第七章 图

- 7.1 基本概念
- 7.2 图的存储结构
- 7.3 图的遍历
- 7.4 最小支撑树
- 7.5 拓扑排序
- 7.6 关键路径
- 7.7 最短路径

7.5 拓扑排序

计划、施工过程、生产流程、程序流程等都是"工程"。除了很小的工程外,一般都把工程分为若干个叫做"活动"的子工程。完成了这些活动,这个工程就可以完成了。

AOV网:在有向图中,用顶点表示活动,用有向边表示活动之间的先后关系,称这样的有向图为AOV网(Activity On Vertex Network)。

[例]按拓扑次序安排计算机专业必修课程

计算机专业必修课程

课程代	课程名称	先修课
C1	程序设计基础	无
C2	离散数学	C1
C3	数据结构	C1, C2
C4	汇编语言	C1
C5	语言设计和分析	C3, C4
C6	计算机原理	C11
C7	编译原理	C3. C5
C8	操作系统	C3, C6
C9	高等数学	无
C10	线性代数	C9
C11	普通物理	C9
C12	数值分析	C1, C9, C10

例如,计算机专业学生的学习就是一个**工程**,每一门课程的学习就是整个工程的一些**活动**。其中有些课程**要求先修**,有些则不要求。这样在有的课程之间有**领先关系**,有的课程可以**并行**地学习。

AOV网络中,如果活动 V_i 必须在活动 V_j 之前进行,则存在有向边 $<V_i$, $V_j>$ 。

AOV网络中不能出现有向回路,即有向环。如果出现了有向环,则意味着某项活动应以自己作为先决条件。因此,必须先判断它是否存在有向环。

拓扑序列:

把AOV网中的所有顶点排成一个线性序列,使每个活动的所有前驱活动都排在该活动的前边。

拓扑排序:

构造AOV网的拓扑序列的过程被称为拓扑排序。

拓扑排序基本步骤:

- ① 从网中选择一个入度为0的顶点且输出之。
- ② 从网中删除该顶点及其所有出边。
- ③ 执行① ② ,直至所有顶点已输出,或网中剩余顶点入度均 不为0(说明网中存在回路,无法继续拓扑排序)

拓扑序列: C1--C2--C3--C4--C5--C7--C9--C10--C11--C6--C12--C8

或 : C9--C10--C11--C6--C1--C12--C4--C2--C3--C5--C7--C8

拓扑序列: C1--C2--C3--C4--C5--C7--C9--C10--C11--C6--C12--C8

或: C9--C10--C11--C6--C1--C12--C4--C2--C3--C5--C7--C8

一个AOV网的拓扑序列不是唯一的

拓扑序列: C1

(1)

拓扑序列: C1--C2 (2)

拓扑序列: C1--C2--C3

拓扑序列: C1--C2--C3--C4
(4)

拓扑序列: C1--C2--C3--C4--C5--C7--C9 --C10 (8)

拓扑序列: C1--C2--C3--C4--C5--C7--C9 --C10--C11--C6

--C10--C11

(C8)

(11) 拓扑序列: C1--C2--C3--C4--C5--C7--C9 --C10--C11--C6--C12--C8

拓扑序列: C1--C2--C3--C4--C5--C7--C9 --C10--C11--C6--C12

(12)

回路与拓扑排序

- ◆任何无回路的AOV网, 其顶点均可排成拓扑序列(其 拓扑序列不一定唯一);
- ◆如果能将AOV网的所有顶点都排入一个拓扑序列。 该AOV网中必定无有向环;
- ◆如果得不到所有顶点的拓扑序列,则说明AOV网中存 在有向环(AOV网所代表的工程是不可行的)。
- ◆存在回路的AOV网, 找不到所有顶点的拓扑序列。
- ◆因此,可以用拓扑排序判断有向图中是否有回路。

■算法实现

- ◆以邻接表作存储结构
- ◆把邻接表中所有入度为0的顶点进栈
- ◆栈非空时,输出栈顶元素V;并退栈;在邻接表中查找V;的直接后继V_k,把V_k的入度减1;若V_k的入度为0则进栈
- ◆重复上述操作直至<mark>栈空</mark>为止。若栈空时输出的 顶点**个数不是n**,则有向图**有环**;否则,拓扑 排序完毕

■算法描述

输出序列: 6

输出序列: 6

输出序列: 6

输出序列: 6

输出序列: 6

输出序列: 6

输出序列: 6 1

输出序列: 6 1 3

输出序列: 6 1 3 2

输出序列: 6 1 3 2

输出序列: 6 1 3 2 4

输出序列: 6 1 3 2 4 5

输出序列: 6 1 3 2 4 5

■算法分析

建邻接表: T(n)=O(e)

搜索入度为0的顶点的时间: T(n)=O(n)

拓扑排序: T(n)=O(n+e)

拓扑排序算法

- ◆假定AOV网用邻接表的形式存储。为实现拓扑排 序算法,事先需做好两项准备工作:
- ◆建立一个数组count[],count[i]的元素值取对应顶 点i的入度:
- ◆建立一个堆栈,栈中存放入度为0的顶点,每当一 个顶点的入度为0,就将其压入栈。

Status TopologicalSort(ALGraph G) { // 算法7.12

```
// 有向图G采用邻接表存储结构。
// 若G无回路,则输出G的顶点的一个拓扑序列并返回OK,
                                           否则ERROR
SqStack S;
int count, k, i;
ArcNode *p;
char indegree[MAX_VERTEX_NUM];
FindInDegree(G, indegree); // 对各顶点求入度indegree[0..vernum-1]
InitStack(S);
for (i=0; i<G.vexnum; ++i) // 建零入度顶点栈S
  if (!indegree[i]) Push(S, i); // 入度为0者进栈
count = 0;
                   // 对输出顶点计数
```

```
while (!StackEmpty(S)) {
    Pop(S, i);
    printf(i, G.vertices[i].data); ++count; // 输出i号顶点并计数
    for (p=G.vertices[i].firstarc; p; p=p->nextarc) {
      k = p-adjvex; // 对i号顶点的每个邻接点的入度减1
      if (!(--indegree[k])) Push(S, k); // 若入度减为0, 则入栈
  if (count<G.vexnum) return ERROR;
                                      // 该有向图有回路
  else return OK;
} // TopologicalSort
```

引理5.1 设图G = (V, E)是非循环图, V(G)≠Φ, 则G中一定存在入度为零的顶点

定理5.2 设G=(V, E)是非循环图, V(G)={1, 2 ,..., n}, e=|E(G)|. 则算法TopoOrder是正确的 且算法的时间复杂性为 O(n+e).

第七章 图

- 7.1 基本概念
- 7.2 图的存储结构
- 7.3 图的遍历
- 7.4 最小支撑树
- 7.5 拓扑排序
- 7.6 关键路径
- 7.7 最短路径

7.6 关键路径

基本概念

- ◆如果在有向无环的带权图中
 - 用有向边表示一个工程中的各项活动(Activity)
 - 用边上的权值表示活动的持续时间(Duration)
 - 用顶点表示事件(Event)
- ◆则这样的有向图叫做用边表示活动的网络,简称 AOE (Activity On Edges)网络。
- 源点:表示整个工程的开始(入度为零)。
- 汇点:表示整个工程的结束(出度为零)。

□问题提出

把工程计划表示为有向图,用<mark>顶点表示事件,弧表示活动;</mark> 每个事件表示在它之前的活动已完成,在它之后的活动可以开始。

例 设一个工程有11项活动,9个事件 事件 V1——表示整个工程开始 事件 V9——表示整个工程结束

- > 完成整个工程至少需要多少时间?
- ▶ 哪些活动不能延期,否则将会影响整个工程进度?
- > 在不推迟整个工程进度的情况下,哪些活动可以适当延 期?

- ◆ 在AOE网络中, 有些活动顺序进行, 有些活动并行进 行。
- ◆ 从源点到各个顶点,以至从源点到汇点的有向路径 可能不止一条。这些路径的长度也可能不同。完成 不同路径的活动所需的时间虽然不同, 但只有各条 路径上所有活动都完成了,整个工程才算完成。
- ◆ 因此,完成整个工程所需的时间取决于从源点到汇 点的最长路径长度,即在这条路径上所有活动的持 续时间之和。这条路径长度最长的路径就叫做关键 路径(Critical Path)。

相关定义与术语

- □ AOE网(Activity On Edge)——也叫边表示活动的网。 AOE网是一个带权的**有向无环图**,其中**顶点**表示**事件,弧** 表示**活动,权**表示活动**持续时间**
- □ 路径长度——路径上各活动持续时间之和
- 关键路径——路径长度最长的路径叫~
- □ Ve(j)——表示事件Vj的最早发生时间
- □ VI(j)——表示事件Vj的最迟发生时间
- □ e(i)——表示活动ai的最早开始时间
- □ I(i)——表示活动ai的最迟开始时间
- □ I(i)-e(i)——表示完成活动ai的时间余量
- □ **关键活动**——关键路径上的活动叫~,即【(i)=e(i)的活动

[例] 某工程

- 关键路径: 从源点到汇点具有最大长度的路径称 为关键路径。
- •路径长度:指路径上的各边权值之和。
- 关键活动: 关键路径上的活动。

- 关键活动有关的量:
- ① 事件vi的最早发生时间ve(j): 从源点vo到vi的最长路径长度。
- ②事件v_i的最迟发生时间vl(j):

保证汇点的最早发生时间不推迟的前提下,事件vi允许的最迟 开始时间,等于ve(n-1)减去从 v_i 到 v_{n-1} 最长路径长度。

• 求所有事件的最早发生时间:

递推公式: // 拓扑排序正序 $ve(k) = \begin{cases} 0 & k=1 \\ max\{ve(j) + weight(< j, k>)\} \\ < v_j, v_k > \in E(G), k = 2, 3, ..., n \end{cases}$

• 求所有事件的最迟发生时间:

递推公式: // 拓扑排序逆序

$$ve(6)=16$$
 $vl(2)=6$

$$ve(7) = 14 vl(1) = 6$$

$$ve(8)=18$$
 $vl(0)=0$

ve(5) = 7

$$vl(0)=0$$

vl(3)=9

•关键活动有关的量:

③活动ai的最早开始时间e(i):

设活动 a_i 在有向边 $\langle v_j, v_k \rangle$ 上,e(i)是从源

点 v_0 到 v_i 的最长路径长度。因此e(i)=ve(j)。

• 关键活动有关的量:

关门

- ④ 活动ai的最迟开始时间l(i):
 - l(i) 是在不会引起时间延误的前提下,该活动允许的 最迟开始时间。设活动 a_i 在有向边< v_i , v_k >上,则 l(i) = vl(k)-weight($\langle j, k \rangle$)

ve(0)=0	vl(8)= 18
ve(1)=6	vl(7) = 15
ve(2)=4	vl(6)= 16
ve(3)=5	vl(5) = 11
ve(4)= 7	vl(4)=7
ve(5)=7	vl(3)=9
ve(6)= 16	vl(2)=6
ve(7)= 14	vl(1)=6
ve(8)= 18	vl(0)=0

设活动 a_i 在有向边 $< v_j, v_k >$ 上 e(i)=ve(j)l(i) = vl(k)-weight($\langle j, k \rangle$)

a _i	\mathbf{a}_1	$\mathbf{a_2}$	$\mathbf{a_3}$	$\mathbf{a_4}$	a ₅	a ₆	a ₇	a ₈	a ₉	a ₁₀	a ₁₁
e(i)	0	0	0	6	4	5	7	7	7	16	14
l(i)	0	2	4	6	6	9	7	8	11	16	15

• 关键活动: l(i) = e(i) 表示活动ak 是没有时间余量的关键活动

为找出关键活动, 需要求各个活动的 e(i) 与 l(i), 以判 别是否 l(i) = e(i)

为求得e(i) 与 l(i),需要先求得从源点 V_0 到各个顶点 V_i 的 ve(j) 和 vl(j)。

所有的关键活动组成的路径就是关键路径

求关键活动算法

求关键活动的基本步骤:

- ①对AOE网进行拓扑排序,按拓扑次序求出各顶点事件 的最早发生时间ve, 若网中有回路, 则终止算法:
- ② 按拓扑序列的逆序求各顶点事件的最迟发生时间vl:
- ③根据ve和vl的值,求各活动的最早开始时间e(i)与最 迟开始时间l(i),若e(i)=l(i),则i是关键活动。

■算法实现

- ◇以邻接表作存储结构
- ◆从源点V1出发,令Ve[1]=0,按拓扑序列求各顶点的Ve[i]
- ◆从汇点Vn出发,令VI[n]=Ve[n],按**逆拓扑序列**求其余各顶点的VI[i]
- ◆根据各顶点的Ve和VI值,计算每条弧的e[i]和I[i],找出e[i]=I[i]的关键活动

■算法描述

- ◆输入顶点和弧信息,建立其邻接表
- ◇计算每个顶点的入度
- ◇对其进行<mark>拓扑排序</mark>
 - □排序过程中求顶点的Ve[i]
 - 口将得到的拓扑序列进栈
 - □按逆拓扑序列求顶点的VI[i]
- ◆计算每条弧的e[i]和I[i],找出e[i]=I[i]的关键活动

[例] 求关键活动 — 第1步

按拓扑正序递推:

$$ve(k) \begin{cases} ve(0) = 0 & k=0 \\ max\{ve(j) + weight(< j, k>)\} \\ < v_j, v_k > \in E(G), k=1, 2, ..., n-1 \end{cases}$$

$$ve(0)=0$$

$$ve(1) = ve(0) + weight(<0,1>) = 0 + 6 = 6$$

$$ve(2) = ve(0) + weight(<0,2>) = 0 + 4 = 4$$

$$ve(3) = ve(0) + weight(<0,3>) = 0 + 5 = 5$$

$$ve(4) = max\{ve(1) + weight(<1,4>),$$

$$ve(2) + weight(<2,4>) = max\{6+1,4+1\}=7$$

$$ve(5) = ve(3) + weight(<3,5>) = 5 + 2 = 7$$

$$ve(6) = ve(4) + weight(<4,6>) = 7 + 9 = 16$$

$$ve(7) = max\{ve(4) + weight(<4,7>),$$

$$ve(5)+weight(<5,7>)$$
=max{7+7,7+4}=14

$$ve(8) = max\{ve(6) + weight(<6,8>),$$

$$ve(7) + weight(<7,8>)$$
 = $max\{16+2,14+4\}=18$

[例] 求关键活动— 第2步

按拓扑逆序递推:


```
vl(8) = ve(8) = 18
vl(7) = vl(8)-weight(<7,8>)=18-3=15
vl(6) = vl(8)-weight(<6,8>)=18-2=16
vl(5) = vl(7)-weight(<5,7>)=15-4=11
vl(4) = min\{vl(7) - weight(<4,7>),
           vl(6)- weight(<4,6>)} =min\{15-7,16-9\}=7
vl(3) = vl(5)-weight(<3,5>)=11-2=9
vl(2) = vl(4)-weight(<2,4>)=7-1=6
vl(1) = vl(4) - weight(<1,4>) = 7-1=6
vl(0) = min\{vl(1) - weight(<0,1>),
           vl(2)- weight(<0,2>),
           vl(3)- weight(<0,3>)} = min{6-6,6-4,9-5}=0
```

[例] 求关键活动— 第3步:

 $e(i)=ve(j), l(i)=vl(k)-weight(\langle j,k \rangle)$

a _i	\mathbf{a}_1	$\mathbf{a_2}$	$\mathbf{a_3}$	$\mathbf{a_4}$	a ₅	a ₆	a ₇	a ₈	a ₉	a ₁₀	a ₁₁
e(i)	0	0	0	6	4	5	7	7	7	16	14
l(i)	0	2	4	6	6	9	7	8	11	16	15
l_i - e_i	0	2	4	0	2	4	0	1	4	0	1

■求关键路径步骤

令求Ve(i)

令求VI(j)

令求e(i)

令求l(i)

顶点	Ve	Vl
V1	0	0 1
V2	6	6
V3	4	6
V4	5	9
V5	7	7
V6	7	11
V7	16	16
V8	14	15
V9	18	18

活动	e	1	1-e
a1	0	0	0 🗸
a2	0	2	2
a3	0	4	4
a4	6	6	0 🗸
a5	4	6	2
a6	5	9	4
a7	7	7	0 🗸
a8	7	8	1
a9	7	11	4
a10	16	16	0 🗸
a11	14	15	1

表 5.1 图 5.14 中各个活动的最早开始时间和最晚开始时间

a_i	a_{I}	a_2	a_3	a_4	a_5	a_6	a_7	a_{8}	ад	a_{10}	a_{II}	a_{12}
e(i)	0	0	0	6	4	4	5	7	7	7	16	19
l(i)	0	2	4	6	6	10	9	8	7	11	17	19
l(i)-e(i)	0	2	4	0	2	6	4	1	0	4	1	0

Status TopologicalOrder(ALGraph G, Stack &T) { // 算法7.13 // 有向网G采用邻接表存储结构,求各顶点事件的最早发生时间ve(全局变量) // T为拓扑序列定点栈, S为零入度顶点栈。 // 若G无回路,则用栈T返回G的一个拓扑序列,且函数值为OK, 否则为ERROR。 SqStack S; int count, k, i; ArcNode *p; char indegree[MAX_VERTEX_NUM]; FindInDegree(G, indegree); // 对各顶点求入度indegree[0..vernum-1] InitStack(S);

// 对输出顶点计数

for (i=0; i<G.vexnum; ++i) // 建零入度顶点栈S

if (!indegree[i]) Push(S, i); // 入度为0者进栈

count = 0;

```
for(int i=0; i<G.vexnum; i++) ve[i] = 0; // 初始化
 while (!StackEmpty(S)) {
    Pop(S,i); Push(T, i); ++count; //i号顶点入T栈并计数
    for (p=G.vertices[i].firstarc; p; p=p->nextarc) {
      k = p-adjvex; // 对i号顶点的每个邻接点的入度减1
      if (!(--indegree[k])) Push(S, k); // 若入度减为0, 则入栈
      if (ve[i]+p->info > ve[k]) ve[k] = ve[i]+p->info;
    }//while
  if (count<G.vexnum) return ERROR;
                                    // 该有向图有回路
  else return OK;
} // TopologicalOrder
```

Status CriticalPath(ALGraph G) { // 算法7.14

```
// G为有向网,输出G的各项关键活动。
Stack T;
int a,j,k,el,ee,dut;
char tag;
ArcNode *p;
if (!TopologicalOrder(G, T)) return ERROR;
for(a=0; a< G.vexnum; a++)
  vl[a] = ve[G.vexnum-1]; // 初始化顶点事件的最迟发生时间
```

```
while (!StackEmpty(T)) // 按拓扑逆序求各顶点的vl值
     for (Pop(T, j), p=G.vertices[j].firstarc; p; p=p->nextarc) {
       k=p->adjvex; dut=p->info; //dut<j,k>
       if (vl[k]-dut < vl[j]) vl[j] = vl[k]-dut;
  for (j=0; j<G.vexnum; ++j) // 求ee,el和关键活动
     for (p=G.vertices[j].firstarc; p; p=p->nextarc) {
       k=p->adjvex;dut=p->info;
       ee = ve[i]; el = vl[k]-dut;
       tag = (ee==el) ? '*': ';
       printf(j, k, dut, ee, el, tag); // 输出关键活动
  return OK;
} // CriticalPath
```

时间复杂性:

对定点进行拓扑排序的时间复杂性为O(n+e), 以拓扑排序求ve[i]和以拓扑逆序求vl[i]时, 所需 时间为均为O(e),求各个活动的e[k]和l[k]的时间 复杂度为O(e),整个算法的时间复杂性是O(n+e)。

第七章 图

- 7.1 基本概念
- 7.2 图的存储结构
- 7.3 图的遍历
- 7.4 最小支撑树
- 7.5 拓扑排序
- 7.6 关键路径
- 7.7 最短路径

5.6 最短路径问题

- ◆两顶点间可能存在**多条路径**,每条路径 经过的边数不同,每条路径的各边权值 之和也不同。
- ◆从一个指定的顶点到达另一指定顶点的 路径上各边权值之和最小的路径被称为 最短路径,这类问题亦称为最短路径问 题。

□ 问题提出

用带权的有向图表示一个交通运输网,图中:

顶点:表示城市

边: 表示城市间的交通联系

权: 表示此线路的长度或沿此线路运输所花的时间或费用等

问题: 从某顶点出发,沿图的边到达另一顶点所经过的路径中,

各边上权值之和最小的一条路径——最短路径

□ 从某个源点到其余各顶点的最短路径

最短路径	长度
<v0,v1></v0,v1>	13
<v0,v2></v0,v2>	8
<v0,v2,v3></v0,v2,v3>	13
<v0,v2,v3,v4></v0,v2,v3,v4>	19
<v0,v2,v3,v4,v5></v0,v2,v3,v4,v5>	21
<v0,v1,v6></v0,v1,v6>	20

Dijkstra算法

基本思想:

- ➤ 将图中所有顶点集合V分成两个集合S和T,即V=S+T;
- ➤ 第一个集合S包括已确定最短路径的顶点;
- > 第二个集合T包括尚未确定最短路径的顶点;
- ▶ 按照最短路径长度递增的顺序逐个把集合T的顶点加到集合S中去;
- ▶ 直至从源点出发可以到达的所有顶点都包括到集合S中。

保证:

- ➤ 从源点Vo到S中各顶点的最短路径长度都不大于从Vo到T中任何顶点的最短路径长度
- > 每个顶点对应一个距离值

S中顶点:从Vo到此顶点的最短路径长度

T中顶点: 从Vo到此顶点的只包括S中顶点作中间顶点的最短路径长度

依据: 可以证明Vo到T中顶点Vk的最短路径(反证法可证)

- ➤ 或是从Vo到Vk的直接路径的权值;
- ▶ 或是从Vo经S中顶点到Vk的路径权值之和。

Dijkstra算法可以按照非递减次序依次得到各顶点的最小路径长度。

最小最短路径

次小最短路径

第三小最短路径

第四小最短路径

第五小最短路径

Dijkstra算法

基本思想:

- ➤ 将图中所有顶点集合V分成两个集合S和T,即V=S+T;
- ➤ 第一个集合S包括已确定最短路径的顶点;
- > 第二个集合T包括尚未确定最短路径的顶点;
- ▶ 按照最短路径长度递增的顺序逐个把集合T的顶点加到集合S中去;
- ▶ 直至从源点出发可以到达的所有顶点都包括到集合S中。

保证:

- ➤ 从源点Vo到S中各顶点的最短路径长度都不大于从Vo到T中任何顶点的最短路径长度
- > 每个顶点对应一个距离值

S中顶点:从Vo到此顶点的最短路径长度

T中顶点: 从Vo到此顶点的只包括S中顶点作中间顶点的最短路径长度

依据: 可以证明Vo到T中顶点Vk的最短路径(反证法可证)

- ➤ 或是从Vo到Vk的直接路径的权值;
- ▶ 或是从Vo经S中顶点到Vk的路径权值之和。

Dijkstra算法可以按照非递减次序依次得到各顶点的最小路径长度。

求最短路径步骤

- ◆ 初使时令 S={VO}, T={其余顶点}, T中顶点对应的 距离值:
 - ➤ 若存在<VO, Vi>, 为<VO, Vi>弧上的权值
- ◆ 从T中选取一个其距离值为最小的顶点W,加入S
- ◆ 对T中顶点的距离值进行修改:若加进W作中间顶点,从VO到Vi的距离值比不加W的路径要短,则修改此距离值
- ◆ 重复上述步骤,直到S中包含所有顶点,即S=V为止

终点	从V0到各终点的最短路径及其长度						
V1	13	13					
	<v0,v1></v0,v1>	<v0,v1></v0,v1>					
V2	8						
	<v0,v2></v0,v2>						
V3	∞	13	13				
4 5		<v0,v2,v3></v0,v2,v3>	<v0,v2,v3></v0,v2,v3>				
V4	30	30	30	19			
	<v0,v4></v0,v4>	<v0,v4></v0,v4>	<v0,v4></v0,v4>	<v0,v2,v3,v4></v0,v2,v3,v4>			
V5	∞	∞	22	22	21		
V 5			<v0,v1,v5></v0,v1,v5>	<v0,v1,v5></v0,v1,v5>	<v0,v2,v3,v4,v5></v0,v2,v3,v4,v5>		
V6	32	32	20	20	20		
V 0	<v0,v6></v0,v6>	<v0,v6></v0,v6>	<v0,v1,v6></v0,v1,v6>	<v0,v1,v6></v0,v1,v6>	<v0,v1,v6></v0,v1,v6>		
Vj	V2:8	V1:13	V3:13	V4:19	V6:20		
٧J	<v0,v2></v0,v2>	<v0,v1></v0,v1>	<v0,v2,v3></v0,v2,v3>	<v0,v2,v3,v4></v0,v2,v3,v4>	<v0, v1,="" v6=""></v0,>		

■ Dijkstra算法描述

初始时(S为初始顶点), $D_s=0$ 且 $\forall i \neq S$,有 $D_i=+\infty$ 。

- ①在未访问顶点中选择 D_v 最小的顶点v,访问v,令 S[v]=1。
- ②依次考察v的邻接顶点w,若

 D_v +weight($\langle v, w \rangle$) $\langle D_w$,

则改变 D_{w} 的值,使 $D_{w} = D_{v} + weight(\langle v, w \rangle)$ 。

③重复①②,直至所有顶点被访问。

■ 说明

- > 引入一个辅助数组dist。它的每一个分量dist[i]表示当前 找到的从源点s到顶点i的最短路径的长度。初始状态: dist[s]=0,对其它节点i有 $dist[i]=+\infty$ 。
- > 引入path[i]记录s到i最短路径中i的前驱节点编号

- ①在未访问顶点中选择D_v最小的顶点v, 访问v, 令 S[v]=1。
- ②依次考察v的邻接顶点w,若

 D_v +weight($\langle v, w \rangle$) $\langle D_w \rangle$

则改变 D_w 的值,使 $D_w = D_v + weight(< v,$ w>) 。

③重复①②,直至所有顶点被访问。

0 0 S dist 00 00 00 00 path

S dist path

1	1	1	1	0
0	3	15	11	23
at a constitution	$\mathbf{v_0}$	\mathbf{v}_3	\mathbf{v}_1	$\mathbf{v_3}$

时间复杂性分析

$$O(\sum_{i=1}^{n} (n+d_i)) = O(n^2 + \sum_{i=1}^{n} d_i) = O(n^2 + e)$$

该算法的时间复杂性为 $O(n^2+e)$,也可认为是 $O(n^2)$

7.6.3 每对顶点间的最短路径

- ◆ 问题: 已知一个各边权值均大于0的带权有向图,对每一对顶 点v_i≠v_i,求v_i与v_i间的最短路径和最短路径长度。
- ◆ 方法一:每次以一个顶点为源点,重复执行Dijkstra算法n
- ◆ 方法二: 弗洛伊德(Floyd)算法
 - >算法思想:逐个顶点试探法
 - > 求最短路径步骤
 - ① 初始时设置一个n阶方阵,令其对角线元素为0,若存在弧 〈Vi, Vj〉,则对应元素为权值;否则为∞
 - ② 逐步试着在原直接路径中增加中间顶点,若加入中间点后路径 变短,则修改之;否则,维持原值
 - ③ 所有顶点试探完毕,算法结束