

PANIC team - SHD2020
alzheimersmri-analysis

Simon Louis Nicolas

Model (3 layers)

Test accuracy	Train: synthetic data Test: : real data	Train: real data Test: synthetic data
Binary classification (Alzheimer or not)	59%	80%
4 classes (not Alzheimer, very mild, mild, moderate)	50%	40%

Model (3 layers)

Test accuracy	Train: synthetic data Test: : real data	Train: real data Test: synthetic data
Binary classification (Alzheimer or not)	59%	80%
4 classes (not Alzheimer, very mild, mild, moderate)	50%	40%

Focus on the model train on synthetic data, for 4 classes (50% of accuracy on real data)

Accuracy and loss (depending of iteration of model) for training and validation

Perspectives

- Change neural network structure (layers number and nodes)
- Remove redundancy in images dataset
- Other methods available for image classification ?
- Improve the classification model with data-augmentation ?

This project was our first real introduction to image classification from synthetic data

Thank you!