1 Ejercicio Sumas binarias básicas

Sumar los números binarios 1011 y 1101

El resultado es 11000 en binario.

2 Ejercicio Suma de dos números binarios con parte decimal:

Sumar los números binarios 1011.10 y 1101.01:

El resultado es 11000.11 en binario.

.

3 Ejercicio Suma de dos números binarios sin parte decimal, pero que son iguales:

Sumar los números binarios 1111 y 1111:

El resultado es 11110 en binario.

Explicación: Comenzamos sumando los dígitos de la derecha, que son 1 y 1, lo que nos da 0 y llevamos un acarreo de 1. Luego sumamos los siguientes dígitos, que son 1 y 1, junto con el acarreo, lo que nos da 0 y llevamos otro acarreo de 1. Continuamos sumando los dígitos restantes, todos iguales a 1, junto con los acarreos correspondientes.

Equivale a multiplicar el número por dos por tanto desplazar a la izquierda.

4 Ejercicio Resta de dos números binarios

Restar los números binarios 1101 y 1001

El resultado es 100 en binario.

Explicación: Comenzamos restando los dígitos de la derecha, que son 1 y 1, lo que nos da 0 y no hay acarreo. Luego restamos los siguientes dígitos, que son 0 y 0, junto con el acarreo de 0, lo que nos da 0 y no hay acarreo. Luego, restamos el siguiente dígito, que es un 1, junto con el acarreo de 0, lo que nos da 1. Finalmente, restamos el dígito más a la izquierda, que es 1, junto con el acarreo, lo que nos da 0 y no hay acarreo. El resultado final es 100.

5 Ejercicio Resta de dos números binarios con parte decimal:

Restar los números binarios 1010.11 y 1001.01:

.

6 Realizar las siguientes sumas y restas en binario puro:

6.1

1	0	0	1	0	0		36
+	1	0	0	1	0	+	18

6.2

	1 1	0 0	1	25
+	1 0	0 1	1	+ 19

6.3

	1	0	1				2.5
+	1	1	0	1		+	3.25

6.4

1	1	1	0	1			29	
	-	1	0	1		-	5	

6.5

1	0	1	0	1			21	
	1	0	0	0		-	8	

(hay video de ello)

Su	ma	as									Re	esta	ıs					
sin a	acar	reos																
1	0	0	1	0	0		3	6				1	1	1	0	1		29
+	1	0	0	1	0		+ 1	8					-	1	0	1	-	5
1	1	0	1	1	0		-	4				1	1	0	0	0		24
con	acar	reos	;															
							_					0	, 2					
1			1	1		acarreos	_					1	0	1	0	1		21
	1	1	0	0	`1		2	5					1	0	0	0	-	8
+	1	0	0	1	1		+ 1	9				0	1	1	0	1		13
1	0	1	1	0	0		4	4										
con	deci	male	25															
									*									
1						acarreos												
	1	0		1			2	5										
+	1	1		0	1		+ 3	25										
1	0	1		1	1		5	75										

7 Ejercicio representar los siguientes números decimales en S-M:

Num	S-M	
102	0 1100110	
-35	1 100011	
481	0 111100001	
-274	1 100010010	
-355	1 101100011	
83	01010011	

8 Representar los mismos números decimales en complemento a dos

Num	Complemento a dos
	1
102	01100110
-35	1011101
	2^6 = 64
	64-35= 29
	29 es congruente con -35 en mod 2
481	0111100001
-274	1011101110
-355	1010011101

83	01010011

9 Extender todos los números en S-M y complemento a dos calculados a un tamaño de 10 bits (incluyendo el signo).

S-M mover signo y rellenar con ceros

Num	S-M 10 bits	Complemento a 2 10 bits
102	0001100110	0001100110
-35	1 000100011	111 1011101
481	0 111100001	0111100001
-274	1 100010010	1011101110
-355	1 101100011	1010011101
83	0001010011	0001010011

10 Representar los números negativos anteriores en complemento a 1

Num	Complemento a uno
-35	35 positivo sería
	00100011
	-35 en complemento a 1:
	11011100
-274	1011101101
-355	1010011100

11 Realizar las siguientes sumas y restas representando los números en complemento a dos de 8 bits. Indicar si hay acarreo y/o overflow.

- 47+32
- 105+43
- -54+20
- -98-50
- 100-27
- -42-5

Operación Nº DecNum C2 bin

47 00101111

- + 32 00100000
 - 79 01001111 Acarreo pero no overflow

Operación Nº DecNum C2 bin

105 01101001

+ 43 00101011

148 "10010100

carry1-1-11" Overflow cambió el signo

con 8 bits represento de -128 a 127

Operación Nº DecNum C2 bin

-54 11001010 11001010 (es 54 complementado) 54 =00110110

+ 20 00010100

-34 11011110 no hay ni acarreos ni overflow

Operación Nº DecNum C2 bin

-98 10011110

+ 50 00110010

-48 11010000 Hay acarreo

Operación Nº DecNum C2 bin

100 01100100

- + -27 11100101
 - 73 101001001 hay acarreo y no overflow el uno de acarreo se quita 01001001 es 73

Operación Nº Dec Num C2 bin

-45 11010011

- + -5 11111011
 - -50 101001110 hay acarreo y overflow cambia de signo

11001110 =-50 en compemento a 2 00110010= 50

12 Aplicar el algoritmo de multiplicación de enteros sin signo a la multiplicación de los números decimales :11 x 13 , paso a paso y en formato tabla

. . .

С	А	Q	М
0	0000	1101	1011

Solución: ver ppt

13 comprobar que si hiciéramos 13 x 11 al final llegaríamos al mismo resultado con el algoritmo

Solución: ver ppt

- 14 Multiplicar 12x 14 aplicando el algoritmo
- 15 Codificar el algoritmo de multiplicación de enteros sin signo en C

16 Realizar circuito en logisim que consigue el número negativo de un número binario de 8 bits en representación S-M. ¿qué pasa con el 0?.

17 Realizar circuito en logisim que consigue el número negativo de un número binario de 8 bits en representación Complemento a 2. ¿qué pasa con el 0?.

- a) Hacerlo con puerta xor
- b) Hacerlo con puertas and, or y not

18 Realizar circuito en logisim que consigue el complemento a 1 de un número binario de 8 bits

