EEE882 - Computação Evolucionária

7 - Algoritmos Evolucionários Multiobjetivo

Michel Bessani

Operations Research and Complex Systems (ORCS) Lab. https://orcslab.github.io/ Departamento de Engenharia Elétrica - DEE

Programa de Pós-Graduação em Engenharia Elétrica - PPGEE

Belo Horizonte

∟Sumário

- 1. Introdução
- 2. O Problema de Otimização Multiobjetivo
- 2.1 Espaço de objetivos
- 2.2 Dominância
- 2.3 Fronteira Pareto-Ótima
- 2.4 Otimização e Tomada de Decisão
- 3. Algoritmos de Otimização Multiobjetivo
- 3.1 Requisitos
- 3.2 Dificuldades
- 3.3 Algoritmos Clássicos
- 4. Algoritmos Evolucionários Multiobjetivo (MOEA)
- 4.1 Aptidão
- 4.2 NSGA-II
- 4.3 SPEA-II
- 5. Considerações Finais

LIntrodução

Os métodos apresentados até agora consideravam apenas problemas em que se busca um conjunto de valores para as variáveis de otimização que:

- Satisfaz as restrições do problema;
- Minimiza (ou maximizava) uma única função objetivo.

Em problemas práticos, normalmente não teremos apenas um critério (função objetivo) a ser minimizado ou maximizado.

Sempre que tivermos mais de uma função objetivo, estaremos lidando com um **problema de otimização multiobjetivo**.

LIntrodução

Em problemas técnicos, seja na etapa de projeto ou durante a operação e gestão de sistemas, normalmente iremos buscar soluções que minimizem o custo e que otimizem outros indicadores de desempenho diversos.

Se pensarmos no projeto de um motor elétrico, pode-se otimizar os seguintes indicadores além do custo:

- ► Peso;
- ► Eficiência;
- Ruído;
- ► Vida útil;
- **.**...

└Introdução

É importante percebermos que o resultado da otimização, i.e., a implementação efetiva da solução, além de ser factível, deverá ter um bom comportamento nos diferentes indicadores de interesse.

Outro aspecto fundamental é que os diferentes **objetivos** terão **comportamento conflitante**.

No exemplo do projeto do motor, teremos alternativas com menor custo e menor eficiência e outros com maior custo e maior eficiência.

Não existirá uma único motor com baixo custo e alta eficiência.

O Problema de Otimização Multiobjetivo

LO Problema de Otimização Multiobjetivo

Um problema de otimização multiobjetivo (MOO, *multi-objective op-timization*) é formalmente definido como:

$$\{\mathbf{x}_1^*, \dots, \mathbf{x}_N^*\} = \arg\min_{\mathbf{x}} \mathbf{y} = \mathbf{f}(\mathbf{x}) = \{f_1(\mathbf{x}), \dots, f_m(\mathbf{x})\}$$
sujeito a: $g_i(\mathbf{x}) \le 0$; $i = 1, \dots, p$

$$h_j(\mathbf{x}) = 0$$
; $j = 1, \dots, q$

$$\mathbf{x} \in \mathcal{X}$$

$$\mathbf{y} \in \mathcal{Y}$$

Neste caso, $\mathbf{f}(\cdot): \mathbb{R}^n \to \mathbb{R}^m$.

Dizemos que a \mathbf{f} mapeia os pontos $\mathbf{x} \in \mathbb{R}^n$ do espaço de busca \mathcal{X} no espaço \mathbb{R}^m de objetivos $(\mathcal{Y} = \mathbf{f}(\mathcal{X}))$.

O Problema de Otimização Multiobjetivo

Nos problemas mono-objetivo:

- ▶ Busca-se soluções candidatas $\mathbf{x}_i \in \mathcal{X}$ que resultam em valores escalares $y_i = f(\mathbf{x}_i)$;
- Ordenava-se os valores de y_i obtidos, permitindo distinguir qual é o menor ou o maior valor da função objetivo associado a cada \mathbf{x}_i .

Agora, teremos que comparar o valor de cada solução candidata $\mathbf{x}_i \in \mathcal{X}$ para as m funções objetivo $\{f_1(\mathbf{x}), \dots, f_m(\mathbf{x})\}$, i.e., \mathbf{y}_i , em busca de soluções que otimizem todos as funções objetivo.

Essa comparação será feita **componente a componente** do vetor **y**, i.e., no espaço de objetivos.

O Problema de Otimização Multiobjetivo: Espaço de objetivos

O Problema de Otimização Multiobjetivo

Espaço de objetivos

Os pontos $\mathbf{x}_i \in \mathcal{X}$ resultam em pontos no espaço de objetivos, i.e., $\mathbf{y}_i \in \mathcal{Y}$.

Figura: Ilustração de pontos representados no espaço de busca e de objetivos. Fonte: Vasconcelos, João Antônio. Notas de Aula de Computação Evolucionária, 2018.

O Problema de Otimização Multiobjetivo: Dominância

O Problema de Otimização Multiobjetivo

L Dominância

Para compararmos as soluções no espaço *m*-dimensional de objetivos, é necessário generalizarmos o conceito de mínimo (ou máximo). Esta generalização será feita utilizando o conceito de **dominância**.

Para um problema de minimização, dizemos que \mathbf{x}_i domina \mathbf{x}_j , ou que $\mathbf{x}_i \leq \mathbf{x}_i$, se e somente se:

- A solução \mathbf{x}_i é **melhor ou igual** a uma solução \mathbf{x}_j em todos os objetivos do problema;
- Se existe **pelo menos um objetivo** em que x_i é **estritamente melhor** que x_j .

O Problema de Otimização Multiobjetivo

LDominância L

Ilustrando:

Figura: y_1 domina todos os outros pontos, y_2 e y_4 dominam o ponto y_3 e y_2 e y_4 não possuem relação de dominância entre si.

Fonte: Gaspar-Cunha, António, Ricardo Takahashi, and Carlos Henggeler Antunes. **Manual de computação evolutiva e metaheurística**. Imprensa da Universidade de Coimbra/Coimbra University Press, 2012.

O Problema de Otimização Multiobjetivo

└Dominância

Dominância

Um vetor de otimização \mathbf{x}_1 domina um outro vetor de otimização \mathbf{x}_2 , $\mathbf{f}(\mathbf{x}_1) \leq \mathbf{f}(\mathbf{x}_2)$, se e somente se:

- ▶ \mathbf{x}_1 não é pior que \mathbf{x}_2 em nenhum dos objetivos, i.e., $f_k(\mathbf{x}_1) \le f_k(\mathbf{x}_2), \ \forall k \in \{1, \dots, m\};$
- ▶ \mathbf{x}_1 é estritamente melhor que \mathbf{x}_2 em pelo menos um dos objetivos, i.e., $\exists k \in \{1, ..., m\} \mid f_k(\mathbf{x}_1) < f_k(\mathbf{x}_2)$.

O Problema de Otimização Multiobjetivo: Fronteira Pareto-Ótima

O Problema de Otimização Multiobjetivo

Fronteira Pareto-Ótima

Solução Pareto-ótimo

- **Pareto-ótimo global**: A solução \mathbf{x}^* ∈ Ω tal que $\nexists \mathbf{x} \neq \mathbf{x}^*, \mathbf{x} \in \Omega \mid \mathbf{f}(\mathbf{x}) \leq \mathbf{f}(\mathbf{x}^*);$
- Pareto-ótimo local:A solução $\mathbf{x}^* \in \Omega$ tal que $\nexists \mathbf{x} \neq \mathbf{x}^*, \mathbf{x} \in \mathcal{N}(\mathbf{x}^*) \mid \mathbf{f}(\mathbf{x}) \leq \mathbf{f}(\mathbf{x}^*).$

Dizemos que um vetor de variáveis de otimização $\mathbf{x}^* \in \Omega$ (factível) é uma **solução eficiente** de um problema de otimização multiobjetivo se não existir qualquer outra solução factível que domine \mathbf{x}^* , i.e., uma solução **Pareto-ótimo global** é uma **solução eficiente**

Importante, não é possível definir, através da avaliação das funções objetivo, que uma solução eficiente é melhor que outra solução eficiente.

O Problema de Otimização Multiobjetivo

└Fronteira Pareto-Ótima

O conjunto Pareto-ótimo global, ou conjunto de soluções eficientes, contém as soluções factíveis não dominadas:

$$\mathcal{P} = \{ \mathbf{x}^* \in \Omega \mid \nexists \mathbf{x} \in \Omega : \mathbf{f}(\mathbf{x}) \leq \mathbf{f}(\mathbf{x}^*) \}$$

A imagem de $\mathcal P$ no espaço $\mathcal Y$ é denominado **Fronteira Pareto-ótimo** $\mathcal P\mathcal F$:

$$\mathcal{PF} = f(\mathcal{P}) = \{f(x^*) \mid x^* \in \mathcal{P}\}$$

O Problema de Otimização Multiobjetivo

Fronteira Pareto-Ótima

Figura: Conjunto de pontos dominados (brancos) e não dominados (pretos) no espaço \mathcal{Y} .

Fonte: Gaspar-Cunha, António, Ricardo Takahashi, and Carlos Henggeler Antunes. **Manual de computação evolutiva e metaheurística**. Imprensa da Universidade de Coimbra/Coimbra University Press, 2012.

O Problema de Otimização Multiobjetivo

Fronteira Pareto-Ótima

A resolução **ideal** de um problema de otimização multiobjetivo consiste em obter todas as soluções que pertencem a \mathcal{P} .

Entretanto, a cardinalidade da \mathcal{P} pode ser muito elevada ou até infinita, tornando a tarefa idealizada geralmente impossível.

Na prática, o resultado esperado da resolução de um problema de otimização multiobjetivo é de obter um conjunto de amostras do conjunto $\mathcal P$ que deve ser **representativo**

A ideia é fornecer uma **boa estimativa** do formato geométrico e da localização deste conjunto $\mathcal P$ no espaço $\mathcal Y$.

O Problema de Otimização Multiobjetivo:

Otimização e Tomada de Decisão

O Problema de Otimização Multiobjetivo

Utimização e Tomada de Decisão

- Conjunto Pareto-ótimo estimado:
 Contêm as soluções não dominadas.
- Tomada de decisão: Escolha da solução que melhor atende às preferências do tomador de decisão.

Figura: Ilustração do resultado da otimização multiobjetivo para um problema de maximização e do processo de tomada de decisão. Fonte: Vasconcelos, João Antônio. Notas de Aula de Computação Evolucionária, 2018.

└O Problema de Otimização Multiobjetivo

Utimização e Tomada de Decisão

Figura: Estratégias de ponderação das preferências do tomador de decisão. Fonte: Vasconcelos, João Antônio. Notas de Aula de Computação Evolucionária, 2018.

Algoritmos de Otimização Multiobjetivo

Algoritmos de Otimização Multiobjetivo: Requisitos

└Algoritmos de Otimização Multiobjetivo

LRequisitos

Um algoritmo de otimização multiobjetivo deve atender aos seguintes requisitos:

- ▶ **Preservação** das melhores soluções, i.e., solução não-dominadas;
- Convergência, i.e., progressão contínua das soluções em direção a fronteira eficiente do problema. Espera-se que as soluções finais estejam o mais próximo possível desta;
- ▶ Diversidade das soluções finais, resultando em uma boa distribuição tanto no espaço de objetivos (cobertura da fronteira Pareto) quanto no espaço de variáveis. Assim é possível fornecer diferentes alternativas de compromisso entre os objetivos e entre as variáveis de otimização.
- ► Cardinalidade, capacidade de gerar um número de soluções não dominadas que seja representativa da Fronteira Pareto-Ótima.
- Retornar ao usuário uma quantidade suficiente, porém, limitada de soluções.

└Algoritmos de Otimização Multiobjetivo

Requisitos

Figura: Ilustração dos requisitos de Diversidade e Convergência. Fonte: Vasconcelos, João Antônio. Notas de Aula de Computação Evolucionária, 2018.

└Algoritmos de Otimização Multiobjetivo

∟Requisitos

Figura: Ilustração do resultado em a) de um algoritmo com boa convergência e má diversidade e em b) um algoritmo com má convergência e boa diversidade.

Fonte: Vasconcelos, João Antônio. Notas de Aula de Computação Evolucionária, 2018.

└Algoritmos de Otimização Multiobjetivo

└Requisitos

Figura: Ilustração do resultado de um algoritmo com boa diversidade e boa convergência.

Fonte: Vasconcelos, João Antônio. Notas de Aula de Computação Evolucionária, 2018.

Algoritmos de Otimização Multiobjetivo: Dificuldades

└Algoritmos de Otimização Multiobjetivo

└Dificuldades

Os problemas de otimização multiobjetivo podem apresentar diversas características que dificultam o processo de busca pelas soluções eficientes.

- Multimodalidade: presença de vários ótimos locais;
- Ruídos: problema de seleção;
- Ótimo isolado: presença de platos no espaço de busca;
- ► Formato da fronteiras Pareto: descontinuidades e não convexidade;
- ▶ **Dimensão do espaço de objetivos**: Número de funções objetivo.

└Algoritmos de Otimização Multiobjetivo

LDificuldades

Figura: Ilustração em a) de uma fronteira eficiente convexa e em b) de uma fronteira eficiente côncava.

Fonte: Vasconcelos, João Antônio. Notas de Aula de Computação Evolucionária, 2018.

└Algoritmos de Otimização Multiobjetivo

└Dificuldades

Figura: Ilustração em a) de uma fronteira mista (parte convexa e parte côncava) e em b) de uma fronteira desconexa.

Fonte: Vasconcelos, João Antônio. Notas de Aula de Computação Evolucionária, 2018.

Algoritmos de Otimização Multiobjetivo: Algoritmos Clássicos

Algoritmos de Otimização Multiobjetivo

LAlgoritmos Clássicos

Os métodos tradicionais de otimização mono-objetivo podem ser utilizados para resolver problemas multiobjetivo.

Estas adaptações ocorrem, não nos algoritmos de otimização, mas sim na **formulação do problema** de otimização com dois ou mais objetivos conflitantes.

Transforma-se o problema multiobjetivo em um, ou mais, problemas mono-objetivo.

└Algoritmos de Otimização Multiobjetivo

LAlgoritmos Clássicos

Abordagem da soma ponderada: Converte o problema original com *m* funções objetivo e um problema mono-objetivo que consiste em minimizar uma combinação linear dos objetivos:

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} f(\mathbf{x}) = \sum_{i=1}^m w_i f_i(\mathbf{x})$$

sujeito a: $\mathbf{x} \in \Omega$

- $\sum_{i=1}^{m} w_i = 1;$
- \blacktriangleright É necessário escalonar todas as $f_i(\mathbf{x})$ para a mesma faixa de valores.

É necessário definir os pesos para obter uma única solução eficiente.

Algoritmos de Otimização Multiobjetivo

LAlgoritmos Clássicos

Abordagem ϵ -restrito: Apenas um dos m objetivos é minimizado, os outros são transformados em restrições:

$$\mathbf{x}^* = \arg\min_{\mathbf{x}} f_j(\mathbf{x})$$

sujeito a: $\mathbf{x} \in \Omega$
 $f_i(\mathbf{x}) \le \epsilon_i, \forall i = 1, \dots, m, \ i \ne j$

- $ightharpoonup \epsilon_i$ são os limites superiores aceitáveis para as m-1 funções objetivo;
- Os valores de ϵ_i devem resultar em um problema factível.

└Algoritmos de Otimização Multiobjetivo

LAlgoritmos Clássicos

As abordagens clássicas trazem alguns problemas e dificuldades:

- Permitem a obtenção de uma única solução a cada execução;
- A execução com a variação dos parâmetros não garante a obtenção de soluções com uma cobertura uniforme da fronteira de Pareto;
- Dificuldade em lidar com problemas incluindo regiões não convexas;
- Requisitam conhecimentos prévios do problema para permitir uma correta adequação dos parâmetros (pesos ou restrições). Este conhecimento é subjetivo e pode ser tendencioso, impedindo encontrar novas soluções mais atraentes a determinadas classes de problema.

Algoritmos Evolucionários Multiobjetivo (MOEA)

Algoritmos Evolucionários Multiobjetivo (MOEA)

Os algoritmos evolucionários multiobjetivo (MOEA, *Multiobjective Evolutionary Algorithms*) iterativamente melhoram uma população de soluções candidatas.

Dessa forma, eles facilitam a obtenção de múltiplas soluções eficientes, favorecendo a diversidade com uma única execução de MOEA.

Eles não possuem dificuldades para lidar com as diferentes formas da \mathcal{PF} , i.e., não convexidade e descontinuidades não são um problema.

Apesar do maior custo computacional, é possível limitar o tempo de execução. Útil quando existe tempo máximo para entrega da solução.

Algoritmos Evolucionários Multiobjetivo (MOEA): Aptidão

LAlgoritmos Evolucionários Multiobjetivo (MOEA)

∟ Aptidão

Os algoritmos evolucionários utilizam da aptidão dos indivíduos para guiar o processo de seleção e sobrevivência.

A **aptidão** em MOEA deve representar a relação de **dominância** entre as soluções.

Para o caso de duas soluções que não possuam relação de dominância, deve-se atribuir maior aptidão àquela solução que resulte na maior **representatividade** do conjunto de Pareto.

LAlgoritmos Evolucionários Multiobjetivo (MOEA)

∟Aptidão

Ordenação por não dominância (non-dominated sort):

- ► Todas as solução não dominadas da população recebem um índice de fronteira F1, indicando que fazem parte da primeira fronteira não dominada.
- Essas soluções são desconsideradas da população e, sobre **as soluções restantes**, determina-se as **solução não dominadas** que recebem um índice de fronteira *F*2, correspondente a uma **nova fronteira**.
- Este processo é **repetido** até que **todos os indivíduos** da população tenham sido **indexados em alguma fronteira**.

Esta estratégia é a ingênua, pois possui um custo computacional elevado.

LAlgoritmos Evolucionários Multiobjetivo (MOEA)

└Aptidão

A ordenação por não dominância permite distinguir a qualidade das soluções, quanto menor o índice da fronteira, melhor a qualidade das soluções.

Figura: Ilustração da ordenaçãos por não dominância. Fonte: Vasconcelos, João Antônio. Notas de Aula de Computação Evolucionária,

2018.

LAlgoritmos Evolucionários Multiobjetivo (MOEA)

∟Aptidão

Algorithm 1: Algoritmo ingênua de ordenação por não dominância.

```
Input : P
 i \leftarrow 1;
 2 while P \neq \emptyset do
          F_i \leftarrow \emptyset;
          for p \in P do
                aux = 0;
 5
                for q \in P do
 6
                       if q \prec p then
 7
                              aux = 1;
 8
                              break;
10
                       end
                end
11
                if aux == 0 then
12
                       F_i = F_i \cup \{p\}
13
14
                end
          end
15
          P \leftarrow P - F_i;
16
          i \leftarrow i + 1:
17
18 end
    Return: \mathbf{F} = \{F_1, \dots, F_k\} com todas as fronteiras mapeadas.
```

Algoritmos Evolucionários Multiobjetivo (MOEA)

∟ Aptidão

Uma outra estratégia, é a ordenação por não dominância rápida (*Fast non-dominated sort*).

Inicia-se calculando dois parâmetros:

- \triangleright N_p , que conta quantas soluções dominam a solução p;
- $ightharpoonup S_p$, conjunto de soluções dominadas pela solução p.

Dessa forma, todas as soluções em F_1 terão $N_p = 0$.

Após isso, para cada solução $p \operatorname{com} N_p = 0$, acessamos as outras soluções $q \operatorname{contidas} \operatorname{em} S_p$ e subtraímos 1 de N_q .

Agora as soluções com $N_q = 0$ são armazenadas em um conjunto Q que será utilizado para formar F_2 .

Este processo é repetido até que todas as soluções sejam alocadas em alguma fronteira.

33/56

LAlgoritmos Evolucionários Multiobjetivo (MOEA)

∟ Aptidão

Algorithm 2: Algoritmo de ordenação por não dominância rápido - Parte 1 - Definição de F_1 , S_p e N_p .

```
Input : P
 1 F_1 = \emptyset;
2 for p \in P do
         S_n = \emptyset;
                                             // Armazena soluções dominadas por p
         N_p = 0;
                                               // Conta quantas soluções dominam p
 4
         for q \in P do
 5
               if p \prec q then
 6
                     S_p \leftarrow S_p \cup \{q\};
 7
               else if q \prec p then
 8
                    N_p \leftarrow N_p + 1;
 9
         end
10
         if N_p == 0 then
11
              p_{rank} \leftarrow 1;
F_1 = F_1 \cup \{p\};
12
13
         end
14
15
   end
```

LAlgoritmos Evolucionários Multiobjetivo (MOEA)

∟Aptidão

Algorithm 3: Algoritmo de ordenação por não dominância rápido - Parte 2 - Definição

```
de F.
 1 i ← 1:
 2 while F_i \neq \emptyset do
          O = \emptyset;
         for p \in F_i do
 4
                for q \in S_p do
 5
                      N_q = n_q - 1;
 6
                     if N_q = 0 then
 7
                          Q = Q \cup \{q\};
 8
                           q_{rank} \leftarrow i + 1;
 9
                      end
10
                end
11
          end
12
         i \leftarrow i + 1;
13
         F_i = O;
14
15 end
   Return: \mathbf{F} = \{F_1, \dots, F_k\} com todas as fronteiras mapeadas.
```

Algoritmos Evolucionários Multiobjetivo (MOEA): NSGA-II

LAlgoritmos Evolucionários Multiobjetivo (MOEA)

LNSGA-II

O NSGA-II (*Non-dominated Sorting Genetic Algorithm II*) foi proposto em 2002, sendo uma versão atualizada do algoritmo NSGA de 1995.

É um AG multiobjetivo elitista que utiliza ordenamento por não dominância.

Similar aos AGs convencionais, utiliza uma população P que gera uma população de filhos Q, e a cada geração, os indivíduos mais aptos sobrevivem.

Algoritmos Evolucionários Multiobjetivo (MOEA)

LNSGA-II

O algoritmo se inicia (t=1) pela geração de uma população inicial P_t de tamanho N. Cada indivíduo tem sua aptidão igual ao seu ranqueamento de dominância, obtido pela ordenação por não dominância.

Os operadores de seleção, cruzamento e mutação são aplicados, resultando em um conjunto de filhos Q_t de tamanho N.

Os indivíduos em P_t e Q_t são combinados formando um conjunto de soluções $R_t = P_t \cup Q_t$ de tamanho 2N.

Uma nova ordenação por não dominância é realizada nas soluções do conjunto R_t , resultando em um conjunto de fronteiras \mathbf{F} que é utilizado para determinar a nova população P_{t+1} .

LAlgoritmos Evolucionários Multiobjetivo (MOEA)

LNSGA-II

 P_{t+1} é constituído de N soluções de R_t . A formação de P_{t+1} começa pela inclusão de todos os indivíduos na fronteira não dominada F_1 , em seguida os indivíduos de F_2 , e assim sucessivamente.

Cada conjunto de soluções de uma fronteira F_i deve ser totalmente incluído em P_{t+1} , até que não seja possível acomodar todos os indivíduos de F_i , i.e., $|P_{t+1}| + |F_i| > N$.

Neste momento, é necessário definir quais são os melhores indivíduos da fronteira F_i que deverão sobreviver para a próxima geração P_{t+1} .

LAlgoritmos Evolucionários Multiobjetivo (MOEA)

LNSGA-II

Para distinguir os indivíduos em uma mesma fronteira, utiliza-se um outro método chamado de **distância de multidão** (*Crowding-distance*).

A distância de multidão $\mathcal I$ consiste em avaliar o perímetro do cuboide no espaço dos objetivos coberto por cada solução, e é utilizado para preservar a diversidade.

As $N - |P_{t+1}|$ soluções da F_i que possuírem as maiores distâncias são incluídos em P_{t+1} , obtendo uma nova população de tamanho N.

Algoritmos Evolucionários Multiobjetivo (MOEA)

LNSGA-II

Cálculo da distância de multidão: Para cada solução i da Fronteira com l soluções que deverá ser particionada, calcula-se a distância entre suas soluções vizinhas em cada uma das m funções objetivo.

Para cada j-ésima função objetivo, ordena-se as soluções em ordem decrescente de $f_j(\cdot)$ e acumula-se a distância entre as soluções vizinhas normalizada pela amplitude de $f_j(\cdot)$:

$$\mathcal{I}_i + = \left(f_j(\mathbf{x}_{i+1}) - f_j(\mathbf{x}_{i-1}) \right) / \left(f_j^{\max} - f_j^{\min} \right)$$

As soluções nos extremos de $f_i(\cdot)$, i.e., i=0 e i=l, possuem $I_i=\infty$

LAlgoritmos Evolucionários Multiobjetivo (MOEA)

∟NSGA-II

Figura: Ilustração, para um problema bi-objetivo, do cuboide cujo perímetro é a distância de multidão.

Fonte: BURKE, Edmund K. et al. Search methodologies: introductory tutorials in optimization and decision support techniques. Springer, 2014.

Algoritmos Evolucionários Multiobjetivo (MOEA)

└NSGA-II

Figura: Visão geral do NSGA-II.

Fonte: Vasconcelos, João Antônio. Notas de Aula de Computação Evolucionária, 2018.

LAlgoritmos Evolucionários Multiobjetivo (MOEA)

∟NSGA-II

Estas etapas são repetidas até que se alcance um critério de parada:

- ► Tempo de execução;
- Número de iterações;
- ► Número de avaliações da função objetivo;
- Erro na estimativa da Fronteira Pareto-ótima.
- Estagnação;

LAlgoritmos Evolucionários Multiobjetivo (MOEA)

LNSGA-II

Operador de Seleção por **Torneio de Multidão**:

Similar ao método do Torneio, porém pondera também a distância de multidão.

Em um **torneio** de tamanho k, uma solução i é a ganhadora se tiver um **melhor nível de dominância**.

Caso exista **empate** no nível de dominância, a que possuir **maior distância de multidão** é a ganhadora.

Os operadores de cruzamento e mutação serão os mesmo já apresentados para os AG.

LAlgoritmos Evolucionários Multiobjetivo (MOEA)

∟NSGA-II

Dominância restrita para tratamento de restrições.

Dada duas soluções \mathbf{x}_i e \mathbf{x}_j de um problema com restrições, dizemos que \mathbf{x}_i domina \mathbf{x}_j se:

- $ightharpoonup \mathbf{x}_i$ é factível e \mathbf{x}_i não é factível;
- $ightharpoonup \mathbf{x}_i$ viola menos restrições que \mathbf{x}_j ;
- Ambas são factíveis, então relação de dominância é como já visto.

LAlgoritmos Evolucionários Multiobjetivo (MOEA)

LNSGA-II

- ► A principal vantagem do NSGA-II é a maneira como mantém a diversidade entre as soluções não dominadas.
- O método de comparação por multidão é usado para a seleção por torneio selecionar os melhores elementos da fronteira F_i .
- Se o conjunto F_1 tem um tamanho maior que N, apenas N soluções são escolhidas para formar a próxima população P_{t+1} , usando a distância de multidão.

Algoritmos Evolucionários Multiobjetivo (MOEA): SPEA-II

LAlgoritmos Evolucionários Multiobjetivo (MOEA)

LSPEA-II

O SPEA-II (*Strength Pareto Evolutionary Algorithm II*) foi proposto em 2001, sendo uma versão atualizada do algoritmo SPEA de 1998.

Abordagem evolutiva multiobjetivo que também inclui o conceito de **elitismo**, através da utilização de **duas populações**:

- P, armazena os indivíduos da população inicial e das próximas gerações;
- $ightharpoonup \overline{P}$, população externa com as melhores soluções não dominadas encontradas;

Ambas possuem tamanho fixo $N \in \overline{N}$.

LAlgoritmos Evolucionários Multiobjetivo (MOEA)

LSPEA-II

Funcionamento:

Em t = 1, cria-se uma população inicial aleatória P_t e define-se $\overline{P}_t = \emptyset$.

A cada iteração, calcula-se uma função aptidão F_i de cada solução i em $P_t \cup \overline{P}_t$.

A função aptidão utiliza os conceitos de **dominância** e de **densidade**, e busca-se **minimizar a aptidão**.

A dominância é medida pela **Força Pareto** e a densidade através da distância para o *k*-vizinho.

Algoritmos Evolucionários Multiobjetivo (MOEA)

LSPEA-II

Força Pareto

Para cada solução i, a sua força Pareto, S_i , é a **quantidade de indivíduos dominados por ele** em $P_t \cup \overline{P}_t$.

Soluções que não dominam nenhuma outra possuem $S_i = 0$.

O Índice de Força Pareto (I_i) é a soma da força Pareto dos indivíduos que dominam i:

$$I_i = \sum_{j \in P_t \cup \overline{P}_t, j \succeq i} S_j$$

Para soluções não dominadas, $I_i = 0$, e quanto maior I_i , menor a força Pareto da solução.

Algoritmos Evolucionários Multiobjetivo (MOEA)

└SPEA-II

Quando muitas solução não dominadas estão presentes na população $P_t \cup \overline{P}_t$, será necessário distingui-las. No SPEA-II, utiliza-se uma métrica de densidade entre as soluções:

$$D_i = \frac{1}{dist_i^k + 2}$$

onde $dist_i^k$ é a distância para k-ésimo ponto mais próximo da solução i no espaço dos objetivos e $k = \sqrt{N + \overline{N}}$.

Para cada indivíduo i, calcula-se as distâncias euclidiana em \mathcal{Y} para todos os outros indivíduos em $P_t \cup \overline{P}_t$. Estas distâncias são ordenadas em ordem crescente, e o k-ésimo elemento representa $dist_i^k$.

LAlgoritmos Evolucionários Multiobjetivo (MOEA)

LSPEA-II

Com isso, é possível calcular a função a ser minimizada:

$$F_i = I_i + D_i$$

Onde:

- ► *I_i* é zero para soluções não dominadas;
- $ightharpoonup D_i$ é menor para soluções mais distantes do seu k-ésimo vizinho.

Dessa forma, as melhores soluções não serão dominadas e serão mais distantes das outras.

LAlgoritmos Evolucionários Multiobjetivo (MOEA)

└SPEA-II

Operador de Seleção.

Todas as soluções não dominadas são copiadas de $P_t \cup \overline{P}_t$ para \overline{P}_{t+1} .

- ► Caso $|\overline{P}_{t+1}| = \overline{N}$, seleção está completa;
- ▶ Se $|\overline{P}_{t+1}| < \overline{N}$, os melhores $\overline{N} |\overline{P}_{t+1}|$ indivíduos dominados são copiados em \overline{P}_{t+1} ;
- Se $|\overline{P}_{t+1}| > \overline{N}$, utiliza-se um **algoritmo de truncamento** onde, a cada iteração, remove-se a solução que possua a menor distância para o seu vizinho mais próximo entre todas as soluções.

Em caso de empate, calcula-se a distância para o seu segundo vizinho mais próximo e assim sucessivamente.

LAlgoritmos Evolucionários Multiobjetivo (MOEA)

LSPEA-II

Figura: Ilustração do truncamento pela distância para os vizinhos. Fonte: Zitzler, Eckart, Marco Laumanns, and Lothar Thiele. *SPEA2: Improving the strength Pareto evolutionary algorithm.* TIK report 103 (2001).

LAlgoritmos Evolucionários Multiobjetivo (MOEA)

LSPEA-II

Após o preenchimento do arquivo \overline{P}_{t+1} , deve-se gerar os novos N indivíduos que farão parte de P_{t+1} .

Isto é realizado da seguinte forma:

- 1. Realizar seleção por torneio em \overline{P}_{t+1} ;
- 2. Realizar cruzamento;
- 3. Realizar mutação;

Este processo é feito até $|P_{t+1}| = N$.

O algoritmo é executado até atingir o critério de parada.

Considerações Finais

Considerações Finais

Os algoritmos NSGA-II e SPEA-II são amplamente empregados na literatura, inclusive em problemas de engenharia.

Apesar do seu alto custo computacional:

- ► NSGA-II:
 - Ordenamento por não dominância;
 - Distância de multidão.
- ► SPEA-II:
 - Cálculo da distância entre todos os indivíduos;
 - Ordenação dos vetores para calcular a distância para o k-ésimo vizinho.

Estes algoritmos conseguem resultados satisfatórios em problemas de otimização multiobjetivo, sendo os mais utilizados para problemas com 2 ou 3 objetivos.

Referências

- ▶ Eiben, Agoston E., and James E. Smith. **Introduction to evolutionary computing.** Springer-Verlag Berlin Heidelberg, 2015.
- Gaspar-Cunha, António, Ricardo Takahashi, and Carlos Henggeler Antunes. Manual de computação evolutiva e metaheurística. Imprensa da Universidade de Coimbra/Coimbra University Press, 2012.
- ▶ BURKE, Edmund K. et al. Search methodologies: introductory tutorials in optimization and decision support techniques. Springer, 2014.
- COELLO, Carlos A. Coello. Evolutionary algorithms for solving multiobjective problems. Springer, 2007.
- Deb, Kalyanmoy, et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation 6.2 (2002): 182-197.
- ▶ Zitzler, Eckart, Marco Laumanns, and Lothar Thiele. *SPEA2: Improving the strength Pareto evolutionary algorithm*. TIK report 103 (2001).
- Vasconcelos, João Antônio. Notas de Aula de Computação Evolucionária, 2018.