Assignment# 1

Introduction to Image Processing

Submission Deadline: 11th Nov 2023

Total Marks: 70

- Q1: Take a grayscale image as an input. You can also convert an RGB to grayscale to use the image as input. (Marks: 10 + 10 + 10)
- (a) Store the most significant (8th bit) of the input grayscale image into a new image of the same size at its least significant (1st bit).
- **(b)** Now save the most significant (8th bit) of the input grayscale image into a new image of the same size at its most significant (8th bit).
- **(c)** Now save the least significatn (1st bit) of the input grayscale image into a new image of the same size at its most significatn (8th bit).

For the above subtasks write the (MATLAB or Python) code and display the output images. Also write down is there any difference in the output images as a result of bit storing differences you have done in (a), (b) and (c).

Q2: Use the same input image as used for Q1. (Marks: 10 + 10 + 10 + 10)

- (a) Write a code that shows an output image based on its 3rd, 4th, and 5th bit planes.
- **(b)** Write a code that shows an output image based on its 6th, 7th, and 8th bit planes.
- (c) Show the output images on a single figure (2 rows, 4 columns), where the first row contains 3rd, 4th, 5th and there combined (resultant) output image. The second row contains 6th, 7th, 8th and there combined (resultant) output image.

 Do you find them different? If yes, write the reason.
- (d) Find out the required memory these images (a), (b) require? Compared to the original

image, does the images (a) and (b) require less memory for storage.

The unprepared mind cannot see the outstretched hand of opportunity.

-Alexander Fleming (1881 – 1955 CE)