22/10/2019 MLexample1

### **MACHINE LEARNING**

# \*Example 1

## Linear regression modelling using sklearn

In this example we will model data of handball players in attempt to predict the relation between players height and the goal

### Here, it is used the fallowing data from 2018 team of IFTC

- 1. handball players heights of a team
- 2. number of total scored goal in the season for each player

#### In [1]:

```
import matplotlib.pyplot as plt
import numpy as np
from sklearn import datasets, linear_model

# datasets for an handball team

Size = [170 , 177, 185, 188, 166, 192, 181, 207, 188, 185, 173, 189, 194, 199 ]
Goals = [12,20, 33, 39, 15, 45, 55, 50, 61, 58, 37, 29, 59, 45 ]

print ("number of field players = ", len(Goals))
# reshape the input of independent variable

SizeR = np.array(Size).reshape((-1,1)) # this generates a list of lists where each row as only one item in it
print (" \n Reshaped variable format:\n", SizeR )
```

number of field players = 14

```
Reshaped variable format:
[[170]
```

[177]

[185]

[188]

[166]

[192]

[181]

[207]

[188] [185]

[173]

[189]

[194]

[199]]

22/10/2019 MLexample1

#### In [2]:

```
# Fitting the linear regression model to data

reg = linear_model.LinearRegression()
reg.fit(SizeR, Goals)
print ("Coeficients: n\ ", reg.coef_ )
print ("Intercept: n\ ", reg.intercept_)
```

Coeficients: n\ [0.93388073] Intercept: n\ -133.17761452031107

#### In [3]:

```
# Ploting initial data
plt.xlabel('Height in cm ')
plt.ylabel('2018 Season goals')
plt.title("Players heigh relation with scoring capacity ")
plt.grid(True)
plt.plot(Size, Goals, "bp")
```

#### Out[3]:

[<matplotlib.lines.Line2D at 0x18d05c77128>]



#### In [4]:

```
# making a prediction based on liner regression model
Size_new = 197
GOALS = (Size_new*reg.coef_) + reg.intercept_
print ("Predicted goals = " , int(round(GOALS[0], 0) ) )
```

Predicted goals = 51

#### In [5]:

```
# Alternative way of making a prediction based on liner regression model
GOALS2 = reg.predict ([[Size_new]])
print ("Predicted goals = " , int(round(GOALS2[0], 0) ) )
```

Predicted goals = 51

22/10/2019 MLexample1

#### In [6]:

```
# Implement the linear model in a function for training the model

def Lmodel(formula, xRange):
    x = np.array(xRange)
    y = eval(formula)
    plt.plot(x, y, 'r')

# ploting the prediction on the data

Lmodel('reg.coef_*x + reg.intercept_', range(150, 220))
plt.scatter(Size, Goals, color = 'blue')
plt.xlabel('Height in cm ')
plt.ylabel('2018 Season goals')
plt.title("Players heigh relation with scoring capacity ")
plt.grid(True)
plt.show()
```



#### In [ ]: