Эффективный метод скаляризации и поиска конкурентного решения без итеративных вычислений для Липшицевых функций

Ильгам Магданович Латыпов Научный руководитель: к.т.н. Ю.В. Дорн

Кафедра интеллектуальных систем ФПМИ МФТИ Специализация: Интеллектуальный анализ данных Направление: 03.04.01 Прикладные математика и физика

конкурентное решение для Липшицевых функций

Проблема

Методы скаляризации многокритериальных задач имеют низкую интерпретируемость: они требуют подбор параметров и полученные ими решения не интуитивны. Также в случае потери доступа к вычислению функций невозможно решить задачу оптимизации.

Требуется

Поставить задачу оптимизации с хорошо интерпретируемым решением и предложить метод ее приближенного решения. Метод должен использовать только заранее вычисленные значения функций.

Решение

Поставить задачу оптимизации, основываясь на определении конкурентного решения. Для решения поставленной задачи использовать липшицевость и монотонность функций.

Задача многокритериальной оптимизации

Требуется найти

$$\min_{x} f(x) \triangleq (f_1(x), ..., f_m(x))^{\mathsf{T}},$$
s.t. $x \in K$.

где:

- · функции $f_i:\mathbb{R}^n o \mathbb{R}_+$, $i=\overline{1,m}$.
- · Множество решений K является выпуклым, замкнутым и снабжено нормой $\|\cdot\|$.

Простой метод скаляризации, пример

$$f(x) \triangleq \sum_{i=1}^{m} w_i f_i(x).$$

Конкурентная точка и его недостаток

Определение (γ -конкурентная точка(стар.))

x называется γ -конкурентной точкой для функций f_i , если для всех $i \in \overline{1,m}$:

$$f_i(x) \le (1+\gamma) \min_{y} f_i(y). \tag{1}$$

Функция, оракул которой больше недоступен, пример

Компания работала несколько периодов со стратегиями x_i и пронаблюдала метрики — $f_j(x_i)$. Необходимо найти стратегию используя только существующие знания. Информации об оптимальности действий компании нет. Доступа к оракулу для вычисления функции нет.

Обобщение конкурентности и метод скаляризации

Определение (γ -конкурентная точка)

x называется γ -конкурентной точкой для функций f_i и точек x_i , если для всех $i \in \overline{1,m}$:

$$f_i(x) \leq (1+\gamma)f_i(x_i). \tag{2}$$

Обозначение: $f_i(x_i) =: v_i$.

Предлагаемый метод скаляризации

$$\min_{\mathbf{x},\gamma} \gamma, \qquad (T_1)$$
s.t. $\mathbf{x} \in K$,
$$f_i(\mathbf{x}) - \mathbf{v}_i \le \gamma \mathbf{v}_i, \quad i \in \overline{1, m}.$$

Предположения для аппроксимации

Определение (Условие Липшица)

Функция $f:\mathbb{R}^n o \mathbb{R}$ удовлетворяет условию Липшица на X с нормой $\|\cdot\|$ и константой Липшица L:

$$\forall x, y \in X: |f(x) - f(y)| \le L||x - y||.$$

Предположения на функции

Для всех $i = \overline{1,m}$ для $f_i(x) : \mathbb{R}^n \to \mathbb{R}_+$:

- 1. Удовлетворяет условию Липшица с константой L_i на K.
- 2. Вычислена в точке $x_i : v_i = f_i(x_i)$.
- 3. Функция минимизируется.

Требуется найти $x \in K$, которая является допустимой для T_1 . Методу доступны только вычисленные значения функций.

Предлагаемый метод аппроксимации

Аппроксимация задачи оптимизации

$$\min_{x,\gamma} \gamma
\text{s.t. } x \in K,
\|x - x_i\| \le \frac{1}{L_i} \gamma v_i \quad \forall i \in \overline{1, m},
f_i(x) - v_i \le \gamma v_i \quad i \in \overline{1, m}. \quad (T1)$$

Доказательство корректности

Рассмотрим допустимые x, γ из T_2 . Тогда для всех $i = \overline{1, m}$:

$$||x_i - x|| \le \frac{\gamma v_i}{I_i} \Longrightarrow |f_i(x) - v_i| \le \gamma v_i.$$
 (3)

Это означает, что x,γ являются допустимыми для T_1 .

Метод аппроксимации для монотонных функций

Воспользуемся монотонностью функции f по параметрам x для упрощения ограничений. Введем оператор ${\tt clip}_f:\mathbb{R}^n\times\mathbb{R}^n\to\mathbb{R}^n$:

$$\mathrm{clip}_f(x,y)_i = egin{cases} \max(x_i - y_i, 0), & f \ \mathrm{возрастает} \ \mathrm{no} \ x_i, \ \min(y_i - x_i, 0), & f \ \mathrm{убывает} \ \mathrm{no} \ x_i, \ x_i - y_i, \end{cases}$$
 иначе.

 $\min c^{\mathsf{T}} x$ $Ax \le b$

Предлагаемый метод аппроксимации и его свойства

$$\begin{aligned} \min_{x,\gamma} \gamma, & (T_3) \\ \text{s.t. } x \in K, & \\ \|\text{clip}_{f_i}(x, x_i)\| \leq \frac{1}{L_i} \gamma f_i(x_i) \ \forall i \in \overline{1, m}, \\ f_i(x) - v_i \leq \gamma v_i \ i \in \overline{1, m}. \end{aligned}$$

Теорема (Латыпов, 2024)

Решение (x,γ) задачи T_3 является выполнимой точкой для T_1 .

Теорема (Латыпов, 2024)

Пусть γ^* является решением задачи T_3 . И известны аппроксимации констант Липшица $\widetilde{L_i} = \kappa_i L_i$. Пусть x – решение задачи T_3 , в которой константы Липшица заменены на $\widetilde{L_i}$. Тогда для x верно: $|f(x) - v_i| \leq \frac{\kappa_{\max}}{\kappa_i} \gamma^* v_i$. Здесь $\kappa_{\max} = \max_{i=\overline{1.m}} \kappa_i$.

Вычислительный эксперимент: потребление ресурсов

Функция

$$F(b,\xi) = c_b^T \cdot b + c_a^T \cdot \max(r_{\xi} - b, 0). \tag{5}$$

Каждый вектор из \mathbb{R}^n , $c_h \leq c_a$ покомпонентно.

Пояснение

Представим, что компания потребляет случайное количество ресурсов r_{ξ} в течение m периодов. В начале периода можно купить b по более низкой цене. При необходимости они докупают недостающие ресурсы по более высокой цене.

Компания проработала m периодов и наблюдала для $i \in \overline{1,m}: r_{\xi}, c_b^i, c_a^i$ количество ресурсов b_i . $K = \{b: c_b^T \cdot b \leq B\}.$

Зависимость относительных приростов функции от бюджета для разных подходов

$$f_i(x) \leq (1+\gamma)f_i(x_i) \longrightarrow \frac{f_i(x)}{f_i(x_i)} \leq (1+\gamma).(6)$$

- 1. Результаты работы разных норм похожи.
- 2. Замена констант на неточные не сломало алгоритм.

Сравнение результатов аппроксимации с точным решением в зависимости от бюджета

- 1. В рассмотренной задаче качество решения для аппроксимаций падает менее чем на 2% в силу простоты рассмотренной задачи.
- 2. L_1 аппроксимация работает хуже на рассмотренном примере. Это следствие разреженности решений.

Выносится на защиту

- 1. Предложен метод скаляризации не требующий подбора параметров.
- 2. Предложен метод поиска приближенного решения для липшицевых функций не использующий итеративную оптимизацию.
- 3. Проведен теоретический анализ для случая неточных параметров.

Публикации

Работа "Balancing Efficiency and Interpretability: A New Approach to Multi-Objective Optimization with High Computation Costs in Lipschitz Functions" Latypov & Dorn представлена на конференции «XIV International Conference on Network Analysis», 2024.