I.S.E.T. BIZERTE

Novembre 2022

Département de Génie électrique. Master R.A.I.A. Algorithmes d'optimisation.

Exercice 1

On se place dans M_2 et on se propose de résoudre l'équation:

$$(E) X^2 = 1$$

Soit Δ_{θ} la droite du plan qui fait un angle θ avec l'axe (O, \overrightarrow{i}) .

Partie A:

- 1. Montrer que S_{θ} , la symétrie orthogonale d'axe Δ_{θ} est une solution de l'équation (E).
- 2. Montrer $S_{\Delta_{\theta}}$ est diagonalisable en indiquant ses valeurs propres.
- 3. Trouver les vecteurs propres.
- 4. Ecrire la matrice de $S_{\Delta_{\theta}}$ dans une base orthonormale de vecteurs propres.
- 5. Ecrire les matrices de passage. En déduire la matrice de $S_{\Delta_{\theta}}$ dans la base canonique.

Partie B

On se propose maintenant d'étudier la réciproque.

1. Soit A une matrice non nulle de \mathbb{M}_n . On suppose qu'il existe une matrice non nulle B telle que:

$$AB = 0$$
 (la matrice nulle)

Montrer que A n'est pas inversible.

2. On rappelle que si A est une matrice qui n'est pas inversible alors il existe des vecteurs X non nuls tels que:

$$AX = 0$$

- 3. Soit A une matrice telle que $A^2 = I_2$.
 - Montrer que ses valeurs propres sont 1 et -1.
 - Montrer par un contre-exemple que A n'est pas forcement une symétrie orthogonale.

1

• Trouver la forme générale des solutions de l'équation (E) dans \mathbb{M}_2 .

Exercice 3

Soit A une matrice diagonalisable de \mathbb{M}_n

- Quel est le degré de son polynôme caractéristique et que vaut le coefficient de X^n ?
- Que vaut le coefficient constant de son polynôme caractéristique?
- Que vaut le coefficient de X^{n-1} ?

On retiendra que ces faits sont vérifiés aussi chez les matrices qui ne sont pas diagonalisables.

Exercice 4

On notera par < .,. > le produit scalaire dans \mathbb{R}^n .

1. On se place d'abord dans \mathbb{R}^2 . Soient u et v deux vecteurs non colinéaires. On pose $e_1 = \frac{u}{||u||}$, et $w = v - \langle v, e_1 \rangle e_1$.

Montrer que (e_1, e_2) forment une base orthonormée directe de \mathbb{R}^2 , où $e_2 = \frac{w}{||w||}$.

- 2. On se place maintenant dans \mathbb{R}^3 . Soient u, v et w trois vecteurs non coplanaires. On pose:
 - $e_1 = \frac{u}{||u||}$
 - $e_2 = \frac{\tilde{v}}{||\tilde{v}||}$, où $\tilde{v} = v \langle v, e_1 \rangle e_1$.
 - $e_3 = \frac{\tilde{w}}{||\tilde{w}||}$ où $\tilde{w} = w \langle w, e_2 \rangle e_2 \langle w, e_1 \rangle e_1$. Montrer que (e_1, e_2, e_3) est une base orthonormée directe de \mathbb{R}^3 .

Cette procédure, qui consiste à construire une base orthonormée directe à partir d'une base qui ne l'est pas, est la restriction à \mathbb{R}^2 et \mathbb{R}^3 d'un algorithme plus général, dit algorithme d'orthonormalisation de Gramm-Shmidt.

Donner la généralisation de cette procédure aux espaces \mathbb{R}^n (version complète de l'algorithme).

Exercice 5

Dans l'espace \mathbb{M}_3 on considère la droite dirigée par le vecteur (1,1,1) et la rotation d'angle $\theta \neq k\pi$ autour de cet axe.

- Trouver les vecteurs propres.
- En utilisant une procédure d'orthonormalisation, donner une base orthonormale qui contienne ces vecteurs propres.
- Ecrire la matrice de cette rotation dans la base canonique.

Exercice 6

On se place dans \mathbb{R}^3 .

- 1. Soit Δ une droite passant par l'origine O. On notera par S_{Δ} la symétrie orthogonale d'axe Δ , et par $R_{\Delta,\phi}$ la rotation d'axe Δ et d'angle ϕ . On suppose que $\phi \neq k\pi$.
 - Montrer que S_{Δ} a une valeur propre double et une valeur propre simple.
 - Ecrire la matrice de S_{Δ} dans une base orthonormale de vecteurs propres, puis dans la base canonique.
 - Montrer que $R_{\Delta,\phi}$ possède une seule valeur propre réelle.
 - Donner un vecteur propre unitaire correspondant à cette valeur propre.
 - Compléter ce vecteur par une base orthonormée.
 - Ecrire la matrice de $R_{\Delta,\phi}$ dans cette base, puis dans la base canonique.
- 2. On considère le plan vectoriel d'équation

$$P: x + y + z = 0$$

On notera par S_P la symétrie orthogonale par rapport à P.

- Ecrire le polynôme caractéristique de S_P .
- Montrer que S_P est diagonalisable et trouver une base orthonormale de vecteurs propres.
- Ecrire la matrice de S_P dans la base canonique.

Exercice 7

On pose

$$A = \frac{1}{2} \left(\begin{array}{cc} 5 & 1 \\ 1 & 5 \end{array} \right)$$

- 1. Diagonaliser cette matrice.
- 2. Vérifier que les vecteurs propres constituent une base orthonormale de \mathbb{R}^2 .
- 3. Quelle est l'image du cercle unité par la transformation que représente cette matrice. On donnera une équation cartésienne.
- 4. Soit $A \in \mathbb{M}_3$ diagonalisable dans une base orthonormale avec des valeurs propres positives.

Quelle est l'image de la sphère unité par la transformation que cette matrice représente?

Exercice 8

On considère la fonction $f(x,y) = x^2 - y^2$, les points A(1,2,-3) et B(2,3,-5).

- 1. Vérifier que A et B sont deux points de la surface S représentative de la fonction f.
- 2. On se place au point A et on regarde dans la direction du point B. Quelle est la valeur de la pente de S au point A dans cette direction? Donner le pourcentage.

3. Quelle est la direction de la plus forte pente au point A? Calculer sa valeur.

Exercice 9

Pour une certaine région de l'espace, la température est donnée par

$$T(x, y, z) = 200e^{-x^2 - 3y^2 - 9z^2}$$

où T est en degrés Celsius et x, y, z sont en mètres.

- Donner la température au point P(2,1,2).
- Trouver le taux de variation de la température au point P(2,1,2) dans la direction du point Q(3,3,3). Interpréter.
- Déterminer la direction dans laquelle la température augmente le plus rapidement si on se place au point P(2, 1, 2).