Malware Variants Identification in Practice

Marcus Botacin¹, André Grégio¹, Paulo Lício de Geus²

 $^1{\sf Federal}$ University of Paraná (UFPR) – {mfbotacin, gregio}@inf.ufpr.br $^2{\sf University}$ of Campinas (Unicamp) – paulo@lasca.ic.unicamp.br

SBSEG 2019

- Motivation
 - Motivation
- Challenges & Alternatives
 - Challenge 1
 - Challenge 2
- Experiments
 - Evaluation
- 4 Concluding Remarks
 - Limitations
 - Conclusions

- Motivation
 - Motivation
- 2 Challenges & Alternatives
 - Challenge 1
 - Challenge 2
- 3 Experiments
 - Evaluation
- 4 Concluding Remarks
 - Limitations
 - Conclusions

Motivation

Motivation

Figure: Source: https://www.infosecurity-magazine.com/news/ 360k-new-malware-samples-every-day/

Figure: Source: https://money.cnn.com/2015/04/14/technology/ security/cyber-attack-hacks-security/index.html

Experiments

Current Approaches.

Figure: Function-based, Graph Modeling.

- Motivation
 - Motivation
- Challenges & Alternatives
 - Challenge 1
 - Challenge 2
- 3 Experiments
 - Evaluation
- 4 Concluding Remarks
 - Limitations
 - Conclusions

Same-Behavior Function Replacement

Figure: Original sample's CG.

Figure: Variant sample's CG.

Figure: Behavioral graph from both samples.

Behavioral Classification

- Compression
- Cryptography.
- Debug.
- Delay.
- Environment.
- Escalation.
- Exfiltration.
- Fingerprint.
- File System.
- Interference.

- Internet.
- Modularity.
- Monitoring.
- Registry.
- Evidence Removal.
- Side Effects.
- System Changes.
- Target Information.
- Timing Attacks.

Behavior-based Graph.

Figure: Behavior-based graph for a given sample.

Challenge 2

- Motivation
 - Motivation
- Challenges & Alternatives
 - Challenge 1
 - Challenge 2
- 3 Experiments
 - Evaluation
- 4 Concluding Remarks
 - Limitations
 - Conclusions

Motivation 000 Challenge 2

Malware Embedding

Figure: **Sample 1**. The original sample.

Figure: Sample 2. Variant sample embedding the original one.

Matching Metrics

Definition

The similarity of two malware, represented as sets, A and B, of vertices or edges of two graphs, is defined as:

$$Sim(A,B) = \frac{|A \cap B|}{|A \cup B|} \tag{1}$$

Definition

The similarity of two malware, represented as sets, A and B, of vertices or edges of two graphs, is defined as:

$$Sim(A, B) = \max\left(\frac{|A \cap B|}{|B|}, \frac{|B \cap A|}{|A|}\right) \tag{2}$$

Experiments

Continence Results

Table: Continence of Sample 1 in Sample 2.

CG	Α	В	С
ı	0.66	0.52	0.64
J	0.75	0.49	0.50
K	0.42	0.80	0.44

Table: Continence of Sample 2 in Sample 1.

CG	Α	В	С
ı	0.57	0.56	0.43
J	0.33	0.51	0.44
K	0.76	0.65	0.44

Table: Maximum continence of Sample 1 and Sample 2.

CG	Α	В	С	
ı	0.66	0.56	0.64	
J	0.75	0.51	0.50	
K	0.76	0.80	0.44	

- - Motivation
- - Challenge 1
 - Challenge 2
- **Experiments**
 - Evaluation
- - Limitations
 - Conclusions

Experiments

•0000000

The Whitelisting Effect.

Figure: Evaluating whitelisting effect. Similarity scores are higher when using the whitelist-based approach.

Experiments

00000000

Advantages of the Behavioral model.

Figure: Function vs. Behavior-based approaches. Scores are higher when considering behavioral patterns.

Evaluating Metrics.

Figure: Proposed metric. Scores are higher when using it in comparison to the usual one

Solutions Comparison.

Figure: Mimail's sample similarity. Our solution's scores are higher when compared to other ones.

Domain Transformation and Similarity Measures.

Figure: Threshold evaluation. This should be higher than 80% in order to proper label the cross dataset.

Real World Experiments (1/2)

Table: Identified variants among unknown, wild-collected samples.

Family	Sample	Hash	Label
	Α	c2ef1aabb15c979e932f5ea1d214cbeb	Generic_vb.OBY
1	В	747b9fe5819a76529abc161bb449b8eb	$Generic_vb.OBO$
	C	39a04a11234d931bfa60d68ba8df9021	$Generic_vb.OBL$
	Α	96d13246971e4368b9ed90c6f996a884	Atros4.CENI
2	В	e23588078ba6a5f5ca1c961a8336ec08	Atros4.CENI
	C	31a2b6adc781328cb1d77e5debb318ff	Atros4.CENI

Real World Experiments (2/2)

Figure: Study case: variant identification. Our approach outperforms others even on low coverage scenarios.

- Motivation
 - Motivation
- Challenges & Alternatives
 - Challenge 1
 - Challenge 2
- 3 Experiments
 - Evaluation
- 4 Concluding Remarks
 - Limitations
 - Conclusions

Matching Complex Behaviors is Challenging!

Figure: DLL injection functions among other function calls.

Figure: Proposed DLL injection class.

- Motivation
 - Motivation
- Challenges & Alternatives
 - Challenge 1
 - Challenge 2
- 3 Experiments
 - Evaluation
- 4 Concluding Remarks
 - Limitations
 - Conclusions

Conclusions

Challenges & Lessons

- Anti-disassembly breaks CG extraction.
- Transparent, dynamic tracing is a viable alternative.
- Same-Function Replacement breaks malware clustering.
- Behavior-based clustering is a viable alternative.
- Dead code breaks similarity metrics.
- Continence metric is a viable alternative.

Experiments

Questions & Comments.

Contact

mfbotacin@inf.ufpr.br

Additional Material

• https://github.com/marcusbotacin/Malware.Variants