* * operation on s and A = s, Hen:

A stable port of 5 if: \(\frac{1}{2}\) \(\frac

<u>Def.</u> : (6,*) group il:							
· * is an operation: \xy \in 6: \x * \y \in 6 \ Semigroup							
· associativity: +, y= (6: (++y) +2 = + + (y +2)							
· neutril element: Jef VIEG: H+e=e=+= X Semigroup (moneid)							
· invertibility: \\ \(\tau \) \(
(+ commutativity: + +y+6: ++y=y*)							
La Abelian group							
3. Decide which ones of the numerical sets \mathbb{N} , \mathbb{Z} , \mathbb{Q} , \mathbb{R} , \mathbb{C} are groups together with the usual addition or multiplication.							
54 :		N	2	Q	R	C	
_		Vo	Yes	167	Tes	le>	
	,	Vo	V.	<i>y</i> ₀	16	No	
5. Let "*" be the operation defined on \mathbb{N} by $x * y = \text{g.c.d.}(x,y)$. (i) Prove that $(\mathbb{N},*)$ is a commutative monoid. (ii) Show that $D_n = \{x \in \mathbb{N} \mid x/n\} \ (n \in \mathbb{N}^*)$ is a stable subset of $(\mathbb{N},*)$ and $(D_n,*)$ is a commutative monoid. (iii) Fill in the table of the operation "*" on D_6 .							
You can use					(»,y), č) = ($gcl(H, gcl(Y, \pm 1))$

Associativity is proven by (*)

Yang & N: gcd(s,j) & N > x operation on N

<u>S/</u>:

(i)

y = is a neutral elevent $y(x, e) = x \Rightarrow x | e \Rightarrow e : x$ le check that e=0. Y* ∈ N: gcd (x,0) =+ +x,y ∈ N: +xj = gd(xy) = gd(y,+) = y x+ Remark: nEN, n= propor -- prom I p prime we define $(p_n) = the power of p in the factoristion of n in our case: Up, <math>(n) > \alpha_1$, $p_n(n) = \alpha_n$ I p $\neq p_{n-1}$, $p_n: Q_p(n) = 0$ · ep (ab) = (p (a) + ep (b) (ep (ath) 7 min (op (a), up (b)) (g cd (a,b)) = min ((p (a), Up (L)) (4) (Dn,x) Stable subset of (N,x)? ₩ x,y ∈ Dn : g cd (x,y) ∈ Dn We how x/n, y/n, we writ to show that gch (+,y) n

[if all and b
$$C =$$
] $a \mid C$?

 $a \mid L \Rightarrow b = a \mid k$, $k \in \mathbb{Z}$] $a \mid C = a \mid k$, $a \mid C = a \mid k$, $a \mid C = a \mid k$, $a \mid C = a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid k$, $a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid C = a \mid C$
 $a \mid L \Rightarrow b = a \mid C \Rightarrow c \mid C \Rightarrow c \mid C \Rightarrow c \mid C$
 $a \mid L \Rightarrow c \mid C \Rightarrow c$

7. Let (G, \cdot) be a group. Show that:

(i) G is abelian $\iff \forall x, y \in G, (xy)^2 = x^2y^2.$

(ii) If $x^2 = 1$ for every $x \in G$, then G is abelian.

"(="
$$(+y)^2 = +y + y = +^2y^2$$

(ii)
$$2d + 3 = 66 = (x+y)^2 = 1$$

$$3 = (x+y)^2 = x^2 = 1$$

$$4^2 = y^2 = 1$$
(i) $6 = 4 = 6$