Threshold Cryptosystems from Threshold Fully Homomorphic Encryption

Sam Kim

Stanford University

Joint work with Dan Boneh, Rosario Gennaro, Steven Goldfeder, Aayush Jain, Peter M. R. Rasmussen, and Amit Sahai

 $\label{eq:Key management} \text{Key management is } \begin{array}{l} \textbf{hard} \text{ in practice!} \\ \text{(difficult to implement to crypto, systems get hacked, human error, ...)} \end{array}$

Key management is **hard** in practice! (difficult to implement to crypto, systems get hacked, human error, ...)

Can we address key management at a more fundamental level?

Can we divide the key into shares and store them separately?

Can we divide the key into shares and store them separately?

Correctness: Each server can independently compute an evaluation share, which can later be publicly combined to form final evaluation.

Can we divide the key into shares and store them separately?

Correctness: Each server can independently compute an evaluation share, which can later be publicly combined to form final evaluation.

Security: Hard to form final evaluation without all the evaluation shares.

Can we divide the key into shares and store them separately?

Correctness: Each server can independently compute an evaluation share, which can later be publicly combined to form final evaluation.

Security: Hard to form final evaluation without all the evaluation shares.

Can we divide the key into shares and store them separately?

Correctness: Each server can independently compute an evaluation share, which can later be publicly combined to form final evaluation.

Security: Hard to form final evaluation without all the evaluation shares.

Can we divide the key into shares and store them separately?

Correctness: Each server can independently compute an evaluation share. Any **t** evaluation shares can later be publicly combined to form final evaluation.

Security: Hard to form final evaluation without **t** evaluation shares.

Requirements: Compactness, Correctness, Unforgeability, Anonymity, Robustness, ...

Requirements: Compactness, Correctness, CCA security, Robustness, ...

Works on Threshold Cryptography

- RSA signatures [Fra89, DDFY94, GRJK07, Sho00]
- Schnorr signatures [SS01]
- (EC)DSA signatures [GJKR01, GGN16]
- BLS signatures [BLS04, Bol03]
- Cramer-Shoup encryption [CG99]
- Many more [SG02, DK05, BBH06]

Works on Threshold Cryptography

- RSA signatures [Fra89, DDFY94, GRJK07, Sho00]
- Schnorr signatures [SS01]
- (EC)DSA signatures [GJKR01, GGN16]
- BLS signatures [BLS04, Bol03]
- Cramer-Shoup encryption [CG99]
- Many more [SG02, DK05, BBH06]

Not much progress on lattice-based schemes.

• Construct Threshold Fully Homomorphic Encryption (TFHE).

- Construct Threshold Fully Homomorphic Encryption (TFHE).
- Define a new primitive Universal Thresholdizer (UT).

- Construct Threshold Fully Homomorphic Encryption (TFHE).
- Define a new primitive Universal Thresholdizer (UT).
- A general framework for constructing threshold cryptosystems using UT.

- Construct Threshold Fully Homomorphic Encryption (TFHE).
- Define a new primitive Universal Thresholdizer (UT).
- A general framework for constructing threshold cryptosystems using UT.
- New constructions for threshold signatures, threshold PKE, distributed PRFs, functional encryption with distributed key generation, . . .

(Standard) Fully Homomorphic Encryption

- $\bullet \ \mathsf{Setup}(1^\lambda) \to (\mathsf{pk},\mathsf{sk})$
- Encrypt(pk, μ) \rightarrow ct
- Eval(pk, C, ct₁, . . . , ct_k) \rightarrow ĉt
- Decrypt(sk, $\hat{\mathsf{ct}}$) $\to \hat{\mu}$

Threshold Fully Homomorphic Encryption

- $\mathsf{Setup}(1^{\lambda}, t, N) \to (\mathsf{pk}, \mathsf{sk}_1, \dots, \mathsf{sk}_N)$
- Encrypt(pk, μ) \rightarrow ct
- Eval(pk, C, ct₁, . . . , ct_k) \rightarrow ĉt
- PartDec(sk_i , \hat{ct}) $\rightarrow p_i$
- FinDec(pk, $\{p_i\}$) $\rightarrow \hat{\mu}$

Threshold Fully Homomorphic Encryption

- $\mathsf{Setup}(1^{\lambda}, t, N) \to (\mathsf{pk}, \mathsf{sk}_1, \dots, \mathsf{sk}_N)$
- Encrypt(pk, μ) \rightarrow ct
- Eval(pk, C, ct₁, . . . , ct_k) \rightarrow ĉt
- PartDec(sk_i , \hat{ct}) $\rightarrow p_i$
- FinDec(pk, $\{p_i\}$) $\rightarrow \hat{\mu}$

Correctness

For any
$$C: \{0,1\}^k \to \{0,1\}$$
, $\hat{\mathsf{ct}} \leftarrow \mathsf{Eval}(\mathsf{pk},C,\mathsf{ct}_1,\ldots,\mathsf{ct}_k)$, $|S| \geq t$,
$$\mathsf{FinDec}(\mathsf{pk},\{\mathsf{PartDec}(\mathsf{sk}_i,\hat{\mathsf{ct}})\}_{i \in S}) = C(\mu_1,\ldots,\mu_k).$$

Threshold Fully Homomorphic Encryption

- $\mathsf{Setup}(1^{\lambda}, t, N) \to (\mathsf{pk}, \mathsf{sk}_1, \dots, \mathsf{sk}_N)$
- Encrypt(pk, μ) \rightarrow ct
- Eval(pk, C, ct₁, . . . , ct_k) \rightarrow ĉt
- PartDec(sk_i , \hat{ct}) $\rightarrow p_i$
- FinDec(pk, $\{p_i\}$) $\rightarrow \hat{\mu}$

Compactness

$$|\hat{\mathsf{ct}}| \leq \mathsf{poly}(\lambda) \quad |\mathsf{p}_i| \leq \mathsf{poly}(\lambda, N).$$

Threshold Fully Homomorphic Encryption

- $\mathsf{Setup}(1^{\lambda}, t, N) \to (\mathsf{pk}, \mathsf{sk}_1, \dots, \mathsf{sk}_N)$
- Encrypt(pk, μ) \rightarrow ct
- Eval(pk, C, ct₁, . . . , ct_k) \rightarrow ĉt
- PartDec(sk_i , \hat{ct}) $\rightarrow p_i$
- FinDec(pk, $\{p_i\}$) $\rightarrow \hat{\mu}$

Semantic Security

Standard PKE semantic security (Adversary given $\{sk_i\}_{i \in S^*}$ for $|S^*| < t$)

Simulation Security (Real World)

Challenger **Adversary** pk pk sk_1, \ldots, sk_N $|S^*| = t - 1$ *S** $\{sk_i\}_{i\in S^*}$ μ_1,\ldots,μ_k $\mathsf{ct}_1, \ldots, \mathsf{ct}_k$ $\hat{\mathsf{ct}} \leftarrow \mathsf{Eval}(\mathsf{pk}, \mathit{C}, \mathsf{ct}_1, \dots, \mathsf{ct}_{\underline{k}})$ $(i \in [N], C)$ $p_i \leftarrow PartDec(sk_i, ct)$ p_i

Simulation Security (Ideal World)

Challenger **Adversary** pk pk sk_1, \ldots, sk_N $|S^*| = t - 1$ *S** $\{sk_i\}_{i\in S^*}$ μ_1,\ldots,μ_k $\mathsf{ct}_1, \ldots, \mathsf{ct}_k$ $(i \in [N], C)$ $S(\{\mathsf{sk}_i\}, \{\mathsf{ct}_i\}, C, C(\mu_1, \ldots, \mu_k))$ p_i

FHE from Approximate Eigenvector [GSW13]

- Ciphertext **C** is a matrix in $\{0,1\}^{m\times m}$
- ullet Secret key $ec{\mathbf{s}}$ is a vector in \mathbb{Z}_q^m

Approximate eigenvector property

$$\mathbf{C} \cdot \vec{\mathbf{s}} = \mu \cdot \vec{\mathbf{s}} + \text{noise}$$

- Homomorphic addition: C₁ + C₂
 s is an eigenvector for (C₁ + C₂).
- Homomorphic multiplicaton: $C_1 \cdot C_2$ \vec{s} is an eigenvector for $(C_1 \cdot C_2)$

Observation: Decryption operation is *linear*.

Observation: Decryption operation is *linear*.

Question: Can we use Shamir secret sharing to break up the key \vec{s} ?

$$\vec{s} \rightarrow \vec{s}_1, \dots, \vec{s}_{\textit{N}}.$$

Observation: Decryption operation is *linear*.

Question: Can we use Shamir secret sharing to break up the key \vec{s} ?

$$ec{\mathbf{s}}
ightarrow ec{\mathbf{s}}_1, \ldots, ec{\mathbf{s}}_{\mathcal{N}}.$$

For any |S| = t, $i \in S$, there exists Lagrange coefficient λ_i such that

$$\vec{\mathbf{s}} = \sum_{i \in S} \lambda_i \cdot \vec{\mathbf{s}}_i.$$

Define partial decryption

$$\mathsf{PartDec}(\mathsf{pk}, \boldsymbol{\mathsf{C}}, \vec{\boldsymbol{\mathsf{s}}}_i) = \boldsymbol{\mathsf{C}} \cdot \vec{\boldsymbol{\mathsf{s}}}_i.$$

Define partial decryption

$$\mathsf{PartDec}(\mathsf{pk}, \mathbf{C}, \vec{\mathbf{s}}_i) = \mathbf{C} \cdot \vec{\mathbf{s}}_i.$$

$$\mathsf{FinDec}(\mathsf{pk}, \{\mathbf{C} \cdot \vec{\mathbf{s}}_i\}_S) = \sum_{i \in S} \lambda_i \cdot (\mathbf{C} \cdot \vec{\mathbf{s}}_i)$$

Define partial decryption

$$\mathsf{PartDec}(\mathsf{pk}, \mathbf{C}, \vec{\mathbf{s}}_i) = \mathbf{C} \cdot \vec{\mathbf{s}}_i.$$

$$\begin{aligned} \text{FinDec}(\mathsf{pk}, \{\mathbf{C} \cdot \vec{\mathbf{s}}_i\}_S) &= \sum_{i \in S} \lambda_i \cdot (\mathbf{C} \cdot \vec{\mathbf{s}}_i) \\ &= \mathbf{C} \cdot \sum_{i \in S} \lambda_i \cdot \vec{\mathbf{s}}_i \end{aligned}$$

Define partial decryption

$$\mathsf{PartDec}(\mathsf{pk}, \boldsymbol{\mathsf{C}}, \vec{\boldsymbol{\mathsf{s}}}_i) = \boldsymbol{\mathsf{C}} \cdot \vec{\boldsymbol{\mathsf{s}}}_i.$$

$$\begin{aligned} \mathsf{FinDec}(\mathsf{pk}, \{\mathbf{C} \cdot \vec{\mathbf{s}}_i\}_S) &= \sum_{i \in S} \lambda_i \cdot (\mathbf{C} \cdot \vec{\mathbf{s}}_i) \\ &= \mathbf{C} \cdot \sum_{i \in S} \lambda_i \cdot \vec{\mathbf{s}}_i \end{aligned}$$

Define partial decryption

$$\mathsf{PartDec}(\mathsf{pk}, \boldsymbol{\mathsf{C}}, \vec{\boldsymbol{\mathsf{s}}}_i) = \boldsymbol{\mathsf{C}} \cdot \vec{\boldsymbol{\mathsf{s}}}_i.$$

$$\begin{aligned} \mathsf{FinDec}(\mathsf{pk}, \{\mathbf{C} \cdot \vec{\mathbf{s}}_i\}_S) &= \sum_{i \in S} \lambda_i \cdot (\mathbf{C} \cdot \vec{\mathbf{s}}_i) \\ &= \mathbf{C} \cdot \sum_{i \in S} \lambda_i \cdot \vec{\mathbf{s}}_i \\ &= \mathbf{C} \cdot \vec{\mathbf{s}} \end{aligned}$$

Define partial decryption

$$\mathsf{PartDec}(\mathsf{pk}, \mathbf{C}, \vec{\mathbf{s}}_i) = \mathbf{C} \cdot \vec{\mathbf{s}}_i.$$

$$\begin{aligned} \mathsf{FinDec}(\mathsf{pk}, \{\mathbf{C} \cdot \vec{\mathbf{s}}_i\}_S) &= \sum_{i \in S} \lambda_i \cdot (\mathbf{C} \cdot \vec{\mathbf{s}}_i) \\ &= \mathbf{C} \cdot \sum_{i \in S} \lambda_i \cdot \vec{\mathbf{s}}_i \\ &= \mathbf{C} \cdot \vec{\mathbf{s}} \\ &= \mu \cdot \vec{\mathbf{s}} + \mathsf{noise} \end{aligned}$$

Problem: C is a public matrix!

Every partial decryption $\mathbf{C} \cdot \vec{\mathbf{s}}_i$ leaks information about $\vec{\mathbf{s}}_i$.

Problem: C is a public matrix!

Every partial decryption $\mathbf{C} \cdot \vec{\mathbf{s}}_i$ leaks information about $\vec{\mathbf{s}}_i$.

Solution(?): Can we add some additional noise?

Define partial decryption

$$\mathsf{PartDec}(\mathsf{pk}, \mathbf{C}, \vec{\mathbf{s}}_i) = \mathbf{C} \cdot \vec{\mathbf{s}}_i.$$

Problem: **C** is a *public matrix*!

Every partial decryption $\mathbf{C} \cdot \vec{\mathbf{s}}_i$ leaks information about $\vec{\mathbf{s}}_i$.

Solution(?): Can we add some additional noise?

Define partial decryption

$$\mathsf{PartDec}(\mathsf{pk}, \mathbf{C}, \vec{\mathbf{s}}_i) = \mathbf{C} \cdot \vec{\mathbf{s}}_i + \mathsf{noise}.$$

Problem: **C** is a *public matrix*!

Every partial decryption $\mathbf{C} \cdot \vec{\mathbf{s}}_i$ leaks information about $\vec{\mathbf{s}}_i$.

Solution(?): Can we add some additional noise?

Define partial decryption

$$PartDec(pk, \mathbf{C}, \vec{\mathbf{s}}_i) = \mathbf{C} \cdot \vec{\mathbf{s}}_i + noise.$$

Still Problem: Final decryption

$$\mathsf{FinDec}(\mathsf{pk}, \{\mathbf{C} \cdot \vec{\mathbf{s}}_i\}_{\mathcal{S}}) = \sum_{i \in \mathcal{S}} \lambda_i \cdot \left(\mathbf{C} \cdot \vec{\mathbf{s}}_i + \mathsf{noise}_i\right)$$

Problem: **C** is a *public matrix*!

Every partial decryption $\mathbf{C} \cdot \vec{\mathbf{s}}_i$ leaks information about $\vec{\mathbf{s}}_i$.

Solution(?): Can we add some additional noise?

Define partial decryption

$$\mathsf{PartDec}(\mathsf{pk}, \mathbf{C}, \vec{\mathbf{s}}_i) = \mathbf{C} \cdot \vec{\mathbf{s}}_i + \mathsf{noise}.$$

Still Problem: Final decryption

$$\begin{aligned} \mathsf{FinDec}(\mathsf{pk}, \{\mathbf{C} \cdot \vec{\mathbf{s}}_i\}_S) &= \sum_{i \in S} \lambda_i \cdot (\mathbf{C} \cdot \vec{\mathbf{s}}_i + \mathsf{noise}_i) \\ &= \mathbf{C} \cdot \sum_{i \in S} \lambda_i \cdot \vec{\mathbf{s}}_i + \sum_{i \in S} \lambda_i \cdot \mathsf{noise}_i \\ &= \mathbf{C} \cdot \vec{\mathbf{s}} + \mathsf{BIG} \\ &= \mu \cdot \vec{\mathbf{s}} + \mathsf{BIG} \end{aligned}$$

Problem of Secret Sharing

Two methods of overcoming noise blow-up:

1. Define a linear secret sharing scheme with low-norm reconstruction coefficients

Problem of Secret Sharing

Two methods of overcoming *noise blow-up*:

- 1. Define a linear secret sharing scheme with low-norm reconstruction coefficients
- 2. Change the scheme itself using clearing out denominators trick

Linear secret sharing scheme for $k \in \mathbb{Z}_q$

- Share $(k, \mathbb{A}) \to (s_1, \dots, s_N) \in \mathbb{Z}_q^N$
- Combine({s_i}_S):
 - There exists efficiently computable coefficients $c_i \in \mathbb{Z}_q$ such that for any set $S \in \mathbb{A}$,

$$\mathsf{k} = \sum_{i \in S} \mathbf{c}_i \cdot \mathsf{s}_i.$$

Linear secret sharing scheme for $k \in \mathbb{Z}_q$

- Share $(\mathsf{k},\phi) o (\mathsf{s}_1,\ldots,\mathsf{s}_N) \in \mathbb{Z}_q^N$
- Combine($\{s_i\}_S$):
 - There exists efficiently computable coefficients $c_i \in \mathbb{Z}_q$ such that for any set $\phi(\mathcal{S})=1$,

$$k = \sum_{i \in S} c_i \cdot s_i.$$

Linear secret sharing scheme for $k \in \mathbb{Z}_q$

- Share $(\mathsf{k},\phi) \to (\mathsf{s}_1,\ldots,\mathsf{s}_N) \in \mathbb{Z}_q^N$
- Combine({s_i}_S):
 - There exists efficiently computable coefficients $c_i \in \mathbb{Z}_q$ such that for any set $\phi(S) = 1$,

$$\mathsf{k} = \sum_{i \in S} c_i \cdot \mathsf{s}_i.$$

Example: Shamir secret sharing scheme

$$\phi_t(S) = 1 \Leftrightarrow |S| \geq t$$
.

Linear secret sharing scheme for $k \in \mathbb{Z}_q$

- Share $(\mathsf{k},\phi) \to (\mathsf{s}_1,\ldots,\mathsf{s}_N) \in \mathbb{Z}_q^N$
- Combine({s_i}_S):
 - There exists efficiently computable coefficients $c_i \in \mathbb{Z}_q$ such that for any set $\phi(S) = 1$,

$$\mathsf{k} = \sum_{i \in S} c_i \cdot \mathsf{s}_i.$$

Define $\{0,1\}$ -LSSS as a linear secret sharing scheme where the reconstruction coefficients are always binary.

Question: How expressive is $\{0, 1\}$ -LSSS?

Monotone Boolean Formulas

$$s_1 = r_2 & s_4 = \mathbf{k} - r_1 \\
 s_2 = r_1 - r_2 & s_5 = \mathbf{k} - r_1 \\
 s_3 = r_1 & s_5 = \mathbf{k} - r_1 \\
 \end{cases}$$

Monotone Boolean Formulas

$$s_1 = r_2 & s_4 = \mathbf{k} - r_1 \\
 s_2 = r_1 - r_2 & s_5 = \mathbf{k} - r_1 \\
 s_3 = r_1 & s_5 = \mathbf{k} - r_1$$

- $\{0,1\}$ -LSSS contains access structures induced by monotone Boolean formulas.

- $\{0,1\}$ -LSSS contains access structures induced by monotone Boolean formulas.
- [Val84, Gol14] show that threshold function expressible by monotone Boolean formulas.

Use $\{0,1\}\text{-LSSS}$ to break up FHE key $\vec{\boldsymbol{s}}$

$$\vec{s} \rightarrow \vec{s}_1, \dots, \vec{s}_N$$

Use $\{0,1\}\text{-LSSS}$ to break up FHE key $\vec{\boldsymbol{s}}$

$$\vec{s} \rightarrow \vec{s}_1, \dots, \vec{s}_N$$

Define partial decryption

$$\mathsf{PartDec}(\mathsf{pk}, \boldsymbol{\mathsf{C}}, \vec{\boldsymbol{\mathsf{s}}}_i) = \boldsymbol{\mathsf{C}} \cdot \vec{\boldsymbol{\mathsf{s}}}_i + \mathsf{noise}.$$

Use $\{0,1\}$ -LSSS to break up FHE key \vec{s}

$$ec{\mathbf{s}}
ightarrow ec{\mathbf{s}}_1, \dots, ec{\mathbf{s}}_N$$

Define partial decryption

PartDec(pk,
$$\mathbf{C}, \vec{\mathbf{s}}_i) = \mathbf{C} \cdot \vec{\mathbf{s}}_i + \text{noise}$$
.

$$\begin{aligned} \mathsf{FinDec}(\mathsf{pk}, \{\mathbf{C} \cdot \vec{\mathbf{s}}_i\}_S) &= \sum_{i \in S} c_i \cdot (\mathbf{C} \cdot \vec{\mathbf{s}}_i + \mathsf{noise}_i) \\ &= C \cdot \vec{\mathbf{s}} + \mathsf{noise} + \sum_{i \in S} c_i \cdot \mathsf{noise}_i \end{aligned}$$

Use $\{0,1\}$ -LSSS to break up FHE key \vec{s}

$$\vec{\textbf{s}} \rightarrow \vec{\textbf{s}}_1, \dots, \vec{\textbf{s}}_{\textit{N}}$$

Define partial decryption

PartDec(pk,
$$\mathbf{C}, \vec{\mathbf{s}}_i) = \mathbf{C} \cdot \vec{\mathbf{s}}_i + \text{noise}$$
.

Define final decryption

$$\begin{aligned} \mathsf{FinDec}(\mathsf{pk}, \{\mathbf{C} \cdot \vec{\mathbf{s}}_i\}_S) &= \sum_{i \in S} c_i \cdot (\mathbf{C} \cdot \vec{\mathbf{s}}_i + \mathsf{noise}_i) \\ &= C \cdot \vec{\mathbf{s}} + \mathsf{noise} + \sum_{i \in S} c_i \cdot \mathsf{noise}_i \end{aligned}$$

Note: Requires careful security analysis!

Clearing out Denominators

Expressing threshold circuit in monotone Boolean formula expensive!

Circuit size $O(N^{5.2}) \Rightarrow \text{partial key } |\mathsf{sk}_i| \leq O(N^{4.2}) \text{ on average.}$

Question: Can we do better?

Idea: Use the technique of clearing out the denominators [Sho00,ABVVW12]

Lemma

For any Lagrange coefficients λ_i ,

$$|(N!) \cdot \lambda_i| \leq (N!)^3.$$

Clearing out Denominators

Use Shamir secret sharing to break up FHE key \vec{s}

$$\vec{\textbf{s}} \rightarrow \vec{\textbf{s}}_1, \dots, \vec{\textbf{s}}_{\textit{N}}$$

Define partial decryption

PartDec(pk,
$$\mathbf{C}, \vec{\mathbf{s}}_i) = \mathbf{C} \cdot \vec{\mathbf{s}}_i + (N!)^2 \cdot \text{noise}.$$

$$\begin{aligned} \mathsf{FinDec}(\mathsf{pk}, \{\mathbf{C} \cdot \vec{\mathbf{s}}_i\}_S) &= \sum_{i \in S} \lambda_i \cdot (\mathbf{C} \cdot \vec{\mathbf{s}}_i + (N!)^2 \cdot \mathsf{noise}_i) \\ &= C \cdot \vec{\mathbf{s}} + \mathsf{noise} + \sum_{i \in S} \lambda_i \cdot (N!)^2 \cdot \mathsf{noise}_i \end{aligned}$$

- Setup $(1^{\lambda}, t, N, x) \rightarrow (pp, s_1, \dots, s_N)$ for $x \in \{0, 1\}^k$
- Eval(pp, s_i , C) $\rightarrow p_i$
- Combine(pp, $\{p_i\}$) $\rightarrow C(x)$

- Setup $(1^{\lambda}, t, N, x) \rightarrow (pp, s_1, \dots, s_N)$ for $x \in \{0, 1\}^k$
 - $\mathsf{Setup}(1^{\lambda}, t, N) \to (\mathsf{pk}, \mathsf{sk}_1, \dots, \mathsf{sk}_N)$
 - Encrypt(pk, x) \rightarrow ct

$$pp = (pk, ct)$$
 $s_i = sk_i$.

- Eval(pp, s_i , C) $\rightarrow p_i$
- Combine(pp, $\{p_i\}$) $\rightarrow C(x)$

- Setup $(1^{\lambda}, t, N, x) \rightarrow (\mathsf{pp}, \mathsf{s}_1, \dots, \mathsf{s}_N)$ for $x \in \{0, 1\}^k$
 - $\mathsf{Setup}(1^{\lambda}, t, N) \to (\mathsf{pk}, \mathsf{sk}_1, \dots, \mathsf{sk}_N)$
 - Encrypt(pk, x) \rightarrow ct

$$pp = (pk, ct)$$
 $s_i = sk_i$.

- Eval(pp, s_i , C) $\rightarrow p_i$
 - Eval(pk, C, ct) \rightarrow ct
 - PartDec(sk_i , \hat{ct}) $\rightarrow p_i$
- Combine(pp, $\{p_i\}$) $\rightarrow C(x)$

- Setup $(1^{\lambda}, t, N, x) \rightarrow (\mathsf{pp}, \mathsf{s}_1, \dots, \mathsf{s}_N)$ for $x \in \{0, 1\}^k$
 - $\mathsf{Setup}(1^{\lambda}, t, N) \to (\mathsf{pk}, \mathsf{sk}_1, \dots, \mathsf{sk}_N)$
 - Encrypt(pk, x) \rightarrow ct

$$pp = (pk, ct)$$
 $s_i = sk_i$.

- Eval(pp, s_i , C) $\rightarrow p_i$
 - Eval(pk, C, ct) \rightarrow ct
 - PartDec(sk_i , \hat{ct}) $\rightarrow p_i$
- Combine(pp, $\{p_i\}$) $\rightarrow C(x)$
 - FinDec(pk, $\{p_i\}$) $\rightarrow C(x)$

$$\mathsf{pp} = (\mathsf{pk}, \mathsf{Enc}(\mathsf{sk}_{\mathsf{sign}}))$$

 sk_1 $\mathsf{Enc}(\sigma)$

$$C_m(sk) = Sign(sk, m)$$

$$sk_3$$
 $Enc(\sigma)$

$$\mathsf{pp} = (\mathsf{pk}, \mathsf{Enc}(\mathsf{sk}_\mathsf{Dec}))$$

$$sk_1$$
 $Enc(\mu)$

$$sk_2$$
 $Enc(\mu)$

$$sk_3$$
 $Enc(\mu)$

$$C_{\rm ct}(sk) = Dec(sk, m)$$

To Conclude...

Did not cover:

- Technical challenged in the analysis
- Decentralizing threshold FHE
- More applications like function secret sharing, distributed PRFs, ...

To Conclude...

Did not cover:

- Technical challenged in the analysis
- Decentralizing threshold FHE
- More applications like function secret sharing, distributed PRFs, ...

Open Problems:

- Decentralizing universal thresholdizer?
- Direct constructions of threshold signatures or threshold PKE?

To Conclude...

Did not cover:

- Technical challenged in the analysis
- Decentralizing threshold FHE
- More applications like function secret sharing, distributed PRFs, ...

Open Problems:

- Decentralizing universal thresholdizer?
- Direct constructions of threshold signatures or threshold PKE?

Thanks!