Matematiske metoder (MM 529)

Stephan Brandt

Syddansk Universitet, Odense

08. 10. 2013

Functions of more than one variable

Function
$$f(x, y) = x^2 - y^2$$
 of two variables.

Domain: $D = \mathbb{R} \times \mathbb{R} = \mathbb{R}^2$.

In general: function of n variables

 $f: D \subseteq \mathbb{R}^n \to \mathbb{R},$ $(x_1, x_2, \dots, x_n) \mapsto z.$

Graphs

Functions of two variables: $f:D\subseteq\mathbb{R}^2\to\mathbb{R}$, z=f(x,y).

graph
$$f = \{(x, y, z) \in \mathbb{R}^3 : z = f(x, y)\}.$$

Functions of n variables $f:D\subseteq\mathbb{R}^n\to\mathbb{R},\ z=f(x_1,x_2,\ldots,x_n)$.

graph
$$f = \{(x_1, x_2, \dots, x_n, z) \in \mathbb{R}^{n+1} : z = f(x_1, x_2, \dots, x_n)\}.$$

For $n \ge 3$ hard to visualize in our 3-dimensional world.

Example: Saddle surface

Graph of the function $f(x, y) = x^2 - y^2$.

Level sets/level curves

Sets of elements of the domain D with the same function value.

$$L(k) = \{(x_1, \ldots, x_n) \in D : f(x_1, \ldots, x_n) = k\}.$$

Examples:

Level curves in a geographic map of constant height k (n=2). Helps visualizing the behaviour of functions $f:D\subseteq\mathbb{R}^2\to\mathbb{R}$.

Example: Level curves

Distance between points in \mathbb{R}^n

n=2: Given two points $(x,y),(a,b)\in\mathbb{R}^2$.

The (Euclidean) distance of (x, y) and (a, b) equals $\sqrt{(x-a)^2 + (y-b)^2}$.

Theorem of Pythagoras.

Arbitrary *n*: Given two points $(x_1, x_2, \dots, x_n), (a_1, a_2, \dots, a_n) \in \mathbb{R}^n$.

The (Euclidean) distance of $(x_1, x_2, ..., x_n)$ and $(a_1, a_2, ..., a_n)$ equals $\sqrt{(x_1 - a_1)^2 + (x_2 - a_2)^2 + ... + (x_n - a_n)^2}$.

Open disc of radius δ around the point $(a,b) \in \mathbb{R}^2$:

$$B_{\delta}(a,b) = \{(x,y) \in \mathbb{R}^2 : \sqrt{(x-a)^2 + (y-b)^2} < \delta\}.$$

Open ball of radius δ around the point $(a_1,a_2,\ldots,a_n)\in\mathbb{R}^n$:

$$B_{\delta}(a_1,\ldots,a_n)=$$

$$\{(x_1,\ldots,x_n)\in\mathbb{R}^n : \sqrt{(x_1-a_1)^2+\ldots+(x_n-a_n)^2}<\delta\}.$$

Open and closed sets, boundary

Open/closed intervals in \mathbb{R} :

- $(a,b) = \{x \in \mathbb{R} : a < x < b\}$ open, boundary points a,b do not belong to (a,b).
- $[a,b] = \{x \in \mathbb{R} : a \le x \le b\}$ closed, boundary points a,b belong to (a,b).
- $[a,b) = \{x \in \mathbb{R} : a \le x < b\}$ and (a,b] neither open nor closed.

Boundary points

Set $D \subseteq \mathbb{R}^2$.

- $(a,b) \in \mathbb{R}^2$ boundary point of D, if for every $\delta > 0$ $B_{\delta}(a,b) \cap D \neq \emptyset$ and $B_{\delta}(a,b) \cap (\mathbb{R}^2 \setminus D) \neq \emptyset$.
- ∂D : set of boundary points of D.
- $D \setminus \partial D$: set of inner points of D.

Open/closed sets

$$D \subseteq \mathbb{R}^2$$
 is open if $\partial D \cap D = \emptyset$.

$$D \subseteq \mathbb{R}^2$$
 is closed if $\partial D \subseteq D$.

Open and closed sets, boundary

Boundary points

Set $D \subseteq \mathbb{R}^n$.

$$(a_1, \ldots, a_n) \in \mathbb{R}^n$$
 boundary point of D , if for every $\delta > 0$ $B_{\delta}(a_1, \ldots, a_n) \cap D \neq \emptyset$ and $B_{\delta}(a_1, \ldots, a_n) \cap (\mathbb{R}^n \setminus D) \neq \emptyset$.

 ∂D : set of boundary points of D.

 $D \setminus \partial D$: set of inner points of D.

Open/closed sets

$$D \subseteq \mathbb{R}^n$$
 is open if $\partial D \cap D = \emptyset$.

$$D \subseteq \mathbb{R}^n$$
 is closed if $\partial D \subseteq D$.

Example: $D_1 = \{(x, y) : x, y \le 1, x^2 + y^2 \ge 1\}$ and

 $D_2 = \{(x, y) : x, y < 1, x^2 + y^2 > 1\}$ both have the same boundary

$$\partial D_1 = \partial D_2 = \{(x, y) : x = 1 \text{ or } y = 1\} \cup \{(x, y) : x^2 + y^2 = 1\},$$

 D_1 is closed (since $\partial D_1 \subseteq D_1$),

 D_2 is open (since $\partial D_2 \cap D_2 = \emptyset$).

Limits and Continuity

 $D \subseteq \mathbb{R}^2$ open subset. Function $f: D \to \mathbb{R}$:

Limit: (ε, δ) -definition

$$\lim_{(x,y)\to(a,b)} f(x,y) = L \in \mathbb{R},$$

if for every $\varepsilon > 0$ there is a $\delta > 0$ such that

$$|L - f(x, y)| < \varepsilon$$
, whenever $(x, y) \in B_{\delta}(a, b)$.

Continuity

f is continuous in $(a, b) \in D$, if

$$\lim_{(x,y)\to(a,b)} f(x,y) = f(a,b).$$

f is continuous on D, if f is continuous in every point $(a, b) \in D$.

Limits and Continuity

 $D \subseteq \mathbb{R}^n$ open subset. Function $f: D \to \mathbb{R}$:

Limit: (ε, δ) -definition

$$\lim_{(x_1,\ldots,x_n)\to(a_1,\ldots,a_n)} f(x,y) = L \in \mathbb{R},$$

if for every $\varepsilon > 0$ there is a $\delta > 0$ such that

$$|L - f(x_1, \ldots, x_n)| < \varepsilon$$
, whenever $(x_1, \ldots, x_n) \in B_{\delta}(a_1, \ldots, a_n)$.

Continuity

f is continuous in $(a_1, \ldots, a_n) \in D$, if

$$\lim_{(x_1,\ldots,x_n)\to(a_1,\ldots,a_n)} f(x_1,\ldots,x_n) = f(a_1,\ldots,a_n).$$

f is continuous on D, if f is continuous in every point $(a_1, \ldots, a_n) \in D$.

Limits and Continuity (Example)

$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = x^2 - y^2$.

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0,$$

since for every given $\varepsilon > 0$ choosing $\delta = \sqrt{\varepsilon}$ all elements of $B_\delta(0,0) = \{(x,y): \sqrt{x^2+y^2} < \delta\}$ satisfy $-\delta < x,y < \delta$. Therefore $0 \le x^2, y^2 < \delta^2 \le \varepsilon$ and $-\varepsilon < f(x,y) = x^2 - y^2 < \varepsilon$ for all $(x,y) \in B_\delta(0,0)$, hence $|f(x,y) - 0| < \varepsilon$.

Since
$$f(0,0) = 0^2 - 0^2 = 0$$
,

$$\lim_{(x,y)\to(0,0)} f(x,y) = 0 = f(0,0),$$

therefore f is continuous in the point (0,0).

Partial derivatives

Functions of two variables: $f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$, z = f(x, y). Difference quotient for variable x at the point (a, b):

$$\frac{f(a+h,b)-f(a,b)}{h}.$$

Difference quotient for variable y at the point (a, b):

$$\frac{f(a,b+h)-f(a,b)}{h}.$$

Partial derivatives of f at the point $(a, b) \in D$:

$$f_x(a,b) = \frac{\partial f}{\partial x}(a,b) = \lim_{h \to 0} \frac{f(a+h,b) - f(a,b)}{h},$$

$$f_y(a,b) = \frac{\partial f}{\partial y}(a,b) = \lim_{h\to 0} \frac{f(a,b+h)-f(a,b)}{h},$$

if the limit exists. (Result: a real number).

Partial derivatives

If the limit exists for all $(a, b) \in D$: Partial derivative with respect to x (y, resp.):

$$f_x(x,y) = \frac{\partial f}{\partial x}(x,y) = \lim_{h \to 0} \frac{f(x+h,y) - f(x,y)}{h}.$$

$$f_y(x,y) = \frac{\partial f}{\partial y}(x,y) = \lim_{h \to 0} \frac{f(x,y+h) - f(x,y)}{h}.$$

Result: functions $f_x:D\to\mathbb{R}$ and $f_y:D\to\mathbb{R}$.

or "del' emphasizes partial derivatives'.

(Attention! Textbook: $f_1 = f_x$ and $f_2 = f_y$.)

Example: $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^2 - y^2$ (saddle surface).

$$f_x(x,y) = 2x, f_y(x,y) = -2y.$$

Partial derivatives

Functions of n variables: $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$, $z = f(x_1, \dots, x_n)$. Difference quotient for variable x_i $(1 \le i \le n)$:

$$\frac{f(x_1,\ldots,x_i+h,\ldots,x_n)-f(x_1,\ldots,x_i,\ldots,x_n)}{h}.$$

Partial derivatives:

$$f_{x_i}(x_1,\ldots,x_n) = \frac{\partial f}{\partial x_i}(x_1,\ldots,x_n) = \lim_{h\to 0} \frac{f(x_1,\ldots,x_i+h,\ldots,x_n)-f(x_1,\ldots,x_i,\ldots,x_n)}{h}.$$

Note: For a function $f: \mathbb{R}^n \to \mathbb{R}$ the partial derivative w.r.t. x_i at (a_1, \ldots, a_n) is the derivative at a_i of the function $g: \mathbb{R} \to \mathbb{R}$ $g(x_i) = f(a_1, \ldots, a_{i-1}, x_i, a_{i+1}, \ldots, a_n)$.

Partial derivatives w.r.t. x_i : Treat all variables except x_i as constants and form the derivative w.r.t. the variable x_i .

Tangent planes

 $f:D\subseteq\mathbb{R}\to\mathbb{R}$ differentiable in $a\in\mathbb{R}$.

Equation of the tangent line at $a \in \mathbb{R}$:

$$y = f(a) + f'(a)(x - a).$$

 $f:D\subseteq\mathbb{R}^2\to\mathbb{R}$ partially differentiable w.r.t. x and y and f_x and f_y continuous in $(a,b)\in D$ (D open subset of \mathbb{R}^2). Equation of the tangent plane at $(a,b)\in D$:

$$z = f(a, b) + f_x(a, b)(x - a) + f_y(a, b)(y - b).$$

 $f: D \subseteq \mathbb{R}^n \to \mathbb{R}$ partially differentiable w.r.t. x_i and f_{x_i} continuous for all i with $1 \le i \le n$ in $(a_1, \dots, a_n) \in D$ (D open subset of \mathbb{R}^n). Equation of the tangent space (hyperplane) at $(a_1, \dots, a_n) \in D$:

$$z = f(a_1, \ldots, a_n) + f_{x_1}(a_1, \ldots, a_n)(x_1 - a_1) + \ldots + f_{x_n}(a_1, \ldots, a_n)(x_n - a_n)$$

$$z = f(a_1, \ldots, a_n) + \sum_{i=1}^n f_{x_i}(a_1, \ldots, a_n)(x_i - a_i).$$

Tangent planes (Example)

$$f: \mathbb{R}^2 \to \mathbb{R}$$
, $f(x,y) = x^2 - y^2$.

Determine the tangent plane at f in (2,1).

 $f_x(x,y)=2x$ and $f_y(x,y)=-2y$ are both continuous in (x,y)=(2,1) (actually on the whole set \mathbb{R}^2).

Therefore the tangent plane consists of all points (x, y, z) satisfying the equation

$$z = f(2,1) + f_x(2,1)(x-2) + f_y(2,1)(y-1)$$

= 4-1+4(x-2)-2(y-1) = 4x-2y-3.

Higher-order partial derivatives

 $f_x: D \subseteq \mathbb{R}^2 \to \mathbb{R}$ partially differentiable w.r.t. x and y in $(a,b) \in \mathbb{R}^2$.

Second order partial derivatives:

$$f_{xx}(a,b) = (f_x)_x(a,b) = \frac{\partial f_x}{\partial x}(a,b) = \frac{\partial^2 f}{\partial x^2}(a,b).$$

$$f_{xy}(a,b) = (f_x)_y(a,b) = \frac{\partial f_x}{\partial y}(a,b) = \frac{\partial^2 f}{\partial x \partial y}(a,b).$$

$$f_y:D\subseteq\mathbb{R}^2 o\mathbb{R}$$
 partially differentiable w.r.t. x and y in

 $(a,b) \in \mathbb{R}^2$. Second order partial derivatives:

$$f_{yx}(a,b) = (f_y)_x(a,b) = \frac{\partial f_y}{\partial x}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b).$$

$$f_{yy}(a,b) = (f_y)_y(a,b) = \frac{\partial f_y}{\partial y}(a,b) = \frac{\partial^2 f}{\partial y^2}(a,b).$$

Higher-order partial derivatives

 $f: D \subseteq \mathbb{R}^2 \to \mathbb{R}$ two times partially differentiable w.r.t. x and y in $(a,b) \in \mathbb{R}^2$. Second order partial derivatives:

$$f_{xx}(a,b) = (f_x)_x(a,b) = \frac{\partial f_x}{\partial x}(a,b) = \frac{\partial^2 f}{\partial x^2}(a,b).$$

$$f_{xy}(a,b) = (f_x)_y(a,b) = \frac{\partial f_x}{\partial y}(a,b) = \frac{\partial^2 f}{\partial x \partial y}(a,b).$$

$$f_{yx}(a,b) = (f_y)_x(a,b) = \frac{\partial f_y}{\partial x}(a,b) = \frac{\partial^2 f}{\partial y \partial x}(a,b).$$

$$f_{yy}(a,b) = (f_y)_y(a,b) = \frac{\partial f_y}{\partial y}(a,b) = \frac{\partial^2 f}{\partial y^2}(a,b).$$

Example: $f(x, y) = x^2 - y^2$. $f_{xx}(x, y) = 2$

$$f_{xx}(x, y) = 2$$

 $f_{xy}(x, y) = 0$
 $f_{yx}(x, y) = 0$
 $f_{yy}(x, y) = -2$.

Exchanging the order of partial derivatives

In many cases $f_{xy} = f_{yx}$. By chance?

Theorem of Schwarz

If D is an open set, $f:D\subseteq\mathbb{R}^2\to\mathbb{R}$ two times partially differentiable and the partial derivatives f_{xy} and f_{yx} are both continuous then

$$f_{yx}(x,y) = \frac{\partial}{\partial x} \left(\frac{\partial}{\partial y} f(x,y) \right) = \frac{\partial}{\partial y} \left(\frac{\partial}{\partial x} f(x,y) \right) = f_{xy}(x,y).$$