Algorithme de Welsch and Powell

<u>Par : Chaima Farhat</u>

1-Le pseudo-code:

On considère un graphe non-orienté G=(X,A), avec $X=[x_1,x_2,\cdots,x_n]$ et n=|X|.

- \bullet L : liste ordonnée des sommets de X ordonnés par ordre décroissant des degrés.
- \bullet couleur \longleftarrow 0
- Tant que $L \neq \emptyset$ faire
 - $couleur \leftarrow couleur + 1$
 - $-s \longleftarrow L[1]$: le premier sommet de la liste L
 - $couleur(s) \leftarrow couleur : colorer s par <math>couleur$
 - $S_{couleur} = [s]$: ensemble des sommets de couleur couleur
 - Pour tout $v \in L$ faire
 - Si v est non-adjacent à $S_{couleur}$ faire $S_{couleur} = S_{couleur} \cup v$ • fin Si couleur(v) = couleur
 - fin Pour
 - $L = L/S_{couleur}$: retirer les sommets déjà colorés de L
- fin Tant que
- Afficher le nombre de couleur utilisées.

2- L'utilité des différents paramètres de l'algorithme:

G = (X, A): un graphe non-orienté, avec

X = sommets.

A= Arêtes.

L: la liste des sommets xi $1 \le i \le n$ par ordre décroissant des degrés.

couleur: Affecter une couleur c au premier sommet s de L et colorer avec la même couleur les sommets non encore colorés et non adjacents à s.

S couleur : ensemble des sommets de couleur couleur

v: sommet non-adjacents à S couleur

3-Application de l'algorithme pour résoudre un problème d'optimisation:

