Metody Numeryczne 2 Laboratorium 4

Aproksymacja średniokwadratowa ciągła w przestrzeni $L_p^2(-1,1)$ dla $p(x)=\frac{1}{\sqrt{(1-x^2)}}$ w bazie wielomianów Czebyszewa.

Szymon Adach

8 grudnia 2015

1 Treść zadania

Zadanie 3: Aproksymacja średniokwadratowa ciągła w przestrzeni $L_p^2(-1,1)$ dla $p(x)=\frac{1}{\sqrt{(1-x^2)}}$ w bazie wielomianów Czebyszewa. Całkowanie n-punktową kwadraturą Gaussa-Czebyszewa. Tablicowanie funkcji, przybliżenia i błędu w m punktach przedziału $[-1,\ 1]$ oraz obliczanie błędu średniokwadratowego w tych punktach.

2 Opis metody

Metoda aproksymacji średniokwadratowej ciągłej dla funkcji f(x)polega na znalezieniu współczynników $\alpha_0...\alpha_n$ takich, że:

 $f^*(x) = \alpha_0 \cdot P_0(x) + \alpha_1 \cdot P_1(x) + ... + \alpha_n \cdot P_n(x)$, gdzie $P_i(x)$ to i-ty wielomian z bazy wielomianów Czebyszewa. Znalezienie współczynników α_i sprowadza się do rozwiązania układu równań liniowych $G \cdot \alpha = F$, gdzie i-ty wiersz wektora

F ma postać $\int_{-1}^{1} f(x)p(x)dx$. Z kolei macierz G zdefiniowana jest następująco:

$$G = \frac{\pi}{2} \cdot \begin{bmatrix} 2 & & & & \\ & 1 & & & \\ & & 1 & & \\ & & & \ddots & \\ & & & & 1 \end{bmatrix}$$

Całki w wektorze F obliczane są za pomocą kwadaratury Gaussa-Czebyszewa:

$$\int_{-1}^{1} f(x)p(x)dx \approx \sum_{i=1}^{n} w_i \cdot f(x_i)$$

- x_i i-te miejsce zerowe wielomianu Czebyszewa określone wzorem: $x_i=\cos(\frac{2i-1}{2n}\cdot\pi)$
- w_i waga dana wzorem: $w_i = \frac{\pi}{n}$

Wartości $f^*(x) = \alpha_0 \cdot P_0(x) + \alpha_1 \cdot P_1(x) + ... + \alpha_n \cdot P_n(x)$ w punktach tablicowania obliczane są przy pomocy procedury **czebysz**, która korzysta ze wzoru:

$$P_n(x) = \frac{(x-\sqrt{x^2-1})^n + (x+\sqrt{x^2-1})^n}{2}$$

Błąd średniokwadratowy obliczany jest ze wzoru:

$$e_s r = \sqrt{\frac{1}{n} \sum_{i=1}^n e_i^2}$$
gdzie e_i to błąd w i-tym punkcie tablicowania.

3 Działanie programu

Program jest uruchamiany poleceniem:

- func uchwyt do funkcji aproksymowanej
- m liczba punktów do tablicowania
- n liczba wielomianów Czebyszewa w bazie

Po wykonaniu obliczeń prezentowane są stablicowane wartości oraz wartość błędu średniokwadratowego w postaci:

$$x = f(x) = f^*(x) = err(x)$$

Blad sredniokwadratowy: $e_s r$

4 Przykłady

1. Wywołanie: aproksymacja(@(x)x^6+5*x^5, 10, 6)
Wyjście:

X	f(x)	$f^*(x)$	err(x)
-1.00000	-4.00000	-4.03125	0.03125
-0.77778	-1.20176	-1.18324	0.01852
-0.55556	-0.23521	-0.26408	0.02887
-0.33333	-0.01920	-0.03331	0.01410
-0.11111	-0.00008	0.02445	0.02453
0.11111	0.00009	0.02462	0.02453
0.33333	0.02195	0.00784	0.01410
0.55556	0.29401	0.26514	0.02887
0.77778	1.64452	1.66304	0.01852
1.00000	6.00000	5.96875	0.03125

Blad sredniokwadratowy: 0.024306

2. Wywołanie: aproksymacja($@(x)x^6+5*x^5$, 10, 7)

•	1	, , , , ,		, , .
Wyjście: 2	X	f(x)	f*(x)	err(x)
-1.00000	-4.00000	-4.00000	0.00000	
-0.77778	-1.20176	-1.20176	0.00000	
-0.55556	-0.23521	-0.23521	0.00000	
-0.33333	-0.01920	-0.01920	0.00000	
-0.11111	-0.00008	-0.00008	0.00000	
0.11111	0.00009	0.00009	0.00000	
0.33333	0.02195	0.02195	0.00000	
0.55556	0.29401	0.29401	0.00000	
0.77778	1.64452	1.64452	0.00000	
1.00000	6.00000	6.00000	0.00000	
Blad sredn	iokwadrate	owy: 0.000000		

3. Wywołanie: aproksymacja(@cos, 10, 4)
 Wyjście:

X	f(x)	f*(x)	err(x)
-1.00000	0.54030	0.53539	0.00491
-0.77778	0.71247	0.71697	0.00449
-0.55556	0.84961	0.85315	0.00354
-0.33333	0.94496	0.94394	0.00102
-0.11111	0.99383	0.98933	0.00450
0.11111	0.99383	0.98933	0.00450
0.33333	0.94496	0.94394	0.00102
0.55556	0.84961	0.85315	0.00354
0.77778	0.71247	0.71697	0.00449
1.00000	0.54030	0.53539	0.00491

Blad sredniokwadratowy: 0.003954