PROBABILITÉS ET STATISTIQUES

Les candidats sont priés de respecter les notations de l'énoncé et la numérotation des questions.

DÉFINITIONS - NOTATIONS - RAPPELS

1º On note : $\mathbb{N}^* = \mathbb{N} - \{0\}$, $\overline{\mathbb{N}} = \mathbb{N} \cup \{+\infty\}$, $\overline{\mathbb{N}}^* = \mathbb{N}^* \cup \{+\infty\}$, $\overline{\mathbb{R}} = \mathbb{R} \cup \{+\infty, -\infty\}$. L'adjectif « réel » (resp^t numérique) se rapportera à un élément de \mathbb{R} (resp^t $\overline{\mathbb{R}}$). $\mathbb{R}^{\mathbb{N}}$ (resp^t $\mathbb{R}^{\mathbb{N}^*}$) est l'ensemble des suites réelles indexées sur \mathbb{N} (resp^t \mathbb{N}^*). Si $x \in \mathbb{R}^{\mathbb{N}^*}$, on note x_n le n – uple (x_1, \ldots, x_n) .

2º Si $(a_n)_{n \in \mathbb{N}}$ est une suite numérique, on note $\overline{\lim} \ a_n$ (resp^t $\underline{\lim} \ a_n$) la limite supérieure (resp^t inférieure) de la suite $(a_n)_{n \in \mathbb{N}}$.

• Tous les objets définis ci-dessous le seront sur un espace probabilisé (Ε, ε, μ) quelconque.

 3° α étant une mesure positive sur (E, \mathcal{E}) et f une fonction numérique positive (i.e. $f \geq 0$) sur E, \mathcal{E} – mesurable, $f \cdot \alpha$ désigne la mesure de densité f par rapport $\dot{\alpha} \propto \left(\forall A \in \mathcal{E}, (f \cdot \alpha) \right) = \int_{-\infty}^{\infty} f \, d\alpha$.

 $4^{\rm o}$ v.a. (resp^t v.a.r., v.a.n.) est l'abréviation de *variable aléatoire*, i.e. application mesurable de (E, \mathcal{E}) dans un autre espace mesurable (resp^t v.a. réelle, v.a. numérique). Y étant une v.a., on note $\mu_{\rm Y}$ sa *loi*, i.e. la mesure image de μ par Y.

- a. Si U est une v.a.n. μ -intégrable, on note $E_{\mu}U=\int U\,d\mu$ (ou, s'il n'y a pas ambiguïté, EU).
- b. De même, si \mathcal{F} est une sous-tribu de \mathcal{E} , $E_{\mu}^{\vec{f}}U$ est l'espérance conditionnelle de U relativement à \mathcal{F} pour la probabilité μ . Lorsqu'il n'y aura pas ambiguïté, on la notera $E^{\vec{f}}U$ et on notera de manière identique un représentant et sa classe μ p.s. .

5° Si A, B \in E, on note A \subset B μ - p.s. le fait que μ ($\mathbf{1}_A \leqslant \mathbf{1}_B$) = 1 et A = B μ -p.s. le fait que μ ($\mathbf{1}_A = \mathbf{1}_B$) = 1.

(1_A désigne la fonction indicatrice de la partie A.)

- Les définitions suivantes s'adaptent immédiatement au cas où l'ensemble d'indice est \mathbb{N}^* au lieu de \mathbb{N} .
- 6º Si U = $(U_n)_{n \in \mathbb{N}}$ est une suite de v.a.r., on note $(U_n \Rightarrow)$ l'ensemble des éléments e de E tels que la suite réelle $(U_n(e))_{n \in \mathbb{N}}$ soit convergente dans \mathbb{R} .

7º Soient $(\mathcal{E}_n)_{n \in \mathbb{N}}$ une suite croissante $(\mathcal{E}_n \subset \mathcal{E}_{n+1} \ \forall \ n \in \mathbb{N})$ de sous-tribus de \mathcal{E} et $U = (U_n)_{n \in \mathbb{N}}$ une suite de v.a.r. ;

a. La suite U est dite $(\mathcal{E}_n)_{n \in \mathbb{N}}$ -adaptée si U_n est \mathcal{E}_n -mesurable pour tout $n \in \mathbb{N}$.

b. U est une sous-martingale (resp^t martingale) si elle est adaptée, si, $\forall n \in \mathbb{N}$, U_n est μ -intégrable et si :

$$\forall n \in \mathbb{N}^*, \qquad E_{\mu}^{C_{n-1}} (U_n - U_{n-1}) \geqslant 0 \text{ (respt} = 0).$$

(Si besoin, on précisera les éléments de référence; exemple : U est une u-sous-martingale relativement

c. Une martingale $U = (U_n)_{n \in \mathbb{N}}$ est dite bornée dans $L^1(\mu)$ si $\sup_{n \in \mathbb{N}} |E_{\mu}| |U_n| < + \infty$.

Dans tout le problème, on utilisera (sans les démontrer), les résultats suivants :

Si $U = (U_n)_{n \in \mathbb{N}}$ est une martingale bornée dans $L^1(\mu)$, on $a : \mu(U_n \rightarrow) = 1$.

Soit $U = (U_n)_{n \in \mathbb{N}}$ une sous-martingale. S'il existe c > 0 tel que : $\forall n \in \mathbb{N}^* \mid U_n - U_{n-1} \mid \leqslant c$

$$(U_n \to) = \left(\sum_{n=1}^{\infty} E_{\mu}^{C_{n-1}} \left[(U_n - U_{n-1}) + (U_n - U_{n-1})^2 \right] < + \infty \right) \mu - p.s.$$

Soit $(U_n)_{n\in\mathbb{N}^*}$ une suite de v.a.r. indépendantes définies sur l'espace de probabilité (Ω, \mathcal{B}, P) de loi respective N (0, σ_n^2), $n \in \mathbb{N}^*$, où $\sigma_n > 0$, et N (m, σ^2) désigne la loi gaussienne sur \mathbb{R} de moyenne m et variance σ^2 . Soient θ et $\tilde{\theta}$ deux réels distincts. On définit les deux suites de v.a.r. $X = (X_n)_{n \in \mathbb{N}^*}$ et $\tilde{X} = (\tilde{X}_n)_{n \in \mathbb{N}^*}$ par les équations :

$$X_{n} = \theta X_{n-1} + U_{n}$$

$$\tilde{X}_{n} = \tilde{\theta} \tilde{X}_{n-1} + U_{n}$$

$$X_{1} = \tilde{X}_{1} = U_{1}$$

On posera par la suite : $X_0 = \tilde{X}_0 = 0$ et, $\forall n \in \mathbb{N}^*$:

$$X_n = (X_1, \ldots, X_n)$$
 , $\tilde{X}_n = (\tilde{X}_1, \ldots, \tilde{X}_n)$.

1. a. a. Démontrer que, $\forall n \in \mathbb{N}^*$, la loi de X_n (resp t \tilde{X}_n) est une mesure de densité (notée) Q_n (resp t \tilde{Q}_n) par rapport à la mesure de Lebesgue λ_n de \mathbb{R}^n , et que $\underline{\tilde{Q}}_n$ peuvent être choisies strictement positives sur tout \mathbb{R}^n . (On ne demande pas une expression analytique de \underline{Q}_n et $\underline{\tilde{Q}}_n$.) \underline{Q}_n et $\underline{\tilde{Q}}_n$ seront ainsi choisies par la suite.

Soit, pour
$$n \in \mathbb{N}^*$$
, $V_n = \frac{X_{n-1}}{\sigma_n}$ et $\underline{V}_n = (V_1, \ldots, V_n)$.

4. a. β. À quel type de loi obéit la v.a. \underline{V}_n à valeurs dans \mathbb{R}^n ? Quel est le vecteur moyenne de \underline{V}_n ?

 \mathbf{L} a. γ. On note Λ la matrice de covariance de \mathbf{V}_n et \mathbf{C} une matrice orthogonale telle que $\mathbf{C} \Lambda \mathbf{C}^* = \mathbf{D}$ soit diagonale (C* est la transposée de C).

On note R la matrice diagonale n x n définie par :

$$R_{tt} / \frac{1}{\sqrt{D_{tt}}} \quad \text{si} \quad D_{tt} > 0$$

55

Soit $\Phi = RCV_n$. Préciser la loi de Φ .

 $-\infty$ }. emble

rieure)

sur E,

(E, E) i.e. la

t à F anière

t que

de N.

que la

N une

a. δ. Si || . || désigne la norme euclidienne usuelle dans Rⁿ et < . , . > le produit scalaire associé, démontrer que :

$$\|\underline{V}_n\|^2 \geqslant < D\Phi, \Phi >$$

et en déduire que :

$$\mathbf{E} e^{- \left\| \frac{\mathbf{V}_n}{2} \right\|^2} \leqslant \prod_{i: \mathbf{D}_{ii} > 0} \frac{1}{\sqrt{1 + 2 \mathbf{D}_{ii}}}$$

1. a. s. Établir alors l'inégalité :

$$\mathbf{E} \parallel \underline{\mathbf{V}}_{n} \parallel^{2} \leqslant \frac{1}{\left[\mathbf{E} e^{-\parallel \underline{\mathbf{V}}_{n} \parallel^{2}\right]^{2}}}$$

1. a. ζ. Démontrer les équivalences :

$$P\left[\sum_{n=1}^{\infty} \left(\frac{X_{n-1}}{\sigma_n}\right)^2 < + \infty\right] = 1 \Leftrightarrow \sum_{n=1}^{\infty} E\left(\frac{X_{n-1}}{\sigma_n}\right)^2 < + \infty$$

$$P\left[\sum_{n=1}^{\infty} \left(\frac{X_{n-1}}{\sigma_n}\right)^2 = + \infty\right] = 1 \Leftrightarrow \sum_{n=1}^{\infty} E\left(\frac{X_{n-1}}{\sigma_n}\right)^2 = + \infty$$

1. b. • On note encore X (resp^t \tilde{X}) l'application : $\omega \rightsquigarrow (X_n(\omega))_{n \in \mathbb{N}^*}$ (respectivement : $\omega \rightsquigarrow (\tilde{X}_n(\omega))_{n \in \mathbb{N}^*}$) de Ω dans $\mathbb{R}^{\mathbb{N}^*}$.

 $\forall j \in \mathbb{N}^*$, π_j est la j-ème projection de $\mathbb{R}^{\mathbb{N}^*}$ sur \mathbb{R} : $\pi_j(x) = x_j$, pour tout élément $x = (x_j)_{j \in \mathbb{N}^*}$ de $\mathbb{R}^{\mathbb{N}^*}$. $\mathcal{B}_{\mathbb{R}}$ étant la tribu borélienne de \mathbb{R} , on définit alors, $\forall n \in \mathbb{N}^*$, la famille \mathcal{B}_n de parties de $\mathbb{R}^{\mathbb{N}^*}$:

$$\mathcal{C}_n = \left\{ \bigcap_{j=1}^n \pi_j^{-1}(A_j) \mid A_j \in \mathcal{B}_R, j = 1, \dots n \right\} \quad \text{et } \mathcal{C}_\infty = \bigcup_{n \in \mathbb{N}^*} \mathcal{C}_n. \text{ Pour tout } n \in \mathbb{N}^*, \mathcal{B}_n \text{ est alors}$$
la tribu sur $\mathbb{R}^{\mathbb{N}^*}$ engendrée par \mathcal{C}_n .

- 1. b. a. Vérifier que $\forall n \in \mathbb{N}^* : \mathcal{B}_n \subset \mathcal{B}_{n+1} \subset \mathcal{B}_{\infty}$.
- 1. b. β . Démontrer que X (resp^t \tilde{X}) est une v.a. définie sur (Ω, \mathcal{B}, P) à valeurs dans $(\mathbb{R}^{\mathbb{N}^*}, \mathcal{B}_{\infty})$.
- 1. b. γ . Si Q_n (resp^t \tilde{Q}_n) est la fonction positive définie sur $\mathbb{R}^{\mathbb{N}^*}$ par, $\forall x \in \mathbb{R}^{\mathbb{N}^*}$: $Q_n(x) = \underline{Q}_n(x_n)$ (resp^t $\tilde{Q}_n(x) = \underline{\tilde{Q}}_n(x_n)$), où $n \in \mathbb{N}^*$, vérifier que Q_n et \tilde{Q}_n sont \mathcal{B}_n mesurables.
 - μ (resp^t $\tilde{\mu}$) est la loi de X (resp^t \tilde{X}), c'est-à-dire la probabilité image de P par X (resp^t \tilde{X}). Si α et β sont deux probabilités sur ($\mathbb{R}^{\mathbb{N}^*}$, \mathfrak{G}_{∞}), on définit les trois relations :

$$\begin{split} \alpha &\leqslant \beta \Leftrightarrow \left(A \in \mathcal{B}_{\infty} \text{ et } \beta\left(A\right) = 0 \quad \Rightarrow \alpha\left(A\right) = 0\right) \\ \alpha &\sim \beta \Leftrightarrow \left(\alpha \leqslant \beta \text{ et } \beta \leqslant \alpha\right) \\ \alpha &\perp \beta \Leftrightarrow \left(\exists \ A \in \mathcal{B}_{\infty} \text{ tel que } \alpha\left(A\right) = 1 \text{ et } \beta\left(A\right) = 0\right). \end{split}$$

Le but de ce problème est d'établir un critère explicite déterminant dans quel cas l'une de ces relations est satisfaite entre μ et $\stackrel{\sim}{\mu}$.

- On définit les probabilités sur $(\mathbb{R}^{\mathbb{N}^*}, \mathcal{B}_{\infty}) : \nu = \frac{1}{2} (\mu + \tilde{\mu}), \ \mu_n = \mu_{\mid \mathfrak{B}_n}, \ \tilde{\mu}_n = \tilde{\mu}_{\mid \mathfrak{B}_n},$ $\nu_n = \frac{1}{2} (\mu_n + \tilde{\mu}_n) \text{ où, } \forall n \in \mathbb{N}^*, \ \mu_{\mid \mathfrak{B}_n} \text{ (respt } \tilde{\mu}_{\mid \mathfrak{B}_n}) \text{ est la restriction de } \mu \text{ (respt } \tilde{\mu}) \text{ à } \mathcal{B}_n.$
- On définit, $\forall n \in \mathbb{N}^*$, les v.a. définies sur $(\mathbb{R}^{\mathbb{N}^*}, \mathcal{B}_{\infty})$ par :

$$Z_n = \frac{\tilde{Q}_n}{Q_n}$$
 $Y_n = \frac{2Q_n}{Q_n + \tilde{Q}_n}$ $\tilde{Y}_n = \frac{2\tilde{Q}_n}{Q_n + \tilde{Q}_n}$

et
$$Z_{\infty} = \overline{\lim} Z_n$$
 $Y_{\infty} = \overline{\lim} Y_n$ $\widetilde{Y}_{\infty} = \overline{\lim} \widetilde{Y}_n$.

2. a. α . Si $A_j \in \mathcal{B}_R \quad \forall j = 1, \ldots, n$, justifier la formule :

$$\tilde{\mu}_n\left(\bigcap_{j=1}^n \pi_j^{-1}(A_j)\right) = \int_{A_1 \times \ldots \times A_l}^{\tilde{Q}_n} d\lambda_n$$

et exprimer la probabilité μ_n à l'aide de Z_n et μ_n $(n \in \mathbb{N}^*)$.

- 2. a. β . Démontrer que $Z = (Z_n)_{n \in \mathbb{N}^*}$ est une μ martingale $(\mathcal{G}_n)_{n \in \mathbb{N}^*}$ adaptée et bornée dans $L^1(\mu)$. Que dire de la convergence μ p.s. de la suite Z. (Utiliser TH 1) ? Que vaut μ ($Z_\infty = +\infty$) ?
- 2. $a. \gamma.$ Exprimer la probabilité μ_n (resp^t $\tilde{\mu}_n$) à l'aide de Y_n (resp^t \tilde{Y}_n) et v_n .
- 2. a. δ. Démontrer que $Y = (Y_n)_{n \in \mathbb{N}^*}$ (resp^t $\widetilde{Y} = (\widetilde{Y}_n)_{n \in \mathbb{N}^*}$) est une ν martingale $(\mathcal{B}_n)_{n \in \mathbb{N}^*}$ adaptée et en déduire la convergence de la suite Y (resp^t \widetilde{Y}) ν p.s. et dans L^1 (ν). Établir alors que : $\widetilde{Y}_{\infty} = Z_{\infty} \cdot Y_{\infty} \nu$ p.s.
- 2. b. α . Vérifier que $\forall n \in \mathbb{N}^*$, $\forall A \in \mathcal{B}_n : \mu(A) = \int_A^{\mathbf{r}} \mathbf{Y}_{\infty} \, \mathrm{d} \nu$, puis en déduire que $\mu = \mathbf{Y}_{\infty} \cdot \nu$. Écrire le résultat analogue pour μ sans le démontrer.
- 2. b. β . Vérifier que, $\forall A \in \mathcal{B}_{\infty}$:

$$(F1) \qquad \widetilde{\mu}(A) = \int_A^* \frac{\widetilde{Y}_\infty}{Y_\infty} \mathbf{1}_{(Y_\infty \neq 0)} d\mu + \int_A^* \widetilde{Y}_\infty \mathbf{1}_{(Y_\infty = 0)} d\nu.$$

2. b. y. En déduire la formule D.L.

(D.L.)
$$\forall A \in \mathfrak{B}_{\infty}, \quad \widetilde{\mu}(A) = \int_{A} Z_{\infty} d\mu + \widetilde{\mu} \left[A \cap (Z_{\infty} = + \infty) \right].$$

2. b. d. Démontrer brièvement la formule :

pour toute v.a.n. φ définie sur $(\mathbb{R}^{\mathbb{N}^*}, \mathcal{B}_{\infty})$ positive ou bornée.

2. b. E. Démontrer à l'aide de (D.L.) les équivalences suivantes :

$$(F2) \qquad \tilde{\mu} \ll \mu \Leftrightarrow E_{\mu} Z_{\infty} = 1 \quad \Leftrightarrow \quad \tilde{\mu} (Z_{\infty} < + \infty) = 1$$

$$(F3) \qquad \tilde{\mu} \perp \mu \Leftrightarrow E_{\mu} Z_{\infty} = 0 \quad \Leftrightarrow \quad \tilde{\mu} (Z_{\infty} < + \infty) = 0$$

3. • On pose, pour tout $n \in \mathbb{N}^*$: $\alpha_n = \frac{Z_n}{Z_{n-1}}$ avec $Z_0 = 1$.

 \mathfrak{G}_{o} est la tribu triviale $\{\varnothing,\mathbb{R}^{\mathbb{N}^{\star}}\}$. On se propose d'établir les équivalences suivantes :

(F4)
$$\tilde{\mu} \leqslant \mu \Leftrightarrow \tilde{\mu} \left[\sum_{n=1 \atop n=1}^{\infty} \left(1 - E_{\mu}^{\mathfrak{B}_{n-1}} \sqrt{\alpha_n} \right) < + \infty \right] = 1$$

(F5)
$$\tilde{\mu} \perp \mu \Leftrightarrow \tilde{\mu} \left[\sum_{n=1}^{\infty} \left(1 - E_{\mu}^{\mathfrak{B}_{n-1}} \sqrt{\alpha_n} \right) = + \infty \right] = 1$$

3. a. α Démontrer que, $\tilde{\mu}$ -p.s. :

$$(Z_{\infty} < + \infty) = (0 < Z_{\infty} < + \infty) = (Z_n \rightarrow)$$

— Soit u la fonction réelle définie sur R par :

$$u(x) = \begin{cases} x & \text{si} & |x| \leq 1 \\ \text{signe } (x) & \text{si} & |x| > 1 \end{cases}$$

3. a.
$$\beta$$
. Vérifier que $\tilde{\mu}$ -p.s. $(\mathbb{Z}_{\infty} < \infty) = \left(\sum_{k=1}^{n} u \ (\text{Log } \alpha_{k}) \rightarrow \right)$.

3. b. a. Démontrer que si ψ est une v.a.r. \mathcal{B}_n – mesurable positive ou bornée définie sur \mathbb{R}^{N^*} , on a :

$$E_{\,\widetilde{\mu}}^{\mathfrak{B}_{\,n-1}}\left(\psi\right) \; = \; E_{\mu}^{\mathfrak{B}_{\,n-1}}\left(\psi\;\alpha_{n}\right) \quad \widetilde{\mu}\text{-p.s.}$$

3. b. β . En déduire $E_{\mu}^{\mathcal{B}_{n-1}}$ (α_n) $\tilde{\mu}$ -p.s.

3. b. y. Soit,
$$\forall n \in \mathbb{N}^*$$
, $\mathbf{W}_n = \sum_{k=1}^n u \text{ (Log } \alpha_k \text{)}$.

Démontrer que $W = (W_n)_{n \in \mathbb{N}^*}$ est une $\widetilde{\mu}$ - sous-martingale $(\mathcal{B}_n)_{n \in \mathbb{N}^*}$ - adaptée. (On admettra l'inégalité : xu (Log x) $\geqslant x-1$ $\forall x > 0$.)

3. b. d. Établir (F4) et (F5) en utilisant la propriété TH2 et la double inégalité (que l'on ne demande pas de démontrer) : il existe A, B tels que $0 < A < B < +\infty$ et, $\forall x > 0$:

A
$$(1 - \sqrt{x})^2 \le x u (\text{Log } x) + x u^2 (\text{Log } x) + 1 - x \le B (1 - \sqrt{x})^2$$
.

4. a. α . Calculer explicitement α_n .

4. a. β . Utiliser alors 3.b. α . pour donner une expression analytique de $E_{\mu}^{\mathfrak{B}_{n-1}}$ $(\sqrt{\alpha_n})$ μ -p.s..

4. b. α. En déduire alors les équivalences :

$$\mu \ll \tilde{\mu} \quad \Rightarrow \quad P\left[\sum_{n=1}^{\infty} \frac{\tilde{X}_{n-1}^2}{\sigma_n^2} < + \infty\right] = 1$$

$$\mu \perp \tilde{\mu} \Leftrightarrow P\left[\sum_{n=1}^{\infty} \frac{\tilde{X}_{n-1}^2}{\sigma_n^2} + \infty\right] = 1$$

4. b. β. Démontrer que l'on a l'alternative :

$$\mu \sim \tilde{\mu}$$
 ou $\mu \perp \tilde{\mu}$ (utiliser 1. a. ζ .).

4. b. γ . En particulier, si $\tilde{\theta} = 0$, $\tilde{X} = (U_n)_{n \in \mathbb{N}^*}$.

Caractériser alors l'alternative en terme de la suite $(\sigma_n)_{n \in \mathbb{N}^*}$.