Scheduling Seminar

Scheduling with Machine Learning

Hyun-Jung Kim

hyunjungkim@kaist.ac.kr msslab.kaist.ac.kr

Department of Industrial & Systems Engineering KAIST (Korea Advanced Institute of Science and Technology)

Contents

- Scheduling with Machine Learning
- Scheduling for Semiconductor Manufacturing
- Scheduling for Steel Manufacturing
- Scheduling for Insulation Manufacturing
- Other Industrial Scheduling Problems
- Final Remark

Scheduling with Machine Learning

- Scheduling is field of study concerned with optimal allocation of resources, over time, to a set of tasks.
 - Semiconductor/LCD, steel, automotive, battery, biopharmaceutical
- Machine learning approaches are used for scheduling in manufacturing, such as determining weights of dispatching rules, assigning jobs to machines, etc.

- Scheduling problems in semiconductor manufacturing
 - Production scheduling

• Flexible job shops with reentrant flows Buffer **Buffer** M1-1 M2-1 M3-1 M1-2 M3-2 M2-2 **J3 J3** M3-3 M1-3 **J**3 M2-3 J2 M1-4 M3-4 M2-4

Stage 2

Stage 3

- Tool scheduling
 - Robot sequencing problem

Stage 1

Weights of dispatching rules

- Dispatching rules
 - SPT, LPT, EDD, etc
- Weights of dispatching rules between 1 and 100,000
- How to obtain an optimal weight set?
 - (SPT, LPT, EDD) = (1, 10, 100)
 - Model development
 - Input factory state, dispatching rule weights
 - Output KPI

Weights of dispatching rules

- Job shop scheduling
 - Reinforcement learning is often used.
 - State, Action, Reward

- Cluster tool scheduling
 - Multiple processing modules (PMs), a material handling robot, and loadlocks (LL)
 - Wafers need to be processed in PMs in sequence.
 - Diverse wafer flows
 - Robot task sequence
 - Systematic analysis for cyclic scheduling
 - Reinforcement learning is applied for noncyclic scheduling with diverse products.

PM2

PM₁

PM3

PM₂

PM4 PM1

PM3

PM4

- Scheduling problems in steelmaking process
 - When charges arrive at the converter, engineers assign them to one of machines (RH (Ruhrstahl-Heraues) or LF (Ladle Furnace)).
 - RH and LF machines often require maintenance operations.
 - It is required to improve performance and assist engineers simultaneously.
 - Issues
 - Engineers have different preferences.
 - Hard to obtain some data, especially for the maintenance operations
 - Proposed approach
 - MILP + ML
 - MILP for improving the performance with limited information
 - ML for assisting engineers

- Scheduling problems in steelmaking process
 - MILP model
 - Objective function
 - Maximize the average time each charge spends between RH/LF and CC

Decision variables

Variables	Definitions		
X_{isk}	1, if machine k is allocated to charge i in stage s . 0, otherwise.		
B_{is}	Start time of charge <i>i</i> in stage <i>s</i>		
Z_{iskt}	1, if charge i is the t th process of machine k in stage s . 0, otherwise.		
SL_i	Time that charge <i>i</i> spends between RH and CC		
WL_k	Workload of machine k		
OL_{kt}	1, if machine k processes special charges in $t-1$ th and t th processes. 0, otherwise.		
TU_{kt}	1, if machine k uses a transfer car successively in $t-1$ th and t th processes. 0, otherwise.		
NMT_{kt}	1, if there is enough time for the maintenance before the machine k 's t th process. 0, otherwise.		

- Scheduling problems in steelmaking process
 - MILP model
 - Constraints

No.	Constraints			
(1)	$B_{is} + p_{is} + t_{kl} \le B_{i,ns(i,s)} + M \times (2 - X_{isk} - X_{i,ns(i,s),k})$	$\forall \ i \in I, s \in S - \{CC\}, k \in K, l \in K$		
(2)	$B_{is} + p_{is} + a_k \le B_{jw} + M \times (2 - Z_{iskt} - Z_{j,w,k,t+1})$	$\forall i, j \in I, i \neq j, s, w \in S, k \in K,$ $t = 1, \dots, n - 1$		
(3)	$\sum_{k \in K_i^s} X_{isk} = 1$	$\forall s \in S, i \in I^s$		
(4)	$B_{i,CF} = f_{i,CF}, X_{i,CF,k_i^{CF}} = 1$	$\forall i \in I$		
(5)	$B_{i,CC} = f_{i,CC}, X_{i,CC,k_i^{CC}} = 1$	$\forall i \in I$		
(6)	$SL_i = B_{i,CC} - (B_{i,RF1} + p_{i,RF1})$	$\forall i \in I^{RF1}$		
(7)	$lb_{SL} \leq SL_i$	$\forall i \in I$		
(8)	$SL_i \leq ub_{SL}$	$\forall i \in I$		

- (1): Flow constraints of each charge
- (2): Machine conflicts & Minimum idle time (for the logistics)
- (3): Machine allocations
- (4)-(5): Converter and CC are given
- (6)-(8): Time between RH and CC (objective function)

- Scheduling problems in steelmaking process
 - ML approach

<An example of real data>

- Descriptions of basic features
 - 1) Characteristics: Special charges, Low carbon
 - 2 Secondary refining code: A set of candidate machines
 - ③ Converter, Continuous caster: Machines of 1st and 3rd stages
 - 4 Top charge: First charge of a cast
 - (5) More features...

Scheduling problems in steelmaking process

MILP+ML model

	Accuracy	Macro F1
KNN	0.5563	0.5059
AdaBoost	0.5594	0.5531
Ridge Regression	0.6459	0.5166
SVM	0.6678	0.6438
Logistic Regression	0.6735	0.6475
Random Forest	0.7468	0.6580
Multi-Layer Perceptron	0.7723	0.7006
Gradient Boosting	0.8105	0.7285
XGBoost	0.8213	0.7417
CatBoost	0.8451	0.7691
LightGBM	0.8492	0.7561
LSTM	0.9173	0.8144
GRU	0.9664	0.9530

Insulation Manufacturing

 Hybrid flow shop scheduling Foaming → Curing → Cutting M2-1 No waiting time between stages 1 and 2 M2-2 **M3** No buffer between stages 2 and 3 **M1** M2-3 Tardiness + Makespan NEH based algorithm M2-4 O_4 $\mathbf{0}_2$ o_5 O1-2 0_1 Initial solution : $[0_1, 0_3, 0_4, 0_6, 0_2, 0_5]$ Iteration 1 $[O_1]$ Best position Iter1. O_1 input 0_6 $\mathbf{0}_2$ 0_5 $[0_3, 0_1]$ $[O_1, O_3]$ Iter2. O_3 input O_1 Iteration 2 0_3 Best position $[\textcolor{red}{O_4}, O_3, O_1]$ $[O_3, \frac{O_4}{O_4}, O_1]$ $[O_3, O_1, \frac{O_4}{}]$ Iter3. O_4 input o_2 o_5 O_1 Iter4. O_6 input 03 Iteration 3 O_4

14

Best position

Insulation Manufacturing

- Hybrid flow shop scheduling
 - Machine learning for initial sorting

Features: due dates, processing times at each stage, factory state, job thickness...

Output: ordering rule (EDD, LPT...)

Project Scheduling for Shipbuilding

- Project scheduling with reinforcement learning
 - Resource-constrained project scheduling problem
 - Precedence relations, time lags, activity time uncertainty
 - Makespan minimization, resource leveling

Project Scheduling for Shipbuilding

Resource leveling with reinforcement learning / minimal time lag

<Algorithm comparison>

Objective	Time lag extension ratio	Greedy algorithm	Simulated annealing	RL
	0.1	168.194	172.307	160.104
Std (obj: 175.054)	0.2	160.500	169.655	153.702
	0.3	152.100	163.792	148.367

Rule Extraction from Schedule Data

- Rule extraction with a decision tree
 - Olafsson, S., & Li, X. (2010). Learning effective new single machine dispatching rules from optimal scheduling data. International Journal of Production Economics, 128(1), 118-126.

Scheduling with ML

Scheduling with ML

- Scheduling with machine learning
 - Imitation learning
 - Solving subproblems with machine learning
 - Parameter selection for scheduling algorithms
 - New dispatching rule working well in a dynamic and unseen environment

	Exact Algorithm	Meta-heuristic	Dispatching rule	ML
Performance	optimal	good	poor	?
Real-time scheduling	Х	X	0	0
Dynamic environment	Х	Х	0	0
Timing control for scheduling	0	0	Х	Δ

 ML as one of useful tools for scheduling especially in a dynamic environment

Thank You.

Hyun-Jung Kim

hyunjungkim@kaist.ac.kr msslab.kaist.ac.kr

Department of Industrial & Systems Engineering KAIST

March. 1, 2023