INDUCTIVE AND CAPACITIVE COUPLING

MATTHEW BECK

Nomenclature

 $\begin{array}{l}
\omega_r \\
C_{\text{Res}} \\
C_c \\
L_{\text{Res}} \\
M \\
Q_c^C \\
Q_c^L
\end{array}$

Resonant cavity frequency
Resonator Capacitance
Coupling Capacitance
Resonator Inductance
Coupling Inductance
Capacitive coupling quality factor
Inductive Coupling quality factor

INDUCTIVE COUPLING

We begin by defining the noise current power spectral density for the input side of the circuit.

$$S_I = \frac{4k_b T}{R_I} \tag{1}$$

The induced noise voltage on the resonator is then

$$S_V = 4k_b T R_e \tag{2}$$

We can relate (1) and (2) via the mutual inductance, M and the frequency.

Date: October 18, 2016.

$$\frac{4k_bT}{R_l}(\omega M)^2 = 4k_bTR_e \tag{3}$$

Solving for R_e yields

$$Re = \frac{(\omega M)^2}{R_l} \tag{4}$$

The inductive coupling quality factor is then defined as

$$Q_c^L = \frac{\omega L_{\text{res}}}{R_e} = \frac{L_{\text{res}} R_l}{\omega M^2} = \frac{2Z_0 L_{\text{res}}}{\omega M^2}$$
 (5)

Where the substitution $R_l = 2Z_0$ has been made.

CAPACITIVE COUPLING

We begin by defining the noise voltage power spectral density for the input side of the circuit

$$S_V = 4k_b T R_l \tag{6}$$

This induces a noise current in the resonator of the form

$$S_I = \frac{4k_b T}{R_e} \tag{7}$$

This can be equated via the coupling impedance

$$\frac{S_I}{(\omega C_c)^2} = S_V \tag{8}$$

$$\frac{4k_bT}{R_e(\omega C_c)^2} = 4k_bTR_l$$

$$R_e = \frac{1}{(\omega C_c)^2R_l}$$
(9)

$$R_e = \frac{1}{(\omega C_c)^2 R_l} \tag{10}$$

We can then define the coupling quality factor as

$$Q_c^C = \omega R_e C \tag{11}$$

$$= \frac{\omega C}{(\omega C_c)^2 R_l} \tag{12}$$

$$= \frac{\omega C}{(\omega C_c)^2 R_l}$$

$$= \frac{C}{2Z_0 \omega C_c^2}$$
(12)

Where we have again made the substitution $R_l=2Z_0$. One can see that (13) matches with the result obtained in Goppl, et al. in the limit that $(\omega C_c R_l)^2 \ll 1$