Fort Huachuca East Range Reflections: Programs, Compute Resources, and Lessons Learned

Devin Bayly

Data and Visualization Consultant Research Technologies UArizona

Agenda

- 1. Personal Background
- 2. Compute Access
- 3. Project Experience
- 4. Questions

Personal Background

- Math and Neuroscience
- Visualization as retrospective
- Web visualization (Mozilla Iodide, early Observable Competitor)
- UA HPC
- Note: No photogrammetry education!

RTDV

- Services
 - o DCC
 - High Performance Visualization
 - Visualization adjacent support (project collaborations)
- Past Projects
 - https://rtdatavis.github.io/
 - "Tell it to the river"
 - <u>"Stellarscape"</u>
 - PhytoOracle VR SXSW

Getting in touch

- vislab-consult@list.arizona.edu
- Data & Vis Tuesdays 9-11am
- Code commons Wednesdays 2-6pm

Support material

- HPC visualization
- Blender USD Point Cloud support
- Lidar processing OSG science gateway (underway)

Compute Access: On Campus

- HPC
 - Workshops updates by email
- <u>Cyverse DE</u>
- Visualization Wall
- Catalyst Studios
- Sensor Lab

Compute Access: Off Campus Specific Programs

- RMACC
 - Alpine CU Boulder
 - Cumulus (Persistent Cloud Compute)
- <u>OSG</u>
- <u>Jetstream 2</u>
 - exosphere

Compute Access: Off Campus General

- Campus Champions
- ACCESS
 - My allocation (demo)
 - Assistance writing Explore Allocation

Fort Huachuca Project: Background

- Supporting students and PI from Digital Humanities
- Reconstructing the east range
- ~145km^2 (yikes!)
- Wingtra one (no ppk)
- 1cm resolution
- >60k images
- Open Drone Map
- Desired outputs
 - DEM & Ortho
 - Pointcloud (.laz)
 - 3d textured models
 - VR assets
 - OGC 3d Tiles
 - (different departments want different outputs)
- project repo
 - includes qgis and odm scripts
 - under development

Fort Huachuca Project: Workflows

- WebODM on HPC (vanilla)
 - Converted Docker Compose to Singularity instances
 - ElGato 16 core 12 hour instance, 200-800 images success
 - o pro:
 - using OOD remote desktop can teach students to use
 - o con:
 - manual submission will not scale to image numbers we have

Fort Huachuca Project: Workflows

- ODM Split Merge Cluster (sm-cluster)
 - support doc
 - Setup 8 worker nodes
 - put their configuration info in cluster-odm
 - launch cluster-odm
 - launch odm container with --split 200 --sm-cluster http://localhost:3000
 - o pro:
 - can point at entire folder of images and start processing programmatically
 - o con:
 - Image products depend on flight pattern (long and narrow feature artifacts more than square tile)
 - unpredictable OOMs and allocation time limits exceeded
 - no all image products can be merged (no 3d)

Fort Huachuca Project: Workflows

- QGIS group segmentation SLURM HPC ODM
 - establish tiled overlapping groups of images from the different flights
 - export a large JSON with those groups
 - Implement a python script that launches HPC tasks (12-16 hours) aimed at processing each group separately
 - leverage .las information for aligning the 3d models
 - o pro:
 - reliably completes without OOM, and/or timeouts
 - o con:
 - hard on the presentation end of the pipeline

Fort Huachuca Project: Difficulties

- Missing files
 - Experiencing a lot of problems filling in sections of map
- Storage issues
 - 10TB runs out fast
- ODM requires a lot of parameter education
 - missing manual helps with this

Closing thoughts

- ODM is a great program with a very active community, recommend experimenting with it
- Reach out to me for any assistance with getting compute access
- Visualization and DCC project support
- Acknowledgment
 - Tyson Swetnam Jeff Gillan
 - Support from Piero Toffanin