Definición 5.5.2

Dimensión

Si el espacio vectorial V tiene una base con un número finito de elementos, entonces la dimensión de V es el número de vectores en todas las bases y V se denomina espacio vectorial de dimensión finita. De otra manera, V se denomina espacio vectorial de dimensión infinita. Si $V = \{0\}$, entonces se dice que V tiene dimensión cero.

Notación. La dimensión V se denota por dim V.

Observación. No se ha demostrado que todo espacio vectorial tiene una base. Esta difícil prueba aparece en la sección 5.8. Pero no se requiere para que la definición 5.5.2 tenga sentido, ya que si V tiene una base finita, entonces V es de dimensión finita. De otra manera, V tiene dimensión infinita. Por lo tanto, con el fin de demostrar que V tiene dimensión infinita, sólo es necesario demostrar que V no tiene una base finita, lo que se puede hacer probando que V contiene un número infinito de vectores linealmente independientes (vea el ejemplo 5.5.7).

EJEMPLO 5.5.4 La dimensión de \mathbb{R}^n

Como n vectores linealmente independientes en \mathbb{R}^n constituyen una base, se observa que

$$\dim \mathbb{R}^n = n$$

EJEMPLO 5.5.5 La dimensión de \mathbb{P}_n

Para el ejemplo 5.5.1 y el problema 5.4.47, los polinomios $\{1, x, x^2, \dots, x^n\}$ constituyen una base en \mathbb{P}_n . Entonces dim $\mathbb{P}_n = n + 1$.

EJEMPLO 5.5.6 La dimensión de M_{mn}

En \mathbb{M}_{mn} , sea A_{ij} la matriz de $m \times n$ con un uno en la posición ij y cero en otra parte. Es sencillo demostrar que las matrices A_{ij} para $i=1,2,\ldots,m$ y $j=1,2,\ldots,n$ forman una base para \mathbb{M}_{mn} . Así, dim $\mathbb{M}_{mn}=mn$.

EJEMPLO 5.5.7 *P* tiene dimensión infinita

En el ejemplo 5.3.7 se observó que ningún conjunto finito de polinomios genera a *P*. Entonces *P* no tiene una base finita y, por lo tanto, es un espacio vectorial de dimensión infinita.

Existe un gran número de teoremas sobre la dimensión de un espacio vectorial.

Teorema 5.5.3

Suponga que dim V = n. Si $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_m$ es un conjunto de m vectores linealmente independientes en V, entonces $m \le n$.

Demostración

Sea $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_n$ una base para V. Si m > n, entonces, igual que en la prueba del teorema 5.5.2, se pueden encontrar constantes c_1, c_2, \ldots, c_m no todas cero, tales que la