Estatística para Cursos de Engenharia e Informática

Pedro Alberto Barbetta / Marcelo Menezes Reis / Antonio Cezar Bornia

São Paulo: Atlas, 2004

Cap. 5 – Variáveis aleatórias discretas

APOIO:

Fundação de Apoio à Pesquisa Científica e Tecnológica do Estado de Santa Catarina (FAPESC)

Departamento de Informática e Estatística – UFSC (INE/CTC/UFSC)

 Uma variável aleatória pode ser entendida como uma variável quantitativa, cujo resultado (valor) depende de fatores aleatórios.

• Exemplos:

- número de coroas obtido no lançamento de 2 moedas;
- número de itens defeituosos em uma amostra retirada, aleatoriamente, de um lote;
- número de defeitos em um azulejo que sai da linha de produção;
- número de pessoas que visitam um determinado site, num certo período de tempo;

 Uma variável aleatória pode ser entendida como uma variável quantitativa, cujo resultado (valor) depende de fatores aleatórios.

• Exemplos:

- volume de água perdido por dia, num sistema de abastecimento;
- resistência ao desgaste de um certo tipo de aço, num teste padrão;
- tempo de resposta de um sistema computacional;
- grau de empeno em um azulejo que sai da linha de produção.

 Formalmente, uma variável aleatória é uma função que associa elementos do espaço amostral ao conjunto de números reais.

 $\mathbf{X} =$ número de coroas obtido no lançamento de 2 moedas $\Omega = \{(cara,\, cara),\, (cara,\, coroa),\, \{coroa,\, cara),\, (coroa,\, coroa)\}$

Variável aleatória discreta: função de probabilidade

$$p(x_i) = P(X = x_i)$$

satisfazendo:

$$p(x_i) \ge 0$$

$$\sum_{i} p(x_i) = 1$$

Variável aleatória discreta: função de probabilidade

X = número obtido no lançamento de um dado comum.

Variável aleatória discreta: Função de distribuição acumulada

$$F(x) = P(X \le x), \quad \forall x \in \Re$$

Variável aleatória discreta: Função de distribuição acumulada

X = número obtido no lançamento de um dado comum.

• **X** = numero obtido no lanç

$$F(x) = \begin{cases} 0 & \text{se } x < 1 \\ \frac{1}{6} & \text{se } 1 \le x < 2 \\ \frac{2}{6} & \text{se } 2 \le x < 3 \\ \frac{3}{6} & \text{se } 3 \le x < 4 \\ \frac{4}{6} & \text{se } 4 \le x < 5 \\ \frac{5}{6} & \text{se } 5 \le x < 6 \\ 1 & \text{se } x \ge 6 \end{cases}$$

Variável aleatória discreta: Valor esperado

Valores	Probabi-
possíveis	lidades
x_1	p_1
x_2	p_2
x_3	p_3
•••	•••
x_k	p_{k}
Total	1

$$\mu = E(X) = \sum_{j=1}^{k} x_j p_j$$

Variável aleatória discreta: Variância

Valores possíveis	Probabi- lidades
x_1	p_1
x_2	p_2
x_3	p_3
•••	•••
x_k	p_{k}
Total	1

$$\sigma^2 = V(X) = \sum_{j=1}^k (x_j - \mu)^2 p_j$$

ou:

$$V(X) = E(X^2) - \mu^2$$

onde:
$$E(X^2) = \sum_{j=1}^k x_j^2 p_j$$

Desvio padrão:

$$\sigma = DP(X) = \sqrt{Var(X)}$$

Propriedades do valor esperado e variância

$$a)E(c)=c$$

$$b)E(X+c) = E(X) + c$$

$$c) E(cX) = cE(X)$$

$$d)E(X + Y) = E(X) + E(Y)$$

$$e) E(X - Y) = E(X) - E(Y)$$

$$a)V(c) = 0$$

$$b) V(X + c) = V(X)$$

$$c) V(cX) = c^2 V(X)$$

$$d)DP(cX) = |c|DP(X)$$

Propriedades do valor esperado e variância

Variáveis aleatórias independentes

X1, X2, ..., Xn podem ser consideradas variáveis
 aleatórias independentes se o conhecimento de uma
 não altera as distribuições de probabilidades das demais.

Vale para variáveis aleatórias independentes:

$$V(X + Y) = V(X) + V(Y)$$

$$V(X - Y) = V(X) + V(Y)$$

 Distribuição de Bernoulli de parâmetro p (0

X	p(x)
0	1-p
1	p
Total	1

$$E(X) = p$$

$$V(X) = p.(1 - p)$$

$$F(x) = \begin{cases} 0 & \text{se } x < 0 \\ 1 - p & \text{se } 0 \le x < 1 \\ 1 & \text{se } x \ge 1 \end{cases}$$

Distribuição Binomial

$$X = X_1 + X_2 + \dots + X_n$$

onde X_1 , X_2 , ..., X_n são variáveis aleatórias independentes, sendo cada uma delas com distribuição de Bernoulli de parâmetro p constante (0 < p < 1).

Ou seja,

- Distribuição Binomial
 - X = número de sucessos em n ensaios
 - ensaios independentes e
 - com $P\{sucesso\} = p$,

constante para todo ensaio (0 .

Distribuição Binomial, n = 4:

Distribuição Binomial

$$p(x) = \binom{n}{x} \cdot p^{x} \cdot (1-p)^{n-x}$$

$$\binom{n}{x} = \frac{n!}{(n-x)! \ x!}$$

$$(x = 0, 1, ..., n)$$

$$E(X) = n.p$$
 $V(X) = n.p.(1-p)$

Distribuição Binomial

binomial com n = 5 e p = 0.5

binomial com n = 5 e p = 0.25

• Ex. 5.2 - Binomial n = 10 e p = 0.7

 Qual a probabilidade da maioria também acessar a p24?

•
$$P(X > 5) =$$

= $p(6) + p(7) + p(8) + p(9) + p(10)$
= 0.8497

	,
X > 5	$ \prec $

Tabela da binomial

n	Х	0,70
10	0	0,0000
	1	0,0001
	2	0,0014
	3	0,0090
	4	0,0368
	5	0,1029
	6	0,2001
	7	0,2668
\prec	8	0,2335
	9	0,1211
	10	0,0282

Distribuição Hipergeométrica

Distribuição Hipergeométrica

$$p(x) = \frac{\binom{r}{x} \cdot \binom{N-r}{n-x}}{\binom{N}{n}}$$
 [x = 0, 1, ..., min(r, n)]

$$[x = 0, 1, ..., min(r, n)]$$

$$E(X) = n.p$$

$$V(X) = n.p.(1-p). \frac{N-n}{N-1}$$
 $(p = r/N)$

- Na prática, muitas situações nas quais interessa o número de observações de uma variável em um intervalo contínuo (tempo ou espaço) podem ser convenientemente explicadas pela distribuição de Poisson. Exemplos:
 - chamadas telefônicas por minuto,
 - mensagens que chegam a um servidor por segundo
 - acidentes por dia,
 - defeitos por m2, etc..

Distribuição de Poisson. Suposições:

- Os números de ocorrências em quaisquer intervalos são independentes.
- A probabilidade de duas ou mais ocorrências simultâneas é zero.
- O número médio de ocorrências (λ) é constante em todo o intervalo considerado.

Distribuição de Poisson. Uma justificativa:

X = n úm. de ocorrências em [t, t+1]

n intervalos de amplitude 1/n, com $n \mapsto \infty$ p = probab. de ocorrência em cada intervalo

$$P(X = x) \approx \binom{n}{x} p^{x} (1 - p)^{n - x} \qquad \begin{cases} n \mapsto \infty \\ p \mapsto 0 \\ n p \mapsto \lambda > 0 \end{cases}$$

$$n \mapsto \infty$$

$$p \mapsto 0$$

$$n p \mapsto \lambda > 0$$

$$P(X = x) \longrightarrow \frac{\lambda^{x} e^{-\lambda}}{x!}$$

$$(x = 1, 2, ...)$$

$$p(x) = \frac{e^{-\lambda} \lambda^x}{x!}$$
 $x = 0, 1, 2, ...$

$$x = 0, 1, 2, \dots$$

$$E(X) = V(X) = \lambda$$

