

Contents

- Finding Eigenvalues
- **■** Finding Eigenvectors
- Diagonalizing a Square Matrix
- Interpretations of Eigenvalues and Eigenvectors
- Special Awesomeness of Symmetric Matrices
- Eigendecomposition of Singular Matrices
- Quadratic Form, Definiteness, and Eigenvalues
- Generalized Eigendecomposition
- Summary
- Code exercise

https://youtu.be/PFDu9oVAE-g?list=PLZHQObOWTQDPD3MizzM2xVFitgF8hE_ab&t=82

Finding Eigenvalues

Find Eigenvalues Using MATLAB

To eigendecompose a square matrix...,

- First, find eigenvalues first.
- Then, use each eigenvalue to find its corresponding eigenvector.
- Super easy in MATLAB.
 - Just use function eig()
 - Eigenvalues of the matrix below are -0.37 and 5.37.

```
% Clear workspace, command window, and close all figures
clc; clear; close all;

% Define the matrix
matrix = [1 2; 3 4];

% Get the eigenvalues
evals = eig(matrix);

% Display the eigenvalues
disp('Eigenvalues of the matrix:');
disp(evals);

MATLAB code to find eigenvalues
```

Probably you have question…!

► How are the eigenvalues of a matrix identified?

Method to Find Eigenvalues of Matrix

Do some simple arithmetic!

$$Av = \lambda v$$

$$Av - \lambda v = 0$$

$$(A - \lambda I)v = 0$$

Reorganize eigenvalue equation

First equation

Repeat of eigenvalue equation.

Second equation

Simply subtracted right-hand side to set equation of right-hand side to the zeros vector.

Third equation

- Left-hand side of second equation has two vector terms.
 - Both of which involve v so that factor out the vector.
- \blacktriangleright After that, it leaves us with the subtraction of a matrix and a scalar $A \lambda$.
 - Matrix-scalar subtraction is not a defined operation in linear algebra.
 - So, shift matrix by λ .
 - λI is sometimes called a scalar matrix.

Meaning of Eigenvalue Equation

■ Eigenvector is in the null space of the matrix shifted by its

$$(A - \lambda I)v = \mathbf{0}$$

Reorganized eigenvalue equation

- Remember...,
 - lgnore trivial solutions in linear algebra which means don't consider v=0 to be an eigenvector.
- Matrix shifted by its eigenvalue is singular.
 - ▶ Because only singular matrices have a **nontrivial null space**.
- What else do we know about singular matrices?
 - Know that their Determinant is zero!
 - ► Hence, we can write as below:

$$det(A - \lambda I) = 0$$

Determinant of $A - \lambda I$

Key to Finding Eigenvalues: Determinant

- Shift matrix by unknown eigenvalue λ .
 - \blacktriangleright Set its determinant to , and solve for λ .
- **Example of finding eigenvalues in 2 \times 2 matrix**
 - ightharpoonup You can apply quadratic formula to solve for two λ values.

$$\begin{vmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} - \lambda \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \end{vmatrix} = 0$$
$$\begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix} = 0$$
$$(a - \lambda)(d - \lambda) - bc = 0$$
$$\lambda^2 - (a + d)\lambda + (ad - bc) = 0$$

Process of finding eigenvalues

Examples to Finding Eigenvalues

Traditional way to find eigenvalues

- Subtract the unknown value lambda off the diagonals.
- Solve for the determinant is equal to zero.

Direct way to find eigenvalues

- Trace of matrix is equal to sum of the eigenvalues.
- ▶ Determinant of a matrix is equal to the product of the two eigenvalues.

Find the eigenvalues of
$$\begin{bmatrix} 3 & 1 \\ 4 & 1 \end{bmatrix}$$

$$\det \left(\begin{bmatrix} 3-\lambda & 1 \\ 4 & 1-\lambda \end{bmatrix} \right) = (3-\lambda)(1-\lambda) - (1)(4)$$
$$= (3-4\lambda+\lambda^2) - 4$$
$$= \lambda^2 - 4\lambda - 1 = 0$$

$$\lambda_1, \lambda_2 = \frac{4 \pm \sqrt{4^2 - 4(1)(-1)}}{2} = \frac{4 \pm \sqrt{20}}{2} = 2 \pm \sqrt{5}$$

Traditional way to find eigenvalue

$$1) \quad \frac{1}{2} \operatorname{tr} \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \frac{a+d}{2} = \frac{\lambda_1 + \lambda_2}{2} = m \quad \text{(mean)}$$

2)
$$\det \begin{pmatrix} a & b \\ c & d \end{pmatrix} = ad - bc = \lambda_1 \lambda_2 = p$$
 (product)

$$3) \lambda_1, \lambda_2 = m \pm \sqrt{m^2 - p}$$

$$\begin{bmatrix} 8 & 4 \\ 2 & 6 \end{bmatrix} \quad m = 7$$

$$p = 40$$

Direct way to find eigenvalue

Code Exercise to Find Eigenvalues

- Code Exercise (13_01)
 - Find the eigenvalues using different method.
 - Use the 'direct way' in the previous slide.

```
% Clear workspace, command window, and close all figures
clc; clear; close all;

% 2x2 matrix : A
A = [1 2; 3 4];

% Calculate the trace of the matrix
trA = trace(A);

% Calculate the determinant of the matrix
detA = det(A);

% Calculate the eigenvalues using the direct way
lambda1 = ;
lambda2 = ;

% Display the eigenvalues
disp('Eigenvalues of the matrix:');
disp([lambda1 lambda2]);

MATLAB code to find eigenvalues using direct way
```


Logical Progression of Mathematical Concepts of Eigenvalue Equation

- The matrix-vector multiplication acts like: -vector multiplication.
- Set eigenvalue equation to zeros vector, and factor out common terms.
 - ► Eigen vector is null space of matrix shifted by eigenvalue.
 - ▶ Do not consider zeros vector to be an eigenvector.
 - Shifted matrix is singular.
- Set determinant of shifted matrix to .
 - Solve for unknown eigenvalue.
- Determinant of an eigenvalue-shifted matrix set to
 - ► Called characteristic polynomial of the matrix.

$$Av = \lambda v$$

$$Av - \lambda v = 0$$

$$(A - \lambda I)v = 0$$

$$det(A - \lambda I) = 0$$

 $\lambda^2 - (a+d)\lambda + (ad - bc) = 0$

- \blacksquare *n th* order polynomial has *n* solutions.
 - Some of solutions might be complex-valued.
 - Called fundamental theorem of algebra.
 - ► Characteristic polynomial of an $M \times M$ matrix will have λ^M term.
 - $M \times M$ matrix will have M eigenvalues.

Finding Eigenvectors

Find Eigenvectors Using MATLAB

Finding eigenvectors is super easy in MATLAB.

- Most important thing to keep in mind
 - Eigenvectors are stored in columns of the matrix.
- Columns of the matrix evecs
 - Eigenvectors
 - Columns are same order as eigenvalues.
- Paired
 - Eigenvector in the first column of matrix *evecs*.
 - First eigenvalue in vector *evals*.
- ightharpoonup People use variable names L & V or D & V.
 - V matrix: each column i is eigenvector v_i .
 - L is for Λ (capital of λ)
 - D is for diagonal.
 - Eigen values are often stored in a diagonal matrix.
 - Reasons will be explained later in this chapter.

```
% Clear workspace, command window, and close all figures
clc; clear; close all;

% 2x2 matrix
matrix = [1 2; 3 4];

% Calculate the eigenvalues and eigenvectors
[vecs, vals] = eig(matrix);

% Display the eigenvalues and eigenvectors
disp('Eigenvalues:');
disp(diag(vals)); % Extracts and displays the eigenvalues from the diagonal matrix
disp('Eigenvectors:');
disp(vecs); % Displays the eigenvectors
```

MATLAB code to find eigenvalues

Important question

▶ Where do eigenvectors come from and how do we find them?

Important Thing to Keep In Mind About Eigenvectors When Coding

- Eigenvectors are stored in the columns of the matrix.
 - Not in the rows.
 - Disastrous consequences in applications.
 - If accidentally using the rows instead of the columns of the eigenvectors matrix.
- Remember common convention in linear algebra.
 - Vectors are in column orientation.

Method to Find Eigenvector

- Find vector v that is in the null space of matrix shifted by λ .
 - ▶ In other words:

$$v_i \in N(A - \lambda_i I)$$

Equation of eigenvector

Numerical example

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \longrightarrow \lambda_1 = 3, \lambda_2 = -1$$

Example of matrix and its eigenvalues

- ► Focus on the first eigenvalue.
 - Shift the matrix by 3 (value of first eigenvalue).
 - Find a vector in its null space.

$$\begin{bmatrix} 1-3 & 2 \\ 2 & 1-3 \end{bmatrix} = \begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix} \longrightarrow \begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Find eigenvector of the matrix

- [1 1]: an eigenvector of the matrix **associated with** an eigenvalue of 3.
- How can we find null space vectors (eigenvectors of the matrix)?

Method to Find Null Space Vectors in Practice

Good way to conceptualize the solution

- ▶ Use Gauss-Jordan to solve a system of equations.
 - Coefficients matrix is λ shifted matrix.
 - Constants vector is zeros vector.

In implementation...,

- More stable numerical methods are applied for finding eigenvalues and eigenvectors.
 - Including QR decomposition and Procedure called the power method

Sign and Scale Indeterminacy of Eigenvectors

Return to numerical example in previous section

- ▶ Why [1 1] was an eigenvector of matrix?
 - [1 1]: a basis for the null space of the matrix shifted by its eigenvalue of 3.
- ▶ Is [1 1] unique eigenvector of matrix?
 - No, [4 4] or [-5.4 -5.4] or ...
 - Any scaled version of vector [1 1] is a basis for that null space.
- lf v is an eigenvector of a matrix, αv can also be eigenvector.
 - αv for any real-valued α except zero.

Indeed, eigenvectors are important because of their

► Not because of their magnitude

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \longrightarrow \lambda_1 = 3, \lambda_2 = -1 \longrightarrow \begin{bmatrix} 1-3 & 2 \\ 2 & 1-3 \end{bmatrix} = \begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix} \longrightarrow \begin{bmatrix} -2 & 2 \\ 2 & -2 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Previous example about eigenvalues and eigenvector

Questions About Infinity of Possible Null Space Basis Vectors

Is there one "best" basis vector?

- No "best" basis vector.
- But convenient to have eigenvectors that are unit normalized.
 - Euclidean norm of 1.
 - Particularly useful for symmetric matrices for reasons will be explained later in this chapter.

■ What is "correct" sign of an eigenvector?

- There is none.
- ► Can get different eigenvector signs from same matrix when using different software.
 - Python, Julia, Mathematica ,
- ▶ There are principled ways for assigning a sign in applications.
 - Such as PCA.
 - But it is just common convention to facilitate interpretation.

Diagonalizing a Square Matrix

Make Equations Compact and Elegant

- Eigenvalue equation lists one eigenvalue and one eigenvector.
 - \blacktriangleright Means that an $M \times M$ matrix has M eigenvalue equations.
- Nothing wrong with that series of equations...!
 - But this equation sets are ugly.
 - ▶ Ugliness violates one of the principles of linear algebra which make equations compact and elegant.

$$Av_1 = \lambda_1 v_1$$

$$\vdots$$

$$Av_M = \lambda_M v_M$$

M eigenvalue equations of $M \times M$ matrix

■ Therefore, we need to transform this series of equations into one matrix equation for compact!

Key Insight for Writing Out Matrix Eigenvalue Equation

- Each of the eigenvectors matrix is scaled by exactly one eigenvalue.
 - ► Can implement this through post multiplication by a diagonal matrix.
 - Store eigenvalues in diagonal of a matrix instead of storing eigenvalues in a vector.
- Form of diagonalization for a 3×3 matrix
 - ▶ Using @ in place of numerical values in the matrix
 - ▶ In the eigenvectors matrix,
 - First subscript number corresponds to eigenvector.
 - Second subscript number corresponds to eigenvector element.
 - ▶ Take a moment to confirm!
 - Each eigenvalue scales all elements of its corresponding eigenvector and not any other eigenvectors.

$$Av_{1} = \lambda_{1}v_{1}$$

$$\vdots$$

$$Av_{M} = \lambda_{M}v_{M}$$

$$Av_{M} = \lambda_{M}v_{M}$$

$$\begin{vmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{vmatrix} \begin{vmatrix} v_{11} & v_{21} & v_{31} \\ v_{12} & v_{22} & v_{32} \\ v_{13} & v_{23} & v_{33} \end{vmatrix} = \begin{vmatrix} \lambda_{1}v_{11} & \lambda_{2}v_{21} & \lambda_{3}v_{31} \\ \lambda_{1}v_{12} & \lambda_{2}v_{22} & \lambda_{3}v_{32} \\ \lambda_{1}v_{13} & \lambda_{2}v_{23} & \lambda_{3}v_{33} \end{vmatrix}$$

$$A = \begin{bmatrix} v_{11} & v_{21} & v_{31} \\ v_{12} & v_{22} & v_{32} \\ v_{13} & v_{23} & v_{33} \end{vmatrix} \begin{bmatrix} \lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3} \end{vmatrix}$$

Diagonalization for 3×3 matrix

Eigen Decomposition

Consider list of equivalent declarations of matrix eigenvalue equation as shown below.

$$AV = V\Lambda$$
 $A = V\Lambda V^{-1}$
 $\Lambda = V^{-1}AV$
List of equivalent declarations

- Code to return:
 - ► Eigenvalues in a vector.

```
% Clear workspace, command window, and close all figures
clc; clear; close all;

% 2x2 matrix
matrix = [1 2; 3 4];

% Calculate the eigenvalues and eigenvectors
[vecs, vals] = eig(matrix);

% Display the D matrix
disp('D matrix:');
disp(vals);

MATLAB code to get D matrix
```


Example of Diagonalizing a Square Matrix

Diagonalizing matrix using eigenvectors (eigenbasis).

$$\Lambda = V^{-1}AV$$

Interpretations of Eigenvalues and Eigenvectors

Interpretations in Geometry

Special combination of a matrix and a vector

- ► Matrix *stretched* vector but did not that vector.
 - That vector: **eigenvector** of matrix
 - Amount of stretching: eigenvalue
- ▶ Eigenvectors point in same direction.
 - Before and after post multiplying the matrix.
- ► In Fig 1.,
 - v_1 , v_2 : eigen vectors.
- ► In Fig 2.,
 - w_1 , w_2 : not eigen vectors.

Geometric meaning of eigenvector

- ► Matrix-vector multiplication acts like scalar-vector multiplication.
- Write eigenvalue equation as:

$$Av = \lambda v$$

Eigenvalue equation

- Equation doesn't say that matrix equals the scala.
 - It says that the *effect* of matrix on the vector is same as the *effect* of the scalar on that same vector.

Principal Components Analysis

Implement Principal Component Analysis (PCA) on statistical data.

- To identify important patterns or structures.
 - We will practice PCA later!

Role of eigenvalue in PCA

- Eigenvalue play a crucial role in PCA.
 - Represent variance of each principal component.
 - The larger the eigenvalue, the more variance (information) the principal component captures.

Scree plot

- graph of the eigenvalues of the dataset's covariance matrix
- ▶ A) 1 component accounts for most of the variance system.
 - All other components account for very little variance.
- B) 3 major subcategories.
 - Other components expect 3 major categories account for very little variance.

Interpretations in Noise Reduction

Most datasets contain noise.

Noise

► Refers to in a dataset either unexplained or unwanted.

Method to reducing random noise

- Many ways to attenuate or eliminate noise, but optimal reduction strategy depends on origin of the noise or characteristics of signal
- Method with eigenvalues and eigenvectors,
 - Identify eigenvalues and eigenvectors of a system.
 - And "project out" directions in the data space associated with small eigen-values.

■ Meaning of "projecting out" a data dimension

Reconstruct dataset after setting some eigenvalues to zero which eigenvalues below some threshold.

Interpretations in Dimension Reduction (Data Compression)

- It is beneficial to compress data before transmitting it.
 - Compression: Reduce the size of data while having minimal impact on the quality of the data.

One way to dimension-reduce a dataset

- ► Take its eigendecomposition
 - Drop eigenvalues and eigenvectors associated with small directions in data space.
 - Transmit only relatively larger eigenvector-value pairs.

All of the data compression idea is same!

- Decompose dataset into a set of basis vectors.
 - Basis vectors that capture the most important features of data.
- Reconstruct a high-quality version of the original data.

Special Awesomeness of Symmetric Matrices

Orthogonal Eigenvector

- Symmetric matrices have orthogonal eigenvectors.
 - ► All eigenvectors of symmetric matrix are pair-wise orthogonal.
- Start with an example, then discuss implications of eigenvector orthogonality, finally show proof.

Code Exercise of Orthogonal Eigenvector

- Code Exercise (13_02)
 - Three dot products are all zero.
 - Within computer rounding errors on order of 10^{-16} .
 - Symmetric matrices were created as random matrix times its transpose.

```
% Clear workspace, command window, and close all figures
clc; clear; close all;
% Create a random matrix and make it symmetric
A = randi([-3, 3], 3, 3);
A = A * A'; % Symmetric matrix
% Perform eigen decomposition
[V, D] = ;
% Display the eigenvalues and eigenvectors
disp('Eigenvalues:');
disp(diag(D));
disp('Eigenvectors:');
disp(V);
% Calculate and display all pairwise dot products between eigenvectors
dot12 = ;
dot13 = ;
disp('Dot product of first and second eigenvectors:')
disp(dot12);
disp('Dot product of first and third eigenvectors:')
disp('Dot product of second and third eigenvectors:')
disp(dot23);
```

MATLAB code of orthogonal eigenvectors

Property of Orthogonal Eigenvector

- Dot product between any pair of eigenvectors is _____.
 - ▶ While dot product of eigenvector with itself is nonzero.
 - Because not consider zeros vector to be eigenvector.
 - ► This can be written as Eq 1..
 - D: Diagonal matrix with diagonals containing norms of eigenvectors

$$V^TV = D$$

Eq 1. Property of orthogonal eigenvector

Direction VS Magnitude

- Eigenvectors are important not magnitude but _____.
 - ► Eigenvector can have any magnitude we want.
 - Except for magnitude of zero
- Let's scale all eigenvectors so they have unit length.
 - Question: If all eigenvectors are orthogonal and have unit length, what happens when we multiply eigenvectors matrix by its transpose?
 - Answer: As you know, it's Eq 1..
- In other words, Eigenvectors matrix of symmetric matrix is orthogonal matrix!

$$V^TV = I$$

Eq 1. Multiply eigenvectors matrix with unit length by its transpose

Implication of Orthogonal Eigenvector

- Eigenvectors are super easy to invert for symmetric matrices.
 - ► Simply transpose them.
- Other implications of orthogonal eigenvectors for applications.
 - Such as principal components analysis
 - ▶ I will discuss later.

Proof of Orthogonal Eigenvector

Necessity

Orthogonal eigenvectors of symmetric matrices is such important concept

Goal

► To show that product between any pair of eigenvectors is zero.

Assumption

- Matrix A is symmetric.
- \triangleright λ_1 and λ_2 are distinct eigenvalues of A, with v_1 and v_2 as their corresponding eigenvectors.
 - λ_1 and λ_2 cannot equal each other.

Eigenvector Orthogonality Proof (1)

- Try to follow each equality step from left to right of Eq 1..
 - ▶ Pay attention to first and last terms.
 - Terms in middle are just transformations.
- Eq 1. are written in Eq 2...
 - Then subtracted to set to zero.

$$\lambda_1 v_1^T v_2 = (A v_1)^T v_2 = v_1^T A^T v_2 = v_1^T \lambda_2 v_2 = \lambda_2 v_1^T v_2$$

Eq 1. Proof of eigenvector orthogonality for symmetric matrices

$$\lambda_1 \boldsymbol{v}_1^T \boldsymbol{v}_2 = \lambda_2 \boldsymbol{v}_1^T \boldsymbol{v}_2$$
$$\lambda_1 \boldsymbol{v}_1^T \boldsymbol{v}_2 - \lambda_2 \boldsymbol{v}_1^T \boldsymbol{v}_2 = 0$$

Eq 2. Continuing eigenvector orthogonality proof

Eigenvector Orthogonality Proof (2)

- Eq 1. can be factored out as Eq 2...
 - ▶ Both terms contain dot product $v_1^T v_2$.
- **Eq 2.** says that two quantities multiply to produce 0.
 - One or both of those quantities must be zero.
 - $(\lambda_1 \lambda_2)$ cannot equal zero.
 - Because we began from assumption that they are
 - ightharpoonup Therefore, $v_1^T v_2$ must equal zero.
 - Meaning: Two eigenvectors are orthogonal.

$$\lambda_1 \boldsymbol{v}_1^T \boldsymbol{v}_2 - \lambda_2 \boldsymbol{v}_1^T \boldsymbol{v}_2 = 0$$

Eq 1. Continuing eigenvector orthogonality proof

$$(\lambda_1 - \lambda_2) \boldsymbol{v}_1^T \boldsymbol{v}_2 = 0$$

Eq 2. Eigenvector orthogonality proof, part 3

Eigenvector Orthogonality Proof (3)

Go back through Eq 1..

- \triangleright Convince yourself that this proof fails for nonsymmetric matrices, when $A^T \neq A$.
- Thus, eigenvectors of nonsymmetric matrix are not constrained to be orthogonal.
 - Linearly independent for all distinct eigenvalues.
 - But I will omit that discussion and proof.

$$\lambda_1 \boldsymbol{v}_1^T \boldsymbol{v}_2 = (\boldsymbol{A} \boldsymbol{v}_1)^T \boldsymbol{v}_2 = \boldsymbol{v}_1^T \boldsymbol{A}^T \boldsymbol{v}_2 = \boldsymbol{v}_1^T \lambda_2 \boldsymbol{v}_2 = \lambda_2 \boldsymbol{v}_1^T \boldsymbol{v}_2$$
$$\lambda_1 \boldsymbol{v}_1^T \boldsymbol{v}_2 = \lambda_2 \boldsymbol{v}_1^T \boldsymbol{v}_2$$
$$\lambda_1 \boldsymbol{v}_1^T \boldsymbol{v}_2 - \lambda_2 \boldsymbol{v}_1^T \boldsymbol{v}_2 = 0$$
$$(\lambda_1 - \lambda_2) \boldsymbol{v}_1^T \boldsymbol{v}_2 = 0$$

Eq 1. Eigenvector orthogonality proof

Real-Valued Eigenvalues

- Second special property of symmetric matrices
 - ► Real-valued eigenvalues
 - ▶ Real-valued eigenvectors
- Let me start by showing that matrices with all real-valued entries.
 - Those have complex-valued eigenvalues.

```
% Clear workspace, command window, and close all figures
clc; clear; close all;

% Define the matrix A
A = [-3 -3 0; 3 -2 3; 0 1 2];

Perform eigen decomposition
[V, D] = eig(A);

Extract the eigenvalues from the diagonal matrix D
eigenvalues = diag(D);

% Display the eigenvalues as a column vector
disp('Eigenvalues:');
disp(eigenvalues);
Eigenvalues:

-2.7447 + 2.8517i
2.4895 + 0.0000i
```


MATLAB code of egiendecomposition

In Code Exercise

- $\mathbf{3} \times \mathbf{3}$ matrix A
 - Two complex eigenvalues and one real-valued eigenvalue.
 - Eigenvectors coupled to complex-valued eigenvalues
 - Themselves be complex-valued.
 - Nothing special
 - Because matrix A comes from random integers between -3 and +3.
- Interestingly, complex-valued solutions come in conjugate pairs.
 - lf there is $\lambda_i = a + ib$, then there is $\lambda_k = a ib$.
 - ► Their corresponding eigenvectors are also complex conjugate pairs.
- I don't go into detail about complex-valued solutions, except to show you that complex solutions to eigendecomposition are straightforward.
 - Straightforward: Mathematically expected
 - Interpreting complex solutions in eigendecomposition is far from straightforward.

Symmetric Matrix

- Guarantee to have eigenvalues.
 - ► Also eigenvectors.
- Let me start by modifying previous example.
 - Make matrix symmetric.

```
% Clear workspace, command window, and close all figures
clc; clear; close all;

% Define the matrix A
A = [-3 -3 0; -3 -2 1; 0 1 2];

% Perform eigen decomposition
[V, D] = eig(A);

% Extract the eigenvalues from the diagonal matrix D
eigenvalues = diag(D);

% Display the eigenvalues as a column vector
disp('Eigenvalues:');
disp(eigenvalues);
```

Eigenvalues:

-5.5971

0.2261

2.3710

MATLAB code of eigendecomposition of symmetric matrix

Random Symmetric Matrix of Any Size

How to make

- Create random matrix.
- ightharpoonup Eigendecompositioning A^TA .

Where to use

Confirm that eigenvalues are real-valued.

Guaranteed real-valued eigenvalues from symmetric matrices.

- It's fortunate
 - Because complex numbers are often confusing to work with.

In data science

- ▶ Lots of matrices are symmetric.
- If you see complex eigenvalues in your data science applications,
 - It's possible that is problem with code or with data.

Eigendecomposition of Singular Matrices

Wrong Idea about Eigendecomposition of Singular Matrices

- Students often get idea.
 - ➤ Singular matrices cannot be _____
 - ► Eigenvectors of singular matrix must be unusual somehow.
- That idea is completely wrong!
 - ► Eigendecomposition of singular matrices is

Code Exercise of Eigendecomposition of Singular Matrix

- Code Exercise (13_03)
 - This rank-2 matrix has one zero-valued eigenvalue with nonzeros eigenvector.
 - Explore eigendecomposition of other reduced-rank random matrices by using example code.

```
% Clear workspace, command window, and close all figures
clc; clear; close all;
% Define the matrix
A = [1 \ 4 \ 7; \ 2 \ 5 \ 8; \ 3 \ 6 \ 9];
% Calculate the matrix rank
rankA = ;
% Eigen decomposition
[V, D] = ;
% Display the results
disp('Rank =')
disp(rankA);
disp('Eigenvalues:');
disp(diag(D));
disp('Eigenvectors:');
disp(V);
% Optionally round eigenvalues and eigenvectors for display
disp('Rounded Eigenvalues:');
disp(round(diag(D).',2)); % Round and transpose for horizontal display
disp('Rounded Eigenvectors:');
disp(round(V, 2));
```

MATLAB code of eigendecomposition of singular matrix

One Special Property of Eigendecomposition of Singular Matrices

At least one eigenvalue is guaranteed to be zero.

- ► That doesn't mean that number of nonzero eigenvalues equals rank of matrix.
- ► True for
 - Scalar values from the SVD (Singular Value Decomposition)
- ► Not for
 - But if matrix is singular, then at least one eigenvalue equals zero.

Converse is also true.

Every full-rank matrix has zero zero-valued eigenvalues.

Why this happens

- Singular matrix already has nontrivial null space.
 - $\lambda = 0$ provides nontrivial solution to $(A \lambda I)v = 0$.

Main take-homes of this section

- ► Eigendecomposition is valid for reduced-rank matrices.
- ▶ Presence of at least one zero-valued eigenvalue indicates reduced-rank matrix.

Quadratic Form, Definiteness, and Eigenvalues

Quadratic Form and Definiteness

- Quadratic form and definiteness are intimidating terms.
 - ▶ Don't worry.
 - ► They are both straightforward concepts that provide gateway to advanced linear algebra and applications.
 - advanced linear algebra technique such as
 - Principal components analysis (PCA)
 - Monte Carlo simulations
 - ► Integrating MATLAB code into your learning will give you huge advantage over learning about these concepts.
 - Compared to traditional linear algebra textbooks.

Quadratic Form of Matrix

- Consider Eq 1...
 - ▶ Pre- and postmultiply square matrix by same vector *w* and get scalar.
 - Notice: This multiplication is valid only for square matrices.

$$\mathbf{w}^T \mathbf{A} \mathbf{w} = \alpha$$

Eq 1. Quadratic form of matrix

- This is called on matrix *A*.
- Which matrix and which vector do we use?
 - ▶ Idea of quadratic form
 - To use one specific matrix.
 - To set of all possible vectors.
 - Appropriate size
 - ► Important point
 - Signs of α for all possible vectors.

Example of Quadratic Form of Matrix

For this particular matrix as Eq 1.

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 2 & 4 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = 2x^2 + (0+4)xy + 3y^2$$

Eq 1. First example of quadratic form of matrix

- ▶ There is no possible combination of *x* and *y* that can give negative answer.
 - Even when x or y is negative value.
 - Because squared terms $(2x^2 \text{ and } 3y^2) \gg \text{cross-term } (4xy)$.
- $\triangleright \alpha$ can be nonpositive.
 - α comes from $\mathbf{w}^T \mathbf{A} \mathbf{w} = \alpha$.
 - Only when x = y = 0.
 - In remaining cases, α is always positive.

That is not trivial result of quadratic form.

- \blacktriangleright Eq 2. can have positive or negative α depending on values of x and y.
- ▶ $[x \ y] \rightarrow [-1 \ 1]$: quadratic form result.
- ▶ $[x \ y] \rightarrow [-1 \ -1]$: quadratic form result

$$\begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} -9 & 4 \\ 3 & 9 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = -9x^2 + (3+4)xy + 9y^2$$

Scalar for All Possible Vectors

- How can you possibly know whether quadratic form will produce positive?
 - Or negative, or zero-valued
- Key
 - ▶ Full-rank eigenvectors matrix spans all of \mathbb{R}^M .
 - ▶ Therefore, Every vector in \mathbb{R}^M can be expressed.
 - As some linear weighted combination of eigenvectors.
- Then, start from eigenvalue equation and left-multiply by eigenvector to return to quadratic form as Eq 1..

$$Av = \lambda v$$

$$v^{T}Av = \lambda v^{T}v$$

$$v^{T}Av = \lambda ||v||^{2}$$

Eq 1. Return to quadratic form

Key of Return to Quadratic Form

- In Eq 1., Final equation is key.
 - ightharpoonup Note, $\|\boldsymbol{v}^T\boldsymbol{v}\|$ is strictly positive.
 - Vector magnitudes cannot be negative.
 - Ignore zeros vector.
 - \triangleright Sign of right-hand side of equation is determined entirely by eigenvalue λ .
- That equation uses only one eigenvalue and its eigenvector.
 - But we need to know about any possible vector.

$$Av = \lambda v$$

$$v^{T}Av = \lambda v^{T}v$$

$$v^{T}Av = \lambda ||v||^{2}$$

Eq 1. Return to quadratic form

Insight of Return to Quadratic Form

- If equation is valid for each eigenvector-eigenvalue pair,
 - ▶ It is valid for any combination of eigenvector-eigenvalue pairs as Eq 1...
- In other words
 - ► Set any vector *u* to be some linear combination of
 - \triangleright Set some scalar ζ to be that same linear combination of eigenvalues.
- Anyway, it doesn't change principle
 - ➤ Sign of right-hand side (quadratic form) is determined by sign of eigenvalues.

$$v_1^T A v_1 = \lambda_1 ||v_1||^2$$

$$v_2^T A v_2 = \lambda_2 ||v_2||^2$$

$$(v_1 + v_2)^T A (v_1 + v_2) = (\lambda_1 + \lambda_2) ||(v_1 + v_2)||^2$$

$$u^T A u = \zeta ||u||^2$$

Eq 1. Valid for each eigenvector-eigenvalue pair

Think about Equation under Different Assumption about sign of λ

All eigenvalues are positive.

- Right-hand side of equation is always positive.
- $\triangleright v^T A v$ is always positive for any vector v.

Eigenvalues are positive or zero.

- $\triangleright v^T A v$ is nonnegative
- $\triangleright v^T A v$ will equal zero when $\lambda = 0$.
 - $\lambda = 0$ happens when matrix is singular.

■ Eigenvalues are negative or zero.

- Quadratic form result will be zero or negative.
- **Eigenvalues are negative.**
 - Quadratic form result will be negative for all vectors.

Definiteness

- Characteristic of square matrix
- Defined by signs of eigenvalues of matrix.
 - Same thing as signs of quadratic form results.
- Implication
 - Invertibility of matrix as well as advanced data analysis methods.
 - Such as generalized eigendecomposition
 - Used in multivariate linear classifiers and signal processing.

Categories of Definiteness

- There are 5 categories in definiteness.
- Five categories as shown in Table 1.
 - + and signs indicate signs of eigenvalues.
 - - Matrix can be invertible or singular depending on numbers in matrix.
 - Not on definiteness category.

Category	Quadratic form	Eigenvalues	Invertible
Positive definite	Positive	+	Yes
Positive semidefinite	Nonnegative	+ and 0	No
Indefinite	Positive and negative	+ and -	Depends
Negative semidefinite	Nonpositive	- and 0	No
Negative definite	Negative	-	Yes

Table 1. Definiteness categories

$A^{T}A$ is Positive (Semi)definite

- Specific matrix is guaranteed to be positive definite or positive semidefinite.
 - Expressed as product of matrix and its transpose.
 - ▶ That is, $S = A^T A$
 - Combination of these two categories is often written as
- All data covariance matrices are positive (semi)definite.
 - \triangleright Because covariance matrices defined: A^TA
 - where data matrix: A
 - ► All covariance matrices have nonnegative eigenvalues.
- Case1: When data matrix is full-rank,
 - ▶ If data is stored as observations by features,
 - Full column-rank
 - ► Eigenvalues will be all positive.
- Case2: If data matrix is reduced-rank,
 - ► At least one zero-valued eigenvalue

Proof of A^TA

Proof that S is positive (semi)definite.

- Writing out its quadratic form.
- Applying some algebra manipulations.

■ In Eq 1..

- ► Transition from first to second equation simply involves moving parentheses around.
 - Such "proof by parentheses" is common in linear algebra.

$$w^{T}Sw = w^{T}(A^{T}A)w$$

$$= (w^{T}A^{T})(Aw)$$

$$= (Aw)^{T}(Aw)$$

$$= ||Aw||^{2}$$

Eq 1. Proof that S is positive (semi)definite by parentheses

Point of Proof of A^TA

- **Quadratic form of** A^TA equals $||matrix||^2 * vector$.
- Characteristic of magnitudes
 - Cannot be negative.
 - Can be zero
 - Only when vector is zero.
- If Aw = 0 for nontrivial w,
 - ► Then *A* is singular.
- Notice
 - ightharpoonup Although all A^TA matrices are symmetric, not all symmetric matrices can be expressed as A^TA .
 - Matrix symmetry on its own does not guarantee positive (semi)definiteness.
 - Because not all symmetric matrices can be expressed as product of matrix and its transpose.

Importance of Quadratic Form and Definiteness

- Importance in data science.
 - Because some linear algebra operations are applied only to well-endowed matrices.
 - Cholesky decomposition
 - Create correlated datasets in Monte Carlo simulations.
 - Importance in optimization problems.
 - - Because guaranteed minimum to find
- In your never-ending quest to improve your data science prowess,
 - You might encounter technical papers.
 - Use abbreviation SPD (Symmetric Positive Definite).

Generalized Eigendecomposition

Eigendecomposition

- Consider that Eq 1. is same as fundamental eigenvalue equation.
 - ► This is obvious.
 - Because
 - Generalized eigendecomposition as Eq 2. involves replacing identity matrix with another matrix.
 - Not identity or zeros matrix

$$Av = \lambda Iv$$

Eq 1. Assumption equal to fundamental eigenvalue equation

$$Av = \lambda Bv$$

Eq 2. Generalized eigendecomposition

Generalized Eigendecomposition

- It is also called simultaneous diagonalization of two matrices.
- Resulting (λ, v) pair is not eigenvalue / vector of A alone nor of B alone.
 - Instead, two matrices share eigenvalue / vector pairs.
- Conceptually, you can think of generalized eigendecomposition
 - As "regular" eigendecomposition of product matrix as Eq 1...
- Just conceptual
 - In practice, does not require **B** to be invertible.
- Not case
 - ► Any two matrices can be simultaneously diagonalized.
 - ▶ If **B** is
 - Diagonalization is possible.

$$C = AB^{-1}$$
 $Cv = \lambda v^{-1}$

Eq 1. "Regular" eigendecomposition of product matrix

Use Generalized Eigendecomposition in Data Science

- Classification analysis
- In particular, fisher's linear discriminant analysis (LDA)
 - Based on generalized eigendecomposition of two data covariance matrices.

Myriad Subtleties of Eigendecomposition

A lot of properties of eigendecomposition

- Sum of eigenvalues equals trace of matrix.
 - While product of eigenvalues equals determinant.
- Not all square matrices can be diagonalized.
- Some matrices have repeated eigenvalues.
 - Implications for their eigenvectors
- Complex eigenvalues of real-valued matrices
 - Inside circle in complex plane.

Mathematical knowledge of eigenvalues runs deep.

- ▶ But this lecture provides essential foundational knowledge.
 - For working with eigendecomposition in applications.

Summary

Summary

lacktriangle Eigendecomposition identifies M scalar/vector pairs of an M imes M matrix.

- It reflect special directions in the matrix.
- And have myriad applications in data science.
 - As well as in geometry, physics, computational biology, and myriad other technical displines.

Eigenvalues can be found.

- ightharpoonup Assuming that the matrix shifted by an unknown scalar λ is singular.
- Setting its determinant to zero.
 - Called characteristic polynomial.
- \blacktriangleright And solving for λs .

Eigenvectors can be found.

▶ By finding basis vector for the null space of $\lambda - shifted$ matrix.

Meaning of diagonalizing a matrix.

- ▶ Represent matrix as $V^{-1}\Lambda V$.
 - V: matrix with eigenvectors in the columns.
 - \bullet Λ : diagonal matrix with eigenvalues in the diagonal elements.

Summary

Symmetric matrices have several special properties in eigendecomposition.

- In data science
 - All eigenvectors are pair-wise orthogonal.
 - Matrix of eigenvectors is orthogonal.
 - Inverse of eigenvectors matrix is its transpose.

Definiteness of matrix

- Signs of its eigenvalues
- In data science
 - Positive (semi)definite
 - All eigenvalues are either nonnegative or positive.
- Matrix times its transpose is always positive (semi)definite.
 - All covariance matrices have nonnegative eigenvalues.

Study of eigendecomposition

- Rich and detailed
- Many fascinating subtleties, special cases, and applications

Code Exercises

A, A^{-1} Eigenvalue

Interestingly, the eigenvectors of A^{-1} are the same as the eigenvectors of A while the eigenvalues are λ^{-1} . Prove that is the case by writing out the eigendecomposition of A and A^{-1} . Then illustrate it using a random full-rank 5×5 symmetric matrix.

```
% create the matrix
A = randn(5,5);
A = A' * A;
% compute its inverse
Ai = ;
% eigenvalues of A and Ai
eigvals_A = ;
eigvals Ai = ;
% compare them (hint: sorting helps!)
disp('Eigenvalues of A:')
disp(sort(eigvals_A))
disp(' ')
disp('Eigenvalues of inv(A):')
disp(sort(eigvals_Ai))
disp(' ')
disp('Reciprocal of evals of inv(A):')
disp(sort(1./eigvals_Ai))
```

Sample code

Interesting property of random matrices

One interesting property of random matrices is that their complex-valued eigenvalues are distributed in a circle with a radius proportional to the size of the matrix. To demonstrate this, compute 123 random 42×42 matrices, extract their eigenvalues, divide by the square root of the matrix size (42), and plot the eigenvalues on the complex plane, as in Figure below.

```
nIter = 123;
matsize = 42:
% fill this evals variable
evals = zeros(nIter, matsize);
% create the matrices and get their scaled eigenvalues
   % declear (matsize, matsize) sized matrix A in every iteration
   A = ;
    evals(i, :) = ;
end
% visualization
% and show in a plot
figure('Position', [100, 100, 600, 600]);
plot(real(evals(:)), imag(evals(:)), 'ko', 'MarkerFaceColor', 'w');
xlim([-1.5, 1.5]);
ylim([-1.5, 1.5]);
xlabel('Real');
ylabel('Imag');
                         Sample code
```


Method to Create Random Symmetric Matrices

Start by creating a 4×4 diagonal matrix with positive numbers on the diagonals(they can be, for example, the numbers 1,2,3,4). Then create a 4×4 Q matrix from the QR decomposition of a random-numbers matrix. Use these matrices as the eigenvalues and eigenvectors, and multiply them appropriately to assemble a matrix. Confirm that the assembled matrix is symmetric, and that its eigenvalues equal the eigenvalues you specified.

```
% Create the Lambda matrix with positive values
Lambda = diag(rand(4,1) * 5);
randnMat = randn(4,4);
% create 0
% reconstruct to a matrix
A = ;
% the matrix minus its transpose should be zeros (within precision error)
result = ;
disp(result);
% sort(diag(Lambda)) and sort(eig(A)) disp same result
% print sorted diagonal of Lambda
disp('Sorted diagonal of Lambda:')
disp(sort(diag(Lambda)))
% print sorted eigenvalues of A
disp('Sorted eigenvalues of A:')
disp(sort(eig(A)))
```

Sample code

THANK YOU FOR YOUR ATTENTION

