COMPUTER ORGANIZATION & DESIGN

SE – CIS Batch 2018 Spring 2020

Instructor: Anita Ali

Lecture Plan

- Signed Integer Multiplication
- Real Number Representation
- IEEE 754 Binary 32 Format

(Single Precision Format)

Product in A, Q

Notion Used

A, M & Q : n-bit registers

Q₋₁ : an extra bit at right hand

side of bit 0 of register Q

Arithmetic Shift Right

Shift all bits *one* position towards right and retain sign bit (MSB)

Example

Arithmetic Shift Right

Shift all bits *one* position towards right and retain sign bit (MSB)

Example

Arithmetic Shift Right (ASR)

Shift all bits *one* position towards right and retain sign bit (MSB)

discarded

Example : - 7 x - 8 (4-bits)

Α	Q	Q-1	Count	Remarks

Product in A, Q

Example: -7 x - 8 (4-bits)

M = 1001

Α	Q	Q-1	Count	Remarks
0000	1000	0	4	Initialization

Example : - 7 x - 8 (4-bits)

M = 1001

Α	Q	Q-1	Count	Remarks
0000	1000	0	4	Initialization
0000	0100	0	3	Qo Q-1 = 00 ASR A, Q, Q-1, Count -1
			3	Count ≠ 0 so next cycle
0000	0010	0	3	Qo Q-1 = 00 ASR A, Q, Q-1, Count -1
			2	Count ≠ 0 so next cycle
0000	0001	0	1	Qo Q-1 = 00 ASR A, Q, Q-1, Count -1
				Count ≠ 0 so next cycle
0111	0001	0	1	Q0 Q-1 = $10 A \leftarrow A - M (or A + M')$
0011	1000	1	0	ASR A, Q, Q-1, Count -1
				Count = 0 so end

Example : - 7 x - 8 (4-bits)

M = 1001

Α	Q	Q-1	Count	Remarks
0000	1000	0	4	Initialization
0000	0100	0	3	Qo Q-1 = 00 ASR A, Q, Q-1, Count -1
			3	Count ≠ 0 so next cycle
0000	0010	0	3	Qo Q-1 = 00 ASR A, Q, Q-1, Count -1
			2	Count ≠ 0 so next cycle
0000	0001	0	1	Qo Q-1 = 00 ASR A, Q, Q-1, Count -1
				Count ≠ 0 so next cycle
0111	0001	0	1	Q0 Q-1 = $10 A \leftarrow A - M (or A + M')$
0011	1000	1	0	ASR A, Q, Q-1, Count -1
0011	1000			Count = 0 so end

M = 1001

Product is

$$0011\ 1000 = 56)_{10}$$

Homework 3.1

1. Use Booth's Algorithm to multiply following decimal numbers: (Use only as many bits as required for 2's complement representation of operands)

b)
$$(-9) \times (+3)$$

Real Number Representation

Digital representation of Real numbers can be of two forms

1. Fixed Point Representation

2. Floating Point Representation

1. Fixed Point Representation

- Position of radix point is fixed
- e.g. (6, 2) fixed point format

- It uses total 6 bits
- 2 bits reserved for fraction part
- Scheme is simple & fast

(6, 2) Fixed Point Format

- Frequently used in DSP & Image processing applications
- Which require stringent performance

Downside

Suffers from low precision and range

2. Floating Point (FP) Representation

- Also known as scientific notation
- Numbers are represented in the form

mantissa x base exponent

- Large integers can be represented as real numbers
- Too <u>small numbers</u> can be expressed
- Superior precision than fixed point representation

Pre-Floating Point Era

 Early processors did not directly support floating point in hardware

• e.g. Intel processors before 80486 microprocessor

Pre-Floating Point Era

Each floating point operation was compiled into a

sequence of integer instructions

- Time consuming
- Computer used for graphics / engineering
 - applications often had *math co-processor*
- It supported floating point operation in hardware

Floating P Compatibility Issue

- Till 1985, different machines had different floating point representation schemes
- Data stored in one machine was difficult to be interpreted by other machine, rather impossible

Problems with FP Representation

Same floating point number can be represented in a number of ways

$$111.101 \times 2^{5}$$

$$= 111101 \times 2^{2}$$

$$= 1.11101 \times 2^{7}$$

IEEE 754 Standard

- IEEE developed a standard for floating point representation in computers
- First released in 1985

Last revised in 2019

IEEE 754 Standard – Binary Representation

- Binary 32 Format (Single Precision Format)
- Binary 64 Format (Double Precision Format)
- Binary 128 Format

Binary Representation

- · Numbers in normalized, scientific binary notation
- i.e. number of the form **1.bbb**
- Where b→ any binary digit (1 / 0)
- e.g. **1.001010** → Normalized
 - **101.1001** → Not normalized

S (Sign bit)

- Bit 31 is used to represent sign of the number
- 0 for positive numbers
- 1 for negative numbers

Biased Exponent Field

- Bit **23** to bit **30** (8 bits)
- Bias is 127 → exponent is Excess-127 encoded

Biased exponent = True exponent + 127

Fraction Field

- Bit **0** to bit **22** (23 bits)
- Holds only fraction part of the significand

Example

Represent **101.1 x 2** ¹⁹ in IEEE 754 Binary 32 Format

Sign Bit

- Sign of number is positive
- so sign bit (bit 31) is 0

Example

Represent **101.1 x 2** ¹⁹ in IEEE 754 Binary 32 Format

Sign Bit

- Sign of number is positive
- so sign bit (bit 31) is 0

Example $- 101.1 \times 2^{19}$

Normalizing Significand

Instructor: Anita Ali

Example – 101.1 x 2 ¹⁹

Normalizing Significand

101.1 x 2 19

 $= 1.011 \times 2^{19+2}$

Example – 101.1 x 2 ¹⁹

Normalizing Significand

101.1x2¹⁹

$$= 1.011 \times 2^{19+2} = 1.011 \times 2^{21}$$

(Significand is normalized & exponent is adjusted accordingly)

Example – 101.1 x 2 ¹⁹

Normalizing Significand

$$= 1.011 \times 2^{19+2} = 1.011 \times 2^{21}$$

Fraction: 011

Example – 101.1 x 2 ¹⁹

Normalizing Significand

101.1x2¹⁹

$$= 1.011 \times 2^{19+2} = 1.011 \times 2^{21}$$

Normalizing Significand

 101.1×2^{19}

$$= 1.011 \times 2^{19+2} = 1.011 \times 2^{21}$$

Fraction : **0 1 1**

Instructor: Anita Ali

Example – 101.1 x 2 ¹⁹

Biased Exponent

No: 1.011x2²¹

Biased exponent = True exponent + **127**

Biased Exponent

No: 1.011x2²¹

Biased exponent = True exponent + 127

= 21 + 127 = 148

Biased Exponent

No: 1.011x2²¹

Biased exponent = True exponent + 127

= 21 + 127 = 148

= 10010100)2

Biased Exponent

No: 1.011x2²¹

Biased exponent = True exponent + 127

= 21 + 127 = 148

= 10010100)2

 101.1×2^{19}

IEEE 754 Binary 32 Format

IEEE 754 Binary 32 Format

In hexadecimal form

0x 4A300000

IEEE 754 - Binary 32 Format

A number in IEEE 754- Binary 32 Format has the following decimal value

$$(-1)^{S}(1+f) \times 2^{(Exponent-127)}$$

Class Activity

Represent given number using IEEE 754 Binary 32 Format (Single Precision Format)

111001.1001x2⁻⁶⁰

Class Activity - Answer

Represent given number using IEEE 754 Binary 32 Format (Single Precision Format)

-1 1 1 0 0 1 . 1 0 0 1 x 2 -60

1. Prevents multiple representation of same floating point number

$$111.101 \times 2^{5}$$

$$= 111101 \times 2^{2}$$

$$= 1.11101 \times 2^{7}$$
Normalized Form

1. Prevents multiple representation of same floating point number

$$111.101 \times 2^{5}$$

$$= 111101 \times 2^{2}$$

$$= 1.11101 \times 2^{7}$$
Normalized Form

2. Avoids storing 1 to the left of binary point (also known as *hidden* 1 / *implicit* 1)

3. Avoids representing the position of the radix(binary) point

Why Biased Exponent?

- If instead of biasing 2'c complement method is used to store exponent then sorting of the numbers becomes difficult
- Because number having negative exponent
 looks larger than a number with positive exponent

2's Complement Representation

Number	Representation	Number	Representation
0	0000	-1	1111
1	0001	-2	1110
2	0010	-3	1101
3	0011	-4	1100
4	0100	-5	1011
5	0101	-6	1010
6	0110	-7	1001
7	0111	-8	1000

Why Biased Exponent?

- Biasing resolves this issue
- It is an unsigned notation
- After biasing, data appears like an ordinary integer number
- Where negative numbers appear as a smaller number than a positive number
- Hence comparison /sorting becomes easier

Comparison/Sorting of FP Numbers

- After biasing comparison/sorting can proceed in 3 steps
- 1. Compare sign bits \rightarrow **S**= 0 is greater
- 2. Compare **E**, if sign are same → big **E** wins
- 3. Compare **f**, if exponents are same → big **f** wins

Homework 3.3

Homework will be shared via Goggle Classroom

Recap

- Signed Integer Multiplication
- Real Number Representation
- IEEE 754 Binary 32 Format

(Single Precision Format) (to be contd....)

Reading Assignment

- Go through all relevant sections from
- Chapter 3 of text book

Computer Organization & Design (5th edition)

Chapter 10 of reference book

Computer Organization & Architecture (10th ed)

Note: Be prepared for quiz in upcoming live session

Stay Home Stay Safe