Label-efficient Deep Learning in Remote Sensing

Michael Mommert, University of St. Gallen

Resources: github.com/mommermi/iadfschool2023_efficientlearning

Input data (x) Output (y) $f(\mathbf{x};\theta) = \mathbf{y}$ training training unseen unseen X

Introduction

Earth observation data are highly complex (unstructured, multi-modal).

Earth observation data are highly complex (unstructured, multi-modal).

How can we analyze these vast amounts of data?

Earth observation data are highly complex (unstructured, multi-modal).

How can we analyze these vast amounts of data?

Deep Learning offers the **scalability** to analyze large amounts of data.

Earth observation data are highly complex (unstructured, multi-modal).

How can we analyze these vast amounts of data?

Deep Learning offers the **scalability** to analyze large amounts of data.

Deep Learning also offers the **flexibility** to deal with a range of different tasks.

Classification

Segmentation

Regression

Object Detection

Earth observation data are highly complex (unstructured, multi-modal).

How can we analyze these vast amounts of data?

Deep Learning offers the **scalability** to analyze large amounts of data.

Deep Learning also offers the **flexibility** to deal with a range of different tasks.

How does it work?

Classification

Segmentation

Regression

Object Detection

A machine learns a task from **annotated examples**.

A machine learns a task from **annotated examples**.

A machine learns a task from **annotated examples**.

A machine learns a task from **annotated examples**.

Mathematically, it learns a function, f, that maps input data, x, to the output, y.

A Neural Network is a cascade of mathematical functions; each neuron contains learnable weights that represent the learned knowledge.

A machine learns a task from **annotated examples**.

Mathematically, it learns a function, *f*, that maps input data, *x*, to the output, *y*.

A Neural Network is a cascade of mathematical functions; each neuron contains learnable weights that represent the learned knowledge.

How does the model learn?

• Sample batch (input data x and target data y) from training dataset:

- Sample batch (input data x and target data y) from training dataset:
 - Evaluate model on batch input data (=prediction) in forward pass

- Sample batch (input data x and target data y) from training dataset:
 - Evaluate model on batch input data (=prediction) in forward pass
 - Compute loss on prediction and target y

- Sample batch (input data x and target data y) from training dataset:
 - Evaluate model on batch input data (=prediction) in forward pass
 - Compute loss on prediction and target y
 - Compute weight gradients with backprop.

- Sample batch (input data x and target data y) from training dataset:
 - Evaluate model on batch input data (=prediction) in forward pass
 - Compute loss on prediction and target y
 - Compute weight gradients with backprop.
 - Modify weights based on gradients and learning rate

- Sample batch (input data x and target data y) from training dataset:
 - Evaluate model on batch input data (=prediction) in forward pass
 - Compute loss on prediction and target y
 - Compute weight gradients with backprop.
 - Modify weights based on gradients and learning rate
 - Repeat for all batches

- Sample batch (input data x and target data y) from training dataset:
 - Evaluate model on batch input data (=prediction) in forward pass
 - Compute loss on prediction and target y
 - Compute weight gradients with backprop.
 - Modify weights based on gradients and learning rate
 - Repeat for all batches
- Repeat for a number of epochs, monitor training and validation loss + metrics

1 epoch

- Sample batch (input data x and target data y) from training dataset:
 - Evaluate model on batch input data (=prediction) in forward pass
 - Compute loss on prediction and target y
 - Compute weight gradients with backprop.
 - Modify weights based on gradients and learning rate
 - Repeat for all batches
- Repeat for a number of epochs, monitor training and validation loss + metrics
- Stop before overfitting sets in

1 epoch

Let's implement a fully supervised learning pipeline with PyTorch and PyTorch Lightning!

Please go to:

github.com/mommermi/iadfschool2023_efficientlearning

A machine learns a task from **annotated examples**.

A Neural Network is a cascade of mathematical functions; each neuron contains learnable weights that represent the learned knowledge.

The availability of annotations typically represents the most important **bottleneck** in supervised learning.

A machine learns a task from **annotated examples**.

Mathematically, it learns a function, *f*, that maps input data, *x*, to the output, *y*.

A Neural Network is a cascade of mathematical functions; each neuron contains learnable weights that represent the learned knowledge.

The availability of annotations typically represents the most important **bottleneck** in supervised learning.

Can we force the model to use the available annotations more **efficiently**?

Can we take advantage of the vast amounts of **unannotated data**?

A machine learns a task from **annotated examples**.

Mathematically, it learns a function, *f*, that maps input data, *x*, to the output, *y*.

A Neural Network is a cascade of mathematical functions; each neuron contains learnable weight that represent the learned knowledge.

• Data augmentations

• Data augmentations

- Data augmentations
- Data Fusion

- Data augmentations
- Data Fusion
- Multi-task Learning

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning

other dataset

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning

other dataset

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning

other dataset

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning

Can we pretrain a model from unannotated data?

other dataset

We initialize our model with the **pre-trained** model weights; training starts not from scratch!

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning
- Self-supervised Learning

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning
- Self-supervised Learning

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning
- Self-supervised Learning

other dataset

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning
- Self-supervised Learning

→ Task

other dataset

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning
- Self-supervised Learning

Task

other dataset

In SSL, we pretrain our model in a **self-supervised way** (no labels required) and then apply transfer learning to learn our actual task more efficiently.

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning
- Self-supervised Learning

→ Task

other dataset

In SSL, we pretrain our model in a **self-supervised way** (no labels required) and then apply transfer learning to learn our actual task more efficiently.

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning
- Self-supervised Learning

We will introduce these methods in the following and implement some them using PyTorch after the coffee break.

Data **Augmentations**

Data Augmentations

Data augmentations are a means to synthetically "increase the size" of your dataset. Augmentations are **transformations** that affect input data but not the corresponding labels; as a result, models trained with data augmentations tend to be **more robust** and **less prone to overfitting**.

Original

Flip

Flip

Image Enhancements

Original

Flip

Image Enhancements

Color distortions

Original

Flip

Image Enhancements

Color distortions

Crop

Original

Flip

Image Enhancements

Color distortions

Crop

Original

Flip

Image Enhancements

Color distortions

Crop

Original

Flip

Image Enhancements

Color distortions

Crop

Original

Flip

Image Enhancements

Color distortions

Crop

Original

Flip

Image Enhancements

Color distortions

Crop

Original

Flip

Image Enhancements

Color distortions

Crop

Original

Flip

Image Enhancements

Color distortions

Crop

Original

Flip

Image **Enhancements**

Color distortions

Crop

+ Rotations!

Data augmentations are a powerful method, but they have to be used with care: some transformations might be unphysical and harm/confuse the model.

Data augmentations are a powerful method, but they have to be used with care: some transformations might be unphysical and harm/confuse the model.

If used properly, there is no disadvantage in using data augmentations.

Data augmentations are a powerful method, but they have to be used with care: some transformations might be unphysical and harm/confuse the model.

If used properly, there is no disadvantage in using data augmentations.

Data augmentations are generally easy to implement, which is why we will not look at them in more detail...

Data Fusion is a technique in which different data modalities are combined ("fused"). The goal of data fusion is to better perform a task by combining relevant data.

Data Fusion is a technique in which different data modalities are combined ("fused"). The goal of data fusion is to better perform a task by combining relevant data.

Data Fusion is a technique in which different data modalities are combined ("fused"). The goal of data fusion is to better perform a task by combining relevant data.

Multispectral (e.g., Sentinel-2, Landsat)

Data Fusion is a technique in which different data modalities are combined ("fused"). The goal of data fusion is to better perform a task by combining relevant data.

Multispectral (e.g., Sentinel-2, Landsat)

SAR (e.g., Sentinel-1, ICEye)

Data Fusion is a technique in which different data modalities are combined ("fused"). The goal of data fusion is to better perform a task by combining relevant data.

Multispectral (e.g., Sentinel-2, Landsat)

SAR (e.g., Sentinel-1, ICEye)

DEM (e.g., Copernicus DEM)

Data Fusion is a technique in which different data modalities are combined ("fused"). The goal of data fusion is to better perform a task by combining relevant data.

Multispectral (e.g., Sentinel-2, Landsat)

SAR (e.g., Sentinel-1, ICEye)

DEM (e.g., Copernicus DEM)

LU/LC (e.g., Corine, Esa WorldCover)

Data Fusion

Data Fusion is a technique in which different data modalities are combined ("fused"). The goal of data fusion is to better perform a task by combining relevant data.

Earth observation is predestined for Data Fusion, as EO sensors collect data across many different data modalities:

Multispectral (e.g., Sentinel-2, Landsat)

SAR (e.g., Sentinel-1, ICEye)

DEM (e.g., Copernicus DEM)

LU/LC (e.g., Corine, Esa WorldCover)

Meta Data (e.g., weather data, observation circumstances)

Data Fusion

Paolo Gamba Will Presel Data Fusion for change detection in urban areas Data Fusion is a technique in which different data modalities are combined ("fused" fusion is to better perform a task by combining relevant data.

Earth observation is predestined for Data Fusion, as EO sensors collections data modalities:

Multispectral (e.g., Sentinel-2, Landsat)

SAR (e.g., Sentinel-1, ICEye)

DEM (e.g., Copernicus DEM)

LU/LC (e.g., Corine, Esa WorldCover)

Meta Data (e.g., weather data, observation circumstances)

To explore the use of multimodal for Data Fusion (and other methods), we will use a specifically designed dataset:

To explore the use of multimodal for Data Fusion (and other methods), we will use a specifically designed dataset:

To explore the use of multimodal for Data Fusion (and other methods), we will use a specifically designed dataset:

BigEarthNet contains 590,326 patches of co-located Sentinel-1/2 data.

To explore the use of multimodal for Data Fusion (and other methods), we will use a specifically designed dataset:

BigEarthNet contains 590,326 patches of co-located Sentinel-1/2 data.

To explore the use of multimodal for Data Fusion (and other methods), we will use a specifically designed dataset:

BigEarthNet contains 590,326 patches of co-located Sentinel-1/2 data.

ben-ge extends BigEarthNet by the following data modalities:

Elevation data (Copernicus DEM GLO-30)

To explore the use of multimodal for Data Fusion (and other methods), we will use a specifically designed dataset:

BigEarthNet contains 590,326 patches of co-located Sentinel-1/2 data.

- Elevation data (Copernicus DEM GLO-30)
- Land-use/land-cover maps (ESA Worldcover)

To explore the use of multimodal for Data Fusion (and other methods), we will use a specifically designed dataset:

BigEarthNet contains 590,326 patches of co-located Sentinel-1/2 data.

- Elevation data (Copernicus DEM GLO-30)
- Land-use/land-cover maps (ESA Worldcover)
- Environmental data (ERA-5)

To explore the use of multimodal for Data Fusion (and other methods), we will use a specifically designed dataset:

BigEarthNet contains 590,326 patches of co-located Sentinel-1/2 data.

- Elevation data (Copernicus DEM GLO-30)
- Land-use/land-cover maps (ESA Worldcover)
- Environmental data (ERA-5)
- Climate zone classification (Beck et al. 2018)

To explore the use of multimodal for Data Fusion (and other methods), we will use a specifically designed dataset:

BigEarthNet contains 590,326 patches of co-located Sentinel-1/2 data.

- Elevation data (Copernicus DEM GLO-30)
- Land-use/land-cover maps (ESA Worldcover)
- Environmental data (ERA-5)
- Climate zone classification (Beck et al. 2018)
- Seasonal encoding

To explore the use of multimodal for Data Fusion (and other methods), we will use a specifically designed dataset:

BigEarthNet contains 590,326 patches of co-located Sentinel-1/2 data.

ben-ge extends BigEarthNet by the following data modalities:

- Elevation data (Copernicus DEM GLO-30)
- Land-use/land-cover maps (ESA Worldcover)
- Environmental data (ERA-5)
- Climate zone classification (Beck et al. 2018)
- Seasonal encoding

ben-ge serves as a testbed for combining different EO data modalities.

To explore the use of multimodal for Data Fusion (and other methods), we will use a specifically designed dataset:

BigEarthNet contains 590,326 patches of co-located Sentinel-1/2 data.

ben-ge extends BigEarthNet by the following data modalities:

- Elevation data (Copernicus DEM GLO-30)
- Land-use/land-cover maps (ESA Worldcover)
- Environmental data (ERA-5)
- Climate zone classification (Beck et al. 2018)
- Seasonal encoding

ben-ge serves as a testbed for combining different EO data modalities. For more details, check out https://github.com/HSG-AIML/ben-ge

To explore the use of multimodal for Data Fusion (and other methods), we will use a specifically designed dataset:

BigEarthNet contains 590,326 patches of co-located Sentinel-1/2 data.

ben-ge extends BigEarthNet by the following data modalities:

- Elevation data (Copernicus DEM GLO-30)
- Land-use/land-cover maps (ESA Worldcover)
- Environmental data (ERA-5)
- Climate zone classification (Beck et al. 2018)
- Seasonal encoding

ben-ge serves as a testbed for combining different EO data modalities. For more details, check out https://github.com/HSG-AIML/ben-ge

We will use a subset of ben-ge, ben-ge-800, in this tutorial.

What data modalities are available in ben-ge?

What data modalities are available in ben-ge?

Sentinel-2 Multispectral

12 bands Level-2A

What data modalities are available in ben-ge?

Sentinel-2 Multispectral

12 bands Level-2A

Sentinel-1 SAR

2 bands

What data modalities are available in ben-ge?

BigEarthNet-MM

What data modalities are available in ben-ge?

BigEarthNet-MM

Sentinel-2 Multispectral

12 bands Level-2A

Sentinel-1 SAR

2 bands

Copernicus DEM (GLO-30, resampled)

What data modalities are available in ben-ge?

BigEarthNet-MM

Sentinel-2 Multispectral

12 bands Level-2A

Sentinel-1 SAR

2 bands

Copernicus DEM (GLO-30, resampled)

ESA WorldCover LU/LC

8/11 classes

What data modalities are available in ben-ge?

BigEarthNet-MM

Sentinel-2 Multispectral

12 bands Level-2A

Sentinel-1 SAR

2 bands

Copernicus DEM (GLO-30, resampled)

ESA WorldCover LU/LC

8/11 classes

Meta Data

ERA-5 weather Climate zones Seasonality

What data modalities are available in ben-ge?

BigEarthNet-MM

Sentinel-2 Multispectral

12 bands Level-2A

Sentinel-1 SAR

2 bands

Copernicus DEM (GLO-30, resampled)

ESA WorldCover LU/LC

8/11 classes

Meta Data

ERA-5 weather Climate zones Seasonality

10m resolution

Data Fusion for Deep Learning

How can we leverage Data Fusion in Deep Learning?

In Early Fusion, two (or more) data modalities are combined before they enter the backbone:

In Early Fusion, two (or more) data modalities are combined before they enter the backbone:

Data 1

In Early Fusion, two (or more) data modalities are combined before they enter the backbone:

Data 1

Data 2

Different data modalities

In Early Fusion, two (or more) data modalities are combined before they enter the backbone:

data modalities

In Early Fusion, two (or more) data modalities are combined before they enter the backbone:

Concatenation: stack data (all of the same shape) along the channel axis

Different data modalities

In Early Fusion, two (or more) data modalities are combined before they enter the backbone:

Early Fusion is simple if the data modalities to be combined have the same shape (e.g., map-like features with the same extent).

Early Fusion is simple if the data modalities to be combined have the same shape (e.g., map-like features with the same extent).

Early Fusion is simple if the data modalities to be combined have the same shape (e.g., map-like features with the same extent).

Sentinel-2

Early Fusion is simple if the data modalities to be combined have the same shape (e.g., map-like features with the same extent).

Early Fusion is simple if the data modalities to be combined have the same shape (e.g., map-like features with the same extent).

Early Fusion is simple if the data modalities to be combined have the same shape (e.g., map-like features with the same extent).

But: how to combine Sentinel-2 data (12 channels x 120 px x 120 px) with patch-global seasonality (scalar value in the range [0, 1]) data?

Blow-up patch: same height and width as Sentinel-2; each "pixel" equals the global value (0.65)

In Late Fusion, two (or more) data modalities are combined after passing through separate backbones:

In Late Fusion, two (or more) data modalities are combined after passing through separate backbones:

In Late Fusion, two (or more) data modalities are combined after passing through separate backbones:

In Late Fusion, two (or more) data modalities are combined after passing through separate backbones:

Backbones might be completely separate, or have shared weights.

In Late Fusion, two (or more) data modalities are combined after passing through separate backbones:

Backbones might be completely separate, or have shared weights.

In Late Fusion, two (or more) data modalities are combined after passing through separate backbones:

Backbones might be completely separate, or have shared weights.

Let's implement some Data Fusion techniques into our model!

Data Fusion: An example

Which data modalities make sense to combine? (Mommert et al. 2023)

N	Sen-2	Sen-1	Climate	DEM	Weather	Season	Classification [%]		Segmentation [%]	
							F1-score	Accuracy	IoU	Accuracy
	✓						77.12 ±0.64	96.21 ± 0.08	39.17 ±0.09	87.57±0.05
		\checkmark					73.09 ± 0.24	95.60 ± 0.05	31.70±0.17	82.65 ± 0.05
1			\checkmark				70.50 ± 0.34	94.69 ± 0.03	14.70 ± 0.32	60.65 ± 1.35
1				\checkmark			55.96 ± 1.00	93.53 ± 0.15	26.25 ± 0.48	76.92 ± 0.63
					\checkmark		46.15 ± 0.68	91.60 ± 0.02	6.30 ± 0.05	45.20 ± 0.08
						\checkmark	39.15 ± 0.74	91.75 ± 0.05	6.01 ± 0.34	43.89 ± 0.51
2	√	√					82.81 ±0.29	97.03 ± 0.04	39.67 ±0.16	87.98 ± 0.07
	\checkmark					\checkmark	78.61 ± 0.67	96.42 ± 0.08	38.92 ± 0.21	87.37 ± 0.10
	√	√	√				85.12 ±0.34	97.39 ± 0.05	39.63 ± 0.23	87.94 ± 0.12
3	\checkmark	\checkmark		\checkmark			83.30 ± 0.43	97.10 ± 0.08	39.71 ±0.21	88.05 ± 0.11
	\checkmark	✓				✓			39.61±0.19	87.93 ± 0.12

Data Fusion: An example

Which data modalities make sense to combine? (Mommert et al. 2023)

N	Sen-2	Sen-1	Climate	DEM	Weather	Season	Classification [%]		Segmentation [%]	
							F1-score	Accuracy	IoU	Accuracy
	✓						77.12 ±0.64	96.21 ± 0.08	39.17 ±0.09	87.57±0.05
		\checkmark					73.09 ± 0.24	95.60 ± 0.05	31.70±0.17	82.65 ± 0.05
1			\checkmark				70.50 ± 0.34	94.69 ± 0.03	14.70 ± 0.32	60.65 ± 1.35
				\checkmark			55.96 ± 1.00	93.53 ± 0.15	26.25 ± 0.48	76.92 ± 0.63
					\checkmark		46.15 ± 0.68	91.60 ± 0.02	6.30 ± 0.05	45.20 ± 0.08
						\checkmark	39.15 ± 0.74	91.75 ± 0.05	6.01 ± 0.34	43.89 ± 0.51
2	√	√					82.81 ±0.29	97.03 ± 0.04	39.67 ±0.16	87.98 ± 0.07
2	\checkmark					\checkmark	78.61 ± 0.67	96.42 ± 0.08	38.92 ± 0.21	87.37 ± 0.10
	√	√	√				85.12 ±0.34	97.39 ± 0.05	39.63±0.23	87.94 ± 0.12
3	\checkmark	\checkmark		\checkmark			83.30 ± 0.43	97.10 ± 0.08	39.71 ±0.21	88.05 ± 0.11
	✓	✓				✓	<u> </u>	<u> </u>	39.61±0.19	87.93 ± 0.12

... it depends on the downstream task and the data...

Data Fusion: An example

Which data modalities make sense to combine? (Mommert et al. 2023)

N	Sen-2	Sen-1	Climate	DEM	Weather	Season	Classification [%]		Segmentation [%]	
							F1-score	Accuracy	IoU	Accuracy
	✓						77.12 ±0.64	96.21 ± 0.08	39.17 ±0.09	87.57±0.05
		\checkmark					73.09 ± 0.24	95.60 ± 0.05	31.70±0.17	82.65 ± 0.05
1			\checkmark				70.50 ± 0.34	94.69 ± 0.03	14.70 ± 0.32	60.65 ± 1.35
				\checkmark			55.96 ± 1.00	93.53 ± 0.15	26.25 ± 0.48	76.92 ± 0.63
					\checkmark		46.15 ± 0.68	91.60 ± 0.02	6.30 ± 0.05	45.20 ± 0.08
						\checkmark	39.15 ± 0.74	91.75 ± 0.05	6.01 ± 0.34	43.89 ± 0.51
2	√	√					82.81 ±0.29	97.03 ± 0.04	39.67 ±0.16	87.98 ± 0.07
2	\checkmark					\checkmark	78.61 ± 0.67	96.42 ± 0.08	38.92 ± 0.21	87.37 ± 0.10
	√	√	√				85.12 ±0.34	97.39 ± 0.05	39.63±0.23	87.94 ± 0.12
3	\checkmark	\checkmark		\checkmark			83.30 ± 0.43	97.10 ± 0.08	39.71 ±0.21	88.05 ± 0.11
	✓	✓				✓	<u> </u>	<u> </u>	39.61±0.19	87.93 ± 0.12

... it depends on the downstream task and the data...

Which method is better: in most cases, late fusion seems to be more beneficial (might be a fallacy).

Multitask Learning

Multitask Learning

Multitask Learning

The Loss of the combined architecture is a weighted sum of the Losses of the individual downstream tasks. Let's implement some Multitask Learning techniques based on our model!

Idea: Can we train a neural network to estimate power and CO2 output of power plants?

Idea: Can we train a neural network to estimate power and CO2 output of power plants?

~3000 observations of

~150 power plants

Sentinel-2 12 Bands

Idea: Can we train a neural network to estimate power and CO2 output of power plants?

~3000 observations of

Sentinel-2 12 Bands

Backbone (U-Net)

Idea: Can we train a neural network to estimate power and CO2 output of power plants?

Idea: Can we train a neural network to estimate power and CO2 output of power plants?

Idea: Can we train a neural network to estimate power and CO2 output of power plants?

Regression: MAE [MW] R^2

Baseline: 202±20 65±5

Idea: Can we train a neural network to estimate power and CO2 output of power plants?

Regression: MAE [MW] R²

Baseline: 202±20 65±5

Estimating power generation is possible. But can we improve it with Multitask learning?

Transfer
Learning
and
Self-supervised
Learning

Transfer Learning

In the end, transfer learning simply means that your model has previously been trained: you load a model checkpoint and resume training on your data and for your downstream task.

Implementing Transfer Learning is simple. Let's do it!

Transfer Learning still needs labels

Self-Supervised Learning (SSL) and Transfer Learning

Self-Supervised Learning (SSL) and Transfer Learning

Self-supervised learning: learn "to see", differentiate between image features (edges, colors) without supervision

Self-Supervised Learning (SSL) and Transfer Learning

Self-supervised learning: learn "to see", differentiate between image features (edges, colors) without supervision

Transfer learning: use the learned features to solve a task by providing "few labels"

Contrastive learning setup (following SimCLR):

Contrastive learning setup (following SimCLR):

Contrastive learning setup (following SimCLR):

Contrastive learning setup (following SimCLR):

Contrastive learning setup (following SimCLR):

Contrastive learning setup (following SimCLR):

Contrastive learning setup (following SimCLR):

Contrastive learning setup (following SimCLR):

Yes we can! SSL is able to learn **rich representations** from large amounts of unannotated data.

Contrastive learning setup (following SimCLR):

SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Chen et al. (2020)

SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Data augmentations (Transformations) are key for SimCLR to work.

Chen et al. (2020)

SimCLR: A Simple Framework for Contrastive Learning of Visual Representations

Data augmentations (Transformations) are key for SimCLR to work.

In remote sensing, we naturally have different views of the same scence (different times, different data modalities, etc.) We can leverage these views...

Chen et al. (2020)

Pre-training

Pre-training

Multimodal dataset (SEN12MS, ~181k
 Sentinel-1/2 patch pairs)

Pre-training

- Multimodal dataset (SEN12MS, ~181k
 Sentinel-1/2 patch pairs)
- Separate backbones for each modality

Pre-training

- Multimodal dataset (SEN12MS, ~181k
 Sentinel-1/2 patch pairs)
- Separate backbones for each modality
- Augmentation-free, contrastive setup

Let's see how we can build this architecture...

Fine-tuning on classification task

Fine-tuning on classification task

 Annotations from DFC2020 high-res (10m) land use/land cover maps, ~5k patches, 8 classes

Fine-tuning on classification task

 Annotations from DFC2020 high-res (10m) land use/land cover maps, ~5k patches, 8 classes

Fine-tuning on classification task

 Annotations from DFC2020 high-res (10m) land use/land cover maps, ~5k patches, 8 classes

Fine-tuning on classification task

 Annotations from DFC2020 high-res (10m) land use/land cover maps, ~5k patches, 8 classes

Fine-tuning on classification task

 Annotations from DFC2020 high-res (10m) land use/land cover maps, ~5k patches, 8 classes

Fine-tuning on classification task

- Annotations from DFC2020 high-res (10m) land use/land cover maps, ~5k patches, 8 classes
- Main result: pretrained models outperform supervised baselines with only 10% of training data

This is it!

Summary

We introduced a number of methods to make more efficient use of labels (or use no labels at all):

- Data augmentations
- Data Fusion
- Multi-task Learning
- Transfer Learning
- Self-supervised Learning

Now go out into the world and use the code that we discussed for your own research!

