Національний технічний університет України "Київський політехнічний інститут імені Ігоря Сікорського" Факультет Електроніки Кафедра мікроелектроніки

ЗВІТ

Про виконання РГР

з дисципліни: «Вакуумна та плазмова електроніка»

Виконавець:		
Студент 3-го курсу	(підпис)	Р. П. Фіцай
Перевірив:	(підпис)	О.М. Бевза

Завдання

- 1. Дивимось на графіки побудовані для п.3 лабораторної роботи.
 - 1.1 Визначити частоту червоної границі фотоефекту.
 - 1.2 Необхідно визначити напругу запирання для кожного елементу при інтенсивності 50 % та 100%. Пояснити, чому напруги запирання відрізняються при різній інтенсивності.
 - 1.3 Побудувати графіки залежностей напруги запирання від частоти (у вас вказані довжини хвиль, отже їх треба перерахувати в частоту) для випадку інтенсивності 50% та 100%. Для кожного матеріалу (у кожного свої три матеріала).
 - 1.4 Визначити з цих нових побудованих графіків роботу виходу в точці (будь-якій, назвіть її А) за вашим власним вибором, яка розташована десь посередині отриманого графіку. Для всіх трьох матеріалів. Для обох значень інтенсивності (50% та 100%). Порівняйте отримані значення роботи виходу при двох різних інтенсивностей для кожного матеріалу та зробити висновки.
 - 1.5 Розрахувати кінетичну швидкість електронів для точки A для всіх трьох матеріалів.
 - 1.6 Порівняти отримане із розрахунку значення роботи виходу з відомими значеннями роботи виходу (довідкові дані, вказати джерело) та розрахувати абсолютну та відносну помилки. Зробити для трьох ваших матеріалів матеріалів.
 - 1.7 Отримані результати звести до таблиці, де повинен бути вказаний кожен з трьох матеріалів та розраховані для нього значення: частота червоної границі фотоефекту, напруга запирання (для двох інтенсивностей), робота виходу в точці А (дві інтенсивності), кінетична швидкість електронів в точці А (для двох інтенсивностей 50% та 100%).

- 1.8 Зробіть перевірку правильності виконання розрахунків за формулою Ейнштейна для фотоефекту.
- 2. Беремо графіки зроблені до пункту 4, де було побудовано залежності струму від інтенсивності. Ви вибирали самі три довжини хвилі. У кожного вибрано свій один матеріал. Робимо:
 - 2.1 Побудуйте ваш графік в інших координатах, де вісь х- довжина хвилі, вісь у-струм. Беремо значення струму для Інтенсивності 50%.
 - 2.2 Побудуйте самі (ваші припущення) на вашому новому графіку іншим кольором як буде виглядати ця залежність, якщо інтенсивність буде складати, а далі за списком вибираємо свій варіант(5-60%).
- 3. Пояснити чому струм змінився саме так. Дивимось на графіки побудовані для пункта 5. Де залежності енергії від частоти. Треба:
 - 3.1 Визначити яка саме енергія стоїть у вас по осі ігрек. Це повна енергія фотону чи робота виходу чи кінетична енергія електрона чи щось інше? Відповідь аргументовано пояснити.

Завдання 1

Частота червоної межі фотоефекту для Na $\approx 0.5 \cdot 10^{15}$ Гц Частота червоної межі фотоефекту для Cu $\approx 0.8 \cdot 10^{15}$ Гц Частота червоної межі фотоефекту для Ca $\approx 1.2 \cdot 10^{15}$ Гц

За формулою $v=\frac{c}{\lambda}$ знайду частоту та занесу дані в табличку наступним чином:

λ , HM	$f \cdot 10^{15}$, Гц
200	1,51
400	0,74
440	0,63
470	0,62

Тепер побудую графіки залежностей напруги запирання від частоти для випадку інтенсивності 50% та 100%, для кожного матеріалу

Na				
$f \cdot 10^{15}$, Гц	U_3 , B			
	50%	100%		
0.63	0	0		
0.68	0	0		
0.7	-1.68	-1.68		
1.5	-5.92	-6.05		

Ca				
$f \cdot 10^{15}, \Gamma$ ц	U_3 , B			
	50%	100%		
0.63	0	0		
0.68	0	0		
0.7	0	0		
1.5	-3	-3.8		

Cu				
$f \cdot 10^{15}$, Гц	U_3 , B			
	50%	100%		
0.63	0	0		
0.68	0	0		
0.7	-3.3	-3.4		
1.5	-4.2	-4.3		

Тепер визначимо з нових побудованих графіків роботу виходу в точці A за власним вибором, яка розташована десь посередині отриманиї графіків, для всіх трьох матеріалів та обох значень інтенсивності (50% та 100%). $A=h\cdot f$

$$A_{Na-50\%} = 3.8088 \text{ eB}$$
 $A_{Na-100\%} = 3.7674 \text{ eB}$

$$A_{Ca-50\%} = 3.9330 \text{ eB}$$
 $A_{Ca-100\%} = 4.1400 \text{ eB}$

$$A_{Cu} = 3.0222 \text{ eB}$$

Тепер рахуємо кінетичну швидкість електронів для точки A для всіх трьох матеріалів:

$$v = \sqrt{\frac{2 \cdot e \cdot U_3}{m}} \tag{1}$$

Для Na

$$v \approx 9,83378 \cdot 10^5 \frac{\text{M}}{\text{c}}$$
 $v \approx 10,06353 \cdot 10^5 \frac{\text{M}}{\text{c}}$

Для Са

$$v \approx 6,70902 \cdot 10^5 \frac{\text{M}}{\text{c}}$$
 $v \approx 7,04147 \cdot 10^5 \frac{\text{M}}{\text{c}}$

Для Cu

$$v = 10,80496 \cdot 10^5 \, \frac{\mathrm{M}}{\mathrm{c}}$$

	Na		Ca		Cu	
	A, eB					
	розраховане	табличне	розраховане	табличне	розразоване	табличне
50%	3.8088	2.2	3.9330	4	3.0222	4.4
100%	3.7674	2.2	4.1400	$\frac{1}{2}$	3.0222	4.4

Для Na 50% похибка становить: $\triangle \approx 1.6; \, \delta = 70\%$ Для Na 100% похибка становить: $\triangle \approx 1.5; \, \delta = 69\%$

Для Са 50% похибка становить: $\triangle \approx 0.1; \, \delta = 2,6\%$ Для Са 50% похибка становить: $\triangle \approx 0.1; \, \delta = 2,5\%$

Для Си 50% похибка становить: $\triangle \approx 1.4; \, \delta = 31\%$ Для Си 100% похибка становить: $\triangle \approx 1.4; \, \delta = 31\%$

	Na		Ca		Cu	
		A, eB				
	моє	довідкове	моє	довідкове	моє	довідкове
50%	3.808	2.2	3.93	4	3.02	4.4
100%	3.767	2.2	4,14		2.02	
	U_3 , B					
50%	-2.75		-1.28		-3.32	
100%	-2.88		-1.41		-3.32	
	$V, \cdot 10^5 \frac{M}{c}$					
50%	9.8333		6.70902		10,804	
100%	10.0635		7.04114		10.804	

Частота червоної границі фотоефекту для Na: $0,5\cdot 10^{15}$ Гц Частота червоної границі фотоефекту для Ca: $0,8\cdot 10^{15}$ Гц Частота червоної границі фотоефекту для Cu: $1,2\cdot 10^{15}$ Гц Довідкові дані взято з http://studzakaz.com/resheniefizikazadachi1119.htm

Завдання 2

Взяв графіки зроблені до пункту 4, де було побудовано залежності струму від інтенсивності. Побудував графік в інших координатах, де вісь х- довжина хвилі, вісь у-струм. БереВзявмо значення струму для Інтенсивності 50%. Побудував свої припущення на своєму новому графіку іншим кольором як буде виглядати ця залежність, якщо інтенсивність буде складати, а далі за списком вибираємо свій варіант(5-100%).

Завдання 3

Пояснити чому струм змінився саме так. Дивимось на графіки побудовані для пункта 5. Де залежності енергії від частоти. Треба: Визначити яка саме енергія стоїть у вас по осі ігрек. Це повна енергія фотону чи робота виходу чи кінетична енергія електрона чи щось інше?

На мою думку, на графіках з лабораторної роботи №1 по осі ігрек маю кінетичну енергію, як на мене це випливае електронів з II законом Столетова.