Big Data Ecosystem part 2

1. Introduction to Big Data

• **Definition:** Big Data means datasets that are so **large, fast, and diverse** that traditional relational databases cannot store or process them efficiently.

4 V's of Big Data:

- Volume → Massive size of data (TB, PB, EB). Example: Facebook stores petabytes of user posts daily.
- Velocity → Speed of data generation (real-time stock trades, IoT sensors).
- Variety → Different types of data: structured (tables), semi-structured (JSON, XML), unstructured (images, videos, logs).
- Value → Extracting useful insights (predicting customer behavior, fraud detection).

Why Big Data matters?

 Businesses use it for decision making, personalization, fraud detection, recommendation engines, Al training, and healthcare predictions.

2. Hadoop Distributed File System (HDFS)

• What it is: A distributed storage system designed to run on clusters of commodity hardware (cheap servers).

How it works:

- Data is split into blocks (default size 128MB/256MB).
- Blocks are stored across multiple machines (**DataNodes**).
- o A **NameNode** keeps track of metadata (which block is stored where).
- o **Replication:** Each block is replicated (usually 3 copies) to avoid data loss.

• Architecture:

- NameNode (Master): Stores file system metadata. If it fails → Secondary/Standby NameNode takes over.
- DataNodes (Workers): Store actual data blocks and report to NameNode.

- Advantages: Fault-tolerant, scalable, cheap to expand.
- **Use Case:** Companies like LinkedIn or Twitter store huge logs and analytics data in HDFS.

3. Apache ZooKeeper

- What it is: A centralized coordination service for distributed applications like Hadoop, HBase, and Kafka.
- Why needed? Distributed systems have many nodes ZooKeeper helps keep them synchronized, consistent, and fault-tolerant.
- Functions:
 - Configuration Management: Keeps cluster settings consistent across nodes.
 - Leader Election: Chooses a leader node automatically if the active one fails.
 - Synchronization: Helps multiple nodes work in coordination (like booking systems avoiding double-booking).
 - Naming Service: Maintains names/IDs for nodes.
- **Use Case:** In HBase, ZooKeeper helps track the master and region servers.

4. HBase

- What it is: A NoSQL (non-relational) database built on top of HDFS.
- Key Characteristics:
 - Modeled after Google Bigtable.
 - Stores data in tables with rows and columns, but columns are grouped into
 Column Families.
 - Designed for real-time read/write access to big datasets.
 - o Can handle billions of rows and millions of columns.
- Why HBase (not Hive or RDBMS)?
 - o Relational DBs fail when data is too large and schema changes frequently.

Hive is for batch analysis, HBase is for real-time queries.

Use Cases:

- Facebook Messenger uses HBase to store billions of messages.
- o IoT companies use it for time-series data.

5. Hive

- What it is: A data warehouse tool built on top of Hadoop.
- **Main Purpose:** Querying and analyzing large datasets stored in HDFS using a SQL-like language (**HiveQL**).

How it works:

- You write HiveQL (similar to SQL).
- o Hive converts it into MapReduce, Tez, or Spark jobs internally.
- Results are stored back in HDFS.

Key Features:

- Supports structured and semi-structured data.
- o Provides functions like GROUP BY, JOIN, ORDER BY.
- Good for batch processing, not real-time.

Use Cases:

- Data analysts running reports (sales trends, user activity).
- Companies like Netflix use Hive to analyze viewing behavior.

6. Apache Spark

 What it is: A unified big data processing engine that is much faster than MapReduce.

Why fast?

 Uses in-memory computation (keeps data in RAM instead of writing intermediate results to disk like MapReduce).

Main Components:

- Spark Core: Basic execution engine.
- Spark SQL: Run SQL queries on big data.
- Spark Streaming: Process real-time data streams.
- MLlib: Machine learning library.
- GraphX: Graph processing (like social network analysis).

Advantages over MapReduce:

- Faster (up to 100x).
- Supports batch, streaming, ML, and graph all in one.

Use Cases:

- Uber uses Spark Streaming for real-time ride matching.
- Banks use Spark MLlib for fraud detection.

7. MapReduce

- What it is: The original programming model in Hadoop for distributed data processing.
- How it works (Steps):
 - Map Phase: Input data is divided into small chunks → processed in parallel → output is in (key, value) pairs.
 - 2. **Shuffle & Sort Phase:** System groups values by key.
 - 3. **Reduce Phase:** Aggregates values for each key → final result.

Example (Word Count):

- Map: "hello world hello" → (hello, 1), (world, 1), (hello, 1)
- Reduce: (hello, [1,1]) → (hello, 2), (world, [1]) → (world, 1)

Limitations:

- Disk-based (slower than Spark).
- Hard to program (requires Java).

• **Importance:** Even though Spark is now preferred, MapReduce introduced the foundation of **parallel data processing**.

▼ Final Quick Summary for Interviews

- **Big Data** → Huge, fast, diverse data.
- **HDFS** → Distributed storage system.
- **ZooKeeper** → Cluster coordination service.
- **HBase** → NoSQL, real-time database on HDFS.
- **Hive** → SQL-like query tool for batch analytics.
- Spark → Fast in-memory processing engine, supports SQL, streaming, ML.
- MapReduce → Original Hadoop processing model (batch, slower, disk-based).