		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich	NDS 112,2497 (2011)	1-Jun-2011

 $Q(\beta^{-}) = -6.25 \times 10^{3} \text{ 4}; S(n) = 1.036 \times 10^{4} \text{ 7}; S(p) = 1.69 \times 10^{3} \text{ 4}; Q(\alpha) = 3.75 \times 10^{3} \text{ 4}$

Note: Current evaluation has used the following Q record.

2003Au03 report the following values: for $Q(\beta^-)$, 6240 40; for S(n), 10360 60; for S(p), 1680 30; and, for $Q(\alpha)$, 3720 40. $Q(\beta^{-})=-6244 \ 36$; $S(n)=10364 \ 63$; $S(p)=1683 \ 32$; $Q(\alpha)=3722 \ 39$ 2009AuZZ

Additional information 1.

¹⁶¹Lu Levels

Nomenclature for quasiparticle labels:

- A: $vi_{13/2}1/2[660]$, $\alpha = +1/2$.
- B: $vi_{13/2}1/2[660]$, $\alpha = -1/2$.
- C: $vi_{13/2}$, $\alpha = +1/2$.
- D: $vi_{13/2}$, $\alpha = -1/2$.
- E: $\nu h_{9/2} 3/2[521]$, $\alpha = +1/2$.
- F: $vh_{9/2}3/2[521]$, $\alpha = -1/2$.
- a: $\pi d_{3/2} 1/2[411]$, $\alpha = +1/2$.
- b: $\pi d_{3/2} 1/2[411]$, $\alpha = -1/2$.
- c: $\pi g_{7/2} 7/2[404]$, $\alpha = +1/2$.
- d: $\pi g_{7/2} 7/2[404]$, $\alpha = -1/2$.
- e: $\pi h_{11/2} 9/2[514]$, $\alpha = +1/2$.
- f: $\pi h_{11/2} 9/2[514]$, $\alpha = -1/2$.
- i: $\pi d_{5/2} 5/2[402]$, $\alpha = +1/2$.
- j: $\pi d_{5/2} 5/2[402]$, $\alpha = -1/2$.

Cross Reference (XREF) Flags

- ¹⁶¹Lu IT decay (7.3 ms) Α
- $^{161}{
 m Hf}~arepsilon$ decay В
- 120 Sn(45 Sc, 4 n γ) 139 La(28 Si, 6 n γ) C

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}$	XREF	Comments
O_{I}	1/2+	77 s 2		$\%\varepsilon + \%\beta^+ = 100$ $\mu = +0.223\ 3\ (1998\text{Ge}13)$ Level not reported in the indicated studies, but it should be populated (at least via the decay of the first excited state $(J^\pi = 3/2^+)$). J^π : measured value from collinear laser spectroscopy (1998Ge13). The proposed Nilsson-orbital assignment $1/2[411]$ is consistent with the measured μ value (1998Ge13).
0+x ^l	(3/2+)		AB D	From an evaluation of data on nuclear rms charge radii, 2004An14 report $< r^2 > ^{1/2} = 5.231$ fm II . $T_{1/2}$: weighted average of 72 s 6 (1979Al16,1980Be39) and 78 s 2 (1981RaZH,1983Ge08). $\% \varepsilon + \% \beta^+$: evaluator assumes that the α decay of this level is negligible. μ : from 1998Ge13, collinear laser spectroscopy. See also the compilation by 2005St24. Additional information 2. E(level): $x \approx 15$ keV from trend of $3/2^+$ to $1/2^+$ spacings for the $1/2[411]$ band in selected odd-A Lu (A=163, 167, 169) nuclei. J^π : from 2005Br14, probable member of the $1/2[411]$ band.

Continued on next page (footnotes at end of table)

161 Lu Levels (continued)

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	T _{1/2}	XREF	Comments
66.6+x ^l 5	$(5/2^+)$		B D	
135.6+x ⁱ 3	$(5/2^+)$		AB D	
166.5+x ^c 8	$(9/2^{-})$	7.3 ms 4	A D	%IT≈100
				The evaluator assumes that the ε decay of this level is negligible. E(level): the evaluator assumes that this level corresponds to the 7.4-ms isomer discovered by 1973An10.
$204.0+x^{d}$ 7	$(11/2^{-})$		CD	
226.6+x ^h 4	$(7/2^+)$		B D	
275.8+x [@] 4	$(7/2^+)$		B D	
$334.9+x^{l}$ 4	$(7/2^+)$		B D	
$443.5 + x^{i} 4$	$(9/2^+)$		B D	
469.9+x ^c 6	$(13/2^{-})$		CD	
579.0+x ^d 7	$(15/2^{-})$		CD	
$677.5 + x^h 5$	$(11/2^+)$		D	
695.5+x [@] 5	$(11/2^+)$		D	
935.2+x ⁱ 5 962.2+x ^c 6	$(13/2^+)$ $(17/2^-)$		D CD	
$1087.1 + x^{d} 6$	$(17/2)$ $(19/2^{-})$		CD	
1200.3+x [@] 5	$(15/2^+)$		D	
$1227.3+x^{h}$ 7	$(15/2^+)$		D	
$1505.2 + x^{i} 6$	$(17/2^+)$		D	
1561.8+x ^C 6	$(21/2^{-})$		CD	
1692.1+x ^d 6	$(23/2^{-})$		CD	
1739.8+x [@] 6	$(19/2^+)$		D	
1833.1+x ^h 7	$(19/2^+)$		D	
2030.6+x ^{&} 6	$(21/2^+)$		CD	
2133.1+x ⁱ _7	$(21/2^+)$		D	
2213.9+x [@] 6	$(23/2^+)$		CD	
2224.4+x 7	$(21/2^+)$		D	
2229.5+x ^c 7 2298.4+x 6	$(25/2^{-})$ $(23/2^{+})$		CD D	
$2364.4 + x^{d}$ 7	$(27/2^{-})$		CD	
$2393.1+x^{h}$ 6	$(23/2^+)$		D	
2396.6+x ^{&} 6	$(25/2^+)$		CD	
2489.5+x ^j 7	$(23/2^+)$		D	
2514.5+x ^k 7	$(25/2^+)$		D	
2527.3+x [@] 7	$(27/2^+)$		CD	
2634.6+x ^j 7	$(27/2^+)$		D	
2687.9+x ^{&} 7	$(29/2^+)$		CD	
2786.8+x ^b 7	$(25/2^+)$		D	
2866.4+x ^k 7	$(29/2^+)$		D	
2883.2+x ^c 8	$(29/2^{-})$		CD	
2902.6+x [@] 7	$(31/2^+)$		CD	
$3008.7 + x^{b} 7$	$(29/2^+)$		D	
$3022.7 + x^{d} 8$	$(31/2^{-})$		CD	
3045.3+x ^j 7 3144.3+x 8	$(31/2^+)$		D	
3144.3+x 8 3153.2+x 8 7	$(31/2^{-})$ $(33/2^{+})$		D CD	
J1JJ.2TA /	(33/4)		CD	

E(level) [†]	$\mathrm{J}^{\pi \ddagger}$	XREF
3249.1+x ^c 8	$(33/2^{-})$	CD
$3279.3+x^{a}$ 7	$(31/2^+)$	D
$3329.4 + x^{k} 7$	$(33/2^+)$	D
3407.9+x [@] 7	$(35/2^+)$	CD
3466.3+x ^d 8	$(35/2^{-})$	CD
3469.0+x ^b 8	$(33/2^+)$	D
$3599.1+x^{j} 8$	$(35/2^+)$	D
3706.0+x ^c 9	$(37/2^{-})$	CD
3743.5+x & 8	$(37/2^+)$	CD
3782.2+x ^a 7	$(35/2^+)$	D
$3909.2 + x^{k} 8$	$(37/2^+)$	D
$3988.4 + x^{d} 9$	(39/2-)	CD
4037.0+x [@] 8	$(39/2^+)$	CD
4271.0+x ^c 9	$(41/2^{-})$	CD
4272.2+x ^j 8 4332.3+x ^a 8	$(39/2^+)$ $(39/2^+)$	D
4332.3+x 8 4439.4+x 8	$(39/2^+)$ $(41/2^+)$	D
4439.4+x 8 4510.1+x 8 10	$(41/2^{+})$ $(39/2^{-})$	CD D
$4587.8 + x^d$ 10	$(33/2^{-})$ $(43/2^{-})$	CD
$4595.3 + x^{k} 8$	$(43/2^+)$	D CD
$4393.3+x^{-6}$ $4723.1+x^{-6}$	$(41/2^{-})$ $(41/2^{-})$	_
4723.1+x ⁹ 4772.3+x [@] 8	$(43/2^+)$	D
4772.3+x° 8 4911.6+x° 10	$(45/2^{-})$ $(45/2^{-})$	CD CD
4959.7+x ⁸ 9	$(43/2^{-})$	D
4960.3+x ^a 9	$(43/2^+)$	D
5036.0+x ^j 9	$(43/2^+)$	D
5216.1+x& 9	$(45/2^+)$	CD
5264.9+x ^d 10	$(47/2^{-})$	CD
5266.7+x ^f 9	$(45/2^{-})$	D
5358.0+x ^k 10	$(45/2^+)$	D
5581.7+x [@] 9	$(47/2^+)$	CD
5586.8+x ⁸ 10	$(47/2^{-})$	D
5621.3+x ^c 10	$(49/2^{-})$	CD
5655.7+x ^a 9	$(47/2^+)$	D
$5865.3+x^{j}$ 10 $5968.3+x^{f}$ 10	$(47/2^+)$	D
	(49/2 ⁻)	D
6012.5+x ^d 11	$(51/2^{-})$	CD
6058.2+x & 9	$(49/2^+)$	CD
$6155.0+x^{k}$ 11	$(49/2^+)$	D
6294.2+x ⁸ 10 6363.0+x ^a 9	$(51/2^{-})$ $(51/2^{+})$	D CD
6398.9+x ^C 11	$(53/2^{-})$	CD
6492.4+x [@] 9	$(51/2^+)$	D
$6643.3 + x^{j}$ 11	$(51/2^+)$	D
$6726.6 + x^f$ 11	$(53/2^{-})$	D
$6829.6 + x^d$ 11	$(55/2^{-})$	CD
6875.8+x 8 9	$(53/2^+)$	
00/3.0+X 9	(33/2)	D

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments
6994.1+x ^k 12	$(53/2^+)$	D	
7096.4+x ⁸ 11	$(55/2^{-})$	D	
7143.5+x ^a 11	$(55/2^+)$	CD	
7252.7+x ^c 11	$(57/2^{-})$	CD	
7269.8+x [@] 10	$(55/2^+)$	D	
7568.0+x ^f 11	$(57/2^{-})$	D	
7649.7+x& 10	$(57/2^+)$	D	
7734.3+x ^d 11	$(59/2^{-})$	CD	
7768.1+x ^k 13	$(57/2^+)$	D	
7953.4+x ^a 12	$(59/2^+)$	D	
7997.2+x ⁸ 12	$(59/2^{-})$	D	
8076.3+x [@] 10	$(59/2^+)$	D	
8192.2+x ^c 12	$(61/2^{-})$	CD	
8489.0+x& 10	$(61/2^+)$	D	
$8503.0+x^{f}$ 12	$(61/2^{-})$	D	
8700.0+x ^d 12	$(63/2^{-})$	CD	
8800.2+x ^a 13	$(63/2^+)$	CD	
8963.4+x [@] 11	$(63/2^+)$	D	
8973.2+x ⁸ 13	$(63/2^{-})$	D	
9196.4+x ^c 12	$(65/2^{-})$	CD	
9391.2+x& 11	$(65/2^+)$	D	
9438.0+x ^f 13	$(65/2^{-})$	D	
9701.2+x ^a 14	$(67/2^+)$	CD	
9727.9+x ^d 12	$(67/2^{-})$	CD	
9908.9+x [@] 11	$(67/2^+)$	D	
10027.2+x ⁸ 14	(67/2-)	D	
10219.9+x ^e 13 10308.8+x ^c 13	$(69/2^{-})$	CD D	
10308.8+x 13 10345.8+x 42	$(69/2^{-})$ $(69/2^{+})$		
$10343.8+x^{a}$ 12 $10649.7+x^{a}$ 15	$(69/2^+)$ $(71/2^+)$	D CD	
$10818.1 + x^d$ 13	$(71/2^{-})$	D	
10904.9+x [@] 12	$(71/2^+)$	D	
11210.0+x ^e 14	$(73/2^{-})$	CD	
11358.8+x ^{&} 13	$(73/2^+)$	D	
11442.9+x ^c 14	$(73/2^{-})$	D	
11633.5+x ^a 15	$(75/2^+)$	CD	
11937.1+x ^d 14	$(75/2^{-})$	D	
11948.9+x [@] 13	$(75/2^+)$	D	
12247.9+x ^e 15	$(77/2^{-})$	D	
12672.7+x ^a 16	$(79/2^+)$	CD	
13309.9+x ^e 16	$(81/2^{-})$	CD	
13742.9+x ^a 17	$(83/2^+)$	D	
14817.9+x ^a 18	$(87/2^+)$	CD	
15942.9+x ^a 19 y ^m	$(91/2^+)$ $(21/2^+)$	D D	Additional information 3.
308.3+y ^m 5	$(25/2^+)^{\#}$		Auditional infolliation 3.
689.0+y ^m 7	$(25/2^+)^{\circ}$	D D	
1139.8+y ^m 9	$(33/2^+)$	D	
	(,-)	_	

E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF	E(level) [†]	$J^{\pi \ddagger}$	XREF
1304.0+y ⁿ 9	$(31/2^+)$	D	4322.2+y ⁿ 13	$(51/2^+)$	D	7963.9+y ^m 17	$(69/2^+)$	D
1658.4+y ^m 10	$(37/2^+)$	D	4372.9+y ^m 14	$(53/2^+)$	D	8743.2+y ⁿ 17	$(71/2^+)$	D
1781.0+y ⁿ 10	$(35/2^+)$	D	5103.2+y ⁿ 14	$(55/2^+)$	D	8961.3+y ^m 18	$(73/2^+)$	D
2244.2+y ^m 11	$(41/2^+)$	D	5196.7+y ^m 15	$(57/2^+)$	D	9751.2+y ⁿ 18	$(75/2^+)$	D
2324.2+y ⁿ 10	$(39/2^+)$	D	5936.2+y ⁿ 15	$(59/2^+)$	D	9985.3+y ^m 19	$(77/2^+)$	D
2893.6+y ^m 12	$(45/2^+)$	D	6072.6+y ^m 16	$(61/2^+)$	D	10793.2+y ⁿ 19	$(79/2^+)$	D
2930.2+y ⁿ 11	$(43/2^+)$	D	6820.2+y ⁿ 16	$(63/2^+)$	D	11044.1+y ^m 19	$(81/2^+)$	D
3597.2+y ⁿ 12	$(47/2^+)$	D	6997.0+y ^m 16	$(65/2^+)$	D	12139.6+y ^m 20	$(85/2^+)$	D
3604.2+y ^m 13	$(49/2^+)$	D	7770.2+y ⁿ 17	$(67/2^+)$	D	13270.6+y ^m 21	$(89/2^+)$	D

[†] From least-squares fit to E γ 's, assuming 0.5 keV uncertainty for E γ , when not stated.

 $^{^{\}ddagger}$ As proposed by 2006Br12 In 139 La(28 Si,6n γ) based on γ cascades defining band structures and comparisons with cranked-shell model calculations. For selected transitions the assignments are also supported by angular correlation results from 120 Sn(45 Sc,4n γ). All assignments are given In parentheses here since strong arguments for bandheads are lacking.

[#] The 308.5 transition is assigned by 2003Br03 as $25/2^+$ to $21/2^+$ transition in comparison with isospectral triaxial SD-1 band in 163 Lu. All other intraband transitions were proposed to be stretched quadrupole transitions from $\gamma\gamma(\theta)$ (DCO) data (2003Br03).

[@] Band(A): π 7/2[404], α =-1/2. At higher spins, crossed by 7/2[404] \otimes AB band, and second crossing by 7/2[404]ABef.

[&]amp; Band(a): $\pi 7/2[404]$, $\alpha = +1/2$. At higher spins crossed by $7/2[404] \otimes AB$ band, and second crossing by 7/2[404]ABef.

^a Band(b): Triaxial band, $\alpha = -1/2$. The alignment is similar to TSD bands, thus it is expected to have a larger deformation.

^b Band(B): $\alpha = +1/2$.

^c Band(C): $\pi 9/2[514]$, $\alpha = +1/2$. At higher spins crossed by $9/2[514] \otimes AB$ band.

^d Band(c): π 9/2[514], α =−1/2. At higher spins crossed by 9/2[514]⊗AB band.

 $^{^{}e}$ Band(D): 1/2[541]⊗ABef, α=+1/2.

^f Band(E): 7/2[523]⊗AB, α =+1/2.

^g Band(e): 7/2[523]⊗AB, α =−1/2.

^h Band(F): π 5/2[402], α =−1/2. At higher spins crossed by 5/2[404]⊗AB band.

ⁱ Band(f): $\pi 5/2[402]$, $\alpha = +1/2$. At higher spins crossed by $5/2[404] \otimes AB$ band.

 $^{^{}j}$ Band(G): 5/2[402]⊗AB, α=-1/2.

^k Band(g): 5/2[402]⊗AB, α=+1/2.

^l Band(H): $\pi 1/2[411]$.

^m Band(I): Triaxial (wobbling mode) SD-1 band, α =+1/2. Band from 2006Br12 (also 2005Br14,2003Br03). Configuration= $\pi i_{13/2} \otimes v i_{13/2}^2$, phonon quantum number=0. Population intensity=1.4% of the reaction channel. This band is isospectral to triaxial SD-1 band in ¹⁶³Lu. On this basis, the 308.5 transition is proposed (by 2003Br03) as the 25/2⁺ to 21/2⁺ transition. The 308.5γ is also in coin with the 266.3, 375.3, 508.4 and 604.9 transitions in normal-deformed structures. See also 2005Ha24 and 2004Ha21 for discussion of triaxial SD bands.

ⁿ Band(i): Triaxial (wobbling mode) SD-2 band, α=-1/2. Band from 2006Br12 (also 2005Br14,2003Br03). Configuration=πi_{13/2}⊗vi²_{13/2}, phonon quantum number=1. Wobbling excitation built on triaxial SD-1 band. Population intensity=0.6% of the reaction channel. See also 2005Ha24, 2004Be53, 2004Ma34, 2004Ha21 and 1999Li39 for discussions and calculations related to triaxial SD bands and wobbling mode of excitation.

$\gamma(^{161} Lu)$

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.@	δ	α^a
135.6+x	(5/2+)	135.6 [#] 3	100#	0+x	(3/2+)	M1(+E2)	0.6 6	1.42 1
166.5+x	(9/2-)	(30.9)		135.6+x	(5/2+)	[M2]		1715
226.6+x	(7/2+)	90.9 [#] 5	100#	135.6+x 66.6+x				
275.8+x	$(7/2^+)$	209.2 [#] 5 275.9 [#] 5	95 [#] 14 100 [#] 14	66.6+x 0+x	$(5/2^+)$ $(3/2^+)$			
334.9+x	(7/2+)	199.4 [#] 4 335 ^c	100#	135.6+x 0+x				
443.5+x	(9/2+)	108.6 217.0 [#] 4	100 [#]	334.9+x 226.6+x	$(7/2^+)$ $(7/2^+)$			
469.9+x	(13/2 ⁻)	307.5 265.9 303.4		135.6+x 204.0+x 166.5+x	$(11/2^{-})$	D		
579.0+x	(15/2 ⁻)	108.7 375.0 ^b	19 <i>4</i> 100	469.9+x 204.0+x	$(13/2^{-})$	D Q		
677.5+x	(11/2+)	234.0 343 450.5	100	204.0+x 443.5+x 334.9+x 226.6+x	$(9/2^+)$ $(7/2^+)$	Q		
695.5+x	$(11/2^+)$	419.9		275.8+x				
935.2+x	$(13/2^+)$	257.7 491.7		677.5+x 443.5+x	$(11/2^+)$			
962.2+x	$(17/2^{-})$	383.1 492.2	100 68 <i>4</i>	579.0+x 469.9+x	$(15/2^{-})$	D Q		
1087.1+x	(19/2-)	124.5 508.0	5.7 8 100	962.2+x 579.0+x		D O		
1200.3+x	(15/2+)	264.5 504.8 522.6 730.7		935.2+x 695.5+x 677.5+x 469.9+x	$(11/2^+)$ $(11/2^+)$	Q		
1227.3+x	(15/2+)	532.0 550 ^c		695.5+x 677.5+x	$(11/2^+)$			
1505.2+x	$(17/2^+)$	570.5		935.2+x				

6

Mult.: 1973An10 report multipolarity from $\alpha(K)$ exp after rejecting the possibility of an E3 transition with a half-life of 7 ms.

Comments

 δ : see the comment in the $^{161}\mathrm{Lu}$ IT decay data set.

E_γ: the evaluator assumes that the isomer decays to 135.6+x, (5/2+) through an M2 transition. This energy is consistent with a low-energy transition, below the K-shell binding energy of 63 keV as postulated by 1973An10. Transitions to other levels will be higher in energy than the K-shell binding energy. The M2 transition rate is consistent with RUL(M2)=1.

$\gamma(\frac{161}{\text{Lu}})$ (continued)

E_i (level)	\mathbf{J}_{i}^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	${\rm J}^\pi_{_f}$	Mult.@	$E_i(level)$	\mathbf{J}_i^{π}	$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	E_f	${\rm J}^\pi_{_f}$	Mult.@
1561.8+x	$\frac{t}{(21/2^-)}$	474.7 599.4	65 <i>11</i> 100	1087.1+x 962.2+x	$(19/2^{-})$	D Q	2687.9+x 2786.8+x	$\frac{t}{(29/2^+)}$ $(25/2^+)$	291.1 654 ^c	19 3	2396.6+x (2133.1+x ($(25/2^+)$	
1692.1+x	(23/2-)	130.3 604.8	2.3 8	1561.8+x 1087.1+x	$(21/2^{-})$	Q	2866.4+x	$(29/2^+)$	231.6 339 ^c		2634.6+x (2527.3+x ($(27/2^+)$	
1739.8+x	$(19/2^+)$	539.1	100	1200.3+x	$(15/2^+)$	V.			352.3		2514.5+x		
1833.1+x	(19/2+)	777.9 605.9		962.2+x 1227.3+x	$(15/2^+)$		2883.2+x	(29/2-)	518.8 ^b 653.7	43 <i>4</i> 100 <i>5</i>	2364.4+x (2229.5+x ($(25/2^{-})$	
2030.6+x	$(21/2^+)$	290.8 525.6		1739.8+x 1505.2+x			2902.6+x	$(31/2^+)$	214.6 375.0 ^b		2687.9+x (2527.3+x (
2133.1+x	$(21/2^+)$	943.3 628.3		1087.1+x 1505.2+x	$(19/2^{-})$	D&	3008.7+x	(29/2+)	222.3 374		2786.8+x (2634.6+x ($(25/2^+)$	
2213.9+x	$(23/2^+)$	183.5 474.3	<140	2030.6+x 1739.8+x	$(21/2^+)$		3022.7+x	(31/2-)	139.4 658.4	9 <i>5</i> 100	2883.2+x (2364.4+x ($(29/2^{-})$	0
		522^{bc}		1692.1+x			3045.3+x	$(31/2^+)$	179.1	100	2866.4+x (Q
2224.4+x	(21/2+)	651.9 1137.2	100 16	1561.8+x 1087.1+x	\ / /	D&	3144.3+x	(31/2-)	410.6 121.5		2634.6+x (3022.7+x (. , ,	
2229.5+x	$(25/2^{-})$	537.4 667.6		1692.1+x 1561.8+x	$(23/2^{-})$		3153.2+x	(33/2+)	779.9 250.4	95 8	2364.4+x (2902.6+x ($(27/2^{-})$	D
2298.4+x	$(23/2^+)$	74.0		2224.4+x	$(21/2^+)$				465.3	100	2687.9+x ($(29/2^+)$	Q
		165.2 558.7		2133.1+x 1739.8+x	$(19/2^+)$		3249.1+x	$(33/2^{-})$	104.7 226.5	100	3144.3+x (3022.7+x ($(31/2^{-})$	D
2364.4+x	(27/2-)	736.6 134.9		1561.8+x 2229.5+x			3279.3+x	$(31/2^+)$	365.9 270.8	14 <i>I</i>	2883.2+x (3008.7+x (Q
		672.3		1692.1+x	$(23/2^{-})$	Q			413		2866.4+x ($(29/2^+)$	
2393.1+x	$(23/2^+)$	362.4 560.2		2030.6+x 1833.1+x	$(19/2^+)$		3329.4+x	$(33/2^+)$	284.3 426.8		3045.3+x (2902.6+x ($(31/2^+)$	
2396.6+x	$(25/2^+)$	653.2 98.0		1739.8+x 2298.4+x			3407.9+x	(35/2+)	463.1 254.6	83 7	2866.4+x (3153.2+x (D
		172 182.8		2224.4+x 2213.9+x	\ / /		3466.3+x	(35/2-)	505.1 217.0	100 100	2902.6+x (3249.1+x (. , ,	Q D
		263.6		2133.1+x	$(21/2^+)$		3400.31X	(33/2)	323 ^c		3144.3+x ($(31/2^{-})$	
		366.1 704.1		2030.6+x 1692.1+x		D&	3469.0+x	$(33/2^+)$	443.7 460.2	44 2	3022.7+x (3008.7+x (Q
2489.5+x 2514.5+x	$(23/2^+)$ $(25/2^+)$	797.3 121.2		1692.1+x 2393.1+x			3599.1+x	$(35/2^+)$	269.5 553.5		3329.4+x (3045.3+x (
		822.6		1692.1+x	$(23/2^{-})$	D&	3706.0+x	(37/2-)	239.6	100	3466.3+x	$(35/2^{-})$	D
2527.3+x	$(27/2^+)$	130.4 313.5		2396.6+x 2213.9+x		D	3743.5+x	$(37/2^+)$	457.0 335.5	40 2 69 7	3249.1+x (3407.9+x (Q
2634.6+x	$(27/2^+)$	119.7 145.1		2514.5+x 2489.5+x			3782.2+x	$(35/2^+)$	590.1 313.2	100	3153.2+x (3469.0+x ($(33/2^+)$	Q
2697.0 :	(20/2+)	238.2	100	2396.6+x	$(25/2^+)$	D	2,02.21A	(00,2)	453		3329.4+x ($(33/2^+)$	
2687.9+x	$(29/2^+)$	160.5	100	2527.3+x	(21/2)	D	1		503.3		3279.3+x ((31/4)	

$\gamma(\frac{161}{\text{Lu}})$ (continued)

	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	$\mathrm{J}_{_{f}}^{\pi}$	Mult.@	$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	${ m J}_f^\pi$	Mult.
ı				y							<u>- y</u>			
ı	3909.2+x	$(37/2^+)$	310.0 501.3		3599.1+x 3407.9+x	$(35/2^{+})$		5358.0+x 5581.7+x	$(45/2^+)$ $(47/2^+)$	762.7 365.5		4595.3+x 5216.1+x		
ı			580.4		3329.4+x			JJ61./TX	(41/2)	809.3		4772.3+x		Q
ı	3988.4+x	$(39/2^{-})$	282.5	100	3706.0+x			5586.8+x	$(47/2^{-})$	319.9		5266.7 + x		Q
ı	2,001	(27/2)	522.0	50 10	3466.3+x				(,=)	627.0		4959.7+x	. , ,	
ı	4037.0+x	$(39/2^+)$	293.5	42 <i>4</i>	3743.5+x		D			675 ^c		4911.6+x		
ı		. , ,	628.9	100	3407.9+x		Q	5621.3+x	$(49/2^{-})$	356.4	81 5	5264.9+x		D
ı	4271.0+x	$(41/2^{-})$	282.7	100	3988.4+x		Ď			709.6	100	4911.6+x		Q
ı			564.8	78 <i>11</i>	3706.0+x	$(37/2^{-})$	Q	5655.7+x	$(47/2^+)$	695.8 <mark>b</mark>		4960.3+x	$(43/2^+)$	
ı	4272.2+x	$(39/2^+)$	362.8		3909.2+x	. , ,			` ' '	883.1		4772.3+x		
ı			672.8		3599.1+x			5865.3+x	$(47/2^+)$	829.3		5036.0+x		
ı	4332.3+x	$(39/2^+)$	550.5		3782.2+x	$(35/2^+)$		5968.3+x	$(49/2^{-})$	381.5		5586.8+x	$(47/2^{-})$	
ı	4439.4+x	$(41/2^+)$	402.2	53 11	4037.0+x	$(39/2^+)$				701.8		5266.7+x	$(45/2^{-})$	
ı			695.8 <mark>b</mark>	100	3743.5+x	$(37/2^+)$	Q	6012.5+x	$(51/2^{-})$	391.1	79 6	5621.3+x	$(49/2^{-})$	
ı	4510.1+x	$(39/2^{-})$	522 <i>bc</i>		3988.4+x	$(39/2^{-})$				747.6	100	5264.9+x	$(47/2^{-})$	Q
ı			804.2		3706.0+x			6058.2+x	$(49/2^+)$	476.6		5581.7+x		-
ı	4587.8+x	$(43/2^{-})$	316.7	100	4271.0+x		D			842.1		5216.1+x		
ı			599.5	85 7	3988.4+x		Q	6155.0+x	$(49/2^+)$	797		5358.0+x		
ı	4595.3+x	$(41/2^+)$	323.1		4272.2+x			6294.2+x	$(51/2^{-})$	325.9		5968.3+x		
ı	.=== .	(11.15-)	686.6		3909.2+x					672 ^c		5621.3+x		
ı	4723.1+x	$(41/2^{-})$	213.1		4510.1+x			(2/2 0	(51/0±)	707.3		5586.8+x		
ı			452.1		4271.0+x			6363.0+x	$(51/2^+)$	707.8		5655.7+x		0
ı			734.8 1017.3		3988.4+x 3706.0+x			6398.9+x	$(53/2^{-})$	780.8 386.4	77 8	5581.7+x		Q D
ı	4772.3+x	$(43/2^+)$	332.8	27 3	4439.4+x			0398.9+X	(33/2)	777.7	100	6012.5+x 5621.3+x		Q
ı	4//2.5TX	(43/2)	735.2	100	4037.0+x		Q	6492.4+x	$(51/2^+)$	434.1	100	6058.2+x		Q
ı	4911.6+x	$(45/2^{-})$	323.8	100	4587.8+x	. , ,	D	0472.417	(31/2)	836.5		5655.7+x		
ı	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(.0/2)	640.6	86 7	4271.0+x		Q			910.8		5581.7+x		
ı	4959.7+x	$(43/2^{-})$	236.8		4723.1+x			6643.3+x	$(51/2^+)$	778 ^c		5865.3+x		
ı			688.5		4271.0+x		(Q)	6726.6+x	$(53/2^{-})$	432.2		6294.2+x		
ı			971.1		3988.4+x		Q			758.4		5968.3+x	$(49/2^{-})$	
ı	4960.3+x	$(43/2^+)$	628.5		4332.3+x	$(39/2^+)$		6829.6+x	$(55/2^{-})$	430.6	81 8	6398.9 + x	$(53/2^{-})$	D
ı	5036.0+x	$(43/2^+)$	441.1		4595.3+x					817.1	100	6012.5 + x	. , ,	Q
ı			763.3		4272.2+x			6875.8+x	$(53/2^+)$	383.6		6492.4+x		
ı	5216.1+x	$(45/2^+)$	443.8		4772.3+x					817.7		6058.2+x		
ı	50640	(45.00-)	776.4	00.5	4439.4+x		ъ	6994.1+x	$(53/2^+)$	839		6155.0+x		
ı	5264.9+x	$(47/2^{-})$	353.5	88 5	4911.6+x		D	7096.4+x	$(55/2^{-})$	370.0		6726.6+x	. , ,	
ı	5266 7 1	(45/2-)	677.0	100	4587.8+x		Q	7142 5	(55/2+)	802.1 651 ^c		6294.2+x		
I	5266.7+x	$(45/2^{-})$	306.8 543.7		4959.7+x 4723.1+x			7143.5+x	$(55/2^+)$	780.5		6492.4+x 6363.0+x		0
I			543.7 679 ^C		4723.1+X 4587.8+x			7252.7+x	(57/2-)	423.2	62 <i>6</i>	6829.6+x		Q
١			995.8		4367.6+x 4271.0+x			1232.1TX	(31/4)	853.8	100	6398.9+x		
١	5358.0+x	$(45/2^+)$	321 ^c		5036.0+x			7269.8+x	$(55/2^+)$	394.2	100	6875.8 + x		
I	JJJ0.U+X	(43/4)	$J \angle 1$		3030.0±X	(43/4)		1207.0±X	(33/4)	374.4		00/J.0±X	(33/4)	

 ∞

$\gamma(\frac{161}{\text{Lu}})$ (continued)

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	\mathbb{E}_f	J_f^π	Mult.@	E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}
7269.8+x	$(55/2^+)$	777.1		6492.4+x	$(51/2^+)$		11210.0+x	$\overline{(73/2^{-})}$	990.1	100	10219.9+x	$(69/2^{-})$
7568.0+x	$(57/2^{-})$	471.8		7096.4+x			11358.8+x	$(73/2^+)$	1013		10345.8+x	
	. , ,	841.3		6726.6+x			11442.9+x	$(73/2^{-})$	1134		10308.8+x	
7649.7 + x	$(57/2^+)$	380.0		7269.8+x			11633.5+x	$(75/2^+)$	983.8	100	10649.7 + x	
		774.0		6875.8+x	$(53/2^+)$		11937.1+x	$(75/2^{-})$	1119		10818.1+x	$(71/2^{-})$
7734.3 + x	$(59/2^{-})$	481.6	70 5	7252.7+x			11948.9+x	$(75/2^+)$	1044		10904.9+x	$(71/2^+)$
		904.6	100	6829.6+x	$(55/2^{-})$		12247.9+x	$(77/2^{-})$	1037.9		11210.0+x	$(73/2^{-})$
7768.1+x	$(57/2^+)$	774		6994.1+x			12672.7+x	$(79/2^+)$	1039.2		11633.5+x	
7953.4 + x	$(59/2^+)$	809.9		7143.5 + x			13309.9+x	$(81/2^{-})$	1062		12247.9+x	
7997.2+x	$(59/2^{-})$	429 ^c		7568.0+x			13742.9+x	$(83/2^+)$	1070.2		12672.7+x	
		900.8		7096.4 + x			14817.9+x	$(87/2^+)$	1075		13742.9+x	
8076.3+x	$(59/2^+)$	426.6		7649.7+x			15942.9+x	$(91/2^+)$	1125		14817.9+x	
0100.0	(61/0-)	806.4	50 0	7269.8+x			308.3+y	$(25/2^+)$	308.3		y	$(21/2^+)$
8192.2+x	$(61/2^{-})$	457.9	52 8	7734.3+x			689.0+y	$(29/2^+)$	380.7		308.3+y	
8489.0+x	((1/2±)	939.5 412.7	100	7252.7+x			1139.8+y 1304.0+y	$(33/2^+)$	450.8 615 ^c		689.0+y	
6469.U+X	$(61/2^+)$			8076.3+x			1	$(31/2^+)$			689.0+y	
		839.3		7649.7+x	` ' '		1658.4+y	$(37/2^+)$	518.8 ^b		1139.8+y	
8503.0+x	$(61/2^{-})$	935 ^b		7568.0+x			1781.0+y	$(35/2^+)$	478 ^c		1304.0+y	
8700.0+x	$(63/2^{-})$	508		8192.2+x					641		1139.8+y	
	(co (o.t.)	965.7	400	7734.3+x			2244.2+y	$(41/2^+)$	585.8		1658.4+y	
8800.2+x	$(63/2^+)$	846.8	100	7953.4+x	. , ,	Q	2324.2+y	$(39/2^+)$	543		1781.0+y	
8963.4+x	$(63/2^+)$	474.4		8489.0+x			2002 ((45 /0±)	666		1658.4+y	
9072 2	(62/2-)	887.1		8076.3+x			2893.6+y	$(45/2^+)$	649.4		2244.2+y	
8973.2+x 9196.4+x	$(63/2^{-})$	976 496		7997.2+x			2930.2+y	$(43/2^+)$	606 686		2324.2+y	
9190.4+X	$(65/2^{-})$	1004.2		8700.0+x 8192.2+x			3597.2+y	$(47/2^+)$	667		2244.2+y 2930.2+y	
9391.2+x	$(65/2^+)$	427.7		8963.4+x			3391.2+y	(47/2)	704 ^c		2930.2+y 2893.6+y	
9391.2TX	(03/2)	902.2		8489.0+x			3604.2+y	$(49/2^+)$	710.6		2893.6+y	$(45/2^+)$
9438.0+x	(65/2-)	935 <i>bc</i>		8503.0+x			4322.2+y		725			
9438.0+x 9701.2+x	$(63/2^+)$	901.0	100	8800.2+x		0	4322.2+y 4372.9+y	$(51/2^+)$ $(53/2^+)$	768.7		3597.2+y 3604.2+y	
9701.2+x 9727.9+x	$(67/2^{-})$	531	100	9196.4+x		Q	5103.2+y	$(55/2^+)$	781		4322.2+y	
9121.9TA	(01/2)	1028.3		8700.0+x	` ' '		5105.2+y 5196.7+y	$(57/2^+)$	823.8		4372.9+y	
9908.9+x	$(67/2^+)$	517.7		9391.2+x	. , ,		5936.2+y	$(59/2^+)$	833		5103.2+y	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	(0.72)	945.5		8963.4+x			6072.6+y	$(61/2^+)$	875.9		5196.7+y	
10027.2+x	$(67/2^{-})$	1054 ^c		8973.2+x			6820.2+y	$(63/2^+)$	884		5936.2+y	
10219.9+x	$(69/2^{-})$	1023.5		9196.4+x		Q	6997.0+y	$(65/2^+)$	924.4		6072.6+y	$(61/2^+)$
10308.8+x	$(69/2^{-})$	581		9727.9+x			7770.2+y	$(67/2^+)$	950		6820.2+y	
		1112.4		9196.4+x			7963.9+y	$(69/2^+)$	966.9		6997.0+y	$(65/2^+)$
10345.8+x	$(69/2^+)$	954.6		9391.2+x			8743.2+y	$(71/2^+)$	973		7770.2+y	
10649.7 + x	$(71/2^+)$	948.5	100	9701.2+x		Q	8961.3+y	$(73/2^+)$	997.4		7963.9+y	
10818.1+x	$(71/2^{-})$	506 ^c		10308.8+x			9751.2+y	$(75/2^+)$	1008		8743.2+y	
		1090.2		9727.9+x			9985.3+y	$(77/2^+)$	1024.0		8961.3+y	$(73/2^+)$
10904.9+x	$(71/2^+)$	996		9908.9+x	$(67/2^+)$		10793.2+y	$(79/2^+)$	1042		9751.2+y	$(75/2^+)$

9

γ (161Lu) (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	E_f	\mathbf{J}_f^π
11044.1+y	$(81/2^+)$	1058.8	9985.3+y	$(77/2^+)$
12139.6+y	$(85/2^+)$	1095.5	11044.1+y	$(81/2^+)$
13270.6+y	$(89/2^+)$	1131	12139.6+y	$(85/2^+)$

- [†] From ¹³⁹La(²⁸Si,6n γ) unless otherwise stated. Although some of the γ -ray energies may be more precise in ¹²⁰Sn(⁴⁵Sc,4n γ), but for the purpose of internal consistency, all γ -ray energies for high-spin (J>9/2) levels have been taken from ¹³⁹La(²⁸Si,6n γ), since it provides a much larger inventory of γ rays than the ¹²⁰Sn(⁴⁵Sc,4n γ) data set.
- [‡] From $^{120}\text{Sn}(^{45}\text{Sc},4n\gamma)$ unless otherwise stated. The adopted γ branching may differ somewhat from those listed in the $^{120}\text{Sn}(^{45}\text{Sc},4n\gamma)$ data set, since those given here are from coincidence spectra gated on specific transitions feeding the particular level, while those in the in-beam data set are from a more general methodology (see the discussion in that data set and values of branching ratios given under comments in that data set).
- [#] Energy from average of values from from 161 Hf ε decay and 139 La(28 Si,6n γ), intensity from 161 Hf ε decay.
- [@] From the 120 Sn(45 Sc, 41 y) study, unless noted otherwise.
- & $\Delta J=1$, stretched dipole interpreted As E1 In ¹³⁹La(²⁸Si,6n γ).
- ^a Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- ^b Multiply placed.

10

^c Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

Intensities: Relative photon branching from each level

---- → γ Decay (Uncertain)

$$^{161}_{71} Lu_{90}$$

Band(f): π 5/2[402], α =+1/2

$$^{161}_{\,71} Lu_{90}$$

$$^{161}_{71} Lu_{90}$$

$$^{161}_{\,71}Lu_{90}$$

¹⁶¹Lu IT decay (7.3 ms) 1973An10

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich	NDS 112,2497 (2011)	1-Jun-2011

Parent: 161 Lu: E=166.5+x; $J^{\pi}=(9/2^{-})$; $T_{1/2}=7.3$ ms 4; %IT decay=100.0 SY

Additional information 1.

¹⁶¹Lu isomer produced in the ¹⁴⁸Sm(¹⁹F,6n) reaction, E(¹⁹F)=110-150 MeV, on an enriched metallic target and in the Eu(¹⁶O,xn) reaction. γ 's measured in a multiscaled manner between beam pulses (2-ms wide, 2% duty cycle), using a Ge(Li) detector of volume 8 cm³. The mass assignment was deduced from excitation functions and the elemental assignment was made through observation of the decay of Lu K x-rays with the appropriate half-life. Measured T_{1/2}. Noted only one γ between 10 and 550 keV with the 7.3 ms half-life.

The problems In interpretation of the IT decay, noted In the previous evaluation (2000Re14), appear to have been resolved by recent heavy-ion studies (2006Br12). For a discussion of these problems, see (2000Re14).

¹⁶¹Lu Levels

E(level)	$J^{\pi \dagger}$	$T_{1/2}$	Comments
0	1/2+		Level not reported in the IT decay, but expected from the decay of the first excited state. J^{π} : bandhead of 1/2[411].
0+x 135.8+x 2	$(3/2^+)$ $(5/2^+)$		E(level): $x \approx 15$ keV based on systematics. See comment In the Adopted Levels.
166.5+x	(9/2-)	7.3 ms 4	E(level): from 'Adopted Levels' based on data from 139 La(28 Si,6n γ). J^{π} : bandhead of 9/2[514], the most likely candidate for the isomeric level.

[†] From the Adopted Levels.

$\gamma(^{161} Lu)$

Iγ normalization: value assumes a transition intensity of 100% for 135.8γ.

E_{γ}	${\rm I}_{\gamma}{}^{\dagger}$	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\ddagger}	Comments
(30.7)		166.5+x	(9/2-)	135.8+x	(5/2+)	[M2]		1767	$\alpha(L)$ =1333 19 ; $\alpha(M)$ =341 5 ; $\alpha(N+)$ =93.3 13 $\alpha(N)$ =81.4 12 ; $\alpha(O)$ =11.34 16 ; $\alpha(P)$ =0.533 8 E_{γ} : the evaluator assumes that the isomer decays to 135.8+x, $(5/2^+)$ through an M2 transition. This energy is consistent with a low-energy transition, below the K-shell binding energy of 63 keV as postulated by 1973An10. Transitions to 0+x or g.s. would be higher than the K-shell binding energy.
135.8 2	100	135.8+x	(5/2+)	0+x	(3/2+)	M1(+E2)	0.6 6	1.41 <i>16</i>	$\alpha(K)=1.1\ 3;\ \alpha(L)=0.26\ 9;\ \alpha(M)=0.062\ 22;\ \alpha(N+)=0.017\ 6\ \alpha(N)=0.014\ 5;\ \alpha(O)=0.0020\ 6;\ \alpha(P)=7.7\times10^{-5}\ 23$ Placement from 'Adopted Gammas', which is based on the work of 2006Br12 in 139 La(28 Si,6n γ). Mult.: 1973An10 report multipolarity

 $^{^{161}\}text{Lu-}\%\text{IT}$ decay: evaluator assumes that the ε decay of the isomer is negligible.

¹⁶¹Lu IT decay (7.3 ms) **1973An10** (continued)

$\gamma(^{161}Lu)$ (continued)

 E_{γ} $E_{i}(level)$

Comments

from $\alpha(K)$ exp=1.1 3, after rejecting the possibility of an E3 transition with a half-life of 7 ms. δ : evaluator's analysis of $\alpha(K)$ exp=1.1 3 (1973An10); 1973An10 give \approx 10% E2 ($\delta\approx$ 0.3).

 $^{^{\}ddagger}$ Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[†] For absolute intensity per 100 decays, multiply by syst 0.41.

¹⁶¹Hf ε decay 1995Hi12,1989Br19

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich	NDS 112,2497 (2011)	1-Jun-2011

Parent: 161 Hf: E=0; $T_{1/2}$ =18.2 s 5; $Q(\varepsilon)$ =6244 36; $\%\varepsilon+\%\beta^+$ decay>99.9

¹⁶¹Hf-E: Additional information 1.

 161 Hf- $T_{1/2}$: Additional information 2.

¹⁶¹Hf-Q(ε): Additional information 3.

¹⁶¹Hf-%ε+%β⁺ decay: %α<0.13.

Additional information 4.

Level scheme essentially based on the low-lying level structure shown by 2006Br12 In $^{139}La(^{28}Si,6n\gamma)$ and As listed In the XUNDL data file. The γ -ray placements are consistent with coincidence data of 1995Hi12.

1995Hi12: ¹⁶¹Hf produced through bombardment of BaF₂ targets with 240-MeV S ions. Reaction products were thermalized and swept out using He-jet gas flow and deposited in a tape-transport system. *γ* radiation was studied with two high-resolution Ge detectors in a close geometry. *α* radiation was studied using a 450-mm² Si surface-barrier detector placed between the *γ* detectors. Measured excitation functions, E*γ*,I*γ*,E*α*,*γγ* and X*γ* coin. Mass assignment made on the basis of excitation functions.

1989Br19: 161 Hf produced in the 144 Sm(22 Ne,5n) and the 147 Sm(20 Ne,6n) reactions with 163-MeV 20 Ne ions. Reaction products were transported using a gas-jet transport system and absorbed in a solution, where chemical separation was performed. γ radiation was studied using a 2.1-cm³ HPGe detector and a 35-cm³ Ge(Li) detector. The authors report $T_{1/2}$ and 2 γ 's, having $E\gamma$ =135.6 and 180.0. 1995Hi12, however, assign this latter γ to the 165 Hf decay.

The data are from 1995Hi12. The level scheme is based on low-lying level structure established by 2006Br12 in 139 La(28 Si,6n γ) study, where several γ -ray energies are found to be similar to those in 1995Hi12.

161 Lu Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0#	1/2+	Level not reported in the ε decay, but expected from the decay of the first excited state.
0+x#	$(3/2^+)$	Additional information 5.
		E(level): $x \approx 15 \text{ keV}$ based on systematics (see comment In the Adopted Levels).
66.7+x [#] 7	$(5/2^+)$	
135.6+x 3	$(5/2^+)$	
226.8+x 6	$(7/2^+)$	
275.9+x? 5	$(7/2^+)$	
335.2+x [#] 5	$(7/2^+)$	
444.4+x 7	$(9/2^+)$	

[†] The level energies are based on those in the Adopted Levels, which are essentially from 2006Br12 in ¹³⁹La(²⁸Si,6ny).

γ (161Lu)

An 180 γ , previously assigned to the 161 Hf decay, has been assigned instead by 1995Hi12 to the 165 Hf decay.

E_{γ}	I_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	J_f^{π}	Comments
91.2 5	5 1	226.8+x	$(7/2^+)$	135.6+x	$(5/2^+)$	
135.6 <i>3</i>	100	135.6+x	$(5/2^+)$	0+x	$(3/2^+)$	
199.6 <i>4</i>	15 <i>4</i>	335.2+x	$(7/2^+)$	135.6+x	$(5/2^+)$	
209.2 [†] 5	20 3	275.9+x?	$(7/2^+)$	66.7+x	$(5/2^+)$	
217.6 4	9 4	444.4 + x	$(9/2^+)$	226.8+x	$(7/2^+)$	the ordering of 217.6-91.2 cascade follows from the work of 2006Br12

[‡] From adopted values.

[#] Band(A): 1/2[411] band.

$^{161}{ m Hf}~arepsilon~{ m decay}$ 1995Hi12,1989Br19 (continued)

$\gamma(^{161}Lu)$ (continued)

Comments

In 139 La(28 Si,6n γ). I $_{\gamma}$: corrected (by 1995Hi12) for the contribution of a 215.8 γ from the decay of 160 Yb.

275.9+x? $(7/2^+)$ $0+x (3/2^+)$

 $^{^\}dagger$ Placement based on low-lying level structure shown In $^{139}\text{La}(^{28}\text{Si},6n\gamma)$ by 2006Br12. γ unplaced by 1995Hi12.

161 Hf ε decay 1995Hi12,1989Br19

Legend

Decay Scheme

Intensities: Relative I_{γ}

$^{161}\mathrm{Hf}\ \varepsilon\ \mathrm{decay}$ 1995Hi12,1989Br19

Band(A): 1/2[411] band

(7/2⁺) 335.2+x

(5/2⁺) 66.7+x

 $(3/2^+)$ 0+x

1/2+ 0

120 Sn(45 Sc,4n γ) 1988Yu05

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich	NDS 112,2497 (2011)	1-Jun-2011

Additional information 1. Data are from the 120 Sn(45 Sc, 41 y) reaction, E(45 Sc)=205 MeV, with modifications based on data from 2006Br12 in 139 La(28 Si,6n γ). The product mass was deduced from the observation of γ 's from this reaction and from the 118 Sn(48 Ti,p4n γ) reaction, E(48 Ti)=230 MeV, and from their lack of observation in 147 Sm(19 F,xng), with E(19 F)= 83, 90 and 94 MeV, where the energies are high enough to remove only 4 neutrons. Measured E γ , I γ , $\gamma\gamma$, $\gamma\gamma(\theta)$ using an array of 12 Compton-suppressed Ge detectors and 50 BGO detectors.

Half-life values have been measured for several levels. They have been mentioned (1993YuZZ) in abstracts and shown graphically as Q_t values in earlier laboratory reports from the group that carried out the measurements summarized in this data set, but they have not as yet been published.

161 Lu Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
<u>z</u> &	11/2-	E(level): $z=204.0+x$ In the Adopted Levels and $203.5+x$ in $^{139}La(^{28}Si,6n\gamma)$.
266.3+z [@]	13/2-	
375.3+z&	15/2-	
758.7+z [@]	17/2-	
883.7+z&	19/2-	
1358.7+z [@]	21/2-	
1488.5+z	23/2-	
1828.0+z ^a	21/2+	
$2011.5 + z^{b}$	$23/2^{+}$	
2012.8+z [@]	25/2-	E(level): 25/2 ⁻ band member is defined At 2229.5+x In the Adopted Levels due to the reversed ordering of the 668.1-654.4 cascade by 2006Br12 In ¹³⁹ La(²⁸ Si,6nγ).
2161.0+z&	27/2-	
2194.3+z ^a	$25/2^{+}$	
$2325.0+z^{b}$	27/2+	
2485.8+z ^a	29/2+	
2680.8+z [@]	29/2-	
$2700.7 + z_{0}^{b}$	31/2+	
2819.7+z&	31/2-	
2951.4+z ^a	33/2+	
3046.4+z [@]	33/2-	
3206.2+z ^b	35/2+	
3263.8+z&	35/2-	
3503.7+z [@] 3541.9+z ^a	37/2 ⁻ 37/2 ⁺	
3786.2+z&	39/2-	
$3835.6+z^{b}$	39/2 ⁺	
4068.9+z [@]	39/2 41/2 ⁻	
$4008.9+z^{a}$ $4238.2+z^{a}$	41/2 41/2 ⁺	
4385.9+z	43/2	
$4571.2 + z^{b}$	43/2+	
4709.9+z [@]	45/2	
$5015.6 + z^a$	45/2+	
	•	

E(level) [†]	Jπ‡	Comments
5063.5+z&	47/2-	
5381.2+z b	$(47/2^+)$	
5419.9+z [@]	49/2-	
5811.3+z&	51/2-	
$5859+z?^{a}$	$(49/2^+)$	
6162+z ^b	$(51/2^+)$	
6198+z [@]	53/2-	
6629+z&	55/2-	
6943+z b	$(55/2^+)$	
$7053+z^{@}$	57/2-	
7534+z&	59/2-	
7791+z#b	$(59/2^+)^{\#}$	E(level): corresponds to 8800.2+x, (63/2+) level In the Adopted Levels.
7992+z [@]	$61/2^{-}$	
8499+z&	$63/2^{-}$	
8692+z [#] b	$(63/2^+)^{\#}$	E(level): corresponds to 9701.2+x, (67/2+) level In the Adopted Levels.
8996+z [@]	$65/2^{-}$	
9527+z?&	$(67/2^{-})$	
9640+z#b	$(67/2^+)^{\#}$	E(level): corresponds to $10649.7+x$, $(71/2^+)$ level In the Adopted Levels.
10019+z [@]	$(69/2^{-})$	
$10625 + z^{\#b}$	$(71/2^+)^{\#}$	E(level): corresponds to 11633.5+x, (75/2+) level In the Adopted Levels.
11009+z [@]	$(73/2^{-})$	
11664+z [#]	$(75/2^+)^{\#}$	E(level): corresponds to $12672.7+x$, $(79/2^+)$ level In the Adopted Levels.
12070+z [@]	(77/2 ⁻)	E(level): corresponds to 13309.9+x, $(81/2^-)$ level In the Adopted Levels. A 1037.9 γ from 77/2 ⁻ to 73/2 ⁻ In the work of 2006Br12 In ¹³⁹ La(²⁸ Si,6n γ) is missing In the cascade defined by 1988Yu05.
12738+z? ^b	(79/2+)	E(level): corresponds to 14817.9+x, $(87/2^+)$ level In the Adopted Levels. A 1070.2γ from $85/2^+$ to $81/2^+$ In the work of $2006Br12$ In $^{139}La(^{28}Si,6n\gamma)$ is missing In the cascade defined by $1988Yu05$.
13835+z? b	$(83/2^+)$	E(level): this level not reported by $2006Br12$ In $^{139}La(^{28}Si,6n\gamma)$.

[†] From unweighted fit to γ energies; γ' s with questionable placements are omitted from fit, except where they are the only γ' s determining the level energies. The energy of the first level z here corresponds to 204.0+x in 'Adopted Levels', except as noted.

Assignments are those of the authors and are based on the systematics of the transition energies and the signature splitting for the Ho, Tm and Lu isotopes and on the $h_{11/2}$ level sequences in other isotopes. Levels having two deexciting γ 's which can be assigned as a cascade and a crossover transition with appropriate multipolarities (Q and D+Q, respectively) have $J^{\pi\prime}$'s without parentheses, while those having only one reported deexciting γ are generally shown in parentheses. The relative parity of the bands is deduced by interpreting the high-energy dipole transitions as being E1, rather than M1. All assignments are consistent with those those in the Adopted Levels, except that these are given in parentheses there due to lack of strong supporting arguments.

[#] An 809.9γ from $59/2^+$ to $55/2^+$ In the work of 2006Br12 In $^{139}La(^{28}Si,6n\gamma)$ reaction is missing In the cascade defined by 1988Yu05. Thus z=1009+x and spin should be increased by two units.

[@] Band(A): Negative-parity band, $\alpha = +1/2$. associated with the configuration= $(\pi \ h_{11/2})$.

[&]amp; Band(a): Negative-parity band, $\alpha = -1/2$. associated with the configuration = $(\pi h_{11/2})$.

^a Band(B): Positive-parity band, $\alpha = +1/2$.

^b Band(b): Positive-parity band, $\alpha = -1/2$.

γ (161Lu)

Iy normalization: only relative Iy, so no normalization given.

Angular correlation ratio: $R=[I_{\gamma\gamma}(two\ detectors\ at\ 30^\circ)]/[I_{\gamma\gamma}(one\ detector\ at\ 30^\circ,\ other\ at\ 90^\circ)].$ Authors use these data to distinguish between dipole and quadrupole multipolarities, but do not indicate which values correspond to these two possibilities.

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.#	Comments
109.0	10.8 23	375.3+z	15/2-	266.3+z	13/2-	D	R=0.73 9.
125.0	5.7 9	883.7+z	19/2	758.7+z		D	R=0.93 17.
130.0 <mark>&</mark>	2.0 7	1488.5+z	23/2-	1358.7+z			
130.8	19 4	2325.0+z	27/2 ⁺	2194.3+z		D	R=0.72 14.
139.7	5.2 8	2819.7+z	31/2-	2680.8+z		D	K-0.72 17.
148.6	<0.8	2161.0+z	27/2-	2012.8+z			E_{γ} : γ not reported by 2006Br12 In ¹³⁹ La(²⁸ Si,6n γ).
160.8	23 4	2485.8+z	29/2 ⁺	2325.0+z		D	R=0.84 12.
182.8	<13	2463.6+Z 2194.3+Z	25/2 ⁺	2323.0+z 2011.5+z		D	R=0.04 12. R=1.00 12.
183.5	<13	2194.5+z	23/2+	1828.0+z	, .		R=1.00 12. R=1.00 12.
	21 3	2700.7+z	31/2+				
214.8 217.3	36.4 <i>17</i>	3263.8+z	35/2-	2485.8+z 3046.4+z		D	R=0.93 11. R=0.87 3.
226.7	36.3 19	3203.8+Z 3046.4+Z	33/2	2819.7+z		D D	R=0.87 3. R=0.77 4.
239.9		3503.7+z		3263.8+z		D	
	32.3 14		37/2 ⁻ 33/2 ⁺				R=0.82 4.
250.7 254.8	13 3	2951.4+z	35/2 ⁺	2700.7+z		D	R=0.71 7.
	18.1 27	3206.2+z		2951.4+z		D	R=0.83 8.
266.3	44 3	266.3+z	13/2	Z 2502.7	11/2	D	R=0.92 7.
282.5	18 <i>8</i> 23 <i>I</i>	3786.2+z	39/2-	3503.7+z		D	D_0.90.2
282.8		4068.9+z	$41/2^{-}$	3786.2+z		D	R=0.80 3.
291.3	4.4 7	2485.8+z	29/2+	2194.3+z	25/2		R=0.99 23.
202.7	0.0.14	2025 (39/2 ⁺	2541.0	27/2+	D	Branching ratio: $I_{\gamma}(291)/I_{\gamma}(161)=0.19 \ 3.$
293.7	9.0 14	3835.6+z		3541.9+z		D	R=0.89 14.
316.9	19.6 15	4385.9+z	43/2 ⁻ 45/2 ⁻	4068.9+z		D	R=0.82 3.
324.0	20.3 <i>15</i> 4.9 <i>9</i>	4709.9+z		4385.9+z		D	R=0.85 9.
333.1		4571.2+z	43/2 ⁺ 37/2 ⁺	4238.2+z			R=1.37 22.
335.8	7.9 13	3541.9+z		3206.2+z		D	R=0.90 15.
353.7	14.1 10	5063.5+z	47/2-	4709.9+z		D	R=0.83 4.
356.4	14.0 10	5419.9+z	49/2 ⁻	5063.5+z		D	R=0.88 7.
366.3 366.4	4.4 <i>7</i> 5.1 <i>1</i>	2194.3+z 3046.4+z	25/2+	1828.0+z		0	Branching ratio: $I\gamma(366)/I\gamma(183) > 0.34$. R=1.08 <i>I3</i> .
300.4	J.1I	3040.4±Z	33/2-	2680.8+z	29/2	Q	Branching ratio: $I\gamma(366)/I\gamma(227)=0.14 I$.
375.3	69 <i>4</i>	375.3+z	15/2-	7	11/2-	0	R=1.12 3.
313.3	09 4	373.3+Z	13/2	Z	11/2	Q	Branching ratio: $I\gamma(375)/I\gamma(109)=5.2\ II$.
376.0		2700.7+z	31/2+	2325.0+z	27/2+		Drailening ratio. $1y(3/3)/1y(109) = 3.2.11$.
383.4	27.4 14	758.7+z	$17/2^{-}$	375.3+z	,	D	R=0.95 10.
386.4	9.3 6	6198+z	53/2	5811.3+z		D	R=0.79 5.
391.4	11.0 5	5811.3+z	51/2	5419.9+z		D	R=0.79 3. R=0.98 8.
402.6	5.9 9	4238.2+z	41/2+	3835.6+z			K-0.70 O.
423.4	5.2 5	7053+z	57/2	6629+z	55/2		
430.9	8.3 5	6629+z	55/2-	6198+z	53/2	D	R=0.88 5.
444.0	16.9 <i>14</i>	3263.8+z	35/2	2819.7+z		Q	R=0.00 5. R=1.29 6.
444.0	10.5 17	3203.0±Z	33/2	2019.7±Z	31/2	Q	Branching ratio: $I\gamma(444)/I\gamma(217)=0.44\ 2$.
444 <mark>&</mark>		5015 (.	4510+	4571.0.	42/2+		
	12 0 11	5015.6+z	45/2+	4571.2+z	,	0	E_{γ} : γ is shown in level scheme, but not in table.
457.4	13.8 11	3503.7+z	37/2-	3046.4+z	33/2	Q	R=1.24 7.
							Branching ratio: $I\gamma(457)/I\gamma(240)=0.40$ 2.
458.3 ^{&}	3.9 9	7992+z	61/2	7534+z	59/2		D 4 4 6 20
465.5	14 3	2951.4+z	$33/2^{+}$	2485.8+z	29/2+	Q	R=1.46 20.
47.4.0	10.2.7	1056.5	01/0-	000.7	10/2-	ъ	Branching ratio: $I\gamma(465)/I\gamma(251)=1.05$ 9.
474.9	19.2 7	1358.7+z	21/2-	883.7+z		D	R=0.84 12.
481.5	6.3 9	7534+z	59/2-	7053+z	57/2-		

γ (161Lu) (continued)

$\mathrm{E}_{\gamma}^{\dagger}$	I_{γ}^{\ddagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}^{π}_f	Mult.#	Comments
492.4	16.3 <i>6</i>	758.7+z	17/2-	266.3+z	13/2-	Q	R=1.26 18.
505.4	22 4	3206.2+z	35/2+	2700.7+z	31/2+	Q	Branching ratio: $I\gamma(492)/I\gamma(383)=0.68$ 4. R=1.10 15.
508.4	100.0 22	883.7+z	19/2-	375.3+z	15/2-	Q	Branching ratio: $I\gamma(505)/I\gamma(255)=1.20 \ 10$. R=1.13 4.
519.3	7.7 <i>7</i>	2680.8+z	29/2-	2161.0+z			Branching ratio: $I\gamma(508)/I\gamma(125)=17.4\ 25$.
522.4 524.4	9 <i>4</i> 8 <i>3</i>	3786.2+z 2012.8+z	39/2 ⁻ 25/2 ⁻	3263.8+z 1488.5+z			Branching ratio: $I\gamma(522)/I\gamma(282)=0.50$ 10. E _{γ} : γ not reported by 2006Br12 In
			- /				139 La(28 Si,6n γ). The 522.6 and 525.6 γ rays In 139 La(28 Si,6n γ) are placed from negative-parity levels.
565.2	18.2 9	4068.9+z	41/2-	3503.7+z	37/2-	Q	R=1.21 8. Branching ratio: $I\gamma(565)/I\gamma(283)=0.78$ 11.
590.6	11.3 17	3541.9+z	37/2+	2951.4+z	33/2+	Q	R=1.15 25.
599.7	16.7 20	4385.9+z	43/2-	3786.2+z	39/2-	Q	Branching ratio: $I\gamma(591)/I\gamma(336)=1.44\ 15$. R=1.25 6.
599.9	29 5	1358.7+z	21/2-	758.7+z	17/2-	Q	Branching ratio: $I\gamma(600)/I\gamma(317)=0.85\ 7$. R=1.20 7.
604.9	85.8 19	1488.5+z	23/2-	883.7+z	19/2-	Q	Branching ratio: $I\gamma(600)/I\gamma(475)=1.53\ 26$. R=1.21 6.
629.3	21 3	3835.6+z	39/2+	3206.2+z	35/2+	Q	Branching ratio: $I\gamma(605)/I\gamma(130)=43$ 14. R=1.25 16.
641.0	17.0 <i>7</i>	4709.9+z	45/2-	4068.9+z		Q	Branching ratio: $I\gamma(629)/I\gamma(294)=2.36\ 20$. R=1.52 <i>I</i> 5.
							Branching ratio: $I\gamma(641)/I\gamma(324)=0.86$ 7.
652.5 654.4	9.2 <i>15</i> 17.8 <i>8</i>	2011.5+z 2012.8+z	23/2 ⁺ 25/2 ⁻	1358.7+z 1358.7+z		D <mark>@</mark>	R=0.76 7. Branching ratio: $I\gamma(654)/I\gamma(524)=2.0$ 7.
							668.1-654.4 cascade is reversed In ¹³⁹ La(²⁸ Si,6nγ) (2006Br12).
658.7	54.0 <i>14</i>	2819.7+z	31/2-	2161.0+z	27/2-	Q	R=1.28 7. Branching ratio: $I_{\gamma}(659)/I_{\gamma}(140)=12 6$.
668.1	10.3 6	2680.8+z	29/2-	2012.8+z	25/2-		668.1-654.4 cascade is reversed In ¹³⁹ La(²⁸ Si,6nγ) (2006Br12).
672.6	75.0 <i>18</i>	2161.0+z	27/2-	1488.5+z	23/2-	Q	Branching ratio: $I\gamma(668)/I\gamma(519)=1.34\ 10$. R=1.12 6.
677.5	17.1 <i>7</i>	5063.5+z	47/2-	4385.9+z	43/2-	Q	Branching ratio: $I\gamma(673)/I\gamma(149)>94$. R=1.32 δ .
696.3	11.3 <i>17</i>	4238.2+z	41/2+	3541.9+z		Q	Branching ratio: $I\gamma(677)/I\gamma(354)=1.14\ 6$. R=1.15 20.
710.1	17.2	5419.9+z	49/2-	4709.9+z			Branching ratio: $I\gamma(696)/I\gamma(403)=1.9$ 4.
					·	Q	R=1.32 <i>12</i> . Branching ratio: $I\gamma(710)/I\gamma(356)=1.24$ 8.
735.6	18.0 27	4571.2+z	43/2+	3835.6+z		Q	R=1.18 14. Branching ratio: $I\gamma(736)/I\gamma(333)=3.66$ 41.
747.8	13.7 8	5811.3+z	51/2-	5063.5+z	47/2-	Q	R=1.29 9. Branching ratio: $I\gamma(748)/I\gamma(391)=1.27$ 9.
777.4 777.8	10.5 <i>16</i> 12 2	5015.6+z 6198+z	45/2 ⁺ 53/2 ⁻	4238.2+z 5419.9+z		Q	R=1.62 16.
781	<20	6162+z	(51/2 ⁺)	5381.2+z	·	Q	Branching ratio: $I\gamma(778)/I\gamma(386)=1.30 \ 14$. R=1.3 1.
781	<20	6943+z	$(55/2^+)$	6162+z	$(51/2^+)$	Q	R=1.3 1.
810 817 3	<22 10.2 8	5381.2+z 6629+z	$(47/2^+)$	4571.2+z	,	Q	R=1.3 <i>1</i> . R=1.45 <i>19</i> .
817.3	10.2 0	ひひとタキム	55/2-	5811.3+z	J1/4	Q	R=1.43 19. Branching ratio: $I\gamma(817)/I\gamma(431)=1.24$ 12.

$\gamma(^{161}Lu)$ (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Mult.#	Comments
843.0 <mark>&</mark>	4.7 8	5859+z?	$(49/2^+)$	5015.6+z	45/2 ⁺		
847.1	6.3 11	7791+z	$(59/2^+)$	6943+z	$(55/2^+)$	Q	R=1.4 2.
854.2	8.4 7	7053+z	57/2-	6198+z	53/2-		Branching ratio: $I_{\gamma}(854)/I_{\gamma}(423)=1.62 \ 17$.
901.5	5.8 11	8692+z	$(63/2^+)$	7791+z	$(59/2^+)$	Q	R=1.2 2.
905.0	9.0 <i>1</i>	7534+z	59/2-	6629+z	55/2-		Branching ratio: $I_{\gamma}(905)/I_{\gamma}(481)=1.42\ 31$.
939.8	7.6 12	7992+z	$61/2^{-}$	7053 + z	57/2-		Branching ratio: $I_{\gamma}(940)/I_{\gamma}(458)=1.93\ 29$.
943.7 <mark>&</mark>	3.8 7	1828.0+z	21/2+	883.7+z	19/2-	$D^{@}$	R=0.51 9.
948	3.9 8	9640+z	$(67/2^+)$	8692+z	$(63/2^+)$	Q	R=1.3 3.
965.8	≤1.8	8499+z	63/2-	7534 + z	59/2-		
985	< 2.3	10625 + z	$(71/2^+)$	9640+z	$(67/2^+)$		
990	<2	11009+z	$(73/2^{-})$	10019+z	$(69/2^{-})$		
1004.4	4.3 8	8996+z	$65/2^{-}$	7992+z	$61/2^{-}$		
1023	< 2.5	10019+z	$(69/2^{-})$	8996+z	$65/2^{-}$		
1028 <mark>&</mark>	<1.5	9527+z?	$(67/2^{-})$	8499+z	$63/2^{-}$		
1039	< 2.5	11664+z	$(75/2^+)$	10625 + z	$(71/2^+)$		
1061	<2	12070+z	$(77/2^{-})$	11009+z	$(73/2^{-})$		
1074 <mark>&</mark>	<1.2	12738+z?	$(79/2^+)$	11664+z	$(75/2^+)$		
1097 <mark>&</mark>	<1.0	13835+z?	(83/2+)	12738+z?	(79/2+)		E_{γ} : this γ not reported by 2006Br12 In $^{139}\text{La}(^{28}\text{Si},6n\gamma)$.

[†] Uncertainties are 0.1 keV for most γ 's; for weak or contaminated γ 's, uncertainty is 0.5 or 1.0 keV (1988Yu05).

For most γ 's, value is the sum of the intensities observed in the coincidence gates on the 266 and 375 γ 's. As noted by the authors, some intensities were deduced from other coincidence spectra. The intensities of the two gate γ 's (i.e., 266 and 375) were obtained from the sum of the spectra in coincidence with the 383, 492, and 508 γ 's. Branching ratios from coincidence spectra gated above a spin J are given under comments. These are generally more precise than those deduced relative gamma-ray intensities.

[#] DCO ratios (the ratio of the coincidence intensity between two detectors at 30° with respect to the beam and between one detector at 30° and one at 90° with respect to the beam) are given for most γ 's. These ratios generally distinguish between $\Delta J=1$ and $\Delta J=2$ transitions, but the implied multipolarities are not given by the authors. The listed values are those inferred by the evaluator from the consideration that those γ 's having DCO ratios that are significantly greater than unity (of the order of 1.2) are Q and those whose ratios are significantly below unity (of the order of 0.8) are D. It is expected that these will generally be M1 and E2, rather than E1 and M2. Some amount of E2 admixture in the $\Delta J=1$ transitions is to be expected.

[®] The DCO ratio indicates a stretched dipole transition (1988Yu05). These authors consider these to be E1 transitions, based on the fact that these energetic (interband) dipole transitions compete favorably with the intraband M1 and E2 transitions.

[&]amp; Placement of transition in the level scheme is uncertain.

¹⁶¹₇₁Lu₉₀

120 Sn(45 Sc,4n γ) 1988Yu05

 $^{161}_{71} Lu_{90}$

139 La(28 Si,6n γ) 2006Br12,2005Br14,2003Br03

		History	
Type	Author	Citation	Literature Cutoff Date
Full Evaluation	C. W. Reich	NDS 112,2497 (2011)	1-Jun-2011

Additional information 1.

Includes ¹⁰⁰Mo(⁶⁵Cu,4nγ) reaction.

2006Br12: E=175 MeV. Measured Eγ, Iγ, γγ using EUROBALL spectrometer composed of 30 conventional Compton-suppressed Ge detectors, and 41 composite Compton-suppressed Ge detectors 26 'Clovers', (each with four Ge crystals) and 15 'Clusters', (each with seven Ge crystals), and a multiplicity filter of 210 BGO crystals.

2005Br14: ¹³⁹La(²⁸Si,6nγ) E=175 MeV. Measured Eγ, Eγ, γγ, γγ(θ)(DCO) using EUROBALL array with 31 conventional Ge detectors, 26 'Clovers' (each with four Ge crystals), and 15 'Clusters' (each with seven Ge crystals); all the detectors with Compton-suppression shields. Inner ball consisted of 210 BGO crystals to serve as a multiplicity filter. Deduced superdeformed structure.

2003Br03: 100 Mo(65 Cu,4n γ) E=260 MeV. Measured E γ , E γ , $\gamma\gamma$, $\gamma\gamma(\theta)$ (DCO) using GASP array with 40 Compton-suppressed Ge detectors combined with an inner ball of 80 BGO detectors. Deduced superdeformed structure.

All three papers are from the same group. The data given here are from 2006Br12 unless otherwise stated.

¹⁶¹Lu Levels

Nomenclature for quasiparticle labels:

```
A: vi_{13/2}1/2[660], \alpha = +1/2.
```

B: $vi_{13/2}1/2[660]$, $\alpha = -1/2$.

C: $vi_{13/2}$, $\alpha = +1/2$.

D: $vi_{13/2}$, $\alpha = -1/2$.

E: $\nu h_{9/2} 3/2[521]$, $\alpha = +1/2$.

F: $\nu h_{9/2} 3/2[521]$, $\alpha = -1/2$.

a: $\pi d_{3/2} 1/2[411]$, $\alpha = +1/2$.

b: $\pi d_{3/2} 1/2[411]$, $\alpha = -1/2$.

c: $\pi g_{7/2} 7/2[404]$, $\alpha = +1/2$.

d: $\pi g_{7/2} 7/2[404]$, $\alpha = -1/2$.

e: $\pi h_{11/2} 9/2[514]$, $\alpha = +1/2$.

f: $\pi h_{11/2} 9/2[514]$, $\alpha = -1/2$.

i: $\pi d_{5/2} 5/2[402]$, $\alpha = +1/2$.

j: $\pi d_{5/2} 5/2[402]$, $\alpha = -1/2$.

E(level) [†]	$J^{\pi \ddagger}$	Comments
0 <i>l</i>	1/2+	$E(level),J^{\pi}$: from the Adopted Levels. Level not reported in this reaction, but is expected from the decay of the first excited state.
0+x ^l	3/2+	E(level): $x \approx 15$ keV from trend of $3/2^+$ to $1/2^+$ spacings for $1/2[411]$ band in selected odd-A Lu (A=163, 167, 169) nuclei.
66.0+x ^l 7	$(5/2^+)$	
135.5+x ⁱ 5	5/2+	
166.0+x ^c 9	9/2-	
203.5+x ^d 8	$11/2^{-}$	
226.4+x ^h 6	7/2+	
275.0+x [@] 5	$(7/2^+)$	
334.4+x ^l 6	$7/2^{+}$	
443.0+x ⁱ 6	9/2+	
469.4+x ^c 7	13/2-	
578.4+x ^d 7	$15/2^{-}$	
677.1+x ^h 6	11/2+	

161 Lu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
694.9+x [@] 6	$(11/2^+)$	4270.5+x ^c 10	$41/2^{-}$	8488.4+x ^{&} 11	61/2+
934.8+x ⁱ 6	$13/2^{+}$	4271.6+x ^j 8	39/2 ⁺	8502.5+x ^f 13	$(61/2^{-})$
961.7+x ^c 7	$17/2^{-}$	4331.6+x ^a 9	$(39/2^+)$	8699.5+x ^d 12	$63/2^{-}$
1086.6+x ^d 7	$19/2^{-}$	4438.8+x& 9	$41/2^{+}$	8799.6+x ^a 13	63/2+
1199.8+x [@] 6	$15/2^{+}$	4509.5+x ⁸ 10	$(39/2^{-})$	8962.8+x [@] 11	$63/2^{+}$
1226.7+x ^h 7	$(15/2^+)$	4587.3+x ^d 10	$43/2^{-}$	8972.6+x ⁸ 13	$(63/2^{-})$
1504.7+x ⁱ 7	$(17/2^+)$	4594.7+x ^k 9	$41/2^{+}$	9195.9+x ^c 12	$65/2^{-}$
1561.3+x ^c 7	$21/2^{-}$	4722.6+x ^f 10	$41/2^{-}$	9390.5+x& 11	$65/2^{+}$
$1691.5 + x^{d}$ 7	$23/2^{-}$	4771.7+x [@] 9	$43/2^{+}$	9436.1+x ^f 24	$(65/2^{-})$
1739.2+x [@] 7	19/2+	4911.0+x ^c 10	$45/2^{-}$	9700.6+x ^a 14	67/2+
$1832.5 + x^{h}$ 7	$(19/2^+)$	4959.2+x ⁸ 10	$43/2^{-}$	9727.3+x ^d 13	$67/2^{-}$
2030.0+x ^{&} 7	$21/2^{+}$	4959.6+x ^a 9	$(43/2^+)$	9908.2+x [@] 12	67/2+
2132.7+x ⁱ 7	$(21/2^+)$	5035.3+x ^j 9	$43/2^{+}$	10025.2+x ^g 24	$(67/2^{-})$
2213.4+x [@] 7	$23/2^{+}$	5215.4+x& 9	$45/2^{+}$	10219.4+x ^e 13	69/2-
2223.9+x 7	$21/2^{+}$	5264.4+x ^d 10	$47/2^{-}$	10308.3+x ^c 13	69/2-
2228.9+x ^C 8	$25/2^{-}$	5266.2+x ^f 10	$45/2^{-}$	10345.1+x& <i>12</i>	$(69/2^+)$
2297.9+x 7	23/2+	5357.4+x ^k 10	$(45/2^+)$	10649.1+x ^a 15	$71/2^{+}$
$2363.8 + x^{d} 8$	$27/2^{-}$	5581.1+x [@] 9	47/2+	10817.5+x ^d 14	$71/2^{-}$
$2392.6 + x^h 7$	$(23/2^+)$	5586.2+x ⁸ 10	$47/2^{-}$	10904.2+x [@] 13	$(71/2^+)$
2396.1+x ^{&} 7	$25/2^{+}$	5620.7+x ^c 11	$49/2^{-}$	11209.5+x ^e 14	$73/2^{-}$
$2488.9 + x^{j} 8$	$23/2^{+}$	5655.0+x ^a 9	$(47/2^+)$	11358.1+x& <i>13</i>	$(73/2^+)$
$2513.9 + x^{k} 7$	25/2+	5864.6+x ^j 11	$(47/2^+)$	11442.3+x ^c 14	73/2-
2526.8+x [@] 7	$27/2^{+}$	5967.8+x ^f 10	$49/2^{-}$	11632.9+x ^a 16	75/2 ⁺
$2634.0+x^{j}$ 7	$27/2^{+}$	6011.9+x ^d 11	$51/2^{-}$	11936.5+x ^d 15	$(75/2^{-})$
2687.3+x & 8	$29/2^{+}$	6057.6+x ^{&} 9	49/2+	11948.3+x [@] 14	$(75/2^+)$
2785.6+x ^b 10	$(25/2^+)$	6154.4+x ^k 11	$(49/2^+)$	12247.4+x ^e 15	77/2-
2865.7+x ^k 8	29/2+	6293.7+x ⁸ 11	51/2-	12672.1+x ^a 17	79/2+
2882.7+x ^c 8	29/2-	6362.3+x ^a 10	51/2 ⁺	13309.4+x ^e 16	$(81/2^{-})$
2902.0+x [@] 8	31/2+	6398.4+x ^c 11 6491.7+x [@] 9	53/2 ⁻	13742.3+x ^a 17	$(83/2^+)$
$3007.9 + x^b 8$ $3022.1 + x^d 8$	$(29/2^+)$	$6491.7 + x^{j} 22$	51/2+	14817.3+x ^a 18	$(87/2^+)$ $(91/2^+)$
$3022.1+x^{j} 8$ $3044.7+x^{j} 8$	31/2-	$6643.5 + x^{f}$ 22 $6726.0 + x^{f}$ 11	$(51/2^+)$	15942.3+x ^a 19 y ^m	$(91/2^+)^{\#}$
3044.7+x ³ 8 3143.8+x 9	31/2 ⁺ 31/2 ⁻	$6829.0+x^d$ 11	53/2-	•	$(21/2^+)^{\#}$ $(25/2^+)^{\#}$
3143.8+x 9 3152.6+x & 8	31/2 33/2 ⁺	6875.2+x 4 10	55/2 ⁻ 53/2 ⁺	308.3+y ^m 5 689.0+y ^m 7	$(23/2^+)^{11}$ $(29/2^+)$
$3132.0+x^{\circ}$ 8 $3248.6+x^{\circ}$ 9	33/2 ⁻	$6993.4 + x^{k}$ 12	$(53/2^+)$	1139.9+y ^m 9	$(29/2)$ $(33/2^+)$
$3278.5 + x^a 8$	$(31/2^+)$	7095.8+x ⁸ 11	$(55/2^{-})$ $55/2^{-}$	139.9+y 9 1303.7+y ⁿ 11	$(33/2)$ $(31/2^+)$
$3328.7 + x^{k} 8$	33/2+	7142.8+x ^a 11	55/2 ⁺	1658.6+y ^m 10	$(37/2^+)$
3407.3+x [@] 8	35/2 ⁺	7252.1+x ^c 12	57/2 ⁻	1781.4+y ⁿ 11	$(35/2^+)$
$3465.8 + x^d 9$	35/2 ⁻	7269.1+x [@] 10	55/2 ⁺	2244.4+y ^m 11	$(41/2^+)$
$3468.2 + x^{b} 9$	$(33/2^+)$	$7567.4 + x^{f}$ 11	57/2 ⁻	2324.5+y ⁿ 12	$(39/2^+)$
$3598.4 + x^{j} 8$	35/2 ⁺	7649.1+x & 10	57/2 ⁺	2893.8+y ^m 12	$(45/2^+)$
$3705.4 + x^{C} 9$	37/2-	$7733.7 + x^d$ 12	59/2 ⁻	2930.5+y n 12	$(43/2^+)$
3742.9+x & 8	37/2 ⁺	$7767.4 + x^{k}$ 13	$(57/2^+)$	3597.6+y ⁿ 13	$(47/2^+)$
$3781.5 + x^a 8$	$(35/2^+)$	7952.8+x ^a 12	59/2+	3604.4+y ^m 13	$(49/2^+)$
3908.6+x ^k 8	37/2+	7996.6+x ⁸ 12	(59/2 ⁻)	4322.6+y ⁿ 17	$(51/2^+)$
3987.8+x ^d 9	39/2-	8075.6+x [@] 11	59/2 ⁺	4373.1+y ^m 14	$(53/2^+)$
4036.4+x [@] 8	39/2+	8191.6+x ^c 12	61/2-	5103.6+y ⁿ 20	$(55/2^+)$

¹³⁹La(²⁸Si,6nγ) **2006Br12,2005Br14,2003Br03** (continued)

¹⁶¹Lu Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	Jπ‡	E(level) [†]	Jπ‡
5196.9+y ^m 15	$(57/2^+)$	7771+y ⁿ 3	$\overline{(67/2^+)}$	9985.5+y ^m 19	$(77/2^+)$
5936.6+y ⁿ 22	$(59/2^+)$	7964.1+y ^m 17	$(69/2^+)$	10794+y ⁿ 4	$(79/2^+)$
6072.8+y ^m 16	$(61/2^+)$	8744+y ⁿ 3	$(71/2^+)$	11044.3+y ^m 19	$(81/2^+)$
6820.6+y ⁿ 24	$(63/2^+)$	8961.5+y ^m 18	$(73/2^+)$	12139.8+y ^m 20	$(85/2^+)$
6997.2+y ^m 17	$(65/2^+)$	9752+y ⁿ 3	$(75/2^+)$	13270.8+y ^m 22	$(89/2^+)$

- [†] From least-squares fit to E γ 's, assuming Δ E γ =0.5 keV for each γ ray.
- ‡ As proposed by 2006Br12 based on γ cascades defining band structures and comparisons with cranked-shell model calculations. The authors state that DCO ratios and angular correlations were measured for transitions but the data are listed for nine transitions only. Assignments for some bands are supported by angular correlation results from 120 Sn(45 Sc,4n γ). All assignments are the same in 'Adopted Levels', except that these are given in parentheses in 'Adopted Levels' due to lack of strong supporting arguments.
- [#] The 308.5 transition is assigned by 2003Br03 as $25/2^+$ to $21/2^+$ transition in comparison with isospectral triaxial SD-1 band in 163 Lu. All other intraband transitions were found to be stretched quadrupole transitions from $\gamma\gamma(\theta)$ (DCO) data. However, results of such measurements were not quoted by 2003Br03 or 2006Br12.
- [@] Band(A): π 7/2[404], α =-1/2. At higher spins crossed by 7/2[404] \otimes AB band, and second crossing by 7/2[404]ABef.
- & Band(a): π 7/2[404], α =+1/2. At higher spins crossed by 7/2[404]⊗AB band, and second crossing by 7/2[404]ABef.
- ^a Band(b): Triaxial band, $\alpha = -1/2$. The alignment is similar to TSD bands, thus it is expected to have large deformation.
- ^b Band(B): $\alpha = +1/2$.
- ^c Band(C): $\pi 9/2[514]$, $\alpha = +1/2$. At higher spins crossed by $9/2[514] \otimes AB$ band.
- ^d Band(c): π 9/2[514], α =−1/2. At higher spins crossed by 9/2[514]⊗AB band.
- e Band(D): 1/2[541]⊗ABef, α=+1/2.
- f Band(E): 7/2[523]⊗AB, α=+1/2.
- ^g Band(e): 7/2[523]⊗AB, α =−1/2.
- ^h Band(F): π 5/2[402], α =−1/2. At higher spins crossed by 5/2[404]⊗AB band.
- ⁱ Band(f): $\pi 5/2[402]$, $\alpha = +1/2$. At higher spins crossed by $5/2[404] \otimes AB$ band.
- j Band(G): 5/2[402]⊗AB, α=-1/2.
- ^k Band(g): 5/2[402]⊗AB, α=+1/2.
- ^l Band(H): $\pi 1/2[411]$.
- ^m Band(I): Triaxial (wobbling mode) SD-1 band, α =+1/2. Band from 2006Br12 (also 2005Br14,2003Br03). Configuration= $\pi i_{13/2} \otimes v i_{13/2}^2$, phonon quantum number=0. Population intensity=1.4% of the reaction channel. This band is isospectral to triaxial SD-1 band in ¹⁶³Lu. On this basis the 308.5 transition is proposed (by 2003Br03) as 25/2+ to 21/2+ transition. The 308.5γ is also in γγ coin with 266.3, 375.3, 508.4 and 604.9 transitions in normal-deformed structures. See also 2005Ha24 and 2004Ha21 for discussion of triaxial SD bands.
- ⁿ Band(i): Triaxial (wobbling mode) SD-2 band, α =−1/2. Band from 2006Br12 (also 2005Br14, 2003Br03). Configuration= $\pi i_{13/2} \otimes v i_{13/2}^2$, phonon quantum number=1. Wobbling excitation built on triaxial SD-1 band. Population intensity=0.6% of the reaction channel. See also 2005Ha24 and 2004Ha21 for discussion of triaxial SD bands.

 γ (161Lu)

E_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
74.0	2297.9+x	23/2+	2223.9+x	21/2+	
90.6	226.4+x	$7/2^{+}$	135.5 + x	$5/2^{+}$	E_{γ} : 90.5 (2005Br14).
98.0	2396.1+x	$25/2^{+}$	2297.9+x	$23/2^{+}$	
104.7	3248.6+x	$33/2^{-}$	3143.8+x	$31/2^{-}$	
108.6	443.0+x	$9/2^{+}$	334.4+x	$7/2^{+}$	E_{γ} : 108.1 (2005Br14).
108.7	578.4 + x	$15/2^{-}$	469.4 + x	$13/2^{-}$	

E_{γ}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_f	\mathbf{J}_f^{π}	Comments	
119.7	2634.0+x	27/2+	2513.9+x	25/2+		
121.2	2513.9+x	25/2+	2392.6+x			
121.5	3143.8+x	$31/2^{-}$	3022.1+x	$31/2^{-}$		
124.5	1086.6+x	$19/2^{-}$	961.7+x	$17/2^{-}$		
130.3	1691.5+x	23/2-	1561.3+x		E_{γ} : 130.1 (2005Br14).	
130.4	2526.8+x	27/2+	2396.1+x			
134.9	2363.8+x	27/2-	2228.9+x			
135.5	135.5+x	5/2 ⁺	0+x	3/2+		
139.4 145.1	3022.1+x 2634.0+x	31/2 ⁻ 27/2 ⁺	2882.7+x 2488.9+x			
160						
160.5	226.4+x 2687.3+x	7/2 ⁺ 29/2 ⁺	66.0+x 2526.8+x			
165.2	2087.3+x 2297.9+x	23/2+	2320.8+x 2132.7+x			
172	2396.1+x	25/2 ⁺	2132.7+x 2223.9+x			
179.1	3044.7+x	31/2+	2865.7+x			
182.8	2396.1+x	25/2+	2213.4+x			
183.5	2213.4+x	23/2+	2030.0+x			
199.2	334.4+x	7/2+	135.5+x		E_{γ} : 199.4 (2005Br14).	
209	275.0+x	$(7/2^+)$	66.0+x			
213.1	4722.6+x	41/2-	4509.5+x			
214.6	2902.0+x	$31/2^{+}$	2687.3+x	$29/2^{+}$		
216.5	443.0+x	$9/2^{+}$	226.4+x		E_{γ} : 217.0 (2005Br14).	
217.0	3465.8+x	35/2-	3248.6+x			
222.3	3007.9+x	$(29/2^+)$	2785.6+x			
226.5	3248.6+x	33/2-	3022.1+x			
231.6	2865.7+x	29/2+	2634.0+x			
234.0	677.1+x	11/2+	443.0+x		E_{γ} : 233.7 (2005Br14).	
236.8	4959.2+x	43/2-	4722.6+x			
238.2	2634.0+x	27/2 ⁺	2396.1+x			
239.6 250.4	3705.4+x 3152.6+x	37/2 ⁻ 33/2 ⁺	3465.8+x 2902.0+x			
254.6	3407.3+x	35/2 ⁺	3152.6+x			
257.7	934.8+x	13/2+	677.1+x		E_{γ} : 257.4 (2005Br14).	
263.6	2396.1+x	25/2 ⁺	2132.7+x		Ly. 237.1 (2003B111).	
264.5	1199.8+x	15/2+	934.8+x			
265.9	469.4 + x	13/2-	203.5+x			
269.5	3598.4+x	35/2+	3328.7+x			
270.8	3278.5+x	$(31/2^+)$	3007.9+x	$(29/2^+)$		
275	275.0+x	$(7/2^+)$	0+x	$3/2^{+}$		
282.5	3987.8+x	39/2-	3705.4+x			
282.7	4270.5+x	41/2	3987.8+x			
284.3	3328.7+x	33/2+	3044.7+x			
290.8	2030.0+x	21/2+	1739.2+x			
291.1	2687.3+x	29/2 ⁺	2396.1+x			
293.5 303.4	4036.4+x 469.4+x	39/2 ⁺	3742.9+x 166.0+x			
306.8	5266.2+x	13/2 ⁻ 45/2 ⁻	4959.2+x	,		
307.5	443.0+x	9/2 ⁺	135.5+x			
308.3	308.3+y	$(25/2^+)$	у	$(21/2^+)$		
310.0	3908.6+x	37/2 ⁺	3598.4+x			
313.2	3781.5+x	$(35/2^+)$	3468.2+x	,		
313.5	2526.8+x	27/2+	2213.4+x			
316.7	4587.3+x	43/2-	4270.5+x	$41/2^{-}$		
319.9	5586.2+x	$47/2^{-}$	5266.2+x	-		
321 [@]	5357.4+x	$(45/2^+)$	5035.3+x	$43/2^{+}$		

E_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Comments
323 [@]	3465.8+x	35/2-	3143.8+x	31/2-	
323.1	4594.7+x	41/2+	4271.6+x	,	
323.8 325.9	4911.0+x 6293.7+x	45/2 ⁻ 51/2 ⁻	4587.3+x 5967.8+x		
332.8	4771.7+x	43/2+	4438.8+x		
335 @	334.4+x	7/2+	0+x	3/2+	
335.5	3742.9+x	37/2+	3407.3+x	35/2+	
339 [@]	2865.7+x	29/2+	2526.8+x	,	
343 352.3	677.1+x 2865.7+x	11/2 ⁺ 29/2 ⁺	334.4+x 2513.9+x		
353.5	5264.4+x	$47/2^{-}$	4911.0+x		
356.4	5620.7+x	49/2-	5264.4+x	47/2-	
362.4	2392.6+x	$(23/2^+)$	2030.0+x		
362.8 365.5	4271.6+x 5581.1+x	39/2 ⁺ 47/2 ⁺	3908.6+x 5215.4+x		
365.9	3248.6+x	33/2-	2882.7+x		
366.1	2396.1+x	$25/2^{+}$	2030.0+x		
370.0 374	7095.8+x 3007.9+x	55/2 ⁻ (29/2 ⁺)	6726.0+x 2634.0+x	,	
375.0 [#]	578.4+x	$(29/2^{-})$ $15/2^{-}$	2034.0+x 203.5+x		
375.0 [#]	2902.0+x	31/2+	2526.8+x		
380.0	7649.1+x	57/2 ⁺	7269.1+x		
380.7	689.0+y	$(29/2^+)$	308.3+y		
381.5 383.1	5967.8+x 961.7+x	49/2 ⁻ 17/2 ⁻	5586.2+x 578.4+x		
383.6	6875.2+x	53/2+	6491.7+x		
386.4	6398.4+x	53/2-	6011.9+x	$51/2^{-}$	
391.1	6011.9+x	51/2 ⁻	5620.7+x		
394.2 402.2	7269.1+x 4438.8+x	55/2 ⁺ 41/2 ⁺	6875.2+x 4036.4+x		
410.6	3044.7+x	31/2+	2634.0+x		
412.7	8488.4+x	61/2+	8075.6+x	,	
413 419.9	3278.5+x 694.9+x	$(31/2^+)$	2865.7+x		
423.2	7252.1+x	$(11/2^+)$ $57/2^-$	275.0+x 6829.0+x		
426.6	8075.6+x	59/2+	7649.1+x		
426.8	3328.7+x	33/2+	2902.0+x		
427.7 429 [@]	9390.5+x 7996.6+x	65/2+	8962.8+x		
430.6	6829.0+x	(59/2 ⁻) 55/2 ⁻	7567.4+x 6398.4+x		
432.2	6726.0+x	53/2-	6293.7+x	$51/2^{-}$	
434.1	6491.7+x		6057.6+x		
441.1 443.7	5035.3+x 3465.8+x	43/2 ⁺ 35/2 ⁻	4594.7+x 3022.1+x		
443.8	5405.6+x 5215.4+x	45/2 ⁺	4771.7+x	,	
450.5	677.1+x	11/2+	226.4+x	$7/2^{+}$	E_{γ} : 450.7 (2005Br14).
450.8	1139.9+y	$(33/2^+)$	689.0+y		
452.1 453	4722.6+x 3781.5+x	$41/2^ (35/2^+)$	4270.5+x 3328.7+x	,	
457.0	3705.4+x	$37/2^{-}$	3248.6+x	,	
457.9	8191.6+x	61/2-	7733.7+x	,	
460.2 463.1	3468.2+x 3328.7+x	$(33/2^+)$ $33/2^+$	3007.9+x 2865.7+x		
465.3	3326.7+x 3152.6+x	33/2 ⁺	2687.3+x		
		•		•	

γ ⁽¹⁶¹Lu) (continued)</sup>

E_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbb{E}_f	J_f^{π}	Mult. [†]	Comments
471.8	7567.4+x	57/2-	7095.8+x 55	5/2-		
474.3	2213.4+x	23/2+	1739.2+x 19			
474.4	8962.8+x	63/2+	8488.4+x 61	1/2+		
474.7	1561.3+x	$21/2^{-}$	1086.6+x 19	$9/2^{-}$		
476.6	6057.6+x	$49/2^{+}$	5581.1+x 47	7/2+		
478 [@]	1781.4+y	$(35/2^+)$	1303.7+y (3	$(1/2^+)$		
481.6	7733.7+x	59/2-	7252.1+x 57			
491.7	934.8+x	13/2+	443.0+x 9/	,		E_{γ} : 491.1 (2005Br14).
492.2	961.7+x	$17/2^{-}$	469.4+x 13			
496	9195.9+x	65/2-	8699.5+x 63			
501.3	3908.6+x	$37/2^{+}$	3407.3+x 35	5/2+		
503.3	3781.5+x	$(35/2^+)$	3278.5+x (3	$(1/2^+)$		
504.8	1199.8+x	15/2+	694.9+x (1			
505.1	3407.3+x	$35/2^{+}$	2902.0+x 31	1/2+		
506 [@]	10817.5 + x	$71/2^{-}$	10308.3+x 69	$9/2^{-}$		
508.0	1086.6 + x	$19/2^{-}$	578.4+x 15	5/2-		
508	8699.5 + x	$63/2^{-}$	8191.6+x 61	1/2-		
517.7	9908.2+x	$67/2^{+}$	9390.5+x 65	5/2+		
518.8 <mark>#</mark>	2882.7+x	29/2-	2363.8+x 27	7/2-		
518.8 [#]	1658.6+y	$(37/2^+)$	1139.9+y (3	3/2+)		
522 <mark>#@</mark>	2213.4+x	$23/2^{+}$	1691.5+x 23	3/2-		
522.0	3987.8+x	39/2-	3465.8+x 35	5/2-		
522 <mark>#@</mark>	4509.5+x	$(39/2^{-})$	3987.8+x 39	$9/2^{-}$		
522.6	1199.8+x	15/2+	677.1+x 11		Q	R _{ang} =0.77 7, DCO=1.05 15.
525.6	2030.0+x	21/2+	1504.7+x (1			5
531	9727.3+x	67/2-	9195.9+x 65	5/2-		
532.0	1226.7+x	$(15/2^+)$	694.9+x (1	$1/2^{+}$)		
537.4	2228.9+x	$25/2^{-}$	1691.5+x 23	3/2-		
539.1	1739.2+x	19/2+	1199.8+x 15			
543	2324.5+y	$(39/2^+)$	1781.4+y (3			
543.7	5266.2+x	$45/2^{-}$	4722.6+x 41	1/2-		
550 [@]	1226.7+x	$(15/2^+)$	677.1+x 11	1/2+		
550.5	4331.6+x	$(39/2^+)$	3781.5+x (3)			
553.5	3598.4+x	35/2+	3044.7+x 31			
558.7	2297.9+x	23/2+	1739.2+x 19			
560.2	2392.6+x	$(23/2^+)$	1832.5+x (1			
564.8	4270.5+x	41/2-	3705.4+x 37			
570.5	1504.7+x	$(17/2^+)$	934.8+x 13			
580.4	3908.6+x	37/2 ⁺	3328.7+x 33			
581 585.8	10308.3+x 2244.4+y	$69/2^ (41/2^+)$	9727.3+x 67 1658.6+y (3			
590.1	3742.9+x	37/2+	3152.6+x 33			
599.4	1561.3+x	21/2	961.7+x 17			
599.5	4587.3+x	43/2-	3987.8+x 39			
604.8	1691.5+x	23/2	1086.6+x 19			
605.9	1832.5+x	$(19/2^+)$	1226.7+x (1			
606	2930.5+y	$(43/2^+)$	2324.5+y (3			
615 [@]	1303.7+v	$(31/2^+)$	689.0+y (2			
627.0	5586.2+x	47/2-	4959.2+x 43			
628.3	2132.7+x	$(21/2^+)$	1504.7+x (1			
628.5	4959.6+x	$(43/2^+)$	4331.6+x (3	, ,		
628.9	4036.4+x	39/2+	3407.3+x 35			
640.6	4911.0+x	$45/2^{-}$	4270.5+x 41			
641	1781.4+y	$(35/2^+)$	1139.9+y (3	(3/2 ⁺)		

E_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult. [†]	Comments
649.4	2893.8+y	$(45/2^+)$	2244.4+y (41/2 ⁺)		
651 [@]	7142.8+x	55/2+	6491.7+x 51/2 ⁺	+	
651.9 653.2	2213.4+x 2392.6+x	$23/2^+$ $(23/2^+)$	1561.3+x 21/2 ⁻ 1739.2+x 19/2 ⁺	D^{\ddagger}	R _{ang} =0.51 4, DCO=0.53 9.
653.7	2882.7+x	29/2	2228.9+x 25/2 ⁻		
654 [@]	2785.6+x	$(25/2^+)$	$2132.7+x (21/2^+)$)	
658.4 666	3022.1+x 2324.5+y	$31/2^ (39/2^+)$	2363.8+x 27/2 ⁻ 1658.6+y (37/2 ⁺)	1	
667	3597.6+y	$(47/2^+)$	2930.5+y (43/2 ⁺)		
667.6	2228.9+x	25/2-	1561.3+x 21/2 ⁻		
672 [@] 672.3	6293.7+x 2363.8+x	51/2 ⁻ 27/2 ⁻	5620.7+x 49/2 ⁻ 1691.5+x 23/2 ⁻		
672.8	4271.6+x	39/2 ⁺	3598.4+x $35/2+$		
675 [@] 677.0	5586.2+x 5264.4+x	47/2 ⁻ 47/2 ⁻	4911.0+x 45/2 ⁻ 4587.3+x 43/2 ⁻		
679 [@]	5266.2+x	45/2-	4587.3+x 43/2 ⁻		
686 686.6	2930.5+y 4594.7+x	$(43/2^+)$ $41/2^+$	2244.4+y (41/2 ⁺) 3908.6+x 37/2 ⁺)	
688.5	4959.2+x	43/2	4270.5+x 41/2 ⁻	(Q)	R _{ang} =0.73 12, DCO=0.5 3.
695.8 [#]	4438.8+x	41/2+	3742.9+x 37/2+		
695.8 [#] 701.8	5655.0+x 5967.8+x	(47/2 ⁺) 49/2 ⁻	4959.6+x (43/2 ⁺) 5266.2+x 45/2 ⁻	1	
704 [@]	3597.6+y	$(47/2^+)$	2893.8+y (45/2 ⁺)		
704.1 707.3	2396.1+x 6293.7+x	25/2 ⁺ 51/2 ⁻	1691.5+x 23/2 ⁻ 5586.2+x 47/2 ⁻	D^{\ddagger}	R _{ang} =0.51 12, DCO=0.8 6.
707.8	6362.3+x	51/2 ⁺	5655.0+x (47/2 ⁺))	
709.6	5620.7+x	49/2-	4911.0+x 45/2 ⁻		
710.6 725	3604.4+y 4322.6+y	$(49/2^+)$ $(51/2^+)$	2893.8+y (45/2 ⁺) 3597.6+y (47/2 ⁺)		
730.7	1199.8+x	$15/2^{+}$	469.4+x 13/2 ⁻		
734.8 735.2	4722.6+x 4771.7+x	41/2 ⁻ 43/2 ⁺	3987.8+x 39/2 ⁻ 4036.4+x 39/2 ⁺		
736.6	2297.9+x	23/2+	1561.3+x 21/2		
747.6	6011.9+x	$51/2^{-}$	5264.4+x 47/2 ⁻		
758.4 762.7	6726.0+x 5357.4+x	53/2 ⁻ (45/2 ⁺)	5967.8+x 49/2 ⁻ 4594.7+x 41/2 ⁺		
763.3	5035.3+x	43/2+	4271.6+x 39/2+		
768.7	4373.1+y	$(53/2^+)$	3604.4+y (49/2+))	
774.0 774	7649.1+x 7767.4+x	57/2 ⁺ (57/2 ⁺)	6875.2+x 53/2+ 6993.4+x (53/2+))	
776.4	5215.4+x	45/2+	4438.8+x 41/2 ⁺		
777.1 777.7	7269.1+x 6398.4+x	55/2 ⁺ 53/2 ⁻	6491.7+x 51/2 ⁺ 5620.7+x 49/2 ⁻		
777.9	1739.2+x	19/2 ⁺	961.7+x 17/2		
778 [@]	6643.5+x	$(51/2^+)$	5864.6+x (47/2 ⁺))	
779.9 780.5	3143.8+x 7142.8+x	31/2 ⁻ 55/2 ⁺	2363.8+x 27/2 ⁻ 6362.3+x 51/2 ⁺	Q	R _{ang} =0.93 6, DCO=1.02 16 for 780.8+780.5.
780.8	6362.3+x	51/2 ⁺	5581.1+x 47/2+	Q	R _{ang} =0.93 6, DCO=1.02 16 for 780.8+780.5.
781 797	5103.6+y	$(55/2^+)$ $(49/2^+)$	4322.6+y $(51/2^+)$		
797.3	6154.4+x 2488.9+x	23/2+	5357.4+x (45/2 ⁺) 1691.5+x 23/2 ⁻	1	
802.1	7095.8+x	$55/2^{-}$	6293.7+x 51/2 ⁻		
804.2	4509.5+x	$(39/2^{-})$	3705.4+x 37/2 ⁻		

\mathbb{E}_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	$\mathbf{E}_f \qquad \mathbf{J}_f^\pi$	Mult. [†]	Comments
806.4	8075.6+x	59/2+	7269.1+x 55/2+	<u> </u>	
809.3	5581.1+x	47/2+	4771.7+x 43/2 ⁺		
809.9	7952.8+x	59/2+	7142.8+x 55/2+		
817.1	6829.0+x	55/2-	6011.9+x 51/2 ⁻		
817.7	6875.2+x	53/2+	6057.6+x 49/2 ⁺		
822.6	2513.9+x	25/2+	1691.5+x 23/2 ⁻	D^{\ddagger}	R _{ang} =0.56 16.
823.8	5196.9+y	$(57/2^+)$	$4373.1+y (53/2^+)$	Ъ	Rang = 0.30 10.
829.3	5864.6+x	$(47/2^+)$	$5035.3+x \ 43/2^+$		
833	5936.6+y	$(59/2^+)$	$5103.6+y (55/2^+)$		
836.5	6491.7+x	51/2+	$5655.0+x (47/2^+)$		
839	6993.4+x	$(53/2^+)$	$6154.4+x (49/2^+)$		
839.3	8488.4+x	61/2+	$7649.1+x 57/2^+$		
841.3	7567.4 + x	57/2-	6726.0+x 53/2 ⁻		
842.1	6057.6+x	49/2+	5215.4+x $45/2+$		
846.8	8799.6+x	$63/2^{+}$	7952.8+x 59/2+		
853.8	7252.1+x	57/2-	6398.4+x 53/2 ⁻		
875.9	6072.8+y	$(61/2^+)$	$5196.9+y (57/2^+)$		
883.1	5655.0+x	$(47/2^+)$	$4771.7+x 43/2^+$		
884	6820.6+y	$(63/2^+)$	5936.6+y (59/2 ⁺)		
887.1	8962.8+x	$63/2^{+}$	$8075.6+x 59/2^+$		
900.8	7996.6+x	$(59/2^{-})$	7095.8+x 55/2 ⁻		
901.0	9700.6+x	67/2+	8799.6+x 63/2 ⁺		
902.2	9390.5+x	65/2 ⁺	8488.4+x 61/2+		
904.6	7733.7+x	59/2 ⁻	6829.0+x 55/2 ⁻		
910.8	6491.7+x	51/2 ⁺	5581.1+x 47/2+		
924.4 935 [#]	6997.2+y	$(65/2^+)$	6072.8+y (61/2 ⁺)		
	8502.5 + x	$(61/2^{-})$	7567.4+x 57/2 ⁻		
935 ^{#@}	9436.1+x	$(65/2^{-})$	8502.5+x (61/2 ⁻)		
939.5	8191.6+x	61/2	7252.1+x 57/2 ⁻	4	
943.3	2030.0+x	21/2+	1086.6+x 19/2 ⁻	D^{\ddagger}	R _{ang} =0.54 5, DCO=0.49 12.
945.5	9908.2+x	67/2+	8962.8+x 63/2+		
948.5	10649.1+x	71/2+	9700.6+x 67/2 ⁺		
950	7771+y	$(67/2^+)$	6820.6+y (63/2 ⁺)		
954.6	10345.1+x	$(69/2^+)$	9390.5+x 65/2 ⁺		
965.7 966.9	8699.5+x	63/2-	7733.7+x 59/2 ⁻		
900.9	7964.1+y 4959.2+x	$(69/2^+)$ $43/2^-$	6997.2+y (65/2 ⁺) 3987.8+x 39/2 ⁻	0	R _{ang} =0.97 9, DCO=1.2 8.
973	8744+y	$(71/2^+)$	$7771+y (67/2^+)$	Q	Rang-0.97 9, DCO-1.2 0.
976	8972.6+x	$(63/2^{-})$	$7996.6+x (59/2^{-})$		
983.8	11632.9+x	75/2+	10649.1+x 71/2+		
990.1	11209.5+x	73/2	10219.4+x 69/2 ⁻		
995.8	5266.2+x	45/2-	4270.5+x 41/2 ⁻		
996	10904.2+x	$(71/2^+)$	9908.2+x 67/2+		
997.4	8961.5+y	$(73/2^+)$	$7964.1+y (69/2^+)$		
1004.2	9195.9+x	$65/2^{-}$	8191.6+x 61/2 ⁻		
1008	9752+y	$(75/2^+)$	$8744+y (71/2^+)$		
1013	11358.1+x	$(73/2^+)$	$10345.1+x (69/2^+)$		
1017.3	4722.6+x	$41/2^{-}$	$3705.4+x 37/2^{-}$		
1023.5	10219.4+x	69/2-	9195.9+x 65/2 ⁻	Q	R _{ang} =0.98 17.
1024.0	9985.5+y	$(77/2^+)$	8961.5+y (73/2 ⁺)		
1028.3	9727.3+x	67/2-	8699.5+x 63/2 ⁻		
1037.9	12247.4+x	77/2 ⁻	11209.5+x 73/2 ⁻		
1039.2 1042	12672.1+x 10794+y	79/2 ⁺	11632.9+x 75/2 ⁺ 9752+y (75/2 ⁺)		
1042	10794+y 11948.3+x	$(79/2^+)$ $(75/2^+)$	9752+y (75/2 ⁺) 10904.2+x (71/2 ⁺)		
10.1	-17.00 A	(.5/2)	-570 (11/2)		

139 La(28 Si,6n γ) 2006Br12,2005Br14,2003Br03 (continued)

E_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f \mathbf{J}_f^{π}	E_{γ}	$E_i(level)$	\mathbf{J}_i^{π}	E_f	J_f^π
1054 [@] 1058.8 1062 1070.2 1075 1090.2 1095.5	10025.2+x 11044.3+y 13309.4+x 13742.3+x 14817.3+x 10817.5+x 12139.8+y	(67/2 ⁻) (81/2 ⁺) (81/2 ⁻) (83/2 ⁺) (87/2 ⁺) 71/2 ⁻ (85/2 ⁺)	8972.6+x (63/2 9985.5+y (77/2 12247.4+x 77/2 ⁻ 12672.1+x 79/2 ⁺ 13742.3+x (83/2 9727.3+x 67/2 ⁻ 11044.3+y (81/2	+) 1119 1125 1131 +) 1134 1137.2	10308.3+x 11936.5+x 15942.3+x 13270.8+y 11442.3+x 2223.9+x	69/2 ⁻ (75/2 ⁻) (91/2 ⁺) (89/2 ⁺) 73/2 ⁻ 21/2 ⁺	9195.9+x 10817.5+x 14817.3+x 12139.8+y 10308.3+x 1086.6+x	71/2 ⁻ (87/2 ⁺) (85/2 ⁺) 69/2 ⁻

 $[\]dagger$ From angular correlation ratios, mult=Q indicates ΔJ =2, stretched quadrupole (most likely E2), mult=D indicates ΔJ =1, stretched dipole with possible quadrupole admixture. ‡ $\Delta J{=}1$, stretched dipole interpreted As E1.

[#] Multiply placed.

[®] Placement of transition in the level scheme is uncertain.

Legend

Level Scheme

---- γ Decay (Uncertain)

Level Scheme (continued)

---- → γ Decay (Uncertain)

Legend

 $^{161}_{\,71}Lu_{90}$

Level Scheme (continued)

---- γ Decay (Uncertain)

Legend

Legend

Level Scheme (continued)

---- → γ Decay (Uncertain)

 $^{161}_{71} Lu_{90}$

Legend

Level Scheme (continued)

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

---- γ Decay (Uncertain)

Legend

Level Scheme (continued)

γ Decay (Uncertain)

¹⁶¹₇₁Lu₉₀

¹³⁹La(²⁸Si,6nγ) 2006Br12,2005Br14,2003Br03 (continued)

Band(D): $1/2[541] \otimes ABef$, $\alpha = +1/2$

Band(e): 7/2[523] \otimes AB, α =-1/2

Band(F): π5/2[402], $\alpha = -1/2$ Band(f): π5/2[402], α =+1/2 $(23/2^{+})$ 2392.6+x $(21/2^{+})$ 2132.7+x $(19/2^+)$ 1832.5+x $(17/2^+)$ 1504.7+x $(15/2^+)$ 1226.7+x 13/2+ 934.8+x $11/2^{+}$ 677.1+x 9/2+ 443.0+x 450 7/2+ 226.4+x 5/2⁺ 135.5+x

$$^{161}_{\ 71}Lu_{90}$$

139 La(28 Si,6n γ) 2006Br12,2005Br14,2003Br03 (continued)

139 La(28 Si,6n γ) 2006Br12,2005Br14,2003Br03 (continued)

$$^{161}_{\,71}{\rm Lu}_{90}$$

¹³⁹La(²⁸Si,6nγ) **2006Br12,2005Br14,2003Br03** (continued)

$$^{161}_{71} Lu_{90}$$