統計学(基礎)

第4回 クロス集計表と χ二乗検定、フィッシャーの正確確率検定

1/77

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

1

統計学(基礎)

クロス集計表

- ・2つの質的データの集計表
- ・ 基本は度数集計
- 割合を出すこともある

川崎市立看護大学大学院 看護学研究科 博士前期課程

ク	ラス別の		おやつ	
	するおやつ	きのこの里	たけのこの山	計
_	きつね	12	18	30
クラス	たぬき	20	10	30
	計	32	28	60

3/77

©Ryota Takayanagi 2025

統計学(基礎)

クロス集計

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

統計学(基礎)

クロス集計

- ・こんなデータがありました
- · data04 01

No	クラス	おやつ
1	きつね	きのこの里
2	たぬき	きのこの里
3	たぬき	きのこの里
4	きつね	きのこの里
5	きつね	たけのこの山
6	たぬき	きのこの里
7	きつね	たけのこの山
8	たぬき	きのこの里

4/77

川崎市立看護大学大学院 看護学研究科 博士前期課程

統計学(基礎) クロス集計表 jamovi 回帰 度数 (子) 結果 クロス集計表 きのこの里 クロス集計表 多種目的変数 x²进合度核力 きのこの里 たけのこの山 度数 (オプション) クラス きのこの屋 たけのこの山 全体 きのこの里 きつね たぬき 全体 6/77 川崎市立看護大学大学院 看護学研究科 博士前期課程 ©Ryota Takayanagi 2025

5

・実数(実測)表
 ・パーセント表
 一横(行)パーセント表
 一縦(列)パーセント表
 一全体パーセント表
 一十全がられる

7/77
川崎市立看護大学大学院 看護学研究科 博士前期課程
CRyota Takayanagi 2025

8

統計学(基礎) 集計方法 ▼ 分割表 分割表 A 25% おやつ きのこの里 たけのこの山 よやつ 品 きつね 12 たぬき 20 cal 32 注 Each cell displays the obse クロス集計表 Θ ★ データは人教受賞で重みづけされています。 行 → <mark>0%</mark> クラス 列 → <u>8</u>おやつ クラス きのこの里 たけのこの山 全体 度数 (オプション) → (条 人数 11/77 川崎市立看護大学大学院 看護学研究科 博士前期課程

録計学(基礎)

母集団から抽出した標本で解析し、母集団のことを考える:推測統計群間の違いを知るためのもの:統計的仮説検定

推測統計と統計的仮説検定

12/77
川崎市立看護大学大学院 看護学研究科 博士前期課程 ©Ryota Takayanagi 2025

仮説検定

- 統計学的仮説検定
 - 抽出された標本を使って、仮説が正しいかどうかを標本デー タから推測する
 - 標本調査の場合のみ、全数調査の場合は必要なし
- ・ 仮説の検証
 - 差があるかどうか(違いがあるかどうか)

※手続き上の仮説は「差が無い」とするのが原則

14/77

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

14

統計学(基礎) 推測統計の基本的な考え(再) ・ 母集団と標本抽出 - 全体(母集団)から偏りなく得ら れた(抽出された)データ(標 母集団 本)を使えば、全体を測定しな くても全体をある程度の精度 で推測できる - 手元にあるデータが抽出され た標本であると仮定できれば、 全体を推測できるとする 標本 - そもそも、対象となるデータは 大きすぎて現実的にデータが とれない 15/77 川崎市立看護大学大学院 看護学研究科 博士前期課程 ©Ryota Takayanagi 2025 統計学(基礎)

検定の考え方

- 手持ちのデータで差があっても、それは標本の差でしか。 ない
- 知りたいのは標本の傾向ではなくて、母集団の傾向
- ・なので、標本での違いが、母集団でも言えるのかどうか を考えないといけない
- ・ということで、検定(統計学的仮説検定)の考え方が必要

16/77

川崎市立看護大学大学院 看護学研究科 博士前期課程

違いがあるかないかの判断

- ・標本間の違いを示す統計値を求める
 - 求める統計値は、データの種類等によって異なる
 - 標本間に違いがなければ統計値は小さな値になる
 - ・標本についての誤差の差や比率を求めてる
 - ・差を求めれば0、商(比)を求めたら1になる
- ・といっても、標本には若干の違い(誤差)がある(単純誤差)
- ・その統計値の確率分布を作ってある

川崎市立看護大学大学院 看護学研究科 博士前期課程

・誤差なのか、違いといえるものなのかを確率で判断する

19/77

©Ryota Takayanagi 2025

統計学(基礎)

有意確率と有意水準

- ・計算した値が出現する確率を「有意確率」という
 - p値とかpとも呼ばれる
- ・有意確率(p値)が大きいか小さいかを判断する基準を、 有意水準(α)という
 - 有意水準は最初に設定するのが約束
 - 最近は有意水準を設定せず、算出された有意確率を記載して 判断する方向に

20/77

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

違いがあるかないかの判断
 ・計算した値は、どれくらいの確率で出現するかが決まっている
 - ものすごい小さい確率でしか出現しない値が出てしまったら、そもそも同じ母集団からの標本では無いと判断する
 標本1 = 標本2
 標本a ≠ 標本b
 母集団
 母業
 母業
 母業
 母業
 母業

21

検定の考え方
・ 最初に「標本間に違いは無い、同じ母集団から抽出している」という仮説(帰無仮説)をたてる
- 実際には別々のカテゴリーの集団から抽出していたとしても、必ず「同じ」という仮説をたてる

母集団ab

母集団ab

母集団ab

母集団ab

母集団ab

母集団ab

母集団ab

母集団ab

「標本a = 標本b 23/77

「CRyota Takayanagi 2025

統計学(基礎)

22

検定の考え方

- ・データに合わせた方法で計算(検定)をおこなう。
- ・計算された値について「有意確率」を求める。
- その「有意確率」が「帰無仮説」が採択されるか、棄却されるか判断する
 - 判断の基準はあらかじめ決めた有意水準

24/77

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

帰無仮説と対立仮説

- ・「帰無仮説」は、検定時に必ず設定する「違いが無い」という仮説
- ・「帰無仮説」が棄却されると、自動的に「対立仮説」が成立する
- 対立仮説は、帰無仮説の逆の仮説
 - 帰無仮説が「違いがない」という仮説なので、対立仮説は「違いがある」ということになる

25/77

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

25

 統計学(基礎)

帰無仮説と対立仮説

- 算出した値が結構大きくて、有意確率は有意水準よりも 小さな値となった
 - -×同じ母集団から抽出したけど滅多にないことが起きた
 - ○そもそも同じ母集団から抽出したという仮説が間違っている
 - ※帰無仮説は違いが無いという仮説なので、母集団が同じということになっている。
- ・「帰無仮説」を棄却して、「対立仮説」が成立

26/77

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

26

統計学(基礎)

有意水準の設定

- ・調査などでは両側 α = 0.05(5%水準) α = 0.01なら1%水準 α = 0.001なら0.1%水準
- ・設定に科学的な根拠はない
 - これまでの経験則から、何となく決まっている
 - 最近は有意水準を設定しないで、有意確率で話をする場合が 多くなってきている

28/77

川崎市立看護大学大学院 看護学研究科 博士前期課程

最近の傾向

- ・そもそもこの考え方(頻度流)でいいのか
- ・ p値(有意確率)が α (有意水準)を超えたか超えていな いかで重要性は測れないのではないか
 - αを下回ったかどうかでなく、pを直接記述する

29/77

川崎市立看護大学大学院 看護学研究科 博士前期課程

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

29

統計学(基礎)

アメリカ統計学会の声明

- 1. P値は、データが帰無仮説とどの程度一致しているかを示す指標 である。
- 2. P値は、仮説が正しい確率でも、結果が偶然に得られた確率でも
- 3. 科学的結論や政策決定をP値だけで判断してはならない。
- 適切な推論には、研究設計・前提・データ品質・効果量・既存知識などの文脈が必要である。
- 5. ある特定のP値(例:0.05)を境に"有意"/"非有意"と二分する 慣習は避けるべきである。
- 6. P値は透明性と完全な報告の一部として扱うべきである。

©Ryota Takayanagi 2025

31/77

統計学(基礎)

アメリカ統計学会の声明

- The ASA's Statement on p-Values: Context. Process, and Purpose
 - アメリカ統計学会によるP値に関する声明:文脈・経緯・目的
 - Ronald L. Wasserstein & Nicole A. Lazar The American Statistician, Vol.70, No.2 (2016), pp.129-133.

30/77

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Rvota Takayanagi 2025

30

統計学(基礎)

その後の声明(2019)

- ・「p < 0.05」を閾値として使う慣習をやめよう
- ・Statistically significant" という言葉も避けよう
 - 代わりに:
 - · 効果量(effect size)
 - 信頼区間(confidence interval)
 - ・ 事前知識や理論的根拠
 - ・ベイズ推論・再現性の重視
 - Moving to a World Beyond 'p < 0.05' Wasserstein, Schirm & Lazar, *The American* Statistician, 2019

32/77

川崎市立看護大学大学院 看護学研究科 博士前期課程

クロス集計とχ²検定

33/77

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

33

統計学(基礎)

χ²検定

- ・ χ²検定(カイにじょうけんてい:独立性の検定)
 - 群ごとの選択したカテゴリの比率の違いを調べる
 - ・抽出データ(推測統計)の場合のみ
 - 通常はクロス集計表を作成して、そこから計算する

35/77

©Ryota Takayanagi 2025

統計学(基礎)

クロス集計表とχ²検定

- ・入院の経験と注射の恐怖感に関係はあるのか
 - → 入院経験がある人の恐怖感と、入院経験のない人の恐怖感 の割合は同じなのか、違うといえるのか? data04 02

	注	射	
入院経験	平気	怖い	合計
なし	55	45	100
あり	25	75	100
合計	80	120	200

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

34

統計学(基礎)

χ²検定

• 帰無仮説 入院経験のあるなしで、注射が「怖い」か「平気」である かは違いが無い

分割表	注	射	
入院経験	平気	怖い	合計
なし	55	45	100
あり	25	75	100
合計	80	120	200

36/77

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

川崎市立看護大学大学院 看護学研究科 博士前期課程

35

χ²検定の手順

- 1. クロス集計表を作成
- 2. 期待度数表を作成
- 3. セルごとに実測値(クロス集計表)と期待度数の差を求め る
- 4. ↑を2乗する
- 5. ↑を期待度数で除した商を求める
- 6. ↑の総和(全セルで実行した合計)を求める(Z)
- 7. Zが χ²分布に従う

37/77

39/77

40

©Ryota Takayanagi 2025

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

1

18.75

期待度数表 jamovi Θ 結果 クロス集計表 → 🙆 入院経験 クロス集計表 列 → <u>@</u>注射 度数(オプション) 49 315 25 > |統計量 使 自由度 p ✓ 期待度数

川崎市立看護大学大学院 看護学研究科 博士前期課程

統計学(基礎) クロス集計表と期待度数表 クロス集計表(実測表) 期待度数表 平気 怖い 計 怖い 平気 計 経験なし 55 45 100 経験あり 40 60 100 経験なし 100 経験あり 25 75 100 40 60 120 200 計 80 120 200 80 38/77

39

Observed

₩ 期時報

非標準化

川崎市立看護大学大学院 看護学研究科 博士前期課程

40/77

©Ryota Takayanagi 2025

期待度数表

- ・実測表(実際のデータのクロス表)と合計は変わらない
- ・各測定値が理論分布になる

			計
	$S \times \frac{a}{S} \times \frac{c}{S}$	$S \times \frac{b}{S} \times \frac{c}{S}$	c
	$S \times \frac{a}{S} \times \frac{d}{S}$	$S \times \frac{b}{S} \times \frac{d}{S}$	d
計	а	b	S

c + d = s

a + b = s

41/77

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

41

統計学(基礎)

期待度数表の作成

- ・実測表(実際のデータのクロス表)と合計は変わらない
- ・各測定値が理論分布になる

			計	
	$S \times \frac{a}{S} \times \frac{c}{S}$	$2 S \times \frac{b}{S} \times \frac{c}{S}$	с	1 + 2 = c
	$S \times \frac{a}{S} \times \frac{d}{S}$	$S \times \frac{b}{S} \times \frac{d}{S}$	d	3 + 4 = d
計	а	b	S	
	1 +	$\Im = a$		•

2 + 4 = b

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

42

統計学(基礎)

期待度数表の作成

- ・実測表(実際のデータのクロス表)と合計は変わらない
- ・各測定値が理論分布になる

川崎市立看護大学大学院 看護学研究科 博士前期課程

			計
	$\frac{S}{S} \times \frac{a}{S} \times \frac{c}{S}$	<i>c</i> −①	с
	<i>a</i> −①	b −2 ④ または d −3	d
計	а	b	S
	_		

$$1 + 2 = c$$

1 + 3 = a + 4 = b

43/77

©Ryota Takayanagi 2025

統計学(基礎)

クロス集計表と期待度数表

クロス集計表(実測表)

期待度数表

	平気	怖い	計
経験なし	55	45	100
経験あり	25	75	100
計	80	120	200

	怖い	平気	計
経験あり	40	60	100
経験なし	40	60	100
計	80	120	200

44/77

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

商の総和を求める

平気 怖い
経験なし 5.625 3.750
経験あり 5.625 3.750

5.625 + 3.750 + 5.625 + 3.750 = 18.750
・今回の χ ²値は 18.75

χ²検定の結果の判断

- ・p値を直接計算できない場合
 - 右のような確率分布表を使う
 - 自由度と主な有意確率の χ²値表
 - ・自由度1で有意確率0.05の場合χ²値は3.84
 - ・自由度1で有意確率0.01の場合 χ²値は6.63
 - ・自由度1で有意確率0.001の場合 χ²値は10.83
 - 今回のχ²値は18.75なので、有意確率は 0.001よりも小さいことがわかる。有意水準を 0.05にしていたら、当然有意水準よりも小さい 有意確率になることがわかる。

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

49

49/77

χ²値とχ²分布 ・ 今回の χ²値は 18.75 有意水準を0.05とすると 有意確率 0.10 0.05 0.01 0.001 2.71 3.84 6.63 10.83 4.61 5.99 9.21 13.82 自由度1の x 2乗分布 6.25 7.81 11.34 16.27 4 7.78 9.49 13.28 18.47 5 9.24 11.07 15.09 20.52 610.6412.5916.8122.46 712.0214.0718.4824.32 8 13.36 15.51 20.09 26.12 914.6816.9221.6727.88 10 15.99 18.31 23.21 29.59 50/77 川崎市立看護大学大学院 看護学研究科 博士前期課程 ©Ryota Takayanagi 2025

50

統計学(基礎)

この場合の χ²検定

帰無仮説は棄却される

川崎市立看護大学大学院 看護学研究科 博士前期課程

- 帰無仮説は「差がない」という仮説なので、今回の検定の結果、 「入院経験の有無と注射の恐怖感には差がない」という帰無仮説 は棄却される。
- 帰無仮説が棄却される場合は対立仮説(差がある)が成立する。
- 今だと、帰無仮説が棄却される可能性が高い のような感じ

51/77

©Ryota Takayanagi 2025

統計学(基礎)

統計学(基礎)

自由度

- ・有意水準(α)を0.05に設定した場合、自由度1で右側が0.05になる χ^2 値は3.84
- ・自由度 標本抽出の際に、自由に決定できるデータ数 分布を決定するパラメータ(係数や傾き)

52/77

川崎市立看護大学大学院 看護学研究科 博士前期課程

54

統計学(基礎)

χ²検定の結果の判断

- ・ χ²値が大きくなると有意確率は小さくなる。
 - 実測値と期待度数の差が大きいほどχ²値は大きくなる。
 - 実測値と期待度数の差が大きいほど、差が無いという仮説から外れていく
 - ・実測値と期待度数の差が小さければχ²値も小さく、有意確率は大きい
- ・有意確率が有意水準 (α) より小さくなると、帰無仮説は 棄却される。

55/77

©Ryota Takayanagi 2025

56

統計学(基礎)

χ²検定の注意点

- ・以下のような場合は、χ²検定は向いてない
 - 期待度数が5未満のセル(組み合わせ)がある場合
 - 分割するカテゴリを減らす
 - データ数が少ない(n<50ぐらい)
 - データ数を増やす

川崎市立看護大学大学院 看護学研究科 博士前期課程

- 分布が極端な場合(片側に依っている)
- ・フィッシャー検定を使う方がよい

56/77

©Ryota Takayanagi 2025

川崎市立看護大学大学院 看護学研究科 博士前期課程

統計学(基礎) data04_01 おやつの場合 クラス きのこの里 たけのこの山 合計 ▼ 統計量 ■ オッズ比(2×2のみ x* 連続性補正 ☑ 対数オッズ比 尤度比 依頼区間 95 % 対立仮説 (フィッシャーの正確確率検定) ○ グルーブ1≠グルーブ2 グループ1 > グループ2 コンティンジェンシー係数 ファイとクラメールのV ケンドールのタウb 95% 信頼区間 569 対数オッズ比 下限 上限 p Odds ratio -1.099 -2.152 -0.045 フィッシャーの直接確率検定 -1.079 -2.287 0.073 .069 58/77 川崎市立看護大学大学院 看護学研究科 博士前期課程 ©Ryota Takayanagi 2025

57

フィッシャーの正確確率検定

・ x²検定 は、近似的な方法(大標本近似)

- 各セルの期待度数が十分大きい(一般的には5以上)ときに、観測度数と期待度数のズレをx²分布に当てはめてP値を計算する。

・ フィッシャーの正確確率検定 は、厳密な方法(exact test)

- サンプルサイズが小さい場合でも、組み合わせの確率をすべて正確に計算してP値を求める

59

58

統計学(基礎)

フィッシャーの正確確率検定

状況	χ²検定のP値	フィッシャー検定のP値	説明
サンプルサイズが十分 大きい	ほぼ一致	ほぼ一致	近似が成立している
サンプルサイズが小さ い(特にn < 50や、期 待度数<5のセルあり)	χ ² のP値が小さ<出が ち	フィッシャーの方が大き め	χ²検定が「差がある」と 過大評価している可能 性が高い
極端な分布(片側にデータが集中)	χ²の近似が崩れる	フィッシャーの方が信頼できる	分布の非対称性をχ²が うまく表現できない

61/77

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

61

統計学(基礎)

統計学(基礎)

χ²検定の注意:比率ではなく度数で計算

	注	射						
入院経験	平気	怖い	合計					
あり	5	15	20	_				
なし	11	9	20					
合計	16	24	40					
カイ二乗検定	領		df	р	_			
カイ二乗検定					_			
	値				_			
カイ二原検定 X ^a N	領 3.75	50	df 1	p .053				
X ^a	領 3.75							
X ² N	值 3.75 4				-			
X ^a	領 3.75 4				-			_
X ² N	領 3.75 4				95% 信	横区間		_
X ² N	領 3.75 4			.053	95% 信下限	接区間上限	р	-
X ² N	領 3.75 4		対数オ	.053			р	-

統計学(基礎)

フィッシャーの正確確率検定

- ・ χ²検定は、データ数が多いときには手軽で正確な方法 - データ数が少ないときには誤差が大きくなる
- ・フィッシャーの検定はデータ数が少ない場合に「正確な」 結果を出してくれる方法
- ・両者のP値が大きく違う場合は、データが小規模で近似がうまくいっていない可能性が高い
 - この場合は、フィッシャーの検定の結果を優先して解釈するの が一般的

川崎市立看護大学大学院 看護学研究科 博士前期課程

62/11

©Ryota Takayanagi 2025

62

χ²乗検定は比率じゃ無くて数

- ・比率が同じでも、数が多いと有意差が出る - 計算の特性だから仕方ない
- そこで出てくる差は、研究上、実際上意味があるのかは、 検定ではわからない
 - 検定は帰無仮説と同じ確率がどれだけしか出さない
 - 差に意味があるかどうかを決めるのは、自分

64/77

川崎市立看護大学大学院 看護学研究科 博士前期課程

65

統計学(基礎) Health Habits(健康習慣) ・データライブラリ 5. Frequencies Health Hbits ・1,184人の学生における身体活動量と果物の摂取量 • 変数: - Physical Activity 参加者の身体活動量(Low=低い、Moderate=中程度、 Vigorous=高い) - Fruit Consumption 参加者の果物摂取量(Low=少ない、Medium=中程度、High=多 (1)

66

川崎市立看護大学大学院 看護学研究科 博士前期課程

67

標準化残差(standardized residual)

- ・各セルの「観測度数 期待度数」がどの程度大きいか を標準偏差単位で示した値
- これをさらに分割表全体の分散構造を考慮して補正したのが「調整済み標準化残差(adjusted standardized residual)」
 - 「調整済みピアソン」とも言う

69/77

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

69

70

統計学(基礎)

グッドマン=クラスカルのガンマ (Goodman-Kruskal's γ)

- ・順序カテゴリ間の関係(クロス表)を評価するための指標
- 2つの順序変数の一致(C:concordant pairs)・不一 致の組(D:discordant pairs)の差に基づく。

 $\gamma = 1 \rightarrow$ 完全に一致(すべてのペアが同じ方向)

 $\gamma = -1 \rightarrow$ 完全に逆方向

 $\gamma = 0 \rightarrow -$ 致と不一致が同じくらい(関係なし)

71/77

©Ryota Takayanagi 2025

統計学(基礎)

標準化残差(standardized residual)

絶対値	解釈	備考
約1以下	偶然の範囲	特に偏りなし
約1.96以上	5%水準で有意	有意な偏り
約2.58以上	1%水準で有意	強い偏り

分割表▼

		Fruit Consumption			
Physical Activity		Low	Medium	High	合計
Low	Count	69.00	25.00	14.00	108.0
	Standardized residuals	3.45	-0.97	-2.99	
Moderate	Count	206.00	126.00	111.00	443.0
	Standardized residuals	-0.83	0.80	0.14	
Vigorous	Count	294.00	170.00	169.00	633.0
	Standardized residuals	-1.19	-0.21	1.59	
合計	Count	569.00	321.00	294.00	1,184.0

70/77 川崎市立看護大学大学院 看護学研究科 博士前期課程 ©Ryota Takayanagi 2025

子人子阮 有遗子听允件 肾上削期沫性 CRyot

統計学(基礎)

ケンドールの順位相関係数 (Kendall's τ)

- グッドマン=クラスカルのガンマと似ているが同順位も 考慮
 - より厳密になる
 - グッドマン=クラスカルの方が値が大きめ
 - -1~1 の範囲

±0.3 くらい:弱い関係

±0.5 前後:中程度

±0.7 以上:強い関係

72/77

©Rvota Takayanagi 2025

川崎市立看護大学大学院 看護学研究科 博士前期課程

川崎市立看護大学大学院 看護学研究科 博士前期課程

グッドマン=クラスカルのγと ケンドールの順位相関 (τb)

- γ は「クロス表で傾向をざっくり見る」ためのもの
- τ は「順位データの一致度を精密に見る」ためのもの
- γは単純な方向一致率、τは同順位も含めた厳密な一 致度を表す

73/77

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

73

75

統計学(基礎)

「分割が多いクロス表」は扱いにくい

- 期待度数が小さくなりやすい
 - ヤルが増えると、1ヤルあたりのデータ数が減る
 - その結果、「期待度数<5」のセルが増えて、χ²検定の前提 (大標本近似)が崩れる
 - フィッシャー検定でも、分割が大きくなると計算が膨大(ほぼ 不可能)になる
 - ・JASPは2×2まで。jamoviはそれ以上でもやるけど途中で止まる

75/77

©Ryota Takayanagi 2025

統計学(基礎)

グッドマン=クラスカルのγと ケンドールの順位相関(τ b)

- ・ χ²乗検定で有意確率がある程度小さい(標準化残差の 大きいところがある)けど、γやτが低い
- →行列の間に関係性はあるけど、一貫した関係性(順序性 や上昇・下降傾向)はない

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Rvota Takayanagi 2025

74

統計学(基礎)

「分割が多いクロス表」は扱いにくい

- 「どこに差があるか」が直感的に見えない
 - 2×2なら「多いか少ないか」がすぐわかる
 - 3×4とかになると、全体で有意でも「どのセルが寄与してい るのか」が読みにくい
 - 標準化残差で見るにしても、±1.96以上のセルが点在してい て、説明しにくい(順序変数だけど順序性がない場合の説明 をどうするか)

76/77

川崎市立看護大学大学院 看護学研究科 博士前期課程

©Ryota Takayanagi 2025

川崎市立看護大学大学院 看護学研究科 博士前期課程

クロス表作成上の注意

- あまり大きなクロス表は作らない
- ・クロス集計表はシンプルなほど関係が見えやすい
 - 直感的に結果が説明できる、2×2クロスがベスト
- 分割が増えると情報が増えても、期待度数が少なくなるので、結果の信頼性が下がる場合がある
- ・3×3以上は、基本的には、集約・再分類を検討した方がいい
 - できれば、2×2、せめて2×3くらいに整理して考えるのが基本

77/77

川崎市立看護大学大学院 看護学研究科 博士前期課程