МОСКОВСКИЙ АВИАЦИОННЫЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ)

Кафедра № 604

ЛАБОРАТОРНАЯРАБОТА №2

по дисциплине
«Динамика ЛА»
"Определение возмущающего ускорения, обусловленного сопротивлением атмосферы Земли"

Утверждено На заседании кафедры «13» сентября 2023 года

Работу подготовили: Проф. Горбатенко С.А. Ст. преп. Морозова Т.А.

СОДЕРЖАНИЕ

		стр.
1	Введение	3
2	Цель работы	3
	Элементы теории	3
4	Задание на выполнение работы	
5	Порядок и методика выполнения работы	5
6	Содержание отчета	10
7	Контрольные вопросы	10

Введение

Задача необходимости учета сопротивления атмосферы имеет довольно давнюю историю и возникла впервые при прогнозировании движения первых ИСЗ и определении времени существования их на орбите с учетом тормозящего действия верхних слоев атмосферы.

Особенно актуальна эта задача для ИСЗ, имеющих «низкие» орбиты ($r_{_{\! I\! I}} \approx 200~\kappa M$), где влияние атмосферы особенно ощутимо.

По смыслу своего воздействия аэродинамическая сила должна быть мала, ибо в противном случае КЛА не мог бы осуществить орбитальный, вернее замкнутый полет.

Цель работы

Исследовать возмущения, вызываемые сопротивлением атмосферы Земли.

Элементы теории

Аэродинамическая сила мала по сравнению с гравитационной силой, а ее малость определяется малой плотностью ($H \ge 100~\kappa M$). Пусть вектор полной аэродинамической силы $\overline{R_A}$ представляется в виде:

$$\overline{R_A} = [\overline{X_A}, \overline{Y_A}, \overline{Z_A}]$$

где X_A, Y_A, Z_A — проекции $\overline{R_A}$ на оси скоростной СК и называется, соответственно, силой лобового сопротивления, подъемной силой и боковой силой.

Основным возмущающим аэродинамическим фактором считается сила X_A , а силы Y_A, Z_A учитываются весьма редко. Вектор $\overline{X_A}$ направлен против вектора скорости КЛА относительно среды, а величина $\overline{X_A}$ равна

$$X_A = c_{xa} \frac{\rho V^2}{2} S_m$$

$$\bar{F}_A = \frac{c_{xa} q S_m}{m} = \sigma_x \rho \bar{V}^2$$
(1)

где C_{xa} – коэффициент силы лобового сопротивления;

$$q = \frac{\rho V^2}{2}$$
 – скоростной напор;

V – вектор скорости КЛА относительно атмосферы;

 S_m — характерная площадь КЛА (площадь поперечного сечения спутника); m — масса КЛА;

 F_A – возмущающее аэродинамическое ускорение в скоростных осях.

 $\sigma_{\chi} = \frac{c_{\chi a} S_m}{2m}$ - баллистический коэффициент КЛА.

Основным аргументом в (1) является плотность атмосферы ρ . Характер изменения плотности верхней атмосферы по высоте зависит от многих причин и может изменяться достаточно быстро и по времени t.

Одним из главных факторов, влияющих на распределение плотности верхней атмосферы, является солнечный нагрев.

Наряду с систематическими циклическими вариациями плотности могут иметь место случайные вариации, порождаемые случайными и непредсказуемыми изменениями солнечной активности. В целом картина вариаций плотности верхней атмосферы оказывается весьма сложной и трудно прогнозируемой.

Для приближенных расчетов часто пользуются упрощенной моделью атмосферы, которая строится на некоторых дополнительных упрощающих предположениях. Такую упрощенную модель мы и будем использовать.

Наблюдение за движением многих ИСЗ и обобщение опыта проведения баллистических расчетов по прогнозу движения ИСЗ позволило создать ГОСТ 25645.115-84 «Атмосфера Земли верхняя. Модель плотности для баллистического обеспечения полетов ИСЗ» для высот $120 \div 1500 \ \kappa M$. Для расчетов ниже $120 \ \kappa M$ (задачи входа КЛА в атмосферу) обычно пользуются стандартной атмосферой по ГОСТу 4401-81.

Для определения безразмерного коэффициента c_x существуют специальные методики в зависимости от формы ИСЗ и углов его ориентации относительно вектора скорости набегающего потока. Для оценочных расчетов вполне можно принять $c_x = 2,0 \div 2,5\,$ независимо от формы ИСЗ.

Если взять некоторые средние значения входящих в (1) величин и оставить только функцию $\rho = \rho(H)$, определяемую стандартной атмосферой, то оценка величины F_A представляется в виде:

h, км	100	200	400	800	
F_A , c_M/c^2	30	2,2*10-2	3,1*10-4	2,6*10-8	

Краткая характеристика:

- на высоте ≤ 100 км F_A столь значительно, что КЛА не сможет сделать и один виток;
- при увеличении h от 200 км до 400 км аэродинамические возмущение убывает на два порядка;
- на высотах > 800 км при проектных расчетах аэродинамическим возмущением обычно пренебрегают.

Задание на выполнение работы

Исследовать возмущения, вызываемые сопротивлением атмосферы Земли применительно к следующим орбитам ИСЗ.

Вариант	h _a , км	h_{π} , км	і, град	Ω, град	ω, град	М, град
1	350	240	10	5	0	60
2	450	340	20	10	0	45
3	650	240	30	15	0	30
4	850	350	45	20	0	15
5	1150	550	60	25	0	0

Порядок и методика выполнения работы

Алгоритм расчета проекций возмущающего ускорения, обусловленного сопротивлением атмосферы Земли, можно записать как:

1. На основе исходных параметров орбиты h_a , h_n , i, Ω , ω , M, которые отвечают заданному моменту времени t, по формулам (2) найти координаты заданной точки в $A\Gamma \ni CK(x_a, y_a, z_a)$;

Большая полуось и эксцентриситет определяются по формулам:

$$a = \frac{r_a + r_{\Pi}}{2}$$
$$e = \frac{r_a - r_{\Pi}}{2a}$$

$$x_a = r_a \cdot (\cos u \cos \Omega - \sin u \sin \Omega \cos i)$$

$$y_a = r_a \cdot (\cos u \sin \Omega + \sin u \cos \Omega \cos i)$$

$$z_a = r_a \cdot \sin u \sin i$$
(2)

где: $u = \theta + \omega$ – аргумент широты орбиты;

$$\vartheta = 2 \cdot arctg\left(\sqrt{\frac{1+e}{1-e}} \cdot tg\left(\frac{E}{2}\right)\right)$$
- истинная аномалия КА на орбите;

$$r_a = a \cdot (1 - e \cos E) = \frac{a \cdot (1 - e^2)}{1 + e \cos \theta}$$
 — модуль радиус-вектора КА в

АГЭСК.

При этом значение эксцентрической аномалии Е, которая отвечает средней аномалии М. Находим методом приближений из уравнения Кеплера.

- а) Задать начальное значение эксцентрической аномалии $E_0 = M$;
- б) рассчитать новое значение эксцентрической аномалии согласно уравнению Кеплера по формуле

$$E_{i+1} = M + e \sin E_i$$

где і – номер итерации.

В случае выполнения условия

$$|E_{i+1}-E_i|\leq \varepsilon$$

где ε — некоторое наперед заданное малое положительное число (ε =0,001град), решение полагается найденным и $E=E_{i+1}$. Конец алгоритма.

Если это условие не выполняется, то переходим к пункту в).

в) $E_i = E_{i+1}$. Алгоритм повторяется с пункта б).

2. По формулам (3), (4) найти трансверсальную V_{τ} и радиальную V_{r} скорости;

Для упрощения выражений будем считать, что атмосфера Земли неподвижная ($V_{\rm nep}=0$). Тогда

$$V = V_{\text{отн}} + V_{\text{пер}} = V_{\text{отн}}$$

Тогда в проекциях на векторы \bar{S} , \bar{T} , \overline{W} имеет вид $\bar{V} = [-V_r \ -V_\tau \ 0]^{\mathrm{T}}$.

А V_r и V_{τ} есть радиальная и трансверсальная составляющие вектора скорости, которые определяются соотношениями (3) и (4).

$$V_r = \sqrt{\frac{\mu}{p}} \cdot e \sin \vartheta \tag{3}$$

$$V_{\tau} = \sqrt{\frac{\mu}{p}} \cdot (1 + e \cos \theta) \tag{4}$$

Поскольку

$$V = \sqrt{V_r^2 + V_\tau^2} = \sqrt{\frac{\mu}{p}} \cdot \sqrt{1 + 2e\cos\vartheta + e^2}$$

3. На базе значений x_a , y_a , z_a по формуле (5) найти положение этой точки B ГСК, заданное координатами x, y, z, u рассчитать соответствующие им геодезические координаты L, B, H;

Рис. 4. Абсолютная и относительная экваториальные СК

Взаимное положение систем координат АГЭСК и ГСК определяется углом поворота Земли вокруг оси вращения S(t). которое отвечает звездному времени на момент t времени UTC.

Положение точки в АГЭСК определяется вектором $\bar{r}_a = (x_a, y_a, z_a)^{\mathrm{T}}$, а положение той же точки в ГСК определяется вектором $\bar{r} = (x, y, z)^{\mathrm{T}}$, которые равны по модулю $(r = r_a)$. Взаимосязь между положением точки в этих системах координат определяется матрицей взаимного перехода.

$$\Psi = \begin{bmatrix} \cos S(t) & \sin S(t) & 0 \\ -\sin S(t) & \cos S(t) & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Тогда имеем:

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \cos S(t) & \sin S(t) & 0 \\ -\sin S(t) & \cos S(t) & 0 \\ 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x_a \\ y_a \\ z_a \end{bmatrix}$$
 (5)

Или $\bar{r} = \Psi \cdot \bar{r}_a$

Связь координат точки (x, y, z) в ГСК с геодезическими координатами (L, B, H) задается формулами

$$x = (N + H) \cdot \cos B \cdot \cos L$$

$$y = (N + H) \cdot \cos B \cdot \sin L$$

$$z = ((1 - e_3^2) \cdot N + H) \cdot \sin B$$
(6)

где

$$N = \frac{a}{\sqrt{1 - e_3^2 \sin^2 B}}$$
$$e_3^2 = 0.0067385254$$

a=6378136м - большая полуось ОЗЭ, f=298,257839303 - знаменатель коэффициента сжатия.

Обратное преобразование согласно формулам (6) имеет в определенных случаях деление на ноль. Поэтому для обратного преобразования нужно применять специальный алгоритм перехода от геоцентрической системы координат в геодезическую систему координат.

а) вычисляем величину D

$$D=\sqrt{x^2+y^2}$$
 b) если $D=0$, то $B=rac{\pi}{2}\cdotrac{z}{|z|}$, $L=0$, $H=z\cdot\sin B-a\sqrt{1-e_3^2\cdot\sin^2 B}$

Решение найдено – выход из алгоритма.

Если
$$D>0$$
 , то $L_a=arcsin\left(\frac{y}{D}\right)$

1)
$$y < 0$$
 и $x > 0$, то $L = 2\pi - L_a$;

2)
$$y < 0$$
 и $x < 0$, то $L = \pi + L_a$;

3)
$$y > 0$$
 и $x < 0$, то $L = \pi - L_a$;

4)
$$y>0$$
 и $x>0$, то $L=L_a$

с) Анализируем значение z:

1)
$$z = 0$$
 , то $B = 0$, $H = D - a$

Решение найдено – выход из алгоритма.

2) $z \neq 0$, тогда надо найти дополнительные величины

$$r = \sqrt{x^2 + y^2 + z^2}$$
, $c = \arcsin\left(\frac{z}{r}\right)$, $p = \frac{e_3^2 \cdot a}{2 \cdot r}$

и реализовать итерационный процесс:

$$s_1=0$$
 , $b=c+s_1$, $s_2=arcsin\left(\frac{p\cdot\sin2b}{\sqrt{1-e_3^2\cdot\sin^2b}}\right)$

Если $|s_2-s_1|<\varepsilon$, где $\varepsilon=0.0001$ " — заведомо заданная малая положительная величина, то B=b ,

$$H = D \cdot \cos B + z \cdot \sin B - a \sqrt{1 - e_3^2 \cdot \sin^2 B}$$

Решение найдено – выход из алгоритма.

Погрешность нахождения H по данному алгоритму не превышает 0.003м.

Положения объектов на геодезических картах представляются в геодезических координатах, кроме того, геодезические координаты применяются в теории полета космических аппаратов, в расчетах, связанных с возмущением движения КА. Использование геодезических координат и этот алгоритм позволяет решать задачи, в которых используется оценка взаимного расположения объектов на поверхности Земли и космического аппарата дистанционного зондирования Земли.

4. Paccumamb $\rho_{atm}(H)$;

Плотность атмосферы ρ , кг/м³, вычисляют по формуле

$$\rho = \rho_{\rm H} K_0 (1 + K_1 + K_2 + K_3 + K_4)$$

где

$$\rho_{\rm H} = \rho_0 e^{\left(a_0 + a_1 H + a_2 H^2 + a_3 H^3 + a_4 H^4 + a_5 H^5 + a_6 H^6\right)}$$

 ho_{H} - плотность ночной атмосферы, кг/м³;

 $ho_0 = 1,58868 \cdot 10^{-8} \,$ - плотность ночной атмосферы на высоте 120 км, кг/м 3 ;

 a_i - коэффициенты модели, используемые для расчета плотности атмосферы при различных значениях фиксированного уровня солнечной активности F_0 ;

 K_i - нормирующие коэффициенты, учитывающие суточные, полугодовые отклонения плотности атмосферы, учитывающие геомагнитную активность солнца. Будем полагать $K_0=1$, а остальные $K_i=0$.

Провести расчеты возмущающего ускорения при различный значениях уровня солнечной активности.

Таблица 2 - Коэффициенты модели плотности атмосферы для первого высотного диапазона (120-500 км)

Коэффициент		Значение при фиксированном уровне солнечной активности F_0 , $10^{-22}~\mathrm{Br/(m^2\cdot\Gamma u)}$							
Обозначение	Размерность	75	100	125	150	175	200	250	
a_h	KM	120	120	120	120	120	120	120	
a_0	-	26,8629	27,4598	28,6395	29,6418	30,1671	29,7578	30,7854	
a_1	KM ⁻¹	-0,451674	-0,463668	-0,490987	-0,514957	-0,527837	-0,517915	-0,545695	
a_2	км ⁻²	0,00290397	0,002974	0,00320649	0,00341926	0,00353211	0,00342699	0,00370328	
a ₃	KM ⁻³	-1,06953e-5	-1,0753e-5	-1,1681e-5	-1,25785e-5	-1,30227e-5	-1,24137e-5	-1,37072e-5	
a ₄	KM^{-4}	2,21598e-8	2,17059e-8	2,36847e-8	2,5727e-8	2,66455e-8	2,48209e-8	2,80614e-8	
a ₅	км ⁻⁵	-2,42941e-11	-2,30249e-11	-2,51809e-11	-2,75874e-11	-2,85432e-11	-2,58413e-11	-3,00184e-11	
a ₆	KM ⁻⁶	1,09926e-14	1,00123e-14	1,09536e-14	1,21091e-14	1,25009e-14	1,09383e-14	1,31142e-14	

Таблица 3 - Коэффициенты модели плотности атмосферы для второго высотного диапазона (500-1500 км)

Коэффициент		Значение при фиксированном уровне солнечной активности F_0 , 10^{-22} Bт/(м $^2 \cdot \Gamma$ ц)							
Обозначение	Размерность	75	100	125	150	175	200	250	
a _h	KM	500	500	500	500	500	500	500	
a_0	-	17,8781	-2,54909	-13,9599	-23,3079	-14,7264	-4,912	-5,40952	
a_1	KM ⁻¹	-0,132025	0,0140064	0,0844951	0,135141	0,0713256	0,0108326	0,00550749	
a_2	км ⁻²	0,000227717	-0,00016946	-0,000328875	-0,000420802	-0,000228015	-8,10546e-5	-3,78851e-5	
a ₃	км ⁻³	-2,2543e-7	3,27196e-7	5,05918e-7	5,73717e-7	2,8487e-7	1,15712e-7	2,4808e-8	
a ₄	км ⁻⁴	1,33574e-10	-2,8763e-10	-3,92299e-10	-4,03238e-10	-1,74383e-10	-8,13296e-11	4,92183e-12	
a ₅	км ⁻⁵	-4,50458e-14	1,22625e-13	1,52279e-13	1,42846e-13	5,08071e-14	3,04913e-14	-8,65011e-15	
a ₆	км ⁻⁶	6,72086e-18	-2,05736e-17	-2,35576e-17	-2,01726e-17	-5,34955e-18	-4,94989e-18	1,9849e-18	

5. Согласно формулам (..) найти составляющие возмущающего ускорения, обусловленного влиянием атмосферы, S, T, W.

Таким образом, запишем модули ускорений S, T, W на основе соотношения (1)

$$S=-\sigma_{x}
ho VV_{r}$$
 $T=-\sigma_{x}
ho VV_{ au}$ $W=0$ где $V=\sqrt{V_{r}^{2}+V_{ au}^{2}}$

Ускорение силы притяжения определяется по следующему соотношению в зависимости от текущей высоты полета:

$$g = G \frac{M_3}{(R_3 + H)^2}$$

- 6. Построить по полученным результатам графики.
- 1. Построить зависимость:
 - составляющих возмущающего ускорения в зависимости от уровня солнечной активности;
 - полной величины возмущающего ускорения в зависимости от уровня солнечной активности.
- 2. Сравнить величину возмущающего ускорения с величиной ускорения силы притяжения на соответствующей высоте.

Содержание отчета

Отчет о выполненной работе должен содержать следующие материалы:

- Формулировку цели работы и исходные данные;
- Полученные в ходе вычислений результаты;
- Анализ результатов работы и выводы.

Контрольные вопросы

- 1. Аэродинамическое воздействие на ИСЗ.
- 2. Основной возмущающий аэродинамический фактор.
- 3. Плотность атмосферы.
- 4. Атмосферные возмущения.
- 5. Время существования КА на орбите ИСЗ.
- 6. Критическая орбита.
- 7. Результат влияния сопротивления атмосферы на движение ИСЗ.
- 8. Действия возмущений, вызываемых сопротивлением атмосферы Земли.