Projekt z przedmiotu

Analiza sygnałów i idetyfikacja

Prowadzący:

dr inż. Marcin Nawrocki

Autor:

Kamil Pieprzycki

Automatyka i Robotyka, grupa laboratoryjna 6

Wydział Inżynierii Mechanicznej i Robotyki

Rys.1. Schemat badanego układu

2. Identyfikacja parametrów modelu na podstawie odpowiedzi skokowej

Rys.2. Odpowiedź skokowa obiektu badanego

Na jej podstawie jesteśmy w stanie określić, iż mamy do czynienia z obiektem oscylacyjnym drugiego rzędu. W celu wyznaczenia transmitancji ogólnej obiektu danej wzorem $G_Z(s)=\frac{\omega_0^2*k}{s^2+\omega_0*\xi*s+\omega_0^2}$ wyznaczamy tłumienie względne ξ z zależności: $\Delta y_m=100*\exp{(-\frac{\xi*\pi}{\sqrt{1-\xi^2}})}[\%]$ oraz okres drgań tłumionych T_1

Obliczone i wyznaczone wartości : $\xi = 0.0716$

$$T_1 = 0.0046 [s]$$

Następnie z zależności $\omega_0=\frac{2\pi}{T_1\sqrt{(1-\xi^2)}}$ wyznaczamy pulsację drgań nietłumionych $\omega_0=1369.425[Hz]$, wzmocnienie k = 1.

Podstawiając dane do wzoru na transmitancję otrzymujemy $G_z(s) = \frac{1875323.676}{s^2 + 196.102*s + 1875323.676}$

Następnie wyznaczono wartości pojemności C oraz indukcyjności L.

Wiedząc że dla obiektu RLC transmitancja operatorowa ma postać $G(s) = \frac{1}{L*C*s^2 + R*C*s + 1}$, oraz że $R_u = 130 \ [\Omega]$ obliczono wartość $C = 87.141 \ [\mu F]$ oraz $L = 6.119 \ [mH]$

Rys.3. Porównanie odpowiedzi skokowej dla wyznaczonej transmitancji i oryginału

Rys.4.Odpowiedź impulsowa dla wyznaczonej transmitancji

Rys.5.Charakterystyka amplitudowo-fazowa dla wyznaczonej transmitancji

Wnioski.

Porównując odpowiedzi skokowe zidentyfikowanego obiektu na podstawie odpowiedzi skokowej i eksperymentalnych metod wyznaczania jej parametrów oraz odpowiedzi skokowej obiektu badanego jesteśmy w stanie oszacować, że identyfikacja przebiegła pomyślnie i jej wyniki są zadowalające

3. Identyfikacja parametrów modelu na podstawie odpowiedzi impulsowej

Korzystając z wiedzy, że odpowiedź impulsowa jest pochodną odpowiedzi skokowej, wyznaczono wektor zawierający poszukiwane wartości. Następnie wyznaczono transformatę Fouriera wektora zawierającego odpowiedź impulsową za pomocą funkcji 'fft'. Odczytano punkty n1 dla przecięcia części rzeczywistej i urojonej oraz n2 dla przecięcia części rzeczywistej z osią 0 pionową na wykresie zamieszczonym poniżej.

Rys.6. Wykres przedstawiający części rzeczywiste i urojone transmitancji widmowej

Odczytane punkty przecięcia n1= 21.185; n2= 22.7395

Następnie obliczono wartości $\omega_1 = 1.331*10^3$ oraz $\omega_2 = 1.428*10^3$

Następnie wyznaczono T_0 oraz ξ z zależności :

$$T_0 = \frac{1}{\omega_2} = 6.999 * 10^{-4}$$
 $\xi = \frac{1}{2} \frac{\omega_2}{\omega_1} \left(1 - \frac{\omega_1^2}{\omega_2^2} \right) = \mathbf{0.0709}$

Wyznaczono również częstotliwość drgań własnych $\omega_0 = \omega_2 = 1.428 * 10^3 \ [Hz]$

Wyliczona transmitancja

$$G(s) = \frac{1}{4.899 * 10^{-7} * s^2 + 9.92 * 10^{-5} * s + 1}$$

Wyznaczono wartości pojemności $C = 82.66 [\mu F]$ oraz L = 0.592 [H]

Dla wyliczonej transmitancji wyznaczono charakterystyki czasowe i częstotliwościowe:

Rys.7.Porównanie odpowiedzi skokowej dla transmitancji wyznaczonej i badanego układu

Rys.8.Odpowiedź impulsowa dla transmitancji wyznaczonej

Rys.9.Odpowiedź amplitudowo-fazowa dla wyznaczonej transmitancji

Wnioski:

Odpowiedź skokowa zidentyfikowanego obiektu na podstawie odpowiedzi impulsowej zauważalnie różni się od odpowiedzi skokowej obiektu podanego w danych, charakterystyka Nyquista w miejscach gdzie występuje największe skupienie próbek również nie jest dokładnie odwzorowana. Otrzymane wartości pojemności i indukcyjności są obarczone dużo większym błędem w stosunku do wartości wyznaczonych na podstawie odpowiedzi skokowej które okazały się dużo lepiej odwzorowywać badany obiekt

4. Identyfikacja parametrów modelu obiektu SISO

Wykorzystana w tym punkcie metoda wykorzystuje funkcję gęstości widmowej mocy własnej i wzajemnej.

Aby wyznaczyć gęstości mocy własnej sygnału wejściowego Pxx oraz wzajemnej sygnałów wejściowego względem wyjściowego Pxy należy dokonać transformaty Fouriera sygnałów wejściowego i wyjściowego a następnie otrzymane wektory X i Y podstawić do zależności:

$$P_{xx} = (X.*conj(X))$$

$$P_{xy} = (conj(X).*Y)$$

Następnie jesteśmy w stanie wyznaczyć charakterystykę amplitudowo-fazową bezpośrednio z równania:

$$\frac{P_{xx}}{P_{xy}} = ModI$$

Po 10-krotnym zredukowaniu ilości danych za pomocą funkcji **decimate** jesteśmy w stanie przedstawić dane na wykresie i odczytać punkty przecięcia n1 oraz n2.

Rys.10. Wykres przedstawiający części rzeczywiste i urojone transmitancji widmowej

Odczytane punkty przecięcia n1= 42.561; n2= 45.799;

Następnie obliczono wartości $\omega_1 = 1.273*10^3$ oraz $\omega_2 = 1.370*10^3$

Następnie wyznaczono T_0 oraz ξ z zależności :

$$T_0 = \frac{1}{\omega_2} = 7.2977 * 10^{-4}$$
 $\xi = \frac{1}{2} \frac{\omega_2}{\omega_1} \left(1 - \frac{\omega_1^2}{\omega_2^2} \right) = \mathbf{0.0734}$

Wyznaczono również częstotliwość drgań własnych $\omega_2=\omega=1.370*10^3~[Hz]$

Wyliczona transmitancja

$$G(s) = \frac{1}{5.326 * 10^{-7} * s^2 + 0.0001071 * s + 1}$$

Wyznaczono wartości pojemności:

$$C = 89.262[\mu F] \text{ oraz } L = 0.596[H]$$

Dla wyliczonej transmitancji wyznaczono charakterystyki czasowe i częstotliwościowe:

Rys.11. Wykres przedstawiający porównanie odpowiedzi skokowej dla transmitancji wyliczonej i oryginału

Rys.12. Wykres odpowiedź impulsową badanego obiektu

Rys.13. Wykres przedstawiający porównanie odpowiedzi amplitudowo-fazowej dla transmitancji wyliczonej i transmitancji widmowej

Wnioski:

Identyfikacja obiektu przebiegła pomyślnie. Otrzymaliśmy obiekt którego charakterystyki czasowe i częstotliwościowe są zgodne

5. Identyfikacja parametrów modelu obiektu MISO

Wykorzystana w tym punkcie metoda wykorzystuje funkcję gęstości widmowej mocy własnej i wzajemnej.

Danymi wejściowymi są sygnały u toru głównego i z toru zakłócenia. W celu identyfikacji należy wyznaczyć gęstości widmowe sygnałów własne **Sx1x1**, **Sx2x2** i wzajemne względem sygnału wyjściowego **y**: **Sx1y**, **Sx2**y oraz wzajemne sygnałów wejściowych **Sx1x2**, **Sx2x1**. Zastosowano 50-krotne wygładzenie próbek za pomocą funkcji **smooth** oraz 5-rotne zredukowanie ich ilości przy użyciu funkcji **decimate**.

Następnie jesteśmy w stanie wyznaczyć transmitancje widmowe z następujących wzorów:

$$G_{1}ii = \frac{S_{x2x2} * S_{x1y} - S_{x1x2} * S_{x2y}}{S_{x1x1} * S_{x2x2} - S_{x1x2} * S_{x2x1}}$$

$$G_{2}ii = \frac{S_{x1x1} * S_{x2y} - S_{x2x1} * S_{x1y}}{S_{x1x1} * S_{x2x2} - S_{x1x2} * S_{x2x1}}$$

Rys.14. Wykres przedstawiający części rzeczywiste i urojone transmitancji widmowej toru głównego

Rys.15. Wykres przedstawiający części rzeczywiste i urojone transmitancji widmowej toru głównego

Odczytane punkty przecięcia dla toru głównego n11= 84; n12= 90.5;

Odczytane punkt przecięcia dla toru zakłócenia n21= 51;

Wyznaczone wartości dla układu w torze głównym:

$$\omega_1 = 1.2609 * 10^3 \qquad \omega_2 = 1.3531 * 10^3$$

Następnie wyznaczono T_0 oraz ξ z zależności :

$$T_0 = \frac{1}{\omega_2} = 7.3903 * 10^{-4}$$
 $\xi = \frac{1}{2} \frac{\omega_2}{\omega_1} \left(1 - \frac{\omega_1^2}{\omega_2^2} \right) = \mathbf{0.0707}$

Wyznaczono częstotliwość drgań własnych:

$$\omega_2 = \omega = 1.3541 * 10^3 [Hz]$$

Wyliczona transmitancja:

$$G(s) = \frac{1.831 * 10^6}{s^2 + 192.2 * s + 1.831 * 10^6}$$

Wyznaczono wartości pojemności i indukcyjności:

$$C = 87.023[\mu F] \text{ oraz } L = 0.628[H]$$

Charakterystyki czasowe i częstotliwościowe dla zidentyfikowanego obiektu w torze głównym:

Rys.16. Porównanie odpowiedzi skokowych obiektu zidentyfikowanego i oryginału

Rys.17. charakterystyka impulsowa zidentyfikowanego obiektu

Rys.18. Wykres przedstawiający porównanie odpowiedzi amplitudowo-fazowej dla transmitancji wyliczonej i transmitancji widmowej

Wyznaczone wartości dla układu w torze zakłócenia:

$$\omega_1 = 762.435$$

Wyznaczona stała czasowa T:

$$T_0 = \frac{1}{\omega_1} = 0.0013$$

Wyliczona transmitancja:

$$G_z(s) = \frac{762.4}{s + 762.4}$$

Wyznaczona pojemność C:

$$\textbf{C}=\textbf{1}.\,\textbf{192}[\mu\textbf{F}]$$

Charakterystyki czasowe i częstotliwościowe dla zidentyfikowanego obiektu w torze zakłócenia:

Rys.19. Odpowiedź skokowa obiektu w torze zakłócenia

Rys.20. Odpowiedź impulsowa obiektu w torze zakłócenia

Rys.19. Porównanie charakterystyk amplitudowo-fazowych dla zidentyfikowanego obiektu toru zakłócenia i jego transmitancji widmowej

Wnioski:

Identyfikacja obiektu za pomocą metody MISO przebiegła pomyślnie. Metoda ta charakteryzuje się przewagą w stosunku do metody MISO z uwagi na to, iż przy identyfikacji posiadamy dane sygnału toru zakłócenia. Byliśmy więc w stanie wyznaczyć parametru obiektu RC.

6. Identyfikacja metodami parametrycznymi Dla układu SISO

Metoda identyfikacji sygnału została przeprowadzona za pomocą pakietu Matlab System Identification Toolbox

Dla metody siso jako sygnał wejściowy przyjęto u a jako wyjściowy y. Czas próbkowania dt=0.0001[s]. Otrzymane dane składające się z 21000 próbek podzielono na przedział <1:20000> dla working data oraz <20001:21000> dla validation data. Następnie za pomocą poszczególnych metod dokonano wstępnych identyfikacji modeli.

Transmitancja wyznaczana metodą ARX

Odrzucono metodę ze względu na kryteriów residuów, jakościowych, otrzymany obiekt posiada duży rząd.

Transmitancja wyznaczana metodą IV

Odrzucono metodę ze względu na duże wartości autokorelacji residuów.

Transmitancja wyznaczana metodą ARMAX

Odrzucono obiekty AMX2221,AMX3331,AMX4441 ze względu na nie spełnienie kryteriów residuów

Odrzucono obiekt AMX5551 ze względu na niesatysfakcjonująca odpowiedź skokową i wysoki rząd

Transmitancja wyznaczana metodą OE

Odrzucono identyfikowane obiekty ze względu na wysokie wartości funkcji autokorelacji

Transmitancja wyznaczana metodą BJ

Zidentyfikowany obiekt BJ66661 spełnia kryteria residuów, ze względu jednak na wysoki rząd transmitancji odrzucamy go i wybieramy obiekt niższego rzędu BJ22221, którego odpowiedź skokowa wyznaczona jest z niedużym błędem.

Po przeniesieniu obiektu do przestrzeni roboczej dokonujemy konwersji danych otrzymanych z system identification toolbox przy pomocy funkcji *th2tf* i otrzymujemy postać transmitancji :

$$G_{bj2221} = \frac{98.79*s + 1.868*10^6}{s^2 + 202.9*s + 1.852*10^6}$$
Step response

0.5

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Rys.20. Porównanie odpowiedzi skokowych obiektu zidentyfikowanego i oryginału

W celu wyznaczenia wartości pojemności C i indukcyjności L identyfikowanego obiektu dokonano uproszczenia licznika transmitancji. Operacja ta nieznacznie tylko zmieni własności obiektu ze względu na duży stosunek współczynników. Otrzymana nowa transmitancja:

$$G_{bj2221} = \frac{1.868 * 10^6}{s^2 + 202.9 * s + 1.852 * 10^6}$$

Wyznaczone wartości dla układu w torze głównym:

Wyznaczono bezwzględny współczynnik tłumienia:

$$\xi = 0.074$$

Wyznaczono częstotliwość drgań własnych:

$$\omega_0 = 1.366 * 10^3 [Hz]$$

Wyznaczono wartości pojemności i indukcyjności:

$$C = 90.051[\mu F] \text{ oraz } L = 0.598[H]$$

Rys.21. Porównanie odpowiedzi skokowych obiektu zidentyfikowanego i oryginału Impulse Response

Rys.22. charakterystyka impulsowa zidentyfikowanego obiektu

Rys.23. Charakterystyka amplitudowo-fazowa zidentyfikowanego obiektu

Wnioski:

Identyfikacja obiektu za pomocą pakietu system identification toolbox przebiegła pomyślnie. Udało otrzymać się obiekt którego odpowiedz skokowa bardzo dobrze odwzorowuje oryginał .

7. Identyfikacja metodami parametrycznymi Dla układu MISO

Metoda identyfikacji sygnału została przeprowadzona za pomocą pakietu Matlab System Identification Toolbox

Dla metody miso jako dane wejściowe przyjęto sygnał toru głównego u oraz sygnał toru zakłócenia z, a jako wyjściowe sygnał y. Czas próbkowania dt=0.0001[s]. Otrzymane dane składające się z 21000 próbek podzielono na przedział <1:20000> dla working data oraz <20001:21000> dla validation data. Następnie za pomocą poszczególnych metod dokonano wstępnych identyfikacji modeli.

Odrzucono zidentyfikowany model, nie spełnia kryteriów jakościowych oraz przewidywań odpowiedzi skokowej

Transmitancja wyznaczana metodą ARX

Odrzucono modele ze względu na wysokie wartości funkcji autokorelacji

Odrzucono model AMX2221 ze względu na wysokie wartości funkcji autokorelacji, obiekt amx3331 daje zadowalające wyniki.

Transmitancja wyznaczana metodą ARX

Odrzucono obiekty ze względu na wysokie wartości funkcji autokorelacji.

Transmitancja wyznaczana metodą ARX System Identification - Untitled Model Output: y1 ▼ Transient Response: u1->y1 <u>File Options Style Channel Help</u> <u>File Options Style Channel Help</u> Measured (misov) and simulated model output Autocorrelation of residuals for output y1 Step Response 0.3 0.5 0.2 bj33331 bi55551: 99.92 0.1 iv331 Cross corr for input u1 and output y1 i -0.1 Time plot ✓ Model o... ✓ Transie -0.2 ✓ Model re... -0.2 Zeros and p. 2.06 2.08 0.04 0.05 0.06 Noise spect

Obiekt bj5551 daje zadowalające wyniki i spełnia kryteria, odrzucamy go jednak ze względu na jego wysoki rząd i zastępujemy go obiektem bj22221, którego odpowiedź skokowa jest identyczna.

Po przeniesieniu obiektu do przestrzeni roboczej dokonujemy konwersji danych otrzymanych z system identification toolbox przy pomocy funkcji *th2tf* i otrzymujemy postać transmitancji toru głównego:

Rys.24. Charakterystyka amplitudowo-fazowa zidentyfikowanego obiektu

W celu wyznaczenia wartości pojemności C i indukcyjności L identyfikowanego obiektu dokonano uproszczenia licznika transmitancji. Operacja ta nieznacznie tylko zmieni własności obiektu ze względu na duży stosunek współczynników. Otrzymana nowa transmitancja:

$$G_{u_bj2221} = \frac{1.851 * 10^6}{s^2 + 200.5 * s + 1.852 * 10^6}$$

Wyznaczone wartości dla układu w torze głównym:

Wyznaczono bezwzględny współczynnik tłumienia:

$$\xi = 0.0737$$

Wyznaczono częstotliwość drgań własnych:

$$\omega_0 = 1.305 * 10^3 [Hz]$$

Wyznaczono wartości pojemności i indukcyjności:

$$C = 90.026[\mu F] \text{ oraz } L = 0.598[H]$$

Wyznaczone wartości dla układu w torze zakłócenia:

Wyliczona transmitancja:

$$G_z(s) = \frac{787.8}{s + 789.8}$$

Wyznaczona pojemność C:

$$C = 1.192[\mu F]$$

Charakterystyki czasowe i częstotliwościowe obiektu w torze głównym:

Rys.25. Porównanie odpowiedzi skokowych uproszczonego obiektu zidentyfikowanego z oryginałem

Rys.26. Charakterystyka impulsowa zidentyfikowanego obiektu

Rys.27. Charakterystyka amplitudowo-fazowa zidentyfikowanego obiektu

Charakterystyki czasowe i częstotliwościowe dla zidentyfikowanego obiektu w torze zakłócenia:

Rys.30. Charakterystyka amplitudowo-fazowa obiektu w torze zakłócenia

Wnioski:

Identyfikacja obiektu za pomocą pakietu system identification toolbox przebiegła pomyślnie. Idealna odpowiedź skokowa obiektu zidentyfikowanego w stosunku do oryginalnego może świadczyć o wysokiej dokładności wykorzystanej metody.