АЛГЕБРА (ЕГЭ профиль)

1	AJII EL	JI A (L		ipo	qp yi.	<u> IIB</u>				14 (1)
ТАБ	ПИЦА КВАДРАТОВ				TA	БЛИЦА	СТЕПЕ	НЕЙ		
1 100 121 144 169 2 400 441 484 529 3 900 961 1024 1089 4 1600 1681 1764 1849 5 2500 2601 2704 2809 6 3600 3721 3844 3969 7 4900 5041 5184 5329 8 6400 6561 6724 6889 9 8100 8281 8464 8649	Единицы 4 5 6 7 8 9 196 225 256 289 324 361 576 625 676 729 784 841 1156 1225 1296 1369 1444 1521 1936 2025 2116 2209 2304 2401 2916 3025 3136 3249 3364 3481 4096 4225 4356 4489 4624 4761 5476 5625 5776 5929 6084 6241 7056 7225 7396 7569 7744 7921 8836 9025 9216 9409 9604 9801		$2^{1} = 2$ $2^{2} = 4$ $3^{3} = 8$ $2^{4} = 16$ $2^{5} = 32$ $2^{6} = 64$ $2^{7} = 128$ $2^{8} = 256$ $2^{9} = 512$ $2^{10} = 1024$		4^{n} $4^{0} = 1$ $4^{1} = 4$ $4^{2} = 16$ $4^{3} = 64$ $4^{4} = 256$ $4^{5} = 1024$	5^{n} $5^{0} = 1$ $5^{1} = 5$ $5^{2} = 25$ $5^{3} = 125$ $5^{4} = 625$	6^{n} $6^{0} = 1$ $6^{1} = 6$ $6^{2} = 36$ $6^{3} = 216$	7^n $7^0 = 1$ $7^1 = 7$ $7^2 = 49$ $7^3 = 343$	8n 80 = 1 81 = 8 82 = 64 83 = 512	9^{n} $9^{0} = 1$ $9^{1} = 9$ $9^{2} = 81$ $9^{3} = 729$
n		1	ПЕНИ							
a^{n} – это степень a^{n} – это основание $a^{n} \cdot a^{m} = a^{n+1}$		$a^{n \cdot m}$ $a^n \cdot b^n =$	$= (a \cdot b)^n \qquad \frac{a}{b}$	$\frac{a^n}{b^n} = \left(\frac{a}{b}\right)^n$	a	$t^0 = 1$	a^{-n}	$=\frac{1}{a^n}$	$\left(\frac{a}{b}\right)^{-n}$	$= \left(\frac{b}{a}\right)^n$
		КО	РНИ		L				<u>'</u>	
Û	2		3			G)			9	
$\sqrt{a} \cdot \sqrt{b} = \sqrt{ab}$	$\frac{\sqrt{a}}{\sqrt{b}} = \sqrt{\frac{a}{b}}$	$\left(\sqrt{a}\right)^2 = a$		\sqrt{a}	$\overline{a^2} = a $			$\sqrt[n]{a^m} = a^{\frac{m}{n}}$		
		ПЫ СОКРАЩ	ЁННОГО	УМНО	КЕНИЯ					
Разность квадратов	Квадрат разности		іт суммы		Разность кубов			Сумма кубов $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$		
$a^2 - b^2 = (a - b)(a + b)$	$(a-b)^2 = a^2 - 2ab + b^2$	$(a+b)^2 = a^2 + 2$		a^3	$-b^3 = (a$	$(a^2 + ab)$	$(a + b^2)$	$a^3 + b^3 = 0$	$(a + b)(a^2 -$	$ab + b^2$
7 1 7	01		РИФМЫ							
$\log_a b$ — логарифм b по основаник a — основание	Определение логарифма Если $\log_a b = c$, то $a^c = b$		ОДЗ > 0	lor	g h l log	$c = \log_a b \cdot c$	7		2	1
подлогарифмическое выражен		\triangle ля $\log_a b$ a	≠ 1 > 0	108	$g_a v + \log_a$	$c = \log_a b$	•	$\log_a b - \log$	$g_a c = log_a \frac{c}{c}$	<u>-</u> !
3	Ą		9			3			9	
$a^{\log_a b} = b$	$\log_a b^m = m \cdot \log_a b$	$\log_{a^n} b = \frac{1}{n} \cdot \log$	a b	log	$g_a b = \frac{1}{\log_b}$	a		$110\sigma n = -$	$g_c b$ $g_c a$	
	•	произ	водные							
	3	g	(ð		6		7		3
C' = 0 x' = 1	(Cx)' = C (x	$(x^n)' = n \cdot x^{n-1}$	$\left(\sqrt{x}\right)' = \frac{1}{2\sqrt{x}}$	\sqrt{x}	$(U\cdot V)'=$	=U'V+UV'	$\left(\frac{U}{V}\right)' = \frac{U}{V}$	$\frac{U'V - UV'}{V^2}$	(U(V))' =	$= (U(V))' \cdot V$
	0 10	12	0:	3		19		16		13
$(\sin x)' = \cos x \qquad (\cos x)' =$	$-\sin x \qquad \left (\operatorname{tg} x)' = \frac{1}{\cos^2 x} \right (\operatorname{cos}^2 x)$	$\operatorname{etg} x)' = -\frac{1}{\sin^2 x}$	$(e^x)' = e^x$		$(a^x)'=a$	$a^x \cdot \ln a$	$(\ln x)' =$	$\frac{1}{x}$	$(\log_a b)'$	$=\frac{1}{b\cdot \ln a}$

Формулы приведения

0

Если в аргументе есть $\frac{\pi}{2}$ или $\frac{3\pi}{2}$ или $\frac{5\pi}{2}$ и т.д., то функция меняется на кофункцию Если в аргументе есть π или 2π или 3π и т.д., то функция не меняется на кофункцию

Пример:

$$\sin\left(\frac{\pi}{2} - \alpha\right) = \cos\alpha$$

$$tg(\pi + \alpha) = tg \alpha$$

92

Чтобы определить знак, необходимо понять в какой четверти находится аргумент и смотреть на изначальную функцию, а не на изменившуюся

Пример:

$$\sin\left(\frac{3\pi}{2} + \alpha\right)$$

Это IV четверть, в ней синус имеет знак минус, поэтому

$$\sin\left(\frac{3\pi}{2} + \alpha\right) = -\cos\alpha$$

ТРИГОНОМЕТРИЧЕСКИЕ ФОРМУЛЫ									
Синус	Косинус	Тангенс	Котангенс						
$\sin = \frac{\text{противолежащий катет}}{\text{гипотенуза}}$	$\cos = \frac{\text{прилежащий катет}}{\text{гипотенуза}}$	$tg = \frac{противолежащий катет}{прилежащий катет}$	$ctg = \frac{прилежащий катет}{противолежащий катет}$						
		$tg \alpha = \frac{\sin \alpha}{\cos \alpha}$	$\operatorname{ctg} \alpha = \frac{\cos \alpha}{\sin \alpha}$						
Q	2	3	q						
$\sin^2\alpha + \cos^2\alpha = 1$	$1 + tg^2 \alpha = \frac{1}{\cos^2 \alpha}$	$1 + \operatorname{ctg}^2 \alpha = \frac{1}{\sin^2 \alpha}$	$tg \alpha \cdot ctg \alpha = 1$						
9	3	I	3						
$\sin 2\alpha = 2\sin \alpha \cdot \cos \alpha$	$\cos 2\alpha = \cos^2 \alpha - \sin^2 \alpha$	$\cos 2\alpha = 2\cos^2\alpha - 1$	$\cos 2\alpha = 1 - 2\sin^2\alpha$						
9	10	00	02						
$\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta$	$\sin(\alpha - \beta) = \sin \alpha \cos \beta - \cos \alpha \sin \beta$	$\cos(\alpha + \beta) = \cos\alpha\cos\beta - \sin\alpha\sin\beta$	$\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$						

ГЕОМЕТРИЧЕСКИЙ И ФИЗИЧЕСКИЙ СМЫСЛ ПРОИЗВОДНОЙ									
Геометрический смысл производной	Физический смысл производной	Взаимное расположение двух прямых	Условие касания функции и прямой	Первообразная	Формула Ньютона-Лейбница				
$f'(x_0) = k = \operatorname{tg} \alpha$	S'(t) = V(t) $V'(t) = a(t)$	$y=k_1x+b_1$ $y=k_2x+b_2$ \emptyset Если $k_1=k_2$ и $b_1=b_2$, то прямые совпадают Пример: $y=2x+7$ и $y=2x+7$ \mathbb{Z} Если $k_1=k_2$ и $b_1\neq b_2$, то прямые параллельны Пример: $y=2x+7$ и $y=2x-5$ \mathbb{S} Если $k_1\neq k_2$, то прямые пересекаются Пример: $y=2x+7$ и $y=3x+7$	$\begin{cases} y' = f'(x_0) \\ y = f(x_0) \end{cases}$	F'(x) = f(x)	S_{ϕ игуры под графиком $=F(b)-F(a)$				

АРИФМЕТИЧЕСКАЯ ПРОГРЕССИЯ										
Элементы прогрессии	Û	2	3	4						
d — это разность (на сколько изменяется каждый следующий член прогрессии) a_n — это какой-либо член прогрессии S_n — это сумма какого-либо количества членов прогрессии	$a_n = a_1 + d(n-1)$	$S_n = \frac{(a_1 + a_n)n}{2}$	$d = a_{n+1} - a_n$	$d = \frac{a_n - a_m}{n - m}$						

4 модуль										
Раскрытие модуля	O .	2	9							
D	$ a \cdot b = a \cdot b $	$\left \frac{a}{a} \right = \frac{ a }{a}$	$ a ^2 = a^2$							
Если внутримодульное выражение положительное, то просто опускаем модуль		b - b								
Пример:										
y = 2 - 1 = 2 - 1										
2										
Если внутримодульное выражение отрицательное, то раскрываем модуль,										
меняя все знаки внутри модуля на противоположные										
Пример:										
y = 1 - 2 = -1 + 2										

КВАДРАТНЫЕ УРАВНЕНИЯ								
Дискриминант	Теорема Виета	Разложение на множители						
$ax^2 + bx + c = 0$	$ax^2 + bx + c = 0$	$ax^2 + bx + c = a(x - x_1)(x - x_2)$						
$D = b^2 - 4ac$	$\left(x + x - \frac{b}{a}\right)$							
$-b \pm \sqrt{D}$	$\int x_1 + x_2 = -\frac{1}{a}$							
$x_{1,2} = \frac{}{2a}$	$x_1 \cdot x_2 = \frac{c}{a}$							

ВЕРОЯТНОСТЬ											
Определение вероятности		K	убик бро	осают д	важды		Сложение и умножение вероятностей	Вероятность суммы двух			
								несовместных событий			
Вероятность – это отношение	11	21	31	41	51	61	Складываем вероятности если нам подходит или одно событие, или	p(A+B) = p(A) + p(B)			
благоприятных исходов ко всем исходам	12	22	32	42	52	62	другое				
	13	23	33	43	53	63					
$p = \frac{благоприятные\;исходы}{п}$	14	24	34	44	54	64	Умножаем вероятности если нам подходит и одно событие, и другое				
все исходы	15	25	35	45	55	65					
	16	26	36	46	56	66					

ТЕКСТОВЫЕ ЗАДАЧИ								
Средняя скорость	Схема задач на производительность							
Чтобы найти среднюю скорость необходимо суммарное				0				
пройденное расстояние разделить на суммарное		Заполняем табличку:						
потраченное время			А (производительность)	t (время)	V (количество)			
$V = \frac{S_{\text{суммарное}}}{}$		I	A_1	t_1	V_1			
$V_{\text{средняя}} = \frac{1}{t_{\text{суммарное}}}$		II	A_2	t_2	V_2			
			•	2	•			
		То,	что требуется найти – берём	x_0 за x_0 , рядом с	х ставим у			
				3				
		Доз	аполняем табличку и решаег	и систему ураві	нений: $egin{cases} A_1 \cdot t_1 = V_1 \ A_2 \cdot t_2 = V_2 \end{cases}$			

Геометрия

лежит меньший угол

РОМБ										
Определение	Площадь	Площадь	Площадь	Площадь	Признаки ромба					
Ромб – это параллелограмм, у которого все стороны равны	$S = \frac{d_1 \cdot d_2}{2}$	$ \begin{array}{c c} a \\ h \\ S = ah \end{array} $	$a \qquad a \qquad a$ $S = a^2 \cdot \sin \alpha$	S = 2ar	1) Если в четырёхугольнике все стороны равны, то он — ромб 2) Если в параллелограмме две смежные стороны равны, то он — ромб 3) Если в параллелограмме диагонали пересекаются под прямым углом, то он — ромб 4) Если в параллелограмме одна из диагоналей является биссектрисой его углов, то он — ромб					

ПРОИЗВОЛЬНЫЙ ЧЕТЫРЁХУГОЛЬНИК

Площадь произвольного четырёхугольника

Ganagarina i Maria	<u> </u>	Площадь круга		РУЖНОС	ТЬ	Рацаанны об мара	Пациярал ил й дара		
Злементы круга 2088 2088 2088 2088	$S=\pi F$	R	R $= 2\pi R$		$2 \alpha^{\circ}$ угол равен половине дуги опирается				
Признак четырёхугольника, в	Пъиз	нак четырёхугольника, П	ризнак четырёхугольника, вписанног	20 В ОКРУЖНОСТЬ	которую он	Свойство касательной	дуги, на которую он опирается Свойство касательных		
который вписали окружность	1	санного в окружность	pushak tombiponyoonbhaka, bhabanno	oo o onpymnoomo		obouting Ruddinginging	Section Results And Inches		
a + c = b + d		$\Delta D = 180^{\circ}$ p c q	образования в противопом и да противопом и да противопом и другой диагоналы в пистырёхугольник можно в пистырёх угольник можно в пистырёх угольник можно в пистырёх угольник можно в пистырёх угольник можно в пистыра в пис	ожной ю, то такой		я к окружности улярна радиусу, проведённ ания	составляют равные углы с прямой, проходящей через эту точку и центр		
		0	кружность				окружности		
				PEOMETI	РИЯ				
Теорема о трёх перпендикуля	pax	Угол между прямой и плоскостью	Признак перпендикулярности прямой и плоскости	Признак пара прямой и і		Признак параллельности двух плоскостей	Схема нахождения угла между плоскостями		
Прямая, проведённая в плочерез основание наклонной		А Угол между прямой и плоскостью – это угол	а Если прямая перпендикулярна к	а Если прямая лежащая в да	<u>а</u> <u>b</u>	в ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф ф	1) Ищем прямую пересечения плоскостей (присунке это <i>CD</i>)		
перпендикулярно к её проег	кции	между прямой и её	двум пересекающимся	плоскости, п	араллельна	прямые одной	2) На этой прямой выбираем точку (на рису		
на эту плоскость, перпендикулярна и к самой наклонной а — прямая АМ — наклонная НМ — проекция АН — перпенликуляр		проекцией на плоскос	прямым, лежащим в плоскости, то она перпендикулярна к этой плоскости	какой-нибуд лежащей в эз плоскости, т параллельна плоскости	гой о она	плоскости соответственно параллельны двум прямым другой плоскости, то эти плоскости параллельны	это точка O) 3) Проводим из этой точки два перпендикуляра в каждой из плоскостей (на рисунке $OA \perp CD$ в плоскости α и $OB \perp CD$ плоскости β) 4) Угол между этими перпендикулярами — искомый угол межлу плоскостями (на рису		

искомый угол между плоскостями (на рисунке $\angle AOB$ — угол между плоскостями α и β)

АН — перпендикуляр

10		K	УБ		
Рисунок		Объём	Площадь поверхност	ıu	Диагональ
a	$V = a^3$		$S_{\text{поверхности}} = 6a^2$		$d = \sqrt{3}a$
		ПРЯМОУГОЛЬНЫЙ	ПАРАЛЛЕЛЕПИПЕД		
Рисунок		Объём	Площадь поверхност		Диагональ
h	V = abh		$S_{\text{поверхности}} = 2ab + 2ah + 2bh$	ı	$d^2 = a^2 + b^2 + h^2$
		ПРИ	I3MA		
Рисунок		Объём	Площадь поверхност	nu	Площадь боковой поверхности
h	$V = S_{\text{основания}} \cdot$	h	$S_{\text{поверхности}} = 2S_{\text{основания}} + S_{\text{бок}}$	совой поверхности	$S_{ ext{боковой поверхности}} = P_{ ext{основания}} \cdot h$
		цил	индр		
Рисунок		Объём	Площадь поверхност	ıu	Площадь боковой поверхности
)h	$V = \pi R^2 h$		$S_{\text{поверхности}} = 2\pi R^2 + 2\pi R h$		$S_{ m 60ковой\ поверхности}=2\pi Rh$
		КО	НУС		
Рисунок		Объём	Площадь поверхност	nu	Площадь боковой поверхности
h R	$V = \frac{1}{3}\pi R^2 h$		$S_{\text{поверхности}} = \pi R^2 + \pi R l$		$S_{ m боковой\ поверхности}=\pi R l$
	-	ПИРА	МИДА		
Рисунок		06	ъём		Площадь поверхности
		$V = \frac{1}{3} S_{\text{основания}} \cdot h$		$S_{ m поверхности} = S_{ m основания} + S_{ m 60ковой\ поверхности}$	
		Ш	AP		
Рисунок		06	ъём		Площадь поверхности
R		$V = \frac{4}{3}\pi R^3$		$S_{\text{сферы}} = 4\pi R^2$	