IN THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in the application: Claims 8, 12, 18 and 20-21 have been amended as follows:

Listing of Claims:

Claim 1 (original): An agent for suppressing transfer of odor and taste originating from (A) a diacetal represented by the formula (1):

$$(R^{2})b \qquad (T)$$

$$(CHOH)_{c} (R^{1})a$$

$$CH_{2}OH$$

wherein R^1 and R^2 are the same or different and each represents a hydrogen atom, a C_1 to C_4 alkyl group, a C_1 to C_4 alkoxy group, a C_1 to C_4 alkoxycarbonyl group or a halogen atom; a and b each represents an integer of 1 to 5; c is 0 or 1; when a is 2, the two R^1 groups taken together with the benzene ring to which they are linked may form a tetralin ring; and when b is 2, the two R^2 groups taken together with the benzene ring to which they are linked may form a tetralin ring; the agent comprising component (B), i.e., at least one member selected from the group consisting of:

(B1) C6 to C32 saturated or unsaturated aliphatic alcohols; and

(B2) C_8 to C_{32} saturated or unsaturated aliphatic carboxylic acids having at least one hydroxyl group per molecule.

Claim 2 (original): The agent for suppressing transfer of odor and taste according to claim 1, wherein said at least one member selected from the group consisting of (B1) and (B2) is at least one member selected from the group consisting of 9-hydroxystearic acid, 10-hydroxystearic acid, 12-hydroxystearic acid, 9,10-dihydroxystearic acid, lauryl alcohol, myristyl alcohol, palmityl alcohol, stearyl alcohol and behenyl alcohol.

Claim 3 (original): A method for suppressing aldehyde generation by thermal decomposition of the diacetal represented by the formula (1) according to claim 1; the method comprising adding to the diacetal represented by the formula (1) at least one member selected from the group consisting of:

- (B1) C₆ to C₃₂ saturated or unsaturated aliphatic alcohols; and
- (B2) C₈ to C₃₂ saturated or unsaturated aliphatic carboxylic acids having at least one hydroxyl group per molecule.

Claim 4 (original): The method according to claim 3, wherein said at least one member selected from the group consisting of components (B1) and (B2) is at least one member selected from the group consisting of 9-hydroxystearic acid, 10-hydroxystearic acid, 12-hydroxystearic acid, 9,10-dihydroxystearic acid, lauryl alcohol, myristyl alcohol, palmityl alcohol, stearyl alcohol and

Claim 5 (original): An agent for suppressing transfer of odor and taste originating from (A) at least one diacetal represented by the formula (1):

$$(R^{2})b \qquad (1)$$

$$(CHOH)_{c} (R^{1})a$$

$$CH_{2}OH$$

wherein R^1 and R^2 are the same or different and each represents a hydrogen atom, a C_1 to C_4 alkyl group, a C_1 to C_4 alkoxy group, a C_1 to C_4 alkoxycarbonyl group or a halogen atom; a and b each represents an integer of 1 to 5; c is 0 or 1; when a is 2, the two R^1 groups taken together with the benzene ring to which they are linked may form a tetralin ring; and when b is 2, the two R^2 groups taken together with the benzene ring to which they are linked may form a tetralin ring; the agent comprising components (B) and (C),

wherein component (B) is at least one member selected from the group consisting of:

- (B1) C₆ to C₃₂ saturated or unsaturated aliphatic alcohols; and
- (B2) C_8 to C_{32} saturated or unsaturated aliphatic carboxylic acids having at least one

hydroxyl group per molecule, and component (C) is

- (C1) at least one anionic surfactant selected from the group consisting of C_6 to C_{30} saturated or unsaturated aliphatic alcohol sulfuric ester salts, polyoxyethylene alkyl (C_8 to C_{22}) or alkenyl (C_8 to C_{22}) ether sulfuric ester salts in which the number of moles of ethylene oxide a dded is 1 to 8, polyoxyethylene alkyl (C_8 to C_{22}) phenyl ether sulfuric ester salts in which the number of moles of ethylene oxide added is 1 to 10, sulfuric ester salts of polyhydric alcohol fatty acid partial esters formed from a C_3 to C_6 polyhydric alcohol and a C_8 to C_{22} saturated or unsaturated fatty acid, and C_8 to C_{22} saturated or unsaturated fatty acid monoalkanol (C_2 to C_6) amide sulfuric ester salts, wherein the sulfuric ester salts are lithium salts, sodium salts, potassium salts and ammonium salts;
- (C2) at least one member selected from the group consisting of alkali metal salts of C8 to C32 saturated or unsaturated fatty acids which may have at least one hydroxyl group per molecule;
- (C3) at least one aliphatic amine selected from the group consisting of dialkanolamine, trialkanolamine, and di(C_8 to C_{22} alkyl or alkenyl) methylamine; or
 - (C4) a mixture of at least two of (C1), (C2) and (C3).

Claim 6 (original): The agent for suppressing transfer of odor and taste according to claim 5, wherein

component (B) is at least one member selected from the group consisting of 9-hydroxystearic acid, 10-hydroxystearic acid, 12-hydroxystearic acid, 9,10-dihydroxystearic acid, lauryl alcohol, myristyl alcohol, palmityl alcohol, stearyl alcohol and behenyl alcohol, and

component (C) is (C2a) at least one member selected from the group consisting of lithium salts, sodium salts and potassium salts of C8 to C32 saturated or unsaturated fatty acids which may have at least one hydroxyl group per molecule, or

component (C) is (C1a) at least one sulfuric ester salt selected from the group consisting of lauryl sulfate salts, stearyl sulfate salts, oleyl sulfate salts, polyoxyethylene (the number of moles of ethylene oxide added = 2 to 3) lauryl ether sulfate salts, polyoxyethylene (the number of moles of ethylene oxide added = 2 to 3) stearyl ether sulfate salts, polyoxyethylene (the number of moles of ethylene oxide added = 2 to 3) nonylphenyl ether sulfate salts, polyoxyethylene (the number of moles of ethylene oxide added = 2 to 3) dodecylphenyl ether sulfate salts, glyceryl monolaurate sulfate salts, glyceryl monostearate sulfate salts, lauric acid monoethanolamide sulfuric ester salts, stearic acid monoethanolamide sulfuric ester salts, and oleic acid monoethanolamide sulfuric ester salts, wherein the sulfuric ester salts or sulfate salts are lithium salts, sodium salts and potassium salts.

Claim 7 (original): The agent for suppressing transfer of odor and taste according to claim 6, wherein component (C) is at least one member selected from the group consisting of sodium lauryl sulfate, potassium lauryl sulfate, sodium stearate, potassium stearate, sodium 12-hydroxystearate and potassium 12-hydroxystearate.

Claim 8 (currently amended): The agent for suppressing transfer of odor and taste according to any one of claims 5-7 claim 5, wherein the weight ratio of component (B) to component (C) is

Claim 9 (original): A method for suppressing aldehyde generation by thermal decomposition of (A) at least one diacetal represented by the formula (1):

$$\begin{array}{c|c}
 & O \\
 & O \\$$

wherein R¹ and R² are the same or different and each represents a hydrogen atom, a C₁ to C₄ alkyl group, a C₁ to C₄ alkoxy group, a C₁ to C₄ alkoxycarbonyl group or a halogen atom; a and b each represents an integer of 1 to 5; c is 0 or 1; when a is 2, the two R¹ groups taken together with the benzene ring to which they are linked may form a tetralin ring; and when b is 2, the two R² groups taken together with the benzene ring to which they are linked may form a tetralin ring; the method comprising adding the following components (B) and (C) to the diacetal, wherein component (B) is at least one member selected from the group consisting of:

(B1) C₆ to C₃₂ saturated or unsaturated aliphatic alcohols; and

(B2) C₈ to C₃₂ saturated or unsaturated aliphatic carboxylic acids having at least one hydroxyl group per molecule, and component (C) is

(C1) at least one anionic surfactant selected from the group consisting of C_6 to C_{30} saturated or unsaturated aliphatic alcohol sulfuric ester salts, polyoxyethylene alkyl (C_8 to C_{22}) or alkenyl (C_8 to C_{22}) ether sulfuric ester salts in which the number of moles of ethylene oxide a dded is 1 to 8, polyoxyethylene alkyl (C_8 to C_{22}) phenyl ether sulfuric ester salts in which the number of moles of ethylene oxide added is 1 to 10, sulfuric ester salts of polyhydric alcohol fatty acid partial esters formed from a C_3 to C_6 polyhydric alcohol and a C_8 to C_{22} saturated or unsaturated fatty acid, and C_8 to C_{22} saturated or unsaturated fatty acid monoalkanol (C_2 to C_6) amide sulfuric ester salts, wherein the sulfuric ester salts are lithium salts, sodium salts, potassium salts and ammonium salts;

(C2) at least one member selected from the group consisting of alkali metal salts of C₈ to C₃₂ saturated or unsaturated fatty acids which may have at least one hydroxyl group per molecule;

(C3) at least one aliphatic amine selected from the group consisting of dialkanolamine, trialkanolamine, and $di(C_8 \text{ to } C_{22} \text{ alkyl or alkenyl})$ methylamine; or

(C4) a mixture of at least two of (C1), (C2) and (C3).

Claim 10 (original): The method according to claim 9, wherein component (B) is at least one member selected from the group consisting of 9-hydroxystearic acid, 10-hydroxystearic acid, 12-hydroxystearic acid, 9,10-dihydroxystearic acid, lauryl alcohol, myristyl alcohol, palmityl alcohol, stearyl alcohol and behenyl alcohol, and

component (C) is (C2a) at least one member selected from the group consisting of lithium salts, sodium salts and potassium salts of C8 to C32 saturated or unsaturated fatty acids which may have at least one hydroxyl group per molecule, or

component (C) is (C1a) at least one sulfuric ester salt selected from the group consisting of lauryl sulfate salts, stearyl sulfate salts, oleyl sulfate salts, polyoxyethylene (the number of moles of ethylene oxide added = 2 to 3) lauryl ether sulfate salts, polyoxyethylene (the number of moles of ethylene oxide added = 2 to 3) stearyl ether sulfate salts, polyoxyethylene (the number of moles of ethylene oxide added = 2 to 3) nonylphenyl ether sulfate salts, polyoxyethylene (the number of moles of ethylene oxide added = 2 to 3) dodecylphenyl ether sulfate salts, glyceryl monolaurate sulfate salts, glyceryl monostearate sulfate salts, lauric acid monoethanolamide sulfuric ester salts, stearic acid monoethanolamide sulfuric ester salts, and oleic acid monoethanolamide sulfuric ester salts, wherein the sulfuric ester salts or sulfate salts are lithium salts, sodium salts and potassium salts.

Claim 11 (original): The method according to claim 10, wherein component (C) is at least one member selected from the group consisting of sodium lauryl sulfate, potassium lauryl sulfate, sodium stearate, potassium stearate, sodium 12-hydroxystearate and potassium 12-hydroxystearate.

Claim 12 (currently amended): The method according to any one of claims 9-11 claim 9, wherein the weight ratio of component (B) to component (C) is 1:0.2 to 5.

Claim 13 (original): A granular or powdery diacetal composition comprising:

(A) at least one diacetal represented by the formula (1)

$$(R^{2})b \qquad O \qquad (1)$$

$$(R^{2})b \qquad (CHOH)_{C} (R^{1})a$$

$$CH_{2}OH$$

wherein R¹ and R² are the same or different and each represents a hydrogen atom, a C₁ to C₄ alkyl group, a C₁ to C₄ alkoxy group, a C₁ to C₄ alkoxy group or a halogen atom; a and b each represents an integer of 1 to 5; c is 0 or 1; when a is 2, the two R¹ groups taken together with the benzene ring to which they are linked may form a tetralin ring; and when b is 2, the two R² groups taken together with the benzene ring to which they are linked may form a tetralin ring; and component (B), i.e., at least one member selected from the group consisting of

- (B1) C₆ to C₃₂ saturated or unsaturated aliphatic alcohols and
- (B2) C₈ to C₃₂ saturated or unsaturated aliphatic carboxylic acids having at least one hydroxyl group per molecule,

wherein transfer of odor and taste originating from the diacetal is suppressed.

Claim 14 (original): The diacetal composition according to claim 13, wherein component (B) is present in a proportion of 0.1 to 10 wt% based on the total amount of components (A) and (B).

Claim 15 (original): A granular or powdery diacetal composition wherein transfer of odor and taste originating from the diacetal is suppressed; the composition comprising components (A), (B) and (C), wherein component (A) is at least one diacetal represented by the formula (1)

$$\begin{array}{c|c}
 & O \\
 & O \\$$

wherein R¹ and R² are the same or different and each represents a hydrogen atom, a C₁ to C₄ alkyl group, a C₁ to C₄ alkoxy group, a C₁ to C₄ alkoxycarbonyl group or a halogen atom; a and b each represents an integer of 1 to 5; c is 0 or 1; when a is 2, the two R¹ groups taken together with the benzene ring to which they are linked may form a tetralin ring; and when b is 2, the two R² groups taken together with the benzene ring to which they are linked may form a tetralin ring, component (B) is at least one member selected from the group consisting of:

- (B1) C₆ to C₃₂ saturated or unsaturated aliphatic alcohols; and
- (B2) C₈ to C₃₂ saturated or unsaturated aliphatic carboxylic acids having at least one hydroxyl group per molecule, and component (C) is

(C1) at least one anionic surfactant selected from the group consisting of C_6 to C_{30} saturated or unsaturated aliphatic alcohol sulfuric ester salts, polyoxyethylene alkyl (C_8 to C_{22}) or alkenyl (C_8 to C_{22}) ether sulfuric ester salts in which the number of moles of ethylene oxide a dded is 1 to 8, polyoxyethylene alkyl (C_8 to C_{22}) phenyl ether sulfuric ester salts in which the number of moles of ethylene oxide added is 1 to 10, sulfuric ester salts of polyhydric alcohol fatty acid partial esters formed from a C_3 to C_6 polyhydric alcohol and a C_8 to C_{22} saturated or unsaturated fatty acid, and C_8 to C_{22} saturated or unsaturated fatty acid monoalkanol (C_2 to C_6) amide sulfuric ester salts, wherein the sulfuric ester salts are lithium salts, sodium salts, potassium salts and ammonium salts;

(C2) at least one member selected from the group consisting of alkali metal salts of C₈ to C₃₂ saturated or unsaturated fatty acids which may have at least one hydroxyl group per molecule;

(C3) at least one aliphatic amine selected from the group consisting of dialkanolamine, trialkanolamine, and $di(C_8 \text{ to } C_{22} \text{ alkyl or alkenyl})$ methylamine; or

(C4) a mixture of at least two of (C1), (C2) and (C3).

Claim 16 (original): The diacetal composition according to claim 15, wherein based on the total amount of components (A), (B) and (C), component (B) is present in a proportion of 0.1 to 5 wt% and component (C) is present in a proportion of 0.1 to 5 wt%.

Claim 17 (original): The diacetal composition according to claim 16, wherein the weight ratio of component (B) to component (C) is 1:0.2 to 5.

Claim 18 (currently amended): A polyolefin resin nucleating agent comprising the diacetal composition according to any one of claims 13 to 17 claim 13, wherein transfer of odor and taste originating from the diacetal is suppressed.

Claim 19 (original): A polyolefin resin composition comprising the polyolefin resin nucleating agent according to claim 18 and a polyolefin resin, wherein transfer of odor and taste originating from the diacetal is suppressed.

Claim 20 (currently amended): The polyolefin resin composition according to claim 19, wherein the polyolefin resin nucleating agent according to claim 18 is present in an amount of 0.05 to 3 weight parts per 100 weight parts of the polyolefin resin and wherein transfer of odor and taste originating from the diacetal is suppressed.

Claim 21 (currently amended): A polyolefin resin molded product prepared by molding the polyolefin resin composition according to claim 19 [[or 20]], wherein transfer of odor and taste originating from the diacetal is suppressed.

Claim 22 (original): A container or a packaging material for foods, cosmetics or medicines comprising the polyolefin resin molded product according to claim 21, wherein transfer of odor and taste originating from the diacetal is suppressed.

Claim 23 (original): A method for suppressing odor originating from a diacetal at the time of molding a polyolefin resin, comprising mixing the nucleating agent according to claim 18 with a polyolefin resin and molding a resultant resin composition.

Claim 24 (original): A method for suppressing transfer of odor and taste originating from a diacetal to a content (such as foods, cosmetics and medicines), characterized in that it comprises placing the content in a packaging material or a container prepared by mixing the nucleating agent according to claim 18 with a polyolefin resin and molding a resultant resin composition.