EE23BTECH11054 - Sai Krishna Shanigarapu*

GATE EE 2023

54. The circuit shown in the figure is initially in the steady state with the switch K in open condition and \overline{K} in closed condition. The switch K is closed and \overline{K} is opened simultaneously at the instant $t = t_1$, where $t_1 > 0$. The minimum value of t_1 in milliseconds such that there is no transient in the voltage across the 100 μF capacitor, is _____ (Round off to 2 decimal places).

Solution:

Case(i) Switch K is open and \overline{K} is closed.

Case(ii) Switch K is closed and \overline{K} is open.

Symbol	description	value
$V_{C}\left(\infty\right)$	Voltage across capacitor after long time	5V
τ	Time constant	1 msec
$V_{c}\left(t\right)$	Voltage across capacitor at time t	$5 + (7.07\sin(100t - 45^{\circ}) - 5)e^{-(t-t_1)/\tau}$
R	Resistance	10Ω
C	capacitance	$100 \mu \mathrm{F}$

TABLE II Case2 Parameters

For transient free voltage,

$$7.07\sin(100t_1 - 45^\circ) = 5\tag{1}$$

$$1000t_1 - \frac{\pi}{4} = \frac{5}{7.07} \tag{2}$$

$$\implies t_1 \approx 1.57 \text{msec}$$
 (3)

Symbol	Description	Formula
τ	Time constant	RC
$V_{c}\left(t\right)$	Voltage across capacitor at time t	$V_c\left(\infty\right) + \left(V_c\left(0\right) - V_c\left(\infty\right)\right)e^{-t/\tau}$

TABLE III FORMULAE

Symbol	description	value
i_c	current through capacitor	$\frac{10}{10-j10}A$
$V_c\left(t_1 ight)$	Voltage across capacitor at t_1	$7.07\sin(1000t - 45^{\circ})V$

TABLE I CASE1 PARAMETERS