Algorytmy geometryczne

Sprawozdanie z ćwiczenia 1.

Paweł Lamża

Dane techniczne urządzenia na którym wykonano ćwiczenie:

Laptop z systemem Windows 10 x64

Procesor: AMD Ryzen™ 5 4600H

Pamięć RAM: 16GB

Środowisko: Jupyter notebook

Ćwiczenie zrealizowano w języku Python 3, z wykorzystaniem

bibliotek numpy oraz matplotlib

Opis ćwiczenia

Ćwiczenie polegało na porównaniu wyników klasyfikacji położenia różnych grup punktów względem wektora w zależności od wybranej metody obliczania wyznacznika oraz tolerancji dla zera. (położenie punktów po lewej/prawej stronie wektora lub na nim)

1. Generacja punktów

W celu wykonania ćwiczenia wygenerowałem 4 zestawy punktów A, B, C, D z treści ćwiczenia. Dokonałem losowanie położenia punktów z pomocą metody np.random.rand() z biblioteki numpy. Funkcja ta generuje macierz zadanej wielkości z liczbami typu double z przedziału (0,1). Dodatkowo punkty z zestawu C zostały wygenerowane z pomocą funkcji trygonometrycznych, również z biblioteki numpy. W zestawie D dodatkowo użyłem metodę np.polyfit (w celu wyliczenia 'a' i 'b' w równaniu y = ax + b) Wszystkie zestawy punktów zostały zwizualizowane za pomocą dostarczonego narzędzia graficznego. Poniżej wykresy dla kolejnych zestawów punktów:

Wykres 1.1, ZESTAW A

Wykres 1.3, ZESTAW C

Wykres 1.2, ZESTAW B

Wykres 1.4, ZESTAW D

2. Metody obliczania wyznacznika oraz tolerancje dla zera

Kolejnym krokiem ćwiczenia było sklasyfikowanie punktów względem wektora w zależności od metod obliczania wyznacznika oraz tolerancji dla zera przy określaniu położenia na podstawie wyznacznika. Wykorzystałem następujące wyznaczniki:

- Wyznacznik 3x3 obliczany za pomocą metody z biblioteki numpy
- Wyznacznik 2x2 obliczany za pomocą metody z biblioteki numpy
- Wyznacznik 3x3 obliczany za pomocą własnej funkcji
- Wyznacznik 2x2 obliczany za pomocą własnej funkcji

Do obliczania własnych wyznaczników użyłem wzorów zamieszczonych w treści ćwiczenia na obliczanie położenia punktu względem odcinka

Rozważane przeze mnie tolerancje dla zera to: 10^-18, 10^-14, 10^-10 oraz 10^-6

3. Klasyfikowanie punktów

W celu zrealizowania zadania stworzyłem funkcje **classify**, która dla danego zestawu punktów zwraca trzy tablice dwuwymiarowe (kolejno left, collinear, right) w których przechowywane są informacje o sklasyfikowaniu punktów dla różnych metod wyliczania wyznacznika i różnych tolerancji dla zera (odpowiednio: po lewej, na odcinku, po prawej)

4. Wizualizacja sklasyfikowania

W kolejnym kroku wyświetlałem wyniki dla poszczególnych zestawów przy użyciu różnych metod obliczania wyznacznika. W tej części ćwiczenia tolerancja dla zera była taka sama dla wszystkich testów we wszystkich zestawach i wynosiła 10^-18. Dodatkowo na początku wyświetlałem wyniki dla danego zestawu w porównaniu kolejnych wyznaczników. Jeśli chodzi o kolory na wykresach to:

- Czerwony punkty sklasyfikowane po lewej stronie prostej
- Zielony punkty sklasyfikowane po prawej stronie prostej
- Niebieski punkty sklasyfikowane na prostej

Zestaw A, wyniki takie same dla wszystkich wyznaczników:

	ро	na	ро	
Wyznacznik	lewej	prostej	prawej	
3x3 numpy	50045	0	49955	
2x2 numpy	50045	0	49955	
3x3 mój	50045	0	49955	
2x2 mój	50045	0	49955	

Tabela 4.A.1

KLASYFIKACJA DLA WSZYSTKICH WYZNACZNIKÓW PRZY STAŁEJ TOLERANCJI DLA ZERA

(ZESTAW A)

Wykres 4.A.1

KLASYFIKACJA DLA WSZYSTKICH WYZNACZNIKÓW PRZY STAŁEJ TOLERANCJI DLA ZERA (ZESTAW A)

Zestaw B, wyniki różne dla obliczania wyznaczników 3x3 i 2x2, dla wyznaczników 2x2 12 punktów znalazło się na odcinku, przy czym co ciekawe były to różne punkty dla wyznacznika 2x2 z biblioteki numpy i własnej implementacji wyznacznika 2x2

	ро	na	ро	
Wyznacznik	lewej	prostej	prawej	
3x3 numpy	50152	0	49848	
2x2 numpy	50146	12	49842	
3x3 mój	50152	0	49848	
2x2 mój	50146	12	49842	

Tabela 4.B.1

KLASYFIKACJA DLA WSZYSTKICH WYZNACZNIKÓW PRZY STAŁEJ TOLERANCJI DLA ZERA

(ZESTAW B)

Wykres 4.B.1

DLA WYZNACZNIKA 3x3 Z BIBLIOTEKI NUMPY (**ZESTAW B**)

Wykres 4.B.2

DLA WYZNACZNIKA 2x2 Z BIBLIOTEKI NUMPY (**ZESTAW B**)

Wykres 4.B.3

DLA WYZNACZNIKA 2x2 WŁASNEJ IMPLEMENTACJI (**ZESTAW B**)

Zestaw C, wyniki znowu takie same dla wszystkich wyznaczników

Wykres 4.C.1

KLASYFIKACJA DLA KAŻDEGO WYZNACZNIKA PRZY STAŁEJ TOLERANCJI DLA ZERA(ZESTAW C)

Zestaw D, zaobserwowałem największe różnice dla różnych sposobów obliczania wyznacznika. W teorii wszystkie punkty powinny leżeć na prostej ale się tak nie dzieje, wiele z nich leży po prawej bądź lewej stronie co może wynikać z przyjętej tolerancji dla zera wynoszącej 10^-18

	ро	na	ро	
Wyznacznik	lewej	prostej	prawej	
3x3 numpy	444	92	464	
2x2 numpy	168	675	157	
3x3 mój	354	231	415	
2x2 mój	122	730	148	

Tabela 4.D.1

KLASYFIKACJA DLA WSZYSTKICH WYZNACZNIKÓW PRZY STAŁEJ TOLERANCJI DLA

ZERA(**ZESTAW D**)

Wykres 4.D.1

KLASYFIKACJA DLA WYZNACZNIKA 3x3 Z BIBLIOTEKI NUMPY (**ZESTAW D**)

Wykres 4.D.2

KLASYFIKACJA DLA WYZNACZNIKA 2x2 Z BIBLIOTEKI NUMPY (**ZESTAW D**)

Wykres 4.D.3

KLASYFIKACJA DLA WYZNACZNIKA 3x3 WŁASNEJ IMPLEMENTACJI (**ZESTAW D**)

Wykres 4.D.4

KLASYFIKACJA DLA WYZNACZNIKA 2x2 WŁASNEJ IMPLEMENTACJI (ZESTAW D)

5. Różnice dla poszczególnych wyznaczników

W tej części wciąż przyjmuję stałą tolerancję dla zera wynoszącą 10^-18, dla poszczególnych zestawów wyniki prezentują się następująco:

Zestaw A, nie zaobserwowałem żadnych różnic

Zestaw B, kilkanaście różnic pomiędzy poszczególnymi wyznacznikami

wyznacznik 1	wyznacznik 2	liczba różnic pomiędzy nimi
3x3 numpy	2x2 numpy	12
3x3 numpy	3x3 mój	0
3x3 numpy	2x2 mój	12
2x2 numpy	3x3 mój	12
2x2 numpy	2x2 mój	10
3x3 mój	2x2 mój	12

Tabela 5.B.1

LICZBA PUNKTÓW SKLASYFIKOWANYCH INACZEJ DLA RÓŻNYCH

WYZNACZNIKÓW(**ZESTAW B**)

Wykres 5.B.1

PUNKTY SKLASYFIKOWANE INACZEJ DLA WYZNACZNIKA 3X3 NUMPY I 2X2

NUMPY (**ZESTAW B**)

Wykres 5.B.2

PUNKTY SKLASYFIKOWANE INACZEJ DLA WYZNACZNIKA 3X3 NUMPY I 2X2 WŁASNEJ IMPLEMENTACJI (**ZESTAW B**)

Wykres 5.B.3

PUNKTY SKLASYFIKOWANE INACZEJ DLA WYZNACZNIKA 2X2 NUMPY I 3X3

WŁASNEJ IMPLEMENTACJI (**ZESTAW B**)

Wykres 5.B.4

PUNKTY SKLASYFIKOWANE INACZEJ DLA WYZNACZNIKA 2X2 NUMPY I 2X2

WŁASNEJ IMPLEMENTACJI (**ZESTAW B**)

Wykres 5.B.5

PUNKTY SKLASYFIKOWANE INACZEJ DLA WYZNACZNIKA 2X2 WŁASNEJ IMPLEMENTACJI I 2X2 WŁASNEJ IMPLEMENTACJI (**ZESTAW B**)

Zestaw C, ponownie nie zaobserwowałem żadnych różnic

Zestaw D, ogrom różnic (prawie 76%), ponieważ wszystkie punkty są blisko prostej toteż nawet minimalne różnice powodują inną klasyfikację

wyznacznik 1	wyznacznik 2	liczba różnic pomiędzy nimi
3x3 numpy	2x2 numpy	749
3x3 numpy	3x3 mój	277
3x3 numpy	2x2 mój	758
2x2 numpy	3x3 mój	667
2x2 numpy	2x2 mój	391
3x3 mój	2x2 mój	678

Tabela 5.D.1

PUNKTY SKLASYFIKOWANE INACZEJ DLA WYZNACZNIKA 3X3 NUMPY I 2X2 NUMPY (**ZESTAW D**)

Wykres 5.D.2

PUNKTY SKLASYFIKOWANE INACZEJ DLA WYZNACZNIKA 3X3 NUMPY I 3X3 WŁASNEJ IMPLEMENTACJI (**ZESTAW D**)

Wykres 5.D.3

PUNKTY SKLASYFIKOWANE INACZEJ DLA WYZNACZNIKA 3X3 NUMPY I 2X2

WŁASNEJ IMPLEMENTACJI (**ZESTAW D**)

Wykres 5.D.4

PUNKTY SKLASYFIKOWANE INACZEJ DLA WYZNACZNIKA 2X2 NUMPY I 3X3

WŁASNEJ IMPLEMENTACJI (**ZESTAW D**)

Wykres 5.D.5

PUNKTY SKLASYFIKOWANE INACZEJ DLA WYZNACZNIKA 2X2 NUMPY I 2X2 WŁASNEJ IMPLEMENTACJI (**ZESTAW D**)

Wykres 5.D.6

PUNKTY SKLASYFIKOWANE INACZEJ DLA WYZNACZNIKA 3X3 WŁASNEJ IMPLEMENTACJI I 2X2 WŁASNEJ IMPLEMENTACJI (**ZESTAW D**)

6. Analiza wyników dla różnych tolerancji zera

Dla **zestawu A**, wszędzie te same wyniki niezależnie od użytego wyznacznika ani tolerancji

Dla **zestawu B**, zauważamy różnice jedynie przy zmianie wyznacznika, jednak nie przy zmianie tolerancji dla zera

wyznacznik	tolerancja	po lewej	na prostej	po prawej
numpy 3x3	10^-18	50152	0	49848
numpy 3x3	10^-14	50152	0	49848
numpy 3x3	10^-10	50152	0	49848
numpy 3x3	10^-6	50152	0	49848
numpy 2x2	10^-18	50146	12	49842
numpy 2x2	10^-14	50146	12	49842
numpy 2x2	10^-10	50146	12	49842
numpy 2x2	10^-6	50146	12	49842
mój 3x3	10^-18	50152	0	49848
mój 3x3	10^-14	50152	0	49848
mój 3x3	10^-10	50152	0	49848
mój 3x3	10^-6	50152	0	49848
mój 2x2	10^-18	50146	12	49842
mój 2x2	10^-14	50146	12	49842
mój 2x2	10^-10	50146	12	49842
mój 2x2	10^-6	50146	12	49842

Tabela 6.1

Dla **zestawu C**, ponownie brak różnic, te same wyniki niezależnie od wyznacznika ani tolerancji

Dla **zestawu D**, duże różnice, przy większej tolerancji (w moim przypadku 1e-10) dla zera wszystkie punkty zaczynają pojawiać się na danej prostej

wyznacznik	tolerancja	po lewej	na prostej	po prawej
numpy 3x3	10^-18	444	92	464
numpy 3x3	10^-14	91	734	175
numpy 3x3	10^-10	0	1000	0
numpy 3x3	10^-6	0	1000	0
numpy 2x2	10^-18	168	675	157
numpy 2x2	10^-14	158	686	156
numpy 2x2	10^-10	0	1000	0
numpy 2x2	10^-6	0	1000	0
mój 3x3	10^-18	354	231	415
mój 3x3	10^-14	70	753	177
mój 3x3	10^-10	0	1000	0
mój 3x3	10^-6	0	1000	0
mój 2x2	10^-18	122	730	148
mój 2x2	10^-14	116	739	145
mój 2x2	10^-10	0	1000	0
mój 2x2	10^-6	0	1000	0

Tabela 6.2

7. Wnioski

- Odnosząc się do powyższych danych, różnica w klasyfikacji położenia punktu względem odcinka w zależności od metody obliczania wyznacznika jest znacząca.
- Różne tolerancje dla zera jeszcze bardziej zwiększają różnice. Co ciekawe dzieje się to tylko w niektórych przypadkach. Dla zestawów A i C takich różnic nie było niezależnie od sposobu wyliczania wyznacznika ani tolerancji dla zera. Co może prowadzić do wniosku że różnice występują tylko bardzo blisko linii z której pomocą dokonywaliśmy klasyfikowania.
- Na poprawność klasyfikacji jak widać ma też wpływ wielkość liczb.
 Zestawy A i B różniły się tylko wielkością liczb co doprowadziło do znaczących różnic zaobserwowanych w zestawie B i braku takich w zestawie A.
- Najwięcej różnic pojawiło się jednak w zestawie D. W teorii każdy punkt powinien znaleźć się na prostej, jednak tak się nie stało, a wręcz przy bardzo małej tolerancji dla zera punkty rzadko pojawiały się na prostej.
- Dla najmniejsze tolerancji 10^-18 najlepszym sposobem wyliczania wyznacznika okazuje się 2x2 (mała różnica w punktach na prostej dla wersji numpy i z własnej implementacji).
- Dla tolerancji rzędu 10^-14 wszystkie wyznaczniki poradziły już sobie porównywalnie, chociaż wyznacznik numpy'owy 2x2 najgorzej ze wszystkich.
- Kiedy tolerancja dla zera zwiększa się do 10^-10 wszystkie punkty pojawiają się na prostej niezależnie od metody wyznaczania wyznacznika.
- Ciekawość poprowadziła mnie to sprawdzenia również wyników dla tolerancji dla zera 10^-12, przy której to już oba wyznaczniki 3x3 okazały się lepsze od tych 2x2
- Powyższe wyniki prowadzą do wniosków, iż dla różnych tolerancji dla zera i zestawów danych wyniki są zgoła inne co świadczy o tym że wyboru wyznacznika zawsze trzeba dokonywać w zależności od zadania (tj. zestawu danych i danej tolerancji).
- Podsumowując nie ma jednego najlepszego sposobu, który działałby w każdej sytuacji lepiej od innych.