Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики **Кафедра «Прикладная математика»**

ОТЧЁТ ПО ЛАБОРАТОРНЫМ РАБОТАМ ПО ДИСЦИПЛИНЕ «ВЫЧИСЛИТЕЛЬНЫЕ КОМПЛЕКСЫ»

Выполнил студент группы 3630102/70201

Крупкина Дарья

Проверил к. ф.-м. н., доцент

Баженов Александр Николаевич

Санкт-Петербург 2020

Содержание

1	Постановка задачи	2
2	Конкретизация задачи и теория	2
3	Реализация	3
4	Результаты 4.1 Переопределенная ИСЛАУ 4.2 Недоопределенная ИСЛАУ	3 3 4
5	Приложения	6
C	писок иллюстраций	
	1 Допусковое множество решений для переопределенной ИСЛАУ	3
	2 График распознающего функционала $Tol(x_1, x_2)$	4
	3 Допусковое множество решений для недоопределенной ИСЛАУ	5
	4 Допусковое множество в проекции	5

1 Постановка задачи

Требуется решить недоопределённую интервальную систему линейных алгебраических уравнений (ИСЛАУ) с матрицей 3×2 и переопределённую ИСЛАУ с матрицей 2×3 . Используемые матрицы должны совпадать с точностью до транспонирования.

Для случая 3×2 построить график распознающего функционала $Tol(x_1, x_2)$.

Для случая 2х3 проанализируйте решение. Постройте 3-мерный образ допускового множества или его проекции на плоскости $(x_i \ O \ x_j)$.

2 Конкретизация задачи и теория

В качестве исходной матрицы СЛАУ была выбрана точечная матрица A и вектор x:

$$A = \begin{pmatrix} 13 & 15 \\ 18 & 19 \\ 23 & 12 \end{pmatrix}, x = \begin{pmatrix} 0.5 \\ 0.2 \end{pmatrix} \tag{1}$$

Таким образом, правая часть СЛАУ была определена значениями A и x:

$$b = A \cdot x = \begin{pmatrix} 9.5 \\ 12.8 \\ 13.9 \end{pmatrix} \tag{2}$$

Далее, положим величины радиусов элементов $rad\mathbf{A}$, $rad\mathbf{x}$ равными:

$$rad\mathbf{A} = \begin{pmatrix} 2 & 2 \\ 3 & 2 \\ 2 & 2 \end{pmatrix}, rad\mathbf{x} = \begin{pmatrix} 2 \\ 2.5 \end{pmatrix}$$
 (3)

Из (1), (2) и (3) имеем переопределенную ИСЛАУ 2 х 3:

$$\begin{pmatrix}
[11, 15] & [13, 17] \\
[15, 21] & [17, 21] \\
[21, 25] & [10, 14]
\end{pmatrix} \cdot x = \begin{pmatrix}
[7, 12] \\
[10.8, 14.8] \\
[11.9, 15.9]
\end{pmatrix}$$
(4)

Для исследования разрешимости этих интервальной ИСЛАУ использовался распознающий функционал Tol(x):

$$Tol(x) = \min_{1 \le i \le n} (radb_i - |midb_i - \sum_{j=1}^m a_{ij}x_j|)$$

$$\tag{5}$$

Допусковое множество решений ИСЛАУ при этом задаётся условием $Tol(x) \ge 0$. Таким образом для нахождения допускового множества и проверки разрешимости системы удобно найти точку x, максимизирующую распознающий функционал, и рассмотреть её окрестность.

3 Реализация

Лабораторная работа выполнена с помощью встроенных средств языка программирования Matlab и Python. Использованы библиотеки IntLab для интервальной арифметики, IntLinIncR2 и IntLinIncR3 для отображения допускового множества решений.

Также привлечена библиотека tolsolvty на Python для визуализации (5) и одноименная функция для нахождения решения в Matlab. Исходный код лабораторной работы приведён в приложении в виде ссылки на репозиторий GitHub.

4 Результаты

4.1 Переопределенная ИСЛАУ

С помощью программы tolsolvty были найдены максимум функционала распознающего функционала maxTol и значение аргумента, в которой он достигался (argmaxTol).

$$maxTol = 0.1437; argmaxTol = \begin{pmatrix} 0.4604\\ 0.2375 \end{pmatrix}$$
 (6)

Формула для оценки меры вариабельности *ive*:

$$ive(\mathbf{A}, \mathbf{b}) = \sqrt{n}(\underset{A \in \mathbf{A}}{mincond}\mathbf{A}) \cdot ||argmaxTol|| \cdot \frac{maxTol}{||\mathbf{b}||}$$
 (7)

По формуле (7) получено: ive = 0.1902. Получен график множества решений:

Рис. 1: Допусковое множество решений для переопределенной ИСЛАУ

Построен распознающий функционал по формуле (5):

Рис. 2: График распознающего функционала $Tol(x_1, x_2)$

4.2 Недоопределенная ИСЛАУ

Матрицы недоопределенной и переопределнной ИСЛАУ должны совпадать с точностью до транспонирования, поэтому определим:

$$A = \begin{pmatrix} 13 & 18 & 23 \\ 15 & 19 & 12 \end{pmatrix}, x = \begin{pmatrix} 0.5 \\ 0.2 \\ 0.1 \end{pmatrix}$$
 (8)

Для них была определена правая часть:

$$b = A \cdot x = \begin{pmatrix} 12.4 \\ 12.5 \end{pmatrix} \tag{9}$$

Из (8) и (9) получена недоопределенная ИСЛАУ:

$$\begin{pmatrix} [11, 15] & [15, 21] & [21, 25] \\ [13, 17] & [17, 21] & [10, 14] \end{pmatrix} \cdot x = \begin{pmatrix} [10.4, 14.4] \\ [10, 15] \end{pmatrix}$$
 (10)

С помощью программы tolsolvty были найдены максимум функционала распознающего функционала maxTol и значение аргумента, в которой он достигался (argmaxTol).

$$maxTol = 0.3365; argmaxTol = \begin{pmatrix} 0.673\\ 0.00\\ 0.1587 \end{pmatrix}$$
 (11)

По формуле (7) получено: ive = 0.8581.

Построим допусковое множество в объеме:

Рис. 3: Допусковое множество решений для недоопределенной ИСЛАУ

Рассмотрим также проекцию на x_1Ox_3 , так как в решении именно вторая координата обращается в 0.

Рис. 4: Допусковое множество в проекции

Точка, соответствующая решению, находится на периферии, в связи с чем брус покрывает не все допусковое множество, а лишь часть, где находится точка. Проанализируем исходное(8) и полученное(11) решения.

Абсолютная погрешность составляет:

$$|x - argmaxTol| = \begin{pmatrix} 0.173\\ 0.2\\ 0.0587 \end{pmatrix}$$
 (12)

Норма разности:

$$||x - argmaxTol|| = 0.2708 \tag{13}$$

Такой результат, на мой взгляд, можно обосновать тем, что при использовании интервальных арифметических операций внутри решения погрешность вычисления возрастает в силу изменения границ интервала. Кроме того, при решении недоопределенной СЛАУ мы добиваем несколько переменных произвольными значениями, что может влиять на результат.

5 Приложения

Kод программы на GitHub, URL: https://github.com/DariaKrup/Computational_complexes