Grado Ingeniería Informática - Doble Grado Informática-Economía

Examen final - Enero 2020

N	ON	/IR	D.	$\mathbf{r}.$
IN	しょい	/I D	n.	r,:

Lee atentamente las siguientes instrucciones:

- Escribe tu nombre y grupo en el lugar indicado en esta hoja.
- NO puedes usar calculadora. Desconecta el teléfono móvil (si lo tienes contigo).
- El examen dura **3 horas**.
- Cada una de las seis primeras preguntas es tipo test y tiene una **única** respuesta correcta. Cada pregunta de ellas respondida correctamente puntuará 0,5 puntos. Cada pregunta respondida incorrectamente puntuará -0,15 puntos. Las preguntas sin contestar puntuarán 0 puntos. La puntuación total del test será como mínimo 0, nunca negativa. Dejar totalmente clara la respuesta escogida, o que no queréis contestar una pregunta, sobre todo cuando haya alguna tachadura.
- Cada una de las preguntas a desarrollar restantes vale 1 punto, salvo la séptima, que vale 2 puntos
- e

 El examen se calificará, por tanto, sobre 9 puntos. A la nota se le sumará la evaluación por curso (entro y 1 punto).
1. Dados $a, b, d \in \mathbb{Z}$, si sabemos que $mcd(a, b) = 1$, entonces: \[\begin{align*} \text{Si además } d \ b, \text{ entonces } $mcd(a, d) = 1$. \end{align*} \text{Si además } d \ b, \text{ entonces } $mcd(a, d) = d$. \[\begin{align*} \text{Si además } d \ (a * b), \text{ entonces } $mcd(a, d) = d$. \end{align*} \text{Si además } d \ a, \text{ entonces } $mcd(a, d) = 1$.
2. Dadas las dos siguientes afirmaciones: $\mathcal{P}(A) \cap \mathcal{P}(B) = \mathcal{P}(A \cap B) \qquad \qquad \mathcal{P}(A) \cup \mathcal{P}(B) = \mathcal{P}(A \cup B)$ $\square \qquad \text{Ambas son siempre ciertas.}$ $\square \qquad \text{Ambas son siempre falsas.}$ $\square \qquad \text{Solamente es cierta siempre la primera.}$ $\square \qquad \text{Solamente es cierta siempre la segunda.}$
3. Consideremos el conjunto $A = \{\{1\}, \{1, 2, \{\}\}\}, 1\}$. Entonces:
4. Sea R la relación binaria sobre $\mathcal{P}(\mathbb{N})$ definida por $XRY \Longleftrightarrow X \setminus Y = X$. \square R es reflexiva. \square R es simétrica. \square R es antirreflexiva. \square R es transitiva.

5.	Sea $f: \{(X,Y) X \in \mathcal{P}(\mathbb{N}), Y \in \mathcal{P}(\mathbb{N}), X \neq Y\} \to \mathbb{N} \cup \{\aleph_0\}$ definida por $f(X,Y) = X \cap Y $ (donde recordemos que \aleph_0 es el cardinal de los conjuntos numerables infinitos, o sea el de \mathbb{N}):
	\Box f es inyectiva, pero no suprayectiva.
	\Box f es suprayectiva, pero no inyectiva.
	\Box f es biyectiva.
	\square f no es ni inyectiva, ni suprayectiva.
6.	Considera los dos asertos siguientes:
	Si A es no numerable y B numerable, entonces $A \setminus B$ es no numerable.
	Toda familia (sea o no numerable) de conjuntos numerables tiene una unión numerable.
	Ambos son ciertos.
	Ambos son falsos.
	El primero es cierto y el segundo es falso.
	El primero es falso y el segundo es cierto.
7.	Considerando la sucesión $(a_n \mid n \in \mathbb{N})$, definida recursivamente mediante:
	$a_1 = 20$, $a_n = 5 * 4^n - a_{n-1}$, $para \ n \ge 2$
	a) Razonando por inducción, demuestra que para todo $n \geq 1$, se tiene $10 \mid a_n$.
	b) Razonando por inducción, demuestra que $a_n = 4^{n+1} + 4*(-1)^{n-1}$, para todo $n \ge 1$.
	Indicación: Tened cuidado con lo que vale $(-1)^{n-1}$, según el valor de n .
	c) Concluye de lo anterior que para todo $n \ge 1$, $4^{n+1} + 4 * (-1)^{n-1}$ es múltiplo de 10.
8.	Sean $a, b, c \in \mathbb{N}_1$:
	a) Demuestra que $a \mid c \land b \mid c \land \operatorname{mcd}(a, b) = 1 \implies (a * b) \mid c$.
	b) Prueba que la conclusión no tendría porqué darse, si no se tuviera la hipótesis $mcd(a, b) = 1$.
9.	En el conjunto de los números enteros \mathbb{Z} , se define la relación $xRy \iff x^2-y^2=x-y$:
	a) Demostrar que R es una relación de equivalencia.
	b) Calcular las clases de equivalencia de 0, de -1 y de 3.
	c) Enumerar (sin repeticiones) los elementos del conjunto cociente \mathbb{Z}/R .
10.	Considera la función $f: \mathbb{Z} * \mathbb{Z} \longrightarrow \mathbb{Z} * \mathbb{Z}$ dada por $f(x,y) = (x-2*y, 2*x+y)$
	a) Estudia si f es inyectiva , justificando adecuadamente tu respuesta.
	b) Estudia si f es sobreyectiva , justificando adecuadamente tu respuesta.
	Sea (B, \sqsubseteq_B) un conjunto parcialmente ordenado cualquiera, y $f: A \longrightarrow B$ una función (total) inyectiva . Definimos una relación binaria R_f en A , tomando $x R_f y \iff f(x) \sqsubseteq_B f(y)$.
	a) Demuestra que R_f es siempre una relación de orden en A .
	b) Considera $B = \{1, 2, 3, 30, 42, 210\}$ ordenado por la relación de divisibilidad, y tomemos $A = \{1, 2, 3, 30, 41, 200\}$
	$\{1, 2, 29, 41, 209\}$, con $f: A \longrightarrow B$ la función $f(x) = x + 1$. Dibuja el diagrama de Hasse de (A, R_f) y determina los elementos extremales (o sea discute si hay elementos minimales,
	maximales y mínimo y máximo de (A, R_f) .

Sugerencia: Aunque no se te pida "entregarlo", empieza por dibujarte el diagrama de Hasse

de (B, |) y luego trabaja a partir de él.