ИІТМО

Основы электротехники

Отчёт по лабораторной работе №3
Исследование линейных двухполюсников в электрических цепях однофазного синусоидального тока
Группа Р3334
Вариант 4

Выполнил: Баянов Равиль Динарович

Дата сдачи отчёта: 20.10.2024

Дата защиты: 21.10.2024

Контрольный срок сдачи: 23.10.2024

Количество баллов:

Содержание

Цель работы	3
Часть 1	4
Схема исследуемой цепи	4
Расчётные формулы и расчёты. Заполненная таблица 2.2	9
Векторные диаграммы входных напряжений и токов для каждого из двухпол	юсников11
Выводы по части 1	15
Часть 2	16
Схема исследуемой цепи (6, 9)	16
Расчётные формулы и расчёты. Заполненные таблицы 2.3 и 2.4	17
Графики характеристик If , φf , $UR1f$, Ukf , UCf для схемы №6	19
Графики характеристик If , $I1f$, $I2f$, $\varphi(f)$ для схемы №9	21
Выполненные в масштабе векторные диаграммы для состояния резонанса в №9	
Выводы по части 2	24
Выводы по работе	25

Цель работы

Исследование свойств линейных цепей синусоидального тока, а также особых режимов работы, таких как резонанс напряжений и токов.

Часть 1

Схема исследуемой цепи

Схема №1

• Схема №2

• Схема №3

• Схема №4

Схема №5

• Схема №6

• Схема №7

• Схема №8

• Схема №9

Расчётные формулы и расчёты. Заполненная таблица 2.2

Таблица 2.2:

Номер)	-	метры поснико	В	Результ	гаты изм	Результаты вычислений		
схемы	R_1	R _k	L	С	U	I	φ	I	φ
цепи	Ом		Гн	мкФ	В	Α	0	A	0
1	25	5	0,00268	46,188	9	0,360	0,000	0,360	0,000
2	25	5	0,00268	46,188	9	0,208	-90,000	0,208	-90,000
3	25	5	0,00268	46,188	9	0,180	-25,000	0,180	-60,000
4	25	5	0,00268	46,188	9	1,739	15,003	1,739	15,003
5	25	5	0,00268	46,188	9	0,300	2,557	0,300	2,557
6	25	5	0,00268	46,188	9	0,174	-54,438	0,174	-54,438
7	25	5	0,00268	46,188	9	0,416	-30,000	0,416	-30,000
8	25	5	0,00268	46,188	9	2,088	12,445	2,088	12,445
9	25	5	0,00268	46,188	9	1,794	9,440	1,794	9,440

Вычисления действующего значения тока и фазового сдвига для каждой схемы:

1.
$$I = \frac{U}{Z} = \frac{U}{R_1} = \frac{9}{25} = 0,36 \text{ [A]}$$

 $\varphi = arctg\left(\frac{0}{R_1}\right) = 0$

2.
$$I = \frac{U}{Z} = \frac{U}{X_C} = UC\omega = \frac{2UC\pi}{T} = \frac{UC\pi}{h} = 9 * 46,188 * 10^{-6} * \frac{3,14}{0,006286} = 0,208 \text{ [A]}$$

 $\varphi = arctg(-\infty) = -\frac{\pi}{2} = -90$

3.
$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + X^2}} = \frac{U}{\sqrt{R_1^2 + \left(\frac{h}{C\pi}\right)^2}} = \frac{9}{\sqrt{25^2 + \left(\frac{0.006286}{46,188*10^{-6}*3,14}\right)^2}} = 0,180[A]$$

 $\varphi = arctg\left(\frac{X}{R}\right) = arctg\left(\frac{h}{C\pi R}\right) = arctg\left(\frac{h}{C\pi R_1}\right) = -60$

4.
$$I = \frac{U}{Z} = \frac{U}{\sqrt{R_k^2 + \left(\frac{L\pi}{h}\right)^2}} = \frac{U}{\sqrt{5^2 + \left(0.00268 * \frac{3.14}{0.006286}\right)^2}} = 1,739[A]$$

 $\varphi = arctg\left(\frac{X}{R}\right) = arctg\left(\frac{\omega L}{R_k}\right) = arctg\left(\frac{2\pi f L}{R_k}\right) = 15,003$

5.
$$I = \frac{U}{Z} = \frac{U}{\sqrt{(R_1 + R_k)^2 + \left(\frac{L\pi}{h}\right)^2}} = \frac{U}{\sqrt{30^2 + \left(0.00268 * \frac{3.14}{0.006286}\right)}} = 0,300 \text{ [A]}$$

$$\varphi = arctg\left(\frac{X}{R}\right) = arctg\left(\frac{2\pi fL}{R_k + R}\right) = 2,577$$

6.
$$I = \frac{U}{Z} = \frac{U}{\sqrt{R^2 + X^2}} = \frac{U}{\sqrt{(R_1 + R_k)^2 + (\omega L - \frac{1}{\omega C})^2}} = \frac{U}{\sqrt{(R_1 + R_k)^2 + (2\pi f L - \frac{1}{2\pi f C})^2}} = 0.174[A]$$

$$\varphi = arctg\left(\frac{X}{R}\right) = arctg\left(\frac{2\pi f L - \frac{1}{2\pi f C}}{R_1 + R_k}\right) = -53,243$$

7.
$$I = U * Y = U * \sqrt{\frac{1}{R_1^2} + (2\pi fC)^2} = 0.420 \text{ [A]}$$

$$\varphi = arctg\left(\frac{B}{G}\right) = arctg(-2\pi fCR_1) = -31,063$$

8.
$$I = U * Y = U * \sqrt{G^2 + B^2} = U * \sqrt{(G_1 + G_k)^2 + (B_k - B_1)^2} = U *$$

$$* \sqrt{\left(\frac{1}{R_1} + \frac{R_k}{R_k^2 + X_L^2}\right)^2 + \left(\frac{X_L}{R_k^2 + X_L^2}\right)^2} = U * \sqrt{\left(\frac{1}{R_1} + \frac{R_k}{R_k^2 + (2\pi f L)^2}\right)^2 + \left(\frac{2\pi f L}{R_k^2 + (2\pi f L)^2}\right)^2}$$

$$= 2,088 \text{ [A]}$$

$$\begin{split} \varphi &= \arctan \left(\frac{B}{G}\right) = \arctan \left(\frac{X_L}{(R_k^2 + X_L^2)(\frac{1}{R_1} + \frac{R_k}{R_k^2 + X_L^2})} = \right) \\ &= \arctan \left(\frac{2\pi f L}{(R_k^2 + (2\pi f L)^2)(\frac{1}{R_1} + \frac{R_k}{R_k^2 + (2\pi f L)^2})}\right) = -13,564 \end{split}$$

9.
$$I = U * Y = U * \sqrt{\left(\frac{1}{R_1} + \frac{R_k}{R_k^2 + X_L^2}\right)^2 + \left(\frac{X_L}{R_k^2 + X_L^2} - \frac{X_C}{R_1^2 + X_C^2}\right)^2} = U * \sqrt{\left(\frac{1}{R_1} + \frac{R_k}{R_k^2 + (2\pi f L)^2}\right)^2 + \left(\frac{2\pi f L}{R_k^2 + (2\pi f L)^2} + \frac{\frac{1}{2\pi f C}}{R_1^2 + \left(\frac{1}{2\pi f C}\right)^2}\right)^2} = 1,794 \text{ [A]}$$

$$\varphi = arctg\left(\frac{B}{G}\right) = arctg\left(\frac{\frac{X_L}{R_k^2 + X_L^2} - \frac{X_C}{R_1^2 + X_C^2}}{\left(\frac{1}{R_1} + \frac{R_k}{R_k^2 + X_L^2}\right)}\right)$$

$$= arctg\left(\frac{\frac{2\pi f L}{R_k^2 + (2\pi f L)^2} - \frac{\frac{1}{2\pi f C}}{R_1^2 + \left(\frac{1}{2\pi f C}\right)^2}}{\left(\frac{1}{R_1} + \frac{R_k}{R_k^2 + (2\pi f L)^2}\right)}\right) = 8,21$$

Векторные диаграммы входных напряжений и токов для каждого из двухполюсников

Векторные диаграммы:

1.

2.

3.

4.

5.

6.

7.

8.

9.

Выводы по части 1

В этой части мы рассматривали линейные электрические цепи в режиме синусоидального тока. Нашли изменения силы тока и фазового сдвига в зависимости от конструкции пассивного двухполюсника. Заметим, что значения по формулам очень близки к экспериментальным.

Часть 2

Схема исследуемой цепи (6, 9)

• Схема №6:

• Схема №9:

Расчётные формулы и расчёты. Заполненные таблицы 2.3 и 2.4

Таблица 2.3:

	$U=9~B;~R_1=7~Om;~R_k=5~Om;~L=2,68~m\Gamma H;~C=41,188~m \kappa \Phi;~f_0=$											
	452,594 Гц											
			Расчёт			Эксперимент						
f	$Q_p = 0.635$						$Q_e = 0.709$					
	φ	I	U_{R1}	U_k	$U_{\rm C}$	φ	I I		U_k	$U_{\rm C}$		
Гц	0	A		В			A					
45,26	-80,954	0,118	0,943	1,183	8,978	-81,342	0,224	1,7906	2,243	14,540		
90,52	-71,821	0,234	1,872	2,367	8,907	-72,726	0,414	3,318	4,183	13,500		
135,78	-62,541	0,346	2,767	3,548	8,777	-62,278	0,560	4,481	5,710	12,160		
181,04	-53,105	0,450	3,602	4,707	8,570	-53,630	0,661	5,293	6,840	10,803		
226,30	-43,572	0,543	4,347	5,815	8,274	-43,781	0,730	5,843	7,677	9,531		
271,56	-34,073	0,621	4,970	6,831	7,883	-34,564	0,775	6,208	8,324	8,422		
316,82	-24,787	0,681	5,447	7,717	7,406	-24,787	0,803	6,439	8,840	7,488		
362,08	-15,907	0,721	5,770	8,448	6,864	-15,845	0,819	6,569	9,254	6,690		
407,33	-7,596	0,743	5,947	9,015	6,289	-7,537	0,827	6,638	9,599	6,004		
452,59	0,037	0,750	6,000	9,430	5,710	0,037	0,834	6,691	9,929	5,421		
497,85	6,946	0,744	5,956	9,715	5,153	6,890	0,829	6,656	10,205	4,915		
543,11	13,138	0,730	5,843	9,897	4,634	13,150	0,823	6,613	10,458	4,477		
588,37	18,654	0,711	5,685	10,003	4,162	18,587	0,815	6,553	10,688	4,094		
633,63	23,555	0,688	5,500	10,054	3,739	23,633	0,805	6,478	10,904	3,755		
678,89	27,909	0,663	5,302	10,066	3,364	27,993	0,794	6,403	11,123	3,483		
724,15	31,783	0,638	5,100	10,054	3,034	32,136	0,782	6,307	11,304	3,220		
769,41	35,240	0,613	4,900	10,025	2,743	35,335	0,769	6,206	11,448	2,970		
814,67	38,334	0,588	4,706	9,987	2,488	38,667	0,755	6,102	11,651	2,760		
859,93	41,113	0,565	4,520	9,944	2,264	41,693	0,741	5,993	11,806	2,570		
905,188	43,621	0,543	4,344	9,898	2,067	44,183	0,727	5,884	11,955	2,403		

Таблица 2.4:

	$U = 9 B; R_1 = 7 O$ м; $R_k = 5 O$ м; $L = 2 \cdot 68 M$ Гн; $C = 46 \cdot 188 M$ к Φ ;										
		$f_0' = 865.383$ Гц									
f		Pa	счёт			Эксперимент					
	φ	I	I_1	I_2	φ	I	I_1	I_2			
Гц	0		A		0		A				
86,538	8,848	1,718	0,223	1,728	-7,523	1,568	0,350	1,490			
173,077	14,383	1,533	0,426	1,555	-11,461	1,726	0,697	1,454			
259,615	15,538	1,349	0,600	1,355	-11,956	1,897	0,938	1,407			
346,153	13,465	1,222	0,740	1,172	-10,514	2,035	1,170	1,321			
432,692	10,088	1,155	0,849	1,018	-8,675	2,130	1,313	1,298			

519,230	6,805	1,129	0,933	0,894	-6,442	2,184	1,380	1,209
605,768	4,182	1,126	0,998	0,792	-4,261	2,208	1,498	1,178
692,306	2,266	1,135	1,048	0,710	-2,568	2,214	1,521	1,134
778,845	0,924	1,147	1,087	0,641	-1,134	2,217	1,637	1,032
865,383	0,000	1,161	1,118	0,584	0,000	2,204	1,666	0,992
951,921	-0,630	1,174	1,142	0,536	0,939	2,185	1,633	0,952
1038,460	-1,056	1,186	1,162	0,495	1,720	2,168	1,654	0,916
1124,998	-1,342	1,197	1,178	0,459	2,273	2,142	1,730	0,865
1211,536	-1,531	1,206	1,191	0,428	2,706	2,132	1,682	0,828
1298,075	-1,652	1,214	1,202	0,401	3,032	2,111	1,767	0,765
1384,613	-1,725	1,221	1,211	0,377	3,418	2,088	1,728	0,731
1471,151	-1,765	1,227	1,219	0,356	3,695	2,073	1,717	0,725
1557,689	-1,782	1,233	1,226	0,337	3,826	2,066	1,738	0,680
1644,228	-1,781	1,237	1,232	0,320	3,831	2,046	1,741	0,640
1730,766	-1,769	1,242	1,237	0,304	3,955	2,041	1,754	0,631

$$f_0 = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{0,00268 * 46,188 * 10^{-6}}} = 452,594 \ [\Gamma\text{u}]$$

$$f_0' = \frac{1}{2\pi\sqrt{LC}} \sqrt{(p^2 - R_k^2)/(p^2 - R_1^2)} = \frac{1}{2\pi\sqrt{LC}} \sqrt{\frac{\frac{L}{C} - R_k^2}{\frac{L}{C} - R_1^2}} = 865,383 \ [\Gamma\text{u}]$$

$$Q_p = \frac{p}{R_1 + R_k} = \frac{\sqrt{\frac{L}{C}}}{R_1 + R_k} = 0,635$$

$$Q_e = \frac{U_{C0}}{U} = \frac{6,385}{9} = 0,709$$

Графики характеристик $I(f), \varphi(f), U_{R1}(f), U_k(f), U_C(f)$ для схемы №6

График I(f):

Графики $U_{R1}(f)$, $U_k(f)$, $U_C(f)$, $\varphi(f)$:

Фиолетовый — $\phi(f)$, Синий — I(f), Красный — $U_C(f)$, Зелёный — $U_{R1}(f)$

Графики характеристик I(f), $I_1(f)$, $I_2(f)$, $\varphi(f)$ для схемы №9

Красный – $\phi(f)$, Синий - I(f), Зелёный - $I_1(f)$, Фиолетовый - $I_2(f)$

Выполненные в масштабе векторные диаграммы для состояния резонанса в схемах №6 и №9

Диаграмма для схемы №6:

Диаграмма для схемы №9:

Выводы по части 2

Мы рассмотрели работу линейных электрических цепей в режиме резонанса напряжений и токов. Нашли зависимости токов и напряжений от резонансной частоты. Заметим, что расчётные значения крайне близки к экспериментальным.

Выводы по работе

В ходе выполнения лабораторной работы было проведено исследование линейных электрических цепей в режиме синусоидального тока, в том числе режимов резонанса напряжений и токов. Заметим, что расчётные значения совпадают по большей мере с экспериментальными значениями. Небольшие расхождения между экспериментальными и расчётными данными можно объяснить погрешностями измерений в приложении LTSpice.