Pannon Egyetem

Matematika Tanszék

Numerikus módszerek (VEMKMA1144C)

Képletgyűjtemény

Készült: dr. Mihálykó Csaba előadása és dr. Hartung Ferenc egyetemi jegyzete alapján

Készítette: Merényi Anna

Hibaanalízis

Az alábbi képletek csak abban az esetben alkalmazhatók, ha:

- 0 < x 'es 0 < y
- $0 < \Delta x \le x \text{ \'es } 0 \le \Delta y < y$
- $0 < \tilde{x} < x; 0 < \tilde{y} < y$
- 1. Definíció és annak kifejtése

Abszolút hiba:
$$\begin{aligned} |x - \tilde{x}| &\leq \Delta_x \\ -\Delta_x &\leq x - \tilde{x} \leq \Delta_x \end{aligned} \qquad \begin{aligned} \frac{|x - \tilde{x}|}{|x|} &\leq \delta_x \\ -\delta_x \cdot x \leq x - \tilde{x} \leq \delta_x \cdot x \end{aligned}$$

$$\tilde{x} - \Delta_x \leq x \leq \tilde{x} + \Delta_x \qquad \tilde{x} - \delta_x \cdot x \leq x \leq \tilde{x} + \delta_x \cdot x$$

$$\tilde{x} \leq x + \delta_x \cdot x \qquad x - \delta_x \cdot x \leq \tilde{x}$$

$$\frac{\tilde{x}}{1 + \delta_x} \leq x \qquad x \leq \frac{\tilde{x}}{1 - \delta_x}$$

2. A négy alapműveletből származó felsőhiba becslése

Összeadás

Abszolút hiba:

$$|(x+y)-(\tilde{x}+\tilde{y})| \le \Delta_x + \Delta_y = \Delta_{x+y}$$

Relatív hiba:

$$\frac{|(x+y) - (\tilde{x} + \tilde{y})|}{|x+y|} \le \max(\delta_x, \delta_y) = \delta_{x+y}$$

<u>Kivonás</u>

Abszolút hiba:

$$|(x-y) - (\tilde{x} - \tilde{y})| \le \Delta_x + \Delta_y = \Delta_{x-y}$$

Relatív hiba: (további kikötés: y < x)

$$\frac{|(x-y) - (\tilde{x} - \tilde{y})|}{|x-y|} \le \frac{x}{x-y} \cdot \delta_x + \frac{y}{x-y} \cdot \delta_y = \delta_{x-y}$$

Szorzás

Abszolút hiba:

$$|x\cdot y - \tilde{x}\cdot \tilde{y}| \leq \tilde{x}\cdot \Delta_y + \tilde{y}\cdot \Delta_x + \Delta_x\cdot \Delta_y = \Delta_{x\cdot y}$$

Relatív hiba:

$$\frac{|x \cdot y - \tilde{x} \cdot \tilde{y}|}{|x \cdot y|} \le \delta_x + \delta_y + \delta_x \cdot \delta_y = \delta_{x \cdot y}$$

Osztás

Abszolút hiba:

$$\left|\frac{x}{y} - \frac{\tilde{x}}{\tilde{y}}\right| \le \frac{x \cdot \Delta_y + y \cdot \Delta_x}{y \cdot (y - \Delta_y)} = \Delta_{x/y}$$

Relatív hiba: (további kikötés: $0 \le \delta_y < 1$)

$$\frac{\left|\frac{x}{y} - \frac{\tilde{x}}{\tilde{y}}\right|}{\left|\frac{x}{y}\right|} \le \frac{\delta_x + \delta_y}{1 - \delta_y} = \delta_{x/y}$$

Számábrázolás

Egész számok

1. Egész számok tárolása

Egyenes (direkt) kód:

Első bit (első helyi érték): előjel bit (minden esetben!)

- → nemnegatív szám esetén: 0
- → nempozitív szám esetén: 1

"m" biten ábrázolható számok intervalluma:

$$-(2^{m-1}-1) \le x \le 2^{m-1}-1$$

Megjegyzés: megkülönböztetünk negatív nullát és pozitív nullát, ilyenkor az annak megfelelő előjel bit kerül előre.

Kettes komplemens:

$$c = \left\{ \begin{array}{ll} x, & ha \ 0 \le x \le 2^{m-1} - 1 \\ 2^m + x, & ha - 2^{m-1} \le x < 0 \end{array} \right\}$$

Abban az esetben, ha a kiindulási szám nemnegatív volt, akkor biztosan 0-val fog kezdődni a kód, ha azonban negatív volt, akkor biztosan 1-gyel fog kezdődni a kettes komplemens kódja.

Kettes komplemens esetén az előjelet a szám tartalmazza, így külön előjel bitet nem kell alkalmazni.

Megjegyzés: "c" mindig nemnegatív szám!

2. Valós számok tárolása

- Lebegőpontos számábrázolás:

Egyszeres pontos számalak: 32 bit = 1 + 8 + 23

- 1. bit: előjel bit
 - "0", ha a kiindulási szám nemnegatív
 - "1", ha a kiindulási szám nempozitív
- 2 9. bit: kitevő bit (8 db bit)

"k + 127"-et ábrázoljuk

10 - 32. bit: mantissza bit (23 db bit)

A kettes kódban kapott szám normál alakjának vessző utáni értékeinek 23 bitre történő kerekítésével kapjuk.

<u>Dupla pontos számalak:</u> 64 bit = 1 + 11 + 52

- 1. bit: előjel bit
 - "0", ha a kiindulási szám nemnegatív
 - "1", ha a kiindulási szám nempozitív
- 2 12. bit: kitevő bit (11 db bit)

"k + 1023"-et ábrázoljuk

13 - 64. bit: mantissza bit (52 db bit)

A kettes kódban kapott szám normál alakjának vessző utáni értékeinek 52 bitre történő kerekítésével kapjuk.

Nemlineáris egyenletek közelítő megoldása

1. Megállási kritérium

Az iteráció szempontjából fontos, mivel akkor fejezhetjük be az iterációt, amikor a megállási kritérium teljesül.

Példa megállási kritériumra:

- A megoldásként elfogadott "x_n"-re teljesüljön, hogy $|f(x_n)| < 10^{-4}$
- Közelítse a gyököt x₃-mal (3 iterációs lépéssel)
- A megoldásként kapott "x_n" és a pontos megoldás eltérése legyen kisebb, mint 10^{-2} (Ez esetben a hiba értékét kell vizsgálni.)

2. Közelítő módszerek

2.1 Intervallumfelezés módszere

Feladat megoldásához szükséges adatok: [a,b] intervallum, megállási kritérium A módszer képlete:

$$x_i = \frac{a_i + b_i}{2}, i = 1, 2, ...$$

A közelítő módszerből származó hiba számítása:

$$|x_n - x^*| \le \frac{b - a}{2^n}$$

2.2 Fixpont iteráció

Feladat megoldásához szükséges adatok: x₀, megállási kritérium A módszer képlete:

$$x_{k+1} = g(x_k)$$

A közelítő módszerből származó hiba számítása:

$$|x_n - x^*| \le \frac{c^n}{1 - c} \cdot |x_1 - x_0|$$

$$|g'(x)| < c < 1$$

2.3 Húrmódszer

Feladat megoldásához szükséges adatok: [a,b], megállási kritérium A módszer képlete:

$$x_i = a_i - \frac{f(a_i) \cdot (b_i - a_i)}{f(b_i) - f(a_i)}$$

A közelítő módszerből származó hiba számítása:

$$|x_n - x^*| \le \frac{|f(x_n)|}{\min_l |f'(x)|}$$

Az I intervallum kiválasztása esetén fontos, hogy:

- x_n és x* benne legyen
- $\min_{I} |f'(x)| \neq 0$
- legyen a lehető "legkisebb"

2.4 Szelőmódszer

Feladat megoldásához szükséges adatok: x₀, x₁, megállási kritérium A módszer képlete:

$$x_{n+1} = x_n - \frac{f(x_n) \cdot (x_n - x_{n-1})}{f(x_n) - f(x_{n-1})}$$

A közelítő módszerből származó hiba számítása:

$$|x_n - x^*| \le \frac{|f(x_n)|}{\min_I |f'(x)|}$$

Az I intervallum kiválasztása esetén fontos, hogy:

- x_n és x* benne legyen
- $\min_{I} |f'(x)| \neq 0$
- legyen a lehető "legkisebb"

2.5 Newton (érintő) módszer

Feladat megoldásához szükséges adatok: x_0 , megállási kritérium A módszer képlete:

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

A közelítő módszerből származó hiba számítása:

$$|x_n - x^*| \le \frac{|f(x_n)|}{\min_l |f'(x)|}$$

Az I intervallum kiválasztása esetén fontos, hogy:

- x_n és x^* benne legyen
- $\min_I |f'(x)| \neq 0$
- legyen a lehető "legkisebb"

Lineáris egyenletrendszerek megoldása

1. Gauss elimináció

$$A \cdot x = b$$

$$\begin{pmatrix} a_1 & a_2 & a_3 \\ a_4 & a_5 & a_6 \\ a_7 & a_8 & a_9 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} = \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix}$$

Az adott négyzetes mátrixban (mely az ismeretlenek együtthatóit tartalmazza) a főátló alatt kinullázzuk a számokat oszloponként haladva.

$$\begin{pmatrix} g_1 & g_2 & g_3 \\ 0 & g_4 & g_5 \\ 0 & 0 & g_6 \end{pmatrix}$$

Fajtái:

- ♦ Főelem kiválasztás nélküli
- ♦ Részleges főelem kiválasztás (sorcsere, ha szükséges)

Az eliminációs lépés előtt megvizsgáljuk, hogy a nullázandó számok és a főátló elem értéke közül melyik abszolút értékben a legnagyobb és azt sorcserével az aktuális főátló elem helyére tesszük, majd a sorcsere után elvégezzük a nullázást. A következő eliminációs lépés előtt megint csak ugyanígy vizsgálódunk.

Ezt addig ismételjük, amíg meg nem oldjuk a feladatot.

♦ Teljes főelem kiválasztás (sor és/vagy oszlopcsere, ha szükséges)

Az eliminációs lépés előtt megvizsgáljuk, hogy a teljes négyzetes mátrixban melyik szám abszolút értékben a legnagyobb és sor/oszlop cserével (amelyikre szükség van, vagy mindkettő segítségével) az első főátló elem helyére tesszük, majd elvégezzük az eliminációs lépést. A következő lépés előtt is vizsgálódunk, de ebben az esetben az első sort és oszlopot kivéve vizsgáljuk a számokat, és hasonlóan járunk el, mint az előzőekben.

Ezt addig ismételjük, míg meg nem oldjuk a feladatot.

♦ LU felbontás

$$A = L \times U$$

$$L = \begin{pmatrix} 1 & 0 & 0 \\ l_1 & 1 & 0 \\ l_2 & l_3 & 1 \end{pmatrix}, U = \begin{pmatrix} u_1 & u_2 & u_3 \\ 0 & u_4 & u_5 \\ 0 & 0 & u_6 \end{pmatrix}$$

Ebben az esetben ugyanúgy Gauss eliminációról beszélünk. A végeredményként kapott négyzetes mátrix megegyezik az U mátrixszal. Az L mátrixot tartalmazó elemeket úgy kapjuk meg, hogy az aktuálisan kinullázandó számokat elosztjuk az aktuális kinullázás során alkalmazott főátló elemmel.

2. Gauss-Jordan elimináció

Az adott négyzetes mátrixban (mely az ismeretlenek együtthatóit tartalmazza) a főátló alatt és felett kinullázzuk a számokat oszloponként haladva.

$$\begin{pmatrix} gj_1 & 0 & 0 \\ 0 & gj_2 & 0 \\ 0 & 0 & gj_3 \end{pmatrix}$$

Interpolációval történő közelítés

1. Lagrange interpoláció

Az általános interpolációs egyenlet:

$$L_n(x) = \sum_{i=0}^n y_i \cdot l_i(x) = y_0 \cdot l_0(x) + y_1 \cdot l_1(x) + y_2 \cdot l_2(x) + \dots + y_n \cdot l_n(x)$$

$$l_k(x) = \frac{(x - x_0) \cdot (x - x_1) \cdot \dots \cdot (x - x_{k-1}) \cdot (x - x_{k+1}) \cdot \dots \cdot (x - x_n)}{(x_k - x_0) \cdot (x_k - x_1) \cdot \dots \cdot (x_k - x_{k-1}) \cdot (x_k - x_{k+1}) \cdot \dots \cdot (x_k - x_n)}$$

A polinom és a függvény eltérésének egyszerűsített képlete (egyenlő távolságra lévő – ekvidisztáns – x_i-k esetén):

$$|f(x) - L_n(x)| \le \frac{M_{n+1}}{4 \cdot (n+1)} \cdot \left(\frac{b-a}{n}\right)^{n+1}$$

2. Lagrange interpolációs polinom Newton-féle alakja

Az általános interpolációs egyenlet:

$$N_n(x) = f[x_0] + f[x_0, x_1] \cdot (x - x_0) + f[x_0, x_1, x_2] \cdot (x - x_0)$$
$$\cdot (x - x_1) + \dots + f[x_0, x_1, x_2, \dots x_n] \cdot (x - x_0) \cdot (x - x_1) \cdot \dots \cdot (x - x_{n-1})$$

3. Hermite interpoláció

Az általános interpolációs egyenlet:

$$H_{2n+1}(x) = f[x_0] + f[x_0, x_0] \cdot (x - x_0) + f[x_0, x_0, x_1] \cdot (x - x_0)^2 + f[x_0, x_0, x_1, x_1] \cdot (x - x_0)^2 \cdot (x - x_1) + \dots + f[x_0, x_0, x_1, x_1, \dots x_n, x_n] \cdot (x - x_0)^2 \cdot (x - x_1)^2 \cdot \dots \cdot (x - x_{n-1})^2 \cdot (x - x_n)$$

A polinom és a függvény eltérésének általános képlete:

$$|f(x) - H_{2n+1}(x)| \le \frac{M_{2n+2}}{(2n+2)!} \cdot (x - x_0)^2 \cdot (x - x_1)^2 \cdot \dots \cdot (x - x_n)^2$$

4. Spline interpoláció

Az általános interpolációs polinom egyenlete:

$$S_i(x) = a_i + b_i \cdot (x - x_i) + c_i \cdot (x - x_i)^2 + d_i \cdot (x - x_i)^3 + \dots$$

Három pontra illeszthető spline interpolációs polinomok általános egyenletei:

$$S_0(x) = a_0 + b_0 \cdot (x - x_0) + c_0 \cdot (x - x_0)^2 + d_0 \cdot (x - x_0)^3 + \dots$$

$$S_1(x) = a_1 + b_1 \cdot (x - x_1) + c_1 \cdot (x - x_1)^2 + d_1 \cdot (x - x_1)^3 + \dots$$

A két általános egyenlet felírásához ismernünk kell az ismeretlen a_0 , b_0 , c_0 , d_0 , ... és a_1 , b_1 , c_1 , d_1 , ... paramétereket. Hogyha köbös spline-ról beszélünk, abban az esetben minden egyenlet harmadfokú lesz, tehát összesen 8 ismeretlenünk lesz. Ennek a kiszámításához szükségünk van 8 egyenletre.

A spline interpoláció esetén úgy kell a két polinomot értelmeznünk, hogy az x₁ pontban folytonos legyen, folytonosan deriválható, és kétszer folytonosan deriválható. Ennek a feltételnek tesz eleget a következő 3 egyenlet:

I.
$$S_0(x_1) = S_1(x_1)$$

II.
$$S'_0(x_1) = S'_1(x_1)$$

III.
$$S''_0(x_1) = S''_1(x_1)$$

A feladatban mindig meg van adva, hogy adott x_0 , x_1 , x_2 értékekhez milyen y_0 , y_1 , y_2 értékek tartoznak. Ezt a következő 3 egyenlet írja le:

IV.
$$S_0(x_0) = y_0$$

V.
$$S_1(x_1) = (S_0(x_1)) = y_1$$

VI.
$$S_1(x_2) = y_2$$

Ez a hat egyenlet MINDIG ugyanaz köbös spline esetén! Az utolsó két szükséges egyenletet viszont az alapján írom fel, hogy természetes, teljes vagy periodikus spline-t kell alkalmaznunk.

Ha <u>természetes köbös spline</u> a feladat, abban az esetben a két egyenlet a második deriváltra vonatkozik, méghozzá úgy, hogy a második deriváltak helyettesítési értékei a végpontokban nullát adnak.

VII.
$$S''_0(x_0) = 0$$

VIII.
$$S''_{1}(x_{2}) = 0$$

Ha <u>teljes köbös spline</u>-ról beszélünk, abban az esetben a két végpontban értelmezett derivált adott, előírt érték (a kezdő és végpontban lévő meredekség):

VII.
$$S'_0(x_0) = m_1$$

VIII.
$$S'_1(x_2) = m_2$$

Ha <u>periodikus köbös spline</u>-t szeretnénk felírni, akkor a két végpontban egyenlők a polinomok első és második deriváltjai:

VII.
$$S'_0(x_0) = S'_1(x_2)$$

VIII.
$$S''_0(x_0) = S''_1(x_2)$$

Numerikus integrálás

1. Jelmagyarázat:

N: hány egyszerű szabályból tevődik össze a feladat

h: egy intervallum hossza, kiszámítása: $h = \frac{b-a}{N}$

M_i: i-edik derivált abszolút értékben vett maximuma az [a,b] intervallumon

2. Módszerek:

2.1 Középpont-szabály (osztópontok száma: N + 1)

A közelítés általános egyenlete:

$$\int_{x_0}^{x_N} f(x) \, dx \approx h \cdot \left[f\left(\frac{x_0 + x_1}{2}\right) + f\left(\frac{x_1 + x_2}{2}\right) + \dots + f\left(\frac{x_{N-1} + x_N}{2}\right) \right]$$

Hibabecslés általános képlete (ekvidisztáns – egyenlő távolságra lévő – pontok esetén):

$$\frac{M_2 \cdot (b-a)^3}{24 \cdot N^2} \le \varepsilon$$

2.2 Trapéz-szabály (osztópontok száma: N + 1)

A közelítés általános egyenlete:

$$\int_{x_0}^{x_N} f(x) dx \approx \frac{h}{2} \cdot \left[f(x_0) + f(x_N) + 2 \cdot f(x_1) + 2 \cdot f(x_2) + 2 \cdot f(x_3) + \dots + 2 \cdot f(x_{N-1}) \right]$$

Hibabecslés általános képlete (ekvidisztáns – egyenlő távolságra lévő – pontok esetén):

$$\frac{M_2 \cdot (b-a)^3}{12 \cdot N^2} \le \varepsilon$$

14

2.2 Simpson-szabály (osztópontok száma: 2N + 1)

A közelítés általános egyenlete:

$$\int_{x_0}^{x_{2N}} f(x) dx \approx \frac{h}{6} \cdot \left[f(x_0) + 4 \cdot \sum_{i=1}^{N} f(x_{2i-1}) + 2 \cdot \sum_{i=1}^{N-1} f(x_{2i}) + f(x_{2N}) \right]$$

Hibabecslés általános képlete (ekvidisztáns – egyenlő távolságra lévő – pontok esetén):

$$\frac{M_4 \cdot (b-a)^5}{2880 \cdot N^4} \le \varepsilon$$

Szélsőérték számítás

Egy- és többváltozós függvények lokális szélsőértékeinek keresése.

1. Aranymetszés szerinti keresés módszere

Aranymetszés arányossági tényezője (állandó): $r = \frac{\sqrt{5}-1}{2} \approx 0,618034$

Az arányossági tényezőt felhasználva határozzuk meg az x és y értékeit, melyet grafikusan az alábbi ábra szemléltet.

Az [a,b] intervallumon az ábra szerinti x és y értékeit képlet szerint az alábbiakban tudjuk meghatározni:

$$x = a + r \cdot (b - a)$$

$$y = b - r \cdot (b - a)$$

A minimumhely keresés algoritmusa azon alapszik, hogy meghatározom x és y értékét, majd a függvénybe visszahelyettesítek, és figyelem az eredményeket. Abban az esetben, ha:

- $f(x) \ge f(y) \rightarrow [a,b]$ intervallumból [a,x] intervallum lesz
- $f(x) < f(y) \rightarrow [a,b]$ intervallumból [y,b] intervallum lesz

Ezt addig kell ismételni, amíg a kívánt pontosságra (ε) nem jutunk, mely a következő egyenlettel számolható: (abban az esetben, ha a közelítő minimumhely az utolsó részintervallum felezéspontja)

$$\frac{r^n\cdot(b-a)}{2}<\varepsilon$$

Ahol: r: aranymetszés arányossági tényező

n: iteráció (lépések) száma

a és b: az intervallum két széle

ε: pontosság, tolerancia, hiba

2. Szimplex módszer

A szimplex módszert n-dimenziós függvények minimumhely keresésére használjuk.

Egy 2-dimenziós szimplex módszer megoldási lépései:

- 1. Vegyünk fel egy 2-dimenziós szimplexet kiindulásként (egy háromszög 3 pontja [(x₁,y₁), (x₂,y₂), (x₃,y₃)] képezi).
- 2. Keressük meg a legrosszabb csúcspontot (x_r) , azaz melyik csúcspontban veszi fel a függvény a legnagyobb értéket.
- 3. Ezt a pontot tükrözzük a vele szemben lévő oldal középpontjára (x_c).
- 4. Megvizsgáljuk, hogy ez a tükrözött pont (x_t) függvénybe történő behelyettesítéssel kisebb eredményt ad-e, mint az eredeti legrosszabb csúcs.

A tükrözéshez használandó képletek: (tegyük fel, hogy az $x_r = (x_3, y_3)$ csúcs)

- A szemközti oldal középpontjának meghatározásához:

$$x_c = \frac{(x_1, y_1) + (x_2, y_2)}{2}$$

- A tükrözött csúcs meghatározásához:

$$x_t = 2 \cdot x_c - x_r$$

Abban az esetben, ha a tükrözött pont függvénybe történő behelyettesítésével kisebb értéket kapunk, mint az eredeti legrosszabb pont esetén, akkor ezt a koordinátát elfogadjuk, vagyis a legrosszabb pont helyére írva egy szimplex került meghatározásra.

Azonban, ha a függvény értéke a legrosszabb pont függvény értékénél nagyobb, akkor nem fogadjuk el, hanem a szimplexet úgy határozzuk meg, hogy a legjobb pontból zsugorítunk. Tegyük fel, hogy a legjobb pont (legkisebb a függvény értéke) (x_1,y_1) csúcs.

Ekkor a felére zsugorítással kapott koordináták:

$$(x_1, y_1)$$

$$\left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

$$\left(\frac{x_1 + x_3}{2}, \frac{y_1 + y_3}{2}\right)$$

3. Gradiens módszer

A módszer általános képlete 2-változó esetén:

$$(x_{n+1}, y_{n+1}) = (x_n, y_n) - \alpha_n \cdot f'(x_n, y_n)$$

Állandó lépésközű gradiens módszer

Ebben az esetben az α_n értéke a következőképpen alakul:

$$\alpha_n = \frac{h}{\|f'(x_n, y_n)\|}$$

$$f'(x_n, y_n) = (D_1 f(x_n, y_n), D_2 f(x_n, y_n))$$

$$\|f'(x_n, y_n)\| = \sqrt{(D_1 f(x_n, y_n))^2 + (D_2 f(x_n, y_n))^2}$$

Ebben az esetben h rögzített, vagyis az egyes pontok közti távolság konstans h értékű lesz. (Vagyis h-nál pontosabban általában nem tudjuk megközelíteni a minimumhelyet.)

Optimális gradiens módszer

Ebben az esetben az α_n -t minden esetben számolni kell a következő példa feladat szerint:

$$f(x,y) = x^2 + xy + 2y^2$$

$$(x_0, y_0) = (1,2)$$

$$f'(x,y) = (D_1 f(x,y), D_2 f(x,y)) \leftarrow gradiens \ vektor$$

$$D_1 f(x, y) = 2x + y \rightarrow D_1 f(x_0, y_0) = 2x_0 + y_0 = 4$$

$$D_2 f(x, y) = x + 4y \rightarrow D_2 f(x_0, y_0) = x_0 + 4y_0 = 9$$

$$(x_1, y_1) = (1,2) - \alpha_0 \cdot (4,9)$$

Az α_n akkor optimális, ha egy tőle függő függvény minimumhelyén vagyunk, vagyis:

$$g'(\alpha_n) = 0$$

Általánosan a $g(\alpha_n)$ függvény és annak deriváltja:

$$g(\alpha_n) = f(x_{n+1}) = f((x_n, y_n) - \alpha_n \cdot f'(x_n, y_n))$$

$$g'(\alpha_n) = f'((x_n, y_n) - \alpha_n \cdot f'(x_n, y_n)) \cdot (-f'(x_n, y_n))$$

Az előzőek alapján az optimális α₀ meghatározása:

$$g'(\alpha_0) = f'((1,2) - \alpha_0 \cdot (4,9)) \cdot (-f'(1,2)) = 0$$

$$g'(\alpha_0) = \left(2\cdot (1-4\alpha_0) + (2-9\alpha_0); (1-4\alpha_0) + 4\cdot (2-9\alpha_0)\right)\cdot (-4,-9) = 0$$

$$g'(\alpha_0) = -4 \cdot (2 \cdot (1 - 4\alpha_0) + (2 - 9\alpha_0)) - 9 \cdot ((1 - 4\alpha_0) + 4 \cdot (2 - 9\alpha_0)) = 0$$

$$g'(\alpha_0) = -8 + 32\alpha_0 - 8 + 36\alpha_0 - 9 + 36\alpha_0 - 72 + 324\alpha_0 = 0$$

$$g'(\alpha_0) = 428\alpha_0 - 97 = 0 \rightarrow \alpha_0 = \frac{97}{428}$$

$$(x_1, y_1) = (1,2) - \frac{97}{428} \cdot (4,9) = \left(\frac{10}{107}, \frac{-17}{428}\right)$$

Ez a lépéssorozat ismétlődik a megállási kritériumig.