

Sampling and Aliasing

Itthi Chatnuntawech

The Sampling Theorem

Communication in the Presence of Noise*

CLAUDE E. SHANNON†, MEMBER, IRE

Theorem 1: If a function f(t) contains no frequencies higher than W cps, it is completely determined by giving its ordinates at a series of points spaced 1/2W seconds apart.

If a function $x_c(t)$ contains no frequencies higher than W Hz, then it can be completely determined from $x[n] = x_c(nT)$ if $T < \frac{1}{2W}$.

$$f_s = \frac{1}{T} > 2W$$
 The Nyquist rate - $2W$
The Nyquist frequency - W

Speaker: Itthi Chatnuntawech

Module: Signal Processing

The Sampling Theorem

Looking at the magnitude plot in the frequency domain, we can see that this signal has non-zero values between -8 Hz and 8 Hz (inclusive)

$$f_s = \frac{1}{T} > 2W \text{ and } W = 8$$

$$f_s > 16 \text{ Hz}$$

The Nyquist rate = 16 Hz

Use $f_s > 16$ Hz.

sampling rate = 128 Hz

sampling rate = 64 Hz

100

125

75

Speaker: Itthi Chatnuntawech

Module: Signal Processing

25

-25

100

125

75

The Nyquist rate = 16 Hz

Use $f_s > 16$ Hz.

sampling rate = 128 Hz

x[n] x[n]

Time domain

Frequency domain

Zoomed freq domain

0 25

Module: Signal Processing

สร้างคน ข้ามพรมแด

The Nyquist rate = 16 Hz

Use $f_s > 16$ Hz.

sampling rate = 128 Hz

sampling rate = 16 Hz

Speaker: Itthi Chatnuntawech

75

100

125

Module: Signal Processing

25

50

-50

The Nyquist rate = 16 Hz

Use $f_s > 16$ Hz.

sampling rate = 128 Hz

sampling rate = 8 Hz 0.4

MRI Acquisition and Reconstruction

- The acquired data are the DFT samples of the object being imaged
- If the sampling rate is high enough, the image can be reconstructed by applying the inverse DFT to the k-space data

ซร้างคน ข้ามพรมแดน

Undersampling

Fully sampled acquisition

Uniformly undersampled (one direction)

Artifact (one direction) Artifact (two directions)

Uniformly undersampled (two directions)

Randomly undersampled

2D-IDFT

Noise-like artifact

Reconstructed data (image-space)

Acquired data

(k-space)

Speaker: Itthi Chatnuntawech

Module: Signal Processing

