2002 AP® CALCULUS AB FREE-RESPONSE QUESTIONS

λ	c	-1.5	-1.0	-0.5	0	0.5	1.0	1.5
f((x)	-1	-4	-6	-7	-6	-4	-1
f'	(x)	-7	-5	-3	0	3	5	7

- 6. Let f be a function that is differentiable for all real numbers. The table above gives the values of f and its derivative f' for selected points x in the closed interval $-1.5 \le x \le 1.5$. The second derivative of f has the property that f''(x) > 0 for $-1.5 \le x \le 1.5$.
 - (a) Evaluate $\int_0^{1.5} (3f'(x) + 4) dx$. Show the work that leads to your answer.
 - (b) Write an equation of the line tangent to the graph of f at the point where x = 1. Use this line to approximate the value of f(1.2). Is this approximation greater than or less than the actual value of f(1.2)? Give a reason for your answer.
 - (c) Find a positive real number r having the property that there must exist a value c with 0 < c < 0.5 and f''(c) = r. Give a reason for your answer.
 - (d) Let g be the function given by $g(x) = \begin{cases} 2x^2 x 7 & \text{for } x < 0 \\ 2x^2 + x 7 & \text{for } x \ge 0 \end{cases}$.

The graph of g passes through each of the points (x, f(x)) given in the table above. Is it possible that f and g are the same function? Give a reason for your answer.

END OF EXAMINATION