Dernière mise à jour	Mécanismes – Vitesses –	Denis DEFAUCHY
21/11/2016	Accélérations – Lois entrée/sortie	TD2 - Sujet

Mécanismes Vitesses et accélération - Lois entrée/sortie

TD2

Vitesse et accélération par composition du mouvement Eolienne – Robot ERICC3

Programme - Compétences		
B29	MODELISER	Solide indéformable: - référentiel, repère - équivalence solide/référentiel - degrés de liberté - vecteur-vitesse angulaire de deux référentiels en mouvement l'un par rapport à l'autre
C26	RESOUDRE	Dérivée temporelle d'un vecteur par rapport à un référentiel Relation entre les dérivées temporelles d'un vecteur par rapport à deux référentiels distincts Composition des vitesses angulaires Composition des vitesses

Dernière mise à jour	Mécanismes – Vitesses –	Denis DEFAUCHY
21/11/2016	Accélérations – Lois entrée/sortie	TD2 - Sujet

Calculs de vitesses par composition du mouvement

Exercice 1: Eolienne

Reprenons l'éolienne étudiée au TD précédemment.

$$\overrightarrow{AB} = H\overrightarrow{z_0} \quad ; \quad \overrightarrow{BC} = R\overrightarrow{x_1} \quad ; \quad \overrightarrow{CD} = L\overrightarrow{y_2}$$

$$\overrightarrow{z_0} = \overrightarrow{z_1} \quad ; \quad (\widehat{x_0}, \overrightarrow{x_1}) = (\widehat{y_0}, \overrightarrow{y_1}) = \theta_{1/0} \quad ; \quad \overrightarrow{x_1} = \overrightarrow{x_2} \quad ; \quad (\widehat{y_1}, \overrightarrow{y_2}) = (\widehat{z_1}, \overrightarrow{z_2}) = \theta_{2/1}$$

A l'aide de la dérivation du vecteur position, nous avions trouvé :

$$\vec{V}(D/0) = R\dot{\theta}_{1/0}\vec{y_1} + L\dot{\theta}_{2/1}\vec{z_2} - L\dot{\theta}_{1/0}\cos\theta_{21}\vec{x_1}$$
$$\vec{V}(D/0) = \vec{V}(D/2) + \vec{V}(D,2/0) = \vec{V}(D,2/0)$$

Question 1: Etablir le graphe des liaisons du système.

Question 2: Exprimer les deux vecteurs rotation de l'éolienne. Question 3: Calculer $\vec{V}(D,2/0)$ par composition du mouvement.

Dernière mise à jour	Mécanismes – Vitesses –	Denis DEFAUCHY
21/11/2016	Accélérations – Lois entrée/sortie	TD2 - Sujet

Exercice 2: Bras manipulateur ERICC 3

Les bras manipulateurs sont des systèmes à chaîne ouverte très utiles pour le transport de produits d'un point à un autre de l'espace. Intéressons-nous ici au bras du robot ERICC3.

On propose le schéma cinématique suivant :

Dernière mise à jour	Mécanismes – Vitesses –	Denis DEFAUCHY
21/11/2016	Accélérations – Lois entrée/sortie	TD2 - Sujet

Cas général

Question 1: Exprimer le vecteur position du point E par rapport au bâti.

Question 2: Exprimer les différents vecteurs rotation du système.

Question 3: Déterminer la vitesse $\vec{V}(E,5/0)$ par la définition

Question 4: Etablir le graphe des liaisons du système.

Question 5: Déterminer la vitesse $\vec{V}(E,5/0)$ par composition du mouvement

Question 6: Déterminer les conditions permettant de déplacer le point E

horizontalement, uniquement suivant $\overrightarrow{x_1}$.

Condition d'un mouvement horizontal

Intéressons-nous à un robot serveur dont la photo est proposée ci-dessous :

Voyons comment imposer un mouvement de translation (pilotage des 3 moteurs épaule/coude/poignet) au plateau à une vitesse déterminée tout en maintenant celui-ci horizontal.

Prenons les hypothèses suivantes :

- Chaque longueur est identique : $L_3 = L_2 = L$

- La pièce 4 est horizontale : $\theta_{43}+\theta_{32}+\theta_{21}=0$

- Et cette pièce 4 reste horizontale : $\dot{\theta}_{43} + \dot{\theta}_{32} + \dot{\theta}_{21} = 0$

Question 7: Simplifier les conditions obtenues dans le cas proposé afin d'obtenir en particulier une relation entre $\dot{\theta}_{32}$, $\dot{\theta}_{21}$, θ_{43} et θ_{21}

Question 8: En déduire l'expression de $\dot{\theta}_{32}$ en fonction de $\dot{\theta}_{21}$ permettant de garder les pièces 4 et 5 horizontales et d'imposer au point D un déplacement horizontal

Dernière mise à jour	Mécanismes – Vitesses –	Denis DEFAUCHY
21/11/2016	Accélérations – Lois entrée/sortie	TD2 - Sujet

Hypothèse supplémentaire :

- Considérons qu'à l'instant initial, les points A, C et D sont alignés.

Question 9: Quelle relation existe-t-il à tout instant entre θ_{21} et θ_{43} Question 10: Déterminer la relation liant $\dot{\theta}_{43}$ et $\dot{\theta}_{32}$ à $\dot{\theta}_{21}$.

On note $\theta_{21} = \theta$ et $\dot{\theta}_{21} = \dot{\theta}$, $\dot{\theta}$ étant la vitesse de rotation de référence pour ce mouvement.

Question 11: Récapituler les conditions imposées aux 5 moteurs en fonction de $\dot{\theta}$ afin d'obtenir le mouvement souhaité.

Vitesse de rotation à imposer

On souhaite déterminer l'expression littérale de $\theta(t)$ afin que la vitesse du point E soit de $1~m.s^{-1}$ On prend L=10~cm

On suppose qu'en position initiale à t=0 s, $\theta=0$. Cet angle va alors augmenter jusqu'à 90° , ramenant le point E sur l'axe vertical du robot $(0, \overrightarrow{y_0})$ (on supposera que cette position peut être atteinte).

Question 12: Déterminer la norme V_E de la vitesse $\vec{V}(E,5/0)$ pour le cas étudié en fonction de $\dot{\theta}$, L et θ .

On remarque que la vitesse du moteur $\dot{\theta}(t)$ à imposer est reliée à la position angulaire $\theta(t)$. La position impose la vitesse, et la position évolue en fonction du temps en fonction de la vitesse, nous allons donc déterminer l'évolution temporelle $\theta(t)$ permettant d'avoir une vitesse V_E constante.

Question 13: En déduire l'expression de $\cos(\theta(t))$ en fonction V_E , L et du temps t. Question 14: Déterminer l'expression littérale et la valeur numérique du temps de fonctionnement permettant au point E d'arriver sur l'axe vertical du robot.

Pour la suite, on rappelle la relation : $\sin\theta = \pm\sqrt{1-\cos^2\theta}$. On déterminera le signe à prendre en compte dans le cas étudié.

Question 15: En déduire l'expression de la vitesse angulaire $\dot{\theta}(t)$ à imposer en fonction du temps afin d'assurer le mouvement à horizontal à la vitesse souhaitée.