Лабораторная работа 2 Часть 2. «Параметрические критерии»

Задание.1. В соответствии с вариантом задания (см. Приложение В) сформулировать нулевую гипотезу о равенстве средних или равенстве среднего номинальному значению, сформулировать альтернативную гипотезу (если она не указана). Выбрать критерий и проверить гипотезу на заданном уровне значимости.

Задание.2. В соответствии с вариантом задания (см. Приложение В) сформулировать нулевую гипотезу о равенстве дисперсий или равенстве выборочной исправленной дисперсии номинальному значению, сформулировать альтернативную гипотезу (если она не указана). Выбрать критерий и проверить гипотезу на заданном уровне значимости.

Ход работы:

- 1. В соответствии с заданием и имеющимися исходными данными сформулировать нулевую гипотезу о равенстве средних (или дисперсий) или равенстве среднего (или дисперсии) номинальному значению, сформулировать альтернативную гипотезу (если она не указана).
- 2. В соответствии с имеющейся информацией о ГС (закон распределения, параметры распределения) выбрать критерий проверки нулевой гипотезы.
 - 3. Рассчитать наблюдаемое значение критерия.
 - 4. Построить критическую область (в зависимости от конкурирующей гипотезы).
 - 5. Оценить расчетное значение критерия и сделать выводы.

Приложение В (обязательное)

Задание 1.

Вариант 1,4.

Установлено, что средний вес таблетки лекарства «NoName» должен быть равен µг. Результаты серии измерений по выборке из n таблеток приведены в таблице В.1.

Вариант 1. При уровне значимости α =0.01 проверить, что среднее значение соответствует номинальному. Предварительными исследованиями было установлено, что масса таблетки подчиняется нормальному закону распределения.

Вариант 4. При уровне значимости α =0.05 ответить на вопрос: превышает ли среднее значение массы таблетки номинальное? Предварительными исследованиями было установлено, что масса таблетки подчиняется нормальному закону распределения с генеральной дисперсией $\sigma^2 = 0.07 \ \Gamma^2$.

Таблица В.1 – Результаты измерений

	Ba	риант 1,	$\mu = 0.50$	Г.			Ba	риант 3,	$\mu = 0.37$	Γ.	
0,66	0,49	0,31	0,48	0,48	0,71	0,39	0,36	0,34	0,5	0,36	0,42
0,64	0,41	0,62	0,52	0,6	0,62	0,48	0,28	0,27	0,51	0,51	0,45
0,44	0,38	0,67	0,68	0,61	0,39	0,44	0,41	0,35	0,46	0,4	0,52
0,54	0,35	0,6	0,68	0,65	0,51	0,34	0,36	0,31	0,4	0,37	0,4
0,58	0,5	0,49	0,54	0,56	0,78	0,51	0,22	0,38	0,3	0,27	0,31
0,55	0,6	0,36	0,48	0,71	0,42	0,45	0,41	0,29	0,44	0,26	0,41
0,46	0,41	0,44	0,38	0,41	0,51	0,38	0,52	0,52	0,3	0,4	0,36
0,69	0,58	0,54	0,53	0,46	0,35	0,55	0,43	0,38	0,43	0,26	0,39
0,68	0,6	0,6	0,53	0,58	0,38	0,33	0,3	0,38	0,35	0,4	0,42
0,75	0,64	0,69	0,55	0,66	0,61	0,38	0,37	0,48	0,44	0,37	0,37
0,56	0,59	0,5	0,45	0,6	0,56	0,23	0,37	0,34	0,44	0,47	0,32
0,47	0,57	0,71	0,57	0,41	0,64	0,42	0,46	0,27	0,41	0,32	0,32
0,34	0,45	0,49	0,39	0,47	0,63	0,31	0,38	0,35	0,29	0,42	0,4
0,55	0,45	0,4	0,41	0,71	0,39	0,38	0,4	0,4	0,2	0,34	0,32
0,68	0,51	0,59	0,51	0,55	0,33	0,43	0,48	0,44	0,37	0,41	0,38
0,45	0,47	0,53	0,38	0,51	0,49						
0,51	0,48	0,38	0,4	0,49	0,61						
0,52	0,49	0,6	0,63	0,5	0,44						
0,63	0,44	0,58	0,61	0,76	0,54						
0,45	0,57	0,87	0,58	0,52	0,4						

Вариант 2,6.

В таблице В.2 приведены значения измеренных диаметров валов, обтачиваемых на двух разных станках. Известно (по результатам предшествующих измерений), что обе случайные величины подчиняются нормальному закону распределения с соответствующими известными дисперсиями. Проверить значимо ли различаются средние диаметры валов, изготовленных на двух разных станках? Уровень значимости принять α =0.05.

Таблица – Результаты измерений

Таолица	тезульт	arbi name	CIIIIII						
	Станок	$1, \sigma_1^2 = 3,$	45 мм ²			Станок	2, $\sigma_2^2 = 3$,65 мм²	
47,05	51,49	50,73	51,06	53	48,87	51,21	53,24	48,73	50,05
48,91	51,29	49,75	51,68	51,12	48,23	52,58	50,97	47,83	49,59
49,54	49,75	49,49	50,83	45,77	52,84	50,21	49,6	49,88	50,64
50,05	51,95	50,31	48,57	48,85	50,58	48,62	48,61	51,87	50,38
52,17	51,54	51,67	49,36	49,95	50,82	50,73	46,18	49,03	53,1
47,99	48,43	47,83	52,67	51,91	48,23	49,9	51	46,01	48,3
53,62	48,69	51,55	48,96	47,59	51,15	50,08	50,07	51,7	49,88
46,85	49,66	47,8	50,52	51,29	51,99	46,19	47,3	49,48	49,57
48,71	49,99	48,93	49,48	53,63	51,31	53,27	50,11	53,23	53,83
47,56	46,78	52,26	51,53	48,62	49,24	48,93	47,73	47,86	51,35

Вариант 3, 14 Сравнить среднее время разрядки аккумулятора двух моделей смартфонов базовой "Х" и улучшенной версии "Х+" (производитель заявляет, что время работы от полной зарядки до рекомендуемой подзарядки смартфона "Х+" значительно больше). Время работы от полной зарядки до рекомендуемой подзарядки смартфона (в часах) распределено по нормальному закону и приведены в таблице В.4 соответственно. Уровень значимости принять $\alpha = 0.05$.

Вы	борка для "	'X"	Вы	борка для ".	X+"
27,8	25,9	32,1	28,3	29,7	30,1
22,8	30,7	23,5	33,6	33,7	30,9
27,2	29,7	25,5	27,8	31,7	29,3
25,4	29,8	26	28,7	29,4	32,2
28,3	27,8	28	29,1	26,9	30
26,4	27,8	26,3	27,6	28,6	32
32,8	27,3	26	29,2	28,7	
26,6	28,6	28,6			

Вариант 5, 13.

Физическая подготовка п спортсменов была проверена до начала усиленных тренировок перед плановыми соревнованиями и после месяца тренировок перед началом соревнований. Итого проверки в баллах приведены в таблице. Проверить значимо ли улучшилась физическая подготовка спортсменов в предположении, что число баллов распределено нормально. Уровень значимости принять $\alpha = 0.05$.

Таблица – Результаты оценки подготовки спортсменов

№ спортсмена	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
до тренировок	58	70	63	47	64	58	60	68	78	41	60	42	56	43	80	50	71	50	73	52
после тренировок	82	69	71	66	34	47	88	49	41	64	92	61	73	66	65	58	51	73	76	70

Вариант 7, 9.

Две лаборатории одним и тем же методом, в одном и том же порядке, определяли содержание углерода в 30 пробах стали некоторой марки. Полученные результаты приведены в таблице. При уровне значимости 0,05 установить значимо или незначимо различаются средние результаты в предположении, что они распределены нормально.

Таблица В.8 – Результаты определения С, %

		Вари	ант 7					Вари	ант 9		
	Лаб.1			Лаб.2			Лаб.1			Лаб.2	
0,48	0,48	0,47	0,45	0,45	0,46	0,2	0,2	0,21	0,21	0,2	0,19
0,47	0,47	0,48	0,43	0,42	0,41	0,21	0,2	0,2	0,21	0,23	0,2
0,48	0,47	0,47	0,46	0,49	0,45	0,2	0,19	0,19	0,22	0,2	0,24
0,46	0,47	0,47	0,46	0,42	0,41	0,21	0,19	0,2	0,21	0,18	0,23
0,47	0,48	0,48	0,5	0,49	0,49	0,2	0,2	0,19	0,19	0,21	0,22
0,46	0,47	0,48	0,47	0,43	0,48	0,19	0,19	0,19	0,2	0,21	0,19
0,47	0,45	0,46	0,5	0,45	0,41	0,18	0,17	0,19	0,21	0,19	0,2
0,46	0,46	0,47	0,47	0,48	0,48	0,22	0,19	0,2	0,21	0,2	0,23
0,45	0,49	0,45	0,45	0,49	0,47	0,2	0,21	0,2	0,22	0,2	0,23
0,47	0,46	0,47	0,47	0,46	0,45	0,21	0,2	0,22	0,19	0,19	0,22

Вариант 8, 10.

Независимая лаборатория отобрала 24 образца йогурта марки «ABC» одной партии для оценки качества.

Вариант 8. Производитель на упаковке заявляет, что «массовая доля жира» составляет 5%. Результаты измерения показателя «массовая доля жира» приведены в таблице В.9.

Вариант 10. Измерялся показатель качества «содержание белка», который, согласно межгосударственному стандарту «Йогурты», должен быть не менее 3,2%.

Таблица В.9 – Результаты измерения показателя качества

	Вариант 8	8]	Вариант 1	0
5,7	3,9	4,6	3,1	2,4	3
5,4	4,6	3,2	2,4	3,2	3,6
3,9	4,8	3	3	2,9	2,7
3,8	4	5,3	3,1	3,2	2,9
4,3	5	4,2	3	3	2,9
3	5,4	4	3	3	2,9
5,3	5,4	4,4	2,9	2,9	2,9
4,3	4,8	4,7	3,2	3,2	2,9

На уровне значимости 5% определить соответствует ли конкретный указанный показатель качества заявленному (или регламентированному), считая, что распределение признака подчиняется нормальному закону?

Вариант 11.

Химическая лаборатория произвела в одном и том же порядке анализ 15 проб двумя разными методами. Получены следующие результаты (в таблице В.10 в первой строке указано содержание некоторого вещества в % в каждой пробе, определяемое методом "А", во второй - методом "Б"). Установить при уровне значимости $\alpha = 0.05$, значимо ли отличаются результаты анализов, если они распределены нормально.

Таблица – Результаты измерений

x, %	16,4	23,7	21,5	19,3	21,2	18,4	19,1	22,8	18	19,2	20,2	23,9	20	18,5	16,8
у,%	23,6	23,7	21,3	27,1	20,8	19,9	21,9	27,8	20	19,7	22,2	23,9	20,1	22,3	24,1

Вариант 12.

На двух одинаково настроенных линиях выпускается однотипная продукция. Для контроля извлечены выборки размером 23 и 27 изделий. Проверить на уровне значимости 0.05 гипотезу о равенстве средних размеров.

	1 линия			2 ли	ния	
287	293	304	289	303	300	294
299	304	314	287	307	285	304
294	299	289	316	299	297	298
304	303	308	305	288	291	
305	305	303	297	293	293	
297	298	300	288	291	309	
289	293	284	298	319	292	
293	289		299	287	291	

Вариант 1, 3. Фрезерный станок с ЧПУ разрезает лист ДСП на заготовки шириной b, точность станка проверяется по СКО величины b и не должна превышать $\sigma_0 = 1.5$ мм. Проведены измерения ширины п заготовок, отобранных случайным образом (таблица В.5). При уровне значимости α =0.05 проверить обеспечивает ли станок требуемую точность?

Таблица В.5 – Результаты измерений, мм

		Вариант 1					Вари	ант 3		
451,6	448,4	452,3	451,1	448,7	747,6	755	749	750,3	749,2	751,1
451,2	450	450,3	451,1	451,6	747,1	749,4	751,3	751	749,2	754,6
453,5	450,1	454	451,7	450,8	748,8	752,3	748,3	749,7	752,3	749,2
449,1	451,1	448,8	454,8	449,9	750,2	751,1	747,4	748,7	749,6	751,2
451	447,6	452,2	447	453,2	751,1	749,8	750,5	751,5	748,8	747,7

Вариант 2, 5. Партия изделий принимается, если дисперсия контролируемого параметра значимо не превышает σ_0^2 мм². Можно ли принять партию при уровне значимости $\alpha = 0.05$?

Таблица В.6 – Результаты измерений, мм

таолиц	. 2.0	Jynbiaid	1 1191,10 p 01	111119 1:11:11						
]	Вариант 2,	$\sigma_0^2 = 0.2$				Вариа	инт 5, σ_0^2	= 2.5	
10,8	10,6	10,11	9,68	9,29	9,12	60,64	57,87	58,97	56,88	59,01
10,62	9,92	9,86	10,3	10,37	9,92	60,1	59,45	61,88	58,18	58,72
10,37	10,08	9,43	10,05	9,83	9,26	60,21	60,48	59,94	59,05	64,67
9,6	9,56	9,37	10,25	10,1	9,98	56,3	59,99	62,35	62,8	60,77
10,66	10,85	9,56	10,56	8,94	9,89	59,26	60,84	62,19	55,88	57,83
9,96	9,72	10,6	9,65	9,91	9,66	57,48	61,81	57,28	61,14	61,61
10,05	9,7	9,24	10,81	9,94	10,5	62,8	57,63	59,77	55,72	59,59

Вариант 4, 6, 14. Двумя методами проведены измерения одной и той же физической величины, результаты представлены в таблице В.7. Можно ли считать, что оба метода обеспечивают одинаковую точность измерений, если принять уровень значимости $\alpha = 0.01$? Предполагается, что выборки распределены нормально и выборки независимы.

Таблица В.7 – Результаты измерений

		Вариа	нт 4, 6					Вариа	нт 14		
	1 метод			2 метод			1 метод			2 метод	
15,91	12,06	11,52	12,37	14,15	17,76	110,5	126,5	136,6	129,3	134,7	112,2
13,59	13,06	15,83	16,83	13,12	13,21	126,4	119,3	118,9	101,1	128	125
12,74	16,03	15,57	13,87	16,48	14,53	113	117,9	119,3	103,1	153,2	107,4
15,62	12,92	16,65	11,68	12,42	17,47	118	115,5	115,9	111,1	121,4	119,5
16,84	13,16	12,1	15,05	17,86	16,62	124,4	119,9	99,1	112,2	147,1	124,5
13,76	18,44	12,14	15,92	11,36	12,74	112,4	123,8	128,6	134	98,9	118,6
11,9	17,65	13,07	15,55	14,39	13,21	109,1	118,8	151,6	129,9	131,9	119,9
12,87	16,03	15,42	16,45	14,98	16,35	129,4	133,3	138,3	128,4	136	115
16,79	11,13	13,94	13,46	15,6	13,7	127,7	115,4	123,9	127,3	111,2	140

Вариант 7, 9, 12. Фрезерный станок с ЧПУ разрезает лист ДСП на заготовки шириной b, точность станка проверяется по СКО величины b и не должна превышать $\sigma_0 = 1.7\,$ мм. Проведены измерения ширины п заготовок, отобранных случайным образом (таблица). При уровне значимости α =0.05 проверить обеспечивает ли станок требуемую точность?

Таблица – Результаты измерений, мм

		Вариант 7					Вариан	т 9, 12		
299,8	301,4	302,5	297,5	299,6	900,4	899,4	901,3	899	901,5	901,1
299,1	299	297,8	297,4	297,1	898,8	901,6	899,4	897,9	900,1	900,1
300,5	297,8	296	302,4	301,5	899,4	902,9	904,2	901,3	902,1	897,6
297,5	302,7	302,4	302,6	300,6	899,5	899,4	900,2	897,9	900,6	897
299,8	299,1	297,7	296,9	304,5	900,2	901	900,4	901,1	899,9	899,5

Вариант 8, 10. Партия изделий принимается, если дисперсия контролируемого параметра значимо не превышает σ_0^2 мм². Можно ли принять партию при уровне значимости $\alpha = 0.01$?

Таблица – Результаты измерений, мм

таолица т обультаты померений, мм										
	Вариан	ит 8, ско σ_0	= 2.5		Вариант 10, ско $\sigma_0 = 0.9$					
16	22,7	21,7	20,1	19,1	55,8	54,9	54	56,7	54	
23	23,6	19,9	19,3	18,9	55,2	54	54,7	54,9	55,1	
19,1	19,1	20,4	17,5	18	56,4	56,2	56,2	54,4	55,8	
22,4	19,3	20,4	24,3	19	56,1	55,9	53,2	55,3	54,4	
24,8	22,9	20,2	20,6	17,7	54,5	56,1	54,2	54,3	55	
55,6	55	54,4	20,6	19,9	56,4	54,2	54,6	56,7	55,6	

Вариант 11, 13. Двумя методами определялось содержание витамина («С» и «В9» по вариантам) в N капсулах, результаты представлены в таблице. Можно ли считать, что оба метода обеспечивают одинаковую точность измерений, если принять уровень значимости $\alpha = 0.05$? Предполагается, что выборки распределены нормально и выборки независимы.

Таблица – Результаты измерений

Вариант 4 «С», мг						Вариант 6, «В9», мкг						
1 метод			2 метод			1 метод			2 метод			
201,8	199,7	199,4	200,1	201,3	200,4	399,3	399,2	401	398,9	401	399	
199,6	201,7	200,5	196,9	201,4	200	399,1	400,9	401,3	398,7	401,1	398,6	
202,5	198,6	200,5	200,3	198,7	199,2	399	398,3	400	399,2	401,7	399,9	
199,3	199	200,8	201	197,1	201,4	403,9	402,2	396,6	400,8	398,4	398,8	
201,8	198,6	200,6	197,2	198,5	200	402,3	399,5	402,7	402,9	397,9	397,5	
201,6	200,8	199	199,3	200,7	197,9	400,4	399,6	400,1	401,3	403,7	401,8	
197,5	199,9	199,4	200,9	200,1	199,3	402,4	398,8	398,9	398,5	404,4	398,7	
200	197,9		200,5	201,6		399,9	402	400	399,6	398	399	
			201,1	199,8		399,1	400,5	401	400,1	400,5	401	