UNIT FIZIK KOLEJ MATRIKULASI NEGERI SEMBILAN

Skema Jawapan dan Pemarkahan Ujian Selaras 2 Semester I Sesi 2023/2024

NO.	ANSWER SCHEME	MARK(S)
1	$[F] = [a][t] = [b][t^2]$	K1
	$[a] = \frac{[F]}{[t]} = \frac{MLT^{-2}}{T} = MLT^{-3} \text{must have } [$	GJU1
		2
2 (a)	For time interval $t = 0$ $s - 3$ s $a = \frac{v - u}{t_2 - t_1} = \frac{5 - 0}{3 - 0} = 1.67 \mathbf{m} s^{-2}$	K1 (gradient) GJU1
	For time interval $t = 3 s - 7 s$ $a = \frac{v - u}{t_2 - t_1} = \frac{-4 - 5}{7 - 3} = -2.25 \text{ ms}^{-2}$ Must -ve	GJU1
2 (b)	(i) $u_x = 23 \cos 30^\circ = 19.92 ms^{-1}$ $u_y = 23 \sin 30^\circ = 11.5 ms^{-1}$	
	at maximum height, $v_{ m y}=0$	K1
	$v_y^2 = u_y^2 - 2gs_y$ $0 = 11.5^2 - 2(9.81)s_y$	G1
	$s_y = 6.74 m$ Hence, maximum height from the ground is $s_y = 6.74 + 40 = 46.74 m$	GJU1
	(ii) $u_y = 23 \sin 30^\circ = 11.50 ms^{-1}$ $s_y = u_y t - \frac{1}{2} g t^2$	K1
	$-40 = (11.50)t - \frac{1}{2}(9.81)t^{2}$ $t = 4.26 \text{ s} \text{ and } t = -1.92 \text{ s (neglect)}$	GJU1
	(iii) $s_x = u_x t = 23 \cos 30^\circ (4.26)$ $s_x = 23 \cos 30^\circ (4.26)$ ecf t? $s_x = 84.85 m$	G1 JU1
		10

3	(a) Change in momentum, $\Delta P = Area \ under \ the \ F - t \ graph$ $= \frac{1}{2}(10)(3.0 \times 10^3)$ $= 1.5 \times 10^4 \ kgms^{-1} @ Ns$	K1 G1 JU1
	(b) (i) $\sum p_i = \sum p_f$ $mu = m_1 v_1 + m_2 v_2$ $(400)(300) = (50)(-120) + (350)v_2$ $v_2 = 360 \text{ ms}^{-1}$ Direction: to the right	K1 G1 JU1 J1
	(c) (i) 2 FORCES CORRECT- 2 MARKS 1 FORCE CORRECT- 1 MARK	D2
	(ii) $\sum_{mg \text{ sin } \theta = ma} F_x = ma$ $(9.81) \sin 23 = a$ $3.83 \text{ ms}^{-2} = a$	K1 GJU1
	(iii) $v^{2} = u^{2} + 2as$ $v^{2} = 0^{2} + 2(3.83)12 \text{ ecf a}$ $v = 9.59 \text{ ms}^{-1}$	G1 JU1
4	(a) $f_{\mathbf{k}} = \frac{1}{30^{0}}$ \mathbf{F}	13

$F_{x} - f_{k} = \sum F$ $(F \cos \theta) - f_{k} = ma$ $(25 \cos 30) - (10)$ $F_{nett} = 11.65 N$	K1
$W_{nett} = F_{nett} (s)(\cos \theta)$ $\cos 0^{0} - \text{K1}$	K1
$W_{nett} = (11.65) (6) (\cos 0^{\circ})$	G1
$W_{nett} = 69.9J$	JU1
$\sum E_{i} = \sum E_{f}$ $mgh = \frac{1}{2}mv^{2}$ $\therefore Kinetic Energy = mgh$ $= (2000)(9.81)(10) = 196200 J$	K1 GJU1
(c) $P = \frac{W}{t} = \frac{E}{t} = \frac{mgh}{t}$ $P = \frac{mgh}{t}$ $P = \frac{(10)(9.81)(15)}{(5)} = 294.3 \text{ W}$	K1 GJU1

5 (a)	$\theta = \sin^{-1} \frac{1}{1.25} = 53.13^{\circ}$ 80 N	
	θ	
	$T \longrightarrow \mathbf{mg}$	
	$\Sigma F_y = 0$ $80 \sin 53.13^{\circ} - T \sin 53.13^{\circ} - (4 \times 9.81) = 0$	K1
	T = 30.95 N	G1 JU1
5.0	P	
5 (b)	$F_{\rm c} = ma_{\rm c}$ 80 cos 53.13° + 30.95 cos 53.13° = $4a_{\rm c}$	G1
	$a_{\rm c} = 16.64 \rm ms^{-2}$	JU1
		5
6	(a) (i) $A = 5 cm = 0.05 m$	JU1
	$\omega = \frac{2\pi}{T} = 2\pi$	001
	T = 1 s	JU1
	(a) (ii) $a_{\text{max}} = A\omega^2$ = $5 \times 10^{-2} (2\pi)^2$	G1
	$= 3 \times 10^{-10} (2 \pi)$ $= 1.97 m s^{-2}$	JU1
	(a) (iii) $y = 5 \sin 2 (\pi (5)) = 0$	K1
	$K = \frac{1}{2}m\omega^{2}(A^{2} - y^{2})$	
	$K = \frac{2}{3}(3)(2\pi)^2((5 \times 10^{-2})^2 - 0^2)$	G1
	= 0.15 J	JU1
	$U = \frac{1}{2}m\omega^2(y^2)$	
	$U = \frac{1}{2}(3)(2\pi)^2(0^2)$	
	$=\stackrel{\scriptstyle 2}{0}J$	G1
		JU1
	(b) $\omega = 2\pi f = 2\pi (50) = 100\pi$	G1
	$v = f\lambda$	
	$100 = 50\lambda$	
	$\lambda = 2 m$	
	$k = \frac{2\pi}{\lambda} = \frac{2\pi}{2} = \pi$	G1
	$y = 5 \times 10^{-2} \sin (100\pi t - \pi x)$ where y and x in meter and t in	11.11
	second	JU1

	(c) (i) $v = \sqrt{\frac{T}{\mu}}$	
	(c) (i) $v = \sqrt{\frac{T}{\mu}}$ $v = \sqrt{\frac{135}{\frac{0.3}{3.5}}}$ $= 39.69 \text{ m s}^{-1}$	G1 JU1
	$v = f\lambda$ $\lambda = \frac{39.69}{200}$ $= 0.2 m$	G1 JU1
	(c) (ii) $f = \frac{nv}{2L}$ $n = \frac{200 (2 \times 3.5)}{39.69}$ ecf v = 35.27	G1 JU1
	≈ 35 (d) (i)	
	Train approaches $f_a = \left(\frac{340 - 0}{340 - 35}\right) 150$ $= 167.21 \text{ Hz}$	G1 JU1
	Train away $f_a = \left(\frac{340 - 0}{340 + 35}\right) 150$ = 136 Hz	G1 JU1
	(d) (ii) $f_a = f$	J1
		23
7	(a) (i) $\sigma = \frac{F}{A}$ $= \frac{5}{\pi (0.2 \times 10^{-3})^2}$ $= 3.98 \times 10^7 \text{ Nm}^{-2}$	G1 JU1
7	(a) (ii) $U = \frac{1}{2}F\Delta l$ $= \frac{1}{2}(5)(0.9 \times 10^{-3})$ $= 2.25 \times 10^{-3} \text{J}$	G1 JU1
7	(b) (i) $\Delta L = \alpha L_0 \Delta T$ $= (11 \times 10^{-6})(0.5)(50 - 20)$ $= 1.65 \times 10^{-4} \text{ m}$	G1 JU1
7	(b) (ii) $Y = \frac{FL_0}{A\Delta L}$	

	$200 \times 10^9 = \frac{F(0.5)}{\pi (1.5 \times 10^{-2})^2 (1.65 \times 10^{-4})}$ ecf Δ I $F = 4.67 \times 10^4 \text{ N}$	G1 JU1
		8
8	(a) (i) $v_{rms} = \sqrt{\frac{3PV}{Nm}} = 1420 \dots (1)$	K1
	$v'_{rms} = \sqrt{\frac{3(3P)(V)}{Nm}} \dots \dots \dots (2)$	
	$\frac{v'_{rms}}{1420} = \frac{\sqrt{\frac{3(3P)(V)}{Nm}}}{\sqrt{\frac{3PV}{Nm}}}$	G1
	$= 2.46 \times 10^3 \ ms^{-1}$	JU1
	(ii) $v_{rms} = \sqrt{\frac{3RT}{M}}$ $2.46 \times 10^3 = \sqrt{\frac{3(8.31)(T)}{4 \times 10^{-3}}} \dots \dots ecf v_{rms}$ T = 970.97 K	G1
		JU1
	(b) (i) $W = W_1 + W_2$ = $nRT \ln \frac{V_f}{V_i} + P(V_f - V_i)$	K1
	$= 1.5 (8.31)(321) \ln \frac{0.3}{0.8} + 3.22 \times 10^{3} (0.8 - 0.3)$ $= -2.31 \times 10^{3} J$	G1 JU1
	(ii) $\Delta U = \frac{5}{2}nRT$ $dof = 5$ = $\frac{5}{2}$ (1.5)(8.31)(500 – 321)	K1
	$= 5.58 \times 10^3 J$	G1 JU1
		11
	TOTAL	80