Size structure and sex ratio

Anna Conklyn

2/5/2022

Structure and Condition of an Established Round Goby Population in the Thousand Islands Region, St. Lawrence River

Size structure and sex ratio

Contents of Rmarkdown:

- 1. Summary tables of lengths by sex and site
- 2. Length Frequency visualization and statistical analysis
- 3. Sex ratio calculation, visualization and statistical analysis

1. Summary tables of lengths by sex, site, and month

Characteristic	May	June	July	August	September	October
Male						
Total.Length						
N	241	29	56	46	13	0
Range	55, 237	53, 224	54, 114	57, 130	51, 135	Inf, -Inf
Mean(SD)	185(21)	175(49)	81(16)	86(17)	83(23)	NA(NA)
Female						
Total.Length						
N	20	2	86	66	11	0
Range	56, 137	57, 65	54, 114	51, 105	43, 105	Inf, -Inf
Mean(SD)	102(27)	61(6)	79(14)	81(11)	75(23)	NA(NA)
Immature						
Total.Length						
N	28	5	132	34	5	1
Range	29, 63	60, 65	42, 92	47, 82	56, 79	67, 67
Mean(SD)	49(9)	63(2)	58(10)	64(8)	69(10)	67(NA)

Characteristic	May	June	July	August	September	October
Total.Length						
N	508	57	80	163	0	24
Range	49, 230	65, 221	48, 146	57, 112	Inf, -Inf	47, 152

Characteristic	May	June	July	August	September	October
Mean(SD)	168(36)	152(38)	95(21)	79(11)	NA(NA)	86(27)

Characteristic	May	June	July	August	September	October
Total.Length						_
N	83	12	54	148	3	19
Range	46, 163	62, 159	47, 118	57, 121	59, 82	54, 91
Mean(SD)	90(27)	103(34)	80(16)	80(11)	74(13)	66(10)

Characteristic	May	June	July	August	September	October
Total.Length						
N	78	13	48	149	13	4
Range	20, 75	35, 73	36, 79	40, 91	26, 56	55, 63
Mean(SD)	48(13)	50(11)	58(9)	67(8)	45(10)	59(4)

Characteristic	May	June	July	August	September	October
Male						
Total.Length						
N	508	57	80	163	0	24
Range	49, 230	65, 221	48, 146	57, 112	Inf, -Inf	47, 152
Mean(SD)	168(36)	152(38)	95(21)	79(11)	NA(NA)	86(27)
Female						
Total.Length						
N	83	12	54	148	3	19
Range	46, 163	62, 159	47, 118	57, 121	59, 82	54, 91
Mean(SD)	90(27)	103(34)	80(16)	80(11)	74(13)	66(10)
Immature						
Total.Length						
N	78	13	48	149	13	4
Range	20, 75	35, 73	36, 79	40, 91	26, 56	55, 63
Mean(SD)	48(13)	50(11)	58(9)	67(8)	45(10)	59(4)

2. Length Frequency visualization and statistical analysis

Histogram of round goby length frequencies

Shapiro-Wilk normality test and qqplots

Males

Rose

```
##
## Shapiro-Wilk normality test
##
## data: Rose_M$Total.Length
## W = 0.91278, p-value < 2.2e-16</pre>
```


[1] 265 467

Cobb

```
##
## Shapiro-Wilk normality test
##
## data: Cobb_M$Total.Length
## W = 0.8684, p-value < 2.2e-16</pre>
```


[1] 214 218

Females

\mathbf{Rose}

```
##
## Shapiro-Wilk normality test
##
## data: Rose_F$Total.Length
## W = 0.87356, p-value = 1.61e-15
```


[1] 27 319

Cobb

```
##
## Shapiro-Wilk normality test
##
## data: Cobb_F$Total.Length
## W = 0.96199, p-value = 6.622e-05
```


[1] 7 23

ECDF plot, Kolmogrov-Smirnov test and bootstrapped K-S test

to determine whether the ECDF (empirical cumulative distribution function) are the same between two groups and can detect differences in the location (e.g., median), dispersion (e.g., variance), and shape of the distributions

Males

```
##
## Asymptotic two-sample Kolmogorov-Smirnov test
##
## data: Rose_M$Total.Length and Cobb_M$Total.Length
## D = 0.17946, p-value = 8.677e-08
## alternative hypothesis: two-sided

## $ks.boot.pvalue
## [1] 0
##
## $ks
##
## Asymptotic two-sample Kolmogorov-Smirnov test
##
```

```
## data: Tr and Co
## D = 0.17946, p-value = 8.677e-08
## alternative hypothesis: two-sided
##
##
## $nboots
## [1] 1000
##
## attr(,"class")
## [1] "ks.boot"
```

Male RG ECDF

Females

```
##
## Asymptotic two-sample Kolmogorov-Smirnov test
##
## data: Rose_F$Total.Length and Cobb_F$Total.Length
## D = 0.085216, p-value = 0.3629
## alternative hypothesis: two-sided
## $ks.boot.pvalue
## [1] 0.297
##
## $ks
```

```
## Asymptotic two-sample Kolmogorov-Smirnov test
##
## data: Tr and Co
## D = 0.085216, p-value = 0.3629
## alternative hypothesis: two-sided
##
##
## $nboots
## [1] 1000
##
## attr(,"class")
## [1] "ks.boot"
```

Female RG ECDF

Chi Square test

to detect differences in length frequencies (5mm classes) between sites and months

Males

```
##
## Pearson's Chi-squared test
##
## data: RG_M_Site_xtab
## X-squared = 80.158, df = 38, p-value = 7.678e-05
```

```
##
## Pearson's Chi-squared test
##
## data: RG_M_Month_xtab
## X-squared = 1246.8, df = 190, p-value < 2.2e-16
Females
##
## Pearson's Chi-squared test
##
## data: RG_F_Site_xtab
## X-squared = 33.525, df = 23, p-value = 0.07235
```

##

##

Pearson's Chi-squared test

data: RG_F_Month_xtab ## X-squared = 363.56, df = 115, p-value < 2.2e-16

3. Sex ratio calculation, visualization and statistical analysis

Between months

A tibble: 6 x 4 Month Female Male Ratio <chr> <int> <int> <dbl> ## 1 May 103 749 7.27 ## 2 June 14 86 6.14 ## 3 July 140 136 0.971 ## 4 August 214 210 0.981 ## 5 September 14 13 0.929 ## 6 October 19 24 1.26

Rose

A tibble: 6 x 4 Month Female.Rose Male.Rose Ratio.Rose <int> <int> <chr> 83 ## 1 May 508 6.12 ## 2 June 12 57 4.75 ## 3 July 54 80 1.48 164 ## 4 August 148 1.11 ## 5 September 3 0 ## 6 October 19 24 1.26

Cobb

A tibble: 6 x 4 ## Month Female.Cobb Male.Cobb Ratio.Cobb ## <chr> <int> <int> <dbl>

```
## 1 May
                         20
                                   241
                                           12.0
## 2 June
                                   29
                                           14.5
                         2
## 3 July
                                   56
                                            0.651
                         86
## 4 August
                         66
                                   46
                                            0.697
## 5 September
                         11
                                    13
                                            1.18
## 6 October
                          0
                                    0
                                          {\tt NaN}
```

```
(All_Sex_ratio<- cbind(Sex_ratio, Rose_MF_Sex_ratio, Cobb_MF_Sex_ratio))
```

##		Month	${\tt Female}$	Male	${\tt Ratio}$	Мс	onth	Female.Rose	Male.Rose	Ratio.Rose
##	1	May	103	749	7.272	2 May		83	508	6.12
##	2	June	14	86	6.143	j	June	12	57	4.75
##	3	July	140	136	0.971	j	July	54	80	1.48
##	4	August	214	210	0.981	Aug	gust	148	164	1.11
##	5	${\tt September}$	14	13	0.929	Septem	nber	3	0	0.00
##	6	October	19	24	1.263	Octo	ber	19	24	1.26
##		Month	Female	Cobb	Male.	Cobb Ra	atio.	Cobb		
##	1	May		20		241	12	2.050		
##	2	June		2		29	14	.500		
##	3	July		86		56	C	.651		
##	4	August		66		46	C	.697		
##	5	${\tt September}$		11		13	1	.182		
##	6	October		0		0		NaN		

```
All_Sex_ratio <- All_Sex_ratio[, !duplicated(colnames(All_Sex_ratio))]</pre>
```

```
gt(All_Sex_ratio)
```

Month	Female	Male	Ratio	Female.Rose	${\bf Male. Rose}$	Ratio.Rose	Female.Cobb	Male.Cobb	Ratio.Cobb
May	103	749	7.272	83	508	6.12	20	241	12.050
June	14	86	6.143	12	57	4.75	2	29	14.500
July	140	136	0.971	54	80	1.48	86	56	0.651
August	214	210	0.981	148	164	1.11	66	46	0.697
September	14	13	0.929	3	0	0.00	11	13	1.182
October	19	24	1.263	19	24	1.26	0	0	NaN

Chi Square test

to detect differences in sex ratio between months

```
##
## Chi-squared test for given probabilities
##
## data: Sex_ratio$Ratio
## X-squared = 15, df = 5, p-value = 0.01
##
## Pairwise comparisons using chi-squared tests
##
## data: $(Sex_ratio,Ratio) and bonferroni
```

```
##
    observed expected Chi Pr(>Chi)
##
##
      7.2718
                2.927 7.742 0.03236 *
                2.927 4.242 0.23664
##
      6.1429
##
      0.9714
                2.927 1.567
                             1.00000
      0.9813
                2.927 1.552 1.00000
##
                2.927 1.637 1.00000
##
      0.9286
                2.927 1.135 1.00000
##
      1.2632
##
## P value adjustment method: bonferroni
## $method
## [1] "chi-squared tests"
##
## $data.name
## [1] "$(Sex_ratio, Ratio) and bonferroni"
## $observed
## [1] 7.272 6.143 0.971 0.981 0.929 1.263
##
## $expected
## [1] 2.93 2.93 2.93 2.93 2.93 2.93
##
## $p.adjust.method
## [1] "bonferroni"
## $statistic
## [1] 7.74 4.24 1.57 1.55 1.64 1.13
##
## $p.value2
## [1] 0.0324 0.2366 1.0000 1.0000 1.0000 1.0000
## $p.value
##
     observed expected Chi Pr(>Chi)
## 1
        7.272
                  2.93 7.74
                              0.0324 *
## 2
        6.143
                  2.93 4.24
                              0.2366
## 3
        0.971
                  2.93 1.57
                              1.0000
## 4
        0.981
                  2.93 1.55
                              1.0000
## 5
        0.929
                  2.93 1.64
                              1.0000
## 6
        1.263
                  2.93 1.13
                              1.0000
##
         Month
                   Month Female Male Ratio
                                                       method
## 1
                            103 749 7.272 chi-squared tests
           May
                     May
## 2
          June
                    June
                                  86 6.143 chi-squared tests
                             14
## 3
          July
                    July
                            140
                                 136 0.971 chi-squared tests
## 4
        August
                  August
                            214
                                 210 0.981 chi-squared tests
## 5 September September
                             14
                                  13 0.929 chi-squared tests
## 6
       October
                 October
                             19
                                   24 1.263 chi-squared tests
##
                             data.name observed expected p.adjust.method statistic
## 1 $(Sex_ratio, Ratio) and bonferroni
                                           7.272
                                                     2.93
                                                               bonferroni
                                                                                7.74
## 2 $(Sex_ratio, Ratio) and bonferroni
                                           6.143
                                                     2.93
                                                                bonferroni
                                                                                4.24
## 3 $(Sex_ratio, Ratio) and bonferroni
                                           0.971
                                                     2.93
                                                               bonferroni
                                                                               1.57
## 4 $(Sex ratio, Ratio) and bonferroni
                                           0.981
                                                     2.93
                                                               bonferroni
                                                                               1.55
## 5 $(Sex_ratio, Ratio) and bonferroni
                                           0.929
                                                     2.93
                                                               bonferroni
                                                                                1.64
```

##	6	\$(Sex_rat	cio,Ratio)	and be	onferroni	1.263	2.93	bonferroni	1.13
##		p.value2	p.value.ob	serve	d p.value	.expected	p.value.Chi	<pre>p.value.Pr(>Chi)</pre>	
##	1	0.0324		7.27	2	2.93	7.74	0.0324	
##	2	0.2366		6.143	3	2.93	4.24	0.2366	
##	3	1.0000		0.97	1	2.93	1.57	1.0000	
##	4	1.0000		0.98	1	2.93	1.55	1.0000	
##	5	1.0000		0.929	9	2.93	1.64	1.0000	
##	6	1.0000		1.26	3	2.93	1.13	1.0000	
##		p.value.							
##	1	*	•						
##	2								
##	3								
##	4								
##	5								
##	6								

Summary table of sex ratio across sampling months

Month	Female	Male	M:F Ratio	X2	P-value
May	103	749	7.272	7.74	0.0324
June	14	86	6.143	4.24	0.2366
July	140	136	0.971	1.57	1.0000
August	214	210	0.981	1.55	1.0000
September	14	13	0.929	1.64	1.0000
October	19	24	1.263	1.13	1.0000