Predicting Selenium content from Nutritional Labels in Seafood

Halle Ritter

Why Selenium (Se) in Fish?

- Harm reduction
- Some studies show protective factor against Hg toxicity
 - (Regardless of whether it is or not, factor of interest to consumers)
- Not listed on nutritional labels

Objective

Create model that a consumer could use in-store to predict Se content (DV) from nutrients on label of fish (IVs/features).

Data Characteristics

- Wrote script to download from nutritionvalue.org, from USDA
- ≥ 206 entries, 168 in no-outlier set
- ▶ 11 factors: Protein; Vit's A, C, D; Fe, Na, K, Ca, SFA, PUFA, MUFA

	Selenium	SFA	PUFA	MUFA	Potassium	Vit_D	Vit_A	Vit_C	Calcium	Iron	Sodium	Protein
Fish												
Fish, raw, ling	36.5	0.120	0.220	0.090	379.0	0.0	2.0	0.0	3.0	4.0	6.0	38.0
Fish, raw, cusk	36.5	0.130	0.280	0.090	392.0	0.0	1.0	0.0	1.0	5.0	1.0	38.0
Fish, raw, carp	12.6	1.083	1.431	2.328	333.0	988.0	1.0	3.0	4.0	7.0	2.0	36.0
Fish, raw, spot	36.5	1.450	1.090	1.330	496.0	0.0	2.0	0.0	1.0	2.0	1.0	38.0
Fish, raw, scup	36.5	0.640	1.030	0.560	287.0	47.0	2.0	0.0	4.0	3.0	2.0	38.0

Pairplot matrix: Every variable plotted against every other variable

Circled areas of interest detailed on slides following

Intercorrelation of Fatty Acids

Fat-soluble vitamins

Selenium Correlations?

Not immediately clear from visual examination of scatterplot

Analysis Considerations

- Optimize for interpretable model
 - Not necessarily most complex fit
- Small data set drives cross-validation method
- Suboptimal qualities of data set reflect underlying reality
 - Size, multicollinearity, feature set

Full Data Set **Outliers Removed**

Raw R²

0.58

K-fold

 R^2

0.21

cross-val

Ranked Feature

Importances

('Protein', 0.14), ('Potassium', 0.14), ('Vit_C', 0.11), ('Calcium', 0.09), ('PUFA', 0.08), ('MUFA', 0.07), ('SFA', 0.06), ('Sodium', 0.06), ('Vit_A', 0.04), ('Vit_D', 0.03)

('Potassium', 0.18),

('Protein', 0.14), ('Calcium', 0.14), ('PUFA', 0.10), ('SFA', 0.09), ('Sodium', 0.08), ('MUFA', 0.07), ('Iron', 0.07), ('Vit_C', 0.06), ('Vit_D', 0.04), ('Vit_A', 0.03)

('Iron', 0.18),

Regressions

	Model	R ²	Cross- val R ²	Feature Importance (top)
Simple Linear Regression	All features degree =1	0.35	0.11	('Iron', 0.48), ('Protein', 0.41), ('Vit_A', 0.19)
Polynomial Pipeline	All features degree =3	1	-7500	n/a: Overfit
Polynomial- Pick and Choose	All features degree = 1; protein & iron = 3	0.37	0.059	('Protein', 0.48), ('Iron2', 0.34), ('Vit_A', 0.20),

Feature Importances b/w Models

- Usually unimportant features:
 - Vitamins (esp. C and D)
- Occasionally important:
 - Iron, protein/potassium
 - ...but feature importances rearrange
 between models = low model confidence

Conclusions

- Not much useable predictive ability for Se with this data set
 - Not much correlation- makes sense biochemically
 - This is a feature of the data set, not models: models accurately demonstrate lack of underlying correlation
- Interesting other correlations (e.g. fatty acids)
- Negative results are results!

Future Directions

- Other strategies of outlier removal
- Better Se data source
- Omega fatty acid ratios
- Join Hg data set

Top Fish by Se Content

	Selenium
Fish	
Mollusks, moist heat, cooked, Pacific, oyster	154.0
Fish, dry heat, cooked, fresh, yellowfin, tuna	108.2
Fish, raw, yellowfin, fresh, tuna	90.6
Mollusks, moist heat, cooked, mixed species, cuttlefish	89.6
Mollusks, moist heat, cooked, common, octopus	89.6
Mollusks, moist heat, cooked, blue, mussel	89.6
Fish, dry heat, cooked, orange, roughy	88.3

(ug/100g)

