Clase nº20

Cálculo II

Universidad de Valparaíso Profesor: Juan Vivanco

15 de Octubre 2021

Objetivo de la clase

3

► Calcular el volumen de un sólido de revolución.

Revisión del Certamen 1

Observaciones

- a) Deben utilizar las igualdades donde corresponda.
- b) Deben utilizar los paréntesis si corresponde.
- c) Deben cuidar la redacción y coherencia.

Teorema 32

Sea $f:[a,b]\to\mathbb{R}$ una función continua y no negativa. Entonces el volumen del sólido que se obtiene al girar la región R,

$$R = \{(x,y) : x \in [a,b], 0 \le y \le f(x)\},\$$

en torno al eje X está dado por la fórmula

$$V = \pi \int_a^b [f(x)]^2 dx.$$

Observación

Este método se puede usar para calcular el volumen del sólido de revolución obtenido al rotar una curva, definida por la función $y=f(x), a \leq x \leq b$, alrededor de una recta $y=y_0$. La única condición es que la recta y la curva no se intersecten. En este caso el volumen requerido es

$$V(S_f) = \pi \int_{a}^{b} (y_0 - f(x))^2 dx.$$

Ejercicio propuesto

a) Calcular el volumen del paraboloide circular generado al rotar el segmento de parábola $y=\sqrt{2x}$ con $x\in[0,3]$ en torno al eje X.

Ejercicio propuesto

b) Sea la región

$$R = \{(x,y) \in \mathbb{R}^2: \ -x^2 + 4 \ge y \quad \land \quad y \ge x^2 \quad \land \quad y \le 3\}.$$

Determinar el volumen generado por R al rotar con respecto al eje X.

Prene en contror A tenemos que h(x)= q(x) (=) -x+4=3 (=) 1 = × ~ $(=) (x=1 \vee x=-1)$ · , A = (1,3). Pene encontrer el pinto B tenemos que $g(x) = f(x) = -x^2 + 4 = x^2$ (=) 4 = 2 x2 C-1 $7 = x^{7}$ (=) (x=Vz v x=-Vz) i, B(v.,2)

$$V_{1} = \int_{0}^{1} \pi \left[\mathbf{k}(\mathbf{x}) \right]^{2} d\mathbf{x} - \int_{0}^{1} \pi \left[\mathbf{f}(\mathbf{x}) \right]^{2} d\mathbf{x}$$

$$= \int_{0}^{1} \pi \left[\mathbf{3} \right]^{2} d\mathbf{x} - \int_{0}^{1} \pi \left[\mathbf{x}^{2} \right]^{2} d\mathbf{x}$$

Ejeicio

= \(\frac{1}{4} \int - \times + 4]^2 \, \delta \tau \\ \frac{1}{\sqrt{1}} \int \times \delta \tau \\

= \[\int \(-8 \x^{2} + 16 \) \(\gamma \times \)

 $= \frac{3^2 \sqrt{2}}{3} \cdot 1 - \frac{4^2 \cdot 1}{3}$

= <u>44</u> T.

$$V_2 = \int_{-\pi}^{\pi} \left[\int_{-\pi}^{$$

El volumen bus curlo es

$$V_{R} = 2 \left(V_{1} + V_{2} \right)$$

$$= 2 \left(\frac{44 \pi}{5} + \frac{32 \sqrt{2}}{3} - \frac{40 \pi}{3} \right)$$

Método de las cortezas o cilindros

Ejercicio Propuesto

Encuentre el volumen del cono generado al rotar el triángulo formado por los segmentos de las rectas $y = \frac{x}{4}$ con

$$x \in [-4, 0], x = -4$$
 y el eje X :

- a) en torno al eje X.
- b) en torno a la recta x = -4.

Bibliografía

		Autor	Título	Editorial	Año
	1	Stewart, James	Cálculo de varias variables:	México: Cengage	2021
			trascendentes tempranas	Learning	
ľ	2	Burgos Román,	Cálculo infinitesimal	Madrid: McGraw-	1994
		Juan de	de una variable	Hill	
ľ	3	Zill Dennis G.	Ecuaciones Diferenciales	Thomson	2007
			con Aplicaciones	THOMSON	
ı	4	Thomas, George B.	Cálculo una variable	México: Pearson	2015

Puede encontrar bibliografía complementaria en el programa.