1 Security

We construct a proof of security imitating the Banquet scheme. We first prove that adversary having access only to the public key can't forge a signature, except with negligible probability, i.e, we prove EUF-KO (Existential unforgeability-key only). Using this we prove EUF-CMA (Existential unforgeability-chosen message attack), were an adversary has access to a signing oracle.

Theorem 1.1 (Scheme is EUF-KO). Assuming that \mathcal{F} is a one way function. Then for any adversary \mathcal{A} probabilistic running in $poly(\kappa)$ time.

Then there exists another prob poly(κ), adversary against the one wayness of \mathcal{F} so that:

$$Adv_{\mathcal{A}}^{EUF-KO} \le Adv_{\mathcal{B}}^{OWF} + \varepsilon(Q_c, Q_1, Q_2)$$

Where ε is a function that we will detail in the proof, Q_c, Q_1, Q_2 are the queries to the Commit oracle, H_1 and H_2 .

Proof. \mathcal{B} mantains tables . . .

 \mathcal{B} receives a challenge y, which it forwards to \mathcal{A} . It then runs \mathcal{A} normally, when \mathcal{A} asks for the output of an oracle, \mathcal{B} answers in the following way:

- H_c : It receives an input $q_c = \sigma_1, \mu, salt$), then it chooses $x \stackrel{unif}{\leftarrow}$. In case, $x \in Bad$, \mathcal{B} aborts. Otherwise, it adds x to Bad, adds (q_c, x) to Q_c and outputs x.
- H₁: Here \$\mathcal{B}\$ checks whether the query of \$\mathcal{A}\$ corresponds to a query already output by a previous query.
 In the affirmative case, \$\mathcal{B}\$ reconstructs the views of the parties. Otherwise, it does nothing.
- H_2 : Same as in the case of H_c .

When \mathcal{A} terminates, \mathcal{B} checks $T_i n$ for the values of sk and checks that $\mathcal{F}(sk) = y$. If he does find one, \mathcal{B} wins. Otherwise, it outputs \perp . Now we observe:

 $P[\mathcal{A}wins] = P[\mathcal{A}wins \land \mathcal{B}aborts] + P[\mathcal{A}wins \land \mathcal{B}outputs \bot] + P[\mathcal{A}wins \land \mathcal{B}outputs witness] + \le P[\mathcal{B}aborts]$ So we only have to analyse: $P[\mathcal{A}wins \land \mathcal{B}outputs \bot]$.

Theorem 1.2 (Scheme is EUF-CMA). Assuming that \mathcal{F} is a one way function. Then the scheme is EUF-CMA.

Proof. \Box

2 Choosing parameters

Again, we imitate the Banquet choice of parameters: Suppose an adversary is trying to attack the scheme, denote the cost of this attack by C. We want that $C > 2^{\kappa}$. The attacker must cheat either in the first challenge or the second challenge of every round. Since there are τ rounds, it must cheats in τ_1 challenges in the first round and τ_2 challenges in the second round, where $\tau_1 + \tau_2 = \tau$.

The probability of cheating τ_1 times in the first challenge is

$$P_1 = \sum_{k=\tau_1}^{\tau} PMF\left(k, \tau, \frac{2}{q^n - 3}\right)$$

$$PMF(k, \tau, p) = {\tau \choose k} p^k (1-p)^{\tau-k}$$

The probability of cheating τ_2 times in the second challenge is

$$P_2 = N^{-\tau_2}$$

Then $C = 1/P_1 + 1/P_2$.

To sum up, the attack wants to find τ_1, τ_2 so that C is maximum. To do this we simply do a brute force of the parameters. We obtain the following results:

N	τ	τ_1	$ au_2$	security level	signature size
8	43	0	32	128.0	6.45KB
16	32	0	26	128.0	5.31KB
32	26	0	26	130.0	4.73KB
64	22	0	22	132.0	4.36KB
128	19	0	19	133.0	4.07KB
1024	13	0	13	130.0	3.41KB
65536	8	0	8	128.0	2.8KB

There is a good explantion for why the best attack is to always try to guess the second challenge: As discussed above the soundness of the Schwart-Zippel lemma is bounded above by:

$$\frac{2}{2^{144} - 3}$$

So, the probability of guessing at least 1 of τ challenges is at most: $1-(1-p)^{\tau}$. So for example in the case of $N=128, \tau=19$ we have: $1-(1-p)^{\tau}=2^{-138.75}<2^{-\kappa}$.

```
Algorithm 1 Sign(sk, msg)
```

Phase 1: Committing to the seeds, the execution views and interpolated polynomials of the parties.

- 1: Sample a random salt: salt $\stackrel{\$}{\leftarrow} \{0,1\}^{2\kappa}$.
- 2: for each parallel repetition e do
- 3: Sample a random master seed sd_e .
- 4: Derive $seed_e^{(i)}$ from sd_e using a merkle tree and give it to party i.
- 5: Commit to seed: $com_e^{(i)} \leftarrow Commit(salt, e, i, seed_e^{(i)})$
- 6: Expand random tape: $tape_e^{(i)} \leftarrow ExpandTape(salt, e, i, seed_e^{(i)})$
- 7: Sample witness shares: $sk_e^{(i)} \leftarrow Sample(tape_e^{(i)})$
- 8: Compute witness and outupt offsets: $\Delta s k_e \leftarrow s k \sum_i s k_e^{(i)}$;
- 9: Update shares from Party 1: $sk_e^{(1)} \leftarrow sk_e^{(1)} + \Delta sk_e$
- 10: Set $pk_e^{(1)} \leftarrow pk$ and $pk_e^{(i)} \leftarrow 0, \forall i \in [n] \setminus \{0\}.$
- 11: **for** each party i **do**: We compute the value of the checking polynomials
- 12: Define $U_e^{(i)}(0) = sk_e^{(i)}$ and $V_e^{(i)}(0) = pk_e^{(i)}$ as elements of \mathbb{F}_p .
- 13: Sample $U_e^{(i)}(1)$ from $tape_e^{(i)}$.
- 14: Parties compute $U_e^{(i)}$ and $V_e^{(i)}$ (which have degree 1 and 0).
- 15: end for
- 16: Prover defines $P_e = V_e F(U_e)$. (Degree 2).
- 17: Prover computes $\Delta P(1)$ and $\Delta P(2)$.
- 18: end for
- 19: Define $\sigma_1 := ((com_e^{(i)})_{0 \le i \le N}, \Delta P_e(1), \Delta P_e(2))_{0 \le e \le \tau}$

Phase 2: Challenging the checking polynomials.

- 1: Compute challenge hash: $h_1 = H(\sigma_1, \mu, salt)$ (μ is the message we want to sign).
- 2: Derive R_e from h_1 for every $e \in [\tau]$.

Phase 3: Committing to the answer of the challenge.

- 1: for each parallel repetition e and every party i: do
- 2: Party *i* computes locally: $U_e^{(i)}(R_e)$, $V_e^{(i)}(R_e)$ and $P_e^{(i)}(R_e)$.
- 3: end for
- 4: Prover commits to $\sigma_2 = (U_e^{(i)}(R_e), V_e^{(i)}(R_e), P_e^{(i)}(R_e)).$

Phase 4: Challenging the execution of the protocol.

- 1: Compute challenge hash: $h_2 = H(\sigma_2, h_1)$
- 2: for each parallel repetition e do
- 3: Verifier derives $\overline{i}_e \leftarrow [N]$ from h_2 .
- 4: end for

Phase 5: Prover reveals the views of N-1 parties.

- 1: Prover gets seeds = seeds necesary to reveal $\{seed_{e,i}: i \neq \bar{i}_e; 1 \leq e \leq M\}$.
- 2: Prover outupts: $\left(salt, h_1, h_2, seeds, \left(com_e^{(\bar{i}_e)}, \Delta sk_e, (\Delta P_e(k))_{k=1,2}, U_e(R_e)\right)_{0 \le e \le \tau}\right)$

Algorithm 2 Verify(pk, σ , msg)

Computation phase

```
1: Parse \sigma \leftarrow \left(salt, h_1, h_2, seeds, (com_e^{(\bar{i}_e)}, \Delta sk_e, (\Delta P_e(k))_{k=1,2}, U_e(R_e))_{0 \leq e \leq \tau}\right)
```

2: Set
$$\sigma_1 \leftarrow ((com_e^{(i)})_{0 \le i \le N}, \Delta P_e(1), \Delta P_e(2))_{0 \le e \le \tau}$$

3: for each execution e do

4:

Derive R_e from h_1 . Derive i_e from h_2 . Recompute $\{\tilde{c}om_e^{(i)}, U_e^{(i)}(R_e), P_e^{(i)}(R_e)\}_{i \neq \bar{i}_e}$ from σ . 5:

Recompute $U_e^{(\bar{i}_e)}(R_e) = U_e(R_e) - \sum_{i \neq \bar{i}_e} U_e^{(i)}(R_e)$ 6:

Recompute $P_e^{(\bar{i}_e)}(R_e) = P_e(R_e) - \sum_{i \neq \bar{i}_e} P_e^{(i)}(R_e)$ Compute $P(R_e) = V_e(R_e) - F \circ U_e(R_e)$. 7:

8:

10: Set $\sigma_2 \leftarrow (U_e(R_e), V_e(R_e), P_e(R_e))_{0 \le e \le \tau}$.

11: Compute $h_1^{(?)} \leftarrow H(\sigma_1, \mu, salt)$, using $com_e^{(\bar{i}_e)}$.

12: Compute $h_2^{(?)} \leftarrow H(\sigma_2, h_1)$.

13: Check $h_1 = h_{1}^2$ and $h_2 = h_{2}^2$.

3 Communication

We can upper bound the communication by the following formula:

$$4\kappa + \tau(\kappa \lceil \log N \rceil + 2\kappa + \lambda(2m+n) \log q)$$

Then best value for λ is 1 actually, because the witness is an element of \mathbb{F}_p where $p > 2^{144}$, depending on the choice of parameters. Other choices are $p = 4^{80}$, $p = 8^{64}$, $p = 64^{51}$. But these have clearly higher signature size.