Poglavje 2

Metoda voditeljev

Velika prednost metode hierarhičnega gručenja, ki smo jo spoznali v prejšnjem poglavju, je odkrivanje strukture skupin v podatkih, ki jih lahko enostavno ponazorimo v vizualizaciji imenovani dendrogram. Na podlagi te vizualizacije lahko potem (intuitivno) presojamo o kvaliteti gručenja ter se odločamo o tem, na koliko skupin bomo razbili podatke. Zanimiva je tudi uporaba te tehnike pri interaktivni analizi podatkov v orodjih, ki nam take vizualizacije ponujajo in kjer lahko gradimo delokroge (angl. *workflows*), s katerimi lahko izbrane skupine nadalje opišemo in interpretiramo.

A pri tem naletimo na največjo pomankljivost hierarhičnega gručenja: metoda deluje samo na relativno majhnih množicah podatkov. Če imamo podatkov veliko, recimo nekaj deset tisoč ali pa celo milijon, hierarhično gručenje zaradi časovne in prostorske kompleksnosti odpove, dendrogram pa postane prevelik in neuporaben.

Rešitev, ki dobro deluje na velikih množicah podatkov je postopek, ki ga imenujemo metoda voditeljev (angl. *K-means*). Seveda zastonj kosila tudi tu ni. V svoji osnovni inačici metoda voditeljev predpostavlja, da je uporabnik v naprej določil število skupin, na katero želi razbiti učno množico primerov. Algoritem uporablja t.im. voditelje oziroma primere, ki določajo te skupine oziroma so središča skupin. Postopek iskanja optimalnega razbitja je potem naslednji:

- prični s K naključno izbranimi voditelji $\mathcal{V} = \{v^{(i)}; i \in 1...K\}$
- ponavljaj
 - določi razvrstitev C tako, da vsak primer prirediš najbližjemu voditelju
 - novi voditelji naj bodo centroidi $R(C_i)$ skupin $C_i \in C$, $v^{(i)} \leftarrow R(C_i)$
- dokler se lega voditeljev spreminja

Voditelji (angl. centroids) so navadno kar geometrijska središča primerov skupine:

$$R(C_i) = \frac{1}{|C_i|} \sum_{x \in C_i} x$$

Izračun teh je za zvezne atribute preprost. Ker moramo v vsaki iteraciji izračunati razdaljo do K voditeljev, je časovna kompleksnost tega algoritma le linearno odvisna od števila primerov, to je O(I*k*m), kjer je I število iteracij. Algoritem tipično hitro konvergira h končni rešitvi. Za srednje velike probleme (npr. nekaj 1000 primerov) je lahko potrebnih manj kot 100 iteracij.

Potek optimizacije za podatke, ki so bili opisani z dvema zveznima atributoma in so vključevali 780 primerov, je prikazan na sliki 2.1. Za prikazano optimizacijo je zanimivo tudi število primerov, ki so pri posameznih iteracijah spremenili svojega voditelja:

Iteration: 1, changes: 54
Iteration: 2, changes: 21
Iteration: 3, changes: 18
Iteration: 4, changes: 18
Iteration: 5, changes: 18
Iteration: 6, changes: 29
Iteration: 7, changes: 63
Iteration: 8, changes: 131
Iteration: 9, changes: 64
Iteration: 10, changes: 6
Iteration: 11, changes: 0

Optimizacija se skoraj ulovi v lokalni minimum, potem pa se v osmi iteraciji pobere in poišče rešitev, ki se nam v tem primeru zdi smiselna.

Tehnika voditeljev pa nas, za izbrane podatke in parametre metode, lahko tudi preseneti in vrne nepričakovane rezultate. Primer take razvrstitve je prikazan na sliki 2.2.

Rezultati metode voditeljev so lahko zelo občutljivi na izbor primernih začetnih pogojev in mero razdalje med primeri (pri zgornjih primerih smo uporabljali evklidsko razdaljo).

2.0.1 Začetni izbor voditeljev

Razbitje, ki ga vrne metoda voditeljev, je lahko zelo odvisna od začetnega izbora voditeljev. Od te bo tudi odvisno število iteracij, ki so potrebne, da postopek privedejo v stabilno stanje, v katerem so izpolnjeni ustavitveni pogoji. Zato je smiseln študij tehnik, ki bi voditelje izbrala čim bolje. Znanih je nekaj standardnih prijemov:

Naključni izbor voditeljev. Za tega smo sicer že povedali, da lahko privede v neoptimalno razbitje. A se lahko temu izognemo, če postopek ponovimo večkrat in med poiskanimi razbitji izberemo najboljše. Kako to storimo? Katero razbitje je najboljše?

Slika 2.1: Potek optimizacije razbitja za 780 primerov v evklidski ravnini. Lega voditeljev je označena s križcem. Primeri, ki pripadajo istemu voditelju, so označeni z isto barvo.

Slika 2.2: Na pogled nepravilno razbitje, ki ga je predlagala metoda voditeljev.

Izbor razpršenih voditeljev. Poiščemo primer, ki je najbolj oddaljen od drugih. Naj bo to naš prvi voditelj. Potem poiščemo primer, ki je njemu najbolj oddaljen. To je drugi voditelj. Naslednje voditelje poiščemo tako, da so ti najbolj oddaljeni od voditeljev, ki smo jih že določili.

Uporaba hierarhičnega razvrščanja. Na podmnožici točk s hierarhičnim razvrščanjem poiščemo *K* skupin in njihova središča uporabimo kot začetne voditelje. Zakaj ne uporabimo celotnega nabora primerov?

2.0.2 Ustavitveni kriterij

V osnovnem algoritmu za iskanje razbitij po metodi voditeljev zahtevamo, da se postopek ustavi šele takrat, ko se razbitje več ne spreminja. Takrat noben primer ne zamenja svojega centroida. V splošnem temu pogoju ne moremo vedno zadostiti, saj se nam lahko zgodi, da pride do oscilacij in se postopek na omenjeni način nikoli ne zaustavi. A so ti primeri v praksi zelo redki. Pri velikih množicah primerov, in v izogib nestabilnosti, lahko namesto popolne stabilnosti rešitve postopka zahtevamo, da se ta izteče, ko v iteraciji samo nekaj (na primer 10) primerov ali manj zamenja skupino.

2.0.3 Ocenjevanje kvalitete razbitij

Glavna pomanjkljivost metode voditeljev, tudi z ozirom na tehniko hierarhičnega razvrščanja v skupine, je potreba po izboru števila skupin *K*. Uporabnik le redkokdaj ve, na koliko skupin bi bilo potrebno rezultate razbiti. Pravzaprav je prav "pravo" število skupin ena od ključnih informacij, ki bi jih radi na podlagi podatkov ocenili.

Tu se zatečemo k razmisleku o cilju razbitja podatkov na skupine. V splošnem bi želeli poiskati taka razbitja, kjer so si primeri znotraj skupine čim bolj podobni, ter primeri iz različnih skupin čim bolj različni. Če razmišljamo samo o prvem, potem želimo, da metoda voditeljev poišče tako razbitje, kjer bo vsota oddaljenosti od pripadajočih voditeljev oziroma spodnji izraz čim manjši:

$$\sum_{i=1}^{K} \sum_{x \in C_i} d(v^{(i)}, x)$$

Predpostavimo, da se naši primeri nahajajo v evklidski ravnini in da imamo opravka s podatki z enim samim atributom. Razdaljo med točkami bomo merili z evklidsko razdaljo. Zgornji izraz se prevede v vsoto kvadratnih napak (angl. *sum of squared errors, SSE*) oziroma odstopanj od centroidov:

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} (v^{(i)} - x)^2$$

Iščemo take centroide C_k , kjer je ta napaka najmanjša:

$$\frac{\partial}{\partial v^{(k)}} = \frac{\partial}{\partial v^{(k)}} \sum_{i=1}^{K} \sum_{x \in C_i} (v^{(i)} - x)^2$$
(2.1)

$$= \sum_{i=1}^{K} \sum_{x \in C_i} \frac{\partial}{\partial v^{(k)}} (v^{(i)} - x)^2$$
 (2.2)

$$= \sum_{x \in C_k} 2(v^{(k)} - x) \tag{2.3}$$

$$\sum_{x \in C_k} 2(v^{(k)} - x) = 0 \implies |C_k| \ v^{(k)} = \sum_{x \in C_k} x \implies v^{(k)} = \frac{1}{|C_k|} \sum_{x \in C_k} x \tag{2.4}$$

kjer je $|C_k|$ število primerov v skupini C_k . Najboljši centroidi, ki minimizirajo vsoto kvadratnih napak so ravno centri (središnjice) skupin. Če bi vzeli namesto evklidske razdalje Manhattansko, bi s pomočjo podobnega izvajanja kot zgoraj dobili, da so najbolj primerni centri mediane točk v skupini.

Pri zgornjem izvajanju smo se osredotočili le na zmanjševanje oddaljenosti točk v skupini od njihovih centroidov. Pravzaprav pa nas zanima podobnost primerov znotraj skupine oziroma t.im. kohezija, ter oddaljenost primerov med različnimi skupinami, oziroma t.im. ločljivost. Mera kvalitete razbitja, ki uspešno združuje tako kohezijo kot ločljivost je silhuetni koeficient, oziroma silhueta razbitja. Izračunamo ga s sledečim postopkom:

- Naj bo a_i povprečna razdalja primera $x^{(i)}$ do vseh ostalih primerov v njegovi skupini.
- Za primer $x^{(i)}$ in neko skupino C_j ; $x_i \notin C_j$, ki je različna od te, ki vsebuje x_i , izračunaj povprečno razdaljo med x_i in primeri v tej skupini. Poišči skupino C_j , kjer je ta razdalja najmanjša. Imenujmo to razdaljo b_i .

- Za primer x_i je njegova silhueta enaka $s_i = (b_i a_i)/\max(a_i, b_i)$.
- Silhueta razbitja je enaka povprečni silhueti primerov v učni množici:

$$s = \frac{1}{|\mathcal{U}|} \sum_{i=1}^{|\mathcal{U}|} s_i$$

Možne vrednosti silhuetnega koeficienta v teoriji ležijo na intervalu med -1 do 1, v praksi pa pričakujemo, da bo za dani primer razdalja do primerov v lastni skupini veliko manjša od razdalj do primerov v najbližji tuji skupini, torej $a_i < b_i$ in zato $s_i > 0$. V primeru, ko so te razlike velike, je vrednost silhuete 1. Silhuete primerov lahko izrišemo za vsako skupino. Uredimo jih od največjega do najmanjšega (za primer, kjer smo razvrstili podatke nabora "voting" v tri skupine, glej sliko 2.3). Kateri primeri so tisti, ki imajo kratko silhueto?

Slika 2.3: Silhuete primerov iz podatkovnega nabora "voting" pri razvrstitvi v tri skupine.

Kvaliteto razbitja za dano število skupin K lahko torej ocenimo s povprečno silhueto primerov. To nam omogoča, da ocenimo, kako primerne so različne vrednosti K (glej primer take študije s slike 2.4). Hevristika sicer ne deluje idealno, a nam lahko, z malce previdnosti, pomaga, da izberemo primerno število skupin za naše podatke. Previdnost je potrebna predvsem tam, kjer so razlike med silhuetami majhne. V takih primerih nam pomaga razmišljanje o tem, kaj posamezne skupine sploh sestavlja in kakšne so skupne značilnosti primerov v skupinah.

Slika 2.4: Silhuetna študija razvrstitve v različno število skupin za podatke s slike 2.1.

2.1 Kombiniranje razvrstitev in razvrščanje s konsenzom

"Več ljudi več ve", ali modrost množic. Tudi na področju razvrščanja je lahko tako. Različni algoritmi, njihovi parametri ali pa rahlo različne učne množice iz iste problemske domene nam lahko pomagajo razkriti skupine, ki so lahko rahlo, ali pa tudi precej različne med sabo. Bi bilo pametno, pri takem nizu razvrstitev, te skupine nekako zliti in poiskati stabilni del razvrstitev. Če bi na primer dva primera pri večini razvrstitev bila del istih skupin bi to bil dober pokazatelj, da bi bilo dobro ta dva primera tudi sicer razvrstiti skupaj. Po drugi strani pa bi lahko za dva druga primera, ki ju skoraj nikoli nismo našli v skupnih skupinah, rekli, da pač ne sodita skupaj.

Na zgornji ideji temelji algoritem razvrščanja s konsenzom (Monti in sod., 2003), ki ga opišemo s spodnjim algoritmom.

input:

učna množica primerov *D* algoritem razvrščanja Cluster in izbrano število skupin *K* število vzorčenj *H*

 $M \leftarrow \emptyset$ **for** h = 1, 2, ..., H **do** $D^{(h)} \leftarrow \text{Resample}(D)$ $M^{(h)} \leftarrow \text{Cluster}(D^{(h)}, K)$ $M \leftarrow M \cup M^{(h)}$ množica povezovalnih matrik

izberemo vzorec iz učne množice razvrstimo primere iz $D^{(h)}$ v K skupin

end

 $\mathcal{M} \leftarrow \text{ComputeConsensusMatrix}(M)$ $\mathcal{C} \leftarrow \text{razbitje } D \text{ v } K \text{ skupin na podlagi } \mathcal{M}$

Oznaka $M^{(h)}$ označuje povezovalno matriko:

$$M^{(h)}(i,j) = \begin{cases} 1 = X_i \in C \land X_j \in C \\ 0 = \text{otherwise} \end{cases}$$

Iz množice povezovalnih matrik izračunamo matriko konsenzov:

$$\mathcal{M}(i, j) = \frac{\sum_{h} M^{(h)}(i, j)}{\sum_{h} I^{(h)}(i, j)}$$

Kjer je I matrika indikatorjev, ki ima za par i in j vrednost 1, če sta oba primera X_i in X_j prisotna v vzorcu $D^{(h)}$, sicer pa vrednost 0. Elementi povezovalne matrike so realna števila na intervalu od 0 do 1. Elementi ustrezajo podobnostim primerov, matrika pa podobnostni matriki. Matrika $\mathbf{1} - \mathcal{M}$ je zato matrika razdalj med primeri, ki jo lahko uporabimo pri hie-

rarhičnem razvrščanju v primere ter na ta način pridobimo možne razvrstitve, ki predstavljajo konsenz delnih razvrstitev na vzorcih iz učne množice.

2.1.1 Permutacijski test

Včasih nam tudi kvantitativna ocena, kot je silhueta, neposredno ne pove prav dosti o tem, ali so v podatkih zares skupine ali pa je algoritem našel neko razbitje, ki pa bi bilo podobne kvalitete tudi, če bi bili podatki naključni oziroma, bolje, taki, kjer bi sicer ohranili porazdelitve vrednosti posameznih atributov a izničili interakcije med atributi. V nadaljevanju bomo zaradi poenostavitve take podatke imenovali naključni podatki.

Slika 2.5: Rezultat razbitja s tehniko voditeljev na dvoatributni domeni izgleda lepo strukturiran, vprašanje pa je, ali smo res odkrili tri značilne skupine. Silhueta tega razbitja je 0.50 in je bila le rahlo različna od silhuete za ostala razbitja na dve do deset skupin, kjer je bila silhueta od 0.44 do 0.49.

Naša hipoteza, ki jo preizkušamo in jo v statistiki imenujemo ničelna hipoteza, je (H_0) : silhueta s ima vrednost, kot bi jo dobili, če bi bili podatki naključni.

Zgornjo hipotezo je enostavno računsko preveriti. Generirajmo naključne podatke. To storimo tako, da v naših podatkih za vsak atribut naključno premešamo njihove vrednosti po primerih. Ker so podatki podani v tabeli, je to isto, kot če vrednosti vsake kolone med sabo premešamo. (Je to res potrebno narediti za vse kolone oziroma atribute?) Na teh podatkih uporabimo tehniko razvrščanja in izmerimo silhueto. To ponovimo, na primer vsaj 100-krat ali pa bolje 1000-krat. Na ta način dobimo porazdelitev vrednosti naše statistike s, kot bi jo dobili, če bi ta izhajala iz naključnih podatkov. Izmerimo sedaj to isto statistiko na nepremešanih, originalnih podatkih in jo primerjamo z ničelno porazdelitvijo.

Zgornji postopek smo uporabili na podatkih, ki so bili podobni tem iz slike 2.5. Za oceno ničelne porazdelitve smo izračunali 200 silhuet, vsakič na podatkih s premešanimi vrednostmi

atributov. Ugotovimo, da je kar 23% vseh vrednosti iz ničelne distribucije večje od naše opazovane statistike na originalnih podatkih. Če bi trdili, da je naša ničelna hipoteza H_0 napačna, bi na podlagi naših eksperimentov verjetnost napačne zavrnitve te hipoteze bila p=0.23. V statistiki je to veliko prevelik prag za zavrnitev ničelne hipoteze. Tipično je sprejemljiva meja tega praga enaka $\alpha=0.01$, včasih celo $\alpha=0.05$.

Slika 2.6: Porazdelitev silhuet na permutiranih podatkih in projekcija (ravna črta) silhuete na originalnih podatkih kaže na to, da, vsaj za izbrano število skupin, za te podatke nismo našli smiselnega razbitja.

Za konec si poglejmo še malce drugačne podatke (slika 2.7). Tu so rezultati smiselni oziroma tako vsaj zgledajo. Podatki dejansko nakazujejo, da bi lahko imeli dve skupini. To preverimo s permutacijskim testom (slika 2.8). Ničelno hipotezo zavrnemo z verjetnostjo, da smo se pri tem zmotili p=0.025.

2.2 Predobdelava podatkov

Do tu smo predpostavili, da imajo atributi v naši podatkovni množici isto, zvezno, zalogo vrednosti. Taka lastnost podatkov je med temi, ki jih uporabljamo pri reševanju praktičnih problemov, le redka. Navadno z atributi zapišemo različne lastnosti primerov, ki nastopajo v različnih merskih enotah. Na primer dolžina, teža, višina, ocena v neki ocenjevalni lestvici, pa rezultati na različnih testih, in podobno. Mere razdalje, kot je Evklidska, ne ločijo med različnimi merskimi lestvicami, zato je potrebno podatke spremeniti tako, da bodo vrednosti atributov med seboj primerljive. To storimo z normalizacijo. In sicer, za vsak atribut j

Slika 2.7: Rezultat razbitja je tu morda smiseln. Silhueta za K = 2 je 0.68, za ostale vrednosti K pa pod 0.56. Rezultate bi bilo dobro preveriti s permutacijskim testom.

Slika 2.8: Porazdelitev silhuet na permutiranih podatkih in projekcija (ravna črta) silhuete na originalnih podatkih s slike 2.7.

določimo najprej njegovo povprečno vrednost:

$$\mu_j = E[X_j] = \frac{1}{N} \sum_{i=1}^{N} X_{ij}$$

kjer je X_{ij} vrednost j-tega atributa za i-ti primer. Podobno določimo tudi standardni odklon atributa:

$$\sigma_{j} = \sqrt{E[(X_{j} - \mu_{j})^{2}]} = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (X_{ij} - \mu_{j})^{2}}$$

Podatke zdaj normaliziramo tako, da so nove vrednosti v tabeli podatkov \mathcal{Z}_{ij} enake:

$$Z_{ij} = \frac{X_{ij} - \mu_j}{\sigma_i}$$