Introduction to Bioinformatics

Summer 2021

Emilie Skoog

Bioinformatics is a subdiscipline of biology and computer science concerned with the acquisition, storage, analysis, and dissemination of biological data, most often DNA and amino acid sequences. Bioinformatics uses computer programs for a variety of applications, including determining gene and protein functions, establishing evolutionary relationships, and predicting the three-dimensional shapes of proteins.

RNA polymerase makes mRNA using DNA

mRNA is read by transfer RNA (tRNA) that brings along amino acids (ex. Lysine, methionine, etc). The <u>ribosome</u> is what binds the mRNA and tRNA together.

These amino acids grow into longer peptide chains as the <u>ribosome</u> continues to 'read' the **mRNA**.

REMEMBER: these amino acids have abbreviations and when you put them together to make peptide chains and proteins you get many letters in a row.

Amino Acid	3-Letters	1-Letter
Alanine	Ala	A
Arginine	Arg	R
Asparagine	Asn	N
Aspartic acid	Asp	D
Cysteine	Cys	С
Glutamic acid	Glu	Е
Glutamine	Gln	Q
Glycine	Gly	G
Histidine	His	Н
Isoleucine	Ile	I
Leucine	Leu	L
Lysine	Lys	K
Methionine	Met	M
Phenylalanine	Phe	F
Proline	Pro	P
Serine	Ser	S
Threonine	Thr	T
Tryptophan	Trp	W
Tyrosine	Tyr	Y
Valine	Val	V

REMEMBER: these amino acids have abbreviations and when you put them together to make peptide chains and proteins you get many letters in a row.

Amino Acid	3-Letters	1-Letter
Alanine	Ala	A
Arginine	Arg	R
Asparagine	Asn	N
Aspartic acid	Asp	D
Cysteine	Cys	С
Glutamic acid	Glu	E
Glutamine	Gln	Q
Glycine	Gly	G
Histidine	His	Н
Isoleucine	Ile	I
Leucine	Leu	L
Lysine	Lys	K
Methionine	Met	M
Phenylalanine	Phe	F
Proline	Pro	P
Serine	Ser	S
Threonine	Thr	T
Tryptophan	Trp	W
Tyrosine	Tyr	Y

Valine

For example, one (small) protein sequence:

YLMKKFYVWHGHHEQRNDCCCHHGILKILKILK

REMEMBER: these amino acids have abbreviations and when you put them together to make peptide chains and proteins you get many letters in a row.

Amino Acid	3-Letters	1-Letter
Alanine	Ala	A
Arginine	Arg	R
Asparagine	Asn	N
Aspartic acid	Asp	D
Cysteine	Cys	С
Glutamic acid	Glu	E
Glutamine	Gln	Q
Glycine	Gly	G
Histidine	His	H
Isoleucine	Ile	I
Leucine	Leu	L
Lysine	Lys	K
Methionine	Met	M
Phenylalanine	Phe	F
Proline	Pro	P
Serine	Ser	S
Threonine	Thr	T
Tryptophan	Trp	W
Tyrosine	Туг	Y
Valine	Val	V

BUT a whole translated genome will have millions of amino acids! Ex:

YLMKKFYVWHGHHEQRNDCCCHHGILKILKILKYLMKKFYVWHGHHEQRNDCCCHHGILKILKYLMKKFYVWHGHHEQRNDCCCHHGILKIL KILKYLMKKFYVWHGHHEQRNDCCCHHGILKILKYLMKKFYVWHGHHEQRNDCCCHHGILKILKYLMKKFYVWHGHHEQRNDCCCHHGI LKILKILKYLMKKFYVWHGHHEQRNDCCCHHGILKILKILKYLMKKFYVWHGHHEQRNDCCCHHGILKILKILKYLMKKFYVWHGHHEQRNDCCC HHGILKILKYLMKKFYVWHGHHEQRNDCCCHHGILKILKYLMKKFYVWHGHHEQRNDCCCHHGILKILKYLMKKFYVWHGHHEQRND CCCHHGILKILKYLMKKFYVWHGHHEQRNDCCCHHGILKILKYLMKKFYVWHGHHEQRNDCCCHHGILKILKYLMKKFYVWHGHHEQ RNDCCCHHGILKILKYLMKKFYVWHGHHEQRNDCCCHHGILKILKYLMKKFYVWHGHHEQRNDCCCHHGILKILKYLMKKFYVWHGH HEQRNDCCCHHGILKILKILKYLMKKFYVWHGHHEQRNDCCCHHGILKILKYLMKKFYVWHGHHEQRNDCCCHHGILKILKILKYLMKKFYVW HÖHHEOBNDCCCHHÖII KII KII KYI MKKEYVMHÖHHEOBNDCCCHHÖII KII KII KYI MKKEYVMHÖHHEOBNDCCCHHÖII KII KII KYI MKKE LKILKILKYLMKKFYVWHGHHEQRNDCCCHHGILKILKILKYLMKKFYVWHGHHEQRNDCCCHHGILKILKILKYLMKKFYVWHGHHEQRNDCCC HHGILKILKYLMKKFYVWHGHHEQRNDCCCHHGILKILKILKYLMKKFYVWHGHHEQRNDCCCHHGILKILKYLMKKFYVWHGHHEQRND RNDCCCHHGILKILKYLMKKFYVWHGHHEQRNDCCCHHGILKILKILKYLMKKFYVWHGHHEQRNDCCCHHGILKILKILKYLMKKFYVWHGH HEORNDCCCHHGII KII KII KYI MKKEYVWHGHHEORNDCCCHHGII KII KII KYI MKKEYVWHGHHEORNDCCCHHGII KII KII KYI MKKEYVW YLMKKFYVWHGHHEQRNDCCCHHGILKILKILKYLMKKFYVWHGHHEQRNDCCCHHGILKILKYLMKKFYVWHGHHEQRNDCCCHHGILKIL KII KYI MKKEYVWHGHHEORNDCCCHHGII KII KII KYI MKKEYVWHGHHEORNDCCCHHGII KII KII KYI MKKEYVWHGHHEORNDCCCHHGI LKILKILKYLMKKFYVWHGHHEQRNDCCCHHGILKILKILKYLMKKFYVWHGHHEQRNDCCCHHGILKILKILKYLMKKFYVWHGHHEQRNDCCC HHGILKILKYLMKKFYVWHGHHEQRNDCCCHHGILKILKYLMKKFYVWHGHHEQRNDCCCHHGILKILKILKYLMKKFYVWHGHHEQ

For example, one (small) protein sequence:

YLMKKFYVWHGHHEQRNDCCCHHGILKILKILK

REMEMBER: these amino acids have abbreviations and when you put them together to make peptide chains and proteins you get many letters in a row.

Amino Acid	3-Letters	1-Letter
Alanine	Ala	A
Arginine	Arg	R
Asparagine	Asn	N
Aspartic acid	Asp	D
Cysteine	Cys	C
Glutamic acid	Glu	E
Glutamine	Gln	Q
Glycine	Gly	G
Histidine	His	Н
Isoleucine	Ile	I
Leucine	Leu	L
Lysine	Lys	K
Methionine	Met	M
Phenylalanine	Phe	F
Proline	Pro	P
Serine	Ser	S
Threonine	Thr	T
Tryptophan	Trp	W
Tyrosine	Туг	Y
Valine	Val	V

REMEMBER: these amino acids have abbreviations and when you put them together to make peptide chains and proteins you get many letters in a row.

Amino Acid	3-Letters	1-Letter
Alanine	Ala	A
Arginine	Arg	R
Asparagine	Asn	N
Aspartic acid	Asp	D
Cysteine	Cys	C
Glutamic acid	Glu	E
Glutamine	Gln	Q
Glycine	Gly	G
Histidine	His	Н
Isoleucine	Ile	I
Leucine	Leu	L
Lysine	Lys	K
Methionine	Met	M
Phenylalanine	Phe	F
Proline	Pro	P
Serine	Ser	S
Threonine	Thr	T
Tryptophan	Trp	W
Tyrosine	Tyr	Y
Valine	Val	V

REMEMBER: these amino acids have abbreviations and when you put them together to make peptide chains and proteins you get many letters in a row.

Amino Acid	3-Letters	1-Letter
Alanine	Ala	A
Arginine	Arg	R
Asparagine	Asn	N
Aspartic acid	Asp	D
Cysteine	Cys	С
Glutamic acid	Glu	E
Glutamine	Gln	Q
Glycine	Gly	G
Histidine	His	H
Isoleucine	Ile	I
Leucine	Leu	L
Lysine	Lys	K
Methionine	Met	M
Phenylalanine	Phe	F
Proline	Pro	P
Serine	Ser	S
Threonine	Thr	T
Tryptophan	Trp	W
Tyrosine	Туг	Y
Valine	Val	V

Sequence!

REMEMBER: these amino acids have abbreviations and when you put them together to make peptide chains and proteins you get many letters in a row.

Amino Acid	3-Letters	1-Letter
Alanine	Ala	A
Arginine	Arg	R
Asparagine	Asn	N
Aspartic acid	Asp	D
Cysteine	Cys	С
Glutamic acid	Glu	E
Glutamine	Gln	Q
Glycine	Gly	G
Histidine	His	Н
Isoleucine	Ile	I
Leucine	Leu	L
Lysine	Lys	K
Methionine	Met	M
Phenylalanine	Phe	F
Proline	Pro	P
Serine	Ser	S
Threonine	Thr	T
Tryptophan	Trp	W
Tyrosine	Tyr	Y
Valine	Val	V

Extract DNA (lab work!)

Sequence!

(amplicon) or genome
(genomics)

ACTGGTCGCTACGATCGT CAGCTAGCTAGTCAGTCG ATAGCTAATCGATCGGCC CCATCGATAA...

REMEMBER: these amino acids have abbreviations and when you put them together to make peptide chains and proteins you get many letters in a row.

Amino Acid	3-Letters	1-Letter
Alanine	Ala	A
Arginine	Arg	R
Asparagine	Asn	N
Aspartic acid	Asp	D
Cysteine	Cys	С
Glutamic acid	Glu	E
Glutamine	Gln	Q
Glycine	Gly	G
Histidine	His	Н
Isoleucine	Ile	I
Leucine	Leu	L
Lysine	Lys	K
Methionine	Met	M
Phenylalanine	Phe	F
Proline	Pro	P
Serine	Ser	S
Threonine	Thr	T
Tryptophan	Trp	W
Tyrosine	Tyr	Y
Valine	Vol	V

T a whole translated genome will have millions of amino acids! Ex:

Sequence!

Sequence alignment

and

phylogenetics

Align sequences from different organisms (can see mismatches, gaps, insertions, deletions, regions of similarity, etc)

Amino acid sequences (protein)

Sequence alignment

and

phylogenetics

Align sequences from different organisms (can see mismatches, gaps, insertions, deletions, regions of similarity, etc)

You can visually see sequence similarities by taking these sequences and making a phylogenetic tree (use a program to do this)

Protein structure prediction

Protein structure prediction

Use sequences to predict protein structure

Protein structure prediction

Protein PFF0165c

MSNKKRSKNENDESTSLPLENSELLIEYIHNLKSCLNVYRREIOEKNKYISIIKNDLSFHEC ILTNVNVVWSVFNNDLLNLLCNNEQKEEGEEIIKQRNIGDEINEYNNLTKLQNDENIKNNNM IKEDLEDDANQNILMKSPYYNIENFLQVFLKYINKKKKKVKVKVKDEGKKEKIEDKKYEQDD EEENEEEEEEEEEEEKEDEEFFKTFVSFNLYHNNNEKNISYDKNLVKQENDNKDEAR GNDNMCGNYDIHNERGEMLDKGKSYSGDEKINTSDNAKSCSGD**E**KVITSDNGKSYDYVKNES **EEQEEKENMLNNKKRSLECNPNEAKKICFSLEEKIGTVQSVKLKEYNELSKENIEKNKHDDN** NICNYLSHNEGENVIEREDKLFNKLNNKNYRNEEEKKKNQINFDYLKKKIKNNQDVFEETIQ KCFLINLKKTLNLINKIMYLKNVEFRKYNLDYIRKINYEKCFYYKNYIDIKKKISELOKDNE SLKIQVDRLEKKKATLIYKLNNDNIRKHILDNNIKDYQNGIDNSKVSYFDEGENPYNRNNKN YRTDNKNSDDNNNNNYYYNNYNSDDNYNSEDNEYNNGNYRFRNNYKKDSLNEDDVKKNPLK VCHKINSDSNIFVNFENIITKONIIHSEPFRNLLKESNELYITLKEKEKENIILKNEILKME NKKDEEYEHLLNNTIEDKKELTRSIKELEINMMTCNMEKDKISNKVNTLEYEINVLKNIDKN OTMOLOOKENDILKMKLYIEKLKLSEKNLKDKIILLENEKDKMLSGIHIKDNSFNEESKSEE GKIQLRDIQNDNDEKYDDEKKRFKELFIENQKLKEELNKKRNVEEELHSLRKNYNIINEEIE EITKEFEKKQEQVDEMILQIKNKELELLDKFNNKMNKAYVEEKLKELKNTYEEKMKHINNIY KKHDDFVNIYLNLFFOARKNAILSDSOREEOMNLFIKLKDKYDIIFOKKIELTDILKNVYDC NKKLIGHCODLEKENSTLONKLSNEIKNSKMLSKNLSKNSDDHLLIEENNELRRRLICSVCM ENFRNYIIIKCGHIYCNNCIFNNLKTRNRKCPQCKVPFDKKDLQKIFLD

Schematic Representation

Use sequences to predict protein structure

Functional annotation (aka labeling a protein's function)

Take protein sequence OR entire genome (many many protein sequences) of interest

Functional annotation (aka labeling a protein's function)

one protein sequence

Stick it into NCBI BLAST (website) and find closest 'hit'. This may help tell you what this protein is. This might be more useful if looking at just one protein.

Take protein sequence OR entire genome (many many protein sequences) of interest

Functional annotation (aka labeling a protein's function)

sequences) of interest

one protein sequence

Stick it into NCBI BLAST (website) and find closest 'hit'. This may help tell you what this protein is. This might be more useful if looking at just one protein.

entire genome

BUT what we usually do when trying to determine what ALL of the proteins are in a genome is use a program to 'annotate' each gene and tell us what function it has. For example, it can tell us which protein is a photosystem I in our cyanobacteria, so now we know that this is likely a photosynthesizing organism.

'Omics studies

Types of 'omics studies:

- (Meta)genomics
- Transcriptomics
- Metabolomics
- Proteomics

Questions you can answer:

- Who is there?
- 2. What might they be able to do?
- 3. Who is doing what?
- 4. How do these organisms or genes fit into the context of evolution?
- 5. And more!

The omics cascade

Revisiting: What is bioinformatics?

Bioinformatics is a subdiscipline of biology and computer science concerned with the acquisition, storage, analysis, and dissemination of biological data, most often DNA and amino acid sequences. Bioinformatics uses computer programs for a variety of applications, including determining gene and protein functions, establishing evolutionary relationships, and predicting the three-dimensional shapes of proteins.

Make more sense?!

Where do we do these bioinformatic analyses?

Locally (aka on your 'local' computer)

Pros:

- Anyone with a computer can perform basic bioinformatic tasks
- Don't need access to an HPC

Cons:

- Can do small amounts of computing
- Not good for large programs -installing takes a lot of space on your computer (this is where memory/ram and processors come into play)
- Not good for large datasets (memory and storage on your computer)

Where do we do these bioinformatic analyses?

Locally (aka on your 'local' computer)

Pros:

- Anyone with a computer can perform basic bioinformatic tasks
- Don't need access to an HPC

Cons:

- Can do small amounts of computing
- Not good for large programs -installing takes a lot of space on your computer (this is where memory/ram and processors come into play)
- Not good for large datasets (memory and storage on your computer)

Terms in case you are interested:

 RAM (Random Access Memory): used as a short-term memory storage space for the computer to place data it's currently working on so it's easily accessible. The more RAM a computer has, the more data it can usually juggle at any given moment.

CPU (Central Processing Unit): provides the
instructions and processing power the computer needs
to do its work. The more powerful and updated your
processor, the faster your computer can complete its
tasks. By getting a more powerful processor, you can
help your computer think and work faster.

Where do we do these bioinformatic analyses?

Locally (aka on your 'local' computer)

Pros:

- Anyone with a computer can perform basic bioinformatic tasks
- Don't need access to an HPC

Cons:

- Can do small amounts of computing
- Not good for large programs -installing takes a lot of space on your computer (this is where memory/ram and processors come into play)
- Not good for large datasets (memory and storage on your computer)

HPC (aka cluster computing)

Pros:

 Can store and process lots of data much faster than your local computer

Cons:

Need access to an HPC (\$\$)

What really is an HPC cluster?

Less dramatically...

High performance computing (HPC) (cluster computing)

- An HPC cluster is a collection of many separate servers (computers), called nodes, which are connected with a fast interconnect.
- Each of the HPC clusters has a headnode or login node, where users log in and can schedule a task.
- When you schedule a task, you can ask for how many nodes, cores, and threads you need.

Nodes, cores, and threads

- A node is (typically) an individual computer, connected to others through a local network. A node contains (normally) a single CPU which contains one or more cores.
- Cores can implement hyper threading, allowing each core to handle the execution of several threads.
- If job is split between several processors, can perform many tasks simultaneously (faster).

