Оглавление

			Стр.
Введе	ние .		. 3
Глава	1. Вне	едрение БШС на нефтегазовых месторождениях .	. 8
1.1	Этапь	и проектирования БШС	. 10
1.2	Анали	из современных беспроводных широкополосных технологий	
	переда	ачи данных	. 12
	1.2.1	Ячеистые сенсорные сети с низкоскоростным трафиком	. 13
	1.2.2	Сети дальнего радиуса действия с высокоскоростным	
		трафиком	. 16
	1.2.3	Выбор протокола беспроводной широкополосной сети	
		для решения задачи синтеза топологий	. 21
1.3	Опред	целение параметров БШС, необходимых для решения	
	задач	размещения базовых станций	. 22
	1.3.1	Энергетический потенциал канала связи	. 23
	1.3.2	Модель потерь в свободном пространстве	. 25
	1.3.3	Модель распространения SUI	. 26
	1.3.4	Модель двух лучевого распространения	. 28
	1.3.5	Расчет параметров БС, необходимых для задачи	
		оптимизации	. 29
1.4	Оценк	ка характеристик производительности сети с помощью	
	стохас	стических моделей массового обслуживания	. 30
	1.4.1	Время передачи пакета в канале	. 30
	1.4.2	Расчет межконцевой задержки	. 33
1.5	Вывод	цы	. 37
Глава	2. Pa ₃	вмещения базовых станций БШС для покрытия	
	лин	нейной территории	. 39
2.1	• Актуа	льность внедрения БШС для телекоммуникационного	
	покры	тия линейного участка	. 39

		Стр.
2.2	Математические модели синтеза топологии сети для охвата	
	линейного участка в виде задачи целочисленного линейного	
	программирования	44
	2.2.1 Постановка задачи	45
	2.2.2 Модель целочисленного линейного программирования	
2.3	Математические модели синтеза топологии сети для охвата	
	линейного участка в виде экстремальной задачи в	
	комбинаторной форме	51
	2.3.1 Постановка задачи	52
	$2.3.2$ Дерево ветвлений для перебора элементов в множестве Γ .	54
	2.3.3 Метод ветвей и границ для задачи размещения БС	57
	2.3.4 Построения последовательности топологий для	
	итерационной процедуры моделирования БШС	62
2.4	Сравнительная оценка полученных моделей	64
2.5	Выводы	68
Глава	3. Размещение базовых станций БШС для	
	обслуживания множества рассредоточенных объектов.	72
3.1	Актуальность внедрения БШС для обслуживания	
	рассредоточенных объектов на месторождении	72
3.2	Математическая модель задачи проверки допустимого решения	
	при заданных местах размещения станций	73
	3.2.1 Постановка задачи	74
	3.2.2 Модель линейного программирования	75
3.3	Математическая модель оптимальной задачи выбора набора	
	размещаемых станций и определения мест их размещения	81
	3.3.1 Постановка задачи	81
	3.3.2 Модель частично целочисленного линейного	
	программирования	83
3.4	Выводы	85
Заклю	очение	86
C		00
Списо	к сокращений и условных обозначений	88

		Стр.
Словарь термин	ІОВ	89
Список литерат	уры	90
Список рисунко	рв	90
Список таблиц		91
Приложение А.	Сравнения оценок «недопокрытия» для задачи $2, \ 3 \ \text{и} \ 4 \ \dots \dots \dots \dots \dots \dots$	92
Приложение Б.	Численный пример оптимального размещения базовых станций сети с линейной топологией в виде задачи целочисленного линейного программирования	93
Приложение В.	Метод ветвей и границ на примере задачи размещени двух базовых станций	96
Приложение Г.	Численный пример оптимального размещения базовых станций сети с линейной топологией в виде экстремальной задачи в комбинаторной форме	101
Приложение Д.	Численный пример оптимального размещения базовых станций для обслуживания заданного множества рассредоточенных объектов	105

Глава 3. Размещение базовых станций БШС для обслуживания множества рассредоточенных объектов

В данной главе будут представлены модели задачи синтеза топологии при развертывании БШС на плоскости для телекоммуникационного покрытия множества рассредоточенных объектов.

3.1 Актуальность внедрения БШС для обслуживания рассредоточенных объектов на месторождении

Построение современной инфраструктуры передачи информации для обслуживания множества объектов промышленного или гражданского назначения, рассредоточенных на некоторой территории, является актуальной задачей при создании единой систем контроля и управления указанными объектами. Создание такой инфраструктуры позволяет обеспечить оперативный контроль и управление объектами путем передачи необходимой информации с сенсоров и датчиков объектов в соответствующий внешнее приемное устройство. Для создания подобной инфраструктуры эффективно используются сети широкополосной беспроводной связи, необходимым этапом проектирования которых является решение задачи определения мест размещения базовых станций [1].

В работе [2] предложен новый протокол сенсорной сети на базе IEEE 802.11 для мониторинга случаев загрязнений углеводородами. В работе [3] исследуются различные протоколы сенсорных сетей для мониторинга над газораспределительной сети. Вся сеть разделена на более мелкие, управляемые сегменты, каждый из которых имеет свою базовую станцию для отправки пакетов в центральный пункт управления. В [4] решают задачу размещения мощностей с помощью генетического алгоритма. Авторы занимаются развертыванием устройств распределенных вычислений, серверов, вблизи устройств конечных пользователей. Связующим звеном между конечным пользователем и сервером являются базовые станции.

В настоящей работе строятся и исследуются две математические модели задач размещения базовых станций, которые применимы на этапе синтеза

топологии сети в процессе комплексного проектирования мультимедийных сетей. Предлагается модель для проверки существования допустимого решения при условии выполнении технологических ограничений для предложенной на предыдущих этапах схемы расстановки станций и модель для оптимизационной задачи. Оптимизационная задача состоит в выборе множества станций из заданного набора типов станций с различными характеристиками и их расстановки на избыточном множестве возможных мест размещения. В поставленной задаче рассматривается задача обслуживания объектов, расположение которых задано их координатами на плоскости. Особенностью такой задачи в широком классе задач оптимального размещения мощностей является наличие условия на наличие информационной связи между станциями и внешним приемным устройством (шлюзом), выполнение которого гарантирует поступление всей информации с контролируемых объектов в центр управления.

Предложена задача оптимального размещения базовых станций, принадлежащая к широкому классу задач размещения мощностей (Location Allocation Problem). В рамках широкого класса задач размещения мощностей в данных задачах размещения присутствуют специфика на связь между всеми узлами сети.

3.2 Математическая модель задачи проверки допустимого решения при заданных местах размещения станций.

Модели задачи оптимизации, которые исследуются в диссертации, предлагается использовать при проектировании БШС на этапе синтеза топологии. После ввода в эксплуатацию сети часто требуется модернизировать, так как любое производство непрерывно развивается. Со временем, телекоммуникационную сеть требует усовершенствование своей инфраструктуры: масштабирование с целью увеличения покрытия сети, демонтаж оборудования, смена протоколов и т.д. Любое изменение приводит к тому, что необходимо провести качество обслуживания сети QoS, надежность и в целом проверить возможно ли обеспечить телекоммуникационное покрытие будущей сети. В данном параграфе будет представлена задача оптимизации при уже заданных размещения базовых станций. В такой постановке возможность сбора такой информации с множе-

ства рассредоточенных объектов и поиска кратчайшего пути передачи пакетов от множества объектов к шлюзу через множества размещенных станций.

3.2.1 Постановка задачи

Задано множество узлов БШС рассредоточенных на плоскости. Все множество можно разбить на две категории:

- объекты, с которых необходимо собирать информацию, являются оконечными узлами сети;
- станции для сбора и передачи на шлюз данных с объектов, являются промежуточными узлами сети;

Под объектом понимается любое устройство с антенной для передачи пакетов в канале. К ним можно отнести измерительные устройства, шлюзы сенсорных сетей и т.д. В частности, объектами могут быть любые стационарные абонентские устройства сети 802.11n.

Задано множество вершин $A=\{a_i\}\,, i=\overline{0,n}$ на некоторой территории. Каждая вершина a_i имеет координаты $\{x_i,y_i\}.$

Множество A состоит из двух подмножеств:

- $-A_1$ множество вершин, соответствующее объектам; с которых необходимо собирать информацию.
- $-A_2$ множество мест, где размещены базовые станции. В дальнейшем вершину из A_2 будем идентифицировать не только как место размещения, но и как соответствующую станцию.

С вершин A_1 необходимо собирать информацию. Каждой вершине $a_i \in A_1$ приписана величина v_i — максимальный объем информации в единицу времени, который генерирует расположенный на этой вершине объект. В дальнейшем будем считать, что каждая вершина из A_1 является, непосредственно, объектом. В дальнейшем вершинз $a_i \in A_2$ будем идентифицировать не только как место размещения, но и как соответствующую станцию.

По определению:

$$A_1 \cup A_2 = \varnothing;$$

$$A_1 \cap A_2 = A$$
.

Все вершины пронумерованы так, что:

$$A_1 = \{a_i\}, i = \overline{1, n_1};$$

$$A_2 = \{a_i\}, i = \overline{n_1 + 1, n}.$$

Каждой станции, размещенной на вершине множества A_2 приписаны три параметра $s_i = \{\{r_{ij}\}, \{R_{ij}\}, \vartheta_i\}$, где:

- $\{r_{ij}\}$ множество радиусов телекоммуникационного покрытия станции. Параметр r_{ij} характеризует дальность связи между станцией размещенной в вершине $a_i, a_i \in A_2$ и объектом в вершине $a_j, a_j \in A_1$;
- $\{R_{ij}\}$ множество радиусов связи станции. Параметр R_{ij} характеризует дальность связи между станциями s_i и s_j , $i=\overline{n_1+1,n}, j=\overline{n_1+1,n}, i\neq j;$
- $-\vartheta_{i}$ объем информации в единицу времени, который может быть получен от объектов, обслуживаемых станцией.

Также станция специального вида – шлюз $s_0 = \{\{R_{0j}\}, \vartheta_0\}$, размещенная на вершине a_0 с координатами $\{x_0, y_0\}$. Данная станция не имеет телекоммуникационного покрытия и служит для сбора всей информации в сети. По условию задачи величина ϑ_0 больше суммы величин ϑ_i всех вершин множества A_1 .

Задано условие, со шлюзом и между собой могут быть связаны только вершины множества A_2 , то есть только станции.

Требуется проверить, что при заданных наборе и размещении станций на множества A_2 вся имеющаяся информация с объектов множества A_1 может быть собрана и передана системой станций до шлюза s_0 .

3.2.2 Модель линейного программирования

Перед тем как приступить к задаче оптимизации, необходимо подготовить правила составления графа сети, в соответствии с постановкой задачи.

Построение матрицы смежности

Составим граф $H = \{A, E\}$ для возможного потока информации между вершинами множества $A = A_1 \cup A_2$. По определению, каждой вершине $a_i \in A_2$ соответствует станция s_i со своим набором параметров $s_i = \{\{r_{ij}\}, \{R_{ij}\}, \vartheta_i\}$.

Матрица смежности $E = \{e_{ij}\}$ графа H строится по следующим правилам:

- $-e_{ij}=1$, если расстояние между i-ым объектом вершины $a_i\in A_1$ и j-ой станцией, размещенной на вершине $a_j\in A_2$ не более радиуса покрытия для станции соответствующего этой вершине типа;
- $-e_{ij}=1$, если расстояние между i-ой станцией на вершине $a_i\in A_2$ и j-ой станцией на вершине $a_j\in A_2$, не более минимального из радиусов связей этих станций;
- $-e_{i0}=1$, если расстояние от вершины $a_i\in A_2$ до шлюза не более минимального из радиусов связей станции и шлюза;
- $-e_{ij}=0$, во всех остальных случаях.

Формулировка в виде задачи линейного программирования

С помощью полученной матрицы смежности, необходимо подготовить условия ограничения для величины потока в каналах.

Введем переменные $x_{ij} \geqslant 0$, определяющее количество информации, передаваемой в единицу времени по дуге e_{ij} графа H.

Каждый объект множества A_1 генерирует пакеты объемом ϑ_i в единицу времени. Для канала $e_{ij}, i = \overline{1,n_1}, j = \overline{n_1+1,n}$ величина потока равна весу ϑ_i :

$$\sum_{a_j \in \Gamma^+(a_i)} x_{ij} = \vartheta_i, \forall a_i, i = \overline{1, n_1}, \tag{3.1}$$

где $\Gamma^+(a_i)$ – множество вершин на графе H, в которые входят дуги, исходящие из вершины a_i .

Для каждой вершины $a_i, a_i \in A_2$ необходимо обеспечить выполнения условия баланса между потоком входящем в эту вершину от объектов множества

 A_1 , а также других станций множества A_2 и выходящего потока из данной вершины.

Сумма входящих и выходящих потоков для любой вершины a_i множества A_2 должна быть равна нулю:

$$\sum_{a_j \in \Gamma_1^-(a_i)} x_{ji} + \sum_{a_j \in \Gamma_2^-(a_i)} x_{ji} - \sum_{a_j \in \Gamma_2^+(a_i)} x_{ij} = 0, \forall a_i \in A_2.$$
 (3.2)

Здесь множество $\Gamma_1^-(a_i)$ – вершины множества A_1 , из которых выходят дуги, входящие в вершину a_i , $\Gamma_2^-(a_i)$ – вершины множества A_2 , из которых выходят дуги, входящие в вершину a_i , $\Gamma_2^+(a_i)$ – вершины множества A_2 , в которые входят дуги, исходящие из вершины a_i .

Необходимо чтобы на выходе сети собирался весь трафик. Через систему станций на вершинах $a_j, a_j \in A_2$, вся информация от объектов на вершинах $a_i, a_i \in A_1$ поступала на шлюз s_0 :

$$\sum_{a_j \in \Gamma_2^-(a_0)} x_{j0} = \sum_{a_i \in A_1} \vartheta_i; \tag{3.3}$$

Поток объема информации в каналах ограничен сверху. В случае каналов передачи от объектов на вершинах A_1 до станций на вершинах A_2 поток ограничен объемом сгенерированного трафика на объекте ϑ_i :

$$x_{ij} \leqslant \vartheta_i, \forall a_i \in A_1, a_j \in A_2. \tag{3.4}$$

Объем информации входящий на станцию на вершине $a_j, a_j \in A_2$ ограничен пропускной способностью ϑ_j станции :

$$\sum_{a_i \in \Gamma^-(a_i)} x_{ij} \leqslant \vartheta_j, \forall a_j \in A_2. \tag{3.5}$$

Если к системе уравнений ограничений (3.1)-(3.5) добавить целевую функцию

$$\sum_{(a_i, a_j) \in A} c_{ij} x_{ij} \to \min, \tag{3.6}$$

где c_{ij} – стоимость потока в ребре, тогда данная модель является задачей о потоке минимальной стоимости. Задача о потоке минимальной стоимости играет одну из основных ролей в области оптимизации сетей [5]. Она используется

для нахождения минимальной стоимости потока с множества узлов поставок до множества узлов потребителей в направленном графе с ограничениями на пропускную способность и целевой функцией стоимости, зависящей от пути потока в графе. Задача имеет широкой спектр приложений в различных областях: задачах транспортировки, расписания, ресурсного планирования, телекоммуникации, проектировании сетей и маршрутизации [5, 6, 7].

С момента публикации Данцигом симплекс-метода [8], изначально разработанного для задач транспортировки, были получены много новых усовершенствованные моделей, большой обзор метод представлен автором в [5]. Одним из популярных методов решения является сетевой симплекс-метод, которой представляет собой версию хорошо известного симплекс метода ЛП, использующий графовое представление задачи о потоке минимальной стоимости. Метод симплекс-типа применяется для решения задач потока минимальной стоимости. Сетевой симплекс алгоритм с наилучшей стоимостью был разработан Орлином [9] в сочетании с древовидной структурой данных Тарьяна [10]. Алгоритм симплекс-метода основана на концепции нахождения минимального остовного дерева. Более подробно алгоритм нахождения решения в виде остовного дерева представлен в работах [6, 5, 11, 7].

Для нахождения допустимого решения задачи (3.1) - (3.6) (или доказательства, что допустимого решения не существует) можно найти возможный граф передачи потока информации от объектов до шлюза, если ввести единичные стоимости c_{ij} передачи потока w_{ij} по ребру e_{ij} задача (3.1) - (3.6) является задачей поиска кратчайшего пути от передачи информации к шлюзу. проверить эту задачу

Пример проверки допустимого решения

На рисунке 3.1 представлен пример заданного размещения базовых станций. Задано множество рассредоточенных объектов $A_1, |A_1| = 5$. Задано множество базовых станций и точки их размещения $A_2, |A_2| = 3$. Координаты множества $A, A = A_1 \cup A_2$ представлены в таблице 5 и мощности узлов сети представлены в таблице 6. Необходимо проверить, возможно ли при данном

Рисунок 3.1 - 3аданное размещение.

наборе базовых станций собрать всю информации с объектов и передать ее на шлюз s_0 , размещенной в точке a_0 .

a_0	(6, 15)	Координаты шлюза					
a_1	(1, 2)	Координаты объектов					
a_2	(14, 13)						
a_3	(1, 8)						
a_4	(12, 6)						
a_5	(4, 12)						
a_6	(4, 2)	Координаты размещения станций					
a_7	(15, 10)						
a_8	(6, 8)						

Таблица 5 — Координаты вершин

ϑ_0	ϑ_1	ϑ_2	ϑ_3	ϑ_4	ϑ_5	ϑ_6	ϑ_7	ϑ_8
∞	11	12	13	14	15	110	120	130

Таблица 6 — Мощности узлов графа

По паспортным характеристиками оборудования были получены параметры станции: радиус телекоммуникационного покрытия r_{ij} и радиус связи между станциями R_{ij} , с помощью которых была получена матрица смежности E граф потока H (таблица 7).

	a_0	a_1	a_2	a_3	a_4	a_5	a_6	a_7	a_8
a_0	0	0	0	0	0	0	0	0	0
a_1	0	0	0	0	0	0	1	0	0
a_2	0	0	0	0	0	0	0	1	1
a_3	0	0	0	0	0	0	1	0	1
a_4	0	0	0	0	0	0	0	1	1
a_5	0	0	0	0	0	0	0	0	1
a_6	0	0	0	0	0	0	0	0	1
a_7	1	0	0	0	0	0	0	0	1
a_8	1	0	0	0	0	0	1	1	0

Таблица 7 — Матрица смежности графа потока H

Рисунок 3.2 — Допустимое решение.

Теперь можно решить задачу ЛП (3.1) - (3.6). На рисунке 3.2 представлен полученный граф допустимого решения. Жирными линиями представлена те-

лекоммуникационная связь между объектами и станциями. Стрелками указан полученный граф потока информации от объектов до шлюза. проверить текст

3.3 Математическая модель оптимальной задачи выбора набора размещаемых станций и определения мест их размещения

В данном параграфе будет представлена оптимизационная задача размещения типов базовых станций БШС для обеспечения телекоммуникационного покрытия рассредоточенных объектов. Задача имеет ту же постановку как для модели ЛП, теперь только множество вершин A_2 задаются свободными. Необходимо разместить базовые станции из заданного множества типов станция для развертывания БШС на плоскости.

3.3.1 Постановка задачи.

Задано множество вершин $A=\{a_i\},\ i=\overline{0,n}$ на некоторой территории. Каждая вершина a_i имеет координаты $\{x_i,y_i\}$. Множество A состоит из двух подмножеств:

- $-A_1$ множество вершин, с которых необходимо собирать информацию;
- $-A_2$ множество возможных мест размещения базовых станций.

Каждой вершине a_i приписана величина v_i – максимальный объем информации, снимаемой с объекта, расположенного на этой вершине.

По определению

$$A_1 \cup A_2 = A;$$

$$A_1 \cap A_2 = \varnothing$$
.

Все вершины пронумерованы так, что:

$$A_1 = \{a_i\}, i = \overline{1,n_1};$$

$$A_2 = \{a_i\}, i = \overline{n_1 + 1, n}.$$

Задано множество типов базовых станций $S=\{s_j\},\ j=\overline{1,m},$ которые необходимо разместить на множестве точек $A_2.$

Каждому типу станции приписаны четыре параметра $s_j = \{\{r_{ji}\}, \{R_{ji}\}, \vartheta_j, c_j\}$, где:

- $\{r_{ji}\}$ множество радиусов покрытия. Параметр r_{ji} характеризует телекоммуникационную связь для обеспечения соединения между j-ой станцией и объектом, размещенный в координате a_i , $j=\overline{n_1+1,n}$, $i=\overline{1,n_1}$;
- $\{R_{ji}\}$ радиус связи между j-ой и i-ой станциями. Параметр характеризует максимальную дальность связи j-ой станции, обеспечивающее заданное качество соединения с i-ой станцией, $j=\overline{n_1+1,n},\ i=\overline{n_1+1,n},\ j\neq i;$
- $-\vartheta_{j}$ пропускная способность;
- $-c_i$ стоимость.

Задана станция специального вида (шлюз) $s_0 = \{\{R_{0j}\}, \vartheta_0\}$ с координатами $\{x_0, y_0\}$. Шлюз уже имеет свое расположение, стоимость размещения $c_0 = 0$. Параметр шлюза $\{R_{0j}\}, j = \overline{n_1 + 1, n}$ радиус связи необходим для соединения с размещаемыми станциями. Полагается, что шлюз не имеет соединения напрямую с объектами. По шлюз s_0 позволяет собрать данные со всех объектов, размещенных в точках $a_i, i = \overline{1, n_1}$, в данной постановке задачи пропускная способность шлюза равна $\vartheta_0 = \infty$.

Множества вершин A_1 будем идентифицировать как размещенные на них объекты. Множества вершин A_2 , на которых будут размещены станции, будем рассматривать, непосредственно, как сами базовые станции.

Требуется разместить станции таким образом, чтобы вся информация с объектов на вершинах множества A_1 могла быть собрана и передана системой БС, размещенных на выбранных в результате решения задачи в вершинах множества A_2 , до шлюза s_0 и итоговая стоимость размещения была бы минимальной.

Задано условие, что информация с вершин множества A_1 может передаваться непосредственно только на вершины множества A_2 , а со шлюзом и между собой могут быть связаны только вершины множества A_2 .

3.3.2 Модель частично целочисленного линейного программирования

На этапе обследования местности проектировании БШС были отобраны точки, куда возможно расставить БС. Необходимо отметить, что в данной постановке на этапе синтеза топологии, рассматривается более общий случай, когда размещаются не множества имеющихся базовый станций, а выбираются их типы. Так результатом данного этапа будут набор типов станций и их места размещения.

Построение матрицы смежности

На каждой вершине a_i , $i=\overline{n_1+1,n}$ может разместиться одна из m-типов БС. Вместо каждой такой вершины a_i введем m вершин с координатами вершины $\{x_i,y_i\}$, и различными параметрами, соответствующими различным типам станций. Обозначим такую группу вершин, записанных с одинаковыми координатами вместо вершины a_i , как D_i . Каждой вершине из D_i поставим в соответствие набор параметров только одного типа станции из S, т.е. на данной вершине может стоять либо станция приписанного типа либо никакая. Обозначим расширенное множество вершин A_2 через $A_2D = \{a_i\}, i=\overline{n_1+1, n\cdot m}$.

Составим граф $H = \{AD, E\}$, описывающий сеть для передачи потока информации между вершинами расширенного множества $AD = A_1 \cup A_2D$ и шлюзом s_0 в вершине a_0 . Матрица смежности $E = \{e_{ij}\}$ графа H, где каждое ребро e_{ij} определяет возможность передачи информации между вершинами, строится по следующим правилам. проверить индексы для ребра между устройством и станцией.

- $-e_{ij}=1$, если расстояние между i-ой вершиной ($a_i\in A_1$) и j-ой вершиной ($a_j\in A_2D$) не более радиуса покрытия r_{ji} , приписанного этой вершине станции;
- $-e_{ij}=1$, если вершины a_i и a_j принадлежат разным множествам D_i и D_j и расстояние между ними не больше минимального из радиусов связи $\min\{R_{ij},R_{ji}\}$, приписанных данным вершинам станциям;

- $-e_{i0}=1$ ($a_i\in A_2D$), если расстояние от вершины до шлюза не больше минимального радиуса связей $\min\{R_{i0},R_{0i}\};$
- $-e_{ij}=0$, во всех остальных случаях.

Формулировка в виде ЧЦЛП

С помощью полученного графа потока, опишем ограничения для задачи частично целочисленного линейного программирования (ЧЦЛП).

Введем булевы переменные $z_{ij}=\{0,1\},\ ,i=\overline{1,n_1},j=\overline{n_1+1,\ n\cdot m},$ определяющее наличие соединения между объектом в точке $a_i,a_i\in A_1$ и станцией, размещенной в точке $a_j,a_j\in A_2D$.

Все объекты, размещенные на вершинах A_1 , оснащены антеннами для передачи сигнала в беспроводной среде. Каждая объект одновременно может поддерживать соединение только с одной БС. Данной условие можно записать в виде ограничения равенства (3.7)

$$\sum_{a_j \in \Gamma_2^+(a_i)} z_{ij} = 1, \forall a_i, i = \overline{1, n_1}, \tag{3.7}$$

где $\Gamma^+(a_i)$ – множество вершин на графе H, в которые входят дуги, исходящие из вершины a_i .

Введем потоковые переменные $x_{ij} \in \mathbb{R}^+$, определяющее количество информации, передаваемой в единицу времени по дуге e_{ij} графа H.

Потоки информации объектов с вершин A_1 должны поступать на станции. Также на станции может поступать потоки с других станций. Необходимо, что-бы сумма входящих и выходящих потоков для любой j-ой вершины множества A_2D был равен нулю (3.8) проверить индексы

$$\sum_{a_i \in \Gamma_1^-(a_j)} z_{ij} \cdot \vartheta_i + \sum_{a_i \in \Gamma_2^-(a_j)} x_{ij} - \sum_{a_i \in \Gamma_2^+(a_j)} x_{ji} = 0, \forall a_j \in A_2.$$
 (3.8)

Здесь множество $\Gamma_1^-(a_i)$ – вершины множества A_1 , из которых выходят дуги, входящие в вершину a_i , $\Gamma_2^-(a_i)$ – вершины множества A_2D , из которых выходят дуги, входящие в вершину a_i , $\Gamma_2^+(a_i)$ – вершины множества A_2D , в которые входят дуги, исходящие из вершины a_i .

Через систему станций вся информация от объектов должна поступить на шлюз s_0 (3.9)

$$\sum_{a_j \in \Gamma_2^-(a_0)} x_{j0} = \sum_{a_i \in A_1} \vartheta_i, \tag{3.9}$$

здесь $\Gamma_2^-(a_0)$ — подмножество вершин множества A_2D , дуги которых входят в шлюз a_0 .

Введем булевы переменные $y_{ij} = \{0,1\}$ для потока x_{ij} , исходящего из вершины $a_i, a_i \in A_2D$ в вершину $a_j, a_j \in A_2D$. Данная переменная характеризует наличие соединения между вершинами.

Поток информации w_{ij} между вершинами множества A_2D может передаваться только при наличии соединения y_{ij} . Также данный поток ограничен пропускной способностью ϑ_i базовой станции (3.10)

$$\sum_{a_j \in \Gamma_2^-(a_i)} x_{ij} \leqslant y_{ij} \cdot \vartheta_i, \forall a_i \in A_2 D.$$
(3.10)

Каждая станция может иметь только одно соединение для передачи потока информации в единицу времени. Необходимо обеспечить условие, что в каждом множестве D_i может быть размещено не более одной станции. Оба этих требования можно записать в виде ограничения неравенства (3.11)

$$\sum_{a_j \in \Gamma_2^-(a_i)} y_{ij} \leqslant 1, \forall D_i. \tag{3.11}$$

Целевая функция задачи минимизации стоимости размещения (3.12)

$$\sum_{a_i \in A_2 D} \sum_{a_j \in \Gamma_2^-(a_i)} c_i \cdot y_{ij} \to min. \tag{3.12}$$

Задача (3.7)-(3.12) представляет собой частично целочисленную задачу линейного программирования с $m\cdot |A_2|$ булевыми переменными.

3.4 Выводы

В работе рассмотрены задачи размещения базовых станций при проектировании беспроводных широкополосных сетей связи для покрытия множества рассредоточенных объектов.

- Предложена формулировка задачи в виде математической модели линейного программирования при заданных мест размещения станция для проверки условия допустимой передачи потока от множества объектов до точки корневого узла сети;
- Предложена математическая модель экстремальной задачи в виде частично целочисленного линейного программирования оптимального размещения станций из имеющегося набора типов станций на избыточном множестве возможных мест размещения;
- Предложены алгоритмы построения графа информационных потоков, позволяющий формализовать задачи в виде соответствующих моделей математического программирования.

В Приложении Д приведены результаты вычислительного эксперимента. Результаты исследования по данной главе были опубликованы в [12, 13, 14, 15, 16].

Список литературы

- [1] В. М. Вишневсикй. *Теоретические основы проектирования компьютер*ных сетей. — Москва: Техносфера, 2003. — 512 с.
- [2] Amjad Mehmood, Jaime Lloret и Sandra Sendra. «A secure and low-energy zone-based wireless sensor networks routing protocol for pollution monitoring». В: Wireless Communications and Mobile Computing 16.17 (2016), с. 2869—2883. DOI: 10.1002/wcm.2734.
- [3] Zaheer Abbas и др. «Monitoring of Gas Distribution Pipelines Network Using Wireless Sensor Networks». В: Wireless Personal Communications 117.3 (2021), с. 2575—2594. DOI: 10.1007/s11277-020-07997-6.
- [4] S. Sabahat H. Bukhari и др. «Novel Cost Efficient Resource Allocation Technique Based on Deadline and Budget Constraints for Edge Users». B: Wireless Personal Communications (2021). DOI: 10.1007/s11277-021-08453-9.
- [5] Péter Kovács. «Minimum-cost flow algorithms: An experimental evaluation». B: Optimization Methods and Software 30.1 (2015), c. 94—127. DOI: 10.1080/10556788.2014.895828.
- [6] Z. Király и P. Kovács. «Efficient implementations of minimum-cost flow algorithms». B: (2012). arXiv: 1207.6381. URL: http://arxiv.org/abs/1207.6381.
- [7] Jincheng Jiang, Jinsong Chen и Chisheng Wang. «Multi-granularity hybrid parallel network simplex algorithm for minimum-cost flow problems». В: Journal of Supercomputing 76.12 (2020), с. 9800—9826. DOI: 10.1007/s11227-020-03227-9.
- [8] G. B. Dantzig. *Linear Programming and Extensions*. Princeton University Press, 1963.
- James B. Orlin. «A polynomial time primal network simplex algorithm for minimum cost flows». B: Mathematical Programming, Series B 78.2 (1997),
 c. 109—129. DOI: 10.1007/BF02614365.

- [10] Robert E. Tarjan. «Dynamic trees as search trees via Euler tours, applied to the network simplex algorithm». B: *Mathematical Programming, Series B* 78.2 (1997), c. 169—177. DOI: 10.1007/BF02614369.
- [11] Michael Holzhauser, Sven O. Krumke и Clemens Thielen. «A network simplex method for the budget-constrained minimum cost flow problem». В: European Journal of Operational Research 259.3 (2017), с. 864—872. DOI: 10.1016/j.ejor.2016.11.024. arXiv: 1607.02284.
- [12] А.А. Мухтаров и Першин О. Ю. «Задача оптимального размещения базовых станций широкополосной беспроводной сети.» В: Материалы Региональной научно-технической конференции «Губкинский университет в решении вопросов нефтегазовой отрасли России» (Москва, 2018). 2019, С. 177.
- [13] А. А. Мухтаров и О. Ю. Першин. «Задача размещения базовых станций широкополосной связи для обслуживания заданного множества рассредоточенных объектов». В: Труды 13-го Всероссийского совещания по проблемам управления (ВСПУ XIII, Москва, 2019). 2019, С. 2992—2994.
- [14] А. А. Мухтаров и О. Ю. Першин. «Оптимальное размещение базовых станций широкополосной беспроводной сети связи для обслуживания заданного множества рассредоточенных объектов». В: Труды 12-й Международной конференции «Управление развитием крупномасштабных систем» (MLSD'2019, Москва). 2019, С. 531—537.
- [15] А. А. Мухтаров и О. Ю. Першин. «Оптимальное размещение базовых станций широкополосной беспроводной сети связи для обслуживания заданного множества рассредоточенных объектов». В: Материалы 12-й Международной конференции «Управление развитием крупномасштабных систем» (MLSD'2019, Москва). 2019, С. 610—612.
- [16] А.А. Мухтаров и Першин О. Ю. «Математические модели задач оптимального размещения базовых станций беспроводной сети связи». В: Материалы 3-й Региональной научно-технической конференции, посвященной 110-летию А.И. Скобло и 105-летию Г.К. Шрейбера «Губкинский университет в решении вопросов нефтегазовой отрасли России» (Москва, 2019). 2019, С. 223.