Náboj a hmotnost elektronu

1911 změřil náboj elektronu Pomocí mlžné komory

$$q = -1.602 \ 177 \ 10^{-19} \ C$$

Elektrický náboj je kvantován, Každý náboj je celistvým násobkem elementárního náboje (elektronu)

z hodnoty q a q/m_e vypočetl hmotnost elektronu

$$m_e = 9.109 \ 39 \ 10^{-31} \ \text{kg}$$

Robert Millikan (1868 - 1953) NP za fyziku 1923

Mlžná komora

Anodové (kanálové) paprsky

Proton $q/m_p = 9.579 \ 10^7 \ C \ g^{-1}$

 $m_p = 1.672648 \ 10^{-27} \text{ kg}$

Jsou různé pro různé druhy použitého plynu, odpuzovány kladným potenciálem, celistvé násobky –e, nejmenší pro H₂

 $q_p = -$ elementární náboj = 1.602 177 10⁻¹⁹ C

Nukleární model atomu

1911 Rozptyl α částic na Au

Ernest Rutherford (1871-1937) NP za chemii 1908

Radium – zdroj alfa částic

Experiment - rozptyl α částic

Nukleární model atomu

Většinu objemu atomu tvoří oblak negativního náboje s malou hmotností

Jádro atomu sestává z pozitivního náboje s vysokou hustotou (1.6 10¹⁴ g cm⁻³)

Hmotnost jádra činí 99.9% hmotnosti atomu

Objevy elementárních částic

Elementární částice

Částice	Symbol	El. náboj	Spin	m, kg	m, amu
Elektron	e	-1	1/2	9.11 10 ⁻³¹	0.0005486
Proton	p	+1	1/2	1.673 10-27	1.007276
Neutron	n	0	1/2	1.675 10-27	1.008665

 $1 \text{ amu} = 1.6606 \ 10^{-27} \text{ kg}$

Rentgenovo záření

Paprsky X - záření pronikající hmotou

Wilhelm K. Roentgen (1845-1923) NP za fyziku 1901

Rentgenovo záření

Vlnová délka $\lambda = 0.1 - 100 \text{ Å}$ podle druhu anody

Materiál anody Cu K_{α} E = 8.05 keV $\lambda = 1.541 \text{ Å}$

$$E = 8.05 \text{ keV}$$

$$\lambda = 1.541 \text{ Å}$$

Vznik Rentgenova záření

Spektrum rentgenova záření

 K_{α} nejintenzivnější linie

Charakteristické čáry pro různé prvky

 $1 \text{ Ångström} = 10^{-10} \text{ m}$

Brzdné záření

Moseleyho zákon

Target Material Dependent Lines of X–rays.

Vlnočet linie K_{α} je různý pro různé prvky

Henry Moseley (1887-1915) Zabit ostřelovačem

Atom

$$A = Z + N$$

Nuklid = soubor atomů se stejným A a Z

Prvek = soubor atomů se stejným Z

Moseleyho zákon

1913 Moseleyho zákon

Správné pořadí prvků v periodickém systému

$$Z = 27$$
 Co 58.933

$$Z = 28$$
 Ni 58.71

Předpověděl prvky:

$$Z = 43$$
 (Tc), 61 (Pm), 72 (Hf), 75 (Re)

Oprava periodického zákona (Mendělejev 1869):

Vlastnosti prvku závisí na protonovém čísle ne na atomové hmotnosti

Atomové (protonové) číslo prvku je rovno počtu protonů v jádře.

Izotopy

 ^{1}H

 $^{2}H = D$

 $^{3}H = T$

Liší se fyzikální vlastnosti Teploty varu (K) : H₂ 20.4, D₂ 23.5, T₂ 25.0

Přírodní zastoupení, %

¹ H	99.985	¹⁶ O	99.759
$^{2}\mathrm{H}$	0.015	¹⁷ O	0.037
		¹⁸ O	0.204
¹² C	98.89		
13 C	1.11	³² S	95.00
		^{33}S	0.76
^{14}N	99.63	³⁴ S	4.22
15N	0.37	^{36}S	0.014

Kolísání přírodního zastoupení, %

^{10}B	18.927 - 20.337	19.9 (7)
¹¹ B	81.073 - 79.663	80.1 (7)
¹⁶ O	99.7384 - 99.7756	99.757 (16)
¹⁷ O	0.0399 - 0.0367	0.038 (1)
¹⁸ O	0.2217 - 0.1877	0.205 (14)

Sledování změny poměrného zastoupení izotopů je využíváno v geochemii – původ a stáří hornin

Hmotnostní spektrometrie

 $Ne \rightarrow Ne^+ + e^-$

J. J. Thomson objevil dva izotopy Ne

²⁰Ne 90.48%

 21 Ne 0.27%

²²Ne 9.25%

Nakresli si hmotnostní spektrum Neonu!

Hmotnostní spektrometrie

1. Ionizace

2. Rozdělení podle m/z

3. Detekce

Hmotnostní spektrometrie TOF (Time-of-flight)

Hmotnostní spektrum Hg

80 ^A Hg	%
196	0.146
198	10.02
199	16.84
200	23.13
201	13.22
202	29.80
204	6.850

Hmotnostní spektrum Cl₂

Izotopomery

$$CH_3$$
 CD_3
 CD_2H
 D
 D

$$H_2O$$
 D_2O HDO $H_2^{17}O$ $H_2^{18}O$

$$H_3C$$
— C \equiv N D_3C — C \equiv N D_2HC — C \equiv N

$$H_3^{13}C$$
— C $\stackrel{}{=}$ N H_3C ^{-13}C $\stackrel{}{=}$ N H_3C — C $\stackrel{}{=}$ ^{15}N

Izotopická substituce

Značené sloučeniny ¹³C/¹⁵N peptidy

IR spektrum, vibrace AlH₃/AlD₃

Redukovaná hmotnost: $m = m_1 m_2/(m_1 + m_2)$

$$\mathbf{v} = \frac{1}{2\pi} \sqrt{\frac{k}{m}}$$

H/D kinetický izotopový efekt: $k_H/k_D = 4 - 15$

Hmotnost – mol – Avogadrova konstanta

Prvky se slučují ve stálých hmotnostních poměrech: NaCl: 23.0 g sodíku s 35.5 g chloru

Škála relativních atomových hmotností:

$$H = 1.0, C = 12.0, O = 16.0$$

Definice molu: 12.0 g C = 1 mol Pak 23.0 g Na = 1 mol 1 mol = 22.4 litru

Změřit kolik částic je v 1 molu = Loschmidt, Perrin,... $N_{\Delta} = 6.022 \ 10^{23} \ mol^{-1}$

Atomová hmotnostní jednotka

Avogadrova hypotéza: Při stejné teplotě a tlaku obsahují stejné objemy různých plynů stejný počet částic

Nejsnadnější bylo určit relativní atomové hmotnosti plynů

Kyslík váží 16krát více než vodík

Kyslík tvoří sloučeniny s většinou prvků, standard O = 16

•Chemická analýza dává průměrnou hmotnost

O = 16 (směs isotopů)

•Hmotnostní spektrometrie dává izotopovou hmotnost

$$^{16}O = 16$$

Atomová hmotnostní jednotka

1961 Atomová hmotnostní jednotka

kompromis mezi stupnicemi založenými na

 $O/^{16}O = 16$, zvolili nuklid ^{12}C

1 amu = 1 u = 1 m_u = 1 d = 1 (Dalton) = 1/12 hmotnosti atomu nuklidu 12 C

 $1 \text{ amu} = 1.6606 \ 10^{-27} \text{ kg}$

Hmotnost 1 atomu ¹²C je 12 amu (definice)

Hmotnost 1 molu ¹²C je 12 g přesně (Počet platných číslic?)

Relativní atomová hmotnost

Nuklidová hmotnost = hmotnost čistého izotopu

Atomová (střední) hmotnost prvku = průměr hmotností izotopů vážený přirozeným zastoupením

Relativní atomová hmotnost = m(A) / amu [bezrozměrná]

 $1 \text{ amu} = 1.6606 \ 10^{-27} \text{ kg}$

$$A_r = \frac{m(atomu)}{amu}$$

Hmotnost 1 atomu 12 C je 12 amu (definice) = $12 \times 1.6606 \ 10^{-27} \ kg$

Relativní atomová hmotnost ${}^{12}C = 12$

Hmotnost 1 molu ¹²C je 12 g přesně

Střední atomová hmotnost

Přírodní C:

Nuklidová hmotnost ¹²C = 12 amu

Nuklidová hmotnost ${}^{13}C = 13.00335$ amu

Střední atomová hmotnost C (vážený průměr):

$$A_{\text{stř}} = (0.98892)(12) + (0.01108)(13.00335) = 12.011 \text{ amu}$$

$$1 \text{ amu} = 1.6606 \ 10^{-27} \text{ kg}$$

Střední atomová hmotnost

Mo, molybden

$$A_{st\check{r}} = 95.94$$

Hm. číslo	Nukl. Hmotnost, amu	Zastoupení, %		
92	91.906808	14.84		
94	93.905085	9.25		
95	94.905840	15.92		
96	95.904678	16.68		
97	96.906020	9.55		
98	97.905406	24.13		
100	99.907477	9.63		

Střední atomová hmotnost

Prvek	Nuklidy	Z	N	A	Nuklidová hm., amu	PZ, %	Atomová hmotnost, amu
Н	H D T	1 1 1	0 1 2	1 2 3	1.007825 2.01410	99.985 0.015	1.0079
Не	³ He ⁴ He	2 2	1 2	3 4	3.01603 4.00260	0.00013 99.99987	4.0026
В	¹⁰ B ¹¹ B	5 5	5 6	10 11	10.01294 11.00931	19.78 80.22	10.81
F	¹⁹ F	9	10	19	18.99840	100	18.9984

Střední relativní atomová hmotnost

24.305₁₂Mg

1 atom (průměrný) Mg má hmotnost 24.305 amu

1 mol Mg má hmotnost 24.305 g

Relativní molekulová hmotnost

Výpočet M_r ze vzorce

$$M_r(CO_2) = A_r(C) + 2 \times A_r(O) = 44.01$$

$$M_r(CuSO_4.5H_2O) =$$

$$= A_r(Cu) + A_r(S) + (4 + 5) \times A_r(O) + 10 \times A_r(H)$$

$$= 249.68$$

Molární hmotnost $CuSO_4.5H_2O = 249.68 \text{ g mol}^{-1}$

Výpočet % složení ze vzorce

$$C_3H_{12}O_4PN$$

 $M_r(C_3H_{12}O_4PN) =$
 $= 3 \times A_r(C) + 12 \times A_r(H) + 4 \times A_r(O)$
 $+ 1 \times A_r(P) + 1 \times A_r(N) = 157.11$

$M_r(C_3H_{12}O_4PN) = 157.11 \dots$	100%
$3 \times A_r(C)$	22.92%
$12 \times A_r(H)$	7.70%
$4 \times A_r(O)$	40.74%
$1 \times A_r(P)$	19.72%
$1 \times A_r(N)$	8.92%

Výpočet empirického vzorce

Vypočítejte stechiometrický vzorec sloučeniny, která se skládá z 26.58% K, 35.35% Cr a 38.07% O.

Hledáme stechiometrické koeficienty x, y, z

 $K_xCr_yO_z$

$$x = \frac{26.58}{39.098} = 0.6798.....1$$

$$y = \frac{35.35}{51.990} = 0.6799.....1.0001$$

$$z = \frac{38.07}{15.999} = 2.3795.....3.4998$$

$$n = \frac{m}{A_r}$$

 $K_1Cr_{1.0001}O_{3.4998}$

 \rightarrow K₂Cr₂O₇

Rentgenovo záření v medicíně a chemii

Difrakce

Spektroskopie – energetické hladiny, interpretace poskytne informace o vazebných parametrech

Difrakce – čistě geometrický jev, závisí na rozložení difraktujících bodů (atomů) a vlnové délce záření, poskytne přímé informace o rozložení atomů

Difrakce záření

Vznikají kulové vlny interferují = sčítají se nebo odčítají

Difrakce

1912 Difrakční experiment

Přirozená mřížka = krystal, např. LiF, pravidelné uspořádání atomů. Vzdálenosti rovin (řádově jednotky Å) jsou srovnatelné s vlnovou délkou rentgenova záření.

Max von Laue (1879-1960) NP za fyziku 1914 42

Difrakce na atomech

Krystal

Základní buňka

Difrakce na krystalových rovinách

Braggův zákon

 $2 d \sin\theta = n\lambda$

W. Henry a W. Lawrence Bragg NP za fyziku 1915

Rentgenová prášková difrakce - Po

Rentgenová strukturní analýza

Rentgenová strukturní analýza

Mapa elektronové hustoty Polohy atomů v elementární buňce Vazebné délky a úhly

Vibrace

Jaderný spin, I

I = 0: ^{12}C , ^{16}O – sudo-sudá (Z/N)

 $I = \frac{1}{2}$: n, p, 13 C, 1 H, 31 P, 19 F, 29 Si

 $I > \frac{1}{2}$: D, ^{27}Al , ^{14}N

Proton ($I = \frac{1}{2}$) v magnetickém poli

Rozdíl v energiích hladin

Intenzita magnetického pole B₀

Periodic Table of the Elements

I	Nuclide	I	Nuclide
0	¹² C, ¹⁶ O	3/2	¹¹ B, ²³ Na, ³⁵ Cl, ³⁷ Cl
1/2	¹ H, ¹³ C, ¹⁵ N, ¹⁹ F, ²⁹ Si, ³¹ P	5/3	¹⁷ O, ²⁷ Al
1	² H, ¹⁴ N	3	¹⁰ B

Rozliší

Geometricky (tedy i chemicky) odlišné atomy v molekule Intenzita signálu odpovídá počtu jader Z interakcí lze zjistit propojení fragmentů v molekule

¹³C NMR

C₆₀ je vysoce symetrická molekula, všechny atomy jsou geometricky (tedy i chemicky) stejné.

Jediný signál v ¹³C NMR spektru

Dynamika pohybu molekul v závislosti na teplotě

MRI-Magnetic Resonance Imaging

Paul C. Lauterbur (1929)

Sir Peter Mansfield (1933)