Section 2.2 Exercise 11

Sol.

Let $f, g, h : D \to \mathbb{R}$ and let x_0 be an accumulation point of D. Suppose that $f(x) \leq g(x) \leq h(x)$ for all $x \in D$, and that both f and h have limits at x_0 , with $\lim_{x\to x_0} f(x) = L = \lim_{x\to x_0} h(x)$. We have to prove that g has a limit at x_0 , and that

$$\lim_{x \to x_0} g(x) = L.$$

Let (x_n) be a sequence converging to x_0 , with $x_n \in D$ and $x_n \neq x_0$ for all n. Then $f(x_n) \to L$ and $h(x_n) \to L$. Moreover, we have

$$f(x_n) \le g(x_n) \le h(x_n)$$

for all n. By Exercise 9, Section 1.1, we get that $g(x_n) \to L$. Hence $\lim_{x\to x_0} g(x) = L$, as required.

Section 2.2 Exercise 12

Sol.

Let $f: D \to \mathbb{R}$ and let x_0 be an accumulation point of D. Suppose that f has a limit at x_0 , say L. We have to show that $\lim_{x\to x_0} |f(x)| = |L|$.

Let (x_n) be a sequence converging to x_0 , with $x_n \in D$ and $x_n \neq x_0$ for all n. Then $f(x_n) \to L$, so that $|f(x_n)| \to |L|$, by Exercise 10, Section 1.1. It follows that $\lim_{x\to x_0} |f(x)| = |L|$ as required.

Section 2.2 Exercise 15

Sol.

Let $f: D \to \mathbb{R}$ and let x_0 be an accumulation point of D. Suppose that for each $\epsilon > 0$, there is a neighborhood Q of x_0 such that for all $x, y \in Q \cap D$, $x \neq x_0$, $y \neq x_0$, we have $|f(x) - f(y)| < \epsilon$. We have to show that f has a limit at x_0 .

Let (x_n) be a sequence converging to x_0 , with $x_n \in D$ and $x_n \neq x_0$ for all n. Let $\epsilon > 0$, and let Q be a neighborhood of x_0 as above. Let $\delta > 0$ such that $(x_0 - \delta, x_0 + \delta) \subset Q$, and let $N \in \mathbb{N}$ such that $|x_k - x_0| < \delta$ for all $k \geq N$. Then for $m, n \geq N$, we have that $x_m, x_n \in (x_0 - \delta, x_0 + \delta) \subset Q$, and $|f(x_m) - f(x_n)| < \epsilon$.

This shows that the sequence $(f(x_n))_{n\in\mathbb{N}}$ is a Cauchy sequence, and thus must converge.

To summarize, we have proved that for every sequence (x_n) converging to x_0 with $x_n \in D$ and $x_n \neq x_0$ for all n, the sequence $(f(x_n))$ converges. Note that this implies that for all such sequences (x_n) , the sequences $(f(x_n))$ have the same limit L, see the remark before the proof of Theorem 2.1 in the textbook. Finally, we get that

$$\lim_{x \to x_0} f(x) = L,$$

as required.

Section 2.3 Exercise 19

Sol.

Define $f:(0,1)\to\mathbb{R}$ by

$$f(x) := \frac{\sqrt{9-x} - 3}{x}.$$

Multiplying and dividing by $\sqrt{9-x}+3$, we get

$$f(x) = \frac{9 - x - 9}{x(\sqrt{9 - x} + 3)} = \frac{-1}{\sqrt{9 - x} + 3}.$$

By algebra of limits, the denominator has limit 6 at 0, while the numerator has limit -1 at 0. It again follows from algebra of limits that f(x) has limit -1/6 at 0.

Section 2.3 Exercise 22

Sol.

Consider $f: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ defined by f(x) = -1 for x < 0 and f(x) = 1 for x > 0, and let g := -f. Then neither f nor g have limits at 0. On the other hand, the functions f + g, f^2 and f/f all have limits at 0.