MIDTERM EXAM

Course: Natural Language Processing

Chapter 8: Recurrent Neural Networks (RNN) and LSTM

Question	Points	Score
1	0	
2	0	
3	0	
4	0	
5	0	
6	0	
7	0	
8	0	
9	0	
10	0	
11	0	
12	0	
13	0	
14	0	
15	0	
16	0	
17	0	
18	0	
19	0	
20	0	
Total:	0	

Time allowed: 60 minutes

Part I: Multiple Choice (8 questions, 4.0 points)

- 1. What key feature of a Recurrent Neural Network (RNN) makes it suitable for processing sequential data?
 - A. It uses convolutional layers.

N.T.	\sim 1
Name:	Class:
1\allic	C1a55

- B. Weight sharing across time steps and having a hidden state.
- C. Each input is processed independently of the others.
- D. There are no loops in its architecture.
- 2. In a simple RNN, what is the hidden state h_t at time step t calculated based on?
 - A. Only the current input x_t .
 - B. Only the previous hidden state h_{t-1} .
 - C. The current input x_t and the previous hidden state h_{t-1} .
 - D. Only the network's output at time step t-1.
- 3. What is the primary cause of the vanishing gradient problem in RNNs?
 - A. Using too many layers in the network.
 - B. The repeated multiplication of small values during backpropagation through time.
 - C. A learning rate that is too large.
 - D. The dataset size being too small.
- 4. In an LSTM, which gate is responsible for deciding what information to discard from the cell state?
 - A. Input Gate.
 - B. Forget Gate.
 - C. Output Gate.
 - D. Reset Gate.
- 5. Compared to an LSTM, what is a characteristic of a GRU?
 - A. It is more complex, with four gates.
 - B. It has separate cell state and hidden state vectors.
 - C. It is simpler, combining the forget and input gates into a single update gate.
 - D. It cannot solve the vanishing gradient problem.
- 6. Which gate in an LSTM uses a 'tanh' activation function to create new candidate values?
 - A. The Forget Gate.
 - B. Part of the Input Gate (to create C_t).
 - C. The Output Gate.
 - D. All three gates use 'tanh'.
- 7. What is the main purpose of using a Bidirectional RNN (Bi-RNN)?
 - A. To reduce training time.
 - B. To process two input sequences at once.

To read ou	Class
Name:	(lagg.

- C. To allow the network to use both past and future context at each time step.
- D. To simplify the network architecture.
- 8. Which of the following tasks is a form of sequence labeling?
 - A. Machine Translation.
 - B. Text Classification.
 - C. Part-of-Speech Tagging.
 - D. Text Summarization.

Part II: Short Answer (7 questions, 10.0 points)

- 9. Write the formula for calculating the hidden state h_t in a simple RNN and explain the meaning of each term.
- 10. Explain why repeated multiplication during Backpropagation Through Time (BPTT) leads to vanishing or exploding gradients.
- 11. Write the full set of equations for an LSTM cell, including all gates and update equations.
- 12. Explain the role of the cell state (C_t) in an LSTM and how its additive update mechanism mitigates vanishing gradients.
- 13. Compare and contrast the architectures of a GRU and an LSTM, focusing on gates and the handling of the cell state.
- 14. Draw a block diagram of a Bidirectional RNN and explain how the final output at each time step is computed.
- 15. Describe how an RNN can be used as a language model.

Part III: Coding Practice (5 questions, 6.0 points)

- 16. Given $W_{xh} = \begin{pmatrix} 0.1 & 0.2 \\ 0.3 & 0.4 \end{pmatrix}$, $W_{hh} = \begin{pmatrix} 0.5 & 0.6 \\ 0.7 & 0.8 \end{pmatrix}$, input $x_t = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$, and $h_{t-1} = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$, compute the new hidden state h_t for a simple RNN with tanh activation and no bias.
- 17. Using NumPy, implement:
 - a sigmoid function
 - an LSTM forget gate function $lstm_forget_gate(xt, ht_prev, Wf, bf)$.
- Explain the steps to preprocess a raw text corpus for training an RNN-based language model.

Ν	Vame:	Class:

- 19. You are building a POS tagger using a Bi-LSTM. a) Why is a Bi-LSTM better than a unidirectional LSTM? b) What are the input and output tensor shapes?
- 20. In the Keras code below, identify the recurrent layer, number of hidden units, and activation function:

```
model = Sequential([
          Embedding(vocab_size, embedding_dim, input_length=max_length),
          SimpleRNN(32, activation='tanh'),
          Dense(1, activation='sigmoid')

5 ])
```

 Explain the steps to preprocess a raw text corpus for training an RNN-based language model.

Tokenize -> (Preate Vocabulary -> Create (or download) embedding -> Embed the tokens

19. You are building a POS tagger using a Bi-LSTM. a) Why is a Bi-LSTM better than a unidirectional LSTM? b) What are the input and output tensor shapes?

a) By adapting information in the part and future, Bi-LSTM can learn richer context for more accurate predictions.

b) input: (N, T, embedding din)

(redeclab - mun , T, N) : tuytus

N: Batch Size

Recumment

layer

T: Sequence length.

20. In the Keras code below, identify the recurrent layer, number of hidden units, and activation function:

Activation: tanh (in recurrent layer)
Sigmoid (in FNN)

nun hidden units, 32