Latent Semantic Indexing

Debapriyo Majumdar Indian Statistical Institute debapriyo@isical.ac.in

The problem of synonymy and polysemy

	d_1	d_2	d_3	d_4	d_5	d_6	d_7
amazon	0.6	0.9	0.7				
order	0.5	0.8					
dispatch	1.0						
ship		0.2		0.5	0.3	0.2	
ocean				0.8			0.1
sea					0.4	0.7	0.5
captain				0.9		0.8	0.3
jungle			0.9				
anaconda			0.4				

cosine	0.23	0.51	0	0.27	0.42	0.13	0
Rank	4	1	6	3	2	5	7

- Commonly occurring in human languages
- Synonymy: two different words with (almost) the same meanings
 - Examples: (Ocean, Sea), (Dispatch, Ship)
 - Often, synonyms do not co-occur in the same document
- Polysemy: same word with different meanings
 - Examples: amazon (company or jungle),
 order (purchase, or authoritative instruction)
- Problem: ranking in vector space model suffers

Singular Value Decomposition

If A is an $m \times n$ matrix with rank r, then there exists a factorization of A as

$$A = U \quad \sum_{m \times n} V^{T}$$

where $U\left(m\times r\right)$ and $V\left(n\times r\right)$ are orthogonal matrices, and $\Sigma\left(r\times r\right)$ is a diagonal matrix.

$$\Sigma = (\sigma_{ij})$$
, where $\sigma_{ii} = \sigma_i$, for $i = 1, ..., r$ are the singular values of A , with $\sigma_1 \geq \sigma_2 \geq ... \sigma_r \geq 0$.

• Columns of U(V) are the left (right) singular vectors of A.

Connection with Eigen Decomposition

- Consider $C = AA^T$ (a symmetric matrix)
- We have the SVD of A as $A = U\Sigma V^T$.
- So, we have

$$C = U\Sigma V^T (U\Sigma V^T)^T$$

$$= U\Sigma V^T V\Sigma^T U^T$$

$$= U\Sigma \Sigma^T U^T$$

$$= U\Sigma \Sigma^T U^T$$

$$= U\Sigma^2 U^T$$

$$= U\Sigma^2 U^T$$
Since V is an orthogonal matrix, $V^T V = I$ (identity matrix).

- ullet This is the Eigen-decomposition of C.
 - The columns of U are the eigenvectors.
 - The (diagonal) entries of Σ^2 are the eigenvalues.
 - The eigenvalues are simply $\sigma_1^2, \sigma_2^2, ..., \sigma_r^2$.

Singular vectors as principal components

Along first singular vectors, scaled by the first singular value

Along the k-th singular vectors, scaled by the k-th singular value

Along the r-th singular vectors, scaled by the r-th singular value

Singular vectors as principal components

 $\underline{a_{ij}} = \underline{u_{i,1}} \sigma_1 v_{1,j} + \cdots + \underline{u_{i,k}} \sigma_k v_{k,j} + \cdots + \underline{u_{i,r}} \sigma_r v_{rj}$

First singular vector (principal component)

Fact: the first singular vector is the direction along which the data has maximimum variance (intuitively, retains most separation).

Fact: If the projection along the first k singular vectors is removed, then the k+1-st vector is the direction along which the variance is maximized.

Idea: consider the first "few" singular vectors. The most important information will be retained along those

Idea: discard the rest of the singular vectors, along those directions we have the noise which we better get rid of.

Note: in this 2-D example, there are only 2 singular vectors, so the first one is important and the other one is the noise.

The idea of latent concepts

- An $m \times n$ term document matrix in the vector-space model
- Each document is a vector in the m dimensional term-space
 - Each term is a "feature" (orthogonal to each other)
 - But we know in reality not all terms are actually so
- The assumption of concept-space: there are k underlying (latent) primary concepts defining the semantics of the data
 - Each such concept may be a combination of some terms
 - The number of concepts << number of distinct terms</p>
- Aim: the singular vectors (principal components) represent the concepts

Keep the information along the first k singular vectors and discard the rest (noise)

LSI: Low rank approximation

$$a_{ij} = u_{i,1}\sigma_1 v_{1,j} + \cdots + u_{i,k}\sigma_k v_{k,j} + \cdots + u_{i,r}\sigma_r v_{rj}$$

 U_k : the matrix with the first k columns of U (first k singular vectors)

 Σ_k : the matrix with the first k rows and columns of Σ (first k singular values)

 V_k^T : the matrix with the first k rows of V^T (first k right singular vectors)

Low rank approximation of A

$$A_k = U_k \Sigma_k V_k^T$$

Contains the information along only the first k singular vectors (and values)

LSI: Dimension Reduction

- The low-rank approximation does not reduce dimension
- $A_k = U_k \Sigma_k V_k^T \text{ is } m \times n$
- The original term-document matrix A was very sparse, but A_k is dense
 - Computationally expensive, infeasible for any large m and n
- Dimension reduction: same idea, differently implemented
 - Transform the document vectors to the lower (k) dimensional space spanned by the first k singular vectors
 - _ Map document $d\mapsto U_k^T d$, query $q\mapsto U_k^T q$ from the term-space to the concept-space
 - Equivalently the term-document matrix $A\mapsto U_k^TA$, concept-document matrix (k imes n)
 - Documents are vectors in the concept space
 - Compute cosine similarity in the k dimensional concept space

$$sim_{concept}(q, d) = \frac{(U_k^T q)^T U_k^T d}{\|U_k^T q\| \|U_k^T d\|}$$

References

<u>Christopher D. Manning</u>, <u>Prabhakar Raghavan</u> and <u>Hinrich Schütze</u>. "<u>Introduction to Information</u>
 <u>Retrieval</u>", Cambridge University Press. 2008.