

Puertos del Estado

CLIMA MEDIO DE OLEAJE

Nodo WANA2114138

CONJUNTO DE DATOS: WANA

CODIGO B.D. 2114138

LONGITUD 2.500 E LATITUD 41.500 N PROFUNDIDAD Indefinida

BANCO DE DATOS OCEANOGRÁFICOS DE PUERTOS DEL ESTADO ÁREA DE MEDIO FÍSICO

www.puertos.es

ÍNDICE 2

Índice

1.	Met	odología	3
	1.1.	Régimen Medio	3
	1.2.	Análisis de Duraciones de Excedencia	5
	1.3.	Caracterización Estadística Complementaria	7
2.	Con	njunto de datos WANA	8
3.	No	do WANA2114138	10
	3.1.	TABLAS HS-TP ANUAL	11
	3.2.	TABLAS HS-TP ESTACIONAL	12
	3.3.	Rosas de Oleaje Anual	16
	3.4.	Rosas de Oleaje Estacional	17
	3.5.	Tablas Hs - Dir. Anual	21
	3.6.	Tablas Hs - Dir. Estacional	22
	3.7.	REGIMEN MEDIO DE HS ANUAL	26
	3.8.	REGIMEN MEDIO DE HS ESTACIONAL	27
	3.9.	REGIMEN MEDIO DE HS POR DIRECCIONES ANUAL .	29
	3.10.	Duración Media y Máxima de Excedencia de Hs Anual	32
	3.11.	Persistencias de Hs Sobre 2.0 (m) Anual	33
	3.12.	Persistencias de Hs Sobre 1.5 (m) Anual	34
	3.13.	Persistencias de Hs Sobre 1.0 (m) Anual	35
	3.14.	Duración Media y Máxima de No Excedencia de Hs Anual	36

3.15. Persistencias	DE HS	Вајо	2.0 (M)	Anual	 37
3.16. Persistencias	DE HS	Вајо	1.5 (M)	Anual	 38
3.17. Persistencias	DE HS	Вајо	1.0 (M)	Anual	 39

1. Metodología

1.1. Régimen Medio

Se puede definir como régimen medio de una serie temporal al conjunto de estados de oleaje que más probablemente nos podemos encontrar.

Si representaramos los datos en forma de histograma no acumulado, el régimen medio vendría definido por aquella banda de datos en la que se contiene la masa de probabilidad que hay entorno al máximo del histograma.

El régimen medio se describe, habitualmente, mediante una distribución teórica que ajusta dicha zona media o central del histograma. Es decir, no todos los datos participan en el proceso de estimación de los parámetros de la distribución teórica, sólo lo hacen aquellos datos cuyos valores de presentación caen en la zona media del histograma.

La distribución elegida para describir el régimen medio de las series de oleaje es Weibull cuya expresión es la siguiente:

$$F_e(x) = 1 - exp\left(-\left(\frac{x-B}{A}\right)^C\right)$$

El parámetro B es conocido como párametro de centrado y su valor ha de ser menor que el menor de los valores justados, A es el parámetro de escala y ha de ser mayor que 0, y finalmente; C es el parámetro de forma y suele moverse entre 0.5 y 3.5

El régimen medio, generalmente, suele representarse de una forma gráfica mediante un histograma acumulado y el correspondiente ajuste teórico, todo ello en una escala especial en la cual *Weibull* aparece representada como una recta.

Ajustar los datos a una distribución teórica, en vez de utilizar el histograma permite obtener una expresión compacta que suaviza e interpola la información proporcianada por el histograma.

El régimen medio está directamente relacionado con lo que se denominan condiciones medias de operatividad. Es decir, caracteriza el comportamiento probabilístico del régimen de oleaje en el que por término medio se va a desenvolver una determinada actividad influida por uno de estos agentes.

En éste informe se presenta el régimen medio siguiendo diferentes criterios de selección o agrupación de los datos. En primer lugar, se presenta el régimen 1 METODOLOGÍA 5

medio sobre la totalidad de los años completos registrados, seguidamente se presentan los régimenes medios estimados sobre los datos agrupados por estaciones climáticas; y, finalmente, y de modo opcional, los regímenes medios para los datos agrupados por direcciones.

6

1.2. Análisis de Duraciones de Excedencia.

Los gráficos A y B muestran dos hipotéticas series de altura significativa o viento en las cuales la probabilidad de que se supere el umbral U es, en ambos casos, 0.5. Si U fuera el umbral a partir del cual cierta actividad tubiera que cesar, (p.ej. la actividad de un sistema de dragado), se tendría que, en ambos casos, el rendimiento teórico de dicha actividad sería del 50 %. No obstante, el modo en que se agruparían en cada caso los tiempos de trabajo y de interrupción serían muy diferentes. Así, mientras que en el primer caso no se tendrían paradas de más de 1/2 día, en el segundo se tendría un cese total de actividad de 1 día de duración.

La diferencia entre ambas series viene marcada por la diferente persistencia con la que el oleaje/viento se mantiene por encima o por debajo de un cierto umbral de intensidad. Dicho de otro modo, por el diferente comportamiento de la duración de las excedencias de los estados de mar/viento, donde se entiende por excendencia el periodo de tiempo que la altura del oleaje/intensidad de viento se mantiene por encima de una cierto valor de corte.

En la figura C se representa una hipotética serie de $\operatorname{Hs/viento}$, la cual, según la anterior definición muestra 3 excedencias sobre U de aproximadamente un día de duración cada una. No obstante, los periodos de tiempo que median entre las diferentes excedencias, y en los cuales la velocidad cae por debajo de U son muy cortos, del orden de 1 hora. Por tanto, si se está estudiando el máximo tiempo que una draga permanecerá inactiva por efecto del oleaje, se tiene que, a efectos prácticos, realmente existe una excedencia de 3 días de duración.

De lo dicho se concluye, que en el proceso de recuento de excedencias es conveniente considerar que reducciones repentinas de la intensidad del olea-je/viento, cuya duración es inferior k horas, no suponen, a efectos prácticos, un cese real del estado de mar/viento; esto es, no suponen el fin de la excedencia cuya duración se está estudiando.

Una vez que se ha definido un cierto nivel de corte, y se han localizado todas las excedencias por encima de dicho nivel, lo siguiente es ordenar las excedencias en función de su duración. Una vez que se ha hecho esto se pueden contestar las siguientes preguntas:

7

- ¿ Cuáles son las duraciones medias, y máximas de las excedencias observadas por encima o debajo de un umbral ?
- ¿ Cuál es el promedio anual o estacional de rachas cuya duración supera un cierto número de días ?
- ¿ Cuál es el porcentaje de tiempo, sobre el tiempo total observado, ocupado por rachas de oleaje/viento cuya duración supera un cierto número de días ?

La primera pregunta puede responderse mediante los gráficos titulados Duración Media y Máxima de Excedencia presentes en este informe. Éstas muestran la evolución de dichas magnitudes para distintos niveles de corte.

Las otras dos preguntas pueden responderse mediante las gráficas mostradas en el apartado que lleva por título *Persistencias*. La gráfica superior, denominada *Número Medio de Superaciones*, presenta en el eje de abcisas el número de días y en ordenadas el promedio de veces que las excedencias han tenido una duración mayor o igual a dicho periodo de tiempo. El gráfico inferior, titulado *Porcentaje de Superaciones*, intenta responder a la tercera pregunta. En este gráfico el eje de ordenadas muestra el porcentaje total de tiempo ocupado por excedencias que han superado un cierto número de días. Los resultados se muestran para diferentes umbrales, sobre la totalidad de los años registrados.

8

1.3. Caracterización Estadística Complementaria.

La caracterización estadística del oleaje/viento, a medio plazo, ofrecida en el presente informe se completa con una descripción estadística de la serie de alturas, periodos y direcciones (cuando existen datos direccionales) del oleaje; o, si corresponde, de la serie de intensidad de viento y su dirección.

Para el oleaje se incluyen tres tipos de estadísticas: distribuciones conjuntas de altura y periodo, y cuando tenemos datos direccionales, rosas de oleaje y distribuciones conjuntas de altura y dirección de oleaje.

Las distribuciones conjuntas muestran histogramas y tablas de contingencia para los parámetros estudiados. Las tablas de contingencia permiten cruzar la información de forma sectorial.

En las rosas de oleaje se representan la altura y dirección del oleaje asociadas a su probabilidad de ocurrencia. El presente informe incluye rosas tanto para la serie total como para cada una de las estaciones.

De forma análoga, para los estudios de viento se muestran distribuciones conjuntas y rosas que cruzan la información de la intensidad y la dirección del viento.

2. Conjunto de datos WANA

Procedencia y obtención del conjunto de datos

El conjunto de datos WANA está formado por series temporales de parámetros de viento y oleaje procedentes de modelado numérico. Son por tanto datos sintéticos y no proceden de medidas directas de la naturaleza.

Las series WANA proceden del sistema de predicción del estado de la mar que Puertos del Estado ha desarrollado en colaboración con la Agencia Estatal de Meteorología (AEMET). No obstante, los datos WANA no son datos de predicción, sino datos de diagnóstico o análisis. Esto supone que, para cada instante el modelo proporciona campos de viento y presión consistentes con la evolución anterior de los parámetros modelado y consistente con las observaciones realizadas.

Las series de viento y oleaje del conjunto WANA no son homogéneas, pues el modelo de vientos se modifica de modo periodico.

Viento

El modelo atmosférico utilizado para generar los campos de vientos es el HIRLAM. Este es un modelo atmosférico mesoescalar e hidrostático cuya resolución es de 5 grados en el Atlántico y 0.2 grados en el Mediterráneo. Los datos de viento facilitados son promedios horarios a 10 metros del altura sobre el nivel del mar.

Debido a la resolución con la que se ha integrado el modelo de Atmósfera, los datos de viento no reproducen ni efectos geográficos de escala inferior a 15 Km, ni procesos con escala temporal inferior a 6 horas. No obstante, el modelo reproduce correctamente los vientos regionales inducidos por la topografía como el Cierzo, Tramontana, Mistral, etc. Por otro lado, de modo general, será má fiable la reproducción de situaciones con vientos procedentes del mar.

Oleaje

Para generar los campos de oleaje se ha utilizado el modelo WAM. Dicho modelo es un modelo espectral de tercera generación que resuelve la ecuación de valance de energía. Trabaja en el Atlántico con una resolución de 0.25 grados (30 Km), y en el Mediterráneo con una resolución de 0.125 grados (15 Km). La aplicación utilizada no incluye esquema de ansimilación de datos instrumentales.

Se ha realizado una descomposición de mar de viento y mar de fondo. Con el fin de describir situaciones con mares de fondo cruzados, se han considerado dos contribuciones posibles para el mar de fondo. Es importante tener en cuenta, que, con independencia de la coordenada asignada a un nodo WANA, los datos de oleaje deben de considerarse, siempre, como datos en aguas abiertas y profundidades indefinidas.

Precauciones de uso

El conjunto de datos WANA proporciona descripciones adecuadas en casi todas las zonas. No obstante es necesario tener cautela en las siguientes zonas:

- En el Estrecho de Gibraltar no se reproducen bien los oleajes propagados de una cuenca a otra, ya que en la aplicación del modelo utilizada, el Estrecho de se encuentra cerrado.
- En el Norte de la Costa Catalana y Golfo de León pueden sobreestimarse las velocidades de viento y las alturas de ola en situaciones de temporal muy extremo. Se aconseja no eliminar los datos sobreestimados, sino más bien cotejar la magnitud aproximada del temporal con datos instrumentales de la zona.
- En el Sur del Archipiélago Canario pueden no reproducirse bien condiciones procedentes del Suroeste

Parámetros disponibles

- Velocidad Media del Viento (Promedio horario a 10 m. de altura)
- Dir. Media de Procedencia del Viento(0=N,90=E)
- Altura Significante Espectral
- Periodo Medio Espectral (Momentos 02)
- Periodo de Pico
- Dir. Media de Procedencia de Oleaje (O=N,90= E)
- Altura Significante y Dirección Media de Mar de Viento
- Altura Significante, Periodo Medio y Dirección Media de Mar de Fondo

3. Nodo WANA2114138

Conjunto de Datos: WANA Nodo: WANA2114138 Longitud: 2.500 E Latitud: 41.500 N

Profundidad : Indefinida

3.1. Tablas Hs-Tp Anual

Distribución Conjunta de Periodo de Pico y Altura Significativa

LUGAR: WANA2114138

Periodo : Anual Serie Analizada : Ene. 1996 - Oct. 2013

Tabla Periodo de Pico (Tp) - Altura Significativa (Hs) en %

Hs (m)						Tp (s)						Total
	≤ 1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	> 10.0	
≤ 0.5	_	0.476	8.960	19.654	10.930	7.758	4.584	2.195	1.645	0.521	0.137	56.860
1.0	-	-	0.706	5.872	5.199	5.993	6.397	2.934	2.142	1.424	0.843	31.511
1.5	-	-	0.002	0.261	0.931	1.247	1.687	1.529	1.194	0.657	0.583	8.090
2.0	-	-	-	0.002	0.133	0.289	0.478	0.421	0.462	0.345	0.220	2.349
2.5	-	-	-	-	0.004	0.021	0.115	0.131	0.166	0.107	0.154	0.698
3.0	-	-	-	-	-	0.004	0.023	0.057	0.062	0.064	0.088	0.298
3.5	-	-	-	-	-	-	0.002	0.008	0.018	0.031	0.053	0.113
4.0	-	-	-	-	-	-	0.002	-	0.006	0.008	0.039	0.055
4.5	-	-	-	-	-	-	0.002	-	-	0.002	0.008	0.012
5.0	-	-	-	-	-	-	-	-	-	-	0.004	0.004
> 5.0	-	-	-	-	-	-	-	-	-	0.002	0.008	0.010
Total	-	0.476	9.668	25.788	17.198	15.312	13.289	7.275	5.696	3.160	2.138	100 %

3.2. Tablas Hs-Tp Estacional

Distribución Conjunta de Periodo de Pico y Altura Significativa

Lugar : WANA2114138
Periodo : Dic. - Feb.

SERIE ANALIZADA: Ene. 1996 - Oct. 2013

Tabla Periodo de Pico (Tp) - Altura Significativa (Hs) en %

Hs (m)						Tp (s)					Total
	≤ 1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	> 10.0	
≤ 0.5	_	0.413	6.213	10.476	8.723	7.537	5.277	2.681	2.501	1.134	0.266	45.222
1.0	-	-	0.627	5.578	4.417	5.784	7.124	4.323	3.317	2.931	1.770	35.871
1.5	-	-	-	0.421	1.152	1.461	2.441	2.226	2.449	1.478	1.435	13.063
2.0	-	-	-	-	0.258	0.275	0.765	0.619	0.963	0.593	0.387	3.859
2.5	-	-	-	-	0.009	0.017	0.138	0.275	0.309	0.103	0.258	1.109
3.0	-	-	-	-	-	0.017	0.043	0.155	0.129	0.086	0.112	0.541
3.5	-	-	-	-	-	-	0.009	0.034	0.034	0.043	0.103	0.223
4.0	-	-	-	-	-	-	0.009	-	0.017	0.009	0.043	0.077
4.5	-	-	-	-	-	-	0.009	-	-	-	0.017	0.026
5.0	-	-	-	-	-	-	-	-	-	-	0.009	0.009
> 5.0	-	-	-	-	-	-	-	-	-	-	-	-
Total	-	0.413	6.841	16.475	14.558	15.091	15.813	10.313	9.720	6.377	4.400	100 %

TABLAS HS-TP ESTACIONAL

DISTRIBUCIÓN CONJUNTA DE PERIODO DE PICO Y ALTURA SIGNIFICATIVA

Lugar : WANA2114138 Periodo : Mar. - May.

Serie Analizada: Ene. 1996 - Oct. 2013

Tabla Periodo de Pico (Tp) - Altura Significativa (Hs) en %

Hs (m)						Tp (s)						Total
	≤ 1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	> 10.0	
≤ 0.5	_	0.325	6.735	17.229	11.243	7.462	5.019	1.902	1.423	0.418	0.162	51.918
1.0	-	-	0.820	5.877	6.148	6.604	7.764	3.178	2.096	1.083	1.059	34.627
1.5	_	-	0.008	0.302	1.144	1.670	2.173	1.910	1.485	0.503	0.526	9.720
2.0	-	-	-	-	0.116	0.410	0.634	0.495	0.402	0.371	0.186	2.614
2.5	-	-	-	-	-	0.023	0.178	0.131	0.147	0.101	0.116	0.696
3.0	-	-	-	-	-	-	0.039	0.054	0.070	0.062	0.093	0.317
3.5	-	-	-	-	-	-	-	-	0.008	0.031	0.015	0.054
4.0	-	-	-	-	-	-	-	-	0.008	-	0.039	0.046
4.5	-	-	-	-	-	-	-	-	-	0.008		0.008
5.0	-	-	-	-	-	-	-	-	-	-	-	-
> 5.0	-	-	-	-	-	-	-	-	-	-	-	-
Total	-	0.325	7.563	23.407	18.651	16.169	15.806	7.671	5.637	2.575	2.196	100 %

TABLAS HS-TP ESTACIONAL

DISTRIBUCIÓN CONJUNTA DE PERIODO DE PICO Y ALTURA SIGNIFICATIVA

LUGAR : WANA2114138 PERIODO : Jun. - Ago.

 $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10$

Periodo de Pico (s)

Serie Analizada: Ene. 1996 - Oct. 2013

Tabla Periodo de Pico (Tp) - Altura Significativa (Hs) en %

Hs (m)						Tp (s)						Total
	≤ 1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	> 10.0	
≤ 0.5	-	0.720	15.166	32.894	12.973	7.514	3.659	1.661	0.810	0.164	0.049	75.610
1.0	-	-	0.712	6.122	5.083	4.428	3.798	0.892	0.843	0.237	0.041	22.156
1.5	-	-	-	0.082	0.548	0.483	0.344	0.246	0.041	0.016	0.008	1.768
2.0	-	-	-	-	0.123	0.164	0.057	0.025	0.016	-	-	0.385
2.5	-	-	-	-	0.008	0.041	0.008	0.016	-	-	-	0.074
3.0	-	-	-	-	-	-	0.008	-	-	-	-	0.008
3.5	-	-	-	-	-	-	-	-	-	-	-	-
4.0	-	-	-	-	-	-	-	-	-	-	-	-
4.5	-	-	-	-	-	-	-	-	-	-	-	-
5.0	-	-	-	-	-	-	-	-	-	-	-	-
> 5.0	-	-	-	-	-	-	-	-	-	-	-	-
Total	-	0.720	15.878	39.098	18.735	12.629	7.874	2.840	1.711	0.417	0.098	100 %

TABLAS HS-TP ESTACIONAL

DISTRIBUCIÓN CONJUNTA DE PERIODO DE PICO Y ALTURA SIGNIFICATIVA

LUGAR : WANA2114138
PERIODO : Sep. - Nov.

 $0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad 7 \quad 8 \quad 9 \quad 10$

Periodo de Pico (s)

Serie Analizada: Ene. 1996 - Oct. 2013

Tabla Periodo de Pico (Tp) - Altura Significativa (Hs) en %

Hs (m)						Tp (s)						Total
	≤ 1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	> 10.0	
≤ 0.5	-	0.452	7.697	17.678	10.650	8.542	4.384	2.585	1.907	0.402	0.075	54.371
1.0	-	-	0.653	5.898	5.053	7.136	6.869	3.405	2.376	1.539	0.527	33.456
1.5	-	-	-	0.243	0.878	1.364	1.799	1.749	0.837	0.678	0.402	7.948
2.0	-	-	-	0.008	0.042	0.301	0.460	0.552	0.494	0.427	0.318	2.602
2.5	-	-	-	-	-	-	0.134	0.109	0.218	0.226	0.251	0.937
3.0	-	-	-	-	-	-	-	0.025	0.050	0.109	0.151	0.335
3.5	-	-	-	-	-	-	-	-	0.033	0.050	0.100	0.184
4.0	-	-	-	-	-	-	-	-	-	0.025	0.075	0.100
4.5	-	-	-	-	-	-	-	-	-	-	0.017	0.017
5.0	-	-	-	-	-	-	-	-	-	-	0.008	0.008
> 5.0	-	-	-	-	-	-	-	-	-	0.008	0.033	0.042
Total	-	0.452	8.349	23.827	16.623	17.343	13.645	8.425	5.915	3.464	1.958	100 %

3.3. Rosas de Oleaje Anual

Rosa de Altura Significativa

LUGAR: WANA2114138 PERIODO: Anual

CRITERIO DE DIRECCIONES: Procedencia SERIE ANALIZADA : Ene. 1996 - Oct. 2013

Intervalo de Calmas : 0 - 0.2 Porcentaje de Calmas : 10.96%

3.4. Rosas de Oleaje Estacional

Rosa de Altura Significativa

LUGAR: WANA2114138 PERIODO: Dic. - Feb.

CRITERIO DE DIRECCIONES: Procedencia SERIE ANALIZADA : Ene. 1996 - Oct. 2013

Intervalo de Calmas : 0 - 0.2 Porcentaje de Calmas : 8.89 %

ROSAS DE OLEAJE ESTACIONAL

Rosa de Altura Significativa

LUGAR: WANA2114138 PERIODO: Mar. - May.

CRITERIO DE DIRECCIONES: Procedencia SERIE ANALIZADA : Ene. 1996 - Oct. 2013

Intervalo de Calmas : 0 - 0.2 Porcentaje de Calmas : 7.82%

ROSAS DE OLEAJE ESTACIONAL

Rosa de Altura Significativa

Lugar : WANA2114138 Periodo : Jun. - Ago.

CRITERIO DE DIRECCIONES: Procedencia SERIE ANALIZADA : Ene. 1996 - Oct. 2013

Intervalo de Calmas : 0 - 0.2 Porcentaje de Calmas : 17.47%

ROSAS DE OLEAJE ESTACIONAL

Rosa de Altura Significativa

LUGAR: WANA2114138 PERIODO: Sep. - Nov.

CRITERIO DE DIRECCIONES: Procedencia SERIE ANALIZADA : Ene. 1996 - Oct. 2013

Intervalo de Calmas : 0 - 0.2 Porcentaje de Calmas : $9.73\,\%$

3.5. Tablas Hs - Dir. Anual

DISTRIBUCIÓN CONJUNTA DE DIRECCIÓN Y ALTURA SIGNIFICATIVA

LUGAR : WANA2114138 PERIODO : Anual

CRITERIO DE DIRECCIONES: Procedencia SERIE ANALIZADA : Ene. 1996 - Oct. 2013

Tabla Altura Significativa (H
s) - Dirección de Procedencia en %

Dire	cción						Hs (1	m)						Total
		≤ 0.2	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	> 5.0	
CALMA	AS	10.964												10.964
N	0.0		.720	.878	.144	.012	.002	-	-	-	-	-	-	1.756
NNE	22.5		.886	.952	.232	.033	-	.002	.004	-	-	-	-	2.109
NE	45.0		2.214	3.090	1.114	.258	.037	.027	.004	.002	-	-	-	6.746
ENE	67.5		5.355	4.963	1.323	.396	.127	.057	.047	.014	.004	.002	.010	12.299
E	90.0		4.557	3.434	1.120	.447	.166	.094	.031	.027	.006	.002	-	9.884
ESE	112.5		4.237	3.196	.819	.336	.148	.041	.008	-	-	-	-	8.785
SE	135.0		4.776	2.482	.349	.055	.025	.002	-	-	-	-	-	7.689
SSE	157.5		3.806	1.549	.300	.074	.016	.010	-	-	-	-	-	5.755
S	180.0		5.168	2.169	.441	.160	.029	.023	.002	-	-	-	-	7.991
SSW	202.5		8.729	4.996	1.311	.367	.109	.035	.016	.012	.002	-	-	15.578
sw	225.0		3.174	2.031	.488	.111	.033	.004	-	-	-	-	-	5.841
WSW	247.5		.786	.648	.146	.021	.002	-	-	-	-	-	-	1.602
W	270.0		.357	.226	.072	.021	-	-	-	-	-	-	-	.675
WNW	292.5		.316	.222	.080	.006	.002	-	-	-	-	-	-	.626
NW	315.0		.289	.265	.072	.031	-	-	-	-	-	-	-	.657
NNW	337.5		.531	.408	.080	.021	.002	.002	-	-	-	-	-	1.044
Total		10.964	45.900	31.508	8.089	2.349	.698	.297	.113	.055	.012	.004	.010	100 %

3.6. Tablas Hs - Dir. Estacional

DISTRIBUCIÓN CONJUNTA DE DIRECCIÓN Y ALTURA SIGNIFICATIVA

LUGAR : WANA2114138 PERIODO : Dic. - Feb.

CRITERIO DE DIRECCIONES: Procedencia SERIE ANALIZADA : Ene. 1996 - Oct. 2013

Tabla Altura Significativa (H
s) - Dirección de Procedencia en %

Dire	cción						Hs (1	m)						Total
		≤ 0.2	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	> 5.0	
CALMA	AS	8.893												8.893
N	0.0		.885	1.005	.232	.043	.009	-	-	-	-	-	-	2.174
NNE	22.5		.833	1.108	.464	.043	-	.009	.017	-	-	-	-	2.475
NE	45.0		3.119	4.992	2.071	.464	.009	.077	.009	.009	-	-	-	10.749
ENE	67.5		6.238	6.865	2.758	.773	.232	.060	.120	.017	.009	-	-	17.073
E	90.0		3.342	3.557	1.779	.756	.284	.155	.043	.052	.017	.009	-	9.993
ESE	112.5		1.839	2.217	.791	.361	.137	.069	.034	-	-	-	-	5.448
SE	135.0		1.633	1.529	.404	.060	.095	.009	-	-	-	-	-	3.729
SSE	157.5		1.555	1.083	.292	.086	.034	.043	-	-	-	-	-	3.093
S	180.0		2.329	1.401	.619	.146	.017	.043	-	-	-	-	-	4.554
SSW	202.5		6.410	5.319	1.959	.627	.206	.052	-	-	-	-	-	14.573
sw	225.0		4.434	3.643	.722	.249	.069	.017	-	-	-	-	-	9.134
WSW	247.5		1.615	1.452	.327	.043	-	-	-	-	-	-	-	3.437
W	270.0		.593	.395	.120	.034	-	-	-	-	-	-	-	1.143
WNW	292.5		.481	.258	.223	.017	.009	-	-	-	-	-	-	.988
NW	315.0		.361	.412	.137	.086	-	-	-	-	-	-	-	.997
NNW	337.5		.670	.627	.163	.069	.009	.009	-	-	-	-	-	1.547
Total		8.893	36.338	35.865	13.061	3.858	1.108	.541	.223	.077	.026	.009	-	100 %

Tablas Hs - Dir. Estacional

DISTRIBUCIÓN CONJUNTA DE DIRECCIÓN Y ALTURA SIGNIFICATIVA

LUGAR: WANA2114138 PERIODO: Mar. - May.

CRITERIO DE DIRECCIONES: Procedencia SERIE ANALIZADA: Ene. 1996 - Oct. 2013

Tabla Altura Significativa (H
s) - Dirección de Procedencia en %

Dire	cción						Hs (m)						Total
		≤ 0.2	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	> 5.0	
CALM	AS	7.818												7.818
N	0.0		.394	.680	.155	.008	-	_	_	_	-	-	-	1.237
NNE	22.5		.696	.789	.162	.077	-	-	-	-	-	-	-	1.724
NE	45.0		1.415	2.536	.851	.232	.054	.031	-	-	-	-	-	5.119
ENE	67.5		3.549	4.222	1.191	.387	.139	.015	.023	.015	-	-	-	9.542
E	90.0		3.789	4.083	1.616	.472	.232	.162	.031	.031	.008	-	-	10.424
ESE	112.5		4.369	4.021	1.500	.711	.232	.093	-	-	-	-	-	10.926
SE	135.0		4.717	2.444	.526	.070	-	-	-	-	-	-	-	7.756
SSE	157.5		3.851	2.181	.402	.085	-	-	-	-	-	-	-	6.519
S	180.0		6.457	3.147	.518	.170	-	-	-	-	-	-	-	10.292
SSW	202.5		10.509	6.689	1.724	.294	.039	.015	-	-	-	-	-	19.270
SW	225.0		2.420	2.250	.634	.054	-	-	-	-	-	-	-	5.359
WSW	247.5		.541	.456	.139	.008	-	-	-	-	-	-	-	1.144
W	270.0		.379	.240	.116	.015	-	-	-	-	-	-	-	.750
WNW	292.5		.247	.294	.070	-	-	-	-	-	-	-	-	.611
NW	315.0		.255	.263	.070	.015	-	-	-	-	-	-	-	.603
NNW	337.5		.510	.333	.046	.015	-	-	-	-	-	-	-	.905
Total		7.818	44.100	34.627	9.720	2.614	.696	.317	.054	.046	.008	-	-	100 %

Tablas Hs - Dir. Estacional

DISTRIBUCIÓN CONJUNTA DE DIRECCIÓN Y ALTURA SIGNIFICATIVA

Lugar : WANA2114138 Periodo : Jun. - Ago.

CRITERIO DE DIRECCIONES: Procedencia SERIE ANALIZADA: Ene. 1996 - Oct. 2013

Tabla Altura Significativa (H
s) - Dirección de Procedencia en %

Dire	cción						Hs (1	m)						Total
		≤ 0.2	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	> 5.0	
CALM	AS	17.474												17.474
N	0.0		.843	.581	.008	-	-	-	-	-	-	-	-	1.432
NNE	22.5		.868	.696	.016	-	-	-	-	-	-	-	-	1.580
NE	45.0		1.629	1.220	.090	.033	-	-	-	-	-	-	-	2.971
ENE	67.5		4.919	3.217	.229	.041	.008	-	-	-	-	-	-	8.414
E	90.0		5.901	2.243	.229	.057	.016	-	-	-	-	-	-	8.447
ESE	112.5		6.490	3.143	.188	.008	-	-	-	-	-	-	-	9.830
SE	135.0		8.086	2.889	.090	.033	-	-	-	-	-	-	-	11.098
SSE	157.5		6.752	1.490	.106	.008	.008	-	-	-	-	-	-	8.365
S	180.0		7.587	2.341	.286	.049	.008	-	-	-	-	-	-	10.272
SSW	202.5		10.869	3.037	.393	.090	.033	.008	-	-	-	-	-	14.430
sw	225.0		2.955	.745	.090	.016	-	-	-	-	-	-	-	3.806
WSW	247.5		.385	.033	.008	.008	-	-	-	-	-	-	-	.434
W	270.0		.106	.008	-	.033	-	-	-	-	-	-	-	.147
WNW	292.5		.172	.106	-	.008	-	-	-	-	-	-	-	.286
NW	315.0		.180	.115	.008	-	-	-	-	-	-	-	-	.303
NNW	337.5		.393	.295	.025	-	-	-	-	-	-	-	-	.712
Total		17.474	58.136	22.156	1.768	.385	.074	.008	-	-	-	-	-	100 %

Tablas Hs - Dir. Estacional

DISTRIBUCIÓN CONJUNTA DE DIRECCIÓN Y ALTURA SIGNIFICATIVA

LUGAR : WANA2114138 PERIODO : Sep. - Nov.

CRITERIO DE DIRECCIONES: Procedencia SERIE ANALIZADA: Ene. 1996 - Oct. 2013

Tabla Altura Significativa (H
s) - Dirección de Procedencia en %

Dirección		Hs (m)												Total
		≤ 0.2	0.5	1.0	1.5	2.0	2.5	3.0	3.5	4.0	4.5	5.0	> 5.0	
CALMAS		9.728												9.728
N	0.0		.786	1.271	.184	-	-	_	-	-	-	-	-	2.242
NNE	22.5		1.163	1.238	.301	.008	-	-	-	-	-	-	-	2.710
NE	45.0		2.794	3.747	1.514	.318	.084	-	.008	-	-	-	-	8.465
ENE	67.5		6.893	5.696	1.188	.402	.134	.159	.050	.025	.008	.008	.042	14.605
E	90.0		5.194	3.831	.853	.519	.134	.059	.050	.025	-	-	-	10.665
ESE	112.5		4.124	3.312	.753	.243	.217	-	-	-	-	-	-	8.649
SE	135.0		4.517	3.036	.368	.059	.008	-	-	-	-	-	-	7.988
SSE	157.5		2.936	1.380	.393	.117	.025	-	-	-	-	-	-	4.852
S	180.0		4.065	1.681	.343	.276	.092	.050	.008	-	-	-	-	6.516
SSW	202.5		6.876	4.852	1.171	.477	.167	.067	.067	.050	.008	-	-	13.735
SW	225.0		2.986	1.539	.510	.134	.067	-	-	-	-	-	-	5.236
WSW	247.5		.652	.703	.117	.025	.008	-	-	-	-	-	-	1.506
W	270.0		.360	.268	.050	-	-	-	-	-	-	-	-	.678
WNW	292.5		.376	.226	.033	-	-	-	-	-	-	-	-	.636
NW	315.0		.368	.276	.075	.025	-	-	-	-	-	-	-	.744
NNW	337.5		.560	.393	.092	_	-	_	-	-	_	-	-	1.046
Total		9.728	44.651	33.450	7.946	2.601	.937	.335	.184	.100	.017	.008	.042	100 %

3.7. REGIMEN MEDIO DE HS ANUAL

Anual

3.8. REGIMEN MEDIO DE HS ESTACIONAL

DICIEMBRE-FEBRERO

REGIMEN MEDIO DE HS ESTACIONAL

Junio-Agosto

3.9. REGIMEN MEDIO DE HS POR DIRECCIONES ANUAL

REGIMEN MEDIO DE HS POR DIRECCIONES ANUAL

SE SSE

SSW

SW WSW

REGIMEN MEDIO DE HS POR DIRECCIONES ANUAL

WNW

NW NNW

3.10. Duración Media y Máxima de Excedencia de Hs Anual

DURACION MEDIA Y MAXIMA DE EXCEDENCIA

LUGAR: WANA2114138 PERIODO: Anual

PARAMETRO: Altura Significativa SERIE: Ene. 1996 - Oct. 2013

DURACION MEDIA DE EXCEDENCIA

DURACION MAXIMA DE EXCEDENCIA

3.11. Persistencias de Hs Sobre 2.0 (m) Anual

PERSISTENCIA SOBRE EL NIVEL 2.00 (m)

LUGAR: WANA2114138 PERIODO: Anual

PARAMETRO: Altura Significativa SERIE: Ene. 1996 - Oct. 2013

NUMERO MEDIO DE SUPERACIONES

Duracion >=(Dias)

PORCENTAJE DE SUPERACIONES

3.12. Persistencias de Hs Sobre 1.5 (m) Anual

PERSISTENCIA SOBRE EL NIVEL 1.50 (m)

LUGAR: WANA2114138 PERIODO: Anual

PARAMETRO : Altura Significativa SERIE : Ene. 1996 - Oct. 2013

NUMERO MEDIO DE SUPERACIONES

Duracion >=(Dias)

PORCENTAJE DE SUPERACIONES

3.13. Persistencias de Hs Sobre 1.0 (m) Anual

PERSISTENCIA SOBRE EL NIVEL 1.00 (m)

LUGAR: WANA2114138 PERIODO: Anual

PARAMETRO: Altura Significativa SERIE: Ene. 1996 - Oct. 2013

NUMERO MEDIO DE SUPERACIONES

Duracion >=(Dias)

PORCENTAJE DE SUPERACIONES

3.14. Duración Media y Máxima de No Excedencia de Hs Anual

DURACION MEDIA Y MAXIMA DE NO EXCEDENCIA

LUGAR: WANA2114138 PERIODO: Anual

PARAMETRO : Altura Significativa SERIE : Ene. 1996 - Oct. 2013

DURACION MEDIA DE NO EXCEDENCIA

DURACION MAXIMA DE NO EXCEDENCIA

3.15. Persistencias de Hs Bajo 2.0 (m) Anual

PERSISTENCIA BAJO EL NIVEL 2.00 (m)

LUGAR: WANA2114138 PERIODO: Anual

PARAMETRO: Altura Significativa SERIE: Ene. 1996 - Oct. 2013

NUMERO MEDIO DE SUPERACIONES

PORCENTAJE DE SUPERACIONES

3.16. Persistencias de Hs Bajo 1.5 (m) Anual

PERSISTENCIA BAJO EL NIVEL 1.50 (m)

LUGAR: WANA2114138 PERIODO: Anual

PARAMETRO: Altura Significativa SERIE: Ene. 1996 - Oct. 2013

NUMERO MEDIO DE SUPERACIONES

PORCENTAJE DE SUPERACIONES

3.17. Persistencias de Hs Bajo 1.0 (m) Anual

PERSISTENCIA BAJO EL NIVEL 1.00 (m)

LUGAR: WANA2114138 PERIODO: Anual

PARAMETRO : Altura Significativa SERIE : Ene. 1996 - Oct. 2013

NUMERO MEDIO DE SUPERACIONES

Duracion >=(Dias)

PORCENTAJE DE SUPERACIONES

