Conception de base de données

Modèle relationnel

L3 Informatique

Antoine Spicher

antoine.spicher@u-pec.fr

Big Picture

Plan

Modèle logique de données

Algèbre relationnelle

En pratique...

Rappels

- Modélisation et base de données
 - □ Modélisation des données
 - Système
 Informations réelles à stocker dans la BD
 - ModèleOrganisation/structuration des informations
 - Formalisme

Quel formalisme?

- Modélisation de la base de données
 - SystèmeStockage physique des données
 - Modèle
 Abstraction réaliste du stockage des données
 - Formalisme(s)Théorie des ensembles, diagrammes, ...

Schéma

Modèle de données

Rappels

- Modélisation logique de données (MLD)
 - Modélisation des données
 - Système

Informations réelles à stocker dans la BD

Modèle

Organisation/structuration des informations

Formalisme

Utilisation du modèle de données

- Modélisation de la base de données
 - Système
 Stockage physique des données
 - Modèle

Abstraction réaliste du stockage des données

Formalisme(s)

Théorie des ensembles, diagrammes, ...

Schéma

La modélisation des données reflète leur stockage physique

Modèle de données

- Introduction par l'exemple
 - Représentation d'étudiants caractérisés par :
 - Leur numéro d'étudiant unique
 - Leur nom
 - Leur date de naissance
 - Leur niveau d'étude
 - Données regroupées dans une table à la façon d'un fichier Excel

Etudiant	N°	Nom	Date naiss.	Niveau
	123456	Toto	25/01/93	L3
	542355	Tata	27/04/92	L2
	242643	Titi	14/08/89	M2
		•••		•••

Vocabulaire du MLD

- □ *Relation* (table) : ensemble de données de même type
 - Identité spécifique
 - Identifiée par un nom
 - Tous les étudiants peuvent être décrits de la même façon

Etudiant	N°	Nom	Date naiss.	Niveau
	123456	Toto	25/01/93	L3
	542355	Tata	27/04/92	L2
	242643	Titi	14/08/89	M2
	•••	•••		

Relation

Vocabulaire du MLD

- □ Relation (table) : ensemble de données de même type
- Schéma (entête) : caractérisation des données de la table
 - Identité qualitative
 - Chaque étudiant peut être caractérisé par un ensemble d'informations (qualités) de taille fixe

Sché	ma					
	Etudiant	N°	Nom	Date naiss.	Niveau	
		123456	Toto	25/01/93	L3	
		542355	Tata	27/04/92	L2	
		242643	Titi	14/08/89	M2	
		•••	•••		•••	

Notation textuelle : Etudiant(num, nom, date_naiss, niveau)

Vocabulaire du MLD

- Relation (table) : ensemble de données de même type
- Schéma (entête) : caractérisation des données de la table
- Attribut (colonne): nom et domaine de valeurs d'une information
 - Chaque information est identifiée par un nom
 - Chaque information est prise dans un domaine de valeurs possibles
 - Un étudiant possède une date de naissance valide dont le format est jj/mm/aa

Etudiant	N°	Nom	Date naiss.	Niveau
	123456	Toto	25/01/93	L3
	542355	Tata	27/04/92	L2
	242643	Titi	14/08/89	M2
			Attribut	

Vocabulaire du MLD

- Relation (table) : ensemble de données de même type
- Schéma (entête) : caractérisation des données de la table
- Attribut (colonne): nom et domaine de valeurs d'une information
- Tuple (ligne) : valeurs des attributs d'une donnée particulière
 - Chaque entrée caractérise une et une seule entité du monde réel
 - La donnée du numéro, du nom, de la date de naissance et du niveau d'un étudiant permet de le distinguer de tous les autres

	Etudiant	N°	Nom	Date naiss.	Niveau
		123456	Toto	25/01/93	L3
		542355	Tata	27/04/92	L2
Tuple		242643	Titi	14/08/89	M2
			•••		

Vocabulaire du MLD

- Relation (table) : ensemble de données de même type
- Schéma (entête) : caractérisation des données de la table
- Attribut (colonne): nom et domaine de valeurs d'une information
- □ Tuple (ligne) : valeurs des attributs d'une donnée particulière
- Valeur (case): croisement entre un tuple et un attribut
 - La date de naissance de l'étudiant numéro 242643 est le 14 février 1989

Etudiant	N°	Nom	Date naiss.	Niveau
	123456	Toto	25/01/93	L3
	542355	Tata	27/04/92	L2
	242643	Titi	14/08/89	M2
			•••	

Contenu

Vocabulaire du MLD

- Relation (table) : ensemble de données de même type
- Schéma (entête) : caractérisation des données de la table
- Attribut (colonne): nom et domaine de valeurs d'une information
- □ Tuple (ligne) : valeurs des attributs d'une donnée particulière
- □ Valeur (case) : croisement entre un tuple et un attribut

- Faiblesses de la représentation graphique
 - Problématiques des représentations graphiques
 - Règles de construction graphique non-closes/incohérentes
 Représentation « dessinable » de sémantique impropre
 - Règles de construction graphique non-couvrantes
 Situations autorisées par la sémantique mais non-dessinables
 - Absence de sémantique formelle bien définie

- Faiblesses de la représentation graphique
 - Ordre des tuples et des attributs
 - Absence d'ordre entre les tuples
 L'ordre dans lequel les données sont entrées est oublié

Etudiant	N°	Nom	Date naiss.	Niveau
	123456	Toto	25/01/93	L3
	542355	Tata	27/04/92	L2
	242643	Titi	14/08/89	M2

Etudiant	N°	Nom	Date naiss.	Niveau
	542355	Tata	27/04/92	L2
	123456	Toto	25/01/93	L3
	242643	Titi	14/08/89	M2

- Faiblesses de la représentation graphique
 - Ordre des tuples et des attributs
 - Absence d'ordre entre les attributs
 Différence entre les types produits × et enregistrement

Etudiant	N°	Nom	Date naiss.	Niveau
	123456	Toto	25/01/93	L3
	542355	Tata	27/04/92	L2
	242643	Titi	14/08/89	M2

Etudiant	Date naiss.	Nom	Niveau	N°
	25/01/93	Toto	L3	123456
	27/04/92	Tata	L2	542355
	14/08/89	Titi	M2	242643

- Faiblesses de la représentation graphique
 - 1. Travailler modulo permutations de tuples et d'attributs

Etudiant	N°	Nom	Date naiss.	Niveau
	123456	Toto	25/01/93	L3
	542355	Tata	27/04/92	L2
	242643	Titi	14/08/89	M2

Etudiant	Date naiss.	Nom	Niveau	N°
	27/04/92	Tata	L2	542355
	25/01/93	Toto	L3	123456
	14/08/89	Titi	M2	242643

- Faiblesses de la représentation graphique
 - ☐ Cas d'un attribut *non renseigné* (case vide)
 - Attribut non défini pour le tuple en question
 Ex: champ « nom de jeune fille » dans un formulaire administratif
 - Attribut non encore connu
 Ex: date de naissance/de mort, un parent, etc. dans un arbre généalogique

...

Etudiant	N°	Nom	Date naiss.	Niveau
	123456	Toto	25/01/32	L3
	542355	Tata		L2
	242643	Titi	14/00/69	M2
		•••		•••

- Faiblesses de la représentation graphique
 - 1. Travailler modulo permutations de tuples et d'attributs
 - 2. Représenter l'absence d'information

- Faiblesses de la représentation graphique
 - Cas de deux tuples identiques
 - Attributs insuffisants pour distinguer les entités réelles
 - Identité qualitative ⇒ identité numérique
 - ...

Etudiant	Nom	Date naiss.	Niveau
		- 	
	Toto	25/01/93	L3
			•••
	Toto	25/01/93	L3

INTERDIT

- Faiblesses de la représentation graphique
 - 1. Travailler modulo permutations de tuples et d'attributs
 - 2. Représenter l'absence d'information
 - 3. Respecter l'identité numérique

- Faiblesses de la représentation graphique
 - Cas de valeurs incohérentes
 - Domaines des attributs non-explicites
 Chaîne de caractères pour une date (format), précision pour les nombres, ...
 - Contraintes sémantiques non représentables pour certaines valeurs
 Etudiants caractérisés par leur numéro d'étudiant unique, etc.
 - Utilisation de valeurs non-atomiques (attributs multi-valués et composites)

- Faiblesses de la représentation graphique
 - 1. Travailler modulo permutations de tuples et d'attributs
 - 2. Représenter l'absence d'information
 - 3. Respecter l'identité numérique
 - 4. Représenter l'intégrité/la régularité des données

- Faiblesses de la représentation graphique
 - Cas de liens sémantiques entre différentes tables
 - Résoudre les cas de valeurs non-atomiques

Etudiant	N°	Nom	Date naiss.	Niv	eau
				•	
	122456	Toto	25/01/93	L3	GP1
	123456	Toto		L2	GP6
				•	

- Faiblesses de la représentation graphique
 - Cas de liens sémantiques entre différentes tables
 - Résoudre les cas de valeurs non-atomiques

1ère solution : fusionner/fractionner

Etudiant	N°	Nom	Date naiss.	Niveau
	123456	Toto	25/01/93	L3-GP1
	123456	Toto	25/01/93	L2-GP6
	•••	•••		

Redondance introduite

- Faiblesses de la représentation graphique
 - Cas de liens sémantiques entre différentes tables
 - Résoudre les cas de valeurs non-atomiques

2ème solution : stocker les valeurs structurées dans une autre table

Etudiant	N°	Nom	Date naiss.
	542355	Tata	27/04/92
	123456	Toto	25/01/93
	242643	Titi	14/08/89

Groupe	N°Etu	Niveau	N°Grp
	123456	L2	6
	123456	L3	1
	999999	M1	2

Faiblesses de la représentation graphique

- Cas de liens sémantiques entre différentes tables
 - Résoudre les cas de valeurs non-atomiques
 - Faire référence à une entrée dans une autre table

- Les attributs N° et N°Etu ont la même sémantique
- L'attribut N° seul doit permettre d'identifier un étudiant
- Tout N°Etu doit correspondre à un étudiant existant

Faiblesses de la représentation graphique

- 1. Travailler modulo permutations de tuples et d'attributs
- 2. Représenter l'absence d'information
- 3. Respecter l'identité numérique
- 4. Représenter l'intégrité/la régularité des données
- 5. Représenter les liens sémantiques entre les données

- Faiblesses de la représentation graphique
 - Fffectuer des recherches
 - Ecriture de procédures de calcul ad hoc
 Rechercher les noms des étudiants du groupe 1 de L3

N°Etu N°Grp Groupe Niveau Pour chaque tuple de Groupe Faire 123456 13 Si N°Grp = 1 et Niveau = L3 Alors Pour chaque tuple d'Etudiant Faire Si N° = N°Etu Alors Afficher Nom Fin Si N° Etudiant Nom Date naiss. Fin Pour Fin Si Fin Pour 123456 25/01/93 Toto

- Faiblesses de la représentation graphique
 - Effectuer des recherches
 - Ecriture de procédures de calcul ad hoc
 Rechercher les noms des étudiants du groupe 1 de L3
 - Absence de langage dédié à l'expression des calculs
 - □ Domain Specific Langague (DSL)
 - □ Sémantique formelle cohérente tout calcul peut être exprimé par un programme, et tout programme décrit un calcul correct dans le cadre du modèle
 - Nécessité de fonder mathématiquement le modèle relationnel

Faiblesses de la représentation graphique

- 1. Travailler modulo permutations de tuples et d'attributs
- 2. Représenter l'absence d'information
- 3. Respecter l'identité numérique
- 4. Représenter l'intégrité/la régularité des données
- 5. Représenter les liens sémantiques entre les données
- 6. Faire du calcul sur les tables
- *7.* ...

Besoin d'une algèbre des relations

Plan

Modèle logique de données

Algèbre relationnelle

En pratique...

- Origine (Wikipédia)
 - □ Du mot arabe : *al-jabr* (réduction d'une fracture, restauration)

 Latinisé en *algebra* (réunion de morceaux, reconstruction, connexion)
 - □ Al-Khawarizmi
 - Mathématicien persan du IXème
 Latinisé en algoritmi, donnant plus tard le mot algorithme
 - Kitāb al-mukhtaṣar fī ḥisāb al-jabr wa-l-muqābala
 « Abrégé du calcul par la restauration et la comparaison »

- Origine (Wikipédia)
 - □ Du mot arabe : *al-jabr* (réduction d'une fracture, restauration)

 Latinisé en *algebra* (réunion de morceaux, reconstruction, connexion)
 - □ Al-Khawarizmi
 - Mathématicien persan du IXème
 Latinisé en *algoritmi*, donnant plus tard le mot *algorithme*
 - Kitāb al-mukhtaṣar fī ḥisāb al-jabr wa-l-muqābala
 « Abrégé du calcul par la restauration et la comparaison »
 - Introduction du concept d'équation
 - Égalité entre expressions mathématiques comportant une inconnue
 - □ Développement des techniques de résolution
 - Extension du concept
 - Évolution des nombres, résolution de systèmes d'équations, polynômes
 - Objets abstraits: structures algébriques (monoïdes, groupes, corps, ...)

Définition

- Structure algébrique : ensemble muni d'opérations
- \square Objets : ensemble E d'éléments sous-jacent à l'algèbre
- \square Opérations ou lois : applications de $E^n \longrightarrow E$
 - n est appelée l'arité de l'opération
 - On parle de constante quand n=0
- Axiomes : identités entre compositions d'opérations
 - Algèbre libre : sans axiome
 - Ex : associativité, commutativité, distributivité, etc.
- □ Calcul dans l'algèbre

Variables, fonctions, (systèmes d') équation(s), etc.

- Exemple : logique classique
 - □ Objets : valeurs booléennes
 - Opérations
 - Nullaires : true et false
 - Unaire : ¬
 - Binaires : Λ, V
 - □ Axiomes
 - Tables de vérité
 - Associativité et commutativité du A
 - Involutivité de ¬
 - Neutre, absorbant : true $\land p = p \land$ true = p, false $\land p = p \land$ false = false
 - Définitions : V (loi de de Morgan), ou exclusif, implication, etc.
 - Calculs

Satisfiabilité des formules, preuve automatique

- Exemple : groupe commutatif
 - \square Objets: mots (i.e., éléments) d'un groupe (par exemple \mathbb{Z})
 - Opérations
 - Nullaire : zero (0 pour \mathbb{Z}), etc.
 - Unaire : inverse (-n pour tout $n \in \mathbb{Z}$)
 - Binaire : loi de composition + (l'addition sur les entiers)
 - □ Axiomes
 - Associativité et commutativité du +
 - Involutivité de —
 - Neutre : 0 + n = n + 0 = n, n + (-n) = (-n) + n = 0
 - Calculs

Problème du mot

Qu'est-ce qu'une algèbre

- Exemple : langages formels
 - \square Objets : ensembles L de mots formés sur un alphabet Σ
 - Opérations
 - Nullaires : langage vide \emptyset , épsilon ε : . \mapsto $\{\varepsilon\}$, a: . \mapsto $\{a\}$ pour tout $a \in \Sigma$
 - Unaires : complémentation \overline{L} , étoile de Kleene L^*
 - Binaires : union $L_1 \cup L_2$, concaténation $L_1 \cdot L_2$
 - □ Axiomes
 - Définitions : intersection $L_1 \cap L_2 = \overline{\overline{L_1} \cup \overline{L_2}}$, étoile $L^* = \bigcup_n L^n$
 - Involutivité : $\overline{\overline{L}} = L$
 - Associativités : $(L_1 \cup L_2) \cup L_3 = L_1 \cup (L_2 \cup L_3)$, $(L_1 \cdot L_2) \cdot L_3 = L_1 \cdot (L_2 \cdot L_3)$
 - Distributivités : $(L_1 \cup L_2) \cdot L_3 = L_1 \cdot L_3 \cup L_2 \cdot L_3$
 - Neutre, absorbant : $\emptyset \cup L = L \cup \emptyset = L$, $\varepsilon \cdot L = L \cdot \varepsilon = L$, $\emptyset \cdot L = L \cdot \emptyset = \emptyset$
 - □ Calculs

Automates, grammaires, analyseurs LL et LR (cf. compilation)

Algèbre relationnelle

Origine

- Edgar Frank "Ted" Codd (1923-2003)
 - Directeur de recherche du centre IBM de San José
 - Prix Turing en 1981
- □ A relational model of data for large shared data banks
 - Article fondateur de 1970
 - Indépendance entre modèle et représentation interne
 - Critique de l'existant, proposition du modèle relationnel, formes normales, base d'un langage de programmation, opérateurs spécifiques

Future users of large data banks must be protected from having to know how the data is organized in the machine (the internal representation). A prompting service which supplies such information is not a satisfactory solution. Activities of users at terminals and most application programs should remain unaffected when the internal representation of data is changed and even when some aspects of the external representation are changed. Changes in data representation will often be needed as a result of changes in query, update, and report traffic and natural growth in the types of stored information.

and applied to the problems of redundancy and consistency

in the user's model.

Algèbre relationnelle

Définition

- □ Objets : relations

 Définition à préciser
- Opérations
 - Nullaires : les relations de la BD
 - Unaires : ????
 - Binaires: ???
- ☐ Axiomes:???
- □ Calculs

Les équations sont les requêtes

- Prérequis : les domaines de valeurs
 - Définition

Les ensembles de valeurs autorisées à être stockées dans la base de données

- □ Synonymes : types ou types atomiques
- □ Notations : D, D', ..., D_1 , D_2 , ... Les valeurs seront notées v, v', ..., v_1 , v_2 , ..., u, u', ..., u_1 , u_2 , ...
- Domaines classiques
 - Exemples
 - \square Booléens $\mathbb{D}_{\mathcal{B}}$
 - \square Numériques $\mathbb{D}_{\mathcal{N}}$: valeurs entières ou réelles
 - \square Chaînes de caractères $D_{\mathcal{S}}$
 - \square Dates $\mathbb{D}_{\mathcal{D}}$
 - ☐ Types énumérés : tout ensemble fini de valeurs (cf. type enum de C)
 - Cf. types de base du langage SQL

- Prérequis : les domaines de valeurs
 - Définition

Les ensembles de valeurs autorisées à être stockées dans la base de données

- Cas particulier de l'absence de valeur (cases vides d'une table)
 - Définition de la valeur spéciale \(\triangle \)
 À l'origine absente de la théorie
 - Plusieurs sémantiques possibles
 « donnée inconnue », « donnée inexistante », « donnée introuvable »
 - Valeur non typée (pas de domaine particulier : tout domaine contient \(\preceq \)
 - Extension des opérations classiques dans les domaines
 - □ Exemple 1 : domaine des chaînes de caractères
 Chaines de caractères classiques avec la concaténation (⊥ ≠ "")
 toute concaténation avec ⊥ retourne ⊥
 - □ Exemple 2 : domaines des booléensLogique à trois valeurs (cf. le LID de SQL)

- Prérequis : les tuples
 - □ Définition : Représentation formelle d'une entrée dans une BD
 - \square Notation: $t, t', ..., t_1, t_2, ..., s, s', ..., s_1, s_2, ...$
- Prérequis : les attributs
 - □ Définition : Fonction **nommée** permettant d'interroger/décomposer un tuple

 $A: \left\{ \begin{array}{ccc} T & \longrightarrow & D \\ t & \longmapsto & A(t) = v \end{array} \right.$

- Spécification
 - Un nom (symbole) A
 - Un domaine D de valeurs
 - Un ensemble T de tuples
- \square Notation : $A, A', ..., A_1, A_2, ..., B, B', ..., B_1, B_2, ...$
- ☐ Compatibilité entre attributs

 Deux attributs sont *compatibles* s'ils ont même *nom* et même *domaine*

Prérequis : les tuples et les attributs

	Etudiant	N°	Nom	Date naiss.	Niveau
	$e_1 \leftarrow$	123456	Toto	25/01/93	L3
	e_2	542355	Tata	27/04/92	L2
	e_3	242643	Titi	14/08/89	M2
	e_4	328494	Tutu	08/11/95	L1
T =	•	1	1	1	1
$\{e_1, e_2,$	e_3, e_4	Num	Nom	DNaiss	Niv

Num:
$$T \to D_{\mathcal{N}}$$
 Nom: $T \to D_{\mathcal{S}}$
 DNaiss: $T \to D_{\mathcal{D}}$
 Niv: $T \to \{L_1, ..., M_2\}$
 $e_1 \mapsto 123456$
 $e_1 \mapsto "Toto"$
 $e_1 \mapsto 25/01/93$
 $e_1 \mapsto L_3$
 $e_2 \mapsto 542355$
 $e_2 \mapsto "Tata"$
 $e_2 \mapsto 27/04/92$
 $e_2 \mapsto L_2$
 $e_3 \mapsto 242643$
 $e_3 \mapsto "Titi"$
 $e_3 \mapsto 14/08/98$
 $e_3 \mapsto M_2$
 $e_4 \mapsto 328494$
 $e_4 \mapsto "Tutu"$
 $e_4 \mapsto 08/11/95$
 $e_4 \mapsto L_1$

Relation

- Définition
 - Objets de l'algèbre relationnelle représentant les tables d'une BD
- □ Formalisation : une relation R = (...) ... définition à compléter ...
- □ Notations: $R, R', ..., R_1, R_2, ..., S, S', ..., S_1, S_2, ...$

- Relation : extension
 - Définition

Objets de l'algèbre relationnelle représentant les tables d'une BD

- \square Formalisation: une relation R = (T, ...)
 - Extension : ensemble de tuples
 - ... définition à compléter ...
- Abus de notations
 - On identifier souvent l'extension à la relation $t \in R$ désigne un tuple t appartenant à l'extension de la relation R
- Propriétés ensemblistes de l'extension
 - Ensemble = structure non-ordonnée et sans doublon

■ Relation : extension

- Relation : extension
 - Définition

Objets de l'algèbre relationnelle représentant les tables d'une BD

- \square Formalisation : une relation R = (T, ...)
 - Extension: ensemble de tuples
 - ... définition à compléter ...
- Abus de notations
 - On identifier souvent l'extension à la relation $t \in R$ désigne un tuple t appartenant à l'extension de la relation R
- Propriétés ensemblistes de l'extension
 - Ensemble = structure non-ordonnée et sans doublon
 - Il ne peut y a voir deux tuples identiques dans une même relation
 - L'ordre de parcours des tuples d'une relation n'est pas spécifié

■ Relation : extension

Etudiant	N°	Nom	Date naiss.	Niveau
$e_1 \leftarrow$	123456	Toto	25/01/93	L3
e_2	542355	Tata	27/04/92	L2
e ₃	242643	Titi	14/08/89	M2
e_4	328494	Tutu	08/11/95	L1
	Num	Nom	D Naiss	Niv

Etudiant =
$$(\{e_1, e_2, e_3, e_4\}, ...)$$

extension

- Relation : schéma
 - Définition

Objets de l'algèbre relationnelle représentant les tables d'une BD

- \square Formalisation: une relation R = (T, Sc, ...)
 - **Extension**: ensemble de tuples
 - Schéma: ensemble d'attributs
 - ... définition à compléter ...
- Abus de notations
 - On identifiera souvent le schéma à la relation

 $A \in \mathbb{R}$ désigne un attribut A appartenant au schéma Sc de la relation \mathbb{R}

- Propriétés
 - Propriété ensembliste du schéma : l'ordre des attributs n'est pas spécifié
 - Schémas compatibles : si leurs attributs sont compatibles deux à deux
 - Sous-schéma : un sous-ensemble des attributs d'une relation

■ Relation: schéma

Etudiant	N°	Nom	Date naiss.	Niveau
$e_1 \leftarrow$	123456	Toto	25/01/93	L3
e_2	542355	Tata	27/04/92	L2
e_3	242643	Titi	14/08/89	M2
e_4	328494	Tutu	08/11/95	L1
	Num	Nom	DNaiss	Niv

Etudiant =
$$\{e_1, e_2, e_3, e_4\}, \{Num, Nom, DNaiss, Niv\}, ...\}$$
extension schéma

- Relation : clé primaire
 - Définition

Objets de l'algèbre relationnelle représentant les tables d'une BD

- \square Formalisation: une relation R = (T, Sc, K, ...)
 - **Extension**: ensemble de tuples
 - Schéma: ensemble d'attributs
 - Clé primaire : clé candidate

... définition à compléter ...

- Notion de clé
 - Super clé : sous-schéma $K \subset Sc$ distinguant l'ensemble des tuples

$$\forall t, t' \in T \quad \exists A \in K \quad A(t) \neq A(t')$$

Par définition Sc est une super clé

- Clé candidate : Super clé minimale
 - $\forall K' \subseteq K, K'$ n'est pas une super clé
- Clé primaire = une des clés candidates

242643

■ Relation : clé primaire

e₃

 Etudiant
 N°
 Nom
 Date naiss.
 Niveau

 e1
 123456
 Toto
 25/01/93
 L3

 e2
 542355
 Tata
 27/04/92
 L2

14/08/89

Représentée graphiquement en soulignant ses attributs

M2

Titi

- Relation : contraintes référentielles
 - Définition

Objets de l'algèbre relationnelle représentant les tables d'une BD

- \square Formalisation: une relation $R = (T, Sc, K, \mathcal{L})$
 - Extension : ensemble de tuples
 - Schéma : ensemble d'attributs
 - Clé primaire : clé candidate
 - Contraintes référentielles : ensemble de clés étrangères
- □ Clé étrangère (ou secondaire)
 - Lien sémantique avec d'autres relations
 - Couple $\langle R', L \rangle$ avec $R' = (T', Sc', K', \mathcal{L}')$ et $L \subset Sc$
 - \square L est en bijection compatible avec K' (on utilise une bijection car les noms des attributs peuvent différer)
 - \Box Obligation: $\forall t \in R \ \exists! \ t' \in R' \ L(t)$ coincide avec K'(t')
 - Un même attribut peut appartenir à plusieurs contraintes référentielles

Relation : contraintes référentielles

Etudiant({e₁, e₂, e₃, e₄}, {Num, Nom, DNaiss}, {Num}, Ø)

 $Groupe = (\{g_1, g_2, g_3\}, \{NEtu, Niv, NGrp\}, \{NEtu, Niv, NGrp\}, \{\langle Etudiant, \{NEtu\}\rangle\})$

Groupe	<u>N°Etu</u>	<u>Niveau</u>	<u>N°Grp</u>
g ₁	123456	L2	2
g_2	123456	L3	1
g ₃	328494	L2	6
	NEtu	Niv	NGrp

Tableau récapitulatif et représentation tabulaire

Vocabulaire	Représentation tabulaire	Algèbre relationnelle
Domaine	Valeur (dont l'absence)	D (avec $\bot \in D$)
Relation	Table	$R = (T, Sc, K, \mathcal{L})$
Tuple	Ligne	$t \in T$
Attribut	Colonne	$A: T \longrightarrow D$
Schéma	Entête	$Sc = \{A_i \mid i \in [[1n]]\}$
Arité	Largeur de la table	n
Clé primaire	Attribut souligné	$K \subset Sc$
Clé étrangère	-	$\langle R', L \rangle \in \mathcal{L} \text{ avec } L \subset Sc$

- Formes normales
 - Motivations
 - Définition des relations : qu'est-ce qu'un modèle *correct* de données
 - Formes normales : qu'est-ce qu'un bon modèle de données
 - ☐ Éviter les redondances => décomposition des tables
 - □ Dépendance fonctionnelle : identifier les fonctions dans les relations
 - Cf. cours de BD avancé...

Algèbre relationnelle

Définition

 $\square \quad \mathsf{Objets} : relation \ R = (T, Sc, K, \mathcal{L})$

Extension: (ensemble de tuples), schéma (ensemble d'attributs), clé primaire (clé candidate), contraintes référentielles (ensemble de clés étrangères)

- Opérations
 - Nullaires : les relations de la BD
 - Unaires : ???
 - Binaires: ????
- ☐ Axiomes:???
- □ Calculs

Les équations sont les requêtes

Algèbre relationnelle : opérations

Constantes

□ Relations construites à partir des tables de BD

Toute autre relation est obtenue en appliquant des opérations sur les constantes

Exemple

4 tables enregistrant des viticulteurs, des vins, des commandes et des clients

VITICULTEUR(NUM, NOM, PRENOM, REGION)

VIN(NVIN, CRU, MILLESIME, NVITICULTEUR, REGION)

COMMANDE(NCOMMANDE, NCLIENT, NVIN, DATE, QUANTITE)

CLIENT(NUM, NOM, PRENOM, REGION)

Vin	<u>Nvin</u>	Cru	Millésime	Viticulteur	Région
	1	Saint-Emilion	2002	1	Bordeaux
	2	Champagne	1996	3	Champagne
	3	Pauillac	1992	1	Bordeaux
	4	Chablis	2007	6	Bourgogne

Cli	ent	<u>NUM</u>	Nom	Prénom	Région
-----	-----	------------	-----	--------	--------

Viticulteur	<u>NUM</u>	Nom	Prénom	Région
	1	Barré	Henri	Bordeaux
	3	Hermelin	Jean-Pierre	Champagne
	4	Fort	Valérie	Languedoc
	6	Schmidt	Thomas	Bourgogne

2	Voser	Armande	Alsace
3	Hermelin	Jean-Pierre	Champagne
5	Senard	Danièle	Champagne
6	Schmidt	Thomas	Bourgogne

Commande	NCom	NClient	<u>NVin</u>	Date	Quantité
	1	5	4	27/04/12	25
	2	3	2	25/01/13	100
	3	2	2	14/08/09	80
	4	5	1	08/11/10	100

Algèbre relationnelle : opérations

Opérations unaires

- Opérations s'appliquant sur une seule relation
 Les opérations peuvent néanmoins être paramétrées
- □ Opérations unaires de l'algèbre relationnelle
 - **Renommage** ρ (« **r**ho ») : changement de nom d'un attribut
 - **Sélection** σ (« **s**igma ») : diminution du nombre de tuples
 - **Projection** π (« **p**i ») : diminution du nombre d'attributs

Renommage ρ

Spécification informelle

Modifie le nom d'un ou plusieurs attributs (modification de l'entête)

Notation

$$\rho_{A_1 \to B_1, \dots, A_k \to B_k}(R)$$

- □ Sémantique ensembliste
 - Soit une relation R = (T, Sc, K, L)
 - Soit $A = \{A_1, ..., A_k\}$ un sous-schéma de Sc
 - Soit $B = \{B_1, ..., B_k\}$ un schéma tel que $D^{A_i} = D^{B_i}$ (domaines compatibles)

$$\rho_{A_1 \to B_1, \dots, A_k \to B_k}(R) = (T, (Sc \setminus A) \cup B, (K \setminus A) \cup B_K, \mathcal{L}')$$

$$\operatorname{avec} \mathcal{L}' = \{ \langle R', (L \setminus A) \cup B_L \rangle \mid \langle R', L \rangle \in \mathcal{L} \}$$

$$\operatorname{et} B_K = \{ B_i \mid A_i \in K \cap A \}$$

Renommage ρ

Exemple : traduire en anglais les attributs de la relation viticulteur

Viticulteur	NUM	Nom	Prénom	Région
	1	Barré	Henri	Bordeaux
	3	Hermelin	Jean-Pierre	Champagne
	4	Fort	Valérie	Languedoc
	6	Schmidt	Thomas	Bourgogne

R	<u>ID</u>	Lastname	Firstname	Region
	1	Barré	Henri	Bordeaux
	3	Hermelin	Jean-Pierre	Champagne
	4	Fort	Valérie	Languedoc
	6	Schmidt	Thomas	Bourgogne

 $\mathbf{R} = \rho_{\mathrm{NUM_ID,\ Nom_Lastname,\ Pr\'enom_Firstname,\ R\'egion_Region}}(\mathbf{Viticulteur})$

\blacksquare Sélection σ

Spécification informelle

Conserve les tuples vérifiant une propriété (suppression de lignes)

Notation

$$\sigma_{\varphi}(R)$$

- □ Sémantique ensembliste
 - Soit une relation R = (T, Sc, K, L) avec $Sc = \{A_1, ..., A_n\}$
 - lacksquare Soit une formule logique ϕ utilisant comme variables les attributs de Sc

$$\sigma_{\varphi}(R) = (T', Sc, K, \mathcal{L}) \text{ avec } T' = \{t \in T \mid \varphi[A_1 \leftarrow A_1(t), \dots, A_n \leftarrow A_n(t)]\}$$

- Remarques
 - $\varphi[X \leftarrow v]$: les occurrences libres de X dans φ sont remplacées par la valeur vDans notre cas, les attributs A_i sont remplacés par leurs valeurs $A_i(t)$
 - La sélection peut calculer une relation vide (sans ligne)

Sélection σ

Exemple : trouver les vins de la région « Bordeaux »

$$\mathbf{R} = \sigma_{\mathrm{R\'egion}_\mathrm{``Bordeaux\:``}}(\mathbf{Vin})$$

Sélection σ

Exemple : trouver les vins de la région « Alsace »

<u>Nvin</u>	Cru	Millésime	Viticulteur	Région	
_1	Saint-Emilion	2002	1	Bordeaux	x
	Chamara	1000	3	Classian	×
	Davillaa	1002	1	Davidaaviii	×
	Cladalia	2007	-	Da	x
	-1 -2	1 Saint-Emilion 2 Champagne 3 Pauillac	1 Saint Emilion 2002 2 Champagne 1996 3 Pauillac 1992	1 Saint-Emilion 2002 1 2 Champagne 1996 3 3 Pauillac 1992 1	1 Saint Emilion 2002 1 Bordeaux 2 Champagne 1996 3 Champagne 3 Pauillac 1992 1 Bordeaux

R <u>NVin</u> Cru Millésime Viticulteur Régio	n
---	---

$$\mathbf{R} = \sigma_{\mathrm{R\'egion}_{=}\text{``Alsace''}}(\mathbf{Vin})$$

Projection π

Spécification informelle

Conserve un sous-ensemble d'attributs (suppression de colonnes)

Notation

$$\pi_{A_1,\ldots,A_k}(R)$$

- Sémantique ensembliste
 - Soit une relation R = (T, Sc, K, L)
 - Soit $A = \{A_1, ..., A_k\}$ un sous-schéma de Sc

$$\pi_{A_1,\ldots,A_k}(R) = (T,A,A,\mathcal{L}') \text{ avec } \mathcal{L}' = \{\langle R',L \rangle \in \mathcal{L} \mid A \subseteq L\}$$

- Remarques
 - Bien que les tuples ne soient pas touchés, les doublons sont supprimés
 - Si $K \subseteq A$ (l'ancienne clé est toujours présente), on pourra toujours l'utiliser comme nouvelle clé primaire

\blacksquare *Projection* π

Exemple : trouver les numéros de vins commandés ainsi que leur quantité

$$R = \pi_{NCom, NVin, Quantité}$$
 (Commande)

■ Projection π

Exemple : trouver les viticulteurs actifs (i.e., qui produisent)

$$R = \pi_{Viticulteur}(Vin)$$

\blacksquare Projection π

Exemple: trouver les viticulteurs actifs (i.e., qui produisent)

$$R = \pi_{Viticulteur}(Vin)$$

Algèbre relationnelle : opérations

- Opérations binaires
 - Opérations s'appliquant sur deux relations
 - □ Notation infixeL'opérateur est situé entre les deux opérandes
 - □ Opérations binaires de l'algèbre relationnelle
 - Op. ensemblistes ∪, ∩ et \ : relations vues comme des ensembles de tuples Conservation du schéma des relations
 - \blacksquare Op. de croisement \times , \bowtie et \div : extension et réduction de schémas

- Opérateurs ensemblistes (booléennes) U, ∩ et \
 - □ Spécification informelle

 Calculent l'union, l'intersection et la différence entre les tuples de deux relations
 - Notation

$$R_1 \cup R_2 \quad R_1 \cap R_2 \quad R_1 \setminus R_2$$

Sémantique ensembliste

Soient
$$R_1 = (T_1, Sc, K, L_1)$$
 et $R_2 = (T_2, Sc, K, L_2)$

- $R_1 \cap R_2 = (T_1 \cap T_2, Sc, K, \mathcal{L}_1 \cap \mathcal{L}_2) = (\{t \mid t \in T_1 \land t \in T_2\}, Sc, K, \mathcal{L}_1 \cap \mathcal{L}_2)$
- $\blacksquare R_1 \setminus R_2 = (T_1 \setminus T_2, Sc, K, \mathcal{L}_1 \cap \mathcal{L}_2) = (\{t \mid t \in T_1 \land t \notin T_2\}, Sc, K, \mathcal{L}_1 \cap \mathcal{L}_2)$
- Remarques
 - Les relations doivent impérativement avoir même schéma et même clé prim.
 - Toutes les contraintes référentielles ne peuvent être maintenues

- Opérateurs ensemblistes (booléennes) U, ∩ et \
 - Exemple : trouver toutes les personnes référencées dans la BD

- Opérateurs ensemblistes (booléennes) U, ∩ et \
 - Exemple : trouver les viticulteurs également clients

- Opérateurs ensemblistes (booléennes) U, ∩ et \
 - Exemple : trouver les viticulteurs qui ne sont pas clients

						Clien	nt	NUM	Nom	Prénom	Région
Viticulteur	NUM	Nom	Pr	énom	Régi	on		2	Voser	Armande	Alsace
	1	Barré	ŀ	Henri	ri Bordeaux			3	Hermelin	Jean-Pierre	Champagne
	3	Hermelin	Jea	n-Pierre	Champ	agne		5	Senard	Danièle	Champagne
	4	Fort	V	alérie	Langue	edoc		6	Schmidt	Thomas	Bourgogne
	6	Schmidt	Τŀ	nomas	Bourgo	ogne					
									R = Vit	iculteur \	Client
- 1 1			R	NUM	Nom		Drá	nom	Région		
- 11			N .	INOIVI	INOIII		rie	:110111	Region		
			\rightarrow	1	Barré		Н	enri	Bordeaux		
			\rightarrow	4	Fort		Va	lérie	Languedoc		

- Opérateurs ensemblistes (booléennes) U, ∩ et \
 - Exemple : trouver les clients qui ne sont pas des viticulteurs

				0
Viticulteur	NUM	Nom	Prénom	Région
	1	Barré	Henri	Bordeaux
	3	Hermelin	Jean-Pierre	Champagne
	4	Fort	Valérie	Languedoc
	6	Schmidt	Thomas	Bourgogne

	10111	116116111	Region
2	Voser	Armande	Alsace
3	Hermelin	Jean-Pierre	Champagne
5	Senard	Danièle	Champagne
6	Schmidt	Thomas	Bourgogne

Nom

Prénom

Région

R = Client \ Viticulteur

R	<u>NUM</u>	Nom	Prénom	Région	
	2	Voser	Armande	Alsace	
	5	Senard	Danièle	Champagne	

- Op. de croisement : produit cartésien ×
 - Spécification informelle

Croise tous les tuples d'une relation avec tous ceux d'une autre relation

Notation

$$R_1 \times R_2$$

□ Sémantique ensembliste

Soient
$$R_1 = (T_1, Sc_1, K_1, \mathcal{L}_1)$$
 et $R_2 = (T_2, Sc_2, K_2, \mathcal{L}_2)$
 $R_1 \times R_2 = (T_1 \times T_2, Sc_1 \uplus Sc_2, K_1 \uplus K_2, \mathcal{L}_1 \uplus \mathcal{L}_2)$

- Remarques
 - La plus grand opérateur de croisement
 - Le produit cartésien de relations est commutatif!!
 - - \Box $E_1 \uplus E_2 = (\{0\} \times E_1) \cup (\{1\} \times E_2)$
 - \square En algèbre relationnelle, $\{0\}$ et $\{1\}$ remplacés par les noms des relations

- Op. de croisement : produit cartésien ×
 - Exemple : croiser l'ensemble des clients avec toutes les commandes

Client	NUM	Nom	Prénom	Région	
	2	Voser	Armande	Alsace	
3		Hermelin	Jean-Pierre	Champagne	
	5	Senard	Danièle	Champagne	
	6	Schmidt	Thomas	Bourgogne	

Commande	NCom	NClient	<u>NVin</u>	Date	Quantité
	1	5	4	27/04/12	25
	2	3	2	25/01/13	100
	3	2	2	14/08/09	80
	4	5	1	08/11/10	100

R = Client × Commande

R	<u>NCom</u>	NClient	<u>NVin</u>	Date	Quantité	<u>NUM</u>	Nom	Prénom	Région
	1	5	4	27/04/12	25	2	Voser	Armande	Alsace
	1	5	4	27/04/12	25	3	Hermelin	Jean-Pierre	Champagne
	1	5	4	27/04/12	25	5	Senard	Danièle	Champagne
	1	5	4	27/04/12	25	6	Schmidt	Thomas	Bourgogne
	2	3	2	25/01/13	100	2	Voser	Armande	Alsace
	2	3	2	25/01/13	100	3	Hermelin	Jean-Pierre	Champagne
	2	3	2	25/01/13	100	5	Senard	Danièle	Champagne
	2	3	2	25/01/13	100	6	Schmidt	Thomas	Bourgogne
	3	2	2	14/08/09	80	2	Voser	Armande	Alsace
	3	2	2	14/08/09	80	3	Hermelin	Jean-Pierre	Champagne
	3	2	2	14/08/09	80	5	Senard	Danièle	Champagne
	3	2	2	14/08/09	80	6	Schmidt	Thomas	Bourgogne
	4	5	1	08/11/10	100	2	Voser	Armande	Alsace
	4	5	1	08/11/10	100	3	Hermelin	Jean-Pierre	Champagne
	4	5	1	08/11/10	100	5	Senard	Danièle	Champagne
	4	5	1	08/11/10	100	6	Schmidt	Thomas	Bourgogne

- Op. de croisement : produit cartésien ×
 - Exemple : croiser l'ensemble des clients avec toutes les commandes

Viticulteur	NUM	Nom	Prénom	Région
	1	Barré	Henri	Bordeaux
	3	Hermelin	Jean-Pierre	Champagne
	4	Fort	Valérie	Languedoc
	6	Schmidt	Thomas	Bourgogne

Vin	<u>Nvin</u>	Cru	Millésime	Viticulteur	Région
	1	Saint-Emilion	2002	1	Bordeaux
	2	Champagne	1996	3	Champagne
	3	Pauillac	1992	1	Bordeaux
	4	Chablis	2007	6	Bourgogne

R = Viticulteur × Vin

R	<u>NUM</u>	Nom	Prénom	Viticulteur. Région	<u>Nvin</u>	Cru	Millé- sime	Viticulteur	Vin.Région
	1	Barré	Henri	Bordeaux	1	Saint-Emilion	2002	1	Bordeaux
	1	Barré	Henri	Bordeaux	2	Champagne	1996	3	Champagne
	1	Barré	Henri	Bordeaux	3	Pauillac	1992	1	Bordeaux
	1	Barré	Henri	Bordeaux	4	Chablis	2007	6	Bourgogne
	3	Hermelin	Jean-Pierre	Champagne	1	Saint-Emilion	2002	1	Bordeaux
	3	Hermelin	Jean-Pierre	Champagne	2	Champagne	1996	3	Champagne
	3	Hermelin	Jean-Pierre	Champagne	3	Pauillac	1992	1	Bordeaux
	3	Hermelin	Jean-Pierre	Champagne	4	Chablis	2007	6	Bourgogne
	4	Fort	Valérie	Languedoc	1	Saint-Emilion	2002	1	Bordeaux
	4	Fort	Valérie	Languedoc	2	Champagne	1996	3	Champagne
	4	Fort	Valérie	Languedoc	3	Pauillac	1992	1	Bordeaux
	4	Fort	Valérie	Languedoc	4	Chablis	2007	6	Bourgogne
	6	Schmidt	Thomas	Bourgogne	1	Saint-Emilion	2002	1	Bordeaux
	6	Schmidt	Thomas	Bourgogne	2	Champagne	1996	3	Champagne
	6	Schmidt	Thomas	Bourgogne	3	Pauillac	1992	1	Bordeaux
	6	Schmidt	Thomas	Bourgogne	4	Chablis	2007	6	Bourgogne

- *Op. de croisement : jointures* \bowtie , \bowtie , \bowtie , ...
 - Spécification informelle
 - Spécialisation du produit cartésien
 - Différents types de jointures
 - ☐ Jointure interne ou externe (à gauche, à droite, bilatérale)
 - \square Jointure naturelle ou θ -jointure (+ équi-jointure)

LES TYPES D	E JOINTURES	Naturelle	heta-jointure	
Inte	erne	\bowtie	$oldsymbol{oldsymbol{eta}}{ heta}$	
	à gauche	$\overset{\circ}{\bowtie}_{L}$	$\overset{\circ}{\underset{ heta}{oldsymbol{oldsymbol{arphi}}}}_L$	
Externe	à droite	$\overset{\circ}{\bowtie}_R$	$\overset{\circ}{\bowtie}_R$	
	bilatérale	X°	$\overset{\circ}{\bowtie}_{\theta}$	

- Op. de croisement : θ -jointure et équi-jointure \bowtie_{θ}
 - □ Spécification informelle Sélectionne les tuples issus d'un produit cartésien vérifiant une propriété
 - Notation

$$R_1 \bowtie_{\theta} R_2$$

- □ Sémantique ensembliste
 - Soient $R_1 = (T_1, Sc_1, K_1, L_1)$ et $R_2 = (T_2, Sc_2, K_2, L_2)$
 - Soit une formule θ utilisant comme variables les attributs de $Sc_1 \uplus Sc_2$

$$R_1 \bowtie_{\theta} R_2 = \sigma_{\theta}(R_1 \times R_2)$$

- Remarque
 - On parle d'équi-jointure lorsque θ n'utilise que les opérateurs \wedge et = Conjonctions d'égalités « attribut-attribut » ou « attribut-valeur »
 - Lorsque le terme est omis, une jointure est toujours interne

- *Op.* de croisement : θ -jointure \bowtie_{θ}
 - □ Exemple : rechercher les vins commandés à plus de 30 exemplaires

Commande	NCom	NClient	<u>NVin</u>	Date	Quantité
	1	5	4	27/04/12	25
	2	3	2	25/01/13	100
	3	2	2	14/08/09	80
	4	5	1	08/11/10	100

Vin	<u>Nvin</u>	Cru	Millésime	Viticulteur	Région
	1	Saint-Emilion	2002	1	Bordeaux
	2	Champagne	1996	3	Champagne
	3	Pauillac	1992	1	Bordeaux
	4	Chablis	2007	6	Bourgogne

R = Commande

M

Vin

Commande.NVin=Vin.NVin∧Quantité>30

R	<u>Vin.</u> <u>Nvin</u>	Cru	Millésime	Viticu- Iteur	Région	<u>NCom</u>	NClient	Commande. <u>NVin</u>	Date	Quantité
X		2 2	20,00		2				-27/04/12	
	1	Samt-Emilion	2002	1	Borueaux	1	5	4	27/04/12	25
X	i	Saint-Emilion	2002	i	Bordeaux	Ž	3	Ž	25/01/13	100
X	1	Saint-Emilion	2002	i	Bordeaux	3	2	2	14/08/09	80
\checkmark	1	Saint-Emilion	2002	1	Bordeaux	4	5	1	08/11/10	100
X	Ž	Champagne	1996	3	Champagne	i	5	4	27/04/12	25
\checkmark	2	Champagne	1996	3	Champagne	2	3	2	25/01/13	100
\checkmark	2	Champagne	1996	3	Champagne	3	2	2	14/08/09	80
X	Ž	Champagne	1996	3	Champagne	4	5	i	08/11/10	100
X	3	Pauillac	1992	ì	Bordeaux	i	5	4	27/04/12	25
X	3	Pauillac	1992	ì	Bordeaux	2	3	2	25/01/13	100
X	3	Pauillac	1992	i	Bordeaux	3	2	2	14/08/09	80
X	3	Paulilac	1992	i	Bordeaux	4	5	i	08/11/10	100
X	4	Chablis	2007	Ô	Bourgogne	i	5	4	27/04/12	25
×	4	Chablis	2007	Ô	Bourgogne	2	3	2	25/01/13	100
×	4	Chabiis	2007	Ö	Bourgogne	3	2	2	14/08/09	80
×	4	Chablis	2007	6	Bourgogne	4	5	i	08/11/10	100

- Op. de croisement : θ -jointure \bowtie_{θ}
 - □ Exemple : rechercher les vins commandés à plus de 30 exemplaires

R	<u>Vin.</u> <u>Nvin</u>	Cru	Millésime	Viticu- Iteur	Région	<u>NCom</u>	NClient	Commande. NVin	Date	Quantité
	1	Saint-Emilion	2002	1	Bordeaux	4	5	1	08/11/10	100
	2	Champagne	1996	3	Champagne	2	3	2	25/01/13	100
	2	Champagne	1996	3	Champagne	3	2	2	14/08/09	80

■ Op. de croisement : équi-jointure \bowtie_{θ}

Exemple : les vins et les viticulteurs de la même région

Viticulteur	NUM	Nom	Prénom	Région
	1	Barré	Henri	Bordeaux
	3	Hermelin	Jean-Pierre	Champagne
	4	Fort	Valérie	Languedoc
	6	Schmidt	Thomas	Bourgogne

Vin	<u>Nvin</u>	Cru	Millésime	Viticulteur	Région
	1	Saint-Emilion	2002	1	Bordeaux
	2	Champagne	1996	3	Champagne
	3	Pauillac	1992	1	Bordeaux
	4	Chablis	2007	6	Bourgogne

R	<u>NUM</u>	Nom	Prénom	Viticulteur. Région	<u>Nvin</u>	Cru	Millé- sime	Viticulteur	Vin.Région
\checkmark	1	Barré	Henri	Bordeaux	1	Saint-Emilion	2002	1	Bordeaux
X	-1	Darré	Henri	Dordeaux	2	Champagne	1996	3	Champagne
\checkmark	1	Barré	Henri	Bordeaux	3	Pauillac	1992	1	Bordeaux
X	1	Barré	Henri	Bordeaux	4	Chablis	2007	6	Bourgogne
X	3	Hermelin	Jean-Pierre	Champagne	1	Saint-Emilion	2002	1	Bordeaux
\checkmark	3	Hermelin	Jean-Pierre	Champagne	2	Champagne	1996	3	Champagne
X		Hermelin	Jean-Pierre	Champagne	0	Pauillac	1992	1	- Bordeaux -
X		Hermelin	Jean-Pierre	Champagne	4	Chablis	2007	6	Bourgogne
X	4	Fort	Valérie	Languedoc	1	Saint-Emilion	2002	1	Bordeaux
X	4	Fort	Valérie	Languedoc	2	Champagne	1996	3	Champagne
X	4	Fort	Valérie	Languedoc	3	Pauillac	1992	1	Bordeaux
X	4	Fort	Valérie	Languedoc	4	Chablis	2007	6	Dourgogne
X	-6	Schmidt	Thomas	Bourgogne	1	Saint-Emilion	2002	1	Bordeaux
X	-6	Schmidt	Thomas	Bourgogne	2	Champagne	1996	3	Champagne
X	-6	Schmidt	Thomas	Bourgogne	0	Pauillac	1992	1	Bordeaux
\checkmark	6	Schmidt	Thomas	Bourgogne	4	Chablis	2007	6	Bourgogne

- Op. de croisement : équi-jointure \bowtie_{θ}
 - ☐ Exemple : les vins et les viticulteurs de la même région

R	<u>NUM</u>	Nom	Prénom	Viticulteur. Région	<u>Nvin</u>	Cru	Millé- sime	Viticulteur	Vin.Région
1									
	1	Barré	Henri	Bordeaux	1	Saint-Emilion	2002	1	Bordeaux
	1	Barré	Henri	Bordeaux	3	Pauillac	1992	1	Bordeaux
	3	Hermelin	Jean-Pierre	Champagne	2	Champagne	1996	3	Champagne
	6	Schmidt	Thomas	Bourgogne	4	Chablis	2007	6	Bourgogne

- Op. de croisement : jointure naturelle ⋈
 - ☐ Spécification informelle

 Identifie dans un produit cartésien les attributs compatibles
 - Notation

$$R_1 \bowtie R_2$$

□ Sémantique ensembliste

Soient
$$R_1 = (T_1, Sc_1, K_1, \mathcal{L}_1)$$
 et $R_2 = (T_2, Sc_2, K_2, \mathcal{L}_2)$

$$R_1 \bowtie R_2 = \pi_{SC_1 \cup SC_2} \left(R_1 \bowtie R_2 \right)$$
 avec $\theta = \bigwedge_{A \in SC_1 \cap SC_2} R_1 \cdot A = R_2 \cdot A$

- Remarque
 - La jointure naturelle correspond à une équi-jointure identifiant les attributs partagés par les deux relations (dans l'intersection des schémas)
 - La projection finale permet d'éviter les doubles colonnes identiques
 - Perte des tuples défaillants Tuples de R_1 (resp. R_2) ne coïncidant avec aucun tuple de R_2 (resp. R_1)

- Op. de croisement : jointure naturelle ⋈
 - Exemple : les vins et les clients de la même région

Client	NUM	Nom	Prénom	Région
	2	Voser	Armande	Alsace
	3	Hermelin	Jean-Pierre	Champagne
	5	Senard	Danièle	Champagne
	6	Schmidt	Thomas	Bourgogne

Vin	<u>Nvin</u>	Cru	Millésime	Viticulteur	Région
	1	Saint-Emilion	2002	1	Bordeaux
	2	Champagne	1996	3	Champagne
	3	Pauillac	1992	1	Bordeaux
	4	Chablis	2007	6	Bourgogne

 $R = Client \bowtie Vin$

- Op. de croisement : jointure naturelle ⋈
 - Exemple : les vins et les clients de la même région

R'	<u>NUM</u>	Nom	Prénom	Client. Région	<u>Nvin</u>	Cru	Millé- sime	Viticulteur	Vin.Région
	3	Hermelin	Jean-Pierre	Champagne	2	Champagne	1996	3	Champagne
	5	Senard	Danièle	Champagne	2	Champagne	1996	3	Champagne
	6	Schmidt	Thomas	Bourgogne	4	Chablis	2007	6	Bourgogne

R	<u>NUM</u>	Nom	Prénom	Région	<u>Nvin</u>	Cru	Millésime	Viticulteur
	3	Hermelin	Jean-Pierre	Champagne	2	Champagne	1996	3
	5	Senard	Danièle	Champagne	2	Champagne	1996	3
	6	Schmidt	Thomas	Bourgogne	4	Chablis	2007	6

 $\mathbf{R} = \mathbf{Client} \ \mathbf{\boxtimes} \ \mathbf{Vin} = \pi_{\mathrm{NUM, Nom, Pr\'enom, R\'egion, NVin, Cru, Mill\'esime, Viticulteur}} (\mathbf{R'})$

- Op. de croisement : jointures externes \bowtie_L , \bowtie_R et \bowtie
 - □ Spécification informelle

Conserve les tuples défaillants lors d'une jointure

Notation

$$R_1 \stackrel{\circ}{\bowtie}_L R_2 \qquad R_1 \stackrel{\circ}{\bowtie}_R R_2 \qquad R_1 \stackrel{\circ}{\bowtie} R_2$$

Sémantique ensembliste

Soient
$$R_1 = (T_1, Sc_1, K_1, L_1)$$
 et $R_2 = (T_2, Sc_2, K_2, L_2)$

- $\blacksquare \quad R_1 \stackrel{\circ}{\bowtie}_R R_2 = R_2 \stackrel{\circ}{\bowtie}_L R_1$
- $R_1 \stackrel{\circ}{\bowtie} R_2 = R_1 \stackrel{\circ}{\bowtie}_L R_2 \cup R_1 \stackrel{\circ}{\bowtie}_R R_2$

- lacktriangle Op. de croisement : jointures externes \bowtie_L
 - □ Exemple : les vins et les clients de la même région

R	<u>NUM</u>	Nom	Prénom	Région	<u>Nvin</u>	Cru	Millésime	Viticulteur
	3	Hermelin	Jean-Pierre	Champagne	2	Champagne	1996	3
	5	Senard	Danièle	Champagne	2	Champagne	1996	3
	6	Schmidt	Thomas	Bourgogne	4	Chablis	2007	6

 $R = Client \bowtie Vin$

R	<u>NUM</u>	Nom	Prénom	Client. Région	<u>Nvin</u>	Cru	Millé- sime	Viticulteur	Vin.Région
deraillant	2	Voser	Armande	Alsace	1	Saint-Emilion	2002	1	Bordeaux
T O	2	Voser	Armande	Alsace	2	Champagne	1996	3	Champagne
	2	Voser	Armande	Alsace	3	Pauillac	1992	1	Bordeaux
Inbie	2	Voser	Armande	Alsace	4	Chablis	2007	6	Bourgogne
	3	Hermelin	Jean-Pierre	Champagne	1	Saint-Emilion	2002	1	Bordeaux
	3	Hermelin	Jean-Pierre	Champagne	2	Champagne	1996	3	Champagne
	3	Hermelin	Jean-Pierre	Champagne	3	Pauillac	1992	1	Bordeaux
	3	Hermelin	Jean-Pierre	Champagne	4	Chablis	2007	6	Bourgogne
	5	Senard	Danièle	Champagne	1	Saint-Emilion	2002	1	Bordeaux
	5	Senard	Danièle	Champagne	2	Champagne	1996	3	Champagne
	5	Senard	Danièle	Champagne	3	Pauillac	1992	1	Bordeaux
	5	Senard	Danièle	Champagne	4	Chablis	2007	6	Bourgogne
	6	Schmidt	Thomas	Bourgogne	1	Saint-Emilion	2002	1	Bordeaux
	6	Schmidt	Thomas	Bourgogne	2	Champagne	1996	3	Champagne
	6	Schmidt	Thomas	Bourgogne	3	Pauillac	1992	1	Bordeaux
	6	Schmidt	Thomas	Bourgogne	4	Chablis	2007	6	Bourgogne

- lacktriangleq Op. de croisement : jointures externes \bowtie_L
 - □ Exemple : les vins et les clients de la même région

R	<u>NUM</u>	Nom	Prénom	Région	<u>Nvin</u>	Cru	Millésime	Viticulteur
	3	Hermelin	Jean-Pierre	Champagne	2	Champagne	1996	3
	5	Senard	Danièle	Champagne	2	Champagne	1996	3
	6	Schmidt	Thomas	Bourgogne	4	Chablis	2007	6

R	<u>NUM</u>	Nom	Prénom	Région	<u>Nvin</u>	Cru	Millésime	Viticulteur
	2	Voser	Armande	Alsace	T	Τ	T	T
	3	Hermelin	Jean-Pierre	Champagne	2	Champagne	1996	3
	5	Senard	Danièle	Champagne	2	Champagne	1996	3
	6	Schmidt	Thomas	Bourgogne	4	Chablis	2007	6

$$R = Client \overset{\circ}{\bowtie}_L Vin$$

- lacktriangle Op. de croisement : jointures externes \bowtie_R
 - □ Exemple : les vins et les clients de la même région

R	<u>NUM</u>	Nom	Prénom	Région	<u>Nvin</u>	Cru	Millésime	Viticulteur
	3	Hermelin	Jean-Pierre	Champagne	2	Champagne	1996	3
	5	Senard	Danièle	Champagne	2	Champagne	1996	3
	6	Schmidt	Thomas	Bourgogne	4	Chablis	2007	6

R	<u>NUM</u>	Nom	Prénom	Région	<u>Nvin</u>	Cru	Millésime	Viticulteur
	1	Τ	Τ	Bordeaux	1	Saint-Emilion	2002	1
	3	Hermelin	Jean-Pierre	Champagne	2	Champagne	1996	3
	5	Senard	Danièle	Champagne	2	Champagne	1996	3
	Т	Т	Т	Bordeaux	3	Pauillac	1992	1
	6	Schmidt	Thomas	Bourgogne	4	Chablis	2007	6

$$R = Client \stackrel{\circ}{\bowtie}_R Vin$$

- Op. de croisement : jointures externes ⋈
 - □ Exemple : les vins et les clients de la même région

R	<u>NUM</u>	Nom	Prénom	Région	<u>Nvin</u>	Cru	Millésime	Viticulteur
	2	Voser	Armande	Alsace	Τ	Τ	Т	1
	Τ	Т	Т	Bordeaux	1	Saint-Emilion	2002	1
	3	Hermelin	Jean-Pierre	Champagne	2	Champagne	1996	3
	5	Senard	Danièle	Champagne	2	Champagne	1996	3
	Τ	Т	Т	Bordeaux	3	Pauillac	1992	1
	6	Schmidt	Thomas	Bourgogne	4	Chablis	2007	6

$$R = Client \overset{\circ}{\bowtie} Vin$$

Algèbre relationnelle

Définition

 \square Objets : relation $R = (T, Sc, K, \mathcal{L})$

Extension: (ensemble de tuples), schéma (ensemble d'attributs), clé primaire (clé candidate), contraintes référentielles (ensemble de clés étrangères)

- Opérations
 - Nullaires : les relations de la BD
 - Unaires : ρ , σ , π
 - Binaires : \cup , \cap , \setminus , \times , \bowtie , \bowtie , \bowtie , \bowtie , \bowtie
- ☐ Axiomes:???
- Calculs

Les équations sont les requêtes

Algèbre relationnelle : Axiomes

Axiomatisation

- Propriétés des opérations...
- Espace des opérations couvertes
 - Définition de nouvelles opérations par composition Autres types de jointure, auto-jointure, division, ...
 - Existence d'opérations non-définissables ?
- Jeux d'opérateurs de base
 - Union, différence, projection, sélection, produit cartésien et renommage
 - Sélection, projection, renommage, jointure naturelle, opérateurs booléens

Calcul relationnel

- □ Ensemble des calculs de la forme : $\{t \mid P(t)\}$ avec P formule **saine** de la logique du premier ordre (FO)
- Exemple de calcul non sain (grosso modo, avec un complémentaire)

```
\{t \mid t \notin R\}
```

Problème: Trouver les personnes (nom et prénom) et les vins (cru et millésime) auxquels elles sont liées soit en tant que client, soit en tant que viticulteur

Vin	<u>Nvin</u>	Cru	Millésime	Viticulteur	Région
	1	Saint-Emilion	2002	1	Bordeaux
	2	Champagne	1996	3	Champagne
	3	Pauillac	1992	1	Bordeaux
	4	Chablis	2007	6	Bourgogne

Client <u>NUM</u>	Nom	Prénom	Région
-------------------	-----	--------	--------

Viticulteur	<u>NUM</u>	Nom Prénom		Région
	1	Barré	Henri	Bordeaux
	3	Hermelin	Jean-Pierre	Champagne
	4	Fort	Valérie	Languedoc
	6	Schmidt	Thomas	Bourgogne

2	Voser	Armande	Alsace
3	Hermelin	Jean-Pierre	Champagne
5	Senard	Danièle	Champagne
6	Schmidt	Thomas	Bourgogne

Commande	NCom	NClient	<u>NVin</u>	Date	Quantité
	1	5	4	27/04/12	25
	2	3	2	25/01/13	100
	3	2	2	14/08/09	80
	4	5	1	08/11/10	100

Bilan de l'algèbre relationnel

Travailler modulo permutations de tuples et d'attributs

Théorie des ensembles

Représenter l'absence d'information

Valeur spéciale ⊥ partagée par tous les domaines

Respecter l'identité numérique

Théorie des ensembles, clés primaires

Représenter l'intégrité/la régularité des données

Domaines, ???

Représenter les liens sémantiques entre les données

Clés étrangères, contraintes référentielles

Faire du calcul sur les tables

Algèbre relationnelle

Plan

Modèle logique de données

Algèbre relationnelle

En pratique...

Motivations

- Algèbre relationnel et SGBD
 - Intégrité structurelle des données (contraintes référentielles)
 Les SGBD permettent de spécifier des contraintes sémantiques

Contraintes d'intégrité

- Ensemble de tuples
 - Les SGBD permettent de trier les résultats des requêtes
 - Les SGBD autorisent la définition de requêtes retournant des doublons

□ Tables de la BD vues comme constantes (opérations nullaires) Les SGBD autorisent les modifications des constantes (?!#\$?!)

Contraintes d'intégrité

- Contraintes d'intégrité
 - Définition

Propriété de cohérence des données indépendante de l'organisation de la base et liée à la sémantique du modèle de données

- □ Langage de spécification
 Utilisation de l'algèbre relationnel et de formules logiques du 1^{er} ordre
- □ Exemple
 La somme des ECTS suivis par un étudiant ne dépasse pas 40 par année
- Affaire à suivre
 - Traduction entité/association => schéma relationnel
 Génération de contraintes d'intégrité (attribut dérivé, spécialisation, ...)
 - Spécification en SQL
 Utilisation des assertions (et des triggers)

Motivations

- Algèbre relationnel et SGBD
 - Intégrité structurelle des données (contraintes référentielles)
 Les SGBD permettent de spécifier des contraintes sémantiques

Contraintes d'intégrité

- Ensemble de tuples
 - Les SGBD permettent de trier les résultats des requêtes
 - Les SGBD autorisent la définition de requêtes retournant des doublons

Algèbre relationnelle multi-ensembliste

□ Tables de la BD vues comme constantes (opérations nullaires)

Les SGBD autorisent les modifications des constantes (?!#\$?!)

- Multi-ensemble
 - Collection sans ordre avec doublon

Multi-ensemble

- □ Collection sans ordre avec doublon
- \square Multi-ensemble sur un ensemble E
 - Fonction indicatrice $1_A : E \longrightarrow \{0,1\}$ d'un sous-ensemble $A \subset E$ $1_A(x) = \begin{cases} 1 \text{ si } x \in E \\ 0 \text{ sinon} \end{cases}$
 - Multi-ensemble : généralisation aux fonctions $m: E \longrightarrow \mathbb{N}$
 - \square m(x) = 0 : x est absent du multi-ensemble m,
 - \square m(x) = 1 : x est présent à un exemplaire dans m,
 - \square m(x) = 2 : x est présent à deux exemplaires dans m, etc.
 - Appartenance : $x \in m \Leftrightarrow m(x) > 0$
- Opérations classiques
 - Union : $(m_1 \cup m_2)(x) = m_1(x) + m_2(x)$
 - Intersection : $(m_1 \cap m_2)(x) = \min(m_1(x), m_2(x))$
 - Différence : $(m_1 \setminus m_2)(x) = \max(0, m_1(x) m_2(x))$

- Redéfinition des relations et des opérations
 - □ Relation (m_T, Sc, K, L) L'extension est donnée par un multi-ensemble de tuples
 - Définition des opérations classiques dans le cadre multi-ensembliste

$$(m'_T, \{A_1, \dots, A_n\}, K, \mathcal{L}) = \tilde{\sigma}_{\varphi}(m_T, \{A_1, \dots, A_n\}, K, \mathcal{L})$$

$$m'_T(t) = \begin{cases} m'_T(t) & \text{si } \varphi[A_1 \leftarrow A_1(t), \dots, A_n \leftarrow A_n(t)] \\ 0 & \text{sinon} \end{cases}$$

$$(m_{T_1 \times T_2}, Sc, K, \mathcal{L}) = (m_{T_1}, Sc_1, K_1, \mathcal{L}_1) \times (m_{T_2}, Sc_2, K_2, \mathcal{L}_2)$$

$$m_{T_1 \times T_2}(t_1, t_2) = m_{T_1}(t_1) * m_{T_2}(t_2)$$

- \blacksquare Opération de groupement γ
 - □ Spécification informelle

 Identifier les tuples de mêmes valeurs pour un sous-ensemble d'attributs
 - Notation

$$\gamma_{A_1,\ldots,A_k}(R)$$

- Sémantique multi-ensembliste
 - Soit une relation $R = (m_T, Sc, K, \mathcal{L})$
 - Soit $A = \{A_1, ..., A_k\}$ un sous-schéma de Sc

$$\gamma_{A_1,\dots,A_k}(R)=(m''_T,A,A,\mathcal{L}')$$
 avec $\tilde{\pi}_{A_1,\dots,A_k}(R)=(m'_T,A,A,\mathcal{L}')$ et $m''_T(t)=egin{cases}1\sin m'_T(t)>0\\0\sin n\end{cases}$

- Opération de groupement γ avec agrégation
 - Notation

$$\gamma_{A_1,\ldots,A_k,Op_1(B_1)\to C_1,\ldots,Op_l(B_l)\to C_l}(R)$$

- Sémantique multi-ensembliste
 - Soit une relation $R = (m_T, Sc, K, \mathcal{L})$
 - Soit $A = \{A_1, ..., A_k\}$ et $B = \{B_1, ..., B_l\}$ deux sous-schémas de Sc
 - Soit $C = \{C_1, ..., C_l\}$ un nouveau schéma
 - Soient les op. d'agrégation $\{Op_i\}_{i\in [1,l]}$ parmi $\{SUM,AVG,MIN,MAX,CNT\}$

$$\gamma_{A_1,...,A_k,Op_1(B_1) o C_1,...,Op_l(B_l) o C_l}(R) = (m'_T, A \cup C, A, \mathcal{L}')$$

$$\operatorname{avec} \gamma_{A_1,...,A_k}(R) = (m'_T, A, A, \mathcal{L}')$$

$$\operatorname{et} C_i(t) = Op_i \{ m_T(t') * B_i(t') \mid A(t') = A(t) \}$$

Motivations

- Algèbre relationnel et SGBD
 - Intégrité structurelle des données (contraintes référentielles)
 Les SGBD permettent de spécifier des contraintes sémantiques

Contraintes d'intégrité

- Ensemble de tuples
 - Les SGBD permettent de trier les résultats des requêtes
 - Les SGBD autorisent la définition de requêtes retournant des doublons

Algèbre relationnelle multi-ensembliste

□ Tables de la BD vues comme constantes (opérations nullaires)

Les SGBD autorisent les modifications des constantes (?!#\$?!)

Variables relationnelles

Variable relationnelle

... ou relvar

- Distinction dans une de relation entre
 - Valeur : extension
 - Type : schéma, clé primaire et clés étrangères
- Mise à jour d'une relation
 - Relation vue comme une variable
 - Ajout, modification ou retrait de tuple
 - Modification de la valeur
 - Respect du type
- Origine et controverse
 - Introduit par C. J. Date (et H. Darwen)
 - Équivalent au concept de table en SQL

-- FIN --