

Lecture: Lagrange relaxation

- 1. Lagrange relaxation
 - Global optimality conditions
 - KKT conditions for convex problems
 - Applications

Lagrange relaxation

We consider the optimization problem

(P)
$$\begin{bmatrix} \text{minimize } f(\mathbf{x}) \\ \text{s.t. } g_i(\mathbf{x}) \leq 0, \ i = 1, \dots, m \end{bmatrix}$$

where $f(\mathbf{x})$ and $g_i(\mathbf{x})$ are real valued functions.

If
$$\mathbf{g}(\mathbf{x}) = \begin{bmatrix} g_1(\mathbf{x}) & \dots & g_m(\mathbf{x}) \end{bmatrix}^\mathsf{T}$$
 then (P) can be written

(P)
$$\begin{bmatrix} \text{minimize } f(\mathbf{x}) \\ \text{s.t. } \mathbf{g}(\mathbf{x}) \leq \mathbf{0}. \end{bmatrix}$$

The idéa behind Lagrange relaxation is to put non-negative prices $y_i \ge 0$, on the constraints and then add these to the objective function. This gives the (unconstrained) optimization problem:

minimize
$$f(\mathbf{x}) + \sum_{i=1}^{m} y_i g_i(\mathbf{x})$$
 (1)

which using
$$\mathbf{y} = \begin{bmatrix} y_1 & \dots & y_m \end{bmatrix}^\mathsf{T}$$
 can be written
$$\text{minimize} \quad f(\mathbf{x}) + \mathbf{y}^\mathsf{T} \mathbf{g}(\mathbf{x})$$

The "price" y_i is called a Lagrange multiplicator.

Definition 1. The function $L : \mathbf{R}^n \times \mathbf{R}^m \to \mathbf{R}$ defined by $L(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}) + \mathbf{y}^\mathsf{T} \mathbf{g}(\mathbf{x})$ is called the Lagrange function to (P)

Weak duality

Theorem 1 (Weak duality). For an arbitrary $y \ge 0$ it holds that $\min_{\mathbf{x}} L(\mathbf{x}, \mathbf{y}) \le f(\hat{\mathbf{x}})$, where $\hat{\mathbf{x}}$ is an optimal solution to (P).

Proof: Since $\hat{\mathbf{x}}$ is a feasible solution to (P) it holds that $\mathbf{g}(\hat{\mathbf{x}}) \leq \mathbf{0}$. We get

$$\min_{\mathbf{x}} L(\mathbf{x}, \mathbf{y}) \le L(\hat{\mathbf{x}}, \mathbf{y}) = f(\hat{\mathbf{x}}) + \underbrace{\mathbf{y}^{\mathsf{T}}}_{\ge 0} \underbrace{\mathbf{g}(\hat{\mathbf{x}})}_{\le 0} \le f(\hat{\mathbf{x}}). \tag{2}$$

- minimizing the Lagrange function provides lower bounds to the optimization problem (P).
- By an appropriate choice of y a good approximation of the optimal solution to (P) is searched for. In practical algorithms one tries to solve $\max_{\mathbf{y} \geq \mathbf{0}} \min_{\mathbf{x}} L(\mathbf{x}, \mathbf{y})$. The next theorem gives conditions for the Lagrange multiplicator providing equality in (2).

Global optimality conditions

Theorem 2. If $(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \in \mathbf{R}^n \times \mathbf{R}^m$ satisfies the conditions

(1)
$$L(\hat{\mathbf{x}}, \hat{\mathbf{y}}) = \min_{x} L(\mathbf{x}, \hat{\mathbf{y}}),$$

- $(2) \mathbf{g}(\hat{\mathbf{x}}) \leq \mathbf{0},$
- $(3) \hat{\mathbf{y}} \geq 0,$
- (4) $\hat{y}^{T}g(\hat{x}) = 0.$

then $\hat{\mathbf{x}}$ is an optimal solution to (P).

Proof: If x is an arbitrary feasible solution to (P) it holds that $g(x) \leq 0$, which shows that

$$f(\mathbf{x}) \ge f(\mathbf{x}) + \hat{\mathbf{y}}^\mathsf{T} \mathbf{g}(\mathbf{x}) = L(\mathbf{x}, \hat{\mathbf{y}}) \ge L(\hat{\mathbf{x}}, \hat{\mathbf{y}}) = f(\hat{\mathbf{x}})$$

where the first inequality follows from (3) and $g(\mathbf{x}) \leq \mathbf{0}$, the second inequality follows from (1), and the last one from (4).

The dual problem

The dual objective function $\varphi: \mathbf{R}^m_+ \to \mathbf{R}$ is defined by

$$\varphi(\mathbf{y}) = \min_{x} L(\mathbf{x}, \mathbf{y}) = L(\hat{\mathbf{x}}(\mathbf{y}), \mathbf{y}),$$

where $\hat{\mathbf{x}}(\mathbf{y})$ minimizes $L(\mathbf{x}, \mathbf{y})$ over \mathbf{x} for a fixed $\mathbf{y} \geq 0$.

The dual problem to (P) is defined as

(D)
$$\begin{bmatrix} \mathsf{maximize} & \varphi(\mathbf{y}) \\ \mathsf{s.t.} & \mathbf{y} \geq \mathbf{0}. \end{bmatrix}$$

The dual problem is a convex optimization problem!

Theorem 3. φ is a concave function on \mathbb{R}^m_+ .

Global optimality conditions again

Theorem 2 can be strengthened

Theorem 4. $(\hat{\mathbf{x}}, \hat{\mathbf{y}}) \in \mathbf{R}^n \times \mathbf{R}^m$ satisfies the global optimality conditions iff

- (1) $\hat{\mathbf{x}}$ is an optimal solution to (P)
- (2) $\hat{\mathbf{y}}$ is an optimal solution to (D)
- (3) $f(\hat{\mathbf{x}}) = \varphi(\hat{\mathbf{y}})$.

The proof is based on the relation

$$\varphi(\hat{\mathbf{y}}) = \min_{x} L(\mathbf{x}, \hat{\mathbf{y}}) = L(\hat{\mathbf{x}}, \hat{\mathbf{y}}) = f(\hat{\mathbf{x}}) + \hat{\mathbf{y}}^{T} g(\hat{\mathbf{x}}) = f(\hat{\mathbf{x}})$$

Lagrange duality: An example - the primal and relaxed problems

(P)
$$\begin{bmatrix} \text{minimize} & x_1^2 + x_2^2 - 2x_1 \\ \text{s.t.} & x_1^2 + x_2^2 - 2x_2 \le 0, \end{bmatrix}$$

Here
$$f(\mathbf{x}) = x_1^2 + x_2^2 - 2x_1$$
 and $g_1(\mathbf{x}) = x_1^2 + x_2^2 - 2x_2$.

For some arbitrary $y \ge 0$, consider the Lagrange relaxed problem

(PR_y)
$$\left[\text{minimize}_{\mathbf{x} \in \mathbb{R}^2} \ x_1^2 + x_2^2 - 2x_1 + y(x_1^2 + x_2^2 - 2x_2), \right]$$

with objective function

$$L(\mathbf{x}, \mathbf{y}) = f(\mathbf{x}) + yg_1(\mathbf{x}) = x_1^2 + x_2^2 - 2x_1 + y(x_1^2 + x_2^2 - 2x_2).$$

Lagrange duality: An example - solving PR_y

For fixed $y \ge 0$ (PR_y) is a convex quadratic problem with

$$H = egin{bmatrix} 2(1+y) & 0 \ 0 & 2(1+y) \end{bmatrix}, \quad c = egin{bmatrix} -2 \ -2y \end{bmatrix}$$

where H is positive definite.

The problem (PR_y) has a unique solution

$$\hat{\mathbf{x}}(y) = -H(y)^{-1}c = -\begin{bmatrix} \frac{1}{2(1+y)} & 0\\ 0 & \frac{1}{2(1+y)} \end{bmatrix} \begin{bmatrix} -2\\ -2y \end{bmatrix} = \begin{bmatrix} \frac{1}{1+y}\\ \frac{y}{1+y} \end{bmatrix}$$

Lagrange duality: An example - the dual problem

The dual objective function is now defined as

$$\varphi(\mathbf{y}) = L(\hat{\mathbf{x}}(\mathbf{y})), \mathbf{y}) = \left(\frac{1}{1+y}\right)^2 + \left(\frac{y}{1+y}\right)^2 - 2\left(\frac{1}{1+y}\right) + \cdots$$
$$+y\left\{\left(\frac{1}{1+y}\right)^2 + \left(\frac{y}{1+y}\right)^2 - 2\left(\frac{y}{1+y}\right)\right\}$$
$$= -\frac{1+y^2}{1+y}$$

The dual optimization problem becomes

(D)
$$\begin{bmatrix} \text{maximize } -\frac{1+y^2}{1+y} \\ \text{s.t. } y \ge 0, \end{bmatrix}$$

Lagrange duality: An example - solving the dual

The dual optimization problem is convex

(D)
$$\left[\begin{array}{c} \text{minimize} & \frac{1+y^2}{1+y} \\ \text{s.t.} & y \ge 0, \end{array} \right] \sim \left[\begin{array}{c} \text{minimize} & \frac{1+(t-1)^2}{t} \\ \text{s.t.} & t \ge 1, \end{array} \right]$$

and with t = 1 + y, the dual objective function is $\phi(t) = 2/t + t - 2$, and then

$$\phi'(t) = -2/t^2 + 1,$$
 $(\phi''(t) = 4/t^3 > 0 \text{ for } t \ge 1)$

The derivative is zero for $\hat{t} = \sqrt{2}$, i.e. (D) is solved by $\hat{y} = \sqrt{2} - 1$.

Lagrange duality: An example - solving the primal

The solution to (P) is now given by

$$\hat{\mathbf{x}}(\hat{\mathbf{y}}) = egin{bmatrix} rac{1}{1+\hat{y}} \ rac{\hat{y}}{1+\hat{y}} \end{bmatrix} = egin{bmatrix} rac{1}{1+\sqrt{2}-1} \ rac{\sqrt{2}-1}{1+\sqrt{2}-1} \end{bmatrix} = egin{bmatrix} rac{1}{\sqrt{2}} \ 1-rac{1}{\sqrt{2}} \end{bmatrix}.$$

Note that the complementarity conditions holds

$$\hat{\mathbf{y}}^T \mathbf{g}_1(\hat{\mathbf{x}}) = (\sqrt{2} - 1)0 = 0$$

To show that it is the optimal solution we check the conditions for the Global optimality conditions in Theorem 4

Lagrange duality: An example - GOC

Identical optimal values

$$f(\hat{\mathbf{x}}) = \left(\frac{1}{\sqrt{2}}\right)^2 + \left(1 - \frac{1}{\sqrt{2}}\right)^2 - 2\left(\frac{1}{\sqrt{2}}\right) = -\frac{4 - 2\sqrt{2}}{\sqrt{2}},$$

$$\varphi(\hat{\mathbf{y}}) = -\frac{1+\hat{y}^2}{1+\hat{y}} = -\frac{1+(\sqrt{2}-1)^2}{1+\sqrt{2}-1} = -\frac{4-2\sqrt{2}}{\sqrt{2}}.$$

Primal feasibility

$$\hat{x}_1^2 + \hat{x}_2^2 - 2x_2 = \left(\frac{1}{\sqrt{2}}\right)^2 + \left(1 - \frac{1}{\sqrt{2}}\right)^2 - 2\left(1 - \frac{1}{\sqrt{2}}\right) = \dots = 0 \le 0.$$

Dual feasibility

$$\hat{y} = \sqrt{2} - 1 \ge 0.$$

Lagrange duality: Example - Graphical illustration

The feasible region is depicted in green.

The level sets of the objective function are circles around the point (1,0), since $x_1^2 + x_2^2 - 2x_1 = (x_1 - 1)^2 + x_2^2 - 1$.

The red small circle denotes the optimal $\hat{\mathbf{x}}$ which lies on the line $x_1 + x_2 = 1$.

Convex optimization problems

• If the functions f and g_1, \ldots, g_m are convex and continuously differentiable, then condition (1) in Theorem 2 is equivalent to the condition

$$\nabla f(\hat{\mathbf{x}}) + \sum_{i=1}^{m} \hat{y}_i \nabla g_i(\hat{\mathbf{x}}) = \mathbf{0}^{\mathsf{T}}$$
 (3)

This follows since $L(\mathbf{x}, \hat{\mathbf{y}})$ is convex when $\hat{\mathbf{y}} \geq 0$ and then it holds that $\hat{\mathbf{x}}$ is a minimum point for $L(\mathbf{x}, \hat{\mathbf{y}})$ if, and only if, $\nabla_{\mathbf{x}} L(\hat{\mathbf{x}}, \hat{\mathbf{y}}) = \mathbf{0}^{\mathsf{T}}$, *i.e.*, if and only if (3) is satisfied.

• The global optimality conditions in Theorem 2 are sufficient conditions for optimality, but in general not necessary. The next theorem shows that they are often also necessary conditions for convex optimization problems.

Definition 2. The optimization problem (P) is a regular convex optimization problem if the functions f and g_1, \ldots, g_m are convex and continuously differentiable and there exists a point $\mathbf{x}_0 \in \mathbf{R}^n$ such that $g_i(\mathbf{x}_0) < 0$, $i = 1, \ldots, m$.

Theorem 5 (KKT for convex problems). Assume that (P) is a regular convex problem. Then $\hat{\mathbf{x}}$ is a (global) optimal solution if, and only if, there exists a vector $\hat{\mathbf{y}} \in \mathbf{R}^m$ such that

(1)
$$\nabla f(\hat{\mathbf{x}}) + \sum_{i=1}^m \hat{y}_i \nabla g_i(\hat{\mathbf{x}}) = \mathbf{0}^\mathsf{T}$$

- $(2) g(\hat{\mathbf{x}}) \leq 0,$
- $(3) \hat{\mathbf{y}} \geq \mathbf{0},$
- $(4) \hat{\mathbf{y}}^{\mathsf{T}} \mathbf{g}(\hat{\mathbf{x}}) = 0.$

Proof: Sufficiency was shown previously. Necessity is shown in the book.

The conditions (2) - (4) can be made more explicit. We have that

$$\hat{\mathbf{y}}^\mathsf{T}\mathbf{g}(\hat{\mathbf{x}}) = \sum_{i=1}^m \hat{y}_i g_i(\hat{\mathbf{x}}) = 0$$

Since $g_i(\hat{\mathbf{x}}) \leq 0$ and $\hat{y}_i \geq 0$ it follows that $\hat{y}_i g_i(\hat{\mathbf{x}}) = 0$, i = 1, ..., m. We then get the equivalent conditions

(2')
$$g_i(\hat{\mathbf{x}}) \leq 0, i = 1, \dots, m,$$

(3')
$$\hat{y}_i \geq 0$$
, $i = 1, \ldots, m$,

(4')
$$\hat{y}_i \cdot g_i(\hat{\mathbf{x}}) = 0, i = 1, \dots, m.$$

Geometric interpretation

The complementarity condition (4') implies that if $g_i(\hat{\mathbf{x}}) < 0$ then $y_i = 0$. Therefore, condition (1) can be written

$$\nabla f(\hat{\mathbf{x}}) = -\sum_{i:g_i(\hat{\mathbf{x}})=0} \hat{y}_i \nabla g_i(\hat{\mathbf{x}})$$

this means that the gradient is a negative linear combination of the gradients of the binding (active) constraints.

Traffic control in communication systems

We consider a communication network consisting of two links. Three sources are sending data over the network to three different destinations.

- Source 1 uses both links.
- Source 2 uses link 1.
- Source 3 uses link 2.

- Link 1 has capacity 2 (normalized entity [data/s])
- Link 2 has capacity 1
- The three sources sends data with speeds x_r , r = 1, 2, 3.
- The three sources has each a utility function $U_r(x)$, r = 1, 2, 3. A common choice of the utility function is $U_r(x_r) = w_r \log(x_r)$.

For efficient and fair use of the available capacity, the data speeds are chosen using the following optimization criterion:

maximize
$$U_1(x_1) + U_2(x_2) + U_3(x_3)$$

s.t. $x_1 + x_2 \le 2$
 $x_1 + x_3 \le 1$
 $x_1 \ge 0, \ x_2 \ge 0, \ x_3 \ge 0$

Assume $U_k(x) = \log(x_k)$, k = 1, 2, 3. The optimization problem can be written

-minimize
$$-\log(x_1) - \log(x_2) - \log(x_3)$$

s.t. $x_1 + x_2 \le 2$
 $x_1 + x_3 \le 1$

We relaxed the constraints $x_k \ge 0$, k = 1, ..., 3 since they will be automatically satisfied, $(-\log(x) \to \infty \text{ as } x \to 0)$.

The optimization problem is convex since the constraints are linear inequalities and the objective function is a sum of convex functions, and hence convex.

The optimality conditions in Theorem 5 are

$$-\frac{1}{x_1} + y_1 + y_2 = 0$$

$$-\frac{1}{x_2} + y_1 = 0$$

$$-\frac{1}{x_3} + y_2 = 0$$

(2)
$$x_1 + x_2 - 2 \le 0$$
$$x_1 + x_3 - 1 \le 0$$

$$(3) y_1 \ge 0$$
$$y_2 \ge 0$$

(4)
$$y_1(x_1 + x_2 - 2) = 0$$
$$y_2(x_1 + x_3 - 1) = 0$$

from (1) we get

$$x_1 = \frac{1}{y_1 + y_2}$$
 $x_2 = \frac{1}{y_1}$ $x_3 = \frac{1}{y_2}$

This leads to $y_1 > 0$ and $y_2 > 0$, hence the complementarity constraint (4) shows that (2) is satisfied with equality. We get

$$\frac{\frac{1}{y_1 + y_2} + \frac{1}{y_1} = 2}{\frac{1}{y_1 + y_2} + \frac{1}{y_2} = 1} \Rightarrow y_1 = \frac{\sqrt{3}}{\sqrt{3} + 1}$$

$$y_2 = \sqrt{3}$$

which in turn gives the optimal data speeds

$$\hat{x}_1 = \frac{\sqrt{3} + 1}{3 + 2\sqrt{3}}$$
 $\hat{x}_2 = \frac{\sqrt{3}}{\sqrt{3} + 1}$, $\hat{x}_3 = \frac{1}{\sqrt{3}}$

Quadratic optimization with inequality constraints

minimize
$$\frac{1}{2}\mathbf{x}^{\mathsf{T}}\mathbf{H}\mathbf{x} + \mathbf{c}^{\mathsf{T}}\mathbf{x} + c_{0}$$

s.t. $\mathbf{A}\mathbf{x} \ge \mathbf{b}$. (4)

If ${\bf H}$ is positive semi-definite, then this is a convex optimization problem and we can apply Theorem 5.

Theorem 6. $\hat{\mathbf{x}}$ is a (global) optimal solution to (4) if, and only if, there exists a vector $\hat{\mathbf{y}} \in \mathbf{R}^m$ such that

- $\mathbf{(1)} \ \mathbf{H}\hat{\mathbf{x}} + \mathbf{c} = \mathbf{A}^{\mathsf{T}}\hat{\mathbf{y}}$
- (2) $A\hat{x} \geq b$,
- (3) $\hat{y} \geq 0$,
- $(4) \hat{\mathbf{y}}^{\mathsf{T}}(\mathbf{A}\hat{\mathbf{x}} \mathbf{b}) = 0.$

Example: Continued from last time

minimize
$$(x_1 - 3)^2 + (x_2 - 2)^2$$

s.t. $2x_1 + x_2 - 6 \le 0$,
 $x_1 + 2x_2 - 6 \le 0$

Here

$$\mathbf{H} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \quad \mathbf{c} = \begin{bmatrix} -6 \\ -4 \end{bmatrix}, \quad c_0 = 13, \quad \mathbf{A} = \begin{bmatrix} -2 & -1 \\ -1 & -2 \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} -6 \\ -6 \end{bmatrix}$$

We just check that the solution $\hat{\mathbf{x}} = (11/5, 8/5)$ and $\hat{\mathbf{y}} = (4/5, 0)$ from last time satisfies the global optimality criterum in Theorem 6.

$$\mathbf{H}\hat{\mathbf{x}} + \mathbf{c} = \mathbf{A}^\mathsf{T}\hat{\mathbf{y}}$$

$$\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 11/5 \\ 8/5 \end{bmatrix} + \begin{bmatrix} -6 & -4 \end{bmatrix} = \begin{bmatrix} -8/5 \\ -4/5 \end{bmatrix} = \begin{bmatrix} -2 & -1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 4/5 \\ 0 \end{bmatrix}$$

$$\mathbf{A}\hat{\mathbf{x}} \geq \mathbf{b}$$
,

$$\begin{bmatrix} -2 & -1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 11/5 \\ 8/5 \end{bmatrix} = \begin{bmatrix} -6 \\ -27/5 \end{bmatrix} \ge \begin{bmatrix} -6 \\ -6 \end{bmatrix}$$

$$\hat{\mathbf{y}} \geq 0$$
,

$$\hat{y} = (4/5, 0) \ge 0$$

$$\hat{\mathbf{y}}^{\mathsf{T}}(\mathbf{A}\hat{\mathbf{x}} - \mathbf{b}) = 0.$$

$$\begin{bmatrix} 4/5 & 0 \end{bmatrix} \left(\begin{bmatrix} -2 & -1 \\ -1 & -2 \end{bmatrix} \begin{bmatrix} 11/5 \\ 8/5 \end{bmatrix} - \begin{bmatrix} -6 \\ -6 \end{bmatrix} \right) = \begin{bmatrix} 4/5 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 3/5 \end{bmatrix} = 0$$

Reading instructions

• Chapters 21-22 in the book.

End of the course, what's next?

Courses given at the division

- SF2863 Systems Engineering (Per2)
- SF2812 Applied Linear Optimization (Per3)
- SF2822 Applied Nonlinear Optimization (Per4)
- SF2812 Mathematical Systems Theory (Per2)
- SF2842 Geometric Control Theory (Per3)
- SF2852 Optimal Control Theory (Per4)