

Konzeption, Projektierung und Inbetriebnahme eines mehrachsigen Positioniersystems

Bachelorarbeit

Name des Studiengangs

Elektrotechnik

Fachbereich 1

vorgelegt von

Aaron Zielstorf

Datum: Berlin, 04.06.2021

Erstgutachter_in: Herr Prof. Dr. Stephan Schäfer Zweitgutachter_in: Herr Dipl.-Ing. Dirk Schöttke

Inhaltsverzeichnis

In	halts	sverzeichnis	II											
1	Ein	leitung	1											
2	Theoretische Grundlagen													
	2.1	Requierements Engineering	2											
	2.2	Anlagenprojektierung	3											
3	Konzeption													
	3.1	Vorstellung der Laboranlage	4											
		3.1.1 Aufbau des Positioniersystems	5											
		3.1.2 Betriebsumgebung	6											
		3.1.3 Betriebsmodi	6											
	3.2	Anforderungsanalyse	11											
		3.2.1 Funktionale Anforderungen	12											
		3.2.2 Nicht-funktionale Anforderungen	12											
	3.3	Identifikation der Stakeholder	13											
	3.4	Kontextanalyse	14											
	3.5	Anwendungsfallspezifikation	15											
	3.6	Verhaltensspezifikation	16											
	3.7	Partitionierung	17											
	3.8	Testspezifikation	18											
4	Projektierung													
	4.1	Genereller Aufbau der Automatisierungssoftware	19											
	4.2	Implementierung der Modelle	20											
	4.3	Peripherie-Schnittstellen	21											
	4.4	Anwenderschnittstelle	22											
5	Inb	etriebnahme	23											
	5.1	Programm-Implementation	23											
	5.2	Verifizierung der Testspezifikation	24											
	5.3	Programmkorrektur und -verbesserung	25											
6	Faz	it	26											
7	Aus	sblick	27											

Literatur															28
Bücher															28
Artikel															28
Artikel											29				
Eidesstattliche	Erklär	rung													30

1 Einleitung

2 Theoretische Grundlagen

Dies hier ist ein Blindtext zum Testen von Textausgaben. Wer diesen Text liest, ist selbst schuld. Der Text gibt lediglich den Grauwert der Schrift an. Ist das wirklich so? Ist es gleichgültig, ob ich schreibe: "Dies ist ein Blindtext" oder "Huardest gefburn"? Kjift – mitnichten! Ein Blindtext bietet mir wichtige Informationen. An ihm messe ich die Lesbarkeit einer Schrift, ihre Anmutung, wie harmonisch die Figuren zueinander stehen und prüfe, wie breit oder schmal sie läuft. Ein Blindtext sollte möglichst viele verschiedene Buchstaben enthalten und in der Originalsprache gesetzt sein. Er muss keinen Sinn ergeben, sollte aber lesbar sein. Fremdsprachige Texte wie "Lorem ipsum" dienen nicht dem eigentlichen Zweck, da sie eine falsche Anmutung vermitteln.

2.1 Requierements Engineering

2.2 Anlagenprojektierung

3 Konzeption

Dieses Kapitel unterteilt sich in acht Abschnitte. Die Konzeptionierung der Laboranlage erfolgt nach dem Requierement Engineering, welches als theoretische Grundlage im ersten Kapitel behandelt wurde.

Im ersten Unterkapitel wird die Laboranlage vorgestellt. Daran anschließend steht im Mittelpunkt der Entwicklungsprozess zum Entwurf des mehrachsigen Positioniersystems. Schwerpunkt der Arbeit liegt dabei auf dem Software- und Systementwicklungsprozess, während der Hardware- und Hardwareentwicklungsprozess in verkürzter Form Erwähnung findet (jeweils am Ende des Unterkapitels).

Der Entwicklungsprozess unter dem Gesichtspunkt der Konzeption des Systems umfasst dabei sieben Kernabschnitte, welche sich in die Anforderungsphase des Entwicklungsprozesses eingliedern. Bei den Kernabschnitten handelt es sich um folgende Analyseschwerpunkte.

- Anforderungsanalyse: Es wird unterschieden zwischen funktionalen und nichtfunktionalen Anforderungen an das System.
- Identifikation der Stakeholder: Ermittlung aller an der Systementwicklung und Systemnutzung beteiligten Personen zur Feststellung von Randbedingungen an die Anforderungen.
- Kontextanalyse: Finden der Systemgrenzen und Ermittlung von Nachbarsystemen.
- Anwendungsfallspezifikation: Identifizierung der Systemprozesse und anschließende Präzisierung.
- Verhaltensspezifikation: Modellierung des Systemverhaltens.
- Partitionierung: Untergliederung des Systems in logische Sinnesabschnitte zur Verringerung der Komplexität.
- **Testspezifikationen:** Festlegung von Prüfkriterien zur Bestätigung der Anforderungsumsetzung.

3.1 Vorstellung der Laboranlage

In diesem Unterkapitel wird zunächst die Laboranlage vorgestellt, die im Verlauf der Arbeit unter den Gesichtspunkten des Requierement Engineerings und der Anlagenprojektierung konzipiert, projektiert und in Betrieb genommen werden soll. Im ersten Abschnitt wird das bereits elektrisch fertiggestellte Positioniersystem dargestellt. Im Mittelpunkt steht hierbei die Erleuterung des Aufbaus und die Beschreibung der Funktionalität der Anlage. Der zweite Abschnitt behandelt die Eingliederung des Systems in seine Arbeitsumgebung.

Dabei soll ein erster Überblick zum Einsatz der Positioniereinheit gegeben werden. Zuletzt werden die Betriebsmodi der Laboranlage vorgestellt, wobei genauer auf den Workflow im jeweiligen Modus eingegangen werden soll.

3.1.1 Aufbau des Positioniersystems

Wie bereits aus dem Thema der Bachelorthesis erkenntlich ist, handelt es sich bei der behandelten Laboranlage um ein mehrachsiges Positioniersystem. Dieses besitzt zum Zeitpunkt der ersten Inbetriebnahme zwei Achsen (siehe Bild).

Die horizontale Achse des Systems ist fest an der Wand montiert und hat eine Länge von rund 1600mm (effektiver Fahrtweg). Vertikal montiert auf dieser befindet sich die beweglich gelagerte zweite Achse der Positioniereinheit. Diese besitzt die Möglichkeit lineare Bewegungen zwischen den Endlagesensoren der Horizontalachse durchzuführen. Bei der Befestigung an der waagerechten Achse handelt es sich um ein doppeltes Schlittensystem auf Rollen. Die Bewegung der Achse erfolgt über ein Gummiriemen, der fest an der Vertikalachse befestigt ist, und über Umlenkrollen und einen Servomotor an der Horizontalachse bewegt werden kann. Auf der senkrechten Achse befindet sich ein weiterer Schlitten, der ebenso beweglich gelagert ist und sich auf einem Fahrtweg von rund 2000mm zwischen zwei Endlagen bewegen kann. Auf diesem ist ein simples Greifsystem angebracht, welches horizontale 180 Grad Schwenkbewegungen durchführen kann, und in der Lage ist, grundlegende Greifoperationen durchzuführen.

Für die Zuleitungen zu den auf den bewegten Anlagenteilen montierten Aktoren und Sensoren wurden Energieketten verbaut, sodass Kabel Prozesssicher miteführt und eine dauerhafte Strom-, sowie Datenversorgung aller Systemkomponenten gewährleistet werden kann. An den beiden äußersten Profilen (sowohl auf der linken als auch auf der rechten Seite der Anlage) sind Ablagepositionen vorgesehen, von bzw. auf welche simple Transportgüter aufgenommen und abgelegt werden können.

Auf der rechten Seite direkt neben der Positioniereinheit sind der Schaltschrank sowie die Speicherprogrammierbare Steuerung (im Folgenden als SPS bezeichnet) an der Wand montiert. Die Kabel der Aktoren und Sensoren des Systems münden an der Unterseite des Schrankes, sowie die Stromzuleitung und sämtliche Aus- und Eingangsverbindungen zu bzw. von der SPS und dem sich neben dieser befindenden Servoantrieb. Auf der Vorderseite an der Tür des Schaltschrankes sind Bedienelemente aufgeschraubt, die für die Grundlegende Steuerung der Anlage benutzt werden können.

Zur gewährleistung der Sicherheit von Mensch und Anlage sind am Eingang des Positioniersystems sowohl ein Lichtvorhang als auch Not-Halt Bedienelemente montiert. Stromfrei kann die Anlage über den Hauptschalter an der rechten Seite des Schaltschrankes geschaltet werden.

3.1.2 Betriebsumgebung

Nachdem im vorhergehenden Abschnitt bereits die Grundlegenden Funktionen und der Aufbau der Positioniereinheit dargestellt wurden, beschäftigt sich dieses Unterkapitel mit der Darstellung der Eingliederung des Systems in dessen Arbeitsumgebung.

Aufgebaut befindet sich das mehrachsige Positioniersystem im Laborraum G422 der HTW Berlin am Campus Wilhelminenhofstraße. Dort wurde die Anlage im Rahmen meines Praktikums errichtet. Nachfolgen ist es Ziel der Bachelorthesis, diese Anlage für den Lehrzweck in Betrieb zu nehmen. Konkret soll die Positioniereinheit für zwei Anwendungen eingesetzt werden.

Erstere gliedert sich direkt in die Unterrichtseinheiten des Laborbetriebs im späten Bachelorund das gesamte Masterstudium im Themenfeld Automatisierungstechnik ein. Jeder studentische Laborplatz besitzt die Möglichkeit sich mit dem System zu verbinden, um es mit Automatisierungssoftware, die in den Lehreinheiten entwickelt wird zu bespielen und diese an der Anlage zu testen. Es soll die Möglichkeit bestehen, Trajektorien zu fahren, bei denen virtuelle Hindernisse umgangen werden, und Objekte von einem Ausgangspunkt zu einem Zielpunkt transportiert werden können. Die Nutzung der realen Anlage dient dabei als Prüfmöglichkeit der vorher von den Studierenden nur simulativ getesteten Automatisierungssoftware. Ziel ist es den Laboranten eine LAboranlage zur Verfügung zu stellen, die in der Industrie in ähnlicher Weise aufzufinden ist, um bereits im Studium spätere Arbneitsabläufe aufzuzeigen.

Die zweite Anwendung des mehrachsigen Positioniersystems ist Teil eines Laborübergreifenden Projektes, welches nicht in dieser Arbeit behandelt wird. Aus dessen Zielen ergeben sich weitere Anforderungen an die Laboranlage. Es sollen Daten aus dem Prozessablauf bereitgestellt werden, aus denen eine Wertschöpfung für das Projekt generiert werden kann. Die gewonnenen Daten sollen extern weiterverarbeitet werden. Dazu müssen weitere Schnittstellen im System bereitgestellt werden, um generierte Daten mit Peripheriegeräten austauschen zu können.

3.1.3 Betriebsmodi

Die Nutzung der Laboranlage erfolgt in zwei verschiedenen Betriebsmodi. Um den Produktivbetrieb des Positioniersystems einzuleiten, muss der Nutzer zwischen dem Automatikmodus und dem Handmodus auswählen, die Im Folgenden detailliert beschrieben werden.

Automatikbetrieb: Bei dem Automatikmodus handelt es sich um den standard betriebsmodus der Laboranlage. Dieser kann vollautomatisch im Dauerbetrieb eingesetzt werden
und erfordert nicht die Anwesenheit vom Nutzer. Der Prozessablauf ist programmatisch
vorgeschrieben und wird zyklisch durchgeführt. Zur erstmaligen Inbetriebnahme sollen
einfache Transportaufgaben durchgeführt werden. So könnte beispielsweise von einer Ablageposition A ein Objekt gegriffen und um Hindernisse herum transportiert werden, so dass
besagtes Objekt an einer Zielposition B wieder abgesetzt wird. Danach fährt die Anlage

wieder zu Position A um erneut ein Objekt für den Transport aufzunehmen.

Konkret muss das Positioniersystem im ersten Schritt unter Spannung gesetzt, in dem der Hauptschalter (400V Ebene) betätigt wird. Dieser befindet sich, wie bereits im vorherigen Unterkapitel erwähnt, auf der rechten Seite des Schaltschrankes. Darauffolgend muss im zweiten Schritt die Steuerung (LMC Pro von Schneider Electric) eingeschalten, sowie alle Betriebsmittel auf der 24V Ebene mit Strom versorgt werden. Dies geschieht über den Ein-Taster, welcher sich auf der Front des Schaltschrankes befindet. Der Eingeschaltete Zustand wird über eine Lampe auf der Schaltschrankfront signalisiert. Als Netzteil dient das LXM62P Powersupply von Schneider Electric, welches 3-phasig an der Drehstromsteckdose des Laborraumes angeschlossen ist. Dieses versorgt den LXM62D double Drive von Schneider Electric. Die 24V Steuerungsebene wird von einem separatem Netzteil im Schaltschrank versorgt. Mit einem Wahlschalter kann nun der Automatikmodus des Systems angewählt werden. Bestätigt wird dieser über einen weiteren Taster an der Schaltschranktür. Die erfolgreiche Auswahl des Automatikmodus wird über eine Signalleuchte, welche mit "Auto" betitelt ist, indiziert. Die Anlage wechselt aus dem Leerlauf in den vollautomatischen Betrieb.

Nach der Wahl des Automatikmodus, bewegt das Positioniersystem die auf den beiden Achsen montierte Greifeinrichtung aus der Ausgangsposition des Leerlaufes (auch als Home bezeichnet) zur Ablageposition A. Dazu werden zunächst die Bremsen der beiden Motoren gelöst, welche für die Bewegunng der jeweiligen Achse verantwortlich sind. Ist die Position vor der Ablagestelle A erreicht, wird im Nächsten Schritt ein Schwenkarm mit Greifer so zur Ablageposition A rotiert, dass ein sich darauf befindliches Objekt gegriffen werden kann. Es folgt besagter Greifprozess, um das auf Ablageposition A befindliche Objekt aufzunehmen.

Das Positioniersystem muss nun einen Fahrtweg bewältigen, der mit virtuellen Hindernissen bestückt ist, um Trajektorien zum Transport von Gütern in mit Objekten blockierten Umgebungen zu erproben. Es ist nicht möglich eine geradlinige Bewegung von Startposition A zur Zielposition, dem Ablageort B, zu fahren. Weiterhin kann auch nicht erst der komplette Fahrtweg in vertikaler Richtung (Z-Richtung) bewältigt werden, und dann die Bewegung in horizontaler Richtung (X-Richtung), noch eine geradlinige Bewegung, so dass die Z- und X-Koordinate des Zieles gleichzeitig erreicht werden. Die Hindernisse werden programmatisch vorgegeben, und sind somit der Laboranlage bzw. der Automatisierungssoftware bekannt.

Im nächsten Schritt werden dem Positioniersystem Koordinaten übergeben, die wenn diese durchfahren werden, den Weg von Startposition A zu Zielposition B ergeben. Dabei soll berücksichtigt werden, dass nur an der Start- und Zielposition umfangreichere Beschleunigungen stattfinden sollen, Welche die Achsen aus der Ruhe beschleunigen bzw. diese wieder abbremsen, die Einzelnen Punkte auf dem Weg werden nur durchfahren. Zur Minimierung von starken Trägheitsmomenten ist es weiterhin notwendig, dass die beiden Achsen zusammen keine ren gradlinigen Fahrtwege zwischen den Wegpunkten

nutzen, sondern im Splineförmigen Bahnen die einzelnen Koordinatenpunkte abfahren. Die konkrete Parametrierung der Splines und der sich daraus ergebenden Trajektorien soll Teil der Testszenarien des mehrachsigen Positioniersystems sein.

An der Zielposition angekommen, schwenkt der sich auf der Z-Achse befindende Arm um, und das Objekt wird über der Ablageposition vom Greifer losgelassen, so dass es auf der Zielposition verweilt. Die Anlage fährt nun den Weg zur Startposition zurück, um ein weiteres Objekt aufzunehmen und dieses wie bereits beschrieben zu transportieren.

Mögliche spätere Erweiterungen könnten sein, dass der Rückweg anders gewählt wird, da kein Objekt transportiert wird und somit auftretende Trägheitsmomente und Schwingungen keine wichtige Rolle spielen. Alternativ könnte auch auf dem Rückweg ein anderes Objekt von Ablageposition B zu Ablageposition A transportiert werden, welches andere Eigenschaften aufweist, was den Fahrtweg beeinflussen könnte.

Für die vollständige Automatisierungs des Prozesses ist eine spätere Erweiterung nötig, bei der auch die Ablageposition(en) automatisch mit neuen Transportobjekten bestückt werden. Es würde sich eine Aufrüstung mit Förderbänder von und zu den Ablagepositionen der Anlage lohnen, so dass steig neue Objekte dem Positioniersystem bereitgestellt, und von diesem auch wieder entnommen werden können.

Im letzten Schritt kann die Anlage wieder deaktiviert werden, was über die Abwahl des aktuellen Betriebsmodus geschieht. es muss der gleiche Taster wie bei der Auswahl des Modus betätigt werden. Dies ist in jedem Moment während der Laufzeit des Automatikmodus möglich. Die letzte Transportaufgabe wird noch vollständig zu Ende durchgeführt. Danach findet das Homing statt, bei dem der sicherer Ausgangszustand der Anlage wieder angefahren und die Bremsen der Motoren wieder aktiviert werden. Die Bremsen dienen beim Erreichen des Leerlaufes nicht nur zum Abbremsen der Achsen, sondern sind nötig, damit der Schlitten auf der Vertikalachse nicht bis nach unten fällt. Nach erfolgreicher Abwahl des Betriebsmodus erlischt die Indikatorlampe für den Automatikbetrieb wieder. Nur wenn kein Modus ausgewählt ist, kann die 24V Ebene wieder spannungsfrei geschalten, und die Laboranlage wieder deaktiviert werden. Dies geschieht über den Aus-Taster auf der Front des Schaltschrankes. Nach Betätigung des Tasters erlischt die Lampe, welche die Betriebsbereitschaft des Positioniersystems signalisiert.

Handbetrieb: Bei dem Handmodus handelt es sich um die zweite Betriebsart der Positioniereinheit. Anders als im Automatikbetrieb dient der Handmodus nicht als Abarbeitungsmodus für Positionieraufgaben, sondern soll als manuelle Bedienmöglichkeit genutzt werden können. Das heißt konkret, dass erst durch das Betätigen von Tastern Bewegungen und Aktionen durchgeführt werden.

Wie auch schon im Automatikmodus wird die Anlage zunächst unter Spannung gesetzt durch Betätigung des Hauptschalters. Anschließend wird über den Ein-Tasters die 24V Ebene aktiviert, wodurch auch alle verbundenen Anlagenkomponenten (SPS, Sensoren und Aktoren) eingeschalten werden. Zur Auswahl des Handbetriebes muss nur der Be-

triebsmodusschalter auf "HAND" eingestellt, und nachfolgend per Taster bestätigt werden. Die erfolgreiche Auswahl wird durch das Aufleuchten der zugehörigen Signalleuchte auf der Front des Schaltschrankes symbolisiert.

Nach der Wahl des Handmodus verbleibt die Anlage zunächst im Ruhezustand. Die beiden Achsen befinden sich an der Ausgangsposition, die im Leerlauf hergestellt ist. Um die Positioniereinheit in Bewegung zu setzen ist nun eine Nutzereingabe nötig.

An der Frontseite des Schaltschrankes befindet sich ein Vierfachtaster mit Pfeilen in Xund Z-Richtung. Mittels der Taster kann per Druck die jeweilige Achse bewegt (gejoggt) werden. Dies geschieht solange, bis der Taster wieder losgelassen wird oder eine der Endlagen erreicht ist. Bei Betätigung eines Tasters fahren die Achsen jedoch nicht mit voller Geschwindigkeit an, sondern beschleunigen erst langsam. Auch die Beschleunigung beim Loslassen bzw. Abbremsen einer Achse ist verringert gegenüber dem Automatikmodus. Über ein Potentiometer rechts neben den vier Bewegungstastern kann die Fahrtgeschwindigkeit reguliert werden.

Nach Manuellem Navigieren zu den Ablagepositionen besteht an diesen die Möglichkeit, den Greifer einzusetzen. Nun muss jedoch jeder einzelne Schritt, also Umschwenken zur Ablage, Greifen und wieder Loslassen einen Transportobjektes per Druckknopf getriggert werden.

Weiterhin ist als Randbedingung im Handbetrieb vorgesehen, dass in den äußeren Bereichen des Positioniersystems zum einen nur geringere Geschwindigkeiten gefahren werden können, als auch, dass die Beschleunigung der Achsen in diesen Bereichen gedämpft ist, um zu verhindern, dass die Schlitten auf den jeweiligen Achsen über die Endlagen hinaus Abbremsen und mit den harten Stoppelementen am äußersten Ende der Achsen kollidieren. Im Handmodus sind keine virtuellen Hindernisse vorgesehen auf dem Fahrtweg des Greifers, da kein Mehrwert aus dem manuellen Umfahren gewonnen wird und maximal die koordination des Nutzers trainiert werden kann. Programmatisch wäre an dieser Stelle kein Mehrwert zu erreichen, falls der Nutzer per Tastendruck Hindernisskollisionen verhindern sollte.

Nach Wiederabwahl des Handmodus bewegt sich die Anlage zurück in ihre Ausgangsposition (es findet wie auch schon im Automatikmodus ein Homing statt).

Sicherheitsbezogene Randbedingungen: Als letzten Unterpunkt in diesem Teilkaptitel soll noch ein Überblick zu den Sicherheitsmaßnahmen der Anlage gegeben werden. Für die detaillierte Darstellung und Projektierung des Sicherheitskonzeptes wird an dieser Stelle auf das Kapitel Safetykonzept im dritten Teil Bachelorthesis verwiesen.

Allgemein wird durch jegliche Sicherheitsmaßnahmen an und um die Laboranlage herum sichergestellt, dass weder Mensch noch Maschine Schaden nehmen kann. Grundlegend muss gewährleistet sein, dass das Positioniersystem nicht außerhalb seiner vorgesehenen Aufgaben und Abläufe agieren kann. Dazu sind kurz vor jedem Ende der zwei Achsen des Systems induktive Endlagesensoren verbaut. Diese lösen aus, wenn ein Schlitten auf einer Achse das Ende eines Farhrbereiches einer Achse erreicht hat. Ist dies der Fall, wird die

betreffende Achse umgehend abgebremst. Diese Sicherheitsmaßnahme ist zum einem im Handbetrieb aber auch im möglichen Fehlerfall von höchster Relevanz. Dem Anlagennutzer darf zum einen nicht eine Achse im manuellen Betrieb auf einen der Puffer am Ende des befahrbaren Weges auffahren lassen, zum anderen muss die Anlage in egal welcher Situation (was auch den Fehlerfall einschließt) unweigerlich an den Endlagesensoren zum Stillstand abbremsen.

Es können weiterhin aber auch im normalen Betriebsablauf Fehler oder Notfälle entstehen, die dem System nicht durch das Erreichen von einem oder mehreren Endlagepositionen bekannt werden. So muss verhindert werden, dass eine sich im Bereich der Positionierheit befindliche Person nicht in den Prozess physisch eingreifen kann. Dazu ist, wie bereits zum Eingang des Unterkapitels erwähnt, ein Lichtvorhang vor dem Positionier- bzw. Fahrbereich der Laboranlage installiert. wird der Vorhang durchbrochen, löst dies ein Signal aus, welches dazu führt, dass die Anlage schnellstmöglich abbremst und zum Stillstand kommt. Es handelt sich folglich um eine Not-Halt Funktionalität. Selbige kann auch von einer Person manuell ausgelöst werden, auch ohne dass der Lichtvorhang ein Eindringen in den Positionierprozess detektiert hat. Sowohl auf der Linken, als auch auf der rechten Seite des Systems ist ein einrastender Not-Halt Taster montiert. Falls Fehler oder Notfall vorliegt, kann dieser betätigt werden.

Damit das mehrachsige Positioniersystem nach einem Fehler wieder seinen Betrieb aufnehmen kann, muss der Fehler zunächst beseitigt werden und anschließend kann über zweifaches Drücken eines dafür deklarierten Tasters am Schaltschrank die Anlage wieder Freigegeben werden. Nach dieser Handlung setzt die Anlage entsprechend ihres aktuell ausgewählten Betriebsmodus ihren ursprünglichen Ablauf fort.

Auch durch visuelle Signale soll die Sicherheit von Menschen, die sich in der Nähe oder an der Maschine befinden verbessert werden. Dazu wird eine Signalampel genutzt, die bei Bewegung von Achsen blink und im Eingeschalteten zustand des Positioniersystems immer mindestens in einer Farbe leuchtet. Konkrete Umsetzungen werden auch hierzu im Kapitel zum Sicherheitskonzept beschrieben.

3.2 Anforderungsanalyse

In der Analysephase der Systementwicklung werden die Kundenanforderungen zusammengetragen und untersucht. Dabei stellt die Anforderungsanalysephase den ersten Schritt zum Aufstellen der initialen Dokumente für den Prozess dar. In weiteren Iterationen liegen der Anforderungsanalyse zusätzlich zu der ursprünglichen Aufgabenstellung noch die Ergebnisse der Tests und die erkannten Analysefehler ebenfalls als Quelle vor.

Die Ermittelten Anforderungen werden untergliedert in funktionale und nicht-funktionale Anforderungen. Diese Unterteilung findet in der Arbeit in separaten Unterkapiteln statt, die sich nachfolgend anschließen. Die Identifikation der Stakeholder ist grundsätzlich der Anforderungsanalyse zugehörig, wird jedoch in einem gesonderten, sich der Anforderungsanalyse anschließenden, Kapitel behandelt, da es sich im Kontext dieser Arbeit um ein Kernabschnitt handelt.

Zur übersichtlichen Einordnung des jeweiligen Analyseschrittes wird die Grafik Analysephase eingeführt, an der sich die fogenden Kapitel entlangbewegen. Die Anforderungsanalyse kann auf der linken Seite der Grafik identifitziert werden und untergliedert sich in die bereits erwähnten drei Unterpunkte.

Die folgenden Abschnitte betrachten die Erstellung einer konkreten Anforderungsspezifikation, die zum Startbeginn des Entwicklungsprozesses vorliegen muss. In den Kapiteln zu den funktionalen und nicht-funktionalen Anforderungen werden die notwendigen Anforderungen für die Entwicklung der Laboranlage vorgestellt. Dabei sind die Hardwareanforderungen nur Beispielhaft aufgelistet. Eine komplette Liste der Anforderungen kann im Anhang gefunden werden.

Aus der theoretischen Grundlagen bereits erkenntlich, bestehen Anforderungen aus Zielen, die im Rahmen der Entwicklung erreicht werden sollen. Dabei handelt es sich um einfachen Text, der nach Absprachen mit dem Kunden Dokumentiert wurde. Konkret geht es im Fall dieser Arbeit um die definierten Aufgaben und Ziele, welche durch Professoren/innen und Laboringenieure/innen des Fachbereiches dokumentiert wurden. Im ersten Schritt ist es notwendig die Aufgaben zu konkretisieren, um überflüssige und irrelevante Lösungen die Aufgaben betreffend zu vermeiden.

Ausgangspunkt für die Entwicklung des mehrachsigen Positioniersystems sind folgende Anforderungen bzw. Ziele. Es wird gefordert, eine Laboranlage zu entwerfen, die simple Transportgüter sicher von einem Ablagepunkt zu einem anderen Ablagepunkt transportieren kann. Dies soll über zunächst zwei Achsen geschehen, die es ermöglichen Bewegungen in horizontale Richtung (X-Achse) und vertikale Richtung (Z-Achse) durchzuführen. Dabei ist es relavant, dass verschiedene Trajektorien von der Anlage gefahren werden können, welche durch den Nutzer programmatisch vorgegeben werden. Die Bewegung der Achsen erfolgt über zwei getrennt ansteuerbare Servomotoren, die über einen Servoantrieb mit einer Industriesteuerung verbunden sind. Die Steuerungskomponenten sind bereits vorhanden. Konkret handelt es sich um den LMC101 (Logic Motion Controller) von Schneider Electric, das LXM 62P Powersupply (ebenfalls von Schneider Electric) und den LXM 62D

Double Drive. Zusätzlich soll eine PFC200 Steuerung von Wago zum einsatz kommen, mit der Betriebsströme gemessen und für die Weiterverarbeitung bereit gestellt werden können. Weiterhin sollen auch Prozessdaten aus dem Programmablauf des LMC101 für die externe Verarbeitung zur Verfügung stehen. Es ist vorgegeben, dass diese Daten per OPC Schnittstelle ausgelesen werden können. Kernziel bei der Entwicklung des Laborsystems ist es die Möglichkeit bereitzustellen, dass die Positioniereinheit von jedem Laborplatz programmiert und als Testsystem für den Lehrzweck eingesetzt werden kann. Für den Betrieb der Anlage sind zwei Betriebsmodi vorgesehen. Ersterer, der Automatikbetrieb soll einen Vollautomatischen Prozessablauf ermöglichen, bei welchem eine konkrete Positionieraufgabe zyklisch durchgeführt wird. Zweiterer, der Handbetrieb, nimmt manuelle Steuerbefehle vom Nutzer entgegen, bei welchen über Tastereingaben an der Laboranlage, Fahrbewegungen entlang der beiden Achsen durchzuführt werden. Ein Wechsel der Betriebsmodi ist über einen Wahltaster zu implementieren. Außerdem ist ein Schutz für die Anlage und deren Nutzer, sowie sich um das Positioniersystem befindende Personen vorgesehen. Der Schutz ist manuell auslösbar über Not-Halt Taster an der Laboranlage und durch ein Lichtvorhang vor dem Fahrbereich der beiden Achsen. Es soll zu einem späteren Zeitpunkt noch Möglich sein das System um weitere Achsen und Peripheriegeräte wie beispielsweise Förderbänder zu erweitern.

3.2.1 Funktionale Anforderungen

3.2.2 Nicht-funktionale Anforderungen

3.3 Identifikation der Stakeholder

3.4 Kontextanalyse

3.5 Anwendungsfallspezifikation

3.6 Verhaltensspezifikation

3.7 Partitionierung

3.8 Testspezifikation

4 Projektierung

Dieses Kapitel unterteilt sich in vier Abschnitte.

4.1 Genereller Aufbau der Automatisierungssoftware

4.2 Implementierung der Modelle

4.3 Peripherie-Schnittstellen

4.4 Anwenderschnittstelle

5 Inbetriebnahme

Dieses Kapitel unterteilt sich in drei Abschnitte.

5.1 Programm-Implementation

5.2 Verifizierung der Testspezifikation

5.3 Programmkorrektur und -verbesserung

6 Fazit

7 Ausblick

Literatur

Bücher

- [Bau14] Thomas Bauernhansl. Industrie 4.0 in Produktion, Automatisierung und Logistik : Anwendung, Technologien und Migration. Wiesbaden: Springer Vieweg, 2014. ISBN: 9783658046828.
- [Gei12] Eva Geisberger. agendaCPS. Springer-Verlag GmbH, 10. Okt. 2012. 297 Seiten. ISBN: 9783642290992. URL: https://www.ebook.de/de/product/19950597/agendacps.html.
- [Pis20] Johannes Pistorius. Industrie 4.0 Schlüsseltechnologien für die Produktion. Springer-Verlag GmbH, 29. Juni 2020. 89 Seiten. ISBN: 978-3-662-61580-5. URL: https://www.ebook.de/de/product/39317953/johannes_pistorius_industrie_4_0_schluesseltechnologien_fuer_die_produktion.html.
- [Win21] Uwe Winkelhake. Die digitale Transformation der Automobilindustrie. Springer-Verlag GmbH, 21. Jan. 2021. 410 Seiten. ISBN: 978-3-662-62102-8. URL: https://www.ebook.de/de/product/40218318/uwe_winkelhake_die_digitale_transformation_der_automobilindustrie.html.

Artikel

[Wis13] Forschungsunion Wirtschaft - Wissenschaft. "Umsetzungsempfehlungen für das Zukunftsprojekt Industrie 4.0". In: Abschlussbericht des Arbeitskreises Industrie 4.0 (Apr. 2013).

Anhang

Eidesstattliche Erklärung