R Programming for Data Analysis

Topics

R Foundations

Conditional statements and loops

Functions

Functionals

Case Study 1: String parsing

Map functions in the purrr package

Case Study 2: Data modeling using the broom package

Overview of R and RStudio

https://github.com/suvampaul88/R_class

R Foundations

R's Data Structures

6

- Atomic vectors
- Lists
- Matrix
- Data frames
- Arrays

Vectors

The basic data structure in R is the vector

Every vector has three properties: type, length, attributes

x <- 1:5

typeof(x)

#[1] "integer"

length(x)

#[1] 5

attributes(x)

#NULL

Vectors

There are four common types of atomic vectors

- logical
- integer
- double
- character

Vectors

Atomic vectors are created with c()

```
dbl_var <- c(1, 2.5, 4.5)
```

 $int_var <- c(1L, 6L, 10L)$

log_var <- c(FALSE, TRUE, T, F)

chr_var <- c("strings", "there", "are", ":yoda")

Vectors Vectors

Atomic Vectors are always flat, even if you nest c()'s.

These two vectors are the same:

```
c(1, c(2, c(3,4)))
```

Coercion

What happens when you try to combine different atomic vectors with c()?

$$a <- c(1,2,3)$$

Order of coercion:

logical -> integer -> numeric -> character

Missing Values

NA: logical constant of length 1 which contains a missing value indicator

```
x1 <- c(1, 4, 3, NA, 7)
```

is.na(x1)

#[1] FALSE FALSE TRUE FALSE

is.na(x2)

#[1] FALSE FALSE TRUE TRUE

Can you add these vectors?

b <- c(1,2,3,4)

d <- c(2,3,4,5)

b1 <- c(1,2,NA,4)

d1 <- c(2,3,4,5)

b2 <- c(T,T,F,F)

d2 < -c(2,3,4,5)

b3 < -c(3,4,6)

d3 < -c(3,4,5,6,7)

Lists

Lists are a special type of vector that can contain elements of any type

```
x <- list(1:3, "a", c(TRUE, FALSE, TRUE), c(2.3, 5.9))
str(x)
#List of 4
#$: int [1:3] 1 2 3
#$: chr "a"
#$: logi [1:3] TRUE FALSE TRUE
#$: num [1:2] 2.3 5.9
```

Matrices and Arrays

A dim() attribute to an atomic vector makes it a multi-dimensional array.

A matrix is a special case of the array because it has two dimensions.

$$a <- matrix(1:6, ncol = 3, nrow = 2)$$

or

$$dim(a) <- c(2,3)$$

Matrices and Arrays

```
length(a) #[1] 6
nrow(a) #[1] 2
ncol(a) #[1] 3
rownames(a) <- c("A", "B")
colnames(a) <- c("a", "b", "c")
# abc
#A 135
#B 2 4 6
```

Matrices and Arrays

```
b \leftarrow array(1:12, c(2,3,2))
#, , 1
# [,1] [,2] [,3]
#[1,] 1 3 5
#[2,] 2 4 6
#, , 2
# [,1][,2][,3]
#[1,] 7 9 11
#[2,] 8 10 12
```

Data frames

Most common way of store data in R.

A data frame is a list of equal-length vectors.

It has the properties of both the matrix and the list.

Data frames

```
df_1 <- data.frame(x = 1:3, y = c("a", "b", "c"))
str(df_1)
#'data.frame': 3 obs. of 2 variables:
# $ x: int 1 2 3
# $ y: Factor w/ 3 levels "a", "b", "c": 1 2 3</pre>
```

Data frames

```
df_1 < -data.frame(x = 1:3, y = c("a", "b", "c"),
stringsAsFactors = FALSE)
str(df_1)
#'data.frame': 3 obs. of 2 variables:
#$ x: int 123
#$ y: chr "a" "b" "c"
```

Summary

R's data structures can be organized by dimensionality and whether they hold same types or different types of data.

	Same types	Different types
1d	Atomic vector	List
2d	Matrix	Data Frame
nd	Array	

Subsetting

R has powerful subsetting operators

```
[, [[, and $
```

Subsetting - Vectors

x <- c(2.1, 4.2, 3.3, 5.3)

Positive integers

x[c(3,1)] #[1] 3.3 2.1

Negative integers

x[-c(3,1)] #[1] 4.2 5.3

Logical vectors

x[c(TRUE, TRUE, FALSE, FALSE)] #[1] 2.1 4.2

Nothing

x[] #[1] 2.1 4.2 3.3 5.3

Zero

x[0] #numeric(0)

Subsetting - Matrices

```
a <- matrix(1:9, nrow = 3)
colnames(a) <- c("A", "B", "C")
\# ABC
#[1,] 1 4 7
#[2,] 258
#[3,] 3 6 9
```

```
a[1:2,]
```

$$\#$$
 ABC

BA

#[1,] 4 1

#[2,] 6 3

25

Subsetting - Data frames

```
df_2 < -data.frame(x = 1:3, y = 3:1, z = letters[1:3])
```

```
\# X Y Z
```

#113a

#222b

#3 3 1 c

Subset with a single vector

Subset with two vectors

Like a list - if you subset with a single vector

#'data.frame': 3 obs. of 1 variable:

#\$x: int 123

Like a matrix - if you subset with two vectors (simplifies by default)

int [1:3] 1 2 3

Subsetting Operators

There are two other types of subsetting operators: [[and \$.

[[returns a single value, used with lists

"If list x is a train carrying objects, then x[[5]] is the object in car 5; x[4:6] is a train of cars 4-6."

- @RLangTip

Because data frames are lists of (equal length) vectors, you can use [[to extract a column from data frames

mtcars[[1]], mtcars[["cyl"]]

Simplifying vs. Preserving Subsetting

Simplifying subsets returns the simplest possible data structure that can represent the output

Preserving subsets keeps the structure of the output the same as input

	Simplifying	Preserving
Vectors	x[[1]]	x[1:4]
Matrices/ Data Frames	x[,1]	x[, 1, drop = F]
Lists	x[[1]]	x[1]
	x\$name	^L']

Practice

```
df <- data.frame (
 col_a = rnorm(100),
 col_b = rnorm(100),
 col_c = rnorm(100),
 col_d = rnorm(100)
library(tibble)
as_tibble(df)
# A tibble: 100 x 4
    col_a
            col_b
                   COl_C
                           col_d
    <dbl>
             <dbl>
                     <dbl>
                             <dbl>
1 -0.09754680 -1.0265275 -1.1441489 0.1355666
2 -0.01121655 0.3643875 0.8441854 1.0353159
3 0.26600646 -0.8164279 -0.6364876 1.1521661
4 0.46999005 0.1305813 1.8666679 -0.1122410
5 0.77085928 0.1764415 0.7265543 1.2569743
  0.85352310 1.2663297 -0.2828890 -2.2197279
7 -0.13918735 -0.5980350 -1.1016172 -0.2847439
8 1.56235829 0.4744131 1.1063214 0.5207370
9 -0.84576242 0.1435361 -1.4697943 -1.1066756
# ... with 90 more rows
```

Find the median of each column

(hint: look up the *median* function in R)

Find the median of each row

median(df[[1]])

median(df[[2]])

median(df[[3]])

median(df[[4]])

```
Why df[[1]] instead of df[1]?
str(df[1])
'data.frame': 100 obs. of 1 variable:
$ col a: num -0.0975 -0.0112 0.266 0.47 0.7709 ...
str(df[[1]])
num [1:100] -0.0975 -0.0112 0.266 0.47 0.7709 ...
```

Because data frames are lists of vectors, you can use [[to extract a column from data frames

Conditional Statements and Loops

Conditional Statements and Loops

• if...else

• for

while

if...else

```
if (condition) {
    statement
} else {
    statement
}
```

if...else

```
x < -6
if (x>0) {
 print("X is a positive number")
} else {
 print("X is a negative number")
[1] "X is a positive number"
```

for

```
for (name in vector) {
    statement
}
```

for

```
y <- c(1,2,3,4,5)
for (number in y) {
 print(number)
[1] 1
[1] 2
[1] 3
[1] 4
[1]5
```

42

for

43

```
y <- c(1,2,3,4,5)
z <- vector()
for (number in y) {
 z[number] <- number + 1
 Ζ
Ζ
#[1] 2 3 4 5 6
```

Three ways to loop over a vector

- loop over elements
- loop over numeric indices
- loop over the names

for (loop over elements)

```
y < -c(1,2,3,4,5)
z <- vector()
for (number in y) {
 z[number] <- number + 1
 Z
Ζ
#[1] 2 3 4 5 6
```

for (loop over numeric indices)

```
y < -c(1,2,3,4,5)
z <- vector()
for (number in seq_along(y)) {
 z[number] <- number + 1
Ζ
#[1] 2 3 4 5 6
```

for (loop over the names)

```
y < -c(1,2,3,4,5)
for (number in names(y)) {
 z[number] <- number + 1
Z
#[1] 2 3 4 5 6
```

while

```
while condition {
    statement
}
```

while

```
x <-1
while (x < 4) {
  print(x)
  x = x+1
```

49

while

```
x < -1
while (x < 4) {
 print(x)
 X = X+1
[1] 1
[1] 2
[1] 3
```

50

bx <- replicate(5, runif(10), simplify = FALSE)

ry <- replicate(5, rpois(10,5)+1, simplify = FALSE)

Calculate the median of each element in bx

Calculate the mean of each element in ry

The Usual Way

median(bx[[1]])

median(bx[[2]])

mean(ry[[1]])

mean(ry[[2]])

```
out <- vector("double", length(bx))
for (i in seq_along(bx)) {
  out[i] <- median(bx[[i]])
}
out</pre>
```

```
out <- vector("double", length(ry))
for (i in seq_along(ry)) {
  out[i] <- mean(ry[[i]])
}
out</pre>
```

Functions

Functions

```
my_fun <- function(arg1, arg2) {
   body
}</pre>
```

Functions

```
f <- function(x) {
x^2
}</pre>
```

Function Components

formals(), the list of arguments

body(), the code inside the function

environment(), the "map" of the location of the function's variables

Function Components

```
formals(f)
#$x
body(f)
#{
\# x^2
#}
environment(f)
#<environment: R_GlobalEnv>
```

Not true of primitive functions like sum(), written in C code

```
f <- function() {
    x <- 1
    y <- 2
    c(x, y)
}</pre>
```

```
f <- function() {
 x < -1
 y <- 2
 C(x, y)
f()
[1] 12
```

```
x < -1
h <- function() {
 y <- 2
 i <- function() {</pre>
   z <- 3
   C(X, y, z)
 i()
```

```
x < -1
h <- function() {
 y <- 2
 i <- function() {</pre>
  z <- 3
   c(x, y, z)
 i()
h()
[1] 1 2 3
```

Practice

```
func_median <- function(x) {</pre>
 out <- vector(mode = "double", length = length(x))
 for (i in seq_along(x)) {
  out[i] <- median(x[[i]])
 out
median_values <- func_median(ry)</pre>
```

```
func_mean <- function(x) {</pre>
 out <- vector(mode = "double", length = length(x))
 for (i in seq_along(x)) {
  out[i] \leftarrow mean(x[[i]])
 out
mean_values <- func_mean(bx)
```

```
func_median <- function(x) {</pre>
 out <- vector(mode = "double", length = length(x))
 for (i in seq_along(x)) {
  out[i] <- median(x[[i]])
 out
func_mean <- function(x) {</pre>
 out <- vector(mode = "double", length = length(x))
 for (i in seq_along(x)) {
  out[i] <- mean(x[[i]])
 out
```

```
element_func <- function(x, f) {
 out <- vector(mode = "double", length = length(x))
 for (i in seq_along(x)) {
  \operatorname{out}[i] \leftarrow \operatorname{f}(x[[i]])
 out
mean_values <- element_func(bx, mean)
median_values <- element_func(ry, median)</pre>
multiplication_values <- element_func(bx, function(x) {3*mean(x)})
```

data(mtcars)

names(mtcars)

Motor Trend Car Road Tests

Description

The data was extracted from the 1974 Motor Trend US magazine, and comprises fuel consumption and 10 aspects of automobile design and performance for 32 automobiles (1973–74 models).

Usage

mtcars

Format

A data frame with 32 observations on 11 variables.

- [, 1] mpg Miles/(US) gallon
- [, 2] cyl Number of cylinders
- [, 3] disp Displacement (cu.in.)
- [, 4] hp Gross horsepower
- [, 5] drat Rear axle ratio
- [, 6] wt Weight (1000 lbs)
- [, 7] qsec 1/4 mile time
- [, 8] vs V/S
- [, 9] am Transmission (0 = automatic, 1 = manual)
- [,10] gear Number of forward gears
- [,11] carb Number of carburetors

Get the mean of each column in the mtcars dataset

- using a function
- using lapply/sapply
- using map functions from the purrr package

Functionals

Functionals

Is a function that takes functions as an input and returns vector as output

Commonly used as alternatives for loops

lapply

lapply takes a function, applies to each element in a list, and returns a list

lapply(bx, mean)

lapply(ry, median)

lapply(by, function(x) { mean(x * 3)})

Source: Advanced R 73

sapply

like lapply, but the output is simplified to produce an atomic vector

sapply(bx, mean)

sapply(ry, median)

sapply(ry, function(x) { mean(x * 3)})

Source: Advanced R 74

Get the mean of each column in the mtcars dataset

- using a function
- using lapply/sapply
- using map functions from the purrr package

Source: Advanced R 75

Case Study 1

Case Study 2

purrr package in R

R now has a purrr package with functionals

map_dbl(x, f)

- 1) Loop over x like a for loop
- 2) Apply function f to each element
- 3) Return output

purrr package in R

install.packages("purrr")

library(purrr)

map_dbl(bx, mean)

[1] 0.5217805 0.6357506 0.6055213 0.5305683 0.6793977

map_dbl(ry, median)

[1] 6.0 7.0 4.5 8.0 5.5

Get the mean of each column in the mtcars dataset

- using a function
- using lapply/sapply
- using map functions from the purrr package

Case Study 3

Resources

R for Data Science (book): http://r4ds.had.co.nz/

Advanced R (book): http://adv-r.had.co.nz/

ggplot2: http://ggplot2.org/

Elegant Graphics for Data Analysis (book)

R Graphics Cookbook (book)

Overview: http://tutorials.iq.harvard.edu/R/Rgraphics/Rgraphics.html

Documentation: https://cran.r-project.org/web/packages/ggplot2/ggplot2.pdf

The Art of R Programming (book)

Tidy Data: https://www.jstatsoft.org/article/view/v059i10

Split-Apply-Combine Strategy for Data Analysis: http://www.stat.wvu.edu/ http://www.stat.wvu.edu/ http://www.stat.wvu.edu/

Sources

Wickham, Hadley. Advanced R. Boca Raton, FL: CRC, 2015. Print.