Spatial Update

5-22

Posterior distribution for weights

$$\begin{split} \boldsymbol{Y}_{i} \sim & N_{d}(\boldsymbol{\mu}, \boldsymbol{\Lambda}), \boldsymbol{\epsilon}_{i} \sim N_{d}(\boldsymbol{0}, \boldsymbol{\Lambda}), \left(\frac{\boldsymbol{\epsilon}_{i}}{\sqrt{w_{i}}} \middle| w_{i}\right) \sim N_{d}(\boldsymbol{0}, w_{i}\boldsymbol{\Lambda}) \\ & w_{i} \sim \operatorname{Gamma}\left(\frac{\boldsymbol{\nu}}{2}, \frac{\boldsymbol{\nu}}{2}\right) \\ p(w_{i}|\boldsymbol{Y}_{i}, \boldsymbol{\mu}_{i}, \boldsymbol{\Lambda}) \propto |w_{i}\boldsymbol{\Lambda}|^{\frac{1}{2}} \exp\left(-\frac{(\boldsymbol{y}_{i} - \boldsymbol{\mu}_{i})^{T} w_{i}\boldsymbol{\Lambda}(\boldsymbol{y}_{i} - \boldsymbol{\mu}_{i})}{2}\right) \times w_{i}^{\frac{\boldsymbol{\nu}}{2} - 1} \exp\left(-\frac{\boldsymbol{\nu}}{2}w_{i}\right) \\ &= w_{i}^{\frac{d}{2}}|\boldsymbol{\Lambda}|^{\frac{1}{2}} \exp\left(-\frac{w_{i}(\boldsymbol{y}_{i} - \boldsymbol{\mu}_{i})^{T}\boldsymbol{\Lambda}(\boldsymbol{y}_{i} - \boldsymbol{\mu}_{i})}{2}\right) \times w_{i}^{\frac{\boldsymbol{\nu}}{2} - 1} \exp\left(-\frac{\boldsymbol{\nu}}{2}w_{i}\right) \\ &= w_{i}^{\frac{d+\boldsymbol{\nu}}{2} - 1}|\boldsymbol{\Lambda}|^{\frac{1}{2}} \exp\left(-w_{i}\frac{\boldsymbol{\nu} + (\boldsymbol{y}_{i} - \boldsymbol{\mu}_{i})^{T}\boldsymbol{\Lambda}(\boldsymbol{y}_{i} - \boldsymbol{\mu}_{i})}{2}\right) \\ w_{i}|\boldsymbol{y}_{i}, \boldsymbol{\mu}_{i}, \boldsymbol{\Lambda} \sim \operatorname{Gamma}\left(\frac{d+\boldsymbol{\nu}}{2}, \frac{\boldsymbol{\nu} + (\boldsymbol{y}_{i} - \boldsymbol{\mu}_{i})^{T}\boldsymbol{\Lambda}(\boldsymbol{y}_{i} - \boldsymbol{\mu}_{i})}{2}\right) \end{split}$$

Normal (left) vs. t-distributed (right) error model

$$\mathbf{y}_i = \sum_{k=1}^{q} \boldsymbol{\mu}_k I(z_i = k) + \boldsymbol{\epsilon}_i$$
$$\boldsymbol{\epsilon}_i \sim N_d(\mathbf{0}, \boldsymbol{\Lambda}^{-1})$$

Priors

$$\mu_k \sim N_d(\mu_0, \Lambda_0^{-1})$$

 $\Lambda \sim W_d(\alpha, \operatorname{diag}(\beta)_d^{-1})$

Posteriors:

$$\boldsymbol{\mu}_k \sim N \left((\boldsymbol{\Lambda}_0 + n_k \boldsymbol{\Lambda})^{-1} \left(\boldsymbol{\Lambda}_0 \boldsymbol{\mu}_0 + \sum_{i: \{z_i = k\}} \boldsymbol{y}_i \right), (\boldsymbol{\Lambda}_0 + n_k \boldsymbol{\Lambda})^{-1} \right)$$

$$\mathbf{\Lambda} \sim W_d \left(n + \alpha, \left(\operatorname{diag}(\beta)_d + \sum_i (\mathbf{y}_i - \boldsymbol{\mu}_i)^T (\mathbf{y}_i - \boldsymbol{\mu}_i) \right)^{-1} \right)$$

Likelihood:

$$\mathbf{y}_i|z_i, \boldsymbol{\mu}, \Lambda \sim N\left(\sum_{k=1}^q \boldsymbol{\mu}_k I(z_i=k), \boldsymbol{\Lambda}^{-1}\right)$$

$$\mathbf{y}_{i} = \sum_{k=1}^{q} \boldsymbol{\mu}_{k} I(z_{i} = k) + \boldsymbol{\epsilon}_{i} / \sqrt{w_{i}}$$

$$\boldsymbol{\epsilon}_{i} \sim N_{d}(\mathbf{0}, \boldsymbol{\Lambda}^{-1})$$
Priors:
$$\boldsymbol{\mu}_{k} \sim N_{d}(\boldsymbol{\mu}_{0}, \boldsymbol{\Lambda}_{0}^{-1})$$

$$\boldsymbol{\Lambda} \sim W_{d}(\boldsymbol{\alpha}, \operatorname{diag}(\boldsymbol{\beta})_{d}^{-1})$$

$$\boldsymbol{w}_{i} \sim \operatorname{Gamma}\left(\frac{\boldsymbol{\nu}}{2}, \frac{\boldsymbol{\nu}}{2}\right)$$

Posteriors:

$$\mu_{k} \sim N \left(\left(\Lambda_{0} + \Lambda \sum_{i: \{z_{i} = k\}} w_{i} \right)^{-1} \left(\Lambda_{0} \mu_{0} + \sum_{i: \{z_{i} = k\}} w_{i} y_{i} \right), \left(\Lambda_{0} + \Lambda \sum_{i: \{z_{i} = k\}} w_{i} \right)^{-1} \right)$$

$$\Lambda \sim W_{d} \left(\sum_{i} w_{i} + \alpha, \left(\operatorname{diag}(\beta)_{d} + \sum_{i} w_{i} (y_{i} - \mu_{i})^{T} (y_{i} - \mu_{i}) \right)^{-1} \right)$$

$$w_{i} \sim \operatorname{Gamma} \left(\frac{d + v}{2}, \frac{v + (y_{i} - \mu_{i})^{T} \Lambda (y_{i} - \mu_{i})}{2} \right)$$

$$\underline{\operatorname{Likelihood:}}$$

$$\mathbf{y}_i|z_i, \boldsymbol{\mu}, \boldsymbol{\Lambda} \sim \frac{T_{\nu}}{\sqrt{\sum_{k=1}^{q} \boldsymbol{\mu}_k I(z_i = k)}}, \boldsymbol{\Lambda}^{-1}$$

Normal (left) vs. t-distributed (right) error model

ARI as a function of chain length

ARI	Truth	Kmeans	Mode of 1:500 (21sec)	Mode of 1:1000 (42s)	Mode of 1000:2000 (84s)	Mode of 1000:10000 (420s)
Truth	1	0.281	0.480	0.481	0.479	0.479
Kmeans		1	0.459	0.458	0.457	0.458
Mode of 1:500			1	0.984	0.959	0.967
Mode of 1:1000				1	0.967	0.979
Mode of 1000:2000					1	0.981
Mode of 1000:10000						1

EEE vs VVV model

Prior

$$\Lambda \sim W_d(\alpha, \operatorname{diag}(\beta)_d^{-1})$$

Posterior

$$\mathbf{\Lambda} \sim W_d \left(n + \alpha, \left(\operatorname{diag}(\beta)_d + \sum_i (\mathbf{y}_i - \boldsymbol{\mu}_i)^T (\mathbf{y}_i - \boldsymbol{\mu}_i) \right)^{-1} \right)$$

Prior

$$\Lambda_{\mathbf{k}} \sim W_d(\alpha, \operatorname{diag}(\beta)_d^{-1})$$

Posterior

$$\Lambda_{k} \sim W_{d} \left(n_{k} + \alpha, \left(\operatorname{diag}(\beta)_{d} + \sum_{i: \{z_{i} = k\}} (y_{i} - \mu_{i})^{T} (y_{i} - \mu_{i}) \right)^{-1} \right)$$

EEE Gaussian model (left) vs. VVV Gaussian model (right)

VVV Gaussian model (left) vs. VVV t model (right)

Next steps

- Simulations
 - Clustering
 - Deconvolution
 - 1. Aggregate spots
 - 2. Use subspot labels as truth