Multi-Dimensional Array related problems (Total 15 questions)

SL	Problem statement	Difficulty
		levels

Sample input	Sample output	
987654321	987	
	654	
	321	
111222333	111	
	2 2 2	
	3 3 3	
WAP that will take (m x n) integ and column-wise.	ers into a <i>m by n</i> array (2D) and print them both row-wise	k
Sample input (m,n)	Sample output	
23	Row-wise: 1 2 3 6 5 4	
123	Column-wise: 1 6 2 5 3 4	
654		
33	Row-wise: 1 1 1 2 2 2 3 3 3	
111	Column-wise: 1 2 3 1 2 3 1 2 3	
222		
333		
this matrix. http://www.mathsisf	by 3 matrix into a 2D array. Now find the determinant of un.com/algebra/matrix-determinant.html	k
Sample input	Sample output	
123	0	
456		
789		

Sample input	Sample output	
5	Major diagonal: 1 4 2 9 4	
12345	Minor diagonal: 5 2 2 7 1	
54321		
22222		
67890		
19374		
MAD that will take the size of		*
	an identity matrix from the user and generate the identity display it. Reference: http://en.wikipedia.org/wiki/Identity_matrix	
Sample input	Sample output	
5	10000	
	01000	
	00100	
	00010	
	00001	
		ale.
	wo <i>m x n</i> sized matrix into two 2D array, suppose A and B. ay all the elements from matrix / 2D array C.	*
	wo m x n sized matrix into two 2D array, suppose A and B. ay all the elements from matrix / 2D array C. Sample output	*
Now do C = A + B. Finally displ	ay all the elements from matrix / 2D array C.	*
Now do C = A + B. Finally displ Sample input	ay all the elements from matrix / 2D array C. Sample output	*
Now do C = A + B. Finally displ Sample input 2 3 1 2 3 2 3 4	ay all the elements from matrix / 2D array C. Sample output 2 3 4	*
Now do C = A + B. Finally displ Sample input 2 3 1 2 3	ay all the elements from matrix / 2D array C. Sample output 2 3 4	*
Now do C = A + B. Finally displ Sample input 2 3 1 2 3 2 3 4	ay all the elements from matrix / 2D array C. Sample output 2 3 4	*
Sample input 2 3 1 2 3 2 3 4 1 1 1 2 2 2 WAP that will take inputs of two	ay all the elements from matrix / 2D array C. Sample output 2 3 4	***
Sample input 2 3 1 2 3 2 3 4 1 1 1 2 2 2 WAP that will take inputs of two	Sample output 2 3 4 4 5 6 wo 3 x 3 sized matrix into two 2D array, suppose A and B. Now	
Sample input 2 3 1 2 3 2 3 4 1 1 1 2 2 2 WAP that will take inputs of two do C = A * B (multiplication). F	Sample output 2 3 4 4 5 6 wo 3 x 3 sized matrix into two 2D array, suppose A and B. Now finally display all the elements from matrix / 2D array C.	
Sample input 23 123 234 111 222 WAP that will take inputs of two C = A * B (multiplication). F Sample input	Sample output 2 3 4 4 5 6 wo 3 x 3 sized matrix into two 2D array, suppose A and B. Now inally display all the elements from matrix / 2D array C. Sample output	
Sample input 2 3 1 2 3 2 3 4 1 1 1 2 2 2 WAP that will take inputs of two C = A * B (multiplication). F Sample input 1 2 3	Sample output 2 3 4 4 5 6 wo 3 x 3 sized matrix into two 2D array, suppose A and B. Now finally display all the elements from matrix / 2D array C. Sample output 9 9 9	
Sample input 2 3 1 2 3 2 3 4 1 1 1 2 2 2 WAP that will take inputs of two do C = A * B (multiplication). F Sample input 1 2 3 4 5 6	Sample output 2 3 4 4 5 6 wo 3 x 3 sized matrix into two 2D array, suppose A and B. Now finally display all the elements from matrix / 2D array C. Sample output 9 9 9 24 24 24	
Sample input 23 123 234 111 222 WAP that will take inputs of two C = A * B (multiplication). F Sample input 123 456 789	Sample output 2 3 4 4 5 6 wo 3 x 3 sized matrix into two 2D array, suppose A and B. Now finally display all the elements from matrix / 2D array C. Sample output 9 9 9 24 24 24	
Sample input 2 3 1 2 3 2 3 4 1 1 1 2 2 2 WAP that will take inputs of two C = A * B (multiplication). F Sample input 1 2 3 4 5 6 7 8 9 2 2 2	Sample output 2 3 4 4 5 6 wo 3 x 3 sized matrix into two 2D array, suppose A and B. Now finally display all the elements from matrix / 2D array C. Sample output 9 9 9 24 24 24	
Sample input 23 123 234 111 222 WAP that will take inputs of two C = A * B (multiplication). F Sample input 123 456 789 222 222	Sample output 2 3 4 4 5 6 wo 3 x 3 sized matrix into two 2D array, suppose A and B. Now finally display all the elements from matrix / 2D array C. Sample output 9 9 9 24 24 24	

Sample input	Sample output	
3 3	Max: 9	
123	Location: [2][1]	
456		
292		
2 3	Max: 9	
987	Location: [0][0]	
3 4 5		
		_
WAP that will take (n x n) integer	inputs into a square matrix of dimension n (where n must **
be an odd number). Then calcula	te sum of the integers at first row, last row a	nd two
diagonals without overlap. Please	e see the sample input-output.	
Sample input	Sample output	
5	52	
1 2 3 4 5		
23416		
34967		
42678		
5 4 3 2 1		
7	23	
1111111		
1 1 1 1 1 1 1 1 1 1 1		
1111111		
1111111		
1111111		
1111111		

10.	WAP that will take (n x n) integer inputs into must be an odd number). Then calculate sum pattern (consider only the boxed position du	n of the integers based on following position	**
	Sample input	Sample output	

	5 1 2 3 4 5 2 3 4 1 6 3 4 9 6 7 4 2 6 7 8 5 4 3 2 1	71	
	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	25	
11.	must be an odd number). Then	er inputs into a square matrix of dimension n (who calculate sum of the integers based on following ed position during the sum). Please see the input-o	position
	5 12345 23416	65	
	3 4 9 6 7 4 2 6 7 8 5 4 3 2 1		

12.	WAP that will take (m x n) integer inputs into a matrix of dimension m x n. Now reverse
	that matrix within itself and display it. Reversal means swap 1 st column with the n th
	column, swap 2 nd column with the (n-1) th column and so on

**

Sample input	Sample output
33	321

123	654	
456	292	
292		
2 6	654321	1
123456	456789	
987654		
		1
determine whether the mat	teger inputs into a square matrix of dimension n. Now rix is symmetric or not. lia.org/wiki/Symmetric_matrix	**
Sample input	Sample output	1
3	Yes	11
173		
7 4 5		
3 5 6		
2	No]
1 3		
4 2		
WAP that will take (m x n) po	ositive integer inputs into a matrix of dimension m x n. Now egers by -1 in that matrix. Finally display it.	***
WAP that will take (m x n) po		***
WAP that will take (m x n) por replace all the duplicate inte	gers by -1 in that matrix. Finally display it.	***
WAP that will take (m x n) poreplace all the duplicate inte	egers by -1 in that matrix. Finally display it. Sample output	***
WAP that will take (m x n) poreplace all the duplicate interest and the second	Sample output 1 7 3	***
WAP that will take (m x n) pereplace all the duplicate interest and the second	Sample output 1 7 3 -1 4 5 -1-1 6	***
WAP that will take (m x n) poreplace all the duplicate interest and the second	Sample output 1 7 3 -1 4 5 -1-1 6	***
WAP that will take (m x n) pereplace all the duplicate interest and the second	Sample output 1 7 3 -1 4 5 -1-1 6	***
WAP that will take (m x n) poreplace all the duplicate interest and the second	Sample output 1 7 3 -1 4 5 -1-1 6	***
WAP that will take (m x n) pereplace all the duplicate interest and the second	Sample output 1 7 3 -1 4 5 -1-1 6	***
WAP that will take (m x n) pereplace all the duplicate interest and the second	Sample output 1 7 3 -1 4 5 -1-1 6	***
WAP that will take (m x n) pereplace all the duplicate interest and the second	Sample output 1 7 3 -1 4 5 -1-1 6	***

15.	WAP that will take (m x n) integer inputs into a matrix of dimension m x n. Now just simply add all the integers in that matrix and show the result.				
	Sample input	Sample output			
	3 3	41			
	1 7 3				
	7 4 5				
	3 5 6				

26	33	
2 2 2 2 2 2		
6 5 4 3 2 1		