KDS 47 30 20 : 2019

전철전원 설비

2019년 4월 8일 개정 http://www.kcsc.re.kr

건설기준 제정 또는 개정에 따른 경과 조치

이 기준은 발간 시점부터 사용하며, 이미 시행 중에 있는 설계용역이나 건설 공사는 발주기관의 장이 필요하다고 인정하는 경우 종전에 적용하고 있는 기준을 그대로 사용할 수 있습니다.

건설기준 연혁

- 이 기준은 건설기준 코드체계 전환에 따라 기존 건설기준(설계기준, 표준시방서) 간 중복· 상충을 비교 검토하여 코드로 통합 정비하였다.
- 이 기준은 기존의 구조물기초 설계기준을 중심으로 도로교 설계기준, 건축구조기준의 기초 내진설계에 해당되는 부분을 통합 정비하여 기준으로 제정한 것으로 연혁은 다음 과 같다.

건설기준	주요내용	제정 또는 개정 (년.월)
철도설계기준(시스템편)	 일반철도와 고속철도에 모두 적용할 수 있도록 서술 철도관련 상위법령, 기준 및 시방서 등의 개정된 내용을 반영 노반, 궤도, 건축 등 타 분야와의 인터페이스를 고려하였으며 향후 철도관련 기술발전 등의 변화 에 대응할 수 있도록 제정 	제정 (2011.5)
철도설계기준(시스템편)	IEC 60850 국제규격 및 국내 KSC IEC 60850규격에 맞게 전압허용범위 설정하되 허용시간은 국제 규격으로 통일 "철도의 건설기준에 관한 규정"개정사항을 반영하여 특정기관명을 삭제 목적과 기능에 부합한 기기를 설치할 수 있도록하며, 한정된 기기명칭(LDS) 삭제 집전장치의 편마모 방지를 위해 제정취지에 맞도록 기준 명확히 하고, 압상향 기준을 국제 인용규격에 따라 수정 파동전차속도에 대한 기본이론 오류를 수정 250km/h급(Cako250) 전차선로시스템 개발자재 검증보고서 결과를 반영 국내 철도운용기관(도시철도) 및 선진외국기준과 같은 수준으로 조도 기준을 합리적으로 조정하고, 조도 측정점을 명확히 제시	개정 (2013.12)
철도설계기준(시스템편)	• 향후 국내외 철도건설기술 발전 등 기술적 환경 변화에 대응할 수 있도록 하였으며 안전기준 강 화 및 그 동안 변경된 철도관련 상위법령, 규정, 기준 등의 개정된 내용을 반영	개정 (2015.12)
KDS 47 30 20 : 2016	• 건설기준 코드체계 전환에 따라 코드화로 통합 정비함	제정 (2016.6)

건설기준	주요내용	제정 또는 개정 (년.월)
KDS 47 30 20 : 2019	• 철도 건설기준 적합성평가에 의해 코드를 정비함	개정 (2019.04)

제 정 : 2016년 6월 30일 개 정 : 2019년 04월 08일

심 의 : 중앙건설기술심의위원회 자문검토 : 국가건설기준센터 건설기준위원회

소관부서 : 국토교통부 철도건설과

관련단체 : 한국철도시설공단 작성기관 : 한국철도기술연구원

목 차

1.	일반사항	1
	1.1 목적	1
	1.2 적용범위	1
	1.3 참고기준	1
	1.4 용어의 정리	1
	1.5 기호의 정리	1
	1.6 시설물의 구성	1
	1.7 해석과 설계원칙	1
2.	조사 및 계획	3
	2.1 계획	5
3.	재료	5
4.	설계	5
	4.1 변전소 등의 설비	5
	4.2 보호 및 절연협조	7
	4.3 접지	8
	4.4 기타 설비	8

1. 일반사항

1.1 목적

(1) 이 기준은 철도 전철전원 설비에 대하여 조사, 계획, 설계, 시공, 유지관리에 필요한 기술적 사항을 제시하는 것을 목적으로 한다.

1.2 적용범위

1.2.1 전철전원설비

(1) 전기사업자로부터 전기를 공급받는 수전선로와 전기철도 차량에 적합한 전원을 공급하기 위한 변전설비 설계에 대하여 적용한다.

1.3 참고기준

내용 없음

1.4 용어의 정의

내용 없음

1.5 기호의 정의

내용 없음

1.6 시설물의 구성

1.6.1 전철전원설비의 구성

1.6.1.1 수전선로

(1) 수전선로는 가공수전선로와 지중수전선로로 구성한다.

1.6.1.2 변전설비

- (1) 변전소는 일반적으로 그 형태에 따라 철구형 변전소, GIS형 변전소 및 혼합형 (Hybrid) 변전소로 분류한다.
- (2) 변전설비는 급전계통 구성에 따라 전철변전소, 급전구분소, 보조급전구분소, 병렬급전소, 단말보조급전구분소로 구성한다.

1.7 해석과 설계원칙

1.7.1 설계 단계별 업무

KDS 47 30 20 : 2019 전철전원 설비

1.7.1.1 기본설계

(1) 설계 중에서 주요 설계수행지침, 예비설계, 개략적인 공사비 등을 포함한 기본적인 설계를 말한다.

- (2) 수전선로 구성방안 및 경과지 검토
- (3) 수전선로 건설방식 검토
- (4) 전철급전계통 구성방안 검토
- (5) 변전설비 위치 검토 선정
- (6) 변전설비의 형식 및 건설방식 선정
- (7) 급전방식 선정 및 급전시뮬레이션 시행
- (8) 접지계통 검토
- (9) 변전설비 단선결선도 구성
- (10) 전철전원설비 시공계획 및 개략 건설비 산출

1.7.1.2 실시설계

- (1) 설계 중에서 기본설계 및 설계지침의 검토, 설계보고서, 계산서, 설계도면, 설계설명 서, 설계내역서, 수량산출서, 단가산출서, 공사시방서, 측량성과품, 지장물 도면 및 조 서, 철도용품표준규격, 기타 설계자료 등을 포함한 시공 목적의 설계를 말한다.
- (2) 전철전원설비 기본조사 및 측량
- (3) 수전선로 계통도, 경과지도 검토 작성
- (4) 수전선로 지지물 및 기초, 가공전선 이도, 지중관로 검토
- (5) 수전선로 임피던스, 고장전류, 철탑구조, 철탑기초 계산, 고조파 및 전자파 대책
- (6) 변전설비 결선도 및 계통도 검토 작성
- (7) 기기배치도 및 배선 설계
- (8) 구조물 설계(옥외철구형 변전설비의 경우)
- (9) 전기기기 각종 계산 및 계통해석
- (10) 공사비 예산서 및 공정표, 공사시방서 등 시공에 필요한 성과물 작성
- (11) 인허가서류 작성
- (12) 수전선로 및 변전설비의 대지고유저항 측정
- (13) 수전선로 및 변전설비의 지질조사 및 탐사

1.7.2 설계조사

1.7.2.1 자료조사

- (1) 상위 계획 및 관련계획을 조사 분석한다.
- (2) 전기사업자 전력공급계통을 조사한다.
- (3) 법규, 인접지역의 규제사항 등을 조사한다.

- (4) 설계대상지역의 지진발생 현황
- (5) 설계대상지역의 기온, 풍속, 적설량 등 기후조건
- (6) 토목, 궤도, 전차선, 신호, 정보통신 등 기타 시설의 계획
- (7) 환경영향 평가자료
- (8) 문화재 지표조사 자료
- (9) 열차운영계획 자료

1.7.2.2 현장조사

- (1) 전철전원설비 건설 예정지역의 지장물 보상, 민원 및 용지 등의 실태를 조사한다.
- (2) 해당지역의 자연환경을 조사한다.
- (3) 사업주변 한전 등의 변전소 및 전철변전소 예상 위치를 조사한다.
- (4) 변전설비의 입지
- (5) 공사용 자재 및 변전기기 운반 관련 사항
- (6) 타 시설물(도로, 한전선로 등) 횡단 현황
- (7) 터널, 교량, 과선교, 곡선반경, 구배현황, 방음벽 등 선로현황
- (8) 대관, 대민 협의사항

2. 조사 및 계획

2.1 계획

2.1.1 전철전원설비의 계획

2.1.1.1 수전선로

- (1) 수전선로 건설계획은 초기투자비 보다 국토이용의 극대화와 설비의 기능성, 유지보수 성, 보안성, 설비의 내구성, 민원해소를 감안하여 가장 유리한 건설방식인 것을 조사 · 검토하여 선정한다.
- (2) 수전계통의 구성에는 3상 단락전류, 3상 단락용량, 전압강하, 전압불평형률 및 전압왜 형률을 고려하여야 하며, 보호계전기는 전력공급자와 협의하여 적절한 값으로 하여야 한다.
- (3) 전철변전소 수전점에서 수전계통의 고조파 등에 대한 허용기준은 전기사업자의 공급 약관을 준용한다.
- (4) 수전선로의 전압은 수전용량, 수전거리 및 이와 연계된 전력계통을 고려하여야 하며, 전력공급자와 협의하여 적용한다.
- (5) 수전선로에는 계통에서 발생하는 지락 및 단락사고를 확실히 검출하는 장치를 설치하 도록 하다.
- (6) 수전선로는 안정적인 전철전원급전을 위하여 예비선로를 구성하여야 한다.

KDS 47 30 20 : 2019 전철전원 설비

(7) 수전선로 방식은 지형적 여건 등 시설 조건과 지역적 특성(도심, 전원, 산간 등) 및 민원발생 요인 등을 감안하여 가공 또는 지중으로 시설한다.

(8) 가공수전선로

- ① 경제적이고 환경보존을 위하여 수전선로 경과지의 주위환경 및 조건, 개발전망, 국 토이용계획 등을 감안한다.
- ② 수전선로의 사용기간 중 지상고 부족으로 인하여 이설 또는 설비의 변경 등이 발생하지 않도록 적정한 지상고가 유지될 수 잇도록 한다.

(9) 지중수전선로

- ① 가공선로 설치 시 도시계획 협의가 곤란하고 주택가 등으로 민원발생 요소가 많은 개소
- ② 전기사업자 인출설비에서 지중수전선로가 건설이 유리할 경우
- (10) 기타 설계기준은 전기설비기술기준과 한국전력공사 송전선로 설계기준을 적용한다.

2.1.1.2 급전계통의 구성

- (1) 급전방식은 교류 단상 25 kV 단권변압기 비절연보호방식을 표준으로 한다.
- (2) 수전측의 상불평형을 최소화하기 위하여 급전용변압기는 스코트 결선을 사용하며, 급 전용변압기 2차측의 M, T상은 단권변압기를 통하여 변전소에서 선로를 향할 때 좌 또는 우방향으로 급전구분소까지 공급한다.
- (3) 변전소에서 전기차량까지 구성되는 회로의 전압보상을 위하여 단권변압기를 적절하게 분산배치하며, 단권변압기의 중성점과 매설접지선, 보호선, 궤도를 연결하여 전류를 변전소까지 귀환시켜 통신 유도장해와 사고파급을 최소화 되도록 설계한다.
- (4) 각종 사고 또는 고장 시 파급 등을 방지하기 위한 적절한 보호방식을 제시하여야 한다.
- (5) 전차선로의 상하선 구분 없이 방면별 급전되도록 회로를 구성한다.
- (6) 3개 이상의 선로에 급전하는 경우 적정하게 부하가 분담되도록 회로를 구성한다.
- (7) 부하측에서 발생되는 고조파의 크기를 검토하여 필요시 저감방안을 제시하여야 한다.

2.1.1.3 변전소 등의 계획

- (1) 철도노선, 전기차량의 특성, 열차운행계획, 장래철도망건설계획 등 부하특성과 연장급 전 등을 고려하여 변전소등의 용량을 결정하고, 용량에 따라 급전계통을 구성한다.
- (2) 변전소의 위치는 가급적 수전선로의 길이가 최소화 되도록 한전 등의 변전소에서 가장 가까운 곳 및 경제성을 고려하여 선정하여야 한다.(단, 여러 개의 철도노선이 합쳐지는 곳의 전력계획은 주변 변전소 이용을 우선적으로 검토하여야 한다.)
- (3) 변전소와 변전소 사이에는 전기적으로 구분해 주는 급전구분소를 설치하되, 급전구분 소의 절연구분장치 양단은 동상이 되도록 설계한다. 단, 부득이한 경우에는 이상으로 할 수 있다. 또한, 급전구분소는 한 변전소 구간에서 다른 변전소 구간으로 연장 급전 이 가능하도록 설계한다.

(4) 변전소와 급전구분소 사이에 전압보상 및 사고시의 고장 구분 등을 위하여 보조급전 구분소 또는 병렬급전소를 두어야 한다. 전차선로의 상하선 전압차 최소화 및 전압보 상을 위하여 선로 말단에는 필요시 단말보조급전구분소를 구성한다.

- (5) 변전설비는 무인 운용을 원칙으로 하며, 설비운용과 안전성 확보를 위하여 원격감시 및 제어방법과 유지보수 등을 고려하여 설계한다.
- (6) 변전기기 및 자재들은 내구성과 안전성, 운용성, 시공성 및 경제성 등을 고려하여 선 정하되 친환경제품을 우선적으로 적용한다.

2.1.1.4 변전소 등의 위치

- (1) 변전소의 간격은 전차선전압의 최저한도를 유지할 수 있고 급전계통에서 발생하는 사고전류를 확실하게 검출할 수 있는 간격으로, 열차운전의 실적 및 계산에 의하여 정하되, 열차운전계획·선구의 중요도 및 장래의 수송수요를 고려한다.
- (2) 변전소나 급전구분소 등의 위치는 다음 각 호의 사항을 고려하여 결정하여야 한다.
 - ① 전원에 가까운 곳(변전소에만 해당)
 - ② 변압기 등 변전기기와 시설자재의 운반이 편리한 곳
 - ③ 공해, 염해 등 각종 재해의 영향이 최소화 되는 곳
 - ④ 보호지구(개발제한지구, 문화재보호지구, 군사시설보호지구 등) 또는 보호시설물에 가급적 지장을 주지 아니하는 곳
 - ⑤ 변전소나 구분소 앞 절연구간에서 열차의 타행운전(동력을 주지 아니하고 관성으로 운전하는 것을 말한다)이 가능한 곳
 - ⑥ 민원발생 요인이 적은 곳

3.재료

내용 없음

4.설계

4.1 변전소 등의 설비

4.1.1 변전소의 용량

- (1) 급전구간별 정상적인 열차부하 조건에서 1시간 최대출력 또는 순간 최대출력을 기준으로 용량을 산정한다.
- (2) 연장급전에 의한 부하의 증가에 대처할 수 있도록 변전소 용량을 결정한다.
- (3) 변전소의 부하는 전철시뮬레이션 프로그램으로 시뮬레이션을 수행한 결과치를 적용하며, 부득이한 경우에 한하여 유사구간의 실측결과로 산정한다.
- (4) 용량 산정 시 현재의 부하와 동시에 장래의 수송수요를 감안하여 뱅크를 구성하고 예비용 변압기를 두어야 한다.

KDS 47 30 20 : 2019 전철전원 설비

4.1.2 변전소 등의 형식

(1) 변전소등은 옥내형으로 하는 것을 원칙으로 하되, 다음 각 호의 어느 하나에 해당하는 경우에는 옥외형으로 할 수 있다.

- ① 주택 등과 멀리 떨어져 민원발생 등의 우려가 적은 지역의 경우
- ② 공해·염해 등의 우려가 적은 지역의 경우
- ③ 인구밀집지역이 아닌 지역의 경우
- ④ 그 밖에 옥내형으로 건설이 곤란한 경우
- (2) 변전기기는 수전측에서 부터 급전측까지 일관되고 합리적으로 배치하고, 급전측이 선로방향이 되도록 한다.
- (3) 변전소등의 건물설계를 위하여 GIS 등 기기들의 하중과 시공 시 필요 공간, 소음 및 진동기준 등 인터페이스조건을 제시하여야 한다.
- (4) 변전설비의 시공 및 유지보수를 위해 필요한 변전소등의 진입로와 여유 부지를 확보하도록 설계한다.
- (5) 변전소등에 일반 사람이 출입하지 못하도록 보호용 울타리를 설치하고 출입구에는 출입금지표지를 붙인다.
- (6) 변전소의 용량증설 및 노후 등으로 설비개량이 필요할 경우 1뱅크를 시설 할 수 있는 여유 공간의 확보를 고려한다.

4.1.3 변전설비

- (1) 변전소 등의 계통을 구성하는 각종 기기는 운용 및 유지보수성, 시공성, 내구성, 효율, 친환경성, 안정성 및 경제성 등을 종합적으로 고려하여 다음 각 호와 같이 합리적으 로 선정한다.
 - ① 급전용변압기는 3상 스코트결선을 적용함을 원칙으로 하되, 예비용 변압기를 확보한다. 단, 부득이한 경우 다른 방식도 적용할 수 있다.
 - ② 단권변압기의 용량은 순시 최대전력 및 단락강도 등을 고려하여 변전소 및 보조구 분소 등으로 구분하여 설계한다.
 - ③ 차단기는 계통의 장래계획을 감안하여 용량을 결정하고, 회로의 특성에 따라 기종 과 동작책무 및 차단시간을 선정한다.
 - ④ 단로기는 설치장소에 적합한 기종을 선정하고, 필요에 따라 변압기의 여자전류를 개폐할 수 있는 것으로 한다.
 - ⑤ 평균 부하역률은 90% 이상으로 유지함을 기준으로 하고, 필요시 역률보상설비를 설치한다.
 - ⑥ 가스절연개폐장치(GIS)의 구조는 전기적, 기계적으로 충분한 내구성을 가지고 조 작이 원활하며 계통에 맞게 적정한 전압계급을 적용하여 설계한다.
 - ⑦ 제어반의 경우 디지털계전기방식을 적용한다.

- ⑧ 원격감시제어기능을 갖출 수 있도록 설계한다.
- ⑨ 제어용 교류전원은 상용과 예비의 2계통으로 구성한다.
- (2) 주변지역의 민원을 예방하기 위하여 필요한 각 변전기기의 소음기준 및 저감대책을 검토하여 제시한다.
- (3) 전력품질 향상을 위하여 필요시 변전소 전력품질 예측시뮬레이션에 의거한 전력품질 보상대책으로 각종 보상장치를 적용한다.
- (4) 체계적인 유지보수를 위하여 예방진단설비 등을 따로 정하여 설계에 반영한다.
- (5) 시설물의 입지조건·중요성·경제성 등을 감안하여 필요시 기기에 미치는 염해· 공 해·분진 등에 대한 오손대책을 제시한다.

4.1.4 배선

- (1) 주회로 배선은 기기 상호간을 직접 연결하는 것을 원칙으로 한다.
- (2) 제어용케이블은 난연성 정전차폐부의 성능을 갖추어야 한다.
- (3) 제어회로에 사용하는 전선의 접속은 단자를 사용한다.
- (4) 케이블 도체 굵기는 기기 용도에 맞게 규격을 검토하여 선정한다.

4.1.5 옥외변전설비 구조물

- (1) 철구와 기기가대 등은 지반 및 지형, 인출, 인입, 회선수 증가, 기기증설 등을 고려하여 설계한다.
- (2) 철구와 기기가대의 안전성 검증을 위하여 범의 하중, POST의 하중, 기기 및 지지가대의 하중, 풍압하중 등을 고려하여 시행한 구조계산결과를 제시하여야 한다.
- (3) 기기 또는 전선로의 배치 시 적절한 간격을 유지한다.

4.2 보호 및 절연협조

4.2.1 보호협조

- (1) 사고 또는 고장의 파급을 방지를 위하여 계통 내에서 발생한 사고전류를 확실히 검출 하고 차단장치에 의해서 안전 신속하게 순차적으로 차단할 수 있는 보호시스템을 검 토하고 설비전반의 보호협조를 도모하다.
- (2) 보호계전방식은 신뢰성, 선택성, 협조성, 적절한 동작, 양호한 감도, 취급 및 보수점검이 용이토록 구성한다.
- (3) 급전선로는 안정도 향상, 자동복구, 정전시간 감소를 위하여 보호계전방식에 자동재폐로 기능을 구비한다.
- (4) 가공선로측에서 발생한 지락 및 사고전류의 파급을 방지하기 위하여 인입, 인출단에 피뢰기를 설치한다.
- (5) 전차선로의 지락 또는 선간단락사고 위치를 검출하기 위하여 고장점표정장치 등을 시설할 수 있다.

4.2.2 절연협조

(1) 변전소등의 입·출력 측에서 유입되는 뇌해, 이상전압, 변전소등의 계통 내에서 발생하는 개폐서어지의 크기 및 지속성, 이상전압 등을 고려하여 각각의 변전설비들에 대한 절연협조를 검토한 후 설계한다.

4.2.3 절연이격

전압별 변전소등 표준절연이격거리는 다음 표에 의한다.

공칭전 압	옥외mm		옥내mm		기사
kV	도체 상호간	도체와대지간	도체 상호간	도체와대지간	7174
154	3,000	1,900		-	수전
66	1,700	1,100	1,000	730	干位
50	1	,000	8	300	급전
25		700	5	500] 발견

4.3 접지

- (1) 접지장치는 지락사고와 역섬락으로 사람이나 기기에 위험을 주지 않도록 설계한다.
- (2) 변전소등의 접지는 망상접지로 설계하되, 선로측의 매설접지선과 연결하여 전기설비를 등전위 접지망으로 구성하는 공용접지방식으로 구성한다.

4.4 기타 설비

- (1) 관제센터 및 변전소등에는 기기를 운전조작하기 위한 이중화 소내전원설비를 시설한다.
- (2) 관제센터 및 변전소등에는 기기 동작의 신뢰, 보호 등을 위한 냉난방과 환기장치 등을 시설한다.
- (3) 화재의 초기 진화 또는 국한을 위하여 소방화설비를 관련법령에 따라 설계한다.
- (4) 무인으로 운용하는 변전소 등에는 외부 침입을 감시할 수 있는 보안설비 시스템을 구축하여야 한다.
- (5) 변전소 등의 소음이 관련법령의 규제치 이하로 되도록 종합적으로 검토 하여야 하며, 부득이한 경우, 흡음판 등의 소음저감시설을 한다.

집필위원

성 명	소 속	성 명	소 속
황선근	한국철도기술연구원	신지훈	한국철도기술연구원

자문위원

성 명	소 속	성 명	소 속

국가건설기준센터 및 건설기준위원회

성 명	소 속	성 명	소 속
이용수	한국건설기술연구원	정혁상	동양대학교
구재동	한국건설기술연구원	구자안	한국철도공사
김기현	한국건설기술연구원	김석수	㈜수성엔지니어링
김태송	한국건설기술연구원	김재복	㈜태조엔지니어링
김희석	한국건설기술연구원	소민섭	회명정보통신㈜
류상훈	한국건설기술연구원	여인호	한국철도기술연구원
원훈일	한국건설기술연구원	이성혁	한국철도기술연구원
주영경	한국건설기술연구원	이승찬	㈜평화엔지니어링
최봉혁	한국건설기술연구원	이진욱	한국철도기술연구원
허원호	한국건설기술연구원	이찬우	한국철도기술연구원
		최상철	㈜한국건설관리공사
		최찬용	한국철도기술연구원

중앙건설기술심의위원회

성 명	소 속	성 명	소 속
김현기	한국철도기술연구원	최상현	한국교통대학교
이광명	성균관대학교	정광섭	포스코건설
신수봉	인하대학교	손성연	씨앤씨종합건설(주)
이용재	삼부토건(주)		

국토교통부

성 명	소 속	성 명	소 속
임종일	철도건설과	홍석표	철도건설과
문재웅	철도건설과		

KDS 47 30 20 : 2019 전철전원 설비

2019년 04월 08일 개정

소관부서 국토교통부 철도건설과

관련단체 한국철도시설공단

34618 대전광역시 동구 중앙로 242 한국철도시설공단

Tel: 1588-7270 http://www.kr.or.kr

작성기관 한국철도기술연구원

16105 경기도 의왕시 철도박물관로 176 한국철도기술연구원

Tel: 031-460-5000 http://www.krri.re.kr

국가건설기준센터

10223 경기도 고양시 일산서구 고양대로 283(대화동)

Tel: 031-910-0444 E-mail: kcsc@kict.re.kr

http://www.kcsc.re.kr