CONTACT BETWEEN LINEARLY ELASTIC BODIES: THE SIGNORINI PROBLEM

Miguel de Benito Augsburg, 15th April 2014

• Hertz, 1881

- Hertz, 1881
- Signorini, 1936, 1959

- Hertz, 1881
- Signorini, 1936, 1959
- Fichera, 1963

- Hertz, 1881
- Signorini, 1936, 1959
- Fichera, 1963
- Lions / Stampacchia, 1967

- Hertz, 1881
- Signorini, 1936, 1959
- Fichera, 1963
- Lions / Stampacchia, 1967
- Duvaut, Brézis, Kinderlehrer...

- Hertz, 1881
- Signorini, 1936, 1959
- Fichera, 1963
- Lions / Stampacchia, 1967
- Duvaut, Brézis, Kinderlehrer...
- 1980s to 2000s

- Hertz, 1881
- Signorini, 1936, 1959
- Fichera, 1963
- Lions / Stampacchia, 1967
- Duvaut, Brézis, Kinderlehrer...
- 1980s to 2000s
- Numerical analysis: 1970s 1990s.

- Hertz, 1881
- Signorini, 1936, 1959
- Fichera, 1963
- Lions / Stampacchia, 1967
- Duvaut, Brézis, Kinderlehrer...
- 1980s to 2000s
- Numerical analysis: 1970s 1990s.
- Numerical analysis: 2000s.

Problem setting

- The problem
- The model

• The problem

• The model

• The problem

• The model

Anisotropic, homogeneous, linearly elastic body in stationary equilibrium on a rigid foundation. No friction, no thermodynamics, no fancy stuff.

The problem

• The model

- Anisotropic, homogeneous, linearly elastic body in stationary equilibrium on a rigid foundation. No friction, no thermodynamics, no fancy stuff.
- Small displacements: $|u| \ll 1$, $|\nabla u| \ll 1$.

• The problem

The model

- Anisotropic, homogeneous, linearly elastic body in stationary equilibrium on a rigid foundation. No friction, no thermodynamics, no fancy stuff.
- Small displacements: $|u| \ll 1$, $|\nabla u| \ll 1$.
- Stress tensor given by Hooke's law.

$$\sigma_{ij}(u) = a_{ijkl} \,\varepsilon_{kl}(u) = \frac{1}{2} \,a_{ijkl} \,(u_{k,l} + u_{l,k}).$$

Stress-free reference configuration: $\Omega \subset \mathbb{R}^3$ open, bounded, with $C^{1,1}$ boundary $\Gamma = \partial \Omega$ split in open smooth subsets Γ_D , Γ_N , Γ_S . Γ_D possibly empty.

Given some data f, p, g find the **displacements** u such that

$$\begin{cases}
-\operatorname{div}\sigma(u) = f & \text{in } \Omega, \\
u = 0 & \text{on } \Gamma_D, \\
\sigma\nu = p & \text{on } \Gamma_N,
\end{cases}$$

and on Γ_S :

Stress-free reference configuration: $\Omega \subset \mathbb{R}^3$ open, bounded, with $C^{1,1}$ boundary $\Gamma = \partial \Omega$ split in open smooth subsets Γ_D , Γ_N , Γ_S . Γ_D possibly empty.

Given some data f, p, g find the **displacements** u such that

$$\begin{cases}
-\operatorname{div} \sigma(u) &= f & \text{in} & \Omega, \\
u &= 0 & \text{on} & \Gamma_D, \\
\sigma \nu &= p & \text{on} & \Gamma_N,
\end{cases}$$

and on Γ_S :

$$\begin{cases} u\nu - g \leq 0 \\ (u\nu - g)(\nu\sigma\nu) = 0 \\ \nu\sigma\nu \leq 0 \\ \nu\sigma\tau = 0 \end{cases}$$

Stress-free reference configuration: $\Omega \subset \mathbb{R}^3$ open, bounded, with $C^{1,1}$ boundary $\Gamma = \partial \Omega$ split in open smooth subsets Γ_D , Γ_N , Γ_S . Γ_D possibly empty.

Given some data f, p, g find the **displacements** u such that

$$\begin{cases}
-\operatorname{div}\sigma(u) = f & \text{in } \Omega, \\
u = 0 & \text{on } \Gamma_D, \\
\sigma\nu = p & \text{on } \Gamma_N,
\end{cases}$$

and on Γ_S :

$$\begin{cases} u \nu - g \leq 0, \\ (u \nu - g)(\nu \sigma \nu) = 0, \\ \nu \sigma \nu \leq 0, \\ \nu \sigma \tau = 0. \end{cases}$$

- Neumann
- Dirichlet
- Signorini (contact)

- Neumann
 - Tractions given on $\Gamma_N \subset \Gamma$.
- Dirichlet
- Signorini (contact)

Neumann

Tractions given on $\Gamma_N \subset \Gamma$.

- Dirichlet
 - The case $|\Gamma_D| = 0$.
- Signorini (contact)

Neumann

Tractions given on $\Gamma_N \subset \Gamma$.

Dirichlet

- The case $|\Gamma_D| = 0$. Rigid movements admissible \Rightarrow loss of coercivity
- Signorini (contact)

Neumann

Tractions given on $\Gamma_N \subset \Gamma$.

Dirichlet

- The case $|\Gamma_D| = 0$. Rigid movements admissible \Rightarrow loss of coercivity
- The case $|\Gamma_D| > 0$.
- Signorini (contact)

Neumann

Tractions given on $\Gamma_N \subset \Gamma$.

Dirichlet

- The case $|\Gamma_D| = 0$. Rigid movements admissible \Rightarrow loss of coercivity
- The case $|\Gamma_D| > 0$. Possible incompatibility at the boundary \Rightarrow need for $H_{00}^{1/2}(\Sigma)$.

Signorini (contact)

Neumann

Tractions given on $\Gamma_N \subset \Gamma$.

Dirichlet

- The case $|\Gamma_D| = 0$. Rigid movements admissible \Rightarrow loss of coercivity
- The case $|\Gamma_D| > 0$. Possible incompatibility at the boundary \Rightarrow need for $H_{00}^{1/2}(\Sigma)$.

Signorini (contact)

Kinematical non-penetration and conditions on normal stresses at $\Gamma_S \subseteq \operatorname{Int}(\Gamma \backslash \Gamma_D)$.

⇒ Free boundary problem.

- Non-penetration
- Stresses at the boundary

$$u \nu \leqslant g \text{ on } \Gamma_S$$
.

- g models the **initial gap** between the surfaces.
- Stresses at the boundary

$$u \nu \leqslant g \text{ on } \Gamma_S$$
.

- Stresses at the boundary
 - No friction \Rightarrow no tangential stresses.
 - Stresses are normal at contact points.
 - There is normal stress iff there is contact.
 - Together, on Γ_S we have:

$$\nu_i \, \sigma_{ij} \, \tau_j = 0$$

$$\begin{cases} u_i \nu_i - g = 0, \\ \sigma_{ij} \nu_i \nu_j < 0, \end{cases} \text{ or } \begin{cases} u_i \nu_i - g < 0, \\ \sigma_{ij} \nu_i \nu_j = 0. \end{cases}$$

$$u \nu \leqslant g \text{ on } \Gamma_S$$
.

- Stresses at the boundary
 - No friction \Rightarrow no tangential stresses.
 - Stresses are normal at contact points.
 - There is normal stress iff there is contact.
 - Together, on Γ_S we have:

$$\nu_i \, \sigma_{ij} \, \tau_j = 0$$

$$\begin{cases} u_i \nu_i - g = 0, \\ \sigma_{ij} \nu_i \nu_j < 0, \end{cases} \text{ or } \begin{cases} u_i \nu_i - g < 0, \\ \sigma_{ij} \nu_i \nu_j = 0. \end{cases}$$

$$u \nu \leqslant g \text{ on } \Gamma_S$$
.

- Stresses at the boundary
 - No friction \Rightarrow no tangential stresses.
 - Stresses are normal at contact points.
 - There is normal stress *iff* there is contact.
 - Together, on Γ_S we have:

$$\nu_i \, \sigma_{ij} \, \tau_j = 0$$

$$\begin{cases} u_i \nu_i - g = 0, \\ \sigma_{ij} \nu_i \nu_j < 0, \end{cases} \text{ or } \begin{cases} u_i \nu_i - g < 0, \\ \sigma_{ij} \nu_i \nu_j = 0. \end{cases}$$

$$u \nu \leqslant g \text{ on } \Gamma_S$$
.

- Stresses at the boundary
 - No friction \Rightarrow no tangential stresses.
 - Stresses are normal at contact points.
 - There is normal stress *iff* there is contact.
 - Together, on Γ_S we have:

$$\nu_i \, \sigma_{ij} \, \tau_j = 0$$

$$\begin{cases} u_i \nu_i - g = 0, \\ \sigma_{ij} \nu_i \nu_j < 0, \end{cases} \text{ or } \begin{cases} u_i \nu_i - g < 0, \\ \sigma_{ij} \nu_i \nu_j = 0. \end{cases}$$

Let: $\Sigma = \Gamma \setminus \overline{\Gamma}_D, f \in L^2(\Omega), p \in H^{-1/2}(\Gamma_N), g \in H^{1/2}_{00}(\Sigma)$

Define: $V:=\{v\in \boldsymbol{H}^1(\Omega)\colon v=0 \text{ in } \Gamma_D\}$ and $\gamma_{\Sigma_v}\colon V\to H_{00}^{1/2}(\Sigma)$ (normatrace).

Admissible set: $K := \{ v \in V : \gamma_{\Sigma_{\nu}}(v) \ \nu - g \leqslant 0 \text{ on } \Gamma_S \text{ in } H_{00}^{1/2}(\Sigma) \}$

Energy functional: $I(v) := rac{1}{2} \, a(v,v) - F(v), \quad v \in K$

Find $u \in K$ such that $I(u) = \min_{v \in K} I(v)$

Where

$$a(u, v) := \int_{\Omega} a_{ijkl} \, \varepsilon_{kl}(u) \, \varepsilon_{ij}(v) \, dx = \int_{\Omega} \sigma_{ij}(u) \, \varepsilon_{ij}(v) \, dx, \quad \varepsilon(v) := \frac{1}{2} \left(\nabla^{\top} v + \nabla v \right)$$

$$F(v) := \int_{\Omega} f_i v_i dx - \int_{\Gamma_N} p_i v_i ds$$

Let:

$$\Sigma = \Gamma \setminus \overline{\Gamma}_D, f \in L^2(\Omega), p \in H^{-1/2}(\Gamma_N), g \in H^{1/2}_{00}(\Sigma).$$

Define: $V:=\{v\in \boldsymbol{H}^1(\Omega)\colon v=0 \text{ in } \Gamma_D\}$ and $\gamma_{\Sigma_{\nu}}\colon V\to H^{1/2}_{00}(\Sigma)$ (normatrace).

Admissible set:

$$K := \{ v \in V : \gamma_{\Sigma_{\nu}}(v) \ \nu - g \leq 0 \text{ on } \Gamma_S \text{ in } H_{00}^{1/2}(\Sigma) \}$$

Energy functional:

$$I(v) := \frac{1}{2} a(v,v) - F(v), \quad v \in K$$

Find $u \in K$ such that

$$I(u) = \min_{v \in K} I(v)$$

Where

$$a(u, v) := \int_{\Omega} a_{ijkl} \, \varepsilon_{kl}(u) \, \varepsilon_{ij}(v) \, dx = \int_{\Omega} \sigma_{ij}(u) \, \varepsilon_{ij}(v) \, dx, \quad \varepsilon(v) := \frac{1}{2} \left(\nabla^{\top} v + \nabla v \right)$$

$$F(v) := \int_{\Omega} f_i v_i \, dx - \int_{\Gamma_N} p_i v_i \, ds$$

Let:

$$\Sigma = \Gamma \setminus \overline{\Gamma}_D, f \in L^2(\Omega), p \in H^{-1/2}(\Gamma_N), g \in H^{1/2}_{00}(\Sigma).$$

Define: $V := \{v \in \mathbf{H}^1(\Omega) \colon v = 0 \text{ in } \Gamma_D\}$ and $\gamma_{\Sigma_{\nu}} \colon V \to H^{1/2}_{00}(\Sigma)$ (normal trace).

Admissible set:

$$K := \{ v \in V : \gamma_{\Sigma_{\nu}}(v) \ \nu - g \leq 0 \text{ on } \Gamma_S \text{ in } H_{00}^{1/2}(\Sigma) \}$$

Energy functional:

$$I(v) := rac{1}{2}\,a(v,v) - F(v), \quad v \in K$$

Find $u \in K$ such that

$$I(u) = \min_{v \in \mathcal{K}} I(v)$$

Where

$$a(u, v) := \int_{\Omega} a_{ijkl} \, \varepsilon_{kl}(u) \, \varepsilon_{ij}(v) \, dx = \int_{\Omega} \sigma_{ij}(u) \, \varepsilon_{ij}(v) \, dx, \quad \varepsilon(v) := \frac{1}{2} \left(\nabla^{\top} v + \nabla v \right)$$

$$F(v) := \int_{\Omega} f_i v_i dx - \int_{\Gamma_N} p_i v_i ds$$

Let:

$$\Sigma = \Gamma \setminus \overline{\Gamma}_D, f \in L^2(\Omega), p \in H^{-1/2}(\Gamma_N), g \in H^{1/2}_{00}(\Sigma).$$

Define: $V := \{v \in \mathbf{H}^1(\Omega) : v = 0 \text{ in } \Gamma_D\}$ and $\gamma_{\Sigma_{\nu}} : V \to H^{1/2}_{00}(\Sigma)$ (normal trace).

Admissible set:

$$K := \{ v \in V : \gamma_{\Sigma_{\nu}}(v) \, \nu - g \leq 0 \text{ on } \Gamma_S \text{ in } H_{00}^{1/2}(\Sigma) \}.$$

Energy functional:

$$I(v) := rac{1}{2} \, a(v,v) - F(v), \quad v \in K$$

Find $u \in K$ such that

$$I(u) = \min_{v \in V} I(v)$$

Where

$$a(u, v) := \int_{\Omega} a_{ijkl} \, \varepsilon_{kl}(u) \, \varepsilon_{ij}(v) \, dx = \int_{\Omega} \sigma_{ij}(u) \, \varepsilon_{ij}(v) \, dx, \quad \varepsilon(v) := \frac{1}{2} \left(\nabla^{\top} v + \nabla v \right)$$

$$F(v) := \int_{\Omega} f_i v_i \, dx - \int_{\Gamma_N} p_i v_i \, ds$$

Let:

$$\Sigma = \Gamma \setminus \overline{\Gamma}_D, f \in L^2(\Omega), p \in H^{-1/2}(\Gamma_N), g \in H^{1/2}_{00}(\Sigma).$$

Define: $V := \{v \in \mathbf{H}^1(\Omega) : v = 0 \text{ in } \Gamma_D\}$ and $\gamma_{\Sigma_{\nu}} : V \to H^{1/2}_{00}(\Sigma)$ (normal trace).

Admissible set:

$$K := \{ v \in V : \gamma_{\Sigma_{\nu}}(v) \, \nu - g \leq 0 \text{ on } \Gamma_S \text{ in } H_{00}^{1/2}(\Sigma) \}.$$

Energy functional:

$$I(v) := \frac{1}{2} a(v,v) - F(v), \quad v \in K.$$

Find $u \in K$ such that

$$I(u) = \min_{v \in \mathcal{K}} I(v)$$

Where

$$a(u, v) := \int_{\Omega} a_{ijkl} \, \varepsilon_{kl}(u) \, \varepsilon_{ij}(v) \, dx = \int_{\Omega} \sigma_{ij}(u) \, \varepsilon_{ij}(v) \, dx, \quad \varepsilon(v) := \frac{1}{2} \left(\nabla^{\top} v + \nabla v \right)$$

$$F(v) := \int_{\Omega} f_i v_i \, \mathrm{d}x - \int_{\Gamma_N} p_i v_i \, \mathrm{d}s$$

Assume $|\Gamma_D| > 0$.

Let: $\Sigma =$

$$\Sigma = \Gamma \setminus \overline{\Gamma}_D, f \in L^2(\Omega), p \in H^{-1/2}(\Gamma_N), g \in H^{1/2}_{00}(\Sigma).$$

Define: $V := \{v \in \mathbf{H}^1(\Omega) : v = 0 \text{ in } \Gamma_D\}$ and $\gamma_{\Sigma_{\nu}} : V \to H^{1/2}_{00}(\Sigma)$ (normal trace).

Admissible set: $K:=\{v\in V: \gamma_{\Sigma_{\nu}}(v)\ \nu-g\leqslant 0 \text{ on } \Gamma_S \text{ in } H^{1/2}_{00}(\Sigma)\}.$

Energy functional: $I(v) := \frac{1}{2} \, a(v,v) - F(v), \quad v \in K.$

Find $u \in K$ such that $I(u) = \min_{v \in K} I(v).$

Where

$$a(u, v) := \int_{\Omega} a_{ijkl} \, \varepsilon_{kl}(u) \, \varepsilon_{ij}(v) \, dx = \int_{\Omega} \sigma_{ij}(u) \, \varepsilon_{ij}(v) \, dx, \quad \varepsilon(v) := \frac{1}{2} \left(\nabla^{\top} v + \nabla v \right)$$

$$F(v) := \int_{\Omega} f_i v_i dx - \int_{\Gamma_N} p_i v_i dx$$

Assume $|\Gamma_D| > 0$.

Let: $\Sigma = \Gamma \setminus \overline{\Gamma}_D, f \in L^2(\Omega), p \in H^{-1/2}(\Gamma_N), g \in H^{1/2}_{00}(\Sigma).$

Define: $V := \{v \in \mathbf{H}^1(\Omega) : v = 0 \text{ in } \Gamma_D\}$ and $\gamma_{\Sigma_{\nu}} : V \to H^{1/2}_{00}(\Sigma)$ (normal trace).

Admissible set: $K := \{ v \in V : \gamma_{\Sigma_{\nu}}(v) \ \nu - g \leqslant 0 \text{ on } \Gamma_S \text{ in } H_{00}^{1/2}(\Sigma) \}.$

Energy functional: $I(v) := \frac{1}{2} \, a(v,v) - F(v), \quad v \in K.$

Find $u \in K$ such that $I(u) = \min_{v \in K} I(v)$.

Where

$$a(u, v) := \int_{\Omega} a_{ijkl} \, \varepsilon_{kl}(u) \, \varepsilon_{ij}(v) \, dx = \int_{\Omega} \sigma_{ij}(u) \, \varepsilon_{ij}(v) \, dx, \quad \varepsilon(v) := \frac{1}{2} \left(\nabla^{\top} v + \nabla v \right)$$

$$F(v) := \int_{\Omega} f_i v_i \, \mathrm{d}x - \int_{\Gamma_N} p_i v_i \, \mathrm{d}s$$

Assume $|\Gamma_D| > 0$.

Let: $\Sigma = \Gamma \setminus \overline{\Gamma}_D, f \in \boldsymbol{L}^2(\Omega), p \in \boldsymbol{H}^{-1/2}(\Gamma_N), g \in H^{1/2}_{00}(\Sigma).$

Define: $V := \{v \in \mathbf{H}^1(\Omega) : v = 0 \text{ in } \Gamma_D\}$ and $\gamma_{\Sigma_{\nu}} : V \to H^{1/2}_{00}(\Sigma)$ (normal trace).

Admissible set: $K:=\{v\in V: \gamma_{\Sigma_{\nu}}(v)\ \nu-g\leqslant 0 \text{ on } \Gamma_S \text{ in } H^{1/2}_{00}(\Sigma)\}.$

Energy functional: $I(v) := \frac{1}{2} \, a(v,v) - F(v), \quad v \in K.$

Find $u \in K$ such that $I(u) = \min_{v \in K} I(v)$.

Where

$$a(u, v) := \int_{\Omega} a_{ijkl} \, \varepsilon_{kl}(u) \, \varepsilon_{ij}(v) \, dx = \int_{\Omega} \sigma_{ij}(u) \, \varepsilon_{ij}(v) \, dx, \quad \varepsilon(v) := \frac{1}{2} \left(\nabla^{\top} v + \nabla v \right)$$

$$F(v) := \int_{\Omega} f_i v_i dx - \int_{\Gamma_N} p_i v_i ds.$$

Direct method easy

Direct method easy

$$\begin{array}{c} I \text{ (strictly) convex} \Rightarrow I \text{ w.s.l.s.c.} \\ I \text{ coercive} \end{array} \right\} \Rightarrow \checkmark$$

$$K \text{ closed and convex}$$

Direct method easy

$$\begin{array}{c} I \text{ (strictly) convex} \Rightarrow I \text{ w.s.l.s.c.} \\ I \text{ coercive} \end{array} \right\} \Rightarrow \checkmark$$

$$K \text{ closed and convex}$$

Not so easy.

Direct method easy

$$\begin{array}{c} I \text{ (strictly) convex} \Rightarrow I \text{ w.s.l.s.c.} \\ I \text{ coercive} \end{array} \right\} \Rightarrow \checkmark$$

$$K \text{ closed and convex}$$

Not so easy

Equivalence with the original PDEs. Definition of traces and Green's formulas.

Assume $|\Gamma_D| = 0$.

Let
$$f \in L^2(\Omega), p \in H^{-1/2}(\Gamma_N), g \in H^{1/2}(\Gamma)$$

Take now

$$K := \{ v \in V : \gamma_{\Gamma_{\nu}}(v) \ \nu - g \leq 0 \text{ on } \Gamma_S \text{ in the sense of } H^{1/2}(\Gamma) \}$$

Find $u \in K$ such that for every $v \in K$

$$a(u, v - u) \geqslant F(v - u) \tag{1}$$

Equivalence (thanks to Gâteaux differentiability of the energy)

$$u$$
 is a minimizer $\iff u$ solves (1)

(with proper choice of K, etc.)

Assume $|\Gamma_D| = 0$.

Let
$$f \in L^2(\Omega), p \in H^{-1/2}(\Gamma_N), g \in H^{1/2}(\Gamma)$$
.

Take now

$$K := \{ v \in V : \gamma_{\Gamma_{\nu}}(v) \ \nu - g \leq 0 \text{ on } \Gamma_S \text{ in the sense of } H^{1/2}(\Gamma) \}$$

Find $u \in K$ such that for every $v \in K$

$$a(u, v - u) \geqslant F(v - u) \tag{2}$$

Equivalence (thanks to Gâteaux differentiability of the energy)

$$u$$
 is a minimizer $\iff u$ solves (2)

(with proper choice of K, etc.).

Assume $|\Gamma_D| = 0$.

Let $f \in L^2(\Omega), p \in H^{-1/2}(\Gamma_N), g \in H^{1/2}(\Gamma)$.

Take now

$$K := \{ v \in V : \gamma_{\Gamma_{\nu}}(v) \ \nu - g \leq 0 \text{ on } \Gamma_S \text{ in the sense of } H^{1/2}(\Gamma) \}.$$

Find $u \in K$ such that for every $v \in K$:

$$a(u, v - u) \geqslant F(v - u) \tag{3}$$

Equivalence (thanks to Gâteaux differentiability of the energy)

u is a minimizer $\iff u$ solves (3)

(with proper choice of K, etc.)

Weak formulation $(|\Gamma_D| = 0)$

Assume $|\Gamma_D| = 0$.

Let $f \in L^2(\Omega), p \in H^{-1/2}(\Gamma_N), g \in H^{1/2}(\Gamma)$.

Take now

$$K := \{ v \in V : \gamma_{\Gamma_{\nu}}(v) \ \nu - g \leq 0 \text{ on } \Gamma_S \text{ in the sense of } H^{1/2}(\Gamma) \}.$$

Find $u \in K$ such that for every $v \in K$:

$$a(u, v - u) \geqslant F(v - u) \tag{4}$$

Equivalence (thanks to Gâteaux differentiability of the energy

u is a minimizer $\iff u$ solves (4)

(with proper choice of K, etc.).

Weak formulation $(|\Gamma_D| = 0)$

Assume $|\Gamma_D| = 0$.

Let
$$f \in L^2(\Omega), p \in H^{-1/2}(\Gamma_N), g \in H^{1/2}(\Gamma)$$
.

Take now

$$K := \{ v \in V : \gamma_{\Gamma_{\nu}}(v) \ \nu - g \leq 0 \text{ on } \Gamma_S \text{ in the sense of } H^{1/2}(\Gamma) \}.$$

Find $u \in K$ such that for every $v \in K$:

$$a(u, v - u) \geqslant F(v - u) \tag{5}$$

Equivalence (thanks to Gâteaux differentiability of the energy)

$$u$$
 is a minimizer $\iff u$ solves (5)

(with proper choice of K, etc.)

Weak formulation $(|\Gamma_D| = 0)$

Assume $|\Gamma_D| = 0$.

Let
$$f \in L^2(\Omega), p \in H^{-1/2}(\Gamma_N), g \in H^{1/2}(\Gamma)$$
.

Take now

$$K := \{ v \in V : \gamma_{\Gamma_{\nu}}(v) \ \nu - g \leq 0 \text{ on } \Gamma_S \text{ in the sense of } H^{1/2}(\Gamma) \}.$$

Find $u \in K$ such that for every $v \in K$:

$$a(u, v - u) \geqslant F(v - u) \tag{6}$$

Equivalence (thanks to Gâteaux differentiability of the energy)

$$u$$
 is a minimizer $\iff u$ solves (6).

(with proper choice of K, etc.).

• The set R of infinitesimal rigid displacements.

• The set \mathcal{R} of infinitesimal rigid displacements.

$$r \in \mathcal{R} \text{ iff } r(x) = b + Rx, \text{ with } b \in \mathbb{R}^3, R = -R^T \in \mathbb{R}^{3 \times 3}.$$

• The set \mathcal{R} of infinitesimal rigid displacements.

$$r \in \mathcal{R} \text{ iff } r(x) = b + Rx, \text{ with } b \in \mathbb{R}^3, R = -R^T \in \mathbb{R}^{3 \times 3}.$$

The *linearized strain* vanishes on \mathcal{R} :

$$\varepsilon(r) = \frac{1}{2} \left(\nabla^{\top} r + \nabla r \right) = 0.$$

• The set \mathcal{R} of infinitesimal rigid displacements.

$$r \in \mathcal{R} \text{ iff } r(x) = b + Rx, \text{ with } b \in \mathbb{R}^3, R = -R^T \in \mathbb{R}^{3 \times 3}.$$

The *linearized strain* vanishes on \mathcal{R} :

$$\varepsilon(r) = \frac{1}{2} \left(\nabla^{\top} r + \nabla r \right) = 0.$$

• Therefore $\ker a(\cdot, \cdot) \stackrel{(!)}{=} \mathcal{R} \subset V$ and the energy is **not coercive**.

• The set \mathcal{R} of infinitesimal rigid displacements.

$$r \in \mathcal{R} \text{ iff } r(x) = b + Rx, \text{ with } b \in \mathbb{R}^3, R = -R^T \in \mathbb{R}^{3 \times 3}.$$

The *linearized strain* vanishes on \mathcal{R} :

$$\varepsilon(r) = \frac{1}{2} \left(\nabla^{\top} r + \nabla r \right) = 0.$$

- Therefore $\ker a(\cdot, \cdot) \stackrel{(!)}{=} \mathcal{R} \subset V$ and the energy is **not coercive**.
- Workaround: solve in V/\mathcal{R} (e.g. Duvaut/Lions, 1976. Nečas, 19..)

• The set \mathcal{R} of infinitesimal rigid displacements.

$$r \in \mathcal{R} \text{ iff } r(x) = b + Rx, \text{ with } b \in \mathbb{R}^3, R = -R^T \in \mathbb{R}^{3 \times 3}.$$

The *linearized strain* vanishes on \mathcal{R} :

$$\varepsilon(r) = \frac{1}{2} \left(\nabla^{\top} r + \nabla r \right) = 0.$$

- Therefore $\ker a(\cdot, \cdot) \stackrel{(!)}{=} \mathcal{R} \subset V$ and the energy is **not coercive**.
- Workaround: solve in V/\mathcal{R} (e.g. Duvaut/Lions, 1976. Nečas, 19..) "Straightforward" but won't cut it.

Proper way: compatibility condition.

Proper way: compatibility condition.

Theorem. (Fichera, 1963) Let $K_0 := K - \tilde{g}$. If $|\Gamma_D| = 0$ and the data f, p satisfy the compatibility conditions

$$F(r) \leq 0$$
 for all $r \in \mathcal{R} \cap K_0$ and $F(r) = 0$ iff $-r \in K_0$.

Then (6) has a solution which is unique up to a member of

$$M = \{ r \in \mathcal{R} : F(r) = 0 \}.$$

Proper way: compatibility condition.

Theorem. (Fichera, 1963) Let $K_0 := K - \tilde{g}$. If $|\Gamma_D| = 0$ and the data f, p satisfy the compatibility conditions

$$F(r) \leq 0$$
 for all $r \in \mathcal{R} \cap K_0$ and $F(r) = 0$ iff $-r \in K_0$.

Then (6) has a solution which is unique up to a member of

$$M = \{ r \in \mathcal{R} : F(r) = 0 \}.$$

• (Alternative?) proof idea: Consider solutions u_{ρ} in bounded sub-cones $K_{\rho} = \{v \in K : ||v|| \le \rho\}$. Prove that there must exist one with $||u_{\rho}|| < \rho$ using the compatibility condition.

Theorem. (Kinderlehrer, 1981) Let $f \in L^2(\Omega)$, $g \in H^1(\Gamma)$ and let $\Omega_{\delta} := \{x \in \Omega : \operatorname{dist}(x, \partial \Gamma_D \cup \partial \Gamma_N \cup \partial \Gamma_S) > \delta\}$. Then

$$u \in \mathbf{H}^2(\Omega_\delta)$$
 for every $\delta > 0$

and the "classical" boundary conditions are fulfilled in $\Gamma_D \cup \Gamma_N \cup \Gamma_S$. In particular for N=3, the solution is in $\mathbf{C}^{0,1/2}(\overline{\Omega}_{\delta}) \cap \mathbf{W}^{1,6}(\Omega_{\delta})$.

Theorem. (Kinderlehrer, 1981) Let $f \in L^2(\Omega)$, $g \in H^1(\Gamma)$ and let $\Omega_{\delta} := \{x \in \Omega : \operatorname{dist}(x, \partial \Gamma_D \cup \partial \Gamma_N \cup \partial \Gamma_S) > \delta\}$. Then

$$u \in \mathbf{H}^2(\Omega_\delta)$$
 for every $\delta > 0$

and the "classical" boundary conditions are fulfilled in $\Gamma_D \cup \Gamma_N \cup \Gamma_S$. In particular for N=3, the solution is in $\mathbf{C}^{0,1/2}(\overline{\Omega}_{\delta}) \cap \mathbf{W}^{1,6}(\Omega_{\delta})$.

Higher regularity

Theorem. (Kinderlehrer, 1981) Let $f \in L^2(\Omega)$, $g \in H^1(\Gamma)$ and let $\Omega_{\delta} := \{x \in \Omega : \operatorname{dist}(x, \partial \Gamma_D \cup \partial \Gamma_N \cup \partial \Gamma_S) > \delta \}$. Then

$$u \in \mathbf{H}^2(\Omega_\delta)$$
 for every $\delta > 0$

and the "classical" boundary conditions are fulfilled in $\Gamma_D \cup \Gamma_N \cup \Gamma_S$. In particular for N=3, the solution is in $\mathbf{C}^{0,1/2}(\overline{\Omega}_{\delta}) \cap \mathbf{W}^{1,6}(\Omega_{\delta})$.

Higher regularity

(Two bodies) Boieri, Gastaldi, Kinderlehrer, 1987.

• Smooth functions and domain

Smooth functions and domain

$$\int_{\Omega} \operatorname{div} \sigma(u) \cdot v + \int_{\Omega} \sigma(u) : \varepsilon(v) = \int_{\partial \Omega} \sigma(u) \nu \cdot v.$$

Smooth functions and domain

$$\int_{\Omega} \operatorname{div} \sigma(u) \cdot v + \int_{\Omega} \sigma(u) : \varepsilon(v) = \int_{\partial \Omega} \sigma(u) \nu \cdot v.$$

• $u \in V$ solution and Ω of class $C^{1,1}$

Smooth functions and domain

$$\int_{\Omega} \operatorname{div} \sigma(u) \cdot v + \int_{\Omega} \sigma(u) : \varepsilon(v) = \int_{\partial \Omega} \sigma(u) \nu \cdot v.$$

• $u \in V$ solution and Ω of class $C^{1,1}$

Thanks to $\gamma: V \longrightarrow H_{00}^{1/2}(\Gamma_S)^N$ surjective, there exists a unique operator

$$\pi: \{ \sigma \in L^2(\Omega)^{N \times N}_{\text{sym}} : \text{div } \sigma \in L^2(\Omega)^N \} \longrightarrow H_{00}^{-1/2}(\Gamma_S)^N$$

such that

$$\int_{\Omega} \operatorname{div} \sigma(u) \cdot v + \int_{\Omega} \sigma(u) : \varepsilon(v) = \langle \pi(\sigma(u)), v \rangle_{H_{00}^{-1/2}}$$

and

$$\pi(\sigma(u)) = \sigma(u) \nu$$

for smooth functions.

$$\Gamma_C = \Gamma \setminus \{x \in \Gamma_S : u(x) \cdot \nu(x) > 0 \text{ in the sense of } H^{1/2}(\Gamma_S)\}$$

$$\Gamma_C = \Gamma \setminus \{x \in \Gamma_S : u(x) \cdot \nu(x) > 0 \text{ in the sense of } H^{1/2}(\Gamma_S)\}$$

or, formally:

$$\Gamma_C := \{ x \in \Gamma_S : u(x) \cdot \nu(x) = 0 \}.$$

$$\Gamma_C = \Gamma \setminus \{x \in \Gamma_S: u(x) \cdot \nu(x) > 0 \text{ in the sense of } H^{1/2}(\Gamma_S)\}$$
 or, formally:

$$\Gamma_C := \{ x \in \Gamma_S : u(x) \cdot \nu(x) = 0 \}.$$

Balance of forces

$$\Gamma_C = \Gamma \setminus \{x \in \Gamma_S : u(x) \cdot \nu(x) > 0 \text{ in the sense of } H^{1/2}(\Gamma_S)\}$$

or, formally:

$$\Gamma_C := \{ x \in \Gamma_S : u(x) \cdot \nu(x) = 0 \}.$$

Balance of forces

Theorem. (Kinderlehrer, 1987) Let u be a solution. Then $\sigma_{\nu}(u) \in L^1(\Gamma_S)$ and for every $r \in \mathcal{R}$

$$\int_{\Gamma_C} \sigma_{\nu}(u) \, r \cdot \nu \, \mathrm{d}s_x = -F(r),$$

$$\mathcal{H}^{N-1}(\Gamma_C) > 0.$$

$$\Gamma_C = \Gamma \setminus \{x \in \Gamma_S : u(x) \cdot \nu(x) > 0 \text{ in the sense of } H^{1/2}(\Gamma_S)\}$$

or, formally:

$$\Gamma_C := \{ x \in \Gamma_S : u(x) \cdot \nu(x) = 0 \}.$$

Balance of forces

Theorem. (Kinderlehrer, 1987) Let u be a solution. Then $\sigma_{\nu}(u) \in L^1(\Gamma_S)$ and for every $r \in \mathcal{R}$

$$\int_{\Gamma_C} \sigma_{\nu}(u) \, r \cdot \nu \, \mathrm{d}s_x = -F(r),$$

and

$$\mathcal{H}^{N-1}(\Gamma_C) > 0.$$

Planar estimates

The scalar problem

The scalar problem

Let $g \in H^{1/2}(\Gamma), p \in H^{-1/2}(\Gamma), f \in L^2(\Omega)$ such that

$$F(1) := (f, 1)_{L^2} + \langle p, 1 \rangle_{H^{-1/2}(\Gamma)} < 0.$$

Find $u \in K_g := \{v \in H^1(\Omega) : v \geqslant g \text{ on } \Gamma\}$ such that

$$a(u, v - u) \geqslant F(v - u)$$
 for all $v \in K_g$

where $a(u,v) := (\nabla u, \nabla v)_{L^2}$. Equivalently, find $u \in H^1(\Omega)$ such that

$$\begin{cases}
-\Delta u = f & \text{in } \Omega, \\
u \geqslant g & \text{in } H^{1/2}(\Gamma), \\
\partial_{\nu} u \geqslant p & \text{in } H^{-1/2}(\Gamma), \\
(u-g)(\partial_{\nu} u - p) = 0 & \text{a.e. } \Gamma.
\end{cases}$$

$$\Gamma_g := \Gamma \setminus \{x \in \Gamma : u(x) > g(x) \text{ in the sense of } H^{1/2}(\Gamma)\},$$

or formally: $\Gamma_g := \{x \in \Gamma : u(x) = g(x)\}.$

Theorem. (Díaz / d.B.) Let $\Omega \in \mathbb{R}^N$ with C^3 boundary and let $u \in H^1(\Omega) \cap L^{\infty}(\Omega)$ solve the scalar problem. Let $||u||_{\infty} \leq M$. Assume there exists a set $\Gamma_{\delta} \subset \Gamma$ where the following holds:

$$p - \partial_{\nu} v_0 \leqslant -\delta := \frac{-1}{M},$$

where $v_0 \in H^2(\Omega)$ is the solution of the Dirichlet problem

$$\begin{cases}
-\Delta v_0 = f & \text{in } \Omega, \\
v_0 = g & \text{on } \Gamma
\end{cases}$$

Then $\Gamma_{\delta} \subset \Gamma_{\sigma}$ the coincidence set of u.

$$\Gamma_g := \Gamma \setminus \{x \in \Gamma : u(x) > g(x) \text{ in the sense of } H^{1/2}(\Gamma)\},$$

or formally: $\Gamma_g := \{x \in \Gamma : u(x) = g(x)\}.$

Theorem. (Díaz / d.B.) Let $\Omega \in \mathbb{R}^N$ with C^3 boundary and let $u \in H^1(\Omega) \cap L^{\infty}(\Omega)$ solve the scalar problem. Let $||u||_{\infty} \leq M$. Assume there exists a set $\Gamma_{\delta} \subset \Gamma$ where the following holds:

$$p - \partial_{\nu} v_0 \leqslant -\delta := \frac{-1}{M},$$

where $v_0 \in H^2(\Omega)$ is the solution of the Dirichlet problem

$$\begin{cases} -\Delta v_0 = f & in \ \Omega, \\ v_0 = g & on \ \Gamma. \end{cases}$$

Then $\Gamma_{\delta} \subset \Gamma_q$ the coincidence set of u.

• Basic tool for the proof

Basic tool for the proof
 Comparison principle:

Lemma. Let $f_1 \le f_2 \in L^2(\Omega)$ and let $u_1, u_2 \in H^1(\Omega)$ be scalar functions defined on an open, bounded and connected set $\Omega \subset \mathbb{R}^N$ with Lipschitz boundary $\Gamma = \partial \Omega$ such that

$$\begin{cases}
-\Delta u_i = f_i & a.e. \ \Omega, \\
\partial_{\nu} u_1 \leqslant \partial_{\nu} u_2 & over \ \Gamma_{\nu} \ in \ H^{-1/2}(\Gamma), \\
u_1 \leqslant u_2 & over \ \Gamma_u \ in \ H^{1/2}(\Gamma),
\end{cases}$$

where $\Gamma_{\nu} \uplus \overline{\Gamma}_{u} = \Gamma$ and $\operatorname{Int} \Gamma_{u} \neq \emptyset$. Then $u_{1} \leqslant u_{2}$ almost everywhere in Ω .

• **Basic tool** for the proof Comparison principle:

Lemma. Let $f_1 \leqslant f_2 \in L^2(\Omega)$ and let $u_1, u_2 \in H^1(\Omega)$ be scalar functions defined on an open, bounded and connected set $\Omega \subset \mathbb{R}^N$ with Lipschitz boundary $\Gamma = \partial \Omega$ such that

$$\begin{cases}
-\Delta u_i = f_i & a.e. \ \Omega, \\
\partial_{\nu} u_1 \leqslant \partial_{\nu} u_2 & over \ \Gamma_{\nu} \ in \ H^{-1/2}(\Gamma), \\
u_1 \leqslant u_2 & over \ \Gamma_u \ in \ H^{1/2}(\Gamma),
\end{cases}$$

where $\Gamma_{\nu} \uplus \overline{\Gamma}_{u} = \Gamma$ and $\operatorname{Int} \Gamma_{u} \neq \emptyset$. Then $u_{1} \leqslant u_{2}$ almost everywhere in Ω .

Application

Basic tool for the proof

Comparison principle:

Lemma. Let $f_1 \leqslant f_2 \in L^2(\Omega)$ and let $u_1, u_2 \in H^1(\Omega)$ be scalar functions defined on an open, bounded and connected set $\Omega \subset \mathbb{R}^N$ with Lipschitz boundary $\Gamma = \partial \Omega$ such that

$$\begin{cases}
-\Delta u_i = f_i & a.e. \ \Omega, \\
\partial_{\nu} u_1 \leqslant \partial_{\nu} u_2 & over \ \Gamma_{\nu} \ in \ H^{-1/2}(\Gamma), \\
u_1 \leqslant u_2 & over \ \Gamma_u \ in \ H^{1/2}(\Gamma),
\end{cases}$$

where $\Gamma_{\nu} \uplus \overline{\Gamma}_{u} = \Gamma$ and $\operatorname{Int} \Gamma_{u} \neq \emptyset$. Then $u_{1} \leqslant u_{2}$ almost everywhere in Ω .

Application

Build local supersolution using intrinsic distance.

Plan for numerics:

- 1. Two body problem.
- 2. Saddle point formulation.
- 3. Mortar method.
- 4. Examples.

Basically the same problem.

The two body problem

- Basically the same problem.
- Special care with contact condition.

The two body problem

- Basically the same problem.
- Special care with contact condition.
- Existence theory analogous.

- Lagrange multiplier space: $Q := \mathbf{H}_{00}^{-1/2}(\Gamma_S^a)$.
- For any $\mu \in Q$ define μ_{ν} , μ_{τ} normal and tangential components. Let

$$Q_{+} := \{ \mu \in Q : \mu_{\tau} = 0, \, \mu_{\nu} \leq 0 \text{ on } \Gamma_{S}^{a} \text{ in } H_{00}^{-1/2}(\Gamma_{S}^{a}) \}.$$

• Let $v_{\nu}^{\iota} = \gamma_{\Gamma_{S}^{\iota}, \nu}^{0}(v^{\iota})$. For every $v \in V = V^{a} \times V^{b}$, $\mu \in Q$ define the bilinear form

$$b(v,\mu) := \langle \mu_{\nu}, v_{\nu}^{a} \rangle + \langle \mu_{\nu}, v_{\nu}^{b} \rangle$$

$$\begin{cases} a(u,v) + b(v,\lambda) = F(v), & v \in V, \\ b(u,\mu-\lambda) \leq g((\mu-\lambda)_{\nu}), & \mu \in Q_{+}. \end{cases}$$

- Lagrange multiplier space: $Q := \boldsymbol{H}_{00}^{-1/2}(\Gamma_S^a)$.
- For any $\mu \in Q$ define μ_{ν} , μ_{τ} normal and tangential components. Let

$$Q_{+} := \{ \mu \in Q : \mu_{\tau} = 0, \mu_{\nu} \leq 0 \text{ on } \Gamma_{S}^{a} \text{ in } H_{00}^{-1/2}(\Gamma_{S}^{a}) \}.$$

• Let $v_{\nu}^{\iota} = \gamma_{\Gamma_{S}^{\iota}, \nu}^{0}(v^{\iota})$. For every $v \in V = V^{a} \times V^{b}$, $\mu \in Q$ define the bilinear form

$$b(v,\mu) := \langle \mu_{\nu}, v_{\nu}^{a} \rangle + \langle \mu_{\nu}, v_{\nu}^{b} \rangle$$

$$\begin{cases} a(u,v) + b(v,\lambda) = F(v), & v \in V, \\ b(u,\mu-\lambda) \leqslant g((\mu-\lambda)_{\nu}), & \mu \in Q_{+}. \end{cases}$$

- Lagrange multiplier space: $Q := \mathbf{H}_{00}^{-1/2}(\Gamma_S^a)$.
- For any $\mu \in Q$ define μ_{ν} , μ_{τ} normal and tangential components. Let

$$Q_{+} := \{ \mu \in Q : \mu_{\tau} = 0, \mu_{\nu} \leq 0 \text{ on } \Gamma_{S}^{a} \text{ in } H_{00}^{-1/2}(\Gamma_{S}^{a}) \}.$$

• Let $v_{\nu}^{\iota} = \gamma_{\Gamma_{S}, \nu}^{0}(v^{\iota})$. For every $v \in V = V^{a} \times V^{b}$, $\mu \in Q$ define the bilinear form

$$b(v,\mu) := \langle \mu_{\nu}, v_{\nu}^{a} \rangle + \langle \mu_{\nu}, v_{\nu}^{b} \rangle.$$

$$\begin{cases} a(u,v) + b(v,\lambda) = F(v), & v \in V, \\ b(u,\mu-\lambda) \leqslant g((\mu-\lambda)_{\nu}), & \mu \in Q_{+} \end{cases}$$

- Lagrange multiplier space: $Q := \boldsymbol{H}_{00}^{-1/2}(\Gamma_S^a)$.
- For any $\mu \in Q$ define μ_{ν} , μ_{τ} normal and tangential components. Let

$$Q_{+} := \{ \mu \in Q : \mu_{\tau} = 0, \mu_{\nu} \leq 0 \text{ on } \Gamma_{S}^{a} \text{ in } H_{00}^{-1/2}(\Gamma_{S}^{a}) \}.$$

• Let $v_{\nu}^{\iota} = \gamma_{\Gamma_{S}, \nu}^{0}(v^{\iota})$. For every $v \in V = V^{a} \times V^{b}$, $\mu \in Q$ define the bilinear form

$$b(v,\mu) := \langle \mu_{\nu}, v_{\nu}^{a} \rangle + \langle \mu_{\nu}, v_{\nu}^{b} \rangle.$$

$$\begin{cases}
 a(u,v) + b(v,\lambda) = F(v), & v \in V, \\
 b(u,\mu-\lambda) \leqslant g((\mu-\lambda)_{\nu}), & \mu \in Q_{+}.
\end{cases}$$

- **Discretization** of function spaces $\hat{V}, \hat{Q}...$ and conditions $\hat{g}, \hat{\mu}^{a,b}...$
- Matching condition instead of pointwise matching $\hat{v}^a \leqslant \hat{v}^b$:

$$\int_{\hat{\Gamma}} (\hat{v}^a - \hat{v}^b) \, \hat{g}^a \leq 0 \text{ for every } \hat{g}^a \in \Lambda_\delta^a = (\dots)$$

$$M_{\alpha\beta} := \int_{\hat{\Gamma}_S^a} \varphi^\beta \psi^\alpha.$$

$$\begin{cases} A\,\hat{u} + B\,\hat{\lambda} &= F, \\ \hat{u}^{\alpha}_{\nu} &\leq \hat{g}^{\alpha}, \end{cases} \text{ and } \begin{cases} \hat{\lambda}^{\alpha}_{\nu} &\leq 0, \\ \hat{\lambda}^{\alpha}_{\nu} \left(\hat{u}^{\alpha}_{\nu} - \hat{g}^{\alpha}\right) &= 0, \\ \hat{\lambda}^{\alpha}_{\tau} &= 0. \end{cases}$$

- **Discretization** of function spaces $\hat{V}, \hat{Q}...$ and conditions $\hat{g}, \hat{\mu}^{a,b}...$
- Matching condition instead of pointwise matching $\hat{v}^a \leqslant \hat{v}^b$:

$$\int_{\hat{\Gamma}} (\hat{v}^a - \hat{v}^b) \, \hat{g}^a \leq 0 \text{ for every } \hat{g}^a \in \Lambda_\delta^a = (\dots)$$

$$M_{\alpha\beta} := \int_{\hat{\Gamma}_{S}^{a}} \varphi^{\beta} \psi^{\alpha}.$$

$$\begin{cases} A\,\hat{u} + B\,\hat{\lambda} &= F, \\ \hat{u}^{\alpha}_{\nu} &\leq \hat{g}^{\alpha}, \end{cases} \text{ and } \begin{cases} \hat{\lambda}^{\alpha}_{\nu} &\leq 0, \\ \hat{\lambda}^{\alpha}_{\nu} \left(\hat{u}^{\alpha}_{\nu} - \hat{g}^{\alpha}\right) &= 0, \\ \hat{\lambda}^{\alpha}_{\tau} &= 0. \end{cases}$$

- **Discretization** of function spaces $\hat{V}, \hat{Q}...$ and conditions $\hat{g}, \hat{\mu}^{a,b}...$
- Matching condition instead of pointwise matching $\hat{v}^a \leqslant \hat{v}^b$:

$$\int_{\hat{\Gamma}} (\hat{v}^a - \hat{v}^b) \, \hat{g}^a \leq 0 \text{ for every } \hat{g}^a \in \Lambda_{\delta}^a = (\dots)$$

$$M_{\alpha\beta} := \int_{\hat{\Gamma}_S^a} \varphi^{\beta} \psi^{\alpha}.$$

$$\begin{cases} A \, \hat{u} + B \, \hat{\lambda} &= F, \\ \hat{u}^{\alpha}_{\nu} &\leq \hat{g}^{\alpha}, \end{cases} \text{ and } \begin{cases} \hat{\lambda}^{\alpha}_{\nu} &\leq 0, \\ \hat{\lambda}^{\alpha}_{\nu} \left(\hat{u}^{\alpha}_{\nu} - \hat{g}^{\alpha} \right) &= 0, \\ \hat{\lambda}^{\alpha}_{\tau} &= 0. \end{cases}$$

- **Discretization** of function spaces $\hat{V}, \hat{Q}...$ and conditions $\hat{g}, \hat{\mu}^{a,b}...$
- Matching condition instead of pointwise matching $\hat{v}^a \leqslant \hat{v}^b$:

$$\int_{\hat{\Gamma}} (\hat{v}^a - \hat{v}^b) \, \hat{g}^a \leq 0 \text{ for every } \hat{g}^a \in \Lambda_{\delta}^a = (\dots)$$

$$M_{\alpha\beta} := \int_{\hat{\Gamma}_{S}^{a}} \varphi^{\beta} \psi^{\alpha}.$$

$$\begin{cases} A \, \hat{u} + B \, \hat{\lambda} &= F, \\ \hat{u}^{\alpha}_{\nu} &\leq \hat{g}^{\alpha}, \end{cases} \text{ and } \begin{cases} \hat{\lambda}^{\alpha}_{\nu} &\leq 0, \\ \hat{\lambda}^{\alpha}_{\nu} \left(\hat{u}^{\alpha}_{\nu} - \hat{g}^{\alpha} \right) &= 0, \\ \hat{\lambda}^{\alpha}_{\tau} &= 0. \end{cases}$$

Horizontal displacements of two touching cogs pressed together.

Forces well above the tolerance of the linear model still **seem** to provide reasonable results. Color represents vertical displacement.

Related problems

- Stefan's problem
- Dam problem
- Subsonic flow
- Magnetohydrodynamics
- Plasticity...