Empirical Risk Minimization

Alexander Jung

Learning Goals:

- know about notion of expected loss or risk
- know that average loss approximates risk
- know about empirical risk minimization
- be aware of design choices data/model/loss and their effect on ERM methods

What is ML About?

fit models to data to make predictions or forecasts!

Data. Model. Loss.

data: set of datapoints (x,y)

model: set of hypothesis maps h(.)

loss: quality measure L((x,y),h)

Data

-	Year	m	d	Time	Time zone	Maximum temperature (degC)	Minimum temperature (degC)
0	2020	2	1	00:00	UTC	3.0	1.9
1	2020	2	2	00:00	UTC	4.9	2.4
2	2020	2	3	00:00	UTC	2.6	-0.4
3	2020	2	4	00:00	UTC	-0.2	-3.7
4	2020	2	5	00:00	UTC	2.5	-4.2
5	2020	2	6	00:00	UTC	2.4	-4.7
6	2020	2	7	00:00	UTC	1.2	-5.5
7	2020	2	8	00:00	UTC	2.7	0.2
8	2020	2	9	00:00	UTC	3.9	2.6

$$\mathcal{D} = \{ (\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)}) \}$$

	Year	m	d	Time	Time zone	Maximum temperature (degC) Minimum temperature (de	gC)
9	2020	2	1	00:00	UTC	3.0	1.9
1	2020	2	2	00:00	UTC	4.9	2.4
2	2020	2	3	00:00	UTC	2.6	-0.4
3	2020	2	4	00:00	UTC	-0.2	-3.7
4	2020	2	5	00:00	UTC	2.5	4.2
5	2020	2	6	00:00	UTC	2.4	4.7
6	2020	2	7	00:00	UTC	1.2	-5.5
7	2020	2	8	00:00	UTC	2.7	0.2
8	2020	2	9	00:00	UTC	3.9	2.6

stack feature vecs into matrix

$$\mathbf{X} = \left(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}\right)^T \in \mathbb{R}^{m \times n}$$

stack labels into vector

$$\mathbf{y} = (y^{(1)}, \dots, y^{(m)})^T \in \mathbb{R}^m$$

Machine Learning.

find hypothesis in model that incurs smallest loss when predicting label of any datapoint

What is Any Datapoint?

- observed datapoints
- "new" datapoint

interpret data points as realizations of i.i.d. random variables with prob. distr. p(x,y)

define loss incurred for any data point as expected loss

feature x

Expected Loss or Risk

$$\mathbb{E}\{L((\mathbf{x},y),h)\} := \int_{\mathbf{x},y} L((\mathbf{x},y),h) dp(\mathbf{x},y)$$
(2.14)

note: to compute this expectation we need to know the probability distribution p(x,y) of datapoints (x,y)

Empirical Risk

IDEA: approximate expected loss by average loss on some datapoints (training set)

$$\mathcal{D} = \left\{ \left(\mathbf{x}^{(1)}, y^{(1)} \right), \dots, \left(\mathbf{x}^{(m)}, y^{(m)} \right) \right\}.$$

$$\mathbb{E} \left\{ L\left((\mathbf{x}, y), h \right) \right\} \approx (1/m) \sum_{i=1}^{m} L\left((\mathbf{x}^{(i)}, y^{(i)}), h \right) \text{ for sufficiently large sample size } m. \quad (2.17)$$

with the average loss or empirical risk

$$\widehat{L}(h|\mathcal{D}) = (1/m) \sum_{i=1}^{m} L((\mathbf{x}^{(i)}, y^{(i)}), h).$$
(2.16)

Empirical Risk Minimization

$$\hat{h} \in \underset{h \in \mathcal{H}}{\operatorname{argmin}} \widehat{L}(h|\mathcal{D})$$

$$= \underset{h \in \mathcal{H}}{\operatorname{argmin}} (1/m) \sum_{i=1}^{m} L((\mathbf{x}^{(i)}, y^{(i)}), h).$$

Empirical Risk Minimization

ERM for Parametrized Models

learnt (optimal) parameter vector

$$\widehat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^n}{\operatorname{argmin}} f(\mathbf{w})$$

$$\lim_{\mathbf{w} \in \mathbb{R}^n} f(\mathbf{w})$$

with
$$f(\mathbf{w}) := (1/m) \sum_{i=1} L((\mathbf{x}^{(i)}, y^{(i)}), h^{(\mathbf{w})}).$$

$$\widehat{L}(h^{(\mathbf{w})}|\mathcal{D})$$
 average loss or empirical risk

ERM for Param. Models

Design Choices in ERM

Design Choice: Model and Data

Linear Regression

- datapoints characterized by feature vector and numeric label
- model consists of linear hypothesis maps
- squared error loss

Linear Regression

choose parameter/weight vector **w** to minimize average squared error loss

ERM for Linear Regression

$$\widehat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^n}{\operatorname{argmin}} (1/m) \sum_{m=1}^m (y^{(i)} - \widehat{\mathbf{w}}^T \mathbf{x}^{(i)})^{2}. \tag{4.5}$$

1/12/22

Linear Regression in Python

$$\widehat{\mathbf{w}} = \underset{\mathbf{w} \in \mathbb{R}^n}{\operatorname{argmin}} (1/m) \sum_{m=1}^m (y^{(i)} - \mathbf{w}^T \mathbf{x}^{(i)})^2.$$
(4.5)

$$\mathbf{X} = \left(\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(m)}\right)^T \in \mathbb{R}^{m \times n}, \qquad \mathbf{y} = (y^{(1)}, \dots, y^{(m)})^T \in \mathbb{R}^m$$

1/12/22

CS-C3240 Machine Learning (A. Jung)

Upgrade Linear Model with new Features!

consider data points with single numeric feature x

You Can Do Anything with Linear Predictors!

h(x) is linear in new features but non-linear in raw feature x!

Polynomial Regression

$$\mathcal{H}_{\text{poly}}^{(n)} = \{ h^{(\mathbf{w})} : \mathbb{R} \to \mathbb{R} : h^{(\mathbf{w})}(x) = \sum_{j=1}^{n} w_j x^{j-1},$$
with some $\mathbf{w} = (w_1, \dots, w_n)^T \in \mathbb{R}^n \}.$ (3.4)

Polynomial Regression

from notebook of TA George https://github.com/alexjungaalto/cs-c3240spring2022/blob/main/George_Demo_PolynomialRegression.ipynb

Polynomial Regression= Lin. Reg. with Feature Transform.

sklearn.preprocessing.PolynomialFeatures

preprocessing.PolynomialFeatures(degree=2, *, interaction_only=False, include_bias=True

sklearn.linear_model.LinearRegression

class sklearn.linear_model.LinearRegression(*, fit_intercept=True, normalize='deprecated', copy_X=True, n_positive=False)

Polynomial Features

we can use anything as features that can be computed or measured easily!

0 2020-2-1 3.0 1.9 1 2020-2-2 2.7 4.9 2.4 2 2020-2-3 2.6 -0.4 3 2020-2-4 -0.2 -3.7 4 2020-2-5 2.5 -4.2		Date	Max temp	Min temp
2 2020-2-3 2.6 -0.4 3 2020-2-4 -0.2 -3.7	0	2020-2-1	3.0	1.9
3 2020-2-4 -0.2 -3.7	1	2020-2-2	3D 4.9	2.4
	2	2020-2-3	2.6	-0.4
4 2020-2-5 2.5 -4.2	3	2020-2-4	-0.2	-3.7
	4	2020-2-5	2.5	-4.2

Design Choice: Loss Function

Measuring Error Size via Loss Functions

Squared Error Loss Sensitive to Outliers

1/12/22

Train Linear Model on "Clean Data"

Training Set with a SINGLE OUTLIER!

How to make learning robust against presence of few outliers in training set?

The Absolute Error Loss

Absolute Error Loss Robust to Outliers

absolute error "tolerates" few outliers

Huber Loss

Fitting Linear Predictor with Huber Loss

Train Linear Model on "Clean Data"

Training Set with a SINGLE OUTLIER!

Huber vs. Squared Error Loss

Squared Error

- cvx and diff.able
- minimized via simple gradient descent
- sensitive to outliers

Huber

- cvx and non-diff.
- requires more advanced opt.
 methods
- robust against outliers

Summary

- ultimate quality measure: expected loss or risk
- approximate risk by average loss (empirical risk)
- many ML methods are instances of ERM
- three design choices of ERM: data, model and loss
- ERM can fail if empirical risk deviates from risk

What's Next?

- work on assignment A1 on https://jupyter.cs.aalto.fi/
- review Stage 1 of ML Project (Section "ML Project")
- next Lecture on Mo. 17.01.2022 on Classification