Al Tools Assignment: Project Report

Group Members: David Muchoki

GitHub Repo Link: https://github.com/muchoki769/week_3_AI_Assignment

Community Article Link: https://academy.powerlearnprojectafrica.org/community

Part 1: Theoretical Understanding

1. Short Answer Questions

Q1: Explain the primary differences between TensorFlow and PyTorch. When would you choose one over the other?

TensorFlow is an open-source machine learning framework developed by Google. It is widely used for building and training deep learning models.

PyTorch is an open-source machine learning library developed by Facebook. It is known for its dynamic computation graph and ease.

Choose TensorFlow when:

Working on large-scale distributed training tasks.

I need a powerful, integrated tool like Tensor Board for visualization and experiment tracking from outset.

Choose PyTorch when:

Rapid prototyping and research are the priorities. The dynamic graph makes it ideal for models with variable-length inputs

I am working in fields where the latest academic research is often published in PyTorch

Q2: Describe two use cases for Jupyter Notebooks in AI development.

1.Interactive Data Exploration and Prototyping:

Jupyter Notebooks are ideal for the initial stages of an AI project. Developers, Data Scientists can load a dataset, run statistical summaries, and create visualization in individual cells. This interactive feedback loop is crucial for understanding data distributions, identifying outliers, and forming hypothesis before committing to a full model architecture.

2. Creating Reproducible Tutorials and Reports:

Notebooks seamlessly combine code, rich text, equations, and results (table, graph, images) into a single, linear document. This makes them perfect for creating educational materials, documenting an experimental process, or building a final report for stakeholders.

Q3: How does spaCy enhance NLP tasks compared to basic Python string operations?

Basic Python string operations (split(), find(), regex) work on a superficial, character-level basis. spaCy provides a linguistically-informed, statistical model that understands the structure and meaning of text.

2. Comparative Analysis

Feature	Scikit-learn	TensorFlow
Target	Classical Machine Learning. Excels at	Deep Learning. Designed for building and
Application	traditional algorithms like Linear	training large-scale neural networks (CNNs,
	Regression, Random Forests. Ideal for	RNNs, Transformers). Essential for unstructured
	tabular data, small to medium-sized	data like images, text, audio and for tasks
	datasets, and tasks where feature	requiring high representational power.
	engineering is key.	
Ease of use	High. It features a remarkably consistent	Moderate (improved with keras). The core
for	and simple API (e.g. the universal.	TensorFlow API was historically more complex.
Beginners	fitdicts(), . score() methods).lts	However, the integration of tf.keras as its high-
	documentation is excellent, making it the	level API has made it significantly easier for
	best starting point for understanding core	beginners to start building neural networks
	ML concepts.	with minimal code.
Community	Strong in classical ML. Its one of the most	Rapidly growing in deep learning. Backend by
Support	well established and trusted libraries in	Google and widely adopted in both industry
	the data science community. You will find	and research. It has one of the largest and most
	a vast number of tutorials, and courses	active communities for deep learning, with
	covering almost every algorithm it	extensive official documentation, forums, and
	implements.	pre-trained models

Task 1: Iris Classification

• Model: Decision Tree Classifier

• **Accuracy**: 100%

• **Key Features**: Petal length and width

Task 2: MNIST Digit Recognition

• Model: CNN Architecture

• **Accuracy**: >98%

• Architecture: 3 Conv layers + 2 Dense layers

Task 3: Amazon Reviews Analysis

• Entities Extracted: Brands, Products, Organizations

• Sentiment Analysis: Rule-based approach

• Visualization: Interactive NER displays