Module IV

July 17, 2024

Contents

1	Maxwell's equations and EM waves 1.1 Topics to be covered	1
2	Fundamentals of vector calculus 2.1 Dot product (scalar product)	
1	Maxwell's equations and EM waves	

Topics to be covered. 1.1

Maxwell's equations 1.1.1

Fundamentals of vector calculus, Divergence and Curl of E and B (static), Gauss' divergence theorem and Stokes'theorem. Description of laws of electrostatics, Faraday's laws of EMI. Current density J and Equation of Continuity. Displacement current with derivation and Maxwell's equations in vacuum

1.1.2 **EM Waves**

The wave equation in differential form in free space (derivation using Maxwell's equations), Plane EM waves(in vacuum), Transverse Nature and Polarization of EM waves

2 Fundamentals of vector calculus

A scalar is a physical quantity with only magnitude.

A vector is a physical quantity with both magnitude and direction.

A unit vector like \hat{a} has a magnitude of 1

In Cartesian coordinates, $\vec{a} = a_1e_1 + a_2e_2 + a_3e_3$ where e_1, e_2 and e_3 are unit vectors.

Magnitude $|a| = \sqrt{a_1^2 + a_2^2 + a_3^2}$

2.1 Dot product (scalar product)

 $a \cdot b = |a| \cdot |b| \cdot cos(\theta) = a_1b_1 + a_2b_2 + a_3c_3$ is a scalar

2.2 Cross product (vector product)

$$a \times b = |a||b|sin(\theta)\hat{n}$$

In terms of components a and b

$$a \times b = \begin{vmatrix} e_1 & e_2 & e_3 \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

or

$$a \times b = ()$$