GROUPES ET ANNEAUX 2

Notations générales : sauf indication contraire, G sera toujours un groupe. On travaillera souvent avec un corps \mathbb{k} , qui sera choisit parmi \mathbb{Q} , \mathbb{R} , \mathbb{C} ou même $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$ pour un nombre premier $p \in \mathbb{N}$.

1. Pré-requis

Les notions suivantes doivent être connues.

- (i) Sous-groupes de G. Notation : H < G signifie "H est un sous-groupe de G"
- (ii) Ordre d'un élément $g \in G$. Notation : ord(g).
- (iii) Morphismes de groupes (également appelés homomorphismes), isomorphismes et automorphismes.
- (iv) ker f et im f pour un homomorphisme f.

Les résultats suivants doivent être connus.

Théorème 1.1 (Lagrange, Théorème 3.4.12 de HAX501X). Si G est un groupe fini et H < G, alors |H| divise |G|.

Proposition 1.2 (Propositions 3.4.5 & 3.4.7, Exercice 50 de HAX501X). Soit G un groupe et $g \in G$.

- (i) $Si \operatorname{ord}(g) = m$, $alors \langle g \rangle$ est un sous-groupe d'ordre m isomorphe à $\mathbb{Z}/m\mathbb{Z}$.
- (ii) Si $q^n = e$, alors ord(q) divise n.
- (iii) Si ord(g) = m, alors ord(gⁿ) = $\frac{m}{\operatorname{pecd}(m,n)}$ pour tout $n \in \mathbb{N}$.

Proposition 1.3 (Proposition 3.3.9 de HAX501X). Un morphisme de groupes $f: G \to G'$ est injectif si et seulement si ker $f = \{e\}$.

2. Quelques exemples de groupes

Exemple 2.1. Voilà quelques exemples importants de groupes.

(i)Muni de la multiplication usuelle entre nombres complexes, \mathbb{C}^\times est un groupe. Le sous-groupe

$$\boldsymbol{\mu}_n := \{ z \in \mathbb{C}^\times \mid z^n = 1 \}$$

est le groupe des racines nèmes de l'unité. Il est isomorphe à $\mathbb{Z}/n\mathbb{Z}$ via l'isomorphisme

$$f: \mathbb{Z}/n\mathbb{Z} \to \boldsymbol{\mu}_n$$
$$[k] \mapsto e^{\frac{2k\pi i}{n}}.$$

(ii) Soit $GL_n(\mathbb{k})$ le groupe général linéaire de dégré n de \mathbb{k} , qui est par définition le groupe des matrices inversibles de taille $n \times n$ à coefficients dans \mathbb{k} . Si $\mathbb{k} = \mathbb{F}_p$, alors $GL_n(\mathbb{k})$ est un groupe fini. Pour déterminer son cardinal, on remarque qu'une matrice $X \in GL_n(\mathbb{F}_p)$ n'est rien d'autre qu'une liste ordonnée de n vecteurs colonne X_1, \ldots, X_n tels que

$$X_1 \neq 0$$
, $X_2 \notin \mathbb{F}_p X_1$, $X_3 \notin \operatorname{vect}_{\mathbb{F}_p}(X_1, X_2)$, ..., $X_n \notin \operatorname{vect}_{\mathbb{F}_p}(X_1, \ldots, X_{n-1})$.

Donc, pour X_1 nous avons $|\mathbb{F}_p^n \setminus \{0\}| = p^n - 1$ choix, pour X_2 nous avons $|\mathbb{F}_p^n \setminus \mathbb{F}_p X_1| = p^n - p$ choix, pour X_3 nous avons $|\mathbb{F}_p^n \setminus \text{vect}_{\mathbb{F}_p}(X_1, X_2)| = p^n - p^2$ choix, etc. Donc

$$|GL_n(\mathbb{F}_p)| = (p^n - 1)(p^n - p)(p^n - p^2) \cdots (p^n - p^{n-1}).$$

En particulier, pour p=n=2, on trouve $|\mathrm{GL}_2(\mathbb{F}_2)|=6$. On verra que $\mathrm{GL}_2(\mathbb{F}_2)\cong\mathfrak{S}_3$.

(iii) On fixe n > 1. Soit $R \in GL_2(\mathbb{R})$ la rotation d'un angle $\frac{2\pi}{n}$ dans le sens anti-horaire autour de l'origine. Soit S la réflexion par rapport à l'axe des abscisses. En identifiant \mathbb{R}^2 avec \mathbb{C} , on obtient

$$R(z) = e^{\frac{2\pi i}{n}} z, \qquad S(z) = \bar{z}.$$

On en déduit que $SR^kS=R^{-k}$ pour tout $k\in\mathbb{Z},$ car

$$S(R^k(S(z))) = S(R^k(\bar{z})) = S(e^{\frac{2k\pi i}{n}}\bar{z}) = e^{-\frac{2k\pi i}{n}}z = R^{-k}(z)$$

pour tout $z \in \mathbb{C}$. On prétend que

$$\mathcal{D}_n = \{I, R, \dots, R^{n-1}\} \cup \{S, RS, \dots, R^{n-1}S\}$$

est un sous-groupe de $\mathrm{GL}_2(\mathbb{R})$. On remarque que

$$R^{i}R^{j} = R^{i+j}, \quad R^{i}(R^{j}S) = R^{i+j}S, \quad (R^{i}S)R^{j} = R^{i-j}S, \quad (R^{i}S)(R^{j}S) = R^{i-j}.$$

Donc \mathcal{D}_n est clos par multiplication. De plus, le premier et le dernier produit impliquent respectivement que

$$(R^i)^{-1} = R^{-i},$$
 $(R^iS)^{-1} = R^iS.$

Donc \mathcal{D}_n est clos par inversion. Ce groupe s'appelle le groupe diédral de 2n éléments. Si n > 2, alors \mathcal{D}_n n'est pas commutatif.

3. Actions

Soit X ensemble et G un groupe.

Définition 3.1. Une action de G sur X est une fonction

$$G \times X \to X$$
$$(g, x) \mapsto g \cdot x$$

telle que

- (i) $e \cdot x = x$ pour tout $x \in X$;
- (ii) $(gg') \cdot x = g \cdot (g' \cdot x)$ pour tout $g, g' \in G$ et $x \in X$.

De temps en temps, un ensemble muni d'une action d'un groupe G sera appelé un G-ensemble.

Exercice 3.2. Si X est un ensemble muni d'une action d'un groupe G, alors la fonction $\rho: G \to \mathfrak{S}_X$ définie par $\rho(g)(x) := g \cdot x$ pour tout $g \in G$ et $x \in X$ est un morphisme de groupes, où \mathfrak{S}_X désigne le groupe des bijections de X. Réciproquement, si $\rho: G \to \mathfrak{S}_X$ est un morphisme de groupes, alors $g \cdot x := \rho(g)(x)$ définit une action de G sur X.

Exemple 3.3. Voilà quelques exemples d'actions de groupes.

- (i) Le groupe \mathfrak{S}_n agit naturellement sur l'ensemble $\{1,\ldots,n\}$.
- (ii) On identifie \mathbb{k}^n avec l'ensemble des vecteurs colonne à coefficients dans \mathbb{k} . Le groupe $\mathrm{GL}_n(\mathbb{k})$ agit alors sur \mathbb{k}^n par produit matriciel, en posant $A \cdot v = Av$ pour tout $A \in \mathrm{GL}_n(\mathbb{k})$ et $v \in \mathbb{k}^n$.

(iii) Pour tout $g \in \mathcal{D}_n$ et $\zeta \in \boldsymbol{\mu}_n$, l'élément $g(\zeta)$ est encore une racine nème de l'unité. Afin de le voir, il suffit de le vérifier pour les générateurs $R, S \in \mathcal{D}_n$:

$$R(\zeta)^n = \left(e^{\frac{2\pi i}{n}}\zeta\right)^n = e^{\frac{2n\pi i}{n}}\zeta^n = 1, \qquad S(\zeta)^n = \left(\bar{\zeta}\right)^n = \zeta^{-n} = 1.$$

On obtient donc une action de \mathcal{D}_n sur $\boldsymbol{\mu}_n$.

- (iv) Soit H < G un sous-groupe d'un groupe G.
 - (a) H agit sur G par le morphisme de groupes $\rho_L: H \to \mathfrak{S}_G$ obtenu en posant $\rho_L(h)(g) := hg$ pour tout $h \in H$ et $g \in G$. Cela est l'action de H sur G par translation à qauche.
 - (b) H agit sur G par le morphisme de groupes $\rho_R: H \to \mathfrak{S}_G$ obtenu en posant $\rho_R(h)(g) := gh^{-1}$ pour tout $h \in H$ et $g \in G$. Cela est l'action de H sur G par translation à droite. Le lecteur devra vérifier que la formule précédente est bien cohérente, et qu'en écrivant $h \cdot g = gh$ on n'obtient pas une action.

Dans l'exemple précédent, on a vu qu'un sous-groupe H < G peut agir de deux manières différentes. Finalement, ces actions ne sont pas si différentes que ça. Pour exprimer cela de façon précise, on a besoin d'une définition.

Définition 3.4. Soient X et Y deux G-ensembles. Une fonction $f: X \to Y$ est dite G-équivariante, ou une G-fonction, si $f(g \cdot x) = g \cdot (f(x))$ pour tout $g \in G$ et $x \in X$.

On peut maintenant exprimer le fait que les actions par translation à droite et à gauche sont "les mêmes".

Exercice 3.5. Soit H < G un sous-groupe. Soit G_L l'ensemble G muni de l'action par translations à gauche de H, à savoir, $\rho_L(h)(g) = hg$ pour tout $h \in H$ et $g \in G_L$. Soit G_R l'ensemble G muni de l'action par translations à droite de H, à savoir, $\rho_R(h)(g) = gh^{-1}$ pour tout $h \in H$ et $g \in G_R$. Montrer que la fonction $_^{-1}: G_L \to G_R$ est une bijection H-équivariante.

Si l'ensemble X est muni d'une structure additionnelle, on s'intéresse souvent aux actions qui préservent cette structure.

Définition 3.6. Soit G un groupe.

(i) Soit Γ un groupe et $G \times \Gamma \to \Gamma$ une action. On dit que G agit par homomorphismes si

$$g \cdot (\gamma \gamma') = (g \cdot \gamma)(g \cdot \gamma')$$

pour tout $g \in G$ et $\gamma, \gamma' \in \Gamma$. Cela arrive si et seulement si la bijection $\rho(g)$ définie dans l'Exercice 3.2 est un morphisme de groupes pour tout $g \in G$. Dans ce cas, im $\rho < \operatorname{Aut}(\Gamma)$, donc, sans changer de nom, l'action de G sur Γ est donnée par un homomorphisme $\rho : G \to \operatorname{Aut}(\Gamma)$.

(ii) Soit V un espace vectoriel sur un corps \Bbbk et $G\times V\to V$ une action. On dit que cette action est lin'eaire si

$$g \cdot (v + v') = g \cdot v + g \cdot v', \qquad g \cdot (\lambda v) = \lambda(g \cdot v)$$

pour tout $g \in G$, $v, v' \in V$ et $\lambda \in \mathbb{k}$. Cela arrive si et seulement si la bijection $\rho(g)$ définie dans l'Exercice 3.2 est une application linéaire pour tout $g \in G$. Dans ce cas, im $\rho < \operatorname{GL}_{\mathbb{k}}(V)$, donc, sans changer de nom, l'action de G sur V est donnée par un homomorphisme $\rho: G \to \operatorname{GL}_{\mathbb{k}}(V)$.

Exemple 3.7. Voilà des exemples et des non-exemples.

(i) L'action d'un sous-groupe H < G sur G par translation à gauche est une action par homomorphismes si et seulement si $H = \{e\}$. En effet,

$$h \cdot (gg') = (h \cdot g)(h \cdot g') \qquad \forall h \in H$$

$$\Leftrightarrow \qquad hgg' = hghg' \qquad \forall h \in H$$

$$\Leftrightarrow \qquad e = (hg)^{-1}(hgg')(g')^{-1} = (hg)^{-1}(hghg')(g')^{-1} = h \qquad \forall h \in H.$$

(ii) L'action de $GL_n(\mathbb{k})$ sur \mathbb{k}^n est clairement linéaire.

L'un des exemples les plus importantes d'actions par homomorphismes est le suivant.

Exemple 3.8. Si H < G est un sous-groupe, alors H agit sur G par le morphisme de groupes $\rho_C : H \to \operatorname{Aut}(G) < \mathfrak{S}_G$ obtenu en posant $\rho_C(h)(g) := hgh^{-1}$ pour tout $h \in H$ et $g \in G$. Cela est l'action de H sur G par conjugaison. Il s'agit d'une action par homomorphismes, car

$$h \cdot (gg') = hgg'h^{-1} = hgh^{-1}hg'h^{-1} = (h \cdot g)(h \cdot g')$$

pour tout $h \in H$ et $g, g' \in G$.

L'idée même d'action donne directement des résultats non-triviaux.

Théorème 3.9 (Cayley). Si G est un groupe d'ordre n, alors G est isomorphe à un sous-groupe de \mathfrak{S}_n .

Démonstration. On considère l'action de G sur lui même par translation à gauche. D'après l'Exercice 3.2, on obtient un morphisme de groupes $\rho_L: G \to \mathfrak{S}_G \cong \mathfrak{S}_n$. Il est clair que

$$g \in \ker \rho_{\mathcal{L}} \Rightarrow \rho_{\mathcal{L}}(g)(e) = e \Rightarrow g = e.$$

Donc ρ est injectif, et $\rho: G \to \operatorname{im} \rho < \mathfrak{S}_n$ est isomorphisme.

Malgré son apparence spectaculaire, le théorème de Cayley n'est pas si puissant que ça. En effet, les sous-groupes d'un groupe symétrique ne sont pas faciles à déterminer.

Exemple 3.10. Posons $\zeta = e^{\frac{2\pi i}{5}}$. On a $\mu_5 = \{\zeta^1, \zeta^2, \zeta^3, \zeta^4, \zeta^5\}$. En faisant agir μ_5 par translation à gauche sur lui même, on obtient un homomorphisme injectif

$$\rho_{\mathcal{L}}: \boldsymbol{\mu}_5 \hookrightarrow \mathfrak{S}_{\boldsymbol{\mu}_5} \cong \mathfrak{S}_5$$
$$\zeta^k \mapsto (1\ 2\ 3\ 4\ 5)^k.$$

Définition 3.11. Soit X un ensemble muni d'une action d'un groupe G, et soit $x \in X$ un élément.

- (i) Un sous-ensemble $Y\subset X$ est $stable\ par\ G$ si $G\cdot Y\subset Y$, où $G\cdot Y$ dénote l'ensemble $\{g\cdot y\mid g\in G, y\in Y\}.$
- (ii) L'orbite de x est $\mathrm{orb}(x) = \{g \cdot x \mid g \in G\} \subset X$. On écrira parfois $G \cdot x$ pour $\mathrm{orb}(x)$. Clairement, $\mathrm{orb}(x)$ est stable par G.
- (iii) Le stabilisateur de x est $\operatorname{st}(x) = \{g \in G \mid g \cdot x = x\}$. On écrira parfois G_x pour $\operatorname{st}(x)$. Clairement, $\operatorname{st}(x)$ est un sous-groupe de G.
- (iv) On dit que x est un point fixe si $g\cdot x=x$ pour tout $g\in G$, c'est-à-dire si $G_x=G$. L'ensemble des points fixes est noté X^G .
- (v) On dit que l'action est transitive si X consiste en une seule orbite, c'està-dire si $X = G \cdot x$ pour quelque (en fait pour tout) $x \in X$. Dans ce cas, X est appelé aussi un espace homogène.
- (vi) On dit que l'action est libre si tous les stabilisateurs sont triviaux, c'est à dire si $G_x = \{e\}$ pour tout $x \in X$.

Exemple 3.12. Voilà quelques exemples.

(i) Le groupe $G = GL_n(\mathbb{k})$ agit naturellement sur \mathbb{k}^n . Si n = 2, et si $\{e_1, e_2\}$ dénote la base standard de \mathbb{k}^2 , alors $G \cdot e_1 = \mathbb{k}^2 \setminus \{0\}$, car

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{cases} \begin{pmatrix} x & 0 \\ y & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \text{si } x \neq 0, \\ \begin{pmatrix} x & 1 \\ y & 0 \end{pmatrix} \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix} & \text{si } y \neq 0 \end{cases} \in G \cdot e_1 \qquad \forall \begin{pmatrix} x \\ y \end{pmatrix} \in \mathbb{k}^2 \setminus \{0\},$$

et $G \cdot 0 = \{0\}$. L'action est donc transitive sur $\mathbb{k}^2 \setminus \{0\}$, et 0 est l'unique point fixe. De plus,

$$G_{e_1} = \left\{ \begin{pmatrix} 1 & b \\ 0 & d \end{pmatrix} \middle| b, d \in \mathbb{k}, d \neq 0 \right\}.$$

Il suit que \mathbb{k}^2 n'est pas un espace homogène, et que l'action n'est pas libre.

- (ii) Soit H < G un sous-groupe d'un groupe G.
 - (a) En faisant agir H par translation à gauche, les stabilisateurs sont triviaux, $\operatorname{st}(g) = \{e\}$ pour tout $g \in G$, et les orbites sont les classes à droite, $\operatorname{orb}(g) = Hg = \{hg \mid h \in H\}$ pour tout $g \in G$. Donc l'action est libre, et elle est transitive si et seulement si H = G.
 - (b) En faisant agir H par translation à droite, les stabilisateurs sont triviaux, $\operatorname{st}(g) = \{e\}$ pour tout $g \in G$, et les orbites sont les classes à gauche, $\operatorname{orb}(g) = gH = \{gh \mid h \in H\}$ pour tout $g \in G$. Donc l'action est libre, et elle est transitive si et seulement si H = G.

Exercice 3.13 (Exercice 1.(ii), Feuille TD1). Soit $\mathbb{P}^{n-1}(\mathbb{k})$ l'espace projectif de dimension n-1 sur \mathbb{k} , qui est par définition l'ensemble des droites vectorielles de \mathbb{k}^n . De manière équivalente, $\mathbb{P}^{n-1}(\mathbb{k})$ peut être défini comme le quotient de $\mathbb{k}^n \setminus \{0\}$ par la relation d'équivalence

$$v \sim v' \Leftrightarrow \exists \lambda \in \mathbb{k} \setminus \{0\} : v' = \lambda v.$$

Le groupe $G = GL_n(\mathbb{k})$ agit naturellement sur $\mathbb{P}^{n-1}(\mathbb{k})$ par $A \cdot [v] = [Av]$ pour tout $[v] \in \mathbb{P}^1(\mathbb{k})$ et $A \in G$. En prenant n = 2, montrer que cette action n'est pas libre, mais qu'elle est transitive.

Exercice 3.14 (Exercice 5, Feuille TD1). En utilisant l'action de $GL_2(\mathbb{F}_2)$ sur l'espace projectif $\mathbb{P}^1(\mathbb{F}_2)$, montrer que $GL_2(\mathbb{F}_2) \cong \mathfrak{S}_3$.

Il s'avère que les actions transitives et libres sont "uniques".

Exercice 3.15. Soit X un ensemble muni d'une action libre et transitive d'un groupe G, et soit $x \in X$ un de ses éléments. Alors la fonction $\varphi : G \to X$ définie par $\varphi(g) = g \cdot x$ est une bijection G-équivariante.

4. Quotients

Soit X un G-ensemble.

Définition 4.1. Le quotient de X par G est l'ensemble X/G des orbites de G. La projection canonique est la fonction $\pi: X \twoheadrightarrow X/G$ qui à tout $x \in X$ associe son orbite $\operatorname{orb}(x) \in X/G$.

Exemple 4.2. Voilà quelques exemples.

(i) Considérons l'action naturelle de $G = GL_2(\mathbb{k})$ sur $X = \mathbb{k}^2$. Alors, comme vu dans l'Exemple 3.12, on a $X/G = \{\{0\}, \mathbb{k}^2 \setminus \{0\}\}$.

- (ii) Le groupe $G = \mathbb{k}^{\times}$ agit sur $X = \mathbb{k}^{n} \setminus \{0\}$ par multiplication scalaire, en posant $\lambda \cdot v = \lambda v$ pour tout $\lambda \in G$ et $v \in X$. Toute orbite est alors une droite vectorielle privée de l'origine, et $X/G \cong \mathbb{P}^{n-1}(\mathbb{k})$.
- (iii) Soit H < G un sous-groupe d'un groupe G. En utilisant la notation introduite dans l'Exercice 3.5, on obtient les ensembles quotients des classes à gauche $G_{\rm L}/H = \{Hg \mid g \in G\}$ et celui des classes à droite $G_{\rm R}/H = \{gH \mid g \in G\}$. On écrira parfois $H \setminus G$ pour $G_{\rm L}/H$ et G/H pour $G_{\rm R}/H$.

Proposition 4.3. Si H < G est un sous-groupe d'un groupe G, alors il existe une bijection $H \setminus G \to G/H$.

Démonstration. On a vu dans l'Exercice 3.5 que l'inversion $_^{-1}: G_L \to G_R$ définit une bijection H-équivariante. Les orbites sont alors en bijection.

Exemple 4.4. Pour $G = \mathcal{D}_3$ et $H = \langle S \rangle$, on trouve

$$H \setminus G = \{\{I, S\}, \{R, R^2 S\}, \{R^2, RS\}\},\$$

$$G/H = \{\{I, S\}, \{R, RS\}, \{R^2, R^2 S\}\}.$$

Définition 4.5. L'indice de H dans G est $[G:H] := |H \setminus G| = |G/H|$.

On en profite pour rappeler le Théorème 1.1: si G est fini, alors

$$[G:H] = |G|/|H|,$$

car chacune des orbites gH contient exactement |H| éléments, et il y a, par définition, [G:H] orbites.

Voilà la propriété universelle satisfaite par les quotients, dont la preuve est tautologique.

Proposition 4.6. Si X est un G-ensemble et Y est un ensemble, alors, pour toute fonction $f: X \to Y$ qui est constante sur les orbites, il existe une unique fonction

$$\bar{f}: X/G \to Y$$

telle que $\bar{f}(\operatorname{orb}(x)) = f(x)$.

Si H < G est un sous-groupe d'un groupe G, alors une propriété très importante du quotient G/H est le fait qu'il admet encore une action naturelle de G par translation à gauche. En effet, si on pose $g \cdot g'H = gg'H$ pour tout $g \in G$ et $g'H \in G/H$, on peut vérifier facilement qu'il s'agit d'une action. Dans la théorie, cette action joue un rôle de premier plan, car elle est le prototype d'une action transitive.

Lemme 4.7. Soit X un G-ensemble, et soit $x \in X$ un de ses éléments.

- (i) La fonction $\varphi_x: G/G_x \to G \cdot x$ définie par $\varphi_x(gG_x) = g \cdot x$ pour tout $g \in G$ est une bijection.
- (ii) La bijection $\varphi_x : G/G_x \to G \cdot x$ est G-équivariante par rapport aux actions de G sur G/G_x (par translation à gauche) et sur $G \cdot x$ (par restriction de l'action sur X).
- (iii) Les stabilisateurs des éléments d'une même orbite sont tous conjugués par $G_{q \cdot x} = gG_xg^{-1}$.

Démonstration. La preuve est évidente, mais on la reproduit ici pour aider le lecteur à retenir les définitions.

(i) Si $g'G_x = gG_x$, alors g' = gs pour quelque $s \in G_x$, et $q' \cdot x = (gs) \cdot x = g \cdot (s \cdot x) = g \cdot x$.

Donc la fonction φ_x est bien définie. Elle est surjective par définition d'orbite. Elle est injective car

$$\varphi_x(gG_x) = \varphi_x(g'G_x) \Leftrightarrow g \cdot x = g' \cdot x \Leftrightarrow g^{-1} \cdot (g \cdot x) = g^{-1} \cdot (g' \cdot x)$$
$$\Leftrightarrow x = (g^{-1}g') \cdot x \Leftrightarrow g^{-1}g' \in G_x \Leftrightarrow gG_x = g'G_x.$$

- (ii) Pour tout $g \in G$ et $g'G_x \in G/G_x$ on a $\varphi_x(g \cdot g'G_x) = \varphi_x(gg'G_x) = (gg') \cdot x = g \cdot (g' \cdot x) = g \cdot \varphi_x(g'G_x).$
- (iii) Pour tout $g \in G$ on a

$$s \in G_{g \cdot x} \Leftrightarrow s \cdot (g \cdot x) = g \cdot x \Leftrightarrow g^{-1} \cdot (s \cdot (g \cdot x)) = g^{-1} \cdot (g \cdot x) \Leftrightarrow (g^{-1}sg) \cdot x = x$$
$$\Leftrightarrow g^{-1}sg \in G_x \Leftrightarrow s \in gG_xg^{-1}.$$

Corollaire 4.8. Si X est un G-espace homogène, c'est-à-dire un G-espace constitué d'une seule orbite, alors il existe un sous-groupe H < G et une bijection G-équivariante $\varphi: G/H \to X$.

Démonstration. On choisit $x \in X$, on pose $H = G_x$, et on applique le Lemme 4.7.

Corollaire 4.9 (Formule des classes). Soit G un groupe fini et X un G-espace fini.

(i) Pour tout $x \in X$ on a

$$|G \cdot x| = [G : G_x].$$

(ii) Si $X = (G \cdot x_1) \sqcup \ldots \sqcup (G \cdot x_n)$, alors

$$|X| = \sum_{i=1}^{n} |G \cdot x_i| = \sum_{i=1}^{n} \frac{|G|}{|G_{x_i}|}.$$

Démonstration. L'énoncé est une conséquence directe du Lemme 4.7.(ii).

(i) La fonction

$$\varphi_x: G/G_x \to G \cdot x$$
$$gG_x \mapsto g \cdot x$$

est une bijection, donc $|G \cdot x| = |G/G_x|$. Mais $|G/G_x| = [G:G_x]$ par définition.

(ii) Comme $X = (G \cdot x_1) \sqcup \ldots \sqcup (G \cdot x_n)$, on a

$$|X| = \sum_{i=1}^{n} |G \cdot x_i|.$$

En utilisant la bijection φ_x on déduit que $|G\cdot x_i|=|G/G_{x_i}|=|G|/|G_{x_i}|$ pour tout entier $1\leqslant i\leqslant n$.

Exemple 4.10. Voilà quelques exemples d'applications du Corollaire 4.9.

(i) Considérons l'espace projectif $\mathbb{P}^1(\mathbb{k})$, sur lequel le groupe $\operatorname{GL}_2(\mathbb{k})$ agit transitivement, comme vu dans l'Exercice 3.13.(iii). Un utilisant le Lemme 4.7, on obtient une bijection $\operatorname{GL}_2(\mathbb{k})$ -équivariante

$$GL_2(\mathbb{k})/B \to \mathbb{P}^1(\mathbb{k}),$$

où $B=\mathrm{st}([e_1])$ est le groupe des matrices triangulaires supérieures inversibles.

(ii) Le groupe additif $\mathbb R$ agit sur le cercle $S^1\cong\{z\in\mathbb C\mid |z|=1\}$ par rotations, en posant $t\cdot z=e^{2t\pi \mathrm{i}}z$. Clairement, cette action est transitive. De plus, $\mathrm{st}(1)=\mathbb Z$. Alors la fonction

$$\mathbb{R} \to S^1$$
$$\vartheta \mapsto e^{2t\pi \mathfrak{i}}$$

définit une bijection entre \mathbb{R}/\mathbb{Z} et S^1 .

Exemple 4.11. Soit p un nombre premier et G un groupe fini d'ordre p^n . On note Z(G) son centre. On fait agir G sur lui même par conjugaison, c'est-à-dire $g \cdot x = gxg^{-1}$ pour tout $g, x \in G$. On note cl(g) l'orbite de $x \in G$, qui coïncide avec la classe de conjugaison de x. Si |G|/|st(x)| > 1, alors $|G|/|st(x)| \equiv 0 \pmod{p}$. Si |G|/|st(x)| = 1, alors $cl(x) = \{x\}$, donc $x \in Z(G)$. La formule des classes implique

$$|G| \equiv |Z(G)| \pmod{p}$$
.

Par conséquent, $|\mathbf{Z}(G)| \equiv 0 \pmod p$. En particulier, $|\mathbf{Z}(G)| \neq 1$. Cela nous permet de montrer que tout groupe d'ordre p^2 est abélien. En effet, si n=2, alors $|\mathbf{Z}(G)|$ est soit p, soit p^2 . Supposons par l'absurde que $|\mathbf{Z}(G)| = p$. Alors, il existe $x \in G \setminus \mathbf{Z}(G)$. Soit $\mathbf{C}_G(x) = \{g \in G \mid gx = xg\}$ le centralisateur de x dans G. C'est facile de voir que $\mathbf{C}_G(x)$ est un sous-groupe de G, qu'il contient le centre $\mathbf{Z}(G)$, et qu'il contient le sous-groupe $\langle x \rangle$ engendré par x. Alors $p = |\mathbf{Z}(G)| < |\mathbf{C}_G(x)| \mid |G| = p^2$, donc $\mathbf{C}_G(x) = G$. Cela signifie que x commute avec tous les éléments de G, donc $x \in \mathbf{Z}(G)$, une contradiction.