

設定軟體定義架構 的 WLAN 測試 系統

Overview

目前已難以想像沒有無線區域網路 (WLAN) 的生 活會是什麼樣子。事 實上,WLAN 或 Wi-Fi 技術更可延伸多款產 品,如存取點 (Access point)、路由 器 (Router), 與行動電話。由於 WLAN 裝置的市場正不斷成長,因此 更有許多人投入 WLAN 量測工程 師的行列。此份技術 文件將說明 WLAN 測試選項的基本概念,並概述 實體層 (Physical layer)。亦將 探討應如何使用軟體 定義的 RF 量測 系統,以快速並精確執行完整的 WLAN 量測作 業。在看完此份技術 文件之後,對 WLAN 測試不甚 熟悉的工程師,亦可了解基本的量測類 型。

WLAN 實體層 (Physical Layer) 介紹

在 1999 年,工作團隊設定了 802.11a 與 802.11 b 標準而為 WLAN。若將 IEEE 802.11a 標 準設定為 5 GHz 的未授權工 業、科學,與醫療 (ISM) 頻帶, 則可達到最高 54 Mb/s 傳 輸率。相對來說, IEEE 802.11b 標準則可於 2.4 GHz ISM 頻 帶上達到最高 11 Mb/s 資 料傳輸率。在 2003 年發表 的 IEEE 802.11g,亦 可於 2.4 GHz 的 ISM 頻帶達到最高 54 Mb/s 的資料傳 輸率。IEEE 802.11n 為 目前最新的版本,其中整合如多重輸入/ 輸出 (MIMO) 與並 行 (Concurrent) 通道的功能,可於 2.4 與 5 GHz 頻帶中達 到 300 Mb/s 的資料傳 輸率。

由 WLAN 所使用 的 2 組基本傳輸 架構,分別為直接序 列展頻 (Direct- sequence spread spectrum, DSSS) 與正交 頻多分工 (Orthogonal frequency division multiplexing, OFDM)。此外, 其內在的調變架構可 包含 CCK,到 如 BPSK 與 64-QAM 的正 交架構。表 1 即 列出使用特定傳輸架 構與調變類型的標 準。

	Year Introduced	Frequency Band (GHz)	Transmit Schemes	Modulation Types
802.11a	1999	5	DSSS/OFDM	BPSK, QPSK, 16-QAM, 64-QAM
802.11b	1999	2.4	DSSS	ССК
802.11g	2003	2.4	DSSS/OFDM	CCK, BPSK, QPSK, 16-QAM, 64-QAM
802.11n	2009 (est.)	2.4, 5	MIMO-OFDM	BPSK, QPSK, 16-QAM, 64-QAM

表 1. 多個 802.11 版本 所使用的傳輸架構與 調變類型

與 WiMAX (IEEE 802.16 d/e) 與 3GPP 長期演進 技術 (Long Term Evolution, LTE) 的 OFDM 架構標準不同, WLAN 的 OFDM 訊號 中,所有子載波均使 用相同的調變架構。 因此對 IEEE 802.11 a/g 訊號而言,調變架構將可直接影 響最大傳輸率,與特 定訊號的編碼速率。 表 2 說明了此關 係。

Data Rate (Mb/s)	Modulation Scheme	Encoding Rate	Data Bits per OFDM Symbol	Burst Duration for 1024 Bits (μs)
6	BPSK	1/2	24	1434
9	BPSK	%	36	962
12	QPSK	1/2	48	726
18	QPSK	%	72	490
24	16-QAM	1/2	96	375
36	16-QAM	¾	144	254
48	64-QAM	3/1	192	198
54	64-QAM	%	216	176

表 2. 資料傳輸率、 編碼速率,與叢集間 隔 (Burst Duration) 之間的關係

在表 2 中如 54 Mb/s 的 高資料傳輸率,則必 須使用如 64- QAM 的高階調變 架構。更進一步來 說,1024 資料 位元的標準叢集間 隔,將大幅高於低階 的調變架構。當要提 升測試系統的量測速 度時,必須先了解較 長叢集間隔與較長量 測時間的關係。一般 來說,當於單一叢集 上執行錯誤向量強 度 (EVM) 量 測時,若能將儀器設 定僅擷取所需的量測 資料,即可加快量測 速度。舉例來說,當 量測 64- QAM 叢集時,若 將擷取時間長度設定 為 200 μs, 則其量測速度可高 於 10 ms 或 以上的時間長度。

RF 虛擬儀控概述

只要透過 NI 軟 體定義的 WLAN 測試作 業,即可選擇多款儀 器測試 WLAN 裝置。為了說明傳統 儀控與虛擬儀控之間 的差異,此篇技術文 件將概述虛擬 PXI 量測系統的 架構。

PXI 儀器整合高 效能的多核心控制 器、高速 PCI/PCI Express 資 料匯流排,與最佳化 的量測運算式,可達

到領先業界的量測速 度。 Software used for WLAN 量測作業 所使用的軟體即為 NI WLAN 量 測套餐 (Measurement Suite),其中 包含 NI WLAN 分析 (Analysis) 與 WLAN 產 生 (Generation) 工具組。推薦使用 的 NI 硬體則 有 NI PXIe- 5663 向量訊號 分析器,與 NI PXIe- 5673 向量訊號 產生器。NI PXIe- 5663 可進行 $10~MHz\sim6.6~GHz$ 的 訊號分析,並可達最 高 50~MHz 瞬間頻寬。NI PXIe- 5673 可產生 $85~MHz\sim6.6~GHz$ 的 訊號,並達到最高 100~MHz 瞬間頻寬。其中任 1~組儀器均可搭配 其他產生器或分析 器,以執行相位同 調 (Phase- coherent) 量測作業。圖 1~則為常見的 WLAN 裝置測試 系統設定,並具備向 量訊號產生器與向量 訊號分析器。

圖 1. 進行 WLAN 量測作業 的 PXI 系統

軟體定義的儀器,特別適用於自動化測試應用。從架構上來說,PXI 模組化儀器與傳統儀器的主要差異,即為其處理核心。雖然此 2 組系統使用多個相似的元件,但其主要區別在於 PXI 系統可使用高效能的多核心中央處理單位 (CPU)。圖 2 即為具備多項相同核心元件的傳統與 PXI 儀器,包含記憶體、高動態範圍的類比數位轉化器 (ADC),與高效能 RF 前端。

Traditional Instrument

PXI RF Instrument

圖 2. 使用者定 義的 CPU 為 PXI RF 儀器 的必要元件。

PXI 模組化儀器 的多核心 CPU, 可達到極佳的訊號處 理功能。因此,與傳 統儀器相較,多款 PXI 架構量測系 統的速度已大幅提 升。一般來說,由英 特爾 (Intel) 與 超微 (AMD) 的晶片製造商,其 CPU 效能均遵循 著摩爾定律 (Moore's law) 持續成 長。因此,當製造商 發表新款處理器時, 使用者僅需升級 PXI 系統的控制 器即可。針對現有的 測試系統,僅需花費 部分元件的成本,即 可大幅提升量測速 度。

軟體定義 儀控的第二個優勢, 即是可於單一硬體平 台上測試多種無線標 準。此項優點又特別 適用於多種標準的消 費性電子應用,或系 統單晶片 (System on a chip, SOC) 的裝置。 在過去,受測裝置若 包含 GPS 接收 器、WLAN 無線 電,與 FM 收音 機,則工程師必須購 買數款專屬儀器。而 透過軟體定義的儀控 方式,僅需整合常見 硬體並使用專屬的軟 體工具組,即可測試 所有標準。圖 3 所示即為此概念。

圖 3. 軟體定義 的儀器架構

在圖 3 中,可使用常 見的 RF 前端 (產生器或分析器均 可) 搭配 Windows- based CPU,即可建立軟體定義的儀器。透 過 NI 的軟體定 義 RF 儀器,即 可測試 WLAN、 GPS、 GSM/EDGE/WCDMA、WiMAXTM、 BluetoothTM、 DVB- T/ATSC/ISDB- T、 FM/RDS/IBOC ,與許多無線標準。

NI WLAN 量 測套餐 (Measurement Suite) 介紹

現有 PXI 儀控 的軟體定義特性中,如 NI WLAN 量測套 餐 (Measurement Suite) 與相 關軟體的組合,均為量測系統的必要元件。WLAN 量測 套餐包含 NI WLAN 產生 (Generation) 工具組與 NI WLAN 分析 (Analysis) 工具組。此 2 款 工具組均包含 LabVIEW 的 API、 LabWindows™/CVI,與 ANSI C/C++;且均可 搭配 PXI RF 向量訊號產生 器與分析器進行作 業。針對高階作業, WLAN 產生 (Generation) 工具組可用於建立 IEEE 802.11 a/b/g 訊號。 WLAN 分析 (Analysis) 工具組,則可透過向量訊號分析器所擷取 的訊號,進一步提供量測結果。圖 4 則顯示此量測方式的 程式圖。

圖 4. WLAN 測試系統 的架構

不論是使用屬性節點 (Property node) 或程式 設計用 API,均可設定如特殊標準、 資料傳輸率、叢集間 隔 (Burst interval), 與載波頻率。圖 5 與圖 6 即是 透過屬性節點或程式 設計用 API,以 調整常見設定。

圖 5. 以 LabVIEW 屬 性節點 (Property Node) 設定 WLAN 量測作業

圖 6. 以 LabVIEW 程 式設計用 API 設定 WLAN 量 測作業

圖 6a. 以 LabWindows™/CVI 程式設計 用 API 設定 WLAN 量測作業

其入門用 範例程式,是專為自 動化量測應用所設 計。若要進行更多互 動式量測作業,則亦 可使用如圖 7 所示的近似 LabVIEW 或 LabWindows™/CVI 展示面 板。

圖 7. WLAN 量測作業 的 LabVIEW 展 示面板

圖 7 為頻域 (Frequency domain) 中 的基本 802.11g 頻 譜遮罩。請注意,下 列章節敘述的所有量 測作業,均是透過此 範例而執行。

常見的 WLAN 量測作業

當進行任何 WLAN 元件或無 線電的特性描述作 業 (Characterization) 時,所需的特定量測 往往取決於該受測裝 置。舉例來說,若要 了解功率放大器 (PA) 的特性參 數,則可能必須整 合 EVM 與三階 交互調變 (IM3) 量測, 以進行非線性化的特 性描述作業。然而, 由於載波偏移量測屬 於 RF 訊號產生 器的功能,因此其重 要性較低。表 3 則列出某些最常見 的 WLAN 量測 作業。如表 3 所 示,若下列章節提及 相關附屬量測,則可 使用 WLAN 分 析 (Analysis) 工具組執行多種量測 作業。

Modulation Measurements	Power Measurements	Frequency Measurements
Error vector magnitude (EVM)	Power versus time	Spectral mask margin
IQ gain imbalance	Gated power (peak and average)	Spectral flatness margin
Quadrature skew	Transmit power (peak and average)	Spectrum flatness
DC offset	Power ramp-up time	Carrier frequency offset
Sample clock offset	Power ramp-down time	Carrier suppression
		Occupied bandwidth (OBW)

表 3. 以 WLAN 分析 (Analysis) 工具組所執行的量測 作業

傳輸功率 (Transmit Power)

WLAN 量測作業 的重點之一,即為傳 輸功率 (Transmit power)。目前 有多種方法可量測功率,且不同的功率量 測作業均需要不同 的 WLAN 標 準。當要進行 802.11 a/g 傳輸器的特 性描述時, WLAN 量測系統 可同時產生峰值功率 與平均功率的結果。 針對 802.11 b 裝置,常見的量 測系統亦可提供功率的「波升 (Ramp- up)」與「波降 (Ramp- down)」次數。 請注意,雖然峰值功 率計為功率量測的有效工具,但若要量測 訊號叢集的平均功 率,仍是以 RF 向量訊號分析器的速 度最快。而當傳輸器是設定為輸出連續調 變載波時,則平均功 率計則僅可量測功 率。

若以 RF 向量訊號分析 器量測功率時,則將 透過所觸發的叢集計 算其結果。如此一 來,即可透過完整叢集或叢集的特定部 分,測得平均功率。 透過 WLAN 分 析 (Analysis) 工具組,即可設定閘 控功率 (Gated power) 量 測;以使用者定義的 開始與停止時間為基 準,量測其中的平均 功率。此外如圖 8 所示,亦可使用工具組回傳 IEEE 802.11 a/g 訊號的功率 對時間軌跡。

圖 8. 功率對時間 (Power- versus- Time) 軌跡中 的訓練序列 (Training Sequence)、 通道估測 (Channel Estimation), 與資料。

圖 8 中的功率對時 間軌跡 (Power- versus- time trace) 常做 為除錯工具,可確保 叢集的各個部分 – 從訓練序列直 到 OFDM 符 碼 – 均確實進行 傳輸作業。

錯誤向量強度 (Error Vector Magnitude, EVM)

由於 EVM 可找 出多種減損 (Impairment) 所造成的錯誤,包含 正交歪曲 (Quadrature skew)、IQ 增益失衡、相位雜 訊,與非線性失真, 因此為最重要的量測 作業之一。針對調變 過的訊號,EVM 將比較訊號預期與實 際的相位/強度。如 圖 9 所示, NI WLAN 分 析 (Analysis) 工具組,即將錯誤向 量 |E| 乘以強 度向量 |V|,以 得出該值。

圖 9. EVM Measurement 的圖形表示式

一般來說,使用者可 將 EVM 指定為 百分比 (%) 或 分貝 (dB) 為 單位。然而, IEEE 802.11 a/g 量測作業 的 EVM 是以分 貝為單位: IEEE 802.11b 的 EVM 是以百 分比為單位。等式 1 則說明轉換此 2 種單位的方法。

$$EVM_{dB} = 20 \log(100 \times EVM_{\%})$$

等式 1. 分貝與百分比 轉換

舉例來 說,1% 的 EVM 等於 -40 dB;而 5% 的 EVM 等於 -26 dB。當量測完整叢 集的 EVM 時, 儀器往往呈現均方 根 (RMS) 的 EVM 結果。 針對 OFDM 訊 號,將跨所有子載波 與符碼得出 EVM 並做為 RMS 結果。針 對 DSSS 訊 號,則是跨所有切 片 (Chip) 得出 RMS。

在許多範 例中,幾乎可透過星 座圖 (Constellation plot) 檢視所 有的 EVM 效 能。星座圖可顯示各個符碼的相位與強 度,讓使用者找出特 定的相位差減損 (Quadrature impairment)。 圖 10 即為 64-QAM 的星座圖。

圖 10. EVM 量測作業的 圖形呈現

如圖 10 所示,-46 dB 的 EVM 等於 0.5%。圖 10 是使用 NI PXIe- 5673 RF 向 量訊號產生器與 NI PXIe- 5663 RF 向 量訊號分析器,並設 定為迴送 (Loopback) 模式。此 2 組儀 器均設定為 2.412 GHz 中央頻率,與 -10 dBm 的 RF 功率強度。因此在這 些設定之下,儀器均 達相同的 -46 dB EVM。另請 注意,圖 10 中 的 WLAN 分 析 (Analysis) 工具組可平行執行所 有的時域 (Time- domain) 量 測。透過複合式的量 測作業,即可得出 EVM、載波偏移,與載波洩漏;還有 如 IQ 增益失衡 與相位差偏移的相位 差減損現象。

頻譜遮罩 (Spectrum Mask) 量測

頻譜遮罩 (Spectrum mask) 可進行 傳輸器的非線性特性 描述。一般來說,頻 譜圖可做為診斷工具,以確定分析中的 訊號是否產生失真現 象。由於頻譜遮罩量 測屬於 Pass/Fail 的測試,因此其結果即構成「頻譜遮罩邊 際」;此「邊際」是 以 dB 為單位,即是所測得實際訊號 與遮罩之間的功率差 異 (Power delta)。圖 11 即為 802.11b 訊 號的頻譜遮罩量測作 業。

圖 11.802.11b 訊 號的頻譜遮罩

IEEE 802.11b 訊 號與 IEEE 802.11 a/g 訊號實際使 用不同的頻譜遮罩。 圖 12 即為 OFDM 802.11 a/g 訊號的遮 罩。

圖 12. Spectrum Mask of an 802.11 a/g 訊號的

請注意,頻譜遮罩亦可描述 多種的訊號特性。舉 例來說,傳輸器的非 線性特性,則可讓訊 號邊帶 (Sideband) 達到遮罩的限度。此 外,未妥善設定的邊 帶訊號,亦可於 DFDM 訊號上構 成多餘的邊帶。

結論

如此篇技術文件所述,使用者可透過軟體 工具組設定多種 WLAN 量測作 業。事實上, WLAN 量測套 餐 (Measurement Suite) 即針 對 IEEE 802.11 a/b/g 量測作 業,提供了產生與分 析功能。透過如 LabVIEW、LabWindows/CVI, 甚至 .NET 的 程式設計環境,即可 設定 PXI RF 向量訊號產生 器與分析器,以迅速 並輕鬆測試 WLAN 產品。雖 然這些軟體定義的儀 器,可測試 WLAN 與其他多 款無線標準,但此方式的主要優點之一即 是其測試速度。參閱提升 WLAN 測 試系統的量測速度,以了解應如何設 定 WLAN 測試系統,以達最佳的素 度、精確度,與可重 複性。

資源

了解 WLAN 測 試系統的其他詳情

觀看預先設定 WLAN 測試系統 的規格與報價

「WiMAX」、「Mobile WiMAX」、「Fixed WiMAX」,與「WiMAX Forum」均為 WiMAX Forum 的註冊標誌。

「Bluetooth」 為 Bluetooth SIG 的註冊標誌

LabWindows 商標為 Microsoft 公司授權使用。 Windows 為 Micorsoft 微軟公司於美國與其 他國家的註冊商標。