self_balanced_robot

LQR控制算法在两轮自平衡小车的实践

经典倒立摆模型

倒立摆控制-CSDN博客提供了详细的倒立摆动力学模型推导过程。本文取逆时针旋转为正方向(即:上图摆杆摆角小于0), 动力学模型如下:

其中: 1表示摆杆重心到铰链的距离, 1表示摆杆以铰链为旋转轴的惯量

两轮自平衡小车动力学模型

轮子摩擦力和电机PWM关系

自平衡小车和经典倒立摆不完全相同,最大的差异在于:自平衡小车没有推力u,它的推力实际来自于地面对轮子的滚动摩擦力,而滚动摩擦来自于电机转矩。直流电机转矩由电压确定,电压大小由PWM占空比来决定。因此,有必要建立滚动摩擦力和电机PWM占空比的表达式。

直流电机的输出转矩 τ_m 和角速度 ω 、外加电压 V_a 存在以下关系:

$$au_m = rac{-k_m k_e}{R} \omega + rac{k_m}{R} V_a$$

其中 k_m 表示电机转矩常数、 k_e 表示电机反电动势常数、R表示电机电阻,都是常数

对电机轴应用刚体转动定律,电机的输出转矩 au_m 和负载转矩 au_a 、角加速度 $\dot{\omega}$ 存在以下关系:

$$I_R \dot{\omega} = au_m - au_a$$

代换后得到:

$$au_a = -I_R \dot{\omega} + rac{-k_m k_e}{R} \omega + rac{k_m}{R} V_a$$

对轮子应用刚体转动定律:

$$I_W \dot{\omega} = au_a - H_f r$$

其中, I_W 表示轮子转动惯量, H_f 表示地面的静摩擦力,r表示轮子半径。(在这里近似认为电机输出转矩全部传递给轮子,忽略电机传动过程中轴承齿轮摩擦力形成的转矩)

代换后得到:

$$H_f = rac{1}{r}(-I_W\dot{\omega} - I_R\dot{\omega} + rac{-k_mk_e}{R}\omega + rac{k_m}{R}V_a)$$

电机电压和pwm占空比存在比例关系:

$$V_a = V_{amax}D_{pwm}$$

因此,最终得到轮子滚动摩擦力和电机PWM占空比关系为:

$$H_f = rac{1}{r} ig(-I_W \dot{\omega} - I_R \dot{\omega} + rac{-k_m k_e}{R} \omega + rac{k_m V_{amax}}{R} D_{pwm} ig)$$

(参考资料: Balancing a Two-Wheeled Autonomous Robot)

电机MC520P30_12V手册:

根据堵转电流计算电机电阻 $R=rac{12}{3.75}=3.2\,$ 和内参基本符合,按内参取 $R=2.8\,$

根据额定转矩和额定电流计算转矩常数 $k_m=rac{1.5/100}{0.36}=0.04167$,内参转矩常数考虑减速比后 $k_m=101.41 imes10^{-5} imes30=0.030423$,按内参取

根据额点电流和额定转速计算反电动势常数 $k_e=rac{12-0.36 imes2.8}{290 imes\pi/30}=0.3620$,内参单位看不出来

带入电机参数得:

$$\frac{-k_m k_e}{R} = -0.003933 \frac{k_m V_{amax}}{R} = 0.13038$$

产品参数

MC520 电机参数				
电机型号	MC520P20_12V	MC520P30_12V	MC520P60_12V	
额定电压	12V(建议供电范围在11-16V之间,推荐12V)			
减速比	1:20	1:30	1:60	
额定电流	0.36A	0.36A	0.53A	
堵转电流	3.2A	3.2A	3.2A	
空载转速	550±30rpm	360±20rpm	190±10rpm	
额定转速	440±30rpm	290±20rpm	150±10rpm	
额定扭矩	0.8kg⋅cm	1.5kg·cm	2.6kg⋅cm	
堵转扭矩	3.8kg⋅cm	4.5kg⋅cm	9.2kg·cm	
额定功率	约7W	约7W	约7W	
重量	~150g	~150g	~150g	
13线脉冲数	1040	1560	3120	
1024线脉冲数	81920	122880	245760	

电机内部参数				
电感	4.45mH	反电动势系数(Ke)	0.001040725	
阻感	2.3Ω±0.5	电磁转矩系数(KT)	101.409135360	

编码器参数				
型号	磁向编码器	霍尔编码器		
编码器线数	1024线	13线		
编码器原理	磁向分割技术	霍尔磁感应		
编码器类型	AB相正交编码器(可测速和方向)			
供电范围	3.3-5V	3.3-5V		
编码器保护	带塑料保护盖	裸露(相对稳定,无需保护盖)		
编码器脉冲数	电机一圈脉冲数:编码器线数*减速比*程序倍频数 13线霍尔编码器30减速比电机为例,脉冲数=13x30x4=1560 1024线磁向编码器30减速比电机为例,脉冲数=1024x30x4=122880			

转动惯量辨识

通过空载测试进行辨识。空载时摩擦力为0,此时:

$$\dot{\omega} = rac{1}{I_W + I_R} (rac{-k_m k_e}{R} \omega + rac{k_m V_{amax}}{R} D_{pwm})$$

计算后取:

$$I_W + I_R = 0.00016$$

Matlab求解LQR反馈矩阵K

见matlab源程序

实际部署效果

演示1 演示2