C.02.01.A2 – Combustão e Equilíbrio Químico

Aplicação em FTAF – Finite Time Air-Fuel Otto Engine Model

Prof. C. Naaktgeboren, PhD

https://github.com/CNThermSci/ApplThermSci Compiled on 2020-09-14 19h31m10s UTC

• Ar é modelado apenas como uma mistura de Oxigênio, O₂, e Nitrogênio, N₂;

- Ar é modelado apenas como uma mistura de Oxigênio, O2, e Nitrogênio, N2;
- A proporção é de ψ kmol de N₂ para cada 1 kmol de O₂;

- Ar é modelado apenas como uma mistura de Oxigênio, O₂, e Nitrogênio, N₂;
- A proporção é de ψ kmol de N₂ para cada 1 kmol de O₂;
- Nitrogênio será considerado gás inerte;

- Ar é modelado apenas como uma mistura de Oxigênio, O2, e Nitrogênio, N2;
- A proporção é de ψ kmol de N₂ para cada 1 kmol de O₂;
- Nitrogênio será considerado gás inerte;
- Todos os demais gases inertes são modelados como sendo N₂;

- Ar é modelado apenas como uma mistura de Oxigênio, O2, e Nitrogênio, N2;
- A proporção é de ψ kmol de N₂ para cada 1 kmol de O₂;
- Nitrogênio será considerado gás inerte;
- Todos os demais gases inertes são modelados como sendo N₂;
- Valor típico para ψ é de $79/21 \approx 3,76$.

• Molécula de combustível modelada como Cn_CHn_HOn_ONn_N;

- Molécula de combustível modelada como Cn_CHn_HOn_ONn_N;
- Valores $n_{\rm C}$, $n_{\rm H}$, $n_{\rm O}$, e $n_{\rm N}$ são parâmetros ajustáveis;

- Molécula de combustível modelada como Cn_CHn_HOn_ONn_N;
- Valores $n_{\rm C}$, $n_{\rm H}$, $n_{\rm O}$, e $n_{\rm N}$ são parâmetros ajustáveis;
- Seja ε a quantidade de combustível por kmol de O_2 estequiometricamente oxidada;

- Molécula de combustível modelada como Cn_CHn_HOn_ONn_N;
- Valores $n_{\rm C}$, $n_{\rm H}$, $n_{\rm O}$, e $n_{\rm N}$ são parâmetros ajustáveis;
- Seja ε a quantidade de combustível por kmol de O_2 estequiometricamente oxidada;

$$\varepsilon^{-1} \equiv n_{\rm C} + \frac{n_{\rm H}}{4} - \frac{n_{\rm O}}{2}.$$

- Molécula de combustível modelada como Cn_CHn_HOn_ONn_N;
- Valores $n_{\rm C}$, $n_{\rm H}$, $n_{\rm O}$, e $n_{\rm N}$ são parâmetros ajustáveis;
- Seja ε a quantidade de combustível por kmol de O_2 estequiometricamente oxidada;

$$\varepsilon^{-1} \equiv n_{\rm C} + \frac{n_{\rm H}}{4} - \frac{n_{\rm O}}{2}.$$

• $\varepsilon/(1+\psi)$ é a razão combustível-ar estequiométrica.

• Seja • a razão de equivalência, ou a razão combustível-ar real pela estequiométrica:

• Seja • a razão de equivalência, ou a razão combustível-ar real pela estequiométrica:

$$\phi \equiv \frac{n_{\rm f}/n_{\rm air}}{\epsilon/(1+\psi)},$$
 assim,

• Seja o a razão de equivalência, ou a razão combustível-ar real pela estequiométrica:

$$\phi \equiv \frac{n_{\rm f}/n_{\rm air}}{\epsilon/(1+\psi)},$$
 assim.

• $\phi < 1$ modela misturas combustível-ar com excesso de ar (pobre em combustível);

• Seja • a razão de equivalência, ou a razão combustível-ar real pela estequiométrica:

$$\phi \equiv \frac{n_{\rm f}/n_{\rm air}}{\epsilon/(1+\psi)},$$
 assim.

- ϕ < 1 modela misturas combustível-ar com excesso de ar (pobre em combustível);
- $\phi > 1$ modela misturas combustível-ar com excesso de combustível (pobre em ar); e

• Seja • a razão de equivalência, ou a razão combustível-ar real pela estequiométrica:

$$\phi \equiv \frac{n_{\rm f}/n_{\rm air}}{\epsilon/(1+\psi)},$$
 assim.

- ϕ < 1 modela misturas combustível-ar com excesso de ar (pobre em combustível);
- $\phi > 1$ modela misturas combustível-ar com excesso de combustível (pobre em ar); e
- $\phi = 1$ modela misturas combustível-ar estequiométricas.

• Quantidades químicas reais de ar e combustível são n_{air} e n_{f} ...

- Quantidades químicas reais de ar e combustível são n_{air} e n_f ...
- ... na câmara de combustão fechada ao final da admissão, assumindo (P_0, V_0, T_0)

- Quantidades químicas reais de ar e combustível são n_{air} e n_{f} ...
- ... na câmara de combustão fechada ao final da admissão, assumindo (P_0, V_0, T_0)
- com $P_0 \leqslant P_{\text{atm}}$, $T_0 \approx T_{\text{atm}}$, para motores aspirados e $V_0 \approx V_{\text{PMI}}$. Assim:

- Quantidades químicas reais de ar e combustível são n_{air} e n_{f} ...
- ... na câmara de combustão fechada ao final da admissão, assumindo (P_0, V_0, T_0)
- com $P_0 \leqslant P_{\text{atm}}$, $T_0 \approx T_{\text{atm}}$, para motores aspirados e $V_0 \approx V_{\text{PMI}}$. Assim:

$$n_{\rm f} = \frac{P_0 V_0}{\bar{R} T_0} \cdot \frac{\Phi \varepsilon}{1 + \psi + \Phi \varepsilon},$$

- Quantidades químicas reais de ar e combustível são n_{air} e n_{f} ...
- ... na câmara de combustão fechada ao final da admissão, assumindo (P_0, V_0, T_0)
- com $P_0 \leqslant P_{\text{atm}}$, $T_0 \approx T_{\text{atm}}$, para motores aspirados e $V_0 \approx V_{\text{PMI}}$. Assim:

$$n_{\rm f} = \frac{P_0 V_0}{\bar{R} T_0} \cdot \frac{\Phi \varepsilon}{1 + \psi + \Phi \varepsilon},$$

$$n_{\text{air}} = \frac{P_0 V_0}{\bar{R} T_0} \cdot \frac{1 + \psi}{1 + \psi + \phi \varepsilon}.$$

$$n_{\rm f}$$
 C $n_{\rm C}$ H $n_{\rm H}$ O $n_{\rm O}$ N $n_{\rm N}$ +

$$n_{\rm f} \, {\rm C} n_{\rm C} {\rm H} n_{\rm H} {\rm O} n_{\rm O} {\rm N} n_{\rm N} + n_{\rm air} \left(\frac{1}{1+\psi} {\rm O}_2 + \frac{\psi}{1+\psi} {\rm N}_2 \right) \longrightarrow$$

$$n_{\rm f} \, {\rm C} n_{\rm C} {\rm H} n_{\rm H} {\rm O} n_{\rm O} {\rm N} n_{\rm N} + n_{\rm air} \left(\frac{1}{1+\psi} {\rm O}_2 + \frac{\psi}{1+\psi} {\rm N}_2 \right) \longrightarrow n_{\rm CO_2} {\rm CO}_2$$

$$n_{\rm f} \, {\rm C} n_{\rm C} {\rm H} n_{\rm H} {\rm O} n_{\rm O} {\rm N} n_{\rm N} + n_{\rm air} \left(\frac{1}{1+\psi} {\rm O}_2 + \frac{\psi}{1+\psi} {\rm N}_2 \right) \longrightarrow$$

$$n_{\rm CO_2} {\rm CO}_2 + n_{\rm H_2O} {\rm H_2O}$$

$$n_{\rm f} \, {\rm C} n_{\rm C} {\rm H} n_{\rm H} {\rm O} n_{\rm O} {\rm N} n_{\rm N} + n_{\rm air} \left(\frac{1}{1+\psi} {\rm O}_2 + \frac{\psi}{1+\psi} {\rm N}_2 \right) \longrightarrow$$

$$n_{\rm CO_2} {\rm CO}_2 + n_{\rm H_2O} {\rm H}_2 {\rm O} + n_{\rm CO} {\rm CO}$$

$$n_{\rm f} \, {\rm C} n_{\rm C} {\rm H} n_{\rm H} {\rm O} n_{\rm O} {\rm N} n_{\rm N} + n_{\rm air} \left(\frac{1}{1+\psi} {\rm O}_2 + \frac{\psi}{1+\psi} {\rm N}_2 \right) \longrightarrow$$

$$n_{\rm CO_2} {\rm CO}_2 + n_{\rm H_2O} {\rm H}_2 {\rm O} + n_{\rm CO} {\rm CO} + n_{\rm H_2} {\rm H}_2$$

$$n_{\rm f} \, {\rm C} n_{\rm C} {\rm H} n_{\rm H} {\rm O} n_{\rm O} {\rm N} n_{\rm N} + n_{\rm air} \left(\frac{1}{1+\psi} {\rm O}_2 + \frac{\psi}{1+\psi} {\rm N}_2 \right) \longrightarrow$$

$$n_{\rm CO_2} {\rm CO}_2 + n_{\rm H_2O} {\rm H}_2 {\rm O} + n_{\rm CO} {\rm CO} + n_{\rm H_2} {\rm H}_2 + n_{\rm O_2} {\rm O}_2$$

$$n_{\rm f} \operatorname{C} n_{\rm C} \operatorname{H} n_{\rm H} \operatorname{O} n_{\rm O} \operatorname{N} n_{\rm N} + n_{\rm air} \left(\frac{1}{1 + \psi} \operatorname{O}_2 + \frac{\psi}{1 + \psi} \operatorname{N}_2 \right) \longrightarrow$$

$$n_{\rm CO_2} \operatorname{CO}_2 + n_{\rm H_2O} \operatorname{H}_2 \operatorname{O} + n_{\rm CO} \operatorname{CO} + n_{\rm H_2} \operatorname{H}_2 + n_{\rm O_2} \operatorname{O}_2 + n_{\rm N_2} \operatorname{N}_2.$$

A reação de combustão básica é:

$$n_{\rm f} \operatorname{C} n_{\rm C} \operatorname{H} n_{\rm H} \operatorname{O} n_{\rm O} \operatorname{N} n_{\rm N} + n_{\rm air} \left(\frac{1}{1 + \psi} \operatorname{O}_2 + \frac{\psi}{1 + \psi} \operatorname{N}_2 \right) \longrightarrow$$

$$n_{\rm CO_2} \operatorname{CO}_2 + n_{\rm H_2O} \operatorname{H}_2 \operatorname{O} + n_{\rm CO} \operatorname{CO} + n_{\rm H_2} \operatorname{H}_2 + n_{\rm O_2} \operatorname{O}_2 + n_{\rm N_2} \operatorname{N}_2.$$

• Hipótese: oxidação mais completa possível:

$$n_{\rm f} \operatorname{C} n_{\rm C} \operatorname{H} n_{\rm H} \operatorname{O} n_{\rm O} \operatorname{N} n_{\rm N} + n_{\rm air} \left(\frac{1}{1+\psi} \operatorname{O}_2 + \frac{\psi}{1+\psi} \operatorname{N}_2 \right) \longrightarrow$$

$$n_{\rm CO_2} \operatorname{CO}_2 + n_{\rm H_2O} \operatorname{H}_2 \operatorname{O} + n_{\rm CO} \operatorname{CO} + n_{\rm H_2} \operatorname{H}_2 + n_{\rm O_2} \operatorname{O}_2 + n_{\rm N_2} \operatorname{N}_2.$$

- Hipótese: oxidação mais completa possível:
- $(\phi \le 1)$: sem produção de CO e H₂ $\longrightarrow n_{CO} = n_{H_2} = 0$ kmol, e o sistema fecha;

$$n_{\rm f} \operatorname{C} n_{\rm C} \operatorname{H} n_{\rm H} \operatorname{O} n_{\rm O} \operatorname{N} n_{\rm N} + n_{\rm air} \left(\frac{1}{1 + \psi} \operatorname{O}_2 + \frac{\psi}{1 + \psi} \operatorname{N}_2 \right) \longrightarrow$$

$$n_{\rm CO_2} \operatorname{CO}_2 + n_{\rm H_2O} \operatorname{H}_2 \operatorname{O} + n_{\rm CO} \operatorname{CO} + n_{\rm H_2} \operatorname{H}_2 + n_{\rm O_2} \operatorname{O}_2 + n_{\rm N_2} \operatorname{N}_2.$$

- Hipótese: oxidação mais completa possível:
- $(\phi \leqslant 1)$: sem produção de CO e H₂ $\longrightarrow n_{CO} = n_{H_2} = 0$ kmol, e o sistema fecha;
- $(\phi > 1)$: todo O_2 é utilizado $\longrightarrow n_{O_2} = 0$ kmol, e requer-se mais equações!

Equilíbrio Químico:

• Para $\phi > 1$ o fechamento é obtido por equilíbrio químico;

Equilíbrio Químico:

- Para $\phi > 1$ o fechamento é obtido por equilíbrio químico;
- Reação de "water-gas shift reaction":

Equilíbrio Químico:

- Para $\phi > 1$ o fechamento é obtido por equilíbrio químico;
- Reação de "water-gas shift reaction":

$$CO_2 + H_2 \Longrightarrow CO + H_2O$$
, com

Equilíbrio Químico:

- Para $\phi > 1$ o fechamento é obtido por equilíbrio químico;
- Reação de "water-gas shift reaction":

$$CO_2 + H_2 \Longrightarrow CO + H_2O$$
, com

• Constante de equilíbrio da reação, K(T), reduzido por hipótese a uma constante K:

Equilíbrio Químico:

- Para $\phi > 1$ o fechamento é obtido por equilíbrio químico;
- Reação de "water-gas shift reaction":

$$CO_2 + H_2 \Longrightarrow CO + H_2O$$
, com

• Constante de equilíbrio da reação, K(T), reduzido por hipótese a uma constante K:

$$K(T) = \frac{n_{\text{H}_2\text{O}}n_{\text{CO}}}{n_{\text{CO}_2}n_{\text{H}_2}} = K(1740 \text{ K}) = 3,5.$$

Equilíbrio Químico: Solução em n_{CO} :

Equilíbrio Químico: Solução em n_{CO} :

$$rac{n_{
m CO}}{n_{
m f}} = -eta \pm \sqrt{eta^2 - \gamma}, \qquad {
m com}$$

Equilíbrio Químico: Solução em n_{CO} :

$$\frac{n_{\rm CO}}{n_{\rm f}} = -\beta \pm \sqrt{\beta^2 - \gamma}, \qquad {
m com}$$

$$\gamma = \frac{2n_{\rm C}(\phi - 1)}{\phi \varepsilon (K - 1)} \qquad \epsilon$$

Equilíbrio Químico: Solução em n_{CO} :

$$rac{n_{
m CO}}{n_{
m f}} = -eta \pm \sqrt{eta^2 - \gamma}, \qquad {
m com}$$

$$\gamma = \frac{2n_{\rm C}(\phi - 1)}{\phi \varepsilon (K - 1)}$$
 e

$$\beta = \frac{\phi \epsilon [(2-K)n_{\rm C} - n_{\rm O}] + 2[K(\phi - 1) + 1]}{2(K-1)\phi \epsilon}.$$

Solução da Combustão:

n_k	rico em ar, $\phi \leqslant 1$	pobre em ar, $\phi > 1$
n_{CO_2}	$n_{\rm C}n_{ m f}=n_{ m C}rac{{ m \phi}\epsilon}{1+{ m \psi}}n_{ m air}$	$n_{\rm C}n_{\rm f} - n_{\rm CO} = n_{\rm C} \frac{\phi \epsilon}{1 + \psi} n_{\rm air} - n_{\rm CO}$
$n_{ m H_2O}$	$\frac{n_{ m H}}{2}n_{ m f}=\frac{n_{ m H}}{2}\frac{\Phi \epsilon}{1+\psi}n_{ m air}$	$(n_{\rm O} - 2n_{\rm C})n_{\rm f} + \frac{2}{1 + \psi}n_{\rm air} + n_{\rm CO}$
$n_{\rm CO}$	0	$n_{\rm CO}$
$n_{ m H_2}$	0	$\frac{2(\phi-1)}{\phi\varepsilon}n_{\rm f}-n_{\rm CO} = \frac{2(\phi-1)}{1+\psi}n_{\rm air}-n_{\rm CO}$
n_{O_2}	$(1 - \phi) \frac{n_{\text{air}}}{1 + \psi} = (1 - \phi) \frac{n_{\text{f}}}{\phi \epsilon}$	0
$n_{ m N_2}$	$\frac{\Psi}{1+\Psi}n_{\rm air} + \frac{n_{\rm N}}{2}n_{\rm f}$	$\frac{\Psi}{1+\Psi}n_{\rm air}+\frac{n_{\rm N}}{2}n_{\rm f}$

• A fração residual, ζ , de gases do ciclo anterior fica no sistema, $V_{\text{PMS}} > 0$;

- A fração residual, ζ , de gases do ciclo anterior fica no sistema, $V_{\text{PMS}} > 0$;
- Silva, R. K. de O. modelou dados de Heywood, J. B., como $\zeta:\zeta(P,r)$:

- A fração residual, ζ , de gases do ciclo anterior fica no sistema, $V_{\text{PMS}} > 0$;
- Silva, R. K. de O. modelou dados de Heywood, J. B., como $\zeta:\zeta(P,r)$:

$$\begin{split} \zeta(P,r) &= 17.807 + 6.423 \text{g}(r) \\ &- [0.029 + 0.013 \text{g}(r)] P \\ &+ [1.828 + 0.798 \text{g}(r)] \times 10^{-5} \times P^2, \qquad \text{com} \end{split}$$

- A fração residual, ζ , de gases do ciclo anterior fica no sistema, $V_{\text{PMS}} > 0$;
- Silva, R. K. de O. modelou dados de Heywood, J. B., como $\zeta:\zeta(P,r)$:

$$\begin{split} \zeta(P,r) &= 17.807 + 6.423 \text{g}(r) \\ &- [0.029 + 0.013 \text{g}(r)] P \\ &+ [1.828 + 0.798 \text{g}(r)] \times 10^{-5} \times P^2, \qquad \text{com} \end{split}$$

$$g(r) = (5.25 - 0.5r)e^{(8.5-r)}$$
.

$$\mathbb{M}_{a} = n_{\text{air}} \left(\frac{1}{1 + \psi} O_2 + \frac{\psi}{1 + \psi} N_2 \right), \tag{ar}$$

$$\mathbb{M}_{a} = n_{\text{air}} \left(\frac{1}{1 + \Psi} O_2 + \frac{\Psi}{1 + \Psi} N_2 \right), \tag{ar}$$

$$M_{f} = n_{f} C n_{C} H n_{H} O n_{O} N n_{N}, \qquad (comb.)$$

$$\mathbb{M}_{a} = n_{air} \left(\frac{1}{1+\Psi} O_2 + \frac{\Psi}{1+\Psi} N_2 \right), \tag{ar}$$

$$M_{f} = n_{f} C n_{C} H n_{H} O n_{O} N n_{N}, \qquad (comb.)$$

$$\mathbb{M}_{af} = n_{air} \left(\frac{1}{1+\Psi} O_2 + \frac{\Psi}{1+\Psi} N_2 \right) + n_f C n_C H n_H O n_O N n_N,$$
 (ar-comb.)

$$\mathbb{M}_{a} = n_{air} \left(\frac{1}{1+\Psi} O_2 + \frac{\Psi}{1+\Psi} N_2 \right), \tag{ar}$$

$$M_{f} = n_{f} C n_{C} H n_{H} O n_{O} N n_{N}, \qquad (comb.)$$

$$\mathbb{M}_{\text{af}} = n_{\text{air}} \left(\frac{1}{1+w} O_2 + \frac{\psi}{1+w} N_2 \right) + n_f C n_C H n_H O n_O N n_N,$$
 (ar-comb.)

$$\mathbb{M}_{pr} = n_{\text{CO}_2}\text{CO}_2 + n_{\text{H}_2}\text{O} + n_{\text{CO}}\text{CO} + n_{\text{H}_2}\text{H}_2 + n_{\text{O}_2}\text{O}_2 + n_{\text{N}_2}\text{N}_2, \quad (produtos)$$

$$\mathbb{M}_{a} = n_{\text{air}} \left(\frac{1}{1 + \Psi} O_2 + \frac{\Psi}{1 + \Psi} N_2 \right), \tag{ar}$$

$$M_{f} = n_{f} C n_{C} H n_{H} O n_{O} N n_{N}, \qquad (comb.)$$

$$\mathbb{M}_{\text{af}} = n_{\text{air}} \left(\frac{1}{1+W} O_2 + \frac{\Psi}{1+W} N_2 \right) + n_{\text{f}} C n_{\text{C}} H n_{\text{H}} O n_{\text{O}} N n_{\text{N}}, \tag{ar-comb.}$$

$$M_{pr} = n_{CO_2}CO_2 + n_{H_2O}H_2O + n_{CO}CO + n_{H_2}H_2 + n_{O_2}O_2 + n_{N_2}N_2,$$
 (produtos)

$$M_{re} = (1 - \zeta) M_{af} + (\zeta) M_{pr}, \qquad (reagentes)$$

Tópicos de Leitura I

Brunetti, F.

Motores de combustão interna. Capítulos 1 e 2.

Blücher. São Paulo. ISBN 978-85-2120-708-5.

Silva, R. K. de O.

Modelo ar-combustível de tempo finito de adição de calor de motores Otto.

Repositório Roca UTFPR.

repositorio.roca.utfpr.edu.br/jspui/handle/1/8786

