Microsoft Student Partners | 2020 Linear fegression = mn + c (y - hypothenis) Slope, Loefficient C → Intercept bias (ya - yh) (: y = y -actual) - mn -c) = 2 (y - mn - c) (-n) 2(ya-mn-c)(-1) Need to reach here for

Microsoft Student Partners | 2020

New store, m= m+ DM New store (bim), CZC+DC

Auste angle

$$e = (\chi \theta - \gamma)^{2}$$

$$e^{2} = (\chi \theta - \gamma)^{2}$$

$$= (\chi \theta - \gamma)^{T} (\chi \theta - \gamma)$$

$$e^2 = \mathcal{E}\left(\theta^{\dagger}\chi^{\dagger}\chi\theta - \theta^{\dagger}\chi^{\dagger}\gamma - \gamma^{\dagger}\chi\theta + \gamma^{\dagger}\gamma\right)$$

when, de = =0 then best value of dis

$$\frac{\partial}{\partial \theta} \left(\theta A \right) = A^{T} \frac{\partial}{\partial \theta} \left(\theta^{T} A \right) = A$$

$$\frac{\partial (o^{\mathsf{T}} A o)}{\partial o} = 2 A o$$

$$\partial e^{\perp} = 0 \Rightarrow 2x^{T}x \circ - 2x^{T}y = 0$$

$$\begin{array}{c}
\delta \theta \\
\theta = (x^T x)^{-1} x^T y
\end{array}$$

$$\begin{array}{c} 0 \longrightarrow 5 \\ 0 \end{array}$$

	Microsoft Student Partners 2020	
	Uose Jorn:	
	Final meaningful data but valid for	16
	Small data.	-
	ch 1:1: mini batch	-
	Statistic Complete Minibard (big auta) (one et.) (all pre-) (can't do)	-
	update programs (hose form)	-
*	Can make complete to minipatch by gassing churchs batcher to gradient descend	
<i>(</i>)	Epoch means one pass over the full	
	training set.	
	Batch means that you use all your data to compute the gradient during one iteration.	
(iii)	Minibatuh means you only take a subset of all your data during one iteration	T.
4	Subset of all your data during one iteration one iteration one iteration one iteration when single the step	