

Patent Abstracts of Japan

PUBLICATION NUMBER

06219703

PUBLICATION DATE

09-08-94

APPLICATION DATE

27-01-93

APPLICATION NUMBER

05031256

APPLICANT: AQUEOUS RES:KK;

INVENTOR:

NAKAMURA MASASHI;

INT.CL.

: C01B 3/32 B01J 8/02 C01B 3/22

C01B 3/26 C01B 3/38

TITLE

: FUEL REFORMER

ABSTRACT :

PURPOSE: To provide a fuel reformer miniaturized and improved in responsibility and

reliability.

CONSTITUTION: A methanol reformer as a fuel reformer is an apparatus for reforming a hydrocarbon-containing raw material into a reformed gas enriched in hydrogen and supplying it to a fuel cell, etc. This methanol reformer is equipped with a raw material heating unit 112 on the outer periphery of a reactor unit 113 so that fuel and unreacted gas from the above fuel cell may be introduced through a fuel gas inlet 114 to a combustion gas passage of the above reactor unit 113 and burnt. This reactor unit 113 involves a reforming catalyst layer on the side of the raw material passage and an oxidation catalyst layer on the side of the combustion gas passage, respectively. In addition, the reformer is designed so that the raw material gas from the raw material heating unit 112 may be dispersed by a raw material gas dispersion unit 116 and allowed to come into the reaction unit 113. The reformed gas from the reactor unit 113 is collected at a gas collection unit 118 and discharged through a gas discharge opening 119.

COPYRIGHT: (C)1994,JPO&Japio