# **Graphs with few trivial critical ideals**

Carlos A. Alfaro



Assumptions

- Motivation: Critical group
  - Invariant factors
  - The family  $G_i$

# **Assumptions on graphs**

• are connected,



# **Assumptions on graphs**

 multiple edges are allowed, and



# **Assumptions on graphs**

• loops are forbidden.



### **Laplacian Matrix**

### **Definition**

Let G = (V, E) be a graph, the Laplacian matrix L(G) of G is the matrix with rows and columns indexed by the vertices of G given by

$$L(G)_{uv} = \begin{cases} \deg_G(u) & \text{if } u = v, \\ -m_{uv} & \text{otherwise,} \end{cases}$$

where  $\deg_G(u)$  denote the degree of u, and  $m_{uv}$  denote the number of edges from u to v.

### **Definition**

By considering L(G) as a linear operator on  $\mathbb{Z}^n$ , the critical group K(G) of G is the torsion part of the cokernel of L(G).

$$coker(L(G)) = \mathbb{Z}^n/ImL(G) = \mathbb{Z} \oplus K(G).$$

#### **Invarian factors**

### **Theorem**

$$K(G) \cong \mathbb{Z}_{\mathbf{f_1}} \oplus \mathbb{Z}_{\mathbf{f_2}} \oplus \cdots \oplus \mathbb{Z}_{\mathbf{f_{n-1}}},$$

where  $f_i \leq 0$  and  $f_i \mid f_i$  for all  $i \leq j$ .

#### **Invarian factors**

### **Theorem**

$$K(G) \cong \mathbb{Z}_{\mathbf{f_1}} \oplus \mathbb{Z}_{\mathbf{f_2}} \oplus \cdots \oplus \mathbb{Z}_{\mathbf{f_{n-1}}},$$

where  $f_i \leq 0$  and  $f_i \mid f_i$  for all  $i \leq j$ .

The  $f_1, f_2, ..., f_{n-1}$  are called invariant factors.

#### **Invarian factors**

#### **Theorem**

$$K(G) \cong \mathbb{Z}_{f_1} \oplus \mathbb{Z}_{f_2} \oplus \cdots \oplus \mathbb{Z}_{f_{n-1}},$$

where  $f_i \leq 0$  and  $f_i \mid f_i$  for all  $i \leq j$ .

The  $f_1, f_2, ..., f_{n-1}$  are called invariant factors.

### **Proposition**

If  $\Delta_i(G)$  is the g.c.d of the *i*-minors of L(G), then  $f_i$  is equal to  $\Delta_i(G)/\Delta_{i-1}(G)$ , where  $\Delta_0(G)=1$ .

# The family $G_i$

### **Definition**

Let  $f_1(G)$  be the number of invariant factors of L(G) equal to 1.

### The family $G_i$

#### **Definition**

Let  $f_1(G)$  be the number of invariant factors of L(G) equal to 1.

#### **Definition**

Let  $G_i$  be the family of simple connected graphs con  $f_1(G) = i$ .

### The family $G_i$

#### **Definition**

Let  $f_1(G)$  be the number of invariant factors of L(G) equal to 1.

### **Definition**

Let  $G_i$  be the family of simple connected graphs con  $f_1(G) = i$ .

### **Example**

The following graph belongs to  $\mathcal{G}_2$ .



$$L(G,s) \sim \left[ egin{array}{cccc} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & 3 & 0 \ 0 & 0 & 0 & 3 \end{array} 
ight]$$



**Figura:** Normalized number of graphs with  $f_1$  invariant factors equal to 1.

# **Pregunta**

¿Qué tan frecuente es cíclico el grupo crítico? es decir, ¿Qué tan frecuente  $f_1(G)$  es igual a n-1 o n-2?

## Conjetura [D. Wagner, 2001]

Casi todas las gráficas simples y conexas tienen grupo crítico ciclico.

### Teorema [M. Wood, 2014]

La probabilidad de que el grupo crítico de una gráfica aleatoria sea cíclica es asintóticamente a lo más

$$\zeta(3)^{-1}\zeta(5)^{-1}\zeta(7)^{-1}\zeta(9)^{-1}\zeta(11)^{-1}\cdots \approx 0.7935212$$

donde ζ es la función zeta de Riemann.

### Gráficas con un factor invariante igual a 1

Por otro lado...

# **Pregunta**

¿Qué podemos decir sobre  $G_1$ ?

### Teorema [Lorenzini, 1989]

Si G es una gráfica simple conexa, entonces los siguientes enunciados son equivalentes:

- I.  $G \in \mathcal{G}_1$ ,
- II. G es  $P_2$ -libre,
- III. G es la gráfica completa.

# **Pregunta**

¿Qué podemos decir sobre  $G_2$  y  $G_3$ ?

#### Teorema

Sea G una gráfica simple conexa . Entonces,  $G \in \mathcal{G}_2$  si y solamente si G es una de las siguientes gráficas:

- I.  $K_{n_1,n_2,n_3}$ , donde  $n_1$ ,  $n_2$  y  $n_3$  tienen la misma paridad.
- II.  $L_{n_1,n_2,n_3}$ , si  $n_1,n_2,n_3 \ge 3$  tienen la misma paridad, u otros once casos.



La demostración usa los ideales críticos.



¡Gracias!