Matemáticas Computacionales Práctica 3: Método de Bisección

Profesor: Ángel Isabel Moreno Saucedo Alumno: Paola Lizbeth Vázquez Leal Semestre Febrero - Junio 2021

Práctica 3

1. Introducción

En esta actividad se busca encontrar la cantidad de iteraciones que realiza el programa para encontrar los ceros de las funciones en base al método de bisección.

2. Método de bisección.

Se considera uno de los métodos más sencillos al momento de resolver ecuaciones de una variable. Este metdo trata de los valores intermedios, donde establece que toda función confinua en f dentro de un intervalo cerrado [a,b] toma todos los valores que se encuentran en f(a) y f(b).

Si f(a) y f(b) son opuestos (por los signos) el valor cero se convierte en un valor intermedio entre estos dos, por lo que se puede decir que existe un x estrella (\mathbf{x}^*) en ese intervalo que cumple lo siguiente: $\mathbf{f}(\mathbf{x}^*) = \mathbf{0}$. Con ello se puede asegurar la existencia de al menos una solución a la función dada.

El metodo se aplica de la siguiente manera: suponer que dentro del intervalo [a, b] hay un cero (raíz) de f. se calcula el punto medio con la siguiente formula:

$$m = \frac{(a+b)}{2} \tag{1}$$

Seguido de obtener nuestro punto medio podemos calcular f(m), si esta funcion es igual a 0 (f(m) = 0) se puede decir que se ha encontrado la solucion, en caso de no ser así se corrobora que f(m) tenga signo opuesto a f(a). Asi se puede redefinir el intervalo como [a, m] o [m, b] según sea el caso. Seguido se vuelve a emplear el mismo meétodo, encerrando la solucion en un intervalo más pequeño hasta obtener el esperado. [2]

[1] A continuación se puede apreciar el método explicado.

El error de estimación: El error exacto en el k-ésimo paso es $|\mathbf{m_k} - \mathbf{x}^*|$. Geométricamente se puede ver que esto es menos que la mitad del intervalo $[a_k, b_k]$, es decir

$$|\mathbf{m}_{\mathbf{k}} - \mathbf{x}^*| \le \frac{b_k - a_k}{2} = \frac{b - a}{2^k} \tag{2}$$

Figura 1: Método de solución para la bisección.

Figura 2: Estimación de error.

Figura 3: Su cero se encuentra en [-0.2, 0.1] es approx: 3.814697e-07 con error = 5.722046e-07

3. Funciones

3.1. Función 1

 $\mathbf{x}^3 = \mathbf{0}$ Usando bisección con el intervalo [-0.2, 0.1]. La tolerancia dada para esta funcion fue de 0.000001 por lo que la función necesito de 18 iteraciones para encontrar los ceros dentro de el intervalo dado. [3]

	Función 1		
a	b	m	Error est.
-0.0500000	0.1000000	-0.0500000	0.0750000
-0.0500000	0.0250000	0.0250000	0.0375000
-0.0125000	0.0250000	-0.0125000	0.0187500
-0.0125000	0.0062500	0.0062500	0.0093750
-0.0031250	0.0062500	-0.0031250	0.0046875
-0.0031250	0.0015625	0.0015625	0.0023437
-0.0007812	0.0015625	-0.0007812	0.0011719
-0.0007812	0.0003906	0.0003906	0.0005859
-0.0001953	0.0003906	-0.0001953	0.0002930
-0.0001953	0.0000977	0.0000977	0.0001465
-0.0000488	0.0000977	-0.0000488	0.0000732
-0.0000488	0.0000244	0.0000244	0.0000366
-0.0000122	0.0000244	-0.0000122	0.0000183
-0.0000122	0.0000061	0.0000061	0.0000092
-0.0000031	0.0000061	-0.0000031	0.0000046
-0.0000031	0.0000015	0.0000015	0.0000023
-0.0000008	0.0000015	-0.0000008	0.0000011
-0.0000008	0.0000004	0.0000004	0.0000006

Figura 4: Su cero se encuentra en en [17 , 22.2] es approx: 17.84636 con error $\mathbf{i} = 6.198883e-07$

3.2. Función 2

 $f(x) = x^5 - 100 * x^4 + 3995 * x^3 - 79700 * x^2 + 794004 * x - 3160075$ usando bisección con [17, 22.2]. La tolerancia dada para esta funcion fue de 0,000001 por lo que la función necesito de 22 iteraciones para encontrar los ceros dentro de el intervalo dado. [4]

	Función 2		
a	b	m	Error est.
17.0000000	19.6000000	19.6000000	1.3000000
17.0000000	18.3000000	18.3000000	0.6500000
17.6500000	18.3000000	17.6500000	0.3250000
17.6500000	17.9750000	17.9750000	0.1625000
17.8125000	17.9750000	17.8125000	0.0812500
17.8125000	17.8937500	17.8937500	0.0406250
17.8125000	17.8531250	17.8531250	0.0203125
17.8328125	17.8531250	17.8328125	0.0101562
17.8429687	17.8531250	17.8429687	0.0050781
17.8429687	17.8480469	17.8480469	0.0025391
17.8455078	17.8480469	17.8455078	0.0012695
17.8455078	17.8467773	17.8467773	0.0006348
17.8461426	17.8467773	17.8461426	0.0003174
17.8461426	17.8464600	17.8464600	0.0001587
17.8463013	17.8464600	17.8463013	0.0000793
17.8463013	17.8463806	17.8463806	0.0000397
17.8463409	17.8463806	17.8463409	0.0000198
17.8463608	17.8463806	17.8463608	0.0000099
17.8463608	17.8463707	17.8463707	0.0000050
17.8463608	17.8463657	17.8463657	0.0000025
17.8463633	17.8463657	17.8463633	0.0000012
17.8463645	17.8463657	17.8463645	0.0000006

Figura 5: La raíz de la función $\mathbf{x^3} - \mathbf{2x} - \mathbf{5}$ es 2.094564

3.3. Función 3

 $\mathbf{x}^3 - \mathbf{2} * \mathbf{x} - \mathbf{5} = \mathbf{0}$ Esta función solo tiene una raíz en el punto [2,094564,0] Dependiendo el intervalo que se elija para encontrar las raices es la cantidad de iteraciones. [5]

Referencias

- [1] Paola Vázquez. Repositorio de Github. https://github.com/Li-vzz/MatematicasComputacionales. 2021.
- [2] Mora F. Walter. Introducción a los métodos numéricos. implementaciones en r, 2015.