Project02

李之琪 3180103041

1 问题描述

1.1 规则区域 Ω 上用多重网格法求解 Possion 方程

在区域 (0,1) 或区域 (0,1)2 上求解 Possion 方程

$$\begin{cases}
-\Delta \varphi = f, & \text{on } \Omega \\
a\varphi + b \frac{\partial \varphi}{\partial n} = F, & \text{on } \partial \Omega
\end{cases}$$
(1)

以下内容应由用户指定或给出:

- (1) 边界条件: Dirichlet 条件, Neumann 条件或混合边界条件;
- (2) 右端项:上式中的函数 f 与 F;
- (3) 限制算子: full-weighting 算子或 injection 算子;
- (4) 插值算子: 线性插值算子或二次插值算子;
- (5) 多重网格方法: V-cycle 或 full multigrid cycle;
- (6) 迭代停止条件:最大迭代次数与相对残差限;
- (7) 初值条件: 零初值;
- (8) 底层求解器: Jacobi 迭代。

我们在 n = 32,64,128,256 的网格上对多重网格算法进行测试,计算误差与收敛精度,并将其所需的 CPU 时间与直接使用 LU 分解的求解方法进行对比。

2 二阶方法理论证明

类似于一维的情形,我们的目标是证明 TG 算子具有很小的谱半径。设矩阵 A_{2D} 有特征向量 $\mathbf{W}_{ij} = \text{vec}(\mathbf{w}_i(\mathbf{w}_j)^T)$, $i, j = 1, 2, \cdots, n$,这里 \mathbf{w}_i 是一维情形时矩阵 A 的特征向量。设 $k_1, k_2 \in [1, \frac{n}{2}), k_1' = n - k_1, k_2' = n - k_2$ 。则首先有

П

引理 2.1.

$$\mathbf{W}_{k_1'k_2,in+j}^h = (-1)^{j+1} \mathbf{W}_{k_1k_2,in+j}^h, \tag{2}$$

$$\mathbf{W}_{k_1 k', in+j}^h = (-1)^{i+1} \mathbf{W}_{k_1 k_2, in+j}^h, \tag{3}$$

$$\mathbf{W}_{k_1'k_2',in+j}^h = (-1)^{j+i} \mathbf{W}_{k_1k_2,in+j}^h. \tag{4}$$

证明.

$$\mathbf{W}_{k'_{1}k_{2},in+j}^{h} = \mathbf{w}_{k'_{1},j}^{h} \mathbf{w}_{k_{2},i}^{h} = (-1)^{j+1} \mathbf{w}_{k_{1},j}^{h} \mathbf{w}_{k_{2},i}^{h} = (-1)^{j+1} \mathbf{W}_{k_{1}k_{2},in+j}^{h}.$$
 (5)

$$\mathbf{W}_{k_1 k_2, in+j}^h = \mathbf{w}_{k_1, j}^h \mathbf{w}_{k_2, i}^h = (-1)^{i+1} \mathbf{w}_{k_1, j}^h \mathbf{w}_{k_2, i}^h = (-1)^{i+1} \mathbf{W}_{k_1 k_2, in+j}^h.$$
 (6)

$$\mathbf{W}_{k'_{1}k'_{2},in+j}^{h} = \mathbf{w}_{k'_{1},j}^{h} \mathbf{w}_{k'_{2},i}^{h} = (-1)^{j+i+2} \mathbf{w}_{k_{1},j}^{h} \mathbf{w}_{k_{2},i}^{h} = (-1)^{j+i} \mathbf{W}_{k_{1}k_{2},in+j}^{h}.$$
(7)

接下来考虑限制算子和插值算子的作用,有

引理 2.2.

$$I_h^{2h} \mathbf{W}_{k_1 k_2}^h = \frac{1}{2} (c_{k_1} + c_{k_2}) \mathbf{W}_{k_1 k_2}^{2h}, \tag{8}$$

$$I_h^{2h} \mathbf{W}_{k_1' k_2}^h = -\frac{1}{2} (s_{k_1} + c_{k_2}) \mathbf{W}_{k_1 k_2}^{2h}, \tag{9}$$

$$I_h^{2h} \mathbf{W}_{k_1 k_2'}^h = -\frac{1}{2} (c_{k_1} + s_{k_2}) \mathbf{W}_{k_1 k_2}^{2h}, \tag{10}$$

$$I_h^{2h} \mathbf{W}_{k_1' k_2'}^h = \frac{1}{2} (s_{k_1} + s_{k_2}) \mathbf{W}_{k_1 k_2}^{2h}.$$
(11)

这里 $c_k = \cos^2(\frac{k\pi}{2n}), s_k = \sin^2(\frac{k\pi}{2n}).$

证明. 首先有

$$(I_{h}^{2h}\mathbf{W}_{k_{1}k_{2}}^{h})_{in+j}$$

$$= \frac{1}{8}\mathbf{w}_{k_{1},2j-1}^{h}\mathbf{w}_{k_{2},2i}^{h} + \frac{1}{4}\mathbf{w}_{k_{1},2j}^{h}\mathbf{w}_{k_{2},2i}^{h} + \frac{1}{8}\mathbf{w}_{k_{1},2j+1}^{h}\mathbf{w}_{k_{2},2i}^{h}$$

$$+ \frac{1}{8}\mathbf{w}_{k_{1},2j}^{h}\mathbf{w}_{k_{2},2i-1}^{h} + \frac{1}{4}\mathbf{w}_{k_{1},2j}^{h}\mathbf{w}_{k_{2},2i}^{h} + \frac{1}{8}\mathbf{w}_{k_{1},2j}^{h}\mathbf{w}_{k_{2},2i+1}^{h}$$

$$= \frac{1}{2}\mathbf{w}_{k_{2},2i}^{h} \cdot c_{k_{1}}\mathbf{w}_{k_{1},2j}^{h} + \frac{1}{2}\mathbf{w}_{k_{1},2j}^{h} \cdot c_{k_{2}}\mathbf{w}_{k_{2},2i}^{h}$$

$$= \frac{1}{2}(c_{k_{1}} + c_{k_{2}})\mathbf{w}_{k_{1},2j}^{h}\mathbf{w}_{k_{2},2i}^{h} = \left(\frac{1}{2}(c_{k_{1}} + c_{k_{2}})\mathbf{W}_{k_{1}k_{2}}^{2h}\right)_{in+j}.$$
(12)

从而第一个等式得证。代人 $k_1'=n-k_1, k_2'=n-k_2$,可以得到剩下三个等式。

引理 2.3.

$$I_{2h}^{h}\mathbf{W}_{k_{1}k_{2}}^{2h} = c_{k_{1}}c_{k_{2}}\mathbf{W}_{k_{1}k_{2}}^{h} - s_{k_{1}}c_{k_{2}}\mathbf{W}_{k'_{1}k_{2}}^{h} - c_{k_{1}}s_{k_{2}}\mathbf{W}_{k_{1}k'_{2}}^{h} + s_{k_{1}}s_{k_{2}}\mathbf{W}_{k'_{1}k'_{2}}^{h}.$$
 (13)

证明. 一方面, lemma2.1说明

$$\begin{aligned}
&\left(c_{k_{1}}c_{k_{2}}\mathbf{W}_{k_{1}k_{2}}^{h} - s_{k_{1}}c_{k_{2}}\mathbf{W}_{k_{1}k_{2}}^{h} - c_{k_{1}}s_{k_{2}}\mathbf{W}_{k_{1}k_{2}}^{h} + s_{k_{1}}s_{k_{2}}\mathbf{W}_{k_{1}k_{2}}^{h}\right)_{in+j} \\
&= c_{k_{1}}c_{k_{2}}\mathbf{W}_{k_{1}k_{2},in+j}^{h} + (-1)^{j}s_{k_{1}}c_{k_{2}}\mathbf{W}_{k_{1}k_{2},in+j}^{h} + (-1)^{i}c_{k_{1}}s_{k_{2}}\mathbf{W}_{k_{1}k_{2},in+j}^{h} + (-1)^{i+j}s_{k_{1}}s_{k_{2}}\mathbf{W}_{k_{1}k_{2},in+j}^{h} \\
&= \begin{cases}
(c_{k_{1}} + s_{k_{1}})(c_{k_{2}} + s_{k_{2}})\mathbf{W}_{k_{1}k_{2},in+j}^{h} & \text{if } i, j \text{ are even,} \\
(c_{k_{1}} + s_{k_{1}})(c_{k_{2}} - s_{k_{2}})\mathbf{W}_{k_{1}k_{2},in+j}^{h} & \text{if } i \text{ is odd, } j \text{ is even,} \\
(c_{k_{1}} - s_{k_{1}})(c_{k_{2}} + s_{k_{2}})\mathbf{W}_{k_{1}k_{2},in+j}^{h} & \text{os } \frac{k_{1}\pi}{n}\mathbf{W}_{k_{1}k_{2},in+j}^{h}, & \text{if } i \text{ is even,} \\
(c_{k_{1}} - s_{k_{1}})(c_{k_{2}} - s_{k_{2}})\mathbf{W}_{k_{1}k_{2},in+j}^{h} & \text{cos } \frac{k_{1}\pi}{n}\mathbf{W}_{k_{1}k_{2},in+j}^{h}, & \text{if } i, j \text{ are odd.}
\end{cases} \end{aligned} \tag{14}
\end{aligned}$$

另一方面,

$$\left(I_{2h}^h\mathbf{W}_{k_1k_2}^{2h}\right)_{in+j}$$

$$= \begin{cases} \mathbf{W}_{k_{1}k_{2},in+j}^{h}, & \text{if } i,j \text{ are even,} \\ (\frac{1}{2}\sin\frac{k_{2}\pi(i-1)}{n} + \frac{1}{2}\sin\frac{k_{2}\pi(i+1)}{n})\mathbf{w}_{k_{1},j}^{h} = \cos\frac{k_{2}\pi}{n}\mathbf{W}_{k_{1}k_{2},in+j}^{h}, & \text{if } i \text{ is odd }, j \text{ is even,} \\ (\frac{1}{2}\sin\frac{k_{1}\pi(j-1)}{n} + \frac{1}{2}\sin\frac{k_{1}\pi(j+1)}{n})\mathbf{w}_{k_{2},i}^{h} = \cos\frac{k_{1}\pi}{n}\mathbf{W}_{k_{1}k_{2},in+j}^{h}, & \text{if } i \text{ is even }, j \text{ is odd,} \\ (\frac{1}{2}\sin\frac{k_{1}\pi(j-1)}{n} + \frac{1}{2}\sin\frac{k_{1}\pi(j+1)}{n})(\frac{1}{2}\sin\frac{k_{2}\pi(i-1)}{n} + \frac{1}{2}\sin\frac{k_{2}\pi(i+1)}{n}) = \cos\frac{k_{1}\pi}{n}\cos\frac{k_{2}\pi}{n}\mathbf{W}_{k_{1}k_{2},in+j}^{h}, & \text{if } i,j \text{ are odd.} \end{cases}$$

$$(15)$$

从而引理得证。

最后, 我们讨论 TG 算子的作用。

定理 2.4.

$$TG\mathbf{W}_{k_{1}k_{2}} = \lambda_{k_{1}k_{2}}^{\nu_{1}+\nu_{2}} \left[1 - \frac{c_{k_{1}}c_{k_{2}}(c_{k_{1}} + c_{k_{2}})(s_{k_{1}} + s_{k_{2}})}{2(s_{k_{1}}c_{k_{1}} + s_{k_{2}}c_{k_{2}})}\right] \mathbf{W}_{k_{1}k_{2}}^{h} + \frac{(c_{k_{1}} + c_{k_{2}})(s_{k_{1}} + s_{k_{2}})}{2(s_{k_{1}}c_{k_{1}} + s_{k_{2}}c_{k_{2}})} \left(\lambda_{k_{1}k_{2}}^{\nu_{1}}\lambda_{k_{1}'k_{2}}^{\nu_{2}}s_{k_{1}}c_{k_{2}}\mathbf{W}_{k_{1}'k_{2}}^{h} + \lambda_{k_{1}k_{2}}^{\nu_{1}}\lambda_{k_{1}k_{2}}^{\nu_{2}}c_{k_{1}}s_{k_{2}}\mathbf{W}_{k_{1}k_{2}'}^{h} - \lambda_{k_{1}k_{2}}^{\nu_{1}}\lambda_{k_{1}'k_{2}'}^{\nu_{2}}s_{k_{1}}s_{k_{2}}\mathbf{W}_{k_{1}'k_{2}'}^{h}\right).$$

$$(16)$$

这里 λ 是对应松弛算子 T_{ω} 的特征值。

证明. 考虑 $\nu_1 = \nu_2 = 0$ 的情况,有

$$A_{2D}\mathbf{W}_{k_{1}k_{2}}^{h} = \lambda_{k_{1}k_{2}}\mathbf{W}_{k_{1}k_{2}}^{h} = \left(\frac{4s_{k_{1}}}{h^{2}} + \frac{4s_{k_{2}}}{h^{2}}\right)\mathbf{W}_{k_{1}k_{2}}^{h}$$

$$\Rightarrow I_{h}^{2h}A_{2D}\mathbf{W}_{k_{1}k_{2}}^{h} = (c_{k_{1}} + c_{k_{2}})\left(\frac{2s_{k_{1}}}{h^{2}} + \frac{2s_{k_{2}}}{h^{2}}\right)\mathbf{W}_{k_{1}k_{2}}^{2h}$$

$$\Rightarrow (A_{2D})^{-1}I_{h}^{2h}A_{2D}\mathbf{W}_{k_{1}k_{2}}^{h} = \left(\frac{4\sin^{2}\frac{k_{1}\pi}{n}}{(2h)^{2}} + \frac{4\sin^{2}\frac{k_{2}\pi}{n}}{(2h)^{2}}\right)^{-1}(c_{k_{1}} + c_{k_{2}})\left(\frac{2s_{k_{1}}}{h^{2}} + \frac{2s_{k_{2}}}{h^{2}}\right)\mathbf{W}_{k_{1}k_{2}}^{2h}$$

$$= \frac{(c_{k_{1}} + c_{k_{2}})(s_{k_{1}} + s_{k_{2}}}{2(s_{k_{1}}c_{k_{1}} + s_{k_{2}}c_{k_{2}})}\mathbf{W}_{k_{1}k_{2}}^{2h}$$

$$\Rightarrow -I_{2h}^{h}(A_{2D})^{-1}I_{h}^{2h}A_{2D}\mathbf{W}_{k_{1}k_{2}}^{h}$$

$$= \frac{(c_{k_{1}} + c_{k_{2}})(s_{k_{1}} + s_{k_{2}})}{2(s_{k_{1}}c_{k_{1}} + s_{k_{2}}c_{k_{2}})}\left(-c_{k_{1}}c_{k_{2}}\mathbf{W}_{k_{1}k_{2}}^{h} + s_{k_{1}}c_{k_{2}}\mathbf{W}_{k_{1}k_{2}}^{h} + c_{k_{1}}s_{k_{2}}\mathbf{W}_{k_{1}k_{2}}^{h} - s_{k_{1}}s_{k_{2}}\mathbf{W}_{k_{1}k_{2}}^{h}\right)$$

$$\Rightarrow [I - I_{2h}^{h}(A_{2D})^{-1}I_{h}^{2h}A_{2D}]\mathbf{W}_{k_{1}k_{2}}^{h} = [1 - \frac{c_{k_{1}}c_{k_{2}}(c_{k_{1}} + c_{k_{2}})(s_{k_{1}} + s_{k_{2}})}{2(s_{k_{1}}c_{k_{1}} + s_{k_{2}}c_{k_{2}})}]\mathbf{W}_{k_{1}k_{2}}^{h}$$

$$+ \frac{(c_{k_{1}} + c_{k_{2}})(s_{k_{1}} + s_{k_{2}})}{2(s_{k_{1}}c_{k_{1}} + s_{k_{2}}c_{k_{2}})}\left(s_{k_{1}}c_{k_{2}}\mathbf{W}_{k_{1}k_{2}}^{h} + c_{k_{1}}s_{k_{2}}\mathbf{W}_{k_{1}k_{2}}^{h} - s_{k_{1}}s_{k_{2}}\mathbf{W}_{k_{1}k_{2}}^{h}\right)$$

将 ν_1, ν_2 纳入考虑,即可得到待证结论。

注意到系数 $[1-\frac{c_{k_1}c_{k_2}(c_{k_1}+c_{k_2})(s_{k_1}+s_{k_2})}{2(s_{k_1}c_{k_1}+s_{k_2}c_{k_2})}]$ 以及 s_{k_1} 、 s_{k_2} 都是较小的值,故 TG 算子关于 $\mathbf{W}_{k_1k_2}$ 只有缩小的作用。类似地,我们可以得到 TG 关于 $\mathbf{W}_{k_1'k_2}$ 、 $\mathbf{W}_{k_1k_2}$ 和 $\mathbf{W}_{k_1'k_2'}$ 的作用。类似的分析说明所有的系数都是小的,从而 TG 算子具有小的谱半径。至此,我们完成了二维情形的证明。

3 数值结果

3.1 一维规则区域 $\Omega = (0,1)$ 上的数值结果

3.1.1 $F = \sin(\pi x)$

Domain: (0,1) BCtype : D , D

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	0.000511158	1.9997	0.000127816	2.00009	3.19521 e-05	2.00068	7.98424e-06
$\ \mathbf{E}\ _2$	0.00056821	2.00057	0.000141997	2.00031	3.54917e-05	2.00074	8.86837e-06
$\ \mathbf{E}\ _{\infty}$	0.000803571	2.00057	0.000200814	2.00031	5.01928e-05	2.00074	1.25418e-05

表 1: V-cycle test, Injection, LinearInterpolation, 完整参数表见 Input1.json

Domain: (0,1) BCtype: D, D

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	0.000511159	1.99969	0.000127818	2.00098	3.19328 e- 05	2.14298	7.22998e-06
$\ \mathbf{E}\ _2$	0.000568212	2.00056	0.000141998	2.00252	3.54376 e - 05	2.1417	8.03061e-06
$\ \mathbf{E}\ _{\infty}$	0.000803572	2.00056	0.000200816	2.00417	5.00592e-05	2.14005	1.13571e-05

表 2: V-cycle test, FullWeightingRestriction, LinearInterpolation, 完整参数表见 Input1.json

Domain: (0,1) BCtype : D , D

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	0.000511157	1.99966	0.00012782	1.99738	3.20129 e-05	2.00361	7.98325e-06
$\ \mathbf{E}\ _2$	0.000568209	2.00053	0.000142	1.99913	3.55215 e-05	2.00214	8.86723e-06
$\ \mathbf{E}\ _{\infty}$	0.000803569	2.00053	0.000200819	2.00117	5.01641e-05	2.00012	1.254e-05

表 3: V-cycle test, Injection, QuadraticInterpolation, 完整参数表见 Input1.json

Domain: (0,1) BCtype : D , D

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	0.000511159	1.99969	0.000127817	1.99911	3.19738e-05	2.22707	6.82934 e-06
$\ \mathbf{E}\ _2$	0.000568211	2.00056	0.000141997	2.00023	3.54938e-05	2.2272	7.58051e-06
$\ \mathbf{E}\ _{\infty}$	0.000803571	2.00056	0.000200815	2.00138	5.01556e-05	2.22834	1.07034e-05

表 4: V-cycle test, FullWeightingRestriction, QuadraticInterpolation, 完整参数表见 Input1.json

Domain: (0,1) BCtype : N , D

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	0.000790461	2.03785	0.000192499	1.9961	4.82548 e - 05	1.94538	1.25292e-05
$\ \mathbf{E}\ _2$	0.00112124	2.03091	0.000274368	1.99914	6.8633 e-05	1.9622	1.76137e-05
$\ \mathbf{E}\ _{\infty}$	0.00252421	2.00076	0.000630719	1.98893	0.000158894	1.96864	4.05964 e - 05

表 5: full multigrid cycle test, Injection, LinearInterpolation, 完整参数表见 Input3.json

Domain: (0,1) BCtype: N, D

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	0.000790145	2.03694	0.000192543	2.01973	4.74821 e-05	2.00206	1.18536 e-05
$\ \mathbf{E}\ _2$	0.00112092	2.03026	0.000274413	2.01571	6.78602e-05	2.00916	1.68577e-05
$\ \mathbf{E}\ _{\infty}$	0.0025237	2.0003	0.000630792	2.00131	0.000157555	2.00514	3.92486e-05

表 6: full multigrid cycle test, FullWeightingRestriction, LinearInterpolation, 完整参数表见 Input3.json

Domain: (0,1) BCtype : N , D

Domain: (0,1) BCtype : N , D

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	0.000790462	2.03692	0.000192622	2.45059	3.52376 e - 05	1.47798	1.26499 e-05
$\ \mathbf{E}\ _2$	0.00112124	2.03026	0.000274491	2.35792	5.35456e-05	1.59296	1.77498e-05
$\ \mathbf{E}\ _{\infty}$	0.00252421	2.00033	0.000630909	2.23159	0.000134336	1.71808	4.08318e-05

表 7: full multigrid cycle test, Injection, QuadraticInterpolation, 完整参数表见 Input3.json

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	0.000790134	2.03678	0.000192561	2.01925	4.75022 e-05	2.0023	1.18566e-05
$\ \mathbf{E}\ _2$	0.00112091	2.0302	0.000274422	2.01584	6.78562e-05	2.00764	1.68745e-05
$\ \mathbf{E}\ _{\infty}$	0.00252369	2.0003	0.000630792	2.00078	0.000157613	2.00372	3.93019e-05

表 8: full multigrid cycle test, FullWeightingRestriction, QuadraticInterpolation, 完整参数表见 Input3.json

3.1.2 $F = e^x$

Domain: (0,1) BCtype: D, N

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	0.000174834	2.01992	4.31091e-05	2.00694	1.07256 e - 05	1.9368	2.80146e-06
$\ \mathbf{E}\ _2$	0.000203578	2.01555	5.03491e-05	2.0045	1.25481 e-05	1.95503	3.23635e-06
$\ \mathbf{E}\ _{\infty}$	0.000361213	1.99736	9.04686e-05	1.99082	2.27615e-05	1.95316	5.87814e-06

表 9: V-cycle test, Injection, LinearInterpolation, 完整参数表见 Input2.json

Domain: (0,1) BCtype: D, N

Domain: (0,1) BCtype : D , N

Domain: (0,1) BCtype: D, N

Domain: (0,1) BCtype : D , D

Domain: (0,1) BCtype : D , D

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	0.000174968	2.01617	4.32546 e - 05	2.00059	1.08092 e-05	1.87033	2.95644e- 06
$\ \mathbf{E}\ _2$	0.000203711	2.01258	5.04856e-05	1.98831	1.27241e-05	1.91391	3.37662e-06
$\ \mathbf{E}\ _{\infty}$	0.000361404	1.99459	9.06904e-05	1.96157	2.32846e-05	1.92602	6.12743e-06

表 10: V-cycle test, FullWeightingRestriction, LinearInterpolation, 完整参数表见 Input2.json

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	0.000174914	2.01758	4.31988e-05	2.00342	1.07741 e-05	1.89345	2.89999e-06
$\ \mathbf{E}\ _2$	0.00020365	2.01397	5.0422e-05	1.99318	1.26652e-05	1.93517	3.31185e-06
$\ \mathbf{E}\ _{\infty}$	0.000361308	1.99609	9.05724e-05	1.96776	2.31547e-05	1.95062	5.99022e-06

表 11: V-cycle test, Injection, QuadraticInterpolation, 完整参数表见 Input2.json

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	0.000174842	2.01966	4.31187e-05	2.05689	1.03628 e-05	1.88108	2.81331e-06
$\ \mathbf{E}\ _2$	0.000203583	2.01546	5.03534 e-05	2.00141	1.2576 e - 05	1.95625	3.24082e-06
$\ \mathbf{E}\ _{\infty}$	0.000361214	1.99741	9.04661e-05	1.95519	2.33301 e-05	1.99022	5.87219e-06

表 12: V-cycle test, FullWeightingRestriction, QuadraticInterpolation, 完整参数表见 Input2.json

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	1.1449e-05	2.01384	2.83493e-06	2.0628	6.78543e- 07	2.68539	1.05486e-07
$\ \mathbf{E}\ _2$	1.25644e-05	2.01508	3.10845e-06	2.06206	7.44394e-07	2.63536	1.19807e-07
$\ \mathbf{E}\ _{\infty}$	1.72331e-05	2.01542	4.26247e-06	2.0574	1.02406e-06	2.59325	1.69698e-07

表 13: full multigrid cycle test, Injection, LinearInterpolation, 完整参数表见 Input4.json

$\overline{}$	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	1.14474e-05	2.00079	2.86028e-06	1.99978	7.15179e-07	2.02943	1.75184e-07
$\ \mathbf{E}\ _2$	1.25628e-05	2.00185	3.13667 e-06	1.9996	7.84384e-07	2.02522	1.92697e-07
$\ \mathbf{E}\ _{\infty}$	1.72313e-05	2.00234	4.30085e-06	1.99686	1.07755e-06	2.03019	2.6381e-07

表 14: full multigrid cycle test, FullWeightingRestriction, LinearInterpolation, 完整参数表见 Input4.json

Domain: (0,1) BCtype: D, D

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	1.1451e-05	2.01547	2.83221e-06	2.00579	7.05217e-07	2.59654	1.16597e-07
$\ \mathbf{E}\ _2$	1.25666e-05	2.01673	3.10543e- 06	1.99791	7.77482e-07	2.55161	1.32611e-07
$\ \mathbf{E}\ _{\infty}$	1.72361e-05	2.01701	4.25852e-06	1.97177	1.08567e-06	2.52647	1.88432e-07

表 15: full multigrid cycle test, Injection, QuadraticInterpolation, 完整参数表见 Input4.json

Domain: (0,1) BCtype: D, D

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	1.14494e-05	1.99983	2.86269e-06	2.00059	7.15379e-07	2.02679	1.75555e-07
$\ \mathbf{E}\ _2$	1.25651e-05	2.0009	3.1393e-06	2.00032	7.84655e-07	2.02275	1.93094e-07
$\ \mathbf{E}\ _{\infty}$	1.72347e-05	2.00125	4.30495e-06	1.99734	1.07823e-06	2.02863	2.6426e-07

表 16: full multigrid cycle test, FullWeightingRestriction, QuadraticInterpolation, 完整参数表见 Input4.json

3.1.3 ϵ 减小测试

Domain: (0,1) BCtype : D , D

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	0.000511162	1.99965	0.000127821	1.99991	3.19573 e-05	1.99998	7.98942e-06
$\ E\ _{2}$	0.000568215	2.00052	0.000142002	2.00013	3.54974e-05	2.00004	8.87413e-06
$\ \mathbf{E}\ _{\infty}$	0.000803578	2.00052	0.000200822	2.00013	5.02009 e-05	2.00004	1.25499 e-05

表 17: $F = \sin(\pi x)$, V-cycle test, Injection, Linear Interpolation, $\epsilon = 1\text{e-}10$, 完整参数表见 Input5.json

Domain: (0,1) BCtype : D , D

10 3 数值结果

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	0.000511162	1.99965	0.000127821	1.99991	3.19573 e-05	1.99998	7.98944e-06
$\ \mathbf{E}\ _2$	0.000568215	2.00052	0.000142002	2.00013	3.54974 e-05	2.00003	8.87415e-06
$\ \mathbf{E}\ _{\infty}$	0.000803578	2.00052	0.000200822	2.00013	5.02009 e-05	2.00003	1.25499e-05

表 18: $F = \sin(\pi x)$, V-cycle test, Injection, Linear Interpolation, $\epsilon = 1\text{e-}12$, 完整参数表见 Input6.json

当 $\epsilon=10^{-12}$,进一步减小 ϵ ,我们发现在 n=256 的网格下相对残差已经无法降低到 ϵ 。 造成这一结果的主要原因是双精度的限制和舍入误差的累积。网格之间的限制与插值以及迭代求解线性系统都会造成舍入误差。

3.2 二维规则区域 $\Omega = (0,1)^2$ 上的数值结果

3.2.1 $F = e^{xy}$

Domain: $(0,1) \times (0,1)$ BCtype : D , D , D , D

$\overline{}$	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	1.24146e-06	1.99417	3.11622 e-07	2.02296	7.66754 e - 08	1.98069	1.94272 e - 08
$\ \mathbf{E}\ _2$	1.51939e-06	1.99688	3.80669e-07	2.02132	9.37714e-08	1.98296	2.37214e-08
$\ \mathbf{E}\ _{\infty}$	3.06682e-06	1.99603	7.68821e-07	2.02223	1.89267e-07	1.98145	4.7929e-08

表 19: V-cycle test, Injection, LinearInterpolation, 完整参数表见 Input7.json

Domain: $(0,1) \times (0,1)$ BCtype : D , D , D , D

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	1.24137e-06	1.99294	3.11864 e-07	2.03984	7.58424 e - 08	2.62919	1.22587e-08
$\ \mathbf{E}\ _2$	1.5193e-06	1.9965	3.80747e-07	2.03255	9.30634e-08	2.55711	1.5813e-08
$\ \mathbf{E}\ _{\infty}$	3.06675e-06	1.99634	7.68634 e - 07	2.10811	1.78285 e - 07	2.35327	3.48909e-08

表 20: full multigrid cycle test, FullWeightingRestriction, LinearInterpolation, 完整参数表见 Input8.json

Domain: $(0,1) \times (0,1)$ BCtype : D , D , D , D

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	1.24135e-06	1.99255	3.11944e-07	2.39102	5.94712e-08	1.62753	1.92474 e - 08
$\ \mathbf{E}\ _2$	1.51928e-06	1.99607	3.80857e-07	2.31149	7.67247e-08	1.69901	2.3631e-08
$\ \mathbf{E}\ _{\infty}$	3.06672e-06	1.99585	7.68887e-07	2.14563	1.73765e-07	1.84559	4.83486e-08

表 21: full multigrid cycle test, Injection, QuadraticInterpolation, 完整参数表见 Input8.json

Domain: $(0,1) \times (0,1)$ BCtype: D, D, D, D

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	1.24145e-06	1.99251	3.11979e-07	2.14585	7.04952e-08	1.87965	1.91571e-08
$\ \mathbf{E}\ _2$	1.51938e-06	1.99612	3.80869 e - 07	2.10664	8.84331e-08	1.91239	2.34924 e - 08
$\ \mathbf{E}\ _{\infty}$	3.06686e-06	1.99606	7.68813e-07	2.04669	1.86082 e-07	1.96064	4.78072e-08

表 22: V-cycle test, FullWeightingRestriction, QuadraticInterpolation, 完整参数表见 Input7.json

 $\begin{aligned} & \text{Domain: } (0,1) \times (0,1) \\ & \text{BCtype: D , N , D , D} \end{aligned}$

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	2.49778e-06	2.05366	6.01649 e - 07	2.02153	1.48184 e - 07	2.02165	3.64942 e-08
$\ \mathbf{E}\ _2$	5.39967e-06	2.05862	1.29617e-06	2.02774	3.1787e-07	2.0208	7.83301e-08
$\ \mathbf{E}\ _{\infty}$	3.15282e-05	1.98791	7.94837e-06	1.9954	1.99344e-06	2.00118	4.9795e-07

表 23: V-cycle test, Injection, LinearInterpolation, 完整参数表见 Input9.json

 $\begin{aligned} & \text{Domain: } (0,1) \times (0,1) \\ & \text{BCtype: D , D , N , N} \end{aligned}$

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	4.3913e-06	2.05301	1.05822e-06	2.02831	2.59413e-07	2.01576	6.41485e-08
$\ \mathbf{E}\ _2$	6.6531e-06	2.05271	1.6036 e-06	2.02795	3.93208 e-07	2.01613	9.72092e-08
$\ \mathbf{E}\ _{\infty}$	3.09504e-05	1.98509	7.81795e-06	1.99583	1.96015e-06	2.00096	4.89711e-07

表 24: V-cycle test, Injection, LinearInterpolation, 完整参数表见 Input10.json

3.2.2 F = x + y

Domain: $(0,1) \times (0,1)$ BCtype: D, D, N, N

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	1.77003e-05	2.05034	4.27332 e-06	2.02653	1.04887e-06	2.01367	2.59743e- 07
$\ \mathbf{E}\ _2$	2.28907e-05	2.04148	5.56047e-06	2.02165	1.36941e-06	2.01113	3.39723e- 07
$\ \mathbf{E}\ _{\infty}$	5.48998e-05	1.99887	1.37357e-05	1.99972	3.43459e-06	1.99995	8.58676e-07

表 25: full multigrid cycle test, Injection, LinearInterpolation, 完整参数表见 Input12.json

 $\begin{aligned} & \text{Domain: } (0,1) \times (0,1) \\ & \text{BCtype: D , D , N , D} \end{aligned}$

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	1.30462e-05	2.07293	3.10077e-06	1.89454	8.33982 e-07	1.85306	2.3085e-07
$\ \mathbf{E}\ _2$	1.92611e-05	2.05686	4.62919e-06	2.00934	1.14983e-06	1.83476	3.22341e-07
$\ \mathbf{E}\ _{\infty}$	6.00063e-05	2.01332	1.48637e-05	1.9975	3.72236e-06	1.88149	1.01026e-06

表 26: V-cycle test, FullWeightingRestriction, LinearInterpolation, 完整参数表见 Input11.json

 $\begin{aligned} & \text{Domain: } (0,1) \times (0,1) \\ & \text{BCtype: D , D , N , N} \end{aligned}$

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	1.77003e-05	2.05034	4.27332 e-06	2.02718	1.04839e-06	2.01293	2.59759e-07
$\ \mathbf{E}\ _2$	2.28907e-05	2.04148	5.56046 e - 06	2.02217	1.36891e-06	2.01052	3.39743e- 07
$\ \mathbf{E}\ _{\infty}$	5.48998e-05	1.99887	1.37357e-05	1.9992	3.43584e-06	2.00038	8.58733e-07

表 27: full multigrid cycle test, Injection, QuadraticInterpolation, 完整参数表见 Input12.json

Domain: $(0,1) \times (0,1)$ BCtype: D, D, N, D

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	1.30923e-05	2.04737	3.16736 e- 06	1.91352	8.40755 e-07	2.12235	1.93098e-07
$\ \mathbf{E}\ _2$	1.931e-05	2.03804	4.70185 e-06	1.92024	1.24228 e-06	2.09857	2.90059e-07
$\ \mathbf{E}\ _{\infty}$	6.01045e-05	2.00111	1.50145 e - 05	1.91732	3.97502 e-06	2.0553	9.56387e-07

表 28: V-cycle test, FullWeightingRestriction, QuadraticInterpolation, 完整参数表见 Input11.json

3.2.3 $F = e^{y + \sin x}$

Domain: $(0,1) \times (0,1)$ BCtype : D , D , D , D

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	0.190883	0.066459	0.182289	0.0339822	0.178046	0.0171857	0.175937
$\ \mathbf{E}\ _2$	0.246312	0.0486708	0.238141	0.0248541	0.234074	0.0125611	0.232045
$\ \mathbf{E}\ _{\infty}$	0.565757	-0.000317309	0.565882	-4.59104e-05	0.5659	-2.89721e-05	0.565911

表 29: V-cycle test, Injection, LinearInterpolation, 完整参数表见 Input13.json

 $\begin{aligned} & \text{Domain: } (0,1) \times (0,1) \\ & \text{BCtype: D , N , D , D} \end{aligned}$

\overline{n}	32	ratio	64	ratio	128	ratio	256
$\ \mathbf{E}\ _1$	0.21532	0.0543032	0.207366	0.0543939	0.199693	0.0012658	0.199518
$\ \mathbf{E}\ _2$	0.281574	0.0347235	0.274878	0.0476802	0.265942	-0.00528527	0.266918
$\ \mathbf{E}\ _{\infty}$	0.746152	-0.0209423	0.757062	0.0369108	0.737938	-0.0281945	0.752502

表 30: full multigrid cycle test, FullWeightingRestriction, QuadraticInterpolation, 完整参数表见 Input14.json

3.3 CPU 时间对比测试

我们用二维规则区域来进行 CPU 时间对比测试。下面是测试结果。

Domain: $(0,1) \times (0,1)$ BCtype: D, D, D, D,

$\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	16	ratio	32	ratio	64
$\ \mathrm{E}\ _1$	4.86697e-06	1.97108	1.24138e-06	1.99273	3.11912e-07
$\ \mathbf{E}\ _2$	6.01432e-06	1.98499	1.51931e-06	1.99629	3.80803e-07
$\ \mathbf{E}\ _{\infty}$	1.20256e-05	1.97132	3.06676e-06	1.99614	7.68746e-07
CPU time(s)	0.012488	4.42354	0.267985	5.74421	14.3645

表 31: LU 分解, $F = e^{xy}$

Domain: $(0,1) \times (0,1)$ BCtype: D, D, D, D

n	16	ratio	32	ratio	64	ratio	128
$\ \mathbf{E}\ _1$	4.86695e-06	1.97115	1.24132 e-06	1.99579	3.11235 e-07	1.99677	7.79834e-08
$\ \mathbf{E}\ _2$	6.01429e-06	1.98505	1.51924e-06	1.99897	3.80081e-07	1.99778	9.51661e-08
$\ \mathbf{E}\ _{\infty}$	1.20256e-05	1.97137	3.06665 e06	1.99839	7.67516e-07	1.99791	1.92158e-07
CPU time(s)	0.053349	0.979012	0.105157	1.5733	0.312931	2.03841	1.2855

表 32: V-cycle test, Injection, LinearInterpolation, $F = e^{xy}$, 完整参数表见 Input15.json

Domain: $(0,1) \times (0,1)$ BCtype: N, D, D, D,

\overline{n}	16	ratio	32	ratio	64
$\ \mathbf{E}\ _1$	1.75902e-05	2.03678	4.28685 e-06	2.02373	1.05423e-06
$\ \mathbf{E}\ _2$	2.2885e-05	2.04482	5.54625 e-06	2.02641	1.36141e-06
$\ \mathbf{E}\ _{\infty}$	7.50122e-05	1.97524	1.90776e-05	1.9954	4.78464e-06
CPU time(s)	0.009031	4.88737	0.267288	5.74904	14.3752

表 33: LU 分解, $F = e^{xy}$

Domain: $(0,1) \times (0,1)$

16 3 数值结果

BCtype: N, D, D, D

\overline{n}	16	ratio	32	ratio	64	ratio	128
$\ \mathbf{E}\ _1$	1.75902e-05	2.0368	4.2868e-06	2.02445	1.05369 e-06	2.01288	2.61082e-07
$\ \mathbf{E}\ _2$	2.2885 e - 05	2.04483	5.5462 e-06	2.02681	1.36103 e-06	2.01397	3.36978e-07
$\ \mathbf{E}\ _{\infty}$	7.50122e-05	1.97525	1.90776e-05	1.99544	4.78451e-06	1.99878	1.19713e-06
CPU time(s)	0.048194	1.1313	0.105572	1.5662	0.312624	2.00859	1.25796

表 34: V-cycle test, Injection, Linear Interpolation, $F=e^{xy}$, 完整参数表见 Input
16.json

对比可知,多重网格方法相较于直接 LU 分解在时间效率上有极大的优势。