Total No. of Questions—8]

[Total No. of Printed Pages—3

Seat		
No.	9	

[5352]-138

S.E. (Electronics/E & TC) (II Sem.) EXAMINATION, 2018 ANALOG COMMUNICATION

(2012 PATTERN)

Time: Two Hours

Maximum Marks: 50

- N.B.:— (i) Attempt Q. No. 1 or Q. No. 2, Q. No. 3 or Q. No. 4, Q. No. 5 or Q. No. 6, Q. No. 7 or Q. No. 8.
 - (ii) Neat diagrams must be drawn wherever necessary.
 - (iii) Figures to the right indicate full marks.
 - (iv) Assume suitable data, if necessary.
- 1. (a) Explain ring modulator for DSB-SC.

[6]

(b) State and compare different SSB generation methods. [6]

Or

- 2. (a) Explain Armstrong method of FM generation. [6]
 - (b) Determine the deviation ratio and worst-case bandwidth for FM signal with a maximum frequency deviation $\Delta f = 25$ kHz and maximum modulation singal $f_{m(\text{max})} = 12.5$ kHz. [6]

P.T.O.

3.	(a)	Explain with waveform and block diagram AM superheterodyn		
		receiver.	[7]	
	(<i>b</i>)	Define noise and explain various sources of noise.	[6]	
4.	(a)	Describe the operation of a PLL FM demodulator.	[6]	
	(<i>b</i>)	For a non-ideal amplifier and the following parameters: [[7]	
		Input noise power = 2×10^{-18} W		
		Input signal power = 2×10^{-10} W		
		Power gain = $10,00,000$		
		Internal noise $(N_d) = 6 \times 10^{-12} \text{ W}.$		
		Determine:		
		(i) Input (S/N) ratio in dB		
		(ii) Output (S/N) ration in dB		
		(iii) Noise Factor (F) and Noise Figure (NF).		
			<i>></i>	
5 .	(a)	Derive expression for signal-to-noise ratio in DSBS	^{3}C	
		system.	[6]	
	(<i>b</i>)	Explain the types of sampling with waveforms.	[6]	
		Explain the types of sampling with waveforms.		
		Or		
6.	(a)		[6]	
	(<i>b</i>)	What is aliasing? How is it reduced?	[6]	
[5352]	-138	2		

[5352]-138

7. (a) Explain the performance of AM in presence of noise. [6]

(b) Draw and explain functional block diagram of PCM encoder and decoder. [7]

Or

8. (a) Compare the noise performance of DSBSC and SSBSC systems. [6]

(b) Draw and explain with waveforms generation and re-generation of PPM. [7]