Definability of mad families of vector spaces and the fullness property

Clement Yung, University of Toronto

Oct 2025

Warning!!!

For the entirety of this talk, the **zero vector** is ignored.

Almost disjoint subspaces

Let \mathbb{F} be a countable field (possibly finite). Let E be a \mathbb{F} -vector space with a fixed Hamel basis $(e_n)_{n<\omega}$.

Definition

Let $V,W\subseteq E$ be two infinite-dimensional subspaces. We say that V,W are almost disjoint if $V\cap W$ is a finite-dimensional subspace of E.

Let $\mathcal A$ be a family of infinite-dimensional subspaces of E. We say that $\mathcal A$ is almost disjoint if all subspaces in $\mathcal A$ are pairwise almost disjoint. We say that $\mathcal A$ is maximal almost disjoint (or just mad) if $\mathcal A$ is not strictly contained in another almost disjoint family of infinite-dimensional subspaces.

Block subspaces

Recall that E has a fixed Hamel basis $(e_n)_{n<\omega}$. Given a vector $x \in E$, we may write

$$x = \sum_{n < \omega} \lambda_n(x) e_n,$$

where only finitely many λ_n 's are non-zero.

Block subspaces

Recall that E has a fixed Hamel basis $(e_n)_{n<\omega}$. Given a vector $x \in E$, we may write

$$x = \sum_{n < \omega} \lambda_n(x) e_n,$$

where only finitely many λ_n 's are non-zero. We may then write:

$$supp(x) := \{ n < \omega : \lambda_n(x) \neq 0 \}.$$

Block subspaces

Recall that E has a fixed Hamel basis $(e_n)_{n<\omega}$. Given a vector $x \in E$, we may write

$$x = \sum_{n < \omega} \lambda_n(x) e_n,$$

where only finitely many λ_n 's are non-zero. We may then write:

$$supp(x) := \{n < \omega : \lambda_n(x) \neq 0\}.$$

Notation

Given two vectors x, y we write:

$$x < y \iff \max(\text{supp}(x)) < \min(\text{supp}(y)).$$

Definition

An infinite-dimensional subspace $V \subseteq W$ is a *block subspace* if it has a *block basis*. That is, V is spanned by the basis $(x_n)_{n<\omega}$, where:

$$x_0 < x_1 < x_2 < \cdots$$
.

Note that the block basis of a block subspace is unique (up to scalar multiplication of each vector).

Every infinite-dimensional subspace of E contains an infinite-dimensional block subspace.

Consequently, if $\mathcal A$ is an almost disjoint family such that there is no block subspace that is almost disjoint with every element of $\mathcal A$, then $\mathcal A$ is mad.

Definition

We define the cardinal invariant:

$$\begin{split} \mathfrak{a}^*_{\mathrm{vec},\mathbb{F}} &:= \min\{|\mathcal{A}| > 1 : \mathcal{A} \text{ is an mad family of subspaces}\}, \\ \mathfrak{a}_{\mathrm{vec},\mathbb{F}} &:= \min\{|\mathcal{A}| > 1 : \mathcal{A} \text{ is a mad family of block subspaces}\}. \end{split}$$

It's clear that $\mathfrak{a}^*_{\mathrm{vec},\mathbb{F}} \leq \mathfrak{a}_{\mathrm{vec},\mathbb{F}}$.

Definition

We define the cardinal invariant:

$$\begin{split} \mathfrak{a}^*_{\mathrm{vec},\mathbb{F}} &:= \min\{|\mathcal{A}| > 1 : \mathcal{A} \text{ is an mad family of subspaces}\}, \\ \mathfrak{a}_{\mathrm{vec},\mathbb{F}} &:= \min\{|\mathcal{A}| > 1 : \mathcal{A} \text{ is a mad family of block subspaces}\}. \end{split}$$

It's clear that $\mathfrak{a}^*_{\mathrm{vec},\mathbb{F}} \leq \mathfrak{a}_{\mathrm{vec},\mathbb{F}}.$

Proposition (Smythe, 2019)

 $\mathfrak{a}_{\mathrm{vec},\mathbb{F}} \geq \aleph_1$.

We define the cardinal invariant:

$$\begin{split} \mathfrak{a}^*_{\mathrm{vec},\mathbb{F}} &:= \min\{|\mathcal{A}| > 1 : \mathcal{A} \text{ is an mad family of subspaces}\}, \\ \mathfrak{a}_{\mathrm{vec},\mathbb{F}} &:= \min\{|\mathcal{A}| > 1 : \mathcal{A} \text{ is a mad family of } \frac{\text{block}}{\text{subspaces}}\}. \end{split}$$

It's clear that $\mathfrak{a}^*_{\mathrm{vec},\mathbb{F}} \leq \mathfrak{a}_{\mathrm{vec},\mathbb{F}}.$

Proposition (Smythe, 2019)

 $\mathfrak{a}_{\mathrm{vec},\mathbb{F}} \geq \aleph_1$.

Proposition (user527492 (on MathOverflow) and Y., 2025)

 $\mathfrak{a}^*_{\mathrm{vec},\mathbb{F}} \geq \aleph_1$.

Let $E^{[\infty]}$ be the set of all block sequences (= block subspaces) of E.

Consider equipping E with the discrete topology, and $E^{\mathbb{N}}$ with the product topology. Since E is countable, $E^{\mathbb{N}}$ is Polish. Then $E^{[\infty]} \subseteq E^{\mathbb{N}}$ is a closed subspace, so the subspace topology of $E^{[\infty]}$ is also Polish.

Definability of mad families

Let $E^{[\infty]}$ be the set of all block sequences (= block subspaces) of E.

Consider equipping E with the discrete topology, and $E^{\mathbb{N}}$ with the product topology. Since E is countable, $E^{\mathbb{N}}$ is Polish. Then $E^{[\infty]} \subseteq E^{\mathbb{N}}$ is a closed subspace, so the subspace topology of $E^{[\infty]}$ is also Polish.

Problem (Smythe, 2019)

Is there no analytic mad family $A \subseteq E^{[\infty]}$ of block subspaces?

Definability of mad families

Let $E^{[\infty]}$ be the set of all block sequences (= block subspaces) of E.

Consider equipping E with the discrete topology, and $E^{\mathbb{N}}$ with the product topology. Since E is countable, $E^{\mathbb{N}}$ is Polish. Then $E^{[\infty]} \subseteq E^{\mathbb{N}}$ is a closed subspace, so the subspace topology of $E^{[\infty]}$ is also Polish.

Problem (Smythe, 2019)

Is there no analytic mad family $\mathcal{A}\subseteq E^{[\infty]}$ of block subspaces?

Current status. Mostly open, but there are some partial positive results.

A subset $X \subseteq E$ is *small* if there is no subspace $V \subseteq E$ such that $V \subseteq X$.

Note that finite union of small subsets need not be small.

A subset $X \subseteq E$ is *small* if there is no subspace $V \subseteq E$ such that $V \subset X$.

Note that finite union of small subsets need not be small.

Given an almost disjoint family $\mathcal{A}\subseteq E^{[\infty]}$ of block subspaces, we define the set $\mathcal{I}(\mathcal{A})$ to be:

$$\left\{X\subseteq E: \exists A_0,\dots,A_{n-1}\in\mathcal{A} \text{ such that } X\setminus\bigcup_{i< n}\langle A_i\rangle \text{ is small}\right\}.$$

Definition

A subset $X \subseteq E$ is *small* if there is no subspace $V \subseteq E$ such that $V \subset X$.

Note that finite union of small subsets need not be small.

Given an almost disjoint family $\mathcal{A}\subseteq E^{[\infty]}$ of block subspaces, we define the set $\mathcal{I}(\mathcal{A})$ to be:

$$\left\{X\subseteq E: \exists A_0,\dots,A_{n-1}\in\mathcal{A} \text{ such that } X\setminus\bigcup_{i< n}\langle A_i\rangle \text{ is small}\right\}.$$

 $\mathcal{I}(\mathcal{A})$ is \subseteq -downward closed, but it is not necessarily an ideal. We also let $\mathcal{I}^+(\mathcal{A}) := \mathcal{P}(E) \setminus \mathcal{I}(\mathcal{A})$.

Fullness

Definition

Let $A \subseteq E^{[\infty]}$ be an almost disjoint family of block subspaces.

Fullness

Definition

Let $A \subseteq E^{[\infty]}$ be an almost disjoint family of block subspaces.

1. A subset $Y \subseteq E$ is $\mathcal{I}^+(\mathcal{A})$ -dense below some $B \in \mathcal{I}^+(\mathcal{A})$ if for all $C \in \mathcal{I}^+(\mathcal{A}) \upharpoonright B$ (i.e. $C \in \mathcal{I}^+(\mathcal{A})$ and $C \leq B$), there exists some $D \leq C$ such that $\langle D \rangle \subseteq Y$.

Fullness

Definition

Let $A \subseteq E^{[\infty]}$ be an almost disjoint family of block subspaces.

- 1. A subset $Y \subseteq E$ is $\mathcal{I}^+(\mathcal{A})$ -dense below some $B \in \mathcal{I}^+(\mathcal{A})$ if for all $C \in \mathcal{I}^+(\mathcal{A}) \upharpoonright B$ (i.e. $C \in \mathcal{I}^+(\mathcal{A})$ and $C \leq B$), there exists some $D \leq C$ such that $\langle D \rangle \subseteq Y$.
- 2. We say that \mathcal{A} is *full* if for all $Y \subseteq E$ such that Y is $\mathcal{I}^+(\mathcal{A})$ -dense below some $B \in \mathcal{I}^+(\mathcal{A})$, there exists some $C^* \in \mathcal{I}^+(\mathcal{A}) \upharpoonright B$ such that $\langle C^* \rangle \subseteq Y$.

The fullness property should be seen as a weak form of the pigeonhole principle.

Lemma

Suppose that E is a vector space over \mathbb{F}_2 . For any almost disjoint family $A \subseteq E^{[\infty]}$, the following are equivalent:

- 1. A is full.
- 2. For every $B \in \mathcal{I}^+(A)$ and every partition $Y \subseteq E$, there exists some $C \in \mathcal{I}^+(A) \upharpoonright B$ such that $\langle C \rangle \subseteq Y$ or $\langle C \rangle \subseteq Y^c$.

Theorem (Smythe, 2019)

If A is a full mad family of subspaces, then A is not analytic.

Theorem (Smythe, 2019)

If A is a full mad family of subspaces, then A is not analytic.

Problem (Smythe, 2019)

- 1. (ZFC) Is there a full mad family?
- 2. (ZFC) Is every mad family full?

If A is a full mad family of subspaces, then A is not analytic.

Problem (Smythe, 2019)

- 1. (ZFC) Is there a full mad family?
- 2. (ZFC) Is every mad family full?

Theorem (Smythe, 2019)

If p = c, then there exists a full mad family.

Construction of full mad families

Theorem (Y., 2025)

If $\max\{\mathfrak{b},\mathfrak{s}\} \leq \mathfrak{a}^*_{\mathrm{vec},\mathbb{F}}$ or $\mathfrak{p} = \max\{\mathfrak{b},\mathfrak{s}\}$, then there exists a full mad family of block subspaces.

The construction mimics that of a completely separable mad family of subsets of ω , assuming $\mathfrak{s} \leq \mathfrak{a}$.

Completely separable mad families

Let $\mathcal{A} \subseteq [\omega]^{\omega}$ be an almost disjoint family (not necessarily mad). Recall that:

$$\mathcal{I}(\mathcal{A}) := \left\{ X \subseteq \omega : \exists A_0, \dots, A_{n-1} \in \mathcal{A} \text{ such that } X \subseteq^* \bigcup_{i < n} A_i \right\}.$$

 $\mathcal{I}(\mathcal{A})$ is an ideal (as finite union of finite sets is finite). We let $\mathcal{I}^+(\mathcal{A}) := \mathcal{P}(\omega) \setminus \mathcal{I}(\mathcal{A})$.

Completely separable mad families

Let $\mathcal{A} \subseteq [\omega]^{\omega}$ be an almost disjoint family (not necessarily mad). Recall that:

$$\mathcal{I}(\mathcal{A}) := \left\{ X \subseteq \omega : \exists A_0, \dots, A_{n-1} \in \mathcal{A} \text{ such that } X \subseteq^* \bigcup_{i < n} A_i
ight\}.$$

 $\mathcal{I}(\mathcal{A})$ is an ideal (as finite union of finite sets is finite). We let $\mathcal{I}^+(\mathcal{A}) := \mathcal{P}(\omega) \setminus \mathcal{I}(\mathcal{A})$.

Definition

A mad family $A \subseteq [\omega]^{\omega}$ is *completely separable* if for every $Y \in \mathcal{I}^+(A)$, there exists some $A \in A$ such that $A \subseteq Y$.

If $\mathfrak{s} \leq \mathfrak{a}$, then there exists a completely separable mad family.

If $\mathfrak{s} \leq \mathfrak{a}$, then there exists a completely separable mad family.

Start of proof. We construct the completely separable mad family $\mathcal{A} = \{X_{\alpha} : \alpha : \alpha < \mathfrak{c}\}$ inductively.

If $\mathfrak{s} \leq \mathfrak{a}$, then there exists a completely separable mad family.

Start of proof. We construct the completely separable mad family $\mathcal{A} = \{X_{\alpha} : \alpha : \alpha < \mathfrak{c}\}$ inductively.

Let $\{Y_{\alpha} : \alpha < \mathfrak{c}\}$ enumerate all infinite subsets of ω such that for each infinite $Y \subseteq \omega$, $Y = Y_{\alpha}$ for cofinally many α .

If $\mathfrak{s} \leq \mathfrak{a}$, then there exists a completely separable mad family.

Start of proof. We construct the completely separable mad family $\mathcal{A} = \{X_{\alpha} : \alpha : \alpha < \mathfrak{c}\}$ inductively.

Let $\{Y_{\alpha} : \alpha < \mathfrak{c}\}$ enumerate all infinite subsets of ω such that for each infinite $Y \subseteq \omega$, $Y = Y_{\alpha}$ for cofinally many α .

Assume that $A_{\alpha} = \{X_{\beta} : \beta < \alpha\}$. We shall find some X_{α} such that:

If $\mathfrak{s} \leq \mathfrak{a}$, then there exists a completely separable mad family.

Start of proof. We construct the completely separable mad family $\mathcal{A} = \{X_{\alpha} : \alpha : \alpha < \mathfrak{c}\}$ inductively.

Let $\{Y_{\alpha} : \alpha < \mathfrak{c}\}$ enumerate all infinite subsets of ω such that for each infinite $Y \subseteq \omega$, $Y = Y_{\alpha}$ for cofinally many α .

Assume that $A_{\alpha} = \{X_{\beta} : \beta < \alpha\}$. We shall find some X_{α} such that:

• X_{α} is almost disjoint from X_{β} for all $\beta < \alpha$.

If $\mathfrak{s} \leq \mathfrak{a}$, then there exists a completely separable mad family.

Start of proof. We construct the completely separable mad family $\mathcal{A} = \{X_{\alpha} : \alpha : \alpha < \mathfrak{c}\}$ inductively.

Let $\{Y_{\alpha} : \alpha < \mathfrak{c}\}$ enumerate all infinite subsets of ω such that for each infinite $Y \subseteq \omega$, $Y = Y_{\alpha}$ for cofinally many α .

Assume that $A_{\alpha} = \{X_{\beta} : \beta < \alpha\}$. We shall find some X_{α} such that:

- X_{α} is almost disjoint from X_{β} for all $\beta < \alpha$.
- If $Y_{\alpha} \in \mathcal{I}^+(\mathcal{A}_{\alpha})$, then $X_{\alpha} \subseteq Y_{\alpha}$.

There are two crucial components of the construction that we will discuss:

There are two crucial components of the construction that we will discuss:

1. (Main lemma) Using block-splitting families to split a set $X \in \mathcal{I}^+(\mathcal{A}_\alpha)$ into two $\mathcal{I}(\mathcal{A}_\alpha)$ -positive pieces.

- 1. (Main lemma) Using block-splitting families to split a set $X \in \mathcal{I}^+(\mathcal{A}_\alpha)$ into two $\mathcal{I}(\mathcal{A}_\alpha)$ -positive pieces.
- 2. **(Applying assumptions)** Applying $\mathfrak{s} \leq \mathfrak{a}$ to obtain the required X_{α} .

Definition

- 1. Let $\mathcal{P} = \{P_n : n < \omega\}$ be an interval partition. We say that a set $S \in [\omega]^{\omega}$ block-splits \mathcal{P} if $\{n < \omega : P_n \subseteq S\}$ and $\{n < \omega : P_n \cap S = \emptyset\}$ are both infinite.
- 2. A block-splitting family is a family $S \subseteq [\omega]^{\omega}$ such that every interval partition is block-split by some $S \in S$.

Definition

- 1. Let $\mathcal{P} = \{P_n : n < \omega\}$ be an interval partition. We say that a set $S \in [\omega]^{\omega}$ block-splits \mathcal{P} if $\{n < \omega : P_n \subseteq S\}$ and $\{n < \omega : P_n \cap S = \emptyset\}$ are both infinite.
- 2. A block-splitting family is a family $S \subseteq [\omega]^{\omega}$ such that every interval partition is block-split by some $S \in S$.

Lemma (Kamburelis-Weglorz, 1996)

 $\max\{\mathfrak{b},\mathfrak{s}\}=\min\{|\mathcal{S}|:\mathcal{S} \text{ is a block-splitting family}\}.$

00000000000000000

Lemma

Let $\{S_{\alpha} : \alpha < \max\{\mathfrak{b}, \mathfrak{s}\}\}\$ be a block-splitting family. Let \mathcal{A} be an almost disjoint family, and let $X \in \mathcal{I}^+(A)$. Then the following properties hold:

- 1. For all α , $X \cap S_{\alpha} \in \mathcal{I}^+(A)$ or $X \setminus S_{\alpha} \in \mathcal{I}^+(A)$.
- 2. If $X \cap S_{\alpha} \in \mathcal{I}^+(\mathcal{A})$, then there exists some $Y \in \mathcal{I}^+(\mathcal{A})$ such that $Y \subseteq X \cap S_{\alpha}$.
- 3. If $X \setminus S_{\alpha} \in \mathcal{I}^+(\mathcal{A})$, then there exists some $Y \in \mathcal{I}^+(\mathcal{A})$ such that $Y \subseteq X \setminus S_{\alpha}$.
- 4. There exists some α such that $X \cap S_{\alpha} \in \mathcal{I}^+(\mathcal{A})$ and $X \setminus S_{\alpha} \in \mathcal{I}^{+}(\mathcal{A}).$

Note that properties (1)-(3) are trivial.

• \mathcal{B} is an almost disjoint family such that $|\mathcal{B}| < \max\{\mathfrak{b},\mathfrak{s}\}$.

- \mathcal{B} is an almost disjoint family such that $|\mathcal{B}| < \max\{\mathfrak{b},\mathfrak{s}\}$.
- $Y'_{\alpha} \subseteq Y_{\alpha}$.

- \mathcal{B} is an almost disjoint family such that $|\mathcal{B}| < \max\{\mathfrak{b},\mathfrak{s}\}$.
- $Y'_{\alpha} \subseteq Y_{\alpha}$.
- If $X \subseteq Y'_{\alpha}$ is almost disjoint from all elements of \mathcal{B} , then X is almost disjoint from X_{β} for all $\beta < \alpha$.

- \mathcal{B} is an almost disjoint family such that $|\mathcal{B}| < \max\{\mathfrak{b},\mathfrak{s}\}$.
- $Y'_{\alpha} \subseteq Y_{\alpha}$.
- If $X \subseteq Y'_{\alpha}$ is almost disjoint from all elements of \mathcal{B} , then X is almost disjoint from X_{β} for all $\beta < \alpha$.

Let:

$$\mathcal{B}' := \{ Z \cap Y'_{\alpha} : Z \in \mathcal{B} \}.$$

If $\mathfrak{s} \leq \mathfrak{a}$, then $|\mathcal{B}'| < \max\{\mathfrak{b},\mathfrak{s}\} \leq \mathfrak{a}$, so there exists some $X_{\alpha} \subseteq Y'_{\alpha}$ that is almost disjoint from all elements of \mathcal{B}' . Choosing X_{α} completes the induction.

Full mad families

Recall the theorem of focus today:

Theorem (Y., 2025)

If $\max\{\mathfrak{b},\mathfrak{s}\} \leq \mathfrak{a}^*_{\mathrm{vec},\mathbb{F}}$ or $\mathfrak{p} = \max\{\mathfrak{b},\mathfrak{s}\}$, then there exists a full mad family of block subspaces.

Start of proof. We construct the full mad family $A = \{A_{\alpha} : \alpha : \alpha < \mathfrak{c}\}$ of block subspaces inductively.

Start of proof. We construct the full mad family $A = \{A_{\alpha} : \alpha : \alpha < \mathfrak{c}\}$ of block subspaces inductively.

We need two enumerations:

- 1. $\{Y_{\alpha} : \alpha < Lim(\mathfrak{c})\}$ enumerates all infinite subsets of E, and;
- 2. $\{B_{\alpha} : \alpha < \text{Lim}(\mathfrak{c})\}$ enumerates all elements of $E^{[\infty]}$ (i.e. all block subspaces);

such that for all $Y \subseteq E$ and $B \in E^{[\infty]}$, $(Y, B) = (Y_{\alpha}, B_{\alpha})$ for cofinally many α .

Assume that $A_{\alpha} = \{A_{\beta} : \beta < \alpha\}$, where α is a limit. We shall find some A'_{α} such that if:

Assume that $A_{\alpha} = \{A_{\beta} : \beta < \alpha\}$, where α is a limit. We shall find some A'_{α} such that if:

• the set:

$$\mathcal{C}_{\alpha} := \{ A_{\beta} \in \mathcal{A}_{\alpha} : A_{\beta} \text{ and } B_{\alpha} \text{ are compatible} \}$$

is infinite, and;

Assume that $A_{\alpha} = \{A_{\beta} : \beta < \alpha\}$, where α is a limit. We shall find some A'_{α} such that if:

• the set:

$$\mathcal{C}_{\alpha} := \{A_{\beta} \in \mathcal{A}_{\alpha} : A_{\beta} \text{ and } B_{\alpha} \text{ are compatible}\}$$

is infinite, and;

• there exists some $D \leq B_{\alpha}$, almost disjoint from C_{α} such that $\langle D \rangle \subseteq Y$;

Assume that $A_{\alpha} = \{A_{\beta} : \beta < \alpha\}$, where α is a limit. We shall find some A'_{α} such that if:

• the set:

$$\mathcal{C}_{\alpha} := \{A_{\beta} \in \mathcal{A}_{\alpha} : A_{\beta} \text{ and } B_{\alpha} \text{ are compatible}\}$$

is infinite, and;

• there exists some $D \leq B_{\alpha}$, almost disjoint from C_{α} such that $\langle D \rangle \subseteq Y$;

then $A'_{\alpha} \leq B_{\alpha}$ is such that $\langle A'_{\alpha} \rangle \subseteq Y$, and A'_{α} is almost disjoint from A_{α} .

• the set:

$$\mathcal{C}_{\alpha} := \{A_{\beta} \in \mathcal{A}_{\alpha} : A_{\beta} \text{ and } B_{\alpha} \text{ are compatible}\}$$

is infinite, and;

• there exists some $D \leq B_{\alpha}$, almost disjoint from C_{α} such that $\langle D \rangle \subseteq Y$;

Claim

This construction yields a full mad family.

Claim

This construction yields a full mad family.

Sketch of Proof. Let $Y \subseteq E$ be $\mathcal{I}^+(\mathcal{A})$ -dense below some $B \in \mathcal{I}^+(\mathcal{A})$, i.e. for all $C \in \mathcal{I}^+(\mathcal{A}) \upharpoonright B$, there exists some $D \leq C$ such that $\langle D \rangle \subseteq Y$. We need to find some $C^* \in \mathcal{I}^+(\mathcal{A}) \upharpoonright B$ such that $\langle C^* \rangle \subseteq Y$.

Claim

This construction yields a full mad family.

Sketch of Proof. Let $Y \subseteq E$ be $\mathcal{I}^+(\mathcal{A})$ -dense below some $B \in \mathcal{I}^+(\mathcal{A})$, i.e. for all $C \in \mathcal{I}^+(\mathcal{A}) \upharpoonright B$, there exists some $D \leq C$ such that $\langle D \rangle \subseteq Y$. We need to find some $C^* \in \mathcal{I}^+(\mathcal{A}) \upharpoonright B$ such that $\langle C^* \rangle \subset Y$.

Fact

If A is a mad family of block subspaces, then $B \in \mathcal{I}^+(A)$ iff there exists an infinite $\{\beta_i : i < \omega\}$ such that A_{β_i} is compatible with B for all i.

Let $\alpha > \beta_i$ for all i be a limit ordinal such that $(Y, B) = (Y_\alpha, B_\alpha)$.

Step α **of the induction.** We shall find some A'_{α} such that if:

• the set:

$$\mathcal{C}_{\alpha}:=\{A_{eta}\in\mathcal{A}_{lpha}:A_{eta} ext{ and }B_{lpha} ext{ are compatible}\}$$

is infinite, and;

• there exists some $D \leq B_{\alpha}$, almost disjoint from \mathcal{C}_{α} such that $\langle D \rangle \subseteq Y$;

Step α **of the induction.** We shall find some A'_{α} such that if:

• the set:

$$\mathcal{C}_{\alpha} := \{A_{\beta} \in \mathcal{A}_{\alpha} : A_{\beta} \text{ and } B_{\alpha} \text{ are compatible}\}$$

is infinite, and; True, as $\{A_{\beta_i}: i < \omega\} \subseteq \mathcal{C}_{\alpha}$.

• there exists some $D \leq B_{\alpha}$, almost disjoint from C_{α} such that $\langle D \rangle \subseteq Y$;

Step α **of the induction.** We shall find some A'_{α} such that if:

• the set:

$$\mathcal{C}_{\alpha}:=\{A_{eta}\in\mathcal{A}_{lpha}:A_{eta} ext{ and }B_{lpha} ext{ are compatible}\}$$

is infinite, and; True, as $\{A_{\beta_i}: i < \omega\} \subseteq \mathcal{C}_{\alpha}$.

• there exists some $D \leq B_{\alpha}$, almost disjoint from C_{α} such that $\langle D \rangle \subseteq Y$; True, as 1. $A'_{\alpha} \in \mathcal{I}^{+}(\mathcal{A}) \upharpoonright B_{\alpha}$,

Step α **of the induction.** We shall find some A'_{α} such that if:

• the set:

$$\mathcal{C}_{\alpha} := \{A_{\beta} \in \mathcal{A}_{\alpha} : A_{\beta} \text{ and } B_{\alpha} \text{ are compatible}\}$$

is infinite, and; True, as $\{A_{\beta_i}: i < \omega\} \subseteq \mathcal{C}_{\alpha}$.

there exists some D ≤ B_α, almost disjoint from C_α such that ⟨D⟩ ⊆ Y; True, as 1. A'_α ∈ I⁺(A)↑B_α, 2. A'_α almost disjoint from C_α,

Step α **of the induction.** We shall find some A'_{α} such that if:

• the set:

$$\mathcal{C}_{\alpha}:=\{A_{eta}\in\mathcal{A}_{lpha}:A_{eta} ext{ and }B_{lpha} ext{ are compatible}\}$$

is infinite, and; True, as $\{A_{\beta_i}: i < \omega\} \subseteq \mathcal{C}_{\alpha}$.

• there exists some $D \leq B_{\alpha}$, almost disjoint from \mathcal{C}_{α} such that $\langle D \rangle \subseteq Y$; True, as 1. $A'_{\alpha} \in \mathcal{I}^+(\mathcal{A}) \upharpoonright B_{\alpha}$, 2. A'_{α} almost disjoint from \mathcal{C}_{α} , and 3. Y is $\mathcal{I}^+(\mathcal{A})$ -dense below B_{α} , so there exists some $D \leq A'_{\alpha}$ such that $\langle D \rangle \subseteq Y$.

Step α **of the induction.** We shall find some A'_{α} such that if:

• the set:

$$\mathcal{C}_{lpha}:=\{A_{eta}\in\mathcal{A}_{lpha}:A_{eta} ext{ and }B_{lpha} ext{ are compatible}\}$$

is infinite, and; True, as $\{A_{\beta_i}: i < \omega\} \subseteq \mathcal{C}_{\alpha}$.

• there exists some $D \leq B_{\alpha}$, almost disjoint from \mathcal{C}_{α} such that $\langle D \rangle \subseteq Y$; True, as 1. $A'_{\alpha} \in \mathcal{I}^+(\mathcal{A}) \upharpoonright B_{\alpha}$, 2. A'_{α} almost disjoint from \mathcal{C}_{α} , and 3. Y is $\mathcal{I}^+(\mathcal{A})$ -dense below B_{α} , so there exists some $D \leq A'_{\alpha}$ such that $\langle D \rangle \subseteq Y$.

Main lemma. Let $\{S_\alpha: \alpha < \max\{\mathfrak{b},\mathfrak{s}\}\}$ be a block-splitting family, and for each α , let:

$$Z_{\alpha} := \langle (e_n)_{n \in S_{\alpha}} \rangle$$
.

Main lemma. Let $\{S_{\alpha} : \alpha < \max\{\mathfrak{b}, \mathfrak{s}\}\}$ be a block-splitting family, and for each α , let:

$$Z_{\alpha}:=\langle (e_n)_{n\in\mathcal{S}_{\alpha}}\rangle$$
.

Lemma

Let $A \subseteq E^{[\infty]}$ be an almost disjoint family, and let $B \in E^{[\infty]}$ be such that $\langle B \rangle \in \mathcal{I}^+(A)$.

- 1. For all α , $\langle B \rangle \cap Z_{\alpha} \in \mathcal{I}^+(\mathcal{A})$ or $\langle B \rangle \setminus Z_{\alpha} \in \mathcal{I}^+(\mathcal{A})$.
- 2. If $\langle B \rangle \cap Z_{\alpha} \in \mathcal{I}^{+}(\mathcal{A})$, then there exists some $C \in E^{[\infty]}$ such that $\langle C \rangle \in \mathcal{I}^{+}(\mathcal{A})$ and $\langle C \rangle \subseteq \langle B \rangle \cap Z_{\alpha}$.
- 3. If $\langle B \rangle \setminus Z_{\alpha} \in \mathcal{I}^{+}(\mathcal{A})$, then there exists some $C \in E^{[\infty]}$ such that $\langle C \rangle \in \mathcal{I}^{+}(\mathcal{A})$ and $\langle C \rangle \subseteq \langle B \rangle \setminus Z_{\alpha}$.
- 4. There exists some α such that $\langle B \rangle \cap Z_{\alpha} \in \mathcal{I}^{+}(\mathcal{A})$ and $\langle B \rangle \setminus Z_{\alpha} \in \mathcal{I}^{+}(\mathcal{A})$.

• \mathcal{B} is an almost disjoint family such that $|\mathcal{B}| < \max\{\mathfrak{b},\mathfrak{s}\}$.

- \mathcal{B} is an almost disjoint family such that $|\mathcal{B}| < \max\{\mathfrak{b},\mathfrak{s}\}$.
- $B'_{\alpha} \leq B_{\alpha}$.

- \mathcal{B} is an almost disjoint family such that $|\mathcal{B}| < \max\{\mathfrak{b},\mathfrak{s}\}$.
- $B'_{\alpha} \leq B_{\alpha}$.
- If $C \leq B'_{\alpha}$ is almost disjoint from all elements of \mathcal{B} , then C is almost disjoint from A_{β} for all $\beta < \alpha$.

Let:

$$\mathcal{B}' := \{ \langle D \rangle \cap \langle B'_{\alpha} \rangle : D \in \mathcal{B} \}.$$

This is an almost disjoint of subspaces of B'_{α} , but not necessarily block subspaces.

Let:

$$\mathcal{B}' := \{\langle D \rangle \cap \langle B'_{\alpha} \rangle : D \in \mathcal{B}\}.$$

This is an almost disjoint of subspaces of B'_{α} , but not necessarily block subspaces.

1. If $\mathfrak{p}=\max\{\mathfrak{b},\mathfrak{s}\}$, then $|\mathcal{B}'|<\mathfrak{p}$. By a Lemma of (Smythe, 2019), there is some $A'_{\alpha}\leq B'_{\alpha}$ that is almost disjoint from \mathcal{B}' .

$$\mathcal{B}' := \{\langle D \rangle \cap \langle B'_{\alpha} \rangle : D \in \mathcal{B}\}.$$

This is an almost disjoint of subspaces of B'_{α} , but not necessarily block subspaces.

- 1. If $\mathfrak{p}=\max\{\mathfrak{b},\mathfrak{s}\}$, then $|\mathcal{B}'|<\mathfrak{p}$. By a Lemma of (Smythe, 2019), there is some $A'_{\alpha}\leq B'_{\alpha}$ that is almost disjoint from \mathcal{B}' .
- 2. If $\max\{\mathfrak{b},\mathfrak{s}\} \leq \mathfrak{a}^*_{\mathrm{vec},\mathbb{F}}$, then $|\mathcal{B}'| < \mathfrak{a}^*_{\mathrm{vec},\mathbb{F}}$. Thus, there exists some $A'_{\alpha} \leq B'_{\alpha}$ that is almost disjoint from all elements of \mathcal{B}' .

Choosing this A'_{α} completes the induction.

Open problems

It's still unknown if one may construct a full mad family of block subspaces in ZFC.

Open problems

It's still unknown if one may construct a full mad family of block subspaces in ZFC.

Problem

Does $\max\{\mathfrak{b},\mathfrak{s}\} \leq \mathfrak{a}^*_{\mathrm{vec},\mathbb{F}}$ hold in ZFC?

Open problems

It's still unknown if one may construct a full mad family of block subspaces in ZFC.

Problem

Does $\max\{\mathfrak{b},\mathfrak{s}\} \leq \mathfrak{a}^*_{\mathrm{vec},\mathbb{F}}$ hold in ZFC?

It's unknown there exists a completely separable mad family in ZFC.

Theorem (Shelah, 2011)

If $\mathfrak{c} < \aleph_{\omega}$, then there is a completely separable mad family.

Problem

If $\mathfrak{c} < \aleph_{\omega}$, is there a full mad family of block subspaces?

Thanks for listening!

- 1. Subspaces V, W are almost disjoint if $V \cap W$ is finite-dimensional. This gives us the cardinal invariants:
 - $\mathfrak{a}_{\text{vec},\mathbb{F}}^* := \min\{|\mathcal{A}| : \mathcal{A} \text{ is a mad family of subspaces}\}.$
 - $\mathfrak{a}_{\mathrm{vec},\mathbb{F}} := \min\{|\mathcal{A}| : \mathcal{A} \text{ is a mad family of block subspaces}\}.$
- 2. A mad family $A \subseteq E^{[\infty]}$ is *full* if $\mathcal{I}^+(A)$ satisfies a weak pigeonhole principle.
 - (Smythe, 2019) If $\mathfrak{p} = \mathfrak{c}$, then there exists a full mad family.
 - Is there a full mad family in ZFC? Is every mad family full?
- 3. (Y., 2025) If $\max\{\mathfrak{b},\mathfrak{s}\} \leq \mathfrak{a}^*_{\mathrm{vec},\mathbb{F}}$ or $\mathfrak{p} = \max\{\mathfrak{b},\mathfrak{s}\}$, then there exists a full mad family.
 - The proof is inspired by the construction of a completely separable mad family (of $[\omega]^{\omega}$), assuming $\mathfrak{s} \leq \mathfrak{a}$.
 - The key modifications are the main lemma involving a block-splitting family, and how the assumptions are applied.