Cryptography—Homework 1*

Sapienza University of Rome Master's Degree in Computer Science Master's Degree in Cybersecurity Master's Degree in Mathematics

Daniele Venturi

Due Date: November 17, 2020 (23:59 CET)

1 Perfect Secrecy

20 Points

- (a) Prove or refute: An encryption scheme (Enc, Dec) with key space \mathcal{K} , message space \mathcal{M} , and ciphertext space \mathcal{C} is perfectly secret if and only if the following holds: For every probability distribution M over \mathcal{M} , and every $c_0, c_1 \in \mathcal{C}$, we have $\Pr[C = c_0] = \Pr[C = c_1]$, where $C := \operatorname{Enc}(K, M)$ with K uniform over \mathcal{K} .
- (b) For each of the following encryption schemes, state whether the scheme is perfectly secret. Justify your answer in each case.
 - (i) The message space is $\mathcal{M} = \{0, \dots, 4\}$. The secret key is uniform over the key space $\mathcal{K} = \{0, \dots, 5\}$. The encryption algorithm $\mathsf{Enc}(k, m)$ returns $c = k + m \mod 5$, whereas the decryption algorithm $\mathsf{Dec}(k, c)$ returns $c k \mod 5$.
 - (ii) The message space is $\mathcal{M} = \{m \in \{0,1\}^{\ell} : \text{the last bit of } m \text{ is } 0\}$. The secret key is uniform over the key space $\mathcal{K} = \{0,1\}^{\ell-1}$. The encryption algorithm $\operatorname{Enc}(k,m)$ returns $c = m \oplus (k||0)$, whereas the decryption algorithm $\operatorname{Dec}(k,c)$ returns $c \oplus (k||0)$.

2 Universal Hashing

20 Points

(a) A family $\mathcal{H} = \{h_s : \mathcal{X} \to \mathcal{Y}\}_{s \in \mathcal{S}}$ of hash functions is called t-wise independent if for all sequences of distinct inputs $x_1, \ldots, x_t \in \mathcal{X}$, and for any output sequence

^{*}Some of the exercises are taken from the book "Introduction to Modern Cryptography" (second edition), by Jonathan Katz and Yehuda Lindell.

 $y_1, \ldots, y_t \in \mathcal{Y}$ (not necessarily distinct), we have that:

$$\Pr\left[h_s(x_1) = y_1 \wedge \dots \wedge h_s(x_t) = y_t : s \leftarrow \mathcal{S}\right] = \frac{1}{|\mathcal{Y}|^t}.$$

- (i) For any $t \geq 2$, show that if \mathcal{H} is t-wise independent, then it is also (t-1)-wise independent.
- (ii) Let q be a prime. Show that the family $\mathcal{H} = \{h_s : \mathbb{Z}_q \to \mathbb{Z}_q\}_{s \in \mathbb{Z}_q^3}$, defined by

$$h_s(x) := h_{s_0, s_1, s_2}(x) := s_0 + s_1 \cdot x + s_2 \cdot x^2 \mod q$$

is 3-wise independent.

- (b) Say that X is a (k, n)-source if $X \in \{0, 1\}^n$, and the min-entropy of X is at least k. Answer the following questions:
 - (i) Suppose that $\ell=128$; what is the minimal amount of min-entropy needed in order to obtain statistical error $\varepsilon=2^{-80}$ when applying the leftover hash lemma? What is the entropy loss?
 - (ii) Suppose that k=238; what is the maximal amount of uniform randomness that you can obtain with statistical error $\varepsilon=2^{-80}$ when applying the leftover hash lemma? Explain how to obtain $\ell=320$ using computational assumptions.

3 One-Way Functions

20 Points

- (a) Let $G:\{0,1\}^{\lambda}\to\{0,1\}^{2\lambda}$ be a PRG with λ -bit stretch. Prove that G is by itself a one-way function.
- (b) Let $G: \{0,1\}^{\lambda} \to \{0,1\}^{\lambda+1}$ be a PRG with one-bit stretch. Prove that G is by itself a one-way function.

4 Pseudorandom Generators

20 Points

- (a) Let $G_1, G_2: \{0,1\}^{\lambda} \to \{0,1\}^{\lambda+\ell}$ be two deterministic functions mapping λ bits into $\lambda + \ell$ bits (for $\ell \geq 1$). You know that at least one of G_1, G_2 is a secure PRG, but you don't know which one. Show how to design a secure PRG $G^*: \{0,1\}^{2\lambda} \to \{0,1\}^{\lambda+\ell}$ by combining G_1 and G_2 .
- (b) Can you prove that your construction works when using the same seed $s^* \in \{0,1\}^{\lambda}$ for both G_1 and G_2 ? Motivate your answer.

5 Pseudorandom Functions

25 Points

- (a) Show that no PRF family can be secure against computationally unbounded distinguishers.
- (b) Analyze the following candidate PRFs. For each of them, specify whether you think the derived construction is secure or not; in the first case prove your answer, in the second case exhibit a concrete counterexample.
 - (i) $F_k(x) = G'(k) \oplus x$, where $G : \{0,1\}^{\lambda} \to \{0,1\}^{\lambda+\ell}$ is a PRG, and G' denotes the output of G truncated to λ bits.
 - (ii) $F_k(x) := F_x(k)$, where $F : \{0,1\}^{\lambda} \times \{0,1\}^{\lambda} \to \{0,1\}^{\ell}$ is a PRF.
 - (iii) $F'_k(x) = F_k(x||0)||F_k(x||1)$, where $x \in \{0, 1\}^{n-1}$.

6 Secret-Key Encryption

20 Points

- (a) Prove that no secret-key encryption scheme $\Pi = (\mathsf{Enc}, \mathsf{Dec})$ can achieve chosen-plaintext attack security in the presence of a computationally unbounded adversary (which thus can make an exponential number of encryption queries before/after being given the challenge ciphertext).
- (b) Let $\mathcal{F} = \{F_k : \{0,1\}^n \to \{0,1\}^n\}_{k \in \{0,1\}^{\lambda}}$ be a family of pseudorandom permutations, and define a fixed-length encryption scheme (Enc, Dec) as follows: Upon input message $m \in \{0,1\}^{n/2}$ and key $k \in \{0,1\}^{\lambda}$, algorithm Enc chooses a random string $r \leftarrow \{0,1\}^{n/2}$ and computes $c := F_k(r||m)$. Show how to decrypt, and prove that this scheme is CPA-secure for messages of length n/2.

7 Message Authentication

25 Points

- (a) Assume UF-CMA MACs exist. Prove that there exists a MAC that is UF-CMA but is not strongly UF-CMA, where the latter means that the attacker is allowed to forge also on messages m^* that are not fresh (i.e., m^* can be equal to one of the messages that were part of tagging queries), so long as the forged tag τ^* is fresh. In other words, the challenger of strong UF-CMA outputs 1 if and only if: (i) $\mathsf{Tag}(k, m^*) = \tau^*$; and (ii) $(m^*, \tau^*) \neq (m, \tau)$ for all pairs (m, τ) corresponding to tagging queries (i.e., either the message m^* or the tag τ^* is fresh).
- (b) Assume a generalization of MACs where a MAC Π consists of a pair of algorithms (Tag, Vrfy), such that Tag is as defined in class (except that it could be randomized), whereas Vrfy is a deterministic algorithm that takes as input a candidate pair (m, τ) and returns a decision bit $d \in \{0, 1\}$ (indicating whether τ is a valid tag of m).

Consider a variant of the game defining UF-CMA security of a MAC $\Pi = (\mathsf{Tag}, \mathsf{Vrfy})$, with key space $\mathcal{K} = \{0,1\}^{\lambda}$, where the adversary is additionally granted access to a verification oracle $\mathsf{Vrfy}(k,\cdot,\cdot)$.

- (i) Make the above definition precise, using the formalism we used in class. Call the new notion "unforgeability under chosen-message and verification attacks" (UF-CMVA).
- (ii) Show that whenever a MAC has unique tags (i.e., for every key k there is only one valid tag τ for each message m) then UF-CMA implies UF-CMVA.
- (iii) Show that if tags are not unique there exists a MAC that satisfies UF-CMA but not UF-CMVA.