Programmazione Funzionale

Esercitazione 4 – Liste

Esercizio 1. Definire la funzione split di tipo ('a * 'b) list \rightarrow ('a list * 'b list) che associa ad ogni lista $[(a_1, b_1); \ldots; (a_n, b_n)]$ la coppia di liste $([a_1; \ldots; a_n], [b_1; \ldots; b_n])$.

Esercizio 2. Definire la funzione lgt che calcola la lunghezza di una lista.

Definire la funzione merge che data due liste $([a_1; \ldots; a_n], [b_1; \ldots; b_k])$ restituisce la lista $[(a_1, b_1); \ldots; (a_n, b_n)]$ quando n = k. Se invece $n \neq k$ la funzione sollevera un eccezione.

Esercizio 3. Definire la funzione invert di tipo 'a list \rightarrow ' a list che inverta una lista.

Definire la funzione concat che prende due liste $[a_1; \ldots; a_n]$ e $[b_1; \ldots; b_k]$ e restituisce $[a_1; \ldots; a_n; b_1; \ldots; b_k]$.

Esercizio 4. Una lista di tipo 'a * 'b list puo essere vista come una funzione *parziale* dal tipo 'a verso il tipo 'b. Definire la funzione comp : ('a * 'b) list * ('b * 'c) list -> ('a * 'c) list che corrisponde alla composizione delle funzioni parziale. La funzione sollevera un eccezione se il dominio della prima e il codominio della secondo lista non coincidono.

Esercizio 5. Una sottolista-prefisso di una lista $[a_1; \ldots; a_n]$ a una lista della forma $[a_1; \ldots; a_k]$ dove $k \le n$. Una sottolista di una lista $[a_1; \ldots; a_n]$ a una lista della forma $[a_i; \ldots; a_k]$ dove $1 \le i, k \le n$.

- 1. Definire una funzione prefix che data una lista l restituisce la lista di tutte le sottoliste prefisso di l.
- 2. Definire una funzione sublist che data una lista l restituisce la lista di tutte le sue sottoliste.

Esercizio 6. Una lista corrisponde a una sequenza finita (a_1, \ldots, a_n) di elementi di un insieme A. Formalmente, $List(A) = \bigcup_{n \in \mathbb{N}} \{(a_1, \ldots, a_n) \mid a_i \in A\}$. La funzione contains e definita nel modo seguente:

contains:
$$List(A) \times A \rightarrow \{true, false\}, ((a_1, \ldots, a_n), a) \mapsto \begin{cases} true \text{ if there exists } a_i = a. \\ false \text{ otherwise.} \end{cases}$$

- 1. Definire in OCAML la funzione contains per le liste di interi.
- 2. Per quale altri tipi α si puo definire contains per le α *list*?
- 3. Definire la funzione witness che prende una lista di interi l e un intero n e restituisce una coppia di bool \times int; (true, i) se l contiene n dove i e la posizione nella lista di n. (false, 0) se l non contiene n.

Esercizio 7. Un *occorrenza* in una lista (a_1, \ldots, a_n) di un elemento a e un intero i tale che $a_i = a$.

- 1. Definire la funzione occurence che prende una lista di interi l e un intero n e restituisce una lista di interi che corrisponde a le occorrenze di n in l.
- 2. Definire la funzione remove che prende una lista di interi l e un intero n e toglie tutte le occorrenze n della lista l.
- 3. Definire la funzione contract che prende una lista di interi l e un intero n e toglie tutte le occorrenze di n meno la prima occorrenza di n della lista l.