Rebeca Jaramillo Camarillo

Matricula: 2132988

Materia: investigación de operaciones Grupo: 032

A4 – Modelado matemático

Problema 6. Durante la construcción de una casa, se deben recortar seis viguetas de 24 pies cada una a la longitud correcta de 23 pies. La operación de recortar una vigueta implica la siguiente secuencia:

Operación	Tiempo (segundos)
1. Colocar la vigueta en caballetes de aserrar	15
2. Medir la longitud correcta (23 pies)	5
3. Marcar la línea de corte para la sierra circular	5
4. Recortar la vigueta a la longitud correcta	20
5. Apilar las viguetas recortadas en un área designada	20

Intervienen tres personas: Dos deben realizar al mismo tiempo las operaciones 1, 2 y 5, y un cortador se ocupa de las operaciones 3 y 4. Hay dos pares de caballetes de aserrar donde se colocan las viguetas sin recortar, y cada par puede manejar tres viguetas. Sugiera un buen plan para recortar las seis viguetas

T1 = trabajador 1

T2 = trabajador 2

T3 = cortador

Tiempo (s)	Operación
0-20	T1 pone la vigueta 1 en el primer caballete
	T2 pone la vigueta 2 en el segundo caballete
	T3 espera en el primer caballete
20-45	T1 pone la vigueta 3 en el primer caballete
	T2 pone la vigueta 4 en el segundo caballete

	T3 marca y recorta la vigueta 1
	T1 pone la vigueta 5 en el primer caballete
45-70	T2 pone la vigueta 6 en el segundo caballete
	T3 marca y recorta la vigueta 2
	T1 apila la vigueta 1 en el área designada
70-95	T2 apila la vigueta 2 en el área designada
	T3 marca y recorta la vigueta 3
	T1 apila la vigueta 3 en el área designada
95-120	T2 espera
	T3 marca y recorta la vigueta 4
	T3 marca y recorta la vigueta 5 y 6
120-170	T1 apila la vigueta 4 en el área designada
	T2 apila la vigueta 5 en el área designada (al terminar T3)
	T1 termina
170-190	T2 apila la vigueta 6 en el área designada
	T3 termina

Parámetros

- Se deben recortar 6 viguetas de 24 pies a 23 pies de longitud
- Cada trabajo tiene un tiempo específicos
 - $T_1 = 15 segundos$
 - $T_2 = 5$ segundos
 - $T_3 = 5$ segundos
 - $T_4 = 20$ segundos
 - $T_5 = 20$ segundos
- Hay 2 caballetes y en cada uno se pueden colocar hasta 3 viguetas al mismo tiempo
- Están disponibles 3 personas, dos trabajan juntos y el cortador trabaja solo

Variables de decisión

 x_{ij} = tiempo en que la vigueta i comienza la tarea j donde

- x_{i1} = tiempo en que la vigueta i se coloca en el caballete de aserrar
- x_{i2} = tiempo en que comienza a medir la longitud de la vigueta i
- x_{i3} = tiempo en que comienza a marcar la línea de corte de la vigueta i
- x_{i4} = tiempo en que comienza a recortar la vigueta i
- x_{i5} = tiempo en que comienza en apilar la vigueta i

T = tiempo en que se apila la última vigueta

Función objetivo

- Minimizar el tiempo de trabajo (T)

minT

Restricciones

- Existe un orden de trabajo, es decir, una vigueta no puede empezar la siguiente tarea hasta que termine la anterior.

$$x_{i2} \ge x_{i1} + T_1$$
$$x_{i3} \ge x_{i2} + T_2$$
$$x_{i4} \ge x_{i3} + T_3$$

$$x_{i5} \ge x_{i4} + T_4$$

- Dos trabajadores realizan juntos las tareas j = {1, 2, 5} y hay dos caballetes, por lo que no se pueden realizar tareas en más de dos viguetas.

$$x_{ij} \ge x_{i-2,j} + T_j \text{ para } j = 1, 2, 5$$

- Solo hay un cortador que realiza las tareas $j = \{3,4\}$, por lo que solo trabaja una vigueta a la vez

$$x_{ij} \ge x_{i-1,j} + T_j \text{ para } j = 3, 4$$

- Hay dos caballetes que pueden sostener hasta 3 viguetas a la vez

$$x_{i1} \ge x_{i-3,1} + 15$$

Las variables son mayores a cero

$$x_{ij} \ge 0 \quad \forall i, j$$

Problema 7. Construye una pirámide bidimensional con cuatro capas. La capa inferior tiene 4 puntos, la siguiente 3 puntos, luego 2, y la última capa tiene un solo punto. Invierta la pirámide para que la capa inferior tenga 1 punto y la superior 4, cambiando la posición de los puntos.

Parámetros

- Pirámide inicial: N1 = 4 puntos, N2 = 3 puntos, N3 = 2 puntos, N4 = 1 punto
- Pirámide invertida: N1 = 1 punto, N2 = 2 puntos, N3 = 3 puntos, N4 = 4 puntos

Variables de decisión

 x_{ij} = variable binaria que indica si el punto en la posición i de la pirámide inicial se mueve a la posición j de la pirámide final

- i = posición en la pirámide inicial
- j = posición en la pirámide invertida

 d_{ij} = distancia entre la posición inicial i y la posición en la pirámide invertida j (movimientos)

Función objetivo

- Minimizar el número de movimientos necesarios para invertir la pirámide

$$\sum_{i=10}^{10} \sum_{i=10}^{10} d_{ij} x_{ij}$$

Restricciones

- Cada punto i debe moverse a una posición j de la pirámide invertida

$$\sum_{j=10}^{10} x_{ij} = 1, \quad \forall i \in \{1, 2, \dots, 10\}$$

 Cada posición j de la pirámide invertida debe ser ocupada por un punto de la pirámide inicial

$$\sum_{i=10}^{10} x_{ij} = 1, \quad \forall j \in \{1, 2, \dots, 10\}$$

- La posición de un punto en la pirámide invertida debe ser diferente a su posición en la pirámide inicial

Problema 8. Tiene cuatro cadenas de tres eslabones cada una y desea conectarlas para formar un brazalete. Romper un eslabón cuesta 2 centavos, y soldarlo nuevamente cuesta 3 centavos.

- a) Identifique dos soluciones factibles y evalúelas.
 Solución 1: Romper el último eslabón de cada cadena y unirlo al primer eslabón de otra cadena. En total se rompen y sueldan 4 eslabones. 4(2) + 4(3) = 8 + 12 = 20 centavos
 Solución 2: Romper los 3 eslabones de una cadena utilizarlos para unir las 3 cadenas restantes. En total se rompen y sueldan 3 eslabones. 3(2) + 3(3) = 6 + 9 = 15 centavos
- b) Determine el costo mínimo para hacer el brazalete.
 El costo mínimo es de 15 centavos

Parámetros

- Unir cuatro cadenas, de 3 eslabones cada una, en un brazalete
- Romper eslabón = 2 centavos
- Soldar eslabón = 3 centavos

Variables de decisión

- x = número de eslabones que se rompen
- y = número de eslabones que se sueldan

Función objetivo

Minimizar el costo de romper y soldar eslabones

$$-z = 2x + 3y$$

Restricciones

- cada eslabón roto se debe volver a soldar.

$$x = y$$

- las cuatro cadenas deben quedar unidas en una sola estructura continua, por lo que se necesitan al menos 3 conexiones

$$x \ge 3$$
; $y \ge 3$

Solución óptima

PS C:\Users\rebec\OneDrive\Desktop\InvOp> py p8.py Solución óptima encontrada:
Numero de eslabones rotos (y): 3.0
Numero de eslabones soldados (y): 3.0
Costo total mínimo: \$15.0

Problema 9. Considere una tabla rectangular de 11 filas y 9 columnas, con cuadros numerados del 1 al 99. Cada cuadro tiene una recompensa oculta entre 0 y 20 dólares. Un jugador elige un número, y su recompensa se determina restando la suma de los dígitos del número elegido al número mismo. Diseñe una asignación de valores a los cuadros que minimice las recompensas, asegurándose de no asignar \$0 a todos los cuadros

Parámetros

- Se tiene 99 cuadros enumerados del 1 al 99
- Recompensa \rightarrow Ri = Ni Suma(dígitos de Ni)

Variables de decisión

 x_i = recompensa del cuadro i

$$x_i \ge 0, \quad \forall j \in \{1, 2, ..., 99\}$$

Función objetivo

Minimizar las recompensas de los cuadros

$$min \sum_{i=1}^{99} x_i$$

Restricciones

- La recompensa se determina restando la suma de los dígitos del número elegido al número mismo.

$$x_i = N_i - Suma(digitos\ de\ N_i), \quad \ \forall i \in \{1,2,...,99\}$$

- La recompensa debe ser entre 0 y 20 dólares

$$0 \le x_i \le 20, \quad \forall i \in \{1, 2, ..., 99\}$$

- No se pueden asignar recompensas de 0 dólares a todos los cuadros