kd education academy (9582701166

Time: 10 Hour

STD 11 Maths kd90+ ch-3 Trigonometry

Total Marks: 630

* Choose the right answer from the given options. [1 Marks Each]

[85]

1. If
$$\sin x + \sin y = \sqrt{3}(\cos y - \cos x)$$
, than $\sin 3x + \sin 3y =$

(A) $2\sin 3x$

(B) 0

(D) None of these

2. The value of $\frac{2(\sin 2x+2\cos^2 x-1)}{\cos x-\sin x-\cos 3x+\sin 3x}$ is:

(A) $\cos x$

(C) cosec x

(D) $\sin x$

3. Choose the correct answer.

If $\tan\theta=\frac{1}{2}$ and $\tan\phi=\frac{1}{3},$ then the value of $\theta+\phi$ is:

(B) π

(D) $\frac{\pi}{4}$

4. If $\tan 20^{\circ} + \tan 40^{\circ} + \sqrt{3} \tan 20 \circ \tan 40^{\circ}$ is equal to:

(B) $\frac{\sqrt{3}}{2}$

(D) 1

5. The value of $\sin^2 \frac{5\pi}{12} - \sin^2 \frac{\pi}{12}$ is:

(A) $\frac{1}{2}$

(B) $\frac{\sqrt{3}}{2}$

(D) 0

6. If n = 1,2,3, ..., then $\cos \alpha \cos 4\alpha \ldots \cos 2^{n-1}\alpha$ is equal to:

(B) $\frac{\sin 2^{n} \alpha}{2^{n} \sin 2^{n-1} \alpha}$

7. Choose the correct answer.

The value of $\sin \frac{\pi}{10} \sin \frac{13\pi}{10}$ is:

(D) 1

8. $2(1-2\sin^2 7x)\sin 3x$ is equal to:

(A) $\sin 17x - \sin 11x$

(B) $\sin 11x - \sin 17x$

(C) $\cos 17x - \cos 11x$

(D) $\cos 17x + \cos 11x$

9. If α and β are acute angles satisfying $\cos 2\alpha = \frac{3\cos 2\beta - 1}{3-\cos 2\beta}$, then $\tan \alpha =$

(A) $\sqrt{2} \tan \beta$

(B) $\frac{1}{\sqrt{2}}\tan\beta$

(C) $\sqrt{2}\cot \beta$

(D) $\frac{1}{\sqrt{2}}\cot\beta$

10. If D, G and R denote respectively the number of degrees, grades and radians in an angle, then:

(A) $\frac{D}{100} = \frac{G}{90} = \frac{2R}{\pi}$

(B) $\frac{D}{90} = \frac{G}{100} = \frac{R}{\pi}$

(C) $\frac{D}{100} = \frac{G}{100} = \frac{2R}{\pi}$

(D) $\frac{D}{90} = \frac{G}{100} = \frac{R}{\pi}$

If $x=r\sin\theta\cos\theta, y=r\sin\theta$ and $z=r\cos\theta,$ then $x^2+x^2+z^2$ is idepandent of							
(A) $ heta,\phi$	(B) r, θ	(C) r, ϕ	(D) r.				
If $5\sin\alpha=3\sin(\alpha+2\beta)\neq 0$, then $\tan(\alpha+\beta)$ is equal to:							
(A) $2 \tan \beta$	(B) $3 \tan \beta$	(C) $4 \tan \beta$	(D) $6 \tan \beta$				
If $\cot(\alpha+\beta)=0$, then s	$\sin(lpha+2eta)$ is equal to:						
(A) $\sin \alpha$	(B) $\cos 2\beta$	(C) $\cos \alpha$	(D) $\sin 2\alpha$				
If $\sec x + \tan x = k, \cos x$	=						
(A) $\frac{\mathrm{x}^2+1}{2\mathrm{k}}$	(B) $\frac{2k}{x^2+1}$	(C) $\frac{k}{x^2+1}$	(D) $\frac{k}{x^2-1}$				
The value of $\cos^4 x + \sin^4 x$	$n^4 x - 6 \cos^2 \sin^2$ is:						
(A) $\cos 2x$	(B) sin 2x	(C) cos 4x	(D) None of these				
The radius of the circ the centre is:	le whose arc of length	15π makes an angle o	f $rac{3\pi}{4}$ radian at				
(A) 10cm	(B) 20cm	(C) $11\frac{1}{4}$ cm	(D) $22\frac{1}{2}$ cm				
In the sides of a triagreatest angle is:	angle are in the ratio	$1:\sqrt{3}:2$, then the m	easure of its				
(A) $\frac{\pi}{6}$	(B) $\frac{\pi}{3}$	(C) $\frac{\pi}{2}$	(D) $\frac{2\pi}{3}$				
Choose the correct ar	nswer.						
The value of $\frac{1-\tan^2 15^\circ}{1+\tan^2 15^\circ}$ is:							
(A) 1	(B) $\sqrt{3}$	(C) $\frac{\sqrt{3}}{2}$	(D) 2				
If $\tan \alpha = \frac{1-\cos\beta}{\sin\beta}$, then:							
(A) $ an 3lpha = an 2eta$		(B) $ an 2lpha = an eta$					
(C) $ an 2eta = an lpha$		(D) None of these					
If $\cos x + \sqrt{3}\sin x = 2$, the	en x =						
(A) $\frac{\pi}{3}$	(B) $\frac{2\pi}{3}$	(C) $\frac{4\pi}{3}$	(D) $\frac{5\pi}{3}$				
If $\alpha + \beta + y = 2p$, then:							
(A) $\frac{\tan \alpha}{2} + \frac{\tan \beta}{2} + \frac{\tan y}{2} = \frac{\tan \alpha}{2} \cdot \frac{\tan \beta}{2} \cdot \frac{\tan y}{2}$ (B) $\frac{\tan \alpha}{2} \cdot \frac{\tan \beta}{2} + \frac{\tan \beta}{2} \cdot \frac{\tan y}{2} = \frac{\tan y}{2} \cdot \frac{\tan \alpha}{2} = 1$ (C) $\frac{\tan \alpha}{2} + \frac{\tan \beta}{2} + \frac{\tan y}{2} = \frac{\tan \alpha}{2} \cdot \frac{\tan \beta}{2} \cdot \frac{\tan y}{2}$							
				(D) None of these			
				_	ngle are in A.P. then tl	he measures of one of	the angles in
(A) $\frac{\pi}{6}$	(B) $\frac{\pi}{3}$	(C) $\frac{\pi}{2}$	(D) $\frac{2\pi}{3}$				
	(A) θ,ϕ If $5\sin\alpha=3\sin(\alpha+2\beta)$ (A) $2\tan\beta$ If $\cot(\alpha+\beta)=0$, then is (A) $\sin\alpha$ If $\sec x + \tan x = k, \cos x$ (A) $\frac{x^2+1}{2k}$ The value of $\cos^4 x + \sin x$ (A) $\cos 2x$ The radius of the circular the centre is: (A) $10cm$ In the sides of a triagreatest angle is: (A) $\frac{\pi}{6}$ Choose the correct and The value of $\frac{1-\tan^2 15^\circ}{1+\tan^2 15^\circ}$ is (A) 1 If $\tan\alpha=\frac{1-\cos\beta}{\sin\beta}$, then: (A) $\tan 3\alpha=\tan 2\beta$ (C) $\tan 2\beta=\tan\alpha$ If $\cos x + \sqrt{3}\sin x = 2$, then (A) $\frac{\pi}{3}$ If $\alpha+\beta+y=2p$, then: (A) $\frac{\pi}{3}$ If $\alpha+\beta+y=2p$, then: (A) $\frac{\tan\alpha}{2}+\frac{\tan\beta}{2}+\frac{\tan\beta}{2}$ (B) $\frac{\tan\alpha}{2}\cdot\frac{\tan\beta}{2}+\frac{\tan\beta}{2}+\frac{\tan\beta}{2}$ (C) $\frac{\tan\alpha}{2}+\frac{\tan\beta}{2}+\frac{\tan\beta}{2}$ (D) None of these If the angles of a triagradians is:	$(A) \ \theta, \phi \qquad \qquad (B) \ r, \theta$ $If \ 5 \sin \alpha = 3 \sin(\alpha + 2\beta) \neq 0, \ \ then \ \tan(\alpha + \beta) \ \ is$ $(A) \ 2 \tan \beta \qquad \qquad (B) \ 3 \tan \beta$ $If \ \cot(\alpha + \beta) = 0, \ \ then \ \sin(\alpha + 2\beta) \ \ is \ \ equal \ \ to:$ $(A) \sin \alpha \qquad \qquad (B) \ \cos 2\beta$ $If \ \sec x + \tan x = k, \cos x =$ $(A) \ \frac{x^2 + 1}{2k} \qquad \qquad (B) \ \frac{2k}{x^2 + 1}$ $The \ \ \ value \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$(A) \ \theta, \phi \qquad (B) \ r, \theta \qquad (C) \ r, \phi$ If $5 \sin \alpha = 3 \sin(\alpha + 2\beta) \neq 0$, then $\tan(\alpha + \beta)$ is equal to: $(A) \ 2 \tan \beta \qquad (B) \ 3 \tan \beta \qquad (C) \ 4 \tan \beta$ If $\cot(\alpha + \beta) = 0$, then $\sin(\alpha + 2\beta)$ is equal to: $(A) \sin \alpha \qquad (B) \cos 2\beta \qquad (C) \cos \alpha$ If $\sec x + \tan x = k, \cos x =$ $(A) \ \frac{x^2 + 1}{2k} \qquad (B) \ \frac{2k}{x^2 + 1} \qquad (C) \ \frac{k}{x^2 + 1}$ The value of $\cos^4 x + \sin^4 x - 6 \cos^2 \sin^2$ is: $(A) \cos 2x \qquad (B) \sin 2x \qquad (C) \cos 4x$ The radius of the circle whose arc of length 15π makes an angle of the centre is: $(A) \ 10 \cos \qquad (B) \ 20 \cos \qquad (C) \ 11\frac{1}{4} \cos \qquad (D) \ 11 \cos \qquad (C) \ \frac{\pi}{2}$ Choose the correct answer. The value of $\frac{1 - \tan^3 15}{1 + \tan^2 15}$ is: $(A) \ 1 \qquad (B) \ \sqrt{3} \qquad (C) \ \frac{\pi}{2}$ Choose the correct answer. The value of $\frac{1 - \tan^3 15}{1 + \tan^2 15}$ is: $(A) \ 1 \qquad (B) \ \sqrt{3} \qquad (C) \ \frac{\sqrt{3}}{2}$ If $\tan \alpha = \frac{1 - \cos \beta}{\sin \beta}$, then: $(A) \ \tan 3\alpha = \tan 2\beta \qquad (B) \ \tan 2\alpha = \tan \beta$ (C) $\tan 2\beta = \tan \alpha \qquad (D)$ None of these If $\cos x + \sqrt{3} \sin x = 2$, then $x = (A) \ \frac{\pi}{3} \qquad (B) \ \frac{2\pi}{3} \qquad (C) \ \frac{4\pi}{3}$ If $\alpha + \beta + y = 2p$, then: $(A) \ \frac{\tan \alpha}{2} + \frac{\tan \beta}{2} + \frac{\tan \alpha}{2} = \frac{\tan \alpha}{2} \cdot \frac{\tan \beta}{2} \cdot \frac{\tan \gamma}{2} = 1$ (C) $\frac{\tan \alpha}{2} + \frac{\tan \beta}{2} + \frac{\tan \alpha}{2} = \frac{\tan \alpha}{2} \cdot \frac{\tan \alpha}{2} \cdot \frac{\tan \gamma}{2}$ (D) None of these If the angles of a triangle are in A.P. then the measures of one of radians is:				

23.	If $ anrac{\mathrm{x}}{2}=\sqrt{rac{1-\mathrm{e}}{1+\mathrm{e}}} anrac{lpha}{2}$ then $\coslpha=$			
	(A) $1 - e \cos(\cos x + e)$		(B) $\frac{1+e\cos x}{\cos x-e}$	
	(C) $\frac{1-e\cos x}{\cos x-e}$		(D) $\frac{\cos x - e}{1 - e \cos x}$	
24.	If $\tan \alpha = \frac{1}{7}, \tan \beta = -\frac{1}{3}$, then $\cos 2lpha$ is equal to):	
	(A) $\sin 2\beta$	(B) $\sin 4\beta$	(C) $\sin 3\beta$	(D) $\cos^2 eta$
25.				
	If $2\tan\alpha = 3\tan\beta$ then			(=)
	(A) $\frac{\sin 2\beta}{5 - \cos 2\beta}$	(B) $\frac{\cos 2\beta}{5-\cos 2\beta}$	(C) $\frac{\sin 2\beta}{5 + \cos 2\beta}$	(D) None of these
26.	If $\frac{\pi}{2} < x < \pi$, and if $= \sqrt{2}$	$\sqrt{rac{1-\sin x}{1+\sin x}}+\sqrt{rac{1+\sin x}{1-\sin x}},$ is ec	gual to:	
	(A) 2 sec x	(B) $-2\sec x$	(C) sec x	(D) $-\sec x$
27.	The angle between th	e minute and hour har	nds of a clock at 8 : 30	s:
	(A) 80°	(B) 75°	(C) 60°	(D) 105°
28.	If $\tan \alpha = \frac{x}{x+1}$ and $\tan \beta$	$g=rac{1}{2\mathrm{x}+1},$ than $lpha+eta$ is e	qual to	
	(A) $\frac{\pi}{2}$	(B) $\frac{\pi}{3}$	(C) $\frac{\pi}{6}$	(D) $\frac{\pi}{4}$
29.	Choose the correct answer. The value of $ an 1^\circ an 2^\circ an 3^\circ \dots an 89^\circ$ is:			
	(A) 0	$2^{\circ} an 3^{\circ} \dots an 89^{\circ}$ IS:	(C) $\frac{1}{2}$	(D) Not defined
30.	The value of $\cos 1^{\circ} \cos 2^{\circ}$	$2^{\circ}\cos 3^{\circ} \qquad \cos 179^{\circ} \text{is}$	· · · · 2	. ,
	(A) $\frac{1}{\sqrt{2}}$	(B) 0	(C) 1	(D) -1
31.		$+\sin^2\left(\frac{\pi}{9}\right)+\sin^2\left(\frac{7\pi}{18}\right)+$	$-\sin^2\left(rac{4\pi}{lpha} ight)$ is:	
	(A) 1	(B) 2		(D) None of these
32.	The value of $\sin^2 5^\circ + { m s}$	${ m in}^210^\circ + { m sin}^215^\circ + \dots +$	$\sin^2 85^\circ + \sin^2 90^\circ$ is:	
	(A) 7	(B) 8	(C) 9.5	(D) 10
33.	If $\tan X = \frac{a}{b}$, then $b\cos 2x + a\sin 2x$ is equal to:			
	(A) a	(B) b	(C) <u>a</u>	(D) $\frac{b}{a}$
34.	The value of $\sin 78^{\circ} - \sin 78^{\circ}$	$\sin 66^{\circ} - \sin 42^{\circ} + \sin 6^{\circ}$ is		
	(A) $\frac{1}{2}$	(B) $-\frac{1}{2}$	(C) −1	(D) None of these
35.	The value of $\cos 52^\circ + \cos 68^\circ + \cos 172^\circ$ is			
	(A) 0	(B) 1	(C) 2	(D) $\frac{3}{2}$
36.	. The value of $\Big(\cot{rac{x}{2}}-\tan{rac{x}{2}}\Big)^2(1-2\tan{x}\cot{2x})$ is:			
	(A) 1	(B) 2	(C) 3	(D) 4
	(~)	(5) 2		(<i>D</i>) T

37.	Choose the correct answer. The value of $\sin 50^\circ - \sin 70^\circ + \sin 10^\circ$ is equal to:			
	(A) 1	(B) 0	_	(D) 2
20			(C) $\frac{1}{2}$	
38.	If $\csc x + \cot x = \frac{11}{2}$, t	15	(0) 44	·- > 117
	(A) $\frac{21}{22}$	(B) $\frac{15}{16}$	(C) $\frac{44}{117}$	(D) $\frac{117}{43}$
39.	If $ an heta_1 an heta_2= ext{k},$ then	$rac{\cos(heta_1- heta_2)}{\cos(heta_1+ heta_2)}=$		
	(A) $\frac{1+k}{1-k}$	(B) $\frac{1-k}{1+k}$	(C) $\frac{k+1}{k-1}$	(D) $\frac{k-1}{k+1}$
40.	If A lies in sec $2 \cot A - 5 \cot A + \sin A$		A+4=0, then the	e value of
	(A) $-\frac{53}{10}$	(B) $\frac{23}{10}$	(C) $\frac{37}{10}$	(D) $\frac{7}{10}$
41.	If $\sin \alpha + \sin \beta - a$ and c	$\cos \alpha - \cos \beta = \mathrm{b}$, than tan		
	$(A) - \frac{a}{b}$	(B) $-\frac{b}{a}$	(C) $\sqrt{a^2 + b^2}$	(D) None of these
40	D	a.	(C) V a ² + b	(2,
42.	The value of $\frac{\sin 5\alpha - \cos 5\alpha + 2\cos 6\alpha}{\cos 5\alpha + 2\cos 6\alpha}$	$rac{\sineta}{4lpha+\cos3lpha}$ is:		
	(A) $\cot \frac{\alpha}{2}$	(B) $\cot \alpha$	(C) $\tan \frac{\alpha}{2}$	(D) None of these
43.	The smallest value of x satisfying the equation $\sqrt{3}(\cot x + \tan x) = 4$ is:			s:
	(A) $\frac{2\pi}{3}$	(B) $\frac{\pi}{3}$	(C) $\frac{\pi}{6}$	(D) $\frac{\pi}{12}$
44.	If $\csc x + \cot x = \frac{11}{2}$, then $\tan x$ is equal to:			
	(A) $\frac{21}{22}$	(B) $\frac{15}{16}$	(C) $\frac{44}{117}$	(D) $\frac{117}{44}$
45.	What is the value of c	ot (-870°)?		
	(A) 3	(B) $\frac{1}{\sqrt{3}}$	(C) $-\sqrt{3}$	(D) $\frac{-1}{\sqrt{3}}$
46.	If $\tan\left(\frac{\pi}{4} + \mathbf{x}\right) + \tan\left(\frac{\pi}{4}\right)$	(B) $\frac{1}{\sqrt{3}}$ $-\mathrm{x}\Big)=\mathrm{a}, \; \mathrm{then} \; \mathrm{tan}^2\left(\frac{\pi}{4}\right)$	$+\mathrm{x}\Big)+ an^2\Big(rac{\pi}{4}-\mathrm{x}\Big)=$	
	(A) $a^2 + 1$	(B) $a^2 + 2$	(C) a ² - 2	(D) none of these
47.	· If $ an A + \cot A = 4$, then $ an^4 A + \cot^4 A$ is equal to:			
		(B) 191	(C) 80	(D) 194
48.	The value of $\cos(36^\circ$ $-$	$ m A)\cos(36^{\circ}+A)+\cos(54^{\circ})$	$+\mathrm{A})\cos(54^\circ-\mathrm{A})$ is:	
	(A) sin 2A	(B) cos 2A	(C) cos 3A	(D) sin 3A
49.	$8\sin\frac{x}{8}\cos\frac{x}{2}\cos\frac{x}{4}\cos\frac{x}{8}$ is	equal to:		
	(A) 8 cos x	(B) $\cos x$	(C) $8 \sin x$	(D) $\sin x$
50.	If x is an acute angle a	and $\mathbf{x} = \frac{1}{\sqrt{7}},$ than the va	lue of $\frac{\csc^2 x - \sec^2 x}{\csc^2 x + \sec^2 x}$ is:	
	(A) $\frac{3}{4}$	(B) $\frac{1}{2}$	(C) 2	(D) $\frac{5}{4}$
51.	$\cos 40^\circ + \cos 80^\circ + \cos 16$	$0^{\circ} + \cos 240 =$		

	(A) 0	(B) 1	(C) $\frac{1}{2}$	(D) $-\frac{1}{2}$
52.		dius 7cm is cut and b le subtended by the ar		of a circle of
	(A) 50°	(B) 210°	(C) 100°	(D) 60°
53.	The solution of the e	quation $\cos^2 ext{q} + \sin ext{q} + 1$	=0, lies in the interva	l:
	(A) $\left(\frac{\pi}{4}, \frac{\pi}{4}\right)$	(B) $\left(\frac{-\pi}{4}, \frac{3\pi}{4}\right)$	(C) $\left(\frac{-3\pi}{4}, \frac{5\pi}{4}\right)$	(D) $\left(\frac{5\pi}{4}, \frac{7\pi}{4}\right)$
54.	$rac{\cos 10^{\circ} + \sin 10^{\circ}}{\cos 10^{\circ} - \sin 10^{\circ}}$ is equal to	:		S
	(A) $\tan 55^{\circ}$	(B) $\cot 55^\circ$	(C) $-\tan 35^\circ$	(D) $-\cot 35^\circ$
55.	The value of $\cos^2\left(\frac{\pi}{6} + \frac{\pi}{6}\right)$	$-\sin^2\left(rac{\pi}{6}-\mathrm{x} ight)$ is:		
	(A) $\frac{1}{2}\cos^2 x$	(B) 0	(C) $-\frac{1}{2}\cos 2x$	(D) $\frac{1}{2}$
56.	The value of $\frac{\cos 3x}{2\cos 2x-1}$ i	s equal to:	20V	
	(A) $\cos x$	(B) sin x	(C) tan x	(D) None of these
57.	Choose the correct ar			
		in the value of $\sin 2 heta$ is e		(5)
	(A) 1	(B) $\frac{1}{2}$	(C) 0	(D) -1
58.	If $\sin \alpha + \sin \beta = a$ and	$\cos lpha - \cos eta = \mathrm{b}$ then ta	${ m n}rac{lpha-eta}{2}=$	
	(A) $-\frac{a}{b}$	(B) $-\frac{b}{a}$	(C) $\sqrt{\mathrm{a}^2+\mathrm{b}^2}$	(D) None of these
59.	The value of $\cos(36^{\circ}$ $-$	$\mathrm{A})\cos(36^\circ + \mathrm{A}) + \cos(54^\circ$	$-A)\cos(54^\circ+A)$ is:	
	(A) $\cos 2A$	(B) sin 2A	(C) cos A	(D) 0
60.	If $A = 2\sin^2 x - \cos 2x$,	then A lies in the interv	val:	
	(A) $[-1,3]$	(B) [1,2]	(C) $[-2,4]$	(D) None of these
61.	If $(2^n+1)x=\pi$, then 2	$\sin \cos x \cos 2x^2 x \cos^{n-1} x =$		
	(A) −1	(B) 1	(C) $\frac{1}{2}$	(D) None of these
62.	62. Let a, b be such that $\pi < \alpha - \beta < 3\pi\mathrm{D}$			
	If $\sin \alpha + \sin \beta = -\frac{21}{65}$ and, $\cos \alpha + \cos \beta = -\frac{27}{65}$. then the value is $\alpha - \frac{\beta}{2}$			
	(A) $\frac{-6}{65}$	(B) $\frac{3}{\sqrt{130}}$	(C) $\frac{6}{65}$	(D) $\frac{-3}{130}$
63.	63. Choose the correct answer.			
	-	value of $(1+\tan\alpha)(1+\tan\alpha)$		
	(A) 1	(B) 2	(C) -2	(D) Not defined
64.	Choose the correct ar			
		$rac{1}{2\mathrm{m}+1}, ext{ then } lpha+eta ext{ is equal}$		
	(A) $\frac{\pi}{2}$	(B) $\frac{\pi}{3}$	(C) $\frac{\pi}{6}$	(D) $\frac{\pi}{4}$

65.	If $\cos A = m \cos B$, than $\cot \frac{A+B}{2} \cot \frac{B-A}{2} =$			
	(A) $\frac{m-1}{m+1}$	(B) $\frac{\mathrm{m}+2}{\mathrm{m}-2}$	(C) $\frac{m+1}{m-1}$	(D) None of these
66.	If $\tan \alpha = \frac{x}{x+1}$ and $\tan \beta = \frac{1}{2x+1}$, then $\alpha + \beta$ is equal to:			
	(A) $\frac{\pi}{2}$	(B) $\frac{\pi}{3}$	(C) $\frac{\pi}{6}$	(D) $\frac{\pi}{4}$
67.	At 3:40, the hour and	d minute hands of a clo	ock are inclined at:	
	(A) $\frac{2\pi^c}{3}$	(B) $\frac{7\pi^{c}}{12}$	(C) $\frac{13\pi^{c}}{18}$	(D) $\frac{13\pi^{c}}{4}$
68.	If $\sin 2\theta + \sin 2\phi = \frac{1}{2}$ and	$d \cos 2\theta$,
	$+\cos2\phi=rac{3}{2}, ext{then}\cos^2($	$(heta-\phi)=$		
	(A) $\frac{3}{8}$	(B) $\frac{5}{8}$	(C) $\frac{3}{4}$	(D) $\frac{5}{4}$
69.	If $\sec x = x + \frac{1}{4x}$, then s	$\sec x + \tan x =$		
	(A) $x, \frac{1}{x}$	(B) $2x, \frac{1}{2x}$	(C) $-2x, \frac{1}{2x}$	(D) $-\frac{1}{x}, x$
70.	For all real values of x	$x, \cot x - 2 \cot$ is equal to		
	(A) tan 2x	(B) tanx	(C) $-\cot 3x$	(D) None of these
71.	If $\tan x = t$ then $\tan 2x + \sec 2x$ is equal to:			
	(A) $\frac{1+t}{1-t}$	(B) $\frac{1-t}{1+t}$	(C) $\frac{2t}{1-t}$	(D) $\frac{2t}{1+t}$
72.	Choose the correct ar			
	The minimum value o		(6) 7	(D) 3
	(A) 5	(B) 9	(C) 7	(D) 3
73.		ation $\cos^2 x + \sin x + 1 = 0$		
	(A) $\left(\frac{-\pi}{4}, \frac{\pi}{4}\right)$	(B) $\left(\frac{\pi}{4}, \frac{3\pi}{4}\right)$	(C) $\left(\frac{3\pi}{4}, \frac{5\pi}{4}\right)$	(D) $\left(\frac{5\pi}{4}, \frac{7\pi}{4}\right)$
74.	The value of $\cos^2 48^\circ$ $-$	$\sin^2 48^\circ$ is:		
	(A) $\sqrt{5} + \frac{1}{8}$	(B) $\sqrt{5} - \frac{1}{8}$	(C) $\sqrt{5} + \frac{1}{5}$	(D) $\sqrt{5}+rac{1}{2\sqrt{2}}$
75.	If $\tan px - \tan qx = 0$, then the values of θ form a series in:			
	(A) AP	(B) GP	(C) HP	(D) None of these
76.	If $ anlpha=rac{1}{7}, aneta=rac{1}{3},$ then $\cos2lpha$ is equal to:			
	a. $\sin 2\beta$			
	b. $\sin 4\beta$			
	c. $\sin 3eta$ d. $\cos 2eta$			
77	,	than:		
, , .	If $f(x) = \cos^2 x + \sec^2 x$, a. $f(x) < 1$	uieii.		
	b. $f(x) < 1$			

2 < f(x) < 1

c.

78. The value of $\cos 1^{\circ} \cos 2^{\circ} \cos 3^{\circ} ... \cos 179^{\circ}$ is:

- a. $\frac{1}{\sqrt{2}}$
- b. 0
- c. 1
- d. -1

79. If $\alpha + \beta = \frac{\pi}{4}$, then the value of $(1 + \tan \alpha)(1 + \tan \beta)$ is:

- a. '
- b. 2
- c. -2
- d. Not defined

80. If $\tan \alpha = \frac{m}{m+1}, \tan \beta = \frac{1}{2m+1},$ then $\alpha + \beta$ is equal to:

- a. $\frac{\pi}{2}$
- b. $\frac{\pi}{3}$
- C. $\frac{\pi}{6}$
- d. $\frac{\pi}{4}$

81. The value of $\cos 12^{\circ} + \cos 84^{\circ} + \cos 156^{\circ} + \cos 132^{\circ}$ is:

- a. $\frac{1}{2}$
- b. 1
- c. $-\frac{1}{2}$
- d. $\frac{1}{8}$

82. If $\tan\theta = \frac{a}{b}$, then $b\cos 2\theta + a\sin 2\theta$ is equal to:

- a. a
- b. b
- c. $\frac{a}{b}$
- d. None

83. The value of $\cot\left(\frac{\pi}{4} + \theta\right)\cot\left(\frac{\pi}{4} - \theta\right)$ is:

- a. -1
- b. 0
- c. 1
- d. Not defined

84. The value of $\sin(45^{\circ} + \theta) - \cos(45^{\circ} - \theta)$ is:

- a. $2\cos\theta$
- b. $2\sin\theta$
- c. 1
- d. 0

85. The value of $\sin 50^{\circ} - \sin 70^{\circ} + \sin 10^{\circ}$ is equal to:

- a. 1
- b. 0
- c. -
- d. 2

* Given section consists of questions of 2 marks each.

[4]

- 86. Find the value of $\tan 22^{\circ}30'$.
- 87. If tan(A+B)=p, tan(A-B)=q, then show that $tan 2A=\frac{p+q}{1-pq}$ [Hint: Use 2A=(A+B)+(A-B)]

* Given section consists of questions of 3 marks each.

[36]

- 88. Prove that: $\cos 6x = 32 \cos^6 x 48 \cos^4 x + 18 \cos^2 x 1$
- 89. Find $\sin \frac{x}{2}, \cos \frac{x}{2}$ and $\tan \frac{x}{2}$ in the $\sin x = \frac{1}{4}$, x in quadrant II.
- 90. Solve: $2 \cos^2 x + 3 \sin x = 0$
- 91. Prove that: $\cos^2 x + \cos^2 \left(x + \frac{\pi}{3} \right) + \cos^2 \left(x \frac{\pi}{3} \right) = \frac{3}{2}$
- 92. Show thet:

$$(\sin^6 x + \cos^6 x) - 3(\sin^4 x + \cos^4 x) + 1 = 0$$

93. Prove that:

$$\sin^2 42^\circ - \cos^2 78^\circ = \frac{\sqrt{15}+1}{8}$$

- 94. If $\cos \alpha + \cos \beta = \frac{1}{3}$ and $\sin \alpha + \sin \beta = \frac{1}{4}$, prove that $\cos \frac{\alpha \beta}{2} = \pm \frac{5}{24}$
- 95. If $\sin \alpha + \sin \beta = a$ and $\cos \alpha + \cos \beta = b$ prove that $\cos(\alpha \beta) = \frac{a^2 + b^2 2}{2}$
- 96. Prove that:

$$\cos 36^\circ \cos 42^\circ \cos 60^\circ \cos 78^\circ = \tfrac{1}{16}$$

- 97. If $a\cos 2x + b\sin 2x = c$ has α and β as its roots, then prove that, $\tan \alpha \tan \beta = \frac{c-a}{c+a}$
- 98. If $\tan x = \frac{b}{a}$, then find the value of $\sqrt{\frac{a+b}{a-b}} + \sqrt{\frac{a-b}{a+b}}$
- 99. If $\frac{\sin(x+y)}{\sin(x-y)} = \frac{a+b}{a-b}$, then show that $\frac{\tan x}{\tan y} = \frac{a}{b}$.

[Hint: Use Componendo and Dividendo]

Given section consists of questions of 5 marks each.

[505]

- 100. In a circle of diameter 40cm, the length of a chord is 20cm. Find the length of minor arc of the chord.
- 101. If $\alpha + \beta = \frac{\pi}{2}$, show that the maximum value of $\cos \alpha \cos \beta$ is $\frac{1}{2}$.

- 102. If θ lies in the first quadrant and $\cos\theta=\frac{8}{17},$ then find the value of $\cos(30^\circ+\theta)+\cos(45^\circ-\theta)+\cos(120^\circ-\theta).$
- 103. Prove that $(2\sqrt{3}+3)\sin x + 2\sqrt{3}\cos x$ lies between $-(2\sqrt{3}+\sqrt{15})$ and $(2\sqrt{3}+\sqrt{15})$.
- 104. Prove that:

$$\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{3\pi}{15}\cos\frac{4\pi}{15}\cos\frac{5\pi}{15}\cos\frac{6\pi}{15}\cos\frac{7\pi}{15}=\cos\frac{1}{128}$$

105. Prove that:

$$egin{aligned} \sin lpha + \sin eta + \sin \gamma - \sin (lpha + eta + \gamma) \ = 4 \sin \left(rac{lpha + eta}{2}
ight) \sin \left(rac{eta + \gamma}{2}
ight) \sin \left(rac{\gamma + lpha}{2}
ight) \end{aligned}$$

- 106. If $\cos(\alpha + \beta)\sin(\gamma + \delta) = \cos(\alpha \beta)\sin(\gamma \delta)$, prove that $\cot\alpha\cot\beta\cot\gamma = \cot\delta$
- 107. If $T_n=\sin^nx+\cos^nx$, Prove that $\frac{T_3-T_5}{T_1}=\frac{T_5-T_7}{T_3}$
- 108. $4\left(bc\cos^2\frac{A}{2} + ca\cos^2\frac{B}{2} + ab\cos^2\frac{C}{2}\right) = (a + b + c)^2$
- 109. If are two different valus of X lying between 0 and which satisfy the equation $6\cos x + 8\sin x = 9$ find the value of $\sin(\alpha + \beta)$.
- 110. A person observes the angle of elevation of the peak of a hill from a station to be α . He walks c metres along a slope inclined at an angle β and finds the angle of elevation of the peak of the hill to be γ . Show that the height of the peak above the ground is $\frac{c \sin \alpha \sin(\gamma \beta)}{(\sin \gamma \alpha)}$.
- 111. If the sides a, b, c of a $\triangle ABC$ are in H.P., prove that $\sin^2 \frac{A}{2}, \sin^2 \frac{B}{2}, \sin^2 \frac{C}{2}$ are in H.P.
- 112. Prove that:

$$\cos 20^{\circ} \cos 100^{\circ} + \cos 100^{\circ} \cos 140^{\circ} - \cos 140^{\circ} \cos 200^{\circ} = -\frac{3}{4}$$

- 113. Prove that: $\cos^2 A + \cos^2 B 2\cos A \cos B \cos (A B) = \sin^2 (A + B)$
- 114. If $\cos x = \frac{\cos \alpha + \cos \beta}{1 + \cos \alpha \cos \beta}$ prove that $\tan \frac{x}{2} = \pm \tan \frac{\alpha}{2} \tan \frac{\beta}{2}$
- 115. Reduce each of the following expressions to the sine and cosin of a single expression:

$$24\cos x + 7\sin x$$

- 116. The angles of a triangle are in A.P. such that the greatest is 5 times the least. Find the angles in radians.
- 117. Prove the following identities:

$$\frac{\sin^3 + \cos^3 x}{\sin x + \cos x} + \frac{\sin^3 x - \cos^3 x}{\sin x - \cos x} = 2$$

- 118. The number of sides of two regular polygons are as 5 : 4 and the difference between their angles is 9°. Find the number of sides of the polygons.
- 119. Prove that:

$$\sin 20^\circ \sin 40^\circ \sin 80^\circ = \frac{\sqrt{3}}{8}$$

120. Solve the following equations:

$$\tan x + \tan 2x + \tan 3x = 0$$

121. If $\sin(\theta+\alpha)=a$ and $\sin(\theta+\beta)=b$, then prove that $\cos 2(\alpha-\beta)-4ab\cos(\alpha-\beta)=1-2a^2-2b^2$

[**Hint:** Express
$$\cos(\alpha - \beta) = \cos((\theta + \alpha) - (\theta + \beta))$$
]

122. If $\cos(\alpha + \beta) = \frac{4}{5}$ and $\sin(\alpha - \beta) = \frac{5}{13}$, where α lie between 0 and $\frac{\pi}{4}$, find the value of $\tan 2\alpha$

[**Hint:** Express
$$\tan 2\alpha$$
 as $\tan(\alpha+\beta+\alpha-\beta)$]

123. If $\sin \alpha + \sin \beta = a$ and $\cos \alpha + \cos \beta = b$, show that

$$\cos(lpha+eta)=rac{\mathrm{b}^2-\mathrm{a}^2}{\mathrm{b}^2+\mathrm{a}^2}$$

- 124. If $\sin \alpha = \frac{4}{5}$ and $\cos \beta = \frac{5}{13}$, prove that $\cos \frac{\alpha \beta}{2} = \frac{8}{\sqrt{65}}$
- 125. Show thet:

$$3(\sin x - \cos x) + 6(\sin x + \cos^2 x) + 4(\sin^6 x + \cos^6 x) = 13$$

- 126. If $\cos A + \sin B = m$ and $\sin A + \cos B = n$, prove that $2\sin(A + B) = m^2 + n^2 2$.
- 127. The angle of a quadrilateral are in A.P. and the greatest angle is 120°. Express the angles in radians.
- 128. If $\sin x + \sin \cos x = m$, then prove that $\sin^6 x + \cos^6 x = \frac{4-3(m^2-1)^2}{4}$, where $m^2 \le 2$
- 129. Prove that:

$$\cos^3 2x + 3\cos 2x = 4(\cos^6 x - \sin^6 x)$$

130. Prove that:

$$\cos 3A + \cos 5A + \cos 7A + \cos 15A = 4\cos 4A\cos 5A\cos 6A$$

131. Prove the following identities:

$$\frac{\tan^3 x}{1 + \tan^2 x} + \frac{\cot^3 x}{1 + \cot^2 x} = \frac{1 - 2\sin^2 x \cos^2 x}{\sin x \cos x}$$

132. If $\sin 2A = \lambda \sin 2B$, prove that:

$$\frac{\tan(A+B)}{\tan(A-B)} = \frac{\lambda+1}{\lambda-1}$$

- 133. If $2\tan\alpha = 3\tan\beta$, prove that $\tan(\alpha \beta) = \frac{\sin 2\beta}{5 \cos 2\beta}$
- 134. Solve the following equation:

$$\sin^2 x - \cos x = \frac{1}{4}$$

135. If $m \sin \theta = n \sin(\theta + 2\alpha)$, then prove that $\tan(\theta + \alpha) \cot \alpha = \frac{m+n}{m-n}$

[**Hint:** Express $\frac{\sin(\theta+2\alpha)}{\sin\theta} = \frac{m}{n}$ and apply componendo and dividendo]

136. If
$$2\tan\frac{\alpha}{2} = \tan\frac{\beta}{2}$$
, prove that $\cos\alpha = \frac{3+5\cos\beta}{5+3\cos\beta}$

137.
$$\sin^3 x + \sin^3 \left(\frac{2\pi}{3} + x\right) + \sin^3 \left(\frac{4\pi}{3} + x\right) = -\frac{3}{4}\sin 3x$$

138. If
$$\frac{2\sin\alpha}{1+\cos\alpha+\sin\alpha}=y$$
, then prove that $\frac{1-\cos\alpha+\sin\alpha}{1+\sin\alpha}$ is also equal to y.

$$\left[\text{Hint: Express } \frac{1-\cos\alpha+\sin\alpha}{1+\sin\alpha} = \frac{1-\cos\alpha+\sin\alpha}{1+\sin\alpha} \cdot \frac{1+\cos\alpha+\sin\alpha}{1+\cos\alpha+\sin\alpha}\right]$$

139. Solve the following equations:

$$\sqrt{3}\cos x + \sin x = 1$$

140. Prove the following identities:

$$(1 + \tan \alpha \tan \beta)^2 + (\tan \alpha - \tan \beta)^2 = \sec^2 \alpha \sec^2 \beta$$

141. Find the value of the expression

$$3[\sin^4\left(rac{3\pi}{2}-lpha
ight)+\sin^4(3\pi+lpha)]-2[\sin^6\left(rac{\pi}{2}+lpha
ight)+\sin^6(5\pi-lpha)]$$

- 142. If $\cos\theta + \tan\theta = 2\csc\theta$, then find the general value of θ .
- 143. If $y \sin \phi = x \sin(2\theta + \phi)$, prove that $(x+y) \cot(\theta + \phi) = (y-x) \cot \theta$
- 144. If $\cos(\theta + \phi) = \cos(\theta \phi)$, then prove that $\tan \theta = \frac{1 m}{1 + m} \cot \phi$.

[**Hint:** Express $\frac{\cos(\theta+\phi)}{\cos(\theta-\phi)}=\frac{\mathrm{m}}{1}$ and apply Componendo and Dividendo]

145. Prove that:

$$\sin 3A + \sin 2A - \sin A = 4\sin A\cos \frac{A}{2}\cos \frac{3A}{2}$$

146. If
$$\sec(x+\alpha) + \sec(x-\alpha) = 2\sec x$$
, prove that $\cos x - \pm \sqrt{2}\cos\frac{\alpha}{2}$

147.
$$\frac{\sqrt{\sin A} - \sqrt{\sin B}}{\sqrt{\sin A} + \sqrt{\sin B}} = \frac{a + b - 2\sqrt{ab}}{a - b}$$

148. Prove that:

$$\frac{1}{\sin(x-b)\sin(x-b)} = \frac{\cot(x-b)-\cot(x-b)}{\sin(a-b)}$$

149. Solve the following equations:

$$\cos x \cos 2x \cos 3x = \frac{1}{4}$$

150. If $\tan \theta = \frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha}$, then show that $\sin \alpha + \cos \alpha = \sqrt{2} \cos \theta$.

[**Hint:** Express
$$\tan \theta = \tan (\alpha - \frac{\pi}{4})\theta = \alpha - \frac{\pi}{4}$$
]

151. Prove that:

$$\cos 40^{\circ} \cos 80^{\circ} \cos 160 = -\frac{1}{8}$$

152. Prove that:

$$\sin 20^{\circ} \sin 40^{\circ} \sin 60^{\circ} \sin 80^{\circ} = \frac{3}{16}$$

153. Solve the following equations:

$$\sin x + \cos x = 1$$

154. If
$$\tan x = \frac{\sin \alpha - \cos \alpha}{\sin \alpha + \cos \alpha}$$
, then show that $\sin \alpha + \cos \alpha = \sqrt{2} \cos x$.

- ^{155.} In any $\triangle ABC$, if a^2 , b^2 , c^2 are in A.P., prove that $\cot A, \cot B$ and $\cot C$ are also in A.P.
- 156. If $a\cos 2\theta + b\sin 2\theta = c$ has α and β as its roots, then prove that $\tan \alpha + \tan \beta = \frac{2b}{a+b}$.

[**Hint:** Use the identities $\cos 2\theta = \frac{1-\tan^2 \theta}{1+\tan^2 \theta}$ and $\sin 2\theta = \frac{2\tan \theta}{1+\tan^2 \theta}$].

157. Prove the following identities:

$$\frac{1-\sin x \cos x}{\cos x (\sec x - \csc x)} \cdot \frac{\sin^2 x - \cos^2 x}{\sin^3 x \cos^3 x} = \sin x$$

- 158. A railway train is travelling on a circular curve of 1500 metres radius at the rate of 66km/ hr. Through what angle has it turned in 10 seconds?
- 159. If $\min \theta = \min(\theta + 2\alpha)$, prove that $\tan(\theta + \alpha)\cot \alpha = \frac{m+n}{m-n}$.
- 160. Prove that:

$$\cot \frac{\pi}{8} = \sqrt{2} + 1$$

161. Prove that:

$$\tan 20^{\circ} \tan 30^{\circ} \tan 40^{\circ} \tan 80^{\circ} = 1$$

162. Prove that:

$$\cos 6^{\circ} \cos 42^{\circ} \cos 66^{\circ} \cos 78^{\circ} = \frac{1}{16}$$

163. Prove that:

$$\cos 10^{\circ} \cos 30^{\circ} \cos 50^{\circ} \cos 70^{\circ} = \frac{3}{16}$$

164. Show that:

$$\sin 25^\circ \cos 115^\circ = \frac{1}{2}(\sin 140^\circ - 1)$$

165. If $\cos \alpha + \cos \beta = 0 = \sin \alpha + \sin \beta$, then prove that $\cos 2\alpha + \cos 2\beta = -2\cos(\alpha + \beta)$.

[Hint:
$$(\cos \alpha + \cos \beta)^2 - (\sin \alpha + \sin \beta)^2 = 0$$
]

166. Prove that

$$\cos\frac{\pi}{65}\cos\frac{2\pi}{65}\cos\frac{4\pi}{65}\cos\frac{8\pi}{65}\cos\frac{16\pi}{65}\cos\frac{32\pi}{65} = \frac{1}{64}$$

167. Prove that

$$\cos \frac{2\pi}{15} \cos \frac{4\pi}{15} \cos \frac{8\pi}{15} \cos \frac{16\pi}{15} = \frac{1}{16}$$

- 168. If $\cos x \sin x = a^3, \sec x \cos x = b^3$, than proved that $a^2b^2(a^2 + b^2) = 1$.
- 169. Prove that:

$$\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ} = \frac{1}{8}$$

170. Prove that:

$$\frac{1}{\cos(x-b)\cos(x-b)} = \frac{\tan(x-a)-\tan(x-b)}{\sin(a-b)}$$

171. If $x = \sec \phi - \tan \phi$ and $y = \csc \phi + \cot \phi$ then show that xy + x - y + 1 = 0

[Hint: Find xy + 1 and then show that x - y = -(xy + 1)]

172. Prove that:

$$\sin 10^\circ \sin 50^\circ \sin 60^\circ \sin 70^\circ = \frac{\sqrt{3}}{16}$$

- 173. Find the distance from the eye at which a coin of 2cm diameter should be held so as to conceal the full moon whose angular diameter is 31'.
- 174. Prove that:

$$\tan 20^{\circ} \tan 40^{\circ} \tan 60^{\circ} \tan 80^{\circ} = 3$$

175. Prove that:

$$\sin A + \sin 2A + \sin 4A + \sin 5A = 4\cos \frac{A}{2}\cos \frac{2A}{2}\cos 4A$$

176. Prove that:

$$(\cos x - \cos y)^2 + (\sin x - \sin y)^2 = 4\sin^2 \frac{x - y}{2}$$

- 177. If $\sin x + \sin \cos x = m$, then prove that $\sin^6 x + \cos^6 x = \frac{4-3(m^2-1)^2}{4}$, where $m^2 \le 2$
- 178. Prove the following identities:

$$(1 + \tan \alpha \tan \beta)^2 + (\tan \alpha - \tan \beta)^2 = \sec^2 \alpha \sec^2 \beta$$

- 179. If $a = \sec x \tan x$ and $b = \csc x + \cot x$, then show that ab + a b + 1 = 0.
- 180. If $\sin \alpha = \frac{4}{5}$ and $\cos \beta = \frac{5}{13}$, prove that $\cos \frac{\alpha \beta}{2} = \frac{8}{\sqrt{65}}$
- 181. Show thet:

$$3(\sin x - \cos x) + 6(\sin x + \cos)^2 + 4(\sin^6 x + \cos^6 x) = 13$$

182. If $\sin \alpha + \sin \beta = a$ and $\cos \alpha + \cos \beta = b$ prove that

$$\sin(lpha+eta)=rac{2ab}{a^2+b^2}$$

- 183. If $2\tan\alpha = 3\tan\beta$, prove that $\tan(\alpha \beta) = \frac{\sin 2\beta}{5 \cos 2\beta}$
- 184. Prove that:

$$\cos\frac{\pi}{15}\cos\frac{2\pi}{15}\cos\frac{4\pi}{15}\cos\frac{7\pi}{15} = \frac{1}{16}$$

- 185. If $\sec(x+\alpha) + \sec(x-\alpha) = 2\sec x$, prove that $\cos x \pm \sqrt{2}\cos\frac{\alpha}{2}$
- 186. Prove that:

$$\sin 6 \circ \sin 42^\circ \sin 66^\circ \sin 78^\circ = \frac{1}{16}$$

187. Prove that:

$$an 82 rac{1^{\circ}}{2} = (\sqrt{3} + \sqrt{2})(\sqrt{2} + 1) = \sqrt{2} + \sqrt{3} + \sqrt{4} + \sqrt{6}$$

188. Prove that:

$$\cos 6^{\circ} \cos 42^{\circ} \cos 66^{\circ} \cos 78^{\circ} = \frac{1}{16}$$

189. Prove that

$$\cos\frac{\pi}{65}\cos\frac{2\pi}{65}\cos\frac{4\pi}{65}\cos\frac{8\pi}{65}\cos\frac{16\pi}{65}\cos\frac{32\pi}{65}=\frac{1}{64}$$

190. Prove that:

 $\tan 20^\circ \tan 40^\circ \tan 60^\circ \tan 80^\circ = 3$

- 191. If θ lies in the first quadrant and $\cos\theta = \frac{8}{17}$, then find the value of $\cos(30^{\circ} + \theta) + \cos(45^{\circ} \theta) + \cos(120^{\circ} \theta)$.
- 192. If $\tan \theta + \sin \theta = m$ and $\tan \theta \sin \theta = n$, then prove that $m^2 n^2 = 4 \sin \theta \tan \theta$
- 193. If $\sin(\theta+\alpha)=a$ and $\sin(\theta+\beta)=b$, then prove that $\cos 2(\alpha-\beta)-4ab\cos(\alpha-\beta)=1-2a^2-2b^2$

[**Hint:** Express $\cos(\alpha - \beta) = \cos((\theta + \alpha) - (\theta + \beta))$]

194. If $\cos(\alpha + \beta) = \frac{4}{5}$ and $\sin(\alpha - \beta) = \frac{5}{13}$, where α lie between 0 and $\frac{\pi}{4}$, find the value of $\tan 2\alpha$

[**Hint:** Express $\tan 2\alpha$ as $\tan(\alpha+\beta+\alpha-\beta)$]

- 195. If $\tan x = \frac{b}{a}$, then find the value of $\sqrt{\frac{a+b}{a-b}} + \sqrt{\frac{a-b}{a+b}}$
- 196. If $\min \theta = n \sin(\theta + 2\alpha)$, then prove that $\tan(\theta + \alpha) \cot \alpha = \frac{m+n}{m-n}$

[**Hint:** Express $\frac{\sin(\theta+2\alpha)}{\sin\theta}=\frac{m}{n}$ and apply componendo and dividendo]

197. If $\frac{2\sin\alpha}{1+\cos\alpha+\sin\alpha}=y$, then prove that $\frac{1-\cos\alpha+\sin\alpha}{1+\sin\alpha}$ is also equal to y.

 $\left[\text{Hint: Express } \frac{1-\cos\alpha+\sin\alpha}{1+\sin\alpha} = \frac{1-\cos\alpha+\sin\alpha}{1+\sin\alpha} \cdot \frac{1+\cos\alpha+\sin\alpha}{1+\cos\alpha+\sin\alpha}\right]$

198. Find the value of the expression

$$3[\sin^4\left(rac{3\pi}{2}-lpha
ight)+\sin^4(3\pi+lpha)]-2[\sin^6\left(rac{\pi}{2}+lpha
ight)+\sin^6(5\pi-lpha)]$$

199. If $\cos(\theta + \phi) = \cos(\theta - \phi)$, then prove that $\tan \theta = \frac{1 - m}{1 + m} \cot \phi$.

[**Hint:** Express $\frac{\cos(\theta+\phi)}{\cos(\theta-\phi)}=\frac{\mathrm{m}}{1}$ and apply Componendo and Dividendo]

200. If $a\cos 2\theta + b\sin 2\theta = c$ has α and β as its roots, then prove that $\tan \alpha + \tan \beta = \frac{2b}{a+b}$.

[**Hint:** Use the identities $\cos 2\theta = \frac{1-\tan^2 \theta}{1+\tan^2 \theta}$ and $\sin 2\theta = \frac{2\tan \theta}{1+\tan^2 \theta}$].

---- the journey of thousands miles begins with a single step -----