## Theoretische Grundlagen der Informatik 3: Hausaufgabenabgabe 9 Tutorium: Sebastian , Mi 14.00 - 16.00 Uhr

Tom Nick - 340528 Maximillian Bachl - 341455 Marius Liwotto - 341051

## Aufgabe 1

(i)

```
\begin{aligned} \varphi_1 &:= \neg (\exists x \exists y E(x,y) \land \neg \exists x \forall y \exists z (\neg E(x,z) \lor f(x,y) = z)) \rightarrow \exists x E(x,f(y,x)) \\ &\equiv (\exists x \exists y E(x,y) \land \neg \exists x \forall y \exists z (\neg E(x,z) \lor f(x,y) = z)) \lor \exists x E(x,f(y,x)) \\ &\equiv (\exists x \exists y E(x,y) \land \forall x \exists y \forall z \neg (\neg E(x,z) \lor f(x,y) = z))) \lor \exists x E(x,f(y,x)) \\ &\equiv (\exists x \exists y E(x,y) \land \forall x \exists y \forall z (E(x,z) \land \neg (f(x,y) = z)))) \lor \exists x E(x,f(y,x)) \text{ in NNF} \\ &\equiv (\exists x_1 \exists y_2 E(x_1,y_2) \land \forall x_2 \exists y_2 \forall z_1 (E(x_2,z_1) \land \neg (f(x_2,y_2) = z_1)))) \lor \exists x_3 E(x_3,f(y,x_3)) \\ &\equiv \exists x_1 \exists y_2 \forall x_2 \exists y_2 \forall z_1 \exists x_3 ((E(x_1,y_2) \land (E(x_2,z_1) \land \neg (f(x_2,y_2) = z_1)))) \lor E(x_3,f(y,x_3))) \text{ in PN} \end{aligned}
```

(ii)

## Aufgabe 2

$$\phi_{1}(\mathcal{N}) := \exists x (y = x + x)$$

$$\phi_{2}(\mathcal{N}) := \exists x (y = x \cdot x)$$

$$\phi_{3}(\mathcal{R}) := x = y \cdot y$$

$$\phi_{4}(\mathcal{R}) := \exists m \forall n (m \cdot n = m \land m = x + y)$$

$$\phi_{5}(\mathcal{R}) := \exists m \exists n (n \cdot n = m \land y = x + m)$$

$$\phi_{6}(\mathcal{R}) := (u'' = u \cdot u' - v \cdot v') \land (v'' = u' \cdot v + u \cdot v')$$