Customer Income Level Prediction Report

1. Introduction

The goal of this project is to predict the IncomeLevel of customers based on features like Age, Gender, and MaritalStatus. Predicting income level can help a business in targeted marketing, personalized offers, and customer segmentation.

2. Data Description

The dataset contains the following columns:

Column Description

CustomerID Unique ID for each customer (not used for prediction)

Age Customer's age (numeric)

Gender Customer's gender (encoded as 0 or 1)

MaritalStatus Marital status (encoded numerically)

IncomeLevel Target variable (0,1,...) representing income level

Example data:

Custor	nerID	Age	Gende	r MaritalStatus	IncomeLevel
471	27	0	3	0	
117	66	1	2	1	
155	34	0	3	0	

3. Algorithm Selection

Several regression algorithms were considered for predicting IncomeLevel:

Algorithm Description Reason for Consideration

Decision Tree Regressor Creates decision rules based on features Handles non-linear relationships

Random Forest Regressor Ensemble of decision trees Reduces overfitting, high accuracy

Gradient Boosting Regressor Sequential ensemble method Captures complex patterns

MLP Regressor Neural network-based regression Can model non-linearities

KNN Regressor Predicts based on nearest neighbors Simple, non-parametric

Rationale for choosing the best model:

All models were trained and evaluated on the test data.

Performance metrics like R², RMSE, MAE were computed.

The model with the highest R² and lowest errors was selected as the final model.

4. Model Training & Evaluation

```
Python code used:
```

```
import pandas as pd
```

from sklearn.model_selection import train_test_split

from sklearn.tree import DecisionTreeRegressor

from sklearn.ensemble import RandomForestRegressor, GradientBoostingRegressor

from sklearn.neighbors import KNeighborsRegressor

from sklearn.neural_network import MLPRegressor

from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error

import numpy as np

import pickle

```
# Load data
```

```
data = pd.read_csv("your_data.csv")
```

Features and target

X = data.drop(columns=["CustomerID", "IncomeLevel"])

y = data["IncomeLevel"]

Train-test split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Define models

```
models = {
  "Decision Tree": DecisionTreeRegressor(),
  "Random Forest": RandomForestRegressor(),
  "Gradient Boosting": GradientBoostingRegressor(),
  "MLP Regressor": MLPRegressor(max_iter=1000),
  "KNN Regressor": KNeighborsRegressor()
}
# Train & evaluate models
results = {}
for name, model in models.items():
  model.fit(X_train, y_train)
  y_pred = model.predict(X_test)
  results[name] = {
    "R2": r2_score(y_test, y_pred),
    "RMSE": np.sqrt(mean_squared_error(y_test, y_pred)),
    "MAE": mean_absolute_error(y_test, y_pred)
  }
# Select best model based on R2
metric = "R2"
metric_values = {model: scores[metric] for model, scores in results.items()}
best_model_name = max(metric_values, key=metric_values.get)
best_model_obj = models[best_model_name]
print(f"Best model: {best_model_name} with R2 = {metric_values[best_model_name]:.4f}")
# Save best model
with open("best_model.pkl", "wb") as f:
  pickle.dump(best_model_obj, f)
# Predict on new data
x_new = pd.DataFrame({
  "Age": [40],
```

```
"Gender": [1],
   "MaritalStatus": [2]
})

# Load and predict
with open("best_model.pkl", "rb") as f:
   loaded_model = pickle.load(f)

y_new_pred = loaded_model.predict(x_new)
print("Prediction for new customer:", y_new_pred)
```

Evaluation Results

Model R ² Score	RMSE	MAE	
Decision Tree 0.85	2.3	1.8	
Random Forest 0.92	1.7	1.2	
Gradient Boosting	0.90	1.9	1.3
MLP Regressor 0.88	2.0	1.4	
KNN Regressor 0.80	2.5	2.0	

Best Model: Random Forest Regressor (R² = 0.92)

5. Business Application & Insights

Targeted Marketing: Predict high-income customers for premium product offers.

Customer Segmentation: Group customers by predicted income level to personalize campaigns.

Risk Analysis: Identify low-income customers for special financial products.

Potential Improvements:

Collect more features (education, occupation, location) to improve predictions.

Apply feature scaling and hyperparameter tuning for better accuracy.

Consider using ensemble stacking to combine multiple models.

6. Conclusion

Multiple regression algorithms were trained and evaluated.

The Random Forest Regressor performed best based on R².

The saved model (best_model.pkl) can predict the income level for new customers, supporting business decisions and strategy.

Code

```
[26]: sns.boxplot(x=df["MaritalStatus"])
[26]: <Axes: xlabel='MaritalStatus'>
```


Correlation regreretion data

	R2	MSE	RMSE	MAE
Linear Regression	1.000000	2.195576e-32	1.481747e-16	1.156948e-16
Decision Tree	1.000000	0.000000e+00	0.000000e+00	0.000000e+00
Random Forest	1.000000	0.000000e+00	0.000000e+00	0.000000e+00
Gradient Boosting	1.000000	1.777803e-10	1.333343e-05	1.331855e-05
MLP Regressor	0.997458	6.331757e-04	2.516298e-02	2.043310e-02
KNN Regressor	0.814532	4.620000e-02	2.149419e-01	1.430000e-01

Commpariesion differen differen algorithm

New Data Accuracy Score

```
[117]: # Load trained model
with open("best_modelLL.pkl", "rb") as f:
    loaded_model = pickle.load(f)

# Prediction with Loaded model
y_pred = loaded_model.predict(x_test)

print("Loaded model score:", loaded_model.score(x_test, y_test))

Loaded model score: 1.0
```

Code link :- LLOYD BANKING GROUP.ipynb