Algoritmos y estructuras de datos P/A: Camino Mínimo.

CEIS

Escuela Colombiana de Ingeniería

2024-1

Agenda

1 Camino Mínimo

Conceptos Problema - Solución Bellman-Ford Dijkstra

2 Aspectos finales Ejercicios

Camino

Dado un grafo dirigido, G = (V, E)Un **camino** p entre dos vértices, i y f, es una secuencia de vértices $p = \langle v_0, v_1, ..., v_k \rangle$, con

- $i = v_0$ y $f = v_k$
- $\forall i: 0..k, v_i \in V$
- $\forall i: 0...k 1, (v_i, v_{i+1}) \in E$

Camino

Dado un grafo dirigido, G = (V, E)Un **camino** p entre dos vértices, i y f, es una secuencia de vértices $p = \langle v_0, v_1, ..., v_k \rangle$, con

- $i = v_0$ y $f = v_k$
- $\forall i: 0..k, v_i \in V$
- $\forall i: 0...k 1, (v_i, v_{i+1}) \in E$

Camino

Dado un grafo dirigido, G = (V, E)Un **camino** p entre dos vértices, i y f, es una secuencia de vértices $p = \langle v_0, v_1, ..., v_k \rangle$, con

- $i = v_0 \text{ y } f = v_k$
- $\forall i: 0..k, v_i \in V$
- $\forall i: 0...k 1, (v_i, v_{i+1}) \in E$

Peso de un camino

Dado un grafo dirigido, G = (V, E), con una función de peso $w : E \to R$ El **peso de un camino** w(p) $p = \langle v_0, v_1, ..., v_k \rangle$, es la suma de los pesos de los arcos correspondientes.

$$w(p) = \sum_{i=1}^{k} w(\nu_{i-1}, \nu_i)$$

5	4	5	6	7	8	9	10	11	12
4	3	4	5	6	7	8	9	10	11
3	2	3	4	5	6	7	8	9	10
2	1	2	3	4	5	6	7	8	9
1		1	6	11	16	21	20	×	8
2	1	2	3	4	5	6	7	8	9
3	2	3	4	5	6	7	8	9	10
4				6	7	8	9	10	11
5				7	8	9	10	11	12
6	7	8	9	8	9	10	11	12	13

Peso de un camino

Dado un grafo dirigido, G = (V, E), con una función de peso $w : E \to R$ El **peso de un camino** w(p) $p = \langle v_0, v_1, ..., v_k \rangle$, es la suma de los pesos de los arcos correspondientes.

$$w(p) = \sum_{i=1}^{k} w(\nu_{i-1}, \nu_i)$$

				montonio	name and	-			
5	4	5	6	7	8	9	10	11	12
4	3	4	5	6	7	8	9	10	11
3	2	3	4	5	6	7	8	9	10
2	1	2	3	4	5	6	7	8	9
1		1	6	11	16	21	20	×	8
2	1	2	3	4	5	6	7	8	9
3	2	3	4	5	6	7	8	9	10
4				6	7	8	9	10	11
5				7	8	9	10	11	12
6	7	8	9	8	9	10	11	12	13

Peso de un camino

Dado un grafo dirigido, G = (V, E), con una función de peso $w : E \to R$ El **peso de un camino** w(p) $p = \langle v_0, v_1, ..., v_k \rangle$, es la suma de los pesos de los arcos correspondientes.

$$w(p) = \sum_{i=1}^{k} w(v_{i-1}, v_i)$$

Ruta más corta

Dado un grafo dirigido, G = (V, E), con una función de peso $w : E \rightarrow R$ La ruta de peso más corta de u a v

$$\delta(u,\nu) = \begin{cases} \min\{w(p): u \overset{p}{\leadsto} \nu\} & \text{if there is a path from } u \text{ to } \nu \;, \\ \infty & \text{otherwise} \;. \end{cases}$$

			-	and the same	principal of	-			
5	4	5	6	7	8	9	10	11	12
4	3	4	5	6	7	8	9	10	11
3	2	3	4	5	6	7	8	9	10
2	1	2	3	4	5	6	7	8	9
1		1	6	11	16	21	20	×	8
2	1	2	3	4	5	6	7	8	9
3	2	3	4	5	6	7	8	9	10
4				6	7	8	9	10	11
5				7	8	9	10	11	12
6	7	8	9	8	9	10	11	12	13

Problema - Solución

Rutas más cortas desde una fuente

 $s \rightarrow v_*$

Dado un vértice fuente $s \in V$, encontrar la ruta mas corta a cada uno de los diferentes vértices $v \in V$.

Otros problemas

- Single-destination shortest-path problem
- Single-pair shortest-path problem
- All-pairs shortest-paths problem

Problema - Solución

Rutas más cortas desde una fuente

 $s \rightarrow v_*$

Dado un vértice fuente $s \in V$, encontrar la ruta mas corta a cada uno de los diferentes vértices $v \in V$.

Otros problemas

- Single-destination shortest-path problem
 Reversar la dirección de cada arco (s ← v*)
- Single-pair shortest-path problem Calcular las rutas más cortas desde $u \ (u o v_*)$
- All-pairs shortest-paths problem
 Calcular las rutas más cortas desde cada vértice u (u → v*)

Relajación

Los algoritmos de solución usan la técnica de **relajación**.

- ∀v ∈ V, v.d es el peso de la ruta más corta estimada hacia v.
- $\forall v \in V, v.\pi$ es predecesor de v.

INITIALIZE-SINGLE-SOURCE (G, s)

- 1 **for** each vertex $v \in G.V$
- 2 $v.d = \infty$
- $\nu.\pi = NIL$
- $4 \quad s.d = 0$

Relajación

El proceso de relajación del arco (u, v) consiste en:

- Verificar si se puede mejorar la ruta más corta a v, hallada hasta el momento, pasando por u
- Si se puede, actualizar v.d y $v.\pi$

Relax(u, v, w)

- 1 **if** v.d > u.d + w(u, v)
- 2 v.d = u.d + w(u, v)
- $v.\pi = u$

Relajación

El proceso de relajación del arco (u, v) consiste en:

- Verificar si se puede mejorar la ruta más corta a v, hallada hasta el momento, pasando por u
- Si se puede, actualizar v.d y $v.\pi$

Relajación

El proceso de relajación del arco (u, v) consiste en:

- Verificar si se puede mejorar la ruta más corta a v, hallada hasta el momento, pasando por u
- Si se puede, actualizar v.d y $v.\pi$

Bellman Ford

- 1 Relajar los arcos, haciendo que disminuya progresivamente un estimado v.d hasta lograr el camino mínimo de s a v.
- 2 Retorna si desde la fuente se llega a hay un ciclo de peso negativo

```
\Theta(VE)
```

```
BELLMAN-FORD (G, w, s)

1 INITIALIZE-SINGLE-SOURCE (G, s)

2 for i = 1 to |G.V| - 1

3 for each edge (u, v) \in G.E

4 RELAX (u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return FALSE

8 return TRUE
```

Bellman Ford

```
BELLMAN-FORD (G, w, s)

1 INITIALIZE-SINGLE-SOURCE (G, s)

2 for i = 1 to |G, V| - 1

3 for each edge (u, v) \in G.E

4 RELAX (u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return FALSE

8 return TRUE
```


Bellman Ford

return TRUE

```
BELLMAN-FORD (G, w, s)

1 INITIALIZE-SINGLE-SOURCE (G, s)

2 for i = 1 to |G, V| - 1

3 for each edge (u, v) \in G.E

4 RELAX (u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return FALSE
```


Bellman Ford

return TRUE

```
BELLMAN-FORD (G, w, s)

1 INITIALIZE-SINGLE-SOURCE (G, s)

2 for i = 1 to |G, V| - 1

3 for each edge (u, v) \in G.E

4 RELAX (u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return FALSE
```


Bellman Ford

return TRUE

```
BELLMAN-FORD (G, w, s)

1 INITIALIZE-SINGLE-SOURCE (G, s)

2 for i = 1 to |G.V| - 1

3 for each edge (u, v) \in G.E

4 RELAX (u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return FALSE
```


Bellman Ford

```
BELLMAN-FORD(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 for i = 1 to |G.V| - 1

3 for each edge (u, v) \in G.E

4 RELAX(u, v, w)

5 for each edge (u, v) \in G.E

6 if v.d > u.d + w(u, v)

7 return FALSE

8 return TRUE
```


Dijkstra

INV: S tiene los vértices de los que se conoce la ruta mínima a la fuente s

- Seleccionar u de V − S con ruta mínima estimada
- Adicionar u a S
- 3 Relajar todos los arcos que parten de u
- 4 Repetir el paso 1 hasta cubrir todos los vértices

Los pesos no pueden ser negativos $\Theta(V^2)$

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX(u, v, w)
```

```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX(u, v, w)
```



```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX(u, v, w)
```



```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX(u, v, w)
```



```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX(u, v, w)
```



```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX(u, v, w)
```



```
DIJKSTRA(G, w, s)

1 INITIALIZE-SINGLE-SOURCE(G, s)

2 S = \emptyset

3 Q = G.V

4 while Q \neq \emptyset

5 u = \text{EXTRACT-MIN}(Q)

6 S = S \cup \{u\}

7 for each vertex v \in G.Adj[u]

8 RELAX(u, v, w)
```


Ejercicios

3. Para cada uno de los siguientes grafos, ¿cuál es el peso de la ruta más corta de principio a fin?

