Appunti per il 1° Anno - 2° Semestre - Gruppo C2

Geometria

Dalle lezioni della prof.ssa Cioffi Francesca

Anno 2023/24 - Di Tota Gaetano

Geometria - a.a. 2023/2024

Simboli

Lezione del 04/03/2024	1
Vettore libero	1
Definizioni e Notazioni	1
Prodotto Cartesiano	2
Principio di Induzione	2
Relazione tra insiemi	2
Classe di equivalenza	4
Lezione del 06/03/2024	4
Relazione di Parallelismo	4
Direzione e Verso	5
Applicazione	5
Lezione del 11/03/2024	7
Restrizione e Riduzione	7
Cardinalità di un'insieme	7
Operazioni binarie	7
Struttura algebrica / Spazio Vettoriale	8
Lezione del 13/03/2024	9
Sotto-spazio Vettoriale / Linearmente Chiuso	11
Combinazione lineare	11
Chiusura lineare	12
Sistema di Generatori	12
Matrici	13
Lezione del 18/03/2024	13
Linearmente Dipendente	13
Linearmente Indipendente	13
Lezione del 20/03/2024	14
Base di uno Spazio-Vettoriale	14
Dimensione	16
Lezione del 25/03/2024	16
Isomorfismo associato ad una Base	17
Lezione del 27/05/2024	18
Somma Diretta	19

Simboli

U unione	
∩ intersezione	
∀ per ogni	
∃ esiste	
∈ appartiene	
∉ non appartiene	
V o disgiunzione	
∧ e congiunzione	
⇔ equivalente	
¬ negazione	
⇒ implica	
⊆ inclusione	
\triangle differenza simmetrica	
\ differenza insiemistica	
U unione unaria	
∩ intersezione unaria	

Lezione del 04/03/2024

Vettore libero

Definizione - Vettore libero

Un vettore rappresenta lo spostamento da un punto ad un altro, esso ha come caratteristiche: direzione, verso e lunghezza.

Definizioni e Notazioni

Definizione - Simboli

- \emptyset = Insieme vuoto
- $A \subseteq B \Leftrightarrow \forall x \in A(x \in B)$
- $A = B \Leftrightarrow A \subset B \land B \subset A$
- $A \cap B \Leftrightarrow \{x \mid x \in A \land x \in B\}$
- $A \cup B \Leftrightarrow \{x \mid x \in A \lor x \in B\}$
- $B \setminus A \Leftrightarrow \{x \mid x \in B \land x \notin A\}$

Domanda - Come assegnare un'insieme?

Per assegnare degli oggetti ad un'insieme abbiamo due modi distinti

- 1. Elencare gli elementi che appartengono all'insieme
 - $x \in A$ oppure $y \notin A$
- 2. Caratterizzare gli elementi che appartengono all'insieme mediante una proprietà

 $B = \{x \mid x \text{ è uno studente del corso di Geometria}\}$

Definizione - Complemento

Prendiamo $A \subseteq X$ e chiamiamo l'operazione $X \setminus A$ complemento di A in X che indichiamo con $C_X(A)$

Definizione - Leggi di De Morgan sul Complemento

Unione dei Complementi
$$C_X(A \cup B) = C_X(A) \cap C_X(B)$$

Dimostrazione

$$y \in C_X(A \cup B) \Leftrightarrow y \in X \land y \not\in A \cup B \Leftrightarrow y \in X \land (y \not\in A \lor y \not\in B) \Leftrightarrow (y \in X \lor y \not\in A) \land (y \in X \lor y \not\in b) \Leftrightarrow y \in C_X(A) \land y \in C_X(B) \Leftrightarrow y \in C_X(A) \cap C_X(B)$$

Intersezione dei Complementi
$$C_X(A \cap B) = C_X(A) \cup C_X(B)$$

Dimostrazione

$$y \in C_X(A \cap B) \Leftrightarrow y \in X \land y \not\in A \cap B \Leftrightarrow y \in X \land (y \not\in A \lor y \not\in B) \Leftrightarrow (y \in X \land y \not\in A) \lor (y \in X \land y \not\in b) \Leftrightarrow y \in C_X(A) \lor y \in C_X(B) \Leftrightarrow y \in C_X(A) \cup C_X(B)$$

Prodotto Cartesiano

Definizione - Prodotto Cartesiano

Siani $A, B \neq \emptyset$ allora definiamo prodotto cartesiano tra due insiemi $A \times B = \{(a, b) \mid a \in A \land b \in B\}$

Esempio - Prodotto Cartesiano

Siano
$$A = \{1, 2, 3\}$$
 e $B = \{x, y\}$ allora otteniamo $A \times B = \{(1, x), (1, y), (2, x), (2, y), (3, x), (3, y)\}$

Sia $A_1, A_2, ..., A_n \neq \emptyset$ abbiamo che $A_1 \times A_2 \times ... \times A_n = \{(a_1, a_2, ..., a_n) \mid a_1 \in A_1 \land a_2 \in A_2 \land ... \land a_n \in A_n\}$ allora

- Preso il polinomio $3x_1 x_2 + 4x_3 + x_5 = 1$
- Definiamo l'insieme di soluzioni $S = \{(\overline{x_1}, \overline{x_2}, \overline{x_3}, \overline{x_4}, \overline{x_5}) \in \mathbb{R}^5 \mid 3\overline{x_1} \overline{x_2} + 4\overline{x_3} + \overline{x_5} = 1\}$
- Dove sappiamo che $(1, 3, -1, 0, 5) \in S$

Principio di Induzione

Definizione - Principio di Induzione

 $\forall n \in \mathbb{N}^*$ sia P(n) un'affermazione che dipende da n allora

- 1. **Base induttiva**: $\exists \overline{n} \in \mathbb{N}^*$ ($P(\overline{n} \text{ è verificata})$)
- 2. Passo induttivo: $\forall n > \overline{n} \quad (P(n-1) \Rightarrow P(n))$

Esempio - Principio di Induzione

Sia P(n) = "Se A ha n elementi allora $\mathcal{P}(A)$ ha 2^n elementi" allora abbiamo

- Base induttiva: $\overline{n} = 0$ allora $P(0): A = \emptyset$ e $\mathcal{P}(A) = \{\emptyset\}$ esattamente $2^0 = 1$ elementi
- Passo induttivo: $\forall n > 0$ $P(n-1) \Rightarrow P(n)$

Siano $A = \{\alpha_1, \alpha_2, ..., \alpha_{n-1}\} \subseteq B = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ allora so che

- 1. $\mathcal{P}(A) = \{x \mid x \subseteq A\} = \{x \mid x \subseteq B \land \alpha_n \notin x\} \subseteq \mathcal{P}(B)$
- 2. $\mathcal{P}(B) \setminus \mathcal{P}(A) = \{x \mid x \subseteq B \land \alpha_n \in x\}$
- 3. $\mathcal{P}(B) = \mathcal{P}(A) \cup \{x \cup \{\alpha_n\} \mid x \subseteq A\}$

Concludo quindi che $\mathfrak{P}(A)$ ha $2^{n-1} + 2^{n-1} = 2 \cdot 2^{n-1} = 2^n$ elementi

Relazione tra insiemi

Definizione - Relazione

Siano $A, B \neq \emptyset$ chiamiamo relazione (oppure corrispondenza) di A in B un sottoinsieme $\rho \subseteq A \times B$

Sia $a \in A$ e $b \in B$ allora indichiamo $a \rho b \Leftrightarrow (a, b) \in \rho$

Chiamiamo **relazione capovolta** la sua inversa $\widehat{\rho} = \{(b, a) \mid (a, b) \in \rho\}$

$$\forall a, b \in A(a \stackrel{\frown}{\rho} b \Leftrightarrow b \rho a)$$

Definizione - Relazione di equivalenza

Sia $A = B = \emptyset$ è detta relazione binaria in A ed è di equivalenza se rispetta le seguenti proprietà

1. Riflessiva: $\forall a \in A(a \rho a)$

in termini di coppia ordinata $(a, a) \in \rho$

2. **Simmetrica**: $\forall a, b \in A(a \rho b \wedge b \rho a)$

in termini di coppia ordinata $(a, b) \Rightarrow (b, a) \in \rho$

3. Transitiva: $\forall a, b, c \in A(a \rho b \wedge b \rho c \Rightarrow a \rho c)$

in termini di coppia ordinata $(a,b) \in \rho \land (b,c) \in \rho \Rightarrow (a,c) \in \rho$

Esempio - Relazione di equivalenza

Sia
$$A = \{1, 3, 5\}$$
 allora $\rho = \{(1, 1), (3, 3), (5, 5), (3, 5), (5, 3)\}$

Sia
$$A = \mathbb{N}^*$$
 allora $\rho = \{(x, y) \mid |x - y| \text{ è pari o nullo}\}$

Sia
$$A = \mathbb{Z} \times \mathbb{N}^*$$
 allora $\rho \subseteq A \times A$ abbiamo che $\rho = \{(m, n), (m', n') \mid m \cdot n' = m' \cdot n\} = \mathbb{Q}$

Teorema - $\rho = \stackrel{\frown}{\rho}$ quando ρ è di equivalenza

Sia
$$\rho \subseteq A \times A$$
 posso dimostrare una sola inclusione perché $(\stackrel{\longleftarrow}{\rho}) = \rho$

Dimostrazione Sia
$$(a, b) \in \rho \Rightarrow (b, a) \in \rho \Rightarrow (a, b) \in \rho$$

Domanda - Quale relazione identifica due vettori applicati uguali?

È chiamata relazione di equipollenza quella che identifica due coppie di punti sul piano che hanno stessa direzione, verso e lunghezza.

Definiamo quindi ho che identifica due vettori applicati uguali:

- $F = \{P \mid P \text{ è un punto nello spazio della geometria elementare}\}$
- $A = F \times F = \{(P, Q) \mid P, Q \in F\}$ ottenendo l'insieme dei vettori applicati
- Sia poi $\rho \subseteq A \times A$ ottenendo $\rho = \{((P,Q),(P',Q')) \mid (P,Q) \in (P',Q') \text{ abbiamo stessa direzione, verso e lunghezza}\}$

Classe di equivalenza

Definizione - Classe di equivalenza

Sia $A \neq \emptyset$ e ρ una relazione di equivalenza su A allora chiamo classe di equivalenza

$$\forall a \in A \quad [a]_{\rho} := \{x \in A \mid x \rho \ a\}$$

Le classi di equivalenza hanno le seguenti proprietà

- 1. $\forall a \in A \quad a \in [a]_{\rho}$
- 2. $\forall a, b \in A \quad a \in [b]_{\rho} \Rightarrow [a]_{\rho} = [b]_{\rho}$
- 3. $\forall a, b \in A$ $[a]_{\rho} \cap [b]_{\rho} = \emptyset \vee [a]_{\rho} = [b]_{\rho}$

Dimostrazione

- 1. $(a, a) \in \rho$
- 2. Qui dobbiamo osservare una doppia inclusione
 - " \subseteq " $z \in [a]_{\rho} \Rightarrow z \ \rho \ a \Rightarrow (z, a) \in \rho$ per ipotesi $a \in [b]_{\rho} \Rightarrow (a, b) \in \rho$ $\Rightarrow (z, b) \in \rho \Rightarrow z \in [b]_{\rho}$
 - " \supseteq " $z \in [b]_{\rho} \Rightarrow z \ \rho \ b \Rightarrow (z, b) \in \rho$ per ipotesi $a \in [b]_{\rho} \Rightarrow (a, b) \in \rho \Rightarrow (b, a) \in \rho$ $\Rightarrow (z, a) \in \rho \Rightarrow z \in [a]_{\rho}$
- 3. Se $\exists z \in [a]_{\rho} \cap [b]_{\rho}$ allora sappiamo che $z \in [a]_{\rho}$ e $z \in [b]_{\rho} \Rightarrow [a]_{\rho} = [z]_{\rho} = [b]_{\rho}$

Domanda - Qual'è l'insieme delle classi di equivalenza?

Se ρ è una relazione di equivalenza su A allora definiamo insieme quoziente (oppure partizione) $\frac{A}{\rho} := \{[a]_{\rho} \mid a \in \rho\}$ l'insieme di tutte le classi di equivalenza, questo ci dice due cose

- $\bullet \ \ A = \bigcup_{[a]_{\rho} \in \frac{A}{\rho}} [a]_{\rho}$
- Se $[a]_{\rho} \cap [b]_{\rho} = \emptyset \Rightarrow [a]_{\rho} \neq [b]_{\rho}$

Lezione del 06/03/2024

Relazione di Parallelismo

Definizione - Relazione di Parallelismo

Siano r_1 e r_2 due rette distinte, allore diciamo che sono parallele se sono complanari, cioè se esiste un piano che contiene sia r_1 e r_2 dove la loro intersezione risulta vuota.

NOTA una retta si dice sempre parallela a se stessa.

Definiamo quindi l'insieme delle rette $A = \{r \mid \text{retta dello spazio nella geometria elementare}\}$ e su questo costruiamo $\rho \subseteq A \times A$ che definiamo usando la relazione di parallelismo $\rho = \{(r_1, r_2) \mid r_1, r_2 \text{ sono parallele}\}$

Sappiamo che la relazione di parallelismo è di equivalenza perché:

• Riflessiva: $\forall r \in A \quad (r, r) \in \rho$

• **Simmetrica**: $\forall r, r_1 \in A \quad (r, r_1) \in \rho \Rightarrow (r_1, r) \in \rho$

• Transitiva: $\forall r, r_1, r_2 \in A \quad (r, r_1) \in (r_1, r_2) \in \rho \Rightarrow (r, r_2) \in \rho$

Direzione e Verso

Definizione - Direzione

Per dare la definizione di direzione, dobbiamo partire dalla definizione di retta per poi usare questo strumento per definire la direzione, vediamo come

- 1. **Retta**: usiamo le classi di equivalenza per definire se due rette hanno la stessa direzione, ovvero se sono parallele, quindi $[r]_{\rho} = \{r_1 \in A \mid r_1 \ \rho \ r\}$
- 2. **Vettore applicato**: due vettori applicati (P,Q) e (R,T) hanno la stessa direzione se sono contenuti in rette parallele
- 3. **Vettore libero**: due vettori liberi \overrightarrow{PQ} e \overrightarrow{RT} hanno la stessa direzione se si possono disegnare su rette parallele

Nota - Vettore Nullo

Definiamo (P, P) il vettore nullo che ha direzione e verso indefinite.

Definizione - Verso

Per questa definizione dobbiamo sfruttare come strumento la retta e le classi di equivalenza, perché

- **Vettore applicato**: siano (P,Q) e (R,T) due vettori applicati paralleli, allora hanno lo stesso verso se applicando uno dei due nel punto di applicazione dell'altro, otteniamo che i due secondi estremi si trovano nella stessa parte della retta individuata rispetto al comune punto di applicazione
- **Vettore libero**: siano \overrightarrow{PQ} e \overrightarrow{RT} due vettori liberi paralleli, allora hanno lo stesso verso se lo hanno i loro rappresentati (P,Q) e (R,T)

Applicazione

Definizione - Applicazione

Siano $A, B \neq \emptyset$ allora definiamo una corrispondenza $f \subseteq A \times B$ che chiamiamo applicazione (oppure funzione) di A in B che indichiamo con $f : A \to B$ se verifica la seguente condizione:

$$\forall a \in A \quad \exists! b \in B \quad (a, b) \in f$$

Chiamiamo A dominio e B codominio di f, inoltre questa applicazione si dice

• Iniettiva: due elementi distinti di A corrispondono a due elementi distinti di B

$$\forall a, b \in A \quad f(a) = f(b) \Rightarrow a = b$$

• Suriettiva: ogni elemento di B è immagine di almeno un elemento di A

$$\forall b \in B \quad \exists a \in A \quad f(a) = b$$

• Biettiva: se è sia iniettiva che suriettiva

$$\forall b \in B \quad \exists! a \in A \quad f(a) = b$$

Definizione - Applicazione inversa

Sia $f:A\to B$ allora definiamo $f^{-1}=\{(b,a)\mid f(a)=b\}$ applicazione inversa che indichiamo con $f^{-1}:B\to A$ ed esiste quando

- $f_o f^{-1}: B \xrightarrow{f^{-1}} A \xrightarrow{f} B$ quindi $f_o f^{-1} = id_B$
- $f_o^{-1}f: A \xrightarrow{f} B \xrightarrow{f^{-1}} A$ quindi $f_o^{-1}f = id_A$

Nota - Se f è biettiva allora anche f^{-1} è biettiva

Sia $f:A\to B$ un'applicazione biettiva allora sappiamo dire per f^{-1} che è un'applicazione biettiva perché

$$f^{-1} \subseteq B \times A \text{ biettiva} \Leftrightarrow \forall b \in B \quad \exists ! a \in A \quad (b,a) \in f^{-1} \Leftrightarrow \forall b \in B \quad \exists ! a \in A \quad (a,b) \in f \Leftrightarrow f \subseteq A \times B \text{ è biettiva}$$

Domanda - Cosa succede se considerano l'applicazione f e f^{-1} su una singola parte?

Andiamo prima a considerare una parte del dominio e poi del codominio applicate rispettivamente all'applicazione f e poi alla sua inversa f^{-1}

- $\forall X \subseteq A$ $f(X) = \{f(a) \mid a \in X\} \subseteq B$
- $\bullet \ \forall Y \subseteq B \quad f^{-1}(Y) = \{a \in A \mid f(a) \in Y\} \subseteq A$

NOTA da questo deduciamo che $Im\ f = \{f(a) \mid a \in A\}$ ovvero esattamente $Im\ f := f(A)$

Definizione - Applicazione composta

Siano $f: A \to B$ e $g: B \to C$ allora possiamo definire l'applicazione composta l'unione di più applicazioni

$$q_0 f: A \to C$$

Questa applicazione segue il seguente schema $A \xrightarrow{f} B \xrightarrow{g} C$ ovvero $g_0f(a) = g(f(a))$

Domanda - Cosa posso dire sulle proprietà della composizione di applicazioni?

Se prese le singole applicazioni f e g osservando la loro composta $g_o f$ posso dire

f e g	$g_o f$
iniettiva	iniettiva
suriettiva	suriettiva
biettiva	biettiva

Lezione del 11/03/2024

Restrizione e Riduzione

Definizione - Restrizione

Una restrizione è una sostituzione del dominio con un suo sottoinsieme non vuoto, sia $f:A\to B$ e un suo sottinsieme $\emptyset\neq X\subseteq A$, chiamo restrizione di f a X l'applicazione

$$f_{|X}: X \to B$$
 con la proprietà che $\forall x \in X$ $f_{|X}(x) = f(x)$

Definizione - Riduzione

Una riduzione è una sostituzione del codominio con un suo sottoinsieme non vuoto, sia $f:A\to B$ e un suo sottinsieme $\emptyset\neq Y\subseteq B$, chiamo riduzione di f a Y l'applicazione

$$f^{|Y}: X \to Y$$
 con la proprietà che $f(X) \subseteq Y$

Cardinalità di un'insieme

Definizione - Insiemi equipotenti

Siano A e B due insiemi, li definiamo equipotenti (ovvero hanno la stessa potenza o ordine) se esiste un'applicazione biettiva $f: A \to B$ con la proprietà che $\exists ! f^{-1}: B \to A$

Nota - Potenze numerabili

Sono dette potenze numerabili tutti gli insiemi equipotenti ad \mathbb{N} , infatti possiamo prendere in esempio $|\mathbb{Z}| = |\mathbb{N}| = |\mathbb{Q}|$ ma sappiamo anche che $|\mathcal{P}(\mathbb{N})| = |\mathbb{R}| > |\mathbb{N}|$, da questo deduciamo che che "infinito" è solo un aggettivo e non una cardinalità.

Operazioni binarie

Definizione - Operazione binaria

Siano A, B, $C \neq \emptyset$ chiamiamo operazione binaria un'applicazione $\pm : A \times B \to C$ e ne distinguiamo due tipi

- 1. **Interna** quando A = B = C
- 2. **Esterna** quando B = C e si dice che ha operatori in A

Domanda - Qual è insieme dei vettori liberi?

Sfruttando le classi di equivalenza e l'insieme quoziente, usiamo la relazione di equipollenza ρ e il prodotto cartesiano $F \times F$ dove F è l'insieme dei punti, definendo così l'insieme dei vettori liberi V:

$$\frac{F \times F}{\rho} = V = \{\overrightarrow{PQ} \mid P, Q \text{ sono punti dello spazio della geometria elementare}\}$$

Nota - Operazioni tra vettori liber

Definiamo adesso le operazioni tra vettori liberi usando lo strumento delle operazioni binarie

- $+ : V \times V \rightarrow V \quad (u, v) \rightsquigarrow w$
- $\cdot : \mathbb{R} \times \mathbb{V} \to \mathbb{V} \quad (\alpha, u) \leadsto \alpha u$

Andiamo ad osservare più nel dettaglio queste operazioni e le loro proprietà

- + è un'operazione interna che restituisce un vettore libero ottenuto prendendo come rappresentati di u e v coppie del tipo (P,Q),(Q,R) tali che w=[(P,R)]
- è un'operazione esterna tale che αu è un vettore che ha stessa direzione di u, la sua lunghezza è calcolata come $|\alpha||u|$ e stesso verso se $\alpha \geq 0$ oppure opposto se $\alpha < 0$

NOTA Se $\alpha = 0 \Rightarrow \alpha u = 0 = (P, P)$ ovvero il vettore nullo con verso, direzione e lunghezza indefinita

Struttura algebrica / Spazio Vettoriale

Definizione - Struttura algebrica

Si tratta di una n-upla ($n \in \mathbb{N}$) costituita da insiemi e operazioni definite su questi insiemi.

Definizione - Gruppoide

Una struttura algebrica dalla forma (A, \bot) con l'insieme $A \neq \emptyset$ e l'operazione $\bot : A \times A \rightarrow A$ della quale possiamo analizzare le seguenti proprietà:

- Associativa $\forall a, b, c \in A \quad (a \perp b) \perp c = a \perp (b \perp c)$
- Commutativa $\forall a, b \in A$ $a \perp b = b \perp a$
- Neutro $\exists t \in A \quad \forall x \in A \quad x \perp t = x = t \perp x$
- Simmetrici $\forall a \in A \quad \exists \overline{a} \in A \quad a \perp \overline{a} = t = \overline{a} \perp a$

Definizione - Gruppo

Sia data la struttura algebrica (A, \bot) si dice gruppo se \bot è associativa, ammette neturo e simmetrici, inoltre se è anche commutativa è detto **Abeliano**

Definizione - Anello

Sia data la struttura algebrica $(A, +, \cdot)$ con le operazioni definite così $+: A \times A \rightarrow \cdots : A \times A \rightarrow A$, allora si chiama anello se

- 1. + è un gruppo Abeliano
- 2 è associativa
- 3. · è distributiva rispetto a +

Inoltre distinguiamo anche i seguenti tipi di anelli

- Commutativo è commutativa
- Unitario · ammette neutro
- Campo anello commutativo unitario dove ogni elemento, tranne lo 0_A , ha inverso rispetto a \cdot

Definizione - Spazio vettoriale

Sia $(K, +, \cdot)$ un campo e V un'insieme non vuoto, definiamo le seguenti operazioni

• $\boxplus : V \times V \to V$ come operazione interna

• $\Box: K \times V \to V$ come operazione esterna

Allora la struttura algebrica $(K, V, \boxplus, \boxdot)$ è chiamata spazio vettoriale su K quando

- 1. (V, \boxplus) è un gruppo Abeliano
- 2. $\forall \alpha \in K \quad \forall u, v \in V \quad \alpha \boxdot (u \boxplus v) = (\alpha \boxdot u) \boxplus (\alpha \boxdot v)$
- 3. $\forall \alpha, \beta \in K \quad \forall u \in V \quad u \boxdot (\alpha + \beta) = (\alpha \boxdot u) \boxplus (\beta \boxdot u)$
- 4. $\forall \alpha, \beta \in K \quad \forall u \in V \quad (\alpha \cdot \beta) \boxdot u = \alpha \boxdot (\beta \boxdot u)$
- 5. $\forall u \in V$ $1_K \square u = u$

NOTA! Gli elementi di K sono detti scalari e gli elementi di V vettori

Teorema - Sui Gruppoidi

Sia (A, \perp) un gruppoide allora sappiamo che

1. Se \perp ammette neutro t esso è unico

$$\forall a \in A \quad a \perp t = x = t \perp a$$

2. Se \perp ammette neutro t ed è associativa, allora se $a \in A$ ha un simmetrico a', esso è unico

$$a \in A \quad \exists a' \in A \quad a \perp a' = t = a' \perp a$$

3. Se \perp ammette neutro t ed è associativa, con $a_1, a_2 \in A$ simmetrizzabili, allora $a_1 \perp a_2$ ha come simmetrico $a'' \perp a'$

$$a_1, a_2, \in A \quad \exists a', a'' \in A \quad a_1 \bot a' = t = a' \bot a_1 \quad a_2 \bot a'' = t = a'' \bot a_2$$

Dimostrazione

- 1. Se esiste $t' \in A$ con le stesse proprietà di t allora abbiamo $t = t \perp t' = t'$
- 2. Se esiste $a'' \in A$ con le stesse proprietà di a' allora abbiamo $a' = a' \perp t = a' \perp (a \perp a'') = (a' \perp a) \perp a'' = t \perp a'' = a''$
- 3. $(a_1 \perp a_2) \perp (a'' \perp a') = a_1 \perp (a_2 \perp a'') \perp a' = a_1 \perp t \perp a' = a_1 \perp a' = t$

Lezione del 13/03/2024

Teorema - Sugli Spazi Vettoriali

Sia $(K, +, \cdot)$ un campo e $V = K^n$ con $n \in \mathbb{N}^*$, sappiamo che $(K, K^n, \boxplus, \boxdot)$ è uno spazio vettoriale su K, definiamo le operazioni dello spazio vettoriale:

 $\bullet \ \boxplus : K^n \times K^n \to K^n$

$$((a_1, ..., a_n 2), (b_1, ..., b_n)) \rightsquigarrow (a_1 + b_1, ..., a_n + b_n)$$

• $\square: K \times K^n \to K^n$

$$(\alpha, (a_1, ..., a_n)) \rightsquigarrow (\alpha a_1, ..., \alpha a_n)$$

Dimostrazione per il caso in cui n = 2

- (K^2, \boxplus) è un gruppo abeliano
 - \boxplus è commutativa $\forall (a_1, a_2), (b_1, b_2) \in K^2$

$$(a_1, a_2) \boxplus (b_1, b_2) = (a_1 + b_1, a_2 + b_2) = (b_1 + a_1, b_2 + a_2) = (b_1, b_2) \boxplus (a_1, a_2)$$

- \boxplus è associativa $\forall (a_1, a_2), (b_1, b_2), (c_1, c_2) \in K^2$

$$((a_1, a_2) \boxplus (b_1, b_2)) \boxplus (c_1, c_2) = ((a_1 + b_1) + c_1, (a_2 + b_2) + c_2) = (a_1 + (b_1 + c_1), a_2 + (b_2 + c_2)) = (a_1, a_2) \boxplus ((b_1, b_2) \boxplus (c_1, c_2))$$

- \blacksquare ha elemento neutro $\forall (a_1, a_2) \in K^2$ $\exists (t_1, t_2) \in K^2$

$$(a_1, a_2) \boxplus (t_1, t_2) = (a_1 + t_1, a_2 + t_2) = (a_1, a_2) \Leftrightarrow \begin{cases} a_1 + t_1 = a_1 \Leftrightarrow t_1 = 0_K \\ a_2 + t_2 = a_2 \Leftrightarrow t_2 = 0_K \end{cases} \Leftrightarrow (t_1, t_2) = (0_K, 0_K)$$

- \boxplus ammette simmetrici $\forall (a_1, a_2) \in K^2$ ∃ $(a'_1, a'_2) \in K^2$

$$(a_1, a_2) \boxplus (a'_1, a'_2) = (a_1 + a'_1, a_2 + a'_2) = (0_K, 0_K) \Leftrightarrow \begin{cases} a_1 + a'_1 = 0_K \Leftrightarrow a'_1 = -a_1 \\ a_2 + a'_2 = 0_K \Leftrightarrow a'_2 = -a_2 \end{cases} \text{ in } K$$

- $\forall \alpha \in K \quad \forall (a_1, a_2), (b_1, b_2) \in K^2 \quad \alpha \boxdot ((a_1, a_2) \boxplus (b_1, b_2)) = (\alpha \boxdot (a_1, a_2)) \boxplus (\alpha \boxdot (b_1, b_2))$
 - $\alpha \boxdot ((a_1, a_2) \boxplus (b_1, b_2)) = \alpha \boxdot (a_1 + b_1, a_2 + b_2) = (\alpha a_1 + \alpha b_1, \alpha a_2 + \alpha b_2) = (\alpha a_1, \alpha a_2) \boxplus (\alpha b_1, \alpha b_2) = (\alpha \boxdot (a_1, a_2)) \boxplus (\alpha \boxdot (b_1, b_2))$
- $\forall \alpha, \beta \in K \quad \forall (a_1, a_2) \in K^2 \quad (a_1, a_2) \boxdot (\alpha + \beta) = ((a_1, a_2) \boxdot \alpha) \boxplus ((a_1, a_2) \boxdot \beta)$

$$(\alpha + \beta) \boxdot (a_1, a_2) = ((\alpha + \beta)a_1, (\alpha + \beta)a_2) = (\alpha a_1 + \beta a_1, \alpha a_2 + \beta a_2) = (\alpha a_1, \alpha a_2) \boxplus (\beta a_1, \beta a_2) = (\alpha \boxdot (a_1, a_2)) \boxplus (\beta \boxdot (a_1, a_2))$$

• $\forall \alpha, \beta \in K \quad \forall (a_1, a_2) \in K^2 \quad (\alpha \cdot \beta) \boxdot (a_1, a_2) = \alpha \boxdot (\beta \boxdot (a_1, a_2))$

$$(\alpha \cdot \beta) \boxdot (a_1, a_2) = ((\alpha \cdot \beta) \cdot a_1, (\alpha \cdot \beta) \cdot a_2) = (\alpha \cdot (\beta \cdot a_1), \alpha \cdot (\beta \cdot a_2)) = \alpha \boxdot (\beta \boxdot (a_1, a_2))$$

• $\forall (a_1, a_2) \in K^2$ $1_a \Box (a_1, a_2) = (a_1, a_2)$

$$1_K \boxdot (a_1, a_2) = (1_K \cdot a_1, 1_K \cdot a_2) = (a_1, a_2)$$

Teorema - Propietà Aritmetiche sugli Spazi Vettoriali

- 1. $\forall \alpha \in K \quad \forall u \in V \quad \alpha \boxdot u = \underline{0} \Leftrightarrow \alpha = 0 \text{ oppure } u = \underline{0}$
- 2. $\forall \alpha \in K \quad \forall u \in V \quad -(\alpha \boxdot u) = -(\alpha) \boxdot u = \alpha \boxdot -(u)$
- 3. $\forall \alpha \neq 0 \quad \forall u, v \in V \quad \alpha \boxdot u = \alpha \boxdot v \Rightarrow u = v$
- 4. $\forall \alpha, \beta \in K \quad \forall u \in V \setminus \{0\} \quad \alpha \boxdot u = \beta \boxdot u \Rightarrow \alpha = \beta$

Dimostrazione

- 1. " ⇐ "
 - Sia $\alpha = 0$ ed osserviamo che 0 \boxdot u = (0 + 0) \boxdot u = (0 ⊕ u) \boxplus (0 \boxdot u) quindi so che ∃ (0 \boxdot u)
 - $\underline{0} = (0 \boxdot u) (0 \boxdot u) = ((0 \boxdot u) \boxplus (0 \boxdot u)) (0 \boxplus u) = 0 \boxdot u$
 - Sia $u = \underline{0}$ ed osserviamo che $\alpha \boxdot \underline{0} = \alpha \boxdot (\underline{0} + \underline{0}) = (\alpha \boxdot \underline{0}) \boxplus (\alpha \boxdot 0)$ quindi so che ∃ − $(\alpha \boxdot \underline{0})$
 - $\underline{0} = (\alpha \boxdot \underline{0}) (\alpha \boxdot \underline{0}) = ((\alpha \boxdot \underline{0}) \boxplus (\alpha \boxdot \underline{0})) (\alpha \boxdot \underline{0}) = \alpha \boxdot \underline{0}$

- Se
$$\alpha \neq 0 \Rightarrow \exists \alpha^{-1}$$
 allora

$$u = 1 \boxdot u = (\alpha^{-1}\alpha) \boxdot u = \alpha^{-1} \boxdot (\alpha \boxdot u) = \alpha^{-1} \boxdot \underline{0} = \underline{0}$$

2. $\forall \alpha \in K \quad \forall u \in V \quad -(\alpha \boxdot u) = -(\alpha) \boxdot u = \alpha \boxdot -(u)$

$$(-(\alpha) \boxdot u) \boxplus (\alpha \boxdot u) = (-\alpha + \alpha) \boxdot u = 0 \boxdot u = \underline{0}$$

$$(\alpha \boxdot -(u)) \boxplus (\alpha \boxdot u) = \alpha \boxdot (-(u) \boxplus u) = \alpha \boxdot \underline{0} = \underline{0}$$

3. $\forall \alpha \neq 0 \quad \forall u, v \in V \quad \alpha \boxdot u = \alpha \boxdot v \Rightarrow u = v$

$$u = 1 \boxdot u = (\alpha^{-1} \cdot \alpha) \boxdot u = \alpha^{-1} \boxdot (\alpha \boxdot u) = \alpha^{-1} \boxdot (\alpha \boxdot v) = (\alpha^{-1} \cdot \alpha) \boxdot v = 1 \boxdot v = v$$

4. $\forall \alpha, \beta \in K \quad \forall u \in A \setminus \{\underline{0}\} \quad \alpha \boxdot u = \beta \boxdot u \Rightarrow \alpha = \beta$

$$\alpha \boxdot u = \beta \boxdot u \Rightarrow \alpha \boxdot u \boxplus -(\beta) \boxdot u = 0 \Rightarrow (\alpha - \beta) \boxdot u = 0 \Rightarrow \alpha - \beta = 0 \Rightarrow \alpha = \beta$$

Sotto-spazio Vettoriale / Linearmente Chiuso

Definizione - Linearmente Chiuso

Sia $(K, V, \boxplus, \boxdot)$ uno spazio vettoriale e $X \subseteq V$ questo si dice Linearmente chiuso se

- 1. $X \neq \emptyset$
- 2. $\forall u, v \in X \quad u \boxplus v \in X$
- 3. $\forall \alpha \in K \quad \forall u \in X \quad \alpha \boxdot u \in X$

Domanda - Ma $\underline{0}$ e l'opposto di u appartengono a X?

- Se $X \neq \emptyset$ allora sappiamo che $\exists u \in X$ con la proprietà che $0 = 0 \square u \in X$
- Se $u \in X$ e $-u \in V$ allora sappiamo che $-u = (-1) \boxdot u \in X$

Definizione - Sotto-Spazio Vettoriale

Un sottoinsieme $X\subseteq V$ linearmente chiuso si dice sotto-spazio vettoriale di V se $(K,X,\boxplus_{|X},\boxdot_{|X})$ è uno spazio vettoriale su K

Combinazione lineare

Definizione - Combinazione lineare

Sia $(K, V, \boxplus, \boxdot)$ uno spazio vettoriale e preso una *n*-upla di vettori $(u_1, ..., u_n)$ definiamo una sua combinazione lineare

un vettore
$$u = \alpha_1 \boxdot u_1 \boxplus ... \boxplus \alpha_n \boxdot u_n$$
 dove $(\alpha_1, ..., \alpha_n) \in V$

Chiusura lineare

Definizione - Chiusura lineare

Sia $(K, V, \boxplus, \boxdot)$ uno spazio vettoriale e $X \subseteq V$ allora chiamiamo chiusura lineare di X l'insieme di tutte le combinazioni lineari

$$\mathscr{L}(X) = \left\{ \begin{array}{l} \{\underline{0}\}, \text{ se } X = \emptyset \\ \{\alpha_1 \boxdot u_1 \boxplus ... \boxplus \alpha_n \boxdot u_n \mid n \in \mathbb{N}^* \quad u_1, ..., u_n \in X \quad \alpha_1, ..., \alpha_n \in K \} \end{array} \right\}$$

NOTA! Si dice $\mathcal{L}(X)$ è il sotto-spazio vettoriale generato da X

Sistema di Generatori

Definizione - Sistema di Generatori

Sia $S \subseteq V$ allora si dice sistema di generatori di V se $V = \mathcal{L}(S)$, ossia ogni vettore di V è combinazione lineare dei vettori di S

$$S$$
 è sistema di generatori di $V \Leftrightarrow \forall u \in V \quad u \in \mathcal{L}(S)$

NOTA! V si dice finitamente generato se ha un sistema di generatori finito

Nota - Allegeriamo la notazione

Da ora in poi useremo i simboli usuali anche per l'addizione e la motiplicazione dello spazio vettoriale, quindi per distinguerli da quelli del campo basterà confrontare gli operandi, se le operazioni hanno come operando un vettore stiamo usando l'operazione dello spazio vettoriale

Teorema - Sulla Chiusura Lineare

- 1. $X \subseteq \mathcal{L}(X)$
- 2. $\mathcal{L}(X)$ è linearmente chiuso
- 3. Comunque prendo un sottospazio vettoriale $W \subseteq V$ con la proprietà che $X \subseteq W$ allora $\mathcal{L}(X) \subseteq W$

Dimostrazione

- 1. $u \in X \Rightarrow u = 1 \cdot u \in \mathcal{L}(X)$
- 2. Osserviamo la chiusura lineare di entrambe le operazioni
 - Addizione siano $v, w \in \mathcal{L}(X) \Rightarrow \begin{cases} \exists u_1, ..., u_n \in X & \exists \alpha_1, ..., \alpha_n \in V & v = \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n \\ \exists k_1, ..., k_m \in X & \exists \beta_1, ..., \beta_m \in V & w = \beta_1 \cdot k_1 + ... + \beta_m \cdot k_m \end{cases}$

Quindi
$$v + w = \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n + \beta_1 \cdot k_1 + ... + \beta_m \cdot k_m \in \mathcal{L}(X)$$

• Moltiplicazione Sia $\gamma \in K$ e $v \in \mathcal{L}(X)$ allora $\gamma \cdot v = \gamma(\alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n) = \gamma(\alpha_1 \cdot u_1) + ... + \gamma(\alpha_1 \cdot u_n)$

Quindi
$$\gamma \cdot v = (\gamma \cdot \alpha_1) \cdot u_1 + ... + (\gamma \cdot \alpha_n) \cdot u_n \in \mathcal{L}(X)$$

3. Sia $v \in \mathcal{L}(X)$ allora $\exists u_1, ..., u_n \in X \quad \exists \alpha_1, ..., \alpha_n \in K \quad v = \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n$

Matrici

Definizione - Matrici

Sia K un'insieme non vuoto e presi $n, m \in \mathbb{N}^*$ chiamiamo matrice su K di tipo $n \times m$ l'applicazione

Lezione del 18/03/2024

Linearmente Dipendente

Definizione - Linearmente Dipendente

Sia $(K, V, +, \cdot)$ uno spazio vettoriale, presa una n-upla $(u_1, ..., u_n)$ di vettori di V si dice lienearmente dipendente se il vettore nullo si può scrivere come una combinazione lineare di vettori della n-upla anche con scalari non tutti nulli

$$\exists (\alpha_1, ..., \alpha_n) \in K^n \setminus \{0\} \quad 0 = \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n$$

Linearmente Indipendente

Definizione - Lienearmente Indipendente

Sia $(K, V, +, \cdot)$ uno spazio vettoriale, presa una n-upla $(u_1, ..., u_n)$ di vettori di V si dice linearmente indipendente se il vettore nullo si può scrivere come combinazione lineare di vettori della n-upla solo con scalari tutti nulli

$$(\alpha_1, ..., \alpha) \in K^n$$
 $\underline{0} = \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n \Rightarrow \alpha_1 = ... = \alpha_n = 0$

NOTA! L'insieme vuoto è linearmente indipendente

Domanda - Come posso capire velocemente se un'insieme è linearmente dipendente?

Sia $X \subseteq V$ allora X si dice linearmente dipendente se esiste un sotto-insieme finito di X linearmente dipendente

Sia $S = \{u_1, ..., u_n\}$ linearmente dipendente allora vediamo che se $T = S \cup \{u_{n+1}, ..., u_m\}$ allora T è linearmente dipendente, siccome S è linearmente dipendente allora

$$\exists (\alpha_1,...,\alpha_n) \in K^n \setminus \{0\} \quad \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n = 0 \Rightarrow \alpha_1 \cdot u_1 + ... + \alpha_{n+1} \cdot u_{n+1} + ... + \alpha_m \cdot u_m = 0$$

Teorema - Sulla Dipendenza Lineare

Sia $(K, V, +, \cdot)$ con $X \subseteq V$ sappiamo che X è linearmente dipendente $\Leftrightarrow \exists u \in X \quad \mathscr{L}(X) = \mathscr{L}(X \setminus \{u\})$

Unico caso particolare da osservare è se $X = \{\underline{0}\}$ sappiamo che $X \setminus \{\underline{0}\} = \emptyset$ ed abbiamo che $\mathcal{L}(X) = \{\underline{0}\} = \mathcal{L}(\emptyset)$

Dimostrazione Se $|X| \ge 2$ osserviamo entrambi i lati della dell'implicazione

• " \Rightarrow " per ipotesi X è linearmente dipendente, ovvero $\exists (\alpha_1,...,\alpha_n) \in K^n \setminus \{\underline{0}\}$ $\underline{0} = \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n$ Sia allora $\alpha_1 \neq 0$ e questo ci dice che $\exists \alpha_1^{-1} \quad \alpha_1^{-1}(\alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n) = \alpha_1^{-1} \cdot \underline{0} = \underline{0}$ sfruttando la distributività e l'associatività abbiamo $(\alpha_1^{-1} \cdot \alpha_1)u_1 + ... + (\alpha_1^{-1} \cdot \alpha_n)u_n = u_1 + ... + (\alpha_1^{-1} \cdot \alpha_n)u_n$

Sfruttando l'uguaglianza precedente abbiamo che $u_1 = -(\alpha_1^{-1} \cdot \alpha_2) - \ldots - (\alpha_1^{-1} \cdot \alpha_n) u_2 \in \mathscr{L}(X \setminus \{u_1\})$

• " \Leftarrow " per ipotesi $\exists u \in X \quad \mathcal{L}(X) = \mathcal{L}(X \setminus \{u\})$

Allora sappiamo che $\exists v_1, ..., v_n \in X \setminus \{u\} \quad \exists \beta_1, ..., \beta_n \in A \quad u = \beta_1 \cdot v_1 + ... + \beta_n \cdot v_n$

Ma questo ci porta a dire che $1 \cdot u - (\beta_1) \cdot u_1 - \dots - (\beta_n) \cdot u_n = \underline{0}$ e quindi X è linearmente dipendente

Lezione del 20/03/2024

Domanda - Quando due chiusure lineari coincidono?

Sia $(K, V, +, \cdot)$ uno spazio vettoriale e $S, T \subseteq V$ allora sappiamo che $\mathcal{L}(S) = \mathcal{L}(T) \Leftrightarrow S \subseteq \mathcal{L}(T)$ e $T \subseteq \mathcal{L}(T)$

- " \Rightarrow " $S \subseteq \mathcal{L}(S) = \mathcal{L}(T)$ e $T \subseteq \mathcal{L}(T) = \mathcal{L}(S)$
- " \Leftarrow " $S \subseteq \mathcal{L}(T) \Rightarrow \mathcal{L}(S) \subseteq \mathcal{L}(T)$ $T \subseteq \mathcal{L}(S) \Rightarrow \mathcal{L}(T) \subseteq \mathcal{L}(S)$ $\Rightarrow \mathcal{L}(S) = \mathcal{L}(T)$

Base di uno Spazio-Vettoriale

Definizione - Base di uno Spazio-Vettoriale

Una base di uno spazio vettoriale V è un sistema di generatori di V linearmente indipendente

NOTA! è chiamata base canonica la base composta da $\{(1,0,...),(0,1,...)\}$

Base ordinata (oppure riferimento), dove la *n*-upla di scalari che da luogo a un vettore è detta *n*-upla delle componenti

Teorema - Di estrazione di una Base

Sia V uno spazio vettoriale finitamente generato su un campo K e sia $S = \{u_1, ..., u_n\}$ un suo sistema di generatori finito, allora sappiamo che esiste una base B di V tale che $B \subseteq S$

Dimostrazione Per ipotesi sappiamo che $\mathcal{L}(S) = V$

- 1. Se S è linearmente indipendente allora B = S ed è base di V
- 2. Altrimenti $\exists u \in S \quad \mathcal{L}(S) = \mathcal{L}(S \setminus \{u\})$ e sia $u = u_1$
- 3. Allora $S' = S \setminus \{u\} = \{u_2, ..., u_n\}$ se è linearmente indipendente e anche un sistema di generatori di V

Ripetiamo il processo finché non si trova un base di V

Nota - Cosa succede nel caso di un'insieme linearmente dipendente con due vettori?

Sia $(K, V, +, \cdot)$ uno spazio vettoriale con $S \subseteq V$ dove $S = \{u, v\}$ allora

S è linearmente dipendente $\Leftrightarrow \exists \gamma \in K \quad u = \gamma \cdot v \text{ oppure } v = \gamma \cdot u$

Infatti per ipotesi $\exists (\alpha, \beta) \in K^2 \setminus \{(0, 0)\}$ $\alpha u + \beta v = \underline{0}$ ma questo ci dice che $\alpha \neq 0$ oppure $\beta \neq 0$

• Se $\alpha \neq 0$ allora $\exists \alpha^{-1}$ ottenendo $\frac{\alpha^{-1}(\alpha \cdot u + \beta \cdot v) = \alpha^{-1} \cdot \underline{0} = \underline{0}}{(\alpha^{-1} \cdot \alpha)u + (\alpha^{-1} \cdot \beta)v = 1 \cdot u + (\alpha^{-1} \cdot \beta)v}$ $\Rightarrow u = -(\alpha^{-1} \cdot \beta)v$

 $\bullet \text{ Se } \beta \neq 0 \text{ allora } \exists \beta^{-1} \text{ ottenendo } \begin{cases} \beta^{-1}(\alpha \cdot u + \beta \cdot v) = \beta^{-1} \cdot \underline{0} = \underline{0} \\ (\beta^{-1} \cdot \alpha)u + (\beta^{-1} \cdot \beta)v = (\beta^{-1} \cdot \alpha)u + 1 \cdot v \end{cases} \Rightarrow v = -(\beta^{-1} \cdot \alpha)u$

Nota - Se poniamo lo stesso caso sui vettori?

Sia V uno spazio vettoriale su ℝ allora sappiamo che

- $u, v \in V \setminus \{u, v\}$ è linearmente dipendente $\Leftrightarrow u \parallel v$
- $u, v, w \in V \setminus \{u, v, w\}$ è linearmente dipendente $\Leftrightarrow u, v, w$ sono complanari

Teorema - Sull'Indipendenza Lineare

Sia $(K, V, +, \cdot)$ uno spazio vettoriale, presa $S \subseteq V$, sia S linearmente indipendente allora $u \in V$ $u \notin \mathcal{L}(S) \Rightarrow S \cup \{u\}$ è linearmente indipendente

Dimostrazione Sia $S \cup \{u\} = \{u, v_1, ..., v_n\}$ allora $\alpha, \alpha_1, ..., \alpha_n \in K$ $\alpha \cdot u + ... + \alpha_n \cdot v_n = \underline{0}$ con la proprietà che $\alpha = ... = \alpha_n = \underline{0}$

Supponiamo per assurdo che $\alpha \neq 0$ allora $\exists \alpha^{-1} \in K$ allora abbiamo la seguente uguaglianza

$$1 \cdot u + (\alpha^{-1} \cdot \alpha_1)v_1 + \dots + (\alpha^{-1} \cdot \alpha^n)v_n = \alpha^{-1}(\alpha \cdot u + \dots + \alpha_n \cdot v_n) = \alpha^{-1} \cdot \underline{0} = \underline{0}$$

Quindi $u = -(\alpha^{-1} \cdot \alpha_1)v_1 + ... + -(\alpha^{-1} \cdot \alpha_n)v_n \in \mathcal{L}(\{v_1, ..., v_n\}) = \mathcal{L}(S)$ ma questo è impossibile

Teorema - di Steinitz

Sia $(K, V, +, \cdot)$ uno spazio vettoriale finitamente generato su un campo K allora sappiamo che

- $S = \{u_1, ..., u_n\} \subseteq V$ con la proprietà che $V = \mathcal{L}(S)$
- $X = \{v_1, ..., v_m\} \subseteq V$

Allora sappiamo che se $|X| = m > n = |S| \Rightarrow X$ è linearmente dipendente

Domanda - Cosa succede nel caso opposto?

Dal teorema di Steinitz ricaviamo che se $Y \subseteq V$ con la proprietà che Y è linearmente indipendente $\Rightarrow |Y| \le |S|$

Teorema - Di Equipotenza delle Basi

Sia $(K, V, +, \cdot)$ uno spazio vettoriale finitamente generato su un campo K allora ogni base di V è finita ed ha lo stesso numero di vettori (sono equipontenti)

Dimostrazione Sia S un sistema di generatori finito di V allora

- 1. Presa B una base estratta da S allora $|B| = n < +\infty$
- 2. Sia B' un'altra base di V
- 3. B' è linearmente indipendente e sistema di generatori di V, ovvero $\mathcal{L}(B') = V = \mathcal{L}(B)$

Quindi per il teorema di Steinitz abbiamo che

$$|B'| \leq |B| \text{ altrimenti avremmo } B' = \{v_1, ..., v_{n+1}\} \text{ linearmente indipendente}$$

$$B \text{ è linearmente indipendente}$$

$$\mathcal{L}(B') = V$$

$$\Rightarrow |B| = |B'|$$

Dimensione

Definizione - Dimensione

Sia $(K, V, +, \cdot)$ uno spazio vettoriale, sia V finitamente generato su K allora la cardinalità comune alle sue basi si dice dimensione di V e si indica con dim(V)

Teorema - sui Sistemi di Generatori Linearmente Indipendenti

Sia $(K, V, +, \cdot)$ uno spazio vettoriale, sia V finitamente generato su K con dim(V) = n

Allora preso $S = \{u_1, ..., u_n\} \subseteq V$ ottengo che S è linearmente indipendente $\Leftrightarrow S$ è un sistema di generatori di V

Dimostrazione

• " \Rightarrow " Per assurdo supponiamo che $\mathscr{L}(S) \subset V$, ovvero $\exists u \in V \quad u \notin \mathscr{L}(S)$ quindi otteniamo che

$$S \text{ è linearmente indipendente} \\ u \not\in \mathcal{L}(S) \\ u \in V$$
 $\Rightarrow S \cup \{u\} \text{ è linearmente indipendente}$

ma questo è assurdo perché $|S \cup \{u\}| = n + 1 > n = dim(V)$

• " \Leftarrow " Per assurdo S è linearmente dipendente, quindi $\exists u \in S \quad \mathscr{L}(S \setminus \{u\}) = \mathscr{L}(S) = V$ allora per il teorema di estrazione di una base sappiamo che

$$\exists B \subseteq S \setminus \{u\}$$
 tale che B è una base di V con la proprietà che $|B| \leq |S \setminus \{u\}| = n-1$

Ma questo è assurdo proprio per il teorema di equipotenza delle basi

Lezione del 25/03/2024

Teorema - Di Completamento di una Base

Sia $(K, V, +, \cdot)$ finitamente generato su un campo K dove n = dim(V)

Sia $X = \{v_1, ..., v_n\} \subseteq V$ linearmente indipendente con |X| < n

Allora sappiamo che $\exists v_{t+1},...,v_n \in V$ tali che $X \cup \{v_{t+1},...,v_n\}$ è base di K

Dimostrazione

Siccome |X| < n sappiamo che X non è un sistema di generatori di V e non una base perché $dim(V) = n \neq t$ allora seguiamo i seguenti passaggi

1. Allora $\mathcal{L}(X) \subset V$ quindi $\exists v_{t+1} \in V \setminus \mathcal{L}(X)$ per cui $X' = X \cup \{v_{t+1}\}$ è linearmente dipendente

- 2. Se t + 1 = n allora X' è una base di V è abbiamo terminato
- 3. Altrimenti X' è un sistema di generatori di V, ovvero $\mathcal{L}(X') \subset V$, e ripetiamo il procedimento dal passaggio 1

Teorema - sulle Basi Ordinate

Sia $(K, V, +, \cdot)$ uno spazio vettoriale finitamente generato su un campo K con dim(V) = n

Sia $B = (u_1, ..., u_n)$ un'insieme ordinato con la proprietà che |B| = n allora abbiamo che

B è base di
$$K \Leftrightarrow \forall v \in V \quad \exists!(\alpha_1, ..., \alpha_n) \in K^n \quad v = \alpha \cdot u_1 + ... + \alpha_n \cdot u_n$$

Dimostrazione

- \Leftarrow per ipotesi $\forall v \in V \quad \exists! (\alpha_1, ..., \alpha_n) \in K^n \quad v = \alpha \cdot u_1 + ... + \alpha_n \cdot u_n \in \mathcal{L}(B)$ quindi sappiamo che
 - 1. B è un sistema di generatori di V
 - 2. B è linearmente indipendente perché se $v = \underline{0}$ allora $\underline{0} = 0 \cdot u_1 + ... + 0 \cdot u_n$ ma $\exists ! (0, ..., 0)$
- ullet \Rightarrow Siccome B è una base di V allora è anche un suo sistema di generatori, quindi
 - 1. $\forall v \in V \quad \exists (\alpha_1, ..., \alpha_n) \in K^n \quad v = \alpha \cdot u_1 + ... + \alpha_n \cdot u_n \in \mathcal{L}(B)$ ma questa *n*-upla è unica
 - 2. Se prendiamo una n-upla con le stesse proprietà $(\beta_1,...,\beta_n) \in K^n$ $v = \beta_1 \cdot u_1 + ... + \beta_n \cdot u_n$ otteniamo
 - (a) v v = 0
 - (b) $\underline{0} = \alpha_1 \cdot u_1 + ... + \alpha_n \cdot u_n (\beta_1 \cdot u_1 + ... + \beta_n \cdot u_n) = (\alpha_1 \beta_1)u_1 + ... + (\alpha_n \beta_n)u_n$

Ma essendo
$$B$$
 linearmente indipendente $\Rightarrow \begin{cases} \alpha_1 - \beta_1 = 0 \\ \dots \\ \alpha_n - \beta_n = 0 \end{cases} \Rightarrow \begin{cases} \alpha_1 = \beta_1 \\ \dots \\ \alpha_n = \beta_n \end{cases}$

Isomorfismo associato ad una Base

Definizione - Isomorfismo associato ad una Base

Sia $(V, K, +, \cdot)$ uno spazio vettoriale finitamente generato su K con n = dim(V)

Sia $B = (u_1, ..., u_n)$ una base ordinata di V allora definiamo osomorfismo associato a B l'applicazione:

$$\phi_B: V \rightarrow K^n$$
 $u \rightsquigarrow (\alpha_1, ..., \alpha_n)$

Ovvero ad ogni vettore associa i suoi componenti in B

Teorema - sui Sottospazi Vettoriali

Sia $(K, V, +, \cdot)$ uno spazio vettoriale finitamente generato con dim(V) = n e W un sottospazio vettoriale di V allora

- 1. $dim(W) = 0 \Leftrightarrow W = \{0\}$
- 2. dim(W) < dim(V)
- 3. $dim(W) = dim(V) \Leftrightarrow W = V$

Dimostrazione

- 1. " \Rightarrow " Se dim(W) = 0 allora \emptyset è una base di W per cui $\mathcal{L}(W) = W = \{\underline{0}\}$
 - " \Leftarrow " Se $W = \{0\}$ allora $W = \{0\} = \mathcal{L}(W)$ percui
 - $\begin{cases} \emptyset \text{ è un sistema di generatori di } W \\ \emptyset \text{ è linearmente indipendente} \\ \emptyset \text{ è una base di } W \text{ quindi } |\emptyset| = 0 = dim(W) \end{cases} \Rightarrow |\emptyset| = 0 = dim(W)$
- 2. Sia $B_w = \{u_1, ..., u_t\}$ una base di W, allora B_w è un sottoinsieme di V linearmente indipendente percui $|B_w| = t \le n = dim(V)$
- 3. Sia $B_W = \{u_1, ..., u_t\}$ una base di W allora
 - " \Rightarrow " per ipotesti t = dim(W) = dim(V) = n ma B_w allora

$$\left. egin{aligned} B_w & \text{è linearmente indipendente} \\ B_w & \text{è sistema di generatori di } V \end{aligned} \right\} \Rightarrow V = \mathcal{L}(B_w) = W$$

• " \Rightarrow " per ipotesi ogni base di W è base di V e viceversa e quindi W = dim(V)

Lezione del 27/05/2024

Teorema - Intersezione di due Spazi Vettoriali

Sia $(K, V, +, \cdot)$ uno spazio vettoriale su un campo K

Presi due sottospazi vettoriali W_1, W_2 di V allora sappiamo che $W_1 \cap W_2$ è un sottospazio vettoriale

Dimostrazione

• $W_1 \cap W_2$ non è vuoto

$$0 \in W_1$$
 $0 \in W_2 \Rightarrow 0 \in W_1 \cap W_2 \neq \emptyset$

• $W_1 \cap W_2$ è linearmente chiuso rispetto alla somma

Siano
$$u, v \in W_1 \cap W_2 \Rightarrow u, v \in W_1$$
 $u, v \in W_2 \Rightarrow u + v \in W_1$ $u, v \in W_2 \Rightarrow u + v \in W_1 \cap W_2$

• $W_1 \cap W_2$ è linearmente chiuso rispetto al prodotto

Sia
$$\alpha \in K$$
 allora $u \in W_1 \cap W_2 \Rightarrow u \in W_1$ $u \in W_2 \Rightarrow \alpha \cdot u \in W_1$ $\alpha \cdot uW_2 \Rightarrow \alpha \cdot u \in W_1 \cap W_2$

Teorema - Somma (Unione) di due Spazi Vettoriali

Sia $(K, V, +, \cdot)$ uno spazio vettoriale su un campo K

Presi due sottospazi vettoriali W_1 , W_2 di V allora sappiamo che $W_1 + W_2$ in generale non è un sottospazio vettoriale

Infatti è un sottospazio vettoriale soltanto in due casi

- 1. $W_1 \subseteq W_2 \Rightarrow W_1 \cup W_2 = W_2$
- 2. $W_2 \subset W_1 \Rightarrow W_1 \cup W_2 = W_1$

La soluzione è definire l'unione come la somma sapendo che questo è un sottospazio vettoriale

Dimostrazione È un sottospazio vettoriale $W_1 + W_2 = \{w_1 + w_2 \mid w_1 \in W_1 \in W_2 \in W_2\}$

• $W_1 + W_2$ non è vuoto

$$\underline{0} \in W_1 \quad \underline{0} \in W_2 \Rightarrow \underline{0} \in W_1 + W_2 \neq \emptyset$$

• $W_1 + W_2$ è linearmente chiuso rispetto alla somma

Siano
$$u, v \in W_1 + W_2 \Rightarrow w_1, w_1' \in W_1$$
 $w_2, w_2' \in W_2$ $u = w_1 + w_1'$ $v = w_2 + w_2'$

Ma allora
$$u + v = w_1 + w_1' + w_2 + w_2' = (w_1 + w_2) + (w_1' + w_2') \in W_1 + W_2$$

ullet W_1+W_2 è linearmente chiuso rispetto al prodotto

Sia
$$\alpha \in K$$
 allora $u \cdot u = \alpha(w_1 + w_1') = \alpha \cdot w_1 + \alpha \cdot w_1' \in W_1 + W_2$

Adesso vediamo che se $W_1 = \mathcal{L}(S_1)$ e $W_2 = \mathcal{L}(S_2)$ allora $W_1 + W_2 = \mathcal{L}(S_1 \cup S_2)$

• " \supseteq " Sia $u \in \mathcal{L}(S_1 \cup S_2)$ allora

$$\exists v_1, \dots, v_n \in S_1 \quad \exists \alpha_1, \dots, \alpha_n \in K \\ \exists u_1, \dots, u_m \in S_2 \quad \exists \beta_1, \dots, \beta_m \in K \\ \end{aligned}$$

$$u = \alpha_1 \cdot v_1 + \dots + \alpha_n \cdot v_n + \beta_1 \cdot u_1 + \dots + \beta_m \cdot u_m \in W_1 + W_2$$

• " \subseteq " Sia $u \in W_1 + W_2$ allora $\exists w_1 \in W_1$ e $\exists w_2 \in W_2$ $u = w_1 + w_2$ con $W_1 = \mathcal{L}(S_1)$ e $W_2 = \mathcal{L}(S_2)$

$$\exists v_1, \dots, v_n \in S_1 \\ \exists \alpha_1, \dots, \alpha_n \in K \end{cases} w_1 = \alpha_1 \cdot v_1 + \dots + \alpha_n \cdot v_n \\ \Rightarrow u = \alpha_1 \cdot v_1 + \dots + \alpha_n \cdot v_n + \beta_1 \cdot u_1 + \dots + \beta_n \cdot u_n \in \mathcal{L}(S_1 \cup S_2) \\ \exists u_1, \dots, u_m \in S_2 \\ \exists \beta_1, \dots, \beta_m \in K \end{cases} w_2 = \beta_1 \cdot u_1 + \dots + \beta_m \cdot u_m$$

Teorema - Relazione di Grassmann

Sia $(K,V,+,\cdot)$ e siano W_1 e W_2 sottospazio vettoriali finitamente generati di V allora sappiamo che

$$dim(W_1 + W_2) = dim(W_1) + dim(W_2) - dim(W_1 \cap W_2)$$

Somma Diretta

Definizione - Somma Diretta

Sia $(K, V, +, \cdot)$ e siano W_1 e W_2 sottospazio vettoriali di V allora si dice somma diretta section

$$W_1 + W_2 = W_1 \boxplus W_2 \text{ se } W_1 \cap W_2 = \{0\}$$

Nel caso avessimo $W_1 + + W_n$ dove n > 2 allora si dice somma diretta se

$$\forall i \in \{1,2,...,n\} \quad W_i \cap (W_1 \boxplus ... \boxplus W_{i-1} \boxplus W_{i+1} \boxplus ... \boxplus W_n) = \{\underline{0}\}$$

Domanda - Cosa succede se applico la relazione di Gaussmann alla somma diretta?

Sia $(K, V, +, \cdot)$ uno spazio vettoriale e $W_1, ..., W_n$ sottospazio vettoriale di V tali che abbiano una somma diretta, allora

1. $dim(W_1 \boxplus ... \boxplus W_n) = dim(W_1) + ... + dim(W_n)$

$$\begin{array}{c}
B_1 \text{ base di } W_1 \\
2. \dots \\
B_n \text{ base di } W_n
\end{array}$$

$$\Rightarrow B_1 \cup \dots \cup B_n \text{ base di } W_1 \boxplus \dots \boxplus W_n$$

Dimostrazione Per induzione su *n*

• Se n = 2 basta usare la relazione di Gaussmann e otteniamo

$$dim(W_1 \boxplus W_2) = dim(W_1) + dim(W_2)$$

Inoltre
$$\begin{cases} \text{Se } B_1 \text{ è base di } W_1 \\ \text{Se } B_2 \text{ è base di } W_2 \end{cases} \Rightarrow W_1 \boxplus W_2 = \mathscr{L}(B_1 \cup B_2)$$

Ossia $B_1 \cup B_2$ è base di $W_1 \boxplus W_2$ perché

- 1. $B_1 \cup B_2$ è sistema di generatori di $W_1 \boxplus W_2$
- 2. $|B_1 \cup B_2| = dim(W_1 \boxplus W_2)$
- Se n>2 per ipotesi di induzione $dim(W_1 \boxplus ... \boxplus W_{n-1})=d_1+...+d_{n-1}$ con base $B_1 \cup ... \cup B_{n-1}$ Per Grossmann $(W_1 \boxplus ... \boxplus W_{n-1}) \boxplus W_n=(d_1+...+d_{n-1})+d_n=|(B_1 \cup ... \cup B_{n-1}) \cup B_n|$

Domanda - Quando so che una somma è una somma diretta?

Sia $(K, V, +, \cdot)$ uno spazio vettoriale e W_1 e W_2 sottospazi vettoriali di V

Allora so che è una somma diretta quando $W_1 \cap W_2 = \{\underline{0}\} \Leftrightarrow \forall u \in W_1 + W_2 \quad \exists ! (w_1, w_2) \in W_1 \times W_2 \quad u = w_1 + w_2$

Dimostrazione

• " \Rightarrow " Per ipotesi $W_1 \cap W_2 = \{\underline{0}\}$ quindi $u \in W_1 + W_2 \Rightarrow \exists w_1 \in W_1 \quad \exists w_2 \in W_2 \quad u = w_1 + w_2$ Siano allora $w_1' \in W_1$ e $w_2' \in W_2$ tali che $u = w_1' + w_2'$ osserviamo che

$$0 = u - u = w_1 + w_2 - (w_1' + w_2') = w_1 + w_2 - w_1' - w_2' \Rightarrow w_1 - w_1' = w_2 - w_2' \in W_1 \cap W_2 = \{0\}$$

Perché se $w_1 - w_1' = \underline{0} \Rightarrow w_1 = w_1'$ e analogamente $w_2 - w_2' = \underline{0} \Rightarrow w_2 = w_2'$

• " \Leftarrow " Quindi $u \in W_1 \cap W_2 \Rightarrow u \in W_1$ e $u \in W_2 \Rightarrow \underline{0} = u + \underline{0} = \underline{0} + u$ Per ipotesi sappiamo che $(u,\underline{0}) = (\underline{0},u) \Rightarrow u = \underline{0}$