Inferencia Estadística

Marisol García Peña

Departamento de Matemáticas Pontificia Universidad Javeriana

Bogotá, 2022

Marisol García Peña

1 / 574

Ejemplo

Sea X_1, \ldots, X_n una m.a. de alguna distribución tal que $E[X_i] = \mu$ y $V[X_i] = \sigma^2$, $i = 1, \ldots, n$. Considere los estimadores de μ , $T_1 = \overline{X}$ y $T_2 = \sum_{i=1}^n \frac{X_i}{n+1}$.

Obetener los ECM de T_1 y T_2 y demuestre que $ECM[T_2] < ECM[T_1]$ para algunos valores de μ mientras que la proposición inversa es cierta para otros valores de μ .

Insesgadez/Insesgamiento

Un estimador $T(X_1, ..., X_n)$ es definido como estimador insesgado de $\tau(\theta)$ si y sólo si

$$E_{\theta}[\widehat{\theta}] = E_{\theta}[T(X_1, \dots, X_n)] = \tau(\theta)$$

Un estimador es insegado si su valor esperado es igual a $\tau(\theta)$.

Marisol García Peña

Ejemplo

Sea X_1, \ldots, X_n una m.a. de una distribución $N(\mu, \sigma^2)$.

- Muestre que $\overline{X} = \sum_{i=1}^{n} \frac{x_i}{n}$ es un estimador insesgado de μ .
- Muestre que $S^2 = \frac{\sum_{i=1}^n (X_i \overline{X})^2}{n-1}$ es un estimador insesgado de σ^2 .
- Muestre que $\widehat{\sigma}^2 = \frac{\sum_{i=1}^n (X_i \overline{X})^2}{n}$ es un estimador sesgado de σ^2 .

163 / 574

Marisol García Peña Inferencia Estadística Bogotá, 2022

Ejemplo

Sea X_1, \ldots, X_n una m.a. i.i.d $U(0, \beta)$. El EMV de β es $\widehat{\beta}_{MV} = X_{(n)} = \max$. $\widehat{\beta}$ es un estimador insesgado?

La f.d.p de $\widehat{\beta}$ es $f_{\mathsf{máx}}(x) = \frac{n}{\beta^n} x^{n-1}$. Su valor esperado es

$$E[\widehat{\beta}] = E[X_{(n)}] = \int_0^\beta x \frac{n}{\beta^n} x^{n-1} dx = \frac{n}{n+1} \beta$$

Entonces $\widehat{\beta}_{MV}=X_{(n)}$ es un estimador sesgado de β . Pero $\frac{n+1}{n}X_{(n)}$ es insegado.

Si se usa el estimador del método de momentos $\widehat{\beta}=2\overline{X}$. Su valor esperado es $E[\widehat{\beta}]=E[2\overline{X}]=2\frac{\beta}{2}=\beta$. Esto indica que el estimador de β por el método de momentos es insesgado.

Marisol García Peña Inferencia Estadística Bogotá, 2022 165 / 574

- Si $T(X_1,...,X_n)$ es un estimador insesgado para $\tau(\theta) \Longrightarrow h(T)$ en general no es un estimador insesgado de $h(\tau(\theta))$.
- El estimador insesgado que minimiza el ECM se conoce como MVUE-Minimum Variance Unbiased Estimator de $\tau(\theta)$.

Estimador asintóticamente insesgado

Sea X_1, \ldots, X_n una m.a. con función de densidad, y sea $T(X_1, \ldots, X_n)$ un estimador puntual de $\tau(\theta)$. Se dice que T es un estimador asintóticamente insesgado si

$$\lim_{n\to\infty} E[T(X_1,\ldots,X_n)] = \tau(\theta)$$

Ejemplo

En el caso del estimador de β , $X_{(n)}$

$$\lim_{n\to\infty} E[X_{(n)}] = \lim_{n\to\infty} \frac{n}{n+1}\beta = \beta.$$

Para el estimador de σ^2 de una $N(\mu, \sigma^2)$, se tiene

$$\lim_{n\to\infty} E[\widehat{\sigma}^2] = \lim_{n\to\infty} \frac{n-1}{n} \sigma^2 = \sigma^2.$$

Estos estimadores son asintóticamente insesgados.

4□ > 4□ > 4 = > 4 = > = 90

Si se tienen 2 estimadores insesgados de $\tau(\theta)$. ¿Cuál se debe seleccionar?

Eficiencia

Sean $T_1(X_1, \ldots, X_n)$ y $T_2(X_1, \ldots, X_n)$ dos estimadores insesgados de $\tau(\theta)$. Se dice que T_1 es **más eficiente** que T_2 si se verifica que

$$V[T_1(X_1,...,X_n)] < V[T_2(X_1,...,X_n)]$$

Es decir, un estimador más eficiente que otro tiene menor varianza/dispersión.

Eficiencia relativa

Sean $T_1(X_1, \ldots, X_n)$ y $T_2(X_1, \ldots, X_n)$ dos estimadores insesgados de $\tau(\theta)$. Se define la **eficiencia relativa de** T_1 **respecto a** T_2 como

$$E.R.[T_1, T_2] = \frac{V[T_2]}{V[T_1]}$$

Si $E.R.[T_1, T_2] > 1 \Longrightarrow T_1$ es más eficiente que T_2 , caso contrario T_2 será más eficiente que T_1 .

Ejemplo

Sean X_1, \ldots, X_{n_1} y Y_1, \ldots, Y_{n_2} dos muestras aleatorias independientes de una población $N(\mu, \sigma^2)$ con medias \overline{X}_1 y \overline{X}_2 respectivamente.

Un investigador pretende estimar la media poblacional μ y propone 2 estimadores alternativos

$$\widehat{\mu} = \frac{1}{2}(\overline{X}_1 + \overline{X}_2)$$
 y $\widetilde{\mu} = \frac{n_1\overline{X}_1 + n_2\overline{X}_2}{n_1 + n_2}$

¿Cuál de esos estimadores es más adecuado para estimar μ ?

Marisol García Peña

Consistencia y BAN

- *ECM* y la propiedad de insesgamiento $\implies n$ fijo.
- 2 conceptos \Longrightarrow aumento de n.
- Notación, $T(X_1, ..., X_n) \Longrightarrow T_n(X_1, ..., X_n)$.
- Secuencia de estimadores, $T_1(X_1)$, $T_2(X_1, X_2)$, ..., $T_n(X_1, ..., X_n)$.
- Buena secuencia de estimadores \Longrightarrow Los valores de los estimadores \Longrightarrow acerca a la cantidad estimada cuando $n \uparrow$

Consistencia de error cuadrático medio

Sea T_1, T_2, \ldots, T_n una secuencia de estimadores de $\tau(\theta)$, donde $T_n(X_1, \ldots, X_n)$ está basado en una muestra de tamaño n.

La secuencia de estimadores se define como secuencia de estimadores de au(heta) consistente de error cuadrático medio, si y sólo si

$$\lim_{n\to\infty} E[[T_n - \tau(\theta)]^2] = 0, \forall \theta$$

Consistencia de error cuadrático medio \Longrightarrow sesgo y varianza de T_n se aproximan a 0 ya que $E[[T_n - \tau(\theta)]^2] = V[T_n] + \{\tau(\theta) - E[T_n]\}^2$.

◆ロト ◆昼 ト ◆ 昼 ト ■ 9 へ ○

Ejemplo

En un muestreo de una densidad con media μ y varianza σ^2 , sea $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$ una secuencia de estimadores de μ y $S_n^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$ una secuencia de estimadores de σ^2 .

 $E[(\overline{X}_n - \mu)^2] = V[\overline{X}] = \frac{\sigma^2}{n} \longrightarrow 0$ cuando $n \longrightarrow \infty$; en este caso, la secuencia $\{\overline{X}_n\}$ es una secuencia de estimadores de μ consistente de ECM.

 $E[(S_n^2 - \sigma^2)^2] = V[S_n^2] = \frac{1}{n} \left(\mu_4 - \frac{n-3}{n-1}\sigma^4\right) \longrightarrow 0$ cuando $n \longrightarrow \infty$, la secuencia $\{S_n^2\}$ es una secuencia de estimadores de σ^2 consistente de ECM.

Si $T_n = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$, la secuencia $\{T_n\}$ también es una secuencia de estimadores de σ^2 consistente de ECM.

◆ロト ◆部ト ◆きト ◆きト き めらぐ

Consistencia simple

Sea T_1, \ldots, T_n una secuencia de estimadores de $\tau(\theta)$, donde $T_n(X_1, \ldots, X_n)$. La secuencia $\{T_n\}$ es definida como una secuencia de estimadores de $\tau(\theta)$ consistente simple (débil) si para cada $\varepsilon > 0$ se satisface:

$$\lim_{n\to\infty} P[|T_n - \tau(\theta)| \le \varepsilon] = 1; \forall \theta, \forall \varepsilon > 0$$

o equivalentemente,

$$\lim_{n\to\infty} P[|T_n - \tau(\theta)| > \varepsilon] = 0; \forall \theta, \forall \varepsilon > 0$$

Convergencia en probabilidad.

Para una cantidad aceptable de error $\varepsilon>0$, la probabilidad de que el error real empeore más que ε tiende a cero.

◆ロト ◆個ト ◆恵ト ◆恵ト ・恵 ・ 釣り○○

- La consistencia de un estimador garantiza que si se tiene un tamaño de muestra grande cualquier estimación particular va a estar cerca del valor de $\tau(\theta)$.
- Si un estimador es un estimador consistente de ECM también es un estimador consistente simple, lo contrario no necesariamente es cierto.

Ejemplo

Sea X_1, \ldots, X_n denota una muestra aleatoria de $N(\mu, 1)$ y sea \overline{X}_n la media muestral. Muestre que \overline{X}_n es un estimador consistente para μ .

Ejemplo

Sea X_1, \ldots, X_n denota una muestra aleatoria de una distribución Bernoulli $(1, \theta)$. Muestre que \overline{X} es un estimador consistente para θ , $0 < \theta < 1$.

Ejemplo

Sea X_1, \ldots, X_n denota una muestra aleatoria de $N(\mu, \sigma^2)$ y sea S_n^2 la varianza muestral. Muestre que S_n^2 es un estimador consistente para σ^2 .

Consistencia

Sea X_1, \ldots, X_n una muestra aleatoria de una f.d.p. Sea $\{T_n\}$ una secuencia de estimadores de $\tau(\theta)$, tal que

$$\lim_{n\to\infty} E[T(X_1,\ldots,X_n)] = \tau(\theta)$$
$$\lim_{n\to\infty} V[T(X_1,\ldots,X_n)] = 0$$

Entonces T_n es consistente para $\tau(\theta)$.

Marisol García Peña

Recordando

Por el TCL. Sea $\{X_n\}$ una secuencia de v.a's iid con $E[X_i] = \mu$ y $V[X_i] = \sigma^2$, $0 < \sigma^2 < \infty$ entonces

$$\frac{T_n - E[T_n]}{S_n} \xrightarrow[n \to \infty]{D} N(0,1)$$

donde
$$T_n = \sum_{i=1}^n X_i$$
, $S_n^2 = V[T_n]$

$$E[T_n] = E[\sum_{i=1}^n X_i] = \sum_{i=1}^n E[X_i] = n\mu$$

$$V[T_n] = V[\sum_{i=1}^n X_i] = \sum_{i=1}^n V[X_i] = n\sigma^2$$

4 ロ ト 4 個 ト 4 種 ト 4 種 ト 単 め 9 0 0 0

182 / 574

De lo anterior, tenemos que

$$\frac{\sum_{i=1}^{n} X_{i} - n\mu}{\sqrt{n}\sigma} = \frac{\overline{X} - \mu}{\frac{\sigma}{\sqrt{n}}}$$
$$\frac{\sqrt{n}(\overline{X} - \mu)}{\sigma} \xrightarrow[n \to \infty]{D} N(0, 1)$$
$$\sqrt{n}(\overline{X} - \mu) \xrightarrow[n \to \infty]{D} N(0, \sigma^{2})$$

Ejemplo

Sean X_1,\ldots,X_n v.a's iid tales que $X\sim U(0,\theta),\theta>0$. Demuestre que $\sqrt{n}(\overline{X}-\frac{\theta}{2})\stackrel{D}{\underset{n\to\infty}{\longrightarrow}} N(0,\theta^2/12)$, donde $\overline{X}=\frac{\sum_{i=1}^n X_i}{n}$.

$$E[X] = \frac{\theta}{2}$$
 $E[X^2] = \frac{\theta^2}{3}$ $V[X] = E[X^2] - (E[X])^2 = \frac{\theta^2}{3} - \frac{\theta^2}{4} = \frac{\theta^2}{12}$

Por TCL, se tiene

$$\sqrt{n}(\overline{X} - \theta/2) \xrightarrow[n \to \infty]{D} N(0, \theta^2/12)$$

Método Delta

Sea $\{T_n\}$ una secuencia de v.a's, $\mu \in \mathbb{R}$ y g una función real de variable real, derivable en un intervalo que contiene el punto μ , con $g'(\mu) \neq 0$.

Se
$$\sqrt{n}(T_n - \mu) \xrightarrow[n \to \infty]{D} N(0, \sigma^2)$$
, entonces

$$\sqrt{n}(g(T_n)-g(\mu)) \xrightarrow[n\to\infty]{D} N(0,(g'(\mu))^2\sigma^2)$$

4□ > 4□ > 4 = > 4 = > = 90

Ejemplo

Sea X_1, \ldots, X_n iid con $E[X] = \mu$ y $V[X] = \sigma^2 < \infty$. Muestre que

Mejores estimadores asintóticamente normales - BAN (best asymptotically normal estimators)

Una secuencia de estimadores T_1^*, \ldots, T_n^* de $\tau(\theta)$ se define como el mejor asintóticamente normal (BAN) si y solo si se satisfacen las siguientes 4 condiciones:

- **1** La distribución de $\sqrt{n}[T_n^* \tau(\theta)] \xrightarrow[n \to \infty]{D} N(0, \sigma^{*2}(\theta))$.
- ② Para cada $\varepsilon > 0$, $\lim_{n \to \infty} P[|T_n^* \tau(\theta)| > \varepsilon] = 0$.
- Sea $\{T_n\}$ una secuencia de estimadores consitente simple para la cual la distribución de $\sqrt{n}[T_n \tau(\theta)] \xrightarrow[n \to \infty]{D} N(0, \sigma^2(\theta))$.
- $\sigma^2(\theta)$ no es menor que $\sigma^{*2}(\theta) \forall \theta$ en un intervalo abierto.

- 4 ロ ト 4 週 ト 4 速 ト 4 速 ト 9 Q G

- BAN a veces se reemplaza por CANE Consistent asymptotically normal efficient.
- Estimadores BAN \Longrightarrow son consitentes por (2).

Consistencia y normalidad asintótica para EMV

Sea X_1, \ldots, X_n una muestra aleatoria de tamaño n de una función de densidad o de probabilidad $f(x;\theta)$ que satisface ciertas condiciones de regularidad y sea $\widehat{\Theta}_n$ el estimador de máxima verosimilitud de θ , entonces:

② La secuencia de estimadores de máxima verosimilitud $\widehat{\Theta}_1, \dots, \widehat{\Theta}_n$ es BAN y por tanto consistente.

◆ロト ◆団 ト ◆豆 ト ◆豆 ・ り へ ○

Ejemplo

Sea X_1,\ldots,X_n una muestra aleatoria de una distribución exponencial negativa $f(x;\theta)=\theta e^{-\theta x}I_{[0,\infty)}(x)$. El estimador de máxima verosimilitud de θ es $\frac{1}{X_n}$.

De acuerdo al teorema anterior,

$$\frac{1}{\overline{X}_n} \xrightarrow[n \to \infty]{D} N \left(\theta, \frac{1}{nE \left\{ \left[\frac{\partial}{\partial \theta} \log f(X; \theta) \right]^2 \right\}} = \frac{\theta^2}{n} \right)$$

Marisol García Peña

- Se ha considerado la estimación de $\tau(\theta)$, una función de θ y no la estimación simplemente de θ .
- La EMV de $\tau(\theta)$ está dada por $\tau(\widehat{\Theta})$, donde $\widehat{\Theta}$ es el EMV de θ .
- Si $\tau(\bullet)$ es diferenciable, entonces

$$\tau(\widehat{\Theta}) \xrightarrow[n \to \infty]{D} N\left(\tau(\theta), \frac{[\tau'(\theta)]^2}{nE\left\{\left[\frac{\partial}{\partial \theta} \log f(X; \theta)\right]^2\right\}}\right)$$

La varianza de la última expresión se conoce como Cota inferior de Cramér-Rao.

Marisol García Peña Inferencia Estadística Bogotá, 2022 191/574

Información de Fisher - $I_F(\theta)$

Sea X una v.a. con función de densidad o de probabilidad $f(x;\theta)$. La información de Fisher o llamada información total de Fisher de una v.a. X está dada por

$$I_F(\theta) = E\left\{ \left[\frac{\partial}{\partial \theta} \log f(X; \theta) \right]^2 \right\}$$

Se existe $\frac{\partial^2}{\partial \theta^2} \log f(X; \theta)$, $\forall \theta$, entonces

$$I_F(\theta) = -E\left[\frac{\partial^2}{\partial \theta^2}\log f(X;\theta)\right]$$

Ejemplo

Sea X una v.a. con distribución Bernoulli $(1,\theta)$. Encuentre la información de Fisher de la v.a. X. $P[X=x]=\theta^x(1-\theta)^{1-x}; x=0,1$.

 $\log P[X = x] = x \log(\theta) + (1 - x) \log(1 - \theta)$

$$\frac{\partial}{\partial \theta} \log P[X = x] = \frac{x}{\theta} - \frac{(1 - x)}{1 - \theta}$$

$$\frac{\partial^2}{\partial \theta^2} \log P[X = x] = -\frac{x}{\theta^2} - \frac{(1 - x)}{(1 - \theta)^2}$$

$$-E\left[\frac{\partial^2}{\partial \theta^2} \log P[X = x]\right] = -E\left[-\frac{x}{\theta^2} - \frac{(1 - x)}{(1 - \theta)^2}\right] = E\left[\frac{x}{\theta^2}\right] + E\left[\frac{1 - x}{(1 - \theta)^2}\right]$$

$$= \frac{E[x]}{\theta^2} + \frac{E[1 - x]}{(1 - \theta)^2} = \frac{\theta}{\theta^2} + \frac{1 - \theta}{(1 - \theta)^2} = \frac{1}{\theta} + \frac{1}{1 - \theta}$$

$$= \frac{1}{\theta(1 - \theta)}$$

Ejemplo

Sea X una v.a. con distribución Poisson (λ) . Encuentre la información de Fisher de la v.a. X. Recuerde que $P[X=x]=\frac{\lambda^x e^{-\lambda}}{x!}$.