Dual op amp takes absolute difference

Lindo St Angel, Motorola General Systems Sector, Arlington Heights, IL

A traditional implementation of an absolute-difference function comprises a difference circuit followed by an absolute-value circuit; the entire circuit requires at least three op amps. The design problem is complicated in single-supply-only systems, which usually require an artificial ground, typically one-half of the supply. The circuit in Fig 1 takes the absolute value of the difference of two voltages using only two single-supply, ground-referenced op amps. The circuit is designed for dc or low-speed operation.

For the case where $V_1 > V_2$, IC_{1A} is disabled because diode D_1 is off. IC_{1B} and its associated resistors form a classic difference circuit where

$$V_{OUT} = (R_2/R_1)(V_1 - V_2).$$

For the case where $V_2 > V_1$, diode D_1 conducts, producing the composite amplifier system made up of both IC_{1A} and IC_{1B} , where

$$V_{OUT} = (R_2/R_1)(V_2 - V_1).$$

Using these two equations, the overall function of the circuit for V_1 and V_2 greater than zero is as follows:

$$V_{OUT} = (R_2/R_1) | (V_1 - V_2) |$$
.

The circuit was built and tested with $R_1\!=\!10~k\Omega$ and $R_2\!=\!220~k\Omega$. For $V_2\!>\!V_1$, the composite amplifier system has poor phase margin and is unstable. Thus, the circuit compensates the loop with the dominant pole formed by R_3 and C_1 . At a gain of 22 and a desired response time of about 300 μsec (the 10 to 90% rise time when V_2 becomes 0.1V greater than V_1), values of $R_3\!=\!56~k\Omega$ and $C_1\!=\!850~pF$ produced the best empirical results. R_3 and C_1 will vary, depending on the required speed of the response and the closed-loop gain.

Also, when $V_2 > V_1$, the output of IC_{1A} becomes a function of the factor $2V_2 - V_1$. Thus, IC_{1A} may saturate for large values of V_2 . The factor's upper limit is as follows, where V_{SAT} is the saturation voltage for IC_{1A} :

$$(2V_2 - V_1) < V_{SAT}(R_1 + R_2)/R_2$$
.

For the LM2902 operating from 5V, V_{SAT} is approximately 3.5V. This last equation also implicitly sets a common-mode voltage (V_{CM}) limitation. You can see this limitation by setting $V_1 = V_2 = V_{CM}$ and allowing the factor ($2V_2 - V_1$) to reduce to V_{CM} .

EDN BBS /DI_SIG #1168

EDN

To Vote For This Design, Circle No. 303

Fig 1—Using single-supply, ground-referenced op amps, this circuit accomplishes an absolute difference function.