Tactics

- rw[HYPOTHESIS]: Substitutes the left hand side of an equality in [HYPOTHESIS] with the right hand side
- rel[HYPOTHESIS]: Substitutes the left hand side of an inequality in [HYPOTHESIS] with the right hand side; also applies rules of modular arithmetic such as the addition, subtraction, negative, and multiplication rules.
- addarith[HYPOTHESIS]: basic addition and subtraction with the provided hypothesis.
- have [HYPOTHESIS_NAME] : [STATEMENT] := by [REASONING]: creates a new hypothesis called HYPOTHESIS_NAME for future reference.
- ring: used as justification for things related to ring properties such as addition, subtract, multiplication (and sometimes division) with variables or ring elements
- extra: used as justification for when an inequality differs by a neutral positive value. Eg: y < 1 + y: = by extra
- cancel [ITEM] at [HYPOTHESIS]: essentially divides both sides of an (in)equality by [ITEM] and rewrites the hypothesis, as long at the value you are canceling is not 0. Eg: if h1: t^2 = t and h2: t ≥ 0, then cancel t at h1 would give h1: t = 1. Note as well that you can cancel powers: if you have h3: a^2≥ 1 you can cancel 2 at h3 to give h3: a ≥ 1
- numbers: Provides justification for any statement involving only numbers. If there is a hypothesis that cannot be true (such as 0 > 7), numbers at [HYPOTHESIS] can be used to show a contradiction
- exact [HYPOTHESIS]: Given [HYPOTHESIS] that matches the goal exactly, close the goal using exact [HYPOTHESIS]
- apply [HYPOTHESIS]: Used to choose a specific value for hypothesis' involving the universal quanitifier.
- mod_cases hx : x % n: Creates n different cases with the hypothesis hx : $x \equiv k$ [ZMOD n] for $0 \le k < n$
- interval_cases x: If x is bounded above and below, interval_cases creates a case for each possible value of x
- contradiction: If there are two hypothesis that connot be simultaneously true, then contradiction closes the goal

OR Goals and Hypothesis

- obtain h1 | h2 := h3: splits a hypothesis in the form $x \vee y$ into two separate goals.
- left: Given a goal in the form a \vee b, chooses to prove the left side, a
- right: Given a goal in the form a \vee b, chooses to prove the right side b

AND Goals and Hypothesis

- obtain \langle h1 , h2 \rangle := h3: splits a hypothesis in the form $x \wedge y$ into two seprente hypothesis's
- constructor: Splits a goal involving AND into two seperate goals to be closed sequentially

Existential Quanitifier Goals and Hypothesis

- use [VALUE(S)]: For goals involving existence, provided [VALUE(S)] are the value(s) for the quanities that we must prove the existence of.
- obtain ⟨ x, hx ⟩ := h: Creates a value and a hypothesis from another hypothesis that has the existential quantifer in it. Eg. if h1 : ∃ a : ℝ, a * t < 0 then, obtain ⟨ x, hx ⟩ := h1 gives hx : x * t < 0 (often used with even/odd and divisibility proofs)

Universal Quantifier Goals and Hypothesis

- intro x: For goals that contain JUST the universal quantifier, introduces a variable x for use
- intro x hx: For goals that contain implication, introduces a variable x and a hypothesis hx such that x satisfies the proposition.

Lemmas

- apply ne_of_lt: Changes any goal in the form of $x \neq y$ to x < y (usually paired with apply ne_of_gt)
- apply ne_of_gt: Changes any goal in the form of $x \neq y$ to y < x (usually paired with apply ne_of_lt)
- le_or_lt x y: Creates an OR hypothesis of the form $x \le y \lor x < y$
- le_or_gt x y: Creates an OR hypothesis of the form $x \le y \lor x > y$ (best used with hypothesis in the form $x \ne y$)
- apply abs_le_of_sq_le_sq': if x ^ 2 \leq y ^ 2 and 0 \leq y, then -y \leq x \wedge x \leq y
- ullet apply le_antisymm: Changes a goal in the form of a = b into two subgoals a \leq b and a \geq b
- rw[mul_eq_zero] at [HYPOTHESIS]: If you have [HYPOTHESIS] in the form xy = 0, then rw[mul_eq_zero] at [HYPOTHESIS] gives [HYPOTHESIS : $x = 0 \lor y = 0$]
- Int.even_or_odd n: Creates a hypothesis in the form Even n ∨ Odd n that any integer n must be even or odd
- apply Int.not_dvd_of_exists_lt_and_lt: Used to prove that one integer does not divide another. Creates a goal in the form ∃ q, b * q < q ∧ a < b * (q + 1), or essentially that if a is between two multiple of b, then b cannot divide a

Definitions

- dsimp[DEFINITION] at *: rewrites all written occurrences of [DEFINITION] in terms of its mathematical definition.
- Odd (n : \mathbb{Z}): n = 2 * k + 1
- Even $(n : \mathbb{Z}): n = 2 * k$
- (· | ·): Definition of divisibility, used to unpack goals in the form a | b