MaetzigEtAl2017 ICCM summary/analysis for SR/OR with reflexives

Paul Mätzig 5/11/2017

```
## Warning: NAs introduced by coercion
model_data_refl_acc_SR <- subset(model_data, model_data$condition == "SR-REFL")</pre>
model_data_refl_acc_OR <- subset(model_data, model_data$condition == "OR-REFL")</pre>
head(model_data_refl_acc_OR)
##
       X simset condition
                             GA DAT ANS sentCount corrCountEmbV
## 2
                  OR-REFL 0.25 0.05 0.15
                                                2000
## 4
       3
                  OR-REFL 0.50 0.05 0.15
                                                2000
                                                                 991
## 6
       5
              3
                  OR-REFL 0.75 0.05 0.15
                                                2000
                                                                991
                   OR-REFL 1.00 0.05 0.15
                                                                994
                                                2000
                  OR-REFL 0.25 0.06 0.15
## 10 9
                                                2000
                                                                991
                   OR-REFL 0.50 0.06 0.15
## 12 11
                                                2000
                                                                 991
##
      corrCountRefl acc_embV acc_refl
## 2
                983
                        0.989
                                 0.983
## 4
                986
                        0.991
                                  0.986
## 6
                989
                        0.991
                                 0.989
## 8
                 993
                        0.994
                                  0.993
## 10
                 986
                        0.991
                                  0.986
## 12
                 986
                        0.991
                                  0.986
head(model_data_refl_acc_SR)
##
       X simset condition
                             GA DAT ANS sentCount corrCountEmbV
## 1
                   SR-REFL 0.25 0.05 0.15
                                                2000
                                                                 992
## 3
       2
                   SR-REFL 0.50 0.05 0.15
                                                2000
                                                                 987
              2
## 5
                   SR-REFL 0.75 0.05 0.15
                                                2000
                                                                 991
## 7
       6
                   SR-REFL 1.00 0.05 0.15
                                                2000
                                                                 994
## 9
                   SR-REFL 0.25 0.06 0.15
                                                2000
                                                                 989
              6
                   SR-REFL 0.50 0.06 0.15
## 11 10
                                                2000
                                                                 986
      corrCountRefl acc_embV acc_refl
##
## 1
                        0.992
                                  0.991
                991
## 3
                        0.987
                                  0.987
                 987
## 5
                 991
                        0.991
                                 0.991
## 7
                 993
                        0.994
                                  0.993
## 9
                        0.989
                                  0.988
                 988
                984
                        0.986
                                  0.984
plot(model_data_refl_acc_SR$acc_refl ~ model_data_refl_acc_SR$simset, main="SR-REFL")
```

SR-REFL

plot(model_data_refl_acc_OR\$acc_refl ~ model_data_refl_acc_OR\$simset, main="OR-REFL")

OR-REFL

qplot(model_data_refl_acc_SR\$GA, model_data_refl_acc_SR\$acc_refl, main="GA, SR-REFL")

plot(model_data_refl_acc_OR\$GA, model_data_refl_acc_OR\$acc_refl, main="GA, OR-REFL")

GA, OR-REFL

plot(model_data_refl_acc_SR\$DAT, model_data_refl_acc_SR\$acc_refl, main="DAT, SR-REFL")

DAT, SR-REFL

plot(model_data_refl_acc_OR\$DAT, model_data_refl_acc_OR\$acc_refl, main="DAT, OR-REFL")

DAT, OR-REFL

plot(model_data_refl_acc_SR\$ANS, model_data_refl_acc_SR\$acc_refl, main="ANS, SR-REFL")

ANS, SR-REFL

plot(model_data_refl_acc_OR\$ANS, model_data_refl_acc_OR\$acc_refl, main="ANS, OR-REFL")

ANS, OR-REFL

Controls, SR

Controls, OR

IWA, OR


```
op<-par(
    mar=c(2,4.5,4,2),
    mfrow=c(1,3),pty="s",
    oma = c(2,10,2,2)
)

#plot(density(results_SR_iwa$GA),xlab="GA",main="IWA, SR")
#plot(density(results_SR_iwa$DAT),xlab="DAT",main="IWA, SR")
#plot(density(results_SR_iwa$ANS),xlab="ANS",main="IWA, SR")

#op<-par(mfrow=c(2,3),pty="s")
plot(density(results_OR_controls$GA),xlab="goal activation \n (resource reduction)",main="Object relatilines(density(results_OR_iwa$GA),xlab="GA",lty=2)
legend(x=.3,y=3,legend=c("controls","patients"),</pre>
```

```
lty=1:2)

plot(density(results_OR_controls$DAT),xlab="Default action time \n (slowed processing)",main="Object re
lines(density(results_OR_iwa$DAT),xlab="DAT",lty=2)

plot(density(results_OR_controls$ANS),xlab="Noise (intermittent deficiency)",main="Object relatives",xl
lines(density(results_OR_iwa$ANS),xlab="ANS",lty=2)
```



```
#plot(density(results_OR_iwa$GA),xlab="GA",main="IWA, OR")
#plot(density(results_OR_iwa$DAT),xlab="DAT",main="IWA, OR")
#plot(density(results_OR_iwa$ANS),xlab="ANS",main="IWA, OR")
```

Hierarchical clustering

[pmaetzig, 2017-05-28] I just copied the steps from the previous ICCM analysis file for now, may need to change methods in hierarchical clustering.

I don't see much of a difference between the two groups in the clustering.

In SRs I chose centroid as the method because that gives the best discrimination ability between controls and iwa.

```
results_SR_controls$type <- "control"
results_SR_iwa$type <- "iwa"
results_OR_controls$type <- "control"
results_OR_iwa$type <- "iwa"</pre>
```

Hierarchical clustering, SR controls

Hierarchical clustering, SR iwa

For ORs I chose complete as method because it gives the best discriminative performance between controls and iwa.

Hierarchical clustering, OR controls

Hierarchical clustering, OR iwa

Discrimination ability using hierarchical clustering

The discrimination ability is OK for controls, but below 50% for iwa, suggesting that the three parameters don't give us much ability to discriminate controls and iwa.

```
results_OR<-rbind(results_OR_controls,results_OR_iwa)
results_SR<-rbind(results_SR_controls,results_SR_iwa)

results_SR$subject_full <- paste(results_SR$type, results_SR$subj, sep="-")
results_SR$subject_full <- as.character(results_SR$subject_full)
clusters_SR <- hclust(dist(results_SR[, 1:3]),method="centroid")
plot(clusters_SR, labels=results_SR$subject_full)</pre>
```

Cluster Dendrogram

dist(results_SR[, 1:3])
hclust (*, "centroid")

```
clusterCut_SR <- cutree(clusters_SR, 2)</pre>
## not able to identify aphasics well
cluster_table_SR <- table(clusterCut_SR, results_SR$type)</pre>
print(cluster_table_SR)
##
## clusterCut_SR control iwa
##
                1
                       31
                          17
##
               2
                       15 39
# SR, controls
(cluster_table_SR[1,1]/(cluster_table_SR[1,1] + cluster_table_SR[2,1]))
## [1] 0.673913
```

```
# SR, iwa
(cluster_table_SR[2,2]/(cluster_table_SR[1,2] + cluster_table_SR[2,2]))
## [1] 0.6964286

results_OR$subject_full <- paste(results_OR$type, results_OR$subj, sep="-")
results_OR$subject_full <- as.character(results_OR$subject_full)
clusters_OR <- hclust(dist(results_OR[, 1:3]),method="centroid")
plot(clusters_OR, labels=results_OR$subject_full)</pre>
```

Cluster Dendrogram

dist(results_OR[, 1:3]) hclust (*, "centroid")

```
clusterCut_OR <- cutree(clusters_OR, 2)
## so-so discrimination ability for aphasics:
cluster_table_OR <- table(clusterCut_OR, results_OR$type)
print(cluster_table_OR)</pre>
```

Discrimination ability using k-means

I'm using the factoextra package for an automatised workflow for k-means and their implementation of the gap statistic (cf. Hastie, Tibshirani & Friedman, 2008 2nd ed, p. 519f.). Using the eclust function with method k-means and a k equal to NULL results in estimation of optimal cluster size using the gap statistic.

CODE CHUNKS TAKEN OUT BECAUSE NOT NEEDED

Distributions of subjects

```
results SR$RCType<-"SR"
results_OR$RCType<-"OR"
results_all<-rbind(results_SR,results_OR)
results_all$DATnormal<-ifelse(results_all$DAT > .06,
       "elevated", "normal")
xtabs(~DATnormal+type+RCType,results_all)
##
  , , RCType = OR
##
##
             type
## DATnormal control iwa
##
     elevated
                   36 46
##
     normal
                   10 10
##
##
  , , RCType = SR
##
##
             type
## DATnormal control iwa
                   11 36
     elevated
##
     normal
                   35
results_all$ANSnormal<-ifelse(results_all$ANS > .2,
       "elevated","normal")
xtabs(~ANSnormal+type+RCType,results_all)
  , , RCType = OR
##
```

```
type
## ANSnormal control iwa
##
     elevated
                   37 51
##
     normal
                       5
                    9
##
## , , RCType = SR
##
##
             type
## ANSnormal control iwa
##
                   23 42
     elevated
     normal
                   23 14
results_all$GAnormal<-ifelse(results_all$GA < .8,
       "elevated", "normal")
xtabs(~GAnormal+type+RCType,results_all)
## , , RCType = OR
##
##
             type
              control iwa
## GAnormal
    elevated
                   28 51
##
    normal
                   18
                       5
##
## , , RCType = SR
##
##
             type
## GAnormal control iwa
     elevated
                  17 40
##
    normal
                   29 16
## two impairments:
results_all$DATGAnormal<-ifelse(results_all$DAT > .06 & results_all$GA < .8,
       "elevated", "normal")
xtabs(~DATGAnormal+type+RCType,results_all)
## , , RCType = OR
##
##
              type
## DATGAnormal control iwa
##
      elevated
                    27 44
##
      normal
                    19 12
##
## , , RCType = SR
##
##
              type
## DATGAnormal control iwa
##
      elevated
                    11 36
##
      normal
                    35
                        20
results_all$ANSGAnormal<-ifelse(results_all$ANS > .2 & results_all$GA < .8,
       "elevated","normal")
xtabs(~ANSGAnormal+type+RCType,results_all)
  , , RCType = OR
##
##
              type
```

```
## ANSGAnormal control iwa
##
      elevated 19 46
     normal
                   27 10
##
##
## , , RCType = SR
##
##
             type
## ANSGAnormal control iwa
##
     elevated
                 11 35
##
     normal
                   35 21
results_all$DATANSnormal<-ifelse(results_all$DAT > .06 & results_all$ANS > .2,
      "elevated","normal")
xtabs(~DATANSnormal+type+RCType,results_all)
## , , RCType = OR
##
##
              type
## DATANSnormal control iwa
##
   elevated
                    27 41
##
      normal
                    19 15
##
## , , RCType = SR
##
              type
## DATANSnormal control iwa
                     5 31
      elevated
                    41 25
##
      normal
## all three
results_all$GADATANSnormal<-ifelse(results_all$GA < 0.8 & results_all$DAT > .06 & results_all$ANS > .2,
       "elevated", "normal")
xtabs(~GADATANSnormal+type+RCType,results_all)
## , , RCType = OR
##
##
                type
## GADATANSnormal control iwa
        elevated
                      28 17
##
        normal
##
## , , RCType = SR
##
##
                type
## GADATANSnormal control iwa
##
        elevated 5 31
                     41 25
##
        normal
```