

Norges teknisk–naturvitenskapelige universitet Institutt for matematiske fag Løsningsforslag for eksamen i Matematikk 3 -TMA4115

Vår 2010

- a) La $z=x+i\,y$. Da er $|\operatorname{Re} z|=|x|$ og $|z|=\sqrt{x^2+y^2}$. Siden y er et reelt tall er $0\leq y^2$. Det betyr at $x^2\leq x^2+y^2$. Siden $f(t)=\sqrt{t}$ er strengt stigende så har vi $|\operatorname{Re} z|=\sqrt{x^2}\leq \sqrt{x^2+y^2}=|z|$.
 - b) Alternativ 1: Vi bruker formel for løsning av annengradslikninger:

$$z = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} = \frac{2i \pm \sqrt{(-2i)^2 - 4 \cdot 1 \cdot (-1 - 2i)}}{2 \cdot 1} = \frac{2i \pm \sqrt{-4 - 4(-1 - 2i)}}{2}$$
$$= \frac{2i \pm \sqrt{8i}}{2} = i \pm \sqrt{2i}$$

Finner $\sqrt{2i}$: $\theta = \arg 2i = \pi/2$ og r = |2i| = 2. Dvs $\sqrt{2i} = \sqrt{2}(\cos \frac{\pi/2 + 2k\pi}{2} + i\sin \frac{\pi/2 + 2k\pi}{2}) = \pm (1+i)$, k = 0, 1. Vi får dermed $z = i \pm (1+i)$. Dvs $z_1 = 1 + 2i$ og $z_2 = -1$.

Alternativ 2: Vi prøver med små hele reelle tall for z og finner ut at z=-1 er løsning:

$$(-1)^2 - 2i \cdot (-1) - 1 - 2i = 1 + 2i - 1 - 2i = 0$$

Polynomdivisjon gir

Det gir $z^2 - 2iz - 1 - 2i = (z+1)(z-1-2i) = 0$. Dvs z+1 = 0 eller z-1-2i = 0. Vi får løsningene $z_1 = -1$ og $z_2 = 1 + 2i$.

Alternativ 3: Vi setter inn z = x + iy inn i likningen:

$$(x+iy)^2 - 2i(x+iy) - 1 - 2i = 0$$
$$(x^2 - y^2 + 2y - 1) + 2i(xy - x - 1) = 0$$

Dvs at xy-x-1=0 og $x^2-y^2+2y-1=0$. Løser vi den første likningen får vi $y=\frac{x+1}{x}$. Setter vi dette inn i den andre likningen får vi $x^2-\frac{x^2+2x+1}{x^2}+\frac{2x+2}{x}-1=0$. Vi multipliserer med x^2 på begge sider og forenkler: $x^4-1=0$. Vi ser at de eneste reelle løsningene for x er x=-1 og x=1. Da får vi tilhørende y=0 og y=2. Løsningene er z=-1 og z=1+2i.

a) Den karakteristiske likningen er $\lambda^2 - 4\lambda + 3 = 0$. Vi løser denne og finner røttene: $\lambda_1 = 1$ og $\lambda_2 = 3$. Det gir den generelle løsningen $y(x) = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_2 x} = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_1 x} + c_2 e^{\lambda_2 x} = c_1 e^{\lambda_1 x} + c_2 e^{\lambda_1 x} + c$

 $c_1e^x + c_2e^{3x}$. Den deriverte av løsningen er $y'(x) = c_1e^x + 3c_2e^{3x}$. Initialbetingelsene y(0) = 1 og y'(0) = 2 gir likningene $c_1 + c_2 = 1$ og $c_1 + 3c_2 = 2$. Vi løser systemet og får $c_1 = c_2 = 1/2$. Det gir løsningen på initalverdiproblemet:

$$y(x) = \frac{1}{2} (e^x + e^{3x}).$$

b) Homogen løsning fant vi i punkt a), $y_h(x) = c_1 e^x + c_2 e^{3x}$. Vi bruker ubestemte koeffisienters metode: Fordi e^x er en løsning av den homogene likningen må vi modifisere med å multiplisere Be^x med x i den spesielle løsningen $y_p = A + Bxe^x$. Vi deriverer to ganger; $y_p' = B(1+x)e^x$ og $y_p'' = B(2+x)e^x$, setter inn i likningen og får

$$B(2+x)e^x - 4B(1+x)e^x + 3(A+Bxe^x) = 3 - 4e^x.$$

Forenkling gir

$$-2Be^x + 3A = 3 - 4e^x$$
.

Det gir B=2 og A=1. Derfor er $y_p(x)=1+2xe^x$. Den generelle løsningen er

$$y(x) = y_h(x) + y_p(x) = (c_1 + 2x)e^x + c_2e^{3x} + 3.$$

3 Vi bruker reduksjon av orden. Vi har løsningen $y_1(x)=x$. La $y_2=u(x)y_1(x)=xu(x)$. Deriverer vi to ganger får vi $y_2'=u+xu'$ og $y_2''=2u'+xu''$. Vi setter inn i likningen

$$(2u' + xu'') - (3x^2 + 4x^{-1})(u + xu') + (3x + 4x^{-2})xu = 0$$

og multipliserer ut parantesene;

$$2u' + xu'' - (3x^{2}u + 3x^{3}u' + 4x^{-1}u + 4u') + (3x^{2}u + 4x^{-1}u) = 0.$$

Når vi trekker sammen får vi

$$xu'' - 3x^3u' - 2u' = 0.$$

Vi setter U = u' og separerer

$$\frac{U'}{U} = 3x^2 + \frac{2}{x}.$$

Integrerasjon med hensyn på x gir

$$ln U = x^3 + ln(x^2).$$

(Vi sløyfer integrasjonskonstanten og krever at U er positiv). Vi tar eksponensialfunksjonen av begge sider av uttrykket.

$$U = e^{(x^3)}e^{\ln(x^2)} = x^2e^{(x^3)}.$$

Vi finner nå $u = \int u' dx = \int U dx = \int x^2 e^{(x^3)} dx = \frac{1}{3} e^{(x^3)}$. Vi får derfor $y_2 = \frac{1}{3} x e^{(x^3)}$. Alternativt: Vi kan også bruke en formel

$$u' = \frac{1}{(y_1)^2} e^{-\int p(x) \, dx} = \frac{1}{x^2} e^{\int (3x^2 + 4/x) dx} = \frac{1}{x^2} e^{(x^3 + 4\ln|x|)} = x^2 e^{(x^3)}.$$

4 a) Wronskideterminanten er

$$W(y_1, y_2) = y_1 y_2' - y_2 y_1'$$

$$= e^{\lambda t} \cos(\omega t) (\lambda e^{\lambda t} \sin(\omega t) + \omega e^{\lambda t} \cos(\omega t))$$

$$- e^{\lambda t} \sin(\omega t) (\lambda e^{\lambda t} \cos(\omega t) - \omega e^{\lambda t} \sin(\omega t))$$

$$= \omega e^{2\lambda t} \cos^2(\omega t) + \omega e^{2\lambda t} \sin^2(\omega t) = \omega e^{2\lambda t}$$

Løsningene til karakteristisk likning

$$r^2 + cr + k = 0$$

er $r = \lambda \pm i\omega = \frac{-c \pm \sqrt{c^2 - 4k}}{2}$, (siden vi har underdempet svingning er $c^2 - 4k < 0$). Dvs

$$\lambda \pm i\omega = \frac{-c \pm i\sqrt{4k - c^2}}{2} = \frac{-c}{2} \pm i\sqrt{k - c^2/4}.$$

Dvs $\lambda = -c/2$ og $\omega^2 = k - c^2/4$. Wronskideterminanten blir

$$W = \sqrt{k - c^2/4}e^{-ct}$$

- b) Maksimums-amplituden er gitt ved $A_0e^{\lambda t}$. En svingning varer 2 sekund. Dvs 15 svingninger tar 30 sekunder. Det gir $A_0e^{-\frac{c}{2}(t_0+30)}=\frac{1}{4}A_0e^{-\frac{c}{2}t_0}$. Vi løser og får $e^{-15c}=\frac{1}{4}\Leftrightarrow -15c=\ln\frac{1}{4}\Leftrightarrow c=(\ln\frac{1}{4})/(-15)\approx 0,0924$.
- a) Svaralternativ **A** er riktig fordi en 4 × 3 matrise kan kun ha rank 0, 1, 2 eller 3. Av samme grunn er B, C og D feil.
 - B er feil fordi rangen til A kan være for eksempel 2 som ikke er lik 3
 - C er feil fordi rangen til A kan være for eksempel 2 som er mindre enn 3
 - D er feil fordi rangen til A ikke kan være 4.
 - b) Løsning **D** er riktig.

Systemet kan skrives $A\mathbf{x} = \mathbf{b}$ med koeffisientmatrise

$$A = \begin{bmatrix} -1 & 1 \\ -1 & 2 \\ -3 & 1 \end{bmatrix}$$

og $\mathbf{b} = [5, 0, -5]^T$. Normalsystemet er $A^T A \mathbf{x} = A^T \mathbf{b}$. Vi har

$$A^T A = \begin{bmatrix} -1 & -1 & -3 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ -1 & 2 \\ -3 & 1 \end{bmatrix} = \begin{bmatrix} 11 & -6 \\ -6 & 6 \end{bmatrix}, \text{ og } A^T \mathbf{b} = \begin{bmatrix} -1 & -1 & -3 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 5 \\ 0 \\ -5 \end{bmatrix} = \begin{bmatrix} 10 \\ 0 \end{bmatrix}$$

Skriver opp totalmatrisen til normalsystemet og utfører GJ:

$$\begin{bmatrix} 11 & -6 & 10 \\ -6 & 6 & 0 \end{bmatrix} | : (-6) \sim \begin{bmatrix} 11 & -6 & 10 \\ 1 & -1 & 0 \end{bmatrix} \longleftrightarrow \sim \begin{bmatrix} 1 & -1 & 0 \\ 11 & -6 & 10 \end{bmatrix} \longleftrightarrow + \begin{bmatrix} 1 & 0 & 0 \\ 0 & 5 & 10 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \end{bmatrix}$$

Dvs $\bar{x} = 2$ og $\bar{y} = 2$. Dvs alternativ **D**.

 $\boxed{6}$ Vi utfører Gauss-Jordan eliminasjon på A

$$A = \begin{bmatrix} 1 & 2 & 0 & 1 & 2 & 1 \\ 3 & 6 & 1 & 0 & 2 & -1 \\ 4 & 8 & 2 & -2 & 0 & -4 \end{bmatrix} \xrightarrow{\leftarrow}_{+}^{(-3)}_{+}^{(-4)} \sim \begin{bmatrix} 1 & 2 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & -3 & -4 & -4 \\ 0 & 0 & 2 & -6 & -8 & -8 \end{bmatrix} \xrightarrow{\leftarrow}_{+}^{(-2)}_{+}$$

$$\sim \begin{bmatrix} 1 & 2 & 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & -3 & -4 & -4 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} = E$$

Systemet $A\mathbf{x} = \mathbf{0}$ har 4 frie variable. $x_2 = t_1$, $x_4 = t_2$, $x_5 = t_3$ og $x_6 = t_4$. Fra den reduserte matrisen får vi at $x_1 = -2t_1 - t_2 - 2t_3 - t_4$ og $x_3 = 3t_2 + 4t_3 + 4t_4$. Da er

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \\ x_6 \end{bmatrix} = \begin{bmatrix} (-2t_1 - t_2 - 2t_3 - t_4) \\ t_1 \\ (3t_2 + 4t_3 + 4t_4) \\ t_2 \\ t_3 \\ t_4 \end{bmatrix} = t_1 \begin{bmatrix} -2 \\ 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + t_2 \begin{bmatrix} -1 \\ 0 \\ 3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t_3 \begin{bmatrix} -2 \\ 0 \\ 4 \\ 0 \\ 1 \\ 0 \end{bmatrix} + t_4 \begin{bmatrix} -1 \\ 0 \\ 4 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

Basis for Null(A) er

$$\left\{ \begin{bmatrix} -2 & 1 & 0 & 0 & 0 \end{bmatrix}^T, \begin{bmatrix} -1 & 0 & 3 & 1 & 0 & 0 \end{bmatrix}^T, \begin{bmatrix} -2 & 0 & 4 & 0 & 1 & 0 \end{bmatrix}^T, \begin{bmatrix} -1 & 0 & 4 & 0 & 0 & 1 \end{bmatrix}^T \right\}$$

Basis for Row(A) er radene forskjellig fra 0-radene i matrisen E:

$$\left\{ \begin{bmatrix} 1 & 2 & 0 & 1 & 2 & 1 \end{bmatrix}^T, \begin{bmatrix} 0 & 0 & 1 & -3 & -4 & -4 \end{bmatrix}^T \right\}$$

Basis for Col(A) er 1. og 3. søyle i A, (pivotsøylene).

$$\left\{ \begin{bmatrix} 1 & 3 & 4 \end{bmatrix}^T, \begin{bmatrix} 0 & 1 & 2 \end{bmatrix}^T \right\}$$

Basis for $\operatorname{Col}(A)^{\perp}$ finner vi ved å finne basis for nullrommet til

$$B = \begin{bmatrix} 1 & 3 & 4 \\ 0 & 1 & 2 \end{bmatrix} \stackrel{+}{\smile}_{(-3)}^{+} \sim \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 2 \end{bmatrix}$$

Systemet $B\mathbf{y} = \mathbf{0}$ har løsningsrom utspent av $\begin{bmatrix} 2 & -2 & 1 \end{bmatrix}^T$, så en basis for $\operatorname{Col}(A)^{\perp}$ er

$$\left\{ \begin{bmatrix} 2 & -2 & 1 \end{bmatrix}^T \right\}$$

Projeksjonen av $\mathbf{e}_3 = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$ på $\operatorname{Col}(A)$ finner vi ved først å projisere \mathbf{e}_3 ned på $\operatorname{Col}(A)^{\perp}$. La $\mathbf{u} = \begin{bmatrix} 2 & -2 & 1 \end{bmatrix}^T$. Den projiserte av \mathbf{e}_3 ned på $\operatorname{Col}(A)^{\perp}$ er gitt ved

$$\mathbf{q} = \frac{\mathbf{e}_3 \cdot \mathbf{u}}{\mathbf{u} \cdot \mathbf{u}} \mathbf{u} = \frac{1}{9} \begin{bmatrix} 2 & -2 & 1 \end{bmatrix}^T.$$

Dvs den projiserte av \mathbf{e}_3 ned på $\operatorname{Col}(A)$ er

$$\mathbf{p} = \mathbf{e}_3 - \mathbf{q} = \begin{bmatrix} -\frac{2}{9} & \frac{2}{9} & \frac{8}{9} \end{bmatrix}^T$$

Vi kunne også brukt minste kvadraters metode eller gått via en ortogonal basis for Col(A).

[7] a) Karakteristisk likning til
$$A$$
 er $\det(A - \lambda I) = \begin{vmatrix} 3 - \lambda & 1 & 1 \\ 1 & 2 - \lambda & 0 \\ 1 & 0 & 2 - \lambda \end{vmatrix}$

$$= (3 - \lambda) \begin{vmatrix} 2 - \lambda & 0 \\ 0 & 2 - \lambda \end{vmatrix} - 1 \cdot \begin{vmatrix} 1 & 0 \\ 1 & 2 - \lambda \end{vmatrix} + 1 \cdot \begin{vmatrix} 1 & 2 - \lambda \\ 1 & 0 \end{vmatrix} = (3 - \lambda)(2 - \lambda)^2 - 2(2 - \lambda)$$

$$= (2 - \lambda)(\lambda^2 - 5\lambda + 4) = (2 - \lambda)(4 - \lambda)(1 - \lambda) = 0. \text{ Det gir egenverdiene } \lambda_1 = 1,$$

$$\lambda_2 = 2 \text{ og } \lambda_3 = 4.$$

Vi finner egenvektorene tilhørende $\lambda_1=1$ ved å løse $(A-I)\mathbf{x}=\mathbf{0}$:

$$\begin{bmatrix} 2 & 1 & 1 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} \stackrel{\longleftarrow}{\leftarrow} \sim \begin{bmatrix} 1 & 1 & 0 \\ 2 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix} \stackrel{\longleftarrow}{\leftarrow} + \begin{bmatrix} -2 \\ + \end{bmatrix} \stackrel{\longleftarrow}{\leftarrow} \sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & -1 & 1 \end{bmatrix} \stackrel{\longleftarrow}{\leftarrow} \stackrel{\longleftarrow}{\leftarrow} + \\ \sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \stackrel{\longleftarrow}{\leftarrow} + \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}.$$

Det gir egenvektorene $\mathbf{x} = t \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix}, t \neq 0.$

Vi finner egenvektorene tilhørende $\lambda_2 = 2$ ved å løse $(A - 2I)\mathbf{x} = \mathbf{0}$:

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix} \xleftarrow{+}_{(-1)} \xrightarrow{(-1)} \sim \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \xleftarrow{-} \sim \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 1 \\ 0 & 0 & 0 \end{bmatrix},$$

Dette gir egenvektorene $\mathbf{x} = t \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix}, t \neq 0.$

Vi finner egenvektorene tilhørende $\lambda_3 = 4$ ved å løse $(A - 4I)\mathbf{x} = \mathbf{0}$:

$$\begin{bmatrix} -1 & 1 & 1 \\ 1 & -2 & 0 \\ 1 & 0 & -2 \end{bmatrix} \overset{\longleftarrow}{\longleftrightarrow}_{+}^{+} \sim \begin{bmatrix} -1 & 1 & 1 \\ 0 & -1 & 1 \\ 0 & 1 & -1 \end{bmatrix} \overset{\longleftarrow}{\longleftrightarrow}_{+}^{+}$$

$$\sim \begin{bmatrix} -1 & 0 & 2 \\ 0 & -1 & 1 \\ 0 & 0 & 0 \end{bmatrix} \overset{|\cdot(-1)|}{\circ} \sim \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix},$$

Dette gir egenvektorene $\mathbf{x} = t \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}, t \neq 0.$

b) I oppgave 7a fant vi egenverdiene $\lambda_1 = 1$, $\lambda_2 = 2$ og $\lambda_3 = 4$ med tilhørende egenvektorer $\mathbf{v}_1 = \begin{bmatrix} 1 & -1 & -1 \end{bmatrix}^T$, $\mathbf{v}_2 = \begin{bmatrix} 0 & 1 & -1 \end{bmatrix}^T$ og $\mathbf{v}_3 = \begin{bmatrix} 2 & 1 & 1 \end{bmatrix}^T$. Hvis vi velger $P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \mathbf{v}_3 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 1 & 1 \\ -1 & -1 & 1 \end{bmatrix}$ og $D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 4 \end{bmatrix}$ så er $A = PDP^{-1}$.

Det er mulig å velge P slik at $P^{-1} = P^T$ fordi A er symmetrisk. Generelt gjelder at når A er en symmetrisk $n \times n$ matrise, så finnes en ortonormal basis for \mathbb{R}^n av egenvektorer til A.

c) Generell løsning for systemet er

$$\mathbf{y}(t) = c_1 e^{1t} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} + c_2 e^{2t} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} + c_3 e^{4t} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

Initialbetingelsen gir oss

$$c_1 \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} + c_2 \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} + c_3 \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ -2 \end{bmatrix}.$$

Vi bruker GJ på totalmatrisen til dette systemet.

$$\begin{bmatrix} 1 & 0 & 2 & 3 \\ -1 & 1 & 1 & 2 \\ -1 & -1 & 1 & -2 \end{bmatrix} \xrightarrow{+}_{+} \sim \begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 3 & 5 \\ 0 & -1 & 3 & 1 \end{bmatrix} \xrightarrow{+}_{+} \sim \begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 6 & 6 \end{bmatrix} \mid : 6$$

$$\sim \begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 3 & 5 \\ 0 & 0 & 1 & 1 \end{bmatrix} \xrightarrow{+}_{-3}_{-2} \sim \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & 1 \end{bmatrix}.$$

Initialverdisystemet har altså løsningen

$$\mathbf{y}(t) = 1 e^{t} \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} + 2 e^{2t} \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} + 1 e^{4t} \begin{bmatrix} 2 \\ 1 \\ 1 \end{bmatrix}$$

Hver av komponentene til $\mathbf{y}(t)$ er:

$$y_1(t) = e^t + 2e^{4t}$$

 $y_2(t) = -e^t + 2e^{2t} + e^{4t}$
 $y_3(t) = -e^t - 2e^{2t} + e^{4t}$.

Den andre delen kan løses på følgende måte $\det(I+A) = \begin{vmatrix} 1 & k \\ 0 & 1 \end{vmatrix} = 1 \cdot 1 - k \cdot 0 = 1 \neq 0$ og derfor invertibel.

b) Den inverse til I + B er I - B fordi $(I + B)(I - B) = (I + B)I - (I + B)B = (I^2 + BI) - (IB + B^2) = I^2 + B - B + B^2 = I + B - B + 0 = I$. Derfor: Ja, I + B er invertibel.

Er B diagonaliserbar? Først viser vi at B bare har en egenverdi, nemlig 0. Hvis λ er en egenverdi med tilhørende egenvektor \mathbf{v} . Så er

$$B\mathbf{v} = \lambda \mathbf{v}$$
.

Om vi multipliserer med B fra venstre på begge sider av likningen, får vi:

$$B^2 \mathbf{v} = \lambda B \mathbf{v}$$

Vi gjør om høyre side ved å bruke $B\mathbf{v} = \lambda \mathbf{v}$ og venstre side ved å bruke $B^2 = 0$.

$$\mathbf{0} = \lambda^2 \mathbf{v}$$
.

Siden $\mathbf{v} \neq \mathbf{0}$, så må vi ha at $\lambda = 0$. Dvs $\lambda = 0$ er eneste egenverdi. Nå kan vi finne alle egenvektorene. Dvs løse $B\mathbf{v} = 0\mathbf{v}$. For at B skal være diagonaliserbar, må vi finne n lineært uavhengige egenvektorer. Det betyr at $\mathrm{Null}(B)$ er egenrommet til B tilhørende egenverdien 0. Hvis B ikke er en matrise med bare nuller så vil $\mathrm{rank}(B) > 0$. Da er dim $\mathrm{Null}(B) = n - \mathrm{rank}(B) < n$. Dvs at B har mindre enn B lineært uavhengige egenvektorer og derfor er ikke B diagonliserbar.

Vi kunne også undersøkt under hvilken betingelse ${\cal B}$ er diagonaliserbar:

Om B er diagonaliserbar (og $B^2=0$) har vi at D er nullmatrisen 0 og følgelig må $B=PDP^{-1}=P0P^{-1}=0$.

Svaret er som følgende når $B^2 = 0$ og $B \neq 0$ så er B ikke diagonaliserbar.

Alternativt: Hvis B er diagonaliserbar så har vi $B = PDP^{-1}$. Derfor er $0 = B^2 = PD^2P^{-1}$. Da må også $D^2 = P^{-1}0P = 0$ og derfor D = 0, fordi D er diagonal. Følgelig er $B = PDP^{-1} = 0$.