EI M5

MATHEMATIK

2011-12

6. Klausur - Probeklausur - Pflicht

In diesem Teil sind weder GTR noch die Formelsammlung erlaubt. Um beide zu erhalten, gib bitte diesen Teil ab. Du solltest ca. eine Stunde für diesen Pflichtteil benötigen. **Die Aufgaben sind alle Abiaufgaben, weswegen du die Lösungen direkt nachschlagen kannst!**

1. Aufgabe (Abi 2006 - A1)

Bilde die erste Ableitung der Funktion f mit $f(x) = \frac{1}{8}\sin(4x^2)$ für reelle Zahlen x.

2. Aufgabe (Abi 2007 – A2)

Berechne das Integral $I = \int_0^{\ln(2)} e^{2x}$.

3. Aufgabe (Abi 2007 - A3)

Gib alle reellen Werte x an, welche die folgende Gleichung lösen: $e^x - 2 - \frac{15}{e^x} = 0$.

4. Aufgabe (Abi 2010 - A4, leicht abgewandelt)

Gegeben ist die Funktion f mit $f(x) = \frac{1-4x^2}{x^2}$. Ihr Schaubild ist K.

- a) Weise nach, dass der Ausdruck $f(x) = \frac{1}{x^2} 4$ ebenfalls die Funktion f beschreibt.
- b) Bestimme den maximalen Definitionsbereich für f und gib die senkrechte Asymptote an.
- c) Gib die waagrechten Asymptote von fan.
- d) Bestimme den Schnittpunkt der Tangenten an K im Punkt P(1|-3) mit der x-Achse.

5. Aufgabe (Abi 2006 - A5)

Die Abbildung zeigt das Schaubild der Ableitungsfunktion f' einer Funktion f:

Gib für jeden der folgenden Sätze an, ob er richtig, falsch oder nicht entscheidbar ist. Begründe jeweils deine Antwort!

- a) Das Schaubild von f hat bei x = -2 einen Tiefpunkt.
- b) Das Schaubild von f hat für $6 \ge x \ge -3$ genau zwei Wendepunkte.
- c) Das Schaubild von f verläuft im Schnittpunkt mit der y-Achse steiler als die erste Winkelhalbierende.
- d) Es gilt f(0) > f(5).

6. Aufgabe (Abi 2009 - A7)

Gegeben sind die Ebene E: $x_1 + x_2 = 4$ und die Gerade g: $\binom{1}{3} + r \cdot \binom{1}{-1}$.

- a) Veranschauliche die Ebene E in einem geeigneten Koordinatensystem.
- b) Untersuche die gegenseitige Lage von g und E.
- c) Bestimme den Abstand des Ursprungs von der Ebene E.

7. Aufgabe (Abi 2008 – A8)

Gegeben sind die beiden Ebenen E: $(\vec{x} - \vec{p}) \cdot \vec{n} = 0$ und F: $(\vec{x} - \vec{q}) \cdot \vec{m} = 0$. Dabei beschreiben \vec{p} und \vec{q} die Ortsvektoren der beiden Aufpunkte der Ebenen E und F. Die Vektoren \vec{n} bzw. \vec{m} sind die Normalenvektoren der beiden Ebenen E und F.

a) Beschreibe ein Verfahren, mit dem man anhand dieser Normalengleichungen die gegenseitige Lage der beiden Ebenen untersuchen kann!

MATHEMATIK

EI M5

2011-12

6. Klausur – Probeklausur

Wahlteil Analysis

Du solltest ca. 45min für diesen Wahlteil benötigen. Auch hier kannst du die Lösungen nachschlagen!

8. Aufgabe (Abi 2004 – Aufgabe I.3, leicht abgewandelt und gekürzt)

Für jedes k>0 ist eine Funktion f_k gegeben durch

$$f_k(x) = \frac{3ke^x}{e^{2x} + k}$$
 mit reellem x .

Ihr Schaubild sei Ck.

- a) Bestimme den maximalen Definitionsbereich für f_k .
- b) Skizziere für drei selbst gewählte Werte von k die Schaubilder C_k in ein gemeinsames Koordinatensystem.
- c) Untersuche das Verhalten von f_k für $x \to \infty$ und gib, wenn möglich, waagrechte und senkrechte Asymptoten an.
- d) Stelle gemeinsame Eigenschaften der von dir skizzierten Schaubilder zusammen.

Jedes Schaubild C_k hat genau einen Hochpunkt.

e) Berechne dessen Koordinaten. Verwende dazu die Ableitung

$$f'_k(x) = \frac{3k \cdot e^x (k - e^{2x})}{(e^{2x} + k)^2}.$$

- f) Bestimme eine Gleichung der Ortskurve der Hochpunkte aller C_k.
- g) Ergänze deine Skizze aus Teilaufgabe a) um diese Ortskurve.

Der Term $f_4(x)$ beschreibt für $x \ge 0$ die Zuwachsrate der von einer Bakterienkultur bedeckten Fläche zum Zeitpunkt x. Dabei ist x in Minuten ab Beobachtungsbeginn angegeben und die Funktionswerte in cm²/min.

h) Um wieviele Quadratzentimeter vergrößert sich die von der Kultur bedeckte Fläche in den ersten zwei Minuten?

MATHEMATIK

EI M5

2011-12

6. Klausur – Probeklausur

Wahlteil Geometrie

Du solltest ca. 45min für diesen Wahlteil benötigen! Auch hier kannst du die Lösungen nachschlagen!

9. Aufgabe (Abi 2010 – Aufgabe II.1, leicht abgewandelt und gekürzt)

Gegeben sind die Punkte A(0|4|0), B(0|0|2) und C(4|0|0).

- a) Zeichne die Punkte in ein geeignetes Koordinatensystem.
- b) Zeige, dass das Dreieck ABC gleichschenklig ist.
- c) Ergänze das Dreieck ABC durch einen Punkt D zu einer Raute und trage auch D in das Koordinatensystem von oben ein.
- d) Berechne die Innenwinkel der Raute.
- e) Berechne den Mittelpunkt der Raute.
- f) Zeige, dass die Raute in der Ebene E: $x_1 + x_2 + 2x_3 = 4$ liegt.

(**Teilergebnis:** D(4|4|-2)) \leftarrow das ist im Abi praktisch; man kann schon für c) spicken!

Gegeben ist für jedes $t \neq 0$ der Punkt $S_t(-3+3t \mid -3+3t \mid 5+t)$. Die Pyramide P_t hat die Grundfläche ABCD und die Spitze S_t .

- g) Zeichne die Pyramide P₃ in ein Koordinatensystem.
- h) Die Punkte B, D und S_3 legen eine Ebene F fest. Zeige, dass die Ebene F eine Symmetrieebene der Pyramide P_3 ist.