[AIMLBD] MACHINE LEARNING, BIG DATA, ARTIFICIAL INTELLIGENCE per medicina e chirurgia high tech

L01: Machine Learning Overview

Dott. Giorgio De Magistris

demagistris@diag.uniroma1.it

Corso di Laurea in Medicina e Chirurgia High Tech

I3S

FACOLTÀ DI INGEGNERIA DELL'INFORMAZIONE, INFORMATICA E STATISTICA

Dipartimento di Ingegneria Informatica, Automatica e Gestionale

Tutti i diritti relativi al presente materiale didattico ed al suo contenuto sono riservati a Sapienza e ai suoi autori (o docenti che lo hanno prodotto). È consentito l'uso personale dello stesso da parte dello studente a fini di studio. Ne è vietata nel modo più assoluto la diffusione, duplicazione, cessione, trasmissione, distribuzione a terzi o al pubblico pena le sanzioni applicabili per legge

What is Machine Learning?

A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured by P, improves with experience E.

Mitchell (1997)

Experience

We can partition the ML algorithms into 3 macro categories according to which kind of experience is allowed during training.

The dataset is a set of tuple (x,y) where x is the input and y is the target.

The dataset is acquired sensing the environment

Task

Supervised Learning Tasks:

- Classification
- Regression
- ...

Unsupervised Learning Tasks:

- Dimensionality
 Reduction
- Clustering
- Density Estimation
- ..

Performance

The performance measure depends on the task, and it is necessary to quantify the ability of the ML algorithm to solve the specific task. It could be a measure of the error to minimize or a score to maximize.

Data generation process

- Assume data is sampled from an (unknown) probability distribution p_{data}
- We usually make the "independent and identically distributed" (I.I.D.) assumption, meaning that each data sample comes from the same distribution p_{data} and that samples are independent
- Assume we have a dataset $D = \{x_1, ..., x_n\}$. The independence assumption allows us to factorize the probability of observing the dataset as:

$$P(D) = P(X_1 = x_1, ..., X_n = x_n) = \prod_{i=1}^n P(X_i = x_i)$$

 We also assume that trainingset, validationset and testset are sampled from the same distribution p_{data}

Hypotheses Space and Inductive Bias

- The Hypotheses space is the set of all the functions that the ML algorithm is allowed to learn
- The prioritization of some hypotheses (restriction of hypothesis space) is an inductive bias.

Generalization

- We optimize the ML model on the trainingset in order to minimize the training error
- However we are interested in the error on new data, that is not encountered during training
- The error on the testset is called generalization error and it quantifies the ability of the model to generalize on unseen data

Image credit: The Inductive Bias of M Models, and Why You Should Care About It

Overfitting and Underfitting

- When training a ML model two things can happen:
 - The model struggles to minimize the training error, this phenomenon is called Underfitting
 - The model reaches a small training error, but the gap between training error and generalization error is large, this phenomenon is called **Overfitting**

Image credit: <u>Deep</u> <u>Learning Book</u>

Capacity

- I can balance the overfitting and underfitting acting on the model capacity
- The model capacity is the complexity of the model:
 - A model with high capacity can fit a wide range of functions
 - A model with limited capacity can fit a small range of functions
- Usually I have the best generalization error when:
 - the capacity of the model is well proportionate to the task
 - I have a lot of training examples

Image credit: <u>The</u>
<u>Inductive Bias of ML</u>
<u>Models, and Why</u>
<u>You Should Care</u>
About It

Feature and Feature Vector

- Each data sample is described as a set of features
- A feature is an individual characteristic of the observed object
- Usually it is represented as a real value (even if different types of feature exist, like categorical features or graph features)
- In the case of real valued features, a sample is represented as a vector which components are the values of the features called feature vector

Features and Task

- I can use many different sets of feature to describe the same object
- Which is the best representation?
- It depends on the task!

Task: Diagnosis of Anemia

Feature Space

- Once I've chosen a representation, the set of all feature vectors form a Feature Space
- I can represent an object as a vector in the feature space, which coordinates are the values of the features
- Usually a feature space with n features is represented as the vector space Rⁿ

Learning

- In this context, learning means to find a function that maps the input feature space to the desired output
- The feature space must exhibit a sort of structure, otherwise no learning is possible

The Curse of Dimensionality

- Assume we represent our objects using n features, and each feature has m admissible values
- The feature space has mⁿ elements, which is exponential in n
- In general to learn a function over a feature space we need at least a number of samples that is proportional to the size of the feature space
- Hence the number of samples grows exponentially with respect to the dimensionality of the feature space (n)

Image credit: Deep Learning Book

Intrinsic Dimensionality

- How can we learn when the dimensionality of the input is higher than the number of samples?
- Often the input data that comes in an high dimensional space (images, audio, text etc.) but can be represented in a lower dimensional feature space in which learning is feasible
- The intrinsic dimensionality is the minimum number of meaningful dimensions needed to capture the essential characteristics or structure of the data without introducing unnecessary noise or redundancy
- The intrinsic dimensionality of a dataset can be influenced by various factors, such as the type of data (e.g., images, text, time series) and the nature of the problem (e.g., classification, regression)

Slides distribuite con Licenza Creative Commons (CC BY-NC-ND 4.0) Attribuzione - Non commerciale - Non opere derivate 4.0 Internazionale

PUOI CONDIVIDERLE ALLE SEGUENTI CONDIZIONI

(riprodurre, distribuire, comunicare o esporre in pubblico, rappresentare, eseguire e recitare questo materiale con qualsiasi mezzo e formato)

Attribuzione*

Devi riconoscere una menzione di paternità adeguata, fornire un link alla licenza e indicare se sono state effettuate delle modifiche. Puoi fare ciò in qualsiasi maniera ragionevole possibile, ma non con modalità tali da suggerire che il licenziante avalli te o il tuo utilizzo del materiale.

Non Commerciale

Non puoi utilizzare il materiale per scopi commerciali.

Non opere derivate

Se remixi, trasformi il materiale o ti basi su di esso, non puoi distribuire il materiale così modificato.

Divieto di restrizioni aggiuntive

Non puoi applicare termini legali o misure tecnologiche che impongano ad altri soggetti dei vincoli giuridici a questa licenza