

Inaccurate Prediction or Genre Evolution? Rethinking Genre Classification

Ke Nie

Department of Sociology, UC San Diego

Research Question: Does genre evolution affect MIR-based genre classifier performance?

- > Genres are cultural constructs, whose boundary depends on subjective judgments by musicians, audiences, critics, etc.
- > Genres may evolve over time as the type of music style associated with a particular genre mutates.
- As genre evolves, genre classifiers trained on songs from different year-cohorts might will impact how the classifier perform on the songs from other year-cohorts.
- ➤ If this is true, then we can use genre classifiers to detect genre evolution by looking at change in classifier performance over the years.

Key takeaway: Genre evolution does affect MIR-based genre classifier performance.

- Genre classifiers trained on older songs do not always correctly predict the genre of newer songs (and vice versa); performance depends on genre evolution including genre-crossing and subgenre salience.
- > But this does not mean the classifiers were defectively trained; the drawback can only be spotted post-hoc when new songs are released.
- For the same reasons, we can thus use genre classifiers to detect genre evolution when trained properly. It is difficult, though, to separate genre evolution from flaws in algorithmic design; therefore, it is important to supplement the analysis with more detailed investigations.

Data: 67,427 songs from Chinesemusic.com (anonymized)

Songs performed by Chinese musicians released on the platform between 2009 and 2019 (until July) from 4 primary genres: Pop, Hip-Hop, Rock, Folk. A song can claim only one primary genres but can claim multiple subgenres.

Method: Use genre classifiers trained on songs from different year-cohorts and predict the genre of all songs

- > 3 different training sets: 2009 songs, 2018 songs, GTZAN (corrected)
- ➤ 4 different machine learning approaches: Gaussian Naïve Bayes, K-Nearest Neighbors, Random Forests, eXtreme Gradient Boosting, plus their average.
- > Focus on Hip-Hop as it experienced a series of dramatic events in recent years
- Key metrics: accuracy (correctly predict Hip-Hop vis-à-vis non-Hip-Hop); recall (correctly predict Hip-Hop among all true Hip-Hop songs)

Finding #1: Classifiers have a fuzzy U-shaped performance over the years, particularly on recalls

- > The trend of recalls fit a polynomial regression on year and its quadratic term, where all coefficients are statistically significant
- ➤ This indicates Hip-Hop deviated from 2009 releases in the middle years but slowly bounced back as the decade concludes

Finding #2: Classifiers perform worse on Hip-Hop-crossing non-Hip-Hop songs

- ➤ Hip-Hop-crossing non-Hip-Hop songs are those who claim a genre other than Hip-Hop as their primary genre but also claim subgenres explicitly related to Hip-Hop (e.g., "Rap Rock")
- Two sample t-tests on classifier accuracy and false negative between Hip-Hop-crossing non-Hip-Hop songs and other non-Hip-Hop songs indicate significantly worse performance when there are more genre-crossing songs
- ➤ U-shaped recall in Finding #1 is thus partly driven by the fact that there are proportionally more Hip-Hop-crossing non-Hip-Hop songs in the middle years

		GNB		KNN		RF		XGB		Average		
ı		Diff. Acc	Diff. FN									
	2009	-0.063***	0.087***	-0.020	0.163***	-0.089***	0.162***	-0.076***	0.181***	-0.062***	0.148***	
ı		(0.015)	(0.016)	(0.017)	(0.015)	(0.015)	(0.016)	(0.016)	(0.016)	(0.008)	(0.008)	
	2018		0.217***		0.270***	-0.131***		-0.161***		-0.127***		
ı		(0.012)	(0.017)	(0.016)	(0.017)	(0.016)	(0.017)	(0.016)	(0.017)	(0.008)	(0.008)	
	GTZAN	-0.079***	0.182***	-0.120***	0.134***	-0.086***	0.263***	-0.081***	0.073***	-0.092***	0.120***	
ı		(0.011)	(0.017)	(0.016)	(0.017)	(0.015)	(0.015)	(0.014)	(0.010)	(0.007)	(0.008)	

Note: Standard errors are in parentheses. Diff. Acc/FN refers to the difference between Hip-Hop-crossing non-Hip-Hop songs and other non-Hip-Hop songs in terms of the accuracy/False Negative rate of the classifiers in predicting their genre. *p < .05; **p < .01; ***p < .001

Finding #3: Classifiers perform worse in years where there are fewer songs from salient subgenres in the year in question

- > Salient subgenres: subgenres that are robustly represented in numbers in the training set and accurately predicted by the classifier
- > Overall pattern suggests a positive relationship between performance metrics and the size of the salient subgenres' proportions. E.g., the classifier trained on 2009 songs perform better when there are more Hip-Hop songs that are Old School Hip-Hop, Instrumental Hip-Hop, Conscious Hip-Hop, Alternative Hip-Hop, or Cloud Rap.

		GNB			KNN			RF			XGB			Average		
		Subg	Acc	Rec	Subg	Acc	Rec	Subg	Acc	Rec	Subg	Acc	Rec	Subg	Acc	Rec
2009	Top1	OS	0.236 [*] (0.103)	0.625*** (0.095)	OS	0.188* (0.066)	0.636** (0.149)	OS	0.165* (0.067)	1.010*** (0.182)	OS	0.180 ^{**} (0.050)	0.773** (0.165)	OS	0.154 [*] (0.062)	0.761*** (0.139)
	Top5	OS; I; Con; A; CR	0.143 [*] (0.045)	0.265** (0.075)	OS; I; Con; A; CR	0.123 ^{***} (0.021)	0.329** (0.072)	OS; A; U; Pop; I	0.090 (0.065)	0.001 (0.314)	OS; A; U; Pop; I	0.082 (0.058)	-0.049 (0.251)	OS; I; Con; A; CR	0.138*** (0.029)	0.301 (0.168)
2018	Top1	НН	0.211** (0.045)	0.065 (0.264)	НН	-0.001 (0.029)	0.208 ^{**} (0.055)	НН	0.033 (0.023)	0.149* (0.048)	НН	0.003 (0.028)	0.206* (0.071)	НН	0.071 [*] (0.022)	0.157** (0.047)
	Top5	HH; Pop; T; OS; CU	0.245** (0.058)	0.016 (0.070)	HH; Pop; T; OS; CU	-0.022 (0.034)	0.150 (0.093)	HH; Pop; T; OS; CU	0.245** (0.058)	0.106 (0.074)	HH; Pop; T; OS; CU	-0.013 (0.033)	0.136 (0.109)	HH; Pop; T; OS; CU	0.082** (0.028)	0.102 (0.077)

Note: Standard errors are in parentheses. Among the subtitles, Subg refers to subgenre, Acc refers to accuracy, and Rec refers to recall. Abbreviations in the Subg column: OS for Old-School Hip-Hop; I for Instrumental Hip-Hop; Con for Conscious Hip-Hop; A for Alternative Hip-Hop; CR for Cloud Rap; U for Underground Hip-Hop; Pop for Pop Rap; HH for Hip-Hop; T for Trap; CU for Chinese Underground Hip-Hop.

*p < .05; **p < .01; ***p<.001