Claims

- [c1] 1. An additive composition for use as at least a partial replacement for mixed metal, alkali-metal and tin-based stabilizer additives for use in vinyl resins wherein said composition comprises:
 - (a) at least two phosphite esters selected from the group consisting of
 - (i) triaryl phosphites and C_{1-9} alkyl substituted derivatives thereof,
 - (ii) C_{8-15} alkyl phosphites,
 - (iii) mixed phosphites having at least one C_{8-15} alkyl moiety and at least one aryl moiety therein, a combination of said moieties totaling three,
 - (iv) C_{10-15} alkyl bisphenol-A phosphites and C_{1-9} alkyl substituted derivatives thereof,
 - (v) poly- and mono- alkylene glycol phosphites,
 - (vi) C_{8-15} pentaerythritol phosphites, and
 - (vii) mono- and di- C_{8-15} alkyl p-cumyl phenol phosphites and C_{1-9} alkyl substituted derivatives thereof; and
 - (b) a zinc additive wherein a molar ratio of P/Zn is

from about 80:1 to 4:1, and wherein said composition is essentially free of calcium, cadmium, barium and tin.

- [c2] 2. The composition of claim 1 wherein (a) said ratio is from about 75:1 to 6:1.
- [c3] 3. The composition of claim 2 wherein (a) said ratio is from bout 73:1 to 8:1.
- [c4] 4. The composition of claim 1 wherein said at least two phosphite esters are selected from the group consisting of
 - (a) triaryl phosphites and $C_{1.9}$ alkyl substituted derivatives thereof of formula (I)

wherein

 R^1 is independently selected from the group consisting of H and C_{1-9} alkyl, and

m is an integral value from 0 to 1 inclusive,

(b) C₈₋₁₅ trialkyl phosphites of formula (II)

$$\begin{bmatrix} R^2 - O \end{bmatrix}_3 P$$
(II)

wherein

R² is selected from the group consisting of C₈₋₁₅ alkyl,

(c) mixed phosphites having at least one C₈₋₁₅ alkyl moiety and at least one aryl moiety of formula (III)

$$\begin{bmatrix} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

wherein

R¹ is as previously defined,

R² is as previously defined,

m is as previously defined, and

n is an integral value from 1 to 2,

(d) C₁₀₋₁₅ alkyl bisphenol-A phosphites of formula (IV) and C₁₋₉ alkyl substituted derivatives thereof

$$\begin{bmatrix} (R^{3}-O)_{2}-P-O & & \\ &$$

wherein

R¹ is as previously defined,

R³ is C₁₀₋₁₅ alkyl, and

m is as previously defined,

(e) poly- and mono- alkylene glycol phosphites of formula (V)

$$\begin{bmatrix} \begin{matrix} \begin{matrix} CH_3 \\ P-O \end{matrix} \\ \begin{matrix} CHCH_2O \end{matrix} \\ \begin{matrix} CH_2CHO-P \end{matrix} \\ \begin{matrix} CH_2CHO-P \end{matrix} \\ \begin{matrix} R_m^1 \end{matrix} \end{bmatrix}_2$$

(V)

wherein

R¹ is as previously defined,

m is as previously defined, and

is an integral value from 0 to 1 inclusive,

(f) C₈₋₁₅ pentaerythritol phosphites of formula (VI) and C₁₋₉ alkyl substituted derivatives thereof

$$R^4 - O - P O - O P - O - R^4$$

wherein

R4 is the same as R1, and

(g) mono- and di- C₈₋₁₅ alkyl *p*-cumyl phenol phosphites and C₁₋₄ alkyl substituted derivatives thereof of formula (VII)

$$CH_3$$
 CH_3
 CH_3

wherein

R⁵ is the same as R¹.

- [c5] 5. The composition of claim 4 wherein a percentage weight loss of said composition as measured as a difference between a start and an end weight of said composition as measured after exposure to two hours at 110°C, is less than 1% by weight.
- [c6] 6. The composition of claim 5 wherein a percentage weight loss is less than 0.5% by weight.

[c7] 7. The composition of claim 4 wherein

Fourth Inventor	For:
ASSIG	NMENT OF INVENTION
In consideration of the payment by ASSIGNEE is hereby acknowledged, and for other good and	to ASSIGNOR of the sum of One Dollar (\$1.00), the receipt of waluable consideration,
ASSIGNOR:	
Inventor(s) or person(s) or Entity(ies) who own the invention	Michael R. Jakupca
	(type or print name(s) of ASSIGNOR(s)
	810 37th St. N.W.
	Address Canton, Ohio 44709
	US
	Nationality
(If assignment is by person o and this was i	r entity to whom invention was previously assigned recorded in PTO, add the following)
Recorded on	Reel
	Frame
hereby sells, assigns and transfers to	
ASSIGNEE:	
	Dover Chemical Corporation
	(type or print name(s) of ASSIGNEE(s)
	3676 Davis Rd., NW
	Address Dover, Ohio 44622
	US
	Nationality
and the successors, assigns and legal repre-	sentative of the ASSIGNEE

Page 3a

(iii) poly- and mono- alkylene glycol phosphites of formula (V)

$$\begin{bmatrix} CH_3 & CH_3 \\ CHCH_2O & CH_2CHO - P \\ R_m^1 & CH_m^2 \end{bmatrix}$$

(V),

(iv) C₈₋₁₅ pentaerythritol phosphites of formula (VI)

$$R^4 - O - P O - R^4$$
(VI),

(v) mono- and di- C_{8-15} alkyl p-cumyl phenol phosphites and C_{1-4} alkyl substituted derivatives thereof of formula (VII)

$$\begin{array}{c|c}
CH_3 \\
CH_3
\end{array}$$

$$\begin{array}{c|c}
O-P = O-R^5 \\
\end{array}$$
(VII),

wherein

$$\mbox{\sc R}^1$$
 , $\mbox{\sc R}^2$, $\mbox{\sc R}^3$, $\mbox{\sc R}^4$, $\mbox{\sc R}^5$, m, n and p are as previously defined.

[08] 8. The composition of claim 7 wherein said at least one second phosphite ester is selected from the group consisting of

C₁₀₋₁₅ alkyl bisphenol-A phosphites of formula (IV)

$$\begin{bmatrix} (R^3 - O)_2 - P - O - O - C(CH_3)_2 \\ R_m^1 \end{bmatrix}$$

(IV),

poly- and di- alkylene glycol phosphites of formula (V)

(V),

C₈₋₁₅ pentaerythritol phosphites of formula (VI)

$$R^4 - O - R^4$$
 (VI), and

wherein

R¹, R³, R⁴, m and p are as previously defined.

[09] 9. The composition of claim 1 wherein said phosphite ester is selected from the group consisting of

C₁₂₋₁₅ bisphenol-A phosphite of formula (VIII)

$$\left[(C_{12-15}H_{25-31}O)_2 - P - O - C(CH_3)_2 \right]$$

(VIII),

C₁₀ bisphenol-A phosphite of formula (IX)

(IX),

tetraphenyl dipropylene glycol diphosphite of formula (X)

(X),

phenyl diisodecyl phosphite of formula (XI)

$$\begin{array}{c} \begin{array}{c} \\ \\ \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \end{array} \begin{array}{c} \\ \end{array} \begin{array}{c} \\$$

diphenyl isodecyl phosphite of formula (XII)

diphenyl 2-ethylhexyl phosphite of formula (XIII)

$$\begin{bmatrix} C_2H_5 \\ P-O-CH_2CHC_4H_9 \end{bmatrix}$$
(XIII),

diisodecyl PE diphosphite of formula (XIV), and

$$C_{10}H_{21}-O-P$$
 $O-C_{10}H_{21}$

(XIV),

mono p-cumyl phenol diisodecyl phosphite of formula (XV)

$$\begin{array}{c}
CH_3 \\
CH_3
\end{array}$$

$$\begin{array}{c}
O-P = O-C_{10}H_{21}\\
\end{array}$$

$$\begin{array}{c}
CXV
\end{array}$$

- [c10] 10. The composition of claim 1 which further comprises a halogenated resin.
- [c11] 11. The composition of claim 10 wherein a level of zinc is approximately 50 to 800 ppm zinc per 100 parts resin.
- [c12] 12. The composition of claim 11 wherein said level of zinc is approximately 100 to 500 ppm zinc per 100 parts resin.
- [c13] 13. The composition of claim 12 wherein said level of

zinc is approximately 100 to 250 ppm zinc per 100 parts resin.

- [c14] 14. The composition of claim 11 wherein said halogenated resin is flexible polyvinyl chloride.
- [c15] 15. An additive composition for use as at least a partial replacement for mixed metal and tin-based stabilizer additives for use in resins wherein said composition comprises at least two phosphite esters, and wherein:
 - (a) a first phosphite ester is C_{10-15} alkyl bisphenol-A phosphites of formula (IV) and C_{1-9} alkyl substituted derivatives thereof

$$\begin{bmatrix}
(R^3 - O)_2 - P - O - O \\
R_{m}^1
\end{bmatrix}_2 C(CH_3)_2$$

(IV), and

- (b) at least one second phosphite ester is selected from the group consisting of
 - (i) mixed phosphites having at least one C₈₋₁₅ alkyl moiety and at least one aryl moiety of formula (III)

$$\begin{bmatrix} & & & \\ & & & \\ & & & \end{bmatrix}_{3-n} P - O - R^2$$

(111)

(ii) C₁₀₋₁₅ alkyl bisphenol-A phosphites of formula (IV)

$$\begin{bmatrix} (R^3 - O)_2 - P - O - \bigvee_{\substack{P \\ R_m^1}} C(CH_3)_{1} \end{bmatrix}$$

(IV),

(iii) poly- and mono- alkylene glycol phosphites of formula (V)

(iv) C₈₋₁₅ pentaerythritol phosphites of formula (VI)

$$R^4 - O - P - O - R^4$$

 (v) mono- and di- C₈₋₁₅ alkyl p-cumyl phenol phosphites and C₁₋₄ alkyl substituted derivatives thereof of formula (VII)

$$\begin{array}{c|c}
CH_3 \\
CH_3
\end{array}$$

$$\begin{array}{c|c}
O-P = O-R^5 \\
\end{array}$$
(VII),

wherein

 R^1 is independently selected from the group consisting of H and C_{1-9} alkyl,

 R^2 is selected from the group consisting of C_{8-15} alkyl,

 R^3 is C_{10-15} alkyl,

R⁴ is the same as R¹,

R⁵ is the same as R¹,

m is an integral value from 0 to 1 inclusive,

n is an integral value from 1 to 2, and

p is an integral value from 0 to 1 inclusive.

- (c) a zinc additive wherein a molar ratio of P/Zn is from about 80:1 to 4:1; and
- (d) said composition is essentially free of calcium, cadmium, barium and tin.
- [c16] 16. The composition of claim 15 which further comprises polyvinyl chloride.
- [c17] 17. The composition of claim 16 wherein a level of zinc is approximately 50 to 800 ppm zinc per 100 parts polyvinyl chloride.
- [c18] 18. The composition of claim 17 wherein said level of zinc is approximately 100 to 500 ppm zinc per 100 parts polyvinyl chloride.
- [c19] 19. The composition of claim 18 wherein said level of

zinc is approximately 100 to 250 ppm zinc per 100 parts polyvinyl chloride.

[c20] 20. The composition of claim 15 wherein said polyvinyl chloride is flexible polyvinyl chloride.