《高等数学 I(2)》考试卷(A)

使用专业、班级______ 学号_____ 姓名

题 号	 	11.1	四	五	六	七	总分
得 分							

一、填空题(每小题5分,共20分)

- (1) 设向量a,b的模 $|a/=2,|b|=\sqrt{2}$,且 $|a\times b/=2$,则 $a\cdot b=$.
- (2) 设函数 $z = e^{x^2 + y^2}$, 则全微分 dz = ______.
- (3) 交换积分次序 $\int_0^1 dx \int_x^{\sqrt{x}} f(x, y) dy =$ ______

本题 二、选择题(每小题5分,共20分)

- (1) 设向量 $\mathbf{a} = (k+2, 2, 1-k^2), \mathbf{b} = (k, k-1, 1), \mathbf{L} \mathbf{a} \perp \mathbf{b}, \mathbf{M} k$ 等于
 - (A) 1.

- (B) $\frac{1}{2}$. (C) $\frac{1}{3}$. (D) $\frac{1}{4}$.
- (2) 设 $f(x,y) = 4(x-y) x^2 y^2$ 的极大值点的是
 (A) (2,2). (B) (2,-2). (C) (-2,2). (D) (-2,-2). 【 】

[]

- (3) 设 f(x,y) 是连续函数,则 $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} d\theta \int_{0}^{\sqrt{2}} f(\rho \cos \theta, \rho \sin \theta) \rho d\rho$ 等于
- (A) $\int_{0}^{1} dx \int_{x}^{\sqrt{2-x^{2}}} f(x, y) dy$. (B) $\int_{0}^{1} dx \int_{0}^{\sqrt{2-x^{2}}} f(x, y) dy$. (C) $\int_{0}^{1} dy \int_{y}^{\sqrt{2-y^{2}}} f(x, y) dx$. (D) $\int_{0}^{1} dy \int_{y}^{\sqrt{2-y^{2}}} f(x, y) dx$.

- (4) 设常数 k > 0,则级数 $\sum_{n=1}^{\infty} (-1)^n \frac{1}{n} \ln \left(1 + \frac{k}{n} \right)$
 - (A) 发散.
- (B) 条件收敛.
- (C) 绝对收敛. (D) 收敛性与 k 有关. 【 】

- 三、计算下列各题(每小题7分,共28分)
- (1) 设函数 z = z(x, y) 由方程 $z^5 x^3 y^2 z = a^2$ 所确定, 求 $\frac{\partial z}{\partial x}$ 及 $\frac{\partial z}{\partial y}$.

(2) 设 z = f(x + y, xy), 其中 f 具有二阶连续偏导数, 求 $\frac{\partial^2 z}{\partial x \partial y}$.

(3) 计算二重积分 $\iint x \sqrt{y} dxdy$, 其中 D 是由直线 y = x, x = 1 及 x 轴 所围成的闭区域.

(4) 判定正项级数 $\sum_{i=1}^{\infty} n \sin \frac{\pi}{2^{n}}$ 的收敛性.

考试形式开卷()、闭卷(),在选项上打(√)

开课教研室<u>大学数学部</u> 命题教师<u>命题组</u> 命题时间<u>2011-05-15</u> 使用学期<u>2010-2011-2</u> 总张数<u>2</u> 教研室主任审核签字 ____

本题 四、(本题 8 分) 求由锥面 $z = \sqrt{x^2 + y^2}$ 及球面 $z = \sqrt{2 - x^2 - y^2}$ 所围成的立体的体积	本题
本题 五、(本题10分)在平面 $x+2y+3z=6$ 的第一卦限部分上求一点, 使该点到三个 坐标面的距离的乘积为最大.	本题 七、(本题 6 分) 设正项级数 $\sum_{n=1}^{\infty}u_n$ 和 $\sum_{n=1}^{\infty}v_n$ 都收敛, 证明级数 $\sum_{n=1}^{\infty}(u_n+v_n)^2$ 也收敛.
<u> </u> 得分	