Les matrices creuses Sparse Matrix

Matrices à très grandes dimensionnalités

Comment les manipuler

Comment identifier une matrice creuse.

Comment gérer une matrice creuse.

Comment explorer les relations d'une matrice à grandes dimensions grâce à TSNE.

Sparse Matrix

Qu'est-ce qu'une matrice creuse?

- Matrice creuse :
 - Valeurs manquantes;
 - Valeurs à 0;
 - Valeurs à False ;
- Matrice dense

	ltem_1	Item_2	Item_3	Item_4		ltem_m	
User_1	2.5	?	4.0	?		?	
User_2	?	4.5	?	? .		2.0	
User_3	2.5	?	3.0	?		?	
:	:	:	:	:	:	:	
User_n	4.5	?	0.0	?		2.0	

Visualiser

Matrice Creuse

• Python: matplotlib SPY

```
import matplotlib.pyplot as plt

\frac{\text{fig, } axs}{\text{fig, } axs} = \text{plt.subplots(2, 2)}
\frac{ax1}{ax2} = \frac{axs}{axs}[0, 0]
\frac{ax2}{ax3} = \frac{axs}{axs}[1, 0]
\frac{ax4}{ax4} = \frac{axs}{axs}[1, 1]
\frac{x}{ax4} = \frac{axs}{axs}[1, 1]
\frac{ax1}{ax4} = \frac{axs}{axs}[1, 1]
\frac{ax2}{ax4} = \frac{axs}{axs}[1, 1]
\frac{ax3}{ax4} = \frac{axs}{axs}[1, 1]
\frac{ax4}{ax4} = \frac{axs}{ax4}[1, 1]
\frac{ax4}{ax4} = \frac{ax4}{ax4}[1, 1]
\frac{ax4}{
```


Manipuler Pandas get_dummies

• Transformer une variable catégorielle.

```
pandas.get_dummies(
    df_n,
    columns=['glid_num'],
    prefix="book",
    sparse=True)
```


[46]:	<pre>pd.get_dummies(df_n, columns=['glid_num'], prefix="book", sparse=True)</pre>								
[46]:		book1	book_0	book_1	book_2	book_3	book_4	book_5	b
	people_id								
	348D0AA4DC5E40C4B439DBF4C86C877D	0	0	0	0	0	0	0	
	EAD4649FC143416CBA4F0302DF6251FD	0	0	0	0	0	0	0	
	348D0AA4DC5E40C4B439DBF4C86C877D	0	0	0	0	0	0	0	
	348D0AA4DC5E40C4B439DBF4C86C877D	0	0	0	0	0	0	0	
	348D0AA4DC5E40C4B439DBF4C86C877D	0	0	0	0	0	0	0	
	348D0AA4DC5E40C4B439DBF4C86C877D	0	0	0	0	0	0	0	
	EAD4649FC143416CBA4F0302DF6251FD	0	0	0	0	0	0	0	
	EAD4649FC143416CBA4F0302DF6251FD	0	0	0	0	0	0	0	
	EAD4649FC143416CBA4F0302DF6251FD	0	0	0	0	0	0	0	
	EAD4649FC143416CBA4F0302DF6251FD	0	0	0	0	0	0	0	

1241 rows × 1209 columns

t-SNE

t-Distributed Stochastic Neighbor Embedding

- Réduction de dimensions
- Visualisation
- Identifier s'il existe des relations entre deux variables dont au moins une est catégorielle.

Exemple Gleeph

Est-ce que nos patterns sont genrés?

- Nous avons une matrice latente de 70 dimensions (U) issue d'un calcul BPR (bayesian personal ranking).
- Une dimension représente un pattern de livres clivant.
- Les utilisateurs sont projetés dans cette matrice en fonction du contenu de leur bibliothèque.

T-SNE Exemple

