Hungarian Helper

Indra Narayan Dutta(NSN8A7)

Objectives

 Create a model that acts as an OCR (Optical Character Recognition) for Hungarian characters – the OCR will be used for translation apps

 A lot of work has been done for English natural scene character recognition but hardly any models are available for Hungarian text

Challenges

 Dataset Unavailability: Unlike English, not a lot of datasets are available for Hungarian natural scene characters

 Model size: An OCR forms the last step in any scene text recognition pipeline and must therefore be light enough to allow bigger prior model pipelines

Dataset Preparation

How the dataset challenge was solved:

Since Hungarian and English share the same Latin script and only differ in the Hungarian special characters, I combined pre-existing English scene text images with Hungarian Characters from a different domain

English Scene Text from ICDAR Challenges

Hungarian special characters from handwritten text recognition

Dataset Split

- The following datasets were considered:
 - ICDAR 2003 Challenge for English Natural Scene Text Images
 - ICDAR Robust Reading Challenge for more difficult English Scene Text
 - Bartosgye's Handwritten character dataset: Handwritten characters for both English and Hungarian special characters

Training	Validation	Test
Images	Images	Images
98, 717	32,919	32,915

Model Pipeline

- A CNN was used with two Fully connected layers at the end
- Data augmentation was done on the training data using:
 - Random Greyscaling of image
 - Random rotation of +22.5 to -22.5 degrees

Model Hyperparameters to consider

- Embedding depth: Initial Embedding depth gets doubled and the dimensions of the input channels get halved at every layer, so the embedding depth determines model size
- Image size: Since multiple sources of images are used, image size becomes vital
- Batch Norm or not: Should batch norm be used or not?
- Learning Rate
- Batch size