1. 次の空間グラフ f(G), g(G) は互いに同型であることを確かめよ。



.....



2. 次の空間グラフ f(G), g(G) は互いに同型であることを確かめよ。



.....



- 3. 空間グラフの同型関係  $\cong$  について、以下が成り立つことをそれぞれ示せ。
  - (a) 空間グラフ f(G) に対し、 $f(G) \cong f(G)$

.....

$$\Phi: \mathbb{R}^3 \times [0,1] \to \mathbb{R}^3 \times [0,1] \tag{8}$$

写像  $\Phi$  を恒等写像とすると  $\Phi(f(G)) = f(G)$  である。

(b) 空間グラフ f(G), g(G) に対し、 $f(G) \cong g(G)$  ならば  $g(G) \cong f(G)$ 

 $f(G)\cong g(G)$  であるので、同相写像  $\Phi$  が存在し、 $\Phi(f(G))=g(G)$  である。  $\Phi$  は同相写像なので、 $X\circ\Phi=\Phi\circ X=id$  となる同相写像 X が存在する。 この X により、X(g(G))=f(G) であるので、 $g(G)\cong f(G)$  である。

(c) 空間グラフ f(G),g(G),h(G) に対し、 $f(G)\cong g(G)$  かつ  $g(G)\cong h(G)$  ならば  $f(G)\cong h(G)$ 

.....

$$\Phi: \mathbb{R}^3 \times [0,1] \to \mathbb{R}^3 \times [0,1] \tag{9}$$

$$X: \mathbb{R}^3 \times [0,1] \to \mathbb{R}^3 \times [0,1] \tag{10}$$

 $f(G) \cong g(G)$  より同相写像  $\Phi$  が存在し、 $\Phi(f(G)) = g(G)$  である。

また、 $g(G) \cong h(G)$  より同相写像 X が存在し、X(g(G)) = h(G) である。

 $\Phi, X$  が同相写像であるので、その合成写像  $X \circ \Phi$  も同相写像であり、  $X(\Phi(f(G))) = h(G)$  である。

よって、 $f(G) \cong h(G)$  である。

- 4. X,Y,Z を位相空間とし、 $\varphi:X\to Y,\,\psi:Y\to Z$  をそれぞれ写像とするとき、合成写像  $\psi\circ\varphi:X\to Z$  について、以下の問いに答えよ。
  - (a)  $\varphi$ ,  $\psi$  がともに全単射ならば、 $\psi \circ \varphi$  も全単射であることを示せ。

.....

## 全射性

 $\varphi$ ,  $\psi$  がともに全射であるので、任意の  $y\in Y$  に対し  $y=\varphi(x)$  となる  $x\in X$  が存在し、任意の  $z\in Z$  に対し  $z=\psi(y)$  となる  $y\in Y$  が存在する。

任意の  $z \in Z$  に対し  $z = \psi(y)$  となる  $y \in Y$  が存在するので、この  $y \in Y$  について  $y = \varphi(x)$  となる  $x \in X$  が存在する。

つまり、 $\forall z \in Z$  に対し、 $z = \psi \circ \varphi(x)$  となる  $x \in X$  が存在する。 よって、 $\psi \circ \varphi$  は全射である。

## 単射性

 $\varphi, \psi$  がともに単射である。

 $y_1, y_2 \in Y$  に対し、 $\psi(y_1) = \psi(y_2)$  であれば  $y_1 = y_2$  である。

 $\varphi$  は全射であるので、 $y_1 = \varphi(x_1), y_2 = \varphi(x_2)$  となる  $x_1, x_2 \in X$  が存在する。  $\varphi$  は単射であるので、 $x_1 = x_2$  である。

つまり、 $\psi(\varphi(x_1)) = \psi(\varphi(x_2))$  であれば  $x_1 = x_2$  である。

よって、 $\psi \circ \varphi$  は単射である。 この 2 つより  $\psi \circ \varphi$  は単全射である。

(b)  $\varphi$ ,  $\psi$  がともに連続写像ならば、 $\psi \circ \varphi$  も連続写像であることを示せ。

arphi、 $\psi$  が連続写像であるので、任意の開集合  $U_Y \subset Y$ ,  $U_Z \subset Z$  に対して、

 $arphi^{-1}(U_Y),\,\psi^{-1}(U_Z)$ が開集合となる。

 $\psi^{-1}(U_Z)$  が開集合であるので、 $\varphi^{-1}(\psi^{-1}(U_Z))$  も開集合となる。

つまり、任意の開集合  $U_Z\subset Z$  に対して、 $(\varphi^{-1}\circ\psi^{-1})(U_Z)$  も開集合となる。  $(\varphi^{-1}\circ\psi^{-1})(U_Z)=(\psi\circ\varphi)^{-1}(U_Z)$  であるので、写像  $\psi\circ\varphi:X\to Z$  は連続写像である。

(c)  $\varphi$  が X から Y への同相写像で、かつ、 $\psi$  が Y から Z への同相写像ならば、  $\psi \circ \varphi$  は X から Z への同相写像となることを示せ。

.....

同相写像とは、全単射な連続写像であり、その逆写像も連続写像であるものをいう。

先の問より、 $\varphi$ , $\psi$  が全単射な連続写像であるので、合成写像  $\psi \circ \varphi$  も全単射な連続写像である。

また、 $\varphi^{-1}:Y\to X,\;\psi^{-1}:Z\to Y$  も連続写像であるので、その合成写像  $\varphi^{-1}\circ\psi^{-1}=(\psi\circ\varphi)$  も連続写像である。

よって、 $\psi \circ \varphi$  は同相写像である。

5. 次の図式が表す結び目 K は自明であることを確かめよ。





6. 次の図式が表す空間グラフ f(G) は分離していることを確かめよ。



.....



7. f(G),g(G) は、それぞれ次の図式  $\tilde{f}(G),\tilde{g}(G)$  で表された空間グラフとする。この時、 $\tilde{f}(G)$  と  $\tilde{g}(G)$  の間の Reidemeister 変形の列を具体的に図示せよ。

.....

## Reidemeister 変形

捻る、パスの上下と移動する、交点の上下を移動する

.....