Algoritmi di Crittografia Corso di Laurea Magistrale in Informatica

A.A. 2018/2019

Algoritmi di Crittografia

- Elliptic curve cryptography (2)
 - EC cryptography over finite fields

Algoritmi di Crittografia

- Elliptic curve cryptography (2)
 - EC cryptography over finite fields

The fields \mathbf{Z}_p

- If p is prime, the set $\{0, 1, ..., p-1\}$ with modular addition and multiplication is a *field*
- This means that it is a group under addition, with neutral element 0, and that it is also a group under multiplication, with neutral element 1
- The distributive property of multiplication also holds
- Polynomial factorization (i.e., the decomposition of a polynomial into a product of irreducible factors) exists and is unique over any field, hence also over Z_p
- This is a well-known fact that has crucial importance for EC cryptography

Elliptic curves over \mathbf{Z}_{ρ}

- When moving from the field of real numbers to Z_ρ, geometric intuitions do not help us any more
- Elliptic curves over Z_p appears as illustrated below

Figura: Elliptic curve $y^2 = x^3 - 4x$ over \mathbf{Z}_{191} : Source: J.P. Aumasson, Serious Cryptography, No Starch Press (2018)

Elliptic curves over \mathbf{Z}_{p} (cont.d)

- However, what we have learned about the group structure and operations still holds
- In particular, let $E_p(x, y) = y^2 x^3 ax b$ be a curve over \mathbf{Z}_p and consider the "line" through $A = (x_A, y_A)$ and $B = (x_B, y_B)$, $x_A \neq x_B$

$$y = mx + q$$

with
$$m = \frac{y_B - y_A}{x_B - x_A} = (y_B - y_A)(x_B - x_A)^{-1}$$
 and $q = y_A - x_A m$

The polynomial equation

$$p(x) = x^3 - m^2x^2 + (a - 2mq)x + b - q^2 = 0$$

has clearly x_A and x_B as solution

- But then, thanks to factorization, we can write $p(x) = (x x_A)(x x_B)r(x)$ and r(x) must have degree 1
- Since \mathbf{Z}_p is a field, r(x) has a solution, which is the x-coordinate of the third "intersection point"

ECs suitable for cryptographic applications

- Let E = E(a, b) be an elliptic curve. From all we have seen, we may conclude that the rational points P ∈ E form a group G_E under point addition
- Whether or nor G_E is cyclic depends on the curve
- But we need a cyclic group
- Recall the definition of scalar multiplication over elliptic curves:

$$kP = \underbrace{P + P + \ldots + P}_{k-\text{times}}$$

- If *G* is cyclic, then there exists a point *P* that is a *generator*
- This means that, for any point Q on the curve, there is an integer k such that kP = Q
- Finding the number k (given the generator, or base point P) is called the elliptic curve discrete logarithm problem (ECDLP)

ECs suitable for cryptographic applications (cont.d)

- Often, the group of rational points is not a cyclic group
- However, the group of rational points always includes cyclic subgroups (trivially...)
- Clearly, not any cyclic subgroup is suitable for cryptographic purposes
- The subgroup must be large, for obvious reasons
- Also, the order of the subgroup must be divisible by a large prime (recall DH protocol)

A simple example

Consider the curve

$$y^2 = x^3 - 4x$$

over the base field \mathbf{Z}_{13}

Besides O, the points on the curve are:

```
[(0, 0), (1, 6), (1, 7), (2, 0), (4, 3),
(4, 10), (5, 1), (5, 12), (6, 6),
(6, 7), (7, 4), (7, 9), (8, 5), (8, 8),
(9, 2), (9, 11), (11, 0), (12, 4), (12, 9)]
```

 A generator for the maximal subgroup is the point (4,3) and the maximal subgroup itself is

$$[(4, 3), (1, 6), (9, 2), (12, 9), (0, 0), (12, 4), (9, 11), (1, 7), (4, 10)]$$

besides \mathcal{O}

Choosing a suitable curve

- Let E be an alliptic curve over F_p and let N be the number of points of E; clearly E must be large
- A trivial estimate is $N \le 2p + 1$ elements, i.e. 2p pairs (x, y) in addition to \mathcal{O}
- A better bound can be devised by Hasse's theorem

$$|N-(p+1)|\leq 2\sqrt{p}$$

- Counting the exact number of points is possible but not trivial
- The fastest known algorithm to compute N is due to René Schoof
- Its complexity is $\tilde{O}(\log^5 p)$
- For the values of p needed in cryptography (e.g., $p \approx 2^{256}$) the cost of Schoof's is very high

The difficulty of the ECDLP

- Solving the ECDLP for a suitably chosen curve is considered very difficult
- An advantage of ECDLP over the classical DLP proposed by Diffie and Hellman is that same levels of security can be obtained using much smaller numbers
- Given points P and Q over E, such that Q = kP, a strategy to determine k consists of finding a "collision" among different linear combinations of P and Q
- In fact, suppose you find pairs a, b and c, d such that:

$$aP + bQ = cP + dQ$$

• Since we know that Q = kP, by substituting and rearranging we get

$$(a+bk)P=(c+dk)P$$

The difficulty of the ECDLP (cont.d)

- This means that (since P is a generator of the cyclic subgroup G_P) $a + bk \equiv c + dk$ modulus the size of the subgroup G_P
- Simple algebra then gives

$$k = (c-a)(b-d)^{-1} \bmod |G_p|$$

- An adaptation of the birthday paradox shows that, if p is of the order of 2ⁿ, then the expected number of attempts before finding a collision is 2^{n/2}
- The downside is that, with smaller numbers, the size of the encrypted messages is consequently smaller

DH protocol on Elliptic Curves

- The DH protocol carries "easily" over EC, at least from a mathematical viewpoint
- Alice and Bob want to share a secret value (to be used as, or transformed into a symmetric key) over an insecure channel
- As before, some parameters must be publicly known: the particular curve $E(x, y) = y^2 x^3 ax b$, the underlying field \mathbf{Z}_p , and the cyclic subgroup generator P (a point on the curve)
- Independently, Alice and Bob pick secret values k_A and k_B
- After that, they compute and release the public information $Q_A = k_A P$ and $Q_B = k_B P$, respectively
- Upon receipt, Bob computes $S = k_B Q_A = k_B k_A P$ while Alice computes $S = k_A Q_B = k_A k_B P$
- The secret is then the x-coordinate of S

Digital signature with EC

- Signing with ECC is little more involved
- Besides the curve parameters, Alice (here the signer) publishes her public key $P_A = kG$, where k is the corresponding secret key
- Let M be the message to be signed
- As a first step Alice computes $h = SHA256(M) \mod |G_P|$
- Then she picks random integer r in the range $[1, |G_P| 1]$, determines the point rG = (x, y) on the curve, and computes $d = x \mod |G_P|$
- As a last computation step, Alice computes the secret quantity $s = (h + dk)r^{-1} \mod |G_P|$
- Alice sends the pair (d, s) to Bob (we assume that message confidentiality is not an issue)

Signature verification

• Upon receiving (d, s), Bob computes the value $w = s^{-1} \mod |G_P|$ and then

$$u = hw$$

= $hr(h + dk)^{-1} \mod |G_P|$

as well as

$$v = dw$$

= $dr(h + dk)^{-1} \mod |G_P|$

• Using these quantities, Bob computes the linear combination uG + vP, which turns out to be rG

Signature verification (cont.d)

• In fact, since P = kG is Alice's public key, we have (omitting the mod reductions for clarity)

$$uG + vP = uG + vkG$$

$$= (u + vk)G$$

$$= (hr + drk)(h + dk)^{-1}G$$

$$= r(h + dk)(h + dk)^{-1}G$$

$$= rG$$

 Bob now checks that the x-coordinate of uG + vP coincides with d thus completing the verification

