基礎コンピュータ工学 第2章 情報の表現 (パート1)

https://github.com/tctsigemura/TecTextBook

本スライドの入手:

情報の表現

コンピュータの内部で情報が表現されるか. どのような回路で扱うことができるか.

コンピュータは電気で動くので情報も電気で表現する必要がある.

電気を用いた情報の表現(おおかみ情報)

電気の「ON/OFF」を用いて情報を表現する.

ランプ	意味
OFF	おおかみは来ていない
ON	おおかみが来た!!

ビット

前例のような「二つのどちらか」を表す情報が「情報の最小単位」にな る.情報の最小単位のことを「**ビット(bit)**」と呼ぶ.

ビットの値は「ON/OFF」ではなく、「1/0」で書く.

 $\left(\begin{array}{ccc}
\mathsf{ON} & : & 1 \\
\mathsf{OFF} & : & 0
\end{array}\right)$

「おおかみが来た情報」をビットで表現する.

ビット値	意味
0 (off)	おおかみは来ていない
1 (on)	おおかみが来た!!

より複雑な情報の表現(拡張おおかみ情報)

複雑な情報は複数のランプ (ビット) の組み合わせで表現する.

ビット値	意味
00	おおかみはきていない(平気)
01	おおかみが1頭来た(戦う)
10	おおかみが2頭来た(?)
11	おおかみがたくさん来た(逃げる)

ビットの組合せと表現できる情報

拡張おおかみ情報は 2 ビットで 4 種類の情報を表現した。一般には n ビットで 2^n 種類の情報を表現できる。

ビット数	ビットの組合せ	組合せ数
1	0 1	$2^1 (= 2)$ $2^2 (= 4)$
2	00 01 10 11	$2^2 (= 4)$
3	000 001 010 011	
	100 101 110 111	$2^3 (= 8)$
n		2^n

「拡張おおかみ情報」のように、ビットの組合せに意味を持たせることで様々な情報を表現できる.

ビットの組合せの意味を表にして定義する.

ビット、ニブル、バイト

「ビット」は情報の最小単位 「ビット」は小さすぎるので「4 ビット」,「8 ビット」 まとめたものもある.

名前	ビット数	組合せの数
ビット (bit)	1	$2^1 = 2$
ニブル (nibble) バイト (byte)	4	$2^4 = 16$
バイト (byte)	8	$2^8 = 256$

スマホの容量:32GB, 64GB, 128GB (「B」は**バイト**の意味)

USBメモリの容量:32GB, 64GB, 128GB(「B」は**バイト**の意味)

通信速度制限:7GB を超えると制限される(「B」は**バイト**の意味)

通信速度:通常は 100Mbps (「b」は**ビット**の意味)

通信速度:制限されると 128kbps (「b」は**ビット**の意味)

参考: bps:【bits per second / ビット毎秒】

数値の表現

これまで,ビットの組合せの意味決める.(表などにする)ビットの組合せの意味を**ルールで決める**場合もある. コンピュータの内部では数値は**2進数**で表現する.

10 進数

- 0~9の10種類の数字だけを使用する数値の表現方法.
- 一桁毎に 10 倍の重みを持つ

2 進数

- 0,1の2種類の数字だけを使用する数値の表現方法。
- 一桁毎に2倍の重みを持つ
- 0, 1の2種類の数字をビットの0, 1と対応付けしやすい。
- nビット(桁)の2進数で0~2ⁿ−1までの値を表現できる.

<u>4ビットの2進数</u>

b_3	b_2	b_1	b_0	意味
$ \begin{array}{c c} b_3 \\ \hline 0 \\ 0 \\ 0 \\ 0 \end{array} $	0	0	0	0
0	0	0	1	1
0	0	1	0	1 2 3
0	0	1	1	3
0	1	0	0	
0	1	0	1	5
0	1	1	0	4 5 6 7
0	1	1	1	7
1	0	0	0	8 9
0 0 0 0 1 1	0	0	1	9
1	0	1	0	10
1	0	1	1	11
1	1	0	0	12
1	1	0	1	13
1	1	1	0	14
1	1	1	1	15

宿題

宿題

- 1) 言葉の確認 (ビット、ニブル、バイト)
- 2) n ビットの組合せの数
 - 3ビットで表現できる情報の種類は何種類か?
 - 32種類の情報表現するためには何ビット必要か?
- 3) 0_{10} (0000_2) ~ 15_{10} (1111_2) の範囲を 2進数で数を数える練習をしなさい。 (小学校の1年生が10まで数える練習をするように)