Estructura de Computadores

Tema 7. Memoria Virtual

Problemas con el sistema de memoria

- ¿Cómo soportar múltiples programas de forma simultánea?
 - Compilación/Ensamblado/Enlazado asignan direcciones de memoria absolutas a instrucciones y datos
 - Hay que reubicar los datos en tiempo de ejecución para evitar conflictos
 - Hay que evitar que un programa acceda a los datos de otros programas

Problemas con el sistema de memoria

- ¿Cómo soportar múltiples programas de forma simultánea?
 - Compilación/Ensamblado/Enlazado asignan direcciones de memoria absolutas a instrucciones y datos
 - Hay que reubicar los datos en tiempo de ejecución para evitar conflictos
 - Hay que evitar que un programa acceda a los datos de otros programas
- ¿Qué ocurre si el tamaño de los datos excede la capacidad de la memoria principal?
 - Añadir otro nivel a la jerarquía de memoria: el disco duro
 - Hay que mover datos entre memoria principal y el disco duro

Solución: Memoria virtual

- Permite que la memoria del computador sea compartida por múltiples programas
 - Reubicación de datos mediante un sistema de traducción de direcciones
 - Mecanismos de protección y compartición de datos entre programas

Solución: Memoria virtual

- Permite que la memoria del computador sea compartida por múltiples programas
 - Reubicación de datos mediante un sistema de traducción de direcciones
 - Mecanismos de protección y compartición de datos entre programas
- Permite exceder la capacidad de la memoria principal
 - Utilizando el disco duro como un nivel más de la jerarquía de memoria

Solución: Memoria virtual

- Permite que la memoria del computador sea compartida por múltiples programas
 - Reubicación de datos mediante un sistema de traducción de direcciones
 - Mecanismos de protección y compartición de datos entre programas
- Permite exceder la capacidad de la memoria principal
 - Utilizando el disco duro como un nivel más de la jerarquía de memoria
- Implementado por el sistema operativo, con soporte hardware para memoria virtual
 - Transparente para el programador

Direcciones lógicas vs direcciones físicas

- Direcciones lógicas (virtuales)
 - Los programas utilizan un espacio de direcciones lógico o virtual
 - Exclusivo de cada programa
 - Tamaño máximo limitado por el número de bits de la dirección
 - ▶ Proporciona aislamiento entre programas

Direcciones lógicas vs direcciones físicas

- Direcciones lógicas (virtuales)
 - Los programas utilizan un espacio de direcciones lógico o virtual
 - Exclusivo de cada programa
 - ► Tamaño máximo limitado por el número de bits de la dirección
 - Proporciona aislamiento entre programas
- Direcciones físicas
 - Direcciones reales de la memoria física
 - Durante la ejecución de un programa, sus datos e instrucciones se almacenan en la memoria física
 - Existe un mecanismo para traducir direcciones lógicas a direcciones físicas

Memoria virtual

Jerarquía de memoria

- El uso del disco permite aumentar la capacidad de la memoria
- ► El mecanismo de memoria virtual se encarga de mover datos entre el disco duro y la memoria principal

Página de memoria

- Bloque de memoria contiguo y de tamaño fijo
- Página virtual
 - Cada uno de los bloques en los que se divide el espacio de direcciones lógico
 - Cada página tiene un número de página (VPN: Virtual Page Number)
 - ▶ Para páginas de 4 KB (2¹² bytes):

	VPN	page offset
@ = 0x10010004 =	0001 0000 0000 0001 0000	0000 0000 0100

Página de memoria

- La memoria física se divide en marcos de página (Page Frames)
 - Mismo tamaño que la página virtual
 - Un marco de página es un contenedor para una página virtual
 - Cada marco de página tiene un número de página física (PPN: Physical Page Number)

Página de memoria

- La memoria física se divide en marcos de página (Page Frames)
 - Mismo tamaño que la página virtual
 - Un marco de página es un contenedor para una página virtual
 - Cada marco de página tiene un número de página física (PPN: Physical Page Number)
- Durante la ejecución de un programa:
 - Sus páginas virtuales (datos, instrucciones) se van almacenando en memoria física en los marcos de página a medida que se necesiten
 - Si no quedan marcos de página libres, el sistema operativo reemplaza uno ocupado

Ejemplo

▶ Direcciones de 32 bits, páginas de 4 KB, memoria de 16 KB

Traducción de direcciones

- El procesador trabaja con direcciones lógicas
- Para cada load/store, se debe traducir la dirección lógica a una dirección física
- ► MMU (Memory Management Unit):
 - Traduce el VPN al correspondiente PPN
 - El offset dentro de la página no cambia

Tabla de páginas

- Para traducir una dirección lógica a física, es necesario saber en qué marco de página (PPN) se almacena una página lógica (VPN)
- El sistema operativo utiliza emplazamiento completamente asociativo
- Cada programa tiene una tabla de páginas que almacena la correspondencia entre VPN y PPN para cada página lógica
 - Entrada de la tabla de páginas (PTE: Page Table Entry)
 - Tantas entradas como páginas virtuales
 - ▶ Bit de presencia (P) y bit de modificado (D)
- ► Registro de tabla de páginas

Traducción con tabla de páginas

Traducción con tabla de páginas

Fallo de página

- ➤ Se produce cuando la CPU solicita a la MMU un acceso a una página que no se encuentra en memoria principal
 - Bit de presencia (P) vale 0 en la tabla de páginas

Fallo de página

- Se produce cuando la CPU solicita a la MMU un acceso a una página que no se encuentra en memoria principal
 - ▶ Bit de presencia (P) vale 0 en la tabla de páginas
- En caso de fallo de página, el sistema operativo:
 - Lee la página del disco duro
 - La escribe en memoria principal (emplazamiento completamente asociativo)
 - Actualiza la información de la tabla de páginas
 - Reejecuta la instrucción que causó el fallo de página

Fallo de página

- Se produce cuando la CPU solicita a la MMU un acceso a una página que no se encuentra en memoria principal
 - Bit de presencia (P) vale 0 en la tabla de páginas
- En caso de fallo de página, el sistema operativo:
 - Lee la página del disco duro
 - La escribe en memoria principal (emplazamiento completamente asociativo)
 - Actualiza la información de la tabla de páginas
 - ► Reejecuta la instrucción que causó el fallo de página
- Política de escritura retardada con asignación
 - ► El acceso al disco es extremadamente lento

Reemplazos de página

- Se producen cuando el sistema operativo necesita cargar una página en memoria y no queda ningún marco de página libre
- Se utiliza un algoritmo de reemplazo para elegir la página a reemplazar (LRU)
- ▶ Antes de reemplazar una página modificada (bit D=1) hay que escribirla en el disco
- ► En Linux la zona del disco dedicada a almacenar las páginas se denomina espacio de intercambio (swap)

https://e-enquestes.upc.edu/

