ОПРЕДЕЛЕННЫЙ ИНТЕГРАЛ

Лекция 1

1. Определение. Свойства

К понятию определенного интеграла приводит задача вычисления площади под графиком функции.

Пусть $y = f(x) \ge 0$ — непрерывная функция задана на замкнутом интервале [a,b] . Возьмем произвольное разбиение на n отрезков отрезка [a,b] точками x_i :

 $a = x_0 < x_1 < x_2 < ... < x_n = b$. Для каждого $\left[x_{i-1}, x_i \right]$ берем произвольную точку $\xi_i \in \left[x_{i-1}, x_i \right]$.

$$S_n = \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1})$$
 — площадь

ступенчатой фигуры, состоящей из прямоугольников с основаниями $\Delta x_i = x_i - x_{i-1}$ и высотами $f(\xi_i)$.

Обозначив $\max_i (x_i - x_{i-1}) = \lambda$, считаем, что если $\lambda \to 0$, $n \to \infty$, то $S_n \to S$ – площади под графиком функции.

$$S = \lim_{\xi = \max_{\Delta x_i \to 0}} \sum_{i=1}^n f(\xi_i)(x_i - x_{i-1}) = \lim_{\xi \to 0} \sum_{i=1}^n f(\xi_i) \Delta x_i.$$

Обычно λ называют диаметром разбиения.

Определение. Пусть f(x) задана на [a,b]. Разделим [a,b] произвольными точками x_i на n отрезков: $a = x_0 < x_1 < ... < x_n = b$. Выберем произвольную точку ξ_i на $[x_{i-1}, x_i]$, составим сумму, которую называют интегральной:

$$\sigma_n = \sigma_n(f) = \sum_{i=1}^n f(\xi_i) \Delta x_i$$
, где $\Delta x_i = x_i - x_{i-1}$.

Предел (если он существует), к которому стремится интегральная сумма σ_n при $\lambda = \max_i \Delta x_i \to 0$, называется определенным интегралом от функции f(x) на [a,b] и обозначается следующим образом:

$$\lim_{\lambda \to 0} \sigma_n = \lim_{\lambda \to 0} \sum_{i=1}^n f(\xi_i) \Delta x_i = \int_a^b f(x) dx.$$
 (2.1)

Утверждение. Если f(x) непрерывна на [a,b], то $\lim_{\lambda \to 0} \sigma_n$ существует и не зависит от способа разбиения [a,b] и выбора точек ξ_i .

Таким образом первым применил предельный переход для вычисления площади под графиком функции $y = x^2$ еще Архимед.

Заметим, если $f(x) \ge 0$ на [a,b], то $\int_a^b f(x) dx \ge 0$, так как это – площадь под графиком функции.

В самой записи $\int_{a}^{b} f(x)dx$ х называют глухой переменной, которая может быть заменена любой другой. Очевидно, что

Тогда для $f(x) = \lambda \int_a^b \lambda dx = \lambda (b-a)$ — площадь прямоугольника при $\lambda > 0$, отрицательное значение площади при $\lambda < 0$.

Утверждение. $\int\limits_{a}^{a}f(x)dx=0$ по определению, $\int\limits_{a}^{b}f(x)dx=-\int\limits_{b}^{a}f(x)dx$ по определению.

Свойства определенного интеграла

1. Линейность

$$\int_{a}^{b} (\lambda f(x) + \mu g(x)) dx = \lambda \int_{a}^{b} f(x) dx + \mu \int_{a}^{b} g(x) dx.$$

2. Если отрезок интегрирования [a,b] разбит на две части точкой c

$$a c b$$
 $\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$. Если точка c вне $\begin{bmatrix} a,b \end{bmatrix}$ $\xrightarrow{a \ b \ c}$ или $\xrightarrow{c \ a \ b}$ и при

этом f(x) непрерывна на [a,c] или [c,b] соответственно, то

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx.$$

- **3.** Если $f(x) \ge 0$ на [a,b], то $\int_{a}^{b} f(x) dx \ge 0$.
- **4.** Если на [a,b] $f(x) \ge \varphi(x)$, то $\int_{a}^{b} f(x) dx \ge \int_{a}^{b} \varphi(x) dx$.
- **5.** *Теорема о среднем.* Если f(x) непрерывна на [a,b], то найдется, по крайней мере, одна точка $\xi \in [a,b]$ такая, что

$$\int_{a}^{b} f(x)dx = f(\xi)(b-a).$$

Доказательство:

Так как f(x) непрерывна на [a,b], то она принимает на [a,b] свои наибольшее Mи наименьшее m значения: $m \le f(x) \le M$, по свойству 4:

$$\int\limits_a^b m dx \leq \int\limits_a^b f(x) dx \leq \int\limits_a^b M dx \Rightarrow m(b-a) \leq \int\limits_a^b f(x) dx \leq M(b-a)\,.$$
 Разделим последние неравенства на $(b-a)$:

$$\int_{a}^{b} f(x)dx$$

$$m \le \frac{a}{b-a} \le M.$$

принимает все значения, т. е. существует точка ξ , такая, что $f(\xi) = \mu$, значит $\int\limits_{-\infty}^{\infty} f(x) dx = f(\xi)(b-a) \, . \, \text{Что и требовалось доказать}.$

Лекция 2

2. Определенный интеграл с переменной верхней границей

Пусть f(x) — непрерывная функция на [a,b]. $x \in [a,b]$, тогда $\hat{\int} f(x)dx = I(x)$.

Удобнее обозначить $\int_{0}^{x} f(t)dt = I(x)$.

$$I(x + \Delta x) = \int_{a}^{x + \Delta x} f(t)dt; \quad \Delta I = I(x + \Delta x) - I(x) = \int_{a}^{x + \Delta x} f(t)dt - \int_{a}^{x} f(t)dt =$$

$$= \int_{a}^{x + \Delta x} f(t)dt + \int_{x}^{a} f(t)dt = \{\text{по теореме о среднем}\} = f(c) \cdot \Delta x, \text{ где } c \in [x, x + \Delta x].$$

$$I'(x) = \lim_{\Delta x \to 0} \frac{\Delta I}{\Delta x} = \lim_{\Delta x \to 0} \frac{f(c)\Delta x}{\Delta x} = \begin{cases} \Delta x \to 0 \\ c \to x \end{cases} = f(x).$$

Получили, что I'(x) = f(x), значит I(x) — одна из первообразных f(x), тогда I(x) = F(x) + c.

Ho
$$\int_{a}^{a} f(x)dx = 0$$
, тогда
$$I(a) = F(a) + c = 0 \Rightarrow c = -F(a)$$

$$I(b) = F(b) + c = F(b) - F(a)$$
, получили
$$\int_{a}^{b} f(x)dx = F(b) - F(a) = F(x)\Big|_{a}^{b}.$$
(2)

Полученная формула Ньютона-Лейбница стыкует понятие определенного и неопределенного интегралов и считается центральной формулой анализа.

Следствия: 1)
$$\left(\int_{a}^{y} f(x)dx\right)_{y}' = f(y);$$

$$2) \left(\int_{a}^{\varphi(y)} f(x) dx \right)_{y}' = f(\varphi(y)) \cdot \varphi'_{y};$$

3)
$$\left(\int_{y}^{b} f(x)dx\right)_{y}' = -f(y);$$

4)
$$\left(\int_{\psi(y)}^{b} f(x)dx\right)_{y}' = -f(\psi(y))\cdot\psi'_{y};$$

5)
$$\left(\int_{\psi(y)}^{\varphi(y)} f(x) dx \right)_{y}' = f(\varphi(y)) \cdot \varphi'_{y} - f(\psi(y)) \cdot \psi'_{y}.$$

3. Замена переменной в определенном интеграле

Нужно вычислить $\int_{a}^{b} f(x)dx$, f(x) — непрерывна на [a,b]. $x = \varphi(t)$ — непрерывна на $[\alpha,\beta]$, при этом $\varphi(\alpha) = a$, $\varphi(\beta) = b$ и существует $t = \varphi^{-1}(x)$; тогда $\int_{a}^{b} f(x)dx = \int_{\alpha}^{\beta} f(x(t)) \cdot x'(t)dt$.

Пример 1.

$$\int_{\ln 2}^{2\ln 2} \frac{dx}{\sqrt{e^x - 1}} = \begin{cases} \sqrt{e^x - 1} = t, & dx = \frac{2tdt}{t^2 + 1}. \\ e^x = t^2 + 1, \\ x = \ln(t^2 + 1), \end{cases} = \int_{\sqrt{e^{\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac{2tdt}{(t^2 + 1) \cdot t} = \int_{\sqrt{e^{2\ln 2} - 1}}^{\sqrt{e^{2\ln 2} - 1}} \frac$$

$$=2\int_{1}^{\sqrt{3}}\frac{dt}{t^{2}+1}=2 \arctan t \left| \frac{1}{1} \right|_{1}^{\sqrt{3}}=2 \arctan \sqrt{3}-2 \arctan 1=2\left(\frac{\pi}{3}-\frac{\pi}{4}\right)=2\cdot\frac{\pi}{12}=\frac{\pi}{6}.$$

Пример 2.

$$\int_{0}^{\pi} x \cos x dx = \begin{cases} u = x, & du = dx, \\ \cos x dx = d \sin x, \\ v = \sin x. \end{cases} = x \sin x \Big|_{0}^{\pi} - \int_{0}^{\pi} \sin x dx = \frac{1}{2} \sin x dx$$

$$= \pi \sin \pi - 0 \cdot \sin 0 + \cos x \Big|_{0}^{\pi} = \cos \pi - \cos 0 = -1 - 1 = -2.$$

Лекция 3

4. Несобственные интегралы

4.1. Интегралы с бесконечными границами.

Понятие определенного интеграла $\int_a^b f(x)dx$ дается в предположении, что отрезок интегрирования [a,b] конечен, а функция f(x) непрерывна на [a,b]. Возникает необходимость рассмотреть случай, когда f(x) задана на $[a,\infty)$ или (и) имеет разрыв второго рода.

Итак, пусть f(x) непрерывна на $[a,\infty)$. Для любого [a,b] интеграл $\int_a^b f(x)dx$

существует, тогда
$$\int_{a}^{\infty} f(x)dx = \lim_{b \to \infty} \int_{a}^{b} f(x)dx$$
.

Данный предел называется несобственным интегралом, а если он является конечным числом, то говорят, что интеграл сходится. Если предела не существует, интеграл расходится.

Аналогично:

$$\int_{-\infty}^{b} f(x)dx = \lim_{a \to -\infty} \int_{a}^{b} f(x)dx.$$

$$\int_{-\infty}^{\infty} f(x)dx = \int_{-\infty}^{c} f(x)dx + \int_{c}^{\infty} f(x)dx,$$
где с – любая точка $-\infty < c < \infty$.

Последний интеграл сходится, если сходятся оба несобственных интеграла справа.

Пример 1. $\int_{1}^{\infty} \frac{dx}{x} = \lim_{b \to \infty} \int_{1}^{b} \frac{dx}{x} = \lim_{b \to \infty} \ln |x| \Big|_{1}^{b} = \lim_{b \to \infty} \ln b - \ln 1 = \infty, \quad \text{данный интеграл расходится.}$

Пример 2.
$$\int_{1}^{\infty} \frac{dx}{x^{\alpha}} = \lim_{b \to \infty} \int_{1}^{b} x^{-\alpha} dx = \lim_{b \to \infty} \frac{x^{1-\alpha}}{1-\alpha} \Big|_{1}^{b} = \lim_{b \to \infty} \frac{b^{1-\alpha}}{1-\alpha} - \frac{1}{1-\alpha} = \begin{cases} \frac{1}{\alpha - 1}, & \alpha > 1\\ \infty, & \alpha < 1 \end{cases}$$

тогда получаем $\int_{1}^{\infty} \frac{dx}{x^{\alpha}} \begin{cases} \text{сходится, если } \alpha < 1 \\ \text{расходится, если } \alpha \leq 1. \end{cases}$

4.2. Интеграл от разрывных функций.

Пусть теперь y=f(x) — непрерывна на [a,b), а в точке b имеет разрыв второго рода. Для любого $\varepsilon>0$, такого, что $a< b-\varepsilon$, интеграл $\int\limits_a^{b-\varepsilon}f(x)dx$ определен, а

 $\lim_{\varepsilon \to 0} \int_{a}^{b-\varepsilon} f(x) dx = \int_{a}^{b} f(x) dx$ называется несобственным интегралом от разрывной функции, он сходится, если предел существует.

Аналогично, если f(x) имеет разрыв в точке a, то $\int\limits_a^b f(x)dx = \lim\limits_{\varepsilon \to 0} \int\limits_{a-\varepsilon}^b f(x)dx$.

Если функция имеет разрыв второго рода в некоторой внутренней точке x=c отрезка [a,b], то $\int\limits_a^b f(x)dx = \lim\limits_{\varepsilon \to 0} \int\limits_a^{c-\varepsilon} f(x)dx + \lim\limits_{\varepsilon \to 0} \int\limits_{c+\varepsilon}^b f(x)dx$.

Для сходимости левого интеграла оба интеграла справа должны сходиться.

Пример.
$$\int_{a}^{b} \frac{dx}{(b-x)^{p}} = \lim_{\varepsilon \to 0} \int_{a}^{b-\varepsilon} (b-x)^{-p} dx = \lim_{\varepsilon \to 0} \frac{(b-x)^{1-p}}{1-p} \bigg|_{a}^{b-\varepsilon} = \lim_{\varepsilon \to 0} \frac{\varepsilon^{1-p}}{1-p} - \frac{(b-a)^{1-p}}{1-p} = \begin{cases} \frac{(b-a)^{1-p}}{p-1}, & \text{если } p < 1\\ \hline \infty, & \text{если } p > 1 \end{cases}$$
 так как
$$\int_{b-x}^{b} \frac{dx}{b-x} = \lim_{\varepsilon \to 0} \left(-\ln|b-x| \right)^{b-\varepsilon} = \infty \text{ расходится, то}$$

$$\int_{a}^{b} \frac{dx}{(b-x)^{p}} \begin{cases} \text{сходится, если } p < 1, \\ \text{расходится, если } p \ge 1. \end{cases}$$

 $\int\limits_a^b \frac{dx}{(b-x)^p} \begin{cases} \text{сходится, если } p<1, \\ \text{расходится , если } p\geq 1. \end{cases}$ **Теорема 1.** Пусть на $[a,\infty)$ функции f(x) и $\varphi(x)$ непрерывны и $0\leq \varphi(x)\leq f(x),$

если
$$\int_{a}^{\infty} f(x)dx$$
 сходится, то сходится и $\int_{a}^{\infty} \varphi(x)dx$;

если
$$\int\limits_{a}^{\infty} \varphi(x) dx$$
 расходится, то расходится и $\int\limits_{a}^{\infty} f(x) dx$.

Теорема 2. Пусть f(x) и $\varphi(x)$ непрерывны на [a,b) и $0 \le \varphi(x) \le f(x)$, тогда:

если
$$\int_{a}^{b} f(x)dx$$
 сходится, то и $\int_{a}^{b} \varphi(x)dx$ сходится,

если
$$\int\limits_{a}^{a} \varphi(x) dx$$
 расходится, то $\int\limits_{a}^{a} f(x) dx$ расходится.

Пример. $\int_{0}^{1} \frac{dx}{\sqrt[3]{1-x^4}}$ исследовать на сходимость.

На
$$[0;1)$$
 выполняется $\frac{1}{\left(1-x^4\right)^{1/3}} \leq \frac{1}{\left(1-x\right)^{1/3}}$, а $\int\limits_0^1 \frac{dx}{\left(1-x\right)^{1/3}}$ сходится, так как $p=1/3$,

значит и
$$\int_{0}^{1} \frac{dx}{(1-x^4)^{1/3}}$$
 сходится по теореме 2.

Лекция 4

5. Приложения определенного интеграла

5.1. Вычисление площадей плоских фигур.

a)
$$f(x) \ge 0$$

$$S = \int_{a}^{b} f(x) dx;$$

$$S = \int_{a}^{b} |f(x)| dx = \int_{a}^{c} f(x) dx - \int_{c}^{b} f(x) dx;$$

в)
$$f(x) \ge g(x)$$
 на $[a,b]$, площадь между ними $S = \int_{a}^{b} (f(x) - g(x)) dx$;

$$\Gamma)\ r=f(\varphi)\,,\ \varphi_1\leq\varphi\leq\varphi_2\,,\ \mathrm{To}\ S=\frac{1}{2}\int\limits_{\varphi_1}^{\varphi_2}r^2(\varphi)d\varphi\,;$$

д)
$$\begin{cases} x = x(t), & x(\alpha) = a, & x(\beta) = b, \\ y = y(t), & \alpha \le t \le \beta, \\ b & \beta \end{cases}$$

$$S = \int_{a}^{b} y \, dx = \int_{\alpha}^{\beta} y(t) \cdot x'(t) dt.$$

Пример 1. $r = 2R\cos\varphi$

$$S = \frac{1}{2} \int_{-\pi/2}^{\pi/2} r^2 d\varphi = \frac{1}{2} \int_{-\pi/2}^{\pi/2} 4R^2 \cos^2 \varphi \, d\varphi = 2R^2 \int_{-\pi/2}^{\pi/2} \cos^2 \varphi \, d\varphi = R^2 \int_{-\pi/2}^{\pi/2} (1 + \cos 2\varphi) \, d\varphi =$$

$$= R^2 \left(\varphi + \frac{\sin 2\varphi}{2} \right) \Big|_{-\pi/2}^{\pi/2} = R^2 \left(\frac{\pi}{2} + \frac{\sin \pi}{2} \right) + R^2 \left(\frac{\pi}{2} - \frac{\sin(-\pi)}{2} \right) = \pi R^2.$$

Пример 2. Найти площадь эллипса
$$\begin{cases} x = a \cos \varphi, \\ y = b \sin \varphi. \end{cases}$$

Ввиду симметрии:
$$S = 4 \int_{0}^{a} y dx = 4 \int_{\pi/2}^{0} b \sin \varphi (-a \sin \varphi) d\varphi = 4ab \int_{0}^{\pi/2} \sin^{2} \varphi \ d\varphi =$$

$$=2ab\int_{0}^{\pi/2}(1-\cos 2\varphi)d\varphi=2ab\left(\varphi-\frac{\sin 2\varphi}{2}\right)\Big|_{0}^{\pi/2}=\pi ab.$$

5.2. Вычисление объемов.

- а) Если тело спроектировано на ось ox на [a,b], S(x) площадь сечения, то $V=\int\limits_{a}^{b}S(x)dx$.
- б) Если тело образовано вращением вокруг оси ox криволинейной трапеции $a \le x \le b$, $0 \le y \le f(x)$, то $V_x = \pi \int\limits_{a}^{b} f^2(x) dx$.

Если эту трапецию вращать вокруг оси oy, то $V_{y} = 2\pi \int_{a}^{b} x \cdot f(x) dx$.

в) Если тело образовано вращением вокруг оси oy криволинейной трапеции $c \le y \le d$, $0 \le x \le \varphi(y)$, то $V_y = \pi \int\limits_y^d \varphi^2(y) dy$.

Если эту трапецию вращать вокруг оси ox, то $V_x = 2\pi \int\limits_{x}^{d} y \cdot \varphi(y) dy$.

Пример. Найти объем эллипсоида $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$.

Для каждого x в сечении получаем эллипс $\frac{y^2}{b^2\!\left(1\!-\!\frac{x^2}{a^2}\right)}\!+\!\frac{z^2}{c^2\!\left(1\!-\!\frac{x^2}{a^2}\right)}\!=\!1,\,$ площадь

сечения $S(x) = \pi b \sqrt{1 - \frac{x^2}{a^2}} \cdot c \sqrt{1 - \frac{x^2}{a^2}} = \pi b c \left(1 - \frac{x^2}{a^2}\right)$, значит

$$V = \int_{-a}^{a} S(x) dx = 2 \int_{0}^{a} \pi bc \left(1 - \frac{x^{2}}{a^{2}} \right) dx = 2\pi bc \left(x - \frac{x^{3}}{3a^{2}} \right) \Big|_{0}^{a} = 2\pi bc \left(a - \frac{a}{3} \right) = \frac{4\pi abc}{3}.$$

5.3. Вычисление длины дуги кривой.

a)
$$y = f(x)$$
,

$$L = \int_{a}^{b} \sqrt{1 + \left(f'(x)\right)^2} dx;$$

$$\begin{aligned} & \text{ fo) } \begin{cases} y = y(t), \\ x = x(t), \end{cases} & \alpha \leq t \leq \beta, \qquad L = \int\limits_{\alpha}^{\beta} \sqrt{\left(x_t'\right)^2 + \left(y_t'\right)^2} \, dt \; ; \\ & \text{ B) } r = f(\varphi), \qquad \varphi_1 \leq \varphi \leq \varphi_2, \qquad L = \int\limits_{\varphi_1}^{\varphi_2} \sqrt{\left(f_\varphi'\right)^2 + f^2} \, d\varphi \, . \end{aligned}$$

B)
$$r = f(\varphi)$$
, $\varphi_1 \le \varphi \le \varphi_2$, $L = \int_{\varphi_1}^{\varphi_2} \sqrt{(f'_{\varphi})^2 + f^2} d\varphi$.

 $=4a(-\cos\pi+\cos0)=8a.$

Пример. Найти длину первой арки циклоиды $\begin{cases} x = a(t - \sin t), \\ y = a(1 - \cos t). \end{cases}$

В данном случае $0 \le t \le 2\pi$, $x'_t = a(1 - \cos t)$, $y'_t = a \sin t$;

$$L = \int_{0}^{2\pi} \sqrt{a^{2}(1-\cos t)^{2} + a^{2}\sin^{2}t} \, dt = a \int_{0}^{2\pi} \sqrt{1-2\cos t + \cos^{2}t + \sin^{2}t} \, dt =$$

$$= a \int_{0}^{2\pi} \sqrt{2(1-\cos t)} \, dt = a \int_{0}^{2\pi} \sqrt{2\cdot 2\sin^{2}\frac{t}{2}} \, dt = 2a \int_{0}^{2\pi} \sin\frac{t}{2} \, dt = 2a \cdot 2\left(-\cos\frac{t}{2}\right)\Big|_{0}^{2\pi} =$$