5.1

		Stratu	n	
	I	II	III	IV
N_i	65	42	93	25 N = 225
n_i	14	9	21	6
# of acct.	4	2	8	1
\hat{p}_i	.286	.222	.381	.167

The estimate of the proportion of delinquent accounts is, using Equation (5.13),

$$\hat{p}_{st} = \frac{1}{N} \sum N_i \hat{p}_i = \frac{1}{225} [65(.286) + 42(.222) + 93(.381) + 25(.167)] = .30$$

The estaiamted variance of \hat{p}_{st} is, by Equation (5.14),

$$\hat{V}(\hat{p}_{st}) = \frac{1}{N^2} \sum_{i} N_i^2 \left(\frac{N_i - n_i}{N_i} \right) \left(\frac{\hat{p}_i \hat{q}_i}{n_i - 1} \right) = .0034397$$

with a bound on the error of estimation

$$B = 2\sqrt{\hat{V}(\hat{p}_{st})} = .117$$

5.2

	S	tratum		_
	I	II	III	_
N_i	132	92	27	
σ_i^2	36	25	9	
$N_i \sigma_i$	792	460	81	$\sum N_i \sigma_i = 1333$

From Equation (5.9),
$$n_i = n \frac{N_i o_i}{\sum N_i o_i}$$

Then

$$n_1 = 30(792/1333) = 17.82 \approx 18$$

 $n_2 = 30(460/1333) = 10.35 \approx 10$
 $n_3 = 30(81/1333) = 1.82 \approx 2$

Stratum

 I
 II
 III

$$N_i$$
 112
 68
 39
 $N=219$
 c_i
 9
 25
 36

 σ_i^2
 2.25
 3.24
 3.24

$$n = \frac{\left(\sum N_k \sigma_k / \sqrt{c_k}\right) \left(\sum N_i \sigma_i \sqrt{c_i}\right)}{N^2 D + \sum N_i \sigma_i^2}$$

$$B = 2\sqrt{V(\overline{y}_{st})}$$
 or $V(\overline{y}_{st}) = \frac{B^2}{4} = D = 0.1$

$$\sum \left(\frac{N_k \sigma_k}{\sqrt{c_k}}\right) = \frac{112(1.5)}{3} + \frac{68(1.8)}{5} + \frac{39(1.8)}{6} = 92.18$$

$$\sum N_i \sigma_i \sqrt{c_i} = 112(1.5)(3) + 68(1.8)(5) + 39(1.8)(6) = 1537.2$$

$$\sum N_i \sigma_i^2 = 112(2.25) + 68(3.24) + 39(3.24) = 598.68$$

$$\sum N_i \sigma_i^2 = 112(2.25) + 68(3.24) + 39(3.24) = 598.68$$

$$n = \frac{92.18(1537.2)}{219^2(.1) + 598.68} = 26.3 \approx 27$$

To allocate the n = 27 to the three strata, use

$$n_i = n \frac{N_i \sigma_i / \sqrt{c_i}}{\sum N_k \sigma_k / \sqrt{c_k}}$$

$$n_1 = 27 \frac{112(1.5)/3}{92.18} = 16.40$$
 $n_2 = 27 \frac{68(1.8)/5}{92.18} = 7.17$ $n_3 = 27 \frac{39(1.8)/6}{92.18} = 3.43$

Rounding off yields: $n_1 = 16$, $n_2 = 7$, $n_3 = 3$

This adds to total sample size of 26, not 27. Add 1 to one of the sample sizes to achieve n = 27. Add to stratum 3 because 3.43 is closer to the next higher integer than any other sample sizes.

5.8
$$n = \frac{\left(\sum N_i \sigma_i\right)^2}{N^2 D + \sum N_i \sigma_i^2}$$
 $B = 1$, $D = \frac{B^2}{4} = .25$

Use $\frac{\text{range}}{4}$ to estimate σ_i .

	Stratum		
	I	II	_
N_{i}	43	53	N = 96
Range	20-5=15	14-3=11	
σ_{i}	$\frac{15}{4}$ = 3.75	$\frac{11}{4}$ =2.75	

$$n = \frac{\left[43(3.75) + 53(2.75)\right]^2}{\left(96\right)^2 (.25) + \left[43(3.75)^2 + 53(2.75)^2\right]} = \frac{94249}{3309.5} = 28.48 \approx 29$$

 N_1 and N_2 are unknown. Assume that they are equal. Let N' represent both of these terms.

$$\hat{\mu} = \overline{y}_{st} = \frac{1}{N} \sum N_i \overline{y}_i = \frac{1}{2N'} \left[N \overline{y}_1 + N \overline{y}_2 \right] = \frac{1}{2} (\overline{y}_1 + \overline{y}_2) = \frac{1}{2} (63.47 + 64.30) = 63.88$$

$$B = 2\sqrt{\frac{1}{N^2} \sum N_i^2 \frac{s_i^2}{n_i}} = 2\sqrt{\frac{N'^2}{(2N')^2} \sum \frac{s_i^2}{n_i}} = 2\sqrt{\frac{1}{4} \sum \frac{s_i^2}{n_i}} = 2\sqrt{\frac{1}{4} \left(\frac{1.07}{6} + \frac{1.30}{6}\right)} = .628$$

The shipment appears to be below the standard in average weight.

5.21 (a)
$$\hat{p} = \frac{\sum y_i}{n} = \frac{6+10}{100} = .16$$

$$B = 2\sqrt{\frac{\hat{p}\hat{q}}{n-1}} = 2\sqrt{\frac{.16(.84)}{.99}} = .074 \text{ (ignoring fpc)}$$

(b)
$$\hat{p}_{st} = \frac{1}{N} \sum N_i \hat{p}_i = \sum \frac{N_i}{N} \hat{p}_i = .6 \frac{6}{38} + .4 \frac{10}{62} = .16$$

$$B = 2 \sqrt{\frac{1}{N^2} \sum N_i^2 \frac{\hat{p}_i \hat{q}_i}{n_i - 1}} = 2 \sqrt{\sum \left(\frac{N_i}{N}\right)^2 \frac{\hat{p}_i \hat{q}_i}{n_i - 1}}$$

$$= 2 \sqrt{(.6)^2 \left(\frac{6}{38}\right) \left(\frac{32}{38}\right) \left(\frac{1}{37}\right) + (.4)^2 \left(\frac{10}{62}\right) \left(\frac{52}{62}\right) \left(\frac{1}{61}\right)} = .081$$

There seems to be no good reason to poststratify here.

5.27 (a) Stratum

I II Total

$$N_i$$
 20 26

 σ_i 25 47.5

 $N_i\sigma_i$ 500 1235 1735

 w_i .29 .71

 $N_i\sigma_i^2$ 12500 58662.5 71162.5

where

$$\frac{\text{range}}{4} \text{ is used to estimate } \sigma_i.$$

$$\sigma_1 \approx \frac{100 - 0}{4} = 25 \qquad \text{for small plants (stratum I)}$$

$$\sigma_2 \approx \frac{200 - 10}{4} = 47.5 \quad \text{for large plants (stratum II)}$$

$$a_i = \frac{N_i \sigma_i}{\sum N_i \sigma_i}$$

$$a_1 = \frac{500}{1735} = .29 \qquad a_2 = \frac{1235}{1735} = .71$$

(b)
$$B = 100$$

 $N^2 D = \frac{B^2}{4} = \frac{(100)^2}{4} = 2500$
 $n = \frac{\left(\sum N_i \sigma_i\right)^2}{N^2 D + \sum N_i \sigma_i^2} = \frac{(1735)^2}{2500 + 71162.5} = 40.87 \approx 41$

$$n_1 = na_1 = 41(.29) = 11.9 \approx 12$$

 $n_2 = na_2 = 41(.71) = 29.1 \approx 29$

Since there is only 26 "large" plants, we allocate $n_1 = 15$, $n_2 = 26$.

	Stratum			
	Ι	П	III	
w_i	.5	.1	.4	
No	417	29	240	
	31.4	17.6	21.8	
Yes	913	136	860	
	68.6	82.4	78.2	
Tot	1330	165	1100	
	100%	100%	100%	

(a)
$$\hat{p}_{st} = \sum \frac{N_i}{N} \hat{p}_i = \sum a_i \hat{p}_i = (.5)(.686) + (.1)(.824) + (.4)(.782) = .738$$

 $\hat{V}(\hat{p}_{st}) = \sum a_i^2 \frac{\hat{p}_i \hat{q}_i}{n_i - 1}$ (ignoring the fpc)
$$= (.5)^2 \frac{(.686)(.314)}{1329} + (.1)^2 \frac{(.824)(.176)}{164} + (.4)^2 \frac{(.782)(.218)}{1099} = .74 \times 10^{-4}$$

(b)
$$\hat{p}_1 - \hat{p}_2 = -.686 - .824 = -.138$$

 $B = 2\sqrt{\hat{V}(\hat{p}_1 - \hat{p}_2)} = 2\sqrt{\frac{\hat{p}_1\hat{q}_1}{n_1} + \frac{\hat{p}_2\hat{q}_2}{n_2}} = 2\sqrt{\frac{(.686)(.314)}{1330} + \frac{(.824)(.176)}{165}} = .0645$

(c)
$$\hat{p}_1 - \hat{p}_2 = -.686 - .782 = -.096$$

$$B = 2\sqrt{\hat{V}(\hat{p}_1 - \hat{p}_2)} = 2\sqrt{\frac{\hat{p}_1\hat{q}_1}{n_1} + \frac{\hat{p}_2\hat{q}_2}{n_2}} = 2\sqrt{\frac{(.686)(.314)}{1330} + \frac{(.782)(.218)}{1100}} = .036$$

5.32 (a)
$$\bar{y}_{st} = \sum a_i \bar{y}_i = (.5)(7.63) + (.1)(7.74) + (.4)(6.55) = 7.209$$

$$B = 2\sqrt{\hat{V}(\bar{y}_{st})} = 2\sqrt{\sum a_i^2 \frac{s_i^2}{n_i}} = 2\sqrt{(.5)^2 \frac{(.15)^2}{1347} + (.1)^2 \frac{(.35)^2}{163} + (.4)^2 \frac{(.11)^2}{1095}} = 0.0000$$

(b)
$$\overline{y}_1 - \overline{y}_2 = 7.63 - 7.74 = -.11$$

$$B = 2\sqrt{\hat{V}(\overline{y}_1 - \overline{y}_2)} = 2\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} = 2\sqrt{\frac{(.15)^2}{1347} + \frac{(.35)^2}{163}} = .055$$

The confidence interval just touches 0, so there is no strong evidence that the residents have a higher mean than the non-resident anesthesiologists.

$$\overline{y}_2 - \overline{y}_3 = 7.74 - 6.55 = 1.19$$

$$B = 2\sqrt{\hat{V}(\overline{y}_2 - \overline{y}_3)} = 2\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} = 2\sqrt{\frac{(.35)^2}{163} + \frac{(.11)^2}{1095}} = .055$$

The confidence interval overlaps 0, so there is evidence that the residents have a higher mean than the nurses.