# Project #2

#### **DIGITAL IMAGE PROCESSING**

Student: 黎文雄 (Le Van Hung)

**Student ID: 0860831** 

### **Requirement:**

- For the bird image below, compute the 512x512 DFT and determine the frequencies (u,v) of the largest 25 DFT magnitudes.
- Your report should contain:
- Source codes
- Figures of Fourier magnitude (using log scale) and phase spectrum (after centering)
- Table of top 25 DFT frequencies (u,v)



Original image

## I will do this task by following step by step:

**Step1:** Centering picture by multiplying input image (f(x,y)) by  $(-1)^{x+y}$ 



**Step2**: compute the 512x512 DFT



**Step3:** Using log scale function: log(1+|F(u,v|))



Step4: plot phase spectrum after centering



**Step5:** determine the frequencies (u,v) of the largest 25 DFT magnitudes

|          | V   | [E(v. v)] |
|----------|-----|-----------|
| <b>u</b> |     | F(u,v)    |
| 256      | 256 | 17.14661  |
| 256      | 258 | 15.31143  |
| 256      | 254 | 15.31143  |
| 256      | 257 | 15.21525  |
| 256      | 255 | 15.21525  |
| 257      | 256 | 15.0907   |
| 255      | 256 | 15.0907   |
| 259      | 257 | 14.50039  |
| 253      | 255 | 14.50039  |
| 256      | 262 | 14.26044  |
| 256      | 250 | 14.26044  |
| 257      | 259 | 14.21716  |
| 255      | 253 | 14.21716  |
| 258      | 257 | 14.20633  |
| 254      | 255 | 14.20633  |
| 258      | 256 | 14.19427  |
| 254      | 256 | 14.19427  |
| 256      | 261 | 14.1615   |
| 256      | 251 | 14.1615   |
| 258      | 259 | 14.14579  |
| 254      | 253 | 14.14579  |
| 257      | 258 | 14.13817  |
| 255      | 254 | 14.13817  |
| 258      | 258 | 14.1075   |
| 254      | 254 | 14.1075   |

### • Source Code (use python)

```
#2020/04/22
#National Chiao Tung University
#Digital Image Processing
#Mini project NO.2
#Created by Le Van Hung (0860831)
# import library
from numpy import asarray
from numpy import savetxt
from PIL import Image
```

```
import numpy as np
import matplotlib.pyplot as plt
# import image
image = Image.open('Bird 1.tif')
image.show()
# convert image to array version
f = np.array(image, dtype='float')
# ff = np.zeros((512,512))
#define value
N = f.shape[0]
for x in range(N):
    for y in range(N):
        \# ff[x,y] = f[x,y]*pow(-1,(x+y))
        f[x,y] = f[x,y]*pow(-1,(x+y))
plt.imshow(f,cmap='gray')
plt.title("input image after multiplying by (-1)^(x+y)")
plt.show()
# DFT
F = np.fft.fft2(f)
# multi fp with (-1)^{(x+y)}
# plot magnitude spectral before after using log function
F abs = np.abs(F)
F \log = np.\log(1+F abs)
plt.imshow(F_abs,cmap='gray')
plt.title("Fourier magnitude spectrum of F(u,v) before log sale")
plt.show()
plt.imshow(F log,cmap='gray')
plt.title("Fourier magnitude spectrum of F(u,v) after log sale")
plt.show()
#plot phase spectral of F
phase = np.angle(F)
plt.imshow(phase,cmap='gray')
plt.title("plot phase spectrum of F(u,v)")
plt.show()
# sort 25 top of frequence [25 max abs()]
def find max(array):
    len array = array.shape[0]
```

```
max = 0;
    row = 0;
    col = 0;
    for u in range(len_array):
        for v in range(len_array):
            if(array[u,v] >=max):
                max = array[u,v]
                row = u
                col = v
    return [row,col,max]
A sort = []
F_{log} temp = 1*F_{log}
for i in range(25):
    temp = find_max(F_log_temp)
    F_{\log_{100}}[temp[0],temp[1]] = 0
    A_sort.append(temp)
A_sort = np.reshape(A_sort,(25,3))
```