Отчёт по результатам декодирования (Greedy, Beam, Beam+LM, Beam+LM Rescore)

Данный эксперимент проводился с целью реализовать и сравнить качество распознавания речи (ASR) четырьмя методами:

- 1. Greedy (жадное СТС-декодирование)
- 2. Beam Search (без LM)
- 3. Beam Search + Language Model (shallow fusion)
- 4. Beam Search + LM Rescore (дополнительный двухшаговый проход)

В качестве модели использовалась Wav2Vec2 (facebook/wav2vec2-base-960h), а для LM – трёхграммная KenLM-модель.

Мы использовали **Character-level Levenshtein distance**, показывающую число операций (вставка, удаление, замена символов), необходимых для преобразования расшифровки в эталонную транскрипцию. Чем меньше это число, тем лучше качество распознавания.

Сэмпл	Greedy	Beam	Beam+LM	Beam+LM Rescore	Beam+LM (модель без прунинга)	Beam+LM Rescore (модель без прунинга)
1	8	10	9	11	15	11
2	0	5	6	5	22	5
3	1	5	6	5	15	5
4	4	8	8	8	17	8
5	1	2	2	2	5	2
6	15	16	18	16	18	16
7	17	19	19	19	20	19
8	14	15	16	15	19	15

Наблюдения

- **Greedy:** во многих тестовых примерах Greedy выдаёт результат лучше (или не хуже) остальных методов. В одном из случаев (пример №2) жадный декодер и вовсе ошибается на 0 символов, то есть идеально совпадает с эталоном.
- **Beam Search:** даёт немного более длинные гипотезы, но не всегда это приводит к улучшению. Иногда, наоборот, он добавляет мелкие ошибки или «подвисает» на СТС-повторах, что в итоге даёт Levenshtein distance больше, чем у Greedy.
- **Beam Search** + **LM** (**shallow fusion**): при больших α,β (например, 1.0, 1.0) мы наблюдали резкое ухудшение результатов из-за чрезмерного «вмешательства» LM. При уменьшении α до 0.01 и β=0 LM перестаёт «портить» выход, но и *не сильно* помогает. Например, в первом примере становится на 1 символ лучше, чем Веат без LM, но всё равно не догоняет Greedy.

• **Beam Search** + **LM Rescore:** результаты похожи на обычный Beam. Если LM не даёт сильного положительного вклада, то и финальный рескоринг не улучшает ситуацию заметно.

Интересные моменты: изначально были α =1.0, β =1.0, но LM «ломал» расшифровку (добавлял десятки лишних символов). Постепенно уменьшая α (до 0.4, 0.1, 0.01) и обнуляя β , мы пришли к балансу, при котором LM уже не вредит, но заметного выигрыша в метриках тоже не даёт. Возможно LM обучен на другом стиле данных или акустические вероятности и так достаточно точны. Большая модель не дает преимуществ, даже ровно наоборот - дает ухудшение. Также изменение бима не дало улучшений при данных вводных.

Итог: greedy лучшие результаты показывает, что наводит на мысль, что facebook/wav2vec2-base-960h отлично обучен - потому и гриди показывает лучший результат.