Занятие № 12. Нормальные и лог-нормальные случайные величины. Закон больших чисел (збч) и центральная предельная теорема (цпт).

 \bigcirc Составитель: ∂ . ϕ .-м.н., про ϕ . Рябов П.Е.

Желательно (а для некоторых студентов обязательно), там, где есть ответ, придумать способ док-ва статистической устойчивости полученного ответа.

- **12.1.** Для нормальной случайной величины X с математическим ожиданием $\mathbb{E}(X) = 0,7$ и дисперсией Var(X) = 49 найдите вероятность $\mathbb{P}(|X| > 4,9)$.
- **12.2.** Математические ожидания и дисперсии независимых нормальных случайных величин X, Y, Z, U равны 1. Найдите $\mathbb{P}(1 < 2X 3Y + 5Z U < 3)$.
- **12.3.** Для независимых нормальных случайных величин X, Y известны их математические ожидания и дисперсии: $\mathbb{E}(X) = 15$; $\mathbb{E}(Y) = 19, 9$; $\mathbb{V}ar(X) = 5$; $\mathbb{V}ar(Y) = 44$. Найдите $\mathbb{P}(3X < 2Y)$.
- **12.4.** Для нормальной случайной величины X известно, что математическое ожидание $\mathbb{E}(X)=20,3$ и вероятность $\mathbb{P}(X<41)=0,98928$. Найдите дисперсию Var(X).
- **12.5.** Для нормальной случайной величины X известно, что дисперсия ${\bf Var}(X)=81$ и вероятность $\mathbb{P}(X<54)=0,61791$. Найдите математическое ожидание $\mu=\mathbb{E}(X)$.
- **12.6.** Случайная величина X распределена по нормальному закону с математическим ожиданием $\mu=25$. Вероятность попадания X в интервал (10;15) равна 0,2. Найдите вероятность попадания X в интервал (35;40)?
- **12.7.** Пусть с.в. $Y \sim \mathcal{L}n(2;25)$. Найдите вероятность $\mathbb{P}\left(\frac{1}{Y} < 3\right)$ и покажите статистическую устойчивость полученной вероятности.

Ответ: 0,73227974.

12.8. Пусть X_1 и X_2 независимые случайные величины и известно, что $X_1 \sim \mathcal{L}n(2;25)$, $X_2 \sim \mathcal{L}n(-3;36)$. Найдите вероятность $\mathbb{P}(X_1 \cdot X_2 > 7)$ и покажите статистическую устойчивость полученной вероятности.

Ответ: 0,353018.

- 12.9. Пусть S(n) обозначает цену акции к концу n-ой недели, $n\geqslant 1$. Известно, что отношения цен $\frac{S(n)}{S(n-1)}$, n>1, являются независимыми случайными величинами, которые распределены логнормально с параметрами $\mu=0,00264$ и $\sigma=0,0671$. Найдите вероятность того, что
 - а) цена акции будет расти подряд две недели; б) цена акции в конце четвертой недели будет выше, чем в конце первой недели; в) за три недели цена акции вырастет более, чем на 7%.

12.10. Пусть Q_1 – квантиль уровня $\frac{1}{4}$, а Q_3 – квантиль уровня $\frac{3}{4}$ нормального распределения $\mathcal{N}(\mu, \sigma^2)$. Выведите формулу для квантилей уровня $q \in (0; 1)$ распределения $\mathcal{N}(\mu; \sigma^2)$ и с ее помощью найдите отношение $\frac{Q_3 - Q_1}{\sigma}$

Напомним, квантиль уровня $q \in (0;1)$ распределения случайной величины X определяется как такое число x_q , что $\mathbb{P}(X < x_q) \leqslant q$, $\mathbb{P}(X \leqslant x_q) \geqslant q$. Квантиль уровня q также называется 100(1-q) – (верхней) процентной точкой распределения X. Пара неравенств, задающих квантиль x_q распределения непрерывной случайной величины X, эквивалентно одному уравнению: $F(x_q) = q$, где $F(x) = \mathbb{P}(X \leqslant x)$ – функция распределения с.в. X. Таким образом $x_q = F^{-1}(q)$, где F^{-1} – функция, обратная к функции распределения F(x).

- 12.11. 85%-я точка нормально распределенной случайной величины X равна 12, а 40%-я точка равна 16. Найдите математическое ожидание и стандартное отклонение случайной величины X.
- **12.12.** Для независимых случайных величин X_1, X_2, \ldots , равномерно распределенных на отрезке [1, 13], найдите предел

$$\lim_{n\to\infty} \mathbb{P}\left(X_1+\ldots+X_n>7n-\sqrt{n}\right).$$

- **12.13.** Для независимых равномерно распределенных на отрезке [-2;2] случайных величин X_1,X_2,\dots найдите предел $\lim_{n\to\infty} \mathbb{P}(|X_1+X_2+\dots+X_n|>\sqrt{3n})$.
- **12.14.** Пусть случайная величина X имеет *треугольное распределение (Triangular distribution)* на отрезке [a,b] (a < b) с параметром c, где $a \leqslant c \leqslant b$, $(X \sim \text{Tri}([a;b];c))$.
 - а) Покажите, что $\mathbb{E}(X)=rac{a+b+c}{3}, \quad \mathbb{V}\!ar(X)=rac{a^2+b^2+c^2-ab-ac-bc}{18}.$
 - б) Постройте график плотности для $X \sim {
 m Tri}\left([-1;3]; c = -\frac{2}{3}\right)$.

Можно использовать X= $triang(\frac{c-a}{b-a}, a, b-a)$ из библиотеки from scipy.stats import triang).

в) Пусть X_1, X_2, \ldots бесконечная последовательность одинаково распределенных случайных величин, имеющих треугольное распределение на отрезке [-1;3] с параметром $c=-\frac{2}{3}$, ($X_k \sim {\rm Tri}\left([-1;3]; c=-\frac{2}{3}\right)$). С помощью IPython продемонстрируйте ЗБЧ и ЦПТ для $\overline{S_n}=\frac{S_n}{n}$, где $S_n=X_1+X_2+\ldots+X_n$.

Определение (См. From Wikipedia, the free encyclopedia MathWorld). Случайная величина X имеет треугольное распределение (Triangular distribution) на отрезке [a,b] (a < b) с параметром c, $a \leqslant c \leqslant b$, $(X \sim \text{Tri}([a;b];c))$, если

плотность распределения f(x) имеет вид

$$f(x) = \begin{cases} \frac{2(x-a)}{(b-a)(c-a)}, & x \in [a;c); \\ \frac{2}{b-a}, & x = c; \\ \frac{2(b-x)}{(b-a)(b-c)}, & x \in (c;b]; \\ 0, & x \notin [a;b]. \end{cases}$$

Ответ: б) и в) см. ниже.

С.в.
$$\frac{\sqrt{n}(\overline{S_n}-\mu)}{\sigma}-^d o Z$$
, где $Z\!\sim N(0;1)$

