EE 240C Analog-Digital Interface Integrated Circuits

Oversampled ADCs

The Case for Oversampling

Nyquist sampling:

Oversampling:

- Nyquist rate f_N = 2B
- Oversampling rate $M = f_s/f_N > 1$

Pulse-Count Modulation

Mean of pulse-count signal approximates analog input!

Pulse-Count Spectrum

- Signal: low frequencies, f < B << f_s
- Quantization error: high frequency, B \dots f_s / 2
- Separate with low-pass filter!

Oversampled ADC

Decimator:

- Digital (low-pass) filter
- Removes quantization error for f > B
- Provides most anti-alias filtering
- Narrow transition band, high-order
- 1-Bit input, N-Bit output (essentially computes "average")

EE 240C Analog-Digital Interface Integrated Circuits

Modulator

Modulator

Objectives:

- Convert analog input to 1-Bit pulse density stream
- Move quantization error to high frequencies f>> B
- Operates at high frequency $f_s >> f_N$
 - M = 4 ... 256 (typical)
 - Better be "simple"
- $\rightarrow \Sigma \Delta = \Delta \Sigma$ Modulator

1st Order ΣΔ Modulator

sigma_delta_L1.mdl

1st Order Modulator Signals

- X analog input
- Q tally of q-error
- Y digital/DAC output

Mean of Y approximates X

$$T = 1/f_s = 1/ (M f_N)$$

ΣΔ Modulator Characteristics

- Quantization error independent of component matching
- Very high SQNR achievable (> 20 Bits!)
- Inherently linear for 1-Bit DAC
- Limited to "moderate" speed (try to build a 10GS/s, 8-Bit oversampled ADC)

What about the quantization noise spectrum?

Output Spectrum

sigma_delta_L1_sin.m

- · Definitely not white!
- Skewed towards higher frequencies
- Tones

 dBWN (dB White Noise) scale sets the 0dB line at the noise per bin of a random -1, +1 sequence

EE 240C Analog-Digital Interface Integrated Circuits

Quantization Noise Analysis

Quantization Noise Analysis

- Sigma-Delta modulators are nonlinear systems with memory
 → very difficult to analyze
- Representing the quantizer as an additive noise source linearizes the system

STF and NTF

$$H(z) = \frac{z^{-1}}{1 - z^{-1}}$$

Signal transfer function:

STF =
$$\frac{Y(z)}{X(z)} = \frac{H(z)}{1 + H(z)} = z^{-1}$$
 \Rightarrow Delay

Noise transfer function:

NTF =
$$\frac{Y(z)}{E(z)} = \frac{1}{1 + H(z)} = 1 - z^{-1}$$
 \Rightarrow Differentiator

Noise Transfer Function, NTF

Quantizer Error

For quantizer with many bits

$$\overline{e^2(kT)} = \frac{\Delta^2}{12}$$

- Let's use the same expression for the 1-Bit case
- And assume the spectrum of the quantization error is white
- Simulation will tell if the result is useful

Experience: often sufficiently accurate to be useful, with enough exceptions to be careful

In-Band Quantization Noise

$$H(z) = \frac{z^{-1}}{1 - z^{-1}}$$

$$G = 1$$

$$NTF(z) = 1 - z^{-1}$$

$$|NTF(z)|^{2} = NTF(z)NTF(z^{-1})$$

$$= (1 - z^{-1})(1 - z)$$

$$= 1 - z^{-1} - z + 1$$

$$= 2 - 2\cos\omega T$$

$$= (2\sin\pi fT)^{2}$$

$$\approx (2\pi fT)^{2}$$
for $M >> 1$

Dynamic Range (Quantization Error)

$$DR = \frac{\text{peak signal power}}{\text{peak noise power}} = \frac{\overline{S_X}}{\overline{S_Y}}$$

$$\overline{S_X} = \frac{1}{2} \left(\frac{\Delta}{2}\right)^2$$

$$\overline{S_Y} = \frac{\pi^2}{3} \frac{1}{M^3} \frac{\Delta^2}{12}$$

sinusoidalinput,
$$STF = 1$$

$$DR = \frac{9}{2\pi^2}M^3$$

Integrated Noise

The signal+noise at the modulator output sums to 1 (0dB)

→ This is consistent with a binary ±1 signal

sigma_delta_L1_total_noise.m

[Eric Swanson]

SQNR

Remarkably good agreement between simulation and analysis, despite violated assumptions about ADC quantization error.

<u>Detail</u>: actually simulation is 3dB short of analysis, since dBFS scale assumes full-scale DC input, not sinusoid

Matlab Source Code

```
% number of averaged simulations
K = 30;
N = 2^10;
                          % number of output samples
fs = 1;
                          % sampling frequency
fx = pi/53;
                          % signal freq
A = 0.79;
                          % signal amplitude (full-scale=1)
offset = pi/150;
                          % signal offset
                       % result vector
Y = zeros(N, K);
for i=1:K
                          % average K results
    [t,x,y] = sim('sigma delta L1 sim', T*(N-1));
    Y(:, i) = V(:, 3);
end
[f, p, pint, pintfx] = avg spectrum(Y, fx/fs);
plot(f, 10*log10(p), f, 10*log10(pintfx));
```

EE 240C Analog-Digital Interface Integrated Circuits

Quantization Noise Characterisitcs

Oversampling and Noise Shaping

- ΣΔ modulators have interesting characteristics
 - Unity gain for the the input signal V_{IN}
 - Large attenuation of quantization noise injected at q
 - Much better than 1-Bit noise performance is possible if we're only interested in frequencies << $f_{\rm s}$
- Oversampling $(M = f_s/f_N > 1)$ improves SQNR considerably
 - 1st-Order SD: DR increases 9dB for each doubling of M or 30 dB per decade
 - Lth-Order SD: DR increases (3 + 6L) dB for each doubling of M or (10 + 20L) dB per decade
 - SQNR independent of circuit complexity and accuracy
- Analysis assumes that the quantizer noise is "white"
 - Not true in practice, especially for low-order modulators
 - Practical modulators suffer from other noise sources also (e.g. thermal noise)

DC Input

- DC input A = 1/11
- Doesn't look like spectrum of DC at all
- The ADC "sings" ???
- → Quantization "noise" is periodic

sigma_delta_L1_sin.m

Limit Cycle

DC input 1/11 → Periodic sequence:

1	+1
2	+1
3	-1
4	+1
5	-1
6	+1
7	-1
8	+1
9	-1
10	+1
11	-1

sigma_delta_L1_dc.m

Summary

- Oversampled ADCs decouple SQNR from circuit complexity and accuracy
- If a 1-Bit DAC is used, the converter is inherently linear—independent of component matching
- Higher order loop filters consisting of several integrators provide much better noise shaping than 1st order realizations and are less prone to limit cycles
- References
 - S. Pavan, R. Schreier, G. C. Temes, *Understanding Sigma Delta Converters*, IEEE Press, 2017
 - J. C. Candy and G. C. Temes, "Oversampling Methods for A/D and D/A Conversion", <u>Oversampling Delta-Sigma Data Converters: Theory, Design, and Simulation</u>, 1992, pp. 1–25.
 - S. R. Norsworthy, R. Schreier, and G. C. Temes, "Delta-Sigma Data Converters, Theory, Design, and Simulation," IEEE Press, 1997.
 - + many others (see course website)

EE 240C Analog-Digital Interface Integrated Circuits

5th Order Modulator (Example)

Overview

- Building and evaluating behavioral models
 - Focus on functionality first
 - Add nonidealities later
 - Beware: changes get more expensive later in the process ...

- A 5th-order, 1-Bit $\Sigma\Delta$ modulator example
 - Noise shaping
 - Complex loop filters
 - Stability
 - Voltage scaling

SD Modulator Filter Design

Procedure

- Establish requirements
- Design noise-transfer function, NTF
- Determine loop-filter, H
- Synthesize filter
- Evaluate performance, stability

• References:

- R. W. Adams and R. Schreier, "Stability Theory for DS Modulators," in Delta-Sigma Data Converters, S. Norsworthy et al. (eds), IEEE Press, 1997, pp. 141–164.
- S. Pavan, R. Schreier, and G. C. Temes, <u>Understanding Delta-Sigma Data Converters</u>. Wiley-IEEE Press, 2017. Chapter 4.

Modulator Specification

Example: Audio ADC

_	Dynamic r	range	DR	16 Bits
---	-----------	-------	----	---------

_	Signal	bandwidth	В	20 kHz
---	--------	-----------	---	--------

- Oversampling ratio
$$M = fs/fN$$
 64

- Sampling frequency fs2.822 MHz
- The order L and oversampling ratio M are chosen based on
 - SQNR > 120dB (20dB below thermal noise)
 - Experience (e.g. Figure 4.14 in Adams & Schreier or Figure 4.18, 4.19, 4.20 in Understand Delta-Sigma Data Converters)

Modulator Specification

SQNR

- Modulator Order (N in graphs below)
- Oversampling Ratio (OSR)
- Number of levels / bits in quantizer

[S. Pavan, R. Schreier, and G. C. Temes, <u>Understanding Delta-Sigma Data Converters</u>. Wiley-IEEE Press, 2017. Chapter 4.]

140 120 120 100 80 80 60 40 20 4 8 16 32 64 128 256 512 1024 OSR

Figure 4.18 Empirical SQNR limit for 1-bit modulators of order *N*.

Figure 4.20 Empirical SQNR limit for modulators with 3-bit quantizers of order *N*.

Modulator Block Diagram

$$STF = \frac{Y(z)}{X(z)} = \frac{H(z)}{1 + H(z)}$$

$$NTF = \frac{Y(z)}{E(z)} = \frac{1}{1 + H(z)}$$

Approach:

Design NTF and solve for H(z)

Noise Transfer Function, NTF(z)

```
% stop-band attenuation Rstop ...
% reduce if design is not stable
Rstop = 80;
                                                20
[b,a] = cheby2(L, Rstop, 1/M, 'high');
                                                 0
                                                -20
% normalize (for causality)
                                             NTF [dB]
b = b/b(1);
                                                -40
NTF = filt(b, a, 1/fs);
                                                -60
                                                -80
% check stability (mag < 1.5)
                                               -100
[maq] = bode(NTF, pi*fs)
                                                                10<sup>4</sup>
                                                              Frequency [Hz]
```

sigma delta L5 design.m

>> mag = 1.32

Loop-Filter, H(z)

```
H = inv(NTF) - filt(1, 1, 1/fs);
% check causality ... y(1) should be 0
y = impulse(H);
y = y(1)
>>> y = 0
```


5th Order Loop Filter

- Lot's of gain in the passband
- Remember that NTF ~ 1/H
- H ~ 0dB in stop-band gives quantization noise a place to show up

Modulator Topologies

- CIFB: Cascade of Integrators with Feedback
 - State at the output of the integrators
 → larger unscaled signals at output of integrators
 - Multiple DACs

Figure 4.21 A third-order NTF realized as a cascade of integrators with feedback (CIFB) structure. All NTF zeros are at z = 1.

- CIFF: Cascade of Integrators with Feed-forward
 - Only quantization noise in integrators

[S. Pavan, R. Schreier, and G. C. Temes, <u>Understanding Delta-Sigma Data Converters</u>. Wiley-IEEE Press, 2017. Chapter 4.]

Figure 4.29 A low distortion CIFF structure, accomplished using input feedforward.

Modulator Topology

sigma_delta_L5_sim.mdl

Rounded Filter Coefficients

Ref: Nav Sooch, Don Kerth, Eric Swanson, and Tetsuro Sugimoto, "Phase Equalization System for a Digital-to-Analog Converter Using Separate Digital and Analog Sections", U.S. Patent 5061925, 1990, figure 3 and table 1.

EE 240C Analog-Digital Interface Integrated Circuits

Noise Shaping

5th Order Noise Shaping

- Mostly quantization noise, except at low frequencies
- Let's zoom ...

sigma_delta_L5.m

5th Order Noise Shaping

sigma_delta_L5.m

5th Order Noise Shaping

sigma_delta_L5.m

- SQNR > 120dB
- Sigma-delta modulators are usually designed for negligible quantization noise
- Other error sources dominate, e.g. thermal noise

In-Band Noise Shaping

In-Band Noise Shaping

- Positive phase jumps indicates poles of H(z) slightly outside unit circle
- Is the modulator stable?
- Let's analyze ...

EE 240C Analog-Digital Interface Integrated Circuits

Stability and Voltage Scaling

L56

Stability Analysis

- Approach: linearize quantizer and use linear system theory!
- Effective quantizer gain

$$G_{eff}^2 = \overline{y^2} / q^2$$

Obtain G_{eff} from simulation

Modulator Root-Locus

- As G_{eff} increases, poles of STF move from
 - poles of H(z) ($G_{eff} = 0$) to
 - zeros of H(z) ($G_{eff} = \infty$)
- Pole-locations inside unit-circle correspond to stable modulator
- G_{eff} > 0.45 for stability

sigma_delta_L5_H.m

Effective Quantizer Gain, Geff

- Large inputs → comparator input grows
- Output is fixed (±1)
- → G_{eff} drops
- → modulator unstable for large inputs
- Solution:
 - · Limit input amplitude
 - Detect instability (long sequence of +1 or -1) and reset integrators
 - Note: signals grow slowly for nearly stable systems → use long simulations

sigma_delta_L5_peaks.m

Loop Voltages

- Internal signal amplitudes are week function of input level (except near overload)
- Exceed supply voltage
- Solutions:
 - Reduce V_{ref} ??
 - Scaling

5th Order Modulator – Scaling

Only the sign of Q matters: choose k₁ without changing the 1-Bit data at all

Scaling Example

Integrator 3 Output times S:

K3 * S, b1 /S, a3 / S, K4 / S, b2 * S

sigma_delta_L5_sim.mdl

Voltage Scaling


```
k1=1/10;
k2=1;
k3=1/4;
k4=1/4;
k5=1/8;
a1= 1;
a2=1/2;
a3=1/2;
a4=1/4;
a5=1/4;
b1=1/512;
b2=1/16-1/64;
g =1;
```

- Integrator output range is fine now
- But: maximum input signal limited to -5dB (-7dB with safety) fix?

Input Range Scaling

Increasing the DAC levels by g reduces the analog Increasing the zero to digital conversion gain: $\frac{D_{OUT}(z)}{V_{IN}(z)} = \frac{H(z)}{1 + gH(z)} \cong \frac{1}{g}$

Increasing v_{IN} & DAC level (g) by the same factor leaves 1-Bit data unchanged

Scaled Modulator Model

$$g = 2.5$$
;

Scaled Model Overload

2dB safety margin for stability