# Spivak Calculus Exercises

## Duncan Bandojo

February 3, 2021

Chapter Title (Summary Information)

[6]

## Contents

| 0 | Introduction                          | 3 |
|---|---------------------------------------|---|
|   | Prologue 1.1 Numbers of Various Sorts | 4 |

## 0 Introduction

These are exercises from Spivak Calculus. All the proofs given are my own proofs (unless stated otherwise) which is not assured for correctness and preciseness.

### 1 Prologue

#### 1.1 Numbers of Various Sorts

**Definition** (Field Properties). The following properties hold in  $\mathbb{R}$ 

P1 (Associative law for addition)

$$a + (b + c) = (a + b) + c.$$

a + (-a) = (-a) + a = 0.

P2 (Existence of an additive identity)

$$a + 0 = 0 + a = a$$
.

P3 (Existence of additive inverse)
P4 (Commutative law for addition)

$$a+b=b+a.$$

P5 (Associative law for multiplication)

$$a \cdot (b \cdot c) = (a \cdot b) \cdot c.$$

P6 (Existence of multiplicative identity)

$$a \cdot 1 = 1 \cdot a = a; \quad 1 \neq 0.$$

P7 (Existence of multiplicative inverses)

$$a \cdot a^{-1} = a^{-1} \cdot a = 1$$
, for  $a \neq 0$ .

P8 (Commutative law for multiplication)

$$a \cdot b = b \cdot a.$$

P9 (Distributive law)

$$a \cdot (b+c) = a \cdot b + a \cdot c.$$

- P10 (Trichotomy law) For every number a, one and only one of the following holds: (Denote P as the collection of positive numbers)
  - (i) a = 0,
  - (ii) a is in the collection P,
  - (iii) -a is in the collection P.
- P11 (Closure under addition) If a and b are in P, then a + b is in P.
- P12 (Closure under multiplication) If a and b are in P, then  $a \cdot b$  is in P.

**Theorem** (Triangle Inequality). For all numbers a and b, we have

$$|a+b| \le |a| + |b|$$

Exercise (1). Prove the following:

(i) If ax = a for some number  $a \neq 0$ , then x = 1.

*Proof.* Assume that ax = a fro some number  $a \neq 0$ .

$$x = x \cdot 1 = x \cdot (a \cdot a^{-1}) = ax \cdot (a^{-1})$$
$$= a \cdot (a^{-1})$$
$$= (a \cdot a^{-1})$$
$$= 1$$

(ii)  $x^2 - y^2 = (x - y)(x + y)$ .

*Proof.* Using the field axioms.

$$(x - y)(x + y) = x \cdot (x + y) + (-y) \cdot (x + y)$$

$$= (x^{2} + xy) + ((-y) \cdot x + (-y) \cdot y)$$

$$= x^{2} + xy - xy - y^{2}$$

$$= x^{2} - y^{2}$$

(iii) If 
$$x^2 = y^2$$
, then  $x = y$  or  $x = -y$ .

*Proof.* Assume that  $x^2 = y^2$ . We make use of (ii).

$$x^{2} = y^{2} \Leftrightarrow x^{2} - y^{2} = 0$$
$$\Leftrightarrow (x - y)(x + y) = 0$$
$$\Rightarrow x = y \text{ or } x = -y.$$

(iv)  $x^3 - y^3 = (x - y)(x^2 + xy + y^2)$ .

Proof. Using the field axioms

$$(x-y)(x^2 + xy + y^2) = x^2(x-y) + xy(x-y) + y^2(x-y)$$

$$= (x^3 - x^2y) + (x^2y - xy^2) + (xy^2 - y^3)$$

$$= x^3 + (x^2y - x^2y) + (xy^2 - xy^2) - y^3$$

$$= x^3 - y^3$$

(v)  $x^n - y^n = (x - y)(x^{n-1} + x^{n-2}y + \dots + xy^{n-2} + y^{n-1}).$ 

Proof. Using the field axioms

$$\begin{split} (x-y)(x^{n-1}+x^{n-2}y+\dots+xy^{n-2}+y^{n-1}) &= x(x^{n-1}+x^{n-2}y+\dots+xy^{n-2}+y^{n-1}) \\ &\quad - [y(x^{n-1}+x^{n-2}y+\dots+xy^{n-2}+y^{n-1})] \\ &= x^n+x^{n-1}y+\dots+x^2y^{n-2}+xy^{n-1} \\ &\quad - [x^{n-1}y+x^{n-2}y^2+\dots+xy^{n-1}+y^n] \\ &= x^n-y^n \end{split}$$

Alternative Proof. We make us of sigma notation

$$\begin{split} (x-y) \cdot \sum_{i=0}^{n-1} x^i y^{n-(i+1)} &= x \left( \sum_{i=0}^{n-1} x^i y^{n-(i+1)} \right) - \left[ y \left( \sum_{i=0}^{n-1} x^i y^{n-(i+1)} \right) \right] \\ &= \sum_{i=0}^{n-1} x^{i+1} y^{n-(i+1)} - \left[ \sum_{i=0}^{n-1} x^i y^{n-i} \right] \\ &= x^n + \sum_{i=0}^{n-2} x^{i+1} y^{n-(i+1)} - \left[ \sum_{i=1}^{n-1} x^i y^{n-i} + y^n \right] \\ &= x^n + \sum_{i=0}^{n-2} x^{i+1} y^{n-(i+1)} - \left[ \sum_{i=0}^{n-2} x^{i+1} y^{n-(i+1)} + y^n \right] \\ &= x^n - y^n + \sum_{i=0}^{n-2} \left[ x^{i+1} y^{n-(i+1)} - (x^{i+1} y^{n-(i+1)}) \right] \\ &= x^n - y^n + \sum_{i=0}^{n-2} 0 \\ &= x^n - y^n \end{split}$$

(vi) 
$$x^3 + y^3 = (x+y)(x^2 - xy + y^2)$$
.

*Proof.* Replace y by -y in part (iv)

$$x^{3} - y^{3} = (x - y)(x^{2} + xy + y^{2}) \Leftrightarrow x^{3} - (-y)^{3} = (x - (-y))(x^{2} + x(-y) + (-y)^{2})$$
$$\Leftrightarrow x^{3} + y^{3} = (x + y)(x^{2} - xy + y^{2})$$

**Exercise** (2). What is wrong with the following "proof"? Let x = y. Then

$$x^{2} = xy,$$

$$x^{2} - y^{2} = xy - y^{2},$$

$$(x+y)(x-y) = y(x-y),$$

$$x+y=y,$$

$$2y = y,$$

$$2 = 1.$$

Solution. For all  $a \in \mathbb{R}$  we know that  $a \cdot a^{-1} = 0$  with the assumption  $a \neq 0$ . The 4th step is contradictory on the given fact that x = y which implies x - y = 0 and has no multiplicative inverse.

Exercise (3). Prove the following:

(i) 
$$\frac{a}{b} = \frac{ac}{bc}$$
, if  $b, c \neq 0$ .

*Proof.* Using the field axioms

$$\frac{a}{b} = ab^{-1} = (ab^{-1})(c \cdot c^{-1})$$
$$= (ac)(b^{-1}c^{-1})$$
$$= (ac)(bc)^{-1}$$
$$= \frac{ac}{bc}$$

(ii) 
$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$$
, if  $b, d \neq 0$ .

Proof. Using the field axioms

$$\frac{a}{b} + \frac{c}{d} = ab^{-1} + cd^{-1} = (ab^{-1} + cd^{-1}) \cdot (bd)(bd)^{-1}$$

$$= (ad(b \cdot b^{-1}) + bc(d \cdot d^{-1})) \cdot (bd)^{-1}$$

$$= (ad + bc) \cdot (bd)^{-1}$$

$$= \frac{ad + bc}{bd}$$

(iii) 
$$(ab)^{-1} = a^{-1}b^{-1}$$
, if  $a, b \neq 0$ .

Proof. Using the field axioms

$$ab(a^{-1}b^{-1}) = 1$$
  
 $a^{-1}b^{-1} = (ab)^{-1}$ 

(iv) 
$$\frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{db}$$
 if  $b, d \neq 0$ .

*Proof.* Using the field axioms

$$\frac{a}{b} \cdot \frac{c}{d} = (ab^{-1}) \cdot (cd^{-1})$$
$$= (ac) \cdot (d^{-1}b^{-1})$$
$$= (ac) \cdot (db)^{-1}$$
$$= \frac{ac}{db}$$

(v) 
$$\frac{a}{b} / \frac{c}{d} = \frac{ad}{bc}$$
, if  $b, d \neq 0$ .

*Proof.* Using the field axioms

$$\frac{a}{b} / \frac{c}{d} = \frac{a}{b} \cdot \left(\frac{c}{d}\right)^{-1}$$

$$= ab^{-1} \cdot (cd^{-1})^{-1}$$

$$= ab^{-1} \cdot c^{-1}(d^{-1})^{-1}$$

$$= ab^{-1} \cdot c^{-1}d$$

$$= (ad) \cdot (b^{-1}c^{-1})$$

$$= (ad) \cdot (bc)^{-1}$$

$$= \frac{ad}{bc}$$

(vi) If  $b, d \neq 0$ , then  $\frac{a}{b} = \frac{c}{d}$  if and only if ad = bc. Also determine when  $\frac{a}{b} = \frac{b}{a}$ .

*Proof.* There are two cases to prove for the first part.

- $(\Rightarrow) \text{ Let } b,d\neq 0. \text{ Assume that } \frac{a}{b}=\frac{c}{d},$   $\frac{a}{b}=\frac{c}{d},$   $ab^{-1}=cd^{-1},$   $(ab^{-1})(bd)=(cd^{-1})(bd),$   $(ad)(b\cdot b^{-1})=(bc)(d\cot d^{-1}),$  ad=bc
- $(\Leftarrow)$  Let  $b, d \neq 0$ . Assume that ad = bc,

$$ad = bc,$$

$$(ad)(bd)^{-1} = (bc)(bd)^{-1}$$

$$(ab^{-1})(d \cdot d^{-1}) = (cd^{-1})(b \cdot b^{-1})$$

$$ab^{-1} = cd^{-1}$$

$$\frac{a}{b} = \frac{c}{d}$$

*Proof.* From Exercise 1 Part (iii) we make use of the fact, if  $x^2 = y^2$  then x = y or x = -y.

$$\frac{a}{b} = \frac{b}{a},$$

$$ab^{-1} = ba^{-1},$$

$$(ab^{-1})(ab) = (ba^{-1})(ab),$$

$$(a \cdot a)(b \cdot b^{-1}) = (b \cdot b)(a \cdot a^{-1}),$$

$$a^2 = b^2.$$

and so it must be that a = b or a = -b.

**Exercise** (4). Find all numbers x for which

(i) 
$$4 - x < 3 - 2x$$
.

Proof. Using the field axioms

$$4-x < 3-2x$$

$$4-x+(2x-4) < 3-2x+(2x-4)$$

$$x < -1$$

(ii)  $5 - x^2 < 8$ .

*Proof.* Using the field axioms

$$5 - x^{2} + (x^{2} - 5) < 8 + (x^{2} - 5)$$
$$x^{2} + 3 > 0$$

since  $x^2 \ge 0$  for all  $x \in \mathbb{R}$ , then it must be that  $x^2 + 3 > 0$  for all  $x \in \mathbb{R}$ .

(iii) 
$$5 - x^2 < -2$$

*Proof.* Using the field axioms

$$5 - x^{2} < -2$$

$$x^{2} > 7$$

$$|x| > \sqrt{7}$$

$$x < -\sqrt{7} \text{ or } x > \sqrt{7}$$

(iv) (x-3)(x-1) > 0 (When is a product of two numbers positive?)

*Proof.* The product of two numbers is postivie if and only if the numbers are both positive or both negative. For all  $a,b\in\mathbb{R},\ ab>0\Leftrightarrow a>0$  and b>0, or a<0 and b<0.

Hence,

$$x - 3 > 0$$
 and  $x - 1 > 0$ 

so it must be that x > 3. Or

$$x - 3 < 0 \qquad \text{and} \qquad x - 1 > 0$$

and it must be that x < 1. That is (x - 3)(x - 1) > 0 if x > 3 or x < 1.

(v) 
$$x^2 - 2x + 2 > 0$$
.

Proof. Using the field axioms

$$x^{2} - 2x + 2 = (x^{2} + 2x + 1) + 1$$
  
=  $(x - 1)^{2} + 1$ 

for all  $x \in \mathbb{R}$  notice that,  $(x-1)^2 \ge 0$ , so it must be that  $(x-1)^2 + 1 > 0$ .  $\square$ 

### (vi) $x^2 + x + 1 > 2$ .

Proof. Using the field axioms

$$x^{2} + x + 1 > 2$$

$$x^{2} + x - 1 > 0$$

$$(x^{2} + x + \frac{1}{4}) - \frac{5}{4} > 0$$

$$\left(x + \frac{1}{2}\right)^{2} > \frac{5}{4}$$

$$\left|x + \frac{1}{2}\right| > \frac{\sqrt{5}}{2}$$

$$x + \frac{1}{2} > \frac{\sqrt{5}}{2} \text{ or } x + \frac{1}{2} < -\frac{\sqrt{5}}{2}$$

so it must be that

$$x > \frac{\sqrt{5} - 1}{2}$$
 or  $x < \frac{-\sqrt{5} - 1}{2}$ 

### (vii) $x^2 - x + 10 > 16$ .

Proof. Using the field axioms

$$x^{2} - x + 10 > 16$$
$$x^{2} - x - 6 > 0$$
$$(x - 3)(x + 2) > 0$$

To assure that the product is positive, it must be that the two numbers are both positive or both negative. Hence,

$$x - 3 > 0 \qquad \text{and} \qquad x + 2 > 0$$

such that x > 3. Or

$$x - 3 < 0$$
 and  $x + 2 < 0$ 

such that x < -2. Therefore,  $x^2 - x + 10 > 16$  if x > 3 or x < -2.

(viii) 
$$x^2 + x + 1 > 0$$
.

*Proof.* Using the field axioms

$$x^{2} + x + 1 = \left(x^{2} + x + \frac{1}{4}\right) + \frac{3}{4},$$
$$= \left(x + \frac{1}{2}\right)^{2} + \frac{3}{4}.$$

for all  $x \in \mathbb{R}$ , notice that  $(x+\frac{1}{2})^2 \ge 0$ , so it must be that  $(x+\frac{1}{2})^2+\frac{3}{4}>0$  for all  $x \in \mathbb{R}$ .

(ix) 
$$(x-\pi)(x+5)(x-3) > 0$$
.

*Proof.* The expression  $(x-\pi)(x+5)(x-3)$  can be rearranged as a product of two numbers, namely,  $(x - \pi)[(x + 5)(x - 3)]$ .

Notice, the product of two real numbers ab is greater than zero if a and b are both greater than zero, or both less than zero.

There are two cases:

- Let  $(x-\pi) > 0$  so that  $x > \pi$ , and (x+5)(x-3) > 0 so that x < -5 or x > 3. Therefore it must be that  $x > \pi$ .
- Let  $(x-\pi) < 0$  so that  $x < \pi$ , and (x+5)(x-3) < 0 so that -5 < x < 3. Therefore it must be that -5 < x < 3.

Therefore, 
$$(x - \pi)(x + 5)(x - 3) > 0$$
 if  $x > \pi$ , or  $-5 < x < 3$ .

(x) 
$$(x - \sqrt[3]{2})(x - \sqrt{2}) > 0$$
.

*Proof.* Either both numbers are greater than zero or less than zero.

$$x > \sqrt[3]{2}$$
 and  $x > \sqrt{2}$ 

so that 
$$x > \sqrt{2}$$
. Or 
$$x < \sqrt[3]{2} \qquad \text{and} \qquad x < \sqrt{2}$$

so that  $x < \sqrt[3]{2}$ .

Therefore, 
$$(x - \sqrt[3]{2})(x - \sqrt{2}) > 0$$
 if  $x > \sqrt{2}$  or  $x < \sqrt[3]{2}$ .

(xi)  $2^x < 8$ .

*Proof.* We can rewrite it as

$$2^x < 2^3$$

Both have the same base, so it must be that the inequality is preserved on the exponents.

so 
$$2^x < 8$$
, whenever  $x < 3$ .

(xii)  $x + 3^x < 4$ .

*Proof.* We first notice that  $x + 3^x = 4$  if x = 1

$$x + 3^x = (1) + 3^1$$

observe that  $x + 3^x$  is always increasing as x increase, and decreasing as x decrease. Therefore  $x + 3^x < 4$  if x < 1.

(xiii) 
$$\frac{1}{x} + \frac{1}{1-x} > 0$$
.

*Proof.* We can rewrite the expression as

$$\frac{1}{x} + \frac{1}{1-x} = \frac{(1-x)+x}{x(1-x)}$$
$$= \frac{1}{x(1-x)}$$

Notice that  $\frac{1}{x(1-x)}>0$ , whenever x(1-x)>0. So it must be that x and (1-x) are greater than zero

$$x > 0$$
 and  $x < 1$ 

or x and (1-x) are both less than zero

$$x < 0$$
 and  $x > 1$ 

but there exists no x such t that x<0 and x>1. Therefore,  $\frac{1}{x}+\frac{1}{1-x}>0$  if x>0 and x<1.  $\square$ 

(xiv) 
$$\frac{x-1}{x+1} > 0$$
.

*Proof.* Either both (x-1) and (x+1) are greater than zero or both less than zero.

$$x > 1$$
 and  $x > -1$ 

so it must be that x > 1. Or

$$x < 1$$
 and  $x < -1$ 

so it must be that x < -1.

Exercise (5). Prove the following:

(i) If a < b and c < d, then a + c < b + d.

*Proof.* Assume that a < b and c < d. Notice that b - a > 0 and d - c > 0, therefore their sum is also positive, namely,

$$(b-a) + (d-c) > 0$$

so that

$$a + c < b + d$$

(ii) If a < b, then -b < -a.

*Proof.* Assume that a < b. Therefore, a - b < 0. Notice that,

$$-(a-b) < 0,$$
  
 $b-a < 0,$   
 $-a < -b.$ 

(iii) If a < b and c > d, then a - c < b - d.

*Proof.* Assume that a < b and c > d. Therefore, a - b < 0 and c - d > so that a - b < 0 < c - d. Therefore,

$$a - b < c - d,$$
  
$$a - c < b - d.$$

(iv) If a < b and c > 0, then ac < bc.

*Proof.* Assume that a < b and c > 0. Therefore, b - a > 0 and their product is positive,

$$(b-a) \cdot c > 0,$$
  
 $bc - ac > 0,$   
 $ac < bc.$ 

(v) If a < b and c < 0, then ac > bc.

*Proof.* Assume that a < b and c < 0. Then b - a > 0 and 0 - c = -c > 0, and their product must be positive,

$$(b-a) \cdot -c > 0,$$
  

$$-bc + ac > 0,$$
  

$$ac > bc.$$

(vi) If a > 1, then  $a^2 > a$ .

*Proof.* Assume that a > 1. Notice that a - 1 > 0 and a > 0, so their product is positive.

$$(a-1) \cdot a > 0,$$
  

$$a^2 - a > 0,$$
  

$$a^2 > a.$$

(vii) If 0 < a < 1, then  $a^2 < a$ .

*Proof.* Assume that 0 < a < 1, therefore a > 0 and 1 - a > 0 so that their product is also positive,

$$(1-a) \cdot a > 0,$$
  

$$a - a^2 > 0,$$
  

$$a^2 < a.$$

(viii) If  $0 \le a < b$  and  $0 \le c < d$ , then ac < bd.

*Proof.* Assume that  $0 \le a < b$  and  $0 \le c < d$ . Notice that bd > 0, and if either one of a or c is equal to zero so that ac is zero, then

$$0 = ac < bd.$$

Otherwise, if a and c are greater than zero then ac is also greater than zero,

$$0 < ac < bc < bd.$$

(ix) If  $0 \le a < b$ , then  $a^2 < b^2$ .

*Proof.* Assume that  $0 \le a < b$ . If a = 0, then  $a^2 = 0$  so that

$$a^2 < b^2$$
.

Suppose that a > 0. From our assumption, a < b therefore

$$a^2 < ab < b^2.$$

(x) If  $a, b \ge 0$  and  $a^2 < b^2$ , then a < b.

*Proof.* Suppose for contradiction that  $a, b \ge 0$  and  $a^2 < b^2$ , but  $a \ge b$ . So either a = b or a > b.

If a = b, then  $a^2 = b^2$ , a contradiction. Now if  $a > b \ge 0$ , then

$$a^2 > ab > b^2$$

also a contradiction. Therefore it must be that a < b.