FSI room: closed

- Wiki
- Forum
- Chat
- Videos
- Evaluations
- Home page
- Start of studies 2020
- exams
- Education
- Your FSI
- University policy
- Contact

You are here: Events » Exam questions and old exams » Main course exams » Chair 5 » Examination protocol IMIP, September 26, 2014 (Overview)

Examination protocol IMIP, September 26, 2014

ECTS: 7.5

Examiner: Dr.-Ing. Andreas Maier

Assessor: I didn't know

Duration: 40 min

Result: 1.3

- To start with, give an overview of the topics covered → Draw the "IMIP Cloud" from the lecture
- Dynamic Density Optimization, what is that actually? What do you do there? → Scatter correction. Gaussian filter with a large σ , then subtract the filtered image from the original.
- What is the structure tensor? What does he say? → Structure Tensor provides information about the gradient orientation in a local environment. Definition written down, gradient vector is multiplied by itself. Explains that a Gauss filter is applied to it to get two eigenvalues $\neq 0$. Without filters, the rank of the matrix would be 1, i.e. only an eigenvalue ≠ 0. Then cornerness is explained based on the distinction between the two eigenvalues.
- What is it like when you want to recognize vessels? You also compare eigenvalues, how is that <u>exactly?</u> \rightarrow explain Vesselness filter \rightarrow eigenvalues of the Hesse matrix are compared. The difference between the structure tensor and the Hesse matrix is the use of the second derivative to obtain the curvature. → Case distinction explained on the basis of the eigenvalues, formulas for S and Rb written down. S = sqrt (λ 1 ^ 2 + λ 2 ^ 2) and Rb = λ 2 / λ 1 For Rb I had swapped the two eigenvalues, but it wasn't that dramatic. → Determination of the "Vesselness" value was still required, I didn't know the exponential function, but it wasn't that bad. In the end it is a Gaussian curve so that you get values between 0 and 1

- Then explain to me what the epipolar geometry is \rightarrow picture drawn and explain that the point can be projected from one image plane into the other image plane by means of translation and rotation. \rightarrow The epipolar constraint is then derived from this
- You have now mentioned factorization in the summary. How exactly does that work? Where do you apply that? → Used for 3D ultrasound. Take several pictures of a 3D object, whereby the respective 3D point must be included in each picture. → If the projection is perpendicular to the image plane, then mapping onto the two main axes of the image plane is explained using unit vectors u and v. → Structure of the measurement matrix explained → The last thing was the factoring algorithm, i.e. SVD (M) and forcing from rank 3 via the singular values and submatrices of U and V. He then wanted to point out that the factorization of the measurement matrix is not clear, in the end I wrote that down, but it took a while. In the end, everything went well.
 - Show source code
 - Older versions link here

•••

- <u>last changes</u>
- register
- data protection

search