

c)	prim = 1,3323 A
	$ \eta = \frac{\rho_{\text{out}}}{\rho_{\text{in}}} \times 100\% = \frac{93.4051\%}{\rho_{\text{in}}} $ $ \rho_{\text{source}} = \rho_{\text{out}} + \rho_{\text{oni}} + \rho_{\text{oni}} = 108\%.3569 $
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	$ \Lambda_{1} = \frac{S_{T} \cdot \rho F 1}{S_{T} \cdot \rho F 1 + \rho_{loss}} \qquad \rho_{loss} = 2686.3158 \text{ VA} $ $ \Lambda_{neu} = \frac{S_{los} \cdot \rho F 2}{S_{nax} \cdot \rho F 2 + \rho_{loss}} \times 100\% = 99.47\% $

V	n = Vrms JZ						
<i>a</i>)	t = 0,014s:	d (+)=-365	4649				
		MMF(A) = GG. 2					
		$I_{\text{Ang}} = \frac{MMI}{N_{12}}$	2 - 1	1=6.			
				3560 mA			
		φ(+)= 127. %					
	l	$MMF(A) = 2$ $\overline{L}_{mag} = \frac{mm1}{N_{ro}}$.9510 A				
		Imag = MMI Nizo	= 33.	2591 mA			
		,					

The second sheer η is max. The second sheer η is max.
a) n=? @ pf= 0.56 lagging - pfl b) % rated load where n is max.
a) n=? @ pf= 0.56 lagging - pfl b) % rated load where n is max.
a) n=? @ pf= 0.56 lagging - pfl b) % rated load where n is mnx.
a) n=? @ pf= 0.56 lagging - pfl b) % rated load where n is mnx.
a) n=? @ pf= 0.56 lagging - pfl b) % rated load where n is mnx.
a) n=? @ pf= 0.56 lagging - pfl b) % rated load where n is mnx.
a) n=? @ pf= 0.56 lagging - pfl b) % rated load where n is mnx.
b) % rated load where n is max.
c) n a a c a
d) Load cycle: No load for Ghours, 70% full load 10 ha @ 0.8pf, 90% full load 8ha @ 0.9pf
pf3 pf4
a) loss = 120 W at half rated
$\rightarrow 120 - \left(\frac{1}{2}\right)^2 \left(C_{\text{u}} \log at \text{full load}\right)$
$\frac{C_{u}}{loss} = 480 W \rightarrow cu$
5 ₄ · ρf1
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
b) $load_{max} = \sqrt{\frac{core loss}{FL Cu loss}} \times 100\%$ $= \sqrt{\frac{core}{Cu}} \times 100\%$
- 77.73 ½
c) Max efficiency: Core loss = Cu loss
$N_2 = \frac{10\text{ad} \cdot S_1 \cdot \rho f2}{10\text{ad} \cdot C_1 \cdot C_2 + C_3 \cdot C_4} = \text{core}$

$10ad \cdot S_{t} \cdot \rho f 2 \Rightarrow Cu_{2} = core$	
$N_2 = \frac{ Oad \cdot S_t \cdot \rho f_2 }{ Oad \cdot S_t \cdot \rho f_2 + Cu_2 + core}$	
= 93,54%	
d) 10 hours	
$ kWh 0/\rho = 0.7 \times \frac{S_T}{\rho f3} \times 10 \text{ hows} = 105 k \text{ Wh}$	
k VA = 0.7 x S, = 8.4 kVA	
$\rho_{Cul} = \frac{\rho_{CuFl}}{\left(\frac{S_7}{LVO}\right)^2} = 235.1 \text{ W}$	
(kVH)	
P _{cu} ' × Ghs → 1.4112 kWh → pcu 6 ×10ha → 2.352 kWh	
8 hours	
LWh o/p = 0.9. St pfy. 8hours - 96 LWh	
k VA 0/p = 0.9 · ST = 10.8 kVA	
$\rho_{cu} = \left(\frac{kva}{Sr}\right)^2 \cdot Cu = 388.8 \text{ With 3110.4}$	
Total core loss: Core * 24 = 6960 Wh → core_day	
a kWh for 74 ha kWh 8 + kWh 10	
1 = kWh for 24 hrs = kWh 8 + kWh 10 kWh 8+ kWh 10 + core day + pcu 6 +	
Core loss for entire day: core 24 hours = C960 Wh -> core_day	
$C_{\text{u loss}}: (0.7) (480) (10) + (0.9) (480) (8) = 6816 \text{ Wh} \rightarrow cu_{\text{day}}$	
[(0.7) St pfz (10 hours) + (0.8) St pfy (8 hours)]	
$ \eta_{3} = \frac{\left[(0.7) S_{+} pf_{3} (10 hour) + (0.8) S_{e} pf_{4} (8 hour_{3}) \right]}{\left[(0.7) S_{+} pf_{3} (10 hour_{3}) + (0.8) S_{e} pf_{4} (8 hour_{3}) \right] + Core_{-}day + Cu_{-}day} $	