MA 576 Optimization for Data Science Homework 1

Nicolas Jorquera

Problem 1

Let $L \in \mathbf{R}^{nxm}$ and $A = LL^T$

- 1. Prove that A is **positive semidefinite**
 - a Since $A = LL^T$, we know A is symmetric because $A^T = (LL^T)^T = (L^T)^T (L)^T = LL^T = A$. By definition, A is symmetric since $A = A^T$
 - **b** An nxn symmetric real matrix A is positive semidefinite if $x^T A x \geq 0$ for all $x \in \mathbf{R}^n$
 - **c** By replacing A in the equation, we get $x^T A x = x^T L L^T x$.
 - **d** Let $B = x^T L$, then $B^T = L^T x$
 - e Therefore $x^T A x = B B^T$. Since the product of this vector cannot be less than 0, we prove that A is indeed a positive semidefinite matrix.
- 2. Prove that A is positive definite iff L has full row rank.
 - **a** An nxn symmetric real matrix A is positive definite if $x^TAx > 0$ for all $x \in \mathbf{R}^n$ for $x \neq 0$. Since we know that L is full rank then we again know A is symmetric since $A = A^T$ and the proof still holds.
 - **b** Recall, that the kernel of a function whose range is \mathbf{R}^n consists of all values in its domain where the function is 0. In other words, $\ker(A)$ is the set of vectors $\mathbf{x} \in \mathbf{R}^n$ for which Ax = 0.
 - **c** Therefore Ax = 0 is the kernel of A; where A is the superset of L. $ker(L) \subset ker(A)$
 - **d** Using the same reasoning from above, we can determine that $||L^Tx||^2 > 0$ since it can never be 0. However because L is full rank we know that L^T, L are row independent; meaning that the $ker(L^Tx) = 0$. Because L^Tx is $ker(L^Tx) \subset ker(A)$ we can imply that A has rows that are also linearly independent, making A a full rank symmetric matrix.
 - e Therefore for $x \neq 0$, then $||L^T x||^2 > 0$ $(A = L^T x)$, implying that matrix A is positive definite since $x^T A x > 0$.

Problem 2

Show that:

- 1. If Q is positive definite, then the diagonal elements are positive.
 - **a** As mentioned, if Q is positive definite then $x^TQx > 0$ for all $x \in \mathbf{R}^n$ for $x \neq 0$.
 - **b** In order to find the diagonal elements in column i, let $x_i = [0, 0, ...1, ...0, 0]$ where it is 1 in the ith column and 0 everywhere else.
 - c Therefore:

$$f(x) = x^{T}Qx > 0$$
$$f(x_i) = x_i^{T}Qx_i > 0$$
$$f(x_i) = a_{ii} > 0$$

- \mathbf{d} a_{ii} is the diagonal element in the ith row / column. Therefore we can conclude that any diagonal element is positive.
- 2. Let Q be a symmetric matrix. If there exist positive and negative in the diagonal, then Q is indefinite.
 - **a** As mentioned, if Q is positive definite then $x^TQx > 0$ for all $x \in \mathbf{R}^n$ for $x \neq 0$.
 - **b** In order to find the diagonal elements in column i, let $x_i = [1, 0, ...0, ...0, 0]$ where it is 1 in the ith column and 0 everywhere else. However this time let $x_i = [0, 1, ...0, ...0, 0]$. This time we will be calculating for the 1st and 2nd diagonal elements.
 - **c** Using the same calculations as above, we find the diagonal element to be $a_{11} > 0$ and $a_{22} < 0$
 - **d** Because not all the diagonal elements are positive, we can conclude that Q is indefinite, since $x^TQx > 0$ does not hold.

Problem 3

Write a program in MATLAB/Octave/Scilab or Python (any other language please con- tact me) that randomly generates a positive definite matrix and then verifies it is by using Sylvester's criterion.

Code provided as an attachment

2

Problem 4

Study the continuity of f and the existence of the directional derivatives:

$$f(x,y) = \begin{cases} xy \sin \frac{1}{x} \cos \frac{1}{y} & \text{if } (x,y) \neq (0,0) \\ a & \text{if } (x,y) = (0,0) \end{cases}$$

for $a \in \mathbf{R}$

To study the continuity of f we must evaluate the function at the point (0,0); which is given to be **a**. In order to test continuity we must take the limit from the right and the left and ensure they are equal:

$$\lim_{(x,y)\to (0,0)^+} xy \sin\frac{1}{x}\cos\frac{1}{y} \qquad \qquad \lim_{(x,y)\to (0,0)^-} xy \sin\frac{1}{x}\cos\frac{1}{y}$$

If we take the limit of the function we know that $\sin \frac{1}{x}$ and $\cos \frac{1}{y}$ are bounded by ; therefore we can solve that

$$\lim_{(x,y)\to (0,0)^+} xy \sin\frac{1}{x}\cos\frac{1}{y} = 0$$

Therefore in order for this function to be continuous a must be 0.

In order to test the directional derivative of f at (x_0, y_0) in the direction of the vector $u = \langle b, c \rangle$ is:

$$D_u f(x_0, y_0) = \frac{f(x_0 + hb, y_0 + hc) - f(x_0, y_0)}{h}$$

We are trying to find the directional derivative at point (0,0), and we know the value of our function at that point is a; therefore:

$$D_u f(x_0, y_0) = \frac{f(hb, hc) - a}{h}$$
$$= h^2 bc \sin \frac{1}{hb} \cos \frac{1}{hc}$$

Because of small angle approximation we can rewrite this function to be:

$$D_u f(0,0) = h^2 b c \frac{1}{hb} \frac{1}{hc}$$

therefore if this function is continuous we know that a = 0; and the directional derivative at point (0,0).

Problem 5

Compute the gradient and the Hessian of:

- 1. $f(x) = e^{\|x\|_2^2}$, with $x \in \mathbf{R}$ and $\|x\|_2^2 = \sum_i x_i^2$
 - a We are given:

$$f(x) = e^{\|x\|_2^2} = e^{\sum_j x_j^2} = e^{(x_1^2 + x_2^2 + \dots + x_n^2)}$$

- **b** We know that the gradient of f(x) is $\nabla f(x) = \begin{bmatrix} \frac{\partial f}{\partial x_1}, \frac{\partial f}{\partial x_2}, ..., \frac{\partial f}{\partial x_n} \end{bmatrix}$
- **c** To find the partial derivatives of x_1 and x_2 :

$$\frac{\partial f}{\partial x_1} = 2x_1 e^{(x_1^2 + x_2^2 + \ldots + x_n^2)} \qquad \qquad \frac{\partial f}{\partial x_2} = 2x_2 e^{(x_1^2 + x_2^2 + \ldots + x_n^2)}$$

- d We can generalize; and conclude that the gradient is calculated by $\nabla f(x) = 2xe^{\sum_j x_j^2}$ where $x = [x_1, x_2, ... x_n]$
- **e** To calculate the Hessian: $H(f(x))_{ij} = \frac{\partial^2 f}{\partial x_i \partial x_j}$. Therefore we need to calculate the second order partial derivatives for each element in the matrix H.

$$\frac{\partial f}{\partial x_1 \partial x_1} = 4 x_1^2 e^{\sum_j x_j^2} + 2 e^{\sum_j x_j^2} \qquad \qquad \frac{\partial f}{\partial x_1 \partial x_2} = 4 x_1 x_2 e^{\sum_j x_j^2}$$

f Therefore we can generalize the Hessian to:

$$H(f(x))_{ij} = \begin{cases} 4x_i x_j e^{\sum_j x_j^2} & \text{if } i \neq j \\ 4x_i^2 e^{\sum_j x_j^2} + 2e^{\sum_j x_j^2} & \text{if } i = j \end{cases}$$

- 2. $g(x) = \prod_{j=1}^{n} x_j$.
 - a We are given:

$$g(x) = \prod_{j=1}^{n} x_j = x_1 x_2 x_3 \dots x_n$$

b We find the partial derivatives to find the gradient:

$$\frac{\partial g}{\partial x_1} = x_2 x_3 ... x_n \qquad \qquad \frac{\partial g}{\partial x_2} = x_1 x_3 ... x_n$$

- d We can generalize; and conclude that the gradient is calculated by $\nabla g(x) = \frac{g(x)}{x_i}$ where $x = [x_1, x_2, ...x_n]$ and x_i the gradient for element i
- ${f e}$ To calculate the Hessian we will calculate the second order partial derivatives for each element in the matrix H.

$$\frac{\partial g}{\partial x_1 \partial x_1} = 0 \qquad \qquad \frac{\partial g}{\partial x_1 \partial x_2} = x_3 ... x_n.$$

f Therefore we can generalize the Hessian to:

$$H(g(x))_{ij} = \begin{cases} \frac{g(x)}{x_i x_j} & \text{if } i \neq j \\ 0 & \text{if } i = j \end{cases}$$

3

Problem 6

Compute

$$\lim_{(x,y)\to(0,0)}\frac{xy-\sin\left(x\right)\sin\left(y\right)}{x^2+y^2}$$

using Taylor's Theorem.

When trying to solve this problem using Taylor Theorem; I was trying to solve the 1st-order Taylor expansion (Linear Approximation) of the equation above, but the solution proved to be indeterminate. Therefore; I will first expand the equation to:

$$\frac{xy - \sin(x)\sin(y)}{x^2 + y^2} = \frac{xy}{x^2 + y^2} \left(1 - \frac{\sin(x)}{x} \frac{\sin(y)}{y}\right)$$

However because $\frac{xy}{x^2+y^2}$ is bounded, we can focus on the Taylor expansion around $1-\frac{\sin(x)}{x}\frac{\sin(y)}{y}$. In order to do this we calculate the partial derivatives and evaluate them at 0; however these calculations also lead to an indeterminate solution. Lastly, we can evaluate the limit (similar to problem above) and see that:

$$\lim_{(x,y)\to(0,0)}1-\frac{\sin(x)}{x}\frac{\sin(y)}{y}\to 0$$