SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH ĐỒNG THÁP

KỲ THI CHỌN HỌC SINH GIỚI LỚP 9 CẤP TỈNH NĂM HỌC 2018 - 2019 Môn: TIN HOC

ĐỀ CHÍNH THỰC (Đề gồm có 03 trang)

Ngày thi: 17/3/2019

Thời gian làm bài: 150 phút, không kể thời gian phát đề

Tổng quan đề thi:

Tên bài	Tên tệp bài làm	Tên tệp dữ liệu vào	Tên tệp kết quả
Bài 1. Văn nghệ	BL1.*	VANNGHE.INP	VANNGHE.OUT
Bài 2. Làng hoa	BL2.*	LANGHOA.INP	LANGHOA.OUT
Bài 3. Đoạn đường đẹp nhất	BL3.*	DDUONG.INP	DDUONG.OUT

Ghi chú: dấu * đại diện cho phần mở rộng, tuỳ theo ngôn ngữ lập trình có thể là PAS hoặc CPP. Thời gian thực hiện chương trình không quá 1 giây, bộ nhớ không quá 1024MB.

Bài 1: (6,0 điểm) VĂN NGHỆ

Nhân dịp xuân về, đội văn nghệ của Nhà văn hoá thiếu nhi được cử đi biểu diễn giao lưu ở các phường trong thành phố. Đội văn nghệ có **n** bạn học sinh nam và **m** bạn học sinh nữ được chia thành các tổ, mỗi tổ sẽ đi phục vụ văn nghệ cho người dân ở các phường khác nhau. Biết rằng: số lượng học sinh nam và số lượng học sinh nữ phải được chia đều giữa các tổ và sau khi chia tổ, mỗi học sinh đều thuộc một tổ.

Yêu cầu: Em hãy cho biết đội văn nghệ có thể chia nhiều nhất bao nhiều tổ? Mỗi tổ có bao nhiều học nam và bao nhiều học sinh nữ?

Dữ liệu vào: Cho từ tệp văn bản VANNGHE.INP chỉ có một dòng chứa hai số nguyên **n** và **m**, giữa hai số cách nhau một khoảng trắng $(1 \le \mathbf{n}, \mathbf{m} \le 10^{15})$.

Kết quả: Ghi vào tệp văn bản VANNGHE.OUT gồm:

• Dòng thứ nhất ghi một số nguyên là số lượng tổ tối đa có thể chia được.

• Dòng thứ hai ghi hai số a, b tương ứng là số học sinh nam và số học sinh nữ của mỗi tổ, giữa hai số cách nhau một khoảng trắng.

Ví dụ:

VANNGHE.INP	VANNGHE.OUT
48 72	24
	23

Ràng buộc:

Có 70% số test tương ứng 70% số điểm có $1 \le \mathbf{n}$, $\mathbf{m} \le 10^6$

- Có 30% số test tương ứng 30% số điểm có $10^6 < \mathbf{n}, \mathbf{m} \le 10^{15}$

Bài 2. (7,0 điểm) LÀNG HOA

Dọc theo tuyến đường vào Làng hoa Sa Đéc có **n** điểm tham quan đánh số từ 1 đến **n** theo hướng từ đầu đường vào làng hoa đến cuối đường. Để phục vụ du khách, ban quản lý đã trang bị các xe điện để đưa đón khách. Các xe điện được chia thành hai tuyến, tuyến thứ nhất chạy theo hướng từ đầu đường đến cuối đường và tuyến thứ hai chạy theo hướng ngược lại. Khi xe điện chạy đến điểm dừng cuối cùng của tuyến thì tất cả du khách phải xuống xe để xe vào nhà ga nạp lại điện. Để tránh quá tải tại các điểm tham quan cũng như tránh ùn tắc giao thông, mỗi tuyến xe điện chỉ dừng lại tại một số điểm tham quan để đón trả khách.

Yêu cầu: Có **k** du khách hiện đang ở điểm tham quan số 1 và đã biết thông tin về các điểm dừng đón trả khách của mỗi tuyến xe điện. Du khách thứ **i** muốn di chuyển đến điểm tham quan **s**_i. Hãy cho biết mỗi du khách có thể di chuyển đến điểm tham quan mong muốn bằng cách sử dụng xe điện hay phải sử dụng phương tiện giao thông khác?

Dữ liệu vào: Cho từ tệp văn bản LANGHOA.INP có dạng:

- Dòng thứ nhất ghi hai số nguyên dương \mathbf{n} , \mathbf{k} ($1 \le n \le 10^5$)
- Dòng thứ hai ghi n số nguyên a₁, a₂, ..., a_n, trong đó a_i = 1 nếu tuyến xe điện thứ nhất có dừng lại để đón trả khách tại điểm tham quan thứ i và a_i = 0 nếu xe điện không dừng lại tại điểm tham quan thứ i (i = 1..n).
- Dòng thứ ba ghi \mathbf{n} số nguyên $\mathbf{b_1}$, $\mathbf{b_2}$, ..., $\mathbf{b_n}$, trong đó $\mathbf{b_i} = 1$ nếu tuyến xe điện thứ hai có dừng lại để đón trả khách tại điểm tham quan thứ \mathbf{i} và $\mathbf{b_i} = 0$ nếu xe điện không dừng lại tại điểm tham quan thứ \mathbf{i} ($\mathbf{i} = 1..\mathbf{n}$).
- Đòng thứ tư ghi k số nguyên dương s₁, s₂, ..., s_k trong đó s_i là điểm tham quan mà du khách thứ i muốn di chuyển đến (1 ≤ s_i ≤ n, i = 1..k)
 Các số trên cùng một dòng ghi cách nhau ít nhất một khoảng trống.

Kết quả: Ghi vào tệp văn bản LANGHOA.OUT gồm một dòng ghi \mathbf{k} số nguyên – số thứ \mathbf{i} bằng 1 nếu du khách thứ \mathbf{i} có thể di chuyển bằng xe điện đến điểm tham quan $\mathbf{s_i}$ và bằng 0 nếu du khách thứ \mathbf{i} không thể di chuyển bằng xe điện đến điểm tham quan $\mathbf{s_i}$.

Ví dụ:

LANGHOA.INP	LANGHOA.OUT					
6 2	1 0					
101101	a do adr do aden unvijo i					
110110	Pon data					
2 5	TO STATE OF STATE AND THE STATE OF STAT					

Giải thích:

- Du khách thứ nhất có thể đến điểm tham quan số 2 bằng cách đi theo tuyến thứ nhất đến điểm tham quan số 4 thì xuống xe và chuyển sang tuyến thứ hai đi ngược về điểm số 2.
- Du khách thứ hai không thể dùng xe điện để đi đến điểm tham quan số 5.

Ràng buộc:

- Có 70% số test tương ứng 70% số điểm có giá trị $\mathbf{k} \le 100$
- Có 30% số test tương ứng 30% số điểm có giá trị $\mathbf{k} \le 10^5$

Bài 3: (7,0 điểm) ĐOẠN ĐƯỜNG ĐỆP NHẤT

Trong thời gian vừa qua, người dân ở thành phố XYZ đã vui mừng chào đón sự xuất hiện của con đường ven biển, con đường được đầu tư rất nhiều kinh phí làm đường và xây dựng các tòa nhà đẹp nằm ở cùng một phía của con đường, con đường này được coi là con đường có cảnh quang đẹp nhất hành tinh. Con đường có \mathbf{n} tòa nhà, được đánh thứ tự từ $\mathbf{1}$ đến \mathbf{n} , tính từ đầu đường, tòa nhà thứ \mathbf{i} có độ cao là $\mathbf{h}_{\mathbf{i}}$ ($\mathbf{i}=1..\mathbf{n}$). Theo các chuyên gia kiến trúc và thẩm mĩ, đoạn đường đẹp nhất là đoạn đường mà ở đó có độ cao trung bình của các tòa nhà đúng bằng \mathbf{k} .

Yêu cầu: Em hãy tìm đoạn đường có các tòa nhà liên tiếp nhau nhiều nhất sao cho đoạn đường này là đoạn đường đẹp nhất (độ cao trung bình của các tòa nhà đúng bằng **k**).

Dữ liệu vào: Cho từ tệp văn bản DDUONG.INP gồm:

- Dòng thứ nhất ghi hai số nguyên **n** và **k** $(1 \le \mathbf{n} \le 10^5; 0 \le \mathbf{k} \le 10^9)$.
- Dòng thứ hai ghi \mathbf{n} số nguyên $\mathbf{h_1}$, $\mathbf{h_2}$, ..., $\mathbf{h_n}$ $(0 < \mathbf{h_i} \le 10^9; \mathbf{i} = 1..\mathbf{n})$. Các số trên cùng một dòng ghi cách nhau ít nhất một khoảng trống.

Kết quả: Ghi vào tệp văn bản DDUONG.OUT gồm:

• Dòng thứ nhất ghi một số nguyên u là chỉ số bắt đầu của toà nhà thuộc đoạn đường đẹp nhất tìm được, nếu có nhiều đáp án thì ghi chỉ số u nhỏ nhất.

• Dòng thứ hai ghi một số nguyên v là số lượng toà nhà thuộc đoạn đường tìm được. Nếu không có đoạn đường nào đẹp nhất thì ghi ra duy nhất số 0. 13.000

Ví dụ:

DDUONG.INP	DDUONG.OUT
4 5	2
2456	3

Ràng buộc:

- Có 50% số test tương ứng 50% số điểm có 1< $n \leq 2 x 10^2$

- Có 30% số test tương ứng 30% số điểm có $2x10^2 < n \le 2x10^3$

- Có 20% số test tương ứng 20% số điểm có $2x10^3 < n \le 10^5$ ----HÉT----

Họ và tên thí sinh:	Số báo danh:	
Chữ ký GT1:	Chữ ký GT2:	

SỞ GIÁO DỤC VÀ ĐÀO TẠO TỈNH ĐỒNG THÁP

KỲ THI CHỌN HỌC SINH GIỚI LỚP 9 CẤP TỈNH NĂM HỌC 2018 - 2019

HƯỚNG DẪN CHẨM (HDC gồm có 05 trang)

Môn: TIN HỌC Ngày thi: 17/3/2019

I. Hướng dẫn chung

- 1) Bài làm được chấm theo từng bộ test. Thời gian thực hiện chương trình cho mỗi bộ test không quá 1 giây. Giám khảo không được sửa bất kỳ nội dung nào trong bài làm thí sinh.
- 2) Việc chi tiết hóa (nếu có) thang điểm trong hướng dẫn chấm phải bảo đảm không làm sai lệch hướng dẫn chấm và phải được thống nhất thực hiện trong tổ chấm.

II. Đáp án và thang điểm

Bài 1. (6,0 điểm) VĂN NGHỆ

Gồm 10 bộ test, mỗi bộ test 0,6 điểm

TEST	VANNGHE.INP	VANNGHE.OUT	Điểm
1	5 17	1	0,6
		5 17	
2	50 110	10	0,6
		5 11	
3	250 250	250	0,6
		1 1	(
4	3250 500	250	0,6
		13 2	
5	23250 21500	250	0,6
		93 86	
6	1000000 1	1	0,6
		1000000 1	
7	6 1000000	2	0,6
		3 500000	100 6 5234
8	8 100000000002	2	0,6
		4 5000000001	10 D
9	1000000000000 8	8	0,6
	DEOLEGICA CONTRACTOR OF THE CO	125000000000 1	
10	100000000000000000000000000000000000000	3	0,6
		3333333333333 3	

Bài 2. (7,0 điểm)) LÀNG HOA

Gồm 10 bộ test, mỗi bộ test 0,7 điểm

TEST	LANGHOA.INP	LANGHOA.OUT	Điểm
1	20 5	1 1 1 0 0	0,7
	101111011		and the second of the second
	0 1 1 1 0 0 0 1 0		
	0 0		
	1 1 1 1 0 1 1 0 0		
	100101010		

			La															
	1 0										5	1						
	12 8 4 20 18	in w																1000
2	90 10	1	1	1	1	0	1	1	1	0	0			7				0,7
3	740 20	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1	0,7
	1,000,000,000,000,000,000,000	0	0	0	1										6			,,,
4	1500 40	1	0	1	1	0	1	0	1	1	1	1	0	1	0	1	1	0,7
		1	1	0	1	0	1	0	0	1	0	0	1	1	0	1	1	
		0	1	0	1	1	0	1	0									6
5	25470 65	0	1	0	0	0	0	1	1	0	1	1	0	0	0	1	0	0,7
-0.1 bd 10.	Lodo chiar grounds dent and	1	1	0	1	1	1	1	1	0	0	1	0	0	1	0	1	
	the internal met dear one au	0	1	1	1	1	0	1	1	1	0	1	1	0	1	1	0	
different	ie dan châng chai bạc dann	0	1	1	1	0	1	1	1	1	1	1	1	1	0	1	1	100
	rione to china	1																ri dost iaz
6	99999 99	1	0	0	1	1	1	1	1	1	1	1	1	1	0	0	0	0,7
		1	0	1	1	1	1	1	1	0	0	1	1	1	0	1	0	11 000
		1	1	0	0	0	1	1	1	1	0	0	1	1	0	1	1	
		1	1	1	0	1	1	1	1	0	0	1	1	1	0	1	0	TOTAL TREE
		1	0	1	0	0	1	1	1	1	1	0	0	1	1	1	1	
		0	0	1	1	1	0	0	0	1	0	1	0	0	0	1	1	PP
		0	1	1														
7	100000 100	1	0	1	1	1	1	0	0	1	1	1	1	1	0	1	1	0,7
0.0		1	1	1	1	1	1	1	1	0	1	1	1	1	1	1	1	
		1	1	0	1	0	1	1	1	1	0	1	1	1	1	1	1	
0.0		1	1	1	1	1	1	0	1	0	1	1	1	1	1	1	1	
		1	1	1	1	1	1	1	.1	0	1	1	1	1	1	1	0	
0.0		1	1	1	1	1	1	1	1	1	1	1	0	1	1	0	1	
4 (1	0	. 1.	0													
8	98765 99999	1	0	1	0	0	1	0	1	0	0			1	1	0	0	0,7
		1	1	0	1	0	1											
9	100000 100000	1	1	1	1	1	1	1	1	1	1		••	1	1	1	1	0,7
		1	1	1	1	1	1											
10	100000 100000	0	0	0	0	0	0	0	0	0	0			0	0	0	0	0,7
		0	0	0	0	0	. 0											

Bài 3. (7,0 điểm) ĐOẠN ĐƯỜNG ĐỆP NHẤT

Gồm 10 bộ test, mỗi bộ test 0,7 điểm

TEST	DDUONG.INP	DDUONG.OUT	Điểm
1	5 20	0	0,7
	1 2 3 4 5		
2	10 10	10	0,7
		1 40313996333393	III VALCORIA
3	20 10	16	0,7
		13 (23) (23) (23) (23) (23) (23) (23)	OH ACK
4	80 60	32	0,7
I (troub)	THE ACHIEVIAL	3	
5	200 50897	59	0,7
		45	
6	700 393	3	0,7
		22	
7	900 1000	441	0,7

.+	I.C.
(1.0.
. 1	DŲ
-	TH
	TACTY

		5	DEEL THE RESTORED BEING
8	2000 909	212	0,7
		1783	
9	50000 24569	6738	0,7
		42500	
10	100000 500000000	50000	0,7
		2	

HƯỚNG DẪN THUẬT TOÁN VÀ BÀI LÀM THAM KHẢO

Bài 1. (6,0 điểm) VĂN NGHỆ

a. <u>Hướng dẫn thuật toán</u>:

Bài toán yêu cầu chia tổ sao cho số lượng nam và nữ của các tổ là như nhau, do đó ta tìm ước chung lớn nhất giữa số nam và số nữ tương ứng đó chính là số tổ nhiều nhất có thể chia được. Số lượng nam chia cho số lượng tổ và số lượng nữ chia cho số lượng tổ để tìm được số lượng nam và số lượng nữ trong từng tổ.

- Subtask 1: Dùng thuật toán Euclide, phương pháp tính hiệu.
- Subtask 2: Dùng thuật toán Euclide, phương pháp tính chia.

b. Bài làm tham khảo:

```
Program VANNGHE;
Const fin = 'VANNGHE.INP';
      fout='VANNGHE.OUT';
Var n,m,a,b,r:Int64;
   f:Text;
Begin
  Assign (f, fin);
  Reset (f);
  Read (f, n, m);
  Close(f);
  a:=n:
  b := m;
  While b>0 do
    Begin
      r:=a \mod b;
      a:=b;
      b := r;
    End;
  Assign (f, fout);
  ReWrite(f);
  Writeln(f,a);
  Write(f,n div a,' ',m div a);
End.
```

Bài 2. (7,0 điểm)) LÀNG HOA

a. Hướng dẫn thuật toán:

Đánh dấu tất cả các điểm trên tuyến thứ nhất là đến được.

Tìm điểm đến cuối cùng mà cả hai tuyến xe đều có thể dừng, duyệt ngược lại theo tuyến thứ hai để đánh dấu.

 D ộ phức tạp $\mathrm{O}(\max(n,k))$

b. Bài làm tham khảo:

```
Program LANGHOA;
Const fin = 'LANGHOA.INP';
     fout='LANGHOA.OUT';
Var a,b:Array[1..100000] of Longint;
   n,k,i,j,s:Longint;
   f,q:Text;
Begin
 Assign(f,fin);
 Reset (f);
 Assign(g,fout);
 ReWrite (g);
 Readln(f,n,k);
 For i:=1 to n do Read(f,a[i]);
 For i:=1 to n do Read(f,b[i]);
 While (i>0) and ((a[i]=0) or (b[i]=0)) do i:=i-1;
 For j:=i downto 1 do
   If b[j]=1 then a[j]:=1;
 For i:=1 to k do
   Begin
     Read(f,s);
     Write(g,a[s],' ');
   End;
 Close(f);
 Close (g);
End.
```

Bài 3. (7,0 điểm) ĐOẠN ĐƯỜNG ĐỊP NHẤT

- a. Hướng dẫn thuật toán:
 - Subtask 1: O(n³) Dùng mô hình lặp

Dùng ba vòng lặp lồng nhau để tính tổng s chiều cao của các tòa nhà từ vị trí i đến vi trí j

Nếu s=k*(j-i+1) thì có đoạn đường đẹp nhất, vị trí bắt đầu là i, đô dài là j-i+1.

- Subtask 2: O(n²) Dùng tổng tiền tố:
 - Gọi f[i] là tổng tiền tố của a[i] (i=1..n).
- Dùng hai vòng lặp duyệt trên mảng tổng tiền tố nếu f[j]-f[i-1]=k*(j-i+1) thì đoạn đường đẹp nhất bắt đầu từ i, đô dài là j-i+1.
- Subtask 3: O(nlog(n))
 - Đặt b[i] = a[i] k (i=1..n, b[0]=-k).
 - Gọi f[i] là tổng tiền tố của b[i] (i=0..n).
 - Từ mảng f ta có nếu tồn tại f[p]=f[q] thì đoạn [p+1, q] có trung bình là k.

Do vậy ta chỉ cần sắp xếp mảng f (đánh dấu cả chỉ số của mảng f) rồi với mỗi f[p] ta tim f[q] sao cho f[q]=f[p]

b. Bài làm tham khảo:

```
Program DDUONG;
Const fin ='DDUONG.INP';
      fout='DDUONG.OUT';
Var S, V: Array[0..100000] of Int64;
    n,k,x,i,j,vt,Res:Longint;
    f:Text;
Procedure QuickSort(L,R:Longint);
 Var i,j,vs,vt,t:Int64;
```

```
Begin
   i:=L; j:=R;
   vs:=S[(L+R) div 2];
   vt:=V[(L+R) div 2];
   Repeat
   Until i>j;
   If L<j then QuickSort(L,j);</pre>
   If i<R then QuickSort(i,R);
 End;
Begin
 Assign(f,fin);
  Reset(f);
  Readln(f,n,k);
  S[0] :=-k; V[0] :=0;
  For i:=1 to n do
   Begin
     Read(f,x);
     S[i] := S[i-1] + x - k;
     V[i]:=i;
   End;
  Close(f);
  QuickSort (0,n);
  i:=0;
  Res:=0;
  For j:=1 to n do
    If S[i]<>S[j] then i:=j
    Else
      If Res<V[j]-V[i] then</pre>
       Begin
         Res:=V[j]-V[i];
         vt:=V[i]+1;
       End
     Else
       If (Res=V[j]-V[i]) and (vt>V[i]+1) then vt:=V[i]+1;
  Assign(f, fout);
  ReWrite(f);
  If Res>0 then Writeln(f,vt);
  Write (f, Res);
  Close (f);
End.
```

--- HÉT---