

TEXAS ORIE

Leveraging Machine Learning to Predict Post Surgery Length - of - Stay

Presented By:

Prudhvinath G (gp23259) Soorya Sriram (s9623)

Supervised By:

Dr Eric Bickel Dr Erhan Kutanoglu

Agenda:

- Background
- Solution
- Experiments
- Results
- Future Approaches

Background:

Age	ВМІ	Surgery Diagnosis Name	LOS 4 groups - Target
35	24.29	Lymphede ma of right upper limb	60+ hours
57	29.54	Other acquired deformity of head	60+ hours

139,634 rows with 47634 unique IDs and 43 features of

Objective:

Develop a robust Machine Learning solution to predict the Post-Surgery Length of Stay into 4 categories to optimize the assignment of patients between inpatient and outpatient care based on a set of features known before, after and accommodating to the changes that might occur during the surgery.

Problem Breakdown:

- 1. Preprocess data and perform EDA to make it suitable for training and testing.
- Reduce the number of features using feature importance techniques based on which features are known before and after the surgery.
- 3. Evaluate using appropriate metrics
- 4. Explain the impact of features on the prediction

Solution: End – To – End Flow

Evaluation Data Selection Data Cleaning 5-Fold Cross Validation Outlier Analysis for Subset the total data Mean Accuracy and Numerical Features. based on IDs and target individual Class Recall, Fill Missing Values for class to create a balance Precision and F1 Score Categorical, Textual Features. train-test dataset Final shape (128385,24) -Sensitivity Analysis Post - OP **Data Visualization Feature Reduction Model Selection** Generate Box Plots, Perform Hyperparameter Forward Selection and **Heatmaps** to analyze tuning for 2 popular ML **Backward Selection** to Models - Random Forest correlation and Bar Plots reduce the number of Classifier and XGBoost for target feature class features for both Post-OP check Classifier and Pre-OP Feature set

Summary of PreOP Experiments:

	Model		Accuracy	Recall	F1 Score
	RFC XGB RFC with Selected Features (Forward Selection)	Base	89.39%	89%	89%
		Tuned	89.21%	89%	89%
		Base	78.49%	78%	78%
Pre - OP		Tuned	78.64%	79%	79%
Pre - OP		Base	93.29%	93%	93%
		Tuned	89.21%	89%	89%
	XGB with Selected Features (Forward Selection)	Base	77.72%	78%	78%
		Tuned	77.90%	78%	78%

- Initial features: 19
- No. of features that got selected for RFC in Pre Op are 11.
- No. of features that got selected for XGB in Pre Op are 15.

Recommendation: RFC with 11 features after forward feature selection to predict the LOS target features has 93.29% accuracy as compared to all the other approaches.

Summary of PostOP Experiments:

	Model		Accuracy	Recall	F1 Score
	XGB RFC with Selected Features (Forward Selection)	Base	93.43%	93%	93%
		Tuned	87.63%	88%	88%
		Base	82.46%	83%	83%
Post OP		Tuned	83.60%	84%	84%
POST OP		Base	96.18%	96%	96%
		Tuned	95.24%	95%	95%
	XGB with Selected Features (Forward Selection)	Base	82.84%	84%	84%
		Tuned	83.09%	84%	84%

- Initial features: 23
- No. of features that got selected for RFC in Post Op are 10.
- No. of features that got selected for XGB in Post Op are 17.

Recommendation: RFC with 10 features after forward feature selection to predict the LOS target features has 96.18% accuracy as compared to all the other approaches.

Post – OP Features

Imbalanced Dataset

- The total number of rows after performing the cleaning process: 128385
- Number of features selected: 24
- Class [36,60) is 7.5% of the total number of rows

Balanced Dataset

- Subset the Imbalanced Dataset based on the Target Class with the least occurrence.
- The total number of rows after performing the cleaning process: 38487
- Number of features selected: 24
- Class [36,60) is 25% of the total number of rows

Final Selected Features PostOP:

Numerical Features

- Age at Surgery
- BMI
- Scheduled Room Duration
- Intraop Minutes
- Total Scheduled Panel Length
- Total Panel Default Length

Target Feature

LOS 4 Groups

One Hot Encoding:

The process of converting categorical features into binary numerical columns.

One hot encoded categorical features and final dataset shape is (38487, 6158).

Categorical Features

- Sex
- Ethnicity
- Primary Race
- Surgery Diagnosis Name
- Location
- Primary Service
- Patient Class
- Anesthesia Type
- ASA Status
- Primary Surgeon ID
- Primary Procedure Name
- Robotic Case?
- Procedure Name
- · Scheduled?
- Performed?
- Procedure Panel
- Panel Primary Surgeon ID

First Iteration after Data Cleaning:

		F	RFC				X	GB	
•	 Mean accuracy with Cross Validation of 5 sets was 93.43%. Strong precision and recall for classes 0 and 1. 		Va	alida	accuracy ation of 5 s r Recall fo	sets was	s 82.46 %.		
	рі	recision	recall	f1-score		Ī	precision	recall	f1-score
	0	0.96	0.94	0.95		0	0.87	0.85	0.86
	1	0.95	0.98	0.96		1	0.88	0.94	0.91
	2	0.92	0.91	0.92		2	0.81	0.76	0.78
	3	0.90	0.91	0.91		3	0.76	0.78	0.77

Class	Label
0	60+ hours
1	<12 hours
2	[12, 36) hours
3	[36, 60) hours

Hyperparameter Tuning:

- Bayesian optimization for hyperparameter tuning.
- It builds a probabilistic model of the objective function, which estimates how changes in hyperparameters affect performance.
- It balances exploration (searching new regions) and exploitation (focusing on known good regions) to efficiently find optimal hyperparameter values.
- Better tuning compared to Grid Search and Random Search. Converges faster.

RFC Base	RFC Tuned	XGB Base	XGB Tuned
 Default Parameters: N_estimators:100 min_samples_split: 2 min_samples_leaf: 	Parameters Tuned: • n_estimators, max_depth, min_samples_split, min_samples_leaf.	Default Parameters:Learning Rate: 0.3Max_depth: 6N_estimators:100	Parameters Tuned: • Learning_rate, max_depth, n_estimators.
1	Best Parameters	Range: N estimators:	Best Parameters found:
Range: N_estimators: (50, 200), min_samples_split: (2, 20), min_samples_leaf: (1, 10)	found: • Max_depth: 50 • N_estimators:200 • min_samples_split: 2 • min_samples_leaf: 1	(50, 125), • Max_depth: (4,7) • learning_rate: Real (0.05, 0.2, prior='log-uniform')	 Learning Rate: 0.19 Max_depth: 7 N_estimators:102 Runtime: 4 hours
	Runtime: 3 hours		

Feature Importance PostOP – RFC Classifier

The same set of Features after data cleaning were used for Feature Reduction.

Features	Feature Name	Mean Accuracy
1	Primary Procedure Name	0.677
2	BMI	0.916
3	Intraop Minutes	0.949
4	Primary Surgeon ID	0.955
5	Total Panel Default Length	0.957
6	Patient Class	0.958
7	Sex	0.959
8	Primary Service	0.9603
9	Age at Surgery	0.9604
10	Primary Race	0.9609

The total number features reduced from 23 to 10 in forward feature reduction.

Feature Importance PostOP – RFC Classifier

•	The total number features reduced from
	23 to 18 in backward feature reduction.

Removed Features	Feature Name	Mean Accuracy
1	Procedure Name	0.954
2	Scheduled?	0.957
3	Procedure Panel	0.959
4	Performed?	0.960
5	Ethnicity	0.961

Important Features:

- 1. Primary Procedure Name,
- 2. BMI,
- 3. Intraop Minutes,
- 4. Primary Surgeon ID,
- 5. Patient Class,
- 6. Total Panel Default Length,
- 7. Sex,
- 8. Primary Service.

Feature Importance PostOP – XGB Classifier

Features	Feature Name	Mean Accuracy		
1	Primary Procedure Name	0.6431		
2	Intraop Minutes	0.736		
3	Primary Surgeon ID	0.776		
4	Patient Class	0.791		
5	Total Panel Default Length	0.805		
6	Primary Service	0.811		
7	Age at Surgery	0.819		
8	BMI	0.825		
9	Total Scheduled Panel Length	0.828		
10	Robotic Case?	0.830		
11	ASA Status	0.832		
12	Primary Race	0.833		
13	Surgery Diagnosis Name	0.834		
14	Anesthesia Type	0.835		
15	Sex	0.836		
16	Scheduled Rood Duration	0.837		
17	Procedure Panel	0.838		

The total number features reduced from 23 to 17 in forward feature reduction.

Feature Importance PostOP – XGB Classifier

•	The total number features reduced from
	23 to 20 in forward feature reduction.

Removed Features	Feature Name	Mean Accuracy
1	Procedure Name	0.836
2	Procedure Panel	0.837
3	Anesthesia Type	0.837

Important Features:

- 1. Primary Procedure Name,
- Intraop Minutes,
- 3. Primary Surgeon ID,
- Patient Class,
- 5. Total Panel Default Length,
- 6. Primary Service,
- 7. *Age,*
- 8. BMI,
- 9. Total Scheduled Panel Length,
- 10. Robotic Case?

Summary of PostOp Experiments:

	Model		Accuracy	Recall	F1 Score
	DEC	Base	93.43%	93%	93%
	RFC	Tuned	87.63%	88%	88%
	XGB	Base	82.46%	83%	83%
Post OP		Tuned	83.60%	84%	84%
	RFC with Selected Features (Forward Selection)	Base	96.18%	96%	96%
		Tuned	95.24%	95%	95%
	XGB with Selected Features	Base	82.84%	84%	84%
	(Forward Selection)	Tuned	83.09%	84%	84%

- Initial features: 23
- No. of features that got selected for RFC in Post Op are 10.
- No. of features that got selected for XGB in Post Op are 17.

Recommendation: RFC with 10 features after forward feature selection to predict the LOS target features has 96.18% accuracy as compared to all the other approaches.

Pre – OP Features

Data Cleaning – Feature Selection

Features dropped for Pre - OP - 'Intraop Minutes', 'Scheduled?', 'Location', 'Patient Class'

Imbalanced Dataset

- The total number of rows after performing the cleaning process: 108324
- Number of features selected: 19
- Class [36,60) is 7% of the total number of rows

Balanced Dataset

- Subset the Imbalanced Dataset based on the Target Class with the least occurrence.
- The total number of rows after performing the cleaning process: 30409
- Number of features selected: 19
- Class [36,60) is 25% of the total number of rows

Final Selected Features PreOP:

Numerical Features

- Age at Surgery
- BMI
- Scheduled Room Duration
- Total Scheduled Panel Length
- Total Panel Default Length

Target Feature

LOS 4 Groups

Categorical Features

- Sex
- Ethnicity
- Primary Race
- Surgery Diagnosis Name
- Primary Service
- Anesthesia Type
- ASA Status
- Primary Surgeon ID
- Primary Procedure Name
- Robotic Case?
- Procedure Name
- Performed?
- Procedure Panel
- Panel Primary Surgeon ID

One Hot Encoding:

The process of converting categorical features into binary numerical columns.

One hot encoded categorical features and final dataset shape is (30409, 5831).

Feature Importance PreOP – RFC Classifier

Features	Feature Name	Mean Accuracy
1	Primary Procedure Name	0.674
2	BMI	0.880
3	Scheduled Room Duration	0.915
4	Primary Surgeon ID	0.922
5	Surgery Diagnosis Name	0.926
6	Age at Surgery	0.928
7	Total Panel Default Length	0.9291
8	Primary Service	0.9295
9	ASA Status	0.9300
10	Total Scheduled Panel Length	0.9302
11	Ethnicity	0.9308

The total number features reduced from **19** to **11** in forward feature reduction.

Feature Importance PreOP – RFC Classifier

Removed Features	Feature Name	Mean Accuracy
1	Procedure Name	0.9206
2	Panel Primary ID	0.9276
3	Performed?	0.9286
4	Anesthesia Type	0.9299
5	Primary Race	0.9303
6	Procedure Panel	0.9309

Important Features:

- 1. Primary Procedure Name,
- 2. BMI,
- 3. Scheduled Room Duration,
- 4. Primary Surgeon ID,
- 5. Surgery Diagnosis Name,
- 6. Age,
- 7. Total Panel Default Length.

The total number features reduced from
 19 to 13 in backward feature reduction.

Feature Importance PreOP – XGB Classifier

Features	Feature Name	Mean Accuracy
1	Primary Procedure Name	0.6431
2	Total Panel Default Length	0.705
3	Primary Surgeon ID	0.735
4	Scheduled Rood Duration	0.746
5	Primary Service	0.756
6	BMI	0.764
7	Age at Surgery	0.772
8	Primary Race	0.773
9	Sex	0.7739
10	Surgery Diagnosis Name	0.774
11	ASA Status	0.7763
12	Total Scheduled Panel Length	0.7767
13	Robotic Case?	0.777
14	Anesthesia Type	0.778
15	Procedure Panel	0.779

The total number features reduced from 19 to 15 in forward feature reduction.

Feature Importance PreOP – XGB Classifier

Removed Features	Feature Name	Mean Accuracy
1	Procedure Name	0.777
2	Panel Primary ID	0.779

Important Features:

- 1. Primary Procedure Name,
- Total Panel Default Length,
- 3. Primary Surgeon ID,
- 4. Scheduled Room Duration,
- 5. Primary Service
- 6. *BMI*,
- 7. *Age,*
- 8. Primary Race,
- 9. Sex,
- 10. Surgery Diagnosis Name.

The total number features reduced from
 19 to 17 in forward feature reduction.

Summary of PreOP Experiments:

	Model		Accuracy	Recall	F1 Score
	RFC	Base	89.39%	89%	89%
	RFG	Tuned	89.21%	89%	89%
	VOD	Base	78.49%	78%	78%
Dro OD	XGB	Tuned	78.64%	79%	79%
XGB	RFC with Selected Features	Base	93.29%	93%	93%
	(Forward Selection)	Tuned	89.21%	89%	89%
	XGB with Selected Features	Base	77.72%	78%	78%
	(Forward Selection)	Tuned	77.90%	78%	78%

- Initial features: 19
- No. of features that got selected for RFC in Pre Op are 11.
- No. of features that got selected for XGB in Pre Op are 15.

Recommendation: RFC with 11 features after forward feature selection to predict the LOS target features has 93.29% accuracy as compared to all the other approaches.

Sensitivity Analysis – Numerical Features

Age at Surgery affect the prediction for LOS group who have an age above 20 very minimally

Intraop Minutes affect the prediction for LOS group when the Intraop Minutes is less than 200 minutes.

Important Features after Prediction for LOS 60+ hours:

- Patient Class
- IntraOP Minutes
- Robotic Case
- 4. Primary Service
- Age at Surgery
- Patient Class
- Total Panel Default Length
- Scheduled Room Duration
- 9. BMI
- 10. Primary Procedure Name

Important Features after Prediction for LOS <12 hours:

- Patient Class
- IntraOP Minutes
- Primary Service
- Age at Surgery
- Patient Class
- 6. Total Panel Default Length
- Scheduled Room Duration
- 8. BMI
- 9. Primary Procedure Name
- 10. Location
- 11. Sex

Missing: Robotic Case

Important Features after Prediction for LOS [12,36) hours:

- Patient Class
- IntraOP Minutes
- 3. Primary Service
- 4. Age at Surgery
- Patient Class
- 6. Total Panel Default Length
- 7. Scheduled Room Duration
- 8. BMI
- 9. Primary Procedure Name
- 10. Robotic Case
- 11. Primary Surgeon ID

Missing: Location, Sex

Important Features after Prediction for LOS [36,60) hours:

- 1. Patient Class
- IntraOP Minutes
- Primary Service
- Age at Surgery
- Patient Class
- Total Panel Default Length
- Scheduled Room Duration
- 8. BMI
- 9. Primary Procedure Name
- 10. Location
- 11. Primary Race

Missing: Age at Surgery, Sex

Conclusion

- Random Forest Classifier with 7-11 essential features with Post OP as well as Pre OP provides the best prediction for LOS groups.
- 2. However, if experiments needs to be performed only on Pre OP features, Random Forest Classifier has the most accurate prediction for LOS groups.
- 3. Prediction is affected by the Numerical Features Age at Surgery and Intra OP minutes significantly.
- 4. Tests such as Random State did not change the accuracy of prediction indicating no overfitting and bias within the model.

Future Steps

- 1. Textual Columns instead of using one-hot encoding could be vectorized using transformers such as Clinical Bert preventing the explosion of features.
- 2. Categorical Columns such as Procedure Panel and Primary Service which impacts heavily as seen from SHAP needs to be explored further.
- 3. Accurately predict the actual number of minutes (regression) instead of classification.

Thank You!

THE UNIVERSITY OF TEXAS AT AUSTIN

Operations Research& Industrial Engineering

Appendix

Data Cleaning of Numerical Features:

Outlier Analysis:

- Objective is to identify a threshold for the IQR multiplier to balance outlier handling and data retention.
- Instead of using the standard 1.5 times IQR, we tested multipliers at 0.25 intervals from 1 to 3.
- 2.5 times IQR effectively identified outliers while minimizing data loss.

Fig 1. Box Plot of BMI

Data Cleaning of Numerical Features:

Features	No. of Outliers	Missing Values after Outlier Analysis	Range of Values after Outlier Analysis
BMI	611	25024	10.07 to 52.77
Scheduled Panel Length	420	0	1 to 945 min
Panel Default Length	4300	0	0 to 965 min
In Recovery to Discharge Time Minutes	5026	5330	0 to 16614 min
Intraop Minutes	812	1863	13 to 886 min
Scheduled Room Duration	1352	1610	1 to 940 min

 A total of 12,521 rows were removed after outlier analysis and the range of these features were suitable to fill in missing values.

Data Cleaning of Numerical Features:

Handling Missing Values:

- BMI: Missing Values were replaced by calculating the median within 10 age buckets, ranging from 1 to 100, and then further grouped by sex.
- Scheduled Room Duration: Subset the data by Primary Service and filled missing values with the median value for each subset.
- Intraop Minutes: Subset the data by Panel Service and used the median value to fill in missing entries.
- In Recovery to Discharge Time Minutes: Used absolute values and filled in missing values based on Panel Service.

Data Cleaning of Categorical Features:

Handling Missing Values:

- Ethnicity: Relabeled 'Unknown Ethnicity' and 'Decline to Answer' as 'Unknown'.
- Primary Race: Replaced missing values, 'Declined to Answer,' and 'Unknown' categories with 'Unknown'.
- Anesthesia Type: Filled with 'General' (74.5% Prevalence)
- ASA Status: Filled with 'Severe Systemic Disease' (68.3% Prevalence).
- Patient Class: Missing values belonged to a single category and were filled with Surgery Admit.

Data Cleaning of Categorical Features:

Handling Missing Values:

- Surgery Diagnosis Name: The rows with missing values were grouped by the Primary Surgeon ID and were filled with commonly occurring Surgery Diagnosis Name for that Primary Surgeon ID.
- Primary Procedure Name: Missing Primary Procedure Names were grouped by the Surgery Diagnosis Name. The Most commonly occurring primary procedure name for that surgery Diagnosis Name was then used to fill the missing values.

Feature	Unique Items
Surgery Diagnosis Name	5928
Surgery Diagnosis Code	2498
Primary Procedure Name	1309
Primary Procedure CPT Code	430
Procedure Name	1804
Procedure CPT Code	694

Dropped Features:

Surgery Diagnosis Code, Procedure CPT Code, Primary Procedure CPT Code, Rolled up columns, Estimated Case Duration, 'Height', 'Weight'.

Data Inconsistency:

Categorical Feature - Procedure Panel:

Issue:

Inconsistent numbering of Procedure Panels.

Solution:

- Step 1: If Primary Service matches Panel Service, assign Procedure Panel as 1.
- Step 2: For every unique Panel Service, find the most commonly occurring Procedure Panel Number.
- Step 3: If the Procedure Panel Number is unique for that Panel Service, assign it else assign the next largest Panel Number.

	Before Cleaning					A	After Cleaning	
ID	Primary Service	Procedure Panel	Panel Service		ID	Primary Service	Procedure Panel	Panel Service
359e43a1a3	UROLOGY	1	urology		359e43a1a3	UROLOGY	1	urology
359e43a1a3	UROLOGY	1	urology		359e43a1a3	UROLOGY	1	urology
359e43a1a3	UROLOGY	2	urology		359e43a1a3	UROLOGY	1	urology
359e43a1a3	UROLOGY	2	urology		359e43a1a3	UROLOGY	1	urology
359e43a1a3	UROLOGY	1	surg onc - gastric/hipec	•	359e43a1a3	UROLOGY	2	surg onc - gastric/hipec
359e43a1a3	UROLOGY	3	pls - plastic surgery		359e43a1a3	UROLOGY	3	pls - plastic surgery
359e43a1a3	UROLOGY	3	pls - plastic surgery		359e43a1a3	UROLOGY	3	pls - plastic surgery
359e43a1a3	UROLOGY	2	pls - plastic surgery		359e43a1a3	UROLOGY	3	pls - plastic surgery

Fig 2. Inconsistent Numbering of Procedure Panel for ID: 359e43a1a3

Post Operative:

Classific	cation	Report:			
	р	recision	recall	f1-score	support
	0	0.94	0.97	0.95	7480
	1	0.94	0.98	0.96	10425
	2	0.93	0.87	0.90	5848
	3	0.93	0.73	0.82	1924
accui	racy			0.94	25677
macro	avg	0.93	0.89	0.91	25677
weighted	avg	0.94	0.94	0.93	25677
Accuracy	Score:	0.9361685	555166102		

Fig 1. RFC with unbalanced dataset

Classification Report:							
		precision	recall	f1-score	support		
	0	0.97	0.97	0.97	1925		
	1	0.95	0.98	0.96	1924		
	2	0.96	0.91	0.93	1925		
	3	0.94	0.95	0.95	1924		
accui	racy			0.95	7698		
macro	avg	0.95	0.95	0.95	7698		
weighted	avg	0.95	0.95	0.95	7698		
Accuracy	Score	e: 0.95245518	31644583				

Classification Report: precision recall f1-score support 0.97 0.97 0.97 1925 0.95 0.98 0.96 1924 0.96 0.91 1925 0.93 0.94 0.95 0.95 1924 0.95 7698 accuracy macro avg 0.95 0.95 0.95 7698 weighted avg 0.95 0.95 7698 0.95 Accuracy Score: 0.9524551831644583

Fig 2. RFC with balanced dataset

Classific	cation	Report:			
	p	recision	recall	f1-score	support
					4005
	0	0.98	0.97	0.97	1925
	1	0.97	0.98	0.98	1924
	2	0.96	0.95	0.96	1925
	3	0.95	0.96	0.95	1924
accur	acy			0.96	7698
macro	avg	0.96	0.96	0.96	7698
weighted	avg	0.96	0.96	0.96	7698
Accuracy	Score:	0.96440633	393089114		

Fig 4. Best RFC model for PostOP (Forward Selection)

Classification Report:						
Į	orecision	recall	f1-score	support		
0	0.84	0.94	0.89	7528		
1	0.90	0.97	0.93	10456		
2	0.84	0.75	0.79	5782		
3	0.71	0.37	0.49	1911		
accuracy			0.86	25677		
macro avg	0.83	0.76	0.78	25677		
weighted avg	0.86	0.86	0.86	25677		
Accuracy Score	0.86485960	019784243				

Classificat		Report: recision	recall	f1-score	support
	0	0.87	0.86	0.86	1925
	1	0.88	0.94	0.91	1924
	2	0.83	0.77	0.80	1925
	3	0.77	0.79	0.78	1924
accurac	:y			0.84	7698
macro av	g	0.84	0.84	0.84	7698
weighted av	g	0.84	0.84	0.84	7698
Accuracy Sc	ore:	0.83930891	114055599		

Fig 5. XGB with unbalanced dataset

Fig 6. Hyperparameter Tuned XGB (balanced dataset)

Classification Report:							
		precision	recall	f1-score	support		
	0	0.88	0.86	0.87	1925		
	1	0.88	0.94	0.91	1924		
	2	0.82	0.76	0.79	1925		
	3	0.76	0.79	0.78	1924		
accur	acy			0.84	7698		
macro	avg	0.84	0.84	0.84	7698		
weighted	avg	0.84	0.84	0.84	7698		
Accuracy	Scor	e: 0.8360613	146271759				
· ·			•	•			

Fig 7. XGB with balanced dataset

Pre Operative:

Classification Report:						
01000111		precision	recall	f1-score	support	
	0	0.89	0.93	0.91	5669	
	1	0.92	0.97	0.94	9376	
	2	0.91	0.84	0.87	5100	
	3	0.88	0.61	0.72	1520	
accur	acy			0.91	21665	
macro	avg	0.90	0.84	0.86	21665	
weighted	avg	0.91	0.91	0.90	21665	
Accuracy	Score	: 0.9065312	2716362797			

Fig 8. RFC with unbalanced dataset

Classification Report:						
	precision		recall	f1-score	support	
		0.00	0.00	0.01	1531	
	0	0.92	0.90	0.91	1521	
	1	0.83	0.96	0.89	1521	
	2	0.95	0.83	0.89	1520	
	3	0.88	0.88	0.88	1520	
accur	асу			0.89	6082	
macro	avg	0.90	0.89	0.89	6082	
weighted	avg	0.90	0.89	0.89	6082	
Accuracy	Score:	0.89214074	431765866			

Fig 10. Hyperparameter Tuned RFC (balanced dataset)

Classification Report:							
	precision		recall	f1-score	support		
	_						
	0	0.96	0.93	0.94	1521		
	1	0.92	0.97	0.94	1521		
	2	0.93	0.91	0.92	1520		
	3	0.92	0.92	0.92	1520		
accura	асу			0.93	6082		
macro a	avg	0.93	0.93	0.93	6082		
weighted a	avg	0.93	0.93	0.93	6082		
Accuracy S	Score:	0.93291680	3682999				

Fig 9. RFC with balanced dataset

Classification Report:						
	р	recision	recall	f1-score	support	
	0	0.96	0.93	0.94	1521	
	1	0.92	0.97	0.94	1521	
	2	0.93	0.91	0.92	1520	
	3	0.92	0.92	0.92	1520	
accui	racy			0.93	6082	
macro	avg	0.93	0.93	0.93	6082	
weighted	avg	0.93	0.93	0.93	6082	
Accuracy	Score:	0.93291680	33682999			
	_			•		

Fig 11. Best RFC model for PreOP (Forward Selection)

Classification Report:						
	p	recision	recall	f1-score	support	
	0	0.79	0.89	0.84	5669	
	1	0.87	0.95	0.91	9376	
	2	0.84	0.72	0.78	5100	
	3	0.68	0.29	0.41	1520	
accui	racy			0.84	21665	
macro	avg	0.80	0.71	0.73	21665	
weighted	avg	0.83	0.84	0.82	21665	
Accuracy	Score:	0.83544888	306831295			

Classification Report:							
	р	recision	recall	f1-score	support		
	0	0.83	0.78	0.80	1558		
	1	0.79	0.91	0.85	1499		
	2	0.78	0.72	0.75	1488		
	3	0.74	0.74	0.74	1537		
accui	racy			0.79	6082		
macro	avg	0.79	0.79	0.79	6082		
weighted	avg	0.79	0.79	0.79	6082		
Accuracy	Score:	0.78641894	111377837				

Fig 12. XGB with unbalanced dataset

Fig 13. XGB with balanced dataset

Classification Report:							
	precision		recall	f1-score	support		
	0	0.82	0.78	0.80	1558		
	1	0.78	0.90	0.84	1499		
	2	0.79	0.71	0.74	1488		
	3	0.73	0.73	0.73	1537		
accur	racy			0.78	6082		
macro	avg	0.78	0.78	0.78	6082		
weighted	avg	0.78	0.78	0.78	6082		
Accuracy	Score:	0.77902005	591910555				

Fig 14. Hyperparameter Tuned XGB (balanced dataset)