

直线、平面垂直的判定及其性质

◆ 知识梳理

一、直线与平面垂直的判定

1、定义

如果直线 / 与平面 α 内的任意一条直线都垂直,我们就说直线 / 与平面 α 互相垂直,记作 / $\perp \alpha$,直线 L 叫做平面 α 的垂线,平面 α 叫做直线 / 的垂面。如图,直线与平面垂直时,它们唯一公共点 P 叫做垂足。

2、判定定理:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

注意点: a)定理中的"两条相交直线"这一条件不可忽视;

b)定理体现了"直线与平面垂直"与"直线与直线垂直"互相转化的数学思想。

二、 平面与平面垂直的判定

1、二面角的概念:表示从空间一直线出发的两个半平面所组成的图形

2、二面角的记法:二面角 α -/- β 或 α -AB- β

3、两个平面互相垂直的判定定理:一个平面过另一个平面的垂线,则这两个平面垂直。

三、 直线与平面、平面与平面垂直的性质

1、定理:垂直于同一个平面的两条直线平行。

2 性质定理: 两个平面垂直,则一个平面内垂直于交线的直线与另一个平面垂直。

◆ 经典习题

1. 如图 ,已知空间四边形 ABCD中 , BC = AC , AD = BD , $E \not\equiv AB$ 的中点。求证:(1) $AB \perp \text{ YE CDE}; (2) \text{ YE DE} \perp \text{ YE DE}$

2. 如图 2 所示,已知 PA 垂直于圆 O 在平面, AB 是圆 O 的直径, C 是圆 O 的圆周上异于 A 、 B 的任意一点,且 PA = AC ,点 E 是线段 PC 的中点.求证: AE \bot 平面 PBC .

3. 在如图所示的几何体中, 四边形 ABCD 是等腰梯形,

 $AB \parallel CD$, $\angle DAB = 60^{\circ}$, $AE \perp BD$, CB = CD = CF. 求

证: BD₁平面 AED

8

分版块专项复习高二

4. 证明:在正方体 ABCD - $A_1B_1C_1D_1$ 中, A_1C ⊥平面 BC_1D

5. 如图 ,平行四边形 *ABCD* 中 ,∠*DAB* = 60° , *AB* = 2 , *AD* = 4.将△*CBD* 沿 *BD* 折起到△*EBD*

的位置,使平面 EBD 上平面 ABD.

(1)求证: AB⊥DE;

(2)求三棱锥 EABD 的侧面积.

解析:

1. 证明: (1)
$$\left. \begin{array}{c} BC = AC \\ AE = BE \end{array} \right\}$$
 \Rightarrow $CE \perp AB$ 同理, $\left. \begin{array}{c} AD = BD \\ AE = BE \end{array} \right\}$ \Rightarrow $DE \perp AB$

(2)由(1)有*AB* ⊥平面*CDE*

又 $: AB \subseteq$ 平面 ABC , :平面 $CDE \perp$ 平面 ABC

2. 证明: $PA \perp O$ 所在平面, $BC \neq O$ 的弦, $BC \perp PA$.

又: AB 是 O的直径, $\angle ACB$ 是直径所对的圆周角, $\therefore BC \perp AC$.

 $\therefore PA$ $AC = A, PA \subset \text{Ψ}$ $\Rightarrow PAC$, $AC \subset \text{$\Psi$}$ $\Rightarrow PAC$.

 $∴ BC \bot$ 平面 PAC , $AE \subset$ 平面 PAC , $∴ AE \bot BC$.

:: PA = AC , 点 E 是线段 PC 的中点... $AE \perp PC$.

 $:: PC \quad BC = C, PC \subset \text{平面 } PBC, BC \subset \text{平面 } PBC.$

 $\therefore AE \perp$ 平面 PBC.

3. 证明:因为四边形 ABCD 是等腰梯形, AB | CD, ∠DAB = 60°,

所以∠ADC=∠BCD=120°.

又 CB = CD, 所以∠CDB = 30°,

因此∠ADB=90°,即 AD⊥BD.

又 AE⊥BD, 且 AE∩AD=A, AE, AD⊂平面 AED,

所以 BD⊥平面 AED.

- 4. 证明:连结 AC
 - $\mathbf{BD} \perp AC$. AC 为 A_1C 在平面 AC 上的射影

$$\begin{array}{c} \therefore BD\bot A_1C \\ \hline \mbox{同理可证} A_1C\bot BC_1 \end{array} \} \Rightarrow A_1C\bot \mbox{平面} BC_1D \label{eq:alpha}$$

$$\therefore AB = 2$$
, $AD = 4$, $\angle DAB = 60^{\circ}$,

设F为AD边的中点,连接FB,

∴△ABF为等边三角形,

$$\angle AFB = 60^{\circ}$$
,

又 DF = BF = 2 , ∴ △ BFD 为等腰三角形 .

∴AB⊥BD.又平面 EBD⊥平面 ABD,

平面 EBD∩平面 ABD = BD, AB⊂平面 ABD,

- ∴AB⊥平面 EBD∴DE⊂平面 EBD,∴AB⊥DE.
- (2)【解析】由(1)知 AB⊥BD, ∵CD∥AB, ∴CD⊥BD, 从而 DE⊥BD.

在 Rt
$$\triangle DBE$$
中, $:DB=2\sqrt{3}$, $DE=DC=AB=2$, $:S_{\triangle DBE}=\frac{1}{2}DB:DE=2\sqrt{3}$.

::AB⊥平面 EBD, BE⊂平面 EBD, ::AB⊥BE::BE=BC=AD=4,

而 AD \subset 平面 ABD , $\therefore ED \perp AD$, $\therefore S_{\triangle ADE} = \frac{1}{2}AD \cdot DE = 4.$ 综上 , 三棱锥 EABD 的侧面积 S = $8 + 2\sqrt{3}$.

