Control Systems

Adyasa Mohanty*

Figure 0 shows a feedback transconductance amplifier implemented using an op amp with open-loop gain μ , a very large input resistance, and an output resistance r_o . The output current I_o that is delivered to the load resistance R_L is sensed by the feedback network composed of the three resistances R_M , R_1 , and R_2 , and a proportional voltage V_f is fed back to the negative-input terminal of the op amp. Find G,H and T. If the loop gain is large, find an approximate expression for T and state precisely the condition for which this applies. The parameters given are shown

Fig. 0

in the TABLE.0

1. Draw the block diagram and the equivalent circuit for Fig. 0

Solution: The equivalent circuit of the amplifier is in Fig. 1

2. Draw the block diagram and equivalent ciruit for H.

Solution: See Fig. ?? and ??.

TABLE 0: 1

3. Find *H*.

Solution: From Fig. ??,

$$H = \frac{V_f}{I_o}$$
 (3.1)
= $\frac{R_1 R_M}{R_1 + R_2 + R_M}$ (3.2)

$$=\frac{R_1 R_M}{R_1 + R_2 + R_M} \tag{3.2}$$

4. Find *G*.

Solution: From Fig. 1,

$$G = \frac{I_o}{V_i} \tag{4.1}$$

$$=\mu \tag{4.2}$$

5. Find *T*.

^{*}The author is with the Department of Electrical Engineering, Indian Institute of Technology, Hyderabad 502285 India. All content in this manual is released under GNU GPL. Free and open source.

Solution:

$$T = \frac{G}{1 + GH}$$

$$\mu(R_1 + R_2 + R_M)$$
(5.1)

$$= \frac{\mu (R_1 + R_2 + R_M)}{R_1 + R_2 + R_M + \mu R_1 R_M}$$
 (5.2)

$$= \frac{\mu(R_1 + R_2 + R_M)}{R_1 + R_2 + R_M + \mu R_1 R_M}$$

$$\approx \frac{1}{H} = \frac{R_1 + R_2 + R_M}{R_1 R_M}$$
(5.2)

6. Summarize your results in a table.

Solution: See Table 6

Parame-	Definition	For given circuit
ters		
Open	G	μ
loop gain		
Feedback	Н	$\frac{R_1R_M}{R_1+R_2+R_M}$
factor		XI IXZ XXW
Loop gain	GH	$\mu \frac{R_1 R_M}{R_1 + R_2 + R_M}$
Amount	1+GH	$1 + \frac{\mu R_1 R_M}{R_1 + R_2 + R_M}$
of		$R_1 \cap R_2 \cap R_M$
feedback		
Closed	T	$\frac{\mu(R_1 + R_2 + R_M)}{R_1 + R_2 + R_M + \mu R_1 R_M}$
loop gain		$K_1 + K_2 + K_M + \mu K_1 K_M$

TABLE 6

7. Find V_o for the parameters given in Table 7. Solution: The following code computes the

Parameter	Value
R_1	1000Ω
R_2	1000Ω
R_L	1000Ω
R_M	1000Ω
V_s	1 <i>V</i>

TABLE 7

value of V_o using the fact that

$$V_o = \frac{V_s}{H} \tag{7.1}$$

8. Verify your result through spice.

Solution: