High-Dimensional Probability

Lectured by Hao Ge

LATEXed by Chengxin Gong

September 19, 2023

Contents

0	Appetizer	2
1	Preliminaries on random variables	2
2	Concentration of sums of independent random variables	2

0 Appetizer

- Convex combination: For $z_1, z_2, \dots, z_m \in \mathbb{R}^n$, the form of $\sum_{i=1}^m \lambda_i z_i$ with $\lambda_i \geq 0, \sum_{i=1}^m \lambda_i = 1$. Convex hull of $T \subset \mathbb{R}^n$: conv $(T) = \{\text{convex combinations of } z_1, \dots, z_m \in T, m \in \mathbb{N}\}.$
- Caratheodory's theorem: Every point in the convex hull of a set $T \subset \mathbb{R}^n$ can be expressed as a convex combination of at most n+1 points from T.
- Approximate Caratheodory's theorem: Consider $T \subset \mathbb{R}^n$, diam $(T) = \sup\{||s-t||_2, s, t \in T\} < 1$. Then for any $x \in \text{conv}(T)$ and any k, one can find points $x_1, x_2, \dots, x_k \in T$ such that $||x \frac{1}{k} \sum_{i=1}^k x_i||_2 \leq \frac{1}{\sqrt{k}}$ (repetition is allowed).

Proof WLOG assume
$$||t||_2 \le 1, \forall t \in T$$
. Fix $x \in \text{conv}(T), x = \sum_{i=1}^m \lambda_i z_i, z_i \in T$. Define $Z, \mathbb{P}(Z = z_i) = \lambda_i, \mathbb{E}Z = x$. Consider i.i.d. Z_1, Z_2, \dots of $Z, \frac{1}{n} \sum_{j=1}^n Z_j \to x$ a.s. $n \to +\infty$. $\mathbb{E}||x - \frac{1}{k} \sum_{j=1}^k Z_j||_2^2 = \frac{1}{k^2} \sum_{j=1}^k \mathbb{E}||Z_j - x||_2^2 = \frac{1}{k^2} \sum_{j=1}^k (\mathbb{E}||Z_j||^2 - ||\mathbb{E}Z_j||_2^2) \le \frac{1}{k} \Rightarrow \exists$ a realization of Z_1, \dots, Z_k such that $||x - \frac{1}{k} \sum_{j=1}^k Z_j||_2 \le \frac{1}{\sqrt{k}}$. □

• Corollary (Covering polytopes by balls): P is a polytope in \mathbb{R}^n with N vertices, diam $(P) \leq 1$. Then P can be covered by at most $N^{\lfloor 1/\epsilon^2 \rfloor}$ Euclidean balls of radii $\epsilon > 0$.

1 Preliminaries on random variables

- Jensen's inequality: convex ϕ , $\phi(\mathbb{E}X) \leq \mathbb{E}\phi(X)$. $\Rightarrow ||X||_{L^p} \leq ||X||_{L^q}$ for $p \leq q$.
- Minkowski inequality: $p \ge 1, ||X + Y||_{L^p} \le ||X||_{L^p} + ||Y||_{L^p}$.
- Cauchy-Schwarz inequality: $\mathbb{E}|XY| \leq ||X||_{L^2}||Y||_{L^2}$.
- Holder inequality: $p, q \in (1, +\infty), \frac{1}{p} + \frac{1}{q} = 1 \text{ or } p = 1, q = \infty, \mathbb{E}||XY|| \le ||X||_{L^p}||Y||_{L^q}.$
- $X \ge 0$, then $\mathbb{E}X = \int_0^{+\infty} \mathbb{P}(X > t) dt$.
- Markov inequality: $X \ge 0, t > 0, \mathbb{P}(X \ge t) \le \frac{\mathbb{E}X}{t}$.
- LLN: X_1, \dots, X_n, \dots i.i.d., $\mathbb{E}X_i = \mu, \operatorname{Var}(X_i) = \sigma^2, S_N = X_1 + X_2 + \dots + X_N$. Then: (WLLN) $\mathbb{P}(|\frac{S_N}{N} \mu| > \epsilon) \to 0, \forall \epsilon > 0$; (SLLN) $\mathbb{P}(\frac{S_N}{N} \to \mu, N \to +\infty) = 1$.
- CLT: $Z_N = \frac{S_N \mathbb{E}S_N}{\sqrt{\operatorname{Var}(S_N)}} \xrightarrow{d} \mathcal{N}(0, 1).$
- $X_{N,i}, 1 \leq i \leq N$ independent $\operatorname{Ber}(p_{N,i}), \max_{i \leq N} p_{N,i} \to 0, S_N = \sum_{i=1}^N X_{N,i}, \mathbb{E}S_N \to \lambda < +\infty$. Then $S_N \xrightarrow{d} \operatorname{Poisson}(\lambda)$.

2 Concentration of sums of independent random variables

- Question: N times, $\mathbb{P}(\text{head} \geq \frac{3}{4}N) = ?$ Let S_N be the number of heads, $\mathbb{E}S_N = \frac{N}{2}$, $\text{Var}(S_N) = \frac{N}{4}$. (1) Chebyshev's inequality: $\mathbb{P}(S_N \geq \frac{3}{4}N) \leq \mathbb{P}(|S_N \frac{N}{2}| \geq \frac{N}{4}) \leq \frac{4}{N}$; (2) $Z_N = \frac{S_N \frac{N}{2}}{\sqrt{N/4}}$, expect: $\mathbb{P}(Z_N \geq \sqrt{N/4}) \approx \mathbb{P}(g \geq \sqrt{N/4}) \leq \frac{1}{\sqrt{2\pi}}e^{-N/8}$ where $g \sim \mathcal{N}(0, 1)$.
- For all t > 0, $(\frac{1}{t} \frac{1}{t^3}) \frac{1}{\sqrt{2\pi}} e^{-t^2/2} \le \mathbb{P}(g \sim \mathcal{N}(0, 1) \ge t) \le \frac{1}{t} \frac{1}{\sqrt{2\pi}} e^{-t^2/2}$.
- Berry-Esseen bound: $|\mathbb{P}(Z_N \geq t) \mathbb{P}(g \geq t)| \leq \frac{\rho}{\sqrt{N}}$ where $\rho = \mathbb{E}|X_1 \mu|^3/\sigma^3$. And in general, no improvement since $\mathbb{P}(S_N = \frac{N}{2}) \sim \frac{1}{\sqrt{N}} \Rightarrow \mathbb{P}(Z_N = 0) \sim \frac{1}{\sqrt{N}}$ but $\mathbb{P}(g = 0) = 0$.
- Hoeffding's inequality: X_1, \dots, X_N i.i.d. symmetric Bernoulli $(\mathbb{P}(X=1) = \mathbb{P}(X=-1) = \frac{1}{2}), a = (a_1, \dots, a_N) \in \mathbb{R}^N$. Then $\forall t \geq 0, \mathbb{P}(\sum_{i=1}^N a_i X_i \geq t) \leq e^{-t^2/2||a||_2^2}, \mathbb{P}(|\sum_{i=1}^N a_i X_i \geq t|) \leq 2e^{-t^2/2||a||_2^2}$.

Proof WLOG,
$$||a||_{2}^{2} = 1$$
. For $\lambda > 0$, $\mathbb{P}(\sum_{i=1}^{N} a_{i}X_{i} \geq t) = \mathbb{P}(e^{\lambda \sum a_{i}X_{i}} \geq e^{\lambda t}) \leq e^{-\lambda t}\mathbb{E}e^{\lambda \sum_{i=1}^{N} a_{i}X_{i}} = e^{-\lambda t}\prod_{i=1}^{N}\mathbb{E}e^{\lambda a_{i}X_{i}} = e^{-\lambda t}\prod_{i=1}^{N}e^{\lambda^{2}a_{i}^{2}/2} = e^{-\lambda t + \frac{\lambda^{2}}{2}} \Rightarrow \mathbb{P}(\sum_{i=1}^{N} a_{i}X_{i} \geq t) \leq \inf_{\lambda \geq 0}e^{-\lambda t + \frac{\lambda^{2}}{2}} = e^{-\frac{t^{2}}{2}}(\lambda = t)$.

CONCENTRATION OF SUMS OF INDEPENDENT RANDOM VARIABLES

- Bounded r.v.s: X_1, \dots, X_N independent, $X_i \in [m_i, M_i]$. Then $\forall t \geq 0, \mathbb{P}(\sum_{i=1}^N (X_i \mathbb{E}X_i) \geq t) \leq e^{-\frac{2t^2}{\sum_{i=1}^N (M_i m_i)^2}}$.
- Chernoff's inequality: $X_i \sim \text{Ber}(p_i)$ independent, $S_N = \sum_{i=1}^N X_i, \mu = \mathbb{E}S_N \Rightarrow \forall t > \mu, \mathbb{P}(S_N \geq t) \leq e^{-\mu} (\frac{e\mu}{t})^t$. $Proof \ \mathbb{P}(S_N \geq t) \leq e^{-\lambda t} \prod_{i=1}^N \mathbb{E}e^{\lambda X_i}. \ \mathbb{E}e^{\lambda X_i} = e^{\lambda}p_i + (1-p_i) = 1 + (e^{\lambda}-1)p_i \leq e^{(e^{\lambda}-1)p_i} \Rightarrow \mathbb{P}(S_N \geq t) \leq e^{-\lambda t}e^{(e^{\lambda}-1)\mu}.$ Take $\lambda^* = \log(t/\mu)$.
- d = (n-1)p is the expected degree. There is an absolute constant C s.t. for G(n,p), $d \ge C \log n$. Then with high prob (for example 0.9), all vertices of G have degrees between 0.9d and 1.1d.

Proof Ex $2.3.5 \Rightarrow \mathbb{P}(|d_i - d| \ge \delta d) \le 2e^{-c\delta^2 d}$. Union bound: $\mathbb{P}(\exists i, |d_i - d| \ge \delta d) \le n \cdot 2e^{-c\delta^2 d} \le n \cdot 2 \cdot \dots \cdot n^{-Cc\delta^2} = 2n^{1-Cc\delta^2} \le 1-p^*$ (let $Cc\delta^2 > 1$).

• Sub-gaussian properties: The following are equivalent: (i) $\mathbb{P}(|X| \geq t) \leq 2e^{-t^2/k_1^2}$ for all $t \geq 0$; (ii) $|X||_{L^p} = (\mathbb{E}|X|^p)^{1/p} \leq k_2\sqrt{p}$ for all $p \geq 1$; (iii) $\mathbb{E}e^{\lambda^2X^2} \leq e^{k_3^2\lambda^2}$ for all λ s.t. $|\lambda| \leq \frac{1}{k_3}$; (iv) $\mathbb{E}e^{X^2/k_4^2} \leq 2$; (v) $\mathbb{E}e^{\lambda X} \leq e^{k_5^2\lambda^2}$, for all $\lambda \in \mathbb{R}$ (if $\mathbb{E}X = 0$).

Proof (i) \Rightarrow (ii): WLOG $k_1 = 1$. $\mathbb{E}|X|^p = \int_0^{+\infty} \mathbb{P}(|X| \ge t) pt^{p-1} dt \le \int_0^{+\infty} 2e^{-t^2} pt^{p-1} dt = p\Gamma(\frac{p}{2}) \int_0^{\Gamma(x) \le 3x^x} for x \ge \frac{1}{2} 3p(\frac{p}{2})^{p/2} \Rightarrow |X||_p \le \frac{1}{\sqrt{2}} (3p)^{1/p} p^{1/2} \le 3\sqrt{p}.$

 $\begin{array}{ll} \text{(ii)} \Rightarrow \text{(iii): WLOG } k_2 = 1. \ \mathbb{E}e^{\lambda^2X^2} = \mathbb{E}[1+\sum_{p=1}^{+\infty}\frac{(\lambda^2X^2)^p}{p!}]. \ \mathbb{E}|X|^{2p} \leq (2p)^p, \\ p! \geq (\frac{p}{e})^p \Rightarrow \mathbb{E}e^{\lambda^2X^2} \leq 1+\sum_{p=1}^{+\infty}\frac{(2\lambda^2p)^p}{(\frac{p}{e})^p} = \frac{1}{1-2e\lambda^2} \\ \text{(if } 2e\lambda^2 < 1) & \leq e^{2x} \text{ for } x \in [0,\frac{1}{2}] \\ & \leq e^{4e\lambda^2} \text{ (if } 2e\lambda^2 \leq 1/2 \Leftrightarrow \lambda \leq \frac{1}{2\sqrt{e}}). \end{array}$

(iii) \Rightarrow (iv): trivial.

(iv) \Rightarrow (i): $\mathbb{P}(|X| \ge t) = \mathbb{P}(e^{X^2} \le e^{t^2}) \le e^{-t^2} \mathbb{E}e^{X^2} \le 2e^{-t^2}$.

(iii) \Rightarrow (v): WLOG $k_3 = 1$. If $|\lambda| \le 1$, then $\mathbb{E}e^{\lambda X} \le \mathbb{E}(\lambda X + e^{\lambda^2 X^2}) = \mathbb{E}e^{\lambda^2 X^2} \le e^{\lambda^2}$. If $|\lambda| \ge 1$, then $\mathbb{E}e^{\lambda X} \le e^{\frac{\lambda^2}{2}} \mathbb{E}e^{\frac{X^2}{2}} e^{\frac{\lambda^2}{2}} e^{\frac{\lambda^2}{2}} \le e^{\lambda^2}$.

 $(v) \Rightarrow (i)$: mimic the proof of $(iv) \Rightarrow (i)$.

• Sub-gaussian r.v.: satisfy the above sub-gaussian properties. $||X||_{\psi_2} = \inf\{t > 0 : \mathbb{E}e^{\lambda^2/t^2} \le 2\}.$