

Gowin USB 2.0 Device Controller IP

User Guide

IPUG927-1.5E, 04/27/2023

Copyright © 2023 Guangdong Gowin Semiconductor Corporation. All Rights Reserved.

GOWIN is a trademark of Guangdong Gowin Semiconductor Corporation and is registered in China, the U.S. Patent and Trademark Office, and other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders. No part of this document may be reproduced or transmitted in any form or by any denotes, electronic, mechanical, photocopying, recording or otherwise, without the prior written consent of GOWINSEMI.

Disclaimer

GOWINSEMI assumes no liability and provides no warranty (either expressed or implied) and is not responsible for any damage incurred to your hardware, software, data, or property resulting from usage of the materials or intellectual property except as outlined in the GOWINSEMI Terms and Conditions of Sale. GOWINSEMI may make changes to this document at any time without prior notice. Anyone relying on this documentation should contact GOWINSEMI for the current documentation and errata.

Revision History

Date	Version	Description		
03/05/2021	1.0E	Initial version published.		
01/04/2022	1.1E	PID configuration interface in synchronized mode added.		
		Interface for interface configuration added.		
03/01/2022	1.2E	Data width of descriptors extended.		
		HID function added.		
03/24/2022	1.3E	The description of resource utilization added.		
07/21/2022	1.4E	The description of USB Device Descriptor interface updated.		
04/27/2023	1.5E	ULPI supported.		
		I/O list updated.		

Contents

C	Contents				
L	ist of Figures	vi			
Li	ist of Tables	vii			
1	About This Guide	1			
	1.1 Purpose	1			
	1.2 Related Documents	1			
	1.3 Terminology and Abbreviations	2			
	1.4 Support and Feedback	2			
2	Function Overview	3			
	2.1 Overview	3			
	2.2 Features	3			
	2.3 Resource Utilization	4			
3	Functional Description	5			
	3.1 USB Device Controller	5			
	3.2 USB Device Controller TX User Interface	6			
	3.3 USB Device Controller RX User Interface	7			
	3.4 USB Device Descriptor Interface	8			
	3.5 USB Device Control Interface	10			
	3.5.1 Control Data Interface	10			
	3.5.2 Configuration Data RX Interface	11			
	3.5.3 Configuration Data TX Interface	12			
	3.5.4 Interface for Interface Configuration	13			
4	Signal Description	14			
	4.1 Signal Description	14			
	4.2 Parameter Configuration	18			
5	Interface Configuration	23			

6	Reference Design	25
	6.1 USB Reference Design	. 25
	6.2 USB CDC Driver Installation	. 26
	6.3 Data Transfer Test	. 28

IPUG927-1.5E v

List of Figures

-igure 3-1 USB Device Controller Block Diagram	5
Figure 3-2 USB Device Controller Data Transmit Timing Diagram	7
Figure 3-3 USB Device Controller Data Receive Timing Diagram	8
Figure 3-4 USB Device Controller Descriptor Read Timing Diagram	9
Figure 3-5 USB Device Controller Control Data Receive Timing Diagram	10
Figure 3-6 USB Device Controller Control Endpoint Data Receive Timing Diagram	11
Figure 3-7 USB Device Controller Control Endpoint Data Transmit Timing Diagram	13
Figure 5-1 IP Core Generator	23
Figure 5-2 USB 2.0 Device Controller IP Core	24
Figure 5-3 USB 2.0 Device Controller Configuration Interface	24
Figure 6-1 USB 2.0 Device Controller Reference Design Block Diagram	25
Figure 6-2 Search USB Device	26
Figure 6-3 Select USB Device	26
Figure 6-4 Zadig WinUSB Driver Installation	27
Figure 6-5 Zadig CDC Driver Installation	27
Figure 6-6 Select Serial Device in Serial Debugging Assistant	28
Figure 6-7 Serial Data Loopback Test	28

IPUG927-1.5E

List of Tables

Table 1-1 Terminology and Abbreviations	2
Table 2-1 Gowin USB 2.0 Device Controller IP Overview	3
Table 2-2 Resource Utilization (I)	4
Table 2-3 Resource Utilization (II)	4
Table 3-1 Device Controller TX User Interface	6
Table 3-2 Device Controller RX User Interface	7
Table 3-3 Device Descriptor Interface	8
Table 3-4 Control Interface	.10
Table 3-5 Configuration Data RX Interface	. 11
Table 3-6 Configuration Data TX Interface	.12
Table 3-7 Inferface for Interface Configuration	. 13
Table 4-1 Signal Description	.14
Table 4-2 Configuration Options	. 18

IPUG927-1.5E vii

1 About This Guide 1.1 Purpose

1 About This Guide

1.1 Purpose

The purpose of Gowin USB 2.0 Device Controller IP User Guide is to help you learn the features and usage of Gowin USB 2.0 Device Controller IP by providing the descriptions of functional description, signal description and interface configuration, etc.

1.2 Related Documents

The latest user guides are available on the GOWINSEMI Website. You can find the related documents at: http://www.gowinsemi.com.

- DS100, GW1N series of FPGA Products Data Sheet
- DS117, GW1NR series of FPGA Products Data Sheet
- DS891, GW1NRF series of FPGA Products Data Sheet
- DS821, GW1NS series of FPGA Products Data Sheet
- DS871, GW1NSE series of FPGA Products Data Sheet
- DS881, GW1NER series of FPGA Products Data Sheet
- DS861, GW1NSR series of FPGA Products Data Sheet
- DS102, GW2A series of FPGA Products Data Sheet
- DS226, GW2AR series of FPGA Products Data Sheet
- SUG100, Gowin Software User Guide

IPUG927-1.5E 1(28)

1.3 Terminology and Abbreviations

The terminology and abbreviations used in this manual are as shown in Table 1-1.

Table 1-1 Terminology and Abbreviations

Terminology and Abbreviations	Meaning
FS	High Speed
HID	Human Interface Device
HS	High Speed
IP	Intellectual Property
LS	Low Speed
PID	Packet ID
ULPI	UTMI+ Low Pin Interface
USB	General Serial Bus
UTMI	USB 2.0 Transceiver Macrocell Interface

1.4 Support and Feedback

Gowin Semiconductor provides customers with comprehensive technical support. If you have any questions, comments, or suggestions, please feel free to contact us directly by the following ways.

Website: www.gowinsemi.com

E-mail: support@gowinsemi.com

IPUG927-1.5E 2(28)

2 Function Overview 2.1 Overview

2 Function Overview

2.1 Overview

Universal Serial Bus, commonly known as USB, is a kind of external bus to standardize the connection and communication between computers and external devices.

Based on USB 2.0 Protocol, Gowin USB 2.0 Device Controller IP supports three modes, including High Speed (HS), Full Speed(FS) and Low Speed(LS). It also supports Control Transaction, Bulk Transaction, Isochronous Transaction, Interrupt Transaction, and UTMI. Gowin USB 2.0 Device Controller IP can realize up to 15 IN/OUT data transfer endpoints, where each endpoint supports Bulk Transaction, Isochronous Transaction and Interrupt Transaction. The IP has two ends, including UTMI and parallel data interface. It connects to USB PHY through UTMI and user design through parallel data interface.

Table 2-1 Gowin USB 2.0 Device Controller IP Overview

Gowin USB 2.0 Device Controller IP				
Logic Resource	Please refer to Table 2-2 and Table 2-3.			
Delivered Doc.				
Design Files	Verilog (encrypted)			
Reference Design	Verilog			
TestBench	Verilog			
Test and Design Flow				
Synthesis Software	GowinSynthesis			
Application Software	Gowin Software (V1.9.9 Beta and above))			

Note!

For the devices supported, you can click **here** to get the information.

IPUG927-1.5E 3(28)

2 Function Overview 2.2 Features

2.2 Features

The features of USB 2.0 Device Controller IP include:

- Supports HS (480 Mbps), FS (12 Mbps), LS (1.5 Mbps)
- Supports 1 control IN/OUT endpoint and 15 data IN/OUT endpoints
- Supports multiple USB devices
- Supports USB 2.0 UTMI and ULPI

2.3 Resource Utilization

Gowin USB 2.0 Device Controller IP can be implemented by Verilog. Its resource utilization may vary when the design is employed in different devices, or at different densities, speeds, or grades. Taking Gowin GW2AR-18 and GW1NSR-4 series of FPGA ptoducts as an instance, the resource utilization is as shown in Table 2-2 and Table 2-3.

Table 2-2 Resource Utilization (I)

Device	Speed Grade	Resource	Utilization	Notes
GW2AR-18		LUT	1513	-
	-6	REG	478	
		ALU	113	
		BSRAM	0	

Table 2-3 Resource Utilization (II)

Device	Speed Grade	Resource	Utilization	Notes
GW1NSR-4		LUT	1416	
	-6	REG	489	
		ALU	106	
		BSRAM	0	

IPUG927-1.5E 4(28)

3 Functional Description

3.1 USB Device Controller

USB Device Controller is located between User Design and PHY. USB Controller connects user design with PHY in series, receives commands from USB and realizes the data transaction between user design and USB. The functional block diagram of USB device controller is as follow.

Figure 3-1 USB Device Controller Block Diagram

IPUG927-1.5E 5(28)

3.2 USB Device Controller TX User Interface

Table 3-1 Device Controller TX User Interface

Name	I/O	Bit Width	Description	
txact_o	Output	1	Transmitting Work Signal High, indicates that the device is in data transmit state.	
txdat_i	Input	8	Transmitting Data IP transmits this data through the USB interface.	
txdat_len_i	Input	12	The Number of Bytes of Transmitting Data It can be used to control the number of bytes of TX data.	
txiso_pid_i	Input	4	Valid only for synchronous transfer; can be configured as 4'b0011 (DATA0), 4'b1011 (DATA1), 4'b0111 (DATA2) or 4'b1111 (MDATA).	
txcork_i	Input	1	Transmitting Valid Data Indicator Signal Low, indicates that TXDAT is insufficient.	
txpop_o	Output	1	Transmitting Read Signal High, indicates that read next data.	
endpt_o	Output	4	Endpoint Selection Indicator Signal It indicates the current communication endpoint of USB.	

When Device receives IN command transmitted by Host, txact_o signal is set to 1 and endpt_o outputs the endpoint address where Host is going to read data. After txact_o is set, you should check whether the transmitting data of corresponding endpoint is prepared. And if it is not ready, set txcork_i to 1 and do not return the data. If the data is ready, set txcork_i to 0 and set txdat_len_i to the number of data bytes (\leq Max data packet size) that current endpoint can transmit. Txdat_len_i should be maintained during the the process of read data.

Device Controller determines whether to return packets to Host according to the status of txcork_i. If the status of txcork_i is high, it means that the transmitting data is not ready and cannot be transmitted. So Device replies data of length 0 to Host. If txcork_i is low, it indicates that transmitting data is ready and can be transmitted. Controller read the corresponding transmitting data according to the size of txdat_len_i. If

IPUG927-1.5E 6(28)

txpop_o is high, it indicates that the data of txdat_i is read and request to read next data. Device data transmit timing Diagram is as follow.

Figure 3-2 USB Device Controller Data Transmit Timing Diagram

3.3 USB Device Controller RX User Interface

Name I/O Bit Width Description Receiving Work Signal Output High, indicates that the device is in data receive rxact_o state. **Endpoint Selection Indicator Signal** It indicates the current communication endpoint of endpt o Output USB. Receiving Data Output IP will output the data received from the USB rxdat o interface Receive Valid Data Signal Output rxval_o High, indicates that RXDAT is valid. Receive Ready Signal rxrdy_i Input 1 High, indicates that it can receive RXDAT.

Table 3-2 Device Controller RX User Interface

When Device receives OUT command transmitted by Host, Device Controller set rxact_o to 1. It indicates the device is in receive state and endpt_o outputs the endpoint address. After rxact_o is set, you should check the data receive ability of corresponding endpoint. If the endpoint can receive new data, set rxrdy_i to 1. Device Controller transmits data to users through rxdat_o and rxval_o. If the endpoint cannot receive new data,

IPUG927-1.5E 7(28)

set rxrdy_i to 0. Device Controller will not output data. Device data receive timing Diagram is as follow.

Figure 3-3 USB Device Controller Data Receive Timing Diagram

3.4 USB Device Descriptor Interface

Table 3-3 Device Descriptor Interface

Name	I/O	Bit Width	Description
descrom_rdata_i	I	8	USB Device Descriptor Data
descrom_raddr_o	0	16	USB Device Descriptor Address
desc_index_o	0	8	USB Device Descriptor Index
desc_type_o	0	8	USB Device Descriptor Type
desc_dev_addr_i	I	16	Device Descriptor Start Address
desc_dev_len_i	I	8	Device Descriptor Byte Length
desc_qual_addr_i	I	16	Device Qualifier Start Address
desc_qual_len_i	I	8	Device Qualifier Byte Length
desc_fscfg_addr_i	I	16	Device Full Speed Configuration Start Address
desc_fscfg_len_i	I	8	Device Full Speed Configuration Byte Length
desc_hscfg_addr_i	I	16	Device High Speed Configuration Start Address
desc_hscfg_len_i	I	8	Device High Speed Configuration Byte Length
desc_oscfg_addr_i	I	16	Device Other Speed Configuration Start Address
desc_strlang_addr_i	I	16	Device String Descriptor Start Address
desc_strvendor_addr _i	I	16	Device Vendor String Start Address
desc_strvendor_len_i	I	8	Device Vendor String Byte Length

IPUG927-1.5E 8(28)

Name	I/O	Bit Width	Description
desc_strproduct_add r_i	I	16	Device Product String Start Address
desc_strproduct_len_ i	I	8	Device Product String Byte Length
desc_strserial_addr_i	I	16	Device Serial String Start Address
desc_strserial_len_i	I	8	Device Serial String Byte Length
desc_hidrpt_addr_i_	I	16	USB Device DescriptorHID Start Address
desc_hidrpt_len_i	I	16	USB Device DescriptorHID Byte Length
desc_have_strings_i	I	1	High, indicates that string descriptors exist in the device descriptor.

USB Device Controller IP provides device descriptor data input interface, which mainly includes Device Descriptor, Device Qualifier, Device Full Speed Configuration, Device High Speed Configuration, Device Other Speed Configuration, Device String Descriptor, Device Vendor String, Device Product String, Device Serial String; desc_index_o and desc_type_o are used to help distinguish between control descriptors and string descriptors that need to be read. You need to provide the start address and byte length of each part according to storage location of its own device descriptor data, and the data of each part should be saved on consecutive addresses. Based on the address and length provided by the user, the Controller outputs the descriptor data read on descrom_raddr_o after receiving the device descriptor read request transmitted by Host. And the user returns the corresponding descriptor data on descrom_rdata_i. The USB Device Controller IP parameters, Self Power and Descriptor Max Packet Size, should be in line with the settings within the user device descriptor. Device descriptor data read timing diagram is as follow.

Figure 3-4 USB Device Controller Descriptor Read Timing Diagram

IPUG927-1.5E 9(28)

3.5 USB Device Control Interface

3.5.1 Control Data Interface

Table 3-4 Control Interface

Name	I/O	Bit Width	Description
setup_o	Output	1	Active Data Indicator Signal High, indicates that USB configuration data is in active state.
rxval_o	Output	1	Valid Data Indicator Signal High, indicates thatUSB configuration data is valid.
rxdat_o	Output	8	Receiving Data IP will output the data received from the USB interface

Device Controller IP has implemented most of the USB control endpoint functions internally, but for different users in different scenarios, it is difficult to cover all the configuration functions, so the user configuration function is reserved. When Device receives the configuration data packet transmitted by Host, Controller will output the configuration data to users through setup_o, rxval_o, rxdat_o. Device configuration data receive timing diagram is as follow.

Figure 3-5 USB Device Controller Control Data Receive Timing Diagram

IPUG927-1.5E 10(28)

3.5.2 Configuration Data RX Interface

Table 3-5 Configuration Data RX Interface

Name	I/O	Bit Width	Description
rxact_o	Output	1	Receiving Work Signal High, indicates that the device is in data receive state.
rxval_o	Output	1	Valid Data Indicator Signal High, indicates thatUSB configuration data is valid.
rxdat_o	Output	8	Receiving Data IP will output the data received from the USB interface
rxrdy_i	Input	1	Receive Ready Signal High, indicates that it can receive RXDAT.
endpt_o	Output	4	Endpoint Selection Indicator Signal It indicates the current communication endpoint of USB.

After Device receives the configuration data packet transmitted by Host, if the configuration data packet indicates that Host will write configuration data to Device, and the configuration data length is not 0, then in the subsequent Host OUT command, you can receive the configuration data through the RX interface. The device configuration data write timing diagram is as follow.

Figure 3-6 USB Device Controller Control Endpoint Data Receive Timing Diagram

IPUG927-1.5E 11(28)

3.5.3 Configuration Data TX Interface

Table 3-6 Configuration Data TX Interface

Name	I/O	Bit Width	Description
txact_o	Output	1	Transmitting Work Signal High, indicates that the device is in data transmit state.
txdat_i	Input	8	Transmitting Data IP transmits this data through the USB interface.
txval_i	Input	1	Transmitting Valid Data Indicator Signal High, indicates the data users input is valid.
txdat_len_i	Input	12	The Number of Bytes of Transmitting Data It can be used to control the number of bytes of TX data.
txcork_i	Input	1	Transmitting Valid Data Indicator Signal Low, indicates that TXDAT is insufficient.
txpop_o	Output	1	Transmitting Read Signal High, indicates that read next data.
endpt_o	Output	4	Endpoint Selection Indicator Signal It indicates the current communication endpoint of USB.

After Device receives the configuration data packet transmitted by Host, if the configuration data packet indicates that the configuration data can be read from Device, you need to make configuration data ready. Then in the subsequent Host IN command, you can transmit configuration data through TX interface.

If txval_i is set to 1, transmit configuration data through TX; If it is set to 0, return data to Host through IP internal logic. Configuration data transmit timing diagram is as follow.

IPUG927-1.5E 12(28)

Figure 3-7 USB Device Controller Control Endpoint Data Transmit Timing Diagram

3.5.4 Interface for Interface Configuration

Table 3-7 Inferface for Interface Configuration

Name	I/O	Bit Width	Description
inf_alter_i	Input	8	USB interface configuration data input
inf_alter_o	Output	8	USB interface configuration data output
inf_sel_o	Output	8	USB interface configuration selection signal
inf_set_o	Output	1	USB interface configuration update indicator, active-high.

After the Device receives the Set Interface instruction from the Host, inf_sel_o outputs the interface signal to be configured; inf_alter_o outputs the replacement of the interface, and set inf_set_o to a high level.

After the Device receives the Get Interface instruction from the Host, inf_sel_o outputs the interface signal to be read, and then reads the configuration information on inf_alter_i and returns it to the Host.

IPUG927-1.5E 13(28)

4 Signal Description

4.1 Signal Description

The descriptions of Gowin USB 2.0 Device Controller IP signals are as shown in Table 4-1.

Table 4-1 Signal Description

No.	Signal Name	I/O	Data Width	Description	Note
1	clk_i	I	1	Input the clock signal transmitting by PHY, and the frequency must be 60MHz.	
2	reset_i	I	1	Asynchronous reset signal	
3	usbrst_o	0	1	USB Reset Indicator Signal High indicates the detection of USB bus reset.	
4	highspeed_o	0	1	HS Indicator Signal High indicates that the device is in HS mode.	
5	suspend_o	0	1	Suspended Indicator Signal High indicates that the device is suspended.	
6	online_o	0	1	Configuration Indicator Signal High indicates that the device is in configuration state.	
7	txact_o	0	1	Transmitting Work Signal High indicates that the device is in data transmit state.	
8	txdat_i	I	8	Transmitting Data IP transmits this data through the	

IPUG927-1.5E 14(28)

No.	Signal Name	I/O	Data Width	Description	Note
				USB interface.	
9	txval_i	I	1	Transmitting Valid Data Indicator Signal High indicates that the data users input is valid (Only valid when control endpoint transmits data.)	
10	txdat_len_i	I	12	The Number of bytes of Transmitting Data It can be used to control the number of bytes of TX data.	
11	txiso_pid_i	1	4	USB Pakcet ID input in synchronous transfer mode.	
12	txcork_i	ı	1	Transmitting Valid Data Indicator Signal Low indicates that TXDAT is insufficient.	
13	txpop_o	0	1	Transmitting Read Signal High indicates that read next data.	
14	rxact_o	0	1	Receiving Work Signal High indicates that the device is in data receive state.	
15	rxdat_o	0	8	Receiving Data IP will output the data received from the USB interface.	
16	rxval_o	0	1	Receiving Valid Data Signal High indicates that RXDAT is valid.	
17	rxrdy_i	I	1	Receive Ready Signal High indicates that it can receive RXDAT.	
18	rxpktval_o	0	1	Valid Data Package Signal High indicates that RX data package is valid.	
19	setup_o	0	1	Configuration Data Active Indicator Signal High indicates that USB configuration data is in active state.	
20	endpt_o	0	4	Endpoint Selection Indicator Signal	

IPUG927-1.5E 15(28)

No.	Signal Name	I/O	Data Width	Description	Note
				It indicates the communication	
				endpoint that USB selects.	
21	sof_o	0	1	USB Frame Synchronization Signal	
22	inf_alter_i		8	USB interface configuration data	
	IIII_alter_i	'	0	output	
23	inf_alter_o	0	8	USB interface configuration data	
				input	
24	inf_sel_o	0	8	USB interface selection	
25	inf_set_o	0	1	The USB interface configuration	
	550_5			update, active-high.	
26	utmi_dataout_o	0	8	Transmits data to USB PHY.	
27	utmi_txvalid_o	0	1	Valid PHY_DATAOUT Data Indicator	
	aum_strama_6			Signal	
				Operation mode selection signal	
				2'b00: Normal	
				2'b01: No driver	
28	utmi_opmode_o	0	2	2'b10: Disable bit stuffing and NRZI	
				encoding	
				2'b11: Operation of not automatically generating start and end signals	
				Transmitting Mode Selection Signal:	
				2'b00: HS Transfer	
29	utmi_xcvrselect_o	0	2	2'b01: FS Transfer	
20	dum_xovrooicot_c		_	2'b10: LS Transfer	
				2'B11: Reserved	
				Termination Selection:	
30	utmi_termselect_o	0	1	1' b0: HS termination enable	
				1' b1: FS termination enable	
31	utmi_reset_o	0	1	Output reset signal, active-high.	
32	utmi_datain_i	ı	8	Receive data from USB PHY	
				Transmitting Data Ready Signal	
33	utmi_txready_i	ı	1	It indicates that PHY can receive	
				transmitting data.	
34	utmi_rxactive_i	ı	1	Receive Active Signal	
35	utmi_rxvalid_i	ı	1	Receive Enable Signal	

IPUG927-1.5E 16(28)

No.	Signal Name	I/O	Data Width	Description	Note
				Valid PHY_DATAIN Indicator Signal	
36	utmi_rxerror_i	I	1	Receive Error Signal High indicates that an error occurs on receive.	
37	utmi_linestate_i	-	2	Line Status of Receiver 2'b00: SE0 2'b01: "J" 2'b10: "K" 2'b11: SE1	
38	descrom_rdata_i	I	8	USB Device Descriptor Data	
39	descrom_raddr_o	0	16	USB Device Descriptor Address	
40	desc_index_o	0	8	USB Device Descriptor Index	
41	desc_type_o	0	8	USB Device Descriptor Type	
42	desc_dev_addr_i	I	16	Device Descriptor Start Address	
43	desc_dev_len_i	I	16	Device Descriptor Byte Length	
44	desc_qual_addr_i	I	16	Device Qualifier Start Address	
45	desc_qual_len_i	I	16	Device Qualifier Byte Length	
46	desc_fscfg_addr_i	I	16	Device Full Speed Configuration Start Address	
47	desc_fscfg_len_i	I	16	Device Full Speed Configuration Byte Length	USB
48	desc_hscfg_addr_i	I	16	Device High Speed Configuration Start Address	Device Descriptor
49	desc_hscfg_len_i	Ι	16	Device High Speed Configuration Byte Length	
50	desc_oscfg_addr_i	_	16	Device Other Speed Configuration Start Address	
51	desc_strlang_addr_i	I	16	Device String Descriptor Start Address	
52	desc_strvendor_addr_i	I	16	Device Verdor String Start Address	
53	desc_strvendor_len_i	1	16	Device Verdor String Byte Length	
54	desc_strproduct_addr_i	I	16	Device Product String Start Address	
55	desc_strproduct_len_i	1	16	Device Product String Byte Length	
56	desc_strserial_addr_i	1	16	Device Serial String Start Address	

IPUG927-1.5E 17(28)

No.	Signal Name	I/O	Data Width	Description	Note
57	desc_strserial_len_i	I	16	Device Serial String Byte Length	
58	desc_hidrpt_addr_i_	I	16	USB Device Descriptor HID Start Address	
59	desc_hidrpt_len_i	I	16	USB Device Descriptor HID Byte Length	
60	desc_bos_addr_i	I	16	USB Device Descriptor BOS Start Address	
61	desc_bos_addr_i	I	16	USB Device Descriptor BOS Byte Length	
62	desc_have_strings_i	I	1	High indicates that there are string descriptors in the device descriptor.	
63	ulpi_nxt_i	I	1	ULPI indication signal; high indicates that data has been successfully transmitted or received.	
64	ulpi_dir_i	I	1	ULPI direction signal; high: RX, low:	ULPI
65	ulpi_data_io	Ю	8	ULPI bi-directional port	
66	ulpi_stp_o	0	1	ULPI stop signal; data TX and RX interrupt flag, active-high.	

4.2 Parameter Configuration

The parameter configuration of Gowin USB 2.0 Device Controller IP is shown in Table 4-2.

Table 4-2 Configuration Options

Options	Description
Interface	USB controller interface selection, including UTMI and ULPI; UTMI logic resource utilization is less than ULPI; ULPI IO is less than UTMI.
Speed Mode	USB controller speed modes: High Speed, Full Speed, Low Speed.
Self Powered	USB self powered function control
Descriptor Max Packet Size	USB Descriptor Max Packet Size: 8 bytes, 16 bytes, 32 bytes, 64 bytes. Low Speed mode only supports max packet size of 8 bytes.
Endpoint 1 Input Transfer Type	Endpoint transfer types: Bulk Transaction,

IPUG927-1.5E 18(28)

Options	Description
	Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 1 Output Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 2 Input Transfer Type	Endpoint transfer type: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 2 Output Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 3 Input Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 3 Output Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 4 Input Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 4 Output Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 5 Input Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 5 Output Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports

IPUG927-1.5E 19(28)

Options	Description
	Interrupt Transaction.
Endpoint 6 Input Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 6 Output Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 7 Input Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 7 Output Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 8 Input Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 8 Output Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 9 Input Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 9 Output Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 10 Input Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 10 Output Transfer	Endpoint transfer types: Bulk Transaction,

IPUG927-1.5E 20(28)

Options	Description
Туре	Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 11 Input Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 11 Output Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 12 Input Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 12 Output Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 13 Input Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 13 Output Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 14 Input Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 14 Output Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports Interrupt Transaction.
Endpoint 15 Input Transfer Type	Endpoint transfer types: Bulk Transaction, Isochronous Transaction, and Interrupt Transaction. Low Speed mode only supports

IPUG927-1.5E 21(28)

Options	Description
	Interrupt Transaction.
Endpoint 15 Output Transfer	Endpoint transfer types: Bulk Transaction,
Туре	Isochronous Transaction, and Interrupt
	Transaction. Low Speed mode only supports
	Interrupt Transaction.

IPUG927-1.5E 22(28)

5 Interface Configuration

You can start the IP Core Generator via Tools on the menu bar, invoke and configure USB 2.0 Device Controller.

1. Open IP Core Generator

After creating the project, you can click the "Tools" tab in the upper left, select and open the IP Core Generator via the drop-down list, as shown in Figure 5-1.

Figure 5-1 IP Core Generator

2. Open the USB 2.0 Device Controller IP core

Select "Soft IP Core > Interface and Interconnect > USB 2.0 IP", as shown in Figure 5-2. Double click to open the configuration interface.

IPUG927-1.5E 23(28)

Secretary For Control (Characteristics)

Support (Characteristics)

Support

Figure 5-2 USB 2.0 Device Controller IP Core

3. USB 2.0 Device Controller IP Core Configuration Interface

The USB 2.0 Device Controller IP core configuration interface is shown in Figure 5-3. The interface diagram is on the left. The options are on the right.

- You can configure the file name in File Name;
- You can configure the top module name in Module Name;
- You can configure the speed mode, power mode, and endpoint transfer type, etc. in Options.

Figure 5-3 USB 2.0 Device Controller Configuration Interface

IPUG927-1.5E 24(28)

6 Reference Design

6.1 USB Reference Design

This chapter introduces the structure and usage of USB 2.0 Device Controller IP reference design instance. This <u>reference design</u> is a USB-to-UART data loopback design instance. Its basic structure is shown in Figure 6-1.

Figure 6-1 USB 2.0 Device Controller Reference Design Block Diagram

In this design instance, USB is converted into parallel UTMI signal through Gowin USB 1.1 SoftPHY IP module, and USB data packet parsing is completed through USB 2.0 Device Controller, UART Device Descriptor module contains USB device descriptor information internally, UART Config

IPUG927-1.5E 25(28)

Register module receives configuration commands from USB Host to configure UART module parameters, TX/RX FIFO provides data buffer and loopback function.

6.2 USB CDC Driver Installation

You can install the CDC driver on the device through the zadig software as follows.

Open zadig (Administrator permission) and select "List All Devices" in the Options drop-down menu.

Figure 6-2 Search USB Device

Select "USB2Serial" in the device drop-down list box.

Figure 6-3 Select USB Device

After selecting "USB2Serial" device, install WinUSB driver first, then

IPUG927-1.5E 26(28)

click Install Driver. Wait a few moments to complete the installation of the driver for this device interface.

Figure 6-4 Zadig WinUSB Driver Installation

After installing WinUSB driver, then install CDC driver and click "Replace Driver". After the CDC driver is successfully installed, you can control the device with software such as serial assistant.

Figure 6-5 Zadig CDC Driver Installation

IPUG927-1.5E 27(28)

6 Reference Design 6.3 Data Transfer Test

6.3 Data Transfer Test

Open the serial debugging assistant software and select the serial port USB2Serial, as shown in the figure below.

Figure 6-6 Select Serial Device in Serial Debugging Assistant

Connect serial port TXD to RXD for serial data loopback test.

Figure 6-7 Serial Data Loopback Test

IPUG927-1.5E 28(28)

