$N^{\circ}25 p145$

- 1. On a $\lim_{n\to+\infty} \sqrt{n} = +\infty$ et $\lim_{n\to+\infty} n^2 = +\infty$. D'où, par somme, $\lim_{n\to+\infty} \sqrt{n} + n^2 = +\infty$.
- 2. On a $\lim_{n\to+\infty}\frac{1}{n^4}=0$. D'où, par somme, $\lim_{n\to+\infty}3+\frac{1}{n^4}=3$.
- 3. Comme $\frac{4}{3} > 1$ alors $\lim_{n \to +\infty} \left(\frac{4}{3}\right)^n = +\infty$. De plus $\lim_{n \to +\infty} \frac{1}{n^2} = 0$. D'où, par somme, $\lim_{n \to +\infty} \left(\frac{4}{3}\right)^n + \frac{1}{n^2} = +\infty$.
- 4. On a $\lim_{n \to +\infty} \frac{1}{\sqrt{n}} = 0$ et $\lim_{n \to +\infty} -n^3 = -\infty$. D'où, par somme, $\lim_{n \to +\infty} \frac{1}{\sqrt{n}} n^3 = -\infty$.
- 5. Comme $\pi > 1$ alors $\lim_{n \to +\infty} \pi^n = +\infty$. De plus $\lim_{n \to +\infty} n = +\infty$.
- D'où, par somme, $\lim_{n\to+\infty} n + \pi^n = +\infty$. Donc $\lim_{n\to+\infty} -(n+\pi^n) = -\infty$.
- 6. Comme $-1 < \frac{7}{10} < 1$ alors $\lim_{n \to +\infty} \left(\frac{7}{10}\right)^n = 0$. De plus $\lim_{n \to +\infty} n^5 = +\infty$. D'où, par somme, $\lim_{n \to +\infty} -4 + \left(\frac{7}{10}\right)^n + n^5 = +\infty$.

$N^{\circ}27 p145$

- 1. Par somme, on a $\lim_{n\to+\infty} n^5 + 4 = +\infty$ et $\lim_{n\to+\infty} n 3 = +\infty$. D'où, par produit, $\lim_{n\to+\infty} (n^5 + 4)(n-3) = +\infty$.
- 2. Comme $-1 < \frac{185}{192} < 1$, alors $\lim_{n \to +\infty} \left(\frac{185}{192}\right)^n = 0$. D'où, par produit, $\lim_{n \to +\infty} 5 \times \left(\frac{185}{192}\right)^n = 0$.
- 3. Par somme, on a $\lim_{n \to +\infty} 8n 2 = +\infty$ et $\lim_{n \to +\infty} 3 + \frac{1}{\sqrt{n}} = 3$. D'où, par produit, $\lim_{n \to +\infty} (8n 2) \left(3 + \frac{1}{\sqrt{n}} \right) = +\infty$.
- $\begin{array}{l} 4. \ \ \text{Comme} \ \frac{144}{121} > 1, \ \text{alors} \ \lim_{n \to +\infty} \left(\frac{144}{121}\right)^n = +\infty. \\ \\ \text{D'où, par produit, } \lim_{n \to +\infty} -2 \times \left(\frac{144}{121}\right)^n = -\infty. \end{array}$
- 5. Par somme, on a $\lim_{n \to +\infty} 6 n^4 = -\infty$ et $\lim_{n \to +\infty} \frac{1}{n^3} + 7 = 7$. D'où, par produit, $\lim_{n \to +\infty} (6 n^4) \left(\frac{1}{n^3} + 7\right) = -\infty$.
- 6. Par somme, on a $\lim_{n\to+\infty}4-n^7=-\infty$ et $\lim_{n\to+\infty}n^9+1=+\infty$. D'où, par produit, $\lim_{n\to+\infty}(4-n^7)(n^9+1)=-\infty$.

$N^{\circ}31$ p145

1. Par somme, on a $\lim_{n \to +\infty} 3n^2 + 4 = +\infty$ et $\lim_{n \to +\infty} 2n + 2 = +\infty$. On ne peut pas conclure directement.

Mais, pour tout entier naturel
$$n$$
, on a $\frac{3n^2+4}{2n+2} = \frac{n^2\left(3+\frac{4}{n^2}\right)}{n\left(2+\frac{2}{n}\right)} = \frac{n\left(3+\frac{4}{n^2}\right)}{2+\frac{2}{n}}$. Or, par somme,

$$\lim_{n \to +\infty} 3 + \frac{4}{n^2} = 3 \text{ et } \lim_{n \to +\infty} 2 + \frac{2}{n} = 2. \text{ Ainsi, par produit, } \lim_{n \to +\infty} n \left(3 + \frac{4}{n^2} \right) = +\infty. \text{ Donc, par quotient, } \lim_{n \to +\infty} \frac{n \left(3 + \frac{4}{n^2} \right)}{2 + \frac{2}{n}} = +\infty.$$

2. Pour tout entier naturel n, on a $\frac{\left(\frac{7}{5}\right)^n}{\left(\frac{4}{3}\right)^n} = \left(\frac{\frac{7}{5}}{\frac{4}{3}}\right)^n = \left(\frac{21}{20}\right)^n$.

Or, comme
$$\frac{21}{20} > 1$$
, on a $\lim_{n \to +\infty} \left(\frac{21}{20}\right)^n = +\infty$.

3. Pour tout entier naturel n, on a $\frac{2n-4}{7-3n} = \frac{n\left(2-\frac{4}{n}\right)}{n\left(\frac{7}{n}-3\right)} = \frac{2-\frac{4}{n}}{\frac{7}{n}-3}$.

Or, par somme,
$$\lim_{n \to +\infty} 2 - \frac{4}{n} = 2$$
 et $\lim_{n \to +\infty} \frac{7}{n} - 3 = -3$.

Donc, par quotient,
$$\lim_{n \to +\infty} \frac{2 - \frac{4}{n}}{\frac{7}{n} - 3} = \frac{2}{-3} = -\frac{2}{3}$$
.

4. Pour tout entier naturel $n \ge 1$, on a $\frac{12n^2}{5n^7} = \frac{12}{5n^5}$. Or, $\lim_{n \to +\infty} 5n^5 = +\infty$.

Donc, par quotient,
$$\lim_{n \to +\infty} \frac{12}{5n^5} = 0$$
.

5. Pour tout entier naturel n, on a $\frac{\left(\frac{3}{5}\right)^n}{\left(\frac{2}{3}\right)^n} = \left(\frac{\frac{3}{5}}{\frac{2}{3}}\right)^n = \left(\frac{2}{5}\right)^n$.

Or, comme
$$-1 < \frac{2}{5} < 1$$
, on a $\lim_{n \to +\infty} \left(\frac{2}{5}\right)^n = 0$.

6. Pour tout entier naturel n, on a $\frac{n^2-1}{n+1}=\frac{(n+1)(n-1)}{n+1}=n-1$. Donc, par somme, $\lim_{n\to+\infty}n-1=+\infty$.