COMPUTACIÓN II - CURSO 2017-2018

PRÁCTICA nº 17 – Resolución de ecuaciones diferenciales de orden n con condiciones iniciales.

Las ecuaciones de movimiento del sistema de la figura vienen dadas por:

$$m_1 \frac{d^2 y_1}{dt^2} = -k_1 y_1 - k_2 (y_1 - y_2)$$
 y $m_2 \frac{d^2 y_2}{dt^2} = k_2 (y_1 - y_2)$

donde y_1 e y_2 son los desplazamientos de las masas m_1 y m_2 respecto a sus posiciones en equilibrio. Las condiciones iniciales son $y_1(0)=3$, $y_2(0)=4$, $y_1(0)=0$, e $y_2(0)=0$. Escribir un programa que utilice el método de Runge-Kutta de cuarto orden para encontrar las elongaciones y velocidades de las dos masas en función del tiempo, desde t=0 hasta t=100s. Utilizar un salto h=0.1.

Tomar m_1 =2kg, m_2 =3.5kg, k_1 =2.5N/m y k_2 = 3.5N/m.

El procedimiento más sencillo a seguir consiste en transformar el sistema de ecuaciones diferenciales de segundo orden anterior, en cuatro ecuaciones diferenciales de primer orden:

$$v_{1} = \frac{dy_{1}}{dt}$$

$$v_{2} = \frac{dy_{2}}{dt}$$

$$\frac{dv_{1}}{dt} = -\frac{k_{1}}{m_{1}}y_{1} - \frac{k_{2}}{m_{1}}(y_{1} - y_{2})$$

$$\frac{dv_{2}}{dt} = \frac{k_{2}}{m_{2}}(y_{1} - y_{2})$$

y utilizar el método de Runge-Kutta de cuarto orden para resolver dicho sistema.

- Representar gráficamente los resultados.