Define \mathbb{R}^2 as the set of 2D points. We will represent a point (x, y) as a 2D vector. Parameterized by a 2D vector \mathbf{w} , a linear classifier h maps a point \mathbf{p} to 1 if $\mathbf{w} \cdot \mathbf{p} \ge 0$, or -1 otherwise.

Problem 1. In the seminar, we introduced the Perceptron algorithm for *online* learning. Suppose that the algorithm initially holds a linear classifier (i.e., h_{now}) parameterized by $\mathbf{w} = (0,0)$. Use the algorithm to process (in the online model) the following sequence of points:

point
$$\mathbf{a} = (1, 2)$$
, label -1
point $\mathbf{b} = (-2, 3)$, label -1
point $\mathbf{c} = (2, 4)$, label 1

Given the value of w after processing each point.

Solution.

- Processing \boldsymbol{a} : Since $\boldsymbol{w} \cdot \boldsymbol{a} = 0$, the point is mis-classified. Hence, \boldsymbol{w} changes to (0,0) (1,2) = (-1,-2).
- Processing b: Since $w \cdot b < 0$, the point is correctly classified. Hence, w incurs no changes.
- Processing c: Since $w \cdot c < 0$, the point is mis-classified. Hence, w changes to (-1, -2) + (2, 4) = (1, 2).

Problem 2. What is the worst-permutation mistake bound of the Perceptron algorithm on the point set $\{a, b, c\}$? Here, a, b, c are the same as given in Problem 1. You should assume that the algorithm always starts with $\mathbf{w} = (0, 0)$.

Solution. Consider how Perceptron processes the permutation a, c, b:

- Processing \boldsymbol{a} : Since $\boldsymbol{w} \cdot \boldsymbol{a} = 0$, the point is mis-classified. Hence, \boldsymbol{w} changes to (0,0) (1,2) = (-1,-2).
- Processing c: Since $w \cdot c < 0$, the point is mis-classified. Hence, w changes to (-1, -2) + (2, 4) = (1, 2).
- Processing **b**: Since $\mathbf{w} \cdot \mathbf{b} > 0$, the point is mis-classified.

We can now conclude that the worst-permutation mistake bound is 3.

Problem 3. We learned a method to convert Perceptron to a batch learning algorithm. Let us run the converted Perceptron algorithm on the set $\{a, b, c\}$. Recall that the method runs in iterations. Assume that, in each iteration, the points remaining in the set are processed in alphabetic order. What is the final \boldsymbol{w} output by the algorithm?

Solution. Iteration 1:

- Processing \boldsymbol{a} : Since $\boldsymbol{w} \cdot \boldsymbol{a} = 0$, the point is mis-classified. Hence, \boldsymbol{w} changes to (0,0) (1,2) = (-1,-2). The point is deleted.
- Processing b: Since $w \cdot b < 0$, the point is correctly classified. Hence, w incurs no changes.
- Processing c: Since $w \cdot c < 0$, the point is mis-classified. Hence, w changes to (-1, -2) + (2, 4) = (1, 2). The point is deleted.

Now the set contains only \boldsymbol{b} . Iteration 2 proceeds as follows:

• Processing **b**: Since $\mathbf{w} \cdot \mathbf{b} > 0$, the point is mis-classified. Hence, \mathbf{w} changes to (1,2) - (-2,3) = (3,-1).

This is the final \boldsymbol{w} returned.