Diskretne strukture UNI Vaje 11

- 1. S pomočjo malega Fermatovega izreka pokaži, da
 - (a) 23 deli $a^{154} 1$ za vse $a \in \mathbb{N}$, za katere je $\gcd(a, 23) = 1$.
 - (b) 17 deli $a^{80} 1$ za vse $a \in \mathbb{N}$, za katere je $\gcd(a, 17) = 1$.
- 2. (a) Koliko je ostanek števila $((5^9)^{13})^{17}$ pri deljenju z 11?
 - (b) Koliko je ostanek števila $5^{9^{13^{17}}}$ pri deljenju z 11?
- 3. Reši enačbe:
 - (a) $11x \equiv 242 \pmod{21}$,

(c) $((6^7)^8)^9 \equiv x \pmod{13}$,

(b) $5x \equiv 270 \pmod{25}$,

(d) $6^{7^{8^9}} \equiv x \pmod{13}$.

4. Dani sta permutaciji

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 3 & 2 & 5 & 8 & 1 & 7 & 4 & 6 \end{pmatrix} \quad \text{in} \quad \beta = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 7 & 6 & 5 & 4 & 3 & 2 & 1 \end{pmatrix}.$$

- (a) Zapiši α in β kot produkt disjunktnih ciklov.
- (b) Zapiši permutacijo $\alpha * \beta * \alpha^{-1}$.
- (c) Poišči najmanjše število k, za katerega je $\alpha^k = \mathrm{id}$.
- (d) Poišči najmanjše število k, za katerega je $\beta^k = \mathrm{id}$.
- 5. Dana je permutacija

$$\pi = \left(\begin{array}{cccccc} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 8 & 2 & 1 & 3 & 7 & 5 & 6 & 4 \end{array}\right).$$

- (a) Določi π^{-1} .
- (b) Zapiši π kot produkt disjunktnih ciklov.
- (c) Zapiši π kot produkt samih transpozicij.
- (d) Določi π^2 in π^{2018} .
- 6. Za n > 3 definiramo permutacije $\pi_n \in S_n$ kot produkt ciklov

$$\pi_n = (1 \ 2 \ n)(1 \ 3 \ n) \cdots (1 \ n-1 \ n).$$

- (a) Zapiši permutacije π_4 , π_5 in π_6 .
- (b) Izračunaj $\pi_n(1)$, $\pi_n(n)$, $\pi_n^{-1}(1)$ in $\pi_n^{-1}(n)$.
- (c) Določi ciklično strukturo in parnost permutacije π_n .
- 7. Poišči vsaj dve permutaciji $\pi \in S_6$, za kateri je

$$\pi^3 = (1\ 2)(3\ 4)(5\ 6).$$