Time Series (TS) Forecast Models Validation & Evaluation

Nagiza F. Samatova, <u>samatova@csc.ncsu.edu</u>

Professor, Department of Computer Science North Carolina State University

Senior Scientist, Computer Science & Mathematics Division Oak Ridge National Laboratory

Basic Notation

Symbol	Definition
$t=1,2,3,\ldots,$	An index for the time period of interest; e.g., for a <i>daily</i> time period, $t=1$ means day 1, $t=2$ means day 2, etc.
y_1, y_2, \dots, y_T	A series of T values measure over T time periods; e.g., for the annual average stock price, y_1 denotes the price for year 1, y_2 denotes the price for year 2, etc.
F_t or $\hat{y_t}$	The forecast value for time period t
F_{t+k} or $\widehat{y_{t+k}}$	The k -step-ahead forecast when forecasting time is t ; e.g., F_{t+1} is the forecast for time period $(t+1)$ made during the time period t
$e_t = y_t - F_t$ or $e_t = y_t - \hat{y_t}$	The forecast error for time period t

Scale-dependent Metrics

The forecast error $(e_t = y_t - \hat{y}_t)$ is on the same scale as the data. Accuracy measures that are based on e_t are scale-dependent and can NOT be used to compare series that are on different scales.

Error Measures

- Error: $e_t = y_t \hat{y}_t$
 - Cons: Dependent of the scale of data
- Percentage Error: $p_t = 100e_t/y_t$
 - Cons of Percentage Errors:
 - Infinite or undefined if $y_t = 0$
 - ullet Have extreme values when any y_t is close to zero
 - Put a heavier penalty on negative errors than on positive errors
 - Pros of Percentage Errors:
 - Independent of the scale of data

• Scaled Error:
$$q_t = rac{e_t}{rac{1}{T-1}\sum_{j=2}^T |y_j-y_{j-1}|}$$

- Scaling the errors based on the training MAE from a naive forecast
 - $q_t < 1$: a better forecast than the average naive forecast computed on the training data.
 - $q_t > 1$: the forecast is worse than the average naive forecast computed on the training data.
- Pros of Scaled Errors:
 - Independent of the scale of data

Scaled Error for Seasonal & Cross-Sectional Data

Scaled Error for Seasonal Naive Forecast:

$$q_t = \frac{e_t}{\frac{1}{T-m} \sum_{j=m+1}^{T} |y_j - y_{j-m}|}$$

Scaled Error for Cross-Sectional Data:

$$q_j = \frac{e_j}{\frac{1}{N} \sum_{i=1}^N |y_i - \overline{y}|}$$

Forecast Accuracy Measures

Measure	Formula	Scale- dependent?
Mean Absolute Error	$MAE = mean(e_t)$	YES
Root Mean Squared Error	$RMSE = sqrt(mean(e_t^2))$	YES
Mean Absolute Percentage Error	$MAPE = mean(p_t)$	NO
Mean Absolute Scaled Error	$MASE = mean(q_t)$	NO
Mean Squared Scaled Error	$MSSE = sqrt(mean(q_t^2))$	NO

Baseline: Simple Forecasting Methods

- Average: meanf (ts.data, h=20)
 - Forecast of all future values is the mean of historical data $\{y_1, ..., y_T\}$
 - $F_{T+h} = \hat{y}_{T+h} = \overline{y} = (y_1 + \dots + y_T)/T$
- Naive: naive (ts.data, h=20) or rwf (ts.data, h=20)
 - Forecast is equal to the last observed value
 - $\bullet \quad F_{T+h|T} = \widehat{y}_{T+h|T} = y_T$
- Seasonal naive: snaive (ts.data, h=20)
 - Forecast is equal to the last value from the same season
 - $\widehat{y}_{T+h|T} = y_{T+h-km}$, where m is the seasonal period and $k = round\left(\frac{h-1}{m}\right) + 1$
- Drift: rwf (ts.data, drift=TRUE, h=20)
 - Forecast is equal to the last value plus the average change
 - Equivalent to extrapolating a line between the first and last observation
 - $F_{T+h|T} = \widehat{y}_{T+h|T} = y_T + \frac{h}{T-1} \sum_{t=2}^{T} (y_t y_{t-1}) = y_T + \frac{h}{T-1} (y_T y_1)$

Training and Test Data Sets

Available data

Training set (e.g., 80%)

Test set (e.g., 20%)

- The test set must not be used for any aspect of model development or calculation of forecasts.
- Forecast accuracy is based only on the test set.

Example: Beer Production Forecast

```
beer3 <- window(ausbeer, start=1992, end=2005.99)</pre>
beer4 <- window(ausbeer,start=2006)</pre>
fit1 <- meanf(beer3,h=20)</pre>
fit2 <- rwf(beer3,h=20)
accuracy(fit1,beer4)
accuracy(fit2,beer4)
In-sample accuracy (one-step forecasts)
accuracy(fit1)
accuracy(fit2)
```

Example: Beer Production Forecast 2006-08

Method	RMSE	MAE	MAPE	MASE
Mean method	38.01	33.78	8.17	2.30
Naïve method	70.91	63.91	15.88	4.35
Seasonal naïve method	12.97	11.27	2.73	0.77

Example: Dow Jones Index Forecast

Method	RMSE	MAE	MAPE	MASE
Mean method	148.24	142.42	3.66	8.70
Naïve method	62.03	54.44	1.40	3.32
Drift method	53.70	45.73	1.18	2.79

Cross-Validation for Cross-Sectional Data

Leave-one-out Cross-Validation (LOOCV) Steps:

- 1. Select observation *i* for the test set, and use the remaining observations in the training set. Compute the error on the test observation.
- 2. Repeat the above step for i = 1, 2, ..., N where N is the total number of observations.
- Compute the forecast accuracy measures based on the errors obtained.

Cross-Validation for Time-Series Data

- For time series data, the procedure is similar to LOOCV for cross-sectional data but the training set consists only of observations that occurred prior to the observation that forms the test set.
 - No future observations can be used in constructing the forecast.
 - It is not possible to get a reliable forecast based on a very small training set, so the earliest observations are not considered as test sets.
- Suppose k observations are required to produce a reliable forecast. Then the cross-validation works as follows:
 - 1. Select the observation at time k + i for the test set, and use the observations at times $1, 2, \ldots, k + i 1$ to estimate the forecasting model. Compute the error on the forecast for time k + i.
 - 2. Repeat the above step for i = 1, 2, ..., T k where T is the total number of observations.
 - Compute the forecast accuracy measures based on the errors obtained.
- This procedure is sometimes known as a "rolling forecasting origin" because the "origin" (k + i -1) at which the forecast is based rolls forward in time.

Cross-Validation for Multi-Step-Ahead Forecast

- The cross-validation procedure based on a rolling forecasting origin can be modified to allow for multi-step errors to be used:
 - 1. Select the observation at time k+h+i-1 for the test set, and use the observations at times $1,2,\ldots,k+i-1$ to estimate the forecasting model. Compute the h-step error on the forecast for time k+h+i-1.
 - 2. Repeat the above step for i = 1, 2, ..., T k h + 1 where T is the total number of observations.
 - Compute the forecast accuracy measures based on the errors obtained.