X5I0020

Etude des algorithmes Vérification de Programmes

Jean-Xavier RAMPON

Spécification

Données désignation type pré-condition Résultats désignation type post-condition

Vérification

Vérification dynamique Aléatoire Fonctionnelle Structurelle

Vérification statique Informelle Formelle

Vérification dynamique

Test Couple (D,R_D) Données Résultats attendus pour D

Algorithme A Test réussi : $A(D) = R_D$ $A(D) \neq R_D \rightarrow A$ contient erreur

objectifs du test

Programme code et/ou spécification + écriture

spécifications

résultats attendus

Comparaison

Archivage Analyse

test; données; résultats inductive; déductive

Modification

programme; test

Tests Typologie

Unitaire/ Module Simuler autres modules

Intégration Intégration progressive des modules ; Test alpha (simulation de l'utilisateur)

Recettes Fournis par le client

Réception Test à la réception avec fournisseur ; Test bêta (ouvert/fermé)

Non régression Lors de la modification d'une partie assurer la cohérence avec les autres parties.

Tests Stratégies

Aléatoire

Fonctionnelle Couverture du domaine ; Un représentant ; Valeurs frontières

Structurelle Couverture des instructions ; Couverture des arcs du graphe de contrôle

Couverture des chemins du graphe de contrôle (Métrique de McCabe : |E|-|X|+2)

Couverture des conditions élémentaires

Exemple: Analyse fonctionnelle

Calcul des puissances positives (au sens large) de 2. Pour les petites valeurs, inférieurs (au sens large) à 100, on dispose d'une fonction donnée. Pour les grandes valeurs, inférieurs (au sens large) à 500, on dispose d'une autre fonction.

- Domaine Découpes explicites ?? Découpes implicites ??
- Jeux de Test

X510020 Vérification 2/6

Exemple: Conditions élémentaires

Si
$$(a > 0)$$
 et $(b \ne 0)$ Alors $a \leftarrow a/b$

Sinon

Si
$$(x = 3)$$
 et $(b = 0)$ Alors $a \leftarrow 3*b$ Fsi

<u>Fsi</u>

Conditions élémentaires :: Interprétations

Graphe de contrôle

$$0 \longrightarrow 0$$
 $a_1; ...; a_n$

Tantque

Exemple: Analyse structurelle

Lire(a); Lire(b);

Tantque a≠b Faire

Si
$$a > b$$
 Alors $a \leftarrow a - b$ Sinon $b \leftarrow b - a$ Fsi

Ftanque

Écrire(a);

Lire(a);

$$\underline{\mathbf{Si}} \ 0 > \mathbf{a} \ \underline{\mathbf{Alors}} \ \mathbf{a} \leftarrow - \mathbf{a} \ \underline{\mathbf{Fsi}}$$

$$b \leftarrow Sqrt(a)$$

Lire(a); Lire(b);

Si
$$a > 0$$
 Alors $c \leftarrow -a$ Sinon $b \leftarrow b - a$ Fsi

Si
$$b > 0$$
 Alors $c \leftarrow b$ Sinon $a \leftarrow b$ Fsi

Vérifications statiques

Stratégies

Informelle (Equipes / durée / tâches)

- Simuler machine
- Check-list défauts usuels

Variables non initialisées; allocation et libération de mémoire; paramètres formels et effectifs; récursivité et variables non protégées; boucles infinies; test d'égalité avec nombres flottants; ...

Formelle

Exécution symbolique : Logique de Hoare ; Weakest Précondition (p³f) de Dijkstra

X510020 Vérification 3/6

Exécution symbolique : La valeur symbolique d'une variable ou d'un ensemble de variables est un ensemble de valeurs définit par une expression logique

Exécution de A sur une valeur symbolique définie par $\{p\}$ conduisant à une valeur symbolique définie par $\{q\}$: $\{p\}$ A $\{q\}$

Exécution symbolique ≡ transformation d'expressions logiques

Exemple

 $m \leftarrow 0$;

<u>Tantque</u> $n \ge (m+1)^2$ Faire $m \leftarrow m+1$ <u>Ftanque</u>

Langage algorithmique

Syntaxe

Soient $S_1, ..., S_n$ des instructions : « $S_1; ...; S_n$; » est une séquence d'instructions

Instructions <Var>; <Expression>; <Cond>

Affectation <Var> := <Expression>

Conditionnelle: Si

<u>Si</u> <Cond> <u>Alors</u> <Séquence d'instructions> <u>Fsi</u>

Conditionnelle: Sisin

<u>Si</u> <Cond> <u>Alors</u> <Séquence d'instructions> <u>Sinon</u> <Séquence d'instructions> <u>Fsi</u>

Répétitive

<u>Tantque</u> <Cond> <u>Faire</u><Séquence d'instructions> <u>Ftq</u>

Pour $i := a \stackrel{\triangle}{a} b [pas c]$ **Faire** \leq Séquence d'instructions \geq **Fpour**

Sémantique Usuelle

Restrictions

Variables synonymes (Pointeurs ; Tableaux (sauf avec adressage direct) ;Fonctions & Procédures

Logique des prédicats 1^{er} ordre

Termes : Formules élémentaires booléennes : $x \in [1, ..n]$; $y \ne 3$; $x \le 2y + 3$; vrai ; ...

Variables : x, y, ...

Opérateur logiques : \neg ; \land ; \lor ; \Rightarrow ; \Leftrightarrow

Quantificateurs : \forall ; \exists

Symboles de liaison : «, »; «(»; «)»; ...

Règles d'inférence : (3,F)

- Utilisation : $(F \in \mathfrak{I}) - F$

- Augmentation : $\operatorname{si}(\mathfrak{I} + F) \operatorname{et}(G \notin \mathfrak{I}) \operatorname{alors} \{G\} \cup \mathfrak{I} + F$

- Synthèse : $si((\Im,G) \vdash F) alors \Im \vdash (G \Rightarrow F)$

- Modus ponens : $si (3 \mid F) \Rightarrow G) et (3 \mid F) alors 3 \mid G$ - Double négation : $(3 \mid F) si et seulement si (3 \mid F)$

-Tiers exclu : $\operatorname{si}((\mathfrak{I},G) \vdash F)$ et $((\mathfrak{I},G) \vdash \neg F)$ alors $\mathfrak{I} \vdash \neg G$

- Instantiation : $si (\Im \vdash \forall x F) alors \Im \vdash F[x \leftarrow t]$

- Généralisation : si (ℑ ├F) alors ℑ ├∀x F x libre dans ℑ - Existence : (ℑ ├∃xF) si et seulement si ℑ ├¬∀x ¬F

X510020 Vérification 4/6

Syntaxe

Avec x variable, t terme, p et q prédicats, sont alors prédicats:

t; $\neg p$; $p \land q$; $p \lor q$; $p \Rightarrow q$; $p \Leftrightarrow q$; $\forall x p$; $\exists x p$; (p)

Variable libre / Variable liée

$$p: \forall i, (i \in [1 \dots j]) \Rightarrow (T[i] \leq T[i+1]) \qquad \qquad q: (i \neq j) \ (\forall i, (i \in [1 \dots j]) \Rightarrow (T[i] \leq T[i+1]))$$

Sémantique

I : interprétation

$$\begin{array}{cccc} I(p) & I(q) & I(p \Rightarrow q) \\ V & V & V \\ V & F & F \\ F & V & V \\ F & F & V \end{array}$$

Avec I(t) définie pour tout terme t, on obtient :

- $I(\neg p) = \neg I(p)$
- $I(p \land q) = I(p) \land I(q) ; I(p \lor q) = I(p) \lor I(q)$
- $I(p \Rightarrow q) = I(p) \Rightarrow I(q) ; I(p \Leftrightarrow q) = I(p) \Leftrightarrow I(q)$
- $I(\exists x p) = V$ s'il existe une valeur de x telle que I(p) = V, $I(\exists x p) = F$ sinon
- $I(\forall x p) = V \text{ si pour toute valeur de } x \text{ on a } I(p) = V, I(\forall x p) = F \text{ sinon}$

Formule ouverte / fermée (close)

Un prédicat est valide s'il est à vrai quelque soit l'environnement.

L'environnement est défini par les variables libres du prédicat au point de contrôle du programme où ce dernier apparaît.

 $p: \forall i \forall j \forall k ((i \in [1...j]) \land (k \in [1...j]) \land (i \le k)) \Rightarrow (T[i] \le T[k])$

6	8	11	12	20	36	40	58
6	8	20	36	11	12	40	58

$$q: \forall i \forall j \forall k((i \in [j...j]) \land (k \in [j...j]) \land (i \le k)) \Rightarrow (T[i] \le T[k])$$

Logique de Hoare

Système formel

Alphabet

Procédé de construction de mots/formules

Axiomes

Règles de déductions

$$\underline{m}^1, ..., \underline{m}^k$$

$$m^1$$
, ..., m^k : prémisses
 m : conclusion
Preuve de f: $(f_1, ..., f_n)$

$$f_n = f$$

f_i: axiome

 $f_i: f_i = R_i(f_1, ..., f_{i-1});$

On établit la preuve en partant du but

X510020 Vérification 5/6

Logique de Hoare

Formules : {**p**} **A** {**q**}

- A algorithme écrit dans le langage présenté
- p et q prédicats de la logique du 1^{er} ordre

Axiomes: $\{p[x := y]\}\ x := y \{p\}$ $\{p\}\ skip \{p\}$

Règles de déduction :

[Seq]:
$$\{p\}$$
 A_1 $\{t\}$, $\{t\}$ A_2 $\{q\}$ $\{p\}$ A_1 ; A_2 $\{q\}$

[Si]:
$$\{p \land c\} \land \{q\}, (p \land \neg c) \Rightarrow q$$

 $\{p\} \land Si \land C \land Alors \land Si \land \{q\}$

[Sisin]:
$$\{p \land c\}$$
 A_1 $\{q\}$, $\{p \land \neg c\}$ A_2 $\{q\}$
 $\{p\}$ Si c Alors A_1 Sinon A_2 Fsi $\{q\}$

[Tq]:
$${p \land c} A {p}$$

{p} Tantque c Faire A Ftantque {p \rightarrow c}

Règles de conséquences :

[Pré]:
$$\{t\}$$
 A $\{q\}$, $p \Rightarrow t$ renforcement $\{p\}$ A $\{q\}$ [Post]: $\{p\}$ A $\{t\}$, $t \Rightarrow q$ affaiblissement

[Ou]: $\{p\} A \{q\}, \{t\} A \{q\}$ $\{p \lor t\} A \{q\}$

Théorème de Cohérence (Soudness) Si {p} A {q} est déductible alors il est valide.

Théorème de **Complétude relative** (Relative Completness) Si {p} A {q} est valide alors il est déductible.

Indécidabilité

Correction Partielle Pas de prise en compte de l'arrêt des répétitives

Correction Totale

« Weakest Precondition » de Dijsktra

wp: plus faible précondition $\{p\}$ A $\{q\}$ p wp(A,q)

wp(A,q): ensemble de tous les états initiaux tels que l'exécution de A débutant dans l'un de ces états termine dans l'état q.

$$\{p\} A \{q\} \equiv ((p \land wp(A, vrai)) \Rightarrow wp(A,q))$$

X5I0020 Vérification 6/6

```
Règles
```

```
 \begin{aligned} & [\textbf{Aff}] : wp(x := y, q) & \equiv q[x := y] \\ & [\textbf{Skip}] : wp(Skip, q) & \equiv q \\ & [\textbf{Et}] : wp(A, p \land q) & \equiv wp(A, p) \land wp(A, q) \\ & [\textbf{Ou}] : wp(A, p \lor q) & \equiv wp(A, p) \lor wp(A, q) \\ & [\textbf{Seq}] : wp(A_1; A_2, q) & \equiv wp(A_1, wp(A_2, q)) \\ & [\textbf{Sisin}] : wp(\underline{\textbf{Si}} \ c \ \underline{\textbf{Alors}} \ A_1 \ \underline{\textbf{Sinon}} \ A_2 \ \underline{\textbf{Fsi}}, \ q) & \equiv (c \Rightarrow wp(A_1, q)) \land (\neg c \Rightarrow wp(A_2, q)) \\ & [\textbf{Tq}] : wp(\underline{\textbf{Tantque}} \ c \ \underline{\textbf{Faire}} \ A \ \underline{\textbf{Ftantque}}, \ q) & \equiv p^3 f(\textbf{x} \rightarrow (\neg c \land q) \lor (c \land wp(A, \textbf{x})) \\ & p^3 f : \text{plus petit point fixe} \end{aligned}
```

Méthodologie

 $wp(Tantque \ c \ Faire \ A \ Ftantque, \ q) \equiv \exists k \ge 0, \ p_k$