Hybridisation & Shapes of Organic Molecules

- Q.1. Butyne-2 contains:
 - a) sp hybridised carbon atoms only
 - b) SP³ hybridised carbon atoms only
 - c) both sp and SP² hybridised carbon atoms
 - d) both sp and SP3 hybridised carbon atoms
- Q.2. Which one of the following has the shortest carbon carbon bond length?
 - a) Benzene
 - b) Ethene
 - c) Ethyne
 - d) Ethane
- Q.3. The compound which contains all the four 1°, 2°, 3° and 4° carbon atoms is
 - a) 2, 3-dimethylpentane
 - b) 3-chloro-2, 3-dimethylpentane
 - c) 2, 3, 4-trimethylpentane
 - d) 3, 3- dimethylpentane
- Q.4. . In which of the following, the bond length between two carbons is equal
- a) 2- Butene
- b) 1- Butene
- c) Propyne
- d) Benzene
- Q.5. . As the s character of hybrid orbital increases, the bond angle
 - a) increases
 - b) decreases
 - c) does not change
 - d) becomes zero

b)

c)

٩)

Q.7. The change in the state of hybridization of the asterisked carbon in the following reaction is

 $CH_3 \stackrel{*}{C}N \xrightarrow{H_2O} CH_3 \stackrel{*}{C}ONH_2$

- a) sp³ to sp²
- b) sp³ to sp
- c) sp to sp²
- d) $sp^2 to sp^3$
- Q.8. The restricted rotation about carbon carbon double bond in 2-butene is due to
 - a) Overlap of one s and sp² hybridized orbitals
 - b) Overlap of two sp² hybridized orbitals
 - C) Overlap of one p and one sp² hybridized orbitals
 - d) Sideways overlap of two p orbitals

- Q.9. The number of σ and π bonds in but-1-ene-3-yne are a) 5σ and 5π b) 7σ and 3π c) 8σ and 2π d) 8σ and 4π
- Q.10. Unpaired electron in CH₃ occupies
 - a) sp hybrid orbital
 - b) SP³ hybrid orbital
 - c) p orbital
 - d) SP2 hybrid orbital
- Q.11. The C-H bond length is minimum in the bond formed by
 - a) sp-s overlapping (as in alkynes)
 - b) sp²-s overlapping (as in alkenes)
 - c) sp³-s overlapping (as in alkanes)
 - d) None of these
- Q.12. Allyl isocyanide has
 - a) 9σ and 4π bonds
 - b) 8σ and 5π bonds
 - c) 9σ , 3π and 2 non-bonded electrons
 - d) 8σ , 3π and 4 non bonded electrons
- Q.13. The structure of $H_2C = C = CH_2$ is
 - a) linear
 - b) planar
 - c) non-planar
 - d) has several resonance structures
- Q.14.Of the following compounds which will have a zero dipole moment?
 - a) 1, 1 dichloroethylene
 - b) Trans -1, 2 dichloroethylene
 - c) Cis 1, 2 dichloroethylene
 - d) None of these
- Q.15.During elimination reactions, the hybrid state of carbon atoms involved change as shown below:
 - a) sp³ to sp² nature
 - b) sp³ to sp nature
 - c) No change in hybridised state
 - d) Either (a) or (b)

 Q.16.In allene (C₃H₄), the type(s) of hybridisation of the carbon atoms is (are): a) sp and sp³ b) sp and sp² c) only sp³ d) sp² and sp³
 Q.17.Which one of the following does not have sp² hybridized carbon? a) Acetonitrile b) Acetic acid c) Acetone d) Acetamide
 Q.18.The restricted rotation about carbon carbon double bond in 2-butene is due to a) Overlap of one s- and sp²- hybridized orbitals b) Overlap of two sp²- hybridized orbitals c) Overlap of one p- and one sp²- hybridized orbitals d) Sideways overlap of two p- orbitals
 Q.19.The shortest C – C bond distance is found in a) Diamond b) Ethane c) Benzene d) Acetylene
Q.20.The Cl – C – Cl angle in 1,1,2,2- tetrachloroethene and tetrachloromethane respectively will be about a) 120° b) 90° and 109.5° c) 109.5° and 90° d) 120° and 109.5°
Q.21.Cyclic hydrocarbon 'A' has all the carbon and hydrogen atoms in a single plane. All the carbon carbon bonds have the same length, less than 1.54 Å, but more than 1.34 Å. The C – C – C bond angle will be a) 109°28' b) 100° c) 180° d) 120°
Q.22.Huckel's rule states that a monocyclic conjugated compound will be aromatic if it contains a) $(4n + 2\pi)$ electrons b) $(4\pi + 2n)$ electrons

c) 4π electrons

d) $(4n + 2)\pi$ electrons

Q.23. The maximum number of carbon atoms arranged linearly in the molecule
a) 2
b) 3
c) 4
d) 5
Q.24. In which of the following species, all types of hybrid carbons are present

- - a) $CH_2 = C = CH_2$
 - b) CH₃-CH=CH-CH₂⁺
 - c) $CH_3-C\equiv C-CH_2^+$
 - d) CH₃-CH=CH-CH₂⁻
- Q.25. How many primary carbon atoms are there in
- $CH_3CH_2CH(CH_3)C(CH_3)_2CH_2CH_2CH_3\ ?$
 - a) 3
 - b) 4
 - c) 5
 - d) 6