- import pandas as pd
- 2 import math
- 3 import matplotlib.pyplot as plt
- 4 import seaborn as sns
- 5 import numpy as np

1 cd /content/drive/MyDrive/Econometrics/Simple Regression

/content/drive/MyDrive/Econometrics/Simple Regression

- Data = pd.read_csv('TestExer1-holiday expenditures-round2.csv')
- 2 Data.head()

	Observation	Age	Expenditures
0	1	49	95
1	2	15	104
2	3	43	91
3	4	45	98
4	5	40	94

- 1 Y = Data. Expenditures # the dependent variable
- 2 X = Data.Age # the independent variable
- 1 #coefficient b
- b = ((X*Y).mean() X.mean()*Y.mean()) / ((X**2).mean() (X.mean())**2)
- 3 print("Value of b is: ",b)

Value of b is: -0.33359609660627854

- 1 X_bar = Data.Age.mean() # sample mean of age
- Y_bar = Data.Expenditures.mean() # sample mean of expenditures print("Mean Age : ", X_bar)
- 3 print("Mean Expenditure : ", Y_bar)

Mean Expenditure : 101.11538461538461

- $1 \quad a = Y_bar b*X_bar$
- print("Value of a : ", a)

Value of a: 114.24110795493165

- 1 Data["error"] = Data.Expenditures a b*Data.Age
- 2 Data.head()

```
Observation Age Expenditures
                                     error
0
            1
                49
                              95 -2.894899
1
            2
                15
                             104 -5.237167
2
            3
                43
                             91 -8.896476
3
            4
                45
                             98 -1.229284
```

sum_sq_error = (Data.error ** 2).sum() # calculating the sum of squares

```
1 ## calclating ci in the dataset
```

- Data["c"] = (Data.Age X_bar) / ((Data.Age X_bar)**2).sum()
- 3 Data.head(6) # showing the first few rows of the enhanced dataset

	Observation	Age	Expenditures	error	С
0	1	49	95	-2.894899	0.003411
1	2	15	104	-5.237167	-0.008603
2	3	43	91	-8.896476	0.001291
3	4	45	98	-1.229284	0.001998
4	5	40	94	-6.897264	0.000231
5	6	35	107	4.434755	-0.001536

```
beta = b - (Data.c * Data.error).sum()
```

The value of beta is: -0.33359609660628065

```
1  n = Data.shape[0] # number of entries
```

- $s_b_{q} = np.sqrt((((Data.error)**2).sum()) / ((n-2) * (((X X_bar)**2).sum())))$
- 3 print("The value of standard error is: ", s_b_sq)

The value of standard error is: 0.09536918278863911

```
1 	 t_b = (b)/s_b_sq
```

print("The t value of b is: ", t_b)

3

The t value of b is: -3.4979443762835545

```
1 #Answer 1 summary
```

- print("Summary of Answer a results\n")
- 3 print("Value of a : ", a)
- 4 print("Value of b : ",b)
- 5 print("The standard error is: ", s_b_sq)
- 6 print("The t value of b is: ", t_b)

print("The value of beta is: ", beta)

Summary of Answer a results

Value of a : 114.24110795493165 Value of b : -0.33359609660627854

The standard error is: 0.09536918278863911 The t value of b is: -3.4979443762835545

```
1 #Question b
```

- plot = sns.regplot(data=Data, x= "Age", y= "Expenditures")
- 3 plot.figure.set_size_inches(14,6)
- 4 plot.axes.set_title('Expenditures against Age')

Text(0.5, 1.0, 'Expenditures against Age')

) see two clusters of data around age groups less than 40 and greater than 40. These clusters will

```
1 lt40 = Data.Age < 40
```

- Data_lt40 = Data[lt40].copy()
- 3 Data_lt40

1

	Observation	Age	Expenditures	error	С
1	2	15	104	-5.237167	-0.008603
5	6	35	107	4.434755	-0.001536
7	8	38	108	6.435544	-0.000476
9	10	30	108	3.766775	-0.003303
13	14	25	105	-0.901206	-0.005070
14	15	35	107	4.434755	-0.001536
15	16	35	106	3.434755	-0.001536
16	17	35	105	2 434755	_N NN1536

20

21

Data lt40.head()

```
## calculating the value of b which is needed to derive a
1
 2
    Y = Data_lt40.Expenditures # the dependent variable
 3
    X = Data_lt40.Age # the independent variable
    b = ((X*Y).mean() - X.mean()*Y.mean()) / ((X**2).mean() - (X.mean())**2)
    X_bar = X.mean() # sample mean of age
    Y bar = Y.mean()
6
7
    a = Y_bar - b*X_bar
    print("Summary of Answer c - part 1 results\n")
8
9
    print("Value of a is: ", a)
    print("Value of b is", b)
10
    ## calculate error from a and b
11
12
    Data_lt40["error"] = Y - a - b*X
    sum_sq_error = (Data_lt40.error ** 2).sum() # calculating the sum of squares
13
14
    n = Data lt40.shape[0] # number of entries
    s_b_q = np.sqrt((((Data_1t40.error)**2).sum()) / ((n-2) * (((X - X_bar)**2).sum())))
15
16
    t_b = (b)/s_b_sq
17
    print("The standard error is: ", s_b_sq)
    print("The t value of b is: ", t_b)
18
19
    # sample data set with errors and c
    print("\n\n Sample data for the final dataset for Age less than 40 with error and c")
```

Value of a ic. 100 2222771020000

- 1 gt40 = Data.Age >= 40
- Data_gt40 = Data[gt40].copy()
- 3 Data_gt40

2122

Data_gt40.head()

	Observation	Age	Expenditures	error	С
0	1	49	95	-2.894899	0.003411
2	3	43	91	-8.896476	0.001291
3	4	45	98	-1.229284	0.001998
4	5	40	94	-6.897264	0.000231
6	7	42	96	-4.230072	0.000938
8	9	46	98	-0.895688	0.002351
10	11	52	101	4.105889	0.004472
11	12	55	89	-6.893323	0.005532
12	13	42	96	-4.230072	0.000938
18	19	48	97	-1.228495	0.003058
20	21	45	94	-5.229284	0.001998
22	23	57	103	7.773870	0.006238
23	24	55	94	-1.893323	0.005532

```
## calculating the value of b which is needed to derive a
 1
 2
    Y = Data_gt40.Expenditures # the dependent variable
    X = Data_gt40.Age # the independent variable
 3
    b = ((X*Y).mean() - X.mean()*Y.mean()) / ((X**2).mean() - (X.mean())**2)
 5
    X_bar = X.mean() # sample mean of age
 6
    Y_bar = Y.mean()
7
    a = Y_bar - b*X_bar
    print("Summary of Answer c - part 2 results\n")
 8
 9
    print("Value of a is: ", a)
    print("Value of b is", b)
10
11
    ## calculate error from a and b
12
    Data_gt40["error"] = Y - a - b*X
    sum_sq_error = (Data_gt40.error ** 2).sum() # calculating the sum of squares
13
     n = Data_gt40.shape[0] # number of entries
14
     s_b_{q} = np.sqrt((((Data_gt40.error)**2).sum()) / ((n-2) * (((X - X_bar)**2).sum())))
15
16
    t_b = (b)/s_b_sq
17
     print("The standard error is: ", s_b_sq)
     print("The t value of b is: ", t_b)
18
19
    # sample data set with errors and c
20
```

print("\n\n Sample data for the final dataset for Age greater than or equal to 40 with error and

Summary of Answer c - part 2 results

Value of a is: 88.87188902488657 Value of b is 0.14647082823339977

The standard error is: 0.19738441872591267 The t value of b is: 0.7420587155705977

Sample data for the final dataset for Age greater than or equal to 40 with error and c

	Observation	Age	Expenditures	error	С
0	1	49	95	-1.048960	0.003411
2	3	43	91	-4.170135	0.001291
3	4	45	98	2.536924	0.001998
4	5	40	94	-0.730722	0.000231
6	7	42	96	0.976336	0.000938

- fig, (ax1, ax2) = plt.subplots(ncols=2, sharey=True)
- sns.regplot(x = Data_lt40.Age, y = Data_lt40.Expenditures, ax = ax1)
- 3 ax1.figure.set_size_inches(14,6)
- 4 ax1.axes.set_title('Expenditures against Age less than 40')
- 5 sns.regplot(x = Data_gt40.Age, y = Data_gt40.Expenditures, ax = ax2)
- 6 ax2.figure.set_size_inches(14,6)
- 7 ax2.axes.set_title('Expenditures against Age greater than or equal to 40')

Text(0.5, 1.0, 'Expenditures against Age greater than or equal to 40')

- 1 # # Answer d
- 2#

1

4 Colitting the data into the two clusters mentioned in answer h gives opposite inference to what

4 # within the two clusters, people with age less than 40 have more sensitive spending habits. The

.