Reproducible Research: Assessment 1

Josephine

Loading and preprocessing the data

Load the required packages for the assignment and check if the working directory is right.

```
library(ggplot2)
library(dplyr)
library(mice)
getwd()
```

Then read the activity dataset with $read_csv()$ and save it as **df**. Look at the variables with str().

```
library(readr)
df = read_csv("activity.zip")
str(df)
```

```
## tibble [17,568 x 3] (S3: spec_tbl_df/tbl_df/tbl/data.frame)
             : num [1:17568] NA ...
              : Date[1:17568], format: "2012-10-01" "2012-10-01"
   $ interval: num [1:17568] 0 5 10 15 20 25 30 35 40 45 ...
   - attr(*, "spec")=
##
##
     .. cols(
##
          steps = col_double(),
##
          date = col_date(format = ""),
          interval = col_double()
##
##
     ..)
```

What is mean total number of steps taken per day?

1. Total number of steps taken per day

Calculate the sum of the number of steps for each day with aggregate and show the first ten rows:

```
df_sum <- aggregate(df$steps, by=list(date=df$date), FUN=sum)
print(head(df_sum), row.names = F)</pre>
```

```
## date x
## 2012-10-01 NA
## 2012-10-02 126
## 2012-10-03 11352
## 2012-10-04 12116
## 2012-10-05 13294
## 2012-10-06 15420
```

2. Make a histogram of the total number of steps taken each day

```
a <- ggplot(df_sum, aes(x))
a + geom_histogram(bins=35) + labs(title="Total number of steps per day",</pre>
```

```
x="Steps per day",
y="count")
```

Total number of steps per day

3. Calculate and report the mean and median of the total number of steps taken per day

What is the average daily activity pattern?

1. Make a time series plot of the 5-minute interval and the average number of steps taken, averaged across all days

```
interv_avg <- aggregate(df$steps, by=list(interval=df$interval), FUN=mean, na.rm=TRUE)
plot(interv_avg$interval,
    interv_avg$x,
    type="1",
    xlab="5-minute interval",
    ylab="average number of steps")
title("Average daily activity pattern")</pre>
```

Average daily activity pattern

2. Which 5-minute interval, on average across all the days in the dataset, contains the maximum number of steps?

Imputing missing values

This is a great step-by-step manual to impute missing data: mice

1. Calculate and report the total number of missing values in the dataset

```
print(sapply(df, function(x) sum(is.na(x))), row.names = F)

## steps date interval
## 2304 0 0
```

2. Filling in all of the missing values in the dataset

Load the "mice"-Package, show a table of missing values with the function **md.pattern**, then impute the missing values from *steps* with the **mice** function

```
imputed_df <- mice(df, m=5, maxit = 50, method = 'pmm', seed = 500, print=FALSE)
# pmm: predictive mean matching
# this is now a S3 object of class mids: multiply imputed data set
head(imputed_df$imp$steps)</pre>
```

```
2
           3
              4 5
## 1 0 47
           0
              0 0
## 2 0
           0
              0 0
## 3 0
       0 38
             0 0
## 4 0
       0
           0
              0 0
## 5 0 0
          0 47 0
## 6 0 47
          0 0 0
```

Show the pattern of missing values in a grafic with md.pattern

```
md.pattern(df) # table of missing values
```


3. Add the data back to original data using one of the iternations (3)

```
complete_df <- complete(imputed_df, 3)
print(head(complete_df), row.names = FALSE)</pre>
```

```
##
    steps
                 date interval
##
        0 2012-10-01
##
        0 2012-10-01
                              5
##
       38 2012-10-01
                             10
        0 2012-10-01
##
                             15
        0 2012-10-01
##
                             20
##
        0 2012-10-01
                             25
```

4. Mean, median and new histogram with imputed values

```
## mean_imp median_imp
## 11058.97 11352
```

Now the comparison to the original data with NAs:

```
print(report,row.names = F)

## mean median
## 10766.19 10765
```

Get the two dataframes together and plot both of them next to each other, to see differences.

Total number of original and imputed steps per day

Are there differences in activity patterns between weekdays and weekends?

1. Create a new factor variable in the dataset with two levels - "weekday" and "weekend"

```
complete_df <- mutate(complete_df, wd = as.factor(weekdays(date)))
levels(complete_df$wd) <- list(weekday="Friday",</pre>
```

```
weekday="Monday",
weekday="Thursday",
weekday="Tuesday",
weekday="Wednesday",
weekend="Saturday",
weekend="Sunday")
```

2. Time series plot of the 5-minute interval and the average number of steps taken, averaged across all weekday days or weekend days

Time series plot of the 5-minute interval

