Bayesian Classification Worksheet

Table 7.1	Training data ti	uples from the	AllElectronics	customer database.
-----------	------------------	----------------	----------------	--------------------

RID	age	income	student	credit_rating	Class: buys_computer
1	<=30	high	no	fair	no
2	<=30	high	no	excellent	no
3	31 40	high	no	fair	yes
4	>40	medium	no	[*] fair	yes
5	>40	low	yes	fair	yes
6	>40	low	yes	excellent	no
7	31 40	low	yes	excellent	yes
8	<=30	medium	no	fair	no
9	<=30	low	yes	fair	yes
10	>40	medium	yes	fair	yes
11	<=30	medium	yes	excellent	yes
12	31 40	medium	no	excellent	yes
13	31 40	high	yes	fair	yes
14	>40	medium	no	excellent	no

- 1. (By hand) Leave the first four samples out, and then use the remaining 10 samples to calculate the probability that each of the first four samples buys a computer. Use the naïve Bayes classifier that we have been discussing in class.
- 2. Create a notebook called bayes.ipynb. Using what you learned in 3.1 and 3.2, replicate your work using pandas. Add comments and write-up as necessary. If we can't follow your calculations, we can't grade your work.