Problem Set 2

Problem 1. Let I be an ideal with no embedded primes in a noetherian ring R. Show that there exists an ideal J, which we can take to be principal, such that $I^{(n)} = (I^n : J^{\infty})$ for all $n \ge 1$.

Problem 2. Let $R = \mathbb{Q}[x_1, x_2, x_3, x_4]$, and consider the ideal I you can define in Macaulay2 as follows:

Using only the packages that come preloaded with Macaulay2, compute $I^{(2)}$ and $I^{(3)}$. Is $I^{(2)} = I^2$? Is $I^{(3)} = I^3$?

Problem 3. Find all the symbolic powers of I = (6) in $\mathbb{Z}[\sqrt{-5}]$.

Problem 4. Let x be a regular element in a ring R, meaning that $xa = 0 \implies a = 0$.

- a) Show that $(x^n : x^{n-1}) = (x)$ for all $n \ge 1$.
- b) Show that $Ass(x^n) = Ass(x)$ for all $n \ge 1$.

Problem 5. Let $R = k[x, y, z]/(xy - z^c)$ where k is a field and $c \ge 2$, and let P = (x, z).

- a) Show that (x^n) is a primary ideal for all $n \ge 1$. What is its radical?
- b) Prove that $P^{(cn)} = (x^n)$ for all $n \ge 1$.
- c) Prove that $P^{(n)} \neq P^n$ for all $n \geq 2$.

Problem 6. Height and dimension.

- a) Given any field k, find the height of J = (ab, bc, cd, ad) in R = k[a, b, c, d] and $\dim(R/J)$.
- b) Find the dimension of the ring $S = \mathbb{Q}[x^3y^3, x^3y^2z, x^2z^3] \subseteq \mathbb{Q}[x, y, z]$.
- c) Let I be the defining ideal of the curve parametrized by (t^{13}, t^{42}, t^{73}) over \mathbb{Q} . Find the height of I, and notice that height $(I) < \mu(I)$.
- d) Let $R = \mathbb{Q}[x, y, z]$, and $I = (x^3, x^2y, x^2z, xyz)$. Find the dimension of R/I and the height of I.
- e) Find the dimension of the module I/I^2 , where I=(xz) in $R=\mathbb{C}[x,y,z]/(xy,yz)$.

Problem 7. Let k be any field.

- a) Is x^2, xy, y^2 a regular sequence on $\mathbb{Q}[x^2, xy, y^2]$?
- b) Is $x^3 yz, y^2 xz, z^2 x^2y$ a regular sequence on k[x, y, z]? (Hint: you can use Example 2.4.)
- c) What is the maximal possible length of a regular sequence on $R = k[x, y](x^2, xy)$?
- d) Let $R = k[x, y]/(x^2, xy)$. Find a regular sequence on M = R/(x) of maximal possible length.