12.2 K-maps: Introduction

K-maps

A **K-map** is a graphical function representation that eases the simplification process for expressions involving a few variables, by adjacently placing minterms that differ in exactly one variable. K-map is short for **Karnaugh map**. "Map" is used like how a country map lays out cities next to each other. A K-map lays out minterms instead.

A K-map lays out possible minterms as adjacent cells (boxes). Adjacent minterm cells differ by exactly one variable. Each function minterm cell gets a 1; other cells get 0.

A K-map is a reoriented truth table.

PARTICIPATION 12.2.1: A 2-variable K-map: Adjacent cells differ in exactly one variable.		
Start 2x speed y = a'b' + ab' a	a b y 0 0 1 0 1 0 1 0 1 1 1 0	
PARTICIPATION 12.2.2: 2-variable K-map		
a b 0	0 1 0 1 (J)	
Given function y = ab + a'b, represented 1) (J) corresponds to which minterm?	in the above figure's K-map.	
Check Show answer 2) (K) corresponds to which minterm? Check Show answer		
3) (L) should have what value (0 or 1)?		
Check Show answer 4) Cells (J) and (K) differ in what variab a, or b?	le:	
Check Show answer 5) Cells (L) and (K) differ in what variab a, or b?	le:	
Check Show answer 6) Cells (L) and (J) differ in how many variables?		
Check Show answer		

Because adjacent minterm cells differ in exactly one variable, a K-map's key benefit is to make i(j + j') simplification opportunities obvious: Adjacent 1's are an i(j + j') opportunity. Circling two adjacent 1's graphically represents the algebraic simplification i(j + j') = i(1) = i. After drawing such a circle, a designer can write a product term with the differing variable omitted. $\begin{array}{ll} \textbf{PARTICIPATION} \\ \textbf{ACTIVITY} \end{array} \hspace{0.5cm} 12.2.3: \hspace{0.5cm} \text{Simplification with a 2-variable K-map: } \textbf{i}(\textbf{j}+\textbf{j}') \hspace{0.5cm} \text{opportunities are obvious.} \end{array}$ Start 2x speed A powerful feature of a K-map is how easily replicating a minterm is achieved (recall an earlier section's example), merely by circling a cell **PARTICIPATION** 12.2.4: Circling a 1 twice is like replicating a minterm to create i(j + j')opportunities. Start 2x speed Table 12.2.1: Rules for simplifying a sum-of-minterms expression with a K-Rule 1: Cover every 1 at least once using circles. Add circle's term to expression. Rule 2: Use fewest and largest circles possible, to achieve simplest expression. PARTICIPATION 12.2.5: Basic 2-variable K-map. 0 0 0 Consider the K-maps in the figure above. 1) Circle (L) is what simplified term? Check Show answer 2) Is circle (M) necessary? Type: yes or no Check Show answer 3) Is circle (P) a good circle? Type: yes or Check Show answer Example: Out-of-bed alarm An example in an earlier section involved sounding an alarm (s = 1) if a person was up from bed (u = 1) and a button pressed (b = 1), or a person was up and button was not pressed. The captured equation was s = ub + ub'. A K-map can be used to simplify the equation. PARTICIPATION 12.2.6: Simplifying with a K-map: Out-of-bed alarm. Start 2x speed

s = ub + ub' s = u Out-of-bed alarm u 0 0 0 0 0 1 1 1 1 u	
PARTICIPATION 12.2.7: Out-of-bed alarm system.	
Consider the example above.	
 1) The designer captured behavior as s = ub + ub', but simplification yielded s = u. Thus, the designer incorrectly captured the original behavior. True False 	
The simplification on the K-map was	
quite obvious.	
O True O False	
- 1.40	
Example: Motion-sensing light An earlier section captured a motion-sensing lamp's behavior and then simplified algebraically. That example oby a K-map instead.	can more-easily be simplified
PARTICIPATION ACTIVITY 12.2.8: Simplifying with a K-map: Motion-sensing light.	
Start 2x speed	
Inputs: m: motion sensed	
t test mode Outputs: i: illuminate lamp Goal: Illuminate lamp if motion and not test mode, or if test mode and no motion, or if test mode and motion	
Algebraic simplification $ i = mt' + tm' + tm $ $ i = mt' + mt + mt $ $ i = mt' + mt + mt + mt $ $ i = mt' + mt + mt + mt $ $ i = mt' + mt + mt + mt $ $ i = m(t + t) + (m' + m) t $ $ i = m(1) + (1)t $ $ i = m(1) + t(1) $ $ i = m + t $ $ T$	
PARTICIPATION 12.2.9: Motion-sensing light system.	
Consider the example above.	
1) How many equations were involved using algebraic simplification?2	
O 8	_
How many circles were drawn using K-map simplification? 2	U
O 3	_
3) K-maps help with simplification by not obeying algebraic properties.True	
O False	
Provide feedback on this section	