Lidar SLAM - Homework 1

YaoGeFAD, e-mail: alexgecontrol@qq.com

November 3, 2019

说明:

• 文本使用在线 IATeX 编辑器 https://www.overleaf.com生成

- 1. **了解 Linux 系统** 阅读《鸟哥的 Linux 私房菜》自学前三部分内容,或利用互联网进行学习,简答以下问题:
 - (a) 列举三个你常用的 Linux 命令, 并说明他们的功能
 - (b) 一句话简要介绍 Vim 的功能,如何在 Vim 中进行插入和删除,如何保存并退出 Vim
 - (c) 列举两种常用的 Linux 压缩和解压缩命令

* ANS:

(a) 列举三个你常用的 Linux 命令,并说明他们的功能

cd 变更当前工作目录	_
ls 列出当前工作目录下的文件	ŧ
rm 删除指定文件	

(b) 一句话简要介绍 Vim 的功能,如何在 Vim 中进行插入和删除,如何保存并退出 Vim Vim 是一个基于命令行的高效文本编辑器。插入、删除、保存以及退出对应的操作方式如下**插人**

Hot Key	Function
i	Insert before the cursor
a	Insert (append) after the cursor
I	Insert at the beginning of the line
A	Insert (append) at the end of the line

删除

Hot Key	Function
dd	Delete (cut) a line
[N]dd	Delete (cut) N lines
dw I	Delete (cut) the characters of the word from the cursor position to the start of the next word
D	Delete (cut) to the end of the line
X	Delete (cut) character

保存

Hot Key	Function
:w	Write (save) the file, but don't exit
:w !sudo tee	Write out the current file using sudo
:wq	Write (save) and quit

退出

Hot Key	Function
:q	Quit (fails if there are unsaved changes)
:q!	quit and throw away unsaved changes

(c) 列举两种常用的 Linux 压缩和解压缩命令

zip

Function	Command
Compress	zip [OPTION] [OUTPUT $_{FILENAME}$][INPUT $_{1}$][INPUT $_{N}$]
Extract	unzip [SOURCE] -d [DESTINATION]

tar

Function	Command
Compress	tar -czvf $[OUTPUT_{FILENAME}][INPUT_1][INPUT_N]$
Extract	-xzvf [SOURCE] -C [DESTINATION]

2. **了解 ROS** 观看 ROS 免费公开课或前往 ROS 官网学习官方教程,安装好 ROS,提供运行小海龟跑的截图

Figure 1: TurtleSim View

- 3. **机器人姿态描述** 设机器人的世界坐标为 x_a, y_a ,其相对于世界坐标系的方向为 θ_a (右手坐标系)。假设机器人旁边有一物体在世界坐标系下的位姿为 x_b, y_b, θ_b 请问
 - (a) 该物体相对于机器人的位置和朝向是什么, 即该物体在当前机器人坐标系下的位姿是多少
 - (b) 机器人此时朝它的正前方 (机器人坐标系 X 轴) 行进了 d 距离,然后又转了 θ_d 角,请问物体此时在 这一时刻机器人坐标系下的位姿是多少?
 - (c) 在第 2 问的情况下,机器人发射一道激光,发现有一物体在它 x_c, y_c, θ_c 处,即 (x_c, y_c, θ_c) 为物体在机器人坐标系下的位姿,请问该物体在世界坐标系下的位姿为多少

* ANS:

(a) 该物体相对于机器人的位置和朝向是什么,即该物体在当前机器人坐标系下的位姿是多少机器人坐标系 R 到世界坐标系 O 的齐次变换矩阵为:

$$T_{OR} = \begin{vmatrix} cos(\theta_a) & -sin(\theta_a) & x_a \\ sin(\theta_a) & cos(\theta_a) & y_a \\ 0 & 0 & 1 \end{vmatrix}$$

物体坐标系 A 到世界坐标系 O 的齐次变换矩阵为:

$$T_{OA} = \begin{vmatrix} cos(\theta_b) & -sin(\theta_b) & x_b \\ sin(\theta_b) & cos(\theta_b) & y_b \\ 0 & 0 & 1 \end{vmatrix}$$

故物体在机器人坐标系下的位姿为:

$$T_{RA} = T_{OR}^{-1} \times T_{OA}$$

$$pose_{RA} = (T_{RA}(0, 2), T_{RA}(1, 2), atan2(T_{RA}(0, 1), T_{RA}(0, 0)))$$

(b) 机器人此时朝它的正前方 (机器人坐标系 X 轴) 行进了 d 距离,然后又转了 θ_d 角,请问物体此时在 这一时刻机器人坐标系下的位姿是多少

完成上述运动后, 机器人坐标系 R 到世界坐标系 O 的齐次变换矩阵为:

$$T_{OR_{new}} = \begin{vmatrix} cos(\theta_a + \theta_d) & -sin(\theta_a + \theta_d) & x_a + d \times cos(\theta_a) \\ sin(\theta_a + \theta_d) & cos(\theta_a + \theta_d) & y_a + d \times sin(\theta_a) \\ 0 & 0 & 1 \end{vmatrix}$$

代入问题 (1) 得到的公式, 有:

$$T_{RA_{new}} = T_{OR_{new}}^{-1} \times T_{OA}$$

$$pose_{RA_{new}} = (T_{RA_{new}}(0,2), T_{RA_{new}}(1,2), atan2(T_{RA_{new}}(0,1), T_{RA_{new}}(0,0)))$$

(c) 在第 2 问的情况下,机器人发射一道激光,发现有一物体在它 x_c, y_c, θ_c 处,即 (x_c, y_c, θ_c) 为物体在机器人坐标系下的位姿,请问该物体在世界坐标系下的位姿为多少检测物体坐标系 A 到机器人坐标系 R 的变换矩阵为:

$$T_{RA} = \begin{vmatrix} cos(\theta_c) & -sin(\theta_c) & x_c \\ sin(\theta_c) & cos(\theta_c) & y_c \\ 0 & 0 & 1 \end{vmatrix}$$

故检测物体坐标系 A 到世界坐标系 O 的变换矩阵为:

$$T_{OA} = T_{OR_{new}} \times T_{RA}$$

物体在世界坐标系下的位姿:

$$pose_{OA} = (T_{OA}(0,2), T_{OA}(1,2), atan2(T_{OA}(0,1), T_{OA}(0,0)))$$

4. 坐标转换的代码实现 完成基础数学坐标转换的代码作业

答案已上传至个人 GitHub https://github.com/AlexGeControl/Auto-Car-03-SLAM-00-Algorithms/blob/master/16-lidar-transform/basic_transform_study.cpp点击上述链接即可访问. 代码实现参见 Line 26 Line 35.