Module 1 Creativity Exercises

1.6.39)

Base case:
$$T(0) = 2^0$$
, $n = 0$
 $1 = 2^0$ so $1 = 1$, true

Induction Hypothesis: assume $T(n) = 2^n$ for all values of $n \ge 1$

Induction Step: show $T(n+1) = 2 ^n + 1$

$$T(n+1) = 2T(n+1-1)$$

= 2T(n)
= 2 * 2^n
= 2 ^ n + 1

Which proves the case for n+ 1

1.6.42)

$$\sum_{i=1}^{n} i^{2} \le \sum_{i=1}^{n} n^{2}$$

$$= n^{2} \sum_{i=1}^{n} 1$$

$$= n^{3} \operatorname{since} \sum_{i=1}^{n} 1 = n$$