Note: This document is a part of the lectures given during the Jan-May 2020 Semester.

Definition:

Let X be a random variable defined on a finite probability space (Ω, \mathbb{P}) . The expectation (or expected value) of X is defined to be:

$$\mathbb{E}X = \sum_{\omega \in \Omega} X(\omega) \mathbb{P}(\omega).$$

When we compute the expectation using the risk-neutral probability measure $\widetilde{\mathbb{P}}$, we use the notation:

$$\widetilde{\mathbb{E}}X = \sum_{\omega \in \Omega} X(\omega) \widetilde{\mathbb{P}}(\omega).$$

The variance of X is:

$$Var(X) = \mathbb{E}\left[\left(X - \mathbb{E}X\right)^2\right].$$

It is clear from its definition that expectation is linear: If X and Y are random variables and c_1 and c_2 are constants then:

$$\mathbb{E}\left(c_1X + c_2Y\right) = c_1\mathbb{E}X + c_2\mathbb{E}Y.$$

Theorem: Jensen's Inequality:

Let X be a random variable on a finite probability space, and let $\varphi(x)$ be a convex function of a dummy variable x. Then:

$$\mathbb{E}\left[\varphi(X)\right] \geq \varphi\left(\mathbb{E}X\right).$$

Conditional Expectations:

Recall the formulas for risk-neutral probabilities:

$$\widetilde{p} = \frac{1+r-d}{u-d}$$
 and $\widetilde{q} = \frac{u-1-r}{u-d}$.

It can be easily verified that

$$\frac{\widetilde{p}u + \widetilde{q}d}{1+r} = 1.$$

Consequently, for every time n and for every sequence of coin tosses $\omega_1\omega_2\ldots\omega_n$, we have

$$S_n(\omega_1\omega_2\ldots\omega_n) = \frac{1}{1+r} \left[\widetilde{p} S_{n+1}(\omega_1\omega_2\ldots\omega_n H) + \widetilde{q} S_{n+1}(\omega_1\omega_2\ldots\omega_n T) \right].$$

For the sake of brevity, we define the notation:

$$\widetilde{\mathbb{E}}_n \left[S_{n+1} \right] \left(\omega_1 \omega_2 \dots \omega_n \right) = \widetilde{p} S_{n+1} \left(\omega_1 \omega_2 \dots \omega_n H \right) + \widetilde{q} S_{n+1} \left(\omega_1 \omega_2 \dots \omega_n T \right).$$

Accordingly, we have,

$$S_n = \frac{1}{1+r} \widetilde{\mathbb{E}}_n \left[S_{n+1} \right].$$

Definition:

Let n satisfy $1 \le n \le N$, and let $\omega_1 \omega_2 \dots \omega_n$ be fixed (as of now). There are 2^{N-n} possible continuations $\omega_{n+1}\omega_{n+2}\dots\omega_N$ of the fixed sequence $\omega_1\omega_2\dots\omega_n$. Denote by $\#H(\omega_{n+1}\omega_{n+2}\dots\omega_N)$ and $\#T(\omega_{n+1}\omega_{n+2}\dots\omega_N)$, the number of heads and tails, respectively, of the continuation $\omega_{n+1}\omega_{n+2}\dots\omega_N$. We define

$$\widetilde{\mathbb{E}}_{n}[X]\left(\omega_{1}\omega_{2}\ldots\omega_{n}\right) = \sum_{\omega_{n+1}\omega_{n+2}\ldots\omega_{N}} \widetilde{p}^{\#H(\omega_{n+1}\omega_{n+2}\ldots\omega_{N})} \widetilde{q}^{\#T(\omega_{n+1}\omega_{n+2}\ldots\omega_{N})} X\left(\omega_{1}\omega_{2}\ldots\omega_{n}\omega_{n+1}\omega_{n+2}\ldots\omega_{N}\right),$$

and call $\widetilde{\mathbb{E}}_n[X]$ the conditional expectation of X based on the information at time n.

Definition (Continued):

The two extreme cases of conditioning are $\widetilde{\mathbb{E}}_0[X]$, the conditional expectation of X based on no information, which we define by,

$$\widetilde{\mathbb{E}}_0[X] = \widetilde{E}X,$$

and $\widetilde{\mathbb{E}}_N[X]$, the conditional expectation of X based on knowledge of all N coin tosses, which we define by,

$$\widetilde{\mathbb{E}}_N[X] = X.$$

While the conditional expectation has been defined above for the risk-neutral probabilities, it can also be computed using the actual probabilities, wherein the notation will be \mathbb{E}_n .

Theorem: Fundamental Properties of Conditional Expectation:

Let N be a positive integer, and let X and Y be random variables depending on the first N coin tosses. Let $0 \le n \le N$ be given. Then the following properties hold:

1. Linearity of conditional expectations: For all constants c_1 and c_2 , we have

$$\mathbb{E}_n \left[c_1 X + c_2 Y \right] = c_1 \mathbb{E}_n \left[X \right] + c_2 \mathbb{E}_n \left[Y \right].$$

2. Taking out what is known: If X actually depends only on the first n coin tosses, then

$$\mathbb{E}_n [XY] = X \cdot \mathbb{E}_n [Y].$$

3. Iterated conditioning: If $0 \le n \le m \le N$, then

$$\mathbb{E}_n \left[\mathbb{E}_m \left[X \right] \right] = \mathbb{E}_n \left[X \right].$$

In particular,

$$\mathbb{E}\left[\mathbb{E}_m\left[X\right]\right] = \mathbb{E}X.$$

4. Independence: If X depends only on tosses n+1 through N, then

$$\mathbb{E}_n[X] = \mathbb{E}X.$$

5. Conditional Jensen's inequality: If $\varphi(x)$ is a convex function of the dummy variable x, then

$$\mathbb{E}_n \left[\varphi(X) \right] \ge \varphi \left(\mathbb{E}_n[X] \right).$$