AI505 Optimization

Bracketing

Marco Chiarandini

Department of Mathematics & Computer Science University of Southern Denmark

Bracketing

Identifying an interval containing a local minimum and then successively shrinking that interval

Unimodality

There exists a unique optimizer x^* such that f is monotonically decreasing for $x \le x^*$ and monotonically increasing for $x \ge x^*$

Finding an Initial Bracket

Given a unimodal function, the global minimum is guaranteed to be inside the interval [a, c] if f(a) > f(b) < (c)


```
function bracket minimum(f, x=0; s=1e-2, k=2.0)
    a, ya = x, f(x)
    b, vb = a + s, f(a + s)
    if yb > ya
        a. b = b. a
       ya, yb = yb, ya
        S = -S
    end
    while true
        c, yc = b + s, f(b + s)
       if yc > yb
            return a < c ? (a, c) : (c, a)
        end
        a, ya, b, yb = b, yb, c, yc
        s *= k
    end
end
```

Finding an Initial Bracket

Example of bracket_minimum on a function

reverses direction between the first and second iteration and expands until a minimum is bracketed in the fourth iteration.

When function evaluations are limited, the Fibonacci Search algorithm is guaranteed to maximally

shrink the bracketed interval

When restricted to only 2 function evaluations (queries) the most we can guarantee to shrink our interval is by just under a factor of 2.

yeilds a factor of 3.

for $\epsilon \to 0$ yields a factor of just less than 2

When restricted to only 3 function evaluations (queries) the most we can guarantee to shrink our interval is by a factor of 3.

Fibonacci Search

When restricted to n functions evaluations following the previous strategy, we are guaranteed to shrink our interval by a factor of F_{n+1} .

Fibonacci numbers: sum of previous two, 1.1.2.3.5.8.13....

$$F_n = \begin{cases} 0 & \text{if } n = 0\\ 1 & \text{if } n = 1, 2\\ F_{n-1} + F_{n-2} & \text{otherwise} \end{cases}$$

 $I_1 = I_2 + I_3 = 8I_5$

The length of every interval constructed can be expressed in terms of the final interval times a Fibonacci number. I_5

- final, smallest interval has length I_n ,
- second smallest interval has length $I_{n-1} = F_3 I_n$
- third smallest interval has length $I_{n-2} = F_4 I_n$, and so forth.

Fibonacci Search Algorithm

For a unimodal function f in the interval [a, b], we want to shrink the interval within n iterations. (At each iteration we want to shrink by a factor ϕ).

$$b_{k+1} - a_{k+1} = \frac{F_{n-k+1}}{F_{n-k+2}} (b_k - a_k)$$

Therefore:

$$b_n - a_n = \frac{F_2}{F_3} (b_{n-1} - a_{n-1})$$

$$= \frac{F_2}{F_3} \frac{F_3}{F_4} \dots \frac{F_n}{F_{n+1}} (b_1 - a_1)$$

$$= \frac{1}{F_{n+1}} (b_1 - a_1)$$

Closed-form expression (Binet's formula):

$$F_n = \frac{\phi^n - (1 - \phi)^n}{\sqrt{5}},$$

$$\phi = (1+\sqrt{5})/2 \approx 1.61803$$
 is the golden ratio.

$$\frac{F_{n+1}}{F_n} = \phi \frac{1 - s^{n+1}}{1 - s^n}, \quad s = (1 - \sqrt{5})(1 + \sqrt{5}) \approx -0.382$$

Suppose we have a unimodal function f in the interval [a, b] and a tolerance $\epsilon = 0.01$. Let k = 1.

1.
$$d_k = a_k + \frac{F_{n-k+1}}{F_{n-k+2}}(b_k - a_k)$$

$$\rho = \frac{F_n}{F_{n+1}} = \frac{1 - s^n}{\phi(1 - s^{n+1})}$$

2. if k = n - 1:

$$c_k = a_k + \left(1 - \frac{F_{n-k+1}}{F_{n-k+2}}\right)(b_k - a_k)$$

Otherwise: $c_k = a_k + (1 - \epsilon)(b_k - a_k)$

- 3. if $f(c_k) > f(d_k)$: $b_{k+1}, d_{k+1} = d_k, c_k$ otherwise: $a_{k+1}, b_{k+1}, = b_k, c_k$
- 4. k = k + 1, go to step 2

Golden Section Search

$$\lim_{n\to\infty} \frac{F_{n+1}}{F_n} = \phi \frac{1-s^{n+1}}{1-s^n} = \phi$$

Comparison

Quadratic Fit Search

Shubert-Piyavskii Method

- The Shubert-Piyavskii method requires that the function be Lipschitz continuous,
- A function is Lipschitz continuous if there is an upper bound on the magnitude of its derivative. A function f is Lipschitz continuous on [a,b] if there exists an $\ell > 0$ such that:

$$|f(x) - f(y)| \le \ell |x - y|, \quad \forall x, y \in [a, b]$$

Bisection Method

