1. Subspaces of \mathbb{R}^n

Definition 1.1. A subspace of \mathbb{R}^n is a subset U of \mathbb{R}^n that is closed under addition:

if
$$u_1 \in U$$
 and $u_2 \in U$ then $u_1 + u_2 \in U$,

and closed under scalar multiplication:

if $t \in \mathbb{R}$ and $u \in U$ then $tu \in U$.

Example 1.2. The set

$$U := \left\{ \begin{bmatrix} u_1 \\ u_2 \\ u_3 \end{bmatrix} \in \mathbb{R}^3 : u_1 - 2u_2 = 3u_3 \right\} \subseteq \mathbb{R}^3$$

is a subspace of \mathbb{R}^3 .

Example 1.3. Lines, planes (graphically).

1.1. Nullspace.

Definition 1.4. Let $A \in \mathbb{R}^{m \times n}$. The *nullspace of* A, written N(A), is the set of all vectors $x \in \mathbb{R}^n$ killed by A:

$$N(A) = \{ x \in \mathbb{R}^n : Ax = 0 \}.$$

Example 1.5. Let U be as in Example 1.2. Observe:

$$u_1-2u_2=3u_3$$
 if and only if
$$u_1-2u_2-3u_3=0$$
 if and only if
$$\begin{bmatrix}1&-2&-3\end{bmatrix}\begin{bmatrix}u_1\\u_2\\u_3\end{bmatrix}=[0].$$

Therefore,

$$U = N \begin{pmatrix} \begin{bmatrix} 1 & -2 & -3 \end{bmatrix} \end{pmatrix}$$

Theorem 1.6. N(A) is a subspace of \mathbb{R}^n .

Proof. Closure under addition: Let $u_1, u_2 \in N(A)$. Then $Au_1 = 0$ and $Au_2 = 0$, by definition of N(A). We compute:

$$A(u_1 + u_2) = Au_1 + Au_2 = 0 + 0 = 0.$$

Therefore, by the defintion of N(A), $u_1 + u_2 \in N(A)$.

Closure under scalar multiplication: Let $t \in \mathbb{R}$ and let $u \in N(A)$. Then Au = 0, by definition of N(A). We compute:

$$A(tu) = tAu = t0 = 0.$$

Therefore, by the defintion of N(A), $tu \in N(A)$

Exercise 1.7. Prove that $\{x \in \mathbb{R}^n : Ax = b\}$ is a subspace of \mathbb{R}^n if and only if b = 0.

Definition 1.8. Let $\lambda \in \mathbb{R}$ and let $A \in \mathbb{R}^{m \times n}$. The λ -eigenspace of A, written $E_{\lambda}(A)$, is the set of all λ -eigenvectors of A:

$$E_{\lambda}(A) = \{x \in \mathbb{R}^n : Ax = \lambda x\}.$$

Corollary: $E_{\lambda}(A)$ is a subspace of \mathbb{R}^n .

Proof. $E_{\lambda}(A) = N(\lambda I - A)$, and nullspaces are subspaces.

Theorem 1.9. Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix. Then $N(A) = \{0\}$.

Proof. Since N(A) is a subspace of \mathbb{R}^n , $\{0\} \subseteq N(A)$. To prove the reverse inclusion, suppose that $x \in N(A)$, i.e., that Ax = 0. Since A is invertible,

$$x = A^{-1}Ax = A^{-1}0 = 0.$$

Therefore, $x \in \{0\}$. Since $x \in N(A)$ was arbitrary, $N(A) \subseteq \{0\}$.

1.2. Orthogonal complement.

Definition 1.10. Let S be a subset of \mathbb{R}^n . The *orthogonal complement of* S written S^{\perp} , is the set of vectors orthogonal to all elements of S:

$$S^{\perp} = \{ v \in \mathbb{R}^n : u \cdot v = 0 \text{ for all } u \in S \}$$

Theorem 1.11. S^{\perp} is a subspace of \mathbb{R}^n .

Proof. Closure under addition: Let $u_1, u_2 \in S^{\perp}$ and $v \in S$. We must show that $(u_1 + u_2) \cdot v = 0$. By definition of S^{\perp} , $u_1 \cdot v = 0$ and $u_2 \cdot v = 0$. Therefore,

$$(u_1 + u_2) \cdot v = u_1 \cdot v + u_2 \cdot v = 0 + 0 = 0,$$

as was to be shown.

Closure under scalar multiplication: Let $t \in \mathbb{R}$, let $u \in S^{\perp}$, and let $v \in S$. We must show that $(tu) \cdot v = 0$. By definition of S^{\perp} , $u \cdot v = 0$. Therefore,

$$(tu) \cdot v = t(u \cdot v) = t(0) = 0,$$

as was to be shown.

The orthogonal complement of a finite set of vectors is a nullspee:

Theorem 1.12. Suppose $S = \{a_1, \ldots, a_k\}$ and let

$$A = \begin{bmatrix} a_1 & \cdots & a_k \end{bmatrix}$$
.

Then

$$S^{\perp} = N(A^T).$$

Proof. Observe:

$$A^T x = \begin{bmatrix} a_1^T \\ \vdots \\ a_k^T \end{bmatrix} x = \begin{bmatrix} a_1^T x \\ \vdots \\ a_k^T x \end{bmatrix} = \begin{bmatrix} a_1^T \cdot x \\ \vdots \\ a_k^T \cdot x \end{bmatrix}$$

Therefore, $A^Tx=0$ if and only if $a_j\cdot x=0$ for all j, i.e., if and only if $x\in S^\perp$. Thus, $N(A^T)=S^\perp$.

We will see, later, that the orthogonal complement of any subset of \mathbb{R}^n is a nullspace.

Example 1.13. Lines, planes

1.3. Image and column space.

Definition 1.14. Let $A \in \mathbb{R}^{m \times n}$ and let U be a subspace of \mathbb{R}^n . The *image of* U *under* A, written AU, is the set of all matrix-vector products Au for $u \in U$:

$$AU = \{Au : u \in U\} \subseteq \mathbb{R}^m.$$

Theorem 1.15. AU is a subspace of \mathbb{R}^m .

The image of $U = \mathbb{R}^n$ plays a special role and gets a special name.

Definition 1.16. Let $A \in \mathbb{R}^{m \times n}$. The image of \mathbb{R}^n under A is called the *column space of* A and written C(A):

$$C(A) = A\mathbb{R}^n = \{Ax : x \in \mathbb{R}^n\} \subseteq \mathbb{R}^m.$$

Theorem 1.17. Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix. Then $C(A) = \mathbb{R}^n$.

Proof. Clearly, $C(A) \subset \mathbb{R}^n$. To prove the reverse inclusion, let $b \in \mathbb{R}^n$. Since A is invertible, we may set $x = A^{-1}b$. Then b = Ax, so $b \in C(A)$, by definition of C(A). Since $b \in \mathbb{R}^n$ was arbitrary, $\mathbb{R}^n \subseteq C(A)$.

Remark 1.18. We'll see, in ??, that A is invertible if and only if $C(A) = \mathbb{R}^n$.

1.4. Linear combinations.

Definition 1.19. Let $u_1, \ldots, u_k \in \mathbb{R}^n$. A linear combination of u_1, \ldots, u_k is a vector of the form

$$t_1u_1 + \cdots + t_ku_k$$

where $t_j \in \mathbb{R}$.

Example 1.20. The sum $u_1 + u_2$ is a linear combination of u_1 and u_2 . The scalar multiple tu is a linear combination of u.

Example 1.21. Let $a_1, \ldots, a_n \in \mathbb{R}^m$ and let $A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$. Then the linear combinations of a_1, \ldots, a_n are precisely the vectors of the form Ax, for $x \in \mathbb{R}^n$:

$$x_1a_1 + \cdots + x_na_n = Ax.$$

Thus, the column space of A is the set of linear combinations of the column vectors of A:

$$C(A) = \{x_1 a_1 + \dots + x_n a_n : x_1, \dots, x_n \in \mathbb{R}\}.$$

Exercise 1.22. Let S be a subset of \mathbb{R}^n . Prove the following statements.

- (1) The sum of two linear combinations of elements of S is a linear combination of elements of S.
- (2) A scalar multiple of a linear combination of elements of S is a linear combination of elements of S.
- (3) A linear combination of linear combinations of elements of S is a linear combination of elements of S.

Theorem 1.23. Let U be a subset of \mathbb{R}^n . Then U is a subspace of \mathbb{R}^n if and only if U is closed under linear combinations, i.e., if and only if every linear combination of (finitely many) elements of U is, itself, an element of U.

Corollary 1.24. Let $A \in \mathbb{R}^{m \times n}$ be a matrix. Then C(A) is a subspace of \mathbb{R}^m .

Example 1.25. Solution of a homogeneous system are linear combinations of *basic solutions*. (We'll give a more satisfying definition of basic solution later.)

1.5. **Span.**

Definition 1.26. Let S be a subset of \mathbb{R}^n . The span of S, written $\langle S \rangle$, is the set of all linear combinations of elements of S.

Theorem 1.27. $\langle S \rangle$ is a subspace of \mathbb{R}^n .

Proof. Do Exercise 1.22. \Box

Exercise 1.28. Prove that $\langle S \rangle$ is the smallest subspace of \mathbb{R}^n containing S, i.e., that if U is a subspace of \mathbb{R}^n and $S \subseteq U$ then $\langle S \rangle \subseteq U$. (Use Theorem 1.23.)

Exercise 1.29. Let S be a subset of \mathbb{R}^n . Prove that $S \subseteq \langle S \rangle$.

Theorem 1.30. Let U be a subset of \mathbb{R}^n . Then U is a subspace of \mathbb{R}^n if and only if $U = \langle U \rangle$.

Proof. Suppose U is a subspace of \mathbb{R}^n . By Exercise 1.29, $U \subseteq \langle U \rangle$. By hypothesis, U is a subspace of \mathbb{R}^n ; U obviously contains U. Therefore, by Exercise 1.29, $\langle U \rangle \subseteq U$. Having proved both inclusions, we conclude that $U = \langle U \rangle$.

Conversely, suppose $U = \langle U \rangle$. Then U is a subspace of \mathbb{R}^n by Theorem 1.27

Exercise 1.31. Let S and T be subsets of \mathbb{R}^n . Prove that if $S \subseteq T$ then $\langle S \rangle \subseteq \langle T \rangle$. Is the converse true?

Theorem 1.32. Let $u, v_1, \ldots, v_k \in \mathbb{R}^n$. Then $u \in \langle v_1, \ldots, v_k \rangle$ if and only if

$$\langle v_1, \dots, v_k \rangle = \langle u, v_1, \dots, v_k \rangle.$$

Proof. Suppose $u \in \langle v_1, \dots, v_k \rangle$. We must prove identity (1). By Exercise 1.31,

$$\langle v_1, \ldots, v_k \rangle \subseteq \langle u, v_1, \ldots, v_k \rangle.$$

To prove the reverse inclusion, let $x \in \langle u, v_1, \dots, v_k \rangle$. Then there are scalars r, s_1, \dots, s_k such that

$$(2) x = ru + s_1 v_1 + \dots + s_k v_k.$$

Since $u \in \langle v_1, \dots, v_k \rangle$, by hypothesis, there are scalars $t_1, \dots, t_k \in \mathbb{R}$ such that

$$(3) u = t_1 v_1 + \dots + t_k v_k.$$

Substituting (3) into (2), we get

$$x = r(t_1v_1 + \dots + t_kv_k) + s_1v_1 + \dots + s_kv_k$$

= $(rt_1 + s_1)v_1 + \dots + (rt_k + s_k)v_k$.

showing that x is a linear combination of $v_1, \ldots v_k$. Therefore, $x \in \langle v_1, \ldots, v_k \rangle$. Since $x \in \langle u, v_1, \ldots, v_k \rangle$ was chosen arbitrarily,

$$\langle u, v_1, \dots, v_k \rangle \subseteq \langle v_1, \dots, v_k \rangle,$$

completing the proof of (1).

Conversely, suppose that (1) holds. We must show that $u \in \langle v_1, \dots, v_k \rangle$. But this is clear:

$$u \in \langle u, v_1, \dots, v_k \rangle$$
 by Exercise 1.29
= $\langle v_1, \dots, v_k \rangle$ by (1)

Definition 1.33. Let S be a subset of \mathbb{R}^n and let U be a subspace of \mathbb{R}^n . We say that S spans U or that S is a spanning set of U if $U = \langle S \rangle$.

Exercise 1.34. Find vectors v_1, \ldots, v_k such that $\{v_1, \ldots, v_k\}$ spans N(A), where $A = \ldots$

Exercise 1.35. Find a finite spanning set for $E_{\lambda}(A)$, where $A = \dots$ and $\lambda = \dots$

Exercise 1.36. Find a vector v_1 such $\{v_1\}$ spans $\left\{\begin{bmatrix} 2\\-3\end{bmatrix}\right\}^{\perp}$.

Exercise 1.37. Find a vector v_1 such $\{v_1\}$ spans $\left\{\begin{bmatrix}2\\-3\\1\end{bmatrix},\begin{bmatrix}-1\\1\\1\end{bmatrix}\right\}^{\perp}$.

Exercise 1.38. Can you find two vectors v_1 and v_2 such $\{v_1, v_2\}$ spans $\left\{\begin{bmatrix}2\\-3\\1\end{bmatrix}\right\}^{\perp}$. Two unit vectors?

Two orthogonal vectors? Two orthogonal unit vectors? A single vector?

Exercise 1.39. Suppose that $\{u_1, \ldots, u_k\}$ spans U. Prove that $\{Au_1, \ldots, Au_k\}$ spans AU.

1.6. Column space, again.

Example 1.40. By Example 1.21, the column space of a matrix is the span of its column vectors:

$$C([a_1 \quad \cdots \quad a_k]) = \langle a_1, \ldots, a_k \rangle.$$

Theorem 1.41. C(A) is spanned by its pivot columns.

We prove this theorem with the help of two lemmas ("helper theorems").

Lemma 1.42. Let $v_1 \ldots, v_k \in \mathbb{R}^n$ and let $X \in \mathbb{R}^{n \times n}$.

$$\langle Xv_1, \dots, Xv_k \rangle = X\langle v_1, \dots, v_k \rangle.$$

Proof. Let

$$u \in \langle Xv_1, \dots, Xv_k \rangle$$
,

with the goal of showing that

$$u \in X\langle v_1, \dots, v_k \rangle.$$

By definition of $\langle Xv_1, \ldots, Xv_k \rangle$, there are scalars $t_1, \ldots, t_k \in \mathbb{R}$ such that

$$u = t_1 X v_1 + \cdots + t_k X v_k.$$

But $t_j X v_j = X(t_j v_j)$, so

$$u = X(t_1v_1) + \cdots X(t_kv_k).$$

Therefore, setting

$$v := t_1 v_1 + \cdots t_k v_k,$$

we have

$$u = X(t_1v_1 + \cdots t_kv_k) = Xv.$$

Evidently, $v \in \langle v_1, \dots, v_k \rangle$. Thus, u = Xv with $v \in \langle v_1, \dots, v_k \rangle$. Therefore,

$$u \in X\langle v_1, \ldots, v_k \rangle$$
.

Since $u \in \langle Xv_1, \dots, Xv_k \rangle$ was arbitrary, we conclude that

$$\langle Xv_1, \dots, Xv_k \rangle \subseteq X\langle v_1, \dots, v_k \rangle.$$

Conversely, Let

$$u \in X\langle v_1, \ldots, v_k \rangle$$
,

with the goal of showing that

$$u \in \langle Xv_1, \dots, Xv_k \rangle$$
.

Then there is an element $v \in \langle v_1, \dots, v_k \rangle$ such that u = Xv. As $v \in \langle v_1, \dots, v_k \rangle$, there are scalars t_1, \dots, t_k such that

$$v = t_1 v_1 + \cdots + t_k v_k.$$

Therefore,

$$u = Xv$$

$$= X(t_1v_1 + \dots + t_kv_k)$$

$$= X(t_1v_1) + \dots + X(t_kv_k)$$

$$= t_1(Xv_1) + \dots + t_k(Xv_k)$$

$$\in \langle Xv_1, \dots, Xv_k \rangle.$$

Since $u \in X\langle v_1, \ldots, v_k \rangle$ was arbitrary, it follows that

$$X\langle v_1,\ldots,v_k\rangle\subseteq\langle Xv_1,\ldots,Xv_k\rangle.$$

Having proved the reverse inclusion above, statement (1) is proved.

Lemma 1.43. Theorem 1.41 holds when A is in reduced row echelon form.

Proof. We must show that the nonpivot columns of A belong to the span of the pivot columns of A. Let $(1, j_i)$, ..., (r, j_r) be the positions of the leading ones of A, so that a_{j_1}, \ldots, a_{j_r} are the pivot columns of A. Since A is in reduced row echelon form, a leading one of A is the only nonzero element in its column. Therefore, $a_{j_i} = e_i \in \mathbb{R}^m$. Thus, it suffices to show that the nonpivot columns of A belong to $\langle e_1, \ldots, e_r \rangle \subseteq \mathbb{R}^m$.

Suppose a_j is a nonpivot column of A. Suppose that q pivot columns of A lie to the left of a_j . Then $1 \le q \le r$. (Why?) As A is in reduced row echelon form, $a_{i,j} = 0$ for i > q. Thus,

$$a_{j} = a_{1,j}e_{1} + \dots + a_{m,j}e_{m}$$
 (property of $\{e_{1}, \dots, e_{m}\}$)
$$= a_{1,j}e_{1} + \dots + a_{q,j}e_{q}$$
 (as $a_{i,j} = 0$ for $i > q$)
$$\in \langle e_{1}, \dots, e_{q} \rangle$$
 (by definition of $\langle e_{1}, \dots, e_{q} \rangle$)
$$\subseteq \langle e_{1}, \dots, e_{r} \rangle$$
 (as $q \le r$),

establishing the claim.

Proof of Theorem 1.41. Let $\gamma \in \mathbb{R}^{m \times m}$ be an invertible matrix such that $B = \gamma A$ is in reduced row echelon form. Write

$$B = \begin{bmatrix} b_1 & \cdots & b_n \end{bmatrix}.$$

Let $(1, j_i), \ldots, (r, j_r)$ be the positions of the leading ones of B, so that a_{j_1}, \ldots, a_{j_r} are the pivot columns of B. Then, by Lemma ??,

$$\langle b_1, \dots, b_n \rangle = \langle b_{j_1}, \dots, b_{j_r} \rangle.$$

Write

$$A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$$
.

Since $B = \gamma A$, $b_j = \gamma a_j$ for all j. Substituting in to the above identity, we get

$$\langle \gamma a_1, \dots, \gamma a_n \rangle = \langle \gamma a_{j_1}, \dots, \gamma a_{j_r} \rangle.$$

By Lemma??,

$$\langle \gamma a_1, \dots, \gamma a_n \rangle = \gamma \langle a_1, \dots, a_n \rangle$$

and

$$\langle \gamma a_{j_1}, \dots, \gamma a_{j_n} \rangle = \gamma \langle a_{j_1}, \dots, a_{j_n} \rangle.$$

Therefore,

$$\gamma\langle a_1,\ldots,a_n\rangle=\gamma\langle a_{i_1},\ldots,a_{i_r}\rangle$$

Cancelling the γ s (see Exercise 1.44), we get

$$\langle a_1, \dots, a_n \rangle = \langle a_{j_1}, \dots, a_{j_n} \rangle$$

Exercise 1.44. Let U and V be subspaces of \mathbb{R}^n .

- (1) Let $X \in \mathbb{R}^{m \times n}$. Prove: if $U \subseteq V$ then $XU \subseteq XV$.
- (2) Show, by example, that $XU \subseteq XV$ need not imply $U \subseteq V$.
- (3) Let $\gamma \in \mathbb{R}^{n \times n}$ be an invertible matrix. Prove: $U \subseteq V$ if and only if $\gamma U \subseteq \gamma V$.

1.7. Sums of subspaces.

Definition 1.45. Let U and V be subspaces of \mathbb{R}^n . The sum of U and V, written U+V is the set of sums u+v for $u\in U$ and $v\in V$:

$$U + V = \{u + v : u \in U, v \in V\} \subseteq \mathbb{R}^n.$$

Theorem 1.46. U + V is a subspace of \mathbb{R}^n .

Theorem 1.47. $\langle S \rangle + \langle T \rangle = \langle S \cup T \rangle$.

Definition 1.48. Let U_1, \ldots, U_k be subspaces of \mathbb{R}^n . The sum of U_1, \ldots, U_k is the set of sums $u_1 + \cdots + u_k$, where $u_i \in U_i$:

$$\sum_{j=1}^{k} U_j = U_1 + \dots + U_k = \{u_1 + \dots + u_k : u_1 \in U_1, \dots, u_k \in U_k\}.$$

Theorem 1.49. $U_1 + \cdots + U_k$ is a subspace of \mathbb{R}^n .

Exercise 1.50. $\langle S_1 \rangle + \cdots + \langle S_k \rangle = \langle S_1 \cup \cdots \cup S_k \rangle$

Exercise 1.51. $\langle u_1, \dots, u_k \rangle = \langle u_1 \rangle + \dots + \langle u_k \rangle$

Exercise 1.52. Prove that $(U_1 + U_2)^{\perp} = U_1^{\perp} \cap U_2^{\perp}$. Generalize to k subspaces.

Exercise 1.53. Prove that $A(U_1 + U_2) = AU_1 + AU_2$ and that $A^{-1}(V_1 + V_2) = A^{-1}V_1 + A^{-1}V_2$. Generalize to k summands.

2. Linear dependence and independence

Definition 2.1. Let a_1, \ldots, a_n be a list of vectors in \mathbb{R}^m . A linear dependence relation among a_1, \ldots, a_n is an identity of the form

$$x_1a_1 + \cdots + x_na_n = 0,$$

where $x_1, \ldots, x_n \in \mathbb{R}$. Such a relation is *trivial* if $x_1 = 0, \ldots, x_n = 0$.

Remark 2.2. Writing

$$A = \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix} \in \mathbb{R}^{m \times n}, \quad x = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix} \in \mathbb{R}^m,$$

and noting that

$$x_1a_1 + \cdots + x_na_n = Ax,$$

we see that a linear dependence relation among v_1, \ldots, v_n is nothing more than an identity of the form

$$Ax = 0$$
.

This linear relation is trivial if and only if x = 0.

Definition 2.3.

- (1) A finite list a_1, \ldots, a_n of vectors in \mathbb{R}^m is *linearly independent* if the only linear dependence relation among them is the trivial one. Otherwise, the list is said to be *linearly dependent*.
- (2) A set S (possibly infinite!) of vectors in \mathbb{R}^n is *linearly independent* if, for every list finite a_1, \ldots, a_n of pairwise distinct vectors drawn from S, the only linear dependence relation among a_1, \ldots, a_n is the trivial one. Otherwise, is said to be *linearly dependent*.

(Lists are allowed to have repeated entries. Sets have no notion of repetition.)

Remark 2.4. Let $S = \{a_1, \ldots, a_n\}$ be a finite set of vectors in \mathbb{R}^m . Suppose $a_i \neq a_j$ if $i \neq j$. Then the set S is linearly independent if and only if the list a_1, \ldots, a_n is linearly independent. (Why?)

Theorem 2.5.

- (1) A list of vectors containing repeated entries is linearly dependent.
- (2) A list or set containing the zero vector is linearly dependent.

Proof.

(1) Let a_1, \ldots, a_n be a list of vectors in \mathbb{R}^m . Suppose that $a_i = a_j$, where $1 \leq i < j \leq n$. Then the vectors a_1, \ldots, a_n satisfy the nontrivial linear dependence relation

$$x_1a_1 + \cdots + x_na_n = 0,$$

where $x_i = 1$, $x_j = -1$, and $x_k = 0$ if $k \neq i, j$. Therefore, the vectors a_1, \ldots, a_n are linearly dependent.

(2) Let a_1, \ldots, a_n be a list of vectors. Suppose it contains the zero vector; say $a_i = 0$, where $1 \le i \le n$. Then the vectors a_1, \ldots, a_n satisfy the nontrivial linear dependence relation

$$x_1a_1 + \cdots + x_na_n = 0,$$

where $x_i = 1$ and $x_j = 0$ if $j \neq i$. A set S containing the zero vector is linearly dependent as the list of elements drawn from S with the single entry 0 contains no repeated entries and is linearly dependent, by the above argument.

Example 2.6. The list of vectors e_1, \ldots, e_m are linearly independent, where $e_j \in \mathbb{R}^m$ is the j-th standard basis vector.

To see this, observe that

$$x_1e_1 + \cdots x_me_m = \begin{bmatrix} x_1 \\ \vdots \\ x_m \end{bmatrix}.$$

Thus, $x_1e_1 + \cdots + x_me_m = 0$ if and only if the x_j are all zero. In other words, the only linear dependence relation satisfied by the vectors e_1, \ldots, e_m is the trivial one.

Theorem 2.7. Vectors a_1, \ldots, a_n in \mathbb{R}^m are linearly dependent if and only if the nullspace of the matrix

$$A := \begin{bmatrix} a_1 & \cdots & a_n \end{bmatrix}$$

is nonzero.

Proof. By Remark 2.2, the vectors a_1, \ldots, a_n satisfy a nontrivial linear dependence relation, i.e., are linearly dependent, if and only if Ax = 0 for some nonzero $x \in \mathbb{R}^n$, i.e., if and only if $N(A) \neq \{0\}$.

Exercise 2.8.

- (1) Prove that a superlist (resp., superset) of a linearly dependent list (resp., set) of vectors is linearly dependent.
- (2) Prove that a sublist (resp., subset) of a linearly independent list (resp., set) of vectors is linearly independent.

Corollary 2.9. Let A be an invertible matrix. Then the column vectors of A are linearly independent.

Proof. Since A is invertible, $N(A) = \{0\}$ by Theorem 1.9. Therefore, by Theorem 2.7, the column vectors of A are linearly independent.

Remark 2.10. We will see, in ??, that a square matrix A is invertible if and only if its column vectors are linearly independent.

Corollary 2.11. Suppose u_1, \ldots, u_{k+1} are distinct vectors in $\langle v_1, \ldots, v_k \rangle$. Then $\{u_1, \ldots, u_{k+1}\}$ is linearly dependent.

Corollary 2.12. A linearly independent set in \mathbb{R}^n has at most n elements.

Theorem 2.13. Let $\gamma \in \mathbb{R}^{n \times n}$ be an invertible matrix. Then vectors $v_1, \ldots, v_k \in \mathbb{R}^n$ are linearly independent if and only if the vectors $\gamma v_1, \ldots, \gamma v_k$ are.

Proof. Suppose v_1, \ldots, v_k are linearly independent. We want to show that $\gamma v_1, \ldots, \gamma v_k$ are, too Suppose $\gamma v_1, \ldots, \gamma v_k$ satisfy the linear dependence relation

$$(4) 0 = t_1(\gamma v_1) + \cdots + t_k(\gamma v_k).$$

We'll show that this linear dependence relation is, necessarily, trivial. Since $t_j(\gamma v_j) = \gamma(t_j v_j)$,

$$0 = \gamma(t_1 v_1) + \cdots + \gamma(t_k v_k)$$

= $\gamma(t_1 v_1 + \cdots + t_k v_k)$.

Multiplying both sides of this identity by γ^{-1} yields

$$0 = t_1 v_1 + \dots + t_k v_k.$$

Since v_1, \ldots, v_k are linearly independent, the t_j must all be zero. Thus, the linear dependence relation (4) is trivial, as was to be shown.

Conversely, suppose the vectors $\gamma v_1, \ldots, \gamma v_k$ are linearly independent. By the above argument, applied with γv_j playing the role of v_j and γ^{-1} playing the role of γ , the vectors

$$\gamma^{-1}\gamma v_1,\ldots,\gamma^{-1}\gamma v_k$$

are linearly independent. But $\gamma^{-1}\gamma v_j = v_j$, so the vectors v_1, \ldots, v_k are linearly independent, as was to be shown.

Corollary 2.14. The pivot columns of a matrix are linearly independent.

Proof. Let γ be an invertible matrix such that $R := \gamma A$ is in reduced row echelon form. Let r be the number of nonzero rows in R. Then the pivot columns of R are $e_1, \ldots, e_r \in \mathbb{R}^m$, clearly linearly independent. The pivot columns of A are $\gamma^{-1}e_1, \ldots, \gamma^{-1}e_r$. These vectors are linearly independent by Theorem 2.13.

Exercise 2.15. Let $A \in \mathbb{R}^{m \times n}$ and let $v_1, \dots, v_k \in \mathbb{R}^n$.

- (1) Prove that if v_1, \ldots, v_k are linearly dependent, then so are Av_1, \ldots, Av_k .
- (2) If Av_1, \ldots, Av_k are linearly dependent (resp., independent), does it follow that v_1, \ldots, v_k are?

Linearly independent sets are "minimal" spanning sets:

Theorem 2.16. Let $S = \{v_1, \dots, v_k\}$ be a set of vectors in \mathbb{R}^n . Then S is linearly dependent if and only if

$$\langle S \setminus \{v_j\} \rangle = \langle S \rangle,$$

for some j with $1 \le j \le k$.

Proof. Suppose S is linearly dependent. Then there are scalars t_1, \ldots, t_k , not all zero, such that

$$0 = t_1 v_1 + \cdots + t_k v_k.$$

We may assume, without loss of generality, that $t_k \neq 0$. Then

$$v_k = -\frac{t_1}{t_k} v_1 - \dots - \frac{t_{k-1}}{t_k} v_{k-1}$$
$$\in \langle v_1, \dots, v_{k-1} \rangle.$$

By Theorem 1.32,

$$\langle v_1, \dots, v_{k-1} \rangle = \langle v_1, \dots, v_{k-1}, v_k \rangle.$$

Therefore,

$$\langle S \setminus \{v_k\} \rangle = \langle v_1, \dots, v_{k-1} \rangle$$

= $\langle v_1, \dots, v_{k-1}, v_k \rangle$
= $\langle S \rangle$.

as was to be shown.

Conversely, suppose that

$$\langle S \setminus \{v_i\} \rangle = \langle S \rangle.$$

for some j with $1 \le j \le k$. Then S is a k-element, spanning subset of $\langle S \rangle$, a subspace of \mathbb{R}^n spanned by the k-1-element set $S \setminus \{v_j\}$. By Corollary 2.11, S is linearly dependent.

Corollary 2.17. Let U be a subspace of \mathbb{R}^n and let S be a spanning subset of U. Then S is linearly independent if and only if, for every $v \in S$, the set $S \setminus \{v\}$ does not span U.

Proof. Let S be a linearly independent, spanning subset of U and let T be a proper subset of U. We must show that T does not span U. Suppose, to the contrary, that T spans U. As $T \subsetneq S$, there is an element $u \in S$ with $u \notin T$.

Suppose the proper subset T of S spans U. We must show that S is linearly dependent. As $T \subsetneq S$, there is an element $u \in S$ with $u \notin T$. Since T spans U and

$$T \subseteq S \setminus \{u\} \subseteq U$$
,

 $S \setminus \{u\}$ must span U as well. As

$$u \in S \subset U = \langle S \setminus \{u\} \rangle,$$

the set

$$(S \setminus \{u\}) \cup \{u\}$$

is linearly dependent, by Theorem ??. But

$$(S \setminus \{u\}) \cup \{u\} = S,$$

so S is linearly dependent.

Theorem 2.18. S is linearly independent if and only if every element of $\langle S \rangle$ can be written uniquely as a linear combination of elements of S.

Definition 2.19. A set S of vectors in \mathbb{R}^n is *orthogonal* if every pair of distinct vectors S are orthogonal, i.e.,

$$u \cdot v = 0$$
 for all $u, v \in S$ with $u \neq v$.

Theorem 2.20. Let S be an orthogonal set in \mathbb{R}^n with $0 \notin S$. Then S is linearly independent.

2.1. Linearly independent subspaces.

2.1.1. Two subspaces.

Definition 2.21. Subspaces U_1 and U_2 of \mathbb{R}^n are *linearly independent* if the pair (u_1, u_2) is linearly independent for all nonzero $u_1 \in U_1$ and all nonzero $u_2 \in U_2$.

Example 2.22. Let u_1 and u_2 be linearly independent vectors in \mathbb{R}^n . Then $\langle u_1 \rangle$ and $\langle u_2 \rangle$ are linearly independent. In other words, distinct lines are linearly independent.

To see this, let $x_1 \in \langle u_1 \rangle$ and let $x_2 \in \langle u_2 \rangle$. We need to show that x_1 and x_2 are linearly independent. So, suppose $s_1x_1 + s_2x_2 = 0$. We will show that $s_1 = 0$ and $s_2 = 0$. Since $x_1 \in \langle u_1 \rangle$, $x_1 = t_1u_1$ for some nonero $t_1 \in \mathbb{R}$. Symmetrically, $x_2 = t_2u_2$ for some nonzero $t_2 \in \mathbb{R}$. Substituting, we get

$$s_1x_1 + s_2x_2 = s_1t_1u_1 + s_2t_2u_2.$$

Since u_1 and u_2 are assumed linearly independent, we must have $s_1t_1 = 0$ and $s_2t_2 = 0$. Thus, $s_1 = 0$ and $s_2 = 0$ as t_1 and t_2 are nonzero.

Theorem 2.23. U_1 and U_2 are linearly independent if and only if $U_1 \cap U_2 = \{0\}$.

Example 2.24. Let

$$U = N(\begin{bmatrix} 1 & 1 & 1 \end{bmatrix}), \quad V = N(\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}).$$

Then

$$U \cap V = N\left(\begin{bmatrix}1 & 1 & 1\\ 1 & 2 & 3\end{bmatrix}\right) = \left\langle\begin{bmatrix}1\\ -2\\ 1\end{bmatrix}\right\rangle.$$

In particular $U \cap V \neq \{0\}$.

Exercise 2.25. Let u_1 and u_2 be linearly independent vectors in \mathbb{R}^3 . Prove that $\{u_1\}^{\perp}$ and $\{u_2\}^{\perp}$ are linearly dependent. Give examples, to show that this result fails if \mathbb{R}^3 is replaced by \mathbb{R}^n with n > 3.

Corollary 2.26. Let λ_1 and λ_2 be distinct eigenvalues of A. Then the eigenspaces $E_{\lambda_1}(A)$ and $E_{\lambda_2}(A)$ are linearly independent.

Exercise 2.27. Let λ_1 and λ_2 be distinct real numbers and let $A \in \mathbb{R}^{n \times n}$. Prove that

$$E_{\lambda_1}(A) \cap E_{\lambda_2}(A) = \{0\}.$$

Exercise 2.28. Let U_1 and U_2 be linearly independent subspaces of \mathbb{R}^n and let S_1 and S_2 be subsets of U_1 and U_2 , respectively. Then $S_1 \cup S_2$ is a linearly independent set if and only if both S_1 and S_2 are.

Definition 2.29. Subspaces U_1 and U_2 of \mathbb{R}^n are orthogonal if every element of U_1 is orthogonal to every element of U_2 , i.e.,

if
$$u_1 \cdot u_2 = 0$$
 for all $u_1 \in U_1$ and all $u_2 \in U_2$.

Example 2.30. Let U be a subspace of \mathbb{R}^n . Then U and U^{\perp} are orthogonal.

Exercise 2.31. Let U_1 and U_2 are orthogonal subspaces of \mathbb{R}^n . Prove that U_1 and U_2 are linearly independent.

 $2.1.2.\ k\ subspaces.$

Definition 2.32. Subspaces U_1, \ldots, U_k of \mathbb{R}^n are linearly independent if the sequence (u_1, \ldots, u_k) is linearly independent for all $u_1 \in U_1, \ldots, u_k \in U_k$.

Theorem 2.33. Let $A \in \mathbb{R}^{n \times n}$ and let Λ be the set of eigenvalues of A. Then the eigenspaces $E_{\lambda}(A)$, $\lambda \in \Lambda$, are linearly independent.

Proof. Suppose not. Let Λ' be a subset of Λ , minimal with respect to the property that the eigenspaces $E_{\lambda}(A)$, $\lambda \in \Lambda'$, are linearly dependent. (This means: if Λ'' is a proper subset of Λ' , then the $E_{\lambda}(A)$, $\lambda \in \Lambda''$, are linearly independent.) Note that $k \geq 2$. (Why?)

Suppose $\Lambda' = \{\lambda_1, \dots, \lambda_k\}$ with the λ_j pairwise distinct. By the linear dependence of Λ' , there are vectors $x_j \in E_{\lambda_j}(A)$ such that $\{x_1, \dots, x_k\}$ is linearly dependent. Thus, there are scalars t_1, \dots, t_k , not all zero, such that

$$0 = t_1 x_1 + \dots + t_k x_k.$$

In fact, by the minimality of Λ' , t_1, \ldots, t_k must all be nonzero. (Explain.) Multiply both sides of this identity by A:

$$0 = A(t_1x_1 + \cdots + t_kx_k) = t_1Ax_1 + \cdots + t_kAx_k.$$

Since x_i is a λ_i -eigenvector of A,

$$(6) 0 = t_1 \lambda_1 x_1 + \dots + t_k \lambda_k x_k.$$

Subtracing λ_k times (5) from (6) yields

$$0 = 0 - \lambda_k(0)$$

= $t_1 \lambda_1 x_1 + \dots + t_k \lambda_k x_k - \lambda_k (t_1 x_1 + \dots + t_k x_k)$
= $t_1 (\lambda_1 - \lambda_k) + \dots + t_{k-1} (\lambda_{k-1} - \lambda_k)$.

(This the right hand side of this identity makes sense as $k \geq 2$.) Since the λ_j are pairwise distinct, $\lambda_j - \lambda_k \neq 0$ for $j \leq k - 1$. Thus,

$$0 = t_1(\lambda_1 - \lambda_k) + \dots + t_{k-1}(\lambda_{k-1} - \lambda_k)$$

is a nontrivial linear depedence relation among the eigenvectors x_1, \ldots, x_{k-1} and, therefore, the eigenspaces $E_{\lambda}(A), \ \lambda \in \Lambda'' := \{\lambda_1, \ldots, \lambda_{k-1}\}$, are linear dependent. But Λ'' has fewer elements than Λ' , contradicting the minimality of the latter.

Theorem 2.34. Let U_1, \ldots, U_k be pairwise orthogonal subspaces of \mathbb{R}^n . Then U_1, \ldots, U_k are linearly independent.

Proof. Let $u_i \in U_i$ be a nonzero vector and suppose that

$$t_1u_1 + \cdots + t_ku_k = 0.$$

We must show that $t_j = 0$ for all j. Suppose $1 \le j \le k$. Take the dot product of each side of the above identity with u_j :

$$t_1(u_1 \cdot u_j) + \dots + t_j(u_j \cdot u_j) + \dots + t_k(u_k \cdot u_j) = 0 \cdot u_j = 0.$$

Since the U_1, \ldots, U_k are pairwise orthogonal, $u_i \cdot u_j = 0$ if $i \neq j$. Therefore,

$$t_i(u_i \cdot u_i) = 0.$$

But $u_j \cdot u_j \neq 0$ as $u_j \neq 0$, so $t_j = 0$, as was to be shown.

Exercise 2.35. Suppose U_1, \ldots, U_j are orthogonal. Prove that U_i and $\sum_{j \neq i} U_j$ are orthogonal for all i.

Theorem 2.36. The following are equivalent for subspaces U_1, \ldots, U_k of \mathbb{R}^n :

- (1) U_1, \ldots, U_k are linearly independent.
- (2) U_i and $\sum_{j\neq i} U_i$ are linearly independent for all i, i.e.,

$$U_i \cap \sum_{j \neq i} U_i = \{0\},\,$$

for all i.

(3) Every element of $U_1 + \cdots U_k$ can be written uniquely in the form $u_1 + \cdots u_k$, where $u_1 \in U_1, \ldots, u_k \in U_k$.

Theorem 2.37. Let $A \in \mathbb{R}^{n \times n}$ and let $\lambda_1, \ldots, \lambda_k$ be the distinct eigenvalues of A. Then the eigenspaces $E_{\lambda_1}(A), \ldots, E_{\lambda_k}(A)$ are linearly independent.

3. Basis and dimension

Definition 3.1. Let U be a nonzero subspace of \mathbb{R}^n . A set B of vectors in U is a basis of U if B is linearly independent and B spans U.

Example 3.2. The set $\{e_1,\ldots,e_n\}$ is a basis of \mathbb{R}^n .

Theorem 3.3. Let $A \in \mathbb{R}^{n \times n}$ be an invertible matrix. Then the set of column vectors of A is a basis of \mathbb{R}^n .

Proof. By Corollary 2.9, the column vectors of A are linearly independent. To see that the column vectors of A span \mathbb{R}^n , observe:

$$\langle a_1, \dots, a_n \rangle = C(A)$$
 (by definition of C(A))
= \mathbb{R}^n (by Theorem 1.17).

Theorem 3.4. The set of pivot columns of A is a basis of C(A).

Proof. The pivot columns of A are linearly independent by Corollary 2.14. They span C(A) by Theorem 1.41.

Theorem 3.5. Let U be a subspace of \mathbb{R}^n and let S be a linearly independent subset of U. Then there is a basis B of U containing S.

Proof. Let B be a linearly independent subset of U, contining S, with the largest possible number of elements. Such a set exists as (i) a linearly independent subset of U containing S exists (S itself), and (ii) the sizes of linearly independent sets in \mathbb{R}^n are bounded, by Corollary 2.12.

We will prove that B is a basis of U. Since B is linearly independent, by construction, we need only show that B spans U. Since $B \subset U$ and U is a subspace of \mathbb{R}^n , $\langle B \rangle \subseteq U$, by ??. To prove the reverse inclusion, let $u \in U$. If $u \notin \langle B \rangle$, when $B \cup \{u\}$ would be a linearly independent subset of U containing B, by Theorem ??, contradicting the maximality of B. Therefore, we must have $u \in \langle B \rangle$. Since $u \in U$ was arbitrary, we conclude that $U \subset \langle B \rangle$. Thus, B spans U, as was to be shown.

Corollary 3.6. Every nonzero subspace of \mathbb{R}^n has a basis.

Proof. Apply Theorem 3.5 with $S = \emptyset$.

Theorem 3.7. Let B_1 and B_2 be bases of the subspace U of \mathbb{R}^n . Then $|B_1| = |B_2|$.

Definition 3.8. Let U be a subspace of \mathbb{R}^n . The dimension of U, written dim U, is the size of any basis of U.

Theorem 3.9. Let U and V be subspaces of \mathbb{R}^n with $U \subseteq V$. Then $\dim U \leq \dim V$, with equality holding if and only if U = V.