Types of data, and input for assessment models

FISH 576, Winter 2025, Week 1

Looking ahead

- This week, you will read the assessment reports for widow and yelloweye rockfish.
- Next week, you will divide into two stock assessment teams
- As a team, you will decide who does what tasks
- During this lecture and as you read, consider what you would like to help with

One goal of stock assessment

 Assimilate all information to understand the system and provide management advice

- Use the data to outline hypotheses to be tested during modeling
 - Data will inform model structure(s)

General sources of information

- Scientific understanding
 - Fundamentals of population dynamics
 - Literature
- Data
 - Fishery monitoring and survey data
 - Fit model to data or use as forcing functions
- Similarities with other species
 - E.g. borrow natural mortality from a similar species
 - Used to fix or provide information on model parameters or structure
- Expert opinion
 - A historian considers catch to be substantial for many years before historical records were kept
 - Used to refine assumptions and model structure
- Anecdotes
 - A fisherman notes that after a vessel buyback CPUE increased for the vessels left in the fishery.
 - Used to develop conceptual model, refine assumptions, and structure assessment model.

Quantitative data sources

- Removals
- Size and age-composition of removals
- Relative or absolute estimate of abundance
 - Fishery independent or dependent
- Size and age-composition from surveys
- Other biological information
 - Maturity, fecundity, weight-length relationship, etc.
- Ecosystem data

Main west coast data sources

- PacFIN: Pacific fisheries information network, commercial data since 1981
- RecFIN: Recreational fisheries information network, recreational data since ~1981 (spans multiple sampling programs)
- **ASHOP:** At-sea hake observer program, data for Pacific hake catcher-processors and motherships. (Shoreside hake fishery is in PacFIN.)
- WCGOP: West coast groundfish observer program, observes commercial fisheries since 2002
- GEMM: Groundfish Expanded Mortality Multiyear, estimate of dead catch (landings and discards) by sector and species
- WCGBTS: West coast groundfish bottom trawl survey, most common current source of fishery-independent data for west coast groundfish

Landings

- History of removals
 - We usually go back to the start of the fishery
 - Other assessments may estimate a fished initial condition
- Stratified, where appropriate, by area, fishing gear, etc.
 - Model assumes ages/sizes within a fleet are homogenous
- Data sources: PacFIN, RecFIN, ASHOP, historical state reconstructions
- Tools: R data manipulation

Discards

- Many ways to account for this, depends on fishery dynamics and available data
- Three main options
 - 1. Add estimates of dead discards to landings.
 - 2. Include separate discard fleet with a selectivity curve.
 - 3. Estimate retention curve and fit discard fractions/amounts.
- Yelloweye model uses option (1) and widow model option (3)
- Data sources: WCGOP, GEMM, RecFIN
- Tools: R data manipulation, WCGOP data is pre-processed

Indices of abundance

- Fishery-independent
 - Methods to standardize each survey's data are established,
 will run data for your species or receive the index time series
 - Data Source: WCGBTS, historical surveys, recruitment survey, others
 - Tools: {indexwc}, {sdmTMB}
- Fishery-dependent
 - Requires more species-specific analysis
 - Data Source: Rec observer programs, WCGOP, others
 - Tools: {sdmTMB}, other regression functions/packages

Age and length composition data

Can be useful for estimating:

- Recruitment
- Growth/size at age
- Natural and fishing mortality rates
 - Truncation/expansion of age structure over time
- Fishery and Survey selectivity

Importance of Age Data

- Asymptotic length reached decades before maximum age
- Age determination is vital to understanding population structure

Example: sablefish

Investigating Length and Age Data

- N trips, N fish -> Input N for assessment
- How will samples from different areas be combined?
 - Weighted by trip or market category within trip and then state landings
- Sexed and unsexed data, changes over time?
 - Often have sexed age comps
 - May have unsexed length comps

Age and length data sources

- Fishery
 - Data Sources: PacFIN, RecFIN, ASHOP
 - Tools: {PacFIN.Utilities}, R data manipulation
- Survey
 - Data Sources: WCGBTS, historical surveys
 - Tools: {nwfscSurvey}

Other biological data

- Maturity at length/age
- Fecundity at length/age
- Weight at length
- Natural mortality and stock-recruit steepness
 - Either estimated in the model (can be hard) or based on a meta-analysis
- Update if new data/priors are available, otherwise retain from previous assessment

Concluding thoughts

- ~80% of your time will be spent on data issues
- Data will arrive late
- Keep asking questions until you are satisfied
- Do not be satisfied easily
- When your model does not fit the data ask more questions about how the data were collected or prepared.
- Try to use the data at it is collected (e.g. lengths) rather than derived data products (e.g. lengths converted to ages)
- Identify data needs to be collected for future assessments