MA 225 Problem Set 8

Recall the following definition:

1. Show that a relation R on the set A is total iff $A \times A = R \cup R^{-1}$.

Claim 1. A relation R on the set A is total iff $A \times A = R \cup R^{-1}$.

Proof. Let $A \times A = R \cup R^{-1}$ and $a \in A$. Since $a \times a$

2. Formulate a set-theoretic criterion (similar to problem 1 above and problem 8 from Homework 6) for antisymmetry. Prove that your criterion is equivalent to the relation in question being antisymmetric.

Claim 2. A relation R on the set A is total iff $A \times A = R \cap R^{-1}$.

Proof. Let $A \times A = R \cap R^{-1}$. Consider the relation $(a,b) \in R$ where $a,b \in A$. So $(a,b) \in A \times A$ if $(a,b) \in R^{-1}$. Since the only way for that to occur is if a=b, R is antisymmetric. Let R be an antisymmetric relation. Consider $(a,b) \in R$ where $a,b \in A$. Let $(a,b) \in R$ and $(b,a) \in R$, so that a=b (according to the definition of antisymmetric). So $(a,a) \in R$. Since $(a,a) \in R^{-1}$ (found inverse of (a,a)), and $(a,a) \in R$, $A \times A = R \cap R^{-1}$.

3. $(\star\star)$ For each set A, there is a unique relation on A which is both a function and an equivalence relation. Find this relation and prove that it is unique.

Claim 3. Equals is the only relation which is both a function and equivalence relationship.

Proof. Let R be an equivalence relationship and function. Let $x, y \in R$ where x = (a, b) and y = (b, c) with $a, b, c \in A$. So $(a, c) \in R$. Since $(a, c), (a, b) \in R$, R is not injective and therefore not a function.

4. Show that the inverse of a partial order is a partial order.

Claim 4. The inverse of a partial order is a partial order.

Proof. Let R be a partial order and $(a,b),(b,c) \in R$. We'll show R^{-1} is a partial order Reflexive: $(a,a) \in R$ (R is reflexive). Therefore R^{-1} is reflexive.

Transitive: $(a,c) \in R$ (Since R is transitive). So $(c,b), (b,a) \in R$ (inverses of (a,b) and (b,c)). Therefore if R is transitive, $(c,a) \in R$. Since $(c,a) \in R$ (inverse of (a,c)), R^{-1} is transitive. Antisymmetric: If $(a,b), (b,a) \in R$, a=b. Therefore if $(b,a), (a,b) \in R^{-1}$, a=b. So R^{-1} is symmetric.

So R^{-1} is a partial order.

- 5. $(\star\star)$ Let \leq be a partial order on the set A. Define a relation \vdash on $A \times A$ by $(a,b) \vdash (c,d)$ if either $a \leq c$ and $a \neq c$, or a = c and $b \leq d$. We call \vdash the *lexicographic* or *dictionary* order on $A \times A$. Show that \vdash is a partial order on $A \times A$. (*Hint 1.* It may help to consider why \vdash is called the *dictionary* order. *Hint 2*. Both antisymmetry and transitivity involve assuming that two pairs of pairs are \vdash -related. Since there are two ways for two pairs to be \vdash -related, there are four cases to consider.)
- 6. Let (A, \vdash) be a partially-ordered set $(i.e., \vdash)$ is a partial order on A). For each $a \in A$, define the downset of a to be

$$D_a = \{x \in A | x \vdash a\}$$

(a) No downset is empty.

Claim 5. No downset is empty.

Proof. Let A be a set and D_a be a downset where $a \in A$ (So A is not empty). Since $a \vdash a$ (Reflexivity by definition of parital order), $a \in D_a$ (by definition of a downset). Therefore a downset on a set is not empty but contains a.

So a downset is never empty.

- (b) For any $a, b \in A$, $D_a \subseteq D_b$ iff $a \vdash b$.
- (c) Consider Down $\vdash = \{D_a | a \in A\}$, the set of all downsets with respect to \vdash . Explain why (A, \vdash) and $(\text{Down}_{\vdash}, \subseteq)$ have essentially the same structure.
- 7. Let X be a set. For each $A \subseteq X$, define the characteristic function of $A, \chi_A : X \to \{0,1\}$ by

$$\chi_A(x) = \begin{cases} 1 & \text{if } x \in A \\ 0 & \text{otherwise} \end{cases}$$

(a) If A and B are subsets of X, what does it mean about A and B that $\forall x \in X, \chi_A(x) \leq \chi_B(x)$? Prove your answer.

Claim 6. If $\forall x \in X, \chi_A(x) \leq \chi_B(x)$, then $A \subseteq B$.

Proof. Let $j \in A$. So $\chi_A(j) = 1$. Since $\chi_A(j) \leq \chi_B(j)$, $\chi_B(j) = 1$ (Since χ 's highest possible value is 1). Since $j \in B$, $A \subseteq B$.

(b) (\star) What does it mean about A and B that $\chi_A = \chi_B$? Formulate your answer as an "iff" statement and prove it.

Claim 7. $\chi_A = \chi_B \text{ iff } A = B$

Proof. Let A = B and $x \in A$. So $x \in B$. Therefore $\chi_A(x) = 1$ and $\chi_B = 1$ (According to the definition of χ). Consider now $x \notin A$. So $x \notin B$ (A = B). Then $\chi_A = 0$ and $\chi_B = 0$ (By definition of χ). Now let $y \in B$. So $y \in B$. Therefore $\chi_B(x) = 1$ and $\chi_A = 1$ (According to the definition of χ). So $\chi_A = \chi_B$ if A = B

Let $\chi_A = \chi_B$ and j be an element. Assume $A \neq B$. Then there is an element which $\chi_A = 0$ and $\chi_A = 1$ or $\chi_A = 1$ and $\chi_B = 0$.

Case $j \in A$ and $j \notin B$. Therefore $\chi_A(x) = 1$ and $\chi_B(x) = 0$. Since this implies 0 = 1, $A \neq b$ cannot be true.

Case $j \in B$ and $j \notin A$. Therefore $\chi_B(x) = 1$ and $\chi_A(x) = 0$. Since this implies 0 = 1, $A \neq b$ cannot be true.

Therefore, by contradiction, A = B. So $\chi_A = \chi_B$ iff A = B.

- 8. For any $A, B \subseteq X$, we have
 - (a) $\chi_{A \cap B} = \chi_A \chi_B$

Claim 8. $\chi_{A \cap B} = \chi_A \chi_B$

Proof. There are four possibilities, $(x \in A \cap B)$, $(x \in A \text{ and } x \notin B)$, $(x \notin A \text{ and } x \notin B)$, and $(x \notin A \text{ and } x \notin B)$.

Case $x \in A \cap B$. Since $x \in A$ and $x \in B$, $\chi_A = 1$ and $\chi_B = 1$, Therefore, plugging in 1 = (1)1, if $x \in A \cap B$, $\chi_{A \cap B} = \chi_A \chi_B$.

Case $x \in A$ and $x \notin B$: So $\chi_A = 1$ and $\chi_B = 0$. So $\chi_A \chi_B = 0$. Since $x \notin A \cap B$, $\chi_{A \cap B} = 0$. So $\chi_{A \cap B} = \chi_A \chi_B$. Case $x \notin A$ and $x \in B$: So $\chi_A = 0$ and $\chi_B = 1$. So $\chi_A \chi_B = 0$. Since $x \notin A \cap B$, $\chi_{A \cap B} = 0$. So $\chi_{A \cap B} = \chi_A \chi_B$.

Case $x \notin A$ and $x \notin B$: So $\chi_A = 0$ and $\chi_B = 0$. So $\chi_A \chi_B = 0$. Since $x \notin A \cap B$, $\chi_{A \cap B} = 0$. So $\chi_{A \cap B} = \chi_A \chi_B$.

Since $\chi_{A \cap B} = \chi_A \chi_B$ for all conditions, $\chi_{A \cap B} = \chi_A \chi_B$.

(b) $\chi_{A \cup B} = \max{\{\chi_A, \chi_B\}}$

Claim 9. $\chi_{A \cup B} = \max{\{\chi_A, \chi_B\}}$

Proof. There are three possibilities, $x \in A$, $x \in B$ and $x \notin A \cup B$. Case $x \in A$: So $x \in \chi_{A \cup B}$. So $max\{\chi_A, \chi_B = 1 \text{ (Since } \chi \text{ has a max value of 1 and } \chi_A = 1 \text{)}$. Therefore $\chi_{A \cup B} = \max\{\chi_A, \chi_B\}$. Case $x \in B$: So $x \in \chi_{A \cup B}$. So $max\{\chi_A, \chi_B\} = 1 \text{ (Since } \chi \text{ has a max value of 1 and } \chi_B = 1 \text{)}$. Therefore $\chi_{A \cup B} = \max\{\chi_A, \chi_B\}$.

Case $x \notin A \cup B$: So $\chi_{A \cup B}(x) = 0$. So $max\{\chi_A, \chi_B\}(x) = 0$ (Since both $\chi_A(x)$ and $\chi_B(x) = 0$). Therefore $\chi_{A \cup B}(x) = \max\{\chi_A(x), \chi_B(x)\}$.

Since $\chi_{A \cup B}(x) = \max\{\chi_A(x), \chi_B(x)\}\$ for all conditions, $\chi_{A \cup B}(x) = \max\{\chi_A(x), \chi_B(x)\}.$

(c) $\chi_{A^c} = 1 - \chi_A$.

Claim 10. $\chi_{A^c} = 1 - \chi_A$

Proof. There are two possibilities, $x \in A$ or $x \notin A$ and therefore $x \in A^c$.

Case $x \in A$. So $\chi_A(x) = 1$ and $1 - \chi_A(x) = 0$. Since $x \notin A^c$, $\chi_A(x) = 0$. So $\chi_{A^c} = 1 - \chi_A$. Case $x \in A^c$. So $x \notin A^c$, $\chi_{A^c}(x) = 1$. Furthermore $\chi_A(x) = 0$, therefore $1 - \chi_A(x) = 1$. So $\chi_{A^c} = 1 - \chi_A$.

Since $\chi_{A^c} = 1 - \chi_A$ for all conditions, $\chi_{A^c} = 1 - \chi_A$.

9. (*) Express $\chi_{A\setminus B}$ and $\chi_{A\Delta B}$ in terms of χ_A and χ_B . Prove your answer.

Claim 11. $\chi_{A \setminus B} = (1 - \chi_B)\chi_A$ and $\chi_{A \Delta B} = (1 - \chi_A)\chi_B + (1 - \chi_B)\chi_A$

Proof. $(\chi_{A \setminus B})$: There are four possibilities, $(x \in A \cap B)$, $(x \in A \text{ and } x \notin B)$, $(x \notin A \text{ and } x \notin B)$, and $(x \notin A \text{ and } x \notin B)$.

Case $x \in A \cap B$: So $\chi_A(x) = 1$ and $\chi_B(x) = 1$ (Since x is in both). So $(1 - \chi_B(x))\chi_A(x) = 0$. $x \notin A \setminus B$ (Since x is in B, according to the definition of setminus $x \notin A \setminus B$). So $\chi_{A \setminus B}(x) = 0$. Therefore $\chi_{A \setminus B} = (1 - \chi_B)\chi_A$.

Case $x \in A$ and $x \notin B$: Case $x \in A \cap B$: So $\chi_A(x) = 1$ and $\chi_B(x) = 0$ (Since by definition of χ). So $(1 - \chi_B(x))\chi_A(x) = 1$. $x \in A \setminus B$ (Since x is not in B but in A, according to the definition of setminus $x \in A \setminus B$). So $\chi_{A \setminus B}(x) = 1$. Therefore $\chi_{A \setminus B} = (1 - \chi_B)\chi_A$.

Case $x \notin A$ and $x \in B$: So $\chi_A(x) = 0$ and $\chi_B(x) = 1$ (According to the definition of χ). So $(1 - \chi_B(x))\chi_A(x) = 0$. $x \notin A \setminus B$ (Since x is in B, according to the definition of setminus $x \notin A \setminus B$). So $\chi_{A \setminus B}(x) = 0$. Therefore $\chi_{A \setminus B} = (1 - \chi_B)\chi_A$.

Case $x \notin A$ and $x \notin B$: So $\chi_A(x) = 0$ and $\chi_B(x) = 0$ (According to the definition of χ). So $(1 - \chi_B(x))\chi_A(x) = 0$. $x \notin A \setminus B$ (Since x is in B, according to the definition of setminus $x \notin A \setminus B$). So $\chi_{A \setminus B}(x) = 0$. Therefore $\chi_{A \setminus B}(x) = (1 - \chi_B)\chi_A$. Since $\chi_{A \setminus B}(x) = (1 - \chi_B)\chi_A$ for all conditions, $\chi_{A \setminus B}(x) = (1 - \chi_B)\chi_A$.

 $(\chi_{A\Delta B} = (1 - \chi_A)\chi_B + (1 - \chi_B)\chi_A)$: There are four possibilities, $(x \in A \cap B)$, $(x \in A \text{ and } x \notin B)$, $(x \notin A \text{ and } x \notin B)$.

Case $x \in A \cap B$: So $\chi_A = 1$ and $\chi_B = 1$ (According to the definition of χ). So $(1 - \chi_A(x))\chi_B(x) + (1 - \chi_B)\chi_A = 0$. Since $x \notin A\Delta B$ (x is in A and B, therefore according to the definition of Δ , $x \notin A\Delta B$). So $\chi_{A\Delta B} = 0$. Therefore $\chi_{A\Delta B} = (1 - \chi_A)\chi_B + (1 - \chi_B)\chi_A$.

Case $x \in A$ and $x \notin B$: So $\chi_A = 1$ and $\chi_B = 0$ (According to the definition of χ). So $(1 - \chi_A(x))\chi_B(x) + (1 - \chi_B)\chi_A = 1$. Since $x \notin A\Delta B$ (x is in A but not in B, therefore according to the definition of Δ , $x \in A\Delta B$). So $\chi_{A\Delta B} = 1$. Therefore $\chi_{A\Delta B} = (1 - \chi_A)\chi_B + (1 - \chi_B)\chi_A$. Case $x \notin A$ $x \in B$: So $\chi_A = 0$ and $\chi_B = 1$ (According to the definition of χ). So $(1 - \chi_A(x))\chi_B(x) + (1 - \chi_B)\chi_A = 1$. Since $x \in A\Delta B$ (x is not in A but in B, therefore according to the definition of Δ , $x \in A\Delta B$). So $\chi_{A\Delta B} = 1$. Therefore $\chi_{A\Delta B} = (1 - \chi_A)\chi_B + (1 - \chi_B)\chi_A$.

Case $x \notin A$ and $x \notin B$: So $\chi_A = 0$ and $\chi_B = 0$ (According to the definition of χ). So $(1 - \chi_A(x))\chi_B(x) + (1 - \chi_B)\chi_A = 0$. Since $x \notin A\Delta B$ (x not in A or B, therefore according to the definition of Δ , $x \notin A\Delta B$). So $\chi_{A\Delta B} = 0$. Therefore $\chi_{A\Delta B} = (1 - \chi_A)\chi_B + (1 - \chi_B)\chi_A$. Since $\chi_{A\Delta B} = (1 - \chi_A)\chi_B + (1 - \chi_B)\chi_A$ for all conditions, $\chi_{A\Delta B} = (1 - \chi_A)\chi_B + (1 - \chi_B)\chi_A$. \square

10. (\star) Let $h: X \to Y$. Let R be an equivalence relation on Y. Define a relation h^*R on X by:

 $x_1 \operatorname{h}^* \operatorname{R} x_2$ if and only if $h(x_1) \operatorname{R} h(x_2)$

Show that h^*R is an equivalence relation on X.

Claim 12. h^*R is an equivalence relation on X.

Proof. (Reflexive) Let $a \in X$. So $h(a) \in Y$ (By definition of a map). So h(a)Rh(a) (Since R is an equivalence relation and therefore Reflexive). So ah^*Ra (Definition of h^*). So h^* is reflexive. (Symmetric) Let $(a,b) \in h^*R$. So $(h(a),h(b)) \in Y$ (By definition of h^*R). So $(h(b),h(a)) \in R$ (Since R is an equivalence relation therefore symmetric). By definition of h^*R , $(b,a) \in h^*R$. Since $(a,b),(b,a) \in h^*R$, h^*R is symmetric.

(Transitive) Let $(a,b), (b,c) \in h^*R$. So $(h(a),h(b)), (h(b),h(c)) \in Y$ (By definition of h^*R). So $(h(a),h(c)) \in R$ (Since R is an equivalence relation therefore transitive). By definition of h^*R , $(a,c) \in h^*R$. Since $(a,b), (b,c), (a,c) \in h^*R$, h^*R is transitive.

Since R is reflexive, transitive, and symmetric, R is an equivalence relation on X.