Project Planning Phase

Project Planning Template (Product Backlog, Sprint Planning, Stories, Story points)

Date	5 NOVEMBER 2022
Team ID	PNT2022TMID28062
Project Name	Classification of arrhythmia by using deep learning with 2-d ECG image spectral representation
Maximum Marks	8 Marks

Product Backlog, Sprint Schedule, and Estimation (4 Marks)

Use the below template to create product backlog and sprint schedule

Sprint Functional User Story User Story / Task Requirement (Epic) Number		User Story / Task	Story Points		Team Members	
Sprint-1	Download The Dataset	USN-1	We can download the Dataset contains Six classes	4	Low	Charulatha GS,Gopiha R Jayawarshini R,Harini S
Sprint-2	Import The ImageDataGenerator Library	USN-2	We can import ImageDataGenerator	4	Low	Charulatha GS,Gopiha R Jayawarshini R,Harini S
Sprint-3	Configure ImageDataGenerator class	USN-3	We can configure the ImageDataGenerator class	6	Medium	Charulatha GS,Gopiha R Jayawarshini R,Harini S
Sprint-4	Apply the ImageDataGenerator functionality to Train Set and Dataset	USN-4	We can apply ImageDataGenerator to train dataset	6	Medium	Charulatha GS,Gopiha R Jayawarshini R,Harini S
Sprint-5	Import Libraries	USN-5	We can import required Libraries	1	Low	Charulatha GS,Gopiha R Jayawarshini R,Harini S

Sprint	Functional User Story User Story / Task Requirement (Epic) Number		Story Points	Priority	Team Members	
Sprint-6	Initialize the Model	USN-6	Initializing the Image recognition model	2	Medium	Charulatha GS,Gopiha R Jayawarshini R,Harini S
Sprint-7	Adding CNN layer	USN-7	We can add Convolutional Neural Network(CNN) used for image/object recognition and classification	3	High	Charulatha GS,Gopiha R Jayawarshini R,Harini S
Sprint-8	Adding Dense Layer	USN-8	We can add Dense Layer in which each neuron receives input from all the neurons of previous layer			Charulatha GS,Gopiha R Jayawarshini R,Harini S
Sprint-9	Configure The Learning Process	USN-9	We can configure The Learning process which is a method, mathematical logic or algorithm that improves the network's performance and/or training time.	4	High	Charulatha GS,Gopiha R Jayawarshini R,Harini S
Sprint-10	Train the Model	USN-10	We can train our model with our image dataset. fit_generator functions used to train a deep learning neural network	4	High	Charulatha GS,Gopiha R Jayawarshini R,Harini S
Sprint-11	Save the Model	USN-11	We can save The model with .h5 extension	2	Medium	Charulatha GS,Gopiha R Jayawarshini R,Harini S
Sprint-12	Test the model	USN-12	We can Test the model through Loaded necessary libraries, the saved model	2	Medium	Charulatha GS,Gopiha R Jayawarshini R,Harini S
Sprint-13	Create Html files	USN-13	We use HTML to create the front end part of the web page. High		Charulatha GS,Gopiha R Jayawarshini R,Harini S	
Sprint-14	Build Python code	USN-14	We build the flask file 'app.py' which is a web framework written in python for server-side scripting.	8	High	Charulatha GS,Gopiha R Jayawarshini R,Harini S R

Sprint	Functional Requirement (Epic)	User Story Number	User Story / Task	Story Points	Priority	Team Members
Sprint-15	Run the App	USN-15	We can run the App	4	Medium	Charulatha GS,Gopiha R Jayawarshini R,Harini S
Sprint-16	Register in IBM Cloud	USN-16	We can register in the cloud	8	Medium	Charulatha GS,Gopiha R Jayawarshini R,Harini S
Sprint-17	Train the model on IBM	USN-17	We can train the model on IBM	12	High	Charulatha GS,Gopiha R Jayawarshini R,Harini S

Project Tracker, Velocity & Burndown Chart: (4 Marks)

Sprint	Total Story Points	Duration	Sprint Start Date	Sprint End Date(Planned)	Story Points Completed (as on Planned End Date)	Sprint Release Date(Actual)
Sprint-1	20	6 Days	24 Oct 2022	29 Oct 2022	20	29 Oct 2022
Sprint-2	20	6 Days	31 Oct 2022	05 Nov 2022	20	05 Nov 2022
Sprint-3	20	6 Days	07 Nov 2022	12 Nov 2022	20	12 Nov 2022
Sprint-4	20	6 Days	14 Nov 2022	19 Nov 2022	20	19 Nov 2022

Velocity:

$$Av = 24/6 = 4$$

Average Velocity is **4** points per Sprint

BurndownChart:

A burndown chart is a graphical representation of work left to do versus time. It is often used in agile software development methodologies such as Scrum. However, burn down charts can be applied to any project containingmeasurable progress over time.

