Chapitre VII - Fonctions polynômes

Exercice bilan

Exercice bilan

Une entreprise familiale fabrique des objets en bois.

On suppose qu'elle vend tous les objets qu'elle fabrique. La fabrication peut varier entre 0 et 18 objets. On appelle x le nombre d'objets fabriqués et vendus par l'entreprise.

Le coût de fabrication en euros d'un nombre x d'objets est donné par la fonction $_{\mbox{\scriptsize $_{\rm 2}$}}f$ définie par

$$f(x)=\frac{1}{2}x^3-12x^2+105,5x+68 \ \text{dont on a trac\'e la courbe}$$
 représentative \mathscr{C}_f ci-contre.

1. Étude des coûts de fabrication

Le coût de fabrication en euros d'un nombre x d'objets est donné par la fonction f définie par $f(x)=\frac{1}{2}x^3-12x^2+105, 5x+68$ dont on a tracé la courbe représentative \mathscr{C}_f ci-contre.

- (a) Les coûts fixes sont les coûts existants avant même d'avoir commencé à produire. C'est donc f(0).
 - Or f(0) = 68 donc les coûts fixes s'élèvent à 68 \in .

1. Étude des coûts de fabrication

Le coût de fabrication en euros d'un nombre x d'objets est donné par la fonction f définie par $f(x)=\frac{1}{2}x^3-12x^2+105, 5x+68$ dont on a tracé la courbe représentative \mathscr{C}_f ci-contre.

(b)
$$f(6) = \frac{1}{2} \times 6^3 - 12 \times 6^2 + 105, 5 \times 6 + 68 = 377.$$
 Donc le coût de fabrication de 6 objets s'élève à 377 €.

1. Étude des coûts de fabrication

Le coût de fabrication en euros d'un nombre x d'objets est donné par la fonction f définie par $f(x)=\frac{1}{2}x^3-12x^2+105, 5x+68$ dont on a tracé la courbe représentative \mathscr{C}_f ci-contre.

(c) On résout graphiquement f(x)=400. On obtient alors x=8. Donc le coût de fabrication est de $600 \in$ lorsqu'on produit 8 objets.

Chaque objet fabriqué est vendu 50 €.

(a) Un objet est vendu 50 \in donc pour x objets le prix de vente sera de $50 \times x \in$.

Ainsi g(x) = 50x.

Chaque objet fabriqué est vendu 50 €.

(b) g est représentée par une droite (c'est une fonction affine - même linéaire). On cherche alors l'image de deux nombres par g: g(0) = 0 et g(10) = 500 ce qui nous permet de placer deux points

et ainsi tracer la droite.

Exercice bilan

Chaque objet fabriqué est vendu 50 €.

(b) g est représentée par une droite (c'est une fonction affine - même linéaire). On cherche alors l'image de deux nombres par g: g(0) = 0 et g(10) = 500 ce qui nous permet de placer deux points et ainsi tracer la droite.

Chaque objet fabriqué est vendu $50 \in$. (c) On cherche quand $g(x) \ge f(x)$

c'est-à-dire quand la droite est audessus de la courbe. Graphiquement l'entreprise réalise un bénéfice entre 8 et 17 objets fabriqués et vendus.

Chaque objet fabriqué est vendu $50 \in$. (c) On cherche quand $g(x) \ge f(x)$

c'est-à-dire quand la droite est audessus de la courbe. Graphiquement l'entreprise réalise un bénéfice entre 8 et 17 objets fabriqués et vendus.

(a) $h(x)=g(x)-f(x)={\sf recette}-{\sf coûts}$ Donc h(x) représente le bénéfice réalisé pour la fabrication et la vente de x objets.

(b)
$$h(x) = 50x - \left(\frac{1}{2}x^3 - 12x^2 + 105, 5x + 68\right)$$

(b)
$$h(x) = 50x - \left(\frac{1}{2}x^3 - 12x^2 + 105, 5x + 68\right)$$

= $50x - \frac{1}{2}x^3 + 12x^2 - 105, 5x - 68$

(b)
$$h(x) = 50x - \left(\frac{1}{2}x^3 - 12x^2 + 105, 5x + 68\right)$$

= $50x - \frac{1}{2}x^3 + 12x^2 - 105, 5x - 68$
= $-\frac{1}{2}x^3 + 12x^2 - 55, 5x - 68$.

(c)
$$h(8) = -\frac{1}{2} \times 8^3 + 12 \times 8^2 - 55, 5 \times 8 - 68 = 0$$

(c)
$$h(8) = -\frac{1}{2} \times 8^3 + 12 \times 8^2 - 55, 5 \times 8 - 68 = 0$$

 $h(-1) = -\frac{1}{2} \times (-1)^3 + 12 \times (-1)^2 - 55, 5 \times (-1) - 68 = 0$

(c)
$$h(8) = -\frac{1}{2} \times 8^3 + 12 \times 8^2 - 55, 5 \times 8 - 68 = 0$$

 $h(-1) = -\frac{1}{2} \times (-1)^3 + 12 \times (-1)^2 - 55, 5 \times (-1) - 68 = 0$
 $h(17) = -\frac{1}{2} \times 17^3 + 12 \times 17^2 - 55, 5 \times 17 - 68 = 0$

(d) D'après la question précédente, on obtient les 3 racines du polynôme : 8; -1 et 17.

- (d) D'après la question précédente, on obtient les 3 racines du polynôme : 8; −1 et 17.
 - De plus le coefficient devant x^3 est $-\frac{1}{2}$, ce qui correspond à la valeur de a dans l'écriture $a(x-x_1)(x-x_2)(x-x_3)$.

(d) D'après la question précédente, on obtient les 3 racines du polynôme : 8; -1 et 17.

De plus le coefficient devant x^3 est $-\frac{1}{2}$, ce qui correspond à la valeur de a dans l'écriture $a(x-x_1)(x-x_2)(x-x_3)$.

Donc la forme factorisée de h(x) est

$$-\frac{1}{2}(x-8)(x-(-1))(x-17)$$

D'après la question précédente, on obtient les 3 racines du polynôme : 8; -1 et 17.

De plus le coefficient devant x^3 est $-\frac{1}{2}$, ce qui correspond à la valeur de a dans l'écriture $a(x-x_1)(\bar{x}-x_2)(x-x_3)$.

Donc la forme factorisée de
$$h(x)$$
 est
$$-\frac{1}{2}(x-8)(x-(-1))(x-17) = -\frac{1}{2}(x-8)(x+1)(x-17).$$

(e) On construite le tableau en plaçant les racines dans l'ordre.

x	$-\infty$	-1	8	3 1	$7 + \infty$
signe de $-\frac{1}{2}$					
signe de $x-8$					
signe de $x+1$					
signe de $x-17$					
signe du produit					

(e) On donne le signe de chacun des facteurs : $-\frac{1}{2}$ est d'un signe constant, les autres étant des facteurs affines.

x	$-\infty$ -	-1	8	17	$+\infty$			
signe de $-\frac{1}{2}$	1	_	_		_			
signe de $x-8$	_	_	(+		+			
signe de $x+1$	_	(+	+		+			
signe de $x-17$	_	_	_	0	+			
signe du produit								

(e) On utilise la règle des signes pour trouver le signe du produit.

x	$-\infty$	-1		8	17	$+\infty$
signe de $-\frac{1}{2}$	_		_	_		_
signe de $x-8$	_		_) +		+
signe de $x+1$	_	ф	+	+		+
signe de $x-17$	_		_	_	ф	+
signe du produit	+	ф	_ () +	0	_

f)	x	$-\infty$ -	-1	8 1	$+\infty$
	signe de $-\frac{1}{2}$	_	_	_	_
	signe de $x-8$	_	_	ф +	+
	signe de $x+1$	_	ø +	+	+
	signe de $x-17$	_	_	_	+
	signe du produit	+	6 –	0 +	0 –

On cherche à résoudre $h(x) \ge 0$ sur l'intervalle [0; 18].

D'après le tableau de signes $h(x) \geqslant 0$ sur [8; 17].

Donc l'entreprise réalise un bénéfice entre 8 et 17 objets fabriqués et vendus.