Presentation Overview

- Compare PLOT3D and CGNS Formats
 - Simple cube/cylinder example
 - PLOT3D code
 - CGNS code
 - Timings and file size
- Enhancing the Data with CGNS
 - Documentation
 - Coordinate systems
 - Connectivity
 - Boundary Conditions
 - Solution Data
- What Else Can You Do?

Example

CGNS of J de ta standard

• Cylinder attached to a cube


```
include 'cgnslib_f.h'
                                         C---- zone 2 - cylinder
                                                do n=1,3
      mach = 0.5
                                                  idim2(n,1) = 5
      alpha = 0
                                                  idim2(n,2) = 4
      re
             = 0
                                                  idim2(n,3) = 0
      time = 0
                                                enddo
                                                idim2(2,1) = 10
C---- zone 1 - cube
                                                idim2(2,2) = 9
      do n=1,3
                                                do i=1.5
        idim1(n,1) = 5
                                                  do j=1,10
        idim1(n,2) = 4
                                                    do k=1,5
        idim1(n,3) = 0
                                                      rad = i - 1
      enddo
      do i=1,5
                                                      ang = 0.6981317*(j - 1)
        do i=1,5
                                                      r2(i,j,k,1) = rad * cos(ang)
          do k=1.5
                                                      r2(i,j,k,2) = rad * sin(ang)
            r1(i,j,k,1) = i - 3
                                                      r2(i,j,k,3) = k - 1
            r1(i, j, k, 2) = j - 3
                                                      do n=1.5
            r1(i, j, k, 3) = k - 5
                                                        q2(i,j,k,n) = n
            do n=1.5
                                                      enddo
              q1(i,j,k,n) = n
                                                    enddo
            enddo
                                                  enddo
          enddo
                                                enddo
        enddo
      enddo
```

Example – PLOT3D Code


```
c--- write PLOT3D xyz file
      iunit = 11
      open(iunit, file='example.xyz', form='unformatted')
      write(iunit) 2
      write(iunit) (idim1(i,1), i=1,3), (idim2(i,1), i=1,3)
      write(iunit) ((((r1(i,j,k,n),i=1,5),j=1,5),k=1,5),n=1,3)
      write(iunit) ((((r2(i,j,k,n),i=1,5),j=1,10),k=1,5),n=1,3)
      close(iunit)
c--- write PLOT3D q file
      open(iunit, file='example.g', form='unformatted')
      write(iunit) 2
      write(iunit) (idim1(i,1), i=1,3), (idim2(i,1), i=1,3)
      write(iunit) mach, alpha, re, time
      write(iunit) ((((q1(i,j,k,n),i=1,5),j=1,5),k=1,5),n=1,5)
      write(iunit) ((((q2(i,j,k,n),i=1,5),j=1,10),k=1,5),n=1,5)
      close(iunit)
```



```
c--- open file and create base
      call cq_open_f('example.cgns', MODE_WRITE, ifile, ierr)
      if (ierr .ne. CG_OK) call cg_error_exit_f
      call cq_base_write_f(ifile, 'Example', 3, 3, ibase, ierr)
c--- zone 1 - cube
      call cq_zone_write_f(ifile, ibase, 'Cube', idim1,
                            Structured, izone, ierr)
     &
      call cg_coord_write_f(ifile, ibase, izone, RealSingle,
                             'CoordinateX',r1(1,1,1,1),icoord,ierr)
     δ
      call cq_coord_write_f(ifile, ibase, izone, RealSingle,
                             'CoordinateY', r1(1,1,1,2), icoord, ierr)
     &
      call cg_coord_write_f(ifile, ibase, izone, RealSingle,
                             'CoordinateZ',r1(1,1,1,3),icoord,ierr)
     &
```


Example – CGNS Code (cont'd)


```
call cq_sol_write_f(ifile, ibase, izone, 'Cube Solution',
                      Vertex, isol, ierr)
&
call cq_field_write_f(ifile, ibase, izone, isol, RealSingle,
                         'Density', q1(1,1,1,1), ifld, ierr)
δ
call cq_field_write_f(ifile, ibase, izone, isol, RealSingle,
                         'MomentumX', q1(1,1,1,2), ifld, ierr)
δ
call cq_field_write_f(ifile, ibase, izone, isol, RealSingle,
&
                         'MomentumY', q1(1,1,1,3), ifld, ierr)
 call cq_field_write_f(ifile, ibase, izone, isol, RealSingle,
                         'MomentumZ', q1(1,1,1,4), ifld, ierr)
&
call cq_field_write_f(ifile, ibase, izone, isol, RealSingle,
                         'EnergyStagnationDensity', q1(1,1,1,5),
&
                         ifld, ierr)
&
```


Example – CGNS Code (cont'd)


```
c--- zone 2 - cylinder
       call cq_zone_write_f(ifile, ibase, 'Cylinder', idim2,
                              Structured, izone, ierr)
       do n=1,3
         call cg_coord_write_f(ifile, ibase, izone, RealSingle,
                                 cnames(n), r2(1,1,1,n), icoord, ierr)
      γ
       enddo
       call cg_sol_write_f(ifile, ibase, izone, 'Cylinder Solution',
                            Vertex, isol, ierr)
      &
       do n=1,5
         call cg_field_write_f(ifile, ibase, izone, isol, RealSingle,
                                 snames (n), q2(1,1,1,n), ifld, ierr)
      &
       enddo
c---- close file
      call cg close f(ifile, ierr)
```


What Do We Have?

- Mesh Coordinates and Conserved Variables at Vertices
- PLOT3D
 - Two files which are non-portable unless ASCII or machines are binary compatible
 - Need to know format (i.e. single/double precision, single/multiblock, planar/whole, iblank or none)

• CGNS

- Completely machine independent and portable
- Self-contained, with inquiry functions to determine content
- Utilities available to convert to and from PLOT3D format

But I Want Separate Files

- Write the Grid File
 - Create Base, Zone and Write Coordinates
- Write the Solution File
 - Create Base, Zone and Write Solution
- Link to Coordinates in Grid File

 No Apparent Difference Between Solution File and Combined File to an Application Reading the Solution

Timings and File Size

Mesh Size File Size	100x100x100 30.5 MB	200x200x200 244 MB	400x400x400 1.90 GB
PLOT3D	2.32 (3.62) secs	16.0 (45.8) secs	126 (216) secs
CGNS (1 file) (+ 6K bytes)	2.48 (0.63) secs	17.2 (7.9) secs	129 (40) secs
CGNS (2 files) (+ 14K bytes)	2.34 (0.67) secs	17.4 (8.1) secs	164 (41) secs

• You've already benefited from CGNS!

Enhancing the Data

- Documentation
 - Descriptors
 - Units
 - Data Class
 - Reference State
 - Simulation Type
 - Flow Equations and Models
- Coordinate Systems
- Connectivity
 - One to One Matching
 - Mismatched Abutting
- Boundary Conditions
- Solution Data
 - Cell-Centered
 - Ghost Cells (rind)

Documentation

• Adding a Descriptor Node

```
call cg_goto_f(ifile,ibase,ierr,'end')
text = 'This is a simple example of a cube and cylinder'
call cg_descriptor_write_f('Description',text,ierr)
```

Defining the Units

Defining the Data Class

```
call cg_dataclass_write_f(NormalizedByUnknownDimensional, ierr)
```


Documentation (cont'd)

• Reference State

```
call cg_state_write_f('Reference Quantities', ierr)
 call cq goto f(ifile, ibase, ierr, 'ReferenceState t', 1, 'end')
 call cq_array_write_f('Mach', RealSingle, 1, 1, mach, ierr)
 call cq qoto f(ifile, ibase, ierr, 'ReferenceState t', 1,
&
                 'DataArray t',1,'end')
 call cq_dataclass_write_f(NondimensionalParameter, ierr)
call cq goto f(ifile, ibase, ierr, 'ReferenceState t', 1, 'end')
call cg_array_write_f('LengthReference', RealSingle, 1, 1,
                        reflen, ierr)
δ
call cq_qoto_f(ifile, ibase, ierr, 'ReferenceState_t', 1,
                 'DataArray t',3,'end')
&
call cq_dataclass_write_f(Dimensional, ierr)
call cq units write f(Null, Foot, Null, Null, ierr)
```


Documentation (cont'd)

Simulation Type

Equation Set and Numerical Models

```
call cg_goto_f(ifile,ibase,ierr,'end')
call cg_equationset_write_f(5,ierr)

call cg_goto_f(ifile,ibase,ierr,'FlowEquationSet_t',1,'end')
call cg_governing_write_f(Euler,ierr)
call cg_model_write_f('GasModel_t',Ideal,ierr)
```


- Four Predefined Coordinate Systems
 - Cartesian (x,y,z)
 - Cylindrical (r,θ,z)
 - Spherical (r, θ, φ)
 - Auxiliary (ξ, η, ζ)
- Write Cylinder coordinates as Cylindrical

Connectivity

• Cylinder Cut as One to One Connection

Cylinder Cut as One to One Connection

```
do n=1,3
   transform(n) = n
   range(n, 1) = 1
   range(n, 2) = 5
   d range(n, 1) = 1
   d_range(n, 2) = 5
 enddo
range(2, 2) = 1
d range(2,1) = 10
d_range(2, 2) = 10
 call cq_1to1_write_f(ifile, ibase, izone, 'Periodic',
     'Cylinder', range, d_range, transform, iconn, ierr)
&
```


Connectivity (cont'd)

CGNS at de ta standard

• Cube to Cylinder Abutting Connection

Connectivity (cont'd)

Cube to Cylinder Abutting Connection

```
n = 0
do j=1,5
 do i=1,5
    rad = sqrt(r1(i, j, 5, 1)**2 + r1(i, j, 5, 2)**2)
    ang = atan2(r1(i, j, 5, 2), r1(i, j, 5, 1))
    ic = rad
    if (ic .qe. 4) ic = 3
    if (ang .lt. 0.0) ang = ang + 6.2831853
    ang = ang / 0.6981317
    jc = ang
    if (jc.ge. 9) jc = 8;
    pts(n+1) = i;
    pts(n+2) = j;
    pts(n+3) = 5;
    d cell(n+1) = ic + 1;
    d cell(n+2) = jc + 1;
    d cell(n+3) = 1;
    interp(n+1) = rad - ic;
    interp(n+2) = ang - jc;
    interp(n+3) = 0.0;
    n = n + 3
  enddo
enddo
```


Cube to Cylinder Abutting Connection

```
call cq_conn_write_f(ifile, ibase, izone, 'Cube -> Cylinder',
                            Vertex, Abutting, PointList, n/3, pts,
     &
                             'Cylinder', Structured, CellListDonor,
     &
                             Integer, n/3, d_cell, iconn, ierr)
     &
     write the interpolants
C
     call cq_qoto_f(ifile, ibase, ierr, 'Zone_t', izone,
                     'ZoneGridConnectivity_t',1,
    &
                     'GridConnectivity_t',iconn,'end')
     dims(1) = 3;
     dims(2) = n / 3;
     call cg_array_write_f('InterpolantsDonor', RealSingle, 2, dims,
                             interp, ierr)
    &
```


Boundary Conditions

CGNS all de ta standard

• Inlet on Cube Using Point Range

• Inlet on Cube Using Point Range

Defining the Inlet Boundary Condition

```
call cg dataset write f(ifile, ibase, izone, ibc,
                   'Inflow Conditions', BCInflowSubsonic,
&
                   idset, ierr)
δ
 call cg bcdata write f(ifile, ibase, izone, ibc, idset,
                          Dirichlet, ierr)
&
 call cq_goto_f(ifile, ibase, ierr, 'Zone_t', izone,
                 'ZoneBC_t',1,'BC_t',ibc,'BCDataSet_t',idset,
&
                 'BCData t', Dirichlet, 'end')
&
 call cg_array_write_f('Density', RealSingle, 1, 1, 0.9, ierr)
 call cq array write f('VelocityX', RealSingle, 1, 1, 1.5, ierr)
 call cg_array_write_f('VelocityY', RealSingle, 1, 1, 0.0, ierr)
 call cq_array_write_f('VelocityZ', RealSingle, 1, 1, 0.0, ierr)
```


• Walls on Cube using Point List

• Walls on Cube using Point List

```
n = 0
do k=1,5
  do i=1,4
    pts(n+1) = i+1
     pts(n+2) = 1
     pts(n+3) = k
     pts(n+4) = i
     pts(n+5) = 5
     pts(n+6) = k
     n = n + 6
   enddo
  do j=1,4
    pts(n+1) = 1
     pts(n+2) = j
    pts(n+3) = k
     pts(n+4) = 5
     pts(n+5) = j+1
     pts(n+6) = k
     n = n + 6
   enddo
enddo
call cg_boco_write_f(ifile, ibase, izone, 'Walls', BCWall,
                       PointList, n/3, pts, ibc, ierr)
&
```


• Cylinder Axis as Degenerate Line

• Cylinder Axis as Degenerate Line

Solution Data

- Cell-Centered Data
 - Change Vertex in

-To CellCenter

Solutions

CGNS at a standard

• Ghost Cells (Rind)

Solutions

• Ghost Cells (Rind)

What Else Can You Do?

- Multiple Cases (bases)
- Data Conversions and Dimensional Exponents
- Gravity
- Convergence History
- Moving/Rotating/Axisymmetric Grids
- Time-dependent Solutions
- User-defined Data
- Integral and Discrete Data
- Group by Families
- Geometry References
- Connectivity and Boundary Condition Properties