Data Cleaning for Machine Learning in Python

1. Remove Duplicate Data

Duplicate rows can skew your analysis. Use drop_duplicates() to remove them.

```
# Sample data with duplicates
data = {'Name': ['Alice', 'Bob', 'Alice', 'Charlie'], 'Age': [25,
30, 25, 35]}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

print("========="*2)
# Remove duplicates
df_cleaned = df.drop_duplicates()
print("\033[32mCleaned DataFrame\033[0m")
display(df_cleaned)
```


Prepared by: Syed Afroz Ali
Connect with me on LinkedIn
https://www.linkedin.com/in/syed-afroz-

70939914/

2. Handle Missing Values

Missing data can be handled by replacing, removing, or interpolating.

```
# Sample data with missing values
data = {'Name': ['Alice', 'Bob', None, 'Charlie'], 'Age': [25,
None, 30, 35]}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Replace missing values with a placeholder
df_filled = df.fillna({'Name': 'Rajesh', 'Age': df['Age'].mean()})
print("\033[32mCleaned DataFrame\033[0m")
display(df_filled)
```

Original DataFrame					
	Name	Age			
0	Alice	25.0	11.		
1	Bob	NaN	+1		
2	None	30.0			
3	Charlie	35.0			
Cle	aned Da	taFram	ne		
Cle	aned Dar		ne III		
Cle O	Name	Age			
0	Name Alice	Age			
0	Name Alice	Age 25.0 30.0			
0	Name Alice Bob Rajesh	Age 25.0 30.0 30.0			

3. Correct Data Types

Ensure data is in the correct format, such as converting strings to datetime.

```
# Sample data with incorrect data types
data = {'Date': ['2023-01-01', '2023-02-01', '2023-
03-01'], 'Sales': [100, 150, 200]}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Convert 'Date' to datetime
df['Date'] = pd.to_datetime(df['Date'])
print("\033[32mCleaned DataFrame\033[0m")
display(df.dtypes)
```

0ri	ginal	DataF	rame	
		Date	Sales	
0	2023	-01-01	100	
1	2023	-02-01	150	
2	2023	-03-01	200	
Cle	aned	DataFr	ame	
			0	
Da	ate d	latetime	e64[ns]	
Sa	les		int64	
dty	pe: obj	ect		

4. Standardize Data

Standardize text cases or units of measurement.

```
# Sample data with inconsistent text cases
data = {'Name': ['alice', 'BOB', 'Charlie'], 'Age': [25,
30, 35]}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Standardize text to title case
df['Name'] = df['Name'].str.title()
print("\033[32mCleaned DataFrame\033[0m")
display(df)
```

Ori	ginal D	ataFra	ame
	Name	Age	
0	alice	25	11.
1	BOB	30	+1
2	Charlie	35	
Cle	aned Dat	taFran	ne
Cle	aned Dar		ne
Cle O			
	Name Alice	Age	
0	Name Alice Bob	Age 25	

5. Filter Outliers

Identify and address extreme values that may distort analysis.

```
# Sample data with outliers
data = {'Values': [10, 12, 1000, 13]}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)
# Calculate IQR
Q1 = df['Values'].quantile(0.25)
Q3 = df['Values'].quantile(0.75)
IQR = Q3 - Q1
# Define outlier bounds
lower bound = Q1 - 1.5 * IQR
upper bound = Q3 + 1.5 * IQR
# Filter out outliers
df_cleaned = df[(df['Values'] >= lower_bound) & (df['Values'] <=
upper bound)]
print("\033[32mCleaned DataFrame\033[0m")
display(df_cleaned)
```


6. Normalize Data

Scale numerical data to ensure features contribute equally in models.

```
# Sample data for normalization
data = {'Feature1': [100, 200, 300, 500], 'Feature2':
[0.5, 0.2, 0.3,.9]}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Normalize data using Min-Max scaling
df_normalized = (df - df.min()) / (df.max() - df.min())
print("\033[32mCleaned DataFrame\033[0m")
```

Original DataFrame				
Fea	ature1	Feature2		
0	100	0.5		
1	200	0.2		
2	300	0.3		
3	500	0.9		
Cleane	d DataF	rame		
Fea	ature1	Feature2		
0	0.00	0.428571		
1	0.25	0.000000		
2	0.50	0.142857		
3	1.00	1.000000		

display(df_normalized)

7. Remove Irrelevant Data

Drop columns or rows that do not contribute to the analysis.

```
# Sample data with irrelevant columns
data = {'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25,
30, 35], 'Unnecessary': [1, 2, 3]}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Drop the 'Unnecessary' column
df_cleaned = df.drop(columns=['Unnecessary'])
print("\033[32mCleaned DataFrame\033[0m")
display(df_cleaned)
```

Or	Original DataFrame						
	Name	Age	Unnecessary				
0	Alice	25	1				
1	Bob	30	2	10			
2	Charlie	35	3				
Cl	eaned Dat	taFra	me				
	Name	Age	11.				
0	Alice	25	10				
1	Bob	30					
2	Charlie	35					

8. Validate Data Integrity

Check for inconsistencies or errors, such as typos or incorrect data entries.

```
# Sample data with potential typos
data = {'Name': ['Alice', 'Bob', 'Charly'], 'Age': [25, 30,
35]}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Check for typos in 'Name'
valid_names = ['Alice', 'Bob', 'Charlie']
df_cleaned = df[df['Name'].isin(valid_names)]
print("\033[32mCleaned DataFrame\033[0m")
display(df_cleaned)
```


9. Document Cleaning Steps

Keep a record of all changes made during cleaning for transparency and reproducibility.

```
import pandas as pd
import numpy as np
# Sample data
data = {'Name': ['Alice', 'Bob', 'Charlie', 'Alice'], 'Age': [25, 30, 35,
np.nan], 'Salary': [50000, 60000, 75000, 50000]}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)
# Document cleaning steps in a list
cleaning steps = []
# Step 1: Remove duplicates
df = df.drop duplicates()
cleaning steps.append("Removed duplicate rows")
# Step 2: Fill missing values
df['Age'] = df['Age'].fillna(df['Age'].mean())
cleaning_steps.append("Filled missing age values with mean")
# Step 3: Standardize text data (e.g., convert names to uppercase)
df['Name'] = df['Name'].str.upper()
cleaning_steps.append("Standardized names to uppercase")
# Step 4: Remove irrelevant columns (e.g., 'Salary' is not needed)
df = df.drop(columns=['Salary'])
cleaning steps.append("Removed irrelevant column 'Salary")
# Step 5: Correct data types (e.g., ensure 'Age' is integer)
df['Age'] = df['Age'].astype(int)
cleaning_steps.append("Converted 'Age' column to integer")
```

```
# Step 6: Filter outliers in 'Age' (e.g., remove ages > 100 or < 0)
df = df[(df['Age'] > 0) & (df['Age'] < 100)]
cleaning steps.append("Filtered outliers in 'Age' column")
# Step 7: Validate data integrity
if df.isnull().sum().sum() == 0:
  cleaning_steps.append("Validated data integrity: No missing
values")
else:
  cleaning steps.append("Data integrity check failed: Missing
values detected")
# Step 8: Reset index after cleaning
df = df.reset_index(drop=True)
cleaning steps.append("Reset DataFrame index")
print("\033[1mData Cleaning Steps:\033[0m") # Print in bold
for step in cleaning_steps:
  print(f"- {step}")
print("\033[32mCleaned DataFrame\033[0m")
display(df)
```


10. Remove Extra Spaces

Trim leading, trailing, and extra spaces in text data.

```
# Sample data with extra spaces
data = {'Name': [' Alice ', 'Bob ', ' Charlie']}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Remove extra spaces
df['Name'] = df['Name'].str.strip()
print("\033[32mCleaned DataFrame\033[0m")
display(df)
```


11. Handle Inconsistent Categorical Data

Standardize categorical values (e.g., "Male" vs. "M").

```
# Sample data with inconsistent categories
data = {'Gender': ['Male', 'M', 'Female', 'F',
    'male']}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Standardize categories
df['Gender'] = df['Gender'].replace({'M': 'Male',
    'F': 'Female', 'male': 'Male'})
print("\033[32mCleaned DataFrame\033[0m")
display(df)
```


Prepared by: Syed Afroz Ali

Connect with me on LinkedIn

https://www.linkedin.com/in/syed-afroz-70939914/

12. Split Columns

Split a column into multiple columns (e.g., splitting "Full Name" into "First Name" and "Last Name").

```
# Sample data with full names
data = {'Full Name': ['Alice Smith', 'Bob Johnson',
'Charlie Brown']}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Split into first and last names
df[['First Name', 'Last Name']] = df['Full
Name'].str.split(' ', expand=True)
print("\033[32mCleaned DataFrame\033[0m")
display(df
```


13. Merge Columns

Combine multiple columns into one (e.g., combining "Year", "Month", and "Day" into a single "Date" column).

```
# Sample data with separate date components data = {'Year': [2023, 2023], 'Month': [1, 2], 'Day': [1, 15]}

df = pd.DataFrame(data)

print("\033[31mOriginal DataFrame\033[0m")

display(df)
```

Combine into a single date column
df['Date'] = pd.to_datetime(df[['Year', 'Month', 'Day']])
print("\033[32mCleaned DataFrame\033[0m")
display(df)

Original DataFrame

	Year	Month	Day	
0	2023	1	1	11.
1	2023	2	15	+1

Cleaned DataFrame

	Year	Month	Day	Date	11.
0	2023	1	1	2023-01-01	+1
1	2023	2	15	2023-02-15	

14. Remove Special Characters

Clean text data by removing special characters or symbols.

```
# Sample data with special characters
data = {'Text': ['Hello!', 'Data@Science', 'Python#3']}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Remove special characters
df['Text'] = df['Text'].str.replace(r'[^\w\s]', ",
regex=True)
print("\033[32mCleaned DataFrame\033[0m")
display(df)
```


15. Convert Text to Lowercase or Uppercase

Ensure consistent text casing.

```
# Sample data with inconsistent casing data = {'Text': ['Hello', 'WORLD', 'Python']} df = pd.DataFrame(data) print("\033[31mOriginal DataFrame\033[0m") display(df)

# Convert to lowercase df['Text'] = df['Text'].str.lower() print("\033[32mCleaned DataFrame\033[0m") display(df)
```


16. Remove Unwanted Rows

Filter out rows based on specific conditions.

```
# Sample data with unwanted rows
data = {'Name': ['Alice', 'Bob', 'Charlie'], 'Age': [25, -
30, 35]}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Remove rows where Age is negative
df = df[df['Age'] >= 0]
print("\033[32mCleaned DataFrame\033[0m")
display(df)
```


17. Encode Categorical Variables

Convert categorical data into numerical format for machine learning.

```
# Sample data with categorical variables
data = {'Color': ['Red', 'Blue', 'Green', 'Blue']}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# One-hot encoding
df_encoded = pd.get_dummies(df, columns=['Color'])
print("\033[32mCleaned DataFrame\033[0m")
display(df_encoded)
```


18. Check for Data Consistency

Ensure data follows logical rules (e.g., age cannot be negative).

```
# Sample data with inconsistent values
data = {'Name': ['Alice', 'Bob', 'Charlie'], 'Age':
[25, -30, 35]}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Check for invalid ages
invalid_ages = df[df['Age'] < 0]
print("\033[32mCleaned DataFrame\033[0m")
display("Invalid Ages:", invalid_ages)
```

Original DataFrame Ħ Name Age Alice 25 0 ıld Bob -30 1 Charlie 35 2 Cleaned DataFrame 'Invalid Ages:' Age Name Bob -30 1

19. Aggregate Data

Summarize data by grouping and aggregating (e.g., calculating average sales by region).

```
# Sample data for aggregation
data = {'Region': ['North', 'South', 'North', 'South'],
'Sales': [100, 150, 200, 250]}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Aggregate sales by region
df_aggregated =
df.groupby('Region')['Sales'].mean().reset_index()
print("\033[32mCleaned DataFrame\033[0m")
display(df_aggregated)
```

Original DataFrame						
	Region	Sales				
0	North	100	11.			
1	South	150	10			
2	North	200				
3	South	250				
Cle	aned Dat	aFrame				
	Region	Sales				
0	North	150.0	1			
1	South	200.0				

20. Handle Mixed Data Types in a Column

Ensure a column contains only one data type.

```
# Sample data with mixed types
data = {'Values': [10, 'King', 30, '40']}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Convert all values to integers
df['Values'] = pd.to_numeric(df['Values'],
errors='coerce')
print("\033[32mCleaned DataFrame\033[0m")
display(df)
```


21. Detect and Remove Corrupted Data

Identify and remove rows with corrupted or nonsensical data.

```
# Sample data with corrupted entries
data = {'Name': ['Alice', 'Bob', 'Charlie', '###'], 'Age':
[25, 30, 35, -999]}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Remove rows with corrupted data
df = df[~df['Name'].str.contains(r'[^a-zA-Z\s]',
regex=True)]
df = df[df['Age'] != -999]
print("\033[32mCleaned DataFrame\033[0m")
display(df)
```


22. Reshape Data (Pivot/Unpivot)

Convert data between wide and long formats.

```
# Sample data in wide format
data = {'Year': [2022, 2023], 'Sales_Q1': [100, 150],
'Sales_Q2': [200, 250]}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Unpivot to long format
df_long = df.melt(id_vars=['Year'],
var_name='Quarter', value_name='Sales')
print("\033[32mCleaned DataFrame\033[0m")
display(df_long)
```

Original DataFrame						
	Year	Sales_Q1	Sales_	_Q2		
0	2022	100	2	200	11.	
1	2023	150	2	250	7	
Cle	aned [)ataFrame				
	Year	Quarter	Sales	11.		
0	2022	Sales_Q1	100	+1		
1	2023	Sales_Q1	150			
2	2022	Sales_Q2	200			
3	2023	Sales_Q2	250			

23. Check for Data Skewness

Identify and address skewed data distributions.

```
import pandas as pd
import numpy as np
# Sample data with skewed distribution
data = {'Values': [1, 2, 3, 1000, 4, 5]}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Check skewness
skewness = df['Values'].skew()
print("Skewness:", skewness)

# Apply log transformation to reduce skewness
df['Values'] = df['Values'].apply(lambda x: np.log(x) if x > 0 else 0)
print("\033[32mCleaned DataFrame\033[0m")
display(df)
```


24. Handle Time Zones in Datetime Data

Ensure datetime data is in the correct time zone.

```
# Sample data with datetime
data = {'Timestamp': ['2023-01-01 12:00:00', '2023-01-02 12:00:00']}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Convert to datetime and set timezone
df['Timestamp'] =
pd.to_datetime(df['Timestamp']).dt.tz_localize('UTC')
print("\033[32mCleaned DataFrame\033[0m")
display(df)
```


25. Handle Imbalanced Data

Address class imbalance in categorical data for machine learning.

```
# Sample data with imbalanced classes
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)
# Check class distribution
print(df['Class'].value counts())
# Use oversampling to balance classes
from sklearn.utils import resample
df majority = df[df['Class'] == 'A']
df minority = df[df['Class'] == 'B']
df_minority_upsampled = resample(df_minority, replace=True,
n samples=len(df majority), random state=42)
df_balanced = pd.concat([df_majority, df_minority_upsampled])
print("\033[32mCleaned DataFrame\033[0m")
display(df_balanced['Class'].value_counts())
```


26. Detect and Remove Multicollinearity

Identify and remove highly correlated features.

```
# Sample data with correlated features
data = {'Feature1': [1, 2, 3, 4], 'Feature2': [2, 4, 6, 8], 'Feature3': [3,
6, 9, 12]}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)
# Calculate correlation matrix
corr matrix = df.corr()
# Remove highly correlated features
import numpy as np
upper_tri = corr_matrix.where(np.triu(np.ones(corr_matrix.shape),
k=1).astype(bool))
to drop = [column for column in upper tri.columns if
any(upper tri[column] > 0.95)]
df_cleaned = df.drop(columns=to_drop)
print("\033[32mCleaned DataFrame\033[0m")
display(df_cleaned)
```

Ori	Original DataFrame							
	Feature1	Feature2	Feature3					
0	1	2	3	11.				
1	2	4	6	1				
2	3	6	9					
3	4	8	12					
Cle	aned DataF	rame						
	Feature1							
0	1	1						
1	2							
2	3							
3	4							

27. Handle Noisy Data

Smooth out noisy data using techniques like moving averages.

```
# Sample noisy data
data = {"Values": [10, 12, 15, 100, 14, 13, 16]}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Apply moving average smoothing
window_size = 2
df["Smoothed"] =
df["Values"].rolling(window=window_size).mean()
print("\033[32mCleaned DataFrame\033[0m")
display(df)
```

0ri	ginal Da Values	ataFrame	
0	10		
1	12	10	
2	15		
3	100		
4	14		
5	13		
6	16		
Cle	aned Dat	:aFrame	
Cle		Smoothed	
Cle O			11.
	Values	Smoothed	11.
0	Values	Smoothed NaN	11.
0	Values 10 12	Smoothed NaN 11.0	11.
0 1 2	10 12 15	NaN 11.0 13.5	11.
0 1 2 3	Values 10 12 15 100	NaN 11.0 13.5 57.5	1. V
0 1 2 3	Values 10 12 15 100 14	NaN 11.0 13.5 57.5 57.0	11. V

28. Detect and Handle Data Leakage

Ensure no future information is used in training data.

```
# Sample data with potential leakage
data = {'Date': ['2023-01-01', '2023-01-02', '2023-01-
03'], 'Sales': [100, 150, 200], 'Future_Info': [150, 200, 250]}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Remove future information
df_cleaned = df.drop(columns=['Future_Info'])
print("\033[32mCleaned DataFrame\033[0m")
display(df_cleaned)
```

Ori	Original DataFrame						
	Da	ite Sa	les	Future	_Info		
0	2023-01-	-01	100		150		
1	2023-01-	-02	150		200	10	
2	2023-01-	-03	200		250		
Cle	aned Dat	aFrame	2				
	Da	rte Sa	les	11.			
0	2023-01-	-01	100	10			
1	2023-01-	-02	150				
2	2023-01-	-03	200				

29. Handle Hierarchical Data

Flatten nested or hierarchical data structures.

```
# Sample hierarchical data
data = {'Name': ['Alice', 'Bob'], 'Details': [{'Age': 25,
'City': 'New York'}, {'Age': 30, 'City': 'Los Angeles'}]}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Flatten nested data
df_flattened = pd.json_normalize(df['Details'])
df_cleaned = pd.concat([df.drop(columns=['Details']),
df_flattened], axis=1)
print("\033[32mCleaned DataFrame\033[0m")
display(df_cleaned)
```


30. Detect and Handle Data Drift

Identify changes in data distribution over time.

```
# Sample data with drift
data = {'Date': pd.date_range(start='2023-01-01',
periods=10), 'Values': [10, 12, 15, 100, 14, 13, 16,
200, 18, 20]}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Detect drift using statistical tests
from scipy.stats import ks_2samp
train = df[df['Date'] < '2023-01-05']['Values']
test = df[df['Date'] >= '2023-01-05']['Values']
stat, p_value = ks_2samp(train, test)
print("P-value for drift detection:", p_value)
```

Ori	ginal DataF		
	Date	Values	=
0	2023-01-01	10	11.
1	2023-01-02	12	7
2	2023-01-03	15	
3	2023-01-04	100	
4	2023-01-05	14	
5	2023-01-06	13	
6	2023-01-07	16	
7	2023-01-08	200	
8	2023-01-09	18	
9	2023-01-10	20	
P-ν	alue for dr	ift dete	ection: 0.5523809523809524

31. Handle High-Cardinality Categorical Data

Reduce the number of unique categories in high-cardinality features.

```
# Sample data with high-cardinality categories
data = {'City': ['New York', 'Los Angeles', 'Chicago', 'Houston',
'Phoenix', 'Philadelphia', 'San Antonio', 'San Diego', 'Dallas', 'San
Jose'] * 10}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Group rare categories into 'Other'
threshold = 5
counts = df['City'].value_counts()
df['City'] = df['City'].apply(lambda x: x if counts[x] >= threshold else
'Other')
display(df['City'].value_counts())
```


32. Handle Time-Based Data

Resample or aggregate time-series data.

```
# Sample time-series data
data = {'Date': pd.date_range(start='2023-01-01',
periods=10, freq='D'), 'Sales': [10, 15, 20, 25, 30, 35, 40, 45,
50, 55]}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Resample to weekly data
df_resampled = df.resample('W', on='Date').sum()
print("\033[32mCleaned DataFrame\033[0m")
display(df_resampled)
```

u		pia	ylui	_, _,	36	4	hı,	Cuj
C	ri	ginal	DataF	rame				
			Date	Sale	5	田		
	0	2023-	01-01	1	0	1	1	
	1	2023-	01-02	1	5	+	,	
	2	2023-	01-03	2	0			
	3	2023-	01-04	2	5			
	4	2023-	01-05	3	0			
	5	2023-	01-06	3	5			
	6	2023-	01-07	4	0			
	7	2023-	01-08	4	5			
	8	2023-	01-09	5	0			
	9	2023-	01-10	5	5			
(:le	aned I	DataFr	ame				
			Si	ales		di		
		Dā	ate		4	1		
	20	23-01-	-01	10				
	20	23-01-	-08	210				
	20	23-01-	15	105				

33. Detect and Handle Data Anomalies

Use statistical or machine learning methods to detect anomalies.

```
# Sample data with anomalies
data = {'Values': [10, 12, 15, 100, 14, 13, 16]}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Detect anomalies using Z-score
from scipy.stats import zscore
df['Z-score'] = zscore(df['Values'])
df['Anomaly'] = df['Z-score'].abs() > 2
print("\033[32mCleaned DataFrame\033[0m")
display(df)
```

01.1	ginal Da	ntaFrame		
	Values	田		
0	10	11.		
1	12	10		
2	15			
3	100			
4	14			
5	13			
6	16			
Cle	aned Dat	aFrame		
Cle		aFrame Z-score	Anomaly	
0	Values		-	···
	Values	Z-score	False	**
0	Values 10 12	Z-score -0.517225	False	**
0	Values 10 12 15	Z-score -0.517225 -0.451396	False False	**
0 1 2	Values 10 12 15 100	Z-score -0.517225 -0.451396 -0.352653	False False False	***
0 1 2 3	Values 10 12 15 100 14	Z-score -0.517225 -0.451396 -0.352653 2.445063	False False False True	***

34. Handle Text Data

Clean and preprocess text data for NLP tasks.

```
# Sample text data
data = {'Text': ['Hello, world!', 'This is a test.', 'Data
cleaning is important.']}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Remove punctuation and convert to lowercase
import string
df['Cleaned_Text'] =
df['Text'].str.translate(str.maketrans(", ",
string.punctuation)).str.lower()
print("\033[32mCleaned DataFrame\033[0m")
display(df)
```

0ri	ginal DataFrame		
	Text	=	
0	Hello, world!		
1	This is a test.	*/	
2	Data cleaning is important.		
Cle	aned DataFrame		
	Text	Cleaned_Text	11
0	Hello, world!	hello world	+1
1	This is a test.	this is a test	

35. Handle Geospatial Data

Clean and preprocess geospatial data.

```
# Sample geospatial data
data = {'City': ['New York', 'Los Angeles', 'Chicago'],
'Latitude': [40.7128, 34.0522, 41.8781], 'Longitude': [-
74.0060, -118.2437, -87.6298]}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Validate coordinates
df = df[(df['Latitude'].between(-90, 90)) &
(df['Longitude'].between(-180, 180))]
print("\033[32mCleaned DataFrame\033[0m")
display(df)
```

Original DataFrame						
	City	Latitude	Longitude			
0	New York	40.7128	-74.0060			
1	Los Angeles	34.0522	-118.2437	+0		
2	Chicago	41.8781	-87.6298			
Cleaned DataFrame						
	alleu Dataria	ame				
		Latitude	Longitude			
0		_	Longitude -74.0060	11.		
	City	Latitude 40.7128		11.		

36. Handle Sparse Data

Remove or impute sparse features.

```
# Sample sparse data
data = {'Feature1': [1, 0, 0, 0], 'Feature2': [0, 0, 0, 0],
'Feature3': [1, 1, 1, 1]}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Remove sparse features
df = df.loc[:, (df != 0).any(axis=0)]
print("\033[32mCleaned DataFrame\033[0m")
display(df)
```

Original DataFrame					
Fe	ature1	Feature2	Feature3		
0	1	0	1		
1	0	0	1	+1	
2	0	0	1		
3	0	0	1		
Cleane	d DataF	rame			
Fe	ature1	Feature3	11.		
0	1	1	1		
1	0	1			
2	0	1			
3	0	1			

37. Handle Data with Mixed Granularity

Aggregate or disaggregate data to a consistent granularity.

```
# Sample data with mixed granularity
data = {'Date': ['2023-01-01', '2023-01-02'], 'Sales': [100, 150, 200]}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Aggregate to daily sales
df_aggregated =
df.groupby('Date')['Sales'].sum().reset_index()
print("\033[32mCleaned DataFrame\033[0m")
display(df_aggregated)
```

Ori	ginal DataF Date	rame Sales	
0	2023-01-01	100	
1	2023-01-01	150	+0
2	2023-01-02	200	
Cle	aned DataFr	ame	
	Date	Sales	11.
0	2023-01-01	250	+0
1	2023-01-02	200	

38. Handle Data with Encoding Issues

Fix encoding problems in text data.

```
# Sample data with encoding issues
data = {'Text': [b'Hello, world!', b'This is a
test.']}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Decode bytes to strings
df['Text'] = df['Text'].str.decode('utf-8')
print("\033[32mCleaned DataFrame\033[0m")
display(df)
```


39. Handle Data with Inconsistent Units

Convert data to consistent units.

```
# Sample data with inconsistent units
data = {'Weight': ['10kg', '20kg', '15000g']}
df = pd.DataFrame(data)
print("\033[31mOriginal DataFrame\033[0m")
display(df)

# Convert all weights to kilograms
df['Weight'] = df['Weight'].apply(lambda x: float(x[:-2])
if 'kg' in x else float(x[:-1]) / 1000)
print("\033[32mCleaned DataFrame\033[0m")
display(df)
```


Prepared by: Syed Afroz Ali
Connect with me on LinkedIn
https://www.linkedin.com/in/syed-afroz-70939914/