Mathematical Analysis

枫聆

2021年2月9日

目录

1	实数		3	
	1.1	实数连续性	3	
	1.2	数集的界	4	
2	极限论			
	2.1	数列极限	5	
	2.2	无穷小量	6	
	2.3	区间套	8	
	2.4	收敛原理	9	
3	一元區	函数	11	
	3.1	单调函数的极限	11	
	3.2	连续函数的性质	12	
	3.3	函数连续性和间断	13	
	3.4	单调函数的连续性和间断	14	
	3.5	连续函数的复合	15	
	3.6	一个有趣的方程的解	16	
	3.7	函数连续性在计算极限时的应用	17	
	3.8	连续函数的性质	18	
4	导数及	及微分	19	
		常用导数求法和表示	19	
	4.2	所数的增量公式	20	

4.3	复合函数的导数	21
4.4	高阶导数及高阶微分	22

实数

实数连续性

由于在有理数上划分存在一种边界无法确定的情况,即把数轴上所有有理数划分为 A|A', 其中要求 A 中所有的有理数都小于 A' 中的有理数,在 A 中无最大有理数,且 A' 中无最小有理数,这种情况下无法确定划分两者的边界,所以引入了无理数的概念,约定上面这种特殊的划分情况定义了某个无理数的 α ,让这个 α 代替缺少的界数,把它插在了 α 里面一切数 α 和 α 里面一切数 α' 中间。

用上面这种思路来理解有理数也是可以的,对任意一有理数 r 存在两种确定它的划分,还是前面的划分方式即 a < r 在下组 A 中,a > r 在上组 A' 中,而有理数 r 本身可能含于 A 或者 A',如果在 A 中,即 A 中有最大有理数,反之在 A' 中,则有最小有理数.为了确定起见,在提及确定有理数 r 的时候,常把其置于固定的一组,即 A 和 A' 任选一个,以后一直用它,在这里取 a 在上组.

实数之间的序关系, 用划分它集合对应的包含关系来描述, 在有理数里面已经有这样的性质了, 再看一下无理数, 定义划分 A|A' 确定无理数 α , 划分无理数 B|B' 确定 β , 即对应下述三种关系

- 1. $\alpha = \beta$, $A \cap B = \beta$, $A' \cap B' = \beta$.
- $2. \alpha > \beta, A$ 包含 A'.
- 3. $\alpha < \beta$, A' 包含 A.

还有一个传递关系 $\alpha > \beta, \beta > \gamma$, 则 $\alpha > \gamma$, 这些性质都比较容易证明。

Lemma 1.1. 对于不论怎样地两个实数 α 和 β , 其中 $\alpha > \beta$, 恒有一个位于它们中间的有理数 $r: \alpha > r > \beta$.

证明. 这个性质更强了,两个实数 $(\alpha > \beta)$ 之间不仅有实数,还有有理数。来证明一下,定义 α 对应 A|A' 有理数域上的划分, β 对应 B|B',因为 $\alpha > \beta$,所以有 A 包含 B,所以可以在 A 上取一点有理数 r 它不含于 B,于是它属于 B',使得 $\beta \leq r < \alpha$,从 里面没有最大数 (按照前面的统一),所以把 r 取的大一点就可以把等号去掉. \square

开始进攻戴德金基本定理)

Theorem 1.2. 对于实数域内的任一划分 A|A' 必有产生这划分的实数 β 存在, β 或是下组 A 中最大数, 或是上组 A' 中最小数.

证明. 首先还是先把实数域上的划分规定先拿出来,定义 \mathbf{A} 和 \mathbf{A}' 是两个非空集合,每一个实数必落在 \mathbf{A} 或者 \mathbf{A}' 其中一个里面,且 \mathbf{A} 里面的数都大于 \mathbf{A}' 里面的数.

将 **A** 里面的一切有理数记为 A, **A**′ 里面的一切有理数记为 A′, 容易证明这样 A|A′ 是一个有理数域上划分,划分确定了一个实数 β . 它应该落在 **A** 或者 **A**′ 中,假设它落在 **A** 上,则它是 **A** 中的最大数,假设它不是最大数,则还存在一个 α_0 使得 $\alpha_0 > \beta$,根据前面的 lemma 两个实数之间又可以确定一个有理数 $\alpha_0 > r > \beta$,与前提有理数划分的界数矛盾,所以 β 是 **A** 中最大数.

数集的界

Theorem 1.3. 若数集 $\mathcal{X} = \{x\}$ 上 (下) 有界,则它必有上 (下) 确界.

证明. 我们分两种情况来看待这个问题. 如果 \mathcal{X} 存在一个最大数 \bar{x} , 对一切 $x \in \mathcal{X}$ 都有 $x \leq \bar{x}$. 这个时候 \bar{x} 是一个上界同时也是上确界.

如果 \mathcal{X} 中不存在这样的最大数,那么我们取 \mathcal{X} 的所有上界 α' 构成归入上组 \mathbf{A}' . 一切其他的实数归入下组 \mathbf{A} . 我们知道 \mathcal{X} 是都会落在下组 \mathbf{A} 中的,因为对于任意的 $x \in \mathcal{X}$,在当前前提下它都不可能是一个上界. 所以现在 \mathbf{A} 和 \mathbf{A}' 都是非空的. 那么现在实际上弄了实数上的一个划分出来,根据戴德金定理我们知道这样划分会产生一个界数 β ,无论这个界数落在 \mathcal{A} 或者 \mathcal{B} 里面也好,都可以用它作为这个独特的上确界,因为一切上界都大于等于它.

这里有一个小推论,clearly.

Corollary 1.4. 若数集 \mathcal{X} 有一个上界 M, 则 $\sup x \leq M$.

极限论

数列极限

数列,整序傻傻分不清....

Definition 2.1. 若对于每一整数 ε , 不论它怎样小,恒有序号 N, 使在 n>N 时,一切 x_n 的指满足不等式

$$|x_n - a| < \varepsilon$$

,则称常数 a 为整序变量 $x = x_n$ 的极限. a 是整序变量的极限这一事实,记成:

$$\lim x_n = a$$
 或者 $\lim x = a$

,也可以说这个序列收敛于 a

有一个很有趣的几何解释在这里,

以 a 点为中心的线段不论取的多小 (其长度为 2ε), 一切 x_n 点从某点起, 必全部落在这线段之内, 这样在线段之外一定只有有限长度个点了, 表示极限的点 a 表示整序变量的数值的点的凝聚中心.

无穷小量

Definition 2.2. 极限为零的整序变量 x_n 称为无穷小量,或简称无穷小.

这里有一个有趣的命题.

Proposition 2.3. 无限个无穷小之积不一定是无穷小.

它是一个自然语言的命题, 所以里面有一些争议. 先看一个一般性构造证明. 证明. 取一系列数列:

数列 $\{a_k\}$ 的第 n 项记为 $a_k(n)$, 其通项公式为

$$a_k(n) = \begin{cases} 1, & n < k \\ k^{k-1}, & n = k \\ \frac{1}{n}, & n > k \end{cases}$$

显然对于任意的 $k\in\mathbb{Z}^+$ 都满足 $\lim_{n\to\infty}a_k(n)=0$. 所以这一系列数列都是无穷小. 那么这一系列数列乘积的 第 n 项为

$$\begin{split} \prod_{k=1}^{\infty} a_k(n) &= \left(\prod_{k=1}^{n-1} a_k(n)\right) a_n(n) \left(\prod_{k=n+1}^{\infty} a_k(n)\right) \\ &= \left(\frac{1}{n}\right)^{n-1} \cdot n^{n-1} \cdot 1^{\infty} = 1. \end{split}$$

因此 $\lim_{n\to\infty} \prod_{k=1}^{\infty} a_k(n) = 1$.

但是有一个奇怪现象是什么呢? $\prod_{k=1}^n a_k(n)$ 中有一项 $a_n(n)=n^{n-1}$ 是一个无穷大,并不是无穷小. 奇怪的东西乱入了.

再看一个经典的无穷个无穷小之和:

$$\lim_{n \to \infty} \left(\frac{1}{n^2} + \frac{2}{n^2} + \frac{3}{n^2} + \dots + \frac{n}{n^2} \right) = \lim_{n \to \infty} \sum_{k=1}^n \frac{k}{n^2} = \lim_{n \to \infty} \frac{1+2+3+\dots+n}{n^2} = \lim_{n \to \infty} \frac{\frac{1}{2}n(n+1)}{n^2} = \frac{1}{2}.$$

定义 $b_k(n)=\frac{k}{n^2},\;$ 则 $b_n(n)=\frac{n}{n^2}$ 还是无穷小. 两个东西对比一下,你可能需要重新定义命题.

区间套

Lemma 2.4. 给定单调增数列 x_n 和单调减数列 y_n , 且恒有

$$x_n < y_n$$

若其差 $y_n - x_n$ 趋向于 0,则它们有公共有限极限:

$$c = \lim x_n = \lim y_n.$$

常用形式是取一个闭区间 [a,b], 然后在取一个区间 [a',b'] 使得

$$a \le a' < b' \le b$$

,则 [a',b'] 是套在 [a,b] 里面的. 设有一区间套的无穷序列

$$[a_1, b_1], [a_2, b_2], \cdots, [a_n, b_n], \cdots$$

后一个总是套在前面一个内, 并且在 n 增大时这些区间的长度趋向于 0:

$$\lim b_n - a_n = 0.$$

则区间的两端点 a_n 和 b_n 趋于共同极限

$$c = \lim a_n = \lim b_n$$
.

收敛原理

Theorem 2.5. 数列变量 x_n 有有限极限的充分必要条件是: 对于每一个数 $\varepsilon > 0$,存在序号 N,使得 n > N 及 n' > N,不等式

$$|x_n - x_{n'}| < \varepsilon$$

成立.

记录一下用分割法证明其必要性.

证明. 设前提条件都已经满足,在全体实数域下构造一个划分. 对于任何实数 α ,若 x_n 从某项其满足不等式

$$x_n > \alpha$$
,

则取这种实数 α 归入下组 A, 其余的 (即不落在 A 里面的) 一起实数归入上组 A'.

首先我们来说明这样确实产生了一个实数上的划分. 由前提条件, 对于任意数 $\varepsilon > 0$ 及其对应的 N. 若 n > N 及 n' > N, 则下面不等式成立

$$x_{n'} - \varepsilon < x_n < x_{n'} + \varepsilon$$

. 现在我们可以看到每一个数 $x_{n'}-\varepsilon$ 都是小于 x_n 的,所以它归入下组 A. 另一方面 $x_{n'}+\varepsilon$ 都大于 x_n ,所以 $x_{n'}+\varepsilon$ 放不进去 A,那它只能归入 A' 了,所以 A 和 A' 都是非空的.我们的划分方式对于每一个数 α 和确定 序列 x_n ,要么它属于 A 或者属于 A'. 同时 A 中实数都小于 A' 的实数.如果 $\alpha>\alpha', \alpha\in A, \alpha'\in A'$,则 x_n 从某一项其也都大于 a',这样就产生矛盾了.所以确实产生了一个实数上的划分.

根据戴德金基本定理,有实数 a 存在它是这两组数之间的界数,即

$$\alpha \leq a \leq \alpha'$$
.

我们注意到当 n > N 时, $x_{n'} - \varepsilon$ 是一个 α ,而 $x_{n'} + \varepsilon$ 是一个 α' . 所以我们有

$$x_{n'} - \varepsilon \le a \le x_{n'} + \varepsilon$$

. 即 $|x_{n'}-a| \le \varepsilon$,所以 $\lim x_n = a$.

Theorem 2.6. B.Bolzano-C.Weierstrass. 任何有界数列内恒能选出收敛于有限极限的部分极限.(有界序列一定有收敛子列)

证明. 假设一切 x_n 都位于界限 a 与 b 之间. 现在将 [a,b] 分为两半,则必有一半含有无限多个数列 x_n 里面的元素. 因为不是这样则数列 x_n 就有有限多个了. 用 $[a_1,b_1]$ 表示其中含有无限多个数列元素的那半个区间 (若两个区间都含有无限多个数列元素,任取一个即可). 类似的取在区间 $[a_1,a_2]$ 分出它的一半 $[a_2,b_2]$,使得它也含有

无限多个 x_n . 继续这种取法至无穷,在第 k 次分出的区间 $[a_k,b_k]$ 内同样也有无穷多个 x_n . 此外,第 k 个区间的长度为

 $\frac{b-a}{2^k}$

可以看到这个长度趋于 0 的,然后把区间套用在这里,就可以知道 a_k 和 b_k 是趋于某个公共极限 c. 也就是说从上面我们分出来的区间里面,都挑一个元素出来,构成的子列是取趋于某个极限的.

利用 BC 定理, 我们可以尝试把前面对收敛原理的证明可以写的更简单.

证明. 假设前提条件满足,即对任意的 $\varepsilon>0$,当 n>N,n'>N 时 $|x_n-x_{n'}|<\varepsilon$. 也就是

$$x_{n'} - \varepsilon < x_n < x_{n'} + \varepsilon.$$

可以看到 x_n 是有界的,可以想象把这个界限拉长把前 N 个 x_n 也包含进来. 假设从 $\{x_n\}$ 里面挑出来某个子列 $\{x_{n_k}\}$ 收敛于 c,即

$$|x_{n_k} - c| < \varepsilon.$$

当 $n_k > N, n > N$ 时,我们有

$$|x_n - x_{n_k}| < \varepsilon.$$

两式联立有

$$|x_n - c| < 2\varepsilon.$$

所以 x_n 也是收敛于 c 的.

一元函数

单调函数的极限

Definition 3.1. 单调函数分为广义的单调函数和严格的单调函数. 例如当 x > x' 有 $f(x) \ge f(x')$ 就是广义单调增函数,也叫不减函数 (菲砖). 与之对应的严格单调增函数就需要把前面这个不等式的等号去掉.

Theorem 3.2. 设 f(x) 在区域 \mathcal{X} 内单调增加,即使是广义的也可以. 区域 X 以大于一切 x 的数 a(它可以是有限的,也可以是 $-\infty$) 作为聚点. 若在这时 f(x) 上有界:

$$f(x) < M, \forall x \in \mathcal{X}.$$

则当 $x \to a$ 时函数有一有限的极限. 在与此相反的场合,它趋向于 $+\infty$.

证明. f(x) 有上界必有上确界 A. 给定任意的 $\varepsilon > 0$ 所以必存在一点 x' < a 使得 $f(x') > A - \varepsilon$. 另一方面我们 永远都有 $f(x) \le A < A + \varepsilon$. 故对满足上述条件的 x 有下面的不等式存在

$$|f(x) - A| < \varepsilon$$

由于 f(x) 单调增函数,所以当 x>x' 时有 f(x)>f(x'),即 $f(x)>f(x')>A-\varepsilon$. 这就是极限的定义 $\lim_{x\to a}=A$. 反过来你可以取 a 小于一切 $x\in\mathcal{X}$. f(x) 下有界,类似的下确界 A' 也可以得到类似的不等式 $|f(x)-A'|<\varepsilon$.

连续函数的性质

Lemma 3.3. E.Borel. 若闭区间 [a,b] 被一个开区间的无穷系 $\sum = \{\sigma\}$ 所覆盖,则恒能从 \sum 里面选出有限子系

$$\sum^* = \sigma_1, \sigma_2, \cdots, \sigma_n,$$

它同样可以覆盖全区间 [a,b].

证明. H.lebesgue's. 定义 x^* 为区间 [a,b] 中使得区间 $[a,x^*]$ 能用有限个区间 σ 来覆盖的点. x^* 肯定是存在,因为 a 就是,只要找一个包含 a 的开区间 σ 就行,这样想的话,又可以找到一群, σ 中接近 a 的都是这样的点.

所以我们的任务是证明 b 也是这样的一个 x^* . 因为一切 $x^* \le b$, 故亦有

$$\sup\{x^*\} = c \le b.$$

,因为 c 也是 [a,b] 中一点,同样可以找到包含它的开区间 $\sigma_0=(\alpha,\beta)$. 但依据上确界的性质,我们还可以找到 x^* 使得 $\alpha < x^* \le c$. 所以现在把 σ_0 来在加到有限个区间 σ 里面去,现在就可以覆盖区间 [a,c],也就是说上确界 c 也是 x^* .

而且 c 是不能小于 b 的,如果 c 小于 b,如果是这样 c 和 β 也可以找到一点 x^* ,这与 c 是上确界矛盾的. 这样,必须有 c=b,即 b 也是属于 x^* . 所以 [a,b] 可以被有限覆盖.

为什么 (a,b) 不是紧致的呢? 考虑 $(a+\frac{b-a}{n},b)$,任何一个 (a,b) 的真子集都可以被它覆盖,但是它不能有限覆盖 (a,b),因为如果有限就意味着我们能找到一个最大的开区间属于 (a,b),实际上这样的开区间并不存在. 但是如果我们加上 a 和 b,这种方式已经无法覆盖 a 和 b 两点了.

Compact means small. It is a peculiar kind of small, but at its heart, compactness is a precise way of being small in the mathematical world. The smallness is peculiar because, as in the example of the open and closed intervals (0,1) and [0,1], a set can be made "smaller" (that is, compact) by adding points to it, and it can be made "larger" (non-compact) by taking points away.

函数连续性和间断

函数 f(x) 在点 x_0 处右连续或者左连续

$$f(x_0 + 0) = \lim_{x \to x + 0} f(x) = f(x_0) \tag{1}$$

$$f(x_0 - 0) = \lim_{x \to x - 0} f(x) = f(x_0). \tag{2}$$

函数 f(x) 在点 x_0 有右间断或者左间断是指对应的上式不成立. 例如第一个式子不成立则是右间断.

函数连续的充要条件可以变成函数在点 x_0 处连续就是等于说它在这一点是同时左连续和右连续的.

如果 f(x) 在 x_0 处有有限极限 $f(x_0+0)$ 和 $f(x_0-0)$ 存在,但是它们均不等于 $f(x_0)$,则称 x_0 是这里是一个普通间断点或者第一类间断点 (跃度). 若极限 $f(x_0+0)$ 或者 $f(x_0-0)$ 是无穷或者根本不存在,则称 x_0 这里是第二类间断点.

Example 3.4. f(x) 定义在区间 [0,1] 上: 若 x 是无理数则 f(x)=0; 若 x 是有理数表示为不可约通分数 $\frac{p}{q}$ 则 $f(\frac{p}{a})=\frac{1}{n}$. 可以得到一个有趣的结论: f(x) 在任一有理数有普通间断点,任一无理数上连续.

事实上无论 x 取任意数 x_0 ,对于任意的 $\varepsilon > 0$,要使得 $f(x) < \varepsilon$,只需要取 $p > \frac{1}{\varepsilon}$. 不满足这样的正整数 p 只有有限多个. 我们找一个 x_0 的邻域 $(x_0 - \delta, x_0 + \delta)$ 把这些点排除在外,那么所有在这个邻域里面的点 (排除 x_0) 都可以满足 $|f(x)| < \varepsilon$. 即意味着

$$f(x_0+0) = f(x_0-0) = 0.$$

若 x_0 是一个有理数,则 x_0 是一个普通间断点. 反之若 x_0 是一个有理数则在 x_0 处连续.

单调函数的连续性和间断

Theorem 3.5. 单调增 (减) 函数 f(x) 在 \mathcal{X} 内若有间断,只能是第一种间断,即跃度.

证明. 取 \mathcal{X} 上任意一点 x_0 ,并设它不是 \mathcal{X} 的左端点. 则当 $x < x_0$ 时有 $f(x) \le f(x_0)$,此时 f(x) 是有界的,根据我们前面证明的单调函数的极限定理, f(x) 在 x_0 这里是有左极限存在 $\lim_{x \to x_0 \to 0} \le f(x_0)$ (上确界小于任意的上界).

设 x 也不是右端点,那么右极限当 $x>x_0$,有 $f(x)\geq f(x_0)$. 也有极限 $\lim_{x\to x_0+0}\geq f(x_0)$. 如果左右极限都等于 $f(x_0)$ 则 f(x) 在这点连续.

Theorem 3.6. 若单调函数 f(x) 在区间 \mathcal{X} 上对应的函数值充满整个区间 \mathcal{Y} (任意 $y \in \mathcal{Y}$ 都至少有一个 $f(x_0)$ 与之对应),则 f(x) 在 \mathcal{X} 上连续.

证明. 假设 f(x) 在 \mathbf{X} 上存在一间断点 x_0 ,我们知道这样的间断点只能是第一间断点. 即在 x_0 这一点两边都有极限但是不等于 $f(x_0)$. 在这种情况下我们需要找到一点 $y_0 \in \mathcal{Y}$ 它并不能被 f(x) 覆盖从而推出矛盾. 当 $x < x_0$ 时有 $f(x) < f(x_0)$. 这里我们就找出了这样 y 属于 $f(x) < y < f(x_0)$.

这个定理非常的有用,它可以很简单直接来描述一些单调初等函数的连续性,而不需要用定义来刻画.

连续函数的复合

一个有趣的方程的解

Example 3.7. 求定义在区间 $(-\infty, +\infty)$ 上满足

$$f(x+y) = f(x) + f(y)$$

的一切连续函数 f(x).

证明. 这个函数只能是 f(x) = cx.

函数连续性在计算极限时的应用

有三个比较重要的极限.

1. $\lim_{\alpha \to 0} \frac{\log_a(1+\alpha)}{\alpha} = \log_a e$

直接用对数函数的性质,把 α 放到对数函数里面就行,对数函数里面的极限是 e. 当 a=e 时极限的结果就是很漂亮的 1.

 $2. \lim_{\alpha \to 0} \frac{a^{\alpha} - 1}{\alpha} = \ln a$

遇到这样略微有些复杂的表达式,直接考虑换元. 让 $\beta=a^{\alpha}-1$,则 $\beta\to 0$. 原式就变成了 $\lim_{\beta\to 0}\frac{\beta}{\log_a(\beta+1)}$. 变成了上面我们熟悉样子.

3. $\lim_{\alpha \to 0} \frac{(1+\alpha)^{\mu} - 1}{\alpha} = \mu$

还是考虑换元,但是不要换的太彻底,适可而止即可. $\beta = (1 + \alpha)^{\mu} - 1$,其中 $\beta \to 0$. 我们可以得到一个 有趣的等式 $\mu \ln(1 + \alpha) = \ln(1 + \beta)$. 到这里就够了,不用把 β 把 α 表示出来. 我们把原式现在整理如下

$$\frac{(1+\alpha)^{\mu}-1}{\alpha}=\frac{\beta}{\alpha}=\frac{\beta}{\ln(1+\beta)}\cdot\frac{\ln(1+\alpha)}{\alpha}.$$

又变成了我们熟悉的样子,两边的极限都是 1,所以最后的整体的极限为 μ .

连续函数的性质

零点定理或者 Bolzano-Cauchy 第一定理.

Theorem 3.8. 函数 f(x) 在闭区间 [a,b] 上连续,且 $f(a) \cdot f(b) < 0$ 即两端函数值异号.则存在一点 c 使得 f(c) = 0.

证明. 在这里可以用上区间套,取 $c=\frac{a+b}{2}$,如果 f(c) 正好等于 c 那就太好了,我们一下子就找到了它. 如果 f(c) 并不等于 0,那么 $\left[a,\frac{a+b}{2}\right]$ 和 $\left[\frac{a+b}{2},b\right]$ 必有一个区间两端异号,我们再取这个区间的中间值. by induction,我们只需要研究最差的情况有 $\lim_{n\to\infty}(b_n-a_n)=0$,则存在极限 $\lim a_n=\lim b_n=c$. 再根据我们的取法还有 $f(a_n)<0$ 和 $f(b_n)>0$. 因为 f(x) 在 [a,b] 上连续,所以 f(x) 在 c 点是有极限存在的,并且左右极限是相等的,那么只能 $\lim f(c)=0$.

上面定理其实还有一种证法,但是需要给出一个小 lemma. 也就是连续保号的性质.

Lemma 3.9. 若函数 f(x) 在 $x = x_0$ 处连续,且 $f(x_0)$ 不等于 0,则对于充分接近 x_0 的一切 x 的函数值 f(x) 仍保持着在 $f(x_0)$ 的函数值.

证明. 根据连续的定义,任意的 $\varepsilon>0$,存在 $|x-x_0|<\delta$ 使得 $|f(x)-f(x_0)|<\varepsilon$ 成立. 若 $f(x_0)>0$,我们把这个不等式左边的绝对值拿到我们有 $f(x)>f(x_0)-\varepsilon$,只要我们让这个 ε 取的足够小,就能使得 $f(x_0)-\varepsilon>0$.即 $\varepsilon< f(x_0)$ 就行. 反之若 $f(x_0)<0$,有 $f(x)< f(x_0)+\varepsilon$,同样只要这个 ε 取的足够小,可以使得 $f(x_0)+\varepsilon<0$. 即 $\varepsilon<-f(x_0)$.

利用这个 lemma 再给出一种证明,这个证明也是我中意的.

证明. 现在我们从任意一个端点出发,例如我选点 a. 先假设没有这样的点 c 存在使得 f(c)=0. 并设 f(a)<0,我们可以选一个特殊的区间出来 [a,d],有上面这个 lemma 我们可以让这个区间里面所有的 x 都有 f(x)<0,那么这个 d 最大可以取到哪里呢? 肯定存在一个最大值,因为 f(b)>0,所以一定有 d
b. 我们现在考虑在这种情况下,充分接近 d 右边的 x 一定都有 f(x)>0,如果不是这样我们可以取更大的 d. 那么在 d 点这里,有 $\lim_{x\to d-0}<0$ 和 $\lim_{x\to d+0}>0$,这表示在这 d 这一点并不连续,与假设矛盾.

上面是我们子集的论证过程,其实有点模糊,再记录一下更正规的论证方式。还是设 f(a) < 0,我们可以取出所有 $f(\bar{x}) < 0$ 这样的 x. 因为 f(b) > 0,所以 $\{\bar{x}\}$ 上有界,我们取 $c = \sup\{\bar{x}\}$. 我们来探讨一下 f(c) 的大小,若是 f(c) < 0,根据前面的 lemma 在充分接近 c 的右边也存在 x 使得 f(x) < 0,这就和 c 是上确界矛盾了。同样 f(c) > 0,我们也可以在 c 的左边找到 f(x) > 0,这也和 c 是上确界矛盾.

导数及微分

导数常用的表示法.

- 1. $\frac{dy}{dx}$ 或 $\frac{df(x_0)}{dx}$ 莱布尼茨 (G.W.Leibniz);
- 2. y' 或者 $f'(x_0)$ 拉格朗日 (J.L.Lagrange);
- 3. Dy 或者 $Df(x_0)$ 柯西 (A.L.Cauchy).

常用导数求法和表示

- 1. 常函数的导数等于 0. 这个就非常 trivial 了.
- 2. $y=x^n$, 其中 n 是自然数. $y'=nx^{n-1}$. $y+\Delta y=(x+\Delta x)^n$ 这个式子二项式展开即可. 即 $x^n+nx^{n-1}\Delta x+\frac{n(n-1)}{1\cdot 2}x^{n-1}+\cdots$.
- 3. $y = \frac{1}{x}$. $y' = -\frac{1}{x^2}$. 直接用导数的基本定义就行.
- 4. $y = \sqrt{x}$. $y' = \frac{1}{2}x^{-\frac{1}{2}}$. 直接用导数的基本定义就行.
- 5. $y=x^{\mu}$, 其中 μ 是任意实数. $y'=\mu x^{\mu-1}$. $\frac{\Delta y}{\Delta x}=\frac{(x+\Delta x)^{\mu}-x^{\mu}}{\Delta x}=x^{u-1}\cdot\frac{(x+\frac{\Delta x}{x})^{\mu}-1}{\frac{\Delta x}{x}}.$ 其中左边极限是我们前面写过的一个重要极限值为 μ .
- 6. $y = a^x$, 其中 a > 0. $y' = a^x \cdot \ln a$. $\frac{\Delta y}{\Delta x} = \frac{a^{x + \Delta x} a^x}{\Delta x} = a^x \cdot \frac{a^{\Delta x} 1}{\Delta x}$. 最后等式做边又是我们熟悉的极限.

函数的增量公式

设 y = f(x). 在 x 的定义域上固定一个 x_0 , 用 $\Delta x \le 0$ 表示 x 的任意增量. 于是对应的函数的增量为

$$\Delta y = \Delta f(x_0) = f(x_0 + \Delta x) - f(x_0).$$

若 y = f(x) 在 x_0 处有有限的导数 $y'_x = f'(x_0)$. 则函数的增量可以表示如下的形式.

$$\Delta f(x_0) = f'(x_0) \cdot \Delta x + \alpha \cdot \Delta x.$$

或者更简短地

$$\Delta y = y_x' \cdot \Delta x + \alpha \cdot \Delta x.$$

式中的 α 是依赖 Δx 的变量,且随着 Δx 一同趋于零.

这个 α 是怎么来的呢? 在导数的定义中, $\Delta x \rightarrow 0$ 时,有

$$\frac{\Delta y}{\Delta x} \to y_x'.$$

故令

$$\alpha = \frac{\Delta y}{\Delta x} - y_x'.$$

这里可以看出来 $\alpha \to 0$. 通过这个等式把 Δy 表示出来就是前面的等式. 因为 $\alpha \cdot \Delta x$ 是比 Δ 更高阶的无穷小. 故上面的等式还可以改成写

$$\Delta y = y_x' \cdot \Delta x + o(\Delta x).$$

这个式子相对来说就非常简洁了.

复合函数的导数

设函数 $\mu=\varphi(x)$ 在某一点 x_0 处有导数 $u_x'=\varphi'(x_0)$. 函数 $y=f(\mu)$ 在对应的 $\mu_0=\varphi(x_0)$ 也有导数 $y_u'=f'(u_0)$. 于是复合函数 $y=f(\varphi(x))$ 在 x_0 处亦有导数

$$[f(\varphi(x_0))]' = f_u'(\varphi(x_0)) \cdot \varphi'(x_0).$$

或者

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}.$$

证明. 先根据导数的定义来求 Δy . 给 x 以任意增量 Δx , Δu 是函数 $u = \varphi(x)$ 对应增量,最后 Δy 是由增量 Δu 所引起的函数 y = f(u) 的增量. 根据函数增量公式我们有

$$\Delta y = y_u' \cdot \Delta u + \alpha \cdot \Delta u.$$

然后两边都除以 Δx

$$\frac{\Delta y}{\Delta x} = y_u' \cdot \frac{\Delta u}{\Delta x} + \alpha \cdot \frac{\Delta u}{\Delta x}.$$

当 $\Delta x \to 0$ 时, $\frac{\Delta u}{\Delta x}$ 就是 u_x' ,而 $\alpha \cdot \frac{\Delta u}{\Delta x}$ 是一个趋于 0 高阶无穷小. 所以最后

$$\lim_{\Delta \to 0} \frac{\Delta y}{\Delta x} = y_u' \cdot \lim_{\Delta \to 0} \frac{\Delta u}{\Delta x} = y_u' \cdot u_x'.$$

这个式子也是我们常说的链式法则(记得在以前在看 mit 的微积分的时候,那个代课老师在讲链式法则的时候,突然拿了一条真的链子出来.说这个法则的强大在于让我们挣脱了链子的束缚...),可以推广到任意有限个函数复合的情形.我们可以尝试来推一下二阶链式法则.

 $\left(\frac{dy}{dx}\right)' = \left(\frac{dy}{du}\right)' \cdot \frac{du}{dx} + \frac{dy}{du} \cdot \left(\frac{du}{dx}\right)'$ $= \frac{d^2y}{du^2} \cdot \frac{du}{dx} \cdot \frac{du}{dx} + \frac{dy}{du} \cdot \frac{d^2u}{dx^2}$ $= \frac{d^2y}{du^2} \cdot \left(\frac{du}{dx}\right)^2 + \frac{dy}{du} \cdot \frac{d^2u}{dx^2}$ (3)

高阶导数及高阶微分

二阶微分记为:

$$d^2y = d(dy).$$

二阶微分的微分记为:

$$d^3y = d(d^2y).$$

一般地说,函数 y = f(x) 的 (n-1) 阶微分的微分称为函数 y = f(x) 的 n 阶微分

$$d^n y = d(d^{n-1}y).$$

在求高阶微分时很重要的一件事,是要记住 dx 是不依赖于 x 的任意的数,关于 x 而微分时必须把它看成常数因子. 在这种情形,将有

$$\begin{split} d^2y = d(dy) = d(y' \cdot dx) = dy' \cdot dx = (y'' \cdot dx) \cdot dx = y'' \cdot dx^2, \\ d^3y = d(d^2y) = d(y'' \cdot dx^2) = dy'' \cdot dx^2 = (y''' \cdot dx) \cdot dx^2 = y''' \cdot dx^3. \end{split}$$

很容易可以猜出普遍规律是

$$d^ny=y^{(n)}\cdot dx^n.$$

由它可以进一步推得

$$y^{(n)} = \frac{d^n y}{dx^n}.$$

但是高阶微分没有形式不变性,即若 $x=\varphi(t)$,于是 y 可以看成 t 的复合函数 $y=f(\varphi(t))$. 它关于 t 的一阶微分可以写成

$$dy = y'_x \cdot dx$$

其中 $dx = x'_t \cdot dt$. 再求它关于 t 的二阶微分

$$d^2y = d(y_x'\cdot dx) = dy_x'\cdot dx + y_x'\cdot d(dx) = y''\cdot dx + y_x'\cdot d^2x.$$

这才是二阶微分的一般形式. 之前的高阶微分形式 x 是自变量, 所以 $d^2x = 0$.