Matemática Discreta l Clase 3 - Recursión

FAMAF / UNC

22 de marzo de 2022

Sea $\mathbb N$ el conjuntos de enteros positivos, esto es

$$\mathbb{N} = \{ n \in \mathbb{Z} | n \ge 1 \},$$

y denotemos \mathbb{N}_0 el conjunto $\mathbb{N} \cup \{0\},$ esto es

$$\mathbb{N}_0 = \{n \in \mathbb{Z} | n \ge 0\}.$$

Sea $\mathbb N$ el conjuntos de enteros positivos, esto es

$$\mathbb{N} = \{ n \in \mathbb{Z} | n \ge 1 \},$$

y denotemos \mathbb{N}_0 el conjunto $\mathbb{N} \cup \{0\},$ esto es

$$\mathbb{N}_0 = \{ n \in \mathbb{Z} | n \ge 0 \}.$$

 $\mathbb N$ es llamado el conjunto de *números naturales*.

Clase 3 - Recursión

Sea $\mathbb N$ el conjuntos de enteros positivos, esto es

$$\mathbb{N} = \{ n \in \mathbb{Z} | n \ge 1 \},$$

y denotemos \mathbb{N}_0 el conjunto $\mathbb{N} \cup \{0\},$ esto es

$$\mathbb{N}_0 = \{ n \in \mathbb{Z} | n \ge 0 \}.$$

N es llamado el conjunto de números naturales.

o $X \subset \mathbb{N}$ (o de \mathbb{N}_0) $\wedge X \neq \emptyset \Rightarrow X$ tiene cota inferior (0 o un x < 0).

Sea $\mathbb N$ el conjuntos de enteros positivos, esto es

$$\mathbb{N} = \{ n \in \mathbb{Z} | n \ge 1 \},$$

y denotemos \mathbb{N}_0 el conjunto $\mathbb{N} \cup \{0\}$, esto es

$$\mathbb{N}_0 = \{ n \in \mathbb{Z} | n \ge 0 \}.$$

N es llamado el conjunto de números naturales.

- $\circ~X\subset\mathbb{N}~(ext{o de }\mathbb{N}_0)\land X
 eq\emptyset\Rightarrow X$ tiene cota inferior (0 o un x<0).
- Así, en este caso el axioma del buen orden toma la forma

si $X \subset \mathbb{N} \vee X \subset \mathbb{N}_0$, no vacío $\Rightarrow X$ tiene un mínimo.

$$\circ u_n = 3n + 2,$$

$$u_n = 3n + 2$$
, o

$$o w_n = (n+1)(n+2)(n+3).$$

Clase 3 - Recursión

$$u_n = 3n + 2$$
, o

$$\circ w_n = (n+1)(n+2)(n+3).$$

En este caso es fácil calcular algún valor de cada sucesión, por ejemplo

Clase 3 - Recursión

$$\circ u_n = 3n + 2$$
, o

$$\circ w_n = (n+1)(n+2)(n+3).$$

En este caso es fácil calcular algún valor de cada sucesión, por ejemplo

$$u_5 = 3 \cdot 5 + 2 = 17$$
 o $w_3 = 4 \cdot 5 \cdot 6 = 120$

Clase 3 - Recursión

22/03/2022

$$\circ u_n = 3n + 2$$
, o

$$volume w_n = (n+1)(n+2)(n+3).$$

En este caso es fácil calcular algún valor de cada sucesión, por ejemplo

$$u_5 = 3 \cdot 5 + 2 = 17$$
 o $w_3 = 4 \cdot 5 \cdot 6 = 120$

Cuando una sucesión puede expresar se como combinación de un número determinado de operaciones elementales, diremos que tiene una fórmula cerrada.

$$\circ \ u_1 = 1, \ u_2 = 2, \ ({\sf casos\ base})$$

$$\circ \ u_1 = 1, \ u_2 = 2, \ (casos base)$$

$$\circ$$
 $u_n=u_{n-1}+u_{n-2}$, para $n\geq 3$ (caso recursivo).

- $\circ \ u_1 = 1, \ u_2 = 2, \ (casos base)$
- $\circ u_n = u_{n-1} + u_{n-2}$, para $n \ge 3$ (caso recursivo).

La anterior es la sucesión de Fibonacci. Entonces podemos calcular los término $n \ge 3$ de la sucesión usando la recursión:

- $\circ \ u_1 = 1, \ u_2 = 2, \ ({\sf casos\ base})$
- \circ $u_n=u_{n-1}+u_{n-2}$, para $n\geq 3$ (caso recursivo).

La anterior es la sucesión de Fibonacci. Entonces podemos calcular los término $n \ge 3$ de la sucesión usando la recursión:

$$u_3 = u_2 + u_1 = 2 + 1 = 3$$

Clase 3 - Recursión

$$\circ \ u_1 = 1, \ u_2 = 2, \ ({\sf casos\ base})$$

$$\circ~u_n=u_{n-1}+u_{n-2}$$
, para $n\geq 3$ (caso recursivo).

La anterior es la sucesión de Fibonacci. Entonces podemos calcular los término $n \ge 3$ de la sucesión usando la recursión:

$$u_3 = u_2 + u_1 = 2 + 1 = 3$$

$$u_4 = u_3 + u_2 = 3 + 2 = 5$$

$$\circ \ u_1 = 1, \ u_2 = 2, \ ({\sf casos\ base})$$

$$\circ$$
 $u_n=u_{n-1}+u_{n-2}$, para $n\geq 3$ (caso recursivo).

La anterior es la sucesión de Fibonacci. Entonces podemos calcular los término $n \ge 3$ de la sucesión usando la recursión:

$$u_3 = u_2 + u_1 = 2 + 1 = 3$$

$$u_4 = u_3 + u_2 = 3 + 2 = 5$$

$$u_5 = u_4 + u_3 = 5 + 3 = 8$$

y así sucesivamente.

Clase 3 - Recursión

22/03/2022

Sea un definida

$$\circ u_1 = 3, u_2 = 5 \text{ y}$$

$$u_n = 3u_{n-1} - 2u_{n-2}$$
 para $n \ge 3$.

Calcular u_n para $n \leq 5$.

Sea un definida

$$\circ u_1 = 3, u_2 = 5 \text{ y}$$

$$u_n = 3u_{n-1} - 2u_{n-2}$$
 para $n \ge 3$.

Calcular u_n para $n \leq 5$.

Solución

Sea *u_n* definida

$$u_1 = 3, u_2 = 5 y$$

$$\circ \ u_n = 3u_{n-1} - 2u_{n-2} \text{ para } n \ge 3.$$

Calcular u_n para $n \leq 5$.

Solución

Los valores para n=1 y n=2 ya los conocemos. La fórmula recursiva es la que nos servirá para conocer los siguientes términos

Sea u_n definida

$$\circ u_1 = 3, u_2 = 5 \text{ y}$$

$$\circ \ u_n = 3u_{n-1} - 2u_{n-2} \ \text{para} \ n \ge 3.$$

Calcular u_n para $n \leq 5$.

Solución

Los valores para n=1 y n=2 ya los conocemos. La fórmula recursiva es la que nos servirá para conocer los siguientes términos

$$u_3 = 3u_2 - 2u_1$$

Clase 3 - Recursión

Sea u_n definida

$$\circ u_1 = 3, u_2 = 5 \text{ y}$$

$$\circ$$
 $u_n = 3u_{n-1} - 2u_{n-2}$ para $n ≥ 3$.

Calcular u_n para $n \leq 5$.

Solución

Los valores para n=1 y n=2 ya los conocemos. La fórmula recursiva es la que nos servirá para conocer los siguientes términos

$$\circ \ u_3 = 3u_2 - 2u_1 = 3 \cdot 5 - 2 \cdot 3 = 9,$$

Clase 3 - Recursión

22/03/2022

Sea *u_n* definida

$$\circ u_1 = 3, u_2 = 5 y$$

∘
$$u_n = 3u_{n-1} - 2u_{n-2}$$
 para $n \ge 3$.

Calcular u_n para $n \leq 5$.

Solución

Los valores para n=1 y n=2 ya los conocemos. La fórmula recursiva es la que nos servirá para conocer los siguientes términos

$$\circ \ u_3 = 3u_2 - 2u_1 = 3 \cdot 5 - 2 \cdot 3 = 9,$$

$$u_4 = 3u_3 - 2u_2$$

Sea *u_n* definida

$$u_1 = 3, u_2 = 5 y$$

∘
$$u_n = 3u_{n-1} - 2u_{n-2}$$
 para $n \ge 3$.

Calcular u_n para $n \leq 5$.

Solución

Los valores para n=1 y n=2 ya los conocemos. La fórmula recursiva es la que nos servirá para conocer los siguientes términos

$$\circ \ u_3 = 3u_2 - 2u_1 = 3 \cdot 5 - 2 \cdot 3 = 9,$$

$$u_4 = 3u_3 - 2u_2 = 3 \cdot 9 - 2 \cdot 5 = 17$$

Sea un definida

$$u_1 = 3, u_2 = 5 y$$

∘
$$u_n = 3u_{n-1} - 2u_{n-2}$$
 para $n \ge 3$.

Calcular u_n para $n \leq 5$.

Solución

Los valores para n=1 y n=2 ya los conocemos. La fórmula recursiva es la que nos servirá para conocer los siguientes términos

$$u_3 = 3u_2 - 2u_1 = 3 \cdot 5 - 2 \cdot 3 = 9$$

$$u_4 = 3u_3 - 2u_2 = 3 \cdot 9 - 2 \cdot 5 = 17$$

$$u_5 = 3u_4 - 2u_3$$

Clase 3 - Recursión

22/03/2022

Sea *u_n* definida

$$u_1 = 3, u_2 = 5 y$$

$$\circ u_n = 3u_{n-1} - 2u_{n-2}$$
 para $n \ge 3$.

Calcular u_n para $n \leq 5$.

Solución

Los valores para n=1 y n=2 ya los conocemos. La fórmula recursiva es la que nos servirá para conocer los siguientes términos

$$u_3 = 3u_2 - 2u_1 = 3 \cdot 5 - 2 \cdot 3 = 9$$

$$u_4 = 3u_3 - 2u_2 = 3 \cdot 9 - 2 \cdot 5 = 17$$

$$\circ \ u_5 = 3u_4 - 2u_3 = 3 \cdot 17 - 2 \cdot 9 = 33,$$

Clase 3 - Recursión

22/03/2022

$$\circ u_1 = 3,$$

- $u_1 = 3$
- $u_2 = 5$,

- $u_1 = 3$,
- $u_2 = 5$,
- $u_3 = 9$,

- $u_1 = 3$
- $u_2 = 5$
- $u_3 = 9$
- $u_4 = 17$

- $\circ u_1 = 3$,
- $u_2 = 5$
- $u_3 = 9$
- $u_4 = 17$
- $u_5 = 33$,

- $\circ u_1 = 3$,
- $u_2 = 5$
- $u_3 = 9$
- $u_4 = 17$
- $u_5 = 33$,

- $\circ \ u_1 = 3,$
- $u_2 = 5$,
- $u_3 = 9$,
- $u_4 = 17$
- $\circ u_5 = 33$,

Observando cuidadosamente estos valores podemos darnos cuenta que:

$$\circ \ u_1 = 3 = 2 + 1 = 2^1 + 1,$$

$$\circ \ u_1 = 3 = 2 + 1 = 2^1 + 1,$$

$$\circ \ u_2 = 5 = 4 + 1 = 2^2 + 1,$$

$$\circ \ u_1 = 3 = 2 + 1 = 2^1 + 1,$$

$$\circ \ u_2 = 5 = 4 + 1 = 2^2 + 1,$$

$$\circ \ u_3 = 9 = 8 + 1 = 2^3 + 1,$$

$$\circ \ u_1 = 3 = 2 + 1 = 2^1 + 1,$$

$$\circ \ u_2 = 5 = 4 + 1 = 2^2 + 1,$$

$$\circ \ u_3 = 9 = 8 + 1 = 2^3 + 1,$$

$$\circ \ u_4 = 17 = 16 + 1 = 2^4 + 1,$$

$$\circ \ u_1 = 3 = 2 + 1 = 2^1 + 1,$$

$$\circ \ u_2 = 5 = 4 + 1 = 2^2 + 1,$$

$$\circ \ u_3 = 9 = 8 + 1 = 2^3 + 1,$$

$$\circ u_4 = 17 = 16 + 1 = 2^4 + 1,$$

$$\circ u_5 = 33 = 32 + 1 = 2^5 + 1,$$

22/03/2022

$$\circ u_1 = 3 = 2 + 1 = 2^1 + 1,$$

$$\circ \ u_2 = 5 = 4 + 1 = 2^2 + 1,$$

$$\circ \ u_3 = 9 = 8 + 1 = 2^3 + 1,$$

$$u_4 = 17 = 16 + 1 = 2^4 + 1$$

$$\circ \ u_5 = 33 = 32 + 1 = 2^5 + 1,$$

Ahora sí, claramente podemos deducir que (posiblemente)

$$u_n=2^n+1.$$

Clase 3 - Recursión

22/03/2022

$$u_1 = 3 = 2 + 1 = 2^1 + 1$$

$$u_2 = 5 = 4 + 1 = 2^2 + 1$$

$$\circ \ u_3 = 9 = 8 + 1 = 2^3 + 1,$$

$$\circ u_4 = 17 = 16 + 1 = 2^4 + 1,$$

$$\circ \ u_5 = 33 = 32 + 1 = 2^5 + 1,$$

Ahora sí, claramente podemos deducir que (posiblemente)

$$u_n=2^n+1.$$

La clase que viene aprenderemos un método (principio de inducción) que nos permitirá probar este tipo de afirmaciones.

Clase 3 - Recursión

22/03/2022

El método de definición recursiva aparecerá bastante seguido en la materia. Existen otras formas de este procedimiento que se "esconden" por su notación.

$$\sum_{r=1}^{n} r, 1 + 2 + 3 + \dots + n.$$

$$\sum_{r=1}^{n} r$$
, $1+2+3+\cdots+n$.

Ambas significan que sumamos los primeros n números naturales, pero cada uno contiene un misterioso símbolo, $\sum y \cdots$, respectivamente.

$$\sum_{r=1}^{n} r$$
, $1+2+3+\cdots+n$.

Ambas significan que sumamos los primeros n números naturales, pero cada uno contiene un misterioso símbolo, $\sum y \cdots$, respectivamente. Lo que deberíamos decir es que cada uno de ellos es equivalente a la expresión s_n , dada por la siguiente definición recursiva:

$$\sum_{r=1}^{n} r$$
, $1+2+3+\cdots+n$.

Ambas significan que sumamos los primeros n números naturales, pero cada uno contiene un misterioso símbolo, $\sum y \cdots$, respectivamente. Lo que deberíamos decir es que cada uno de ellos es equivalente a la expresión s_n , dada por la siguiente definición recursiva:

$$s_1 = 1,$$
 $s_n = s_{n-1} + n,$ $n \ge 2.$

Sea $n \in \mathbb{N}$ sean $a_i, \ 1 \leq i \leq n$ una secuencia de números (enteros, reales, etc.).

Sea $n \in \mathbb{N}$ sean a_i , $1 \le i \le n$ una secuencia de números (enteros, reales, etc.). Entonces $\sum_{i=1}^n a_i$ denota la función recursiva definida

Sea $n \in \mathbb{N}$ sean a_i , $1 \le i \le n$ una secuencia de números (enteros, reales, etc.). Entonces $\sum_{i=1}^{n} a_i$ denota la función recursiva definida

$$\sum_{i=1}^{1} a_i = a_1, \qquad \sum_{i=1}^{n} a_i = \sum_{i=1}^{n-1} a_i + a_n \quad (n \ge 2).$$

Sea $n \in \mathbb{N}$ sean a_i , $1 \le i \le n$ una secuencia de números (enteros, reales, etc.). Entonces $\sum_{i=1}^n a_i$ denota la función recursiva definida

$$\sum_{i=1}^{1} a_i = a_1, \qquad \sum_{i=1}^{n} a_i = \sum_{i=1}^{n-1} a_i + a_n \quad (n \ge 2).$$

En este caso decimos que $\sum_{i=1}^{n} a_i$ es la *sumatoria* de los a_i de i=1 a n.

El símbolo $\prod_{i=1}^n a_i$ denota la función recursiva definida

El símbolo $\prod_{i=1}^n a_i$ denota la función recursiva definida

$$\prod_{i=1}^{1} a_i = a_1, \qquad \prod_{i=1}^{n} a_i = \prod_{i=1}^{n-1} a_i \cdot a_n \quad (n \ge 2).$$

El símbolo $\prod_{i=1} a_i$ denota la función recursiva definida

$$\prod_{i=1}^{1} a_i = a_1, \qquad \prod_{i=1}^{n} a_i = \prod_{i=1}^{n-1} a_i \cdot a_n \quad (n \ge 2).$$

En este caso decimos que $\prod_{i=1}^n a_i$ es la productoria de los a_i de i=1 a n.

$$n! = 1 \cdot 2 \cdot 3 \cdot \cdot \cdot n,$$

$$n! = 1 \cdot 2 \cdot 3 \cdot \cdot \cdot n$$

y el significado es bastante claro para cualquiera.

$$n! = 1 \cdot 2 \cdot 3 \cdot \cdot \cdot n$$

y el significado es bastante claro para cualquiera.

Pero para precisar (y hacerlo claro para una computadora) debemos usar una definición recursiva:

$$n! = 1 \cdot 2 \cdot 3 \cdot \cdot \cdot n$$

y el significado es bastante claro para cualquiera.

Pero para precisar (y hacerlo claro para una computadora) debemos usar una definición recursiva:

$$\circ$$
 1! = 1,

$$n! = 1 \cdot 2 \cdot 3 \cdot \cdot \cdot n$$

y el significado es bastante claro para cualquiera.

Pero para precisar (y hacerlo claro para una computadora) debemos usar una definición recursiva:

- \circ 1! = 1,
- $\circ n! = (n-1)! \cdot n.$

$$n! = \prod_{i=1}^{n} i.$$

$$n! = \prod_{i=1}^{n} i.$$

Pese a que esta última fórmula parece cerrada, oculta la definición recursiva de \prod .

$$n! = \prod_{i=1}^{n} i.$$

Pese a que esta última fórmula parece cerrada, oculta la definición recursiva de ∏.

Es un resultado conocido que la función n! no admite una fórmula cerrada.

Finalmente definiremos la "n-ésima potencia" de un número: sea x un número, si $n \in \mathbb{N}$ definimos