Übungen zum Ferienkurs Theoretische Elektrodynamik

1 Koaxialkabel

Ein unendlich langes gerades Koaxialkabel besteht aus einem inneren, leitendem Vollzylinder vom Radius r, und konzentrisch dazu einem leitenden Zylindermantel mit Radius R > rund vernachlässigbarer Dicke, welcher als Rückleitung dient. Die Zylinderachse liegt auf der z-Achse.

- a) Geben Sie die Stromdichte im Koaxialkabel an, wenn der hin- und rückfließende Strom jeweils gleichmäßig über den Leiter verteilt sind.
- b) Berechnen Sie das zugehörige Vektorpotential im ganzen Raum.
- c) Berechnen Sie die Selbstinduktion pro Längeneinheit

1.1 Lösung

a) Stromdichte:

$$\vec{j}(\vec{r}) = \frac{I}{\pi r^2} \Theta(r - \rho) \vec{e}_z + \frac{-I}{2\pi R} \delta(\rho - R) \vec{e}_z \tag{1}$$

Überprüfe das Flächenintegral über den Querschnitt:

$$\int d\vec{F} \cdot \vec{j} = \frac{I}{\pi r^2} \pi r^2 + \frac{-I}{2\pi R} \pi R = 0$$
 (2)

b) da $\vec{j} \propto \vec{e_z}$ ist $\vec{A}(\vec{r} = A(\rho)\vec{e_z}$ Aus Maxwell Gleichungen:

$$\mu_0 \vec{j} = rot \vec{B} = rot rot \vec{A} = graddiv \vec{A} - \Delta \vec{A} \tag{3}$$

Wir benutzen die Coloumb Eichung $(div\vec{A}=0)$. Hieraus folgt:

$$\Delta \vec{A} = -\mu_0 \vec{j}(\vec{r}) \tag{4}$$

Da A nur vom Abstand abhängt:

$$\Delta A(\rho) = A''(\rho) + \frac{1}{\rho}A'(\rho) = -\frac{\mu_0 I}{\pi} \left\{ \frac{\Theta(r-\rho)}{r^2} - \frac{\delta(\rho-R)}{2R} \right\}$$
 (5)

In den Bereichen $r < \rho < R$ und $\rho > R$ ist die zu lösende Differentialgleichung homogen:

$$A''(\rho) + \frac{1}{\rho}A'(\rho) = \frac{1}{\rho}\frac{\partial}{\partial\rho}\left(\rho A'(\rho)\right) = 0 \implies A(\rho) = aln\rho + b \tag{6}$$

Im Bereich $\rho < R$ ist die Differentialgleichung nicht mehr homogen:

$$A''(\rho) + \frac{1}{\rho}A'(\rho) = \frac{1}{\rho}\frac{\partial}{\partial\rho}\left(\rho A'(\rho)\right) = -\frac{\mu_0 I}{\pi r^2} \implies A(\rho) = -\frac{\mu_0 I}{4\pi r^2}\rho^2 + aln\rho + b \tag{7}$$

Nun haben wir insgesamt folgende Lösung:

$$A(t) = \begin{cases} -\frac{\mu_0 I}{4\pi r^2} \rho^2 + a_1 l n \rho + b_1 & \rho < r \\ a_2 l n \rho + b_2 & r < \rho < R \\ a_3 l n \rho + b_3 & \rho > R \end{cases}$$
 (8)

Damit keine unendlichkeit bei A(0) auftritt: $a_1 = 0$

 b_1 ist eine unbedeutende additive konstante und kann hier 0 gewählt werden (aber achtung nur 1 mal!!!)

Philipp Landgraf Abgabe: 18.03.2015

aus stetiger Differenzierbarkeit bei $\rho = r$ folgt: $a_1 = -\frac{\mu_0 I}{2\pi}$

aus Stetigkeit bei $\rho=r$ folgt $b_2=-\frac{\mu_0 I}{4\pi}(1-2lnr)$ Zur bestimmung von a_3 wenden wir das Amper'sche Durchflutungsgesetz auf eine Kreisscheibe mit Radius $\rho > R$ an:

$$\oint_{\partial F} d\vec{r} \cdot \vec{B}(\vec{r}) = 2\pi \rho B(\rho) = (I - I)\mu_0 = 0 \implies B(\rho) = 0$$
(9)

Hierbei wurde verwendet, dass $\vec{B}=B(\rho)\vec{e}_{\phi}$ und $d\vec{r}=\rho\vec{e}_{\phi}$ Da B=0 sein muss folgt daraus, dass A in diesem Bereich konstant sein muss. Hieraus folgt dass $a_3 = 0$.

Aus der Stetigkeit bei $\rho=R$ folgt dann: $b_3=-\frac{\mu_0 I}{4\pi}(1+2ln(\frac{R}{r})$ c) Nun sollen wir noch die Selbstinduktivität pro Längeneinheit Berechnen. Wir benutzen hierfür die Formel aus der Vorlesung:

$$\frac{L}{l} = \frac{1}{I^2} \iint_{Querschnitt} dF \vec{j} \cdot \vec{A} = \frac{1}{I^2} \int_0^{2\pi} d\phi \int_0^{\infty} d\rho \rho \vec{j} \cdot \vec{A} = \frac{\mu_0}{2\pi} (ln \frac{R}{r} + \frac{1}{4})$$
 (10)

$\mathbf{2}$ Induktion in rotierendem Kreisring

Ein leitender Kreisring rotiert mit konstanter Winkelgeschwindigkeit ω um die x-Achse. Es wirkt das homogene Magnetfeld $\vec{B} = B\vec{e}_z$. Berechnen Sie die induzierte Spannung.

2.1 Lösung

Aufgrund der Drehung des Kreisringes, wird die Fläche, welche vom Magnetfeld durchdrungen wird Zeitabhängig. Die Zeitabhängige Fläche ergibt sich zu $A(t) = \pi R^2 cos(\omega t)$ Einsetzen in das Faraday'sche Induktionsgesetz liefert:

$$U = -B_0 \frac{\partial}{\partial t} \int_F d\vec{F} \vec{e_z} = -B_0 \frac{\partial A(t)}{\partial t} = B_0 \omega \pi R^2 \sin(\omega t)$$
 (11)

Anmerkung: Dies ist ein Modell für einen Dynamo.

3 Punktladung vor Dielektrikum

Sei der Rechte Halbraum(x > 0) von einem Dielektrikum mit $\epsilon_r > 1$ gefüllt. Im Linken Halbraum(x < 0)0) befinde sich eine Punktladung der Ladung q an der Stelle $-a\vec{e}x$. Berechnen sie das Elektrische Feld im ganzen Raum, so wie die auf der Grenzfläche induzierte Flächenladungsdichte und die induzierte Gesamtladung.

3.1 Lösung

Zur bestimmung des Elektrischen Feldes benutzen wir die Methode der Spiegelladung.

$$\vec{E}(r) = \frac{1}{4\pi\epsilon_0} \begin{cases} q \frac{\vec{r} + a\vec{e}_x}{|\vec{r} + a\vec{e}_x|^3} + q' \frac{\vec{r} - a\vec{e}_x}{|\vec{r} - a\vec{e}_x|^3} & (x < 0) \\ q'' \frac{\vec{r} + a\vec{e}_x}{|\vec{r} + a\vec{e}_x|^3} & (x > 0) \end{cases}$$
(12)

Nun bestimmt man aus den Stetigkeitsbedingungen für E bzw D die Ladungen:

$$D = \epsilon_0 \epsilon_r E \tag{13}$$

$$D_{x<0}(0) = D_{x>0}(0) = q - q' = \epsilon_r q''$$
(14)

$$E_{x<0}(0) = E_{x>0}(0) = q + q' = q''$$
 (15)

Nun berechnen wir die Polarisation P:

$$P = (\epsilon_0 \epsilon_r - \epsilon_0) E = \frac{1}{4\pi} \begin{cases} 0 & (x < 0) \\ \frac{2q\epsilon_r \epsilon_0 - \epsilon_0}{\epsilon_r + 1} \frac{\vec{r} + a\vec{e}_x}{|\vec{r} + a\vec{e}_x|^3} & (x > 0) \end{cases}$$
(16)

Nun können wir wie in der Beispielaufgabe aus der Vorlesung direkt aus der Polarisation die induzierte Ladung berechnen:

$$\sigma_{ind} = (P_2(0) - P_1(0))\epsilon_0 \cdot \vec{e}_x = \frac{2q\epsilon_r\epsilon_0 - \epsilon_0}{\epsilon_r + 1} \frac{a^2}{(z^2 + y^2 + a^2)^{\frac{3}{2}}}$$
(17)

4 Magnetisierung durch äußeres Feld

Eine Kugel mit Radius R und Permeabilität μ_r befindet sich in einem äußeren homogenen Magnetfeld B_0 . Dieses Magnetfeld bewirkt eine Magnetisierung M_0 . Bestimmen sie M_0 aus μ_r und B_0 . Bestimmen sie die Stärke des H-Feldes in der Kugel für $\mu_r >> 1$ Das B-Feld einer magnetisierten Kugel ist:

$$\vec{B}(r) = \vec{B}_0 + \begin{cases} \frac{2\mu_0}{3}\vec{M}_0 & (r \le R) \\ \frac{3\vec{e}_r(\vec{e}_r \cdot (\frac{\mu_0}{3}R^3\vec{M}_0)) - \frac{\mu_0}{3}R^3\vec{M}_0}{r^3} & (r > R) \end{cases}$$
(18)

4.1 Lösung

Legen sie die z-Achse in Richtung des äußeren Magnetfeldes. Dann gilt:

$$\vec{B}(r) = \vec{B}_0 = B_0 \vec{e}_z \tag{19}$$

$$\vec{M}(r) = M_0 \vec{e}_z \quad (r \le R) \tag{20}$$

Zuerst berechnen wir \vec{M}_0 . Hierzu verwenden wir die aus der Vorlesung bekannte Formel:

$$\vec{H} = \frac{1}{\mu_0}\vec{B} - \vec{M} = \vec{B}\frac{1}{\mu\mu_0} \tag{21}$$

Aus obiger Gleichung folgt:

$$\vec{B} = \frac{\mu\mu_0}{\mu - 1}\vec{M}_0 \tag{22}$$

Hier setzen wir die Felder innerhalb der Kugel ein.

$$\vec{B}_0 + \frac{2\mu_0}{3}\vec{M}_0 = \frac{\mu\mu_0}{1-\mu}\vec{M}_0 \tag{23}$$

Auflösen nach \vec{M}_0 :

$$\vec{M}_0 = \frac{3}{\mu_0} \frac{\mu - 1}{2 + \mu} \vec{B}_0 \tag{24}$$

Nun sollen wir noch das H-Feld innerhalb der Kugel berechnen:

$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M} = \frac{\vec{B}_0}{\mu_0} + \frac{2}{3}\vec{M}_0 - \vec{M}_0 = \frac{3}{\mu_0(2+\mu)}$$
 (25)

Für große μ geht dieses Ergebniss wie zu erwarten gegen 0

5 Kugelkondensator mit inhomogenem Dielektrikum

Ein Kugelkondensator besteht aus zwei konzentrischen, unendlich dünnen Kugelschalen mit den Radien R_1 und $R_2 > R_1$. Die Kugelschalen haben die Ladungen $q_1 = q$ und $q_1 = -q$. Der Zwischenraum zwischen den Beiden Schalen sei ganz mit einem inhomogenen Dielektrikum der Dielektrizitatskonstante $\epsilon_r(r)$ gefüllt.

- a) Bestimmen Sie \vec{R}
- b) Nun sei $\epsilon_r(r) = \epsilon r^2$. Berechnen Sie das elektrische Feld so wie die Kapazität des Kondensators.

5.1 Lösung

a) aus der Vorlesung ist das Feld einer Geladenen Kugel Bekannt. Berechnen kann man dies auch aus dem Satz von Gauss:

$$\vec{D}(\vec{r}) = \frac{q}{4\pi r^2} \vec{e_r} \tag{26}$$

$$\vec{E}(\vec{r}) = \frac{q}{4\pi r^2 \epsilon_0 \epsilon_r(r)} \vec{e}_r \tag{27}$$

b) Das Elektrische Feld ist : $\vec{E}=-\vec{\nabla}\Phi(r)$. Daraus kann man die Potentialdifferenz Folgern:

$$\Delta \Phi = -\int_{R_1}^{R_2} dr E(r) = \frac{q}{12\pi\epsilon_0 \epsilon^2} \left(\frac{1}{R_2^3} - \frac{1}{R_1^3} \right)$$
 (28)

Die Kapazität ist schließlich:

$$C = \frac{q}{|\Delta\Phi|} = 12\pi\epsilon_0 \epsilon \frac{R_2 R_1^3}{R_2^3 - R_1^3}$$
 (29)