NATIONAL UNIVERSITY OF SINGAPORE Department of Mathematics

Module: MA1508E Linear Algebra for Engineering

Year/Semester: 2018-2019 (Semester 2)

Tutorial: 8

1. For each of the following matrices \boldsymbol{A} , determine a basis for each of the following subspaces (i) row space of \boldsymbol{A} ; (ii) row space of \boldsymbol{A}^T ; (iii) nullspace of \boldsymbol{A} ; (iv) nullspace of \boldsymbol{A}^T . State also the dimension of each of these subspaces.

(a)
$$\begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 0 \end{pmatrix}$$
 (b) $\begin{pmatrix} 4 & -2 \\ 1 & 3 \\ 2 & 1 \\ 3 & 4 \end{pmatrix}$

(c)
$$\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 1 & 2 & 2 \end{pmatrix}$$
 (d)
$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 1 & 3 \\ 2 & 1 & 4 \end{pmatrix}$$

- 2. For each of the following \boldsymbol{A} and \boldsymbol{b} ,
 - (i) Find a basis for the row space of A.
 - (ii) Find a basis for the column space of \boldsymbol{A} .
 - (iii) Determine $\operatorname{nullity}(\boldsymbol{A})$. If $\operatorname{nullity}(\boldsymbol{A}) > 0$, find a basis for the $\operatorname{nullspace}$ of \boldsymbol{A} .
 - (iv) Solve the linear system Ax = b and express b as a linear combination of the columns of A.
 - (v) If $\text{nullity}(\mathbf{A}) > 0$, use the basis you obtained in part (iii) to write down the solution set of $\mathbf{A}\mathbf{x} = \mathbf{b}$.

(a)
$$\mathbf{A} = \begin{pmatrix} 1 & -2 & 0 \\ 2 & 1 & 5 \\ 0 & 1 & 3 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 1 \\ -3 \\ 5 \end{pmatrix}$.

(b)
$$\mathbf{A} = \begin{pmatrix} 1 & 0 & -3 & 3 \\ 3 & 1 & 0 & 4 \\ 1 & 1 & 6 & -2 \\ 3 & 0 & -1 & 1 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 2 \\ 0 \\ -4 \\ -2 \end{pmatrix}$.

(c)
$$\mathbf{A} = \begin{pmatrix} 1 & 1 & 0 & 2 \\ -2 & -2 & 1 & -5 \\ 1 & 1 & -1 & 3 \\ 4 & 4 & -1 & 9 \end{pmatrix}$$
 and $\mathbf{b} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$.

- 3. Let \mathbf{A} be a 3×4 matrix. Suppose $x_1 = 1$, $x_2 = 0$, $x_3 = -1$, $x_4 = 0$ is a solution to a non-homogeneous linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ and that the homogeneous linear system $\mathbf{A}\mathbf{x} = \mathbf{0}$ has a general solution $x_1 = t 2s$, $x_2 = s + t$, $x_3 = s$, $x_4 = t$, where s, t are arbitrary parameters.
 - (a) Find a basis for the nullspace of A and determine the nullity of A.
 - (b) Find a general solution for the system Ax = b.
 - (c) Write down the reduced row-echelon form of A.
 - (d) Find a basis for the row space of A and determine the rank of A.
 - (e) Do we have enough information for us to find the column space of A^T ?
- 4. Let **A** be a $m \times n$ matrix. Show that
 - (a) If \boldsymbol{x} belongs to the nullspace of $\boldsymbol{A}^T\boldsymbol{A}$, then $\boldsymbol{A}\boldsymbol{x}$ belongs to both the column space of \boldsymbol{A} and the nullspace of \boldsymbol{A}^T .
 - (b) Nullspace of $\mathbf{A}^T \mathbf{A}$ is equal to the nullspace of \mathbf{A} .
 - (c) Rank of \boldsymbol{A} is equal to the rank of $\boldsymbol{A}^T \boldsymbol{A}$.
 - (d) If \boldsymbol{A} has linearly independent columns, then $\boldsymbol{A}^T\boldsymbol{A}$ is invertible.
- 5. Let $\mathbf{w} = (0, 1, 2, 3)$.
 - (a) Let $S = \{u_1, u_2, u_3, u_4\}$ where $u_1 = (2, 1, 0, 0)$, $u_2 = (-1, 0, 0, 1)$, $u_3 = (2, 0, -1, 1)$, $u_4 = (0, 0, 1, 1)$. Show that S is a basis for \mathbb{R}^4 . Is S an orthogonal basis for \mathbb{R}^4 ? Compute $(\boldsymbol{w})_S$.
 - (b) Let $T = \{v_1, v_2, v_3, v_4\}$ where $v_1 = (1, 2, 2, -1)$, $v_2 = (1, 1, -1, 1)$, $v_3 = (-1, 1, -1, -1)$, $v_4 = (-2, 1, 1, 2)$. Show that T is a basis for \mathbb{R}^4 . Is T an orthogonal basis for \mathbb{R}^4 ? Compute $(\boldsymbol{w})_T$.