

<u>Help</u>

HuitianDiao 🗸

<u>Course</u> <u>Progress</u> <u>Dates</u> <u>Discussion</u> <u>Resources</u>

Exercises due Jun 8, 2021 19:59 EDT Completed

Applying Linear Functions to a Random Sequence

3/3 points (graded)

Let $(Z_n)_{n\geq 1}$ be a sequence of random variables such that

$$\sqrt{n}\left(Z_n-\theta\right)\xrightarrow[n\to\infty]{(d)}Z$$

for some $\theta \in \mathbb{R}$ and some random variable Z.

Let g(x) = 5x and define another sequence by $Y_n = g(Z_n)$.

The sequence $\sqrt{n}\left(Y_n-g\left(\theta\right)\right)$ converges. In terms of Z , what random variable does it converge to?

$$\sqrt{n}\left(Y_n-g\left(\theta\right)\right)\xrightarrow[n\to\infty]{(d)}Y.$$

(Answer in terms of Z)

$$Y =$$

What theorem did we invoke to compute Y? (There can be more than 1 acceptable answers.)

Laws of large number	
Central Limit theorem	
Slutsky theorem	
Continuous mapping theorem	

If $\operatorname{Var}(Z) = \sigma^2$, what is $\operatorname{Var}(Y)$? This is the asymptotic variance of $(Y_n)_{n \geq 1}$. (Answer in terms of σ^2 .)

$$Var(Y) =$$

STANDARD NOTATION

Submit You have used 1 of 2 attempts

Video note: In the video below, there is an important misprint at roughly 1:26, which will be corrected in the video on the next page. The Central limit theorem applied to \overline{T}_n should read

$$-1$$
 (d) (1)

$$\sqrt{n}\left(T_n-\frac{1}{\lambda}\right)\xrightarrow[n\to\infty]{}\mathcal{N}\left(0,\frac{1}{\lambda^2}\right).$$

the Delta Method

0:00 / 0:00 66 1.50x X CC

The problem is that this is not something of the form estimator

of lambda minus lambda.

Right?

What I would want to see is something

that looks like square root of n one over T n bar, which is actually my lambda hat,

minus lambda converges to some Gaussian

as n goes to infinity in distribution.

Maybe zero and some sigma squared here.

Right?

That's what I want to see.

Because once I know how to do this,

then I can start unpacking my confidence intervals

of the form lambda hat plus or minus

Video

Download video file

Transcripts

Download SubRip (.srt) file <u>Download Text (.txt) file</u>

(Optional) Proof of the Delta Method

For simplicity, we will prove only the case when g is continuously differentiable everywhere in \mathbb{R} , ie. g and g'exist and are continuous everywhere. Let μ be arbitrary. The mean value theorem (which is the zeroth order statement of Taylor's theorem) states that for any $z > \mu$,

$$g(z) = g(\mu) + g'(c_z)(z - \mu)$$
 for some $c_z \in (\mu, z)$

Note that c_z is a function of z. This works also for the case $z < \mu$. The two cases together give the statement that for any z:

$$g(z) = g(\mu) + g'(c_z)(z - \mu)$$
 for some c_z such that $|c_z - \mu| < |z - \mu|$.

For each z, we can make a choice of c_z that makes the above statement true: we now think of c as being a function of z (but we will continue to write c_z to denote c(z)). This implies that for a random variable Z,

$$g(Z) - g(\mu) = g'(c_Z)(Z - \mu)$$
 for some c such that $|c_Z - \mu| < |Z - \mu|$.

Now, given an arbitrary sequence $(Z_n)_{n\geq 1}$ and for any μ , the above statement is true for each random variable Z_n in the sequence:

$$g(Z_n) - g(\mu) = g'(c_{Z_n})(Z_n - \mu)$$
 for some c such that $|c_{Z_n} - \mu| < |Z_n - \mu|$.

We return to the statistical context. Let $X_1, X_2, \ldots, X_n \overset{\text{i.i.d}}{\sim} X$, and let $Z_n = \overline{X}_n$ and $\mu = \mathbb{E}[X]$. Plugging these into the equation above and multiplying by \sqrt{n} , we have

$$\sqrt{n}\left(g\left(\overline{X}_{n}\right)-g\left(\mu\right)\right) = g'\left(c_{\overline{X}_{n}}\right)\left(\sqrt{n}\left(\overline{X}_{n}-\mu\right)\right) \quad \text{where } \left|c_{\overline{X}_{n}}-\mu\right| < \left|\overline{X}_{n}-\mu\right|$$

We deal with the two factors on the right hand side separately. By CLT, we know the second factor is asymptotically normal:

$$\left(\sqrt{n}\left(\overline{X}_n-\mu\right)\right)\xrightarrow[n\to\infty]{(d)}N\left(0,\sigma^2\right).$$

For the second factor, observe that since $\left|c_{\overline{X}_n} - \mu\right| < \left|\overline{X}_n - \mu\right|$, we have for any $\epsilon > 0$,

$$\mathbf{P}\left(\left|c_{\overline{X}_n} - \mu\right| > \epsilon\right) \leq \mathbf{P}\left(\left|\overline{X}_n - \mu\right| > \epsilon\right).$$

Together with the fact that $\overline{X}_n \stackrel{\mathbf{P}}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} \mu$, this implies

$$c_{\overline{X}_n} \xrightarrow[n \to \infty]{\mathbf{P}} \mu.$$

Since g' is continuous, by the continuous mapping theorem,

$$g'(c_{\overline{X}_n}) \xrightarrow[n \to \infty]{\mathbf{P}} g'(\mu).$$

Finally, by Slutsky Theorem,

$$\sqrt{n}\left(g\left(\overline{X}_{n}\right)-g\left(\mu\right)\right)\xrightarrow[n\to\infty]{(d)}N\left(0,\left(g'\left(\mu\right)\right)^{2}\sigma^{2}\right).$$

Remark: Notice that g is only needed to be continuously differentiable close to μ .

<u>Hide</u>

Discussion

Hide Discussion

Topic: Unit 2 Foundation of Inference:Lecture 5: Delta Method and Confidence Intervals / 8. The One-Dimensional Delta Method

Add a Post

Show all posts by recent activity > ✓ Taylor series expansion for functions with non continuous second derivative ~6:30 in the video 3 Is the purpose of delta method to get a "centered" interval? 3 From n^0.5*(barT_n - 1/lambda), we can get a confidence interval for 1/lambda say [a, b] without delta method. Once we have that w...

Previous

Next >

© All Rights Reserved

About

Affiliates

edX for Business

Open edX

Careers

News

Legal

Terms of Service & Honor Code

Privacy Policy

Accessibility Policy

<u>Trademark Policy</u>

<u>Sitemap</u>

Connect

Blog

Contact Us

Help Center

Media Kit

Donate

© 2021 edX Inc. All rights reserved.

深圳市恒宇博科技有限公司 <u>粤ICP备17044299号-2</u>