Towards Expressive Tail Node Embeddings for Link Prediction on Networks

Yijun Ma Renmin University of China

2022.08

Background

- Advancing graph embedding techniques has shown promising results in various downstream tasks, such as node classification, link prediction and recommendation
- Despite all the progress we've made, there's some recent work revealing that low degree nodes are suffering higher loss and lower predictive accuracy, which causes a degree-related fairness concern, or denoted as **low degree bias**

Reference: Jian Kang, et.al. RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. In WWW 2022

Background

- Highly qualified node embedding learning in graph needs rich and high-quality neighborhood information
- Due to the long-tailed degree distribution in real-world networks, tail nodes
 accounting for vast majority of nodes usually have few and even noisy links, which
 will lead to partially inferior performance if all the nodes are treated equally

Reference: Wenqing Zheng, et.al. Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods. In ICLR 2022

Background

- Existing strategy
 - Debias with heterogeneous information
 - Debias without heterogeneous information: Two-sided bias
 - Sampling-level debias
 - Model-level debias (Mainly discussed today)

Reference:

Sadamori Kojaku, et.al. Residual2Vec: Debiasing graph embedding with random graphs. In NIPS 2021

Outline

- Mainstream strategy: Train a competitive base model on head nodes first, then generalize it to tail nodes
 - Head nodes have abundant structural information, thus can encode less error in the base model
- Different methods adopt different generalization strategy
 - Self-supervised learning based
 - B. Hao, et.al. *Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.* WSDM 2021
 - Meta-learning based
 - Z. Liu, et.al. Towards Locality-Aware Meta-Learning of Tail Node Embeddings on Networks.
 CIKM 2020
 - Missing neighborhood imputation
 - Z. Liu, et.al. Tail-GNN: Tail-Node Graph Neural Networks. KDD 2021
 - Knowledge distillation
 - W. Zheng, et.al. Cold Brew: Distilling Graph Node Representations with Incomplete or Missing Neighborhoods. ICLR 2022

Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation

Bowen Hao Renmin University of China jeremyhao@ruc.edu.cn Jing Zhang*
Renmin University of China zhang-jing@ruc.edu.cn

Hongzhi Yin
The University of Queensland
h.yin1@uq.edu.au

Cuiping Li Renmin University of China licuiping@ruc.edu.cn Hong Chen Renmin University of China chong@ruc.edu.cn

WSDM 2021

- Intuition
 - Despite advancing GNN models can incorporate higher-order collaborative signal to alleviate cold-start problem, they don't explicitly optimize the tail(cold-start) users/items or deal with cold-start neighbors
 - Existing work, such as FastGCN and GraphSAGE, tend to do neighbor filtering randomly
- Motivation & Contribution
 - How to learn more accurate embeddings for cold-start users/items by GNN?
 - A reconstruction-based pre-training GNN model is proposed to learn high-quality embeddings for cold-start users/items
 - How to explicitly deal with high-order cold-start neighbors when performing graph convolution?
 - A **meta aggregator** and an MDP-based **neighbor sampler** are proposed to enhance aggregation ability for each graph convolution step

- Basic pre-training GNN model
 - Pretext task: reconstruct the cold-start user/item embeddings
 - Training data: head nodes with abundant interactions
 - Ground truth: NCF embeddings learned upon full observed interactions
 - Synthetic cold-start users/items generation: Randomly sample K neighbors in each layer

Pre-train the GNN model for reconstructing embeddings

Fine-tune the GNN model for recommendation

- Meta aggregator
 - Cold-start neighbors will harm the embedding quality due to their inaccuracy
 - A self-attention based meta-learner g is designed to learn an additional embedding for each node based on first-order neighbors only
 - Pre-training GNN f is designed to deal with cold-start target nodes, while g is designed for enhancing representation of cold-start neighbors
 - · Meta aggregator is an extension of pre-training GNN model

Pre-train the GNN model for reconstructing embeddings

Fine-tune the GNN model for recommendation

- Adaptive neighbor sampler
 - Neighbor sampling as Markov Decision Process (MDP)
 - An adaptive sampling strategy can be learned based on feedbacks of pre-training GNN model
 - ullet Neighbor sampler can be formulated as a L-1 MDP subtasks, where l_{th} subtask indicates sampling l-order neighbors
 - All the first-order neighbors are kept for a complete user profile, which means that the sampling will be conducted from second-order to L-order neighbors
 - The overall process will finish after the I-th subtask deletes all the neighbors or the L-th subtask is finished
 - No assumption of what kind of neighbors are useful is made

- Adaptive neighbor sampler
 - Task formulation
 - State s_t^l : For the t-th l-order neighbor to be determined, state feature is defined as the cosine similarity between its initial embedding and target user u's initial embedding, and the element-wise product between its initial embedding of formerly selected neighbor by the l-1-th subtask and the average embedding of all the formerly selected neighbors, respectively
 - Action a_t^l : For the t-th l-order neighbor to be determined, a_t^l is defined as a binary value to represent whether to sample the neighbor or not

- Adaptive neighbor sampler
 - Task formulation
 - Reward: Indicate whether the performed actions are reasonable or not, which is reflected by performance difference

$$R(a_t^l, \mathbf{s}_t^l) = \begin{cases} \cos(\hat{\mathbf{h}}_u^L, \mathbf{h}_u) - \cos(\mathbf{h}_u^L, \mathbf{h}_u) & \text{if } t = |\mathcal{N}^{l'}(u)| \land l = l'; \\ 0 & \text{otherwise,} \end{cases}$$

• Objective function: Monto-carlo policy gradient

$$\sum_{\tau} P(\tau; \Theta_s) R(\tau)$$

$$\nabla_{\Theta_s} = \frac{1}{M} \sum_{m=1}^{M} \sum_{l=1}^{l'} \sum_{t=1}^{|\mathcal{N}^l(u)|} \nabla_{\Theta_s} \log P(a_t^{m,l} | \mathbf{s}_t^{m,l}, \Theta_s^l) R(a_t^{m,l}, \mathbf{s}_t^{m,l}),$$

Algorithm 1: The Joint Training Process.

```
Input: Train_T = \{(u_k, i_k)\}, the ground truth embeddings
              \{(\mathbf{h}_u, \mathbf{h}_i)\}, a pre-trained meta learner with \Theta_q^0, meta
              aggregator with \Theta_f^0 and \Theta_g^0 and neighbor sampler with \Theta_s^0.
1 Initialize \Theta_s = \Theta_s^0, \Theta_f = \Theta_f^0, \Theta_g = \Theta_g^0;
2 for epoch from 1 to E do
         foreach u_k or i_k in Train_T do
               for l in \{2, 3, \dots, L\} do
                     Sample a sequence of actions
                      \tau^{l} = \{a_{1}^{l}, \cdots, a_{t}^{l}, \cdots, a_{|\mathcal{N}^{l}(u)|}^{l}\} by Eq. (7);
                     if \forall a_t^l = 0 \text{ or } l = L \text{ then}
                           Compute R(a_{|\mathcal{N}^l(u)|}^l, \mathbf{s}_{|\mathcal{N}^l(u)|}^l) by Eq. (8);
                           Compute gradients by Eq. (9);
 8
                           Break;
         Update \Theta_s;
         if Jointly Training then
             Update \Theta_q and \Theta_f;
```

- Model training
 - During joint training in line 4, each parameter is updated by a linear combination of its old version and the new version for stable optimization, i.e. $\Theta_{new} = \lambda \Theta_{new} + (1 \lambda) \Theta_{old}$, where $\lambda \ll 1$

Algorithm 2: The Overall Training Process.

- ¹ Pre-train the meta learner with parameter Θ_g ;
- ² Pre-train the meta aggregator with parameter Θ_f when fixing Θ_g ;
- ³ Pre-train the neighbor sampler with parameter Θ_s by Algorithm 1 when fixing Θ_q and Θ_f ;
- 4 Jointly train the three modules together with parameters Θ_g , Θ_f and Θ_s by running Algorithm 1;

Pre-train the GNN model for reconstructing embeddings

Fine-tune the GNN model for recommendation

- Fine-tune for downstream recommendation task
 - 1. Neighbor sampling through pre-trained neighbor sampler
 - 2. Produce user/item embedding through pre-trained meta aggregator
 - 3. Obtain relevance score and perform fine-tune through BPR loss

$$y(u, i) = \sigma(\mathbf{W} \cdot \mathbf{h}_u^L)^{\mathrm{T}} \sigma(\mathbf{W} \cdot \mathbf{h}_i^L)$$

Pre-train the GNN model for reconstructing embeddings

Fine-tune the GNN model for recommendation

• PT-GNN

Datasets

Table 1: Statistics of the Datasets.

Dataset	#Users	#Items	#Interactions	#Sparse Ratio
MovieLens-1M	6,040	3,706	1,000,209	4.47%
MOOCs	82,535	1,302	458,453	0.42%
Last.fm	992	1,084,866	19,150,868	1.78%

• PT-GNN

• Intrinsic evaluation results (embedding inference)

	Ml-1M	(user)	MOOC	s (user)	Last.fn	ı (user)	Ml-1M	(item)	MOOC	s (item)	Last.fm	ı (item)
Methods	3-shot	8-shot	3-shot	8-shot	3-shot	8-shot	3-shot	8-shot	3-shot	8-shot	3-shot	8-shot
NCF	-0.017	0.063	-0.098	-0.062	0.042	0.117	-0.118	-0.017	-0.036	0.027	-0.036	-0.018
GraphSAGE	0.035	0.105	0.085	0.128	0.104	0.134	0.113	0.156	0.116	0.182	0.112	0.198
Basic-GraphSAGE	0.076	0.198	0.103	0.152	0.132	0.184	0.145	0.172	0.172	0.196	0.166	0.208
Meta-GraphSAGE	0.258	0.271	0.298	0.320	0.186	0.209	0.434	0.448	0.288	0.258	0.312	0.333
NSampler-GraphSAGE	0.266	0.284	0.294	0.336	0.196	0.212	0.448	0.460	0.286	0.306	0.326	0.336
GraphSAGE*	0.368	0.375	0.302	0.338	0.326	0.384	0.470	0.491	0.316	0.336	0.336	0.353
GAT	0.020	0.049	0.092	0.138	0.092	0.125	0.116	0.126	0.108	0.118	0.106	0.114
Basic-GAT	0.046	0.158	0.104	0.168	0.158	0.180	0.134	0.168	0.112	0.126	0.209	0.243
Meta-GAT	0.224	0.282	0.284	0.288	0.206	0.212	0.438	0.462	0.294	0.308	0.314	0.340
NSampler-GAT	0.296	0.314	0.339	0.354	0.198	0.206	0.464	0.472	0.394	0.396	0.338	0.358
GAT*	0.365	0.379	0.306	0.366	0.309	0.394	0.496	0.536	0.362	0.384	0.346	0.364
FastGCN	0.009	0.012	0.063	0.095	0.082	0.114	0.002	0.036	0.007	0.018	0.007	0.013
Basic-FastGCN	0.082	0.146	0.083	0.146	0.104	0.149	0.088	0.113	0.099	0.121	0.159	0.182
Meta-FastGCN	0.181	0.192	0.282	0.280	0.224	0.274	0.216	0.266	0.248	0.278	0.230	0.258
NSampler-FastGCN	0.188	0.194	0.281	0.286	0.226	0.277	0.268	0.288	0.267	0.296	0.246	0.253
FastGCN*	0.198	0.212	0.288	0.291	0.266	0.282	0.282	0.298	0.296	0.302	0.268	0.278
FBNE	0.034	0.102	0.053	0.065	0.142	0.164	0.168	0.190	0.137	0.168	0.127	0.133
Basic-FBNE	0.162	0.190	0.162	0.185	0.135	0.180	0.176	0.209	0.157	0.180	0.167	0.173
Meta-FBNE	0.186	0.204	0.269	0.284	0.175	0.192	0.426	0.449	0.236	0.272	0.178	0.182
NSampler-FBNE	0.208	0.216	0.259	0.283	0.203	0.207	0.422	0.439	0.226	0.273	0.164	0.183
FBNE*	0.242	0.265	0.306	0.321	0.206	0.219	0.481	0.490	0.301	0.382	0.182	0.199
LightGCN	0.093	0.108	0.060	0.068	0.162	0.184	0.201	0.262	0.181	0.232	0.213	0.245
Basic-LightGCN	0.178	0.192	0.212	0.226	0.182	0.192	0.318	0.336	0.234	0.260	0.252	0.290
Meta-LightGCN	0.226	0.241	0.272	0.285	0.206	0.221	0.336	0.346	0.314	0.331	0.372	0.392
NSampler-LightGCN	0.238	0.256	0.286	0.294	0.204	0.212	0.348	0.384	0.296	0.314	0.356	0.401
LightGCN*	0.270	0.286	0.292	0.309	0.229	0.234	0.382	0.408	0.334	0.353	0.386	0.403

• PT-GNN

• Extrinsic evaluation results (recommendation)

	M1-	-1M	МО	OCs	Last.fm		
Methods	Recall	NDCG	Recall	NDCG	Recall	NDCG	
NCF	0.008	0.101	0.021	0.047	0.005	0.007	
GraphSAGE	0.006	0.082	0.085	0.066	0.003	0.011	
Basic-GraphSAGE	0.013	0.135	0.082	0.091	0.007	0.044	
Meta-GraphSAGE	0.016	0.209	0.096	0.116	0.007	0.097	
NSampler-GraphSAGE	0.021	0.221	0.101	0.122	0.008	0.088	
GraphSAGE*	0.024	0.235	0.110	0.129	0.008	0.131	
GAT	0.008	0.099	0.023	0.055	0.006	0.033	
Basic-GAT	0.016	0.163	0.032	0.093	0.006	0.147	
Meta-GAT	0.017	0.191	0.063	0.123	0.009	0.184	
NSampler-GAT	0.012	0.188	0.084	0.132	0.010	0.199	
GAT*	0.014	0.208	0.100	0.139	0.018	0.232	
FastGCN	0.003	0.019	0.064	0.089	0.006	0.068	
Basic-FastGCN	0.008	0.102	0.099	0.117	0.012	0.083	
Meta-FastGCN	0.009	0.123	0.105	0.124	0.018	0.116	
NSampler-FastGCN	0.011	0.118	0.108	0.128	0.020	0.136	
FastGCN*	0.012	0.123	0.119	0.140	0.023	0.186	
FBNE	0.002	0.088	0.048	0.041	0.009	0.013	
Basic-FBNE	0.009	0.104	0.064	0.087	0.003	0.032	
Meta-FBNE	0.012	0.101	0.088	0.101	0.006	0.087	
NSampler-FBNE	0.013	0.118	0.102	0.117	0.006	0.099	
FBNE*	0.014	0.121	0.117	0.138	0.007	0.129	
LightGCN	0.014	0.207	0.102	0.112	0.001	0.083	
Basic-LightGCN	0.012	0.211	0.112	0.121	0.005	0.097	
Meta-LightGCN	0.018	0.221	0.120	0.139	0.005	0.101	
NSampler-LightGCN	0.020	0.218	0.116	0.132	0.007	0.106	
LightGCN*	0.022	0.227	0.123	0.142	0.007	0.114	

Towards Locality-Aware Meta-Learning of Tail Node Embeddings on Networks

Zemin Liu¹*, Wentao Zhang²*†, Yuan Fang¹, Xinming Zhang², Steven C.H. Hoi¹,3‡ ¹Singapore Management University, ²University of Science and Technology of China, ³Salesforce Research Asia {zmliu, yfang}@smu.edu.sg, zwt@mail.ustc.edu.cn, xinming@ustc.edu.cn, shoi@salesforce.com

CIKM 2020

Meta-Tail2Vec

- Intuition
 - Tail node embedding is a few-shot learning task
 - By using regression model trained by head nodes only, the quality of predicted tail node embeddings can approach which of head node embeddings, even with scarce structural information
- Motivation & Contribution
 - How to learn effective embeddings for tail nodes with scarce structural information?
 - Formulate the tail node embedding learning problem as a regression task via oracle reconstruction
 - How to ensure that the regression model can fit both head and tail nodes?
 - A base regression model hinged on link dropout is proposed
 - How to adapt the model to the unique locality of each node?
 - Locality-aware tasks are formulated in a meta-learning framework, which allows for easy local adaptation of the base model

Meta-Tail2Vec

- Problem formulation
 - Given tail node set $V_{tail}=\{v\in V\colon |N_v|\le k\}$ and head node set $V_{head}=\{v\in V\colon |N_v|> k\}$, where $|N_v|$ is the node degree
 - Denote embeddings of head nodes and tail nodes as $O = \{h_v : v \in V_{head}\}$ and $\{h_v : v \in V_{tail}\}$ respectively, which are actually node features in this work
 - A regression model $F(v; \Theta)$ is trained on the head nodes, treating O obtained by base embedding model ϕ as the oracle embeddings
 - $F(v;\Theta)$ is expected to output new predicted embeddings $\widehat{h_v}$ to reconstruct the oracle embeddings O
 - Optimization:

$$\arg\min_{\Theta} \sum_{v \in \mathcal{V}_{\text{head}}} \|F(v; \Theta) - \mathbf{h}_v\|^2$$

• Goal: learn new embedding vectors for tail nodes $\{\widehat{h_v}:v\in V_{tail}\}$ with improved quality

- Meta-Learned Few-Shot Regression
 - Embedding regression model
 - m-hop neighborhood aggregation

$$\mathcal{N}_{v}^{(m)} = \bigcup_{i \in \mathcal{N}_{v}^{(m-1)}} \mathcal{N}_{i} \qquad \mathbf{x}_{v} = \operatorname{Aggr}(\{\mathbf{h}_{i} : i \in \mathcal{N}_{v}^{(1)} \cup \mathcal{N}_{v}^{(2)} \cup \ldots \cup \mathcal{N}_{v}^{(m)}\})$$

• x_v is leveraged as the input of MLP to reconstruct the embedding h_v

$$\hat{\mathbf{h}}_v = F(v; \Theta) = W_2 \cdot \sigma(W_1 \mathbf{x}_v + \mathbf{b}_1) + \mathbf{b}_2$$

Meta-Learned Few-Shot Regression

- Locality-aware few-shot regression tasks
 - Why not more extreme pre-train then fine-tune strategy? → Fine-tune can easily cause overfitting in tail nodes due to limited structural information
 - Episodic meta-learning framework is adopted to learn an adaptable prior regression model
 - Each task represents the unique locality of a node
 - Given query node, we aim to predict its embedding after training on a set of support nodes
 - The goal is to extract common prior knowledge of all tasks in an MAML manner

Task formulation

- For each head node v, a meta-training task $T_v = (S_v, q_v)$ is defined, where $S_v = \{(i, h_i): i \in N_v\}$ and $q_v = (v, h_v)$ are support set and query respectively, where $\widetilde{N_v}$ is the randomly sampled neighborhood with K neighbors
- For each tail node u, a meta-testing task $T_u = (S_u, q_u)$ is defined, where $S_u = \{(i, h_i): i \in N_u\}$ and $q_u = (u, ?)$ are support set and query respectively, where the embedding of u is unknown and to be predicted
- A prior regression model $F(v; \Theta)$ is learned, which can be quickly adapted to new tasks by performing just a few gradient updates on the support set of the new task

Meta-Learned Few-Shot Regression

- Task formulation
 - Given task $T_v = (S_v, q_v)$, the prior Θ will be adapted by S_v , generating local model Θ_v'

$$L_{S_v}(\Theta) = \sum_{(i,\mathbf{h}_i) \in S_v} \|F(i;\Theta) - \mathbf{h}_i\|^2 \qquad \Theta'_v = \Theta - \alpha \frac{\partial L_{S_v}(\Theta)}{\partial \Theta}$$

• Afterwards, local model Θ'_v will be applied to query node v to calculate the task loss, which is subsequently used to optimize prior Θ

$$L_{q_v}(\Theta_v') = \|F(v; \Theta_v') - \mathbf{h}_v\|^2 \qquad \arg\min_{\Theta} \sum_{T_v = (S_v, q_v) \in \mathcal{T}_{\text{train}}} L_{q_v} \left(\Theta - \alpha \frac{\partial L_{S_v}(\Theta)}{\partial \Theta}\right)$$

Figure 3: Overall framework of our locality-aware tail node embedding model meta-tail2vec. (Best viewed in color.)

Meta-Learned Few-Shot Regression

- More details
 - Why use neighbors of query node as support sets? → Randomly sampled support nodes aren't related to query node, thus can't reflect the locality of query node
 - Why randomly sample K neighbors as support set? → Transform each meta-training task as few-shot regression task, which is more similar to meta-testing tasks
 - Only head nodes are kept/sampled in support set: → Make sure they are all related to an oracle embedding for regression adaptation
 - For meta-testing tasks with no head nodes in support set, the original embedding will be directly
 used as output embedding

- Meta-Tail2Vec
 - Datasets

Table 1: Summary of datasets.

565	# nodes	# edges	# node classes	multi-label	# tail nodes
Wiki	2,405	17,981	19	No	1,069
Flickr	80,513	5,899,882	195	Yes	9,367
Email	1,005	25,571	42	No	235

• Meta-Tail2Vec

Table 2: Performance of node classification w.r.t. classic base embedding models.

	E		Biased walk	Additive	Additive-2	a la carte	a la carte-2	Nonce2vec	Dropout	meta-tail2vec	1	ov. over
											Base	2 nd best
	DeepWalk as the base embedding model											
Wiki	MicroF	44.27 ± 0.25	44.69 ± 0.31	45.32 ± 0.52	42.11 ± 0.76	23.65 ± 0.44	23.34 ± 0.47	44.97 ± 0.29	36.88 ± 0.65	49.10 ± 0.23	+10.9%	+8.3%
WIKI	Accuracy	46.68 ± 0.31	47.05 ± 0.17	47.18 ± 0.29	44.73 ± 0.53	24.17 ± 0.49	24.48 ± 0.42	47.11 ± 0.22	38.13 ± 0.57	50.70 ± 0.45	+8.6%	+7.5%
Flickr	MicroF	33.48 ± 0.26	33.61 ± 0.39	34.43 ± 0.41	32.59 ± 0.17	31.89 ± 0.47	32.25 ± 0.35	33.83 ± 0.28	33.91 ± 0.22	36.31 ± 0.19	+8.5%	+5.5%
THERI	Accuracy	32.44 ± 0.13	32.57 ± 0.19	33.29 ± 0.17	31.31 ± 0.24	32.13 ± 0.26	32.62 ± 0.31	33.01 ± 0.15	32.86 ± 0.09	35.28 ± 0.25	+8.8%	+6.0%
Email	MicroF	51.32 ± 0.29	50.95 ± 0.24	52.50 ± 0.17	51.17 ± 0.23	17.88 ± 0.48	18.21 ± 0.52	51.84 ± 0.33	32.72 ± 0.45	55.26 ± 0.18	+7.7%	+5.3%
Liliali	Accuracy	54.41 ± 0.34	54.13 ± 0.22	55.38 ± 0.43	53.82 ± 0.36	21.06 ± 0.45	21.13 ± 0.37	54.79 ± 0.19	33.85 ± 0.51	57.78 ± 0.29	+6.2%	+4.3%
					GraphSAGE a	s the base em	bedding mode	el				
Wiki	MicroF	39.68 ± 0.24	40.07 ± 0.15	37.84 ± 0.31	35.96 ± 0.43	23.88 ± 0.47	22.52 ± 0.39	40.75 ± 0.33	19.78 ± 0.59	44.29 ± 0.31	+11.6%	+8.7%
WIKI	Accuracy	41.22 ± 0.19	41.39 ± 0.06	39.31 ± 0.26	36.59 ± 0.25	25.71 ± 0.36	24.94 ± 0.62	41.65 ± 0.28	24.73 ± 0.42	44.90 ± 0.12	+8.9%	+7.8%
Flickr	MicroF	29.38 ± 0.32	28.75 ± 0.31	27.86 ± 0.14	23.69 ± 0.44	30.02 ± 0.17	29.67 ± 0.20	29.85 ± 0.12	28.75 ± 0.11	32.11 ± 0.41	+9.3%	+7.0%
FIICKI	Accuracy	28.46 ± 0.08	27.52 ± 0.19	27.69 ± 0.31	22.82 ± 0.45	29.83 ± 0.22	28.18 ± 0.46	29.26 ± 0.31	28.78 ± 0.14	31.96 ± 0.35	+12.3%	+7.1%
Email	MicroF	41.25 ± 0.17	41.07 ± 0.33	35.83 ± 0.31	34.19 ± 0.13	27.81 ± 0.44	26.97 ± 0.39	41.97 ± 0.24	23.47 ± 0.25	46.73 ± 0.37	+13.3%	+11.3%
Eman	Accuracy	42.61 ± 0.31	42.20 ± 0.31	37.25 ± 0.16	35.13 ± 0.35	29.41 ± 0.46	27.16 ± 0.34	43.23 ± 0.30	25.84 ± 0.18	47.70 ± 0.46	+11.9%	+10.3%

• Meta-Tail2Vec

Table 3: Performance of link prediction w.r.t. classic base embedding models.

		Base	Biased walk	Additive	Additive-2	a la carte	a la carte-2	Nonce2vec	Dranaut	meta-tail2vec	Impr	ov. over
		Dase	biased walk	Additive	Additive-2	a la carte	a la carte-2	Noncezvec	Dropout	meta-tanzvec	Base	2 nd best
	DeepWalk as the base embedding model											
Wiki	MRR	75.28 ± 0.37	75.13 ± 0.41	75.81 ± 0.62	74.89 ± 0.78	76.31 ± 0.25	76.14 ± 0.33	67.42 ± 0.87	77.06 ± 0.71	79.18 ± 0.52	+5.2%	+2.8%
WIKI	Hit@1	51.83 ± 0.42	52.04 ± 0.57	52.51 ± 0.67	51.48 ± 0.39	53.70 ± 0.61	53.59 ± 0.32	53.34 ± 0.49	54.19 ± 0.30	57.22 ± 0.46	+10.4%	+5.6%
Flickr	MRR	50.05 ± 0.30	49.57 ± 0.19	49.80 ± 0.45	49.72 ± 0.41	50.36 ± 0.55	50.71 ± 0.65	50.83 ± 0.48	50.25 ± 0.59	52.18 ± 0.61	+4.3%	+2.7%
THERI	Hit@1	25.32 ± 0.24	25.63 ± 0.55	26.10 ± 0.41	26.55 ± 0.62	26.07 ± 0.30	26.39 ± 0.58	26.67 ± 0.33	26.19 ± 0.44	28.11 ± 0.40	+11.0%	+5.4%
Email	MRR	44.17 ± 0.35	44.58 ± 0.26	44.52 ± 0.68	44.96 ± 0.28	44.49 ± 0.50	45.11 ± 0.34	44.80 ± 0.15	45.33 ± 0.08	48.42 ± 0.55	+9.6%	+6.8%
Elliali	Hit@1	19.47 ± 0.38	19.96 ± 0.27	21.38 ± 0.15	21.66 ± 0.40	22.45 ± 0.58	22.63 ± 0.31	20.90 ± 0.44	<u>23.02</u> ± 0.33	24.31 ± 0.46	+24.9%	+5.6%
					GraphSAGE	as the base er	nbedding mod	lel				
Wiki	MRR	81.36 ± 0.14	82.01 ± 0.10	80.56 ± 0.45	80.39 ± 0.21	81.82 ± 0.53	80.94 ± 0.62	82.18 ± 0.64	82.52 ± 0.40	84.38 ± 0.61	+3.7%	+2.3%
VV IKI	Hit@1	58.87 ± 0.52	58.39 ± 0.15	58.43 ± 0.61	58.92 ± 0.30	59.56 ± 0.29	59.34 ± 0.44	59.70 ± 0.37	59.93 ± 0.56	62.04 ± 0.68	+5.4%	+3.5%
Flickr	MRR	55.83 ± 0.29	56.17 ± 0.36	55.04 ± 0.25	55.40 ± 0.58	56.28 ± 0.49	56.76 ± 0.40	56.31 ± 0.32	56.85 ± 0.71	58.15 ± 0.43	+4.2%	+2.3%
FIICKI	Hit@1	34.59 ± 0.52	35.15 ± 0.47	33.79 ± 0.38	33.36 ± 0.40	35.22 ± 0.68	35.29 ± 0.64	34.97 ± 0.50	35.74 ± 0.31	36.92 ± 0.39	+6.7%	+3.3%
Email	MRR	46.71 ± 0.45	46.24 ± 0.29	46.05 ± 0.25	46.68 ± 0.44	47.03 ± 0.53	46.92 ± 0.30	47.18 ± 0.19	46.37 ± 0.60	48.15 ± 0.44	+3.1%	+2.1%
Eman	Hit@1	23.02 ± 0.23	22.73 ± 0.41	22.91 ± 0.44	22.65 ± 0.52	23.19 ± 0.39	23.14 ± 0.61	23.28 ± 0.43	23.07 ± 0.56	24.55 ± 0.70	+6.6%	+5.4%

Meta-Tail2Vec

Table 4: Performance of node classification w.r.t. robust base embedding models (MiF for MicroF; Acc for accuracy).

	Base	Additive	Nonce2vec	Dropout	meta-tail2vec					
SDNE as the base embedding model										
MiF	31.38 ± 0.34	34.46 ± 0.63	32.14 ± 0.75	34.69 ± 0.48	37.99 ± 0.83					
Acc	34.10 ± 0.71	35.62 ± 0.28	34.59 ± 0.12	$\underline{36.46} \pm 0.43$	38.80 ± 0.64					
MiF	34.74 ± 0.86	35.49 ± 0.47	34.73 ± 0.37	35.38 ± 0.35	38.50 ± 0.78					
Acc	32.67 ± 0.32	34.72 ± 0.28	33.59 ± 0.73	34.64 ± 0.49	38.03 ± 0.66					
MiF	29.85 ± 0.48	31.07 ± 0.21	31.83 ± 0.46	$\underline{34.50} \pm 0.25$	47.21 ± 0.72					
Acc	32.90 ± 0.62	34.37 ± 0.27	33.79 ± 0.60	37.85 ± 0.47	51.70 ± 0.33					
	ARG	A as the base	e embedding	model						
MiF	32.22 ± 0.46	31.19 ± 0.23	32.47 ± 0.19	32.85 ± 0.23	33.51 ± 0.31					
Acc	34.47 ± 0.52	33.84 ± 0.10	34.79 ± 0.21	$\underline{35.22}\pm0.49$	35.80 ± 0.23					
MiF	24.60 ± 0.15	23.69 ± 0.18	25.16 ± 0.20	24.71 ± 0.15	25.93 ± 0.25					
Acc	22.81 ± 0.17	21.59 ± 0.11	$\underline{24.26} \pm 0.46$	23.65 ± 0.39	25.37 ± 0.16					
MiF	24.38 ± 0.31	23.94 ± 0.47	24.97 ± 0.35	$\underline{25.48} \pm 0.53$	26.11 ± 0.25					
Acc	26.57 ± 0.43	25.69 ± 0.30	27.02 ± 0.37	27.54 ± 0.21	27.95 ± 0.16					
	DDGC	CN as the bas	se embedding	g model						
MiF	29.49 ± 0.18	27.68 ± 0.58	31.20 ± 0.44	30.37 ± 0.35	33.02 ± 0.43					
Acc	31.39 ± 0.25	30.82 ± 0.21	33.87 ± 0.75	32.69 ± 0.40	36.27 ± 0.41					
MiF	28.57 ± 0.47	26.92 ± 0.08	30.09 ± 0.35	29.17 ± 0.26	31.03 ± 0.52					
Acc	25.90 ± 0.71	24.44 ± 0.12	26.76 ± 0.49	26.37 ± 0.25	28.38 ± 0.54					
MiF	38.95 ± 0.67	38.73 ± 0.55	39.62 ± 0.43	39.15 ± 0.40	41.83 ± 0.34					
Acc	39.81 ± 0.56	38.20 ± 0.35	$\underline{42.32} \pm 0.63$	41.69 ± 0.41	44.13 ± 0.73					
	MiF Acc MiF Acc MiF Acc MiF Acc MiF Acc MiF Acc	SDN MiF 31.38 ± 0.34 Acc 34.10 ± 0.71 MiF 34.74 ± 0.86 Acc 32.67 ± 0.32 MiF 29.85 ± 0.48 Acc 32.90 ± 0.62 ***PAG** MiF 32.22 ± 0.46 Acc 34.47 ± 0.52 MiF 24.60 ± 0.15 Acc 22.81 ± 0.17 MiF 24.38 ± 0.31 Acc 26.57 ± 0.43 ***DDGG** ***DDGG** MiF 29.49 ± 0.18 Acc 31.39 ± 0.25 MiF 28.57 ± 0.47 Acc 25.90 ± 0.71 MiF 38.95 ± 0.67	SDNE as the base MiF 31.38 ± 0.34 34.46 ± 0.63 Acc 34.10 ± 0.71 35.62 ± 0.28 MiF 34.74 ± 0.86 35.49 ± 0.47 Acc 32.67 ± 0.32 34.72 ± 0.28 MiF 29.85 ± 0.48 31.07 ± 0.21 Acc 32.90 ± 0.62 34.37 ± 0.27 ARGA as the base MiF 32.22 ± 0.46 31.19 ± 0.23 Acc 34.47 ± 0.52 33.84 ± 0.10 MiF 24.60 ± 0.15 23.69 ± 0.18 Acc 22.81 ± 0.17 21.59 ± 0.11 MiF 24.38 ± 0.31 23.94 ± 0.47 Acc 26.57 ± 0.43 25.69 ± 0.30 DDGCN as the base MiF 29.49 ± 0.18 27.68 ± 0.58 Acc 31.39 ± 0.25 30.82 ± 0.21 MiF 28.57 ± 0.47 26.92 ± 0.08 Acc 25.90 ± 0.71 24.44 ± 0.12 MiF 38.95 ± 0.67 38.73 ± 0.55	SDNE as the base embedding MiF 31.38 ± 0.34 34.46 ± 0.63 32.14 ± 0.75 Acc 34.10 ± 0.71 35.62 ± 0.28 34.59 ± 0.12 MiF 34.74 ± 0.86 35.49 ± 0.47 34.73 ± 0.37 Acc 32.67 ± 0.32 34.72 ± 0.28 33.59 ± 0.73 MiF 29.85 ± 0.48 31.07 ± 0.21 31.83 ± 0.46 Acc 32.90 ± 0.62 34.37 ± 0.27 33.79 ± 0.60 ARGA as the base embedding MiF 32.22 ± 0.46 31.19 ± 0.23 32.47 ± 0.19 Acc 34.47 ± 0.52 33.84 ± 0.10 34.79 ± 0.21 MiF 24.60 ± 0.15 23.69 ± 0.18 25.16 ± 0.20 Acc 22.81 ± 0.17 21.59 ± 0.11 24.26 ± 0.46 MiF 24.38 ± 0.31 23.94 ± 0.47 24.97 ± 0.35 Acc 26.57 ± 0.43 25.69 ± 0.30 27.02 ± 0.37 DDGCN as the base embedding MiF 29.49 ± 0.18 27.68 ± 0.58 31.20 ± 0.44 Acc 31.39 ± 0.25 30.82 ± 0.21 33.87 ± 0.75 <td>SDNE as the base embedding model MiF 31.38 ± 0.34 34.46 ± 0.63 32.14 ± 0.75 34.69 ± 0.48 Acc 34.10 ± 0.71 35.62 ± 0.28 34.59 ± 0.12 36.46 ± 0.43 MiF 34.74 ± 0.86 35.49 ± 0.47 34.73 ± 0.37 35.38 ± 0.35 Acc 32.67 ± 0.32 34.72 ± 0.28 33.59 ± 0.73 34.64 ± 0.49 MiF 29.85 ± 0.48 31.07 ± 0.21 31.83 ± 0.46 34.50 ± 0.25 Acc 32.90 ± 0.62 34.37 ± 0.27 33.79 ± 0.60 37.85 ± 0.47 MiF 32.22 ± 0.46 31.19 ± 0.23 32.47 ± 0.19 32.85 ± 0.23 Acc 34.47 ± 0.52 33.84 ± 0.10 34.79 ± 0.21 35.22 ± 0.49 MiF 24.60 ± 0.15 23.69 ± 0.18 25.16 ± 0.20 24.71 ± 0.15 Acc 22.81 ± 0.17 21.59 ± 0.11 24.26 ± 0.46 23.65 ± 0.39 MiF 24.38 ± 0.31 23.94 ± 0.47 24.97 ± 0.35 25.48 ± 0.53 Acc 26.57 ± 0.43 25.69 ± 0.30 27.02 ± 0.37 27.54 ± 0.21 DDGCV as</td>	SDNE as the base embedding model MiF 31.38 ± 0.34 34.46 ± 0.63 32.14 ± 0.75 34.69 ± 0.48 Acc 34.10 ± 0.71 35.62 ± 0.28 34.59 ± 0.12 36.46 ± 0.43 MiF 34.74 ± 0.86 35.49 ± 0.47 34.73 ± 0.37 35.38 ± 0.35 Acc 32.67 ± 0.32 34.72 ± 0.28 33.59 ± 0.73 34.64 ± 0.49 MiF 29.85 ± 0.48 31.07 ± 0.21 31.83 ± 0.46 34.50 ± 0.25 Acc 32.90 ± 0.62 34.37 ± 0.27 33.79 ± 0.60 37.85 ± 0.47 MiF 32.22 ± 0.46 31.19 ± 0.23 32.47 ± 0.19 32.85 ± 0.23 Acc 34.47 ± 0.52 33.84 ± 0.10 34.79 ± 0.21 35.22 ± 0.49 MiF 24.60 ± 0.15 23.69 ± 0.18 25.16 ± 0.20 24.71 ± 0.15 Acc 22.81 ± 0.17 21.59 ± 0.11 24.26 ± 0.46 23.65 ± 0.39 MiF 24.38 ± 0.31 23.94 ± 0.47 24.97 ± 0.35 25.48 ± 0.53 Acc 26.57 ± 0.43 25.69 ± 0.30 27.02 ± 0.37 27.54 ± 0.21 DDGCV as					

Table 5: Performance of link prediction w.r.t. robust base embedding models (H@1 for hit@1).

		Base	Additive	Nonce2vec	Dropout	meta-tail2vec				
		SDNE as the base embedding model								
Wiki	MRR	72.25 ± 0.48	72.53 ± 0.30	74.44 ± 0.39	75.08 ± 0.65	76.97 ± 0.61				
VV IKI	H@1	52.19 ± 0.27	51.94 ± 0.39	54.50 ± 0.61	$\underline{55.21} \pm 0.35$	57.58 ± 0.74				
Flickr	MRR	46.82 ± 0.20	47.09 ± 0.44	48.35 ± 0.51	48.17 ± 0.29	49.31 ± 0.46				
THERE	H@1	26.23 ± 0.16	27.00 ± 0.33	$\underline{28.82} \pm 0.61$	28.39 ± 0.10	29.26 ± 0.20				
Email	MRR	34.02 ± 0.76	34.29 ± 0.51	$\underline{36.87} \pm 0.49$	36.42 ± 0.55	39.55 ± 0.50				
Lillaii	H@1	17.51 ± 0.24	18.65 ± 0.51	21.19 ± 0.40	20.88 ± 0.13	22.86 ± 0.63				
		ARGA	A as the base	embedding	model					
Wiki	MRR	48.57 ± 0.40	46.49 ± 0.38	49.16 ± 0.45	50.27 ± 0.14	51.08 ± 0.20				
VV IKI	H@1	41.40 ± 0.52	40.49 ± 0.07	41.67 ± 0.35	$\underline{42.22}\pm0.10$	43.73 ± 0.65				
Flickr	MRR	35.52 ± 0.32	35.41 ± 0.72	35.69 ± 0.63	36.31 ± 0.28	36.87 ± 0.45				
THERE	H@1	29.73 ± 0.34	28.86 ± 0.40	29.89 ± 0.62	$\underline{30.51} \pm 0.77$	31.37 ± 0.29				
Email	MRR	26.83 ± 0.29	25.89 ± 0.47	26.91 ± 0.18	26.22 ± 0.40	27.26 ± 0.55				
Lillan	H@1	16.51 ± 0.29	16.30 ± 0.42	$\underline{17.22} \pm 0.40$	16.89 ± 0.31	17.87 ± 0.35				
		DDGC	N as the bas	e embedding	g model					
Wiki	MRR	73.25 ± 0.49	74.10 ± 0.34	74.28 ± 0.15	74.92 ± 0.53	75.31 ± 0.67				
VV IKI	H@1	51.28 ± 0.39	50.77 ± 0.21	51.86 ± 0.45	$\underline{52.56} \pm 0.32$	53.30 ± 0.61				
Flickr	MRR	52.17 ± 0.40	50.74 ± 0.51	52.23 ± 0.42	51.79 ± 0.60	52.49 ± 0.34				
THERI	H@1	37.15 ± 0.38	35.82 ± 0.85	$\underline{37.53} \pm 0.42$	37.16 ± 0.60	38.68 ± 0.63				
Email	MRR	41.58 ± 0.45	40.83 ± 0.37	42.96 ± 0.39	42.81 ± 0.12	43.47 ± 0.18				
	H@1	27.35 ± 0.39	28.31 ± 0.63	28.58 ± 0.25	28.87 ± 0.30	29.22 ± 0.36				

Meta-Tail2Vec

Figure 4: Performance of node classification on head nodes w.r.t. DeepWalk as the base embedding model.

Figure 6: Ablation study of the meta-learning strategy on node classification w.r.t. DeepWalk as the base model.

Figure 5: Performance of link prediction on head nodes w.r.t. DeepWalk as the base embedding model.

Figure 8: Impact of number of links on node classification w.r.t. DeepWalk as the base model.

Tail-GNN: Tail-Node Graph Neural Networks

Zemin Liu Singapore Management University Singapore zmliu@smu.edu.sg Trung-Kien Nguyen
Singapore Management University
Singapore
tknguyen@smu.edu.sg

Yuan Fang Singapore Management University Singapore yfang@smu.edu.sg

KDD 2021

- Intuition
 - Prior two-stage refinement model, such as meta-tail2vec, can't mitigate the bias and noise in base embedding model
 - Tail nodes can be directly transformed into heavy nodes through missing neighborhood imputation
- Motivation and Contribution
 - How to uncover missing information for tail nodes?
 - Missing neighborhood can be imputed by exploring potential weak links and relational tie between head nodes and their neighborhood
 - How to localize the missing information for individual tail node while maintaining the generality?
 - A novel concept of transferable neighborhood translation can be exploited for missing neighborhood prediction
 - How to utilize the predicted missing information in embedding model?
 - A novel model Tail-GNN is proposed to perform aggregation with missing information for tail nodes

 ${\bf Tail\ node}\ v_{\bf 1}\quad {\bf Head\ node}\ v_{\bf 0}$

(b) Toy citation network

- Neighborhood translation and missing information prediction
 - Global neighborhood translation vector $r_v:h_v+r_v\approx h_{N_v}$, where h_{N_v} is the observed neighborhood representation obtained via pooling
 - Missing information definition for tail nodes: $m_v=h_{N_v^*}-h_{N_v}$, where $h_{N_v^*}=h_v+r_v$ is the ideal neighborhood representation

- Details for neighborhood translation
 - How to transfer the neighborhood translation vector to achieve localizing
 - Scaling + Shifting: based on global translation vector r_v and local context

$$\mathbf{r}_{v}^{l} = \phi(\mathbf{h}_{v}^{l}, \mathbf{h}_{\mathcal{N}_{v}}^{l}, \mathbf{r}^{l}; \boldsymbol{\theta}_{\phi}^{l}) = (\gamma_{v}^{l} + 1) \odot \mathbf{r}^{l} + \beta_{v}^{l}$$

$$\boldsymbol{\beta}_{v}^{l} = \text{LeakyReLU}(\mathbf{W}_{\gamma}^{l,1} \mathbf{h}_{v}^{l} + \mathbf{W}_{\gamma}^{l,2} \mathbf{h}_{\mathcal{N}_{v}}^{l})$$

$$\boldsymbol{\beta}_{v}^{l} = \text{LeakyReLU}(\mathbf{W}_{\beta}^{l,1} \mathbf{h}_{v}^{l} + \mathbf{W}_{\beta}^{l,2} \mathbf{h}_{\mathcal{N}_{v}}^{l})$$

Figure 3: Overall framework of Tail-GNN.

• Tail-GNN

- Details for proposed Tail-GNN method
 - Neighborhood aggregation with missing information

$$\mathbf{h}_v^{l+1} = \mathcal{M}(\mathbf{h}_v^l, \{\mathbf{m}_v^l\} \cup \{\mathbf{h}_i^l : i \in \mathcal{N}_v\}; \theta^{l+1})$$

Objective function

$$\mathcal{L}_{m} = \sum_{v \in \mathcal{V}_{tr}} I_{v} \sum_{l=1}^{\ell} \|\mathbf{m}_{v}^{l-1}\|_{2}^{2}$$

$$\mathcal{L}_{d} = \sum_{v \in \mathcal{V}_{tr}} \text{CrossEnt}(I_{v}, D(\mathbf{h}_{v}^{\ell}; \theta_{d})) + \lambda_{d} \|\theta_{d}\|_{2}^{2}$$

$$\min_{\Theta} \max_{\theta_{d}} \mathcal{L}_{t} + \mu \mathcal{L}_{m} - \eta \mathcal{L}_{d}$$

Figure 3: Overall framework of Tail-GNN.

- Other details for model training
 - Contrastive strategy: Generate more training data through head node link dropout to form correspondence
 - Help model to learn how to exactly impute missing neighborhood
 - Raw training set is composed of heavy nodes only, and tail nodes are only contained in test/valid sets

Algorithm 1 Model Training for Tail-GNN

```
Input: graph \mathcal{G} = (\mathcal{V}, \mathcal{E}, X), task-related training data \mathcal{V}_{tr}.
Output: Model parameters \Theta.
  1: initialize parameters \Theta, \theta_d;
  2: while not converged do
            sample a batch of nodes from V_{tr};
                                                                        ▶ construct forged tail nodes
  4:
            for each node v in the batch do
                  if v is a head node then
  5:
                        v' \leftarrow \text{LinkDropout}(v);
  6:
                        add v' to the batch;
  7:
            for each node v in the batch do
  8:
                  for each layer l \in \{0, ..., \ell - 1\} do
  9:
                        \mathbf{r}_{v}^{l} = \phi(\mathbf{h}_{v}^{l}, \mathbf{h}_{N_{v}}^{l}, \mathbf{r}^{l}; \theta_{\phi}^{l});
                                                                                    ▶ localization, Eq. (9)
 10:
                        \mathbf{m}_{v}^{l} \leftarrow \mathbf{h}_{v}^{l} + \mathbf{r}_{v}^{l} - \mathbf{h}_{\mathcal{N}_{v}}^{l};
                                                                      ▶ missing information, Eq. (7)
 11:
                        if v is a head node then
                                                                      ▶ aggregation for head, Eq. (1)
 12:
                              \mathbf{h}_{v}^{l+1} \leftarrow \mathcal{M}(\mathbf{h}_{v}^{l}, \{\mathbf{h}_{i}^{l} : i \in \mathcal{N}_{v}\}; \theta^{l+1});
 13:
                                                                      ▶ aggregation for tail, Eq. (12)
 14:
                             \mathbf{h}_{n}^{l+1} \leftarrow \mathcal{M}(\mathbf{h}_{n}^{l}, \{\mathbf{m}_{n}^{l}\} \cup \{\mathbf{h}_{i}^{l} : i \in \mathcal{N}_{v}\}; \theta^{l+1});
 15:
            update \Theta by minimizing Eq. (16) with \theta_d fixed;
 16:
            update \theta_d by maximizing Eq. (16) with \Theta fixed;
 18: return Θ.
```

• Tail-GNN

Datasets

Table 1: Summary of datasets.

	# Nodes	# Edges	# Features	# Classes	# Tail $(K = 5)$
Email	1,005	25,571	128	42	235
Squirrel	5,201	217,073	2,089	5	942
Actor	7,600	33,391	931	5	4,823
CoauthorCS	18,333	327,576	6,805	15	8,037
Amazon	937,349	12,455,925	100	44	248,125

• Tail-GNN

• Experimental results

Table 2: Evaluation on tail node classification using GCN as the base model.

Henceforth, tabular results are in percent; the best result is bolded and the runner-up is underlined; a dash (-) denotes no result reported for failing to work on a large dataset.

36-411-	En	nail	Squ	irrel	Ac	tor	Coaut	horCS	Ama	zon
Methods	Accuracy	Micro-F	Accuracy	Micro-F	Accuracy	Micro-F	Accuracy	Micro-F	Accuracy	Micro-F
DeepWalk GCN	54.4 ± 0.3 57.9 ± 1.2	51.3 ± 0.3 57.7 ± 1.3	$\frac{28.8 \pm 1.6}{24.8 \pm 1.3}$	$\frac{28.0 \pm 2.3}{23.2 \pm 1.8}$	21.8 ± 0.6 29.7 ± 0.2	18.2 ± 0.9 15.0 ± 0.9	84.1 ± 0.7 88.4 ± 0.1	81.5 ± 0.7 86.1 ± 0.1	83.7 ± 0.1 82.3 ± 0.2	$\frac{74.3}{70.6} \pm 0.6$
Additive a la carte meta-tail2vec	55.4 ± 0.4 21.1 ± 0.4 57.1 ± 0.1	52.5 ± 0.2 17.9 ± 0.5 55.3 ± 0.2	$ 27.0 \pm 1.7 $ $ 22.5 \pm 1.1 $ $ 25.1 \pm 0.5 $	22.9 ± 1.6 22.5 ± 0.7 21.5 ± 0.3	$ \begin{array}{c c} 28.1 \pm 0.3 \\ 28.0 \pm 0.5 \\ 29.7 \pm 0.4 \end{array} $	15.1 ± 1.3 14.8 ± 1.4 20.1 ± 0.7	89.5 ± 0.1 88.7 ± 0.2 89.3 ± 0.1	87.8 ± 0.1 86.7 ± 0.3 87.4 ± 0.1	$\begin{array}{ c c c }\hline 84.2 \pm 0.2 \\ \hline 81.1 \pm 0.1 \\ \hline 81.9 \pm 0.1 \\ \hline \end{array}$	73.2 ± 0.6 69.7 ± 0.7 71.4 ± 0.4
SDNE ARGA DDGCN	32.9 ± 0.6 45.1 ± 0.9 39.8 ± 0.6	29.8 ± 0.5 41.2 ± 1.0 38.9 ± 0.7	23.8 ± 3.2 22.4 ± 1.0 26.3 ± 2.1	16.6 ± 6.2 22.8 ± 1.9 26.4 ± 3.3	$24.4 \pm 0.8 25.9 \pm 0.3 24.0 \pm 0.4$	12.6 ± 5.6 8.2 ± 0.6 11.7 ± 0.7	70.6 ± 0.9 74.6 ± 1.8 73.6 ± 0.9	64.5 ± 1.1 67.9 ± 2.5 68.8 ± 1.0		
DEMO-Net role2vec	56.9 ± 0.6 44.9 ± 1.6	56.5 ± 0.7 43.8 ± 2.4	$28.3 \pm 0.5 \\ 26.3 \pm 0.8$	22.5 ± 2.2 27.5 ± 1.7	$ \begin{array}{c c} 28.4 \pm 0.8 \\ 23.1 \pm 0.1 \end{array} $	$\frac{22.0 \pm 1.3}{18.3 \pm 0.6}$	$\frac{90.8 \pm 0.5}{62.7 \pm 0.3}$	$\frac{88.9 \pm 0.6}{56.3 \pm 0.3}$	83.1 ± 0.1 77.1 ± 0.2	72.0 ± 0.4 61.5 ± 0.5
Tail-GCN	59.2 ± 0.8	58.5 ± 1.3	30.2 ± 1.1	31.1 ± 1.1	34.9 ± 0.5	25.2 ± 0.6	93.6 ± 0.1	92.7 ± 0.1	87.0 ± 0.1	78.2 ± 0.2

Table 3: Evaluation on tail node classification using other GNNs as the base model.

Methods	Email		Squ	Squirrel		Actor		horCS	Ama	zon
Wethods	Accuracy	Micro-F	Accuracy	Micro-F	Accuracy	Micro-F	Accuracy	Micro-F	Accuracy	Micro-F
GAT	57.9 ± 0.4	57.3 ± 0.2	24.1 ± 2.4	23.1 ± 2.6	29.8 ± 0.6	13.2 ± 2.7	88.6 ± 0.2	86.2 ± 0.2	-	-
Tail-GAT	59.4 ± 0.9	58.2 ± 1.2	28.8 ± 2.1	$\textbf{30.4} \pm 2.6$	34.5 ± 1.3	24.7 ± 2.0	92.5 ± 0.1	90.8 ± 0.1	-	-
GraphSAGE	52.0 ± 1.6	51.3 ± 1.7	27.1 ± 2.7	26.4 ± 4.9	33.1 ± 1.1	23.2 ± 2.4	89.8 ± 2.4	87.7 ± 1.1	79.1 ± 0.4	62.8 ± 0.6
Tail-GraphSAGE	55.7 ± 0.6	54.9 ± 0.7	28.5 ± 1.6	$\textbf{28.2} \pm 2.4$	34.1 ± 1.7	$\textbf{26.8} \pm 1.8$	93.8 ± 0.7	92.4 ± 1.4	$\textbf{85.1} \pm 0.2$	75.5 ± 0.3

• Tail-GNN

• Experimental results

Table 6: Evaluation on head node classification.

Mathada	Squ	irrel	Ac	tor	CoauthorCS Acc. Micro-F		
Methods	Acc.	Micro-F	Acc.	Micro-F	Acc.	Micro-F	
Tail-GCN	28.8±1.0 24.4±0.2 30.1±1.3 24.7±1.9		28.7±2.3	24.3 ±3.3	94.2 ±0.2	93.1 ±0.4	

Table 4: Evaluation on tail link prediction.

Methods	Squ	irrel	Ac	tor	CoauthorCS		
Methods	MAP	NDCG	MAP	NDCG	MAP	NDCG	
DeepWalk	29.5±0.9	45.8±0.8	30.0±1.6	46.1±1.3	32.5±1.5	48.2±1.2	
GCN	38.5±0.9	53.2 ± 0.4	33.2 ± 1.2	48.9 ± 0.9	77.7±1.2	83.9 ± 0.8	
Additive	36.4±0.7	51.5±0.5	32.1±0.9	48.1 ± 0.8	77.8 ± 0.2	83.9 ± 0.2	
meta-tail2vec	39.7 ± 0.6	54.2 ± 0.7	33.1±1.0	48.8 ± 0.8	76.0±0.5	82.7 ± 0.2	
Tail-GCN	41.8 ±2.4	$55.9 \!\pm\! 1.3$	35.8 ±2.2	51.1 ±2.0	81.0 ± 0.8	86.1 \pm 0.4	

Figure 4: Ablation study.

COLD BREW: DISTILLING GRAPH NODE REPRESENTATIONS WITH INCOMPLETE OR MISSING NEIGHBORHOODS

Wenqing Zheng^{1,2} Edward W Huang¹, Nikhil Rao¹, Sumeet Katariya¹,
Zhangyang Wang^{1,2}, Karthik Subbian¹

¹Amazon ²The University of Texas at Austin
{wenqzhen, ewhuang, nikhilsr, katsumee, wzhangwa, ksubbian}@amazon.com

ICLR 2022

- Intuition
 - Tail nodes have unreliable or absent neighborhood
- Task definition: Strict Cold Start (SCS)
 - Most public datasets have 3% to 6% isolated nodes
 - Key to truly inductive GNN model
- Motivation & Contribution
 - How to generalize better to tail and SCS nodes?
 - Cold Brew framework is proposed to distill the knowledge of a node-wise Structural Embedding (SE) enhanced GNN teacher model into a MLP student model
 - How to select cold-start-friendly model architecture?
 - A new metric Feature-Contribution Ratio (FCR) is defined to quantify the contribution of node features w.r.t. the adjacency structure in the dataset for a specific downstream task

- Strict Cold Start generalization
 - Prerequisites
 - Given node number N and node embedding dimension d
 - Due to $N\gg d$, the node embeddings form an **overcomplete set** in the d-dimensional space
 - It's possible that any node representation can be cast as a linear combination of $K \ll N$ existing node representations
 - Overall strategy
 - Naïve node-wise MLP is inferior due to its ignorance to graph information
 - Teacher-student knowledge distillation procedure
 - Teacher GNN model embed nodes onto a d-dimensional manifold with structural information
 - Student model learn a mapping from node features and virtual neighborhood to the manifold without access to structural information
 - Note: Unlike traditional knowledge distillation task, Cold Brew aims to train a student model better than the teacher under tail and SCS task setting, where GNN-based teacher model usually fails

- Strict Cold Start generalization
 - Teacher model: Structural Embedding Enhanced GNN (GCN for example)
 - SE-GNN enables each node to encode self and neighbors' label information into its own embedding
 - Structural embedding can avoid over-smoothing

$$\mathbf{X}^{(l+1)} = \sigma\left(\tilde{A}\left(\mathbf{X}^{(l)}\mathbf{W}^{(l)} + \mathbf{E}^{(l)}\right)\right), \mathbf{X}^{(l)} \in \mathbb{R}^{N \times d_1}, \mathbf{W}^{(l)} \in \mathbb{R}^{d_1 \times d_2}, \mathbf{E}^{(l)} \in \mathbb{R}^{N \times d_2}$$
$$loss = CE(\mathbf{X}_{train}^{(L)}, \mathbf{Y}_{train}) + \eta \|\mathbf{E}\|_2^2$$

- Student MLP model
 - The first MLP aims to mimic the node embedding generated by GNN teacher
 - The second MLP aims to transform both target node feature and <u>virtual neighborhood</u> into the embedding of interest

(a) The teacher-student knowledge distillation of the Cold Brew framework under the cold start setting.

- Strict Cold Start generalization
 - Student MLP model
 - Given embedding of interest \bar{E} , the first MLP will learn a mapping from input node feature to \bar{E} , s.t. $\xi_1 \colon x_i^{(0)} \to e_i, e_i = \bar{E}[i,:]$
 - \bar{E} can be the final output of teacher GNN, s.t. $\bar{E} \in R^{N \times d_{out}}$
 - \bar{E} can also be the concatenation of all intermediate results of teacher GNN, s.t. $\bar{E} \in R^{N \times (d_{out} + d_{hidden} * (L-1))}$

- Cold Brew
 - Strict Cold Start generalization
 - Student MLP model
 - Virtural neighborhood discovery based on self-attention
 - $\Theta_K(\cdot)$ is the **top-K hard thresholding operator**
 - Every node embedding, whether or not seen previously, can be decomposed as a linear combination of the given overcomplete basis

$$\tilde{e}_i = softmax(\Theta_K(e_i\bar{\mathbf{E}}^\top))\bar{\mathbf{E}}$$

- The second MLP will learn mapping ξ_2 : $[x_i, e_i] \rightarrow y_i$
 - y_i is the ground truth or target of interest for node i.

Model interpretation from label smoothing perspective

We cite Theorem 1 in [36]: Suppose that the latent ground-truth mapping from node features to node labels is differentiable and L-Lipschitz. If the edge weights a_{ij} approximately smooth \mathbf{x}_i over its immediate neighbors with error ϵ_i , i.e., $\mathbf{x}_i = \frac{1}{d_{ii}} \sum_{j \in \mathcal{N}} a_{ij} \mathbf{x}_j + \epsilon_i$, then the a_{ij} also approximately smooth y_i to bound within error $|y_i - \frac{1}{d_{ii}} \sum_{j \in \mathcal{N}_i} a_{ij} y_j| \leq L||\epsilon||_2 + o(\max_{j \in \mathcal{N}_i} (||\mathbf{x}_j - \mathbf{x}_i||_2))$, where $o(\cdot)$ denotes a higher order infinitesimal.

- Errors of label prediction are proportional to the difference of features after neighborhood aggregation
- For teacher model
 - Due to the additional structural embedding, the approximately smoothed x_i can be formalized as $\frac{1}{d_{ii}}\sum_{j\in N}a_{ij}x_j+\bar{E}[:,i]+\epsilon_i$
 - The error ϵ_i can be lowered if \bar{E} is properly learned, allowing higher flexibility and expressiveness
- For student model
 - Without neighborhood aggregation, error ϵ_i will be non-negligible, leading to higher loss in the label prediction
 - Cold Brew mitigate the issue through virtual neighborhood aggregation

- Feature-Contribution Ratio
 - Basic intuition: SCS generalization difficulty is proportional to the contribution ratio of *node features*
 - Two submodules
 - For node features only: an MLP is built to map the self-features to self-labels
 - For adjacency structure only: a Label Propagation (LP) method is adopted to learn representations from self- and neighbor-labels
 - Formalization
 - Given graph dataset G, the contribution of a submodule is defined to be residual performance of the submodule compared to a full-fledged GNN
 - Denote z_{MLP}, z_{LP}, z_{GNN} as the performance of MLP submodule, LP submodule and full GNN on the test set

$$\delta_{MLP} = z_{GNN} - z_{MLP}, \quad \delta_{LP} = z_{GNN} - z_{LP}$$

$$FCR(\mathcal{G}) = \begin{cases} \frac{\delta_{LP}}{\delta_{MLP} + \delta_{LP}} \times 100\% & z_{MLP} \leq z_{GNN} \\ 1 + \frac{|\delta_{MLP}|}{|\delta_{MLP}| + \delta_{LP}} \times 100\% & z_{MLP} > z_{GNN} \end{cases}$$

(b) Four GNN Atomic Components in deciding GNN's output, which are used for FCR analysis.

$$FCR(G) = \begin{cases} [0\%, 50\%) \rightarrow z_{GNN} > z_{LP} > z_{MLP} \\ [50\%, 100\%) \rightarrow z_{GNN} > z_{MLP} > z_{LP} \\ [100\%, +\infty) \rightarrow z_{MLP} > z_{GNN} > z_{LP} \end{cases}$$

- Datasets and splits
 - Head data: top 10% highest degree nodes and induced subgraph
 - Isolation data: nodes correspond to the bottom 10% of the degree distribution, with all the edges artificially removed
 - Tail data: top 10% lowest degree nodes in the remaining graph
 - Overall data: without distinguishing head/tail/isolation

Stats.	Cora	Citeseer	Pubmed	Arxiv	Chameleon	E-comm1	E-comm2	E-comm3	E-comm4
Num. of Nodes	2708	3327	19717	169343	2277	4918	29352	319482	793194
Num. of Edges	13264	12431	108365	2315598	65019	104753	1415646	8689910	22368070
Max Degree	169	100	172	13161	733	277	1721	4925	12452
Mean Degree	4.90	3.74	5.50	13.67	28.55	21.30	48.23	27.20	28.19
Median Degree	4	3	3	6	13	10	21	15	14
Isolated Nodes %	3%	3%	3%	3%	3%	6%	5%	5%	6%

Table 1: The statistics of datasets selected for evaluations.

• Experiment results (FCR evaluation)

	Cora	Citeseer	Pubmed	Arxiv	Cham.	Squ.	Actor	Cornell	Texas	Wisconsin
GNN	86.96	72.44	75.96	71.54	68.51	31.95	59.79	65.1	61.08	81.62
MLP	69.02	56.59	73.51	54.89	58.65	38.51	37.93	86.26	83.33	85.42
Label Propagation	78.18	45.00	67.8	68.26	41.01	22.85	29.69	32.06	52.08	40.62
FCR %	32.86 %	63.39 %	76.91%	16.45%	73.61%	141.91%	57.93%	139.04%	171.2 %	108.48 %
$eta(\mathcal{G})~\%$	83%	71%	79%	68%	25%	22%	24%	11%	6%	16%
head-tail(GNN)	4.44	23.98	11.71	5.9	0.24	-6.51	2.22	-4.37	-11.26	-33.92
head-isolation(GNN)	31.01	33.09	15.21	28.81	1.55	-4.85	22.61	-18.68	-24.62	-29.23

$$\beta(\mathcal{G}) = \frac{1}{|\mathcal{V}|} \sum_{v \in \mathcal{V}} \frac{\text{the number of } v\text{'s direct neighbors that have the same labels as } v}{\text{the number of } v\text{'s directly connected neighbors}} \times 100\%$$

• Cold Brew

• Experiment results (Node classification)

Splits	Me	trics/Models		Ope	n-Source D	atasets			Proprietar	y Datasets	
Spins		ures/woders	Cora	Citeseer	Pubmed	Arxiv	Chameleon	E-comm1	E-comm2	E-comm3	E-comm4
	GNNs	GCN 2 layers GraphSAGE	58.02 66.02	47.09 51.46	71.50 69.87	44.51 47.32	57.28 59.83	+3.89	- +4.81	+5.24	+0.52
	MLPs	Simple MLP GraphMLP	68.40 65.00	53.26 52.82	65.84 71.22	51.03 51.10	60.76 63.54	+5.89 +6.27	+9.85 +9.46	+5.83 + 5.99	+6.42 +7.37
	Cold Brew	GCN + SE 2 layers Student MLP	58.37 69.62	47.78 53.17	73.85 72.33	45.20 52.36	60.13 62.28	+0.27 + 7.56	+0.76 +11.09	-0.50 +5.64	+1.22 + 9.05
Tail GNNs MLPs Cold Brew	GNNs	GCN 2 layers GraphSAGE	84.54 82.82	56.51 52.77	74.95 73.07	67.74 63.23	58.33 61.26	-3.82	-3.07	-2.87	- -6.42
	MLPs	Simple MLP GraphMLP	70.76 70.09	54.85 55.56	67.21 71.45	52.14 52.40	50.12 52.84	-0.37 -0.33	+1.74 +1.64	-0.13 +1.27	-0.45 +0.80
	Cold Brew	GCN + SE 2 layers Student MLP	84.66 71.80	56.32 54.88	75.33 72.54	68.11 53.24	60.80 51.36	+0.85 +0.32	+0.44 + 3.09	-0.60 -0.18	+1.10 +2.09
	GNNs	GCN 2 layers GraphSAGE	88.68 87.75	80.37 74.81	85.79 86.94	73.35 70.85	67.49 62.08	-4.26	- -4.17	-3.50	- -7.46
Head	MLPs	Simple MLP GraphMLP	74.33 72.45	72.00 69.83	89.00 89.00	56.34 56.65	60.82 62.44	-16.74 -15.96	-18.10 -18.08	-16.73 -15.33	-16.51 -15.41
	Cold Brew	GCN + SE 2 layers Student MLP	89.39 74.53	80.76 72.33	87.83 90.33	74.01 57.41	70.56 61.28	+1.11 -15.28	+0.47 -17.42	-0.39 -17.02	+1.28 -15.41
	GNNs	GCN 2 layers GraphSAGE	84.89 80.90	70.38 66.21	78.18 76.73	71.50 68.33	59.30 70.02	-3.09	- -3.86	-2.58	- -5.48
Overall	MLPs	Simple MLP GraphMLP	69.02 71.87	56.59 68.22	73.51 82.03	54.89 53.81	58.65 57.67	-12.69 -12.26	-12.86 -12.01	-12.68 -10.80	-13.16 -11.41
	Cold Brew	GCN + SE 2 layers Student MLP	86.96 72.36	72.44 67.54	79.03 82.00	71.92 54.94	68.51 59.07	+0.65 -11.25	-0.24 -11.51	-0.77 -11.55	+1.43 -11.21

• Cold Brew

• Experiment results

Splits	Models		Datasets							
Spins	Wiodels	Cora	Citeseer	Pubmed	E-comm1					
	GCN 2 layers	34.10	50.41	51.52	_					
Isolation	TailGCN	36.13	51.48	51.19	+2.18					
Isolation	Meta-Tail2Vec	36.92	50.90	51.62	+2.34					
	Cold Brew's MLP	44.59	55.14	54.82	+5.39					

Splits	Models	Datasets							
Spins	Wiodels	Cora	Citeseer	Pubmed	E-comm1				
	GCN 2 layers	58.02	47.09	71.50	_				
Isolation	TailGCN	62.04	51.87	72.10	+3.14				
Isolation	Meta-Tail2Vec	61.16	50.46	71.80	+2.80				
	Cold Brew's MLP	69.62	53.17	72.33	+7.56				

Splits	Metrics/Models		Open-Source Datasets					Proprietary Datasets			
Spires		Cora	Citeseer	Pubmed	Arxiv	Chameleon	E-comm1	E-comm2	E-comm3	E-comm4	
Overall	GCN 64 layers	40.04	23.66	75.65	65.53	58.14	-5.49	-6.59	-6.13	-3.57	
	GCN + SE 64 layers	74.23	46.80	78.12	69.28	59.88	-1.71	-2.92	-3.29	-0.06	
Head	GCN 64 layers	46.46	49.84	85.89	67.53	67.16	-5.60	-6.24	-6.05	-3.16	
	GCN + SE 64 layers	87.38	71.18	86.81	71.35	69.63	-1.78	-2.17	-2.79	-0.35	
Tail	GCN 64 layers	45.14	24.42	71.89	63.91	56.48	-3.85	-3.62	-3.84	-1.14	
	GCN + SE 64 layers	79.56	36.52	74.88	65.19	61.73	-2.42	-2.52	-3.68	-1.23	
Isolation	GCN 64 layers	39.97	22.12	68.57	40.03	57.60	-4.66	-4.63	-4.93	-1.89	
	GCN + SE 64 layers	40.33	24.53	71.22	41.18	60.13	- 3.08	-3.02	-4.00	-2.32	

Other related work

- Sampling bias in skip-gram based node embedding
 - S. Kojaku, et.al. Residual2Vec: Debiasing graph embedding with random graphs. NIPS 2021
 - Inspired by built-in debiasing mechanism in skip-gram negative sampling word2vec, Residual2Vec proposed to **debias from the noise distribution** based on dcSBM random graph to precisely reflect structural information
- Introduce additional heterogeneous information
 - S. Wang, et.al. Privileged Graph Distillation for Cold-Start Recommendation. SIGIR 2021
 - Distill knowledge of user-item-attribute heterogeneous graph into user/item-attribute bipartite graph to generate effective cold-start representation only based on attribute
 - Z. Liu, et.al. Learning Representations of Inactive Users: A Cross Domain Approach with Graph Neural Networks. CIKM 2021
 - With auxiliary **social network signal**, transfer learning is conducted to make cold-start users able to benefit from knowledge of head users
 - J. Zheng, et.al. Multi-view Denoising Graph Auto-Encoders on Heterogeneous Information Networks for Cold-start Recommendation. KDD 2021
 - A meta-path based DGAE is proposed to help tail users make better use of limited semantic information from scarce meta-paths

Conclusion

Background of low degree bias: observation and intuitive causes

Debias Strategy

 Debias with heterogeneous information: (mainstream strategy) HIN-based: MvDGAE

• Debias with heterogeneous information:

☐ Content-based recommendation: Privileged Graph Distillation

Social network/KG enhanced: CD-GNN

• Debias from sampling-level: Residual2vec

Me

(On the rise, under-explored)

Debias from model-level:

Self-supervised learning based: PT-GNN

Meta-learning based: Meta-Tail2Vec

Missing information imputation based: Tail-GNN

Knowledge distillation based: Cold Brew

Thanks!

2022.08