

Engineering Portfolio

2018-2023

Perry Fung

PERRY FUNG

MECHANICAL ENGINEERING AT TORONTO METROPOLITAN UNIVERSITY

perryfung5@gmail.com

in linkedin.com/in/perry-fung

(647)-705-3267

HOMECARE PATIENT DEVICE - TORONTO METROPOLITAN UNIVERSITY

	A	0	C		K		0	н			К.			M	0	P	Q	E .	5			٧		ж		z	àΑ	AB	AO.	AD	AE	MF.	4/3	391	All	ΔJ
				At	A	A	A	91	82	83	04	86	24	CI	C2		C4	CS (24 0	01.0	12	03.6	04	D5	CI6	E1	E2	63	E4 1	F1	F2	F3	F4	F5 I	16	Q1
2	Litting System	Wing Silder Cylinder	A1								X	X																								
3		Car Lift Hydraulic	A2								ж	х																								
		Powered Linear Actuator Hydraulic	A3								X	х																								
5		Air Cylinder Hydraulic	Al									х																								
	Moving System	Mecanum Wheel	81								ж	х																								
		Standard Wheel	62									х																								
		Caterpillar Tracks	83								х	X																			X:	х				
9		Roter Bals	84									х	ж	×	Х	Х	Х	Х	X :		х	X	х		х	х								х	Х	х
13		Skis	85										ж	х	х	×	Х	ж	X	х.	X	X	Х	х	х	х	х	Х	×	х	х	х	х	х	х	х
		Refacester Vibeels	66																																	
12	Power System	Brush DC Mator	C1																																	
13		Brushless DC Motor	C2																																	
14		Asynchronous Motor	C3																																	
15		Three-Phase Motor	C4																																	
15		Power Lifter IV Battery	C5																																	
0		Mobile Generator	C6																																	
13	Remote Control System	Switch	DI																																	
19		Button	D2																																	
23		Joystick	£13																																	
21		Diel	D4																																	
22		Touch Screen	DS																																	
23		Lever	D6																																	
24	Slings	Comfort Siling	EI																																	
25		Non-sile Sling	E2																																	
25		Fully Padded Sling	E3																																	
27		Full Black support Sling	E4																																	
28	Control System (Handles)	Bulhom Far	FI																																	
29		Vertical Door Handles	F2																																	
33		Straight Horizontal Bar	F																																	
21		Steering Wheel	F4																																	
32		Agro Bar	FS																																	
33		Helm Wheel	F6																																	
34	Storage System	Mesh	01																																	
35		Plestic	62																																	
34		Paper Bas	63																																	
32		Colegable	64																																	
18		Metal	01																																	
29	Spreader Bar System	2 moint	HI																																	
43	apronent and appear	4 oint Cross	H2																																	
61		Cradle	ю																																	

What?

- Design a device that can transport people with limited abilities.
- The gadgets are intended to protect the patient and other participants before, during, and after the transportation procedure

How?

- Used **SolidWorks** to design structure.
- Used Microsoft Excel and Google.
 Spreadsheet to organize and evaluate concept design.
- Implemented Persona and Human Factor principles to simulate real life situations ,reducing errors .

Results

 Understand the critical process of product design and educated the team about the demands of users and co-users.

RAMA DESIGN FOOD CHOPPER-TORONTO METROPOLITAN UNIVERSITY

How?

- Used **SolidWorks** to design the final concept.
- Used Lucas method to reduce the every part during the insertion and handling phases.
- Used **DFMA method** to reduce the assembly time and cost of the overall product.

Results

- Reduced production costs by 10%
- Reduced assembly part by 50%, while increased the functional efficiency from 70.8 to 80%.

What?

- Reverse engineer a food chopper to make it more efficient and user-friendly.
- Reduce any parts that are deemed unnecessary.

PERRY FUNG

MECHANICAL ENGINEERING AT TORONTO METROPOLITAN UNIVERSITY

perryfung5@gmail.com

in linkedin.com/in/perry-fung

(647)-705-3267

BALL TRANSPORTATION DEVICE- TORONTO METROPOLITAN UNIVERSITY

What?

- Design a mechanism capable of transporting three distinct balls into three separate containers.
- Perform a stress analysis to ensure that the system would not fail when using the mechanism.

How?

- To create the construction, just acrylic sheet, rubber band, paper clips, and SolidWorks features were used.
- GD&T was used on all designs, as well as a decision matrix during the review process.

Results

 The design fulfilled its purpose with 90% accuracy and precision.

FUNICULAR VEHICLE - TORONTO METROPOLITAN UNIVERSITY

What?

- Create a miniature vehicle that travel 60 degrees wood stud while carrying a standard 355ml pop can.
- The team's supplies are limited to 3 fiberboard and 50 grams of FDM (thermoplastic polymers).

How?

- Designed on SolidWorks
- Joined the components together that make up the can holder via MasterCAM and CNC machine.
- Fabricated customs gears for the wheels using a 3D machine and G-Code software.

Results

- The car successfully navigated a 30 degree incline.
- The weight was distributed uniformly along the length rather than being concentrated in one spot.

PERRY FUNG

MECHANICAL ENGINEERING AT TORONTO METROPOLITAN UNIVERSITY

perryfung5@gmail.com

in linkedin.com/in/perry-fung

(647)-705-3267

AUTOMATIC JAR OPENER (CAPSTONE PROJECT)- TORONTO METROPOLITAN UNIVERSITY

What?

- Create a compact, motorized device that can open various jar sizes and shapes.
- The device must be userfriendly and accessible to all user.
- The design must incorporates an adjustable body to create friction, which is powerful enough to open a variety of jar sizes.

How?

- Created initial design based reference design and Situation Use Case.
- Applied Morphological Chart to pick the most optimal design
- Designed ini.tial framework using SolidWork
- Used Arduino for electrical structure
- Implemented DFA principles to reduce product assembly cost.

Results

- Created a final design consists of a total of 14 CAD parts.
- The final product is created using 3d printed filament also known as PLA.

CIRCUIT DESIGN OF TOP COMPONENT /HEIGHT ADJUSTMENT MECHANISM

FINAL ASSEMBLY OF AUTOMATIC JAR OPENER