Ridge repression solution: $0 ||Y - XB||_{2}^{2} + \lambda ||B||_{2}^{2} = |(Y - XB)^{T}(Y - XB) + \lambda \cdot B^{T}B = f(B)$ YTY-2YTXB+BTXTXB+ 2.BTGB

Let's use a more general penalty:
$$\lambda \cdot \beta^T G \beta$$
, where G is seen an appropriate penalty matrix; e.g., $G = I$ in ridge reg. If G is set symmetric pol, or X is of full rank, solution is unique. $P_{\beta} f(\beta) = -2X^T Y + 2 X^T X \beta + 2 \lambda G \beta = 0$

PB+(B) = -2xTY + 2xTXB + 2 x GB =

 $(X^{T}X + \lambda G).\beta = X^{T}Y = 7\beta_{\lambda} = (X^{T}X + \lambda G)^{-1}.X^{T}Y.$ Check 2nd order conditions - skipped here.

(2)

Want: min $f(\beta)$ subject to $\beta^{T}\beta \leq S$; $\langle = \rangle$ $\beta^{T}\beta - S \leq 0$ Construct a lagrangian obj. fren: $f(\beta,\delta) = 11Y - X\beta 1/2^2 + Y \cdot (11\beta 1/2^2 - 5)$ Mow minimize $f(\beta, \gamma)$ wit β , γ jointly. Ppf(B,8) = - 2xTY + 2xTxB + 28. I.B eg (2) = 0 $P_{\delta} f(\beta, \delta) = \beta^{T} \beta - S$ eg (b) = 0 From eq. (a): $\beta \gamma = (x^T x + \lambda \cdot I)^{-1} \cdot x^T \cdot \gamma$ eq. (b): $\beta^T \beta$ = S. For a peneral value of f, $\beta^T\beta = S$ won't hold, but we can pich the value of f (will depend on S) such that $\beta g^T\beta r = S$. More general constrained optimization optimality conditions: KKT (KKT: Karush-Kuhn-Tucker).

2) f(p) = ||Y-XB||2 = YTY-2YTXB + BTXTXB.