распространенная схема ЧД - ЧД с расстроенными контурами. Его принципиальная схема имеет вид:

Контура расстроены относительно средней частоты ЧМ сигнала ω_0 . Например: $\omega_1 > \omega_0$, $\omega_2 < \omega_0$.

Если частота ЧМ сигнала больше ω_0 [$\omega_{\text{чм}}(t) > \omega_0$], то она ближе к ω_1 , чем к ω_2 , т.е. напряжение (его амплитуда) на верхнем контуре (на входе Д1) больше чем напряжение на выходе нижнего контура (на входе Д2). Напряжение в точке 1 будет больше чем в точке 2.

Если [$\omega_{\text{чм}}$ (t) < ω_0], т.е. ближе к ω_2 то, так же рассуждая, получим, что напряжение в точке 2 будет больше чем в точке 1. Полярность напряжения на выходе $U_{\text{нч}}(t)$ меняется на противоположную.

Основная характеристика - статическая характеристика детектора. Это зависимость постоянной составляющей тока в нагрузке детектора I_0 от частоты входного сигнала.

$$I_0 = \phi(\omega)$$
 или $I_0 = \phi(f)$

Стандартный вид СХД следующий:

Расчет рабочего режима по СХД.

Выбираем линейный участок.

Определяем $\omega_{max.}$, ω_{min} , $I_{max.}$, $I_{min.}$

Выбираем рабочую точку в середине линейного участка характеристики.

Определяем ω_0 , $I_{00} \cong 0$.