苏州大学<u>模拟电路</u>课程试卷 (B) 卷 共 8 页 考试形式<u>闭</u>卷 2017年1月

院系.	系 <u>电子信息学院</u> 年级专业									
学号.										
	总 分	题 号	_	_	Ξ	四	五	六	七	
		题 分	20	80						
	合分人	得 分								

得分

一、课程教学目标1(共20分)

对教学目标 1 的掌握情况进行命题,可以多种形式考题应能反映学生的能力掌握情况

本试卷设计一个声控电路,包括发射电路和接收电路两部分。发射电路如图 1 所示,采用电池 $+V_B$ 供电,振荡器产生特定频率 f_a 的正弦波,经过射极跟随器,送到功率放大器,驱动喇叭发出特定频率的声音。接收电路如图 2 所示,由驻极体话筒 MIC 接收声音。话筒工作时需要直流偏置, R_7 、 R_8 用于抵消话筒的直流偏置电压。声音信号经过差分放大电路和运放构成的仪表放大器电路进行放大,经过滤波器滤除干扰和噪声,取出频率为 f_a 的正弦波,送到比较器中与预设的门限电压做比较,当 V_H 超过一定限值时比较器输出方波,经过平均值电路取出平均直流分量 V_M 。当 V_H 较小时,比较器输出为 0, V_M 也为 0。 V_M 可作为开关信号用于后续电路控制电气设备。不同遥控指令对应不同的发射端频率 f_a ,配合接收端不同频率的滤波器,即可执行不同的控制操作。

(本试卷中各试题可能存在依赖关系, 若某题有一参数未能求出或计算错误, 在其他题目中 出现该参数时可用符号代替, 不再重复扣分。)

1. (10分)

- (1) T5 构成什么类型的正弦波振荡器?
- (2) T6 构成的射极跟随器电路, 其电压增益、输入电阻和输出电阻有什么特点?
- (3) T1、T2 构成什么类型的功率放大电路?该电路存在什么失真?采用什么电路可以消除此 类失真?
- りを売れし
- (3) 乙类单电源超过数额额 交通失真,中山关电路

2. (10 分) 图 1 中, 运放 A1、A2、A3 也可采用集成的仪表放大器芯片 INA128, 数据手册上的某特性曲线如图 2 所示, 部分参数表如表 1 所示, G 表示增益, INA128 增益可调。

表 1 INA128 参数表

	UNIT
Į	UNIT
	μV μV/°C μV/V μV/mo Ω pF
ı	
ı	V
ı	V
ı	V
ı	
ı	dB
	dB
	dB
	dB
	nA
	pA/°C
	nA
	pA/°C
٦	r

		INA128P, U INA129P. U		
PARAMETER	CONDITIONS	MIN	TYP	MAX
INPUT				
Offset Voltage, RTI				
Initial	T _A = +25°C		±10±100/G	±50±500/G
vs Temperature	$T_A = T_{MIN}$ to T_{MAX}		±0.2±2/G	±0.5±20/G
vs Power Supply	$V_S = \pm 2.25 V \text{ to } \pm 18 V$		±0.2±20/G	±1±100/G
Long-Term Stability			±0.1±3/G	
Impedance, Differential			10 ¹⁰ 2	
Common-Mode			10 ¹¹ 9	
Common-Mode Voltage Range(1)	V _O = 0V	(V+) - 2	(V+) - 1.4	
		(V-) + 2	(V−) + 1.7	
Safe Input Voltage				±40
Common-Mode Rejection	$V_{CM} = \pm 13V$, $\Delta R_S = 1k\Omega$			
	G = 1	80	86	
	G = 10	100	106	
	G = 100	120	125	
	G = 1000	120	130	
BIAS CURRENT			±2	±5
vs Temperature			±30	
Offset Current			±1	±5
vs Temperature			±30	

图 2 增益特性

- (1) 根据图 2 可以得到什么结论? 由图可知输入信号频率 1MHz 时,INA128 的增益约多 少倍?
- (2) 表 1 中 Common-Mode Rejection 代表什么指标?该指标与什么因素有关?
- (3) 除 Common-Mode Rejection 外,另选 3 个参数,根据课程所学知识,说明其中文名

称。随着频畅的状态。将这样,但是(1)共模抑制地 温度 指盖。(3) 输入失调电压,输入失调电流, 安全输入电压

输入偏置电流 Input Bias Current

二、课程教学目标 2(共 80 分)

对教学目标 2 的掌握情况进行命题,可以多种形式考题应能反映学生的能力掌握情况

- 容量较大,交流时可视为短路
- (1) 使用相位平衡条件判断能否产生正弦波振荡。
- (2) 写出该电路的振荡频率公式。若要求输出频率 $f_0 = 10$ kHz, 取 $C_2 = C_3 = 0.12 \mu F$, 求 L_1 。

1)
$$\int_{0}^{1} df = 0$$

 $\int_{0}^{12} df = \int_{0}^{12} df = \int_{0}$

- 4. (10 分) 对于图 1 中功率放大电路, 电源电压 $+V_B = 6V$, 喇叭阻抗 $R_1 = 4\Omega$ 。设功率管 T_1 和 T_2 的饱和压降 $V_{CES} = 1V$,忽略三极管发 射结导通电压 V_{BE} ,输入电压 V_N 含有+ V_B /2的直流偏置电压。
 - (1) 求此功放电路的最大电压输出幅度 V_{om} 和最大输出功率 P_{om} 。
- (2) 在最大输出功率时,计算此时的效率 η 、直流电源提供的功率 P_{v} .

$$P_{V}$$
、
两个功率管的总管耗 P_{V} 。
(3) 选择功率管型号时,其集电极最大电流 I_{CM} 、集电极最大耗散功率 P_{CM} 、反向击穿电压
$$V_{(BR)CEO} 应满足什么条件?$$
(3) $I_{CM} > \frac{V_{om}}{R_L} = 0.5 \text{ A}$

$$V_{om} = \frac{V_{o}}{2} - V_{CES} = 2V$$

$$V_{om} = \frac{V_{om}}{2} - 0.5 \text{ A}$$

$$V_{om} = \frac{V_{om}}{2} - 0.25 \text{ A}$$

(3)
$$I_{cm} > \frac{V_{om}}{R_L} = 0.5 \text{ A}$$
 0.75A
 $P_{cm} > \frac{(5)^2}{\pi^2 R_L} = 0.23 \text{ W}$
 $V_{cso} > V_{cs} - V_{ces} = 5 \text{ V}$

5. (10分)对于图 2中的差分放大电路,两个场效应管低频 跨导 $g_m = 1.41 \text{ mS}$, $I_{DO} = 4 \text{ mA}$, 开启电压 $V_T = 2 \text{ V}$, $V_{CC} = 12V$, $R_{d} = 10k\Omega$, 电流源 $I_{o} = 1$ mA ,

- (1) 求静态时($V_{K1} = V_{K2} = 0$),场效应管 T_5 的漏极电流 ‰、漏极对地电位 ⅙。。

6. (10分)对于图 2中的仪表放大器,输入 V_{D1} ,

 V_{D2} 已知,

- (1) 求 A1、A2 输出电压 V_E 的表达式。
- (2) 求整个电路电压增益 $A_r = \frac{V_F}{V_{D1} V_{D2}}$ 的表

$$-V_{E} = I(2R_{11}+R_{12}) = (V_{01}-V_{02})(H^{2}\frac{R_{11}}{R_{12}})$$

$$V_{1} = (H \frac{R_{13}}{R_{14}}) V_{p}$$

$$V_{N} = V_{2} + (V_{1} - V_{2}) \frac{R_{13}}{R_{13} + R_{14}} = \frac{R_{13}}{R_{2} + IR_{14}} V_{p} + \frac{R_{14}}{R_{13} + R_{14}} V_{2} = V_{p} = V_{1} \frac{R_{14}}{R_{13} + R_{14}}$$

$$P_{13} V_{F} = R_{14} (V_{1} - V_{2}) = -R_{14} V_{E} = -(H 2 \frac{R_{11}}{R_{12}}) (V_{p_{1}} - V_{p_{2}}) R_{14}$$

$$A_{V} = \frac{V_{F}}{V_{p_{1}} - V_{p_{2}}} = -(H 2 \frac{R_{11}}{R_{12}}) \frac{R_{14}}{R_{13}}$$

$$\frac{\sqrt{1}}{\sqrt{2}} = -\frac{1}{4}$$

R11

R11

۷ŧ

R13

Rd

R14

V₀₁

- 7. (10 分) 对于图 2 中的滤波器电路,由两级滤波器 A4 和 A5 串联相接而成,
 - (1) 对于滤波器 A4,求传递函数 $A_{V}(j\omega) = \frac{V_{G}(j\omega)}{V_{F}(j\omega)}$
- (2) 对于滤波器 A4, 根据传递函数, 判断是什么类型的滤波电路(高通/低通/带通/带阻),

以及滤波器的阶数。

(3) 按照图 2 的设计需求, 两级滤波器 A4 和 A5 串联后是什么类型的滤波电路? 根据前面各小题的信息, 滤波器的截止频率 (若为高通/低通) 或中心频率 (若为带通/带阻) 应该设计为多少?

- 8. (15 分)对于图 2 中的比较器电路,稳压管 D_6 的稳定电压 $V_Z=5V$,正向导通电压 $V_{on}=0.7V$ 。 + $V_{CC}=+12V$,取 $R_{22}=1k\Omega$ 。 要求输入 V_H 大于 1V 时,输出高电平 V_{OH} 。 V_H 小于 1V 时,输出低电平 V_{OL} 。运放 A6 的最大输出为 $\pm 10V$ 。
 - (1) 按照题意,若输入正弦波 $v_H = 2\sin(2\pi \times 10^4 t) \, V$,画出输出波形 v_J 。若输入正弦波 $v_H = 0.5\sin(2\pi \times 10^4 t) \, V$,再画出输出波形。(在同一个坐标系中画出 $v_H \, \cdot v_J \, \circ v_J$ 输出高低电平以符号 $V_{OH} \, \cdot \, V_{OL}$ 表示)
 - (2) 求阈值电压 V_{τ} 表达式。为符合上述设计要求,确定 R_{21} 大小。
 - (3) 求输出高电平 V_{OH} 和输出低电平 V_{OL} ,并画出电路的传输特性。

- 9. (15 分)采用下图所示线性稳压电源电路为图 2 声控接收电路供电。要求 $+V_{CC}=+12V$,输出电流 $I_o=0.2A$ 供给声控接收电路。 TR_1 为电源变压器,将 $V_1=220V$ 的交流电压降压为 $V_2=12V$,后经整流、滤波和稳压,产生 $+V_{CC}$ 。稳压管 D_8 的稳定电压为 $V_2=3.3V$,取 $R_{50}=3.3k\Omega$,
 - (1) 根据输出电压极性, 画出 4 个整流二极管 D₁~D₄。
 - (2) 根据经验公式估算整流、滤波后在 C_8 上产生的直流电压 V_{C8} 。
- (3) 推导输出电压 $+V_{CC}$ 和稳压管稳定电压 V_Z 的表达式。根据题意设计要求确定 R_{29} 大小。
- (4) 计算调整管 T_8 集电极-发射极间电压 V_{CE} 和集电极损耗功率 P_C 。为降低损耗,提高电源效率,可以使用什么类型的稳压电源?
- (5) 若电网电压 V_1 下降 20% , $+V_{CC}$ 是否还能输出电压 +12V ?

