

Semester I Examinations 2023-24

Course Instance Code(s) 4BS2, 4BMS2, 4FM2, 1OA2

Examinations 4th Science

Module Codes MA490

Module Measure Theory

External Examiner(s) Prof C. Roney-Dougal

Internal Examiner(s) Dr T. Rossmann

*Dr James Cruickshank

Duration 2 hours

No. of Pages 3 pages (including this cover page)

Subject Mathematics

Instructions Attempt ALL questions.

Requirements

Requirements			
	Release in exam venue		Yes
	MCQ answer aheet	No	
	Handout	No	
	Formula and Tables*		Yes
	Cambridge Tables 2nd Edition	No	
	Other materials	No	
	Graphic material in colour	No	

Q1 (40%) Answer five of the following. (8% each)

- (a) Let $X = \{a, b, c, d\}$. Write down all the subsets of X that are in the algebra generated by $\{\{a\}, \{a, b\}\}$.
- (b) In Bernoulli space let E_n be the event that the nth term of the sequence is H. Write down a formula, in terms of the events E_n , for the event that HTH appears infinitely often.
- (c) For each integer $n\geqslant 1$, let A_n be the interval $\left(\frac{(-1)^n}{n},2+\frac{1}{n}\right)$. Calculate $\liminf A_n$ and $\limsup A_n$.
- (d) Let $A = (\mathbb{Q} \cap [0,1]) \cup ([2,3] \cap \mathbb{Q}^c)$. Compute the Lebesgue measure of A. Give a brief justification of each step of you computation.
- (e) Define $f:[0,1]\to\mathbb{R}$ by setting f(x)=1 if x is irrational and f(x)=2x+1 if x is rational. Show that f is a measurable function with respect to the Borel σ -algebra on \mathbb{R} .
- (f) Evaluate

$$\sum_{n=0}^{\infty} \int_{0}^{1/2} x^{n} dx$$

and justify each step of the calculation.

(g) Let

$$f_n(x) = \frac{1}{1 + (x - n)^2}.$$

Show that this sequence of functions converges pointwise but not uniformly on \mathbb{R} .

- (h) For $n = 1, 2, 3, \cdots$ let $f_n(x) = x^n$. Prove that the sequence (f_n) converges almost uniformly with respect to the Lebesgue measure on the interval [0, 1].
- (i) Let

$$f = \sum_{n=1}^{\infty} (-1)^n \frac{1}{\sqrt{n}} \chi_{[n,n+1)},$$

where χ_A denotes the characteristic function of a subset $A \subset X$. Prove that f is not integrable with respect to Lebesgue measure on \mathbb{R} .

(j) Does $(0.12)_3$ belong to the Cantor set? Does $(0.21)_3$ belong to the Cantor set? Briefly explain your answers with reference to an appropriate definition of the Cantor set.

Q2 (20%) (a) Define the following terms: (2% each)

- (i) a σ-algebra.
- (ii) an additive function.
- (iii) a measure.
- (iv) the Borel σ -algebra.
- (b) (6%) Suppose that (X, \mathcal{A}, μ) is a measure space and let (A_n) be an increasing sequence of sets in \mathcal{A} . Prove that

$$\mu\left(\bigcup_{n=1}^{\infty}A_{n}\right)=\lim_{n\to\infty}\mu(A_{n}).$$

- (c) (6%) In Bernoulli space let $E_n = \{\omega : \omega_n = H\}$ and let $A_n = E_n^c \cap E_{n+1} \cap E_{n+2}$. Calculate $P(\limsup A_n)$. State clearly any theorem or lemma that you use without proof in your calculation.
- **Q3** (20%) Let X be a set and let \mathcal{A} be a σ -algebra of subsets of X.
 - (a) (3%) Define what it means for a function $f: X \to \mathbb{R}$ to be *measurable* with respect to A.
 - (b) (9%) Suppose that f is a measurable functions on X. Prove that f^2 is also measurable. Hence, or otherwise, prove that if f, g are both measurable functions on X then fg is a measurable function on X.
 - You can assume without proof that the sum of two measurable functions is measurable and that any constant multiple of a measurable function is measurable.
 - (c) (8%) Give an example, with proof, of a sequence of functions f_n on the interval [0,1] such that f_n is continuous for all n, $f_n \to 0$ almost everywhere with respect to the Lebesgue measure, but f_n does not converge pointwise to the zero function.
- **Q4 (20%)** Let (X, \mathcal{A}, μ) be a complete measure space.
 - (a) **(6%)** Define the *integral of a measurable simple function* on X. Define the *integral of a nonnegative measurable function* $f: X \to \mathbb{R}$. What does it mean to say that a measurable function $f: X \to \mathbb{R}$ is *integrable*?
 - (b) (7%) Let f be a nonnegative measurable function on X. Using the definitions from part (a), prove that $\int f d\mu = 0$ if and only if f = 0 almost everywhere.
 - (c) (7%) State two different convergence theorems that allow term by term integration for a sequence or a sequence of integrable functions. Give an example of a sequence or series to which at least one of these theorems can be applied.