Aprendizado de máquina para previsão de preços de ações no mercado financeiro

Paula Campigotto

Formação Acadêmica

2021 - 2022

Universidade Federal do Paraná

Computação Bioinspirada (Mestrado)

2017 - 2020*

Universidade do Estado de Santa Catarina

Ciência da Computação (Bacharelado)

2015 - 2019

Universidade da Região de Joinville

Ciências Contábeis (Bacharelado)

Experiência Profissional

2021 - Presente

Senior Sistemas

Pesquisadora de Engenharia de Software

2020 - 2021

Conta Azul

Desenvolvedora Backend

github.com/paulacampigotto

linkedin.com/in/paula-campigotto

Tópicos

- Introdução
- Modelo que iremos implementar
- Conceitos básicos de Aprendizado de Máquina
- Plataforma
- Hands on

Modelo que iremos implementar: resultado final

$f(X) = \hat{y}$

Aprendizado de Máquina

- Possibilita a criação de modelos (programas) que aprendem padrões em a partir de dados
- Depois de criados, estes modelos podem fazer predições de resultados (inferências)

$f(X) = \hat{y}$

Aprendizado de Máquina

- Possibilita a criação de modelos (programas) que aprendem padrões em a partir de dados
- Depois de criados, estes modelos podem fazer predições de resultados (inferências)

$f(X) = \hat{y}$ Modelo

Aprendizado de Máquina

- Possibilita a criação de modelos (programas) que aprendem padrões em a partir de dados
- Depois de criados, estes modelos podem fazer predições de resultados (inferências)

$f(X) = \hat{y}$ Modelo Predições

Aprendizado de Máquina

- Possibilita a criação de modelos (programas) que aprendem padrões em a partir de dados
- Depois de criados, estes modelos podem fazer predições de resultados (inferências)

Aprendizado de Máquina

- Possibilita a criação de modelos (programas) que aprendem padrões em a partir de dados
- Depois de criados, estes modelos podem fazer predições de resultados (inferências)

X = 32, 55, 87, 91	Y = 12
X = 30, 25, 44, 83	Y = 9
X = 0, 87, 100, 40	Y = 75
X = 8, 34, 76, 99	Y = 9
X = 21, 44, 35, 67	Y = 13
X = 4, 55, 64, 65	Y = 4
X = 9, 5, 6, 455	Y = 29
X = 3, 44, 12, 54	Y = 34
X = 5, 54, 56, 33	Y = 44
X = 63, 4, 34, 34	Y = 2

Aprendizado de Máquina

Machine Learning (ML)

TREINO

80%

X = 32, 55, 87, 91 X = 30, 25, 44, 83	Y = 12 Y = 9
X = 0, 87, 100, 40	Y = 75
X = 8, 34, 76, 99	Y = 9
X = 21, 44, 35, 67	Y = 13
X = 4, 55, 64, 65	Y = 4
X = 9, 5, 6, 455	Y = 29
X = 3, 44, 12, 54	Y = 34
X = 5, 54, 56, 33	Y = 44
X = 63, 4, 34, 34	Y = 2

Aprendizado de Máquina

Machine Learning (ML)

TREINO

80%

20%

Aprendizado de Máquina

Machine Learning (ML)

TREINO

80%

20%

X = 32, 55, 87, 91	Y = 12
X = 30, 25, 44, 83	Y = 9
X = 0, 87, 100, 40	Y = 75
X = 8, 34, 76, 99	Y = 9
X = 21, 44, 35, 67	Y = 13
X = 4, 55, 64, 65	Y = 4
X = 9, 5, 6, 455	Y = 29
X = 3, 44, 12, 54	Y = 34
X = 5, 54, 56, 33	Y = 44
X = 63, 4, 34, 34	Y = 2

Aprendizado de Máquina

Machine Learning (ML)

TREINO

80%

20%

X = 32, 55, 87, 91	Y = 12
X = 30, 25, 44, 83	Y = 9
X = 0, 87, 100, 40	Y = 75
X = 8, 34, 76, 99	Y = 9
X = 21, 44, 35, 67	Y = 13
X = 4, 55, 64, 65	Y = 4
X = 9, 5, 6, 455	Y = 29
X = 3, 44, 12, 54	Y = 34
X = 5, 54, 56, 33	Y = 44
X = 63, 4, 34, 34	Y = 2

X = 5, 54, 56, 33	Y = 43
X = 63, 4, 34, 34	Y = 15

Aprendizado de Máquina

Machine Learning (ML)

TREINO

80%

20%

X = 32, 55, 87, 91	Y = 12
X = 30, 25, 44, 83	Y = 9
X = 0, 87, 100, 40	Y = 75
X = 8, 34, 76, 99	Y = 9
X = 21, 44, 35, 67	Y = 13
X = 4, 55, 64, 65	Y = 4
X = 9, 5, 6, 455	Y = 29
X = 3, 44, 12, 54	Y = 34
X = 5, 54, 56, 33	Y = 44
X = 63, 4, 34, 34	Y = 2

Erro: diferença entre previsão e realidade

Aprendizado de Máquina

Machine Learning (ML)

Objetivo: erro = 0

- Abordagem de Aprendizado de Máquina
- Analogia às redes neurais cerebrais
- Conjunto orquestrado de neurônios
- Existem vários tipos de Redes Neurais Perceptron, CNN, LSTM...

- ◆ Abordagem de Aprendizado de Máquina
- Analogia às redes neurais cerebrais
- Conjunto orquestrado de neurônios
- Existem vários tipos de Redes Neurais Perceptron, CNN, LSTM...

- Abordagem de Aprendizado de Máquina
- Analogia às redes neurais cerebrais
- Conjunto orquestrado de neurônios
- Existem vários tipos de Redes Neurais Perceptron, CNN, LSTM...

- Abordagem de Aprendizado de Máquina
- Analogia às redes neurais cerebrais
- Conjunto orquestrado de neurônios
- Existem vários tipos de Redes Neurais Perceptron, CNN, LSTM...

return_sequences = True Input_shape = (30,1)

Input_shape = (30,1)

Input_shape = (30,1)

return_sequences = True Input_shape = (30,1)

Modelo que iremos implementar: resultado

Plataforma ____

Google Colab: colab.research.google.com

Google Colab: colab.research.google.com

Linguagem de programação: Python

Linguagem de programação: Python

Bibliotecas principais: Tensorflow, Keras

Google Colab: colab.research.google.com

Linguagem de programação: Python

Bibliotecas principais: Tensorflow, Keras

Bibliotecas auxiliares: Pandas, Numpy, Sklearn, Matplotlib, Pandas datareader

Hands on

colab.research.google.com

github.com/paulacampigotto/mini-curso_ML_SEI

Pesquisas relacionadas

Applying LSTM for Stock Price Prediction with Sentiment Analysis

Alexandre Heiden Graduate Program in Applied Computing Santa Catarina State University (UDESC) Joinville, SC - Brazil Rafael Stubs Parpinelli Graduate Program in Applied Computing Santa Catarina State University (UDESC) Joinville, SC - Brazil

Pesquisas relacionadas

An approach using Artificial Neural Network and Genetic Algorithm for Day Trade Portfolio Selection

Paula Campigotto

Department of Computer Science

Universidade do Estado de Santa Catarina

Joinville, Brazil

paula.campigotto@edu.udesc.br

Omir Correia Alves Junior Department of Computer Science Universidade do Estado de Santa Catarina Joinville, Brazil omir.alves@udesc.br

Pesquisas relacionadas

Previsão do Mercado Financeiro com Redes Neurais

Ya-Sin B. Mghazli*, Ricardo de A. Araujo†, Jose M. de Seixas*

*Laboratorio de Processamento de Sinais, COPPE/POLI, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil

†Laboratorio de Inteligência Computacional do Araripe, Instituto Federal do Sertão Pernambucano, Ouricuri, PE, Brasil
yasinbarcelos@hotmail.com, ricardo.araujo@ifsertao-pe.edu.br, seixas@lps.ufrj.br

