

PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6:		(11) International Publication Number:	WO 96/11952
C07K 14/50	A1	(43) International Publication Date:	25 April 1996 (25.04.96)
(21) International Application Number: PCT/US (22) International Filing Date: 12 October 1995 (1840 Dehavilland Drive, Thousa	
(30) Priority Data: 08/323,339 08/487,830 13 October 1994 (13.10.94) 7 June 1995 (07.06.95) (60) Parent Application or Grant (63) Related by Continuation US Filed on 7 June 1995 (07.06.95)	830 (CI 07.06.9	SD, SZ, UG).	FI, GB, GE, HU, IS, JP, LT, LU, LV, MD, MG, PL, PT, RO, RU, SD, SE, UZ, VN, European patent GB, GR, IE, IT, LU, MC, BJ, CF, CG, CJ, CM, GA,
(71) Applicant (37 all aesignates active Cost. INC. [US/US]; Amgen Center, 1840 Dehavillar Thousand Oaks, CA 91320-1789 (US). (72) Inventors; and (75) Inventors/Applicants (for US only): HSU, Eric, W. 2110 Mapleleaf Avenue, Thousand Oaks, CA 91: (US). KENNEY, William, C. [US/US]; 2654 Castil Thousand Oaks, CA 91320-1789 (US). TRESS [US/US]; 1975 Ferndale Place, Thousand Oaks, C. 1789 (US).	(US/US 320-17 Ilo Circ IEL, T	e. With international search report. Before the expiration of the tim claims and to be republished in amendments. 13: 14: 15: 16: 17: 18: 18: 18: 18: 18: 18: 18: 18: 18: 18	ne limit for amending the

(54) Title: METHOD FOR PURIFYING KERATINOCYTE GROWTH FACTORS

(57) Abstract

The present invention concerns the purification of keratinocyte growth factors.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AT	Austria	G78	United Kingdom	MR	Mauricania
ΑÜ	Australia	GZ.	Georgia	MW	Malawi
58	Barbados	GN GN	Guines	MW NE	
BE	Belgium	GR.	Greece		Miger
BY	Burkina Paso			NL	Netherlands
BG		HU	Hungary	NO	Norway
	Bulgaria	<u> </u>	Ireland	NZ	New Zealand
Ŋ	Benis	IT	kely	PL.	Poissed
BR	Brazil	æ	Japan	FI	Portugal
BY	Belarus	KX.	Konya	RO	Romania
CA	Canada	KG	Кутрукан	RU	Russian Pederation
Œ	Central African Republic	KP	Democratic People's Republic	SD	Sudan
CC	Compo		of Korea	51	Sweden
CH	Switzerland	KR	Republic of Korea	SI	Slovenia
a	Côte d'Tvoire	KZ	Kazakhetao	SX	Slovakia
CM	Cameroon	u	Liechtentein	SN	Senegal
C	Chima	LX	Sri Lanka	TD	Chad
C	Catatoslovakia	LU	Luxembourg	TG	Togo
Œ	Czech Republic	LY	Larvia	TJ	Tajikina
DE	Germany	MC	Moneco	π	Trinidad and Tobago
DK	Domest	MD	Republic of Moldova	ÜÀ	Ultraine
23	Spain	MG	Madaguese	US	United States of America
π	Finland	ML	Mail		
72	Primor	MIN		UZ	Uzbekinom Maria
Ġ	Gabon	MACA	Margolia	VN	Vist Nam
44	CHOOL				

- 1 -

METHOD FOR PURIFYING KERATINOCYTE GROWTH FACTORS

Field of the Invention

The present invention relates to the field of protein purification. Specifically, the present invention relates to the field of purifying keratinocyte growth factors.

10 Background of the Invention

15

Polypeptide growth factors are important mediators of intercellular communication (Rubin et al. (1989), Proc. Natl. Acad. Sci. USA, 86:802-806). These molecules are generally released by one cell type and act to influence proliferation of other cell types.

One family of growth factors is the fibroblast growth factors (FGF). There are currently eight known FGF family members which share a relatedness among primary structures: basic fibroblast growth factor, bFGF (Abraham et al. (1986), EMBO J., 5:2523-2528); acidic fibroblast growth factor, aFGF (Jaye et al. (1986), Science, 233:541-545); int-2 gene product, int-2 (Dickson & Peters (1987), Nature, 326:833); hst/kFGF (Delli-Bovi et al. (1987), Cell, 50:729-737, and

25 (Delli-Bovi et al. (1987), Cell, 50:729-737, and Yoshida et al. (1987), Proc. Natl. Acad. Sci. USA, 84:7305-7309); FGF-5 (Zhan et al. (1988), Mol. Cell. Biol., 8:3487-3495); FGF-6 (Marics et al. (1989), Oncogene, 4:335-340); keratinocyte growth factor (Finch

30 et al. (1989), Science, 24:752-755; Rubin et al. (1989),
 Proc. Natl. Acad. Sci. USA, 86:802-806; Ron et al.
 (1993), The Journal of Biological Chemistry,
 268(4):2984-2988; and Yan et al. (1991), In Vitro Cell.
 Dev. Biol., 27A:437-438); and hisactophilin (Habazzettl
35 et al. (1992), Nature, 359:855-858).

Among the FGF family of proteins, keratinocyte growth factor (KGF) is a unique effector of non-fibroblast epithelial (particularly keratinocyte) cell proliferation derived from mesenchymal tissues. The term "native KGF" refers to a natural human (hKGF) or recombinant (rKGF) polypeptide (with or without a signal sequence) as depicted by the amino acid sequence presented in SEQ ID NO:2 or an allelic variant thereof. [Unless otherwise indicated, amino acid numbering for molecules described herein shall correspond to that presented for the mature form of the native molecule (i.e., minus the signal sequence), as depicted by amino acids 32 to 194 of SEQ ID NO:2.1

10

Native KGF may be isolated from natural sources. For example, hKGF can be isolated from medium 15 conditioned by an embryonic lung fibroblast cell line (Rubin et al. (1989), supra. Three chromatographic steps, namely heparin-Sepharose (Pharmacia, Piscataway, NJ) affinity chromatography, HPLC gel filtration, and reverse-phase HPLC, were used to obtain a purified hKGF 20 preparation. Approximately 6 mg of hKGF were recovered from 10 liters of conditioned medium. These chromatographic steps only recovered 0.8% total hRGF based upon a mitogenic activity assay. A further example teaches the use of another chromatographic step 25 using heparin-Sepharose™ affinity and Mono-S™ ionexchange chromatographys (Pharmacia, Piscataway, NJ) for isolation of rKGF produced in bacteria (Ron et al. (1993), Journal of Biological Chemistry, 268:2984-2988). 30

The properties of keratinocyte growth factors suggest a potential for the application thereof as a drug for promoting specific stimulation of epithelial cell growth. It therefore would be desirable to develop a method or methods for obtaining relatively high levels of homogeneous keratinocyte growth factors to provide sufficient quantities of material for comprehensive in

- 3 -

vitro and in vivo biological evaluation and for a potential therapeutic application.

It is the object of this invention to provide a novel method for the purification of keratinocyte growth factors.

Summary of the Invention

The present invention is directed to a first method for purifying a keratinocyte growth factor (KGF), the method comprising:

- a) obtaining a solution containing KGF;
- b) binding KGF from the solution of part (a) to a cation exchange resin;
- c) eluting KGF in an eluate solution from the cation exchange resin;
- d) passing the eluate solution from part (c) through a molecular weight exclusion matrix; and
- e) recovering KGF from the molecular weight exclusion matrix.

15

30

The invention is further directed to a second method for purifying a keratinocyte growth factor (KGF), the method comprising:

- a) obtaining a solution containing KGF;
- b) binding KGF from the solution of part (a) to a cation exchange resin;
- c) eluting KGF in an eluate solution from the cation exchange resin;
- d) performing hydrophobic interaction chromatography on the eluate solution of part (c); and
- e) recovering KGF from the hydrophobic

 interaction chromatography step of part
 (d).

Generally, the cation exchange chromatography step of the first or second methods may be conducted with any suitable buffer (e.g., phosphate buffer saline, sodium acetate or tris-HCL) at a pH of preferably between about 6.8-7.5. Suitable columns for use in this step include carboxymethyl cellulose, carboxymethyl agarose and sulfated agarose and cellulose columns (e.g., columns of S-Sepharose Fast Flow resin, Mono-5 resin and CM-cellulose resin, commercially available from Pharmacia, Piscataway, NJ). The flow rate will be variable depending upon the column size.

The gel filtration step of the first method may be conducted in any suitable buffer (e.g., phosphate buffer saline) at a pH of preferably between about 7.0 and 7.5.

Suitable columns for use in this step include agarose-based, acrylamide-based, silica-based or polymer-based size-exclusion columns (e.g., columns of Sephadex G-75m resin and Superdex-75m resin, commercially available from Pharmacia).

10

20 In a particularly preferred embodiment of the second method, free sulfhydryl groups may be oxidized prior to the hydrophobic interaction step, discussed below. -Any manner of oxidation may be employed. For example, the protein may be exposed to atmospheric oxygen for a suitable period of time. Alternatively, 25 various oxidation procedures may be employed. One such procedure is particularly suited for keratinocyte growth factors wherein one or more cysteine residues, as compared to the native KGF molecule, are deleted or replaced. In this procedure an oxidizing agent (e.g., 30 cystamine dihydrochloride or another appropriate oxidizing agent, for instance, cystine, oxidized glutathione or divalent copper) may be added to a final concentration, adjusting the pH to preferably between about 7-9.5, with pH 9.0 \pm 0.3°C being more preferred 35 when using cystamine dihydrochloride), and holding the

PCT/US95/13099 WO 96/11952

temperature at preferably between about 10-30°C, for an appropriate period. The second procedure may be used for oxidizing native KGF and other keratinocyte growth factors with comparable patterns of cysteine residues. In this procedure, oxidation may be accomplished by adding an appropriate amount of an ionic strength modifier (e.g., (NH₄)₂SO₄)), adjusting the pH to preferably between about 7.5-9.5, and holding the temperature at preferably between about 23 \pm 5°C for an appropriate period.

10

20

25

30

35

The hydrophobic interaction step of the second method may be conducted by using any suitable buffer (e.g., sodium phosphate) at a pH of preferably between about 6.0-8.0, more preferably about 7.0, and by eluting 15 with a decreasing linear (NH₄)₂SO₄ gradient ranging from 2-0 M. Suitable columns for use in this step include alkyl or phenyl substituted resins (e.g., a column of Butyl-650M Toyopearl™ resin, commercially available from Tosohaas, Inc., Montgomeryville, PA and columns of phenyl Sepharose™ resin and phenyl Superose™ resin, commercially available from Pharmacia).

The process of the present invention may be used to purify KGF. Thus, it should be understood that the terms "keratinocyte growth factor" and "KGF" as employed in this description are intended to include, and to mean interchangeably unless otherwise indicated, native KGF and KGF analog proteins (or "muteins") characterized by a peptide sequence substantially the same as the peptide sequence of native KGF and by retaining some or all of the biological activity of native KGF, particularly non-fibroblast epithelial cell proliferation (e.g., exhibiting at least about 500-fold greater stimulation of BALB/MK keratinocyte cells than that of NIH/3T3 fibroblast cells, and at least about 50fold greater stimulation of BALB/MK keratinocyte cells than for BS/589 epithelial cells or for CC1208

25

30

epithelial cells, as determined by H-thymidine incorporation). By "characterized by a peptide sequence substantially the same as the peptide sequence of native KGF" is meant a peptide sequence which is encoded by a DNA sequence capable of hybridizing to nucleotides 201 to 684 of SEQ ID NO:1, preferably under stringent hybridization conditions.

The determination of a corresponding amino acid position between two amino acid sequences may be determined by aligning the two sequences to maximize 10 matches of residues including shifting the amino and/or carboxyl terminus, introducing gaps as required and/or deleting residues present as inserts in the candidate. Database searches, sequence analysis and manipulations, may be performed using one of the well-known and routinely used sequence homology/identity scanning algorithm programs (e.g., Pearson and Lipman (1988), Proc. Natl. Acad. Sci. U.S.A., 85:2444-2448; Altschul et al. (1990), J. Mol. Biol., 215:403-410; Lipman and Pearson (1985), Science, 222:1435 or Devereux et al. 20 (1984), Nuc. Acids Res., 12:387-395).

Stringent conditions, in the hybridization context, will be stringent combined conditions of salt, temperature, organic solvents and other parameters typically controlled in hybridization reactions. Exemplary stringent hybridization conditions are hybridization in 4 X SSC at 62-67° C., followed by washing in 0.1 X SSC at 62-67° C. for approximately an hour. Alternatively, exemplary stringent hybridization conditions are hybridization in 45-55% formamide, 4 X SSC at 40-45°C. [See, T. Maniatis et. al., Molecular Cloning (A Laboratory Manual); Cold Spring Harbor Laboratory (1982), pages 387 to 389].

Thus, the proteins include allelic variations, or deletion(s), substitution(s) or insertion(s) of amino acids, including fragments, chimeric or hybrid molecules

30

of native KGF. One example of KGF includes proteins having residues corresponding to Cys1 and Cys15 of SEO ID NO:2 replaced or deleted, with the resultant molecule having improved stability as compared with the parent molecule (as taught in commonly owned U.S.S.N. 08/487,825, filed on July 7, 1995). Another example of KGF includes charge-change polypeptides wherein one or more of amino acid residues 41-154 of native KGF (preferably residues Arg41, Gln43, Lys55, Lys95, Lys128, Asn¹³⁷, Gln¹³⁸, Lys¹³⁹, Arg¹⁴⁴, Lys¹⁴⁷, Gln¹⁵², Lys¹⁵³ or 10 Thr¹⁵⁴) are deleted or substituted with a neutral residue or negatively charged residue selected to effect a protein with a reduced positive charge (as taught in commonly owned U.S.S.N. 08/323,337, filed on October 13, 1994). A still further example of KGF includes proteins 15 generated by substituting at least one amino acid having a higher loop-forming potential for at least one amino acid within a loop-forming region of Asn¹¹⁵-His¹¹⁶-Tyr117-Asn118-Thr119 of native KGF (as taught in commonly owned U.S.S.N. 08/323,473, filed on October 13, 1994). A still yet further example includes proteins having one or more amino acid substitutions, deletions or additions within a region of 123-133 (amino acids 154-164 of SEQ ID NO:2) of native KGF; these proteins 25 may have agonistic or antagonistic activity.

Specifically disclosed proteins include the following RGF molecules (referred to by the residue found at that position in the mature protein (minus signal sequence) set forth in SEQ ID NO:2, followed by that amino acid position in parentheses and then either the substituted residue or "-" to designate a deletion): C(1,15)S, AN15-AN24, AN3/C(15)S, AN3/C(15)-, AN8/C(15)S, AN8/C(15)-, C(1,15)S/R(144)E, C(1,15)S/R(144)Q, AN23/R(144)Q, C(1,15,40)S, C(1,15,102)S,

35 C(1,15,102,106)S, ΔN23/N(137)E, ΔN23/K(139)E, ΔN23/K(139)Q, ΔN23/R(144)A, ΔN23/R(144)E, ΔN23/R(144)L, $\Delta N23/K(147)E$, $\Delta N23/K(147)Q$, $\Delta N23/K(153)E$, $\Delta N23/K(153)Q$, $\Delta N23/Q(152)E/K(153)E$; R(144)Q and H(116)G.

As those skilled in the art will also appreciate, a variety of host-vector systems may be 5 utilized to express the KGF protein-coding sequence. These include but are not limited to eucaryotic cell systems such as mammalian cell systems infected with virus (e.g., vaccinia virus, adenovirus, etc.); insect cell systems infected with virus (e.g., baculovirus); 10 microorganisms such as yeast-containing yeast vectors; or to procaryotic cell systems such as bacteria transformed with bacteriophage DNA, plasmid DNA, or cosmid DNA. The expression elements of these vectors vary in their strengths and specificities. Depending on the host-vector system utilized, any one of a number of 15 suitable transcription and translation elements may be used.

Once the protein product of KGF expression has been isolated, purified and assayed for KGF activity (using procedures known to those skilled in the art), it may be formulated in a variety of pharmaceutical compositions. Typically, such compositions include a suitable, usually chemically-defined, carrier or excipient for the therapeutic agent and, depending on 25 the intended form of administration, other ingredients as well. The composition can include aqueous carriers or consist of solid phase formulations in which KGF is incorporated into non-aqueous carriers such as collagens, hyaluronic acid, and various polymers. composition can be suitably formulated to be 30 administered in a variety of ways, including by injection, orally, topically, intranasally and by pulmonary delivery.

20

- 9 -

Brief Description of the Drawings

Figure 1 shows the nucleotide (SEQ ID NO:1) and amino acid (SEQ ID NO:2) sequences of native KGF (the nucleotides encoding the mature form of native KGF is depicted by bases 201 to 684 of SEQ ID NO:1 and the mature form of KGF is depicted by amino acid residues 32 to 194 of SEQ ID NO:2).

5

15

20

30

35

Figures 2A, 2B and 2C show the plasmid maps of pCFM156, pCFM1656 and pCFM3102, respectively.

Figure 3 shows the nucleotide (SEQ ID NO:3) and amino acid (SEQ ID NO:4) sequences of the construct RSH-KGF.

Figure 4 shows the nucleotide (SEQ ID NO:5) and amino acid (SEQ ID NO:6) sequences of the construct contained in plasmid KGF.

Figure 5 shows the chemically synthesized OLIGOs (OLIGO#6 through OLIGO#11; SEQ ID NO:12-17, respectively) used to substitute the DNA sequence between a KpnI site and an EcoRI site for a KpnI site (from amino acid positions 46 to 85 of SEQ ID No:6) in the construct contained plasmid KGF to produce the construct in plasmid KGF(dsd).

Figure 6 shows the chemically synthesized

OLIGOs (OLIGO#12 through OLIGO#24; SEQ ID NO:18-30, respectively) used to construct KGF(codon optimized).

Figure 7 shows the nucleotide (SEQ ID NO:31) and amino acid sequences (SEQ ID NO:32) of C(1,15)S, a KGF analog having substitutions of serine for cysteine at amino acid positions 1 and 15 of native KGF.

Figure 8 shows the nucleotide (SEQ ID NO:33) and amino acid sequences (SEQ ID NO:34) of C(1,15)S/R(144)E, a KGF analog having substitutions of serine for cysteine at amino acid positions 1 and 15 and a substitution of glutamic acid for arginine at amino acid position 144 of native KGF.

- 10 -

Figure 9 shows the nucleotide (SEQ ID NO:35) and amino acid (SEQ ID NO:36) sequences of C(1,15)S/R(144)Q, a KGF analog having substitutions of serine for cysteine at amino acid positions 1 and 15 and a substitution of glutamine for arginine at amino acid position 144 of native KGF.

Figure 10 shows the nucleotide (SEQ ID NO:37) and amino acid (SEQ ID NO:38) sequences of Δ N15, a KGF analog having a deletion of the first 15 amino acids of the N-terminus of native KGF.

Figure 11 shows the nucleotide (SEQ ID NO:39) and amino acid (SEQ ID NO:40) sequences of Δ N23, a KGF analog having a deletion of the first 23 amino acids of the N-terminus of native KGF.

Figure 12 shows the nucleotide (SEQ ID NO:41) and amino acid (SEQ ID NO:42) sequences of Δ N23/R(144)Q, a KGF analog having a deletion of the first 23 amino acids of the N-terminus and a substitution of glutamine for arginine at amino acid position 144 of native KGF.

20

15

10

Description of Specific Embodiments

: Standard methods for many of the procedures described in the following examples, or suitable alternative procedures, are provided in widely recognized manuals of molecular biology such as, for example, Molecular Cloning, Second Edition, Sambrook et al., Cold Spring Harbor Laboratory Press (1987) and Current Protocols in Molecular Biology, Ausabel et al., Greene Publishing Associates/Wiley-Interscience, New York (1990).

Example 1: Preparation of DNA Coding for KGF and KGF Analogs

The cloning of the full-length human KGF gene (encoding a polypeptide with the sequence of native KGF)

- 11 -

was carried out both by polymerase chain reaction (PCR) of RNA from an animal cell and by PCR of chemically synthesized (E. coli optimized codon) oligonucleotides ("OLIGOS"). Both procedures are described below:

("OLIGOs"). Both procedures are described below: 5 PCR amplification using RNA isolated from cells known to produce the polypeptide was performed. Initially, cells from a human fibroblast cell line AG1523A (obtained from Human Genetic Mutant Cell Culture Repository Institute For Medical Research, Camden, New 10 Jersey) were disrupted with guanidium thiocyanate, followed by extraction (according to the method of Chomyzinski et al. (1987), Anal. Biochem., <u>172</u>:156). Using a standard reverse transcriptase protocol for total RNA, the KGF cDNA was generated. PCR (PCR#1) 15 amplification of the KGF gene was carried out using the KGF cDNA as template and primers OLIGO#1 and OLIGO#2 that encode DNA sequences immediately 5' and 3' of the KGF gene [model 9600 Thermocycler (Perkin-Elmer Cetus, Norwalk, CT); 28 cycles; each cycle consisting of one 20 minute at 94°C for denaturation, two minutes at 60°C for annealing, and three minutes at 72°C for elongation]. A small aliquot of the PCR#1 product was then used as template for a second KGF PCR (PCR#2) amplification identical to the cycle conditions described above except for a 50°C annealing temperature. For expression 25 cloning of the KGF gene, nested PCR primers were used to create convenient restriction sites at both ends of the KGF gene. OLIGO#3 and OLIGO#4 were used to modify the KGF DNA product from PCR#2 to include MluI and BamHI restriction sites at the 5' and 3' ends of the gene, 30 respectively [PCR#3; 30 cycles; each cycle consisting of one minute at 94°C for denaturation, two minutes at 60°C for annealing, and three minutes at 72°C for elongation]. This DNA was subsequently cut with MluI 35 and BamHI, phenol extracted and ethanol precipitated. It was then resuspended and ligated (using T4 ligase)

- 12 -

into a pCFM1156 plasmid (Figure 2A) that contained a "RSH" signal sequence to make construct RSH-KGF (Figure 3). The ligation products were transformed (according to the method of Hanahan (1983), J. Mol. Biol., 166:557) 5 into E. coli strain FM5 (ATCC: 53911) and plated onto LB+kanamycin at 28°C. Several transformants were selected and grown in small liquid cultures containing 20 μ g/mL kanamycin. The RSH-KGF plasmid was isolated from the cells of each culture and DNA sequenced. Because of an internal NdeI site in the KGF gene, it was 10 not possible to directly clone the native gene sequence into the desired expression vector with the bracketed restriction sites of NdeI and BamHI. This was accomplished as a three-way ligation. Plasmid RSH-KGF was cut with the unique restriction sites of BsmI and 15 SstI, and a -3 kbp DNA fragment (containing the 3' end of the KGF gene) was isolated following electrophoresis through a 1% agarose gel. A PCR (PCR#4) was carried out as described for PCR#3 except for the substitution of OLIGO#5 for OLIGO#3. The PCR DNA product was then cut 20 with NdeI and BsmI and a 311 bp DNA fragment was isolated following electrophoresis through a 4% agarose The third fragment used in the ligation was a 1.8 kbp DNA fragment of pCFM1156 cut with NdeI and SstI isolated following electrophoresis through a 1% agarose 25 gel. Following ligation (T4 ligase), transformation, kanamycin selection and DNA sequencing as described above, a clone was picked containing the construct in Figure 4, and the plasmid designated KGF. Because of an internal ribosomal binding site that produced truncated products, the KGF DNA sequence between the unique KpnI and EcoRI sites was replaced with chemically synthesized OLIGOs (OLIGO#6 through OLIGO#11) to minimize the use of the internal start site (Figure 5).

.

- 13 -

OLIGO#1 (SEQ ID NO:7): 5'-CAATGACCTAGGAGTAACAATCAAC-3' OLIGO#2 (SEQ ID NO:8): 5'-AAAACAAACATAAATGCACAAGTCCA-3' OLIGO#3 (SEQ ID NO:9): 5'-ACAACGCGTGCAATGACATGACTCCA-3' OLIGO#4 (SEQ ID NO:10): 5 5'-ACAGGATCCTATTAAGTTATTGCCATAGGAA-3' OLIGO#5 (SEQ ID NO:11): 5'-ACACATATGTGCAATGACATGACTCCA-3' OLIGO#6 (SEQ ID NO:12): 5'-CTGCGTATCGACAAACGCGGCAAAGTCAAGGGCACCC-3' 10 OLIGO#7 (SEQ ID NO:13): 5'-AAGAGATGAAAAACAACTACAATATTATGGAAATCCGTACTGTT-3' OLIGO#8 (SEQ ID NO:14): 5'-GCTGTTGGTATCGTTGCAATCAAAGGTGTTGAATCTG-3' OLIGO#9 (SEQ ID NO:15): 15 5'-TCTTGGGTGCCCTTGACTTTGCCGCGTTTGTCGATACGCAGGTAC-3' OLIGO#10 (SEQ ID NO:16): 5'-ACAGCAACAGTACGGATTTCCATAATATTGTAGTTGTTTTTCATC-3' OLIGO#11 (SEQ ID NO:17): 5'-AATTCAGATTCAACACCTTTGATTGCAACGATACCA-3'

20

25

The OLIGOs were phosphorylated with T4 polynucleotide kinase and then heat denatured. The single-stranded (ss) OLIGOs were then allowed to form a ds DNA fragment by allowing the temperature to slowly decrease to room temperature. 'T4 ligase was then used to covalently link both the internal OLIGO sticky-ends and the whole ds OLIGO fragment to the KGF plasmid cut with KpnI and EcoRI. The new plasmid was designated KGF (dsd).

30 A completely E. coli codon-optimized KGF gene was constructed by PCR amplification of chemically synthesized OLIGOs #12 through 24.

- 14 -

OLIGO#12 (SEQ ID NO:18): 5'-AGTTTTGATCTAGAAGGAGG-3' OLIGO#13 (SEQ ID NO:19): 5'-TCAAAACTGGATCCTATTAA-3' OLIGO#14 (SEQ ID NO:20): 5'-AGTTTTGATCTAGAAGGAGGAATAACATATGTGCAACGACATGAC-TCCGGAACAGATGGCTACCAACGTTAACTGCTCCAGCCCGGAACGT-3 5 OLIGO#15 (SEQ ID NO:21): 5'-CACACCCGTAGCTACGACTACATGGAAGGTGGTGACATCCGTGTTC-GTCGTCTGTTCTGCCGTACCCAGTGGTACCTGCGTATCGACAAA-3' OLIGO#16 (SEQ ID NO:22): 10 5'-CGTGGTAAAGTTAAAGGTACCCAGGAAATGAAAAACAACTA-CAACATCATGGAAATCCGTACTGTTGCTGTTGGTATCGTTGCAATCAAA-3' OLIGO#17 (SEQ ID NO:23): 5'-GGTGTTGAATCTGAATTCTACCTGGCAATGAACAAAGAAGGTAAAC-TGTACGCAAAAAAGAATGCAACGAAGACTGCAACTTCAAAGAA-3 15 OLIGO#18 (SEQ ID NO:24): 5'-CTGATCCTGGAAAACCACTACAACACCTACGCATCTGCTAAATGGA-CCCACAACGGTGGTGAAATGTTCGTTGCTCTGAACCAGAAAGGT-3' OLIGO#19 (SEQ ID NO:25): 5'-ATCCCGGTTCGTGGTAAAAAAACCAAAAAAGAACAGAAAACCGCT-20 CACTTCCTGCCGATGGCAATCACTTAATAGGATCCAGTTTTGA-3' OLIGO#20 (SEQ ID NO:26):5'-TACGGGTGTGACGTTCCGGG-3' OLIGO#21 (SEQ ID NO:27):5'-CTTTACCACGTTTGTCGATA-3' OLIGO#22: (SEO ID NO:28):5'-ATTCAACACCTTTGATTGCA-3' OLIGO#23 (SEQ ID NO:29):5'-CCAGGATCAGTTCTTTGAAG-3' 25 OLIGO#24 (SEQ ID NO:30):5'-GAACCGGGATACCTTTCTGG-3'

OLIGOS #12 through 24 were designed so that the entire DNA sequence encoding native KGF was represented by OLIGOs from either the "Watson" or the "Crick" strand and upon PCR amplification would produce the desired double-stranded DNA sequence (Figure 6) [PCR#5, Model 9600 thermocycler (Perkin-Elmer Cetus); 21 cycles, each cycle consisting of 31 seconds at 94°C for denaturation, 31 seconds at 50°C for annealing, and 31 seconds at 73°C for elongation; following the 21 cycles the PCR was finished with a final elongation step of 7

3

30

minutes]. After PCR amplification, the DNA fragment was cut with XbaI and BamHI and the 521 bp fragment ligated into the expression plasmid pCFM1156 cut with the same enzymes. PCR#5 utilized the outside primers (100 pmoles/100 µl rxn) OLIGO#12 and OLIGO#13 and 1 µl/100 µl rxn of a KGF template derived by ligation (by T4 ligase) of OLIGOS #14 through #19 (OLIGOS#15 through OLIGOS#18 were phosphorylated with T4 polynucleotide kinase) using OLIGOS#20 through OLIGOS#24 as band-aid oligos (Jayaraman et al. (1992), Biotechniques, 12:392) for the ligation. The final construct was designated KGF(codon optimized).

10

All of the KGF analogs described herein are composed in part from DNA sequences found in KGF(dsd) or 15 'KGF(codon optimized), or a combination of the two. The sequences are further modified by the insertion into convenient restrictions sites of DNA sequences that encode the particular KGF analog amino acids made utilizing one or more of the above-described techniques for DNA fragment synthesis. Any of the analogs can be 20 generated in their entirety by either of the above described techniques. However, as a part of the general OLIGO design optimized E. coli codons were used where appropriate, although the presence of E. coli optimized 25 codons in part or in toto of any of the genes where examined did not significantly increase the yield of protein that could be obtained from cultured bacterial cells. Figures 7 to 12 set forth by convenient example particular KGF analog nucleotide and amino acid sequence constructions: C(1,15)S (Figure 7); C(1,15)S/R(144)E 30 (Figure 8); C(1,15)S/R(144)Q (Figure 9); AN15 (Figure 10); Δ N23 (Figure 11) and Δ N23/R(144)Q (Figure 12). All the KGF analog constructions described herein were DNA sequence confirmed.

- 16 -

Example 2: Purification from E. coli

Three different expression plasmids were

tilized in the cloning of the KGF analog genes. They
were pCFM1156 (ATCC 69702), pCFM1656 (ATCC 69576), and
pCFM3102 (Figures 2A, 2B and 2C, respectively). The
plasmid p3102 can be derived from the plasmid pCFM1656
by making a series of site directed base changes with
pCR overlapping oligo mutagenesis. Starting with the
Bg1II site (pCFM1656 plasmid bp #180) immediately 5' to
the plasmid replication promoter, PcopB, and proceeding
toward the plasmid replication genes, the base pair
changes are as follows:

15

::

- 17 -

	DCFM1656 bo #	bp in pCFM1656	bo changed to in pCFM31	.02
	# 204	T/A	C/G	
	# 428	A/T	G/C	
	# 509	G/C	A/T	
5	# 617 .		insert two G/C bp	
	# 677	G/C	T/A	
	# 978	T/A	C/G	
	# 992	G/C	A/T	
	# 1002	A/T	C/G	
10	# 1005	C/G	T/A	
	# 1026	A/T	T/A	
	# 1045	C/G	T/A	
	# 1176	G/C	T/A	
	# 1464	G/C	T/A	
15	# 2026	G/C	bp deletion	
	# 2186	C/G	T/A·	
	# 2479	A/T	T/A	
	# 2498-2501	AGTG	GTCA	
20		TCAC	CAGT	
	# 2641-2647	TCCGAGC AGGCTCG	bp deletion	
25	# 3441	G/C	: A/T	
	# 3452	G/C	A/T	
	# 3649	· A/T	T/A	
	# 4556		insert bps	
30	(SEQ	ID NO:43) 5'-GA	CTTCACTAGTGTCGACCTGCAG-3	•
	(SEC		CGAGTGATCACAGCTGGACGTC-3	

As seen above, pCFM156, pCFM1656 and pCFM3102 are very similar to each other and contain many of the same restriction sites. The plasmids were chosen by convenience, and the vector DNA components can be easily exchanged for purposes of new constructs. The host used for all cloning was E. coli strain FM5 (ATCC: 53911) and the transformations were carried out (according to the method of Hanahan (1983), supra) or by electroelution with a Gene Pulser transfection apparatus (BioRad Laboraties, Inc., Hercules, CA), according to the manufacturer's protocol.

Initially, a small, freshly-cultured inoculum of the desired recombinant *E. coli* clone harboring the

.;

desired construct on one of the three pCFM vectors was started by transferring 0.1 mL of a frozen glycerol stock of the appropriate strain into a 2 L flask containing 500 mL of Luria broth. The culture was shaken at 30°C for 16 hours. Thereafter the culture was transferred to a 15 L fermentor containing 8 L of sterile batch medium (Tsai, et al. (1987), J. Industrial Microbiol., 2:181-187).

Feed batch fermentation starts with the

feeding of Feed # 1 medium (Tsai, et al. (1987.),

supra). When the OD600 reached 35, expression of the

desired KGF analog was induced by rapidly raising the

culture temperature to 37°C to allow the amplification

of plasmid. After two hours at 37°C, the culture

temperature was quickly raised to 42°C to denature the

CI repressor and the addition of Feed 1 was discontinued

in favor of Feed 2, the addition rate of which was

initiated at 300 mL/hr. Feed 2 comprised 175 g/L

trypticase-peptone, 87.5 g/L yeast extract, and 260 g/L

glucose. After one hour at 42°C, the culture

temperature was decreased to 36°C, where this

temperature was then maintained for another 6 hours.

were harvested by centrifugation into plastic bags
25 placed within 1 L centrifuge bottles. The cells were
pelleted by centrifugation at 400 rpm for 60 minutes,
after which the supernatants were removed and the cell
paste frozen at -90°C.

Following expression of the various KGF

analogs in E. coli, native KGF, C(1.15)S,
C(1.15)S/R(144)E, C(1.15)S/R(144)Q, AN15, AN23, and
AN23/R(144)Q protein were purified using the following
procedure. Cell paste from a high cell density
fermentation was suspended at 4 C in 0.2 M NaC1, 20 mM

NaPO₄, pH 7.5 as a 10-20% solution (weight per volume)
using a suitable high shear mixer. The suspended cells

were then lysed by passing the solution through a homogenizer (APV Gaulin, Inc., Everett, MA) three times. The outflowing homogenate was cooled to 4-8°C by using a suitable heat exchanger. Debris was then removed by centrifuging the lysate in a J-6Bm centrifuge (Beckman Instruments, Inc., Brea, CA) equipped with a JS 4.2 rotor at 4,200 rpm for 30-60 min. at 4°C. Supernatants were then carefully decanted and loaded onto a previously prepared 450 mL (5 cm x 23 cm) column of S-Sepharose Fast Flow™ resin (Pharmacia) column 10 equilibrated with 0.2 M NaCl, 20 mM NaPO4, pH 7.5 at 4°C. Next, the column was washed with five column volumes (2250 mL) of 0.4 M NaCl, 20 mM NaPO4, pH 7.5 at 4°C. The desired protein was eluted by washing the column with 5 L of 0.5 M NaCl, 20 mM NaPO4, pH 7.5. 15 Again, 50 mL fractions were collected and the A_{280} of the effluent was continuously monitored. Fractions identified by A_{280} as containing eluted material were then analyzed by SDS-PAGE through 14% gels to confirm the presence of the desired polypeptide. 20

Those fractions containing proteins of interest were then pooled, followed by the addition of an equal volume of distilled water. The diluted sample was then loaded onto a previously prepared 450 mL (5 cm x 23 cm) column of S-Sepharose'Fast Flow equilibrated with 0.4 M NaCl, 20 mM NaPO4, pH 6.8 at 4°C. The column was washed with 2250 mL of 0.4 M NaCl, 20 mM NaPO4, pH 6.8 and the protein eluted using a 20 column volume linear gradient ranging from 0.4 M NaCl, 20 mM NaPO4, pH 6.8 to 0.6 M NaCl, 20 mM NaPO4, pH 6.8. Again, 50 mL fractions were collected under constant A280 monitoring of the effluent. Those fractions containing the protein (determined by 14% SDS-PAGE) were then pooled, followed by concentration through a YM-10 membrane (10,000 molecular weight cutoff) in a 350cc stirring cell (Amicon, Inc. Mayberry, MA) to a volume of 30-40 mL.

25

35

The concentrate was then loaded onto a previously generated 1,300 mL (4.4 cm x 85 cm) column of Superdex-75™ resin (Pharmacia) equilibrated in column buffer comprising 1% PBS (Dulbecco's Phosphate Buffered Saline, *D-PBS, * calcium and magnesium-free) or 0.15 M NaCl, 20 mM NaPO4, pH 7.0. After allowing the sample to run into the column, the protein was eluted from the gel filtration matrix using column buffer. Thereafter, 10 mL fractions were recovered and those containing the analog (determined by 14% SDS-PAGE) were pooled. 10 Typically, the protein concentration was about 5-10 mg/mL in the resultant pool. All of the above procedures were performed at 4-8°C, unless otherwise specified.

An alternative purification procedure was used to purify native KGF, C(1,15)S and AN23. The procedure involves the following steps and, unless otherwise specified, all procedures, solutions and materials were conducted at 23 ± 5°C.

. 15

20

35

Upon completion of the production phase of a bacterial fermentation, the cell culture was cooled to 4-8°C and the cells were harvested by centrifugation or a similar process. On the basis of the expected yield of protein per unit weight of cell paste and the amount of purified protein required, an appropriate amount of cell paste, by weight, was suspended in a mild buffer solution, 20 mM NaPO4, 0.2 M NaCl, pH 7.5, weighing about five times that of the cell paste to be suspended. The cells were dispersed to a homogeneous solution using 30 a high shear mixer. The temperature of the cell paste dispersion was maintained at 4-8°C during homogenization.

The cells were then lysed by pressure, for example by passing the cell paste dispersion twice through an appropriately sized cell homogenizer. The homogenate was kept chilled at $5 \pm 3^{\circ}$ C. To clarify the

- 21 -

cell lysate, a previously prepared depth filter housing (Cuno, Inc., Meriden, CT) equipped with a filter having an appropriate amount of filter surface area, equilibrated with a suitable volume of 0.2 M NaCl, 20 mM NaPO4, pH 7.5 was employed. The equilibration and clarification were performed at 5 ± 3°C. Prior to clarification, an appropriate amount of a suitable filter aid was used to pre-coat the filter and be thoroughly mixed with the cell lysate, after which the lysate was clarified by passing the solution through the filter apparatus. The filter was washed with 0.2 M NaCl, 20 mM NaPO4, pH 7.5. The filtrate and any subsequent wash were collected in a chilled container of suitable capacity, all the while being maintained at less than 10°C.

10

15

Following clarification the lysate was then passed through a previously prepared column of SP-Sepharose Fast Flow containing at least 1 mL of resin per 2 g of cell paste. The column of SP-Sepharose Fast Flow was equilibrated with cold (5 ± 3°C), 0.2 M NaCl, 20 mM NaPO4, pH 7.5. The temperature of the column was maintained at less than 10°C. The clarified lysate (5 ± 3°C) was then loaded onto the ion exchange column, with the absorbance at 280 nm (A280) of eluate being continuously monitored. After sample loading, the column was washed with cold 0.2 M NaCl, 20 mM NaPO4, pH 7.5, followed by washing with 0.3 M NaCl, 20 mM NaPO4, pH 7.5 at 23 ± 5°C.

To elute the desired protein, a linear gradient ranging from 0.2-1 M NaCl, 20 mM NaPO₄, pH 7.5 was used. Bulk product was collected in several fractions on the basis of the A₂₈₀ of the eluate. Following elution, these fractions were pooled and the volume noted.

To oxidize free sulfhydryl groups, an oxidation step was performed. For proteins with altered

3

10

15

cysteine patterns, as compared to native KGF, an oxidizing agent (e.g., cystamine dihydrochloride or another appropriate oxidizing agent, for instance, cystine, oxidized glutathione or divalent copper) was added to a final concentration of 1-20 mM and the pH was adjusted to 7-9.5, with a pH of 9.0 ± 0.3 when cystamine dihydrochloride was used. The oxidation was conducted at 10 - 30°C for an appropriate period. For the native KGF protein, oxidation was accomplished by adding an appropriate amount of (NH₄)₂SO₄ such as 1-2 M (NH₄)₂SO₄, adjusting the pH to 7.5-9.5, and holding the temperature at 23 ± 5°C for an appropriate period.

After oxidation, the pH of the solution was adjusted to between 6.5 and 9.5. If necessary, solid (NH₄)₂SO₄ was added to the solution to a final concentration of 2 M. To remove particulates, the solution was passed through appropriate clarification filters.

The filtered, oxidized product was then subjected to hydrophobic interaction chromatography 20 (HIC). The HIC matrice was Butyl-650M Toyopearl™ resin (Tosohaas, Inc., Montgomeryville, PA). The proteincontaining solution was loaded onto the column, which had been previously equilibrated with 2 M (NH₄)₂SO₄, 0.15 M NaCl, 20 mM NaPO4, pH 7.0. After sample loading, the 25 column was washed with 2 M (NH₄)₂SO₄, 0.15 M NaCl, 20 mM NaPO₄, pH 7.0. The desired protein was then eluted using a decreasing linear (NH₄)₂SO₄ gradient ranging from 2-0 M developed in 0.15 M NaCl, 20 mM NaPO4, pH 7.0. When the desired protein began to elute, as indicated by 30 an increase in the A280 of the eluate, fractions were collected. Alignots of each fraction were then analyzed by SDS-PAGE. Those fractions containing the desired protein were then pooled, thoroughly mixed, and the volume of the pool determined, as was the concentration 35 of the protein therein.

- 23 -

The pooled HIC protein-containing eluate was then concentrated and the elution buffer exchanged. Typically, proteins were concentrated to 5.0-10.0 mg/mL. Ultrafiltration was conducted using an ultrafiltration system equipped with a Pellicon^m cassette system (Millipore, Inc., Bedford, MA) with an appropriately sized cut-off membrane

After concentration, the sample was diafiltered against an appropriate buffer. The retentate from the concentration step was diafiltered against 0.15 M NaCl, 20 mM NaPO4, pH 7.0 until the conductivity of the retentate was within 5% of the conductivity of the 0.15 M NaCl, 20 mM NaPO4, pH 7.0 solution.

10

30

35

15 In addition, to remove precipitates and bacterial endotoxin that might be present, the concentrated diafiltered protein-containing sample was passed through a 0.1 µm Posidyner filter (Pall, Inc., Cortland, NY). After determining the protein concentration of the solution and on the basis of the 20 desired concentration of the final bulk product, the solution was diluted with 0.15 M NaCl, 20 mM sodium phosphate, pH 7.0, to the desired final concentration. A final aseptic filtration through a 0.22 µm filter, was 25 then performed as the final bulk product was transferred to a pyrogen-free container for storage (at about 5°C) for further formulation.

Example 3: Purification from Mammalian Cell Culture

This example describes the expression, isolation, and characterization of two biologically active recombinant KGF (rKGF) forms produced in a mammalian expression system.

The human KGF gene was isolated by PCR amplification of cDNA made from normal dermal human

.;

fibroblast cells (Clonetec, Inc., Palo Alto, CA).
Following the making of cDNA by reverse transcriptase,
PCR was used to amplify the KGF gene. OLIGO#25 and
OLIGO#26 were used to amplify the gene out of the cDNA
and OLIGO#27 and OLIGO#28 were used to place HindIII and
BgIII restriction sites at the fragment ends by a second
PCR amplification, as set forth in Figure 1.

OLIGO#25 (SEQ ID NO:45): 5'-CAATCTACAATTCACAGA-3'

10 OLIGO#26 (SEQ ID NO:46): 5'-TTAAGTTATTGCCATAGG-3'

OLIGO#27 (SEQ ID NO:47): 5'-AACAAAGCTTCTACAATTCACAGATAGGA-3'

OLIGO#28 (SEQ ID NO:48): 5'-AACAAGATCTTAAGTTATTGCCATAGG-3'

Following cloning and DNA sequence

15 confirmation, the KGF gene DNA was then used.

Amplification was effected using two primers:

OLIGO#29 (SEQ. ID. NO:49):

5'-CGGTCTAGACCACCATGCACAAATGGATACTGACATGG-3'

20 OLIGO#30 (SEQ. ID. NO:50):

5'-GCCGTCGACCTATTAAGTTATTGCCATAGGAAG-3'

The sense primer, OLIGO#29, included an Xbal site and a consensus Kozak translation sequence (5'-CCACC-3') upstream of the start codon, ATG. The 25 antisense primer, OLIGO#30, included a SalI cloning site and an additional stop codon. After 18 cycles of PCR amplification (30 sec. denaturation at 94°C, 40 sec. annealing at 55°C, and 40 sec. elongation at 72°C), the product was digested with XbaI and SalI and ligated with 30 a similarly digested DNA of pDSRa2 (according to the methods of Bourdrel et al. (1993), Protein Exp. & Purif., 4:130-140 and Lu et al. (1992), Arch. Biochem. Biophys., 298:150-158). This resulted in plasmid 35 KGF/pDSRa2 which placed the human KGF gene between the SV40 early promoter and the $\alpha\text{-FSH}$ polyadenylation

sequences. Two clones were picked and DNA sequence analysis confirmed construction of the desired vector.

Two micrograms of KGF/pDSRa2 DNA were then linearized with PvuI. Chinese hamster ovary (CHO) cells, seeded the day before at 0.8 x 10⁶ cells/60 mm culture dish, were then transfected with the treated DNA using a standard calcium phosphate precipitation method (Bourdrel et al., supra). Two weeks later, individual colonies were picked and transferred into 24-well plates. The conditioned media was considered serum-free when the cells reached confluency and aliquots thereof were analyzed by Western blotting using a polyclonal rabbit antiserum reactive against E. coli-expressed human KGF.

Westerns were performed by running samples 15 through 12.5% (w/v) SDS polyacrylamide gels, followed by electroblotting for 1 hr. at 400 mA onto nitrocellulose membranes using a semidry transfer apparatus (Hoefer Scientific Instruments, San Francisco, CA). 20 mM Tris, 150 mM glycine, 20% methanol served as the transfer 20 buffer. The nitrocellulose sheets were blocked by incubation with 10% normal goat serum in PBS. Rabbit anti-serum raised against E. coli-derived KGF was used as primary antibody. For use, it was diluted 1/10,000 in 1% normal goat serum in PBS and incubated with the 25 blocked nitrocellulose sheets for 12 hr. at room temperature, after which excess antibody was removed by three 30 min. washes in PBS. The nitrocellulose membranes were then incubated in 100 mL of 1% normal goat serum in PBS containing Vectastain biotinylated 30 goat anti-rabbit IgG (secondary antibody, Vector Labs, Burlingame, CA), for 30 minutes at room temperature. After three 10 minute washes in PBS, a 30 minute room temperature incubation was performed in a 100 mL solution of 1% normal goat serum containing streptavidin 35 and biotinylated peroxidase, prepared according to

1 .

20

- 26 -

manufacturer's directions (Vector Labs). Following three washes in PBS, KGF cross-reactive material was visualized by incubation in a mixture of 60 μL of 30% (w/v) H_2O_2 in 100 mL of PBS and 50 mg of 4-chloronapthol in 20 mL of methanol. The reaction was stopped by rinsing in water after 10 minutes.

Analysis of the blots revealed that the KGFspecific antibody associated with three distinct protein bands, two being closely related with molecular weights 10 of about 25-29 kDa and one with an estimated molecular weight of about 17 kDa, as compared to the expected molecular weight of approximately 18.8 of the 163 amino acid mature protein. Additionally, several high expressing clones secreting more than 2.0 mg of rKGF per liter, as judged by Western analysis, were selected and 15 expanded into roller bottles (according to the method of Lu et al., supra) to generate large volumes of serumfree conditioned medium for purification of KGF by cationic exchange chromatography and gel filtration, as set forth below.

KGF from 3 L of serum-free conditioned medium was purified applying the medium directly to a cation exchange column (5 x 24 cm) packed with 450 mL of sulfoethyl column of SP-Sepharose Fast Flow(Pharmacia) pre-equilibrated with 20 mM sodium phosphate, pH 7.5. After washing with five column volumes of 20 mM sodium phosphate, 0.2 M NaCl, pH 7.5, rKGF was eluted using a 20 column volume linear gradient of 0.2 to 1.0 M NaCl in 20 mM sodium phosphate, pH 7.5. 50 mL fractions were collected with continuous A280 monitoring. KGF protein was detected by analyzing aliquots of each fraction by SDS-PAGE. SDS-PAGE was performed on an electrophoresis system (Novex, San Diego, CA) using precast 14% Tris-glycine precast gels (according to the method of Laemmli (1970), Nature, 227:680-685). Samples were 35 mixed with non-reducing SDS sample buffer without

.

heating before loading. The proteins were detected by either Coomassie blue or silver staining. Two late-eluting peaks were seen to contain protein bands corresponding to the 25-29 kDa and 17 kDa bands detected by Western blot. The fractions containing each of these peaks were separately concentrated to a volume of less than 1.0 mL and subjected to gel filtration.

The gel filtrations employed columns of Superdex-75m resin (HR 10/30, Pharmacia) preequilibrated with PBS, pH 7.2, and calibrated with the following known molecular weight standards (BioRad, San Francisco, CA): thyroglobulin (670 kDa), gamma globulin (158 kDa), ovalbumin (44 kDa), myoglobin (17 kDa) and vitamin B-12 (1.4 kDa). These purification steps resulted in an approximate 2000-fold purification of rKGF, specifically including a 17 kDa and a 30 kDa material, as estimated by silver staining.

In the instance of the higher molecular weight material, rKGF eluted as a major symmetrical peak, which 20 was called KGF-a. Upon SDS-PAGE analysis of a lesser amount of this material, 3 µg/lane versus 6 µg/lane, two bands with a 1-2 kDa molecular weight difference were resolved. In the instance of the lower molecular weight material, termed KGF-b, gel filtration resulted in a protein preparation having the expected mobility. For both KGF-a and KGF-b, the overall yield after purification was approximately 30-40%.

Amino acid sequences from KGF-a and KGF-b were also analyzed. These analyses were performed on an automatic sequencer (Model 477A or 470A, Applied Biosystems, Inc., Foster City, CA) equipped with a Model 120A on-line PTH-amino acid analyzer and a Model 900A data collection system (according to the method of Lu et al. (1991), J. Biol. Chem., 266:8102-8107). Edman sequence analysis of KGF-a revealed a major N-terminal sequence of X1-N-D-M-T-P-E-Q-M-A-T-N-V-X2-X3-S- (SEQ ID

- 28 -

NO:51). A minor sequence starting from the third Nterminal amino acid, aspartic acid, was also present in 1.6% of the total sequenceable protein. X_1 , X_2 , and X_3 were the unassigned due to the absence of phenylthiohydantoinyl (PTH) amino acid signals during sequence analysis.

Interestingly, N-terminal sequence analysis of KGF-b revealed an N-terminal amino acid sequence of S-Y-D-Y-M-E-G-G-D-I-R-V- (SEQ ID NO:52), indicating that it is an N-terminally truncated form of KGF that has been proteolytically cleaved at the Arg23-Ser24 peptide bond.

To further characterize purified KGF-a and KGF-b, the protein was subjected to glycosidases (neuraminidase, O-glycanase, and/or N-glycanase), using 15 known techniques (Sasaki et al. (1987), J. Biol. Chem., 262:12059-12076; Takeuchi et al. (1988), J. Biol. Chem., 263:3657-3663; Zsebo et al. (1990), Cell, 63:195-201). These data indicate that KGF-a contains N- and O-linked carbohydrates, although the lower molecular weight form 20 of KGF-a probably contains only N-linked sugar. Glycosidase treatment did not cause molecular weight reduction for KGF-b, indicating that the molecule is unglycosylated.

Example 4: Biological Activity

25

30

Each KGF analog was diluted and assayed for biological activity by measuring the [3H]-thymidine uptake of Balb/MK cells (according to the method of Rubin et al. (1989), supra). The samples were first diluted in a bioassay medium consisting of 50% customermade Eagle's MEM, 50% customer-made F12, 5 µg/mL transferrin, 5 ng/mL sodium selenite, 0.0005% HSA and 35 0.005% Tween 20. KGF samples were then added into Falcon primeria 96-well plates seeded with Balb/MK

cells. Incorporation of [3H]-Thymidine during DNA synthesis was measured and converted to input native KGF concentration by comparison to a native KGF standard curve. Each of the tested analogs exhibited mitogenic activity.

Interaction with the KGF receptor was examined using isolated KGF receptor membrane preparations prepared from Balb/MK mouse epidermal keratinocytes (by the procedure described by Massague (19932), J. Biol. Chem., 258:13614-13620). Specifically, various forms of KGF were diluted with 50 mM Tris-HCl, pH 7.5, containing 0.2% bovine serum albumin so as to range in concentration from 0.8 ng to 100 ng per 50 µL. were individually incubated with the membrane preparation (75 ng/mL) and 125I-labeled E. coli-derived KGF (1.5 ng). Receptor binding and competition experiments were performed at 4°C for 16 hr., after which time samples were taken, centrifuged, and washed twice with the above diluent buffer to remove unbound and non-specifically bound, labeled KGF. Samples were then counted for the remaining radioactivity. Competition curves for receptor binding between KGF samples and labeled KGF were constructed by plotting percent uncompetition versus concentrations of each KGF sample. Radioreceptor assay uncompetition experiments

20

25

while the present invention has been described above both generally and in terms of preferred

embodiments, it is understood that other variations and modifications will occur to those skilled in the art in light of the description above.

indicated that E. coli-derived KGF, KGF-a, and KGF-b

have similar receptor binding activity.

SEQUENCE LISTING	
(1) GENERAL INFORMATION:	
(i) APPLICANT: Amgen Inc.	
(ii) TITLE OF INVENTION: Method for Purifying Keratinocyte Growth Factors	
(iii) NUMBER OF SEQUENCES: 52	
(iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Amgen Inc. (B) STREET: 1840 DeHavilland Drive (C) CITY: Thousand Oaks (D) STATE: California (E) COUNTRY: U.S.A. (F) ZIP: 91320-1789	
(v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS (D) SOFTWARE: PatentIn Release #1.0, Version #1.25	•
(vi) CURRENT APPLICATION DATA: (A) APPLICATION NUMBER: US 08/487,830 (B) FILING DATE: (C) CLASSIFICATION: Not yet known	
(2) INFORMATION FOR SEQ ID NO:1:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 862 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown, (D) TOPOLOGY: unknown	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:	
ANTETACAN TICACAGATA GGAAGAGGTC AATGACCTAG GAGTAACAAT CAACTCAAGA	
TCATTITCA TTATGITATT CATGAACACC CGGAGCACTA CACTATAATG CACAAATGGA	12
ACTGACATG GATCCTGCCA ACTTTGCTCT ACAGATCATG CTTTCACATT ATCTGTCTAG	18
GGGTACTAT ATCTTTAGCT TGCAATGACA TGACTCCAGA GCAAATGGCT ACAAATGTGA	. 24

ACTGTTCCAG CCCTGAGCGA CACACAAGAA GTTATGATTA CATGGAAGGA GGGGATATAA

.

300

- 31 -

GAGTG	AGA	AG A	CTC	rici	T C	ZAAC	ACAG:	r GG	TACC:	PGAG	GATY	GAT	AAA .	AGAG	GCAA	AG	360
TAAAA	.GGG	iac c	CAAC	BAGA?	rg aj	AGAA?	TAAT	ר אכו	AATA:	CAT	GGA	LATC	AGG 2	ACAG:	recc	AG	420.
TTGGA	ATI	GT G	GCA	TCA	LA GO	GGT	GAA	A GT	SAATT	CTA	TCT	rgCA;	NTG 2	AACA	AGGA	AG	480
GAAAA	CTC	TA I	CA	AGAJ	LA GA	LATGO	CAATO	AAC	ATTO	TAA	CTTC	AAA:	AA (TAA	TCT	G.	540
AAAAC	CAT	TA C	AACA	CATA	T GC	ATCA	GCTA	AA1	rGGA(ACA	CAAC	:GGAC	GG (aaa1	GTT	rg	600
TIGCC	TTA	AA I	CAAA	AGGG	g ai	TCCI	GTAA	GAG	GAAA	AAA	AACG	:AAGA	AA C	AAC	LAAA.	LA.	660
CAGCC	CAC	TT T	CTIC	CTAI	GC GC	AATA	ACTI	AA1	TGCA	TAT	GGTA	TATA	AA C	AACC	CAGI	T	720
CCAGC	AGG	GA G	ATTI	CITI	A AG	TGGA	.CTGI	TI	CTTI	CIT	CTCA	AAAT	TT 1	CITI	CCTI	T	780
TATTT	TTT.	AG T	AATC	AAGA	A AG	GCTG	GAAA	AAC	TACI	GAA	AAAC	TGAT	CA A	GCTC	GACT	T	840
GTGCA:	ITT.	AT G	TTTG	TITI	A AG									•			862
(2) II	NFO	RMAT	ION	FOR	SEQ	ID N	0:2:										
		(C (D MOL) ST) TO ECUL	PE: RAND POLO E TY	EDNE GY: '	SS: union prot	unkn own ein		D NO	:2:	÷						
1		His	Lys	Trp	Ile 5	Leu	Thr	Trp	Ile	Leu 10	Pro	Thr	Leu	Leu	Tyr 15	Arg	
S	Ser	Cys	Phe	His 20	Ile	Ile	Cys	Leu	Val 25	Gly	Thr	Ile	Ser	Leu 30	Ala	Суз	
A	SI	Asp	Met 35	Thr	Pro	Glu	Gln	Met 40	Ala	Thr	Asn	Val	Asn 45	Суз	Ser	Ser	
P	ro	Glu 50	Arg	His	Thr	Arg	Ser 55	Tyr	Asp	Tyr	Met	Glu 60	Gly	Gly	Asp	Ile	
	rg S	Val	Arg	Arg	Leu	Phe 70	Cys	Arg	Thr	Gln	Trp 75	Tyr	Leu	Arg	Ile	Asp 08	
L	ys	Arg	Gly	Lys	Val 85	Lys	Gly	Thr	Gln	Glu 90	Met	Lys	Asn	Asn	Тут 95	Asn	
	le	Met	Glu	Ile 100	Arg	Thr	Val	Ala	Val 105	Gly	Ile	Val	Ala	Ile 110	Гуз	Gly	
V	al	Glu	Ser 115	Glu	Phe	Tyr	Leu	Ala 120	Met	Asn	Lys	Glu	Gly 125	Lys	Leu	Tyr	

Ξ,

- 32 -

Ala	Lys 130	Lys	Glu	Cys	Asn	Glu 135	Ąsp	Cys	Asn	Phe	Lys 140	Glu	Leu	Ile	Leu
Glu 145	λsn	His	Tyr	Asti	Thr 150	Tyr	Ala	Ser	Ala	Lys 155	Trp	Thr	His	Asn	G13 160
Gly	Glu	Met	Phe	Val 165	Ala	Leu	Asn	Gln	Lys 170	Gly	Ile	Pro	Val	Arg 175	Gly
Lys	Lys	Thr	Lys 180	Lys	Glu	Gln	Lys	Thr 185	Ala	His	Phe	Leu	Pro 190	Met	Ala

Ile Thr

(2) INFORMATION FOR SEQ ID NO:3:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 595 base pairs

 - (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

ATCGATTTGA	TTCTAGAAGG	AGGAATAACA	TATGAAAAAG	CGCGCACGTG	CTATCGCCAT	6
TGCTGTGGCT	CTGGCAGGTT	TCGCAACTAG	TGCACACGCG	TGCAATGACA	TGACTCCAGA	120
GCAAATGGCT	ACAAATGTGA	ACTGTTCCAG	CCCTGAGCGA	CACACAAGAA	GTTATGATTA	180
CATGGAAGGA	GGGGATATAA	GAGTGAGAAG	ACTOTTCTGT	CGAACACAGT	GGTACCTGAG	240
GATCGATAAA	AGAGGCAAAG	TAAAAGGGAC	CCAAGAGATG	AAGAATAATT	ACAATATCAT	300
GGAAATCAGG	ACAGTGGCAG	TTGGAATTGT	GGCAATCAAA	GGGGTGGAAA	GTGAATTCTA	36
TCTTGCAATG	AACAAGGAAG	GAAAACTCTA	TGCAAAGAAA	GAATGCAATG	aagattgtaa	420
CTTCAAAGAA	CTAATTCTGG	AAAACCATTA	CAACACATAT	GCATCAGCTA	AATGGACACA	480
CAACGGAGGG	GAAATGTTTG	TTGCCTTAAA	TCAAAAGGGG	ATTCCTGTAA	GAGGAAAAA	540
AACGÄAGAAA	GAACAAAAAA	CAGCCCACTT	TCTTCCTATG	GCAATAACTT	AATAG	599

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 186 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein

- 33 -

	(sei	1 6	-0111-	Jee 1		The	POV	670								
										NO:4:						
	Met 1	Ly	Ly:	Arg	Ala 5	Arg	, Ala	Ile	: Ala	11e	: Ala	\Val	L Ala	a Lei	15	
	Phe	: Ala	The	Sez 20	: Ala	His	Ala	Cys	Asr 25	n Asp	Met	The	Pro	Gl: 30	ı Glr	a Me
	Ala	Thr	Asn 35	Val	. Asn	Cys	Ser	Ser 40	Pro	Glu	Arg	His	Thi 45	Arç	7 Ser	Ту
	Asp	Ty: 50	Met	Glu	Gly	Gly	Asp 55	Ile	Arg	Val	Arg	Arg	Leu	Phe	Cys	Ar
	Thr 65	Gln	Trp	Tyr	Leu	Arg 70	Ile	Asp	Lys	Arg	Gly 75	Lys	Val	Lys	Gly	Th 80
	Gln	Glu	Met	Lys	Asn 85	Asn	Tyr	Asn	Ile	Met 90	Glu	Ile	Arg	Thr	Val 95	Ala
	Val	Gly	Ile	Val 100	Ala	Ile	Lys	Gly	Val 105	Glu	Ser	Glu	Phe	Tyr 110	Leu	Ala
	Met	Asn	Lys 115	Glu	Gly	Lys	Leu	Tyr 120	Ala	Lys	Lys	Glu	Cys 125	Asn	Glu	AsŢ
	Суз	Asn 130	Phe	Lys	Glu	Leu	Ile 135	Leu	Glu	Asn	His	Tyr 140	Asn	Thr	Tyr	Ala
	Ser 145	Ala	Lys	Trp	Thr	His 150	Asn	Gly	Gly	Glu	Met 155	Phe	Val	Ala	Leu	Asn 160
	Gln	Lys	Gly	Ile	Pro 165	Val	Arg	Gly	Lys	Lys 170	Thr	Lys	Lys	Glu	Gln 175	Lys
	Thr .	Ala	His	Phe 180	Leu	Pro	Met		Ile 185	Thr						
(2)	INFOR	Mati	ON F	OR S	EQ I	D NO	:5:			,						,
	(i)	SEQU (A) (B) (C)	ence Len Typ Str	CHA GTH: E: n ANDE	•	ERIS bas ic a S: u	TICS e pa cid	irs					.			

TATGTGCAAT GACATGACTC CAGAGCAAAT GGCTACAAAT GTGAACTGTT CCAGCCCTGA 60
GCGACACACA AGAAGTTATG ATTACATGGA AGGAGGGGAT ATAAGAGTGA GAAGACTCTT 120
CTGTCGAACA CAGTGGTACC TGAGGATCGA TAAAAGAGGC AAAGTAAAAG GGACCCAAGA 180

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

GATG	AAGA	T A	ATTAC	CAATI	TC	\TGG#	TAAL	CAGO	IACAC	TG (3CAG	MGG:	LA T	rgtg	CAAT	•
CAAA	.GGGG7	rg Gi	\AAG1	rgaa?	r TCI	PATCI	TGC	AATO	EXACI	VAG (ZAAGO	LAAA	C TO	TATO	CAA	
GAAA	GAAAGAATGC AATGAAGATT GTAACTTCAA AGAACTAATT CTGGAAAAACC ATTACAACAC															
ATATGCATCA GCTAAATGGA CACACAACGG AGGGGAAATG TTTGTTGCCT TAAATCAAAA																
GGGGATTCCT GTAAGAGGAA AAAAAACGAA GAAAGAACAA AAAACAGCCC ACTTTCTTCC																
TATG	PATGGCAATA ACTTAATAG (2) INFORMATION FOR SEQ ID NO:6:															
(2)	INFOR	MAT!	CON E	FOR S	EQ 1	ED NO	:6:									
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown															
	(ii) MOLECULE TYPE: protein															
	(xi)	SEQ	JENCI	E DES	CRI	PTION	i: Si	EQ II	NO:	6:						•
	Met 1	Cys	Asn	Asp	Met 5	Thr	Pro	Glu	Gln	Met 10	Ala	Thr	Asn	Val	Asn 15	Cys
	Ser	Ser	Pro	Glu 20	Arg	His	Thr	Arg	Ser 25	Tyr	Asp	Tyr	Met	Glu 30	Gly	Gly
	Asp	Ile	Arg 35	Val	Arg	Arg	Leu	Phe 40	Cys	Arg	Thr	Gln	Trp 45	Tyr	Leu	Arg
	Ile	Asp 50	Lys	Arg	G1y	Lys	Val 55	Lys	Gly	Thr	Gln	Glu 60	Met	Lys	Asn	Asn
	Tyr 65	Asn	Ile	Met	Glu	Ile 70	Arg	Thr	Val	Ala	Val 75	Gly	Ile	Val	Ala	Ile 80
	Lys	Gly	Val	Glu	Ser 85	Glu	Phe	Tyr	Leu	Ala 90	Met	Asn 	Lys	Glu	Gly 95	Lys
	Leu	Týr	Ala	Lys 100	Lys	Glu	Суз	Asn	Glu 105	Asp	Суз	Asn	Phe	Lys 110	Glu	Leu
	Ile	Leu	Glu 115	Asn	His	Tyr	Asn	Thr 120	Tyr	Ala	Ser	Ala	Lys 125	Trp	Thr	His
	Asn	Gly 130	Gly	Glu	Met	Lhe	Val 135	Ala	Leu	Asn	Gln	Lys 140	Gly	Ile	Pro	Val
	Arg 145		Lys	Lys	Thr	Lys 150	Ļys	Glu	Gln	Lys	Thr 155	Ala	His	Phe	Leu	Pro 160

Met Ala Ile Thr

-	D/T0000 N 1000
VO 96/11952	PCT/US95/13099

, .

(2)	INFORMATION FOR SEQ ID NO:7:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 25 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
CAAT	GACCTA GGAGTAACAA TCAAC	25
(2)	INFORMATION FOR SEQ ID NO:8:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
AAA	ACARACA TARATGCACA AGTCCA	26
(2)	INFORMATION FOR SEQ ID NO:9:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 26 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
ACAZ	ACGCGTG CAATGACATG ACTCCA	26
(2)	INFORMATION FOR SEQ ID NO:10:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 31 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
	(;;) MOLECTILE TYPE: CDNA	

WO 96/11952	
-------------	--

PCT/US95/13099

- 36 -

(XI) SEQUENCE SESCREFIION: SEQ ID NO:IU:	
ACAGGATCCT ATTAAGTTAT TGCCATAGGA A	31
(2) INFORMATION FOR SEQ ID NO:11:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
ACACATATGT GCAATGACAT GACTCCA	27
(2) INFORMATION FOR SEQ ID NO:12:	÷
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	· .
(ii) MOLECULE TYPE: CDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:	
CTGCGTATCG ACAAACGCGG CAAAGTCAAG GGCACCC	37
(2) INFORMATION FOR SEQ ID NO:13:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 44 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
(ii) MCLECULE TYPE: CDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	
AAGAGATGAA AAACAACTAC AATATTATGG AAATCCGTAC TGTT	44

WO 96/11952

(2) INFORMATION FOR SEQ ID NO:14:

(ii) MOLECULE TYPE: cDNA

PCT/US95/13099

- 37 -

(i	.) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
GCTGTTG	GTA TCGTTGCAAT CAAAGGTGTT GAATCTG	3
(2) INF	ORMATION FOR SEQ ID NO:15:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
(ii)	MOLECULE TYPE: CDNA	
(zci)	SEQUENCE DESCRIPTION: SEQ ID NO:15:	
	GC CCTTGACTTT GCCGCGTTTG TCGATACGCA GGTAC	4.
	RMATION FOR SEQ ID NO:16:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 45 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
(ii)	MOLECULE TYPE: CDNA	
	SEQUENCE DESCRIPTION: SEQ ID NO:16:	
ACAGCAACI	AG TACGGATTTC CATAATATTG TAGTTGTTTT TCATC	45
(2) INFO	RMATION FOR SEQ ID NO:17:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:	
AATTCAGATT CAACACCTTT GATTGCAACG ATACCA	36
(2) INFORMATION FOR SEQ ID NO:18:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
AGTTTTGATC TAGAAGGAGG	20
(2) INFORMATION FOR SEQ ID NO:19:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
TCAAAACTGG ATCCTATTAA	20
(2) INFORMATION FOR SEQ ID NO:20:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 91 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
AGTTTTGATC TAGAAGGAGG AATAACATAT GTGCAACGAC ATGACTCCGG AACAGATGGC	60

TACCAACGTT AACTGCTCCA GCCCGGAACG T

WO 96/11952 PCT/US95/13099

_ 30 _

(2) INFORMATION FOR SEQ ID NO:21:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	•
CACACCCGTA GCTACGACTA CATGGAAGGT GGTGACATCC GTGTTCGTCG TCTGTTCTGC	60
CGTACCCAGT GGTACCTGCG TATCGACAAA	90
(2) INFORMATION FOR SEQ ID NO:22:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
CGTGGTAAAG TTAAAGGTAC CCAGGAAATG AAAAACAACT ACAACATCAT GGAAATCCGT	60
ACTGTTGCTG TTGGTATCGT TGCAATCAAA	90
(2) INFORMATION FOR SEQ ID NO:23:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
SGTGTTGAAT CTGAATTCTA CCTGGCAATG AACAAAGAAG GTAAACTGTA CGCAAAAAAA	60
CARTON ARCACTOR ARCACTOR CONTRARGA	9.0

WO 96/11952 PCT/US95/13099

- 40 -

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 90 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:	
CTGATCCTGG AAAACCACTA CAACACCTAC GCATCTGCTA AATGGACCCA CAACGGTGGT	60
GAAATGTTCG TTGCTCTGAA CCAGAAAGGT	9(
(2) INFORMATION FOR SEQ ID NO:25:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 88 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	•
(ii) MOLECULE TYPE: cDNA (xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:	
ATCCCGGTTC GTGGTAAAAA AACCAAAAAA GAACAGAAAA CCGCTCACTT CCTGCCGATG	60
GCAATCACTT AATAGGATCC AGTTITGA	. 88
(2) INFORMATION FOR SEQ ID NO:26:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:	
TACGGGTGTG ACGTTCCGGG	20
(2) INFORMATION FOR SEQ ID NO:27:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	

VO 96/11952	PCT/US95/1309

- 41 -

	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:	
CTI	TTACCACG TTTGTCGATA	2
(2)) INFORMATION FOR SEQ ID NO:28:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:	
\TT	CAACACC TITGATIGCA	. 20
(2)	INFORMATION FOR SEQ ID NO:29:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
	•	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:	
CAC	GGATCAG TICTITGAAG	20
2)	INFORMATION FOR SEQ ID NO:30:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 20 base pairs	

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

(B) TYPE: nucleic acid
(C) STRANDEDNESS: unknown
(D) TOPOLOGY: unknown

GAACCGGGAT ACCTTTCTGG

WO 96/11952 PCT/US95/13099

- 42 -

(2) INFORMATION FOR SEQ ID NO:31:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 495 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:	
ATGTCTAATG ATATGACTCC GGAACAGATG GCTACCAACG TTAACTCCTC CTCCCCGGAA 60	
CGTCACACGC GTTCCTACGA CTACATGGAA GGTGGTGACA TCCGCGTACG TCGTCTGTTC 120	!
TGCCGTACCC AGTGGTACCT GCGTATCGAC AAACGCGGCA AAGTCAAGGG CACCCAAGAG 180	ł
ACTACANTAL TATGGAAATC CGTACTGTTG CTGTTGGTAT CGTTGCAATC 240	l
ATGAAAAACA ACIACAAATI TIIOOTTOO ATGAACAAAG AAGGTAAACT GTACGCAAAA 300	ì
AAAGGATGEA ACGAAGACTG CAACTTCAAA GAACTGATCC TGGAAAACCA CTACAACACC 360	ì
TACGCATCTG CTAAATGGAC CCACAACGGT GGTGAAATGT TCGTTGCTCT GAACCAGAAA 420) .
)
GGTATCCCGG TTCGTGGTÄA AAAAACCAAA AAAGAACAGA AAACCGCTCA CTTCCTGCCG 480	ś
ATGGCAATCA CTTAA	
(2) INFORMATION FOR SEQ ID NO:32:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 164 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
(ii) MOLECULE TYPE: protein	
·.	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:	
Met Ser Asn Asp Met Thr Pro Glu Gln Met Ala Thr Asn Val Asn Ser 1 10 15	
Ser Ser Pro Glu Arg His Thr Arg Ser Tyr Asp Tyr Met Glu Gly Gly 20 25 30	
Asp Ile Arg Val Arg Arg Leu Phe Cys Arg Thr Gln Trp Tyr Leu Arg 35 40 45	
Ile Asp Lys Arg Gly Lys Val Lys Gly Thr Gln Glu Met Lys Asn Asn 50 55	

WO 96/11952 PCT/US95/13099

Tyr 65	Asn	Ile	Met	Glu	Ile 70	Arg	Thr	Val	Ala	Val 75	Gly	Ile	Val	Ala	I1.
Lys	Gly	Val	Glu	Ser 85	Glu	Phe	Tyr	Leu	Ala 90	Met	neA	Lys	Glu	Gly 95	Lys
Leu	Tyr	Ala	Lys 100	Lys	Glu	Cys	Asn	Glu 105	Asp	CAZ	Asn	Phe	Lys 110	Glu	Leu
Ile	Leu	Glu 115	Asn	His	Tyr	Asn	Thr 120	Tyr	Ala	Ser	Ala	Lys 125	Trp	Thr	His
Asn	Gly 130	Gly	Glu	Met	Phe	Val 135	Ala	Leu	Asn	Gln	Lys 140	Gly	Ile	Pro	Val
Arg 145	Gly	Lys	Lys	Thr	Lys 150	Lys	Glu	Gln	Lys	Thr 155	Ala	His	Phe	Leu	Pro 160
Met	Ala	Ile	Thr												

(2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 495 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: unknown

 - (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

ATATGACTCC	TGAACAAATG	GCTACCAATG	TCAACTGTTC	CTCTCCGGAG	60
GGAGTTACGA	TTACATGGAA	GGTGGGGATA	TTCGCGTACG	TEGTETETTE	120
AGTGGTACCT	GCGTATCGAC	AAACGCGGCA	AAGTCAAGGG	CACCCAAGAG	180
ACTACAATAT	TATGGAAATC	CGTACTGTTG	CTGTTGGTAT	CGTTGCAATC	240
AATCTGAATT	CTATCTTGCA	ATGAACAAGG	AAGGAAAACT	CTATGCAAAG	300
ATGAAGATTG	TAACTTCAAA	GAACTAATTC	TGGAAAACCA	TTACAACACA	360
CTAAATGGAC	CCACAACGGT	GGTGAAATGT	TEGTTGETET	GAACCAGAAA	420
TTCAAGGTAA	GYYYYCCYYC	AAAGAAC AGA	AAACCGCTCA	CTTCCTGCCG	480
CTTAA					495
	GGAGTTACGA AGTGGTACCT ACTACAATAT AATCTGAATT ATGAAGATTG CTAAATGGAC	GGAGTTACGA TTACATGGAA AGTGGTACCT GCGTATCGAC ACTACAATAT TATGGAAATC AATCTGAATT CTATCTTGCA ATGAAGATTG TAACTTCAAA CTAAATGGAC CCACAACGGT TTCAAGGTAA GAAAACCAAG	GGAGTTACGA TTACATGGAA GGTGGGGATA AGTGGTACCT GCGTATCGAC AAACGCGGCA ACTACAATAT TATGGAAATC CGTACTGTTG AATCTGAATT CTATCTTGCA ATGAACAAGG ATGAAGATTG TAACTTCAAA GAACTAATTC CTAAATGGAC CCACAACGGT GGTGAAATGT TTCAAGGTAA GAAAACCAAG, AAAGAACAGA	GGAGTTACGA TTACATGGAA GGTGGGGATA TTCGCGTACG AGTGGTACCT GCGTATCGAC AAACGCGGCA AAGTCAAGGG ACTACAATAT TATGGAAATC CGTACTGTTG CTGTTGGTAT AATCTGAATT CTATCTTGCA ATGAACAAGG AAGGAAAACT ATGAAGATTG TAACTTCAAA GAACTAATTC TGGAAAACCA CTAAAATGGAC CCACAACGGT GGTGAAATGT TCGTTGCTCT TTCAAGGTAA GAAAACCAAG AAAGAACAGA AAACCGCTCA	ATATGACTCC TGAACAAATG GCTACCAATG TCAACTGTTC CTCTCCGGAG GGAGTTACGA TTACATGGAA GGTGGGGATA TTCGCGTACG TCGTCTGTTC AGTGGTACCT GCGTATCGAC AAACGCGGCA AAGTCAAGGG CACCCAAGAG ACTACAATAT TATGGAAATC CGTACTGTTG CTGTTGGTAT CGTTGCAATC AATCTGAATT CTATCTTGCA ATGAACAAGG AAGGAAAACT CTATGCAAAG ATGAAGATTG TAACTTCAAA GAACTAATTC TGGAAAACCA TTACAACACA CTAAATGGAC CCACAACGGT GGTGAAATGT TCGTTGCTCT GAACCAGAAA TTCAAGGTAA GAAAACCAAG AAAGAACAGA AAACCGCTCA CTTCCTGCCG CTTAA

(2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 164 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:
- Met Cys Asn Asp Met Thr Pro Glu Gln Met Ala Thr Asn Val Asn Cys

 1 10 15
- Ser Ser Pro Glu Arg His Thr Arg Ser Tyr Asp Tyr Met Glu Gly Gly 20 25 30
- Asp Ile Arg Val Arg Arg Leu Phe Cys Arg Thr Gln Trp Tyr Leu Arg 35 40 45
- Ile Asp Lys Arg Gly Lys Val Lys Gly Thr Gln Glu Met Lys Asn Asn 50 55 60
- Tyr Asn Ile Met Glu Ile Arg Thr Val Ala Val Gly Ile Val Ala Ile 65 70 75 80
- Lys Gly Val Glu Ser Glu Phe Tyr Leu Ala Met Asn Lys Glu Gly Lys 85 90 95
- Leu Tyr Ala Lys Lys Glu Cys Asn Glu Asp Cys Asn Phe Lys Glu Leu 100 105 110
- Ile Leu Glu Asn His Tyr Asn Thr Tyr Ala Ser Ala Lys Trp Thr His 115 120 125
- Asn Gly Gly Glu Met Phe Val Ala Leu Asn Gln Lys Gly Ile Pro Val 130 135 140
- Gln Gly Lys Lys Thr Lys Lys Glu Gln Lys Thr Ala His Phe Leu Pro 145 150 155 160

Met Ala Ile Thr

(2) INFORMATION FOR SEQ ID NO:35:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 495 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: cDNA

WO 96/11952 PCT/US95/13099

- 45 -

	(xi) S	EQUENCE D	ESCRIPTION:	SEQ ID NO:35	i :		
atgt	CTAATG	ATATGACT	CC GGAACAGAT	G GCTACCAACG	TTAACTCCTC	CTCCCCGGAA	60
GTC	ACACGO	GTTCCTAC	ga ctacatgga	A GGTGGTGACA	TCCGCGTACG	TCGTCTGTTC	120
recc	GTACCC	AGTGGTAC	CT GCGTATCGA	C AAACGCGGCA	AAGTCAAGGG	CACCCAAGAG	180
ATGA.	AAAACA	ACTACAAT	at tatggaaat	C CGTACTGTTG	CTGTTGGTAT	CGTTGCAATC	240
LAAG	STGTTG	AATCTGAA!	IT CTATCITGO	a atgaacaagg	AAGGAAAACT	CTATGCAAAG	300
AAG	AATGCA	ATGAAGAT	IG TAACTTCAA	A GAACTAATTC	TGGAAAACCA	TTACAACACA	360
ATG	LATCTG	CTAAATGG	AC CCACAACGG	t ggtgaaatgt	TCGTTGCTCT	GAACCAGAAA	420
GTA:	rccctg	TTCAAGGT	AA GAAAACCAA	G AAAGAACAGA	AAACCGCTCA	CTTCCTGCCG	480
TGG	CAATCA	CTTAA					495
2) 3	INFORM	ATION FOR	SEQ ID NO:3	6:			

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 164 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:
- Met Ser Asn Asp Met Thr Pro Glu Gln Met Ala Thr Asn Val Asn Ser 1 10 15
- Ser Ser Pro Glu Arg His Thr Arg Ser Tyr Asp Tyr Met Glu Gly Gly 25
- Asp Ile Arg Val Arg Arg Leu Phe Cys Arg Thr Gln Trp Tyr Leu Arg
- Ile Asp Lys Arg Gly Lys Val Lys Gly Thr Gln Glu Met Lys Asn Asn
- Tyr Asn Ile Met Glu Ile Arg Thr Val Ala Val Gly Ile Val Ala Ile 70
- Lys Gly Val Glu Ser Glu Phe Tyr Leu Ala Met Asn Lys Glu Gly Lys
- Leu Tyr Ala Lys Lys Glu Cys Asn Glu Asp Cys Asn Phe Lys Glu Leu 105
- Ile Leu Glu Asn His Tyr Asn Thr Tyr Ala Ser Ala Lys Trp Thr His 120 125

Asn Gly Gly Glu Met Phe Val Ala Leu Asn Gln Lys Gly Ile Pro Val	
Gln Gly Lys Lys Thr Lys Lys Glu Gln Lys Thr Ala His Phe Leu Pro 145 150 155 160	
Met Ala Ile Thr	
(2) INFORMATION FOR SEQ ID NO:37:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 450 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
(ii) MOLECULE TYPE: cDNA	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:	÷
ATGTCTTCTC CTGAACGTCA TACGCGTTCC TACGACTACA TAGAAAGGTGG TGACATCCGC	60
GTACGTCGTC TGTTCTGCCG TACCCAGTGG TACCTGCGTA TCGACAAACG CGGCAAAGTC	120
AAGGGCACCC AAGAGATGAA AAACAACTAC AATATTATGG AAATCCGTAC TGTTGCTGTT	180
GGTATCGTTG CAATCAAAGG TGTTGAATCT GAATTCTACC TGGCAATGAA CAAAGAAGGT	240
AAACTGTACG CAAAAAAAGA ATGCAACGAA GACTGCAACT TCAAAGAACT GATCCTGGAA	300
AACCACTACA ACACCTACGC ATCTGCTAAA TGGACCCACA ACGGTGGTGA AATGTTCGTT	360
GCTCTGAACC AGAAAGGTAT CCCGGTTCGT GGTAAAAAAA CCAAAAAAGA ACAGAAAACC	420
GCTCACTTCC TGCCGATGGC AATCACTTAA	450
(2) INFORMATION FOR SEQ ID NO:38:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 149 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown (ii) MOLECULE TYPE: protein	

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

Met Ser Ser Pro Glu Arg His Thr Arg Ser Tyr Asp Tyr Met Glu Gly 1 5 10 15

Gly Asp Ile Arg Val Arg Arg Leu Phe Cys Arg Thr Gln Trp Tyr Leu 20 25 30

PCT/US95/13099 WO 96/11952

- 47 -

Arg	Ile	Asp 35	Lys	Arg	Gly	Lys	Val 40	Lys	Gly	Thr	Gln	Glu 45	Met	Lys	RΑ
Asn	Tyr 50	Asn	Ile	Met	Glu	Ile 55	Arg	Thr	Val	Ala	Val 60	Gly	Ile	Val	Al
Ile 65	Lys	Gly	Val	Glu	Ser 70	Glu	Phe	Tyr	Leu	Ala 75	Met	Asn	Lys	Glu	G1 80
Lys	Leu	Tyr	Ala	Lys 85	Lys	Glu	Cys	Asn	Glu 90	Asp	Cys	Asn	Phe	Lys 95	Gl
Leu	Ile	Leu	Gļu 100	Asn	His	Tyr	Asn	Thr 105	Tyr	Ala	Ser		Lys 110	Trp	Th
His	Asn	Gly 115	Gly	Glu	Met	Phe	Val 120	Ala	Leu	Asn	Gln	Lys 125	Gly	Ile	Pr
Val	Arg 130	Gly	Lys	Lys	Thr	Lys 135	Lys	Glu	Gln	Lys	Thr 140	Ala	His	Phe	Le
Pro	Met	Ala	Ile	Thr											

(2) INFORMATION FOR SEQ ID NO:39:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 426 base pairs (B) TYPE: nucleic acid

 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown

(ii) MOLECULE TYPE: cDNA

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

ATGTCCTACG	ACTACATGGA	AGGTGGTGAC	ATCCGCGTAC	GTCGTCTGTT	CTGCCGTACC	60
CAGTGGTACC	TGCGTATCGA	CAAACGCGGC	AAAGTCAAGG	GCACCCAAGA	GATGAAAAAC	120
AACTACAATA	TTATGGAAAT	CCGTACTGTT	GCTGTTGGTA	TCGTTGCAAT	CAAAGGTGTT	180
GAATCTGAAT	TCTACCTCGC	AATGAACAAA	GAAGGTAAAC	TGTACGCAAA	AAAAGAATGC	240
AACGAAGACT	GCAACTTCAA	AGAACTGATC	CTGGAAAACC	ACTACAACAC	CTACGCATCT	300
GCTAAATGGA	CCCACAACGG			TGAACCAGAA	AGGTATCCCG	360
GTTCGTGGTA	AAAAAACCAA	AAAAGAACAG		ACTTCCTGCC	GATGGCAATC	420
ACTTAA						426

(2) INFORMATION FOR SEQ ID NO:40:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 141 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: protein
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:
- Met Ser Tyr Asp Tyr Met Glu Gly Gly Asp Ile Arg Val Arg Arg Leu 1 5 10 15
- Phe Cys Arg Thr Gln Trp Tyr Leu Arg Ile Asp Lys Arg Gly Lys Val 20 25 30
- Lys Gly Thr Glu Met Lys Asn Asn Tyr Asn Ile Met Glu Ile Arg 35 40 45
- Thr Val Ala Val Gly Ile Val Ala Ile Lys Gly Val Glu Ser Glu Phe 50 55 60
- Tyr Leu Ala Met Asn Lys Glu Gly Lys Leu Tyr Ala Lys Lys Glu Cys 65 70 75 80
- Asn Glu Asp Cys Asn Phe Lys Glu Leu Ile Leu Glu Asn His Tyr Asn 85 90 95
- Thr Tyr Ala Ser Ala Lys Trp Thr His Asn Gly Gly Glu Met Phe Val
- Ala Leu Asn Gln Lys Gly Ile Pro Val Arg Gly Lys Lys Thr Lys Lys
- Glu Gln Lys Thr Ala His Phe Leu Pro Met Ala Ile Thr 130 135 140

(2) INFORMATION FOR SEQ ID NO:41:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 426 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: cDNA

- 49 -

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:	
ATGTCCTACG ACTACATGGA AGGTGGTGAC ATCCGCGTAC GTCGTCTGTT CTGCCGTACC	60
CAGTGGTACC TGCGTATCGA CAAACGCGGC AAAGTCAAGG GCACCCAAGA GATGAAAAAC	120
AACTACAATA TTATGGAAAT CCGTACTGTT GCTGTTGGTA TCGTTGCAAT CAAAGGTGTT	180
GAATCTGAAT TCTATCTTGC AATGAACAAG GAAGGAAAAC TCTATGCAAA GAAAGAATGC	240
AATGAAGATT GTAACTTCAA AGAACTAATT CTGGAAAACC ATTACAACAC ATATGCATCT	300
SCTAAATGGA CCCACAACGG TGGTGAAATG TTCGTTGCTC TGAACCAGAA AGGTATCCCT	360
TTCAAGGTA AGAAAACCAA GAAAGAACAG AAAACCGCTC ACTTCCTGCC GATGGCAATC	420
ACTTAA	426
(2) INFORMATION FOR SEQ ID NO:42:	
(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 141 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
(ii) MOLECULE TYPE: protein	
(xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:	
Met Ser Tyr Asp Tyr Met Glu Gly Gly Asp Ile Arg Val Arg Arg Leu 1 15 15	
Phe Cys Arg Thr Gln Trp Tyr Leu Arg Ile Asp Lys Arg Gly Lys Val	
Lys Gly Thr Gln Glu Met Lys Asn Asn Tyr Asn Ile Met Glu Ile Arg 35 40 , 45	
Thr Val Ala Val Gly Ile Val Ala Ile Lys Gly Val Glu Ser Glu Phe 50 60	
Tyr Leu Ala Met Asn Lys Glu Gly Lys Leu Tyr Ala Lys Lys Glu Cys 65 70 75 80	
Asn Glu Asp Cys Asn Phe Lys Glu Leu Ile Leu Glu Asn His Tyr Asn 85 90 95	
Thr Tyr Ala Ser Ala Lys Tup Thr His Asn Gly Gly Glu Met Phe Val 100 105 110	
Ala Leu Asn Gln Lys Gly Ile Pro Val Gln Gly Lys Lys Thr Lys Lys 115 120 125	
Glu Gln Lys Thr Ala His Phe Leu Pro Met Ala Ile Thr	

•							•	
(2)	INFOR	MATIC	ON FOR SEQ	ID NO:43	:			
	(i)	(A) (B) (C)	ENCE CHARA LENGTH: 20 TYPE: nuc STRANDEDNI TOPOLOGY:	4 base pa: leic acid ESS: unkno	irs			
	(ii)	MOLE	CULE TYPE:	CDNA				
	(xi)	SEQUI	ENCE DESCR	IPTION: S	EQ ID NO:	13:		
GAGC	TCACT	A GIY	GTCGACCT G	CAG				24
(2)	INFOR	ITAM	ON FOR SEQ	ID NO:44	•			
	(i)	(A) (B) (C)	ENCE CHARA LENGTH: 2 TYPE: nuc STRANDEDN TOPOLOGY:	4 base pa: leic acid ESS: unkn	irs			
	(ii)	MOLE	CULE TYPE:	CDNA				•
	(ix)	FEAT (A) (B)	URE: NAME/KEY: LOCATION:	- compleme	nt (124)		
	(xi)	SEQU	ENCE DESCR	IPTION: S	EQ ID NO:	44:		
CTG	CAGGTO	CG AC	ACTAGTGA G	CTC	,			24
(2)	INFO	RMATI	ON FOR SEC	ID NO:45	:			
	(i)	(A) (B) (C)	ENCE CHARA LENGTH: 1 TYPE: NUC STRANDEDN TOPOLOGY:	.8 base pa :leic acid ESS: unko	irs			
	(ii)	MOLE	CULE TYPE:	CDNA				

18

(2) INFORMATION FOR SEQ ID NO:46:

CAATCTACAA TTCACAGA

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 18 base pairs
(B) TYPE: nucleic acid

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

VO 96/11952	PCT/US95/1309

- 51 -

(C) STRANDEDNESS: unknown

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

CGGTCTAGAC CACCATGCAC AAATGGATAC TGACATGG

	(D) TOPOLOGI: Unknown	
(ii)	MOLECULE TYPE: cDNA	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:46:	
TTAAGTTA	ATT GCCATAGG	18
(2) INFO	ORMATION FOR SEQ ID NO:47:	
	SEQUENCE CHARACTERISTICS: (A) LENGTH: 29 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
(ii)	MOLECULE TYPE: cDNA	
(xi)	SEQUENCE DESCRIPTION: SEQ ID NO:47:	
AACAAAGC	TT CTACAATTCA CAGATAGGA	29
	RMATION FOR SEQ ID NO:48:	
	SEQUENCE CHARACTERISTICS: (A) LENGTH: 27 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
(ii)	MOLECULE TYPE; CDNA	
	SEQUENCE DESCRIPTION: SEQ ID NO:48:	
AACAAGAT	CT TAAGTTATTG CCATAGG	27
(2) INFO	RMATION FOR SEQ ID NO:49:	
(i)	SEQUENCE CHARACTERISTICS: (A) LENGTH: 38 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown	
(ii)	MOLECULE TYPE: cDNA	

38

PCT/US95/13099 WO 96/11952

- 52 -

(2)	INFORMATION	FOR	SEQ	ID	NO:50:
-----	-------------	-----	-----	----	--------

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 33 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown
- (ii) MOLECULE TYPE: cDNA
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

GCCGTCGACC TATTAAGTTA TTGCCATAGG AAG

33

- (2) INFORMATION FOR SEQ ID NO:51:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 16 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: unknown (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

Xaa Asn Asp Met Thr Pro Glu Gln Met Ala Thr Asn Val Xaa Xaa Ser 10

- (2) INFORMATION FOR SEQ ID NO:52:
 - (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 12 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: unknown
 - (D) TOPOLOGY: unknown
 - (ii) MOLECULE TYPE: protein
 - (xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

Ser Tyr Asp Tyr Met Glu Gly Gly Asp Ile Arg Val 5 👡

WHAT IS CLAIMED IS:

- 1. A method for purifying a keratinocyte growth factor (KGF), the method comprising:
- 5 a) obtaining a solution comprising KGF;
 - b) binding KGF from the solution of part (a) to a cation exchange resin;
 - c) eluting KGF in an eluate solution from the cation exchange resin;
- 10 d) passing the eluate solution from part (c) through an appropriate molecular weight exclusion matrix; and
 - e) recovering KGF from the molecular weight exclusion matrix.

15

- 2. The method according to Claim 1 wherein the KGF is produced in procaryotic cells.
- 3. The method according to Claim 1 wherein the 20 KGF is produced in E. coli.
 - 4. The method according to Claim 1 wherein the KGF is produced in mammalian cells.
- 25 5. The method according to Claim 4 wherein the KGF is produced in Chinese hamster ovary cells.
 - 6. A method for purifying a keratinocyte growth factor (KGF), the method comprising:
- 30 a) obtaining a solution comprising KGF;
 - b) binding KGF from the solution of part (a) to a cation exchange resin;
 - c) eluting KGF in an eluate solution from the cation exchange resin;

5

- d) performing hydrophobic interaction chromatography on the eluate solution of part (c); and
- e) recovering KGF from the hydrophobic interaction chromatography step of part (d).
- 7. A method according to Claim 6 further comprising oxidation of free sulfhydryl groups in KGF.
- 10 8. The method according to Claim 6 wherein the KGF is produced in procaryotic cells.
 - 9. The method according to Claim 7 wherein the KGF is produced in E. coli.
- 10. The method according to Claim 6 wherein the KGF is produced in mammalian cells.
- 11. The method according to Claim 10 wherein the 20 RGF is produced in Chinese hamster ovary cells.

::

1/15 Figure 1

human KGF (+ signal sequence)

5'CX 5'CX					_							_L_ F		OF1	MC	MI	CAN	1 3	,	
-110	CAT:	111	CATT	:ATC	KITE	TIC.	ZATO	3220	:200	œ	iλG	:xc	יאכו	CTI	LTA.				rcc	+ 60°
				•											H	- -	1 1	ς ι	7	+ 120 I
-130																				
					. ?											1		: 1	•	v
-TGG													-							
G	T	I	• \$, L	λ	C	N	D	M	T	P	E	Q				N	ľ	1	
-ACT	GII	ccx	GCC	CTG	AGC	3AC	ACX	CXX	GAA	GII	λīG	λTI	محم	TGG	λλG	GAG	GGG	KIK	TX	۱-
c	3	S	P	E	R	H	T	R	s	Y	D	Y	H	E	G	G	D	I		l− - 300 }
-GAG						FTC	GAN	حمح	AGT	GGT:	ACC	TGA:	GGX:	rcs:	ATA		GZG	CC 1	336	•_
					C	-			+				-	-					·	3.00
-TAX																				
					м	+	-			-					-					430
-TTGG																				
					ĸ	+														400
-GXXX	uci	CIX	TGC	XXX	Gλλ	λGλ	ATG	cza												
					ĸ	+			-+-							-				540
->>>>																				_
					Y				-+-			+								600
-TTG0																				
		+							-+-			+							-	660
					G												_			
-cxcc		r				-			-+			+	3GT/	XXX.	גגו	NGX ——	λCC	حمح	11 -+	720
λ																				

...

2/15 (continued)

-CCAGCAGGAGATTTCTTTAAGTGGACTGTTTTCTTTCTTT	
+ TOTAL CONTROL CONTRO	780
-TATTTTTAGTAATCAAGAAAGGCTGGAAAAAGTTGGAAAAAGGCTGGAAAAAGGCTGGAAAAAGGCTGGAAAAAGGCTGGAAAAAGGCTGGAAAAAGGCTGGAAAAAGGCTGGAAAAAGGCTGGAAAAAGGCTGGAAAAAGGCTGGAAAAAAGGCTGGAAAAAAGGCTGGAAAAAAGGCTGGAAAAAAGGCTGGAAAAAAGGCTGGAAAAAAGGCTGGAAAAAAGGCTGGAAAAAAGGCTGGAAAAAAGGCTGGAAAAAAGGCTGGAAAAAAGGCTGGAAAAAAGGCTGGAAAAAAGGCTTGGAAAAAAGGCTTGGAAAAAAGGCTTGGAAAAAAGGCTTGGAAAAAAGGCTTGGAAAAAAGGCTTGGAAAAAAGGCTTGGAAAAAAGGCTTGGAAAAAAGGCTTGGAAAAAAGGCTTGGAAAAAAGGCTTGGAAAAAAGGCTTGGAAAAAAGGCTTGGAAAAAAGGCTTGGAAAAAAGGCTTGGAAAAAAAGGCTTGGAAAAAAAGGCTTGGAAAAAAAGGCTTGGAAAAAAAGGCTTGGAAAAAAAGGCTTGGAAAAAAAGGCTTGGAAAAAAAGGCTTGGAAAAAAAGGCTTGGAAAAAAAA	
THE TAXABLE TACTORAL TOTAL TOT	840
3'ACCTGAA-	710
-GIGCATTIAIGTTIGTTTIAAG 3'	
CACGTANATACANACANA 5'	•

::

7

"

plasmid DNA

6/15 Figure 3

Clai

RSH-KGF

Ndel 5'-ATCGATTTGATTCTAGAAGGAGGAATAACATATGAAAAAGsequence MRK RSH signal sequence -CGCGCACGTGCTATCGCCATTGCTGTGGCTCTGGCAGGTTTCGCAACTAGTGCACA-3 RARAIAIAVALAGFATSAHA-MluI 5'CGCGTGCAATGACATGACTCCAGAGCAAAATGGCTACAAATGTGAACTGTTCCAGCCCTGA-- C N D M T P E Q M A T N V N C S S P -GCGACACACAAGAAGTTATGATTACATGGAAGGAGGGGATATAAGAGTGAGAAGACTCTT-RHTRSYDYHEGGDIRVRRLF Clai KonI -CTGTCGAACACAGTGGTACCTGAGGATCGATAAAAGAGGCAAAGTAAAAGGGACCCAAGA-CRTQWYLRIDKRGKVKGTQE -GATGAAGAATAATTACAATATCATGGAAATCAGGACAGTGGCAGTTGGAATTGTGGCAAT-M R N N Y N I M E I R T V A V G I V A I EcoRI K G V E S E F Y L A H N K E G K L Y A K Bam I -GANGNITGCANTGANGATTGTANCTTCANAGAACTAATTCTGGAAAACCATTACAACAC KECHEDCHFKELILEHHYHT NdeI Y A S A R W T H N G G E M F V A L N Q -GGGGATTCCTGTANGAGGAAAAAAAGAAGAAGAACAAAAAAACAGCCCACTTTCTTCC-GIPVRGKKTKKZQKTAHFLP Banki -TATGGCAATAACTTAATAG 3' -plasmid DNA - 503 M A I T + +

7/15 Figure 4

KGE

λZ	ωI					•					کیلا											
5 . 2		TG	حر	λIG	رعد	TGA	CTC	cac	:אכר		1 ~~					. <u>.</u>						
-				-			+				-+-	JCT.	<i></i>	TAL	GIG	33(TG					
	M	_	N	_	•			E	_	_		A 1					C	S	S	2		+ 60
-G	CGA	CA	CAC	גגי	GAA	GII.	ATG	λTT	محم	TGG	iaac	Gλ	3GG(EXT:	\TX	AGA	GT	GAC	:22	C3C		-
		H			_) ;			_	-+- R		<u> </u>		+ 12
						Ka	2 <i>I</i>			C1a											_	
-C:	GI	CGJ	uc	تعد	GI	3GT/	ICC:	IGA(:GX	rcg	ii XTX	ىدد	GAG		330							
	: :	_	_													-						
			Ţ	-	W	Y	_	R	I	D	X	R	G	X	•	7 1	K	G	T	Q	Ε	+ 18
GJ	TG	UG	22	IXX	TI	CAA	TAI	CX1	GGJ	LAA!	TCX	cc.	CZG	7	~~							
												_		 -			لفاد	W.T	IG7	rggi		
M		,	N	N	¥	N	I	M	E	I	R	T	٧	λ	v	, (;	I	V	λ	Ī	240
						r	coR	7													_	
CA	λAG	GG	GIG	Gλ	λλG	ΤGλ	ATT	∸ CTA	7	Trans	• • • •	~~						•				
														AGG	WG	<u>GYY</u>	W	ĊI				
K	G	1	7	Ļ	S	E	F	Y	L	A	·M	N	K	E					Y		 +	300
		R:	em I	•			•												_		••	
i.	NG	AA1	GC	222	GU	NGX:	TG:	7220	TT	- 1	1 61	201			~ ~.			<u> </u>		_		
		_					+			+			~~	+	964	···	AC					
K.	E	C		N	E	D	C	N	F	ĸ	E	L	I	L	E	N	F	 I	Y	N	Ŧ	360
No	leI												;						_	••	•	
		:AT	CA	CI	גגג	TGG	aca	cac	`33C		300											
			-+-				+			-+-		~~		GII	IGI	TGC		TA	λλ Ι	CV.		
Y	λ	•	•					A						7							ĸ	420
GG	GAI	TC	CIG	T).	٨G٨	GGA	XXX	ىند	λCG	AAC	ندن	IGA	دعا		w	366	م.	٠,				
 G			•							-+-		-		-				~	<u> </u>	CIT		480
•	•	P	٧		R	G 1	K :	K	T .	X	K	E	Ø.	ĸ	T	λ	H	. 1	F	L		100
					::	1	Bem	a T														
IT	GC.	XX 1	!AA	CT:	:AA:	tag [°]	3,															
	_		+-				<u> </u>	-	503													
M	A	I	I	•	•																	

8/15 Figure 5

substitution of KpnI to EcoRI sequence to make KGF (dsd)

.,	ΑŢ	20.Z - -				0	LIG	0#6 -						1		<u>-</u> -	-0L	IGO:	9 7			
3'0	:\1	GG	LCGC	λΤ	LGC:	GI	TGC	JCC CCC	SCA ST		יניביו אפריי	NGG(CAC		NG	VGY:	ſĠλ	W	CN	CIA	CIA	17-
																			10- 110- N			
								·11-			0	LIG	048								ORI	•
5'-: 3'-:	λI Iλ	TAT ATA		XXI KII	GGC	TAC ATG	TGI ACA	TGC	TGI ACA	TGG JCC	TAT ATA	CGI GCA	TGC	λλΙ IIλ	CN	AGG	TG	TGA	ATC	īĠ	TAX	3
		M	Z.		R	7	v	λ	!	- G	0 I	LIG V	0#1	1							!	

9/15

Figure 6

KGF (codon optimized)

XXXI
OLIGO#12
5'AGTTTTGATCTAGAAGGAGG 3'
•
0LIG0#14
5'AGTTTTGATCTAGAAGGAGGAATAACATATGTGCAACGACATGACTCCGGAACAGATGGCT-
The state of the s
-ACCAACGTTAACTGCTCCAGCCCGGAACGTCACACCCGTAGCTACGACTACATGGAAGGTG-
3' GGGCCTTGCAGTGTGGGCAT 5'
a coccitation and a
OLIGO#20
-CTG)C)TCCCTCTCCCCCTCTCCCCCCCCCCCCCCCCCC
-GTGACATCCGTGTTCGTCGTCTGTTCTGCCGTACCCAGTGGTACCTGCGTATCGACAAACG-
3' ATAGCTGTTTGC-
-0LIG0#21
, I-ULIGUEZI
OLIGO#16
-TGGTAAAGTTAAAGGTACCCAGGAAATGAAAAACAACTACAACATCATGGAAATCCGTACT-
-ACCATTIC 5'
-CTGC917
-GITGCTGTTGGTATCGTTGCAATCAAAGGTGTTGAATCTGAATTCTACCTGGCAATGAACA-
3' ACGITAGITICCACAACITA 5'
OLIGO#22
•
OLIGO#17
-AAGAAGGTAAACTGTACGCAAAAAAAGAATGCAACGAAGACTGCAACTTCAAAGAACTGAT-
3'GAAGTTTCTTGACTA-
OLIGO#23
OLIGO#18
-CCTGGAAAACCACTACAACACCTACGCATCTGCTAAATGGACCCACAACGGTGGTGAAATG-
-GGACC 5'
OLIGO#19
-TTCGTTGCTCTGLACCAGAAAGGTATCCCGGTTCGTGGTAAAAAAACCAAAAAAGAACAGA-
21 CONTRACTOR OF THE PROPERTY
3' GGTCTTTCCXTAGGCCCAAG 5'
OLIGO#24
•
OLIGO#19
-ANACCECTCACTTCCTGCCGATGGCAATCACTTAATAGGATCCAGTTTTGA 3'
3' ANTIATCETAGGTCAAACT 5'
I AMERICAN STATE OF THE STATE O

BandI

~

- .;

10/15

Figure 7
KGF C(1,15)S

					N 3															
	I	P	▼	R	G	K	R	T	ĸ	ĸ	E	Q	K	T	λ	H	ŗ	L	P	48
31	λī		GT	TCG	IGG	ZXX													scca	
												M	•		λ	L	N	Q	K	- 42
												XXT(ىلدى	
:	E	C	N	E	D	C	N	7	x	E	L	I	L	E	N	H	Y	N	7	- 3
u	ιGλ	λīg	دىم	CGX	λĠλ	CIG	CAA	CII	cw	λGλ	ACT	GAT	CCI	GGA	***	دحم	CTA	CXX	CAC	:- _
	G	7	Z	5	E	E	Y	L	λ	M	N	K	E	G	K.	L	¥	λ	K	+ 3
W.	AGG	IGI	TGJ	ATC	TG	LAT!	CI)	CCI	GGC	ZAI	GAA	CX	λGλ	AGG	TAA	ACI			w	-
												٧						λ	I	+ 2
AT	GJJ	w	CN	CI	حد	LTA:	TAI	GGJ	UA2	CCG	TAC	IGI	TGC	TG1	TGC	TA			:MI	_
C	R	7	Q	W	Y	L	R	I	D	K	R	G	K	٧	ĸ	G	T	Q	E	+ 1
IG	ccc	TX	œ	MET	GT.	ACC:	rgc(JTA:	CGJ	ىدى	uc	CGG	cu	NG:	CN	NGG	CA	:00:	L XGX	G-
R	H	T	R	3	Y	D	Y	M	E	G	G	D	I	.R	٧	R	R	Ĺ	F	+ 1
CG	TC	برعد	CGC	GII	CCT.	ACG	ACT.	ACA:	rgg:	NG	JTG(FTG)	יכא	cc	SCG:	TAC	iic	STC.	IGI:	C-
					_	•	_	•	••	^	•		٧		3	\$	3	₽	Z	

2:

11/15 Figure 8 KGF R(144)Q

							_												:CGG	
																			E	
																			IGI:	
											•	ט	Ī	R	V	R	R	L	r	
IG	CCC	Tλ		λGI	GGT	ACC	TGC	GTA	TCG)CX	NC	GCG	GCX.	NG:	C	NGG	GCA	ccc) J	lG-
C	R	T	õ	W	Y	L	R	I	D	ĸ	R	G	ĸ	٧	ĸ	G	ī	0	E	+ 1
AT.	GAJ	w	CX	ACT.	ACA.	ATA:	TTA:	rgg.	XXX:	rcc	JIX	CIG	FTG	TG	TGC	TA:	rcg:	ITG	CAAT	:c-
H	ĸ	N-	· N	Y	N	I	H	E	I	R	I	V.	À	V	G	I	v	λ	I	+ 2
W	NGG	IGI	TG	LATO	TG	UT:	CI	ITC:	TGC	נגגי	GJ.	CX	تويا	uga	ندد	uc:	CI	lig	ددد	<u>_</u>
K	G	V	E	5	E	7	Y	£	λ	M	N	K	Z	G	K	L	Y	λ	x	+ 3
W	GA.	ATG	cy	TGI	NGX	TIG	TAN	CIT	CAA	AGA	ACI	גג	TCI	'GGA	ኢኢኢ	cca	IIJ	ردعا	احد	λ-
:	Z	С	N	E	D	С	N	F	K	E	L	I	L	E	H	+	Y	N	ī	+ 3
בג	GC;	ric	IGC	IAA	ATG	GAC	cca	CXX	CGG	IGG	TGA	aat	GII	CGI	IGC	ICI	GAA	cca	Gari	A-
						+							F						_	
																			GCCG	<u>.</u>
		_	-				_						ĸ							
												_		_		-	•	-	•	
īG	3CA	ATC	C.	TA	A 3	•														

::

12/15 Figure 9 KGZ C(1,15)S/R(144)Q

M	5	N	, E) H	1	P	E		M		7	N	-	· W			+			+ 6
<u></u>	TC	ХСХ		GII	CCI	ACG	ACT.	λςλ	TGG:	AAG	3TG	GIG	λCλ	ICC	GCG.	IXC	GTC	GIC	IGII	·C-
					Y	D	Y	M	E	G	G	D	I	R	V	R	R		T	
īG	CC	37A	<u> </u>	XGT	GGT.	ACC:	TGC	JTA:	rcg/	ĊŊ	uc	SCG (ica.	NG:	CN	NGG	FC A	ععد	XAGX	G-
	~	•	~	-	-	14	K	_	ט	K	R	G	K	V	K	G	T	Q	-	
120	GλJ	W	حم	ACT	CN	NTA:	TX1	GG	LLLI	CCG	TAC	.TG	TG	TG:	TGC	TA	CG:	TTG	CAAT	c-
									I			٧	- - -	٨	G	I	V	λ	I	+ 2
נג	NGG	IG	TG	UX	TG	NT1	CIA	TC:	TGC	JÁT	GN	cu	GGJ	uca	ىدد	uci	CI	LTGC	:,,,,	3
:	G	٧	E	S	E	F	Y	L	λ	H	N	ĸ	Z	G	ĸ	L	Y	λ	ĸ	→ 3
X	GX	ATG	cu	LTGX	λGλ	IIG	TAA	CII	CAA	λGλ) ACT	L	TCI	GGA	w	œx	TIA	ىد	حمحا	۱-
	_		_			+			ĸ	+										-
λI	GC	ATC	IGC	TAA	λīG	حدو	حص	CLA	CGG:	rgg:	rga,	LL	GII	CGI	IGC	ICI	G22	CCA	مدي	
			-+-			+			G				-+-							42
																		_		
JI.	7.T.	<u> </u>	IGI 	ICY	NGG	:XX	GAN	uc		i N	لتكا	CX	ZX.	٨٨٥		CA	-11	CCT	GCCG	-
;	I	P	V	Q	G	ĸ	ĸ	7	ĸ	K	E	Q	ĸ	7	λ	H	r	L	₽	48
				IIA						_										

13/15

Figure 10 KGF AN15

' A.	IGI	CII		E10	אנ	GIC	ATA 	CGC	GII	CCT:	NC G	ACT.	بحد	TGG	عدد	GIG	GIG	محم	TCC	GC- -+ 60
H	3	3	7	2	R	H	T	R	5	Y	D	Y	M	Z	G	G	D	I	R	-+ 60
-G	rac:	GTC	GIC	IGI	TCI	600	GTA	ccc	AGT	GGT	VCC:	rgc	JTX	TCG)CX	مد	GCG	GCA	λλG	TC-
٧	R	R	L		C	R	I	Q	W	Y	L	R	I	D	K	R	G	· K	٧	→ 12
- J	VGGC	جحد	200	λ	λGλ	īG).		CX	NCT)	ىدى	II)	TA:	rgg:	XXX:	rcc	:TA	ere:	IIG	CIG:	II-
ĸ	G	T	Q	E	M	K	N	N	Y	N	I	H	E	I	R	T	<u> </u>	λ	V	-+ 18
-GG	TA	·cs	TG	CXX	TCA.	NG	a G	TG	LATO	TGA	ATT	CIA	vec:	rgge	:22	'GJ	C	NG:	M G	37-
G	I	V.	, À	I	x	G	V	E	s	Z	ľ	¥	L	λ	H	· N	K	Z	G	→ 24
λλ	ACI	GI	ıcçı	::	w	UG	MIG	ندى	CGX	J GA	CTG	cu	CŦI	:cu	NG)	AC:	GX:	rcc:	rggj	u-
ĸ	L	Y	À	K	K	E	С	N	E	D	Ç	N	F	K	E	L	I	L	E	-+ 30
						ICGC														
N	H	Y	N	T	Y	····	5	λ	ĸ	W	Ŧ	Ħ	N	G	G	E	н	7	v	+ 360
GC:	ICI	GXX	œ	ندی	LAGG	TAI	CCC	GGI	TCG	TGG	Tλλ	333	λλC	CA.	XXX	λGλ	یدی	GN	330	:c-
			-+-			+				+			-+-			+				+ 420
												••,	. •	••		_	~	•	٠	
		CIT				GGC														
										+ 4:	su									

Figure 11.

KGF AN23

5'ATGTCCTACGACTACATGGAAGGTGGTGACATCCGCGTACGTCGTCTGTTCTGCCGTACC-H S Y D Y H E G G D I R V R R L F C R T -CAGTGGTACCTGCGTATCGACAAACGCGGCAAAGTCAAGGGCACCCAAGAGATGAAAAAC-QWYLRIDKRGKVKGTQEMKN -AACTACAATATTATGGAAATCCGTACTGTTGCTGTTGCTATCCAATCAAAGGTGTT-NYNIMEIRTVAVGIVAIKGV -GAATCTGAATTCTACCTGGCAATGAACAAAGAAGGTAAACTGTACGCAAAAAAAGAATGC-ESEFYLAHNKEGKLYAKKEC -AACGAAGACTGCAACTTCAAAGAACTGATCCTGGAAAACCCTACAACACCTACGCATCT-NEDCNFKELILENHYNTYAS -GCTAAATGGACCCACAACGGTGGTGAAATGTTCGTTGCTCTGAACCAGAAAGGTATCCCG -AKNTHNGGEMFVALNQKGIP -GTTCGTGGTXXXXXXACCXXXXXAGXACXGXXXXCCGCTCACTTCCTGCCGATGGCXATC-V R G K K K K E Q K T A H F L P M A I -ACTIAA 3' 426 T •

.

15/15 Figure 12 KGF AN23/R(144)Q

M	5	Y		X		•	Z	G	G	D	I	R	V	R	R	L	F	C	R	7	7 (
גב	GI	3GI	XCC	TGC	GIA	ızcı	GAC	גגי	AC	GCG	3CX	NG:	rca.	AGG	GC N	ccc	λλG	λGλ	rga:	w	c-
2	W	Y	L	R	I	1		ĸ	R	G	K	٨	K	G	7	0	E	×	x	N 	+ 1
u	CI	حد	NIX.	IIX:	rgg	ىد	IZC	œ	ZXC	TGI	TGC	.TG1	TG	TA:	rcg:	rig	233	rcu	uc	IGI	T -
•	Y	N	I	M	E	I		R	I	٧	λ	V	G	I	7	λ	I	K	G	V V	+ 1
i.).TC	TG	UT:	CI	TC:	IIG	حد	λI	GAA	ca	GGJ	JGG		uc:	C.	TC	*33:	lG3 i	301	ATG	_
_											_										
			_		_		-				-		_							C-	
λ1	S NGA	E AGA	770	Y Tai	î Cî	A rca	***	H SAJ	M	K AAT	E	G GGA	X	ı CCX	Y	A CM	X	R KTA	Z	C-	- 2
λ2	S NGA	E AGA	770	¥	ı Cı	A rca	***	H SAJ	M	K AAT	E	G GGA	X	ı CCX	Y	A CM	X	R KTA	Z	C-	- 2
A1	S NGA E	E AGA D	TTG C GAC	Y TAA N CCA	E F	A CA X	AAC	H SAJ E	L CI	K AAT I AAT	E TCT L	G GGA E	X AAA N	L CCA A	Y TTA Y GAA	N CXI	CAC	K ATA Y AGG	E TGC A	C- ATCI S	- 3
A1	S NGA E	E AGA D	TTG C GAC	Y Taa N	E F	A CA K	AAC	H SAJ S S G T	H CI L GA	X XXI I XXI	E	G GGA E	K AAA N TGC	E CCA H	Y TTA Y GAA	N CYI	Z CAC T	R ATA Y AGG	E TGC A	C- ATCI S	- 3
27	S GA E CAU	AGA D ATG W	C GAC	Y N CCA H	E CUI	K K K C G	AAC GIG	H SAJ SGT SGT	N L GA	K AAT I AAT H	E STATE	G GGA Z V	X AAA N IGC A	L E H I I C	Y GAA	A CAN M CCA	R CAC T GAA	X X X AGG	E TGC A TAT	C- ATC: S	- 3
27	S CAA	AGA D ATG W	C GAC	Y N CCA	E CAN	X X G	A A C	H SAU SGT SGT	H L GA	K AAT I AAT H	E ICT	G GGA E V	X AAA N IGC A	E CO	Y GAA	A CAM	Z Z Z Z	X X X AGG G	Z TGC A TAT	C- ATCI S CCCI P	3(

::

•

INTERNATIONAL SEARCH REPORT

Interre and Application No PCT/US 95/13899

			PCT/US 95/13699
toc 6	SSIFICATION OF SUBJECT MATTER CO7K14/50		
	ng to International Patent Classification (IPC) or to both nation DS SEARCHED	nal classification and IPC	
Minimo	a documentation searched (classification system followed by	danification rephole)	
IPC 6	6 C97K		•
Documen	entron searched other green terraments occumentation to the ex	and that such documents are include	ed in the fields searched
Electronic	data best consulted during the international search (name of	data base and, where practical, see	rch terms used)
C. DOCU	MENTS CONSIDERED TO BE RELEVANT		
Category *	Citation of document, with undication, where appropriate,	of the relevant passages	Relevant to claim No.
X .	FEBS LETTERS, vol. 328, no. 1,2, - August 1 NL.	1993 AMSTERDAM	1-5
	pages 17-20, M.SUZUKI E A 'Splee9derived	anath	
	factor, SDGF-3, is identified keratinocyte growth factor (K	as	
	see page 18	,	
4	JOURNAL OF BIOLOGICAL CHEMIST vol. 268, no. 4, 5 February 1 pages 2984-2988,	993 MD US.	1-11
	D.RON ET AL 'Expression of b' active recombinant KGF'	iologically	
	cited in the application see the whole document		
	, ••••	-/	
	ner documents are listed in the continuation of box C.	X Patent Camily member	ere are listed in annux.
	reporter of citael documents :	T later document published	after the international filing date
-	nt defining the general state of the art which is not red to be of particular relevance	or priority date and not a cited to understand the p invention	n conflict with the application but sinciple or theory underlying the
and a		"X" document of personaler re	devenor, the claimed invention
	of which may throw doubts on priority claim(s) or s cried to establish the publication date of another	. Evolve as inventive step	ed or counct be considered to when the document is taken alone
, qocame	or outer special reason (as specified) If referring to an oral disclosure, use, exhibition-as	" document of particular re- cannot be considered to it	SYNDON, THE CANDON SET WITH CO.
, qocomen	mens If published prior to the international filing data has	ment, such combination in the art.	being obvious to a person skilled
1400, 14	in the priority date claimed	'A' document member of the	
	February 1996	Date of meding of the use	
	iling address of the SA		g. 03 22
	Exception Office, P.B. 5212 Patentiam 2 NL - 2220 HV Rijewijk	Authorized officer	
	Tel. (+31-70) 340-2040, Tr. 31 651 epo el. Fez: (+31-70) 340-3016	Groenendijk	, м

1

INTERNATIONAL SEARCH REPORT

PCT/US 95/13899

λ.	Citation of document, with indication, where appropriate, of the relevant passages	Adevant to daim No.
	WO,A,90 08771 (RUBIN JEFFREY S ;FINCH PAUL W (US); AARONSON STUART A (US)) 9 August 1990 cited in the application The whole document; see especially p.13, lines 2-7, p.40 to 43; page 66, lines 15-25; Tab. I-1	1-11
	· · · · · · · · · · · · · · · · · · ·	
		3

\$ (4

	formation on patent family men	ober .		Application No. 95/13899
Patent document cited in search report	Publication date	Patent memb		Publication date
WO-A-9868771	69-68-96	AU-B- AU-B- AU-B- CA-A- EP-A- JP-T- LT-A,B LV-B-	647732 5849699 6598694 2938398 8555295 4594415 667 19284	31-03-94 24-08-90 08-09-94 16-09-92 18-08-93 06-08-92 31-01-95 20-04-95

::