Лабораторная работа 6

Тагиев Байрам Алтай оглы

Содержание

1	Цель работы	5
2	Теоретическое введение	6
3	Выполнение лабораторной работы	7
4	Выводы	12

Список иллюстраций

3.1	Модель «хищник-жертва» в хсоз	7
3.2	Начальное значение 1	8
3.3	Начальное значение 2	8
3.4	График изменения численности хищников и численности	
	жертв	8
3.5	График зависимости численности хищников от численно-	
	сти жертв	Ö
3.6	Модель «хищник-жертва» в хсоз	Ö
3.7	Код	10
3.8	График изменения численности хищников и численности	
	жертв	11
3.9	График зависимости численности хищников от численно-	
	сти жертв	11

Список таблиц

1 Цель работы

Целью данной работы является построение модели хищник-жертва.

2 Теоретическое введение

Модель Лотки—Вольтерры ([1]) — модель взаимодействия двух видов типа «хищник — жертва», названная в честь её авторов, которые предложили модельные уравнения независимо друг от друга. Такие уравнения можно использовать для моделирования систем «хищник — жертва», «паразит — хозяин», конкуренции и других видов взаимодействия между двумя видами.

Данная двувидовая модель основывается на следующих предположениях:

- 1. Численность популяции жертв х и хищников у зависят только от времени (модель не учитывает пространственное распределение популяции на занимаемой территории)
- 2. В отсутствии взаимодействия численность видов изменяется по модели Мальтуса, при этом число жертв увеличивается, а число хищников падает
- 3. Естественная смертность жертвы и естественная рождаемость хищника считаются несущественными
- 4. Эффект насыщения численности обеих популяций не учитывается
- 5. Скорость роста численности жертв уменьшается пропорционально численности хищников

3 Выполнение лабораторной работы

1. Реализуем модель на хсоз. Добавим необходимые блоки.

Модель «хищник-жертва» в хсоѕ

2. Зададим начальные условия на блоках интегрирования.

Начальное значение 1

Начальное значение 2

3. Запустив, мы увидим два графика.

График изменения численности хищников и численности жертв

График зависимости численности хищников от численности жертв

4. Перейдем к реализации с блоком modelica. Сдеалаем следующую схему.

Модель «хищник-жертва» в хсоѕ

5. Добавим "исходный код в наш блок".

```
class generic

///automatically generated ///

//input variables

Real a,b,c,d;

//output variables

// Real x,y;

////do not modif above this line ////

Real x(start=1), y(start=2);
equation

der(x)=a*x-b*x*y;
der(y)=c*x*y-d*y;
end generic;
```

Код

- 6. Запустив получим аналогичные графики, как и в 3 пунтке.
- 7. Перейдем к OpenModelica. Далее представлен листинг программы.

```
model m1
parameter Real a=2,b=1,c=0.3,d=1;
Real x(start=2), y(start=1);
equation
der(x)=a*x-b*x*y;
der(y)=c*x*y-d*y;
annotation(
    experiment(StartTime = 0, StopTime = 30, Tolerance = 1e-6, Interval = 0.06))
end m1;
```

8. Запустив, получим следующие графики.

График изменения численности хищников и численности жертв

График зависимости численности хищников от численности жертв

4 Выводы

Мы реализовали модель "Хищник-жертва" в xcos, modelica и OpenModelica.

1. Wikipedia. Lotka-Volterra equations — Wikipedia, The Free Encyclopedia. http://en.wikipedia.org/w/index.php?title=Lotka %E2%80%93Volterra%20equations&oldid=1136125432, 2023.