Es05B: Circuiti lineari con Amplificatori Operazionali

Gruppo 1G.BT Francesco Sacco, Lorenzo Cavuoti

8 Novembre 2018

Scopo dell' esperienza

Misurare le caratteristiche di circuiti lineari realizzati con un op-amp TL081 alimentati tra +15 V e -15 V.

1 Amplificatore invertente

Si vuole realizzare un amplificatore invertente con un' impedenza di ingresso superiore a 1 k Ω e con un amplificazione a centro banda di 10.

1.a Scelta dei componenti

Si monta il circuito secondo lo schema mostrato in figura 1, utilizzando la barra di distribuzione verde per la tensione negativa, quella rosso per la tensione positiva, e quella nera per la massa. Si sono scelti $R_1=1.2k\Omega$ e $R_2=12k\Omega$ nominali in quanto risolvendo il circuito considerando un OpAmp ideale si trova $A_V=R_2/R_1$

Figura 1: Schema di un amplificatore invertente

Le resistenze selezionate hanno i seguenti valori, misurati con il multimetro digitale, con il corrispondente valore atteso del guadagno in tensione dell'amplificatore.

$$R_1 = (1.19 \pm 0.01) \,\mathrm{k}\Omega, \quad R_2 = (12.2 \pm 0.1) \,\mathrm{k}\Omega, \quad A_{exp} = (10.2 \pm 0.1)$$

1.b Montaggio circuito

1.c Linearità e misura del guadagno

Si fissa la frequenza del segnale ad $f_{in} = (5.59 \pm 0.06)$ kHz e si invia all' ingresso dell' amplificatore. L'uscita dell' amplificatore è mostrata qualitativativamente in Fig. 2 per due differenti ampiezze di V_{in} (circa 424mV Vpp e 4.32V Vpp). Nel primo caso l' OpAmp si comporta in modo lineare mentre nel secondo caso si osserva clipping.

Variando l'ampiezza di V_{in} si misura V_{out} ed il relativo guadagno $A_V = V_{out}/V_{in}$ riportando i dati ottenuti in tabella 1 e mostrandone un grafico in Fig. 3. Il fit è stato fatto sulla retta V_{out} vs V_{in} usando la funzione curve_fit di scipy con ablosute_sigma=False, sono stati considerati anche gli errori sulla x.

Figura 2: Ingresso ed uscita di un amplificatore invertente con OpAmp, in zona lineare (a sinistra) e non (a destra)

Tabella 1: V_{out} in funzione di V_{in} e relativo rapporto.

V_{in} (V)	V_{out} (V)	A_V
$66 \pm 3 \mathrm{m}$	$680 \pm 30 \mathrm{m}$	10.2 ± 0.6
$290 \pm 10 m$	2.9 ± 0.1	10.1 ± 0.6
$730 \pm 30 \text{m}$	7.4 ± 0.3	10.1 ± 0.6
1.26 ± 0.05	12.7 ± 0.5	10.1 ± 0.6
2.7 ± 0.1	27 ± 1	10 ± 0.6

Si determina il guadagno mediante fit dei dati ottenuti:

$$A_{best} = 10.07 \pm 0.03$$
 $\chi^2 = 0.02$

Il circuito si comporta linearmente fino a $V_{in} \approx 2.8V$, questo rispecchia il funzionamento dell'OpAmp, infatti con una ddp di alimentazione $\approx 30V$ e con un guadagno atteso di 10.2 ci aspettiamo che il clipping avvenga a circa 3V, in accordo con quanto misurato. Da questo si può dedurre che alzando o abbassando la ddp di alimentazione il clipping avverrà a una ddp maggiore o minore, rispettivamente.

2 Risposta in frequenza e slew rate

2.a Risposta in frequenza del circuito

Si misura la risposta in frequenza del circuito, riportando i dati in Tab. 2 e in un grafico di Bode in Fig. 4, stimando la frequenza di taglio inferiore e superiore. osservando la frequenza alla quale il guadagno risulta -3dB del massimo, l'errore è stato valutato variando la frequenza fino a che non si osserva un cambiamento nell'ampiezza del segnale di uscita.

$$V_{in} = (1.14 \pm 0.05) \, {\rm V}$$

$$f_L = (7.5 \pm 0.3) \, {\rm Hz} \hspace{0.5cm} f_H = (210 \pm 4 \,) \, {\rm kHz}$$

2.b Misura dello slew-rate

Si misura direttamente lo slew-rate dell'op-amp inviando in ingresso un' onda quadra di frequenza di ~ 2.11 kHz e di ampiezza ~ 2.70 V. Si ottiene:

$$SR_{\text{misurato}} = (7.7 \pm 0.3) \text{ V/}\mu\text{s}$$
 valore tipico (13) V/ μ s

Lo slew rate misurato risulta circa la metà rispetto a quello atteso e non sappiamo perchè

Figura 3: Linearità dell' amplificatore invertente

Tabella 2: Guadagno dell' amplificatore invertente in funzione della frequenza.

f_{in} (kHz)	V_{out} (V)	A (dB)
2.58 ± 0.3	3.8 ± 0.2	3.3 ± 0.2
172.0 ± 2	11.6 ± 0.5	10.2 ± 0.6
$5.56 \pm 0.06k$	11.5 ± 0.5	10.1 ± 0.6
$67.7 \pm 0.7k$	11.0 ± 0.5	9.6 ± 0.6
$952 \pm 10k$	2.5 ± 0.1	2.2 ± 0.1

3 Circuito integratore

Si monta il circuito integratore con i seguenti valori dei componenti indicati:

$$R_1 = (0.990 \pm 0.008) \,\mathrm{k}\Omega, \qquad R_2 = (9.83 \pm 0.08) \,\mathrm{k}\Omega, \qquad C = (49 \pm 2) \,\mathrm{nF}$$

3.a Risposta in frequenza

Si invia un' onda sinusoidale e si misura la risposta in frequenza dell' amplificazione e della fase riportandoli nella tabella 3 e in un diagramma di Bode in Fig. 5.

$$V_{in} = (1.03 \pm 0.04) \,\mathrm{V}$$

Si ricava una stima delle caratteristiche principali dell'andamento (guadagno a bassa frequenza, frequenza di taglio, e pendenza ad alta frequenza) e si confrontano con quanto atteso. Non si effettua la stima degli errori, trattandosi di misure qualitative. I valori attesi sono stati ottenuti calcolando il guadagno del circuito:

$$A_V = \left| \frac{Z_2}{Z_1} \right| = \frac{R_2}{R_1} \frac{1}{\sqrt{(\omega C R_2)^2 + 1}}$$

Si nota subito che il massimo si ha per $\omega=0, A_V=R2/R1$, la frequenza di taglio si ottiene ponendo $\omega R_2C=1$ $f_H=1/2\pi R_2C$, infine in guadagno ad alta frequenza può essere approssimato con $A_V=1/\omega CR_1$.

Figura 4: Plot di Bode in ampiezza per l'amplificatore invertente.

Tabella 3: Guadagno e fase dell' integratore invertente in funzione della frequenza.

f_{in} (kHz)	V_{out} (V)	A (dB)	$\Delta t(\mu s)$	$\phi(rad/\pi)$
10.8 ± 0.05	8.2 ± 0.4	19.9 ± 0.6	$(4.52 \pm 0.02) \times 10^{-2}$	0.976 ± 0.006
$(1.08 \pm 0.005) \times 10^2$	9.5 ± 0.4	19.3 ± 0.6	$(4.12 \pm 0.02) \times 10^{-3}$	0.89 ± 0.006
$(1.07 \pm 0.005) \times 10^3$	3.0 ± 0.1	9.3 ± 0.5	$(2.72 \pm 0.02) \times 10^{-4}$	0.582 ± 0.005
$(1.07 \pm 0.005) \times 10^4$	0.32 ± 0.01	-10.1 ± 0.5	$(2.32 \pm 0.01) \times 10^{-5}$	0.496 ± 0.003
$(1.08 \pm 0.005) \times 10^5$	$(4.1 \pm 0.2) \times 10^{-2}$	-28.0 ± 0.6	$(2.16 \pm 0.01) \times 10^{-6}$	0.467 ± 0.003

$A_M = (19.5) \mathrm{dB}$	atteso: $(19.9) dB$
$f_H = (355)\mathrm{Hz}$	atteso: $(330) Hz$
$dA_V/df = (-18.6) dB/decade$	atteso: $(-20) dB/decade$

Risposta ad un' onda quadra

Si invia all' ingresso un' onda quadra di frequenza $\sim 6.47\,kHz$ e ampiezza $\sim 1.09\,V$. Si riporta in Fig. 6 le forme d' onda acquisite all' oscillografo per l' ingresso e l' uscita. Il circuito si comporta come un integratore invertente infatti l'uscita presenta un'onda triangolare con minimi e massimi dove V_{in} passa da alto a basso e basso a alto rispettivamente

Si misura l'ampiezza dell'onda in uscita e si confronta il valore atteso.

risolvendo il circuito si ottiene che

$$\frac{V_{out}}{V_{in}} = \frac{R_2}{R_1} \frac{1}{\omega C R_2 + 1} \approx \frac{1}{R_1 i \omega C} \quad \text{per frequenze alte}$$

sfuttando la linearità del circuito si ottiene che $V_{out} = \frac{1}{R_1 C} \int V_{in}(t) dt$, essendo V_{in} un'onda quadra si può effettuare l'integrale sulla parte positiva dell'onda quadra per ottenere il valore massimo di V_{outMax} , supponendo che l'onda quadra passa da positivo a negativo a t=0 si ottene che

$$V_{outMax} = \frac{1}{R_1 C} \int_0^{T/2} V_{in} dt = \frac{V_{in}}{2R_1 C f} \approx 0.86$$
 (1)

Figura 5: Plot di Bode in ampiezza (a sinistra) e fase (a destra) per il circuito integratore.

Figura 6: Ingresso (onda quadra) ed uscita (onda triangolare) del circuito integratore per un' onda quadra.

$$V_{out} = (0.86) \,\mathrm{V}$$
 atteso: $(0.86) \,\mathrm{V}$

3.b Discussione

Come si vede dall'equazione 1 l'ampiezza di V_{out} è inversamente proporzionale alla frequenza e la fase ϕ del segnale è data da $\phi = \arctan(\omega C R_2)$, il circuito rispetta le aspettative, in particolare il guadagno e la frequenza di taglio sono in accordo con le previsioni teoriche.