

Sri Chaitanya IIT Academy, India

A.P, TELANGANA, KARNATAKA, TAMILNADU, MAHARASHTRA, DELHI, RANCHI A right Choice for the Real Aspirant

ICON CENTRAL OFFICE, MADHAPUR-HYD

Sec: Sr.IPLCO JEE-ADVANCE
Time: 02:00 PM to 05:00 PM 2014-P2-Model

Date: 02-08-15 Max Marks: 180

PAPER-II KEY & SOLUTIONS

PHYSICS

1	D	2	A	3	В	4	A	5	A	6	A
7	A	8	A	9	A	10	D	11	С	12	В
13	В	14	C	15	С	16	D	17	С	18	A
19	D	20	A								

CHEMISTRY

21	D	22	A	23	D	24	В	25	В	26	С
27	A	28	В	29	В	30	D	31	В	32	С
33	В	34	С	35	С	36	D	37	С	38	В
39	A	40	A						W	JJJ	

MATHS

41	В	42	A	43	В	44	C	45	D	46	C
47	C	48	D	49	D	50	C	51	A	52	В
53	A	54	C	55	В	56	D	57	D	58	A
59	A	60	C	111-							

CHEMISTRY

21. a,b,c are resonating structures

But d cannot be converted to any of these. It has no one αH , on the positive carbon released as H:

22. The conjugate bases of x and y are stablised by resonance

$$CH_{2} \xrightarrow{CH_{3}} \xrightarrow{CH_{3}} \xrightarrow{CH_{3}} \xrightarrow{CH_{2}CH_{2}CH_{3}} \xrightarrow{CH_{2}CH_{2}CH_{2}CH_{3}} \xrightarrow{CH_{2}CH_{2}CH_{3}} \xrightarrow{CH_{2}CH_{2}CH_{3}} \xrightarrow{CH_{2}CH_{2}CH_{3}} \xrightarrow{CH_{2}CH_{2}CH_{2}CH_{3}} \xrightarrow{CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}CH_{2}} \xrightarrow{CH_{2}CH_{2$$

$$CH_{3} - CH_{2} - CH_{3} - CH_{3} - CH_{3} - CH_{2} - CH_{3} - C$$

But conjugate base by of (y) is tertiary. The $-CH_3$ group releases electrons by +I effect and decreases stability

Conjugate base of 2 is not stabilized by resonance

- 23. P and Q are identical because by rotating through 180°, they become one and the same P and R are diasteromers with difference in configuration at one asymmetric carbon P & S are also diasteromers
 - R and S are enantiomers. One interchange at all the three asymmetric carbons converts R into S and vice versa
- 24. Parent chain should have both –CHO and –COOH groups. –CHO is a substituent. Prefix alloted for it when it is part of parent chain is 'oxo'
- 25. a) is meso and not optically active
 - b) is chiral and on hydrogenation gives tran 1,4-dimethyl cyclohexane which is inactive
 - c) gives both cis and trans, 1,4-dimethyl cyclohexanes. Both of them are inactive. As two products are formed is not correct answer
 - d) is active, on hydrogenation also it gives optically active compound
- 26. Due to resonance the three membered ring gets relief from strain and more stable
- 27. a) In aceto acetic ester keto form predominates enol so x > y
 - b) y is stablised by intramolecular H-bonding. Hence it is in greater proportion

- c) due to C-C bond rotation can change into on the stablised by intramolecular H-bonding can change into can c
- d) Ring does not allow rotation of C-C bond. y is stablised by H bonding
- 28. Lone pair of P not involved in resonance. Lone pair of Q is involved in resonance R has a withdrawing group -C-
- 29. The first pk_a of maleic acid is less than that of fumaric acid as its conjugate base is

stablised by intra molecular H-bonding $\stackrel{\|}{o}$. Due to the same reason – the second H^{\oplus} is not released from it easily and seond pk_a is greater

- 30. Only d exhibits geometrical isomerism, with two different groups on C_3 and C_6
- 31. The nitro group in ortho position is forced out of the plane of the ring due to steric repulsion exerted by large I atom. So it cannot withdraw π electrons of the ring.

$$-C - NO_2(x)$$
 remains to be single bond 1.45 A^0

Nitro group in para position does not face any such steric inhibition. It is in the plane of the ring, and with draws π electrons from the ring. So C-N bond acquires partial π bond character

$$O_{2}N$$

$$N = O$$

$$O_{2}N$$

$$O_{2}N$$

$$O_{3}N$$

$$O_{4}N$$

$$O_{5}N$$

$$O_{5}N$$

$$O_{6}N$$

$$O_{7}N$$

$$O_{8}N$$

$$O_$$

- 32. Due to crowding in 2,4,6-trinitro N,N-dimethyl aniline, the N,N-dimethyl group goes out of plane of the ring and the lone pairs is not involved in resonance with the ring. As it is in free state H^{\oplus} is accepted easily
- 33. Cis isomer (c) is optically inactive with a plane of symmetry (a) has only asymmetric carbon (b) the trans isomer is optically active
- 34. With two asymmetric carbon atoms and cis isomer becoming inactive it has 3 stereo isomeric forms trans and its mirror image and inactive cis isomer. cis is meso
- 35. Due to interamolecular H-bonding gauche form is more stable
- 36. Antiform of butane does not have steric strain as the two $-CH_3$ groups are farther away. As it is staggered form, it does not have torsional strain also (Both don't have angle strain)