Groepen theorie

Luc Veldhuis

14 Maart 2016

Definitie

G, H Groepen

 $\phi: G \to H$ heet een homomorfisme als

- $\phi(xy) = \phi(x)\phi(y) \ \forall x, y \in G$ Hierbij is $xy \in G$ en $\phi(x)\phi(y) \in H$
- Als ϕ ook bijectief is, heet ϕ een isomorfisme.

Opgave

- Als $\phi: G \to H$ een isomorfisme is, dan $\phi^{-1}: H \to G$ ook een isomorfisme.
- Als $\phi: G_1 \to G_2$ en $\psi: G_2 \to G_3$ homomorfismes/isomorfisme, dan is $\psi \circ \phi: G_1 \to G-3$ ook een homomorfisme/isomorfisme.

Voorbeeld

 $\phi: \mathbb{R}^* \to \mathbb{R}$ is een homomorfisme want $x \mapsto \log |x|$ $\phi(xy) = \phi(x) + \phi(y)$ voor alle $x, y \in \mathbb{R}^*$

$$\log|xy| = \log|x| + \log|y|$$

Geen isomorfisme want $1 \neq -1 \in \mathbb{R}^*$ en $\log |1| = 0 = \log |-1|$ dus niet bijectief.

Voorbeeld

 $\psi: \mathbb{R}_{>0} \to \mathbb{R} \text{ met } x \mapsto \log x \text{ is een homomorfisme.}$

 $\mathbb{R}_{>0} = \{x \in \mathbb{R} | x > 0\}$ een groep onder vermenigvuldiging.

$$\log(xy) = \log(x) + \log(y)$$

 ψ is bijectief met $\psi^{-1}: \mathbb{R} \to \mathbb{R}_{x>0}$ met $z \mapsto e^z$ en

$$\psi^{-1}(z_1+z_2)=\psi^{-1}(z_1)\psi^{-1}(z_2)$$

$$e^{z_1+z_2}=e^{z_1}e^{z_2}$$

Voorbeeld

F een lichaam $n \geq 1$ det $GL_n(F) \to F \setminus \{0\}$ met $A \mapsto$ det A een homomorfisme. $F \setminus \{0\}$ is een groep onder vermenigvuldiging. Homomorfisme want det $(AB) = \det(A) \det(B)$

Propositie

Zij $\phi: G \to H$ een homomorfisme. Dan geldt:

- $\phi(e_G) = e_H$
- $\phi(x^{-1}) = (\phi(x))^{-1} \ \forall x \in G$

Bewijs

- $e_G e_g = e_g$ dus $\phi(e_G)\phi(e_G) = \phi(e_G e_G) = \phi(e_G)$ Links vermenigvuldig met $(\phi(e_G))^{-1}$ $\phi(e_G) = e_H \phi(e_G) = (\phi(e_G))^{-1} \phi(e_G) \phi(e_G)$ $= (\phi(e_G))^{-1} \phi(e_G) = e_H$
- $xx^{-1} = e_H$ als $x \in G$ dus $\phi(x)\phi(x^{-1}) = \phi(xx^{-1}) = \phi(e_G) = e_H$ Linksvermenigvuldig met $(\phi(x))^{-1}$ $\phi(x^{-1}) = e_H\phi(x^{-1}) = (\phi(x))^{-1}\phi(x)\phi(x^{-1}) = (\phi(x))^{-1}e_H = (\phi(x))^{-1}$

Voorbeeld

 $\phi: \mathbb{R}^* \to \mathbb{R} \text{ met } x \mapsto \log |x| \text{ is een homomorfisme.}$ Er geldt $\phi(1) = 0$ want $\log |1| = 0$ Je zou denken $\phi(x^{-1})$ gelijk aan $\phi(x)^{-1}$ MAAR \mathbb{R} is een optelgroep, dus $\phi(x^{-1}) = -\phi(x)$ Dat wil zeggen $\log |x^{-1}| = -\log |x|$

Definitie

 $\phi: G \to H$ een homomorfisme.

 $e_G \in \text{Ker}(\phi) = \{x \in G \text{ met } \phi(x) = e_H\} \subseteq G \text{ (Ondergroep van } G)$ $e_H \in \text{Im}(\phi) = \{\phi(x) \text{ met } x \in G\} \subseteq H \text{ (Ondergroep van } H)$

Propositie

Zij $\phi: G \to H$ een homomorfisme. Dan is ϕ injectief $\Leftrightarrow \operatorname{Ker}(\phi) = \{e_G\}$

Bewijs

```
'⇒' \phi(e_G) = e_H dus e_G \in \operatorname{Ker}(\phi) \phi is injectief dus \phi(x) = e_H met x \in G impliceert dat x het enige element in G is dat op e_H afbeeldt, dus x = e_G. Conclusie, \operatorname{Ker}(\phi) = \{e_G\} '\rightleftharpoons' Stel x, y \in G hebben hetzelfde beeld. Dat wil zeggen, \phi(x) = \phi(y). Linksvermenigvuldig met (\phi(y))^{-1} \phi(y^{-1}x) = \phi(y^{-1})\phi(x) = (\phi(y))^{-1}\phi(x) = (\phi(y))^{-1}\phi(y) = e_H Conclusie, y^{-1}x \in \operatorname{Ker}(\phi) = \{e_G\}. Dus y^{-1}x = e_G. Linksvermenigvuldig met y: yy^{-1}x = e_Gx = x = y = ye_G. Dus injectief.
```

Voorbeeld

 $\phi: \mathbb{R}_{>0} \to \mathbb{R}$ met $z \mapsto \log z$ is een homomorfisme.

 ϕ is injectief. ϕ is een homomorfisme dus voldoende is te controleren dat $Ker(\phi) = \{1\}$:

 $\mathsf{Ker}\;(\phi)=\{x\in\mathbb{R}\;\mathsf{met}\;\mathsf{log}(x)=0\}=\{1\}$

Dus volgens de stelling is ϕ een homomorfisme.

Definitie

Een groepwerking is de reden waarom groepen zo belangrijk zijn. Een (links)werking van een groep G op een niet lege verzameling in een afbeelding $G \times A \to A$ met $(g,a) \mapsto g \cdot a$ zodat:

- $g_1 \cdot (g_2 \cdot a) = (g_1 \cdot c_2) \cdot a \ \forall g_1, g_2 \in G$ en $\forall a \in A$. Let op, de operatie \cdot werkt 1 keer tussen elementen van G en 1 keer tussen elementen van G en A
- $e_H \cdot a = a \ \forall a \in A$

Opmerking

- Normaal schrijven we 'ga' in plaats van ' $g \cdot a$ '
- Als $g_1 \dots g_n \in G$ en $a \in A$ dan krijg je uit $g_1 \dots g_n \cdot a$ altijd hetzelfde resultaat, ongeacht hoe je de haakjes zet.

Voorbeeld

- Elke G werkt op A via $g \cdot a = a$, de **triviale** werking.
- S_n werkt op $A = \{1, 2, ..., n\}$ via $S_n \times A \rightarrow A$, met $(\sigma, m) \mapsto \sigma(m)$
 - e(m) = m geldt nu voor alle $m \in A$, klopt, e = identieke afbeelding.

Voor
$$\sigma, \tau \in S_n$$
, $m \in A$ geldt $\sigma(\tau \cdot m) = (\sigma \circ \tau)m$
Want $\sigma(\tau(m)) = \sigma \cdot \tau(m) = \sigma \cdot \tau \cdot m = (\sigma \circ \tau)m$

- $GL_3(\mathbb{R})$ werkt op \mathbb{R}^3 door linksvermenigvuldiging. $GL_3(\mathbb{R}) \times \mathbb{R}^3 \to \mathbb{R}^3$ en $(A, v) \to Av$ met \mathbb{R}^3 de kolomvectoren.
- $GL_3(\mathbb{R})$ werkt op $M_3(\mathbb{R}) = \{3 \times 3 \text{ matrices met coëfficiënten in } \mathbb{R}\}.$

Via conjungatie:
$$GL_3(\mathbb{R}) \times M_3(\mathbb{R}) \to M_3(\mathbb{R})$$
 met $(A, M) \mapsto AMA^{-1}$

Voorbeeld

- \mathbb{Z} werkt op \mathbb{R} via translatie: $\mathbb{Z} \times \mathbb{R} \to \mathbb{R}$ met $(n, a) \mapsto n + a$ (optelgroep)
- G werkt op zichzelf via linksvermenigvuldiging:

$$G \times G \rightarrow G$$

 $(g, a) \mapsto ga$

• *G* werkt op zichzelf door middel van conjungatie:

$$G \times G \rightarrow G$$

 $(g, a) \mapsto gag^{-1}$

Stelling

- Als G op A werkt dan is voor een vaste $g \in G$ de afbeelding: $\sigma_g : A \to A$ met $a \mapsto g \cdot a$ een bijectie.
- Als $g, h \in G$ dan zijn er $\sigma_g h = \sigma_g \circ \sigma_h$

Bewijs

• $\sigma_{g^{-1}}$ is de inverse afbeelding van σ_g . Dus na te gaan: $\sigma_{g^{-1}} \circ \sigma_g = id_a$ Te bewijzen: Voor alle $a \in A$ geldt dat $\sigma_{g^{-1}} \cdot \sigma_g(a) = a$ en dat $\sigma_g \cdot \sigma_{g^{-1}}(a) = a$ Bijvoorbeeld: $\sigma_{g^{-1}} \cdot \sigma_g(a) = a$: $\sigma_{g^{-1}} \cdot \sigma_g(a) = \sigma_{g^{-1}}(\sigma_g(a)) = \sigma_{g^{-1}}(ga) = g^{-1}(ga) = (g^{-1}g)a = e_g a = a$ $\sigma_g \cdot \sigma_{g^{-1}}(a) = \sigma_g(\sigma_{g^{-1}}(a)) = \sigma_g(g^{-1}a) = g(g^{-1}a) = (gg^{-1})a = e_g a = a$

$\S 2.1$ Ondergroepen

Definition

Zij G een groep. Een deelverzameling H van G heet een **ondergroep** van G al $H \neq \emptyset$ en H is gesloten onder het nemen van producten en inverses:

Als $x, y \in H$ dan $xy \in H$ en $x^{-1} \in H$

Notatie: $H \leqslant G$

Gevolg

- $H \neq \emptyset$ dan is er een $x \in H$. H is een ondergroep, dus $x^{-1} \in H$ en $e_g = xx^{-1} \in H$. Conclusie $G \leqslant G \Rightarrow e_g \in H$
- Als H een ondergroep is van G dan is H met dezelfde vermenigvuldiging als G zelf een groep:
 - *H* is gesloten onder producten
 - H heeft een neutraal element
 - $x \in H$ heeft een inverse $x^{-1} \in H$
 - Associativiteit geldt in G

§2.1 Ondergroepen

Voorbeeld

- $\mathbb{Q}^* \subseteq \mathbb{Q}$ is geen ondergroep onder optelling $1, -1 \in \mathbb{Q}^*$ maar $1 + (-1) = 0 \neq \mathbb{Q}^*$
- $\mathbb{Z} \subseteq \mathbb{Q}$ is wel een ondergroep. $\mathbb{Z} \neq \emptyset$ en gesloten onder optelling ('product') en inverses.
- $\{1, r, r^2, \dots, r^{n-1}\} \subseteq D_{2n}$ voor $n \ge 3$ is een ondergroep.

Stelling

Zij G een groep, $H\subseteq G$ dan geldt H is een ondergroep van $G\Leftrightarrow$

- H ≠ ∅
- als $x, y \in H$ dan $xy^{-1} \in H$

§2.1 Ondergroepen

Bewijs

```
\Rightarrow ga zelf na
```

⇐:

Neem aan dat $H \neq \emptyset$ en als $x, y \in H$ dan $xy^{-1} \in H$

Te laten zien: $H \neq \emptyset$ (aanname) en als $x, y \in H$ dan $xy \in H$ en

$$x^{-1} \in H$$

 $H \neq \emptyset$ dus er is een $z \in H$, dus $zz^{-1} = e \in H$. Dus als $e, z \in H$,

 $dan ook ez^{-1} = z^{-1} \in H$

Ook als $y^{-1} \in H$ en dus $x(y^{-1})^{-1} = xy \in H$