Project Flow

Date	17 November 2022
Team id	PNT2022TMID0128
	8
Project name	Fertilizer recommendation
	system for disease prediction
Maximum marks	4 marks

Images of various kinds are taken using a digital camera or similar tools, and those images are then utilised to spot the damaged area in leaves. Then, various image-processing techniques are used to transform those images into diverse, usable attributes that are needed for further analysis. In particular, plant leaf disease diagnosis is required to forecast both the quality and quantity of the

A light polygonal leaf model-based initial segmentation step is first obtained, and is then used to direct the evolution of an active contour.

The leaves are then categorised using overleaf datasets, which combine global form descriptors provided by the polygonal model with local curvature based features. Introduce a strategy used in this research project to overcome the challenges posed by such complex images, for simple and plant leaves. In order to classify diseases and suggest fertilisers for affected leaves, a first segmentation step based on a graph-cut approach is first carried out. This process is later used to direct the evolution of leaf boundaries.

Figure.1 Propose