Conversational Korean-Vietnam translator for interpreters

(Neural machine translation)

2023.11.09

Presenter: Seonhui, Kim

Contents

01. Introduction

02. Related works

03. Experience

04. Results

05. Future work

Introduction

Improvement of translation quality

- ✓ Translating natural expression of foreigners into appropriate Korean for situation
- ✓ Improving smooth communication in real-life interpreting situations

Related works

WMT22

Seventh Conference on Machine Translation

Confirmed language pairs:

- English Chinese
- English Czech
- English German
- English Japanese
- English Russian
- French German
- Croatian English
- Livonian English
- Yakut Russian

Korean-Vietnamese Neural Machine Translation System With Korean Morphological Analysis and Word Sense Disambiguation

TABLE 11. Statistics of the Korean-Vietnamese parallel corpus.

		#Sent.	#Avg. Len.	#Tokens	#Vocabulary
Vietnemese	Original Segmented		19.3	8,790,197	40,090
Vietnamese	Segmented	454 751	16.3	7,409,163	49,208
Korean	Original	454,751	12.0	5,435,686	397,130
	Morph. Ana.		21.4	9,728,801	63,735
	WSD		21.4	9,720,001	68,856

Conversational Data

Parallel Corpus

의역

< 영어 >

Because you're all plans and clockworks

I just got outsmarted by Mr.Potato Head.

Even though it's once in a blue moon, there are these moments... Moments?

So we're just gonna bite the bullet and just do it.

< 한국어 >

당신은 모든게 <mark>계획대로 순조롭게</mark> 진행 되야하잖아

나 방금 저 <mark>꼴통</mark>한테 당한 건가.

<mark>아주 가끔</mark>이지만 순간 순간

그래서 <mark>울며 겨자 먹기</mark>로 당장 해치우 려고 English (source text)

Transformer (E2E)

Machine Translation model

Korean (target text)

Data Collection

Use Vecalign to make parallel corpus

Data Collection

Conversational parallel corpus configuration

Language	Number of Sentences	Number of words
Korean	11,878,865	49,532,476
Vietnam	11,878,865	96,670,925

• Conversational parallel corpus example

Korean	Vietnam	
그런데 그걸 집에 와서 봤더니 갑자기 어떤 여자가 나와서.	Vậy mà khi anh ta bật lên để xem lại, thì nhìn thấy một người phụ nữ trong cuốn bă ng.	
그런데 지방이라 동경하고 채널이 다르잖아.	Nhưng không hề có kênh đó phát từ Tokyo.	
부인이 병원에 계속 있었어요.	Phải. Vợ ổng đã ở trong bệnh viện.	
사과하는 걸 수도 있잖아요	Đó có thể là một lời xin lỗi theo như chúng ta biết.	

Experience configuration

: Configure hyper parameters for each model size

Base model

Text Encoder/Decoder(MT):
 Transformer (6-block, 256-hidden, 4-head, noam-learning rate)

Large model

Text Encoder/Decoder(MT):
 Transformer (6-block, 1,024-hidden, 16-head, noam-learning rate)

Evaluation matrix

BLEU score

Korean (source text)

Vietnam (target text)

Experience configuration

: Configuration for each experiment

Experience	Model size	Data	Training data	Validation data
Exp1	Base	Written	2 million	
Exp2	Base	Conversational	2 million	2 000
Exp3	Base	Conversational	11 million	3,000
Exp4	Large	Conversational	11 million	

: Evaluation data configuration

Language	Number of Sentence	Number of words
Korean	3,000	12,005
Vietnam	3,000	27,002

: Pre-experimentation

Quantitative analysis
 More difficult

		[BLEU Score]
Model	Written eval set	Conversational eval set
Written model (2M)	26.2	8.8
Conversational model (2M)	23.4	13.1

: Performance comparison of conversational and written models

Quantitative analysis

Model	Conversational eval set
Exp1: Written data	7.13
Exp2: Conversational data	9.35

: Performance comparison of conversational and written models

Quantitative analysis

[BLEU Score]

Model	Conversational eval set
Exp1: Written data	7.13
Exp2: Conversational data	9.35

Static analysis

Reference	Hypothesish of Exp1	Hypothesish of Exp2
Tay nắm cửa. (The handle is)	Bạn có tay cầm không?	Tay cầm
tìm bà cô. (I'm helping to find aunt)	Tôi đang giúp bạn tìm dì của tôi.	Tôi đang giúp cô tìm dì.

: Pre-experimentation

Quantitative analysis – 2 million VS 11 million
 Just increasing the data did not make a difference about quality of translation.

: Performance comparison of increase data

Quantitative analysis

	[BLEU Score]
Model	Conversational eval set
Exp2: 2 million	9.35
Exp3: 12 million	11.83

: Performance comparison of increase data & model size

• Quantitative analysis

[BLEU Score]

Model	Conversational eval set	
Exp2: 2 million, Base	9.35	
Exp3: 12 million, Base	11.83	
Exp4: 12 million, Large	13.02	

Static analysis

Reference	Hypothesis of Exp2	Hypothesis of Exp4
chính là nó.	Đây rồi.	Chính là nó.
Tôi đang ở đâu?	Chúng ta đang ở đâu?	Tôi đang ở đâu?
Đây không hẳn là kiếp sau.		Đây không hẳn là thế giới sau khi
	chết.	chết.

Analysis

: Feature of conversational data

- Conversational data is difficult to translate, because it contains paraphrases.
- Conversational data increases, the ambiguity of the translation increases.
- Compared to other translators, the result is a bit easier to understand.

: Improving massively parallel corpus about MT

- Modified hyperparameters to be suitable for huge data.
- Reduce the likelihood of output
 - Learning contextual information from translation models.

Side Experience

Side Experience

Data configuration

: Korean – English machine translation

Source language: English

Target language: Korean

: Parallel corpus

• Training data: Conversational Data, 40 million

• Evaluating data: 4,000

Model	Data info	Domain
Korean -> English	38 million sentence	Conversational (Drama, movie scripts)
	10 million sentence	Written (Trip, daily)
	6.9 million sentence	Written (Trip, daily)

Experience configuration

- : Korean English machine translation
 - Text Encoder (MT):

Transformer (6-block, 512-hidden, 8-head, noam-optimizer)

Text Decoder (MT):

Transformer (6-block, 512-hidden, 8-head, noam-optimizer)

: Eval matrix

- DeepL, Papago
- BLEU score

English (source text)

Transformer (E2E)

Machine Translation model

Korean (target text)

: My model vs DeepL vs Papago

Quantitative analysis

[BLEU Score]

Model	Conversational eval set	Written eval set
My model	34.0	32.3
DeepL	36.6	28.6
Papago	32.6	33.9

Conversational eval set: Papago < My model < DeepL

Written eval set: DeepL < My model < Papago

Future work

Conversational NMT model applicable in real-life scenarios- structure

Domain adaptation

Transfer learning

- Domain: conference (CV)
- Consider: copy-mechanism
- Use data: sentences & words

Future work

Q&A

2023.11.09 Presenter: Seonhui, Kim