Università degli Studi di Firenze

Facoltà d' Ingegneria Dipartimento di Elettronica e Telecomunicazioni

IEEE 802.11 (Wi-Fi)

Massimiliano Pieraccini

IEEE 802.11

1997 Standard IEEE 802.11 1 Mbit/s 2 Mbit/s

1999 Standard IEEE 802.11b 1 Mbit/s 2 Mbit/s 5.5 Mbit/s 11 Mbit/s

Standard IEEE 802.11a OFDM 5GHz **54Mbps**

Applicazione

TCP/IP

Link Logic Link Control, MAC

Physical FHSS, DSSS, OFDM

Topologia

Infrastructure mode

Ad Hoc mode

Physical Layer (PHY)

2.4 GHz band

$$P_{RX} = P_{TX}G_{RX}G_{TX}\left(\frac{\lambda}{4\pi R}\right)^2$$

$$P_{RX} = -70dBm$$

$$P_{TX} = 20dBm$$

$$G_{TX} = G_{RX} \approx 5dB$$

$$\lambda = 12cm$$

 $R \approx 100m$

Physical Layer

2.4 GHz band Industrial, Scientific, and Medial (ISM) band

2.402 GHz – 2.479 GHz

FHSS: Frequency Hopping Spread Spectrum

DSSS: Direct Sequence Spread Spectrum

FHSS: Frequency Hopping Spread Spectrum

< 2 Mbit/s

La banda a 2.5 GHz è divisa in 75 canali da 1MHz

TX e RX fissano un **hopping pattern**. I pattern sono definti in modo da minimizzare la possibilità che due TX usino lo stesso pattern simultaneamente.

 $224 \mu s - 400 ms$

GFSK (Gaussian Frequency Shift Keying)

Physical Layer

DSSS: Direct Sequence Spread Spectrum

14 canali da 22-MHz I canali sono parzialmente sovrapposti in 3 zone separate I dati sono trasmessi in un canale.

Data Rate	Code Length	Modulation	Symbol Rate	Bits/Symbol
1 Mbps	11 (Barker Sequence)	BPSK	1 MSps	1
2 Mbps	11 (Barker Sequence)	QPSK	1 MSps	2
5.5 Mbps	8 (CCK)	QPSK	1.375 MSps	4
11 Mbps	8 (CCK)	QPSK	1.375 MSps	8

Pseudo-noise sequences:

Barker Sequence: 2 sequenze di 11 bit

Complementary Code Keying (CCK): 64 sequenze di 8 bit

Physical Layer

DSSS sfrutta meglio lo spettro, è in grado di operare con un più basso S/N

FHSS ha minore capacità, ma è più robusta alle interferenze e al multipath

802.11a

5GHz band

OFDM – Orthogonal Frequency Division Multiplex

BPSK, QPSK, and 16-QAM

(Vedi ADSL)

OFDM – Orthogonal Frequency Division Multiplex

R[bit/s] N canali paralleli

 $T_s = \frac{N}{D}$ tempo tra un bit e il successivo in un canale

 $\Delta f = \frac{1}{T}$ larghezza di banda di ciascun canale

$$g(t) = \sum_{n=0}^{N-1} a_n e^{j2\pi f_n t} \qquad f_n = \frac{n}{T_s} \qquad 0 < t < T_s \qquad a_n \text{ bit di informazione}$$

$$f_n = \frac{n}{T_s}$$

$$0 < t < T_s$$

Antitrasformata di Fourier

La trasmissione è divisa in pacchetti, la robustezza della trasmissione è assicurata da:

Packet fragmentation

CRC

ACK

Il protocollo CSMA/CD (Ethernet)

CS MA: Carrier Sense Multple Access

Il tx si accorge se qualcuno trasmette e quindi attende a trasmettere fino a quando il canale è libero

CD: Collision Detection

Il tx interrompe la comunicazione (e invia un segnale di jam "ingorgo") se sente qualcun altro trasmettere, dopo un tentativo fallito (abort) attende un tempo random e riprova

Purtroppo, mentre sta trasmettendo il segnale RF, il terminale non può rivelare se un altro terminale sta trasmettendo

II protocollo CSMA/CD (IEEE 802.11)

MAC: Media Access Control

CS MA: Carrier Sense Multple Access

Il tx si accorge se qualcuno trasmette e quindi attende a trasmettere fino a quando il canale è libero. Se trova il canale libero aspetto un tempo random, controlla che il canale sia ancora libero, quindi trasmette

CD: Collision Detection

Il tx trasmette l'intero pacchetto e aspetta il segnale di ACK, se non lo riceve suppone che ci sia stata una collisione, quindi attende un tempo random e riprova

Data Link Layer

MAC header Frame Body CRC

MAC header

2 byte	Frame Control	tipo di frame
2 byte	Duration	tempo di attesa dell'ack
6 byte	Adress 1 (48bit)	
6 byte	Adress 2 (48bit)	
6 byte	Adress 3 (48bit)	
2 byte	Sequence Control	numero seriale del frame
6 byte	Adress 3 (48bit)	

Data Link Layer

MAC header

Frame Body

CRC

Frame Body

0-2312 byte (possono essere crittografati)

CRC

32 bit