We already have seen an algorithmie technique in the Previous chapter names divide and conquer

In tems chapter, we introduce another such technique, colled Greedy algorithms

A greedy algorithm, mosty designed for an optimization problem, Starts with an empty solution and adds element to the subsolution based on a choice that Looks best at this moment Hoping that an optimal solution be achieved in this way. of the time, greedy solution to achieve optimality.

The Knapsack Problem...

Capacity of knapsack: K = 4

Fractional Knapsack Problem: Can take a fraction of an item.

0-1 Knapsack Problem:
Can only take or leave item. You can't take a fraction.

Geiven Plems with neight and xalve and a Knopsock with copuly k the objective to to put items inside the knopsock with moximum xolve.

Solution:

2 pd	2 pd C
\$100	\$80

Solution:

3 pd	
\$120	

The Fractional Knapsack Problem: Formal Definition

• Given K and a set of n items:

weight	$ w_1 $	W ₂	• • •	W _n
value	V_1	<i>V</i> ₂	• • •	Vn

• Find: $0 \le x_i \le 1$, $i = 1, 2, \dots, n$ such that

$$\sum_{i=1}^n x_i w_i \le K$$

and the following is maximized:

$$\sum_{i=1}^{n} x_i v_i$$

Greedy Solution for Fractional Knapsack

If knapsack holds K = 5 pd, solution is:

1	pd	Α
3	pd	В
1	pd	С

Greedy Solution for Fractional Knapsack

- Calculate the value-per-pound $\rho_i = \frac{v_i}{w_i}$ for $i = 1, 2, \ldots, n$.
- Sort the items by decreasing ρ_i . Let the sorted item sequence be 1, 2, ..., i, ..., n, and the corresponding value-per-pound and weight be ρ_i and w_i respectively.
- Let k be the current weight limit (Initially, k = K). In each iteration, we choose item i from the head of the unselected list.
 - If $k \ge w_i$, set $x_i = 1$ (we take item i), and reduce $k = k w_i$, then consider the next unselected item.
 - If $k < w_i$, set $x_i = k/w_i$ (we take a fraction k/w_i of item i), Then the algorithm terminates.

Running time: $O(n \log n)$.

Greedy Solution for Fractional Knapsack

- Observe that the algorithm may take a fraction of an item.
 This can only be the last selected item.
- We claim that the total value for this set of items is the optimal value.

Correctness

Given a set of n items $\{1, 2, ..., n\}$.

• Assume items sorted by per-pound values: $\rho_1 \ge \rho_2 \ge ... \ge \rho_n$.

Let the greedy solution be $G = \langle x_1, x_2, ..., x_k \rangle$

• x_i indicates fraction of item i taken (all $x_i = 1$, except possibly for i = k).

Consider any optimal solution $O = \langle y_1, y_2, ..., y_n \rangle$

- y_i indicates fraction of item i taken in O (for all i, $0 \le y_i \le 1$).
- Knapsack must be full in both G and O: $\sum_{i=1}^{n} x_i w_i = \sum_{i=1}^{n} y_i w_i = K.$

Consider the first item i where the two selections differ.

• By definition, solution G takes a greater amount of item i than solution O (because the greedy solution always takes as much as it can). Let $x = x_i - y_i$.

Correctness...

Consider the following new solution O' constructed from O:

- For j < i, keep $y'_j = y_j$.
- Set $y_i' = x_i$.
- In O, remove items of total weight xw_i from items i+1 to n, resetting the y'_i appropriately.

This is always doable because $\sum_{j=i}^{n} x_j = \sum_{j=i}^{n} y_j$

- The total value of solution O' is greater than or equal to the total value of solution O (why?)
- Since O is largest possible solution and value of O' cannot be smaller than that of O, O and O' must be equal.
- Thus solution O' is also optimal.

By repeating this process, we will eventually convert O into G, without changing the total value of the selection.

Therefore *G* is also optimal!

Greedy solution for 0-1 Knapsack Problem?

The 0-1 Knapsack Problem does not have a greedy solution!

Question

Suppose we tried to prove the greedy algorithm for 0-1 knapsack problem **does** construct an optimal solution. If we follow exactly the same argument as in the fractional knapsack problem where does the proof fail?

Greedy Scheduling

https://cs.pomona.edu/classes/cs140/

Scheduling (ignoring concurrency)

You have a shared resource
For example, a processor
You have many jobs that need to use the resource

Each job j has:

- A <u>Priority</u> P_i that stands for the job's importance
- A <u>Duration</u> D_i that stands for the length of time to run the job

In what sequence should we complete the jobs?

Scheduling (ignoring concurrency)

In what sequence should we complete the jobs?

- What is our criteria? What do we want to optimize?
- Let's start by looking at job j's completion time C_i
- Given three jobs: $D_1 = 1$, $D_2 = 2$, $D_3 = 3$
- What is the completion time for each if they are scheduled in order?

What is the completion time of Job 5?

Scheduling

Optimization objective: minimize the weighted sum of completion times

$$S_{cost} = \min[\sum_{j=1}^{N} P_j C_j]$$

What is the weighted sum of completion times if we schedule the following jobs in order?

Job	J_1	J ₂	J ₃
Duration	D ₁ = 1	$D_2 = 2$	$D_3 = 3$
Priority	$P_1 = 3$	$P_2 = 2$	$P_3 = 1$

Time

Exercise Question 1, 2, and 3

Scheduling

Calculate the weighted sum of completion times for the following jobs if they are scheduled in the order: 1, 2, 3.

Job	J ₁	J ₂	J ₃
Duration	$D_1 = 1$	$D_2 = 2$	$D_3 = 3$
Priority	$P_1 = 3$	$P_2 = 2$	$P_3 = 1$
Completion			
Weight			

Weighted sum of completion times: ?

Greedy Scheduling

Our process for creating a greedy scheduling algorithm

- 1. Look at some special cases for our problem
- 2. Describe some possible greedy criteria
- 3. Compare our greedy criteria
- 4. Select the "best" one
- 5. Prove correctness if possible

Greedy Scheduling

Goal: devise a greedy algorithm to minimize the weighted sum of completion times

Why are we approaching this problem with a greedy algorithm?

- It's a pretty easy way to start.
- Compare the approach we go through in these slides with a Divide and Conquer approach

- These jobs have different priorities (P_H and P_L)
- Do we schedule the lower or higher priority job first?

- These jobs have different priorities (P_H and P_L)
- Do we schedule the lower or higher priority job first?

- These jobs have different priorities (P_H and P_L)
- Do we schedule the lower or higher priority job first?

Schedule with Lower Priority First

Schedule with Higher Priority First

- These jobs have different priorities (P_H and P_L)
- Do we schedule the lower or higher priority job first?

- These jobs have different durations (D_E and D_S)
- Do we schedule the shorter or longer (Extended) job first?

- These jobs have different durations (D_E and D_S)
- Do we schedule the shorter or longer (Extended) job first?

- These jobs have different durations (D_E and D_S)
- Do we schedule the shorter or longer (Extended) job first?

Schedule with Shorter Job First

Schedule with Longer Job First

- These jobs have different durations (D_E and D_S)
- Do we schedule the shorter or longer (Extended) job first?

2. Describe some possible greedy criteria

What do we do when in the more general case:

- 1. Schedule highest priority first
- 2. Schedule shortest duration first

$$P_i > P_j \ and \ D_i > D_j$$
 (job i has higher priority and longer duration)

What are some simple scoring functions that aggregate our criteria?

We want a function for which jobs with a bigger score are scheduled first:

- Score increases for higher priorities
- Score increases for shorter times
- 1. Greedy Criterion 1: $P_i D_i$ (take the difference)
- 2. Greedy Criterion 2: P_i/D_i (take the ratio)

Jobs will be ordered from biggest to smallest value

Job with same duration	Difference Metric ($P_i - D_i$)	Ratio Metric (P_i/D_i)
Job 1: P=2, D=1		
Job 2: P=5, D=1		

• Jobs will be ordered from biggest to smallest value

	Job with same duration	Difference Metric ($P_i - D_i$)	Ratio Metric (P_i/D_i)
	Job 1: P=2, D=1	1	2
Highest priority	Job 2: P=5, D=1	4	5
	Total weighted sum		

Jobs will be ordered from biggest to smallest value

	Job with same duration	Difference Metric $(P_i - D_i)$	Ratio Metric (P_i/D_i)	
	Job 1: P=2, D=1	1	2	
Highest priority	Job 2: P=5, D=1	4	5	
	Total weighted sum	5*1 + 2*2 = 9	5*1 + 2*2 = 9	Same Result

Job with same priority	Difference Metric ($P_i - D_i$)	Ratio Metric (P_i/D_i)
Job 1: P=1, D=3		
Job 2: P=1, D=4		
Total weighted sum		

Jobs will be ordered from biggest to smallest value

	Job with same duration	Difference Metric ($P_i - D_i$)	Ratio Metric (P_i/D_i)	
	Job 1: P=2, D=1	1	2	
Highest priority	Job 2: P=5, D=1	4	5	
	Total weighted sum	5*1 + 2*2 = 9	5*1 + 2*2 = 9	Same Result

	Job with same priority	Difference Metric ($P_i - D_i$)	Ratio Metric (P_i/D_i)
Shortest time	Job 1: P=1, D=3	-2	1/3
	Job 2: P=1, D=4	-3	1/4
	Total weighted sum		

Jobs will be ordered from biggest to smallest value

	Job with same duration	Difference Metric ($P_i - D_i$)	Ratio Metric (P_i/D_i)	
	Job 1: P=2, D=1	1	2	
Highest priority	Job 2: P=5, D=1	4	5	
	Total weighted sum	5*1 + 2*2 = 9	5*1 + 2*2 = 9	Same Result

	Job with same priority	Difference Metric ($P_i - D_i$)	Ratio Metric (P_i/D_i)	
Shortest time	Job 1: P=1, D=3	-2	1/3	
	Job 2: P=1, D=4	-3	1/4	
	Total weighted sum	1*3 + 1*7 = 10	1*3 + 1*7 = 10	Same Result

- Let's try to get them to disagree.
- Why does it matter if they don't produce the same result?
- One scoring metric must be better than the other

 Apply the two greedy algorithms and calculate their weighted sum of completion times

3. Compare our greedy criteria

Jobs will be ordered from biggest to smallest metric value

Job	Difference Metric ($P_i - D_i$)	Ratio Metric (P_i/D_i)
Job 1: P=3, D=5		
Job 2: P=1, D=2		
Total weighted sum		

3. Compare our greedy criteria

Jobs will be ordered from biggest to smallest metric value

Job	Difference Metric ($P_i - D_i$)	Ratio Metric (P_i/D_i)
Job 1: P=3, D=5	-2	3/5
Job 2: P=1, D=2	-1	1/2
Total weighted sum		

Which job goes first?

3. Compare our greedy criteria

Jobs will be ordered from biggest to smallest metric value

Job	Difference Metric ($P_i - D_i$)	Ratio Metric (P_i/D_i)
Job 1: P=3, D=5	-2	3/5
Job 2: P=1, D=2	-1	1/2
Total weighted sum		

Which job goes first?

What is the priority sum?

4. Select the "best" one

Jobs will be ordered from biggest to smallest metric value

Job	Difference Metric ($P_i - D_i$)	Ratio Metric (P_i/D_i)
Job 1: P=3, D=5	-2	3/5
Job 2: P=1, D=2	-1	1/2
Total weighted sum	1*2 + 3*7 = 23	3*5 + 1*7 = 22

Which job goes first?

What is the priority sum?

Which criteria is better?

5. Prove correctness if possible

Is criteria 2 optimal?

We don't know yet.

Claim: Criteria 2 is optimal for minimizing the weighted sum of completion times.

We're going to prove this using an exchange argument!

Exchange Arguments

Consider your greedy solution, G

- Consider an alternative solution, A
 - A can be anything that is not G
 - Create A by changing G in some way

- Compare these solutions
 - Show that turning A into G makes A get better

Proof

- Assume that we have no ties (all P_i/D_i are distinct numbers)
- Fix an arbitrary input with n jobs
- Let's perform a proof using an exchange argument contradiction

Let G = the greedy schedule and A = the (alternative) optimal schedule

- Let's assume that A must be better than G (assume greedy is not optimal)
- To perform the contradiction, we must show that G is better than A, thus contradicting the purported optimality of A

Proof

Let G = the greedy schedule and A = the optimal schedule

- Assume that: $P_1/D_1 > P_2/D_2 > ... > P_n/D_n$
- We can just rename all jobs after we calculate their scores...
- Thus, G is just job 1 followed by job 2 etc. (1, 2, ..., n)

Reorde	Ratio	Length	Weight	Job ID
4	0.3	4	1	1
3	1.3	6	8	2
1	6.0	1	6	3
5	0.2	5	1	4
6	0.1	9	1	5
2	2.3	3	7	6

Proof

Let G = the greedy schedule and A = the optimal schedule

- Assume that: $P_1/D_1 > P_2/D_2 > ... > P_n/D_n$
- We can just rename all jobs after we calculate their scores...
- Thus, G is just job 1 followed by job 2 etc. (1, 2, ..., n)
- For A there must be at least two jobs that are "out of order"
 - Specifically, jobs i and j where i is scheduled after j, but S_i > S_j (for example, Job₅ after Job₆)
- The greedy schedule is the only schedule where the jobs are in order

(jobs i and j where i is scheduled after j, but $P_i/D_i > P_j/D_j$)

Job i has a larger greedy score

How does the exchange affect the completion time for:

- 1. Jobs other than i and j?
- 2. Job i
- 3. Job j

What is the weighted sum of completion times for each schedule?

```
Before
                                                             After
      A Schedule
                     Time
                                                  exchange
                               Before
                                                             After
       G Schedule
Cost(A) = Cost(Before) + Pj * (Tb + Dj) + Pi * (Tb + Dj + Di) + Cost(After)
Cost(G) = Cost(Before) + Pi * (Tb + Di) + Pj * (Tb + Di + Dj) + Cost(After)
                     Implied by optimality of A
Cost(A) < Cost(G)
Cost(Before) + Pj * (Tb + Dj) + Pi * (Tb + Dj + Di) + Cost(After)
    < Cost(Before) + Pi * (Tb + Di) + Pj * (Tb + Di + Dj) + Cost(After)</pre>
```

```
After
                               Before
       A Schedule
                     Time
                                                  exchange
                                                            After
                               Before
       G Schedule
Cost(A) = Cost(Before) + Pj * (Tb + Dj) + Pi * (Tb + Dj + Di) + Cost(After)
Cost(G) = Cost(Before) + Pi * (Tb + Di) + Pj * (Tb + Di + Dj) + Cost(After)
                    Implied by optimality of A
Cost(A) < Cost(G)
Cost(Before) + Pj * (Tb + Dj) + Pi * (Tb + Dj + Di) + Cost(After)
    < Cost(Before) + Pi * (Tb + Di) + Pj * (Tb + Di + Dj) + Cost(After)
Pj * (Tb + Dj) + Pi * (Tb + Dj + Di)
    < Pi * (Tb + Di) + Pi * (Tb + Di + Di)
Pj*Tb + Pj*Dj + Pi*Tb + Pi*Dj + Pi*Di
    < Pi*Tb + Pi*Di + Pj*Tb + Pj*Di + Pj*Dj</pre>
```


Summary of Greedy Scheduling

- Given n jobs, each with a priority and a duration
- Give each job a score based on their ratio of priority to duration
- Schedule jobs in <u>decreasing</u> order of their <u>score</u>
- This gives us an optimal schedule

- What do we do if we're given more jobs while these are running?
- Any issues with this scheme?
 - Some jobs might always be postponed.