

(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

(43) International Publication Date
12 September 2002 (12.09.2002)

PCT

(10) International Publication Number
WO 02/070047 A1

- (51) International Patent Classification⁷: **A61M 5/142, 5/145, 5/172** (US). WIGNESS, Bruce, David; 500 East 26th Street, Minneapolis, MN 55404 (US).
- (21) International Application Number: **PCT/US02/01912** (74) Agent: **HULSEY, William, N., III**; Hughes & Luce, L.L.P., Suite 2800, 1717 Main Street, Dallas, TX 75210 (US).
- (22) International Filing Date: 24 January 2002 (24.01.2002)
- (25) Filing Language: English (81) Designated States (*national*): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, OM, PH, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TN, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZM, ZW.
- (26) Publication Language: English
- (30) Priority Data:
09/796,969 1 March 2001 (01.03.2001) US
- (71) Applicant: **ADVANCED NEUROMODULATION SYSTEMS, INC. [US/US]**; Suite 100, 6501 Windcrest Drive, Plano, TX 75024 (US).
- (72) Inventors: **BLISCHAK, Brian**; 2429 Sky Harbor Drive, Plano, TX 75025 (US). **ERICKSON, John, H.**; 3516 Interlaken Drive, Plano, TX 75035 (US). **DAGLOW, Terry**; 1005 Ashland Court, Allen, TX 75013 (US). **HOOPER, Sandra, Marie**; 1211 Cherrywood Court, Allen, TX 75002 (84) Designated States (*regional*): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZM, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE, TR), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

[Continued on next page]

(54) Title: NON-CONSTANT PRESSURE INFUSION PUMP

WO 02/070047 A1

(57) Abstract: The present invention relates to an implantable infusion pump having a refillable infusate reservoir in fluid communication with a delivery site via a flow path. This flow path includes a flow resistance. The infusion pump includes a sensing device(s), positioned relative to the flow path, to provide data regarding a flow rate along the flow path. The infusion pump effects a division of a total flow period into at least a plurality of unit dose periods, each unit dose period effecting delivery of a unit dose of infusate. The cumulative effect of delivery the total number of unit dose periods is the delivery of a desired dose over the total flow period. The present invention permits a reservoir pressure to vary over any portion of total flow period but effects a constant-pressure state over each unit dose cycle.

Published:

- *with international search report*
- *before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments*

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

NON-CONSTANT PRESSURE INFUSION PUMP

FIELD OF THE INVENTION

The present invention relates to an implantable infusion pump, and in particular, to an infusion pump capable of effecting a precisely controlled (constant or variable) fluid flow delivery rate, independent of a constant reservoir pressure.

BACKGROUND OF THE INVENTION

Modern implantable infusion devices, or implantable pumps, for delivering an infusate (e.g., medicaments, insulin, etc.) commonly have a rigid housing that maintains a collapsible infusate reservoir. The housing includes a needle-penetrable septum that covers a reservoir inlet. A flow passage is provided between the reservoir and an exterior surface of the device. At the flow passage outlet, a flexible delivery catheter is provided.

These devices are implanted at a selected location in a patient's body so that (i) the inlet septum is proximate to the patient's skin and (ii) a distal end of the catheter is positioned at a selected delivery site. Infusate can then be delivered to the infusion site by controlling the flow of such fluid from the device infusate reservoir into the delivery catheter. When the infusate reservoir becomes empty, the reservoir is refillable through the reservoir inlet by injecting a new supply of infusate through the apparatus' inlet septum. Due to the location of the device in relation to the skin of the patient, injection can be readily accomplished using a hypodermic needle (or cannula).

Infusate is expelled from the reservoir to an infusion site by collapsing the reservoir. Some infusion pumps use an electrically powered mechanism to "actively" pump infusate from the infusate reservoir 5 into the delivery catheter. Examples of these types of "active pumping" devices include so-called peristaltic pumps (e.g., SynchroMed[®] implantable pump from Medtronic, Inc., Minneapolis, Minn.) and accumulator-type pumps (e.g., certain external infusion pumps from 10 Minimed, Inc., Northridge, Calif. and Infusaid[®] implantable pump from Strato/Infusaid, Inc., Norwood, Mass.). These devices have certain advantages; however, such devices have a large disadvantage in that they use relatively large amounts of battery power to 15 effect infusion. Given that batteries tend to add bulk and weight and their replacement requires surgical intervention, it is very desirable to minimize power consumption in implantable infusion pumps.

Another type of implantable pump that is typically 20 much more electrically efficient uses a passive pumping mechanism. In fact, certain of these devices can be constructed and operated without any electrical power at all. A passive pumping mechanism generally consists of a means of pressurizing the infusate reservoir and a 25 means of restricting the fluid flow. All of these devices operate under the principle that the fluid flow rate (Q) is directly proportional to a pressure difference (ΔP) between the infusate reservoir interior and the delivery site and inversely proportional to the 30 total flow resistance provided by the fluid passage and delivery catheter (collectively (R)), wherein

$$Q = \Delta P \div R$$

A practical pump must have a predictable flow rate (Q). To achieve this goal, conventional designs have strived to develop substantially constant pressure 5 sources.

The first means of developing such a "constant pressure source" includes using a two-phase fluid, or propellant, that is contained within the rigid housing and is further confined within a fluid-tight space 10 adjacent to the infusate reservoir. Pumps constructed in this manner are called "gas-driven" pumps.

The propellant is both a liquid and a vapor at patient physiological temperatures, e.g., 98.6 °F, and theoretically exerts a positive, constant pressure over 15 a full volume change of the reservoir, thus effecting the delivery of a constant flow of infusate. When the infusate reservoir is expanded upon being refilled, a portion of such vapor reverts to its liquid phase and thereby maintains a state of equilibrium between the 20 fluid and gas states at a "vapor pressure," which is a characteristic of the propellant. The construction and operation of implantable infusion pumps of this type are described in detail, for example, in U.S. Patent Nos. 3,731,681 and 3,951,147. Pumps of this type are 25 commercially available, for example, Model 3000™ from Arrow International, Reading, Penn. and IsoMed® from Medtronic, Inc., Minneapolis, Minn.

Gas-driven infusion pumps typically provide an electrically efficient means to deliver a flow of 30 infusate throughout a delivery cycle. However, such infusion pumps depend upon a constant pressure source,

wherein the output fluid flow rate is directly proportional to a propellant-reservoir pressure. If the propellant-reservoir pressure varies, then so will the fluid flow rate and the drug delivery rate.

5 The propellant-reservoir pressure of conventional gas-driven infusion pumps are susceptible to changes in ambient temperature and pressure. This, in turn, makes the fluid flow rate such devices susceptible to changes in ambient temperature and pressure. Such changes in
10 drug infusion rates are undesirable and, in certain situations, unacceptable.

Circumstances readily exist where either ambient temperature or pressure can rapidly change a significant amount. For example, the reservoir
15 pressure of some conventional gas-driven pumps can change as much as 0.5 psi for each 1°F change in body temperature. Thus, for example, assuming a pump driving force of 8 psi at 98.6°F, a fever of only 102.6°F can result in a twenty-five percent (25%)
20 increase in propellant-reservoir pressure and thus, a corresponding (or larger) increase in an fluid flow rate. In addition, changes in environmental temperature affect the infusate viscosity as well as the vapor pressure produced by the propellant, thereby
25 further increasing the pump's susceptibility to temperature.

An even more serious situation results from changes in ambient pressure. Although minor variations in ambient pressure at any given location on earth may
30 not significantly affect delivery flow rates, with modern modes of transportation, a patient can rapidly change altitude during travel, such as when traveling

in the mountains or when traveling by plane. In a like manner, a patient can experience a rapid change in pressure when swimming or diving.

The rigid housing of the conventional, gas-driven infusion pump provides an absolute constant-internal pressure (P_R) (at constant temperature) independent of external pressures. However, largely due to compliance by the lungs and venous circulatory system, hydrostatic pressure within the human body closely follows ambient pressure (P_D).

The net effect is that the pressure differential ($\Delta P = P_R - P_D$) in conventional gas-driven pumps changes linearly with ambient pressure. Consequently, a delivered infusate flow rate can increase as much as forty percent (40%) when a patient takes a common commercial airline flight.

To overcome these practical circumstances, some conventional gas-driven infusion devices have been provided with elevated reservoir pressures. The increased reservoir pressures are not intended to prevent variations in a constant pressure delivery but are intended to mitigate their effect. In particular, for any given change of pressure, the effect on flow rate is effectively lessened if the total percentage of pressure change (relative to the reservoir pressure) can be reduced. These infusion devices possess undesirable attributes in that refilling operations are more difficult and the high-pressure vessels, which form the pump housing structures, must necessarily be stronger and are therefore more susceptible to manufacturing problems.

Another method of attempting to produce a constant pressure source and thereby more accurately controlling a rate of fluid delivery is to incorporate a pressure regulator, such as that disclosed in U.S. Patent No. 5 4,299,220. The pressure regulator described therein, which is positioned between the infusate reservoir and delivery catheter, uses a diaphragm valve to maintain a constant pressure differential (ΔP) across the fluid flow restrictor. In addition to increasing the operational complexity of such a pump mechanism and the volume of a fluid path extending therethrough, the pressure regulator may, depending upon device configuration, subject infusate solutions to high local shear stresses, which may alter the chemical or therapeutic properties of certain infusates.

An alternative method for attempting to produce a constant pressure source and thereby more accurately controlling a rate of fluid delivery, as well as addressing the susceptibilities of the two-phase pumps to ambient temperature and pressure, is proposed in U.S. Patent No. 4,772,263. Specifically, in place of the conventional rigid enclosure that maintains a two-phase fluid, the disclosure teaches forming the fluid reservoir between a rigid portion (which maintains at least the inlet septum) and a flexible drive-spring diaphragm. The spring diaphragm is exposed to the body of the patient and the pressure therein. The spring diaphragm creates a more desirable "relative" (as opposed to an absolute) pressure source. By exposing the spring diaphragm to the pressures inside the body it is possible for the pump to respond and react to

changes in ambient pressure so that ΔP is unaffected. Likewise, it is possible to construct the spring diaphragm so that the pressure that it generates is not affected by changes in ambient temperature. While this 5 configuration offers practical performance advantages, this design offers a unique configuration that may not be adopted by all constant flow pump designs.

Accordingly, a need exists for an electrically efficient system to enable a controllable (constant or 10 variable) fluid flow delivery rate independent of either a constant reservoir pressure or external conditions that may otherwise result in undesirable or unpredictable output fluid flow variations.

SUMMARY OF THE INVENTION

15 An object of the present invention is to provide an implantable infusion device with a non-constant reservoir pressure (over at least a portion of the flow cycle) that controls fluid flow across a fluid flow restrictor (with or without other fluid control 20 elements) by dividing a greater dose cycle into a series of (smaller) unit dose cycles over which the reservoir pressure is substantially constant.

Another object of the present invention is to provide an electrically efficient implantable infusion 25 device, having a convenient pressure reservoir, that is capable of delivering a prescribed dosage of a fluid infusate independent of either a constant reservoir pressure, ambient temperature or pressure, changes in device performance, or infusate properties.

Another objective of the present invention is to provide an implantable infusion device that is simpler in construction.

The present invention is directed to a controlled-rate infusion device for implantation in a living body. 5 The infusion device includes a collapsible infusate chamber, an energy source to collapse the chamber, and an outlet flow path extending between the chamber and a device outlet. The infusion device further includes at least one flow restrictor, a controller, at least one valve or variable flow restrictor to selectively alter a flow resistance of the outlet flow path, and at least one pressure sensing device. The pressure sensing device(s) are positioned relative to the outlet flow path as well as about the flow resistance (i.e., any combination of flow restrictors and/or valves). 10 The controller is adapted to control an operation of the valve (or variable flow restrictor) based on measured value(s) obtained by the pressure sensing device(s). 15

In another aspect, the present invention is 20 directed to a controlled-rate infusion device for implantation in a living body. The infusion device includes a collapsible infusate chamber, an energy source to collapse the chamber, and an outlet flow path extending between the chamber and a device outlet. The infusion device further includes a controller, a valve 25 (or variable flow restrictor) to selectively obstruct the outlet flow path, and one or more pressure sensing devices. The pressure sensing devices are positioned relative to the outlet flow path as well as about the flow resistance. The controller is adapted to assess 30 whether output flow from the device is undesirably

restricted based on measured values obtained from the pressure sensing devices.

Another aspect of the present invention is directed to a method for controlling infusate output from an implantable-infusion device for a prescribed dose period. The device includes a collapsible infusate chamber, an energy source to collapse the chamber, and an outlet flow path extending between the chamber and a device outlet, and the outlet flow path includes a restrictor network, which includes an occlusion device to selectively and at least partially occlude the outlet flow path. The method includes the steps of: (i) dividing the prescribed dose period into a plurality of unit dose periods, wherein each unit dose period is defined by an open-close cycle of the valve; and (ii) modifying a duty cycle of the open-close cycle of the valve so as to maintain a prescribed output volume (i.e., a unit dose) for each unit dose period.

Another aspect of the method for controlling infusate output from an implantable infusion device can include, independent of or in cooperation with other aspects of this method, measuring an infusate pressure differential across the restrictor network (or a portion thereof). Thus, the step of modifying the duty cycle is performed in accordance with a measured infusate pressure differential.

Another aspect of the method for controlling infusate output from an implantable infusion device can include, independent of or in cooperation with other aspects of this method, actuating the valve so as to effect a change in an occluded state of the outlet flow

path. During or proximate to such actuation, a transient pressure profile on one side of the valve is measured, thus enabling an assessment of the performance of the valve, fluid path, flow restrictor 5 and any other elements of the flow control system or flow path.

Another aspect of the method for controlling infusate output from an implantable infusion device can include, independent of or in cooperation with other 10 aspects of this method, measuring an infusate temperature. Thus, the step of modifying the duty cycle is performed in accordance with a measured infusate temperature.

Another aspect of the present invention is that an 15 output flow rate of a controlled rate pump can be changed by "resetting," or programming, such output flow rate. This resetting operation can be accomplished using non-invasive (e.g., magnetic switch, radio-frequency telemetry) or invasive methods (e.g., 20 transcutaneous trocar). In this way, the methods and devices described herein can be used to construct a programmable pump, the flow rate of which can be manually or automatically (responsive to a clock, sensor, or other data input) modified to any of various 25 beneficial patterns.

Other objects and advantages of the present invention will be apparent to those of ordinary skill in the art having reference to the following specification together with the drawings.

30 **BRIEF DESCRIPTION OF THE DRAWINGS**

In the drawings, like reference numerals and letters indicate corresponding parts throughout the several illustrations:

FIGURE 1 schematically illustrates a conventional implantable infusion device for delivering an infusate at a prescribed rate incorporating a passive pumping mechanism;

FIGURE 2A schematically illustrates an implantable infusion device in accordance with one embodiment of the present invention, FIGURE 2B schematically illustrates an implantable infusion device in accordance with another embodiment of the present invention, and FIGURE 2C schematically illustrates an implantable infusion device in accordance with another embodiment of the present invention;

FIGURE 3 illustrates an exemplary timing chart corresponding to valve control for regulating a delivery of infusate from an infusate reservoir of the implantable infusion device of either FIGURE 2A, 2B, or FIGURE 2C;

FIGURE 4 schematically illustrates an implantable infusion device in accordance with another embodiment of the present invention;

FIGURE 5 partially illustrates a schematic representation of an implantable infusion device in accordance with another embodiment of the present invention;

FIGURE 6 partially illustrates a schematic representation of an implantable infusion device in accordance with another embodiment of the present invention;

FIGURE 7 partially illustrates a schematic representation of an implantable infusion device in accordance with another embodiment of the present invention;

5 FIGURE 8 partially illustrates a schematic representation of an implantable infusion device in accordance with another embodiment of the present invention;

10 FIGURE 9 partially illustrates a schematic representation of an implantable infusion device in accordance with another embodiment of the present invention;

15 FIGURE 10 partially illustrates a schematic representation of an implantable infusion device in accordance with another embodiment of the present invention; and

20 FIGURE 11 partially illustrates a schematic representation of an implantable infusion device in accordance with another embodiment of the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

Various embodiments, including preferred embodiments, will now be described in detail below with reference to the drawings.

25 FIGURE 1 illustrates a conventional, constant flow rate infusion device 10. The device 10 is characterized by an infusate reservoir 12 that is required to store a prescribed volume of infusate, e.g., insulin, medicament, pain relieving drugs, etc.

30 The infusate reservoir 12 is of sufficient volume so as to provide a supply of infusate (i.e., a prescribed dose (D)) over a flow period (τ) at a (theoretically)

constant flow rate. As but one possible example, the volume of the infusate reservoir 12 can be fixed at any prescribed volume to enable delivery of a precisely controlled volume of infusate from one day to more than 5 three months. The infusate reservoir 12 can be refilled through a septum 14.

Infusate is pressurized and thereby driven from the infusate reservoir 12 by a drive source 16. The physical nature of the drive source 16 can be a two-phase fluid, which is confined between the housing of 10 the device 10 and a movable diaphragm structure 18, a drive spring that forms the diaphragm structure 18, or like mechanisms/structures that develop a substantially constant pressure. A flow restrictor 20 is positioned 15 downstream from the infusate reservoir 12 to establish an output flow rate. The flow restrictor 20 can be constructed of any number of potential structures, for example, a plate having a groove formed therein, capillary tubing, an etched flow chip, or the like. 20 Although not shown, a filter is preferably interpositioned between the infusate reservoir 12 and the restrictor 20 to prevent any bacteria present in the infusate reservoir 12 from being transferred into the body, and to a certain extent, to protect the 25 restricted flow path defined by the restrictor 20. Flow from the flow restrictor 20 is passed to a catheter 22 having its distal end positioned at a site for fluid delivery.

Conventional implantable infusion devices can 30 further include a bolus port structure 24. The bolus port structure 24, whether integral with the device 10 or separate therefrom, provides direct fluid

communication with the catheter 22. The bolus port structure 24 is adapted to receive independently a hypodermic needle (or cannula). Fluid delivered to the bolus port structure 24 can be used to flush the downstream catheter 22, deliver a prescribed dosage of medicament (possibly of a volume greater or at a rate greater than that otherwise capable to be delivered through the flow restrictor 20), or perform troubleshooting or diagnostic procedures. Depending on the configuration of the bolus port structure 24, the structure 24 can also allow extraction of fluid from the patient via the catheter 22.

FIGURE 2A illustrates one embodiment of the present invention. Specifically, an implantable infusion device has a infusate reservoir 12 connected between a septum 14 and a flow restrictor 20. Infusate within the infusate reservoir 12 is pressurized and thereby driven through the flow restrictor 20 by the drive source 16. The illustrated infusion device includes a first pressure sensing device 24, to measure a pressure upstream of the flow restrictor 20, and a second pressure sensing device 26, to measure a pressure downstream of the flow restrictor 20. Respective positions of the pressure sensing devices 24 and 26 relative to a flow path through the infusion device are not critical so long as the pressure sensing device 24 remains upstream of the flow restrictor 20 and the pressure sensing device 26 remains downstream of the flow restrictor 20. Alternatively, given that the flow rate will be determined by a pressure differential (ΔP) at the point of the pressure sensing

devices 24 and 26, it is also possible to measure this pressure differential (ΔP) with a single pressure transducer, operatively coupled to the flow path at or about the same two points as otherwise occupied by the 5 pressure sensing devices 24 and 26 (FIGURE 2A or FIGURE 4) or as otherwise occupied by the pressure sensing devices 24 and 40 (FIGURE 4), as illustrated in FIGURES 2B and 2C.

It will be readily apparent to those of ordinary 10 skill in the art that a multitude of configurations are within the scope of the present invention, such configurations including at least one flow restrictor, one pressure sensor, and a mechanism to change the total flow resistance of the system. To this end, 15 FIGURES 2A to 11 illustrate some of the possible configuration-combinations that includes: (i) one or more flow restrictors arranged in parallel, series, or combinations thereof; (ii) one or more valves, whereby these elements can affect an overall flow resistance; 20 and (iii) one or more pressure sensors that are capable of determining a pressure difference across any portion of or all of the flow restrictors or valves. In regard to (ii) above, depending upon the intended use of the infusion device, it may be desirable to use fixed or 25 variable flow restrictors, which includes mono-stable, bi-stable, or multi-stable valves that have the potential of occluding or partially occluding the possible flow paths.

A valve 28 is positioned downstream of the flow 30 restrictor 20, and is preferably positioned downstream of the pressure sensing device 26. Accordingly, the

pressure sensing device 24 can be positioned within or proximate to the infusate reservoir 12, and the pressure sensing device 26 can be positioned subsequent to the valve 28.

5 A controller 30 (e.g., a microprocessor) is electrically connected to the pressure sensing device 24, the pressure sensing device 26, and the valve 28. The controller 30 functions to control fluid flow through the valve 28 based on respective outputs from 10 pressure sensing devices 24 and 26.

A fluid flow rate across the flow restrictor 20 can be calculated from:

$$Q = (P_R - P_D) \div R$$

where,

15 Q is a flow rate output from the catheter 22;
P_R is a measured reservoir pressure;
P_D is a measured delivery pressure; and
R is a flow resistance value of the flow path as a whole, which can be approximated by the resistive value 20 of the flow restrictor 20 (when the valve is in an open state).

An optional temperature sensing device 38 can also be coupled to the controller 30. If provided, the controller 30 would function to control fluid flow 25 through the valve 28 also in consideration of (or solely based on) an output from the temperature sensing device 38. The controller 30 is adapted to relate changes in an infusate temperature to proportional changes in system pressure and/or to changes in the 30 resistive value (R), the latter being caused by a change in fluid viscosity due to a change in infusate temperature. This ability of the controller 30 is

managed by algorithms or look-up tables stored in memories 32 and/or 34.

A flow cycle of an infusion device is considered to extend through the delivery of the contents of the infusate reservoir 12, i.e., from a refilling event until a subsequent refilling event. The quantity (S) of active pharmacological agents or other agents (individually or collectively "agent") contained in the infusate reservoir 12 depends upon the fluid volume (V) of the infusate reservoir 12 and the concentration of the agent in the infusate stored therein:

$$S = V * C$$

where,

S is the quantity (e.g., mg) of the agent,

C is the agent concentration in the infusate contained in the infusate reservoir 12, and

V is the fluid volume of the infusate reservoir 12.

The duration of the flow cycle is referred to as the flow period (τ). As is probable, the flow period will typically be between 1 and over three (3) months. It is related to the flow rate (Q) and the infusate reservoir volume (V) as follows:

$$\tau = V / Q$$

where,

τ is the flow period (e.g., days), and

Q is the infusate flow rate (e.g., ml/day).

A prescribed (or desired) dose (D) delivered must be further calculated in accordance with the following:

$$D = Q * C$$

where,

D is the quantity of an agent delivered per unit of time (e.g., mg/day).

As discussed above, conventional constant flow infusion devices deliver a single prescribed dose (D) based on 5, the assumption that a constant pressure is maintained over an entire flow period (τ). As also discussed above, this assumption can be realistically compromised by changes in ambient pressure or temperature, patient position, or infusate volume residing in the reservoir 10 throughout a flow period (τ). Moreover, the total flow resistance (R) provided by the flow path can change over the lifetime of the infusion device further affecting the discharge performance of the device. Moreover, the properties of the infusate can change 15 over the lifetime of the infusion device, further affecting the therapy.

In contrast, the devices of the present invention seek to provide the desired flow accuracy in spite of the fact that the pressure differential (ΔP) and/or 20 flow resistance (R) may not remain constant over the entire flow period (τ). These devices do this by subdividing the flow period (τ) into smaller unit dose periods ($t_{i,j}$) over which the flow parameters (ΔP) and (R) are likely to remain constant and delivering the 25 total dose (D) through a series of sequential unit dose periods ($t_{i,j}$). The following definitions and equations help to understand the present invention.

A flow period (τ) can be subdivided into any number (n) of prescribed dose periods (T_i), which may 30 or may not be of equal duration. For conventional

constant flow pumps, n=1. For the present invention, "n" may be any integer, preferably two or greater.

$$\tau = \sum_{i=1}^n T_i$$

For various embodiments of the present invention, the duration of the prescribed dose periods (T_i) may or may not be physician-alterable (i.e., to create a programmable pump) and/or patient-alterable (i.e., to 10 create a programmable pump with patient-controllable elements) either before or during the flow period (τ).

During each of the prescribed dose periods (T_i) a prescribed dose (D_i) is delivered. If all of these prescribed doses (D_i) are equal, then the equations 15 describe a constant flow infusion device, possibly with improved flow accuracy such as, for example, illustrated in FIGURE 2A. If there are multiple prescribed doses (D_i) of different magnitudes, then the equations describe a programmable pump operating with a 20 complex continuous infusion pattern. The therapeutic value of these complex infusion patterns is readily apparent to clinicians, and varies depending upon the agent, patient, and application.

In all applications, a certain quantity of drug 25 (s_i) is to be delivered in the dose period (T_i) at a prescribed dose (D_i). The following equations illustrate the relationship among these variables,

$$s = \sum_{i=1}^n s_i = \sum_{i=1}^n D_i * T_i$$

In the present invention, each of the prescribed dose periods (T_i) is further divided into any number (m_i) of unit dose periods ($t_{i,j}$). For the present invention, "m" may be any integer, one or greater. In 5 a preferred embodiment, all of the unit dose periods ($t_{i,j}$) within a given prescribed dose period (T_i) are equal. This simplifies the calculations necessary for device operation; however, this is not a necessary condition. In general,

$$10 \quad m_i \\ T_i = \sum_{j=1}^{m_i} t_{i,j}$$

and,

$$15 \quad n \quad m_i \\ \tau = \sum_{i=1}^n \sum_{j=1}^{m_i} t_{i,j}$$

when all unit dose periods ($t_{i,j}$) within each of the prescribed dose periods (T_i) are equal,

$$20 \quad T_i = m_i * t_i \\ \text{and,}$$

$$n \\ \tau = \sum_{i=1}^n m_i * t_i$$

During each unit dose period ($t_{i,j}$), the valve 28 25 will be actuated through one complete cycle, such that it is in one position (i.e., designated open) for a fraction of the unit dose period ($t_{i,j}$) and in a second position (i.e., designated closed) for the balance of the unit dose period ($t_{i,j}$). Those skilled in the art 30 will readily appreciate that it would also be possible to use one or more valves to move between two or more

position during any given unit dose period ($t_{i,j}$), and it would also be possible for such valve(s) to move between different positions during the same or different unit dose periods ($t_{i,j}$).

5 In the simplified embodiment described herein, the controller 30 determines a timing for keeping the valve 28 in an open state based on the most recent estimate or measurement of the flow parameters ($\Delta P_{i,j}$) and ($R_{i,j}$). The flow parameters are assumed (approximated) to be
 10 constant for at least the period of time that the valve 28 remains in a given position. The following equations are useful in determining the amount of agent delivered (s_i) in a prescribed dose period (T_i), and the prescribed dosage pharmacologically perceived,

$$15 \quad t_{i,j} = t_{i,j} \text{ open} + t_{i,j} \text{ close}$$

$$m_i$$

$$s_i = C * \sum_{j=1}^{m_i} (t_{i,j} \text{ open} * Q_{i,j} \text{ open} + t_{i,j} \text{ close} * Q_{i,j} \text{ close})$$

$$20 \quad D_i = (C / T_i) * \sum_{j=1}^{m_i} (t_{i,j} \text{ open} * Q_{i,j} \text{ open} + t_{i,j} \text{ close} * Q_{i,j} \text{ close})$$

where,

25 $t_{i,j} \text{ open}$ is the duration of time that the valve 28 is in an open state,

$t_{i,j} \text{ close}$ is the duration of time that the valve 28 is in a closed state,

30 $Q_{i,j} \text{ open}$ is the flow rate when the valve 28 is in the open state during unit dose period $t_{i,j}$, and

$Q_{i,j}$ close is the flow rate when the valve 28 is in the closed state during unit dose period $t_{i,j}$.

For passive pumping devices, the flow rate can be further described by the following equations,

5 $Q_{i,j}$ open = $\Delta P_{i,j}$ open ÷ $R_{i,j}$ open

$$Q_{i,j}$$
 close = $\Delta P_{i,j}$ close ÷ $R_{i,j}$ close

For restrictor-based passive pumping devices, $\Delta P_{i,j}$ open will often be assumed to be equal to $\Delta P_{i,j}$ close for any given i,j . Thus, the position of the valve 28 simply changes the resistance magnitude (R) from $R_{i,j}$ open to

$R_{i,j}$ close. For passive pumping devices incorporating a regulator, $R_{i,j}$ open will often be approximated as equal to $R_{i,j}$ close and the position of the valve 28 simply changes the magnitude of AP from $\Delta P_{i,j}$ open to $\Delta P_{i,j}$ close.

While in many cases $Q_{i,j}$ close will be a zero value, i.e., the valve 28 closes completely and flow stops, such is not a necessary condition. For example, if maintaining the valve in an open state uses battery power, then it may be advantageous to design the infusion device to have a non-zero $Q_{i,j}$ close flow rate to thereby reduce the amount of time that the valve 28 needs be held open, and thereby conserve battery power. Alternatively, it may be possible to use a longer unit dose period ($t_{i,j}$) when using a non-zero $Q_{i,j}$ close flow rate, and thereby reduce battery consumption by reducing the total number of unit dose periods. In cases when $Q_{i,j}$ close is zero the equation simplifies to,

n

$$30 \quad s_i = C * \sum_{j=1}^n t_{i,j} \text{ open} * Q_{i,j} \text{ open}$$

In a preferred embodiment, the unit dose period ($t_{i,j}$) is pre-determined, and $t_{i,j \text{ open}}$ is calculated to effect the desired agent delivery. Those skilled in the art will readily recognize that it is possible to 5 obtain the same effect by pre-determining $t_{i,j \text{ open}}$ and calculating $t_{i,j \text{ close}}$, and thereby calculating $t_{i,j}$ so that effectively $t_{i,j \text{ open}}$ is held constant while $t_{i,j}$ is varied.

The duration of the unit dose periods ($t_{i,j}$) is so 10 chosen so that they are: (i) short enough that the flow parameters (ΔP) and (R) are unlikely to change significantly so that the flow rates $Q_{i,j \text{ open}}$ and $Q_{i,j \text{ close}}$ can be approximated as being constant over the unit dose period ($t_{i,j}$); (ii) short enough that the 15 open/close flow rate changes are pharmacologically imperceptible or insignificant; and (iii) long enough to achieve acceptable levels of battery consumption (by minimizing the number of battery-consuming opening and closing cycles for the valve 28).

20 The above algorithms are maintained in non-volatile memory 32, and RAM 34 is used as a work space for at least the purposes of the above calculations. The controller 30 is further coupled to an internalized power source 36.

25 Reference is hereby made to FIGURE 3, which illustrates but one example of the control signals delivered from the controller 30 to the valve 28. The illustrated signals extend over a period of time in which the potential output flow rate decreases. For 30 the exemplary illustrated unit dose periods ($t_{i,j}$), the duration of $t_{i,x \text{ open}}$ is increased relative to the

duration of, for example, $t_{i,1}$ open for the "initial" dose periods ($t_{i,j}$). Notwithstanding, the duration of the unit dose period ($t_{1,m} = t_1$ for all of m) is held constant. Of course, the noted change in $t_{i,j}$ open
5 compensates for the change in infusate flow rate without express regard for the reason for such change in flow rate.

In some devices the pressure generated by the drive source 16 will vary according to the volume of
10 infusate remaining in the infusate reservoir 12. For example, in many devices the reservoir pressure drops as the reservoir volume is nearly depleted and rises as the reservoir volume nears (or exceeds) its rated capacity. In conventional infusion devices this is a
15 liability because it affects and therefore reduces the flow rate accuracy and the usable volume of the infusate reservoir 12. However, in the present invention this information can be an asset that is used: (i) in the case of filled reservoirs, to alert a
20 user so as to prevent a dangerous or undesirable overfilling of the pump; and/or (ii) in the case of nearly depleted reservoirs, to measure the volume of fluid remaining in the infusate reservoir 12 by measuring the reservoir pressure, and if appropriate,
25 alert a user that the device should be refilled. As described earlier, the controller can use this information to adjust the open/close cycles, and thereby extend the usable volume of the infusion device without changing the physical size of the device.

30 In some clinical applications, the duration of the flow period (τ) can be limited by the compatibility or

stability of an active agent in the infusate.

"Compatibility" and "stability" are terms that are intended to capture all of the changes that can occur in the chemical, physical, pharmacological, or

5 therapeutic properties of an infusate as it resides inside the infusate reservoir 12 of the drug delivery device. While not exhaustive, these changes include:
(i) a decrease in the potency of the active ingredient;
(ii) an increase in the potency of the active

10 ingredient; and (iii) a change in infusate viscosity.

For example, the potency of morphine sulfate in conventional implantable infusion pumps is known to decrease by about 20% over a 90 day period, thus the lack of morphine stability restricts the maximum flow 15 period for this agent to less than about 90 days (without regard to a potential volumetric capacity of the delivering infusion device). This fact, as well as the fact that some conventional constant flow implantable infusion pumps flow faster when full than 20 they do when nearly empty, means that the actual drug dose received by the patient can vary dramatically over a flow period (τ).

However, in the present invention look up tables or algorithms can be used to compensate for known 25 changes in the properties of the infusate to adjust the flow controller over the course of the flow period (τ). This has at least two beneficial effects: (i) a more uniform amount of active agent is administered throughout the flow period (τ), thereby improving 30 therapy and/or reducing side effects; and (ii) the

maximum duration of the flow period (τ) can be extended so that more of the infusate reservoir can be used.

For any internally powered, implantable device, the life span of its power source dictates its functional life. Of course, removal and replacement of such device can be traumatic, as the patient is required to undergo a surgical procedure to effect such removal and replacement. As the benefits of any such implantable device are carefully weighed against the costs of use/replacement (e.g., hardware expense, physician time, hospitalization, etc.) as well as patient morbidity/mortality, it is imperative that efforts be made to provide an implantable device capable of sustaining sufficient operational life but remain cost and size effective. Even when the device incorporates a rechargeable power source (e.g., battery, capacity, etc.) minimizing power consumption is desirable.

System power consumption is largely dictated by the power consumed to actuate the valve 28 through each open-close cycle for each unit dose ($d_{i,j}$) and generally, to a lesser extent, by that required to make the measurements and calculations required to control the valve timing. It is an objective of the present invention to safely minimize and control a total current drain associated with the operation of the valve 28. This control increases the predictability of a life-span of a power source (36, FIGURES 2A, 2B, and 2C). A generalized equation for current drain resulting from valve actuation for one unit dose cycle ($t_{i,j}$) is:

$$I_{\text{total}} = I_{\text{open}} + I_{\text{held open}} \cdot t_{i,j} \text{ open} + I_{\text{close}} + I_{\text{held close}} \cdot t_{i,j} \text{ close}$$

where,

for a bi-stable valve, $I_{\text{held open}}$ and $I_{\text{held close}}$ are zero values, thus $I_{\text{total}} = I_{\text{open}} + I_{\text{close}}$; and by comparison,

for a mono-stable valve, I_{close} and $I_{\text{held close}}$ are likely zero values, thus $I_{\text{total}} = I_{\text{open}} + I_{\text{held open}} \cdot t_{i,j} \text{ open}$.

From the above examples, it can be readily seen that system current drain can be easily approximated from the operative nature of a selected valve, wherein the basis for valve selection depends upon an intended application.

Shortening the duration of the unit dose period ($t_{i,j}$) improves flow accuracy, but at the expense of additional battery consumption to effect incremental valve actuation, computations, and pressure and/or temperature measurements. It will also be readily apparent that for reasons of battery conservation, there may be times and conditions within a given flow period (τ) when the prescribed dose period (T_i) and/or unit dose period ($t_{i,j}$) should be lengthened or shortened, and that based on the design of the device it may be possible to predetermine these times (such as when the infusate reservoir is nearly empty), or to determine them in real time based on the input from a sensor. For example, when the reservoir is nearly depleted, ΔP may change quickly meaning that the unit dose period ($t_{i,j}$) should be shortened to improve flow accuracy. Doing so, also effectively increases the

amount of fluid from the infusate reservoir 12 that can be delivered within flow accuracy specifications (i.e., the usable volume), which is a very desirable feature.

Based on a flow rate determined by the controller 50, an accurate, dynamic calculation of remaining power source life can be made. Likewise, an estimated life for the power source 36 can be approximated from anticipated changes of the infusion device, or the present invention can be configured to pass calculated, real-time information outside the patient to an external controller 50. For this concept, reference is made to FIGURE 4, which illustrates a second embodiment of the present invention.

Controller 50 communicates with the controller 30 through a patient's skin. Such communication is made, for example, using common radio-frequency technology that is well known in the art. The manner and form of communication is not critical. Any means (e.g., IR, direct connection, etc.) that is capable of establishing a data transfer link, provided that the controller 50 and the implantable infusion device are provided with the proper link components, is consistent with this aspect of the disclosed invention.

The controller 50 can provide information (e.g., software updates, modification of calculation variables, for example, the unit dose period ($t_{i,j}$), $t_{i,j}$ open, etc.) to the controller 30 for maintaining accurate functionality of the infusion device. Moreover, the controller 50 can provide instructions to the controller 30 to change any of these variables in response to changes in other parameters, e.g., complex continuous infusion. The controller 50 could also

transmit power to the power source 36, if the power source 36 was of a rechargeable nature. Further yet, the controller 50 could transmit power directly to the controller 30 via a carrier signal, e.g., using a 5 radio-frequency carrier signal.

It is contemplated that through the communication link between the controller 30 and the controller 50, data can be uploaded from the controller 30 to the controller 50. To this end, the controller 50 10 preferably includes a display 50a, which can communicate information, e.g., life expectancy of the power source 28, to a user for real-time consideration. Additionally, diagnostic information regarding the operability of the implantable infusion device can be 15 supplied to the user with only slight modification to the system illustrated in FIGURE 2A.

In further reference to FIGURE 4, an infusion device in accordance with the present invention could be provided with a third pressure sensing device 40, 20 which is positioned downstream of the valve 28. Further yet, additional variations of the specific arrangement of the components of this system are illustrated in FIGURES 5-11.

From the initial pressure sensing devices 24 and 25 26 (and the optional third pressure sensing device 40), the following information can be gathered and supplied back to a monitoring user via a data link between the controller 30 and the controller 50:

Valve open, if $P_R > P_{D1} \approx P_{D2}$;
30 Valve closed, if $P_R \approx P_{D1} > P_{D2}$;

Catheter obstruction (e.g., kink, thrombosis), if
 $P_R \approx P_{D1} \approx P_{D2}$

Further yet, transient responses from the second pressure sensing device 26 and the third pressure sensing device 40 during or proximate to an opening or closing of the valve 28 can be monitored to provide information regarding a system status. For example, in reference to the exemplary embodiment illustrated in FIGURE 4, if prior to opening the valve 28, $P_R \approx P_{D1} \geq P_{D2}$, then as the valve 28 is opened, a measured pressure transient enables a calculated appreciation of how freely infusate is able to flow through the catheter 22 and the flow restrictor 20. The rate of change of pressures P_{D1} and P_{D2} will communicate whether or not certain parts of the flow path are obstructed (e.g., completely or in part), and if obstructed, the location of such obstruction relative to the flow path. Moreover, as the valve 28 is closed, a measured pressure transient (between P_{D1} and P_{D2}) will allow an inference as to how freely infusate is able to flow from the infusate reservoir 12 through at least the restrictor 20. A rate of change of pressure will communicate whether the system filter (positioned between the infusate reservoir 12 and the restrictor 20) or the restrictor 20 is partially or completely obstructed as might occur over the lifetime of the device. Of course, this information could be displayed on the display 50a. In a like manner, as the valve 28 is closed, a pressure transient measured for P_{D2} will allow an inference as to how freely infusate is able to flow through the delivery catheter 22.

Provided that the critical portion of the flow path (i.e., that portion through which regardless of any/all valve states all infusate must flow) within the infusion device 10 is not completely occluded, the data 5 gained from the aforementioned detected conditions can enable a modification of controller variables (e.g., the unit dose period ($t_{i,j}$), $t_{i,j}$ open, etc.) so as to enable a targeted dosage/delivery rate to be maintained. The information gained can also provide 10 the managing clinician with valuable information to help determine whether or not surgical intervention or a change in dosage is required.

As should also be noted, while the controller 50 has been described as a device capable of establishing 15 a data transfer link, it should be further noted that modification of at least calculation variables (e.g., the unit dose period ($t_{i,j}$), $t_{i,j}$ open, etc.) can be accomplished through other non-invasive methods (e.g., magnetic switch control) or invasive methods (e.g., 20 trocar).

While the invention has been described herein relative to a number of particularized embodiments, it is understood that modifications of, and alternatives to, these embodiments, in particular, variants in the 25 number, type, and configuration of the flow restrictor(s), valve(s), and sensor(s), such modifications and alternatives realizing the advantages and benefits of this invention, will be apparent those of ordinary skill in the art having reference to this 30 specification and its drawings. It is contemplated that such modifications and alternatives are within the scope of this invention as subsequently claimed herein,

and it is intended that the scope of this invention claimed herein be limited only by the broadest interpretation of the appended claims to which the inventors are legally entitled.

WHAT IS CLAIMED IS:

1. An infusion device for implantation in a living body, the device comprising:
 - 5 at least one variable-volume chamber to receive and transiently store a fluid infusate;
 - at least one inlet conduit, wherein each variable-volume chamber is in fluid communication with an inlet conduit;
 - an energy source to effect an expulsion of stored 10 infusate from the at least one variable-volume chamber;
 - at least one outlet conduit, in fluid communication with the chamber(s), to facilitate the passage of infusate from the chamber(s) to a delivery site;
 - 15 a flow resistor network including at least one flow restrictor positioned relative to the outlet conduit;
 - at least one pressure sensing device to measure a pressure differential across at least a portion of the 20 flow restrictor network;
 - at least one valve, positioned relative to the outlet conduit, to selectively control an infusate output from the device; and
 - a controller, coupled to the at least one 25 pressure sensing device and to the at least one valve, to control an operation of the at least one valve based on measured values obtained by the at least one pressure sensing device.
- 30 2. A device in accordance with Claim 1, wherein a first pressure sensing device, which is one of the at least one pressure sensing device, is adapted to

measure an infusate pressure across the at least one valve.

3. A device in accordance with Claim 1, wherein
5 a first pressure sensing device is adapted to measure
an infusate pressure prior to the at least one flow
restrictor, and a second pressure sensing device is
adapted to measure an infusate pressure subsequent to
the at least one flow restrictor, and wherein the first
10 pressure sensing device and the second pressure sensing
device are two of the at least one pressure sensing
device.

4. A device in accordance with Claim 1, further
15 comprising a temperature sensor to measure an infusate
temperature, and the controller is further coupled to
the temperature sensor.

5. A device in accordance with Claim 4, wherein
20 the controller is adapted to control the at least one
valve based also on measured values obtained by the
temperature sensor.

6. An infusion device for implantation in a
25 living body having a collapsible infusate chamber, an
energy source to collapse the chamber, and an outlet
flow path extending between the chamber and a device
outlet having a flow resistance, the device comprising:
30 a pressure sensing mechanism to measure an
infusate pressure differential across at least a
portion of the flow resistance;

a valve, which defines at least in part the flow resistance, to selectively obstruct the outlet flow path; and

5 a controller, coupled to the pressure sensing mechanism and the valve, to control an operation of the valve based on measured values obtained by the pressure sensing mechanism,

10 wherein a prescribed dose to be delivered by the device consists of a plurality of unit dose cycles, each unit dose cycle being defined by an open-close cycle of the valve, and

15 wherein the controller is adapted to regulate an operational timing of the open-close cycle of the valve to deliver a constant unit dose amount for each dose cycle.

7. A device in accordance with Claim 6, further comprising a flow resistor, which defines at least in part the flow resistance, positioned relative to the 20 outlet conduit.

8. A device in accordance with Claim 7, wherein the pressure sensing mechanism includes a first pressure sensing device to measure an infusate pressure upstream of the flow restrictor and a second pressure sensing device to measure an infusate pressure downstream of the flow restrictor.

9. A device in accordance with Claim 6, wherein 30 the pressure sensing mechanism is further adapted to measure an infusate pressure across the valve.

10. A device in accordance with Claim 6, further comprising a temperature sensor to measure an infusate temperature, and the controller is further coupled to the temperature sensor.

5

11. A device in accordance with Claim 10, wherein the controller is adapted to control the valve based also on measured values obtained by the temperature sensor.

10

12. A device in accordance with Claim 6, wherein the controller varies a duty cycle of the open-close cycle of the valve within a prescribed cycle period.

15

13. A device in accordance with Claim 6, wherein the controller varies a period of the open-close cycle.

20

14. An infusion device for implantation in a living body having a collapsible infusate chamber to transiently store an active agent-containing infusate, an energy source to collapse the chamber, and an outlet flow path extending between the chamber and a device outlet having a flow resistance, the device comprising:

25

a pressure sensing mechanism to measure an infusate pressure differential across at least a portion of the flow resistance;

a valve, which defines at least in part the flow resistance, to selectively obstruct the outlet flow path; and

30

a controller, coupled to the pressure sensing mechanism and the valve, to control an operation of the

valve based on measured values obtained by the pressure sensing mechanism,

wherein a prescribed dose, to be delivered over a prescribed dose period, consists of a plurality of unit 5 dose cycles, each unit dose cycle being defined by an open-close cycle of the valve, and

wherein the controller is adapted to regulate an operational timing of the open-close cycle of the valve to compensate for changes in the active agent-10 containing infusate, thereby maintaining a prescribed dose of active agent over the prescribed dose period.

15. A device in accordance with Claim 14, wherein the operational timing that is subject to regulation by 15 the controller is a duty cycle of the open-close cycle of the valve.

16. An infusion device for implantation in a living body having a collapsible infusate chamber to 20 transiently store an active agent-containing infusate, an energy source to collapse the chamber, and an outlet flow path extending between the chamber and a device outlet having a flow resistance, the device comprising:

a temperature sensing device to measure an 25 infusate temperature;

a valve, which defines at least in part the flow resistance, to selectively obstruct the outlet flow path; and

30 a controller, coupled to the temperature sensing device and the valve, to control an operation of the valve based on measured values obtained by the temperature sensing device,

wherein a prescribed dose, to be delivered over a prescribed dose period, consists of a plurality of unit dose cycles, each unit dose cycle being defined by an open-close cycle of the valve, and

5 wherein the controller is adapted to regulate an operational timing of the open-close cycle of the valve based on a change in infusate temperature measured by the temperature sensing device.

10 17. A device in accordance with Claim 16, wherein the operational timing that is subject to regulation by the controller is a duty cycle of the open-close cycle of the valve.

15 18. An infusion device for implantation in a living body having a collapsible infusate chamber to transiently store an infusate, an energy source to collapse the chamber, and an outlet flow path extending between the chamber and a device outlet having a flow 20 resistance, the device comprising:

a pressure sensing mechanism to measure an infusate pressure differential across at least a portion of the flow resistance;

25 a valve, which defines at least in part the flow resistance, to selectively obstruct the outlet flow path; and

30 a controller, coupled to the pressure sensing mechanism and the valve, to control an operation of the valve based on measured values obtained by the pressure sensing mechanism,

wherein a prescribed dose, to be delivered over a prescribed dose period, consists of a plurality of unit

dose cycles, each unit dose cycle being defined by an open-close cycle of the valve, and

wherein the controller is adapted to regulate an operational timing of the open-close cycle of the valve
5 based on a change in flow resistance.

19. A device in accordance with Claim 18, wherein
the operational timing that is subject to regulation by
the controller is a duty cycle of the open-close cycle
10 of the valve.

20. An infusion device for implantation in a living body having a collapsible infusate chamber to transiently store an infusate, an energy source to
15 collapse the chamber, and an outlet flow path extending between the chamber and a device outlet having a flow resistance, the device comprising:

a pressure sensing mechanism to measure an infusate pressure differential across at least a
20 portion of the flow resistance;

a valve, which defines at least in part the flow resistance, to selectively obstruct the outlet flow path; and

25 a controller, coupled to the pressure sensing mechanism and the valve, to control an operation of the valve based on measured values obtained by the pressure sensing mechanism,

wherein a prescribed dose, to be delivered over a prescribed dose period, consists of a plurality of unit
30 dose cycles, each unit dose cycle being defined by an open-close cycle of the valve, and

wherein the controller is adapted to selectively regulate an operational timing of the open-close cycle of the valve in accordance with a volume then-determined to be present within the infusate chamber.

5

21. A device in accordance with Claim 20, wherein the operational timing that is subject to regulation by the controller is a duty cycle of the open-close cycle of the valve.

10

22. An infusion device for implantation in a living body having a collapsible infusate chamber, an energy source to collapse the chamber, and an outlet flow path, having a flow resistance, that extends between the chamber and a device outlet, the device comprising:

a flow restrictor, positioned relative to the outlet flow path, which defines in part the flow resistance;

20 a valve, which defines in part the flow resistance, to selectively obstruct the outlet flow path;

25 a pressure sensing device to measure an infusate pressure across at least a portion of the flow resistance; and

a controller, coupled to the pressure sensing device and the valve, to control an operation of the valve to selectively obstruct the outlet flow path, wherein the controller is adapted to assess whether the flow resistance has undesirably changed based on measured values obtained from the pressure sensing device.

23. A device in accordance with Claim 22, wherein
the pressure sensing mechanism includes a first
pressure sensing device to measure an infusate pressure
5 upstream of the valve and a second pressure sensing
device to measure an infusate pressure downstream of
the valve.

24. A device in accordance with Claim 22, wherein
10 the pressure sensing mechanism is further adapted to
measure an infusate pressure across the flow
restrictor, and the controller is adapted to control
the valve based also on measured infusate pressure
values across the flow restrictor.

15
25. A device in accordance with Claim 22, wherein
the controller is adapted to identify a change in the
flow resistance upstream of the valve based on measured
values obtained from the pressure sensing mechanism.

20
26. A device in accordance with Claim 22, wherein
the controller is adapted to identify a change in the
flow resistance downstream of the valve based on
measured values obtained from the pressure sensing
25 mechanism.

27. A method of controlling infusate output from
an implantable infusion device for a prescribed dose
period, the device having a collapsible infusate
30 chamber, an energy source to collapse the chamber, and
an outlet flow path extending between the chamber and a
device outlet, wherein the outlet flow path includes a

restrictor and a valve to selectively and at least partially occlude the outlet flow path, comprising the steps of:

5 dividing the prescribed dose period into a plurality of unit dose periods, wherein each unit dose period is defined by an open-close cycle of the valve; and

10 modifying a duty cycle of the open-close cycle of the valve so as to maintain a unit dose for each unit dose period.

28. A method in accordance with Claim 27, wherein the open-close cycle is defined by a fixed period.

15 29. A method of controlling infusate output from an implantable infusion device for at least one prescribed dose period, the device having a collapsible infusate chamber, an energy source to collapse the chamber, and an outlet flow path extending between the 20 chamber and a device outlet, wherein the outlet flow path includes a restrictor and a valve to selectively and at least partially occlude the outlet flow path, comprising the steps of:

25 dividing the prescribed dose period into a plurality of unit dose periods, wherein each unit dose period is defined by an open-close cycle of the valve;

measuring an infusate pressure differential across the restrictor; and

30 modifying an operational timing of the open-close cycle of the valve, in accordance with a measured infusate pressure differential, so as to maintain a unit dose for each unit dose period.

30. A method in accordance with Claim 29, wherein
a plurality of prescribed dose periods define a flow
period, and further comprising the step of dividing the
5 flow period into the plurality of prescribed dose
periods.

31. A method in accordance with Claim 29, wherein
the operational timing that is subject to regulation by
10 the controller is a duty cycle of the open-close cycle
of the valve.

32. A method in accordance with Claim 29, further
comprising the step of measuring an infusate
15 temperature, wherein the step of modifying is effected
also in accordance with a measured temperature.

33. A method in accordance with Claim 29, further
comprising the steps of:
20 actuating the valve so as to effect a change in an
occluded state of the outlet flow path; and
measuring a transient pressure profile across the
valve.

25 34. A method in accordance with Claim 33, wherein
the infusion device is adapted to communicate with a
controller external to the patient, and further
comprising the step of transmitting a signal to the
controller, wherein the signal corresponds to the
30 measured pressure profile.

35. A method in accordance with Claim 33, further comprising the step of assessing a rate of change of a measured pressure profile at or about said actuating step.

5

36. A method in accordance with Claim 29, wherein the infusion device is adapted to communicate with a controller external to the patient, and further comprising the step of transmitting a signal to the 10 controller, wherein the signal is representative of the measured infusate pressure differential.

37. A method of controlling infusate output from an implantable infusion device for at least one 15 prescribed dose period, the device having a collapsible infusate chamber to transiently store an active agent-containing infusate, an energy source to collapse the chamber, and an outlet flow path extending between the chamber and a device outlet, wherein the outlet flow 20 path includes a restrictor and a valve to selectively and at least partially occlude the outlet flow path, comprising the steps of:

dividing the prescribed dose period into a plurality of unit dose periods, wherein each unit dose 25 period is defined by an open-close cycle of the valve; and

modifying an operational timing of the open-close cycle of the valve to compensate for changes in the active agent-containing infusate, thereby maintaining a 30 prescribed dose of active agent over the prescribed dose period.

38. A method in accordance with Claim 37, wherein
a plurality of prescribed dose periods define a flow
period, and further comprising the step of dividing the
flow period into the plurality of prescribed dose
5 periods, and

wherein the step of modifying effects a control
over the valve to compensate for changes in the active
agent-containing infusate, thereby maintaining a
prescribed dose of active agent over each prescribed
10 dose period in the flow period.

39. A method of controlling infusate output from
an implantable infusion device for a prescribed dose
period, the device having a collapsible infusate
15 chamber, an energy source to collapse the chamber, and
an outlet flow path extending between the chamber and a
device outlet, wherein the outlet flow path includes a
restrictor and a valve to selectively and at least
partially occlude the outlet flow path, comprising the
20 steps of:

actuating the valve so as to effect a change in an
occluded state of the outlet flow path;
measuring a transient pressure profile across the
valve; and
25 assessing a rate of change of the pressure profile
during the actuating step.

40. A method in accordance the Claim 39, wherein
the step of assessing can reveal an undesired flow
30 restriction upstream of the valve based on a rate of
change of a measured pressure profile.

41. A method in accordance the Claim 39, wherein the step of assessing can reveal an undesired flow restriction downstream of the valve based on a rate of change of a measured pressure profile.

5

42. A method in accordance the Claim 39, wherein the step of assessing can reveal a valve malfunction.

43. A method in accordance the Claim 39, wherein
10 the step of assessing can reveal changes in infusate delivery caused by changes in certain properties of the infusate based on a rate of change of a measured pressure profile, the certain properties being of the group of: physical, chemical, therapeutic, and
15 pharmacological.

44. A method in accordance the Claim 39, wherein the step of assessing can reveal a catheter malfunction.

20

45. An infusion device for implantation in a living body, the device comprising:
a variable-volume chamber to receive and transiently store a fluid infusate;
25 an inlet conduit, which is in fluid communication with the variable-volume chamber;
an energy source to effect an expulsion of stored infusate from the chamber;
30 an outlet conduit, in fluid communication with the chamber, to facilitate the passage of infusate from the chamber to a delivery site;

a flow restrictor, positioned relative to the outlet conduit, to define a maximum infusate flow rate output from the device;

5 a first pressure sensing device to measure an infusate pressure upstream of the flow restrictor;

a second pressure sensing device to measure an infusate pressure downstream of the flow restrictor;

a valve to selectively control an infusate output from the device; and

10 a controller, coupled to the first pressure sensing device, the second pressure sensing device, and the valve, to control an operation of the valve based on measured values obtained by the first and second pressure sensing devices.

1/9

*FIG. 1
Prior Art*

FIG. 3

2/9

3/9

FIG. 2B

4/9

5/9

FIG. 4

6/9

FIG. 5

FIG. 6

7/9

FIG. 9

9/9

FIG. 10

FIG. 11

INTERNATIONAL SEARCH REPORT

International Application No
PCT/US 02/01912

A. CLASSIFICATION OF SUBJECT MATTER
IPC 7 A61M5/142 A61M5/145 A61M5/172

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 7 A61M

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

EPO-Internal

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ^a	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 4 077 405 A (HAERTEN RAINER ET AL) 7 March 1978 (1978-03-07) the whole document ---	1-45
A	DE 100 20 499 A (MEDTRONIC INC) 23 November 2000 (2000-11-23) the whole document ---	1-45
A	DE 35 20 782 A (SIEMENS AG) 11 December 1986 (1986-12-11) the whole document ---	1-45
A	EP 0 039 124 A (INFUSAID CORP) 4 November 1981 (1981-11-04) the whole document ---	1-45
		-/-

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

^a Special categories of cited documents:

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority, claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed Invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed Invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

Z document member of the same patent family

Date of the actual completion of the International search

Date of mailing of the International Search report

1 July 2002

11/07/2002

Name and mailing address of the ISA

European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Nielsen, M

INTERNATIONAL SEARCH REPORT

International Application No

PCT/US 02/01912

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	US 4 443 218 A (DECANT JR LEONARD J ET AL) 17 April 1984 (1984-04-17) abstract -----	1-45
A	EP 0 409 511 A (INFUSAID INC) 23 January 1991 (1991-01-23) column 2, line 29-44; figure 1 -----	1-45
A	EP 0 420 620 A (INFUSAID INC) 3 April 1991 (1991-04-03) abstract -----	1-45
A	EP 0 951 916 A (MEDTRONIC INC) 27 October 1999 (1999-10-27) paragraph '0027!; figure 14 -----	1-45

INTERNATIONAL SEARCH REPORT

Information on patent family members

National Application No

PCT/US 02/01912

Patent document cited in search report	Publication date	Patent family member(s)	Publication date
US 4077405	A 07-03-1978	DE 2513467 A1 AT 349608 B AT 90776 A CH 602121 A5 FR 2305197 A1 GB 1506305 A NL 7600868 A ,C SE 408753 B SE 7601324 A	30-09-1976 10-04-1979 15-09-1978 31-07-1978 22-10-1976 05-04-1978 28-09-1976 09-07-1979 27-09-1976
DE 10020499	A 23-11-2000	DE 10020499 A1 FR 2792844 A1	23-11-2000 03-11-2000
DE 3520782	A 11-12-1986	DE 3520782 A1	11-12-1986
EP 0039124	A 04-11-1981	CA 1154345 A1 DE 3166247 D1 DK 104581 A ,B, EP 0039124 A1 JP 56136562 A	27-09-1983 31-10-1984 08-09-1981 04-11-1981 24-10-1981
US 4443218	A 17-04-1984	NONE	
EP 0409511	A 23-01-1991	US 5061242 A AT 102488 T AU 620527 B2 AU 5912890 A CA 2021284 A1 DE 69007194 D1 DE 69007194 T2 DK 409511 T3 EP 0409511 A1 ES 2050957 T3 JP 1752887 C JP 3068373 A JP 4036033 B	29-10-1991 15-03-1994 20-02-1992 31-01-1991 19-01-1991 14-04-1994 16-06-1994 05-04-1994 23-01-1991 01-06-1994 23-04-1993 25-03-1991 12-06-1992
EP 0420620	A 03-04-1991	US 5067943 A AT 124274 T AU 625000 B2 AU 6320790 A CA 2026077 A1 DE 69020474 D1 DE 69020474 T2 EP 0420620 A2 ES 2073536 T3 JP 2109122 C JP 3121076 A JP 8022313 B US 5088983 A	26-11-1991 15-07-1995 25-06-1992 11-04-1991 27-03-1991 03-08-1995 09-11-1995 03-04-1991 16-08-1995 21-11-1996 23-05-1991 06-03-1996 18-02-1992
EP 0951916	A 27-10-1999	US 5993414 A EP 0951916 A2	30-11-1999 27-10-1999