

CSE452 Computer Graphics

Lecture 10: Illumination

If there is no light...

What is light?

- Electromagnetic radiation that is visible to the human eye
 - Carried by "photons" but also exhibits wave behaviors
- Properties
 - Speed (constant)
 - Direction (straight)
 - Wavelength ("color")

What is light?

- Electromagnetic radiation that is visible to the human eye
 - Carried by "photons" but also exhibits wave behaviors
- Properties
 - Speed (constant)
 - Direction (straight)
 - Wavelength ("color")
 - Amplitude ("intensity")

Where is purple or pink?

Where is purple or pink?

You may not have fully understood.

Important thing is "color is deep."

How is a surface lit?

- By the (color and intensity of) light that is transmitted from the surface in the direction towards our eye
 - Active: the surface is emitting light (i.e., a light source)
 - Passive: the light originates from somewhere else

- When a photon hits a surface it may
 - Get absorbed (turned into heat or other energy)

- When a photon hits a surface it may
 - Get absorbed
 - Reflect

- When a photon hits a surface it may
 - Get absorbed
 - Reflect
 - Refract

- When a photon hits a surface it may
 - Get absorbed
 - Reflect
 - Refract

- When a photon hits a surface it may
 - Get absorbed
 - Reflect
 - Refract
 - Scatter

- When a photon hits a surface it may
 - Get absorbed
 - Reflect
 - Refract
 - Scatter

May change direction, color, and intensity

- The color and intensity of light
- Color and material of surface
 - Reflective? Diffusive? Transparent? Opaque? Translucent?
- Orientation of surface with respect to the light source and eye

Illumination (in Computer Graphics)

- Given
 - Light sources, object surfaces and the camera
- Compute
 - Color of each pixel on the screen
 - As intensity of photons that come towards the camera in that viewing direction

Computer Representation

Light sources

- Directional light (e.g., the sunlight)
 - Emitting photons in one direction
- Point/Area light (e.g., light bulb)
 - Emitting photons in all directions from a single source
- Spot light (e.g., a flashlight)
 - Emitting photons from a single source forming a cone

Light attenuation

Intensity falls off with distance

Computer Representation

Surface

- A geometric surface can be
 - Discrete: consisting of polygons (e.g., triangles), or
 - Continuous: parametric surface (e.g., the sphere)
- Each surface element is locally represented by
 - The point location
 - The normal vector of the tangent plane
 - Discrete: polygon normal
 - Continuous: first derivatives

Local Illumination

Local Illumination

- Light interaction with one surface
 - Only considers direct reflection of the light from the source
 - Assuming the path between the light source and the surface is unblocked
- Pros: Fast
- Cons: Missing many effects
 - Shadow
 - Refraction
 - Multi-hop reflection

Global Illumination

- Light interaction with all surfaces
 - Reflection/refraction involving multiple surfaces
 - Considers shadows (when the path between the light source and surface is blocked)
 - Complete (*Umbra*) or incomplete (*Penumbra*)
- Pros: Realistic
- Cons: Expensive

Umbra/Penumbra from Sun

Local vs. Global Illumination

If you want to know more...

Light and Color Song by ParrMr [http://www.youtube.com/watch?v=X1hIQvKbQDE]

Overview

- Local illumination
 - Local lighting model (this lecture)
 - Drawing polygonal models (lecture 11)
- Global illumination
 - Ray tracing (lecture 12,13)
 - Radiosity (lecture 14)

Local Lighting Model

- Factors in computing reflected light:
 - Geometric configuration (between light source, surface and camera)
 - Light properties (source type, color, attenuation)
 - Surface material (color, shininess, etc.)
 - Others (polarization, fluorescence, phosphorescence, etc.)
- Lighting model: the math that computes reflected light
 - Physical model
 - Computes actual energy transmitted, very expensive
 - Non-physical model (OpenGL)
 - "Close enough", "looks good", but fast

Local Lighting Model

- Point light source
- Sum of three terms
 - Diffuse light
 - Diffusive reflection
 - Specular light
 - Highlights
 - Ambient light
 - Global, environment light

Local Lighting Model

Parameters

Geometry

- Surface normal (unit vec): $N = \{N_x, N_y, N_z\}$
- Direction to light source (unit vec) $\mathbf{L} = \{\mathbf{L}_{x}, \mathbf{L}_{y}, \mathbf{L}_{z}\}$
- Distance to light source:
- Direction to camera:

Parameters

Geometry

- Surface normal (unit vec): $N = \{N_x, N_y, N_z\}$
- Direction to light source (unit vec) $\mathbf{L} = \{\mathbf{L}_{x}, \mathbf{L}_{y}, \mathbf{L}_{z}\}$
- Distance to light source:
- Direction to camera: $\mathbf{V} = \{\mathbf{V_x}, \mathbf{V_y}, \mathbf{V_z}\}$
- Light properties
 - Diffuse/Specular Light $I_L = \{I_L^r, I_L^g, I_L^b\}$
 - Ambient light: $I_A = \{I_A^r, I_A^g, I_A^b\}$
 - Attenuation coefficients: C₀ , C₁ , C₂

Parameters

N

V

Geometry

- Surface normal (unit vec): $N = \{N_x, N_y, N_z\}$
- Direction to light source (unit vec) $\mathbf{L} = \{\mathbf{L}_{x}, \mathbf{L}_{y}, \mathbf{L}_{z}\}$
- Distance to light source:
- Direction to camera: $\mathbf{V} = \{\mathbf{V_x}, \mathbf{V_y}, \mathbf{V_z}\}$

Light properties

- Diffuse/Specular Light $I_L = \{I_L^r, I_L^g, I_L^b\}$
- Ambient light: $I_A = \{I_A^r, I_A^g, I_A^b\}$
- Attenuation coefficients: C₀, C₁, C₂

Surface material

- Diffuse coefficients: $\mathbf{k_d} = \{\mathbf{k_d^r}, \mathbf{k_d^g}, \mathbf{k_d^b}\}$
- Specular coefficients: $\mathbf{k_s} = \{\mathbf{k_s^r}, \mathbf{k_s^g}, \mathbf{k_s^b}\}$ and exponent: \mathbf{n}
- Ambient coefficients: $\mathbf{k_a} = \{\mathbf{k_a^r}, \mathbf{k_a^g}, \mathbf{k_a^b}\}$

Diffuse Reflection

- Simulates reflection on matte surfaces
 - Independent of view direction
- Lambert's Cosine Law

$$I_{diff} = I_{L} k_{d} Cos[\theta] = I_{L} k_{d} (N \cdot L)$$
$$(\theta < \pi/2, or N \cdot L \ge 0)$$

Diffuse Reflection

- Simulates reflection on matte surfaces
 - Independent of view direction
- Lambert's Cosine Law

$$I_{diff} = I_L k_d Cos[\theta] = I_L k_d (N \cdot L)$$

 $(\theta < \pi/2, or N \cdot L \ge 0)$

Compute for each color component :

$$I_{diff}^{r} = I_{L}^{r} k_{d}^{r} (N \cdot L)$$

$$\mathbf{I}_{\text{diff}}^{\mathbf{g}} = \mathbf{I}_{\mathbf{L}}^{\mathbf{g}} \, \mathbf{k}_{\mathbf{d}}^{\mathbf{g}} \, (\mathbf{N} \cdot \mathbf{L})$$

$$I_{diff}^{b} = I_{L}^{b} k_{d}^{b} (N \cdot L)$$

Specular Reflection

- Simulates highlight on shiny surfaces
 - Dependent on the viewing direction
- Phong's approximation

$$I_{spec} = I_{L} k_{s} Cos[\alpha]^{n} = I_{L} k_{s} (R \cdot V)^{n}$$

$$(N \cdot L \ge 0)$$

- R: reflected light direction
- n: specular exponent

Specular Reflection

- Simulates highlight on shiny surfaces
 - Dependent on the viewing direction
- Phong's approximation

$$I_{spec} = I_{L} k_{s} Cos[\alpha]^{n} = I_{L} k_{s} (R \cdot V)^{n}$$

$$(N \cdot L \ge 0)$$

- R: reflected light direction
- n: specular exponent

Specular Reflection

Phong's approximation

$$I_{spec} = I_{L} k_{s} Cos[\alpha]^{n} = I_{L} k_{s} (R \cdot V)^{n}$$

$$(N \cdot L \ge 0)$$

Often, ks is independent of object

Ambient Reflection

- Simulates global illumination
 - Lights bounced off other objects
- Constant light (a simple hack)

$$I_{amb} = I_A k_a$$

Light Attenuation

Simulates decrease of light energy over distance

$$- I_{L} \leftarrow f_{att} I_{L}$$

- Does not affect ambient light
- Inverse square law of energy fall-off

$$\mathbf{f}_{\text{att}} = \frac{1}{d_{\text{L}}^2}$$

In practice

$$f_{att} = \frac{1}{c_0 + c_1 d_L + c_2 d_L^2}$$

Putting Together

Local (OpenGL) lighting model

$$I = I_{amb} + I_{diff} + I_{spec}$$

$$= I_A k_a + I_L f_{att} (k_d (N \cdot L) + k_s (R \cdot V)^n)$$

Compute for each color component

Example: Varying Parameter

40

Example: Varying Parameter

41

Example: Varying Parameter

Example: Attenuation

No attenuation:

Linear attenuation:

Quadratic attenuation:

