

INTERNATIONAL A-LEVEL MATHEMATICS MA04

(9660/MA04) Unit S2 Statistics

Mark scheme

January 2020

Version: V1 Final Mark Scheme

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Examiner.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from oxfordagaexams.org.uk

Copyright information

OxfordAQA retains the copyright on all its publications. However, registered schools/colleges for OxfordAQA are permitted to copy material from this booklet for their own internal use, with the following important exception: OxfordAQA cannot give permission to schools/colleges to photocopy any material that is acknowledged to a third party even for internal use within the centre.

Copyright © 2020 Oxford International AQA Examinations and its licensors. All rights reserved.

Key to mark scheme abbreviations

M Mark is for method

m Mark is dependent on one or more M marks and is for method

A Mark is dependent on M or m marks and is for accuracy

B Mark is independent of M or m marks and is for method and accuracy

E Mark is for explanation

√or ft Follow through from previous incorrect result

CAO Correct answer only

CSO Correct solution only

AWFW Anything which falls within

AWRT Anything which rounds to

ACF Any correct form

AG Answer given

SC Special case

oe Or equivalent

A2, 1 2 or 1 (or 0) accuracy marks

−x EE Deduct x marks for each error

NMS No method shown

PI Possibly implied

SCA Substantially correct approach

sf Significant figure(s)

dp Decimal place(s)

Q	Answer	Marks	Comments
	, .		
1(a)	$E\left(\sum_{i=1}^{3} X_{i}\right) = 8$	B1	
1(b)	$Var\left(\sum_{i=1}^{3} X_{i}\right) = 4.5$	B1	
1(c)	$E(3X_1 - 4X_3) = 3 \times 2 - 4 \times 1$	M1	$E(3X_1 - 4X_3) = 3a - 4b$ where a, b = 2, 5 or 1
	= 2	A 1	
1(d)	$Var(5X_1 - 2X_2) = 5^2 \times 3 + 2^2 \times 1$	M1	Var $(5X_1 - 2X_2) = 5^2c + 2^2d$ c, d = 3, 1 or 0.5
	= 79	A 1	
	Total	6	

Q	Answer	Marks	Comments
2(a)	$\frac{1}{\lambda^2} = 400$	M1	
	$\lambda = 0.05$	A 1	Do not award if –0.05 seen but not rejected
2(b)	$Mean = \frac{1}{\lambda} = 20$	B1ft	Follow through their λ
2(c)	P(X > 25) = 1 – F(25)	M1	oe
	$= 1 - (1 - e^{-0.05 \times 25})$	A 1	Attempts to find correct probability using cdf of exponential or integration of pdf
	= 0.287	A 1	AWRT, NMS 3/3
2(d)	$1 - e^{-0.05x} = 0.6$	M1	Forms equation using cdf of exponential or integration of pdf
	<i>x</i> = 18.3	A 1	AWRT
	Total	8	

Q	Answer	Marks	Comments
	<i>Y</i> ∼ Po(1)	B1	PI
3(a)	$P(X > 3) \approx P(Y > 3) = 1 - P(Y \le 3)$	M1	Attempt at correct probability
	= 0.019	A 1	AWRT
3/b)	n is large	B1	oe
3(b)	p is small	B1	oe
	Total	5	

Q	Answer	Marks	Comments
44.	$\overline{x} = 2.5$	B1	
4(a)	$s^2 = \frac{1}{20 - 1} \left(173 - \frac{50^2}{20} \right)$	M1	Attempt at variance formula Allow one slip Implied by correct answer
	= 2.53	A1	AWRT
	Because Mean ≈ Variance	E1	Values and conclusion must be seen Allow "values of sample mean and variance are close"
4(b)	$P(X = 4) = \frac{e^{-2.5} \times 2.5^4}{4!}$	M1	Applies Poisson formula Implied by correct answer Condone using different value of λ
	= 0.134	A 1	AWRT
	Total	6	

Q	Answer	Marks	Comments
5(a)	H_0 : $p = 0.2$ or H_0 : $p = 0.8$ H_1 : $p < 0.2$ H_1 : $p > 0.8$	B1	Both hypotheses
	$X \sim B(15, 0.2)$ or $X \sim B(15, 0.8)$	M1	PI
	$P(X \le 1) = 0.1671$ or $P(X \ge 14) = 0.1671$	A 1	AWRT 0.17
	0.1671 > 0.1	M1	Compares their probability with 0.1
	Accept H₀	A1ft	Follow through their probability provided both M marks awarded Implied by correct conclusion in context
	Evidence to suggest/support that the proportion of customers giving an "Excellent" rating has not increased	E1	Must be consistent with their conclusion on whether to accept H ₀ or not or their probability if not explicitly stated
5(b)	Concluding that the proportion of customers giving an "Excellent" rating has not increased when it has	E1	oe
	Total	7	

Q	Answer	Marks	Comments
6(a)	$\frac{83-\mu}{\sigma} = 1.6449$	M1	Setting up formula with a z -value or $\Phi^{-1}(0.95)$
	$83 - \mu = 1.6449\sigma$ (AG)	A 1	No errors seen 1.6449 must be seen before the final line
O(h)	1.4051	B1	Sight of anywhere in part (b)
6(b)	$\frac{10-\mu}{\sigma} = \pm 1.4051$	M1	Oe, condone sign error for -1.4051
	$10 - \mu = -1.4051\sigma$	A 1	oe
	μ = 43.6 or σ = 23.9	M1	AWRT
	μ = 43.6 and σ = 23.9	A 1	
6(c)	85 is within two standard deviations of the mean	E1	oe
	or		Allow non-zero probability (0.042) using normal distribution model of gaining a score higher than 85
	Negative scores are within two standard deviations of the mean		
	Total	8	

Q	Answer	Marks	Comments
7(a)	H ₀ : μ = 14 H ₁ : $\mu \neq$ 14	B1	Both hypotheses
	$\overline{X} \square N\left(14, \frac{0.25^2}{25}\right)$	M1	Use of PI
	$z = \frac{13.892 - 14}{\frac{0.25}{\sqrt{25}}}$	M1	Attempts to find z Allow one slip
	z = -2.16	A1	AWRT Allow 2.16
	z_{crit} = 2.3263 or -2.3263	B1	Seen anywhere AWRT 2.33 Accept $P(Z < -2.16) = 0.015$
	Accept H₀	A1ft	Follow through their z and $z_{\rm crit}$ or their probability and 0.01 Implied by correct conclusion in context
	Evidence to suggest/support that the mean diameter of the pipes produced by machine A has not changed following the power cut	E1	Must be consistent with their conclusion on whether to accept H_0 or not or their z and z_{crit} (or their probability and 0.01) if not explicitly stated

Q	Answer	Marks	Comments
7(b)	H ₀ : μ = 14 H ₁ : μ > 14	B1	Both hypotheses
	dof v = 8	M1	PI
	$t = \frac{14.02 - 14}{\frac{0.04}{\sqrt{9}}}$	M1	Attempts to find t Allow one slip Condone $z =$
	<i>t</i> = 1.5	A 1	Condone z =
	t _{crit} = 1.397	B1	Seen anywhere
	Reject H ₀	A1ft	Follow through their t and $t_{\rm crit}$ (but not $z_{\rm crit}$) Implied by correct conclusion in context
	Evidence to suggest/support that the mean diameter of the pipes produced by machine B is greater than 14 millimetres	E1	Must be consistent with their conclusion on whether to accept H_0 or not or their t and $t_{\rm crit}$ if not explicitly stated
	Total	14	

Q	Answer	Marks	Comments
8(a)	$\int_{1}^{6} k(x^2 - 7x + 6) \mathrm{d}x = 1$	M1	Sets integral over whole range equal to 1
	$k \left[\frac{x^3}{3} - \frac{7x^2}{2} + 6x \right]_1^6 = 1$	M1	Correct integration
	$k \left[\left(\frac{6^3}{3} - \frac{7 \times 6^2}{2} + 6 \times 6 \right) - \left(\frac{1^3}{3} - \frac{7 \times 1^2}{2} + 6 \times 1 \right) \right] = 1$ $\Rightarrow k = -\frac{6}{125} \text{ (AG)}$	A 1	Requires intermediate line after integration
8(b)	$E(X) = \int_{1}^{6} kx(x^2 - 7x + 6) dx$	M1	Identifies correct integral
	$= k \left[\frac{x^4}{4} - \frac{7x^3}{3} + \frac{6x^2}{2} \right]_1^6$	M1	Correct integration
	$= k \left[\left(\frac{6^4}{4} - \frac{7 \times 6^3}{3} + \frac{6 \times 6^2}{2} \right) - \left(\frac{1^4}{4} - \frac{7 \times 1^3}{3} + \frac{1 \times 1^2}{2} \right) \right]$ $\Rightarrow E(X) = 3.5 \text{ (AG)}$	A 1	Requires intermediate line after integration
8(c)	$E(X^2) = \int_{1}^{6} kx^2(x^2 - 7x + 6) dx$	M1	Identifies correct integral
	$= k \left[\frac{x^5}{5} - \frac{7x^4}{4} + \frac{6x^3}{3} \right]_1^6$	M1	Correct integration
	$E(X^2) = 13.5$	A 1	PI
	$Var(X) = E(X^2) - (E(X))^2$ = 13.5 - 3.5 ²	M1	Applies formula
	= 1.25	A 1	
	Total	11	

Q	Answer	Marks	Comments
9(a)(i)	$\overline{X} \sim N\left(20, \ \frac{6.5536}{25}\right)$	B1	oe
9(a)(ii)	$P(\overline{X} > 21) = P\left(Z > \frac{21 - 20}{\sqrt{\frac{6.5536}{25}}}\right)$	М1	Standardises
	= $1 - \Phi(1.95)$ = $1 - 0.97441$	M1	PI
	= 0.0254 to 0.0256	A1	AWFW
9(b)(i)	$\sum_{i=1}^{25} X_i \Box N(500,163.84)$	B1	oe
9(b)(ii)	$P\left(\sum_{i=1}^{25} X_i > 525\right) = P\left(Z > \frac{525 - 500}{\sqrt{163.84}}\right)$	M 1	Standardises
	= $1 - \Phi(1.95)$ = $1 - 0.97441$	M1	PI
	= 0.0254 to 0.0256	A 1	AWFW
9(c)	The probabilities are the same	E1	oe
3(0)	This is because a total height of 525 centimetres is the same as a mean height of 21 cm as $\frac{525}{25} = 21$	E1	oe
	Total	10	

Q	Answer	Marks	Comments
10(a)(i)	All the car owners in the town	E1	Must include 'all' or 'every'
10(a)(ii)	A sample where each member of the population has an equal probability of being chosen		
	or	E1	oe
	Each sample of the required size from the population has an equal probability of being chosen		
10(b)	average number of events in an interval	B1	oe
40()	mean	B1	
10(c)	standard deviation	B1	Accept variance
			SC1 for μ and σ or μ and σ^2
	Total	5	