Ensemble dénombrable, famille sommable des nombres complexes, séries entières

Coralie RENAULT

2 janvier 2015

Exercice

Etablir

avec

$$e\sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n \cdot n!} = \sum_{n=1}^{+\infty} \frac{H_n}{n!}$$

$$H_n = \sum_{k=1}^n \frac{1}{k}$$

Exercice

Etablir que pour $x \in]-1, 1[$,

$$\sum_{n=1}^{+\infty} \frac{x^n}{1 - x^n} = \sum_{n=1}^{+\infty} d(n)x^n$$

en notant d(n) le nombre de diviseurs positifs de n.

Exercice

Existence et calcul de

$$\sum_{n=0}^{+\infty} (n+1)3^{-n}$$

Exercice

Une involution d'un ensemble E est une application $f: E \to E$ vérifiant $f \circ f = \mathrm{Id}_E$. Pour $n \ge 1$, on note I_n le nombre d'involutions de $[\![1,n]\!]$. On convient : $I_0 = 1$.

a) Montrer, si $n \ge 2$, que

$$I_n = I_{n-1} + (n-1)I_{n-2}$$

b) Montrer que la série entière $\sum_{n\geqslant 0}\frac{I_n}{n!}x^n$ converge si $x\in]-1,1[.$

On note S(x) sa somme.

c) Montrer, pour $x \in [-1, 1[$, que

$$S'(x) = (1+x)S(x)$$

d) En déduire une expression de S(x), puis une expression de I_n .

Exercice

Soit $\sigma: \mathbb{N}^* \to \mathbb{N}^*$ une application bijective.

a) Déterminer la nature de

$$\sum_{n\geqslant 1}\frac{1}{\sigma(n)^2}$$

b) Même question pour

$$\sum_{n\geqslant 1} \frac{1}{\sigma(n)}$$

Exercice

Déterminer le rayon de convergence de :

a)
$$\sum_{n\geqslant 0} n! z^n$$
 b) $\sum_{n\geqslant 0} {2n \choose n} z^n$ c) $\sum_{n\geqslant 0} \frac{(3n)!}{(n!)^3} z^n$ d) $\sum_{n\geqslant 0} {n+1 \choose n+1} - \sqrt[n]{n} z^n$

Exercice

On note N(n, p) le nombre de permutations de [1, n] qui ont exactement p points fixes. On pose en particulier D(n) = N(n, 0), puis

$$f(x) = \sum_{n=0}^{+\infty} \frac{D(n)}{n!} x^n$$

- a) relier N(n, p) et D(n p).
- b) Justifier la définition de f sur]-1,1[puis calculer f.
- c) Calculer N(n, p).
- d) Etudier la limite de $\left(\frac{1}{n!}N(n,p)\right)$ quand n tend vers $+\infty$.

Exercice

Déterminer le rayon de convergence des séries entières :

a)
$$\sum_{n\geqslant 0} \frac{n^2+1}{3^n} z^n$$
 b) $\sum_{n\geqslant 0} e^{-n^2} z^n$ c) $\sum_{n\geqslant 1} \frac{\ln n}{n^2} z^{2n}$ d) $\sum_{n\geqslant 0} \frac{n^n}{n!} z^{3n}$

Exercice

a) Etudier la convergence et préciser la limite éventuelle de (a_n) définie par

$$a_{n+1} = \ln(1 + a_n)$$
 et $a_0 > 0$

- b) Rayon de convergence de $\sum a_n x^n$
- c) Etudier la convergence de $(\sum a_n x^n)$ sur le bord de l'intervalle de convergence (on pourra étudier la limite de $1/a_{n+1} 1/a_n$ et utiliser le théorème de Cesaro)

Exercice

Soit σ une permutation de \mathbb{N}^* .

Quelle est la nature de

$$\sum \frac{\sigma(n)}{n^2 \ln n}?$$

Exercice

Soit $f: \mathbb{R} \to \mathbb{R}$ croissante. Montrer que l'ensemble des points de discontinuité de f est au plus dénombrable.

Exercice

On appelle nombre algébrique, tout nombre complexe x solution d'une équation de la forme

$$a_n x^n + \dots + a_1 x + a_0 = 0$$
 avec $a_0, a_1, \dots, a_n \in \mathbb{Z}$ et $a_n \neq 0$

On appelle degré d'un nombre algébrique x, le plus petit $n \in \mathbb{N}$ tel que x soit solution d'une équation comme ci-dessus.

- a) Quels sont les nombres algébriques de degré 1?
- b) Montrer que l'ensemble des nombres algébriques de degré au plus n est dénombrable.
- c) L'ensemble de tous les nombres algébriques est-il dénombrable?