Politechnika Śląska Wydział Automatyki, Elektroniki i Informatyki kierunek: informatyka

Mateusz Trzeciak

Określenie wieku twarzy na podstawie tekstury

praca dyplomowa magisterska

promotor: dr hab. inż. Karolina Nurzyńska

Gliwice, październik 2019

Oświadczenie

Wyrażam zgodę / Nie wyrażam zgodyplomowej / rozprawy doktorskiej*.	ody* na udostępnienie mojej pracy
Gliwice, dnia 14 października 2019	
	(podpis)
	(poświadczenie wiarygodności podpisu przez Dziekanat)

^{*} podkreślić właściwe

Oświadczenie promotora

Oświadczam, że praca "Określenie wie spełnia wymagania formalne pracy dyplor	· -
Gliwice, dnia 14 października 2019	(podpis promotora)

Spis treści

1	Wst	tęp	1
2	Me	toda bazowa - wrinkle feature	3
	2.1	Metoda wykrywania twarzy	. 5
		2.1.1 Konwersja do skali szarości oraz przestrzenie barw	10
		2.1.2 Algorytm Haar Cascade	. 13
	2.2	Wyznaczanie stref	. 21
	2.3	Wykrywanie zmarszczek - detektor Canny	21
	2.4	Wyliczanie wrinkle feature	21
	2.5	Algorytm trenowania	21
	2.6	Grupowanie danych - FCM	21
		2.6.1 Wstęp do grupowania danych	. 21
		2.6.2 Metoda FCM	. 21
	2.7	Wyznaczanie wieku	. 21
3	Mo	dyfikacje metody bazowej	23
	3.1	Odjęcie wybranej strefy	23
		3.1.1 Zmiana algorytmu względem metody bazowej	. 23
	3.2	Zastosowanie metody HOG	. 23
		3.2.1 Opis algorytmu HOG	. 23
		3.2.2 Zastosowanie w projekcie	. 23
	3.3	Metoda HOG oraz grupowanie KNN	. 23
		3.3.1 Grupowanie KNN	
		3.3.2 Zastosowanie w projekcie	. 23

<u>II</u>		
4	Badania	25
5	Podsumowanie	27

Wstęp

Wiek jest cechą, którą niełatwo człowiekowi odczytać z czyjejś twarzy. Dla komputera rozpoznawanie wieku jest trudniejsze niż dla człowieka. Dlatego do wyznaczania wieku z pomocą programu komputerowego należy podchodzić z dystansem. Mimo trudności programiści i naukowcy udoskonalają algorytmy, tak aby ocena wieku danej osoby była coraz dokładniejsza.

Istnieje wiele sposobów wyznaczania wieku. Większość metod skupia się na analizie tekstury twarzy. Idąc dalej - z obrazu danej osoby lub jego części, np tułowia, musi zostać wykryta twarz. Wykrycie twarzy na teksturze jest możliwe dzięki algorytmom rozpoznawaniu obrazu. Rozpoznawanie obrazu jest stosowane w wizji komputerowej i polega na wyodrębnieniu z obrazu jakichś szczegółów. Mogą to być osoby, pojazdy, przedmioty itp. (Rys. 1.1)

Można znaleźć wiele witryn internetowych, które udostępniają interfejsy programistyczne umożliwiające zaimplementowanie rozpoznawania wieku z obrazu. Istnieją algorytmy przetwarzania obrazu, które oprócz wieku wyznaczają z pewnym prawdopodobieństwem płeć danej osoby. Oprócz płci mogą one także wyznaczyć mine oraz czy dana osoba nosi okulary.

Z weryfikacją wieku danej osoby można się spotkać przed wejściem do niektórych miejsc, tj. klub nocny. Większość osób musi okazać ważny dowód osobisty, co generuje duże kolejki do wejścia. Aplikacje analizujące wiek na podstawie obrazu twarzy z kamery przed wejściem do takich miejsc znacząco usprawniłyby weryfikację wieku. Rozpoznawanie wieku może być wykorzy-

Rysunek 1.1: Przykład rozpoznawania obiektów na zdjęciu ulicy. [14]

stywane przy analizie średniego wieku ludzi w jakimś miejscu np. podczas demonstracji.

Wiele gier posiada treści nieodpowiednie dla młodszych użytkowników. Możliwe jest stosowanie technologii wykrywania wieku użytkownika przed udostępnieniem mu treści, która wymaga odpowiedniego wieku.

Można znaleźć o wiele więcej potencjalnych zastosowań przetwarzania obrazu oraz rozpoznawania wieku na podstawie tekstury (obrazu) twarzy. Z biegiem lat z pewnością będzie można zauważyć dalszy rozwój tej dziedziny, która opiera się w głównej mierze na sztucznej inteligencji [19].

Metoda bazowa - wrinkle feature

Istnieje wiele metod wyznaczania wieku z obrazu twarzy. W literaturze spotkano rozwiązania, w których wyznaczany jest konkretny wiek osoby przez algorytm lub przedział wiekowy. Jedna z pierwszych metod szacowania wieku opierała się na wyznaczaniu proporcji twarzy, a następnie na detekcji i interpretacji zmarszczek. Była ona w stanie ze stu procentową poprawnością wyznaczyć czy dana osoba jest osobą dorosłą lub dzieckiem [23].

W kolejnych latach algorytmy i techniki szacowania wieku były udoskonalane. Badano wpływ starzenia się osób na wygląd skóry. Oprócz naturalnych zmian skóry pod wpływem starzenia się skóry należało uwzględnić także inne czynniki. Takimi czynnikami są min. płeć, poziom stresu, ekspozycja na działanie środowiska zewnętrznego. Powyższe metody zastosowano w pracy "Toward automatic simulation of aging effects on face images" autorstwa A. Lanitis, Ch. J. Taylor oraz T. F. Cootes [1]. Należy dodać, że w powyższej pracy stosowano trenowanie zbioru zdjęć. Trenowanie polega na wykryciu relacji pewnych cech twarzy do wieku osób.

W kolejnych latach pojawiło się podejście porównywania cech twarzy tej samej osoby w różnym wieku. Różnice w powyższych cechach posłużyły do zbudowania statystyki zmian cech twarzy wraz ze starzeniem się. Powyższe podejście zostało zaprezentowane w pracy "Face verification across age

progression" autorstwa N. Ramanathan oraz R. Chellappa [12].

Rozwinięciem tego pomysłu była praca "Automatic age estimation based on facial aging patterns" autorstwa X. Geng, Z. Zhou i K. Smith-Miles [21]. W tej pracy porównywano sekwencje wielu zdjęć twarzy jednej osoby. Zdjęcia przestawiały twarz w różnym wieku. Powyższe badania pozwoliły na zbudowanie wzorca starzenia się twarzy.

Praca "A new algorithm for age recognition from facial images" autorstwa M.M. Dehshibi oraz A. Bastanfard [22] przy szacowaniu wieku analizuje proporcje twarzy oraz ilość zmarszczek.

Praca "Age Estimation from Face Images: Challenging Problem for Audience Measurement Systems" autorstwa Vladimira Khryashcheva, Alexandra Ganina, Olgi Stepanovej oraz Antona Lebedeva podsumowała techniki szacowania wieku [20]. Z podsumowania wynikło, że najczęściej stosuje się do wyodrębniania cech z twarzy BIF, czyli biologically inspired features. Powyższa metoda została zaprezentowana w książce "Human Age Estimation Using Bio-inspired Features" autorstwa Guodong Guo i in. Mniej popularne metody analizujące cechy twarzy to filtry Gabora oraz LBP- local binary patterns.

Metoda bazowa została opisana w artykule "Age Estimation from Face Image using Wrinkle Features" [17]. Wykrywanie wieku dzieli się na kilka faz. Na początku należy wykryć twarz. Zastosowany algorytm wykrywania został opisany w sekcji 2.1 Następnie należy wyznaczyć strefy zmarszczkowe na twarzy. W artykule [17] udowodniono, że istnieje kilka konkretnych stref, w których następuje znacząca zmiana ilości zmarszczek wraz z wiekiem. Powyższe strefy zostały wymienione w sekcji 2.2. Sekcja 2.3 przedstawia technikę wykrywania zmarszczek znajdujących się w strefach. Wykryte zmarszczki pozwalają na obliczenie wrinkle feature dla danej twarzy, zgodnie z opisem w sekcji 2.4. W tym miejscu kończy się faza wyznaczania wrinkle feature dla danej osoby (Rysunek 2.1). Kolejna faza jest potrzebna do znalezienia relacji pomiędzy wrinkle feature a wiekiem. Do tego celu należy zastosować algorytm trenujący, który został opisany w sekcji 2.5. Wynikiem algorytmu trenującego jest zbiór danych, który należy pogrupować, tak jak to opisano w sekcji 2.6. Ostatnią fazą algorytmu jest wykrywanie wieku na podstawie

wyników działania FCM - sekcja 2.7 (Rysunek 2.2).

Rysunek 2.1: Faza 1 algorytmu

Rysunek 2.2: Faza 2 algorytmu

2.1 Metoda wykrywania twarzy

W literaturze można odnaleźć wiele metod wykrywania twarzy. Istnieje kilka podejść aby skutecznie wykrywać twarz na danym obrazie [18]:

- metoda oparta na nauce
- metoda niezmienności cech
- metoda dopasowania szablonu twarzy
- metoda bazująca na wyglądzie

Metoda oparta na nauce kieruje się wiedzą na temat wyglądu twarz. Dokładniej chodzi o charakterystyczne cechy, które pozwalają na wyodrębnienie obszaru twarzy na zdjęciu. Mowa tutaj o cechach takich jak kształt twarzy, kolor, miejsca o różnej jasności czy krawędzie tworzone np przez usta.

Metoda niezmienności cech wyszukuje takie strukturalne cechy twarzy, które są widoczne w każdych warunkach oświetleniowych. Ponadto powyższe cechy są widoczne bez względu na punkt widzenia np. profil czy kąt nachylenia twarzy.

Metoda dopasowania szablonu twarzy wykorzystuje kilka standardowych wzorów opisujących twarz. Na wejściu algorytmu obraz jest porównywany z powyższymi wzorami. Na wyjściu dostajemy informację w jakim stopniu obraz jest dopasowany do szablonu twarzy.

Ideą metody bazującej na wyglądzie jest trenowanie dużego zbioru obrazów twarzy, tak aby wychwycić zmienność cech twarzy. Tak wytrenowany model jest później wykorzystywany do wykrywania twarzy.

Ponadto w procesie ekstrakcji twarzy z obrazu istnieje wiele problemów [18].

Jednym z nich jest nieodpowiednia poza. Wiąże się to z różnymi ustawieniami twarzy wobec aparatu fotograficznego lub kamery. Twarz może być nachylona, przechylona, odchylona. Inaczej mówiąc może mieć różne położenie w trzech wymiarach. Niektóre części twarzy lub cechy mogą zostać przysłonięte. Im mniej cech widocznych na twarzy tym mniej danych, które algorytm może wyodrębnić z twarzy. Im mniej danych posiada algorytm tym mniejsze prawdopodobieństwo prawidłowego wykrycia twarzy.

Pewne twarze mogą zawierać lub nie pewne cechy tj. brody, blizny, okulary. Różnorodność tych cech także wpływa na efektywność wykrywania twarzy.

Rysunek 2.3: Przykład twarzy oświetlonej twardym (twarz po lewej) oraz miękkim światłem. [8]

Wyrazy mimiczne wpływają na zwiększenie ilości zmarszczeń na twarzy. Ponadto zmienia się kształt ust, pojawiają się ostre krawędzie wynikające z pracy mięśni twarzowych. Widoczne mogą być różne pofałdowania skóry.

Zdarza się, że część twarzy zostaje przysłonięta przez jakiś inny obiekt. Na zdjęciu na którym jest wiele osób część twarzy może być przysłonięta przez inną twarz. Przysłonięcie przez inny obiekt wiąże się z utratą informacji o części twarzy co zmniejsza prawdopodobieństwo prawidłowego wykrycia twarzy.

Istotnym elementem jest także oświetlenie twarzy. Gdy twarz oświetlona jest tzw. twardym światłem występują na niej tzw. ostre cienie i światła 2.3. W tym przypadku występuje większe ryzyko utraty szczegółów oświetlanej twarzy. Gdy twarz jest skierowana na wprost słońca z dużym prawdopodobieństwem można powiedzieć, że zostanie oświetlona twardym światłem. Miękkie światło jest generowane na przykład przez zachmurzone niebo. Istotne jest także źródło światła. Źródło może być punktowe lub rozproszone. Przy punktowym źródle światła twarz będzie posiadać jednolity cień, którego intensywność będzie zależała od "twardości"światła. Przy świetle rozproszonym intensywność cieni zostanie zmniejszona.

Na Rys 2.4 przedstawione są różne techniki wykrywania twarzy.

Rysunek 2.4: Różne techniki wykrywania twarzy. [4]

Jak widać metod wykrywania twarzy jest sporo. Omówienie każdej z nich zajęłoby dużo czasu. Poniżej zostaną przytoczone dwie metody wykrywania twarzy. Dodatkowo zostanie omówiona metoda, która posłużyła do wykrywania twarzy w niniejszej pracy.

W pracy "An efficient algorithm for human face detection and facial feature extraction under different conditions" ([10]) przedstawiono opisaną w skrócie poniżej technikę wykrywania twarzy. W pierwszym etapie procesu obszary, gdzie może znajdować się ludzkie oko, są wykrywane przez przeprowadzenie testów na zacienionych rejonach obrazu. Pary takich obszarów wyodrębnia się na podstawie algorytmu genetycznego, aby następnie wyznaczyć możliwy obszar twarzy. Dla każdego obszaru mierzy się wartość dopasowania na podstawie jego projekcji na wektory własne, tzw. eigenfaces. Aby wiarygodność wykrywania była wyższa, każdy możliwy obszar twarzy normalizuje się pod kątem oświetlenia. Proces ten powtarza się pewną ilość razy, a następnie do dalszej weryfikacji są wybierane możliwe obszary twarzy o wysokiej wartości dopasowania. Na tym etapie mierzy się symetrię twarzy oraz sprawdza się, czy na każdym wybranym obszarze istnieją rysy twarzy. Rysy

określa się przez ewaluację rzeźby topograficznej - wystających i wklęsłych elementów różnych regionów obszaru twarzy, poddanego uprzednio normalizacji. Algorytm jest w stanie wykryć także obszar twarzy, gdy głowa jest przechylona

W roku 1997 w pracy pt. "Vision for man-machine interaction" opisano metodę wykrywania twarzy bazującą na wykrywaniu cechy jaką jest kolor skóry [7]. Kolor skóry jest najbardziej widoczną cechą twarzy zarówno dla człowieka jak i dla maszyny. Ponadto kolor jest przetwarzany znacznie szybciej od innych cech. Przy dobrych warunkach oświetleniowych ustawienie twarzy nie ma wpływu na skuteczność wykrywalności twarzy opisywaną metodą. Każda metoda wykrywania twarzy posiada wady. Jedną z tych wad jest problem wykrywalności twarzy przy nierównomiernym oświetleniu. Problem pojawia się także, gdy na obrazie widoczny jest obszar skóry z poza twarzy np. z rąk. Warto zaznaczyć, że kolor twarzy na obrazie jest zależny od względnego kierunku oświetlenia. Obszar twarzy w omawianym algorytmie jest wykrywany poprzez normalizacje histogramu kolorów. Normalizacja jest potrzebna do redukcji wpływu luminancji na kolor.

Algorytm Haar Cascade jest najpopularniejszym algorytmem do wykrywania twarzy w bibliotece OpenCV. Właśnie ta biblioteka była jednym z niezbędnym elementów programu przy wykrywaniu wieku z tekstury twarzy. W związku z powyższym w wykrywaniu twarzy zastosowano algorytm Haar Cascade. Omawiany algorytm został zaprezentowany w książce "Rapid Object Detection using a Boosted Cascade of Simple Features" w 2001 i składa się z trzech faz [16]. W pierwszej obraz wejściowy przekształcany jest na obraz scałkowany. Następnie wykorzystywany jest algorytm do boostingu, który zmniejsza ilość klasyfikatorów tylko do tych najbardziej istotnych. W ostatniej fazie klasyfikatory łączone są w kaskady w celu przyspieszenia procesu wykrywania twarzy. Znaczna większość metod wykrywania obiektów na obrazie (w tym twarzy) wymaga wstępnego przekształcenia obrazu do skali szarości.

2.1.1 Konwersja do skali szarości oraz przestrzenie barw

Każdy piksel w trybie kolorowym ma określoną reprezentację barwy z określonego modelu. Najczęściej są to 3 lub 4 wartości [13]. Pierwszą przestrzenią barw była CIEXYZ. Została ona stworzona w 1931 przez Międzynarodowa Komisja ds. Oświetlenia (International Commission on Illumination). Przestrzeń barw CIEXYZ została specjalnie stworzona, by odtworzyć sposób postrzegania barw przez ludzkie oko. Barwa jest opisywana w trzech współrzędnych trójchromatycznych X,Y,Z. Powyższe współrzędne są zależne od składowych - sprawności wizualnych czopków. Czopki to światłoczułe receptory siatkówki ludzkiego oka [13]. Współrzędne X,Y,Z wyliczane są na podstawie trzech podstawowych barw R (czerwonej), G (zielonej) i B (niebieskiej). Współrzędne XYZ są często reprezentowane przez luminancję Y oraz współrzędne x, y chromatyczności. Wyliczanie współrzędnych x, y przedstawiono na wzorach 2.1 oraz 2.2.

$$x = \frac{X}{X + Y + Z} \tag{2.1}$$

$$y = \frac{Y}{X + Y + Z} \tag{2.2}$$

Na rysunku 2.5 przedstawiono diagram chromatyczności reprezentujący przestrzeń barw CIEXYZ.

Kolory mogą byc także odwzorowane przez przestrzeń barw CMYK. Skrót CMYK oznacza odpowiednio:

- Cyan odcień niebieskiego
- Magenta kolor karmazynowy
- Yellow kolor żółty
- K key colour kolor czarny

Rysunek 2.5: Przykład rozpoznawania obiektów na zdjęciu ulicy. [6]

Barwa wynikowa powstaje poprzez mieszanie trzech kolorów - niebieskiego, karmazynowego oraz żółtego. Mieszanie zachodzi według zasady syntezy subtraktywnej [13]. Synteza subtraktywna polega na mieszaniu kolorów przez odejmowanie promieniowań widzialnych różnych długości. Przykładem syntezy subtraktywnej jest np. mieszanie farb o różnych kolorach.

Najczęściej barwy są reprezentowane przez przestrzeń barw RGB [13]. Przestrzeń kolorów RGB składa się z trzech kanałów [9]:

- R czerwonego (z angielskiego Red)
- G zielonego (z angielskiego Green)
- B niebieskiego (z angielskiego Blue)

Barwy mieszane są poprzez syntezę addytywną. W przeciwieństwie do syntezy subtraktywnej barwa wynikowa powstaje poprzez sumowanie wiązek światła widzialnego o różnych długościach [13]. Każdy piksel opisany za pomocą przestrzenie barw RGB ma trzy 8-bitowe wartości reprezentujący każdy kanał. Spotykane są 12- lub 16-bitowe reprezentacje kanałów, jednak 8-bitowa jest najpopularniejsza. Dla 8-bitowych kanałów wartość "0" danego kanału oznacza brak jasności, natomiast "255" maksymalną jasność. Poprzez

Rysunek 2.6: Mieszanie kanałów RGB. [11]

Rysunek 2.7: Kolor R=153 G=217 B=234.

mieszanie jasności tych trzech kanałów można uzyskać szerokie spektrum barw (Rysunek 2.6).

Przykładowo kolor o reprezentacji R=153 G=217 B=234 przedstawiono na Rysunku 2.7

Kolor (Rysunek 2.7) może być też reprezentowany w kodzie szesnastkowym #99D9EA. Każda wartość heksadecymalna odpowiada kolejno kanałowi R, G, B.

Obraz może też być przedstawiony stosując odcienie jednej barwy. Taka obraz nazywa się obrazem monochromatycznym. Najczęściej stosowaną barwą w takich obrazach jest szarość [13].

Istnieją 3 metody konwersji obrazu z przestrzeni RGB na monochromatyczny [11].

największej jasności

- średnia
- luminancji

Metoda największej jasności konwertuje na skalę szarości wg wzoru 2.3.

$$\frac{(\max(R,G,B) + \min(R,G,B))}{2} \tag{2.3}$$

Metoda średnia bazuje na wzorze 2.4, natomiast metodę luminancji ilustruje wzór 2.5.

$$\frac{(R+G+B)}{3} \tag{2.4}$$

$$0.21R + 0.72G + 0.07B \tag{2.5}$$

W niniejszej pracy zastosowano konwersję za pomocą metody średniej.

2.1.2 Algorytm Haar Cascade

Haar Cascade jest algorytmem służącym do wykrywania obiektów na obrazach. Został stworzony przez Paula Viola oraz Michaela Jonesa w 2001 roku[16].

Opiera się na zbudowaniu kaskadowej funkcji za pomocą trenowania wielu zdjęć. Zdjęcia są dzielone na dwie kategorie - pozytywne oraz negatywne. Na zdjęciach klasyfikowanych jako pozytywne istnieje obiekt, który ma zostać wykryty, natomiast na zdjęciach negatywnych nie ma tego obiektu.

Ekstrakcja cech w algorytmie Violi i Jonesa jest realizowana przez filtry Haara. Są to prostokątne okienka nakładane na obraz, które analizują jasność pikseli (Rysunek 2.8).

Przed zastosowaniem filtru Haara obraz musi zostać przekształcony do skali szarości W niniejszej pracy należało przekształcić każdy obraz z trybu kolorowego na monochromatyczny co opisano w sekcji 2.1.1.

Każde okienko zawiera białe oraz czarne prostokąty. Wyznaczana jest suma jasności pikseli w obu rodzajach prostokątów, a następnie dla każdego

Rysunek 2.8: Filtr Haara a) krawędziowy b) liniowy c) szachownica [2]

okna obliczana jest różnica pomiędzy białymi a czarnymi. Opisywany algorytm ma zastosowanie w wykrywaniu krawędzi. Na granicy krawędzi istnieje różnica w jasności pikseli (Rysunek 2.9).

W celu poprawy efektywności sumowania pikseli stosowane są rozwiązanie zwane w języku angielskim Summed-area table [15]. Summed-area table jest również nazywana w literaturze Integral Image, czyli obrazem scałkowanym. Ideą obrazu scałkowanego jest, aby każdy obraz został przekształcony w tabelę, w której każdy element x,y tej tabeli odpowiada sumie jasności wszystkich pikseli według wzoru ??.

$$I(x,y) = \sum_{x' \le x \cap y' \le y} i(x',y')$$
 (2.6)

gdzie I(x,y) jest wartością na pozycji x,y w tabeli(tabela obrazu scałkowanego), i(x,y) - jasność piksela o współrzędnych x,y na obrazie.

Na Rysunku 2.10 przedstawiona jest tabela prezentująca jasność pikseli przed zastosowaniem całkowania obrazu.

Po całkowaniu otrzymujemy tabelę podobną do przedstawionej na Rysunku 2.11.

Sumowanie przykładowego okna (Rysunek 2.12) wymaga 4 operacji (Wzór 2.7).

Rysunek 2.9: Filtr Haara nałożony na krawędź twarzy $\left[2\right]$

Image				
5	2	5	2	
3	6	3	6	
5	2	5	2	
3	6	3	6	
,				

Rysunek 2.10: Tabela jasności poszczególnych pikseli przed zastosowaniem całkowania $\left[5\right]$

Summed Area Table				
5	7	12	14	
8	16	24	32	
13	23	36	46	
16	32	48	64	
,				

Rysunek 2.11: Filtr Haara nałożony na krawędź twarzy [5]

Rysunek 2.12: Sumowanie okna [5]

$$\sum_{x_0 \le x \le x_1 \cap y \le y \le y_1} i(x, y) = I(D) + I(A) - I(B) - I(C)$$
 (2.7)

gdzie lewa część równania oznacza sumę jasności pikseli zaznaczonego oknatj. na Rysunku 2.12, I(A) - wartość scałkowanego obrazu przy punkcie A (analogicznie I(B), I(C), I(D)) - (Rysunek 2.12).

W związku z powyższym obliczenie wartości dla krawędziowego filtru Haara wymaga obliczenia różnicy dwóch sum co wymaga ośmiu operacji. Reprezentacja obrazu za pomocą obrazu scałkowanego znacznie zwiększa efektywność obliczania wartości w filtrze Haara.

Liczba cech wykrywanych w zdjęciu za pomocą filtru Haara jest znacznie większa od liczby pikseli na obrazie [16]. Dla obrazu o rozmiarze 384x288 liczba cech wynosi ponad 180000. Autorzy algorytmu stwierdzili, że dla zwiększenia szybkości algorytmu należy wybrać małą grupę cech, które razem mogą stworzyć jeden efektywny klasyfikator obiektu. W celu wyodrębnienia tych istotnych cech zastosowano algorytm Adaboost, który został opisany poniżej.

Zbiór n obrazów do trenowania można oznaczyć tak jak we wzorze 2.8:

$$(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$$
 (2.8)

oznacza, że obraz jest odpowiednio negatywny lub pozytywny. Następnym krokiem jest inicjalizacja wag (Wzór 2.9).

$$w_{1,i} = \frac{1}{2m}, \frac{1}{2l} \tag{2.9}$$

odpowiednio dla $y_i=0,1$, gdzie m, l oznacza odpowiednio liczbę negatywnych oraz pozytywnych zdjęć. Następnie Dla $t=1,\ldots,$ T:

1. Normalizowane są wagi (Wzór 2.10):

$$w_{t,i} = \frac{w_{t,i}}{\sum_{j=1}^{n} w_{t,j}} \tag{2.10}$$

 w_t jest rozkładem prawdopodobieństwa

2. Dla każdej cechy j, trenowany jest klasyfikator h_j , który używa tylko jedną cechę wyliczoną z filtru Haara. Błąd jest wyliczony następująco (Wzór 2.11):

$$w_t, \epsilon_j = \sum_i w_i h_j(x_i) - y_i \tag{2.11}$$

- 3. Wybierany jest klasyfikator h_t z najmniejszym błędem ϵ_t .
- 4. Następuje aktualizacja wag (Wzór 2.12):

$$w_{t+1,i} = w_{t,i}\beta_t^{1-e_i} (2.12)$$

, gdzie $e_i=0$. Jeśli x_i jest sklasyfikowane prawidłowo, wtedy $e_i=1$, w innym wypadku $\beta_t=\frac{\epsilon_t}{1-\epsilon_t}$.

Silny klasyfikator h(x) jest opisany równaniem:

$$h(x) = \begin{cases} 1 & \text{gdy } \sum_{t=1}^{T} \alpha_t h_t(x) > = \frac{1}{2} \sum_{t=1}^{T} \alpha_t \\ 0 & \text{w przeciwnym wypadku} \end{cases}$$
 (2.13)

, gdzie $\alpha_t = \lg \frac{1}{\beta_t}$

Rysunek 2.13: Kaskada klasyfikatorów. [?]

Algorytm Adaboost zmniejsza ilość cech Haara z ponad stu tysięcy do kilkuset - do tych najistotniejszych cech.

Ostatnim etapem jest wytworzenie kaskady klasyfikatorów. Zwiększa ona znacznie szybkość wykrywania pożądanego obiektu na obrazie. Ideą kaskady jest zgrupowanie klasyfikatorów, które powstały w poprzednim procesie - procesie boostingu. Klasyfikatory są grupowane w okna. Okna są połączone ze sobą tak jak na rysunku 2.13. Okna są oznaczone jako P1, P2, ..., Pn. Gdy dane okno wykryje obiekt przechodzi do kolejnego okna w kaskadzie. W przeciwnym wypadku algorytm przerywa działanie i na danym obrazie nie zostaje zidentyfikowany obiekt. Okna są poustawiane tak aby każde z nich klasyfikowało obiekt z różnym prawdopodobieństwem wykrycia oraz prawdopodobieństwem błędu. Składnikami wyżej wymienionego prawdopodobieństwa jest macierz pomyłek (Rysunek 2.14).

Z macierzy 2.14 można odczytać czy klasyfikator poprawnie sklasyfikował dane testowe. W macierzy użyto 4 pojęcia:

• TP (true positive) - poprawna klasyfikacja, jako obiekt

TAK NIE TAK True False Positive Negative NIE False Negative Positive Negative NIE NIE True Positive Negative Negative

Rysunek 2.14: Macierz pomyłek.

- TN (true negative) poprawna klasyfikacja, jako nie obiekt
- FP (false positive) błędna klasyfikacja jako obiekt
- FN (false negative) błędna klasyfikacja jako nie obiekt

Prawdopodobieństwo błędu wyliczane jest ze współczynnika FPR (false positive rate) (Wzór 2.14).

$$FPR = \frac{FP}{FP + TN} \tag{2.14}$$

Natomiast prawdopodobieństwo wykrycia obiektu wyliczane jest ze współczynnika TPR (true positive ratio) (Wzór 2.15)

$$TPR = \frac{TP}{TP + FN} \tag{2.15}$$

Pierwsze okna posiadają klasyfikatory o słabszym TPR oraz

FPR niż kolejne okna. Oznacza to, że prawdopodobieństwo TPR w oknie P_{x-1} jest mniejsze od tego w P_x . Natomiast prawdopodobieństwo FPR w oknie P_{x-1} jest większe od tego w P_x . Ostatnie okna mają największy współczynnik TPR oraz najmniejszy FRP ze wszystkich. Takie ustawienie okien ma na celu wstępne przepuszczenie przez okna obrazy, które z dużym prawdopodobieństwem zawierają szukany obiekt. Natomiast ostatnie okna w kaskadzie analizują niewielką część obrazu wejściowego.

Biblioteka OpenCV zawiera wytrenowane klasyfikatory, które zostały użyte w tej pracy magisterskiej. Wykorzystano je do wykrycia twarzy, ust oraz oczu. Klasyfikatory mają postać plików xml, które można znaleźć na oryginalnym repozytorium projektu OpenCv.

- 2.2 Wyznaczanie stref
- 2.3 Wykrywanie zmarszczek detektor Canny
- 2.4 Wyliczanie wrinkle feature
- 2.5 Algorytm trenowania
- 2.6 Grupowanie danych FCM
- 2.6.1 Wstęp do grupowania danych
- 2.6.2 Metoda FCM
- 2.7 Wyznaczanie wieku

Modyfikacje metody bazowej

- 3.1 Odjęcie wybranej strefy
- 3.1.1 Zmiana algorytmu względem metody bazowej
- 3.2 Zastosowanie metody HOG
- 3.2.1 Opis algorytmu HOG
- 3.2.2 Zastosowanie w projekcie
- 3.3 Metoda HOG oraz grupowanie KNN
- 3.3.1 Grupowanie KNN
- 3.3.2 Zastosowanie w projekcie

Badania

Podsumowanie

Bibliografia

- [1] T. F. Cootes A. Lanitis, Ch. J. Taylor. Toward automatic simulation of aging effects on face images. IEEE Transactions of Pattern Analysis and Machine Intelligence, 2002.
- [2] Abid K. Alexander Mordvintsev. Face Detection using Haar Cascades . https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_objdetect/py_face_detection/py_face_detection.html, 2019. [Online; Dostęp: 28.09.19].
- [3] F. Boray Tek Ali Buğra KanburoğluF. A Haar Classifier Based Call Number Detection and Counting Method for Library Books. 2018 3rd International Conference on Computer Science and Engineering, 2018.
- [4] Munish Kumar Ashu Kumar, Amandeep Kaur. Face detection techniques: a review. Springer, 2018.
- [5] BADGERATI. https://computersciencesource.wordpress.com/2010/09/03/comvision-the-integral-image/, 2010. [Online; Dostep: 28.09.19].
- [6] Brent Bergherm. https://brentbergherm.com/cie-chromaticity-diagram/, 201. [Online; Dostęp: 10.10.19].

- [7] Coutaz J Crowley JL. Vision for man-machine interaction. Robotics and Autonomous Systems, 1997.
- [8] Erik Fritts. https://www.videomaker.com/article/c03/18848-tell-your-story-more-effectively-with-the-correct-application-of-hard-and-soft-light, 2017. [Online; Dostęp: 07.10.19].
- [9] Robert Hirsch. Exploring Colour Photography: A Complete Guide. Laurence King Publishing, 2004.
- [10] Wan-Chi Siu Kwok-Wai Wong, Kin-Man Lam. Age Estimation from Face Images: Challenging Problem for Audience Measurement Systems. Centre for Multimedia Signal Processing, Department of Electronic and Information Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 2000.
- [11] Henrik Skov Midtiby. Example: Rgb color mixing, 2019. [Online; Dostęp: 28.09.19].
- [12] R. Chellappa N. Ramanathan. Face verification across age progression. IEEE Transactions on Image Processing, 2006.
- [13] Rafiqul Z. Khan Pramod K. Mishr Noor A. Ibraheem, Mokhtar M. Hasan. *Understanding Color Models: A Review*. ARPN Journal of Science and Technology, 2012.
- [14] Moses Olafenwa. Przykład rozpoznawania obrazów. https://towardsdatascience.com/

- object-detection-with-10-lines-of-code-d6cb4d86f606/, 2018. [Online; Dostęp: 30.09.18].
- [15] M. Jone P. Viola. Robust Real-Time Object Detection. International Journal of Computer Vision, 2002.
- [16] Michael Jones Paul Viola. Rapid Object Detection using a Boosted Cascade of Simple Features. Accepted conference on computer vision and pattern recognition, 2001.
- [17] Rituparna Sahaa Ranjan Janaa, Debaleena Dattaa. Age Estimation from Face Image using Wrinkle Features. RCC Institute of Information Technology, 2014.
- [18] Qaim Mehdi Rizvi. A Review on Face Detection Methods. Qassim University, 2011.
- [19] Richard Szeliski. Computer Vision: Algorithms and Applications. Springer, 2011.
- [20] Olga Stepanova Anton Lebedev Vladimir Khryashchev, Alexander Ganin. Age Estimation from Face Images: Challenging Problem for Audience Measurement Systems. Yaroslavl State University, 2014.
- [21] K. Smith-Miles X. Geng, Z. Zhou. Automatic age estimation based on facial aging patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007.
- [22] K. Smith-Miles X. Geng, Z. Zhou. A new algorithm for age recognition from facial images. Signal Processing, 2010.

[23] N. da V. Lobo Y. H. Kwon. Age classification from facial images. Computer Vision and Image Understanding. 1999.

Dodatki

Dokumentacja techniczna

Spis skrótów i symboli

```
DNA kwas deoksyrybonukleinowy (ang. deoxyribonucleic acid)
```

 $MVC \mod - \text{widok} - \text{kontroler (ang. } model-view-controller)$

 ${\cal N}$ liczebność zbioru danych

 μ stopnień przynależności do zbioru

 $\mathbb E$ zbi
ór krawędzi grafu

 ${\mathcal L}$ transformata Laplace'a

Zawartość dołączonej płyty

Do pracy dołączona jest płyta CD z następującą zawartością:

- praca w formacie pdf,
- źródła programu,
- zbiory danych użyte w eksperymentach.

Spis rysunków

1.1	Przykład rozpoznawania obiektów na zdjęciu ulicy.	
	[14]	2
2.1	Faza 1 algorytmu	5
2.2	Faza 2 algorytmu	5
2.3	Przykład twarzy oświetlonej twardym (twarz po	
	lewej) oraz miękkim światłem. [8]	7
2.4	Różne techniki wykrywania twarzy. [4]	8
2.5	Przykład rozpoznawania obiektów na zdjęciu ulicy.	
	$[6] \dots \dots$	11
2.6	Mieszanie kanałów RGB. [11]	12
2.7	Kolor R=153 G=217 B=234	12
2.8	Filtr Haara a) krawędziowy b) liniowy c) sza-	
	chownica [2]	14
2.9	Filtr Haara nałożony na krawędź twarzy [2]	15
2.10	Tabela jasności poszczególnych pikseli przed za-	
	stosowaniem całkowania [5]	15
2.11	Filtr Haara nałożony na krawędź twarzy [5]	15
2.12	Sumowanie okna [5]	16
2.13	Kaskada klasyfikatorów. [?]	18

\mathbf{v}	T	7	T
Λ	V	٠.	L

Spis tablic