Análisis de Componentes Principales (PCA)

José A. Perusquía Cortés

Análisis Multivariado Semestre 2024-l

Motivación

Visualizar y/o interpretar datos multivariados es complicado

- A grandes rasgos PCA es un método estadístico que busca
 - 1. "Reducir" la dimensionalidad de los datos
 - 2. Retener la mayor cantidad de la variación original

- ¿Cómo?

Crear un nuevo conjunto de variables no correlacionadas y ordenadas por varianza

Intuición

- ¿Cómo debe girar la cabeza la ballena para comer la mayo cantidad de kril?

Fuente: Allison Horst (twitter)

- Sea $\mathbf{X}_{p \times 1}$ un vector aleatorio real valuado
- El primer componente principal estará dado por

$$\alpha_1^T x = \alpha_{11} x_1 + \alpha_{12} x_2 + \dots + \alpha_{1p} x_p = \sum_{j=1}^p \alpha_{1j} x_j$$

tal que sea la combinación lineal de mayor varianza.

- El segundo componente principal está dado por

$$\alpha_2^T x = \alpha_{21} x_1 + \alpha_{22} x_2 + \dots + \alpha_{2p} x_p = \sum_{j=1}^p \alpha_{2j} x_j$$

tal que sea la combinación lineal de **mayor varianza** y **no esté correlacionado** con el primero.

- Y así sucesivamente...

Primer Componente

Segundo Componente

- Nuevas variables

- Sea $\mathbf{x}_{p imes 1}$ un vector aleatorio real valuado, con Σ conocida
- (Formalmente) el primer componente principal se encuentra resolviendo

$$\max_{\alpha_1} \ \text{var} \left(\alpha_1^T x\right) = \alpha_1^T \Sigma \alpha_1$$
 s.a.
$$\alpha_1^T \alpha_1 = 1$$

- Dando como resultado que
 - λ : eigenvalor más grande
 - α_1 : eigenvector asociado

Construcción

- Para el segundo componente resolvemos:

$$\max_{\alpha_2} \quad \text{var} \left(\alpha_2^T x\right) = \alpha_2^T \sum \alpha_2$$
s.a.
$$\alpha_2^T \alpha_2 = 1$$

$$\cos \left(\alpha_1^T x, \alpha_2^T x\right) = 0$$

- Dando como resultado que

 λ : segundo eigenvalor más grande

 α_2 : eigenvector asociado

- Y así sucesivamente...

- Los componente principales corresponden a una transformación ortogonal de ${f x}$

$$z = Ax$$

- Donde A es la matriz de eigenvectores

- Así, var
$$(z_k) = \lambda_k$$

Proposición

Sea la familia de elipsoides $\mathbf{x}^T \mathbf{\Sigma}^{-1} \mathbf{x} = c$. Entonces los componentes principales definen los ejes principales.

Interpretación geométrica

Propiedades algebraicas

Proposición (A1)

Sea la transformación ortogonal $\mathbf{y}=\mathbf{B}^T\mathbf{x}$. Donde $\mathbf{B}_{q\times p}$ y $\mathbf{\Sigma}_{\mathbf{y}}=\mathbf{B}^T\mathbf{\Sigma}\mathbf{B}$ entonces,

- 1. $\operatorname{tr}(\Sigma_y)$ y $|\Sigma_y|$ se maximizan cuando $\mathbf{B}=\mathbf{A}_q$ (las primeras q columnas)
- 2. $\operatorname{tr}(\Sigma_y)$ se minimiza cuando $\mathbf{B}=\mathbf{A}_q^*$ (las últimas q columnas)

Proposición (A2)

La descomposición espectral de Σ está dada por $\Sigma = \sum_{i=1}^P \lambda_i \alpha_i \alpha_i^T$.

Proposición (A₃)

Si σ_j^2 es la varianza residual de predecir x_j en términos de \mathbf{y} , entonces $\sum \sigma_i^2$ se minimiza cuando $\mathbf{B} = \mathbf{A}_q$.

Componentes vía matriz de correlación

- En la práctica es más común definir a los componentes como

$$z = Ax^*$$

donde \mathbf{x}^* son las variables estandarizadas y \mathbf{A} es la matriz de eigenvectores de la matriz de correlación

Observaciones

- 1. Todas las propiedades anteriores siguen siendo válidas
- 2. Se pueden mezclar variables en diferentes escalas
- 3. Los componentes no están dominados por una posible variable de mayor varianza

Componentes principales muestrales

- Sea $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ una muestra aleatoria (centrados) con matriz de varianzas y covarianzas

$$\mathbf{S} = \frac{1}{n-1} \mathbf{X}^T \mathbf{X}$$

- 1. El primer componente principal es el eigenvector \mathbf{a}_1 asociado al eigenvalor más grande
- 2. Se tienen n nuevas variables $z_{i1} = \mathbf{a}_1^T \mathbf{x}_i$
- 3. Y sucesivamente para los otros componentes

Observaciones

- 1. Las vectores \mathbf{Z}_i se les conoce como scores
- 2. Los eigenvectores \mathbf{a}_i se les conoce como loadings

Componentes principales muestrales

-En muchas ocasiones es preferible usar la descomposición en valores singulares (SVD) para encontrar los componentes principales

$$\mathbf{S} = \frac{1}{n-1} \mathbf{W}^T \mathbf{W} \qquad \mathbf{W} = \mathbf{U} \mathbf{D} \mathbf{V}^T \qquad \mathbf{S} = \mathbf{V} \Lambda \mathbf{V}^T$$

- 1. Numéricamente más estable.
- 2. Permite considerar el caso p > n
- 3. Puede ser más rápido

Componentes principales muestrales

Proposición

Sea $\mathbf{Z} = \mathbf{H}\mathbf{X}\mathbf{V}$ la matriz de cargas, i.e., $\mathbf{z}_i = \mathbf{V}^T(\mathbf{x}_i - \bar{\mathbf{x}})$ entonces se cumple

- 1. La media muestral es el vector de ceros
- 2. La matriz de varianza y covarianza es Λ
- 3. $\mathbf{v_1}^T \mathbf{S} \mathbf{v_1} > \mathbf{v_2}^T \mathbf{S} \mathbf{v_2} > \dots > \mathbf{v_p}^T \mathbf{S} \mathbf{v_p}$ y si ran(S) = q < p se tiene que $\mathbf{v_s}^T \mathbf{S} \mathbf{v_s} = 0$ para

$$s = q + 1,...,p$$

4.
$$\sum_{i=1}^{p} \mathbf{v_i}^T \mathbf{S} \mathbf{v_i} = \sum_{i=1}^{p} \lambda_i = \operatorname{tr}(S)$$

5.
$$\prod_{i=1}^{p} \mathbf{v_i}^T \mathbf{S} \mathbf{v_i} = \prod_{i=1}^{p} \lambda_i = |S|$$

- 88 calificaciones de 5 exámenes a libro abierto o cerrado

Lineal (C)	Estadística (C)	Probabilidad(A)	Finanzas (A)	Cálculo (A)
97	92	77	72	96
83	88	90	75	96
95	83	81	71	96
75	82	73	75	83
83	73	75	75	78
73	71	82	69	88
71	77	75	70	83

- En R usamos prcomp() con $\widehat{\Sigma} = S$

- Los eigenvalores resultantes son

$$\lambda_1 = 689.6583 > \lambda_2 = 200.9016 > \lambda_3 = 103.5280 > \lambda_4 = 83.3404 > \lambda_5 = 32.2476$$

- Los vectores de cargas:

Lineal	-0.502	-0.759	0.289	-0.284	-0.080
Estadística	-0.371	-0.188	-0.417	0.785	-0.186
Probabilidad	-0.345	0.077	-0.144	-0.002	0.923
Finanzas	-0.450	0.299	-0.591	-0.523	-0.287
Cálculo	-0.535	0.541	0.609	0.164	-0.149

- El primer componente es un "promedio"

$$-0.502 \cdot \text{Lineal} - 0.371 \cdot \text{Estadística} - 0.345 \cdot \text{Probabilidad} - 0.450 \cdot \text{Finanzas} - 0.535 \cdot \text{Cálculo}$$

- El segundo componente es una comparación entre libro abierto y cerrado

$$-0.759 \cdot \text{Lineal} - 0.188 \cdot \text{Estadística} + 0.077 \cdot \text{Probabilidad} + 0.299 \cdot \text{Finanzas} + 0.541 \cdot \text{Cálculo}$$

- El tercer componente es una comparación entre matemáticas "puras y aplicadas"

$$0.289 \cdot \text{Lineal} - 0.417 \cdot \text{Estadística} - 0.144 \cdot \text{Probabilidad} - 0.591 \cdot \text{Finanzas} + 0.609 \cdot \text{Cálculo}$$

Consideraciones

- La interpretación requiere conocimiento del problema

- Algunos componentes pueden interpretarse como un promedio ponderado

- Algunos componentes pueden discriminar entre grupos de variables

- ¿Cuántos componentes elegir?

- Seleccionar los componentes que expliquen un cierto porcentaje de la variación (por ejemplo, 70%, 80%, 90%, etc.)

- Usar la regla de codo

- Otros (e.g. pruebas de hipótesis)

- La variación explicada por los componentes

61.91% 18.21% 9.35% 7.63% 2.90%

- Nos quedamos con los primeros dos para tener arriba del 80% de la variación total (80.12%)
- Nos quedamos con los primeros tres para tener casi 90% de la variación total (89.47%)

- Regla de codo: graficar las varianzas (en **R** función screeplot)

- Si nos quedamos con dos componentes podemos graficarlos usando biplot()

- La librería factoextra proporciona una alternativa utilizando ggplot

- Con el PC1, se pueden identificar los mejores y peores promedios

Alumno	Lineal	Est.	Proba.	Finanzas	Cálculo
1	97	92	77	72	96
2	83	88	90	75	96
3	95	83	81	71	96

Alumno	Lineal	Est.	Proba.	Finanzas	Cálculo
87	25	36	25	25	35
88	20	50	31	14	29

- Con el PC2, se pueden identificar las mejores y peores calificaciones en examen abierto y cerrado

Alumno	Lineal	Est.	Proba.	Finanzas	Cálculo
66	79	63	47	27	34
76	69	60	48	28	24

Alumno	Lineal	Est.	Proba.	Finanzas	Cálculo
23	38	54	60	62	96
28	32	68	72	68	82

- Los eigenvalores resultantes con la matriz de correlación:

$$\lambda_1 = 1.7849 > \lambda_2 = 0.8536 > \lambda_3 = 0.6688 > \lambda_4 = 0.62582 > \lambda_5 = 0.4961$$

- Los vectores de cargas:

Lineal	-0.397	-0.664	0.612	-0.091	-0.131
Estadística	-0.432	-0.420	-0.740	0.234	-0.179
Probabilidad	-0.502	0.129	-0.021	-0.116	0.846
Finanzas	-0.456	0.389	-0.064	-0.674	-0.425
Cálculo	-0.439	0.461	0.268	0.684	-0.230

- Seleccionar los componentes que expliquen un cierto porcentaje de la variación (por ejemplo, to%, 80%, 90%, etc.)

- Usar la regla de codo

- Otros (e.g. pruebas de hipótesis)

- **Regla de Kaiser.** Retener los componentes con varianza mayor a cierto valor (e.g. >.7)

- 300 observaciones de 7 valores nutricionales en 10 marcas de pizza diferentes
 - 1. Mois: Cantidad de agua por cada 1009
 - 2. **Prot**: Cantidad de proteína por cada 1009
 - 3. **Fat**: Cantidad de grasa por cada 1009
 - 4. Ash: Cantidad de ceniza por cada 1009
 - 5. **Sodium**: Cantidad de sodio por cada 1009
 - 6. Carb: Cantidad de carbohidratos por cada 1009
 - 7. Cal: Cantidad de calorías por cada 1009

- Obtenemos los componentes principales con matriz de correlación, prcomp(...,scale=T)

- ¿Cuántos componentes?

- El primer componente es

$$0.064 \cdot \text{mois} + 0.378 \cdot \text{prot} + 0.446 \cdot \text{fat} + 0.471 \cdot \text{ash} + 0.435 \cdot \text{sodium} - 0.424 \cdot \text{carb} + 0.244 \cdot \text{calb}$$

- El segundo componente es

$$-0.628 \cdot \text{mois} - 0.269 \cdot \text{prot} + 0.234 \cdot \text{fat} - 0.110 \cdot \text{ash} + 0.201 \cdot \text{sodium} + 0.320 \cdot \text{carb} + 0.567 \cdot \text{calbertal} + 0.0000 \cdot \text{carb} + 0.00000 \cdot \text{carb} + 0.0000 \cdot \text{$$

- Selección de variables (problema NP-difícil)
- PCA + otras modelos/técnicas multivariadas (e.g. SVM, análisis de discriminantes, regresión, etc.)
- Detección de outliers y observaciones influyentes (analizando los primeros y los últimos componentes)
- Rotación de componente principales (para una mejor interpretación como en análisis de factores)
- Otro tipo de datos (e.g. series de tiempo, datos no independientes, discretos, etc.)