06.10.03

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application: 2002年10月 4日

REC'D 2 1 NOV 2003

PCT

Date of Application.

番

特願2002-292977

Application Number: [ST. 10/C]:

願

[JP2002-292977]

出 願 人
Applicant(s):

東亞合成株式会社

PRIORITY DOCUMENT SUBMITTED OR TRANSMITTED IN

WIPO

SUBMITTED OR TRANSMITTED II
COMPLIANCE WITH
RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年11月 6日

SEST AVAILABLE COPY

【書類名】

特許願

【整理番号】

Y41004G2

【あて先】

特許庁長官 殿

【発明者】

【住所又は居所】

愛知県名古屋市港区船見町1番地の1 東亞合成株式会

社高分子材料研究所内

【氏名】

伊藤 賢司

【発明者】

【住所又は居所】

愛知県名古屋市港区船見町1番地の1 東亞合成株式会

社高分子材料研究所内

【氏名】

森 嘉男

【特許出願人】

【識別番号】

000003034

【氏名又は名称】 東亞合成株式会社

【代表者】

福澤 文士郎

【電話番号】

(03)3597-7224

【手数料の表示】

【予納台帳番号】

043432

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 酸性水溶液用増粘剤及びそれを用いた液状酸性洗浄剤

【特許請求の範囲】

【請求項1】 2-アクリルアミド-2-メチルプロパンスルホン酸及び/又はその塩、アクリル酸及び/又はその塩、並びに下記一般式(1)で表される化合物又はその塩を必須成分とする単量体混合物を重合して得られる水溶性共重合体からなる酸性水溶液用増粘剤。

【化1】

$$H_2C = CHC - O + CH_2CH_2C - O + H$$

$$O = O + CH_2CH_2C - O + H$$

. (1)

[但し、式(1) において、nは1~12の整数である。]

【請求項2】 鉱酸及び/又は有機酸と、請求項1記載の酸性水溶液用増粘剤を含有する水溶液からなる液状酸性洗浄剤。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、強酸性を示す水溶液においても増粘効果及び安定性を有する増粘剤 及び該増粘剤を配合した液状酸性洗浄剤に関するものである。

[0002]

【従来の技術】

浴室内のタイルや洗面台、トイレの便器や室内タイルなどの陶器等の汚れを除去する洗浄剤には、塩酸、クエン酸等を洗浄成分とする酸性洗浄剤、中性あるいは塩素系などの洗浄剤が使用されている。従来、これらの洗浄剤ではタイルの垂

[0003]

例えば、酸性基剤としてスルファミン酸とグリコール酸を併用したタイル用液 状酸性洗浄剤において、増粘剤としてポリビニールアルコールを、安定化剤とし て尿素を配合した酸性洗浄剤が開示されている(特許文献 2 参照)。当該洗浄剤 は、安全性を考慮して塩酸に代えて酸性基剤にスルファミン酸を用いているが、 スルファミン酸単独では洗浄効果が塩酸に劣るためグリコール酸を酸性補助剤と している。増粘剤であるポリビニルアルコールは凍結解凍によるゲル化現象で粘 性低下を起こすため、安定化剤として尿素を配合して、酸性下における増粘効果 と粘性安定性を確保している。

また、塩酸等の鉱酸、ハロゲン捕捉剤、界面活性剤及び増粘剤を必須成分とし、増粘剤には、キサンタンガム、カチオン化セルロース、ポリエチレングリコール、ポリビニルピロリドン又はポリアクリルアミドメチルプロパンスルホン酸が用いられたトイレ・タイル用洗浄剤が開示されている(特許文献3参照)。このうち、ポリアクリルアミドメチルプロパンスルホン酸は、10%塩酸でもある程度の増粘効果は見られるものの流動性とたれ防止性を両立できないために満足できるものではなかった。何れの増粘剤も単独では酸性条件下において増粘効果が不十分であり、経時安定性も満足できるものではなかった。

[0004]

さらに、(メタ) アクリル酸又はその塩、(メタ) アクリルアミドアルキルスルホン酸又はその塩、及び架橋性単量体とを共重合して得られる共重合体からなる水溶性増粘剤が、酸性下あるいは塩水溶液中においても粘度低下の少ないことが開示されている(特許文献 4 参照)。当該増粘剤は医薬品や化粧品等の用途で皮膚に対して刺激性の少ない穏やかな酸性条件であれば、ある程度の増粘効果と増粘液の経時安定性を示すものの、10質量%程度の塩酸を含有してpH1以下を示すような強酸性の酸性洗浄剤等に対して増粘効果は不十分であった。

[0005]

【特許文献1】

特開平4-209700号公報(第1欄36行~第2欄18行)

【特許文献2】

特開昭53-46302号公報(第5及び6頁)

【特許文献3】

特開平9-143498号公報(段落0023~0026及び表1)

【特許文献4】

特開平9-157130号公報(段落0019、0020及び図3)

[0006]

【発明が解決しようとする課題】

上記のように、これまでの増粘剤では強酸性を示す水溶液に対して増粘効果や経時安定性は不十分なものであった。酸性洗浄剤に配合する増粘剤の添加量を多くすることである程度の増粘効果は認められるが、それに伴い流動性が低下するため、酸性洗浄剤用容器ノズルから洗浄液が出にくくなるため使用感が悪化するばかりか、有機物を多量に含有することになるため環境負荷の面でも好ましくないという問題がある。

さらに、酸性洗浄剤に配合する増粘剤の添加量を調節することで、酸性洗浄剤 の流動性を改善すると逆に陶器面でのたれ防止性が不十分となってしまう。即ち 、酸性洗浄剤として適切な流動性とたれ防止性を両立することは至難であった。

[0007]

【課題を解決するための手段】

本発明者らは、上記の課題を解決するために鋭意検討した結果、強酸性を示す水溶液に対しても増粘効果及び安定性に優れる特定の共重合体を必須成分とする酸性水溶液用増粘剤、並びにその増粘剤を含有する液状酸性洗浄剤を見出し、本発明を完成した。

以下、本発明を詳細に説明する。

[0008]

【発明の実施の形態】

<1>酸性水溶液用增粘剤

本発明の酸性水溶液用増粘剤は、2-アクリルアミド-2-メチルプロパンスルホン酸及び/又はその塩、アクリル酸及び/又はその塩、並びに下記一般式(1)で表される化合物又はその塩を必須成分とする単量体混合物を重合して得られる水溶性共重合体からなるものである。

[0009]

[12]

$$\begin{array}{c} H_2C \longrightarrow CHC \longrightarrow O \longrightarrow CH_2CH_2C \longrightarrow O \longrightarrow H \\ \parallel O \longrightarrow n \end{array}$$

 $\dots \dots (1)$

[但し、式(1)において、nは1~12の整数である。]

[0010]

2-アクリルアミドー2-メチルプロパンスルホン酸及び/又はその塩は、酸性水溶液に対する重合体の溶解性及び粘性を付与するために用いるが、その使用量は全単量体の合計モル数を基準として20~60モル%が好ましく、特に30~50モル%が好ましい。20モル%未満では酸性水溶液に対する重合体の溶解性及び粘性が十分でなく、60モル%を超えると酸性水溶液に対する重合体の溶解性及び粘性は増すものの酸性増粘液の流動性とたれ防止性を両立できない場合がある。

2-アクリルアミド-2-メチルプロパンスルホン酸の塩としては、例えば、 ナトリウム、カリウム等のアルカリ金属塩、アンモニウム塩、又は、トリエチル アミン、トリエタノールアミン等の有機アミン塩等が挙げられる。

[0011]

アクリル酸及び/又はその塩の使用量としては、全単量体の合計モル数を基準に、好ましくは20~79.9モル%であり、特に35~69.5モル%が好ましい。20モル%未満では酸性増粘液のたれ防止性が十分でなく、79.9モル

%を超えると酸性水溶液に対する重合体の溶解性を悪化させたり増粘性を低下させる。

アクリル酸の塩としては、例えば、ナトリウム、カリウム等のアルカリ金属塩、アンモニウム塩、又は、トリエチルアミン、トリエタノールアミン等の有機アミン塩等が挙げられる。

[0012]

式(1)の化合物又はその塩は、酸性増粘液のたれ防止性をさらに高める目的で用いるが、nは $1\sim12$ の範囲の整数であり、好ましくはnが $1\sim6$ であり、さらに好ましくはnが $1\sim3$ である。nが0ではその効果が不十分であり、nが 12を超えても効果の向上は見込まれず、また、強酸性を示す水溶液に対する溶解性が損なわれるために好ましくない。当該化合物は上記の範囲内でnが1種類である単一化合物であっても、nが異なる複数の化合物の混合物であってもよい。なお、式(1)の化合物としては市販のものを使用することができ、例えば、東亞合成(株)製;商品名「アロニックスM-5600」が挙げられる。

式(1)の化合物の使用範囲は0.1~20モル%が好ましく、特に好ましくは0.5~15モル%である。使用範囲が0.1モル%未満では、その効果は不十分であり、20モル%を超えても効果の向上は見込まれず、また、残存モノマーが生じやすくなるために好ましくない。 一般式(1)の塩としては、例えば、ナトリウム、カリウム等のアルカリ金属塩、アンモニウム塩又は、トリエチルアミン、トリエタノールアミン等の有機アミン塩等が挙げられる。

[0013]

本発明の酸性水溶液用増粘剤は、強酸性を示す水溶液に対する増粘性、安定性 及び得られる共重合体の水溶性を大きく阻害しない範囲で、上記必須成分の他に 共重合可能な単量体を用いることもできる。

共重合可能な単量体としては、アニオン性単量体、ノニオン性単量体等の親水 性単量体と疎水性単量体があり、それらの具体例として以下のものが挙げられる

(1) アニオン性単量体

2-アクリルアミド-2-メチルプロパンスルホン酸以外の(メタ)アクリル

(2) ノニオン性単量体

(メタ) アクリルアミド、ジメチル (メタ) アクリルアミド等のジアルキル (メタ) アクリルアミド、ヒドロキシエチル (メタ) アクリレート等のヒドロキシアルキル (メタ) アクリレート、ジメチルアミノエチル (メタ) アクリレート等のジアルキルアミノアルキル (メタ) アクリレート、ジアルキルアミノプロピル(メタ) アクリルアミド等のジアルキルアミノアルキル (メタ) アクリルアミド等。

(3) 疎水性単量体

スチレン、アクリロニトリル、酢酸ビニル、アクリル酸アルキル、メタクリル酸アルキル、ビニルピリジン、ビニルイミダゾール及びアリルアミン等。

[0014]

重合体の合成は、ゲル重合法、水溶液重合法及び逆相懸濁重合法などがあるが 、公知の重合法で重合することができる。

[0015]

重合開始剤としてはレドックス重合開始剤が好ましく、またレドックス重合開始剤の替わりに、光重合開始剤を含有させた単量体水溶液に紫外線等の活性エネルギー線を照射してラジカル重合させることもできる。

重合開始剤の具体例としては、過硫酸ナトリウムや過硫酸カリウム等の過硫酸アルカリ金属塩、過硫酸アンモニウム等の過硫酸塩、過酸化水素、クメンヒドロパーオキサイド、ベンゾイルパーオキシド、tーブチルパーオキサイド、過酸化ベンゾイル等の有機過酸化物、2,2 'ーアゾビス(4ーシアノ吉草酸)、2,2 'ーアゾビス[2ーメチルーNー(2ーヒドロキシエチル)ープロピオンアミド]、2,2 'ーアゾビスイソブチロニトリル等のアゾ化合物等が挙げられる。また、このときに遷移金属塩や亜硫酸水素塩、Lーアスコルビン酸(塩)、エリソルビン酸(塩)、アミン化合物等のレドックス形成用の還元剤を併用すること

また、添加する重合開始剤の量は、使用する重合開始剤の種類や目的とする重合体の組成、重合度、粘度などに応じて調整されるが、通常、全単量体の合計量を基準にして、 $5\sim10$, 000質量ppmが用いられる。好ましくは $10\sim5$, 000質量ppm、特に $15\sim3$, 000質量ppmがより好ましい。

尚、重合体の分子量は、ポリエチレンオキサイドを基準物質とする水系ゲルパーミエーションクロマトグラフィー(以下GPCと略す)で測定した重量平均分子量である。

[0016]

<2>液状酸性洗浄剤

本発明の液状酸性洗浄剤は、鉱酸及び/又は有機酸と前記載の酸性水溶液用増粘剤を含有する水溶液である。

[0017]

液状酸性洗浄剤に含まれる鉱酸又は有機酸としては、塩酸、硫酸、硝酸及びリン酸などの鉱酸や、酢酸、クエン酸、リンゴ酸、スルファミン酸及びグリコール酸などの有機酸が挙げられる。また、これらの酸は単独又は2種以上を選択して組み合わせて使用することができる。

[0018]

液状酸性洗浄剤に含まれる酸の量は、酸の種類によって洗浄力や安全性が異なるために一概には言えないが、3~30質量%の範囲が好ましく、5~20質量%の範囲がより好ましい。3質量%未満であると、洗浄力が不十分であり、30質量%を超えると、使用者の安全性や使用する場所(トイレ・浴室等)の周辺を腐食させるなどの問題が生じる場合がある。

[0019]

液状酸性洗浄剤に添加する酸性水溶液用増粘剤の量は、使用する増粘剤の種類と洗浄剤に用いる酸の種類及び量によって異なるため一概には言えないが、実際の液状酸性洗浄剤の配合において得ようとする粘度となるように増粘剤の量を調整する必要があるが、概ね0.02~5質量%の範囲が好ましく、0.1~2質量%の範囲がより好ましい。0.02質量%未満であると増粘効果が不十分であ

り、5 質量%を超えると粘性が過度に強くなり、洗浄後に洗剤を水で流した際に 洗浄剤が残存しやすくなってしまう。

液状酸性洗浄剤の洗浄効果、取り扱い易さ(使用感)及び安定性を得るために、20℃における粘度は5~100mPa·s、特に10~20mPa·sに調整することが好ましい。

[0020]

本発明の酸性洗浄剤は、前記の酸及び酸性水溶液用増粘剤を水に溶解させて得られる。また、水は、アルカリ土類金属イオンを含まないような軟水であれば使用できるがイオン交換水(脱イオン水)であることがさらに好ましい。

[0021]

液状酸性洗浄剤は、前記の酸及び酸性水溶液用増粘剤以外に、界面活性剤、消 泡剤、防腐剤、研磨剤、沈降防止剤、キレート剤、防食剤、香料等を含有しても よい。界面活性剤としては、脂肪酸塩類、高級アルコール硫酸エステル塩類、液 体脂肪油硫酸エステル塩類、アルキルアリルスルホン酸塩類等の陰イオン界面活 性剤、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルエ ステル類、ポリオキシエチレンソルビタンアルキルエステル類、アセチレンアル コール、アセチレングリコール等の非イオン性界面活性剤などが挙げられる。

[0022]

【実施例】

次に、実施例及び比較例を挙げて本発明をさらに具体的に説明する。尚、以下の各例において、特に表示されていない場合の「%」は「質量%」を、「ppm」は「質量ppm」を意味する。

[0023]

(合成例 1)

<重合体1の合成>

反応容器としてステンレス製デュアー瓶に、2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウムの50質量%水溶液419.4g(30モル%相当)、アクリル酸ナトリウムの36質量%水溶液159.3g(20モル%相当)、アクリル酸107.7g(49モル%相当)、アクリル酸ダイマー(商品名

「アロニックスM-5600」;東亞合成(株)製)5.3g(1モル%相当)及び純水308.3gを混合して単量体濃度38質量%の単量体水溶液1kgを調製した。この単量体水溶液をステンレス製デュアー瓶に仕込み、反応容器内の温度を10℃に温調しながら30分間窒素バブリングを行った。次いで重合開始剤として、tーブチルハイドロパーオキサイド30ppm(全単量体の合計量に対しての質量基準に換算、以下同様)、過硫酸ナトリウム200ppm及びエリソルビン酸ナトリウム20ppmを添加し、そのまま8時間放置して断熱静置レドックス重合を行った。8時間の反応終了後、生成した含水ゲル状重合体を反応容器から取り出し、チョッパーに投入して挽肉状に細断した。細断された含水ゲルを熱風乾燥機で乾燥し、更に粉砕機で粉砕して目的とする粉末状の重合体1を得た。

[0024]

(合成例2)

<重合体2の合成>

2-アクリルアミドー2-メチルプロパンスルホン酸ナトリウムの50質量%水溶液432.1g(30モル%相当)、アクリル酸ナトリウムの36質量%水溶液164.2g(20モル%相当)、アクリル酸90.5g(40モル%相当)、アクリル酸ダイマー(商品名「アロニックスM-5600」;東亞合成(株)製)54.3g(10モル%相当)及び純水258.9gを混合して単量体濃度42質量%の単量体水溶液1kgを調製した。それ以外は合成例1と同様に操作して目的とする粉末状の重合体2を調製した。

[0025]

(合成例3)

<重合体3の合成>

2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウムの50質量%水溶液656.9g(50モル%相当)、アクリル酸ナトリウムの36質量%水溶液112.3g(15モル%相当)、アクリル酸51.6g(25モル%相当)、アクリル酸ダイマー(商品名「アロニックスM-5600」;東亞合成(株)製)49.5g(10モル%相当)及び純水129.7gを混合して単量体濃

度47質量%の単量体水溶液1 k gを調製した。この単量体水溶液をステンレス製デュアー瓶に仕込み、反応容器内の温度を5 %に温調しながら30 分間窒素バブリングを行った。次いで、重合開始剤として、t ーブチルハイドロパーオキサイド10ppm、過硫酸ナトリウム200ppm及びエリソルビン酸ナトリウム20ppmを添加した。それ以外は合成例1と同様に操作して目的とする粉末状の重合体3を調製した。

[0026]

(比較合成例1)

<比較重合体1の合成>

2-アクリルアミドー2-メチルプロパンスルホン酸ナトリウムの50質量%水溶液645.9g(50モル%相当)、アクリル酸ナトリウムの36質量%水溶液184.1g(25モル%相当)、アクリル酸50.8g(25モル%相当)及び純水119.2gを混合して単量体濃度44質量%の単量体水溶液1kgを調製した。重合開始剤として、tーブチルハイドロパーオキサイド500ppm、過硫酸ナトリウム400ppm及びエリソルビン酸ナトリウム500ppm、連鎖移動剤として2-メルカプトエタノール1200ppmを添加した。それ以外は合成例3と同様に操作して目的とする粉末状の比較重合体1を調製した。

[0027]

次に、合成例 $1 \sim 3$ で得られた重合体 $1 \sim 3$ 並び比較合成例 1 で得られた比較 重合体 1 の物性を以下に示す方法に従って試験した。その結果を表 1 に示す。 (試験方法)

◎0.2質量%水溶液粘度

純水400mlに合成例1~3並びに比較合成例1で得られた重合体を各々0.80gずつ加えて3時間攪拌し、十分に溶解して0.2質量%濃度の重合体水溶液を調製した。この重合体水溶液の粘度をB型粘度計(東京計器(株)製、形式:BM型)により、30℃、30rpmのローター回転数で測定した。

◎ p H

上記で調製した0.2質量%濃度の重合体水溶液のpHをpH計で測定した。 ◎不溶解分

◎重量平均分子量

合成例 $1 \sim 3$ 並びに比較合成例 1 で得られた重合体の分子量は、溶質として硫酸ナトリウム(1.33g/1)と水酸化ナトリウム(0.33g/1)を含む水溶液を用いた水系 GPC により測定した。重量平均分子量は、ポリエチレンオキサイドを基準物質として検量線を作成し算出した。

[0028]

【表1】

	単量体組成 ATBS-Na/ANa/AA /M-5600 [mo!%]	0.2%水溶液の 粘度(30℃) [mPa·s]	рΗ	不溶解分 [ml]	重量平均 分子量
重合体 1	30/20/49/ 1	405	5.4	なし	7,500,000
重合体 2	30/20/40/10	453	5.1	なし	8,400,000
重合体 3	50/15/25/10	408	6.2	なし	8, 100, 000
比較重合体 1	50/25/25/—	16	6.5	なし	800,000

表中の略号は以下のものを示す。

ATBS-Na:2-アクリルアミド-2-メチルプロパンスルホン酸ナトリウム

A-Na:アクリル酸ナトリウム

AA:アクリル酸

M-5600:アロニックスM-5600 (東亞合成 (株) 製)

尚、ATBS及びアロニックスM-5600は東亞合成株式会社の登録商標である。

[0029]

(実施例1)

<液状酸性洗浄剤の調製>

10質量%濃度の塩酸水溶液に、上記の重合体1を増粘剤として0.9質量%となるように加えて十分に攪拌した後、2日間放置して10質量%塩酸の酸性増粘液(液状酸性洗浄剤)を調製した。

[0030]

<液状酸性洗浄剤の評価>

(a) 粘度:液状酸性洗浄剤の粘度はB型粘度計により、20℃、60 r p m の条件で測定した。

[0031]

(b) 流動性:図1に示すスタンド1に設置された容器ノズル2(口径2.4 mm)を有する加工した市販のポリエチレン製の容器3を下向きにセットした。上記で調製された液状酸性洗浄剤150gを25 \mathbb{C} に温調したたまま容器に仕込んで、容器ノズル2 から洗浄液が流出する時間 \mathbb{T} \mathbb{F} \mathbb{E} \mathbb{E}

流動性 [g/min] = (150[g]/Tf[sec]) × 60 【0032】

(c) たれ速度:図2に示すように15cm角の陶器製タイル5を傾斜角17度にセットし、上記で調製された液状酸性洗浄剤0.30mlをオートピペット6に採った後、タイルの上辺から下方3cmの位置にタイル面に対して垂直に液状酸性洗浄剤を全量滴下して、10cmたれ落ちる時間Td[sec]を5回繰返して測定した。その平均値を用いて、下式により10秒間当りにたれ落ちた距離(=たれ速度[cm/10sec])として示した。

たれ速度 [cm/10sec] = (10[cm] / Td[sec]) × 10 【0033】

(d) 溶解性:調製した液状酸性洗浄剤について、含有する増粘剤の溶解状態を目視で観察して評価した。

○:無色透明で滑らかな液状に溶解している。

×:白色または透明の不溶解物がある。

×× :白色または透明の不溶解物が多い。

[0034]

(e)経時安定性:調製した液状酸性洗浄剤を硼珪酸ガラス製の耐熱ねじ口瓶(SCHOTT社製DURAN(商品名))に密閉し、温度40℃、湿度60%の条件に設定した恒温恒湿器内で保存した。2週間及び1カ月保存後の性状を上記の各項目について評価した。その結果を表3及び4に示す。

[0035]

(実施例2~8及び比較例1~3)

<液状酸性洗浄剤の調製及び評価>

10質量%濃度の塩酸水溶液に、表2に示す増粘剤(重合体)の種類と適用濃度において液状酸性洗浄剤を調製した。それ以外は実施例1と同様に操作した。また、得られた各々の液状酸性洗浄剤について、実施例1で記述した評価を行った。その結果を表2~4に示す。

[0036]

(比較例4)

増粘剤(重合体)を添加しなかった以外は、実施例1と同様に操作及び評価を 行った。

[0037]

(比較例5)

市販のトイレ用液状酸性洗浄剤(商品名「サンポール」;大日本除虫菊(株)製、主成分:9.5質量%塩酸、界面活性剤[アルキルトリメチルアンモニウム塩])を用いて、実施例1で記述する評価を行った。

[0038]

	増粘剤種類 種類	増粘剤 濃度	粘度 (20℃) [mPa·s]	流動性 [g/min]	たれ速度 [cm /10sec]	増粘剤 の 溶解性
実施例1	重合体1	0.9%	14	123	6.5	0
実施例2	"	0.8%	13	127	7.4	0
実施例3	//	0.7%	12	132	8.0	
実施例4	重合体 2	0.9%	15	122	4.8	0
実施例 5	"	0.8%	14	126	6.0	0
実施例 6	重合体3	0.7%	18	107	6.0	0
実施例7	"	0.6%	15	114	7.7	0
実施例8	"	0.5%	13	122	9.3	0
比較例 1	比較重合体1	10%	12	106	44.4	
比較例2	"	8.0%	10	118	46.7	0
比較例3	"	6.0%	8	128	48.2	0
比較例 4	なし	なし	3	172	66.0	
比較例5	アルキルトリメチル アンモニウム塩	不明	13	118	40.0	-

[0039]

【表3】

	4 0℃保存安定性試験① 粘度(20℃) [mPa·s]			4 0 ℃保存安定性試験② 流動性 [g/min]		
	初期	2週間後	1ヶ月後	初期	2週間後	1ヶ月後
実施例1	14	14	14	123	124	123
実施例2	13	13	13	127	127	128
実施例3	12	12	12	132	132	132
実施例4	15	15	15	122	122	122
実施例 5	14	14	14	126	125	125
実施例 6	18	18	18	107	107	108
実施例 7	15	15	15	114	115	114
実施例8	13	13	13	122	123	122
比較例1	12	12	12	106	106	107
比較例 2	10	10	10	118	119	119
比較例3	8	8	8	128	129	129
比較例 5	13	13	13	118	118	119

[0040]

	40℃保存安定性試験③ たれ速度 [cm/10sec]			40℃保存安定性試験④ 増粘剤の溶解性		
	初期	2週間後	1ヶ月後	初期	2週間後	1ヶ月後
実施例1	6.5	6.1	6.3		0	0
実施例2	7.4	7.5	7.0		0	0
実施例3	8.0	8.3	8.2		0	0
実施例4	4.8	4.5	4.3			
実施例 5	6.0	5.8	6.2		0	0
実施例6	6.0	6. 2	6.3	0	0	
実施例7	7.7	7.8	7.7		0	0
実施例8	9. 3	9.1	9.2	0	0	0
比較例1	44.4	44.4	44.8	0	0	0
比較例 2	46.7	46.9	46.5		0	0
比較例3	48.2	48.7	48.4		0	0
比較例 5	40.0	42.9	44. 4	-	_	

[0041]

表2に示すように、実施例の液状酸性洗浄剤は比較例の液状酸性洗浄剤に比べて良好な結果が得られた。

すなわち、比較例 5 に比して、増粘剤として重合体 1 ~ 3 を用いた実施例 1 ~ 8 ではたれ速度が緩慢な値を示し、液状酸性洗浄剤としてのたれ防止性は優れていた。特に、実施例 1 ~ 5 の液状酸性洗浄剤(重合体 1 又は 2 含有)はたれ速度とともに流動性も優れていた。比較重合体 1 を用いた比較例 1 ~ 3 では、比較例 5 と同等の粘度及び流動性を得るには増粘剤を 6 %以上にする必要があった。また、適用濃度を 6 %以上とし流動性を合わせても比較例 5 に比してたれ速度が速く、液状酸性洗浄剤のたれ防止性に問題があった。

さらに、表3及び4に示すように、2週間及び1カ月後での粘度、流動性及び たれ速度の値にほとんど変動が無く、安定性も良好である結果であった。

以上のように、各実施例で使用した増粘剤を含有する液状酸性洗浄剤は保存安 定性に優れ、良好で適切な流動性及びたれ速度を兼ね備える結果であった。

[0042]

【発明の効果】

本発明の酸性水溶液用増粘剤は、強酸性を示す水溶液においても優れた増粘効果を示し、且つ、その増粘剤を含有する液状酸性洗浄剤は安定性に優れ、適切な

[0043]

【図面の簡単な説明】

【図1】

図1は液状酸性洗浄剤の流動性を計測するために用いた装置の概略説明図である。

【図2】

図2は液状酸性洗浄剤のたれ速度を測定するために用いた装置の概略説明図である。

【符号の説明】

- 1 スタンド
- 2 容器ノズル
- 3 容器
- 4 ビーカー
- 5 陶器製タイル
- 6 オートピペット
- 7 傾斜角
- 8 固定台

【図1】

【図2】

【書類名】 要約書

【要約】

【課題】 強酸性を示す水溶液に対しても増粘効果及び安定性に優れる特定の共 重合体を必須成分とする酸性水溶液用増粘剤および該増粘剤を含有する液状酸性 洗浄剤を提供する。

【解決手段】 2-アクリル酸アミド-2-メチルプロパンスルホン酸及び/又はその塩、アクリル酸及び/又はその塩、並びに下記一般式(1)で表される化合物又はその塩を必須成分とする単量体混合物を重合して得られる水溶性共重合体からなる酸性水溶液用増粘剤および該増粘剤を含有する液状酸性洗浄剤。

【化1】

$$H_2C = CHC - O + CH_2CH_2C - O + H$$

$$0$$

 \cdots (1)

[但し、式(1)において、nは1~12の整数である。]

【選択図】 なし

ページ: 1/E

認定・付加情報

特許出願の番号 特願2002-292977

受付番号 50201501498

書類名 特許願

担当官 第一担当上席 0090

平成14年10月 7日 作成日

<認定情報・付加情報>

【提出日】 平成14年10月 4日

特願2002-292977

出願人履歴情報

識別番号

[000003034]

1. 変更年月日 [変更理由] 住 所 氏 名

1994年 7月14日 名称変更

東京都港区西新橋1丁目14番1号

東亞合成株式会社

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER: _____

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.