

Neural Style Transfer

Style cost function

Meaning of the "style" of an image

Say you are using layer *l*'s activation to measure "style." Define style as correlation between activations across channels.

How correlated are the activations across different channels?

Intuition about style of an image

Generated Image

Style matrix

Let
$$a_{i,j,k}^{[l]} = \text{activation at } (i,j,k)$$
. $\underline{G}^{[l]} \text{ is } \mathbf{n}_{\mathbf{c}}^{[l]} \times \mathbf{n}_{\mathbf{c}}^{[l]}$

$$\Rightarrow C_{kk'}^{[l]} = \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_{ijk}^{(l)} \alpha_{ijk'}^{(l)}$$

$$\Rightarrow C_{kk'}^{(l)} = \sum_{i=1}^{l} \sum_{j=1}^{l} \alpha_{ijk}^{(l)} \alpha_{ijk}^{(l)}$$

$$\int_{S+yle} \left(S, C_k \right) = \frac{1}{\left(\frac{1}{2} \frac{1}{N_H^2 N_W^2 N_W^2 N_W^2} \right)^2} - \left(\frac{123(C_k)}{C_k N_H^2 N_W^2 N_W^2 N_W^2 N_W^2} - \frac{123(C_k)}{C_k N_H^2 N_W^2 N_W^2 N_W^2 N_W^2} \right)^2 + \frac{1}{(C_k N_H^2 N_W^2 N$$

[Gatys et al., 2015. A neural algorithm of artistic style]

Style cost function

$$J_{style}^{[l]}(S,G) = \frac{1}{\left(2n_H^{[l]}n_W^{[l]}n_C^{[l]}\right)^2} \sum_{k} \sum_{k'} (G_{kk'}^{[l](S)} - G_{kk'}^{[l](G)})$$