

Accelerating Design Exploration and Optimization with Surrogate Physics Models

Presented by Rishabh Jain & Shiv Ratn IIT Delhi

Dataset

Input:

- Cell Size X
- Cell Size YZ
- Average Velocity

Output:

- Mass
- Surface area
- Average Velocity
- Pressure Drop

Inference:

- There is absolutely no correlation between Mass and Inlet Velocity
- There is absolutely no correlation between Surface Area and Inlet Velocity

Involved Physics

Mass:

Smaller cell size → Higher Mass

Average Velocity:

- Avg. velocity scales with Inlet Velocity
- smaller Dh → higher flow resistance
- Cell Sizes determine Directional Anisotropy

Surface Area:

• Smaller cell size → Higher Surface Area

Pressure Drop:

- Pressure drop : Δp∝v²/D_h
- Flow Volume is governed by **Mass**
- Cell Sizes determine Directional Anisotropy

- Flow Volume = V_s
- Pressure Drop = Δp
- Inlet Velocity = v
- Submerged Area = A_s
- Hydraulic diameter: D_h=4V_s/A_s
- Reynolds number: Re=ρD_hv/μ

Note : $D_h = f(Mass, Surface Area)$

Surrogate Model Architecture

Model Specifications

Model 1:

Number of layers = 3

Neuron Count = [237, 182, 240]

Activation Function = Leaky ReLU

Optimizer = Adam

Learning Rate = 0.006745

Batch Size = Full Batch

Model 2:

Number of layers = 3

Neuron Count = [262, 469, 70]

Activation Function = ReLU

Optimizer = Adam

Learning Rate = 0.002447

Batch Size = 32

Weight Decay = 2.939e-5

We used probabilistic approach to sample the best hyperparameters, likely to increase model accuracy

Optimization Algorithm

To find: Maximum Surface Area Constraint:

- 10mm < Cell Size X < 25mm
- 10mm < Cell Size Y/Z < 25mm
- 2500 mm/s < Inlet Velocity < 3500 mm/s
- Mass < 125 grams
- Pressure Drop < 8000 Pa
- Avg Velocity > 520 mm/s^2

Initial Approach: Grid Search on Surrogate Model Function

- Form high resolution grid on the surrogate function
- Mask the grid points which satisfy the constraint
- Choose the highest surface area from the set of masked grid points

Optimization output : Cell Size X = 15.2968 ; Cell Size YZ = 24.9843 ; Inlet Velocity = 2585.78 ; Surface Area = 23689.015 ; Mass = 124.99 ; Pressure Drop = 5859.8662 ; Average Velocity = 541.834

Average Velocity and Pressure Drop is not the "limiting constraint"

We only optimize the Surface Area with the Mass constraint (Optimization limited to Model 1)

Simplified Optimization Problem

Constraints on Inlet Velocity, Pressure Drop and Average Velocity are NOT A LIMITING CONDITION

Stage 1 — Cell Size Optimization

- Objective: maximize surface area (implemented as minimizing -surface_area)
- Constraint: mass < 125 g
 (enforced via heavy penalty:
 penalty = (mass 125) * 10000
 when violated)
- Algorithm: global search with Differential Evolution (seeded) + multi-start local refinement with L-BFGS-B
- Output: optimal_x, optimal_yz, predicted mass & surface area

Stage 2 — Inlet velocity feasibility

- Sweep inlet velocity ∈ [2500, 3500] mm/s (grid)
- Use Model2 to predict AvgVelocity and PressureDrop
- Feasibility criteria:
- AvgVelocity > 520 mm/s²
- PressureDrop < 8000 Pa
- Output: feasible velocity range, recommended solution (middle of feasible range)

How the code uses Diffenrential Evolution + local polish

- DE finds promising basins (global exploration).
- TwoStageOptimizer then runs multi-start L-BFGS-B (20 random starts in the notebook) to quickly refine to a precise local optimum inside those basins.
- This combination gives robust global coverage (DE) plus fast accurate convergence (L-BFGS-B).

Results

Optimization output:

Cell Size X = 21.787

Cell Size YZ = 20.5293

Inlet Velocity = 3168.3

Surface Area = 23559.94

Mass = 124.99

Pressure Drop = 6772.29

Average Velocity = 566.02

Thankyou

