```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
# Loading the dataset
df = pd.read_csv('oil_spill.csv')
# Display the first few rows of the dataset
df.head()
  f_1 f_2 f_3 f_4 f_5 f_6 f_7 f_8 f_9
f 10 \
        2558 1506.09
                      456.63
                                   6395000 40.88 7.89 29780.0
    1
                             90
0.19
1
    2 22325
             79.11
                      841.03
                             180
                                  55812500
                                           51.11 1.21
                                                        61900.0
0.02
       115 1449.85
                              88
                                           40.42 7.34
2
    3
                      608.43
                                    287500
                                                         3340.0
0.18
3
        1201 1562.53
                      295.65
                              66
                                   3002500 42.40 7.97
                                                        18030.0
0.19
        312
              950.27 440.86
                              37 780000 41.43 7.03
                                                         3350.0
    5
0.17
                   f_42
                            f 43
                                 f 44
                                           f 45 f 46
         f 41
                                                          f 47
f_48 \
0 ...
       2850.00
                1000.00
                          763.16
                                  135.46
                                           3.73
                                                   0
                                                      33243.19
65.74
       5750.00
              11500.00 9593.48 1648.80
                                           0.60
                                                   0
                                                      51572.04
1 ...
65.73
                                           9.33
2 ...
       1400.00
                 250.00
                          150.00
                                 45.13
                                                   1
                                                      31692.84
65.81
       6041.52
                 761.58
                          453.21 144.97
                                          13.33
                                                   1
                                                      37696.21
3 ...
65.67
       1320.04
                 710.63
                          512.54
                                  109.16
                                           2.58
                                                      29038.17
4 ...
                                                   0
65.66
  f 49
       target
0 7.95
             1
1 6.26
             0
2
  7.84
             1
             1
3 8.07
4 7.35
             0
[5 \text{ rows } \times 50 \text{ columns}]
df.tail()
    f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9
f 10 ...
          12 92.42 364.42 135
932 200
                                 97200 59.42 10.34 884.0
```

0 17									
0.17 933	201 1	1 98.82	2 248.64	159	89100	59.64	10.18	831.0	
0.17 934	 202 1	L4 25.14	4 428.86	24	113400	60.14	17.94	847.0	
	203 1	0 96.00	9 451.30	68	81000	59.90	15.01	831.0	
		11 7.73	3 235.73	135	89100	61.82	12.24	831.0	
0.20	 £ 41	£ 42	£ 42	£ 11	£ 15	£ 16	£ 17	£ 40	£ 40
targe		_	f_43	_	_	_	_	_	f_49
932 0	381.84	254.56	84.85	146.97	4.50	0	2593.50	65.85	6.39
933 0	284.60	180.00	150.00	51.96	1.90	0	4361.25	65.70	6.53
934	402.49	180.00	180.00	0.00	2.24	0	2153.05	65.91	6.12
0 935 0	402.49	180.00	90.00	73.48	3 4.47	0	2421.43	65.97	6.32
	254.56	254.56	127.28	180.00	2.00	0	3782.68	65.65	6.26
	ows x 50) columns	s]						
df.de	escribe(()							
		f_1	f	_2	f	_3	f_4	ļ	f_5
\ count	937.0	00000	937.0000	000 9	37.0000	90 93	37.000000	937.0	00000
mean	81.5	88047	332.8420)49 6	98.7070	36 87	70.992209	84.1	21665
std	64.9	76730	1931.9385	570 5	99.9655	77 52	22.799325	45.3	61771
min	1.6	100000	10.0000	100					
		,00000		,00	1.92000	90	1.000000	0.0	00000
25%	31.6	000000	20.0000		1.92000 85.27000		1.000000 14.200000		00000
25% 50%				000		90 44		54.0	
50%	64.6	000000	20.0006 65.0006)00)00 7	85.27000 '04.37000	90 44 90 76	14.200006 51.280006	54.0 73.0	00000 00000
	64.6 124.6	000000 000000 000000	20.0006	000 000 7 000 12	85.27000	90 44 90 76 90 126	14.200000	54.0 73.0 117.0	00000 00000 00000
50% 75%	64.6 124.6	000000 000000 000000	20.0006 65.0006 132.0006	000 000 7 000 12	85.27000 704.37000 223.48000	90 44 90 76 90 126	14.200006 51.280006 50.370006	54.0 73.0 117.0	00000 00000 00000
50% 75% max	64.6 124.6 352.6	000000 000000 000000	20.0006 65.0006 132.0006 32389.0006	000 000 7 000 12	85.27000 704.37000 223.48000	90 44 90 76 90 126 90 272	14.200006 51.280006 50.370006	54.0 73.0 117.0 180.0	00000 00000 00000
50% 75% max 	64.6 124.6 352.6	000000 000000 000000	20.0006 65.0006 132.0006 32389.0006	000 000 7 000 12 000 18	85.27000 704.37000 223.48000 893.08000	90 44 90 76 90 126 90 272	14.200006 51.280006 50.370006 24.570006	54.0 73.0 117.0 180.0	00000 00000 00000 00000
50% 75% max	64.6 124.6 352.6	000000 000000 000000 000000 3	20.0000 65.0000 132.0000 32389.0000	000 7 000 12 000 18 -7	85.27000 704.37000 223.48000 893.08000 f_8	90 44 90 76 90 126 90 272 8	14.200006 51.280006 50.370006 24.570006 f_	54.0 73.0 117.0 180.0 9 00 937.	00000 00000 00000 00000 f_10

std 3	.831151e+06	12.718404	3.588878	8167.427625	0.090316		
min 7	.031200e+04	21.240000	0.830000	667.000000	0.020000		
25% 1	.250000e+05	33.650000	6.750000	1371.000000	0.160000		
	.863000e+05	39.970000	8.200000	2090.000000	0.200000		
75% 3	.304680e+05	52.420000	10.760000	3435.000000	0.260000		
max 7	.131500e+07	82.640000	24.690000 1	60740.000000	0.740000		
	f 41	f 42	f 43	f 4	4		
f 45 \	1_41	1_42	1_43	1_4	·4		
count 937.0000	937.000000	937.000000	937.000000	937.00000	0		
mean 5.014002	933.928677	427.565582	255.435902	106.11251	9		
	1001.681331	715.391648	534.306194	135.61770	8		
min 0.000000	0.000000	0.000000	0.000000	0.00000	0		
25% 2.370000	450.000000	180.000000	90.800000	50.12000	0		
50% 3.850000	685.420000	270.000000	161.650000	73.85000	0		
75%	1053.420000	460.980000	265.510000	125.81000	0		
6.320000 max 1 76.63000	1949.330000	11500.000000	9593.480000	1748.13000	0		
count 9 mean std min 25% 50% 75% max	f_46 37.000000 0.128068 0.334344 0.000000 0.000000 0.000000 0.000000 1.000000	f_47 937.000000 7985.718004 6854.504915 2051.500000 3760.570000 5509.430000 9521.930000	f_48 937.000000 9 61.694386 10.412807 35.950000 65.720000 65.930000 66.130000 66.450000	f_49 37.000000 9 8.119723 2.908895 5.810000 6.340000 7.220000 7.840000 15.440000	target 37.000000 0.043757 0.204662 0.000000 0.000000 0.000000 0.000000		
[8 rows	x 50 columns	s]					
df.info()						
<pre><class 'pandas.core.frame.dataframe'=""> RangeIndex: 937 entries, 0 to 936 Data columns (total 50 columns):</class></pre>							

#	Column	Non-Null Count	Dtype
0	f 1	937 non-null	int64
1	f_2	937 non-null	int64
2	f_3	937 non-null	float64
3	f_4	937 non-null	float64
4	f_5	937 non-null	int64
5	f_6	937 non-null	int64
6	f 7	937 non-null	float64
7	f_8	937 non-null	float64
8	f 9	937 non-null	float64
9	f 10	937 non-null	float64
10	f 11	937 non-null	float64
11	f 12	937 non-null	float64
12	f 13	937 non-null	float64
13	f 14	937 non-null	float64
14	f_15	937 non-null	float64
15	f_16	937 non-null	float64
16	f_17	937 non-null	float64
17	f_18	937 non-null	float64
18	f ⁻ 19	937 non-null	float64
19	f ²⁰	937 non-null	float64
20	f_21	937 non-null	float64
21	f_22	937 non-null	float64
22	f_23	937 non-null	int64
23	f_24	937 non-null	float64
24	f_25	937 non-null	float64
25	f_26	937 non-null	float64
26	f_27	937 non-null	float64
27	f_28	937 non-null	float64
28	f_29	937 non-null	float64
29	f_30	937 non-null	float64
30	f_31	937 non-null	float64
31	f_32	937 non-null	float64
32	f_33	937 non-null	float64
33	f_34	937 non-null	float64
34	f_35	937 non-null	int64
35	f_36	937 non-null	int64
36	f_37	937 non-null	float64
37	f_38	937 non-null	float64
38	f_39	937 non-null	int64
39	f_40	937 non-null	int64
40	f_41 f_42	937 non-null 937 non-null	float64
41 42	f_42 f_43	937 non-null	float64 float64
42	1_43 f 44	937 non-null	float64
44	f 45	937 non-null	float64
45	f 46	937 non-null	int64
46	f 47	937 non-null	float64
70		337 Holl-Hacc	1 COULUT

```
47 f 48
               937 non-null
                                  float64
 48 f 49
               937 non-null
                                  float64
 49 target 937 non-null
                                  int64
dtypes: float64(39), int64(11)
memory usage: 366.1 KB
# Check for missing values
print("\nMissing Values in Each Column:")
print(df.isnull().sum())
Missing Values in Each Column:
f_1
f_2
f_3
           0
           0
           0
f_4
           0
f_5
           0
f_6
f_7
           0
           0
f_8
           0
f 9
           0
f 10
           0
f_11
           0
f 12
           0
f 13
           0
f 14
           0
f_15
           0
f_16
           0
f 17
           0
f_18
           0
f 19
           0
f_20
f_21
           0
           0
f 22
           0
f 23
           0
           0
f 24
f_25
f_26
           0
           0
f 27
           0
f<sup>28</sup>
           0
f 29
           0
f_30
           0
f<sup>31</sup>
           0
f_32
           0
f<sup>33</sup>
           0
f_34
           0
f_35
           0
f<sup>36</sup>
           0
f_37
           0
f 38
           0
```

```
f 39
           0
f 40
           0
f 41
           0
f 42
           0
           0
f 43
f 44
           0
f 45
           0
f 46
f 47
           0
f 48
f 49
           0
target
dtype: int64
```

Q.2 -- Use various methods such as Handling null values, One-Hot Encoding, Imputation, and Scaling of Data Pre-Processing where necessary.

```
# Check for null values
null_values = df.isnull().sum()
null_values
f_1
f 2
             0
f 3
             0
f_4
             0
f_5
             0
f_6
             0
             0
f_8
             0
f_9
             0
f_10
             0
f<sup>-</sup>11
             0
f 12
             0
f 13
             0
f<sup>-</sup>14
             0
f 15
             0
f 16
             0
f 17
             0
f<sup>-</sup>18
             0
f 19
             0
f 20
             0
f<sup>21</sup>
             0
f 22
             0
f<sup>23</sup>
             0
f 24
             0
f_25
             0
f_26
             0
```

```
f 27
          0
f_28
          0
f 29
          0
f 30
          0
          0
f 31
f_32
          0
f 33
          0
f 34
          0
f 35
          0
          0
f 36
f 37
          0
          0
f 38
f<sup>39</sup>
          0
f 40
          0
f 41
          0
f 42
          0
f 43
          0
f 44
          0
f 45
          0
f 46
          0
f 47
          0
f 48
          0
f 49
          0
target
dtype: int64
# Check for categorical variables
categorical columns = df.select dtypes(include=['object']).columns
categorical_columns
Index([], dtype='object')
from sklearn.preprocessing import StandardScaler
# Separating features and target
X = df.drop(columns=['target'])
y = df['target']
# Scaling the features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Convert scaled features back to DataFrame
X scaled df = pd.DataFrame(X scaled, columns=X.columns)
X_scaled_df.head()
        f 1
                   f_2 f_3 f_4
                                                  f_5
                                                             f 6
f 7 \
0 -1.240922
              1.152390 1.346434 -0.793007 0.129657 1.469091 -
0.185871
```

```
1 - 1.225524 \quad 11.389546 \quad -1.033273 \quad -0.057342 \quad 2.114766 \quad 14.374844
0.618905
2 -1.210126 -0.112818 1.252645 -0.502492 0.085544 -0.125929 -
0.222058
3 -1.194727  0.449611  1.440556 -1.101091 -0.399705  0.583114 -
0.066295
4 -1.179329 -0.010794 0.419520 -0.823188 -1.039352 0.002691 -
0.142604
                                            f 40
                   f 9
                            f 10
                                                       f 41
                                                                  f 42 \
0 - 0.3451\overline{0}7 \quad 3.1653\overline{8}9 - 0.343\overline{4}60 \\ 1 - 2.207407 \quad 7.100184 \quad -2.226754
                                        0.611105
                                                   1.913877
                                                              0.800597
                                        0.611105
                                                   4.810555
                                                             15.485710
2 -0.498440 -0.073589 -0.454242
                                        0.611105
                                                   0.465538
                                                             -0.248340
3 -0.322804 1.725979 -0.343460
                                        0.611105
                                                   5.101741
                                                              0.467147
4 -0.584864 -0.072364 -0.565024
                                                   0.385669
                                        0.611105
                                                              0.395889
        f 43  f 44  f 45  f 46  f 47  f 48
f 49
0 0.950757
               0.216514 -0.255448 -0.383248 3.686767 0.388730 -
0.058377
1 17.486286 11.381341 -0.878152 -0.383248 6.362181 0.387769 -
0.639664
2 -0.197438 -0.449905 0.858654 2.609278 3.460466 0.395456 -
0.096212
              0.286675 1.654442 2.609278 4.336762 0.382004 -
    0.370349
0.017102
               0.022483 -0.484237 -0.383248 3.072971 0.381043 -
    0.481449
0.264751
[5 rows x 49 columns]
```

Q3 -- Derive some insights from the dataset.

```
# Plot the distribution of the target variable

plt.figure(figsize=(8, 6))
sns.countplot(x=y)
plt.title('Distribution of Target Variable')
plt.xlabel('Class (0 = Non-Spill, 1 = Oil Spill)')
plt.ylabel('Count')
plt.show()
```

Distribution of Target Variable


```
# Calculate the correlation matrix

correlation_matrix = X_scaled_df.corr()

# Display a heatmap of the correlation matrix
plt.figure(figsize=(8,6))
sns.heatmap(correlation_matrix, cmap='coolwarm', annot=False)
plt.title('Correlation Matrix of Features')
plt.show()
```



```
# Plot distribution of a few selected features
plt.figure(figsize=(12, 6))

for i, feature in enumerate(X_scaled_df.columns[:6], 1):
    plt.subplot(2, 3, i)
    sns.histplot(X_scaled_df[feature], kde=True)
    plt.title(f'Distribution of {feature}')

plt.tight_layout()
plt.show()
```



```
# Example of feature-target relationship using a scatter plot

plt.figure(figsize=(10, 6))
sns.scatterplot(x=X_scaled_df['f_1'], y=X_scaled_df['f_2'], hue=y)
plt.title('Scatter Plot of f_1 vs f_2 by Target Class')
plt.xlabel('f_1')
plt.ylabel('f_2')
plt.show()
```


f_1

Question 4: - Apply various Machine Learning techniques to predict the output in the target column, make use of Bagging and Ensemble as required, and find the best model by evaluating the model using Model evaluation techniques by theory and code.

1. Splitting the Data

5.0

2.5

0.0

```
from sklearn.model_selection import train_test_split

# Splitting the data into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X_scaled_df, y, test_size=0.3, random_state=42, stratify=y)
```

A)-- Logistic Regression

```
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import classification_report, accuracy_score,
confusion_matrix
# Initialize the Logistic Regression model
```

```
logistic model = LogisticRegression(max iter=1000)
# Train the model
logistic model.fit(X train, y train)
# Make predictions on the test set
y pred logistic = logistic model.predict(X test)
# Evaluate the model
print("Logistic Regression Model Evaluation:")
print("Accuracy:", accuracy score(y test, y pred logistic))
print("Classification Report:\n", classification_report(y_test,
y pred logistic))
print("Confusion Matrix:\n", confusion matrix(y test,
y pred logistic))
Logistic Regression Model Evaluation:
Accuracy: 0.950354609929078
Classification Report:
               precision
                            recall f1-score
                                                support
           0
                   0.97
                             0.97
                                        0.97
                                                   270
           1
                   0.42
                             0.42
                                        0.42
                                                    12
                                        0.95
                                                   282
    accuracy
                   0.70
                             0.70
                                        0.70
                                                   282
   macro avq
weighted avg
                   0.95
                             0.95
                                       0.95
                                                   282
Confusion Matrix:
 [[263
        71
 [ 7
        511
```

B)-- Random Forest

```
from sklearn.ensemble import RandomForestClassifier

# Initialize the Random Forest model
rf_model = RandomForestClassifier()

# Train the model
rf_model.fit(X_train, y_train)

# Make predictions on the test set
y_pred_rf = rf_model.predict(X_test)

# Evaluate the model
print("Random Forest Model Evaluation:")
print("Accuracy:", accuracy_score(y_test, y_pred_rf))
print("Classification Report:\n", classification_report(y_test,
```

```
y pred rf))
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred_rf))
Random Forest Model Evaluation:
Accuracy: 0.9645390070921985
Classification Report:
               precision recall f1-score
                                                support
           0
                   0.97
                              0.99
                                        0.98
                                                   270
           1
                   0.67
                              0.33
                                        0.44
                                                    12
    accuracy
                                        0.96
                                                   282
                              0.66
                                        0.71
                                                   282
   macro avg
                   0.82
                                        0.96
weighted avg
                   0.96
                              0.96
                                                   282
Confusion Matrix:
 [[268
         21
 8
        411
```

C)-- Gradient Boosting

```
from sklearn.ensemble import GradientBoostingClassifier
# Initialize the Gradient Boosting model
gb model = GradientBoostingClassifier()
# Train the model
gb model.fit(X train, y train)
# Make predictions on the test set
y_pred_gb = gb_model.predict(X_test)
# Evaluate the model
print("Gradient Boosting Model Evaluation:")
print("Accuracy:", accuracy_score(y_test, y_pred_gb))
print("Classification Report:\n", classification report(y test,
y pred gb))
print("Confusion Matrix:\n", confusion matrix(y test, y pred gb))
Gradient Boosting Model Evaluation:
Accuracy: 0.9574468085106383
Classification Report:
               precision
                            recall f1-score
                                                support
                                                   270
           0
                   0.97
                             0.99
                                        0.98
           1
                   0.50
                             0.25
                                        0.33
                                                    12
                                        0.96
                                                   282
    accuracy
                                        0.66
   macro avg
                   0.73
                             0.62
                                                   282
                   0.95
                             0.96
                                        0.95
                                                   282
weighted avg
```

```
Confusion Matrix:
[[267 3]
[ 9 3]]
```

D)-- Applying Bagging and Ensemble Methods

```
from sklearn.ensemble import BaggingClassifier
from sklearn.tree import DecisionTreeClassifier
# Initialize and train the Bagging model
base model = DecisionTreeClassifier()
bagging model = BaggingClassifier(base estimator=base model,
n estimators=50, random state=42)
bagging model.fit(X train, y train)
# Make predictions
y_pred_bagging = bagging_model.predict(X test)
# Evaluate the model
bagging_accuracy = accuracy_score(y_test, y_pred_bagging)
print("Bagging Accuracy:", bagging accuracy)
print("Classification Report:\n", classification report(y test,
y pred bagging))
C:\Users\SUDARSHAN PANDEY\anaconda3\Lib\site-packages\sklearn\
ensemble\ base.py:156: FutureWarning: `base estimator` was renamed to
`estimator` in version 1.2 and will be removed in 1.4.
 warnings.warn(
Bagging Accuracy: 0.9609929078014184
Classification Report:
                            recall f1-score support
               precision
                   0.97
                             0.99
                                       0.98
                                                   270
                   0.57
                             0.33
                                       0.42
                                                    12
                                       0.96
                                                   282
    accuracy
                             0.66
                                                   282
                   0.77
                                       0.70
   macro avg
weighted avg
                   0.95
                             0.96
                                       0.96
                                                   282
```

Question 4: - Save the best model and load the model.

```
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import joblib
# Train-test split (Assuming X_train, X_test, y_train, y_test are
```

```
already defined)
X train, X test, y train, y test = train test split(X scaled df, y,
test_size=0.2, random_state=42, stratify=y)
# Initialize and train the Random Forest classifier
model = RandomForestClassifier(random state=42)
model.fit(X_train, y_train)
# Predict and evaluate the model (accuracy as an example)
y pred = model.predict(X test)
accuracy = accuracy score(y test, y pred)
print(f'Accuracy: {accuracy:.4f}')
# Save the best model
joblib.dump(model, 'best model.pkl')
Accuracy: 0.9628
['best model.pkl']
# Load the saved model
loaded model = joblib.load('best model.pkl')
# Use the loaded model to make predictions
predictions = loaded model.predict(X test)
# Print the model
print(loaded model)
RandomForestClassifier(random state=42)
```

Question 5: - Take the original data set and make another dataset by randomly picking 20 data points from the oil spill data set and applying the saved model to the same.

```
# Randomly select 20 data points
sample_data = data.sample(n=20, random_state=42)

# Load the saved model
loaded_model = joblib.load('best_model.pkl')

# Separate features from the sample data
X_sample = sample_data.drop(columns=['target'])

# Scale the sample data (assuming you used a scaler during training)
scaler = StandardScaler()
X_sample_scaled = scaler.fit_transform(X_sample)

# Apply the model to predict the target for the sample data
```

```
sample predictions = loaded model.predict(X sample scaled)
# Add predictions to the sample data
sample data['predicted target'] = sample predictions
# Print the new dataset with predictions
print(sample data)
                             f_4 f_5
                                            f_6
                                                           f 8
                                                                    f 9
     f_1 f_2
                   f_3
                                                   f_7
f 10
321
      29
          105
                881.92
                         1128.79
                                   83
                                         262500
                                                 38.90
                                                          8.51
                                                                 2710.0
0.22
70
      60
          111
               1153.32
                         1283.44
                                   41
                                         277500
                                                 41.25
                                                          5.98
                                                                 1760.0
0.14
209
      17
          867
               1059.49
                          581.31
                                   46
                                        2167500
                                                 31.08
                                                          8.26
                                                                15780.0
0.27
656
       9
           85
                 71.06
                          469.47
                                  140
                                         688500
                                                 70.85
                                                         11.28
                                                                 4626.0
0.16
685
           15
                 32.47
                          582.13
                                  156
                                         121500
                                                 73.27
                                                        12.11
                                                                 1080.0
      38
0.17
           86
                                                                 3090.0
96
      86
                769.73
                         1761.26
                                   55
                                         215000
                                                 37.55
                                                          6.27
0.17
468
          462
                904.13
                         2689.99
                                  129
                                         649687
                                                 29.80
                                                          8.99
                                                                 5160.0
      36
0.30
               1378.47
86
      76
          128
                          929.73
                                   51
                                         320000
                                                 39.80
                                                          5.20
                                                                 3370.0
0.13
      38
532
          294
                 11.49
                         1559.36
                                    40
                                         413437
                                                 38.12
                                                        22.22
                                                                 2893.5
0.58
327
      37
           98
               1326.06
                         1109.08
                                    72
                                         245000
                                                 41.31
                                                          7.53
                                                                 2880.0
0.18
528
      34
          151
                465.77
                         1736.15
                                   73
                                         212343
                                                 28.96
                                                          8.14
                                                                 3474.0
0.28
247
     138
          144
               1341.72
                           78.22
                                  110
                                         360000
                                                 31.12
                                                          6.88
                                                                 4650.0
0.22
     156
250
          260
               1080.89
                          833.29
                                  111
                                         650000
                                                 30.52
                                                          7.95
                                                                 5680.0
0.26
485
      53
           84
                575.19
                         1558.81 153
                                         118125
                                                 30.94
                                                          8.89
                                                                 1489.5
0.29
467
      35
           74
                619.18
                         1622.32
                                   5
                                         104062
                                                 26.45
                                                          5.92
                                                                 1255.5
0.22
723
           10
                          348.90
                                                                  720.0
      76
                 30.80
                                          81000
                                                 70.50
                                                          8.93
                                  153
0.13
483
           60
                743.88
                         1250.60
                                  127
                                                 33.03
                                                                 1701.5
      51
                                          84375
                                                         11.87
0.36
886
           10
                182.50
                          460.00
                                   90
                                          81000
                                                 57.60
                                                         8.68
                                                                  810.0
     154
0.15
809
      77
           13
                160.77
                          420.23
                                    63
                                         105300
                                                 51.15
                                                        10.66
                                                                 1191.0
0.21
244
     118
          308
               1313.18
                          791.35
                                   61
                                         770000
                                                 29.13
                                                         7.14
                                                                 5880.0
0.24
```

\		f_42	f_43	f_44	f_45	f_46	f_47	f_48	f_49
321		353.55	226.91	84.74	4.21	0	3425.75	65.97	7.04
70		500.00	296.40	140.92	2.40	0	5915.80	66.12	7.34
209		1131.37	637.97	408.01	4.93	0	5679.31	65.74	7.42
656		509.12	323.98	87.51	3.95	0	6376.53	65.98	6.22
685		201.25	105.89	84.66	6.47	0	3285.95	66.11	5.98
96		180.28	93.84	59.34	14.93	1	15720.91	66.30	6.71
468		0.00	0.00	0.00	0.00	0	40916.70	36.71	14.53
86		320.16	160.29	94.32	8.43	0	9183.53	65.98	7.73
532		0.00	0.00	0.00	0.00	0	10484.87	36.02	14.82
327		269.26	196.00	33.61	3.71	0	7233.16	66.02	7.54
528		0.00	0.00	0.00	0.00	0	8415.67	36.35	14.83
247		254.95	147.30	60.43	11.49	1	6824.45	65.55	7.90
250		632.46	307.02	161.45	5.93	0	4667.21	65.86	7.36
485		0.00	0.00	0.00	0.00	0	10674.79	36.41	14.92
467		0.00	0.00	0.00	0.00	0	11277.47	36.44	14.90
723		254.56	84.85	146.97	3.82	0	11172.62	65.80	6.22
483		375.00	127.08	109.90	2.95	0	9370.56	36.51	15.08
886		90.00	90.00	0.00	4.00	0	6004.08	66.01	6.58
809		127.28	25.46	56.92	20.62	0	3719.47	65.95	6.55
244		738.24	370.16	181.66	4.29	0	6636.30	65.87	7.63
321 70 209 656 685 96	targ	et predi 0 0 0 0 0 0	cted_tar	get 0 0 0 0 0					

[20 rows x 51 columns]

C:\Users\SUDARSHAN PANDEY\anaconda3\Lib\site-packages\sklearn\
base.py:464: UserWarning: X does not have valid feature names, but
RandomForestClassifier was fitted with feature names
 warnings.warn(