Hierarchical Bayesian Modeling of Antibody Kinetics: Extensions and Refinements

Kwan Ho Lee

UC Davis

2025-05-22

Overview

- Incorporates feedback from Dr. Morrison, Dr. Aiemjoy, and lab discussion
- Focus exclusively on (Teunis and Eijkeren 2016) two-phase within-host model
- Clarifies full hierarchical Bayesian modeling structure
- Explicitly distinguishes between priors, hyperpriors, transformations
- Reorders: Start from observation model → build upward

Big Picture: What Are We Modeling?

We are modeling **how antibody levels change over time** in response to infection, using multiple individuals and multiple biomarkers (antigen-isotype combinations, (j = 1, 2, ..., 10)).

Goals:

- Understand the average pattern for each biomarker
- Allow for individual-level variation
- Share information across individuals to improve inference

This motivates using a hierarchical Bayesian model.

Step 1: Observation Model (Data Level)

Observed (log-transformed) antibody levels:

$$\log(y_{\mathrm{obs},ij}) \sim \mathcal{N}(\log(y_{\mathrm{pred},ij}(\theta_{ij})), \tau_j^{-1}) \tag{1}$$

Measurement precision prior:

$$\tau_j \sim \mathsf{Gamma}(a_j, b_j)$$
 (2)

Parameter Summary

Table 1: Parameter summary for antibody kinetics model.

Symbol	Description
$\begin{array}{c} \mu_y \\ \mu_b \\ \gamma \end{array}$	Antibody production rate (growth phase) Pathogen replication rate Clearance rate (by antibodies)
$\alpha \over ho$	Antibody decay rate Shape of antibody decay (power-law)
$egin{array}{c} t_1 \ y_1 \end{array}$	Time of peak response Peak antibody concentration

Note: Only the first 6 are typically estimated. y_1 is derived from the ODE solution at t_1 .

Step 2: Within-Host ODE System (Teunis and Eijkeren 2016)

$$\frac{dy}{dt} = \begin{cases} \mu_y y(t), & t \leq t_1 \\ -\alpha y(t)^\rho, & t > t_1 \end{cases} \quad \text{and} \quad \frac{db}{dt} = \mu_b b(t) - \gamma y(t) \tag{3}$$

- Initial conditions: $y(0) = y_0$, $b(0) = b_0$
- $\bullet \ \, {\rm Transition} \,\, {\rm at} \,\, t_1 \colon \, {\rm when} \,\, b(t_1) = 0 \\$

Step 3: Closed-Form Solutions

Antibody concentration:

• For $t \leq t_1$:

$$y(t) = y_0 e^{\mu_y t} \tag{4}$$

• For *t t*₁:

$$y(t) = y_1 \left(1 + (\rho - 1)\alpha y_1^{\rho - 1} (t - t_1) \right)^{-\frac{1}{\rho - 1}} \tag{5}$$

Pathogen load:

• For $t \leq t_1$:

$$b(t) = b_0 e^{\mu_b t} - \frac{\gamma y_0}{\mu_y - \mu_b} \left(e^{\mu_y t} - e^{\mu_b t} \right) \tag{6}$$

• For *t t*₁:

$$b(t) = 0$$

Step 4: Derived Quantities

• Clearance Time t_1 :

$$t_1 = \frac{1}{\mu_y - \mu_b} \log \left(1 + \frac{(\mu_y - \mu_b)b_0}{\gamma y_0} \right) \tag{7}$$

• Peak Antibody Level y_1 :

$$y_1 = y_0 e^{\mu_y t_1} \tag{8}$$

Important: t_1 and y_1 are **derived**, not fit parameters.

Full Parameter Model (7 Parameters)

Subject-level parameters for each subjecti and biomarker j:

$$\theta_{ij} \sim \mathcal{N}(\mu_j, \, \Sigma_j), \quad \theta_{ij} = \begin{bmatrix} y_{0,ij} \\ b_{0,ij} \\ \mu_{b,ij} \\ \mu_{y,ij} \\ \gamma_{ij} \\ \alpha_{ij} \\ \rho_{ij} \end{bmatrix} \tag{9}$$

These 7 parameters represent the full biological model (antibody + pathogen dynamics)

From Full 7 Parameters to 5 Latent Parameters

• Although the model estimates 7 parameters, for modeling antibody kinetics y(t), we focus on **5-parameter subset**:

$$y_0, \ t_1(\text{derived}), \ y_1(\text{derived}), \ \alpha, \ \rho$$

• These 5 parameters are **log-transformed** into the latent parameters $\theta_{-}ij$ used for modeling.

Core Parameters Used for Curve Drawing

Although the full model estimates **7 parameters**, only **5 key parameters** required to draw antibody curves:

- y_0 : initial antibody level
- t_1 : time of peak antibody response (derived)
- y_1 : peak antibody level (derived)
- α : decay rate
- ullet ho: shape of decay

Note: t_1 and y_1 are $\mbox{derived}\mbox{ from the full model}$ - These 5 are sufficient for prediction and plotting

Step 5: Subject-Level Parameters (Latent Version)

Each subject i and biomarker j has latent parameters:

$$\theta_{ij} = \begin{bmatrix} \log(y_{0,ij}) \\ \log(y_{1,ij} - y_{0,ij}) \\ \log(t_{1,ij}) \\ \log(\alpha_{ij}) \\ \log(\rho_{ij} - 1) \end{bmatrix}$$
(10)

Distribution:

$$\theta_{ij} \sim \mathcal{N}(\mu_j, \Sigma_j)$$

par[subj, cur_antigen_iso, 1:n_params] ~ dmnorm(mu.par[cur_antigen_iso, 1:n_params] ~ dmnorm(mu.par[cur_antigen_iso, 1:n_params])

Step 6: Parameter Transformations (log scale priors)

JAGS implements latent parameters (par) as:

Table 2: Log-Scale Transformations of Antibody Model Parameters in JAGS.

Model Parameter	Transformation in JAGS
$\overline{y_0}$	$\exp(par_1)$
y_1	$y_0 + \exp(par_2)$
t_1	$\exp(par_3)$
α	$\exp(par_4)$
ρ	$\exp(par_5) + 1$

All priors are thus applied on **log scale** (or log-minus-one for ρ).

Step 7: Population-Level Parameters (Priors)

The biomarker-specific mean vector μ_j has a **hyperprior** :

$$\mu_{j} \sim \mathcal{N}(\mu_{\mathsf{hyp},j}, \Omega_{\mathsf{hyp},j}) \tag{11}$$

Where:

- ullet $\mu_{\mathsf{hyp},j}$: **prior mean** for the population-level parameters
- $\Omega_{\mathrm{hyp},j}$: prior covariance encoding uncertainty about μ_j (e.g., $100\cdot I_7$ for weakly informative prior)

Clarification:

- ullet $\mu_{\mathsf{hyp},j}$ defines the **center of a distribution, not** a single point guess.
- In Bayesian modeling, priors and hyperpriors are distributions over unknown quantities, capturing full uncertainty.

Step 8: Prior on Covariance Matrices

We also don't know how much individual parameters vary. So we assign a **Wishart prior** to the **inverse** covariance matrix:

$$\Sigma_{j}^{-1} \sim \mathcal{W}(\Omega_{j}, \nu_{j}) \tag{12}$$

- Ω_j : prior scale matrix (small variance across parameters, often $0.1 \cdot I_7$)
- ullet ν_i : degrees of freedom

Higher $\nu_j o$ more informative prior (stronger prior).

Lower $\nu_j
ightarrow$ more weakly informative (broader prior or weaker prior).

This tells the model how much we expect individuals to vary from the average for biomarker j.

Putting It All Together

The model is built hierarchically across five conceptual levels:

- Observed data: noisy log antibody concentrations from serum samples
- 2 Latent individual parameters: hidden antibody dynamics θ_{ij} for each subject-biomarker pair
- Population-level means: average antibody parameters for each biomarker
- Hyperpriors on means: our belief about the likely range of biomarker-specific population means
- Priors on variability: our belief about how much individual parameters vary around the population mean

This structure allows us to account for uncertainty at every level, while borrowing strength across subjects and biomarkers.

Summary of the Hierarchy

Top Level:

- \bullet For each biomarker j, the true mean antibody trajectory parameters μ_j come from a prior:
 - $\bullet \ \mu_j \sim \mathcal{N}(\mu_{\mathrm{hyp},j},\Omega_{\mathrm{hyp},j})$

Middle Level:

- For each person i, their parameters:
 - $\bullet \ \theta_{ij} \sim \mathcal{N}(\mu_j, \Sigma_j)$

Bottom Level:

- \bullet Their actual observed antibody levels are noisy measurements of predictions from θ_{ij} :
 - $\bullet \ \log(y_{\mathrm{obs},ij}) \sim \mathcal{N}(\log(y_{\mathrm{pred},ij}(\theta_{ij})), \tau_j^{-1})$

Where:

- $y_{\mathrm{pred},ij}(\theta_{ij})$ is the predicted antibody trajectory based on θij .
- \bullet So predictions directly use θ_{ij} to compute $y_{\mathsf{pred},ij}$, and then compare

Clarification: How Bottom Level Depends on Middle Level

We know the following facts:

- θ_{ij} are the subject-level latent parameters (like $y_0, b_0, \mu_b, \mu_y, \gamma, \alpha, \rho$).
- ② From θ_{ij} , we **calculate** the antibody trajectory $y_{\mathsf{pred},ij}(t)$ using the ODE solution.
- **③** The observed log-antibody $\log(y_{\text{obs},ij})$ is modeled as a noisy version of $\log(y_{\text{pred},ij})$.
- **1** au_j is the precision (measurement noise precision for biomarker j).

Thus, at the **Bottom Level**, we model:

$$\log(y_{\mathrm{obs},ij}) \sim \mathcal{N}(\log(y_{\mathrm{pred},ij}(\theta_{ij})), \tau_j^{-1})$$

Here:

• The **mean** is $\log(y_{\mathrm{pred},ij}(\theta_{ij}))$ — depends on the **ODE solution** which itself depends on θ_{ij} .

Model Comparison (Teunis and Eijkeren 2016) vs. Our Presentation

Table 3: Comparison of Teunis (2016) model and this presentation's model assumptions.

Component	(Teunis and Eijkeren 2016)	This Presentation
Pathogen ODE Antibody growth ODE	$\mu_0 b(t) - c y(t) \\ \mu y(t)$	$\frac{\mu_b b(t) - \gamma y(t)}{\mu_y y(t)}$
Antibody decay ODE	$-\alpha y(t)^r$	$-\alpha y(t)^ ho$
Growth mechanism	Pathogen-driven	Self-driven

Teunis, Peter F. M., and J. C. H. van Eijkeren. 2016. "Linking the Seroresponse to Infection to Within-Host Heterogeneity in Antibody