

Decoding and Analyzing Medical Data

Medical Insurance Fraud Detection

Sirui Li(sl4653) & Xiaoli Sun(xs2338)

Background

\$3.65T

Health Care Cost

2018 CMS report US Health Care Cost 3-10%

Fraud Percentage

Investigated by FBI and Insurance Company

\$110B

Medical Fraud

Conservatively Annual Estimate Lost

Goals

- Predict potential illness with similar patient retrieval
- Early-stage treatment recommendation for prevention
- Visualization platform for health providers
- (Potential) Anomaly Fraud Detection

Our Dataset

- MIMIC-III (Medical Information Mart for Intensive Care III) Critical Care Database
- Health data from over 40K ICU patients of the Beth Israel Deaconess Medical Center (2001-2012)
- Large dataset(60G), consisting of 40 tables,
 534 columns and 700M rows
- Preliminary categorizing by diseases ICD-9 codes
- Google Cloud Platform

- List of ICD-9 codes 290–319: mental disorders
- List of ICD-9 codes 320–389: diseases of the nervous system and sense organs
- List of ICD-9 codes 390–459: diseases of the circulatory system
- List of ICD-9 codes 460-519: diseases of the respiratory system

Previous Research

Fig. 3. Progression analysis includes three major steps: (1) event representation estimation, (2) sequence alignment, and (3) sequence segmentation.

Provide visualisation methods

Give algorithms for core steps

Our Project - Workflow

Dataset

Preprocessing

Event Sequence

ICD-9
NLP
Computable vector

Event Representation

Event Sequence Alignment —

Event Sequence Segmentation

Unsupervised Machine

→ Learning

Algorithms

RNN

Our Project - Data Cleaning

ICD-9 code vector

Related work: Medical prescription classification: a NLP-based approach

Our Project - Event Sequences Generation

The Biggest Challenge:

Challenge: It's hard to find such an embedding matrix. We're still working on it...

Our Project - Prediction & Recommendation

Challenge:

the reliance upon fixed-width time intervals

Stage 2 Similar Patient Retrieval

Technical Challenge

01

Data Cleaning

40 Tables
How to connect and clean

03

Event Sequence Generation

Find latent space and embedding matrix

02

Medical Terminology

Crawl information from Wiki to create knowledge graph

04

Anomaly Detection

Implementation of real-world fraud data

Novelty and Value

Insurance Company

Decrease Cost of Business

Health Provider

Visualization Platform
Prediction and Prevention
More Efficient Procedure

Government

Help to Fight Against Crimes
Automated Fraud Detection

Consumer

Avoid Financial Lost Lower Insurance Premium Higher Survival Rate

Scientist

Apply Algorithms in Other Fields

More?

Longer Life Expectancy
OECD Better Life Index

Milestones Plan

Milestone 1

Related Work Study
Dataset Select
Proposal
Data Clean

Milestone 2

Model Build Disease Predict Treatment Recommend (Anomaly Detect)

Milestone 3

Broaden Implementation Accuracy Test

Final

Visualization Demo Report & Video

Citation

- https://www.cms.gov/Research-Statistics-Data-and-Systems/Statistics-Trends-and-Reports/NationalHealthExpendData/Downloads/ForecastSummary.pdf
- https://www.researchgate.net/publication/336071394_Medical_prescription_classification_a_NLP-based_approach
- https://en.wikipedia.org/wiki/List_of_ICD-9_codes
- http://gotz.web.unc.edu/files/2018/08/2018_VAST_EventThread_ V2_Preprint.pdf
- http://www.nature.com/articles/sdata201635
- http://www.cs.umd.edu/hcil/trs/2012-06/2012-06.pdf