Zener Diode

Using notations as for a conventional diode

For a ZD, the interest is in the **breakdown region** (**regulation region**), that is a nondestructive region

Zener Diode

To operate with positive values let's introduce

$$i_Z = -i_L$$

$$v_Z = -v_D$$

The *ZD* is normally used in **reverse bias!**

Regulation region of the ZD

$$I_{Z\max} = \frac{P_{d\max}}{V_Z}$$

Excerpt from a datasheet

1N4728A - 1N4758A Zener Diodes

Tolerance = 5%

DO-41 Glass case
COLOR BAND DENOTES CATHODE

 $P_{Dmax} = 1W$

Electrical Characteristics T_a = 25°C unless other

Device	V _Z (\	/) @ I _Z	Test Current				
	Min.	Тур.	Мах.	I _Z (mA)			
1N4728A	3.135	3.3	3.465	76			
1N4729A	3.42	3.6	3.78	69			
1N4730A	3.705	3.9	4.095	64			
1N4731A	4.085	4.3	4.515	58			
1N4732A	4.465	4.7	4.935	53			
1N4733A	4.845	5.1	5.355	49			
1N4734A	5.32	5.6	5.88	45			
1N4735A	5.89	6.2	6.51	41			
1N4736A	6.46	6.8	7.14	37			
1N4737A	7.125	7.5	7.875	34			
1N4738A	7.79	8.2	8.61	31			
1N4739A	8.645	9.1	9.555	28			
1N4740A	9.5	10	10.5	25			
1N4741A	10.45	11	11.55	23			
1N4742A	11.4	12	12.6	21			

Parametric voltage regulator

Maintains the output voltage constant against

- input voltage variation,
- output current variation,
- temperature variation,
- etc

Let's suppose DZ: 1N4740. What is V_O if:

- $v_I = 15 \text{ V}$
- $v_I = 17 \text{ V}$
- $v_I = 7 \text{ V}$

Parametric voltage regulator

Maintains the output voltage constant

$$i_Z = i_R - I_O$$

$$i_R = \frac{v_I - V_Z}{R}$$

$$i_Z = \frac{v_I - V_Z}{R} - I_O$$

$$R = \frac{v_I - V_Z}{I_{Znom} + I_O}$$

Exercise

$$v_I \approx 12V, \ V_O = 7.5V, \ I_O = 70\text{mA}$$

 $R = ?$

Light-Emitting Diode: LED

- A light-emitting diode (LED) is a two-lead semiconductor light source.
- \bullet A p-n junction diode that emits light when activated.
- When a suitable voltage is applied to the leads, electrons are able to recombine with holes within the device, releasing energy in the form of photons.
 - This effect is called electroluminescence, and the color of the light (corresponding to the energy of the photon) is determined by the energy band gap of the semiconductor.

Light-Emitting Diode: LED cont

- 1.5V to 3V forward voltage drop
 - forward current, type, color
- in forward bias the LED lights up: red, yellow, green, blue, white, infrared (remote control)
- emits radiation in the visible, infrared, or laser range
- typically, **5mA to 20mA** @ **2-2.5V**
- power LED: 3.5V @ 500mA

Current through the LED?

Excerpt

from the

TLHR440., TLHO440., TLHY440., TLHG440., TLHP440.

www.vishay.com

Vishay Semiconductors

High Efficiency LED in Ø 3 mm Tinted Diffused Package

APPLICATIONS

- Status lights
- Off/on indicator.
- Background illumination.
- Readout lights
- Maintenance lights
- Legend light

PRODUCT GROUP AND PACKAGE DATA

Product group: LED

Package: 3 mm

Product series: standard

Angle of half intensity: ± 30°

PARTS TABLE														
PART	COLOR	LUMINOUS INTENSITY (m cd)		at i _F	WAVELENGTH (nm)		at IF	FORWARD VOLTAGE (V)			at I _F (mA)	TECHNOLOGY		
		MIN.	TYP.	MAX.	(m A)	MIN.	TYP.	MAX.	(m A)	MIN.	TYP.	MAX.	(IIIA)	
TLHR4400	Red	1.6	13	-	10	612	-	625	10	-	2	3	20	GaAsP on GaP
TLHO4400-MS12Z	Soft orange	1.6	13	-	10	598	-	611	10	-	2.4	3	20	GaAsP on GaP
TLHY4400	Yellow	1.6	10	-	10	581	-	594	10	-	2.4	3	20	GaAsP on GaP
TLHG4405	Green	6.3	15		10	562	-	575	10	-	2.4	3	20	GaP on GaP
TLHP4401	Pure green	1	4	-	10	555	-	565	10	-	2.4	3	20	GaP on GaP

ABSOLUTE MAXIMUM RATINGS (T_{amb} = 25 °C, unless otherwise specified) TLHR440., TLH0440., TLHY440., TLHG440., TLHP440. PARAMETER TEST CONDITION SYMBOL VALUE UNIT Reverse voltage V_R 6 V DC forward current 30 ΙF mΑ Surge forward current t_D ≤ 10 μs Α I_{FSM} T_{amb} ≤ 60 °C Power dissipation 100 P_V mW

LED Color Spectrum for Red, Green, Blue, Yellow:

5050 SMD 60 LED/m Indoor Strip LED

Problem

A voltage in a circuit can be +5V, 0V, or -5V.

How can one signalize the voltage value using two LEDs (green for +5V and red for -5V)?

The current through the conducting LED should be 10mA.

7-segment Display (LED)

HDSP-7801 Common Anode, Right Hand Decimal, Green **HDSP-7803** Common Cathode, Right Hand Decimal, Green

2.1V @ 20mA / segment (DP)

[7-segment Display, https://www.electronics-tutorials.ws/blog/7-segment-display-tutorial.html]

Allows to display each of the ten decimal digits 0 through 9 on the same 7-segment display

What is the connection to display "7"?

7-segment Display - utilization

[7-segment Display, https://www.electronics-tutorials.ws/blog/7-segment-display-tutorial.html]

4-digit 7-segment Display (LED)

Use time-multiplexing technique.

Multiplexing technique is based on the idea of "persistence" of vision of the human eyes.

4-digit 7-segment Display (LCD)

EDC190

4 Digit 7 Segment LCD Display

Digital Clock Tube Static Driving 3V TN Pin

PIN NO.	1	2	3	4	5	6	7	8	9	10
SEGMENT	COM	/	/	/	1E	1D	10	DP1	2E	2D
PIN NO.	11	12	13	14	15	16	17	18	19	20
SEGMENT	2C	DP2	3E	3D	3C	DP3	4E	4D	4C	4B
PIN NO.	21	22	23	24	25	26	27	28	29	30
SEGMENT	4A	4F	4G	3B	3A	3F	3G	COL	2B	2A
PIN NO.	31	32	33	34	35	36	37	38	39	40
SEGMENT	2F	2G	/	1B	1A	1F	1G	/	/	COM

LED strips

Single Color LED Strip

LED strips

Single Color LED Strip

RGB LED Strip

LED light bulbs

BONUS

230-volt LED light bulb with E27 screw

Disassembled LED-light bulb with driver circuit board (dc power supply) E27 base, 5W, 450lm, CRI >7

Dmitry G - Own work

A 230-volt LED filament light bulb, with a B22 base. The filaments are visible as the four yellow vertical lines.

Closeup of a filament at 5% power, https://en.wikipedia.org/wiki/LED_filament

Electromagnetic Spectrum $\lambda = \frac{c}{s}$; $c = 3.10^8 \text{ m/s}$ Wavelength (λ) Virus Bacteria Pinhead Fingernails Atom Humans. **Dust** in meters 10^{-12} 10^{-10} 10^{-8} 10^{-6} 10^{-4} 10^{-2} Ultraviolet Infrared Microwaves Radio waves Gamma rays X rays 10^{20} 10^{18} 10^{16} 10^{14} 10^{12} 10^{10} 10^{8} Frequency (ν) in hertz Visible 380 nm 500 nm 600 nm 700 nm 780 nm $3.8 \times 10^{-7} \,\mathrm{m}$ $7.8 \times 10^{-7} \,\mathrm{m}$

Wavelength vs. period (or frequency)

$$\lambda = cT = \frac{c}{f}$$

$$c = 3 \cdot 10^8 \,\text{m/s}$$

The wavelength of a sinusoidal wave is its spatial period

the distance over which the wave's shape repeats

Wavelength vs. period (or frequency) — cont.

$$\lambda = cT = \frac{c}{f};$$

$$c = 3 \cdot 10^8 \,\mathrm{m/s}$$

Red light

$$\lambda = 650 \text{nm}, \quad T = \frac{\lambda}{c} = \frac{650 \cdot 10^{-9}}{3 \cdot 10^{8}} = 216.7 \cdot 10^{-17} \text{s} = 2.17 \text{fs}, \quad f = 460.8 \text{THz}$$

SSM frequency band 900MHz, 1800 MHz (mobile phones)
$$f = 900\text{MHz}, \quad T = \frac{1}{900 \cdot 10^6} = 1.1 \text{ns}, \quad \lambda = \frac{3 \cdot 10^8}{900 \cdot 10^6} = 0.33 \text{m} = 33 \text{cm}$$

> FM: Radio Impuls Cluj-Napoca 101.5MHz

$$f = 101.5 \text{MHz}, \quad T = \frac{1}{101.5 \cdot 10^6} = 9.85 \text{ns}, \quad \lambda = \frac{3 \cdot 10^8}{101.5 \cdot 10^6} = 2.95 \text{m}$$