11. Equality constrained minimization

- equality constrained minimization
- eliminating equality constraints
- Newton's method with equality constraints
- infeasible start Newton method
- implementation

Equality constrained minimization

minimize
$$f(x)$$

subject to $Ax = b$

- f convex, twice continuously differentiable
- $A \in \mathbf{R}^{p \times n}$ with $\mathbf{rank} A = p$
- we assume p^* is finite and attained

Optimality conditions: x^* is optimal if and only if there exists a v^* such that

$$\nabla f(x^*) + A^T v^* = 0, \qquad Ax^* = b$$

Equality constrained quadratic minimization

minimize
$$(1/2)x^TPx + q^Tx + r$$

subject to $Ax = b$

we assume $P \in \mathbf{S}^n_+$ (and $\mathbf{rank}(A) = p$)

Optimality condition

$$\left[\begin{array}{cc} P & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} x^{\star} \\ v^{\star} \end{array}\right] = \left[\begin{array}{c} -q \\ b \end{array}\right]$$

- coefficient matrix is called KKT matrix
- KKT matrix is nonsingular if and only if

$$Ax = 0, \quad x \neq 0 \qquad \Longrightarrow \qquad x^T P x > 0 \tag{1}$$

(see next page)

equivalent condition for nonsingularity:

$$P + A^T A > 0$$

Proof

• $x^T P x = 0$ only if P x = 0 (because $P \ge 0$); therefore (1) can be written

$$Ax = 0, \quad Px = 0 \implies x = 0$$
 (2)

in other words, $\operatorname{rank}(\begin{bmatrix} P \\ A \end{bmatrix}) = n$

- clearly, this is necessary for nonsingularity of the KKT matrix
- to show it is sufficient, suppose (1) holds, and consider x, y that satisfy

$$Px + A^T y = 0, \qquad Ax = 0$$

• inner product with x shows that $x^T P x = x^T (P x + A^T y) = 0$; hence

$$Px = 0, \qquad Ax = 0, \qquad A^T y = 0$$

• this implies x = 0 (from (2)) and y = 0 (from rank(A) = p)

Eliminating equality constraints

represent solution of $\{x \mid Ax = b\}$ as

$$\{x \mid Ax = b\} = \{Fz + \hat{x} \mid z \in \mathbf{R}^{n-p}\}\$$

- \hat{x} is (any) particular solution
- range of $F \in \mathbf{R}^{n \times (n-p)}$ is nullspace of A (rank F = n p and AF = 0)

Reduced or eliminated problem

minimize
$$f(Fz + \hat{x})$$

- an unconstrained problem with variable $z \in \mathbb{R}^{n-p}$
- from solution z^* , obtain x^* and v^* as

$$x^* = Fz^* + \hat{x}, \qquad v^* = -(AA^T)^{-1}A\nabla f(x^*)$$

Example

Optimal allocation with resource constraint

minimize
$$f_1(x_1) + f_2(x_2) + \cdots + f_n(x_n)$$

subject to $x_1 + x_2 + \cdots + x_n = b$

Reduced problem

• eliminate $x_n = b - x_1 - \cdots - x_{n-1}$, *i.e.*, choose

$$\hat{x} = be_n, \qquad F = \begin{bmatrix} I \\ -\mathbf{1}^T \end{bmatrix} \in \mathbf{R}^{n \times (n-1)}$$

• reduced problem with variables x_1, \ldots, x_{n-1} :

minimize
$$f_1(x_1) + \cdots + f_{n-1}(x_{n-1}) + f_n(b - x_1 - \cdots - x_{n-1})$$

Newton step

Newton step $\Delta x_{\rm nt}$ of f at feasible x is given by solution v of

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = \begin{bmatrix} -\nabla f(x) \\ 0 \end{bmatrix}$$

Interpretations

• $\Delta x_{\rm nt}$ solves second order approximation (with variable v)

minimize
$$\widehat{f}(x+v) = f(x) + \nabla f(x)^T v + (1/2) v^T \nabla^2 f(x) v$$
 subject to
$$A(x+v) = b$$

• $\Delta x_{\rm nt}$ equations follow from linearizing optimality conditions

$$\nabla f(x+v) + A^T w \approx \nabla f(x) + \nabla^2 f(x)v + A^T w = 0, \qquad A(x+v) = b$$

Newton decrement

$$\lambda(x) = (\Delta x_{\text{nt}}^T \nabla^2 f(x) \Delta x_{\text{nt}})^{1/2} = (-\nabla f(x)^T \Delta x_{\text{nt}})^{1/2}$$

Properties

• gives an estimate of $f(x) - p^*$ using quadratic approximation \widehat{f} :

$$f(x) - \inf_{Ay=b} \widehat{f}(y) = \frac{1}{2}\lambda(x)^2$$

directional derivative in Newton direction:

$$\left. \frac{d}{dt} f(x + t\Delta x_{\rm nt}) \right|_{t=0} = -\lambda(x)^2$$

• in general,

$$\lambda(x) \neq (\nabla f(x)^T \nabla^2 f(x)^{-1} \nabla f(x))^{1/2}$$

Newton's method with equality constraints

given: a starting point $x \in \text{dom } f$ with Ax = b, tolerance $\epsilon > 0$ repeat

- 1. *Newton step:* compute Newton step $\Delta x_{\rm nt}$ and Newton decrement $\lambda(x)$
- 2. stopping criterion: quit if $\lambda^2/2 \le \epsilon$
- 3. *line search:* choose step size *t* by backtracking line search
- 4. *update:* $x := x + t\Delta x_{nt}$

- a feasible descent method: $x^{(k)}$ feasible and $f(x^{(k+1)}) < f(x^{(k)})$
- affine-invariant

Newton's method and elimination

Newton's method for reduced problem

minimize
$$\tilde{f}(z) = f(Fz + \hat{x})$$

- variables $z \in \mathbf{R}^{n-p}$
- \hat{x} satisfies $A\hat{x} = b$; rank F = n p and AF = 0
- Newton's method for \tilde{f} , started at $z^{(0)}$, generates iterates $z^{(k)}$

Newton's method with equality constraints

when started at $x^{(0)} = Fz^{(0)} + \hat{x}$, iterates are

$$x^{(k+1)} = Fz^{(k)} + \hat{x}$$

hence, don't need separate convergence analysis

Newton step at infeasible points

2nd interpretation of page 11.7 extends to infeasible x (*i.e.*, $Ax \neq b$) linearizing optimality conditions at infeasible x (with $x \in \text{dom } f$) gives

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\text{nt}} \\ w \end{bmatrix} = - \begin{bmatrix} \nabla f(x) \\ Ax - b \end{bmatrix}$$
 (3)

Primal-dual interpretation

• write optimality condition as r(y) = 0, where

$$y = (x, v),$$
 $r(y) = (\nabla f(x) + A^T v, Ax - b)$

• linearizing r(y) = 0 gives $r(y + \Delta y) \approx r(y) + Dr(y)\Delta y = 0$:

$$\begin{bmatrix} \nabla^2 f(x) & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x_{\text{nt}} \\ \Delta v_{\text{nt}} \end{bmatrix} = - \begin{bmatrix} \nabla f(x) + A^T v \\ Ax - b \end{bmatrix}$$

same as (3) with $w = v + \Delta v_{\rm nt}$

Infeasible start Newton method

given: a starting point $x \in \text{dom } f$, ν , tolerance $\epsilon > 0$, $\alpha \in (0, 1/2)$, $\beta \in (0, 1)$ repeat

- 1. Newton step: compute primal and dual Newton steps $\Delta x_{\rm nt}$, $\Delta v_{\rm nt}$
- 2. backtracking line search on $||r||_2$:

$$t:=1$$
 while $||r(x+t\Delta x_{\rm nt},\nu+t\Delta \nu_{\rm nt})||_2 > (1-\alpha t)||r(x,\nu)||_2$
$$t:=\beta t$$

3. *update:* $x := x + t\Delta x_{\rm nt}, \ \nu := \nu + t\Delta \nu_{\rm nt}$ until Ax = b and $||r(x, \nu)||_2 \le \epsilon$

- not a descent method: $f(x^{(k+1)}) > f(x^{(k)})$ is possible
- directional derivative of $||r(y)||_2$ in direction $\Delta y = (\Delta x_{nt}, \Delta v_{nt})$ is

$$\frac{d}{dt} \| r(y + t\Delta y) \|_2 \Big|_{t=0} = -\| r(y) \|_2$$

Solving KKT systems

$$\left[\begin{array}{cc} H & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} v \\ w \end{array}\right] = - \left[\begin{array}{c} g \\ h \end{array}\right]$$

Solution methods

- LDL^T factorization
- elimination (if *H* nonsingular)

$$AH^{-1}A^{T}w = h - AH^{-1}g, \qquad Hv = -(g + A^{T}w)$$

• elimination with singular *H*: write as

$$\begin{bmatrix} H + A^T Q A & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} v \\ w \end{bmatrix} = - \begin{bmatrix} g + A^T Q h \\ h \end{bmatrix}$$

with $Q \ge 0$ for which $H + A^T Q A > 0$, and apply elimination

Equality constrained analytic centering

Primal problem: minimize $-\sum_{i=1}^{n} \log x_i$ subject to Ax = b

Dual problem: maximize $-b^T v + \sum_{i=1}^n \log(A^T v)_i + n$

three methods for an example with $A \in \mathbf{R}^{100 \times 500}$, different starting points

1. Newton method with equality constraints (requires $x^{(0)} > 0$, $Ax^{(0)} = b$)

2. Newton method applied to dual problem (requires $A^T v^{(0)} > 0$)

3. infeasible start Newton method (requires $x^{(0)} > 0$)

Complexity per iteration of the three methods is identical

1. use block elimination to solve KKT system

$$\begin{bmatrix} \operatorname{diag}(x)^{-2} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ w \end{bmatrix} = \begin{bmatrix} \operatorname{diag}(x)^{-1} \mathbf{1} \\ 0 \end{bmatrix}$$

reduces to solving $A \operatorname{diag}(x)^2 A^T w = b$

- 2. solve Newton system $A \operatorname{diag}(A^T v)^{-2} A^T \Delta v = -b + A \operatorname{diag}(A^T v)^{-1} \mathbf{1}$
- 3. use block elimination to solve KKT system

$$\begin{bmatrix} \operatorname{\mathbf{diag}}(x)^{-2} & A^T \\ A & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta \nu \end{bmatrix} = \begin{bmatrix} \operatorname{\mathbf{diag}}(x)^{-1} \mathbf{1} \\ Ax - b \end{bmatrix}$$

reduces to solving $A \operatorname{diag}(x)^2 A^T w = 2Ax - b$

conclusion: in each case, solve $ADA^Tw = h$ with D positive diagonal

Network flow optimization

minimize
$$\sum_{i=1}^{n} \phi_i(x_i)$$

subject to
$$Ax = b$$

- directed graph with n arcs, p + 1 nodes
- x_i : flow through arc i; ϕ_i : cost flow function for arc i (with $\phi_i''(x) > 0$)
- node-incidence matrix $\tilde{A} \in \mathbf{R}^{(p+1)\times n}$ defined as

$$\tilde{A}_{ij} = \begin{cases} 1 & \text{arc } j \text{ leaves node } i \\ -1 & \text{arc } j \text{ enters node } i \\ 0 & \text{otherwise} \end{cases}$$

- reduced node-incidence matrix $A \in \mathbf{R}^{p \times n}$ is \tilde{A} with last row removed
- $b \in \mathbf{R}^p$ is (reduced) source vector
- $\operatorname{rank} A = p$ if graph is connected

KKT system

$$\left[\begin{array}{cc} H & A^T \\ A & 0 \end{array}\right] \left[\begin{array}{c} v \\ w \end{array}\right] = - \left[\begin{array}{c} g \\ h \end{array}\right]$$

- $H = \mathbf{diag}(\phi_1''(x_1), \dots, \phi_n''(x_n))$, positive diagonal
- solve via elimination:

$$AH^{-1}A^{T}w = h - AH^{-1}g, \qquad Hv = -(g + A^{T}w)$$

sparsity pattern of coefficient matrix is given by graph connectivity

$$(AH^{-1}A^T)_{ij} \neq 0 \iff (AA^T)_{ij} \neq 0$$

 \iff nodes i and j are connected by an arc

Analytic center of linear matrix inequality

minimize
$$-\log \det X$$

subject to $\operatorname{tr}(A_i X) = b_i, \quad i = 1, \dots, p$

variable $X \in \mathbf{S}^n$

Optimality conditions

$$X > 0$$
, $-X^{-1} + \sum_{j=1}^{p} \nu_j A_i = 0$, $tr(A_i X) = b_i$, $i = 1, \dots, p$

Newton equation at feasible *X*:

$$X^{-1}\Delta XX^{-1} + \sum_{j=1}^{p} w_j A_i = X^{-1}, \quad \operatorname{tr}(A_i \Delta X) = 0, \quad i = 1, \dots, p$$

- follows from linear approximation $(X + \Delta X)^{-1} \approx X^{-1} X^{-1} \Delta X X^{-1}$
- n(n+1)/2 + p variables ΔX , w

Solution by block elimination

- eliminate ΔX from first equation: $\Delta X = X \sum_{j=1}^{p} w_j X A_j X$
- substitute ΔX in second equation

$$\sum_{j=1}^{p} \operatorname{tr}(A_{i} X A_{j} X) w_{j} = b_{i}, \quad i = 1, \dots, p$$
(4)

a dense positive definite set of linear equations with variable $w \in \mathbf{R}^p$

Complexity: flop count (dominant terms) using Cholesky factorization $X = LL^T$

- form p products $L^T A_j L$: $(3/2)pn^3$
- form p(p+1)/2 inner products $tr((L^TA_iL)(L^TA_jL))$: $(1/2)p^2n^2$
- solve (4) via Cholesky factorization: $(1/3)p^3$