Ph.D. Qualifying Exam, Real Analysis

Fall 2016, part I

Do all five problems. Write your solution for each problem in a separate blue book.

- Suppose X is a Banach space and $A \in \mathcal{L}(X)$ is a bounded linear operator on it. Show that the spectrum of A is a closed, bounded subset of \mathbb{C} .
- Recall that $\mathcal{S}(\mathbb{R})$ is the space of Schwartz functions on \mathbb{R} , and $\mathcal{S}'(\mathbb{R})$ the space of tempered distributions. Show that there exists no $u \in \mathcal{S}'(\mathbb{R})$ such that for $\phi \in \mathcal{S}(\mathbb{R})$ with supp $\phi \subset (0, \infty)$, $u(\phi) = \int e^{1/x} \phi(x) dx$. (Hint: if such a distribution u existed, it would satisfy an estimate!)
- 3 Let μ be a non-negative Borel measure on \mathbb{R}^n such that $\mu(A) < \infty$ for each bounded Borel subset $A \subset \mathbb{R}^n$.
 - **a.** Setting $\overline{B}_{\rho}(x)=\{y\in\mathbb{R}^n:|y-x|\leq\rho\}$, prove that for each $\rho>0,$ $x\mapsto\mu(\overline{B}_{\rho}(x))$ is an upper semi-continuous function on \mathbb{R}^n . (A real-valued function θ on \mathbb{R}^n is upper semi-continuous if for all $x\in\mathbb{R}^n,$ $\theta(x)\geq\limsup_{y\to x}\theta(y)$.)
 - **b.** Give an example of a Borel measure μ as above and $\rho>0$ such that $x\mapsto \mu(\overline{B}_{\rho}(x))$ is not continuous.
- 4 Consider the Hilbert space $\mathcal{H} = L^2(\mathbb{R}, e^{-x^2} dx)$, and let $\phi_n(x) = x^n$ for $n \ge 0$ integer, so $\phi_n \in \mathcal{H}$.
 - **a.** Let $e_{\xi}(x) = e^{i\xi x}$ for $x \in \mathbb{R}$. Prove that $\sum_{n=0}^{k} \frac{(i\xi)^n}{n!} \phi_n$ converges to $e_{\xi} \in \mathcal{H}$ in the norm topology as $k \to \infty$.
 - **b.** Using (a) or otherwise show that if $\phi \in \mathcal{H}$ and $\langle \phi_n, \phi \rangle_{\mathcal{H}} = 0$ for all n then $\phi = 0$. (Hint: show that the Fourier transform of $e^{-x^2}\phi$ vanishes!)
 - **c.** Show that there is an orthonormal basis $\{\psi_n\}_{n=0}^{\infty}$ of \mathcal{H} such that for all n

$$\operatorname{span}\{\phi_0, \phi_1, \dots, \phi_n\} = \operatorname{span}\{\psi_0, \psi_1, \dots, \psi_n\}.$$

Let $\mathbb{T}=\mathbb{R}/(2\pi\mathbb{Z})$ be the unit circle, and for m>0 let $H^m(\mathbb{T})$ be the Sobolev space consisting of $L^2(\mathbb{T})$ -functions f whose Fourier coefficients $\hat{f}(n)$ satisfy $\sum_{n\in\mathbb{Z}}|\hat{f}(n)|^2(1+n^2)^m<\infty$. Suppose $A:H^m(\mathbb{T})\to L^2(\mathbb{T})$ is a continuous linear map, and there is $B\in\mathcal{L}(L^2(\mathbb{T}),H^m(\mathbb{T}))$ such that AB-I=E and BA-I=F are compact on $L^2(\mathbb{T})$, resp. $H^m(\mathbb{T})$, [and in fact $E^*\in\mathcal{L}(L^2,H^m)$]. Suppose also that $\langle Af,g\rangle_{L^2}=\langle f,Ag\rangle_{L^2}$ when $f,g\in H^m(\mathbb{T})$, [and $\langle Bf,g\rangle_{L^2}=\langle f,Bg\rangle_{L^2}$ for $f,g\in L^2(\mathbb{T})$]. Show that $A-\lambda I:H^m\to L^2$ is invertible when $\lambda\notin\mathbb{R}$.

Ph.D. Qualifying Exam, Real Analysis

Fall 2016, part II

Do all five problems. Write your solution for each problem in a separate blue book.

- Show that if μ is a σ -finite measure on a measurable space (X, \mathcal{A}) (i.e. on \mathcal{A} , where \mathcal{A} is a σ -algebra of subsets of X), then there is a *finite* measure ν on (X, \mathcal{A}) with $\nu << \mu$ and $\mu << \nu$.
- Suppose $K \in L^2(\mathbb{R}^{2n})$, and define $(Tf)(x) = \int_{\mathbb{R}^n} K(x,y) f(y) \, dy$. Show that $T \in \mathcal{L}(L^2(\mathbb{R}^n))$, and T is compact.
- Recall that $\mathcal{S}(\mathbb{R})$ is the space of Schwartz functions on \mathbb{R} , and $\mathcal{S}'(\mathbb{R})$ the space of tempered distributions. Let $\phi_n \in \mathcal{S}(\mathbb{R})$, $n \geq 1$. Suppose that $u \in \mathcal{S}'(\mathbb{R})$, and the distributions corresponding to ϕ_n , namely $u_n(\psi) = \int \phi_n \psi$ for $\psi \in \mathcal{S}(\mathbb{R})$, converge to u in $\mathcal{S}'(\mathbb{R})$.
 - **a.** Suppose that there exists C>0 such that $\|\phi_n\|_{L^2}< C$ for all n. Show that there exists $\phi\in L^2$ such that $u(\psi)=\int \phi\psi,\,\psi\in\mathcal{S}(\mathbb{R})$ and ϕ_n converge weakly to ϕ in L^2 .
 - **b.** Show that the analogous statement is not true if L^2 is replaced by L^1 , namely show that there exist ϕ_n and u with $\|\phi_n\|_{L^1} < C$ such that u is not a distribution given by an L^1 function ϕ .
- Suppose $X \subset Z$, $Y \subset V$, with X,Y,Z,V Banach spaces, and with both inclusions continuous with respect to their respective norms. Suppose that $P:Z \to V$ continuous linear and has the property that $u \in Z$, $Pu \in Y$ implies $u \in X$. Show that there exists C > 0 such that for all $u \in Z$ satisfying $Pu \in Y$, one has

$$||u||_X \le C(||Pu||_Y + ||u||_Z).$$

- 5 Let $\mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$.
 - **a.** Assume that for a given function $\phi \in L^1([0,1])$ there exists an irrational number α such that $\phi(x) = \phi(x + \alpha)$ for almost all $x \in [0,1]$, where + is addition modulo \mathbb{Z} . Show that $\phi(x)$ equals to a constant for almost all $x \in [0,1]$.
 - **b.** Given an irrational number α , consider the equation

$$g(x+\alpha)-g(x)=p(x),\ x\in\mathbb{S}^1,$$

for an unknown function g(x), with a given function $p \in C^{\infty}(\mathbb{S}^1)$, such that

$$\int_{\mathbb{S}^1} p(x)dx = 0.$$

Give a condition on α that would guarantee that $g \in C^1(\mathbb{S}^1)$ for any such function p.