Diskrétní simulace 2

přednáška NPRG031 Programování 2 11. 3. 2020

Minule jsme viděli, jak pomocí **modelu** a **diskrétní simulace** můžeme získat odpovědi na některé otázky.

Návrh modelu

Co kdybychom místo stěhování písku chtěli modelovat něco jiného?

- hlavní cyklus zůstane stejný
- změní se
 - reprezentace a inicializace modelu (PisekA, PisekB...)
 - jaké procesy budou v modelu (proces říkáme tomu, co se v našem modelu pohybuje)
 - jaké **události** budou v modelu
 - jak budou jednotlivé procesy zpracovávat události třeba AUTO a událost ZAČNI_NAKLÁDAT:
 - zjisti kolik můžeš naložit min(PisekA, nosnost)
 - pokud je to <=0, tak skonči
 - jinak nastav vlastnost kolikVezu
 - PisekA zmenši o kolikVezu
 - naplánuj si událost NALOŽENO na okamžik
 Čas+dobaNakládání

Když máme tohle vymyšleno, máme určitým způsobem hotovo, protože pak už zbývá to jen (mechanicky) přepsat do zdrojového kódu (a je vcelku jedno, v jakém jazyku) – na začátku roku jsem říkal, že potkáte různé významy slova "programování" a tohle je jeden z nich.

"Návrh" naznačuje, že neexistuje jedno správné řešení, které máme najít, ale spíše (nekonečně) mnoho možností, z nichž si můžeme vybírat a porovnávat klady a zápory, které má ta která možnost. Proto je někdy těžké jednoznačně určit, který návrh je dobrý a který špatný.

Podívejme se na příklad.

Úloha

Obchodní dům sestává z několika **oddělení** ležících v různých **patrech**, mezi nimiž jezdí **výtah**. Do obchodního domu přicházejí **zákazníci** se svými **seznamy oddělení**, která chtějí navštívit. V každém oddělení obsluhuje jedna **prodavačka**, která má svou **rychlost** udávající, za jak dlouho obslouží jednoho zákazníka, zákazníci čekají ve **frontě** a pokud zákazník čeká déle, než je jeho **trpělivost**, odejde z fronty a jde jinam, pokud to už není jeho poslední nákup.

Na výtah zákazníci také čekají ve frontě, ale tady se trpělivost neuplatňuje. Výtah se řídí **algoritmem výtahu** (směr jízdy mění jen tehdy, když neveze žádné pasažéry a zároveň na něj nikdo nečeká ve směru jízdy a zároveň na něj někdo čeká ve směru, odkud přijel).

Cíl: Chceme spočítat, v kolik hodin odejde poslední zákazník.

Příklad vstupních dat

Příklad návrhu

Začneme **seznamem procesů**, v tomto případě navrhujeme, aby model obsahoval procesy

- zákazník
- oddělení
- výtah

Pro návrh událostí můžeme jako pomůcku použít **diagram stavů** (též "stavový diagram") znázorňující **stavy**, ve kterých se proces může nacházet a **přechody** mezi nimi.

U každého přechodu nás potom zajímá

- kdo ho spustí
- co je při něm potřeba udělat

Například oddělení se může nacházet ve stavech obsluhuje a spí.

Takhle může vypadat jedna z mnoha možností. Jiná by byla, že zákazník nebude mít konec obsluhy (ale kdy si označí vyřízený nákup?) nebo... nebo...

Protože máme několik typů procesů, bude se nám hodit abstraktní třída **proces**, která bude společným předkem všech tříd procesů a která nám dovolí (polymorfismus!) obsluhovat události tak, že je vybereme z kalendáře a necháme je zpracovat ten objekt, který je v události uveden.

Protože třída proces slouží jenom jako společný jmenovatel a nikdy od ní nebudeme vytvářet instance/objekty, bude **abstraktní.**

Použití společného předka a polymorfismu má tu výhodu, že pokud bychom v budoucnosti chtěli přidat další typ procesu, nebudeme kvůli tomu muset měnit hlavní cyklus zpracování události.

Implementace a cvičení

1. úkol

Stáhněte si zdrojový kód

https://ksvi.mff.cuni.cz/~holan/py/obchod.txt

a vstupní data

https://ksvi.mff.cuni.cz/~holan/py/obchod_data.txt_,

vytvořte si nový projekt, nakopírujte zdrojový kód a soubor se vstupními daty přidejte do projektu

(ve VisualStudiu v Průzkumníku řešení (Solution Explorer) stačí soubor přetáhnout na název **projektu** a ve Vlastnostech (Properties) tomuto souboru nastavte vlastnost **Kopírovat do výstupního adresáře** na **Kopírovat, pokud je novější** (dtto anglicky) – tím zařídíte,

- a) že vstupní soubor máte mezi zdrojovými texty
- b) že se při překladu nakopíruje tam, kde bude přeložený a spouštěný program.

Spusťte program a přesvědčte se, že počítá.

2. úkol

Prozkoumejte zdrojový kód tak, abyste si byli jisti, že všemu rozumíte. Pokud ne, tak se ptejte (viz dále)

3. úkol

Zkuste si rozmyslet návrh jiného modelu, třeba lyžařské středisko, kde lidé stojí fronty u vleků, u kiosků s občerstvením, toalet a půjčoven lyží a sjíždějí po různých sjezdovkách.

Otázky a odpovědi

Pokud máte nějaké dotazy k přednášce, podívejte se na stránku https://ksvi.mff.cuni.cz/~holan/py/otazky 200311.html a jestli tam vaše otázka už není zodpovězená, pošlete mi mail a předmět zprávy nastavte na **Pgm-2: 200311**.

Hodně zdraví!

Tomáš Holan