Letter: Testable brane-world unification with early-time ρ² and dark radiation

Ricardo Maldonado (corresponding: sales@rank.vegas)

Abstract

We derive a four-dimensional effective cosmology exhibiting a ρ^2 correction and a dark-radiation term. A single parameter—the brane tension λ —sets a gravitational-wave spectral break f_br $\propto \lambda^{-}\{1/4\}$ and correlates with ΔN_{eff} . Using the NANOGrav 15-yr KDE spectrum with a Planck-2018 N_eff prior, we present posteriors and a PTA→LISA context. The framework $\frac{\partial R}{\partial R}$ of $\frac{\partial R}{\partial R}$ at latestimes and is kalsifiable by a joint PTA + CMB/BBN consistency test.

$$f_{\rm br}(\lambda) \propto \lambda^{1/4}$$
, $C/\rho_{\gamma, 0} = \frac{7}{8} \left(\frac{4}{11}\right)^{4/3} \Delta N_{\rm eff}$

A higher-D brane setup yields a 4-D Friedmann equation with a ρ^2 term and a dark-radiation piece. A single parameter λ fixes the GW spectral break and correlates with ΔN_eff ; one λ must jointly fit PTA \rightarrow LISA and CMB/BBN.

Data/prior: Official NANOGrav 15-yr KDE spectrum (CSV) + Planck-2018 prior on $N_{eff} = 2.99 \pm 0.17$ (with BAO).

Prepared: Aug 13, 2025 (UTC)