数学建模算法与实践

微分方程数值解应用案例4 高压油管压力控制问题

HY Deng dhy0826@126.com

内容提要

- ① 微分方程Matlab解析解
- 2 微分方程Matlab数值解
- 3 案例1: 火箭升空问题
- 4 案例2: 嫦娥三号软着陆轨道设计子问题
- 5 案例3: 多层高温作业专业服装设计问题
- 6 案例4: 高压油管的压力控制问题

燃油进入和喷出高压油管是许多燃油发动机工作的基础,图1给出了某高压燃油系统的工作原理,燃油经过高压油泵从A处进入高压油管,再由喷口B喷出。燃油进入和喷出的间歇性工作过程会导致高压油管内压力的变化,使得所喷出的燃油量出现偏差,从而影响发动机的工作效率。

图1高压油管示意图

□问题1. 某型号高压油管的内腔长度为500mm, 内直径 为10mm,供油入口A处小孔的直径为1.4mm,通过单向 阀开关控制供油时间的长短,单向阀每打开一次后就要 关闭10ms。喷油器每秒工作10次,每次工作时喷油时间 为2.4ms,喷油器工作时从喷油嘴B处向外喷油的速率如 图2所示。高压油泵在入口A处提供的压力恒为160 MPa, 高压油管内的初始压力为100 MPa。

□如果要将高压油管内的压力尽可能稳定在100 MPa左右,如何设置单向阀每次开启的时长?如果要将高压油管内的压力从100 MPa增加到150 MPa,且分别经过约2 s、5 s和10 s的调整过程后稳定在150 MPa,单向阀开启的时长应如何调整?

图2喷油速率示意图

□注1. 燃油的压力变化量与密度变化量成正比,比例系数为 $\frac{E}{\rho}$,其中 ρ 为燃油的密度,当压力为100 MPa时,燃油的密度为0.850 mg/mm³。 E 为弹性模量,其与压力的关系见附件3。

4.	Д	R
1	压力(MPa)	弹性模量(MPa)
2	0	1538.4
3	0.5	1540.8
4	1	1543.3
5	1.5	1545.7
6	2	1548. 2
7	2.5	1550.6
8	3	1553. 1
9	3.5	1555. 6
10	4	1558
11	4.5	1560.5
12	5	1563

395	196.5	3331
396	197	3339.7
397	197.5	3348.6
398	198	3357.4
399	198.5	3366.4
400	199	3375.3
401	199.5	3384.3
402	200	3393.4
100		

口注2.进出高压油管的流量为 $Q = CA\sqrt{\frac{2\Delta P}{\rho}}$, 其中Q为单位时间流过小孔的燃油量(mm³/ms),C=0.85为流量系数,A为小孔的面积(mm²), ΔP 为小孔两边的压力差(MPa), ρ 为高压侧燃油的密度(mg/mm³).

□注1. 燃油的压力变化量与密度变化量成正比,比例系数为 $\frac{E}{\rho}$,其中 ρ 为燃油的密度,当压力为100 MPa时,燃油的密度为0.850 mg/mm³。E为弹性模量,其与压力的关系见附件3。

$$\frac{\triangle P}{\triangle \rho} = \frac{E}{\rho} \Longrightarrow \frac{dP}{d\rho} = \frac{E(P)}{\rho}$$

模型建立

■时间离散:对研究的时间进行均匀离散。记为 t_k

设
$$h = t_{k+1} - t_k$$

■差分方程:

$$\frac{dP}{d\rho} = \frac{E(P)}{\rho} \implies \frac{P_{k+1} - P_k}{\rho_{k+1} - \rho_k} = \frac{E(P_k)}{\rho_k},$$

即

$$\begin{cases} P_{k+1} = P_k + \frac{E(P_k)}{\rho_k} (\rho_{k+1} - \rho_k), k = 0, 1, \dots, N \\ P_0 = 100Mpa \end{cases}$$

模型建立

■质量与密度: $m_{k+1} = \rho_{k+1}V$

$$\begin{cases} P_{k+1} = P_k + \frac{E(P_k)}{\rho_k} \frac{m_{k+1} - m_k}{V}, k = 0, 1, \dots, N \\ P_0 = 100Mpa \end{cases}$$

■质量守恒: $[t_k, t_{k+1}]$ 内高压油管内燃油质量的变化=流入量-流出量

$$\Delta m = m_{k+1} - m_k = Q_{In} - Q_{out}$$

其中, Q_{In} , Q_{out} 分别表示进入和喷出高压油管的燃油量

■弹性模量和压力关系: E(P)的确定

□根据注1: E为弹性模量,其与压力的关系见附件3。

4	Δ	R
1	压力(MPa)	弹性模量(MPa)
2	0	1538.4
3	0.5	1540.8
4	1	1543.3
5	1.5	1545.7
6	2	1548.2
7	2.5	1550.6
8	3	1553.1
9	3.5	1555.6
10	4	1558
11	4.5	1560.5
12	5	1563

395	196.5	3331
396	197	3339.7
397	197.5	3348.6
398	198	3357.4
399	198.5	3366.4
400	199	3375.3
401	199.5	3384.3
402	200	3393.4
100		

■弹性模量和压力关系: E(P)的确定

```
[data]=x1sread('f:\06 2020Spring\数
P=data(:, 1);
E=data(:, 2);
poly3=polyfit(P, E, 3);
fitE = poly2str(poly3, 'P')
plot (P, E, 'ro')
hold on
newE=polyval(poly3, P);
plot (P, newE, 'b--', 'Linewidth', 2)
legend('原数数据','拟合数据')
save E P poly3
```

fitE = 0.00010004 P³ - 0.0010825 P² + 5.4744 P + 1531.8684

■弹性模量和压力关系: E(P)的确定

■流入速率(单位时间内流入的质量):

口注2.进出高压油管的流量为 $Q = CA\sqrt{\frac{2\triangle P}{\rho}}$,其中Q为单位时间流过小孔的燃油量(mm^3/ms),C=0.85为流量系数,A为小孔的面积(mm^2), $\triangle P$ 为小孔两边的压力差(MPa),P为高压侧燃油的密度(mg/mm^3).

$$Q_{In}^{(k)} = \begin{cases} 0.85\pi \frac{1.4^2}{4} \sqrt{\frac{2(160 - P_k)}{\rho_{In}}} \rho_{In} h, t \in [0, T_{\text{period}}] \\ 0, t \in [T_{\text{period}}, T_{\text{period}} + 10ms] \end{cases}$$

其中 T_{Period} 为单向阀开启的时长,且上述为一个周期内的流量关系, $\rho_{In}=0.8711$ 为入口160Mpa对应的密度.

■喷出速率(单位时间内喷出的质量):

图2喷油速率示意图

$$Q_2(t,T) = \begin{cases} 100t, & 0 \le t < 0.2, \\ 20, & 0.2 \le t < 2.2, \\ 240 - 100t, & 2.2 \le t < 2.4, \\ 0, & 2.4 \le t \le T, \end{cases}$$

■喷油速率为周期函数(离散问题)

$$Q_{out}^{(k)}(t, T, T_{\rm start})$$

$$= \begin{cases} 100(\text{Mod}(t,T) - T_{\text{start}})\rho_{k}h, & 0 \leq \text{Mod}(t,T) - T_{\text{start}} < 0.2, \\ 20\rho_{k}h, & 0.2 \leq \text{Mod}(t,T) - T_{\text{start}} < 2.2 \\ 240 - 100(\text{Mod}(t,T) - T_{\text{start}})\rho_{k}h, & 2.2 \leq \text{Mod}(t,T) - T_{\text{start}} < 2.4 \\ 0, & \text{otherwise} \end{cases}$$

其中,T=100为喷油周期, T_{start} 为每个周期开始喷油的时刻, ρ_k 为喷出的油的密度,h为所研究的时间段长度.

■喷油速率为周期函数(离散问题)

```
function Q_out=flow_out_rate(t, flowout_start)
 %喷油速率
 T=100:
 new_t=rem(t, T)-flowout_start; %转化到一个周期T=100
 if new_t<0
     Q_{out}=0;
 elseif new_t < 0.2
      Q_out=100*new_t;
 elseif new_t \langle 2.2
     Q_out=20;
 elseif new_t<2.4
     Q out=240-100*new t;
 e1se
     Q_out=0;
 end
```

■喷油速率为周期函数(离散问题)

```
flowout start=55.8; %每个周期内开始喷油的时刻
 t_data=[];
 Q out data=[];
for t=0:0.01:200
    Q out=flow out rate(t, flowout start);
    t data=[t data; t];
    Q out data=[Q out data; Q out];
-end
 plot(t_data, Q_out_data, 'b', 'Linewidth', 1)
 axis([min(t_data) max(t_data) min(Q_out_data) max(Q_out_data)+2])
 xlabel('时间(ms)')
 ylabel('喷油速率(mm^3/ms)')
```


$$\frac{dP}{d\rho} = \frac{E(P)}{\rho} \Longrightarrow \frac{dP}{E(P)} = \frac{d\rho}{\rho}$$

$$\implies \int_{P_0}^{P_0 + \Delta P} \frac{1}{E(P)} dP = \int_{\rho_0}^{\rho_1} \frac{1}{\rho} d\rho = \ln \rho_1 - \ln \rho_0 = \ln \frac{\rho_1}{\rho_0}$$

$$\implies \rho_1 = \rho_0 \exp\left(\int_{P_0}^{P_0 + \Delta P} \frac{1}{E(P)} dP\right)$$

- ■初始条件: $\rho_0 = 0.85, P_0 = 100Mpa$.
- ■利用梯形或Simpson数值积分可以计算出压力从[0, 200], 取dP=0.5, 不断计算出新的压力对应的密度值, 以此作为初始条件不断递推.

```
load E P poly3
                                        %数值积分[0,100]区间
%数值积分int(1/E(P), 100, P)
                                        dP2=-0.5:
%先计算P在[100, 200]区间的数值积分
                                        dataP2=[100];
dP=0.5:
                                        dataDensity2=[0.85];
dataP1=[100]:
                                      for P=100: dP2: 0
dataDensity1=[0.85];
                                            P1=P:
for P=100: dP: 200
                                            P2=P1+dP2:
                                            mid=(P1+P2)/2;
   P1=P:
    P2=P1+dP:
                                            density1=dataDensity2(end);
    mid=(P1+P2)/2:
                                            deltaS=dP2/6*(1/polyval(poly3, P1)+...
    density1=dataDensity1(end);
                                                1/polyval (poly3, P2)...
    deltaS=dP/6*(1/polyval(poly3, P1)...
                                                +4/polyval(poly3, mid));
        +1/polyval (poly3, P2)...
                                            density2=density1*exp(deltaS);
        +4/polyval(poly3, mid));
                                            dataP2=[dataP2;
    density2=density1*exp(deltaS);
                                                            P2]:
    dataP1=[dataP1;
                                             dataDensity2=[dataDensity2;
                    P2]:
                                                                     densitv2]:
     dataDensity1=[dataDensity1;
                                      - end
                             density2];
end
```

```
dataP = [dataP2(end:-1:2)]
                       dataP1]:
         dataDensity=[dataDensity2(end:-1:2)
                                  dataDensitv1]:
         funcPressure_Density=polyfit(dataP, dataDensity, 2)
         P_Density=poly2str(funcPressure_Density, 'P')
\rho_k = \rho(P_k) = -6.5548 \times 10^{-7} P_k^2 + 0.0005226 P_k + 0.8043
funcPressure_Density =
 -0.0000 0.0005 0.8043
P Density =
 -6.5584e-007 P^2 + 0.00052261 P + 0.8043
funcDensity_Pressure =
 1.0e+005 *
  0.9252 -2.2369 1.8228 -0.5005
Density P =
 92523.7814 rho^3 - 223686.9111 rho^2 + 182283.3304 rho - 50048.4042
```


■满足差分方程模型的优化目标函数: 决策变量

为单向阀开启时长和每个周期喷油开启时间

$$\min_{h, T_{\text{Start}}} \sum_{k=1}^{n} (P(k) - 100)^2$$

$$\begin{cases} P_{k+1} = P_k + \frac{E(P_k)}{\rho_k} \frac{m_{k+1} - m_k}{V}, k = 0, 1, \dots, N \\ P_0 = 100Mpa \end{cases}$$

其中, $m_{k+1}-m_k=Q_{In}^{(k)}-Q_{out}^{(k)}$,

$$Q_{In}^{(k)} = \begin{cases} 0.85\pi \frac{1.4^2}{4} \sqrt{\frac{2(160 - P_k)}{\rho_{In}}} \rho_{In} h, t \in [0, T_{\text{period}}] \\ 0, t \in [T_{\text{period}}, T_{\text{period}} + 10ms] \end{cases}$$

$$Q_{out}^{(k)}(t,T,T_{\mathrm{start}})$$

$$= \begin{cases} 100(\text{Mod}(t,T) - T_{\text{start}}) \rho_{k} h, & 0 \leq \text{Mod}(t,T) - T_{\text{start}} < 0.2, \\ 20 \rho_{k} h, & 0.2 \leq \text{Mod}(t,T) - T_{\text{start}} < 2.2 \\ 240 - 100(\text{Mod}(t,T) - T_{\text{start}}) \rho_{k} h, & 2.2 \leq \text{Mod}(t,T) - T_{\text{start}} < 2.4 \\ 0, & \text{otherwise} \end{cases}$$

$$\rho_k = \rho(P_k) = -6.5548 \times 10^{-7} P_k^2 + 0.0005226 P_k + 0.8043$$

模型求解

```
function [dataT, dataP]=Problem01_dynamic(valve_period,...
                                 flowout start, total T, dt)
        dataT=[0];
        dataP=[100];%高压油管的初始压力
        Volume=500*(10)<sup>2</sup>/4*pi; %高压油管的体积
        t stop=10; % 单向阀每次关闭10ms
 6 -
        for t_k=0: dt: total_T
           t start=t k;
10 -
           t end=t k+dt;
           P0=dataP(end); %每个离散时间段初始的压力值
11 -
12 -
            density_out=fitDensity(P0);
            delta_pressure=fitEP(P0)/fitDensity(P0)/Volume*...
13 -
14
                (flow_in(t_start, t_end, valve_period, t_stop, P0)-...
                flow_out(t_start, t_end, flowout_start, density_out));
15
           new_pressure = dataP(end)+delta_pressure;
16 -
           %保存该时间段后的压力
17
            dataT=[dataT;
18 -
                        t_end];
19
            dataP=[dataP:
20 -
```

```
new_pressure ];%高压油管的初始压力
21
       end
23
       function E=fitEP(P)
24
25
       %使用fitEP里的拟合结果
     E = 0.00010004*P^3 - 0.0010825*P^2 + 5.4744*P + 1531.8684;
26 -
27
     function density=fitDensity(P)
       %使用Pressure_density里的拟合结果
28
       density= -6.5584e-07*P^2 + 0.00052261*P + 0.8043;
29 -
           function Problme01 main()
            valve_period = 0.288;
      3 -
            flowout start=55.6;
            total T=3000;
            dt=0.05:
      5 -
             [dataT, dataP]=Problem01_dynamic(valve_period, ...
      6 -
      7
                              flowout_start, total_T, dt);
      8 -
            plot(dataT, dataP,'--','Linewidth',2)
      9 -
            axis([0 total_T 95 105])
            xlabel('时间(ms)')
     10 -
            ylabel('压力(Mpa)')
     11 -
            -title('高压油管压力的动态变化过程')
     12 -
```

探索不同时间段内稳定到150Mpa

模型求解

回注1. 燃油的压力变化量与密度变化量成正比,比例系数为 $\frac{E}{\rho}$,其中 ρ 为燃油的密度,当压力为100 MPa时,燃油的密度为0.850 mg/mm³。 E 为弹性模量,其与压力的关系见附件3。

$$\frac{\triangle P}{\triangle \rho} = \frac{E}{\rho} \Longrightarrow \frac{dP}{d\rho} = \frac{E(P)}{\rho} \Longrightarrow P = P(\rho)$$

$$dP = \frac{E(P)}{\rho}d\rho \Longrightarrow \frac{dP}{dt} = \frac{E(P)}{\rho}\frac{d\rho}{dt}$$

□燃油的压力和燃油密度的关系(最小二乘拟合和求解

方程):

$$\frac{dP}{d\rho} = \frac{E(P)}{\rho} \Longrightarrow P = P(\rho)$$

$$E = 645.4e^{0.00671P} + 905.6$$

$$\rho = e^{(0.0011P - 0.073 - 0.1646\ln(1.40316 + e^{0.00671P}))}$$

□燃油的压力和燃油密度的关系(数值积分):

$$\frac{dP}{d\rho} = \frac{E(P)}{\rho} \Longrightarrow \int_{P=100}^{P} \frac{1}{E(P)} dP = \int_{\rho=0.85}^{\rho} \frac{1}{\rho} d\rho$$

 \square 研究燃油的质量m(t),高压油管的体积V为常数:

图 2 燃油质量变化示意图

□由于压力差导致流入和流出:

$$m'(t) = m'_{in}(t) - m'_{out}(t)$$

□由于压力差导致流入和流出:

$$m'(t) = m'_{in}(t) - m'_{out}(t) = Q_{in}\rho_{in} - Q_{out}\rho(t)$$

□从注2可以得到:

$$Q_{in} = CA\sqrt{rac{2(160-P(t))}{
ho_{160MPa}}}, \quad
ho_{in} =
ho_{160}$$
质量 $m_{in}(t)$

图 2 燃油质量变化示意图

□从注2可以得到:

$$Q_{out} = \begin{cases} 100t, 0 \le t < 0.2\\ 2, 2 \le t < 2.2\\ 240 - 100t, 2.2 \le t \le 2.4 \end{cases}$$

□研究燃油的质量m(t):

$$\frac{dP}{d\rho} = \frac{E(P)}{\rho}$$

$$m'(t) = \rho'(t)V = \frac{d\rho}{dP}\frac{dP}{dt}V = \frac{\rho}{E(P)}V\frac{dP}{dt}$$
$$m'(t) = m'_{in}(t) - m'_{out}(t) = Q_{in}\rho_{in} - Q_{out}\rho(t)$$

$$m'(t) = \frac{\rho}{E(P)} V \frac{dP}{dt}$$

$$= Q_{in}\rho_{in} - Q_{out}\rho(t)$$

$$= CA \sqrt{\frac{2(160 - P(t))}{\rho_{160MPa}}} \rho_{160} - Q_{out}\rho(P(t))$$

模型建立

□问题1的模型为:

$$\begin{cases} \frac{dP(t)}{dt} = \frac{\rho_{160}Q_{in} - \rho_{100}Q_{out}}{V} / (\frac{d\rho(t)}{dP(t)}) \\ Q_{in} = CA\sqrt{\frac{2(160 - P)}{\rho_{160}}} \\ Q_{out} = \begin{cases} 100t & 0 \le t < 0.2 \\ 20 & 0.2 \le t < 2.2 \\ 240 - 100t & 2.2 \le t \le 2.4 \end{cases} \\ \rho = e^{(0.0011P - 0.073 - 0.1646\ln(1.40316 + e^{0.00671P}))} \end{cases}$$

□利用四阶Runge-Kutta格式进行求解(Matlab命令 ode45())

模型建立

□分段函数处理方法(应用单位阶跃函数,Matlab:

heaviside():

图 4 阶跃函数
$$\varepsilon(t)$$

$$Q_{out} = \begin{cases} 100t, 0 \le t < 0.2\\ 2, 2 \le t < 2.2\\ 240 - 100t, 2.2 \le t \le 2.4 \end{cases}$$

 $S(t) = (100t)(\varepsilon(t) - \varepsilon(t - 0.2)) + (2)(\varepsilon(t - 0.2) - \varepsilon(t - 2.2)) + (240 - 100t)(\varepsilon(t - 2.2) - \varepsilon(t - 2.4))$

模型建立

□周期函数处理方法(mod取余):

对于周期函数:

$$f(x) = f(x+T)$$

记 $(x)_a$ 表示x除a的余数,例如 $(5)_3 = 2$,g(x)为f(x)的主值函数,则

$$f(x) = g((x)_T).$$

- ■推广2: 喷油速率到周期函数(连续问题)
- \blacksquare 引入单位阶跃函数 u(t)

$$Q_2(t,T) = \begin{cases} 100t, & 0 \le t < 0.2, \\ 20, & 0.2 \le t < 2.2, \\ 240 - 100t, & 2.2 \le t < 2.4, \\ 0, & 2.4 \le t \le T, \end{cases}$$

■使用单位阶跃函数描述分段周期函数

$$Q_2(t,T) = 100t(u(t) - u(t - 0.2)) + 20(u(t - 0.2) + u(t - 2.2))$$
$$+(240 - 100t)(u(t - 2.2) - u(t - 2.4))$$

■Matlab实现单位阶跃函数: heaviside(t)

```
t=linspace(0,110,100); %研究10ms内测试,避免使用0:0.01:T
flowout start=5; %每个周期内启动喷油的时刻
T=100;%周期
new_t=rem(t, T)-flowout_start; %转化到一个周期T=100
%利用单位阶跃函数计算喷油速率
Q_out=100*new_t.*(ceil(heaviside(new_t)-heaviside(new_t-0.2)))+...
  20*(ceil(heaviside(new_t-0.2)-heaviside(new_t-2.2)))+...
  (240-100*new_t).*(ceil(heaviside(new_t-2.2)-heaviside(new_t-2.4)));
plot(t, Q_out, 'b', 'Linewidth',1)
axis([min(t) max(t) min(Q_out) max(Q_out) + 2])
xlabel('时间(ms)')
ylabel('喷油速率(mm^3/ms)')
```



```
function dy=odefun2 new0(t, y, flag, T)
2
        %v: p
       rho=exp(0.0011*y-0.0733-0.1646*log(1.40316+exp(0.00671*y)));
       rho160=0.8707;
        C=0.85:
        A=pi*1.4<sup>2</sup>/4:%0.15394:
        r=T:
9
        dy = (rho160 * C * A * sqrt (2 * (160 - y) / rho160) * (ceil (heaviside (mod (t, 10 + r)) - heaviside (mod (t, 10 + r) - r))) - ...
10
            rho*((100*mod(max(t,0),100))*(ceil(heaviside(mod(max(t,0),100))-heaviside(mod(max(t,0),100)-0.2)))+...
11
            20*(ceil (heaviside (mod (max (t, 0), 100) -0. 2) -heaviside (mod (max (t, 0), 100) -2. 2)))+...
12
            (-100*mod(max(t, 0), 100) + 240)*(ceil(heaviside(mod(max(t, 0), 100) - 2.2) - heaviside(mod(max(t, 0), 100) - 2.4)))))/...
         (\exp(0.0011*v-0.0733-0.1646*\log(1.40316+\exp(0.00671*v)))*(0.0011-0.1646/(1.40316+\exp(0.00671*v))*...
13
         0.00671*exp(0.00671*v))/39269.90817: %((3.45e-4)*39269.90817):
14
```

```
% function Problem1_main()%%%%OK
        clear
       Y Node=100;
       Result T=[]:
       Result_P=[];
       C=0.85:
       A=pi*1. 4<sup>2</sup>/4;%0. 15394;
       r=0.95:
       rho160=0.8707;
       T opt=0.27;
12 -
       Err=10000:
13 -
       Pressure=150:
     for T=[0. 2664:0. 0006:0. 2782]
14 -
15 -
16 -
            for k=1:200
                y0=Y_Node(end);
17 -
                 tspan=linspace((k-1)*10, k*10, 1000);
18 -
                Cumulated Out=440*0.85*10;
19 -
20 -
                 [T_Node, Y_Node] = ode45 ('odefun2_new', tspan, y0, [], T);
21
                Result_T=[Result_T;T_Node];
                 Result_P=[Result_P;Y_Node];
            end
```

```
Cumulated_In=rho160*C*A*sqrt(2*(160-Result_P(end-1000:10:end))/rho160)*10000*T/(10+T);
25
26
             err0=sqrt(sum((Cumulated_Out-Cumulated_In).^2)/length(Cumulated_In))/Cumulated_Out*100;
       %曲线偏差的均方差的相对误差
27
           err0=sqrt(sum((Result_P(end-1000:1:end)-100).^2)/length(Result_P(end-1000:1:end)));
28 -
           %index=find(abs(Result T-2000)<0.1); %找到t=2000ms的位置
29
           if err0<Err %& abs(mean(Result P(index))-100)<1 %t=2000, Pressure ==150
30 -
31 -
               T \text{ opt}=T;
32 -
               Err=err0
33 -
               Pressure=mean(Y Node(end-100:end));
34 -
           end
35 -
       end
36
37 -
       T opt
38 -
       Err
39 -
       Pressure
       Result T=[];
40 -
       Result P=[];
       Y Node=100;
42 -
```

```
for T=T opt
            for k=1:3000
                v0=Y Node (end);
45 -
                tspan=linspace((k-1)*10, k*10, 100):
46 -
47
                 [T Node, Y Node] = ode45 ('odefun2 new0', tspan, y0, [], T);
48 -
                Result_T=[Result_T;T_Node];
49 -
                Result P=[Result P:Y Node]:
50 -
51
52 -
            end
53 -
        end
54
        plot (Result T, Result P, 'r-', 'Linewidth', 0.1)
55 -
        hold on
56 -
        plot(Result T, 100*ones(size(Result P)), 'b--', 'Linewidth', 2)
57 -
        xlabel ('Time (unit:ms)', 'Fontname', 'Times New Roman', 'fontweight', 'bold', 'fontsize', 12)
58 -
        ylabel ('Pressure (unit: Kpa)', 'Fontname', 'Times New Roman', 'fontweight', 'bold', 'fontsize', 12)
59 -
60 -
        axis([0 max(Result T)/3 75 125])
       title('压力变化趋势', 'Fontname', '宋体', 'fontweight', 'bold', 'FontSize', 12)
61 -
```


T_opt = 0.2670 Err = 0.6076 Pressure = 98.5434

□尽量稳定在100Mpa的动态过程

□经过2s尽量稳定在150Mpa的动态过程

□经过5s尽量稳定在150Mpa的动态过程

□经过10s尽量稳定在150Mpa的动态过程

表 1 问题 1 的计算结果比较

	不同情形	稳定在 100	经过约 2 s 稳定	经过约 5s 稳定	经过约 10s 稳	
		MPa	在 150 MPa	在 150 MPa	定在 150 MPa	
	单向阀开启的 时长	0.267ms	0.7550ms	0.7000ms	0.68ms	
	平均相对压力	98.5434 <i>MPa</i>	150.0304 <i>MPa</i>	148.9906 <i>MPa</i>	148.0651 <i>MPa</i>	
	误差	0.6076 <i>MPa</i>	2.1261 <i>MPa</i>	1.0385 <i>MPa</i>	0.6744 <i>MPa</i>	

从上述表格和动态图可以看出如下结论:

- 1. 经过 5s 稳定在 150MPa 时,压力变化趋势最稳定,压力变化趋势是否稳定与经过的时间无直接联系。
 - 2. 都稳定在 150MPa 时, 平均相对压力和误差与经过的时间无直接联系
 - 3. 稳定在 100MPa 时的误差小。

□问题2. 在实际工作过程中, 高压油管A处的燃油来自 高压油泵的柱塞腔出口,喷油由喷油嘴的针阀控制。高 压油泵柱塞的压油过程如图3所示,凸轮驱动柱塞上下 运动,凸轮边缘曲线与角度的关系见附件1。柱塞向上 运动时压缩柱塞腔内的燃油,当柱塞腔内的压力大于高 压油管内的压力时, 柱塞腔与高压油管连接的单向阀开 启,燃油进入高压油管内。柱塞腔内直径为5mm,柱塞 运动到上止点位置时, 柱塞腔残余容积为20mm3。

3. 07

2.4192

极角 (rad)	极径 (mm)	3. 08	2. 4176
0	7. 239	3. 09	2. 4162
0. 01	7. 2389	3. 1	2. 4151
0. 02	7. 2385	3. 11	2. 4142
0. 03	7. 2379	3. 12	2. 4136
0. 04	7. 2371	3. 13	2. 4132
0. 05	7. 236	3. 14	2. 413
0.06	7. 2347	3. 15	2. 4131
0. 07	7. 2331	3. 16	2.4134
0. 08	7. 2313	3. 17	2. 414
0. 09	7. 2292	3. 18	2. 4148
Λ.1	7 0060	3. 19	2. 4158
		3. 2	2. 4171

6. 15	7. 2176
6. 16	7. 2207
6. 17	7. 2236
6. 18	7. 2262
6. 19	7. 2285
6. 2	7. 2307
6. 21	7. 2325
6. 22	7. 2342
6. 23	7. 2356
6. 24	7. 2368
6. 25	7. 2377
6. 26	7. 2384
6. 27	7. 2388

□问题2.柱塞运动到下止点时,低压燃油会充满柱塞腔 (包括残余容积),低压燃油的压力为0.5 MPa。喷油器 喷嘴结构如图4所示,针阀直径为2.5mm、密封座是半角 为9°的圆锥,最下端喷孔的直径为1.4mm。针阀升程为 0时, 针阀关闭: 针阀升程大于0时, 针阀开启, 燃油向 喷孔流动,通过喷孔喷出。在一个喷油周期内针阀升程 与时间的关系由附件2给出。在问题1中给出的喷油器工 作次数、高压油管尺寸和初始压力下,确定凸轮的角速 度, 使得高压油管内的压力尽量稳定在100 MPa左右。

图4喷油器喷嘴放大后的示意图

时间(ms)	距离(mm)	时间(ms)	距离(mm)				
0	0	2.01	1.9942				
0.01	1.2337E-06	2.02	1.9704				
0.02	0.000019739	2.03	1.9296				
0.03	0.000099928	2.04	1.8739				
0.04	0.00031581	2.05	1.8052				
0.05	0.00077096	2.06	1.7258				
0.06	0.0015984	2.07	1.6376				
0.07	0.0029607	2.08	1.5427				
0.08	0.005049	2.09	1 4432	0.34	1.2426	2. 35	0.012063
0.09	0.0080834	2.1	1	0.35	1.3461	2. 36	0.0079019
0.1	0.012312	2.11		0.36	1.4484	2. 37	0.0049215
				0.37	1.5477	2. 38	0.0049213
				0.38	1.6423	2.39	0.0025133
				0.39	1.73	2. 4	0.00073997
				0.4	1.809	2. 41	0.00013331
				0.41	1.8771		0.000093301
				0.42	1.9321		
				0.43	1.972	2. 44	1.0005E-06
				0.44	1.995	2. 45	1.00002 00
			[0.45,		2	[2.46,100]	o o

□柱塞腔内燃油的体积:

$$h_{pump}(t) = f(\theta_0 + wt)$$

$$V_{pump}(t) = \pi r^2 (h_0 + h_1 - h_{pump}(t) + h_{min})$$

$$= \pi r^2 (h_0 + h_{max} - h_{pump}(t))$$

$$\rho_{pump}(t) = \frac{m_{pump}(t)}{V_{pump}(t)} \Longrightarrow P_{pump}(t) = \mu(\rho_{pump}(t))$$

□柱塞腔内燃油质量的变化:

$$P_{pump}(t) > P_{tube}(t),$$

$$\frac{dm_{pump}}{dt} = -CA_{pump} \sqrt{\frac{2(P_{pump}(t) - P_{tube}(t))}{m_{pump}/V_{pump}(t)}} \frac{m_{pump}}{V_{pump}(t)}$$

$$P_{pump}(t) < P_{tube}(t), \quad \frac{dm_{pump}(t)}{dt} = 0$$

□综合上述两种情形,有:

$$Q_{in} = CA_{pump} \sqrt{\frac{2max[(P_{pump}(t) - P_{tube}(t)), 0]}{m_{pump}/V_{pump}(t)}}$$

$$\frac{dm_{pump}(t)}{dt} = -Q_{in}\rho_{pump}(t)$$

□喷嘴圆环的面积S1与喷孔的面积S2:

$$S_1 = \pi \left(r + H(t) \tan \frac{9}{180} \pi \right)^2 - \pi r^2, \quad S_2 = \pi \frac{1.4^2}{2}$$

□燃油可通过的面积: $A_{out} = \min\{S_1, S_2\}$,

□流出高压油管的流量:

$$Q_{out} = CA_{out}\sqrt{\frac{2(P_{tube}(t) - P_{out}(t))}{\rho(P_{tube}(t))}}$$

□高压油管的质量守恒方程:

$$\frac{dm_{tube}(t)}{dt} = V_{tube} \frac{d\rho_{tube}(t)}{dt} = Q_{in}\rho_{pump}(t) - Q_{out}\rho_{tube}(t)$$

that is
$$V_{tube} \frac{d\rho_{tube}(t)}{dP_{tube}} \frac{dP_{tube}}{dt} = Q_{in}\rho(P_{pump}(t)) - Q_{out}\rho(P_{tube}(t))$$

□柱塞腔和高压油管联立微分方程组:

$$\frac{dm_{pump}(t)}{dt} = -Q_{in}\rho(P_{pump}(t))$$

$$V_{tube} \frac{d\rho_{tube}(t)}{dP_{tube}} \frac{dP_{tube}}{dt} = Q_{in}\rho(P_{pump}(t)) - Q_{out}\rho(P_{tube}(t))$$

□决策变量为w,目标函数为:

$$\min \int_{T_0}^T |P_{tube}(t) - 100Mpa|dt$$

□编程求解:

□问题3. 在问题2的基础上,再增加一个喷油嘴,每个喷嘴喷油规律相同,喷油和供油策略应如何调整?为了更有效地控制高压油管的压力,现计划在D处安装一个单向减压阀(图5)。单向减压阀出口为直径为1.4mm的圆,打开后高压油管内的燃油可以在压力下回流到外部低压油路中,从而使得高压油管内燃油的压力减小。请给出高压油泵和减压阀的控制方案。

图5 具有减压阀和两个喷油嘴时高压油管示意图

□两个喷油嘴和一个减压阀情形:

柱塞腔和高压油管联立微分方程组:

$$\frac{dm_{pump}(t)}{dt} = -Q_{in}\rho(P_{pump}(t))$$

$$V_{tube} \frac{d\rho_{tube}(t)}{dP_{tube}} \frac{dP_{tube}}{dt} = Q_{in}\rho(P_{pump}(t)) - (Q_{out,1} + Q_{out,2} + Q_{out,3})\rho(P_{tube}(t))$$

□两个喷油嘴情形: 柱塞腔和高压油管联立微分方程组:

$$\frac{dm_{pump}(t)}{dt} = -Q_{in}\rho(P_{pump}(t))$$

$$V_{tube} \frac{d\rho_{tube}(t)}{dP_{tube}} \frac{dP_{tube}}{dt} = Q_{in}\rho(P_{pump}(t)) - (Q_{out,1} + Q_{out2})\rho(P_{tube}(t))$$

- □模型检验和模型误差分析
- □模型敏感性分析
- □模型评价

Thanks!