Existem variações nas taxas metabólicas (MR) das pessoas devido a diferentes pesos, genes etc.

Existe uma taxa metabólica mínima

A taxa metabólica varia com a atividade

A taxa metabólica também pode depender da ingestão de alimentos.

Por exemplo, sabe-se que a MR diminui em condições de jejum e essa alteração contraria alguns dos efeitos esperados da dieta.

Embora sejam amplamente conhecidas como taxas metabólicas, são mais precisamente taxas catabólicas.

Taxa metabólica basal

A taxa metabólica basal (BMR) é a taxa metabólica de uma pessoa inativa e acordada.

A BMR para uma pessoa de 70 kg é de cerca de 1680 kcal/dia = 70 kcal/h = 81W

Assim, mesmo em repouso, cada um de nós liberta quase a mesma quantidade de calor que uma lâmpada incandescente de 100W.

Quanto mais pesada a pessoa, maior a BMR.

Aproximadamente 85% das pessoas do mesmo sexo e peso têm uma BMR desviada 6 a 10% do valor média para sua classificação.

Para se medir a BMR deve-se:

- (1) não ingerir alimentos durante pelo menos 12 h
- (2) ter uma noite de sono reparador e nenhuma atividade extenuante depois disso
- (3) estar a descansar completamente numa posição reclinada durante pelo menos 30 minutos
- (4) não sentir excitação por fatores físicos ou psíquicos
- (5) estar numa sala com temperatura de 20 a 27 °C

A BMR é maior que a taxa metabólica durante o sono pois durante este a digestão de alimentos é mínima

A taxa metabólica de repouso (RMR) é semelhante à BMR, mas é medida em condições um pouco menos restritivas:

no início da manhã, após um jejum noturno e 8 horas de sono

(condições mais fáceis de alcançar e, portanto, é frequentemente usado)

- BMR
- Taxas metabólicas em atividade aeróbica

são geralmente determinadas pela medição da utilização do oxigénio

O modo como o funcionamento de vários órgãos contribui para a BMR em uma pessoa em repouso, pode ser visto na tabela seguinte.

Table 6.17. Metabolism of a resting person. (Using data from [300])

system	percentage of BMR	met. rate (kcal/min)	organ mass (kg) for a 65 kg man
liver and spleen	27	0.33	_
brain	19	0.23	1.40
skeletal muscle	18	0.22	28.0
kidney	10	0.13	0.30
heart	7	0.08	0.32
remainder	19	0.23	_
		sum = 1.22	

A BMR é uma função da massa, altura e sexo.

Também é uma função da temperatura corporal — varia cerca de 10% por 1°C da temperatura corporal.

Assim, a BMR

aumenta 30% quando a temperatura corporal aumenta dos 37 °C normais para os 40 °C e diminui 30% quando a temperatura corporal diminui do normal para 34°C.

A BMR da mulher grávida é um caso especial.

Relações de escala para BMR

Quanto maior o animal, maior é a taxa metabólica (catabólica), o que é bastante óbvio.

Table 6.18. BMR determined for several mammals. (See, for example [324])

species	mass	BMR (kcal/day)
mouse	20 g	3
reference woman (25 years)	$55\mathrm{kg}$	$1,\!260$
reference man (25 years)	$65\mathrm{kg}$	1,500
elephant	$5{,}000 \text{ kg}$	70,000

Kleiber's Law
$${
m BMR} = c m_{
m b}^{3/4}$$
 $c pprox 90\,{
m kcal/kg^{3/4}}$ -day

Embora essa relação de escala tenha sido desenvolvida para comparar espécies diferentes, ela funciona bastante bem entre os vários géneros humanos, desde crianças a adultos.

Relações de escala para BMR

Outros autores defendem antes uma relação com uma potência de 2/3

$$BMR \propto m_{\rm b}^{2/3}$$

Os argumentos suportando a potência em 3/4 baseiam-se em que a BMR escala conforme as necessidades de energia metabólica.

O expoente 2/3 é suportado pelo argumento de que a BMR é limitada pela taxa de perda de calor: área \propto volume $^{(2/3)} \propto m_{\rm b}^{2/3}$

Relações de escala para BMR de humanos

A MBR em humanos depende da massa e de outros fatores, como sexo, altura e idade.

As equações de Harris-Benedict são frequentemente usadas para prever as BMRs humanas:

Para homens ${
m BMR} = 66.4730 + 13.7516 m_{
m b} + 5.0033 H - 6.75505 Y_{
m b}$

Para mulheres $BMR = 655.0955 + 9.5634m_b + 1.8496H - 4.6756Y$

Relações de escala para BMR de humanos

As relações de escala podem também ser expressas como

Para homens
$${\rm BMR} = 71.2 m_{\rm b}^{3/4} [1 + 0.004(30 - Y) + 0.010(S - 43.4)]$$

Para mulheres
$${\rm BMR} = 65.8 m_{\rm b}^{3/4} [1 + 0.004(30 - Y) + 0.010(S - 43.4)]$$

Em que S é a estatura específica S = $H/m_b^{1/3}$ (H em cm e m_b in kg)

Essas relações mostram que

- as pessoas mais jovens têm BMRs mais altas que as pessoas mais velhas (o que faz sentido porque elas têm mais massa corporal magra)
- pessoas altas e magras têm BMRs mais altas
- pessoas com sobrepeso têm BMRs mais baixas.

as mulheres grávidas as pessoas com febre sob stress sob condições de calor e frio

pessoas em jejum
com fome
em desnutrição

têm BMR é mais baixa do que o previsto

Taxas metabólicas durante atividades comuns

As taxas metabólicas durante a atividade podem ser definidas de várias formas.

- (1) A taxa metabólica (MR) total (incluindo a devida à BMR) é expressa como
 - (a) um valor acumulado (BMR + o MR adicional devido a atividades)
 - (b) um fator vezes a BMR que se designa por fator de atividade f
 - (c) um fator vezes a RMR, que se designa por MET, o equivalente metabólico.
- (2) Apenas o aumento da taxa metabólica relativamente à BMR (ou RMR) é dado, como, por exemplo, MR-BMR.

Vemos na Tabela 6.21 que quanto mais intensa a atividade, maior a taxa metabólica e maior a necessidade de oxigénio, sendo por isso que precisamos respirar mais rápido e com mais força.

De fato, o consumo de ar / oxigénio é proporcional

à energia usada e

à taxa de calor produzida,

se a potência for suficientemente baixa para que apenas processos aeróbicos sejam importantes

Table 6.21. Approximate total metabolic rates (MR) and oxygen consumption for different levels of activity for an average 70 kg person. (From [296] and [300])

activity	equiva heat pro		O_2 consumption (L/min)	
	(kcal/h)	(W)		
very low level activity				
sleeping	71	83	0.24	
sitting at rest	103	120	0.34	
standing relaxed	108	125	0.36	
light activity				
walking slowly, 5 km/h	228	265	0.76	
moderate activity				
cycling, 15km/h	344	400	1.13	
moderate swim	400	465	1.32	
heavy activity				
soccer	500	580	1.65	
quite heavy activity				
climbing stairs, 116 steps/min	589	685	1.96	
cycling, 21 km/h	602	700	2.00	
basketball	688	800	2.28	
extreme activity				
racing cyclist	1,400	1,600	4.62	

Taxas metabólicas durante atividades comuns

A taxa metabólica durante o exercício pode ser medida usando calorimetria direta ou calorimetria indireta

Numa câmara calorimétrica por calorimetria direta, o calor gerado pela pessoa é transferido para o ar e para as paredes da câmara, e o calor produzido, que se relaciona com a taxa metabólica, é determinado pela mudança de temperatura medida no ar e na água que flui através da câmara

Taxas metabólicas durante atividades comuns

A taxa metabólica é determinada assumindo que ~ 40% da energia libertada durante o metabolismo é usada para produzir ATP, enquanto os 60% restantes são convertidos em calor - que se está a medir

A construção dessa câmara é relativamente cara e o tempo de resposta do método é lenta, de modo que as taxas metabólicas durante atividades intensas não podem ser bem

medidas.

Na calorimetria indireta, as taxas de consumo de O_2 , dVO_2/dt e produção de CO_2 , $dVCO_2/dt$, são determinadas, sendo, consequentemente, mais simples de implementar.

São determinadas a partir das taxas de volumes inspirados e expirados de ar e das frações de O₂ e CO₂ no ar inspirado e expirado

Recolha de gás para medir indiretamente as taxas metabólicas

Taxas metabólicas durante atividades comuns

Se os equivalentes caloríficos dos carbohidratos e das gorduras fossem iguais, a taxa de energia térmica produzida seria $dVO_2/dt \times (equivalente calorífico)$.

Por não serem iguais, a razão de troca respiratória, RER, é medida para determinar as quantidades relativas de carbohidratos e gorduras que estão a ser metabolizadas

$$RER = (dV_{CO_2}/dt)/(dV_{O_2}/dt)$$

Um RER = 1,0 indica que os músculos estão usando apenas glicose ou glicogénio (carbohidratos).

Um RER = 0,71 indica que apenas gorduras estão sendo usadas.

Para casos intermédios têm-se RER= x +0.71(1-x) sendo x a fração de consume de carbohidratos

Essa abordagem pressupõe que nenhuma proteína esteja sendo metabolizada mas, para exercício físico, com duração de várias horas, até 10% da energia

metabólica pode ser proveniente do metabolismo da proteína.

Taxas metabólicas durante atividades comuns

Capacidades aeróbias

estudantes universitários de 18 a 22 anos, normalmente ativos	44-50 mL / kg-min (de oxigénio) para homens e 38-42 mL / kg-min para mulheres
atletas treinados	60 mL / kg-min
melhores corredores masculinos de longa distância	70–80 mL / kg-min ou maior
adultos em má condição física	< 20 mL / kg-min

A capacidade aeróbica diminui com a idade em cerca de 10% por década, a partir da adolescência para as mulheres e a partir de 20 anos para os homens

Para homens normalmente ativos,

Capacidade aeróbica 47,7 mL/kg-min 43,1 mL/kg-min 39,5 mL/kg-min 38,4 mL/kg-min	1dade 25 35 45 52 63	Todas essas mudanças nas taxas metabólicas do corpo estão ligadas a mudanças correspondentes nas células, órgãos e sistemas do corpo.
34,5 mL/kg-min 25,5 mL/kg-min	63 75	corpo.

	organelle, cell, or object	$\begin{array}{c} \text{power} \\ \text{output} \\ \text{(picowatts)} \end{array}$	${\rm volume \atop (\mu m^3)}$	$\begin{array}{c} \text{power} \\ \text{density} \\ (\text{W/m}^3) \end{array}$
	myosin muscle motor crossbridge	0.000001	5×10^{-7}	2×10^6
	platelet (resting)	0.003 – 0.09	3	$0.1 – 3.0 \times 10^4$
	red blood cell	0.008	94	8.5×10^{1}
	E. coli bacterium (basal)	0.05	2	2.5×10^2
	mitochondrian organelle	0.1 – 1.1	1	$0.1 – 1.1 \times 10^6$
	platelet (activated)	0.7 – 7.0	3	$0.2 – 2.3 \times 10^6$
	skin cell	1-3	1,000	$1.0 – 3.1 \times 10^3$
	skeletal muscle (resting)	1 - 10	2,000	$0.5 – 4.9 \times 10^3$
	typical tissue cell (basal)	30	8,000	3.8×10^{3}
A Tabala 6 22 ao	intestine/stomach cell	46 - 52	8,000	$5.6-6.5 \times 10^3$
A Tabela 6.22, ao	neuron cell (basal)	70 – 110	14,000	$5.0-7.9 \times 10^3$
lado, lista a	heart muscle cell (typical)	87 - 290	8,000	$1.1-3.6 \times 10^4$
produção de	skeletal muscle cell (max., voluntary)	113	2,000	5.7×10^4
energia de várias	kidney cell	155 - 346	8,000	$1.9 - 4.3 \times 10^4$
células e tecidos	neuron cell (maximum)	255 - 330	14,000	$1.8-2.4 \times 10^4$
em vários níveis de	typical tissue cell (maximum)	480	8,000	6.0×10^4
atividade	skeletal muscle cell (max., tetanic)	2,300	2,000	1.2×10^6
	honeybee flight muscle cell	3,400	1,000	3.4×10^{6}
	heart muscle cell (maximum)	$3,\!500 - \!5,\!000$	8,000	$4.4 - 6.3 \times 10^5$
	human brain	$1525\mathrm{W}$	$1.4 \times 10^{-3} \text{ m}^3$	$1.1 - 1.8 \times 10^4$
	human body (basal)	$100\mathrm{W}$	$0.1{ m m}^{3}$	1.0×10^{3}
	human body (maximum)	$1,\!600\mathrm{W}$	0.1 m^3	1.6×10^{4}
	gasoline-powered automobile	$200,\!000{ m W}$	$10\mathrm{m}^3$	2.0×10^{4}
	The Sun	$3.92 \times 10^{26} \mathrm{W}$	$1.41 \times 10^{27} \mathrm{m}^3$	0.28
	Note that $1 W = 0.86 \text{ kcal/h}$.			

Taxas metabólicas durante atividades comuns

Poderão existir variações significativas no metabolismo entre pessoas com as mesmas características corporais e níveis de atividade.

A variação usual na BMR é de ± 6-10%; Presumivelmente isso também é verdade para a MR (para os mesmos níveis médios de atividade)

A Tabela 6.23 mostra um exemplo impressionante em que as taxas metabólicas de duas mulheres jovens diferem em 50%.

Tabela 6.23: Ingestão de alimentos e produção de calor para duas mulheres de 23 anos de tamanho físico comparável.

	"large eater"	"small eater"	ratio
body mass (kg)	54.2	52.7	1.03
lean body mass (kg)	45.1	43.6	1.03
average food intake (kcal/d)	2,370	1,550	1.54
heat production (kcal/d)	2,170	1,390	1.55
heat production at night (kcal/d)	1,720	1,100	1.56

Como uma parte significativa dessa diferença se deve ao metabolismo durante o sono à noite, as diferenças potenciais nos níveis de atividade não parecem muito importantes.

Taxas metabólicas durante a locomoção

A taxa de produção de calor vs. a velocidade de caminhada é aproximadamente linear, o que significa que o custo de energia por distância percorrida é independente da velocidade

Em alta velocidade, por que preferimos correr a andar? É muito difícil continuar caminhando a velocidades mais rápidas, devido ao aumento da potência necessária em relação ao "jogging" e à corrida

De facto, a 2,4 m/s (8,6 km/h), a energia metabólica necessária para correr é 14% menor do que a necessária para caminhar

Taxas metabólicas durante a locomoção

A Figura 6.9 mostra as necessidades metabólicas versus velocidade para vários tipos de locomoção.

Taxas metabólicas durante a locomoção

Por que é difícil correr contra o vento?

R: Porque é necessário muito mais poder metabólico (produção de calor ou consumo equivalente de oxigénio).

A Tabela 6.25 mostra que, para caminhar e correr, essa potência aumenta conforme o quadrado da velocidade do vento.

Uma caminhada	activity, speed (m/s) (or mph)	wind speed w (m/s) (or mph)	$\begin{array}{c} \text{oxygen} \\ \text{consumption} \\ \text{(L/min)} \end{array}$	heat production (W)	increase in energy/ w^2 (W-s ² /m ²)
rápida contra o vento pode exigir tanta energia	walking, 1.25 (2.80)	0.0 (0.0) 10.0 (22.4) 14.1 (31.5)	0.878 1.192 1.505	294 399 504	$\simeq 1.05$ $\simeq 1.05$
quanto uma corrida	walking, 2.08 (4.65)	0.0 (0.0) 10.0 (22.4) 14.1 (31.5)	$ \begin{array}{c} 1.649 \\ 2.221 \\ \hline 2.792 \end{array} $	552 744 935	$\simeq 1.91$ $\simeq 1.91$
relativamente lenta, sem vento.	running, 3.75 (8.39)	0.0 (0.0) 10.0 (22.4) 14.1 (31.5)	2.836 3.243 3.710	950 1,086 1,243	$\simeq 1.36$ $\simeq 1.36$
	running, 4.47 (10.00)	0.0 (0.0) 10.0 (22.4) 14.1 (31.5)	3.010 3.710 4.525	1,008 1,243 1,516	$\simeq 2.52$ $\simeq 2.52$

Mesmo o ar parado afeta as necessidades metabólicas; a resistência do ar é responsável por cerca de 8% das necessidades metabólicas dos corredores de média distância e até 15% dos velocistas

Relações de MR com fatores de atividade ou com equivalentes metabólicos

A produção real de calor, ou taxa metabólica (MR), é maior que a BMR devido à atividade. Podemos relacionar o MR e BMR por

$$MR = f(BMR)$$

onde f é o fator de atividade

O equivalente metabólico (MET) é outra medida de atividade.

MR = MET(RMR)

Em média, organismo consome (3,5 mL / kg-min) × MET de oxigénio

(MR = MET x RMR = f x BMR como RMR > BMR entao MET < f)

Table 6.26 a 6.30 : Valores típicos de MET

MET $\sim f/1.5$

self-care	MET	housework	MET
rest, sitting, standing, eating, conversation	1.0	handsewing machine sewing, sweeping floor	1.0 1.5
dressing, undressing, washing hands and face, propelling wheelchair	2.0	polishing furniture	2.0
walking 2.5 mph	3.0	peeling potatoes, scrubbing, hand washing clothes, kneading dough	2.5
showering walking downstairs	$\frac{3.5}{4.5}$	scrubbing floors, cleaning windows, making beds ironing, mopping, wringing wash by hand,	3.0
walking 3.5 mph	5.5	hanging wash by hand beating carpets	3.5 4.0

Table 6.26 a 6.30 : Valores típicos de MET

occupational	MET
sitting at desk, writing, riding in car, watch repair	1.5
typing	2.0
welding, radio assembly, playing musical instrument	2.5
parts assembly	3.0
bricklaying, plastering	3.5
heavy assembly work, wheeling wheelbarrow (115 lb, 2.5 mph)	4.0
carpentry	5.5
moving lawn with hand mover, chopping wood	6.5
shoveling	7.0
digging	7.5

		exercise (level conditions)	MET
recreational	MET	walking 2 mph	2.5
painting, sitting	1.5	cycling 5.5 mph	3.0
playing piano, driving car	2.0	walking 2.5 mph, cycling 6 mph	3.5
canoeing 2.5 mph, horseback riding (walk)	2.5	walking 3 mph; calisthenics	4.5
volleyball (recreational), billiards	3.0	cycling 9.7 mph; swimming, crawl, 1.0 ft/s	5.0
bowling, horseshoes	3.5	walking 3.5 mph	5.5
golf, cricket	4.0	walking 4 mph	6.5
archery, ballroom dancing, table tennis, baseball	4.5	jogging 5 mph	7.5
tennis	6.0	running 7.5 mph; cycling 13 mph	9.0
horseback riding (trot), folk dancing	6.5	swimming, crawl, 2.0 ft/s	10.0
skiing, horseback riding (gallop)	8.0	running 8.5 mph	12.0
squash	8.5	running 10 mph; swimming, crawl, 2.5 ft/s	15.0
fencing, basketball, football	9.0	running 12 mph; swimming, crawl, 3.0 ft/s	20.0
gymnastics, handball, paddleball	10.0	running 15 mph; swimming, crawl, 3.5 ft/s	30.0

Relações de MR com fatores de atividade ou com equivalentes metabólicos

Fator médio de atividade diária

O fator de atividade pode referir-se a uma determinada atividade, como nas tabelas anteriores, ou à média diária, f_{av}

Estudos das Nações Unidas sugerem que, para homens adultos,

 $f_{av} \sim$ 1,55 para trabalho ocupacional leve

1,78 para trabalho moderado

2,10 para trabalho ocupacional pesado.

O mais alto desses valores para trabalho ocupacional pesado, $f_{av} \sim 2.10$, é mais baixo do que o estimado para um mineiro de carvão escocês nos anos 50.

A taxa metabólica máxima do mineiro de carvão foi de 4,3 × BMR durante o horário de trabalho e uma média diária muito alta de 2,5 × BMR durante o dia.

Atualmente, a maioria das ocupações é fisicamente menos exigente.

Trabalho Mecânico e Potência

A energia armazenada pode ser usada para fornecer calor ou trabalho mecânico.

Trabalho mecânico é :

(força que se aplica a um objeto) × (distância a que se empurra ou puxa)

Consideraremos a **eficiência mecânica, ε**, simplesmente como:

(taxa de realização de trabalho mecânico)

(taxa metabólica)

As tabelas 6.32 e 6.33 mostram que a eficiência raramente excede 20% e geralmente é muito menor que esse valor.

Tabela 6.32. Potência mecânica e eficiência do trabalho mecânico

task		cal power put	$\begin{array}{c} \text{metabolic rate} \\ \text{(W)} \end{array}$	efficiency (%)
	(hp)	(W)		
cycling (typical)	0.15	112	505	19
tramming	0.12	90	525	17
shoveling sand	0.024	17.5	570	3

Trabalho Mecânico e Potência

O ciclismo é relativamente eficiente, chegando a 22% para ciclistas de competição.

Empurrar vagões carregados por uma ferrovia ("Tramming ") também é eficiente

exercise activity or task

walking, horizontal

walking, incline

Deslocar areia com uma pá ("shoveling sand"), uma atividade mais comum, é apenas 3% eficiente.

efficiency (%)

24 - 34

19

11 10–20

23

2.9 - 7.4

20 - 35

21 - 43

	cycling, level
Tabela 6.33.	cycling, uphill
Eficiências de	ice skating
trabalho mecânico	rowing
	stepping machine
	swimming, freestyle

Para onde vai o balanço de energia?

A energia restante vai para a produção de calor.

Isto significa que 80–100% do produto final do seu metabolismo é calor (geralmente próximo de 100%)

Assim, o trabalho mecânico de ~500 kcal realizado por um trabalhador durante um dia => necessidades alimentares de pelo menos 2.500 kcal sobre a BMR (porque a eficiência mecânica é geralmente <20%)

Trabalho Mecânico e Potência

A Tabela 6.35 mostra que a potência máxima do trabalho mecânico que uma pessoa, em boas condições físicas, pode fazer, diminui com a duração da tarefa.

- Por períodos curtos, podemos realizar trabalhos mecânicos a uma taxa mais alta devido a processos metabólicos anaeróbicos;
- O trabalho a longo prazo requer processos aeróbicos que estão limitados pela entrada e entrega de O₂ no organismo

Tabela 6.35 Potência mecânica máxima aproximada para seres humanos em boa condição física

power		duration	total energy	
(hp)	(W)		(kJ)	(kcal)
2	1,500	6 s	9.0	2.2
1	750	$1\mathrm{min}$	45	10.8
0.35	260	$35\mathrm{min}$	546	130
0.2	150	$5\mathrm{h}$	2,700	645
0.1	75	8 h day of a laborer	2,160	516

Table 6.34. World record running speeds. (As of 2006)

Diminuição da velocidade de corrida com o aumento da distância (além de ~200 m)

distance (m)	average running speed (m/s)
100	10.22
200	10.35
400	9.26
1,500	7.28
10,000	6.32
$42,200^a$	6.12
100,000	4.46

Como "queimar" comida?

Considere-se uma pessoa que acabou de comer um donut. Essa pessoa, de 70kg, consome 103kcal/h estando sentada em repouso Ela sente-se culpada e deseja queimar essas calorias extra. O que pode fazer?

Através de um intenso jogo de basketball, as 280 kcal do donut serão queimadas em:

$$\frac{280 \,\text{kcal}}{585 \,\text{kcal/h}} = 0.48 \,\text{h} = 29 \,\text{min}$$

a taxa metabólica de **jogar basketball intensamente** é 688kcal/h o que excede a de repouso em 585kcal/h (RMR~103kcal/h)

Para queimar as calorias do donut **andando** será necessário :

$$\frac{280 \,\mathrm{kcal}}{125 \,\mathrm{kcal/h}} = 2.24 \,\mathrm{h} = 2 \,\mathrm{h} \,\, 14 \,\mathrm{min}$$

a taxa metabólica durante uma caminhada lenta é de ~ 228 kcal/h, o que excede a de repouso em ~ 125 kcal/h ((RMR~103kcal/h)

Por que as pessoas engordam quando envelhecem?

Uma razão é a diminuição da BMR com a idade Outra é o nível de atividade, f_{av}, usualmente diminuir com a idade

Ganho e perda de peso

Se a ingestão calórica exceder a taxa metabólica, ganha-se peso.

Se a ingestão calórica for menor que a taxa metabólica, perde-se peso.

Pode-se controlar a ingestão calórica controlando o que se come (quantidade e qualidade).

Pode-se controlar a taxa metabólica sendo, no geral, mais ou menos ativo fazendo mais ou menos exercício físico

- Se o seu ganho ou perda de peso envolver apenas gordura e sendo o valor calórico da gordura de 9 kcal/g, significa que

um aumento ou diminuição da entrada metabólica em 4090 kcal um ganho ou perda de 1lb=453g

- Se a sua alteração de peso envolver apenas proteínas (4 kcal/g),

um aumento ou diminuição da entrada metabólica em 1820 kcal um ganho ou perda de 1lb=453g

De acordo com a regra de Wishnofsky, quando aumenta ou diminui a entrada metabólica em 3500 kcal, ganha-se ou perde-se cerca de 1lb=453g de massa

~1/4 músculo

É razoável aplicar as relações que caracterizam como a taxa metabólica média depende do peso corporal, idade e estatura (leis de Kleiber, equações de Harris-Benedict, etc) para calcular as alterações de peso e o peso no estado de equilíbrio de um determinado indivíduo? Sim

Qual o tempo necessário para atingir o novo estado estacionário ?

Considere que se aumenta ou diminui a ingestão de alimentos em 1000 kcal/dia. Se essa variação apenas afetasse as reservas de gordura, isso levaria a uma alteração de

(1000 kcal/dia) / (9 kcal/g de gordura) = ~110 g de gordura/dia,

o que corresponde aproximadamente a 750g por semana.

Uma redução na ingestão calórica de 1.000 kcal / dia é muito grande, portanto, não se pode esperar perder mais de 750g por semana.

(Obviamente, o exercício físico também acelera a perda de peso.)

Durante a privação de alimentos:

- o corpo utiliza primeiro todos os carbohidratos disponíveis, principalmente glicogénio no fígado e músculos, e isso satisfaz as necessidades de energia do corpo por cerca de meio dia
- então a gordura e a proteína são utilizadas pelo corpo: as reservas de gordura são cerca de 100 vezes maiores que as reservas iniciais de carbohidratos
- no final, sem gordura restante, a proteína é usada até um máximo de 50%.

