Localization-Aware Chest X-ray Classification via Segmentation and Gradient-based Attention

Anonymous Authors

I. EVALUATION METRICS

In the classification tasks, instances where the lesion type for object detection is "No Finding" are designated as the negative class. For evaluating the classification results, we utilize the performance metrics provided by scikit-learn, including Accuracy, Precision, Recall, and F1-Score. Since the datasets have been balanced through cleaning to ensure representation across classes, both weighted and macro variants of the metrics are reported. Given the unique characteristics of medical data, we additionally incorporate sensitivity (recall), specificity, positive predictive value (PPV), false discovery rate (FDR), false omission rate (FOR), Youden's index (YI) and Discriminant power (DP) as evaluation metrics, which are formally defined as follows:

$$Sensitivity = \frac{TP}{TP + FN},$$

$$Specificity = \frac{TN}{FP + TN},$$

$$PPV = \frac{TP}{TP + FP},$$

$$FDR = \frac{FP}{FP + TP},$$

$$FOR = \frac{FN}{FN + TN}.$$

$$YI = Sensitivity + Specificity - 1$$

$$\mathrm{DP} = \frac{\sqrt{3}}{\pi} \cdot \left(\log\left(\frac{\mathrm{sensitivity}}{1-\mathrm{sensitivity}}\right) + \log\left(\frac{\mathrm{specificity}}{1-\mathrm{specificity}}\right)\right)$$

TABLE I
RESULTS OF COMPARISON FOR OTTAWA DATASET
(CROSS-ENTROPY/PROPOSED LOSS) OVER THREE MODELS, THE
EXPERIMENTAL SETTING USED FOR ATTENTION LOSS IS THE
BEST-PERFORMING (F1 SCORE) CONFIGURATION FROM ALL SETTINGS OF
EACH MODEL, DP REPRESENTS DISCRIMINANT POWER.

Ottawa: No Finding vs Effusion							
Metric PVT VGG16 ResNet50							
Sensitivity	0.654/0.705	0.782/0.692	0.744/0.692				
Specificity	0.603/0.744	0.564/0.718	0.564/0.718				
Youden's index	0.257/0.449	0.410/0.384	0.308/0.410				
DP	0.253/0.464	0.367/0.418	0.317/0.418				

Ottawa: No Finding vs Pneumothorax					
Metric	PVT	VGG16	ResNet50		
Sensitivity	0.517/0.638	0.784/0.784	0.707/0.672		
Specificity	0.612/0.647	0.483/0.586	0.397/0.612		
Youden's index	0.129/0.285	0.267/0.370	0.104/0.284		
DP	0.125/0.281	0.292/0.392	0.111/0.281		

Ottawa: No Finding vs Subcutaneous emphysema						
Metric PVT VGG16 ResNet50						
Sensitivity	0.697/0.780	0.727/0.735	0.621/0.689			
Specificity	0.811/0.795	0.773/0.780	0.712/0.712			
Youden's index	0.508/0.575	0.500/0.515	0.333/0.401			
DP	0.548/0.628	0.528/0.547	0.335/0.407			

Ottawa: No finding, Effusion, Pneumothorax							
Metric PVT VGG16 ResNet50							
0.457/0.551	0.474/0.543	0.496/0.513					
0.729/0.776	0.737/0.771	0.748/0.756					
0.186/0.327	0.212/0.314	0.244/0.269					
0.212/0.368	0.223/0.405	0.263/0.284					
	PVT 0.457/0.551 0.729/0.776 0.186/0.327	PVT VGG16 0.457/0.551 0.474/0.543 0.729/0.776 0.737/0.771 0.186/0.327 0.212/0.314					

TABLE II

Results of comparison for NIH dataset (cross-entropy/proposed loss) over three models, the experimental setting used for attention loss is the best-performing (F1 score) configuration from all settings of each model, DP represents Discriminant power.

NIH: No Finding vs Effusion

Metric	PVT	VGG16	ResNet50
Sensitivity	0.752/0.810	0.861/0.823	0.746/0.828
Specificity	0.882/0.899	0.807/0.853	0.872/0.824
Youden's index	0.634/0.709	0.668/0.676	0.618/0.652
DP	0.747/0.871	0.779/ 0.750	0.789/0.746

NIH: No Finding vs Pneumothorax

Metric	PVT	VGG16	ResNet50
Sensitivity	0.745/0.815	0.795/0.795	0.715/0.806
Specificity	0.797/0.793	0.736/0.788	0.738/0.770
Youden's index	0.542/0.608	0.531/0.583	0.453/0.576
DP	0.584/0.677	0.570/0.639	0.468/0.630

NIH: No finding, Effusion, Pneumothorax

Metric	PVT	VGG16	ResNet50
Sensitivity	0.651/0.689	0.674/0.683	0.631/0.632
Specificity	0.826/0.845	0.837/0.842	0.815/0.816
Youden's index	0.477/0.534	0.511/0.525	0.446/0.449
DP	0.525/0.603	0.569/0.590	0.498/0.492

TABLE III

Results with different λ values (binary classification - Ottawa dataset). $\lambda=1$: cross-entropy loss, $\lambda=*$: adaptive custom loss, bold: best results within the same model, underline: best results over all models, italics: best results over all models prior to "attention loss" being used.

	Effusion vs No Finding					
Model	Metric	$\lambda = 1$	$\lambda = 0.75$	$\lambda = 0.5$	$\lambda = 0.25$	$\lambda = *$
	Acc / Rec	0.628	0.660	0.692	0.654	0.628
	Prec	0.629	0.662	0.693	0.659	0.630
	F1	0.628	0.659	0.692	0.651	0.627
	AUC	0.743	0.723	0.752	0.678	0.683
PVT	PPV	0.622	0.681	0.703	0.630	0.614
PVI	Sensitivity	0.654	0.603	0.718	0.744	0.692
	Specificity	0.603	0.718	0.718	0.564	0.564
	FDR	0.378	0.319	0.297	0.370	0.386
	FOR	0.365	0.356	0.317	0.313	0.353
	Acc / Rec	0.673	0.667	0.673	0.654	0.692
VGG16	Prec	0.682	0.667	0.674	0.662	0.692
	F1	0.669	0.666	0.672	0.649	<u>0.692</u>
	AUC	0.726	0.735	0.745	0.745	<u>0.760</u>
	PPV	0.642	0.676	0.659	0.625	0.697
VGG10	Sensitivity	<u>0.782</u>	0.641	0.718	0.769	0.679
	Specificity	0.564	0.692	0.628	0.538	0.705
	FDR	0.358	0.324	0.341	0.375	0.303
	FOR	<u>0.279</u>	0.341	0.310	0.300	0.313
	Acc / Rec	0.654	0.635	0.628	0.673	0.667
	Prec	0.659	0.638	0.630	0.673	0.669
	F1	0.651	0.632	0.627	0.673	0.665
	AUC	0.736	0.672	0.739	0.737	0.711
ResNet50	PPV	0.630	0.615	0.616	0.667	0.648
Resiletou	Sensitivity	0.744	0.718	0.679	0.692	0.731
	Specificity	0.564	0.551	0.577	0.654	0.603
	FDR	0.370	0.385	0.384	0.333	0.352
	FOR	0.313	0.338	0.357	0.320	0.309

REFERENCES

TABLE IV

Results with different λ values (binary classification - Ottawa dataset). $\lambda=1$: cross-entropy loss, $\lambda=*$: adaptive custom loss, bold: best results within the same model, underline: best results over all models, italics: best results over all models prior to "attention loss" being used.

	Pneumothorax vs No Finding					
Model	Metric	$\lambda = 1$	$\lambda = 0.75$	$\lambda = 0.5$	$\lambda = 0.25$	$\lambda = *$
	Acc / Rec	0.565	0.578	0.595	0.595	0.642
	Prec	0.565	0.578	0.595	0.596	0.642
	F1	0.564	0.576	0.594	0.594	0.642
	AUC	0.626	0.632	0.654	0.623	0.653
PVT	PPV	0.571	0.587	0.602	0.587	0.643
1 1 1	Sensitivity	0.517	0.526	0.560	0.638	0.638
	Specificity	0.612	0.629	0.629	0.552	0.647
	FDR	0.429	0.413	0.398	0.413	0.357
	FOR	0.441	0.430	0.411	0.396	0.359
	Acc / Rec	0.634	0.642	0.681	0.647	0.629
	Prec	0.647	0.643	<u>0.681</u>	0.648	0.629
	F1	0.625	0.642	<u>0.681</u>	0.646	0.629
	AUC	0.707	0.681	0.714	<u>0.740</u>	0.680
VGG16	PPV	0.603	0.636	<u>0.684</u>	0.663	0.627
VGG10	Sensitivity	<u>0.784</u>	0.664	0.672	0.595	0.638
	Specificity	0.483	0.621	0.690	<u>0.698</u>	0.621
	FDR	0.397	0.364	<u>0.316</u>	0.337	0.373
	FOR	<u>0.309</u>	0.351	0.322	0.367	0.368
	Acc / Rec	0.552	0.547	0.504	0.608	0.556
	Prec	0.557	0.549	0.505	0.609	0.558
	F1	0.541	0.544	0.496	0.607	0.553
	AUC	0.591	0.569	0.504	0.627	0.583
ResNet50	PPV	0.539	0.540	0.506	0.619	0.567
ICSIVE 50	Sensitivity	0.707	0.638	0.379	0.560	0.474
	Specificity	0.397	0.457	0.629	0.655	0.638
	FDR	0.461	0.460	0.494	0.381	0.433
	FOR	0.425	0.442	0.497	0.402	0.452

TABLE V

Results with different λ values (binary classification - Ottawa dataset). $\lambda=1$: cross-entropy loss, $\lambda=*$: adaptive custom loss, bold: best results within the same model, underline: best results over all models, italics: best results over all models prior to "attention loss" being used.

Subcutaneous	emphysema	vs No Finding	

			mpn joenia v			
Model	Metric	$\lambda = 1$	$\lambda = 0.75$	$\lambda = 0.5$	$\lambda = 0.25$	$\lambda = *$
	Acc / Rec	0.754	0.735	0.727	0.758	0.739
	Prec	0.757	0.740	0.727	0.759	0.740
	F1	0.753	0.733	0.727	<u>0.757</u>	0.738
	AUC	0.828	0.810	0.811	0.831	0.799
PVT	PPV	<i>0.786</i>	0.777	0.721	0.779	0.756
r v I	Sensitivity	0.697	0.659	0.742	0.720	0.705
	Specificity	0.811	0.811	0.712	0.795	0.773
	FDR	0.214	0.223	0.279	0.221	0.244
	FOR	0.272	0.296	0.266	0.261	0.277
	Acc / Rec	0.750	0.742	0.742	0.731	0.758
	Prec	0.751	0.742	0.751	0.731	0.776
	F1	0.750	0.742	0.740	0.731	0.753
	AUC	0.790	0.811	0.829	0.813	0.811
VGG16	PPV	0.762	0.739	0.796	0.729	0.847
VOOTO	Sensitivity	0.727	<u>0.750</u>	0.652	0.735	0.629
	Specificity	0.773	0.735	0.833	0.727	0.886
	FDR	0.238	0.261	0.204	0.271	0.153
	FOR	0.261	0.254	0.295	0.267	0.295
	Acc / Rec	0.667	0.678	0.621	0.652	0.652
	Prec	0.668	0.683	0.621	0.657	0.652
	F1	0.666	0.676	0.621	0.649	0.651
	AUC	0.707	0.712	0.667	0.715	0.696
ResNet50	PPV	0.683	0.712	0.619	0.685	0.664
RESINCIDO	Sensitivity	0.621	0.598	0.629	0.561	0.614
	Specificity	0.712	0.758	0.614	0.742	0.689
	FDR	0.317	0.288	0.381	0.315	0.336
	FOR	0.347	0.346	0.377	0.372	0.359

TABLE VI

Results with different λ values (multi-class classification -Ottawa dataset). $\lambda = 1$: cross-entropy loss, $\lambda = *$: adaptive CUSTOM LOSS, BOLD: BEST RESULTS WITHIN THE SAME MODEL, UNDERLINE: BEST RESULTS OVER ALL MODELS, ITALICS: BEST RESULTS OVER ALL MODELS PRIOR TO "ATTENTION LOSS" BEING USED.

Effusion, Pneumothorax and No Finding

Model

Metric	$\lambda = 1$	$\lambda = 0.75$	$\lambda = 0.5$	$\lambda = 0.25$	λ =
Acc / Rec	0.457	0.491	0.453	0.474	0.49
Prec	0.465	0.488	0.462	0.472	0.49
F1	0.443	0.488	0.453	0.470	0.48

PVT	ACC / RCC	0.457	0.491	0.433	0.474	0.470
	Prec	0.465	0.488	0.462	0.472	0.491
	F1	0.443	0.488	0.453	0.470	0.488
	AUC	0.643	0.663	0.644	0.650	0.677
VGG16	Acc / Rec	0.474	0.512	0.512	0.496	0.474
	Prec	0.466	0.518	0.516	0.486	0.474
	F1	0.459	0.517	0.507	0.482	0.445
	AUC	0.697	0.709	0.722	0.688	0.667
ResNet50	Acc / Rec	0.496	0.419	0.466	0.487	0.453
	Prec	0.493	0.407	0.448	0.486	0.437
	F1	0.488	0.408	0.450	0.484	0.441
	AUC	0.683	0.610	0.675	0.679	0.674

TABLE VII

Results with different λ values (binary classification - NIH dataset). $\lambda=1$: cross-entropy loss, $\lambda=*$: adaptive custom LOSS, BOLD: BEST RESULTS WITHIN THE SAME MODEL, UNDERLINE: BEST RESULTS OVER ALL MODELS, ITALICS: BEST RESULTS OVER ALL MODELS PRIOR TO "ATTENTION LOSS" BEING USED.

Effusio	on vs No Fi	nding
$\lambda = 1$	$\lambda = 0.75$	λ =

Litusion vs tvo i munig						
Model	Metric	$\lambda = 1$	$\lambda = 0.75$	$\lambda = 0.5$	$\lambda = 0.25$	$\lambda = *$
	Acc / Rec	0.817	0.822	0.828	0.821	0.855
	Prec	0.823	0.824	0.828	0.821	<u>0.857</u>
	F1	0.817	0.821	0.828	0.821	<u>0.854</u>
	AUC	0.884	0.896	0.896	0.894	0.909
PVT	PPV	0.865	0.851	0.838	0.829	0.889
PVI	Sensitivity	0.752	0.780	0.813	0.809	0.810
	Specificity	0.882	0.863	0.843	0.833	0.899
	FDR	0.135	0.149	0.162	0.171	0.111
	FOR	0.219	0.203	0.182	0.186	0.174
	Acc / Rec	0.834	0.821	0.821	0.820	0.825
	Prec	0.835	0.822	0.822	0.824	0.826
	F1	0.834	0.821	0.821	0.820	0.825
	AUC	0.907	0.900	0.896	0.900	0.891
VGG16	PPV	0.817	0.843	0.840	0.858	0.846
V0010	Sensitivity	0.861	0.789	0.793	0.769	0.794
	Specificity	0.807	0.853	0.850	0.872	0.856
	FDR	0.183	0.157	0.160	0.142	0.154
	FOR	0.147	0.198	0.196	0.210	0.194
ResNet50	Acc / Rec	0.809	0.808	0.784	0.815	0.809
	Prec	0.814	0.809	0.788	0.815	0.810
	F1	0.808	0.808	0.784	0.815	0.809
	AUC	0.870	0.863	0.860	0.874	0.872
	PPV	0.854	0.803	0.819	0.805	0.821
	Sensitivity	0.746	0.818	0.731	0.831	0.790
	Specificity	0.872	0.799	0.838	0.799	0.828
	FDR	0.146	0.197	0.181	0.195	0.179
	FOR	0.226	0.186	0.243	0.175	0.202

TABLE VIII

Results with different λ values (binary classification - NIH dataset). $\lambda = 1$: cross-entropy loss, $\lambda = *$: adaptive custom LOSS, BOLD: BEST RESULTS WITHIN THE SAME MODEL, UNDERLINE: BEST RESULTS OVER ALL MODELS, ITALICS: BEST RESULTS OVER ALL MODELS PRIOR TO "ATTENTION LOSS" BEING USED.

Pneumothorax vs No Finding

Theumothorax vs No Finding						
Model	Metric	$\lambda = 1$	$\lambda = 0.75$	$\lambda = 0.5$	$\lambda = 0.25$	$\lambda = *$
	Acc / Rec	0.771	0.793	0.784	0.759	0.790
	Prec	0.772	<u>0.793</u>	0.784	0.760	0.791
	F1	0.771	0.793	0.783	0.758	0.790
	AUC	0.842	0.872	0.858	0.841	0.868
PVT	PPV	0.786	0.804	0.769	0.778	0.796
PVI	Sensitivity	0.745	0.774	0.811	0.724	0.781
	Specificity	0.797	0.811	0.756	0.793	0.800
	FDR	0.214	0.196	0.231	0.222	0.204
	FOR	0.242	0.218	0.200	0.258	0.215
	Acc / Rec	0.765	0.763	0.768	0.776	0.778
	Prec	0.766	0.764	0.768	0.776	0.778
	F1	0.765	0.763	0.768	0.776	0.778
	AUC	0.841	0.828	0.848	0.848	0.860
VGG16	PPV	0.751	0.753	0.771	0.768	0.769
VGG10	Sensitivity	0.795	0.784	0.761	0.790	0.795
	Specificity	0.736	0.743	0.774	0.761	0.761
	FDR	0.249	0.247	0.229	0.232	0.231
	FOR	0.218	0.226	0.236	0.216	0.212
	Acc / Rec	0.727	0.749	0.731	0.738	0.743
	Prec	0.727	0.751	0.733	0.739	0.746
	F1	0.727	0.749	0.731	0.738	0.742
	AUC	0.817	0.821	0.807	0.818	0.804
ResNet50	PPV	0.732	0.733	0.713	0.723	0.719
RESINCIDO	Sensitivity	0.715	0.784	0.774	0.772	0.797
	Specificity	0.738	0.715	0.688	0.704	0.688
	FDR	0.268	0.267	0.287	0.277	0.281
	FOR	0.278	0.232	0.247	0.244	0.228

TABLE IX

Results with different λ values (multi-class classification -NIH dataset). $\lambda = 1$: cross-entropy loss, $\lambda = *$: adaptive custom LOSS, BOLD: BEST RESULTS WITHIN THE SAME MODEL, UNDERLINE: BEST RESULTS OVER ALL MODELS, ITALICS: BEST RESULTS OVER ALL MODELS PRIOR TO "ATTENTION LOSS" BEING USED.

Effusion, Pneumothorax and No Finding

Model	Metric	$\lambda = 1$	$\lambda = 0.75$	$\lambda = 0.5$	$\lambda = 0.25$	$\lambda = *$
	Acc / Rec	0.651	0.651	0.670	0.669	0.677
PVT	Prec	0.651	0.651	0.672	0.669	0.678
PVI	F1	0.652	0.651	0.671	0.669	0.677
	AUC	0.812	0.819	0.843	0.828	0.839
	Acc / Rec	0.674	0.653	0.640	0.660	0.641
VGG16	Prec	0.674	0.657	0.641	0.660	0.641
VGG10	F1	0.674	0.651	0.640	0.660	0.641
	AUC	0.831	0.822	0.820	0.822	0.817
ResNet50	Acc / Rec	0.631	0.610	0.601	0.620	0.632
	Prec	0.631	0.609	0.598	0.622	0.632
	F1	0.626	0.609	0.598	0.609	0.630
	AUC	0.800	0.781	0.781	0.793	0.794