METODY NUMERYCZNE – LABORATORIUM

Zadanie 1 – rozwiązywanie równań nieliniowych

Opis rozwiązania

Założeniem zadania pierwszego jest zaimplementowanie dwóch metod rozwiązywania równań nieliniowych, w naszym przypadku jest to metoda bisekcji oraz metoda stycznych (Newtona). Funkcje dla których nasz program będzie szukał rozwiązania muszą być ciągłe oraz określone na przedziale < a, b >. Dokładność wyniku szacowana będzie za pomocą nierówności $|x_i - x_{i-1}| < \varepsilon$, i \in N.

Metoda bisekcji:

- Sprawdzamy czy wartości funkcji na granicach podanego przedziału są różnych znaków oraz czy
 wartość wybranego warunku stopu ma sens (ilość iteracji ∈ < 1, ∞) oraz epsilon ∈ (0, ∞)). Jeżeli
 któryś z tych warunków nie jest spełniony funkcja kończy swoje działanie zwracając błąd.
- 2. Obliczamy środek przedziału $x_i = \frac{(a+b)}{2}$.
- Jeżeli wybrany warunek stopu został spełniony (została wykonana konkretna ilość iteracji, lub różnica między dwoma ostatnimi środkami jest mniejsza niż epsilon) funkcja kończy swoje działanie zwracając wyliczoną wartość x_i.
- 4. Kalkulowana jest wartość funkcji dla aktualnej wartości s_i. Jeżeli jest ona mniejsza od zera wtedy do dolnej granicy przedziału przypisujemy wartość x_i, a jeżeli jest większa od zera to wartość x_i przypisujemy do górnej granicy przedziału.
- 5. Do poprzedniej wartości środka przedziału przypisujemy aktualną wartość środka przedziału $(x_{i-1} = x_i)$, a następnie powtarzamy proces od punktu 2.

Metoda stycznych (Newtona):

- Sprawdzamy czy wartości funkcji na granicach podanego przedziału są różnych znaków oraz czy
 wartość wybranego warunku stopu ma sens (ilość iteracji ∈ < 1, ∞) oraz epsilon ∈ (0, ∞)). Jeżeli
 któryś z tych warunków nie jest spełniony funkcja kończy swoje działanie.
- 2. Przyjmujemy, że naszym potencjalnym rozwiązaniem jest środek przedziału < a, b > (s = $\frac{(a+b)}{2}$).
- 3. Korzystając ze wzoru $x_{n+1} = x_n \frac{f(x_n)}{f'(x_n)}$ obliczamy odciętą miejsca przecięcia stycznej funkcji (x_{n+1}) z osią OX dla argumentu x_n i otrzymujemy tym samym przybliżenie rozwiązania.
- 4. Jeżeli wybrany warunek stopu został spełniony (została wykonana konkretna ilość iteracji, lub różnica między dwoma ostatnimi środkami jest mniejsza niż epsilon) funkcja kończy swoje działanie zwracając wyliczoną wartość. W przeciwnym wypadku nasze x_{n+1}staje się x_n i proces od punktu 3. jest powtarzany do momentu uzyskania satysfakcjonującego nas przybliżenia rozwiązania.

Wyniki

Dla porównania wydajności obu metod wykonaliśmy doświadczenia na kilku funkcjach nieliniowych.

Tabela 1 - Dane porównawcze dla wybranych funkcji.

Funkcja	Warunek stopu	Metoda	Przedział		Engilon (G.)	Ilość	Dominania
			a	b	Epsilon (ε)	iteracji	Rozwiązanie
x^3-2x-5	dokładność	bisekcji	-10	9	$1\cdot 10^{-4}$	18	2,09453964
		stycznych				10	2,09455148
	liczba iteracji	bisekcji			$1,9 \cdot 10^{-2}$	10	2,07910156
		stycznych			$1,1\cdot 10^{-6}$		2,09455148
$2^{(x-2)} - 3$	dokładność	bisekcji	-1	4,5	$1 \cdot 10^{-4}$	16	3,58498383
		stycznych				25	3,5849625
	liczba iteracji	bisekcji			$6,6 \cdot 10^{-7}$	23	3,58496219
		stycznych			$1.0 \cdot 10^{-1}$		3,58868814
$\sin(x^2-2)$	dokładność	bisekcji	-2	1	$1\cdot 10^{-4}$	15	-1,41415405
		stycznych				6	-1,41421356
	liczba iteracji	bisekcji			$7.3 \cdot 10^{-4}$	12	-1,41479492
		stycznych			$2,2\cdot 10^{-16}$		-1,41421356
$3^{\sin(x^3-2)}-2$	dokładność	bisekcji	-1,3	0,8	$1\cdot\mathbf{10^{-4}}$	15	-1,22187805
		stycznych				3	-1,22189968
	liczba iteracji	bisekcji			$1,6 \cdot 10^{-2}$	7	-1,21796875
		stycznych			$2,2\cdot 10^{-16}$		-1,22189968

Wnioski

- 1. Biorąc pod uwagę powyższe wyniki możemy stwierdzić, że szybsza w rozwiązywaniu równań wielomianowych i trygonometrycznych jest metoda Newtona. Wymaga mniejszej ilości iteracji do osiągnięcia zadanej dokładności.
- 2. Dla funkcji wykładniczej metoda bisekcji jest szybsza i dokładniejsza. Różnice tę dobrze obrazuje przykład drugi w tabeli różnica w dokładności przy zadanej ilości iteracji jest znaczna.
- 3. Metoda bisekcji jest prostsza i bardziej intuicyjna od metody Newtona i jest też bardziej uniwersalna.
- 4. Metoda stycznych (Newtona) może znaleźć miejsca zerowe poza wyznaczonym przedziałem, ze względu na sposób jej działania.