Proposition 35.2. Let $f: E \to F$ be a surjective linear map between two A-modules with F a free module. Given any basis (v_1, \ldots, v_r) of F, for any r vectors $u_1, \ldots, u_r \in E$ such that $f(u_i) = v_i$ for $i = 1, \ldots, r$, the vectors (u_1, \ldots, u_r) are linearly independent and the module E is the direct sum

$$E = \operatorname{Ker}(f) \oplus U$$
,

where U is the free submodule of E spanned by the basis (u_1, \ldots, u_r) .

Proof. Pick any $w \in E$, write f(w) over the basis (v_1, \ldots, v_r) as $f(w) = a_1v_1 + \cdots + a_rv_r$, and let $u = a_1u_1 + \cdots + a_ru_r$. Observe that

$$f(w - u) = f(w) - f(u)$$

$$= a_1 v_1 + \dots + a_r v_r - (a_1 f(u_1) + \dots + a_r f(u_r))$$

$$= a_1 v_1 + \dots + a_r v_r - (a_1 v_1 + \dots + a_r v_r)$$

$$= 0.$$

Therefore, $h = w - u \in \text{Ker}(f)$, and since w = h + u with $h \in \text{Ker}(f)$ and $u \in U$, we have E = Ker(f) + U.

If $u = a_1u_1 + \cdots + a_ru_r \in U$ also belongs to Ker(f), then

$$0 = f(u) = f(a_1u_1 + \dots + a_ru_r) = a_1v_1 + \dots + a_rv_r,$$

and since (v_1, \ldots, v_r) is a basis, $a_i = 0$ for $i = 1, \ldots, r$, which shows that $\text{Ker}(f) \cap U = (0)$. Therefore, we have a direct sum

$$E = \operatorname{Ker}(f) \oplus U$$
.

Finally, if

$$a_1u_1 + \dots + a_ru_r = 0,$$

the above reasoning shows that $a_i = 0$ for i = 1, ..., r, so $(u_1, ..., u_r)$ are linearly independent. Therefore, the module U is a free module.

One should be aware that if we have a direct sum of modules

$$U = U_1 \oplus \cdots \oplus U_m$$
,

every vector $u \in U$ can be written is a unique way as

$$u = u_1 + \cdots + u_m$$

with $u_i \in U_i$ but, unlike the case of vector spaces, this does not imply that any m nonzero vectors (u_1, \ldots, u_m) are linearly independent. For example, we have the direct sum

$$\mathbb{Z}/2\mathbb{Z} \oplus \mathbb{Z}/2\mathbb{Z}$$