AI System for Predicting 30-Day Hospital Readmission Risk

1. Problem Scope

Problem Definition:

Hospitals face significant financial and care quality penalties due to high rates of patient readmission within 30 days post-discharge. Unplanned readmissions can result from inadequate post-discharge care, poor follow-up, medication issues, or comorbid conditions.

Objective:

To build an AI model that uses structured patient data to predict the risk of readmission within 30 days, enabling:

- Proactive interventions for high-risk patients,
- Personalized discharge planning,
- Improved resource allocation,
- Reduced hospital costs and enhanced patient care.

Stakeholders:

Stakeholder	Role	
Hospital Administration	Reduce costs, improve KPIs, meet insurance requirements (e.g., CMS penalties).	
Physicians/Nurses	Use predictions to tailor patient care and follow-up plans.	
IT & Data Science Team	Develop, integrate, and maintain the model.	
Patients	Benefit from personalized care and reduced readmission risk.	
Regulators (e.g., MOH, HIPAA)	Ensure ethical and legal data usage.	

2. Data Strategy

A. Data Sources:

The model requires a combination of clinical, demographic, and behavioral data:

Category	Source	Examples
Clinical	EHRs	Diagnosis codes (ICD-10), vitals, lab tests, surgery logs
Demographic	Patient Records	Age, gender, race, insurance type, income level

Category	Source	Examples
Admission History	Hospital Systems	Number of past admissions, duration of stays, discharge disposition
Treatment Data	Pharmacy Systems	Medication adherence, prescriptions at discharge
Social & Behavioural	Surveys, Case Notes	Living situation, caregiver support, smoking/alcohol use
Follow-up Care	Appointment Logs	Time to next visit, referrals

B. Ethical Concerns:

1. Patient Privacy:

- Risk of data breaches or unauthorized access to sensitive medical information.
- Mitigation:
 - De-identify data before model training.
 - Use encrypted storage and secure APIs.
 - Comply with HIPAA (US), Data Protection Act (Kenya), or GDPR (EU).

2. Bias and Fairness:

- Models may unintentionally discriminate against certain groups (e.g., older adults or low-income patients).
- Mitigation:
 - Perform fairness audits using tools like Fairlearn or IBM AI Fairness
 360.
 - Include diverse population data during training.
 - Monitor disparate impact during deployment.

C. Preprocessing Pipeline:

1. Data Cleaning:

- o Remove duplicates, standardize date/time formats.
- o Impute missing values (mean for labs, mode for categorical).

2. Feature Engineering:

- o Comorbidity Index (e.g., Charlson Index).
- o Time Since Last Admission.
- Medication Count on Discharge.
- o Discharge Type Encoding (e.g., home, skilled care, death).
- o **Diagnosis Grouping** using CCS (Clinical Classifications Software).

3. Encoding & Scaling:

- o One-hot encoding for categorical features (e.g., gender, diagnosis group).
- o Min-Max or Z-score normalization for numerical variables.

4. Train-Test Split & Resampling:

- o 70-15-15 (train-validation-test).
- Use SMOTE (Synthetic Minority Oversampling Technique) to handle class imbalance.

3. Model Development

A. Model Selection:

Model Reason

- Handles tabular, structured healthcare data well.

XGBoost (Extreme Gradient Boosting) - Built-in regularization helps prevent overfitting.

- Fast training and strong accuracy.

Logistic Regression (Baseline)

- For interpretability and comparison.

Libraries: xgboost, scikit-learn, imbalanced-learn, SHAP for explainability.

B. Example Confusion Matrix (Hypothetical):

Predicted No Predicted Yes

Actual No 850 150

Actual Yes 100 200

C. Metrics Calculation:

- Accuracy = (TP + TN) / Total = (200 + 850)/1300 = 80.7%
- Precision = TP/(TP + FP) = 200/(200 + 150) = 0.571
- Recall = TP/(TP + FN) = 200/(200 + 100) = 0.667
- F1 Score = 2 * (Precision * Recall) / (Precision + Recall) \approx 0.615

D. Model Explainability:

- Use SHAP (SHapley Additive exPlanations) to interpret feature influence.
- Output top risk factors to clinicians (e.g., age, prior admissions, comorbidities).

4. Deployment Strategy

A. Integration Steps:

1. Model Packaging:

o Save model as .pkl or serve via **FastAPI** or **Flask** RESTAPI.

2. Connect to Hospital System:

- o Integrate with existing EHR platforms (Epic, Cerner, OpenMRS).
- o Pull real-time discharge records and output predictions.

3. Clinician Interface:

- o Embed risk score and top predictors into patient dashboards.
- o Allow care teams to flag patients for intervention.

4. Alert System:

o High-risk patients trigger alerts to discharge planners or case managers.

5. Feedback Loop:

 Collect actual readmission outcomes to retrain and improve model periodically.

B. Regulatory Compliance:

• HIPAA Compliance (US):

- Use data encryption (AES-256).
- Role-based access control (RBAC).
- Secure APIs (HTTPS, JWT tokens).
- Business Associate Agreements (BAA) with third-party cloud providers.

• Kenya's Data Protection Act:

- Notify patients about AI usage.
- o Allow data access and correction.
- o Appoint a **Data Protection Officer (DPO)**.

• Maintain audit logs for all data access and predictions.

5. Optimization Strategy

Addressing Overfitting:

Method: Early Stopping + Regularization

- Monitor validation loss; stop training if no improvement after n rounds.
- Use L1 (Lasso) and L2 (Ridge) penalties in XGBoost (alpha, lambda parameters).

Other Techniques:

- **Dropout** (if using deep learning)
- K-Fold Cross Validation
- Feature Selection (e.g., Recursive Feature Elimination)

Reference:

- Chen, T., & Guestrin, C. (2016). *XGBoost: A Scalable Tree Boosting System*. Proceedings of the 22nd ACM SIGKDD. https://doi.org/10.1145/2939672.2939785