The fact that the map $\varphi \colon E^n \to \bigwedge^n(E)$ is alternating and multilinear can also be expressed as follows:

$$u_1 \wedge \cdots \wedge (u_i + v_i) \wedge \cdots \wedge u_n = (u_1 \wedge \cdots \wedge u_i \wedge \cdots \wedge u_n) + (u_1 \wedge \cdots \wedge v_i \wedge \cdots \wedge u_n),$$

$$u_1 \wedge \cdots \wedge (\lambda u_i) \wedge \cdots \wedge u_n = \lambda(u_1 \wedge \cdots \wedge u_i \wedge \cdots \wedge u_n),$$

$$u_{\sigma(1)} \wedge \cdots \wedge u_{\sigma(n)} = \operatorname{sgn}(\sigma) u_1 \wedge \cdots \wedge u_n,$$

for all $\sigma \in \mathfrak{S}_n$.

The map φ from E^n to $\bigwedge^n(E)$ is often denoted ι_{\wedge} , so that

$$\iota_{\wedge}(u_1,\ldots,u_n)=u_1\wedge\cdots\wedge u_n.$$

Theorem 34.4 implies the following result.

Proposition 34.5. There is a canonical isomorphism

$$\operatorname{Hom}(\bigwedge^n(E), F) \cong \operatorname{Alt}^n(E; F)$$

between the vector space of linear maps $\operatorname{Hom}(\bigwedge^n(E), F)$ and the vector space of alternating multilinear maps $\operatorname{Alt}^n(E; F)$, given by the linear map $-\circ \varphi$ defined by $\mapsto h \circ \varphi$, with $h \in \operatorname{Hom}(\bigwedge^n(E), F)$. In particular, when F = K, we get a canonical isomorphism

$$\left(\bigwedge^n(E)\right)^* \cong \operatorname{Alt}^n(E;K).$$

Definition 34.3. Tensors $\alpha \in \bigwedge^n(E)$ are called alternating n-tensors or alternating tensors of degree n and we write $\deg(\alpha) = n$. Tensors of the form $u_1 \wedge \cdots \wedge u_n$, where $u_i \in E$, are called simple (or decomposable) alternating n-tensors. Those alternating n-tensors that are not simple are often called compound alternating n-tensors. Simple tensors $u_1 \wedge \cdots \wedge u_n \in \bigwedge^n(E)$ are also called n-vectors and tensors in $\bigwedge^n(E^*)$ are often called (alternating) n-forms.

Given a linear map $f: E \to E'$, since the map $\iota'_{\wedge} \circ (f \times f)$ is bilinear and alternating, there is a unique linear map $f \wedge f: \bigwedge^2(E) \to \bigwedge^2(E')$ making the following diagram commute:

$$E^{2} \xrightarrow{\iota_{\wedge}} \bigwedge^{2}(E)$$

$$f \times f \downarrow \qquad \qquad \downarrow f \wedge f$$

$$(E')^{2} \xrightarrow{\iota_{\wedge}'} \bigwedge^{2}(E').$$

The map $f \wedge f \colon \bigwedge^2(E) \to \bigwedge^2(E')$ is determined by

$$(f \wedge f)(u \wedge v) = f(u) \wedge f(v).$$