Caminhos Evolucionários Possíveis

Por Leandro Zatesko, UFFS Brazil

Timelimit: 1

- Já que a senhora é bióloga, poderia nos definir o conceito de 'espécie'?
- Senhora, senhora, volta aqui!

Laura é uma bióloga muito interessada em Computação. Recentemente ela escreveu um programa que, dados os códigos genéticos de dois indivíduos $\bf A$ e $\bf B$, decide se $\bf A$ é um possível pai genético de $\bf B$, o que significa que não há nada nos códigos genéticos de ambos os indivíduos que nos permita afirmar com certeza que $\bf B$ não foi gerado por $\bf A$. Note que, se $\bf A$ é um possível pai genético de $\bf B$, isso não significa que $\bf B$ seja da mesma espécieque $\bf A$, pois pode ter ocorrido uma mutação durante a geração de $\bf B$. Naturalmente, dizemos que um indivíduo $\bf A$ é um possível ancestral genético de um indivíduo $\bf B$ se existe uma sequência de $\bf k$ indivíduos $\bf I_1$, $\bf I_1$, ..., $\bf I_k$ tais que $\bf I_1$ = $\bf A$, $\bf I_k$ = $\bf B$ e, para todo $\bf j$ \in {1, ..., $\bf k$ - 1}, $\bf I_j$ é um possível pai genético de $\bf I_j$ + 1.

Laura está estudando os fósseis encontrados mês passado em Chapecó para determinar, através dos códigos genéticos extraídos, as espécies que habitavam a região. Mas o conceito de 'espécie' é muito polêmico. Laura, que não quer viver situações como a da senhora da imagem acima, preferiu adotar a seguinte definição: dois indivíduos **A** e **B** pertencem à mesma espécie se e somente se **A** é um possível ancestral genético de **B** e **B** é um possível ancestral genético de **A**. O diagrama abaixo ilustra uma situação com 7 indivíduos fossilizados, em que um arco de um indivíduo **A** para um indivíduo **B** representa que **A** é um possível pai genético de **B**. No exemplo, podemos identificar 3 espécies: **I**, **II** e **III**.

Dados as informações fornecidas pelo programa de Laura, ajude-a a calcular o número de *caminhos evolucionários possíveis* da espécie de um indíviduo S para a espécie de um indivíduo T. Um *caminho evolucionário possível* de uma espécie E_1 para uma espécie E_k é uma sequência de k espécies E_1 , E_2 , ..., E_k tal que, para todo $j \in \{1, ..., k-1\}$, existe algum indivíduo B da espécie I_{j+1} que tem um possível pai genético da espécie I_j .

Entrada

A primeira linha da entrada consiste de 4 inteiros, **N**, **M**, **S** e **T** ($1 \le N \le 10^5$, $0 \le M \le 10^6$, $1 \le S$, **T** $\le N$), sendo **N** o número de indivíduos fossilizados, designados pelos inteiros de 1 a **N**, cujos códigos genéticos foram obtidos por Laura. Cada uma das próximas **M** linhas consiste de 2 inteiros, **A** e **B** ($1 \le A$, **B** $\le N$), representando que o programa de Laura considera o indivíduo **A** um possível pai genético de **B**.

Saída

4 5 5 3

Seu programa deve imprimir uma linha contendo um único número inteiro, o qual representa o número de caminhos evolucionários possíveis da espécie à qual pertence o indivíduo $\bf S$ para a espécie à qual pertence o indivíduo $\bf T$. Como esse número pode ser muito grande, seu programa deve apenas imprimir o resto que esse número deixa quando dividido por $10^9 + 7$.

Exemplos de Entrada	Exemplos de Saída
7 10 1 7 1 2 2 1 2 3 3 4 4 5 5 3 3 6 2 6 6 7 7 6	2
7 10 7 4 1 2 2 1 2 3 3 4	0

3 6 2 6 6 7 7 6	
7 10 1 7 1 2 2 1 3 2 3 4 4 5 5 3 3 6 2 6 6 7 7 6	1
5 8 1 5 1 2 1 3 1 4 2 3 2 4 2 5 3 5 4 5	5

 $^{2^{\}mbox{\scriptsize a}}$ Minimaratona Matutina de Grafos da UFFS - 2015