Computación Evolutiva Algoritmos Genéticos

Diego Milone

Inteligencia Computacional Departamento de Informática

FICH-UNL

Hace 200 años...

La idea de que las especies cambian ya se confrontaba al creacionismo.

Hace 200 años...

La idea de que las especies cambian ya se confrontaba al creacionismo.

El cuello de las jirafas según Jean-Baptiste Lamarck

Hace 200 años...

La idea de que las especies cambian ya se confrontaba al creacionismo.

El cuello de las jirafas según Jean-Baptiste Lamarck

Buena idea pero... ¿se heredan los caracteres adquiridos?

Hace 150 años...

La idea de la *evolución* genera un cambio de paradigmas tan grande que hasta hoy, incluso en computación, estamos hablando de **Charles R. Darwin**

Hace 150 años...

La idea de la *evolución* genera un cambio de paradigmas tan grande que hasta hoy, incluso en computación, estamos hablando de **Charles R. Darwin**

Variación y selección natural: si hay variabilidad en la longitud del cuello de las jirafas, las de cuello corto tendrán menos probabilidades de sobrevivir y procrear. Así...

Hace 150 años...

La idea de la *evolución* genera un cambio de paradigmas tan grande que hasta hoy, incluso en computación, estamos hablando de **Charles R. Darwin**

Variación y selección natural: si hay variabilidad en la longitud del cuello de las jirafas, las de cuello corto tendrán menos probabilidades de sobrevivir y procrear. Así...

...en la próxima generación habrá menos jirafas de cuello corto.

- ¿Qué tiene que ver todo esto con la computación?
- ¿Y con la "inteligencia" computacional?
- ¿Podremos ver las ideas de Darwin como un algoritmo?
- ¿Podremos usar estas ideas para resolver problemas con la computadora?

Diego Milone

Inteligencia Computacional Departamento de Informática

FICH-UNL

- √ El creacionismo y las ideas de Lamarck
- ✓ Darwin versus Lamarck

- √ El creacionismo y las ideas de Lamarck
- ✓ Darwin versus Lamarck
- Poblaciones versus individuos

- √ El creacionismo y las ideas de Lamarck
- ✓ Darwin versus Lamarck
- Poblaciones versus individuos
- Mejores versus "adaptados"

- √ El creacionismo y las ideas de Lamarck
- ✓ Darwin versus Lamarck
- Poblaciones versus individuos
- Mejores versus "adaptados"
- Aleatoriedad en la selección natural

- ✓ El creacionismo y las ideas de Lamarck
- ✓ Darwin versus Lamarck
- Poblaciones versus individuos
- Mejores versus "adaptados"
- Aleatoriedad en la selección natural
- Diversidad y operadores de variación en la población

Inicializar(Población)

MejorAptitud ← Evaluar(Población)

mientras MejorAptitud < AptitudRequerida

```
Inicializar(Población)

MejorAptitud ← Evaluar(Población)

mientras MejorAptitud < AptitudRequerida

Progenitores ← SelecciónNatural(Población)
```

```
Inicializar(Población)

MejorAptitud ← Evaluar(Población)

mientras MejorAptitud < AptitudRequerida

Progenitores ← SelecciónNatural(Población)

Población ← ReproducciónVariación(Progenitores)
```

```
Inicializar(Población)

MejorAptitud ← Evaluar(Población)

mientras MejorAptitud < AptitudRequerida

Progenitores ← SelecciónNatural(Población)

Población ← ReproducciónVariación(Progenitores)

MejorAptitud ← Evaluar(Población)
```

fin

• Representación de los individuos

- Representación de los individuos
- Función de aptitud

- Representación de los individuos
- Función de aptitud
- Mecanismo de selección

- Representación de los individuos
- Función de aptitud
- Mecanismo de selección
- Operadores de variación

- Representación de los individuos
- Función de aptitud
- Mecanismo de selección
- Operadores de variación
- Reproducción y reemplazo generacional

Algoritmos genéticos: representación de los individuos

Diego Milone

Inteligencia Computacional Departamento de Informática

FICH-UNL

Representación de los individuos

(Agoritmos Genéticos)

• Ubicación de figuras para el llenado de un área

- Ubicación de figuras para el llenado de un área
- Entrenamiento de una red neuronal

- Ubicación de figuras para el llenado de un área
- Entrenamiento de una red neuronal
- Programación de un robot

- Ubicación de figuras para el llenado de un área
- Entrenamiento de una red neuronal
- Programación de un robot
- Circuito para un filtro multibanda

- Ubicación de figuras para el llenado de un área
- Entrenamiento de una red neuronal
- Programación de un robot
- Circuito para un filtro multibanda
- Problema del agente viajero
- ...

Algoritmos genéticos: función de aptitud

Diego Milone

Inteligencia Computacional Departamento de Informática

FICH-UNL

Función de aptitud

- Características generales:
 - Monotonicidad
 - Precisión
 - Suavidad regulable
 - Penalización de complejidad

Función de aptitud

- · Características generales:
 - Monotonicidad
 - Precisión
 - Suavidad regulable
 - Penalización de complejidad
- Algunos ejemplos típicos:
 - Promedios de error: cuadrados medios, desviación media absoluta, error relativo medio,...
 - Estadísticas: estimación de la varianza, validación cruzada, verosimilitud, predicción de error,...
 - Medidas de información: criterio de Akaike, criterio de información Bayesiano, descriptor de mínima longitud, información mutua, minimización del riesgo empírico
 - Otras: correlaciones, distancias,...

Función de aptitud: ejemplos

• Ubicación de figuras para el llenado de un área

- Ubicación de figuras para el llenado de un área
- Entrenamiento de una red neuronal

- Ubicación de figuras para el llenado de un área
- Entrenamiento de una red neuronal
- Programación de un robot

- Ubicación de figuras para el llenado de un área
- Entrenamiento de una red neuronal
- Programación de un robot
- Circuito para un filtro multibanda

- Ubicación de figuras para el llenado de un área
- Entrenamiento de una red neuronal
- Programación de un robot
- Circuito para un filtro multibanda
- Problema del agente viajero
- ...

Algoritmos genéticos: operadores

Diego Milone

Inteligencia Computacional Departamento de Informática

FICH-UNL

Estrategias de selección

• Rueda de ruleta

Estrategias de selección

• Rueda de ruleta

Ventanas

Estrategias de selección

• Rueda de ruleta

- Ventanas
- Competencias

Operadores de variación

Mutaciones

Operadores de variación

• Cruzas simples

Operadores de variación

Cruzas simples

¿Qué rol cumple cada operador en la búsqueda?

Reemplazo durante la reproducción

Reemplazo total

Reemplazo durante la reproducción

- Reemplazo total
- Reemplazo con brecha generacional

Reemplazo durante la reproducción

- Reemplazo total
- Reemplazo con brecha generacional
- Elitismo

Algoritmos evolutivos: características principales

Diego Milone

Inteligencia Computacional Departamento de Informática

FICH-UNL

• Búsqueda en un espacio codificado de parámetros

- Búsqueda en un espacio codificado de parámetros
- Búsqueda en múltiples puntos del espacio de soluciones
 - Ejemplo 1:

- Búsqueda en un espacio codificado de parámetros
- Búsqueda en múltiples puntos del espacio de soluciones
 - Ejemplo 2:

- Búsqueda en un espacio codificado de parámetros
- Búsqueda en múltiples puntos del espacio de soluciones
- · Pocos requisitos sobre la función objetivo

- Búsqueda en un espacio codificado de parámetros
- Búsqueda en múltiples puntos del espacio de soluciones
- Pocos requisitos sobre la función objetivo
- Algoritmo de naturaleza estocástica

- Búsqueda en un espacio codificado de parámetros
- Búsqueda en múltiples puntos del espacio de soluciones
- Pocos requisitos sobre la función objetivo
- Algoritmo de naturaleza estocástica
- La estructura de los operadores los hace muy efectivos al realizar búsquedas globales

- Búsqueda en un espacio codificado de parámetros
- Búsqueda en múltiples puntos del espacio de soluciones
- Pocos requisitos sobre la función objetivo
- Algoritmo de naturaleza estocástica
- La estructura de los operadores los hace muy efectivos al realizar búsquedas globales
- Múltiples objetivos

- Búsqueda en un espacio codificado de parámetros
- Búsqueda en múltiples puntos del espacio de soluciones
- Pocos requisitos sobre la función objetivo
- Algoritmo de naturaleza estocástica
- La estructura de los operadores los hace muy efectivos al realizar búsquedas globales
- Múltiples objetivos
- Algunas desventajas...?

Comparación con otros métodos

Métodos tradicionales	Algoritmos evolutivos
Trabajan con los propios parámetros a optimizar	Emplea una codificación de los parámetros*
Utilizan información de las deriva- das de la función objetivo u otro co- nocimiento adicional	Utilizan la información de la función objetivo en forma directa
Reglas de transición deterministas	Reglas de transición probabilísticas
Exploran el espacio de soluciones a partir de un punto	Exploran el espacio de soluciones en múltiples puntos a la vez

Paralelismo

