引脚	输入输出	位宽	续表
			功能描述
Result2	输出	32	ALU 结果第二部分,用于乘法指令结果的高位或除法指令的余数位,其他运算时值为 0
OF	输出	1	
			有符号加减运算溢出标记,其他运算时值为0
UOF	输出	1	无符号加减运算溢出标记,其他运算时 值为0 溢出条件(加法和小于加数,减法差大于 被减数)
Equal	输出	1	Equal=(x==y)?1:0,对所有运算均有效

表 2.2 芯片引运算符功能

ALU_OP	十进制	运算功能	
0000	0	Result=X< <y,逻辑左移(y 5="" 位),result2="0</td" 取低=""></y,逻辑左移(y>	
0001	1	Result=X>>>Y,算术右移(Y取低 5 位),Result2=0	
0010	2	Result=X>>Y,逻辑右移(Y取低 5 位),Result2=0	
0011	3	Result=(X * Y) _[31,0] , Result2=(X * Y) _[63,32] , 无符号乘法	
0100	4	Result=X/Y, Result2=X%Y, 无符号除法	
0101	5	Result=X+Y,需要设置 OF/UOF	
0110	6	Result=X-Y,需要设置 OF/UOF	
0111	7	Result=X&Y,按位与	
1000	8	Result=X Y,按位或	
1001	9	Result=X⊕Y,按位异或	
1010	10	Result=~(X Y),按位或非	
1011	11	Result=(X <y)?1:0,符号比较< td=""></y)?1:0,符号比较<>	
1100	12	Result=(X <y)?1:0,无符号比较< td=""></y)?1:0,无符号比较<>	

请直接在实验发布文件 alu. circ 中构建 ALU 子电路,该电路已经提前封装好,切勿自行修改封装形状和引脚位置,否则构建后的子电路将无法在测试程序中进行自动测试,自行打开 alutest. circ 电路,该电路将 alu. circ 作为 Logisim 库引用,其主电路会使用 alucirc 中的 ALU 子电路,其主电路显示如图 2.17 所示,图中 ALU 和各输入输出引脚准置连接。

2.4.4 实验思考

真实系统中乘法器、除法器能和加法器等基本算术逻辑运算放在一起吗?为什么?

