

FORMALE SYSTEME

ÜBUNG 5

Eric Kunze
eric.kunze@tu-dresden.de

TU Dresden, 18. November 2021

Aufgabe 1: *NFA* → *RegExp*

$NFA \rightarrow REGEXP$: ERSETZUNGSMETHODE

Gegeben: NFA $\mathcal{M} = \langle Q, \Sigma, \delta, Q_0, F \rangle$

Gesucht: regulärer Ausdruck α mit $\mathbf{L}(\alpha) = \mathbf{L}(\mathcal{M})$

Idee:

Für jeden Zustand $q \in Q$, berechne einen regulären Ausdruck α_q für die Sprache $\mathbf{L}(\alpha_q) = \mathbf{L}(\mathcal{M}_q)$ mit $\mathcal{M}_q = \langle Q, \Sigma, \delta, \{q\}, F \rangle$

Für Startzustände $Q_0 = \{q_1, q_2, \dots, q_n\}$ gilt dann

$$\mathbf{L}(\mathcal{M}) = \bigcup_{q \in Q_0} \mathbf{L}(\alpha_q) = \mathbf{L}(\alpha_{q_1} \mid \alpha_{q_2} \mid \dots \mid \alpha_{q_n})$$

- (1) **Vereinfache den Automaten** (entferne offensichtlich unnötige Zustände)
- (2) Bestimme das Gleichungssystem

Intuition: Beschreibe α_q in Abhängigkeit von Folgezuständen

- ho Für jeden Zustand $q \in Q \setminus F$: $\alpha_q \equiv \sum_{\mathbf{a} \in \Sigma} \sum_{p \in \delta(q, \mathbf{a})} \mathbf{a} \alpha_p$
- ightharpoonup Für jeden Zustand $q \in F$: $\alpha_q \equiv \varepsilon \mid \sum_{\mathbf{a} \in \Sigma} \sum_{p \in \delta(q, \mathbf{a})} \mathbf{a} \alpha_p$
- (3) Löse das Gleichungssystem durch Einsetzen und

Regel von Arden: Aus $\alpha \equiv \beta \alpha \mid \gamma \text{ mit } \varepsilon \notin \mathbf{L}(\beta) \text{ folgt } \alpha \equiv \beta^* \gamma.$

(4) Gib den Ausdruck für die Sprache des NFA an

Für
$$Q_0 = \{q_1, q_2, \dots, q_n\}$$
 gilt dann

$$\mathbf{L}(\mathcal{M}) = \bigcup_{q \in Q_0} \mathbf{L}(\alpha_q) = \mathbf{L}(\alpha_{q_1} \mid \alpha_{q_2} \mid \cdots \mid \alpha_{q_n})$$

Gegeben ist der DFA $\mathcal{M} = \langle \{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_0\} \rangle$ mit δ :

Geben Sie einen regulären Ausdruck α an, der die von \mathcal{M} akzeptierte Sprache repräsentiert, d.h. es gilt $L(\alpha) = L(\mathcal{M})$.

Hinweis: Zur Lösung können Sie die Ersetzungsmethode verwenden: geben Sie hierzu für jeden Zustand q_i des Automaten eine Gleichung $\alpha_i = \ldots$ an. Lösen Sie anschließend das Gleichungssystem mithilfe des *Arden-Lemmas*.

Aufgabe 2:

Minimierung von Automaten

ÄQUIVALENZ VON ZUSTÄNDEN & QUOTIENTENAUTOMAT

$$\mathsf{DFA}\ \mathcal{M} = \langle Q, \Sigma, \delta, q_0, F \rangle \leadsto \mathsf{DFA}\ \mathcal{M}_q = \langle Q, \Sigma, \delta, q, F \rangle$$

Äquivalenz von Zuständen: $p \sim_{\mathcal{M}} q \quad \Leftrightarrow \quad \mathbf{L}(\mathcal{M}_p) = \mathbf{L}(\mathcal{M}_q)$

Äquivalenzklasse: $[q]_{\sim} = \{p \in Q \mid q \sim p\}$ Quotient von $P \subseteq Q$: $P/_{\sim} = \{[p]_{\sim} \mid p \in P\}$

Quotientenautomat: Verschmelzen von äguivalenten Zuständen

Für einen DFA $\mathcal{M}=\langle Q,\Sigma,\delta,q_0,F\rangle$ mit totaler Übergangsfunktion ist der Quotientenautomat $\mathcal{M}/_{\!\!\sim}=\langle Q/_{\!\!\sim},\Sigma,\delta_{\sim},[q_0]_{\sim_{\mathcal{M}}},F/_{\!\!\sim}\rangle$ gegeben durch

- $\blacktriangleright F/_{\sim} = \{ [q]_{\sim} \mid q \in F \}$

Bestimmung von \sim :

- ▶ Initialisiere $\checkmark := \emptyset$
- ▶ **Regel 1**: Für jedes Paar von Zuständen $\langle q, p \rangle \in Q \times Q$: falls $q \in F$ und $p \notin F$, dann "speichere $q \nsim p$ "
- ▶ **Regel 2**: Für jedes Paar $\langle q, p \rangle \in Q \times Q \setminus \not\sim$ und jedes $\mathbf{a} \in \Sigma$: falls $\delta(q, \mathbf{a}) \not\sim \delta(p, \mathbf{a})$ dann "speichere $q \not\sim p$ "
- ► Wiederhole Regel 2 bis keine Änderungen mehr auftreten
- ▶ Das Ergebnis ist $(Q \times Q) \setminus \%$

Beispiel: Für einen DFA mit Zuständen $Q = \{A, B, C, D, E\}$ genügt eine Tabelle mit zehn Feldern (statt $5^2 = 25$).

Reihenfolge)

Gegeben ist der ε-NFA $\mathcal{M} = (\{q_0, q_1, q_2, q_3, q_4\}, \{a, b\}, \Delta, \{q_0\}, \{q_2\})$ mit Δ:

- a) Konstruieren Sie einen zu $\mathcal M$ äquivalenten DFA $\mathcal M'$.
- b) Geben Sie den zu \mathcal{M}' reduzierten DFA \mathcal{M}'_r an.

Aufgabe 3:

Nerode-Rechtskongruenz

NERODE-RECHTSKONGRUENZ

```
Nerode-Rechtskongruenz \simeq_{\mathbf{L}} \subseteq \Sigma^* \times \Sigma^*:

u \simeq_{\mathbf{L}} v falls uw \in \mathbf{L} \Leftrightarrow vw \in \mathbf{L} \quad \forall w \in \Sigma^*
```

Satz (Myhill & Nerode): Eine Sprache **L** ist genau dann regulär, wenn $\simeq_{\mathbf{L}}$ endlich viele Äquivalenzklassen hat.

Myhill-Nerode-Minimalautomat $\mathcal{M}_{L} = \langle Q, \Sigma, \delta, q_0, F \rangle$ mit:

- $q_0 = [\varepsilon]_{\simeq}$
- $\blacktriangleright F = \{[w]_{\simeq} \mid w \in \mathbf{L}\}$

Gegeben ist der reguläre Ausdruck $\alpha = (bb)^*a$.

- 1. Geben Sie für α die *Nerode*-Rechtskongruenz $\simeq_{L(\alpha)}$ an.
- 2. Geben Sie einen minimalen DFA \mathcal{M} an mit $L(\mathcal{M}) = L(\alpha)$.

Beweis von Nichtregularität

Aufgabe 4

BEWEIS VON NICHTREGULARITÄT

Satz (Myhill & Nerode): Eine Sprache **L** ist genau dann regulär, wenn $\simeq_{\mathbf{L}}$ endlich viele Äquivalenzklassen hat.

BEWEIS VON NICHTREGULARITÄT

Satz (Myhill & Nerode): Eine Sprache **L** ist genau dann regulär, wenn $\simeq_{\mathbf{L}}$ endlich viele Äquivalenzklassen hat.

Satz: Wenn L_1 und L_2 regulär sind, dann auch $L_1 \cap L_2$, $L_1 \cup L_2$, L_1^* und \overline{L}_1 .

BEWEIS VON NICHTREGULARITÄT

Satz (Myhill & Nerode): Eine Sprache **L** ist genau dann regulär, wenn $\simeq_{\mathbf{L}}$ endlich viele Äquivalenzklassen hat.

Satz: Wenn L_1 und L_2 regulär sind, dann auch $L_1 \cap L_2$, $L_1 \cup L_2$, L_1^* und \overline{L}_1 .

Satz (Pumping-Lemma): Für jede reguläre Sprache **L** gibt es eine Zahl $n \geq 0$, so dass gilt: für jedes Wort $x \in \mathbf{L}$ mit $|x| \geq n$ gibt es eine Zerlegung x = uvw mit $|v| \geq 1$ und $|uv| \leq n$, so dass: für jede Zahl $k \geq 0$ gilt: $uv^k w \in \mathbf{L}$

Welche der folgenden Sprachen sind regulär? Begründen Sie Ihre Antwort.

```
a) L_a = \{ww^R : w \in \{0, 1\}^*\}
b) L_b = \{\mathbf{a}^n \mathbf{c}^m \mathbf{b}^n : n, m \ge 0\}
c) L_c = \{w \in \{0, 1\}^* : |w|_0 \text{ gerade}, |w|_1 \text{ durch 3 teilbar}\}
d) L_d = \{w \in \{0, 1\}^* : \text{ auf jede 0 folgt eine 1}\}
e) L_e = \{0^{n^2} : n \ge 0\}
f) L_f = \{0^m \mathbf{1}^n \mathbf{0}^{n+m} : n, m > 1\}
```