A TABLE OF LAPLACE TRANSFORMS

f(t)	$F(s) = \mathscr{L}\{f\}(s)$	f(t)	$F(s) = \mathcal{L}\{f\}(s)$
1. f(at)	$\frac{1}{a}F\left(\frac{s}{a}\right)$	19. $\frac{1}{\sqrt{t}}$	$\frac{\sqrt{\pi}}{\sqrt{s}}$
$2. e^{at}f(t)$	F(s-a)	20. \sqrt{t}	$\frac{\sqrt{\pi}}{2s^{3/2}}$
3. $f'(t)$	sF(s)-f(0)	21. $t^{n-(1/2)}$, $n=1,2,\ldots$	$\frac{1 \cdot 3 \cdot 5 \cdots (2n-1)\sqrt{\pi}}{2^n s^{n+(1/2)}}$
4. $f^{(n)}(t)$	$s^n F(s) - s^{n-1} f(0) - s^{n-2} f'(0)$	22. t^r , $r > -1$	$\frac{\Gamma(r+1)}{s^{r+1}}$
	$-\cdots-sf^{(n-2)}(0)-f^{(n-1)}(0)$	23. sin <i>bt</i>	$\frac{b}{s^2+b^2}$
5. $t^n f(t)$	$(-1)^n F^{(n)}(s)$	24. cos bt	$\frac{s}{s^2+b^2}$
$6. \frac{1}{t} f(t)$	$\int_s^\infty F(u)du$	25. $e^{at} \sin bt$	$\frac{b}{(s-a)^2+b^2}$
$7. \int_0^t f(v) dv$	$\frac{F(s)}{s}$	26. $e^{at} \cos bt$	$\frac{s-a}{(s-a)^2+b^2}$
8. $(f * g)(t)$	F(s)G(s)	27. sinh <i>bt</i>	$\frac{b}{s^2-b^2}$
9. f(t+T) = f(t)	$\frac{\int_0^T e^{-st} f(t) dt}{1 - e^{-sT}}$	28. cosh <i>bt</i>	$\frac{s}{s^2-b^2}$
10. $f(t-a)u(t-a), a \ge 0$	$e^{-as}F(s)$	29. $\sin bt - bt \cos bt$	$\frac{2b^3}{(s^2+b^2)^2}$
11. $g(t)u(t-a), a \ge 0$	$e^{-as}\mathscr{L}\lbrace g(t+a)\rbrace(s)$	30. t sin bt	$\frac{2bs}{(s^2+b^2)^2}$
12. $u(t-a), a \ge 0$	$\frac{e^{-as}}{s}$	31. $\sin bt + bt \cos bt$	$\frac{2bs^2}{(s^2+b^2)^2}$
13. $\delta(t-a)$, $a \ge 0$	e^{-as}	32. t cos bt	$\frac{s^2 - b^2}{(s^2 + b^2)^2}$
14. e ^{at}	$\frac{1}{s-a}$	33. $\sin bt \cosh bt - \cos bt \sinh bt$	$\frac{4b^3}{s^4+4b^4}$
15. t^n , $n = 1, 2,$	$\frac{n!}{s^{n+1}}$	34. sin <i>bt</i> sinh <i>bt</i>	$\frac{2b^2s}{s^4+4b^4}$
16. $e^{at}t^n$, $n = 1, 2, 3,$	$\frac{n!}{(s-a)^{n+1}}$	35. $\sinh bt - \sin bt$	$\frac{2b^3}{s^4-b^4}$
17. $e^{at} - e^{bt}$	$\frac{(a-b)}{(s-a)(s-b)}$	$36. \cosh bt - \cos bt$	$\frac{2b^2s}{s^4-b^4}$
$18. \ ae^{at} - be^{bt}$	$\frac{(a-b)s}{(s-a)(s-b)}$	37. J _v (bt)	$\frac{(\sqrt{s^2+b^2}-s)^{\nu}}{b^{\nu}\sqrt{s^2+b^2}}, \nu > -1$