進捗状況

T1076006 塩貝亮宇

1 目的

- 極小値となる前世代 t_{down} ,
- 極小値となる世代 t_{local}
- 極小値から上昇しだす世代 t_{up} ,

の各々について、

1.1 エネルギー関数

エネルギー関数 $E(\boldsymbol{v}; \boldsymbol{L})$ を描く (2 次元)

- \bullet L
- $E_{P_{model}}\left[\cdot\right]$
- $E_{P_{data}}\left[\cdot\right]$
 - 対角化する
 - 対角化しない

 $3 \times 2 = 6$ 通り。

1.2 ボルツマン分布

ボルツマン分布 P(v; L) を描く。

- \bullet L
- $E_{P_{model}}\left[\cdot\right]$
- $E_{P_{data}}\left[\cdot\right]$
 - 対角化する
 - 対角化しない

 $3 \times 2 = 6$ 通り。

1.3 gibbs sampling

- \bullet L
- $E_{P_{model}}\left[\cdot\right]$
- $E_{P_{data}}\left[\cdot\right]$
 - 対角化する
 - 対角化しない

 $3 \times 2 = 18$ 通り。

2 メモ

- KL 情報量が
 - 極小値となる前の時刻 t_{down}
 - 極小値の t_{local}
 - 極小値から外れて上昇しだす t_{up}

3つの時刻において

- \boldsymbol{L} ,
- $-E_{P_{data}}[\cdot],$
- $-E_{P_{model}}\left[\cdot\right]$

の値をファイルへ保存(保存するパラメータは対角化しないでおく)これを pylab で料理していく

- pylab で
 - エネルギー関数 $E(\boldsymbol{v}; \boldsymbol{L})$
 - * 対角成分 0
 - * 対角成分 $v_i = 1$ の統計値
 - $O3 \times 2 = 6 通り$
 - ボルツマン分布 P(v; L)
 - * 対角成分 0
 - * 対角成分 $v_i = 1$ の統計値
 - の $3 \times 2 = 6$ 通り

を描く (W の場合は 3 次元でプロット)

- c++でファイルを読みとり gibbs sampling を実行。
 - \boldsymbol{L}
 - $-E_{P_{data}}[\cdot]$
 - $E_{P_{model}}[\cdot]$

対角化の有無を合せた全6パターンの統計値をファイルへ出力する

•

環境からの入力確率 Q(v) とボルツマン分布が一致しない原因を調査

- ボルツマン分布 P(v) = En(v; L) に与える L が誤っている可能性
 - Lを代入
 - E_{Pdata} [·] を代入
 - E_{Pmodel} [·] を代入

更に、

-素子 v_i が1になった確率

- 自己結合無しの 0
- gibbs sampling で得られる標本と比較
 - **L**を用いて
 - E_{Pdata}[·]を用いて
 - E_{Pmodel} [·] を用いて
- M,N のサンプリング数
 - -M,N = 1000, 1000

良い統計量が出ている

- αの値
 - 伊達先生の実験では 0.01
 - 自作プログラムでは $\alpha = 1./T$ (SA に従う)
 - アニーリングスケジュールを論文に書かれている方法を使う
- Kの値
- 関数に誤りがないか
 - エネルギー関数
 - * 内積を 1 している
 - * 上三角行列を足し合わせている
 - * 対角成分が邪魔している
 - * 閾値が邪魔していないか
 - $\cdot w_{0i}$
 - $\cdot w_{ii}$
 - 分配関数

*

- 学習則
 - 閾値の項を更新していない
 - 閾値の項を更新している
- そもそも、ボルツマン分布は正確な値がでないのではないか?
 - P(x):一様分布では確認した
 - $-P(x) = \{0.1, 0.1, 0.05, 0.05, 0.1, 0.1, 0.4, 0.1\}$:課題初期値
 - $D=3, n=2^3$ 通りの全パターンをボルツマン分布で求めるには密すぎるのではないか? D=3, n=D など、疎なパターンでボルツマン分布を比較する
- KL 情報量の D(P,Q) と D(Q,P) が逆になっていないか
- 訓練データが

KL 情報量が上昇しはじめる際の結合行列 L、データ依存期待値 L_{data} 、モデル依存期待値 L_{model} を用いてエネルギー関数によるエネルギー谷を描く。

全ての順列組み合わせを求めて、データ依存期待値の行列、エネルギー関数、ボルツマン分布、reconstruction による確率分布を求める

3 変数

D	可視素子数	
Р	隱れ素子数	
K	gibbs sampling の回数	
M	モデル依存期待値のサンプリング数	
N	データ依存期待値のサンプリング数	
vf	可視素子の fantasy particle	
hf	隱れ素子の fantasy particle	
L	可視素子行列	
W	可視素子から隱れ素子	
J	隱れ素子	

4 関数