粒子物理简介

第七节 典型粒子性质

余钊焕

中山大学物理学院

https://yzhxxzxy.github.io

2021年9月

基本粒子

- W[±] 规范玻色子,质量 80.4 GeV,宽度 2.1 GeV
 - 弱衰变 $W^+ \rightarrow c\bar{s}/u\bar{d}$,分支比 67.4%
 - 弱衰变 $W^+ \rightarrow \tau^+ \nu_{\tau}$,分支比 11.4%
 - 弱衰变 $W^+ \rightarrow e^+ \nu_e$,分支比 10.7%
 - 弱衰变 $W^+ \rightarrow \mu^+ \nu_\mu$,分支比 10.6%
- ② Z⁰ 规范玻色子,质量 91.2 GeV,宽度 2.5 GeV
 - 弱衰变 $Z^0 \rightarrow u\bar{u}/d\bar{d}/c\bar{c}/s\bar{s}/b\bar{b}$,分支比 69.9%
 - 弱衰变 $Z^0 \rightarrow \nu_e \bar{\nu}_e / \nu_\mu \bar{\nu}_\mu / \nu_\tau \bar{\nu}_\tau$, 分支比 20%
 - 弱衰变 $Z^0 \rightarrow \tau^+\tau^-$,分支比 3.37%
 - 弱衰变 $Z^0 \to \mu^+ \mu^-$,分支比 3.37%
 - 弱衰变 $Z^0 \to e^+e^-$, 分支比 3.36%

- $H^0 \rightarrow b\bar{b}$,预期分支比 58%
- $H^0 \to W^{\pm}W^{\mp *}(\to f\bar{f}')$,预期分支比 21%
- $H^0 \rightarrow gg$,预期分支比 8.2%
- $H^0 \rightarrow \tau^+ \tau^-$,预期分支比 6.3%
- $H^0 \rightarrow c\bar{c}$, 预期分支比 2.9%
- $H^0 \rightarrow Z^0 Z^{0*} (\rightarrow f \bar{f})$,预期分支比 2.6%
- $H^0 \rightarrow \gamma \gamma$, 预期分支比 0.23%
- $H^0 \rightarrow Z^0 \gamma$, 预期分支比 0.15%

- μ 子, 质量 105.66 MeV, 寿命 2.2 × 10⁻⁶ s
 - 弱衰变 $\mu^- \rightarrow e^- \bar{\nu}_e \nu_\mu$,分支比 $\simeq 100\%$
- **⑤** τ 子,质量 1.777 GeV,寿命 2.9 × 10⁻¹³ s
 - 弱衰变 $\tau^- \rightarrow$ 强子 + ν_{τ} ,分支比 64.8%
 - BR($\tau^- \to \pi^- \pi^0 \nu_{\tau}$) = 25.5%, BR($\tau^- \to \pi^- \nu_{\tau}$) = 10.8%
 - 弱衰变 $\tau^- \rightarrow e^- \bar{\nu}_e \nu_\tau$,分支比 17.8%
 - 弱衰变 $\tau^- \rightarrow \mu^- \bar{\nu}_\mu \nu_\tau$,分支比 17.4%
- **⑤** 顶夸克 t,质量 173 GeV,宽度 1.4 GeV
 - 弱衰变 $t \rightarrow bW^+$,分支比 $\simeq 100\%$

介子

- ① π^0 介子,质量 135.0 MeV,寿命 8.5×10^{-17} s,价夸克为 $(u\bar{u} d\bar{d})/\sqrt{2}$
 - 电磁衰变 $\pi^0 \rightarrow \gamma \gamma$,分支比 98.8%
 - 电磁衰变 $\pi^0 \rightarrow e^+e^-\gamma$,分支比 1.2%

- ② π^{\pm} 介子,质量 139.6 MeV,寿命 2.6 × 10^{-8} s,价夸克为 $\pi^{+}(u\bar{d})$, $\pi^{-}(d\bar{u})$
 - 弱衰变 $\pi^+ \to \mu^+ \nu_\mu$,分支比 99.9877%
 - 弱衰变 $\pi^+ \rightarrow e^+ \nu_e$,分支比 0.0123%
- ③ K^{\pm} 介子,质量 493.7 MeV,寿命 1.2×10^{-8} s,价夸克为 $K^{+}(u\bar{s}),~K^{-}(s\bar{u})$
 - 弱衰变 $K^+ \to \mu^+ \nu_\mu$,分支比 63.6%
 - 弱衰变 $K^+ \rightarrow \pi^+ \pi^0$,分支比 20.7%

中性介子 $K^0(d\bar{s})$ 和 $\bar{K}^0(s\bar{d})$ 互为正反粒子,质量均为 497.6 MeV。在 CP 变换下, $K^0 \leftrightarrow -\bar{K}^0$,它们可以混合成两个不同的态: CP 为偶的态 $K_s^0 = (K^0 - \bar{K}^0)/\sqrt{2}$ 和 CP 为奇的态 $K_L^0 = (K^0 + \bar{K}^0)/\sqrt{2}$ 。弱作用中的 CP 守恒允许 K_s^0 衰变成一对 π 介子,却禁止 K_L^0 衰变成一对 π 介子。这导致 K_s^0 比 K_L^0 衰变得更快,寿命更短。

- **③** K_S^0 介子,CP = +,质量 497.6 MeV,寿命 9.0×10^{-11} s
 - 弱衰变 $K_S^0 \rightarrow \pi^+\pi^-$,分支比 69.2%
 - 弱衰变 $K_s^0 \rightarrow \pi^0 \pi^0$,分支比 30.7%
- **⑤** K_1^0 介子,CP = -,质量 497.6 MeV,寿命 5.1×10^{-8} s
 - 弱衰变 $K_{\tau}^0 \rightarrow \pi^{\pm} e^{\mp} \nu_e / \pi^{\pm} \mu^{\mp} \nu_{\mu}$,分支比 67.6%
 - 弱衰变 $K_1^0 \to \pi^0 \pi^0 \pi^0 / \pi^+ \pi^- \pi^0$,分支比 32.1%

- **1.865** GeV,寿命 4.1×10^{-13} s,价夸克为 $c\bar{u}$
 - 弱衰变 $D^0 \to K^- +$ 其它,分支比 $\simeq 54.7\%$
 - 弱衰变 $D^0 \rightarrow \bar{K}^0/K^0 +$ 其它,分支比 $\simeq 47\%$
 - 弱衰变 $D^0 \to \bar{K}^*(892)^- +$ 其它,分支比 $\simeq 15\%$
- ② D^{\pm} 介子,质量 1.870 GeV,寿命 1.0 × 10^{-12} s,价夸克为 $D^{+}(c\bar{d}), D^{-}(d\bar{c})$
 - 弱衰变 $D^+ \rightarrow \bar{K}^0/K^0 +$ 其它,分支比 $\simeq 61\%$
 - 弱衰变 $D^+ \rightarrow K^- +$ 其它,分支比 $\simeq 25.7\%$
 - 弱衰变 $D^+ \to \bar{K}^*(892)^0 + 其它,分支比 <math>\simeq 23\%$
 - 弱衰变 $D^+ \to \mu^+ +$ 其它,分支比 $\simeq 17.6\%$

- **③** B^0 介子,质量 5.280 GeV,寿命 1.5×10^{-12} s,价夸克为 $d\bar{b}$
 - 弱衰变 $B^0 \rightarrow K^{\pm} +$ 其它,分支比 $\simeq 78\%$
 - 弱衰变 $B^0 \rightarrow \bar{D}^0 X$,分支比 $\simeq 47.4\%$
 - 弱衰变 $B^0 \rightarrow D^-X$,分支比 $\simeq 36.9\%$
 - 弱衰变 $B^0 \rightarrow \ell^+ \nu_\ell +$ 其它,分支比 $\simeq 10.33\%$
- ② B^{\pm} 介子,质量 5.279 GeV,寿命 1.6×10^{-12} s,价夸克为 $B^{+}(u\bar{b})$, $B^{-}(b\bar{u})$
 - 弱衰变 $B^+ \to \bar{D}^0 X$,分支比 $\simeq 79\%$
 - 弱衰变 $B^0 \rightarrow \ell^+ \nu_\ell +$ 其它,分支比 $\simeq 10.99\%$
 - 弱衰变 $B^+ \rightarrow D^- X$,分支比 $\simeq 9.9\%$
 - 弱衰变 $B^+ \rightarrow D^0 X$,分支比 $\simeq 8.6\%$
- **⑩** $\rho(770)$ 介子,质量 775 MeV,宽度 149 MeV,价夸克为 $(u\bar{u}-d\bar{d})/\sqrt{2}$
 - 强衰变 $\rho \rightarrow \pi^+\pi^-/\pi^0\pi^0$,分支比 $\simeq 100\%$

- **①** $J/\psi(1S)$ 介子,质量 3.097 GeV,宽度 92.9 keV,价夸克为 $c\bar{c}$
 - 强衰变 $J/\psi \rightarrow ggg \rightarrow$ 强子,分支比 64.1%
 - 电磁衰变 $J/\psi \rightarrow \gamma^* \rightarrow$ 强子,分支比 13.5% $J/\psi/\Upsilon$ $\left\{\begin{array}{c} c/b \\ \bar{c}/\bar{b} \end{array}\right\}$
 - 电磁衰变 $J/\psi \to e^+e^-/\mu^+\mu^-$, 分支比 11.9%

- ② $\Upsilon(1S)$ 介子,质量 9.460 GeV,宽度 54.0 keV,价夸克为 $b\bar{b}$
 - 强衰变 Y → ggg → 强子, 分支比 81.7%
 - 电磁衰变 $\Upsilon \to e^+ e^- / \mu^+ \mu^- / \tau^+ \tau^-$, 分支比 7.46%

Okubo-Zweig-lizuka (OZI) 规则

如果可通过移除胶子内线使某一个 衰变费曼图分隔成两个不相连的部 分,一个部分包含所有初态粒子, 另一个部分包含所有末态粒子,则 相关强衰变过程会被严重压低

重子

- **●** 中子 *n*,质量 939.6 MeV,寿命 880 s, 价夸克为 udd
 - 弱衰变 $n \rightarrow pe^-\bar{\nu}_e$,分支比 $\simeq 100\%$
- Δ Λ⁰ 重子, 质量 1.116 GeV, 寿命 2.6 × 10⁻¹⁰ s, 价夸克为 uds
 - 弱衰变 $\Lambda^0 \rightarrow p\pi^-$,分支比 63.9%
 - 弱衰变 $\Lambda^0 \rightarrow n\pi^0$,分支比 35.8%

•00

重子

- ③ ∑⁺ 重子,质量 1.189 GeV,寿命 8.0 × 10⁻¹¹ s,价夸克为 uus
 - 弱衰变 $\Sigma^+ \rightarrow p\pi^0$,分支比 51.6%
 - 弱衰变 $\Sigma^+ \rightarrow n\pi^+$,分支比 48.3%
- ∑⁻ 重子,质量 1.197 GeV,寿命
 1.5 × 10⁻¹⁰ s,价夸克为 dds
 - 弱衰变 $\Sigma^- \rightarrow n\pi^-$,分支比 99.85%

重子

- - 电磁衰变 $\Sigma^0 \to \Lambda^0 \gamma$,分支比 $\simeq 100\%$
- Δ⁰(1232) 重子,质量 1.232 GeV, 宽度 117 MeV,价夸克为 udd
 - 强衰变 $\Delta^0 \rightarrow n\pi^0/p\pi^-$,分支比 99.4%

