MA 166: Quiz 3

TA: Carlos Salinas

January 30, 2016

You have 15 minutes to complete this quiz. You may work in groups, but you are not allowed to use any other resources.

Problem 1. Let $\mathbf{u} = \langle 6, 3, 1 \rangle$, $\mathbf{v} = \langle 0, 1, 2 \rangle$, and $\mathbf{w} = \langle 4, -2, 5 \rangle$.

- (i) Find the scalar projection $comp_{\mathbf{v}} \mathbf{w}$.
- (ii) Find the projection $\operatorname{proj}_{\mathbf{u}}\mathbf{v}.$
- (iii) Find the cross product $\mathbf{v} \times \mathbf{w}$.
- (iv) What is a vector orthogonal to \mathbf{v} and \mathbf{w} ?
- (v) Find the scalar triple product $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})$.
- (vi) Are the vectors \mathbf{u} , \mathbf{v} , and \mathbf{w} coplanar?

Problem 2. Find the area enclosed by the regions

- (i) $y = x^3$, and y = |x|.
- (ii) $y = e^x$, $y = e^2x$, and $x = \ln 2$.

Solutions

Solution to Problem 1. (i) Recall the formula for the scalar projection of the vector ${\bf b}$ onto ${\bf a}$

$$comp_{\mathbf{a}} \mathbf{b} = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|}.$$
 (1)

All we need to do for this problem is to substitute \mathbf{v} for \mathbf{a} and \mathbf{w} for \mathbf{b} in equation (1) and we have

$$comp_{\mathbf{v}} \mathbf{w} = \frac{\mathbf{v} \cdot \mathbf{w}}{|\mathbf{v}|}$$

$$= \frac{\langle 0, 1, 2 \rangle \cdot \langle 4, -2, 5 \rangle}{|\langle 0, 1, 2 \rangle|}$$

$$= \frac{0 \cdot 4 + 1(-2) + 2 \cdot 5}{\sqrt{0^2 + 1^2 + 2^2}}$$

$$= \boxed{\frac{8}{\sqrt{5}}.}$$

(ii) The equation for the projection of **b** onto **a** is given by

$$\operatorname{proj}_{\mathbf{a}} \mathbf{b} = (\operatorname{comp}_{\mathbf{a}} \mathbf{b}) \frac{\mathbf{a}}{|\mathbf{a}|} = \left(\frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}|^2}\right) \mathbf{a}. \tag{2}$$

Then substituting \mathbf{u} for \mathbf{a} and \mathbf{v} for \mathbf{b} , by equation 2, we have

$$\operatorname{proj}_{\mathbf{u}} \mathbf{v} = \left(\frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}|^{2}}\right) \mathbf{u}$$

$$= \left(\frac{\langle 6, 3, 1 \rangle \cdot \langle 0, 1, 2 \rangle}{|\langle 6, 3, 1 \rangle|^{2}}\right) \langle 6, 3, 1 \rangle$$

$$= \frac{6 \cdot 0 + 3 \cdot 1 + 1 \cdot 2}{(6^{2} + 3^{2} + 1)^{2}} \langle 6, 3, 1 \rangle$$

$$= \frac{3 + 2}{36 + 9 + 1} \langle 6, 3, 1 \rangle$$

$$= \left[\frac{5}{46} \langle 6, 3, 1 \rangle\right]$$

(iii) The cross product of $\mathbf{a} = \langle a_1, a_2, a_3 \rangle$ and $\mathbf{b} = \langle b_1, b_2, b_3 \rangle$ is

$$\mathbf{a} \times \mathbf{b} = \langle a_2 b_3 - a_3 b_2, a_3 b_1 - a_1 b_3, a_1 b_2 - a_2 b_1 \rangle. \tag{3}$$

hen substituting v for a and w for b, by equation 3, we have

$$\mathbf{v} \times \mathbf{w} = \langle 1 \cdot 5 - 2(-2), 2 \cdot 4 - 0 \cdot 5, 0(-2) - 1 \cdot 4 \rangle$$
$$= \langle 9, 8, -4 \rangle.$$

Of course, I would never try to memorize that horrible formula, but instead write the vectors as the rows of a matrix like so

$$\begin{bmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 1 & 2 \\ 4 & -2 & 5 \end{bmatrix}$$

and taking the determinant like so

$$\begin{bmatrix} 1 & 2 \\ -2 & 5 \end{bmatrix} \mathbf{i} + \begin{bmatrix} 2 & 0 \\ 5 & 4 \end{bmatrix} \mathbf{j} + \begin{bmatrix} 0 & 1 \\ 4 & -2 \end{bmatrix} \mathbf{k},$$

and again

$$(1 \cdot 5 - 2(-2))\mathbf{i} + (2 \cdot 4 - 0 \cdot 5)\mathbf{j} + (0(-2) - 1 \cdot 4)\mathbf{k} = 9\mathbf{i} + 8\mathbf{j} - 4\mathbf{k}.$$

(iv) Remember that the cross product of \mathbf{a} and \mathbf{b} has the property that it is orthogonal to both \mathbf{a} and \mathbf{b} . In the case of \mathbf{v} and \mathbf{w} we can demonstrate that the the cross product $\mathbf{v} \times \mathbf{w}$ is in fact orthogonal to \mathbf{v} and \mathbf{w} :

$$\mathbf{v} \cdot (\mathbf{v} \times \mathbf{w}) = \langle 0, 1, 2 \rangle \cdot \langle 9, 8, -4 \rangle \qquad \mathbf{w} \cdot (\mathbf{v} \times \mathbf{w}) = \langle 4, -2, 5 \rangle \cdot \langle 9, 8, -4 \rangle$$

$$= 0 \cdot 9 + 1 \cdot 8 + 2(-4) \qquad = 4 \cdot 9 + (-2)8 + 5(-4)$$

$$= 8 - 8 \qquad = 36 - 16 - 20$$

$$= 0 \qquad = 0.$$

(v) Let's take our value for the cross product of \mathbf{v} with \mathbf{w} from part (iii) and dot it with \mathbf{u} this gives us

$$\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = \langle 6, 3, 1 \rangle \cdot \langle 9, 8, -4 \rangle$$
$$= 6 \cdot 9 + 3 \cdot 8 + 1(-4)$$
$$= 74.$$

(vi) Remember, three vectors \mathbf{a} , \mathbf{b} , and \mathbf{c} are coplanar if they all lie on a plane. This means that if we can find a vector which is orthogonal to both \mathbf{a} and \mathbf{b} then it will be orthogonal to \mathbf{c} . For the case of \mathbf{u} , \mathbf{v} , and \mathbf{w} , from the previous problem we have $\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = 72 \neq 0$ so \mathbf{u} is not orthogonal to $\mathbf{v} \times \mathbf{w}$ so it cannot lie in the same plane as \mathbf{v} and \mathbf{w}

Solution to Problem 2. ((i)) A great way to begin this problem is by plotting the curves y = |x| and $y = x^3$. As you can see from Figure 1 the curves y = |x| and $y = x^3$ intersect at the points x = 0 and x = 1. Moreover, we see that on this interval, $0 \le x \le 1$, $y = x^3$ is always smaller than y = |x| so evaluating the integral

$$\int_0^1 \left| |x| - x^3 \right| \mathrm{d}x$$

comes down to computing the integral

$$\int_0^1 |x| - x^3 \, \mathrm{d}x.$$

Now, remember the definition of the absolute value: If f(x) then its absolute value is the piecewise defined function

$$|f(x)| = \begin{cases} f(x) & \text{if } f(x) \ge 0\\ -f(x) & \text{if } f(x) < 0. \end{cases}$$

$$\tag{4}$$

Since x is ≥ 0 on $0 \leq x \leq 1$, y = |x| = x on the interval $0 \leq x \leq 1$ so

$$\int_0^1 |x| - x^3 \, dx = \int_0^1 x - x^3 \, dx$$

$$= \frac{x^2}{2} - \frac{x^4}{4} \Big|_0^1$$

$$= \frac{1^4}{2} - \frac{1^4}{4} - \left(\frac{0^2}{2} - \frac{0^4}{4}\right)$$

$$= \boxed{\frac{1}{4}}.$$

Figure 1: The area enclosed by the curves y = |x| and $y = x^3$ at their points of intersection.

((ii)) As before, it helps to graph these curves (see Figure 2). From the figure we see that $y=e^{2x}$ and e^x intersect at x=0 where $e^{2\cdot 0}=1=e^0$ and they both intersect the vertical line $x=\ln 2$ at, well, obviously at $x=\ln 2$. So our integral will be

$$\int_0^{\ln 2} \left| e^{2x} - e^x \right| \mathrm{d}x.$$

Like before, note that $e^{2x} > e^x$ for any $0 \le x \le \ln 2$ so we can forget about the

absolute value and evaluate the integral

$$\int_0^{\ln 2} e^{2x} - e^x \, dx = \frac{e^{2x}}{2} - e^x \Big|_0^{\ln 2}$$

$$= \frac{e^{2\ln 2}}{2} - e^{\ln 2} - \left(\frac{e^{2\cdot 0}}{2} - e^0\right)$$

$$= \frac{e^{\ln 2^2}}{2} - 2 - \left(\frac{1}{2} - 1\right)$$

$$= \frac{2^2}{2} - 2 + \frac{1}{2}$$

$$= 2 - 2 + \frac{1}{2}$$

$$= \left[\frac{1}{2}\right]$$

Figure 2: The area enclosed by the curves $y=e^x$, $y=e^{2x}$, and $x=\ln 2$ at their points of intersection.