Target Recognition in Cluttered Infrared Scenes via Pattern Theoretic Representations and Jump-Diffusion Processes

Prof. Aaron D. Lanterman

School of Electrical & Computer Engineering Georgia Institute of Technology

404-385-2548

lanterma@ece.gatech.edu

Computer Engineering

maintaining the data needed, and c including suggestions for reducing	lection of information is estimated to completing and reviewing the collect this burden, to Washington Headqu uld be aware that notwithstanding ar DMB control number.	ion of information. Send comments arters Services, Directorate for Information	regarding this burden estimate mation Operations and Reports	or any other aspect of the 1215 Jefferson Davis	is collection of information, Highway, Suite 1204, Arlington	
1. REPORT DATE JUN 2003		2. REPORT TYPE		3. DATES COVERED 00-00-2003 to 00-00-2003		
4. TITLE AND SUBTITLE				5a. CONTRACT NUMBER		
Target Recognition in Cluttered Infrared Scenes via Pattern Theoretic Representations and Jump-Diffusion Processes				5b. GRANT NUMBER		
				5c. PROGRAM ELEMENT NUMBER		
6. AUTHOR(S)				5d. PROJECT NUMBER		
				5e. TASK NUMBER		
				5f. WORK UNIT NUMBER		
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Georgia Institute of Technology, School of Electrical & Computer Engineering, 777 Atlantic Drive NW, Atlanta, GA, 30332-0250				8. PERFORMING ORGANIZATION REPORT NUMBER		
9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)				10. SPONSOR/MONITOR'S ACRONYM(S)		
				11. SPONSOR/MONITOR'S REPORT NUMBER(S)		
12. DISTRIBUTION/AVAIL Approved for publ	LABILITY STATEMENT ic release; distributi	on unlimited				
13. SUPPLEMENTARY NO Presented at the Al Rights License	otes FOSR Program Rev	iew, Princeton Univ	ersity, June 2003	. U.S. Gover	nment or Federal	
14. ABSTRACT						
15. SUBJECT TERMS						
16. SECURITY CLASSIFIC	17. LIMITATION OF ABSTRACT	18. NUMBER	19a. NAME OF			
a. REPORT unclassified	b. ABSTRACT unclassified	c. THIS PAGE unclassified	Same as Report (SAR)	OF PAGES 26	RESPONSIBLE PERSON	

Report Documentation Page

Form Approved OMB No. 0704-0188

Variability in Complex Scenes

- Geometric variability
 - Position
 - Orientation
 - Articulation
 - Fingerprint (in the Bob Hummel sense)
- -Environmental variability
 - Thermodynamic variability in infrared
 - Illumination variability in visual
- Complexity variability
 - Number of objects not known

Pattern Theory: The Grenander Program

Representation:

- Incorporate variability in the parameter space
 - Possibly many nuisance parameters
- Model mapping from parameters to data

Inference:

- Build inference algorithms using the representation
- Ex.: Markov chain Monte Carlo (jump-diffusion)
- General notion: avoid "preprocessing" or "feature extraction" as much as possible to avoid loss of information
 - Recall Biao Chen's mention of the Information Processing Inequality
- Apply tools of Bayesian inference to weird things

Legacy Work

Sponsored by

- U.S. Army Center for Imaging Science (ARO - David Skatrud/Bill Sander)
- ONR (Bill Miceli)

Collaborators

- Michael Miller (now at Johns Hopkins)
- Donald Snyder (Washington Univ.)
- Anuj Srivastava (now with Dept. of Stat., Florida State)
 - Airborne targets radar
- Matt Cooper (now with Xerox)
 - Thermodynamic variability of targets

Parameter Space for ATR

Parameter space for a single target:

$$X(1) = \Re^2 \times [0, 2\pi) \times A$$

$$A = \{M2, M60, T62...\}$$

Parameter space for an n-target scene:

$$X(n) = \left[\Re^2 \times [0, 2\pi) \times A\right]^n$$

Number of targets not known in advance:

$$X = \bigcup_{n=0}^{\infty} [\Re^2 \times [0,2\pi) \times A]^n$$

Ingrid's Third Approach

- Data y, parameters x
- Likelihood $p(y \mid x)$
 - Render infrared scene onto detector plane
 - Model sensor noise effects
- Prior p(x)
- Bayesian posterior

$$\pi(x) \equiv p(x \mid y) \propto p(y \mid x) p(x)$$

- Analytically forboding!
- Sample via jump-diffusion processes
 - Jump from subspace to subspace
 - Diffuse to refine estimates within a subspace

Take Home Message

Go read Ulf Grenander's papers and books. They are very cool.

Perspective Projection

Sensor Effects

Optical PSF

Poisson
Photocounting
Noise

Dead and Saturated Pixels

FLIR Loglikelihood

CCD loglikelihood of Snyder, Hammoud, and White

$$L_{CCD}(y \mid \lambda) = -\sum_{i} \mu(i) + \sum_{i} y(i) \ln \mu(i)$$

where
$$\mu(j) = \sum_{j} psf(i \mid j) \lambda(j)$$

• Cascade with render: $x \to \lambda$

$$L(y \mid x) = L_{CCD}(y \mid \text{render}(x))$$

Sensor fusion natural; just add loglikelihoods

Langevin Processes Process

- Write posterior in Gibbs form: $\pi(x) = \exp\{H(x)\}/Z$
- Consider a fixed number of N targets and target classes
- Simulate Langevin diffusion:

$$dX_N(\tau) = \nabla_{X_N} \{ H(X_n(\tau)) \} + dW_N(\tau)$$

- Distribution of $X_N(\tau) \xrightarrow{\tau \to \infty} \pi_N(x_n)$
- Computed desired statistics from the samples
- Generalizes to non-Euclidean groups like rotations
- Gradient computation
 - Numeric approximations
 - Easy and fast on modern 3-D graphics hardware

Diffusion Example on AMCOM Data

Jump Moves

Helpful Properties of Jump Processes

Jump at exponentially distributed times

$$\mathcal{T}^{1}(x) = \{ \text{states reachable from } x \}$$

 $\mathcal{T}^{-1}(x) = \{ \text{states from which } x \text{ can be reached} \}$

- Move reversability: $T^{1}(x) = T^{-1}(x)$
- Connectedness: can go from any point to any other in a finite number of jumps
- Detailed balance (in discrete form)

$$\pi(x)\Pr(x \to z) = \pi(z)\Pr(z \to x)$$

(continuous form slightly more complicated)

Jumping Strategies

Gibbs

 Sample from a restricted part of the posterior

Metropolis-Hastings style

- –Draw a "proposal" from a "proposal density"
- Accept (or reject) the proposal with a certain probability

Example Jump-Diffusion Process

How to Model Clutter?

- Problem: Algorithm only knows about tanks (which Bob doesn't like anyway), and will try to explain everything with tanks!
 - Cows, swimming pools, school buses
- Solution (?): Let the algorithm use flexible representation in addition to rigid objects
 - Blobs: Simple connected shapes on the lattice to represent structured clutter
 - Could use active curves, level set methods (Clem Karl), active polygons (Hamid Krim)
 - Clutter might be interesting in its own right!

Random Sampling for Blobs

- Set of jump moves
 - Add a pixel along the boundary
 - Remove a pixel along the boundary
 - -Keep the blob a blob
- Pick move based on posterior probability

Blob Estimation Examples

M60 spreading

M60 decaying

Ship decaying

NVESD M60 Example

Saccadic Detection

- Current implementation "births" specific target types
- May be better to birth simple shapes, and later change them to more specific target types (clutter or target)
- Example:
 - Birth squares
 - Deform into rectangles
 - Then jump to more detailed targets

AMCOM Data Ex.: Finding Tank 1

Initial Detection

Low-dimensional refinement

High-dimensional refinement

Equilibrium

AMCOM Data Ex.: Finding Tank 2

Initial Detection

Low-dimensional refinement

Equilibrium

AMCOM Data Ex.: Finding ?????

Initial Detection

Low-dimensional refinement

Factory Example

Unified Algorithm

Extended jump moves

- Saccadic ↔ blob
- Saccadic ↔ rigid
- Blob ↔ rigid
- Break/combine blobs
- Change rigid target types
- Difficulty: Make parameters make sense between representation types

