Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

1 Input Parameters

			1		
	Module			Fin Plate	
MainMo			Shear Connection		
Connectivity			С	olumn flange-Beam web	
Shear(k	(N)*			1.0	
	Su	pporting Sect	ion		
	Supportin	ng Section		HB 200	
	Mate	erial *		E 250 (Fe 410 W)A	
<u> </u>	Ultimate strer	ngth, fu (MPa)		410	
	Yield Streng	th , fy (MPa)		230	
$(B-t)$ α	Mass	37.3	Iz(cm4)	36000000.0	
ZZ D	Area(cm2) - A	4750.0	Iy(cm4)	9670000.0	
	D(mm)	200.0	rz(cm)	87.10000000000001	
R ₁	B(mm)	200.0	ry(cm)	45.09999999999994	
R ₂	t(mm)	6.1	Zz(cm3)	361000.0	
В	T(mm)	9	Zy(cm3)	96700.0	
•	FlangeSlope	94	Zpz(cm3)	361000.0	
	R1(mm)	9.0	Zpy(cm3)	96700.0	
	R2(mm)	4.5			
	Su	ipported Secti	on		
	Supporte	ed Section		JB 225	
	Material *		E 250 (Fe 410 W)A		
т т	Ultimate strength, fu (MPa)		410		
	Yield Streng	th , fy (MPa)		230	
$(B-t)$ α	Mass	12.8	Iz(cm4)	13100000.0	
4	Area(cm2) -	1630.0	Iy(cm4)	405000.0	
ZZ D	A				
P.	D(mm)	225.0	rz(cm)	89.7	
R_1	B(mm)	80.0	ry(cm)	15.8	
- В	t(mm)	3.7	Zz(cm3)	116000.0	
¥	T(mm)	5.0	Zy(cm3)	10100.0	
,	FlangeSlope	91.5	Zpz(cm3)	116000.0	
	R1(mm)	6.5	Zpy(cm3)	10100.0	
	R2(mm)	1.5			
	/ \ \	Bolt Details		100 000 010 000 000	
Diameter(mm)*				, 16.0, 20.0, 24.0, 30.0, 36.0]	
Grade *			[3.6, 4.6, 4.8]	8, 5.6, 5.8, 6.8, 8.8, 9.8, 10.9, 12.9]	
Type *			Bearing Bolt		
Bolt hole				Standard	
Slip factor				0.3	
Type of	edges		a - Sheared or hand flame cut		

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

Gap between beam and support (mm)	10.0
Are the members exposed to corrosive influences	False
Weld Details	
Weld Type	Fillet
Type of weld fabrication	Shop Weld
Material grade overwrite (MPa) Fu	410.0

2 Design Checks

2.1 Bolt Design Checks

Check	Required	Provided	Remarks
Shear Capacity (kN)		$V_{dsb} = \frac{f_{ub} n_n A_{nb}}{\sqrt{3} \gamma_{mb}}$ $= \frac{410 * 1 * 84.3}{\sqrt{3} * 1.25}$ $= 11.68$	
Bearing Capacity (kN)		$V_{dpb} = \frac{2.5 \ k_b \ d \ t \ f_u}{\gamma_{mb}}$ $= \frac{2.5 \ * 0.52 * 12.0 * 3.7 * 410}{1.25}$ $= 11.68$	
Capacity (KN)		$V_{db} = min (V_{dsb}, V_{dpb})$ $= min (11.68, 11.68)$ $= 11.68$	
No of Bolts	$R_{u} = \sqrt{V_{u}^{2} + A_{u}^{2}}$ $n_{trial} = R_{u}/V_{bolt}$ $R_{u} = \frac{\sqrt{1.0^{2} + 1.0^{2}}}{11.68}$ $= 1$	2	
No of Columns		1	
No of Rows		2	
Min. Pitch (mm)	$p/g_{min} = 2.5 d$ =2.5 * 12.0 = 30.0	0.0	N/A
Max. Pitch (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * \ 3.7, \ 300 \ mm)$ = 300	0.0	N/A
Min. Gauge (mm)	$p/g_{min} = 2.5 d$ = $2.5 * 12.0 = 30.0$	85	Pass
Max. Gauge (mm)	$p/g_{max} = \min(32 \ t, \ 300 \ mm)$ = $\min(32 * \ 3.7, \ 300 \ mm)$ = 300	85	Pass
Min. End Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Max. End Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *4.0 * \sqrt{\frac{250}{230}}$ $= 49.92$	25	Pass
Min. Edge Distance (mm)	$e/e'_{min} = [1.5 \text{ or } 1.7] * d_0$ = 1.7 * 13.0 = 22.1	25	Pass
Max. Edge Distance (mm)	$e/e'_{max} = 12 \ t \ \varepsilon$ $\varepsilon = \sqrt{\frac{250}{f_y}}$ $e/e'_{max} = 12 \ *4.0 * \sqrt{\frac{250}{230}}$ $= 49.92$	25	Pass
Capacity (KN)	1039.86	11680.95	Pass

2.2 Plate Design Checks

Check	Required	Provided	Remarks
Min. Plate Height (mm)	$0.6 * d_b = 0.6 * 225.0 = 135.0$	135	Pass
Max. Plate Height (mm)	$d_b - 2(t_{bf} + r_{b1} + gap)$ $= 225.0 - 2 * (5.0 + 6.5 + 10)$ $= 202.0$	135	Pass
Min. Plate Length (mm)	$2 * e_{min} + (n \ c - 1) * p_{min})$ $= 2 * 22.1 + (1 - 1) * 30.0$ $= 54.2$	60.0	Pass
Min.Plate Thickness (mm)	$t_w = 3.7$	4.0	Pass
Shear yielding Capacity (V_dy) (kN)		$V_{dg} = \frac{A_v * f_y}{\sqrt{3} * \gamma_{mo}}$ $= \frac{135 * 4.0 * 230}{\sqrt{3} * 1.1}$ $= 39.11$	
Shear Rupture Capacity (V_dn) (kN)		$V_{dn} = \frac{0.75 * A_{vn} * f_u}{\sqrt{3} * \gamma_{mo}}$ $= 1 * (135 - (2 * 13.0)) * 4.0 * 410$ $= 134.07$	
Block Shear Capacity in Shear (V_db) (kN)		79.79	
Shear Capacity (V_d) (kN)	1.0	$V_d = Min(V_{dy}, V_{dn}, V_{db})$ $= Min(39.11, 134.07, 79.79)$ $= 39.11$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

Check	Required	Provided	Remarks
Tension Yielding Capacity (kN)		$T_{dg} = \frac{l * t * f_y}{\gamma_{mo}}$ $= \frac{60.0 * 4.0 * 230}{\sqrt{3} * 1.1}$ $= 50.18$	
Tension Rupture Capacity(kN)		$T_{dn} = \frac{0.9 * A_n * f_u}{\gamma_{m1}}$ $= \frac{0.9 * (60.0 - 2 * 13.0) * 4.0 * 410}{1.25}$ $= 55.5$	
Block Shear Capacity in Tension (T_db) (kN)	- •		
Tension Capacity (kN)	1.0	$T_d = Min(T_{dg}, T_{dn}, T_{db})$ $= Min(50.18, 55.5, 79.79)$ $= 50.18$	Pass
Moment Capacity (kNm)	0.04	3.05	Pass
Interaction Ratio	≤ 1	$\frac{0.04}{3.05} + \frac{1.0}{50.18} = 0.03$	Pass

2.3 Weld Checks

Check	Required	Provided	Remarks
Min Weld Size (mm)	$Thickness of Thicker part \\ = Max(9,9) = 9 \\ IS800: 2007 \ cl.10.5.2.3 \ Table 21, \\ t_{w_{min}} = 3$	3	Pass
Max Weld Size (mm)	Thickness of Thinner part $= Min(9,9) = 4.0$ $t_{w_{max}} = 4.0$	3	Pass
Weld Strength (kN/mm)	$R_{w} = \sqrt{(T_{wh} + A_{wh})^{2} + (T_{wv} + V_{wv})^{2}}$ $T_{wh} = \frac{M * y_{max}}{Ipw} = \frac{35000.0 * 64.5}{357781.5}$ $T_{wv} = \frac{M * x_{max}}{Ipw} = \frac{35000.0 * 0.0}{357781.5}$ $V_{wv} = \frac{V}{l_{w}} = \frac{1000.0}{258}$ $A_{wh} = \frac{A}{l_{w}} = \frac{1000.0}{258}$ $R_{w} = \sqrt{(6.31 + 3.88)^{2} + (0.0 + 3.88)^{2}}$ $= 10.9$	$f_w = \frac{t_t * f_u}{\sqrt{3} * \gamma_{mw}}$ $= \frac{3 * 410}{\sqrt{3}} * 1.25$ $= 568.11$	Pass

Company Name	LoremIpsum	Project Title	Fossee
Group/Team Name	LoremIpsum	Subtitle	
Designer	LoremIpsum	Job Number	123
Date	29 /04 /2020	Client	LoremIpsum

3 3D View

Figure 1: 3D View