Rank-65561 over GF(8)

January 15, 2021

The equation

The equation of the surface is:

$$X_1^3 + X_2^3 + X_0^2 X_1 + X_0 X_1 X_2 = 0$$

(0, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(8) is 1227137685

General information

Number of lines	4
Number of points	33
Number of singular points	1
Number of Eckardt points	0
Number of double points	0
Number of single points	32
Number of points off lines	0
Number of Hesse planes	0
Number of axes	0
Type of points on lines	9^{4}
Type of lines on points	$4, 1^{32}$

Singular Points

The surface has 1 singular points:

$$0: P_3 = \mathbf{P}(0,0,0,1) = \mathbf{P}(0,0,0,1)$$

The 4 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{72} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{72} = \mathbf{Pl}(0, 0, 0, 0, 1, 0)_{81}$$

$$\ell_1 = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{145} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{145} = \mathbf{Pl}(0, 0, 0, 1, 1, 0)_{201}$$

$$\ell_2 = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4689} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{4689} = \mathbf{Pl}(0, 1, 0, 1, 0, 0)_{25}$$

$$\ell_3 = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{729} = \begin{bmatrix} 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{729} = \mathbf{Pl}(0, 1, 0, 1, 1, 0)_{209}$$

Rank of lines: (72, 145, 4689, 729)

Rank of points on Klein quadric: (81, 201, 25, 209)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 0 Double points: The double points on the surface are:

Single Points

The surface has 32 single points: The single points on the surface are:

 $0: P_0 = (1,0,0,0)$ lies on line ℓ_0 1: $P_4 = (1, 1, 1, 1)$ lies on line ℓ_3 2: $P_5 = (1, 1, 0, 0)$ lies on line ℓ_1 $3: P_{19} = (0, 1, 1, 0)$ lies on line ℓ_2 4: $P_{20} = (1, 1, 1, 0)$ lies on line ℓ_3 5: $P_{75} = (1,0,0,1)$ lies on line ℓ_0 6: $P_{76} = (2,0,0,1)$ lies on line ℓ_0 7: $P_{77} = (3, 0, 0, 1)$ lies on line ℓ_0 8: $P_{78} = (4, 0, 0, 1)$ lies on line ℓ_0 9: $P_{79} = (5,0,0,1)$ lies on line ℓ_0 10: $P_{80} = (6,0,0,1)$ lies on line ℓ_0 11: $P_{81} = (7,0,0,1)$ lies on line ℓ_0 12 : $P_{83} = (1, 1, 0, 1)$ lies on line ℓ_1 13 : $P_{92} = (2, 2, 0, 1)$ lies on line ℓ_1 14: $P_{101} = (3, 3, 0, 1)$ lies on line ℓ_1 15: $P_{110} = (4, 4, 0, 1)$ lies on line ℓ_1 16: $P_{119} = (5, 5, 0, 1)$ lies on line ℓ_1

The single points on the surface are:

Points on surface but on no line

The surface has 0 points not on any line: The points on the surface but not on lines are: $\begin{array}{l} 17: \ P_{128} = (6,6,0,1) \ \text{lies on line} \ \ell_1 \\ 18: \ P_{137} = (7,7,0,1) \ \text{lies on line} \ \ell_1 \\ 19: \ P_{146} = (0,1,1,1) \ \text{lies on line} \ \ell_2 \\ 20: \ P_{217} = (0,2,2,1) \ \text{lies on line} \ \ell_2 \\ 21: \ P_{219} = (2,2,2,1) \ \text{lies on line} \ \ell_3 \\ 22: \ P_{289} = (0,3,3,1) \ \text{lies on line} \ \ell_2 \\ 23: \ P_{292} = (3,3,3,1) \ \text{lies on line} \ \ell_3 \\ 24: \ P_{361} = (0,4,4,1) \ \text{lies on line} \ \ell_2 \\ 25: \ P_{365} = (4,4,4,1) \ \text{lies on line} \ \ell_3 \\ 26: \ P_{433} = (0,5,5,1) \ \text{lies on line} \ \ell_2 \\ 27: \ P_{438} = (5,5,5,1) \ \text{lies on line} \ \ell_2 \\ 29: \ P_{511} = (6,6,6,1) \ \text{lies on line} \ \ell_3 \\ 30: \ P_{577} = (0,7,7,1) \ \text{lies on line} \ \ell_3 \\ 31: \ P_{584} = (7,7,7,1) \ \text{lies on line} \ \ell_3 \\ \end{array}$

Line Intersection Graph

$$\begin{array}{c|c} & 0 \ 1 \ 2 \ 3 \\ \hline 0 \ 0 \ 1 \ 1 \ 1 \\ 1 \ 1 \ 0 \ 1 \ 1 \\ 2 \ 1 \ 1 \ 0 \ 1 \\ 3 \ 1 \ 1 \ 1 \ 0 \end{array}$$

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3
in point	P_3	P_3	P_3

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_3
in point	P_3	P_3	P_3

Line 2 intersects

Line	ℓ_0	ℓ_1	ℓ_3
in point	P_3	P_3	P_3

Line 3 intersects

Line	ℓ_0	ℓ_1	ℓ_2
in point	P_3	P_3	P_3

The surface has 33 points:

The points on the surface are:

$0: P_0 = (1,0,0,0)$	$12: P_{81} = (7,0,0,1)$	$24: P_{292} = (3, 3, 3, 1)$
$1: P_3 = (0,0,0,1)$	13: $P_{83} = (1, 1, 0, 1)$	$25: P_{361} = (0, 4, 4, 1)$
$2: P_4 = (1, 1, 1, 1)$	$14: P_{92} = (2, 2, 0, 1)$	$26: P_{365} = (4, 4, 4, 1)$
$3: P_5 = (1, 1, 0, 0)$	15: $P_{101} = (3, 3, 0, 1)$	$27: P_{433} = (0, 5, 5, 1)$
$4: P_{19} = (0, 1, 1, 0)$	16: $P_{110} = (4, 4, 0, 1)$	$28: P_{438} = (5, 5, 5, 1)$
$5: P_{20} = (1, 1, 1, 0)$	17: $P_{119} = (5, 5, 0, 1)$	$29: P_{505} = (0, 6, 6, 1)$
$6: P_{75} = (1, 0, 0, 1)$	18: $P_{128} = (6, 6, 0, 1)$	$30: P_{511} = (6, 6, 6, 1)$
$7: P_{76} = (2, 0, 0, 1)$	$19: P_{137} = (7, 7, 0, 1)$	$31: P_{577} = (0,7,7,1)$
$8: P_{77} = (3,0,0,1)$	$20: P_{146} = (0, 1, 1, 1)$	$32: P_{584} = (7,7,7,1)$
$9: P_{78} = (4,0,0,1)$	$21: P_{217} = (0, 2, 2, 1)$	
$10: P_{79} = (5, 0, 0, 1)$	$22: P_{219} = (2, 2, 2, 1)$	
$11: P_{80} = (6,0,0,1)$	$23: P_{289} = (0, 3, 3, 1)$	