

Rob J Hyndman

Outline

- Motivation
- Exponential smoothing
- ARIMA modelling
- Time series with complex seasonality
- Hierarchical time series
- Functional time series

- Common in business to have over 1000 products that need forecasting at least monthly.
- Forecasts are often required by people who are untrained in time series analysis.
- Some types of data can be decomposed into a large number of univariate time series that need to be forecast.

Specifications

- Automatic forecasting algorithms must:
- determine an appropriate time series model;
- estimate the parameters;

- Common in business to have over 1000 products that need forecasting at least monthly.
- 2 Forecasts are often required by people who are untrained in time series analysis.
- 3 Some types of data can be decomposed into a large number of univariate time series that need to be forecast.

Specifications

- determine an appropriate time series model;
- estimate the parameters;
- compute the forecasts with prediction intervals

- Common in business to have over 1000 products that need forecasting at least monthly.
- 2 Forecasts are often required by people who are untrained in time series analysis.
- Some types of data can be decomposed into a large number of univariate time series that need to be forecast.

Specifications

- determine an appropriate time series model;
- estimate the parameters;
- compute the forecasts with prediction intervals.

- Common in business to have over 1000 products that need forecasting at least monthly.
- Forecasts are often required by people who are untrained in time series analysis.
- 3 Some types of data can be decomposed into a large number of univariate time series that need to be forecast.

Specifications

- determine an appropriate time series model;
- estimate the parameters;
- compute the forecasts with prediction intervals.

- Common in business to have over 1000 products that need forecasting at least monthly.
- Forecasts are often required by people who are untrained in time series analysis.
- 3 Some types of data can be decomposed into a large number of univariate time series that need to be forecast.

Specifications

- determine an appropriate time series model;
- estimate the parameters;
- compute the forecasts with prediction intervals.

Outline

- Motivation
- Exponential smoothing
- ARIMA modelling
- Time series with complex seasonality
- **B** Hierarchical time series
- Functional time series

		Seasonal Component		
Trend		N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A_d , N	A_d ,A	A _d ,M
М	(Multiplicative)	M,N	M,A	M,M
M_d	(Multiplicative damped)	M_d,N	M_d ,A	M _d ,M

General notation ETS: ExponenTial Smoothing

		S	Seasonal Component		
Trend		N	Α	M	
	Component	(None)	(Additive)	(Multiplicative)	
N	(None)	N,N	N,A	N,M	
Α	(Additive)	A,N	A,A	A,M	
A_d	(Additive damped)	A_d , N	A_d , A	A _d ,M	
М	(Multiplicative)	M,N	M,A	M,M	
M_d	(Multiplicative damped)	M_d,N	M_d ,A	M _d ,M	

General notation ETS: ExponenTial Smoothing

		Seasonal Component		
Trend		N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A _d ,N	A_d , A	A _d ,M
М	(Multiplicative)	M,N	M,A	M,M
M_d	(Multiplicative damped)	M _d ,N	M_d ,A	M _d ,M

General notation E T S : **E**xponen**T**ial **S**moothing

Trend

Examples:

A,N,N: Simple exponential smoothing with additive errors

A,A,N: Holt's linear method with additive errors

Advances in automatic time series forecasting

		Seasonal Component		
Trend		N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A_d , N	A_d ,A	A_d ,M
М	(Multiplicative)	M,N	M,A	M,M
M _d	(Multiplicative damped)	M_d,N	M_d ,A	M_d , M

General notation $E T S_{\kappa}$: **E**xponen**T**ial **S**moothing

Trend Seasonal

Examples:

A,N,N: Simple exponential smoothing with additive errors

A,A,N: Holt's linear method with additive errors

		Seasonal Component		
Trend		N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A _d ,N	A_d ,A	A _d ,M
М	(Multiplicative)	M,N	M,A	M,M
M _d	(Multiplicative damped)	M _d ,N	M_d ,A	M _d ,M

General notation ETS: ExponenTial Smoothing

Error Trend Seasonal

Examples:

A,N,N: Simple exponential smoothing with additive errors

A,A,N: Holt's linear method with additive errors

		Seasonal Component		
Trend		N	Α	M
	Component	(None)	(Additive)	(Multiplicative)
N	(None)	N,N	N,A	N,M
Α	(Additive)	A,N	A,A	A,M
A_d	(Additive damped)	A _d ,N	A_d ,A	A_d ,M
М	(Multiplicative)	M,N	M,A	M,M
M _d	(Multiplicative damped)	M _d ,N	M_d ,A	M _d ,M

General notation ETS: ExponenTial Smoothing

Error Trend Seasonal

Examples:

A,N,N: Simple exponential smoothing with additive errors

A,A,N: Holt's linear method with additive errors

Innovations state space models

- → All ETS models can be written in innovations state space form.
- → Additive and multiplicative versions give the same point forecasts but different prediction intervals.
- ⇒ Use AIC to select best model.

General notation E T S: **E**xponen**T**ial **S**moothing

Error Trend Seasonal

Examples:

A,N,N: Simple exponential smoothing with additive errors

A,A,N: Holt's linear method with additive errors

Innovations state space models

- → All ETS models can be written in innovations state space form.
- Additive and multiplicative versions give the same point forecasts but different prediction intervals.
- ⇒ Use AIC to select best model.

General notation ETS: Expone

Error Trend Seasonal

Examples:

A,N,N: Simple exponential smoothing with additive Holt's linear method with additive errors A,A,N:

M A M Multiplicative Holt-Winters' method with mu

Smoothing

The State Space Approach

Rob J. Hyndman · Anne B. Koehler

with Exponential

J. Keith Ord - Ralph D. Snyder Forecasting

Advances in automatic time series forecasting

Exponential

Exponential smoothing

Exponential smoothing

Exponential smoothing

Outline

- Motivation
- Exponential smoothing
- ARIMA modelling
- Time series with complex seasonality
- **B** Hierarchical time series
- Functional time series

How does auto.arima() work?

A seasonal ARIMA process

$$\Phi(B^m)\phi(B)(1-B)^d(1-B^m)^Dy_t = c + \Theta(B^m)\theta(B)\varepsilon_t$$

Need to select appropriate orders p, q, d, P, Q, D, and whether to include c.

How does auto.arima() work?

A seasonal ARIMA process

$$\Phi(B^m)\phi(B)(1-B)^d(1-B^m)^Dy_t=c+\Theta(B^m)\theta(B)\varepsilon_t$$

Need to select appropriate orders p, q, d, P, Q, D, and whether to include c.

Hyndman & Khandakar (JSS, 2008) algorithm:

- Select no. differences d via KPSS unit root test.
- Select D using OCSB unit root test.
- Select p, q, P, Q, c by minimising AIC.
- Use stepwise search to traverse model space, starting with a simple model and considering nearby variants.

Auto ARIMA

Auto ARIMA

Outline

- Motivation
- Exponential smoothing
- ARIMA modelling
- Time series with complex seasonality
- **B** Hierarchical time series
- Functional time series

Examples

Examples

Examples

 y_t = observation at time t

$$y_t^{(\omega)} = egin{cases} (y_t^\omega - 1)/\omega & ext{if } \omega
eq 0; \ \log y_t & ext{if } \omega = 0. \end{cases}$$

$$y_t^{(\omega)} = \ell_{t-1} + \phi b_{t-1} + \sum_{i=1}^{M} s_{t-m_i}^{(i)} + d_t$$

$$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha d_t$$

$$b_t = (1 - \phi)b + \phi b_{t-1} + \beta d_t$$

$$d_{t} = \sum_{i=1}^{p} \phi_{i} d_{t-i} + \sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j} + \varepsilon_{t}$$

$$s_{t}^{(i)} = \sum_{j=1}^{k_{i}} s_{j,t}^{(i)}$$
 $s_{j,t}^{(i)} = s_{j,t-1}^{(i)} \cos \lambda_{j}^{(i)} + s_{j,t-1}^{*(i)} \sin \lambda_{j}^{(i)} + \gamma_{1}^{(i)} d_{t}$ $s_{j,t}^{(i)} = -s_{j,t-1}^{(i)} \sin \lambda_{j}^{(i)} + s_{j,t-1}^{*(i)} \cos \lambda_{j}^{(i)} + \gamma_{2}^{(i)} d_{t}$

 y_t = observation at time t

$$y_t^{(\omega)} = egin{cases} (y_t^\omega - 1)/\omega & ext{if } \omega
eq 0; \ \log y_t & ext{if } \omega = 0. \end{cases}$$

$$y_t^{(\omega)} = \ell_{t-1} + \phi b_{t-1} + \sum_{i=1}^{M} s_{t-m_i}^{(i)} + d_t$$

$$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha d_t$$

$$b_t = (1 - \phi)b + \phi b_{t-1} + \beta d_t$$

$$d_{t} = \sum_{i=1}^{p} \phi_{i} d_{t-i} + \sum_{i=1}^{q} \theta_{j} \varepsilon_{t-j} + \varepsilon_{t}$$

$$s_t^{(i)} = \sum_{i=1}^{k_i} s_{j,t}^{(i)}$$

$$egin{aligned} heta_{j} arepsilon_{t-j} + arepsilon_{t} \ s_{j,t}^{(i)} &= s_{j,t-1}^{(i)} \cos \lambda_{j}^{(i)} + s_{j,t-1}^{*(i)} \sin \lambda_{j}^{(i)} + \gamma_{1}^{(i)} d_{t} \ s_{j,t-1}^{(i)} &= -s_{j,t-1}^{(i)} \sin \lambda_{j}^{(i)} + s_{j,t-1}^{*(i)} \cos \lambda_{j}^{(i)} + \gamma_{2}^{(i)} d_{t} \end{aligned}$$

with complex seasonal patterns using exponential smoothing". *JASA*, **106**, 1513-1527.

De Livera, Hyndman,

"Forecasting time series

Snyder (2011).

 y_t = observation at time t

$$y_t^{(\omega)} = egin{cases} (y_t^\omega - 1)/\omega & ext{if } \omega
eq 0; \ \log y_t & ext{if } \omega = 0. \end{cases}$$

Box-Cox transformation

$$\begin{split} y_t^{(\omega)} &= \ell_{t-1} + \phi b_{t-1} + \sum_{i=1}^M s_{t-m_i}^{(i)} + d_t \\ \ell_t &= \ell_{t-1} + \phi b_{t-1} + \alpha d_t \\ b_t &= (1 - \phi)b + \phi b_{t-1} + \beta d_t \\ d_t &= \sum_{i=1}^p \phi_i d_{t-i} + \sum_{j=1}^q \theta_j \varepsilon_{t-j} + \varepsilon_t \\ s_t^{(i)} &= \sum_{j=1}^{k_i} s_{j,t}^{(i)} & s_{j,t-1}^{(i)} \cos \lambda_j^{(i)} + s_{j,t-1}^{*(i)} \sin \lambda_j^{(i)} + \gamma_1^{(i)} d_t \\ s_t^{(i)} &= -s_{j,t-1}^{(i)} \sin \lambda_j^{(i)} + s_{j,t-1}^{*(i)} \cos \lambda_j^{(i)} + \gamma_2^{(i)} d_t \end{split}$$

 y_t = observation at time t

$$y_t^{(\omega)} = egin{cases} (y_t^\omega - 1)/\omega & ext{if } \omega
eq 0; \ \log y_t & ext{if } \omega = 0. \end{cases}$$

Box-Cox transformation

$$y_t^{(\omega)} = \ell_{t-1} + \phi b_{t-1} + \sum_{i=1}^{M} s_{t-m_i}^{(i)} + d_t$$

M seasonal periods

$$\begin{split} \ell_t &= \ell_{t-1} + \phi b_{t-1} + \alpha d_t \\ b_t &= (1 - \phi)b + \phi b_{t-1} + \beta d_t \\ d_t &= \sum_{i=1}^p \phi_i d_{t-i} + \sum_{j=1}^q \theta_j \varepsilon_{t-j} + \varepsilon_t \\ s_t^{(i)} &= \sum_{i=1}^{k_i} s_{j,t}^{(i)} & s_{j,t}^{(i)} = s_{j,t-1}^{(i)} \cos \lambda_j^{(i)} + s_{j,t-1}^{*(i)} \sin \lambda_j^{(i)} + \gamma_1^{(i)} d_t \\ s_t^{(i)} &= -s_{i,t-1}^{(i)} \sin \lambda_i^{(i)} + s_{i,t-1}^{*(i)} \cos \lambda_i^{(i)} + \gamma_2^{(i)} d_t \end{split}$$

 y_t = observation at time t

$$y_t^{(\omega)} = egin{cases} (y_t^\omega - 1)/\omega & ext{if } \omega
eq 0; \ \log y_t & ext{if } \omega = 0. \end{cases}$$

Box-Cox transformation

$$y_t^{(\omega)} = \ell_{t-1} + \phi b_{t-1} + \sum_{i=1}^{M} s_{t-m_i}^{(i)} + d_t$$

M seasonal periods

$$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha d_t$$

$$b_t = (1 - \phi)b + \phi b_{t-1} + \beta d_t$$

global and local trend

$$d_{t} = \sum_{i=1}^{p} \phi_{i} d_{t-i} + \sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j} + \varepsilon_{t}$$

$$s_t^{(i)} = \sum_{j=1}^{k_i} s_{j,t}^{(i)} \qquad s_{j,t}^{(i)} = s_{j,t-1}^{(i)} \cos \lambda_j^{(i)} + s_{j,t-1}^{*(i)} \sin \lambda_j^{(i)} + \gamma_1^{(i)} d_t$$
$$s_{j,t}^{(i)} = -s_{j,t-1}^{(i)} \sin \lambda_j^{(i)} + s_{j,t-1}^{*(i)} \cos \lambda_j^{(i)} + \gamma_2^{(i)} d_t$$

 $y_t =$ observation at time t

$$y_t^{(\omega)} = egin{cases} (y_t^\omega - 1)/\omega & ext{if } \omega
eq 0; \ \log y_t & ext{if } \omega = 0. \end{cases}$$

Box-Cox transformation

$$y_t^{(\omega)} = \ell_{t-1} + \phi b_{t-1} + \sum_{i=1}^{M} s_{t-m_i}^{(i)} + d_t$$

M seasonal periods

$$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha d_t$$

$$b_t = (1 - \phi)b + \phi b_{t-1} + \beta d_t$$

global and local trend

$$d_{t} = \sum_{i=1}^{p} \phi_{i} d_{t-i} + \sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j} + \varepsilon_{t}$$

ARMA error

$$s_t^{(i)} = \sum_{j=1}^{k_i} s_{j,t}^{(i)} \qquad s_{j,t}^{(i)} = s_{j,t-1}^{(i)} \cos \lambda_j^{(i)} + s_{j,t-1}^{*(i)} \sin \lambda_j^{(i)} + \gamma_1^{(i)} d_t \\ s_{j,t}^{(i)} = -s_{j,t-1}^{(i)} \sin \lambda_j^{(i)} + s_{j,t-1}^{*(i)} \cos \lambda_j^{(i)} + \gamma_2^{(i)} d_t$$

 y_t = observation at time t

$$y_t^{(\omega)} = egin{cases} (y_t^\omega - 1)/\omega & ext{if } \omega
eq 0; \ \log y_t & ext{if } \omega = 0. \end{cases}$$

Box-Cox transformation

$$y_t^{(\omega)} = \ell_{t-1} + \phi b_{t-1} + \sum_{i=1}^{M} s_{t-m_i}^{(i)} + d_t$$

M seasonal periods

$$\ell_t = \ell_{t-1} + \phi b_{t-1} + \alpha d_t$$

$$b_t = (1 - \phi)b + \phi b_{t-1} + \beta d_t$$

global and local trend

$$d_{t} = \sum_{i=1}^{p} \phi_{i} d_{t-i} + \sum_{j=1}^{q} \theta_{j} \varepsilon_{t-j} + \varepsilon_{t}$$

ARMA error

$$s_t^{(i)} = \sum_{j=1}^{k_i} s_{j,t}^{(i)}$$
 $s_{j,t}^{(i)} = s_{j,t-1}^{(i)}$ Fourier-like seasonal terms $s_{j,t}^{(i)} = -s_{j,t-1}^{(i)} \sin \lambda_j^{(i)} + s_{j,t-1}^{*(i)} \cos \lambda_j^{(i)} + \gamma_2^{(i)} d_t$

 y_t = observation at time t

$$y_t^{(\omega)} = \begin{cases} (y_t^{\omega} - 1)/\omega & \text{if } \omega \neq 0; \\ \log \text{TBATS} \end{cases}$$

$$y_t^{(\omega)} = \ell_{t-1}$$
 Trigonometric Box-Cox $\ell_t = \ell_{t-1}$ ARMA

$$\ell_t = \ell_{t-1}$$
 ARMA

$$d_t = \sum_{i=1}^{p}$$
 Trend
 $d_t = \sum_{i=1}^{p}$ Seasonal

$$s_t^{(i)} = \sum_{i=1}^{k_i} s_{j,t}^{(i)}$$

$$s_{i,t}^{(i)} = s_{i,t-1}^{(i)} c$$

 $s_{j,t}^{(i)} = s_{j,t-1}^{(i)} c_{\mathsf{terms}}^{\mathsf{terms}}$

$$s_{i\,t}^{(i)} = -s_{i\,t-1}^{(i)} \, s_{i}^{(i)}$$

Box-Cox transformation

M seasonal periods

global and local trend

ARMA error

Fourier-like seasonal

$$s_{j,t}^{(i)} = -s_{j,t-1}^{(i)} \sin \lambda_j^{(i)} + s_{j,t-1}^{*(i)} \cos \lambda_j^{(i)} + \gamma_2^{(i)} d_t$$

Outline

- Motivation
- Exponential smoothing
- ARIMA modelling
- Time series with complex seasonality
- Hierarchical time series
- Functional time series

- Manufacturing product hierarchies
- Pharmaceutical sales
- Net labour turnover

- Manufacturing product hierarchies
- Pharmaceutical sales
- Net labour turnover

- Manufacturing product hierarchies
- Pharmaceutical sales
- Net labour turnover

- Manufacturing product hierarchies
- Pharmaceutical sales
- Net labour turnover

K: number of levels in hierarchy (excl. Total). Y_t : observed aggregate of all series at time t.

 $Y_{X,t}$: observation on series X at time t.

Y_{i,t}: vector of all series at level *i* in time *t*.

 $\mathbf{Y}_t = [\mathbf{Y}_t, \mathbf{Y}_{1,t}, \dots, \mathbf{Y}_{K,t}]'$

K: number of levels in hierarchy (excl. Total). $\mathbf{Y}_t = [Y_t, \mathbf{Y}_{1,t}, \dots, \mathbf{Y}_{K,t}]'$

 Y_t : observed aggregate of all series at time t.

 $Y_{X,t}$: observation on series X at time t.

 $Y_{i,t}$: vector of all series at level i in time t.

K: number of levels in hierarchy (excl. Total). $\mathbf{Y}_t = [Y_t, \mathbf{Y}_{1,t}, \dots, \mathbf{Y}_{K,t}]'$

 Y_t : observed aggregate of all series at time t.

 $Y_{X,t}$: observation on series X at time t.

Y_{i,t}: vector of all series at level i in time t.

$$m{Y}_t = [Y_t, Y_{A,t}, Y_{B,t}, Y_{C,t}]' = egin{pmatrix} 1 & 1 & 1 \ 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{pmatrix} egin{pmatrix} Y_{A,t} \ Y_{B,t} \ Y_{C,t} \end{pmatrix}$$

K: number of levels in

 Y_t : observed aggregate of all series at time t.

 $Y_{X,t}$: observation on series X at time t.

Y_{i,t}: vector of all series at level i in time t.

hierarchy (excl. Total). $\mathbf{Y}_t = [Y_t, \mathbf{Y}_{1,t}, \dots, \mathbf{Y}_{K,t}]'$

$$\mathbf{Y}_{t} = [Y_{t}, Y_{A,t}, Y_{B,t}, Y_{C,t}]' = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{S} \begin{pmatrix} Y_{A,t} \\ Y_{B,t} \\ Y_{C,t} \end{pmatrix}$$

K: number of levels in hierarchy (excl. Total).

Y_t: observed aggregate of all series at time t.

 $Y_{X,t}$: observation on series X at time t.

Y_{i,t}: vector of all series at level *i* in time *t*.

hierarchy (excl. Total). $\mathbf{Y}_t = [Y_t, \mathbf{Y}_{1,t}, \dots, \mathbf{Y}_{K,t}]'$

$$\mathbf{Y}_{t} = [Y_{t}, Y_{A,t}, Y_{B,t}, Y_{C,t}]' = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{Y}_{K,t}} \underbrace{\begin{pmatrix} Y_{A,t} \\ Y_{B,t} \\ Y_{C,t} \end{pmatrix}}_{\mathbf{Y}_{K,t}}$$

K: number of levels in

 Y_t : observed aggregate of all series at time t.

 $Y_{X,t}$: observation on series X at time t.

Y_{i,t}: vector of all series at level i in time t.

hierarchy (excl. Total). $\mathbf{Y}_t = [Y_t, \mathbf{Y}_{1,t}, \dots, \mathbf{Y}_{K,t}]'$

$$\mathbf{Y}_{t} = [Y_{t}, Y_{A,t}, Y_{B,t}, Y_{C,t}]' = \underbrace{\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}}_{\mathbf{Y}_{K,t}} \underbrace{\begin{pmatrix} Y_{A,t} \\ Y_{B,t} \\ Y_{C,t} \end{pmatrix}}_{\mathbf{Y}_{K,t}}$$

Hierarchical data

$$\mathbf{Y}_{t} = \begin{pmatrix} Y_{A,t} \\ Y_{B,t} \\ Y_{C,t} \\ Y_{AX,t} \\ Y_{AX,t} \\ Y_{AX,t} \\ Y_{BX,t} \\ Y_{BX,t} \\ Y_{BX,t} \\ Y_{BX,t} \\ Y_{BX,t} \\ Y_{BX,t} \\ Y_{CX,t} \\$$

Hierarchical data

Key idea: forecast reconciliation

- Ignore structural constraints and forecast every series of interest independently.
- → Adjust forecasts to impose constraints.

$$\mathbf{Y}_t = S\mathbf{Y}_{K,t}$$
 . So $\hat{\mathbf{Y}}_n(h) = Seta_n(h) + \varepsilon_h$.

Key idea: forecast reconciliation

- Ignore structural constraints and forecast every series of interest independently.
- ➤ Adjust forecasts to impose constraints.

$$\mathbf{Y}_t = S\mathbf{Y}_{K,t}$$
. So $\hat{\mathbf{Y}}_n(h) = S\beta_n(h) + \varepsilon_h$.

Key idea: forecast reconciliation

- Ignore structural constraints and forecast every series of interest independently.
- → Adjust forecasts to impose constraints.

$$\mathbf{Y}_t = S\mathbf{Y}_{K,t}$$
. So $\hat{\mathbf{Y}}_n(h) = S\beta_n(h) + \varepsilon_h$.

Key idea: forecast reconciliation

- Ignore structural constraints and forecast every series of interest independently.
- → Adjust forecasts to impose constraints.

$$\mathbf{Y}_t = S\mathbf{Y}_{K,t}$$
 . So $\hat{\mathbf{Y}}_n(h) = Seta_n(h) + arepsilon_h$.

Key idea: forecast reconciliation

- Ignore structural constraints and forecast every series of interest independently.
- ➤ Adjust forecasts to impose constraints.

$$\mathbf{Y}_t = S\mathbf{Y}_{K,t}$$
 . So $\hat{\mathbf{Y}}_n(h) = Seta_n(h) + arepsilon_h$.

- lacksquare ε_h has zero mean and covariance matrix Σ_h .
- Estimate $\beta_n(h)$ using GLS?
- Revised forecasts: $\tilde{\mathbf{Y}}_n(h) = \mathbf{S}\hat{\boldsymbol{\beta}}_n(h)$

Key idea: forecast reconciliation

- Ignore structural constraints and forecast every series of interest independently.
- ➤ Adjust forecasts to impose constraints.

$$\mathbf{Y}_t = S\mathbf{Y}_{K,t}$$
 . So $\hat{\mathbf{Y}}_n(h) = Seta_n(h) + arepsilon_h$.

- lacksquare ε_h has zero mean and covariance matrix Σ_h .
- Estimate $\beta_n(h)$ using GLS?
- Revised forecasts: $\tilde{\mathbf{Y}}_n(h) = S\hat{\beta}_n(h)$

Key idea: forecast reconciliation

- Ignore structural constraints and forecast every series of interest independently.
- ➤ Adjust forecasts to impose constraints.

$$\mathbf{Y}_t = S\mathbf{Y}_{K,t}$$
 . So $\hat{\mathbf{Y}}_n(h) = Seta_n(h) + arepsilon_h$.

- lacksquare ε_h has zero mean and covariance matrix Σ_h .
- Estimate $\beta_n(h)$ using GLS?
- Revised forecasts: $\tilde{\mathbf{Y}}_n(h) = S\hat{\beta}_n(h)$

Key idea: forecast reconciliation

- Ignore structural constraints and forecast every series of interest independently.
- ➤ Adjust forecasts to impose constraints.

$$\mathbf{Y}_t = S\mathbf{Y}_{K,t}$$
 . So $\hat{\mathbf{Y}}_n(h) = Seta_n(h) + arepsilon_h$.

- lacksquare ε_h has zero mean and covariance matrix Σ_h .
- Estimate $\beta_n(h)$ using GLS?
- Revised forecasts: $\tilde{\mathbf{Y}}_n(h) = S\hat{\boldsymbol{\beta}}_n(h)$

$$\tilde{\mathbf{Y}}_n(h) = S\hat{eta}_n(h) = S(S'\Sigma_h^{\dagger}S)^{-1}S'\Sigma_h^{\dagger}\hat{\mathbf{Y}}_n(h)$$

$$\mathbf{\tilde{Y}}_n(h) = S\hat{eta}_n(h) = S(S'\Sigma_h^{\dagger}S)^{-1}S'\Sigma_h^{\dagger}\mathbf{\hat{Y}}_n(h)$$

Base forecasts

$$\mathbf{\tilde{Y}}_n(h) = S\hat{\beta}_n(h) = S(S'\Sigma_h^{\dagger}S)^{-1}S'\Sigma_h^{\dagger}\mathbf{\hat{Y}}_n(h)$$

Revised forecasts

Base forecasts

$$\mathbf{\tilde{Y}}_n(h) = S\hat{\boldsymbol{\beta}}_n(h) = S(S'\Sigma_h^{\dagger}S)^{-1}S'\Sigma_h^{\dagger}\mathbf{\hat{Y}}_n(h)$$

Revised forecasts

Base forecasts

- lacksquare Σ_h^{\dagger} is generalized inverse of Σ_h .
- **Problem:** Don't know Σ_h and hard to estimate.
- **Solution:** Assume $\varepsilon_h \approx S\varepsilon_{K,h}$ where $\varepsilon_{K,h}$ is the forecast error at bottom level.

Then $\Sigma_h \approx S\Omega_h S'$ where $\Omega_h = \text{Var}(\varepsilon_{K,h})$. If Moore-Penrose generalized inverse used then

$$(S'\Sigma^{\dagger}S)^{-1}S'\Sigma^{\dagger}=(S'S)^{-1}S'$$

 $\tilde{\mathbf{Y}}_n(h) = S(S'S)^{-1}S'\hat{\mathbf{Y}}_n(h)$

$$\mathbf{\tilde{Y}}_n(h) = S\hat{\beta}_n(h) = S(S'\Sigma_h^{\dagger}S)^{-1}S'\Sigma_h^{\dagger}\mathbf{\hat{Y}}_n(h)$$

Revised forecasts

Base forecasts

- lacksquare Σ_h^{\dagger} is generalized inverse of Σ_h .
- **Problem:** Don't know Σ_h and hard to estimate.
- **Solution:** Assume $\varepsilon_h \approx S\varepsilon_{K,h}$ where $\varepsilon_{K,h}$ is the forecast error at bottom level. Then $\Sigma_h \approx S\Omega_h S'$ where $\Omega_h = \mathrm{Var}(\varepsilon_{K,h})$. If Moore-Penrose generalized inverse used,

$$(S'\Sigma^{\dagger}S)^{-1}S'\Sigma^{\dagger} = (S'S)^{-1}S'$$

$$\tilde{\mathbf{Y}}_n(h) = S(S'S)^{-1}S'\hat{\mathbf{Y}}_n(h)$$

$$\mathbf{\tilde{Y}}_n(h) = S\hat{\beta}_n(h) = S(S'\Sigma_h^{\dagger}S)^{-1}S'\Sigma_h^{\dagger}\mathbf{\hat{Y}}_n(h)$$

Revised forecasts

Base forecasts

- lacksquare Σ_h^{\dagger} is generalized inverse of Σ_h .
- **Problem:** Don't know Σ_h and hard to estimate.
- **Solution:** Assume $\varepsilon_h \approx S\varepsilon_{K,h}$ where $\varepsilon_{K,h}$ is the forecast error at bottom level.

Then $\Sigma_h \approx S\Omega_h S'$ where $\Omega_h = \text{Var}(\varepsilon_{K,h})$. If Moore-Penrose generalized inverse used, then

$$(S'\Sigma^{\dagger}S)^{-1}S'\Sigma^{\dagger} = (S'S)^{-1}S'.$$

$$\tilde{\mathbf{Y}}_n(h) = S(S'S)^{-1}S'\hat{\mathbf{Y}}_n(h)$$

$$\mathbf{\tilde{Y}}_n(h) = S\hat{\beta}_n(h) = S(S'\Sigma_h^{\dagger}S)^{-1}S'\Sigma_h^{\dagger}\mathbf{\hat{Y}}_n(h)$$

Revised forecasts

Base forecasts

- lacksquare Σ_h^{\dagger} is generalized inverse of Σ_h .
- **Problem:** Don't know Σ_h and hard to estimate.
- Solution: Assume $\varepsilon_h \approx S\varepsilon_{K,h}$ where $\varepsilon_{K,h}$ is the forecast error at bottom level.

Then $\Sigma_h \approx S\Omega_h S'$ where $\Omega_h = \text{Var}(\varepsilon_{K,h})$. If Moore-Penrose generalized inverse used, then

$$(S'\Sigma^{\dagger}S)^{-1}S'\Sigma^{\dagger} = (S'S)^{-1}S'.$$

$$\tilde{\mathbf{Y}}_n(h) = S(S'S)^{-1}S'\hat{\mathbf{Y}}_n(h)$$

$$\mathbf{\tilde{Y}}_n(h) = S\hat{\beta}_n(h) = S(S'\Sigma_h^{\dagger}S)^{-1}S'\Sigma_h^{\dagger}\mathbf{\hat{Y}}_n(h)$$

Revised forecasts

Base forecasts

- lacksquare Σ_h^{\dagger} is generalized inverse of Σ_h .
- **Problem:** Don't know Σ_h and hard to estimate.
- Solution: Assume $\varepsilon_h \approx S\varepsilon_{K,h}$ where $\varepsilon_{K,h}$ is the forecast error at bottom level.

Then $\Sigma_h \approx S\Omega_h S'$ where $\Omega_h = \text{Var}(\varepsilon_{K,h})$. If Moore-Penrose generalized inverse used, then

$$(S'\Sigma^{\dagger}S)^{-1}S'\Sigma^{\dagger} = (S'S)^{-1}S'.$$

$$\tilde{\mathbf{Y}}_n(h) = S(S'S)^{-1}S'\hat{\mathbf{Y}}_n(h)$$

$$\mathbf{\tilde{Y}}_n(h) = S\hat{\beta}_n(h) = S(S'\Sigma_h^{\dagger}S)^{-1}S'\Sigma_h^{\dagger}\mathbf{\hat{Y}}_n(h)$$

Revised forecasts

Base forecasts

- lacksquare Σ_h^{\dagger} is generalized inverse of Σ_h .
- **Problem:** Don't know Σ_h and hard to estimate.
- Solution: Assume $\varepsilon_h \approx S\varepsilon_{K,h}$ where $\varepsilon_{K,h}$ is the forecast error at bottom level.

Then $\Sigma_h \approx S\Omega_h S'$ where $\Omega_h = \text{Var}(\varepsilon_{K,h})$. If Moore-Penrose generalized inverse used, then

$$(S'\Sigma^{\dagger}S)^{-1}S'\Sigma^{\dagger} = (S'S)^{-1}S'.$$

$$\tilde{\mathbf{Y}}_n(h) = S(S'S)^{-1}S'\hat{\mathbf{Y}}_n(h)$$

GLS = OLS

$$\tilde{\mathbf{Y}}_n(h) = S(S'S)^{-1}S'\hat{\mathbf{Y}}_n(h)$$

- Optimal weighted average of base forecasts.
- Optimal weights are $S(S'S)^{-1}S'$ (independent of the data!)
- Covariates can be included in base forecasts.
- Computational difficulties in big hierarchies due to size of *S* matrix.

$$\tilde{\mathbf{Y}}_n(h) = S(S'S)^{-1}S'\hat{\mathbf{Y}}_n(h)$$

- Optimal weighted average of base forecasts.
- Optimal weights are $S(S'S)^{-1}S'$ (independent of the data!)
- Covariates can be included in base forecasts.
- Computational difficulties in big hierarchies due to size of S matrix.

$$\tilde{\mathbf{Y}}_n(h) = S(S'S)^{-1}S'\hat{\mathbf{Y}}_n(h)$$

- Optimal weighted average of base forecasts.
- Optimal weights are $S(S'S)^{-1}S'$ (independent of the data!)
- Covariates can be included in base forecasts.
- Computational difficulties in big hierarchies due to size of S matrix.

Optimal combination forecasts

$$\tilde{\mathbf{Y}}_n(h) = S(S'S)^{-1}S'\hat{\mathbf{Y}}_n(h)$$

- Optimal weighted average of base forecasts.
- Optimal weights are $S(S'S)^{-1}S'$ (independent of the data!)
- Covariates can be included in base forecasts.
- Computational difficulties in big hierarchies due to size of S matrix.

Optimal combination forecasts

$$\tilde{\mathbf{Y}}_n(h) = S(S'S)^{-1}S'\hat{\mathbf{Y}}_n(h)$$

- Optimal weighted average of base forecasts.
- Optimal weights are $S(S'S)^{-1}S'$ (independent of the data!)
- Covariates can be included in base forecasts.
- Computational difficulties in big hierarchies due to size of S matrix.

Hyndman, Ahmed, Athanasopoulos, Shang (2011). "Optimal combination forecasts for hierarchical time series". *Computational Statistics and Data Analysis* **55**(9), 2579–2589

Hyndman, Ahmed, Shang (2011). hts: Hierarchical time series. cran.r-project.org/package=hts

Outline

- Motivation
- Exponential smoothing
- ARIMA modelling
- Time series with complex seasonality
- **B** Hierarchical time series
- Functional time series

Fertility rates

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

- **E**stimate $f_t(x)$ using penalized regression splines
- Estimate $\mu(\mathbf{x})$ as mean $f_t(\mathbf{x})$ across years.
- Estimate $\beta_{t,k}$ and $\phi_k(x)$ using functional (weighted principal components

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

- Estimate $f_t(x)$ using penalized regression splines.
- Estimate $\mu(x)$ as mean $f_t(x)$ across years.
- Estimate $\beta_{t,k}$ and $\phi_k(x)$ using functional (weighted) principal components.
- \bullet $\varepsilon_{t,x} \stackrel{\text{iid}}{\sim} N(0,1)$ and $e_t(x) \stackrel{\text{iid}}{\sim} N(0,v(x))$.

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

- Estimate $f_t(x)$ using penalized regression splines.
- Estimate $\mu(x)$ as mean $f_t(x)$ across years.
- Estimate $\beta_{t,k}$ and $\phi_k(x)$ using functional (weighted) principal components.
- lacksquare $\varepsilon_{t,x} \stackrel{\text{iid}}{\sim} \mathsf{N}(0,1)$ and $e_t(x) \stackrel{\text{iid}}{\sim} \mathsf{N}(0,v(x))$.

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

- Estimate $f_t(x)$ using penalized regression splines.
- Estimate $\mu(x)$ as mean $f_t(x)$ across years.
- Estimate $\beta_{t,k}$ and $\phi_k(x)$ using functional (weighted) principal components.
- \bullet $\varepsilon_{t,x} \stackrel{\text{iid}}{\sim} N(0,1)$ and $e_t(x) \stackrel{\text{iid}}{\sim} N(0,v(x))$.

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

- Estimate $f_t(x)$ using penalized regression splines.
- Estimate $\mu(x)$ as mean $f_t(x)$ across years.
- Estimate $\beta_{t,k}$ and $\phi_k(x)$ using functional (weighted) principal components.
- lacksquare $\varepsilon_{t,x} \stackrel{\text{iid}}{\sim} \mathsf{N}(0,1)$ and $e_t(x) \stackrel{\text{iid}}{\sim} \mathsf{N}(0,v(x))$.

Fertility application

Fertility model

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

- The eigenfunctions $\phi_k(x)$ show the main regions of variation.
- The scores $\{\beta_{t,k}\}$ are uncorrelated by construction. So we can forecast each $\beta_{t,k}$ using a univariate time series model.
- Univariate ARIMA models used for automatic forecasting of scores.

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

- The eigenfunctions $\phi_k(x)$ show the main regions of variation.
- The scores $\{\beta_{t,k}\}$ are uncorrelated by construction. So we can forecast each $\beta_{t,k}$ using a univariate time series model.
- Univariate ARIMA models used for automatic forecasting of scores.

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

- The eigenfunctions $\phi_k(x)$ show the main regions of variation.
- The scores $\{\beta_{t,k}\}$ are uncorrelated by construction. So we can forecast each $\beta_{t,k}$ using a univariate time series model.
- Univariate ARIMA models used for automatic forecasting of scores.

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \phi_k(x) + e_t(x)$$

- The eigenfunctions $\phi_k(x)$ show the main regions of variation.
- The scores $\{\beta_{t,k}\}$ are uncorrelated by construction. So we can forecast each $\beta_{t,k}$ using a univariate time series model.
- Univariate ARIMA models used for automatic forecasting of scores.

Forecasts

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \,\phi_k(x) + e_t(x)$$

Forecasts

$$y_{t,x} = f_t(x) + \sigma_t(x)\varepsilon_{t,x}$$

$$f_t(x) = \mu(x) + \sum_{k=1}^K \beta_{t,k} \,\phi_k(x) + e_t(x)$$

$$\begin{split} \mathsf{E}[y_{n+h,x} \mid \boldsymbol{y}] &= \hat{\mu}(x) + \sum_{k=1} \hat{\beta}_{n+h,k} \, \hat{\phi}_k(x) \\ \mathsf{Var}[y_{n+h,x} \mid \boldsymbol{y}] &= \hat{\sigma}^2_{\mu}(x) + \sum_{k=1}^K v_{n+h,k} \, \hat{\phi}^2_k(x) + \sigma^2_t(x) + v(x) \end{split}$$

where
$$v_{n+h,k} = \text{Var}(\beta_{n+h,k} \mid \beta_{1,k}, \dots, \beta_{n,k})$$
 and $\mathbf{y} = [y_{1,x}, \dots, y_{n,x}].$

References

Hyndman, Ullah (2007). Robust forecasting of mortality and fertility rates: A functional data approach. *CSDA*, **51**, 4942–4956

Hyndman, Shang (2009). Forecasting functional time series (with discussion). *JKSS* **38**(3), 199–221

Hyndman, Booth, Yasmeen (2012). Coherent mortality forecasting: the product-ratio method with functional time series models.

Demography, to appear.

Hyndman (2012). demography: Forecasting mortality, fertility, migration and population data. cran.r-project.org/package=demography

For further information

robjhyndman.com

- Slides and references for this talk.
- Links to all papers and books.
- Links to R packages.
- A blog about forecasting research.