Friday, October 19, 2018 11:30

R = KCXJ

"Euclidean algorithm worlds" meaning if $g(x) \in \mathbb{R} \setminus \{0\}$, $f(x) \in \mathbb{R}$ then f(x) = g(x)g(x) + r(x) where $deg(r(x)) \land deg(g(x))$

 $g(X) = \alpha_d X^d + \alpha_{d-1} X^{d-1} + \dots + \alpha_0 \qquad d = deg(g)$ assume $a_d = 1$

Pf. Induction on deg (f) = : n.

If n < d then r = f, q = 0 works.

O.W. If n > d then $f(x) = b_n \times^n + \cdots + b_0$ and $f(x) - b_n x^{n-d} g(x)$ has smaller degree than f

So every ideal of K[X] is g(x) K[X] for some g(X) = K(X], i.e. every ideal is principal.

Pf if $I \neq \{0\}$ then choose $g(x) \in I \setminus \{0\}$ of smallest degree? We may assume g(x) is monic since $\frac{1}{a_1}g(x)$ is one of these. Then $(g(x)) \subset I$ and conversely: let $f(x) \in I$ $\Rightarrow f(x) = g(x)g(x) + v(x) \quad \text{where } 0 \leqslant \deg(v) \leqslant \deg(g)$ and $v(x) \in I$ so v(x) = 0 or $v(x) = \alpha$ for some $\alpha \in K^{\times}$ but $I \neq K(x)$ excludes the second case so $g(x) \mid f(x)$

i.e.
$$f(x) \in (g(x))$$
,
so $I = (g(x))$

So
$$I = (g(x))$$

$$R = Z(J-1) \subset C.$$

$$R = Abi \longrightarrow a^{2} + b^{2} = |Z|^{2}$$

$$Vorm(2w) = Norm(2) Norm(w)$$

$$Norm(1) = 1$$

$$Vorm(1) = 1$$

Cor: every ideal is principal.

Read about Z(1) 19 229, § 7.1

(B)
$$R = \mathbb{Z}[X] \supset I = \{f(x): f(0) \in 2\mathbb{Z}\}$$
 is an ideal.

$$I = (2, x) \ni 2 \cdot k + x \cdot (...)$$

EX: I is not a principal ideal.

Another "proof" That I CZ[x] is an ideal.

Lemma: if $\varphi: R_1 \longrightarrow R_2$ is a vivy hom & $I_2 \subset R_2$ is an idealy

tuen I = g'(I2) is an ideal in R.

 $\frac{\rho_{coof}}{(I_{,,}+)} \leq (R_{,,}+) \quad \text{since} \quad \varphi(o_{R_{i}}) = o_{R_{z}} \in I_{z}, \quad \varphi(a \pm b) = \varphi(a) \pm \varphi(b) \Rightarrow \quad a \pm b \in I, \forall a, b \in I_{i}.$ $\forall_{i} \in R_{i}, \quad \forall_{i} \in I_{i}, \quad \Rightarrow \quad \varphi(\gamma_{i}, \chi_{i}) = \varphi(\gamma_{i}) \cdot \varphi(\chi_{i}) \in I_{z} \Rightarrow \gamma_{i} \cdot \chi_{i} \in I_{i}.$

f(I) is not necessarily an ideal: $\mathbb{Z} \stackrel{id}{\longrightarrow} \mathbb{Q}$

Lemma cont. but if f is surjective then it does take ideals to ideals.

I2=f(I,) & R2 obviously.

 $\forall \Upsilon_2 \in \mathbb{R}_2$, $\chi_2 \in \mathbb{I}_2$, $\exists \Upsilon_1 \in \mathbb{R}_1$, $\chi_1 \in \mathbb{I}_1$ set $f(\Upsilon_1) = V_2$, $f(\chi_1) = \chi_2$ So $\Upsilon_2 \chi_2 = f(\Upsilon_1 \chi_1) \in \mathbb{I}_2$ since $\Upsilon_1 \chi_1 \in \mathbb{I}_1$.

In concl. if f:R, - Rz is a sur rmy hom,

then Set of ideals in R, containing $\ker(f)$ \longleftrightarrow Set of ideals in R₂ (4R/2) I, f(I,) f(I,) I_2

the bijection preserves all operations of ideals.

for instance if $I_2 \subset R_2$ is a 2-sided ideal $I_1 = f'(I_2) \in R$ is a 2-sided ideal

Thun $R_{I_1} \cong R_2/I_2 \cong (R_1/J)/(I_1/J)$

(analogue of $(G/k)/(N/k) \equiv G/N$)