How many scatters with 1H and with ^{235}U , on the average, would it take for 2~MeV neutrons to reach an average thermal energy of 0.025~eV?

Answer

The average logarithmic energy loss is

$$\xi = \overline{\ln \frac{E}{E'}} = 1 + \frac{\alpha}{1 - \alpha} \ln \alpha, \alpha = \left(\frac{A - 1}{A + 1}\right)^2$$

So the average scatter time is

$$n=rac{1}{\xi} {
m ln} \, rac{E_i}{E_f}$$

For this exercise, the total logarithmic energy loss is

$$\ln rac{E_i}{E_f} = \ln igg(rac{2~\mathrm{MeV}}{0.025~\mathrm{eV}}igg) = 18.198$$

For $^1\mathrm{H}$, $A_{^1\mathrm{H}}=1.00783~\mathrm{u}$, $\xi=0.99983$, thus

$$n(^{1}\text{H}) = \frac{18.198}{0.99983} = 18$$

For $^{235}\mathrm{U}$, $A_{^{235}\mathrm{U}}=235.044~\mathrm{u}$, $\xi=0.008485$, thus

$$n(^{235}\mathrm{U}) = \frac{18.198}{0.008485} = 2145$$

Question 2

Discuss the relative merits of water and graphite for use in a thermal reactor.

Answer

Water:

- much less expensive
- can also be used as the coolant for a power reactor
- boils at lower temperatures and thus require a pressure vessel
- σ_a is relatively large (0.664 b)
- larger ξ and slows neutrons with fewer scatters
- much more inert chemically
- cannot be used as a structural element of the core
- $\bullet~$ can produce radioactive 3H and $^{16}~N$ by activation
- can dissociate and produce explosive hydrogen-oxygen gas mixtures

Graphite:

- reactor-grade (high purity) graphite is expensive
- cannot be used as the coolant

- solid to very high temperatures; thus no need for a pressure vessel
- σ_a is very small ($34\,\mathrm{mb}$)
- smaller ξ and requires more scatters to slow neutrons
- burns and thus hot graphite must be isolated from oxygen
- can be used as structural elements of the core
- does not activate and produce radionuclides
- stores energy and must be periodically annealed to avoid a sudden energy release (Wigner effect).

Plot the thermal fission factor for uranium as a function of its atom-% enrichment in $^{235}\mathrm{U}.$

Answer

The thermal fission factor is

$$\eta =
u rac{ar{\Sigma}_f}{ar{\Sigma}_a} = rac{
u_{235}ar{\sigma}_f^{235}}{ar{\sigma}_a^{235} + ar{\sigma}_a^{238}(N^{238}/N^{235})}$$

By definition of enrichment, e,

$$\frac{N^{235}}{N^{238} + N^{235}} = e \Rightarrow \frac{N^{238}}{N^{235}} = \frac{e}{1 - e}$$

From Tabel 10.1 and Table 10.2 of our text book,

$$\bar{\sigma}_a^{235} = 592.6 \; \mathrm{b}, \sigma_a^{238} = 2.382 \; \mathrm{b}, \sigma_f^{235} = 505.9 \; \mathrm{b}, \nu^{235} = 2.4367 \; \mathrm{b}$$

Bring these in we get the relationship of η and e:

$$\eta = rac{
u_{235}\sigma_f^{235}}{\sigma_a^{235} + \sigma_a^{238}rac{e}{1-e}}$$

By those python code, we can plot it out:


```
# import matplotlib.pyplot as plt
# import numpy as np
# import astropy.units as u
sigma_a_235 = 592.6 **u.barn
sigma_a_238 = 2.382 #*u.barn
sigma_f_235 = 505.9#*u.barn
nu235=2.4367
e = np.logspace(-4, -0, 1000)
eta = nu235*sigma_f_235/(sigma_a_235+sigma_a_238*(1-e)/e)
plt.plot(e*100,eta)
plt.xlabel('enrichment(%)')
plt.xscale('log')
plt.ylabel('thermal fission factor')
plt.yscale('linear')
# plt.yticks((0,1,2))
plt.grid(True)
plt.savefig('hw3c_3.svg')
plt.show()
```

Consider a homogeneous mixture of fully enriched $^{235}{
m U}$ and graphite. Plot k_{∞} versus N^{235}/N^c . What is the fuel-to-moderator ratio that yields the maximum value of k_{∞} ?

Answer

$$k_{\infty} = \eta \epsilon p f$$

For a dilute mixture of fully enriched uranium and carbon, $\epsilon p pprox 1$, thus

$$k_{\infty} = \eta f = rac{
u^{235}ar{\sigma}_f^{235}}{ar{\sigma}_a^{235} + ar{\sigma}_a^crac{N^c}{N^{235}}} = rac{
u^{235}ar{\sigma}_f^{235}}{ar{\sigma}_a^{235} + ar{\sigma}_a^c r^{-1}}
onumber \ ar{\sigma}_a^c = (\sqrt{\pi}/2)\sigma_a^c = 3.422 ext{ mb}$$

Bring these in and we can plot it out by the code below


```
# import matplotlib.pyplot as plt
# import numpy as np
# import astropy.units as u
sigma_a_235 = 592.6#*u.barn
sigma_a_{238} = 2.382 #*u.barn
sigma_f_235 = 505.9#*u.barn
nu235=2.4367
e = np.logspace(-4, -0, 1000)
eta = nu235*sigma_f_235/(sigma_a_235+sigma_a_238*(1-e)/e)
plt.plot(e*100,eta)
plt.xlabel('ratio')
plt.xscale('log')
plt.ylabel(r'$k_\infty$')
plt.yscale('linear')
# plt.yticks((0,1,2))
plt.grid(True)
plt.savefig('hw3c_3.svg')
plt.show()
```

Two detectors, placed symmetrically on either side of a fission source, record two fission fragments f_1 and f_2 from a fission event. If the flight time for f_1 is 20% greater than that for f_2 , calculate the ratio of the masses of f_1 and f_2 . Which has the most energy?

Answer

Because the detectors are placed symmetrically, the flight time is.

$$t_{
m flight} = rac{L}{v}$$

One can derive

$$(t_1 - t_2)/t_2 = 0.2 \Rightarrow t_1/t_2 = 1.2.$$

So $v_1/v_2=t_2/t_2.$ For the conservation of momentum

$$m_1v_1=m_2v_2\Rightarrow m_1/m_2=v_2/v_1=t_1/t_2.$$

So for the energy ratio

$$E_1/E_2 = m_1/m_2(v_1/v_2)^2 = t_2/t_1 = 5/6$$

So the second fragment f_2 has the most energy.