TRIGONOMETRY

Chapter 04

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO

HELICO MOTIVACIÓN INTRODUCCIÓN A LAS RAZONES TRIGONOMÉTRICAS

¿ QUÉ SE ENTIENDE POR RAZÓN TRIGONOMÉTRICA DE UN ÁNGULO AGUDO?

Es el COCIENTE entre las longitudes de dos lados de un triángulo rectángulo, con respecto a uno de sus ángulos interiores agudos.

α: Ángulo interior agudo de referencia

H: Longitud de la hipotenusa

CO: Longitud del cateto opuesto a α

CA: Longitud del cateto adyacente a a

Teorema de Pitágoras: $H^2 = (CA)^2 + (CO)^2$

RAZONES TRIGONOMÉTRICAS DE UN ÁNGULO AGUDO α

senα	cosα	tanα	cotα	secα	csca
CO	CA	CO	CA	Н	Н
H	H	CA	CO	CA	CO

MÉTODO NEMOTÉCNICO: "COCA COCA HELADA HELADA"

EJEMPLO: Calcula las razones trigonométricas (RT) de α

sena	cosa	tanα	cota	seca	csca
$\sqrt{2}$	$\sqrt{7}$	$\sqrt{2}$	$\sqrt{7}$	3	3
3	3	$\overline{\sqrt{7}}$	$\overline{\sqrt{2}}$	$\frac{\overline{\sqrt{7}}}{}$	$\sqrt{2}$

Del gráfico, efectúe:

$$\mathsf{E} = \sqrt{21} \; (\; \mathsf{csc}\theta + \mathsf{cot}\theta \;)$$

senα	cosα	tanα	cotα	secα	cscα
CO	CA	CO	CA	Н	Н
H	H	CA	CO	CA	CO

RESOLUCIÓN

Teorema de Pitágoras:

$$(CO)^2 + 2^2 = 5^2$$

$$(CO)^2 + 4 = 25$$

$$\Rightarrow$$
 CO = $\sqrt{21}$

Calculamos E:

$$E = \sqrt{21}(\frac{5}{\sqrt{21}} + \frac{2}{\sqrt{21}})$$

Si $\sec \beta = 1,2$; donde β es un ángulo agudo, efectúe $L = \sqrt{11}(\cot \beta + \csc \beta)$.

RESOLUCIÓN

Dato:

$$\sec \beta = \frac{6}{5} = \frac{H}{CA}$$

$$CA = 5$$

Recordar:

$$\sec \beta = \frac{H}{CA}$$

$$\cot \beta = \frac{CA}{CO}$$

$$\mathbf{csc}\beta = \frac{\mathbf{H}}{\mathbf{CO}}$$

Teorema de Pitágoras:

$$(CO)^2 + 5^2 = 6^2$$

 $(CO)^2 + 25 = 36$
 $CO = \sqrt{11}$

Calculamos L:

$$L = \sqrt{11} \left(\frac{5}{\sqrt{11}} + \frac{6}{\sqrt{11}} \right)$$

En un triángulo rectángulo ABC $(m \not= C = 90^\circ)$, se sabe que senA = $\frac{7}{25}$ y la longitud de la hipotenusa mide 75 m .- Calcule el perímetro del triángulo ABC .

RESOLUCIÓN

Dato:
$$\operatorname{sen} A = \frac{7K}{25K} = \frac{CO}{H}$$

Teorema de Pitágoras:

$$(CA)^2 + (7K)^2 = (25 k)^2$$

$$(CA)^2 + 49 k^2 = 625 k^2$$

$$(CA)^2 = 576 k^2$$
 $CA = 24K$

Calculamos:
$$2p = 25K + 7K + 24K$$

$$2p = 56K = 56(3m)$$

: 2p = 168 m

En un triángulo rectángulo

ABC ($m \not = 90^{\circ}$), se sabe

que : tanB . cotA = $\frac{9}{16}$.

Efectúe: Q = cscA + tanB

RESOLUCIÓN

Dato:
$$tanB \cdot cotA = \frac{9}{16}$$

$$\frac{b}{a} \cdot \frac{b}{a} = \frac{9}{16} \Rightarrow \frac{b^2}{a^2} = \frac{9}{16} \Rightarrow \frac{b}{a} = \frac{3}{4}$$

Teorema de Pitágoras:

$$c^2 = 4^2 + 3^2 = 16 + 9$$
 $c = 5$

Calculamos:
$$Q = cscA + tanB$$

tanα	cotα
СО	CA
CA	CO

$$Q = \frac{5}{4} + \frac{3}{4}$$

CSCα

H
CO

Del gráfico, calcule sen α si AQ = QC

RESOLUCIÓN

Sea:
$$AQ = QC = a$$

En el
$$\triangle ABC$$
: sen $\alpha = \frac{10}{2a} = \frac{5}{a}$

En el
$$\triangle PQC$$
: sen $\alpha = \frac{a}{8}$

Luego:
$$\frac{a}{8} = \frac{5}{a}$$

$$a^2 = 40$$
 \Rightarrow $a = 2\sqrt{10}$

$$sen \alpha = \frac{2\sqrt{10}}{8}$$
 $sen \alpha = \frac{\sqrt{10}}{4}$

En la figura se muestra el perfil de la instalación de tubería de desagüe. Si el buzón A está ubicado a 1 m de la superficie, determine la altura a la que se encuentra el buzón B sabiendo que la pendiente de la tubería AB es de 2%.

Dato: Pendiente
$$AB = 2\%$$

$$tan\alpha = \frac{2K}{100K} = \frac{CO}{CA}$$

Calculamos
$$h_B$$
: $h_B = 4 m + 1 m$

$$h_{\rm B} = 5 \, \mathrm{m}$$

CHicho es un albañil muy dedicado en su trabajo y se le contrata para tarrajear una pared, tal como se muestra en la figura.- Sabiendo que el valor de a es un número entero positivo, determine la altura de dicha pared.

RESOLUCIÓN

Teorema de Pitágoras:

$$a^{2} + (a - 4)^{2} = (a + 4)^{2}$$
 $a^{2} = (a + 4)^{2} - (a - 4)^{2}$
 $a^{2} = 4(a)(4)$
 $a = 16$

Calculamos la altura de la pared :

$$h = (a-4) m = (16-4) m$$

$$\therefore$$
 h = 12 m

