Seminar on Reflection Positivity and Invertible Phases

Simon Xiang

February 21, 2022

Notes for a seminar on Reflection Positivity and Invertible Phases, organized by Leon Liu and Cameron Krulewski. Source files: https://git.simonxiang.xyz/math_notes/files.html

Contents

1 Quantum Mechanics 2

1 Quantum Mechanics 2

1 Quantum Mechanics

Today's speaker is Justin Kulp from the Perimeter Institute for Theoretical Physics. We will talk about "gapped phases of quantum matter". There are different camps interested in this: the condensed matter camp/quantum information (QI), the math camp, and the high energy physics (HEP) camp. They may say things like this:

- Cond-MAT/QI: Gapped system, microscopic Hamiltonians, phases, SPt, anyons
- MATH: Formal TFTs, π_0 , homotopy, group cohomology, cobordism, MTC
- HEP: Gauge theory, TQFTs, field, Dijkgraaf-Witten.

We will not talk about quantum mechanics. Regardless of choice of axioms, we have three objects everyone agrees on.

- \mathcal{H} the **state space**, a complex separable Hilbert space
- End(\mathcal{H}), some algebra of operators on \mathcal{H} , which will contain something called **observables**
- *H* the **Hamiltonian**, a non-negative self-adjoint operator.
- Unitary evolution of states, a one parameter group acting on \mathcal{H} generated by H. In other words, a map $\mathbb{R} \mapsto U(\mathcal{H}), t \mapsto U_t = e^{-itH|\hbar}$?? called the time-evolution operator.

Since H is non-negative, $z\mapsto U_z=e^{i\tau H|\hbar}$, where τ is **Euclidian time**, $\tau\mapsto U_\tau=e^{-\tau H|\hbar}$, $\tau>0$. Why? This turns oscillatory things into exponentially decaying things. This makes QFT analogous to Statistical Field Theory.

Example 1.1. A nice system is a particle on a ring. Consider the classical Lagrangian $L=\frac{1}{2}\dot{x}^2$, then after identifying $x\sim x+2\pi$ we can view x as a particle on a ring. After Hamiltonification we get $\hat{H}=-\frac{1}{2}\partial_x^2$, and $\mathcal{H}=L^2(S^1;\mathbb{C}), \tau\mapsto U_\tau=e^{-\tau\partial_x^2}$. Our eigenfunction is $\psi_n(x)=\frac{e^{inx}}{\sqrt{2\pi}}$, and evaluation is $E_n=\frac{n^2}{2}$. Then $L=\frac{1}{2}\dot{x}^2+\frac{1}{2\pi}\theta\dot{x}$. Formally, $\hat{H}=\frac{1}{2}\left(-i\partial_x-\frac{1}{2\pi}\theta\right)^2$, $\mathcal{H}=L^2(S^1;\mathcal{L}_{e^{i\theta}})$. Okay this isn't worth it I will spend my time watching the previous lectures instead.

¹Resources for QM: Ryan Hall- QM. Freed. Mackey's book on QM. Varadarajan. Kapustin 1303.6917?