『ストリング図で学ぶ圏論の基礎』勉強会

§1.3 自然変換

山田鈴太

電気通信大学大学院情報理工学研究科 博士前期課程 1 年

 C, \mathcal{D} は圏, $F, G: \mathcal{C} \to \mathcal{D}$ は関手

定義 1.66 (自然変換)

- (1) α は各 $a\in\mathcal{C}$ で添字付けられた射の集まり $\left\{Fa\stackrel{lpha_a}{\longrightarrow}Ga
 ight\}_{a\in\mathcal{C}}$
- (2) 任意の $a,b \in \mathcal{C}$ と $f:a \to b$ に対して $Gf \circ \alpha_a = \alpha_b \circ Ff$ (自然性, naturality)
 - ightharpoonup α が F から G への自然変換であることを α : $F \Rightarrow G$ と書く

 C, \mathcal{D} は圏, $F, G: \mathcal{C} \to \mathcal{D}$ は関手

定義 1.66 (自然変換)

(1) lpha は各 $a\in\mathcal{C}$ で添字付けられた射の集まり $\left\{Fa\stackrel{lpha_a}{\longrightarrow}Ga
ight\}_{a\in\mathcal{C}}$

$$\begin{array}{c|c}
\mathcal{D} & G & C \\
\hline
\alpha & \\
F & \\
\end{array} := \left\{ \begin{array}{c}
\mathcal{D} & G \\
\hline
\alpha \\
F & \\
\end{array} \right.$$

(1.67)

ightharpoonup lpha を構成する各射 $lpha_a$ を lpha の成分 (component) と呼ぶ

- ▶ 一番右の図は少しわかりづらい気がする……
- ▶ 我々は既に関手の適用をストリング図として導入したのだった

▶ ならばこうしてしまってもよいのでは?

 C, \mathcal{D} は圏, $F, G: \mathcal{C} \to \mathcal{D}$ は関手

定義 1.66 (自然変換)

(2) 任意の $a,b \in \mathcal{C}$ と $f: a \to b$ に対して $Gf \circ \alpha_a = \alpha_b \circ Ff$ (自然性, naturality)

$$Gf \circ \alpha_a = \alpha_b \circ Ff \quad \rightleftarrows \qquad \boxed{ \begin{bmatrix} G & f \\ \hline f \\ \hline \alpha & a \end{bmatrix} } \qquad = \qquad \boxed{ \begin{bmatrix} G & f \\ \hline \alpha & b \\ \hline f & \hline d \end{bmatrix} }$$

$$(1.68)$$

 \mathcal{C},\mathcal{D} は圏, $F,G:\mathcal{C}\to\mathcal{D}$ は関手, $\alpha:F\Rightarrow G$ は自然変換

▶ 自然性 $Gf \circ \alpha_a = \alpha_b \circ Ff$ は次のようにも表せる

- ightharpoonup f が α を素通りして縦方向に動ける
 - ▶ スライディング則

 C, \mathcal{D} は圏, $F: \mathcal{C} \to \mathcal{D}$ は関手

- lackbox 各 $a\in\mathcal{C}$ に対して Fa の恒等射 1_{Fa} を集めると, $1_F:=\left\{Fa\overset{1_{Fa}}{\longrightarrow}Fa
 ight\}_{a\in\mathcal{C}}$ は F の恒等自然変換
 - ightharpoonup 実際,以下の通り各 $a\in\mathcal{C}$ について自然性の条件を満たす

1.3.2 自然変換の対象への作用と射への作用

 C, \mathcal{D} は圏, $F, G: \mathcal{C} \to \mathcal{D}$ は関手, $\alpha: F \Rightarrow G$ は自然変換

 $ightharpoonup lpha = \{lpha_a\}_{a \in \mathcal{C}}$ を, \mathcal{C} の対象と射への作用と見なせる

対象への作用: C の対象を対応する α の成分に写す

$$\begin{array}{ccc}
\operatorname{ob} \mathcal{C} & \to & \mathcal{D}(Fa, Ga) & \subseteq \operatorname{mor} \mathcal{D} \\
a & \mapsto & \alpha_a
\end{array}$$

射への作用: α と射 f を「横に並べる」

$$\operatorname{mor} \mathcal{C} \supseteq \quad \mathcal{C}(a,b) \quad \to \quad \mathcal{D}(Fa,Gb) \quad \subseteq \operatorname{mor} \mathcal{D}$$

$$f \qquad \mapsto \qquad \alpha \bullet f$$

1.3.2 自然変換の対象への作用と射への作用

 C, \mathcal{D} は圏, $F, G: \mathcal{C} \to \mathcal{D}$ は関手, $\alpha: F \Rightarrow G$ は自然変換

射への作用: α と射 f を「横に並べる」

$$\operatorname{mor} \mathcal{C} \supseteq \quad \mathcal{C}(a,b) \quad \to \quad \mathcal{D}(Fa,Gb) \quad \subseteq \operatorname{mor} \mathcal{D}$$

$$f \quad \mapsto \quad \alpha \bullet f$$

α • f の定義

