Quasiconformal Deformations and Sullivan's Theorem of No Wandering Domains

Willie Rush Lim

Imperial College London

February 6, 2019

Holomorphic Dynamics

All holomorphic maps from the Riemann sphere $\hat{\mathbb{C}} := \mathbb{C} \cup \{\infty\}$ to itself are rational maps $f(z) = \frac{P(z)}{Q(z)}$. The **degree** of f is max $\{\deg P, \deg Q\}$.

We are interested in the behaviour of iterations of f. A question we can ask is: for which points $z \in \hat{\mathbb{C}}$ does the sequence of forward iterates $f^n(z)$

- converge to a point?
- blow up to ∞ ?
- have a convergent subsequence?
- chaotic, i.e. a small pertubation would result in strikingly different dynamical behaviours?

Simple Example

Simple Example

Simple Example

Fatou and Julia Sets

The **Fatou** set F(f) is the largest open set with equicontinuous points:

$$\forall w \in F(f), \forall \epsilon > 0, \exists \delta > 0: \quad \forall n \in \mathbb{N}, \; f^n\big(B(w,\delta)\big) \subset B\big(f^n(w),\epsilon\big)$$

The **Julia set** J(f) is the complement of F(f). This is the chaotic set.

Properties of the Fatou Set

$$F(f)$$
 is completely invariant, i.e. $f^{-1}(F(f)) = F(f)$.

We can classify each connected component U of F(f) as follows:

- **periodic**, i.e. $f^p(U) = U$ for some period p,
- **pre-periodic**, i.e. $f^{n+p}(U) = f^n(U)$ for some n, p,
- wandering, i.e. $\{f^n(U)\}_{n\in\mathbb{N}}$ are all pairwise disjoint.

Some Examples

Some Examples

9 / 21

Sullivan's No Wandering Domain Theorem

Theorem

All connected components of the Fatou set F(f) of a rational map f of degree ≥ 2 are non-wandering, i.e. periodic or pre-periodic.

Quasiconformal Homeomorphism

Let U, V be non-empty open subsets of $\hat{\mathbb{C}}$.

An orientation-preserving homeomorphism $f: U \to V$ is a quasiconformal(QC) homeomorphism if

- f is absolutely continuous on lines, i.e. $x \to f(x+iy)$ and $y \to f(x+iy)$ are differentiable almost everywhere,
- **2** $\|\mu_f(z)\|_{\infty} < 1.$

Here, $\mu_f(z) = \frac{\frac{\partial f}{\partial \bar{z}}(z)}{\frac{\partial f}{\partial z}(z)}$ is the **complex dilatation** of f.

Quasiconformal Homeomorphism

Geometrically, QC maps preserve orientation but it distorts angles. The distortion level depends on $|\mu_f(z)|$.

Measurable Riemann Mapping Theorem

A **Beltrami form** on an open subset $U \subset \hat{\mathbb{C}}$ is a measurable $\mu \in L^{\infty}(U)$ where $\|\mu\|_{\infty} < 1$.

Theorem (MRMT)

For any Beltrami form μ on $\hat{\mathbb{C}}$, there is a QC homeomorphism $\phi: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ such that μ is the complex dilatation of ϕ , i.e.

$$\mu_{\phi}(z) = \mu(z)$$

Moreover, ϕ depends analytically on μ and it is unique if we require ϕ to fix 0, 1, and ∞ .

Remark: MRMT can be used for Beltrami forms on open subsets of $\hat{\mathbb{C}}$. The uniqueness criterion will be different, however.

Pullback of a Beltrami Form

Let $f:U\to V$ be a QC/holomorphic map between open subsets of $\hat{\mathbb{C}}$. Let μ be a Beltrami form on V and ϕ be the unique QC map with $\mu_\phi=\mu$.

Define the **pullback** of μ via f as $f^*\mu := \mu_{\phi \circ f}$, a Beltrami form on U.

If f is bijective, the **pushforward** operator is $f_* = (f^{-1})^*$.

Deformation Lemma

Let $f: \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ be a rational map.

Let μ be a Beltrami form on $\hat{\mathbb{C}}$ and ϕ be the unique QC map with $\mu_{\phi} = \mu$.

If $f^*\mu = \mu$, then $\phi \circ f \circ \phi^{-1}$ is a rational map.

Proof:

Denote by 0 the zero Beltrami form on $\hat{\mathbb{C}}$. By f- inviarance of μ ,

$$(\phi \circ f \circ \phi^{-1})^* 0 = \phi^{-1*} f^* \phi^* 0$$

$$= \phi^{-1*} f^* \mu$$

$$= \phi^{-1*} \mu$$

$$= 0$$

No Wandering Domain Theorem

Theorem (Sullivan's No Wandering Domains)

All connected components of the Fatou set F(f) of a rational map f of degree ≥ 2 are non-wandering, i.e. periodic or pre-periodic.

Proof of No Wandering Domains

Let f be a rational map of degree d. Assume a wandering component U of F(f) exists.

Main idea

There's a space M_U of Beltrami forms on U of arbitrarily large dimension.

Meanwhile, the space Rat_d of rational maps of degree d is a complex manifold of dimension 2d + 1.

If we can construct an analytic map $F: M_U \to Rat_d$, we will obtain a contradiction from noninjectivity.

Construction of $F: M_U \rightarrow Rat_d$

Pick any $\mu \in M_U$. We will extend this to a Beltrami form on $\hat{\mathbb{C}}$:

- **1** Push forward μ via f from U to $\bigcup_{n\in\mathbb{N}} f^n(U)$,
- ② Pull back via f to the whole $\bigcup_{m,n\in\mathbb{N}} f^{-m+n}(U)$.
- **③** Set $\mu(z) = 0$ on the complement $\hat{\mathbb{C}} \setminus \bigcup_{m,n \in \mathbb{N}} f^{-m+n}(U)$,
- **①** $\|\mu\|_{\infty}$ is preserved under pullback and pushforward, so $\|\mu\|_{\infty} < 1$.

By MRMT, we have a unique QC homeomorphism ϕ such that $\mu_{\phi}=\mu.$

By the construction above, $f^*\mu = \mu$.

By deformation lemma, let $F(\mu) = \phi \circ f \circ \phi^{-1}$ is a rational map of deg d. Also, F is analytic as ϕ depends analytically on μ .

The Contradiction

Step 4: The Contradiction

Since m is arbitrary, we can assume that 2m is larger than 4d+2, which is the real dimension of the smooth complex manifold Rat_d . By Sard's theorem, there exists some element $f_a \in Rat_d$ where the fiber $F^{-1}(\{f_a\})$ is of dimension ≥ 1 . In other words, we can take a non-trivial simple curve $\mu_{\alpha(t)}$, where $t \in [0,1]$, in $F^{-1}(\{f_a\})$ connecting 2 distinct Beltrami coefficients $\mu_{\alpha(0)}$ and $\mu_{\alpha(1)}$ with corresponding quasiconformal homeomorphisms $\phi_{\alpha(0)}$ and $\phi_{\alpha(1)}$.

$$\hat{\mathbb{C}} \xleftarrow{\phi_{\alpha(0)}} \hat{\mathbb{C}} \xrightarrow{\phi_{\alpha(1)}} \hat{\mathbb{C}}$$

$$f_a \downarrow \qquad \qquad \downarrow f \qquad f_a \downarrow$$

$$\hat{\mathbb{C}} \xleftarrow{\phi_{\alpha(0)}} \hat{\mathbb{C}} \xrightarrow{\phi_{\alpha(1)}} \hat{\mathbb{C}}$$

Pick any $t \in [0, 1]$. Since $\phi_{a(t)} \circ \phi_{a(0)}^{-1}$ commutes with f_a , for all $n \geq 1$, $\phi_{a(t)} \circ \phi_{a(0)}^{-1}$ restricted to the set periodic points $Per_n(f_a)$ of prime period n is an automorphism. For any n and $z \in Per_n(f_a)$, the map $\phi_{a(t)} \circ \phi_{a(0)}^{-1}(z)$, $t \in [0, 1]$ is a continuous path starting from z, but since $Per_n(f_a)$ is finite, it is the identity on $Per_n(f_a)$. We conclude by Lemma 2.0.3 that $\phi_{a(t)} \circ \phi_{a(0)}^{-1}$ is the identity on $J(f_a)$, or in other words $\phi_{a(0)}^{-1} \circ \phi_{a(t)}$ is the identity on $\partial U \subset J(f)$.

Let $V = \phi_{a(0)}(U)$ and $t \in [0,1]$, then as $\phi_{a(t)} \circ \phi_{a(0)}^{-1}$ is the identity on ∂V , $\phi_{a(t)}$ maps U to either V or $\hat{\mathbb{C}} \backslash \overline{V}$. We can assume without loss of generality by conjugation with Möbius maps that U contains ∞ , so that $\phi_{a(t)}$ and $\phi_{a(0)}^{-1}$ fixes ∞ . Then, $\phi_{a(t)}(U) = V$.

Let $h_{a(t)} := g_{a(t)} \circ R \circ \phi_{a(t)}^{-1} : V \to \mathbb{D}$. By the same argument as in Lemma 2.1.1, we can deduce that $h_{a(t)}$ is a biholomorphism. Thus, $g_{a(t)} \circ g_{a(0)}^{-1} = h_{a(1)} \circ \phi_{a(1)} \circ \phi_{a(0)}^{-1} \circ h_{a(0)}^{-1}$, but on $\partial \mathbb{D}$, $g_{a(1)} \circ g_{a(0)}^{-1} = h_{a(0)} \circ h_{a(0)}^{-1}$, but on $\partial \mathbb{D}$, $g_{a(1)} \circ g_{a(0)}^{-1} = h_{a(0)} \circ g_{a($

Other Applications

- Renormalization Theory and Dynamics
 e.g. proving the quasi-self-similarity of the Mandelbrot Set
- Kleinian Groups, Hyperbolic 3-manifolds, and Teichmuller Theory
- Omputer graphics, medical image analysis, etc

Figure 3.8: (A) shows the original human face and (B) shows a deformed version of the human face with an abnormally swollen area. (C) shows the plot of $|\mu|$ versus the parameter domain. (D) shows the distribution of $|\mu|$ by color.

The End