Experimentalphysik (H.-C. Schulz-Coulon)

Robin Heinemann

November 27, 2016

Contents

1	Einl	eitung 3
	1.1	Eigenschaften der Physik
		1.1.1 Beispiel
	1.2	Maßeinheiten
		1.2.1 Basisgrößen
		1.2.2 Weitere Größen
2	Med	chanik 4
	2.1	Kinematik des Massenpunktes
		2.1.1 Eindimensionale Bewegung
		2.1.2 Bewegung im Raum
	2.2	Newtonsche Dynamik
		2.2.1 Kraft und Impuls
3	Vers	schiedene Kräfte und Kraftgesetze 12
	3.1	Gravitation (TODO Skizze)
		3.1.1 Anziehungskraft zweier Massen
		3.1.2 Erdbeschleunigung
	3.2	Federkraft
	3.3	Maxwell'sches Rad
		3.3.1 Ruhezushand
		3.3.2 Frage
		3.3.3 Messung:
		3.3.4 Auswertung
	3.4	Rotierende Kette
	3.5	Normalkraft
	3.6	Schiefe Ebene
	3.7	Reibungskräfte
		3.7.1 Experiment: Bewegung einer Masse
		3.7.2 Experiment: Tribologische Messung

3.10 Schiefe Ebene: Messung der Reibungskraft (Skizze) 3.11 Zentripetalkraft		3.8 3.9	Tribologische Reibungslehre	15 15
3.11 Zentripetalkraft 3.11.1 Beispiel 1 Rotierendes Pendel 3.11.2 Beispiel 2 Geostationärer Satellit 4 Arbeit, Energie, Leistung 4.1 Arbeit 4.1.1 Beispiel 4.1.2 Beispiel Kreisbahn (⇒ Gravitation) 4.2 kinetische Energie 4.3 Potentielle Energie 4.3.1 Ball als Feder am Auftreffpunkt 4.4 Bemerkung 4.5 Umwandlung von Energie 4.6 Energie 4.7 Leistung 4.8 Konservative Kräfte 4.8.1 Definition 4.9 Kraftfelder und Potential 4.9.1 Definition Kraftfeld 4.9.2 Beispiel 4.9.3 Feldlinien: 4.9.4 konservative Kraftfelder 4.9.5 Potential und Gravitationsfeld 5 Erhaltungssätze 6 Mechanik des starren Körper			1	16
3.11.1 Beispiel 1 Rotierendes Pendel 3.11.2 Beispiel 2 Geostationärer Satellit 4 Arbeit, Energie, Leistung 4.1 Arbeit 4.1.1 Beispiel 4.1.2 Beispiel (⇒ Gravitation) 4.2 kinetische Energie 4.3 Potentielle Energie 4.3 Potentielle Energie 4.3.1 Ball als Feder am Auftreffpunkt 4.4 Bemerkung 4.5 Umwandlung von Energie 4.6 Energie 4.7 Leistung 4.8 Konservative Kräfte 4.8 Konservative Kräfte 4.9 Kraftfelder und Potential 4.9 Kraftfelder und Potential 4.9.1 Definition Kraftfeld 4.9.2 Beispiel 4.9.3 Feldlinien: 4.9.4 konservative Kraftfelder 4.9.5 Potential und Gravitationsfeld 5 Erhaltungssätze 6 Mechanik des starren Körper				16
3.11.2 Beispiel 2 Geostationärer Satellit 4 Arbeit, Energie, Leistung 4.1 Arbeit 4.1.1 Beispiel 4.1.2 Beispiel Kreisbahn (⇒ Gravitation) 1.4.2 kinetische Energie 4.3 Potentielle Energie 4.3.1 Ball als Feder am Auftreffpunkt 4.4 Bemerkung 4.5 Umwandlung von Energie 4.6 Energie 4.7 Leistung 4.8 Konservative Kräfte 4.8.1 Definition 4.9 Kraftfelder und Potential 4.9.1 Definition Kraftfeld 4.9.2 Beispiel 4.9.3 Feldlinien: 4.9.4 konservative Kraftfelder 4.9.5 Potential und Gravitationsfeld 5 Erhaltungssätze 6 Mechanik des starren Körper		9.11		16
4 Arbeit, Energie, Leistung 4.1 Arbeit 4.1.1 Beispiel 4.1.2 Beispiel Kreisbahn (⇒ Gravitation) 4.2 kinetische Energie 4.3 Potentielle Energie 4.3.1 Ball als Feder am Auftreffpunkt 4.4 Bemerkung 4.5 Umwandlung von Energie 4.6 Energie 4.7 Leistung 4.8 Konservative Kräfte 4.8.1 Definition 4.9 Kraftfelder und Potential 4.9.1 Definition Kraftfeld 4.9.2 Beispiel 4.9.3 Feldlinien: 4.9.4 konservative Kraftfelder 4.9.5 Potential und Gravitationsfeld 2.5 Erhaltungssätze 6 Mechanik des starren Körper 2.5 Erhaltungssätze 2.6 Mechanik des starren Körper				16
4.1 Arbeit			Sompton 2 Goodstanding Savonna 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
4.1.1 Beispiel	4	Arbe	eit, Energie, Leistung	17
4.1.2 Beispiel Kreisbahn (⇒ Gravitation) 1.		4.1	Arbeit	17
4.2 kinetische Energie 1 4.3 Potentielle Energie 1 4.3.1 Ball als Feder am Auftreffpunkt 1 4.4 Bemerkung 1 4.5 Umwandlung von Energie 1 4.6 Energie 1 4.7 Leistung 1 4.8 Konservative Kräfte 1 4.8.1 Definition 1 4.9 Kraftfelder und Potential 1 4.9.1 Definition Kraftfeld 2 4.9.2 Beispiel 2 4.9.3 Feldlinien: 2 4.9.4 konservative Kraftfelder 2 4.9.5 Potential und Gravitationsfeld 2 5 Erhaltungssätze 2 6 Mechanik des starren Körper 2			4.1.1 Beispiel	17
4.3 Potentielle Energie 4.3.1 Ball als Feder am Auftreffpunkt 11 4.4 Bemerkung 12 4.5 Umwandlung von Energie 13 4.6 Energie 14 4.7 Leistung 19 4.8 Konservative Kräfte 4.8.1 Definition 19 4.9 Kraftfelder und Potential 4.9.1 Definition Kraftfeld 4.9.2 Beispiel 4.9.2 Beispiel 4.9.3 Feldlinien: 4.9.4 konservative Kräftelder 4.9.5 Potential und Gravitationsfeld 22 4.9.6 Mechanik des starren Körper 23 46 47 48 48 48 48 48 48 48 48 48 48 48 48 48			4.1.2 Beispiel Kreisbahn (\Rightarrow Gravitation)	17
4.3.1 Ball als Feder am Auftreffpunkt 4.4 Bemerkung 4.5 Umwandlung von Energie 4.6 Energie 4.7 Leistung 4.8 Konservative Kräfte 4.8.1 Definition 4.9 Kraftfelder und Potential 4.9.1 Definition Kraftfeld 4.9.2 Beispiel 4.9.3 Feldlinien: 4.9.4 konservative Kraftfelder 4.9.5 Potential und Gravitationsfeld 5 Erhaltungssätze 6 Mechanik des starren Körper		4.2	kinetische Energie	17
4.4 Bemerkung 18 4.5 Umwandlung von Energie 18 4.6 Energie 19 4.7 Leistung 19 4.8 Konservative Kräfte 19 4.8.1 Definition 19 4.9 Kraftfelder und Potential 19 4.9.1 Definition Kraftfeld 20 4.9.2 Beispiel 20 4.9.3 Feldlinien: 20 4.9.4 konservative Kraftfelder 21 4.9.5 Potential und Gravitationsfeld 22 5 Erhaltungssätze 23 6 Mechanik des starren Körper 23		4.3	Potentielle Energie	18
4.5 Umwandlung von Energie 4.6 Energie 4.7 Leistung 4.7 Leistung 4.8 Konservative Kräfte 4.8.1 Definition 4.9 Kraftfelder und Potential 4.9.1 Definition Kraftfeld 4.9.2 Beispiel 4.9.3 Feldlinien: 4.9.4 konservative Kraftfelder 4.9.5 Potential und Gravitationsfeld 5 Erhaltungssätze 6 Mechanik des starren Körper 2 Mechanik des starren Körper			4.3.1 Ball als Feder am Auftreffpunkt	18
4.6 Energie 19 4.7 Leistung 19 4.8 Konservative Kräfte 19 4.8.1 Definition 19 4.9 Kraftfelder und Potential 19 4.9.1 Definition Kraftfeld 20 4.9.2 Beispiel 20 4.9.3 Feldlinien: 20 4.9.4 konservative Kraftfelder 21 4.9.5 Potential und Gravitationsfeld 22 5 Erhaltungssätze 23 6 Mechanik des starren Körper 23		4.4	Bemerkung	18
4.6 Energie 19 4.7 Leistung 19 4.8 Konservative Kräfte 19 4.8.1 Definition 19 4.9 Kraftfelder und Potential 19 4.9.1 Definition Kraftfeld 20 4.9.2 Beispiel 20 4.9.3 Feldlinien: 20 4.9.4 konservative Kraftfelder 20 4.9.5 Potential und Gravitationsfeld 21 5 Erhaltungssätze 23 6 Mechanik des starren Körper 25		4.5	Umwandlung von Energie	18
4.7 Leistung 19 4.8 Konservative Kräfte 19 4.8.1 Definition 19 4.9 Kraftfelder und Potential 19 4.9.1 Definition Kraftfeld 20 4.9.2 Beispiel 20 4.9.3 Feldlinien: 20 4.9.4 konservative Kraftfelder 20 4.9.5 Potential und Gravitationsfeld 20 5 Erhaltungssätze 20 6 Mechanik des starren Körper 20 6 Mechanik des starren Körper 20		4.6		19
4.8.1 Definition 19 4.9 Kraftfelder und Potential 19 4.9.1 Definition Kraftfeld 20 4.9.2 Beispiel 20 4.9.3 Feldlinien: 20 4.9.4 konservative Kraftfelder 20 4.9.5 Potential und Gravitationsfeld 20 5 Erhaltungssätze 20 6 Mechanik des starren Körper 20 6 Mechanik des starren Körper 20		4.7		19
4.9 Kraftfelder und Potential 4.9.1 Definition Kraftfeld 4.9.2 Beispiel 4.9.3 Feldlinien: 2.4.9.4 konservative Kraftfelder 4.9.5 Potential und Gravitationsfeld 5 Erhaltungssätze 6 Mechanik des starren Körper 2 Mechanik des starren Körper		4.8	Konservative Kräfte	19
4.9.1 Definition Kraftfeld			4.8.1 Definition	19
4.9.1 Definition Kraftfeld		4.9	Kraftfelder und Potential	19
4.9.2 Beispiel				20
4.9.3 Feldlinien:				20
4.9.5 Potential und Gravitationsfeld			*	20
4.9.5 Potential und Gravitationsfeld			4.9.4 konservative Kraftfelder	20
5 Erhaltungssätze 23 6 Mechanik des starren Körper 23				22
6 Mechanik des starren Körper 23				
†	5	Erha	altungssätze	23
†	6	Med	hanik des starren Körner	23
	•		↑	
mass, m m				
			mass, m m	
			Г I	
		\Box		
\$ <u>,</u> _, \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		>		
·····································		}		

1 Einleitung

1.1 Eigenschaften der Physik

Physik ist nicht axiomatisch!

- Nicht alle Gesetze der Natur sind bekannt.
- Die bekannten Naturgesezte sind nicht unumstößlich
- unfertig
- empirisch
- quantitativ
- experimentell
- überprüfbar
- braucht Mathematik
- Gefühl für Größenordnungen und rationale Zusammenhänge

1.1.1 Beispiel

Fermi-Probleme:

- Anzahl der Klavierstimmer in Chicago?
- Anzahl der Autos in einem 10km Stau?
- Anzahl von Fischen im Ozean

1.2 Maßeinheiten

Internationales Einheitensystem (SI)

1.2.1 Basisgrößen

Größe	Einheit	$_{\text{Symbol}}$
Länge	Meter	m
Masse	Kilogramm	kg
Zeit	Sekunden	\mathbf{S}

Meter Strecke, die das Licht im Vakuum während der Dauer von $\frac{1}{299792458}$ s durchläuft.

Sekunde Das 9 192 631 770-fache der Periodendauder der am Übergang zwischen den beiden Hyperfeinstukturniveaus des Grundzustandes von Atomen des Nukulids Cs_{133} entsprechenden Strahlung.

Kilogramm Das Kilogramm ist die Einheit der Masse, es ist gleich der Masse des internationalen Kilogrammprototyps (ist scheiße).

Avogadroprojekt

$$N_A = \frac{MVn}{m}$$

 N_A : Avogardokonstante ($N_A = 6.022\,141\,5 \times 10^{23}$)

1.2.2 Weitere Größen

Größe	Einheit	Symbol
Strom	Ampere	A
Temperatur	Kelvin	K
Lichtstärke	Candla	cd

2 Mechanik

Kinematik: Beschreibung der Bewegung Dynamik: Ursache der Bewegung

2.1 Kinematik des Massenpunktes

2.1.1 Eindimensionale Bewegung

TODO Skizze 1 $x_1, t_1 \longrightarrow x_2, t_2$ Geschwindigkeit

$$v = \frac{\text{Weg}}{\text{Zeit}} = \frac{x_2 - x_1}{t_2 - t_1} = \frac{\Delta x}{\Delta t}$$
 $[v] = \text{m s}^{-1}$ abgeleitete Größe

Momentangeschwindigkeit

$$v := \lim_{\Delta t \to 0} \frac{\Delta x}{\Delta t} = \frac{\mathrm{d}x}{\mathrm{d}t} = \dot{x}$$

Beschleunigung

$$a := \lim_{\Delta t \to 0} \frac{\Delta v}{\Delta t} = \frac{\mathrm{d}v}{\mathrm{d}t} = \frac{\mathrm{d}^2 x}{\mathrm{d}t^2} = \ddot{x} \quad [a] = \mathrm{m}\,\mathrm{s}^{-2}$$

Freier Fall a = const. (Behauptung)

$$a = \ddot{x} = \text{const} = \dot{v}$$

 \rightarrow Integration:

$$v(t) = \int_0^t a dt + v_0 = at + v_0$$
$$x(t) = x_0 + \int_0^t v(t) dt = x_0 + \int_0^t (at + v_0) dt = \frac{1}{2}at^2 + v_0t + x_0$$

Bei unserem Fallturm

$$x(t) = \frac{1}{2}at^2 \to a = \frac{2x}{t^2}$$

$$\frac{x[\text{m}] \quad t[\text{ms}] \quad \frac{2x}{t^2}[\text{m s}^{-2}]}{0.45 \quad 304.1 \quad 9.7321696}$$

$$0.9 \quad 429.4 \quad 9.7622163$$

$$1.35 \quad 525.5 \quad 9.7772861$$

$$1.80 \quad 606.8 \quad 9.7771293$$

$$x(t) = \frac{1}{2}gt^2, \ g = 9.81\,\text{m s}^{-2}$$

Die Erdbeschleunigung g ist für alle Körper gleich (Naturgesetz).

2.1.2 Bewegung im Raum

TODO Skizze 2 Ortsvektor:

$$\vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \\ z(t) \end{pmatrix} = \begin{pmatrix} x(t) & y(t) & z(t) \end{pmatrix}^{\mathsf{T}}$$

Durschnittsgeschwindigkeit

$$\frac{\Delta \vec{r}_{12}}{\Delta t} = \frac{\vec{r}_2 - \vec{r}_1}{\Delta t} = \vec{v}_D$$

$$\vec{v}(t) = \frac{d\vec{r}}{dt} = \dot{\vec{r}}(t) = (\dot{x}(t) \quad \dot{y}(t) \quad \dot{z}(t))^{\mathsf{T}} = (v_x \quad v_y \quad v_z)^{\mathsf{T}}$$

$$\vec{a}(t) = \frac{d\vec{v}}{dt} = \dot{\vec{v}}(t) = \ddot{\vec{r}}(t) = (\ddot{x} \quad \ddot{y} \quad \ddot{z})^{\mathsf{T}} = (a_x \quad a_y \quad a_z)^{\mathsf{T}}$$

 \rightarrow Superpositionsprinzip:

Kinematik kann für jede einzelne (Orts)komponente einzeln betrachtet werden.

$$\vec{r}(t) = \vec{r_0} + \vec{v_0}(t - t_0) + \frac{1}{2}\vec{a}(t^2 - t_0^2) = \begin{pmatrix} x_0 + v_{x,0}(t - t_0) + \frac{1}{2}a_{x,0}(t^2 - t_0^2) \\ y_0 + v_{y,0}(t - t_0) + \frac{1}{2}a_{y,0}(t^2 - t_0^2) \\ z_0 + v_{z,0}(t - t_0) + \frac{1}{2}a_{z,0}(t^2 - t_0^2) \end{pmatrix}$$

Horizontaler Wurf

TODO Skizze 3

$$t_0 = 0$$

$$\vec{a_0} = \begin{pmatrix} 0 & 0 & -g \end{pmatrix}^{\mathsf{T}}$$

$$\vec{v_0} = \begin{pmatrix} v_{x,0} & 0 & 0 \end{pmatrix}^{\mathsf{T}}$$

$$\vec{x_0} = \begin{pmatrix} 0 & 0 & 0 \end{pmatrix}^{\mathsf{T}}$$

$$\vec{r}(t) = \begin{pmatrix} v_{x,0}t & 0 & \frac{1}{2}gt^2 \end{pmatrix}^{\mathsf{T}}$$

Schiefer Wurf

$$\vec{a_0} = \begin{pmatrix} 0 \\ 0 \\ -g \end{pmatrix}$$

$$\vec{v_0} = \begin{pmatrix} v_{x,0} \\ 0 \\ v_{z,0} \end{pmatrix}$$

$$\vec{r_0} = \begin{pmatrix} 0 \\ 0 \\ z_0 \end{pmatrix}$$

$$r(t) = \begin{pmatrix} v_{x,0}t \\ 0 \\ -\frac{1}{2}gt^2 + v_{z,0}t + z_0 \end{pmatrix}$$

$$z(x) = -\frac{1}{2}\frac{g}{v_{x,0}^2}x^2 + \frac{v_{z,0}}{v_{x,0}}x + z_0$$

Nachtrag

$$a = \dot{v}$$

$$\int_0^t \dot{v} dt' = \int_0^t a dt'$$

$$v \mid_0^t = at' \mid_0^t$$

$$v(t) - \underbrace{v(0)}_{v_0} = at$$

$$v(t) = at + v_0$$

analog:

$$x(t) = \frac{1}{2}at^2 + v_0t + x_0$$

TODO Skizze Wurfparabel

$$\tan \varphi = \frac{v_{z,0}}{v_{x,0}}$$
$$v_0^2 = v_{x,0}^2 + v_{z,0}^2$$

Scheitel:

$$Z'(x_s) = 0$$
$$x_s = \frac{v_0^2}{2g}\sin 2\varphi$$

Wurfweite:

$$Z(x_w) = 0$$

$$x_w = \frac{v_0^2}{2g} \sin 2\varphi (1 + \sqrt{1 + \frac{2gz_0}{v_0^2 \sin^2 \varphi}})$$

Optimaler Winkel: φ_{opt}, x_w max.

$$z_0 = 0 \Rightarrow \sin 2\varphi = 1 \rightarrow \varphi = 45^{\circ}$$

$$z_0 \neq 0 \Rightarrow \sin \varphi_{opt} = (2 + \frac{2gz_0}{v_0^2})^{-\frac{1}{2}}$$

Gleichförmige Kreisbewegung

$$\vec{r}(t) = \begin{pmatrix} x(t) \\ y(t) \end{pmatrix} = \begin{pmatrix} R\cos\varphi \\ R\sin\varphi \end{pmatrix}$$

 $mit \varphi = \varphi(t)$

$$\vec{v}(t) = \begin{pmatrix} \dot{x} \\ \dot{y} \end{pmatrix} = \begin{pmatrix} -R\dot{\varphi}\sin\varphi \\ R\dot{\varphi}\cos\varphi \end{pmatrix}$$

Gleichförmige Kreisbewegung: $\dot{\varphi} = \mathrm{const}$ Definition Winkelgeschwindigkeit:

$$\omega = \frac{\mathrm{d}\varphi}{\mathrm{d}t} = \dot{\varphi} \quad [w] = \mathrm{rad}\,\mathrm{s}^{-1} = 1/\mathrm{s}$$

Für $\omega = \text{const.}$:

$$\vec{r} = R \begin{pmatrix} \cos \varphi \\ \sin \varphi \end{pmatrix} \rightarrow |\vec{r}(t)| = r = \text{const}$$

$$\vec{v} = R\omega \begin{pmatrix} -\sin \varphi \\ \cos \varphi \end{pmatrix} \rightarrow |\vec{r}(t)| = r = \text{const}$$

$$\vec{v} \perp \vec{r} \Leftrightarrow \vec{v} \cdot \vec{r} = 0$$

TODO Skizze Kreisbewegung

Mitbewegtes Koordinatensystem

$$\vec{r}(t) = R\vec{e_R}$$
 $\vec{e_R} = \begin{pmatrix} \cos \varphi(t) \\ \sin \varphi(t) \end{pmatrix}$

$$\vec{v}(t) = R\omega\vec{e_t} \quad \vec{e_t} = \begin{pmatrix} -\sin\varphi(t) \\ \cos\varphi(t) \end{pmatrix}$$

$$\vec{t} \neq \text{ const das heißt } \vec{a}(t) \neq 0$$

Kreisbeschleunigung

$$\vec{a}(t) = \begin{pmatrix} \ddot{x}(t) \\ \ddot{y}(t) \end{pmatrix} = \begin{pmatrix} -R\omega^2 \cos \varphi \\ -R\omega^2 \sin \varphi \end{pmatrix} = -R\omega^2 \vec{e_R} \Rightarrow \vec{a} \parallel \vec{r}$$
$$|\vec{a}(t)| = R\omega^2 = \frac{v^2}{R} \neq 0$$

Zentripetalbeschleunigung Zeigt in Richtung des Ursprungs.

$$\vec{a}_{zp} = -R\omega^2 \vec{e_R}$$

Allgemein

 $\vec{\omega}$

Räumliche Lage der Bewegungsebene

$$\vec{v} = \vec{w} \times \vec{r} \quad v = \omega r$$

$$\vec{a} = \vec{w} \times \vec{v}$$

1. **TODO** Skizze omega

Allgemeine Krummlinige Bewegung

$$\vec{v} = v\vec{e_t}$$

$$\vec{a} = \dot{\vec{v}} = \frac{\mathrm{d}(v\vec{e_t})}{\mathrm{d}t} = \frac{\mathrm{d}v}{\mathrm{d}t}\vec{e_t} + v\frac{\mathrm{d}ve_t}{\mathrm{d}t}$$

$$\vec{e_t} = \cos\rho\vec{e_x} + \sin\rho\vec{e_y}$$

$$\vec{e_n} = -\sin\rho\vec{e_x} + \cos\rho\vec{e_y}$$

$$\frac{\mathrm{d}\vec{e_t}}{\mathrm{d}t} = \dot{\rho} - \sin\rho\vec{e_x} + \cos\rho\vec{e_y} = \dot{\rho}\vec{e_n}$$

$$\vec{a} = \dot{v}\vec{e_t} + \frac{v^2}{\rho}\vec{e_n}$$

TODO Skizze

Relativbewegung

- \bullet S-Laborsystem
- S'-Bewegtes System
- $\vec{u} = (u, 0, 0) = \text{const Geschwindigkeit von S'}$ im System S
- Punkt P = (x, y, z) in S
- Punkt P' = (x', y', z') in S'
- Zeitpunkt t = 0: S = S', P = P'

TODO Skizze Bewegtes Bezugssystem

Galilei-Transformation

1. Eindimensional

$$x' = x - ut$$

$$y' = y$$

$$z' = z$$

$$v' = v - u$$

$$t' = t$$

2. Dreidimensional

$$\vec{r}' = \vec{r} - \vec{u}t$$

$$\vec{v}' = \vec{v} - \vec{u}$$

$$\vec{a}' = \vec{a}$$

2.2 Newtonsche Dynamik

Warum bewegen sich Körper?

Newton 1686: Ursache von Bewegungsänderungen sind Kräfte. Newtonsche Gesetze (Axiome)

- 1. Jeder Körper verharrt im Zustand der Ruhe oder der gleichförmigen Bewegung, sofern er nicht durch Kräfte gezwungen wird diesen Bewegungszustand zu verlassen
- 2. Die Änderung einer Bewegung wird durch Einwirken einer Kraft verursacht. Sie geschieht in Richtung der Kraft und ist proportional zu Größe der Kraft
- 3. Übt ein Körper 1 auf einen Körper 2 die Kraft F_{12} , so reagiert Körper 2 auf den Körper 1 mit der Gegenkraft F_{21} und es gilt $F_{21} = -F_{12}$ (actio = reactio)

2.2.1 Kraft und Impuls

$$\vec{F} = \begin{pmatrix} F_x \\ F_y \\ F_z \end{pmatrix}$$

Superpositions von Kräften (Zusatz zu den Newtonschen Gesetzen (Korollar)):

$$\vec{F}_{\text{ges}} = \sum_{i=1}^{n} \vec{F}_{i}$$

TODO Skizze Addition von Kräften

Grundkräfte der Natur

- Elektromagnetische Kraft
- Starke Draft
- Schwache Kraft
- Gravitation

Impuls

$$\vec{P} = m\vec{v}$$
 $[\vec{P}] = \text{kg m s}^{-1}$

Kraft

$$\vec{F} = \frac{\mathrm{d}\vec{P}}{\mathrm{d}t} = \dot{\vec{P}} = \frac{\mathrm{d}}{\mathrm{d}t}(m\vec{v})$$

m = const.:

$$\vec{F} = m \frac{\mathrm{d}\vec{v}}{\mathrm{d}t} = m \dot{\vec{v}} = m \ddot{\vec{x}} = m \vec{a}$$

Grundgesetz der Dynamik

$$\vec{F} = \dot{\vec{P}}$$
 beziehungsweise $\vec{F} = m\vec{a}$

Trägheitsprinzip (Impulserhaltung)

$$\vec{P}=m\vec{v}=\mathrm{const},\ \vec{P}=0$$
 für $\vec{F}=0$

Experiment

$$\vec{F}_G = \underbrace{m\vec{g}}_{Kraft} = \underbrace{(m+M)}_{Trgheit} \vec{a} = m_{\rm ges} \vec{a}$$

$$\vec{a} = \frac{m}{m+M} \vec{g} \stackrel{d=1}{\Longleftrightarrow} a = \frac{m}{m+M} g = \frac{m}{m_{textges}} g$$

Erwartung: $a\sim \frac{m}{m_{\mathrm{ges}}},~a=\frac{2\Delta s}{\Delta s},~\mathrm{weil}~\Delta s=\frac{1}{2}a\Delta t^2$

Messung:

TODO Skizze

Trägheitsprinzip - "revisited" Definition: Ein Bezugssystem in dem das Trägheitsprinzip gilt nennt man ein Inatialsystem.

In einem beschleunigten Bezugsystem gilt das Trägheitsprinzip <u>nicht</u>. Beschleunigte Systeme \neq Inatialsysteme. Das Trägheitsprinzip ist Galilei-invariant.

TODO Skizze whatever

Trägheitsprinzip: [moderne Formulierung]: Es gibt Inatialsysteme, das heißt Koordinatensysteme in denen ein Kräftefreier Körper im Zustand der Ruhe oder der gradlinig gleichförmigen Bewegung verbleibt.

Actio gleich Reactio

$$\underbrace{\vec{F_{12}}}_{\text{Kraft}} = \underbrace{-\vec{F_{21}}}_{\text{Gegenkraft}}$$

TODO Skizze von Körpern

TODO (Skizze) Expermiment

1. Erwartung:

$$v_1 = v_2 \rightarrow a_1 = a_2 \rightarrow F_1 = F_2 \checkmark$$

Nichttrivialer Fall:

Kraftstoß:

Magnetische Kraft: $F_{\text{mag}} \sim \frac{1}{r^2}$

$$v_{1,2} = \int_0^{t_{1,2}} a(t) dt = a_{\text{eff}} T$$

 $\to F_1(t) = F_2(t) \to v_1 = v_2$

Expermiment 2

$$m_1 = 241.8 \,\mathrm{g} \wedge 2 = 341.8 \,\mathrm{g} \Rightarrow \frac{m_2}{m_1} \approx 1.5$$

$$v = \frac{\Delta s}{\Delta t} \to \frac{v_1}{v_2} = \frac{t_2}{t_1} = \frac{71}{48} \approx 1.5$$

$$a \sim v, F = ma \to \frac{v_1}{v_2} = \frac{a_1}{a_2} = \frac{m_2}{m_1} \cdot \frac{F_1}{F_2}$$

$$1 = \frac{F_1}{F_2} \Rightarrow F_1 = F_2$$

Beispiele

- Kraft und Gegenkraft (TODO Skizze)
- Flaschenzug, Seilkräfte (TODO Skizze)

3 Verschiedene Kräfte und Kraftgesetze

3.1 Gravitation (TODO Skizze)

Eperimenteller Nachweis im Labor mit Torsionsdrehungen (erstmals Cavendish)

3.1.1 Anziehungskraft zweier Massen

 m_1, m_2 Massen, Newtonsches Gravitaitonsgesetz:

$$\vec{F_G} = -G\frac{m_1 m_2}{r^2} \vec{e_r}$$

mit
$$G = 6.67 \times 10^{-11} \, \mathrm{m^3 \, kg^{-1} \, s^{-2}}$$

3.1.2 Erdbeschleunigung

$$F_G = G \frac{mM_E}{(r_E + h)^2} \approx G \frac{mM_E}{r^2} = mg \Rightarrow g \approx 9.81 \,\mathrm{m \, s}^{-2}$$

(mittleres g)

Abweichungen

- $\bullet\,$ kompilizierte Massenverteilung, Strukturen
- Abflachung der Erde

Messung von g

- Gravimeter (Federgravimeter, Pendelgravimeter), relative Messung
- Absolutgravimeter (freier Fall, supraleitende Gravimeter)

Träge und schwere Masse

$$F = m_T a \rightarrow \text{träge Masse}$$

$$F = m_S G \frac{M_E}{r_E^2} \rightarrow \text{ schwere Masse}$$

Äquivalenzprinzip $m_S \sim T$ beziehungsweise $m_S = m_T$

3.2 Federkraft

Hook'sches Gesetz

$$F_x = F_x(\Delta x) = -k_F \Delta x$$

Beliebige Auslenkungsfunktion $(F_x(\Delta x = x - x_0))$

$$F_x(x) = F_x(x_0) + \frac{\mathrm{d}F_x(x)}{\mathrm{d}x}(x - x_0) + \frac{1}{2}\frac{\mathrm{d}^2 f_x(x)}{\mathrm{d}x^2}(x - x_0) + \dots$$

 \rightarrow unabhängig von konkreter Zusammenhang $f_x(x)$ gilt kleine Änderungen

3.3 Maxwell'sches Rad

3.3.1 Ruhezushand

Waage misst Gesamtmasse M austariert

3.3.2 Frage

Was passiert, wenn sich das Rad bewegt??

3.3.3 Messung:

- 1. Rad fixiert $\rightarrow m = 0$
- 2. Rad läuft $\rightarrow \Delta m = -0.7g < 0$

3.3.4 Auswertung

Anwendung 3. Newtonsches Gesetz: $\vec{F_1} + \vec{F_2} = m\vec{a}$ beziehungsweise $F_2 = -F_1 + m\vec{a}$

- 1. $\vec{a} = 0 : |\vec{F_2}| = |\vec{F_1}| \to |\vec{F_2}| = 0, 0m = 0$ (Waage)
- 2. $\vec{a} > 0: |\vec{F_2}| < |\vec{F_1}| \rightarrow$ Waage mit $|\vec{F_2}| < mg \ \Delta m < 0$

3.4 Rotierende Kette

Winkelelement $\Delta\alpha$. Radialkraft $\vec{F_r}$ ist resultierende Kraft der vom abgeschnittenen Teil der Kette wirkende Kräfte $\vec{F_1} + \vec{F_2}$

 $(\vec{F}_G$ vernachlässigbar klein bei hoher Umdrehung und somit großen $|F_1|, |F_2|$) Es gilt:

$$\vec{a}_z p = -\frac{v^2}{R} \vec{e}_r \quad \vec{v} = R\omega \vec{e}_t$$

$$\vec{F_r} = \Delta m \vec{a}_z p = -\Delta m \frac{v^2}{R} \vec{e}_r$$

$$\vec{F_r} = \vec{F_1} + \vec{F_2}$$

$$F_r \approx \Delta \alpha F = F \frac{\Delta L}{R}$$

$$F = F_r \frac{R}{\Delta L} = \Delta m \frac{v^2}{R} \frac{R}{\Delta L} = \frac{m}{2\pi R} v^2$$

Die Kraft $F = \frac{m}{2\pi R}v^2$ spannt die Kette.

3.5 Normalkraft

1. (Skizze) Normalkraft \vec{F}_N = Kraft senktrecht zur Kontaktfläche. Wird kompensiert duchr \vec{F}_N' = Kraft mit der die Unterlage auf Körper wirkt (Źwangskräfte)

3.6 Schiefe Ebene

• Gewichtskraft: $\vec{F}_G = m\vec{g}$

• Normalkraft: $\vec{F}_N = mg \cos \alpha \vec{e}_y$

• Hangabtriebskraft: $\vec{F}_H = mg \sin \alpha \vec{e}_x$

Bewegungsgleichung

$$F_H = m\ddot{x} \to x_x = g \sin \alpha = \text{const.}$$

3.7 Reibungskräfte

• im täglichen Leben über all präsent

• spielt eine wichtige Rolle Technik

 \rightarrow Tribologie = Reibungslehre

• Reibung hängt stark von der Oberfläche ab

3.7.1 Experiment: Bewegung einer Masse

• Gewicht ruhte: $\vec{F}_Z = -\vec{F}_R \rightarrow a = 0, v = 0$

• Gewicht setzt sich in Bewegung: $|\vec{F}_Z| > |\vec{F}_R| \to a > 0, v$ steigt an

• Gewicht gleitet: $\vec{F}_Z = -\vec{R}_R \rightarrow a = 0, v = \text{const.} \neq 0 \text{ mit } \vec{v} = \text{const.}$

Reibugskraft nimmt ab, sobald das Gewicht bewegt wird.

• Haftreibung F_H Schwellenwert für Zugkraft um Körper zu bewegen

• Gleitreibung F_G Reibungskraft bei bewegtem Körper

3.7.2 Experiment: Tribologische Messung

Messung der Zugkraft bei der sich der Holzblock nach kleiner Störung in Richtung Rolle bewegt: $F_R = F_Z$

Beobachtung

- F_R hängt nicht von der Oberfläche ab.
- F_R hängt von dem Gewicht des Blocks ab
- F_R ist Materialbhängig

3.8 Tribologische Reibungslehre

3.9 Mikroskopisches Modell

Verantwortlich sind elektrische Kröfte zwischen Atomen und Molekülen der beieinanderliegenden Oberflächen: Van-der-Waals-Kräfte

• Stärke ergibt sich aus effektivem Kontakt.

Relative mikroskopische Reibungsfläche: $\sum \frac{a_i}{A} \sim \frac{F_N}{A} \leftarrow \; \text{Druck}$

• $a_1 =$ effektive Kontaktfläche eines Einzelatoms

Also:

$$F_R \sim \sum \frac{a_i}{A} \sim F_N$$

- Haftreibung: Verzahnung der Oberflächen mit minimalen Abstand
- Gleitreibung: Minimaler Abstand wird auf Grund der Bewegung nicht erreicht

3.10 Schiefe Ebene: Messung der Reibungskraft (Skizze)

Kräftegleichgewicht: $F_H = F_R$

$$F_H = mg \sin \alpha, F_N = mg \cos \alpha$$

Grenzwinkel: $F_R = mg \sin \alpha = \mu_R mg \cos \alpha \Rightarrow \mu_R = \tan \alpha$

$$\alpha = 15^{\circ} \rightarrow \tan \alpha = 0.27, \mu_G = 0.27$$

3.11 Zentripetalkraft

$$\vec{a}_{Zp} = \vec{\omega} \times (\vec{\omega} \times \vec{r})$$
 $\vec{F}_{Zp} = m\vec{\omega} \times (\vec{\omega} \times \vec{r})$
$$a_{Zp} = \omega^2 r = \frac{v^2}{r}$$
 $F_{Zp} = m\omega^2 r = m\frac{v^2}{r}$

3.11.1 Beispiel 1 Rotierendes Pendel

$$\vec{F}_{Zp} := \vec{F}_G + \vec{F}_Z$$

$$F_G = mg = F_Z \cos \theta$$

$$F_{Zp} = F_Z \sin \theta$$

$$F_{Zp} = mg \frac{\sin \theta}{\cos \theta} = mg \tan \theta, \quad a_{Zp} = g \tan \theta$$

$$a_{Zp} = \omega^2 r \Rightarrow : \omega \sqrt{\frac{g}{\tan \theta}}$$

- θ steigt mit ω an
- $\theta(\omega)$ ist unabhängig von Masse

3.11.2 Beispiel 2 Geostationärer Satellit

Zentripetal = Gravitationskraft

$$m\omega^2 R = G \frac{mM_E}{R^2}$$

Geostationär: $\omega = \frac{2\pi}{24 \,\text{h}} = \frac{2\pi}{24 \cdot 3600 \,\text{s}} = 7.27 \times 10^{-5} \,\text{s}^{-1}$

$$R^3 = \frac{GM_E}{\omega^2} \to R = 42\,312\,\mathrm{km}$$

Abstand von der Erd-Oberfläche:

$$\tilde{R} = R - R_E = 35\,930\,\mathrm{km}$$

- $G = 6.67 \times 10^{-11} \,\mathrm{m}^3 \,\mathrm{kg}^{-1} \,\mathrm{s}^2$
- $M_E = 6 \times 10^{24} \,\mathrm{kg}$
- $R_E = 6373 \,\mathrm{km}$

4 Arbeit, Energie, Leistung

4.1 Arbeit

$$\Delta W = \vec{F}\vec{x} = F_x \Delta x + F_y \Delta y + F_z \Delta z$$
$$dW = \lim_{\Delta r \to 0} \Delta W = \lim_{\Delta r \to 0} \vec{F} \Delta \vec{r} = \vec{F} d\vec{r}$$
$$= F_x dx + F_y dy + F_z dz$$

Gesamtarbeit für Verschiebung von $\vec{r_1}$ nach $\vec{r_2}$

$$W = \int_{\vec{r_1}}^{\vec{r_2}} \vec{F} d\vec{r}$$
$$[W] = N \,\mathrm{m} = \mathrm{kg} \,\mathrm{m} \,\mathrm{s}^{-2} = \mathrm{J}$$
$$\int_{\vec{r_1}}^{\vec{r_2}} \vec{F} d\vec{r} = \int_{r_1}^{r_2} F_x dx + \int_{r_1}^{r_2} F_y dy + \int_{r_1}^{r_2} F_z dz = \int_{s_1=0}^{s_2} \vec{F}(s) \frac{d\vec{r}}{ds} ds$$

 $\vec{r}(s)$ parametrisiere Geschwindigkeit.

4.1.1 Beispiel

$$\vec{r_1} = \begin{pmatrix} 0 \\ 0 \\ 0 \end{pmatrix}, \vec{r_2} = \begin{pmatrix} \Delta x \\ 0 \\ 0 \end{pmatrix}, \vec{F} = \begin{pmatrix} mg \\ 0 \\ 0 \end{pmatrix}, d\vec{r} = \begin{pmatrix} dx \\ dy \\ dz \end{pmatrix}$$

$$W = \int_{(0)}^{(1)} mg dx + \int 0 dy + \int 0 dz = mg \Delta x$$

4.1.2 Beispiel Kreisbahn (⇒ Gravitation)

$$W = \int_{A}^{B} \vec{F} d\vec{r} = 0$$

4.2 kinetische Energie

$$k = \frac{1}{2}gt^2$$

$$v = gt$$

$$v^2 = g^2t^2$$

$$v^2 = gh$$

$$W = \int_0^h F_G dx = F_G \int_0^h dx = F_G h = mgh = \frac{1}{2}mv^2$$

• Kinetische Energie: E_{kin}

$$E_{kin} = \frac{1}{2}mv^2$$
 $[E_{kin} = \text{kg m s}^{-2} = \text{J}]$

• Die Zunahme (beziehungsweise Abnahme) der kinetischen Energie eines Körpers ist gleich der ihm zugeführten (beziehungsweise der von ihm gelieferten) Arbeit (keine Reibung)

$$W = \int_{\vec{r_1}}^{\vec{r_2}} \vec{F} d\vec{r} = \int_{\vec{r_1}}^{\vec{r_2}} m \frac{d\vec{v}}{dt} d\vec{r} = \int_{\vec{v_1}}^{\vec{v_2}} m \frac{d\vec{r}}{dt} d\vec{v}$$
 (1)

$$= \int_{\vec{v_1}}^{\vec{v_2}} m\vec{v} d\vec{r} = \frac{1}{2} m v_2^2 - \frac{1}{2} m v_1^2 \tag{2}$$

4.3 Potentielle Energie

$$W = \int_{h}^{0} F_{g} dx = \int_{h}^{0} -gm dx = mgh = \frac{1}{2}mv^{2}$$

4.3.1 Ball als Feder am Auftreffpunkt

$$F = k\xi$$

$$W = \int_0^{\xi} k\xi' d\xi' = \frac{1}{2}k\xi^2$$

4.4 Bemerkung

Arbeit $W = \int_{\vec{r_1}}^{\vec{r_2}} \vec{F} d\vec{F}$ gilt immer, Symbol für Linienintegral meist weggelassen.

- kinetische Energie $E_{kin} = \frac{1}{2}mv^2$
- potentielle Energie

$$-E_{pot} = \frac{1}{2}mx^{2}$$
 (Verformen)

$$-E_{pot} = mgh$$
 (Lage)

4.5 Umwandlung von Energie

$$dE_{kin} = Fdx = -dE_{pot}$$

Gilt nur für konservative Kräfte!

$$W = \int_{\vec{r_1}}^{\vec{r_2}} \vec{F} d\vec{r} = \int_{E_1}^{E_2} dE_{kin} = E_{kin}(\vec{r_2}) - E_{kin}(\vec{r_1})$$
 (3)

$$W = \int_{\vec{r_1}}^{\vec{r_2}} \vec{F} d\vec{r} = -\int_{E_1}^{E_2} dE_{kin} = E_{pot}(\vec{r_1}) - E_{pot}(\vec{r_2})$$
 (4)

- 1. Für
 - W>0: E_{kin} nimmt zu (Arbeit von System am Objekt verrichtet)
 - W < 0: E_{kin} nimmt ab

2. Für

• W > 0: E_{pot} nimmt ab

• W < 0: E_{pot} nimmt zu

4.6 Energie

$$W = \int_{\vec{r_1}}^{\vec{r_2}} \vec{F} d\vec{r} \tag{5}$$

$$=E_{kin}(\vec{r_2}) - E_{kin}(\vec{r_1}) \tag{6}$$

$$=E_{pot}(\vec{r_2}) - E_{pot}(\vec{r_1}) \tag{7}$$

Die unteren beiden Gleichungen gelten nur für konservative Kräfte

4.7 Leistung

$$\vec{F} = \text{const}$$

$$P = \frac{\mathrm{d}W}{\mathrm{d}t} = \vec{F} \frac{\mathrm{d}\vec{r}}{\mathrm{d}t} = \vec{F}\vec{c}$$

$$[P] = \mathrm{N}\,\mathrm{m}\,\mathrm{s}^{-1} = \mathrm{J}\,\mathrm{s}^{-1} = \mathrm{W} = \mathrm{Watt}$$

4.8 Konservative Kräfte

$$W_1 = \int_{1 \text{ Weg1}}^{2} \vec{F} d\vec{r} = E_{pot}(1) - E_{pot}(2)$$
 (8)

$$W_2 = \int_{1 \text{ Weg2}}^{2} \vec{F} d\vec{r} = E_{pot}(1) - E_{pot}(2)$$
 (9)

(10)

Geschlossener Weg: $1 \rightarrow 2 \rightarrow 1$

$$W = \oint_{\mathcal{C}} \vec{F} d\vec{r} = W_1 - W_2 = 0$$

4.8.1 Definition

Kräfte, für die die Arbeit unabhängig vom Weg ist nennt man konservativ. Für konservative Kräfte gilt:

$$W = \oint \vec{F} \, \mathrm{d}\vec{s} = 0$$

4.9 Kraftfelder und Potential

$$W = \int_{\vec{r_1}}^{\vec{r_2}} \vec{F} \mathrm{d}\vec{r}$$

4.9.1 Definition Kraftfeld

Eindeutige Zuordnung einer Kraft zu jedem Punkt im Raum:

$$\vec{F} = \vec{F}(\vec{r}) = \vec{F}(x, y, z) = (F_x(x, y, z), F_y(x, y, z), F_z(x, y, z))$$

4.9.2 Beispiel

Gravitationskraft:

$$\vec{F}(\vec{r}) = -G\frac{mM}{r^2}\vec{e_r} \tag{11}$$

$$= f(r)\vec{e}_r \tag{12}$$

Kugelsymmetrisch, Zentralfeld

TODO Skizze Vektorfeld

TODO Skizze Feldlinien

4.9.3 Feldlinien:

- Feldlinien sind immer tangential zur Kraftrichtung
- Feldliniendichte ist proportional zum Betrag der Karft
- Feldlinien schneiden sich nie

4.9.4 konservative Kraftfelder

Kraftfelder, die konservative Kräfte beschreiben nennt man konservative Kraftfelder Für konservative Kraftfelder gilt

$$W_{12} = \int_{1}^{2} \vec{F} d\vec{r} = E_{pot}(1) - E_{pot}(2)$$

• $E_{pot} = E_{pot}(x, y, z)$ Skalar!

homogenes Kraftfeld

$$\vec{F}(\vec{R}) = (0, 0, F_z)$$

• Weg 1:

$$W_1 = \int_{\text{Weg1}} \vec{F} d\vec{R} = \int_{z_1}^z F_z dz = F_z(z_2 - z_1)$$

• Weg 2:

$$W_2 = \int_{\text{Weg2}} \vec{F} d\vec{R} = \int_{z_1}^z F_z dz = F_z(z_2 - z_1)$$

TODO Skizze

Zentralkraftfeld

$$\vec{F}(\vec{r}) = f(r)\vec{e_r}$$

$$W = \oint \vec{F} \, \mathrm{d}\vec{r} \tag{13}$$

$$= \int_{1}^{2} f(r) dr + \int_{2}^{3} \vec{F} d\vec{r} + \int_{3}^{4} f(r) dr + \int_{4}^{1} \vec{F} d\vec{r}$$
 (14)

$$=0 (15)$$

Gravitationsfeld

$$W_{AB} = \int_{A}^{B} \vec{F} d\vec{R} \tag{16}$$

$$= \int_{A}^{B} -G \frac{mM}{r^2} \vec{e_r} d\vec{r} \tag{17}$$

$$= \int_{A}^{B} -G\frac{mM}{r^2} dr \tag{18}$$

$$= \left[G \frac{mM}{r+\xi} \right]_{r_A}^{r_B} \qquad = E_{pot}(A) - E_{pot}(B) \tag{19}$$

$$\Rightarrow E_{pot}(A) = -G\frac{mM}{r_A} + \xi$$

$$\Rightarrow E_{pot}(B) = -G\frac{mM}{r_B} + \xi = E_{pot}(C)$$

Potentielle Energie des Gravitationsfelder:

$$E_{pot}^{grav} = -G\frac{mM}{r}$$

d = 1

$$E_{pot} = -\int F dx$$
$$dE_{pot} = -F dx$$
$$-\frac{dE_{pot}}{dx} = F$$

$$d = 3$$

$$E_{pot} = -\int \vec{F} d\vec{r} \rightarrow \vec{F} = - \frac{dE_{pot}}{d\vec{r}}$$

Gesucht: Ableitung eines Vektors nach einem Skalar. Betrachte:

$$\Delta E_{pot} = -\vec{F}\Delta \vec{r} = -(F_x \Delta x + F_y \Delta y + F_z \Delta z)$$

$$\Delta E_{pot} = \frac{\partial E_{pot}}{\partial x} \Delta x + \frac{\partial E_{pot}}{\partial y} \Delta y + \frac{\partial E_{pot}}{\partial z} \Delta z$$

$$\vec{F}(x, y, z) = -(\frac{\partial E_{pot}}{\partial x} \Delta x, \frac{\partial E_{pot}}{\partial y} \Delta y, \frac{\partial E_{pot}}{\partial z} \Delta z)$$

$$= -\operatorname{grad} E_{pot} \qquad (20)$$

Gilt nur für konservative Kräfte

Gradient Der Gradient eines Skalarfeldes ist ein Vektorfeld, dass in jedem Punkt in die Richtung des steilsten Anstiegs der skalaren Größe zeigt.

Notation:

$$\vec{F} = -\operatorname{grad} E_{pot}$$

$$\vec{F} = -\vec{\nabla} E_{pot}, \vec{\nabla} = (\frac{\partial}{\partial x}, \frac{\partial}{\partial z}, \frac{\partial}{\partial z})$$

4.9.5 Potential und Gravitationsfeld

• Gravitationskraft:

$$\vec{F}(\vec{r}) = -G\frac{mM}{r^2}\vec{e_r}$$

• Potentielle Energie:

$$\vec{E}_{pot}(\vec{r}) = -G\frac{mM}{r}$$

Potential:

$$\Phi(\vec{r}) = \lim_{m \to 0} \frac{E_{pot}(\vec{r})}{m}$$

• Gravitationspotential:

$$\Phi = -G\frac{M}{r}$$

• Gravitationsfeld:

$$\vec{G} = -G\frac{M}{r^2}\vec{e_r}$$

•

$$\vec{G} = -\operatorname{grad}\Phi$$

•

$$E_{not} = m\Phi$$

5 Erhaltungssätze

falls
$$\vec{F}_{auen} = 0$$

$$\sum \vec{p_i} = \sum \vec{p_i'} = \text{const}$$

$$\sum E_{kin,i} = \sum E'_{kin,i} + Q$$

$$Q = 0$$
 elastisch
$$Q > 0$$
 inelastisch
$$Qx0$$
 superelastisch

6 Mechanik des starren Körper