

Principles of Compiler Construction

Lecture 6 Syntax Analysis (II)

Lecturer: CHANG HUIYOU

Note that most of these slides were created by: Prof. Wen-jun LI (School of Software)

问题

给出一个CFG,如何判断一个字符串是否属于它定义的语言?

Recursive-Descent Parsing

```
boolean A(){
   Choose an A-production A \rightarrow X_1 X_2 \cdots X_k
   for (i=1 to k) {
        if (X_i \text{ is a nonterminal && } ! X_i)
           return false;
        else if (X_i is a terminal)
           if (X_i equals the current input token t)
                get the next token t;
           else return false;
   return true;
```


Elimination of Left Recursion

中山大學 Elimination of Left Recursion

A grammar is *left recursive* if it has a nonterminal A such that there is a derivation $A \stackrel{\Rightarrow}{\Rightarrow} A\alpha$ for some string a.

$$A \to A\alpha \mid \beta \quad \longrightarrow \quad \begin{array}{c} A \to \beta A' \\ A' \to \alpha A' \mid \epsilon \end{array}$$

Generally, · · ·

$$A \to A\alpha_1 \mid A\alpha_2 \mid \cdots \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid \cdots \mid \beta_n$$

$$\downarrow \downarrow$$

$$A \to \beta_1 A' \mid \beta_2 A' \mid \cdots \mid \beta_n A'$$

$$A' \to \alpha_1 A' \mid \alpha_2 A' \mid \cdots \mid \alpha_m A' \mid \epsilon$$

However, ···

This procedure eliminates immediate left recursion, but does not eliminate left recursion involving derivations of two or more steps.

Example:

The nonterminal S is left recursive because $S \Rightarrow Aa \Rightarrow Sda$

The Algorithm for Elimination of Left Recursion

Algorithm 4.19: Eliminating left recursion.

INPUT: Grammar G with no cycles or ϵ -productions.

OUTPUT: An equivalent grammar with no left recursion.

METHOD: Apply the algorithm in Fig. 4.11 to G. Note that the resulting non-left-recursive grammar may have ϵ -productions. \square

```
1) arrange the nonterminals in some order A<sub>1</sub>, A<sub>2</sub>,..., A<sub>n</sub>.
2) for ( each i from 1 to n ) {
3) for ( each j from 1 to i − 1 ) {
4) replace each production of the form A<sub>i</sub> → A<sub>j</sub>γ by the productions A<sub>i</sub> → δ<sub>1</sub>γ | δ<sub>2</sub>γ | ··· | δ<sub>k</sub>γ, where A<sub>j</sub> → δ<sub>1</sub> | δ<sub>2</sub> | ··· | δ<sub>k</sub> are all current A<sub>j</sub>-productions
5) }
6) eliminate the immediate left recursion among the A<sub>i</sub>-productions
```


Dragon, p213

Discussion

Why is the algorithm correct?

What will happen if the input grammar has a cycle?

What will happen if the input grammar has an ε-productions?

Challenges

Give an algorithm to convert a grammar into an equivalent grammar that has no ε -productions.

Give an algorithm to convert a grammar into an equivalent grammar that has no cycles.

See Exercise 4.4.6 and 4.4.7 (DragonBook p232)

Recursive-Descent Parsing

```
boolean A(){
                     Which production should be chosen?
   Choose an A-production A \rightarrow X_1 X_2 \cdots X_k
   for (i=1 to k) {
       if (X_i \text{ is a nonterminal && } ! X_i)
          return false;
       else if (X_i is a terminal)
          if (X_i equals the current input token t)
               get the next token t;
           else return false;
                              Naive idea: backtracking
   return true;
```


对于字符串cad

中

More Efficient Approaches

Backtracking is inefficient!
We need more efficient algorithms.

Recursive-Descent Parsing

```
boolean A(){
                     It would be fine if there were only one choice!
   Choose an A-production A \rightarrow X_1 X_2 \cdots X_k
   for (i=1 to k) {
       if (X_i \text{ is a nonterminal && } ! X_i)
           return false;
       else if (X_i is a terminal)
          if (X_i equals the current input token t)
               get the next token t;
           else return false;
                        Lookahead & Left Factoring
   return true;
```


 $S \to cAd \mid bAd$ $A \to ab \mid a$

对于输入cad

Left Factoring

INPUT: Grammar G.

OUTPUT: An equivalent left-factored grammar.

METHOD: For each nonterminal A, find the longest prefix α common to two or more of its alternatives. If $\alpha \neq \epsilon$ — i.e., there is a nontrivial common prefix — replace all of the A-productions $A \to \alpha\beta_1 \mid \alpha\beta_2 \mid \cdots \mid \alpha\beta_n \mid \gamma$, where γ represents all alternatives that do not begin with α , by

Here A' is a new nonterminal. Repeatedly apply this transformation until no two alternatives for a nonterminal have a common prefix. \Box

$$S \rightarrow i E t S \mid i E t S e S \mid a E \rightarrow b$$

$$S \rightarrow i E t S S' \mid a$$

$$S' \rightarrow e S \mid \epsilon$$

$$E \rightarrow b$$

Question

Is left factoring enough for predictive parsing?

No!

E.g.

S→Abc | Bda ...

If we only lookahead only one character, we do not know which production should be chosen.

$FIRST(\alpha)$

Define $FIRST(\alpha)$, where α is any string of grammar symbols, to be the set of terminals that begin strings derived from α . If $\alpha \stackrel{*}{\Rightarrow} \epsilon$, then ϵ is also in $FIRST(\alpha)$. For example, in Fig. 4.15, $A \stackrel{*}{\Rightarrow} c\gamma$, so c is in FIRST(A).

Consider two A-productions $A \rightarrow \alpha | \beta$, where FIRST(α) and FIRST(β) are disjoint. We can then choose between these A-productions by looking at the next input symbol a, since a can be in at most one of FIRST(α) and FIRST(β), not both.

Computing FIRST(X)

To compute FIRST(X) for all grammar symbols X, apply the following rules until no more terminals or ϵ can be added to any FIRST set.

- 1. If X is a terminal, then $FIRST(X) = \{X\}.$
- 2. If X is a nonterminal and $X \to Y_1Y_2 \cdots Y_k$ is a production for some $k \ge 1$, then place a in FIRST(X) if for some i, a is in $\text{FIRST}(Y_i)$, and ϵ is in all of $\text{FIRST}(Y_1), \ldots, \text{FIRST}(Y_{i-1})$; that is, $Y_1 \cdots Y_{i-1} \stackrel{*}{\Rightarrow} \epsilon$. If ϵ is in $\text{FIRST}(Y_j)$ for all $j = 1, 2, \ldots, k$, then add ϵ to FIRST(X). For example, everything in $\text{FIRST}(Y_1)$ is surely in FIRST(X). If Y_1 does not derive ϵ , then we add nothing more to FIRST(X), but if $Y_1 \stackrel{*}{\Rightarrow} \epsilon$, then we add $\text{FIRST}(Y_2)$, and so on.
- 3. If $X \to \epsilon$ is a production, then add ϵ to FIRST(X).

Compute the FIRST(X) for each nonterminal X.

FOLLOW(A)

S→aA|e, if the next input symbol is not 'a', then will will choose S→ e; otherwise both productions can be chosen.

Define FOLLOW(A), for nonterminal A, to be the set of terminals a that can appear immediately to the right of A in some sentential form; that is, the set of terminals a such that there exists a derivation of the form $S \stackrel{*}{\Rightarrow} \alpha A a \beta$, for some α and β

if A can be the rightmost symbol in some sentential form, then \$ is in FOLLOW(A).

Computing FOLLOW(A)

To compute FOLLOW(A) for all nonterminals A, apply the following rules until nothing can be added to any FOLLOW set.

- 1. Place \$ in FOLLOW(S), where S is the start symbol, and \$ is the input right endmarker.
- 2. If there is a production $A \to \alpha B\beta$, then everything in FIRST(β) except ϵ is in FOLLOW(B).
- 3. If there is a production $A \to \alpha B$, or a production $A \to \alpha B\beta$, where FIRST(β) contains ϵ , then everything in FOLLOW(A) is in FOLLOW(B).

Practice

Compute the FOLLOW(X) for each nonterminal X.

Construction of a Predictive Parsing Table

INPUT: Grammar G.

OUTPUT: Parsing table M.

METHOD: For each production $A \to \alpha$ of the grammar, do the following:

1. For each terminal a in FIRST(α), add $A \to \alpha$ to M[A, a].

2. If ϵ is in FIRST(α), then for each terminal b in FOLLOW(A), add $A \to \alpha$ to M[A, b]. If ϵ is in FIRST(α) and \$ is in FOLLOW(A), add $A \to \alpha$ to M[A, \$] as well.

If, after performing the above, there is no production at all in M[A, a], then set M[A, a] to **error** (which we normally represent by an empty entry in the table). \square

Predictive Parsing Table

NON -	INPUT SYMBOL						
TERMINAL	id	+	*	()	\$	
\overline{E}	$E \to TE'$			$E \to TE'$			
E'		$E' \rightarrow +TE'$			$E' \to \epsilon$	$E' o \epsilon$	
T	T o FT'			T o FT'			
T'		$T' o \epsilon$	$T' \to *FT'$		$T' o \epsilon$	$T' o \epsilon$	
F	$F o \mathbf{id}$			F o (E)			

LL(1) Grammar

A grammar G is LL(1) if and only if whenever $A \to \alpha \mid \beta$ are two distinct productions of G, the following conditions hold:

- 1. For no terminal a do both α and β derive strings beginning with a.
- 2. At most one of α and β can derive the empty string.
- 3. If $\beta \stackrel{*}{\Rightarrow} \epsilon$, then α does not derive any string beginning with a terminal in FOLLOW(A). Likewise, if $\alpha \stackrel{*}{\Rightarrow} \epsilon$, then β does not derive any string beginning with a terminal in FOLLOW(A).

第一个L: 输入字符串从左边开始扫描

第二个L: 得到的推导是最左推导

(1): 向前看1个输入符号(或单词)

$$\begin{array}{ccc} S & \rightarrow & iEtSS' \mid a \\ S' & \rightarrow & eS \mid \epsilon \\ E & \rightarrow & b \end{array}$$

Non - TERMINAL	INPUT SYMBOL						
	a	b	e	i	t	\$	
S	$S \rightarrow a$			$S \rightarrow iEtSS'$			
S'			$S' \to \epsilon$			$S' \to \epsilon$	
			$S' \to \epsilon$ $S' \to eS$				
E		$E \rightarrow b$					

Since M[S', e] contains more than one production, the grammar is not LL(1).

作业

Week07.pdf

Implementing the Parser

Two ways:

- Recursive
- Non-recursive, table-driven

A→aBb

```
boolean A(){
   return (match('a') && B() && match('b'));
}
```

```
boolean match(Token t){
    if (lookahead == t){
        lookahead = lexer.nextToken();
        return true;
    else return false;
}
```

A→aBb|bAC

```
boolean A(){
   if (lookahead == 'a')
     return (match('a') && B() && match('b'));
   else if (lookahead == 'b')
     return (match('b') && A() && C());
   else return false;
}
```


A→aBb|bAC|Da

```
boolean A(){
   if (lookahead == 'a')
      return (match('a') && B() && match('b'));
   else if (lookahead == 'b')
      return (match('b') && A() && C());
   else if (lookahead in FIRST(D))
      return (D() && match(a));
   else return false;
```


A→aBb|bAC|€

```
boolean A(){
   if (lookahead == 'a')
      return (match('a') && B() && match('b'));
   else if (lookahead == 'b')
      return (match('b') && A() && C());
   else if (lookahead in FOLLOW (A))
      return true;
   else return false;
```


Model of a Table-Driven Predictive Parser

Algorithm 4.34: Table-driven predictive parsing.

INPUT: A string w and a parsing table M for grammar G.

OUTPUT: If w is in L(G), a leftmost derivation of w; otherwise, an error indication.

Table-Driven Predictive Parsing

METHOD: Initially, the parser is in a configuration with w\$ in the input buffer and the start symbol S of G on top of the stack, above S. The program in Fig. 4.20 uses the predictive parsing table M to produce a predictive parse for the input.

```
set ip to point to the first symbol of w;
                                                    the current input symbol
set X to the top stack symbol;
while (X \neq \$) { /* stack is not empty */
       if (X \text{ is } (a)) pop the stack and advance ip;
       else if (\bar{X} is a terminal) error();
       else if (M[X,a] is an error entry ) error();
       else if (M[X,a] = X \rightarrow Y_1Y_2\cdots Y_k) {
              output the production X \to Y_1 Y_2 \cdots Y_k;
              pop the stack;
              push Y_k, Y_{k-1}, \ldots, Y_1 onto the stack, with Y_1 on top;
       set X to the top stack symbol;
if (a != '$') error();
```


MATCHED	Stack	Input	ACTION
	E\$	id + id * id\$	
	TE'\$	id + id * id\$	output $E \to TE'$
	FT'E'\$	id + id * id\$	output $T \to FT'$
	id $T'E'$ \$	id + id * id\$	output $F \to \mathbf{id}$
id	T'E'\$	$+\operatorname{id}*\operatorname{id}\$$	match id
id	E'\$	$+\operatorname{id}*\operatorname{id}\$$	output $T' \to \epsilon$
id	+ TE'\$	+ id * id \$	output $E' \to + TE'$
id +	TE'\$	$\mathbf{id}*\mathbf{id}\$$	match +
id +	FT'E'\$	$\mathbf{id}*\mathbf{id}\$$	output $T \to FT'$
id +	id $T'E'$ \$	$\mathbf{id} * \mathbf{id} \$$	output $F \to \mathbf{id}$
id + id	T'E'\$	*id\$	match id
id + id	* FT'E'\$	* id \$	output $T' \to *FT'$
$\mathbf{id} + \mathbf{id} \ *$	FT'E'\$	id\$	$\mathrm{match} *$
id + id *	id $T'E'$ \$	id\$	output $F \to \mathbf{id}$
id + id * id	T'E'\$	\$	match id
id + id * id	E'\$	\$	output $T' \to \epsilon$
id + id * id	\$	\$	output $E' \to \epsilon$

