DIGITAL ELECTRONICS: ECE 213

Topic: IC LOGIC FAMILIES

UNIT III: Introduction to

Combinational Logic Circuits and Logic

Families

Lecture No.: 23

Parity Generator Circuit

Even Parity Generator

If odd number of ones present in the input, then even parity bit, P should be '1' so that the resultant word contains even number of ones.

Binary Input WXY	Even Parity bit P	
000	0	
001	1	
010	1	
011	0	
100	1	
101	0	
110	0	
111	1	

$$P = W'X'Y + W'XY' + WX'Y' + WXY$$

$$\Rightarrow$$
 $P = W'(X'Y + XY') + W(X'Y' + XY)$

$$\Rightarrow P = W'(X \oplus Y) + W(X \oplus Y)' = W \oplus X \oplus Y$$

Odd Parity Generator

If even number of ones present in the input, then odd parity bit, P should be '1' so that the resultant word contains odd number of ones

Binary Input WXY	Odd Parity bit P
000	1
001	0
010	0
011	1
100	О Х-
101	1
110	1
111	0

Parity Checker Circuit

Even parity checker checks error in the transmitted data, which contains message bits along with even parity.

Four Bits Received		Parity Error Check			
A	В	С	D	PEC	
0	0	0	0	0	
0	0	0	1	1	
0	0	1	0	.1	
0	0	3.	1	0	
0	1	0	0	1	
0	1	0	1	0	
0	1	1	0	0	
0	1	- 1	1.		
1	0	0	0	1	
1	0	0	1	0	
1	0	1	0	0	
1	0	1	1	1	
1	1	0	0	0	
1	1	1	0	1	
1	1	1	1	0	

DIGITAL IC LOGIC FAMILIES:

Logic Families

OBSOLETE ONES:

- 1. Diode Logic.
- 2. Diode Transistor Logic (DTL).
- 3. Resistor Transistor Logic (RTL).

CURRENT ONES:

- 1. TTL (Transistor Transistor Logic)
- 2. ECL (Emitter Coupled Logic)
- 3. CMOS (Complementary Metal Oxide Semiconductor)

IC Families

Logic family are digital integrated circuit devices which are constructed with a combination of electronic gates.

A family has its own power supply voltage and group potential; distinct logic levels.

Diode Logic (DL)	logic is implemented with the use of resistors and diodes.
J (/	

- •Resistor-Transistor Logic (RTL) logic is implemented with the use of transistors and resistors
- •Diode-Transistor Logic (DTL) logic is implemented with the use of diodes and transistors.
- •Transistor-Transistor Logic (TTL) logic are implemented with transistors
- •Emitter Coupled Logic (ECL) logic are implemented with transistors
- •Complementary Metal Oxide Semiconductor Logic (CMOS) logic are implemented with MOSFET

Characteristics of an Ideal Logic Family

The most important parameters for evaluating and comparing logic families include:

- Logic Levels
- Power Dissipation
- Propagation delay
- Noise margin
- Fan-out (loading)

Characteristics of Logic Family

- Fan in: The number of inputs that the gate can handle properly with out disturbing the output level.
- Fan out: The number of inputs that can driven simultaneously by the output with out disturbing the output level.
- Noise immunity: Noise immunity is the ability of the logic circuit to tolerate the noise voltage.

Hold the sender to tougher standards!

"1" noise margin: $V_{IH} - V_{OH}$ "0" noise margin: $V_{TL} - V_{OL}$

As illustrated in Figure the noise margin for a logical 0 is given by

$$NM_0 = V_{IL} - V_{OL}$$

and the noise margin for a logical 1 is given by

$$NM_1 = V_{OH} - V_{IH}$$
.

Characteristics of Logic Family

- Noise Margin : The quantative measure of noise immunity is called noise margin.
- ▶ Propagation Delay: The propagation delay of gate is the average transition delay time for the signal to propagate from input to output
- ➤ Threshold Voltage: The voltage at which the circuit changes from one state to another state
- Operating Speed: The speed of operation of the logic gate is the time that elapses between giving input and getting output.
- Power Dissipation: The power dissipation is defined as power needed by the logic circuit.

TTL IC Family

- In Transistor-Transistor logic or just TTL, logic gates are built only around transistors
- TTL was developed in 1965
- Through the years basic TTL has been improved to meet performance requirements. There are many versions or families of TTL. For example
 - Standard TTL
 - High Speed TTL (twice as fast, twice as much power)
 - Low Power TTL (1/10 the speed, 1/10 the power of "standard" TTL)
 - Schhottky TTL etc. (for high-frequency uses)

TTL IC Family

Transistor-Transistor Logic Families:

74L Low power

74H High speed

74S Schottky

74LS Low power Schottky

74AS Advanced Schottky

74ALS Advance Low power Schottky

TTL IC Family Evolution

Legacy: don't use in new designs

Widely used today

ECL IC Family

- PROS: Fastest logic family available (~lns)
- CONS: low noise margin and high power dissipation
- Operated in emitter coupled geometry (recall differential amplifier or emitter-follower), transistors are biased and operate near their Q-point (never near saturation!)
- Logic levels. "0": -1.7V. "1": -0.8V
- Such strange logic levels require extra effort when interfacing to TTL/CMOS logic families

CMOS IC Family

Complementary MOS (CMOS)

- Other variants: NMOS, PMOS (obsolete)
- Very low static power consumption
- Scaling capabilities (large integration all MOS)
- Full swing: rail-to-rail output

CMOS Family Evolution

4000 Series

CMOS. Wide supply voltage range. High noise margin. Low speed. Weak output drive. Practically obsolete.

74C Series

CMOS. Pin-compatible with TTL devices. Low speed. Obsolete. Replaced by HC/HCT family.

74HC/HCT Series

CMOS. Drastic increase in speed. Higher output drive capability. HCT input voltage levels compatible with TTL.

74AC/ACT Series

CMOS. Functionally compatible, but not pin-compatible to TTL. Improved noise immunity and speed. ACT inputs are TTL compatible.

74AHC/AHCT Series

CMOS. Improved speed, lower power, lower drive capability.

BiCMOS Logic

CMOS/Bipolar. Combine the best features of CMOS and bipolar. Low power high speed. Bus interfacing applications (74BCT, 74ABT)

74LVC/ALVC/LV/AVC

CMOS. Reduced supply voltage.

LVC: 5V/3.3V translation ALVC: Fast 3.3V only

AVC: Optimised for 2.5V, down to 1.2V

TTL vs CMOS

- faster (some versions)
- strong drive capability
- rugged

- lower power consumption
- simpler to make
- greater packing density
- better noise immunity

CMOS as a Switch

PMOS

ON Gate input Low
OFF Gate input High

NMOS

OFF→ Gate input Low ON→ Gate input High

Comparison of Logic Families

	TTL	ECL	CMOS
Base Gate	NAND	OR/NOR	NAND/NOR
Fan-in	12-14	>10	>10
Fan-out	10	25	50
Power dissipation (mW)	10	175	0.001
Noise Margin	0.5V	0.16V (lowest)	1.5∨ (Highest)
Propagation Delay (ns)	10	<3 lowest	15 Highest
Noise immunity	Very good	good	excellent