1 Généralités.

Définition 1.1. Relation binaire sur un ensemble.

Soit E, un ensemble non vide. Soit P(x,y), une proposition dépendant de deux éléments, x et y de E. La partie de $E \times E$ dont les éléments (x,y) vérifient P(x,y) est appelée relation binaire sur E:

$$\{(x,y) \in E \times E / P(x,y)\}$$
.

Remarque 1.1. Notation d'une relation \mathcal{R} .

Plutôt que de décrire \mathcal{R} en compréhension comme partie de $E \times E$, il est d'usage de décrire \mathcal{R} par ses éléments :

$$\forall (x,y) \in E \times E \ (x\mathcal{R}y) \Leftrightarrow P(x,y).$$

Exemple 1.1. $\mathcal{R} = \{(u, v) \in \mathbb{R}^2 \times \mathbb{R}^2 / \det(u, v) = 0\}.$

Soit $u \in \mathbb{R}^2$. On a : $(u, u) \in \mathcal{R}$ car det(u, u) = 0. On note $(u\mathcal{R}u)$.

Définition 1.2. Qualités d'une relation binaire sur un ensemble.

Soit E, un ensemble non vide. Soit \mathcal{R} , une relation binaire sur E.

- La relation \mathcal{R} sur E est **réflexive** si et seulement si : $\forall x \in E \ (x\mathcal{R}x)$.
- La relation \mathcal{R} sur E est symétrique si et seulement si : $\forall x, y \in E \ (x\mathcal{R}y) \Rightarrow (y\mathcal{R}x)$.
- La relation \mathcal{R} sur E est antisymétrique si et seulement si : $\forall x, y \in E$ $[(x\mathcal{R}y) \ et \ (y\mathcal{R}x)] \Rightarrow (x=y)$.
- La relation \mathcal{R} sur E est transitive si et seulement si : $\forall x, y, z \in E \ [(x\mathcal{R}y) \ et \ (y\mathcal{R}z)] \Rightarrow (x\mathcal{R}z)$.

Exemple 1.2. Soit E un ensemble non vide. Soit la relation binaire \mathcal{R} sur $\mathcal{A}(E,E)$:

$$\forall f, g \in \mathcal{A}(E, E) \ (f\mathcal{R}g) \Leftrightarrow (\exists \varphi \in \mathcal{A}(E, E) \ / \ f = \varphi^{-1} \circ g \circ \varphi).$$

 \mathcal{R} est réflexive, symétrique et transitive. Mais \mathcal{R} n'est pas antisymétrique. Exemple dans $\mathcal{A}(\mathbb{R},\mathbb{R})$:

$$f \left| \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & 3x^2 \end{array} \right| ; g \left| \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & x^2 \end{array} \right| \text{ et } \varphi \left| \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & 3x \end{array} \right| .$$

Remarque 1.2. A «relation symétrique» et «relation antisymétrique» ne sont pas logiquement contraires.

2 Relations d'équivalence.

Définition 2.1. Soit E, un ensemble non vide. Soit \mathcal{R} , une relation binaire sur E.

 $\mathcal R$ est une relation d'équivalence sur E si et seulement si $\mathcal R$ est réflexive, symétrique et transitive.

Exemple 2.1. Relations d'équivalence de référence.

- Sur $\mathcal{A}(E, E)$, relation d'équivalence globale :

$$\forall f, g \in \mathcal{A}(E, E) \quad (f\mathcal{R}g) \Leftrightarrow (\exists \varphi \in \mathcal{A}(E, E) \quad f = \varphi^{-1} \circ g \circ \varphi).$$

- Sur $\mathcal{A}(E,F)$, relation induite par une application $f:E\to F$ «avoir la même image par f que» :

$$\forall x, y \in E \quad (x \sim y) \Leftrightarrow (f(x) = f(y)).$$

- Sur Z, relation «avoir la même reste euclidien par d »où d est un entier relatif non nul :

$$\forall n, p \in \mathbb{Z} \quad (n \equiv p[d]) \Leftrightarrow (d|(n-p)).$$

- Sur $\mathcal{A}(|x_0-r,x_0+r|, \mathbb{R})$, relation d'équivalence locale où x_0 est un réel et r>0 (cours d'analyse).

Définition 2.2. Soit \mathcal{R} , une relation d'équivalence définie sur un ensemble E. Soit x_0 un élément de E. Les éléments de E en relation avec x_0 par \mathcal{R} forment un ensemble appelé classe d'équivalence de x_0 :

$$\{x \in E/(x_0 \mathcal{R} x)\}$$
.

La classe de x_0 par \mathcal{R} est souvent notée $C_{\mathcal{R}}(x_0)$ ou, plus simplement, $C(x_0)$ ou $\overline{x_0}$.

Théorème 2.1. Théorème de partition d'un ensemble.

Soit \mathcal{R} une relation d'équivalence définie sur un ensemble E.

- (1)Une classe d'équivalence n'est pas vide.
- (2) Deux classes d'équivalence par \mathcal{R} sont disjointes ou confondues.
- (3)Les classes d'équivalence par \mathcal{R} forment une partition de E.

Exemple 2.2. Classes d'équivalence.

- Les classes de congruences de \mathbb{Z} modulo $3 : \overline{r} = \{3k + r \mid k \in \mathbb{Z}\}$ où r = 0, 1, 2.
- Les classes d'éléments de E ayant la même image par une application $f \in \mathcal{A}(E,F)$.

Exemple : soit $f: \mathbb{R}^2 \to \mathbb{R}$ telle que $\forall (x, y) \in \mathbb{R}^2$ f((x, y)) = x - y.

Les classes de la relation induite par f sont de la forme : $C((a,b)) = \{(x,y) \in \mathbb{R}^2 \mid y = (x-a) + b\}$

En particulier $C((0,0)) = \{(x,y) \in \mathbb{R}^2 \mid /y = x\}.$

- Les classes des injections de $\mathcal{A}(\{1,2\}, \{1,2,3,4\})$, ayant le même ensemble image.

3 Relations d'ordre.

Définition 3.1. Soit E, un ensemble non vide. Soit \mathcal{R} , une relation binaire sur E.

 \mathcal{R} est une relation d'ordre sur E si et seulement si \mathcal{R} est réflexive, antisymétrique et transitive.

Exemple 3.1. Relations d'ordre référence.

- Relation d'ordre alphabétique sur l'ensemble des mots d'une même langue.
- Relation «être inférieur ou égal à» sur $\mathbb{R}: \forall x,y \in \mathbb{R} \ (x \leq y) \Leftrightarrow ((y-x) \in \mathbb{R}_+)$.

 $\Lambda: < n$ 'est pas réflexive sur $\mathbb{R} \ ; \le n$ 'est pas définie sur $\mathbb{C}.$

- Relation «être inclus dans »sur $\mathcal{P}(E)$: $\forall A, B \in \mathcal{P}(E)$ $(A \subset B) \Leftrightarrow (\forall x \in E \ (x \in A) \Rightarrow (x \in B))$.
- Relation «être diviseur de »sur \mathbb{N} : $\forall a, b \in \mathbb{N}$ $(b|a) \Leftrightarrow (\exists q \in \mathbb{N} / a = bq)$.

 Λ : | n'est pas antisymétrique sur \mathbb{Z} ; | n'est pas définie sur \mathbb{Q} .

Définition 3.2. Soient \mathcal{R} une relation d'ordre sur un ensemble E et A, une partie de E.

- A est dite majorée dans E par \mathcal{R} si et seulement si : $\exists M \in E \ / \ \forall x \in A \ (x\mathcal{R}M)$.

M est un majorant de A par \mathcal{R} .

- A est dite **minorée** dans E par \mathcal{R} si et seulement si : $\exists m \in E \ / \ \forall x \in A \ (m\mathcal{R}x)$. m est un minorant de A par \mathcal{R} .
- A admet un plus grand élément dans E par \mathcal{R} si et seulement si A est majorée par l'un de ses éléments. S'il existe, le plus grand élément de A est noté $\max(A)$.
- A admet un plus petit élément dans E par \mathcal{R} si et seulement si A est minorée par l'un de ses éléments. S'il existe, le plus petit élément de A est noté $\min(A)$.
- A admet une borne supérieure dans E par \mathcal{R} si et seulement si l'ensemble des majorants de A admet un plus petit élément. Si elle existe, la borne supérieure de A est notée $\sup(A)$.
- A admet une **borne inférieure** dans E par \mathcal{R} si et seulement si l'ensemble des minorants de A admet un plus grand élément. Si elle existe, la borne inférieure de A est notée $\inf(A)$.

Exemple 3.2. 0 minorant et majorant de \mathbb{N} .

0 est le plus petit élément de \mathbb{N} pour la relation \leq . 0 est le plus grand élément de \mathbb{N} pour la relation |.

Théorème 3.1. Soit E, un ensemble ordonné par la relation d'ordre R. Soit A, une partie de E.

- (1) Si A admet un plus grand (plus petit) élément alors celui-ci est unique.
- (2)Si A admet une borne supérieure (inférieure)alors celle-ci est unique.

4 Relation d'ordre sur \mathbb{R} .

Axiome : soit A, une partie de $\mathbb R$ totalement ordonné par la relation d'ordre \leq .

Si A est non vide et majorée alors A admet une borne supérieure.

Si A est non vide et minorée alors A admet une borne inférieure.

Théorème 4.1. Caractérisation de la borne sup.

Soit A une partie de $\mathbb R$ admettant une borne supérieure pour la relation d'ordre usuelle \leq . Soit M un majorant de A pour \leq .

M est la borne supérieure de A si et seulement si : $\forall \epsilon > 0, \ \exists a \in A \ / \ M - \epsilon < a \leq M.$

Exemple 4.1. Une application de ce théorème est le théorème de convergence uniforme dans l'ensemble des suites réelles.

Exercice 4.1.

Soit
$$A = \{x \in \mathbb{Q}_+ / x^2 < 2\}.$$

- 1. Soit $x \in A$. Montrer qu'il existe n tel que $: x + \frac{1}{n} \in A$.
- 2. Déduire que A n'a pas de plus grand élément.

5 Exercices à préparer.

1. Exercice : des relations d'équivalence.

 \mathcal{R} étant une relation d'équivalence sur un ensemble E et x étant un élément de E, on note C(x), la classe d'équivalence de x, c'est à dire l'ensemble des éléments y de E tels que $x\mathcal{R}y$.

Les questions sont indépendantes.

- (a) Considérons $\mathcal{R} = \{(x, y) \in \mathbb{R}^2 / x^2 y^2 = x y\}.$
 - i. Vérifier que \mathcal{R} est une relation d'équivalence.
 - ii. Déterminer C(0) et $C(\frac{1}{2})$.
 - iii. Soit x, un réel. Déterminer C(x).
- (b) On note $E = \mathcal{A}(\mathbb{R}, \mathbb{R})$, l'ensemble des applications de \mathbb{R} vers \mathbb{R} .

On note B, la partie de E dont les éléments sont des bijections.

Dans E, on définit la relation \mathcal{R} par : $\forall f, g \in E$, $(f\mathcal{R}g) \Leftrightarrow (\exists \phi \in B / \phi \circ f = g \circ \phi)$.

Montrer que \mathcal{R} est une relation d'équivalence.

2. Exercice : ordre sur des ensembles de nombres.

Les questions sont indépendantes.

(a) La relation «divise».

Soit $E = \{1, 2, 3, 7, 14, 15, 21, 42\}$. On munit E de la relation usuelle divise notée |.

Compléter, quand c'est possible, le tableau suivant :

Eusemble	Borne in-	Plus petit	Ensemble	Borne su-	Plus
des mino-	férieure	élément	des majo-	périeure	grand
rants			rants		élément
		1		, ,	, , ,

(b) Intervalles et suite réelle.

L'ensemble des réels, R,est muni de la relation d'ordre usuelle $\leq.$

Soient I, J, S, trois parties de \mathbb{R} : $I = [0, 1[; J =]0, +\infty[$ et la suite $S = (\frac{n-1/n}{n+1/n})_{n \in \mathbb{N} \setminus \{0\}}$.

Compléter, quand c'est possible, le tableau suivant :

Partie de \mathbb{R}	Ensemble	Borne in-	Plus petit	Ensemble	Borne su-	Plus
	des mino-	férieure	élément	des majo-	périeure	grand
	rants			rants		élément
I						
J						
S						

3. Exercice : symétrie et antisymétrie.

Les trois questions principales sont indépendantes.

- (a) Sur \mathbb{Z} , on définit la relation binaire \mathcal{R} par : $\forall x, y \in \mathbb{Z}$ $(x\mathcal{R}y) \Leftrightarrow (x^2|y)$. On rappelle que l'expression $(x^2|y)$ signifie « x^2 divise y».
 - i. Donner un contre- exemple évident au fait que $\mathcal R$ soit symétrique.
 - ii. Donner un contre- exemple évident au fait que ${\mathcal R}$ soit antisymétrique.

- (b) Soit \mathcal{R} une relation binaire sur un ensemble E telle que \mathcal{R} est symétrique et antisymétrique. Soit x un élément de E. Déterminer l'ensemble $C(x) = \{y \in E \mid (x\mathcal{R}y)\}.$
- (c) Soit E un ensemble sur lequel on définit une relation binaire \mathcal{R} transitive et irréflexive (i.e. : aucun élément de E n'est en relation avec lui-même).

On définit la relation $\mathcal{R}': \forall x, y \in E \ (x\mathcal{R}'y) \Leftrightarrow [(x\mathcal{R}y) \text{ ou } (x=y)].$

- i. Montrer que \mathcal{R}' est réflexive et transitive. Est-elle une relation d'équivalence ?
- ii. La relation \mathcal{R}' est-elle une relation d'ordre?

4. Exercice: relation sur \mathbb{Z} .

Sur \mathbb{Z} , on définit la relation binaire \mathcal{R} par $: \forall x, y \in \mathbb{Z} \ (x\mathcal{R}y) \Leftrightarrow (2|(x+y))$. On rappelle que l'expression (2|(x+y)) signifie «2 divise la somme de x et y ».

- (a) Montrer que \mathcal{R} est une relation d'équivalence.
- (b) Déterminer les classes d'équivalence de \mathcal{R} .

5. Exercice: reconnaître une relation d'équivalence.

Soit E un ensemble non vide et soit x un élément de E.

Les relations \mathcal{R} définies par les assertions suivantes sont-elles des relations d'équivalence sur $\mathcal{P}(E)$?

- (a) $\forall A, B \in \mathcal{P}(E), A\mathcal{R}B \Leftrightarrow (x \in A \cup B)$
- (b) $\forall A, B \in \mathcal{P}(E), A\mathcal{R}B \Leftrightarrow (x \in A \cap B) \text{ ou } (x \in \overline{A} \cap \overline{B})$

