

A unified data analytics platform for accelerating innovation across data engineering, data science, and analytics

- Global company with over 5,000 customers and 450+ partners
- Original creators of popular big data and machine learning open source projects

Business Objective(s)

- What do you want to accomplish? Impact decisions?
- What is "success"?
- Business constraints on model?

⊜ databricks

Deployment Scenarios

- Batch
- Streaming
- · Real-time

a

Deployment Scenarios

- Batch
- Streaming
- · Real-time

Which library to use: SparkML or sklearn?

If an algorithm is present in both, will I get the same result?

Not Necessarily!

- Different default parameters
 RF in Sklearn vs. RF in SparkML
- Some algorithms are implemented differently

⊗ databricks

Handling Missing Data

What are some techniques to deal with missing data?

- · Drop rows/columns
- Impute:

12

Handling Missing Data

What are some techniques to deal with missing data?

- Drop rows/columns
- Impute:
 - Numeric
 - Mean, Median, etc.
 - Categorical
 - 'Missing' Category or Mode
 - Other techniques

databricks

Indicator Columns

If you do ANY imputation techniques, you MUST include an additional field specifying that field was imputed

CustomerID	Salary =	Salary_Imputed ==	Salary_Imputed_IND ==
598769243857	50,000	50,000	0
934529879045	null	70,000	1
456394875354	90,000	90,000	0

Feature Preparation

- Feature Engineering & modelling process are closely related.
- · No "one size fits all" solution.

Handling Non-Numeric Features

Option 1: Create single numerical feature

```
Animals = {'Dog', 'Cat', 'Fish'}
'Dog' = 1, 'Cat' = 2, 'Fish' = 3
```

Option 2: Create a 'dummy' feature for each category

```
'isDog' => [1, 0, 0],
'isCat' => [0, 1, 0],
'isFish' => [0, 0, 1]
```

adatabricks

17

Sparse Vectors

Size of vector, indices of non-zero elements, values

```
DenseVector(0, 0, 0, 7, 0, 2, 0, 0, 0, 0)
SparseVector(10, [3, 5], [7, 2])
```

⊚ databricks

OHE good for linear algorithms

OHE bad for decision trees

Sklearn use ordinalEncoder or labelEncoder

Spark use stringIndexer()

Linear regression assumptions:

If data is skewed, apply log normal distribution

Inspect The Model

- Feature importance scores
- Correlated features?
- Label used as one of features?

Reproducibility

- Can I run this notebook?
- · Run cells out of order?
- Modify stateful model?

Spark Configurations

- spark.sql.shuffle.partitions
 - Number of partitions to use when shuffling data for joins or aggregations
- spark.sql.execution.arrow.enabled
 - Apache Arrow is an in-memory columnar data format that is used in Spark to efficiently transfer data between JVM and Python processes

Solutions vs. Algorithms

Solution	Algorithm	
Outcome driven	Lose sight of problem	
Simple	Most often complex	
Explainable	Hard to explain	
Flexible	Rigid	
Involves multiple parties	Solo driven	
Grasp attentions	"Academic"	
Sometimes boring	Innovative	

⊚ databricks

Illusion of Perfection

- Best does not exist
- Better always exists
- Double down on 80/20 rule
- Iterate through "solutions"

Fail Fast Minimum Viable Model (MVM) 12 Time-to-market seconds Results matter 8 Adoption matters more Visibility 9 The average human attention span in 2000 2013 goldfish **databricks** 31

32

- Organizations are unique
- · Problems are unique

databricks

- Datasets are unique
- DS life cycles are unique
- One-size-fits all solution does not exist (yet)!

Summary

- Setting up for success
- Data Preparation
- Feature Engineering & Model Assumptions
- My Soapbox
 - Provide solutions
 - 80/20 rule
 - Fail Fast
 - Data Science is a team sport
 - One size fits all does not exist

atabricks