NOAA Storm Database Exploratory Analysis for identification of Most Destructive Events in terms of health and economic consequences

Muneeb Shahid

9/2/2020

Synopsis

This document contains exploratory data analysis of NOAA Storm Database.In this analysis I have tried to find most destructive events in terms of population health and economic consequences. For population health effects, I took number of fatalaties and injuries caused by each event into account. For economic consequences, I took property damage and crop damage expenses into account. To compare destruction caused by harmful events, a bar plot was created for all of such events.

Data Processing

Loading the Storm Data from compressed comma separated file compressed in bz2 format.

```
storm_data <- read.csv("./repdata_data_StormData.csv.bz2", header=T, sep=",")
head(storm_data)</pre>
```

##		STATE		BGN_DATE	BGN_TIME	TIME_Z	ZONE	COUNTY	COUNTYNAME	STATE	EVTYPE
##	1	1 4	4/18/1950	0:00:00	0130		CST	97	MOBILE	: AL	TORNADO
##	2	1 4	4/18/1950	0:00:00	0145		CST	3	BALDWIN	I AL	TORNADO
##	3	1 2	2/20/1951	0:00:00	1600		CST	57	FAYETTE	. AL	TORNADO
##	4	1	6/8/1951	0:00:00	0900		CST	89	MADISON	I AL	TORNADO
##	5	1 1:	1/15/1951	0:00:00	1500		CST	43	CULLMAN	I AL	TORNADO
##	6	1 1:	1/15/1951	0:00:00	2000		CST	77	LAUDERDALE	: AL	TORNADO
##		BGN_RANGE	BGN_AZI	BGN_LOCAT	ri end_da?	re end	TIME	COUNTY	_END COUNT	YENDN	
##	1	0							0	NA	
##	2	0							0	NA	
##	3	0							0	NA	
##	4	0							0	NA	
##	5	0							0	NA	
##	6	0							0	NA	
##		${\tt END_RANGE}$	END_AZI	END_LOCAT	ΓΙ LENGTH	${\tt WIDTH}$	F MA	G FATAI	LITIES INJU	RIES P	ROPDMG
##	1	0			14.0	100	3	0	0	15	25.0
##	2	0			2.0	150	2	0	0	0	2.5
##	3	0			0.1	123	2	0	0	2	25.0
##	4	0			0.0	100	2	0	0	2	2.5
##	5	0			0.0	150	2	0	0	2	2.5
##	6	0			1.5	177	2	0	0	6	2.5

```
PROPDMGEXP CROPDMG CROPDMGEXP WFO STATEOFFIC ZONENAMES LATITUDE LONGITUDE
##
## 1
               K
                                                                      3040
                                                                                 8812
               K
                        0
                                                                      3042
                                                                                 8755
## 2
               K
                        0
                                                                      3340
                                                                                 8742
## 3
## 4
               K
                        0
                                                                      3458
                                                                                 8626
## 5
               K
                        0
                                                                      3412
                                                                                 8642
## 6
               K
                                                                      3450
                                                                                 8748
     LATITUDE E LONGITUDE REMARKS REFNUM
##
## 1
            3051
                        8806
                                           2
## 2
               0
                           0
## 3
               0
                           0
                                           3
               0
                           0
                                            4
## 4
                           0
                                           5
## 5
               0
## 6
               0
                           0
                                            6
```

Finding Most Harmful Events with respect to Population Health

Aggregating (sum) fatalities values w.r.t Event Type.

```
fatalities_per_event <- tapply(storm_data$FATALITIES, storm_data$EVTYPE, sum)</pre>
```

Aggregating (sum) injuries values w.r.t Event Type.

```
injuries_per_event <- tapply(storm_data$INJURIES, storm_data$EVTYPE, sum)</pre>
```

Taking sum of fatalities and injuries caused by each event. From now on this sum will be referred by health effects.

```
health_effects_per_event <- fatalities_per_event + injuries_per_event
```

Excluding events with no health effects to find harmful events.

```
health_effects_per_harmful_event <- health_effects_per_event[health_effects_per_event > 0]
```

Converting health effects per harmful event object to DataFrame type.

```
health_effects_per_harmful_event_df <- data.frame(Event=names(health_effects_per_harmful_event), Health
head(health_effects_per_harmful_event_df)
```

```
##
            Event Health_Effects
## 1
         AVALANCE
                                 1
## 2
                               394
        AVALANCHE
## 3
        BLACK ICE
                                25
                               906
         BLIZZARD
## 5 blowing snow
                                 2
## 6 BLOWING SNOW
                                14
```

Caclulating average number of health effects caused by harmful events.

```
harmful_events_avg_effects <- mean(health_effects_per_harmful_event_df$Health_Effects)
harmful_events_avg_effects</pre>
```

[1] 707.6045

Results

Finding most harmful events by extracting events from the dataframe having number of effects greater than average.

##		Event	Health_Effects
##	4	BLIZZARD	906
##	32	EXCESSIVE HEAT	8428
##	42	FLASH FLOOD	2755
##	47	FLOOD	7259
##	52	FOG	796
##	67	HAIL	1376
##	69	HEAT	3037
##	77	HEAVY SNOW	1148
##	93	HIGH WIND	1385
##	109	HURRICANE/TYPHOON	1339
##	117	ICE STORM	2064
##	123	LIGHTNING	6046
##	173	THUNDERSTORM WIND	1621
##	176	THUNDERSTORM WINDS	972
##	184	TORNADO	96979
##	191	TSTM WIND	7461
##	210	WILDFIRE	986
##	214	WINTER STORM	1527

Plotting Health Effects against most harmful events.

```
library(ggplot2)
```

```
## Warning: package 'ggplot2' was built under R version 3.6.3

plot <-ggplot(data=hlth_efcts_per_most_hrmfl_event_df, aes(x=Event, y=Health_Effects), ) +
    geom_bar(stat="identity") + labs(title = "Net Health Effects caused by Harmful Events") + xlab("Event
plot</pre>
```


It looks like from above bar plot that Tornado is the most harmful event w.r.t population health.

Finding Events with greatest economic consequences

Checking unique entries in property damage estimates exponents.

Translating exponents of property damage estimates into numbers. This translation is recorded in new attribute.

Note: Numeric entries in exponents are translated into power of 10 and '-','+','?' values in exponents are ignored

```
numeric_prop_dmg_exp <- (storm_data$PROPDMGEXP)

numeric_prop_dmg_exp <- sub("K", 1000, numeric_prop_dmg_exp)
numeric_prop_dmg_exp <- sub("h", 100, numeric_prop_dmg_exp)
numeric_prop_dmg_exp <- sub("H", 100, numeric_prop_dmg_exp)
numeric_prop_dmg_exp <- sub("B", 10000000000, numeric_prop_dmg_exp)
numeric_prop_dmg_exp <- sub("b", 1000000000, numeric_prop_dmg_exp)
numeric_prop_dmg_exp <- sub("M", 1000000, numeric_prop_dmg_exp)</pre>
```

```
numeric_prop_dmg_exp <- sub("m", 1000000, numeric_prop_dmg_exp)
numeric_prop_dmg_exp <- sub("0", 1, numeric_prop_dmg_exp)
numeric_prop_dmg_exp <- sub("1", 10, numeric_prop_dmg_exp)
numeric_prop_dmg_exp <- sub("2", 100, numeric_prop_dmg_exp)
numeric_prop_dmg_exp <- sub("3", 1000, numeric_prop_dmg_exp)
numeric_prop_dmg_exp <- sub("4", 10000, numeric_prop_dmg_exp)
numeric_prop_dmg_exp <- sub("5", 100000, numeric_prop_dmg_exp)
numeric_prop_dmg_exp <- sub("6", 1000000, numeric_prop_dmg_exp)
numeric_prop_dmg_exp <- sub("7", 10000000, numeric_prop_dmg_exp)
numeric_prop_dmg_exp <- sub("8", 100000000, numeric_prop_dmg_exp)
# replacing empty values with 0
numeric_prop_dmg_exp <- sub("", 0, numeric_prop_dmg_exp)</pre>
```

Checking unique entries in crop damage estimates exponents.

Levels: ? 0 2 B k K m M

Translating exponents of crop damage estimates into numbers. This translation is recorded in new attribute.

Note: Numeric entries in exponents are translated into power of 10 and '-','+','?' values in exponents are ignored

```
numeric_crop_dmg_exp <- (storm_data$CROPDMGEXP)

numeric_crop_dmg_exp <- sub("K", 1000, numeric_crop_dmg_exp)
numeric_crop_dmg_exp <- sub("k", 1000, numeric_crop_dmg_exp)
numeric_crop_dmg_exp <- sub("B", 10000000000, numeric_crop_dmg_exp)
numeric_crop_dmg_exp <- sub("M", 1000000, numeric_crop_dmg_exp)
numeric_crop_dmg_exp <- sub("m", 1000000, numeric_crop_dmg_exp)
numeric_crop_dmg_exp <- sub("0", 1, numeric_crop_dmg_exp)
numeric_crop_dmg_exp <- sub("2", 100, numeric_crop_dmg_exp)
# replacing empty values with 0
numeric_crop_dmg_exp <- sub("", 0, numeric_crop_dmg_exp)</pre>
```

Creating new dataframe from original data. New dataframe will consist of subset of attributes from original data and newly created attributes in previous steps.

```
strm_dta_fr_ecnmc_consqncs <- data.frame(storm_data$EVTYPE, storm_data$PROPDMG, storm_data$PROPDMGEXP, storm_data$PROPDMG, storm_data$PROPDMGEXP, storm_data$PROPDMG, storm_data$PROPDMGEXP, storm_data$PROPDMG, storm_data$PROPDMGEXP, storm_data$PROPDMGEX
```

```
Event Prop_Dmg Prop_Dmg_Exp Numeric_Prop_Dmg_Exp Crop_Dmg Crop_Dmg_Exp
##
## 1 TORNADO
                 25.0
                                 K
                                                 010100
                                                               Ω
## 2 TORNADO
                 2.5
                                 K
                                                 010100
                                                               0
                                 K
## 3 TORNADO
                 25.0
                                                 010100
                                                               0
## 4 TORNADO
                  2.5
                                 K
                                                               0
                                                 010100
## 5 TORNADO
                                 K
                                                 010100
                                                               0
                  2.5
```

```
## 6 TORNADO
                   2.5
                                   K
                                                     010100
                                                                    0
     Numeric_Crop_Dmg_Exp
## 1
## 2
                          0
## 3
                          0
## 4
                          0
## 5
                          0
## 6
                          0
```

Removing entries having '-','+','?' values in exponents.

```
strm_dta_fr_ecnmc_consqncs <- strm_dta_fr_ecnmc_consqncs[strm_dta_fr_ecnmc_consqncs$Prop_Dmg_Exp != "-"
```

Performing Data Type conversion of attributes.

```
strm_dta_fr_ecnmc_consqncs$Event <- as.character(strm_dta_fr_ecnmc_consqncs$Event)
strm_dta_fr_ecnmc_consqncs$Numeric_Crop_Dmg_Exp <- as.numeric(strm_dta_fr_ecnmc_consqncs$Numeric_Crop_Dmg_Exp <- as.numeric_Crop_Dmg_Exp <- as.numeric_Crop_Dmg
```

Warning: NAs introduced by coercion

```
strm_dta_fr_ecnmc_consqncs$Numeric_Prop_Dmg_Exp <- as.numeric(strm_dta_fr_ecnmc_consqncs$Numeric_Prop_Dmg_Exp <- as.numeric(strm_dta_fr_ecnmc_consqncs)
```

Warning: NAs introduced by coercion

```
head(strm_dta_fr_ecnmc_consqncs)
```

```
Event Prop_Dmg Prop_Dmg_Exp Numeric_Prop_Dmg_Exp Crop_Dmg Crop_Dmg_Exp
##
## 1 TORNADO
                 25.0
                                  K
                                                    10100
## 2 TORNADO
                  2.5
                                  K
                                                    10100
                                                                  0
                 25.0
## 3 TORNADO
                                  K
                                                    10100
                                                                  0
## 4 TORNADO
                  2.5
                                  K
                                                    10100
                                                                  0
## 5 TORNADO
                  2.5
                                  K
                                                    10100
                                                                  0
## 6 TORNADO
                  2.5
                                  K
                                                    10100
                                                                  0
    Numeric_Crop_Dmg_Exp
## 1
## 2
                         0
## 3
                         0
## 4
                         0
## 5
                         0
## 6
                         0
```

Multiplying Damage values with corresponding numeric exponent values and storing the result in new attributes.

```
prop_dmg_expense <- strm_dta_fr_ecnmc_consqncs$Prop_Dmg * strm_dta_fr_ecnmc_consqncs$Numeric_Prop_Dmg_E
crop_dmg_expense <- strm_dta_fr_ecnmc_consqncs$Crop_Dmg * strm_dta_fr_ecnmc_consqncs$Numeric_Crop_Dmg_E
strm_dta_fr_ecnmc_consqncs$prop_dmg_expense <- prop_dmg_expense
strm_dta_fr_ecnmc_consqncs$crop_dmg_expense <- crop_dmg_expense
head(strm_dta_fr_ecnmc_consqncs)</pre>
```

```
##
       Event Prop_Dmg Prop_Dmg_Exp Numeric_Prop_Dmg_Exp Crop_Dmg Crop_Dmg_Exp
## 1 TORNADO
                  25.0
                                                      10100
                                   K
                                                                    0
                   2.5
                                   K
                                                      10100
                                                                    0
## 2 TORNADO
## 3 TORNADO
                  25.0
                                   K
                                                      10100
                                                                    0
## 4 TORNADO
                   2.5
                                   K
                                                      10100
                                                                    0
## 5 TORNADO
                   2.5
                                   K
                                                      10100
                                                                    0
## 6 TORNADO
                   2.5
                                   K
##
     Numeric_Crop_Dmg_Exp prop_dmg_expense crop_dmg_expense
## 1
                          0
                                       252500
## 2
                          0
                                        25250
                                                               0
## 3
                          0
                                       252500
                                                               0
                                                               0
## 4
                          0
                                        25250
                                                               0
## 5
                          0
                                        25250
## 6
                          0
                                        25250
                                                               0
```

Adding property damage and cost damage expenses and storing result in new attribute.

```
strm_dta_fr_ecnmc_consqncs$net_dmg_expense <- strm_dta_fr_ecnmc_consqncs$prop_dmg_expense + strm_dta_fr
head(strm_dta_fr_ecnmc_consqncs)</pre>
```

```
##
       Event Prop_Dmg Prop_Dmg_Exp Numeric_Prop_Dmg_Exp Crop_Dmg Crop_Dmg_Exp
## 1 TORNADO
                  25.0
                                   K
                                                      10100
## 2 TORNADO
                   2.5
                                   K
                                                      10100
                                                                   0
## 3 TORNADO
                  25.0
                                   K
                                                      10100
                                                                   0
## 4 TORNADO
                   2.5
                                   K
                                                     10100
                                   K
## 5 TORNADO
                   2.5
                                                     10100
                                                                   0
## 6 TORNADO
                   2.5
                                   K
                                                     10100
     Numeric_Crop_Dmg_Exp prop_dmg_expense crop_dmg_expense net_dmg_expense
## 1
                         0
                                      252500
                                                              0
                                                                          252500
## 2
                         0
                                                              0
                                       25250
                                                                           25250
                                                              0
## 3
                         0
                                      252500
                                                                          252500
## 4
                         0
                                       25250
                                                              0
                                                                           25250
## 5
                         0
                                       25250
                                                              0
                                                                           25250
## 6
                                       25250
                                                              0
                         0
                                                                           25250
```

Aggregating (sum) net damage expenses w.r.t Event.

```
net_dmg_expense_per_event <- tapply(strm_dta_fr_ecnmc_consqncs$net_dmg_expense, strm_dta_fr_ecnmc_consqner
## removing NA values
net_dmg_expense_per_event <- net_dmg_expense_per_event[!is.na(net_dmg_expense_per_event)]
## converting to dataframe
net_dmg_expense_per_event_df <- data.frame(Event=names(net_dmg_expense_per_event), Economic_Cost=net_dmg_expense_per_event_df)</pre>
```

```
## Event Economic_Cost
## 1 HIGH SURF ADVISORY 2020000
## 2 COASTAL FLOOD 0
## 3 FLASH FLOOD 505000
```

```
## 4 LIGHTNING 0
## 5 TSTM WIND (G45) 80800
## 6 WATERSPOUT 0
```

Caclulating average economic cost across all events.

```
avg_economic_cost <- mean(net_dmg_expense_per_event_df$Economic_Cost)
avg_economic_cost</pre>
```

```
## [1] 5.065047e+17
```

Results

Finding most harmful events w.r.t economic consequences by extracting events from the dataframe having economic cost greater than average.

```
ecnmc_cost_per_hrmfl_event_df <- net_dmg_expense_per_event_df[net_dmg_expense_per_event_df$Economic_Cos
ecnmc_cost_per_hrmfl_event_df</pre>
```

```
##
                            Event Economic_Cost
          COLD AND WET CONDITIONS
                                    6.60000e+17
## 62
## 117
                EXCESSIVE WETNESS
                                    1.42000e+18
## 151
                 FLOOD/RAIN/WINDS
                                    1.12800e+18
## 156
                           FREEZE
                                    4.45550e+18
## 171
                            FROST
                                    6.50000e+17
## 244
       HEAVY RAIN/SEVERE WEATHER
                                    2.50000e+20
## 336 HURRICANE OPAL/HIGH WINDS
                                    1.01000e+19
## 731 TORNADOES, TSTM WIND, HAIL
                                    1.60025e+20
```

Formatting Economic Cost in Billions

ecnmc_cost_per_hrmfl_event_df\$Economic_Cost_Billion <- round(ecnmc_cost_per_hrmfl_event_df\$Economic_Cost_ecnmc_cost_per_hrmfl_event_df

```
##
                            Event Economic_Cost Economic_Cost_Billion
## 62
          COLD AND WET CONDITIONS
                                    6.60000e+17
                                                           6.60000e+08
## 117
                EXCESSIVE WETNESS
                                     1.42000e+18
                                                           1.42000e+09
                 FLOOD/RAIN/WINDS
## 151
                                     1.12800e+18
                                                           1.12800e+09
## 156
                           FREEZE
                                     4.45550e+18
                                                           4.45550e+09
## 171
                            FROST
                                     6.50000e+17
                                                           6.50000e+08
## 244
       HEAVY RAIN/SEVERE WEATHER
                                     2.50000e+20
                                                           2.50000e+11
## 336 HURRICANE OPAL/HIGH WINDS
                                     1.01000e+19
                                                           1.01000e+10
## 731 TORNADOES, TSTM WIND, HAIL
                                    1.60025e+20
                                                           1.60025e+11
```

Plotting Economic Consequences against most harmful events.

```
library(ggplot2)
ecnmc_cnsqnc_plot <-ggplot(data=ecnmc_cost_per_hrmfl_event_df, aes(x=Event, y=Economic_Cost_Billion)) +
   geom_bar(stat="identity") + labs(title = "Net Economic Cost caused by Harmful Events") + xlab("Event"
ecnmc_cnsqnc_plot</pre>
```

Net Economic Cost caused by Harmful Events

From above above bar plot we can deduce that HEAVY RAIN / SEVER WEATHER has greatest economic consequences.