Лабораторная работа 3.4.1

Измерение магнитной восприимчивости диа- и парамагнетиков

Выполнил: Тимонин Андрей

1 Цель работы

Измерение магнитной восприимчивости диа- и парамагнитных образцов.

2 В работе используются:

- электромагнит;
- аналитические весы;
- милливеберметр;
- регулируемый источник постоянного тока;
- образцы (медь, графит, алюминий, вольфрам);

3 Ход работы

Nº	I, A	Ф, мВб	В, Тл
1	0.37 ± 0.01	0.8 ± 0.1	0.111 ± 0.014
2	0.74 ± 0.01	1.7 ± 0.1	0.236 ± 0.014
3	1.11 ± 0.01	2.5 ± 0.1	0.347 ± 0.014
4	1.48 ± 0.01	3.3 ± 0.1	0.458 ± 0.014
5	1.85 ± 0.01	4.1 ± 0.1	0.569 ± 0.014
6	2.22 ± 0.01	4.8 ± 0.1	0.667 ± 0.014
7	2.59 ± 0.01	5.5 ± 0.1	0.764 ± 0.014
8	3.06 ± 0.01	6.2 ± 0.1	0.861 ± 0.014

Таблица 1: Градуировка электромагнита

Ma		A D II 10-3
№	т, г	$\Delta P, \mathrm{H} \cdot 10^{-3}$
1	150.700 ± 0.001	-0.647 ± 0.020
2	150.780 ± 0.001	0.137 ± 0.020
3	150.790 ± 0.001	0.235 ± 0.020
4	150.811 ± 0.001	0.441 ± 0.020
5	150.831 ± 0.001	0.638 ± 0.020
6	150.857 ± 0.001	0.893 ± 0.020
7	150.890 ± 0.001	1.216 ± 0.020
8	150.920 ± 0.001	1.511 ± 0.020

Таблица 2: Данные для вольфрама

Nº	т, г	$\Delta P, \mathrm{H} \cdot 10^{-3}$
1	83.378 ± 0.001	0.010 ± 0.020
2	83.378 ± 0.001	0.010 ± 0.020
3	83.377 ± 0.001	0.000 ± 0.020
4	83.376 ± 0.001	-0.010 ± 0.020
5	83.374 ± 0.001	-0.029 ± 0.020
6	83.372 ± 0.001	-0.049 ± 0.020
7	83.367 ± 0.001	-0.098 ± 0.020
8	83.367 ± 0.001	-0.098 ± 0.020

Таблица 3: Данные для меди

Nº	т, г	$\Delta P, \mathrm{H} \cdot 10^{-3}$
1	25.221 ± 0.001	0.020 ± 0.020
2	25.225 ± 0.001	0.059 ± 0.020
3	25.231 ± 0.001	0.118 ± 0.020
4	25.236 ± 0.001	0.167 ± 0.020
5	25.250 ± 0.001	0.304 ± 0.020
6	25.260 ± 0.001	0.402 ± 0.020
7	25.271 ± 0.001	0.510 ± 0.020
8	25.285 ± 0.001	0.647 ± 0.020

Таблица 4: Данные для алюминия

№	т, г	$\Delta P, H \cdot 10^{-3}$
1	11.574 ± 0.001	-0.108 ± 0.020
2	11.607 ± 0.001	-0.432 ± 0.020
3	11.641 ± 0.001	-0.765 ± 0.020
4	11.683 ± 0.001	-1.177 ± 0.020
5	11.725 ± 0.001	-1.589 ± 0.020
6	11.738 ± 0.001	-1.717 ± 0.020
7	11.765 ± 0.001	-1.982 ± 0.020
8	11.802 ± 0.001	-2.345 ± 0.020

Таблица 5: Данные для графита

График зависимости В электромагнита от I через него

График зависимости ΔP на образец от B^2

Образец	$k, H \cdot 10^{-3} \cdot T \pi^{-2}$	$b, H \cdot 10^{-3}$
Вольфрам	2.0360 ± 0.0341	0.0031 ± 0.0144
Медь	0.1778 ± 0.0215	-0.0245 ± 0.0098
Алюминий	0.8646 ± 0.0177	0.0090 ± 0.0070
Углерод	2.8998 ± 0.2994	0.3609 ± 0.1186

Таблица 6: Данные коэффициентов аппроксимации графиков

Образец	χ
Вольфрам	$5.5 \cdot 10^{-5}$
Медь	$-6.4 \cdot 10^{-6}$
Алюминий	$2.2 \cdot 10^{-5}$
Углерод	$-8.5 \cdot 10^{-5}$

Таблица 7: Табличные значения магнитной восприимчивости металлов

Образец	χ
Вольфрам	$(6.5 \pm 2.7) \cdot 10^{-5}$
Медь	$(-5.7 \pm 3.0) \cdot 10^{-6}$
Алюминий	$(2.8 \pm 1.2) \cdot 10^{-5}$
Углерод	$(-9.2 \pm 4.6) \cdot 10^{-5}$

Таблица 8: Экспериментальные значения магнитной восприимчивости металлов