Objective: Extract insights using visual and statistical exploration.

Tools: Python (Pandas, Matplotlib, Seaborn)

Deliverables: Jupyter Notebook + PDF report of findings

A: Use .describe(), .info(), .value_counts()

train.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object

dtypes: float64(2), int64(5), object(5)

memory usage: 83.7+ KB

train.describe()

	Passengerld	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
max	891.000000	1.000000	3.000000	80.000000	8.000000	6.000000	512.329200

```
train['Survived'].value_counts()
3]:
3]: Survived
         549
    1
         342
    Name: count, dtype: int64
2]:
    train['Sex'].value_counts()
2]: Sex
    male
              577
    female
              314
    Name: count, dtype: int64
1]:
    train['Pclass'].value_counts()
1]: Pclass
    3
         491
    1
         216
         184
    Name: count, dtype: int64
```

Observations:

- 891 records with 12 columns.
- Age, Cabin, Embarked have missing values.
- Sex is slightly unbalanced (more males).
- Pclass 3 (economy) has the most passengers.

- Fare prices have a large range (some very expensive tickets).
- Average passenger age is around 30 years.
- About 38% survived the Titanic disaster.

Summary

- Dataset is relatively clean but needs treatment for missing values (Age, Cabin, Embarked).
- Skew towards males and lower class passengers (Pclass 3).
- Survival rate is low (~38%) overall.
- b. Use sns.pairplot(), sns.heatmap() for visualization

-0.4

Observations:

0.082

Survived

0.018

Pclass

0.25

Sex_encoded

Age

 Sex has a strong correlation with survival (being female increased survival chances).

0.22

Fare

0.41

SibSp

Parch

- Pclass (passenger class) negatively correlated with survival (lower classes had lower survival).
- Fare positively correlates with survival richer people survived more.
- SibSp and Parch have mild impacts on survival.
- Age is weakly correlated with survival.

Summary:

- Gender and ticket class are strong predictors of survival.
- Wealthier and female passengers had a survival advantage.

c. Identify relationships and trends

based on plots and correlations

- Females were much more likely to survive.
- Passengers in 1st class were much more likely to survive than 3rd class.
- Higher Fare = Higher survival chances.
- Young kids (very young ages) had better survival compared to middle-aged men.

d. Plot histograms, boxplots, scatterplot

```
plt.figure(figsize=(8,5))
train['Age'].hist(bins=30)
plt.title('Distribution of Passenger Age')
plt.xlabel('Age')
plt.ylabel('Count')
plt.show()
```



```
plt.figure(figsize=(8,5))
sns.boxplot(x='Pclass', y='Fare', data=train)
plt.title('Fare Distribution Across Passenger Classes')
plt.show()
```


Observation:

- High Fare passengers (regardless of age) had a higher chance of survival.
- Younger passengers who paid less had lower survival chance

Summary:

- Young adults made up the majority of passengers.
- Rich passengers had higher survival chances.
- Scatterplot shows survival is related to both Age and Fare, but not linearly.

FINAL OVERALL SUMMARY:

Missing Values: Age, Cabin, and Embarked need data

cleaning

Females survived at a much higher

Gender: rate

Passenger Class: 1st class passengers survived the most

Age: Younger children survived slightly

better

Fare: Higher ticket fare correlates with

survival

Trends: Being wealthy and female increased

survival chances