تمایش اعداد

سيستم نمايش اعداد

:(base) مبنا

 $(379)_{10}$: -

- باينري: $_{2}$ (01011101)

 $(372)_8$:اكتال

 $(23D9F)_{16}$: هگزادسیمال –

A=10, B=11, ..., F = 15 -

• نيازها:

😝 محاسبات در هر سیستم

← تبدیل از یک سیستم به سیستم دیگر

سیستم نمایش اعداد (دسیمال)

اعداد دسیمال:

دو بخش صحیح و اعشاري

 $A_{n-1} A_{n-2} ... A_1 A_0 .A_{-1} A_{-2} ... A_{-m+1} A_{-m}$

که A_i عددي بين 0 تا 9 و با وزن A_i است.

سیستم نمایش اعداد (دسیمال)

The value of

$$A_{n-1}$$
 A_{n-2} ... A_1 A_0 . A_{-1} A_{-2} ... A_{-m+1} A_{-m} is calculated by

$$\sum_{i=n-1..0} (A_i * 10^i) + \sum_{i=-m..-1} (A_i * 10^i)$$

مثال:

$$(126.53)_{10}$$

$$= 1*10^{2} + 2*10^{1} + 6*10^{0} + 5*10^{-1} + 3*10^{-2}$$

سيستم نمايش اعداد (حالت كلي)

"base" r (radix r)

•
$$N = A_{n-1} * r^{n-1} + A_{n-2} * r^{n-2} + ... + A_1 * r + A_0 + A_{-1} * r^{-1} + A_{-2} * r^{-2} + ... + A_{-m} * r^{-m}$$

Most Significant Digit (MSD) Least / Significant Digit (LSD)

سیستم نمایش اعداد (حالت کلی)

r=6: مثال

$$(312.4)_6 = 3*6^2 + 1*6^1 + 2*6^0 + 4*6^{-1}$$

= $(116.66)_{10}$

◄ تبدیل از مبنای r به مبنای 10 با رابطة بالا انجام می شود.

اعداد باينري (مبناي 2)

> كامپيوترها داده ها را به صورت رشته اي از "بيت ها" نمايش مي دهند.

- بیت: 0 یا 1

مبناي 2: ارقام 0 يا 1

• مثال:

$$(101101.10)_{2} = 1*2^{5} + 0*2^{4} + 1*2^{3} + 1*2^{2} + 0*2^{1} + 1*2^{0} + 1*2^{-1} + 0*2^{-2}$$
(in decimal) = 32 + 0 + 8 + 4 + 0 + 1 + \frac{1}{2} + 0
= (45.5)_{10}

اعداد باينري

```
32 16 8 4 2 1 .5 .25 .125 .0625 (1\ 1\ 0\ 1\ 0\ 1\ 0\ 1\ )_{B} = (53.6785)_{D}
```

توان هاي 2

n	2 ⁿ	n	2 ⁿ	n 2 ⁿ
0	1	8	256	16 65,536
1	2	9	512	17 131,072
2	4	10	1,024	18 262,144
3	8	11	2,048	19 524,288
4	16	12	4,096	20 1,048,576
5	32	13	8,192	21 2,097,152
6	64	14	16,384	22 4,194,304
7	128	15	32,768	23 8,388,608

Memorize at least through 212

اعداد اكتال (مبناي 8)

• مبناي 8:

√ ارقام 0 تا 7

• مثال:

$$(762)_8 = 7*8^2 + 6*8^1 + 2*8^0$$

(in decimal) = 448 + 48 + 2
= (498)₁₀

اعداد هگزادسیمال (مبنای 16)

• مبناي 16:

0, ..., 9, A, B, C, D, E, F ارقام • مثال ا

$$(3FB)_{16} = 3*16^2 + 15*16^1 + 11*16^0$$

(in decimal) = 768 + 240 + 11
= (1019)₁₀

تبديل مبناها

◄ مر مبنا (r) ← دسیمال: آسان (گفته شده)

 $r \rightarrow \alpha c$ Annually $r \rightarrow \alpha c$

← دسيمال ← باينري

ightharpoonup باینری و برعکس ightharpoonup

 \Rightarrow هگزادسیمال \Rightarrow باینري و برعکس

تبدیل دسیمال به هر مبنای ۲

$$34,761_{10} = (?)_{16}$$

- بخش صحيح: تقسيم متوالي بر r
- خو اندن باقیمانده ها به بالا.

$$34,761_{10} = 87C9_{16}$$

تبدیل دسیمال به هر مبنای ۲

 $0.78125_{10} = (?)_{16}$

- بخش اعشاري: ضرب متوالي در r
- خواندن بخش صحیح ها به پایین.

$$0.78125 \times 16 = 12.5 \quad \text{int} = 12 = C$$

$$0.5 \times 16 = 8.0 \quad \text{int} = 8$$
Read down

$$0.78125_{10} = 0.C8_{16}$$

تبدیل دسیمال به هر مبنای ۲

• مثالي ديگر

$$0.1_{10} = (?)_2$$

$$0.1 \times 2 = 0.2$$
 int = 0

$$0.2 \times 2 = 0.4$$
 int = 0

$$0.4 \times 2 = 0.8$$
 int = 0

$$0.8 \times 2 = 1.6$$
 int = 1

$$0.6 \times 2 = 1.2$$
 int = 1

$$0.2 \times 2 = 0.4$$
 int = 0

$$0.4 \times 2 = 0.8$$
 int = 0

$$0.1_{10} = 0.00011_{2}$$

Read down

اعداد در مبناهاي مختلف

Decimal (base 10)	Binary (base 2)	Octal (base 8)	Hexadecimal (base 16)
00	0000	00	0
01	0001	01	1
02	0010	02	2
03	0011	03	3
04	0100	04	4
05	0101	05	5
06	0110	06	6
07	0111	07	7
08	1000	10	8
09	1001	11	9
10	1010	12	Α
11	1011	13	В
12	1100	14	С
13	1101	15	Ď
14	1110	16	E
15	1111	17	F

Memorize at least Binary and Hex

دسيمال 🗕 باينري

- فرض: N یک عدد دسیمال
- 1. بزرگترین عددی که توان 2 است و با تفریق آن عددی مثبت (N_1) حاصل می شود پیدا کن.
- 2. یک عدد 1 در MSB (محل ارزش عدد) قرار بده.
 - N_1 عدد N_1 تكرار كن.
 - ← در بیت مربوط عدد 1 قرار بده.
 - ◄ وقتي اختلاف صفر شد توقف كن.

دسيمال 🗕 باينري

• مثال:

•
$$N = (717)_{10}$$

$$717 - 512 = 205 = N_{1}$$

$$205 - 128 = 77 = N_{2}$$

$$77 - 64 = 13 = N_{3}$$

$$13 - 8 = 5 = N_{4}$$

$$5 - 4 = 1 = N_{5}$$

$$1 - 1 = 0 = N_{6}$$

$$7717 - 64 = 13 = N_{3}$$

$$13 - 8 = 5 = N_{4}$$

$$13 - 8 = 5 = N_{4}$$

$$13 - 8 = 5 = N_{4}$$

$$14 = 2^{2}$$

$$1 - 1 = 0 = N_{6}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0}$$

$$1 = 2^{0$$

باینري به اکتال باینري به هگز

• باينري به اكتال

$$8 = 2^3 <$$

 \rightarrow هر 3 بیت باینری به یک بیت اکتال تبدیل می شود.

• باينري به هگزادسيمال

→ هر 4 بیت باینري به یک بیت هگزادسیمال

<u>تبدیل مي شود.</u>

Binary ↔ Octal

 $(11010101000.1111010111)_2$

Binary ↔ Hex

Octal ↔ Hex

• ازطریق باینري انجام دهید:

 $Hex \rightarrow Binary \rightarrow Octal$ Octal $\rightarrow Binary \rightarrow Hex$

تبدیل ها (مثال)

• جدول را پر کنید:

Decimal	Binary	Octal	Hex
329.3935	?	?	?
?	10101101.011	?	?
?	?	336.5	?
?	?	?	F9C7.A