Introduction to Robotics

Lecture 4

Kacper Jastrzębski 260607@student.pwr.edu.pl

Date: Tuesday 11:15, 21-03-2023

Contents

1	Forward kinematics	2
2	Denavit-Hartenberg (1955) solution	2
	2.1 Preliminary assumptions	2
	2.2 Algorithm:	2
3	Planar double pendulum	3

1 Forward kinematics

Let's recapitulate the naming conventions for a exemplary manipulator:

2 Denavit-Hartenberg (1955) solution

Jacques Denavit and Richard Hartenberg introduced this convention in 1955 in order to standardize the coordinate frames for spatial linkages¹. They came up with an universal algorithm for describing the motion (or in other words: attaching a reference frames to the links) of a manipulator.

2.1 Preliminary assumptions

- 1. motion allowed only along z-axis
- 2. rigid body assumed

2.2 Algorithm:

- 1. Step: assign axes of rotation $z_0 \dots z_{n-1}$
- 2. Step: describe base frame $O_0x_0y_0z_0^2$
- 3. Step: create a loop $i = 1, \ldots, n-1$ (repeat steps 4-6)
- 4. Step: determine O_i (the origin of next frame), consider 3 cases:
 - (a) case: $O_i = z_{i-1} \cap z_i$
 - (b) case parallel: a point where normal line passing through O_{i0-1} crosses Z_i
 - (c) case: a point where normal line to both Z_{i-1} and Z_i crosses Z_i
- 5. Step: determine x_i axis, for each case:
 - (a) $x_i = z_{i-1} \times Z_i$
 - (b) b and c: x_i along normal line selected previously
- 6. Step: calculate missing axis y_i such the $x_iy_iz_i$ is a right-handed frame
- 7. Step: end-effector frame:
 - (a) origin O_n between fingers of a grabbing, two fingered effector
 - (b) $z_n \mid\mid z_{n-1}$ inherited from the last joint
 - (c) y_n finger motion direction

¹Description borrowed from Wikipedia: Denavit–Hartenberg parameters.

²Axis should be chosen wisely, in respect to the surroundings, context, and the use case.

(d) $x_n \to x_n y_n z_n \to \text{right-handed}$

8. Step: determine D-H parameters described in table below:

	θ_i	d_i	a_i	α_i
1	$ heta_1$	d_1	a_1	α_1
2	θ_2	d_2	a_2	α_2
:				
n	θ_n	d_n	a_n	α_n

This is the procedure that is using th D-H parameters

$$A_{i-1}^{i}(q_i) = Rot(z, \theta_i) Tran(z, d_i) Tran(x, a_i) Rot(x, \alpha_i)$$
(1)

9. Describe full kinematic:

$$A_0^n(q) = A_0^1(q1) \cdot A_1^2(q2) \cdots A_{n-1}^n(q_n)$$
(2)

note-1 with pictures

3 Planar double pendulum

Simple but not trivial example of a system: notes-2

	θ_i	d_i	a_i	α_i
1	q_1	0	a_1	0
2	q_2	0	a_2	0

$$q = \begin{bmatrix} q1\\q2 \end{bmatrix} \tag{3}$$

$$A_0^2(q) = A_0^1(q_1) \cdot A_1^2(q_2) \tag{4}$$

$$Rot(z,q_1) \cdot Tran(x,a_1) = \begin{bmatrix} c_1 & -s_1 & 0 & 0 \\ s_1 & c_1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} = (5)$$