SARKAR, Mohul

Experiment Number 4

Node Equations

TUESDAY

March 19

ECE 1101L

Spring 2024

Partner Name(s): MARIN, Gregorio

Lab:

ECE 1101L Experiment 4

NODE EQUATIONS

OBJECTIVES

-Learn how to write node equations

MATERIALS REQUIRED BY STUDENT

- -11 clip leads
- -Required Resistors

Pre-Lab:

- a. Node A: V_a -5/1k + V_a - V_b /3.3K + V_a /2.2k=0 Node B: V_b /4.7k + V_b - V_a /3.3k=0
- b.

1.

$$A = \begin{bmatrix} 1276 & -220 \\ -47 & 50 \end{bmatrix}$$

- c. $V_a=3.395V$ $V_b=3.191V$
- d. V_1 =5V(1k/1k+2.2k) = 1.56 V I_1 =1.83 mA V_2 = 5V(2.2k/1k+2.2k) = 3.4375 V I_2 =3.4375 V/ 2.2 k = 1.56 mA

$$\begin{split} &V_{3}{=}~3.395~V~(3.3k/3.3k+4.7k)~{=}1.4~V\\ &I_{3}{=}~I_{1}{-}I_{2}{=}~1.83{-}1.56{=}~0.27~mA\\ &V_{4}{=}~V_{a}{-}V_{b}{=}3.191{-}1.4{=}1.8~V\\ &I_{4}{=}~3.191/4.7{=}~0.68~mA\\ &{}_{1K}~{}_{V_{1}}~{}_{3.3K} \end{split}$$

2.

Node voltage at V1: 2.69 V

Node equations:

$$V_1$$
-5/1k + V_1 +3/3.3k + V_1 /4.7K = 0

$$V_1/1k + V_1/3.3k + V_1/4.7k = 4.09$$

$$V_1(1/3.3 + 1/4.7) = 4.09$$

$$V_1 = 2.69 \text{ V}$$

Given CKT1:

		Branch Voltages			
Ref Des	Voltage	Branch Equation	Measured	Calculated	Equivalent
	Across		Branch	Branch	Resistance
	Element [V]		Voltage [V]	Values [V]	$[\Omega]$
V_1	2.5	$V_1 - 5$	-2.4	-2.4	5.69k
V_2	-2.95	V_1+V_2	5.4	5.4	
		V_1	2.6	2.6	
		V_1-3	-5.4	-5.4	

Equivalent resistance:

$$R_a = 3.3k + 3.3k * 4.7k + 4.7k = 23.51k$$

$$R_b = (3.3k + 3.3k*4.7k + 4.7k)/3.3k = 7.12k$$

$$R_c = (3.3k + 3.3k*4.7k + 4.7k)/4.7k = 5k$$

 $R_{eq} = 5.69k$

Given CKT2:

		Branch Voltages			
Ref Des	Voltage	Branch Equation	Measured Branch	Calculated Branch	Equivalent
	Across		Current [mA]	Current [mA]	Resistance $[\Omega]$
	Element				
	[V]				
V_1	3.3	$V_1 - V_2/1k$	0.26	0.3	2.79k
V_2	3	$V_1 - 5/1k$	-1.34	-1.7	
		$V_1/3.3k$	1	1	
		$V_2/2.7k$	1.1	1.11	
		$V_2 - 5/2.2k$	-0.7	-0.9	

$$R_{eq1} = (1/2k + 1/2.2k)^{-1} = 1.048$$

$$R_{eq2} = (1/3.3k + 1/2.7k)^{-1} = 1.74$$

$$R_{eqfinal} = 1.048 + 1.74 = 2.788k$$

Given CKT3:

		Branch Voltages				
Ref Des	Voltage	Branch	Ref Des	Measured Branch	Calculated	Equivalent Resistance
	Across	Equation		Current [mA]	Branch Current	[Ω]
	Elemen				[mA]	
	t [V]					
V_1	3	$V_1 - 5/1k$	I_1	3	3	2.54k
V_2	0.64	$V_1/3.3k$	I_2	0.87	0.91	
V1 _{R1(left)}	3	$V_1/2.3k$	I_3	1.28	1.3	
$V1_{R2(down)}$	2.871	$V_2/2.3k$	I_4	0.25	0.28	
V1 _{R3(right)}	2.944	$V_2/0.82k$	I ₅	0.78	-0.9	
V2 _{R1(right)}	0.639	$V_2/2.7k$	I_6	0.21	0.24	
$V2_{R2(down)}$	0.567					
V2 _{R3(left)}	0.575					

$$R_{eq1} = (1/5.6k + 1/3.9k)^{-1} = 2.3k$$

$$R_{eq2} = (1/2.7k + 1/0.82k)^{-1} = 0.628k$$

$$R_{eq3} = 2.3k + 0.628k = 2.9k$$

$$R_{eq4} = (1/3.3k + 1/2.9k)^{-1} = 1.54k$$

$$R_{eqfinal} = 1.54k + 1k = 2.54k$$

Discussion of Results:

The voltages obtained from the node equations closely matched those calculated through branch equations. This consistency validates the accuracy of the node equation method in predicting voltages within the circuit. By treating each node as an independent entity and formulating equations based on current conservation principles, we were able to systematically determine the voltages across the entire circuit. I am confident that the insights gained from this experiment will enhance my understanding of circuit analysis principles and aid in tackling more intricate circuit designs in the future.

Post Lab:

$$A = \begin{bmatrix} 11 & -3 & -2 \\ -3 & 11 & -6 \\ -2 & -6 & 11 \end{bmatrix}$$

$$V_a = 7.083 \text{ V}$$

$$V_b = 3.75 \text{ V}$$

$$V_c = 3.33 \text{ V}$$

Branch Current:

Branch 1: $(V_{dc}-V_a)/2k = 7.083-3.75/2k = 1.6 \text{ mA} = I_1$

Branch 2: $(V_a-V_c)/3k = 7.083-3.33/3k = 1.25 \text{ mA} = I_2$

Branch 3: $V_b/3k = 3.75/3k = 1.25 \text{ mA} = I_3$

Branch 4: $V_c/2k = 3.33/2k = 1.67 \text{ mA} = I_4$

Branch 5: $(V_b-V_c)/1k = 3.75-3.33 = 0.42 \text{ mA} = I_5$

Node Equations:

$$(V_1-V_2)/1k + (V_1-5V)/5.6k + V_1/2.2k + (V_1-V_3)/3.9k = 0$$

$$(V_2-V_1)/1k + (V_2-V_3)/2.7k = 0$$

$$(V_3-V_1)/2.9k + (V_3-V_2)/2.7k + V_3/0.82 = 0$$

$$A = \begin{bmatrix} 90788 & -48048 & -12320 \\ -27 & 37 & -10 \\ -2214 & -3198 & 15942 \end{bmatrix}$$

$$V_1 = 0.892 \text{ V}$$

$$V_2 = 0.724 V$$

$$V_3 = 0.27 V$$