Variational Style Transfer

Jan Schopohl, Dominik Fuchsgruber

Supervisor: Maxim Maximov

Department of Informatics, Technical University of Munich

December 3rd, 2019

Artistic Style Transfer

Given a **content image** *C* and an artistic **style image** *S*:

 \rightarrow **Stylization**: Image with content similar to C and a style similar to S

How to combine different styles?

Related Work

- [1]: Optimize random image to fit C content-wise and S style-wise → very slow!
- [2]: **Autoencoders** to encode *C* and *S*, use Adaptive Instance Normalization (**Adaln**) to transfer the style
- [5]: Separate Encoders for content and style
 → Disentanglement
- [4]: Variational Autoencoders encode into a smooth latent space
 - → Good for interpolation between encodings
- [3]: Perceptual losses for style transfer

Our Approach - Pipeline

- Content Encoder E-c and Style Encoder E-s
- Random sampling from a Gaussian centered at style encoding

Our Approach - Content Loss

 Content Loss: Perceptual loss using pretrained VGG19 loss network

Our Approach - Style Loss

• Style Loss: Gram matrices of feature activations

Our Approach - Disentanglement Loss

• Disentanglement Loss: Disentangles content and style

Our Approach - Regularization Loss

• Regularization: Regularizes style distribution

Our Approach - Implementation Progress

Gray components are not yet implemented.

Code

Available implementations:

- Loss network: torchvision's pretrained VGG19
- Content and style losses and Adaln: Unofficial implementation² of [2]
- Perceptual and style losses pytorch implementation³ of [1]

Unfortunately, for [5], no implementation is available so far.

¹https://pytorch.org/docs/stable/torchvision/models.html

²https://github.com/naoto0804/pytorch-AdalN

 $^{^3} https://github.com/leongatys/PytorchNeuralStyleTransfer\\$

Datasets

Content images: Places365⁴ dataset with different sceneries

Style images: WikiArt⁵ contains artistic images

Lack of large GPU resources: \rightarrow downsample images to a **64x64** resolution and only **shallow** networks.

⁴http://places2.csail.mit.edu/download.html

⁵https://github.com/cs-chan/ArtGAN

Evaluation

To our best knowledge there is **no data-driven metric** to asses the quality of stylizations.

Common subjective assessment methods:

- Preference Rate: Probands select most appealing result among different stylizations
- Deception Rate: Probands try to identify a real artistic image mixed between stylizations

We focus on interpolations between multiple styles!

We would be glad if course participants and / or chair members could participate!

First Results

Milestones

What we want to achieve until the next presentation:

- Get the style transfer working
- Implement the disentanglement loss
- Implement sampling from a latent style distribution
- Fine-tune the architecture and train a final evaluation-ready model
- (Possibly) set up a survey and participants for our evaluation
 This includes getting baselines running as well

Baselines

Possible baselines for evaluation on preference rate include:

- The original style transfer paper [1]
- The Adaln paper [2]: Same decoder for content and style
- Learning a linear transformation on an image embedding for style transfer [6]

Possibly problematic may be **model sizes** and **computation times** due to our limited resources.

References I

- Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge. "A Neural Algorithm of Artistic Style". In: CoRR abs/1508.06576 (2015). arXiv: 1508.06576. URL: http://arxiv.org/abs/1508.06576.
- Xun Huang and Serge J. Belongie. "Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization". In: CoRR abs/1703.06868 (2017). arXiv: 1703.06868. URL: http://arxiv.org/abs/1703.06868.
- Justin Johnson, Alexandre Alahi, and Fei-Fei Li. "Perceptual Losses for Real-Time Style Transfer and Super-Resolution". In: CoRR abs/1603.08155 (2016). arXiv: 1603.08155. URL: http://arxiv.org/abs/1603.08155.
- Diederik P Kingma and Max Welling. *Auto-Encoding Variational Bayes*. 2013. arXiv: 1312.6114 [stat.ML].

References II

- Dmytro Kotovenko et al. "Content and Style Disentanglement for Artistic Style Transfer". In: The IEEE International Conference on Computer Vision (ICCV). 2019.
- Xueting Li et al. "Learning Linear Transformations for Fast Arbitrary Style Transfer". In: CoRR abs/1808.04537 (2018). arXiv: 1808.04537. URL: http://arxiv.org/abs/1808.04537.

Perceptual Loss

Instead of a pixel-wise loss between input and output: \rightarrow error between feature activations of layer(s) *i* provided by a pre-trained model Φ

$$\mathcal{L}_{\Phi}(y,\hat{y}) = \frac{1}{C_i \times H_i \times W_i} \sum_{i} \|f_{\Phi}^{i}(y) - f_{\Phi}^{i}(\hat{y})\|_2^2$$

Where f^i are the **activation maps** of layer i with a dimensionality of $C_i \times H_i \times W_i$.

Penalizes **semantic discrepancies** between y and \hat{y} (e.g. objects, composition, etc.)

Style Loss

Gram matrices G_i of feature activation maps f_i capture **correlations between channels**:

$$G_i(y) = \tilde{f}^i_{\Phi}(y)\tilde{f}^i_{\Phi}(y)^T$$

Where \tilde{f}_{Φ}^{i} are flattened feature activation maps of shape $C_{i} \times (H_{i}W_{i})$.

 $G_i(y)(c_1, c_2)$ captures how **strongly correlated** the features c_1 and c_2 are in the activation map f_i .

The style loss is given as the error between Gram matrices of feature maps:

$$\mathcal{L}_{\Phi}(y, \hat{y}) = \sum_{i} \frac{1}{C_{i}^{2}} \|G_{i}(y) - G_{i}(\hat{y})\|_{2}^{2}$$

Adaptive Instance Normalization

Instance Normalization is related to **Batch Normalization** but calculates **instance-wise** mean μ and variance σ^2 , instead of using batch-wise statistics.

[2] showed that μ and σ encapsulate style information: \rightarrow

Adaptive Instance Normalization:

$$Adaln(x,y) = \sigma(y)\frac{x - \mu(x)}{\sigma(x)} + \mu(y)$$

transfers instance-wise statistics from y to x

No learnable parameters!

Variational Autoencoders I

Autoencoders encode an input X to a latent space representation z and try to reconstruct X using only z.

- → neglects variations in input distribution (e.g. noise)
- \rightarrow Latent space may not be smooth

Variational Autoencoders sample *s* from a **distribution parametrized by** *z* (usually Gaussian) instead

Figure: taken from

http://kvfrans.com/variational-autoencoders-explained/

Variational Autoencoders II

To enforce a **smooth latent space** the learned distribution is **regularized** using the KL-divergence:

$$\mathcal{L} = \mathbb{KL}(q_{\text{enc}}(s|X)||p(z))$$

Where $q_{\text{enc}}(s|X)$ describes the distribution of latent representations s given an input X and p(z) is set to be a standard normal distribution.

 \rightarrow forces latent distribution to be close to a standard normal distribution.