Module EA4 – Éléments d'Algorithmique

Dominique Poulalhon dominique.poulalhon@liafa.univ-paris-diderot.fr

Université Paris Diderot L2 Informatique, Math-Info et EIDD Année universitaire 2013-2014

	tableau		liste chaînée	
	non trié	trié	non triée	triée
recherche	$\Theta(\mathfrak{n})$	$\Theta(\log n)$	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$

	tableau		liste chaînée	
	non trié	trié	non triée	triée
recherche	$\Theta(\mathfrak{n})$	$\Theta(\log n)$	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$
insertion	$+\Theta(1)$	$\Theta(\mathfrak{n})$	$+\Theta(1)$	+ Θ (1)
suppression	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$	$+\Theta(1)$	+ Θ(1)

	tableau		liste chaînée	
	non trié	trié	non triée	triée
recherche	$\Theta(\mathfrak{n})$	$\Theta(\log n)$	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$
insertion	$+\Theta(1)$	$\Theta(\mathfrak{n})$	$+\Theta(1)$	+ Θ (1)
suppression	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$	$+\Theta(1)$	+ Θ (1)
minimum	$\Theta(\mathfrak{n})$	Θ(1)	$\Theta(\mathfrak{n})$	Θ(1)

	tableau		liste chaînée	
	non trié	trié	non triée	triée
recherche	$\Theta(\mathfrak{n})$	$\Theta(\log n)$	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$
insertion	$+\Theta(1)$	$\Theta(\mathfrak{n})$	$+\Theta(1)$	+ Θ (1)
suppression	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$	$+\Theta(1)$	+ Θ (1)
minimum	$\Theta(\mathfrak{n})$	Θ(1)	$\Theta(\mathfrak{n})$	Θ(1)
sélection du k ^e	$\Theta(kn)$	Θ(1)	$\Theta(kn)$	$\Theta(k)$

	tableau		liste chaînée	
	non trié	trié	non triée	triée
recherche	$\Theta(\mathfrak{n})$	$\Theta(\log n)$	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$
insertion	$+\Theta(1)$	$\Theta(\mathfrak{n})$	$+\Theta(1)$	+ Θ (1)
suppression	$\Theta(\mathfrak{n})$	$\Theta(\mathfrak{n})$	$+\Theta(1)$	$+\Theta(1)$
minimum	$\Theta(\mathfrak{n})$	Θ(1)	$\Theta(\mathfrak{n})$	Θ(1)
sélection du k ^e	$\Theta(kn)$	Θ(1)	$\Theta(kn)$	$\Theta(k)$
union	$\Theta(n^2)$	$\Theta(\mathfrak{n})$	$\Theta(n^2)$	$\Theta(n)$

sommets contenant des étiquettes reliés par des arêtes

hiérarchie entre les sommets : père, fils

hiérarchie entre les sommets : père, fils

sommet = nœud ou feuille

sommet = nœud ou feuille

profondeur d'un sommet = distance à la racine

hauteur de l'arbre = profondeur maximale

hauteur de l'arbre = profondeur maximale

pointeur vers le père (dans chaque nœud, ou dans un tableau)

pointeur vers le père (dans chaque nœud, ou dans un tableau)

avantage: représentation très compacte inconvénient: ne peut être parcouru que de bas en haut

inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut être parcouru que de bas en haut
inconvénient: ne peut ètre parcouru que de bas en haut
inconvénient: ne peut ètre parcouru que de bas en haut
inconvénient en le peut
inconvénient en le pe

cas des arbres à arité fixe (en particulier les arbres binaires) : un pointeur vers chaque fils (plus éventuellement le père)

cas des arbres à arité fixe (en particulier les arbres binaires) : un pointeur vers chaque fils (plus éventuellement le père)

cas des arbres à arité fixe (en particulier les arbres binaires) : un pointeur vers chaque fils (plus éventuellement le père)

cas général : pointeurs vers le fils aîné et le frère cadet

cas général : pointeurs vers le fils aîné et le frère cadet (plus éventuellement le père)

PARCOURIR UN ARBRE

```
parcours en profondeur générique :

def parcours(A) :
   pre_traitement(A)
   for i, B in enumerate(sous_arbres(A)) :
    parcours(B)
    post_traitement(A, i)
```

PARCOURIR UN ARBRE

```
def parcours(A) :
   pre_traitement(A)
   for i, B in enumerate(sous_arbres(A)) :
     parcours(B)
     post_traitement(A, i)
```

parcours en profondeur générique :

variation selon les traitements intermediaires :

- s'il y a seulement un prétraitement : parcours préfixe
- s'il y a seulement un posttraitement : parcours postfixe
- dans le cas binaire, s'il y a seulement un traitement intermédiaire : parcours infixe

« Trier » un arbre?

les arbres binaires de recherche (ABR)

en chaque nœud, l'étiquette est comprise entre

- les étiquettes du sous-arbre gauche (plus petites) et
- celles du sous-arbre droit (plus grandes)

Arbre binaire de recherche

Arbre binaire de recherche

Arbre binaire de recherche

