CAŁKOWANIE NUMERYCZNE

Zaczynamy kolejny dział: Całkowanie numeryczne. Dzisiaj poznają i zaimplementują Państwo dwie metody opisane poniżej. Za pomocą tych metod można wyznaczyć całkę oznaczoną:

$$\int_{a}^{b} f(x) dx$$

METODA TRAPEZÓW

W tej metodzie zakłada się przybliżenie całki oznaczonej (pola powierzchni pod wykresem funkcji na przedziale całkowania a, b) za pomocą pola powierzchni trapezu jak przedstawiono na rysunku 1.

Rys. 1. Schemat działania metody trapezów.

Kolejne etapy metody:

Dzielimy przedział $\langle a, b \rangle$ na n równych części o długości:

$$h = \frac{b - a}{n}$$

Kolejne punkty wyznaczamy ze wzoru:

$$x_i = a + \frac{i}{n}(b - a), \quad i = 1 \dots n-1$$

Wówczas zgodnie ze wzorem na pole trapezu: $\frac{(a+b)h}{2}$ (a i b – podstawy trapezu oraz h – wysokość), wyznaczamy sumę kolejnych pól trapezów:

$$\int_{a}^{b} f(x) dx \cong \frac{f(a) + f(x_{1})}{2} \cdot h + \frac{f(x_{1}) + f(x_{2})}{2} \cdot h + \dots + \frac{f(x_{n-2}) + f(x_{n-1})}{2} \cdot h + \frac{f(x_{n-1}) + f(b)}{2} \cdot h$$

Można zauważyć, że w każdym z ułamków występuje h/2, które można wynieść przed nawias, wtedy oznaczając: $a=x_0$ oraz $b=x_n$ ogólny wzór można zapisać:

$$\int_{a}^{b} f(x) dx \cong \frac{h}{2} \sum_{i=0}^{n-1} [f(x_i) + f(x_{i+1})]$$
 (1)

Rozbijając sumy w ułamkach na oddzielne ułamki można zauważyć, że poza f(a) oraz f(b) elementy $f(x_i)$ powtarzają się dwukrotnie, czyli sumę można również zapisać:

$$\int_{a}^{b} f(x) dx \cong h \cdot \left(\frac{f(a)}{2} + f(x_1) + f(x_2) + \dots + f(x_{n-2}) + f(x_{n-1}) + \frac{f(b)}{2} \right)$$

W ten sposób można wyznaczyć bardziej optymalny wzór ogólny w postaci:

$$\int_{a}^{b} f(x) dx \cong h\left(\frac{f(a)}{2} + \sum_{i=1}^{n-1} f(x_i) + \frac{f(b)}{2}\right)$$
 (2)

W implementacji zostawiamy Państwu dowolność. Można policzyć po prostu sumę trapezów lub zastosować wzór (1) lub (2).

Przykład

$$\int_1^4 x^2 dx \cong ?$$

Dane a=1, b=4. Przyjmujemy np. n=3, więc $h = \frac{4-1}{3} = 1$.

Korzystając ze wzoru wyznaczamy x_i , a także wartość funkcji podcałkowej dla następujących punktów:

$$f(1) = 1^{2} = 1$$

$$f(2) = 2^{2} = 4$$

$$f(3) = 3^{2} = 9$$

$$f(4) = 4^{2} = 16$$

I ostatecznie podstawiając do wzoru:

$$\int_{1}^{4} x^{2} dx \approx 1\left(\frac{1}{2} + 4 + 9 + \frac{16}{2}\right) \approx 21.5$$

METODA SIMPSONA

W kolejnej metodzie, do zwiększenia dokładności przybliżenia pola, oblicza się sumy wycinków obszarów pod parabolą. Ponieważ wzór opisujący parabolę wymaga trzech zmiennych: $ax^2 + bx + c$, należało wyznaczyć dodatkowy punkt t_i pomiędzy wyznaczanymi w metodzie trapezów punktami x_i , jak przedstawiono na rys.2.

Rys. 2. Schemat działania metody Simpsona.

W związku z tym, wzory na wyznaczenie t_i oraz h są następujące:

$$t_i = \frac{x_{i+1} + x_i}{2}, \qquad h = \frac{x_{i+1} - x_i}{2}$$

Stosując bezpośrednio wzór na wycinek obszaru pod parabolą wzór ogólny można zapisać w postaci:

$$\int_{a}^{b} f(x) dx \cong \sum_{i=0}^{n-1} \frac{h}{3} (f(x_i) + 4f(t_i) + f(x_{i+1}))$$

Podobnie jak w metodzie trapezów można wyznaczyć bardziej optymalny wzór ogólny w postaci:

$$\int_{a}^{b} f(x) dx \cong \frac{h}{3} \left[f(x_0) + 4 \sum_{i=0}^{n-1} f(t_i) + 2 \sum_{i=1}^{n-1} f(x_i) + f(x_n) \right]$$

Przykład

$$\int_{1}^{4} x^{2} dx \cong ?$$

Dane a=1, b=4. Przyjmujemy np. n=3. Punkty x_i wyznaczamy jak w poprzedniej metodzie, zaś punkty t_i znajdują się dokładnie po środku pomiędzy punktami x_i (patrz rys. 2). Nowe $h=\frac{4-3}{2}=0.5$.

Wyznaczamy wartość funkcji podcałkowej dla następujących punktów x_i :

$$f(1) = 1^{2} = 1$$

$$f(2) = 2^{2} = 4$$

$$f(3) = 3^{2} = 9$$

$$f(4) = 4^{2} = 16$$

oraz punktów t_i

$$f(1.5) = 1.5^2 = 2.25$$

 $f(2.5) = 2.5^2 = 6.25$
 $f(3.5) = 3.5^2 = 12.25$

I ostatecznie podstawiając do wzoru:

$$\int_{1}^{4} x^{2} dx \approx \frac{0.5}{3} (1 + 4 * 2.25 + 2 * 4 + 4 * 6.25 + 2 * 9 + 4 * 12.25 + 16) \approx 21$$

INNY PRZYKŁAD do testowania w programie: W całkowaniu numerycznym w bardzo łatwy sposób można wyznaczyć sobie przykład do sprawdzenia metody licząc jakąkolwiek całkę oznaczoną. Przy wystarczająco dużym n powinna być bardzo zbliżona do wyznaczonego rozwiązania analitycznego. Poniżej przykład całki z bardziej złożonej funkcji do weryfikacji programu:

$$\int_{0}^{2} \frac{x^2 \sqrt{1+x}}{1+x^2} \, dx = 1{,}3589$$

Programy wytyczne

- implementujemy obie metody
- funkcja podcałkowa wprowadzona jest w kodzie programu
- definiujemy a i b (lub podaje je użytkownik)
- użytkownik podaje dowolne n
- program zwraca przybliżoną wartość całki