

Total No. of Printed Pages:4

Enrollment No.....

Q.5 i. Find the transform of the given waveform.

ii. In the series RLC circuit shown, the applied voltage is v (t) = sin t for 7 t>0. For the element values specified, find i(t) if the switch K is closed at t=0 using LT method.

OR iii. A pulse of voltage of 10 V magnitude and 5 μ sec duration is applied to 7 the RL circuit. If R = 2Ω and L = 10μ H, find i(t).

- Q.6 i. Write the conditions of reciprocity and symmetry in two-port for Z, Y 3 and T parameters.
 - ii. Find Z and Y parameters for the figure shown below.

OR iii. Find hybrid and ABCD parameters for the figure shown below.

3

7

7

Faculty of Engineering
End Sem (Odd) Examination Dec-2022
EE3CO28 Network Analysis

Programme: B.Tech. Branch/Specialisation: EE

Duration: 3 Hrs.

Maximum Marks: 60

1

1

Note: All questions are compulsory. Internal choices, if any, are indicated. Answers of Q.1 (MCQs) should be written in full instead of only a, b, c or d.

Q.1 i. The Kirchhoff's law fails in-

1

(a) Linear circuits

- (b) Non-linear circuits
- (c) Lumped parameter circuits
- (d) Distributed parameter circuits
- ii. A graph which does not have a cut-set is called-
 - (b) Unilateral graph

(c) Bipolar graph

(a) Complement graph

- (d) Hinged graph
- iii. A network is said to be nonlinear if it does not satisfy-
 - (a) Superposition condition
- (b) Homogeneity condition

(c) Both (a) and (b)

- (d) Associative condition
- iv. Super positions theorem is not applicable in the network when it is 1 varying-
 - (a) Linear

(b) Non-linear

(c) Time varying

- (d) Time invariant
- v. Transient current in a circuit result from-
 - (a) Voltage applied to the circuit
 - (b) Impedance of the circuit
 - (c) Changes in the stored energy in inductors and capacitors
 - (d) Resistance of the circuit.
- vi. The equivalent inductance measured between the terminals 1 and 2 for 1 the circuit shown in figure is:

(a) $L_1 + L_2 + M$

(b) $L_1 + L_2 - M$

(c) $L_1 + L_2 + 2M$

(d) $L_1 + L_2 - 2M$

P.T.O.

- vii. Laplace transform of ramp function is-
 - (a) $1/s^2$
- (b) 1/s

- (c) s
- viii. Convolution theorem is used to find inverse Laplace transform of-
 - (a) Product of two transform

(b) Quotient

(c) Addition

- (d) None of these
- ix. Example of two port network is-
 - (a) Transformer

(b) Transmission line

(d) s^2

1

1

1

- (c) Bridge circuit and transistor circuit
- (d) All of these
- x. Two port networks are connected in cascade, the combination is to be represented as a single two port network, the parameters of the network are obtained by multiplying the individuals in-
 - (a) Z parameter matrix

(b) H parameter matrix

(c) Y parameter matrix

- (d) T parameter matrix
- Q.2 i. Define Tree, Incidence matrix, Tie Set matrix, Cut Set matrix, oriented graph, Links, Twigs.
 - ii. Determine the voltage drop across 5Ω resistance of the coupled circuits 7 shown below.

OR iii. In the network of the figure shown below, find V_1 , V_2 and V_3 using 7 nodal analysis.

- Q.3 i. State and explain Thevenin's theorem.
 - ii. Determine the value of load, for which source will transfer the 7 maximum power. Also determine the value of maximum power that can be transferred.

OR iii. Apply Milliman's theorem to find current through 10Ω resistor.

- Q.4 i. Explain the concept of impedance and admittance for steady state 3 analysis of any network.
 - ii. In the network of the figure, the switch k is moved from position 1 to 7 position 2 at t = 0, a steady state current having previously been established in the RL circuit. Find the particular solution for the current i(t).

OR iii. In the network of fig., K is changed from position a to b at t=0. Solve 7 for i, di/dt, and di 2 /dt 2 at t=0+ if R=1000 Ω , L=1H, C=0.1 μ F, and V=100V.

7

Marking Scheme

EE3CO28 Network Analysis

		EESCO20 Network Analysis	
Q.1	i)	c) Lumped parameter circuits	1
	ii)	d) Hinged graph	1
	iii)	c) both superposition and homogeneity conditions	1
	iv)	b) Non-linear	1
	v)	c) changes in the stored energy in inductors and capacitors	1
	vi)	d) $L_1 + L_2 - 2M$	1
	vii)	a) 1/s ²	1
	viii)	a) product of two transform	1
	ix)	d) All of these	1
	x)	d) T parameter matrix	1
Q.2	i.	Define Tree, Incidence matrix, Tie Set matrix, Cut Set matrix, oriented graph, Links, Twigs.	0.5*6=3
	ii.	Finding the value of mutual inductance	1
		Writing the two equations	3
		Solving till final value	3
OR	iii.	Writing the two nodal equations	2
		Finding V_1 , V_2 and V_3 values	5
Q.3	i.	State and explain Thevenin's theorem.	1,2
	ii.	Value of voltage	3
		Value of load	2
		value of maximum power that can be transferred.	2
OR	iii.	Formula used	2
		Applying Milliman's theorem to find current through 10Ω .	5
Q.4	i.	Explain the concept of impedance and admittance for steady	1.5*2=3
	::	state analysis of a any network.	2
	ii.	Different values at $t = 0^{-}$ condition Writing equations	2
		Solving it to final value	1
ΟD	:::	-	4
OR	iii.	Different values at $t = 0^{-}$ condition Solving for i, di/dt, and di ² /dt ² at t=0+	2
		Solving for i, direct, and di rec at t=01	1,2,2
Q.5	i.	Transform of the given waveform	3
	ii.	Writing equation	1
		Solving partial fraction	3
		Solving inverse Laplace transform to get i(t)	

			3
OR	iii.	Writing equation	1
		Solving partial fraction	3
		Solving inverse Laplace transform to get i(t)	3
Q.6	i.	Write the conditions of reciprocity and symmetry in two-port for Z, Y and T parameters.	0.5*6=3
	ii.	Find Z and Y parameters	3.5*2=7
OR	iii.	Find hybrid and ABCD parameters	3.5*2=7
