

# 实验一 晶体管放大电路 (一)



### 实验目的

- 1、学习放大器静态工作点的测量与调整;
- 2、学习放大器电压放大倍数的测量方法;
- 3、了解信号源内阻对放大器放大倍数的影响;
- 4、学习放大器输入电阻输出电阻的测量方法;
- 5、熟悉常用电子仪器的一般使用方法。

### 实验设备







元器件及托盘



交流毫伏表

交流毫伏表用于测量交 流输入、输出信号的有 效值。



示波器

示波器用于显示被测信号 的波形、大小、周期和相 位,可以观测波形的动态 变化过程。



函数信号发生器

函数信号发生器提供频率 和幅值可调的正弦波。由 交流毫伏表读取其大小。 信号发生器的输出端不允 许短接。

### 实验设备



数字式万用表



直流稳压电源



指针式万用表

万要是流选别用量坏用意流号量注流压用电流流号量注流压压电压,不去会,程意档,表。



### 实验注意事项

- 1、接线时,交流毫伏表,信号发生器,稳压电源,示波器公共接地端应连在一起(放大器的地)。
- 2、低频信号发生器的输出衰减旋钮应旋至40dB或20dB位置,以免输出电压过高而损坏被测试的晶体管。
- 3、由于放大电路的输出电压和输入电压不是同一数量级, 当测完输入电压后,在测量输出电压时,晶体管毫伏表要 注意更换量程,以免指针由于超量程而受损。
- 4、注意电源 $U_{CC}$ 的极性,电源电压不超过12V。

#### 实验内容和线路

#### 1.初选静态工作点

调节直流稳压电源,使输出为12V,接入稳压电源, 直流毫安表处用线短接,

调节  $R_{v}$ ,使 $R_{C}$ 两端电压为3v。





## 2、测量静态工作点



| 测量数据             |                |                 |           | 计算数据            |           |                  |                                                              |         |   |             |
|------------------|----------------|-----------------|-----------|-----------------|-----------|------------------|--------------------------------------------------------------|---------|---|-------------|
| $U_{\mathrm{B}}$ | U <sub>E</sub> | U <sub>CE</sub> | $U_{RB1}$ | R <sub>B1</sub> | $I_{RB1}$ | I <sub>RB2</sub> | $ \begin{array}{c c} I_{B} \\ =I_{RB1}-I_{RB2} \end{array} $ | $I_{C}$ | β | $U_{ m BE}$ |
|                  |                |                 |           |                 |           |                  |                                                              |         |   |             |

#### 3.测量不同负载的电压放大倍数



表11-1 不同负载时的电压放大倍数

|                      | Us(mV) | $U_i(mV)$ | $U_o(mV)$ | $A_{\!\scriptscriptstyle VV}$ | $A_{VS}$ |
|----------------------|--------|-----------|-----------|-------------------------------|----------|
| $R_L = \infty$       | 20     |           |           |                               |          |
| $R_L$ =2.4K $\Omega$ | 20     |           |           |                               |          |

#### 4.接入旁路电容Ce的电压放大倍数



表11-1 不同负载时的电压放大倍数

|                | Us(mV) | $U_i(mV)$ | $U_o(mV)$ | $A_{VV}$ | $A_{VS}$ |
|----------------|--------|-----------|-----------|----------|----------|
| $R_L = \infty$ | 20     |           |           |          |          |



接进信号发生器,使其频率f=1000HZ,输出(即放大器的输入 $U_i$ )从零开始增加,到 $U_o$ 的波形出现失真,暂停 $U_i$ 的增加,调节 $R_w$ ,失真消除。然后 $U_i$ 再稍许增加, $U_o$ 又出现失真,再次调节 $R_w$ , $U_o$ 的失真又消除了。连续工作几次,最后发现 $U_i$  不能再增加,否则,就出现失真; $R_w$ 也不能再变,否则也出现失真。这时的输出 $U_o$ 就是最大不失真输出。







| $U_{S}(mV)$ | U <sub>I</sub> (mV) | I <sub>C (mA)</sub> | U <sub>CE</sub> (mV) | A <sub>UU</sub> | A <sub>US</sub> | U <sub>om</sub> |
|-------------|---------------------|---------------------|----------------------|-----------------|-----------------|-----------------|
|             |                     |                     |                      |                 |                 |                 |