

Dipartimento di Scienze Fisiche, Informatiche e Matematiche

MECCANICA

Accelerazione e seconda legge di Newton

Sommario

- Posizione e spostamento di un corpo puntiforme
- Velocità
- Accelerazione
- Valori medi ed istantanei
- Seconda legge di Newton
- Composizione delle velocità galileiana
- •Impulso e quantità di moto

Il sistema di riferimento della meccanica classica

(min.0,44-9,45)

https://www.youtube.com/watch?v=7QbYE3o5qPE

Posizione & Spostamento

La **posizione r** di un oggetto puntiforme descrive la sua collocazione rispetto ad un punto di riferimento (origine).

$$\Delta \mathbf{r} = \mathbf{r}_f - \mathbf{r}_i$$

Lo spostamento rappresenta la variazione della posizione di un oggetto puntiforme. Dipende soltanto dalle posizioni iniziale e finale. 4

Una persona cammina verso un negozio secondo il seguente cammino: 0,500 miglia ovest, 0,200 miglia nord, 0,300 miglia est. Qual è lo spostamento totale (modulo, direzione e verso)?

continua:

Lo spostamento è $\Delta \mathbf{r} = \mathbf{r}_{\rm f} - \mathbf{r}_{\rm i}$. La posizione iniziale è l'origine; qual è **r**_f?

La posizione finale sarà $\mathbf{r}_{\rm f} = \mathbf{r}_{\rm 1} + \mathbf{r}_{\rm 2} + \mathbf{r}_{\rm 3}$. Le componenti sono $r_{fx} = -r_1 + r_3 = -0.2$ miglia e $r_{fy} = +r_2 = +0.2$ miglia.

Dalla figura, il modulo e la direzione dello spostamento sono:

$$\left|\Delta \mathbf{r}\right| = \sqrt{\Delta r_x^2 + \Delta r_y^2} = 0.283 \text{ miles}$$

$$\tan \theta = \frac{\left|\Delta r_y\right|}{\left|\Delta r_x\right|} = 1 \text{ and } \theta = 45^{\circ} \text{ N of W.}$$

Velocità

La **velocità** è un vettore che misura quanto rapidamente e in quale direzione orientata un oggetto puntiforme si muove.

Average velocity =
$$\mathbf{v}_{av} = \frac{\Delta \mathbf{r}}{\Delta t}$$
 (The x - component would be: $v_{av,x} = \frac{\Delta x}{\Delta t}$)

Una particella si muove lungo la traiettoria blu. Al tempo t_1 la sua posizione è \mathbf{r}_0 ; al tempo t_2 la sua posizione è \mathbf{r}_f .

$$\mathbf{v}_{av} = \frac{\Delta \mathbf{r}}{\Delta t}$$

Punta nella direzione orientata di ∆**r**

(a) Un oggetto si muove lungo una traiettoria su un piano. Al tempo t₁ esso si trova nel punto 1 e al tempo t₂ si trova nel punto 2. La velocità media risulta parallela a Δs. (b) Mano a mano che l'intervallo di tempo t₂ - t₁ diventa più piccolo, anche lo spostamento Δs diminuisce. La velocità media $\bar{v} = \Delta s/\Delta t$ si approssima alla velocità istantanea v al tempo t₁, che è un vettore tangente alla traiettoria nel punto 1.

Una particella si muove lungo la traiettoria blu. Al tempo t_1 la sua posizione è \mathbf{r}_0 ; al tempo t_2 la sua posizione è \mathbf{r}_f .

La notazione di Leibnitz per le derivate e gli integrali

E' la più antica notazione di derivata tutt'ora in uso sia in matematica che in fisica.

Fu introdotta da Leibnitz nel 1635 e utilizza il concetto di «infinitesimo», oggi chiamato «differenziale» (da cui il nome «calcolo infinitesimale» per l'analisi matematica.

Sia y=f(x) una funzione reale dell'incognita reale x. Chiamiamo derivata prima della f(x) la funzione:

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

Nella notazione di Leibnitz la derivata si denota così:

$$\frac{dy}{dx} = \frac{df}{dx}$$

La notazione di Leibnitz per le derivate e gli integrali

Per le derivate di ordine successivo:

$$f'' = f^{(2)} = \frac{\mathrm{d}^2 f}{\mathrm{d}x^2}$$
 $f''' = f^{(3)} = \frac{\mathrm{d}^3 f}{\mathrm{d}x^3}$
:

$$f^{(n)} = rac{\mathrm{d}^n f}{\mathrm{d} x^n}$$

La notazione di Leibnitz per le derivate e gli integrali

Il concetto di differenziale e la notazione di Leibnitz vengono ripresi nella definizione matematica di integrale. Se y=f(x) è una funzione reale definita nell'intervallo (a,b) della variabile indipendente x e suddiviso questo intervallo in n suddivisioni di ampiezza δ :

$$\lim_{\delta \to 0} \sum_{i=0}^{n-1} f(x_i) (x_{i+1} - x_i) = \int_a^b f(x) dx$$

$$= F(b) - F(a) \cos \frac{dF}{dx} = f(x)$$

WWW.OKPEDIA.IT

$$\int \frac{df(x)}{dx} dx = \int df(x) = f(x) + costante$$

Velocità istantanea = derivata temporale dello spostamento

$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{s}}{\Delta t} = \frac{d\vec{s}}{dt}$$

$$\vec{S} = \int \vec{v} dt$$

Velocità istantanea in coordinate cartesiane

La velocità istantanea è definita partendo dalla velocità media e considerandone il limite per $\Delta t \rightarrow 0$:

$$\vec{v} = \lim_{\Delta t \to 0} \vec{v}_M = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt} = \frac{dx}{dt} \hat{i} + \frac{dy}{dt} \hat{j} + \frac{dz}{dt} \hat{k}$$

Le componenti del vettore velocità sono dunque:

$$v_x = \frac{dx}{dt}$$
 $v_y = \frac{dy}{dt}$ $v_z = \frac{dz}{dt}$

Per ∆t→0 la direzione dello spostamento tende ad essere tangente alla traiettoria

Il vettore velocità istantanea è tangente alla traiettoria

Interpretazione geometrica del vettore velocità

In un grafico di posizione vs tempo la velocità media è rappresentata dalla pendenza della corda:

Average velocity =
$$v_{av,x} = \frac{x_2 - x_1}{t_2 - t_1}$$

In un grafico di posizione vs tempo la velocità istantanea è rappresentata dalla pendenza della tangente alla curva che rappresenta la traiettoria nella posizione occupata dal corpo all'istante considerato.

Accelerazione media e istantanea

Se la velocità cambia nel tempo nasce una accelerazione diversa da zero che cambia lo stato di moto del corpo che si muove.

Accelerazione media
$$= \overrightarrow{\mathbf{a}}_{av} = \frac{\Delta \overrightarrow{\mathbf{v}}}{\Delta t}$$
 (interpretazione simile a \mathbf{v}_{av} e \mathbf{v}).

Accelerazione istantanea

$$\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt} = \frac{d^2 \vec{s}}{dt^2}$$

Accelerazione in coordinate cartesiane

Siano $\overrightarrow{v_1}$ e $\overrightarrow{v_2}$ le velocità del punto materiale agli istanti di tempo t_1 e $t_2=t_1+\Delta t$

Accelerazione media:
$$\vec{a}_M = \frac{\vec{v}_2 - \vec{v}_1}{t_2 - t_1} = \frac{\Delta \vec{v}}{\Delta t}$$

Accelerazione istantanea:

$$\vec{a} = \lim_{\Delta t \to 0} \vec{a}_{M} = \lim_{\Delta t \to 0} \frac{\vec{v}(t + \Delta t) - \vec{v}(t)}{\Delta t} = \frac{d\vec{v}}{dt}$$

$$a_{x} = \frac{dv_{x}}{dt} = \frac{d^{2}x}{dt^{2}}$$
 $a_{y} = \frac{dv_{y}}{dt} = \frac{d^{2}y}{dt^{2}}$ $a_{z} = \frac{dv_{z}}{dt} = \frac{d^{2}z}{dt^{2}}$

In generale il vettore a avrà una componente parallela alla traiettoria (accelerazione tangenziale) ed una componente perpendicolare alla traiettoria (accelerazione normale) Una particella si muove lungo la traiettoria blu. Al tempo t_1 la sua posizione è \mathbf{r}_0 ; al tempo t_2 la sua posizione è \mathbf{r}_f .

Un'auto che viaggia a 28 m/s viene decelerata fino ad un completo arresto in 4 s. Trovare la decelerazione media durante la frenata.

Dati
$$v_i$$
 = +28 m/s, v_f = 0 m/s, e Δt = 4.0 s.

$$a_{av} = \frac{\Delta v}{\Delta t} = \frac{0 - 28 \text{ m/s}}{4.0 \text{ s}} = -7.0 \text{ m/s}^2$$

- All'inizio di un viaggio di 3 ore stai viaggiando verso nord a 192 km/h. Alla fine viaggi a 240 km/h a 45°a ovest della direzione nord. (a) Disegnare i vettori velocità iniziale e finale. (b) Trovare il vettore Δv . (c) Qual è l'accelerazione media durante il viaggio?
- (a) Disegna I vettori velocità iniziale e finale.

continua:

(b) Trova $\Delta \mathbf{v}$.

Le componenti sono

$$\Delta v_x = v_{fx} - v_{ox} = -v_f \sin 45^\circ - 0 = -170 \text{ km/hr}$$

$$\Delta v_y = v_{fy} - v_{oy} = +v_f \cos 45^\circ - v_0 = -22.3 \text{ km/hr}$$

$$\left|\Delta \mathbf{v}\right| = \sqrt{\Delta v_x^2 + \Delta v_y^2} = 171 \,\text{km/hr}$$

$$\tan \varphi = \frac{\left|\Delta v_y\right|}{\left|\Delta v_x\right|} = 0.1312 \Rightarrow \phi = \tan^{-1}(0.1312) = 7.5^{\circ}$$
Sud-
ovest

continua:

(c) Qual è **a**_{av} durante il viaggio ?

$$\mathbf{a}_{av} = \frac{\Delta \mathbf{v}}{\Delta t}$$
 $a_{x,av} = \frac{\Delta v_x}{\Delta t} = \frac{-170 \text{ km/hr}}{3 \text{ hr}} = -56.7 \text{ km/hr}^2$ $a_{y,av} = \frac{\Delta v_y}{\Delta t} = \frac{-22.3 \text{ km/hr}}{3 \text{ hr}} = -7.43 \text{ km/hr}^2$

Il modulo e la direzione sono:

$$|\mathbf{a}_{av}| = \sqrt{a_{x,av}^2 + a_{y,av}^2} = 57.2 \text{ km/hr}^2$$

 $\tan \phi = \frac{|a_{y,av}|}{|a_{x,av}|} = 0.1310 \Rightarrow \phi = \tan^{-1}(0.1310) = 7.5^{\circ}$ Sud ovest

Seconda legge di Newton

Si chiama forza risultante la somma vettoriale Σ **F** di tutte le forze applicate ad un corpo.

La forza risultante agente su un corpo è direttamente proporzionale all' accelerazione del corpo. La costante di proporzionalità è chiamata **massa** (inerziale) del corpo.

$$\Sigma \mathbf{F} = m\mathbf{a}$$

Force units: $1 \text{ N} = 1 \text{ kg m/s}^2$.

Se $\mathbf{a} = 0$, allora $\Sigma \mathbf{F} = 0$. In questo caso un corpo puntiforme può avere:

v = 0 (equilibrio statico), **o**

 $v \neq 0$ constante, (equilibrio dinamico).

La massa di un corpo è una misura della sua inerzia, cioè della sua resistenza a cambiare il proprio stato di moto sotto l'azione di una forza.

28

Trovare la tensione che agisce sulla corda che collega i due blocchi in figura quando una forza di 10 N viene applicata al blocco di destra. Supporre trascurabile l'attrito. Le masse dei due blocchi sono $m_1 = 3.00 \text{ kg}$ e $m_2 = 1.00 \text{ kg}$.

Assumi che la corda rimanga tesa cosicchè entrambi l blocchi abbiano la stessa accelerazione.

Diagramma di forze di corpo libero per il blocco 2

Diagramma di forze di corpo libero per il blocco 1

Applica la seconda legge di Newton a ciascun blocco:

$$\sum F_x = T = m_2 a$$
$$\sum F_y = N_2 - w_2 = 0$$

$$\sum F_x = F - T = m_1 a$$

$$\sum F_y = N_1 - w_1 = 0$$

$$\sum F_{y} = N_{1} - w_{1} = 0$$

$$F - T = m_1 a \quad (1)$$

 $T = m_2 a \quad (2)$

Queste 2 equazioni contengono le incognite: *a* and *T*.

Per risolvere per T, a deve essere eliminata. Risolvi per a in (2) e sostituisci in (1).

$$F - T = m_1 a = m_1 \left(\frac{T}{m_2}\right)$$

$$F = m_1 \left(\frac{T}{m_2}\right) + T = \left(1 + \frac{m_1}{m_2}\right) T$$

$$\therefore T = \frac{F}{\left(1 + \frac{m_1}{m_2}\right)} = \frac{10 \text{ N}}{\left(1 + \frac{3 \text{ kg}}{1 \text{ kg}}\right)} = 2.5 \text{ N}$$

Una scatola scivola su una superficie rugosa. Sapendo che il coefficiente di attrito dinamico è 0,3 calcolare l'accelerazione della scatola.

Diagramma di forze di corpo libero per la scatola

Applica la seconda legge di Newton:

$$\sum F_{x} = -F_{k} = ma$$

$$\sum F_{x} = -F_{k} = ma$$

$$\sum F_{y} = N - w = 0$$

$$(1) -F_k = ma$$

$$(2) N - w = 0 : N = w = mg$$

Da (1):
$$-F_k = -\mu_k N = -\mu_k mg = ma$$

Risolvendo

per a:

$$a = -\mu_k g = -(0.3)(9.8 \text{ m/s}^2) = -2.94 \text{ m/s}^2$$

Composizione delle velocità

Esempio1: viaggiatore in movimento su

(min.9,45)

https://www.youtube.com/watch?v=7QbYE3o5qPE

Il motore di una barca la fa muovere rispetto all'acqua di una velocità v_{ba} =4.0m/s, secondo la direzione perpendicolare alla corrente. Se la velocità dell'acqua rispetto alla riva è v_{ar} =2.0 m/s, quanto vale la velocità v_{br} della barca rispetto alla riva? Se il fiume è largo 1800m, quanto tempo

impiega la barca per attraversarlo?

RISOLUZIONE/1

Rispetto alla riva, la velocità della barca (vettore) ha due componenti: una lungo x e un'altra lungo y. Quella lungo x è v_{ar} mentre lungo y è

RISOLUZIONE/2

Il modulo della velocità totale v_{TOT} della barca sarà dato

$$v_{TOT} = \sqrt{v_{ar}^2 + v_{ba}^2} = \left(\sqrt{4^2 + 2^2}\right)m/s = 4.5m/s$$

La direzione della velocità è individuato dall'angolo α formato dal vettore velocità totale v_{TOT} con l'asse \times .

Dalla trigonometria so che la tangente dell'angolo α è pari al rapporto tra i cateti:

$$\tan \alpha = \frac{v_{ba}}{v_{ar}} = 2$$

da cui
$$\alpha = \arctan 2 = 63^{\circ}$$

RISOLUZIONE/3

La seconda parte del problema chiede: 'se il fiume è largo 1800m, quanto tempo impiega la barca per attraversarlo?'.

Dalla velocità della barca si risale al tempo necessario per percorrere 1800 m, infatti:

Sapendo che
$$V_{ba} = \frac{y}{t}$$
 \longrightarrow $t = \frac{y}{V_{ba}} = \frac{1800m}{4m/s} = 450s$

Quantità di moto

La quantità vettoriale **p** = m**v** è chiamata quantità di moto o "momento lineare".

La sua unità di misura è kg m/s.

La seconda legge della dinamica per una particella di massa m costante si può scrivere in termini della quantità di moto:

$$F = ma = m dv/dt = dp/dt$$

Teorema dell' impulso

Se la risultante delle forze applicate al corpo è nulla <u>la</u> <u>quantità di moto si conserva.</u>

Per un sistema di particelle in cui le forze sono solo interne (cioè esercitate da particelle del sistema su altre particelle del sistema) la risultante delle forze applicate al corpo è nulla per la terza legge della dinamica e la quantità di moto TOTALE si conserva.