

a distributed system - collection of independent' entries that "looperate" to solve a problem.

- * No common physical clock
- " no shared memory
- · gautonomy & heterogenity
- · geographical deparation

"Independent"

wankly coupled

strongly coupled

WAN

LAN

very strongly coupled multiprocessor systems

Coloributed execution)

- * inherently distributed computations (wanty)
- " resource shoring (went primer)
 - * access to geographically remote data & resources
 - " enhanced "reliability" (interest)
- * increased performance / cost ratio
 - modularity and incremental expandability (12)

(some multiprocessor system - multiple processors w/ Shared memory-

to rap - around 20 -mash (torus)

hypercube of dimension 1.

FLYNN'S TAXONOMY

- · coupling · interdependency. I bonding among modules
- · parallelism 1 time processors are busy.
- * concurrency multiple ops , not necessarily at once
- * granularity computation communication ratio

SHARED MEMORY SYSTEM

- · shared address space
- · use semaphores and monitors
- · Conceptually endier
- · can emulate message passing,

MESSAGE PASSING SYSTEM

- . Separated address space
- · can emulate (distributed) shared memory

BLOCKING SYNC SEND. BLOCKING RECEIVE

BLOCKING ASTNC GEND

- · send (destination, buffer)
- buffered or unsuffered

NONBLELAIND SYNC SEND , NONBLOCKING RECEIVE

NONBLOCKING ASYNC GEND

- · recieve Cource; buffer)
 - normally buffored

processor synchrony - processors execute in synchronized steps (apo shader)

ASYNCHRONORS EXECUTION

- · no processor synchrong.
- no bound on drift rate of proc. clocks
- · message delays are unbounded
- · execution time is unbounded.

STREMENOUS EXECUTION

- * processors are synchronized
- · drift rate of proc. clocks is bounded
- message delays occur within one step
- · execution time is bounded
- · algorithms easier to design be verify
- . difficult to build (often emulated)

SYSTEMS CHALLENGES

· naming

- · Synchronization
- · data storage & occess · consistency & replication
- · fooit tolerance
- · security
- · API & transparency

· scalability & modolarity.

ALGORITHMIC CHALLENGES

- · designing useful models & frameworks
- * dynamic distributed graph algorithms & distributed routing algorithms
- * time & global state in a distributed egistem
- · Synchronization / coordination mechanisms
 - physical clock synchronization leader election

- mutual exculusion

- deadlock detection and resolution

- termination detection.

- garbage collection
- · group communication, mutticast, and ordered message delivery
- · monitoring distributed events & predicates
- · distributed program design & verification tools
- · debugging distributed programs
- · data replication, consistency models & caching
- · world wide coeb design caching, searching, scheduling
- · distributed shared memory abstraction
 - wait-bree algorithms

- mutual exclusion

- register constructions

- · consistency models
- · reliable and bault-tolerant distributed systems
 - consensus algorithms

- replication & replica management

- voting & quorum systems

- distributed DBs & dustr. commit-

" Salb-stabilizing systems

· Checkpointing & receiving algos

- bailure detectors
- · load balancing
 - * clata migration
- computation migration distributed schedoling
- · real-time schooling
- · perbormance
 - metrics

- measurement methods / tools

APPLICATIONS.

- · mobile systems
- · ubiquitous / pervasive computing
- · peer-to-peer computing

· sensor networks

- · publish-sobscribe, content-distribution & multimedia
- · distributed agents
- · grid computing

- · distributed data mining
- * security in distributed systems

PROJECT