R-code for producing Figure 2 from Pedersen et al. (2013)

Lykke Pedersen, Peter H Hagedorn, Marie Lindholm, Morten Lindow

This vignette includes the commands to reproduce Fig. 2 from "A kinetic model of enzyme recruiting oligonucleotides predicts an optimal affinity and explains why shorter and less affine oligonucleotides can be more potent". The R-functions from the ASOmodels package are used and the package is loaded by the commands

```
> require(devtools)
> #install_github('ASOmodel',username='lykkep')
> require(ASOmodels)
```

Kinetic model figures

Figure 2a: Time-resolved simulation of the model

Parameters for the model, the initial concentrations and the time-steps for which the simulation is performed:

Using vode() the model is simulated in time. The function diffASO() is part of the ASOmodels package.

```
> solASO <- vode(init,TimeSteps,diffASO,parms)</pre>
```

The time traces for the concentrations of $[O],\ [T],\ [OT],\ [OTE],$ and [E] are plotted:

```
> xtime <- TimeSteps <= 35
 par(mar=c(3.2,3.4,0.1,0.1),bty='n',mgp=c(2,0.7,0),
      cex=0.7,cex.axis=1.1,las=1)
> for(i in 1:5){
    if(i!=1) par(new=TRUE)
    plot(TimeSteps[xtime], solASO[xtime,i], yaxt='n', xaxt='n',
         ylab=ifelse(i==1,'relative concentrations',NA),
         xlab=ifelse(i==1, 'minutes', NA), las=1,
         col=colVAR[i], type='l', ylim=c(0,1), xlim=c(0,35+26)) }
> xtime <- 40
> for(i in 1:5) lines(xtime+0:20,rep(last(solASO)[i],21),
                      col=colVAR[i])
> axis(1,at=c((0:3)*10,45),label=c((0:3)*10,''))
> axis(1,at=45,label='steady-\nstate',mgp=c(0,1.6,0))
> axis(2,at=c(0,1),label=c('min','max'),las=1)
> text(xtime,last(solASO)[5]-0.05,col=colVAR[5],adj=0,
       substitute(0 == e^nM,list(e=SSvalue[5])))
> #T
  text(xtime, 0.05, col=colVAR[1], adj=0,
       substitute(T == e*pM,list(e=1e3*SSvalue[1])))
> #OT
> text(xtime,last(solASO)[2]-0.05,col=colVAR[2],adj=0,
       substitute(OT== e*nM,list(e=SSvalue[2])))
> #0TE
> text(xtime, last(solASO)[3]+0.05, col=colVAR[3], adj=0,
       substitute(OTE == e*pM,list(e=1e3*SSvalue[3])))
> #E
> text(xtime, last(solASO)[4]+0.05, col=colVAR[4], adj=0,
       substitute(E == e*nM,list(e=SSvalue[4])))
```


Figure 2a: Time resolved simulation of the relative concentrations of key species.

Figure 2b: Simulated dose-response curve

Given a set of parameters the R-function Trel() from the ASOmodels package calculates the relative target concentration as a function of the total concentration of oligonucleotide added to the system.

Figure 2b: The relative total target concentration $(T_{\rm rel})$ is defined as the steady state level of total target in the presence of oligonucleotide divided by the target concentration in the absence of oligonucleotide. Dashed lines indicate efficacy (horizontal) and EC_{50} (vertical).

Figure 2c: An optimal affinity

For a range of affinities D1_seq the EC_{50} -values are calculated by use of the R-function EC50() from the ASOmodels package:

```
> D1_seq <- 10^seq(-3,3.2,by=0.25)
> ECfit <- sapply(D1_seq,EC50)</pre>
```

When there is no coupling between the off-rates $k_{\text{OT}\to\text{O+T}}$ and $k_{\text{OC}\to\text{O+C}}$ then the value of $k_{\text{OC}\to\text{O+C}}$ is set in the param vector as the entry 'kC':

```
> parmsN0 <- c(parms,kC=parms['k0pT']*parms['Kd0T']/parms['alpha'])

> names(parmsN0)[length(parmsN0)] <- 'kC'

> ECfitN0 <- sapply(D1_seq,EC50N0) #EC50 without coupling

For the range of affinities the corresponding EC_{50}-values are plotted:

> par(mar=c(3.2,3.4,0.1,0.1),bty='n',mgp=c(2,0.7,0),las=1)

> plot(D1\_seq,ECfit,log='xy',yaxt='n',type='l',xaxt='n',

+ xlab=expression(K[d0T]^{-'}(nM)'),ylab=expression(EC[50]^{-'}(nM)'))

> lines(D1\_seq,ECfitN0,lty=2)

> axis(2,at=c(2,20,200),labels=c(2,20,200),las=2)

> axis(1,at=10^pretty(log10(D1\_seq)),

+ labels=pretty10expLP(10^pretty(log10(D1\_seq)),drop.1=T),)

> legend('topleft',c('Coupling','No coupling'),lty=c(1,2),bty='n')
```


Figure 2c: EC_{50} as a function of the dissociation constant for the OT complex. A low $K_{\rm dOT}$ corresponds to a high affinity binding. Dashed line: no coupling of off-rates. Solid line: coupling of off-rates.

Experimental data figures

Figure 2d: Frieden et al. (2003)

```
> data(gapmers)
> dat <- data.frame(gapmers)
> colL <- c('red','orange','darkgreen','','darkblue','','purple','','black')
> OLength <- sort(unique(dat$Oligo.length))
> #### We plot the data from Frieden et al, 2003
> dat.F <- dat[dat$Study=="Frieden 2003",]
> Flength <- dat.F$Oligo.length</pre>
```

```
> par(mar=c(4,4,1,1),las=1,bty='n',mgp=c(2.5,0.6,0))
> Fx <- dat.F$Predicted.Tm; Fy <- dat.F$Dose.2nm
> plot(Fx,Fy, pch=19, cex=2,col=colL[Flength-11],ylim=c(0,104),
       ylab='activity (% of control)',
       xlab=expression(T[m]~'('*degree*C*')'))
> FitF <- lm(Fy \sim Fx + I(Fx\sim2))
> Parfun <- function(D1){tmp <- coefficients(FitF); tmp[1]+tmp[2]*D1+tmp[3]*D1^2}
> curve(Parfun(x),min(Fx),max(Fx), lwd=1,add=T,col='grey')
> f <- summary(FitF)$fstatistic
> p \leftarrow pf(f[1], f[2], f[3], lower.tail=F)
> tmp <- coefficients(FitF) ; xmin <- -tmp[2]/(2*tmp[3])</pre>
> mtext(paste('p-value =',signif(p,2)),3,line=-1)
> mtext(as.expression(substitute(Optimal~T[m] == x*degree,list(x=round(xmin)))),
        3, line=-2.1)
> title('Luciferase')
> points(Fx,Fy,pch=19,cex=2,col=colL[Flength-11])
```


Figure 2d: 21 oligonucleotides targeted against the luciferase firefly gene.

Figure 2e: Stanton et al. (2012)

```
+ pch=19,col=colL[sort(unique(OLength))-11],bg='white',horiz=T,bty='n')
> FitS <- lm(Sy ~ Sx + I(Sx^2))
> Parfun <- function(D1){
+ tmp <- coefficients(FitS)
+ tmp[1]+tmp[2]*D1+tmp[3]*D1^2}
> curve(Parfun(x),min(Sx),max(Sx), lwd=1,add=T,col='grey')
> f <- summary(FitS)$fstatistic
> p <- pf(f[1],f[2],f[3],lower.tail=F)
> tmp <- coefficients(FitS) ; xmin <- -tmp[2]/(2*tmp[3])
> mtext(paste('p-value =',signif(p,2)),3,line=-1)
> mtext(as.expression(substitute(Optimal~T[m] == x*degree,list(x=round(xmin)))),
+ 3,line=-2.1)
> title('GR')
> points(Sx,Sy,pch=19,cex=2,col=colL[Slength-11])
```


Figure 2e: 21 oligonucleotides targeted against the glucocorticoid receptor.

Figure 2f: Pedersen et al. (2013) (this work)

Figure 2f: 23 oligonucleotides targeted against apolipoprotein B.