Ita: JA At least one of Mis different Ho: 11=12=113 from one another.

ANOVA table

Source	of	SS	MS	F	p-val
Group Error Total	2 (3-1) 9 (12-3) 11 (12-1)	122.17 (182.92-122.17) 60.75 (Given) 182.92 (Given)	61.085 (122.17/2) 6.75 (60.75/9)	9.05 (<u>\$62.081</u>)	0.007
of num = 2 of den = 9		₩ ₀	\$F2,9	P-val 0.7 9.05	\$ =0.00 \$ <0.0.

Conclusion: (Since p-val is tiny) we have very strong evidence to say average wt loss with these 3 diets are NOT all the same in population.

Which ones are different? Multiple comparisons.

Sums of Squares

Total SS: SST =
$$\sum_{i=1}^{g} \sum_{j=1}^{n_i} (y_{ij} - \overline{y}_{..})^2$$
 $\overrightarrow{M}: N-1$

$$\frac{2}{2} \sum_{j=1}^{n} (y_{ij} - y_{i.})^{2} = \sum_{j=1}^{n} \sum_{j=1}^{n} (y_{ij} - y_{i.})^{2} + (y_{ij} - y_{i.})^{2} + (y_{ij} - y_{i.})^{2} + 2(y_{ij} - y_{i.})(y_{i} - y_{i.})^{2}$$

$$= \sum_{j=1}^{n} \sum_{j=1}^{n} [(y_{ij} - y_{i.})^{2} + (y_{ij} - y_{i.})^{2} + 2(y_{ij} - y_{i.})(y_{i} - y_{i.})^{2}]$$

$$= \sum_{j=1}^{n} \sum_{j=1}^{n} [(y_{ij} - y_{i.})^{2} + (y_{ij} - y_{i.})^{2} + 2(y_{ij} - y_{i.})(y_{i} - y_{i.})^{2}]$$

$$I_{n} = \sum_{i=1}^{q} \sum_{j=1}^{n} (y_{i} - y_{i})^{2} = \sum_{i=1}^{q} n_{i} (y_{i} - y_{i})^{2} = SSG$$

$$I_{n} = \sum_{i=1}^{q} \sum_{j=1}^{n} (y_{ij} - y_{i})^{2} = \sum_{i=1}^{q} [(y_{i} - y_{i})^{2}] \sum_{j=1}^{n} (y_{j} - y_{i})^{2} = \sum_{i=1}^{n} [(y_{i} - y_{i})^{2}] \sum_{j=1}^{n} (y_{j} - y_{i})^{2} = \sum_{i=1}^{n} [(y_{i} - y_{i})^{2}] \sum_{j=1}^{n} (y_{j} - y_{i})^{2} = \sum_{i=1}^{n} [(y_{i} - y_{i})^{2}] \sum_{j=1}^{n} (y_{j} - y_{i})^{2} = \sum_{i=1}^{n} [(y_{i} - y_{i})^{2}] \sum_{j=1}^{n} (y_{j} - y_{i})^{2} = \sum_{i=1}^{n} [(y_{i} - y_{i})^{2}] \sum_{j=1}^{n} (y_{j} - y_{i})^{2} = \sum_{i=1}^{n} [(y_{i} - y_{i})^{2}] \sum_{j=1}^{n} (y_{j} - y_{i})^{2} = \sum_{i=1}^{n} [(y_{i} - y_{i})^{2}] \sum_{j=1}^{n} (y_{j} - y_{i})^{2} = \sum_{i=1}^{n} [(y_{i} - y_{i})^{2}] \sum_{j=1}^{n} (y_{j} - y_{i})^{2} = \sum_{i=1}^{n} [(y_{i} - y_{i})^{2}] \sum_{j=1}^{n} (y_{j} - y_{i})^{2} = \sum_{i=1}^{n} [(y_{i} - y_{i})^{2}] \sum_{j=1}^{n} (y_{j} - y_{i})^{2} = \sum_{i=1}^{n} [(y_{i} - y_{i})^{2}] \sum_{j=1}^{n} (y_{j} - y_{i})^{2} = \sum_{i=1}^{n} [(y_{i} - y_{i})^{2}] \sum_{j=1}^{n} (y_{j} - y_{i})^{2} = \sum_{i=1}^{n} [(y_{i} - y_{i})^{2}] \sum_{j=1}^{n} (y_{j} - y_{i})^{2} = \sum_{i=1}^{n} [(y_{i} - y_{i})^{2}] \sum_{j=1}^{n} (y_{j} - y_{i})^{2} = \sum_{i=1}^{n} [(y_{i} - y_{i})^{2}] \sum_{j=1}^{n} (y_{j} - y_{i})^{2} = \sum_{i=1}^{n} [(y_{i} - y_{i})^{2}] \sum_{j=1}^{n} (y_{j} - y_{i})^{2} = \sum_{i=1}^{n} [(y_{i} - y_{i})^{2}] \sum_{j=1}^{n} [(y_{i}$$

$$\frac{1}{\sqrt{2}} = \frac{1}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}} \frac{\sqrt{2}}{\sqrt{2}}$$

$$MS = Mean Squares
SSE = $\frac{2}{14} \frac{2}{5} \frac{(y_{ij} - y_{i.})^2}{y_{i.}} = \frac{356}{2} \frac{MSG}{9-1}$

$$MSE = \frac{SSE}{N-9}$$

$$SSE = \frac{2}{14} \frac{2}{5} \frac{(y_{ij} - y_{i.})^2}{y_{i.}} = \frac{2}{14} \frac{2}{5} \frac{(n_{i-1})S_i^2}{y_{i-1}}$$

$$SSE = \frac{1}{14} \frac{2}{5} \frac{(y_{ij} - y_{i.})^2}{y_{i.}} = \frac{1}{14} \frac{2}{5} \frac{(n_{i-1})S_i^2 + (n_{2-1})S_i^2}{y_{i+1}}$$

$$SSE = \frac{1}{14} \frac{2}{5} \frac{(y_{ij} - y_{i.})^2}{y_{i.}} = \frac{1}{14} \frac{2}{5} \frac{2}{5} \frac{(n_{i-1})S_i^2 + (n_{2-1})S_i^2}{y_{i+1}}$$

$$SSE = \frac{1}{14} \frac{2}{5} \frac{2}{5} \frac{(y_{ij} - y_{i.})^2}{y_{i.}} = \frac{1}{14} \frac{2}{5} \frac{2}{5} \frac{(n_{i-1})S_i^2 + (n_{2-1})S_i^2}{y_{i+1}}$$

$$SSE = \frac{1}{14} \frac{2}{5} \frac{2}{5} \frac{(y_{ij} - y_{i.})^2}{y_{i.}} = \frac{1}{14} \frac{2}{5} \frac{2}{5} \frac{(n_{i-1})S_i^2 + (n_{2-1})S_i^2}{y_{i+1}}$$

$$SSE = \frac{1}{14} \frac{2}{5} \frac{2}{5} \frac{(y_{ij} - y_{i.})^2}{y_{i.}} = \frac{1}{14} \frac{2}{5} \frac{2}{5} \frac{(n_{i-1})S_i^2 + (n_{2-1})S_i^2}{y_{i+1}}$$

$$SSE = \frac{1}{14} \frac{2}{5} \frac{2}{5} \frac{(y_{ij} - y_{i.})^2}{y_{i.}} = \frac{1}{14} \frac{2}{5} \frac{2}{5} \frac{2}{5} \frac{(n_{i-1})S_i^2 + (n_{2-1})S_i^2}{y_{i+1}}$$

$$SSE = \frac{1}{14} \frac{2}{5} \frac{2}$$$$

· Multiple comparison of means Refore: CI for M. X ± t. S. $\overline{X_1} - \overline{X_2} \pm \frac{1}{2} \sqrt{\frac{S_1^2}{n_1} + \frac{S_2^2}{n_2}}$ 1. Individual C.I. for each & mean ui: gi. + t. Sp Sp = pooled stder = average within variability b/c assumption equal variance. Sp=VMSE t. df = offerr = N-9 If CI. for 2 tots DO NOT overlap () →SIG DIFF botwon those 2 groups. () 95 CI. 5% MIS 1/2 M3 MI-M2 MI-M3 M2-M3 confloses 5/ 5/ God 1055 15% Family confidence 1. 100/3-15/3=85% What if we had 4 groups? How many comparisons? If g = #groups, $\# companisons = {9 \choose 1} {1-2} {2-3} {2-4}$