RANDOMIZATION DISTRIBUTIONS & P-VALUES

Sections 4.2 & 4.3

Day 13

STATISTICAL HYPOTHESES

Null Hypothesis (H_0): Claim that there is no effect or difference.

Alternative Hypothesis (H_a): Claim for which we seek evidence.

• Always claims about population parameters.

STATISTICAL SIGNIFICANCE

When results as extreme as the observed sample statistic are *unlikely* to occur by random chance alone (assuming the null hypothesis is true), we say the sample results are *statistically significant*

- If our sample is **statistically significant**, we have convincing evidence against H_0 , in **favor of** H_a
- If our sample is not statistically significant, our test is inconclusive. The null hypothesis may be true (or maybe not).

KEY QUESTION

How unusual is it to see a sample statistic as extreme as that observed, if H_0 is true?

EXTRASENSORY PERCEPTION (EXAMPLE 1)

p = Proportion of correct guesses

$$H_0$$
: $p = 1/5$

$$H_a: p > 1/5$$

- Suppose we try this n=10 times and get 3 correct guesses.
- What kinds of statistics (sample proportions) would we observe just by chance, if the null were true and ESP does not exist?
- How can we generate this distribution?

Simulate many samples of size n=10 with p=0.2 and look at the distribution of sample proportions.

RANDOMIZATION DISTRIBUTION

A randomization distribution is a collection of statistics from samples simulated assuming the null hypothesis is true

- Also known as a **permutation distribution**.
- A randomization distribution is **centered** at the value of the **parameter given in the null hypothesis**.

RANDOMIZATION DISTRIBUTION FOR ESP

KEY QUESTION

How unusual is it to see a sample statistic as extreme as that observed, if H_0 is true?

P-VALUE

The *p-value* is the chance of obtaining a sample statistic as extreme (or more extreme) than the observed sample statistic, if the null hypothesis is true

- The p-value can be calculated as the proportion of statistics in a randomization distribution that are as extreme (or more extreme) than the observed sample statistic
- "extreme" is determined by the alternative hypothesis

RANDOMIZATION DISTRIBUTION FOR ESP

P-VALUE FOR ESP (EXAMPLE 1)

- The *p-value* is the chance of getting at least 3 out of 10 guesses correct, if p = 0.2.
 - P-value is about 0.318.
 - About 31% of the time we would get at least 3 out 10 guesses correct just by chance (no ESP). (interpretation)
 - Which conclusion does this p-value support?
 - \land Inconclusive, little evidence that supports ESP (H_a)
 - B. Borderline, weak evidence for ESP (H_a)
 - c. Strong statistically significant evidence for ESP (H_a)

P-VALUE AND H₀

observed would be unlikely if the null hypothesis were true, providing evidence against H₀ and in **favor of the** alternative

Small p-value

- Results are statistically significant
- Reject the null in favor of the alternative

Large p-value

- Results are not statistically significant
- Do not reject the null in favor of the alternative

P-VALUE (EXAMPLE 2)

Using the randomization distribution below to test

 $H_0: = 0$ vs $H_a: > 0$

Match the sample correlation and p-values:

Sample Correlation: r = 0.1, r = 0.3, or r = 0.5

P-values: 0.005, 0.15, or 0.35

SLEEP VERSUS CAFFEINE (EXAMP

- Recall the sleep versus caffeine experiment
- μ_s and μ_c are the true mean number of words recalled after sleeping and after caffeine.

$$\begin{array}{cccc} \cdot & H_0 \colon \mu_s = \mu_c \\ \cdot & H_a \colon \mu_s \ \neq \ \mu_c \end{array}$$

$$H_0: \mu_s - \mu_c = 0$$

$$H_a: \mu_s - \mu_c \neq 0$$

- How can we create a randomization distribution consistent with the null?
 - What statistic do we compute?
 - Sample difference: $\overline{\chi}_S^{}$ $\overline{\chi}_C^{}$
 - Where is the distribution centered?
 - Distribution centered at a difference of 0 (null)

Sleep versus Caffeine Data

Words	Group
9	sleep
11	sleep
13	sleep
14	sleep
14	sleep
15	sleep
16	sleep
17	sleep
17	sleep
18	sleep
18	sleep
21	sleep

Words	Group
6	caffeine
7	caffeine
10	caffeine
10	caffeine
12	caffeine
12	caffeine
13	caffeine
14	caffeine
14	caffeine
15	caffeine
16	caffeine
18	caffeine

Rerandomize sleep/caffeine, but do not change the number of words recalled.

What kinds of results

would you see, just by

were equivalent for

random chance, if

sleep or caffeine

memory?

$$X_S = 15.25$$
 $X_C = 12.25$

$$\bar{X}_{C} = 12.25$$

$$\overline{x}_S - \overline{x}_C = 3$$

Sleep versus Caffeine – one rerandomized data set (under H_0)

Words	Group
9	sleep
11	caffein
13	e affein
14	§ leep
14	sleep
15	caffein
16	s leep
17	caffein
17	§leep
18	sleep
18	caffein
21	§ leep

Words	Group
6	caffein
7	S leep
10	sleep
10	caffein
12	e affein
12	Eaffein
13	€affein
14	e affein
14	Sleep
15	sleep
16	sleep
18	caffein

What kinds of results would you see, just by random chance, if sleep or caffeine were equivalent for memory?

Rerandomize sleep/caffeine, but do not change the number of words recalled.

$$\overline{X}_S = 14.25$$
 $\overline{X}_C = 13.25$ $\overline{X}_S - \overline{X}_C = 1$

Sleep vs. Caffeine: Randomization Distribution

- Rerandomize many, many times.
- Compute difference in means for each rerandomized

SLEEP VERSUS CAFFEINE

$$H_0: \mu_s - \mu_c = 0$$

$$H_0$$
: $\mu_s - \mu_c = 0$
 H_a : $\mu_s - \mu_c \neq 0$

- The observed difference is 3 words.
- The p-value is the proportion of samples that yield a difference in means of 3 or more words (under randomization model).
 - Two-sided alternative: no direction specified!

Sleep versus Caffeine

Randomization Dotplot of $\overline{x}_1 - \overline{x}_2$, Null hypothesis: $\mu_1 = \mu_2$

SLEEP VERSUS CAFFEINE (EXAMPLE 3)

$$H_0$$
: $\mu_s - \mu_c = 0$

$$H_0$$
: $\mu_s - \mu_c = 0$
 H_a : $\mu_s - \mu_c \neq 0$

- P-value is about 0.048
- About 4.8% of samples will yield a difference in means of 3 or more words if sleep and caffeine have the same influence on memory.
- Which hypothesis does this p-value support?
 - Inconclusive, little evidence that suggests treatments differ
 - Borderline, weak evidence that suggests treatments differ
 - Strong statistically significant evidence that suggests treatments differ

Alternative Hypothesis

- The p-value is the proportion in the tail in the direction specified by \mathbf{H}_{a}
- For a two-sided alternative, the p-value is twice the proportion in the smallest tail

Summary: p-value and H_a

Upper-tail (Right Tail)

H_a: parameter > null value

Lower-tail (Left Tail)

H_a: parameter < null value

Two-tailed

 H_a : parameter \neq null value

SUMMARY: RANDOMIZATION DISTRIBUTION FOR ONE PROPORTION

- Null: H_0 : $p = p_0$ where p_0 is the null value of the population parameter p
- Creating a randomization distribution consistent with H₀:
 - Generate a sample of size n from a population with proportion p₀
 - Compute the sample proportion
 - Repeat lots of times

SUMMARY: RANDOMIZATION DISTRIBUTION FOR COMPARING TWO GROUPS 1 AND 2

- Null: $H_0: \mu_1 \mu_2 = 0$ OR $H_0: p_1 p_2 = 0$
- Creating a randomization distribution consistent with H₀: **group** membership arbitrary (no affect on response)
 - Randomly permute (re-randomize) the group assignment for all cases
 - Compute the sample mean/proportion for each group and find the \bar{x}_1 - \bar{x}_{2OR} p_1 - p_2 and repeat lots of times

	2	\mathbf{X}_2	1
Original data	3	\mathbf{x}_3	1
aava	4		2

	•	1
1	\mathbf{x}_1	1
2	\mathbf{X}_2	1
3	\mathbf{X}_3	1
	X ₄	2
5	\mathbf{X}_5	2
6	\mathbf{X}_6	2
7	X ₇	2

Case response Group

Permute

es		
	response	Group
1	\mathbf{x}_1	2
2	\mathbf{x}_2	2
3	\mathbf{x}_3	1
4	X_4	2
5	\mathbf{X}_5	2
6	\mathbf{x}_6	1
7	X_7	1

SUMMARY: RANDOMIZATION DISTRIBUTION FOR COMPARING TWO GROUPS 1 AND 2

• Comment:

Original

data

- Equivalently, we can permute (re-randomized) the response for all cases but leave the group assignments fixed.
- Will get the same randomization distribution for the difference in means or proportions either way.

Case	response	Group
1	\mathbf{x}_1	1
2	\mathbf{x}_2	1
3	\mathbf{x}_3	1
4	X_4	2
5	\mathbf{X}_5	2
6	\mathbf{x}_6	2
7	X ₇	2

Permute responses

Case	response	Group
1	\mathbf{x}_6	1
2	\mathbf{X}_7	1
3	\mathbf{x}_3	1
4	\mathbf{X}_5	2
5	$\mathbf{X_4}$	2
6	\mathbf{x}_1	2
7	\mathbf{X}_2	2

SUMMARY: RANDOMIZATION DISTRIBUTION FOR CORRELATION OR SLOPE

- Null: H_0 : $\rho = 0$ OR H_0 : $\beta = 0$
- Creating a randomization distribution consistent with H₀: no association between x and y
 - Randomly permute (re-randomize) one of the variables (either or x or y)
 - Compute the sample correlation/slope r or b.

• Repeat lots of times

	Case	x variable	y variable
	1	\mathbf{x}_1	y_1
Original	2	\mathbf{x}_2	y_2
data	3	\mathbf{x}_3	y_3
	4	X_4	y_4
	5	X_5	y_5
	6	X_6	y_6
	7		

Permute y variable

Case	x variable	y variable
1	\mathbf{x}_1	\mathbf{y}_{5}
2	\mathbf{X}_2	\mathbf{y}_2
3	\mathbf{x}_3	$\mathbf{y_4}$
4	X_4	\mathbf{y}_1
5	\mathbf{X}_5	\mathbf{y}_{6}
6	\mathbf{x}_6	y_5
7	X_7	\mathbf{y}_3

• For Florida lakes, are lower pH levels (more acidity) associated with higher mercury levels?

$$H_0$$
: $\beta = 0$ vs. H_a : $\beta < 0$

The regression line slope is b = -0.152.

Lange, Royals, and Connor, Transactions of the American Fisheries Society (1993)

$$H_0$$
: $\beta = 0$ vs. H_a : $\beta < 0$

Chance of getting a slope as small, or smaller than, the observed slope of b = -0.152.

 H_a : $\beta < 0$ H_0 : $\beta = 0$ vs.

Yes, lower pH levels are associated with higher average mercury levels (p-value

How much lower?

Bootstrap distribution for the slope

TUITION: RESIDENT VS. NON-RESIDENT

- Tuition2006 data from the lab manual section 4.5
- We want to know if the average tuition charged to non-residents is higher than residents for all state colleges and universities
- Population: all state colleges and universities
- Parameters: μ = mean tuition (resident or non-resident) for all colleges and universities
- \circ H₀: $\mu_{non\text{-}resident} \mu_{resident} = 0$
- \circ H_a: $\mu_{non\text{-resident}} \mu_{resident} > 0$
- O Data: **paired** tuition amounts (resident, non-resident) from a random sample of n=19 schools

Histogram of Tuition\$NonRes - Tuition\$Res

Tuition\$NonRes - Tuition\$Res

TUITION: RESIDENT VS. NON-RESIDENT

$$\bullet$$
 H_0 : $\mu_{non-resident} - \mu_{resident} = 0$

•
$$H_a$$
: $\mu_{non\text{-}resident} - \mu_{resident} > 0$

• How can we create a randomization distribution for paired data?

Original
Data (first 7 cases)

Randomly assign tuition amounts to resident or non-resident for each case

		(=== %		on restactivitor eac			
2 3600 1900 2 1900 3600 3 8600 3400 3 8600 3400 4 7000 3200 4 7000 3200 5 12700 3400 5 12700 3400 6 5700 2600 6 2600 5700	Case	residen	t tuition		Case	residen	Residen t tuition
3 8600 3400 4 7000 3200 5 12700 3400 6 5700 2600 3 8600 3400 4 7000 3200 5 12700 3400 6 2600 5700	1	8800	4200	-	1	4200	8800
4 7000 3200 5 12700 3400 6 5700 2600 4 7000 3200 5 12700 3400 6 2600 5700	2	3600	1900		2	1900	3600
5 12700 3400 5 12700 3400 6 5700 2600 6 2600 5700	3	8600	3400	-	3	8600	3400
6 5700 2600 6 2600 5700	4	7000	3200	-	4	7000	3200
	5	12700	3400	-	5	12700	3400
7 5900 3300 7 5900 3300	6	5700	2600		6	2600	5700
	7	5900	3300		7	5900	3300

TUITION: RESIDENT VS. NON-RESIDENT

- \circ H₀: $\mu_{non\text{-}resident} \mu_{resident} = 0$
- \circ H_a: $\mu_{non\text{-}resident} \mu_{resident} > 0$
- How can we create a randomization distribution for paired data?
 - For each case: Randomly re-assign tuition amounts to resident or non-resident
 - Compute the difference in tuition for non-residents and residents
 - Calculate the mean difference
 - Repeat lots of times
- Use R to get this randomization distribution

Permutation distribution for mean of paired difference: NonRes - Res

TUITION: RESIDENT VS. NON-RESIDENT

- \circ H₀: $\mu_{non\text{-}resident} \mu_{resident} = 0$
- \circ H_a: $\mu_{non\text{-}resident} \mu_{resident} > 0$
- > permTestPaired(NonRes ~ Res, data= tuition, alt = "greater")
 - ** Permutation test for mean of paired difference **

Permutation test with alternative: greater

Observed mean

NonRes: 6405.263 Res: 2821.053

Observed difference NonRes - Res: 3584.211

Mean of permutation distribution: 13.60926

Standard error of permutation distribution: 948.5907

P-value: 1e-04

• If there was no difference in mean tuition, we would see a mean difference (NR-R) of at least \$3584 less than 0.01% of the time. We have very strong evidence that mean tuition for non-residents is higher than for residents.

Formal Decisions

- A formal hypothesis test has only two possible conclusions:
- 1. The p-value is small: reject the null hypothesis in favor of the alternative
- 2. The p-value is not small: do not reject the null hypothesis

How small?

Significance Level

The significance level, , is the threshold below which the p-value is deemed small enough to reject the null hypothesis

```
p-value < Reject H_0
p-value \geq Do not Reject H_0
```

Significance Level

- If the p-value is less than , the results are statistically significant, and we reject the null hypothesis in favor of the alternative
- If the p-value is **not** less than , the results are **not** statistically significant, and our test is inconclusive
- Often = 0.05 by default, unless otherwise specified

Cocaine Addiction

- In a randomized experiment on treating cocaine addiction, 48 people were randomly assigned to take either Desipramine (a new drug), or Lithium (an existing drug), and then followed to see who relapsed
- Question of interest:
- We are testing to see if desipramine is better than lithium at treating cocaine addiction.

Desipramin

e

1. Randomly assign units to treatment

Lithium

- 2. Conduct experiment
- 3. Observe relapse counts in each

10 relapse, 14 no relapse

18 relapse, 6 no relapse