Matematica Discreta Compito 5

1.) Consideriamio gli sotto insiemi $X, Y \in \mathbb{Z}$ di \mathbb{R}^2 dato da

$$X = \{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid x_1 \le x_2 \}, \qquad Y = \{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid x_1 x_2 = 0 \}, \qquad Z = \{ \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \in \mathbb{R}^2 \mid x_1 = 3x_2 \}$$

e gli sotto insiemi
$$P, Q, R$$
 e S di \mathbb{R}^3 dato da $P = \{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \mid x_1 = 0, x_2 - x_3 = 0 \},$

$$Q = \{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \mid x_1 = x_2 \}, \qquad R = \{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \mid x_1 + x_2 + x_3 = 3 \}, \qquad S = \{ \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \in \mathbb{R}^3 \mid x_1^2 = x_2 \}.$$

- a.) Stabilire quali di X, Y, Z sono un sotto spazio di \mathbb{R}^2
- b.) Stabilire quali di P, Q, R, S sono un sotto spazio di \mathbb{R}^3 .
- 2.) Siano X e Y due sotto spazi di \mathbb{R}^n . Quali di $X \cap Y$, $X \cup Y$ e $X \setminus Y$ sono sotto spazi di \mathbb{R}^n ?
- 3.) Sia T un'applicazione lineare dato dalla matrice A. Per ogni matrice discrivere l'imagine di Tgeometricamente (cioè come punto, rette, piano o tutto lo spazio \mathbb{R}^2 o \mathbb{R}^3).

a.)
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

b.)
$$A = \begin{pmatrix} 1 & 4 \\ 3 & 12 \end{pmatrix}$$

a.)
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$
 b.) $A = \begin{pmatrix} 1 & 4 \\ 3 & 12 \end{pmatrix}$ c.) $A = \begin{pmatrix} 1 & 2 & 3 & 4 \\ -2 & -4 & -6 & -8 \end{pmatrix}$

d.)
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$
 e.) $A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ f.) $A = \begin{pmatrix} 2 & 1 & 3 \\ 3 & 4 & 2 \\ 6 & 5 & 7 \end{pmatrix}$

e.)
$$A = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

f.)
$$A = \begin{pmatrix} 2 & 1 & 3 \\ 3 & 4 & 2 \\ 6 & 5 & 7 \end{pmatrix}$$

4.) Stabilire se i vettori dati sono linearmente indipendenti o no.

a.)
$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
, $\begin{pmatrix} 3 \\ 6 \end{pmatrix}$

b.)
$$\begin{pmatrix} 7\\11 \end{pmatrix}$$
, $\begin{pmatrix} 11\\7 \end{pmatrix}$

c.)
$$\begin{pmatrix} 7 \\ 11 \end{pmatrix}$$
, $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$

$$\mathbf{d.)} \left(\begin{array}{c} 1 \\ 2 \\ 0 \end{array} \right), \left(\begin{array}{c} 1 \\ 2 \\ 3 \end{array} \right)$$

e.)
$$\begin{pmatrix} 1\\1\\1 \end{pmatrix}$$
, $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$, $\begin{pmatrix} 1\\3\\6 \end{pmatrix}$

d.)
$$\begin{pmatrix} 1\\2\\0 \end{pmatrix}$$
, $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$ e.) $\begin{pmatrix} 1\\1\\1 \end{pmatrix}$, $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$, $\begin{pmatrix} 1\\3\\6 \end{pmatrix}$ f.) $\begin{pmatrix} 1\\2\\3 \end{pmatrix}$, $\begin{pmatrix} 4\\5\\6 \end{pmatrix}$, $\begin{pmatrix} 7\\8\\9 \end{pmatrix}$

5.) Stabilire se gli insiemi ordinati di vettori formano una base di \mathbb{R}^2 .

a.)
$$\begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix}$$

b.)
$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}, \begin{pmatrix} 2 \\ -3 \end{pmatrix}, \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 c.) $\begin{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} -2 \\ -6 \end{pmatrix}$

c.)
$$\begin{pmatrix} 1 \\ 3 \end{pmatrix}, \begin{pmatrix} -2 \\ -6 \end{pmatrix}$$

6.) Sia
$$T: \mathbb{R}^4 \to \mathbb{R}^2$$
 dato da $\begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} \mapsto \begin{pmatrix} x_1 - x_2 + x_3 \\ x_1 - x_2 + x_4 \end{pmatrix}$. E' $\begin{pmatrix} 3 \\ 2 \\ 3 \\ -2 \end{pmatrix} \in Ker(T) \in \begin{pmatrix} 1 \\ 2 \end{pmatrix} \in Im(T)$?

7.) Sia T un'applicazione lineare dato dalla matrice A. Trovare un base del nucleo di T.

a.)
$$A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$$

b.)
$$A = \begin{pmatrix} 2 & 3 \\ 6 & 9 \end{pmatrix}$$

b.)
$$A = \begin{pmatrix} 2 & 3 \\ 6 & 9 \end{pmatrix}$$
 c.) $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \end{pmatrix}$

d.)
$$A = (1 \ 2 \ 3)$$

e.)
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix}$$

e.)
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix}$$
 f.) $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

8.) Sia T un'applicazione lineare dato dalla matrice A. Determinare una base di Im(T).

a.)
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix}$$

b.)
$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 5 \\ 1 & 3 & 7 \end{pmatrix}$$

a.)
$$A = \begin{pmatrix} 1 & 1 \\ 1 & 2 \\ 1 & 3 \end{pmatrix}$$
 b.) $A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 5 \\ 1 & 3 & 7 \end{pmatrix}$ c.) $A = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$

d.)
$$A = \begin{pmatrix} 1 & 5 & 3 \\ 2 & 6 & 2 \\ 3 & 7 & 1 \\ 4 & 8 & 0 \end{pmatrix}$$

e.)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \\ 4 & 8 & 12 \end{pmatrix}$$

d.)
$$A = \begin{pmatrix} 1 & 5 & 3 \\ 2 & 6 & 2 \\ 3 & 7 & 1 \\ 4 & 8 & 0 \end{pmatrix}$$
 e.) $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \\ 4 & 8 & 12 \end{pmatrix}$ f.) $A = \begin{pmatrix} 0 & 1 & 2 & 0 & 3 & 0 \\ 0 & 0 & 0 & 1 & 4 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$.