CH577535

Patent number:

CH577535

Publication date:

1976-07-15

Inventor:

Applicant:

CIBA GEIGY AG

Classification:

- international:

C08K5/35; D01F1/10

- european:

C08K5/00P4; C08K5/35

Application number:

CH19750012936 19721018

Priority number(s):

CH19750012936 19721018

Abstract not available for CH577535

Data supplied from the esp@cenet database - Worldwide

SCHWEIZERISCHE EIDGENOSSENSCHAFT EIDGENÖSSISCHES AMT FÜR GEISTIGES EIGENTUM

(5) Int. CL²: C 08 K 5/35 D 01 F 1/10

(9) CH PATENTSCHRIFT AS

(1)

577 535

② Gesuchsnummer:

12936/75

61 Zusatz zu:

(2) Teilgesuch von:

15245/72

22 Anmeldungsdatum:

18. 10. 1972, 18 h

3333 Priorität:

Patent erteilt:

31. 5. 1976

45 Patentschrift veröffentlicht:

15.7.1976

(54) Titel:

Verwendung von Bis-Oxadiazolen zum optischen Aufhellen von organischen Materialien ausserhalb der Textilindustrie

(3) Inhaber:

CIBA-GEIGY AG, Basel

(74) Vertreter:

(2) Erfinder:

Dr. Hans-Rudolf Meyer, Binningen

Die vorliegende Erfindung betrifft die Verwendung von Bis-Oxadiazolen zum optischen Aufhellen von organischen Materialien ausserhalb der Textilindustrie. Die erfindungsgemäss verwendbaren Bis-Oxadiazole sind Verbindungen der Formel (1)

$$R_1$$
 CH=CH— A CH=CH— R_1 (1)

worin R₁ und R₁' unabhängig voneinander Wasserstoff, einen ¹⁰ gegebenenfalls nicht-chromophor substituierten aliphatischen, cycloaliphatischen oder araliphatischen Rest mit bis zu 18 Kohlenstoffatomen oder einen gegebenenfalls nicht-chromophor substituierten, höchstens zweikernigen, carbocyclischen oder heterocyclischen aromatischen Rest bedeuten, und der ¹⁵ Benzolring A gegebenenfalls mit Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Sulfogruppen oder deren Salzen oder einer gegebenenfalls substituierten Sulfamoylgruppe substituiert sein oder einen ankondensierten cycloaliphatischen Sechsring aufweisen kann, ²⁰

Als aliphatische Reste kommen für R1 und R1' sowohl gesättigte als auch ungesättigte, gegebenenfalls über ein Sauerstoffatom gebundene oder durch Sauerstoffatome unterbrochene acyclische Kohlenwasserstoffreste in Betracht, als cycloaliphatische Reste vorwiegend gegebenenfalls Methyl substituierte Cycloalkylreste mit 5 oder 6 Ringgliedern, und als araliphatische Reste Aralkyl- und Aralkenylreste, vorzugsweise Styrylreste. Als Beispiele derartiger Substituenten in der Bedeutung von R1 und R1' seien Methyl, Athyl, n-Propyl, Isopropyl, n-Butyl, Isobutyl, sek. Butyl, Isobutyl, tert. 30 Butyl, Methoxyäthyl-Acetoxyäthyl, n-Pentyl, sek. Pentyl, Isopentyl, Neopentyl, 1-Athyl-propyl, Vinyl, Allyl, Methallyl, Crotyl, Chlormethyl, Chloräthyl, Cyclohexyl, Cyclopentyl, Benzyl, Piperonyl, Phenyläthyl, 2-, 3- oder 4-Chlorbenzyl, 2-, 3- oder 4-Methylbenzyl genannt.

Bedeuten R₁ und R₁' carbocyclische aromatische Reste, so handelt es sich beispielsweise um solche der Naphthalinreihe oder insbesondere um solche der Benzolreihe wie Phenyl und Diphenylyl. Als heteroaromatische Reste kommen in erster Linie Pyridin-, Chinolin-, Furyl- und Thienylreste in Betracht. Alle diese Reste für R₁ und R₁' können nicht-chromophor substituiert sein.

Nicht-chromophore Substituenten können sowohl einwertige als auch zweiwertige Radikale sein, wobei letztere in der Regel einen an einen Benzolring ankondensierten carbo- oder heterocyclischen Ring bilden.

Als eine gegebenenfalls substituierte Sulfamoylgruppe ist eine unsubstituierte, mono- und disubstituierte Sulfonsäure-amidgruppe zu verstehen, deren allfällige Substituenten Alkylreste mit 1 bis 6 Kohlenstoffatomen oder Phenylgruppen 25 darstellen oder mit dem sie verbindenden Stickstoffatom einen Heterocyclus bilden können, der noch weitere Heteroatome enthalten kann. Diese Heteroringe können beispielsweise gegebenenfalls mit Methyl substituiertes Piperidino, Morpholino, Pyrrolidino oder Piperazino sein. Bei den in Salzform vorliegenden Sulfonsäuregruppen handelt es sich meist um deren Alkalimetall-, Erdalkalimetall-, Ammoniumoder Aminsalze. Bevorzugt sind die Natrium- oder Kaliumsalze.

Im Rahmen der Formel (1) liegen z. B. die Bis-Oxadiazolverbindungen der Formel (2)

$$R_{\bullet}$$
 CH=CH-CH-CH-CH-(2)

worin R2 Wasserstoff, Alkyl mit 1 bis 6 Kohlenstoffatomen, welches als Substituenten Halogen, Cyano oder Alkoxy mit 1 bis 4 Kohlenstoffatomen oder Phenoxy aufweisen kann, Alkenyl mit 2—4 Kohlenstoffatomen, gegebenenfalls mit Methylgruppen substituiertes Cyclohexyl, Alkoxy mit 1 bis 4 Kohlenstoffatomen, gegebenenfalls im Benzolkern mit Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Methylendioxy oder Phenoxy substi-

tuiertes Phenylalkyl mit 1 bis 3 Kohlenstoffatomen im Alkylteil oder gegebenenfalls nicht-chromophor substituiertes Phenyl, Phenoxy, Styryl, Diphenylyl, Naphthyl, Pyridyl, Chinolyl, Thienyl-2 oder Furyl-2 bedeutet und der Benzolring A wie unter Formel 1 definiert weitersubstituiert sein kann.

Besonders hervorzuheben sind Verbindungen der Formel (3)

$$R_3$$
 CH=CH-CH-CH- R_3 (3)

worin R3 Styryl, Phenyl, Diphenylyl, Naphthyl, Pyridyl, Chinolyl, Thienyl-2, 5-Phenyl-Thienyl-2, Furyl-2 oder Phenyl substituiert mit Halogen, z. B. Fluor, Brom oder vorzugsweise Chlor, Alkyl mit 1 bis 5 Kohlenstoffatomen, Cycloalkyl mit 5 oder 6 Kohlenstoffatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Phenoxy, Carboxyl oder deren Salzen, Carbalkoxy mit 2 bis 9 Kohlenstoffatomen, Cyano, Methylendioxy, Sulfogruppen oder deren Salzen, gegebenenfalls am Stickstoff mit Alkyl mit 1 bis 6 Kohlenstoffatomen substituiertem Carbamoyl- oder Sulfamoyl, Alkylsulfonyl oder Alkoxysulfonyl os mit 1 bis 6 Kohlenstoffatomen, gegebenenfalls mit Halogen, vor allem Chlor, oder mit Alkyl mit 1 bis 4 Kohlenstoffatomen

men substituiertem Phenylsulfonyl oder Phenoxysulfonyl, Amino, Alkanoylamino mit 2 bis 4 Kohlenstoffatomen oder Alkanoyloxy mit 2 bis 4 Kohlenstoffatomen bedeutet und der Benzolring B gegebenenfalls mit Halogen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Sulfogruppen oder deren Salzen, gegebenenfalls am Stickstoff mit Alkyl mit 1 bis 6 Kohlenstoffatomen oder Phenyl substituiertem Sulfamoyl substituiert sein kann

Von besonderem praktischem Interesse sind Verbindungen der Formel (1), welche einen symmetrischen Aufbau besitzen und der Formel (4) entsprechen

worin X₁ Wasserstoff, Halogen, wie Chlor oder Brom, Alkyl mit 1 bis 5 Kohlenstoffatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Phenyl, Phenoxy, Carboxyl oder deren Salze, Carbalkoxy mit 2 bis 5 Kohlenstoffatomen, Cyano, Sulfogruppen oder deren Salze,

X2 und X3 unabhängig voneinander Wasserstoff, Chlor, Alkyl mit 1 bis 5 Kohlenstoffatomen oder Alkoxy mit 1 bis 4 Kohenstoffatomen oder zwei der X-Symbole, X₁, X₂ und X₃ miteinander verbunden Methylendioxy bedeuten, und

der Benzolring D gegebenenfalls mit Chlor, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Sulfogruppen oder deren Salzen ¹⁰ substituiert sein kann.

Unter den Verbindungen der Formel 4 sind die nachstehenden Bis-Oxadiazolverbindungen der Formel 5

bevorzugt, in der X4 Wasserstoff, Chlor, Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen oder Phenyl bedeutet.

Zu diesen Formeln (2) bis (5) ist generell zu bemerken, dass - soweit nicht näher angemerkt - für Halogen vorzugsweise Chlor in Betracht kommt und unter Alkyl sowohl geradkettiges als auch verzweigtes Alkyl zu verstehen ist. Im Falle einer am Stickstoff mit Alkyl mit 1 bis 6 Kohlenstoffatomen substituierten Sulfamoyl- oder Carbamoylgruppe wie z. B. unter Formel (3) für B bzw. R3 vorgesehen - können die Alkylsubstituenten der Sulfamoyl- bzw. Cbarmamoylgruppe mit dem sie verbindenden Stickstoffatom auch einen Heteroring bilden, der weitere Heteroatome enthalten und gegebenenfalls durch Alkylgruppen mit 1 bis 4 Kohlenstoff- 35 atomen substituiert sein kann. Derartige Heteroringe sind z. B. Morpholino, Piperidino, Piperazino und N-Methylpiperazino. Als Salze von Carboxyl- und Sulfogruppen kommen beispielsweise die Alkalimetall-, Erdalkalimetall-, Ammonium- und Aminsalze in Betracht. Bevorzugt sind die Na- 40 trium- und Kaliumsalze.

Die Bis-Oxadiazolverbindungen der Formel 1 bzw. untergeordneten Formeln können in Analogie zu an sich bekannten Verfahren hergestellt werden.

Mit Vorteil verfährt man so, dass man gleichzeitig oder 45 nacheinander ein Mol einer Verbindung der Formel 6

mit je einem Mol der Verbindungen der Formeln 7 und 8

$$R_1-Y_2$$
 (7) $R_1'-Y_2$ (8)

worin R₁, R₁' und A die oben angegebene Bedeutung haben 55 und eines der Symbole Y₁ und Y₂ Carboxyl oder eine funktionell abgewandelte Carboxylgruppe und das andere eine Hydrazidgruppe bedeuten, zu einer Dialcylhydrazinverbindung der Formel 9

umsetzt und diese dem Ringschluss zur Bis-Oxadiazolverbin- 65 dung unterwirft. Als funktionell abgewandelte Carboxylgruppen kommen beispielsweise Carbonsäurehalogenide wie Chlo-

ride und Bromide, Carbonsäureamid, Carbonsäurealkylester mit 2 bis 5 Kohlenstoffatomen, sowie Nitrilgruppen in Betracht. Bevorzugt sind die Carbonsäurechloride.

Die Umsetzung zwischen den jeweiligen Komponenten der Formeln (6) und (7) bzw. (8) kann mit oder ohne Abtrennung der zuerst entstehenden Zwischenstufe der Formel (9) durch Erhitzen auf Temperaturen oberhalb 100° C erfolgen, zweckmässig auf 120 bis 300° C, vorteilhaft in Gegenwart eines inerten organischen Lösungsmittels wie Toluol, Xylolen, Chlorbenzol, Dichlorbenzolen, Trichlorbenzol oder Nitrobenzol oder falls Säurechloride verwendet werden, vorzugsweise in Gegenwart eines katalytisch wirkenden oder säurebindenden Mittels, z. B. in Pyridinbasen wie Picolin oder Pyridin oder weiteren tertiären Aminen wie Triäthylamin. Die Überführung in die Oxadiazolylverbindung geschieht in der Regel durch Behandlung der Diacylhydrazinverbindung der Formel (9) mit wasserabspaltenden Mitteln, wie Phosphoroxychlorid, Phosphortrichlorid, Phosphorpentachlorid, Phosphorpentoxid, Polyphosphorsäure, Schwefelsäure, Sulfurylchlorid, Oleum-Dimethylformamid, Zinkchlorid, Ahıminiumchlorid oder p-Toluolsulfonsäure oder vorzugsweise Thionylchlorid bei Temperaturen zwischen 100 und 250° C. Gewünschtenfalls können auch hochsiedende organische Lösungsmittel, wie beispielsweise Dimethylformamid, Dichlorbenzol, Trichlorbenzol, Nitrobenzol, Pyridin und aliphatische, gegebenenfalls verätherte Oxyverbindungen, z. B. Propylenglykol, Athylenglykolmonoäthyläther, Diäthylenglykoldiäthyläther oder Diäthylenglykol-dibutyläther mitverwendet wer-

Eine besonders vorteilhafte Ausführungsform zur Herstellung von Verbindungen der Formel (2) besteht z. B. darin, dass man zunächst ein Dicarbonsäurehalogenid der Formel 10

mit zwei Mol eines Hydrazids der Formel 11

$$R_2$$
-CONHNH₂ (11)

vorzugsweise in Gegenwart eines katalytisch wirksamen oder Halogenwasserstoff bindenden Mittels umsetzt und die erhaltene Diacylbydrazinverbindung einer Oxadiazol-Ringschlussreaktion durch Behandlung mit Wasserabspaltungsmittel, z. B. Thionylchlorid, zwischen 120 und 200° C unter-

wirft. In vorstehenden Formeln bedeutet Hal Chlor oder Brom, während A und R2 die weiter oben angegebene Bedeutung haben.

Ein anderes, in vielen Fällen günstiges Herstellungsverfahren für Verbindungen der Formel (1) besteht darin, dass man gleichzeitig oder nacheinander ein Mol einer Verbindung der Formel 12

$$Z_1$$
 A Z_1 (12)

mit einem Mol einer Verbindung der Formel 13

$$R_1$$
 Z_2

und einem Mol einer Verbindung der Formel 14

umsetzt, gegebenenfalls unter anschliessender Verseifung und 25 Decarboxylierung der bei der Kondensation primär entstandenen Carbonsäurederivate, wobei für A, R1 und R1' das oben Gesagte gilt und von Z1 und Z2 eines eine HOC-Gruppe und das andere Methyl, die Gruppierung CH2COOH oder deren funktionelle Säurederivate oder eine der Gruppierungen der Formeln 15, 16, 17 und 18

bedeuten, worin R Alkyl mit 1 bis 5 Kohlenstoffatomen oder Phenyl darstellt. Als funktionelle Säurederivate der CH2OOH-Gruppe seien hierbei z. B. -CH2CN, -CH2CONH2, CH2COCl 45 oder CH2COOR', worin R' einen Alkylrest mit 1 bis 4 Kohlenstoffatomen bedeutet, genannt.

Die Modifizierung allfälliger Carboxylgruppen in den Substituenten R1 und R1' wird nach erfolgter Bildung der Bis-Oxadiazolverbindung gemäss obigem Herstellungsverfahren bewirkt, indem man Verbindungen gemäss Formel (1) bzw. untergeordneten Formeln mit freien Carboxylgruppen bzw. deren Salze in entsprechende Säurehalogenide überführt und hieraus die entsprechenden Ester oder Amide nach an sich bekannten Methoden herstellt.

Gemäss oben erläutertem Reaktionsprinzip kann man beispielsweise Dialdehyde der Formel 19

mit monofunktionellen Verbindungen der Formeln

$$R_1$$
 V (20) bzw. V R_1 (21)

oder Monoaldehyde der Formeln

mit bifunktionellen Verbindungen der Formel

$$V - A - V$$
 (24)

umsetzen, wobei V Methyl, die Gruppierung -CH2COOH
oder deren funktionelle Säurederivate oder eine der phosphorhaltigen Substituenten der Formeln (15), (16), (17) oder
(18) bedeutet und A, R1 und R1' die unter Formeln (12), (13)
und (14) angegebene Bedeutung haben.

Als eine bevorzugte Herstellungsmethode zur Herstellung von Verbindungen gemäss Formel (2) kommt diejenige der vorstehend genannten Verfahrensvarianten in Betracht, gemäss welcher ein Mol einer Verbindung der Formel (19) mit zwei Mol einer Verbindung der Formel

umgesetzt wird, wobei R_2 die unter Formel (2) angegebene 30 Bedeutung hat.

Die Kondensation einer Verbindung der Formel (12) mit den Verbindungen der Formeln (13) und (14) kann in der Schmelze, vorzugsweise jedoch in einem indifferenten Lösungsmittel bei Temperaturen zwischen 20 und 150° C, nöti-(16) sungsmitter der Temperaturen Zundender durchgeführt wergenfalls in Gegenwart eines Katalysators durchgeführt werden. Als Lösungsmittel kommen beispielsweise Kohlenwasserstoffe wie Toluol und Xylol, oder Alkohole wie Methanol, Athanol, Isopropanol, Butanol, Glykole, Glykoläther wie 2-Methoxyäthanol, Hexanole, Cyclohexanol, und Cyclooctanol, (18) Methoxyatnanoi, riexanoie, Ojonoileanie, de ferner Ather wie Diisopropyläther, Tetrahydrofuran und Dioxan in Betracht. Besonders geeignet sind polare organische Lösungsmittel, wie Dimethylformamid, N-Methylpyrrolidon, Pyridin und Dimethylsulfoxid. Auch in wässriger Lösung lassen sich einige der Umsetzungen durchführen. Als Katalysatoren eignen sich beispielsweise tertiäre Amine wie Pyridin, Picoline und Triäthylamin sowie Piperidin, Zinkchlorid, Borsäure, Borsäureanhydrid, Essigsäureanhydrid, p-Toluolsulfonsäure, ferner Alkaliacetate, Alkali- oder Erdalkalihydroxide, Alkalialkoholate, Phthalimidkalium und Kaliumcarbonat.

Die vorstehend definierten neuen Verbindungen zeigen in gelöstem oder feinverteiltem Zustande eine oder mehr oder weniger ausgeprägte Fluoreszenz. Sie werden erfindungsgemäss zum optischen Aufhellen der verschiedensten synthetischen, halbsynthetischen oder natürlichen Materialien oder
 Substanzen, welche solche organischen Materialien enthalten, ausserhalb der Textilindustrie verwendet.

Hierfür seien beispielsweise, ohne dass durch die nachfolgende Übersicht irgendeine Beschränkung hierauf ausgedrückt werden soll, die folgenden Gruppen von organischen Materialien ausserhalb der Textilindustrie, soweit eine optische Aufhellung derselben in Betracht kommt, genannt:

I. Synthetische organische hochmolekulare Materialien:

a) Polymerisationsprodukte auf Basis mindestens eine polymerisierbare Kohlenstoff-Kohlenstoff-Doppelbindung enthaltender organischer Verbindungen, d. h. deren Homo- oder

Copolymerisate sowie deren Nachbehandlungsprodukte, wie beispielsweise Vernetzungs-, Pfropfungs- oder Abbauprodukte, Polymerisat-Verschnitte oder durch Modifizierung reaktionsfähiger Gruppen erhaltene Produkte, beispielsweise Polymerisate auf Basis von α,β -ungesättigten Carbonsäuren oder Derivaten solcher Carbonsäuren, insbesondere von Acrylverbindungen (wie z. B. Acrylestern, Acrylsäure, Acrylnitril, Acrylamiden und deren Derivaten oder deren Methacryl-Analoga), von Olefin-Kohlenwasserstoffen (wie z. B. Athylen, Propylen, Styrole oder Diene, ferner sogenannte ABS-Polymerisate) oder Polymerisate auf Basis von Vinyl- und Vinyliden-Verbindungen (wie z. B. Vinylchlorid, Vinylalkohol, Vinylidenchlorid).

- b) Polymerisationsprodukte, die durch Ringöffnung erhältlich sind, z. B. Polyamide vom Polycaprolactam-Typ, ferner Polymere, die sowohl über Polyaddition als auch Polykondensation erhältlich sind, wie Polyäther oder Polyacetale.
- c) Polykondensationsprodukte oder Vorkondensate auf Basis bi- oder polyfunktioneller Verbindungen mit kondensationsfähigen Gruppen, deren Homo- und Mischkondensationsprodukte, sowie Produkte der Nachbehandlung, wie beispielsweise Polyester, insbesondere gesättigte (z. B. Athylenglykolterephthalsäure-Polyester) oder ungesättigte (z. B. Maleinsäure-Dialkohol-Polykondensate sowie deren Vernetzungsprodukte mit anpolymerisierbaren Vinylmonomeren), unverzweigte sowie verzweigte (auch auf Basis höherwertiger Alkohole, wie z. B. Alkydharze), Polyester, Polyamide (z. B. Hexamethylendiamin-adipat), Maleinatharze, Melaminharze, deren Vorkondensate und Analoga, Polycarbonate oder Silikone.
- d) Polyadditionsprodukte wie Polyurethane (vernetzt und unvernetzt) oder Epoxydharze.
- II. Halbsynthetische organische Materialien (soweit deren Behandlung ausserhalb der Textilindustrie erfolgt), z. B. Celluloseester verschiedener Veresterungsgrade (sogenanntes 2½-Acetat, Triacetat) oder Celluloseäther, regenerierte Cellulose (Viskose, Kupferammoniak-Cellulose) oder deren Nachbehandlungsprodukte, sowie Casein-Kunststoffe.
- III. Natürliche organische Materialien animalischen oder vegetabilischen Ursprungs (soweit deren Behandlung ausserhalb der Textilindustrie erfolgt), beispielsweise auf Basis von Cellulose oder Proteinen, beispielsweise natürliche Lackharze, Stärke, Casein.

Die optisch aufzuhellenden organischen Materialien können den verschiedenartigsten Verarbeitungszuständen (Rohstoffe, Halbfabrikate oder Fertigfabrikate) angehören. Sie können andererseits in Form der verschiedenartigsten geformten Gebilde vorliegen, d. h. beispielsweise als vorwiegend SS Zusätze). dreidimensional ausgedehnte Körper wie Platten, Profile, Spritzgussformlinge, verschiedenartige Werkstücke, Schnitzel, Granulate oder Schaumstoffe, ferner als vorwiegend zweidimensional ausgebildete Körper wie Filme, Folien, Lacke, Überzüge, Imprägnierungen und Beschichtungen oder als vorwiegend eindimensional ausgebildete Körper wie Endlos-Fäden, Borsten, Flocken, Drähte. Die besagten Materialien können andererseits auch in ungeformten Zuständen in den verschiedenartigsten homogenen oder inhomogenen Verteilungsformen, wie z. B. als Pulver, Lösungen, Emulsionen, Dispersionen, Latices, Pasten oder Wachse vorliegen.

Fasermaterialien können beispielsweise als endlose Fäden (verstreckt oder unverstreckt), Stapelfasern, Flocken, Fa-

servliese, Filze, Watten, Beflockungs-Gebilde oder als Verbundstoffe, Papier, Pappen oder Papiermassen vorliegen.

Die Applikation der genannten optischen Aufhellmittel kann mit Vorteil aus wässrigem Medium, worin die betref-5 fenden Verbindungen in feinverteilter Form (Suspensionen, sogenannten Mikrodispersionen, gegebenenfalls Lösungen) vorliegen, vorgenommen werden. Gegebenenfalls können bei der Behandlung Dispergier-, Stabilisier-, Netz- und weitere Hilfsmittel zugesetzt werden. In Abhängigkeit vom verwen-10 deten Aufheller-Verbindungstyp kann es sich als vorteilhaft erweisen, vorzugsweise in neutralem, in alkalischem oder in saurem Bade zu arbeiten. Die Behandlung wird üblicherweise bei Temperaturen von etwa 20 bis 140° C, beispielsweise bei Siedetemperaturen des Bades oder in deren Nähe (etwa 90° C), durchgeführt. Unter Umständen können für Applikationen ausserhalb der Textilindustrie auch Lösungen oder Emulsionen in organischen Lösungsmitteln in Betracht kommen, wie dies von der Färbereipraxis her in der sogenannten Lösungsmittelfärberei (Foulard-Thermofixierapplikation, Ausziehfärbeverfahren in Färbemaschinen) bekannt ist.

Die neuen optischen Aufhellmittel gemäss vorliegender Erfindung können insbesondere den Materialien vor oder während deren Verformung zugesetzt bzw. einverleibt werden. So kann man sie beispielsweise bei der Herstellung von Filmen, Folien (z. B. Einwalzen in Polyvinylchlorid in der Hitze) oder Formkörpern der Pressmasse oder Spritzgussmasse beifügen.

Sofern die Formgebung voll- oder halbsynthetischer organischer Materialien durch Spinnverfahren bzw. über Spinn30 massen erfolgt, können die optischen Aufheller nach folgenden Verfahren appliziert werden:

- Zugabe zu den Ausgangssubstanzen (z. B. Monomeren) oder Zwischenprodukten (z. B. Vorkondensaten, Praepolymeren), d. h. vor oder während der Polymerisation, Polykondensation oder Polyaddition,
- Aufpudern auf Polymerisatschnitzel oder Granulate f
 ür Spinnmassen,
- Badfärbung von Polymerisatschnitzeln oder Granulaten für Spinnmassen,
- dosierte Zugabe zu Spinnschmelzen oder Spinnlösungen,
- Applikation auf Spinnkabel vor dem Verstrecken.

Die neuen optischen Aufhellmittel gemäss vorliegender Erfindung können beispielsweise auch in folgenden Anwendungsformen eingesetzt werden:

- a) In Mischungen mit Farbstoffen (Nuancierung) oder 50 Pigmenten (Farb- oder insbesondere z. B. Weisspigmenten).
 - b) In Mischungen mit Netzmitteln, Weichmachern, Quellmitteln, Antioxydantien, Lichtschutzmitteln, Hitzestabilisatoren, chemischen Bleichmitteln (Chlorit-Bleiche, Bleichbäder-Zusätze).
 - c) Einarbeiten der optischen Aufhellmittel in polymere Trägermaterialien (Polymerisations-, Polykondensations- oder Polyadditionsprodukte) in gelöster oder dispergierter Form für Anwendung z. B. in Beschichtungs-, Imprägnier- oder Bindemitteln (Lösungen, Dispersionen, Emulsionen) für Vliese, Papier, Leder.
 - d) Als Zusätze zu sogenannten «master batches».
 - e) Als Zusätze zu den verschiedensten industriellen Produkten, um dieselben marktfähiger zu machen (z. B. Aspektverbesserung von Seifen, Waschmitteln, Pigmenten).

f) In Kombination mit andern, optisch aufhellend wirkenden Substanzen.

g) In Spinnbadpräparationen, d. h. als Zusätze zu Spinnbädern, wie sie zur Gleitfähigkeitsverbesserung für die Weiterverarbeitung von Synthesefasern verwendet werden, oder aus einem speziellen Bad vor der Verstreckung der Faser.

h) Als Scintillatoren, für verschiedene Zwecke photographischer Art, wie z. B. optische Aufhellung photographischer Schichten (gegebenenfalls in Kombination mit Weisspigmenten), für elektrophotographische Reproduktion oder Supersensibilisierung.

In gewissen Fällen werden die Aufheller durch eine Nachbehandlung zur vollen Wirkung gebracht. Diese kann beispielsweise eine chemische (z. B. Säurebehandlung), eine thermische (z. B. Hitze) oder eine kombinierte chemisch/thermische Behandlung darstellen.

Die Menge der erfindungsgemäss zu verwendenden neuen optischen Aufheller, bezogen auf das optisch aufzuhellende 20 Material, kann in weiten Grenzen schwanken. Schon mit sehr geringen Mengen, in gewissen Fällen z. B. solchen von 0,0001 Gewichtsprozent, kann ein deutlicher und haltbarer Effekt erzielt werden. Es können aber auch Mengen bis zu etwa 0,8 Gewichtsprozent und gegebenenfalls bis zu etwa 2 Gewichtsprozent zur Anwendung gelangen. Für die meisten praktischen Belange sind vorzugsweise Mengen zwischen 0,0005 und 0,5 Gewichtsprozent von Interesse.

Die neuen optischen Aufhellmittel eignen sich auch besonders als Zusätze für Waschbäder oder zu Gewerbe- und Haushaltwaschmitteln, wobei sie in verschiedener Weise zugesetzt werden können. Zu Waschbädern werden sie zweckmässig in Form ihrer Lösungen in Wasser oder organischen Lösungsmitteln oder auch in feiner Verteilung als wässerige Dispersionen zugegeben. Zu Haushalt- oder gewerblichen Waschmitteln werden sie vorteilhaft in irgend einer Phase des Herstellungsprozesses der Waschmittel, z. B. dem sogenannten «slurry» vor dem Zerstäuben des Waschpulvers oder bei der Vorbereitung flüssiger Waschmittelkombinationen zugesetzt. Die Zugabe kann sowohl in Form einer Lösung oder 40 Dispersion in Wasser oder anderen Lösungsmitteln als auch ohne Hilfsmittel als trockenes Aufhellerpulver erfolgen. Man kann die Aufhellmittel beispielsweise mit den waschaktiven Substanzen vermischen, verkneten oder vermahlen und so dem fertigen Waschpulver zumischen. Sie können jedoch auch gelöst oder vordispergiert auf das fertige Waschmittel aufgesprüht werden.

Als Waschmittel kommen die bekannten Mischungen von Waschaktivsubstanzen, wie beispielsweise Seife in Form von Schnitzeln und Pulver, Synthetika, lösliche Salze von Sulfonsäurehalbestern höherer Fettalkohole, höher und/oder mehrfach alkylsubstituierten Arylsulfonsäuren, Sulfocarbonsäure-

estern mittlerer bis höherer Alkohole, Fettsäureacylaminoalkyl- oder -aminoarylglycerinsulfonate, Phosphorsäureester von Fettalkoholen usw., in Frage. Als Aufbaustoffe, sogenannte «Builders», kommen z. B. Alkalipoly- und -polymetaphosphate, Alkalipyrophosphate, Alkalisalze der Carboxymethylcellulose und andere «soilredepositionsinhibitoren», ferner Alkalisilikate, Alkalicarbonate, Alkaliborate, Alkaliperborate, Nitrilotriessigsäure, Athylendiaminotetraessigsäure, Schaumstabilisatoren wie Alkanolamide höherer Fettsäuren, in Betracht. Ferner können in den Waschmitteln beispielsweise enthalten sein:

Antistatische Mittel, rückfettende Hautschutzmittel wie Lanolin, Enzyme, Antimikrobika, Parfüme und Farbstoffe.

Die neuen optischen Aufheller haben den besonderen Vorteil, dass sie auch bei Gegenwart von Aktivchlorspendern, wie z. B. Hypochlorit, wirksam sind und ohne wesentliche Einbusse der Effekte in Waschbädern mit nichtionogenen Waschmitteln, z. B. Alkylphenolpolyglykoläthern, verwendet werden können.

Die erfindungsgemässen Verbindungen werden in Mengen von 0,005 bis 1 % oder mehr, bezogen auf das Gewicht des flüssigen oder pulverförmigen, fertigen Waschmittels, zugesetzt. Waschflotten, die die angegebenen Mengen der beanspruchten optischen Aufheller enthalten, verleihen beim Waschen von Textilien aus Cellulosefasern, Polyamidfasern, hochveredelten Cellulosefasern, Polyesterfasern, Wolle usw. einen brillanten Aspekt am Tageslicht.

Die Waschbehandlung wird beispielsweise wie folgt durchgeführt:

Die angegebenen Textilien werden während 1 bis 30 Minuten bei 20 bis 100° C in einem Waschbad behandelt, das 1 bis 10 g/kg eines aufgebauten, zusammengesetzten Waschmittels und 0,05 bis 1 %, bezogen auf das Waschmittelgewicht, der beanspruchten Aufhellmittel enthält. Das Flottenverhältnis kann 1:3 bis 1:50 betragen. Nach dem Waschen wird wie üblich gespült und getrocknet. Das Waschbad kann als Bleichzusatz 0,2 g/l Aktivchlor (z. B. als Hypochlorit) oder 0,1 bis 2 g/l Natriumperborat enthalten.

In den nachfolgenden Herstellungsvorschriften und Beispielen sind Teile, soweit nicht anders angegeben, immer Gewichtsteile und Prozente immer Gewichtsprozente. Schmelzund Siedepunkt sind, sofern nicht anders vermerkt, unkorrigiert. Alle Temperaturangaben erfolgen in Celsiusgraden.

Beispiel 1

10,9 g Benzhydrazid und 10,2 g p-Phenylen-diacrylsäure-dichlorid [P. Ruggli, W. Theilheimer, Helv. Chim. Acta 24 (1941) 899—918] werden in 100 ml wasserfreiem Pyridin ¼ Stunde bei 50° und ½ Stunde bei Rückflusstemperatur verrührt. Die entstandene Suspension wird abgekühlt und abfiltriert. Der Rückstand wird mit Athanol gewaschen und getrocknet. Man erhält 12,1 g des Dihydrazides der Formel 26

vom Smp. 325° (nach Umkristallisieren einer Probe aus Diäthylenglykol).

11,0 g des rohen Dihydrazids der Formel (26) werden in 50 ml o-Dichlorbenzol und 0,1 ml Pyridin unter Zutropfen von 5,3 ml Thionylchlorid bei Rückfluss verrührt. Das Di-

hydrazid geht dabei allmählich in Lösung. Nach beendeter Chlorwasserstoffentwicklung wird die Lösung abgekühlt. Das auskristallisierte Produkt wird abfiltriert, mit Dimethylformamid gewaschen und getrocknet. Man erhält 7,3 g des Dioxadiazols der Formel 27

vom Smp. 276° (nach Umkristallisieren aus Dimethylformamid und o-Dichlorbenzol unter Zuhilfenahme von Aluminiumoxid zur Entfärbung).

Beispiel 2

Eine Lösung von 9,8 g 2-Chlormethyl-5-phenyl-1,3,4-oxadiazol (Belg. Patent Nr. 773 033) und 20 mg Zinkchlorid in 26,2 g Triäthylphosphit wird langsam auf Rückflusstemperatur erhitzt und 1 Stunde bei 170—180° gehalten. Nach beendeter Abspaltung von Athylchlorid dampft man das überschüssige Triäthylphosphit im Vakuum ab und kühlt auf Zimmertemperatur.

Man löst den harzigen Rückstand, der das Phosphonat der Formel 28

enthält, zusammen mit 2,7 g Terephthalaldehyd in 50 ml Dimethylformamid und trägt unter Rühren im Verlauf von ½ Std. 4,3 g Natriummethylat in kleinen Portionen ein. Das Reaktionsgemisch wird noch 3 Stunden bei 45—50° gerührt, abgekühlt und mit 40 ml Wasser versetzt. Das auskristallisierte Produkt wird abgesaugt, wiederholt mit Methanol und Wasser gewaschen und getrocknet. Man erhält 2,7 g einer gelben Verbindung der Formel (27), die nach Umkristallisieren aus Dimethylformamid bei 276° schmilzt.

Beispiel 3

In eine Lösung von 16,0 g 2-Methyl-5-phenyl-1,3,4-oxadiazol und 6,7 g Terephthalaldehyd in 100 ml Dimethylformamid trägt man unter intensivem Rühren 15,9 g pulverisiertes Kaliumhydroxid (88 %)6ig) ein. Die Mischung wird 16 Stunden bei 50—55° verrührt, wobei Dunkelfärbung eintritt. Nach Abkühlen auf Raumtemperatur versetzt man das Reaktionsgemisch mit 20 ml Wasser und 5 ml Eisessig. Der entstandene Niederschlag wird abfiltriert und wiederholt mit Methanol und Wasser gewaschen. Der getrocknete Rückstand (6,8 g) wird dann in 30 ml Dimethylformamid aufgekocht, die Suspension abgekühlt, abfiltriert und der Rückstand mit Dimethylformamid gewaschen. Man erhält 5,6 g der Verbindung der Formel (27) in Form von blass grünlichgelben Kristallen vom Schmelzpunkt 276° C.

Verwendet man anstelle von Kaliumhydroxid 28,0 g Kalium-tert.-butylat, so erhält man nach analoger Verfahrensweise ebenfalls 5,6 g der Verbindung der Formel (27).

Anstelle von Dimethylformamid lässt sich die Kondensation auch in Dimethylsulfoxid oder N-Methylpyrrolidon durchführen.

Beispiel 4

Eine Mischung von 17,0 g p-Phenyl-benzhydrazid, 10,2 g p-Phenylen-diacrylsäure-dichlorid, 0,2 ml Pyridin und 200 ml wasserfreies Trichlorbenzol wird langsam unter Rühren auf Siedetemperatur erhitzt und 1 Stunde unter Rückfluss gehalten. Nach Zugabe von 0,2 ml Pyridin werden 8,8 ml Thionylchlorid im Verlauf einer Stunde zugetropft, wobei das ausgefallene Zwischenprodukt wieder in Lösung geht.

Nach beendeter Chlorwasserstoffentwicklung wird die Lösung abgekühlt und das angefallene Produkt abgesaugt. Letzteres wird mit Dimethylformamid und Athanol gewaschen und getrocknet. Man erhält 18,3 g der Verbindung der Formel 29

die nach Umkristallisation aus N-Methylpyrrolidon und Trichlorbenzol bei 331° schmilzt.

Beispiel 5

Eine Lösung von 1,34 g Terephthalaldehyd und 4,64 g des Oxadiazols der Formel 30

(Ann. Chim. 2 [1967], 169—181) in 100 ml Toluol und 0,2 ml Piperidin wird unter azeotroper Destillation des gebildeten Wassers 23 Stunden bei Rückfluss gekocht. Man dampft das Reaktionsprodukt im Vakuum vollständig ein und kristallisiert den Rückstand aus 20 ml Athylenglykolmonomethyläther. Man erhält 1,6 g der Verbindung der Formel 31

Hellgelbe, filzige Nädelchen vom Smp. 176° werden nach Umkristallisieren aus Perchloräthylen und n-Butanol erhalten.

2,4 g der Verbindung der Formel (31) werden mit 1,2 g Kalium-tert.-butylat in 50 ml abs. Athanol 2 Stunden bei Rückflusstemperatur verrührt. Man dampft das Reaktionsprodukt im Vakuum ein, kocht den Rückstand in 10 ml Wasser auf und versetzt nach Abkühlen auf Raumtemperatur mit 3 ml konz. Salzsäure. Die entstandene freie Dicarbonsäure wird abgesaugt, mit Wasser neutral gewaschen, im Vakuum getrocknet und unter Ausschluss von Luftsauerstoff 2 Stunden auf 230° erhitzt. Der Rückstand wird in siedendem

Dimethylformamid aufgenommen, die Lösung heiss klarfiltriert und abkühlen gelassen. Das ausgefallene Produkt wird abfiltriert, mit Dimethylformamid gewaschen und im ⁶⁰ Vakuum bei 100° getrocknet. Man erhält die Verbindung der Formel (27) vom Smp. 269—276°.

Beispiel 6

25,5 g p-Phenylendiacrylsäuredichlorid werden im Verlauf einer halben Stunde in eine Lösung von 80,0 g Hydrazinhydrat und 200 ml Äthanol unter Rühren und Kühlen eingetragen, so dass die Temperatur nicht über 40° ansteigt. Man

erhitzt hierauf 1 Stunde auf 70° und 1/4 Stunde auf Rückfluss. Nach Abkühlen auf Raumtemperatur wird das Reaktionsgut filtriert und der Rückstand mit Methanol gewaschen und getrocknet (18,5 g).

Dieses Produkt wird in 100 ml Dimethylformamid und 20 ml Pyridin bei Rückfluss verrührt. Zur Suspension werden dann im Verlauf von 10 Minuten 16,3 ml Benzoylchlorid zugetropft. Nach weiteren 2 Stunden wird abgekühlt, mit 30 ml Wasser versetzt, filtriert und der Rückstand mit Methanol gewaschen und getrocknet (16,0 g). 10

Dieses Produkt wird nach Zugabe von 0,15 ml Pyridin in 80 ml o-Dichlorbenzol unter Rückfluss verrührt und tropfenweise mit 12,6 ml Thionylchlorid versetzt. Nach beendeter

Chlorwasserstoffentwicklung wird abgekühlt, filtriert und der Rückstand mit Dimethylformamid gewaschen und getrocknet (8,3 g). Nach Umkristallisieren aus Dimethylformamid, Dodecylbenzol und o-Dichlorbenzol erhält man die Verbindung der Formel (27) vom Smp. 272-276°.

Beispiel 7

6,9 g Nicotinsäurehydrazid und 6,4 g p-Phenylendiacrylsäurechlorid werden in 100 ml wasserfreiem Pyridin eine Stunde bei Rückflusstemperatur verrührt. Die Suspension wird abgekühlt, abfiltriert und der Rückstand mit Pyridin und Wasser gewaschen und getrocknet. Man erhält 8,6 g des Dihydrazides der Formel 32

das bei ca. 325° schmilzt.

Diese Verbindung wird dann in 40 ml o-Dichlorbenzol, 8 ml Pyridin und 4,5 ml Phosphoroxychlorid eine Stunde bei

Rückflusstemperatur verrührt. Man fügt noch 10 ml Pyridin hinzu, kühlt ab, filtriert, wäscht den Rückstand mit Methanol und trocknet. Man erhält 5,1 g des Dioxadiazols der For-

aı

H

H

H

a2

H

H

Н

R4

Formel Nr.

40

41

42

Blassgelbe Kristalle vom Smp. 298° nach Umkristallisieren aus Dodecylbenzol und Dimethylformamid.

In ähnlicher Weise wie in den Beispielen 1, 3, 4 oder 7 beschrieben, werden Bis-Oxadiazolverbindungen der Formel 34

worin R4, a1 und a2 die in der folgenden Tabelle I angegebenen Bedeutungen haben, hergestellt.

	Tabelle I					OCH:		
Formel Nr.	R ₄	aı	a2	45 	43	CH ₅ -C-	H	H
35	CH _s	H	Н	50	44	С́н.	CI	CI
36	CH ₃	н	H		45	\bigcirc	осн3	ОСН₃
37	Chi.	н	H	55	46		ci	н
38	CH ₃	H	н	60	47	CI-	Ħ	н
39		Н	Н	65	48	cl-⟨	н	н
	CI	•				CI		

Tabelle I (Fortsetzung)

Tabelle I (Fortsetzung)

Formel Nr.	R4	aı	82	I	Formel Nr.	R4	aı	as				
49	СНз-	н	н	5	63 .	CH ₅	Н	H				
- 50	α′ <>-	н	н	10	64	CH,	н	H				
51	B	н	н	15	65	CH ₃	СН- Н	H				
52	Cl	н	н	20	66	\Diamond	н	н				
	CH ₂ CH ₂ O	- н	H		67		- н	. H				
54	\bigcirc	н Сн ₂ Сн ₃	H	25	68		H	н				
55	\Diamond	н	н	30		s	1	٠				
56	\Diamond	СОСН:	н	35	69 70	S'	- н	н				
57	CH ₂ O	СОСН.	н	40	71	~ Ń	н	н				
	CH.			45	72	CH ₃	Н	н				
58	CH ₂ O	Н СНз	Н	50	Beispiel 8 100 Teile eines Granulates aus Terephthalsäure-äthylen- glykol-Polyester werden innig mit jeweils 0,05 Teilen einer der Verbindungen der Formeln (27), (29), (35) (Smp. 312°),							
59	CH ₂ O	- н	H		(37) oder (43) (Smp. 340° C) vermischt und bei 285° unter Rühren geschmolzen. Nach dem Ausspinnen der Spinnmasse durch übliche Spinndüsen werden stark aufgehellte Polyester- fasern mit guter Lichtechtheit erhalten.							
60	CH ₂ O	ОСН.	H	55								
61		СН ₃	Н	60	Rollgefäss während 12 Stunden gemischt. Die Mischung wird unter Ausschluss von Luftsauerstoff geschmolzen und die Schmelze wie üblich versponnen. Die erhaltenen Fäden sind stark aufgehellt.							
62	СН	– н СН ₃	Н	65	Teilen Stabili	Beispiel 10 ge Mischung aus 100 To isator («Advastat BD 10 lioxyd, 59 Teilen Dioct	0»: Ba/Cd-Kor	nplex), 2				

0,2 Teilen einer der Verbindungen der Formeln (27), (37) oder (43) wird auf einem Kalander bei 150 bis 155° zu einer Folie ausgewalzt. Die so gewonnene opake Polyvinylchloridfolie besitzt einen wesentlich höheren Weissgehalt als eine Folie, welche den optischen Aufheller nicht enthält.

Beispiel 11

Eine Giessmasse aus 10 g Polyacrylnitril, 0,2 g Titandioxid (Anatas-Modifikation) als Mattierungsmittel und 40 ml Dimethylformamid, die 5 mg der Verbindung der Formel (27) enthält, wird auf eine Glasplatte gegossen und mit einem Metallstab zu einem dünnen Film ausgezogen. Nach dem Trocknen ist die Folie stark aufgehellt.

PATENTANSPRUCH

Verwendung von Bis-Oxadiazolen der Formel

worin R1 und R1' unabhängig voneinander Wasserstoff, einen gegebenenfalls nicht-chromophor substituierten aliphatischen, cycloaliphatischen oder araliphatischen Rest mit bis zu 18 Kohlenstoffatomen oder einen gegebenenfalls nicht-chromo- 20 serhalb der Textilindustrie. phor substituierten, höchstens zweikernigen, carbocyclischen oder heterocyclischen aromatischen Rest bedeuten, und der Benzolring A gegebenenfalls mit Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Sulfogruppen oder deren Salzen oder einer gegebenenfalls

substituierten Sulfamoylgruppe substituiert sein oder einen ankondensierten cycloaliphatischen Sechsring aufweisen kann, zum optischen Aufhellen von organischen Materialien aus-

UNTERANSPRÜCHE

1. Verwendung ausserhalb der Textilindustrie gemäss Pa-25 tentanspruch von Bis-Oxadiazolen der Formel

worin R2 Wasserstoff, Alkyl mit 1 bis 6 Kohlenstoffatomen. welches als Substituenten Halogen, Cyano oder Alkoxy mit 135 bis 4 Kohlenstoffatomen oder Phenoxy aufweisen kann, Alkenyl mit 2 bis 4 Kohlenstoffatomen, gegebenenfalls mit Methylgruppen substituiertes Cyclohexyl, Alkoxy mit 1 bis 4 Kohlenstoffatomen, gegebenenfalls im Benzolkern mit Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkoxy mit 1 bis 440 einen ankondensierten cycloaliphatischen Sechsring aufwei-Kohlenstoffatomen, Methylendioxy oder Phenoxy substituiertes Phenylalkyl mit 1 bis 3 Kohlenstoffatomen im Alkylteil oder gegebenenfalls nicht-chromophor substituiertes Phenyl.

Phenoxy, Styryl, Diphenylyl, Naphthyl, Pyridyl, Chinolyl, Thienyl-2 oder Furyl-2 bedeutet und

der Benzolring A gegebenenfalls mit Halogen, Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Sulfogruppen oder deren Salzen oder einer gegebenenfalls substituierten Sulfamoylgruppe substituiert sein oder sen kann.

2. Verwendung ausserhalb der Textilindustrie gemäss Patentanspruch von Bis-Oxadiazolen der Formel

worin R3 Styryl, Phenyl, Diphenylyl, Naphthyl, Pyridyl, Chinolyl, Thienyl-2, 5-Phenyl-thienyl-2, Furyl-2 oder Phenyl substituiert mit Halogen, Alkyl mit 1 bis 5 Kohlenstoffatomen, Cycloalkyl mit 5 oder 6 Kohlenstoffatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Phenoxy, Carboxyl oder deren Salzen, Carbalkoxy mit 2 bis 9 Kohlenstoffatomen, Cyano, Methylendioxy, Sulfogruppen oder deren Salzen, gegebenenfalls am Stickstoff mit Alkyl mit 1 bis 6 Kohlenstoffatomen oder Phenyl substituiertem Carbamoyl oder Sulfamoyl, Alkylsulfonyl oder Alkoxysulfonyl mit 1 bis 6 Kohlenstoffatomen, gegebenenfalls mit Halogen, Alkyl mit 1 bis 4 Kohlen-

stoffatomen substituiertem Phenylsufonyl oder Phenoxysulfonyl, Amino, Alkanoylamino mit 2 bis 4 Kohlenstoffatomen oder Alkanoyloxy mit 2 bis 4 Kohlenstoffatomen bedeutet

Benzolring B gegebenenfalls mit Halogen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Sulfogruppen oder deren Salzen, gegebenenfalls am Stickstoff mit Alkyl mit 1 bis 6 Kohlenstoffatomen oder Phenyl substituiertem Sulfamoyl substituiert sein

3. Verwendung ausserhalb der Textilindustrie gemäss Patentanspruch von Bis-Oxadiazolen der Formel

$$X_1$$
 X_2
 X_3
 X_4
 X_5
 X_5
 X_5
 X_5
 X_5
 X_5
 X_5
 X_5

worin X₁ Wasserstoff, Halogen, Alkyl mit 1 bis 5 Kohlenstoffatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Phenyl, Phenoxy, Carboxyl oder deren Salze, Carbalkoxy mit 2 bis 5 Kohlenstoffatomen, Cyano, Sulfogruppen oder deren Salze, X₂ und X₃ unabhängig voneinander Wasserstoff, Chlor, Alkyl mit 1 bis 5 Kohlenstoffatomen oder Alkoxy mit 1 bis 4 Kohlenstoffatomen oder zwei der X-Symbole,

 X_1 , X_2 und X_3 miteinander verbunden Methylendioxy bedeuten und der

Benzolring D gegebenenfalls mit Chlor, Alkoxy mit 1 bis 4 Kohlenstoffatomen, Sulfogruppen oder deren Salze substituiert sein kann.

4. Verwendung ausserhalb der Textilindustrie gemäss Patentanspruch von Bis-Oxadiazolen der Formel

worin X4 Wasserstoff, Chlor, Alkyl mit 1 bis 4 Kohlenstoffatomen, Alkoxy mit 1 bis 4 Kohlenstoffatomen oder Phenyl bedeutet.

5. Verwendung ausserhalb der Textilindustrie gemäss Patentanspruch von Bis-Oxadiazolverbindungen der im Patentanspruch angegebenen Formel zum optischen Aufhellen von Polyamid, Polyvinylchlorid, Polyester oder Polyacrylnitril in der Masse.