

-60-

*Amen.*

*a'*

Claims

1. A compound of formula



a prodrug, N-oxide, addition salt, quaternary amine, metal complex or stereochemically

5 isomeric form thereof wherein

-a¹=a²-a³=a⁴- represents a bivalent radical of formula

-CH=CH-CH=CH- (a-1);

-N=CH-CH=CH- (a-2);

-CH=N-CH=CH- (a-3);

-CH=CH-N=CH- (a-4); or

-CH=CH-CH=N- (a-5);

wherein each hydrogen atom in the radicals (a-1), (a-2), (a-3), (a-4) and (a-5) may optionally be replaced by halo, C<sub>1-6</sub>alkyl, nitro, amino, hydroxy, C<sub>1-6</sub>alkyloxy, polyhaloC<sub>1-6</sub>alkyl, carboxyl, aminoC<sub>1-6</sub>alkyl, mono- or di(C<sub>1-4</sub>alkyl)-aminoC<sub>1-6</sub>alkyl, C<sub>1-6</sub>alkyloxycarbonyl, hydroxyC<sub>1-6</sub>alkyl, or a radical of formula



wherein =Z is =O, =CH-C(=O)-NR<sup>5a</sup>R<sup>5b</sup>, =CH<sub>2</sub>, =CH-C<sub>1-6</sub>alkyl, =N-OH or =N-O-C<sub>1-6</sub>alkyl;

20 Q is a radical of formula

wherein Alk is C<sub>1-6</sub>alkanediyl;Y¹ is a bivalent radical of formula -NR<sup>2</sup>- or -CH(NR<sup>2</sup>R<sup>4</sup>)-;25 X¹ is NR<sup>4</sup>, S, S(=O), S(=O)<sub>2</sub>, O, CH<sub>2</sub>, C(=O), C(=CH<sub>2</sub>), CH(OH), CH(CH<sub>3</sub>), CH(OCH<sub>3</sub>), CH(SCH<sub>3</sub>), CH(NR<sup>5a</sup>R<sup>5b</sup>), CH<sub>2</sub>-NR<sup>4</sup> or NR<sup>4</sup>-CH<sub>2</sub>;

*contd.**a<sup>1</sup>*

$X^2$  is a direct bond,  $\text{CH}_2$ ,  $\text{C}(=\text{O})$ ,  $\text{NR}^4$ ,  $\text{C}_{1-4}\text{alkyl}-\text{NR}^4$ ,  $\text{NR}^4-\text{C}_{1-4}\text{alkyl}$ ;

$t$  is 2, 3, 4 or 5;

$u$  is 1, 2, 3, 4 or 5;

$v$  is 2 or 3; and

- 5 whereby each hydrogen atom in Alk and the carbocycles and the heterocycles defined in radicals (b-3), (b-4), (b-5), (b-6), (b-7) and (b-8) may optionally be replaced by  $\text{R}^3$ ; with the proviso that when  $\text{R}^3$  is hydroxy or  $\text{C}_{1-6}\text{alkyloxy}$ , then  $\text{R}^3$  can not replace a hydrogen atom in the  $\alpha$  position relative to a nitrogen atom;
- G is  $\text{C}_{1-10}\text{alkanediyl}$  substituted with one or more hydroxy,  $\text{C}_{1-6}\text{alkyloxy}$ ,
- 10 aryl $\text{C}_{1-6}\text{alkyloxy}$ ,  $\text{C}_{1-6}\text{alkylthio}$ , aryl $\text{C}_{1-6}\text{alkylthio}$ ,  $\text{HO}(-\text{CH}_2-\text{CH}_2-\text{O})_n-$ ,  $\text{C}_{1-6}\text{alkyloxy}(-\text{CH}_2-\text{CH}_2-\text{O})_n-$  or aryl $\text{C}_{1-6}\text{alkyloxy}(-\text{CH}_2-\text{CH}_2-\text{O})_n-$ ;
- R<sup>1</sup> is a monocyclic heterocycle or aryl; said heterocycle being selected from piperidinyl, piperazinyl, pyridyl, pyrazinyl, pyridazinyl, pyrimidinyl, furanyl, tetrahydrofuranyl, thienyl, pyrrolyl, thiazolyl, oxazolyl, imidazolyl, isothiazolyl, pyrazolyl, isoxazolyl, oxadiazolyl; and each heterocycle may optionally be substituted with 1 or where possible more, such as 2, 3 or 4, substituents selected from halo, hydroxy, amino, cyano, carboxy,  $\text{C}_{1-6}\text{alkyl}$ ,  $\text{C}_{1-6}\text{alkyloxy}$ ,  $\text{C}_{1-6}\text{alkylthio}$ ,  $\text{C}_{1-6}\text{alkyloxyC}_{1-6}\text{alkyl}$ , aryl, aryl $\text{C}_{1-6}\text{alkyl}$ , aryl $\text{C}_{1-6}\text{alkyloxy}$ , hydroxy $\text{C}_{1-6}\text{alkyl}$ , mono-or di( $\text{C}_{1-6}\text{alkyl}$ )amino, mono-or di( $\text{C}_{1-6}\text{alkyl}$ )amino $\text{C}_{1-6}\text{alkyl}$ , polyhalo $\text{C}_{1-6}\text{alkyl}$ ,  $\text{C}_{1-6}\text{alkylcarbonylamino}$ ,
- 15  $\text{C}_{1-6}\text{alkyl-SO}_2-\text{NR}^{5c}-$ , aryl-SO<sub>2</sub>-NR<sup>5c</sup>-,  $\text{C}_{1-6}\text{alkyloxycarbonyl}$ , -C(=O)-NR<sup>5c</sup>R<sup>5d</sup>, HO(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>-, halo(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>-,  $\text{C}_{1-6}\text{alkyloxy}(-\text{CH}_2-\text{CH}_2-\text{O})_n-$ , aryl $\text{C}_{1-6}\text{alkyloxy}(-\text{CH}_2-\text{CH}_2-\text{O})_n-$  and mono-or di( $\text{C}_{1-6}\text{alkyl}$ )amino(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>-, each n independently is 1, 2, 3 or 4;
- 20 R<sup>2</sup> is hydrogen, formyl,  $\text{C}_{1-6}\text{alkylcarbonyl}$ , Hetcarbonyl, pyrrolidinyl, piperidinyl, homopiperidinyl,  $\text{C}_{3-7}\text{cycloalkyl}$  substituted with N(R<sup>6</sup>)<sub>2</sub>, or  $\text{C}_{1-10}\text{alkyl}$  substituted with N(R<sup>6</sup>)<sub>2</sub> and optionally with a second, third or fourth substituent selected from amino, hydroxy,  $\text{C}_{3-7}\text{cycloalkyl}$ ,  $\text{C}_{2-5}\text{alkanediyl}$ , piperidinyl, mono-or di( $\text{C}_{1-6}\text{alkyl}$ )amino,  $\text{C}_{1-6}\text{alkyloxycarbonylamino}$ , aryl and aryloxy;
- 25 R<sup>3</sup> is hydrogen, hydroxy,  $\text{C}_{1-6}\text{alkyl}$ ,  $\text{C}_{1-6}\text{alkyloxy}$ , aryl $\text{C}_{1-6}\text{alkyl}$  or aryl $\text{C}_{1-6}\text{alkyloxy}$ ;
- 30 R<sup>4</sup> is hydrogen,  $\text{C}_{1-6}\text{alkyl}$  or aryl $\text{C}_{1-6}\text{alkyl}$ ;
- R<sup>5a</sup>, R<sup>5b</sup>, R<sup>5c</sup> and R<sup>5d</sup> each independently are hydrogen or  $\text{C}_{1-6}\text{alkyl}$ ; or R<sup>5a</sup> and R<sup>5b</sup>, or R<sup>5c</sup> and R<sup>5d</sup> taken together form a bivalent radical of formula -(CH<sub>2</sub>)<sub>s</sub>- wherein s is 4 or 5;
- 35 R<sup>6</sup> is hydrogen,  $\text{C}_{1-4}\text{alkyl}$ , formyl, hydroxy $\text{C}_{1-6}\text{alkyl}$ ,  $\text{C}_{1-6}\text{alkylcarbonyl}$  or  $\text{C}_{1-6}\text{alkyloxycarbonyl}$ ;

*contd.**a 1*

aryl is phenyl or phenyl substituted with 1 or more, such as 2, 3 or 4, substituents selected from halo, hydroxy, C<sub>1-6</sub>alkyl, hydroxyC<sub>1-6</sub>alkyl, polyhaloC<sub>1-6</sub>alkyl, and C<sub>1-6</sub>alkyloxy;

Het is pyridyl, pyrimidinyl, pyrazinyl, pyridazinyl.

- 5        2. A compound according to claim 1 wherein -a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup>- is a radical of formula (a-1) or (a-2).
- 10      3. A compound according to claim 1 or 2 wherein R<sup>1</sup> is phenyl optionally substituted with halo, C<sub>1-6</sub>alkyl or C<sub>1-4</sub>alkyloxy; or pyridyl optionally substituted with 1 or more substituents selected from arylC<sub>1-6</sub>alkyloxy, C<sub>1-6</sub>alkyloxyC<sub>1-6</sub>alkyl, aryl, mono- or di(C<sub>1-6</sub>alkyl)amino, C(=O)-NR<sup>5c</sup>R<sup>5d</sup>, halo or C<sub>1-6</sub>alkyl.
- 15      4. A compound according to any one of claims 1 to 3 wherein G is C<sub>1-4</sub>alkanediyl substituted with hydroxy, C<sub>1-6</sub>alkyloxy, HO(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>-, C<sub>1-6</sub>alkyloxy(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>- or arylC<sub>1-6</sub>alkyloxy(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>-.
- 20      5. A compound according to any one of claims 1 to 4 wherein Q is a radical of formula (b-5) wherein v is 2 and Y<sup>1</sup> is -NR<sup>2</sup>-.
- 25      6. A compound according to any one of claims 1 to 5 wherein X<sup>1</sup> is NH or CH<sub>2</sub>.
- 30      7. A compound according to any one of claims 1 to 6 wherein R<sup>2</sup> is hydrogen or C<sub>1-10</sub>alkyl substituted with NHR<sup>6</sup> wherein R<sup>6</sup> is hydrogen or C<sub>1-6</sub>alkyloxycarbonyl.
- 35      8. A compound according to claim 1 wherein the compound is [(A),(S)]-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[(6-bromo-2-pyridinyl)-ethoxymethyl]-1H-benzimidazol-2-amine; [(A),(S)]-N-[1-(2-aminopropyl)-4-piperidinyl]-1-[ethoxy(6-methyl-2-pyridinyl)methyl]-1H-benzimidazol-2-amine (compound 75); ( $\pm$ )-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[(2-methoxyethoxy)(6-methyl-2-pyridinyl)methyl]-1H-benzimidazol-2-amine; N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-6-chloro-1-[(2-methoxyethoxy)(6-methyl-2-pyridinyl)methyl]-4-methyl-1H-benzimidazol-2-amine trihydrochloride trihydrate; [(A),(R)]-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[ethoxy(6-methyl-2-pyridinyl)methyl]-1H-benzimidazol-2-amine monohydrate; ( $\pm$ )-N-[1-(2-aminopropyl)-4-piperidinyl]-1-[ethoxy(6-methyl-2-pyridinyl)methyl]-1H-benzimidazol-2-amine; [(A),(S)]-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[ethoxy(6-methyl-2-pyridinyl)methyl]-1H-benzimidazol-2-amine monohydrate; ( $\pm$ )-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[ethoxy(6-methyl-2-pyridinyl)methyl]-1H-benzimidazol-

-63-

*contd.**a<sup>1</sup>*

- ~~2-amine; [(A),(R)]-N-[1-(2-aminopropyl)-4-piperidinyl]-1-[ethoxy(6-methyl-2-pyridinyl)methyl]-1H-benzimidazol-2-amine monohydrate; (±)-N-[1-(2-aminoethyl)-4-piperidinyl]-1-[(6-bromo-2-pyridinyl)ethoxymethyl]-2-benzimidazol-2-amine; (±)-N-[1-(2-aminoethyl)-4-piperidinyl]-1-[(2-ethoxyethoxy)(6-methyl-2-pyridinyl)methyl]-1H-benzimidazol-2-amine; [(B),(S)] N-[1-(2-aminopropyl)-4-piperidinyl]-1-[ethoxy(6-methyl-2-pyridinyl)methyl]-1H-benzimidazol-2-amine monohydrate; (±)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-3-[(2-methoxyethoxy)(6-methyl-2-pyridinyl)methyl]-7-methyl-3H-imidazo[4,5-b]pyridin-2-amine; (±)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[(2-ethoxyethoxy)(6-phenyl-2-pyridinyl)methyl]-1H-benzimidazol-2-amine; (±)-N-[1-(2-aminoethyl)-4-piperidinyl]-1-[(2-methoxyethoxy)(6-methyl-2-pyridinyl)methyl]-1H-benzimidazol-2-amine; (±)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[(6-bromo-2-pyridinyl)ethoxymethyl]-4-methyl-1H-benzimidazol-2-amine monohydrate; [(A),(R)]-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[(6-bromo-2-pyridinyl)ethoxymethyl]-1H-benzimidazol-2-amine; (±)-N-[1-(2-amino-3-methylbutyl)-4-piperidinyl]-1-[(6-bromo-2-pyridinyl)ethoxymethyl]-1H-benzimidazol-2-amine;~~
- ~~a prodrug, N-oxide, addition salt, quaternary amine, metal complex or stereochemically isomeric form thereof.~~
- 20 9. A compound as claimed in any one of claims 1 to 8 for use as a medicine.
10. A pharmaceutical composition comprising a pharmaceutically acceptable carrier, and as active ingredient a therapeutically effective amount of a compound as described in any one of claims 1 to 8.
- 25 11. A process of preparing a composition as claimed in claim 10, characterized in that, a pharmaceutically acceptable carrier is intimately mixed with a therapeutically effective amount of a compound as described in any one of claims 1 to 8.
- 30 12. An intermediate of formula



with R<sup>1</sup>, G and -a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup>- defined as in claim 1, P being a protective group, and Q<sub>1</sub> being defined as Q according to claim 1 provided that it is devoided of the R<sup>2</sup> or R<sup>6</sup> substituent.

-64-

*contd.*  
a 1

## 13. An intermediate of formula



with  $R^1$ ,  $G$  and  $-a^1=a^2-a^3=a^4$  defined as in claim 1, and  $(O=)Q_3$  being a carbonyl derivative of  $Q$ , said  $Q$  being defined according to claim 1, provided that it is devoided of the  $-NR^2R^4$  or  $-NR^2-$  substituent.

5

## 14. An intermediate of formula



with  $R^1$ ,  $Q$  and  $-a^1=a^2-a^3=a^4$  defined as in claim 1, and  $(O=G)_2$  being a carbonyl derivative of  $G$ , said  $G$  being defined according to claim 1.

10

15. A process of preparing a compound as claimed in claim 1, characterized by,

- a) reacting an intermediate of formula (II-a) or (II-b) with an intermediate of formula

(III)

 $R^1-G-W_1$ 

(III)

 $R^1-G-W_1$ 

(III)

15

with  $R^1$ ,  $G$ ,  $Q$  and  $-a^1=a^2-a^3=a^4$  defined as in claim 1, and  $W_1$  being a suitable leaving group, in the presence of a suitable base and in a suitable reaction-inert solvent;

- b) deprotecting an intermediate of formula (IV)

-65-

*contd.*  
a<sup>1</sup>



with R<sup>1</sup>, G, and -a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup> defined as in claim 1, H-Q<sub>1</sub> being defined as Q according to claim 1 provided that R<sup>2</sup> or at least one R<sup>6</sup> substituent is hydrogen, and P being a protective group;

5

- c) deprotecting and reducing an intermediate of formula (IV-a)



with R<sup>1</sup>, G, and -a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup> defined as in claim 1, H-Q<sub>1</sub> being defined as Q according to claim 1 provided that R<sup>2</sup> or at least one R<sup>6</sup> substituent is hydrogen, Q<sub>1a</sub>(CH=CH) being defined as Q<sub>1</sub> provided that Q<sub>1</sub> comprises an unsaturated bond, and P being a protective group;

10

- d) deprotecting an intermediate of formula (V)



15

with R<sup>1</sup>, G, and -a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup> defined as in claim 1, and H<sub>2</sub>N-Q<sub>2</sub> being defined as Q according to claim 1 provided that both R<sup>6</sup> substituents are hydrogen or R<sup>2</sup> and R<sup>4</sup> are both hydrogen;

- e) deprotecting an intermediate of formula (VI)



-66-

*contd.**a 1*

with  $R^1$ , G, and  $-a^1=a^2-a^3=a^4$  defined as in claim 1, and  $H_2N-Q_2$  being defined as Q according to claim 1 provided that both  $R^6$  substituents are hydrogen or  $R^2$  and  $R^4$  are both hydrogen, and P being a protective group;

- 5 f) deprotecting an intermediate of formula (VII) or (VIII)



- 10 with  $R^1$ , G, and  $-a^1=a^2-a^3=a^4$  defined as in claim 1,  $H-Q_1 \cdot (OH)$  being defined as Q according to claim 1 provided that  $R^2$  or at least one  $R^6$  substituent is hydrogen and provided that Q comprises a hydroxy moiety,  $H_2N-Q_2 \cdot (OH)$  being defined as Q according to claim 1 provided that both  $R^6$  substituents are hydrogen or  $R^2$  and  $R^4$  are both hydrogen and provided that Q comprises a hydroxy moiety, and P being a protective group;

- g) amination of an intermediate of formula (IX)



- 15 with  $R^1$ , G, and  $-a^1=a^2-a^3=a^4$  defined as in claim 1, and  $H_2N-Q_3H$  being defined as Q according to claim 1 provided that both  $R^6$  substituents are hydrogen or  $R^2$  and  $R^4$  are both hydrogen, and the carbon adjacent to the nitrogen carrying the  $R^6$ , or  $R^2$  and  $R^4$  substituents contains at least one hydrogen, in the presence of a suitable amination reagent;

- h) reducing an intermediate of formula (X)

-67-

contd.

*a* 1



with R<sup>1</sup>, G, and -a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup>- defined as in claim 1, and H<sub>2</sub>N-CH<sub>2</sub>-Q<sub>4</sub> being defined as Q according to claim 1 provided that Q comprises a -CH<sub>2</sub>-NH<sub>2</sub> moiety, in the presence of a suitable reducing agent;

- 5 i) reducing an intermediate of formula (X-a)



with G, and  $-a^1 = a^2 - a^3 = a^4$  defined as in claim 1,  $\text{H}_2\text{N-CH}_2\text{-Q}_4$  being defined as Q according to claim 1 provided that Q comprises a  $-\text{CH}_2\text{-NH}_2$  moiety, and  $\text{R}^1'$  being defined as  $\text{R}^1$  according to claim 1 provided that it comprises at least one substituent, in the presence of a suitable reducing agent and suitable solvent;

- 10 substituent, in the presence of a suitable reducing agent and suitable solvent;

- j) amination of an intermediate of formula (XI)



with R<sup>1</sup>, G, and -a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup>- defined as in claim 1, and H<sub>2</sub>N-CH<sub>2</sub>-CHOH-CH<sub>2</sub>-Q<sub>4</sub>' being defined as Q according to claim 1 provided that Q comprises a CH<sub>2</sub>-CHOH-CH<sub>2</sub>-NH<sub>2</sub> moiety, in the presence of a suitable amination reagent;

- 15 CH<sub>2</sub>-CHOH-CH<sub>2</sub>-NH<sub>2</sub> moiety, in the presence of a suitable amination reagent;

- k) reacting an intermediate of formula (XII) with formic acid, formamide and ammonia



-68-

*contd.**a 1*

- with  $R^1$ , G, and  $-a^1=a^2-a^3=a^4$  defined as in claim 1, and H-C(=O)-Q<sub>1</sub> being defined as Q according to claim 1 provided that R<sup>2</sup> or at least one R<sup>6</sup> substituent is formyl; amination of an intermediate of formula (XIII) by reaction with an intermediate of formula (XIV)



- 5 with  $R^1$ , G, and  $-a^1=a^2-a^3=a^4$  defined as in claim 1, and R<sup>2a</sup>-NH-HQ<sub>5</sub> being defined as Q according to claim 1 provided that R<sup>2</sup> is other than hydrogen and is represented by R<sup>2a</sup>, R<sup>4</sup> is hydrogen, and the carbon atom adjacent to the nitrogen atom carrying the R<sup>2</sup> and R<sup>4</sup> substituents, carries also at least one hydrogen atom, in the presence of a suitable reducing agent;

- 10 m) reducing an intermediate of formula (XV)



- 15 with  $R^1$ , G, and  $-a^1=a^2-a^3=a^4$  defined as in claim 1, and (R<sup>6</sup>)<sub>2</sub>N-[(C<sub>1-9</sub>alkyl)CH<sub>2</sub>OH]-NH-HQ<sub>5</sub> being defined as Q according to claim 1 provided that R<sup>2</sup> is other than hydrogen and is represented by C<sub>1-10</sub>alkyl substituted with N(R<sub>6</sub>)<sub>2</sub> and with hydroxy, and the carbon atom carrying the hydroxy, carries also two hydrogen atoms, and provided that R<sup>4</sup> is hydrogen, and the carbon atom adjacent to the nitrogen atom carrying the R<sup>2</sup> and R<sup>4</sup> substituents, carries also at least one hydrogen atom, with a suitable reducing agent;

- 20 n) deprotecting an intermediate of formula (XVI), (XVI-a) or (XVI-b)



-69-

contd.

*a'*

with  $G$ , and  $-a^1=a^2-a^3=a^4$  defined as in claim 1, and  $H-Q_1$  being defined as  $Q$  according to claim 1 provided that  $R^2$  or at least one  $R^6$  substituent is hydrogen, and  $R^{1a'}-(A-O-H)_w$ ,  $R^{1a'}-(A-O-H)_2$  and  $R^{1a''}-(A-O-H)_3$  being defined as  $R^1$  according to claim 1 provided that  $R^1$  is substituted with hydroxy, hydroxyC<sub>1-6</sub>alkyl, or HO(-CH<sub>2</sub>-CH<sub>2</sub>-O)<sub>n</sub>-, with  $w$  being an integer from 1 to 4 and  $P$  or  $P_1$  being a suitable protecting group, with a suitable acid.

5

## o) amination of an intermediate of formula (XVII)



10

with  $R^1$ ,  $G$ ,  $-a^1=a^2-a^3=a^4$ , Alk,  $X^1$ ,  $R^2$  and  $R^4$  defined as in claim 1, in the presence of a suitable amination agent;

## p) amination of an intermediate of formula (XIX)



15

with  $R^1$ ,  $G$ , and  $-a^1=a^2-a^3=a^4$  defined as in claim 1, and  $Q_6N-CH_2-C_{1-3}\text{alkyl}-NR^4$

-70-

*contd.*

*a 1*

being defined as Q according to claim 1 provided that in the definition of Q, X<sup>2</sup> is C<sub>2-4</sub>alkyl-NR<sup>4</sup>, in the presence of a suitable amination agent;

- q) deprotecting an intermediate of formula (XXI)



5 with R<sup>1</sup>, Q, and -a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup> - defined as in claim 1, and HO-G<sub>1</sub> being defined as G according to claim 1 provided that G is substituted with hydroxy or HO-(CH<sub>2</sub>CH<sub>2</sub>O-)<sub>n</sub>;

- r) reducing an intermediate of formula (XXII)



10 with R<sup>1</sup>, Q, and -a<sup>1</sup>=a<sup>2</sup>-a<sup>3</sup>=a<sup>4</sup> - defined as in claim 1, and H-G<sub>2</sub>-OH being defined as G according to claim 1 provided that G is substituted with hydroxy and the carbon atom carrying the hydroxy substituent carries also at least one hydrogen, in the presence of a suitable reducing agent.

15 and, if desired, converting compounds of formula (I) into each other following art-known transformations, and further, if desired, converting the compounds of formula (I), into a therapeutically active non-toxic acid addition salt by treatment with an acid, or into a therapeutically active non-toxic base addition salt by treatment with a base, or conversely, converting the acid addition salt form into the free base by treatment with alkali, or converting the base addition salt into the free acid by treatment with acid; and, if desired, preparing stereochemically isomeric forms, metal complexes, quaternary amines or N-oxide forms thereof.

- 20 16. A product containing (a) a compound as defined in claim 1, and (b) another antiviral compound, as a combined preparation for simultaneous, separate or sequential use in the treatment or the prevention of viral infections.

-71-

*contd.*

*a<sup>1</sup>*

*Addt* >  
*a<sup>2</sup>* >

17. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and as active ingredients (a) a compound as defined in claim 1, and (b) another antiviral compound.