Concept

Matrix Addition

• The sum of two m x n matrix $A = [a_{ij}]$ and $B = [b_{ij}]$ is the m x n matrix $A + B = [c_{ij}]$ such that

$$c_{ij} = a_{ij} + b_{ij} \forall i \& j$$

• if A and B have different sizes they cannot be added

Transpose

• transpose of a m x n matrix $A = [a_{ij}]$ is the n x m matrix $A^T = [b_{ij}]$ with

$$b_{ij} = a_{ji}$$

• Example: If B = $\begin{bmatrix} 4 & 2 \\ 0 & 2 \end{bmatrix}$ then $B^T = \begin{bmatrix} 4 & 0 \\ 2 & 2 \end{bmatrix}$

Theorem. The Properties of Transpose

$$-(A+B)^T = A^T + B^T$$

$$- (cA)^T = cA^T$$

$$- (A^T)^T = A$$

$$- (AB)^T = B^T A^T$$

- A matrix is symmetric if $A = A^T$

Matrix Multiplication

• Let m x n matrix A = $[a_{ij}]$ and n x p matrix B = $[b_{ij}]$ then the product of A and B is m x p matrix AB = $[c_{ij}]$ such that

$$[c_{ij}] = (row_i A)^T \times col_j B$$

Problems

1. Let $A = \begin{bmatrix} 1 & 2 \\ 0 & 4 \end{bmatrix}$ $B = \begin{bmatrix} 2 & 1 \\ 3 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 3 \\ 5 \end{bmatrix}$ Then if possible do these following operations a) A + B

b) 3A - 2C

c) AC

d) CA

Perform the following matrix operation if possible.

$$2. \begin{bmatrix} 2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix} =$$

$$3. \begin{bmatrix} 2 & 4 \\ 0 & -1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 1 & -1 \end{bmatrix} =$$

$$4. \begin{bmatrix} 2 & 4 \\ 0 & -1 \end{bmatrix} + \begin{bmatrix} 1 & 0 & 0 \\ 3 & 1 & 0 \end{bmatrix} =$$

5. Find the transpose of the following matrix and determine if they are symmetric

a)
$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

b)
$$B = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix}$$