高等代数教程参考答案

魏子豪, 伍文超, 卓铭鑫, 赵斓, 杨传禹, 周文杰, 王博凡

2018年11月24日

写在前面

针对郭爷爷在《高等代数教程》前言中提到的"教材的语言固然严忌艰涩,也切忌所谓'通俗易懂,便于自学'"的的问题,我们希望更多的后来者能够较好的进入高等代数的学习,虽然这可能不太利于之后的学习,但是能让大家更好的入门,体会到数学虽然艰涩但亦有可琢磨之处。同样,我们希望大家不要一味的抄袭答案,这样是和我们的初衷不符的,也是我们为什么说不利于之后学习的原因。除此之外,我们还希望大家能够有更多更好的想法,这样我们才能在学习的过程中逐渐的成长,有所进步。

最后, 祝大家能够在学习中体验数学的快乐。

目录

第零章	整数,数域与多项式	1
第一章	矩阵代数	18
第二章	一类特殊线性方程组的行列式法则 (Cramer 法则)	31
第三章	线性方程组的一般理论	48
第四章	线性空间与线性方程组	70
第五章	对称双线性度量空间与线性方程组	97
第六章	线性空间上的线性变换	113
第七章	线性空间关于线性变换的一类直和分解	144
第八章	Euclid 空间上的两类线性变换与二次型主轴问题	148
第九章	引申——般矩阵的 (相似) 标准形	178

第零章 整数,数域与多项式

解答

1. 已知

$$A = \{x \in \mathbb{R} | -1 \le x < 1\}$$

$$B = \{x \in \mathbb{R} | -2 < x < 1\}$$

$$C = \{x \in \mathbb{R} | x < 0\}$$
(1)

计算 $A \cap (B \cup C)$ 、 $A \cup (B \cap C)$;

解:有志与力者,应当养成严格遵循定义的习惯。

 $= \{ x \in \mathbb{R} | -2 < x < 1 \}$

$$A \cap (B \cup C)$$

$$= A \cap \{x | [x \in B] \lor [x \in C] \}$$

$$= A \cap \{x | [x \in \{x \in \mathbb{R} | -2 < x < 1\}] \lor [x \in \{x \in \mathbb{R} | x < 0\}] \}$$

$$= A \cap \{x \in \mathbb{R} | [-2 < x < 1] \lor [x < 0] \}$$

$$= \{x \in \mathbb{R} | -1 \le x < 1\} \cap \{x \in \mathbb{R} | x < 1\}$$

$$= \{x | [x \in \{x \in \mathbb{R} | -1 \le x < 1\}] \land [x \in \{x \in \mathbb{R} | x < 1\}] \}$$

$$= \{x \in \mathbb{R} | [-1 \le x < 1] \land [x < 1] \}$$

$$= \{x \in \mathbb{R} | [-1 \le x < 1] \land [x < 1] \}$$

$$= \{x \in \mathbb{R} | -1 \le x < 1\}$$

$$A \cup (B \cap C)$$

$$= A \cup \{x | [x \in B] \land [x \in C] \}$$

$$= A \cup \{x | [x \in \{x \in \mathbb{R} | -2 < x < 1\}] \land [x \in \{x \in \mathbb{R} | x < 0\}] \}$$

$$= A \cup \{x \in \mathbb{R} | [-2 < x < 1] \land [x < 0] \}$$

$$= \{x \in \mathbb{R} | -1 \le x < 1\} \cup \{x \in \mathbb{R} | -2 < x < 0\}$$

$$= \{x | [x \in \{x \in \mathbb{R} | -1 \le x < 1\}] \lor [x \in \{x \in \mathbb{R} | -2 < x < 0\}] \}$$

$$= \{x \in \mathbb{R} | [-1 \le x < 1] \lor [-2 < x < 0] \}$$

注: 注意利用集合恒等式

$$A = \{x | x \in A\} \tag{4}$$

2. 求证: $M \subseteq N \to [M \cap N = M] \land [M \cup N = N]$

 $M \subseteq N$

3.

$$M \cap (N \cup L)$$

$$= \{x | [x \in M] \land [x \in \{x | [x \in N] \lor [x \in L]\}\}$$

$$= \{x | [x \in M] \land ([x \in N] \lor [x \in L])\}$$

$$= \{x | ([x \in M] \land [x \in N]) \lor ([x \in M] \land [x \in L])\}$$

$$= \{x | [x \in M] \land [x \in N]\} \cup \{x | [x \in M] \land [x \in L]\}$$

$$= (M \cap N) \cup (M \cap L)$$

$$(6)$$

4.

$$((A - B) \cup (B - A))^{C}$$

$$= \{x | [x \in C] \land ([x \notin \{x | [x \in A] \land [x \notin B]\}] \land [x \notin \{x | [x \notin A] \land [x \in B]\}])\}$$

$$= \{x | [x \in C] \land (\neg([x \in A] \land [x \notin B]) \land \neg([x \notin A] \land [x \in B]))\}$$

$$= \{x | [x \in C] \land (([x \in A] \land [x \in B]) \lor ([x \notin A] \land [x \notin B]))\}$$

$$= (A \cap B) \cup (A \cup B)^{C}$$

$$((A \cap B) \cup (A \cup B)^{C})$$

$$((A \cap B) \cup (A \cup B)^{C})$$

$$((A \cap B) \cup (A \cup B)^{C})$$

5. 例:

$$f(x) = 4 - x$$

$$g(x) = 3$$

$$f(g(x)) = 1$$

$$g(f(x)) = 3$$
(8)

2

6. (1)

$$[\forall x, y \in \mathbb{R}^+)] \wedge [a^x = a^y] \to [x = \frac{\ln(a^x)}{\ln a} = \frac{\ln(a^y)}{\ln a}$$

$$(\forall b \in \mathbb{R})[a^{\frac{\ln b}{\ln a}} = b]$$

$$(9)$$

故 f 是双射。

(2)

$$[x, y \in \mathbb{R}^+] \wedge [x^{-1} = y^{-1}] \to [x = y]$$

$$(\forall a \in \mathbb{R}^+)[(a^{-1})^{-1} = a]$$
(10)

故 g 是双射。

- (3)
- (4)
- 7. (1)

$$([x, y \in A] \land [g(f(x)) = g(f(y))] \rightarrow [x = y])$$

$$\rightarrow (([x, y \in A] \land [f(x) = f(y)] \rightarrow ([x, y \in A] \land [g(f(x) = g(f(y))] \rightarrow [x = y])$$

$$\rightarrow (\forall c \in C)(\exists x \in A)[g(f(x)) = c]$$

$$\rightarrow (\forall c \in C)(\exists b \in B)[g(b) = c]$$

$$(11)$$

反之不真。例:

$$f: \mathbb{R} \to \mathbb{R}$$

$$g: \mathbb{R} \to \mathbb{R}$$

$$f(x) = x, g(x) = 0$$

$$f(x) = 0, g(x) = x$$

$$(12)$$

前者不是单射,后者不是满射。

(2) 首先证明一个引<mark>理,即逆映</mark>射在原映射的像上的唯一性。 引理一、记:

$$\begin{split} f: A &\mapsto B \\ (\forall a \in A)(\exists ! x \in B)[f(x) = a] \\ C &= \{y | (\exists x \in A)[f(x) = y]\} \\ \mathscr{F} &= \{g: C \mapsto A | (\forall x \in A)(\forall y \in C)[g(f(x)) = x, f(g(y)) = y]\} \end{split}$$
 (13)

则有 $|\mathcal{F}| = 1$, 即

$$(\exists! f^{-1} \in f)(\forall x \in A)[f^{-1}(f(x))) = f(f^{-1}(x)) = x]$$

$$\chi : \Box D D$$
数的美位

引理一的证明:

$$(\forall x \in A)(\forall g, h \in \mathscr{F})[g(f(x)) = h(f(x)) = x]$$

$$\rightarrow (\forall y \in C)[g(y) = h(y)]$$

$$\rightarrow [g = h]$$

$$\rightarrow 1 = |\{f^{-1} : C \mapsto A|(\forall c \in C)(\exists! x \in \{x \in A|f(x) = c\})[f^{-1}(c) = x]\}| \leq \mathscr{F}| \leq 1$$

$$\rightarrow |\mathscr{F}| = 1$$

$$(15)$$

回到原题。实际上我们有:

$$f^{-1}(g^{-1}(g(f(x)))) = x (16)$$

故

$$h = f^{-1} \circ g^{-1} \tag{17}$$

8. (1) 显然

$$1 \cdot 1! = 1 = (1+1)! - 1 \tag{18}$$

$$(\forall n \in (\mathbb{Z} \cap (0, +\infty))) [\sum_{i=1}^{n+1} i \cdot i! = (n+1)(n+1)! + (n+1)! - 1 = (n+2)! - 1$$
(19)

事实上

$$(\forall n \in (\mathbb{Z} \cap (0, +\infty))) \left[\sum_{i=1}^{n} i \cdot i! = \sum_{i=1}^{n} ((i+1)! - i!) = (n+1)! - 1 \right]$$
 (20)

(2)

$$(\forall h \in ((0, +\infty) \cap \mathbb{Z}))[(1+h)^1 \ge 1+1 \cdot h]$$

$$(\forall n \in ((1, +\infty) \cap \mathbb{Z}))(\forall h \in ((0, +\infty) \cap \mathbb{Z}))[(1+h)^n \ge 1+nh]$$

$$\to [(1+h)^(n+1) \ge (1+h)(1+nh) \ge 1+(n+1)h]$$

$$\therefore (\forall n \in ((1, \infty) \cap \mathbb{Z}))(\forall h \in ((0, \infty) \cap \mathbb{Z}))[(1+h)^n \ge 1+nh]$$

$$(21)$$

事实上

$$(1+h)^{n}$$

$$=|([0,h] \cap \mathbb{Z})^{n}|$$

$$\geq |\{x \in ([0,h] \cap \mathbb{Z})^{n}| ||x||_{1} = ||x||_{\infty}\}|$$
(22)

4

=1+nh

(3) 缺: 归纳证法事实上设

$$A = \{a_i | i \in ([1, n+1] \cap \mathbb{Z})\}$$
(23)

有

$${n+1 \choose r+1}$$

$$=|\{B||B|=r+1, B \subseteq A\}|$$

$$=|\{B||B|=r, B \subseteq (A-\{a_{n+1}\})\}|+|\{B||B|=r+1, B \cap \{a_{n+1}\}=\emptyset\}$$

$$={n \choose r}+{n \choose r+1}$$
(24)

(4)

9. 法一:证明:首先,由最大公因数的定义,

$$(a_1, b_1)|a_1, (a_1, b_1)|b_1 (25)$$

由整除定义,

$$(\exists m, n \in \mathbb{Z})[m(a_1, b_1) = a_1, n(a_1, b_1) = b_1]$$
(26)

两边同乘以 d,

$$(\exists m, n \in \mathbb{Z})[dm(a_1, b_1) = da_1 = a, dn(a_1, b_1) = db_1 = b]$$
(27)

即

$$d(a_1, b_1)|a, d(a_1, b_1)|b (28)$$

于是

$$d(a_1, b_1)|(a, b) \tag{29}$$

由整除定义,

$$(\exists k \in \mathbb{Z})[kd(a_1, b_1) = (a, b)] \tag{30}$$

而由最大公因数定义,

$$kd(a_1, b_1) = (a, b)|a = da_1, kd(a_1, b_1) = (a, b)|a = db_1,$$
 (31)

于是由整除定义,

$$(\exists s, t \in \mathbb{Z})[ksd(a_1, b_1) = da_1, ktd(a_1, b_1) = db_1]$$
(32)

两边同除以 d, 有

$$ks(a_1, b_1) = a_1, kt(a_1, b_1) = b_1$$
 (33)

于是由最大公因数定义,

$$k(a_1, b_1)|(a_1, b_1) \tag{34}$$

由整除定义,

$$(\exists l \in \mathbb{Z})[kl(a_1, b_1) = (a_1, b_1)] \tag{35}$$

有

$$kl = 1 (36)$$

故 $k \neq 0, l \neq 0$

 $\overline{m} \ k, l \in \mathbb{Z}$

故 $|k| \ge 1, |l| \ge 1$

但 k|1,l|1

于是 $|k| \le 1, |l| \le 1$

故 $k \in \{-1,1\}, l \in \{-1,1\}$

而 kl = 1

故只有 k = 1, l = -1 或 k = -1, l = 1 于是

$$(a,b) = |kd(a_1,b_1)| = |k||d|(a_1,b_1) = |d|(a_1,b_1)$$
(37)

法二:证明:首先,由最大公因数的定义,

$$(a_1, b_1)|a_1, (a_1, b_1)|b_1 (38)$$

由整除定义,

$$(\exists m, n \in \mathbb{Z})[m(a_1, b_1) = a_1, n(a_1, b_1) = b_1]$$
(39)

移项,得

$$m = \frac{a_1}{(a_1, b_1)} \in \mathbb{Z}, n = \frac{b_1}{(a_1, b_1)} \in \mathbb{Z}$$
 (40)

故

$$a = da_1 = d(a_1, b_1) \frac{a_1}{(a_1, b_1)}, b = db_1 = d(a_1, b_1) \frac{b_1}{(a_1, b_1)}$$

$$(41)$$

于是

$$d(a_1, b_1)|(a, b)|d(a_1, b_1) (42)$$

故

$$(a,b) = |d|(a_1, b_1) \tag{43}$$

法三:对 a_1 、 b_1 作辗转相除:

 $\Rightarrow r_0 = a_1, \ r_1 = b_1,$

$$(\forall n \in ((0, +\infty) \cap \mathbb{Z}))[r_n = r_{n+1}q_{n+1} + r_{n+2}] \wedge [q_n, r_n \in \mathbb{Z}] \wedge [r_{n+2} \in (0, r_{n+1})] \quad (44)$$

则

$$(\exists! m \in (\mathbb{Z} \cap (0, +\infty)))[r_m = 0, r_{m-1} \neq 0] \tag{45}$$

事实上

$$|r_{m-1}| = (a_1, b_1) (46)$$

然后构造两个数列

$$(\forall n \in ((0, +\infty) \cap \mathbb{Z}))[Q_n = dq_n, R_n = dr_n]$$
(47)

于是

$$a = R_0, b = R_1, (a, b) = |R_{m-1}| = |d||r_{m-1}| = |d|(a_1, b_1)$$
 (48)

评注:请注意评判这几种证法的优劣,并在日后养成批判着阅读证明的习惯。

10. 显然若 $p_i|a$, 则

$$p_i|(\prod_{i=1}^n p_i + 1) - \prod_{i=1}^n p_i|p_i$$
(49)

故 $p_i = 1$,矛盾。再假定素数有限,则由唯一素因子分解定理,必有一个素数 $p \notin \{p_i | i \in (\mathbb{Z} \cap [1, n])\}$ 满足 p|a,矛盾。所以素数无限。

11. 我们首先对 m、n 作辗转相除:

 $\Rightarrow r_0 = a_1, \ r_1 = b_1,$

$$(\forall n \in ((0, +\infty) \cap \mathbb{Z}))[r_n = r_{n+1}q_{n+1} + r_{n+2}] \wedge [q_n, r_n \in \mathbb{Z}] \wedge [r_{n+2} \in (0, r_{n+1})]$$
 (50)

则

$$(\exists ! m \in (\mathbb{Z} \cap (0, +\infty)))[r_s = 0, r_{s-1} \neq 0]$$
(51)

事实上

$$|r_{s-1}| = (a_1, b_1) \tag{52}$$

而由熟知的等比数列求和公式有

$$2^{qn} - 1 = \left(\sum_{k=0}^{q-1} 2^{kn}\right)(2^n - 1) \tag{53}$$

$$(\forall n \in ((0, +\infty) \cap \mathbb{Z}))[R_n = R_{n+1}Q_{n+1} + R_{n+2}] \wedge [Q_n, R_n \in \mathbb{Z}] \wedge [R_{n+2} \in (0, R_{n+1})]$$
(54)

故

$$(2^{m} - 1, 2^{n} - 1) = R_{s-1} = 2^{(m, n)} - 1$$
(55)

12. (1)ℚ[i] 是数域。显然

$$(\forall a_1, b_1, a_2, b_2 \in \mathbb{Q}) \Big[a_1 + b_1 i, a_2 + b_2 i \in \mathbb{Q}[i]$$

$$(a_1 + b_1 i) + (a_2 + b_2 i) = (a_1 + a_2) + (b_1 + b_2) i \in \mathbb{Q}[i]$$

$$- (a_1 + b_1 i) = (-a_1) + (-b_1) i \in \mathbb{Q}[i]$$

$$(a_1 + b_1 i) (a_2 + b_2 i) = (a_1 a_2 - b_1 b_2) + (a_1 b_2 + a_2 b_1) i \in \mathbb{Q}[i]$$

$$(a_1 + b_1 i)^{-1} = \frac{a_1}{a_1^2 + b_2^2} - \frac{b_1}{a_2^2 + b_2^2} i \in \mathbb{Q}[i] \Big]$$

$$(56)$$

故 $\mathbb{Q}[i]$ 是数域。

(2)S 不是数域。因为 $\frac{1}{2^1}$, $\frac{1}{2^2} \in S$,但 $\log_2 \frac{3}{4} = \log_2 3 - 1 \in (0,1)$,故 $\log_2 \frac{3}{4} \notin S$,故 $\frac{1}{2^1} + \frac{1}{2^2} \notin S$,故 S 不是数域。

 $(3)\mathbb{Z}[\pi]$ 是数域。

显然

$$(\forall a_{1}(\pi), b_{1}(\pi), a_{2}(\pi), b_{2}(\pi) \in \mathbb{Z}[\pi]) \left[\frac{a_{1}(\pi)}{b_{1}(\pi)}, \frac{a_{2}(\pi)}{b_{2}(\pi)} \in \mathbb{Z}(\pi) \right]$$

$$\frac{a_{1}(\pi)}{b_{1}(\pi)} + \frac{a_{2}(\pi)}{b_{2}(\pi)} = \frac{a_{1}(\pi)b_{2}(\pi) + a_{2}(\pi)b_{1}(\pi)}{b_{1}(\pi)b_{2}(\pi)} \in \mathbb{Z}(\pi)$$

$$-\frac{a_{1}(\pi)}{b_{1}(\pi)} = \frac{-a_{1}(\pi)}{b_{1}(\pi)} \in \mathbb{Z}(\pi)$$

$$a_{1}(\pi)b_{1}(\pi)\frac{a_{2}(\pi)}{b_{2}(\pi)} = \frac{a_{1}(\pi)a_{2}(\pi)}{b_{1}(\pi)b_{2}(\pi)} \in \mathbb{Z}(\pi)$$

$$(\frac{a_{1}(\pi)}{b_{1}(\pi)})^{-1} = \frac{b_{1}(\pi)}{a_{1}(\pi)} \in \mathbb{Z}(\pi)$$

$$(57)$$

故 ℤ[π] 是数域。

13. 比较系数,得

$$\begin{cases} \ell - 2k &= 5\\ 2 - \ell k - 1 &= m\\ \ell + k &= -1 \end{cases}$$

$$(58)$$

解得

$$\begin{cases}
\ell = 1 \\
k = -2 \\
m = 3
\end{cases}$$
(59)

8

14. 如表。

f(x)	g(x)	$\partial(f(x) + g(x))$	$\max\{\partial f(x), \partial g(x)\}$	$\min\{\partial f(x),\partial g(x)\}$
x+1	-x	0	1	1
x+1	x	1	1	1

15. (1) 若两边均不为 0,则两边多项式最高次项系数均为正实数,计算两边多项式次数得

$$2\partial f = \max\{2\partial g, 2\partial h\} + 1 \tag{60}$$

而显然左边为偶数,右边为奇数,矛盾。

故两边只能为0,即

$$(\forall x \in \mathbb{R})[f(x) = g(x) = h(x) = 0] \tag{61}$$

(2) 对于复数情形, 有反例:

$$\begin{cases} f(x) &= 0\\ g(x) &= x\\ h(x) &= ix \end{cases}$$
 (62)

16. 显然

$$\sum_{k=0}^{n} \frac{\prod_{0 \le j < k} (j-x)}{k!}$$

$$= \sum_{k=0}^{n} (-1)^{n} \left(\frac{\prod_{1 \le j < k} (x-j)}{k!} - \frac{\prod_{0 \le j < k-1} (x-j)}{(k-1)!} \right)$$

$$= (-1)^{n} \frac{\prod_{1 \le j < n+1} (x-j)}{n!}$$
(63)

17. 比较两边 k 次项系数是常见的方法。而更组合的方法,则是像这样: 设集合 $A \setminus B$ 满足: $|A| = m, |B| = n, A \cap B = \emptyset$,则由熟知的加法原理与乘法原理,

$$\binom{m+n}{k}$$

$$= |\{C|C \subseteq (A \cup B), |C| = k\}|$$

$$= \sum_{j=0}^{k} |\{C \cap A \middle| C \subseteq (A \cup B), |C \cap A| = j\}| |\{C \cap B \middle| C \subseteq (A \cup B), |C \cap B| = k - j\}|$$

$$= \sum_{j=0}^{k} \binom{m}{j} \binom{n}{k-j}$$

$$(64)$$

18.

9

$$\partial f(x) \le \max\{\partial q(x)g(x), \partial r(x)\} = \partial q(x) + \partial g(x) \le \max\{\partial f(x), \partial r(x)\} = \partial f(x)$$
 (65)

故 $\partial q(x) = \partial f(x) - \partial g(x)$

19. 首先 $f_1 \neq 0$,而 $f_1(x)|g_1(x)$,故 $g_1(x) \neq 0$

$$g_1(x)g_2(x)|f_1(x)f_2(x)|f_2(x)g_1(x)$$
 (66)

即

$$(\exists q(x) \in \mathbb{Z}[x])[g_1(x)(g_2(x)q(x) - f_2(x)) = 0]$$
(67)

于是

$$(\exists q(x) \in \mathbb{Z}[x])[g_2(x)q(x) - f_2(x) = 0] \tag{68}$$

即

$$g_2(x)|f_2(x) \tag{69}$$

20. 设

$$f(x) = \sum_{k=0}^{n} a_k x^k \tag{70}$$

则

$$f(g_1(x)) - f(g_2(x)) = \left(\sum_{k=0}^{n} a_k \sum_{j=0}^{k-1} ((g_1(x))^j (g_2(x))^{k-1-j}))(g_1(x) - g_2(x))\right)$$
(71)

故
$$g_1(x) - g_2(x)|f(g_1(x)) - f(g_2(x))$$

21. (1) 比较等式两边系数,有

$$\begin{cases} a = 1 \\ am + b = 0 \\ b - a = p \\ -b = q \end{cases}$$

$$(72)$$

整理得

$$m = -b = q = -p - 1, a = 1 (73)$$

(2)

$$\begin{cases} a = 1 \\ am + b = 0 \\ a + bm + c = p \\ cm + b = 0 \\ c = q \end{cases}$$

$$(74)$$

10

整理得

$$a = 1, m = 0, b = 0, c = q = p - 1$$
 (75)

或

$$a = 1, c = 1, q = 1, m = -b \neq 0, p = 2 - b^2$$
 (76)

22. (1)
$$2x^5 - 5x^3 - 8x = (2x^4 - 6x^3 + 13x^2 - 39x + 109)(x+3) - 327$$

(2)
$$x^3 - x^2 - x = (x^2 - 2i + 3 - 2i)(x - 1 + 2i) - (1 + 8i)$$

(3)
$$x^4 + x^3 + 2x^2 + x - 2 = (x^2 - 2x + 7)(x^2 + 3x + 1) - 18x - 9$$

23. (1)

$$x^{5}$$

$$=(x-1+1)^{5}$$

$$=\sum_{k=0}^{5} {5 \choose k} (x-1)^{k}$$

$$=(x-1)^{5}+5(x-1)^{4}+10(x-1)^{3}+10(x-1)^{2}+5(x-1)+1$$

$$(2), x^{4}-2x^{2}+3=(x-2)^{4}+8(x-2)^{3}+22(x-2)^{2}+24(x-2)+11$$

$$(3), x^{4}+2ix^{3}-(1+i)x^{2}-3x+7+i=(x+i)^{4}-2i(x+i)^{3}-(1+i)(x+i)^{2}-5(x+i)+9+7i$$
注: 实际上这就是泰勒公式。

24. 显然由第 20 题结论及整除定义有

$$(\exists A(x), B(x) \in \mathbb{Z}[x]) \left[\sum_{k=0}^{n-1} f_k(x^n) x^i = A(x) (f(x^n) - a) + \sum_{k=0}^{n-1} f_k(a) x^i = B(x) (f(x^n) - a) \right]$$
(78)

于是

$$(\exists A(x), B(x) \in \mathbb{Z}[x]) \left[\sum_{k=0}^{n-1} f_k(a) x^i = (A(x) - B(x))(x^n - a) \right]$$
 (79)

即

$$\sum_{k=0}^{n-1} f_k(a) x^i | x^n - a \tag{80}$$

但是

$$\partial(\sum_{k=0}^{n-1} f_k(a)x^i) = n - 1 < n = \partial(x^n - a)$$
(81)

于是

$$(\forall k \in (\mathbb{Z} \cap [0, n-1]))[f_k(a) = 0] \tag{82}$$

由零点-因子定理知

$$(\forall k \in (\mathbb{Z} \cap [0, n-1]))[x - a|f_k(x)] \tag{83}$$

欢迎加入 数的美位

11

25. (1),

$$x^{4} + x^{3} - 2x^{2} - 4x - 1 = x(x^{3} + x^{2}x - 1) - x^{2} - 3x - 1$$

$$x^{3} + x^{2} - x - 1 = (-x + 2)(-x^{2} - 3x - 1) + 4x + 1$$

$$-x^{2} - 3x - 1 = (-\frac{1}{4}x - \frac{11}{16})(4x + 1) - \frac{5}{16}$$

$$(-\frac{1}{4}x - \frac{11}{16}) = (\frac{4}{5}x + \frac{11}{5})(-\frac{5}{16}) + 0$$
(84)

故

$$(x^4 + x^3 - 2x^2 - 4x - 1, x^3 + x^2 - x - 1) = 1$$
(85)

(2),

$$x^{3} - 3x + 1 = \left(\frac{1}{3}x + \frac{13}{3}\right)\left(3x^{2} - 13x + 4\right) + 3x^{2} - 13x + 4$$

$$3x^{2} - 13x + 4 = \left(\frac{3}{52}x - \frac{627}{2604}\right)\left(52x - \frac{49}{3}\right) + \frac{175}{2604}$$

$$52x - \frac{49}{3} = \left(\frac{1563024}{175}x - \frac{21228}{75}\right) \cdot \frac{175}{2604} + 0$$
(86)

故

$$(x^3 - 3x + 1, 3x^2 - 13x + 4) = 1 (87)$$

(3),

$$x^{4} - 10x^{2} + 1 = x^{4} - 4\sqrt{2}x^{3} + 6x^{2} + 4\sqrt{2}x^{2} + 1 + (4\sqrt{2}x^{3} - 16x^{2} - 4\sqrt{2}x)$$
 (88)

$$x^{4} - 4\sqrt{2}x^{3} + 6x^{2} + 4\sqrt{2}x + 1 = (\frac{\sqrt{2}}{8}x - \frac{1}{2})(4\sqrt{2}x^{3} - 16x^{2} - 4\sqrt{2}x) - x^{2} + 2\sqrt{2}x + 1$$

(89)

$$4\sqrt{2}x^3 - 16x^2 - 4\sqrt{2}x = (-4\sqrt{2}x)(-x^2 + 2\sqrt{2}x + 1) + 0$$
(90)

(91)

故

$$(x^4 - 10x^2 + 1, x^4 - 4\sqrt{2}x^3 + 6x^2 + 4\sqrt{2} + 1) = -x^2 + 2\sqrt{2}x + 1$$
 (92)

26. (1)

$$x^{4} + 2x^{3} - x^{2} - 4x - 2 = x^{4} + x^{3} - x^{2} - 2x - 2 + x^{3} - 2x$$

$$x^{4} + x^{3} - x^{2} - 2x - 2 = (x+1)(x^{3} - 2x) + (x^{2} - 2)$$

$$x^{3} - 2x = (x^{2} - 2)(x)$$
(93)

故

$$(x^4 + 2x^3 - x^2 - 4x - 2, x^4 + x^3 - x^2 - 2x - 2) = x^2 - 2$$
(94)

于是

$$x^{2} - 2$$

$$= x^{4} + x^{3} - x^{2} - 2x - 2 - (x+1)((x^{4} + 2x^{3} - x^{2} - 4x - 2) - (x^{4} + x^{3} - x^{2} - 2x - 2))$$

$$= (x+2)(x^{4} + x^{3} - x^{2} - 2x - 2) - (x+1)(x^{4} + x^{3} - x^{2} - 2x - 2)$$
(95)

 $4x^{4} - 2x^{3} - 16x^{2} + 5x + 9 = (2x)(2x^{3} - x^{2} - 5x + 4) - 6x^{2} - 3x + 9$ $2x^{3} - x^{2} - 5x + 4 = (-\frac{1}{3}x + \frac{1}{3})(-6x^{3} - 3x + 9) - x + 1 \tag{96}$

$$-6x^2 - 3x + 9 = (-x+1)(-6x+9)$$

故

$$(4x^4 - 2x^3 - 16x^2 + 5x + 9, 2x^3 - x^2 - 5x + 4) = x - 1$$
(97)

于是

$$x-1$$

$$=(-\frac{1}{3}x+\frac{1}{3})((4x^4-2x^3-16x^2+5x+9)-2x(2x^3-x^2-5x+4))-2x^3-x^2-5x+4$$

$$=(-\frac{1}{3}x+\frac{1}{3})(4x^4-2x^3-16x^2+5x+9)+(\frac{2}{3}x^2-\frac{2}{3}x-1)(2x^3-x^2-5x+4)$$
(98)

$$x^{4} - x^{3} - 4x^{2} + 4x + 1 = (x^{2} - 3)(x^{2} - x - 1) + x - 2$$

$$x^{2} - x - x = (x + 1)(x - 2) + 1$$
(99)

故

$$(x^4 - x^3 - 4x^2 + 4x + 1, x^2 - x - 1) = 1 (100)$$

于是

$$1 = (x^{2} - x - 1) - (x + 1)((x^{4} - x^{3} - 4x^{2} + 4x + 1) - (x^{2} - 3)(x^{2} - x - 1))$$

$$= -(x + 1)(x^{4} - x^{3} - 4x^{2} + 4x + 1) + (x^{3} + x^{2} - 3x - 2)(x^{2} - x - 1)$$
(101)

27. 设

$$\begin{cases} x^3 + (1+t)x^2 + 2x + 2u &= x^3 + tx + u + (1+t)x^2 + (2-t)x + u \\ x^3 + tx + u &= (ax+b)((1+t)x^2 + (2-t)x + u) \end{cases}$$
(102)

比较系数得:

$$\begin{cases} 1 &= a(1+t) \\ 0 &= a(2-t) + (1+t) \\ t &= au + b(2-t) \\ u &= bu \end{cases}$$
 (103)

解得

$$\begin{cases} t_1 & = \frac{-1 - \sqrt{11}i}{2} \\ u_1 & = 0 \end{cases} \begin{cases} t_2 & = \frac{-1 + \sqrt{11}i}{2} \\ u_2 & = 0 \end{cases} \begin{cases} t_3 & = \frac{-1 - \sqrt{11}i}{2} \\ u_3 & = -7 + \sqrt{11}i \end{cases} \begin{cases} t_4 & = \frac{-1 + \sqrt{11}i}{2} \\ u_4 & = -7 - \sqrt{11}i \end{cases}$$

$$(104)$$

28. 显然

$$(f(x), g(x))|u(x)f(x) + v(x)g(x)|d(x)|(f(x), g(x))$$
(105)

即

$$d(x) = (f(x), g(x))$$

$$(106)$$

$$(f(x)h(x), g(x)h(x)) = (f(x), g(x))(f_1(x), g_1(x))h(x) = (f(x), g(x))h(x)$$
(107)

30. 显然

$$(f(x), g(x))(u(x), v(x))|u(x)f(x) + v(x)g(x)|(f(x), g(x))|(f(x), g(x))(u(x), v(x))$$
(108)

故

$$(f(x), g(x))(u(x), v(x)) = (f(x), g(x))$$
(109)

此时唯有

$$(u(x), v(x)) = 1$$
 (110)

31. 由定理 0.6.4 显然.

32.

$$1|(\prod_{k=1}^{m} f_k(x), \prod_{k=1}^{n} g_k(x))| \prod_{k=1}^{m} (f_k(x), \prod_{k=1}^{n} g_k(x))| \prod_{j=1}^{m} \prod_{k=1}^{n} (f_j(x), g_k(x))| 1$$
(111)

故

$$\left(\prod_{k=1}^{m} f_k(x), \prod_{k=1}^{n} g_k(x)\right) = 1 \tag{112}$$

33.

$$1|(f(x)+g(x),f(x)g(x))|(f(x)+g(x),f(x))(f(x)+g(x),g(x))|(f(x),g(x))^2=1 (113)$$

故

$$(f(x) + g(x), f(x)g(x)) = 1$$
 (114)

34. 显然

$$f(x)|g(x)f(x) \tag{115}$$

于是

$$f(x)|f(x)g(x)|f(x) (116)$$

故有常数 c 使

$$f(x)g(x) = cf(x) (117)$$

只能有

$$g(x) = c (118)$$

故

$$(f(x), g(x)) = 1$$
 (119)

35. 显然

$$f(x)|\frac{f(x)g(x)}{(f(x),g(x))},g(x)|\frac{f(x)g(x)}{(f(x),g(x))}$$
(120)

于是

$$\frac{f(x)g(x)}{(f(x),g(x))}|f(x)g(x)|\frac{f(x)g(x)}{(f(x),g(x))}$$
(121)

故有常数 c 使

$$\frac{f(x)g(x)}{(f(x),g(x))} = cf(x)g(x) \tag{122}$$

只能有

$$(f(x), g(x)) = 1 \tag{123}$$

36. 不妨设 $\partial f(x) \ge \partial g(x)$ (如果不是,则令 f(x)、g(x) 互换),对 f(x)、g(x) 作辗转相除: 令 $r_1(x) = f(x)$, $r_2(x) = g(x)$,

$$(\forall n \in (\mathbb{Z} \cap (0, +\infty)))[r_n = q_n r_{n+1} + r_{n+2}, \partial r_{n+2}(x) < r_{n+1}(x)]$$
(124)

而设 s 满足

$$s \in (\mathbb{Z} \cap (0, +\infty)), r_s(x) = 0, r_{s-1}(x) \neq 0$$
(125)

欢迎加入 数的美位

15

则 $r_{s-1}(x) = (f(x), g(x)) = 1$,

再设

$$(\forall n \in (\mathbb{Z} \cap (0, +\infty)))[Q_n(x) = q_n(x^m), R_n(x) = r_n(x^m)$$
(126)

则

$$(f(x^m), g(x^m)) = R_{s-1}(x) = r_{s-1}(x^m) = 1$$
(127)

37.

$$(f(x), g(x)) = (\frac{ad - bc}{d} f(x), cf(x) + dg(x))$$

$$= (af(x) + bg(x), cf(x) + dg(x)) = (f_1(x), g_1(x))$$
(128)

38. 不妨设 f, g 均为首一多项式。对 f(x), g(x) 作辗转相除: 令 $r_1(x) = f(x), r_2(x) = g(x),$

$$(\forall n \in ((0, +\infty) \cap \mathbb{Z})[r_n(x) = q_n(x)r_{n+1}(x) + r_{n+2}(x)] \wedge [\partial r_{n+2}(x) < \partial r_{n+1}(x)]$$
 (129)

则

$$(\exists ! s \in (\mathbb{Z} \cap (0, +\infty))) [r_s(x) = 0] \land [r_{s-1}(x) \neq 0]$$
(130)

于是

$$(f(x), g(x)) = r_{s-1}(x)$$
 (131)

 $\diamondsuit u_{s-2}(x) = 0, \ v_{s-2}(x) = 1;$

$$(\forall n \in ((0, s - 2) \cap \mathbb{Z})) \begin{bmatrix} u_n(x) &= v_{n+1}(x) \\ v_n(x) &= u_{n+1}(x) - q_{n+1}(x)v_{n+1}(x) \end{bmatrix}$$
(132)

我们有

$$u(x)f(x) + v(x)g(x) = (f(x), g(x))$$
(133)

由 18, 我们有

$$u(x)f(x) + v(x)g(x) = (f(x), g(x))$$

$$\partial u(x) < \partial \frac{g(x)}{(f(x), g(x))}, \partial v(x) < \partial \frac{f(x)}{(f(x), g(x))}$$

$$(133)$$

39. 显然

$$\frac{f(x)g(x)}{(f(x),g(x))^2} | [\frac{f(x)}{(f(x),g(x))}, \frac{g(x)}{(f(x),g(x))}] | \frac{f(x)g(x)}{(f(x),g(x))^2}$$
(135)

故

$$[f(x), g(x)] = \frac{f(x)g(x)}{(f(x), g(x))}$$
(136)

40. 由 Bézout 定理

$$p(x)f(x) + q(x)g(x) = 1$$
 (137)

作辗转相除:

$$p(x)u(x)g(x) + q(x)v(x)f(x) = Q(x)f(x)g(x) + A(x)$$
(138)

显然此 A(x) 即为所求。

41.

$$(\Phi(x), \Psi(x))$$

$$=((x^{3}-1)f(x) + (x^{3}-x^{2}+x-1)g(x), (x^{2}-1)f(x) + (x^{2}-x)g(x))$$

$$=((x-1)f(x) + (x-1)g(x), (x^{2}-1)f(x) + (x^{2}-x)g(x))$$

$$=((x-1)f(x) + (x-1)g(x), (x-1)f(x))$$

$$=((x-1)f(x), (x-1)g(x))$$

$$=(x-1)(f(x), g(x))$$
(139)

= x - 1

42. 设 p(x) = u(x)v(x)。1) 若 p(x) 在 \mathbb{P} 上不可约,此时 $\{u(x), v(x)\} = \{f(x), 1\}, \{d(x): d(x)|p(x)\} = \{1, p(x)\}$

$$(p(x), f(x))|p(x) \tag{140}$$

于是唯有

$$(p(x), f(x)) \in \{p(x), 1\} \tag{141}$$

2) 反之,若 $\{(f(x), p(x))|f(x) \in \mathbb{P}[x]\} = \{1, p(x)\}$,若

$$d(x)|p(x) \tag{142}$$

则

$$d(x) = (d(x), p(x)) \in \{(f(x), p(x)) | f(x) \in \mathbb{P}[x]\} = \{1, p(x)\}$$
(143)

于是 p(x) 在 \mathbb{P} 上不可约。

67. 由引理 0.8.3, 我们设 f(x) 可以在 $\mathbb{Z}[x]$ 上写成两个整多项式的乘积:

$$f(x) = p(x)q(x) \tag{144}$$

则

$$(\forall i \in ((0, n+1) \cap \mathbb{Z}))[f(a_i) = p(a_i)q(a_i) = -1] \tag{145}$$

于是

$$(\forall i \in ((0, n+1) \cap \mathbb{Z}))[p(a_i) + q(a_i) = 0] \tag{146}$$

于是 $\partial(p(x) + q(x)) \ge n$ 于是 $\{p(x), q(x)\} = \{1, f(x)\}$ 即 f 不可约。

第一章 矩阵代数

习题

1. 计算:

$$(1) \begin{bmatrix} 3 & -2 \\ 5 & -4 \end{bmatrix} \begin{bmatrix} 3 & 4 \\ 2 & 5 \end{bmatrix}; \quad (2) \begin{bmatrix} 1 & -3 & 2 \\ 3 & -4 & 1 \\ 2 & -5 & 3 \end{bmatrix} \begin{bmatrix} 2 & 5 & 6 \\ 1 & 2 & 5 \\ 1 & 3 & 2 \end{bmatrix};$$

$$(3) \begin{bmatrix} 1 & 5 & -3 & 2 \\ -1 & 4 & -2 & 6 \\ 3 & 8 & 7 & 5 \end{bmatrix} \begin{bmatrix} 1 & 0 & 7 \\ 0 & 2 & 6 \\ 1 & 3 & -2 \\ -1 & 5 & 3 \end{bmatrix}; \quad (4) \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}^n;$$

$$(5) \begin{bmatrix} \lambda & 1 \\ 0 & \lambda \end{bmatrix}^n; \quad (6) \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}^n$$

2. 用初等变换求下列矩阵的逆:

$$(1) \begin{bmatrix} 2 & 5 & 7 \\ 6 & 3 & 4 \\ 5 & -2 & -3 \end{bmatrix} \quad (2) \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 1 & 2 \\ 1 & 1 & 1 & -1 \\ 1 & 0 & -2 & -6 \end{bmatrix}$$

$$(3) \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & 1 & 1 \end{bmatrix}$$

3. 解方程:

$$(1) \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} X = \begin{bmatrix} 3 & 5 \\ 5 & 9 \end{bmatrix};$$

$$(2) \begin{bmatrix} 1 & 2 & -3 \\ 3 & 2 & -4 \\ 2 & -1 & 0 \end{bmatrix} X = \begin{bmatrix} 1 & -3 & 6 \\ 10 & 2 & 7 \\ 10 & 7 & 8 \end{bmatrix}.$$

4. 如果 AB = BA, 就称矩阵 B 与 A 可交换. 令

$$(1) \ A = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}; \quad (2) \ A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}; \quad (3) \ A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 2 \\ 3 & 1 & 2 \end{bmatrix}.$$

求所有与 A 可交换的矩阵.

5. 利用分块矩阵计算.AB.

$$(1)A = \begin{bmatrix} 1 & 2 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 0 & 2 & 1 \end{bmatrix}, \quad B = \begin{bmatrix} 1 \\ 2 \\ 1 \\ 3 \\ 2 \\ 1 \end{bmatrix};$$

$$(2)A = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 2 & 1 & 0 \\ 1 & 1 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 3 & 2 \\ -1 & 2 & 0 & 1 \\ 1 & 0 & 4 & 1 \\ 1 & 1 & 2 & 0 \end{bmatrix}.$$

$$\begin{bmatrix} -1 & 2 & 1 & 0 \\ 1 & 1 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 & 4 & 1 \\ -1 & -1 & 2 & 0 \end{bmatrix}$$

6. 令 $A = D_{a_k,k}$,(参见 1.1.1 小节) $a_i \neq a_j$, $i, j = 1, 2, \dots, n, i \neq j$. 证明: 与 A 可交换的矩阵只能是对角矩阵.

 $n_i \leq n, \sum_{i=1}^r n_i = n$. 证明: 与 A 可交换的矩阵只能为准对角矩阵

兰州大学数学协会 第一章 矩阵代数

其中 A_i 为 n_i 阶方阵, $i=1,2,\cdots,r$.

- 8. 令 $A = \frac{1}{2}(B+E)$. 证明: 当且仅当 $B^2 = E$ 时, $A^2 = A$.
- 9. $\Diamond A$ 为实对称矩阵 (参见 1.1.3 小节). 证明: $A^2 = O$ 当且仅当 A = O.
- 10. $\Diamond A, B$ 都是 n 阶对称矩阵. 证明:AB 对称当且仅当 A 与 B 可交换.
- 11. 今 $A \in \mathbb{R}^{n \times n}$. 证明: 若对于某一正整数 k 有 $A^k = O$, 则

$$(E = A)^{-1} = E + A + A^{2} + \dots + A^{k-1}.$$

12. 称 $A \in \mathbb{R}^{n \times n}$ (R 为实数域) 为 n 阶正交矩阵, 如果 $A^{-1} = A'$. 列如,

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}, \begin{bmatrix} -1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

分别为二阶, 三阶正交矩阵. 证明: 下列三个命题等价:

- $(1)A = (a_{ij} \in R^{n \times n})$ 为一正交矩阵;
- $(2)\sum_{k=1}^{n} a_{ik} a_{jk} = \delta_{ij}, i, j = 1, 2, \cdots, n;$
- $(3)\sum_{k=1}^{n} a_{ki} a_{kj} = \delta_{ij}, i, j = 1, 2, \cdots, n;$
- (其中

$$\delta_{ij} = \begin{cases} 1, & i = j \\ 0, & i \neq j, \end{cases}$$

称 δ_{ij} 为 Kroneker 函数).

- 13. 已经 $X = \begin{bmatrix} O & A \\ C & O \end{bmatrix}$, A, C 为 n 阶可逆矩阵, 求 X^{-1} .
- 14. 称 $A = (a_{ij})_{n \times n}$ 是反对称的, 如果 $a_{ij} = -a_{ji}, i, j = 1, 2, \dots, n$. 证明: 任意方阵都可以表示为一对称矩阵与一反对称矩阵之和.

15. 令
$$A \in P^{n \times n}$$
. 证明: 若对于任意 $X = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \in P^{n \times 1}, AX = O, 则 A = O.$

16. 令 A,D 分别为 m,n 阶可逆矩阵. 证明: 分块矩阵 $H=\begin{bmatrix}A&B\\C&D\end{bmatrix}$ 可逆的充要条件是 $A-BD^{-1}C$ 或 $D-CA^{-1}B$ 可逆.

第一章 矩阵代数 兰州大学数学协会

17. 令 S 是一些 n 阶方阵组成的集合, 对任意 $A, B \in S, AB \in S$, 且 $(AB)^3 = BA$, 证明:

$$\forall A, B \in S, \quad AB = BA.$$

18. 令 A, B, X_n 都是三阶方阵, 且 $X_{n+1} = AX_n + B, n = 0, 1, \cdots$. 当

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad X_0 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

时, 求 X_n .

- 19. 证明: 不存在 n 阶方阵,A,B 满足 AB BA = E.
- 20. 令 A 为 n 阶方阵 A 的主对角线上的元素的和称为 A 的迹, 并记为 $\mathrm{tr}(A)$. 证明: 若对于任意 n 阶方阵 X, 都有 $\mathrm{tr}(A)=0$, 则 A=O.
- 21. 称 A 为对合矩阵, 如果 $A^2 = E$. 令 A, B 都是对合矩阵, 证明: AB 是对合矩阵的充分 必要条件是 AB = BA.
- 22. 称 A 为幂等矩阵, 如果 $A^2 = A$. 令 A, B 都是对合矩阵. 证明:AB 是幂等矩阵的充分 必要条件是 AB = BA = O.
- 23. 今 A 为 n 阶方阵, $A^3 = 2E$, $B = A^2 2A E$. 求 B^{-1} .
- 24. 令 A, B 都是 n 阶方阵, A+B, A-B 都可逆, $D=\begin{bmatrix}A&B\\B&A\end{bmatrix}$, 求 D^{-1} .
- - (1) 若 A 不可逆, 且 $a_m \le 0$, 则 $f(A) \le O$:
 - (2) 若 A 可逆, 且 f(A) = O, 则当 $a_m = 0$ 时, 存在一个 m 1 次多项式 g(x), 使得 g(A) = O; 当 $a_m \le 0$ 时, A 的逆家族 A^{-1} 可表示成 A 的多项式, 且次数是 m 1.
- 26. 令

21

$$A = \begin{bmatrix} A_1 \\ A_2 \\ \vdots \\ A_s \end{bmatrix}, \quad
\sharp \, \forall A_i = (a_{i1}, a_{i2}, \cdots, a_{in}), i = 1, 2, \cdots, s.$$

证明: $A'A = \sum_{i=1}^{s} A'_i A_i$.

兰州大学数学协会 第一章 矩阵代数

27. 用分块矩阵的方法求下列矩阵的逆矩阵:

$$A = \begin{bmatrix} 0 & a_1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & a_2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & a_{n-1} \\ a_n & 0 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

其中 $a_1a_2\cdots a_n\neq 0$.

- 28. 证明: 任意 *n* 阶方阵可表示为一个数量矩阵 (数与单位机组的数乘) 与迹为零矩阵的 和.
- 29. 令 A, B 为 n 阶实对称矩阵,C 为 n 实反对称矩阵, 且 $A^2 + B^2 = C^2$. 证明:

$$A = B = C = O$$
.

- 30. 令 A, BA 为同阶方阵, 且 A, B, A + B 均可逆, 证明: $A^{-1} + B^{-1}$ 可逆, 并求其逆.
- 31. $\Diamond A, B$ 为 n 阶方阵, 且 A+B=AB. 证明:AB=BA.

解答

1. 令 $A = (a_{ij})_{m \times n}, B = (b_{kj})_{n \times p}$. 我们定义 A = B 的乘积为 $m \times p$ 阶矩阵 $C = (c_{ij}),$ 其中

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj}$$
 $i = 1.2. \cdots .m, j = 1.2. \cdots .p.$

记为 $A \times B = C$ 或 AB = C(左行乘右列).

$$(1) \begin{bmatrix} 5 & 2 \\ 7 & 0 \end{bmatrix} \qquad (2) \begin{bmatrix} 1 & 5 & -5 \\ 3 & 10 & 0 \\ 1 & 9 & -7 \end{bmatrix} \qquad (3) \begin{bmatrix} -4 & 11 & 49 \\ 3 & 32 & 39 \\ 5 & 62 & 70 \end{bmatrix} \qquad (4) \begin{bmatrix} 1 & n \\ 0 & 1 \end{bmatrix}$$

$$(5) \begin{bmatrix} \lambda^{n} & n\lambda^{n-1} \\ 0 & \lambda^{n} \end{bmatrix} \qquad (6) \begin{bmatrix} \cos(k\theta) & -\sin(k\theta) \\ \sin(k\theta) & \cos(k\theta) \end{bmatrix}$$

$$\begin{bmatrix}
2 & 5 & 7 & 1 & 0 & 0 \\
6 & 3 & 4 & 0 & 1 & 0 \\
5 & -2 & -3 & 0 & 0 & 1
\end{bmatrix}
\xrightarrow{3(-1)}
\begin{bmatrix}
2 & 5 & 7 & 1 & 0 & 0 \\
-6 & -3 & -4 & 0 & -1 & 0 \\
5 & -2 & -3 & 0 & 0 & 1
\end{bmatrix}
\xrightarrow{1+2(1)+3(1)}$$

$$\begin{bmatrix}
1 & 0 & 0 & 1 & -1 & 1 \\
-6 & -3 & -4 & 0 & -1 & 0 \\
5 & -2 & -3 & 0 & 0 & 1
\end{bmatrix}
\xrightarrow{\frac{[2+1(1)+3(1)]}{\{3-1(5)\}}}
\begin{bmatrix}
1 & 0 & 0 & 1 & -1 & 1 \\
0 & -5 & -7 & 1 & -2 & 2 \\
0 & -2 & -3 & -5 & 5 & -4
\end{bmatrix}
\xrightarrow{\frac{2(-1)+3(2)}{3+2(2)}}$$

22

兰州大学数学协会

$$\begin{bmatrix} 1 & 0 & 0 & 1 & -1 & 1 \\ 0 & 1 & 1 & -11 & 12 & -10 \\ 0 & 0 & -1 & -27 & 29 & -24 \end{bmatrix} \xrightarrow{2+3(1)} \begin{bmatrix} 1 & 0 & 0 & 1 & -1 & 1 \\ 0 & 1 & 0 & -38 & 41 & -34 \\ 0 & 0 & 1 & 27 & -29 & 24 \end{bmatrix} \xrightarrow{3(-1)} \xrightarrow{2+3(1)}$$

$$\mathbf{A}^{-1} = \left[\begin{array}{rrr} 1 & -1 & 1 \\ -38 & 41 & -34 \\ 27 & -29 & 24 \end{array} \right].$$

(2)

$$\begin{bmatrix} 22 & -6 & -26 & 17 \\ -17 & 5 & 20 & -13 \\ -1 & 0 & 2 & -1 \\ 4 & -1 & -5 & 3 \end{bmatrix}.$$

(3)

$$\begin{bmatrix} \frac{1}{4} & \frac{1}{4} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{4} & \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} \\ \frac{1}{4} & -\frac{1}{4} & \frac{1}{4} & -\frac{1}{4} \\ \frac{1}{4} & -\frac{1}{4} & -\frac{1}{4} & \frac{1}{4} \end{bmatrix}$$

(不难发现,此逆中 $a_{ij} = \frac{1}{4}a_{ij}$.可以适当记<mark>住此</mark>矩阵).

3.

$$\mathbf{AX} = \mathbf{B} \Longrightarrow \mathbf{X} = \mathbf{A}^{-1}\mathbf{B}$$

若
$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$
,则 $\mathbf{A}^{-1} = |A|^{-1} \begin{bmatrix} a_{22} & -a_{12} \\ -a_{21} & a_{11} \end{bmatrix}$

$$(1)\mathbf{X} = -\frac{1}{2} \begin{bmatrix} 4 & -2 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 3 & 5 \\ 5 & 9 \end{bmatrix} = \begin{bmatrix} -1 & -1 \\ 2 & 3 \end{bmatrix}$$

$$(2)\begin{bmatrix} 6 & 4 & -19 \\ 2 & 1 & 46 \end{bmatrix}$$

$$(2) \left[\begin{array}{ccc} 6 & 4 & -19 \\ 2 & 1 & -46 \\ 3 & 3 & -39 \end{array} \right].$$

4. 欲得 AB = BA, 已知 A, 不妨设 B 为同阶矩阵, 根据矩阵的乘法, 又若矩阵 A = B, 则 $a_{ij} = b_{ij}$

$$(1) 设 B 为 \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

$$AB = \begin{bmatrix} a+c & b+d \\ c & d \end{bmatrix} = \begin{bmatrix} a & a+b \\ c & c+d \end{bmatrix} = AB$$

$$\mathbb{E} \colon \left\{ \begin{array}{ll} a+c & = & a \\ b+d & = & a+b \\ c & = & c \\ d & = & c+d \end{array} \right. \Longrightarrow \left\{ \begin{array}{ll} c & = & 0 \\ a & = & d \end{array} \right.$$

故: B=
$$\begin{bmatrix} a & b \\ 0 & a \end{bmatrix}(\forall a, b \in \mathbf{R})$$

5.

$$\begin{bmatrix} 1 & 2 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 1 & 0 & 0 \\ 0 & 0 & 1 & 3 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & 2 \\ 0 & 0 & 0 & 0 & 2 & 1 \end{bmatrix}$$

 $\begin{bmatrix} 1 \\ 2 \\ \vdots \\ 1 \\ 3 \\ \vdots \\ 1 \end{bmatrix}$

$$AB = \begin{bmatrix} \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \\ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 2 & 1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \\ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} + \begin{bmatrix} 3 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} \end{bmatrix} = \begin{bmatrix} 5 \\ 4 \\ 5 \\ 10 \\ 8 \\ 5 \end{bmatrix}$$

6. 同第四颗、设出矩阵分析即可。

不妨设:
$$B = \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1n} \\ b_{21} & b_{22} & \cdots & b_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ b_{n1} & b_{n2} & \cdots & b_{nn} \end{bmatrix} (b_{ij} \neq 0, ifi \neq j)$$

$$AB = BA$$

$$\Rightarrow \begin{bmatrix} a_{1}b_{11} & a_{1}b_{12} & \cdots & a_{1}b_{1n} \\ a_{2}b_{21} & a_{2}b_{22} & \cdots & a_{2}b_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n}b_{n1} & a_{n}b_{n2} & \cdots & a_{n}b_{nn} \end{bmatrix} = \begin{bmatrix} a_{1}b_{11} & a_{2}b_{12} & \cdots & a_{n}b_{1n} \\ a_{1}b_{21} & a_{2}b_{22} & \cdots & a_{n}b_{2n} \\ \vdots & \vdots & \vdots & \vdots \\ a_{1}b_{n1} & a_{2}b_{n2} & \cdots & a_{n}b_{nn} \end{bmatrix}$$

$$\Rightarrow a_{i}b_{ij} = a_{j}b_{ij} (i \neq j)$$

$$\Rightarrow a_{i} = a_{j} (i \neq j)$$

矛盾, 故 $b_{ij} = 0 (i \neq j)$

- 7. 同上题。
- 8. 必要性:

$$A = \frac{1}{2}(B+E) \Rightarrow B = (2A-E) \Rightarrow B^2 = (2A-E)^2 = E.$$

充分性:

$$B = (2A - E) \Rightarrow 4A^2 - 4A + E = E \Rightarrow A^2 = A.$$

9. 必要性:

由于 A 为实对称矩阵,设 $A^2 = (b_{ij})_{n \times n}$ 则: $b_{ii} = \sum_{j=1}^n a_{ij} a_{ji} = \sum_{k=1}^n a_{ij}^2 \geqslant 0 \text{ (if } a_{ij} = 0, a_{ij}^2 = 0) \Longrightarrow \mathbf{A} = \mathbf{O}$ 充分性:

显然

10. 充分性:

$$(AB)^T = AB = B^T A^T = BA$$

必要性:

25

$$(AB)^T = B^T A^T = BA = AB$$

11. 由 $(E-A)(E+A+A^2+A^3+\cdots+A^{k-1})=E$ 即得.

兰州大学数学协会 第一章 矩阵代数

$$12. \ \delta_{ij} = \begin{cases} 1 & if \quad i = j \\ 0 & if \quad i \neq j \end{cases}$$
 欲证此三款命题等价,只需证(1) ⇒ (2) ⇒ (3) ⇒ (1)
(1) ⇒ (2)
由于 $A^{-1} = A^{T}$, 即: $AA^{T} = (\sum_{k=1}^{n} a_{ik} a_{jk})_{n \times n} = E \Longrightarrow \sum_{k=1}^{n} a_{ik} a_{jk} = \delta_{ij}$
(2) ⇒ (3)
 $\sum_{k=1}^{n} a_{ik} a_{jk} = \delta_{ij} \Longrightarrow AA^{T} = E \Longrightarrow |A| \neq 0 \Longrightarrow A^{T}A = E \Longrightarrow \sum_{k=1}^{n} a_{ki} a_{kj} = \delta_{ij}.$

 $(3) \Longrightarrow (1)$

上已证。

13.

$$X^{-1} = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix}$$

$$AA^{-1} = \begin{bmatrix} AA_3 & AA_4 \\ CA_1 & CA_2 \end{bmatrix}$$

$$\Rightarrow A_3 = A^{-1} \quad A_2 = C^{-1} \quad A_4 = A_1 = O$$

$$14. \, \diamondsuit \left\{ \begin{array}{l} a_{ij} = b_{ij} + c_{ij} \\ a_{ji} = b_{ji} + c_{ji} \end{array} \right.$$

当 $b_{ij} = b_{ji}, c_{ij} = -c_{ji}$ 时,上述方程有解的。 故命题成立。

15. 取
$$X = e_i = (\delta_{i1}, \delta_{i2}, \dots, \delta_{in}), (i = 1, 2, 3, \dots, n)$$
 (克罗内克符号)
则由 $AX = O$ 可知: $a_{ki} = 0 (k = 1, 2, 3, \dots, n)$
即: $A = O$

16. 由 A、D 可知:

$$\begin{bmatrix} A & B \\ C & D \end{bmatrix} \iff \begin{bmatrix} A - BD^{-1}C & 0 \\ C & D \end{bmatrix} (\begin{bmatrix} A & B \\ O & D - CA^{-1}B \end{bmatrix})$$

$$\iff \begin{bmatrix} A - BD^{-1}C & 0 \\ O & D \end{bmatrix} (\begin{bmatrix} A & O \\ O & D - CA^{-1}B \end{bmatrix})$$

$$\iff A - BD^{-1}C(D - CA^{-1}B)reversible.$$

17. $\forall A, B \in S, AB \in S$, 且 $(AB)^3 = BA$,有:

$$(AB)^9 = (BA)^3 = (AB)$$

 $(AB)^9 = ((ABAB)(AB))^3 = (ABABAB) = BA$

故: AB = BA

18. 我们从表达式可看到,A 实际上是对 X_n 做了三次初等行变换,(1-3, 3-2, 2-1),这 一个 3-轮换, $\begin{pmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{pmatrix}$,可知其以三为周期,且迭代三次之后矩阵 X_n 整体 每个元素加一。因此有

$$X_{n} = \begin{cases} \begin{bmatrix} k & k & k \\ k & k & k \\ k & k & k \end{bmatrix} & \text{n=3k} \\ \begin{bmatrix} k+1 & k & k \\ k & k+1 & k \\ k & k & k+1 \\ k+1 & k+1 & k \\ k & k+1 & k+1 \\ k+1 & k & k+1 \end{bmatrix} & \text{n=3k+1} \\ & \text{n=3k+2} \end{cases}$$

19. 若存在,则有

$$\left(\sum_{j=1}^{n} a_{ij}b_{ji} - \sum_{j=1}^{n} b_{ij}a_{ji}\right) = c_{ii} = 1 \qquad i = 1 \cdot 2 \cdot \dots n$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} (a_{ij}b_{ji} - b_{ij}a_{ji}) = n$$

$$\sum_{i=1}^{n} \sum_{j=1}^{n} (a_{ij}b_{ji} - b_{ij}a_{ji}) = 0$$

故

$$\sum_{i=1}^{n} \sum_{j=1}^{n} (a_{ij}b_{ji} - b_{ij}a_{ji}) = n$$

但是:

$$\sum_{i=1}^{n} \sum_{j=1}^{n} (a_{ij}b_{ji} - b_{ij}a_{ji}) = 0$$

矛盾。因此不存在这样的 A、B

20. 设:
$$A = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{n1} & & a_{nn} \end{bmatrix} X = \begin{bmatrix} x_{11} & \cdots & x_{1n} \\ \vdots & & \vdots \\ x_{n1} & \cdots & x_{nn} \end{bmatrix}$$
 则:

欲证 A = O, 只需证 $a_{ij} = 0$, 因此不妨令 X_{ij} 为 x_{ij} 为 1, 其余元素为 0 的矩阵. 这样由 $\forall X$, tr(AX)=0 可知: $a_{ji}=0 (i, j=1, 2, 3, \cdots, n.)$, 即 A=O.

21. 充分性:

$$ABAB = AABB = E$$

必要性:

$$AB = BA$$

$$\implies ABA = BAA = B$$

$$\implies ABAB = BB = E.$$

22. 充分性:

$$(A + B)^2 = AA + AB + BA + BB = AA + BB = A + B$$

必要性:

$$(A+B)^2 = A+B = AA+BB+AB+BA$$

$$\implies AB + BA = O$$

$$\implies ABA + BAA = O, AAB + ABA = O$$

$$\Longrightarrow BA = AB = O$$

23.
$$\pm : A^3 = 2E$$

$$\implies A^3 - E = E$$

$$\implies (A-E)(A^2+A+E)=E$$

$$\implies B^{-1} = ((A - E)^2)^{-1}$$

$$\implies B^{-1} = (A^2 + A + E)^2 = 3A^2 + 4A + 5E$$

24. 设:
$$D^{-1} = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix}$$

则有:

$$\begin{cases} AA_1 + BA_3 = 1 \\ AA_2 + BA_4 = 0 \\ BA_1 + AA_3 = 0 \\ BA_1 + AA_2 = 1 \end{cases}$$

 \Longrightarrow

$$A_1 = A_4 = \frac{(A-B)^{-1} + (A+B)^{-1}}{2}, A_2 = A_3 = \frac{(A+B)^{-1} - (A-B)^{-1}}{2}$$

25. (1) 若 f(A) = O, 则有:

$$\left(-\frac{a_0}{a_m}A^{m-1} - \dots - \frac{a_{m-1}}{a_m}\right)A = E$$

即 A 可逆, 矛盾。

(2) 当 $a_m = 0$ 时,显然有 $a_0 A^{m-1} + a_1 A^{m-2} + \cdots + a_{m-1} E = O$,因此存在一个次数 为 m-1 的

多项式 g(x) 使得 g(A) = O

. 当 $a_m \neq 0$ 时,同(1)即可

欢迎加入 数的美位

28

26.

$$A' = [A'_1.A'_2.\cdots.A'_n]$$

故:

$$A'A = \sum_{i=1}^{n} A'_i A_i$$

27.

$$A = \begin{pmatrix} O_{(n-1)\times 1} & A_{(n-1)\times (n-1)} \\ A_{1\times 1} & O_{1\times (n-1)} \end{pmatrix}$$

$$B = \begin{pmatrix} B_{1\times (n-1)} & B_{1\times 1} \\ B_{(n-1)\times (n-1)} & B_{(n-1)\times 1} \end{pmatrix}$$

$$AB = \begin{pmatrix} A_{(n-1)\times (n-1)}B_{(n-1)\times (n-1)} & A_{(n-1)\times (n-1)}B_{(n-1)\times 1} \\ A_{1\times 1}B_{1\times (n-1)} & A_{1\times 1}B_{1\times 1} \end{pmatrix}$$

$$\Rightarrow$$

$$B_{1\times (n-1)} = O_{1\times (n-1)}$$

$$B_{1\times 1} = \frac{1}{a_{11}}$$

$$B_{1\times 1} = \frac{1}{a_{11}}$$

$$B_{(n-1)\times(n-1)} = A_{(n-1)\times(n-1)}^{-1}$$

$$= \begin{pmatrix} \sum_{i=2}^{n} a_{ii} & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & \sum_{i=1}^{n-1} a_{ii} \end{pmatrix}$$

$$B_{(n-1)\times 1} = O_{(n-1)\times 1}$$

28. 只需要考虑对角线上的元素即可。

不妨设数量矩阵对角元素为 k, 迹为零的矩阵的对角元素为 $b_i(i=1,2,3,\dots,n)$

$$\begin{cases} b_1 + b_2 + b_3 + \cdots + b_n & = 0 \\ b_1 + & + k = a_{11} \\ & b_2 + & + k = a_{22} \\ & & b_3 + & + k = a_{33} \\ & \vdots & & & \\ & & b_n + k = a_{nn} \end{cases}$$

即: $\bar{H}\bar{b}=\bar{a}$

兰州大学数学协会 第一章 矩阵代数

其中:

$$\bar{H} = \begin{bmatrix} 1 & 1 & 1 & \cdots & 1 & 0 \\ 1 & 0 & 0 & \cdots & 0 & 1 \\ 0 & 1 & 0 & \cdots & 0 & 1 \\ 0 & 0 & 1 & \cdots & 0 & 1 \\ & & & \vdots & & \\ 0 & 0 & 0 & \cdots & 1 & 1 \end{bmatrix}$$

 $\bar{b} = (b_1, b_2, b_3, \dots, b_n, k)^T \bar{a} = (0, a_{11}, a_{22}, a_{33}, \dots, a_{nn})^T \bar{H}$ 显然可逆(只需将第一行加到下面的 n-1 行即可),故方程组有唯一解。

29.

$$A^{2} = A * A', B^{2} = B * B'$$

$$\Rightarrow a_{ii}^{*} = \sum_{j=1}^{n} a_{ij} \ge 0, b_{ii}^{*} = \sum_{j=1}^{n} b_{ij} \ge 0$$

$$C = -C'$$

$$c_{ii} = 0, c_{ii}^{*} \le 0$$

$$C^{2} = A^{2} + B^{2}$$

$$\Rightarrow a_{ij} = b_{ij} = c_{ij} = 0$$

- 30. 由于 $A(A^{-1} + B^{-1})B = B + A$ $\Longrightarrow (A^{-1} + B^{-1})(B(B + A)^{-1}A) = E$ 故 $A^{-1} + B^{-1}$ 可逆。
- 31. 欲证: AB = BA即证 A + B = BA $\Leftrightarrow BA - A - B + E = E$ $\Leftrightarrow (B - E)(A - E) = E$ $\Leftrightarrow (A - E)(B - E) = E$ $\Leftrightarrow AB = A + B$ 显然

第二章 一类特殊线性方程组的行列式法则 (Cramer 法则)

习题

1. 计算下列行列式:

(1)
$$\begin{vmatrix} a+b & c & 1 \\ b+c & a & 1 \\ a+c & b & 1 \end{vmatrix}$$
, (2) $\begin{vmatrix} \sin^2 \alpha & 1 & \cos^2 \alpha \\ \sin^2 \beta & 1 & \cos^2 \beta \\ \sin^2 \gamma & 1 & \cos^2 \gamma \end{vmatrix}$

(3)
$$\begin{vmatrix} 1 & \varepsilon & \varepsilon^2 \\ \varepsilon & \varepsilon^2 & 1 \\ x & y & z \end{vmatrix}$$
, 其中 ε 为 $x^3 - 1 = 0$ 的任意一个根;

$$(8) \begin{vmatrix} a & b & c & 1 \\ b & c & a & 1 \\ c & a & b & 1 \\ \frac{(b+c)}{2} & \frac{(a+c)}{2} & \frac{(a+b)}{2} & 1 \end{vmatrix}$$

欢迎加级 数的美位

$$(9) \begin{vmatrix} x & y & 0 & \cdots & 0 & 0 \\ 0 & x & y & \cdots & 0 & 0 \\ 0 & 0 & x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & x & y \\ y & 0 & 0 & \cdots & 0 & x \end{vmatrix}$$

$$(10) \begin{vmatrix} a_1 - b_1 & a_1 - b_2 & \cdots & a_1 - b_n \\ a_2 - b_1 & a_2 - b_2 & \cdots & a_2 - b_n \\ \vdots & \vdots & & \vdots \\ a_n - b_1 & a_n - b_2 & \cdots & a_n - b_n \end{vmatrix}; (提示: 分 n = 1, n = 2 和 n \ge 3 三种情况.)$$

$$(11) \begin{vmatrix} x & a & a & \cdots & a \\ a & x & a & \cdots & a \\ \vdots & \vdots & & \vdots & \vdots \\ a & a & a & \cdots & x \end{vmatrix}$$

$$(12) \begin{vmatrix} \frac{1-a_1^n b_1^n}{1-a_1 b_1} & \frac{1-a_1^n b_2^n}{1-a_1 b_2} & \dots & \frac{1-a_1^n b_n^n}{1-a_1 b_n} \\ \frac{1-a_2^n b_1^n}{1-a_2 b_1} & \frac{1-a_2^n b_2^n}{1-a_2 b_2} & \dots & \frac{1-a_2^n b_1^n}{1-a_2 b_1} \\ \vdots & \vdots & & \vdots \\ \frac{1-a_n^n b_1^n}{1-a_n b_1} & \frac{1-a_n^n b_2^n}{1-a_n b_2} & \dots & \frac{1-a_n^n b_n^n}{1-a_n b_n} \end{vmatrix}$$

$$(13) \begin{vmatrix} a & a & a & \cdots & a & 0 \\ a & a & a & \cdots & 0 & b \\ a & a & a & \cdots & b & b \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ a & 0 & b & \cdots & b & b \\ 0 & b & b & \cdots & b & b \end{vmatrix}$$

$$\begin{pmatrix}
 1 & 2 & 3 & \cdots & n \\
 a & 1 & 2 & \cdots & n-1 \\
 a & a & 1 & \cdots & n-2 \\
 \vdots & \vdots & \vdots & & \vdots \\
 a & a & a & \cdots & 2 \\
 a & a & a & \cdots & 1
 \end{cases}$$

$$(15) \begin{vmatrix} 2 & 1 & 0 & \cdots & 0 & 0 \\ 1 & 2 & 1 & \cdots & 0 & 0 \\ 0 & 1 & 2 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2 & 1 \\ 0 & 0 & 0 & 0 \cdots & 1 & 2 \end{vmatrix};$$

(17)
$$\begin{vmatrix} 1 + a_1 & 1 & \cdots & 1 \\ 2 & 2 + a_2 & \cdots & 2 \\ \vdots & \vdots & & \vdots \\ n & n & \cdots & n + a_n \end{vmatrix}, \sharp + \prod_{i=1}^n a_i \neq 0;$$

$$(18) \begin{vmatrix} x & y & y & \cdots & y & y \\ z & x & y & \cdots & y & y \\ z & z & x & \cdots & y & y \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ z & z & z & \cdots & x & y \\ z & z & z & \cdots & z & x \end{vmatrix}$$

(19)
$$\begin{vmatrix} \cos \alpha & 1 & 0 & \cdots & 0 & 0 \\ 1 & 2\cos \alpha & 1 & \cdots & 0 & 0 \\ 0 & 1 & 2\cos \alpha & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2\cos \alpha & 1 \\ 0 & 0 & 0 & \cdots & 1 & 2\cos \alpha \end{vmatrix};$$

$$(20) \begin{vmatrix} 1 & a_1 & a_1^2 & \cdots & a_1^{n-2} & a_1^n \\ 1 & a_2 & a_2^2 & \cdots & a_2^{n-2} & a_2^n \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 1 & a_n & a_n^2 & \cdots & a_n^{n-2} & a_n^n \end{vmatrix};$$

$$(21) \begin{vmatrix} 0 & a_1 + a_2 & a_1 + a_3 & \cdots & a_1 + a_n \\ a_2 + a_1 & 0 & a_2 + a_3 & \cdots & a_2 + a_n \\ \vdots & \vdots & \vdots & & \vdots \\ a_n + a_1 & a_n + a_2 & a_n + 3 & \cdots & 0 \end{vmatrix};$$

$$(22) \begin{vmatrix} \alpha + \beta & \alpha\beta & 0 & \cdots & 0 & 0 \\ 1 & \alpha + \beta & \alpha\beta & \cdots & 0 & 0 \\ 0 & 1 & \alpha + \beta & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha + \beta & \alpha\beta \\ 0 & 0 & 0 & \cdots & 1 & \alpha + \beta \end{vmatrix}$$

$$(23) \begin{vmatrix} a & & & & & b \\ & \ddots & & & \ddots & \\ & & a & b & \\ & & b & a & \\ & & \ddots & & \ddots & \\ b & & & & a \end{vmatrix}_{2n};$$

2. 证明:

(2) 已知 204,527,255 都是 17 的倍数. 则

也是 17 的倍数;

- (3) 若 $(a_{ij})_n$ 为正交矩阵, 则 $|a_{ij}| = \pm 1$;
- (4) 若 $(a_{ij})_n$ 反对称, 则当 n 为奇数时, $|a_{ij}|=0$;

 $|a_{ij}| \neq 0;$

(6) 可逆的上(下)三角矩阵的逆矩阵仍为上(下)三角矩阵;

(7) 若

$$D = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1,n-1} & 1 \\ a_{21} & a_{22} & \cdots & a_{2,n-1} & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{n-1,1} & a_{n-1,2} & \cdots & a_{n-1,n-1} & 1 \\ a_{n1} & a_{n2} & \cdots & a_{n,n-1} & 1 \end{vmatrix}$$

 D_i 表示用 $x_1, x_2, \dots, x_{n-1}, 1$ 取代 D 的第 i 行所得的行列式, 其中 x_i 为 P 上的变

$$D = \sum_{i=1}^{n} D_i,$$

(提示: 计算 $\sum_{i=1}^{n} D_i$, 将 D_i 依第 i 行展开.)

- 3. $\Diamond n$ 阶方阵 A 的所有元素仅为 1 或-1. 证明: $2^{n-1} | |A|$.
- 4. 令 n 阶行列式 D 的所有元素仅为 1,-1 或 0. 证明: 当 $n \ge 3$ 时,

$$D \le (n-1)!(n-1).$$

5. 证明:n 为奇数时,下列行列式 D 一定非零.

$$D = \begin{vmatrix} 1 & 2 & 3 & \cdots & n-1 & n \\ 2^2 & 3^2 & 4^2 & \cdots & n^2 & (n+1)^2 \\ 3^3 & 4^3 & 5^3 & \cdots & (n+1)^3 & (n+1)^3 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ n^n & (n+1)^n & (n+1)^n & \cdots & (n+1)^n & (n+1)^n \end{vmatrix}$$

6. 证明:

$$\begin{vmatrix} a_{11} + x & a_{12} + x & \cdots & a_{1n} + x \\ a_{21} + x & a_{22} + x & \cdots & a_{2n} + x \\ \vdots & \vdots & & \vdots \\ a_{n1} + x & a_{n2} + x & \cdots & a_{nn} + x \end{vmatrix} = |A| + x \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij};$$

其中 $|A| = |a_{ij}|, A_{ij}$ 为 a_{ij} 的代数余子式.

- 7. 证明:4 阶行列式不能有对角线法计算.
- 8. 证明: 如果 n 阶行列式在 k 个行和 h 个列的交点处的元素都为零, 且 k+h>n, 则行 列式为零.
- 9. $\Diamond A = (a_{ij})$ 为 n 阶实方阵, $0 \le a_{ij} \le \delta, i, j = 1, 2, \dots, n$. 证明:

$$|A| \le \delta^n 2^{-n} (n+1)^{\frac{n+1}{2}}$$

10. 令 a_{ij} 为整数,i, j = 1.2...., n. 证明:

$$\begin{vmatrix} a_{11} - \frac{1}{m} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \frac{1}{m} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \frac{1}{m} \end{vmatrix} \neq 0(\text{ \underline{x} \underline{x} $m $\neq 0, 1 - 1)}.$$

11. 令 $A = a_{ij}$ 为 n 阶方阵 $(n \ge 2), A^*$ 为 A 的伴随矩阵. 证明:

$$(1)|A^*| = |A|^{n-1};$$

$$(2)\begin{vmatrix} A_{22} & A_{23} & \cdots & A_{2n} \\ A_{32} & A_{33} & \cdots & A_{3n} \\ \cdots & \cdots & \cdots \\ A_{n2} & A_{n3} & \cdots & A_{nn} \end{vmatrix} = a_{11}|A|^{n-2}, 其中 |A| \neq 0, A_{ij} 为 a_{ij} 的代数余子式.$$

12. Cramer 法则解下列方程组:

$$(1) \begin{cases} 2x + 3y + 5z = 10, \\ 3x + 2y + 4z = 3, \\ x + 2y + 2z = 3; \end{cases}$$

$$(2) \begin{cases} 5x + 2y + 3z + 2 = 0, \\ 2x - 2y + 5z + 2 = 0, \\ 3x + 4y + 2z + x = 0; \end{cases}$$

$$(3) \begin{cases} 6x + 5y - 2z + 4t + 4 = 0, \\ 9x - y + 4z - t - 13 = 0, \\ 3x + 4y + 2z - 2t - 1 = 0, \\ 3x - 9y + 2z - 14 = 0. \end{cases}$$

13. 用 Cramer 法则解引言中的习题 7 和习题 8.

解答

1. (1):
$$\begin{vmatrix} a+b & c & 1 \\ b+c & a & 1 \\ a+c & b & 1 \end{vmatrix} = \begin{vmatrix} a+b+c & c & 1 \\ a+b+c & b & 1 \\ a+b+c & c & 1 \end{vmatrix} = 0$$
(2):
$$\begin{vmatrix} sin^{2}\alpha & 1 & cos^{2}\alpha \\ sin^{2}\beta & 1 & cos^{2}\beta \\ sin^{2}\gamma & 1 & cos^{2}\gamma \end{vmatrix} = \begin{vmatrix} 1 & 1 & cos^{2}\alpha \\ 1 & 1 & cos^{2}\beta \\ 1 & 1 & cos^{2}\gamma \end{vmatrix} = 0$$
(3):
$$\begin{vmatrix} 1 & \varepsilon & \varepsilon^{2} \\ \varepsilon & \varepsilon^{2} & 1 \\ x & y & z \end{vmatrix} = x(\varepsilon - \varepsilon^{4}) - y(1 - \varepsilon^{3}) + z(\varepsilon^{2} - \varepsilon^{2}) = 0$$

(4):
$$\begin{vmatrix} 1 & a & a^2 \\ 1 & b & b^2 \\ 1 & c & c^2 \end{vmatrix} = (c-a)(c-b)(b-a)$$
 (Vandermonde 行列式)

$$(5): \begin{vmatrix} 5 & 1 & 2 & 7 \\ 3 & 0 & 0 & 2 \\ 1 & 3 & 4 & 5 \\ 2 & 0 & 0 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 1 & 5 & 7 \\ 4 & 3 & 1 & 5 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & 2 & 3 \end{vmatrix} = \begin{vmatrix} 2 & 1 \\ 4 & 3 \end{vmatrix} * \begin{vmatrix} 3 & 2 \\ 2 & 3 \end{vmatrix} = 2*5=10$$

$$(6): \begin{vmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 5 & 7 \\ 1 & 4 & 7 & 10 \\ 1 & 5 & 9 & 13 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 2 & 4 & 6 \\ 0 & 3 & 6 & 9 \end{vmatrix} = \begin{vmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 1 & 2 & 3 \\ 0 & 2 & 4 & 6 \end{vmatrix} = 0$$

$$(7): \begin{vmatrix} 2 & 5 & 4 & 10 \\ 1 & 0 & 2 & 8 \\ 3 & 5 & 4 & 6 \\ 3 & 0 & 2 & 2 \end{vmatrix} = -5 \begin{vmatrix} 1 & 2 & 8 \\ 3 & 4 & 6 \\ 3 & 2 & 2 \end{vmatrix} - 5 \begin{vmatrix} 2 & 4 & 10 \\ 1 & 2 & 8 \\ 3 & 2 & 2 \end{vmatrix}$$

= -5(-4+3*12-3*20-2*12+12+3*12)=20

$$(8): \begin{vmatrix} a & b & c & 1 \\ b & c & a & 1 \\ c & a & b & 1 \\ \frac{b+c}{2} & \frac{a+c}{2} & \frac{b+a}{2} & 1 \end{vmatrix} = \begin{vmatrix} a & b & c & 1 \\ b & c & a & 1 \\ c+b & a+c & b+a & 2 \\ \frac{b+c}{2} & \frac{a+c}{2} & \frac{b+a}{2} & 1 \end{vmatrix} = 0$$

$$(9): \begin{vmatrix} x & y & 0 & \cdots & 0 & 0 \\ 0 & x & y & \cdots & 0 & 0 \\ 0 & 0 & x & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & x & y \\ y & 0 & 0 & 0 & 0 & x \end{vmatrix}$$

$$= x \begin{vmatrix} x & y & \cdots & 0 & 0 \\ 0 & x & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & x & y \\ 0 & 0 & \cdots & 0 & x \end{vmatrix} + (-1)^{n+1} y \begin{vmatrix} y & 0 & \cdots & 0 & 0 \\ x & y & \cdots & 0 & 0 \\ 0 & x & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & x & y \end{vmatrix}$$

$$= x^{n} + (-1)^{n+1} y^{n}$$

(10): 当 $n \ge 3$ 时:

$$\begin{vmatrix} a_1-b_1 & a_1-b_2 & \cdots & a_1-b_n \\ a_2-b_1 & a_2-b_2 & \cdots & a_2-b_n \\ \vdots & \vdots & & \vdots \\ a_n-b_1 & a_n-b_2 & \cdots & a_n-b_n \end{vmatrix} = \begin{vmatrix} a_1-b_1 & a_1-b_2 & \cdots & a_1-b_n \\ a_2-a_1 & a_2-a_1 & \cdots & a_2-a_n \\ \vdots & \vdots & & \vdots \\ a_n-a_1 & a_n-a_1 & \cdots & a_n-a_n \end{vmatrix} = 0$$

$$\stackrel{\cong}{=} n=2 \text{ B};$$

$$\begin{vmatrix} a_1-b_1 & a_1-b_2 \\ a_2-b_1 & a_2-b_2 \end{vmatrix} = (a_1-a_2)(b_1-b_2)$$

$$\stackrel{\cong}{=} n=1 \text{ B};$$

$$a_1-b_1$$

$$(11): \begin{vmatrix} x & a & a & \cdots & a \\ a & x & a & \cdots & a \\ a & a & x & \cdots & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & a & a & \cdots & x \end{vmatrix} = (x + (n-1)a) \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ a & x & a & \cdots & a \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a & a & x & \cdots & x \end{vmatrix}$$

$$= (x + (n-1)a) \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & x - a & 0 & \cdots & 0 \\ 0 & 0 & x - a & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & x - a \end{vmatrix} = (x + (n-1)a)(x - a)^{n-1}$$

$$(12): |A| = \begin{vmatrix} \sum_{k=0}^{n-1} a_1^k b_1^k & \sum_{k=0}^{n-1} a_1^k b_2^k & \cdots & \sum_{k=0}^{n-1} a_1^k b_n^k \\ \sum_{k=0}^{n-1} a_2^k b_1^k & \sum_{k=0}^{n-1} a_2^k b_2^k & \cdots & \sum_{k=0}^{n-1} a_2^k b_n^k \\ \vdots & \vdots & & \vdots \\ \sum_{k=0}^{n-1} a_n^k b_1^k & \sum_{k=0}^{n-1} a_n^k b_2^k & \cdots & \sum_{k=0}^{n-1} a_n^k b_n^k \end{vmatrix}$$

$$= \begin{vmatrix} 1 & a_1 & \cdots & a_1^{n-1} \\ 1 & a_2 & \cdots & a_2^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & a_n & \cdots & a_n^{n-1} \end{vmatrix} \begin{vmatrix} 1 & 1 & \cdots & 1 \\ b_1 & b_2 & \cdots & b_n \\ \vdots & \vdots & & \vdots \\ b_1^{n-1} & b_2^{n-1} & \cdots & b_n^{n-1} \\ \vdots & \vdots & & \vdots \\ 1 & a_1 & \cdots & a_n^{n-1} \end{vmatrix} \begin{vmatrix} b_1^{n-1} & b_2^{n-1} & \cdots & b_n^{n-1} \\ \vdots & \vdots & & \vdots \\ b_1^{n-1} & b_2^{n-1} & \cdots & b_n^{n-1} \end{vmatrix}$$

$$= \prod_{1 \le i < j \le n} (a_i - a_j) \prod_{1 \le i < j \le n} (b_i - b_j)$$

(13): 若 b, a 为零, 则 $|A_n|$ 为 0. 若 b, a 相等且不为零, 则 $|A| = (-1)^{n^2 + n - 2}(n - 1)a^n$ 否则, 有:

$$|A| = \begin{vmatrix} a & a & a & \cdots & a & b \\ a & a & a & \cdots & 0 & b \\ a & a & a & \cdots & b & b \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a & 0 & b & \cdots & b & b \\ 0 & b & b & \cdots & b & b \end{vmatrix} + \begin{vmatrix} a & a & a & \cdots & a & -b \\ a & a & a & \cdots & b & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a & 0 & b & \cdots & b & b \end{vmatrix} + \begin{vmatrix} a & a & a & \cdots & a & -b \\ a & a & a & \cdots & b & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \cdots & -a & b \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & b - a & \cdots & b - a & b \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -a & b - a & \cdots & b - a & b \end{vmatrix} - b|A_{n-1}|$$

$$= (-1)^{\frac{n^2 + n - 2}{2}} a^{n-1} b - b|A_{n-1}|$$

$$= (-1)^{\frac{n^2 + n - 2}{2}} a^{n-1} b - b|A_{n-1}|$$

$$= (-1)^{\frac{n^2 + n - 2}{2}} a^{n-1} b - b|A_{n-1}|$$

$$= \begin{vmatrix} 1 - a & 1 & 1 & \cdots & 1 \\ 0 & 1 - a & 1 & \cdots & 1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ a & a & a & \cdots & 1 \end{vmatrix} + \begin{vmatrix} 1 - a & 1 & 1 & \cdots & 0 \\ 0 & 1 - a & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \\ a & a & a & \cdots & 1 - a \end{vmatrix} + \begin{vmatrix} 1 - a & 1 & 1 & \cdots & 0 \\ 0 & 0 & 1 - a & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \\ -1 & -a & 0 & \cdots & 0 \\ -1 & -a & 0 & \cdots & 0 \\ -1 & -a & 0 & \cdots & 0 \\ -1 & -a & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ -1 & -1 & -1 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & a \end{vmatrix}$$

$$= (1 - a)^n + a(-1)^{n-1} a^{n-1} = (-1)^n ((a - 1)^n - a^n)$$

$$(15): |A_n| = 2|A_{n-1}| - |A_{n-2}| \not \boxtimes |A_n| \not \Rightarrow \not \cong \not \Longrightarrow \not \exists |A_n| |A_n| = (n - 1)(|A_2| - |A_n|)$$

(15): $|A_n| = 2|A_{n-1}| - |A_{n-2}|$ 故 $|A_n|$ 为等差数列 $|A_n| = (n-1)(|A_2| - |A_1|) + |A|_1 = (n-1)(|A_2| - |A_1|)$

n+1

$$(16): |A| = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 0 & 2^{n} - 2 & 2^{n-1} - 2 & \cdots & 2^{3} - 2 & 2^{2} - 2 \\ 0 & 3^{n} - 3 & 3^{n-1} - 3 & \cdots & 3^{3} - 3 & 3^{2} - 3 \\ \vdots & \vdots & & \vdots & & \vdots & \vdots \\ 0 & n^{n} - n & n^{n-1} + -n & \cdots & n^{3} - n & n^{2} - n \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & 1 \\ 2 & 2^n & 2^{n-1} & \cdots & 2^3 & 2^2 \\ 3 & 3^n & 3^{n-1} & \cdots & 3^3 & 3^2 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ n & n^n & n^{n-1} & \cdots & n^3 & n^2 \end{vmatrix}$$

$$= (-1)^{n-1} \begin{vmatrix} 1 & 1 & \cdots & 1 & 1 & 1 \\ 2^n & 2^{n-1} & \cdots & 2^3 & 2^2 & 2 \\ 3^n & 3^{n-1} & \cdots & 3^3 & 3^2 & 3 \\ \vdots & \vdots & & \vdots & \vdots & \vdots \\ n^n & n^{n-1} & \cdots & n^3 & n^2 & n \end{vmatrix}$$

$$= (-1)^{n-1} \begin{vmatrix} 1 & 1 & \cdots & 1 & 1 & 1 \\ 2^n & 2^{n-1} & \cdots & 2^3 & 2^2 & 2 \\ 3^n & 3^{n-1} & \cdots & 3^3 & 3^2 & 3 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ n^n & n^{n-1} & \cdots & n^3 & n^2 & n \end{vmatrix}$$

$$= (-1)^{n-1} \begin{vmatrix} -1 & -1 & \cdots & -1 & -1 & 1 \\ 0 & 0 & \cdots & 0 & 0 & 2 \\ 3^{n-1}(3-2) & 3^{n-2}(3-2) & \cdots & 3^2(3-2) & 3^1(3-2) & 3 \\ \vdots & & \vdots & & \vdots & \vdots & \vdots \\ n^{n-1}(n-2) & n^{n-2}(n-2) & \cdots & n^2(n-2) & n^2(n-2) & n \end{vmatrix}$$

$$\begin{vmatrix} \vdots & \vdots \\ n^{n-1}(n-2) & n^{n-2}(n-2) & \cdots & n^2(n-2) & n^2(n-2) & n \end{vmatrix}$$

$$= (-1)^{2n+1+n-1} \begin{vmatrix} 2 & 2 & \cdots & 2 & 2 \\ 3^{n-1}(3-2) & 3^{n-2}(3-2) & \cdots & 3^2(3-2) & 3^1(3-2) \\ \vdots & \vdots & & \vdots & \vdots \\ n^{n-1}(n-2) & n^{n-2}(n-2) & \cdots & n^2(n-2) & n^2(n-2) \end{vmatrix}$$

$$= (-1)^{2n+1+n-1}(n-2)! \begin{vmatrix} 2 & 2 & \cdots & 2 & 2 \\ 3^{n-1} & 3^{n-2} & \cdots & 3^2 & 3^1 \\ \vdots & \vdots & & \vdots & \vdots \\ n^{n-1} & n^{n-2} & \cdots & n^2 & n^1 \end{vmatrix}$$

$$= (-1)^{2n+1+n-1}(n-2)! \begin{vmatrix} 1 & 1 & \cdots & 1 \end{vmatrix}$$

$$= (-1)^{2n+1+n-1}(n-2)! \begin{vmatrix} 2 & 2 & \cdots & 2 & 2 \\ 3^{n-1} & 3^{n-2} & \cdots & 3^2 & 3^1 \\ \vdots & \vdots & & \vdots & \vdots \\ n^{n-1} & n^{n-2} & \cdots & n^2 & n^1 \end{vmatrix}$$

$$= -2(-3)(2)\Pi_{k=3}^{n}(k-2)\Pi_{k=4}^{n}(k-3) \begin{vmatrix} 1 & 1 & \cdots & 1 \\ \vdots & \vdots & & \vdots \\ n^{n-2} & n^{n-3} & \cdots & n^{1} \end{vmatrix}$$

$$= -n \prod_{k=2}^{n-1} (-k^2) \prod_{2 \le i < j \le n} (j-i)$$

= $(-1)^{n-1} \prod_{i=0}^{n} (n-i)!$

$$(17): |A| = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ 0 & 1 + a_1 & 1 & \cdots & 1 \\ 0 & 2 & 2 + a_2 & \cdots & 2 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & n & n & \cdots & n + a_n \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 \\ -1 & a_1 & 0 & \cdots & 0 \\ -2 & 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ -n & 0 & 0 & \cdots & a_n \end{vmatrix}$$

$$= \begin{vmatrix} 1 + \frac{1}{a_1} + \cdots + \frac{1}{a_n} & 1 & 1 & \cdots & 1 \\ 0 & a_1 & 0 & \cdots & 0 \\ 0 & 0 & a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & a_n \end{vmatrix}$$

$$(18):|A_{n}| = \begin{vmatrix} z & y & y & \cdots & y \\ z & x & y & \cdots & y \\ z & z & x & \cdots & y \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ z & z & z & \cdots & x \end{vmatrix} + \begin{vmatrix} x-z & y & y & \cdots & y \\ 0 & x & y & \cdots & y \\ 0 & z & x & \cdots & y \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & z & z & \cdots & x \end{vmatrix}$$

$$= \begin{vmatrix} z & y-y & y-y & \cdots & y-y \\ z & x-y & y-y & \cdots & y-y \\ z & z-y & x-y & \cdots & y-y \\ \vdots & \vdots & \vdots & \vdots \\ z & z-y & z-y & \cdots & x-y \end{vmatrix} + (x-z)|A_{n-1}|$$

$$\begin{vmatrix} z & y-y & y-y & \cdots & y-y \\ z & x-y & y-y & \cdots & y-y \\ z & z-y & x-y & \cdots & y-y \\ \vdots & \vdots & & \vdots & & \vdots \\ z & z-y & z-y & \cdots & x-y \\ = z(x-y)^{n-1} + (x-z)|A_{n-1}| \qquad (1)$$

同理可得

$$|A_n| = y(x-z)^{n-1} + (x-y)|A_{n-1}|$$
(2)
(1)(x-y)-(2)(x-z): 可得:
$$|A_n| = \frac{z(x-y)^n - y(x-z)^n}{z-y}$$

(19): $|A_1| = \cos\alpha$, $|A_2| = 2\cos^2\alpha - 1 = \cos2\alpha$, $|A_3| = \cos3\alpha$. 不妨猜测 $D_n = \cos n\alpha$ 下 面用数学归纳法证明:

a) 当 n=1 时, 结论显然成立.

b) 假设当 $k \le n-1$ 时都成立, 则当 k=n 时:

$$D_n = 2\cos\alpha D_{n-1} - D_{n-2}$$

$$=2\cos\alpha\cos(n-1)\alpha-\cos(n-2)\alpha$$

$$= cosn\alpha + cos(n-2)\alpha - cos(n-2)\alpha$$

 $= cosn\alpha$

故猜想正确.

$$(20):|A_n| = \begin{vmatrix} 1 & y & y^2 & \cdots & y^{n-1} & y^n \\ 1 & a_1 & a_1^2 & \cdots & a_1^{n-1} & a_1^n \\ 1 & a_2 & a_2^2 & \cdots & a_2^{n-1} & a_2^n \\ 1 & a_3 & a_3^2 & \cdots & a_3^{n-1} & a_3^n \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & a_n & a_n^2 & \cdots & a_n^{n-1} & a_n^n \\ = (a_1 - y)(a_2 - y)(a_3 - y) \cdots (a_n - y) \cdots (a_n - a_{n-1}) \\ \hline 可知原行列式为此行列式 y^{n-1} 的系数 $*(-1)^n$:
$$(-1)^n(-1)^{n-1}(\sum_{i=1}^n \prod_{1 \le j_1 < j_2 \le n})(a_{j_2} - a_{j_1}) = -(\sum_{i=1}^n \prod_{1 \le j_1 < j_2 \le n})(a_{j_2} - a_{j_1})$$$$

$$\begin{vmatrix} 1 & 0 & 1 & a_1 & a_2 & \cdots & a_n \\ a_1 & -1 & -2a_1 & 0 & \cdots & 0 \\ a_2 & -1 & 0 & -2a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_n & -1 & 0 & 0 & \cdots & -2a_n \end{vmatrix}$$

$$\begin{vmatrix} 1 - \frac{n}{2} & \frac{1}{2} \sum_{j=1}^{n} \frac{1}{a_j} & -1 & -1 & \cdots & -1 \\ \frac{\sum_{i=1}^{n} a_i}{2} & 1 - \frac{n}{2} & a_1 & a_2 & \cdots & a_n \\ 0 & 0 & -2a_1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & -2a_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & \cdots & -2a_n \end{vmatrix}$$

$$= (-2)^n \prod_{i=1}^n a_i \begin{vmatrix} 1 - \frac{n}{2} & \frac{1}{2} \sum_{j=1}^{n} \frac{1}{a_j} \\ \sum_{i=1}^{n} a_i & \frac{n}{2} \end{vmatrix}$$

$$= (-2)^n \prod_{i=1}^n a_i |(n-2)^2 - \sum_{i,j=1}^{n} \frac{1}{a_j}|$$

$$= (-2)^n \prod_{i=1}^n a_i |(n-2)^2 - \sum_{i,j=1}^{n} \frac{1}{a_j}|$$

$$= (-2)^n \prod_{i=1}^n a_i |(n-2)^2 - \sum_{i,j=1}^{n} \frac{1}{a_i}|$$

$$(22): |A_n| = \begin{vmatrix} \alpha & \alpha\beta & 0 & \cdots & 0 & 0 \\ 1 & \alpha+\beta & \alpha\beta & \cdots & 0 & 0 \\ 0 & 1 & \alpha+\beta & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha+\beta & \alpha\beta \\ 0 & 0 & 0 & \cdots & \alpha+\beta & \alpha\beta \\ 0 & 0 & 0 & \cdots & \alpha+\beta & \alpha\beta \\ 0 & 0 & 0 & \cdots & \alpha+\beta & \alpha\beta \\ 0 & 0 & 0 & \cdots & \alpha+\beta & \alpha\beta \\ 0 & 0 & 0 & \cdots & \alpha+\beta & \alpha\beta \\ 0 & 0 & 0 & \cdots & \alpha+\beta & \alpha\beta \\ 0 & 0 & 0 & \cdots & \alpha+\beta & \alpha\beta \\ 0 & 0 & 0 & \cdots & \alpha+\beta & \alpha\beta \\ 0 & 0 & 0 & \cdots & \alpha+\beta & \alpha\beta \\ 0 & 0 & 0 & \cdots & \alpha+\beta & \alpha\beta \\ 0 & 0 & 0 & \cdots & \alpha+\beta & \alpha\beta \\ 0 & 0 & 0 & \cdots & \alpha+\beta & \alpha\beta \\ 0 & 0 & 0 & \cdots & \alpha+\beta & \alpha\beta \\ 0 & 1 & \alpha & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha & 0 \\ 0 & 1 & \alpha & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha & \alpha \\ 0 & 0 & 0 & \cdots & \alpha & \alpha \\ 0 & 0 & 0 & \cdots & \alpha & \alpha \\ 0 & 0 & 0 & \cdots & \alpha & \alpha \\ 0 & 0 & 0 & \cdots & \alpha & \alpha \\ 0 & 0 & 0 & \cdots & \alpha & \alpha \\ 0 & 0 & 0 & \cdots & \alpha & \alpha \\ 0 & 0 & 0 & \cdots & \alpha & \alpha \\ 0 & 0 & 0 & \cdots & \alpha \\ 0 & 1 & \alpha & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha & \alpha \\ 0 & 0 & 0 & \cdots & \alpha & \alpha \\ 0 & 1 & \alpha & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha & \alpha \\ 0 & 1 & \alpha & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha & \alpha \\ 0 & 1 & \alpha & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha & \alpha \\ 0 & 1 & \alpha & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha & \alpha \\ 0 & 1 & \alpha & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \alpha & \alpha \\ 0 & 1 & \alpha & \cdots & 0 \\ 0 & 1 & \alpha & \cdots & 0 \\ 0 & 1 & \alpha & \cdots & 0 \\ 0 & 1 & \alpha$$

 $= \alpha^n + \beta |A_{n-1}|$

当 $\alpha = \beta$ 时,

$$|A_n| = \alpha^n + \alpha |A_{n-1}| = (n-2)\alpha^n + |A_2| = (n+1)\alpha^n$$

当 $\alpha \neq \beta$ 时有:

$$|A_n| = \alpha^n + \beta |A_{n-1}| \tag{1}$$

$$|A_n| = \beta^n + \alpha |A_{n-1}| \qquad (2)$$

$$(1)\alpha - (2)\beta$$
, 有:

$$(\alpha - \beta)|A_n| = \alpha^{n+1} + \beta^{n+1}$$

$$|A_n| = \sum_{i=1=0}^n \alpha^i \beta^{n-i}$$

(亦可用三对角线的递推方法).

$$(23): |A_n| = \begin{vmatrix} a & b \\ b & a \end{vmatrix} \begin{vmatrix} a & & & b \\ & \ddots & & \\ & & a & b \\ & & b & a \\ & & & \ddots \\ & & & & \ddots \\ & & & & a \end{vmatrix}$$

$$= (a^2 - b^2)|A_{n-1}|$$

$$= (a^2 - b^2)^n$$

2. (1):

左边 =
$$\begin{vmatrix} 1 & a & bc \\ 0 & b-a & c(a-b) \\ 0 & c-a & b(a-c) \end{vmatrix} = (c-a)(c-b)(b-a) = 右边$$

(2): 第一列 *100、第二列 *10, 加到第三列即可。

(3):

定义:
$$A^{-1} = A^T$$

故:
$$A^{-1}A = E$$

$$\Rightarrow A^T A = E$$

$$\Rightarrow |A^T||A| = |A|^2 = 1$$

36

$$\Rightarrow |A| = \pm 1$$

(4):

定义:
$$A^T = -A$$

$$|A^T| = (-1)^n |A|$$

$$\Rightarrow |A| - (-1)^n |A| = 0$$

当 n 为奇数时, 有 $2|A|=0 \Rightarrow |A|=0$

(5):

欢迎加入 数的美位

$$A = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & -1 \\ 1 & 1 & 1 & \cdots & -1 & -1 \\ 1 & 1 & 1 & \cdots & -1 & -1 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & -1 & -1 & \cdots & -1 & -1 \\ -1 & -1 & -1 & \cdots & -1 & -1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 & \cdots & 1 & -1 \\ 0 & 0 & 0 & \cdots & -2 & 0 \\ 0 & 0 & 0 & \cdots & -2 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & -2 & -2 & \cdots & -2 & 0 \\ -2 & -2 & -2 & \cdots & -2 & 0 \end{vmatrix}$$
$$= (-1)^{1+n} * (-1)^{\{(1+n-1)+(1+n-2)+\cdots+(1+1)\}} * (-1) * (-2)^{n-1}$$
$$= (-1)^{\frac{n^2+5n}{2}} 2^{n-1} \neq 0$$

(6): 只证可逆的上三角阵的逆矩阵仍为上三角阵。

(7):

$$\sum_{k=1}^{n} D_k = \sum_{j=1}^{n} \sum_{i=1}^{n} x_i A_{ji}(x_n = 1) = \sum_{i=1}^{n} x_i \sum_{j=1}^{n} A_{ji}(x_n = 1) = A_1 + \dots + A_n = A_n = D$$
(其中表示将 D 第 i 行变为 x_i)。

(其中表示将 D 第 i 行变为 x_i)。

- 3. 当至少存在两行(列)成比例时, |A|=0, 命题显然成立。 当任意两行和两列不成比例时,将第 1 行依次加到 2、3··· n 行,由于任意两行不成 比例,故 $a_{ij}^*(j=2,3,4\cdots n)$ 至少存在一个 2 或者-2, 其他元素为零, $a_{i1}=0 (i=2,1)$ $3, 4 \cdots n$), 从 2-n 行中提 2 出来有 $|A_n| = 2^{n-1} |B_{n-1}|$,显然 $|B_{n-1}|$ 不为零,否则 $|A_n|=0$ 。命题得证。
- 4. 由于做初等变换,行列式只有符号改变,故先不考虑正负。做行列变换,使得 $a_{11}=1$, 并将第一行加到 2-n 行, 故 $a_{ii}^*(j=2,3,4\cdots n)$ 的元素为 $1,-1,0,2,-2,a_{i1}=0$ $(i=2,3,4\cdots n)$ $3, 4 \cdots n$, $total |A_n| = (-1)^i |B_{n-1}|$

$$D = (-1)^{1+n} n \begin{pmatrix} 2^2 & 3^2 & 4^2 & \cdots & n^2 \\ 3^3 & 4^3 & 5^3 & \cdots & (n+1)^3 \\ \vdots & \vdots & \vdots & & \vdots \\ n^n & (n+1)^n & (n+1)^n & \cdots & (n+1)^n \end{pmatrix} + D_2$$

 $=(-1)^{1+n}nD_1+D_2$ 由于 n 为奇数, 因此 n+1 为偶数, 故 D_2 为偶数.

D₁ 也按照 D 类似的展开, 可得到一个数和一个偶数的和, 又有:

$$D_2^{(n-2)} = (n-1)^{(n-1)(n+1)^n - n^{(2n-1)}}$$

故:D 必可以分解成一个奇数和一个偶数之和. 故其不为零.

$$6. |B| = \begin{vmatrix} a_{11} & a_{12} + x & \cdots & a_{1n} + x \\ a_{21} & a_{22} + x & \cdots & a_{2n} + x \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} + x & \cdots & a_{nn} + x \end{vmatrix} + \begin{vmatrix} x & a_{12} + x & \cdots & a_{1n} + x \\ x & a_{22} + x & \cdots & a_{2n} + x \\ \vdots & \vdots & & \vdots \\ x & a_{n2} + x & \cdots & a_{nn} + x \end{vmatrix}$$

$$= |B_1| + |B_2|$$

$$|B_2| = \begin{vmatrix} x & a_{12} & \cdots & a_{1n} \\ x & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ x & a_{n2} & \cdots & a_{nn} \end{vmatrix}$$

$$= x \sum_{j=1}^{n} A_{1j}$$

$$|B_1| = \begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} + x \\ a_{21} & a_{22} & \cdots & a_{2n} + x \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} + x \end{vmatrix} + \begin{vmatrix} a_{11} & x & \cdots & a_{1n} + x \\ a_{21} & x & \cdots & a_{2n} + x \\ \vdots & \vdots & & \vdots \\ a_{n1} & x & \cdots & a_{nn} + x \end{vmatrix}$$

$$= |B_1^1| + |B_2^1|$$

$$|B_2^1| = \begin{vmatrix} a_{11} & x & \cdots & a_{1n} \\ a_{21} & x & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & x & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & x & \cdots & a_{nn} \end{vmatrix}$$

$$= x \sum_{j=1}^{n} A_{1j}$$

$$|B_1^1| = |B_1^2| + |B_2^2| \cdots$$

$$|B| = |B_1^{n-1}| + \sum_{k=0}^{n-1} |B_2^k| = |A| + x \sum_{i=1}^{n} \sum_{j=1}^{n} A_{ij}$$

- 7. 4 阶行列式按一般展开应有 24 项,但按对角线展开 8 项,缺项,故二者不等。
- 8. 由于 h+k>n, 不妨设 $h\geq k$, 不考虑符号变化, 将零元素全部变换至左上角得到 A_1 , 将 其按 Laplace 展开 (第 1 行到第 k 行的 k 阶行列式) 即可得到 $A_1 = B_{(n-k)\times(n-k)}B_{k\times k}$ 其中 $B_{k\times k}$ 有至少一列为零,故 $B_{k\times k}=0$
- 9. 可参考阿达玛不等式

10.
$$\begin{vmatrix} a_{11} - \frac{1}{m} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} - \frac{1}{m} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} - \frac{1}{m} \end{vmatrix}$$

设 $\frac{1}{m} = \lambda$, 将行列式展开可以得到如下的一个多项式:

$$A = f(\lambda) = (-1)^n \lambda^n + b_{n-1} \lambda^{n-1} + \dots + b_1 \lambda + b_0, b_0 = (a_{ij}), b_i$$
次迎加入 数的美位

若 $f(\lambda)=0$, 则等式两边同时乘以 $_{\bar{1}}\lambda^{n-1}$, 得到: $(-1)^n\lambda=-b_{n-1}-\cdots-\frac{1}{\lambda^{n-1}}b_0$ 可知等式左端为小数,等式右端为整数。

11. (1) $A^{-1} = \frac{1}{|A|}A^* \Rightarrow A^* = |A|A^{-1} \Rightarrow |A^*| = |A|^n|A|^{-1} = |A|^{n-1}$ (2)

12.	$(1) x = \frac{1}{2}$	10	3	5	$y = \frac{1}{2}$	2	10	5		$z = \frac{1}{2}$	2	3	10	
		3	2	4		3	3	4			3	2	3	
		3	2	2		1	3	2			1	2	3	
		2	3	5		2	3	5	_		2	3	5	
		3	2	4		3	2	4			3	2	4	
		1	2	2		1	2	$2 \mid$			1	2	2	

(2)

(3)

第三章 线性方程组的一般理论

习题

1. 证明下面 (1), (2) 中 e_1 , e_2 , e_3 线性无关, 再将 x 表示成 e_1 , e_2 , e_3 的线性组合.

(1)
$$e_1 = (1, 1, 1), e_2 = (1, 1, 2), e_3 = (1, 2, 3), x = (6, 9, 14);$$

(2)
$$e_1 = (2, 1, -3), e_2 = (3, 2, -5), e_3 = (6, 1, -5), x = (6, 2, -7).$$

2. 确定下列向量组的秩, 并找出所有的极大无关组.

(1)
$$\alpha_1 = (4, -1, 3, -2), \alpha_2 = (8, -2, 6, -4), \alpha_3 = (3, -1, 4, -2), \alpha_4 = (6, -2, 8, -4);$$

(2)
$$\alpha_1 = (1, 2, 4, 5), \alpha_2 = (2, 3, 5, 6), \alpha_3 = (3, 4, 6, 7), \alpha_4 = (4, 5, 7, 8);$$

(3)
$$\alpha_1 = (1, 2, 3), \alpha_2 = (2, 3, 4), \alpha_3 = (3, 2, 3), \alpha_4 = (4, 3, 4); \alpha_5 = (1, 1, 1).$$

- 3. 已知 $\alpha_1 = (0, 1, -1), \alpha_2 = (1, 2, 2), \alpha_3 = (-1, 0, \lambda)$. 选择 λ 使 α_3 可以被 α_1, α_2 线性 表出.
- 4. 已知 $\alpha_1 = (2,3,5), \alpha_2 = (3,7,8), \alpha_3 = (1,-6,1), \beta = (7,-2,\lambda)$. 选择 λ 使 β 可以被 $\alpha_1, \alpha_2, \alpha_3$ 线性表出.
- 5. 求下列矩阵的秩.

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & -3 & 1 \\ 4 & 2 & -6 & 2 \\ 6 & 3 & -9 & 3 \\ 1 & 1 & 1 & 1 \end{bmatrix}; \quad \mathbf{B} = \begin{bmatrix} 5 & 2 & -3 & 1 \\ 4 & 1 & -2 & 3 \\ 1 & 1 & -1 & -2 \\ 3 & 4 & -1 & 2 \end{bmatrix}; \quad \mathbf{C} = \begin{bmatrix} 2 & -1 & 3 & 1 \\ 4 & -3 & 1 & 3 \\ 3 & -2 & 3 & 4 \\ 4 & -1 & 15 & 17 \\ 7 & -6 & -7 & 0 \end{bmatrix}.$$

6. 判断下列方程组是否有解.

(1)

$$\begin{cases} 2x_1 - x_2 + x_3 - x_4 = 3, \\ 4x_1 - 2x_2 - 2x_3 + 3x_4 = 2, \\ 2x_1 - x_2 + 5x_3 - 6x_4 = 1, \\ -2x_1 - x_2 - 3x_3 + 4x_4 = 5; \end{cases}$$

(2)

$$\begin{cases} 2x_1 + 3x_2 - x_3 + x_4 = 1, \\ 3x_1 + 12x_2 - 9x_3 + 8x_4 = 3, \\ 4x_1 + 6x_2 + 3x_3 - 2x_4 = 3, \\ 2x_1 + 3x_2 + 9x_3 - 7x_4 = 3. \end{cases}$$

7. 求下列方程组的一个基础解系,并构造与它们具有同样解集的含三个方程的方程组.

(1)

$$\begin{cases} x_1 + 2x_2 + 4x_3 - 3x_4 = 0, \\ 3x_1 + 5x_2 + 6x_3 - 4x_4 = 0, \\ 4x_1 + 5x_2 - 2x_3 + 3x_4 = 0, \\ 3x_1 + 8x_2 + 24x_3 - 19x_4 = 0; \end{cases}$$

(2)

$$\begin{cases} 3x_1 + 2x_2 + x_3 + 3x_4 + 5x_5 = 0, \\ 6x_1 + 4x_2 + 3x_3 + 5x_4 + 7x_5 = 0, \\ 9x_1 + 6x_2 + 5x_3 + 7x_4 + 9x_5 = 0, \\ 3x_1 + 2x_2 + 4x_4 + 8x_5 = 0. \end{cases}$$

8. 求下列方程组的一个特解, 然后写出通解.

(1)

$$\begin{cases} 2x_1 + 7x_2 + 3x_3 + x_4 = 6, \\ 3x_1 + 5x_2 + 2x_3 + 2x_4 = 4, \\ 9x_1 + 4x_2 + x_3 + 7x_4 = 2; \end{cases}$$
江山 入 数的美位

(2)

$$\begin{cases} 3x_1 + 2x_2 + 2x_3 + 2x_4 = 2, \\ 2x_1 + 3x_2 + 2x_3 + 5x_4 = 3, \\ 9x_1 + x_2 + 4x_3 - 5x_4 = 1, \\ 2x_1 + 2x_2 + 3x_3 + 4x_4 = 5, \\ 7x_1 + x_2 + 6x_3 - x_4 = 7. \end{cases}$$

9. 讨论 λ , a, b 取什么值时下列方程组有解, 并于有解时求其解.

(1)

$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1, \\ x_1 + \lambda x_2 + x_3 = \lambda, \\ x_1 + x_2 + \lambda x_3 = \lambda^2; \end{cases}$$

(2)

$$\begin{cases} \lambda x_1 + x_2 + x_3 = 1, \\ x_1 + \lambda x_2 + x_3 = \lambda, \\ x_1 + x_2 + \lambda x_3 = \lambda^2; \end{cases}$$

$$\begin{cases} (\lambda + 3)x_1 + x_2 + 2x_3 = \lambda, \\ \lambda x_1 + (\lambda - 1)x_2 + x_3 = 2\lambda, \\ 3(\lambda + 1)x_1 + \lambda x_2 + (\lambda + 3)x_3 = 3; \end{cases}$$

(3)

$$\begin{cases} ax_1 + x_2 + x_3 = 4, \\ x_2 + bx_2 + x_3 = 3, \\ x_2 + 2bx_2 + x_3 = 4. \end{cases}$$

- 10. 证明: 若 α_1 , α_2 , α_3 线性无关,则 $\alpha_1 + \alpha_2$, $\alpha_2 + \alpha_3$, $\alpha_3 + \alpha_1$ 也线性无关.
- 11. 证明: 若 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性无关, 且可由 $\beta_1, \beta_2, \cdots, \beta_s$ 线性表出, 则 $\beta_1, \beta_2, \cdots, \beta_s$ 也线性无关.
- 12. 证明: 若两组向量有相同的秩, 且其中一组可由另一组线性表出, 则它们等价 (即可以 相互线性表出).
- 13. 证明: 对于任意正整数 $n \ge 1$, 任意 n+1 个 n 元向量必然线性相关.
- 14. 证明: 若 t_1, t_2, \dots, t_r 是两两不同的数, 且 $r \leq n$, 则下列向量组线性无关:

$$oldsymbol{lpha}_i=(1,t_i,t_i^2,\cdots,t_i^{n-1}),\quad i=1,2,\cdots,r.$$

15. 证明: 由 $x_1 - x_2 = a_1, x_2 - x_3 = a_2, x_3 - x_4 = a_3, x_4 - x_5 = a_4, x_5 - x_1 = a_5$ 组成的线性方程组有解当且仅当

$$\sum_{i=1}^{5} a_i = 0,$$

在有解时求出它的一般解.

- 16. 证明:
 - (1) 令 A, B 分别为 $m \times n$ 矩阵和 $n \times p$ 矩阵. 若 AB = O, 则 $r_A + r_B \le n$. 怎样刻 画 $r_A + r_B = n$ 的情形?
 - (2) 令 A 为 r 阶方阵, B 为 $r \times n$ 矩阵, 且 $r_B = r$. 若 AB = O(B), 则 A = O(E).
 - (3) 令 $A \in \mathbb{P}^{m \times n}$. 若 $r_A = r$, 则存在 $B \in \mathbb{P}^{m \times r}$, $C \in \mathbb{P}^{r \times n}$, 使得 $r_B = r_C = r$, A = BC.
 - (4) 今 $A \in \mathbb{P}^{n \times n}$. 则 A 可分解为一可逆矩阵与一对称矩阵的乘积.
- 17. 证明: 若 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 为一组线性无关向量, 且

$$oldsymbol{eta}_i = \sum_{j=1}^r a_{ij}oldsymbol{lpha}_j, \quad i=1,2,\cdots,r,$$

则 $oldsymbol{eta}_1,oldsymbol{eta}_2,\cdots,oldsymbol{eta}_r$ 线性无关当且仅当 $|a_{ij}|
eq 0$.

18. 在线性方程组

$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j = 0, \\ i = 1, 2, \cdots, n-1 \end{cases}$$

的系数矩阵 $(a_{ij})_{(n-1)\times n}$ 中划去第 i 列剩下的 (n-1) 阶子式用 M_i 表示, $i=1,2,\cdots,n$. 证明:

- (1) $(M_1, -M_2, \cdots, (-1)^{i-1}M_i, \cdots, (-1)^{n-1}M_n)$ 是方程组的一个解;
- (2) 若 $r_{(a_{ij})_{(n-1)\times n}} = n-1$, 则方程组的解都是 (1) 中解的倍数.
- 19. \diamondsuit $\alpha_i = (a_{i1}, a_{i2}, \dots, a_{in}), i = 1, 2, \dots, s; \beta = (b_1, b_2, \dots, b_n)$. 若方程组

$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j = 0, \\ i = 1, 2, \cdots, s \end{cases}$$

的解都是方程

$$\sum_{j=1}^{n} b_j x_j = 0$$

的解, 则 β 可由 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 线性表出.

20. 证明: 若 $(a_{ij})_n$ 满足条件

$$|a_{ii}| > \sum_{j=1, j \neq i}^{n} |a_{ij}|, \quad i = 1, 2, \dots, n,$$

则 $|a_{ij}| \neq 0$.

21. 令 η_0 为式 (3.10) 的一个解, $\eta_1, \eta_2, \dots, \eta_t$ 为式 (3.10) 的导出方程组的一个基础解系, 又今

$$\gamma_1 = \eta_0, \gamma_2 = \eta_1 + \eta_0, \cdots, \gamma_{t+1} = \eta_t + \eta_0.$$

证明: 式 (3.10) 的任一解 γ 都可以表示成

$$oldsymbol{\gamma} = \sum_{i=1}^{t+1} u_i oldsymbol{\gamma}_i,$$

其中
$$\sum_{i=1}^{t+1} u_i = 1$$
.

22. 证明: 若 A 为 n 阶方阵, $n \ge 2$, 则

$$r_{A^*} = egin{cases} n, & r_A = n, \ 1, & r_A = n-1, \ 0, & r_A < n-1, \end{cases}$$

其中 A* 为 A 的伴随矩阵 (见第 2 章 2.3 节注 2.4).

- 23. 证明: 向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ ($\alpha_1 \neq 0$) 线性相关的充要条件是, 至少有一个 α_i (1 < $i \leq s$) 可被前面的 $\alpha_1, \alpha_2, \cdots, \alpha_{i-1}$ 线性表出.
- 24. 令向量 β 可由向量组 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 线性表出. 证明: 表示法唯一的充要条件是 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 线性无关.
- 25. 令向量 $\boldsymbol{\beta}$ 可由向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_r$ 线性表出, 但不能由向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_{r-1}$ 线性表出. 证明:
 - (1) α_r 不能由向量组 $\alpha_1, \alpha_2, \cdots, \alpha_{r-1}$ 线性表出;
 - (2) α_r 能由向量组 $\alpha_1, \alpha_2, \cdots, \alpha_{r-1}, \beta$ 线性表出.
- 26. 令向量组 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性无关. 证明: 当且仅当 n 为奇数时, 向量组

$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \cdots, \alpha_{n-1} + \alpha_n, \alpha_n + \alpha_1$$

也线性无关.

欢迎加入 数的美位

- 27. 令向量组 $\alpha_1, \alpha_2, \dots, \alpha_m$ $(m \ge 2)$ 中的 $\alpha_m \ne 0$. 证明: 对任意的数 k_1, k_2, \dots, k_{m-1} , 向量组 $\beta_1 = \alpha_1 + k_1 \alpha_m, \beta_2 = \alpha_2 + k_2 \alpha_m, \dots, \beta_{m-1} = \alpha_{m-1} + k_{m-1} \alpha_m$ 线性无关的 充要条件是 $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性无关.
- 28. 令向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 的秩 r > 0. 证明:
 - (1) $\alpha_1, \alpha_2, \dots, \alpha_s$ 中任意 r 个线性无关的向量都构成它的一个极大线性无关组;
 - (2) 若 $\alpha_1, \alpha_2, \dots, \alpha_s$ 中任一个向量都可以由其中某 r 个向量线性表出,则这 r 个向量必为 $\alpha_1, \alpha_2, \dots, \alpha_s$ 的一个极大无关组.
- 29. 证明: 若向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 中有 r 个向量, 使得任一个向量 α_i 可由这 r 个向量唯一线性表出, 则向量组 $\alpha_1, \alpha_2, \dots, \alpha_s$ 的秩为 r.
- 30. 证明: $n \uparrow n$ 元向量 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性无关的充要条件是单位向量 $\epsilon, \epsilon, \dots, \epsilon_n$ 可由 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表出.
- 31. 今向量组

$$oldsymbol{lpha}_1, oldsymbol{lpha}_2, \cdots, oldsymbol{lpha}_s; oldsymbol{eta}_1, oldsymbol{eta}_2, \cdots, oldsymbol{eta}_t; oldsymbol{lpha}_1, oldsymbol{lpha}_2, \cdots, oldsymbol{lpha}_s, oldsymbol{eta}_1, oldsymbol{eta}_2, \cdots, oldsymbol{eta}_t$$

的秩分别为 r_1, r_2, r_3 . 证明:

$$\max(r_1, r_2) \leqslant r_3 \leqslant r_1 + r_2.$$

32. 今向量组

$$oldsymbol{lpha}_1, oldsymbol{lpha}_2, \cdots, oldsymbol{lpha}_m; oldsymbol{eta}_1, oldsymbol{eta}_2, \cdots, oldsymbol{eta}_m; oldsymbol{\gamma}_1, oldsymbol{\gamma}_2, \cdots, oldsymbol{\gamma}_m$$

的秩分别为 r_1, r_2, r_3 , 其中 $\gamma_i = \alpha_i - \beta_i$, $i = 1, 2, \dots, m$. 证明:

$$r_1 \leqslant r_2 + r_3, r_2 \leqslant r_1 + r_3, r_3 \leqslant r_1 + r_2.$$

- 33. 令向量组 $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性无关,而向量组 $\alpha_1, \alpha_2, \dots, \alpha_m, \beta, \gamma$ 线性相关. 证明: 若向量组 $\alpha_1, \alpha_2, \dots, \alpha_m, \beta$ 与向量组 $\alpha_1, \alpha_2, \dots, \alpha_m, \gamma$ 不等价,则 β 与 γ 中有且仅有一个向量可由向量组 $\alpha_1, \alpha_2, \dots, \alpha_m$ 线性表出.
- 34. 令方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = d_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = d_2, \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = d_m \end{cases}$$

有解, 且系数矩阵 A 的秩为 r_1 , 而方程组

$$\begin{cases} b_{11}x_1 + b_{12}x_2 + \dots + b_{1s}x_s = c_1, \\ b_{21}x_1 + b_{22}x_2 + \dots + b_{2s}x_s = c_2, \\ \dots \\ b_{m1}x_1 + b_{m2}x_2 + \dots + b_{ms}x_s = c_m \end{cases}$$

无解, 且系数矩阵 B 的秩为 r_2 . 证明: 矩阵

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_{11} & \cdots & b_{1s} & d_1 & c_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_{21} & \cdots & b_{2s} & d_2 & c_2 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_{m1} & \cdots & b_{ms} & d_m & c_m \end{bmatrix}$$

的秩 $\leq r_1 + r_2 + 1$.

35. 令方程组

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1, \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2, \\ \dots \\ a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \end{cases}$$
(1)

与

$$\begin{cases} a_{n1}x_1 + a_{n2}x_2 + \dots + a_{nn}x_n = b_n \\ A_{11}x_1 + A_{12}x_2 + \dots + A_{1n}x_n = c_1, \\ A_{21}x_1 + A_{22}x_2 + \dots + A_{2n}x_n = c_2, \\ \dots \\ A_{n1}x_1 + A_{n2}x_2 + \dots + A_{nn}x_n = c_n \end{cases}$$
在系教行列式 $D = |a_{n1}| + 的代教全子式 i i = 1$

中的 A_{ij} 为 a_{ij} 在系数行列式 $D=|a_{ij}|$ 中的代数余子式, $i,j=1,2,\cdots,n$. 证明: 方程组 (1) 有唯一解的充要条件是 (2) 有唯一解.

36. 令 $\alpha_1, \alpha_2, \dots, \alpha_s$ 为 s 个线性无关的 n 元向量. 证明: 存在含 n 个未知量的齐次线性方程组, 使得 $\alpha_1, \alpha_2, \dots, \alpha_s$ 是它的一个基础解系.

37. 令
$$\mathbf{A} = (a_{ij})_{m \times n}$$
, $\mathbf{B} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$, $\mathbf{X} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$, a_{ij}, b_i 均为实数. 则线性方程组

必有解.

欢迎加入 数的美位

解答

1. 为证明 e_1 , e_2 , e_3 线性无关,只需指出以它们为列向量的齐次线性方程组只有零解(这可以通过求解方程组证明). 至于将 x 表示成 e_1 , e_2 , e_3 的线性组合,只需求解关于 k_1 , k_2 , k_3 的线性方程组

$$k_1 e_1' + k_2 e_2' + k_3 e_3' = x'$$

即可.

- (1) $x = e_1 + 2e_2 + 3e_3$;
- (2) $x = \frac{3}{2}e_1 + \frac{1}{2}e_3$.
- 2. (1) 注意到 $\alpha_2 = 2\alpha_1$, $\alpha_4 = 2\alpha_3$, 而 α_1 与 α_3 线性无关 (因它们各分量不成比例), 所 以此向量组的秩为 2, 所有的极大无关组为 α_1 , α_3 , α_1 , α_4 , α_2 , α_3 , α_2 , α_4 .
 - (2) 施行涉及向量的初等变换,得到 $\alpha_5 = \alpha_1 = (1,2,4,5)$, $\alpha_6 = \alpha_2 \alpha_1 = (1,1,1,1)$, $\alpha_7 = \alpha_3 \alpha_2 = (1,1,1,1)$, $\alpha_8 = \alpha_4 \alpha_3 = (1,1,1,1)$. 变换后的向量组的秩显然为 2,所以原向量组的秩也为 2.而原向量组中的向量两两不成比例,故所有的极大无关组是它们的组合 (共 6 组).
 - (3) 施行涉及向量的初等变换,得到 $\alpha_6 = \alpha_1 \alpha_5 = (0,1,2), \alpha_7 = \alpha_2 2\alpha_5 = (0,1,2), \alpha_8 = \alpha_3 2\alpha_5 = (1,0,1), \alpha_9 = \alpha_4 3\alpha_5 = (1,0,1), \alpha_{10} = \alpha_5 = (1,1,1).$ 继续做初等变换,发现向量组的秩为 3. 经计算知,在所有 10 种组合中,只有 $\{\alpha_1,\alpha_2,\alpha_5\},\{\alpha_3,\alpha_4,\alpha_5\}$ 线性相关,其余 8 组皆构成极大无关组.
- 3. 今 $k_1\alpha_1 + k_2\alpha_2 = \alpha_3$ 成立,则这一关系关于这些向量的前两个分量也成立. 解方程组

$$\begin{bmatrix} 0 & 1 \\ 1 & 2 \end{bmatrix} \begin{bmatrix} k_1 \\ k_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

得 $k_1 = 2, k_2 = -1$. 所以 $\lambda = -k_1 + 2k_2 = -4$.

4. 令 $k_1\alpha_1 + k_2\alpha_2 + k_3\alpha_3 = \beta$, 对此方程组的增广矩阵作行初等变换:

$$\begin{bmatrix} 2 & 3 & 1 & 7 \\ 3 & 7 & -6 & -2 \\ 5 & 8 & 1 & \lambda \end{bmatrix} \xrightarrow{[2-1(1)]} \begin{bmatrix} 2 & 3 & 1 & 7 \\ 1 & 4 & -7 & -9 \\ 5 & 8 & 1 & \lambda \end{bmatrix} \xrightarrow{[1-2(2)]} \xrightarrow{[3-2(5)]}$$

$$\begin{bmatrix} 0 & -5 & 15 & 25 \\ 1 & 4 & -7 & -9 \\ 0 & -12 & 36 & \lambda + 45 \end{bmatrix} \xrightarrow{[3-1(\frac{12}{5})]} \begin{bmatrix} 0 & -5 & 15 & 25 \\ 1 & 4 & -7 & -9 \\ 0 & 0 & 0 & \lambda - 15 \end{bmatrix}.$$

由 β 能被 $\alpha_1, \alpha_2, \alpha_3$ 线性表出, 知 $\lambda = 15$.

5.

$$\boldsymbol{A} = \begin{bmatrix} 2 & 1 & -3 & 1 \\ 4 & 2 & -6 & 2 \\ 6 & 3 & -9 & 3 \\ 1 & 1 & 1 & 1 \end{bmatrix} \xrightarrow{[1,4][2-4(2)]} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 2 & 1 & -3 & 1 \end{bmatrix} \xrightarrow{[2,4]} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & -1 & -5 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

故 $r_A = 2$.

$$\boldsymbol{B} = \begin{bmatrix} 5 & 2 & -3 & 1 \\ 4 & 1 & -2 & 3 \\ 1 & 1 & -1 & -2 \\ 3 & 4 & -1 & 2 \end{bmatrix} \xrightarrow{[1-3(5)][2-3(4)]} \begin{bmatrix} 0 & -3 & 2 & 11 \\ 0 & -3 & 2 & 11 \\ 1 & 1 & -1 & -2 \\ 0 & 1 & 2 & 8 \end{bmatrix} \xrightarrow{[1,3][2,4]} \xrightarrow{[1,3][2,4]}$$

$$\begin{bmatrix} 1 & 1 & -1 & -2 \\ 0 & 1 & 2 & 8 \\ 0 & 0 & 8 & 35 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

故 $r_B = 3$.

$$C = \begin{bmatrix} 2 & -1 & 3 & 1 \\ 4 & -3 & 1 & 3 \\ 3 & -2 & 3 & 4 \\ 4 & -1 & 15 & 17 \\ 7 & -6 & -7 & 0 \end{bmatrix} \xrightarrow{\begin{bmatrix} 3-1(1)][1-3(2)][2-3(4)] \\ [4-3(4)][5-3(7)][1,3]}} \begin{bmatrix} 1 & -1 & 0 & 3 \\ 0 & 1 & 1 & -9 \\ 0 & 1 & 3 & -5 \\ 0 & 3 & 15 & 5 \\ 0 & 1 & -7 & -21 \end{bmatrix} \xrightarrow{\begin{bmatrix} 3-2(1)][4-2(3)] \\ [5-2(1)] \end{bmatrix}}$$

$$\begin{bmatrix}
1 & -1 & 0 & 3 \\
0 & 1 & 1 & -9 \\
0 & 0 & 2 & 4 \\
0 & 0 & 12 & 32 \\
0 & 0 & -8 & -12
\end{bmatrix}
\xrightarrow{\begin{bmatrix} 4-3(6) \\ [5+3(4) \end{bmatrix}}
\begin{bmatrix}
1 & -1 & 0 & 3 \\
0 & 1 & 1 & -9 \\
0 & 0 & 2 & 4 \\
0 & 0 & 0 & 8 \\
0 & 0 & 0 & 4
\end{bmatrix}.$$

故 $r_C = 4$.

6. 对增广矩阵作初等变换:

(1)

$$\begin{bmatrix} 2 & -1 & 1 & -1 & 3 \\ 4 & -2 & -2 & 3 & 2 \\ 2 & -1 & 5 & -6 & 1 \\ -2 & -1 & -3 & 4 & 5 \end{bmatrix} \xrightarrow{\begin{bmatrix} [3,4][2,3][1,2] \\ [2+1(1)][3+1(2)][4+1(1)] \end{bmatrix}} \begin{bmatrix} -2 & -1 & -3 & 4 & 5 \\ 0 & -2 & -2 & 3 & 8 \\ 0 & -4 & -8 & 11 & 12 \\ 0 & -2 & 2 & -2 & 6 \end{bmatrix} \xrightarrow{\begin{bmatrix} [3-2(2)] \\ [4-2(1)] \end{bmatrix}}$$

欢迎加入 数的美位

$$\begin{bmatrix} -2 & -1 & -3 & 4 & 5 \\ 0 & -2 & -2 & 3 & 8 \\ 0 & 0 & -4 & 5 & -4 \\ 0 & 0 & 4 & -5 & -2 \end{bmatrix} \xrightarrow{[4+3(1)]} \begin{bmatrix} -2 & -1 & -3 & 4 & 5 \\ 0 & -2 & -2 & 3 & 8 \\ 0 & 0 & -4 & 5 & -4 \\ 0 & 0 & 0 & 0 & -6 \end{bmatrix}.$$

系数矩阵的秩小于增广矩阵的秩,从而方程组无解.

(2)

$$\begin{bmatrix} 2 & 3 & -1 & 1 & 1 \\ 3 & 12 & -9 & 8 & 3 \\ 4 & 6 & 3 & -2 & 3 \\ 2 & 3 & 9 & -7 & 3 \end{bmatrix} \xrightarrow{\underbrace{[2-1(1)][3-1(2)][4-1(1)]}} \begin{bmatrix} 0 & -15 & 15 & -13 & -3 \\ 1 & 9 & -8 & 7 & 2 \\ 0 & 0 & 5 & -4 & 1 \\ 0 & 0 & 10 & -8 & 2 \end{bmatrix} \xrightarrow{\underbrace{[1,2]}_{[4-3(2)]}}$$

$$\begin{bmatrix} 1 & 9 & -8 & 7 & 2 \\ 0 & -15 & 15 & -13 & -3 \\ 0 & 0 & 5 & -4 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}.$$

系数矩阵的秩等于增广矩阵的秩,从而方程组有解.

7. 对系数矩阵作初等变换:

$$\begin{bmatrix}
1 & 2 & 4 & -3 \\
3 & 5 & 6 & -4 \\
4 & 5 & -2 & 3 \\
3 & 8 & 24 & -19
\end{bmatrix}
\xrightarrow{[2-1(3)][3-1(4)]}
\begin{bmatrix}
1 & 2 & 4 & -3 \\
0 & -1 & -6 & 5 \\
0 & -3 & -18 & 15 \\
0 & 2 & 12 & -10
\end{bmatrix}
\xrightarrow{[4-2(2)]}
\begin{bmatrix}
1 & 2 & 4 & -3 \\
0 & -1 & -6 & 5 \\
0 & 0 & 0 & 0
\end{bmatrix}
\xrightarrow{[4-2(2)]}$$

$$\begin{bmatrix}
1 & 2 & 4 & -3 \\
0 & 1 & 6 & -5 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix}
\xrightarrow{[1-2(2)]}
\begin{bmatrix}
1 & 0 & -8 & 7 \\
0 & 1 & 6 & -5 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{bmatrix},$$

移项得

$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = - \begin{bmatrix} -8 \\ 6 \end{bmatrix} x_3 - \begin{bmatrix} 7 \\ -5 \end{bmatrix} x_4.$$

故方程组的一个基础解系为

$$T_1 = \begin{bmatrix} 8 \\ -6 \\ 1 \\ 0 \end{bmatrix}, T_2 = \begin{bmatrix} -7 \\ 5 \\ 0 \\ 1 \end{bmatrix}.$$

上面变换过程中的第二步的前三行可以构成一个同解的方程组.

(2)

移项得

$$\begin{bmatrix} x_1 \\ x_3 \end{bmatrix} = - \begin{bmatrix} \frac{2}{3} \\ 0 \end{bmatrix} x_2 - \begin{bmatrix} \frac{4}{3} \\ -1 \end{bmatrix} x_4 - \begin{bmatrix} \frac{8}{3} \\ -3 \end{bmatrix} x_5.$$

故方程的一个基础解系为

$$T_1 = egin{bmatrix} -rac{2}{3} \\ 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, T_2 = egin{bmatrix} -rac{4}{3} \\ 0 \\ 1 \\ 0 \end{bmatrix}, T_3 = egin{bmatrix} -rac{8}{3} \\ 0 \\ 3 \\ 0 \\ 1 \end{bmatrix}.$$

上面变换过程中的第二步的前三行可以构成一个同解的方程组.

8. (1)

$$\begin{bmatrix} 2 & 7 & 3 & 1 & 6 \\ 3 & 5 & 2 & 2 & 4 \\ 9 & 4 & 1 & 7 & 2 \end{bmatrix} \xrightarrow{\begin{bmatrix} [3-2(3)][2-1(1)] \\ [1-2(2)] \end{bmatrix}} \begin{bmatrix} 0 & 11 & 5 & -1 & 10 \\ 1 & -2 & -1 & 1 & -2 \\ 0 & -11 & -5 & 1 & -10 \end{bmatrix} \xrightarrow{\begin{bmatrix} [1,2][3+2(1)] \\ [1(11)] \end{bmatrix}} \begin{bmatrix} 11 & -22 & -11 & 11 & -22 \\ 0 & 11 & 5 & -1 & 10 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\begin{bmatrix} [1+2(2)] \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}} \begin{bmatrix} 11 & 0 & -1 & 9 & -2 \\ 0 & 11 & 5 & -1 & 10 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix},$$

移项得

$$11 \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -2 \\ 10 \end{bmatrix} - \begin{bmatrix} -1 \\ 5 \end{bmatrix} x_3 - \begin{bmatrix} 9 \\ -1 \end{bmatrix} x_4.$$

从而

$$11\mathbf{X} = \begin{bmatrix} -2\\10\\0\\0\\0 \end{bmatrix} + \begin{bmatrix} 1\\-5\\11\\0\\0 \end{bmatrix} x_3 + \begin{bmatrix} -9\\1\\0\\11 \end{bmatrix} x_4,$$

通解为

$$\boldsymbol{X} = \begin{bmatrix} -\frac{2}{11} \\ \frac{10}{11} \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} \frac{1}{11} \\ -\frac{5}{11} \\ 1 \\ 0 \end{bmatrix} k_1 + \begin{bmatrix} -\frac{9}{11} \\ \frac{1}{11} \\ 0 \\ 1 \end{bmatrix} k_2.$$

(2)

$$\begin{bmatrix} 3 & 2 & 2 & 2 & 2 \\ 2 & 3 & 2 & 5 & 3 \\ 9 & 1 & 4 & -5 & 1 \\ 2 & 2 & 3 & 4 & 5 \\ 7 & 1 & 6 & -1 & 7 \end{bmatrix} \xrightarrow{\underbrace{[1-2(1)][2-1(2)][3-1(9)]}_{[4-1(2)][5-1(7)]}} \begin{bmatrix} 1 & -1 & 0 & -3 & -1 \\ 0 & 5 & 2 & 11 & 5 \\ 0 & 10 & 4 & 22 & 10 \\ 0 & 4 & 3 & 10 & 7 \\ 0 & 8 & 6 & 20 & 14 \end{bmatrix} \xrightarrow{\underbrace{[3-2(2)][5-4(2)]}_{[3,4][3(5)]}}$$

移项整理可得通解

$$m{X} = egin{bmatrix} -rac{6}{7} \ rac{1}{7} \ rac{15}{7} \ 0 \end{bmatrix} + egin{bmatrix} rac{8}{7} \ -rac{13}{7} \ -rac{6}{7} \ 1 \end{bmatrix} k_1.$$

9. (1) 对增广矩阵施行初等变换:

$$\begin{bmatrix} \lambda & 1 & 1 & 1 \\ 1 & \lambda & 1 & \lambda \\ 1 & 1 & \lambda & \lambda^2 \end{bmatrix} \xrightarrow{[1,3]} \begin{bmatrix} 1 & 1 & \lambda & \lambda^2 \\ 1 & \lambda & 1 & \lambda \\ \lambda & 1 & 1 & 1 \end{bmatrix} \xrightarrow{[2-1(1)]} \xrightarrow{[3-1(\lambda)]}$$

$$\begin{bmatrix} 1 & 1 & \lambda & \lambda^2 \\ 0 & \lambda - 1 & 1 - \lambda & \lambda(1 - \lambda) \\ 0 & 1 - \lambda & 1 - \lambda^2 & 1 - \lambda^3 \end{bmatrix} \xrightarrow{[3+2(1)]}$$

$$\begin{bmatrix} 1 & 1 & \lambda & \lambda^2 \\ 0 & \lambda - 1 & 1 - \lambda & \lambda(1 - \lambda) \\ 0 & 0 & (1 - \lambda)(2 + \lambda) & (1 - \lambda)(1 + \lambda)^2 \end{bmatrix}.$$

从而方程组在 $\lambda \neq -2$ 时有解. 若 $\lambda = 1$, 方程化为 $x_1 + x_2 + x_3 = 1$, 其解为

$$\boldsymbol{X} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix} k_1 + \begin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} k_2.$$

若 $\lambda \neq 1$ 且 $\lambda \neq -2$,方程组有唯一解

$$\boldsymbol{X} = \left(-\frac{1+\lambda}{2+\lambda}, \frac{1}{2+\lambda}, \frac{(1+\lambda)^2}{2+\lambda}\right)'.$$

(2) 对增广矩阵施行初等变换:

$$\begin{bmatrix} \lambda + 3 & 1 & 2 & \lambda \\ \lambda & \lambda - 1 & 1 & 2\lambda \\ 3(\lambda + 1) & \lambda & \lambda + 3 & 3 \end{bmatrix} \xrightarrow{[1-2(1)][3-2(3)]} \begin{bmatrix} 3 & 2 - \lambda & 1 & -\lambda \\ 3\lambda & 3\lambda - 3 & 3 & 6\lambda \\ 3 & 3 - 2\lambda & \lambda & 3 - 6\lambda \end{bmatrix} \xrightarrow{[2-1(\lambda)]} \begin{bmatrix} 2-1(\lambda) \\ 3-1(1) \end{bmatrix}$$

$$\begin{bmatrix} 3 & 2 - \lambda & 1 & -\lambda \\ 0 & \lambda^2 + \lambda - 3 & 3 - \lambda & \lambda^2 + 6\lambda \\ 0 & 1 - \lambda & \lambda - 1 & 3 - 5\lambda \end{bmatrix} \xrightarrow{[2+3(\lambda+2)]} \xrightarrow{[3-2(\lambda-1)]}$$

$$\begin{bmatrix} 3 & 2 - \lambda & 1 & -\lambda \\ 0 & -1 & \lambda^2 + 1 & -4\lambda^2 - \lambda + 6 \\ 0 & 0 & -\lambda^2(\lambda - 1) & (\lambda^2 - 3)(4\lambda - 3) \end{bmatrix}.$$

$$\begin{bmatrix} 3 & 2 - \lambda & 1 & -\lambda \\ 0 & -1 & \lambda^2 + 1 & -4\lambda^2 - \lambda + 6 \\ 0 & 0 & -\lambda^2(\lambda - 1) & (\lambda^2 - 3)(4\lambda - 3) \end{bmatrix}$$

故方程组在 $\lambda \notin \{0,1\}$ 时有解. 这时它具有唯一

$$\left(\frac{\lambda^3+3\lambda^2-15\lambda+9}{\lambda^2(\lambda-1)},\frac{\lambda^3+12\lambda-9}{\lambda^2(\lambda-1)},-\frac{(\lambda^2-3)(4\lambda-3)}{\lambda^2(\lambda-1)}\right)'.$$

(3) 对增广矩阵施行初等变换:

$$\begin{bmatrix} a & 1 & 1 & 4 \\ 1 & b & 1 & 3 \\ 1 & 2b & 1 & 4 \end{bmatrix} \xrightarrow{[1,2][2-1(a)]} \begin{bmatrix} 1 & b & 1 & 3 \\ 0 & 1-ab & 1-a & 4-3a \\ 0 & b & 0 & 1 \end{bmatrix} \xrightarrow{[2+3(a)]} \xrightarrow{[3-2(b)]}$$

$$\begin{bmatrix} 1 & b & 1 & 3 \\ 0 & 1 & 1-a & 4-2a \\ 0 & 0 & b(a-1) & 1+2b(a-2) \end{bmatrix}.$$

故方程组在

成为桂组在
$$\begin{cases} b(a-1)=0,\\ 1+2b(a-2)\neq 0 \end{cases}$$
 时无解,即方程组在 $b=\frac{1}{2}$ 或
$$\begin{cases} b\neq 0\\ a\neq 1 \end{cases}$$
 时有解.若有 $a=1,b=\frac{1}{2}$,方程组化为
$$\begin{cases} x_1+\frac{1}{2}x_2+x_3=3,\\ x_2=4. \end{cases}$$

其解为

$$m{X} = egin{bmatrix} 1 \\ 4 \\ 0 \end{bmatrix} + egin{bmatrix} -1 \\ 0 \\ 1 \end{bmatrix} k_1.$$

否则, 为使方程组有解, 必有 $b \neq 0$ 且 $a \neq 1$. 此时方程组有唯一解

$$\left(\frac{2b-1}{b(a-1)}, \frac{1}{b}, \frac{1+2b(a-2)}{b(a-1)}\right)'$$
.

10.

$$k_{1}(\alpha_{1} + \alpha_{2}) + k_{2}(\alpha_{2} + \alpha_{3}) + k_{3}(\alpha_{3} + \alpha_{1}) = \theta$$

$$\Rightarrow (k_{1} + k_{3})\alpha_{1}(k_{1} + k_{2})\alpha_{2}(k_{2} + k_{3})\alpha_{3} = \theta$$

$$\Rightarrow k_{1} + k_{3} = k_{1} + k_{2} = k_{2} + k_{3} = 0$$

$$\Rightarrow k_{1} = k_{2} = k_{3} = 0.$$

当然, 本题是 26 题的一个特例.

- 11. 由替换定理, $\{\alpha_i\}_{i=1}^s$ 和 $\{\beta_j\}_{j=1}^s$ 等价. 再由推论 3.1.8, $r_{\{\alpha_i\}_{i=1}^s} = r_{\{\beta_j\}_{j=1}^s} = s$, 故 $\{\beta_j\}_{j=1}^s$ 线性无关.
- 12. 设 $r_{\{\alpha_i\}_{i=1}^s} = r_{\{\beta_j\}_{j=1}^t}$, 且 $\{\alpha_i\}_{i=1}^s$ 可被 $\{\beta_j\}_{j=1}^t$ 线性表出. 不妨设 $\{\alpha_i\}_{i=1}^r$ 线性无关, $\{\beta_j\}_{j=1}^r$ 线性无关,则 $\{\beta_j\}_{j=1}^r$ 可以线性表出 $\{\alpha_i\}_{i=1}^r$. 由替换定理, $\{\alpha_i\}_{i=1}^r$ 可以线性表出 $\{\beta_j\}_{i=1}^r$. 从而 $\{\alpha_i\}_{i=1}^s$ 可以线性表出 $\{\beta_j\}_{i=1}^r$. 于是两个向量组等价.
- 13. 反设 $\{\alpha_i\}_{i=1}^{n+1}$ 线性无关,但它们能被单位向量组 $\{\varepsilon_i\}_{i=1}^n$ 线性表出,由替换定理, $n+1 \le n$,矛盾.
- 14. 由 t_1, t_2, \dots, t_r 两两不同知 Vandermonde 行列式

$$\begin{vmatrix} 1 & 1 & \cdots & 1 \\ t_1 & t_2 & \cdots & t_r \\ \vdots & \vdots & & \vdots \\ t_1^{r-1} & t_2^{r-1} & \cdots & t_r^{r-1} \end{vmatrix} \neq 0.$$

欢迎加入 数的美位

从而由推论 3.1.3 知上述行列式的各列组成的向量组 $\alpha'_1, \alpha'_2, \cdots, \alpha'_r$ 线性无关. 再由推论 3.1.4 知 $\alpha_1, \alpha_2, \cdots, \alpha_r$ 线性无关.

15. 对增广矩阵作初等变换, 并记 $s = \sum_{i=1}^{5} a_i$, 有

$$\begin{bmatrix} 1 & -1 & & & & a_1 \\ & 1 & -1 & & & a_2 \\ & & 1 & -1 & & a_3 \\ & & & 1 & -1 & a_4 \\ -1 & & & & 1 & a_5 \end{bmatrix} \xrightarrow{\begin{bmatrix} [5+1(1)][5+2(1)] \\ [5+3(1)][5+4(1)] \end{bmatrix}} \begin{bmatrix} 1 & -1 & & & a_1 \\ & 1 & -1 & & & a_2 \\ & & 1 & -1 & & a_3 \\ & & & 1 & -1 & a_3 \\ & & & 1 & -1 & a_4 \\ 0 & 0 & 0 & 0 & 0 & s \end{bmatrix}$$

从而知方程组有解当且仅当 s=0, 这时它的一般解为

$$\mathbf{X} = \begin{bmatrix} a_1 + a_2 + a_3 + a_4 \\ a_2 + a_3 + a_4 \\ a_3 + a_4 \\ a_4 \\ 0 \end{bmatrix} + \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} k_1.$$

16. (1) 由 AB = O 知 B 的每一列均为方程组 AX = 0 的解. 当 $r_A = n$ 时, 该方程只有零解, 所以 B = O, $r_A + r_B = n + 0 = n$.

当 $r_A < n$ 时,由定理 3.3.3,该方程组具有 $n - r_A$ 个向量组成的基础解系,即 B 的每一列均能由这一基础解系线性表出.于是 $r_B \le n - r_A$,即 $r_A + r_B \le n$.联系补充题 1,此题也可视为 Sylvester 秩不等式的特例.

- (2) 若 AB = O, 则由 (1) 立即有 $r_A \le 0$, 故 A = O. 若 AB = B, 由于 $r_B = r$, 令 B_1 为 B 中线性无关的 r 列组成的方阵, 于是 B_1 可逆, 且 $AB_1 = B_1$. 两边同时右乘 B_1^{-1} 得 A = E.
- (3) 本题可视作 114 页例 2 的推广. 对矩阵 \boldsymbol{A} 施行的这一分解称为**秩因子分解** (Rank Factorization). r=0 时, $\boldsymbol{A}=\boldsymbol{O}$, 分别取 $\boldsymbol{B},\boldsymbol{C}$ 为相应大小的零矩阵即可. 下面设 r>0, 且

$$A = (\alpha_1, \alpha_2, \cdots, \alpha_n),$$

欢迎加入 数的美位

不妨令 $\{\alpha_i\}_{i=1}^r$ 线性无关,则它们构成 $\{\alpha_i\}_{i=1}^n$ 的一个极大线性无关组. 设

$$\boldsymbol{lpha}_j = \sum_{i=1}^r c_{ij} \boldsymbol{lpha}_i, \quad j = r+1, r+2, \cdots, n.$$

记 $\{\alpha_i\}_{i=1}^r$ 组成的矩阵为 **B**, 又记

$$C = \begin{bmatrix} 1 & 0 & \cdots & 0 & c_{1,r+1} & \cdots & c_{1n} \\ 0 & 1 & \cdots & 0 & c_{2,r+1} & \cdots & c_{2n} \\ \vdots & \vdots & & \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 1 & c_{r,r+1} & \cdots & c_{rn} \end{bmatrix},$$

容易验证 $r_B = r_C = r$, 且 A = BC.

- (4) 令 \bar{A} 为 A 的等价标准形,则 \bar{A} 为对称矩阵,且存在可逆矩阵 P,Q,使得 $A = P\bar{A}Q = P(Q')^{-1}Q'\bar{A}Q$,其中 $P(Q')^{-1}$ 可逆, $Q'\bar{A}Q$ 为对称矩阵.
- 17. 记 $\mathbf{A} = (a_{ij}), \mathbf{X} = (x_1, x_2, \dots, x_r)'$. 则由于 $\{\alpha_j\}_{j=1}^r$ 线性无关,

$$\sum_{i=1}^{r} x_{i} \boldsymbol{\beta}_{i} = \boldsymbol{\theta} \Leftrightarrow \sum_{i=1}^{r} \sum_{j=1}^{r} x_{i} a_{ij} \boldsymbol{\alpha}_{j} = \boldsymbol{\theta} \Leftrightarrow \sum_{j=1}^{r} \boldsymbol{\alpha}_{j} \left(\sum_{i=1}^{r} x_{i} a_{ij} \right) = \boldsymbol{\theta} \Leftrightarrow \sum_{i=1}^{r} x_{i} a_{ij} = 0, j = 1, 2, \cdots, r \Leftrightarrow \boldsymbol{A} \boldsymbol{X} = \boldsymbol{\theta}.$$

从而

18. (1) 由定理 2.3.1,

$$\sum_{j=1}^{n} (-1)^{i+j} a_{ij} M_j = 0, \quad i = 1, 2, \dots, n-1,$$

于是

$$\sum_{j=1}^{n} (-1)^{j-1} a_{ij} M_j = 0, \quad i = 1, 2, \dots, n-1,$$

即 $(M_1, -M_2, \cdots, (-1)^{i-1}M_i, \cdots, (-1)^{n-1}M_n)$ 是方程组的一个解.

- (2) 由秩 = n-1 知系数矩阵的全体 n-1 阶子式 M_1, M_2, \dots, M_n 至少有一个不为 零, 从而 (1) 中的解非零. 又由定理 3.3.3, 方程组具有 $n-r_{(a_{ij})_{(n-1)\times n}}=1$ 个向量组成的基础解系, 所以方程组的解都是 (1) 中解的倍数.
- 19. 由已知, 方程组

$$\sum_{j=1}^{n} a_{ij} x_j = 0, \quad i = 1, 2, \dots, s$$

欢迎加入 数的美位

与方程组

$$\begin{cases} \sum_{j=1}^{n} a_{ij} x_j = 0, & i = 1, 2, \dots, s, \\ \sum_{j=1}^{n} b_j x_j = 0 \end{cases}$$

同解. 由定理 3.3.3, 它们的系数矩阵的秩相等, 即 $r_{\alpha_1,\alpha_2,\cdots,\alpha_s} = r_{\alpha_1,\alpha_2\cdots,\alpha_s,\beta}$. 设 β 不能由 $\{\alpha_i\}_{i=1}^s$ 线性表出, 我们取后者的一个极大线性无关组, 不妨令其为 $\{\alpha_i\}_{i=1}^r$, 则由引理 3.1.1, 向量组 $\alpha_1,\alpha_2,\cdots,\alpha_r,\beta$ 线性无关,矛盾.

应当指出, 这里结论反过来也对, 即若 $\boldsymbol{\beta}$ 可由 $\{\boldsymbol{\alpha}_i\}_{i=1}^s$ 线性表出, 则方程组 (1) 的解都 是方程

$$\sum_{j=1}^{n} b_j x_j = 0$$

的解.

20. 我们称满足题设条件的矩阵为**严格对角占优**的. 记 $A = (a_{ij})_n$, 为证 $|A| \neq 0$, 由推论 2.3.1, 只需指出以 A 为系数矩阵的齐次线性方程组 $AX = \theta$ 只有零解. 反设其有非零解 $X = (x_1, x_2, \cdots, x_n)'$, 并记 $|x_i| = \max_{1 \leq k \leq n} |x_k|$. 由 X 满足上述线性方程组的第 i 个方程, 有

$$a_{ii}x_i = -\sum_{j=1, j\neq i}^n a_{ij}x_j.$$

从而

$$|a_{ii}| = \left| \sum_{j=1, j \neq i}^{n} a_{ij} \frac{x_j}{x_i} \right| \leqslant \sum_{j=1, j \neq i}^{n} |a_{ij}| \left| \frac{x_j}{x_i} \right| \leqslant \sum_{j=1, j \neq i}^{n} |a_{ij}|,$$

矛盾.

21. 由定理 3.3.4, 式 (3.10) 的任一解 γ 可以表示成 $\gamma = \eta_0 + \sum_{i=1}^t k_i \eta_i$, 其中 $k_i \in \mathbb{P}, i = 1, 2, \dots, t$. 取 $u_{i+1} = k_i, i = 1, 2, \dots, t$, $u_1 = 1 - \sum_{i=1}^t u_{i+1}$, 则

$$\gamma = \eta_0 \sum_{i=1}^{t+1} u_i + \sum_{i=1}^{t} u_{i+1} \eta_i = u_1 \eta_0 + \sum_{i=1}^{t} u_{i+1} (\eta_i + \eta_0) = \sum_{i=1}^{t+1} u_i \gamma_i.$$

22. (1) 由注 3.8 知, n 阶方阵的满秩, 可逆和非奇异是一致的. 从而 $r_{\pmb{A}}=n$ 时, $|\pmb{A}|\neq 0$, 我们有

$$rac{oldsymbol{A}}{|oldsymbol{A}|}oldsymbol{A}^*=oldsymbol{A}^*rac{oldsymbol{A}}{|oldsymbol{A}|}=oldsymbol{E}.$$

所以 A^* 可逆. 于是 $r_{A^*} = n$.

(2) 由 $r_{A} = n - 1$ 知存在 A 的一个 n - 1 阶子式不为 0, 故 $A^{*} \neq O$, $r_{A^{*}} \geq 1$. 另一方面, 由于 $AA^{*} = |A|E = O$, 联系 16 题的 (1) 知 $r_{A} + r_{A^{*}} \leq n$, 即 $r_{A^{*}} \leq 1$. 所以 $r_{A^{*}} = 1$.

欢迎加入 数的美位

- (3) $r_A < n-1$ 蕴含 A 的任一 n-1 阶子式为 0, 从而 $A^* = O$, $r_{A^*} = 0$.
- 23. 充分性显然,下证必要性. 设 $\sum_{i=1}^{s} k_i \alpha_i = \mathbf{0}$,由 $\{\alpha_i\}_{i=1}^{s}$ 线性相关知,存在 $1 < r \le s$,使得 $r = \max\{i \mid 1 \le i \le s, k_i \ne 0\}$ (由 $\alpha_1 \ne \mathbf{0}$ 知 $r \ne 1$). 则通过移项可知 α_r 能被 $\alpha_1, \alpha_2, \dots, \alpha_{r-1}$ 线性表出.
- 24. (联系注 3.1) 充分性: 设 $\beta = \sum_{i=1}^{r} k_{i}\alpha_{i} = \sum_{i=1}^{r} l_{i}\alpha_{i}$, 则 $\sum_{i=1}^{r} (k_{i} l_{i})\alpha_{i} = \theta$. 由 $\{\alpha_{i}\}_{i=1}^{r}$ 线性无关知 $k_{i} = l_{i}, i = 1, 2, \cdots, r$. 必要性: 若 $\beta = \sum_{i=1}^{r} k_{i}\alpha_{i}$,且这一线性表出是唯一的,又设 $\sum_{i=1}^{r} l_{i}\alpha_{i} = \theta$,于是 $\beta = \sum_{i=1}^{r} (k_{i} + l_{i})\alpha_{i}$. 由 β 被表出的唯一性知 $l_{i} = 0, i = 1, 2, \cdots, r$,所以 $\{\alpha_{i}\}_{i=1}^{r}$ 线性无关.
- 25. 设 $\beta = \sum_{i=1}^{r} k_i \boldsymbol{\alpha}_i$.
 - (1) 若存在 l_1, l_2, \dots, l_{r-1} , 使得 $\alpha_r = \sum_{i=1}^{r-1} l_i \alpha_i$, 则 $\beta = \sum_{i=1}^{r-1} (k_i + k_r l_i) \alpha_i$, 矛盾.
 - (2) 由 $\boldsymbol{\beta}$ 不能由向量组 $\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_{r-1}$ 线性表出知 $k_r \neq 0$,所以 $\boldsymbol{\alpha}_r = \frac{1}{k_r} \boldsymbol{\beta} \sum_{i=1}^{r-1} \frac{k_i}{k_r} \boldsymbol{\alpha}_i$.
- 26. 由 17 题知, 向量组

$$\alpha_1 + \alpha_2, \alpha_2 + \alpha_3, \cdots, \alpha_{n-1} + \alpha_n, \alpha_n + \alpha_1$$

线性无关当且仅当矩阵

$$\begin{bmatrix} 1 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & 1 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 1 & 1 \\ 1 & 0 & 0 & \cdots & 0 & 1 \end{bmatrix}_{n \times r}$$

非奇异. 沿第一列展开, 易知其行列式等于 $1 + (-1)^{n+1}$. 所以这一矩阵非奇异当且仅当 n 为奇数.

27. 对任意的数 $k_1, k_2, \cdots, k_{m-1}$ 和 $l_1, l_2, \cdots, l_{m-1}$, 有

$$\sum_{i=1}^{m-1} l_i \boldsymbol{\beta}_i = \boldsymbol{\theta} \Leftrightarrow \sum_{i=1}^{m-1} l_i (\boldsymbol{\alpha}_i + k_i \boldsymbol{\alpha}_m) = \boldsymbol{\theta} \Leftrightarrow \sum_{i=1}^{m-1} l_i \boldsymbol{\alpha}_i + \boldsymbol{\alpha}_m \sum_{i=1}^{m-1} l_i k_i = \boldsymbol{\theta}.$$

故

$$eta_1, eta_2, \cdots, eta_{m-1}$$
线性无关 \Leftrightarrow 上式左端蕴含 $l_1 = l_2 = \cdots = l_{m-1} = 0 \Leftrightarrow$ 上式右端蕴含 $l_1 = l_2 = \cdots = l_{m-1} = \sum_{i=1}^{m-1} l_i k_i = 0 \Leftrightarrow oldsymbol{lpha}_1, oldsymbol{lpha}_2, \cdots, oldsymbol{lpha}_m$ 线性无关.

- 28. (1) 不妨设这 r 个线性无关向量是 $\{\alpha_i\}_{i=1}^r$. 若它们不构成 $\{\alpha_i\}_{i=1}^s$ 的极大线性无关组,由定义 3.1.5 知,存在 $\beta \in \{\alpha_i\}_{i=1}^s$, β 不能由 $\{\alpha_i\}_{i=1}^r$ 线性表出. 由引理 3.1.1 知, $\alpha_1, \alpha_2, \cdots, \alpha_r, \beta$ 线性无关,联系注 3.3,这与 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 的秩为 r 矛盾.
 - (2) 不妨设这 r 个向量是 $\{\alpha_i\}_{i=1}^r$,由定义 3.1.5,只需再证 $\{\alpha_i\}_{i=1}^r$ 线性无关. 由向量组 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 的秩为 r 知,它们中存在含 r 个向量的极大线性无关组. 由已知,这一极大线性无关组中的 r 个向量均可由 $\{\alpha_i\}_{i=1}^r$ 线性表出,由 11 题知 $\{\alpha_i\}_{i=1}^r$ 线性无关.
- 29. 由 24 题知这 r 个向量线性无关. 再由定义 3.1.5, 这些向量即构成一个极大线性无关组. 故 $\alpha_1, \alpha_2, \cdots, \alpha_s$ 的秩为 r.
- 30. 充分性: 显然 $\{\varepsilon_i\}_{i=1}^n$ 线性无关. 若它们能由 $\{\alpha_i\}_{i=1}^n$ 线性表出, 由 11 题知 $\{\alpha_i\}_{i=1}^n$ 也 线性无关.

必要性: 由 $\{\alpha_i\}_{i=1}^n$ 线性无关知以它们为各列向量的矩阵 A 非奇异, 从而线性方程组

$$AX = \varepsilon_i, \quad i = 1, 2, \cdots, n$$

有 (唯一) 解. 这就说明 $\{\varepsilon_i\}_{i=1}^n$ 可由 $\{\alpha_i\}_{i=1}^n$ 线性表出.

31. 记这 3 个向量组分别为 I, II, III. 因为 I, II 都能由 III 线性表出, 所以 $\max(r_1, r_2) \le r_3$. 另一方面, 记 IV 为 I, II 中的极大线性无关组之并, 则由于 IV 能线性表出向量组 III, 有 $r_3 \le r_{\text{IV}} \le r_1 + r_2$.

推论: 设 $A \in m \times n$ 矩阵, $B \in m \times s$ 矩阵, 则 $\max(r_A, r_B) \leqslant r_{A,B} \leqslant r_A + r_B$.

32. 完全类似于 31 题中第二个不等式的证明. 推论: 设 A, B 都是 $m \times n$ 矩阵, 则 $r_{A \pm B} \leqslant r_A + r_B$.

由 II 线性表出, 这与 I, II 不等价的条件相矛盾.

33. 分别记向量组 $\alpha_1, \alpha_2, \cdots, \alpha_m, \beta$ 和 $\alpha_1, \alpha_2, \cdots, \alpha_m, \gamma$ 为 I 和 II. 先设 β, γ 都能由 $\{\alpha_i\}_{i=1}^m$ 线性表出. 显然这与 I, II 不等价的条件相矛盾. 再设 β, γ 都不能由 $\{\alpha_i\}_{i=1}^m$ 线性表出,则由引理 3.1.1,向量组 I 线性无关. 但向量组 $\alpha_1, \alpha_2, \cdots, \alpha_m, \beta, \gamma$ 线性相关,再次使用引理 3.1.1 知, γ 能由 I 线性表出. 同理 β 能

欢迎加入 数的美位

34. 我们知道, 方程组 AX = B 有解当且仅当 B 能由 A 的各列向量线性表出. 依题意, $(d_1, d_2, \cdots, d_m)'$ 能由

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

的各列向量线性表出, 但 $(c_1, c_2, \cdots, c_m)'$ 不能由

$$\begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1s} \\ b_{21} & b_{22} & \cdots & b_{2s} \\ \vdots & \vdots & & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{ms} \end{bmatrix}$$

的各列向量线性表出. 由引理 3.1.1,

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & d_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & d_2 \\ \vdots & \vdots & & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & d_m \end{bmatrix}$$

的秩为 r_1 ,

$$\begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1s} & c_1 \\ b_{21} & b_{22} & \cdots & b_{2s} & c_2 \\ \vdots & \vdots & & \vdots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{ms} & c_m \end{bmatrix}$$

的秩为 $r_2 + 1$, 再由 31 题, 所求矩阵的秩 $\leq r_1 + r_2 + 1$.

- 35. 记方程组 (1) 的系数矩阵为 A, 由 22 题, $r_A = n$ 的充要条件是 $r_{A^*} = n$, 从而方程组 (1) 有唯一解的充要条件是 (2) 有唯一解.
- 36. (联系 4.5 节) s = n 时, 注意到任意 n 元向量 X 都是方程组

$$OX = 0 (3.1)$$

的解, 即方程组 (3.1) 的解集为 \mathbb{P}^n . 由 13 题, $\alpha_1, \alpha_2, \dots, \alpha_n, X$ 线性相关. 再由引理 3.1.1, X 能由 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性表出, 从而 $\alpha_1, \alpha_2, \dots, \alpha_n$ 为方程组 (3.1) 的一个基础解系.

 $s \neq n$ 时, 必有 $1 \leq s < n$, 这时记 $\boldsymbol{A}_{s \times n}$ 是以 $\boldsymbol{\alpha}_i$ 为第 i 行的矩阵, $i = 1, 2, \cdots, s$. 则由 $r_{\boldsymbol{A}} = s$ 知,

$$AX = 0$$

有 n-s 个解构成的基础解系 $\{\gamma_i\}_{i=1}^{n-s}$. 这时有

$$\alpha_i \cdot \gamma_j = 0, i = 1, 2, \dots, s, j = 1, 2, \dots, n - s.$$
 (3.2)

令 $C_{(n-s)\times n}$ 是以 γ_i 为第 i 行的矩阵, $i=1,2,\cdots,n-s$. 则由 (3.2) 知, α_i 是方程组

$$CX = 0 (3.3)$$

的解, 再由 $r_C = n - s$ 知, $\{\alpha_i\}_{i=1}^s$ 构成方程组 (3.3) 的基础解系.

37. 提示: 第5章注5.9.

考查齐次线性方程组 AX=0 (I) 和 A'AX=0 (II). I 的解一定是 II 的解. 现在设 X 为 II 的解, 则 $X \in \mathbb{R}^n$, 所以 $AX \in \mathbb{R}^n$. 且

$$(AX)'AX = X'A'AX = X'0 = 0.$$

这指出 AX = 0, 所以 II 的解也是 I 的解, 从而 I, II 同解. 由定理 3.3.3, I, II 的系数 矩阵的秩相等, 即 $r_A = r_{A'A}$. 联系 31 题推论和补充题 1 的 (1),

$$r_{A'A} \leqslant r_{A'A,A'B} = r_{A'(A,B)} \leqslant r_{A'} = r_A = r_{A'A},$$

于是 $r_{A'A} = r_{A'A,A'B}$, 即方程组

$$A'AX = A'B$$

有解.

注意: 复数域中, AX = 0 与 A'AX = 0 不一定同解, 如

$$m{A} = egin{bmatrix} 1 & i \\ i & -1 \end{bmatrix}.$$

补充

- 1. 设 A, B 分别为 $m \times n$ 矩阵和 $n \times s$ 矩阵, 则
 - (1) $r_{AB} \leqslant \min(r_A, r_B)$;
 - (2) (Sylvester 秩不等式) $r_A + r_B \leq n + r_{AB}$.

证:

(1) AB 的列向量可由 A 的列向量线性表出, 所以 $r_{AB} \leq r_A$. AB 的行向量可由 B 的行向量线性表出, 所以 $r_{AB} \leq r_B$.

欢迎加入 数的美位

(2) 考查 $(n+m)\times(n+s)$ 矩阵

$$oldsymbol{C} = egin{bmatrix} oldsymbol{E}_{n imes n} & oldsymbol{B} \ oldsymbol{A} & oldsymbol{O}_{m imes s} \end{bmatrix},$$

可以证明: A, B 各自的列极大线性无关组所在的列线性无关, 因此 $r_A + r_B \leq r_C$. 令

$$m{P}_{(n+m) imes(n+m)} = egin{bmatrix} m{E}_{n imes n} & m{O} \ -m{A} & m{E}_{m imes m} \end{bmatrix}, \quad m{Q}_{(n+s) imes(n+s)} = egin{bmatrix} m{E}_{n imes n} & -m{B} \ m{O} & m{E}_{s imes s} \end{bmatrix},$$

则

$$PCQ = egin{bmatrix} E_{n imes n} & O \ O & -AB \end{bmatrix}.$$

易知 |P|=|Q|=1, 故 P,Q 均可逆, 所以 $r_C=r_{PCQ}=r_{E_{n\times n}}+r_{-AB}=n+r_{AB}$. 于是 $r_A+r_B\leqslant n+r_{AB}$.

第四章 线性空间与线性方程组

题目

- 1. 判断下列集合对于所指出的合成是否构成数域 ℙ上的线性空间。
 - (1) 正整数(整数、实数、复数)全体对于通常的加法和数乘, $P = \mathbb{R}$ (实数域);
 - (2) \mathbb{P} 上的 n 阶上三角矩阵(可逆矩阵、对称矩阵、反对称矩阵)全体对于通常的矩阵加法和数乘;
 - (3) ℙ对于通常的 n 元向量加法和如下的数乘:

$$(\forall \alpha \in \mathbb{P}^n \& \forall k \in \mathbb{P}) \ k\alpha = \alpha_0,$$

其中 α_0 为一固定元素;

- (4) $(x_1, x_2)|x_1, x_2 \in \mathbb{P}, x_1 + x_2 = p \in \mathbb{P}$ 对于通常的加法和数乘,其中 p 为 \mathbb{P} 中一固定数;
- (5) \mathbb{P}^2 对于下面的合成:

$$(\forall (x_1, x_2) \in \mathbb{P}^2, (y_1, y_2) \in \mathbb{P}^2) (x_1, x_2) + (y_1, y_2) = (x_1 + y_2, 0),$$
$$(\forall (x_1, x_2) \in \mathbb{P}^2, \&k \in \mathbb{P}) k(x_1, x_2) = (kx_1, 0);$$

(6) ℙ对于下面的合成:

$$(\forall (x_1, x_2) \in \mathbb{P}^2, (y_1, y_2) \in \mathbb{P}^2) (x_1, x_2) + (y_1, y_2) = (x_1 + y_2, x_2),$$
$$(\forall (x_1, x_2) \in \mathbb{P}^2, \&k \in \mathbb{P}) k(x_1, x_2) = (kx_1, x_2);$$

(7) ℙ对于下面的合成:

$$(\forall (x_1, x_2) \in \mathbb{P}^2, (y_1, y_2) \in \mathbb{P}^2) (x_1, x_2) + (y_1, y_2) = (x_1 + y_2, x_2 + y_2 + x_1 y_1),$$
$$(\forall (x_1, x_2) \in \mathbb{P}^2, \&k \in \mathbb{P}) k(x_1, x_2) = (kx_1, kx_2 + \frac{k(k-1)}{2}x_1^2);$$

(8) 平面上不平行于某一向量的向量全体对于通常的加法和数乘, $\mathbb{P} \in \mathbb{R}$;

 $(9) \diamondsuit$

$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \omega & 0 \\ 0 & 0 & \omega^2 \end{pmatrix}, \quad \omega = \frac{(-1 + i\sqrt{3})}{2},$$

 $\{f(A)|f(x)\in\mathbb{R}[x]\}$ 对于通常的加法和数乘, $\mathbb{P}\in\mathbb{R}$.

- 2. 确定下列线性空间的维数,给出它的一个基底,并写出向量在该基地下的坐标的一般 表达式:
 - (1) 上题中的那些线性空间;
 - (2) \mathbb{P}^5 的子空间 $G[\alpha_1, \alpha_2\alpha_3]$, 其中

$$\alpha_1 = (1, 1, -1, -1, 2), \alpha_2 = (2, 1, 0, 1, 0), \alpha_3 = (3, 2, -1, 0, 2);$$

(3) \mathbb{P}^4 中,下面线性方程组的解空间:

$$\begin{cases} 3x_1 + 2x_2 - 5x_3 + 4x_4 = 0\\ 3x_1 - x_2 + 3x_3 - 3x_4 = 0\\ 3x_1 + 5x_2 - 13x_3 + 11x_4 = 0 \end{cases}$$

$$(4.1)$$

- 3. 证明: 实函数函数空间中, $1\cos^2 x$, $\cos 2x$ 线性相关。
- 4. 令 V 为某一数域上的线性空间, $\alpha_1, \alpha_2, \ldots, \alpha_n \in V$ 。证明:若 $r_{\{\alpha_i\}_{i=1}^n} = r, \alpha_{i_1}, \alpha_{i_2}, \ldots, \alpha_{i_m}$ 为 $r_{\{\alpha_i\}_{i=1}^n}$ 中任意 m 个向量,则

$$r_{\{\alpha_{i_j}\}_{j=1}^m} \geqslant r+m-n.$$

5. 令 V 为某一数域上的一个线性空间, $\alpha_1, \ldots, \alpha_s; \beta_1, \ldots, \beta_t \in V$. 证明: 若 $r_{\{\alpha_i\}_{i=1}^s} = r_1, r_{\{\beta_j\}_{i=1}^t} = r_2, r_{\{\alpha_i\}_{i=1}^s} \cup \{\beta_j\}_{i=1}^t = r_3, 则$:

$$max\{r_1, r_2\} \leqslant r_3 \leqslant r_1 + r_2.$$

6. $\diamondsuit A, B \in \mathbb{P}^{m \times n}, C \in \mathbb{P}^{n \times p}$. 证明: $r_{A+B} \leqslant r_A + r_B, r_{AC} \leqslant r_A, r_C$, 当 A(C) 可逆时,

$$r_{AC} = r_A, (r_C)$$

- 7. 令 V 为某一数域上的一个 n 为线性空间, $V_1, V_2 \leq V$. 证明: 若 $dimV_1 + dimV_2 > n$,则 $V_1 \cap V_2$ 不是零空间。反之不然,试举例说明。
- 8. 令 V_1, V_2, V_3 为线性空间的子空间。证明: 若 $V_1 \supseteq V_2$, 则

$$V_1 \cap (V_2 + V_3) = (V_1 \cap V_2) + (V_1 \cap V_3) = V_2 + V_1 \cap V_3$$

举例说明,对于上述事实,条件 $V_1 \supseteq V_2$ 是必要的。

71

- 9. 令 V 是某一数域上的一个 $n(n \ge 1)$ 维线性空间。证明:存在 V 的无限子集 S,使得 S 中任意 n 个向量都是线性无关的。
- 10. 假设如上题。证明: 若 $V_i < V, i = 1, 2, ..., m$, 则存在 $\alpha \in V$, 使得 α 不属于 $V_i, i = 1, 2, ..., m$.
- 11. $\diamondsuit A \in \mathbb{P}^{n \times n}$.
 - (1) 证明:

$$C(A) = B \in \mathbb{P}^{n \times n} | AB = BA \leqslant \mathbb{P}^{n \times n};$$

- (2) 当 $A = D_{a_k,n}$ 时,其中 $a_k = k, k = 1, 2, ..., n$,求 C(A),dimC(A) 以及 C(A) 的 一个基底。
- 12. $\Diamond a_1, a_2, \ldots, a_n$ 为数域 \mathbb{P} 中 n 个两两不同的数,

$$f_i(x) = \prod_{\substack{j=1\\j\neq i}}^n (x - a_j), i = 1, 2, \dots, n.$$

证明:

$$(f_1(x), f_2(x), \dots, f_n(x))$$

为 $\mathbb{P}_{n-1}[x]$ 的一个基底。当 a_1, a_2, \ldots, a_n 为所有 n 次单位根时,求基底 $(1, x, x^2, \ldots, x^{n-1})$ 到 $(f_1(x), f_2(x), \ldots, f_n(x))$ 的过渡矩阵。

- 13. 证明: 维数相等的两个子空间若有包含关系,则它们必相同。
- 14. 证明: 在任意线性空间中, 若

$$\sum_{i=1}^{3} k_i \alpha_i = \theta, 且 k_1 k_2 \neq 0, 则$$

$$G[\alpha_1, \alpha_3] = G[\alpha_2, \alpha_3].$$

- 15. 令 V_1, V_2 为线性空间 V 的子空间。证明 $V_1 \cup V_2 \subseteq V_1 + V_2$,等号成立当且仅当 $V_1 \subseteq V_2$ 或 $V_2 \subseteq V_1$.
- 16. 在 \mathbb{P}^4 中,求由基底 $(\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)$ 到基底 $(\delta_1, \delta_2, \delta_3, \delta_4)$ 的过渡矩阵,并求向量在所指基底下的坐标。

(1)

$$\varepsilon_1(1,0,0,0) \qquad \delta_1(2,1,-1,1)
\varepsilon_2(0,1,0,0) \qquad \delta_2(0,1,2,2)
\varepsilon_3(0,0,1,0) \qquad \delta_3(-1,1,1,2)
\varepsilon_4(0,0,0,1) \qquad \delta_4(1,3,1,8)$$

欢迎加入 数的美位

 $\alpha = (x_1, x_2, x_3, x_4)$ 在 $(\delta_1 \delta_2 \delta_3 \delta_4)$ 下的坐标.

(2)

$$\varepsilon_1 = (1, 2, -1, 0), \qquad \delta_1 = (2, 1, 0, 1),$$

$$\varepsilon_2 = (1, -1, 1, 1), \qquad \delta_2 = (0, 1, 2, 2),$$

$$\varepsilon_3 = (-1, 2, 1, 1), \qquad \delta_3 = (-2, 1, 1, 2),$$

$$\varepsilon_4 = (-1, -1, 0, 1), \qquad \delta_4 = (1, 3, 1, 2),$$

 $\alpha = (1,3,1,2)$ 在 $(\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)$ 下的坐标。

(3)

$$arepsilon_1(1,1,1,1), \qquad \delta_1(1,1,0,1),$$
 $arepsilon_2(1,1,-1,-1), \qquad \delta_2(2,1,3,1),$
 $arepsilon_3(1,-1,1,-1), \qquad \delta_3(1,1,0,0),$
 $arepsilon_4(1,-1,-1,1), \qquad \delta_4(0,1,-1,-1).$

- 17. 求非零向量 $\alpha \in \mathbb{P}^4$, α 在上题 (1) 的两个基底下的坐标相同。
- 18. \Diamond $(\alpha_1, \alpha_2, \dots, \alpha_n)$ 是 n 维线性空间 V 的一个基底。证明:
 - (1) $(\alpha_1, \alpha_1 + \alpha_2, \cdots, (\alpha_1 + \alpha_2 + \cdots + \alpha_n))$ 也是 n 维线性空间 V 的一个基底;
 - (2) 令向量 α 关于基底 $(\alpha_1, \alpha_2, \dots, \alpha_n)$ 的坐标是 $(n, n-1, \dots, 2, 1)$. 求 α 在基底 $(\alpha_1, \alpha_1 + \alpha_2, \dots, (\alpha_1 + \alpha_2 + \dots + \alpha_n))$ 下的坐标。
- 19. 证明:

73

$$W = \{ f(x) \in \mathbb{R} | f(1) = 0, \partial f(x) \leq n, \vec{\mathfrak{g}} f(x) = 0 \}$$

是实数域 ℝ 上的线性空间, 并求出它的一个基底。

20. \diamondsuit $(\alpha_1, \alpha_2, \dots, \alpha_n)$ 是 n 维线性空间 V 的一个基底, $A \in \mathbb{P}^{n \times n}$,

$$(\beta_1, \beta_2, \dots, \beta_n) = ((\alpha_1, \alpha_2, \dots, \alpha_n)A.$$

- (1) 令 $r_A = r$, 且 A 的列向量的极大线性无关组为 $A_{i_1}, A_{i_2}, ..., A_{i_r}$). 则 $\beta_{i_1}, \beta_{i_2}, ..., \beta_{i_r}$ 是 $\beta_1, \beta_2, ..., \beta_s$ 的一个极大线性无关组;
- (2) $dimG[\beta_1, \beta_2, \dots, \beta_s] = r_A$.

21. 今 V_1, V_2 是 n 维线性空间 V 的一个子空间, 且

$$dim(V_1 + V_2) = dim(V_1 \cap V_2) + 1$$

- . 则 $V_1 \subseteq V_2$ 或 $V_1 \supseteq V_2$.
- 22. 令 V_1,V_2,\ldots,V_s 是 n 维线性空间 V 的 s 个真子空间。证明: 在 V 中存在一个基底 $(\beta_1,\beta_2\ldots,\beta_n)$, 使得每个 β_j 不属于一切 $V_i(i=1,2,ldots,)$
- 23. 令 $AX = \theta$ 和 $BX = \theta$ 为数域 \mathbb{P} 上线性方程组,其中 $A = (a_{ij})_{m \times n}, B = (b_{ij})_{s \times n}$

$$X = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}$$

证明: 若它们的一般解中含参数的个数的和大于 n,则这两个方程组有非零的公共解。

24. $\Diamond \alpha_1, \alpha_2, \dots, \alpha_s$ 和 $\beta_1, \beta_2, \dots, \beta_t$ 是 \mathbb{P}^n 中两个线性无关的向量组,

$$V_1 = G[\alpha_1, \alpha_2, \dots, \alpha_s], V_2 = [\beta_1, \beta_2, \dots, \beta_t], \quad (1)$$

$$x_1\alpha_1 + \dots + x_s\alpha_s + x_{s+1}\beta_1 + \dots + x_{s+t}\beta_t = \theta, \quad (2)$$

W 为齐次线性方程 (2) 的解空间。证明: $dimW = dim(V_1 \cap V_2)$.

25. 令 W 是数域 \mathbb{P} 上的 n 维线性空间 $\mathbb{P} = (a_1, a_2, ..., a_n) | a_i \in \mathbb{P}$ 的平凡子空间。证明: 若关于 W 的每一个向量 $(a_1, a_2, ..., a_n)$, 或者 $a_1 = a_2 = ... = a_n = 0$, 或者每一个 a_i 都不等于零,则

$$dimw = 1$$

26. 今

$$f(x), g(x) \in \mathbb{P}[x], \underline{\mathbb{H}}(f(x), g(x)) = 1, A \in \mathbb{P}^{n \times n}.$$

证明: 齐次线性方程组

$$f(A)g(A)X = 0$$

的解空间 V 是 f(A)X = 0 与 g(A)X = 0 的解空间 V_1, V_2 的直和,其中

$$X = (x_1, x_2, \dots, x_n)'.$$

27. 令 ℙ 为一数域,

$$\begin{split} \mathbb{P}_0[x] &= \left\{ \sum a_i x^i | a_i \in \mathbb{P}, i \geqslant 1, i \text{为奇数} \right\}, \\ \mathbb{P}_1[x] &= \left\{ \sum b_i x^i | b_j \in \mathbb{P}, j \geqslant 0, j \text{为偶数} \right\}, \end{split}$$

证明: $\mathbb{P}_0[x]$ 与 $\mathbb{P}_1[x]$ 均为 $\mathbb{P}[x]$ 的子空间,且 $\mathbb{P}_0[x]$ 与 $\mathbb{P}_1[x]$ 同构。

28. 证明: 实数域 ℝ 作为它自身上的线性空间与正实数的全体 ℝ+, 关于

$$(a, b \in \mathbb{R}^+)a \oplus b = ab, (\forall a \in \mathbb{R}^+ \& \forall k \in \mathbb{R})k \cdot a = a_k$$

构成的 ℝ 上的线性空间同构。

- 29. 证明:线性空间 ℙ[x] 可以同它的无穷多个真子空间同构。
- 30. 令 A 为数域 \mathbb{P} 上一 n 阶可逆矩阵。任意将 A 分成两个子块 $A = \begin{pmatrix} A_1 \\ A_2 \end{pmatrix}$,证明: n 维线性空间 \mathbb{P}^n 是齐次线性方程组 $A_1X = \theta$ 与 $A_2X = \theta$ 的解空间 V_1 与 V_2 的直和。
- 31. 令 A 为任一 $m \times n$ 矩阵。将 A 任意分块成

$$A = \begin{pmatrix} A_1 \\ A_2 \\ \vdots \\ A_s \end{pmatrix},$$

证明: n 元齐次线性方程组 $AX = \theta$ 的解空间 V 是所有齐次线性方程组 $A_iX = \theta$ 的解空间的交, $i = 1, 2 \dots, s$.

- 32. 令 V 为数域 ℙ 上一 n 维线性空间,V 中有 s 组向量,每一组均含有 t 个线性无关的 向量 $\beta_{i1}, \beta_{i2} \dots, \beta_{it}, i = 1, 2, \dots, s, t < n$. 证明:V 中必有 n t 个向量存在,它们与 任一组的 t 个向量合在一起构成 V 的一个基底。
- 33. 令 V 为数域 \mathbb{P} 上一线性空间。证明: 不存在 V 的五个子空间 V_1, V_2, \ldots, V_5 , 使下述四个条件均成立:
 - (1) V_1, V_2, \ldots, V_5 , 两两不等;
 - (2) 任意两个 V_i, V_j 之和 $V_i + V_j$ 与交 $V_i \cap V_j$ 仍属于这五个子空间;
 - (3) $V_1 \subset V_2 \subset V_3 \subset V_5; V_1 \subset V_4 \subset V_5;$
 - (4) V_2 与 V_4 , V_3 与 V_4 之间没有包含关系。
- 34. 证明: n 维线性空间的任何真看见均可表示为若干个 n-1 维子空间的交。

解答

75

- 1. (1) 构成线性空间的有: 实数和复数全体; 不构成线性空间的有: 正整数和整数全体.
 - (2) 构成线性空间的有: 上三角, 对称和反对称矩阵全体; 不构成线性空间的有: 可逆矩阵全体.

- (3) 不构成线性空间 (条件 viii 中的"1"不存在).
- (4) p=0 时构成线性空间; $p\neq 0$ 时, 加法不封闭, 不构成线性空间.
- (5) 不构成 (无零元素).
- (6) 不构成 (加法不满足交换律).
- (7) 构成 (请同学们耐心计算, 一定要亲自动手算一下).
- (8) 不构成.
- (9) 构成.
- 2. (1) i) 实数构成的线性空间:

维数: 1 维;

基底: 整数 1;

坐标: 对于实数 r, 坐标就是 r.

ii) 复数构成的线性空间:

维数: 2 维;

基底: 1, i;

坐标: 对于复数 a + bi, $a, b \in \mathbb{R}$, 坐标为 (a, b).

iii) 上三角矩阵全体构成的线性空间;

维数: $1+2+\cdots+n=\frac{n(n+1)}{2}$;

基底: $E_{ij}(i=1,2,\ldots,n;j=1,2,\ldots,n;j\geq i)$ (第 ij 元素为 1, 其他为 0);

坐标: 上三角矩阵上半部分每个元素的值.

iv) 对称矩阵全体构成的线性空间:

维数: $1+2+\cdots+n=\frac{n(n+1)}{2}$;

基底: $E_{ij}^1(i=1,2,\ldots,n;j=1,2,\ldots,n;j\geq i)$ (第 ij,ji 元素为 1, 其他为 0);

坐标: 对应元素的值.

v) 反对称矩阵构成的线性空间:

维数: $1 + 2 + \dots + n = \frac{n(n+1)}{2}$;

基底: E_{ij}^2 ($i = 1, 2, ..., n; j = 1, 2, ..., n; j \ge i$) (第 ij 元素为 1, 第 ji 元素为 -1, 其他为 0);

坐标: 对应元素的值.

vi) 第 1 题 (7) 对应的线性空间: 维数: 2 维;

基底: (0,1), (1,0);

坐标: 对 \mathbb{P}^2 中的向量 (x,y) 坐标为 $\left(x,y-\frac{x(x-1)}{x}\right)$.

vii) 第 1 题 (9) 对应的线性空间: 维数: 3 维;

基底: E, A, A^2 ;

坐标: 对于 f(A), 即为其系数.

欢迎加入 数的美位

(2) 维数: 2 维;

基底: α_1, α_2 ;

坐标: 当 $\alpha = (a_1, a_2, a_3, a_4, a_5)'$ 时, 坐标为: $\left(\frac{a_2 - a_4}{2}, \frac{a_2 + a_4}{2}\right)$. (提示: 将 $\alpha_1, \alpha_2, \alpha_3$ 以列向量的形式组成一个 5×3 的矩阵, 然后进行初等行变

换)

(3) 维数: 2 维;

基底:
$$\left(-\frac{1}{9}, \frac{8}{3}, 1, 0\right)', \left(\frac{2}{9}, -\frac{7}{3}, 0, 1\right)';$$

坐标: 对于解空间的一个向量 $(x_1, x_2, x_3, x_4)'$, 其在上述基底下的坐标为 (x_3, x_4) .

- 3. 提示: $\cos 2x = 2\cos^2 x 1$.
- 4. 证明: 我们考虑如下两个方程组:

$$x_1 \boldsymbol{\alpha}_1 + x_2 \boldsymbol{\alpha}_2 + \dots + x_n \boldsymbol{\alpha}_n = \boldsymbol{\theta}$$
 (I)
 $x_{i_1} \boldsymbol{\alpha}_{i_1} + x_{i_2} \boldsymbol{\alpha}_{i_2} + \dots + x_{i_m} \boldsymbol{\alpha}_{i_m} = \boldsymbol{\theta}$ (II)

要证原式, 只需证明:

$$n-r\geqslant m-r_{\{\alpha_{i_j}\}_{j=1}^m}$$

上式左端为 (I) 的基础解系的向量个数, 右端为 (II) 的基础解系的向量个数. 对于方 程 (II) 的每一解, 我们令方程 (I) 中除了与方程 (II) 相同的变量之外都取为 0, 则方程 (II) 的一个解可以唯一确定方程 (I) 的一个解, 所以方程 (II) 基础解系的个数小于等于 方程(I)基础解系的个数,故有上述不等式.

5. 证明: 令

$$V_1 = G[\alpha_1, \alpha_2, \dots, \alpha_s],$$

$$V_2 = G[\beta_1, \beta_2, \dots, \beta_t],$$

$$V = G[\alpha_1, \alpha_2, \dots, \alpha_s, \beta_1, \beta_2, \dots, \beta_t].$$

易知 $\dim V_1 = r_1, \dim V_2 = r_2, \dim V = r_3$; 第一个不等式显然成立, 为证第二个不等式, 我们由维数公式:

$$\dim V_1 + \dim V_2 = \dim(V_1 + V_2) + \dim(V_1 \cap V_2) \geqslant \dim(V_1 + V_2),$$

即: $r_1 + r_2 \ge r_3$. 当且仅当向量组 $\alpha_1, \alpha_2, \ldots, \alpha_s, \beta_1, \beta_2, \ldots, \beta_t$ 线性无关时等号成立.

6. 证明:

77

- (1) 由于 A + B 的列向量组可以由 A 与 B 的列向量组线性表示, 故易得 $r_{A+B} \leq r_{A} + r_{B}$.
- (2) 令

$$ACX = \theta$$
 (I)

$$CX = \theta$$
 (II)

若 α 为(II)的解,则 α 也是(I)的解,即(II)的解集是(I)的解集的子集,所以有

$$n - r_C \leqslant n - r_{AC} \Rightarrow r_{AC} \leqslant r_C$$
.

又因为转置不改变秩, 即:

$$r_{AC} = r_{(AC)'} = r_{C'A'}.$$

应用上面已证明的结论可得:

$$r_{AC} = r_{C'A'} \leqslant r_{A'} = r_A,$$
 $II r_{AC} \leqslant r_A.$

所以有

$$r_{AC} \leqslant r_A, r_C$$

(3) 若 A 可逆,则 A 可以表示为初等矩阵的乘积:

$$A = P_1 P_2 \cdots P_s$$

则

$$AC = P_1 P_2 \cdots P_s C$$
.

因为初等变换不改变矩阵的秩,所以当 A 可逆时,有 $r_{AC} = r_C$,同理可知另外的 结论.

7. 证明: (反证法) 假设 V_1, V_2 的交是零空间, 即

$$V_1 \cap V_2 = \{\boldsymbol{\theta}\},\$$

则

$$\dim(V_1 \cap V_2) = 0.$$

由维数公式

$$\dim V_1 + \dim V_2 = \dim(V_1 + V_2) + \dim(V_1 \cap V_2) = \dim(V_1 + V_2),$$

设 V₁ 的基底为:

$$\alpha_1, \alpha_2, \ldots, \alpha_s,$$

 V_2 的基底为:

$$\beta_1, \beta_2, \ldots, \beta_t,$$

则 $V_1 + V_2$ 的基底为:

$$\alpha_1, \alpha_2, \ldots, \alpha_s, \beta_1, \beta_2, \ldots, \beta_t$$
.

又

$$V_1, V_2 \leqslant V$$

故

$$s+t \leqslant n$$
.

即

$$\dim V_1 + \dim V_2 = \dim(V_1 + V_2) \leqslant n.$$

这与 $\dim V_1 + \dim V_2 > n$ 矛盾.

反之,在平面直角坐标系中取 $V_1 = \{(a,0)|a \in \mathbb{R}\}, V_2 = \{(0,b)|b \in \mathbb{R}\}, 则 V_1 \cap V_2 = \{(0,0)\}, 但有$

$$\dim V_1 + \dim V_2 = 1 + 1 = 2 = \dim V_3$$
,

所以反之不成立.

8. 证明:

(1) a)
$$\diamondsuit$$
 α ∈ V_1 ∩ $(V_2 + V_3)$, \emptyset

$$\alpha \in V_1 \coprod \alpha \in V_2 + V_3.$$

由
$$\alpha \in V_2 + V_3$$
 知, $\exists \alpha_2 \in V_2 \subseteq V_1, \alpha_3 \in V_3$, 使

$$\alpha = \alpha_2 + \alpha_3$$
,

结合 $\alpha \in V_1$, 有

$$\alpha_2 \in V_1 \cap V_2$$
, $\alpha_3 = \alpha - \alpha_2 \in V_1 \cap V_3$.

故

$$\alpha \in (V_1 \cap V_2) + (V_1 \cap V_3),$$

即

$$V_1 \cap (V_2 + V_3) \subseteq (V_1 \cap V_2) + (V_1 \cap V_3).$$

b) 若

$$\alpha \in (V_1 \cap V_2) + (V_1 \cap V_3),$$

则 α 存在分解

 $\alpha = \alpha_4 + \alpha_5, \not\equiv \alpha_4 \in V_1 \cap V_2, \alpha_5 \in V_1 \cap V_3.$

则

 $\alpha_4, \alpha_5 \in V_1$,

则

 $\alpha = \alpha_4 + \alpha_5 \in V_1$,

同理有

 $\boldsymbol{\alpha} = \boldsymbol{\alpha}_4 + \boldsymbol{\alpha}_5 \in V_2 + V_3,$

故

 $\alpha \in V_1 \cap (V_2 + V_3),$

即

$$V_1 \cap (V_2 + V_3) \supseteq (V_1 \cap V_2) + (V_1 \cap V_3).$$

由上得

$$V_1 \cap (V_2 + V_3) = (V_1 \cap V_2) + (V_1 \cap V_3).$$

(2) 要证

$$(V_1 \cap V_2) + (V_1 \cap V_3) = V_2 + V_1 \cap V_3,$$

即证

$$V_1 \cap V_2 = V_2$$

因为

$$V_2 \subset V_1$$
,

故显然成立, 所以结论成立. 举例略, 可参考三维欧式空间举例.

9. 证明: 我们用同构的思想来证明该命题.

我们知道 n 维线性空间是与 \mathbb{P}^n 同构的, 所以只需在 \mathbb{P}^n 中说明有一个无限子集 S 满足题意即可.

我们在 \mathbb{P}^n 中找下面这种类型的向量:

$$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 2 \\ 2^2 \\ \vdots \\ 2^{n-1} \end{bmatrix}, \begin{bmatrix} 1 \\ 3 \\ 3^2 \\ \vdots \\ 3^{n-1} \end{bmatrix}, \dots, \begin{bmatrix} 1 \\ n \\ n^2 \\ \vdots \\ n^{n-1} \end{bmatrix}, \begin{bmatrix} 1 \\ n+1 \\ (n+1)^2 \\ \vdots \\ (n+1)^{n-1} \end{bmatrix}, \dots$$

欢迎加入 数的美位

80

由于自然数是无限的,所以上述向量组也是无限的.仔细观察可以发现,这个向量组任何 n 个向量合起来取行列式后为 Vandermonde 行列式,由于两两自然数不为零,所以行列式是非零的,那么就可以说明任何 n 个向量是线性无关的,由于同构的空间有相同的性质,所以在 V 中我们可以找到满足题意的 S.

10. (这个题说明了 V 的有限个真子空间的并不能覆盖 V)

证明: 我们用数学归纳法来证明这个命题吧.

i) m=2 时, 令 V_1, V_2 为 V 的非平凡子空间, 任取 $\alpha \in V \setminus V_1$, 若 $\alpha \notin V_2$, 则 α 即为所求; 若 $\alpha \in V_2$, 则由 V_2 为非平凡子空间, $\exists \beta \in V \setminus V_2$.

断言

$$(\forall k \in \mathbb{P})k\alpha + \beta \notin V_2$$
,

因为如果

$$k\boldsymbol{\alpha} + \boldsymbol{\beta} \in V_2$$
,

则由

$$(k\boldsymbol{\alpha} + \boldsymbol{\beta}) - k\boldsymbol{\alpha} = \boldsymbol{\beta} \in V_2$$

产生矛盾. 现在取

$$k_1 \neq k_2$$

则断言

$$k_1\alpha + \beta$$
, $k_2\alpha + \beta$ 不全都属于 V_1 ,

因为如果全都在 V_1 中,则

$$(k_1\boldsymbol{\alpha} + \boldsymbol{\beta}) - (k_2\boldsymbol{\alpha} + \boldsymbol{\beta}) = (k_1 - k_2)\boldsymbol{\alpha} \in V_1,$$

矛盾, 所以必有其中之一不在 V_1 中, 且由前可知该元素也不在 V_2 中. 所以, 当 m=2 的时候结论成立.

ii) 假设 m-1 时结论成立, 即

$$(\exists \alpha \in V) \alpha \notin V_i, \quad i = 1, 2, \dots, m - 1.$$

若 $\alpha \notin V_m$, 则 α 即为所求的向量, 若 $\alpha \in V_m$, 因为 $V_m < V$, 则

$$\exists \beta \in V \backslash V_m$$
,

构造 $k\alpha + \beta$, 那么仿照前面的证明, 我们可以得到

$$k\boldsymbol{\alpha} + \boldsymbol{\beta} \notin V_m$$
.

接着取 $k_1 \neq k_2$, 则

$$k_1\alpha + \beta, k_2\alpha + \beta$$

不能同时属于 V_i 中 $(i=1,2,\ldots,m-1)$ (这同样是仿照前面的证明). 然后取 m 个不同的数 k_1,k_2,\ldots,k_m , 根据抽屉原理,

$$k_1\alpha + \beta, k_2\alpha + \beta, \dots, k_m\alpha + \beta$$

中至少有一个不在任意一个 V_i 中 $(i=1,2,\ldots,m-1)$. 又因为其不在 V_m 中, 所以便找到了一个向量满足题意. 由数学归纳法故得证.

11. 证明:

- (1) i) 因为 $E \in C(A)$, 故 C(A) 非空.
 - ii) 若

$$AB = BA, AC = CA,$$

则

$$A(B+C) = AB + AC = BA + CA = (B+C)A,$$

故

$$B + C \in C(A)$$
.

iii) 若

$$AB = BA$$

则

$$\mathbf{A}(k\mathbf{B}) = k(\mathbf{A}\mathbf{B}) = k(\mathbf{B}\mathbf{A}) = (k\mathbf{B})\mathbf{A},$$

即

$$k\mathbf{B} \in C(\mathbf{A})$$
.

综上

$$C(\mathbf{A}) \leqslant \mathbb{P}^{n \times n}$$
.

- (2) $C(\mathbf{A})$ 为全体 n 阶对角矩阵. $\dim C(\mathbf{A}) = n$. 它的一组基底为: $\mathbf{E}_{ii} (i = 1, 2, ..., n)$.
- 12. 证明: 令

$$k_1 f_1(x) + k_2 f_2(x) + \dots + k_n f_n(x) = 0,$$

依次将 a_1, a_2, \ldots, a_n 代入上式, 注意 $f_i(a_i) \neq 0, i = 1, 2, \ldots, n$, 且 $f_i(a_j) = 0, i, j = 1, 2, \ldots, n, i \neq j$, 我们得到

$$k_i f_i(a_i) = 0, \quad i = 1, 2, \dots, n,$$

欢迎加入 数的美位

从而

$$k_i = 0, \quad i = 1, 2, \dots, n.$$

故

$$(f_1(x), f_2(x), \dots, f_n(x))$$

线性无关, 故其为 $\mathbb{P}_{n-1}[x]$ 的一个基底.

由 a_1, a_2, \ldots, a_n 为 n 次单位根, 得:

$$x^{n} - 1 = (x - a_{1})(x - a_{2}) \cdots (x - a_{n}) = (x - a_{i}) f_{i}(x).$$

又

$$a_i^n = 1, \quad i = 1, 2, \dots, n,$$

故对 i = 1, 2, ..., n,

$$f_i(x) = \frac{x^n - 1}{x - a_i} = \frac{x^n - a_i^n}{x - a_i}$$

$$= \frac{(x - a_i)(x^{n-1} + x^{n-2}a_i + \dots + xa_i^{n-2} + a_i^{n-1})}{x - a_i}$$

$$= x^{n-1} + x^{n-2}a_i + \dots + xa_i^{n-2} + a_i^{n-1}$$

$$= (1, x, x^2, \dots, x^{n-1})(a_i^{n-1}, a_i^{n-2}, \dots, a_i, 1)'.$$

故 $(1, x, x^2, ..., x^{n-1})$ 到 $(f_1(x), f_2(x), ..., f_n(x))$ 的过渡矩阵为:

$$\begin{bmatrix} a_1^{n-1} & a_2^{n-1} & \cdots & a_{n-1}^{n-1} & a_n^{n-1} \\ a_1^{n-2} & a_2^{n-2} & \cdots & a_{n-1}^{n-2} & a_n^{n-2} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_1 & a_2 & \cdots & a_{n-1} & a_n \\ 1 & 1 & \cdots & 1 & 1 \end{bmatrix}.$$

13. 证明: 由题

$$V_1, V_2 \leqslant V; \quad V_1 \leqslant V_2; \quad \dim V_1 = \dim V_2.$$

$$\dim V_1 = s$$
.

又

$$V_1 \subseteq V_2$$
,

则

$$\alpha_1,\ldots,\alpha_s\in V_2.$$

欢迎加入 数的美位

因为

$$\dim V_1 = \dim V_2 = s,$$

且

$$oldsymbol{lpha}_1,\ldots,oldsymbol{lpha}_s$$

线性无关, 故其也是 V_2 的一组基底. 因为 V_1, V_2 有相同的基底, 故有

$$V_1 = V_2$$
.

14. 证明: 由题,

$$k_1\boldsymbol{\alpha}_1 + k_2\boldsymbol{\alpha}_2 + k_3\boldsymbol{\alpha}_3 = \boldsymbol{\theta}.$$

因为

$$k_1k_2 \neq 0$$

故

$$k_1 \neq 0, k_2 \neq 0.$$

因为

$$\alpha_3 = 0 \cdot \alpha_1 + 1 \cdot \alpha_3, \quad \alpha_2 = -\frac{k_1}{k_2} \alpha_1 - \frac{k_3}{k_2} \alpha_3,$$

即 α_2, α_3 可以由 α_1, α_3 线性表出. 故

$$G[\alpha_2, \alpha_3] \subseteq G[\alpha_1, \alpha_3].$$

同理可知

$$G[\boldsymbol{lpha}_2, \boldsymbol{lpha}_3] \supseteq G[\boldsymbol{lpha}_1, \boldsymbol{lpha}_3],$$

故有

$$G[\boldsymbol{lpha}_2, \boldsymbol{lpha}_3] = G[\boldsymbol{lpha}_1, \boldsymbol{lpha}_3].$$

15. 证明:

i) 令

$$\alpha \in V_1 \cup V_2$$
,

则

$$\alpha \in V_1$$
 或 $\alpha \in V_2$.

若

$$\alpha \in V_1$$
,

欢迎加入 数的美位

84

则由

 $\alpha = \alpha + \theta, \sharp + \alpha \in V_1, \theta \in V_2$

知

 $\alpha \in V_1 + V_2$.

同理若

 $\alpha \in V_2$,

也有

 $\alpha \in V_1 + V_2$.

故有

 $V_1 \cup V_2 \subseteq V_1 + V_2$.

ii) 当

 $V_1 \subseteq V_2$,

有

 $V_1 \cup V_2 = V_2.$

而对于

 $\forall \alpha = \alpha_1 + \alpha_2 \in V_1 + V_2,$

其中

 $\alpha_1 \in V_1, \alpha_2 \in V_2,$

因为

 $V_1 \subseteq V_2$,

故也有

 $\alpha_1 \in V_2$.

所以

 $\alpha = \alpha_1 + \alpha_2 \in V_2$,

即

 $V_1 + V_2 \subseteq V_2$.

又显然

 $V_2 \subseteq V_1 + V_2$,

故

 $V_2 = V_1 + V_2,$

即有

$$V_1 \cup V_2 = V_1 + V_2$$
.

当 V_2 ⊆ V_1 时,同理等号成立.

- iii)若 $V_1 \cup V_2 = V_1 + V_2$,由第 10 题, V_1, V_2 不可能全为 $V_1 + V_2$ 的真子空间, 不妨设 $V_1 = V_1 + V_2$,这时任取 $\boldsymbol{\beta} \in V_2$,则 $\boldsymbol{\beta} = \boldsymbol{\theta} + \boldsymbol{\beta} \in V_1 + V_2 = V_1$. 所以 $V_2 \subseteq V_1$. 若 $V_2 = V_1 + V_2$,同理可证 $V_1 \subseteq V_2$.
- 16. (1) 过渡矩阵为:

$$(\boldsymbol{\varepsilon}_1, \boldsymbol{\varepsilon}_2, \boldsymbol{\varepsilon}_3, \boldsymbol{\varepsilon}_4)^{-1}(\boldsymbol{\delta}_1, \boldsymbol{\delta}_2, \boldsymbol{\delta}_3, \boldsymbol{\delta}_4) = \begin{bmatrix} 2 & 0 & -1 & 1 \\ 1 & 1 & 1 & 3 \\ -1 & 2 & 1 & 1 \\ 1 & 2 & 2 & 8 \end{bmatrix},$$

坐标为:

$$\mathbf{A}^{-1} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \frac{1}{16} \begin{bmatrix} 2x_1 + 16x_2 - 2x_3 - 6x_4 \\ 6x_1 + 10x_3 - 2x_4 \\ -11x_1 + 24x_2 - 5x_3 - 7x_4 \\ x_1 - 8x_2 - x_3 + 5x_4 \end{bmatrix}.$$

(2) 过渡矩阵为:

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix},$$

坐标为:

(3) 过渡矩阵为:

$$\mathbf{A} = \frac{1}{4} \begin{bmatrix} 3 & 7 & 2 & -1 \\ 1 & -1 & 2 & 3 \\ -1 & 3 & 0 & -1 \\ 1 & -1 & 0 & -1 \end{bmatrix},$$

坐标为:

$$\left(1,\frac{1}{2},-1,\frac{1}{2}\right).$$

17. 令

$$\boldsymbol{\alpha} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}$$

则 α 在 $(\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)$ 下的坐标为:

$$(x_1, x_2, x_3, x_4).$$

我们令:

$$\begin{bmatrix} 2 & 0 & -1 & 1 \\ 1 & 1 & 1 & 3 \\ -1 & 2 & 1 & 1 \\ 1 & 2 & 2 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix},$$

解得:

$$oldsymbol{lpha} = egin{bmatrix} -2k \\ -\frac{3}{2}k \\ -k \\ k \end{bmatrix}$$
 (k 为任意常数).

18. 证明:

(1) 令

$$k_1\boldsymbol{\alpha}_1 + k_2(\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2) + \cdots + k_n(\boldsymbol{\alpha}_1 + \boldsymbol{\alpha}_2 + \cdots + \boldsymbol{\alpha}_n) = \boldsymbol{\theta},$$

整理得

$$(k_1+k_2+\cdots+k_n)\alpha_1+(k_2+k_3+\cdots+k_n)\alpha_2+\cdots+k_n\alpha_n=\theta.$$

则由 $\alpha_1, \alpha_2, \cdots, \alpha_n$ 为基底, 得

$$\begin{cases} k_1 + k_2 + \dots + k_n = 0 \\ k_2 + \dots + k_n = 0 \end{cases}$$

$$\vdots$$

$$k_n = 0$$

解得

$$k_1 = k_2 = \dots = k_n = 0.$$

故

$$oldsymbol{lpha}_1,oldsymbol{lpha}_1+oldsymbol{lpha}_2,\cdots,oldsymbol{lpha}_1+oldsymbol{lpha}_2+\cdots+oldsymbol{lpha}_n$$

线性无关, 也是 V 的一个基底.

(2) 易知

$$(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \cdots, \boldsymbol{\alpha}_n)$$

到

$$(\alpha_1, \alpha_1 + \alpha_2, \cdots, \alpha_1 + \alpha_2 + \cdots + \alpha_n)$$

的过渡矩阵为:

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & \cdots & 1 & 1 \\ 0 & 1 & \cdots & 1 & 1 \\ 0 & 0 & \cdots & 1 & 1 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix},$$

则 α 在基底 $(\alpha_1, \alpha_1 + \alpha_2, \cdots, \alpha_1 + \alpha_2 + \cdots + \alpha_n)$ 下的坐标为:

$$A^{-1} \begin{bmatrix} n \\ n-1 \\ \vdots \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \\ 1 \end{bmatrix}.$$

19. 证明: 线性空间的证明就略吧, 相信看到这里的一定会知道怎么证明 (抓住定义).

令

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0 \in W.$$

由

$$f(1) = 0$$

得

$$a_n + a_{n-1} + \dots + a_0 = 0$$

即

$$a_0 = -(a_n + a_{n-1} + \dots + a_1).$$

故

$$f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$$

= $a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x - (a_n + a_{n-1} + \dots + a_1)$
= $a_n (x^n - 1) + a_{n-1} (x^{n-1} - 1) + \dots + a_1 (x - 1).$

欢迎加入 数的美位

88

故 W 的一个基底为

$$(x^{n}-1, x^{n-1}-1, \dots, x-1).$$

20. (1) 证明: 令

$$\boldsymbol{A} = (\boldsymbol{A}_1, \boldsymbol{A}_2, \dots, \boldsymbol{A}_s),$$

由题:

$$egin{aligned} (oldsymbol{eta}_{i_1},oldsymbol{eta}_{i_2},\ldots,oldsymbol{eta}_{i_r}) = \ & ((oldsymbol{lpha}_1,oldsymbol{lpha}_2,\ldots,oldsymbol{lpha}_n)oldsymbol{A}_{i_1},(oldsymbol{lpha}_1,oldsymbol{lpha}_2,\ldots,oldsymbol{lpha}_n)oldsymbol{A}_{i_2},\ldots,(oldsymbol{lpha}_1,oldsymbol{lpha}_2,\ldots,oldsymbol{lpha}_n)oldsymbol{A}_{i_r}). \end{aligned}$$

令

$$k_1 \boldsymbol{\beta}_{i_1} + \dots + k_r \boldsymbol{\beta}_{i_r} = k_1(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots, \boldsymbol{\alpha}_n) \boldsymbol{A}_{i_1} + \dots + k_r(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots, \boldsymbol{\alpha}_n) \boldsymbol{A}_{i_r}$$
$$= (\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots, \boldsymbol{\alpha}_n) (k_1 \boldsymbol{A}_{i_1} + \dots + k_r \boldsymbol{A}_{i_r}) = \boldsymbol{\theta},$$

由

$$(\boldsymbol{lpha}_1, \boldsymbol{lpha}_2, \dots, \boldsymbol{lpha}_n)$$

为基底知, 其对应的矩阵可逆, 那么在

$$(\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots, \boldsymbol{\alpha}_n)(k_1 \boldsymbol{A}_{i_1} + \dots + k_r \boldsymbol{A}_{i_r}) = \boldsymbol{\theta}$$

两端左乘以

$$(oldsymbol{lpha}_1,oldsymbol{lpha}_2,\ldots,oldsymbol{lpha}_n)^{-1}$$

得

$$k_1 \mathbf{A}_{i_1} + \dots + k_r \mathbf{A}_{i_r} = \boldsymbol{\theta}.$$

所以有

$$k_1 = k_2 = \dots = k_r = 0.$$

故

$$\beta_{i_1},\ldots,\beta_{i_r}$$
线性无关.

由

$$oldsymbol{A}_{i_1}, oldsymbol{A}_{i_2}, \ldots, oldsymbol{A}_{i_r}$$

的极大性,可得

$$oldsymbol{eta}_{i_1},\ldots,oldsymbol{eta}_{i_r}$$

得极大性. 故

$$oldsymbol{eta}_{i_1},\ldots,oldsymbol{eta}_{i_r}$$

欢迎加入 数的美位

90

为

$$oldsymbol{eta}_1,\ldots,oldsymbol{eta}_s$$

的一个极大线性无关组.

(2) 证明:

$$\dim G[\boldsymbol{\beta}_1,\ldots,\boldsymbol{\beta}_s]$$

为

$$\beta_1,\ldots,\beta_s$$

中极大线性无关组中向量的个数, 由(1) 知其等于 r_A . 故得证.

21. 证明: 由已知

$$\dim V_1 + \dim V_2 = \dim(V_1 + V_2) + \dim(V_1 \cap V_2)$$
$$= 2\dim(V_1 \cap V_2) + 1,$$

所以有

$$(\dim V_1 - \dim(V_1 \cap V_2)) + (\dim V_2 - \dim(V_1 \cap V_2)) = 1,$$

则有

$$\dim V_1 = \dim(V_1 \cap V_2) \not \exists \dim V_2 = \dim(V_1 \cap V_2).$$

若

$$\dim V_1 = \dim(V_1 \cap V_2),$$

但又

$$V_1 \cap V_2 \subseteq V_1$$
,

故

$$V_1 \cap V_2 = V_1 (\pm 13 \ \mathbb{D}).$$

易得

$$V_1 \subseteq V_2$$
,

若

$$\dim V_2 = \dim(V_1 \cap V_2),$$

则同理有

$$V_2 \subseteq V_1$$
.

欢迎加入 数的美位

、数的美位 ----

22. 证明: 我们先建立 V 与 \mathbb{P}^n 之间的同构, 在此基础上, V 中的向量与 \mathbb{P}^n 中的一个列向量对应, V 中的真子空间与 \mathbb{P}^n 中的真子空间对应. 对于题中的 V_1, V_2, \ldots, V_s , 我们在其中找形如

$$\boldsymbol{\alpha} = \begin{bmatrix} 1 \\ a \\ a^2 \\ \vdots \\ a^{n-1} \end{bmatrix}$$

的向量来分别构成 V_1, V_2, \ldots, V_s 的基底. (这是可以办到的) 我们按"最坏"情况处理. 这些子空间都是 n-1 维的,且 n-1 个基底向量互不相同. 但由于正整数的无限性,我们还是可以找到 n 个线性无关的向量,它们是 \mathbb{P}^n 的基底,但是它们中任一个都不属于 V_i ($i=1,\ldots,s$) (因为不能被 V_i 的基底线性表示).

23. 我们知道

AX = 0

的解集中基础解系的向量个数为

 $n-r_{\mathbf{A}}$

同理 BX = 0 为

 $n-r_{\mathbf{R}}$

由题有, 若

 $n - r_A + n - r_B > n,$

则有

 $r_{\boldsymbol{A}} + r_{\boldsymbol{B}} < n_{\boldsymbol{A}}$

今

 $C = egin{bmatrix} m{A} \ m{B} \end{bmatrix}$

则

 $r_C \leqslant r_A + r_B < n.$

故方程 CX = 0 有非零解. 设其为 α , 则

 $C\alpha = 0$.

即

$$egin{bmatrix} A \ B \end{bmatrix} lpha = 0.$$

92

故有

$$A\alpha = 0$$
, $B\alpha = 0$.

 α 即为其公共非零解.

24. 证明: 由题

$$\dim V_1 = s$$
, $\dim V_2 = t$.

则由维数公式

$$\dim(V_1 \cap V_2) = s + t - \dim(V_1 + V_2)$$

$$= s + t - \dim(G[\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots, \boldsymbol{\alpha}_s, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \dots, \boldsymbol{\beta}_t])$$

$$= s + t - r_{\boldsymbol{\alpha}_1, \boldsymbol{\alpha}_2, \dots, \boldsymbol{\alpha}_s, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \dots, \boldsymbol{\beta}_t}.$$

再由线性方程组解空间的理论 (定理 3.3.3), 上式等于 dimW.

25. 证明: (反证法) 我们假设 $\dim W \ge 2$, 不妨就令 $\dim W = 2$, 则 W 中存在两个线性无 关向量, 不妨令

$$oldsymbol{lpha} = egin{bmatrix} a_1 \ a_2 \ dots \ a_n \end{bmatrix}, \quad oldsymbol{eta} = egin{bmatrix} a_1 \ b_2 \ dots \ b_n \end{bmatrix},$$

且 $\alpha \neq \theta, \beta \neq \theta, \alpha \neq k\beta$. 那么考虑

$$oldsymbol{lpha}-oldsymbol{eta}=egin{bmatrix} 0\ a_2-b_2\ dots\ a_n-b_n \end{bmatrix},$$

它不可能是 $\boldsymbol{\theta}$, 因为 $\boldsymbol{\alpha} \neq k\boldsymbol{\beta}$ (取 k=1 即知), 但其第一个分量为 0, 所以 $\boldsymbol{\alpha} - \boldsymbol{\beta} \notin W$, 矛盾. 故 $\dim W = 1$.

26. 证明: 易知

$$V_1, V_2 \leqslant V$$
.

因为若

$$\alpha \in V_1$$
,

则

$$f(A)\alpha = \mathbf{0} \Rightarrow f(A)g(A)\alpha = g(A)f(A)\alpha = \mathbf{0} \Rightarrow \alpha \in V,$$
 次证加入 数的美位

故 $V_1 \leq V_2$. 同理 $V_2 \leq V$. 由

$$(f(x), g(x)) = 1 \Rightarrow (\exists u(x), v(x) \in \mathbb{P}[x]) f(x) u(x) + g(x) v(x) = 1$$
$$\Rightarrow (\exists u(x), v(x) \in \mathbb{P}[x]) f(\mathbf{A}) u(\mathbf{A}) + g(\mathbf{A}) v(\mathbf{A}) = \mathbf{E},$$

设 $\alpha \in V$, 则

$$\alpha = E\alpha = (f(A)u(A) + g(A)v(A))\alpha = \alpha_1 + \alpha_2,$$

其中

$$\alpha_1 = f(\mathbf{A})u(\mathbf{A})\alpha, \quad \alpha_2 = g(\mathbf{A})v(\mathbf{A})\alpha,$$

则

$$g(\mathbf{A})\alpha_1 = g(\mathbf{A})f(\mathbf{A})u(\mathbf{A})\alpha = u(\mathbf{A})(f(\mathbf{A})g(\mathbf{A})\alpha) = \mathbf{0},$$

故 $\alpha_1 \in V_2$. 同理有 $\alpha_2 \in V_1$, 即有 $V = V_1 + V_2$.

现在令 $\beta \in V_1 \cap V_2$, 则有

$$f(\mathbf{A})\mathbf{eta} = \mathbf{0}, \quad g(\mathbf{A})\mathbf{eta} = \mathbf{0}.$$

于是

$$\beta = E\beta = (f(A)u(A) + g(A)v(A))\beta = u(A)f(A)\beta + v(A)g(A)\beta = 0,$$

即

$$V_1 \cap V_2 = \{\mathbf{0}\}$$

综上

93

$$V = V_1 \oplus V_2$$

27. 证明: 容易验证

$$(\forall f(x), g(x) \in \mathbb{P}_0[x]) f(x) + g(x) \in \mathbb{P}_0[x],$$

$$(\forall f(x) \in \mathbb{P}_0[x], \forall k \in \mathbb{P}) k f(x) \in \mathbb{P}_0[x].$$

故 $\mathbb{P}_0[x]$ 为 $\mathbb{P}[x]$ 的子空间,同理 $\mathbb{P}_1[x]$ 也是 $\mathbb{P}[x]$ 的子空间.下面我们说明 $\mathbb{P}_0[x]$ 与 $\mathbb{P}_1[x]$ 之间有同构关系.

我们建立这样的映射, 对 $\forall \sum a_i x^i \in \mathbb{P}_0[x]$,

$$\varphi(\sum a_i x^i) = \sum a_i x^{i-1} \in \mathbb{P}_1[x].$$

我们首先可以证明 φ 是单射且是满射,接着证明其满足线性关系,则可以说明 $\mathbb{P}_0[x]$ 与 $\mathbb{P}_1[x]$ 有同构关系. 这些相信大家都是可以证明的,就不再写了.

因为

$$\varphi(a+b) = e^{a+b} = e^a \cdot e^b = \varphi(a) \oplus \varphi(b),$$

$$\varphi(ka) = e^{ka} = (e^a)^k = k \cdot e^a = k \cdot \varphi(a),$$

故 φ 为 $\mathbb{R}^+ \longrightarrow \mathbb{R}$ 的一个同构映射. 于是 \mathbb{R}^+ 与 \mathbb{R} 同构.

29. 证明: 我们先来证明 ℙ[x] 可以与其一个真子空间同构.

令

$$V = \{f(x)u_0(x) | f(x) \in \mathbb{P}[x], u_0[x]$$
为一个固定多项式 $\}$,

令

$$\varphi(f(x)) = f(x)u_0(x).$$

易知 φ 为一双射, 且

$$\varphi(f_1(x) + f_2(x)) = (f_1(x) + f_2(x))u_0(x) = \varphi(f_1(x)) + \varphi(f_2(x)),$$
$$\varphi(kf(x)) = kf(x)u_0(x) = k\varphi(f(x)).$$

故存在 $\mathbb{P}[x]$ 与 V 的一个同构映射, 这个映射与 $u_0(x)$ 有关. 我们改变 $u_0(x)$ 为 $u_1(x), u_2(x), \ldots, u_n(x), \ldots$, 故有无穷多个真子空间与 $\mathbb{P}[x]$ 同构.

30. 证明: 由 31 题, 得

$$V_1 \cap V_2 = \{\mathbf{0}\}.$$

设 A_1 的秩为 n-r, A_2 的秩为 r, 则

$$\dim V_1 = n - r, \quad \dim V_2 = r.$$

取 V_1 的基底:

$$\boldsymbol{\xi}_1, \ldots, \boldsymbol{\xi}_{n-r},$$

V2 的基底为:

$$\eta_1,\ldots,\eta_r$$
.

令

$$k_1 \xi_1 + \dots + k_{n-r} \xi_{n-r} + k_{n-r+1} \eta_1 + \dots + k_n \eta_r = 0,$$

令

$$\alpha = k_1 \boldsymbol{\xi}_1 + \dots + k_{n-r} \boldsymbol{\xi}_{n-r}, \quad \boldsymbol{\beta} = -(k_{n-r+1} \boldsymbol{\eta}_1 + \dots + k_n \boldsymbol{\eta}_r),$$

则有

$$\alpha = \beta$$
.

又

$$\alpha \in V_1, \beta \in V_2, \coprod V_1 \cap V_2 = \{\mathbf{0}\},\$$

故

$$\alpha = \beta = 0$$
,

故

$$k_1 = k_2 = \dots = k_n = 0.$$

故

$$\boldsymbol{\xi}_1,\cdots,\boldsymbol{\xi}_{n-r},\boldsymbol{\eta}_1,\cdots,\boldsymbol{\eta}_r$$

为 V 的一个基底, 所以 $V = V_1 \oplus V_2$.

31. 证明:

i) 若 $\alpha \in V$, 即 $A\alpha = 0$, 即

$$egin{bmatrix} egin{bmatrix} m{A}_1 \ m{A}_2 \ dots \ m{A}_s \end{bmatrix} m{lpha} = m{0}.$$

故

$$A_i\alpha=0, \quad i=1,2,\ldots,s,$$

即

$$\alpha \in V_i, \quad , i = 1, 2, \dots, s.$$

故

$$\alpha \in V_1 \cap V_2 \cap \cdots \cap V_s$$
,

故

$$V \subseteq V_1 \cap V_2 \cap \cdots \cap V_s.$$

ii) 若

$$\alpha \in V_1 \cap V_2 \cap \cdots \cap V_s$$
,

则

$$A_1\alpha=0, A_2\alpha=0, \ldots, A_s\alpha=0,$$

故

$$egin{aligned} oldsymbol{A} oldsymbol{lpha} = egin{bmatrix} oldsymbol{A}_1 \ oldsymbol{A}_2 \ dots \ oldsymbol{A}_s \ oldsymbol{A}_s \end{bmatrix} oldsymbol{lpha} = egin{bmatrix} oldsymbol{A}_1 oldsymbol{lpha} \ oldsymbol{A}_2 oldsymbol{lpha} \ dots \ oldsymbol{A}_s oldsymbol{lpha} \end{bmatrix} = oldsymbol{0}. \end{aligned}$$

欢迎加入 数的美位

即
$$\alpha \in V$$
,即 $V_1 \cap V_2 \cap \cdots \cap V_s \subseteq V$.
综上有 $V_1 \cap V_2 \cap \cdots \cap V_s = V$.

- 32. 证明: 在这一个题目里, 我们还是借助同构的思想, 和前面的第 9 题和第 22 题类似, 并且要找的向量和前面的也一样, 所以就不详细写过程了, 看到这里的小伙伴们一定知道怎么做.
- 33. 证明: 假设满足四个条件的子空间存在, 我们来推出矛盾.

由条件(2)(3)(4)得:

$$V_2 \cap V_4 = V_3 \cap V_4 = V_1,$$

 $V_2 + V_4 = V_3 + V_4 = V_5.$

则由维数公式

$$\dim V_2 + \dim V_4 = \dim(V_2 + V_4) + \dim(V_2 \cap V_4) = \dim V_5 + \dim V_1,$$

$$\dim V_3 + \dim V_4 = \dim(V_3 + V_4) + \dim(V_3 \cap V_4) = \dim V_5 + \dim V_1.$$

故推得

$$\dim V_2 = \dim V_3, \quad \mathbf{V}_2 \subseteq V_3,$$

所以由 13 题的结论, 我们有

$$V_2 = V_3$$

矛盾, 故不存在满足题意的子空间.

34. 证明: 让我们一起来考虑一个 n 元方程吧. (还是借助了同构的方法)

$$a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = 0$$

各系数不全为零时, 我们知道其解空间是 n-1 维的. 由 31 题, 我们令

$$\boldsymbol{A}_i = (a_{i1}, a_{i2}, \dots, a_{in}),$$

则 $A_iX = \mathbf{0}$ 的解空间均为 n-1 维 $(i=1,2,\ldots,s)$, 且其交为 $AX = \mathbf{0}$ 的解空间, 其中

$$oldsymbol{A} = egin{bmatrix} oldsymbol{A}_1 \ dots \ oldsymbol{A}_s \end{bmatrix}.$$

这个解空间维数为 $n-r_A$. 由于 $r_A \ge 1$, 故有

$$0 \leqslant n - r_A < n$$

即 AX = 0 的解空间为 \mathbb{P}^n 的真子空间. 如此即证明了 \mathbb{P}^n 的任何真子空间都可以表示为若干个 n-1 维子空间的交. 由 n 维线性空间与 \mathbb{P}^n 的同构关系, 即得原命题也成立.

欢迎加入 数的美位

96

第五章 对称双线性度量空间与线性方程 组

习题

- 1. 令 V 为数域 P 上一 3 维线性空间, $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ 为 V 的一个基底.
 - (1) 若 f 为 V 上一线性函数, 使得

$$f(\varepsilon_1 + \varepsilon_2) = 1, f(\varepsilon_2 - 2\varepsilon_3) = -1, f(\varepsilon_1 + \varepsilon_2) = -3.$$

求 $f(x_1\varepsilon_1 + x_2\varepsilon_2 + x_3\varepsilon_3)$. (2) 求线性函数 f, 使得

$$f(\varepsilon_1 + \varepsilon_3) = f(\varepsilon_1 - 2\varepsilon_3) = 0, f(\varepsilon_1 + \varepsilon_2) = 1.$$

2. 令 V 为数域 P 上一 n 维线性空间. 证明: 若 V 上线性函数 f 非零 (不是零函数), 即

$$(\exists \in V) \quad f(\alpha) \neq 0,$$

则存在 V 的一个人基底 $(\alpha_1, \alpha_2, \cdots, \alpha_n)$, 使得

$$(\forall \alpha \in V), f(\alpha) = x_1^{\alpha}$$

其中 x_1^{α} 为 α 在该基底下的第一个坐标分量.

3. 令 V 为数域 P 上一 n 维线性空间, f_1, f_2, \dots, f_k 为 V 上 k 个线性函数. (1) 证明:

$$W = \alpha \in V | f_i(\alpha) = 0, i = 1, 2, \dots, k \le V,$$

称 W 为 f_1, f_2, \cdots, f_k 的零化子空间;

(2) 证明: 若 $W \leq V$, 则存在 V 上的线性函数 f_1, f_2, \cdots, f_k , 使得 W 为 f_1, f_2, \cdots, f_k 的零化子空间.

注意: 这里从全新角度讨论了 4.5 节的内容.

欢迎加州 数的美位

4. 令 $A \in p^{m \times m}$, 定义 P 上线性空间 $p^{m \times n}$ 上一二元函数 f 如下

$$(\forall X, Y \in P^{m \times n})$$
 $f(X, Y) = tr(X'AY)$

- (1) 证明:f 为 $P^{m \times n}$ 上的上线性函数;
- (2) 求 f 在基底 $(E_{11}, \dots, E_{1n}, E_{21}, \dots, E_{2n}, \dots, E_{m1}, \dots, E_{mn})$ 下的度量矩阵, 其中 E_{ij} 为 (i, j) 为 1 而其他元素为零的 $m \times n$ 矩阵.
- 5. 在 P 上线性空间 P^4 上定义以下双线性函数 f 如下:

$$(\forall X = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}) \qquad X = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} \in P^4)$$

$$f(X,Y) = 3x_1y_2 - 5x_2y_1 + x_3y_4 - 4x_4y_3,$$

(1) 求 f 在基底 $(\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)$ 下的度量矩阵, 其中

$$\varepsilon_1 = (1, -2, -1, 0), \qquad \varepsilon_2 = (1, -1, 1, 0)$$

$$\varepsilon_3 = (-1, 2, 1, 1), \qquad \varepsilon_4 = (-1, -1, 0, 1)$$

(2)(1) 求 f 在基底 $(\eta_1, \eta_2, \eta_3, \eta_4)$ 下的度量矩阵, 其中

$$(\eta_1, \eta_2, \eta_3, \eta_4) = (\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)T$$

- 6. 令 V 是复线性空间,dimV > 1,f 为 V 上一对称双线性函数.
 - (1) 证明:

$$(\exists \theta \neq \zeta \in V) \quad f(\zeta, \zeta) = 0;$$

(2) 证明: 若 f 非奇异, 则存在线性无关向量 ζ, η , 使得

$$f(\zeta, \eta) = 1, f(\zeta, \zeta) = f(\eta, \eta) = 0.$$

7. 令 V 为数域 P 上一 n 维线性空间 $V_1 < V_2 \notin V_1, f$ 为 V 上一双线性函数. 证明:

$$(\exists 0 \neq \eta \in V_1 + G[\zeta])(\forall \alpha \in V_1) \quad f(\zeta, \alpha) = 0.$$

欢迎加入 数的美位

- 8. 假设如第七题.
 - (1) 证明: 若 $V_1 \cap V_2^{\perp} = \theta$, 则 $V = V_1 + V_1^{\perp}$;
 - (2) 证明: 若 f 限制在 V_1 上非奇异, 则 $V = V_1 + V_1^{\perp}$. 并证明 f 在 V_1^{\perp} 上非奇异当且 仅当 f 在 V 上非奇异.
- 9. 今 $A \in \mathbb{R}^{n \times n}$ 为正定矩阵, 在线性空间 \mathbb{R}^n 上定义

$$(\forall \alpha = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}) \qquad \beta = \begin{pmatrix} y_1 \\ y_2 \\ y_3 \\ y_4 \end{pmatrix} \in P^4)$$
$$(\alpha, \beta) = \alpha' A \beta.$$

- (1) 证明: (α, β) 为 R^n 上一内积;
- (2) 求 (α, β) 在 \mathbb{R}^n 的自然基底下的度量矩阵;
- (3) 具体写出此空间的柯西不等式.
- 10. 在 Euclid 空间 R^4 中, 求 α, β 的夹角 $<\alpha, \beta>$:

$$(1)\alpha = (2,1,3,2), \beta = (1,2,-2,1);$$

$$(2)\alpha = (1, 2, 2, 3), \beta = (3, 1, 5, 1);$$

$$(3)\alpha = (1, 1, 1, 2), \beta = (3, 1, -1, 0).$$

- 11. 在 Euclid 空间 R^4 中, 求一与 (1,1,-1,1),(1,-1,-1,1),(2,1,1,3) 正交的单位向量 $(x-1,x_2,x_3,x_4)$.
- 12. \diamondsuit ($\varepsilon_1, \varepsilon_2, \varepsilon_3$) 为 3 维 Euclid 空间 V 的一个标准正交基底. 证明:($\alpha_1, \alpha_2, \alpha_3$) 也是 V 的一个标准正交基底, 其中

$$\alpha_1 = \frac{1}{3}(2\varepsilon_1 + 2\varepsilon_2 - \varepsilon_3)$$

$$\alpha_2 = \frac{1}{3}(2\varepsilon_1 - \varepsilon_2 + 2\varepsilon_3)$$

$$\alpha_3 = \frac{1}{3}(\varepsilon_1 - 2\varepsilon_2 - 2\varepsilon_3)$$

13. \diamondsuit $(\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4, \varepsilon_5)$ 为 5 维 Euclid 空间 V 的一个标准正交基底. $G[\alpha_1, \alpha_2, \alpha_3]$, 其中

$$\alpha_1 = \varepsilon_1 + \varepsilon_5$$

$$\alpha_2 = \varepsilon_1 - \varepsilon_2 + \varepsilon_4$$

$$\alpha_3 = 2\varepsilon_1 + \varepsilon_2 + \varepsilon_3$$

求 V_1 的一个标准正交基底.

14. 求齐次线性方程组

$$\begin{cases} 2x_1 + x_2 - x_3 + x_4 -3x_5 = 0 \\ x_1 + x_2 - x_3 + x_5 = 0 \end{cases}$$

的解空间的一个标准正交基底.

15. 在 R₃[x] 关于

$$(f(x),g(x)) = \int_{-1}^{1} f(x)g(x)dx$$

构成的 Euclid 空间中, 将基底 $(1, x, x^2)$ 标准正交化.

16. 今 $A = (a_{ij}) \in \mathbb{R}^{n \times n}$ 实对称. 证明:A 正定当且仅当 A 的顺序主子式

$$|A_k| = |a_{ij}|_{k \times k} > 0, k = 1, 2, \cdots, n.$$

17. 令 V 为一 n 维 Euclid 空间, $\alpha_1,\alpha_2,\cdots,\alpha_m$ 线性无关当且仅当 $\alpha_1,\alpha_2,\cdots,\alpha_m$ 的 Gram 矩阵的行列式

$$|G(\alpha_1, \alpha_2, \cdots, \alpha_m)| \neq 0.$$

18. 令 V_1, V_2 为 Eucild 空间 V 的子空间. 证明:

$$(V_1 + V_2)^{\perp} = V_1^{\perp} \bigcup V_2^{\perp},$$

 $(V_1 \bigcap V_2)^{\perp} = V_1^{\perp} + V_2^{\perp}$

- 19. 令 V 为一 n 维 Euclid 空间, $\alpha \neq \theta$ 是 V 中一固定向量. 证明:
 - $(1)V_1 = \beta | (\beta, \alpha) = 0, \beta \in V V \qquad ;$
 - $(2)dimV_1 = n 1.$
- 20. (1) 证明: 在任意非零 Euclid 空间 V 中一定存在向量 $\alpha_1 \neq \beta_1$, 使得

$$(\alpha_1, \beta_1) > 0;$$

也同时存在 $\alpha_2 \neq \beta_2$, 使得

$$(\alpha_2, \beta_2) < 0.$$

(2) 令 M 为内积为正的一切向量对 $\alpha,\beta((\alpha,\beta)>0)$ 所做成的集合, 而 N 为内积为负的一切向量对 $\alpha,\beta((\alpha,\beta)>0)$ 所做成的集合. 证明:M 与 N 之间存在一个双射.

欢迎加入 数的美位

21. 今 V 为一 n 维 Euclid 空间. 证明: 对于任意 $\alpha, \beta, \gamma \in V$, 有

$$d(\alpha, \beta) - d(\beta, \gamma) \le d(\alpha, \gamma) \le d(\alpha, \beta) + d(\beta, \gamma)$$

- 22. 今 V 为一 n 维 Euclid 空间, α 为 V 中一向量. 证明:
 - $(1)f(\beta) = (\beta, \gamma)$ 定义 V 上一线性函数 f.
 - (2) 若 g 由 $g(\eta) = (\eta, \beta)$ 定义, $\beta \neq \alpha$, 则 $f \neq g$;
 - (3) 对于 V 上任意线性函数 f, 都存在向量 α , 使得 f 可由 $f(\eta) = (\eta, \alpha)$ 定义.
- 23. 今 α, β 为 n 维 Euclid 空间 V 中两个不同的向量, 证明 $(\alpha, \beta) \neq 1$.
- 24. $\Diamond \alpha_1, \alpha_2, \cdots, \alpha_m$ 与 $\beta_1, \beta_2, \cdots, \beta_m$ 为 Euclid 空间 V 的两组向量. 证明: 若

$$(\alpha_i, \alpha_j) = (\beta_i, \beta_j), \quad i, j = 1, 2, \cdots, m,$$

则子空间 $V_1 = G[\alpha_1, \alpha_2, \cdots, \alpha_m], V_2 = G[\beta_1, \beta_2, \cdots, \beta_m]$ 是 Euclid 同构的.

- 25. 令 V_1, V_2 为一 n 维 Euclid 空间 V 的子空间, 且 $dimV_1 < dimV_2$. 证明: V_2 中有非零向量与 V_1 正交.
- 26. 令 α 是 Euclid 空间 V 中一非零向量, $\alpha_1, \alpha_2, \cdots, \alpha_n \in V$ 满足条件 $(1)(\alpha_i, \alpha) > 0, i = 1, 2, \cdots, n;$ $(2)(\alpha_i, \alpha_j) \leq 0, i, j = 1, 2, \cdots, n, i \neq j.$ 证明: $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性无关.
- 27. 令 V 为一 n 维 Euclid 空间. 证明:V 中至多有 n+1 个向量, 其两两夹角都为钝角.
- 28. 在 Euclid 空间 R^n 中, 证明: 非零向量 α, β 正交的充分必要条件是 $|\alpha + \beta| = |\alpha \beta|$.
- 29. 令 $\alpha_1, \alpha_2, \cdots, \alpha_m$ 是 n 维 Euclid 空间 V 的一个标准正交向量组. 证明: 对于 V 中任 意向量 β 有不等式

$$\sum_{i=1}^{m} (\beta, \alpha_i)^2 \le |\beta|^2.$$

30. 求下列线性方程组的最小二乘解 (精确到小数点后两位数字):

$$\begin{cases}
0.39x - 1.89y = 1 \\
0.61x - 1.80y = 1 \\
0.93x - 1.68y = 1 \\
1.35x - 1.50y = 1
\end{cases}$$

并用"向量到子空间的距离"的语言表述这一解的几何意义.

解答

1. (1)

$$f(\varepsilon_{1} + \varepsilon_{3}) = f(\varepsilon_{1}) + f(\varepsilon_{3}) = 1$$

$$f(\varepsilon_{2} - 2\varepsilon_{3}) = f(\varepsilon_{2}) - f(2\varepsilon_{3}) = -1$$

$$f(\varepsilon_{1} + \varepsilon_{2}) = f(\varepsilon_{1}) + f(\varepsilon_{2}) = -3$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 0 & 1 & -2 \\ 1 & 1 & 0 \end{pmatrix} \begin{pmatrix} f(\varepsilon_{1}) \\ f(\varepsilon_{2}) \\ f(\varepsilon_{3}) \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \\ -3 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} f(\varepsilon_{1}) & f(\varepsilon_{2}) & f(\varepsilon_{3}) \\ f(\varepsilon_{1}) & f(\varepsilon_{2}) & f(\varepsilon_{3}) \end{pmatrix}^{T} = \begin{pmatrix} 4 & -7 & -3 \\ 4 & -7 & -3 \end{pmatrix}^{T}$$

$$f(x_{1}\varepsilon_{1} + x_{2}\varepsilon_{2} + x_{3}\varepsilon_{3}) = 4x_{1} - 7x_{2} - 3x_{3}$$

$$(2):$$

$$\not \equiv \not X \circ$$

$$f(\varepsilon_{1} + \varepsilon_{3}) = f(\varepsilon_{1}) + f(\varepsilon_{3}) = 0$$

$$f(\varepsilon_{1} - 2\varepsilon_{3}) = f(\varepsilon_{1}) - f(2\varepsilon_{3}) = 0$$

$$f(\varepsilon_{1} + \varepsilon_{2}) = f(\varepsilon_{1}) + f(\varepsilon_{2}) = 1$$

$$f(\varepsilon_{1} - 2\varepsilon_{3}) = f(\varepsilon_{1}) - f(2\varepsilon_{3}) = 0$$

$$f(\varepsilon_{1} + \varepsilon_{2}) = f(\varepsilon_{1}) + f(\varepsilon_{2}) = 1$$

$$\begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & -2 \\ 1 & 2 & 0 \end{pmatrix} \begin{pmatrix} f(\varepsilon_{1}) \\ f(\varepsilon_{2}) \\ f(\varepsilon_{3}) \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} f(\varepsilon_{1}) & f(\varepsilon_{2}) & f(\varepsilon_{3}) \end{pmatrix}^{T} = \begin{pmatrix} 0 & 1/2 & 0 \end{pmatrix}^{T}$$

2. (考虑 $f^{-1}(0)$) 由于存在 α 使得 $f(\alpha) = k \neq 0$, 记: $\frac{\alpha}{k} = \alpha^*$, 并令 $\alpha^* = \alpha_1$, 再取 $\alpha_2, \alpha_3 \cdots , \alpha_n$, 使得 $(\alpha_1, \cdots, \alpha_n)$ 为一基底。 则 $\forall \alpha \in V, f(\alpha) = f(x_1\alpha_1 + \cdots + x_n\alpha_n) = k = kf(\alpha^*) = f(k\alpha^*)$

 $\Rightarrow f((x_1 - k)\alpha_1 + \dots + x_n\alpha_n) = 0$ 只需令: $f(\alpha_1) = 1$,其余为零即可.

3. (1):

显然若 $\forall \alpha, \beta \in W, k \in P$,则: $\alpha + \beta \in W, k\alpha \in W$

故 $W \leq V$

(2);

设: dimW = m, dimV = n, 若 m = n, 则今 f 为一零函数即可。

若 m < n, 设 $V = G[\alpha_1, \dots, \alpha_m, \dots, \alpha_n], W = G[\alpha_1, \dots, \alpha_m]$, 因为 V 上所有的线性 函数的集合 L(V, P) 到 P^n 的双射。

故存在 $f_k(\alpha_i) = 0, f_k(\alpha_{k+m}) = 1 (i = 1, 2, \dots, m \quad k = 1, 2, \dots, n - m),$ 使得 $\forall \alpha \in W, f_k(\alpha) = 0,$ 故 W 为零化子空间.

4. (1):

欢迎加入 数的美位

$$f(X,kY+lZ) = tr(X'A(kY+lZ)) = ktr(X'AY) + ltr(X'AZ) = kf(X,Y) + lf(X,Z)$$
 同理可得: $f(kY+lZ,X) = kf(Y,X) + lf(Z,X)$ (2):

$$f(E_{ij}, E_{lk}) = a_{il}$$
 if $j = k$ 否则: 为零。

- 5. (1) $\begin{pmatrix}
 4 & 7 & -5 & -14 \\
 -1 & 2 & 2 & -7 \\
 0 & -11 & 1 & 14 \\
 15 & 4 & -15 & -2
 \end{pmatrix}$ (2) $\begin{pmatrix}
 -6 & 46 & 8 & 24 \\
 -18 & 26 & 16 & -72 \\
 -2 & -38 & 0 & 0 \\
 -6 & 86 & 0 & 0
 \end{pmatrix}$
- 6. (1):

由于 dimV > 1,故 $\exists \alpha, \beta \in V, st \quad \alpha, \beta$ 线性无关 设 $f(\alpha, \alpha) = a, f(\beta, \beta) = b$.

- i): 当 a,b 中至少有一个为零时,符合题意。
- ii): 若二者皆不为零,则 $f(\alpha + t\beta, \alpha + t\beta) = f(\beta, \beta)t^2 + 2f(\alpha, \beta)t + f(\alpha, \alpha)$ $t \in C$ 有解 t_1 ,因此 $\exists \eta = \alpha + t_1\beta$ st $f(\eta, \eta) = 0$.

(2):

由 (1) 可得, $\exists \zeta \in V$, st $f(\zeta, \zeta) = 0$, 又因为 f 非奇异, 因此 $\exists \theta \in V$, st $f(\zeta, \theta) = b \neq 0$ 故 $f(\zeta, \frac{\theta}{b}) = 1$.

 $\Rightarrow \frac{\theta}{h} = \xi$

- i): 若 $f(\xi, \xi) = 0$, 则令 $\eta = \xi$ 即可。
- ii): 若 $f(\xi, \xi) = a$, 则令 $\eta = \xi + t\zeta$

 $f(\zeta, \xi + t\zeta) = f(\zeta, \xi) = 1$

 $f(\xi + t\zeta, \xi + t\zeta) = f(\xi, \xi) + 2tf(\xi, \zeta) + t^2 f(\zeta, \zeta) = 0 \Rightarrow t = -\frac{a}{2}$ 故令 $\eta = \xi - \frac{a}{2}\zeta$, 即有 $f(\eta, \eta) = 0$

- 7. 即证 $\eta \in V^{\perp} \Rightarrow (V_1 + G[\zeta]) \cap V_1^{\perp} \neq 0$. 设 $dimV_1 = m$,由于 $V_1 \cap G[\zeta] = \{0\}$,故 $dim(V_1 + G[\zeta]) = m + 1, dimV_1^{\perp} = n - m$,故由维数公式即可知 $dim((V_1 + G[\zeta]) \cap V_1^{\perp}) \neq 0$.
- 8. (1): $V_1 + V_1^{\perp} \in V \ \text{显然}$

水迎加入 数的美位

由于 $dim(V_1 \cap V_1^{\perp}) = 0$, 故 $dim(V_1 + V_1^{\perp}) = n = dimV$ $\Rightarrow V = V_1 \bigoplus V_1^{\perp}$

(2):

只需由 f 在 V_1 上非奇异 $\Rightarrow V_1 \cap V_1^{\perp} = 0$ 即可

由二者之定义即可得到。

 $(\forall \Theta \neq \alpha \in V_1)(\exists \beta \in V) f(\alpha, \beta) \neq 0.$

 $V^{\perp} = \alpha \in V | (\forall \beta \in V_1) f(\alpha, \beta) = 0 \le V$

显然, $V_1 \cap V_1^{\perp} = 0$.

 $(\forall \Theta \neq \alpha \in V_1)(\exists \beta \in V) f(\alpha, \beta) \neq 0.$

a): 若 f 在 V_1^{\perp} 上非奇异, 所以 $V = V_1 \oplus V_1^{\perp}$.

又可得: 若 f 在 V^{\perp} 上非奇异,那么其在 V_1 上非奇异.若否,与直和矛盾。

因此 $\forall \Theta \neq \alpha \in V$, 若 $\alpha \in V_1$, 则 $\exists \alpha_1 \in V_1$ 使得命题成立。

若 $\alpha \in V_1^{\perp}$ 则 $\exists \alpha_1 \in V_1^{\perp}$ 使得命题成立。

故 $\forall \Theta \neq \alpha \in V \exists \alpha_1 \in Vst \quad f(\alpha, \alpha_1) \neq 0$. 必要性<mark>得证</mark>

b): 若 f 在 V 上非奇异,而 f 在 V_1^{\perp} 上奇异,则 $\exists \beta \in V_1^{\perp}, st \quad \forall \beta_1 \in V_1^{\perp}, f(\beta, \beta_1) = 0$, 又因为 $\forall \beta_2 \in V_1$ 有, $f(\beta, \beta_2) = 0$.

因此 $\exists \beta \in V, st \quad \forall \beta_3 \in V, f(\beta, \beta_3) = 0$, 故f在V上奇异,矛盾。

故 f 在 V₁ 上非奇异.

9. (1):

由正定矩阵的性质可得。

(2):

作矩阵;
$$B = \begin{pmatrix} (\varepsilon_1, \varepsilon_1) & (\varepsilon_1, \varepsilon_2) & \cdots & (\varepsilon_1, \varepsilon_n) \\ (\varepsilon_2, \varepsilon_1) & (\varepsilon_2, \varepsilon_2) & \cdots & (\varepsilon_2, \varepsilon_n) \\ \vdots & \vdots & & \vdots \\ (\varepsilon_n, \varepsilon_1) & (\varepsilon_n, \varepsilon_2) & \cdots & (\varepsilon_n, \varepsilon_n) \end{pmatrix}$$
 得到 $A = B$

(3):

 $Cauchy - Bunjakovski : (\alpha, \beta)^2 \le (\alpha, \alpha)(\beta, \beta)$

直接写出即可

$$\begin{aligned} 10. \ \ &(1){:<\alpha,\beta>} = cos^{-1}(\frac{(\alpha,\beta)}{|\alpha||\beta|}) = cos^{-1}(0) = \frac{\pi}{2} \\ &(2){:<\alpha,\beta>} = cos^{-1}(\frac{(\alpha,\beta)}{|\alpha||\beta|}) = cos^{-1}(45^\circ) = \frac{\pi}{4} \\ &(3){:<\alpha,\beta>} = cos^{-1}(\frac{(\alpha,\beta)}{|\alpha||\beta|}) = cos^{-1}(\frac{3}{\sqrt{77}}) \end{aligned}$$

11. 由题意可得:

$$\begin{cases} x_1 + x_2 - x_3 + x_4 = 0 \\ x_1 - x_2 - x_3 + x_4 = 0 \\ 2x_1 + x_2 + x_3 + 3x_4 = 0 \end{cases}$$

$$\implies \begin{pmatrix} 1 & 1 & -1 & 1 \\ 1 & -1 & -1 & 1 \\ 2 & 1 & 1 & 3 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

解得 $\begin{pmatrix} -4 & 0 & -1 & 3 \end{pmatrix}^T$ 为一所求解

12. 首先

$$|\alpha_1| = \frac{1}{9}(4+4+1) = 1$$

$$|\alpha_2| = \frac{1}{9}(4+1+4) = 1$$

$$|\alpha_3| = \frac{1}{9}(1+4+4) = 1$$

又有:

$$(\alpha_1, \alpha_2) = \frac{1}{9}(4 - 2 - 2) = 0$$
$$(\alpha_1, \alpha_3) = \frac{1}{9}(2 - 4 + 2) = 0$$
$$(\alpha_3, \alpha_2) = \frac{1}{9}(2 + 2 - 4) = 0$$

故命题得证。

13. 由线性无关的定义可知 $\alpha_1, \alpha_2, \alpha_3$ 线性无关。 事实上:

$$k_1\alpha_1 + k_2\alpha + k_3\alpha_3 = (k_1 + k_2 + 2k_3)\varepsilon_1 + (k_3 - k_2)\varepsilon_2 + k_1\varepsilon_3 + k_4\varepsilon_\varepsilon 4 + k_5\varepsilon_5$$

 $\implies k_i = 0$

105

由 Smith 正交化法可得

$$\beta_1 = \alpha_1 \varepsilon_1 + \varepsilon_5$$

$$\beta_2 = \alpha_2 - \frac{(\alpha_2, \beta_1)}{(\beta_1, \beta_1)} \beta_1 = \frac{1}{2} \varepsilon_1 - \varepsilon_2 + \varepsilon_4 - \frac{1}{2} \varepsilon_5$$

$$\beta_3 = \alpha_3 - \frac{(\alpha_3, \beta_1)}{(\beta_1, \beta_1)} \beta_1 - \frac{(\alpha_3, \beta_2)}{(\beta_2, \beta_2)} \beta_2 = \varepsilon_1 + \varepsilon_2 + \varepsilon_3 - \varepsilon_5$$

现只需将其标准化化即可

$$|\beta_1| = \sqrt{2}, |\beta_2| = \frac{\sqrt{10}}{2}, |\beta_3| = 2$$

14. 解得

$$\varepsilon_1 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ 0 \\ 0 \end{pmatrix} \varepsilon_2 = \begin{pmatrix} -1 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix} \varepsilon_1 = \begin{pmatrix} 4 \\ -5 \\ 0 \\ 0 \\ 1 \end{pmatrix}$$

同上有:

$$\beta_1=(0,1,1,0,0),\beta_2=(-1,\frac{1}{2},-\frac{1}{2},-1,0),\beta_3=(1,\frac{1}{2},\frac{5}{2},3,1)$$
 标准化即可

15.

$$\beta_1 = 1$$

$$\beta_2 = x - \frac{(x,1)}{(1,1)} = x - \frac{1}{2}$$

$$\beta_3 = x^2 - \frac{(x^2,1)}{(1,1)} - \frac{(x^2, x - \frac{1}{2})}{(x - \frac{1}{2}, x - \frac{1}{2})} (x - \frac{1}{2}) = x^2 - \frac{2}{7}x - \frac{4}{21}$$

$$|\beta_1| = \sqrt{2}$$

$$|\beta_2| = \frac{\sqrt{42}}{6}$$

16. 必要性: 令:

$$\forall \varepsilon_i = (\delta_{i1}, \delta_{i2}, \cdots, \delta_{in})$$

$$\delta_{ij} \neq 0 (j \leq i)$$

$$\delta_{ij} = 0 (j > i)$$

由于 A 正定,则有

$$\varepsilon_i A \varepsilon_i^T > 0$$

$$\Rightarrow (\delta_{i1}, \delta_{i2}, \cdots, \delta_{ii}) A_i (\delta_{i1}, \delta_{i2}, \cdots, \delta_{ii})^T > 0$$

$$\Rightarrow |A_i| > 0$$

充分性:

运用数学归纳法证明。

欢迎加入 数的美位

i)k = 1 时,显然成立。ii) 假设当 k = n - 1 时,其结果成立,则当 k = n 时:今:

$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix} = \begin{pmatrix} A_{n-1} & \alpha \\ \alpha^T & a_n n \end{pmatrix}$$

$$\begin{pmatrix} E_{n-1} & O \\ -\alpha^T A_{n-1}^{-1} & 1 \end{pmatrix} \begin{pmatrix} A_{n-1} & \alpha \\ \alpha^T & a_n n \end{pmatrix} \begin{pmatrix} E_{n-1} & -A_{n-1}^{-1} \\ O & 1 \end{pmatrix} = \begin{pmatrix} A_{n-1} & O \\ O & a_{nn} - \alpha^T A_{n-1}^{-1} \alpha \end{pmatrix}$$

有又因为 $\exists n-1$ 阶可逆矩阵 G,

$$st \quad G'A_{n-1}G = \begin{pmatrix} d_1 \\ d_2 \\ & \ddots \\ & d_{n-1} \end{pmatrix}$$

其中 $d_n = a_{nn} - \alpha^T A_{n-1}^{-1} \alpha$ $|T_2' T_1' A_n T_1 T_2| = |T_1|^2 |T_2|^2 |A_n| = \Pi_{i=1}^n \Rightarrow d_n > 0$

17.

$$k_1\alpha_1 + k_2\alpha_2 + \dots + k_n\alpha_n = 0$$

 \Rightarrow

$$k_1(\alpha_1, \alpha_1) + k_2(\alpha_2, \alpha_1) + \dots + k_n(\alpha_n, \alpha_1) = 0$$

 $k_1(\alpha_1, \alpha_2) + k_2(\alpha_2, \alpha_2) + \dots + k_n(\alpha_n, \alpha_2) = 0$
:

欢迎加入 数的美位

$$k_{1}(\alpha_{1}, \alpha_{n}) + k_{2}(\alpha_{2}, \alpha_{n}) + \dots + k_{n}(\alpha_{n}, \alpha_{n}) = 0$$

$$\Rightarrow \begin{pmatrix} (\alpha_{1}, \alpha_{1}) & (\alpha_{2}, \alpha_{1}) & \dots & (\alpha_{n}, \alpha_{1}) \\ (\alpha_{1}, \alpha_{2}) & (\alpha_{2}, \alpha_{2}) & \dots & (\alpha_{n}, \alpha_{2}) \\ \vdots & \vdots & & \vdots \\ (\alpha_{1}, \alpha_{n}) & (\alpha_{2}, \alpha_{n}) & \dots & (\alpha_{n}, \alpha_{n}) \end{pmatrix} \begin{pmatrix} k_{1} \\ k_{2} \\ \vdots \\ k_{n} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$$

此方程有零解当且仅当系数矩阵可逆,即: $\alpha_1, \alpha_2, \cdots, \alpha_n$ 线性无关 $\Rightarrow |G(\alpha_1, \alpha_2, \cdots, \alpha_n)| \neq 0$

18. (1):

先证: $(V_1 + V_2)^{\perp} \subset V_1^{\perp} \cap V_2^{\perp}$

 $\forall \alpha \in V_1 + V_2$

 $\exists \alpha_1 \in V_1, \alpha_2 \in V_2, st \quad \alpha = \alpha_1 + \alpha_2$

 $(\alpha_2, \beta) = 0, (\alpha_1, \beta) = 0$

由 α_1, α_2 的任意性,可得: $\beta \in V_1^{\perp}$ 且 $\beta \in V_2^{\perp}$

 $\mathbb{H} \colon (V_1 + V_2)^{\perp} \subset V_1^{\perp} \cap V_2^{\perp}$

再证: $(V_1 + V_2)^{\perp} \supset V_1^{\perp} \cap V_2^{\perp}$

 $\forall \beta \in V_1^{\perp} \cap V_2^{\perp}$

 $\forall \beta \in V_1^{\perp} \cap V_2^{\perp}$ $(\alpha, \beta) = (\alpha_1, \beta) + (\alpha_2, \beta) = 0 \Rightarrow \beta \in (V_1 + V_2)^{\perp}$

(2):

先证: $dim((V_1 \cap V_2)^{\perp}) = dim(V_1^{\perp} + V_2^{\perp})$

 $dim(V_1^{\perp} + V_2^{\perp}) = dimV_1^{\perp} + dimV_2^{\perp} - dim(V_1^{\perp} \cap V_2^{\perp})$

 $=2n-dimV_{1}-dimV_{2}-dim((V_{1}+V_{2})^{\perp})$

 $= n - dimV_1 - dimV_2 + dim(V_1 + V_2)$

 $= n - dim(V_1 \cap V_2)$

 $= dim((V_1 \cap V_2)^{\perp})$

再证: $(V_1 \cap V_2)^{\perp} \supset V_1^{\perp} + V_2^{\perp}$

 $\forall \beta_1 \in V_1^{\perp}, \beta_2 \in V_2^{\perp}, (\beta_1 + \beta_2, \alpha) = (\beta_1, \alpha) + (\beta_2, \alpha) = 0$

由第四章第十三题引理可证命题成立。

19. $(1):(\beta-\gamma,\alpha)=(\beta,\alpha)-(\gamma,\alpha)=0\Rightarrow\beta-\gamma\in V_1$

 $(k\beta, \alpha) = 0 \Rightarrow k\beta \in V_1$

故其为 V 的一个子空间

 $2,3,\cdots,n$) by $V_1=G[\beta_2,\cdots,\beta_n]$

 $\mathbb{H} \dim V_1 = n-1$

欢迎加入 数的美位

20. (1):

由于 $\forall \alpha \neq 0$ 有 $(\alpha, \alpha) > 0$, 故 $(2\alpha, \alpha) > 0(2\alpha, -\alpha) < 0$.

(2):

 $\forall \eta \in M$, 有 $-\eta \in N$, 因此 M 中的元素与 N 的的一个子集中的元素——对应。

同理,N 中的元素与 M 的一个子集中的元素一一对应。故 N 中的元素与 M 中的元素 ——对应

或者做一个映射:

$$\varphi: M \to N$$
$$\{\alpha, \beta\} \to \{-\alpha, \beta\}$$

证 φ 是单射和 φ 是满射即可.

21.

$$d(\alpha, \gamma) = |\alpha - \gamma| \le |\alpha - \beta| + |\beta - \gamma| = d(\alpha, \beta) + d(\beta, \gamma)$$

同理,将不等式左侧移项,可得:

가득:
$$d(lpha,\gamma)+d(eta,\gamma)\geq d(lpha,eta)$$

22. (1):
$$f(k\gamma + l\beta) = (k\gamma + l\beta, \alpha) = kf(\beta) + lf(\gamma)$$

(2): 若
$$f = g$$
, 则: $(f - g)(\alpha - \beta) = (\alpha - \beta, \alpha - \beta) = 0$, 矛盾。

(3): 今
$$V = G[\varepsilon_1, \dots, \varepsilon_n]$$
 其中 $\varepsilon_1, \dots, \varepsilon_n$ 为标准正交基底则:

$$\begin{cases} f(\varepsilon_1) = k_1(\varepsilon_1, \varepsilon_1) + k_1(\varepsilon_1, \varepsilon_2) + \dots + k_n(\varepsilon_1, \varepsilon_n) \\ f(\varepsilon_2) = k_1(\varepsilon_2, \varepsilon_1) + k_1(\varepsilon_2, \varepsilon_2) + \dots + k_n(\varepsilon_2, \varepsilon_n) \\ \vdots \\ f(\varepsilon_n) = k_1(\varepsilon_n, \varepsilon_1) + k_1(\varepsilon_n, \varepsilon_2) + \dots + k_n(\varepsilon_n, \varepsilon_n) \end{cases}$$

 \Rightarrow

$$\begin{pmatrix} (\varepsilon_{1}, \varepsilon_{1}) & (\varepsilon_{1}, \varepsilon_{2}) & \cdots & (\varepsilon_{1}, \varepsilon_{n}) \\ (\varepsilon_{2}, \varepsilon_{1}) & (\varepsilon_{2}, \varepsilon_{2}) & \cdots & (\varepsilon_{2}, \varepsilon_{n}) \\ \vdots & \vdots & & \vdots \\ (\varepsilon_{n}, \varepsilon_{1}) & (\varepsilon_{n}, \varepsilon_{2}) & \cdots & (\varepsilon_{n}, \varepsilon_{n}) \end{pmatrix} \begin{pmatrix} k_{1} \\ k_{2} \\ \vdots \\ k_{n} \end{pmatrix} = \begin{pmatrix} f(\varepsilon_{1}) \\ f(\varepsilon_{2}) \\ \vdots \\ f(\varepsilon_{n}) \end{pmatrix}$$

由于 L(V,P) 与 P^n 同构,故对 $\forall f \in L(V,P)$,存在唯一相应的 $(f(\varepsilon_1),f(\varepsilon_2),\cdots,f(\varepsilon_n))$, 从而存在唯一相应的 (k_1,k_2,\cdots,k_n) ,即相应(唯一)的 α ,使得此定义为一良定义。

23.

$$(\alpha - \beta, \alpha - \beta) = (\alpha, \alpha) + (\beta, \beta) - 2(\alpha, \beta) \neq 0$$
$$(\alpha, \beta) \neq 1$$

24. 由于 $(\alpha_i, \alpha_j) = (\beta_i, \beta_j)$

可知 $\alpha_1 \cdots, \alpha_n$ 与 $\beta_1, \beta_2, \cdots, \beta_n$ 中相同位置的任意个数的元素具有相同的线性关系。 事实上,取 $\alpha_1, \cdots, \alpha_l, \beta_1, \beta_2, \cdots, \beta_n$,有:

$$k_1\alpha_1 + \dots + k_l\alpha_l = 0$$
$$l_1\beta_1 + \dots + l_l\beta_l = 0$$

因此有:

$$\begin{pmatrix} (\alpha_{1}, \alpha_{1}) & (\alpha_{1}, \alpha_{2}) & \cdots & (\alpha_{1}, \alpha_{l}) \\ (\alpha_{2}, \alpha_{1}) & (\alpha_{2}, \alpha_{2}) & \cdots & (\alpha_{2}, \alpha_{l}) \\ \vdots & \vdots & & \vdots \\ (\alpha_{l}, \alpha_{1}) & (\alpha_{l}, \alpha_{2}) & \cdots & (\alpha_{l}, \alpha_{l}) \end{pmatrix} \begin{pmatrix} k_{1} \\ k_{2} \\ \vdots \\ k_{l} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ k_{l} \end{pmatrix}$$

$$\begin{pmatrix} (\beta_{1}, \beta_{1}) & (\beta_{1}, \beta_{2}) & \cdots & (\beta_{l}, \beta_{l}) \\ (\beta_{2}, \beta_{1}) & (\beta_{2}, \beta_{2}) & \cdots & (\beta_{2}, \beta_{l}) \\ \vdots & \vdots & & \vdots \\ (\beta_{l}, \beta_{1}) & (\beta_{l}, \beta_{2}) & \cdots & (\beta_{l}, \beta_{l}) \end{pmatrix} \begin{pmatrix} l_{1} \\ l_{2} \\ \vdots \\ l_{l} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}$$

由: $G(\alpha_1 \cdots, \alpha_n) = G(\beta_1, \beta_2, \cdots, \beta_n)$ 、、即知二者线性关系相同。可知

$$dim(G[\alpha_1, \cdots, \alpha_n]) = dim(G[\beta_1, \cdots, \beta_n])$$

故 $V_1.V_2$ 是 Euclid 空间同构的。

25. $\diamondsuit V_1 = G[\varepsilon_1, \cdots, \varepsilon_{m_1}], V_2 = G[\zeta_1, \cdots, \zeta_{m_2}]$

且 $m_1 < m_2$, 其中基底为标准正交基。

取 $\zeta_i \in V_2$ 且 $\zeta_i \neq V_1$, 显然: $(\zeta_i, \varepsilon_i) = 0$, 故 $\zeta_i = 0$, 正交。

事实上,这样的 ζ_i 是肯定存在的,否则 V_2 中的任意元素都可以被 V_1 的基底表示,则 $m_2 \leq m_1$. 矛盾。

或

 $\mathfrak{P} \zeta = k_1 \zeta_1 + \dots + k_{m_2} \zeta_{m_2}$

若 ζ 与 V_1 正交,则 $(\zeta, \alpha_i) = 0$,即:

$$\begin{pmatrix}
(\zeta_1, \alpha_1) & (\zeta_2, \alpha_1) & \cdots & (\zeta_{m_2}, \alpha_1) \\
\vdots & \vdots & & \vdots \\
(\zeta_1, \alpha_{m_1}) & (\zeta_2, \alpha_{m_1}) & \cdots & (\zeta_{m_2}, \alpha_{m_1})
\end{pmatrix}
\begin{pmatrix}
k_1 \\
\vdots \\
k_{m_2}
\end{pmatrix} =
\begin{pmatrix}
0 \\
\vdots \\
0
\end{pmatrix}$$

因为 $m_1 < m_2$, 因此, 此方程有非零解。即存在 $\zeta \in V_2$ 与 V_1 正交。

欢迎加入 数的美位

26. 不妨设 $\alpha_1, \alpha_2, \dots, \alpha_n$ 线性相关,即存在不全为零的 k_1, k_2, \dots, k_n 使得 $k_1\alpha_1 + k_2\alpha_2 + \dots + k_n\alpha_n = 0$

故 $k_1(\alpha_1, \alpha) + k_2(\alpha_2, \alpha) + \dots + k_n(\alpha_n, \alpha) = 0$ 因此 k_i 有正有负有零。不妨调整一下 α_i 的顺序,使得设 l_1, l_2, \dots, l_i 为正, $l_{i+1}, l_{i+2}, \dots, l_j$ 为负,其余为零。故 $l_1\alpha_1 + l_2\alpha_2 + \dots + l_i\alpha_i = -l_{i+1}\alpha_{i+1} - \dots - l_j\alpha_j$

$$(l_{1}\alpha_{1} + l_{2}\alpha_{2} + \dots + l_{i}\alpha_{i}, -l_{i+1}\alpha_{i+1} - \dots - l_{j}\alpha_{j})$$

$$= (l_{1}\alpha_{1}, -l_{i+1}\alpha_{i+1} - \dots - l_{j}\alpha_{j}) + \dots + (l_{1}\alpha_{i}, -l_{i+1}\alpha_{i+1} - \dots - l_{j}\alpha_{j})$$

$$= -(l_{1}\alpha_{1}, l_{i+1}\alpha_{i+1}) - \dots - (l_{1}\alpha_{1}, l_{i+1}\alpha_{i+1}) - \dots - (l_{i}\alpha_{i}, l_{i+1}\alpha_{i+1}) - \dots - (l_{i}\alpha_{i}, l_{j}\alpha_{j})$$

$$< 0$$

与 $(\alpha,\alpha) > 0$ 矛盾。故其线性无关

27. 不妨假设存在 n+2 个向量,其两两夹角为钝角。设为 $\alpha_1, \alpha_2, \cdots, \alpha_{n+2}$. 则由夹角定义可得 $(\alpha_i, \alpha_j) < 0$ 又因为存在 $k_1\alpha_1 + \cdots + k_{n+1} + \alpha_{n+1} = 0$.

$$k_1(\alpha_1, \alpha_{n+2}) + \dots + k_{n+1}(\alpha_{n+1}, \alpha_{n+2}) = 0$$

故 k_i 有正有负有零。不妨调整一下 α_i 的顺序,使得设 l_1, l_2, \dots, l_i 为正, $l_{i+1}, l_{i+2}, \dots, l_j$ 为负,其余为零。故 $l_1\alpha_1 + l_2\alpha_2 + \dots + l_i\alpha_i = -l_{i+1}\alpha_{i+1} - \dots - l_j\alpha_j$

$$(l_{1}\alpha_{1} + l_{2}\alpha_{2} + \dots + l_{i}\alpha_{i}, -l_{i+1}\alpha_{i+1} - \dots - l_{j}\alpha_{j})$$

$$= (l_{1}\alpha_{1}, -l_{i+1}\alpha_{i+1} - \dots - l_{j}\alpha_{j}) + \dots + (l_{1}\alpha_{i}, -l_{i+1}\alpha_{i+1} - \dots - l_{j}\alpha_{j})$$

$$= -(l_{1}\alpha_{1}, l_{i+1}\alpha_{i+1}) - \dots - (l_{1}\alpha_{1}, l_{i+1}\alpha_{i+1}) - \dots - (l_{i}\alpha_{i}, l_{i+1}\alpha_{i+1}) - \dots - (l_{i}\alpha_{i}, l_{j}\alpha_{j})$$

$$< 0$$

与 $(\alpha, \alpha) > 0$ 矛盾。故假设错误,即最多存在 n+1 个这样的向量。

28.

$$|\alpha + \beta| = |\alpha - \beta|$$

$$\Leftrightarrow (\alpha + \beta, \alpha + \beta) = (\alpha - \beta, \alpha - \beta)$$

$$\Leftrightarrow (\alpha, \beta) = 0$$

$$\Leftrightarrow \alpha, \beta \to \overline{\Sigma}.$$

29. 令 $\beta=k_1\alpha_1+\cdots+k_n\alpha_n$, 其中 α_1,\cdots,α_n 为 V 的一组标准正交向量组。则有:

$$|\beta|^2 = (k_1\alpha_1 + \dots + k_n\alpha_n, k_1\alpha_1 + \dots + k_n\alpha_n) =$$

$$k_1^2 + \dots + k_n^2$$

$$(\beta, \alpha_i) = k_i \Rightarrow \sum_{i=1}^m k_1^2 + \dots + k_m^2 \le \sum_{i=1}^n k_i^2 = k_1^2 + \dots + k_n^2$$

30.

$$A = \begin{pmatrix} 0.39 & -1.89 \\ 0.61 & -1.80 \\ 0.93 & -1.68 \\ 1.35 & -1.50 \end{pmatrix} \qquad B = \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$$

$$X = (A'A)^{-1}(A'B) = \begin{pmatrix} 47.79 \\ -99.43 \end{pmatrix}$$

几何意义: 当 $X=\left(\begin{array}{c}47.79\\-99.43\end{array}\right)$ B 到 $G[\alpha_1,\alpha_2]$ 的距离最小, 其中:

$$\alpha_1 = (0.39, 0.61, 0.93, 1.35)$$
 $\alpha_2 = (-1.89, -1.80, -1.68, -1.50)$

第六章 线性空间上的线性变换

习题

- 1. 判断:
 - (1) 对于某一 $\mathbf{B} \in \mathbb{P}^{m \times n}$,

$$(orall oldsymbol{A} \in \mathbb{P}^{m imes m}) \quad f: oldsymbol{A} \mapsto oldsymbol{A}^2 oldsymbol{B} \ ((orall oldsymbol{A} \in \mathbb{P}^{p imes m}) \quad g: oldsymbol{A} \mapsto oldsymbol{A} oldsymbol{B})$$

是否提供 $\mathbb{P}^{m \times m}$ 到 $\mathbb{P}^{m \times n}$ ($\mathbb{P}^{p \times m}$ 到 $\mathbb{P}^{p \times n}$) 的线性映射;

(2) 下列变换是否提供 $\mathbb{P}^{m \times m}$ 到 \mathbb{P} 的线性映射 (即 $\mathbb{P}^{m \times m}$ 上的线性函数):

$$f: \mathbf{A} = (a_{ij}) \mapsto \sum_{i,j=1}^{m} a_{ij},$$
 $g: \mathbf{A} = (a_{ij}) \mapsto \sum_{i=1}^{m} k a_{i1}, k$ 为 \mathbb{P} 中一固定数.

2. 对于任意取定的 $A \in \mathbb{P}^{m \times m}$, $X_0 \in \mathbb{P}^{m \times p}$, 当且仅当在什么条件下,

$$f: oldsymbol{X} \mapsto oldsymbol{A} oldsymbol{X} + oldsymbol{X}_0, \quad oldsymbol{X} \in \mathbb{P}^{m imes p}$$

提供 $\mathbb{P}^{m \times p}$ 到 $\mathbb{P}^{m \times p}$ 的线性映射.

- 3. 判断下列变换哪些是线性的:
 - (1) 在 \mathbb{P}^3 中,

$$\mathbf{A}_1: (x_1, x_2, x_3) \mapsto (2x_1 - x_2, x_2 + x_3, x_1),$$

$$\mathbf{A}_2: (x_1, x_2, x_3) \mapsto (x_1^2, x_2 + x_3, x_3^2);$$

(2) 在 $\mathbb{P}[x]$ 中,

 $\mathbf{A}_1: f(x) \mapsto f(x+1),$

 $\mathbf{A}_2: f(x) \mapsto f(x) + f(x_0), \quad x_0 \$ 为 \mathbb{P} 中一固定数;

(3) 在 $\mathbb{P}^{n\times n}$ 中,

 $\mathbf{A}_1: \mathbf{A} \mapsto \mathbf{A}'$

 $\mathbf{A}_2: \mathbf{A} \mapsto \mathbf{B}\mathbf{A}\mathbf{C}, \quad \mathbf{B}, \mathbf{C} \$ 为 $\mathbb{P}^{n \times n}$ 中的固定矩阵;

(4) 在 n 维 Euclid 空间 V 中,

$$\mathbf{A}: oldsymbol{lpha} \mapsto egin{cases} \dfrac{lpha}{|lpha|}, & lpha
eq oldsymbol{ heta}, \ oldsymbol{ heta}, & oldsymbol{lpha} = oldsymbol{ heta}, \end{cases}$$

 $\mathbf{B}: \boldsymbol{\alpha} \mapsto \boldsymbol{\alpha} - 2(\boldsymbol{\eta}, \boldsymbol{\alpha})\boldsymbol{\eta}, \quad \boldsymbol{\eta}$ 为一单位向量;

(5) 在 [a,b] 上连续函数的实线性空间中,

$$\mathbf{A}: f(x) \mapsto \int_a^b k(x,t)f(t)dt,$$

其中 k(x,t) 为定义在正方形 $a \le x \le b, a \le t \le b$ 上的一个固定的实连续函数 (此 **A** 称为 **Fredholm 算子**).

4. 令 V 为 \mathbb{P} 上一 n 维线性空间, $\mathbf{A}_i \in L(V)$, $i=1,2,\cdots,s$. 证明: 若 $\mathbf{A}_i \neq \mathbf{A}_j$, $i,j=1,2,\cdots,s,\,i\neq j$,则

$$(\exists \alpha \in V) \quad \mathbf{A}_i \alpha \neq \mathbf{A}_j \alpha, \quad i, j = 1, 2, \dots, s, i \neq j.$$

- 5. 在 $\mathbb{P}[x]$ 中, $\mathbf{A}f(x) = xf(x)$. 证明: $\mathbf{D}\mathbf{A} \mathbf{A}\mathbf{D} = \mathbf{E}$, $\mathbf{D}^k \mathbf{A} \mathbf{A}\mathbf{D}^k = k\mathbf{D}^{k-1}$, 其中 \mathbf{D} 为微商变换, k > 1. 实际上,一个结果蕴含第二个结果.
- 6. 求下列线性变换在指定基底下的矩阵:
 - (1) m=n 时,第一题 (1) 中的 g,基底为自然基底;
 - (2) $\mathbb{P}_n[x]$ 中线性变换

$$(\forall f(x) \in \mathbb{P}_n[x]) \quad \mathbf{A} : f(x) \longmapsto f(x+1) - f(x),$$

基底为

$$\left(1, x, \frac{x(x-1)}{2}, \cdots, \frac{x(x-1)\cdots(x-n+2)}{(n-1)!}\right);$$

(3) ℙ^{2×2} 中线性变换

$$(\forall \boldsymbol{X} \in \mathbb{P}^{2 \times 2}) \boldsymbol{A}_1 : \boldsymbol{X} \longmapsto \begin{bmatrix} a & b \\ c & d \end{bmatrix} \boldsymbol{X},$$

$$(\forall \boldsymbol{X} \in \mathbb{P}^{2 \times 2}) \boldsymbol{A}_2 : \boldsymbol{X} \longmapsto \boldsymbol{X} \begin{bmatrix} a & b \\ c & d \end{bmatrix},$$

$$(\forall \boldsymbol{X} \in \mathbb{P}^{2 \times 2}) \boldsymbol{A}_1 : \boldsymbol{X} \longmapsto \begin{bmatrix} a & b \\ c & d \end{bmatrix} \boldsymbol{X} \begin{bmatrix} a & b \\ c & d \end{bmatrix},$$

其中

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbb{P}^{2 \times 2}$$

为一固定矩阵,基底为 $\mathbb{P}^{2\times 2}$ 的自然基底,即

$$\left(\begin{bmatrix}1 & 0 \\ 0 & 0\end{bmatrix}, \begin{bmatrix}0 & 1 \\ 0 & 0\end{bmatrix}, \begin{bmatrix}0 & 0 \\ 1 & 0\end{bmatrix}, \begin{bmatrix}0 & 0 \\ 0 & 1\end{bmatrix}\right).$$

7. 已知 \mathbb{P}^3 中线性变换 **A** 在基底

$$\left(\boldsymbol{\varepsilon}_1 = \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix}, \boldsymbol{\varepsilon}_2 = \begin{bmatrix} -1 \\ 0 \\ -1 \end{bmatrix}, \boldsymbol{\varepsilon}_3 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}\right)$$

下的矩阵为

$$\begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ -2 & 2 & 1 \end{bmatrix}.$$

求A在自然基底下的矩阵。

8. 在 ℙ3 中借助基底

$$\left(\varepsilon_1 = \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}, \varepsilon_2 = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \varepsilon_3 = \begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix}\right)$$

作线性变换:

$$\mathbf{A}: \varepsilon_1 \longmapsto \begin{bmatrix} -5 \\ 0 \\ 2 \end{bmatrix}, \varepsilon_2 \longmapsto \begin{bmatrix} 0 \\ -1 \\ 6 \end{bmatrix}, \varepsilon_3 \longmapsto \begin{bmatrix} -5 \\ -1 \\ 9 \end{bmatrix}.$$

求 **A** 在自然基底和基底 $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ 下的矩阵。

- 9. 在 \mathbb{P} 上 3 维线性空间中, 线性变换 **A** 在基底 $(\alpha_1, \alpha_2, \alpha_3)$ 下的矩阵为 $\mathbf{A} = (a_{ij}) \in P^{3 \times 3}$. 求 **A** 在下述基底下的矩阵:
 - (1) $(\alpha_3, \alpha_2, \alpha_1);$
 - (2) $(\alpha_1, k\alpha_2, \alpha_3)$, 其中 $k \in P$, 且 $k \neq 0$:
 - (3) $(\varepsilon_1 + \varepsilon_2, \varepsilon_2, \varepsilon_3)$.
- 10. 在 4 维线性空间中, 线性变换 **A** 在基底 $(\varepsilon_1, \varepsilon_2, \varepsilon_3, \varepsilon_4)$ 下的矩阵为

$$\left[\begin{array}{ccccc}
1 & 0 & 2 & 1 \\
-1 & 2 & 1 & 3 \\
1 & 2 & 5 & 5 \\
2 & -2 & 1 & -2
\end{array}\right].$$

求 **A** 在基底 $(\beta_1, \beta_2, \beta_3, \beta_4)$ 下的矩阵, 其中

$$\beta_1 = \alpha_1 - 2\alpha_2 + \alpha_4,$$

$$\beta_2 = 3\alpha_2 - \alpha_3 - \alpha_4,$$

$$\beta_3 = \alpha_3 + \alpha_4,$$

$$\beta_4 = 2\alpha_4.$$

11. 在 P_3 中借助下列两个基底

$$\begin{pmatrix} \alpha_1 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}, \alpha_2 = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix}, \alpha_3 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix} \end{pmatrix},$$

$$\begin{pmatrix} \beta_1 = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix}, \alpha_2 = \begin{bmatrix} 2 \\ 2 \\ -1 \end{bmatrix}, \alpha_3 = \begin{bmatrix} 2 \\ -1 \\ -1 \end{bmatrix} \end{pmatrix}$$

定义线性变换

$$\mathbf{A}: \alpha_i \longmapsto \beta_i, \quad i = 1, 2, 3.$$

- (1) 写出前一基底到后一基底的过渡矩阵;
- (2) 写出 A 在这两个基底下的矩阵.

欢迎加入 数的美位

- 12. 除了应用矩阵的等价标准型, 也可应用线性变换与矩阵的对应关系证明:
 - (1) 若 $\mathbf{A} \in \mathbb{P}^{n \times n}$, $r_{\mathbf{A}} = r$, 则存在可逆阵 $\mathbf{T} \in \mathbb{P}^{n \times n}$, 使得 $\mathbf{T} \mathbf{A} \mathbf{T}^{-1}$ 的后 n r 行全为 零;
 - (2) 下面两个矩阵

相似, 其中 i_1, i_2, \dots, i_n 是 $1, 2, \dots, n$ 的一个排列.

13. 在直观几何中, 取正交坐标系 Oxyz, 用 **A** (**B**, **C**) 表示绕 Ox 轴 (Oy 轴, Oz 轴) 由 Oy 向 Oz 轴 (由 Oz 轴向 Ox 轴, 由 Ox 向 Oy) 方向旋转 90° 的变换, 证明 (可利用线性 变换与矩阵的关系):

$$\mathbf{A}^4 = \mathbf{B}^4 = \mathbf{C}^4 = \mathbf{E},$$

 $\mathbf{A}\mathbf{B} \neq \mathbf{B}\mathbf{A},$
 $\mathbf{A}^2\mathbf{B}^2 = \mathbf{B}^2\mathbf{A}^2.$

并问 $(\mathbf{AB})^2 = \mathbf{A}^2 \mathbf{B}^2$ 是否成立.

- 14. 证明: 与 V 上所有线性变换可交换的 V 上线性变换是且仅是数乘变换.
- 15. 证明: 在任意基底下的矩阵都相等的线性变换是且仅是数乘变换.
- 16. 令 V 为一 n 维线性空间, $\mathbf{A} \in L(V)$, $\alpha \in V$. 证明: 若 $\mathbf{A}^{k-1}\alpha \neq \boldsymbol{\theta}$, $\mathbf{A}^k\alpha = \boldsymbol{\theta}$, k > 0, 则 α , $\mathbf{A}\alpha$, \cdots , $\mathbf{A}^{k-1}\alpha$ 线性无关. 进而, 若 k = n, 则 \mathbf{A} 在基底 $(\alpha, \mathbf{A}\alpha, \cdots, \mathbf{A}^{k-1}\alpha)$ 下的矩阵为

$$\begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \end{bmatrix}.$$

17. 考虑 $\mathbb{P}_n[x]$ 上的线性变换

$$\mathbf{D}: f(x) \longmapsto f'(x),$$

$$\mathbf{A}: f(x) \longmapsto f(x+1) - f(x),$$

$$\mathbf{B}: f(x) \longmapsto f(x+1).$$

证明: 若它们在基底

$$\left(1, x, \frac{x^2}{2!}, \cdots, \frac{x^{n-1}}{(n-1)!}\right)$$

下的矩阵分别为 D, A, B, 则

$$D^{n} = A^{n} = O,$$
 $A = D + \frac{D^{2}}{2!} + \dots + \frac{D^{n-1}}{(n-1)!},$
 $B = E + D + \frac{D^{2}}{2!} + \dots + \frac{D^{n-1}}{(n-1)!}.$

- 18. 证明: 若 W 是线性空间 V 上线性变换 \mathbf{A} 和 \mathbf{B} 的不变子空间,则 W 也是 $\mathbf{A} + \mathbf{B}$, $\mathbf{A}\mathbf{B}$ 和 $k\mathbf{A}$ 的不变子空间,其中 k 为 V 的基础数域中的数.
- 19. 证明: 若 V_1, V_2 都是线性空间 V 上的线性变换 **A** 的不变子空间,则 $V_1 + V_2, V_1 \cap V_2$ 也是 **A** 的不变子空间.
- 20. 考虑复数域 $\mathbb C$ 作为实数域 $\mathbb R$ 上的 2 维线性空间, $Z_0 = a + bi \in \mathbb C$. 证明: 线性变换

$$(\forall Z \in \mathbb{C}) \quad \mathbf{A} : Z \longmapsto Z_0 Z,$$

有非平凡的不变子空间的充要条件是 b=0.

- 21. 令 W 是有限维线性空间 V 上线性变换 \mathbf{A} 的不变子空间. 证明: 若 \mathbf{A} 为双射, 则 W 也是 \mathbf{A}^{-1} 的不变子空间.
- 22. 证明:
 - (1) 若 ε_1 , ε_2 分别为线性变换 **A** 相应于不同特征根 λ_1 , λ_2 的特征向量, 则 $ab \neq 0$ 时, $a\varepsilon_1 + b\varepsilon_2$ 不为 **A** 的特征向量;
 - (2) A 以空间的每一非零向量为特征向量当且仅当 A 为数乘变换.

欢迎加入 数的美位

23. 计算下列矩阵 (视为复矩阵) 的特征根和相应的特征向量:

- 24. 视上述矩阵为相应维数的复线性空间上某一线性变换在某一基底下的矩阵,哪些线性变换有对角形表示矩阵? 在此情形,写出相应的基底过渡矩阵 T,验算 $T^{-1}AT$,并求 $A^k, k \in \mathbb{Z}^+$.
- 25. 证明: 若 V 为 \mathbb{C} 上一线性空间, 则 $\mathbf{A}(\in L(V))$ 幂零, 即存在 $m \in \mathbb{N}$, 使得 $\mathbf{A}^m = \mathbf{0}$, 当且仅当只有 0 是 \mathbf{A} 的特征根.
- 26. 证明: 若 $\mathbf{A}, \mathbf{B} \in \mathbb{C}^{n \times n}$, 且 $\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A}$, 则 \mathbf{A} 与 \mathbf{B} 有公共的特征向量.
- 27. 求矩阵

119

$$m{A} = egin{bmatrix} b & c & a \ c & a & b \ a & b & c \end{bmatrix}$$

的特征多项式. 证明: 下列两个矩阵与 A 的特征多项式相同:

$$m{B} = egin{bmatrix} c & a & b \ a & b & c \ b & c & a \end{bmatrix}, \quad m{C} = egin{bmatrix} a & b & c \ b & c & a \ c & a & b \end{bmatrix}.$$

若 BC = CB, 则 A, B, C 至少有两个特征根为零.

28. 今矩阵 A 的每一元素都为 1. 求 A 的特征根, 并求 A 的最小多项式.

29. 今矩阵

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}.$$

证明: 对于任意 $n \ge 3$, 有 $\mathbf{A}^n = \mathbf{A}^{n-2} + \mathbf{A}^2 - \mathbf{E}$, 由此计算 \mathbf{A}^{100} .

- 30. 令 A 为一 n 阶方阵, $k \ge n$. 证明: A^k 可以写成次数不大于 n-1 的 A 的多项式.
- 31. $\Diamond \lambda_1, \lambda_2, \cdots, \lambda_n$ 为 n 阶方阵 \boldsymbol{A} 的所有特征根 (重数计算在内). 证明:

$$\sum_{i=1}^{n} \lambda_i^2 = \sum_{i,j=1}^{n} a_{ij} a_{ji}.$$

- 32. \diamondsuit $\mathbf{A} \in \mathbb{P}^{n \times n}$, $f(x) \in \mathbb{P}[x]$, $\partial f(x) \geqslant 1$. 证明:
 - (1) 若 $f(x)|m_{A}(x)$, 则 f(A) 不可逆;
 - (2) 若 $(f(x), m_{\mathbf{A}}(x)) = d(x)$, 则 $r_{f(\mathbf{A})} = r_{d(\mathbf{A})}$;
 - (3) f(A) 可逆当且仅当 $(f(x), m_A) = 1$.
- 33. \diamondsuit $A \in \mathbb{C}^{m \times m}$, $B \in \mathbb{C}^{n \times n}$. 证明: 若方程

$$AX = XB$$

有非零解,则 A,B 有公共特征根.

34. 今

$$\begin{bmatrix} 0 & 1 & 0 & 0 & \cdots & 0 \\ 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

为一 n 阶方阵. 计算 $\mathbf{A}^2, \mathbf{A}^3, \cdots, \mathbf{A}^{n-1}$, 并求 \mathbf{A} 的全部特征根. 进而, 对于任意复行列式

$$D = \begin{vmatrix} a_1 & a_2 & a_3 & \cdots & a_n \\ a_n & a_1 & a_2 & \cdots & a_{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ a_2 & a_3 & a_4 & \cdots & a_1 \end{vmatrix}$$

(称为循环行列式), 证明:

$$D = f(\omega_1)f(\omega_2)\cdots f(\omega_n),$$

其中 $f(x) = a_n x^{n-1} + a_{n-1} x^{n-2} + \dots + a_2 x + a_1; \omega_1, \omega_2, \dots, \omega_n$ 为全部 n 次单位根.

欢迎加入 数的美位

- 35. 令 V 为数域 \mathbb{P} 上一 n 维线性空间, \mathbf{A} 是 V 上一线性变换, 且在 \mathbb{P} 上有 n 个不同的特征根 $\lambda_1, \lambda_2, \dots, \lambda_n, \alpha \in V$. 证明: $\alpha, \mathbf{A}\alpha, \dots, \mathbf{A}^2\alpha, \dots, \mathbf{A}^{n-1}\alpha$ 线性无关的充分必要条件是 $\alpha = \sum_{i=1}^n \alpha_i$, 其中 α_i 是 \mathbf{A} 相应于 λ_i 的特征向量, $i = 1, 2, \dots, n$.
- 36. 令 V 为数域 $\mathbb P$ 上一线性空间, $V=W\dot+N$, $\mathbf A,\mathbf B\in L(V)$. 证明: 若对于任何 $\boldsymbol\alpha=\boldsymbol\beta+\boldsymbol\gamma\in V$, $\boldsymbol\beta\in W$, $\boldsymbol\gamma\in N$, $\mathbf A\boldsymbol\alpha=\boldsymbol\beta$, 则 $\mathbf A\mathbf B=\mathbf B\mathbf A$ 当且仅当 W,N 是 $\mathbf B$ 的不变子空间.
- 37. 令 $A, B \in \mathbb{C}^{n \times n}$, $\Delta_A(\lambda)$ 为 A 的特征多项式. 证明: $\Delta_A(B)$ 不可逆的充分必要条件是 A, B 有公共特征根.
- 38. 证明: **A** 为幂零矩阵的充分必要条件是对任意正整数 n, 有 $tr(\mathbf{A}^n) = 0$.
- 39. 令 A 为 n 阶实对称矩阵, $\varphi(A)$ 为 A 的实系数多项式. 求

$$\begin{bmatrix} \boldsymbol{A} & \varphi(\boldsymbol{A}) \\ \varphi(\boldsymbol{A}) & \boldsymbol{A} \end{bmatrix}$$

的 2n 个特征根和相应的特征向量.

- 40. 令 A 为 n 阶方阵, $\lambda^2 3\lambda + 2$ 为其零化多项式. 求可逆矩阵 T, 使 $T^{-1}AT$ 为对角形矩阵.
- 41. 令 V 为数域 \mathbb{P} 上 n 阶方阵构成的线性空间 (即 $V = \mathbb{P}^{n \times n}$), T 为 V 中一固定矩阵. 定义 $\mathbf{A}(B) = TB BT$, $B \in V$. 证明: 若 T 为幂零矩阵, 则 \mathbf{A} 为幂零线性变换.
- 42. 令 n 维线性空间上线性变换 \mathbf{A} 有 n 个互不相同的特征根. 证明: V 上与 \mathbf{A} 可交换的 线性变换都是 \mathbf{E} , \mathbf{A} , \mathbf{A}^2 , \cdots , \mathbf{A}^{n-1} 的线性组合.
- 43. 令 A, B 为数域 \mathbb{P} 上的两个 n 阶方阵, A 有 n 个特征根, 且两两互异. 证明: A 的特征向量恒为 B 的特征向量的充分必要条件是 AB = BA.
- 44. 令 n 维线性空间 V 上<mark>的线性变换 A</mark> 在基底 $(\beta_1, \beta_2, \cdots, \beta_n)$ 下的矩阵为对角矩阵, 且 对角线上的元素互不相同. 求 A 的所有不变子空间, 并决定它们的个数.
- 45. 令 n 维线性空间 V 上的线性变换 \mathbf{A} 的最小多项式 $m(\lambda)$ 的次数为 n, 且 $m(\lambda)$ 在基础 数域 \mathbb{P} 上不可约. 证明: V 不能分解成两个在 \mathbf{A} 下不变的真子空间的直和.
- 46. \Diamond **A** 为 n 维线性空间 V 上一线性变换, $m(\lambda)$ 为 **A** 的最小多项式. 证明:
 - (1) 若 $m(\lambda) = h(\lambda)g(\lambda)$, 且 $(h(\lambda), g(\lambda)) = 1$, 则 V 能分解成 **A** 的不变子空间 W_1 和 W_2 的直和, 其中

$$W_1 = \{ \boldsymbol{\alpha} \mid h(\mathbf{A})\boldsymbol{\alpha} = \boldsymbol{\theta}, \boldsymbol{\alpha} \in V \},$$

$$W_2 = \{ \boldsymbol{\alpha} \mid g(\mathbf{A})\boldsymbol{\alpha} = \boldsymbol{\theta}, \boldsymbol{\alpha} \in V \},$$

并且 $h(\lambda), g(\lambda)$ 分别为 $\mathbf{A}|_{W_1} = \mathbf{A}_1, \mathbf{A}|_{W_2} = \mathbf{A}_2$ 的最小多项式;

(2) 若 $m(\lambda) = h_1(\lambda)h_2(\lambda)\cdots h_s(\lambda)$, 且 $h_i(\lambda)$ 两两互素, $i = 1, 2, \cdots, s$, 则 V 是 **A** 的不变子空间 W_i 的直和, $i = 1, 2, \cdots, s$, 其中

$$W_i = \{ \boldsymbol{\alpha} \mid h_i(\mathbf{A})\boldsymbol{\alpha} = \boldsymbol{\theta}, \boldsymbol{\alpha} \in V \},$$

且 $h_i(\lambda)$ 是 $\mathbf{A}|_{W_i} = \mathbf{A}_i$ 的最小多项式, $i = 1, 2, \cdots, s$.

解答

- 1. 解:
 - (1) 对于映射 f, 考虑 $\exists A_1, A_2 \in P^{m \times m}, s.t.$

$$f(A_1 + A_2) = (A_1 + A_2)^2 B$$

$$= (A_1^2 + A_2^2 + A_1 A_2 + A_2 A_1) B$$

$$= f(A_1) + f(A_2) + A_1 A_2 B + A_2 A_1 B$$

$$\neq f(A_1) + f(A_2)$$

不提供线性映射。

对于映射 g, 考虑 $\forall k, l \in \mathbb{R}^1, A_1, A_2 \in \mathbb{R}^{p \times m}$,

$$g(kA_1 + lA_2) = (kA_1 + lA_2)B$$

$$= kA_1B + lA_2B$$

$$= kg(A_1) + lg(A_2)$$

提供线性映射。

(2) 对于映射 f, 考虑 $\forall k, l \in \mathbb{R}^1, A, B \in \mathbb{R}^{m \times m}$,

$$f(kA_1 + lA_2) = \sum_{i,j=1}^{m} (ka_{ij} + lb_{ij})$$
$$= \sum_{i,j=1}^{m} ka_{ij} + \sum_{i,j=1}^{m} lb_{ij}$$
$$= kf(A) + lf(B)$$

提供线性映射。

对于映射 g, 考虑 $\forall p, q \in \mathbb{R}^1, A, B \in \mathbb{R}^{m \times m}$,

$$g(kA_1 + lA_2) = \sum_{i,j=1}^{m} k(pa_{ij} + qb_{ij})$$
$$= \sum_{i,j=1}^{m} pka_{ij} + \sum_{i,j=1}^{m} qkb_{ij}$$
$$= pg(A) + qg(B)$$

提供线性映射。

2. 解:

f 提供线性映射

$$\iff f(kX_1 + lX_2) = kf(X_1) + lf(X_2), \forall k, l \in R^1, X_1, X_2 \in P^{m \times p}$$

$$\iff A(kX_1 + lX_2) + X_0 = k(AX_1 + X_0) + l(AX_2 + X_0)$$

$$\iff (k + l - 1)X_0 = \theta$$

$$\iff X_0 = \theta$$

故当且仅当 $X_0 = \theta$ 时 f 提供线性变换。

3. 解:

(1) 对于 A_1 ,

$$\mathbf{A}_{1}(kx+ly) = (2(kx_{1}+ly_{1}) - (kx_{2}+ly_{2},(kx_{2}+ly_{2}) + (kx_{3}+ly_{3}),kx_{1}+ly_{1})$$

$$= k(2x_{1} - x_{2},x_{2} + x_{3},x_{1}) + l(2y_{1} - y_{2},y_{2} + y_{3},y_{1})$$

$$= k\mathbf{A}_{1}(x) + l\mathbf{A}_{1}(y)$$

是线性的.

对于 A_2 , 不妨只考虑其第一个分量, 有

$$\mathbf{A}_2(x_1+y_1)=(x_1+y_1)^2=x_1^2+y_1^2+2x_1y_1=\mathbf{A}_2(x_1)+\mathbf{A}_2(y_1)+2x_1y_1$$
 是非线性的.

(2) 对于 A_1 ,

$$\mathbf{A}_1(kf(x) + lg(x)) = kf(x+1) + lg(x+1) = k\mathbf{A}_1(f(x)) + l\mathbf{A}_1(g(x))$$

是线性的.

对于 \mathbf{A}_2 , 由第 2 题易知, 当且仅当 $f(x_0) = 0$ 时, \mathbf{A}_2 是线性的.

(3) 对于 A_1 ,

$$\mathbf{A}_{1}(kA+lB)=kA^{'}+lB^{'}=k\mathbf{A}_{1}(A)+l\mathbf{A}_{1}(B)$$
是线性的.

对于 A_2 ,

$$\mathbf{A}_2(kF+lG)=B(kF+lG)C=kBFC+lBGC=k\mathbf{A}_2(F)+l\mathbf{A}_2(G)$$
是线性的.

(4) 对于 A,

$$\mathbf{A}(k\alpha + l\beta) = \begin{cases} \frac{k\alpha + l\beta}{|k\alpha + l\beta|}, & k\alpha + l\beta \neq \theta, \\ \theta, & k\alpha + l\beta = \theta. \end{cases}$$

即 **A** 总是将非零向量单位化,在很多情况下,不满足 $\mathbf{A}(k\alpha + l\beta) = k\mathbf{A}(\alpha) + l\mathbf{A}(\beta)$ 这一形式是显然的, 故 **A** 是非线性的.

对于 \mathbf{B} ,

 $\mathbf{B}(k\alpha+l\beta) = (k\alpha+l\beta)-2(\eta,k\alpha+l\beta)\eta = k\alpha-2k(\eta,\alpha)\eta+l\beta-2l(\eta,\beta)\eta = k\mathbf{B}(\alpha)+l\mathbf{B}(\beta)$ 是线性的.

(5) 对于 A,

$$\begin{aligned} \mathbf{A}(kf(x) + lg(x)) &= \int_a^b k(x,t)(kf(t) + lg(t))dt \\ &= k \int_a^b k(x,t)f(t)dt + l \int_a^b k(x,t)g(t)dt \\ &= k\mathbf{A}(f(x)) + l\mathbf{A}(g(x)), \end{aligned}$$

是线性的.

4. 证明

令 $V_{ij} = \{\alpha | A_i \alpha = A_j \alpha \}$,我们可以证明其是一个线性子空间(只需证明对加法和数乘封闭,在这里就不写了)。因为 $i,j=1,2,\cdots,s$,所以这些子空间最多只有 C_s^2 个,即有限个,那么我们根据第四章第 10 题的结论可知存在 $\alpha \notin A_{ij}$ $(i,j=1,2,\cdots,s)$,即存在 α 使得 $A_i \neq A_j$. 证毕。

5. 证明:

$$(\mathbf{D}\mathbf{A} - \mathbf{A}\mathbf{D})(f(x)) = (\mathbf{D}\mathbf{A})(f(x)) - (\mathbf{A}\mathbf{D})(f(x))$$
$$= \mathbf{D}(xf(x)) - \mathbf{A}(f^{'}(x))$$
$$= xf^{'}(x) + f(x) - xf^{'}(x)$$
$$= \mathbf{E}(f(x)),$$

即有 $\mathbf{DA} - \mathbf{AD} = \mathbf{E}$.

$$\begin{split} (\mathbf{D}^{k}\mathbf{A} - \mathbf{A}\mathbf{D}^{k})(f(x)) &= \mathbf{D}^{k}(xf(x)) - \mathbf{A}(\mathbf{D}^{k-1}(f'(x))) \\ &= \mathbf{D}^{k-1}(xf'(x) + f(x)) - \mathbf{A}(\mathbf{D}^{k-1}f'(x)) \\ &= \mathbf{D}^{k-1}(f(x)) + \mathbf{D}^{k-2}(f'(x)) + \mathbf{D}^{k-2}(xf''(x)) - \mathbf{A}(\mathbf{D}^{k-2}f''(x)) \\ &= \cdots \\ &= k\mathbf{D}^{k-1}(f(x)) + \mathbf{D}(xf^{(k)}(x)) - \mathbf{A}(\mathbf{D}^{0}f^{(k)}(x)) \\ &= k\mathbf{D}^{k-1}(f(x)), \end{split}$$

即有 $\mathbf{D}^k \mathbf{A} - \mathbf{A} \mathbf{D}^k = k \mathbf{D}^{k-1}$, 显然地,当 k=1 时,有 $\mathbf{D} \mathbf{A} - \mathbf{A} \mathbf{D} = \mathbf{E}$. 证毕.

6. 解:

(1) 令

$$B = \begin{pmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{m1} & b_{m2} & \cdots & b_{mm} \end{pmatrix}$$

则 g 在自然基底下的表示矩阵为:

$$A = \begin{pmatrix} B' & O & \cdots & O \\ O & B' & \cdots & O \\ \vdots & \vdots & \ddots & \vdots \\ O & O & \cdots & B' \end{pmatrix}$$

(2) 设
$$(1, x, \frac{x(x-1)}{2}, \dots, \frac{x(x-1)\cdots(x-n+2)}{(n-1)}) = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n),$$

表示矩阵为 $\mathbf{A} = (a_{ij})_{n \times n}$, 设 $\varepsilon_0 = 0$.
则有 $\mathbf{A}(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n) = (\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)\mathbf{A},$
 $\mathbf{A}\varepsilon_i = \varepsilon_i(x+1) - \varepsilon_i = \sum_{j=1}^n \varepsilon_j a_{ji} = \varepsilon_{i-1}, i = 1, 2, \dots, n.$
显然地,有解 $\mathbf{A} = (\delta_{ij})_{n \times n}$, 其中 $\delta_{ij} = \begin{cases} 1, & j = i+1 \\ 0, & j \neq i+1 \end{cases}$
(3)

$$A_1 = \left(\begin{array}{cccc} a & 0 & b & 0 \\ 0 & a & 0 & b \\ c & 0 & d & 0 \\ 0 & c & 0 & d \end{array}\right)$$

$$A_2 = \left(\begin{array}{cccc} a & c & 0 & 0 \\ b & d & 0 & 0 \\ 0 & 0 & a & c \\ 0 & 0 & b & d \end{array}\right)$$

$$A_{3} = \begin{pmatrix} a^{2} & ac & ab & bc \\ ab & ad & b^{2} & bd \\ ac & c^{2} & ad & cd \\ bc & cd & bd & d^{2} \end{pmatrix}$$

7. 解:

设 **A** 在自然基底 $(\varepsilon_1', \varepsilon_2', \varepsilon_3')$ 下的表示矩阵为 A_1 , 在基底 $(\varepsilon_1, \varepsilon_2, \varepsilon_3)$ 下的表示矩阵为 A_2 ,

从而 \exists 可逆矩阵B, s.t.

$$egin{aligned} &(arepsilon_{1},arepsilon_{2},arepsilon_{3})oldsymbol{B}=(arepsilon_{1}^{'},arepsilon_{2}^{'},arepsilon_{3}^{'}),\ &\mathbf{A}(arepsilon_{1}^{'},arepsilon_{2}^{'},arepsilon_{3}^{'})oldsymbol{B}^{-1}=(arepsilon_{1}^{'},arepsilon_{2}^{'},arepsilon_{3}^{'})oldsymbol{B}^{-1}oldsymbol{A}_{2}, \end{aligned}$$

曲
$$\left[\frac{\pmb{B}^{-1}}{\pmb{A}_2}\right] \pmb{B} = \left(\frac{\pmb{E}^{-1}}{\pmb{A}_2 \pmb{B}}\right)$$
 有 $\begin{bmatrix} -1 & 1 & 0 \\ 1 & 0 & 1 \\ \frac{1}{1} & -1 & 1 \\ 1 & 1 & 0 \\ -2 & 2 & 1 \end{bmatrix}$ \longrightarrow $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 2 & -2 \\ 3 & 0 & 1 \end{bmatrix}$ (这里进行了初等列变

换)

从而得到
$$\mathbf{A}_1 = \mathbf{B}^{-1} \mathbf{A}_2 \mathbf{B} = \begin{bmatrix} -1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ -1 & 2 & -2 \\ 3 & 0 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 1 & -2 \\ 3 & 1 & 1 \\ 4 & -1 & 3 \end{bmatrix}$$

8. 解:

设 \mathbf{A} 在基底 $\mathbf{B} = (\varepsilon_1, \varepsilon_2, \varepsilon_3)$ 下的表示矩阵为 \mathbf{A}_1 ,设 \mathbf{B} 在 \mathbf{A}_1 下的变换结果为 \mathbf{B}_1 .

得到
$$A_1 = B^{-1}B_1$$
, 由 $B^{-1}[B_1B_1] = [E_1B^{-1}B_1]$

(进行初等行变换后) 解出
$$\mathbf{A}_1 = \begin{pmatrix} \frac{11}{7} & 3 & 5 \\ -\frac{8}{7} & 0 & -1 \\ -\frac{8}{7} & 1 & 0 \end{pmatrix}$$
.

设
$$\mathbf{A}$$
在自然基底 $\mathbf{C}=\left(egin{array}{ccc}1&0&0\\0&1&0\\0&0&1\end{array}
ight)$ 下的表示矩阵为 \mathbf{A}_2 ,则 \exists 可逆矩阵 $\mathbf{T},s.t.$

$$C = BT$$

从而

$$\mathbf{A}C = CT^{-1}A_1T$$
$$= CBA_1B^{-1}$$
$$= CA_2$$

即

$$A_2 = BA_1B^{-1} = B_1B^{-1},$$

由
$$\left[egin{array}{c} m{B} \\ m{B}_1 \end{array}
ight] m{B}^{-1} = \left[m{E} \\ m{B}_1 m{B}^{-1} \end{array}
ight]$$
 (进行初等行变换后) 解出 $m{A}_2$.

9. 解:

$$(1) \left(\begin{array}{cccc} a_{33} & a_{32} & a_{31} \\ a_{23} & a_{22} & a_{21} \\ a_{13} & a_{12} & a_{11} \end{array} \right)$$

$$(2) \begin{pmatrix} a_{11} & ka_{12} & a_{13} \\ \frac{a_{21}}{k} & a_{22} & \frac{a_{23}}{k} \\ a_{31} & ka_{32} & a_{33} \end{pmatrix}$$

$$\begin{pmatrix}
a_{31} & ka_{32} & a_{33} \\
a_{31} & ka_{32} & a_{33}
\end{pmatrix}$$

$$\begin{pmatrix}
a_{11} + a_{12} & a_{12} & a_{13} \\
a_{21} + a_{22} - a_{11} - a_{12} & a_{22} = a_{12} & a_{23} - a_{13} \\
a_{31} + a_{32} & a_{32} & a_{33}
\end{pmatrix}$$

10. 解:

$$(\beta_1, \beta_2, \beta_3, \beta_4) = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) B$$
, 其中

$$\boldsymbol{B} = \left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ -2 & 3 & 0 & 0 \\ 0 & -1 & 1 & 0 \\ 1 & -1 & 1 & 1 \end{array}\right)$$

是过渡矩阵, A_1 、 A_2 分别为表示矩阵.

$$\mathbf{A}(\alpha_1, \alpha_2, \alpha_3, \alpha_4) = (\alpha_1, \alpha_2, \alpha_3, \alpha_4) \mathbf{A}_1$$

$$\mathbf{A}(\beta_1, \beta_2, \beta_3, \beta_4) = (\beta_1, \beta_2, \beta_3, \beta_4) \mathbf{A}_2$$

从而有
$$\mathbf{A}_2 = \mathbf{B}^{-1} \mathbf{A}_1 \mathbf{B}$$
.

11. 解:

(1)由(
$$\alpha_1, \alpha_2, \alpha_3$$
) $\mathbf{A} = (\beta_1, \beta_2, \beta_3)$ 有 $\mathbf{A} = (\alpha_1, \alpha_2, \alpha_3)^{-1}(\beta_1, \beta_2, \beta_3)$,
设 $\alpha = (\alpha_1, \alpha_2, \alpha_3), \beta = (\beta_1, \beta_2, \beta_3)$

又由
$$\alpha^{-1}\begin{bmatrix}\alpha\mid\beta\end{bmatrix} = \begin{bmatrix}\mathbf{E}\mid\alpha^{-1}\beta\end{bmatrix}$$
(注:此处进行了初等行变换)有
$$\begin{bmatrix}1&2&1&1&2&2\\0&1&1&2&2&-1\\1&0&1&-1&-1\end{bmatrix} \longrightarrow \begin{bmatrix}1&0&0&-2&-\frac{3}{2}&\frac{3}{2}\\0&1&0&\frac{3}{2}&0\\0&0&1&1&\frac{1}{2}&-\frac{5}{2}\end{bmatrix}, 即\mathbf{A} = \begin{bmatrix}-2&-\frac{3}{2}&\frac{3}{2}\\1&\frac{3}{2}&0\\1&\frac{1}{2}&-\frac{5}{2}\end{bmatrix}$$

(2) 设 \mathbf{A} 在 α 下的矩阵为 \mathbf{A}_1 ,在 β 下的矩阵为 \mathbf{A}_2 ,则有

$$\mathbf{A}\alpha = \alpha \mathbf{A}_1$$
$$\mathbf{A}\beta = \beta \mathbf{A}_2$$
$$\alpha \mathbf{A} = \beta$$

从而容易得到 $A_1 = A_2 = A$.

12.

13. 证明:

由题意可知 A、B、C 为坐标变换,从而容易写出 A、B、C 的表示矩阵

$$\boldsymbol{A} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{bmatrix}, \boldsymbol{B} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0 \end{bmatrix}, \boldsymbol{C} = \begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

显然地有

$$\mathbf{A}^4 = \mathbf{B}^4 = \mathbf{C}^4 = \mathbf{D}^4 = \mathbf{E}$$
 $\mathbf{A}\mathbf{B} \neq \mathbf{B}\mathbf{A}$
 $\mathbf{A}^2\mathbf{B}^2 = \mathbf{B}^2\mathbf{A}^2$

且有 $(\mathbf{AB})^2 = \mathbf{A}^2 \mathbf{B}^2$ 不成立. 证毕.

14. 证明:

我们转化为对应的矩阵的问题。充分性是显然的。必要性:

若 A 可与所有矩阵交换,先设 T 为对角矩阵,那么因为与对角矩阵交换的只能是对角矩阵,我们可得 A 一定也是对角矩阵。我们在令 T=P(i,j)(将 E 的 i,j 行互换) 我们设

$$A = \left(\begin{array}{ccc} a_{11} & & & \\ & a_{22} & & \\ & & \ddots & \\ & & & a_{nn} \end{array}\right)$$

欢迎加入 数的美位

那么由:TA = AT,且

$$TA = \begin{pmatrix} a_{11} & & & & & \\ & a_{22} & & & & \\ & & \ddots & a_{jj} & & \\ & & a_{ii} & \ddots & \\ & & & a_{nn} \end{pmatrix} \qquad TA = \begin{pmatrix} a_{11} & & & & \\ & a_{22} & & & \\ & & \ddots & a_{ii} & \\ & & a_{jj} & \ddots & \\ & & & a_{nn} \end{pmatrix}$$

得 $a_{ii} = a_{jj}$, 所以有 $a_{11} = a_{22} = \cdots = a_{nn}$, 即 A 为数量矩阵。

15. 证明:

(\iff) 设 A 为数乘变换,A 在基底 $(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n)$ 下的矩阵为 kE,则 A 在基底 $(\eta_1, \eta_2, \dots, \eta_n)$ (设过渡矩阵为 T) 下的矩阵为

$$B = T^{-1}kET = kET^{-1}T = kE$$

所以数乘变换在任意基底下的矩阵都相等。

(⇒) 设 A 为一线性变换,在基底 $(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n)$ 下的矩阵为 A,在基底 $(\eta_1, \eta_2, \cdots, \eta_n)$ 下的矩阵为 B, 且 $(\eta_1, \eta_2, \cdots, \eta_n) = (\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n)T$, 则

$$B = T^{-1}AT$$

即

$$TB = AT$$

若 A 在任意基底下的矩阵都不变,则有

$$TA = AT$$
,

由上题知 A 为数量矩阵, 故结论成立。

16. 证明(反证法):

假设 α , $\mathbf{A}\alpha$, \cdots , $\mathbf{A}^{k-1}\alpha$ 线性相关,则 \exists $l_0, l_1, \ldots, l_{k-1}$ 不全为零,

s.t.
$$l_0 \mathbf{E} \alpha + l_1 \mathbf{A} \alpha + \cdots + l_{k-1} \mathbf{A}^{k-1} \alpha = \theta$$
,

则有

$$l_0 \mathbf{A} \alpha + \dots + l_{k-1} \mathbf{A}^k \alpha = \mathbf{A} (l_0 \mathbf{E} \alpha + l_1 \mathbf{A} \alpha + \dots + l_{k-1} \mathbf{A}^{k-1} \alpha) = \theta,$$

由于 $\mathbf{A}^k \alpha = \theta$, 故有

$$l_0 \mathbf{A} \alpha + \dots + l_{k-1} \mathbf{A}^k \alpha = \theta,$$

若 $l_0, l_1, \ldots, l_{k-2}$ 全为零,则 $l_{k-1} \neq 0, \mathbf{A}^{k-1}\alpha = \theta$,矛盾.若 $l_0, l_1, \ldots, l_{k-2}$ 不全为零,则 $\mathbf{A}\alpha, \cdots, \mathbf{A}^{k-1}\alpha$ 线性相关,有

$$l_0 \mathbf{A} \alpha + \dots + l_{k-2} \mathbf{A}^{k-1} \alpha = \theta,$$

进一步地, 我们有

$$l_0 \neq 0 \coprod l_0 \mathbf{A} \alpha = \theta$$
,

有 $l_0 = 0$ 或 $\mathbf{A}\alpha = \theta$, 但无论哪一种都与题设矛盾,故 $\alpha, \mathbf{A}\alpha, \cdots, \mathbf{A}^{k-1}\alpha$ 线性无关. 当 k=n 时,

$$\mathbf{A}(\alpha, \mathbf{A}\alpha, \cdots, \mathbf{A}^{k-1}\alpha) = (\mathbf{A}\alpha, \mathbf{A}^2\alpha, \cdots, \mathbf{A}^k\alpha) = (\alpha, \mathbf{A}\alpha, \cdots, \mathbf{A}^{k-1}\alpha)\mathbf{A},$$

有 $\mathbf{A}^i \alpha = \sum_{j=0}^{k-1} \mathbf{A}^j \alpha a_{ji}, i = 1, 2, \dots, k$. 显然地,

$$\mathbf{A} = (\delta_{ij})_{n \times n}, \sharp + \delta_{ij} = \begin{cases} 1, & j = i - 1, \\ 0, & j \neq i - 1. \end{cases}$$

证毕.

17. 证明:

$$D = \begin{pmatrix} 0 & 1 & \cdots & 0 & 0 \\ 0 & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 0 & 0 \end{pmatrix}$$

容易得到 $\mathbf{D}^n = \theta$.

$$\mathbf{A} = \begin{pmatrix} 0 & 1 & \frac{1}{2!} & \cdots & \frac{1}{(n-1)!} \\ 0 & 0 & 1 & \cdots & \frac{1}{(n-2)!} \\ 0 & 0 & 0 & \cdots & \frac{1}{(n-3)!} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix} = \mathbf{D} + \frac{\mathbf{D}^2}{2!} + \cdots + \frac{\mathbf{D}^{n-1}}{(n-1)!}$$

显然有 $\mathbf{A}^n = \theta$.

欢迎加入 数的美位

$$\boldsymbol{B} = \begin{pmatrix} 1 & 1 & \frac{1}{2!} & \cdots & \frac{1}{(n-1)!} \\ 0 & 1 & 1 & \cdots & \frac{1}{(n-2)!} \\ 0 & 0 & 1 & \cdots & \frac{1}{(n-3)!} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \cdots & 1 \end{pmatrix} = \boldsymbol{E} + \boldsymbol{D} + \frac{\boldsymbol{D}^2}{2!} + \cdots + \frac{\boldsymbol{D}^{n-1}}{(n-1)!}$$

证毕.

18. 证明:

显然有 $AW \subseteq W, BW \subseteq W, 则$

$$\forall \alpha \in \mathbf{W}, \quad (\mathbf{A} + \mathbf{B})\alpha = \mathbf{A}\alpha + \mathbf{B}\alpha \in \mathbf{W},$$

从而有 $(A + B)W \subseteq W$, 故 W 也是 (A + B) 的不变子空间. 类似地,W 也是 AB 和 kA 的不变子空间.

证毕.

19. 证明:

由 $\mathbf{AV}_1 \subseteq \mathbf{V}_1, \mathbf{AV}_2 \subseteq \mathbf{V}_2$ 有

$$\forall \alpha \in \mathbf{V}_1 + \mathbf{V}_2, \exists \alpha_1 \in \mathbf{V}_1, \alpha_2 \in \mathbf{V}_2, s.t. \quad \alpha = \alpha_1 + \alpha_2$$

从而

$$\mathbf{A}\alpha = \mathbf{A}(\alpha_1 + \alpha_2) = \mathbf{A}\alpha_1 + \mathbf{A}\alpha_2 \in \mathbf{V}_1 + \mathbf{V}_2,$$
$$\mathbf{A}(\mathbf{V}_1 + \mathbf{V}_2) \subseteq \mathbf{V}_1 + \mathbf{V}_2,$$

即 $\mathbf{V}_1 + \mathbf{V}_2$ 也是 \mathbf{A} 的不变子空间. 类似地, $\mathbf{V}_1 \cap \mathbf{V}_2$ 也是 \mathbf{A} 的不变子空间. 证毕.

20. 证明:

由题易知 a,b 不能同时为零.

不妨将
$$z=x+iy$$
 写为形式 $\begin{bmatrix} x \\ y \end{bmatrix}$. 从而有

$$\mathbf{A}: z \longrightarrow z_0 z$$

$$\left[\begin{array}{c} x \\ y \end{array}\right] \longmapsto \left[\begin{array}{c} ax - by \\ ay + bx \end{array}\right] = \sqrt{a^2 + b^2} \left[\begin{array}{cc} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{array}\right] \left[\begin{array}{c} x \\ y \end{array}\right]$$

其中 $\cos\varphi=\frac{a}{\sqrt{a^2+b^2}}$,即近似为二维坐标系进行绕 $\begin{bmatrix}0\\0\end{bmatrix}$ 点的逆时针旋转变换.则旋转后的坐标仍在原来的直线上当且仅当 $\varphi=n\cdot 180^\circ, n\in z^+$,即 b=0. 证毕.

21. 证明:

若 W 为零子空间,结论显然,若 W 不是零字空间,记

$$W = G[\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_r]$$

,有 A 为双射,故

$$A\varepsilon_1, A\varepsilon_2, \cdots, A\varepsilon_r$$

也是 W 的一组基底,即

$$W = [A\varepsilon_1, A\varepsilon_2, \cdots, A\varepsilon_r]$$

则

$$\forall \alpha \in W, \alpha = x_1 A \varepsilon_1 + x_2 A \varepsilon_2 + \dots + x_r A \varepsilon_r$$

上式两边用 A^{-1} 作用, 有

$$A^{-1}(\alpha) = A^{-1}(x_1 A \varepsilon_1 + x_2 A \varepsilon_2 + \dots + x_r A \varepsilon_r)$$

$$= A^{-1} A(x_1 \varepsilon_1 + x_2 \varepsilon_2 + \dots + x_r \varepsilon_r)$$

$$= x_1 \varepsilon_1 + x_2 \varepsilon_2 + \dots + x_r \varepsilon_r \in W$$

则 W 也是 A^{-1} 的不变子空间。

22. 证明:

(1)(反证法) 设 $a\varepsilon_1 + b\varepsilon_2$ 为 **A** 的特征向量, $(ab \neq 0)$, 则

$$\exists \lambda, \quad s.t. \mathbf{A}(a\varepsilon_1 + b\varepsilon_2) = \lambda(a\varepsilon_1 + b\varepsilon_2)$$
$$\lambda_1(a\varepsilon_1) + \lambda_2(b\varepsilon_2) = \lambda(a\varepsilon_1) + \lambda(b\varepsilon_2)$$
$$(\lambda_1 - \lambda)(a\varepsilon_1) = (\lambda - \lambda_2)(b\varepsilon_2)$$

由于 $\lambda_1 \neq \lambda_2$, 故 $a\varepsilon_1$ 与 $b\varepsilon_2$ 线性无关. 从而有 $\lambda_1 - \lambda = \lambda - \lambda_2 = 0$, 即 $\lambda = \lambda_1 = \lambda_2$, 矛盾. 所以 $a\varepsilon_1 + b\varepsilon_2$ 不是 **A** 的特征向量.

(2) 设基底 $(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n)$

$$\forall \alpha \neq \theta, \exists x_1, x_2, \dots, x_n \in \mathbf{R}, s.t. \alpha = \sum_{i=1}^n x_i \varepsilon_i,$$
 欢迎加入 数的美位

设
$$\mathbf{A}(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n) = (\lambda_1 \varepsilon_1, \lambda_2 \varepsilon_2, \cdots, \lambda_n \varepsilon_n),$$
 则

A以任一 $\alpha \neq \theta$ 为特征向量 $\iff \exists \lambda \in \mathbf{R}, s.t. \mathbf{A}\alpha = \lambda \alpha$

$$\iff \mathbf{A}(\sum_{i=1}^{n} x_i \varepsilon_i) = \sum_{i=1}^{n} \lambda_i(x_i \varepsilon_i)$$

$$\iff \lambda_1 = \lambda_2 = \dots = \lambda_n = \lambda$$

$$\iff \pmb{A} = \left[egin{array}{ccc} \lambda & & & \\ & \ddots & & \\ & & \lambda \end{array} \right]_{n imes n} = \lambda \pmb{E}_{n imes n}$$

 \iff **A**为数乘变换.

证毕.

23. 解:

以(1)为例有

$$|\lambda m{E} - m{A}| = (\lambda - 7)(\lambda + 2),$$

从而有 $\lambda_1 = 7, \lambda_2 = -2$,分别对应特征向量 $\overrightarrow{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}, \overrightarrow{v} = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$.

$$\mathbf{A} \overrightarrow{u} = \lambda_1 \overrightarrow{u} \Longrightarrow \begin{cases} 3u_1 + 4u_2 = 7u_1, \\ 5u_1 + 2u_2 = 7u_2 \end{cases} \Longrightarrow \overrightarrow{u} = \begin{bmatrix} 1 \\ 1 \end{bmatrix},$$

$$\mathbf{A} \overrightarrow{v} = \lambda_1 \overrightarrow{v} \Longrightarrow \begin{cases} 3v_1 + 4v_2 = -2v_1 \\ 5v_1 + 2v_2 = -2v_2 \end{cases} \Longrightarrow \overrightarrow{v} = \begin{bmatrix} -4 \\ 5 \end{bmatrix}.$$

其余结果略.

24. 解:

对于 23 题中的矩阵,有对角形表示矩阵当且仅当其要有 n 个线性无关的特征向量.以(1)为例有

$$m{T}^{-1}m{A}m{T} = \left(egin{array}{cccc} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ dots & dots & \ddots & dots \\ 0 & 0 & \cdots & \lambda_n \end{array}
ight)$$

所以有

$$m{AT} = m{T} \left(egin{array}{cccc} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ dots & dots & \ddots & dots \\ 0 & 0 & \cdots & \lambda_n \end{array}
ight)$$

$$\boldsymbol{A}(\alpha_1, \alpha_2, \cdots, \alpha_n) = (\alpha_1, \alpha_2, \cdots, \alpha_n) \begin{pmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{pmatrix}$$

从而有

$$\mathbf{A}\alpha_i = \lambda_i \alpha_i \quad (i = 1, 2, \cdots, n)$$

其中 λ_i 、 α_i 为 \boldsymbol{A} 的特征根与对应的特征向量,将<mark>所有特征向量按列拼接起来即为 \boldsymbol{T} .</mark> 从而有 $\boldsymbol{A}^k = \boldsymbol{T}\boldsymbol{B}^k \boldsymbol{T}^{-1}$,其中 \boldsymbol{B} 为 \boldsymbol{A} 的对角形表示矩阵.

25. 证明:

 $\leftarrow)$ 如果 A 的特征根只有 0,则其特征多项式为

$$\lambda^n = 0,$$

从而 A 幂零.

 \Longrightarrow) 如果 A 幂零,则

 λ^{m}

是 A 的零化多项式,又因为最小多项式整除零化多项式,所以易得 A 的特征根只能为零.

证毕.

26. 证明:

因为 A 是复数域上的矩阵,所以其一定有特征根,设为 λ_0 ,考虑有 λ_0 生成的子空间 V_{λ_0} ,我们证明它也是 B 的不变子空间。对于 $\forall \quad \alpha \in V_{\lambda_0}$,有 $A\alpha = \lambda_0 \alpha$,则

$$A(B\alpha) = B(A\alpha) = B(\lambda_0 \alpha) = \lambda_0(B\alpha)$$

故 $B\alpha \in V_{\lambda_0}$,即 V_{λ_0} 是 B 的不变子空间,我们把 B 限定在 V_{λ_0} 上,那么在复数域上 $B|_{V_{\lambda_0}}$ 在 V_{λ_0} 上一定有特征向量,此向量也是 A 的特征向量,故 A,B 有公共的特征向量。

证毕.

欢迎加入 数的美位

27. 证明:

容易计算有

$$|\lambda \mathbf{E} - \mathbf{A}| = |\lambda \mathbf{E} - \mathbf{B}| = |\lambda \mathbf{E} - \mathbf{C}|$$

= $(\lambda - a)(\lambda - b)(\lambda - c) - 2abc - a^2(\lambda - a) - b^2(\lambda - b) - c^2(\lambda - c)$

且有

$$BC = \begin{bmatrix} ac + ab + bc & bc + ac + ab & c^2 + a^2 + b^2 \\ a^2 + b^2 + c^2 & ab + bc + ca & ac + ba + bc \\ ab + bc + ac & a^2 + b^2 + c^2 & bc + ac + ab \end{bmatrix}$$

$$CB = \begin{bmatrix} ac + ab + bc & a^2 + b^2 + c^2 & ab + bc + ac \\ bc + ac + ab & ab + bc + ca & a^2 + b^2 + c^2 \\ a^2 + b^2 + c^2 & ac + ba + bc & bc + ac + ab \end{bmatrix}$$

由 BC = CB有

$$bc + ac + ab = a^2 + b^2 + c^2 > bc + ac + ab$$

当且仅当 a=b=c 时取得等号. 从而有

$$m{A} = abc egin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix},$$

 $f(\lambda) = \lambda^2(\lambda - 3a)$, 显然至少有两个特征根为零. 证毕.

28. 证明:

当 $\alpha \neq \theta$ 时

$$A\alpha = \lambda \alpha \Longleftrightarrow \begin{bmatrix} 1 & \cdots & 1 \\ \vdots & \ddots & \vdots \\ 1 & \cdots & 1 \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = \lambda \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix}$$
$$\iff \begin{bmatrix} \sum_{i=1}^n \alpha_i \\ \vdots \\ \sum_{i=1}^n \alpha_i \end{bmatrix} = \begin{bmatrix} \lambda \alpha_1 \\ \vdots \\ \lambda \alpha_n \end{bmatrix}$$
$$\iff \alpha_1 = \cdots = \alpha_n \, \text{If} \, \lambda = n \, \text{If} \, \sum_{i=1}^n \alpha_i = 0 \, \text{If} \, \lambda = 0.$$

又由 $\lambda_1 + \cdots + \lambda_n = \mathbf{Tr}(A) = n$, 有

欢迎加入 数的美位

$$\triangle_A(x) = x^{n-1}(x - n) = m_A(x).$$

故 A 的特征根为 n 与 0 , 其中 0 为 n-1 重根. 证毕.

29. 解:

$$A^2 = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}, A^3 = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}.$$

当 n=3 时, $A^3 = A + A^2 + E$ 显然成立; 当 $n = k \ge 3$ 时, 假设 $A^k = A^{k-2} + A^2 - E$ 成立,

则当 n=k+1 时
$$A^{k+1} = A(A^{k-2} + A^2 - E)$$

= $A^{k-1} + A^3 - A$
= $A^{k-1} + A^2 - E$ 成立.

故 $\forall n \geq 3$, 有 $A^n = A^{n-2} + A^2 - E$ 成立. 则

$$A^{100} = A^2 + 49(A^2 - E) = \begin{bmatrix} 1 & 0 & 0 \\ 50 & 1 & 0 \\ 50 & 0 & 1 \end{bmatrix}.$$

30. 证明:

由 $\triangle_A(A) = \sum_{i=1}^n a_i A^i = 0$ 有 $A^n = -\sum_{i=1}^{n-1} a_i A^i$. 故 当 k=n 时,有 $A^k = A^n = \sum_{i=1}^{n-1} -a_i A^i$,次数不大于 n-1; 当 k=n+j 且 $j \ge 1$ 时,

$$A^k = A^{j+n} = A^j \cdot (-\sum_{i=1}^{n-1} a_i A^i) = -\sum_{i=1}^{n-1} a_i A^{i+j}$$

当 $k' = i + j \ge n$ 时, 令 k' = n + l, 则

$$A^{k'} = A^{n+l} = A^{l} \cdot (-\sum_{i=1}^{n-1} a_i A^i) = -\sum_{i=1}^{n-1} a_i A^{i+l}$$

当 $k^{''}=i+l\geq n$ 时, 令 $k^{''}=i+l$. 重复上述过程直至 $k^{(m)}=n$, 有

$$A^{k^{(m)}} = A^n = -\sum_{i=1}^{n-1} a_i A^i$$

次数不大于 n-1. 证毕.

欢迎加入 数的美位

31. 证明:

由 $\lambda_1, \lambda_2, \ldots, \lambda_n$ 满足 $|\lambda_i E - A| = 0, i = 1, 2, \ldots, m,$ 有

$$0 = |\lambda_i E - A| |-\lambda_i E - A|$$
$$= |-\lambda_i^2 E + A^2|$$
$$= (-1)^n |\lambda_i^2 E - A^2|,$$

从而有 $\lambda_i^2, i=1,2,\ldots,n$ 为 A^2 的所有特征根,即 $\sum_{i=1}^n \lambda_i^2 = Tr(A^2) = \sum_{i,j=1}^n a_{ij}a_{ji}$. 证毕.

32. 证明:

(1) 由 $m_A(x) = \prod_{i=1}^n (x - \lambda_i)^{l_i}$, 而 $f(x)|m_A(x)$ 且 $\partial f(x) \ge 1$, 即

$$\exists \lambda_i, s.t.(x - \lambda_i) | f(x),$$

从而有

$$(A - \lambda_i E)|f(A).$$

由 $|\lambda_i E - A| = 0$, 有 |f(A)| = 0, 从而 f(A) 不可逆.

(2) 不妨设 $d(x) = \prod_{i=1}^{l} (x - \lambda_i)^{k_i}$,则有

$$m_A(x) = d(x) \cdot \prod_{i=l+1}^n (x - \lambda_i)^{k_i},$$
$$f(x) = d(x) \cdot \prod_{i=l+1}^n (x - a_i)^{b_i},$$

且

$$(\prod_{i=l+1}^{n} (x - \lambda_i)^{k_i}, \prod_{i=l+1}^{n} (x - a_i)^{b_i}) = 1$$

显然有

$$f(A) = d(A) \cdot \prod_{i=l+1}^{n} (x - a_i)^{b_i}$$

由于 $a_i \neq \lambda_i$, 故 $|A - a_i E| \neq 0$, 从而 $A - a_i E$ 可逆, 故有 $r_{f(A)} = r_{d(A)}$. $(3)\Longrightarrow$) 由 (2), 当 d(x)=1 时, $|f(A)\neq 0|$, 即 f(A) 可逆. \Longrightarrow) 当 f(A) 可逆时,必有 $(x-\lambda_i)$ $f(x), \forall i=1,2,\ldots,n,$ 故 $(f(x),m_A(x))=1.$ 证毕.

33. 证明:

若 X 非零,则存在可逆矩阵 P,Q,s.t.

$$PXQ = \left(\begin{array}{cc} E_r & O \\ O & O \end{array}\right)$$

由

$$AX = XB \Longrightarrow PAXQ = PXBQ$$

$$\Longrightarrow PAP^{-1}PXQ = PXQ^{-1}QBQ$$

$$\Longrightarrow \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix} \begin{pmatrix} E_r & O \\ O & O \end{pmatrix} = \begin{pmatrix} E_r & O \\ O & O \end{pmatrix} \begin{pmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{pmatrix}$$

$$\Longrightarrow \begin{pmatrix} A_{11} & O \\ A_{21} & O \end{pmatrix} = \begin{pmatrix} B_{11} & B_{12} \\ O & O \end{pmatrix}$$

$$\Longrightarrow A_{11} = B_{11}, A_{21} = O, B_{12} = O$$

则

$$PAP^{-1} = \begin{pmatrix} A_{11} & A_{12} \\ O & A_{22} \end{pmatrix} \qquad Q^{-1}BQ = \begin{pmatrix} B_{11} & O \\ B_{21} & B_{22} \end{pmatrix}$$

$$\Delta_C(\lambda) = |\lambda E - A_{11}| |\lambda E - A_{22}|$$
$$\Delta_D(\lambda) = |\lambda E - B_{11}| |\lambda E - B_{22}|$$

$$\triangle_D(\lambda) = |\lambda E - B_{11}||\lambda E - B_{22}|$$

又 $A_{11}=B_{11}$, 故 $|\lambda E-A_{11}|=|\lambda E-B_{11}|$, 所以 C,D 有公共特征根,又因为 C 与 A 相似, D与B相似, 所以 A,B 有公共特征根.

34. 解:

$$A^{2} = \begin{bmatrix} 0 & 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 \end{bmatrix}, \dots, A^{n-1} = \begin{bmatrix} 0 & 0 & 0 & 0 & \cdots & 1 \\ 1 & 0 & 0 & 0 & \cdots & 0 \\ 0 & 1 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 & \cdots & 0 \\ 0 & 0 & 0 & 0 & \cdots & 0 \end{bmatrix}$$

A 的全部特征根为 n 次单位根。

由上,|f(A)| = D,又因为 $f(\omega_i)$ 是 f(A) 的特征根且矩阵的所有特征根之积等于其行列式,所以结论成立.

证毕.

35. 证明:

(⇐=), 今

$$k_1\alpha + k_2A\alpha + k_3A^2\alpha + \dots + k_nA^{n-1}\alpha = \theta$$

将 $\alpha = \alpha_1 + \alpha_2 + \cdots + \alpha_n$ 代入并注意 α_i $(i = 1, 2, \dots, n)$ 为 A 的特征向量得

$$(k_1 + k_2\lambda_1 + \dots + k_n\lambda_1^{n-1})\alpha_1 + \dots + (k_1 + k_2\lambda_n + \dots + k_n\lambda_n^{n-1})\alpha_n = \theta$$

因为 $\alpha_1, \alpha_2, \dots, \alpha_n$ 为特征向量, 易知它们线性无关, 所以我们可以得到下面的方程组

$$\begin{cases} k_1 + k_2 \lambda_1 + \dots + k_n \lambda_1^{n-1} = 0 \\ k_1 + k_2 \lambda_2 + \dots + k_n \lambda_2^{n-1} = 0 \\ \dots \\ k_1 + k_2 \lambda_n + \dots + k_n \lambda_n^{n-1} = 0 \end{cases}$$

因为特征根两两不同,所以又范德蒙行列式可知上述方程组有唯一解零解,所以 $\alpha, A\alpha, \cdots, A^{n-1}\alpha$ 线性无关。

(⇒) 设 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 分别为 $\lambda_1, \lambda_2, \dots, \lambda_n$ 对应的特征向量,因为 $\lambda_1, \lambda_2, \dots, \lambda_n$ 两不同,故可知 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 也是 V 的一组基底,则由 $\alpha = l_1\varepsilon_1 + l_2\varepsilon_2 + \dots + l_n\varepsilon_n$, 因为特征向量经过数乘变换以后还是特征向量,所以为了证明命题,我们只需说明 l_1, l_2, \dots, l_n 全不为 0。因为 $\alpha, A\alpha, A^2\alpha, \dots, A^{n-1}\alpha$ 线性无关,则有

$$k_1\alpha + k_2A\alpha + k_3A^2\alpha + \dots + k_nA^{n-1}\alpha = \theta \Longrightarrow k_1 = k_2 = \dots = k_n = 0$$

将 $\alpha = l_1 \varepsilon_1 + l_2 \varepsilon_2 + \cdots + l_n \varepsilon_n$ 代入上式整理得:

$$(k_1l_1 + k_2l_1\lambda + \dots + k_nl_1\lambda_n^{n-1})\varepsilon_1 + \dots + (k_1l_n + k_2l_n\lambda_n + \dots + k_nl_n\lambda_n^{n-1})\varepsilon_n = \theta$$

因为 $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n$ 也是基底,故有它们的系数都为 0,即得方程组:

$$\begin{cases} k_1 l_1 + k_2 l_1 \lambda_1 + \dots + k_n l_1 \lambda_1^{n-1} = 0 \\ k_1 l_2 + k_2 l_2 \lambda_1 + \dots + k_n l_2 \lambda_1^{n-1} = 0 \\ \dots \\ k_1 l_n + k_2 l_n \lambda_n + \dots + k_n l_n \lambda_n^{n-1} = 0 \end{cases}$$

将 k_1, k_2, \cdots, k_n 看做未知量,因为其只有零解,故得系数行列式不为零。又因为其系数行列式为

$$l_1 l_2 \cdots l_n D$$

其中 D 为范德蒙行列式. 由特征根两两不同, 知范德蒙行列式不为零, 故要求 $l_1 l_2 \cdots l_n$ $\neq 0$, 即 l_1, l_2, \cdots, l_n 全不为 0 证毕.

36. 证明:

由题易知,有

$$\forall \alpha \in W, \beta \in N, \quad \mathbf{A}\beta = \beta, \mathbf{A}\gamma = \theta.$$

即 W 是 A 的不变子空间.

 \Longrightarrow) 设 $\forall \beta \in W, \exists \beta_1 \in V, \quad s.t. \mathbf{B}\beta = \beta_1, \, 则有$

$$\mathbf{A}\mathbf{B}\beta = \mathbf{B}\mathbf{A}\beta \Longrightarrow \mathbf{B}\beta = \mathbf{A}\beta_1 \in W$$

从而 W 是 B 的不变子空间. $\forall \gamma \in N$, 有

$$\mathbf{A}\mathbf{B}\gamma = \mathbf{B}\mathbf{A}\lambda \Longrightarrow \mathbf{A}(\mathbf{B}\gamma) = \theta \Longrightarrow \mathbf{B}\gamma \in N$$

故有 W, N 是 B 的不变子空间.

 \Leftarrow) $\forall \alpha = \beta + \gamma, \beta \in W, \gamma \in N, \exists \beta_1 \in W, \gamma_1 \in N, \text{s.t.}$

$$\mathbf{B}(\beta, \gamma) = (\beta_1, \gamma_1),$$

从而有

$$\mathbf{A}\mathbf{B}\alpha = \mathbf{A}(\beta_1 + \gamma_1) = \beta_1$$
$$\mathbf{B}\mathbf{A}\alpha = \mathbf{B}\beta = \beta_1$$

故有 **AB** = **BA** 证毕.

37. 证明:

我们这一题要用 32 (3) 题的结论:

$$\triangle_A(B)$$
不可逆 \iff $\triangle_A(x)$ 与 $m_B(x)$ 不互素 \iff $\triangle_A(x)$ $\triangle_B(x)$ 不互素

因为 A, B 有公共特征根, 所以这是显然的。

38. (目前我只能说明这是在实数域上成立的)证明:由 25 题可知,A 幂零,则A 只有 0 是其特征根,所以我们只需说明 A^n 的迹为 0 等价于A 只有 0 为其特征根。又因为我们有

$$\lambda_1 + \lambda_2 + \dots + \lambda_n = tr(A)$$

所以容易在实数域上说明结论是成立的。

欢迎加入 数的美位

39.

40. 证明:

因为 $\lambda^2 - 3\lambda + 2 = (\lambda - 1)(\lambda - 2)$ 为其零化多项式,所以其特征根只有 1 和 2,同时我们还可以知道其最小多项式的根也只可能是 1 和 2,且是一次的,即最小多项式为一次因式的一次幂,所以 A 一定可以对角化。(可以从第六章找到相关定理,也可以从第九章找到相关定理)。

今:

$$T = (\alpha_1, \alpha_2, \dots, \alpha_n)$$

则由 $T^{-1}AT =$ 得 (D_{a_k} 为对角矩阵):

$$A(\alpha_1, \alpha_2, \dots, \alpha_n) = (\alpha_1, \alpha_2, \dots, \alpha_n) D_{a_k}$$

进一步有:

$$A\alpha_i = d_i\alpha_i \ (i = 1, 2, \dots, n)$$

即 α_i 为 A 的特征根所对应的特征向量,以为我们已经知道了 A 可以对角化,所以 A 一定有 n 个线性无关的特征向量,那么问题也就解决了。我们只需要求出 A 的 1 和 2 对应的线性无关的特征向量,再以它们为列拼起来就构成了 T。由于 A 为给出,故只能说思考方法,具体的 T 求不出来。

41.

42. 证明:

因为 A 有 n 个两两不同的特征根,不妨设为

$$\lambda_1, \lambda_2, \ldots, \lambda_n$$

则存在 V 的一组基, 使得:

$$E \to \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}, A \to \begin{pmatrix} \lambda_1 & 0 & 0 & 0 \\ 0 & \lambda_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \lambda_n \end{pmatrix}, A \to \begin{pmatrix} \lambda_1^2 & 0 & 0 & 0 \\ 0 & \lambda_2^2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & \lambda_n^2 \end{pmatrix}, \cdots$$

故问题转化为与 A 可交换的矩阵是且仅是 E,A,A^2,\ldots,A^{n-1} 的线性组合。 因为 A 为对角型,所以根据 AB=BA,我们可以得出 B 一定也是对角矩阵,不妨设

$$B = \left(\begin{array}{cccc} b_1 & 0 & 0 & 0 \\ 0 & b_2 & 0 & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & 0 & 0 & b_4 \end{array}\right)$$

那么由

$$B = k_1 E + k_2 A + k_3 A^2 + \dots + k_{n-1} A^{n-1}$$

可得

$$\begin{cases} k_1 + k_2 \lambda_1 + k_3 \lambda_1^2 + \dots + k_n \lambda_1^{n-1} = b_1 \\ k_1 + k_2 \lambda_2 + k_3 \lambda_2^2 + \dots + k_n \lambda_2^{n-1} = b_2 \\ \dots \\ k_1 + k_2 \lambda_n + k_3 \lambda_n^2 + \dots + k_n \lambda_n^{n-1} = b_n \end{cases}$$

将 k_1, k_2, \ldots, k_n 视为未知数,那么由于上面的方程组的系数行列式为范德蒙行列式,且特征值两两不同,故其值非 0,所以上面的线性方程组有唯一解,所以结论成立。

43. 证明:

充分性: 设 λ_i 为 A 的特征根, 则 $A\alpha = \lambda_i \alpha$, ($\alpha \neq \theta$ 即为从属与 λ_i 的特征向量) 所以 $A\alpha = \lambda_i \alpha = 0$, $(A - \lambda_i E)\alpha = 0$ 由 A, B 可交换 AB = BA, 得 $AB - \lambda_i B = BA - \lambda_i B$ 即 $(A - \lambda_i E)B = B(A - \lambda_i E)$

故矩阵 $(A - \lambda_i E)$ 与 B 可交换, 则 $(A - \lambda_i E)$ 对应的线性变换的核是 B 的不变子空间, 又 $(A - \lambda_i E)$ 的核为 A 的从属 λ_i 的特征向量故 A 的特征向量是 B 的不变子空间里的元素, 又其是一维的故 A 的特征向量也是 B 的特征向量.

必要性: 因为 A 有 n 个特征根且两两互异, 故其有对角型矩阵, 又 A 的 n 个线性无关的特征向量也是 B 的特征向量, 故 B 也可以对角化, 设 V 的一组基为 $\eta_1, \eta_n, \cdots, \eta_n$,则由矩阵 A 及基 $\eta_1, \eta_n, \cdots, \eta_n$ 可唯一的确定一线性变换 A,由矩阵 B 及 $\eta_1, \eta_n, \cdots, \eta_n$,可唯一确定一线性变换 B.

即

$$(A\eta_1, A\eta_2, \cdots, A\eta_n) = (\eta_1, \eta_n, \cdots, \eta_n)A$$
$$(B\eta_1, B\eta_2, \cdots, B\eta_n) = (\eta_1, \eta_n, \cdots, \eta_n)B$$

又因为 A, B 可对角化. 由 A 的特征向量有为 B 的特征向量, 易得 A, B 有公共的特征向量. 则有基变换 $(\varepsilon_1, \varepsilon_2, \cdots, \varepsilon_n) = (\eta_1, \eta_n, \cdots, \eta_n)T$, 使得 A 为对角阵

$$\begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix} = T^{-1}AT$$

欢迎加入 数的美位

又有基变换 $(\varepsilon_1, \varepsilon_2, \dots, \varepsilon_n) = (\eta_1, \eta_2, \dots, \eta_n)Q$,s.tB 为对角阵

$$\begin{pmatrix} m_1 & & & \\ & m_2 & & \\ & & \ddots & \\ & & & m_n \end{pmatrix} = Q^{-1}BQ \qquad \mathbb{E}Q = T$$

因为对角可交换, 则有 $(T^{-1}AT)(T^{-1}BT) = (T^{-1}BT)(T^{-1}AT)$, 即 AB = BA.

44.

45. 证明:

用反证法,我们假设 A 可以分解为两个不变的真子空间的直和,那么在 V 的某一基底下,线性变换 A 有准对角型表示矩阵:

$$A = \left(\begin{array}{cc} A_1 & O \\ O & A_2 \end{array}\right)$$

所以 A 的最小多项式为 A_1, A_2 的最小多项式的最小公<mark>倍</mark>式,这与 A 的最小多项式不可约矛盾,故原命题成立。

46. 证明: 因为 $m(\lambda) = h(\lambda)g(\lambda), (h(\lambda), g(\lambda)) = 1$, 由推论 7.2.1 有

$$ker(m(A)) = ker(h(A)) + ker(g(A))$$

又因为 $ker(m(A)) = ker(\theta) = V$ 则有 V = ker(h(A)) + ker(g(A)),

对 $\forall \alpha \in ker(h(A))$, 有 $h(A)\alpha = \theta$, 所以 ker(h(A)) 就是 W_1 , 同理 ker(g(A)) 就是 W_2 , 即有 $V = W_1 + W_2$ 接下来证明 $h(\lambda)$ 为 $A|_{W_1} = A_1$ 的最小多项式, $g(\lambda)$ 同理可证. 对 $\forall \alpha \in W_1$, 有 $h(A_1)\alpha = h(A|_m)\alpha = \theta$, 得 $h(A_1) = \theta$, 即 $h(\lambda)$ 零化 A_1 , 则只需证明 $h(\lambda)$ 是次数最低的零化 A_1 的多项式即可. 我们假设有 $l(\lambda)$, 满足 $\partial(l(\lambda)) < \partial(h(\lambda))$ 且 $\forall \alpha \in W_1, l(A) = \theta$, 则令 $h(\lambda) = l(\lambda)g(\lambda)$ 可得到

対
$$\forall \alpha \in W_1, h(A)\alpha = l(A)g(A)\alpha = g(A)l(A)\alpha = g(A)(\theta) = \theta$$

$$\forall \beta \in W_2, h(A)\beta = l(A)g(A)\beta = l(A)(\theta)\theta = \theta$$

$$\diamondsuit \forall \gamma \in V, \gamma = \alpha + \beta, \alpha \in W_1, \beta \in W_2$$

则 $\forall \in V$ 有 $h(A)\gamma = h(A)(\alpha + \beta) > h(A)\alpha + h(A)\beta = \theta \Rightarrow h(A) > \theta$, 但 $\partial(h(\lambda)) < \partial(m(\lambda))$ 与 $m(\lambda)$ 为最小多项式矛盾, 故不可能有 $l(\lambda)$, s.t $\partial l(\lambda) < \partial h(\lambda)$ 所以 $h(\lambda)$ 是零化 A_1 的次数最低的多项式,且,故 $h(\lambda)$ 即为 A_1 的最小多项式,同理可证 $g(\lambda)$ 为 A_2 的最小多项式.

(2) 将 (1) 中的结论推广到 n 的情况.(证明略)

第七章 线性空间关于线性变换的一类直 和分解

习题

- 1. 求习题 6 的第 2 题和第 3 题中的线性变换的像与核; 在维数有限时, 求像与核的维数.
- 2. \Diamond **A** 为 n 维线性空间上的线性变换. 则存在 $m \in \mathbb{N}$ 使得

$$Im \mathbf{A}^m = Im \mathbf{A}^{m+1} = \cdots.$$

- 3. 令 \mathbf{A} , \mathbf{B} 为 n 维线性空间上的幂等线性变换 (即 $\mathbf{A}^2 = \mathbf{A}$, $\mathbf{B}^2 = \mathbf{B}$). 证明:
 - (1) $Im \mathbf{A} = Im \mathbf{B}$ 的充分必要条件为 $\mathbf{A} \mathbf{B} = \mathbf{B}, \mathbf{B} \mathbf{A} = \mathbf{A};$
 - (2) $Ker \mathbf{A} = Ker \mathbf{B}$ 的充分必要条件为 $\mathbf{AB} = \mathbf{A}, \mathbf{BA} = \mathbf{B}$.
- 4. \Diamond A 为 n 维线性空间 V 上的线性变换, $W \leqslant V$. 证明:

$$\dim(\mathbf{A}W) + \dim(\operatorname{Ker}\mathbf{A} \cap W) = \dim W.$$

这是定理 7.1.1 中的维数公式的推广.

- 5. 令 V 为数域 \mathbb{P} 上一 n 维线性空间, $V_1, V_2 \leq V$, $\dim V_1 + \dim V_2 = n$. 证明:
 - (1) $(\exists \sigma \in L(V)) \operatorname{Im} \sigma = V_1, \operatorname{K} er \sigma = V_2;$
 - (2) $(\exists \sigma \in L(V), \sigma^2 = \sigma) \operatorname{Im} \sigma = V_1, \operatorname{Ker} \sigma = V_2;$

当且仅当

$$V = V_1 \oplus V_2$$
.

- 6. 令 V 为数域 \mathbb{P} 上一 n 维线性空间, $A \in L(V)$. 证明以下几款等价
 - $(1)V = \operatorname{Im} \mathcal{A} + \operatorname{Ker} \mathcal{A};$
- $(2)\operatorname{Im} \mathcal{A} + \operatorname{Ker} \mathcal{A} = \operatorname{Im} \mathcal{A} \oplus \operatorname{Ker} \mathcal{A};$
- (3) $\operatorname{Im} \mathcal{A}^2 = \operatorname{Im} \mathcal{A}$;
- (4) $\operatorname{Ker} A^2 = \operatorname{Ker} A$.

解答

- 1. 略.
- 2. 证明: 由定理 7.1.3 知, $V \supseteq \operatorname{Im} \mathbf{A} \supseteq \operatorname{Im} \mathbf{A}^2 \supseteq \cdots \supseteq \operatorname{Im} \mathbf{A}^k \supseteq \operatorname{Im} \mathbf{A}^{k+1} \supseteq \cdots$,于是有 $n = \dim V \geqslant \dim(\operatorname{Im} \mathbf{A}) \geqslant \dim(\operatorname{Im} \mathbf{A}^3) \geqslant \cdots \geqslant \dim(\operatorname{Im} \mathbf{A}^n) \geqslant \dim(\operatorname{Im} \mathbf{A}^{n+1}) \geqslant 0$,因此在以上 n+1 个线性变换中,必有某 $0 \leqslant k \leqslant n, k \in \mathbb{N}$,使 $\dim(\operatorname{Im} \mathbf{A}^{k+1}) = \dim(\operatorname{Im} \mathbf{A}^{k+1})$,又因为 $\operatorname{Im} \mathbf{A}^{k+1} \supseteq \operatorname{Im} \mathbf{A}^k$,所以 $\operatorname{Im} \mathbf{A}^{k+1} = \operatorname{Im} \mathbf{A}^k$.下面 考虑 $\operatorname{Im} \mathbf{A}^{k+j}$ 和 $\operatorname{Im} \mathbf{A}^{k+j+1}$ $(j=1,2,3,\cdots)$,由 Sylvester 定理,考虑 $\mathbf{A}|_{\mathbf{A}^k V}$,有

$$\dim(\operatorname{Im} \mathbf{A}|_{\mathbf{A}^k V}) + \dim(\operatorname{Ker} \mathbf{A}|_{\mathbf{A}^k V}) = \dim(\mathbf{A}^k V)$$

由 $\operatorname{Im} \mathbf{A}^{k+1} = \operatorname{Im} \mathbf{A}^{k}$, 得 $\operatorname{dim}(\operatorname{Im} \mathbf{A}|_{\mathbf{A}^{k}V}) = \operatorname{dim}(\mathbf{A}^{k+1}V) = \operatorname{dim}(\mathbf{A}^{k}V)$, 从而

$$\dim((\operatorname{Ker} \mathbf{A}) \cap \mathbf{A}^k V) = \dim(\operatorname{Ker} \mathbf{A}|_{\mathbf{A}^k V}) = 0,$$

于是 $(\operatorname{Ker} \mathbf{A}) \cap \mathbf{A}^k V = \theta$, 又由 $\mathbf{A}^{k+j} V \subseteq \mathbf{A}^k V$, 得 $(\operatorname{Ker} \mathbf{A}) \cap \mathbf{A}^{k+j} V = \theta$, 即有 $\dim(\operatorname{Ker} \mathbf{A}|_{\mathbf{A}^{k+j} V}) = \dim((\operatorname{Ker} \mathbf{A}) \cap \mathbf{A}^{k+j} V) = 0$, 同样由 Sylvester 定理, 考虑 $\mathbf{A}|_{\mathbf{A}^{k+j} V}$, 有

$$\dim(\operatorname{Im} \mathbf{A}|_{\mathbf{A}^{k+j}V}) + \dim(\operatorname{Ker} \mathbf{A}|_{\mathbf{A}^{k+j}V}) = \dim(\mathbf{A}^{k+j}V)$$

即有, $\dim(\mathbf{A}^{k+j+1}V) = \dim(\operatorname{Im} \mathbf{A}|_{\mathbf{A}^{k+j}V}) = \dim(\mathbf{A}^{k+j}V)$, 又由 $\mathbf{A}^{k+j+1}V \subseteq \mathbf{A}^{k+j}V$, 得 $\mathbf{A}^{k+j+1}V = \mathbf{A}^{k+j}V$, 即 $\operatorname{Im} \mathbf{A}^{k+j+1} = \operatorname{Im} \mathbf{A}^{k+j}$.

综片.
$$\operatorname{Im} \mathbf{A}^k = \operatorname{Im} \mathbf{A}^{k+1} = \operatorname{Im} \mathbf{A}^{k+2} = \operatorname{Im} \mathbf{A}^{k+3} = \cdots$$

3. (1) 证明: " \leftarrow "(必要性): 设 $\operatorname{Im} \mathbf{A} = \operatorname{Im} \mathbf{B}$. 任取 $\alpha \in V$, 有 $\mathbf{A}\alpha \in \operatorname{Im} \mathbf{A} = \operatorname{Im} \mathbf{B}$, 从而 存在 $\beta \in V$, 使得

$$\mathbf{B}\beta = \mathbf{A}\alpha \tag{7.1}$$

将 B 作用于等式 (1) 两端, 就有

$$\mathbf{B}^2 \beta = \mathbf{B} \mathbf{A} \alpha \tag{7.2}$$

由题目知 $\mathbf{A}^2 = \mathbf{A}$, $\mathbf{B}^2 = \mathbf{B}$, 代入 (2) 式, 得

$$\mathbf{B}\mathbf{A}\alpha = \mathbf{B}^2\beta = \mathbf{B}\beta\tag{7.3}$$

再将(1)式代入(3)式,有

145

$$\mathbf{B}\mathbf{A}\alpha = \mathbf{B}\beta = \mathbf{A}\alpha$$

由 α 的任意性, 得 $\mathbf{B}\mathbf{A} = \mathbf{A}$, 同理可得, $\mathbf{A}\mathbf{B} = \mathbf{B}$.

" \Rightarrow "(充分性): 设 $\mathbf{AB} = \mathbf{B}, \mathbf{BA} = \mathbf{A}$. 任取 $\gamma \in \mathbf{V}$, 有

$$\mathbf{A}\gamma = \mathbf{B}\mathbf{A}\gamma = \mathbf{B}(\mathbf{A}\gamma) \in \mathrm{Im}\mathbf{B}$$

从而 $Im \mathbf{A} \subseteq Im \mathbf{B}$. 任取 $\delta \in V$, 有

$$\mathbf{B}\delta = \mathbf{A}\mathbf{B}\delta = \mathbf{A}(\mathbf{B}\delta) \in \mathrm{Im}\mathbf{A}$$

从而 $Im \mathbf{B} \subseteq Im \mathbf{A}$. 于是, $Im \mathbf{A} = Im \mathbf{B}$.

综上, $Im A = Im B \iff AB = B$, BA = A.

(2) 证明: " \leftarrow ": 设 Ker $\mathbf{A} = \text{Ker}\mathbf{B}$. 任取 $\beta \in V$, 由题目得, $\mathbf{A}^2 = \mathbf{A}$, $\mathbf{B}^2 = \mathbf{B}$, 于是

$$\mathbf{A}(\beta - \mathbf{A}\beta) = \mathbf{A}\beta - \mathbf{A}^2\beta = \mathbf{A}\beta - \mathbf{A}\beta = \theta$$

从而, $\beta - \mathbf{A}\beta \in \text{Ker}\mathbf{A} = \text{Ker}\mathbf{B}$, 既有,

$$\mathbf{B}(\beta - \mathbf{A}\beta) = \mathbf{B}\beta - \mathbf{B}\mathbf{A}\beta = \theta$$

由 β 的任意性得, $\mathbf{B} = \mathbf{B}\mathbf{A}$. 同理可得, $\mathbf{A} = \mathbf{A}\mathbf{B}$.

"⇒": 设 $\mathbf{AB} = \mathbf{A}$, $\mathbf{BA} = \mathbf{B}$. 任取 $\alpha \in \text{Ker}\mathbf{A}$, 有,

$$\mathbf{A}\alpha = \theta$$

$$\mathbf{B}\alpha = \mathbf{B}\mathbf{A}\alpha = \mathbf{B}(\mathbf{A}\alpha) = \mathbf{B}\theta = \theta$$

从而 $\alpha \in \text{Ker}\mathbf{B}$, 即有 $\text{Ker}\mathbf{A} \subseteq \text{Ker}\mathbf{B}$. 任取 $\beta \in \text{Ker}\mathbf{B}$, 有,

$$\mathbf{B}\beta = \theta$$

$$\mathbf{A}\beta = \mathbf{A}\mathbf{B}\beta = \mathbf{A}(\mathbf{B}\beta) = \mathbf{A}\theta = \theta$$

从而 $\beta \in \text{Ker} \mathbf{A}$, 即有 Ker $\mathbf{B} \subseteq \text{Ker} \mathbf{A}$. 于是, Ker $\mathbf{A} = \text{Ker} \mathbf{B}$.

综上, $Ker A = Ker B \iff AB = A, BA = B, Q.E.D.$

4. 证明: 考虑在子空间 W 上的 \mathbf{A} 即 $\mathbf{A}|_{W}$, 它是 W 到 $\mathbf{A}W$ 的一个线性映射. 由于

$$\begin{split} \alpha \in \mathrm{Ker}(\mathbf{A}|_W) &\iff (\mathbf{A}|_W)\alpha = 0 \\ &\iff \mathbf{A}\alpha = 0, \ \alpha \in W \\ &\iff \alpha \in (\mathrm{Ker}\mathbf{A}) \cap W. \end{split}$$

因此 $\operatorname{Ker}(\mathbf{A}|_W) = (\operatorname{Ker}\mathbf{A}) \cap W$. 又显然有 $\operatorname{Im}(\mathbf{A}|_W) = \mathbf{A}W$, 因此

$$\dim(\mathbf{A}W) + \dim((\operatorname{Ker}\mathbf{A}) \cap W) = \dim W.$$

欢迎加入 数的美位

5.

6. 证明: (1) ⇔ (2):

"⇒": 设 $V = \operatorname{Im} \mathcal{A} + \operatorname{Ker} \mathcal{A}$. 由定理 4.2.2 有 $\dim(\operatorname{Im} \mathcal{A} + \operatorname{Ker} \mathcal{A}) + \dim(\operatorname{Im} \mathcal{A} \cap \operatorname{Ker} \mathcal{A}) = \dim(\operatorname{Im} \mathcal{A}) + \dim(\operatorname{Ker} \mathcal{A})$,又由 Sylvester 定理,得 $\dim(\operatorname{Im} \mathcal{A} + \operatorname{Ker} \mathcal{A}) = \dim V = \dim(\operatorname{Im} \mathcal{A}) + \dim(\operatorname{Ker} \mathcal{A})$,从而 $\dim(\operatorname{Im} \mathcal{A} \cap \operatorname{Ker} \mathcal{A}) = 0$,即有 $\operatorname{Im} \mathcal{A} \cap \operatorname{Ker} \mathcal{A} = \theta$,从而 $\operatorname{Im} \mathcal{A} + \operatorname{Ker} \mathcal{A} = \operatorname{Im} \mathcal{A} \oplus \operatorname{Ker} \mathcal{A}$.

" \Leftarrow ": 设 $\operatorname{Im} \mathcal{A} + \operatorname{Ker} \mathcal{A} = \operatorname{Im} \mathcal{A} \oplus \operatorname{Ker} \mathcal{A}$. 则有 $\operatorname{dim}(\operatorname{Im} \mathcal{A}) + \operatorname{dim}(\operatorname{Ker} \mathcal{A}) = \operatorname{dim}(\operatorname{Im} \mathcal{A} + \operatorname{Ker} \mathcal{A})$,由 Sylvester 定理,得 $\operatorname{dim}(\operatorname{Im} \mathcal{A}) + \operatorname{dim}(\operatorname{Ker} \mathcal{A}) = \operatorname{dim}(\operatorname{Im} \mathcal{A} + \operatorname{Ker} \mathcal{A})$,又由 $\operatorname{Im} \mathcal{A} + \operatorname{Ker} \mathcal{A} \subseteq V$,得, $V = \operatorname{Im} \mathcal{A} + \operatorname{Ker} \mathcal{A}$.

$(2) \iff (3)$:

"⇒": 设 $\operatorname{Im} \mathcal{A} + \operatorname{Ker} \mathcal{A} = \operatorname{Im} \mathcal{A} \oplus \operatorname{Ker} \mathcal{A}$. 有 $\mathcal{A}^2(V) = \mathcal{A}(\mathcal{A}V) \subseteq \mathcal{A}V$, 即 $\operatorname{Im} \mathcal{A}^2 \subseteq \operatorname{Im} \mathcal{A} \oplus \mathbb{A}$ 是 $\forall \beta \in \operatorname{Im} \mathcal{A}$, $\exists \alpha \in V, s.t.$ $\beta = \mathcal{A}\alpha$, 对于 α , $\exists \alpha_1 \in \operatorname{Im} \mathcal{A}$, $\alpha_2 \in \operatorname{Ker} \mathcal{A}$, s.t. $\alpha = \alpha_1 + \alpha_2$, 从而有 $\beta = \mathcal{A}\alpha = \mathcal{A}(\alpha_1 + \alpha_2) = \mathcal{A}\alpha_1$, 又由 $\alpha_1 \in \operatorname{Im} \mathcal{A}$, 得 $\exists \delta \in V, s.t.$ $\alpha_1 = \mathcal{A}\delta$, 从而 $\beta = \mathcal{A}\alpha_1 = \mathcal{A}^2\delta \in \operatorname{Im} \mathcal{A}^2$, 即有 $\operatorname{Im} \mathcal{A} \subseteq \operatorname{Im} \mathcal{A}^2$, 所以 $\operatorname{Im} \mathcal{A}^2 = \operatorname{Im} \mathcal{A}$.

" \Leftarrow ": 设 $\operatorname{Im} \mathcal{A}^2 = \operatorname{Im} \mathcal{A}$. 由 Sylvester 定理,得 $\operatorname{dim}(\operatorname{Im} \mathcal{A}) + \operatorname{dim}(\operatorname{Ker} \mathcal{A}) = \operatorname{dim}V = \operatorname{dim}(\operatorname{Im} \mathcal{A}^2) + \operatorname{dim}(\operatorname{Ker} \mathcal{A}^2)$,即有 $\operatorname{dim}(\operatorname{Ker} \mathcal{A}) = \operatorname{dim}(\operatorname{Ker} \mathcal{A}^2)$,又由 $\operatorname{Ker} \mathcal{A} \subseteq \operatorname{Ker} \mathcal{A}^2$,得 $\operatorname{Ker} \mathcal{A} = \operatorname{Ker} \mathcal{A}^2$.取 $\forall \beta \in \operatorname{Im} \mathcal{A} \cap \operatorname{Ker} \mathcal{A}$,则 $\exists \gamma \in V, s.t.$ $\beta = \mathcal{A} \gamma$ 且 $\mathcal{A} \beta = \theta$,即有 $\mathcal{A}^2 \gamma = \theta$. 从而 $\gamma \in \operatorname{Ker} \mathcal{A}^2 = \operatorname{Ker} \mathcal{A}$,所以 $\beta = \mathcal{A} \gamma = \theta$,所以 $\operatorname{Im} \mathcal{A} + \operatorname{Ker} \mathcal{A} = \operatorname{Im} \mathcal{A} \oplus \operatorname{Ker} \mathcal{A}$.

$(3) \iff (4)$:

由 Sylvester 定理, 以及 $\operatorname{Ker} A \subseteq \operatorname{Ker} A^2$, $\operatorname{Im} A^2 \subseteq \operatorname{Im} A$, 显然得证

第八章 Euclid 空间上的两类线性变换与 二次型主轴问题

习题

1. 令 A 为 Euclid 空间 V 上的线性变换. 证明: A 为正交变换当且仅当 A 保持任意两个向量的距离不变 (定义 5.4.2), 即

$$(\forall \alpha, \beta \in V)$$
 $d(A\alpha, A\beta) = d(\alpha, \beta)$

- 2. 证明: 三角形正交矩阵必为对角矩阵, 且对角线元素非 1 即-1.
- 3. 证明:每一个 n 阶实可逆矩阵 A 都有唯一分解 A = UT, 其中 U 为一正交矩阵, T 为上三角实矩阵且其对角线各元素都大于零.
- 4. 令 V 是一 Euclid 空间, $\alpha_1, \alpha_2, \beta_1, \beta_2 \in V$. 证明:若 $|\alpha_1| = |\beta_1|, |\alpha_2| = |\beta_2|$,且 $\langle \alpha_1, \alpha_2 \rangle = \langle \beta_1, \beta_2 \rangle$,则粗在正交变换 A,使得 $A\alpha_1 = \beta_1, A\alpha_2 = \beta_2$.
- 5. 证明: 正交变换 (矩阵) 的特征多项式的根的模为 1.
- 6. 令 $(\alpha_1, \alpha_2, \dots, \alpha_n)$, $(\beta_1, \beta_2, \dots, \beta_n)$ 都是 n 维 Euclid 空间 V 的标准正交基底,A 为 V 上的一正交变换. 证明:若 $A\alpha_1 = \beta_1$,则

$$G[A\alpha_2, A\alpha_3, \cdots, A\alpha_n] = G[\beta_2, \beta_3, \cdots, \beta_n]$$

7. 令 V 为一 Euclid 空间, $\alpha \in V, \alpha \neq \theta$, 又

$$(\forall \eta \in V) \quad A\eta = \eta - \frac{2(\eta,\alpha)}{(\alpha,\alpha)}\alpha.$$

8. 证明: $A \to V$ 上一正交变换,且 $A^2 = E$. 当 dimV = n 时, 证明: 存在 V 的标准正 交基底, A 在该基底下的矩阵为

$$\left[\begin{array}{cc} -1 & & \\ & E_{n-1} \end{array}\right]$$

(这样的线性变换称为镜面反射,它的直观集合意义是很明显的).

- 9. 令 A 为一 n 维 Euclid 空间上的正交变换. 证明: 若 1 为 A 的特征根, 且 dimKer = (A E) = n 1, 则 A 为镜面反射.
- 10. 今 A 为 n 阶正交矩阵, 且 A 有 n 个特征根. 证明:A 为实对称矩阵.
- 11. 令 V 为一 n 维 Euclid 空间, α , $\beta \in V$, 且 $\alpha \neq \beta$. 证明: 若 $|\alpha| = |\beta|$, 则存在镜面反射 A, 使得 $A\alpha = \beta$. 进而, 再利用第 6 题, 证明:V 上的每一个正交变换都可以表示成若干 镜面反射的乘积.
- 12. 令 A 为 n 维 Euclid 空间 V 上一线性变换. 证明: 下面三个命题中的任意两个可以推出第三个:
 - (1) A 为正交变换;
 - (2) A 为对称变换;
 - (3) $A^2 = E$.
- 13. 令 A 为 n 维 Euclid 空间上一对称变换. 证明: 若 $A^2 = A$, 则存在标准正交基底, 使得 A 在该基底下的矩阵为 $E^{(r)}$, $r = r_A$.
- 14. Euclid 空间 V 上的线性变换 A 称为反对称的, 如果

$$(\forall \alpha, \beta \in V) \quad (A\alpha, \beta) = (\alpha, A\beta).$$

建立类似定理 8.1.3 的事实, 并证明:

- (1) 若 V_1 为反对称变换 A 的不变子空间, 则 V_1^{\perp} 在 A 下也不变;
- (2) 反对称变换的特征多项式的根只能为零或纯虚数.
- 15. $\Diamond A$ 为一 n 阶反对称矩阵. 证明:
 - (1) $E_n + A$ 可逆;
 - (2) $U = (E_n A)(E_n + A)^{-1}$ 是一正交矩阵.
- 16. 令 A 为 P 上一 n 阶方阵. 证明:
 - (1) A 反对称当且仅当

149

$$(\forall X \in P^n) \quad X'AX = O;$$

(2) A 对称时,A = O 当且仅当

 $(\forall X \in P^n) \quad X'AX = O;$

17. 求正交矩阵 T, 使得 T'AT 成对角形, 其中 A 为

求正交矩阵
$$T$$
, 便待 T 和 放対用形, 其中 A 为
$$\begin{pmatrix}
11 & 2 & -8 \\
2 & 2 & 10 \\
-8 & 10 & 5
\end{pmatrix}
\begin{pmatrix}
2 \end{pmatrix}
\begin{pmatrix}
17 & -8 & 4 \\
-8 & 17 & -4 \\
4 & -4 & 11
\end{pmatrix}
\begin{pmatrix}
3 \end{pmatrix}
\begin{pmatrix}
2 & -2 & 0 \\
-2 & 1 & -2 \\
0 & -2 & 0
\end{pmatrix}$$

$$\begin{pmatrix}
4 \end{pmatrix}
\begin{pmatrix}
2 & 2 & -2 \\
2 & 5 & -4 \\
-2 & -4 & 5
\end{pmatrix}
\begin{pmatrix}
5 \end{pmatrix}
\begin{pmatrix}
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
1 & 1 & 1 & -1
\end{pmatrix}
\begin{pmatrix}
6 \end{pmatrix}
\begin{pmatrix}
0 & 0 & 4 & 1 \\
0 & 0 & 1 & 4 \\
4 & 1 & 0 & 0 \\
1 & 4 & 0 & 0
\end{pmatrix}$$

- 18. 化简下列实二次型到主轴形式, 并写出变数的一个相应的的正交替换:
 - (1) $x_1^2 + 2x_2^2 + 3x_3^2 4x_1x_2 4x_2x_3$;
 - (2) $2x_1x_2 + 2x_3x_4$;
 - (3) $x_1^2 2x_2^2 2x_3^2 4x_1x_2 + 4x_1x_3 + 8x_2x_3$;
 - $(4) -4x_1x_2 + 2x_1x_3 + 3x_2x_3$
- 19. 令 A, B 为 n 维 Euclid 空间上两个对称变换, 证明: 若 AB = BA, 则 A 与 B 在 V 中 有公共特征向量. 进而, 对于 n 用归纳法证明: 若 $A_{ii\in N}$ 为一组两两可交换的 n 阶实对 称矩阵, 则存在 n 阶正交矩阵 U, 使得 $U'A_iU$ 都是对角矩阵, $i \in Z^+$.
- 20. $A, B \in \mathbb{R}^{n \times n}, A' = A, B' = B, 证明: 若 A 正定, 则 B 正定当且仅当 AB 的 n 个特$ 征根都是正的.
- 21. 用第 4 节中的各种化简方法化简下列二次型到标准形, 求所施的变数的可逆替换, 并进 行验证:
 - (1) 16 题中的二次型以及 15 题的对称矩阵所对应的二次型;
 - (2) $x_1^2 + x_2^2 + 3x_3^2 + 4x_1x_2 + 2x_1x_3 + 2x_2x_3$;
 - (3) $2x_1x_2 + 2x_1x_3 + 2x_1x_4 + 2x_2x_3 + 2x_2x_4 + 2x_3x_4$;
 - $(4) -4x_1x_2 + 2x_1x_3 + 2x_2x_3;$
 - (5) $x_1^2 + 2x_2^2 + 4x_3^2 + 2x_1x_2 + 4x_2x_3$;
 - (6) $\sum_{i=1}^{n-1} x_i^{i+1}$;
 - (7) $\sum_{i=1}^{n} x_i^2 + \sum_{i < i < j < n} x_i x_j;$
- 22. $\Diamond A$ 为 n 阶实对称矩阵. 证明:
 - (1) 存在实数 k > 0, 使得

 $(\forall X \in R^n) \quad |X'AX| \le kX'X;$

(2) 若

$$(\exists X, Y \in \mathbb{R}^n) \qquad \begin{array}{l} X'AX < 0 \\ Y'AY > 0 \end{array}$$

则

$$((\exists Z \in R^n \setminus \{\theta\})) Z'AZ = 0$$

- 23. 令 A, B, AB 都是 n 阶实对称矩阵, λ 为 AB 的一个特征根. 证明: 存在 A 的一个特征根 μ 和 B 的一个特征根 ν , 使得 $\lambda = \mu\nu$.
- 24. 令 λ, μ 为实二次型 $f(X_1, x_2, \dots, x_n) = X'AX$ 的系数对称矩阵 A 的最大和最小特征根. 证明:

$$(\forall X \in \mathbb{R}^n) \quad \lambda X'X \ge X'AX \ge \mu X'X.$$

- 25. 证明: 一个 n 元实二次型 f 可以分解为两个 n 元实一次型乘积的充要条件为 $r_f=1$; 或者 $f_f=2$, 符号差为 0.
- 26. 令

151

$$A = \begin{bmatrix} 5 & 4 & 3 \\ 4 & 5 & 3 \\ 3 & 3 & 2 \end{bmatrix}, \quad B = \begin{bmatrix} 4 & 0 & -6 \\ 0 & 1 & 0 \\ -6 & 0 & 0 \end{bmatrix}$$

证明:A 与 B 实合同, 并求可逆矩阵 C, 使得 C'AC = B.

- 27. 确定下列实二次型的秩和符号差:
 - (1) $x_1x_2 + x_3x_4 + \cdots + x_{n-1}x_n$;
 - (2) ayz + bzx + cxy;
- 28. 证明: 关于任意实数 λ, 实二次型

$$\sum_{i,j=1}^{n} (\lambda ij + i + j) x_i x_j, \quad n \ge 2$$

的秩和符号差与 λ 无关.

- 29. 证明: $ax_1^2 + bx_1x_2 + cx_2$ 正定当且仅当 $a > 0, b^2 4ac < 0$.
- 30. 推论 8.3.2 已经指出, n 阶实对称矩阵 A 是正定的当且仅当 n 元二次型 $f(x_1, x_2, \dots, x_n) = X'AX$ 是正定的, 今令 $A, B \in R^{n \times n}, A' = A, B' = B$. 证明:
 - (1) 若 A, B 都正定, 则对于任意 $k, l \in R, k^2 + l^2 \neq 0$ 时, $k^2A + l^2B$ 正定;
 - (2) 若 A 正定, 则 A^{-1} , A^* 都正定;

- (3) 若 A, B 都正定, 则 AB 正定当且仅当 AB = BA;
- (4) 若 $A = (a_{ij}, B = (b_{ij}))$ 都正定, 则 $(a_{ij}b_{ij})$ 也正定;
- (5) 若 $A = (a_{ij})$ 正定, b_1, b_2, \dots, b_n 为任意 n 个不为零的实数,则 $B = (a_{ij}b_{ij})$ 也正 定;
- 31. 令 $A \in \mathbb{R}^{n \times n}$, 且 $|A| \neq 0$, 证明:A 可表示为一个正定矩阵与一个正交矩阵的乘积.
- 32. 今 $A \in \mathbb{R}^{n \times n}$, A' = A. 证明: 当实数 t 充分大时,tE + A 正定.
- 33. 证明:

$$n\sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2$$

是半正定的.

- 34. 证明:A 是正定矩阵当且仅当 A 的主子式 (定理 8.4.2) 都大于零.
- 35. 令 $A = (a_{ij})$ 是 n 阶正定矩阵. 证明:

$$|A| \le a_{11}a_{22}\cdots, a_{nn},$$

等号成立当且仅当 A 为对角矩阵.

36. 令二次型 $f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n l_i^2 - \sum_{j=p+1}^{p+q} l_j^2$, 其中 l_i 是 x_1, x_2, \dots, x_n 的一次齐 式, $k = 1, 2, \dots, p+q$. 证明: $f(x_1, x_2, \dots, x_n)$ 的正惯性指数 $\leq p$, 负惯性指数 $\leq q$.

解答

1. 证明: 充分性

由距离的定义知, $d(\alpha, \beta) = \sqrt{(\alpha - \beta, \alpha - \beta)}$ 。则由 $d(\mathbf{A}\alpha, \mathbf{A}\beta) = d(\alpha, \beta)$ 可得

$$(\mathbf{A}\alpha - \mathbf{A}\beta, \mathbf{A}\alpha - \mathbf{A}\beta) = (\alpha - \beta, \alpha - \beta)$$

$$(\mathbf{A}(\alpha - \beta), \mathbf{A}(\alpha - \beta)) = (\alpha - \beta, \alpha - \beta)$$

 $\beta = \theta$ 则

$$(\forall \alpha \in V) \quad (\mathbf{A}\alpha, \mathbf{A}\alpha) = (\alpha, \alpha)$$

故A为正交变换

必要性若 A 为正交变换,则有

$$(\forall \alpha \in V) \quad (\mathbf{A}\alpha, \mathbf{A}\alpha) = (\alpha, \alpha)$$
$$(\forall \beta \in V) \quad (\mathbf{A}\beta, \mathbf{A}\beta) = (\beta, \beta)$$
$$(\mathbf{A}\alpha - \mathbf{A}\beta, \mathbf{A}\alpha - \mathbf{A}\beta) = (\alpha - \beta, \alpha - \beta)$$

 $\mathbb{H} (\forall \alpha, \beta \in V) \quad d(\mathbf{A}\alpha, \mathbf{A}\beta) = d(\alpha, \beta).$

欢迎加入 数的美位

2. 证明: 不妨设 A 为上三角矩阵且为正交矩阵。

因为 A 为正交矩阵 $A^{-1}=A'$, 其中 A 为上三角矩阵故 A^{-1} 亦为上三角矩阵 而 A' 为下三角矩阵故 A 为对角矩阵即 $A=A'=A^{-1}$ 故有 $A^2=E$,则 A 对角元素 非 1 即 -1.

3. (提示: 考虑施密特正交化过程)

证明:存在性 由 A 为 n 阶实满秩矩阵,故

$$A = (\alpha_1, \alpha_2, \alpha_3, \cdots, \alpha_n)$$

的列向量 $\alpha_1, \alpha_2, \alpha_3, \dots, \alpha_n$ 线性无关,从而为 n 维欧式空间 \mathbb{R}^n 的一组基,现在对其正交标准化,根据正交标准化过程,设

$$\beta_1 = t_{11}\alpha_1$$

$$\beta_2 = t_{12}\alpha_1 + t_{22}\alpha_2$$

$$\dots$$

$$\beta_n = t_{1n}\alpha_1 + t_{2n}\alpha_2 + \dots + t_{nn}\alpha_n$$

其中 $t_{ii} > 0, i = 1, 2, 3, \dots, n$. 即有

$$(\beta_1, \beta_2, \beta_3, \cdots, \beta_n) = (\alpha_1, \alpha_2, \alpha_3, \cdots, \alpha_n)R^{-1}$$

其中 $\beta_1, \beta_2, \beta_3, \dots, \beta_n$ 为 R^n 的一组标准正交基,

$$R^{-1} = \begin{bmatrix} t_{11} & t_{12} & \cdots & t_{1n} \\ 0 & t_{22} & \cdots & t_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & \cdots & t_{nn} \end{bmatrix}$$

 R^{-1} 为对角线上全为正实数的上三角矩阵,从而 R 亦为这样的矩阵。

由于 $\beta_1, \beta_2, \beta_3, \cdots, \beta_n$ 为标准正交基,故以它为列所得 n 阶矩阵 $Q = (\beta_1, \beta_2, \beta_3, \cdots, \beta_n)$ 是一个正交矩阵,于是 A = QR.

唯一性. 设另有 $A=Q_1R_1$, 其中 Q_1 为正交矩阵, R_1 为对角线上全是正实数的上三角矩阵,则

$$QR = Q_1 R_1, \quad \vec{\boxtimes} \quad RR_1^{-1} = Q^{-1} Q_1$$

由于上三角矩阵的逆及乘积仍为上三角矩阵, 而正交矩阵的逆及乘积仍为正交矩阵, 故上式表明 RR_1^{-1} 即是上三角矩阵 (且对角线上的元素全为正), 又为正交矩阵. 从而由第二题可知必为单位矩阵, 即 $RR_1^{-1} = E$. 于是

$$R_1 = R$$
 $Q_1 = Q$.

4. 证明: 今 A 为一线性变换且有 $\mathbf{A}\alpha_1 = \beta_1, \mathbf{A}\alpha_2 = \beta_2$.

因为 $|\alpha_1| = |\beta_1|, |\alpha_2| = |\beta_2|$ 即 $|\alpha_1| = |\mathbf{A}\alpha_1|, |\alpha_2| = |\mathbf{A}\alpha_2|,$ 且 **A** 亦保持夹角不变。**A** 可以正交变换。

5. 证明: 设 A 是正交矩阵, λ_0 (复数) 是它的任意一个特征根, $X \neq \theta$ 是属于 λ_0 的复特征向量,即

$$AX = \lambda_0 X$$
, $X = (x_1, x_2, x_3, \dots, x_n)' \neq \theta$
两端取转置, 有 $X'A' = \lambda_0 X'$. 于是

$$\overline{X'A'} \cdot AX = \overline{\lambda_0 X'} \cdot \lambda_0 X$$

即
$$\overline{X'}A'AX = \overline{\lambda_0}\lambda_0\overline{X'}X$$
. $\overline{X'}X = |\lambda_0|^2\overline{X'}X$. 但因为 $X \neq \theta$, 从而 $\overline{X'}X = \overline{x_1}x_1 + \overline{x_2}x_2 + \overline{x_3}x_3 + \cdots + \overline{x_3}x_3 \neq 0$, 所以得

$$1 = |\lambda_0|^2, \quad |\lambda_0| = 1.$$

6. 证明: 因为 A 是正交变换, $(\alpha_1, \alpha_2, \alpha_3, \cdots, \alpha_n)$ 是标准正交基, 故

7. 证明:

$$(\mathbf{A}\eta, \mathbf{A}\eta) = (\eta - \frac{2(\eta, \alpha)}{(\alpha, \alpha)}\alpha, \eta - \frac{2(\eta, \alpha)}{(\alpha, \alpha)}\alpha)$$

$$= (\eta, \eta) - 2(\eta, \frac{2(\eta, \alpha)}{(\alpha, \alpha)}\alpha) + (\frac{2(\eta, \alpha)}{(\alpha, \alpha)}\alpha, \frac{2(\eta, \alpha)}{(\alpha, \alpha)}\alpha)$$

$$= (\eta, \eta) - \frac{4(\eta, \alpha)^2}{(\alpha, \alpha)} + \frac{4(\eta, \alpha)^2}{(\alpha, \alpha)^2}(\alpha, \alpha)$$

$$= (\eta, \eta).$$

欢迎加入 数的美位

由 η 的任意性,知A为一正交变换.对于

$$\begin{split} (\forall \eta \in V) \quad \mathbf{A}\mathbf{A}\eta &= \mathbf{A}(\eta - \frac{2(\eta,\alpha)}{(\alpha,\alpha)}\alpha) \\ &= \mathbf{A}\eta - \frac{2(\eta,\alpha)}{(\alpha,\alpha)}\mathbf{A}\alpha \\ &= \eta - \frac{2(\eta,\alpha)}{(\alpha,\alpha)}\alpha - \frac{2(\eta,\alpha)}{(\alpha,\alpha)}(\alpha - \frac{2(\alpha,\alpha)}{(\alpha,\alpha)}\alpha) \\ &= \eta \end{split}$$

故有 $A^2=E$. 当 dim=n 时,以 $(\frac{\alpha}{|\alpha|}, \varepsilon_2, \varepsilon_3, \cdots, \varepsilon_n)$ 为一标准正交基底,则 **A** 在该基底下的矩阵为

$$\left[\begin{array}{cc} -1 & & \\ & E_{n-1} \end{array}\right]$$

8.

9. 证明: 对于任意矩阵 A, 若其特征值全为实数, 则存在正交矩阵 X 使得 X'AX = U.(U 为一个上三角矩阵); (舒尔定理, 提示: 建议自行查找, 舒尔定理有多个, 此定理为线性代数里舒尔定理)

对上式转置得 X'A'X = U', 两式相乘, 其中 A 为正交矩阵故 A'A = E 且 X'X = E. 则有 U'U = E, 故 U 为对角矩阵.

$$X'AX = U$$

$$A = XUX'$$

$$A' = XU'X'$$

$$= XUX'$$

$$= A$$

故 A 为实对称矩阵.

10.

$$(\alpha, \alpha) = (\beta, \beta) = 1 \quad \alpha - \beta \neq \theta.$$

从而

$$\eta = \frac{\alpha - \beta}{|\alpha - \beta|}$$

为一个单位向量. 令

$$Tx = x - 2(x, \eta)\eta,$$

欢迎加入 数的美位

则 T 是一个镜面反射, 且

$$T\alpha = \alpha - 2(\alpha, \eta)\eta = \alpha - 2(\alpha, \frac{\alpha - \beta}{|\alpha - \beta|}) \cdot \frac{\alpha - \beta}{|\alpha - \beta|}$$

$$= \alpha - \frac{2}{|\alpha - \beta|^2}(\alpha, \alpha - \beta)(\alpha - \beta)$$

$$= \alpha - \frac{2[(\alpha, \alpha) - (\alpha, \beta)](\alpha - \beta)}{(\alpha, \alpha) - 2(\alpha, \beta) + (\beta, \beta)}$$

$$= \alpha - \frac{1}{1 - (\alpha, \beta)}[1 - (\alpha, \beta)](\alpha - \beta)$$

$$= \beta.$$

即有 $T\alpha = \beta$

证明 2) 设 T 为 n 维欧式空间 V 的任意一正交变换, 取 V 的一组标准正交基.

如果 $\eta_1 = \varepsilon_1, \eta_2 = \varepsilon_2, \cdots, \eta_n = \varepsilon_n$.

则 T 就是恒等变换,作镜面反射

$$T_1 x = x - 2(x, \varepsilon_1)\varepsilon_1,$$

则有

$$T_1\varepsilon_1 = -\varepsilon_1, \quad T_1\varepsilon_j = \varepsilon_j, j = 2, 3, \cdots, n.$$

$$T = T_1T_1.$$

于是此时显然有

$$T = T_1 T_1.$$

如果 $\varepsilon_1, \dots, \varepsilon_n$ 与 η_1, \dots, η_n 不完全相同, 不完全相同, 设 $\varepsilon_1 \neq \eta_1$. 则由于 ε_1, η_1 是两 个不同的单位向量,由 (1) 知,存在镜面反射 T_1 ,使得 $T_1\varepsilon_1=\eta_1$. 令

$$T_1\varepsilon_j=\varepsilon_j,\quad j=2,3,\cdots,n.$$

如果 $\varepsilon_j = \eta_j, j = 2, 3, \cdots, n$,则 $T = T_1$,结论成立,否则 可设 $\varepsilon_2 \neq \eta_2$, 在作镜面反射 T_2 :

$$T_2 x = x - 2(x, \eta)\eta, \quad \eta = \frac{\varepsilon_2 - \eta_2}{|\varepsilon_2 - \eta_2|}.$$

于是 $T_2\varepsilon_2 = \eta_2$, 且可验证 $T_2\eta_1 = \eta_1$. 如此继续下去. 则有

$$T = T_S T_{S-1} \cdots T_2 T_1.$$

其中 T_i 都是镜面反射,即 T 可表示为镜面反射的乘积.

11. 证明: $(1)(2) \Longrightarrow (3)$

A 为对称变换故有 A = A'

欢迎加入 数的美位

A 为正交变换故有 $A^{-1} = A'$

则

$$A^2 = AA = AA' = AA^{-1} = E$$

 $(1)(3) \Longrightarrow (2)$

A 为正交变换故有 $A^{-1} = A'$

 $A^2 = E$ 则

$$AA = E = AA' = AA^{-1}, A' = A$$

 $(2)(3)\Longrightarrow(1)$ A 为对称变换故有 A=A'

 $A^2 = E$ 则

$$AA = AA' = E, A' = A^{-1}$$

A 为正交变换.

12. 证明: A 为一对称变换,存在正交矩阵 T 使得 T'AT = D,其中 D 为对角矩阵. 对角 线上的元素为特征根 $\lambda_1, \lambda_2, \cdots, \lambda_n$,则

$$A = A^{2}$$

$$T'DT = T'DTT'D = T'DDT'$$

$$D = DD$$

$$\lambda_{i} = \lambda_{i}^{2}$$

故 A 的特征值为 1 或 0, 调节 λ_i 的次序, 即相当于乘上适当的的正交矩阵, 即得

其中 Q 为正交矩阵, 且 $r = r_A$.

13. 证明: (1)

设子空间 V_1 对反对称变换 T 不变, α 为正交补 V_1^\perp 中的任一向量, β 为 V_1 中任一向量,则 $T\beta\in V_1$,且

$$(T\alpha, \beta) = -(\alpha, T\beta) = 0.$$

即 $T\alpha$ 与 V_1 中任意向量正交, 故

 $T\alpha \in V_1^{\perp}$

即 V_1^{\perp} 对 T 也不变.

(2) 证明: 设 A 为实反对称矩阵, λ 是它的任意一个特征根, 而 $\alpha=(\alpha_1,\alpha_2,\cdots,\alpha_n)'\neq\theta$ 是属于特征根 λ 的一个特征向量,即

$$A\alpha = \lambda \alpha$$
.

一方面,有

$$\overline{\alpha}' A \alpha = \overline{\alpha}' \lambda \alpha = \lambda \overline{\alpha}' \alpha$$

另一方面, 又有

$$\overline{\alpha}' A \alpha = \overline{\alpha}' (-A') \alpha = -(\overline{A\alpha})' \alpha = -\overline{\lambda \alpha'} \alpha,$$

故

$$\lambda \overline{\alpha}' \alpha = -\overline{\lambda \alpha'} \alpha$$
. 但是, $\overline{\alpha'} \alpha = |\alpha_1| + |\alpha_2| + \cdots + |\alpha_n| \neq 0$. 故

$$\lambda = -\overline{\lambda}.$$

即 λ 为零或纯虚数.

14. 证明 (1) 因为 A 为反对称矩阵, 从而 1 不可能是 A 的特征根. 因此 $|E_n - A| \neq 0$. 即 $E_n - A$ 可逆,

$$(E_n - A)' = E'_n - A' = E_n + A$$

从而 $E_n + A$ 可逆.

(2) 由
$$U = (E_n - A)(E_n + A)^{-1}$$
, 易知 $U' = (E_n - A)^{-1}(E_n + A)$
又由 $E_n A = AE_n$, 可得 $(E_n + A)(E_n - A) = (E_n - A)(E_n + A)$, 从而

$$U'U = (E_n - A)^{-1}(E_n + A)(E_n - A)(E_n + A)^{-1}$$
$$= (E_n - A)^{-1}(E_n - A)(E_n + A)(E_n + A)^{-1}$$
$$= EE$$
$$= E$$

从而 U 是正交矩阵.

15. (1) 证明:

必要性:

$$A \not \boxtimes \forall \alpha, \beta \in P^n) \quad (A\alpha, \beta) = -(\alpha, A\beta).$$

$$\implies (\forall \alpha \in P^n) \quad (A\alpha, \alpha) + (\alpha, A\alpha) = 0.$$

$$\implies (\forall \alpha \in P^n) \quad 2(A\alpha, \alpha) = 0.$$

$$\implies (\forall x \in P^n) \quad (Ax, x) = 0$$

$$\implies (\forall x \in P^n) \quad X'AX = 0$$

欢迎加入 数的美位

充分性:

$$(\forall x \in P^n) \quad X'AX = 0 \quad \Longrightarrow (\forall \alpha, \beta \in P^n) \quad (A(\alpha - \beta), \alpha - \beta) = 0.$$

$$\Longrightarrow (A\alpha, \alpha) - (A\alpha, \beta) - (A\beta, \alpha) + (A\beta, \beta) = 0$$

$$\Longrightarrow (A\alpha, \beta) + (A\beta, \alpha) = 0$$

$$\Longrightarrow (A\alpha, \beta) = -(\alpha, A\beta).$$

$$\Longrightarrow A\beta \mathcal{D} \mathcal{F}$$

(2) 证明:

必要性: 显然

充分性:

$$(\forall x \in P^n) \quad (Ax, x) = 0 \quad \Longrightarrow (\forall \alpha, \beta \in P^n) \quad (A(\alpha - \beta), \alpha - \beta) = 0$$

$$\Longrightarrow (A\alpha, \alpha) - (A\alpha, \beta) - (A\beta, \alpha) + (A\beta, \beta) = 0$$

$$\Longrightarrow (A\alpha, \beta) + (A\beta, \alpha) = 0 \quad (A$$

$$\Longrightarrow (A\alpha, \beta) + (\beta, A\alpha) = 0$$

$$\Longrightarrow 2(A\alpha, \beta) = 0$$

$$\Longrightarrow 2(A\alpha, \beta) = 0$$

$$\Longrightarrow (\forall \alpha, \beta \in P^n) \quad (A\alpha, \beta) = 0$$

$$\Longrightarrow A = O$$

16. 此类题先求矩阵的特征根及其相应特征向量,将特征向量标准正交化,即可求得正交矩阵 T.

$$T = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ -\frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

而

$$T'AT = \begin{bmatrix} -9 & & \\ & 18 & \\ & & 9 \end{bmatrix}$$

(2)

欢迎加入 数的美位

$$|\lambda E - A| = \begin{vmatrix} \lambda - 17 & -8 & 4 \\ -8 & \lambda - 17 & -4 \\ 4 & -4 & \lambda - 11 \end{vmatrix} = (\lambda - 27)(\lambda - 9)(\lambda - 9)$$
可求得相应的特征向量为 $\alpha_1 = (2, -2, 1)', \alpha_2 = (1, 1, 0)', \alpha_3 = (-\frac{1}{2}, 0, 1)'.$ 故所求的正交矩阵为

$$T = \begin{bmatrix} -\frac{2}{3} & \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{6} \\ -\frac{2}{3} & -\frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{6} \\ 1 & 0 & \frac{2\sqrt{2}}{3} \end{bmatrix}$$

而

$$T'AT = \begin{bmatrix} 27 & & \\ & 9 & \\ & & 9 \end{bmatrix}$$

$$|\lambda E - A| = \begin{vmatrix} \lambda - 2 & 2 & 0 \\ 2 & \lambda - 1 & 2 \\ 0 & 2 & \lambda \end{vmatrix} = (\lambda - 1)(\lambda + 2)(\lambda - 4)$$
 可求得相应的特征向量为 $\alpha_1 = (-1, -\frac{1}{2}, 1)', \alpha_2 = (\frac{1}{2}, 1, 1)', \alpha_3 = (2, -2, 1)',$ 故所求的正交矩阵为

$$T = \begin{bmatrix} -\frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ -\frac{1}{3} & \frac{2}{3} & -\frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

$$T'AT = \begin{bmatrix} 1 & & \\ & -2 & \\ & & 4 \end{bmatrix}$$

而

$$T'AT = \begin{vmatrix} 1 & & \\ & -2 & \\ & & 4 \end{vmatrix}$$

(4)
$$|\lambda E - A| = \begin{vmatrix} \lambda - 2 & -2 & 2 \\ -2 & \lambda - 5 & 4 \\ 2 & 4 & \lambda - 5 \end{vmatrix} = (\lambda - 1)(\lambda - 1)(\lambda - 10)$$
 可求得相应的特征向量 为 $\alpha_1 = (-2, 1, 0)', \alpha_2 = (2, 0, 1)', \alpha_3 = (-\frac{1}{2}, -1, 1)',$ 故所求的正交矩阵为

$$T = \begin{bmatrix} -\frac{2\sqrt{5}}{5} & \frac{2\sqrt{5}}{15} & -\frac{1}{3} \\ \frac{\sqrt{5}}{5} & \frac{4\sqrt{5}}{15} & -\frac{2}{3} \\ 0 & \frac{\sqrt{5}}{3} & \frac{2}{3} \end{bmatrix}$$

而

$$T'AT = \left[\begin{array}{cc} 1 & & \\ & 1 & \\ & & 10 \end{array} \right]$$

$$|\lambda E - A| = \begin{vmatrix} \lambda - 1 & -1 & -1 & -1 \\ -1 & \lambda - 1 & -1 & -1 \\ -1 & -1 & \lambda - 1 & -1 \\ -1 & -1 & -1 & \lambda + 1 \end{vmatrix} = \lambda^2 (\lambda - (1 + \sqrt{7}))(\lambda - (1 - \sqrt{7})) \text{ 可求得相应}$$

 $(0,0)', \alpha_2 = (-1,0,1,0)', \alpha_3 = (-\frac{4\sqrt{7}-7}{14+\sqrt{7}}, \frac{(\sqrt{7}-7)(\sqrt{7}-1)}{2(14+\sqrt{7})}, \frac{(\sqrt{7}-4)\sqrt{7}}{14+\sqrt{7}}, 1)',$ $\alpha_4 = (-\frac{7+4\sqrt{7}}{\sqrt{7}-14}, -\frac{(\sqrt{7}+7)(1+\sqrt{7})}{2(\sqrt{7}-14)}, \frac{(\sqrt{7}-4)\sqrt{7}}{14+\sqrt{7}}, 1)'$. 故所求的正交矩阵为

$$T = \begin{bmatrix} -\frac{\sqrt{2}}{2} & -\frac{\sqrt{6}}{6} & \frac{(\sqrt{7}-4)\sqrt{7}}{\sqrt{686-140\sqrt{7}}} & \frac{\sqrt{7}(14+\sqrt{7}\sqrt{6})}{42\sqrt{49-10\sqrt{7}}} \\ \frac{\sqrt{2}}{2} & -\frac{6}{2} & \frac{(\sqrt{7}-4)\sqrt{7}}{\sqrt{686-140\sqrt{7}}} & \frac{\sqrt{7}(14+\sqrt{7}\sqrt{6})}{42\sqrt{49-10\sqrt{7}}} \\ 0 & \frac{\sqrt{6}}{6} & \frac{(\sqrt{7}-4)\sqrt{7}}{\sqrt{686-140\sqrt{7}}} & \frac{\sqrt{7}(14+\sqrt{7}\sqrt{6})}{42\sqrt{49-10\sqrt{7}}} \\ 0 & 0 & \frac{14+\sqrt{7}}{\sqrt{686-140\sqrt{7}}} & -\frac{(\sqrt{7}-4)\sqrt{6}}{42\sqrt{49-10\sqrt{7}}} \end{bmatrix}$$

而

$$T'AT = \begin{bmatrix} 0 & & & \\ & 0 & & \\ & & 1 - \sqrt{7} & \\ & & & 1 + \sqrt{7} \end{bmatrix}$$

(6)
$$|\lambda E - A| = \begin{vmatrix} \lambda & 0 & -4 & -1 \\ 0 & \lambda & -1 & -4 \\ -4 & -1 & \lambda & 0 \\ -1 & -4 & 0 & \lambda \end{vmatrix} = (\lambda + 5)(\lambda + 3)(\lambda - 3)(\lambda - 5)$$
可求得相应的特征向

求的正交矩阵为

$$T = \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$

而

$$T'AT = \begin{bmatrix} -5 & & & \\ & -3 & & \\ & & 3 & \\ & & 5 \end{bmatrix}$$

17. (1) 求其相应的系数矩阵

$$A = \left[\begin{array}{rrr} 1 & -2 & 0 \\ -2 & 2 & -2 \\ 0 & -2 & 3 \end{array} \right]$$

的三个特征根,分别为 $\lambda_1 = -1, \lambda_2 = 2, \lambda_3 = 5$,其相应的特征向量分别为 $\alpha_1 = (2,2,1)', \alpha_2 = (-1,\frac{1}{2},1)', \alpha_3 = (\frac{1}{2},-1,1)$,将其标准正交化即得正交矩阵

$$T = \begin{bmatrix} \frac{2}{3} & -\frac{2}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \end{bmatrix}$$

即为所求正交变数替换.

(2) 求其相应的系数矩阵

$$\left[\begin{array}{ccccc}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]$$

的四个特征根,分别为 $\lambda_1 = -1, \lambda_2 = -1, \lambda_3 = 1, \lambda_4 = 1$,其相应的特征向量分别为 $\alpha_1 = (-1, 1, 0, 0)', \alpha_2 = (0, 0, -1, 1)', \alpha_3 = (1, 1, 0, 0), \alpha_4 = (0, 0, 1, 1)',$ 将其标准正交化即得正交矩阵

$$T = \begin{bmatrix} -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} & 0\\ \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} & 0\\ 0 & -\frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2}\\ 0 & \frac{\sqrt{2}}{2} & 0 & \frac{\sqrt{2}}{2} \end{bmatrix}$$

即为所求正交变数替换.

(3) 求其相应的系数矩阵

$$\begin{bmatrix}
 1 & -2 & 2 \\
 -2 & -2 & 4 \\
 2 & 4 & -2
 \end{bmatrix}$$

的三个特征根,分别为 $\lambda_1=-7, \lambda_2=2, \lambda_3=2$,其相应的特征向量分别为 $\alpha_1=(-\frac{1}{2},-1,1)', \alpha_2=(-2,1,0)', \alpha_3=(2,0,1)$,将其标准正交化即得正交矩阵

$$T = \begin{bmatrix} -1/3 & -2\sqrt{5}/5 & 2\sqrt{5}/15 \\ -2/3 & \sqrt{5}/5 & 4\sqrt{5}/15 \\ 2/3 & 0 & \sqrt{5}/3 \end{bmatrix}$$

即为所求正交变数替换.

(4) 此题特征根为三次多项式的根, 不易计算. 特征多项式为 $x^3 - \frac{29}{4}x + 6$, 故在此略去.

18. 证明:

存在正交矩阵 Q_1 , 使 $Q_1^{-1}AQ_1$ 为对角形, 不妨设

$$Q_1^{-1}AQ_1 = \begin{pmatrix} \lambda_1 E_1 & & & \\ & \lambda_2 E_2 & & \\ & & \ddots & \\ & & & \lambda_S E_S \end{pmatrix} \quad \lambda_i \neq \lambda_j,$$

这类 E_i 表示单位矩阵,因为 AB = BA,故

$$Q_1^{-1}AQ_1 \cdot Q_1^{-1}BQ_1 = Q_1^{-1}ABQ_1 = Q_1^{-1}BAQ_1 \qquad = Q_1^{-1}BQ \cdot Q_1^{-1}AQ_1$$

即 $Q_1^{-1}BQ_1$ 与 $Q_1^{-1}AQ_1$ 可换,和对角矩阵可交换的只能是对角矩阵,因此可知有

$$Q_1^{-1}BQ_1 = \begin{pmatrix} B_1 & & & & \\ & B_2 & & & \\ & & \ddots & & \\ & & & B_S \end{pmatrix}$$

并且易见 $Q_1^{-1}BQ_1$ 仍是对称的,从而 $B_i(i=1,2,\cdots,s)$ 都是对称的,于是存在正交 矩阵 $P_i(i=1,2,\cdots,s)$,使得 $P_i^{-1}B_iP_i=D_i$ 为对角矩阵。令

$$Q = Q_1 \begin{pmatrix} P_1 & & & \\ & P_2 & & \\ & & \ddots & \\ & & & P_s \end{pmatrix}$$

则易见

$$QQ' = Q_1 \begin{pmatrix} P_1 & & & \\ & P_2 & & \\ & & \ddots & \\ & & & P_s \end{pmatrix} \begin{pmatrix} P_1' & & & \\ & P_2' & & \\ & & \ddots & \\ & & & P_s' \end{pmatrix} Q_1'$$

$$= Q_1 \begin{pmatrix} P_1 P_1' & & & \\ & P_2 P_2' & & \\ & & \ddots & \\ & & P_s P_s' \end{pmatrix} Q_1'$$

$$= Q_1 E Q_1' = Q_1 Q_1' = E,$$

即 Q 是正交矩阵,且

$$Q^{-1}AQ = \begin{pmatrix} P_1^{-1} & & & \\ & P_2^{-1} & & \\ & & \ddots & \\ & & P_s^{-1} \end{pmatrix} Q_1^{-1}AQ_1 \begin{pmatrix} P_1 & & \\ & P_2 & & \\ & & \ddots & \\ & & P_s \end{pmatrix}$$

$$= \begin{pmatrix} P_1^{-1} & & & \\ & P_2^{-1} & & \\ & & \ddots & \\ & & P_s^{-1} \end{pmatrix} \begin{pmatrix} \lambda_1 E_1 & & \\ & \lambda_2 E_2 & & \\ & & \ddots & \\ & & & \lambda_s E_s \end{pmatrix} \begin{pmatrix} P_1 & & \\ & P_2 & & \\ & & \ddots & \\ & & & P_s \end{pmatrix}$$

$$= \begin{pmatrix} \lambda_1 E_1 & & & \\ & \lambda_2 E_2 & & \\ & & \ddots & \\ & & & \lambda_s E_s \end{pmatrix}$$

$$Q^{-1}BQ = \begin{pmatrix} P_1^{-1} & & & \\ & P_2^{-1} & & \\ & & \ddots & \\ & & & P_s^{-1} \end{pmatrix} \begin{pmatrix} P_1 & & \\ & P_2 & & \\ & & \ddots & \\ & & & P_s \end{pmatrix}$$

$$= \begin{pmatrix} P_1^{-1} & & & \\ & P_2^{-1} & & \\ & & \ddots & \\ & & & P_s^{-1} \end{pmatrix} \begin{pmatrix} B_1 & & & \\ & B_2 & & \\ & & \ddots & \\ & & & B_s \end{pmatrix} \begin{pmatrix} P_1 & & \\ & P_2 & & \\ & & \ddots & \\ & & & P_s \end{pmatrix}$$

$$= \begin{pmatrix} P_1^{-1}B_1P_1 & & & \\ & P_2^{-1}B_2P_2 & & \\ & & \ddots & \\ & & & P_s^{-1}B_sP_s \end{pmatrix}$$

$$= \begin{pmatrix} D_1 & & & \\ & D_1 & & \\ & & \ddots & \\ & & & P_s^{-1}B_sP_s \end{pmatrix}$$

即存在正交矩阵 Q 使得 $Q^{-1}AQ$ 与 $Q^{-1}BQ$ 都是对角矩阵,则正交矩阵 Q 的每一列向量均为它们的公共特征向量。

对 n=1,2 时,存在 n 阶正交矩阵 U,使得 $U'A_iU$ 都是对角矩阵.

假设对 i = n 时, 命题成立.

当 i = n + 1 时,证明方法与上述类似,不再叙述,可证得命题亦成立。 综上所述, 命题得证。

19. 证明: (正定矩阵的一个性质: 对任意正定矩阵 A, 对任意正整数 m 都存在正定矩阵 B, 使得 $A = B^m$. 特别的有 $A = B^2$) 存在正定矩阵 $A = C^2$

$$A$$
为正定矩阵 $\Longrightarrow AB = C^2B$ $\iff AB = C^2B = C(C'BC)C^{-1}$ $(C' = C)$ $\iff C'BC = AB$ 相似,有相同的特征根. B 正定 $\iff C'BC$ 正定 $\iff C'BC$ 特征根全为正的 $\iff AB$ 特征根全为正的

20. (1) 略

$$(5) \begin{bmatrix} A \\ E_3 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 2 \\ 0 & 2 & 4 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & -1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$

 $(6)f = x_1x_2 + x_2x_3 + \dots + x_{n-1}x_n$

首先, 应注意到: 若

$$y_1 = \frac{x_1 + x_2 + x_3}{2}, \qquad y_2 = \frac{x_1 - x_2 + x_3}{2}$$

则便有

$$y_1^2 - y_2^2 = x_1 x_2 + x_2 x_3$$

由此下面在分n为奇偶来讨论f的标准形,

(1) 当 n 为奇数时, 令

$$\begin{cases} y_i = \frac{x_i + x_{i+1} + x_{i+2}}{2} \\ y_{i+1} = \frac{x_i - x_{i+1} + x_{i+2}}{2} \\ y_n = x_n \end{cases} \qquad i = 1, 3, 5, \dots, n-2$$

由此可得当 n = 4k + 1 及 4k + 3 时的代换矩阵分别为

$$\begin{pmatrix} 1 & 1 & -1 & -1 & \cdots & -1 & -1 & 1 \\ 1 & -1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ & 1 & 1 & \cdots & 1 & 1 & -1 \\ & 1 & -1 & \cdots & 0 & 0 & 0 \\ & & & \cdots & \cdots & \cdots \\ & & & 1 & -1 & 0 \\ & & & & 1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & -1 & -1 & \cdots & 1 & 1 & -1 \\ 1 & -1 & 0 & 0 & \cdots & 0 & 0 & 0 \\ & & 1 & 1 & \cdots & -1 & -1 & 1 \\ 1 & -1 & \cdots & 0 & 0 & 0 & 0 \\ & & & \cdots & \cdots & \cdots & \cdots \\ & & & & 1 & -1 & 0 \\ & & & & & 1 \end{pmatrix}$$

将以上代入 f, 即得 f 的标准形:

$$f = y_1^2 - y_2^2 + y_3^2 - y_4^2 = \dots + y_n^2 - y_{n-1}^2$$
.
欢迎加入 数的美位

(2) 当 n 为偶数时, 令,

$$\begin{cases} y_i &= \frac{x_i + x_{i+1} + x_{i+2}}{2} \\ y_{i+1} &= \frac{x_i - x_{i+1} + x_{i+2}}{2} \\ y_{n-1} &= \frac{x_{n-1} + x_n}{2} \end{cases}$$
 $i = 1, 3, 5, \dots, n-3.$

$$y_n &= \frac{x_{n-1} - x_n}{2}$$

此时代换的方阵在 n = 4k 及 n = 4k + 2 时分别为

$$\begin{pmatrix} 1 & 1 & -1 & -1 & \cdots & -1 & -1 \\ 1 & -1 & 0 & 0 & \cdots & 0 & 0 \\ & 1 & 1 & \cdots & 1 & 1 \\ & 1 & -1 & \cdots & 0 & 0 \\ & & & \cdots & \cdots & \cdots \\ & & & 1 & 1 \\ & & & & 1 & -1 \end{pmatrix}$$

$$\begin{pmatrix} 1 & 1 & -1 & -1 & \cdots & 1 & 1 \\ 1 & -1 & 0 & 0 & \cdots & 0 & 0 \\ & & 1 & 1 & \cdots & 1 & -1 \\ 1 & -1 & \cdots & 0 & 0 & \cdots \\ & & & & \cdots & \cdots & \cdots \\ & & & & & 1 & 1 \\ & & & & & 1 & -1 \end{pmatrix}$$

将以上代入 f, 得 f 的标准形为

$$f = y_1^2 - y_2^2 + y_3^2 - y_4^2 + \dots + y_{n-1}^2 - y_n^2$$

(7) 可将 f 化成

$$f = (x_1 + \frac{1}{2} \sum_{j=2}^{n} x_j)^2 + \frac{3}{4} (x_2 + \frac{1}{3} \sum_{j=3}^{n} x_j)^2 + \dots + \frac{n}{2(n-1)} (x_{n-1} + \frac{1}{n} x_n)^2 + \frac{n+1}{2n} x_n^2$$

今

$$\begin{cases} y_1 = x_1 + \frac{1}{2} \sum_{j=2}^n x_j \\ y_2 = x_2 + \frac{1}{3} \sum_{j=3}^n x_j \\ \dots \\ y_{n-1} = x_{n-1} + \frac{1}{n} x_n \\ y_n = x_n \end{cases}$$

即

$$\begin{cases} x_1 = y_1 - \frac{1}{2}y_2 - \frac{1}{3}y_3 - \dots - \frac{1}{n-1}y_{n-1} - \frac{1}{n}y_n \\ x_2 = y_2 - \frac{1}{3}y_3 - \dots - \frac{1}{n-1}y_{n-1} - \frac{1}{n}y_n \\ \dots \\ x_{n-1} = y_{n-1} - \frac{1}{n}y_n \\ x_n = x_n \end{cases}$$

$$C = \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{3} & \cdots & -\frac{1}{n-1} & -\frac{1}{n} \\ 0 & 1 & -\frac{1}{3} & \cdots & -\frac{1}{n-1} & -\frac{1}{n} \\ 0 & 0 & 1 & \cdots & -\frac{1}{n-1} & -\frac{1}{n} \\ \cdots & \cdots & \cdots & \cdots & \cdots \\ 0 & 0 & 0 & \cdots & 1 & -\frac{1}{n} \\ 0 & 0 & 0 & \cdots & 0 & 1 \end{pmatrix}$$

将代换代入 f, 即得

$$f = y_1^2 + \frac{3}{4}y_2^2 + \dots + \frac{2}{2(n-1)}y_{n-1}^2 + \frac{n+1}{2n}y_n^2$$

矩阵验算从略.

21. (1) 证明: 因为 A 为 n 阶实对称矩阵故有 n 个实特征根,且存在正交矩阵 T,使得 T'AT = D,其中 D 为对角矩阵,对角线上的元素为矩阵 A 的特征值,设为 $\lambda_1, \lambda_2, \dots, \lambda_n$,令 $k = max\{|\lambda_1|, |\lambda_2|, \dots, |\lambda_n|\}$ 。X = TY,则

$$(\forall X \in R^n) \quad |X'AX| = |Y'DY|$$

$$= |\lambda_1 y_1^2 + \lambda_2 y_2^2 + \dots + \lambda_n y_n^2|$$

$$\leq k(y_1^2 + y_2^2 + \dots + y_n^2)$$

$$= kY'Y$$

$$= kX'X$$

(2) 证明:

因为 A 为实对称矩阵,可以将 A 标准标准化,由 $(\exists X,Y\in R^n)X'AX>0,Y'AY<0$,知 A 正惯性指数不为零且负惯性指数也不为零. 故 $\exists Z\in R^n\backslash\theta\quad Z'AZ=0$

22. 证明:由 A, B, AB 均为对称矩阵可得 AB = BA,则由 (18)的证明可知存在正交矩阵 U,使得 A, B 均为对角形.由 $U'ABU = U'AUU'BU = D_AD_B$ 知,AB 与 D_AD_B 有相同的特征根,故命题得证。

欢迎加入 数的美位

23. 证明: 因 A 为实对称的, 故存在正交矩阵 U 使

$$U^{-1}AU = \begin{pmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{pmatrix}$$

于是由于 $\mu \leq \lambda_i \leq \lambda, i = 1, 2, \dots, n$, 故 $U^{-1}AU - \mu E = U^{-1}(A - \mu E)U$, 都是非负 实数,从而 $A - \mu E$ 是半正定的,因此对任意 n 维向量 X 都有 $X'(A - \mu E) \geq 0$,即 $\mu X'X \leq X'AX$,同理可证得另一边.

24. 证明: 充分性. 设实二次型 f 的秩为 2, 符号差为 0, 则 f 可通过满秩线性代换 X=CY 化为

$$f = x_1^2 - y_2^2 = (y_1 + y_2)(y_1 - y_2)$$

由 $Y = C^{-1}X$, 即 y_1, y_2 可由 x_1, x_2, \dots, x_n 线性表示, 代入上式, 即知 f 的秩是 1, 则 f 的规范形为 y_1^2 , 根据同样的道理知, 结论成立.

必要性. 设

$$f = (a_1x_1 + \dots + a_nx_n)(b_1x_1 + \dots + b_nx_n) \neq 0$$

若 (a_1, \dots, a_n) 与 (b_1, \dots, b_n) 成比例, 设 $b_i = ka_i$, 且 $a_1 \neq 0$, 则可对 f 进行满秩线性代换

$$\begin{cases} y_1 = a_1 x_1 + \dots + a_n x_n \\ y_2 = x_2 \\ \dots \\ y_n = x_n \end{cases}$$

化成 $f = ky_1^2$, 此时 f 的秩为 1.

若 (a_1, \dots, a_n) 与 (b_1, \dots, b_n) 不成比例,不妨设 (a_1, a_2) 与 (b_1, b_2) 不成比例,从而 $\begin{vmatrix} a_1 & a_2 \\ b_1 & b_2 \end{vmatrix} \neq 0$,则可对 f 连续进行下列满秩线性代换

$$\begin{cases} y_1 = a_1 x_1 + \dots + a_n x_n \\ y_2 = b_1 x_1 + \dots + b_n x_n \\ y_3 = x_3 \\ \dots \\ y_n = x_n \end{cases} \qquad \mathcal{J} \begin{cases} y_1 = z_1 + z_2 \\ y_2 = z_1 - z_2 \\ y_3 = z_3 \\ \dots \\ y_n = z_n \end{cases}$$

得 $f = y_1 y_2 = z_1^2 - z_2^2$, 即此时 f 的秩为 2 且符号差为 0.

欢迎加入 数的美位

25. 证明: 因为 A, B 均对称, 故存在可逆矩阵 C_A, C_B , 使得 $C'_A A C_A, C'_B B C_B$, 为对角形.

$$C'_{A}AC_{A} = \begin{pmatrix} \sqrt{5}/5 & 4\sqrt{5}/15 & -1/3 \\ 0 & \sqrt{5}/3 & -1/3 \\ 0 & 0 & 1 \end{pmatrix}' \begin{pmatrix} 5 & 4 & 3 \\ 4 & 5 & 3 \\ 3 & 3 & 2 \end{pmatrix} \begin{pmatrix} \sqrt{5}/5 & 4\sqrt{5}/15 & -1/3 \\ 0 & \sqrt{5}/3 & -1/3 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$C'_{B}BC_{B} = \begin{pmatrix} 1/2 & 0 & 3/2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}' \begin{pmatrix} 4 & 0 & -6 \\ 0 & 1 & 0 \\ -6 & 0 & 9 \end{pmatrix} \begin{pmatrix} 1/2 & 0 & 3/2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

$$B = (C_B^{-1})'C_A'AC_AC_B^{-1}$$

$$= (C_AC_B^{-1})'A(C_AC_B^{-1})$$

$$C = C_AC_B^{-1}$$

$$= \begin{pmatrix} \sqrt{5}/5 & 4\sqrt{5}/15 & -1/3 \\ 0 & \sqrt{5}/3 & -1/3 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} 2 & 0 & -3 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

$$= \begin{pmatrix} 2\sqrt{5}/5 & 4\sqrt{5}/15 & -(9\sqrt{5}+5)/15 \\ 0 & \sqrt{5}/3 & -1/3 \\ 0 & 0 & 1 \end{pmatrix}$$

故 *A* 与 *B* 合同.

$$26. (1) 其系数矩阵为 $A = \begin{pmatrix} 0 & 1/2 & 0 & 0 & \dots & 0 & 0 \\ 1/2 & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & 1/2 & \dots & 0 & 0 \\ 0 & 0 & 1/2 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 0 & 1/2 \\ 0 & 0 & 0 & 0 & \dots & 1/2 & 0 \end{pmatrix}$$$

$$\begin{bmatrix} A \\ E_n \end{bmatrix} = \begin{bmatrix} 0 & 1/2 & 0 & 0 & \dots & 0 & 0 \\ 1/2 & 0 & 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & 0 & 1/2 & \dots & 0 & 0 \\ 0 & 0 & 1/2 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 0 & 1/2 \\ 0 & 0 & 0 & 0 & \dots & 0 & 1/2 & 0 \\ 1 & 0 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & \dots & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & \dots & 0 & 0 & 0 \\ \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & \dots & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \dots & 1 & 0 & 0 \end{bmatrix}$$

故 A 的秩为 n, 符号差为 0.

27. 证明:

$$\begin{bmatrix} \lambda+2 & 2\lambda+3 & \cdots & n\lambda+1+n \\ 2\lambda+3 & 4\lambda+4 & \cdots & 2n\lambda+2+n \\ \vdots & \vdots & \ddots & \vdots \\ n\lambda+1+n & 2n\lambda+n+2 & \cdots & nn\lambda+2n \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} \lambda+2 & -1 & \cdots & n\lambda+1+n \\ -1 & 0 & \cdots & -n \\ \vdots & \vdots & \ddots & \vdots \\ n\lambda+1+n & -n & \cdots & nn\lambda+2n \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} \lambda & -1 & \cdots & n\lambda \\ -1 & 0 & \cdots & -n \\ \vdots & \vdots & \ddots & \vdots \\ n\lambda & -n & \cdots & nn\lambda \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} \lambda & -1 & \cdots & n\lambda \\ -1 & 0 & \cdots & -n \\ \vdots & \vdots & \ddots & \vdots \\ n\lambda & -n & \cdots & nn\lambda \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} \lambda & -1 & \cdots & n\lambda \\ -1 & 0 & \cdots & -n \\ \vdots & \vdots & \ddots & \vdots \\ n\lambda & -n & \cdots & nn\lambda \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} \lambda & -1 & \cdots & 0 \\ -1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 0 & -1 & \cdots & 0 \\ -1 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

$$\rightarrow \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & -1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

28. 证明: 假设 $a, b, c \neq 0$

$$ax_1^2 + bx_1x_2 + cx_2^2 = a(x_1^2 + \frac{b}{a}x_1x_2) + cx_2^2$$
$$= a(x_1 + \frac{b}{2a})^2 + \frac{4ac - b^2}{4a}x_2^2$$

故若 $ax_1^2 + bx_1x_2 + cx_2^2$ 正定, 当且仅当 $a > 0, b^2 - 4ac < 0$.

29. (1) 证明: A, B 均正定,故有 $\forall X \neq \theta \in \mathbb{R}^n, X'AX > 0, X'BX > 0, 若 <math>k^2 + l^2 \neq 0$,则

$$(\forall X \neq \theta \in \mathbb{R}^n) \quad X'(k^2A + l^2B)X = k^2X'AX + l^2X'BX > 0$$

故 $X'(k^2A + l^2B)X$ 正定.

- (2) 证明: A 正定,假设 A 的特征根分别为 $\lambda_1, \lambda_2, \cdots, \lambda_n$,则 $\lambda_i > 0, i = 1, 2, \cdots, n$ 因为 A 对称易证得 A^{-1}, A^* ,都为对称矩阵,而它们相应的特征根分别为 $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}, \cdots, \frac{1}{\lambda_n}$ 与 $\frac{|A|}{\lambda_1}, \frac{|A|}{\lambda_2}, \cdots, \frac{|A|}{\lambda_n}$,它们都大于零,故 A^{-1}, A^* 都正定.
- (3)、证明: 必要性: 若 AB 正定,则有 (AB)' = AB 而 (AB)' = B'A' = BA 即 AB = BA.

充分性:

AB = BA 且 A, B 均对称可得 AB 亦对称. 由于 A, B 都是正定的, 故存在实可逆矩阵 P, Q 使得

$$A = P'P$$
 $B = Q'Q$.

于是 AB = P'PQ'Q 与 $QP'PQ' = Q(P'PQ'Q)Q^{-1} = QABQ^{-1}$ 相似,从而两者有相同的特征根,而 QP'PQ' = (PQ')'(PQ') 为正定矩阵,其特征根都是正实数,故 AB的特征根都是正实数,从而为正定矩阵.

(4)、证明:

因为 A 是正定,存在正定矩阵 $C, A = C^2$ 若用 c_1, c_2, \cdots, c_n 表示 C 中的列向量,则

$$a_{ij} = c'_i c_j$$
,令 $D = (a_{ij}b_{ij})$ 则有
$$d_{ij} = a_{ij}b_{ij} = c'_i c_j b_{ij} = c'_i b_{ij} c_j = \sum_{k=1}^n b_{ij} c_{ik} c_{jk}$$

$$X'DX = \sum_{i=1}^n \sum_{j=1}^n x_i d_{ij} x_j = \sum_{i=1}^n \sum_{j=1}^n x_i c'_i b_{ij} c_j x_j$$

$$= \sum_{i=1}^n \sum_{j=1}^n \sum_{k=1}^n x_i c_{ik} b_{ij} c_{jk} x_j$$

$$= \sum_{k=1}^n \sum_{i=1}^n \sum_{j=1}^n x_i c_{ik} b_{ij} c_{jk} x_j$$

$$= \sum_{k=1}^{n} \begin{pmatrix} x_1 c_{1k} \\ x_2 c_{2k} \\ \vdots \\ x_n c_{nk} \end{pmatrix}' B \begin{pmatrix} x_1 c_{1k} \\ x_2 c_{2k} \\ \vdots \\ x_n c_{nk} \end{pmatrix}$$

因为 B 正定故有 $(\forall X \in R^n)$ $X'BX \geq 0$, 令 $X_i = (x_1c_{1i}, x_1c_{1i}, \cdots, x_1c_{1i})', i = 1, 2, \cdots, n$, 则有 $X'DX = \sum_{i=1}^n X_i'BX_i \geq 0$, 若 $X \neq 0$, 则存在 i = k 使得 $X_k \neq 0$, $X_k'BX_k > 0$. 而易证得 D 为对称矩阵,故 D 正定。

(5)、证明: 由 $B = (a_{ij}b_ib_j)$ 知 B 对称.

$$X'BX = \sum_{i=1}^{n} x_i b_i a_{ij} x_j b_j = \begin{pmatrix} x_1 b_1 \\ x_2 b_2 \\ \vdots \\ x_n b_n \end{pmatrix}' A \begin{pmatrix} x_1 b_1 \\ x_2 b_2 \\ \vdots \\ x_n b_n \end{pmatrix}$$

因为 A 正定且 b_1, b_2, \dots, b_n 是不为零的实数, 故若 $X \neq 0, X'BX > 0$ 即 B 正定.

30. 证明: 设 A 为任意一个可逆矩阵,则 AA' 是正定矩阵,存在正定矩阵 B 使

$$AA' = B^2$$
.

令 $Q = B^{-1}A$, 于是 A = BQ, 下证 Q 是正交矩阵:

$$QQ' = B^{-1}A(B^{-1}A)' = B^{-1}AA'B^{-1}$$

= $B^{-1}B^{2}(B^{-1})' = E$

故命题得证.

31. 证明: 因为 A' = A,所以有 n 个实特征根,令其为 $\lambda_1, \lambda_2, \dots, \lambda_n$,则 tE + A 的特征 根为 $t + \lambda_1, t + \lambda_2, \dots, t + \lambda_n$,当 $t > max\{\lambda_i\}, i = 1, 2, \dots, n$ 时,tE + A 的特征值 均为正数且 tE + A 为对称矩阵,故 tE + A 正定.

32. 证明:

$$n \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2$$

$$= (n-1) \sum_{i=1}^{n} x_i^2 - 2 \sum_{i,j=1,i < j}^{n} x_i x_j$$

$$= (x_1 - x_2)^2 + (x_1 - x_3)^2 + \dots + (x_2 - x_3)^2 + \dots + (x_{n-1} - x_n)^2$$

$$= \sum_{i,j=1,j>i}^{n} (x_i - x_j)^2$$

$$> 0$$

故 A 是半正定的.

33. 证明:

充分性:若A的主子式都大于零,则存在可逆矩阵C使得

$$C'AC = \left[egin{array}{c} rac{\Delta_0}{\Delta_1} \ rac{\Delta_1}{\Delta_2} \ rac{\Delta_n}{\Delta_{n-1}} \end{array}
ight]$$

其中 $\Delta_0 = 1$,故对角线上的元素都大于零,所以其正惯性指数为 n 即 A 正定.

必要性: 若 A 正定,令 A_k 为 k 行与相应 k 列组成的矩阵,则 A_k , $k=1,2,\cdots,n$ 都是正定矩阵,而正定矩阵的行列式大于零. 故 A 的主子式都大于零.

34. 证明:

当 n=1,2 时,易证得命题成立。

假设 n = k - 1 时,命题成立.

当 n = k 时,矩阵 A 可以写成

$$A = \left(\begin{array}{cc} A_{n-1} & a \\ a' & a_{nn} \end{array}\right)$$

而

$$\begin{pmatrix} E_{n-1} & O \\ -a'A_{n-1} & 1 \end{pmatrix} \begin{pmatrix} A_{n-1} & a \\ a' & a_{nn} \end{pmatrix} = \begin{pmatrix} A_{n-1} & a \\ O & a_{nn} - a'A_{n-1}^{-1}a \end{pmatrix}$$

$$\sharp \, \dot{\tau} \begin{vmatrix} E_{n-1} & O \\ -a'A_{n-1} & 1 \end{vmatrix} = 1, \quad \dot{\Xi} \begin{vmatrix} A_{n-1} & a \\ O & a_{nn} - a'A_{n-1}^{-1}a \end{vmatrix} = \begin{vmatrix} A_{n-1} & a \\ a' & a_{nn} \end{vmatrix} = |A|$$

$$|A| = |A_{n-1}|(a_{nn} - a'A_{n-1}^{-1}a) \le a_{11}a_{22} \cdots a_{nn}.$$

欢迎加入 数的美位

即当 n = k 时,命题亦成立. 综上所述,命题得证.

35. 证明: 设

$$l_i = b_{i1}x_1 + \dots + b_{in}x_n, \quad i = 1, 2, \dots, p + q.$$

且 f 的秩为 r, 正惯性指数为 s, 则存在满秩线性代换

$$y_i = c_{i1}x_1 + c_{i2}x_2 + \dots + c_{in}x_n \quad i = 1, 2, \dots, n.$$

使
$$f = l_1^2 + \dots + l_p^2 - l_p^2 - \dots - l_{p+s}^2$$

= $y_1^2 + \dots + y_s^2 - y_{s+1}^2 - \dots - y_r^2$.

若 s > p, 则方程组

$$\begin{cases}
b_{11}x_1 + \dots + b_{1n}x_n = 0 \\
\dots \\
b_{p1}x_1 + \dots + b_{pn}x_n = 0 \\
c_{s+1,1}x_1 + \dots + c_{s+1,n}x_n = 0 \\
\dots \\
c_{n1}x_1 + \dots + c_{nn}x_n = 0
\end{cases} (1)$$

有非零解 (因为方程个数 p+n-s < n), 则任取一非零解 k_1, \dots, k_n 代人 (2), 得

$$f = -l_{p+1}^2 - \dots - l_{p+q}^2 = y_1^2 + \dots + y_s^2$$

由于都是实数, 故只有 $y_1 = \cdots = y_s = 0$. 这 s 个等式同 (1) 中后 n - s 个等式联合起来, 即得

$$\begin{cases} c_{11}k_1 + \dots + c_{1n}k_n = 0 \\ \dots \\ c_{s1}k_1 + \dots + c_{sn}k_n = 0 \\ c_{s+1,1}k_1 + \dots + c_{s+1,n}k_n = 0 \\ \dots \\ c_{s1}k_1 + \dots + c_{sn}k_n = 0 \end{cases}$$

由 k_1, \dots, k_n 不全为零, 故其系数行列式等于零, 这与满秩线性代换不合, 故必为 $s \leq p$. 同理可证负惯性指数 $\leq q$

第九章 引申——一般矩阵的(相似)标准 形

习题

1. 求下列 λ 矩阵的等价标准形:

$$(1) \begin{bmatrix} \lambda^3 - \lambda & 2\lambda^2 & \lambda^3 + 2\lambda^2 - \lambda \\ \lambda^2 + 5\lambda & 3\lambda & \lambda^2 + 8\lambda \end{bmatrix};$$

(2)
$$\begin{bmatrix} 1 - \lambda & \lambda^2 & \lambda \\ \lambda & \lambda & -\lambda \\ 1 + \lambda^2 & \lambda^2 & -\lambda^2 \end{bmatrix};$$

(3)
$$\begin{bmatrix} \lambda - \lambda_1 & 0 \\ 0 & \lambda - \lambda_2 \end{bmatrix}, \lambda_1 \neq \lambda_2;$$

(4)
$$\begin{bmatrix} 0 & 0 & 0 & \lambda^2 \\ 0 & 0 & \lambda^2 - \lambda & 0 \\ 0 & (\lambda - 1)^2 & 0 & 0 \\ \lambda^2 - \lambda & 0 & 0 & 0 \end{bmatrix}.$$

2. \diamondsuit $\boldsymbol{B}(\lambda) \in \mathbb{P}[\lambda]^{m \times m}$, $\boldsymbol{A}(\lambda) \in \mathbb{P}[\lambda]^{m \times n}(\mathbb{P}[\lambda]^{n \times m})$. 证明: 若 $\boldsymbol{B}(\lambda)$ 可逆, 则

$$r_{\mathbf{B}(\lambda)\mathbf{A}(\lambda)} = r_{\mathbf{A}(\lambda)}(r_{\mathbf{A}(\lambda)\mathbf{B}(\lambda)} = r_{\mathbf{A}(\lambda)}).$$

- 3. 证明: 任意 $A(\lambda) \in \mathbb{P}[\lambda]^{n \times n}$ 总可以分解为一对称 λ 矩阵, 左 (右) 乘一可逆 λ 矩阵.
- 4. \diamondsuit $A(\lambda) \in \mathbb{P}[\lambda]^{n \times n}, r = r_{A(\lambda)}$. 证明: 存在 $B(\lambda) \in \mathbb{P}[\lambda]^{m \times r}, C(\lambda) \in \mathbb{P}[\lambda]^{r \times n}$, 使得

$$A(\lambda) = B(\lambda)C(\lambda),$$

其中 $r_{\mathbf{B}(\lambda)} = r_{\mathbf{C}(\lambda)} = r$.

5. 用 λ 矩阵的初等变换, 结合行列式因子计算, 求下列矩阵的不变因子, 从而写出特征矩阵的等价标准形, 也写出它的全部初等因子:

学的等例が推步、色与出色的生命列等区寸:
$$(1) \begin{bmatrix} 0 & 1 & -1 \\ 3 & -2 & 0 \\ -1 & 1 & -1 \end{bmatrix}; \qquad (2) \begin{bmatrix} 1 & -1 & 0 \\ 1 & 2 & 1 \\ 0 & -1 & 1 \end{bmatrix}; \\
(3) \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}; \qquad (4) \begin{bmatrix} 1 & -1 & 1 & -1 \\ -3 & 3 & -5 & 4 \\ 8 & -4 & 3 & -4 \\ 15 & 10 & 11 & -11 \end{bmatrix}.$$

6. 求

$$\begin{bmatrix} \lambda^2(\lambda-1)^2 & 0 & 0 & 0\\ 0 & \lambda(\lambda-1)^3 & 0 & 0\\ 0 & 0 & \lambda-1 & 0\\ 0 & 0 & 0 & \lambda \end{bmatrix}$$

的初等因子和不变因子 (初等因子分别在 $\mathbb{Q}, \mathbb{R}, \mathbb{C}$ 上求).

7. 证明: 下列 $A(\lambda)$ 与 $B(\lambda)$ 等价, 从而, 在 \mathbb{C} 上求出 $A(\lambda)$ 的初等因子和不变因子.

$$\boldsymbol{A}(\lambda) = \begin{bmatrix} \lambda - \alpha & 0 & 0 & -1 & 0 & 0 \\ 0 & \lambda - \alpha & 0 & 0 & -1 & 0 \\ 0 & 0 & \lambda - \alpha & 0 & 0 & 1 \\ \beta^2 & 1 & 0 & \lambda - \alpha & 0 & 0 \\ 0 & \beta^2 & 1 & 0 & \lambda - \alpha & 0 \\ 0 & 0 & \beta^2 & 0 & 0 & \lambda - \alpha \end{bmatrix},$$

$$\boldsymbol{B}(\lambda) = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & r & 1 & 0 \\ 0 & 0 & 0 & 0 & r & 1 \\ 0 & 0 & 0 & 0 & 0 & r \end{bmatrix}, \ r = (\lambda - \alpha)^2 + \beta^2.$$

8. 证明: 对于任意 λ 矩阵 $A(\lambda)$, 有

$$D_k(\lambda)^2 \mid D_{k-1}(\lambda)D_{k+1}(\lambda).$$

9. 今

$$m{A} = egin{bmatrix} \lambda & 0 & 0 \ 1 & \lambda & 0 \ 0 & 1 & \lambda \end{bmatrix}.$$

 $\vec{\mathbf{x}} \; \mathbf{A}^k, k = 1, 2, \cdots$

欢迎加入 数的美位

10. 由 A 的全部不变因子写出 A 的有理标准形:

(1)
$$1, 1, 1, (\lambda - 1), (\lambda - 1)(\lambda + 2), (\lambda - 1)(\lambda + 2);$$

(2)
$$1, 1, 1, (\lambda + 1), (\lambda + 1)^2, (\lambda + 1)^3$$
.

11. 求 6 阶方阵

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3 & -1 \\ 0 & 0 & 0 & 0 & 2 & 0 \end{bmatrix}$$

在 Q 上的 Jacobson 标准形.

12. 令 11 阶方阵 A 的非常数不变因子为

$$(\lambda + 7)(\lambda^2 - 5), (\lambda + 7)^2(\lambda^2 - 5)(\lambda^2 - 3)^2.$$

分别求 A 在域 $\mathbb{Q}, \mathbb{Q}(\sqrt{3}), \mathbb{Q}(\sqrt{5})$ 和 \mathbb{R} 上的 Jacobson 标准形.

13. 今 $\mathbf{A} \in \mathbb{Q}^{2n \times 2n}$. 证明: 若 $\Delta(\lambda) = |\lambda \mathbf{E} - \mathbf{A}|$ 的不可约因式是

$$\lambda^2 + \lambda + 1$$
, $\lambda^2 - 2$,

又 $m(\lambda)$ 是 4 次的,则在 \mathbb{C} 上, A 相似于对角形.

14. 求 ℂ 上下列矩阵的 Jordan 标准形:

$$\begin{bmatrix}
 2 & -1 & 1 \\
 2 & 2 & -1 \\
 1 & 2 & -1
 \end{bmatrix};$$

$$(2) \begin{bmatrix} \sqrt{-1} & \sqrt{-1} \\ 1 & \sqrt{-1} \end{bmatrix};$$

$$(3) \begin{bmatrix} 3 & 0 & 8 \\ 3 & -1 & 6 \\ -2 & 0 & 5 \end{bmatrix}$$

$$(4) \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 1 \end{bmatrix};$$

$$(5) \begin{bmatrix} 0 & 1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & 1 \\ 1 & 0 & 0 & \cdots & 0 & 0 \end{bmatrix};$$

$$(6) \begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{bmatrix}$$

- 15. 令 \boldsymbol{A} 是零矩阵 (即存在正整数 k, 使得 $\boldsymbol{A}^k = \boldsymbol{O}$). 利用 Jordan 标准形证明: $|\boldsymbol{A} + \boldsymbol{E}| = 1$
- 16. 令 3 阶方阵的 Jordan 标准形是

$$\begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

且使得 $P^{-1}AP = J$ 的 P 是

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 2 \end{bmatrix}.$$

求 $f(\mathbf{A})$, 其中 $f(x) = x^3 - 4x^2 + 2$.

- 17. 令 $\mathbf{A} \in \mathbb{C}^{n \times n}$, 且 $\mathbf{A}^l = \mathbf{E}$, l 为正整数. 证明: \mathbf{A} 相似于对角形, 且后者对角线元素的模都是 1.
- 18. 证明: ℂ上的下列矩阵 *A*, *B* 相似.

$$(1)$$
 $A = \begin{bmatrix} O & 1 \\ E_{n-1} & 0 \end{bmatrix}$, $B = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$, 其中, a_1, a_2, \cdots, a_n 是 1 的 n 个两两不同的 n 次根;

(2)

181

$$\mathbf{A} = \begin{bmatrix} 0 & 1 & & & \\ & 0 & 1 & & \\ & & 0 & \ddots & \\ & & & \ddots & 1 \\ & & & & 0 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 0 & 1 & & & \\ & 0 & 1 & * & \\ & & 0 & \ddots & \\ & & & \ddots & 1 \\ & & & & 0 \end{bmatrix},$$

其中*处元素任意.

- 19. 令 λ_1 为 $\mathbf{A} \in \mathbb{C}^{n \times n}$ 的 k 重特征根. 证明: $(\lambda_1 \mathbf{E} \mathbf{A})^k$ 的秩为 n k.
- 20. 令 $J_s(\lambda)$ 为 s 阶的 Jordan 块, $\lambda \neq 0$. 求 $J_s(\lambda)^{-1}$.
- 21. 令 $\mathbf{A} \in \mathbb{C}^{n \times n}$, 又 $\mathbf{P}^{-1}\mathbf{A}\mathbf{P} = J_n(\lambda)$ (对角线为 λ 的 Jordan 块). 求 \mathbf{P} 的列向量所满足的线性方程组.
- 22. 求秩为 1 的 n 阶方阵的 Jordan 标准形.

- 23. 令 $\mathbf{A} \in \mathbb{C}^{n \times n}$ 的秩为 1. 证明: 若 $\operatorname{tr}(\mathbf{A}) = 1$, 则 \mathbf{A} 必幂等 (即 $\mathbf{A}^2 = \mathbf{A}$).
- 24. 令 $\pmb{A} \in \mathbb{C}^{n \times n}$ 的特征多项式为 $(\lambda 1)^n$. 证明: 对于任意正整数 $l, 2 \leqslant l \leqslant n$, \pmb{A} 与 \pmb{A}^l 相似.
- 25. $\diamondsuit \mathbf{A} \in \mathbb{C}^{n \times n}$. 证明: $\mathbf{A} \sim \mathbf{A}'$.
- 26. 今 $\mathbf{A} \in \mathbb{C}^{n \times n}$. 证明: \mathbf{A} 为纯量阵当且仅当 $\partial \mathbf{D}_{n-1}(\lambda) = n-1$.

解答

1. (1)

$$\begin{bmatrix} \lambda^{3} - \lambda & 2\lambda^{2} & \lambda^{3} + 2\lambda^{2} - \lambda \\ \lambda^{2} + 5\lambda & 3\lambda & \lambda^{2} + 8\lambda \end{bmatrix} \xrightarrow{\{3+1(-1)\}} \begin{bmatrix} \lambda^{3} - \lambda & 2\lambda^{2} & 0 \\ \lambda^{2} + 5\lambda & 3\lambda & 0 \end{bmatrix} \xrightarrow{\{1+2(-\frac{1}{3}\lambda - \frac{5}{3})\}} \begin{bmatrix} \frac{1}{3}\lambda^{3} - \frac{10}{3}\lambda^{2} - \lambda & 2\lambda^{2} & 0 \\ 0 & 3\lambda & 0 \end{bmatrix} \xrightarrow{[1+2(-\frac{2}{3})]} \begin{bmatrix} \frac{1}{3}\lambda^{3} - \frac{10}{3}\lambda^{2} - \lambda & 0 & 0 \\ 0 & 3\lambda & 0 \end{bmatrix} \xrightarrow{[2(\frac{1}{3})]} \begin{bmatrix} \frac{1}{3}\lambda^{3} - \frac{10}{3}\lambda^{2} - \lambda & 0 & 0 \\ 0 & 3\lambda & 0 \end{bmatrix} \xrightarrow{[2(\frac{1}{3})]} \begin{bmatrix} \frac{1}{3}\lambda^{3} - \frac{10}{3}\lambda^{2} - \lambda & 0 & 0 \\ 0 & 3\lambda & 0 \end{bmatrix} \xrightarrow{[2(\frac{1}{3})]} \begin{bmatrix} \frac{1}{3}\lambda^{3} - \frac{10}{3}\lambda^{2} - \lambda & 0 & 0 \\ 0 & \lambda^{3} - 10\lambda^{2} - 3\lambda & 0 \end{bmatrix}$$

$$\begin{bmatrix}
1 - \lambda & \lambda^{2} & \lambda \\
\lambda & \lambda & -\lambda \\
1 + \lambda^{2} & \lambda^{2} & -\lambda^{2}
\end{bmatrix} \xrightarrow{\begin{bmatrix} [1+2(1)] \\ [3+2(-\lambda)] \end{bmatrix}} \begin{bmatrix} 1 & \lambda^{2} + \lambda & 0 \\
\lambda & \lambda & -\lambda \\
1 & 0 & 0
\end{bmatrix} \xrightarrow{\begin{bmatrix} [1,3] \\
\lambda & \lambda & -\lambda \\
1 & 0 & 0
\end{bmatrix}}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & -\lambda \\ 0 & \lambda^{2} + \lambda & 0
\end{bmatrix} \xrightarrow{\begin{bmatrix} [3+2(-(\lambda+1))] \\ (3+1(-1)] \end{bmatrix}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & -\lambda \\ 0 & \lambda^{2} + \lambda & 0
\end{bmatrix} \xrightarrow{\begin{bmatrix} [3+2(-(\lambda+1))] \\ (3+2(1)) \end{bmatrix}}$$

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda(\lambda+1) \end{bmatrix} \xrightarrow{\{3+2(1)\}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda & 0 \\ 0 & 0 & \lambda(\lambda+1) \end{bmatrix}$$

$$\begin{array}{c} \left[\lambda-\lambda_{1} \quad 0 \\ 0 \quad \lambda-\lambda_{2}\right] \xrightarrow{[1+2(1)]} \left[\lambda_{2}-\lambda_{1} \quad \lambda-\lambda_{2}\right] \xrightarrow{\{2+1(-\frac{\lambda-\lambda_{2}}{\lambda_{2}-\lambda_{1}})\}} \\ \left[\lambda_{2}-\lambda \quad \lambda-\lambda_{2}\right] \xrightarrow{[2+1(\frac{\lambda-\lambda_{2}}{\lambda_{2}-\lambda_{1}})]} \\ \left[\lambda_{2}-\lambda_{1} \quad 0 \\ 0 \quad (\lambda-\lambda_{2})(1+\frac{\lambda-\lambda_{2}}{\lambda_{2}-\lambda_{1}})\right] \xrightarrow{[2(\lambda_{2}-\lambda_{1})]} \left[1 \quad 0 \\ 0 \quad (\lambda-\lambda_{1})(\lambda-\lambda_{2})\right] \\ \text{This } \left[\lambda_{2}-\lambda_{1} \quad 0 \right] \\ \text{This } \left[\lambda_{2}-\lambda_{1} \quad \lambda-\lambda_{2}\right] \xrightarrow{[2(\lambda_{2}-\lambda_{1})]} \left[1 \quad 0 \\ 0 \quad (\lambda-\lambda_{1})(\lambda-\lambda_{2})\right] \\ \text{This } \left[\lambda_{2}-\lambda_{1} \quad \lambda-\lambda_{2}\right] \\ \text{This } \left[\lambda_{2}-\lambda_{1} \quad \lambda-\lambda_{2}\right] \xrightarrow{[2+1(-\frac{\lambda-\lambda_{2}}{\lambda_{2}-\lambda_{1}})]} \left[1 \quad 0 \\ 0 \quad (\lambda-\lambda_{1})(\lambda-\lambda_{2})\right] \\ \text{This } \left[\lambda_{2}-\lambda_{1} \quad \lambda-\lambda_{2}\right] \xrightarrow{[2+1(-\frac{\lambda-\lambda_{2}}{\lambda_{2}-\lambda_{1}})]} \left[1 \quad 0 \\ 0 \quad (\lambda-\lambda_{1})(\lambda-\lambda_{2})\right] \\ \text{This } \left[\lambda_{2}-\lambda_{1} \quad \lambda-\lambda_{2}\right] \xrightarrow{[2+1(-\frac{\lambda-\lambda_{2}}{\lambda_{2}-\lambda_{1}})]} \left[1 \quad 0 \\ 0 \quad (\lambda-\lambda_{1})(\lambda-\lambda_{2})\right] \\ \text{This } \left[\lambda_{2}-\lambda_{1} \quad \lambda-\lambda_{2}\right] \xrightarrow{[2+1(-\frac{\lambda-\lambda_{2}}{\lambda_{2}-\lambda_{1}})]} \left[1 \quad 0 \\ 0 \quad (\lambda-\lambda_{1})(\lambda-\lambda_{2})\right] \\ \text{This } \left[\lambda_{2}-\lambda_{1} \quad \lambda-\lambda_{2}\right] \xrightarrow{[2+1(-\frac{\lambda-\lambda_{2}}{\lambda_{2}-\lambda_{1}})]} \left[\lambda_{2}-\lambda_{1} \quad \lambda-\lambda_{2}\right] \\ \text{This } \left[\lambda_{2}-\lambda_{1} \quad \lambda-\lambda_{2}\right] \xrightarrow{[2+1(-\frac{\lambda-\lambda_{2}}{\lambda_{2}-\lambda_{1}})]} \left[\lambda_{2}-\lambda_{1} \quad \lambda-\lambda_{2}\right] \\ \text{This } \left[\lambda_{2}-\lambda_{1} \quad \lambda-\lambda_{2}\right] \xrightarrow{[2+1(-\frac{\lambda-\lambda_{2}}{\lambda_{2}-\lambda_{1}})]} \left[\lambda_{2}-\lambda_{1} \quad \lambda-\lambda_{2}\right] \\ \text{This } \left[\lambda_{2}-\lambda_{1} \quad \lambda-\lambda_{2}\right] \xrightarrow{[2+1(-\frac{\lambda-\lambda_{2}}{\lambda_{2}-\lambda_{1}})]} \left[\lambda_{2}-\lambda_{1} \quad \lambda-\lambda_{2}\right] \\ \text{This } \left[\lambda_{2}-\lambda_{1} \quad \lambda-\lambda_{2}\right] \xrightarrow{[2+1(-\frac{\lambda-\lambda_{2}}{\lambda_{2}-\lambda_{1}})]} \left[\lambda_{2}-\lambda_{1} \quad \lambda-\lambda_{2}\right] \\ \text{This } \left[\lambda_{2}-\lambda_{1} \quad \lambda-\lambda_{2}\right] \xrightarrow{[2+1(-\frac{\lambda-\lambda_{2}}{\lambda_{2}-\lambda_{1}})]} \left[\lambda_{2}-\lambda_{1} \quad \lambda-\lambda_{2}\right] \\ \text{This } \left[\lambda_{2}-\lambda_{1} \quad \lambda-\lambda_{2}\right] \xrightarrow{[2+1(-\frac{\lambda-\lambda_{2}}{\lambda_{2}-\lambda_{1})]} \left[\lambda_{2}-\lambda_{1} \quad \lambda-\lambda_{2}\right] \\ \text{This } \left[\lambda_{2}-\lambda_{1} \quad \lambda-\lambda_{2}\right] \xrightarrow{[2+1(-\frac{\lambda-\lambda_{2}}{\lambda_{2}-\lambda_{1})]} \left[\lambda_{2}-\lambda_{2} \quad \lambda-\lambda_{2}\right] \\ \text{This } \left[\lambda_{2}-\lambda_{1} \quad \lambda-\lambda_{2}\right] \xrightarrow{[2+1(-\frac{\lambda-\lambda_{2}}{\lambda_{2}-\lambda_{1})]} \left[\lambda_{2}-\lambda_{2} \quad \lambda-\lambda_{2}\right] \\ \text{This } \left[\lambda_{2}-\lambda_{1} \quad \lambda-\lambda_{2}\right] \xrightarrow{[2+1(-\frac{\lambda-\lambda_{2}}{\lambda_{2}-\lambda_{1})]} \left[\lambda_{2}-\lambda_{2} \quad \lambda-\lambda_{2}\right]$$

(4) 化成对角阵形式:

$$\begin{bmatrix} \lambda^2 & 0 & 0 & 0 \\ 0 & \lambda^2 - \lambda & 0 & 0 \\ 0 & 0 & (\lambda - 1)^2 & 0 \\ 0 & 0 & 0 & \lambda^2 - \lambda \end{bmatrix},$$

则有, 其初等因子为: λ , λ , λ^2 , $(\lambda - 1)$, $(\lambda - 1)$, $(\lambda - 1)^2$, 从而不变因子为:

$$d_1(\lambda) = 1, d_2(\lambda) = \lambda(\lambda - 1), d_3(\lambda) = \lambda(\lambda - 1), d_4(\lambda) = \lambda^2(\lambda - 1)^2.$$

从而,等价标准形为:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \lambda(\lambda-1) & 0 & 0 \\ 0 & 0 & \lambda(\lambda-1) & 0 \\ 0 & 0 & 0 & \lambda^2(\lambda-1)^2 \end{bmatrix}.$$

- 2. 由初等变换不改变矩阵的秩易证.
- 3. 证明: 令 $\bar{A}(\lambda)$ 为 $A(\lambda)$ 的等价标准形 (详见定理 9.1.2), 则 $\bar{A}(\lambda)$ 为对称矩阵, 且存在可逆矩阵 P,Q, 使得 $A(\lambda) = P\bar{A}(\lambda)Q = P(Q')^{-1}Q'\bar{A}(\lambda)Q$, 其中 $P(Q')^{-1}$ 可逆, $Q'\bar{A}(\lambda)Q$ 为对称矩阵.
- 4. 证明: 对 $\boldsymbol{A}(\lambda) \in \mathbb{P}[\lambda]^{n \times n}$, 记 $\bar{\boldsymbol{A}}(\lambda)$ 为 $\boldsymbol{A}(\lambda)$ 的等价标准形,则存在可逆矩阵 $\boldsymbol{P}, \boldsymbol{Q}$ 使得, $\boldsymbol{A}(\lambda) = \boldsymbol{P}\bar{\boldsymbol{A}}(\lambda)\boldsymbol{Q}$. 其中 $\boldsymbol{P} \in \mathbb{P}^{m \times m}, \boldsymbol{Q} \in \mathbb{P}^{n \times n}$. 又 $\bar{\boldsymbol{A}}(\lambda) = \begin{bmatrix} \bar{\boldsymbol{A}}_{11}(\lambda) & \boldsymbol{O} \\ \boldsymbol{O} & \boldsymbol{O} \end{bmatrix}$, 其中 $\bar{\boldsymbol{A}}(\lambda) \in \mathbb{P}(\lambda)^{r \times r}$, 则 $\bar{\boldsymbol{A}}(\lambda)$ 可以拆分为 $\begin{bmatrix} \boldsymbol{F}_{11}(\lambda) \\ \boldsymbol{O} \end{bmatrix} \begin{bmatrix} \boldsymbol{G}_{11}(\lambda) & \boldsymbol{O} \end{bmatrix}$, 其中记 $\boldsymbol{F}(\lambda) = \begin{bmatrix} \boldsymbol{F}_{11}(\lambda) \\ \boldsymbol{O} \end{bmatrix} \in \mathbb{P}(\lambda)^{m \times r}$, $\boldsymbol{G}(\lambda) = \begin{bmatrix} \boldsymbol{G}_{11}(\lambda) & \boldsymbol{O} \end{bmatrix} \in \mathbb{P}(\lambda)^{r \times n}$. 所以

$$A(\lambda) = PF(\lambda)G(\lambda)Q$$

则取 $B(\lambda) = PF(\lambda), C(\lambda) = G(\lambda)Q$ 即可.

5. (1) 由题得,
$$\lambda E - A = \begin{bmatrix} \lambda & -1 & 1 \\ -3 & \lambda + 2 & 0 \\ 1 & -1 & \lambda + 1 \end{bmatrix}$$
, 则有, $\mathbf{D}_1(\lambda) = 1$, $\mathbf{D}_2(\lambda) = 1$, $\mathbf{D}_3(\lambda) = |\lambda E - A| = \lambda^3 + 3\lambda^2 - 2\lambda - 2$. 从而,

$$d_1(\lambda) = D_1(\lambda) = 1, d_2(\lambda) = \frac{D_2(\lambda)}{D_1(\lambda)} = 1,$$

欢迎加入 数的美位

$$d_3(\lambda) = \frac{D_3(\lambda)}{D_2(\lambda)} = (\lambda - 1)(\lambda + 2 - \sqrt{2})(\lambda + 2 + \sqrt{2}).$$

综上, 特征矩阵的等价标准形为:

$$\begin{bmatrix} 1 & 0 & & 0 \\ 0 & 1 & & 0 \\ 0 & 0 & (\lambda - 1)(\lambda + 2 - \sqrt{2})(\lambda + 2 + \sqrt{2}) \end{bmatrix},$$

初等因子为:

$$(\lambda - 1), (\lambda + 2 - \sqrt{2}), (\lambda + 2 + \sqrt{2}).$$

$$(\lambda - 1), (\lambda + 2 - \sqrt{2}), (\lambda + 2 + \sqrt{2}).$$
(2) 由题得, $\lambda \mathbf{E} - \mathbf{A} = \begin{bmatrix} \lambda & 1 & 0 \\ -1 & \lambda - 2 & -1 \\ 0 & 1 & \lambda - 1 \end{bmatrix}$, 则有, $\mathbf{D}_{1}(\lambda) = 1$, $\mathbf{D}_{2}(\lambda) = 1$, $\mathbf{D}_{3}(\lambda) = |\lambda \mathbf{E} - \mathbf{A}| = \lambda^{3} - 4\lambda^{2} + 7\lambda - 4$. 从而,

$$d_1(\lambda) = D_1(\lambda) = 1, d_2(\lambda) = \frac{D_2(\lambda)}{D_1(\lambda)} = 1,$$

$$d_3(\lambda) = \frac{D_3(\lambda)}{D_2(\lambda)} = (\lambda - 1)(\lambda^2 - 3\lambda + 4).$$

综上, 特征矩阵的等价标准形为:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & (\lambda - 1)(\lambda^2 - 3\lambda + 4) \end{bmatrix},$$

$$(\lambda-1), (\lambda^2-3\lambda+4).$$

(3) 由题得,
$$\lambda E - A = \begin{bmatrix} \lambda & -1 & -1 \\ -1 & \lambda & -1 \\ -1 & -1 & \lambda \end{bmatrix}$$
, 则有, $\mathbf{D}_1(\lambda) = 1$, $\mathbf{D}_2(\lambda) = \lambda + 1$, $\mathbf{D}_3(\lambda) = |\lambda E - A| = (\lambda + 1)^2 (\lambda - 2)$. 从而,

$$d_1(\lambda) = D_1(\lambda) = 1, d_2(\lambda) = \frac{D_2(\lambda)}{D_1(\lambda)} = \lambda + 1,$$

$$d_3(\lambda) = \frac{D_3(\lambda)}{D_2(\lambda)} = (\lambda + 1)(\lambda - 2).$$

综上, 特征矩阵的等价标准形为:

$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & \lambda + 1 & 0 \\ 0 & 0 & (\lambda + 1)(\lambda - 2) \end{bmatrix},$$

初等因子为:

$$(\lambda + 1), (\lambda + 1), (\lambda - 2).$$

(4) 由题得,
$$\lambda \mathbf{E} - \mathbf{A} = \begin{bmatrix} \lambda - 1 & 1 & -1 & 1 \\ 3 & \lambda - 3 & 5 & -4 \\ -8 & 4 & \lambda - 3 & 4 \\ -15 & -10 & -11 & \lambda + 11 \end{bmatrix}$$
, 则有, $\mathbf{D}_{1}(\lambda) = 1$, $\mathbf{D}_{2}(\lambda) = 1$, $\mathbf{D}_{3}(\lambda) = 1$, $\mathbf{D}_{4}(\lambda) = |\lambda \mathbf{E} - \mathbf{A}| = (\lambda + 1)(\lambda^{3} + 3\lambda^{2} - 77\lambda - 59)$. 从而,
$$d_{1}(\lambda) = D_{1}(\lambda) = 1$$
,
$$d_{2}(\lambda) = \frac{D_{2}(\lambda)}{D_{1}(\lambda)} = 1$$
,
$$d_{3}(\lambda) = \frac{D_{3}(\lambda)}{D_{2}(\lambda)} = 1$$
,
$$d_{4}(\lambda) = \frac{D_{4}(\lambda)}{D_{3}(\lambda)} = (\lambda + 1)(\lambda^{3} + 3\lambda^{2} - 77\lambda - 59)$$
.

综上, 特征矩阵的等价标准形为:

$$\begin{bmatrix} 1 & 0 & 0 & & 0 \\ 0 & 1 & 0 & & 0 \\ 0 & 0 & 1 & & 0 \\ 0 & 0 & 0 & (\lambda+1)(\lambda^3+3\lambda^2-77\lambda-59) \end{bmatrix},$$

初等因子为:

$$(\lambda + 1), (\lambda^3 + 3\lambda^2 - 77\lambda - 59).$$

- 6. 由定理 9.2.3,初等因子为 λ^2 , $(\lambda 1)^2$, λ , $(\lambda 1)^3$, $(\lambda 1)$, λ . 所以不变因子为 $d_1(\lambda) = 1$, $d_2(\lambda) = \lambda(\lambda 1)$, $d_3(\lambda) = \lambda(\lambda 1)^2$, $d_4(\lambda) = \lambda^2(\lambda 1)^3$.
- 7. 证明: 对 $A(\lambda)$ 初等变换:

$$\boldsymbol{A}(\lambda) = \begin{bmatrix} \lambda - \alpha & 0 & 0 & -1 & 0 & 0 \\ 0 & \lambda - \alpha & 0 & 0 & -1 & 0 \\ 0 & 0 & \lambda - \alpha & 0 & 0 & -1 \\ \beta^2 & 1 & 0 & \lambda - \alpha & 0 & 0 \\ 0 & \beta^2 & 1 & 0 & \lambda - \alpha & 0 \\ 0 & 0 & \beta^2 & 0 & 0 & \lambda - \alpha \end{bmatrix} \xrightarrow{\{1,4\} \ \{2,5\}}$$

$$\begin{bmatrix} -1 & 0 & 0 & \lambda - \alpha & 0 & 0 \\ 0 & -1 & 0 & 0 & \lambda - \alpha & 0 \\ 0 & 0 & -1 & 0 & 0 & \lambda - \alpha \\ \lambda - \alpha & 0 & 0 & \beta^2 & 1 & 0 \\ 0 & \lambda - \alpha & 0 & 0 & \beta^2 & 1 \\ 0 & 0 & \lambda - \alpha & 0 & 0 & \beta^2 \end{bmatrix} \xrightarrow{[6+3(\lambda - \alpha)]} \xrightarrow{[6+3(\lambda - \alpha)]}$$

$$\begin{bmatrix} -1 & 0 & 0 & \lambda - \alpha & 0 & 0 \\ 0 & -1 & 0 & 0 & \lambda - \alpha & 0 \\ 0 & 0 & -1 & 0 & 0 & \lambda - \alpha \\ \hline 0 & 0 & 0 & \beta^2 + (\lambda - \alpha)^2 & 1 & 0 \\ 0 & 0 & 0 & 0 & \beta^2 + (\lambda - \alpha)^2 & 1 \\ 0 & 0 & 0 & 0 & \beta^2 + (\lambda - \alpha)^2 \end{bmatrix}$$

$$\frac{\{4+1(\lambda-\alpha)\} \{5+2(\lambda-\alpha)\}}{\{6+3(\lambda-\alpha)\}} \mapsto \begin{bmatrix}
-1 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & r & 1 & 0 \\
0 & 0 & 0 & 0 & r & 1 \\
0 & 0 & 0 & 0 & r & 1
\end{pmatrix} = \boldsymbol{B}(\lambda).$$

所以 $A(\lambda)$ 等价于 $B(\lambda)$,则 $A(\lambda)$ 和 $B(\lambda)$ 有相同的初等因子和不变因子,所以要 求 $A(\lambda)$ 的不变因子和初等因子只需求 $B(\lambda)$ 的不变因子和初等因子. 考虑 $B(\lambda)$ 的 5 阶行列式因子有, 取 1,2,3,5,6 列和 1,2,3,4,5 行的子式为 -1, 为 0 次多项式, 所以 $D_5(\lambda) = 1$, 即有 $D_1(\lambda) = D_2(\lambda) = D_3(\lambda) = D_4(\lambda) = D_5(\lambda) = 1$, 又 $D_6(\lambda) = |\mathbf{B}| = D_5(\lambda) = 1$ $-r^3$, 所以不变因子为

$$1, 1, 1, 1, 1, -[(\lambda - \alpha)^2 + \beta^2]^3 = -[(\lambda - \alpha + |\beta|i)(\lambda - \alpha - |\beta|i)]^3$$

$$(\lambda - \alpha - |\beta|i)^3, (\lambda - \alpha + |\beta|i)^3$$

初等因子为

$$(\lambda - \alpha - |\beta|i)^3, (\lambda - \alpha + |\beta|i)^3$$

8. 证明: 由推论 9.2.1,有 $d_k(\lambda) = \frac{D_k \lambda}{D_{k-1}(\lambda)}, d_{k+1}(\lambda) = \frac{D_{k+1} \lambda}{D_k(\lambda)}$. 又由于 $d_k(\lambda)|d_{k+1}(\lambda)$,有 $\frac{D_k(\lambda)}{D_{k-1}(\lambda)} \mid \frac{D_{k+1}(\lambda)}{D_k(\lambda)}$,即有 $D_k(\lambda)^2 \mid D_{k-1}(\lambda)D_{k+1}(\lambda)$.

9.
$$\mathbf{A}^{k} = \begin{bmatrix} \lambda^{k} & 0 & 0 \\ k\lambda^{k-1} & \lambda^{k} & 0 \\ \frac{k(k-1)}{2}\lambda^{k-2} & k\lambda^{k-1} & \lambda^{k} \end{bmatrix}, \text{ Fix}.$$

 2° 假设 k=n 时, 命题成立, 即有

$$\boldsymbol{A}^{n} = \begin{bmatrix} \lambda^{n} & 0 & 0 \\ n\lambda^{n-1} & \lambda^{n} & 0 \\ \frac{n(n-1)}{2}\lambda^{n-2} & n\lambda^{n-1} & \lambda^{n} \end{bmatrix},$$

k = n + 1 时, 有

$$A^{n+1} = A(A^n) = \begin{bmatrix} \lambda & 0 & 0 \\ 1 & \lambda & 0 \\ 0 & 1 & \lambda \end{bmatrix} \begin{bmatrix} \lambda^n & 0 & 0 \\ n\lambda^{n-1} & \lambda^n & 0 \\ \frac{n(n-1)}{2}\lambda^{n-2} & n\lambda^{n-1} & \lambda^n \end{bmatrix}$$

$$= \begin{bmatrix} \lambda^{n+1} & 0 & 0 \\ n\lambda^n + \lambda^n & \lambda^{n+1} & 0 \\ \frac{n(n-1)}{2}\lambda^{n-1} + n\lambda^{n-1} & n\lambda^n + \lambda^n & \lambda^{n+1} \end{bmatrix}$$

$$= \begin{bmatrix} \lambda^{n+1} & 0 & 0 \\ (n+1)\lambda^n & \lambda^{n+1} & 0 \\ \frac{n(n+1)}{2}\lambda^{n-1} & (n+1)\lambda^n & \lambda^{n+1} \end{bmatrix}$$

所以, 命题在 k = n + 1 时成立.

所以,命题在
$$k = n + 1$$
 时成立.
由 $1^{\circ}, 2^{\circ}$ 知原命题成立,从而, $\mathbf{A}^{k} = \begin{bmatrix} \lambda^{k} & 0 & 0 \\ k\lambda^{k-1} & \lambda^{k} & 0 \\ \frac{k(k-1)}{2}\lambda^{k-2} & k\lambda^{k-1} & \lambda^{k} \end{bmatrix}$.

10. (1)
$$\begin{bmatrix} \frac{1}{0} & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 1 & -1 & 0 \end{bmatrix}.$$
$$\begin{bmatrix} \frac{1}{0} & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 1 & -3 \end{bmatrix}$$

$$\begin{bmatrix} \lambda - 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \lambda + 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda - 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & \lambda - 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \lambda - 3 & 1 \\ 0 & 0 & 0 & 0 & -2 & \lambda \end{bmatrix}$$
, 经过初等变换可得,原
$$\begin{bmatrix} \lambda - 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \lambda + 1 & 0 & 0 & 0 & 0 \\ 0 & \lambda + 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda - 2 & 0 & 0 & 0 \\ 0 & 0 & \lambda - 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & \lambda - 1 & 0 & 0 \\ 0 & 0 & 0 & \lambda - 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & (\lambda - 1)(\lambda - 2) \end{bmatrix}$$
. 从而由定理 9.2.3,矩

矩阵等价于
$$\begin{bmatrix} \lambda-1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \lambda+1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda-2 & 0 & 0 & 0 \\ 0 & 0 & 0 & \lambda-1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & (\lambda-1)(\lambda-2) \end{bmatrix}$$

阵的全体初等因子为: $(\lambda-1),(\lambda+1),(\lambda-2),(\lambda-1),(\lambda-1),(\lambda-2)$. 所以, Jacobson 标准形为:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 2 \\ \end{bmatrix} \, .$$

12. 1° 在域 ℚ 上:

由题目得, 方阵 \boldsymbol{A} 的初等因子为: $(\lambda+7), (\lambda+7)^2, (\lambda^2-5), (\lambda^2-5), (\lambda^2-3)^2$. 从而, Jacobson 标准形为:

$\lceil -7 \rceil$	0	0	0	0	0	0	0	0	0	0	
0	-7	0	0	0	0	0	0	0	0	0	
0	1	-7	0	0	0	0	0	0	0	0	
0	0	0	0	5	0	0	0	0	0	0	
0	0	0	1	0	0	0	0	0	0	0	
0	0	0	0	0	0	5	0	0	0	0	١.
0	0	0	0	0	1	0	0	0	0	0	
0	0_	0	0	0	0	0	0	3	0	0	
0	0	0	0	0	0	0	1	0	0	0	
0	0	0	0	0	0	0	0	1	0	3	
	0	0	0	0	0	0	0	0	1	0_	

2° 在域 $\mathbb{Q}(\sqrt{3})$ 上:

由题目得, 方阵 \boldsymbol{A} 的初等因子为: $(\lambda+7), (\lambda+7)^2, (\lambda^2-5), (\lambda^2-5), (\lambda-\sqrt{3})^2, (\lambda+\sqrt{3})^2$. 从而, Jacobson 标准形为:

_												
A	-7	0	0	0	0	0	0	0	0	0	0	
	0	-7	0	0	0	0	0	0	0	0	0	
1	0	1	-7	0	0	0	0	0	0	0	0	
4	0	0	0	0	5	0	0	0	0	0	0	
	0	0	0	1	0	0	0	0	0	0	0	
	0	0	0	0	0	0	5	0	0	0	0	
	0	0	0	0	0	1	0	0	0	0	0	•
	0	0	0	0	0	0	0	$\sqrt{3}$	0	0	0	
	0	0	0	0	0	0	0	1	$\sqrt{3}$	0	0	
	0	0	0	0	0	0	0	0	0	$-\sqrt{3}$	0	
	0	0	0	0	0	0	0	0	0	1	$-\sqrt{3}$	

2° 在域 $\mathbb{Q}(\sqrt{5})$ 上:

由题目得, 方阵 ${m A}$ 的初等因子为: $(\lambda+7),(\lambda+7)^2,(\lambda-\sqrt{5}),(\lambda+\sqrt{5}),(\lambda-\sqrt{5}),(\lambda+\sqrt{5})$

 $\sqrt{5}$), $(\lambda^2 - 3)^2$. 从而, Jacobson 标准形为:

$\lceil -7 \rceil$	0	0	0	0	0		0	0 0 0) -
0	-7	0	0	0	0	0	0	0 0 0)
0	1	-7	0	0	0	0	0	0 0 0)_
0	0	0	$\sqrt{5}$	0	0	0	0	0 0 0)_
0	0	0	0	$-\sqrt{5}$	0	0	0	0 0 0)_
0	0	0	0	0	$\sqrt{5}$	0	0	0 0 0)_
0	0	0	0	0	0	$-\sqrt{5}$	0	0 0 0)
0	0	0	0	0	0	0	0	3 0 0)
0	0	0	0	0	0	0	1	0 0 0)
0	0	0	0	0	0	0	0	1 0 3	,
0	0	0	0	0	0	0	0	0 1 0) _

- 13. 证明:由推论 9.4.3 有, $\Delta(\lambda)$ 的不可约因式 $\lambda^2 + \lambda + 1$, $\lambda^2 2$ 都是 $m(\lambda)$ 的因式,且 $d_n(\lambda) = m(\lambda)$. 又由 $m(\lambda)$ 是 4 次的,得 $m(\lambda) = (\lambda^2 + \lambda + 1)(\lambda^2 2)$,即有在 $\mathbb C$ 上, $m(\lambda) = (\lambda + \frac{1-\sqrt{3}i}{2})(\lambda + \frac{1+\sqrt{3}i}{2})(\lambda \sqrt{2})(\lambda + \sqrt{2})$,所以有 $d_n(\lambda) = m(\lambda)$ 在 $\mathbb C$ 上的不可约因式都是一次的,从而 $\mathbf A$ 在 $\mathbb C$ 上的初等因子都是一次的,所以 $\mathbf A$ 的 Jacobson 标准形为对角形矩阵,即有 $\mathbf A$ 相似于对角形矩阵.
- 14. (1) 由题得, $\lambda E A = \begin{bmatrix} \lambda 2 & 1 & -1 \\ -2 & \lambda 2 & 1 \\ -1 & -2 & \lambda + 1 \end{bmatrix}$. 由于右上角的二阶子式为 $(\lambda 1)$, 而左下角二阶子式为 $(\lambda + 2)$, 所以 $D_2(\lambda) = 1$, 即有 $D_1(\lambda) = D_2(\lambda) = 1$, 又

而左下用二阶于式为 $(\lambda + 2)$,所以 $D_2(\lambda) = 1$,即有 $D_1(\lambda) = D_2(\lambda) = 1$,又 $D_3(\lambda) = |\lambda E - A| = (\lambda - 1)^3$,从而,

$$d_1(\lambda) = D_1(\lambda) = 1, d_2(\lambda) = \frac{D_2(\lambda)}{D_1(\lambda)} = 1, d_3(\lambda) = \frac{D_3(\lambda)}{D_2(\lambda)} = (\lambda - 1)^3.$$

即有初等因子为 $(\lambda - 1)^3$. 所以矩阵的 Jordan 标准形为:

$$\begin{bmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix},$$

(2) 由题得, $\lambda \mathbf{E} - \mathbf{A} = \begin{bmatrix} \lambda - i & -i \\ -1 & \lambda - i \end{bmatrix}$. 进行初等变换, 有

$$\begin{bmatrix} \lambda - i & -i \\ -1 & \lambda - i \end{bmatrix} \xrightarrow{[1,2] \ [2+1(\lambda-i)]} \begin{bmatrix} 1 & 0 \\ 0 & \lambda^2 - 2i\lambda - i - 1 \end{bmatrix}.$$

由于 $\lambda^2 - 2i\lambda - i - 1 = [\lambda - \frac{\sqrt{2}}{2} - (1 + \frac{\sqrt{2}}{2})i][\lambda + \frac{\sqrt{2}}{2} - (1 - \frac{\sqrt{2}}{2})i]$,所以初等因子 为 $[\lambda - \frac{\sqrt{2}}{2} - (1 + \frac{\sqrt{2}}{2})i]$, $[\lambda + \frac{\sqrt{2}}{2} - (1 - \frac{\sqrt{2}}{2})i]$ 所以矩阵的 Jordan 标准形为

$$\begin{bmatrix} \frac{\sqrt{2}}{2} + (1 + \frac{\sqrt{2}}{2})i & 0\\ 0 & -\frac{\sqrt{2}}{2} + (1 - \frac{\sqrt{2}}{2})i \end{bmatrix}.$$

(3) 由题得,
$$\lambda E - A = \begin{bmatrix} \lambda - 3 & 0 & -8 \\ -3 & \lambda + 1 & -6 \\ 2 & 0 & \lambda - 5 \end{bmatrix}$$
. 由于右上角的二阶子式为 $8(\lambda + 1)$, 而

1, 又 $D_3(\lambda) = |\lambda E - A| = (\lambda + 1)(\lambda^2 - 8\lambda + 31)$, 从而,

$$d_1(\lambda) = D_1(\lambda) = 1, d_2(\lambda) = \frac{D_2(\lambda)}{D_1(\lambda)} = 1, d_3(\lambda) = \frac{D_3(\lambda)}{D_2(\lambda)} = (\lambda + 1)(\lambda^2 - 8\lambda + 31).$$

即有初等因子为 $(\lambda+1)$, $(\lambda-4-\sqrt{15}i)$, $(\lambda-4+\sqrt{15}i)$. 所以矩阵的 Jordan 标准 形为:

$$\begin{bmatrix} -1 & 0 & 0 \\ 0 & 4 + \sqrt{15}i & 0 \\ 0 & 0 & 4 - \sqrt{15}i \end{bmatrix},$$

(4) 由题得,
$$\lambda E - A = \begin{bmatrix} \lambda - 1 & -2 & -3 & -4 \\ 0 & \lambda - 1 & -2 & -3 \\ 0 & 0 & \lambda - 1 & -2 \\ 0 & 0 & 0 & \lambda - 1 \end{bmatrix}$$
. 由于右上角的三阶子式为

$$d_1(\lambda) = D_1(\lambda) = 1, d_2(\lambda) = \frac{D_2(\lambda)}{D_1(\lambda)} = 1,$$

$$d_3(\lambda) = \frac{D_3(\lambda)}{D_2(\lambda)} = 1, d_4(\lambda) = \frac{D_4(\lambda)}{D_3(\lambda)} = (\lambda - 1)^4.$$

即有初等因子为 $(\lambda - 1)^4$. 所以矩阵的 Jordan 标准形为:

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix},$$

(5) 由题得,
$$\lambda E - A = \begin{bmatrix} \lambda & -1 & 0 & \cdots & 0 & 0 \\ 0 & \lambda & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \lambda & -1 \\ -1 & 0 & 0 & \cdots & 0 & \lambda \end{bmatrix}$$
. 由于右上角的 $n-1$ 阶子式为

 $(\lambda) = 1$,即有 $D_1(\lambda) = \cdots = D_{n-1}(\lambda) = 1$,又

$$D_n(\lambda) = |\lambda \mathbf{E} - \mathbf{A}| = \begin{bmatrix} 0 & -1 & 0 & \cdots & 0 & 0 \\ 0 & 0 & -1 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 0 & -1 \\ \lambda^n - 1 & \lambda^{n-1} & \lambda^{n-2} & \cdots & \lambda^2 & \lambda \end{bmatrix} = \lambda^n - 1, \, \text{M} \vec{\mathbf{m}},$$

$$d_1(\lambda) = D_1(\lambda) = 1, \dots, d_{n-1}(\lambda) = \frac{D_{n-1}(\lambda)}{D_{n-2}(\lambda)} = 1,$$

$$d_n(\lambda) = \frac{D_n(\lambda)}{D_{n-1}(\lambda)} = \lambda^n - 1 = (\lambda - 1)(\lambda - \omega)(\lambda - \omega^2) \cdots (\lambda - \omega^{n-1}).$$

其中 ω 为 n 次本原根, 即有初等因子为 $(\lambda-1),(\lambda-\omega),\cdots,(\lambda-\omega^{n-1})$. 所以矩 阵的 Jordan 标准形为:

$$\begin{bmatrix} 1 & 0 & 0 & \cdots & 0 & 0 \\ 0 & \omega & 0 & \cdots & 0 & 0 \\ \vdots & \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & \omega^{n-2} & 0 \\ 0 & 0 & 0 & \cdots & 0 & \omega^{n-1} \end{bmatrix},$$

(6) 由题得,
$$\lambda E - A = \begin{bmatrix} \lambda & -1 & 0 & 0 & 0 & 0 \\ 0 & \lambda & -1 & 0 & 0 & 0 \\ -1 & 0 & \lambda & 0 & 0 & 0 \\ 0 & 0 & 0 & \lambda & -1 & 0 \\ 0 & 0 & 0 & \lambda & -1 & 0 \\ 0 & 0 & 0 & -1 & 0 & \lambda \end{bmatrix}$$
. 经过初等变换可得,原矩
$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda^3 - 1 & 0 & 0 & 0 \\ 0 & 0 & \lambda^3 - 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \lambda^3 - 1 \end{bmatrix}$$
. 从而由定理 9.2.3,又 $\lambda^3 - 1 = (\lambda - 1)[\lambda - \frac{(-1+i\sqrt{3})}{2}][\lambda + \frac{(1+i\sqrt{3})}{2}]$,矩阵的初等因子的全体为 $(\lambda - 1), [\lambda - \frac{(-1+i\sqrt{3})}{2}], [\lambda + 1]$

阵等价于
$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & \lambda^3 - 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & \lambda^3 - 1 \end{bmatrix}. 从而由定理 9.2.3, 又 $\lambda^3 - 1 = (\lambda - 1)$$$

 $\frac{(1+i\sqrt{3})}{2}],(\lambda-1),[\lambda-\frac{(-1+i\sqrt{3})}{2}],[\lambda+\frac{(1+i\sqrt{3})}{2}].$ 所以矩阵的 Jordan 标准形为:

$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & \frac{-1+i\sqrt{3}}{2} & 0 & 0 & 0 & 0 \\ 0 & 0 & \frac{-1-i\sqrt{3}}{2} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & \frac{-1+i\sqrt{3}}{2} & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{-1-i\sqrt{3}}{2} \end{bmatrix}.$$

15. 证明: 设 λ 为 \boldsymbol{A} 的一个特征值, α 为其对应的特征向量, 则有 $\boldsymbol{A}\alpha = \lambda\alpha$, 即有 $\boldsymbol{A}^k\alpha = \lambda^k\alpha$ 。由题有 $\boldsymbol{A}^k = \boldsymbol{O}$,则 $\lambda^k\alpha = 0$,又由于 α 不为零向量, 所以 $\lambda = 0$,即 \boldsymbol{A} 的特征值都为 0,所以 $\Delta_{\boldsymbol{A}}(\lambda) = \lambda^n$,则 \boldsymbol{A} 的初等因子都是 λ 的幂次形式, 所以 \boldsymbol{A} 的 Jordan标准形对角线上元素都为 0. 设 \boldsymbol{J}_a 为 \boldsymbol{A} 的 Jordan标准形,则存在可逆矩阵 \boldsymbol{T} 使得 $\boldsymbol{A} = \boldsymbol{T}^{-1}\boldsymbol{J}_a\boldsymbol{T}$. 则

$$|A + E| = |T^{-1}J_aT + T^{-1}T| = |T^{-1}(J_a + E)T| = |J_a + E| = 1$$

16. 由题, 计算可得
$$\mathbf{P}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \end{bmatrix}$$
, 则 $\mathbf{A} = \mathbf{PJP}^{-1} = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & -1 & 1 \end{bmatrix}$. 于是 $f(\mathbf{A}) = \mathbf{A}^3 - 4\mathbf{A}^2 + 2\mathbf{E} = \mathbf{P}(\mathbf{J}^3 - 4\mathbf{J}^2 + 2\mathbf{E})\mathbf{P}^{-1} = \begin{bmatrix} -6 & 0 & 0 \\ -4 & -6 & 0 \\ -1 & 5 & -1 \end{bmatrix}$

17. 证明: 由题有 $A^l = E$, 即 $A^l - E = O$, 所以 $\lambda^l - 1$ 为 A 的零化多项式, 从而 $m(\lambda)|\lambda^l - 1$. 由于在复数域上 $\lambda^l - 1 = (\lambda - 1)(\lambda - \omega) \cdots (\lambda - \omega^{l-1})$, 其中 ω 为本原根. 所以 $m(\lambda)$ 的不可约因式都是一次的, 由于

$$d_1(\lambda)|d_2(\lambda)|\cdots|d_n(\lambda)=m(\lambda)|\lambda^l-1=(\lambda-1)(\lambda-\omega)\cdots(\lambda-\omega^{l-1})$$

所以初等因子的不可约因式都是一次的,即有 A 的 Jordan 标准形为对角形,且对角线上元素为 1 或 ω 的幂次,所以对角线元素的模均为 1.

18. (1) 类似于本章习题 14(5), 可求得 A 的 Jordan 标准形即为 B.

(2) 由题得,
$$\lambda E - A = \begin{bmatrix} \lambda & -1 & & & \\ & \lambda & -1 & & \\ & & \lambda & \ddots & \\ & & & \ddots & -1 \\ & & & & \lambda \end{bmatrix}$$
; $\lambda E - B = \begin{bmatrix} \lambda & -1 & & & \\ & \lambda & -1 & -* & \\ & & \lambda & \ddots & \\ & & & \ddots & -1 \\ & & & & \lambda \end{bmatrix}$.

由于 $\lambda E - A$ 右上角 n-1 阶子式为 $(-1)^{n-1}$ 为零次多项式, 所以有 A 的 n-1

阶行列式因子为 1. 而对于 $\lambda E - B$, $\lambda = 0$ 为其左上角 n-1 阶子式的根, 取其右 上角的 n-1 阶子式, 并令 $\lambda=0$ 代入得其值为 $(-1)^{n-1}\neq 0$, 所以 $\lambda=0$ 不为右 上角 n-1 阶子式的根, 所以这两个 n-1 阶子式互质, 所以有 **B** 的 n-1 阶行 列式因子为 1. 即有

$$d_1^a(\lambda) = d_2^a(\lambda) = \dots = d_{n-1}^a(\lambda) = 1, d_n^a(\lambda) = \lambda^n$$

$$d_1^b(\lambda) = d_2^b(\lambda) = \dots = d_{n-1}^b(\lambda) = 1, d_n^b(\lambda) = \lambda^n$$

所以 A, B 的不变因子相同, 所以 A, B 相似.

19. 证明: 由题, 假设在复数域上矩阵 A 的特征多项式为

$$\Delta_{\mathbf{A}}(\lambda) = (\lambda - \lambda_1)^k (\lambda - \lambda_2)^{r_2} \cdots (\lambda - \lambda_s)^{r_s},$$

其中 $\lambda_1, \lambda_2, \cdots, \lambda_s$ 互不相同, 记 \boldsymbol{A} 的 Jordan 标准形为 $\boldsymbol{J} = \begin{bmatrix} \boldsymbol{J}_1 \\ & \ddots \end{bmatrix}$ 不妨设

A 前 l 个 Jordan 块对角线元素都为 λ_1 , 由定理 9.6.3 有这 l 个 Jordan 块阶数之和为 k (这 l 个 Jordan 块为对角线的矩阵相当于定理 9.6.3 中的 "Jordan 标准形矩阵 J_1 "),

且
$$\lambda_1 E - J_i$$
 都形如 $\begin{bmatrix} 0 \\ -1 & 0 \end{bmatrix}$ $(i = 1, 2, \cdots, l)$,由于每个块的阶数不超过 $\begin{bmatrix} 0 \\ -1 & 0 \end{bmatrix}$

k, 所以有 $(\lambda_1 E - J_i)^k = O$, $(i = 1, 2, \dots, l)$. 而对于其他的 $\lambda_1 E - J_j$, j = l + 1, l + 1

$$\mathbf{Z}_{s}$$
 \mathbf{Z}_{s} \mathbf{Z}_{s}

 $B_0^k = O, r(B_1) = n - k, B_1$ 可逆. 由于对于 A 的 Jordan 标准形, 存在可逆矩阵 T 使 得 $\boldsymbol{A} = \boldsymbol{T}^{-1} \boldsymbol{J} \boldsymbol{T}$,则

$$(\lambda_1 oldsymbol{E} - oldsymbol{A})^k = (oldsymbol{T}^{-1}(\lambda_1 oldsymbol{E} - oldsymbol{J})^k = oldsymbol{T}^{-1}(\lambda_1 oldsymbol{E} - oldsymbol{J})^k oldsymbol{T} = oldsymbol{T}^{-1}egin{bmatrix} oldsymbol{O}_{k imes} & oldsymbol{O}_{k imes(n-k)} \ oldsymbol{O}_{(n-k) imes k} & oldsymbol{B}_1^k \end{bmatrix} oldsymbol{T}.$$

又因为, $r(\mathbf{B}_1) = n - k$, \mathbf{B}_1 可逆, 所以 $r((\lambda_1 \mathbf{E} - \mathbf{A})$

欢迎加入 数的美位

20. 由题得,
$$\boldsymbol{J}_s(\lambda) = \begin{bmatrix} \lambda & & & & \\ 1 & \lambda & & & \\ & \ddots & \ddots & & \\ & & 1 & \lambda & \\ & & & 1 & \lambda \end{bmatrix}$$
, 则 $|\boldsymbol{J}_s(\lambda)| = \lambda^s \neq 0$, 且有

$$J_{i,j} = \begin{cases} 0, & i > j \\ (-1)^{i+j} \lambda^{s-1}, & i = j \\ (-1)^{i+j} \lambda^{s-j+i-1}, & i < j \end{cases}$$

则有

$$m{J}_s(\lambda)^{-1} = rac{1}{|m{J}_s(\lambda)|} m{J}_s(\lambda)^* = \lambda^{-s} egin{bmatrix} m{J}_{1,1} & m{J}_{2,1} & \cdots & m{J}_{s,1} \\ m{J}_{1,2} & m{J}_{2,2} & \cdots & m{J}_{s,2} \\ \vdots & \vdots & & \vdots \\ m{J}_{1,s} & m{J}_{2,s} & \cdots & m{J}_{s,s} \end{bmatrix}$$

$$= \lambda^{-s} \begin{bmatrix} \lambda^{s-1} & 0 & 0 & \cdots & 0 \\ -\lambda^{s-2} & \lambda^{s-1} & 0 & \cdots & 0 \\ \lambda^{s-3} & -\lambda^{s-2} & \lambda^{s-1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ (-1)^{s+1} & (-1)^{s+2}\lambda^1 & \cdots & -\lambda^{s-2} & \lambda^{s-1} \end{bmatrix}$$

$$= \begin{bmatrix} \lambda^{-1} & 0 & 0 & \cdots & 0 \\ -\lambda^{-2} & \lambda^{-1} & 0 & \cdots & 0 \\ \lambda^{-3} & -\lambda^{-2} & \lambda^{-1} & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ (-1)^{s+1}\lambda^{-s} & (-1)^{s+2}\lambda^{-(s-1)} & \cdots & -\lambda^{-2} & \lambda^{-1} \end{bmatrix}$$

21. 由题有, $AP = PJ_n(\lambda)$, 将 P 列分块有 $P = (\alpha_1, \alpha_2, \dots, \alpha_n)$. 于是有

$$m{A}(m{lpha}_1,m{lpha}_2,\cdots,m{lpha}_n) = (m{lpha}_1,m{lpha}_2,\cdots,m{lpha}_n) egin{bmatrix} m{\lambda} & & & & \ 1 & m{\lambda} & & & \ & \ddots & \ddots & \ & & 1 & m{\lambda} \end{bmatrix}$$

 $(\boldsymbol{A}\boldsymbol{\alpha}_1,\boldsymbol{A}\boldsymbol{\alpha}_2,\cdots,\boldsymbol{A}\boldsymbol{\alpha}_n)=(\lambda\boldsymbol{\alpha}_1+\boldsymbol{\alpha}_2,\lambda\boldsymbol{\alpha}_2+\boldsymbol{\alpha}_3,\cdots,\lambda\boldsymbol{\alpha}_{n-1}+\boldsymbol{\alpha}_n,\lambda\boldsymbol{\alpha}_n)$

$$egin{aligned} egin{aligned} oldsymbol{A}oldsymbol{lpha}_1 &= \lambdaoldsymbol{lpha}_1 + oldsymbol{lpha}_2 \ oldsymbol{A}oldsymbol{lpha}_2 &= \lambdaoldsymbol{lpha}_2 + oldsymbol{lpha}_3 \ &dots \ oldsymbol{A}oldsymbol{lpha}_2 - oldsymbol{lpha}_3 &= heta \ oldsymbol{(A-\lambda E)}oldsymbol{lpha}_2 - oldsymbol{lpha}_3 &= heta \ oldsymbol{(A-\lambda E)}oldsymbol{lpha}_{n-1} - oldsymbol{lpha}_n &= heta \ oldsymbol{A}oldsymbol{lpha}_{n-1} - oldsymbol{lpha}_n &= heta \ oldsymbol{(A-\lambda E)}oldsymbol{lpha}_n &= heta \ oldsymbol{(A-\lambda E)}oldsymbol{lpha}_n &= heta \end{aligned}$$

所以P列向量满足的线性方程组为

$$\begin{bmatrix} A - \lambda E & -E \\ & A - \lambda E & -E \\ & & \ddots & \ddots \\ & & A - \lambda E & -E \\ & & & A - \lambda E \end{bmatrix} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \vdots \\ \alpha_{n-1} \\ \alpha_n \end{bmatrix} = O$$

22. 因为 $r(\mathbf{A}) = 1$ 所以 \mathbf{A} 有 0 特征值, 又由 $\mathbf{A}\alpha = 0$ 的解<mark>空间的维数为 n-1</mark>, 所以特征 多项式中 λ 的重数大于等于 n-1. 所以有

$$\Delta_{\mathbf{A}}(\lambda) = \lambda^k(\lambda - \lambda_1), \ k \geqslant n - 1.$$

若 k = n - 1, 则 Jordan 标准形为

若 k=n, 则由于 $r(\mathbf{A})=1$, \mathbf{A} 相似于含有一个二阶若当块 $\begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$ 和 n-2 个一阶若 当块的 Jordan 标准形, 即

$$\begin{bmatrix} 0 & & & & & \\ 1 & 0 & & & & \\ & & 0 & & & \\ & & & \ddots & & \\ & & & & 0 \end{bmatrix}$$

23. 证明: 由于相似矩阵的迹相等, 记矩阵 \boldsymbol{A} 的 Jordan 标准形为 \boldsymbol{J} , 则有 tr(J) = tr(A) =欢迎加入 数的美位 195

1, 又由第 22 题的结论有 A 的 Jordan 标准形只能为

$$\begin{bmatrix} 1 & & & \\ & 0 & & \\ & & \ddots & \\ & & & 0 \end{bmatrix}$$

所以 $J^2 = J$. 由于 $A = T^{-1}JT$, 有 $A^2 = T^{-1}J^2T = T^{-1}JT = A$.

24. 证明: 由于 A 的特征多项式为 $(\lambda - 1)^n$, 所以其初等因子都是 $(\lambda - 1)^s$ 的形式. 设其初等因子为 $(\lambda - 1)^{n_1}, (\lambda - 1)^{n_2}, \cdots, (\lambda - 1)^{n_s}$, Jordan 标准形为

$$oldsymbol{J} = egin{bmatrix} oldsymbol{J}_1 & & & & & \ & oldsymbol{J}_2 & & & & \ & & \ddots & & & \ & & & oldsymbol{J}_s \end{bmatrix}$$

其中

对于每个 J_i^l , 考虑 $\lambda E - J_i^l$ 左上角和左下角两个 $n_i - 1$ 阶子式

$$\begin{vmatrix} \lambda - 1 \\ -l & \lambda - 1 \\ -* & \ddots & \ddots \\ \vdots & \ddots & -l & \lambda - 1 \\ -* & \cdots & -* & -l & \lambda - 1 \end{vmatrix}, \begin{vmatrix} -l & \lambda - 1 \\ -* & -l & \lambda - 1 \\ -* & -* & \ddots & \ddots \\ \vdots & \ddots & -* & -l & \lambda - 1 \\ -* & \cdots & -* & -l & \lambda - 1 \end{vmatrix}$$

当 $\lambda = 1$ 时,一个子式为 0 ,另一个子式的值为 $(-l)^{n_i-1} \neq 0$,所以这两个 $n_i - 1$ 阶子式是互素的,从而其 $n_i - 1$ 级行列式因子为 1,所以 $\lambda E - J_i^l$ 的初等因子为 $|\lambda E - J_i^l| = (\lambda - 1)^{n_i}$,所以 A^l 的初等因子为 $(\lambda - 1)^{n_1}, (\lambda - 1)^{n_2}, \cdots, (\lambda - 1)^{n_s}$,和 A 的初等因子相同,所以 A 与 A^l 相似

欢迎加入 数的美位

25. 证明: 首先证明对于任意若当块 $J_n(a)$, 都有 $J_n(a) \sim J_n(a)'$. 由于

$$\begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{bmatrix} \begin{bmatrix} \boldsymbol{\gamma}_1 \\ \boldsymbol{\gamma}_2 \\ \vdots \\ \boldsymbol{\gamma}_n \end{bmatrix} = \begin{bmatrix} \boldsymbol{\gamma}_n \\ \boldsymbol{\gamma}_{n-1} \\ \vdots \\ \boldsymbol{\gamma}_1 \end{bmatrix}$$

$$egin{aligned} (oldsymbol{lpha}_1,oldsymbol{lpha}_2,\cdots,oldsymbol{lpha}_n) & egin{bmatrix} 0 & 0 & \cdots & 0 & 1 \ 0 & 0 & \cdots & 1 & 0 \ dots & dots & & dots & dots \ 0 & 1 & \cdots & 0 & 0 \ 1 & 0 & \cdots & 0 & 0 \end{bmatrix} = (oldsymbol{lpha}_n,oldsymbol{lpha}_{n-1},\cdots,oldsymbol{lpha}_1) \end{aligned}$$

因此

$$\begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{bmatrix} = \begin{bmatrix} 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \cdots & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & 0 \\ 0 & 0 & \cdots & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 1 & \cdots & 0 & 0 \\ 1 & 0 & \cdots & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 \\ 1 & a & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 1 & a & 0 \\ 0 & 0 & \cdots & 0 & 1 & a \end{bmatrix} \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \\ 1 & 0 & \cdots & 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 & \cdots & 0 & 1 \\ 0 & 0 & \cdots & 1 & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & 1 & \cdots & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 & \cdots & 0 & 0 & a \\ 0 & 0 & \cdots & 0 & 0 & 1 \\ \vdots & \vdots & & \vdots & \vdots & \vdots \\ 0 & a & \cdots & 0 & 0 & 0 \\ a & 1 & \cdots & 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} a & 1 & \cdots & 0 & 0 & 0 \\ 0 & a & \cdots & 0 & 0 & 0 \\ \vdots & \vdots & & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & 0 & a & 1 \\ 0 & 0 & \cdots & 0 & 0 & a \end{bmatrix}$$

从而有 $\boldsymbol{J}_{n}(a) \sim \boldsymbol{J}_{n}(a)'$.

由于 A 是复数域上的矩阵, 因此 A 有 Jordan 标准形

其中 $\lambda_1, \lambda_2, \dots, \lambda_m$ 可能有相同, $r_1 + r_2 + \dots + r_m = n$. 由上所证明, $J_{r_i}(\lambda_1) \sim$

其中
$$\lambda_1, \lambda_2, \cdots, \lambda_m$$
 可能有相同, $r_1+r_2+\cdots+r_m=n$. 田上所证明, $J_{r_i}(\lambda_1)\sim J_{r_i}(\lambda_i)'$,且存在可逆矩阵 $P_i=\begin{bmatrix}0&0&\cdots&0&1\\0&0&\cdots&1&0\\\vdots&\vdots&&\ddots&\vdots\\0&1&\cdots&0&0\\1&0&\cdots&0&0\end{bmatrix}$ 使得 $P_i^{-1}J_{r_i}(\lambda_1)P_i=J_{r_i}(\lambda_i)'$.令 $P_i=\begin{bmatrix}P_1&&&&\\P_2&&&&\\&\ddots&&&\\P_m&&&&\\&&&&P_m\end{bmatrix}$,则 $P^{-1}JP=J'$.从而 $J\sim J'$.由于 $A\sim J$,因此 $A'\sim J'$

26. 证明: "⇒": 若 A 为纯量阵, 则显然 $\partial D_{n-1}(\lambda) = n-1$.

" \Leftarrow ": 设 $\partial D_{n-1}(\lambda) = n-1$, 由于 $\partial D_n(\lambda) = n$ 且有 $D_{n-1}(\lambda)|D_n(\lambda)$, 所以 $\partial d_n(\lambda) = n$ $\partial \frac{D_n(\lambda)}{D_{n-1}(\lambda)} = 1$. 由于 $d_1(\lambda)|d_2(\lambda)|\cdots|d_n(\lambda)$, 所以 $\partial d_1(\lambda) \leqslant \partial d_2(\lambda) \leqslant \cdots \leqslant \partial d_n(\lambda) = 1$, 又由于 $\sum_{i=1}^{n} \partial d_i(\lambda) = n$, 所以 $\partial d_1(\lambda) = \partial d_2(\lambda) = \cdots = \partial d_n(\lambda) = 1$, 所以有 $d_1(\lambda) = 0$ $d_2(\lambda) = \cdots = d_n(\lambda) = \lambda - \lambda_1$, 所以 A 为纯量阵.

