1 Introduction to logic

What happens when people don't use logic.

Example: pentium floating point bug. -> only testing

There was a huge slowdown because they did not assess it logically.

Originally people thought that testing is enough.

But verification is also important.

Example: Ariane 5 overflow bug

Example: Knight Capital Group trading glitch

How can you test an infinite object in finite steps?

problem example:

Coffee machine state machine -> finite state automata

dots -> states

arrows -> change of states

S -> system (All possible computation)

 ϕ -> all desired computations

 $Lang(S) = \{10c, reset, 5c, 5c, 10c, \dots\}$

A superior might have given us specification e.g.:

```
\phi = '10c \text{ or } 5c' \text{ until (coffe,reset,kick)}
```

do all model executions satisfy the delivered specifications?

Containment problem:

 $Lang(S) \subseteq Lang(\phi)$

Create Negated specification and check for emptiness of product

```
\mathrm{not}\ \phi = \mathrm{Forever}(10\mathrm{c}\ \mathrm{or}\ 5\mathrm{c})
```

1.1 What is a logic

a language to express object properties or systems

or

a set of tool to reason about properties of systems

A language has three properties:

- 1. <u>vocabulary</u> -> The symbols that can be used
- 2. Syntax -> grammar how to combine them so that something has meaning

3. <u>semantics</u> -> meaning of formulas

Example:

Q: Are you two married

A: Depends

- 1. meaning: the people who are there married to people
- 2. or meaning: are the two people present married

Other example:

If all humans are mortal, and

Socrates is human,

then Socrates is mortal.

$$((orall x A(x)
ightarrow B(x)) \wedge A(y_0))
ightarrow B(y_0)$$

The above formular is valid (i.e. true in every structure/interpretation). We call this a tautology

Other example:

There exists a set that contains all and only the sets that do not contain themselves.

$$\exists x \forall y (C(x,y) \iff \neg C(y,y))$$

The formula is unsatisfiable (false in every structure/interpretation).

We call it a contradiction

Every incoming order is eventually processed

$$\forall o \forall t (A(o,t) \rightarrow \exists t' \ t < t' \land B(o,t')$$

If a non-deterministiac programs has infinitely many configurations, then it has an infinite execution.

if model is a tree, is finitely-branching, has infinitely many nodes, Then it has a infinite path

Todo: definitinoan

Here we use two different sorts of variables:

- first order varibles (e.g. x,y,z) interpreted by single elements
- second-order variables (e.g Y_{finite} or $Z_{infinite}$) interpreted as finite or infinite sets.

Path

Has alternating a node and a connection i.e.

n -> n ->n

Chain

Can have multiple connections:

```
n -> -> n -> n -> -> n
```

As a formal tool to reason about properties of a system

- What can be mechanized?
 (descision problem, algorithms, <u>reduction</u> from Halting, Domino)
- How hard is it to mechanize?
 (complexity, expressiveness)

What is a reduction?

A reduction from P to Q is an algorithm F that solves P using an oracle that returns solutions to Q

What is complexity?

Alg is Time/Space bounded by some function $O(f) \ f: N \to N$ if Alg(input) uses <= $c \cdot f(|input|) + d$ units of time/space for some coefficients c,d

What is <u>expressiveness</u>

It is a competition Expressiveness vs Decidability Which properties can be expressed in a given logic? Is this logic more or less expressive than another logic? Does it express undecidable properties.

Succinctness vs Efficiency

How complex is it to express a certain property

Which logic is more Succinctness -> using less tools only using nands is more succinct than using all gates

Which logic has more efficient

1.2 Model checking problem

Does a model hold using a structure

formula $\phi \to {\rm checker}$ structure $S \to {\rm checker}$ checker $\to {\rm yes/no}$ depending on whether ϕ holds over S

validity satifiability

formula $\phi \rightarrow$ checker \rightarrow yes no

 ϕ needs to hold over all S and is more strict than