Хеширование

Минский ШАД. Осень

7 марта 2015 г.

1 Обозначения

В данной домашней работе будет много задач на строки. Введём следующие обозначения:

- |s| длина строки s
- s[i] i-й символ строки s
- $s[i\dots j]$ подстрока строки s, которая начинается в индексе i и заканчивается в индексе j
- \bullet \overline{s} «перевёрнутая» строка s
- $\operatorname{ord}(c)$ произвольная инъективная функция из алфавита строки в целые числа. Тут будем считать, что символы пронумерованы по алфафиту, т.е. $\operatorname{ord}(a) = 1, \operatorname{ord}(b) = 2, \dots$

Например, если s =«abacaba», то:

- |s| = 7
- s[3] = c'
- s[1...3] = «bac»
- $\overline{s[1...3]} = \text{«cab»}$

2 Тематические задачи

- 1. Предложить, как решать с помощью полиномиального хеширования следующие задачи (везде вам дана строка s, причём |s| = n):
 - (а) $[\frac{1}{2}$ балла] По данным парам (l_1, r_1) и (l_2, r_2) отвечать на запрос, правда ли, что равны две строки $s[l_1 \dots r_1]$ и $s[l_2 \dots r_2]$ за $\mathcal{O}(1)$. Разрешается делать препроцесс за $\mathcal{O}(n)$
 - (b) $[\frac{1}{2}$ балла] По данным парам (l_1, r_1) и (l_2, r_2) отвечать на запрос, правда ли, что равны две строки $s[l_1 \dots r_1]$ и $\overline{s[l_2 \dots r_2]}$ за $\mathcal{O}(1)$. Разрешается делать препроцесс за $\mathcal{O}(n)$
 - (c) $[\frac{1}{2}$ балла] По данной паре (l,r) отвечать на запрос, правда ли, что строка s[l...r] является палиндромом за $\mathcal{O}(1)$. Разрешается делать препроцесс за $\mathcal{O}(n)$
 - (d) $[\frac{1}{2}$ балла] Найти по данным (i,j) найти длину наибольшего общего префикса двух строк $s[i\dots|s|]$ и $s[j\dots|s|]$ за $\mathcal{O}(\log n)$. Разрешается препроцесс за $\mathcal{O}(n)$
 - (e) $[\frac{1}{2}$ балла] Вычислить z-функцию строки за $\mathcal{O}(n \log n)$ (т.е. найти z_i для всех $i = \overline{1 \dots |s|}$). z_i длина наидлиннейшей подстроки, которая начинается в символе с индексом i и совпадает с префиксом строки.
 - (f) $[\frac{1}{2}$ балла] Для пары (i,j) выяснить, какой суффикс лексикографически меньше: который начинается в i или который начинается в j. Время работы $\mathcal{O}(\log n)$. Препроцесс за $\mathcal{O}(n)$

(g) $[\frac{1}{2}$ балла] Построить суффиксный массив для строки s за время $\mathcal{O}(n\log^2 n)$. i-суффиксом (suf $_i$) назовём подстроку $s[i\dots|s|]$. Суффиксный массив a_i — перестановка первых n чисел, такая, что $\sup_{a_i} < \sup_{a_{i+1}}$ для любого $i = \overline{1\dots|s|-1}$. Сравнение проводится лексикографически.

Решение:

Повторим идею полиномиального хеширования. Рассмотрим строку «abacaba». Зафиксируем число p (для определённости возьмём тройку), модуль N (для определённости возьмём 1234) и каждому индесу i поставим в соотвествие число p^i ord $(s[i]) \mod N$. Также посчитаем куммулятивный массив таких сумм h (тут тоже суммируем по модулю N):

s_i	a	b	a	С	a	b	a
i	0	1	2	3	4	5	6
$\operatorname{ord}(s_i)$	1	2	1	3	1	2	1
p^i	1	3	9	27	81	243	729
a_i	1	6	9	81	81	486	729
h_i	1	7	16	97	178	664	159

Для удобства записи отождествим s_i и $\operatorname{ord}(s_i)$ в дальнейшем рассуждении.

Пусть нас спросили, равны ли подстроки $s[1\dots 2]$ и $s[5\dots 6]$. Поступим так же, как обычно поступают с куммулятивным массивом, т.е. попробуем посчитать сумму на подотрезке. Что мы получим для первой подстроки: $h_2-h_0=ps_1+p^2s_2=15$, для второй: $h_6-h_4=p^5s_5+p^6s_6=$ [Вычисления по модулю] = 1215.

Заметим, что полученные выражения отличаются лишь в показателях степеней. Естественный выход — домножить одну величину на «разность» между степенями, а именно $(h_2 - h_0)p^{5-1} = 15 \cdot 81 = 1215 = h_6 - h_4$. Т.е. хеши действительно совпали.

Таким образом, общий метод для проверки подстрок на совпдаение:

- Проверить, что $r_1 l_1 = r_2 l_2$, иначе строки сразу не равны
- Пусть, не теряя общности, $l_1 \leqslant l_2$. Тогда проверим на равенство $(h_{r_1} h_{l_1-1})p^{l_2-l_1}$ и $h_{r_2} h_{l_2}$. Если хеши не совпали, то строки различны. Иначе можно с высокой долей уверенности говорить, что строки тоже совпадают.

Для пункта b кроме хешей для строки s предпросчитаем хеши для строки \bar{s} . Теперь надо просто находить разности из двух разных куммулятивных массивов.

Для пункта с воспользуемся решением предыдущего пункта (положим $l_1 = l_2, r_1 = r_2$)

Для пункта d воспользуемся бинарным поиском по ответу, а именно будем перебирать длину этой подстроки и сравнивать подстроки описанным методом (пусть текущее значение длины строки — k, тогда можно положить $l_1 = i$, $r_1 = i + k - 1$, $l_2 = j$, $r_2 = j + k - 1$).

В пункте е надо лишь применить решение из d, считая, что j=0.

В пункте f найдём длину самой длинной подстроки, i-суффикса и j-суффикса (пункт d), а затем сравним первый несовпадающий символ двух суффиксов (просто посмотрев в строку на соответствующие места).

В пункте g просто отсортируем массив из первых n чисел с помощью компоратора, описанного в пункте f.

2. Предложить функцию для хеширования мультимножеств. А именно, по мультимножеству A и числу m ваша функция h(A,m) должна выдавать число в диапазоне $0 \dots 2^m - 1$, такое что (можно

считать, что у вас есть хеш-функция для любого возможного элемента мультимножества, которая вычисляется за $\mathcal{O}(1)$:

- (a) [1/2 балла] h(A,m)=h(B,m), если A=B
- (b) [½ балла] Функция должна быть легко обновляемая (т.е. при добавлении элемента в мультимножество должно быть можно пересчитать значение $h(A \cup \{x\}, m)$ за $\overline{o}(|A|^{\varepsilon})$, для любого $\varepsilon > 0$)
- (c) $[\frac{1}{2}$ балла] Функция должна быть суръективна (можно считать, что функция хеширования элемента суръективна)
- (d) [3 балла] Функция должна быть стойкой. С целью упрощения будем считать, что функция стойкая, если выполняется хотя бы одно из двух:
 - Рассмотрим конечное множество элементов B и будем считать, что все элементы мультимножества лежат в B. Зададимся числом n и рассмотрим множество мультимножеств $S_n = \{A : |A| \le n\}$. Функцию будем называть стойкой, если $\forall m$ и для любого k $(0 \le k < 2^m)$, $P\{h(A,m) = k | A \in S_n\} \to \frac{1}{2^m}$, при $n \to \infty$
 - Функцию будет называть стойкой, если для достаточного большого m и $|A| \not\equiv$ такая константа k, что $\forall |A| \exists C, D$, такие что $|C| \leqslant k$, $|D| \leqslant k$ и $h(A, m) = h((A \cup C) \setminus D, m)$

Решение:

Для пункта а и b подходит, например $h \equiv 0$.

Для пункта с можно использовать, например, $h(A) = \bigoplus_{x \in A} H(x)$

Для пункта d нужно использовать уже хорошие функции. Хорошей функцией может являться, например, такая $h(A) = \prod_{x \in \mathrm{uniq}(A)} H(x)^{\mathrm{cnt}(x)}$, где cnt — кратность элемента x в A, a uniq —

множество всех элементов мультимножества. За доказательством этого факта можно обратиться сюда.

Вообще говоря, я немного облажался с первым определением, поэтому тут подходит почти всё разумное. В частности, просто \bigoplus всех хешей элементов.

Красивую идею предложила студентка Миронович, но почему-то не довела до конца. А именно, посмотрим на сумму хешей всех элементов. По центральной предельной теорема после несложного преобразования она начинает вести себя как случайная величина нормального распределения. Давайте просто теперь возьмём эту величину и несложным преобразованием получим из неё величину равномерно распределения от 0 до 2^M — профит.

3 Задачи на повторение

3. $[\frac{1}{2}$ балла] Дан отсортированный массив различных целых чисел. Надо определить, существует ли такой индекс i, что $a_i = i$. Сложность алгоритма должна быть $\mathcal{O}(\log n)$, где n- длина массива.

Решение:

Так как числа целые и различные, то $a_i \geqslant a_{i-1} + 1$. Рассмотрим функцию $f(i) = a_i - i$. Она неубывающая. Поэтому можно найти первую точку, где она не меньше нуля за $\mathcal{O}(\log n)$ с помощью бинарного поиска.

4. $[\frac{1}{2}$ балла] Пусть мы имеем два положительные неубывающие функции f(x) и g(x), причём $f(n) = \mathcal{O}(g(n))$. Правда, что $2^{f(n)} = \mathcal{O}(2^{g(n)})$? Если это может как выполняться, так и не выполняться, привидете примеры обоих случаев. Иначе докажите утверждение.

Решение:

Иногда это выполнятся, например f(n) = g(n). В частности, это правда, если $f(n) \leqslant g(n)$, при $n \to \infty$.

С другой стороны, если, к примеру, g(n) = 2f(n), то $2^{f(n)}$ и $2^{g(n)}$ отличаются уже не в константу раз.

5. $[\frac{1}{2}$ балла] Пусть у нас есть k отсортированных последовательностей из n чисел каждая. Предлагается такой алгоритм слияния их в одну: сначала сольём две первых последовательности, затем результат с третьей, и так далее. Какова сложность полученного алгоритма? Считаем, что слияние двух массивов происходит за их суммарную длину.

Решение:

$$\sum_{i=1}^{k-1} n + in = n \sum_{i=1}^{k-1} i + 1 = \mathcal{O}(nk^2)$$

4 Практические задачи

Ссылка на контест: https://contest.yandex.ru/contest/1080/problems/

- 6. [1 балл] Задача А. Дана строка S. Необходимо найти самую длинную подстроку, которая встречается в S хотя бы два раза. Вхождения могут перекрываться. Ождиаемая сложность $\mathcal{O}(|S|\log|S|)$.
- 7. [1 балл] Задача В. Реализуйте решение задачи про суффиксный массив через хеши.

Задание	1	2	3	4	5	6	7	Сумма
Баллы	31/2	$4\frac{1}{2}$	1/2	1/2	1/2	1	1	111/2