Realistic fire rendering

Garoe Dorta Perez

University of Bath Centre For Digital Entertainment

September 16, 2015

Overview

Introduction

Previous Work

Methodology

Implementation

Results and Conclusion

Outline

Introduction

Previous Work

Methodology

Implementation

Results and Conclusio

Introduction

Manipulate fire in virtual scenes

- Create
- Edit
- Visualize

Real fire with paper as fuel, image courtesy of FireImg1 (2015).

Volume rendering area

Diagram of light observed at p, image courtesy of Pharr and Humphreys (2004)

The problem

- Render fire realistically
 - Participating media
 - Emission cannot be ignored
 - Varied fuel types

Real fire with paper as fuel, image courtesy of FireImg1 (2015).

Outline

Introduction

Previous Work

Methodology

Implementation

Results and Conclusio

nplementation Results and Conclusion

Previous work

- Ray-tracing-based
 - Physically based
 - Accurate
 - Slow

Previous Work

- Raster-based
 - Many artefacts
 - Fast

Previous work: Results 1

Left, methane fire pool Pegoraro and Parker (2006); right, a dragon emits a flame Hong et al. (2007).

Previous work: Results 2

Left, a dragon emits a flame Jamriška et al. (2015); right, sparse flame reconstruction Okabe et al. (2015).

Outline

Introduction

Previous Work

Methodology

Implementation

Results and Conclusio

$$(\nabla)L_{\mathsf{x}} = -\sigma_{\mathsf{a}}L_{\mathsf{x}} + \sigma_{\mathsf{a}}L_{\mathsf{e}} - \sigma_{\mathsf{s}}L_{\mathsf{x}} + \sigma_{\mathsf{s}}\int L_{i}\Phi d\omega_{i}$$

$$\boxed{(\nabla)L_{\mathbf{x}}} = -\sigma_{a}L_{\mathbf{x}} + \sigma_{a}L_{e} - \sigma_{s}L_{\mathbf{x}} + \sigma_{s}\int L_{i}\Phi d\omega_{i}$$

Differential of radiance over a segment

$$(\nabla)L_{\mathbf{x}} = \boxed{-\sigma_{\mathbf{a}}L_{\mathbf{x}}} + \sigma_{\mathbf{a}}L_{\mathbf{e}} - \sigma_{\mathbf{s}}L_{\mathbf{x}} + \sigma_{\mathbf{s}}\int L_{i}\Phi d\omega_{i}$$

Absorption,

where σ_a is an absorption

coefficient

$$(\nabla)L_{\mathbf{x}} = -\sigma_{\mathbf{a}}L_{\mathbf{x}} + \boxed{\sigma_{\mathbf{a}}L_{\mathbf{e}}} - \sigma_{\mathbf{s}}L_{\mathbf{x}} + \sigma_{\mathbf{s}}\int L_{i}\Phi d\omega_{i}$$

Emission

$$(\nabla)L_{\mathbf{x}} = -\sigma_{a}L_{\mathbf{x}} + \sigma_{a}L_{e} - \sigma_{s}L_{\mathbf{x}} + \sigma_{s}\int L_{i}\Phi d\omega_{i}$$

In-scattering,

where σ_s is a scattering coefficient, Φ a scattering

function and ω_i is

a incoming direction

$$(\nabla)L_{\mathbf{x}} = -\sigma_{a}L_{\mathbf{x}} + \sigma_{a}L_{e}\left[-\sigma_{s}L_{\mathbf{x}}\right] + \sigma_{s}\int L_{i}\Phi d\omega_{i}$$

Out-scattering

Analytical solution

$$\begin{split} L_{\mathbf{x}} &= e^{-\sigma_t \|\Delta \mathbf{x}\|} L_{\mathbf{x} + \Delta \mathbf{x}} + \left(1 - e^{-\sigma_t \|\Delta \mathbf{x}\|}\right) \frac{\sigma_a L_e + \sigma_s \int L_i \Phi d\omega_i}{\sigma_t} \\ \sigma_t &= \sigma_a + \sigma_s \end{split}$$

Segment increment Δx

The model: Important quantities

- Fuel type $\Rightarrow \sigma_a, \sigma_s$
 - Burning soot emission (Propane, Methane, ...)
 - Exotic chemicals (Copper, Lithium, ...)
- Black Body radiation $\Rightarrow L_e$
- Refraction $\Rightarrow \Delta x$
- Visual Adaptation $\Rightarrow L_{x}$

Outline

Introduction

Previous Work

Methodology

Implementation

Results and Conclusio

$$L_{\mathbf{x}} = e^{-\sigma_t \|\Delta \mathbf{x}\|} L_{\mathbf{x} + \Delta \mathbf{x}} + \left(1 - e^{-\sigma_t \|\Delta \mathbf{x}\|}\right) rac{\sigma_a L_e + \sigma_s \int L_i \Phi d\omega_i}{\sigma_t}$$

$$egin{aligned} L_{\mathbf{x}} &= e^{-\sigma_t \|\Delta \mathbf{x}\|} L_{\mathbf{x} + \Delta \mathbf{x}} + \left(1 - e^{-\sigma_t \|\Delta \mathbf{x}\|}\right) rac{\sigma_a L_e + \sigma_s \int L_i \Phi d\omega_i}{\sigma_t} \ \sigma_s &= 0. \end{aligned}$$

Implementation

Prior simplifications

$$\sigma_t = \sigma_a + \sigma_s$$

$$L_{\mathbf{x}} = e^{-\sigma_t \|\Delta \mathbf{x}\|} L_{\mathbf{x} + \Delta \mathbf{x}} + \left(1 - e^{-\sigma_t \|\Delta \mathbf{x}\|}\right) \frac{\mathbf{x}_{\mathbf{x}} L_e + \sigma_s \mathbf{x}_{\mathbf{x}}}{\mathbf{x}_{\mathbf{x}}}$$

$$L_{\mathbf{x}} = e^{-\sigma_{\mathbf{a}} \|\Delta \mathbf{x}\|} L_{\mathbf{x} + \Delta \mathbf{x}} + \left(1 - e^{-\sigma_{\mathbf{a}} \|\Delta \mathbf{x}\|}\right) L_{\mathbf{e}}$$

Constant refraction indices

Implementation overview

- MentalRay shader in Maya
 - Ray marching divides the RTE into
 - ▶ Light Ray $\rightarrow L_e$
 - Shadow Ray $\rightarrow e^{-\sigma_a \|\Delta x\|} L_{x+\Delta x}$
 - Eye Ray $\rightarrow L_x = e^{-\sigma_a ||\Delta x||} L_{x+\Delta x} + L_e$
 - Light shader
 - Volume/Shadow shader
 - Utility scripts

Rays diagram for a sample intersection point.

Other details

- Large memory requirements
 - Sparse voxel dataset library OpenVDB
- Validation with more data
 - Uintah simulation framework
- Different fuel types
 - NIST emission spectrum database

Outline

Introduction

Previous Work

Methodology

Implementation

Results and Conclusion

Implementation

Results and Conclusion

Reference

Results I

The test scene.

Results II

Propane flame.

•••••

Results III

Flame with copper fuel.

•••••

Results IV

Flame with sulfur fuel.

Results V

Visual adaptation to the flame; left, no adaptation, right, fully adapted.

Conclusions and Future Work

- Limitations
 - Difficult parametrization
 - Relies on tabulated data
 - Computationally intensive
 - Spherical particles
- Future work
 - Importance sampling
 - Automatic parameter estimation

Parameter Estimation

- Spectrum reconstruction
- Under constrained
- Prior knowledge
 - Camera sensitivity
- Previous work, Smits (1999), Sun et al. (2001), Drew and Finlayson (2003)

Thank you

Questions?

- Drew, M. S. and Finlayson, G. D. (2003). Multispectral processing without spectra. *J. Opt. Soc. Am. A*, 20(7):1181–1193.
- FireImg1 (2015). Fire image 1.
 - https://en.wikipedia.org/wiki/File:Fire.JPG.

Accessed: 21-07-2015.

- Hong, J.-M., Shinar, T., and Fedkiw, R. (2007). Wrinkled flames and cellular patterns. *ACM Trans. Graph.*, 26(3).
- Jamriška, O., Fišer, J., Asente, P., Lu, J., Shechtman, E., and Sýkora, D. (2015). Lazyfluids: Appearance transfer for fluid animations. ACM Transactions on Graphics, 34(4).

- Okabe, M., Dobashi, Y., Anjyo, K., and Onai, R. (2015). Fluid volume modeling from sparse multi-view images by appearance transfer. *ACM Transactions on Graphics (Proc. SIGGRAPH 2015)*, 34(4):93:1–93:10.
- Pegoraro, V. and Parker, S. G. (2006). Physically-based realistic fire rendering. *Natural Phenomena*, pages 51–59.
- Pharr, M. and Humphreys, G. (2004). *Physically based rendering:* From theory to implementation. Morgan Kaufmann.
- Smits, B. (1999). An rgb-to-spectrum conversion for reflectances. *Journal of Graphics Tools*, 4(4):11–22.
- Sun, Y., Fracchia, F. D., Drew, M. S., and Calvert, T. W. (2001). A spectrally based framework for realistic image synthesis. *The Visual Computer*, 17(7):429–444.