命题逻辑

School of Computer Wuhan University

- 命题符号化
 - 命题
 - 符号化
 - 合式公式的形式文法
 - 合式公式的形式语义
- 2 永真公式
 - 公式的分类
 - 逻辑等价
 - 永真蕴含
 - 恒等变换和不等变换
 - 对偶性
- ③ 范式
 - 析取范式和合取范式
 - 主析取范式
- 4 联结词的扩充和归约
 - 联结词的扩充
 - 联结词的归约
- 5 推理和证明方法
 - 有效结论
 - 自然推理的形式证明
 - 证明方法

Outline

- 1 命题符号化
 - 命题
 - 符号化
 - 合式公式的形式文法
 - 合式公式的形式语义

- 4 联结词的扩充和归约
- 5 推理和证明方法

Drawing hands

True or False

- 左手画右手,右手画左手;
- paradox

◆□▶ ◆圖▶ ◆臺▶ ◆臺▶

logic

- 自然语言是对客观世界的描述,因此有"真"有"假";
- 逻辑学是研究"真假"的普遍规律的学科;
- 形式逻辑是用符号化的方法研究逻辑,也称符号逻辑,是数理逻辑的基础;
- 数理逻辑的主要研究内容:公理集合论、证明论、模型论、递归论.

命题(Proposition)

推理和证明

- 数学中的重要问题是"推理",即构造正确的论证(证明).
- 数理逻辑用符号化的方法,来研究推理.
- 用命题逻辑表达的推理,其基本要素即为命题.

Definition命题

• 有唯一真假值的陈述句(Declarative Sentence).

Example

- 糖是碳水化合物; (简单命题)
- 武汉大学是最美丽的大学; (简单命题)
- 如果不下雨,就开运动会; (复合命题)

Example (非命题)

- 现在几点?-(疑问句)
- 请不要讲话! (祈使句)
- \bullet $x+y \leq 4$

Example (Paradox)

• 我正在说谎.

符号化

命题符号化

- 每个具体命题有惟一真假值, 称为命题的真值.
- 对于真命题,称命题真值为"真";假命题,称其真值为"假".
- 但符号化只关心命题的真假,不关心其具体含义.
- 将不能再分的最小命题单位称为原子(atom),用英文字母表示:
 - 命题常元-真命题: T,假命题: F;
 - 命题变元-可以代表真命题或假命题,常用大写字母表示: *P*,*Q*,*R*, ...
- 原子通过联结词(connectives)按照一定的规则组成复合命题.

逻辑联结词

常用的逻辑联结词

名称	英文	符号	解释
否定词	negation	$\neg P$	非P,否定P
析取词	disjunction	$P \lor Q$	P或者 Q(兼或)
合取词	conjunction	$P \wedge Q$	P并且 Q
蕴含词	implication	$P \rightarrow Q$	如果 P ,则 Q
			P是 Q 的充分条件
			Q是 P 的必要条件
			P是前提, Q 是结论
			当 P ,则 Q (仅当 Q ,有 P)
等值词	bicondition	$P \leftrightarrow Q$	P等值于Q
			P是 Q 的充分必要条件
			P当且仅当 Q

逻辑联结词

联结词含义

- 原子命题的真值有"真"和"假",由原子和联结词组成的复合命题也有"真"和"假".
- 复合命题的真值由其中的原子和联结词的含义决定.

逻辑联结词的含义

P	Q	$\neg P$	$P \lor Q$	$P \wedge Q$	$P \rightarrow Q$	$P \leftrightarrow Q$
0	0	1	0	0	1	1
0	1	1	1	0	1	0
1	0	0	1	0	0	0
1	1	0	1	1	1	1

蕴含式

Example

- 如果上天再给一次重来机会,我一定要...
- 若前件为真,后件为假,则该蕴含式不成立,即为假;
- 若前件为假,后件为真或假,都为真.

形式蕴含

由于简单命题在符号化为原子时,剥离了原子之间可能存在的语义 关系,蕴含式的真假仅与条件和结论的真假有关,而与条件和结论 是否有语意关联无关.

Example

- If today is Friday, then 2 + 3 = 5. (True)
- If today is Friday, then 2+3=6. (True, except for Friday)

符号化

Example (命题)

你可以上网,仅当你是计算机专业的学生或者你不是一年级的学生.

符号化命题中的原子

- A: 你可以上网;
- C: 你是计算机专业的学生;
- F: 你是一年级的学生.

用联结词合成原命题

- 你不是一年级的学生: ¬F
- 你是计算机专业的学生或者你不是一年级的学生: C∨¬F
- \emptyset $A \to (C \vee \neg F)$

合式公式(Well-Formed Formulas, WFFs)

Desription

• 命题符号化的结果是合式公式,是命题"语言"中的"句子".

字母表

- 常元: T,F
- 变元: *P*, *Q*, *R*, ...
- 联结词: ¬, ∨, ∧, →, ↔
- 辅助符号: (,)

Definition (合式公式WFFs)

- ① 递归基础:常元和变元是WFFs;
- ② 递归规则: 若A, B是WFFs, 则

 $(\neg A), (A \lor B), (A \land B), (A \to B), (A \leftrightarrow B) \not\in \mathsf{WFFs};$

■ 极小性条款:由以上规则在有限步生成的都是WFFs.

Example

• $(A \to (C \lor (\neg F)))$ 是公式.

Proof.

- **●** *A*, *C*, *F*, 是公式, 根据规则①;
- ② (¬F)是公式,根据❶和规则②;
- ③ (C∨(¬F)),根据❶和规则②;
- **4** $(A \rightarrow (C \lor (\neg F)))$ 是公式,根据**03**和规则②.

Example

- $(→(C \lor ¬F))$ 不是公式,因为没有生成(→A)的规则;
- $(A \Rightarrow (C \lor \neg F))$ 不是公式,因为⇒不是联结词.

公式简化规则

约定

- 最外层的括号可以省略;
- 运算的优先级别由高到低:括号 $,\neg,\wedge,\vee,\rightarrow,\leftrightarrow$;
- 同一二元运算符号从左到右进行结合.

Example

- $(A \to (C \lor (\neg F)))$ 可以简化为: $A \to C \lor \neg F$
- $((P \lor Q) \lor R)$ 可以简化为: $P \lor Q \lor R$

注意

- $P \lor Q \land R \equiv P \lor (Q \land R) \neq (P \lor Q) \land R$
- $P \to Q \to R \equiv (P \to Q) \to R \neq P \to (Q \to R)$

◆□▶◆□▶◆壹▶◆壹▶ 壹 めQで

逻辑运算的基本法则

Description

- 每个命题都可以符号化为一个公式;
- 每个命题中的原子的真假一旦确定,则该命题的真假也惟一确定,即对应公式的真假值也惟一确定.

真值表

表示公式中原子的真假和公式真假值之间关系.为方便书写,用0表示假值,1表示真值.

逻辑联结词的含义

P	Q	$\neg P$	$P \lor Q$	$P \wedge Q$	$P \rightarrow Q$	$P \leftrightarrow Q$
0	0	1	0	0	1	1
0	1	1	1	0	1	0
1	0	0	1	0	0	0
1	1	0	1	1	1	1

一般公式的语义

记号

• 记含n个原子 P_1, P_2, \ldots, P_n 的公式G为: $G(P_1, P_2, \ldots, P_n)$.

Definition (指派(assignment))

设 $G(P_1, P_2, ..., P_n)$ 是一公式: 对 $P_1, P_2, ..., P_n$ 的一次取值 $\langle x_1, x_2, ..., x_n \rangle$, $x_i \in \{0, 1\}$, 称为一个指派(assignment). 记 $P_1, P_2, ..., P_n$ 的指派 $I = \langle x_1, x_2, ..., x_n \rangle$ 为: $I = x_1 x_2 ... x_n$

Property

- 公式 $G(P_1, P_2, \ldots, P_n)$ 一共有 2^n 种不同的指派.
- 注意:指派的下标与对应指派间的关系.

Example

• $G(P,Q) = \neg((P \lor Q) \land P)$ 的4个指派是: $I_0 = 00, \ I_1 = 01, \ I_2 = 10, \ I_3 = 11.$

Definition (G在解释I下的真值I(G))

设 $I = x_1 x_2 \dots x_n$ 为公式 $G(P_1, P_2, \dots, P_n)$ 的一个指派,则公式G在指派I下的值记为: I(G), 其递归定义如下:

•
$$I(\mathbb{T}) = 1$$
, $I(\mathbb{F}) = 0$;

•
$$I(G) = x_i$$
, if $G \equiv P_i$;

•

$$I(G) = \begin{cases} \neg I(A), & \text{if} \quad G = \neg A \\ I(A) \wedge I(B), & \text{if} \quad G = A \wedge B \\ I(A) \vee I(B), & \text{if} \quad G = A \vee B \\ I(A) \rightarrow I(B), & \text{if} \quad G = A \rightarrow B \\ I(A) \leftrightarrow I(B), & \text{if} \quad G = A \leftrightarrow B \end{cases}$$

◆ロト ◆部 → ◆ 章 → ◆ 章 → りへの

真值表

• 公式 $G(P_1, P_2, \ldots, P_n)$ 在 2^n 的指派下的值所构成的表称为公式G的 真值表.

Example

• $\triangle \preceq G = \neg((P \lor Q) \land P)$ 的真值表:

指派	P	Q	$P \lor Q$	$(P \lor Q) \land P$	G
$I_0 = 00$	0	0	0	0	1
$I_1 = 01$	0	1	1	0	1
$I_2 = 10$	1	0	1	1	0
$I_3 = 11$	1	1	1	1	0

• 公式 $G(P_1, P_2, ..., P_n)$ 的语义解释实际上是一个函数:

$$\underbrace{\{0,1\} \times \{0,1\} \times \ldots \times \{0,1\}}_{n \not x} \to \{0,1\}$$
$$\langle x_1, x_2, \ldots, x_n \rangle \mapsto G(x_1, x_2, \ldots, x_n)$$

- 这样的函数称为布尔函数(Boolean Function);
- 真值表的指派排列次序最好按二进制数从小到大的次序;
- 形式系统的构成:"形式结构+语义"
- 逻辑问题转化为"计算问题".

计算问题

- 计算一个n个原子的真值表需要 2^n 次计算;
- → 计算能力为1T(2⁴⁰)Flops, 计算100个原子的公式的真值表所用的 时间是:

$$2^{100}(\cancel{x}) = 2^{100} \div 2^{40} = 2^{60}(\cancel{v})$$
$$= 2^{60} \div (365 * 24 * 3600) = 3.6558901 \times 10^{10}(\cancel{4})$$

Boolean Satisfiability problem(SAT):NP-complete problem.

22/85

Outline

- 2 永真公式
 - 公式的分类
 - 逻辑等价
 - 永真蕴含
 - 恒等变换和不等变换
 - 对偶性

- 5 推理和证明方法

重言式(Tautology)

Definition

设 G是 公式:

- 如果对G的任意一个解释I,都有I(G) = 1,称G为重言式(永真式);
- 如果存在G的一个解释I, 有I(G) = 1, 称G为可满足式(satisfiable);
- 如果对G的任意一个解释I,都有I(G) = 0,称G为矛盾式(invalid).

Example

公式 $G = \neg((P \lor Q) \land P) \leftrightarrow \neg P$ 为重言式.

指派	P	Q	$P \lor Q$	$(P \lor Q) \land P$	$\neg((P \lor Q) \land P)$	$\neg P$	G
$I_0 = 00$	0	0	0	0	1	1	1
$I_1 = 01$	0	1	1	0	1	1	1
$I_2 = 10$	1	0	1	1	0	0	1
$I_3 = 11$	1	1	1	1	0	0	1

(ロ) 4団) 4 E) 4 E) 9 Q (P

逻辑等价(Logical Equivalences)

Definition

称公式F和G逻辑等价, iff, 公式 $(F) \leftrightarrow (G)$ 是重言式, 记为: $F \Leftrightarrow G$.

Example

公式G = ¬((P ∨ Q) ∧ P) ↔ ¬P为重言式,
 则, ¬((P ∨ Q) ∧ P) ⇔ ¬P.

Properties

- \bullet $A \Leftrightarrow A$;
- if $A \Leftrightarrow B$, then $B \Leftrightarrow A$;
- if $A \Leftrightarrow B$ and $B \Leftrightarrow C$, then $A \Leftrightarrow C$.

常用的逻辑等价式

$\neg \neg P \Leftrightarrow P$	双重否定律
$P \wedge P \Leftrightarrow P$	幂等律
$P \lor P \Leftrightarrow P$	
$P \wedge Q \Leftrightarrow Q \wedge P$	交换律
$P \lor Q \Leftrightarrow Q \lor P$	
$(P \land Q) \land R \Leftrightarrow P \land (Q \land R)$	结合律
$(P \lor Q) \lor R \Leftrightarrow P \lor (Q \lor R)$	
$(P \land Q) \lor P \Leftrightarrow P$	吸收律
$(P \lor Q) \land P \Leftrightarrow P$	
$(P \land Q) \lor R \Leftrightarrow (P \lor R) \land (Q \lor R)$	分配律
$(P \lor Q) \land R \Leftrightarrow (P \land R) \lor (Q \land R)$	
$P \to Q \Leftrightarrow \neg P \lor Q$	蕴含恒等式
$\neg (P \land Q) \Leftrightarrow \neg P \lor \neg Q$	De Morgan律
$\neg (P \lor Q) \Leftrightarrow \neg P \land \neg Q$	
$(P \to Q) \land (P \to \neg Q) \Leftrightarrow \neg P$	归谬律
$(P \vee \neg P) \Leftrightarrow \mathbb{T}$	排中律

永真蕴含关系(Logical Implication)

Definition

- 称公式F 永真蕴含公式G, iff, 公式 $(F) \to (G)$ 是重言式, 记为: $F \Rightarrow G$.
- 注: 对F 和G 中原子的所有指派I, 都有 $I(F) \leq I(G)$, 即F 为真时 G 一定为真, 相当于代数中的不等式.

Example

• 公式 $G = P \land (P \rightarrow Q) \rightarrow Q$ 为重言式,则, $P \land (P \rightarrow Q) \Rightarrow Q$.

Properties

- $\bullet A \Rightarrow A;$
- if $A \Rightarrow B$ and $B \Rightarrow A$, then $A \Leftrightarrow B$;
- if $A \Rightarrow B$ and $B \Rightarrow C$, then $A \Rightarrow C$:
- if $A \Rightarrow B$, then $\neg B \Rightarrow \neg A$.

常用的永真蕴含式

$P \Rightarrow P \lor Q$	加法式
$P \land Q \Rightarrow P$	简化式
$(P \to Q) \land P \Rightarrow Q$	假言推理
$(P \to Q) \land \neg Q \Rightarrow \neg p$	拒取式
$(P \lor Q) \land \neg P \Rightarrow Q$	析取三段论
$(P \to Q) \land (Q \to R) \Rightarrow (P \to R)$	前提三段论
$(P \to Q) \Rightarrow (Q \to R) \to (P \to R)$	
$(P \to Q) \land (R \to S) \Rightarrow (P \land R) \to (Q \land S)$	

水真公式 范式 联结词的扩充和归约 推理和证明方法

逻辑恒等式与不等式的证明

方法

- 真值表法: 判断 $A \leftrightarrow B$ 或 $A \to B$ 的真值是否恒为1;
- 对不等式 $A \Rightarrow B$: 判断A为真时B亦真; 或者, B为假时A亦假;
- 恒等、不等变换.

Example: $P \wedge (P \rightarrow Q) \Rightarrow Q$

Method 1:

- **①** 设, $P \wedge (P \rightarrow Q)$ 为真;
- ② 则, P为真, $P \to Q$ 亦真;
- ③ 所以, Q为真.

Method 2:

- ❶ 设, Q为假;
- ② 分情况讨论:
 - P为真,则, $P \to Q$ 为假,所以, $P \land (P \to Q)$ 为假;
 - P为假,则, $P \land (P \rightarrow Q)$ 为假.

代入规则

Definition (代入(Substitution))

设 $G(P_1, P_2, \ldots, P_n)$ 是一公式,F是另一公式,设 P_i 是公式G中的某一原子,将公式G中的 P_i 的每个出现用F替换,称为代入,代入后所得的公式 $G(P_1, \ldots, F/P_i, \ldots, P_n)$ 称为原公式的代入实例.

Example

- $G(F/P, Q) = ((\neg P \lor R) \land Q) \lor (\neg P \lor R)$
- $G(F/P, Q) \neq (\neg P \lor R \land Q) \lor \neg P \lor R$

Theorem (代入规则)

设公式 $G(P_1, P_2, \ldots, P_n)$ 是重言式,则其任意的一个代入实例 $G(P_1, \ldots, P_{i-1} \mathbf{F}/P_i, P_{i+1}, \ldots, P_n)$ 也是重言式.

Corollary (代入规则)

- **1** $A \Leftrightarrow B$, M $A(F/P) \Leftrightarrow B(F/P)$;
- **2** $A \Rightarrow B$, M $A(F/P) \Rightarrow B(F/P)$.

替换规则

Definition (替换(Replacement))

设G是一公式,A是在G的某个位置出现的子公式,将该子公式A用公式 B置换,称为替换.

Example

- $\mathbf{0} \quad G = (P \to Q) \land P, \ B = (\neg P \lor Q);$
- $\mathbf{Q} \quad G' = (\neg P \lor Q) \land P.$

Theorem (替换规则)

设, G'是公式G中的某个子公式A用B替换后得到的公式, 如果 $A \Leftrightarrow B$, 则 $G \Leftrightarrow G'$.

Example

$$\underbrace{\overbrace{(P \to Q)}^G \land P}_{A} \Leftrightarrow \underbrace{\underbrace{(\neg P \lor Q)}_{B} \land P}_{C}$$

注意

- 替换规则只能对恒等式 $A \Leftrightarrow B$ 成立,对不等式不成立!
- \mathbb{P} : if $A \Rightarrow B$, $G \Rightarrow G'$.

Example

$$\underbrace{P \wedge Q}_{A} \Rightarrow \underbrace{P}_{B}$$

$$\underbrace{\neg (P \wedge Q)}_{G} \not \Rightarrow \underbrace{\neg P}_{G'}$$

Example(1/3)

Example

$$(P \to Q) \to (Q \lor R) \Leftrightarrow P \lor Q \lor R$$

Proof.

$$(P \to Q) \to (Q \lor R)$$

$$1 \Leftrightarrow (\neg P \lor Q) \to (Q \lor R)$$

$$2 \Leftrightarrow \neg (\neg P \lor Q) \lor (Q \lor R)$$

$$3 \Leftrightarrow (\neg \neg P \land \neg Q) \lor (Q \lor R)$$

$$4 \Leftrightarrow (P \land \neg Q) \lor (Q \lor R)$$

$$5 \Leftrightarrow ((P \land \neg Q) \lor Q) \lor R$$

$$6 \Leftrightarrow ((P \lor Q) \land (\neg Q \lor Q)) \lor R$$

$$7 \Leftrightarrow ((P \lor Q) \land T) \lor R$$

$$(替换+排中律)$$

$$(替换+排中律)$$

(替换+简化式)

 $8 \Leftrightarrow (P \vee Q) \vee R$

9 = RHS

Example(2/3)

Example

$$(P \to Q) \land \neg Q \Rightarrow \neg P$$
等价于: $(P \to Q) \land \neg Q \to \neg P \dot{x} \dot{p}$;
等价于: $(P \to Q) \land \neg Q \to \neg P \leftrightarrow T$;
等价于: $\neg ((P \to Q) \land \neg Q \to \neg P) \leftrightarrow F$.
Proof.
$$\neg ((P \to Q) \land \neg Q \to \neg P)$$

$$1 \Leftrightarrow \neg ((\neg P \lor Q) \land \neg Q \to \neg P)$$

$$2 \Leftrightarrow \neg (\neg ((\neg P \lor Q) \land \neg Q) \lor \neg P)$$

$$3 \Leftrightarrow \neg \neg ((\neg P \lor Q) \land \neg Q) \land \neg \neg P$$

$$4 \Leftrightarrow (\neg P \lor Q) \land \neg Q \land P$$

$$5 \Leftrightarrow ((\neg P \land \neg Q) \lor (Q \land \neg Q)) \land P$$

$$6 \Leftrightarrow ((\neg P \land \neg Q) \lor (P \land \neg Q)) \land P$$

$$7 \Leftrightarrow (\neg P \land \neg Q) \land P$$

$$8 \Leftrightarrow (\neg P \land P) \land \neg Q$$

$$9 \Leftrightarrow F \land \neg Q$$

$$($ f \dot{x} + $ f h e t t)$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x} + $ f h e t]$$

$$($ f \dot{x$$

Example(3/3)

Example

化简公式: $(P \rightarrow Q \lor \neg R) \land \neg P \land Q$ 解:

$$\frac{(P \to Q \lor \neg R) \land \neg P \land Q}{1 \Leftrightarrow (\neg P \lor Q \lor \neg R) \land \neg P \land Q}$$

 $2 \Leftrightarrow \neg P \land Q$

(代入+替换+蕴含表达式) (代入+替换+吸收律)

Example

化简公式: $(P \rightarrow Q) \land (P \rightarrow R)$

解:

$$(P \to Q) \land (P \to R)$$

$$1 \Leftrightarrow (\neg P \lor Q) \land (\neg P \lor R)$$

$$2 \Leftrightarrow \neg P \lor (Q \land R)$$

$$3 \Leftrightarrow P \to (Q \land R)$$

(替换+蕴含表达式) (代入+分配律)

恒等变换和不等变换

Remarks

- ❶ 公式的整体变换: 代入+基本恒等式;
- ② 公式的局部变换: 替换+基本恒等式;
- ⑤ 局部变换的子公式和基本恒等式的形式不完全一样:代入+替换+基本恒等式;
- 4 蕴含表达式的使用;
- 所有的恒等式和不等式,都能够用基本恒等式和不等式通过代入和替换推出.

Definition (对偶公式)

Example

$$(P \land Q \lor \neg R)^*$$

$$= (P \lor Q) \land \neg R$$

$$\neq P \lor Q \land \neg R$$

$$= P \lor (Q \land \neg R)$$

Property

$$A^{**} = A$$
.

广义De Morgan定理

Theorem

设是一个仅含有
$$\neg$$
, \land 和 \lor 运算符号的公式,则:
$$\neg G(P_1, P_2, \dots, P_n) \Leftrightarrow G^*(\neg P_1, \neg P_2, \dots, \neg P_n)$$

Proof (对公式的递归结构用归纳法证明).

- ② 设 $G(P_1, P_2, ..., P_n) = A(P_1, P_2, ..., P_n) \land B(P_1, P_2, ..., P_n)$, 并且A和B满足上述恒等式,则:

$$\neg G(P_1, P_2, \dots, P_n)
= \neg (A(P_1, P_2, \dots, P_n) \land B(P_1, P_2, \dots, P_n))
\Leftrightarrow \neg A(P_1, P_2, \dots, P_n) \lor \neg B(P_1, P_2, \dots, P_n)
\Leftrightarrow A^*(\neg P_1, \neg P_2, \dots, \neg P_n) \lor B^*(\neg P_1, \neg P_2, \dots, \neg P_n)
= (A(\neg P_1, \neg P_2, \dots, \neg P_n) \land B(\neg P_1, \neg P_2, \dots, \neg P_n))^*
= G^*(\neg P_1, \neg P_2, \dots, \neg P_n)$$
(度义)

③ 同理, 对 $G = \neg A \rightarrow G = A \lor B$ 有相同的结论.

相关推论(1/2)

Theorem

设F和G是仅含有 \neg , \land 和 \lor 运算符号的公式,则: $F \Leftrightarrow G$ iff $F^* \Leftrightarrow G^*$

iff $F^*(P_1, P_2, \dots, P_n) \Leftrightarrow G^*(P_1, P_2, \dots, P_n)$

Proof.

$$F\Leftrightarrow G$$
 iff $\neg F\Leftrightarrow \neg G$ iff $F^*(\neg P_1, \neg P_2, \dots, \neg P_n)\Leftrightarrow G^*(\neg P_1, \neg P_2, \dots, \neg P_n)$ (广义DeMorgan) iff $F^*(\neg P_1, \neg P_2, \dots, \neg P_n)\Leftrightarrow G^*(\neg P_1, \neg P_2, \dots, \neg P_n)$ (代入)

(双重否定)

Theorem

设F和G是仅含有 \neg 、 \land 和 \lor 运算符号的公式,则:

$$F \Rightarrow G$$
 iff $G^* \Rightarrow F^*$

Proof.

$$F \Rightarrow G$$

iff
$$\neg G \Rightarrow \neg F$$

iff
$$\neg G \rightarrow \neg F \Leftrightarrow \mathbb{T}$$

$$III \quad IG \rightarrow IT \Leftrightarrow II$$

$$\mathsf{iff} \ \ G^*(\neg P_1, \neg P_2, \dots, \neg P_n) \to F^*(\neg P_1, \neg P_2, \dots, \neg P_n) \Leftrightarrow \mathbb{T} \quad (\dot{\vdash} \not \perp \mathsf{DeMorgan})$$

iff
$$G^*(\neg \neg P_1, \neg \neg P_2, \dots, \neg \neg P_n) \to F^*(\neg \neg P_1, \neg \neg P_2, \dots, \neg \neg P_n) \Leftrightarrow \mathbb{T}$$
 ($\mathcal{K}\lambda$)

iff
$$G^*(P_1, P_2, \dots, P_n) \to G^*(F_1, P_2, \dots, P_n) \Leftrightarrow \mathbb{T}$$
 (双重否定)

iff
$$G^* \Rightarrow F^*$$
 (定义)

Outline

- 3 范式
 - 析取范式和合取范式
 - 主析取范式
- 5 推理和证明方法

内容

- - 命题
 - 符号化
 - 合式公式的形式文法
 - 合式公式的形式语义
- - 公式的分类
 - 逻辑等价
 - 永真蕴含
 - 恒等变换和不等变换
 - 对偶性
- 3 范式
 - 析取范式和合取范式 • 主析取范式
- - 联结词的扩充
 - 联结词的归约
- - 有效结论
 - 自然推理的形式证明
 - 证明方法

逻辑等价的公式

逻辑等价

- $A \Leftrightarrow B$, 即, 公式A恒等值于B, A和B逻辑等价.
- e.g.: $P \rightarrow Q \Leftrightarrow \neg P \lor Q \Leftrightarrow \dots$
- e.g.: $P \leftrightarrow Q \Leftrightarrow (P \land Q) \lor (\neg P \land \neg Q) \Leftrightarrow \dots$
- 为了便于讨论, 有必要将公式的形式规范化, 即将公式转换为与其 等价的标准形式.

析取范式和合取范式

Definition基本积、基本和

- 基本积 是合式公式中的变元或变元的否定的合取;
- 基本和 是合式公式中的变元或变元的否定的析取;

Example

- 基本积: $P, \neg P \land Q, Q \land \neg P, P \land \neg P, Q \land P \land \neg P$
- 基本和: P, $\neg P \lor Q$, $Q \lor \neg P$, $P \lor \neg P$, $Q \lor P \lor \neg P$

析取范式

Definition析取范式

• 一个形为基本积的析取的公式, 若与命题公式A 等价, 则称其为公式A的析取范式, 记为: $A \Leftrightarrow A_1 \lor A_2 \lor ... \lor A_n$, $(n \ge 1, A_i$ 是基本积)

Example析取范式

- $P \rightarrow Q \Leftrightarrow \neg P \lor Q$
- $P \leftrightarrow Q \Leftrightarrow (P \land Q) \lor (\neg P \land \neg Q)$

注意

● 析取范式中只含有联结词¬, ∧, V.

析取范式的求解

求解方法: 公式恒等变换

- ❶ 消去联结词→, ↔;
- ② 利用DeMorgen律将联结词¬移至变元前,并消去双重否定;
- 3 利用分配律、结合律等将公式化为析取范式.

Example求解析取范式

• $\bar{x} \propto \vec{\Lambda} P \wedge (P \rightarrow Q)$ 的析取范式:

$$P \land (P \to Q) \Leftrightarrow P \land (\neg P \lor Q)$$
$$\Leftrightarrow (P \land \neg P) \lor (P \land Q)$$
$$\Leftrightarrow (P \land Q)$$

注意

• 公式的析取范式不唯一.

主析取范式-极小项

Definition极小项

• 有n个命题变元 $P_1, P_2, ..., P_n$ 的基本积, 称之为极小项, 当且仅 当, 每个变元与其否定不同时出现, 且二者之一出现且仅出现一次.

Example

- 变元P, Q: 则 $P \land \neg Q, P \land Q$ 是极小项;
- \mathfrak{T}_1, P_2, P_3 : $\mathfrak{M}_1 \wedge \neg P_2 \wedge \neg P_3, \ \neg P_1 \wedge \neg P_2 \wedge P_3$ 是极小项;
- 问题: 对于给定的n个变元, 一共有多少个不同的极小项?

极小项的性质

3个变元极小项

- 对于3个命题变元P, Q, R, 共有 $2^3 = 8$ 个极小项;
- 对于每个极小项,有且仅有一个指派使之真值为真.
- 标记法: 用使极小项为真的指派对应的数字作为它的下标.

极小项	所有指派	唯一指派	标记
$\neg P \land \neg Q \land \neg R$	$000 \sim 111$	000	m_0
$\neg P \land \neg Q \land R$	$000 \sim 111$	001	m_1
$\neg P \land Q \land \neg R$	$000 \sim 111$	010	m_2
$\neg P \land Q \land R$	$000 \sim 111$	011	m_3
$P \wedge \neg Q \wedge \neg R$	$000 \sim 111$	100	m_4
$P \wedge \neg Q \wedge R$	$000 \sim 111$	101	m_5
$P \wedge Q \wedge \neg R$	$000 \sim 111$	110	m_6
$P \wedge Q \wedge R$	$000 \sim 111$	110	m_7

n个变元的极小项

• n个变元 $P_1, P_2, ..., P_n$ 的极小项共 2^n 项:

 $m_0: \neg P_1 \wedge \neg P_2 \wedge ... \wedge \neg P_n$

 $m_1: \neg P_1 \wedge \neg P_2 \wedge ... \wedge P_n$

.....

 $m_{2^n-1}: P_1 \wedge P_2 \wedge ... \wedge P_n$

极小项性质

• 极小项的下标对应的指派, 唯一使得该极小项真值为1.

主析取范式

Definition主析取范式

• 一个公式称之为公式A的主析取范式,当且仅当,其与公式A逻辑等价,且由极小项之和组成.

Example

• 公式 $P \leftrightarrow Q$ 的主析取范式:

$$P \leftrightarrow Q \Leftrightarrow (P \land Q) \lor (\neg P \land \neg Q)$$
$$\Leftrightarrow m_3 \lor m_0$$
$$\Leftrightarrow \sum (0, 3)$$

主析取范式的求解

公式的主析取范式的求法

- 恒等变换法: A ⇔析取范式⇔主析取范式
 - 1 去掉析取范式中的永假的基本积;
 - ② 合并相同的变元(变元的否定)和基本积;
 - ③ 对每个基本积补入未出现的命题变元, 再展开化简至主析取 范式.
- 真值表法

题符号化 永真公式 范式 联结词的扩充和归约 推理和证明方法

主析取范式求解-Example(I)

恒等变换法

- 用恒等变换法求公式A的主析取范式
- $A \Leftrightarrow P \land Q \lor R$ $\Leftrightarrow P \land Q \land (R \lor \neg R) \lor (P \lor \neg P) \land (Q \lor \neg Q) \land R$ (补入) $\Leftrightarrow P \land Q \land R \lor P \land Q \land \neg R \lor P \land Q \land R \lor \neg P \land Q \land R$ $\lor P \land \neg Q \land R \lor \neg P \land \neg Q \land R$ (展开) $\Leftrightarrow m_7 \lor m_6 \lor m_7 \lor m_5 \lor m_3 \lor m_1$ (极小项标记) $\Leftrightarrow m_1 \lor m_3 \lor m_5 \lor m_6 \lor m_7$ (化简)
 - $\Leftrightarrow \sum (1,3,5,6,7)$

思考: 求出的主析取范式是否是唯一的?(考虑极小项的性质)

• 有且仅有一个指派使得某个极小项为真.

主析取范式的唯一性

Remark

- 主析取范式是否是唯一的?(考虑极小项的性质)
- 极小项的性质: 有且仅有一个指派使得某个极小项真值为1.
- 公式A的主析取范式中,出现的极小项的下标对应的二进制编码,就是使得公式真值为1的指派;未出现的极小项的下标对应于使公式真值为0的指派.
- 结论: 公式的主析取范式是唯一的.

主析取范式求解-Example(II)

Example

• 用真值表法求公式 $A \Leftrightarrow P \land Q \lor R$ 的主析取范式.

	P	\overline{Q}	R	$P \land Q \lor R$
0	0	0	0	0
1	0	0	1	1
2	0	1	0	0
3	0	1	1	1
4	1	0	0	0
5	1	0	1	1
6	1	1	0	1
7	1	1	1	1

真值表法

- $A \Leftrightarrow P \land Q \lor R$ $\Leftrightarrow \sum (1, 3, 5, 6, 7)$
- 使得公式真值为1的指 派,对应于公式A的主析取 范式中的某个极小项的下 标.

主析取范式个数

问题

• n个变元的命题公式可以有无限多个, 但一共有多少个不同的主析取范式呢?

分析

- 已知对于n个变元, 有 2^n 个极小项;
- 对任一个主析取范式,可能含有的某个极小项,或者不含有某个极小项;
- 所以,一共可构造 2^{2ⁿ} 个主析取范式.

• n = 1 一个变元的主析取范式. 共有 $2^{2^1} = 4$ 个:

●
$$\sum(\emptyset) \Leftrightarrow \mathbb{F}$$
 (不含任何极小项)

- \bullet $\Sigma(1) \Leftrightarrow P$

(含所有极小项)

- n = 2含两个变元的主析取范式, 共有 $2^{2^2} = 16$ 个;
- n = 3含三个变元的主析取范式. 共有 $2^{2^3} = 256$ 个.

4日 > 4周 > 4 目 > 4 目 > 目

主析取范式和主合取范式-对偶性

Canonical Forms

- 主析取范式-Canonical Disjunctive Normal Form(CDNF)
- 主合取范式-Canonical Conjunctive Normal Form(CCNF)

主析取范式	主合取范式
基本积	基本和
析取范式(基本积之和)	合取范式(基本和之积)
极小项	极大项
n个变元有2 ⁿ 个极小项	n 个变元有 2^n 个极大项
其下标使该极小项为真	其下标使该极大项为假
主析取范式是极小项的和	主合取范式是极大项的积
其中的所有的极小项的下标	其中的所有的极大项的下标
对应使该公式为真的解释	对应使该公式为假的解释

极小项、极大项性质

极小项

- n个变元可以构成 2^n 个极小项;
- 每个极小项其下标编码对应的 指派,唯一使得其真值为1;
- 任意两个极小项的合取式真值 为0;
- 全体极小项的析取式真值为1.

极大项

- n个变元可以构成 2^n 个极大项;
- 每个极大项其下标编码对应的 指派,唯一使得其真值为0;
- 任意两个极大项的析取式真值 为1;
- 全体极大项的合取式真值为0.

主合取范式求解-Example

恒等变换法求CDNF

• $A \Leftrightarrow P \land Q \lor R$ $\Leftrightarrow P \land Q \land (R \lor \neg R) \lor (P \lor \neg P) \land (Q \lor \neg Q) \land R$ (补入) $\Leftrightarrow P \land Q \land R \lor P \land Q \land \neg R \lor P \land Q \land R \lor \neg P \land Q \land R$ $\lor P \land \neg Q \land R \lor \neg P \land \neg Q \land R$ (展升) $\Leftrightarrow m_1 \lor m_3 \lor m_5 \lor m_6 \lor m_7$ (化简) $\Leftrightarrow \sum (1,3,5,6,7)$

恒等变换法求CCNF

•
$$A \Leftrightarrow P \land Q \lor R \Leftrightarrow (P \lor R) \land (Q \lor R)$$
 (合取范式)
 $\Leftrightarrow (P \lor R \lor (Q \land \neg Q)) \land (Q \lor R \lor (P \land \neg P))$ (补入)
 $\Leftrightarrow (P \lor Q \lor R) \land (P \lor \neg Q \lor R) \land (\neg P \lor Q \lor R)$ (展开化简)
 $\Leftrightarrow M_0 \land M_2 \land M_4 \Leftrightarrow \prod (0, 2, 4)$ (标记)

Outline

- 3 范式
- 4 联结词的扩充和归约
 - 联结词的扩充
 - 联结词的归约
- 5 推理和证明方法

内容

- - 命题
 - 符号化
 - 合式公式的形式文法
 - 合式公式的形式语义
- - 公式的分类
 - 逻辑等价
 - 永真蕴含
 - 恒等变换和不等变换
 - 对偶性
- - 析取范式和合取范式
 - 主析取范式
- 4 联结词的扩充和归约
 - 联结词的扩充
 - 联结词的归约
- - 有效结论
 - 自然推理的形式证明
 - 证明方法

联结词的扩充

Remark(n个原子的公式共有 2^{2^n} 个不同的运算)

- 一元运算: $2^{2^1} = 4$ 个: 恒为1, 恒为0, 恒等, 否定;
- 二元运算: $2^{2^2} = 16$ 个: 恒为1, 恒为0, \land , \lor , \rightarrow , \leftrightarrow ,...
- 在数字电路和程序设计中还常用到一些二元逻辑运算,可以定义相应的运算符(联结词),即为对联结词的扩充.

Example (二元运算的扩充)

		与非(NAND)	或非(NOR)	异或(XOR)
P	Q	$P \uparrow Q$	$P \downarrow Q$	$P \oplus Q$
0	0	1	1	0
0	1	1	0	1
1	0	1	0	1
1	1	0	0	0
等1	价式	$\neg (P \land Q)$	$\neg (P \lor Q)$	$(P \land \neg Q) \lor (\neg P \land Q)$

程序设计中的位运算

Example

C语言的位运算(bitwise operator):

~(取否), &(合取), |(析取), ^(异或), <<(左位移), >>(右位移)

Example

Programming Example

计算正整数二进制表示中1出现的次数 int cardinal(unsigned long x) { int count = 0; while (x != (unsigned long) 0) { x = x & -x; count++; return count;

联结词的全功能集

Definition

- 一个联结词的集合的全功能的, iff, 所有的运算均能用该集合中的 联结词表示;
- 极小全功能联结词集合, iff, 该集合中删除任意的一个联结词后不 再是全功能的.

Example

- {¬,∧,∨}是全功能的;
- {¬,∧}和{¬,∨}是极小全功能的;
- {¬,→}是极小全功能的;
- $\{\neg, \leftrightarrow\}$ 不是全功能的,因为: \leftrightarrow +¬永远只能有8个公式(CCNF);
- $\{\Lambda, V\}$ 不是全功能的,因为: Λ + V 的组合中对每个原子都取真值 的指派只能取真.

Example

- {↓}是全功能的.

 - $P \Leftrightarrow P \downarrow P$
 - **3** 考虑 $P \rightarrow Q$:

$$\begin{split} P &\to Q \\ \Leftrightarrow \neg P \lor Q \\ \Leftrightarrow \neg \neg ((P \downarrow P) \lor Q) \\ \Leftrightarrow \neg ((P \downarrow P) \downarrow Q) \\ \Leftrightarrow ((P \downarrow P) \downarrow Q) \downarrow ((P \downarrow P) \downarrow Q) \end{split}$$

Outline

- 5 推理和证明方法
 - 有效结论
 - 自然推理的形式证明
 - 证明方法

有效结论

Definition

设 H_1,H_2,\ldots,H_n,C 是公式,称C是 H_1,H_2,\ldots,H_n 的有效结论(Valid consequence), iff, 对任意的指派I, 如果 $I(H_1 \wedge H_2 \wedge \ldots \wedge H_n)=1$, 则有: I(C)=1. 记为 $H_1,H_2,\ldots,H_n \vdash C$.

Theorem

下述条件彼此等价:

- $\bullet H_1, H_2, \ldots, H_n \vdash C;$
- ② $(H_1 \wedge H_2 \wedge \ldots \wedge H_n) \rightarrow C$ 是重言式;
- **④** ¬ $((H_1 \land H_2 \land ... \land H_n) \rightarrow C)$ 是矛盾式;
- **⑤** $H_1 \wedge H_2 \wedge \ldots \wedge H_n \wedge \neg C$ 是矛盾式;
- **⑤** $(H_1 \land H_2 \land ... \land H_n \land \neg C) \rightarrow \mathbb{F} \mathcal{L} \mathring{\mathcal{A}} \mathring{\mathcal{A}};$
- $(H_1 \wedge H_2 \wedge \ldots \wedge H_n \wedge \neg C) \Rightarrow \mathbb{F}.$

A, B, C和D参加球赛,条件如下:

- ① A参加,则B或C也参加;
- ② B参加,则A不参加;
- ③ D参加,则 C不参加.

证明: "如果A参加,则D不参加" 是上述条件的有效结论.

将条件和结论符号化为:

- $\mathbf{Q} H_2 = B \rightarrow \neg A$:
- **4** 结论: $A \rightarrow \neg D$

方法1

等价于: $(A \to B \lor C) \land (B \to \neg A) \land (D \to \neg C) \Rightarrow (A \to \neg D)$

$$(A \to B \lor C) \land (B \to \neg A) \land (D \to \neg C)$$

- $1 \Leftrightarrow (A \to B \lor C) \land (A \to \neg B) \land (D \to \neg C)$
- $2 \Leftrightarrow (A \to (B \lor C) \land \neg B) \land (D \to \neg C)$
- $3 \Leftrightarrow (A \to (C \land \neg B)) \land (D \to \neg C)$
- $4 \Leftrightarrow (A \to C) \land (A \to \neg B) \land (D \to \neg C)$
- $5 \Leftrightarrow (A \to C) \land (A \to \neg B) \land (C \to \neg D)$
- $6 \Rightarrow (A \rightarrow C) \land (C \rightarrow \neg D)$
- $7 \Rightarrow A \rightarrow \neg D$

(注意:不等变换不能使用替换规则)

方法2

真值表法(略).

方法3

$$(A \to B \lor C) \land (B \to \neg A) \land (D \to \neg C) \Rightarrow (A \to \neg D)$$

- ① 设结论为假,即 $(A \rightarrow \neg D)$ 为假;
- ❷ 所以, A, D为真;
- ③ 设B为真: $(B \rightarrow \neg A)$ 为假,所以前提为假;
- ❹ 设B为假:

 - 当C为假时: $(A \rightarrow B \lor C)$ 为假;
- ⑤ 由❸4得: 前提为假.

方法4

$$(A \to B \lor C) \land (B \to \neg A) \land (D \to \neg C) \Rightarrow (A \to \neg D)$$

- ① 设前提为真,即 $(A \to B \lor C)$, $(B \to \neg A)$, $(D \to \neg C)$ 为真;
- ② :. $A \rightarrow \neg B$ 为真;
- **3** ∴ $(A \rightarrow \neg B) \land (A \rightarrow B \lor C)$ 为 真;
- **④** ∴ $A \rightarrow (\neg B \land (B \lor C)) \not A$ $\not =$;
- **⑤** ∴ $A \rightarrow (\neg B \land C) \rightarrow A$;
- **6** ∴ $A \rightarrow C$ 为真;
- **②** 由**①**得: $C \rightarrow \neg D$ 为真;

证明有效结论的方法

Remark

- ❶ 恒等和不等变换;
- ② 真值表;
- 3 设结论为假,证明条件亦假;
- 设前提为真,证明结论亦真;
- ⑤ 证明序列.

Example

$$A \to B \lor C, B \to \neg A, D \to \neg C \vdash A \to \neg D$$

证明序列

$$\mathbf{D} = \mathbf{D} + \mathbf{D}$$

4
$$A \rightarrow (B \lor C) \land \neg B$$
 (①③+复合式)

$$\bigcirc A \rightarrow C$$
 (⑥+简化式)

$$(2+T) 3 D \to \neg C (P)$$

⑩
$$A \rightarrow \neg D$$
 (⑦⑨+前提三段论)

说明

证明说明中用P(Premise)表示引入前提,用T(Tautology)表示恒等变换.

证明序列

Definition

设, H_1, H_2, \ldots, H_n 是一组条件,一个证明序列是一组形如: C_1, C_2, \ldots, C_m 的公式序列,其中每个 C_i 满足下述条件中的一个:

- ① 存在 H_i , 使得: $C_i = H_i$; (引入条件)
- ② $C_i = \mathbb{T}$; (引入永真)
- **③** 存在 $C_{i_1}, C_{i_2}, \ldots, C_{i_k}$, 其中: $i_j \leq i$, 并且: $C_{i_1} \wedge C_{i_2} \wedge \ldots \wedge C_{i_k} \Leftrightarrow C_i$; (恒等变换)
- 存在 $C_{i_1}, C_{i_2}, \ldots, C_{i_k}$, 其中: $i_j \leq i$, 并且: $C_{i_1} \wedge C_{i_2} \wedge \ldots \wedge C_{i_k} \Rightarrow C_i$; (不等变换)

自然推理的正确性与完备性

Theorem (Soundness & Completeness)

$$\mathcal{C}_1, C_1, C_2, \dots, C_m$$
是关于条件 H_1, H_2, \dots, H_n 的一证明序列,则对每个 C_i 都有:
$$(H_1 \land H_2 \land \dots \land H_n \Rightarrow C_i)$$

 $P: H_1, H_2, \ldots, H_n \vdash C_i$. 反之亦然.

Proof.(正确性)对证明序列的下标用归纳法证明.

- ❶ 由于C₁满足定义中的条件,所以结论成立;
- ② 假设对任意的j < i, C_i 都是前提的有效结论,则:
 - if $C_i = H_j$: (引入条件) $(H_1 \wedge H_2 \wedge \ldots \wedge H_n \Rightarrow H_j)$;
 - ② if $C_i = \mathbb{T}$: (引入永真) $(H_1 \wedge H_2 \wedge \ldots \wedge H_n \Rightarrow \mathbb{T})$;
 - **9** if $C_{i_1} \wedge C_{i_2} \wedge \ldots \wedge C_{i_k} \Rightarrow C_i$, 由归纳假设: $(H_1 \wedge H_2 \wedge \ldots \wedge H_n \Rightarrow C_{i_j})$, $(i_j < i)$ $\therefore (H_1 \wedge H_2 \wedge \ldots \wedge H_n) \Rightarrow C_{i_1} \wedge C_{i_2} \wedge \ldots \wedge C_{i_n} \Rightarrow C_i$
 - **④** 同理可证, 当 C_{i_1} ∧ C_{i_2} ∧ ... ∧ C_{i_k} ⇔ C_{i_k} 时结论成立;
- 3 故结论成立.

推理规则

Definition

常用的永真蕴含关系的竖式表示称为推理规则(Inference Rule).

Example (三段论)

$$P \wedge (P \rightarrow Q) \Rightarrow Q$$

其对应的推理规则表示为:

$$\frac{P \qquad (P \to Q)}{Q}$$
 (三段论)

Remark

推理过程中的不等变换仅能使用代入规则,即对公式的整体进行变换.

《□》《圖》《臺》《臺》 臺

常用的推理规则(1/2)

推理规则

名称	推理规则	对应的永真蕴含关系
加法式	$\frac{P}{P \vee Q}$	$P \Rightarrow P \lor Q$
简化式	$\frac{P \wedge Q}{P}$	$P \wedge Q \Rightarrow P$
拒取式 Modus Tollens(MT)	$\begin{array}{ccc} \neg Q & P \to Q \\ \hline \neg P & \end{array}$	$\neg Q \wedge (P \to Q) \Rightarrow \neg P$
前提三段论 Hypothetical syllogism	$\begin{array}{c} P \to Q & Q \to R \\ \hline P \to R & \end{array}$	$(P \to Q) \land (Q \to R) \Rightarrow P \to R$
复合式 Composition	$\begin{array}{c} P \to Q & P \to R \\ \hline P \to Q \land R & \end{array}$	$(P \to Q) \land (P \to R) \Rightarrow (P \to Q \land R)$

常用的推理规则(2/2)

推理规则

名称	推理规则	对应的永真蕴含关系
合取式	$\frac{P \qquad Q}{P \wedge Q}$	$P \wedge Q \Rightarrow Q \wedge P$
析取三段论 Disjunctive syllogism	$\frac{P \lor Q \qquad \neg Q}{P}$	$(P \lor Q) \land \neg Q \Rightarrow P$
构造性二难	$P \rightarrow Q R \rightarrow S P \lor R$	$(P \to Q) \land (R \to S) \land (P \lor R)$
Constructive dilemma	$Q \lor S$	$\Rightarrow Q \vee S$
破坏性二难	$P \rightarrow Q R \rightarrow S \neg Q \lor \neg S$	$(P \to Q) \land (R \to S) \land (\neg Q \lor \neg S)$
Destructive dilemma	$\neg P \lor \neg R$	$\Rightarrow \neg P \vee \neg R$

Example

$$A \to B \lor C$$
, $B \to \neg A$, $D \to \neg C \vdash A \to \neg D$

证明序列

4
$$A \rightarrow (B \lor C) \land \neg B$$
 (①③+复合式)

$$\bigcirc A \rightarrow C$$
 (⑥+简化式)

$$(2+T) 3 D \to \neg C (P)$$

⑩
$$A \rightarrow \neg D$$
 (⑦⑨+前提三段论)

说明

证明说明中用P(Premise)表示引入前提,用T(Tautology)表示恒等变换.

Remark

- ❶ 直接对结论写证明序列;
- ② 间接证明:条件和结论的等价变换,如,CP规则(Conditional Proof), 反证法等.

Theorem

$$H_1, H_2, \ldots, H_n \vdash P \rightarrow Q$$
, iff, $H_1, H_2, \ldots, H_n, P \vdash Q$.

Proof.

设
$$\mathbf{H} = H_1 \wedge H_2 \wedge \cdots \wedge H_n$$
, 则:

$$\mathbf{H} \to (P \to Q)$$

$$\Leftrightarrow \neg \mathbf{H} \vee \neg P \vee Q$$

$$\Leftrightarrow \neg (\mathbf{H} \wedge P) \vee Q$$

$$\Leftrightarrow$$
 (**H** \wedge P) \rightarrow Q

So,
$$\mathbf{H} \to (P \to Q)$$
永真, iff, $(\mathbf{H} \land P) \to Q$ 永真.

Example

$$A \to B \lor C, \ B \to \neg A, \ D \to \neg C \vdash A \to \neg D$$

方法2(CP规则)

(附加前提)

 \bullet $\neg B$

(0.5 + MP)

$$\mathbf{Q} A \to B \vee C$$

(P)

② (③⑥+析取三段论)

$$\bullet$$
 $B \lor C$

(①②+MP)

(P)

(P)

$$\square$$
 $\neg D$

反证法

Remark

由有效结论的等价定理有:

$$H_1, H_2, \ldots, H_n \vdash C$$
 iff $H_1, H_2, \ldots, H_n, \neg C \vdash \mathbb{F}$

称这样的条件和结论的变换为反证法.

Example

$$A \to B \lor C, B \to \neg A, D \to \neg C \vdash A \to \neg D$$

方法3(反证法)

用反证法等价于: H_1 , H_2 , $H_3 \neg (A \rightarrow \neg D) \vdash \mathbb{F}$.

用及证法等价寸:
$$\Pi_1$$
, Π_2 , $\Pi_3 \neg (A \rightarrow \neg D) \vdash \mathbb{F}$.

①
$$\neg (A \rightarrow \neg D)$$
 (否定前提) ② $A \rightarrow B \lor C$

(含定則徒)
$$A \rightarrow B \lor C$$
 (P) $A \land D$ (①+T) ③ $B \lor C$ (③⑦+MP)

③
$$A$$
 (②+简化式) ④ B (⑥⑧+析取三段论)
 ④ D (②+简化式) ④ $B \to \neg A$ (P)

$$(2+ 闽化式)$$
 (B) $B \rightarrow \neg A$ (P)

題符号化 永真公式 范式 联结词的扩充和归约 推理和证明方法

证明方法和策略

Definition (定理)

• 一个定理是一个能够被证明为真的语句.

证明方法

- 直接证明法: $P \rightarrow Q$ 为真;
- 反证法(proof by contraposition): $P \to Q$ 等价于¬ $Q \to \neg P$;
- 归谬法(proof by contradiction): P等价于¬ $P \to \mathbb{F}$;
- 等价证明法、反例证明,.....

证明策略

- 穷举法;
- 分情形证明;
- 正向推理、逆向推理;
-

本章小结

- 命题符号化
 - 命题
 - 符号化
 - 合式公式的形式文法
 - 合式公式的形式语义
- 2 永真公式
 - 公式的分类
 - 逻辑等价
 - 永真蕴含
 - 恒等变换和不等变换
 - 对偶性
- 3 范式
 - 析取范式和合取范式
 - 主析取范式
- 4 联结词的扩充和归约
 - 联结词的扩充
 - 联结词的归约
- 5 推理和证明方法
 - 有效结论
 - 自然推理的形式证明
 - 证明方法

Reference books

■ 刘玉珍 《离散数学》. 武汉大学出版社.

■ 王汉飞 《离散数学》讲义.