

PSYCHOLOGY - DEPT. OF DATA ANALYSIS

PhD-student: Daniel Borek – Promotor: Prof. dr. Daniele Marinazzo Doctoral advisory committee: Prof. dr. Dante Mantini, Prof dr. Tom Verguts

PARAMETRIZATION OF POWER SPECTRA

TO BETTER UNDERSTAND COGNITIVE PROCESSES

My PhD research is part of the GOA-BOF project "Brain Interactions and Neural Dynamics (BIND)", which investigates memory and cognitive control using neuroimaging data.

Oscillations

Neural oscillatory activity play an important role during maintaining and processing information on different scales

- a proposed mechanism for human flexibility (memory, attention) and cognitive control (Verguts, 2017)
- "when oscillations do exist, they often manifest as "bumps" on top of the 1/f slope in the power spectrum" (He, 2014)
- Non-oscillatory, 1/f-like activity in the background carries physiological information too (Voytek, 2015)
- oscillatory content of the signal may change during a cognitive task or resting state

Possible pitfalls

- standard: comparison of mean alpha-band power between conditions
- nonzero power in a narrow frequency band is not necessarily a sign of oscillating activity there
- a priori definition of canonical bands not consistent across studies
- information about 1/f component is put aside

Parametrizing spectra

- data-driven approach built on standard Fourier analysis
- model of the power spectrum as a combination of additive distinct functional processes (aperiodic and periodic)
- an aperiodic 'background' component, reflecting 1/f like characteristics, modeled with an exponential fit, oscillatory components as Gaussians

1. Input Power Spectra 2. Fit 1/f Backround 3. Remove Backround Process 4. Fit Gaussians to Oscillatory Peaks

PROJECT

- Investigate the oscillatory dynamics during processes underlying cognitive flexibility
- Estimation of different spectral components in the signal. combine existing methods & improve them
- Learn more about the regional distribution of neurophysiological activity

Idea 1: compare localisations of oscillatory components in reconstructed sources and intracranial recordings during resting state

- datasets: Frauscher, 2018 (106 patients, 1772 channels, 60 s closed eyes activity from healthy brain regions) and Liu, 2017 (19 participants, sources extracted to match those regions)
- quantify the effect of solving the inverse problem
- validate a parametrical approach to a signal by reproducing results about topographical distributions of oscillations.
- code as a toolbox in Python

Idea 2: modeling alpha power changes and frequency shifts in attentional and cognitive control processes

- alpha oscillations in the EEG as a reliable marker of attention allocation (Janssens, 2017)
- collaborate between BIND group members
- inter- and intra-individual variability in alpha peak frequency
- take into account non-stationarity of the signal (single bursts)

Contact Begijnhoflaan 464, 9000 Ghent Daniel.Borek@UGent.be Acknowledgements This research is funded by Special Research Fund of Ghent University.

Voytek, B., Kramer, M. A., Case, J., Lepage, K. Q., Tempesta, Z. R., Knight, R. T., & Gazzaley, A. (2015). Age-Related Changes in 1/f Neural Electrophysiological Noise. Journal of Neuroscience, 35(38), 13257–13265. https://doi.org/10.1523/JNEUROSCI.2332-14.2015