Introduction to Operating Systems

Lab 2: Pintos & Project 1

GAO Ming

SE@ECNU (for course related communications) mgao@sei.ecnu.edu.cn

Mar. 19, 2014

- Project 1: Threads in Pintos
 - Data structures
 - Synchronization
- Requirements to the project
 - Alarm clock
 - Priority scheduling
 - Advanced scheduling
- Administrative issues
 - Lab report
 - Hand-ins and deadline
 - Scoring
- Tips
 - ctags
 - Testing
 - gdb

Pintos

- Introduction/manual: http://www.stanford.edu/class/cs140/projects/pintos/ pintos_1.html
- PDF manual: http://www.stanford.edu/class/cs140/projects/pintos/ pintos.pdf
- All things you need: http://www.stanford.edu/class/cs140/projects/pintos/
- Source: http://www.stanford.edu/class/cs140/projects/pintos/ pintos.tar.gz

Install Pintos in OSProj Virtual Machine

Pls. refer to materials in past courses.

- 2009_lab_1.pdf
- 2009_lab_2.pdf

Install Pintos

http://www.stanford.edu/class/cs140/projects/pintos/ pintos_12.html

- Project 1: Threads in Pintos
 - Data structures
 - Synchronization
- Requirements to the project
 - Alarm clock
 - Priority scheduling
 - Advanced scheduling
- Administrative issues
 - Lab report
 - Hand-ins and deadline
 - Scoring
- 4 Tips
 - ctags
 - Testing
 - gdb

6 / 22

Data structures

- Read thread related source code
 - threads/init.c
 - threads/thread.h, thread.c
 - threads/switch.h
 - threads/synch.h, synch.c
 - devices/timer.c, timer.h

Synchronization

Solution that disable interrupts:

threads/synch.h, synch.c

- Project 1: Threads in Pintos
 - Data structures
 - Synchronization
- Requirements to the project
 - Alarm clock
 - Priority scheduling
 - Advanced scheduling
- Administrative issues
 - Lab report
 - Hand-ins and deadline
 - Scoring
- 4 Tips
 - ctags
 - Testing
 - gdb

9 / 22

Alarm clock

Reimplement: void timer_sleep (int64_t ticks)

- In devices/timer.c
- Without using busy waiting

Priority scheduling

- Implement priority scheduling
- Implement priority donation (for locks)
- Implement set/get priority functions

Introduction to the 4.4BSD scheduler

Multi-level feed-back queue scheduling

- priority = PRI_MAX (recent_cpu / 4) (nice * 2)
- $\bullet \ \mathsf{recent_cpu} = (2 * \mathsf{load_avg}) / (2 * \mathsf{load_avg} + 1) * \mathsf{recent_cpu} + \mathsf{nice}$
- $load_avg = (59/60)*load_avg + (1/60)*ready_threads$

Notes

- No floating-point arithmetic in the kernel
- Assume that x and y are fixed-point numbers, and n is an integer. Fixed point numbers are in signed p.q format, where p + q = 31, and f is 1 << q:

```
convert n to fixed point : n * f
convert x to integer (rounding toward zero) : x/f
convert x to integer (rounding toward nearest) : (x + f/2)/f if x >= 0,
              (x - f/2)/f if x <= 0
 add x and y : x + y
substract v from x : x - v
 add x and n: x + n * f
substract n from x : x - n * f
multiply x by y : ((int64_t)x) * y/f
multiply x by n: x * y
divide x by y : ((int64_t)x)*f/y
divide x by n: x/y
```

- Project 1: Threads in Pintos
 - Data structures
 - Synchronization
- 2 Requirements to the project
 - Alarm clock
 - Priority scheduling
 - Advanced scheduling
- Administrative issues
 - Lab report
 - Hand-ins and deadline
 - Scoring
- 4 Tips
 - ctags
 - Testing
 - gdb

Lab report

- Data structures: see Manual Appendix D
- Algorithms: see Manual Appendix D
- Synchronization: see Manual Appendix D
- Rationale: see Manual Appendix D
- Known errors: the summary of the testing, and your explanation on failed tests

Hand-ins and deadline

- All hand-ins (code and lab report) should be received before/on April 13, 2014 (before the end of our class)
- What to submit?
 - A lab report: by hand with a printed attachment on A4 papers
 - An zipped package (the file name is xxxxxxxx.zip, where xxxxxxxx is your full student id) with following files should be sent to my gmail address (os.sei.ecnu@gmail.com) vis an email with title: proj1_submit:
 - The lab report attachment: in plain txt format, in English, in the root directory of the zipped file
 - All source code files you modified or added: in relative path corresponding to pintos/src
 e.g. if you've modified synch.c in pintos/src/threads, then the file synch.c should appear in /threads of the package
 - A readme file states all things that I should notice on your submission.
 It could be left as a blank file if you have nothing to say. But the file must exist.

Scoring

$$\frac{P}{P+F} \times 50\% + S \times 50\%$$

- P: number of items passed the test
- F: number of items failed in the test
- S: score on your lab report

Note:

- Inconsistency between your implementation and your report will increase F and decrease P.
- Copy other's code is not allowed.
- Cheating is not allowed.

- Project 1: Threads in Pintos
 - Data structures
 - Synchronization
- 2 Requirements to the project
 - Alarm clock
 - Priority scheduling
 - Advanced scheduling
- Administrative issues
 - Lab report
 - Hand-ins and deadline
 - Scoring
- Tips
 - ctags
 - Testing
 - gdb

Ctags

```
>cd /Desktop/pintos/src
>ctags -R *
```

 Add the following two lines to /.vimrc: set nu set tags= /Desktop/pintos/src/tags

Testing

- >cd threads
- >make check

gdb

- >cd threads/build >pintos -gdb - run multi-alarm
 - Open another terminal
- >pintos-gdb kernel.o (gdb) target remote localhost:1234
 - Then, you may be able to debug pintos in gdb
 - You may omit the following warning: warning: Remote failure reply: Eff 0x0000fff0 in ?? ()

Pintos manual Chapter 2 and Appendix A, B, D, and E.