4. Pretpostavimo da je vaš zadatak analizirati i vizualizirati rezultate izbora.

Ovdje nećemo doista vizualizirati već analizirati kako organizirati i prirediti podatke odgovarajućeg tipa potrebne za vizualizaciju. Rješenja pišite u formi pseudokoda i SQL naredbi, te komentara, pri čemu navedite GIS funkcije koje planirate koristiti. Potrebno je:

- (a) (3 boda) Napraviti vizualizaciju rezultata izbora po teritorijalnim jedinicama na dnu hijerarhije (listovi), poput ove preuzete s wikipedije: Opišite kako biste napravili takvu vizualizaciju. Kod dohvata podataka je potrebno navesti odgovarajuće SQL naredbe.
- (b) (4 boda) Potrebno je pronaći "relativno najmanju u odnosu na susjede" teritorijalnu jedinicu koja je:
 - a. glasala za ostanak, i
 - b. koja je okružena teritorijalnim jedinicama koje su glasale za izlazak.

Ili, preciznije rečeno, koja nema niti jednog susjeda koji je glasao za ostanak.

Pod "relativno najmanju u odnosu na susjede" se misli da je potrebno razmatrati omjer površine te jedinice i sume površine njenih susjeda.

Opet, potrebno je razmatrati samo teritorijalne jedinice koje su najniže u hijerarhiji (listovi). Na slici 3 je strelicom označena jedinica koju je potrebno programski pronaći. Napišite pseudokod kojim biste pronašli takvu teritorijalnu jedinicu.

Pritom koristite SQL za opis dohvata podataka, pri čemu navedite i GIS funkcije koje koristite.

5. (4 boda) Napisati MapReduce upit koji će prebrojiti rezultate izbora na temelju tablice results. Rezultat upita treba biti broj glasova za ostanak, izlazak i broj nevažećih glasova za sve identifikatore glasačkog mjesta, tako da na temelju rezultata, npr. možemo popuniti sljedeću tablicu:

W	?	7
レー	V	> W

poolPlaceld	voteStay	voteLeave	invalidVotes
1	12345	54321	123
2	2131	1233	31
3	34234	34432	34

Pretpostaviti istu M/R arhitekturu (s obzirom na (combinable) reducer i sl.) kao MongoDB.

- 6. (3 boda) Objasnite mehanizam kvoruma kod ostvarivanja konzistencije. Navedite primjere i za čitanje i za pisanje.
- 7. (5 bodova) Napravite RDF model podataka (nacrtajte graf) za nekoliko osoba koje:
 - se mogu međusobno poznavati
 - neke od njih mogu imati kućne ljubimce različitih vrsta (pas, mačka, ...)

Na temelju vlastitog modela napišite upit koji će za svaku osobu vratiti ime, prezime i broj poznanika koji imaju psa.

U zadacima 1, 2, 4 i 5 pretpostavlja se korištenje PostgreSQL SUBP-a i baze podataka sa slike 1.

Baza podataka prikazana na **slici 1** služi za evidenciju podataka o rezultatima referenduma koji se održavaju u Ujedinjenom Kraljevstvu Velike Britanije i Sjeverne Irske. Rezultati referenduma se bilježe u relaciji **result**. Osobe koje mogu pristupiti određenom referendumu (zajedno s detaljima kao što su predviđeno glasačko mjesto) evidentirane su u relaciji **personRef**. Teritorijalna podjela države, te glasačka mjesta u teritorijalnim jedinicama evidentirani su u relacijama **terUnit** i **poolPlace**. Ključevi relacija su podcrtani.

terUnitId	terUnitName	 geom	supTer UnitId
53	England	<polygon></polygon>	NULL
32	Scotland	<polygon></polygon>	NULL
5478	East England	<polygon></polygon>	53
9056	London	<polygon></polygon>	53
437	City of Edinburg	<polygon></polygon>	32
856	West London	<polygon></polygon>	9056
876	East London	<polygon></polygon>	9056

personRef

<u>refDate</u>	personid	poolPlaceId	voted
18.09.2014	234567	132	1
23.06.2016	38954	184	0
23.06.2016	6903423	-11	1
23.06.2016	5689045	184	1

poolPlace			
poolPlaceId	poolPlaceName		terUnitld
184	Islington Town Hall		856
132	Olive Morris House		437
11	York House		976
			1\

resu	It	

refDate	poolPlaceId	ordinal	voteFor	valid
18.09.2014	132	1	1	1
23.06.2016	11	2	0	1
23.06.2016	132	105	1	1

	rs	

personId	FName	LName	

Slika 1.

- 1. (4 boda) Za teritorijalne jedinice koje nemaju nadređenu jedinicu ispisati naziv teritorijalne jedinice, ukupan broj glasova za i ukupan broj glasova protiv referendumskog pitanja. Glasovima teritorijalne jedinice se pribrajaju glasovi svih teritorijalnih jedinica u njenom sastavu. U obzir uzeti samo važeće glasove.
- 2. (4 boda) Zbog promjene teritorijalnog ustroja, moguća je promjena pripadnosti glasačkog mjesta teritorijalnoj jedinici (poolPlace.terUnitId). Postojeći segment sa slike 1 potrebno je izmijeniti (proširiti) tako da omogući praćenje promjene atributa poolPlace.terUnitId u kontekstu vremena valjanosti. Modelom osigurati pripadnost glasačkog mjesta samo jednoj teritorijalnoj jedinici u konkretnom periodu. Također, modelom osigurati da se zapisi u relaciji personRef referenciraju na ispravnu n-torku iz poolPlace (aktualnu u trenutku odvijanja referenduma).

Korištenjem funkcionalnosti PostgreSQL SUBP napisati SQL naredbe za provođenje predloženih izmjena. Definirati temporalna integritetska ograničenja (primarne i strane ključeve) koja je moguće definirati u okviru PostgreSQL SUBP.

Za integritetska ograničenja koja nije moguće implementirati u PostgreSQL-u objasnite kakvu implementaciju predviđa SQL standard.

3. (3 boda) Relacija contract sa shemom CONTRACT (<u>contractId</u>, contractContent, contractDate,...) sadrži 100*10⁶ zapisa. Atribut contractContent je tipa VARCHAR(5000). Vrijeme obavljanja donjeg upita je neprihvatljivo dugo.

```
SELECT *
  FROM contract
WHERE TO_tsVector('english', contractContent) @@
   TO tsquery('english', 'Europian & independency & I & am');
```

Objasnite zbog čega se upiti gornjeg tipa dugo izvode. Predložite promjene u shemi relacije contract s ciljem ubrzanja izvođenja upita. Ako promjene sheme relacije zahtijevaju drugačiji upit, napišite izmijenjeni upit.

CONSTRAINT EXCLUDE USING