Séquence 04 - TP01 - Îlot 01

Lycée Dorian Renaud Costadoat Françoise Puig

Géométrie pour la mécanique

Référence S04 - TP01 - I01

Compétences Mod2-C11: Modélisation géométrique et cinématique des mouvements

entre solides indéformables

Description Déterminer une fermeture géométrique et vérifier expérimentalement.

Système Barrière

Problématique du TP:

Déterminer une loi d'entrée/sortie géométrique

- MODELISER

Modéliser la loi d'entrée/sortie

- **Question 1** Écrire les vecteurs \overrightarrow{AB} , \overrightarrow{AC} et \overrightarrow{BC} dans les bases respectives $B_0(\overrightarrow{x_0},\overrightarrow{y_0},\overrightarrow{z_0})$, $B_1(\overrightarrow{x_1},\overrightarrow{y_1},\overrightarrow{z_1})$ et $B_2(\overrightarrow{x_2},\overrightarrow{y_2},\overrightarrow{z_2})$. On mesurera $\|\overrightarrow{AB}\|$ et $\|\overrightarrow{BC}\|$ directement sur le système et on prendra $\|\overrightarrow{AC}\| = l(t)$ variable.
- Question 2 Donner la relation qui existe entre ces trois vecteurs.
- **Question 3** Projeter cette relation dans la base $B_0(\overrightarrow{x_0}, \overrightarrow{y_0}, \overrightarrow{z_0})$ afin d'obtenir deux équations scalaires. On fera apparaître les angles θ_1 et θ_2 .
- **Question 4** A l'aide de ces deux relations faire disparaitre l(t) afin de trouver une relation entre θ_1 et θ_2 .
- **Question 5** Mettre cette relation sous la forme $\theta_1 = f(\theta_2)$.
- **Question 6** Mettre cette relation sous la forme $\theta_2 = f(\theta_1)$.

EXPERIMENTER

Vérifier la relation $\theta_1=f(\theta_2)$.

Télécharger le fichier Simu_barrière.xlsx.

- **Question 7** Compléter le fichier Simu_barrière.xlsx en effectuant les mesures d'angles sur le sous-système de la barrière.
- **Question 8** Recopier la formule de la première partie dans la troisième colonne et comparer le modèle théorique avec l'expérimentation.

Correction 1

Question 1:

$$\overrightarrow{AB} = a \cdot \overrightarrow{y_0}, \overrightarrow{AC} = l(t) \cdot \overrightarrow{x_1}$$
 et $\overrightarrow{BC} = b \cdot \overrightarrow{x_2}$, avec a=112mm et b=81mm.

Question 2:
$$\overrightarrow{AC} = \overrightarrow{AB} + \overrightarrow{BC}$$
.

Question 3:

$$l(t) \cdot \cos\theta_1 = b \cdot \cos\theta_2 \tag{1}$$

$$l(t) \cdot sin\theta_1 = a + b \cdot sin\theta_2 \tag{2}$$

Question 4:

$$tan\theta_1 = \frac{a + b \cdot sin\theta_2}{b \cdot cos\theta_2} \tag{3}$$

Question 5:

$$\theta_1 = \arctan\left(\frac{a + b \cdot \sin\theta_2}{b \cdot \cos\theta_2}\right) \tag{4}$$

Question 6:

$$b \cdot \sin\theta_{1} \cdot \cos\theta_{2} = a \cdot \cos\theta_{1} + b \cdot \sin\theta_{2} \cdot \cos\theta_{1}$$

$$b \cdot (\sin\theta_{1} \cdot \cos\theta_{2} - \sin\theta_{2} \cdot \cos\theta_{1}) = a \cdot \cos\theta_{1}$$

$$b \cdot \sin(\theta_{1} - \theta_{2}) = a \cdot \cos\theta_{1}$$

$$\theta_{1} - \theta_{2} = \arcsin\left(\frac{a}{b} \cdot \cos\theta_{1}\right)$$

$$\theta_{2} = \theta_{1} - \arcsin\left(\frac{a}{b} \cdot \cos\theta_{1}\right)$$
(5)

