Expressing Conditional and Boolean Queries in Relational Algebra

Dirk Van Gucht¹

¹Indiana University

Outline

Objectives:

- Expressing conditional, i.e., "if-then-else" queries in Relational Algebra and SQL with RA operations.
- Expressing boolean queries in Relational Algebra and SQL with RA operations.
- Translating boolean SQL queries into boolean RA expressions.

The "if-then-else" conditional query

Develop an RA expression for the "if-then-else" query

if
$$\mathcal{C}(F)$$
 then E_1 else E_2

F RA expression with schema \mathbf{A} E_1 RA expression with schema \mathbf{B} E_2 RA expression with schema \mathbf{B} $\mathcal{C}(F)$ a boolean set/relation condition \mathcal{C} on F

Typical cases for C(F):

$$\begin{array}{lll} F & \neq & \emptyset \\ F & = & \emptyset \\ |F| & \theta & {\rm k} & {\rm with} \; \theta \; {\rm one} \; {\rm of} \; =, \neq, <, \leq, >, \geq \end{array}$$

Semantics of the "if-then-else" query

The semantics of the "if-then-else" query

if
$$\mathcal{C}(F)$$
 then E_1 else E_2

If C(F) is true then the "if-then-else" query returns the value of the expression E_1 .

If C(F) is false then the "if-then-else" query returns the value of the expression E_2 .

We begin with a special case of the "if-then-else" query, i.e. 1

if
$$F \neq \emptyset$$
 then E_1 else E_2

This guery can be expressed in RA with the expression

$$\pi_{\mathsf{B}}(\mathsf{E}_1 \times \mathsf{F}) \cup (\mathsf{E}_2 - \pi_{\mathsf{B}}(\mathsf{E}_2 \times \mathsf{F})).$$

¹Recall that E_1 and E_2 both have schema **B**.

$$\pi_{\mathsf{B}}(E_1 \times F) \cup (E_2 - \pi_{\mathsf{B}}(E_2 \times F))$$

• If $F \neq \emptyset$, then $\pi_{\mathbf{B}}(E_1 \times F) = E_1$ and $\pi_{\mathbf{B}}(E_2 \times F) = E_2$. Therefore,

$$\pi_{\mathbf{B}}(E_1 \times F) \cup (E_2 - \pi_{\mathbf{B}}(E_2 \times F) = E_1 \cup (E_2 - E_2) = E_1 - \emptyset = E_1.$$

• If $F = \emptyset$, then $\pi_{\mathbf{B}}(E_1 \times F) = \emptyset$ and $\pi_{\mathbf{B}}(E_2 \times F) = \emptyset$. Therefore,

$$\pi_{\mathsf{B}}(E_1 \times F) \cup (E_2 - \pi_{\mathsf{B}}(E_2 \times F) = \emptyset \cup (E_2 - \emptyset) = E_2.$$

Expressing "if-then-else" query in Relational Algebra (Alternative)

We begin with a special case of the "if-then-else" query, i.e.²

if
$$F \neq \emptyset$$
 then E_1 else E_2

This query can also be expressed in RA with the expression

$$(E_1 \times \pi_0(F)) \cup (E_2 - (E_2 \times \pi_0(F)))$$

²Recall that E_1 and E_2 both have schema **B**.

$$(E_1 \times \pi_{()}(F)) \cup (E_2 - (E_2 \times \pi_{()}(F))$$

• If $F \neq \emptyset$, then $\pi_{()}(F) = \{()\}$. Thus.

$$E_1 \times \pi()(F) = E_1 \times \{()\} = E_1$$

 $E_2 \times \pi_{()}(F) = E_2 \times \{()\} = E_2$.

Therefore,

$$(E_1 \times \pi_{()}(F)) \cup (E_2 - (E_2 \times \pi_{()}(F))) = E_1 \cup (E_2 - E_2) = E_1 - \emptyset = E_1.$$

• If $F = \emptyset$, then $\pi_{()}(F) = \emptyset$. Therefore,

$$(E_1 \times \pi_{()}(F)) \cup (E_2 - (E_2 \times \pi_{()}(F)) = \emptyset \cup (E_2 - \emptyset) = E_2.$$

if
$$F \neq \emptyset$$
 then E_1 else E_2

In RA,

$$\pi_{\mathsf{B}}(\mathsf{E}_1 \times \mathsf{F}) \cup (\mathsf{E}_2 - \pi_{\mathsf{B}}(\mathsf{E}_2 \times \mathsf{F})) \tag{1}$$

or, alternatively,

$$(E_1 \times \pi_0(F)) \cup (E_2 - (E_2 \times \pi_0(F)))$$
 (2)

Expression (2) is better than expression (1):

- Complexity of expression (1) is $O((|E_1| + |E_2|) * |F|)$.
- Complexity of expression (2) is $O(|E_1| + |E_2| + |F|)$.

RA expression for "if-then-else" in SQL

if
$$F \neq \emptyset$$
 then E_1 else E_2

$$\pi_{\mathbf{B}}(E_1 \times F) \cup (E_2 - \pi_{\mathbf{B}}(E_2 \times F)) \qquad (1)$$

SELECT $e_1.*$
FROM $E_1 e_1$ CROSS JOIN F
UNION
(SELECT $e_2.*$
FROM $E_2 e_2$
EXCEPT
SELECT $e_2.*$
FROM $E_2 e_2$ CROSS JOIN F)

RA expression for "if-then-else" in SQL

$$\begin{array}{ccc} \text{if} & \textit{\textit{F}} \neq \emptyset & \text{then} & \textit{\textit{E}}_1 \\ & \text{else} & \textit{\textit{E}}_2 \end{array} \\ (\textit{\textit{E}}_1 \times \pi_{()}(\textit{\textit{F}})) \, \cup \, (\textit{\textit{E}}_2 - (\textit{\textit{E}}_2 \times \pi_{()}(\textit{\textit{F}})) \end{array} \tag{2}$$

```
SELECT e_1.*
FROM E_1 e_1 CROSS JOIN (SELECT DISTINCT row() FROM F) f
UNION
(SELECT e_2.*
FROM E_2 e_2
EXCEPT
SELECT e_2.*
FROM E_2.*
FROM E_2 e_2
```

We next consider another special case of the "if-then-else" query, i.e.³

if
$$F = \emptyset$$
 then E_1 else E_2

This query is equivalent with

if
$$F \neq \emptyset$$
 then E_2 else E_1

This guery can be expressed in RA with the expression

$$\pi_{\mathsf{B}}(\mathsf{E}_2 \times \mathsf{F}) \cup (\mathsf{E}_1 - \pi_{\mathsf{B}}(\mathsf{E}_1 \times \mathsf{F}))$$

or, alternatively

$$(E_2 \times \pi_0(F)) \cup (E_1 - (E_1 \times \pi_0(F)).$$

³Recall that E_1 and E_2 both have schema **B**.

We next consider another special case of the "if-then-else" query, i.e.

if
$$|F| \ge 2$$
 then E_1 else E_2

This query is equivalent with4

if
$$(F_1 \bowtie_{F_1.\mathbf{A} \neq F_2.\mathbf{A}} F_2) \neq \emptyset$$
 then E_1 else E_2

This guery can be expressed in RA with the expression

$$\pi_{\mathbf{B}}(E_2 \times (F_1 \bowtie_{F_1.\mathbf{A} \neq F_2.\mathbf{A}} F_2)) \cup (E_1 - \pi_{\mathbf{A}}(E_1 \times (F_1 \bowtie_{F_1.\mathbf{A} \neq F_2.\mathbf{A}} F_2)))$$
 or, alternatively

$$E_2 \times \pi_{()}(F_1 \bowtie_{F_1, \mathbf{A} \neq F_2, \mathbf{A}} F_2) \cup (E_1 - (E_1 \times \pi_{()}(F_1 \bowtie_{F_1, \mathbf{A} \neq F_2, \mathbf{A}} F_2)).$$

⁴Recall that F has schema A.

Boolean queries

A boolean query is a special case of the "if-then-else" query. I.e., it is the following query:

if
$$\mathcal{C}(F)$$
 then true else false

$$F$$
 RA expression with schema \mathbf{A} $\mathcal{C}(F)$ a boolean set/relation condition \mathcal{C} on F

Typical cases for C(F):

$$\begin{array}{lll} \textit{F} & \neq & \emptyset \\ \textit{F} & = & \emptyset \\ |\textit{F}| & \theta & \mathbf{k} & \text{with } \theta \text{ one of } =, \neq, <, \leq, >, \geq \end{array}$$

Semantics of boolean queries

The semantics of the boolean query

if
$$\mathcal{C}(F)$$
 then true else false

If C(F) is true then the boolean query returns the value "true".

If C(F) is false then the boolean query returns the value "false".

Expressing boolean queries in Relational Algebra

We begin with a special case of a boolean query, i.e:

if
$$F \neq \emptyset$$
 then true else false

This query can be expressed in RA with the expression

$$\pi_B((B: \texttt{true}) \times F) \cup ((B: \texttt{false}) - \pi_B((B: \texttt{false}) \times F))$$

or, alternatively

$$(B: \mathtt{true}) \times \pi_{()}(F) \cup ((B: \mathtt{false}) - ((B: \mathtt{false}) \times \pi_{()}(F))).$$

Recall that (B: true) and (B: false) are RA expressions representing the constants "true" and "false", respectively.

Expressing boolean queries in Relational Algebra (complexity)

if
$$F \neq \emptyset$$
 then true else false

In RA,

$$\pi_B((B: \text{true}) \times F) \cup ((B: \text{false}) - \pi_B((B: \text{false}) \times F))$$
 (1) or, alternatively,

$$(B: \text{true}) \times \pi_{()}(F) \cup ((B: \text{false}) - ((B: \text{false}) \times \pi_{()}(F)))$$
 (2)

Expressions (1) and (2) have the same complexity, namely O(|F|).

RA expression for boolean RA queries in SQL

if
$$F \neq \emptyset$$
 then true else false

$$\pi_B((B: \texttt{true}) \times F) \cup ((B: \texttt{false}) - \pi_B((B: \texttt{false}) \times F))$$

```
SELECT t.B
FROM (SELECT true AS B) t CROSS JOIN F
UNION
(SELECT false AS B
EXCEPT
SELECT f.B
FROM (SELECT false AS B) f CROSS JOIN F)
```

Let R be a binary relation over schema (A, B). We say that R is a *function* from A to B if

$$\forall t_1 \forall t_2 ((R(t_1) \land R(t_2) \land t_1.A = t_2.B) \rightarrow t_1.B = t_2.B)$$

Or, equivalently

$$\neg \exists t_1 \exists t_2 (R(t_1) \land R(t_2) \land t_1.A = t_2.B \land t_1.B \neq t_2.B).$$

Consider the subformula

$$(R(t_1) \wedge R(t_2) \wedge t_1.A = t_2.B \wedge t_1.B \neq t_2.B).$$

The RA expression for this subformula is

$$R_1 \bowtie_{R_1.A=R_2.A \land R_1.B \neq R_2.B} R_2.$$

Let R be a binary relation over schema (A, B).

R is a function if

$$\neg \exists t_1 \exists t_2 (R(t_1) \land R(t_2) \land t_1.A = t_2.B \land t_1.B \neq t_2.B).$$

We can express this as the RA boolean query:

if
$$(R_1 \bowtie_{R_1.A=R_2.A \land R_1.B \neq R_2.B} R_2) = \emptyset$$
 then true else false

This boolean RA query can then be expressed in RA and SQL with RA operations as shown above.

Let R be a binary relation over schema (A, B).

The boolean query "R is a function" can be expressed in RA as

$$\pi_B((B: \texttt{true}) \times F) \cup ((B: \texttt{false}) - \pi_B((B: \texttt{false}) \times F))$$

where *F* is the RA expression

$$R_1 \bowtie_{R_1.A=R_2.A \wedge R_1.B \neq R_2.B} R_2.$$

Let R be a binary relation over schema (A, B). The boolean query "R is a function" can be expressed in SQL with RA operations as

```
WITH F AS
  (SELECT t1.*, t2.*
   FROM R t1 JOIN R t2 ON (t1.A=t2.A AND t1.B <> t2.B))
SELECT t.B.
FROM (SELECT false AS B) t CROSS JOIN F
UNION
(SELECT true AS B
EXCEPT
SELECT f.B.
FROM (SELECT true AS B) f CROSS JOIN F)
```

Translating Boolean SQL queries to Boolean RA queries

Consider the boolean SQL query⁵

Let E_Q denote the translation of "Q" in the Relational Algebra. Then the boolean SQL query can be expressed as the RA boolean query:

if
$$E_Q \neq \emptyset$$
 then true else false

I.e., as the RA expression

$$(B: \text{true}) \times \pi_{O}(E_Q) \cup ((B: \text{false}) - (B: \text{false}) \times \pi_{O}(E_Q))$$

⁵"Q" denotes a SQL query.

Translating Boolean SQL queries to Boolean RA queries

Consider the boolean SQL query⁶

Let E_Q denote the translation of "Q" in the Relational Algebra. Then the boolean SQL query can be expressed as the RA boolean query:

if
$$E_Q = \emptyset$$
 then true else false

I.e., as the RA expression

$$(B: false) \times \pi_0(E_Q) \cup ((B: true) - (B: true) \times \pi_0(E_Q))$$

⁶"Q" denotes a SQL query.