Media streaming in the functional world

Mateusz Front

How do you stream media in Elixir?

How do you stream media in Elixir?

Let's solve a real-life problem! Or kind of...

Drum

Drum

+ It does bam bam

Drum

- + It does bam bam
- It takes a lot of space

Small drum == not cool

Digital drum == too expensive

Let's make a virtual drum!

 Record hand movements with camera

- Record hand movements with camera
- Stream it over WebRTC

- Record hand movements with camera
- Stream it over WebRTC
- Detect hand position with Al

- Record hand movements with camera
- Stream it over WebRTC
- Detect hand position with Al
- Emit bam whenever hand moves down

- Record hand movements with camera
- Stream it over WebRTC
- Detect hand position with Al
- Emit *bam* whenever hand moves down
- Stream the sound back

• Use getUserMedia to get the video from the browser

- Use getUserMedia to get the video from the browser
- Use JS WebRTC API to send it to the server

- Use getUserMedia to get the video from the browser
- Use JS WebRTC API to send it to the server
- Use JS WebRTC API to receive audio from the server

- Use getUserMedia to get the video from the browser
- Use JS WebRTC API to send it to the server
- Use JS WebRTC API to receive audio from the server
- Put it into the HTML <audio/> element

Receive video over WebRTC

- Receive video over WebRTC
- Parse the video

- Receive video over WebRTC
- Parse the video

- Receive video over WebRTC
- Parse the video
- Decode the video

- Receive video over WebRTC
- Parse the video
- Decode the video
- Convert the video from YUV to RGB

- Receive video over WebRTC
- Parse the video
- Decode the video
- Convert the video from YUV to RGB

- Receive video over WebRTC
- Parse the video
- Decode the video
- Convert the video from YUV to RGB

- Receive video over WebRTC
- Parse the video
- Decode the video
- Convert the video from YUV to RGB
- Detect hand movement

• Generate BAM sounds

- Generate BAM sounds
- Fill gaps with silence

- Generate BAM sounds
- Fill gaps with silence
- Encode the audio

- Generate BAM sounds
- Fill gaps with silence
- Encode the audio
- Send the audio via WebRTC

Let's get to it!

Project Bam Bam - outcomes

- With WebRTC we can stream media at very low latency
- Membrane helps accessing and manipulating media in a functional way
- Elixir makes parallelism manageable
- Bridging media streaming with AI opens up a ton of possibilities

WebRTC & low latency

	Sending a file	Low-latency media streaming
Packet loss	Always retransmit	Maybe drop it, FEC
Congestion decection	On packet loss	Constant monitoring
Recovering from congestion	Slow down	Reduce quality
Transport protocol	TCP	Custom stack on top of UDP

RTC.ON>

Sept 11-13 2024, Kraków, Poland

