Physics Applicable to Circulatory System

Dr. Denny C.W. Ma

Cardiovascular System

Composed of:

1. Heart:

Pumps blood

2. Blood vessels:

Transport blood throughout the body

Hemodynamics

Study of blood flow

(involving physical properties of blood, blood vessels & the heart and their interactions)

Cardiac Output (CO)

- Amount of blood pumped by each ventricle in 1 minute
- Product of heart rate (HR) & stroke volume (SV)
 - HR: number of heart beats per minute
 - SV: volume of blood pumped out by a ventricle with each beat

Trained athletes have higher SV (e.g. 100 mL)

```
CO (mL/min) = HR (75 beats/min) x SV (70 mL/beat)
= 5,250 mL/min
= 5.25 L/min
```

Blood Flow (Q)

Volume of blood flowing through a <u>vessel</u>, an <u>organ</u>, or the <u>entire circulation</u> in a given period (e.g. L/min)

Equivalent to cardiac output (CO)

Blood Flow (Q)

Volume of blood flowing through a <u>vessel</u>, an <u>organ</u>, or the <u>entire circulation</u> in a given period (e.g. L/min)

Equivalent to cardiac output (CO)

Closed system

Blood Pressure (BP)

- Force per unit area exerted on the wall of a blood vessel by its contained blood [Pressure = Force / Area]
 - Unit: millimeters of mercury (mmHg)
 - Site of measurement: large arteries near the heart (e.g. brachial artery)

Blood pressure is the measurement of force applied to artery walls

Blood Pressure (BP)

Differences in BP within vascular system provide driving force that keeps blood moving (from higher to lower pressure areas)

Arterial Blood Pressure

- Systolic pressure: arterial pressure during ventricular contraction (highest level in a cardiac cycle)
- Diastolic pressure: arterial pressure during ventricular filling (lowest level in a cardiac cycle)
- Pulse pressure = difference between systolic & diastolic pressure
- Mean arterial pressure (MAP)
- = Average arterial pressure during a single cardiac cycle

Relationship between BP & CO

Entire circulation:

Blood pressure (BP) = Cardiac output (CO) x Total peripheral resistance (TPR)

(Opposition to flow)

Between 2 points in the circulation:

$$Q = \Delta P / R$$

Relationship between BP & CO

Entire circulation:

Blood pressure (BP) = Cardiac output (CO) x Total peripheral resistance (TPR)

(Opposition to flow)

$$BP = CO \times TPR$$

 $CO = BP / TPR$

Blood circulation

$$Q = \Delta P / R$$

Electric circuit

- Flow (Q): measure of volume per unit time (e.g. mL/sec → cm³/sec)
- Velocity (v): measure of <u>displacement</u> per unit time (e.g. cm/sec)
 [<u>distance</u> per unit time in a specific direction]

- Flow (Q): measure of <u>volume</u> per unit time (e.g. mL/sec → cm³/sec)
- Velocity (v): measure of <u>displacement</u> per unit time (e.g. cm/sec)

[distance per unit time in a specific direction]

Assumption: constant flow (no resistance)

For incompressible fluids, flow rate at various points is constant

When a tube narrows, the same volume occupies a greater length.

For the **same volume** to pass points 1 and 2 in a given time, the <u>speed must be greater</u> at point 2.

Calculation:

Blood is pumped from the heart at a rate of 5.0 L / min into the aorta (of radius 1.0 cm).

Determine the **velocity** of blood through the aorta.

 $= 5,000 \text{ cm}^3 / 60 \text{ s}$

 $= 83.3 \text{ cm}^3 / \text{s}$

Solution:

Flow = 5 L / min

```
Velocity (cm/s) = Flow (cm<sup>3</sup>/s) / Cross sectional area (cm<sup>2</sup>)
= 83.3 (cm<sup>3</sup>/s) / (3.14 x 1 cm x 1 cm)
= 83.3 (cm<sup>3</sup>/s) / 3.14 cm<sup>2</sup>
= 26.5 cm/s
```

Resistance

$$Q = \Delta P / R$$

Resistance

Opposition to flow

- Measure of the amount of <u>friction</u> blood encounters as it passes through vessels
- Generally encountered in the systemic circulation: referred to as peripheral resistance (PR)

Factors that affect resistance:

- 1. Blood viscosity [more 'sticky" → higher resistance]
- 2. Total blood vessel length [long vessel → higher resistance]
- 3. Blood vessel radius

Regulated

Regulation of blood vessel radius

Thange in blood flow

Jean Léonard Marie Poiseuille (1797 - 1869)

r⁴ can be regulated (especially in arterioles)

ΔP is <u>not</u> subject to significant short-term regulation

η, I are not subject to significant regulation by body

8, π are constant

$$Q = \frac{\Delta P}{R}$$

$$R = \frac{8 \eta l}{\pi r^4}$$

Resistance varies <u>inversely</u> with the **4**th **power** of vessel **radius** (e.g. if radius is doubled, resistance becomes 1/16 as much)

Small changes in radius result in large changes in resistance

Regulation of blood vessel radius

→ Change in blood flow

Small changes in radius result in large changes in resistance

Series & Parallel Circuits

Electrical circuit

Blood vessels

(a) Resistors in series

(b) Resistors in parallel

Series & Parallel Circuits

Systemic Circulation

Circulatory system has both series & parallel arrangements of blood vessels.

Laminar vs. Turbulent Flow

Laminar Flow

- •Fluid flows in layers **parallel** to vessel wall (without disruption between layers)
- •The layer of fluid in contact with the wall has lower velocity
- •The layer of fluid that moves along the axis of the tube has maximal velocity

Laminar vs. Turbulent Flow

Turbulent Flow

- Irregular movement
- Pressure & flow velocity changes rapidly
- •Flow is lower than laminar flow at a given perfusion pressure

Some are pathological:

e.g. in atherosclerosis (fatty plaques accumulation at vessel wall)

→ resistance ↑ → workload of heart ↑

Perfusion Pressure

Cardiovascular Dynamics

Non-invasive visualization of intracranial arterial hemodynamics (time-resolved 3D MRI)

Abnormal hemodynamics in the arteries in the brain are associated with hypertension, stroke & aneurysms

Key Points

Cardiovascular System: Heart + Blood vessel

Hemodynamics: Study of blood flow

- Cardiac Output (CO = HR x SV)
- Blood Flow (Q) [= CO for entire circulation]
- Blood Pressure (BP = CO x TPR) $[\rightarrow Q = \Delta P / R]$
- Velocity (v = Q / Area)
- Resistance (R) [Opposition to Q]
 - Blood viscosity
 - Total vessel length
 - Vessel radius regulated
 - Poiseuille's Law
 - Small change in radius → Large change in R

Series & Parallel Circuits in Circulatory System
Laminar & Turbulent Flow
Visualization of Hemodynamics