Nonlinear Relationships

EC 320: Introduction to Econometrics

Philip Economides Winter 2022

Prologue

Housekeeping

Quiz II

- Released today, due 23rd
- 8 questions, recapping recent content
- 45mins of time, have notes ready

Data Project

• Due March 1st

PBS5

- Will post on Feb 28th
- Due following week

Nonlinear Relationships

Nonlinear Relationships

Many economic relationships are **nonlinear**.

• e.g., most production functions, profit, diminishing marginal utility, tax revenue as a function of the tax rate, etc.

The flexibility of OLS

OLS can accommodate many, but not all, nonlinear relationships.

- Underlying model must be linear-in-parameters.
- Nonlinear transformations of variables are okay.
- Modeling some nonlinear relationships requires advanced estimation techniques, such as *maximum likelihood*.[†]

[†] Beyond the scope of this class.

Linearity

Linear-in-parameters: Parameters enter model as a weighted sum, where the weights are functions of the variables.

• One of the assumptions required for the unbiasedness of OLS.

Linear-in-variables: Variables enter the model as a weighted sum, where the weights are functions of the parameters.

Not required for the unbiasedness of OLS.

The standard linear regression model satisfies both properties:

$$Y_i=eta_0+eta_1X_{1i}+eta_2X_{2i}+\cdots+eta_kX_{ki}+u_i$$

Linearity

Which of the following is **linear-in-parameters**, **linear-in-variables**, or **neither**?

1.
$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \dots + \beta_k X_i^k + u_i$$

2.
$$Y_i=eta_0 X_i^{eta_1} v_i$$

3.
$$Y_i = \beta_0 + \beta_1 \beta_2 X_i + u_i$$

Model 1 is linear-in-parameters, but not linear-in-variables.

Model 2 is neither.

Model 3 is linear-in-variables, but not linear-in-parameters.

We're Going to Take Logs

The natural log is the inverse function for the exponential function: $\log(e^x) = x$ for x > 0.

(Natural) Log Rules

- 1. Product rule: $\log(AB) = \log(A) + \log(B)$.
- 2. Quotient rule: $\log(A/B) = \log(A) \log(B)$.
- 3. Power rule: $\log(A^B) = B \cdot \log(A)$.
- 4. Derivative: $f(x) = \log(x) \Rightarrow f'(x) = \frac{1}{x}$.
- 5. $\log(e) = 1$, $\log(1) = 0$, and $\log(x)$ is undefined for $x \leq 0$.

Nonlinear Model

$$Y_i = lpha e^{eta_1 X_i} v_i$$

- Y > 0, X is continuous, and v_i is a multiplicative error term.
- Cannot estimate parameters with OLS directly.

Logarithmic Transformation

$$\log(Y_i) = \log(lpha) + eta_1 X_i + \log(v_i)$$

• Redefine $\log(lpha) \equiv eta_0$ and $\log(v_i) \equiv u_i$.

Transformed (Linear) Model

$$\log(Y_i) = \beta_0 + \beta_1 X_i + u_i$$

• Can estimate with OLS, but coefficient interpretation changes.

Regression Model

$$\log(Y_i) = \beta_0 + \beta_1 X_i + u_i$$

Interpretation

- A one-unit increase in the explanatory variable increases the outcome variable by approximately $eta_1 imes 100$ percent, on average.
- Example: If $log(Pay_i) = 2.9 + 0.03 \cdot School_i$, then an additional year of schooling increases pay by approximately 3 percent, on average.

Derivation

Consider the log-linear model

$$\log(Y) = \beta_0 + \beta_1 X + u$$

and differentiate

$$rac{dY}{Y}=eta_1 dX$$

A marginal (small) change in X (i.e., dX) leads to a $\beta_1 dX$ proportionate change in Y.

Multiply by 100 to get the percentage change in Y.

Log-Linear Example

$$\log(\hat{Y}_i) = 10.02 + 0.73 \cdot \mathrm{X}_i$$

Note: If you have a log-linear model with a binary indicator variable, the interpretation of the coefficient on that variable changes.

Consider

$$\log(Y_i) = \beta_0 + \beta_1 X_i + u_i$$

for binary variable X.

Interpretation of β_1 :

- ullet When X changes from 0 to 1, Y will increase by $100 imes \left(e^{eta_1}-1
 ight)$ percent.
- ullet When X changes from 1 to 0, Y will decrease by $100 imes \left(e^{-eta_1}-1
 ight)$ percent.

Log-Linear Example

Binary explanatory variable: trained

- trained = 1 if employee received training.
- trained = 0 if employee did not receive training.

```
lm(log(productivity) ~ trained, data = df2) %>% tidy()
```

Q: How do we interpret the coefficient on trained?

A₁: Trained workers 64.2 percent more productive than untrained workers.

A₂: Untrained workers 21.08 percent less productive than trained workers.

Log-Log Model

Nonlinear Model

$$Y_i = lpha X_i^{eta_1} v_i$$

- Y>0, X>0, and v_i is a multiplicative error term.
- Cannot estimate parameters with OLS directly.

Logarithmic Transformation

$$\log(Y_i) = \log(lpha) + eta_1 \log(X_i) + \log(v_i)$$

• Redefine $\log(\alpha) \equiv \beta_0$ and $\log(v_i) \equiv u_i$.

Transformed (Linear) Model

$$\log(Y_i) = \beta_0 + \beta_1 \log(X_i) + u_i$$

• Can estimate with OLS, but coefficient interpretation changes.

Log-Log Model

Regression Model

$$\log(Y_i) = \beta_0 + \beta_1 \log(X_i) + u_i$$

Interpretation

- A one-percent increase in the explanatory variable leads to a β_1 percent change in the outcome variable, on average.
- Often interpreted as an elasticity.
- Example: If $\log(\mathrm{Quantity}\,\widehat{\mathrm{Demanded}}_i) = 0.45 0.31 \cdot \log(\mathrm{Income}_i)$, then each one-percent increase in income decreases quantity demanded by 0.31 percent.

Log-Log Model

Derivation

Consider the log-log model

$$\log(Y_i) = eta_0 + eta_1 \log(X_i) + u$$

and differentiate

$$rac{dY}{Y}=eta_1rac{dX}{X}$$

A one-percent increase in X leads to a β_1 -percent increase in Y.

• Rearrange to show elasticity interpretation:

$$rac{dY}{dX}rac{X}{Y}=eta_1$$

Log-Log Example

Linear-Log Model

Nonlinear Model

$$e^{Y_i} = lpha X_i^{eta_1} v_i$$

- X>0 and v_i is a multiplicative error term.
- Cannot estimate parameters with OLS directly.

Logarithmic Transformation

$$Y_i = \log(lpha) + eta_1 \log(X_i) + \log(v_i)$$

• Redefine $\log(\alpha) \equiv \beta_0$ and $\log(v_i) \equiv u_i$.

Transformed (Linear) Model

$$Y_i = eta_0 + eta_1 \log(X_i) + u_i$$

• Can estimate with OLS, but coefficient interpretation changes.

Linear-Log Model

Regression Model

$$Y_i = eta_0 + eta_1 \log(X_i) + u_i$$

Interpretation

- A one-percent increase in the explanatory variable increases the outcome variable by approximately $\beta_1 \div 100$, on average.
- Example: If $(Blood \ \hat{Pressure})_i = 150 9.1 \log(Income_i)$, then a one-percent increase in income decrease blood pressure by 0.091 points.

Linear-Log Model

Derivation

Consider the log-linear model

$$Y = \beta_0 + \beta_1 \log(X) + u$$

and differentiate

$$dY=eta_1rac{dX}{X}$$

A one-percent increase in X leads to a $\beta_1 \div 100$ change in Y.

Linear-Log Example

(Approximate) Coefficient Interpretation

Model	eta_1 Interpretation
Level-level $Y_i = eta_0 + eta_1 X_i + u_i$	$\Delta Y = eta_1 \cdot \Delta X$ A one-unit increase in X leads to a eta_1 -unit increase in Y
Log-level $\log(Y_i) = eta_0 + eta_1 X_i + u_i$	$\%\Delta Y=100\cdoteta_1\cdot\Delta X$ A one-unit increase in X leads to a $eta_1\cdot 100$ -percent increase in Y
Log-log $\log(Y_i) = eta_0 + eta_1 \log(X_i) + u_i$	$\%\Delta Y = eta_1\cdot\%\Delta X$ A one-percent increase in X leads to a eta_1 -percent increase in Y
Level-log $Y_i = eta_0 + eta_1 \log(X_i) + u_i$	$\Delta Y = (eta_1 \div 100) \cdot \% \Delta X$ A one-percent increase in X leads to a $eta_1 \div 100$ -unit increase in Y

Practical Considerations

Consideration 1: Do your data take negative numbers or zeros as values?

log(0)

#> [1] -Inf

Consideration 2: What coefficient interpretation do you want? Unit change? Unit-free percent change?

Consideration 3: Are your data skewed?

Quadratic Data

Regression Model

$$Y_i=eta_0+eta_1X_i+eta_2X_i^2+u_i$$

Interpretation

Sign of β_2 indicates whether the relationship is convex (+) or concave (-)

Sign of β_1 ?

Partial derivative of Y with respect to X is the marginal effect of X on Y:

$$rac{\partial Y}{\partial X}=eta_1+2eta_2 X$$

ullet Effect of X depends on the level of X

```
lm(y \sim x + I(x^2), data = quad_df) %>% tidy()
```

What is the marginal effect of X on Y?

$$rac{\widehat{\partial \mathbf{Y}}}{\partial \mathbf{X}} = \hat{eta}_1 + 2\hat{eta}_2 X = 15.69 + -4.99 X$$

```
lm(y \sim x + I(x^2), data = quad_df) %>% tidy()
```

What is the marginal effect of X on Y when X = 0?

$$\left. \frac{\widehat{\partial \mathbf{Y}}}{\partial \mathbf{X}} \right|_{\mathbf{X}=\mathbf{0}} = \hat{\boldsymbol{\beta}}_1 = \mathbf{15.69}$$

```
lm(y \sim x + I(x^2), data = quad_df) %>% tidy()
```

What is the marginal effect of X on Y when X = 2?

$$\left. \frac{\widehat{\partial \mathrm{Y}}}{\partial \mathrm{X}} \right|_{\mathrm{X}=2} = \hat{eta}_1 + 2\hat{eta}_2 \cdot (2) = 15.69 - 9.99 = 5.71$$

```
lm(y \sim x + I(x^2), data = quad_df) %>% tidy()
```

What is the marginal effect of X on Y when X = 7?

$$\left. \frac{\widehat{\partial \mathrm{Y}}}{\partial \mathrm{X}} \right|_{\mathrm{X}=7} = \hat{eta}_1 + 2\hat{eta}_2 \cdot (7) = 15.69 - 34.96 = -19.27$$

Where does the regression $\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 X_i + \hat{eta}_2 X_i^2$ turn?

• In other words, where is the peak (valley) of the fitted relationship?

Step 1: Take the derivative and set equal to zero.

$$rac{\widehat{\partial \mathbf{Y}}}{\partial \mathbf{X}} = \hat{eta}_1 + 2\hat{eta}_2 X = 0$$

Step 2: Solve for X.

$$X=-rac{{\hateta}_1}{2{\hateta}_2}$$

Example: Peak of previous regression occurs at X=3.14.

Anscombe's Quartet

Four "identical" regressions: Intercept = 3, Slope = 0.5, $R^2 = 0.67$

