AED3 > Clase 7 > Camino mínimo. Uno a todos.

Repaso

Dado un grafo G=(V, E, w) con $w: E \rightarrow R$

- Costo: $w(T) = \sum_{T} w(e)$... Como un abuso de notación se usa w tanto para el costo de una arista como de todo el árbol.
- Para los grafos no pesados todo AG es AGM porque w=1 $\Rightarrow \sum_{T} w = m = n-1$
- También puede haber varios AGM.

Topología de problemas de camino mínimo

- 1. uno a uno
- 2. uno a muchos
- 3. muchos a muchos

Definición 1: Camino mínimo elemental

Dados $u, v \in G$, quiero un camino entre u y v (P_{uv}) ,

tal que
$$w(P_{uv}) = d(u,v)$$

(sea mínimo).

No se conocen algoritmos polinomiales para este problema,

pero ...

Definición 2: Camino mínimo no elemental

Dado $u \in G$, un origen, quiero los caminos a todos lo $v \in G$ alcanzables,

tenemos que suponer que G es conexo (o que estamos en una componente conexa)

si es no pesado \Rightarrow BFS

si es no dirigido ⇒ Prim / Kruskal

si es pesado y dirigido \Rightarrow clase de hoy

Camino mínimo vs Camino máximo

Dados P_1 , P_2 dos caminos en G=(V, E, w), y w'=-w una función de pesos (costos) tq G'=(V, E, w'). Entonces,

$$w(P_{p}) \le w(P_{2}) \Leftrightarrow w'(P_{p}) \ge w'(P_{2})$$

Ejemplos de problemas de camino mínimo...

Teorema 1: Subestructura óptima

Sea G=(V,E,w) un digrafo, $v\in G$ un origen. Sea $P=v_1\dots v_k$ un camino mínimo de G. Entonces,

 $\forall i, j \ 1 \le i \le j \le k, P_{ij}$ es un camino mínimo de v_i a v_j .

Demo (por Absurdo):

$$P = v_1 \dots v_i \dots v_j \dots v_k = P_{1i} + P_{ij} + P_{jk}$$

$$\Rightarrow w(P) = w(P_{li}) + w(P_{ij}) + w(P_{jk})$$

Si existe Q de v_i a v_j tq $w(Q) \le w(P_{ij})$

$$\Rightarrow$$
 $w(P') = w(P_{li}) + w(Q) + w(P_{jk}) \le w(P)$

Teorema 1: Subestructura óptima

Sea G = (V, E, w) un digrafo, $v \in G$ un origen. Sea $P = v_1 \dots v_k$ un camino mínimo de G. Entonces,

 $\forall i, j \ 1 \le i \le j \le k, P_{ij}$ es un camino mínimo de v_i a v_j .

Aristas negativas.

Ciclos

Ciclos de peso negativo w(C)<0 \Rightarrow Problema mal definido

Ciclos de peso positivo w(C)>0 \Rightarrow No es parte del camino mínimo

Ciclos de peso nulo w(C)=0 \Rightarrow Seguro existe un camino alternativo que no use este ciclo

Topología de problemas de camino mínimo

- 1. uno a uno
- 2. uno a muchos
- 3. muchos a muchos

¿Tienen aristas negativas?

¿Tienen ciclos?

¿Cómo es el peso de los ciclos?

- 1. Negativo
- 2. Positivo
- 3. Nulo

Algoritmos de camino mínimo con un único origen

Input: G = (V, E, w) y $s \in G$ un origen

Output: Distancias de cada nodo u a s (u.d) y la estructura de los caminos mínimos o árbol de caminos mínimos (u.pred)

Algoritmos de camino mínimo con un único origen

Propiedad de RELAJACIÓN

```
RELAX ( u , v, w ) :
| if v.d > u.d + w(u,v):
| v.d = u.d + w(u,v)
| v.pred = u
```


Algoritmos de camino mínimo con un único origen

d(u, v) distancia estimada entre u y v, $\delta(u, v)$ distancia mínima (real) entre u y v

Designaldad triangular Sea $(u, v) \in E$, $\delta(s, v) \leq \delta(s, u) + w(u, v)$

Límite superior Sea $v \in V$, $d(s, v) \ge \delta(s, v)$, y una vez que $d(s, v) = \delta(s, v)$ ya no cambia.

Nodos no alcanzables Si no hay camino de s a v, entonces $d(s, v) = \delta(s, v) = \infty$.

Convergencia Sea $P = s \rightarrow ... \rightarrow u \rightarrow v$ un camino mínimo de u a v y $d(s, u) = \delta(s, u)$ en un paso dado. Entonces, luego de relajar (u, v), ocurre que $d(s, v) = \delta(s, v)$.

Relajación Si $P = v_0, v_1, \dots, v_k$ es un camino mínimo de $s = v_0$ a v_k , y se relajan los ejes en orden $(v_0, v_1), (v_1, v_2), \dots, (v_{k-1}, v_k)$, entonces $d(s, v_k) = \delta(s, v_k)$. Esta propiedad se mantiene aunque se relajen otras aristas en el medio.

Subgrafo de predecesores Si se cumple que $d(s, v) = \delta(s, v) \ \forall v \in V$, entonces el subgrafo que forman los predecesores es un s-ACM.

DAGs

```
RELAX ( u , v, w ) :

| if v.d > u.d + w(u,v):

| v.d = u.d + w(u,v)

| v.pred = u
```

DAGs (Complejidad)

```
RELAX ( u , v, w ) :
| if v.d > u.d + w(u,v):
| v.d = u.d + w(u,v)
| v.pred = u

O(1)
```

```
DAG ( G, s ): O(V+E)

| TOPOLOGICAL-SORT(G ): O(V)

| INIT(G, s) O(V)

| for u in V (en el orden de TOPOLOGICAL-SORT: O(V+E)

| for v in Adj[u]

| RELAX(u, v) O(E)
```

DAGs (Correctitud)

```
RELAX ( u , v, w ) :

| if v.d > u.d + w(u,v):

| v.d = u.d + w(u,v)

| v.pred = u
```

Demo:

TOPOLOGICAL-SORT hace que todos los caminos sean recorridos de izquierda a derecha.

Luego, si se recorre en orden vale la propiedad de **Relajación** de caminos. Finalmente, a partir del **subgrafo de predecesores** se arma el s-ACM

DAGs

¿Cuánto tiempo me va a llevar la tarea? ¿Cuál es el cuello de botella?

DAGs

¿Cuánto tiempo me va a llevar la tarea? ¿Cuál es el cuello de botella?

Aristas no negativas: $w(u, v) \ge 0$

Breadth First Search (BFS) iterativo (versión CLRS)

```
BFS ( G , s ):
     for cada nodo u ∈ G.V - { s }
          u.color = n  # w: nuevo, g: frontera descubierta, k: usado
u.d = ∞  # distancia
           u.\pi = NIL \# parent / predecesor
     s.color = g
     s.d = 0
     Q = \emptyset # Q: cola: Guardo los que tengo que explorar a continuación: frontera
     ENQUEUE(Q,s) # agrega s a la cola Q
     while 0 \neq 0:
           u = DEQUEUE(Q)
           for cada v ∈ G.Adj[ u ] :
                 if v.color == w : # si no fue visita aún
                    v.color = g  # lo marco
v.d = u.d + 1  # actualizo la distancia
                     v.π = u  # u es el predecesor de v
ENQUEUE(Q,s) # guardo v para explorar después
           u.color = k # termino de explorar y lo marco
```

```
RELAX ( u , v, w ) :
| if v.d > u.d + w(u,v):
| v.d = u.d + w(u,v)
| v.pred = u
| DECREASE-KEY(Q, v, v.d)
```

```
DIJKSTRA ( G, s ) :

| INIT(G, s)
| S = Ø
| Q = Ø
| for u in V:
| INSERT(Q, u)
| while Q:
| u = EXTRACT-MIN()
| S = S U {u}
| for v in Adj[u]:
| RELAX(u, v)
```



```
d = \{a: 0, b: \infty, c: \infty, d: \infty, e: \infty\}
pred = \{a: None, b: None, c: None, d: None, e: None\}
S = []
Q = []
```

```
DIJKSTRA ( G, s ) :

| INIT(G, s)
| S = Ø
| Q = Ø
| for u in V:
| INSERT(Q, u)
| while Q:
| u = EXTRACT-MIN()
| S = S U {u}
| for v in Adj[u]:
| RELAX(u, v)
```



```
d = \{a: 0, b: \infty, c: \infty, d: \infty, e: \infty\}
pred = \{a: None, b: None, c: None, d: None, e: None\}
S = []
Q = [a, b, c, d, e]
```

```
DIJKSTRA ( G, s ) :

| INIT(G, s)
| S = Ø
| Q = Ø
| for u in V:
| INSERT(Q, u)
| while Q:
| u = EXTRACT-MIN()
| S = S U {u}
| for v in Adj[u]:
| RELAX(u, v)
```



```
d = \{a: 0, b: \infty, c: \infty, d: \infty, e: \infty\}
pred = \{a: None, b: None, c: None, d: None, e: None\}
S = [a]
Q = [b, c, d, e]
Adj[a] = [b, d]
```



```
RELAX ( u , v, w ) :
| if v.d > u.d + w(u,v):
| v.d = u.d + w(u,v)
| v.pred = u
| DECREASE-KEY(Q, v, v.d)
```

```
d = \{a: 0, b: 10, c: \infty, d: 5, e: \infty\}

pred = \{a: None, b: a, c: None, d: a, e: None\}

S = [a]

Q = [d, b, c, e]

Adj[a] = [b, d]
```

```
DIJKSTRA ( G, s ) :

| INIT(G, s)
| S = Ø
| Q = Ø
| for u in V:
| INSERT(Q, u)
| while Q:
| u = EXTRACT-MIN()
| S = S U {u}
| for v in Adj[u]:
| RELAX(u, v)
```



```
RELAX ( u , v, w ) :
| if v.d > u.d + w(u,v):
| v.d = u.d + w(u,v)
| v.pred = u
| DECREASE-KEY(Q, v, v.d)
```

```
d = \{a: 0, b: 10, c: \infty, d: 5, e: \infty\}
pred = \{a: None, b: a, c: None, d: a, e: None\}
S = [a, d]
Q = [b, c, e]
Adj[d] = [b, c, e]
```



```
RELAX ( u , v, w ) :
| if v.d > u.d + w(u,v):
| v.d = u.d + w(u,v)
| v.pred = u
| DECREASE-KEY(Q, v, v.d)
```

```
d = {a: 0, b: 8, c: 14, d: 5, e: 7}

pred = {a: None, b: d, c: d, d: a, e: d}

S = [a, d]

Q = [e, b, c]

Adj[d] = [b, c, e]
```

```
DIJKSTRA ( G, s ) :

| INIT(G, s)
| S = Ø
| Q = Ø
| for u in V:
| INSERT(Q, u)
| while Q:
| u = EXTRACT-MIN()
| S = S U {u}
| for v in Adj[u]:
| RELAX(u, v)
```



```
d = {a: 0, b: 8, c: 14, d: 5, e: 7}

pred = {a: None, b: d, c: d, d: a, e: d}

S = [a, d, e]

Q = [b, c]

Adj[e] = [a, c]
```



```
RELAX ( u , v, w ) :
| if v.d > u.d + w(u,v):
| v.d = u.d + w(u,v)
| v.pred = u
| DECREASE-KEY(Q, v, v.d)
```

```
d = {a: 0, b: 8, c: 13, d: 5, e: 7}

pred = {a: None, b: d, c: e, d: a, e: d}

S = [a, d, e]

Q = [b, c]

Adj[e] = [a, c]
```

```
DIJKSTRA ( G, s ) :

| INIT(G, s)
| S = Ø
| Q = Ø
| for u in V:
| INSERT(Q, u)
| while Q:
| u = EXTRACT-MIN()
| S = S U {u}
| for v in Adj[u]:
| RELAX(u, v)
```

```
RELAX ( u , v, w ) :
| if v.d > u.d + w(u,v):
| v.d = u.d + w(u,v)
| v.pred = u
| DECREASE-KEY(Q, v, v.d)
```



```
d = {a: 0, b: 8, c: 13, d: 5, e: 7}

pred = {a: None, b: d, c: e, d: a, e: d}

S = [a, d, e, b]

Q = [c]

Adj[b] = [c, d]
```

```
DIJKSTRA ( G, s ) :

| INIT(G, s)
| S = Ø
| Q = Ø
| for u in V:
| INSERT(Q, u)
| while Q:
| u = EXTRACT-MIN()
| S = S U {u}
| for v in Adj[u]:
| RELAX(u, v)
```

```
RELAX ( u , v, w ) :
| if v.d > u.d + w(u,v):
| v.d = u.d + w(u,v)
| v.pred = u
| DECREASE-KEY(Q, v, v.d)
```



```
d = {a: 0, b: 8, c: 9, d: 5, e: 7}

pred = {a: None, b: d, c: b, d: a, e: d}

S = [a, d, e, b]

Q = [c]

Adj[b] = [c, d]
```

```
DIJKSTRA ( G, s ) :

| INIT(G, s)
| S = Ø
| Q = Ø
| for u in V:
| INSERT(Q, u)
| while Q:
| u = EXTRACT-MIN()
| S = S U {u}
| for v in Adj[u]:
| RELAX(u, v)
```



```
RELAX ( u , v, w ) :
| if v.d > u.d + w(u,v):
| v.d = u.d + w(u,v)
| v.pred = u
| DECREASE-KEY(Q, v, v.d)
```

```
d = {a: 0, b: 8, c: 9, d: 5, e: 7}

pred = {a: None, b: d, c: b, d: a, e: d}

S = [a, d, e, b, c]

Q = []

Adj[c] = [e]
```



```
RELAX ( u , v, w ) :
| if v.d > u.d + w(u,v):
| v.d = u.d + w(u,v)
| v.pred = u
| DECREASE-KEY(Q, v, v.d)
```

```
d = {a: 0, b: 8, c: 9, d: 5, e: 7}

pred = {a: None, b: d, c: b, d: a, e: d}

S = [a, d, e, b, c]

Q = []

Adj[c] = [e]
```

```
DIJKSTRA ( G, s ) :

| INIT(G, s)
| S = Ø
| Q = Ø
| for u in V:
| INSERT(Q, u)
| while Q:
| u = EXTRACT-MIN()
| S = S U {u}
| for v in Adj[u]:
| RELAX(u, v)
```



```
d = {a: 0, b: 8, c: 9, d: 5, e: 7}

pred = {a: None, b: d, c: b, d: a, e: d}

S = [a, d, e, b, c]

Q = []
```

```
DIJKSTRA ( G, s ):
      INIT(G, s)
      S = \emptyset
      Q = \emptyset
      for u in V:
           INSERT(Q, u)
     while Q:
            u = EXTRACT-MIN()
           S = S U \{u\}
            for v in Adj[u]:
                  RELAX(u, v)
```


10

pred

Q

Dijkstra (Correctitud)

Demo (inducción en vértices):

Caso base: S = [s], $d(s,s) = \delta(s,s) = 0$

<u>Hipótesis inductiva</u>: $\forall v \in S$, $d(s,v) = \delta(s,v)$

Dijkstra (Correctitud)

Demo (inducción en vértices):

Caso base: S = [s], $d(s,s) = \delta(s,s) = 0$

<u>Hipótesis inductiva</u>: $\forall v \in S$, $d(s,v) = \delta(s,v)$

Sea $u \in V$ -S, supongo que existe $y \in V$ -S el siguiente fuera de S, $x \in S$ su predecesor.

Como $w \ge 0 \Rightarrow \delta(s, y) \le \delta(s, u)$

Si EXTRACT-MIN devuelve u, significa que $u.d \le y.d$ en ese paso.

Y $\delta(s, u) \le u.d$ por propiedad del **límite superior**.

Por otro lado, como $x \in S \Rightarrow x.d = \delta(s, x)$ y al agregar x a S, (x, y) se relaja $\Rightarrow y.d = \delta(s, y)$

$$\delta(s, y) \le \delta(s, u) \le u.d \le y.d = \delta(s, y)$$

Dijkstra (Correctitud)

Demo (inducción en vértices):

Caso base: S = [s], $d(s,s) = \delta(s,s) = 0$

<u>Hipótesis inductiva</u>: $\forall v \in S$, $d(s,v) = \delta(s,v)$

Sea $u \in V$ -S, supongo que existe $y \in V$ -S el siguiente fuera de S, $x \in S$ su predecesor.

Como $w \ge 0 \Rightarrow \delta(s, y) \le \delta(s, u)$

Si EXTRACT-MIN devuelve u, significa que $u.d \le y.d$ en ese paso.

Y $\delta(s, u) \le u.d$ por propiedad del **límite superior**.

Por otro lado, como $x \in S \Rightarrow x.d = \delta(s, x)$ y al agregar x a S, (x, y) se relaja $\Rightarrow y.d = \delta(s, y)$

$$\delta(s, y) = \delta(s, u) = u.d = y.d$$

Dijkstra (Complejidad)

```
DIJKSTRA ( G, s ) :

| INIT(G, s) |
| S = Ø |
| Q = Ø |
| for u in V:
| INSERT(Q, u) O(1) O(V) |
| while Q:
| u = EXTRACT-MIN() O(V) |
| S = S U {u} |
| for v in Adj[u]:
| RELAX(u, v)
```

$$O(V + V + V^2 + E) = O(V^2 + E) = O(V^2)$$

```
RELAX ( u , v, w ) :
| if v.d > u.d + w(u,v):
| v.d = u.d + w(u,v)
| v.pred = u
| DECREASE-KEY(Q, v, v.d)
```

Dijkstra (Complejidad)

```
O(V + V + V^2 + E) = O(V^2 + E) = O(V^2)
```

```
RELAX ( u , v, w ) :
| if v.d > u.d + w(u,v):
| v.d = u.d + w(u,v)
| v.pred = u
| DECREASE-KEY(Q, v, v.d) O(log(V))
```

Con min-heap... $O(V + V + V*log(V) + E*log(V)) = O(E*log(V)) \sim O(V*log(V))$ si es ralo

Dijkstra (Complejidad)

```
O(V + V + V^2 + E) = O(V^2 + E) = O(V^2)
```

```
RELAX ( u , v, w ) :
| if v.d > u.d + w(u,v):
| v.d = u.d + w(u,v)
| v.pred = u
| DECREASE-KEY(Q, v, v.d) O(1)
```

Con min-heap... $O(V + V + V*log(V) + E*log(V)) = O(E*log(V)) \sim O(V*log(V))$ si es ralo

Con fibonacci-heap... $O(V + V + V*log(V) + E) = O(V*log(V) + E) \sim O(V*log(V))$ <u>si es ralo</u>

 \sim Uno a uno

Inicializo los valores con una distancia estimada al objetivo (heurística). Es importante que subestime (admisible), y que sea consistente (que respete las distancias).

$$h(g,x) \le d(g,x)$$
 (admisible)

$$|h(g,x) - h(g,y)| \le d(x,y)$$
 (consistente)

Inicializo los valores con una distancia estimada al objetivo (heurística). Es importante que subestime (admisible), y que sea consistente (que respete las distancias).

$$h(g,x) \le d(g,x)$$
 (admisible)

$$|h(g,x) - h(g,y)| \le d(x,y)$$
 (consistente)

Inicializo los valores con una distancia estimada al objetivo (heurística). Es importante que subestime (admisible), y que sea consistente (que respete las distancias).

$$h(g,x) \le d(g,x)$$
 (admisible)

$$|h(g,x) - h(g,y)| \le d(x,y)$$
 (consistente)

Inicializo los valores con una distancia estimada al objetivo (heurística). Es importante que subestime (ver más adelante).

A* score = heurística (h) + costo

a = 5

Inicializo los valores con una distancia estimada al objetivo (heurística). Es importante que subestime (ver más adelante).

$$a = 12, d = 15$$

Inicializo los valores con una distancia estimada al objetivo (heurística). Es importante que subestime (ver más adelante).

$$a = 12$$
, $d = 15$, $e = 13$

Inicializo los valores con una distancia estimada al objetivo (heurística). Es importante que subestime (ver más adelante).

$$a = 12$$
, $d = 15$, $e = 13$, $g = 16$

Inicializo los valores con una distancia estimada al objetivo (heurística). Es importante que subestime (ver más adelante).

$$a = 12$$
, $d = 15$, $e = 13$, $g = 16$

