Linear Regression

Overview

- Review: Linear Regression
- Studentized Residuals
- Regression diagnostics
 - Non-linearity
 - Non-normality
 - Heteroscedasticity
 - Multicollinearity
 - Outliers
- More on linear regression
 - Categorical variables
 - Interactions

Simple Linear Regression

$$Y = \beta_0 + \beta_1 X + \epsilon$$

- The Model, what you're presuming the world looks like
- β_0 and β_1 are unknown constants that represent the intercept and slope.
- ϵ is the error term. ϵ ~i.i.d. $N(0, \sigma^2)$

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x$$

- β₀-hat and β₁-hat are model coefficient estimates for world presumed
- y-hat indicates the prediction of Y based on X=x

Simple Linear Regression

$$e_i = y_i - \hat{y}_i$$
 Want these to be small

$${\rm RSS} = e_1^2 + e_2^2 + \cdots + e_n^2 \qquad {\rm Typically \ square \ them!}_{\rm (though \ absolute \ value \ is \ an \ alternative)}$$

RSS =
$$(y_1 - \hat{\beta}_0 - \hat{\beta}_1 x_1)^2 + (y_2 - \hat{\beta}_0 - \hat{\beta}_1 x_2)^2 + \dots + (y_n - \hat{\beta}_0 - \hat{\beta}_1 x_n)^2$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$
 These are the minimize RSS

These are the estimates that minimize RSS

Multiple Linear Regression

<u>Model</u>

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_p X_p + \epsilon$$

Fitted Value

$$\hat{y} = \hat{\beta}_0 + \hat{\beta}_1 x_1 + \hat{\beta}_2 x_2 + \dots + \hat{\beta}_p x_p$$

Residual Sum of Squares

RSS =
$$\sum_{i=1}^{n} (y_i - \hat{y}_i)^2$$

= $\sum_{i=1}^{n} (y_i - \hat{\beta}_0 - \hat{\beta}_1 x_{i1} - \hat{\beta}_2 x_{i2} - \dots - \hat{\beta}_p x_{ip})^2$

Coefficient Estimates

$$\hat{\boldsymbol{\beta}} = (\mathbf{X}^{\mathrm{T}}\mathbf{X})^{-1}\mathbf{X}^{\mathrm{T}}\mathbf{y}$$

Multiple Linear Regression

Model in Matrix Form

$$\mathbf{Y}_{n \times 1} = \mathbf{X}_{n \times p} \beta_{p \times 1} + \epsilon_{n \times 1}$$

$$\epsilon \sim N(\mathbf{0}, \sigma^2 \mathbf{I}_{n \times n})$$

$$\mathbf{Y} \sim N(\mathbf{X}\beta, \sigma^2 \mathbf{I})$$

Design Matrix X:

$$\mathbf{X} = \begin{bmatrix} 1 & X_{1,1} & X_{1,2} & \cdots & X_{1,p-1} \\ 1 & X_{2,1} & X_{2,2} & \cdots & X_{2,p-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & X_{n,1} & X_{n,2} & \cdots & X_{n,p-1} \end{bmatrix}$$

Coefficient matrix β :

$$\beta = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_{p-1} \end{bmatrix} \qquad \hat{\boldsymbol{\beta}} = (\mathbf{X}^T \mathbf{X})^{-1} \mathbf{X}^T \mathbf{y}$$

Assumptions

- Linearity
- Constant variance (homoscedasticity)
- Independence of errors
- Normality of errors
- Lack of multicollinearity

Studentized Residuals

- All of the linear regression model assumptions are really statements about the regression error terms (ε)
- The error terms cannot be observed directly
- We rely on least squares residuals

$$e_i = y_i - \hat{y}_i$$

Studentized residuals (standardized residuals)

$$r_i = \frac{e_i}{s_{e_i}} = \frac{\epsilon_i}{\sigma} \sim N(0, 1)$$

Obtaining Studentized Residuals

- 1. Run the regression
- 2. Calculate the predicted values
- 3. Calculate the residuals

$$e_i = y_i - \hat{y}_i$$

4. Calculate the studentized residuals

$$r_i = \frac{e_i}{s_{e_i}} = \frac{\epsilon_i}{\sigma} \sim N(0, 1)$$

Residual Plot

- Residuals vs. independent variables
- Residuals vs. \hat{y}

Model Checking

	Coefficient	Std. Error	t-statistic	p-value	
Intercept	56.9001	1.8004	31.6	< 0.0001	
horsepower	-0.4662	0.0311	-15.0	< 0.0001	
${ t horsepower}^2$	0.0012	0.0001	10.1	< 0.0001	✓ It <u>IS</u> pretty good!

- Truth is never linear!!!
- Not going over this, just be aware that other ways exist. Can read more in Chapter 7

Degree 4 Polynomial

• Polynomials, Step functions, Splines, Local Regression, GAMs

Not going over this, just be aware that other ways exist. Can read more in <u>Chapter 7</u>

Local Regression

 Use sliding weight function, make separate linear fits over range of X

$$y_i = \beta_0 + f_1(x_{i1}) + f_2(x_{i2}) + \dots + f_p(x_{ip}) + \epsilon_i.$$

Generalized Additive Models

Just add up contributing effects

Non-normality of Error Terms

- The normality assumption allows us to construct confidence intervals and do hypothesis tests
- Ways to check:
 - Graphical checks, e.g. Normal Q-Q plot, histogram
 - Normality tests, e.g. Jarque—Bera test, Shapiro-Wilk test
- Fix? A log transformation of the dependent variable is often useful

The Normal Q-Q Plot

 A quantile-quantile plot of the standardized data against the standard normal distribution

Normal Q-Q Plot

Non-constant Variance or Heteroscedasticity

• Again recall ε ~ i.i.d. N(0, σ ^2), or equivalently,

$$Var(\epsilon_i) = \sigma^2$$

Solution might be to transform Y

Multicollinearity

Correlation Matrix / Scatterplot Matrix

Downside is can only pick up pairwise effects 🕾

- Variance Inflation Factors (VIF)
 - Run ordinary least squares for each predictor as function of all the other predictors.
 k times for k predictors

$$X_1 = \alpha_2 X_2 + \alpha_3 X_3 + \dots + \alpha_k X_k + c_0 + e$$

$$VIF = \frac{1}{1 - R_i^2}$$

Looks at all predictors together! ©

Rule of Thumb, > 10 is problematic

Outliers

- Occur when y_i is far from predicted, $\hat{y_i}$
- May occur due to data collection, re-coding issues, dirty data, etc.
- Least Squares Estimates particularly affected by outliers
- Residual plots can help identify outliers
 - Recall that residuals are $\,e_i = y_i \hat{y}_i\,$
 - and that ε ~i.i.d. N(0, σ ^2)
 - → "Studentized" residuals: Dividing each residual by its standard error, should result in a "studentized residual" between -2 and 2.

 Studentized residuals outside this range indicate outliers.

Different Types of Outliers

Leverage

- Leverage point: an observation with an unusual X value
- Does not necessarily have a large effect on the regression model
- Most common measure, the hat value, $h_{ii} = (H)_{ii}$
- The ith diagonal of the hat matrix

$$H = X(X^T X)^{-1} X^T$$

Which points are outliers?

Which points have high leverage?

$$H = X(X^T X)^{-1} X^T \longrightarrow h_{ii} = (H)_{ii}$$

Influential Points

- An outlier that greatly affects the slope of the regression line
- Observations that have high leverage and large residuals tend to be influential

Influential Points

- An outlier that greatly affects the slope of the regression line
- Observations that have high leverage and large residuals tend to be influential

Afternoon

- Interested in Credit Card Balances (y)
- Suspect it may be related to Gender or Ethnicity

Modeling with just Gender

$$x_i = \begin{cases} 1 & \text{if } i \text{th person is female} \\ 0 & \text{if } i \text{th person is male} \end{cases}$$

$$y_i = \beta_0 + \beta_1 \underline{x_i} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if } i \text{th person is female} \\ \beta_0 + \epsilon_i & \text{if } i \text{th person is male.} \end{cases}$$

Modeling with Ethnicity (more than 2 Levels)

$$x_{i1} = \begin{cases} 1 & \text{if } i \text{th person is } \underline{\text{Asian}} \\ 0 & \text{if } i \text{th person is not Asian} \end{cases}$$

$$x_{i2} = \begin{cases} 1 & \text{if } i \text{th person is } \underline{\text{Caucasian}} \\ 0 & \text{if } i \text{th person is not Caucasian} \end{cases}$$

$$y_{i} = \beta_{0} + \beta_{1} \underline{x_{i1}} + \beta_{2} \underline{x_{i2}} + \epsilon_{i} = \begin{cases} \beta_{0} + \beta_{1} + \epsilon_{i} & \text{if } i \text{th person is Asian} \\ \beta_{0} + \beta_{2} + \epsilon_{i} & \text{if } i \text{th person is Caucasian} \\ \beta_{0} + \epsilon_{i} & \text{if } i \text{th person is AA.} \end{cases}$$

Data

<u>Ones</u>	<u>Ethnicity</u>	
1	AA	
1	Asian	
1	Asian	
1	Caucasian	
1	AA	_
1	AA	
1	Asian	
1	Caucasian	
1	AA	

Recode Design Matrix

	<u>Ones</u>	<u>Asian</u>	<u>Caucasian</u>
	1	0	0
	1	1	0
	1	1	0
	1	0	1
•	1	0	0
	1	0	0
	1	1	0
	1	0	1
	1	0	0
,		-	·

- β0 as average credit card balance for AA
- β1 as <u>difference</u> in average balance between Asian and AA
- β2 as <u>difference</u> in average balance between Caucasian and AA

So what if $\beta 1 = -23.1$?

Card_Balance ~ Age + Years_of_Education + Gender + Ethnicity +

- Intercept β0 loses nice interpretation
- Now what's it mean if $\beta 1 = -23.1$?
- What if you wanted to compare groups to Caucasians as a baseline?

$$y_i = \beta_0 + \beta_1 \underline{x_{i1}} + \beta_2 \underline{x_{i2}} + \epsilon_i = \begin{cases} \beta_0 + \beta_1 + \epsilon_i & \text{if } i \text{th person is Asian} \\ \beta_0 + \beta_2 + \epsilon_i & \text{if } i \text{th person is Caucasian} \\ \beta_0 + \epsilon_i & \text{if } i \text{th person is AA.} \end{cases}$$

Card_Balance ~ Age + Years_of_Education + Gender + Ethnicity +

- Intercept β0 loses nice interpretation
- Now what's it mean if $\beta 1 = -23.1$?
 - ✓ Still interpret as difference between Asian and AA...*holding all other predictors constant*. Again, beware of interpretation.
- What if you wanted to compare groups to Caucasians as a baseline?

√	Da	ita		Reco	de Design	Matrix
	<u>Ones</u>	<u>Ethnicity</u>		<u>Ones</u>	<u>AA</u>	<u>Asian</u>
	1	AA		1	1	0
	1	Asian		1	0	1
	1	Asian		1	0	1
Ī	1	Caucasian		1	0	0
Ī	1	AA	─	1	1	0
Ī	1	AA		1	1	0
Ī	1	Asian		1	0	1
Ī	1	Caucasian		1	0	0
Ī	1	AA	1	1	1	0
Ì					0	0

Interactions

$$\widehat{\mathtt{sales}} = \beta_0 + \beta_1 \times \mathtt{TV} + \beta_2 \times \mathtt{radio} + \beta_3 \times \mathtt{newspaper}$$

- Maybe spending \$50,000 on TV and \$50,000 on Radio is better than \$100,000 on either.
- How can our model account for this?

Interactions

sales =
$$\beta_0 + \beta_1 \times TV + \beta_2 \times radio + \underline{\beta_3} \times (radio \times TV) + \epsilon$$

= $\beta_0 + (\beta_1 + \beta_3 \times radio) \times TV + \beta_2 \times radio + \epsilon$.

Results:

	Coefficient	Std. Error	t-statistic	p-value
Intercept	6.7502	0.248	27.23	< 0.0001
TV	0.0191	0.002	12.70	< 0.0001
radio	0.0289	0.009	3.24	0.0014
${ t TV}{ imes { t radio}}$	0.0011	0.000	20.73	< 0.0001

The coefficient estimates in the table suggest that an increase in TV advertising of \$1,000 is associated with increased sales of

$$(\hat{\beta}_1 + \hat{\beta}_3 \times \text{radio}) \times 1000 = 19 + 1.1 \times \text{radio}$$
 units.

Interactions

Interacting **student** (qualitative) and **income** (quantitative)

No Interaction $balance_i = \beta_0 + \beta_1 * income_i + \beta_2 * student_i$

$$\begin{array}{ll} \mathbf{balance}_i & \approx & \beta_0 + \beta_1 \times \mathbf{income}_i + \begin{cases} \beta_2 & \text{if } i \text{th person is a student} \\ 0 & \text{if } i \text{th person is not a student} \end{cases}$$

$$= & \underline{\beta_1} \times \mathbf{income}_i + \begin{cases} \underline{\beta_0 + \beta_2} & \text{if } i \text{th person is a student} \\ \underline{\beta_0} & \text{if } i \text{th person is not a student} \end{cases}$$

With Interaction $balance_i = \beta_0 + \beta_1 * income_i + \beta_2 * student_i + \beta_3 * income_i * student_i$

$$\begin{array}{lll} \mathbf{balance}_i & \approx & \beta_0 + \beta_1 \times \mathbf{income}_i + \begin{cases} \beta_2 + \beta_3 \times \mathbf{income}_i & \text{if student} \\ 0 & \text{if not student} \end{cases} \\ & = & \begin{cases} \frac{(\beta_0 + \beta_2) + (\beta_1 + \beta_3) \times \mathbf{income}_i & \text{if student} \\ \beta_0 + \beta_1 \times \mathbf{income}_i & \text{if not student} \end{cases} \end{array}$$

Questions

- How to account for categorical variables?
 - What if you want to change the baseline?
- How to account for interaction?
 - How to test for significance?
- What are the assumptions underlying linear regression?
- How can one detect for outliers?
- What is leverage and how does it relate to influence?