X (3)

Universidade Federal de Viçosa - Campus Florestal CCF211 – Introdução aos Sistemas Lógicos Digitais 2018/2

Prof. José Augusto Miranda Nacif

Nomes: Josué Nunes Campos – 03465

Lucas Barros Pereira Costa - 03511

Maria Theresa Arruda e Henriques - 03684

Mateus Coelho Santos - 03488

Documentação:

Começamos a realização o trabalho proposto a partir da criação da tabela verdade tomando cada saída como um display e levando em consideração o

padrão pedido na descrição do trabalho, que o traço seria 0 e o ponto seria 1. A

partir disso, elaboramos os mapas de Karnaugh e suas respectivas equações

simplificadas, para que, logo após, pudéssemos construir o circuito utilizando a

ferramenta Logisim, sendo que este, foi feito de forma que pudesse ser utilizado

de forma interativa, ou seja, pode-se colocar quaisquer opções disponíveis de

entrada, de 0 até 9, e haverá uma saída correspondente.

Com a elaboração do circuito feita, partimos para a criação dos módulos

em Verilog. O primeiro módulo, chamado Número, foi criado com a finalidade de

abrigar as equações simplificadas adquiridas com os mapas de Karnaugh, para

que o código ficasse mais enxuto e simples de visualizar. O segundo módulo,

chamado testbench, foi feito tanto para simular cada possível entrada passível

de conversão para código morse, quanto para gerar o arquivo que é necessário

para observar o gráfico de formas de onda, de tal forma que cada conversão é

exibida na tela, e as formas de onda são para cada tipo de entrada.

Com as principais tarefas do trabalho criadas, decidimos mostrar no final

da documentação a tabela verdade e os mapas, como também as formas de

equações possíveis para a conversão para código morse.

Conclusão:

Portanto, com a realização do trabalho pudemos analisar os passos para

criação de uma resolução de problema em hardware, possibilitando um

acréscimo no aprendizado que já possuíamos em sala de aula.

Ademais, a utilização de ferramentas relacionadas ao hardware garantiu

conhecimento para todos do grupo acerca das vantagens e desvantagens de

cada implementação.

TABELA VERDADE:

Entradas				Saídas				
Α	В	С	D	d5	d4	d3	d2	d1
0	0	0	0	0	0	0	0	0
0	0	0	1	1	0	0	0	0
0	0	1	0	1	1	0	0	0
0	0	1	1	1	1	1	0	0
0	1	0	0	1	1	1	1	0
0	1	0	1	1	1	1	1	1
0	1	1	0	0	1	1	1	1
0	1	1	1	0	0	1	1	1
1	0	0	0	0	0	0	1	1
1	0	0	1	0	0	0	0	1
1	0	1	0	Х	Х	Х	Х	Х
1	0	1	1	Χ	Χ	Χ	Χ	Χ
1	1	0	0	Χ	Χ	Χ	Χ	Х
1	1	0	1	Χ	Χ	Χ	Χ	Χ
1	1	1	0	Χ	Χ	Χ	Χ	Χ
1	1	1	1	Χ	Χ	Χ	Χ	X

a) EQUAÇÕES BOOLEANAS:

b) MAPAS DE KARNAUGH E EQUAÇÃO SIMPLIFICADA PARA CADA SAÍDA:

• PARA d5:

		AB					
		00 01 11 10					
CD	00	0	1	X	0		
	01	(1,	Q	X	0		
	11	1	0	X	Χ		
	10	1	0	Χ	Х		

$$d5 = BC' + A'C'D + B'C$$

• PARA d4:

		AB					
		00 01 11 10					
CD	00	0	1	X	0		
	01	0	1	X	0		
CD	11	1_	0	X	X		
	10	1	1	Χ	X		

$$d4 = BC' + B'C + CD'$$

PARA d3:

		AB				
		00	01	4	10	
CD	00	0	/1	X	0	
	01	0	1	Х	0	
	11	J	1	Х	X	
	10	0	1	X	Χ	

$$d3 = B + CD$$

PARA d2:

		AB					
		00	01	11	10		
	00	0	/1	X	1)		
CD	01	0	1	Х	0		
	11	0	1	Х	Χ		
	10	0	1	X	Χ		

$$d2 = B + AC'D'$$

PARA d1:

		AB				
		00 01 11 10				
	00	0	0	X	1	
CD	01	0	1_	X	1	
	11	0	X 1	X	Х	
	10	0	1	W	X	

$$d1 = A + BD + BC$$

c) FORMAS CANÔNICAS:

• Mintermos:

 $\mathbf{d5} = \sum m(1, 2, 3, 4, 5) + d(10, 11, 12, 13, 14, 15, 16) = m1 + m2 + m3 + m4 + m5 + d10 + d11 + d12 + d13 + d14 + d15 + d16$

 $d4 = \sum m(2, 3, 4, 5, 6) + d(10, 11, 12, 13, 14, 15, 16) = m2 + m3 + m4 + m5 + m6 + d10 + d11 + d12 + d13 + d14 + d15 + d16$

 $d3 = \sum m(3, 4, 5, 6, 7) + d(10, 11, 12, 13, 14, 15, 16) = m3 + m4 + m5 + m6 + m7 + d10 + d11 + d12 + d13 + d14 + d15 + d16$

 $d2 = \sum m(4, 5, 6, 7, 8) + d(10, 11, 12, 13, 14, 15, 16) = m4 + m5 + m6 + m7 + m8 + d10 + d11 + d12 + d13 + d14 + d15 + d16$

 $d1 = \sum m(5, 6, 7, 8, 9) + d(10, 11, 12, 13, 14, 15, 16) = m5 + m6 + m7 + m8 + m9 + d10 + d11 + d12 + d13 + d14 + d15 + d16$

Maxtermos:

$$d5 = \prod M(0, 6, 7, 8, 9) \cdot D(10, 11, 12, 13, 14, 15, 16) = M0 \cdot M6 \cdot M7 \cdot M8 \cdot M9 \cdot D10 \cdot D11 \cdot D12 \cdot D13 \cdot D14 \cdot D15 \cdot D16$$

$$d4 = \prod M(0, 1, 7, 8, 9) \cdot D(10, 11, 12, 13, 14, 15, 16) = M0 \cdot M1 \cdot M7 \cdot M8 \cdot M9 \cdot D10 \cdot D11 \cdot D12 \cdot D13 \cdot D14 \cdot D15 \cdot D16$$

$$d3 = \prod M(0, 1, 2, 8, 9) \cdot D(10, 11, 12, 13, 14, 15, 16) = M0 \cdot M1 \cdot M2 \cdot M8 \cdot M9 \cdot D10 \cdot D11 \cdot D12 \cdot D13 \cdot D14 \cdot D15 \cdot D16$$

$$d2 = \prod M(0, 1, 2, 3, 9) \cdot D(10, 11, 12, 13, 14, 15, 16) = M0 \cdot M1 \cdot M2 \cdot M3 \cdot M9 \cdot D10 \cdot D11 \cdot D12 \cdot D13 \cdot D14 \cdot D15 \cdot D16$$

$$d1 = \prod M(0, 1, 2, 3, 4) \cdot D(10, 11, 12, 13, 14, 15, 16) = M0 \cdot M1 \cdot M2 \cdot M3 \cdot M4 \cdot D10 \cdot D11 \cdot D12 \cdot D13 \cdot D14 \cdot D15 \cdot D16$$

d) APRESENTAÇÃO DOS MINTERMOS E MAXTERMOS DAS SAÍDAS:

Mintermos:

$$d5 = \sum m(1, 2, 3, 4, 5) + d(10, 11, 12, 13, 14, 15, 16) = A'B'C'D + A'B'CD' + A'BC'D' + A'BC'D' + A'BC'D'$$

$$d4 = \sum m(2, 3, 4, 5, 6) + d(10, 11, 12, 13, 14, 15, 16) = A'B'CD' + A'BC'D' + A'BC'D' + A'BC'D' + A'BCD'$$

$$d3 = \sum m(3, 4, 5, 6, 7) + d(10, 11, 12, 13, 14, 15, 16) = ABC'D' + A'BC'D' + A'BCD' + A'BC' +$$

$$d2 = \sum m(4, 5, 6, 7, 8) + d(10, 11, 12, 13, 14, 15, 16) = A'BC'D' + A'BCD' + A'BC'D' + A'B'C'D' + A'BC'D' + A'B'C'D' + A'B'C'D'$$

$$d1 = \sum m(5, 6, 7, 8, 9) + d(10, 11, 12, 13, 14, 15, 16) = A'BC'D + A'BCD' + A'BCD + AB'C'D' + AB'C'D'$$

Maxtermos:

d5 =
$$\prod$$
M(0, 6, 7, 8, 9) • D(10, 11, 12, 13, 14, 15, 16) = (A+B+C+D) • (A+B'+C'+D) • (A+B'+C'+D') • (A'+B+C+D) • (A'+B+C+D')

$$d4 = \prod M(0, 1, 7, 8, 9) \cdot D(10, 11, 12, 13, 14, 15, 16) = (A+B+C+D) \cdot (A+B+C+D') \cdot (A+B'+C'+D') \cdot (A'+B+C+D) \cdot (A'+B+C+D')$$

$$d3 = \prod M(0, 1, 2, 8, 9) \cdot D(10, 11, 12, 13, 14, 15, 16) = (A+B+C+D) \cdot (A+B+C+D') \cdot (A+B+C'+D) \cdot (A'+B+C+D')$$

d2 = \prod M(0, 1, 2, 3, 9) • D(10, 11, 12, 13, 14, 15, 16) = (A+B+C+D) • (A+B+C+D') • (A+B+C'+D) • (A+B+C'+D') • (A'+B+C+D')

d1 = \prod M(0, 1, 2, 3, 4) • D(10, 11, 12, 13, 14, 15, 16) = (A+B+C+D) • (A+B+C+D') • (A+B+C'+D) • (A+B+C'+D') • (A+B'+C+D)