# Отчет по лабораторной работе №3: "Тепловые свойства твердых тел"

#### Никитин Илья

## 22 декабря 2020 г.

# Содержание

| 1 | Задачи                                                         | 1   |
|---|----------------------------------------------------------------|-----|
| 2 | Оборудование                                                   | 2   |
| 3 | Теория                                                         | 2   |
|   | 3.1 Температурная зависимость удельного сопротивления металлов |     |
|   | 3.2 Теплоотдача                                                |     |
|   | 3.3 Тепловое излучение                                         | . 3 |
|   | 3.4 Мощность                                                   | . 3 |
| 4 | Температурная зависимость сопротивления                        | 3   |
|   | 4.1 Ход работы                                                 | . 3 |
|   | 4.2 Обработка данных                                           |     |
| 5 | Определение мощности потерь и теплоемкости                     | 6   |
|   | 5.1 Ход работы                                                 | . 6 |
|   | 5.2 Обработка данных                                           |     |
| 6 | Исследование теплоемкости меди                                 | 8   |
|   | 6.1 Ход работы                                                 | . 8 |
|   | 6.2 Обработка данных                                           |     |
|   |                                                                |     |

# 1 Задачи

Определить температурную зависимость сопротивления, а также коэффициенты теплового излучения и теплопередачи в воздух от проволок из разных материалов

# 2 Оборудование

- Проволоки из различных материалов
- Термопаста КПТ-19
- Алюминевая банка
- Термопара К-типа
- Мультиметр
- Шунт
- Два мультиметра Keysight
- Коробка картонная
- Клемник
- Компьютер с программой LabView
- Электрический кипятильник
- Источник тока Gophert
- Резинки для зажима проволоки

# 3 Теория

# 3.1 Температурная зависимость удельного сопротивления металлов

В этой работе будут использоваться материалы, состоящие из простых веществ: медь, титан, вольфрам. Все эти материалы при нормальных условиях являются классическими примерами твердых тел – металлов. Их общее свойство состоит в линейной зависимости удельного сопротивления от температуры:

$$\rho = \rho_0 [1 + \alpha (T - T_0)]$$

#### 3.2 Теплоотдача

Процесс теплоотдачи описывается эмпирическим законом Ньютона-Рихмана, согласно которому нормальная компонента потока тепла через стенку твердого тела наружу пропорциональа разности температур тела и среды:

$$q_n = \beta(T - T_0)$$

#### 3.3 Тепловое излучение

Согласно закону Стефана-Больцмана мощность теплового узлучения с небольшой площадки DS на поверхности тела, имеющего абсолютную температуру Т, пропорциональна разности четвертой степени температур тела и окружающей среды:

$$dP = \epsilon \sigma (T^4 - T_0^4) dS$$

где 
$$\sigma = \frac{2\pi^5 k_B^4}{15h^3c^2}$$

#### 3.4 Мощность

В стационарном режиме вся установившаяся мощность  $P_{st}=I^2R_{st}$  равна суммарной мощности тепловых потерь:

$$P_{st} = \beta S_{surf}(T - T_0) + \epsilon \sigma S_{surf}(T^4 - T_0^4)$$

# 4 Температурная зависимость сопротивления

#### 4.1 Ход работы

Для измерения температурной зависимости сопротивления различных проволок была взята алюминевая банка с водой, кипятильник, термопаста и соответсвующие кусочки проволоки. Проволока обматывалась на банку, предварительно смазанную термопастой, затем проволока подключалась к электрической цепи, в которой измерялся ток и напряжение на проволоке. Кипятильником вода нагревалась шагами по  $5-10 \circ C$  и при установлении постоянного тока записывались показания вольтметров, чтобы потом из этих данных получить сопротивление.



Рис. 1: Схема подключения проволоки

# 4.2 Обработка данных



Рис. 2: Получившийся коэффициент температурной зависимости сопротивления  $\alpha \approx 3.9 \cdot 10^{-3} \; \frac{1}{K}$ 



Рис. 3: Получившийся коэффициент температурной зависимости сопротивления  $\alpha \approx 127.6 \cdot 10^{-3} \ \frac{1}{K}$ 



Рис. 4: Получившийся коэффициент температурной зависимости сопротивления  $\alpha \approx 2.3 \cdot 10^{-3} \; \frac{1}{K}$ 

# 5 Определение мощности потерь и теплоемкости

#### 5.1 Ход работы

Для измерения мощности потерь использовалась похожая схема, но без банки, термопары и кипятильника. Проволока в данном случае висела в воздухе и грелась до больших температур за счет подаваемой мощности. Над схемой была установлена картонная коробка, чтобы минимизировать конвективные потоки воздуха.



Рис. 5: Схема подключения проволоки

# 5.2 Обработка данных



Рис. 6: Коэффициенты  $\beta \approx 52.9$ ,  $\epsilon \approx 0.24$ 



Рис. 7: Коэффициенты  $\beta \approx 27, \, \epsilon \approx 0.29$ 



Рис. 8: Коэффициенты  $\beta \approx 47.1, \, \epsilon \approx 0.38$ 

Теплоемкость была посчитана в предположении, что энергия линейна по температуре и вся мощность уходит на нагрев образца (рассчеты произведе-

ны на низких температурах):

$$C_{Cu} = \frac{P\delta t}{m\delta T} \approx 405 \frac{\text{к} \text{Дж}}{\text{к} \text{г} \cdot \text{г}}$$

$$C_{Ti} = \frac{P\delta t}{m\delta T} \approx 570 \frac{\text{к} \text{Дж}}{\text{к} \text{г} \cdot \text{г}}$$

$$C_{W} = \frac{P\delta t}{m\delta T} \approx 150 \frac{\text{к} \text{Дж}}{\text{к} \text{г} \cdot \text{г}}$$

## 6 Исследование теплоемкости меди

#### 6.1 Ход работы

Для того чтобы найти зависимость теплоемкости от температуры воспользуемся другим способом. Известно, что сопротивление при скачке тока меняется по закону  $R(t) = R(t_0) + A(1 - \exp(-(t-t_0)/\tau))$ . Решая уравнение теплопроводности, выразим коэффициенты через известные нам величины. Таким образом:  $R(t) = 1 + \alpha (T_2 - T_1)(1 - \exp(-\frac{(t-t_0)I^2R(t_0)}{V_c(T_2 - T_1)})$ . Далее будем брать небольшие участки, на которых сопротивление меняется скачком, подгонять для них кривые R(t) и вычислять теплоемкость как подгоночный коэффициент.

#### 6.2 Обработка данных

Выведем для начала полный график изменения сопротивления со временем



Рис. 9: Изменение сопротивление со временем для медной проволоки

Теперь к каждому отрезку со скачком подгоним кривую для определения теплоемкости.



Рис. 10: Изменение сопротивление со временем для медной проволоки. Температура  $\approx 400 K$ 



Рис. 11: Изменение сопротивление со временем для медной проволоки. Температура  $\approx 480~\mathrm{K}$ 



Рис. 12: Изменение сопротивление со временем для медной проволоки. Температура  $\approx 570~\mathrm{K}$ 



Рис. 13: Изменение сопротивление со временем для медной проволоки. Температура  $\approx 650~\mathrm{K}$ 

По полученным данным составим график зависимости удельной теплоемкости меди от температуры



Рис. 14: Изменение теплоемкости с температурой для меди

Как можно видеть, теплоемкость действительно зависит линейно от температуры в таком диапазоне. Коэффициент наклона прямой  $\alpha \approx 0.13 \frac{Д_{\rm ж}}{{\rm kr}{\rm K}^2}.$