Convergence des suites

1. Généralités

1.1. Définitions

a) <u>Suites convergentes</u>: on dit que $(u_n)_{n\in\mathbb{N}}$ converge vers $\ell\in\mathbb{R}$ lorsque $\lim_{n\to\infty}u_n=\ell$, i.e.

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N} \ / \ \forall n \geqslant n_0, \ |u_n - \ell| \leqslant \varepsilon$$

qui s'écrit aussi

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N} \ / \ \forall n \geqslant n_0, \ \ell - \varepsilon \leqslant u_n \leqslant \ell + \varepsilon$$

Toute suite non convergente est dite divergente.

Exemple : la suite (u_n) de terme général $1 + \frac{(-1)^n}{\sqrt{n}}$ converge vers 1

Remarque1: " $\exists n_0 \in \mathbb{N} \ / \ \forall n \geqslant n_0$ " signifie "à partir d'un certain rang" ou "pour n au voisinage de ∞ "

Remarque2: $\lim_{n\to\infty} u_n = 0$ s'écrit donc $\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N} \ / \ \forall n \geqslant n_0, \ |u_n| \leqslant \varepsilon$

Remarque3: (u_n) converge vers $\ell \Leftrightarrow (u_n - \ell)$ converge vers $0 \Leftrightarrow |u_n - \ell|$ converge vers 0

b) Suites divergentes vers $+\infty$: on dit que $(u_n)_{n\in\mathbb{N}}$ diverge vers $+\infty$ lorsque $\lim_{n\to\infty}u_n=+\infty$, i.e.

$$\forall M > 0, \ \exists n_0 \in \mathbb{N} \ / \ \forall n \geqslant n_0, \ u_n \geqslant M$$

Exemple: suites géométriques: soit $a \in \mathbb{R}$: $\begin{cases} \text{Si } |a| < 1, \text{ alors } (a^n) \text{ converge vers } 0. \\ \text{Si } a > 1, \text{ alors } (a^n) \text{ diverge vers } +\infty. \end{cases}$

1.2. Quelques propriétés

a) Unicité de la limite : $si(u_n)$ converge vers ℓ et ℓ' , alors $\ell = \ell'$

b) Propriété importante : Toute suite convergente est bornée

c) <u>Suites extraites</u>: $si(u_n)_{n\in\mathbb{N}}$ converge vers ℓ , alors les suites $(u_{n+1})_{n\in\mathbb{N}}$, $(u_{2n})_{n\in\mathbb{N}}$, $(u_{2n+1})_{n\in\mathbb{N}}$ aussi

Plus généralement, si $\varphi : \mathbb{N} \to \mathbb{N}$ est strictement croissante, la suite de terme général $u_{\varphi(n)}$ est dite **extraite** de la suite (u_n) et converge vers ℓ .

1

Exemple: suites géométriques : si $a \leqslant -1$, alors (a^n) diverge.

En particulier la suite de terme général $\left(-1\right)^n$ diverge.

Réciproquement, si (u_{2n}) et (u_{2n+1}) convergent vers le même réel ℓ , alors (u_n) converge vers ℓ

1.3. Opérations

Sommes, produits, quotients:

(i) On convient des règles de calculs (lacunaires) suivantes, où $a \in \mathbb{R}$

$$\begin{array}{ll} a+(+\infty)=+\infty & a\times(+\infty)=\mathrm{signe}\,(a)\;\infty\;\mathrm{pour}\;a\neq0\\ a+(-\infty)=-\infty & (+\infty)\times(+\infty)=+\infty\\ (+\infty)+(+\infty)=+\infty & (-\infty)\times(-\infty)=+\infty\\ (-\infty)+(-\infty)=-\infty & (+\infty)\times(-\infty)=-\infty \end{array}$$

Les opérations $(+\infty) + (-\infty)$, $0 \times (+\infty)$, $0 \times (-\infty)$ ne sont pas définies.

- (ii) Si (u_n) converge vers 0 et (v_n) est bornée, alors (u_nv_n) converge vers 0
- (iii) Règles élémentaires
- $\overline{\text{Si }\ell + \ell' \text{ est défini sur } \overline{\mathbb{R}}, \text{ alors } \left\{ \begin{array}{l} \lim u_n = \ell \\ \lim v_n = \ell \end{array} \right. \Rightarrow \lim \left(u_n + v_n \right) = \ell + \ell'$ $\overline{\text{Si }\ell . \ell' \text{ est défini sur } \overline{\mathbb{R}}, \text{ alors } \left\{ \begin{array}{l} \lim u_n = \ell \\ \lim v_n = \ell \end{array} \right. \Rightarrow \lim \left(u_n . v_n \right) = \ell . \ell'$
- Si $\lim u_n = \ell \neq 0$, alors $\left(\frac{1}{u_n}\right)$ est définie à partir d'un certain rang et $\lim \frac{1}{u_n} = \frac{1}{\ell}$
- $\begin{cases} \lim u_n = +\infty \Rightarrow \lim \frac{1}{u_n} = 0 \\ \lim u_n = 0 \Rightarrow \lim \left| \frac{1}{u_n} \right| = +\infty \end{cases}$
- "Composée": soient $f: I \to \mathbb{R}$, (u_n) une suite à valeurs dans $I, a \in \overline{I}$, et $\ell \in \overline{\mathbb{R}}$.

Si
$$\lim_{a} f = \ell$$
 et $\lim u_n = a$, alors $\lim f(u_n) = \ell$

Cas particulier 1: $\sup_{x\to+\infty} f(x) = \ell \in \overline{\mathbb{R}}$, alors la suite (u_n) de terme général f(n) converge vers ℓ

Cas particulier 2: si f est continue en a et $\lim u_n = a$, alors $f(u_n)$ converge vers f(a)

c) <u>Cas des suites récurrentes</u>: soit (u_n) la suite définie la donnée de u_0 et la relation de récurrence

$$\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n) \quad (f \text{ continue sur } \mathbb{R})$$

Alors

$$\mathbf{si}\;(u_n)$$
 converge vers $\ell,$ alors nécessairement, ℓ vérifie $f\left(\ell\right)=\ell$

En effet, le passage à la limite dans l'égalité $u_{n+1}=f\left(u_{n}\right)$ donne, par continuité de $f:\ell=f\left(\ell\right)$

Exemple: (u_n) définie par $u_0 \in \mathbb{R}$, et $\forall n \in \mathbb{N}$, $u_{n+1} = \frac{1}{2} (u_n^2 + 1)$.

Si (u_n) converge, sa limite sera nécessairement 1.

1.4. Limites et inégalités

a) Caractérisation séquentielle des bornes : soit A une partie non vide majorée de \mathbb{R} , M un majorant de A.

Alors

$$M = \sup A \Longleftrightarrow \exists (a_n)_{n \in \mathbb{N}} \in A^{\mathbb{N}} / (a_n) \text{ converge vers } M$$

Exemple: bornes de
$$A = \left\{ \frac{n}{mn+1}, \ (m,n) \in \mathbb{N}^{*2} \right\}$$

Remarque: pour une fonction
$$f: M = \sup_I f \Longleftrightarrow \left\{ \begin{array}{l} M \text{ est majorant de } f \text{ sur } I \\ \exists \left(x_n\right)_{n \in \mathbb{N}} \in I^{\mathbb{N}} \ / \ f\left(x_n\right) \text{ converge vers } M \end{array} \right.$$

Exemple: bornes sur \mathbb{R} de $f: x \mapsto \arctan(x)\cos(x)$

b) Passage à la limite dans une inégalité :

On suppose que
$$(u_n)$$
 et (v_n) convergent vers ℓ et ℓ' , et qu' $\exists n_0 \in \mathbb{N} \ / \ \forall n \geqslant n_0, \ u_n \leqslant v_n$. Alors $\ell \leqslant \ell'$.

c) Théorème des gendarmes :

On suppose qu'
$$\exists n_0 \in \mathbb{N} \ / \ \forall n \geqslant n_0, \ v_n \leqslant u_n \leqslant w_n$$
. Si (v_n) et (w_n) convergent vers $\ell \in \mathbb{R}$, alors (u_n) converge vers ℓ

Exemple: convergence et limite de
$$u_n = \frac{1}{n^2} \sum_{k=1}^n \lfloor kx \rfloor$$
 $(x \in \mathbb{R} \text{ fixé})$.

Remarque: pour montrer la convergence d'une suite (u_n) vers ℓ il suffit de trouver une suite (v_n) de limite nulle telle que

$$\boxed{\exists n_0 / \forall n \geqslant n_0, |u_n - \ell| \leqslant v_n}$$

Exemple:
$$\lim \frac{1}{n!} \sum_{k=1}^{n} k! = 1$$
 (ou $\sum_{k=1}^{n} k! \sim n!$)

d) "Comparaison à $+\infty$ ":

On suppose qu'
$$\exists n_0 \in \mathbb{N} / \forall n \geqslant n_0, \ u_n \geqslant v_n$$
. Si $\lim v_n = +\infty$, alors $\lim u_n = +\infty$

1.5. Suites monotones

a) Théorème:

Toute suite (u_n) croissante et majorée converge. De plus $\lim u_n = \sup_{n \in \mathbb{N}} u_n$ Toute suite (u_n) décroissante et minorée converge. De plus $\lim u_n = \inf_{n \in \mathbb{N}} u_n$ Toute suite (u_n) croissante non majorée diverge vers $+\infty$.

3

Remarque : ce théorème sert en général à montrer l'existence d'une limite (et non sa valeur).

Exemple 1: montrer que
$$u_n = \sum_{k=1}^n \frac{1}{n+k} = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{2n}$$
 est convergente.

Exemple2:
$$(u_n)$$
 définie par $u_0 \in]0,1[$, et $\forall n \in \mathbb{N},\ u_{n+1} = \frac{1}{2}\left(u_n^2 + 1\right)$ converge vers 1.

b) Suites adjacentes:

(i) <u>Définition</u>: on dit que (u_n) et (v_n) sont **adjacentes** lorsque

$$\begin{cases} (u_n) \text{ est croissante} \\ (v_n) \text{ est décroissante} \\ \lim (v_n - u_n) = 0 \end{cases}$$

(ii) Théorème:

Si (u_n) et (v_n) sont adjacentes, alors elles convergent vers la même limite ℓ vérifiant $\forall n \in \mathbb{N}, u_n \leqslant \ell \leqslant v_n$

$$u_0 \quad u_n \, \ell \, v_n \quad v_0$$

Exemple 1: soit $x \in \mathbb{R}$. On pose

$$x_n = \frac{\lfloor 10^n x \rfloor}{10^n} \quad \text{et} \quad x_n' = x_n + \frac{1}{10^n}$$

les approximations décimales de x par défaut et par excès à l'ordre n.

Alors (x_n) et (x'_n) sont adjacentes et leur limite commune est x.

Remarque: $x_n = \lfloor x \rfloor + \sum_{k=1}^n a_k 10^{-k}$, où $a_k = 10^k (x_k - x_{k-1})$ est la k-ième décimale de x. On notera

$$x = \lfloor x \rfloor + \sum_{k=1}^{\infty} a_k 10^{-k}$$

Exemple 2: soient $u_n = \sum_{k=0}^n \frac{1}{k!}$ et $v_n = u_n + \frac{1}{n \cdot n!}$: (u_n) et (v_n) sont adjacentes (strictement)

Application : <u>irrationnalité de e</u>. On suppose que e est un rationnel, soit $e=\frac{p}{q},\;(p,q)\in(\mathbb{N}^*)^2$.

- a. On pose $I_n = \int_0^1 \frac{x^n}{n!} e^{1-x} dx$. Calculer I_0 et montrer que (I_n) converge vers 0.
- b. Montrer que $\forall k \in \mathbb{N}^*, \ I_{k-1} I_k = \frac{1}{k!}$. En déduire que $\forall n \in \mathbb{N}, u_n = e I_n$ puis $\lim u_n$
- c. Justifier que $A=\sum_{k=0}^q \frac{q!}{k!}$ est un entier et que $\forall n\in\mathbb{N},\ u_n<\frac{p}{q}< v_n.$

En déduire que qA < pq! < qA + 1 et conclure.

2. Brève extension aux suites complexes

2.1. Définition

a) Si (u_n) est une suite à valeurs complexes $(\forall n \in \mathbb{N}, u_n \in \mathbb{C})$, on dit que qu'elle converge vers $\ell \in \mathbb{C}$ lorsque

$$\forall \varepsilon > 0, \ \exists n_0 \in \mathbb{N} \ / \ \forall n \geqslant n_0, \ |u_n - \ell| \leqslant \varepsilon$$
 (module)

Ainsi

$$\lim u_n = \ell \Leftrightarrow \lim |u_n - \ell| = 0$$

Interprétation géométrique : à partir d'un certain rang, les points images des u_n sont dans le disque de centre $L(\ell)$ et de rayon ε . (DESSIN).

b) Suites géométriques: si |a| < 1, alors (a^n) converge vers 0. Si |a| > 1, alors (a^n) diverge.

Exemple: $(1+i)^n$ diverge; $\left(\frac{1+\sqrt{3}i}{4}\right)^n$ converge vers 0.

2.2. Propriétés

a) On pose $u_n = x_n + iy_n$, où (x_n) et (y_n) sont des suites réelles. Alors

$$(u_n)$$
 converge \Leftrightarrow (x_n) et (y_n) convergent

et on a alors

$$\lim u_n = \lim x_n + i \lim y_n$$

b) Conséquence : les théorèmes sur les sommes, produits, quotients restent vrais sur \mathbb{C} . (On étudie parties réelles et imaginaires). De plus, si (u_n) converge vers ℓ , alors

$$\boxed{ |u_n| \to |\ell| \quad ; \quad \overline{u_n} \to \overline{\ell} }$$

Remarque: si ρ_n converge vers ρ et θ_n converge vers θ , alors $z_n = \rho_n e^{i\theta_n}$ converge vers $z = \rho e^{i\theta}$.

3. Suites du type $u_{n+1} = f(u_n)$

On suppose f continue sur l'intervalle I, et on considère la suite (u_n) définie par

$$\left\{\begin{array}{l} u_{0}\in I\\ \forall n\in\mathbb{N},\;u_{n+1}=f\left(u_{n}\right)\end{array}\right.$$
 Remarque: on a $u_{1}=f\left(u_{0}\right),\;u_{2}=f\left(f\left(u_{0}\right)\right)=f\circ f\left(u_{0}\right),\ldots,u_{n}=\overbrace{f\circ\cdots\circ f}\left(u_{0}\right)$

3.1. Généralités

<u>Intervalles stables</u>: l'intervalle I est stable par f lorsque $f\langle I\rangle\subset I$, c'est-à-dire $\forall x\in I,\ f(x)\in I$.

$$\boxed{ \text{Si I est stable par f et $u_0 \in I$, alors $\forall n \in \mathbb{N}$, $u_n \in I$}$$

$$Exemple: u_0 = 1 \text{ et } \forall n \in \mathbb{N} \text{ , } u_{n+1} = \frac{u_n - 6}{u_n - 4} \text{ : ici } f: x \mapsto \frac{x - 6}{x - 4} = 1 - \frac{2}{x - 4}$$

Montrer que [1, 2] est f-stable et en déduire que $\forall n \in \mathbb{N}, 1 \leq u_n \leq 2$.

b) Seules limites possibles: on suppose f continue sur l'intervalle I stable par f, et $u_0 \in I$.

Si
$$(u_n)$$
 converge vers ℓ , alors on a $f(\ell) = \ell$ (ℓ est un point fixe de f)

Exemple: quelles sont les seules limites possibles pour (u_n) définie au a)?

Remarque: dans la pratique, faire un dessin, calculer les points fixes et repérer les intervalles stables

3.2. Monotonie

a) Sens de variation: on suppose que I est un intervalle stable par f et que $u_0 \in I$.

Le sens de variation de
$$(u_n)$$
 dépend du signe sur I de la fonction $g: x \mapsto f(x) - x$

Exemple: étudier la suite (u_n) définie au 3.1.a)

b) Utilisation de la croissance de f: on suppose f croissante sur un intervalle I stable par f et $u_0 \in I$. Alors (u_n) est monotone

Remarque: si f est décroissante sur I stable par f et $u_0 \in I$, alors (u_{2n}) et (u_{2n+1}) sont monotones

Exemple 1:
$$\forall n \in \mathbb{N}, \ u_{n+1} = \frac{u_n - 6}{u_n - 4}$$
. Discuter la convergence de (u_n) sur la valeur de u_0

Exemple 2:
$$\left\{ \begin{array}{l} u_0=0\\ \forall n\in\mathbb{N},\ u_{n+1}=\cos u_n \end{array} \right. \text{. Etude de } (u_{2n}) \text{ et } (u_{2n+1})$$

3.3. Utilisation des fonctions contractantes

On suppose que I est f-stable, que α point fixe de f sur I, et que

$$\exists k \in]0,1[\ /\ \forall (x,y) \in I^2,\ |f(y)-f(x)| \leqslant k|y-x| \quad (f \text{ est } k\text{-contractante sur } I)$$

Alors la suite si $u_0 \in I$, la suite (u_n) définie par $\forall n \in \mathbb{N}, \ u_{n+1} = f(u_n)$ converge vers α et

$$\forall n \in \mathbb{N}, |u_n - \alpha| \leqslant k^n |u_0 - \alpha|$$

 $\boxed{\forall n\in\mathbb{N},\ |u_n-\alpha|\leqslant k^n\,|u_0-\alpha|}$ $\textit{Exemple}: \left\{\begin{array}{ll} u_0=0\\ \forall n\in\mathbb{N}, & u_{n+1}=\cos u_n \end{array}\right. \text{. Trouver } n \text{ tel que } |u_n-\alpha|\leqslant 10^{-10}. \text{ Approximation de } \alpha?$