Problemy uczenia sieci neuronowych

dr inż. Sebastian Ernst

Przedmiot: Uczenie Maszynowe

Uczenie sieci neuronowych

Problem znikających/eksplodujących gradientów

- Algorytm propagacji wstecznej przenosi gradienty błędów idąc od warstwy wyjściowej do wejściowej (czyli wstecz)
- Często wartości gradientów spadają przy przechodzeniu do coraz niższych warstw
 problem znikajacych gradientów
- Czasami jest wręcz przeciwnie problem eksplodujących gradientów
- W 2010 Glorot i Bengio odkryli związek między niestabilnością gradientów a używaniem funkcji sigmoidalnej oraz popularnego wówczas sposobu inicjalizacji wag (rozkład normalny $\mu=0$, $\sigma=1$)

Inicjalizacja Glorota i He

- Teoretycznie: wariancja wejść każdej warstwy musi być równa wariancji jej wyjść
- W praktyce: wagi połączeń warstwy powinny być równe:
 - rozkładowi normalnemu o $\mu=0$, $\sigma^2=\frac{1}{fan_{avg}}$ lub
 - rozkładowi jednostajnemu pomiędzy -r a +r przy $r=\sqrt{\frac{3}{fan_{\mathrm{avg}}}}$

Metoda	Funkcje aktywacji	σ^2
Glorot	brak, tanh, sigmoid, softmax	$1/\mathit{fan}_{avg}$
He	ReLU & co.	$2/fan_{in}$
LeCun	SELU	$1/\mathit{fan}_{in}$

Nienasycające funkcje aktywacji

- Przy ReLU: problem "umierających" neuronów
 suma ważona wejść zawsze ujemna
- Dwa rozwiązania:
 - leaky ReLU:

$$\mathsf{LeakyReLU}_\alpha(\mathbf{z}) = \mathit{max}(\alpha \mathbf{z}, \mathbf{z})$$

Exponential Linear Unit:

$$ELU_{\alpha}(z) = egin{cases} lpha(e^z-1) & ext{dla } z < 0 \ z & ext{dla } z \geqslant 0 \end{cases}$$

Normalizacja wsadów

- Stosowanie inicjalizacji He i ELU/ReLU & co. zmniejsza ryzyko niestabilności gradientów na początku uczenia, ale problem może pojawić się później.
- Technika Batch Normalization polega na dodaniu operacji tuż przed lub po funkcji aktywacji każdej warstwy ukrytej – wycentrowanie i normalizacja wejścia + skalowanie i przesunięcie wyniku.

```
model = keras.models.Sequential([
    keras.layers.Flatten(input_shape=[28, 28]),
    keras.layers.BatchNormalization(),
    keras.layers.Dense(300, activation="relu"),
    keras.layers.BatchNormalization(),
    keras.layers.Dense(100, activation="relu"),
    keras.layers.BatchNormalization(),
    keras.layers.Dense(10, activation="softmax")
])
```

Uczenie transferowe

Wykorzystanie wytrenowanych warstw

Uczenie transferowe w Keras

```
model A = keras.models.load model("my model A.h5")
model B on A = keras.models.Sequential(model A.layers[:-1])
model B on A.add(keras.layers.Dense(1, activation="sigmoid"))
Uwaga: trening nowego modelu będzie modyfikował wagi warstw również w model A
– aby tego uniknać, klonujemy model:
model A clone = keras.models.clone model(model A)
model A clone.set weights(model A.get weights())
model_B_on_A = keras.models.Sequential(model_A_clone.layers[:-1])
model B on A.add(keras.layers.Dense(1, activation="sigmoid"))
```

Wstępne przyuczanie warstwy wyjściowej

Początkowo, warstwa wyjściowa może zwracać wartości dalekie od ideału, a propagacja zmian może zniszczyć wagi przeniesione z pierwotnego modelu. W tym celu blokujemy możliwość modyfikacji wag przeniesionych warstw.

```
for layer in model B on A.layers[:-1]:
    laver.trainable = False
model B on A.compile(loss="binary crossentropy",
                     optimizer=keras.optimizers.SGD(learning rate=1e-3).
                     metrics=["accuracy"])
history = model_B_on_A.fit(X_train_B, y_train_B, epochs=4,
                           validation data=(X valid B, y valid B))
```

Uczenie nowego modelu

Nienadzorowane uczenie wstępne

Inne (szybsze) algorytmy

optymalizacji

Przyspieszanie procesu uczenia

Dotychczas znamy **cztery sposoby** na przyspieszenie uczenia:

- 1. dobra strategia inicjalizacji wag połączeń
- 2. dobra funkcja aktywacji
- 3. korzystanie z normalizacji wsadów (BN)
- 4. wykorzystanie części wstępnie przyuczonej sieci

Piąty sposób: wykorzystanie algorytmu optymalizacji innego niż gradientowy (*gradient descent*).

Algorytm gradientowy z pędem

- Klasyczny algorytm gradientowy nie uwzględnia wcześniejszych wartości gradientów
 bierze pod uwagę tylko wartość chwilową.
- Algorytm z pędem dodaje wektor pędu, a więc wartość gradientu przekłada się na przyspieszenie a nie prędkość:
 - 1. $\mathbf{m} \leftarrow \beta \mathbf{m} \eta \nabla_{\Theta} J(\Theta)$
 - 2. $\Theta \leftarrow \Theta + \mathbf{m}$
- \blacksquare Np. dla $\beta=0.9$ prędkość może wzrosnąć 10x w stosunku do zwykłego algorytmu gradientowego.
- Przyspieszenie widoczne szczególnie przy różnych skalach wejść (efekt wydłużonej misy).
- W Keras wystarczy ustawić parametr momentum:

```
optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9)
```

Nesterov Accelerated Gradient (NAG)

- Zaproponowany w 1983 przez
 Nesterowa, prawie zawsze szybszy
 niż "zwykły" gradient z pędem.
- Patrzy "z wyprzedzeniem":

1.
$$\mathbf{m} \leftarrow \beta \mathbf{m} - \eta \nabla_{\Theta} J(\Theta + \beta \mathbf{m})$$

2.
$$\Theta \leftarrow \Theta + \mathbf{m}$$

 W Keras dodajemy argument nesterov=True.

AdaGrad

 Koryguje kierunek gradientu w stronę globalnego minimum, skalując wektor gradientów wedle "stromości":

1.
$$\mathbf{s} \leftarrow \mathbf{s} + \nabla_{\Theta} J(\Theta) \otimes \nabla_{\Theta} J(\Theta)$$

2.
$$\Theta \leftarrow \Theta - \eta \nabla_{\Theta} J(\Theta) \oslash \sqrt{\mathbf{S} + \varepsilon}$$

 Problem przy sieciach głębokich: zatrzymuje się za wcześnie.

RMSProp

- Rozwinięcie AdaGrad bierze pod uwagę tylko gradienty z ostatnich iteracji (a nie od początku uczenia)
- Patrzy "z wyprzedzeniem":

1.
$$\mathbf{s} \leftarrow \beta \mathbf{s} + (1 - \beta) \nabla_{\Theta} J(\Theta) \otimes \nabla_{\Theta} J(\Theta)$$

2.
$$\Theta \leftarrow \Theta - \eta \nabla_{\Theta} J(\Theta) \oslash \sqrt{\mathbf{S} + \varepsilon}$$

- Typowa wartość β : 0.9.
- W Keras:

keras.optimizers.RMSprop(lr=0.001, rho=0.9)

Adam

- Adam = adaptive moment estimation
- Łączy cechy gradientu z pędem oraz RMSProp:
 - tak jak gradient z pędem, pamięta wykładniczo zanikającą średnią poprzednich gradientów,
 - tak jak RMSProp, pamięta wykładniczo zanikającą średnią kwadratów poprzednich gradientów.

1.
$$\mathbf{m} \leftarrow \beta_1 \mathbf{m} - (1 - \beta_1) \nabla_{\Theta} J(\Theta)$$

2.
$$\mathbf{s} \leftarrow \beta_2 \mathbf{s} + (1 - \beta_2) \nabla_{\Theta} J(\Theta) \otimes \nabla_{\Theta} J(\Theta)$$

3.
$$\widehat{\mathbf{m}} \leftarrow \frac{\mathbf{m}}{1-\beta_1^t}$$

4.
$$\widehat{s} \leftarrow \frac{\mathbf{s}}{1-\beta_2^t}$$

5.
$$\Theta \leftarrow \Theta + \eta \widehat{\mathbf{m}} \oslash \sqrt{\widehat{\mathbf{s}} + \varepsilon}$$

Harmonogramowanie kroku uczenia

Długość kroku a efekty uczenia

Harmonogramowanie z potęgowaniem (power scheduling)

- Krok w funkcji numeru iteracji t: $\eta(t) = \eta_0/(1+t/s)^c$
- Hiperparametry:
 - η_0 krok początkowy
 - c wykładnik potęgi
 - s liczba kroków
- Po wykonaniu s kroków, η spada do $\eta_0/2$, potem do $\eta_0/3$, $\eta_0/4$, itd.

Harmonogramowanie wykładnicze (exponential scheduling)

- $\eta(t) = \eta_0 \cdot 0.1^{t/s}$
- η maleje 10-krotnie co s kroków
- nie wyhamowuje tak jak harmonogramowanie z potęgowaniem

Harmonogramowanie ze stałymi wartościami (piecewise constant scheduling)

- Sekwencja par (długość kroku, liczba iteracji)
- Wymaga ręcznego strojenia całej sekwencji

Harmonogramowanie oparte o wydajność (performance scheduling)

- Zmierz błąd walidacyjny co N kroków (tak jak early stopping)
- Zmniejsz długość kroku o λ gdy nie ma poprawy

Harmonogramowanie 1cycle

- Zaproponowane w 2018 przez Liesliego Smitha
- Zaczynamy od η_0 , zwiększamy liniowo do η_1
- Potem obniżamy z powrotem do η_0 w kolejnej części procesu uczenia
- Pod koniec uczenia zmniejszamy krok, nadal liniowo, ale o kilku rzędów wielkości
- η_1 ustawiamy tak jak zwykle statyczny krok; $\emph{n}_0 pprox \eta_1/10$
- Jeżeli korzystamy z pędu, zaczynamy od wysokiej wartości (np. 0.95) i w pierwszej fazie nieco ją obniżamy (np. 0.85), potem podnosimy

Harmonogramowanie w Keras

• Harmonogramowanie z potęgowaniem:

```
optimizer = keras.optimizers.SGD(lr=0.01, decay=1e-4)
```

 Harmonogramowanie wykładnicze i ze stałymi wartościami możemy uzyskać definiując funkcję zaniku i dołączając jako callback do procesu uczenia:

Regularyzacja: unikanie przeuczenia

Regularyzacja: co już znamy

- Early stopping przerywanie uczenia przy braku poprawy
- Normalizacja wsadów ma takie działanie, mimo że powstała aby unikać niestabilności gradientów

Regularyzacja ℓ_1 i ℓ_2

- Regularyzacja ℓ_1 ograniczenie wag połączeń w sieci
- Regularyzacja ℓ_2 model rzadki (wiele wag ustawionych na 0)
- W Keras dodajemy do warstwy argument kernel_regularizer, przekazując jeden z obiektów:
 - keras.regularizers.l1
 - keras.regularizers.12
 - keras.regularizers.l1_l2

Dropout

- Metoda zaproponowana i rozwinięta w 2012 i 2014 roku
- W każdym kroku, każdy neuron z prawdopodobieństwem p zostanie opuszczony (ang. dropped out)
- Opuszczony neuron jest ignorowany, ale tylko w bieżącym kroku uczenia
- Hiperparametr p (współczynnik opuszczenia – dropout rate) ustawiamy na 10–50% (zakres węższy w sieciach rekurencyjnych i konwolucyjnych)

Dropout w Keras

```
model = keras.models.Sequential([
    keras.layers.Flatten(input shape=[28, 28]),
    keras.layers.Dropout(rate=0.2).
    keras.lavers.Dense(300, activation="elu",
                       kernel initializer="he normal"),
    keras.layers.Dropout(rate=0.2),
    keras.layers.Dense(100, activation="elu",
                       kernel initializer="he normal"),
    keras.layers.Dropout(rate=0.2),
    keras.layers.Dense(10, activation="softmax")
1)
```