Feature generation for multiscale time series forecasting

A. Motrenko, R. Neychev, R. Isachenko, M. Popova, V. Strijov

Moscow Institute of Physics and Technology

2016

Outline

- Data preprocessing
- Design matrix
- ► Testing procedure
- ► Feature generation
- ► Feature selection

Problem statement

Multiscale data

Consider a large set of time series $\mathfrak{D} = \{\mathbf{s}^{(q)} | \ q = 1 \dots, Q\}$. Each real-valued time series \mathbf{s}

$$\mathbf{s} = [s_1, \dots, s_i, \dots, s_T], \quad s_i = s(t_i), \quad 0 \le t_i \le t_{\mathsf{max}}$$

is a sequence of observations of some real-valued signal s(t). Each time series $\mathbf{s}^{(q)}$ has its own sampling rate $\tau^{(q)}$.

Time series forecasting

Design matrix

$$[\mathbf{x}_i|\mathbf{y}_i] = \underbrace{s(t_i - \Delta t_r - \Delta t_p), \dots, \underbrace{s(t_i - \Delta t_r), \dots, s(t_i)}}_{\mathbf{y}_i}.$$

Design matrix

$$\mathbf{X}^* = \begin{bmatrix} \mathbf{x} & \mathbf{y} \\ \frac{1 \times n}{\mathbf{X}} & \frac{\mathbf{y}}{m \times r} \end{bmatrix} = \begin{bmatrix} \frac{\mathbf{x}^{(1)} & \dots & \mathbf{x}^{(Q)} & \mathbf{y}^{(1)} & \dots & \mathbf{y}^{(Q)} \\ \hline \mathbf{x}_m^{(1)} & \dots & \mathbf{x}_m^{(Q)} & \mathbf{y}_m^{(1)} & \dots & \mathbf{y}_m^{(Q)} \\ \vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_1^{(1)} & \dots & \mathbf{x}_1^{(Q)} & \mathbf{y}_1^{(1)} & \dots & \mathbf{y}_1^{(Q)} \end{bmatrix}.$$

Regression problem

Now we are able to state the regression problem as follows:

$$\hat{\mathbf{y}} = f(\mathbf{x}, \hat{\mathbf{w}}), \ \hat{\mathbf{w}} = \underset{\hat{\mathbf{w}}}{\operatorname{arg min}} S(\mathbf{w}|\mathbf{f}(\mathbf{w}, \mathbf{x}), \mathbf{y}).$$
 (1)

Here the error function $S(\mathbf{w}|\mathbf{f}(\mathbf{w},\mathbf{x}),\mathbf{y})$ averages forecasting errors of $[\mathbf{x}_i|\mathbf{y}_i]$ over all segments $i=1,\ldots,m$ in the test set:

$$S(\mathbf{w}|\mathbf{f}(\mathbf{w},\mathbf{x}),\mathbf{y}) = \frac{r}{m}\sum_{i=1}^{m}I(\mathbf{y}_{i},f(\mathbf{x}_{i},\mathbf{w})).$$

Let ε denote residual vector

$$\boldsymbol{\varepsilon} = [\varepsilon_1, \dots, \varepsilon_r] = \mathbf{y} - \hat{\mathbf{y}}$$

for the forecast $\hat{\mathbf{y}} = \mathbf{f}(\mathbf{w}, \mathbf{x})$ of \mathbf{y} .

Types of forecasting errors

scale-dependent metrics: mean absolute error

$$MAE = \frac{1}{r} \sum_{j=1}^{r} |\varepsilon_j|,$$

percentage-error metrics: (symmetric) mean absolute percent error

$$\mathit{MAPE} = \frac{1}{r} \sum_{j=1}^r \frac{|\varepsilon_j|}{|y_j|}, \quad \mathit{sMAPE} = \frac{1}{r} \sum_{j=1}^r \frac{2|\varepsilon_j|}{|\hat{y}_j + y_j|},$$

▶ relative-error metrics (to residues ε^* of a benchmark method):

$$MRAE = \frac{1}{r} \sum_{j=1}^{r} \frac{|\varepsilon_j|}{\varepsilon_j^*},$$

and scale-free error metrics:

MASE =
$$\frac{n-1}{r} \frac{\sum_{i=1}^{r} |\varepsilon_{i}|}{\sum_{j=2}^{n} |x_{j} - x_{j-1}|}$$
.

Rolling validation

Rolling validation

- 1) construct the validation vector $\mathbf{x}_{\text{val},k}^*$ for time series of the length Δt_r as the first row of the design matrix \mathbf{Z} ,
- 2) construct the rest rows of the design matrix ${\bf Z}$ for the time after t_k and present it as

$$\mathbf{Z} = \begin{bmatrix} & \dots & & & & \\ & \mathbf{X}_{\text{val},k} & & \mathbf{y}_{\text{val},k} \\ & 1 \times n & & 1 \times r \\ & \mathbf{X}_{\text{train},k} & & \mathbf{Y}_{\text{train},k} \\ & & & m_{\text{min}} \times n & & m_{\text{min}} \times r \\ & & & & & & & & \end{bmatrix}, \uparrow_{k}$$

- 3) optimize model parameters \mathbf{w} using $\mathbf{X}_{\text{train},k}$, $\mathbf{Y}_{\text{train},k}$,
- 4) compute residues $\varepsilon_k = \mathbf{y}_{\mathsf{val},k} \mathbf{f}(\mathbf{x}_{\mathsf{val}_k}, \mathbf{w})$ and MAPE,
- 5) increment *k* and repeat.

Feature generation

Generating extra features

To augment feature description, consider the following types of features:

- 1) the local history of all time series themselves,
- transformations (non-parametric and parametric) of local history,
- 3) parameters of the local models,
- 4) distances to the centroids of local clusters.

Functional transforms

The procedure of generating new features ϕ requires:

- ▶ the original features $\mathbf{x} = \{\mathbf{x}_1, \dots, \mathbf{x}_Q\}$,
- ▶ the set of primitive functions $G = \{g(\mathbf{b}, \mathbf{x})\}$,

$$g: \mathbf{x} \mapsto \boldsymbol{\phi};$$

- ▶ the generation rules: $\mathcal{G} \supset \mathcal{G}$, where the superposition $g_k \circ g_l \in \mathcal{G}$ w.r.t. numbers and types of the input and output arguments;
- ▶ the simplification rules: g_u is not in \mathcal{G} , if there exist a rule

$$r: g_u \mapsto g_v \in \mathcal{G}.$$

The result is

the set of the features
$$\mathbf{x} = \{\mathbf{x}_1, \dots, \mathbf{x}_Q, \phi_1, \dots, \phi_N\}.$$

Examples of nonparametric transformation functions

Univariate

Formula	Output dimension
\sqrt{X}	1
\sqrt{x}	1
arctan x	1
ln x	1
$x \ln x$	1

Bivariate

Plus	$x_1 + x_2$	
Minus	$x_1 - x_2$	
Product	$x_1 \cdot x_2$	
Division	<u>X1</u> X2	
	$x_1\sqrt{x_2}$	
	$x_1 \ln x_2$	

Nonparametric transformations: sample statistics

Nonparametric transformations include basic data statistics:

▶ Sum or average value of each row \mathbf{x}_i , i = 1, ..., m:

$$\phi_i = \sum_{j=1}^n x_{ij}, \text{ or } \phi_i' = \frac{1}{n} \sum_{j=1}^n x_{ij}.$$

- ▶ Min and max values: $\phi_i = \min_j x_{ij}$, $\phi'_i = \max_j x_{ij}$.
- Standard deviation:

$$\phi_i = \frac{1}{n-1} \sqrt{\sum_{j=1}^n (x_{ij} - \mathsf{mean}(\mathbf{x}_i))^2}.$$

▶ Data quantiles: $\phi_i = [X_1, ..., X_K]$, where

$$\sum_{i=1}^{n} [X_{k-1} < x_{ij} \le X_k] = \frac{1}{K}, \text{ for } k = 1, \dots, K.$$

Nonparametric transformations: Haar's transform

Applying Haar's transform produces multiscale representations of the same data.

Assume that $n=2^K$ and init $\phi_{i,j}^{(0)}=\phi_{i,j}^{\prime(0)}=x_{ij}$ for $j=1,\ldots,n$. To obtain coarse-graining and fine-graining of the input feature vector \mathbf{x}_i , for $k=1,\ldots,K$ repeat:

data averaging step

$$\phi_{i,j}^{(k)} = \frac{\phi_{i,2j-1}^{(k-1)} + \phi_{i,2j}^{(k-1)}}{2}, \quad j = 1, \dots, \frac{n}{2^k},$$

and data differencing step

$$\phi_{i,j}^{\prime(k)} = \frac{\phi_{i,2j}^{\prime(k-1)} - \phi_{i,2j-1}^{\prime(k-1)}}{2}, \quad j = 1, \dots, \frac{n}{2^k}.$$

The resulting multiscale feature vectors are $\phi_i = [\phi_i^{(1)}, \dots, \phi_i^{(K)}]$ and $\phi_i' = [\phi_i'^{(1)}, \dots, \phi_i'^{(K)}]$.

Parametric transformations

Optimization of the transformation function parameters ${\bf b}$ is iterative:

1. Fix the vector $\hat{\mathbf{b}}$, collected over all the primitive functions $\{g\}$, which generate features ϕ :

$$\hat{\mathbf{w}} = \arg\min S(\mathbf{w}|\mathbf{f}(\mathbf{w},\mathbf{x}),\mathbf{y}), \quad \text{where} \quad \phi(\hat{\mathbf{b}},\mathbf{s}) \subseteq \mathbf{x}.$$

2. Optimize transformation parameters $\hat{\boldsymbol{b}}$ given model parameters $\hat{\boldsymbol{w}}$

$$\hat{\mathbf{b}} = \arg\min S(\mathbf{b}|\mathbf{f}(\hat{\mathbf{w}},\mathbf{x}),\mathbf{y}).$$

Repeat these steps until vectors $\hat{\mathbf{w}}, \hat{\mathbf{b}}$ converge.

Examples of parametric transformation functions

Function	Formula	Output	Num.	Num.
name		dim.	of	of
			args	pars
Add constant	x + w	1	1	1
Quadratic	$w_2x^2 + w_1x + w_0$	1	1	3
Cubic	$w_3x^3 + w_2x^2 + w_1x + w_0$	1	1	4
Logarithmic	$1/(w_0 + \exp(-w_1x))$	1	1	2
sigmoid				
Exponent	exp x	1	1	0
Normal	$\frac{1}{w_1\sqrt{2\pi}}\exp\left(\frac{(x-w_2)^2}{2w_1^2}\right)$	1	1	2
Multiply by	x · w	1	1	1
constant				
Monomial	$w_1 x^{w_2}$	1	1	2
Weibull-2	$w_1 w_2 x^{w_2 - 1} \exp{-w_1 x^{w_2}}$	1	1	2
Weibull-3	$w_1w_2x^{w_2-1}\exp{-w_1(x-w_3)^{w_2}}$	1	1	3

Monotone functions

▶ By grow rate

Function name	Formula	Constraints
Linear	$w_1 x + w_0$	
Exponential rate	$\exp(w_1x+w_0)$	$w_1 > 0$
Polynomial rate	$\exp(w_1 \ln x + w_0)$	$w_1 > 1$
Sublinear	$\exp(w_1 \ln x + w_0)$	$0 < w_1 < 1$
polynomial rate		
Logarithmic rate	$w_1 \ln x + w_0$	$w_1 > 0$
Slow convergence	$w_0 + w_1/x$	$w_1 \neq 0$
Fast convergence	$w_0 + w_1 \cdot \exp(-x)$	$w_1 \neq 0$

Other

Soft ReLu	$ln(1+e^x)$	
Sigmoid	$1/(w_0 + \exp(-w_1x))$	$w_1 > 0$
Softmax	$1/(1+\exp(-x))$	
Hiberbolic tangent	tanh(x)	
softsign	$\frac{ x }{1+ x }$	

Parameters of the local models

Other options:

- ▶ Parameters of SSA approximation of the time series $\mathbf{x}^{(q)}$.
- ▶ Parameters of the FFT of each $\mathbf{x}^{(q)}$.
- ▶ Parameters of polynomial/spline approximation of each $\mathbf{x}^{(q)}$.

Parameters of the local models: SSA

For the time series **s** construct the Hankel matrix with a period k and shift p, so that for $\mathbf{s} = [s_1, \dots, s_T]$ the matrix

$$\mathbf{H}^* = \left[egin{array}{cccc} s_T & \dots & s_{T-k+1} \ dots & \ddots & dots \ s_{k+p} & \dots & s_{1+p} \ s_k & \dots & s_1 \end{array}
ight], ext{ where } 1 \geqslant p \geqslant k.$$

Reconstruct the regression to the first column of the matrix $\mathbf{H}^* = [\mathbf{h}, \mathbf{H}]$ and denote its least square parameters as the feature vector

$$\phi(\mathbf{s}) = \operatorname{arg\,min} \|\mathbf{h} - \mathbf{H}\phi\|_2^2.$$

For the original feature vector $\mathbf{x} = [\mathbf{x}^{(1)}, \mathbf{x}^{(Q)}]$ use the parameters $\phi(\mathbf{x}^{(q)})$, $q = 1, \dots, Q$ as the features.

Metric features: distances to the centroids of local clusters

Apply kernel trick to the time series.

- 1. For given local feature vector $\mathbf{x}_i^{(q)}$, $q=1,\ldots,Q$ compute k-means centroids $\mathbf{c}_p^{(m)}$, $p=1,\ldots,P$.
- 2. With the selected k-means distance function ρ construct the feature vector

$$\phi_i^{(q)} = [\rho(\mathbf{c}_1^{(q)}, \mathbf{x}_i^{(q)}), \dots, \rho(\mathbf{c}_P^{(q)}, \mathbf{x}_i^{(q)})] \in \mathbb{R}_+^P.$$

The procedure may be applied to each $\mathbf{x}^{(q)}$ or directly to the $\mathbf{x} = [\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(Q)}]$, resulting in only P additional features instead of $Q \cdot P$

Feature selection

Mixture models

Linear mixture models

Assume the target variable \mathbf{y} is generated by one of K linear models $f_k(\mathbf{x}, \mathbf{w}_k)$. Let the distribution of the target variable \mathbf{y} be a mixture of normal distributions

$$p(\mathbf{y}|\mathbf{x}, \boldsymbol{\theta}) = \sum_{k=1}^{K} \pi_k \, \mathcal{N}(\mathbf{y}|\mathbf{w}_k^\mathsf{T}\mathbf{x}, \beta) =$$

$$\sum_{k=1}^K \frac{1}{(2\pi\beta_k)^{n/2}} \exp\left(\left(-\frac{1}{2\beta_k}(\mathbf{y} - \mathbf{w}_k^\mathsf{T} X)^\top (\mathbf{y} - \mathbf{w}_k^\mathsf{T} X)\right)\right).$$

Here heta denotes the concatenated vector of parameters:

$$\boldsymbol{\theta} = [\mathbf{w}_1, \dots, \mathbf{w}_k, \boldsymbol{\pi}, \boldsymbol{\beta}]^\mathsf{T},$$

where $\pi = [\pi_1, \dots, \pi_k]$ are weights of the models, and $\mathbf{B} = \beta \mathbf{I}_m$ is the covariance matrix for \mathbf{y} .

Parameter estimation

To find maximum likelihood estimates of $\hat{m{ heta}}$

$$\hat{\boldsymbol{\theta}} = \operatorname*{arg\,max}_{\boldsymbol{\theta}} \ln p(\mathbf{y}|\boldsymbol{\theta}),$$

introduce hidden indicator variables $Z = [\mathbf{z}_1, \dots, \mathbf{z}_m], \quad z_{ik} \in \{0, 1\},$ such that

$$z_{ik} = 1 \Leftrightarrow y_i \sim \mathcal{N}(\mathbf{w}_k^\mathsf{T} \mathbf{x}_i, \beta).$$

Then the loglikelihood function $p(\mathbf{y}, Z|X, \boldsymbol{\theta})$ takes the form

$$p(\mathbf{y}|X,Z,\boldsymbol{\theta}) = \sum_{i=1}^{m} \sum_{k=1}^{K} z_{ik} \left(\ln \pi_k + \ln \mathcal{N}(y_i|\mathbf{w}_k^\mathsf{T}\mathbf{x}_i,\beta) \right).$$

EM-algorithm: instead of $p(\mathbf{y}|X,\theta)$ maximize the expected loglikelihood $E_Z[p(\mathbf{y},Z|X,\theta)]$ of the observed data.

Expectation step

Expectation-Maximization algorithm maximizes $\mathsf{E}_Z[p(\mathbf{y},Z|X,\theta)]$, updating parameters estimates $\boldsymbol{\theta}^{(r+1)}$ in two iterative steps with $\boldsymbol{\theta}^{(r)}$ fixed.

E-step: obtain $E(Z) = [\gamma_{ik}]$. Using Bayesian rule, obtain:

$$\gamma_{ik}^{(r+1)} = \mathsf{E}(z_{ik}) = p(k|\mathbf{x}_i, \boldsymbol{\theta}^{(r)}) = \frac{\pi_k \mathcal{N}(y_i|\mathbf{x}_i^\mathsf{T} \mathbf{w}_k^{(r)}, \boldsymbol{\beta}^{(r)})}{\sum_{k'=1}^K \pi_{k'} \mathcal{N}(y_i|\mathbf{x}_i^\mathsf{T} \mathbf{w}_{k'}^{(r)}, \boldsymbol{\beta}^{(r)}).}$$

Define expectations of joint loglikelihood In $p(\mathbf{y}, Z|X, \theta)$ with respect to the posteriors distribution $p(Z|\mathbf{y}, \theta)$

$$Q^{(r)}(\boldsymbol{\theta}) = \mathsf{E}_{Z}(\ln p(\mathbf{y}, Z|\boldsymbol{\theta})) = \sum_{i=1}^{m} \sum_{k=1}^{K} \gamma_{ik}^{(r+1)} \left(\ln \pi_{k}^{(r)} + \ln \mathcal{N}(y_{i}|\mathbf{x}_{i}^{\mathsf{T}}\mathbf{w}_{k}^{(r)}, \beta^{(r)}) \right)$$

Maximization step

Expectation-Maximization algorithm maximizes $E_Z[p(\mathbf{y}, Z|X, \theta)]$, updating parameters estimates $\theta^{(r+1)}$ in two iterative steps with $\theta^{(r)}$ fixed.

M-step: update parameters θ , maximizing $Q^{(r)}(\theta) = E_Z(\ln p(\mathbf{y}, Z|\theta))$ with respect to θ with $\gamma^{(r+1)}$ fixed:

$$\pi_k^{(r+1)} = \frac{1}{n} \sum_{i=1}^m \gamma_{ik}^{(r+1)}.$$

$$\mathbf{w}_k^{(r+1)} = \arg\max_{\mathbf{w}_k} \sum_{i=1}^m -\gamma_{ik}^{(r+1)} \left(y_i - \mathbf{w}_k^\mathsf{T} \mathbf{x}_i \right)^2,$$

$$\beta_k^{(r+1)} = \arg\max_{\beta} \sum_{i=1}^m \gamma_{ik}^{(r+1)} \left(n \ln \beta - \frac{1}{\beta} (y_i - \mathbf{x}_i^\mathsf{T} \mathbf{w}_k^{(r+1)})^2 \right).$$

Maximization step

Expectation-Maximization algorithm maximizes $E_Z[p(\mathbf{y}, Z|X, \boldsymbol{\theta})]$, updating parameters estimates $\boldsymbol{\theta}^{(r+1)}$ in two iterative steps with $\boldsymbol{\theta}^{(r)}$ fixed.

M-step: update parameters θ , maximizing $Q^{(r)}(\theta) = E_Z(\ln p(\mathbf{y}, Z|\theta))$ with respect to θ with $\gamma^{(r+1)}$ fixed:

$$\pi_k^{(r+1)} = \frac{1}{n} \sum_{i=1}^m \gamma_{ik}^{(r+1)}.$$

$$\mathbf{w}_k^{(r+1)} = \arg\max_{\mathbf{w}_k} \sum_{i=1}^m -\gamma_{ik}^{(r+1)} \left(y_i - \mathbf{w}_k^\mathsf{T} \mathbf{x}_i \right)^2,$$

$$\beta_k^{(r+1)} = \arg\max_{\beta} \sum_{i=1}^m \gamma_{ik}^{(r+1)} \left(n \ln \beta - \frac{1}{\beta} (y_i - \mathbf{x}_i^\mathsf{T} \mathbf{w}_k^{(r+1)})^2 \right).$$

Mixture of Experts

Suppose that each model $f(\mathbf{x}, \mathbf{w}_k)$ generates a sample (\mathbf{x}, y) with some probability $p(k|\mathbf{x}, \mathbf{w})$. Then the following factorization holds

$$p(y|\mathbf{x}, \boldsymbol{\theta}) = \sum_{k=1}^{K} p(y, k|\mathbf{x}, \boldsymbol{\theta}) = \sum_{k=1}^{K} p(k|\mathbf{x}, \boldsymbol{\theta}) p(y|k, \mathbf{x}, \boldsymbol{\theta})$$

for $p(y|\mathbf{x}, \boldsymbol{\theta})$.

Here $p(k|\mathbf{x}, \boldsymbol{\theta})$ correspond to weight parameters π_k in mixture models dependent on the inputs \mathbf{x} :

$$\pi_k(\mathbf{x}, \mathbf{v}_k) = \frac{\exp(\mathbf{v}_k^\mathsf{T} \mathbf{x})}{\sum_{k'=1}^K \exp(\mathbf{v}_{k'}^\mathsf{T} \mathbf{x})}.$$

Parameter's estimation via EM differs only in M-step.

EM for Mixture of experts

E-step: compute hidden variables $\gamma_{ik}^{(r+1)}$, the expectation of the indicator variables, as previously shown.

M-step: find new parameter estimates

$$\begin{aligned} \mathbf{v}_{k}^{(r+1)} &= \arg\max_{\mathbf{v}} \sum_{i=1}^{m} \gamma_{ik}^{(r+1)} \ln \pi_{k}(\mathbf{x}_{i}, \mathbf{v}), \\ \mathbf{w}_{k}^{(r+1)} &= \arg\max_{\mathbf{w}_{k}} \left[-\sum_{i=1}^{m} \gamma_{ik}^{(r+1)} \left(y_{i} - \mathbf{w}_{k}^{\mathsf{T}} \mathbf{x}_{i} \right)^{2} \right], \\ \beta_{k}^{(r+1)} &= \arg\max_{\beta} \left[n \ln \beta - \frac{1}{\beta} \left(y_{i} - \mathbf{x}_{i}^{\mathsf{T}} \mathbf{w}_{k}^{(r+1)} \right)^{2} \right]. \end{aligned}$$

EM for Mixture of experts

E-step: compute hidden variables $\gamma_{ik}^{(r+1)}$, the expectation of the indicator variables, as previously shown.

M-step: find new parameter estimates

$$\begin{aligned} \mathbf{v}_k^{(r+1)} &= \arg\max_{\mathbf{v}} \sum_{i=1}^m \gamma_{ik}^{(r+1)} \ln \pi_k(\mathbf{x}_i, \mathbf{v}), \\ \mathbf{w}_k^{(r+1)} &= \arg\max_{\mathbf{w}_k} \left[-\sum_{i=1}^m \gamma_{ik}^{(r+1)} \left(y_i - \mathbf{w}_k^\mathsf{T} \mathbf{x}_i \right)^2 \right], \\ \boldsymbol{\beta}_k^{(r+1)} &= \arg\max_{\boldsymbol{\beta}} \left[n \ln \boldsymbol{\beta} - \frac{1}{\boldsymbol{\beta}} \left(y_i - \mathbf{x}_i^\mathsf{T} \mathbf{w}_k^{(r+1)} \right)^2 \right]. \end{aligned}$$

Resampling time series

The sampling rate might be changing over time, specifically

1. The initial sampling rate is approximately even, but distortions are possible:

$$t_i = i \cdot \tau + \delta_i, |\delta_i| < \frac{\tau}{2}.$$

In this case the number T_s of resampled observations equals the initial number of observations T.

2. The sampling rate is even, but some values are missing:

$$|t_{i+1}-t_i|=n\tau, n\in\mathbb{N}.$$

Here $\tau_{\rm s}=\tau$ and missing values are the only ones that one needs to approximate.

3. Time series **s** comprises a finite number of intervals \mathbf{s}_k , each sampled from s(t) at fixed sampling rate:

$$\mathbf{s} = \left[s(\tau_1), \ldots, s(T_1\tau_1), s(T_1\tau_1 + \tau_2), \ldots, s\left(\sum_k T_k\tau_k\right) \right],$$

where $\sum_k T_k = T$. Here we select the maximum sampling rate $f_{\rm s} = \max_k \frac{1}{\tau_k}$ and upsample the rest time series, using piecewise constant approximation.

Piece-wise constant approximation of missing values:

