot 3k \cdot j$$

$$\overline{T} = T \cdot \uparrow$$

$$\overline{F} = F \cdot \uparrow$$

$$\overline{R}_{1} = R(-f)$$

$$\overline{R}_{2} = R_{2}(-f)$$

$$\overline{R}_{2} = R_{2}(-f)$$

$$\Rightarrow R_{1}T + R_{2}T = \overline{I}d = -\overline{I}R_{1}$$

$$\Rightarrow R_{1}T + R_{2}T = \overline{I}d = -\overline{I}R_{2}$$

$$mol + (1) \text{ med } \overline{I} \text{ och } (2) \text{ med } M$$

$$\Rightarrow \begin{cases} \overline{T}I + \overline{f}I = HR_{1}R_{2} \\ HTR_{1} + FHR_{2} = -HR_{2}R_{2} \\ HTR_{1} + HR_{1}R_{2} \end{cases}$$

$$\Rightarrow f = -\overline{I + HR_{1}R_{2}}$$

$$mothout_{2}$$

 $\begin{array}{c|c}
\hline
 & \lambda = 580 \text{ nm} \\
\hline
 & \gamma & 1,50 = n, \\
\hline
 & \beta & 1,22
\end{array}$

Villhor For maximum

$$2n_1 y = \left(m + \frac{1}{2}\right) \lambda$$

Vid B a det and n ganger som gult you ger max : m=1 $\Rightarrow \gamma = \frac{3/2\lambda}{2n} = \frac{3/2.580}{21.1.50} nn = 290 nm$

Vid A an det merut eftersom Objectelutet at met tont all farstellines komme av 1291. mot totale medjum dvs. T

2
$$\frac{Q_1 - Q_2}{Q_1} = W$$
 $e = \frac{Q_1}{Q_1} = Q_1$
 $W = 900 \text{ fw}$
 $e = 0.25 = Q_1 = 4.W = 3600.10^{\circ} \text{ J}$
 $A = \frac{3}{4}Q_1 = 2700.10^{\circ} \text{ J}$
 $A = \frac{3}{4}Q_1 = 2700.10^{\circ} \text{ J}$
 $A = 3600 = \Delta T - C \frac{dm}{dt} = \frac{4.18 \cdot 10^{\circ} \text{ J/w}}{dt}$
 $A = \frac{dm}{dt} = \frac{Q_2 \cdot 3600}{\Delta T - C} = \frac{2700 \cdot 3600}{40 - 15^{\circ}} \cdot \frac{10^{\circ}}{4118 \cdot 10^{\circ}} \cdot \frac{10^{\circ}}{4118 \cdot 10$

(1) (2) $\frac{\lambda_{2}}{\lambda_{1}} = \frac{\lambda_{2}}{\lambda_{1}} = 0.005 \text{ sin}(7.5 \times -12.06)$ $\lambda_{1} = \frac{2\pi}{\lambda_{1}} = \frac{2\pi}{7.5} = 0.04 \text{ m} \quad \lambda_{1} = \frac{\omega}{\lambda_{1}} = \frac{\omega}{1.60}$ samma ω i ba da medierna $\frac{1.60}{M/s}$ $\frac{V_{1}}{V_{2}} = \frac{T/\mu_{1}}{T/\mu_{2}} = \frac{\mu_{2}}{V_{2}} = \frac{10}{V_{2}} = \sqrt{2}$ $\Rightarrow V_{2} = \frac{V_{1}}{V_{2}} = \frac{1.60}{V_{2}} = 1.13 \text{ m/s}$ $\Rightarrow k_{2} = \frac{\omega}{V_{2}} \Rightarrow \lambda_{2} = \frac{2\pi}{k_{2}} = \frac{2\pi}{k_{2}/1.13} = 0.59 \text{ m}$ = 0.59 m $T = \mu^{2} = 0.005 \cdot 1.60^{2} = 0.005 \cdot 1.00^{2}$

$$= 0.0606$$

$$= 0.0606$$

$$= 0.0606$$

$$= 0.0606$$

$$= 0.0606$$

$$= 0.0606$$

$$= 0.0606$$

$$= 0.0606$$

$$= 0.0606$$

$$= 0.0606$$

$$= 0.0606$$

$$= 0.0606$$

$$= 0.0606$$

$$= 0.0606$$

$$= 0.0606$$

$$= 0.0606$$

$$= 0.0606$$

$$= 0.0606$$

$$= 0.0606$$

$$= 0.0606$$

$$= 0.0606$$

$$= 0.0606$$

$$= 0.0606$$

by
$$E_{foton} = \frac{hc}{\lambda e} (eV) = 12,77 eV$$

Valeatomen $E_{1} = -13,6 eV$
 $E_{1} = \frac{1}{N^{2}} 13,6 eV$
 $E_{2} = -3,4 eV$
 $E_{3} = 151 eV$
 $E_{3} - E_{1} = 12,09 eV$
 $E_{3} = 151 eV$