

Technische Universiteit
Eindhoven
University of Technology

Sheets are largely based on the those provided by Tan, Steinbach, and Kumar. *Introduction to Data Mining*

Where innovation starts

Classification: Definition

- Given a training set
 - Relation over attributes, one of the attributes is the class.
- Find a model for the class attribute
- That allows for:
 - predicting <u>previously unseen</u> records accurately.

Examples of Classification Task

- Predicting tumor cells as benign or malignant
- Classifying credit card transactions as legitimate or fraudulent

 Classifying secondary structures of protein as alpha-helix, beta-sheet, or random coil

 Categorizing news stories as finance, weather, entertainment, sports, etc

Illustrating Classification Task

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Many different types of models

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) → Amphibians

Outline

- K-nearest neighbors
 - Distance measures
- Decision trees
 - Induction of a decision tree
 - Hunt's algorithm
 - Issues with decision trees

Outline

- K-nearest neighbors
 - Distance measures
- Decision trees
 - Induction of a decision tree
 - Hunt's algorithm
 - Issues with decision trees

Nearest Neighbor Classifiers

- Basic idea:
 - If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest-Neighbor Classifiers

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify k nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record

Definition of Nearest Neighbor

- (a) 1-nearest neighbor
- (b) 2-nearest neighbor
- (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

1 nearest-neighbor

Voronoi Diagram

Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_{i} - q_{i})^{2}}$$

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the knearest neighbors
 - Weigh the vote according to distance
 - weight factor, $w = 1/d^2$

Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

Nearest Neighbor Classification...

- Problem with Euclidean measure:
 - High dimensional data
 - curse of dimensionality
 - Can produce counter-intuitive results

Outline

- K-nearest neighbors
 - Distance measures
 - Example: for strings and sequences
- Decision trees
 - Induction of a decision tree
 - Hunt's algorithm
 - Issues with Decision trees

Distance Measures ...

- Choosing the correct distance function is essential
 - Eucledian, Minkowski
 - Mahalanobis
 - Simple Matching Coefficient
 - Jaccard measure
 - Tanimoto Coefficient
 - Cosine Measure
- Example: distance measure for strings

Edit Distance

- Distance between two strings: minimal number of operations to transform one into another
 - Insert a character
 - Delete a character
 - Replace a character with aother
- Example:
 - paard → paad → parade distance = 3
 - eauivlaent → equivalent → equivalent distance = 3

Edit Distance: Algorithm

E

A A R P A R Fill a matrix entry i,j: edit distance between t[1..i] en s[1..j] A D

Edit distance: algoritme

```
A A
                                           R
P
Α
        2
R
        3
                 Filling the matrix: recursively
                 d[i,j] = min \{ d(i-1, j) + 1 \quad (del) \}
A
                               d(i,j-1) + 1 (ins)
        4
                               d(i-1,j-1) + cost }
                                   (match of subst.)
        5
D
E
        6
```

Edit distance: algoritme

	_	Р	Α	Α	R	D	
_	0	1	2	3	4	5	
Р	1	0	1	2	3	4	
Α	2	1	0	1	2	3	
R	3	2	1	1	1	2	
Α	4	3	2	1	2	2	
D	5	4	3	2	2	2	
Е	6	5	4	3	3 T	Technische Eindhoven University	Universiteit of Technology

Distance for DNA Sequences

- Matching in BLAST (Basic Local Alignment and Search Tool) is based on this type of match
- Similarity is defined as the maximal match

```
ATGGCGT
*** !**
ATG-AGT
```

- Not every replacement is equally likely
 - Evolutionary theory

BLOSUM62 Substitution Matrix

```
Y2-2-32-1-2-33-22-7-1
                                                   E-1002-42520-33123-10132-2
                                                                                G02013226244233202233
                                                                                                       H20113002833121212223
                                                                                                                                                                                                                                                                                                                                                      W33442232232311432123
C033393433112311221
                          Q11003522032103101212
                                                                                                                                                               L-23-4-12-3-4-220-32-12
                                                                                                                                                                                           K12013112132513101322
                                                                                                                                                                                                                     M -1 -2 3 -1 0 2 3 2 1 2 1 5 0 2 1 -1 1
                                                                                                                                                                                                                                                                           P12213112233124711432
                                                                                                                                                                                                                                                                                                                                                                                                                03331211220314
```


Outline

- K-nearest neighbors
 - Distance measures
- Decision trees
 - Induction of a decision tree
 - Hunt's algorithm
 - Local optimal criterion
 - Gini-Index
 - Issues with decision trees

Example of a Decision Tree

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Another Example of Decision Tree

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

There could be more than one tree that fits the same data!

Decision Tree Classification Task

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Start from the root of tree.

Refund		Taxable Income	Cheat
No	Married	80K	?

Outline

- K-nearest neighbors
 - Distance measures
- Decision trees
 - Induction of a decision tree
 - Hunt's algorithm
 - Local optimal criterion
 - Gini-index
 - Issues with decision trees

Decision Tree Classification Task

Training Set

Tid	Attrib1	Attrib2	Attrib3	Class
11	No	Small	55K	?
12	Yes	Medium	80K	?
13	Yes	Large	110K	?
14	No	Small	95K	?
15	No	Large	67K	?

Test Set

Deduction

General Structure of Hunt's Algorithm

Input: Dataset D

Output: Decision tree t

Induce(D):

If all tuples t in D have label + then

return

If all tuples t in D have label - then

return <

For all split criteria C:

 $D_{1,C} = \{ t \text{ in } D \mid t \text{ satisfies } C \}$

 $D_{2,C} = D - D_1$

Measure Quality(D_1 , D_2)

Let C be the best split

Tid	Refund	Marital Status	Taxable Income	Cheat
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.
- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.
- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

How to Specify Test Condition?

- Depends on attribute types
 - Nominal
 - Ordinal
 - Continuous
- Depends on number of ways to split
 - 2-way split
 - Multi-way split

Splitting Based on Nominal Attributes

Multi-way split: Use as many partitions as distinct values.

Binary split: Divides values into two subsets.
 Need to find optimal partitioning.

Splitting Based on Ordinal Attributes

Multi-way split: Use as many partitions as distinct values.

Size

Large

Binary split: Divides values into two subsets.
 Need to find optimal partitioning.

Medium

Small

What about this split?

Splitting Based on Continuous Attributes

- Different ways of handling
 - Discretization to form an ordinal categorical attribute
 - Static discretize once at the beginning
 - Dynamic ranges can be found by equal interval bucketing, equal frequency bucketing (percentiles), or clustering.
 - Binary Decision: (A < v) or (A ≥ v)
 - consider all possible splits and finds the best cut
 - can be more compute intensive

Splitting Based on Continuous Attributes

(i) Binary split

(ii) Multi-way split

Tree Induction

- Greedy strategy.
 - Split the records based on an attribute test that optimizes certain criterion.
- Issues
 - Determine how to split the records
 - How to specify the attribute test condition?
 - How to determine the best split?
 - Determine when to stop splitting

How to determine the Best Split

Before Splitting: 10 records of class 0, 10 records of class 1

Which test condition is the best?

How to determine the Best Split

- Greedy approach:
 - Nodes with homogeneous class distribution are preferred
- Need a measure of node impurity:

C0: 5

C1: 5

Non-homogeneous,

High degree of impurity

C0: 9

C1: 1

Homogeneous,

Low degree of impurity

Measures of Node Impurity

- Gini Index
- Entropy
- Misclassification error

How to Find the Best Split

Measure of Impurity: GINI

Gini Index for a given node t :

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

(NOTE: $p(j \mid t)$ is the relative frequency of class j at node t).

- Maximum (1 1/n_c) (records equally distributed)
- Minimum 0 (all records in one class)

C1	0	
C2	6	
Gini=0.000		

C1	3
C2	3
Gini=0.500	

Examples for computing GINI

$$GINI(t) = 1 - \sum_{j} [p(j|t)]^{2}$$

$$P(C1) = 0/6 = 0$$
 $P(C2) = 6/6 = 1$

Gini =
$$1 - P(C1)^2 - P(C2)^2 = 1 - 0 - 1 = 0$$

$$P(C1) = 1/6$$
 $P(C2) = 5/6$

Gini =
$$1 - (1/6)^2 - (5/6)^2 = 0.278$$

$$P(C1) = 2/6$$
 $P(C2) = 4/6$

Gini =
$$1 - (2/6)^2 - (4/6)^2 = 0.444$$

Splitting Based on GINI

- Used in CART, SLIQ, SPRINT.
- When a node p is split into k partitions (children), the quality of split is computed as,

$$GINI_{split} = \sum_{i=1}^{k} \frac{n_i}{n} GINI(i)$$

where, n_i = number of records at child i, n_i = number of records at node p.

Binary Attributes: Computing GINI Index

- Splits into two partitions
- Effect of Weighing partitions:
 - Larger and Purer Partitions are sought for.

	Parent
C1	6
C2	6
Gini	= 0.500

Gini(N1)

$$= 1 - (5/7)^2 - (2/7)^2$$

= 0.408

Gini(N2)

$$= 1 - (1/5)^2 - (4/5)^2$$

= 0.32

	N1	N2
C1	5	1
C2	2	4
Gini=0.333		

Gini(Children)

= 7/12 * 0.408 +

5/12 * 0.32

= 0.371

Categorical Attributes: Computing Gini Index

- For each distinct value, gather counts for each class in the dataset
- Use the count matrix to make decisions

Multi-way split

Two-way split (find best partition of values)

	CarType		
	Family	Sports	Luxury
C1	1	2	1
C2	4	1	1
Gini	0.393		

	CarType	
	{Sports, Luxury}	{Family}
C1	3	1
C2	2	4
Gini	0.400	

	CarType	
	{Sports}	{Family, Luxury}
C1	2	2
C2	1 5	
Gini	0.419	

Outline

- K-nearest neighbors
 - Distance measures
- Decision trees
 - Induction of a decision tree
 - Hunt's algorithm
 - Local optimal criterion
 - Gini-index
 - Issues with decision trees

Practical Issues of Classification

- Underfitting and Overfitting
- Missing Values
- Costs of Classification

Underfitting and Overfitting (Example)

500 circular and 500 triangular data points.

Circular points:

$$0.5 \le \text{sqrt}(x_1^2 + x_2^2) \le 1$$

Triangular points:

$$sqrt(x_1^2 + x_2^2) > 0.5 or$$

$$sqrt(x_1^2 + x_2^2) < 1$$

Underfitting and Overfitting

Overfitting due to Noise

Decision boundary is distorted by noise point

Notes on Overfitting

- Overfitting results in decision trees that are more complex than necessary
- Training error no longer provides a good estimate of how well the tree will perform on previously unseen records
- Need new ways for estimating errors

How to Address Overfitting

- Pre-Pruning (Early Stopping Rule)
 - Stop the algorithm before it becomes a fully-grown tree
 - Typical stopping conditions for a node:
 - all instances belong to the same class
 - all the attribute values are the same
 - More restrictive conditions:
 - if number of instances becomes too small
 - If class distribution becomes independent of attributes
 - If expanding the current node does not improve impurity measures.

How to Address Overfitting...

Post-pruning

- Grow decision tree to its entirety
- Trim the nodes of the decision tree in a bottom-up fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node → use a validation set
- Class label of leaf node is determined from majority class of instances in the sub-tree

Conclusion

- Classification problem
 - Learning a model on labeled data
 - Model used to predict class of new examples
- K-nearest neighbor
 - Distance function essential
- Decision trees
 - Hunt's algorithm
 - Split criteria
 - Stopping condition

