

CSE322 DROPERTIES OF REGULAR LANGUAGES

Lecture #12

Properties of Regular Languages

For regular languages $L_{\!1}$ and $L_{\!2}$

we will prove that:

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1*

Reversal: L_1^R

Complement: L_1

Intersection: $L_1 \cap L_2$

Are regular Languages

We say: Regular languages are closed under

Union: $L_1 \cup L_2$

Concatenation: L_1L_2

Star: L_1*

Reversal: L_1^R

Complement: $\overline{L_1}$

Intersection: $L_1 \cap L_2$

Regular language L_2

$$L(M_1) = L_1$$

$$L(M_2) = L_2$$

NFA M₁

NFA M2

Single accepting state

Single accepting state

$$L_2 = \{ba\}$$

$$M_2$$

Union

NFA for $L_1 \cup L_2$

Example

NFA for $L_1 \cup L_2 = \{a^n b\} \cup \{ba\}$

Concatenation

NFA for L_1L_2

Example

NFA for
$$L_1L_2 = \{a^nb\}\{ba\} = \{a^nbba\}$$

Star Operation

NFA for L_1*

Example

NFA for
$$L_1^* = \{a^n b\}^*$$

$$w = w_1 w_2 \cdots w_k$$
$$w_i \in L_1$$

Reverse

NFA for L_1^{R}

Homework 2

Complement

Homework 2

Intersection

$$L_1$$
 regular $L_1 \cap L_2$ L_2 regular regular

DeMorgan's Law:

$$L_1 \cap L_2 = L_1 \cup L_2$$

$$L_1$$
, L_2

regular

$$\overline{L_1}$$
, $\overline{L_2}$

regular

$$\overline{L_1} \cup \overline{L_2}$$

regular

$$\overline{L_1} \cup \overline{L_2}$$

regular

$$L_1 \cap L_2$$

regular

Example

$$L_1 = \{a^nb\} \quad \text{regular} \\ L_1 \cap L_2 = \{ab\} \\ L_2 = \{ab,ba\} \quad \text{regular} \\ \\ \text{regular}$$

Another Proof for Intersection Closure

Machine M_1

FA for L_1

Machine M_2

FA for L_2

Construct a new FA M that accepts $L_1 \cap L_2$

 $\,M\,$ simulates in parallel $\,M_1\,$ and $\,M_2\,$

States in M

FA M_1

FA A

initial state

initial state

FA M

Initial state

Both constituents must be accepting states

Example:

$$L_1 = \{a^n b\}$$

Automaton for intersection

$$L = \{a^n b\} \cap \{ab^n\} = \{ab\}$$

M simulates in parallel M_1 and M_2

M accepts string w if and only if

 M_1 accepts string w and M_2 accepts string w

$$L(M) = L(M_1) \cap L(M_2)$$