EECS 343: Theoretical Computer Science, Homework Exercise 1 due Monday, January 27, 2020 before class

Problem 1: Let L_1 and L_2 be languages. Consider language $L = L_1 \times L_2$. (L consists of pairs (a, b) where $a \in L_1$ and $b \in L_2$.) Prove (a) if L_1 and L_2 are decidable languages than L is also decidable, and (b) if L_1 and L_2 are recognizable languages then L is also recognizable.

Problem 2: Let a^n denote a string of length n characters, each character being an a. Write a Turing Machine that will accept strings of the form a^nb^{2n} and reject all other strings, where a and b are elements of the input alphabet Σ and n is some nonnegative integer. Explicitly give your machine's alphabet, set of states, and transition function. Prove that your Turing Machine is correct.

Problem 3: Let L be the set of all strings over the alphabet $\Sigma = \{a, b\}$ that contain exactly twice as many a's as b's. For example, aababa would be in the language L and abab would not. Write a Turing machine that will accept all strings that are in L and reject all other strings. Explicitly give your machine's alphabet, set of states, and transition function. Prove that your Turing machine is correct.