# Is my inference any good? What does "good" mean?

May 7, 2025

Prof. Gwendolyn Eadie

# **Inference and Convergence**

- Inference:
  - Plotting and summarizing posterior samples
  - Computing quantiles, moments, other summary statistics, etc.
  - Posterior predictive simulations
- But, the above depends heavily on whether your samples are a sample representative of the target distribution!
- Convergence to the target distribution:
  - Design simulations that allow monitoring of convergence
  - Monitor the convergence with multiple diagnostics
    - many tests, diagnostics, etc have and continue to be developed to assess and monitor convergence
  - Techniques that avoid getting into bad places in parameter space to begin with

## Assessing Convergence: discard the burn-in

- Discard the "burn-in" from a Markov chain
  - Look at the traceplot of the samples, get rid of the first few hundred (or more!) samples

#### Trace of var1



#### Density of var1



N = 1000 Bandwidth = 0.007482

## Assessing Convergence: run multiple chains

- Run independent, multiple chains
- Start them in different parts of parameter space to make sure then converge to the same place
- Evaluate convergence diagnostics such as  $\hat{R}$  that assess between-chain and within-chain information



# Assessing Convergence: the $\widehat{R}$

In Bayesian Data Analysis, Gelman et al (2014) suggest a convergence diagnostic

$$\widehat{R} = \sqrt{\frac{\widehat{\text{var}}^+(\psi|y)}{W}}$$

Which can be computed when multiple, independent chains are run. In the equation above,

$$\widehat{\text{var}}^+(\psi|y) = \frac{n-1}{n}W + \frac{1}{n}B$$

where W and B are the estimates of the within and between chain variances respectively.

As  $n \to \infty$ ,  $\hat{R}$  declines to 1.

A general rule is that if  $\hat{R}$  is less than 1.1 (or closer to 1 if you want to be more conservative), then you can probably safely assume that you don't need to run the chain longer.

# Inference and Assessing Convergence: effective sample size

- Ideally, every sample should only depend on the sample before it, but in practice there may be more autocorrelation
- If autocorrelation is high but unavoidable, then you need to thin the chains
  - Take every  $k^{th}$  sample
- Calculate the *effective sample size* across m chains of length n (see BDA by Gelman et al for more details):

$$\hat{n}_{eff} = \frac{mn}{1 + 2\sum_{t=1}^{T} \hat{\rho_t}}$$

where  $\hat{\rho_t}$  are the estimated autocorrelations and T is the first odd positive integer for which  $\hat{\rho_{T+1}} + \hat{\rho_{T+2}}$  is negative (Gelman et al 2014, BDA)

# **Inference and Assessing Convergence**

- ullet The  $\widehat{R}$  and  $\widehat{n}_{eff}$  do not work great for highly non-Gaussian distributions
- Sometimes sampling a transformation of the parameter is better, e.g.,
  - log-transformations of parameters
  - Logit transformation of quantities that fall in (0,1)
  - Rank transform for long-tailed distributions