Geometría y Álgebra Lineal 2

Mauro Polenta Mora

CLASE 20 - 14/07/2025

Teorema espectral para operadores autoadjuntos

Lema 1

Sea V un \mathbb{K} -espacio vectorial y $T:V\to V$ operador autoadjunto. S un subespacio de V T-invariante.

Entonces S^{\perp} es T-invariante.

Demostración

Dado $w \in S^{\perp}$ queremos probar que $T(w) \in S^{\perp}$.

Entonces consideramos $s \in S$, veamos lo siguiente:

$$\begin{split} & \langle T(w),s\rangle \\ = & (T \text{ autoadjunto}) \\ & \langle w,T(s)\rangle \\ = & (S \text{ invariante y } w {\in} S^{\perp}) \\ & 0 \end{split}$$

Enunciado teorema espectral para operadores autoadjuntos

Sea V un \mathbb{K} -espacio vectorial de dimensión finita con producto interno. Sea $T:V\to V$ un operador autoadjunto.

Entonces existe \mathcal{B} una base ortonormal de vectores propios de T.

Demostración

Como V es de dimensión finita, los valores propios son raíces de X_T que tendrá al menos una raíz. Ésta será real por uno de los teoremas previos que probamos. Llamaremos λ_0 al valor propio, entonces existe $v_0 \in V, v_0 \neq \vec{0}$ tal que $T(v_0) = \lambda_0 v_0$. Consideramos $w_0 = \frac{v_0}{\|v_0\|}$.

Continuaremos la prueba razonando por inducción sobre la dimensión del espacio vectorial ${\cal V}.$

Paso base

Si dim(V)=1, entonces consideramos $\mathcal{B}=\{w_0\}$ que es una base ortonormal de V formada por vectores propios de T.

Paso inductivo

Supongamos que el teorema es cierto para espacios de dimensión n-1 y lo probamos para espacios de dimensión n.

Sea $S = [w_0] \subseteq S_{\lambda_0}$, observemos que S es T-invariante, pues $T(w_0) = \lambda_0 w_0 \quad \forall w_0 \in S$. Entonces por el lema anterior S^{\perp} también es T-invariante. Consideremos $T\mid_{S^{\perp}}: S^{\perp} \to S^{\perp}$

Como tenemos que $V=S\oplus S^{\perp}$, en particular tenemos que $dim(V)=dim(S)+dim(S^{\perp})$. De donde concluimos que:

•
$$dim(S^{\perp}) = n - 1$$

Entonces veamos que:

 S^{\perp} es un K-espacio vectorial de dimensión n-1, y tenemos $T\mid_{S^{\perp}}:S^{\perp}\to S^{\perp}$ que es autoadjunto.

Luego, por hipótesis inductiva, existe una base \mathcal{B}_1 ortonormal de S^\perp de vectores propios de $T\mid_{S^\perp}$

Concluyendo, consideramos la base $\mathcal{B}=B_1\cup\{w_0\}$ que está formada por vectores propios de T y además es ortonormal.