David Eriksson

Curriculum Vitæ

Education

2014 -**Cornell University**

Present • Ph.D. in Applied Mathematics, expected May 2019

• TA award in Computer Science, Spring 2016

• Overall TA rating: 4.8/5.0

• GPA: 4.22/4.0 (current)

2012 -**Chalmers University of Technology**

2014 • M.Sc. in Engineering Mathematics and Computational Science

• Graduated top of class

• GPA: 5.0/5.0

2008 -**Chalmers University of Technology**

2011 • B.Sc. in Mathematics

· Graduated top of class

• GPA: 4.92/5.0

Research Interests

Surrogate Optimization, Numerical Linear Algebra, Scientific Computing, High-Performance Computing, Scientific Software, Machine Learning, Numerical Analysis.

Current Research

Asynchrony and elasticity in surrogate optimization

- · Designing flexible and fault tolerant asynchronous surrogate optimization algorithms.
- Using elasticity in modern cloud platforms.

Global optimization with additional information

· Developing algorithms with provable convergence rates for global optimization problems.

Structured solvers

• Constructing fast solvers for surrogate optimization, machine learning, and problems with Kronecker structure.

Software packages

- Developing asynchronous surrogate optimization software:
- pySOT (github.com/dme65/pySOT)
- SOT (github.com/dme65/SOT)

Awards

2016 **Teaching Assistant Award in Computer Science** Cornell University

2014 **Richard & Alice Netter Fellowship**

Thanks to Scandinavia

2014 Fritz O Fernstroms Scholarship The Sweden-America Foundation

2011 **Anna Whitlock Scholarship**

Anna Whitlock's Foundation

dme65@cornell.edu

https://people.cam.cornell.edu/~dme65/

in https://www.linkedin.com/in/davideriksson89/ 0

https://github.com/dme65/

Work Experience

The MathWorks

May. 2017 – Aug. 2017 Natick, MA, USA

Software Developer Global Optimization

· Implemented an asynchronous surrogate optimization framework.

- Performed design review, code review, unit testing, and benchmarking.
- · Gave several internal talks and software tutorials.
- Helped internal customers solve challenging optimization problems.

Fraunhofer - Chalmers Centre

Mar. 2014 – July 2014

Applied Researcher

Gothenburg, Sweden

Point Cloud Visualization

- Developed algorithms for visualizing point clouds with billions of points.
- Used these algorithms to design a visualization software in C++ capable of rendering 50+ FPS with unlimited detail on a standard graphics card.

Fraunhofer - Chalmers Centre

Sept. 2012 - Mar. 2014 Gothenburg, Sweden

Contracted Student

Computational Geometry

- Constructed out-of-core algorithms for shortest distance computations between a point cloud with billions of points and a geometric object.
- · Satisfied the heavy memory requirements by only keeping the relevant points in memory at a given time.
- Derived sharp criteria for when a specific subset of the point cloud can contain the point closest to the geometric object.

NASA Goddard Space Flight Center

Data Analyst

June 2013 – Sept. 2013 Greenbelt, MD, USA

Tropospheric Delay Ray Tracing

• Computed tropospheric delays by solving the Eikonal equation numerically through the weather model data.

• Showed a substantial improvement in baseline length and station positions.

NASA Goddard Space Flight Center

June 2011 – June 2012 Greenbelt, MD, USA

Data Analyst

Mass Loading

• Computed mass loading displacements due to changes in water mass and ocean bottom pressure.

- Convolved a loading Green's function with the global mass loading field.
- Found significant improvements in baseline lengths and station positions.

Extracurricular Activity

Argonne Training Program on Extreme-Scale

Computing (ATPESC)

Argonne National Labs

July 31 - Aug 12

2016 -President of the Scientific Software Club

Present Cornell University

cornell-ssw.github.io

Computer Skills

Python, C++, MATLAB, C, UNIX, LATEX, Git, OpenMP, MPI, CUDA.

Journal Publications

March 2016 Fast exact shortest distance queries for massive point clouds Graphical Models Vol. 84, pages 28-37 (with E. Shellshear) Dec. 2014 Tropospheric delay raytracing applied in VLBI analysis Journal of Geophysical Research Vol. 119, Issue 12, pages 9156-9170 (with D. S. MacMillan and J. M. Gipson) July 2014 Continental hydrology loading observed by VLBI measurements Journal of Geodesy Vol. 88, Issue 7, pages 675-690 (with D. S. MacMillan)

Conference Proceedings

Sept. 2014	Approximate distance queries for path-planning in massive point clouds 11th International Conference on Informatics in Control, Automation and Robotics (ICINCO) Vol. 2, pages 20-28, IEEE, Vienna, Austria (with E. Shellshear)
	(with E. Shellshear)

Aug. 2013 Nontidal ocean loading observed by VLBI measurements 21st Meeting of the European VLBI

Group for Geodesy and Astronomy Vol. 1, pages 135-140, Espoo, Finland (with D. S. MacMillan)

Mar. 2012 Continental hydrology loading observed by VLBI measurements

IVS 2012 General Meeting Proceedings pages 415-419, Madrid, Spain (with D. S. MacMillan)

Presentations

Presentations	
Mar. 2017	Global optimization with Native space semi-norm bounds SIAM CSE, 2017 Atlanta, GA
June. 2016	Asynchronous surrogate optimization in Python (pySOT + POAP) Computational Methods in Water Resources, 2016 Toronto, Canada
Aug. 2013	Atmospheric ray tracing and its impact in VLBI analysis NASA Goddard Space Flight Center, Greenbelt, MD (with D. S. MacMillan and J. M. Gipson)
Dec. 2012	Explaining the VLBI estimated degree-1 load variation via atmospheric, oceanic, and hydrological mass variations American Geophysical Union, Fall Meeting 2012 San Francisco, CA (with D. S. MacMillan)
Nov. 2011	Mass loading in VLBI analysis NASA Goddard Space Flight Center, Greenbelt, MD

(with D. S. MacMillan)