Simulation-Based Design

PRESENTED FOR

University of Utah November 21, 2024

PRESENTED BY

Miguel A. Aguilo, PhD maguilo@morphorm.com www.morphorm.com

Agenda

- · About Us
- Motivation
- Traditional Approach
- Simulation-Based Design
- Formulation

Simulation-Based Design About Us

Profile

About Us: We build optimization and simulation engineering technologies to deliver real-time design solutions, with a strong focus on clean energy and defense sectors

Mission: Empower our clients to achieve engineering breakthroughs with unmatched speed and precision

Vision: Drive transformative advancements in technology through innovation and excellence in digital engineering.

Topology optimized antenna support bracket and the normalized von Mises stress. The von Mises stress is normalized with respect to the stress limit. Results show that the von Mises stress limit is satisfied at every material point.

Computing & Parallelism

- Runs in various computing environments
 - O Desktop: Linux, Mac, and Windows (Experimental)
 - HPC: Linux Clusters
 - o Cloud Platforms: GCP, AWS
- Exploits concurrency at multiple levels
 - Multiprocessor and multi-GPU simulations
 - Multiple simulations per response
 - Samples in a parameter study
- File management features, including
 - Work directories to partition analysis files

History

- Software foundations developed at Sandia National Laboratories (SNL)
- Ongoing partnership with SNL to integrate the latest simulation-based optimization research
- New major release every March 15th and October 15th
 - New minor release every three weeks
- Partners: SNL, DOE, AFRL, JHAPL, Industry

Simulation-Based Design Motivation

Problem Description

Design Challenge. Find a lightweight structure and actuating forces needed to match a desired deformation profile. The locations of the actuating forces are assumed known.

Material. The structure is made of an elastic material:

• Young's Modulus: 325.0 GPa

Poisson's Ratio: 0.33

Model. The model is symmetric about the plane at X=0.0, only half of the model is considered for optimization.

Initial design domain for the topology optimization study.

^{*} See Example 3.2.6 in the Examples Manual for details.

Boundary Conditions

Locations of the actuating forces on the top surface. Regions with matching colors share the same force value. The red and green regions are non-optimizable regions.

Bottom **red surface** represents the target surface, i.e., deformation profile will be matched at this surface. X, Y, and Z displacements on the **green surface** are fixed. The **red surface** is a non-optimizable region.

X, *Y*, and *Z* displacements along the lower edge are fixed.

Algorithm

Note. The initial optimization study produced 35 design candidates.

Simulation-Based Design

Traditional Approach

Structural Engineering

Design Challenge. Find a lightweight structure capable of withstanding the expected loading profile.

Material. The structure is made of an elastic material:

- Young's Modulus: 200.0 GPa
- Poisson's Ratio: 0.3

Desired Outcome. Reduce cost

Allowable design space for the topology optimization study.

Boundary Conditions

$$L = 10 \text{ m}$$

Step 1: Build Geometry

Step 2: Build Mesh

Step 4: Run Simulation

Step 5: Iterate

Manually modify the geometry based on the simulation results

Re-generate mesh and re-launch simulation to analyze new geometry

Analyze results and modify geometry if necessary

Summary

Repeat (Manual)

Can we accelerate the design process?

Simulation-Based Design Automation

Animation

Computer-Guided Engineering

Optimized Structure

Simulation-Based Design

Formulation

Problem Formulation

Find a structural design that <u>maximizes</u> structural rigidity and <u>meets</u> the mass budget requirement.

Optimization Problem Statement

Design* = arg maximize Structural Stiffness Design

subject to

Governing Equations Are Satisfied

Structural Mass - Mass Requirement ≤ 0

Problem Formulation

Find a structural design that <u>maximizes</u> structural rigidity and <u>meets</u> the mass budget requirement.

Optimization Problem Statement

$$Design^* = \underset{Design}{\operatorname{arg minimize}} \frac{1}{2} \mathbf{u^T} (Design) \mathbf{f}$$

subject to

$$\mathbf{R}(\mathbf{u}(\mathrm{Design}), \mathrm{Design}) = \mathbf{K}(\mathrm{Design})\mathbf{u} - \mathbf{f} = \mathbf{0}$$

$$\mathbf{G}(\mathrm{Design}) = \mathrm{Mass}(\mathrm{Design}) - \mathrm{Mass} \; \mathrm{Req.} \leq \mathbf{0}$$

Enforce Local Design Requirements

Minimize Mass & Constraint Local von Mises Stress

Will the Problem Formulation Impact Results?

Topology Optimization

Spatially-Varying Lattices

Conformal Topology Optimization

Lattice-Based Topology Optimization

Thank you

Simulation-Based Design