

COC Berlin Code of Conduct

CATEGORY THEORY FOR PROGRAMMERS

Bartosz Milewski

Category Theory for

Programmers

Main Concepts	Supporting Concepts	
Universal Construction (technique)		
A) Objects	Naturality Condition	
B) Morphisms Also known as "arrows"	Isomorphism	
C) Category (A + B)	Hom-Set	
D) Functor (C + B) Bifunctor, Profunctor, Contravariant Functor Product, Coproduct Maybe, List, Reader	Hom-Functor	
E) Natural Transformation (D + B)	Yoneda Lemma	
	Yoneda Embedding	

Main Concepts	Supporting Concepts	
Universal Construction (technique)		
A) Objects	Naturality Condition	
B) Morphisms Also known as "arrows"	Isomorphism	
C) Category (A + B)	Hom-Set	
D) Functor (C + B) Bifunctor, Profunctor, Contravariant Functor Product, Coproduct Maybe, List, Reader	Hom-Functor	
E) Natural Transformation (D + B)	Yoneda Lemma	
	Yoneda Embedding	

Main Concepts	Supporting Concepts	
Universal Construction (technique)		
A) Objects	Naturality Condition	
B) Morphisms Also known as "arrows"	(Natural) Isomorphism	
C) Category (A + B)	Hom-Set	
D) Functor (C + B) Bifunctor, Profunctor, Contravariant Functor Product, Coproduct Maybe, List, Reader	Hom-Functor	
E) Natural Transformation (D + B)	Yoneda Lemma	
	Yoneda Embedding	

Main Concepts	Supporting Concepts	
Universal Construction (technique)		
A) Objects	Naturality Condition	
B) Morphisms Also known as "arrows"	(Natural) Isomorphism	
C) Category (A + B)	Hom-Set	
<pre>D) Functor (C + B) Bifunctor, Profunctor, Contravariant Functor Product, Coproduct Maybe, List, Reader</pre>	Hom-Functor	
E) Natural Transformation (D + B)	Representable Functor	
	Yoneda Lemma	
	Yoneda Embedding	

Main Concepts	Supporting Concepts	
Universal Construction (technique)		
A) Objects	Naturality Condition	
B) Morphisms Also known as "arrows"	(Natural) Isomorphism	
C) Category (A + B)	Hom-Set	
D) Functor (C + B) Bifunctor, Profunctor, Contravariant Functor Product, Coproduct Maybe, List, Reader	Hom-Functor	
E) Natural Transformation (D + B)	Representable Functor	
	Yoneda Lemma	
	Yoneda Embedding	

14.1 The Hom Functor

Every category comes equipped with a canonical family of mappings to **Set**. Those mappings are in fact functors, so they preserve the structure of the category. Let's build one such mapping.

Let's fix one object a in C and pick another object x also in C. The hom-set C(a, x) is a set, an object in **Set**. When we vary x, keeping a fixed, C(a, x) will also vary in **Set**. Thus we have a mapping from x to **Set**.

If we want to stress the fact that we are considering the hom-set as a mapping in its second argument, we use the notation C(a, -) with the dash serving as the placeholder for the argument.

This mapping of objects is easily extended to the mapping of morphisms. Let's take a morphism f in C between two arbitrary objects x and y. The object x is mapped to the set C(a, x), and the object y is mapped to C(a, y), under the mapping we have just defined. If this mapping is to be a functor, f must be mapped to a function between the two sets: $C(a, x) \rightarrow C(a, y)$

There two subsections across chapters called **The Hom-Functor**Ch 8 Functors Section 8 Ch 14 Representable Functors Section 1

The above examples are the reflection of a more general statement that the mapping that takes a pair of objects a and b and assigns to it the set of morphisms between them, the hom-set C(a, b), is a functor. It is a functor from the product category $C^{op} \times C$ to the category of sets, **Set**.

Functors

T THE RISK OF SOUNDING like a broken record, I will say this about functors: A functor is a very simple but powerful idea. Category theory is just full of those simple but powerful ideas. A functor is a mapping between categories. Given two categories, C and D, a functor

