Fonética práctica UVG Sololá 14-16 de julio 2016

Espectros de potencia y la acústica de las vocales

https://campuspress.yale.edu/ryanbennett/fonetica-practica

Periodicidad

Las ondas acústicas se pueden clasificar según si incluyen un patrón de fluctuación de presión que se repite regularmente.

Se llama la periodicidad.

Periodicidad

Sonido periódico:

- Hay un patrón que se repite en intérvalos uniformes.
- Se pueden percibir una tonía clara.
- Ejemplos:
 - Instrumentos de cuerda que se tocan con arco.
 - Vocales
- En la naturaleza, la mayoría de sonidos 'periódicos' no son perfectamente regulares.

Sonidos periódicos: tonía simple

Sonidos periódicos: [a]

Time (s)

Periodicidad

Sonidos aperiódicos: no son periódicos.

- Fluctuaciones de presión son más o menos aleatorios.
- Ejemplos:
 - El viento
 - Ruido blanco
 - Fricativas sordas
 - La soltura de una oclusiva.

Sonidos aperiódicos: ruido gris

Periodicidad

La repetición de un patrón en una onda periódica se llama un ciclo.

 El tiempo que dura un ciclo se llama un periódo: segundos/ciclo

Frequencia

La **frequencia** es el rítmo de repetición del ciclo.

- Hertzios (Hz): ciclos/segundo
- Si tiempo = 1s, ¿cuál es la frequencia de cada sonido?

Frequencia

La frequencia se percibe como la tonía.

- Frequencia más alta
 - = tonía más alta

Ondas periódicas sencillas

Ondas periódicas sencillas muestran solo un patrón único de repetición (una frequencia sola).

Ondas periódicas complejas

En la naturaleza, las ondas acústicas con más complejas.

Ondas periódicas complejas

Aquí podemos ver que la onda conlleva varios patrones de fluctuación que se repiten.

Ondas periódicas complejas

Las ondas periódicas complejas se componen por patrones **multiples** de fluctuación.

Análisis de Fourier

Las ondas periódicas complejas se pueden descomponer a través de un técnico matemático que se llama **análisis de Fourier**.

$$F(\omega) = \int f(x)e^{-2\pi i\omega x}dx$$

$$= \int_0^X Ae^{-2\pi i\omega x}dx$$

$$= \frac{-A}{2\pi i\omega}e^{-2\pi i\omega x}\Big|_0^X$$

$$= \frac{-A}{2\pi i\omega}[e^{-2\pi i\omega X - 1}]$$

$$= \frac{A}{2\pi i\omega}[e^{\pi i\omega X} - e^{-\pi i\omega X}]e^{-\pi i\omega X}$$

$$= \frac{A}{\pi \omega}\sin(\pi \omega X)e^{-\pi i\omega X}$$

Análisis de Fourier

El resultado: un espectro de potencia (o solamente 'espectro').

 Se representan las frequencias subyacentes del sonido y sus amplitudes.

Espectro de potencia

Espectro de potencia

Onda acústica: campaña de templo

Espectro de potencia: campaña de templo

Espectro de potencia: una flauta (G4)

La teoría fuente-filtro

La teoría fuente-filtro de la producción del habla:

- Una fuente (p.e. las cuerdas vocales) produce una onda acústica compleja que se compone de ondas más sencillas con varias frequencias.
- El tracto vocal **amplifica o modera** estas frequencias.
 - Así funciona como un filtro acústico.

La teoría fuente-filtro: Voz modal (150 Hz)

La teoría fuente-filtro

Fuente

Filtro

Resultado

La teoría fuente-filtro

La misma fuente (p.e. las cuerdas vocales) puede resultar en diferentes sonidos dependiendo de las propriedades del filtro (el tracto vocal).

- La filtración acústica del tracto vocal depende de su forma – es decir, la posición de los articuladores.
- Una comparación: la misma nota/tonía se suena diferente cuando se toca con instrumentos diferentes.

Espectro de [i]

Espectro de [u]

Sonidos aperiódicos

El análisis de Fourier también se puede usar con sonidos aperiódicos.

Onda acústica de [ʃ]

Espectro de [∫]

Espectro de [s]

La acústica de las vocales

Las vocales se distinguen acústicamente en cuanto a cuales frequencias amplifcan o moderan.

- Esta filtración se llama resonancia.
- Los picos de amplitud en el espectro de una vocal se llaman formantes.

Espectro de [a]

La acústica de las vocales

F2

La acústica de las vocales

F2

La acústica de las vocales

F2

El primer formante (F1)

F1: el pico de la resonancia del tracto vocal más bajo.

- Tiene una relación inversa con la altura vocálica.
- Vocal más alta → F1 más baja

El segundo formante (F2)

F2: el pico de la resonancia del tracto vocal segundo bajo.

- Se correlaciona con la anterioridad vocálica.
- Vocal más anterior → F2 más alta

La acústica de las vocales **F2**

Las vocales del kaqchikel

Las vocales del kaqchikel

(Bennett por aparecer)

Gamas de los formantes: el inglés

Más o menos un formante por cada 1000 Hz.

Hombres:

• F1: 250-800 Hz

• F2: 800-2400 Hz

Mujeres:

• F1: 300-950 Hz

• F2: 900-2800 Hz (Hillenbrand et al. 1995)

Son solo estimaciones, y pueden variar con factores como el tamaño del cuerpo.

El tercer formante (F3)

El F3 puede indicar el redondeamiento vocálico.

- Vocales redondas tienen F3 más bajo.
- Además: el redondeamiento hace bajar todos los formantes, incluyendo el F2.

Redondeamiento contrastivo: El francés

Redondeamiento

Las vocales posteriores suelen ser redondas (y vice-versa). ¿Por qué?

- Las vocales posteriores tienen F2 bajo.
- El redondeamiento intensifica este F2 bajo.

Sistema común

F2

Sistema que no existe **F2**

Frequencia de muestreo

Ahora entendemos mejor por qué importa tanto la frequencia de muestreo.

- Los sonidos se distiguen acústicamente en cuanto a como afectan las componentes de frequencia de la fuente de sonido.
- Tenemos que grabar con frequencia de muestreo que puede capturar todas las frequencias que tienen relevancia para el habla (< 10,000 Hz)

Fonética práctica UVG Sololá 14-16 de julio 2016

La acústica del habla cambia rápidamente con los movimientos de los articuladores.

- Pero los espectros son como fotos: representan solo un momento del tiempo.
- Necesitamos una 'película' del habla.
- Espectrogramas representan cambios espectrales a través del tiempo.

- Eje X: tiempo
- Eje Y: frequencia
- Eje Z (color/oscuridad): amplitud

Sound pressure level (dB/Hz)

Espectro de [u]

Espectrogramas de [i u]

Las espectrogramas son importantes para sonidos que cambian a través del tiempo, como los diptóngos.

Diptóngos

