Introduction to HR analytics

HUMAN RESOURCES ANALYTICS: PREDICTING EMPLOYEE CHURN IN PYTHON

Hrant Davtyan

Assistant Professor of Data Science American University of Armenia

What is HR analytics?

- Also known as People analytics
- Is a data-driven approach to managing people at work.

Problems addressed by HR analytics

- Hiring/Assessment
- Retention
- Performance evaluation

- Learning and Development
- Collaboration/team composition
- Other (e.g. absenteeism)

Employee turnover

- Employee turnover is the process of employees leaving the company
- Also known as employee attrition or employee churn
- May result in high costs for the company
- May affect company's hiring or retention decisions

Course structure

- 1. Describing and manipulating the dataset
- 2. Predicting employee turnover
- 3. Evaluating and tuning prediction
- 4. Selection final model


```
import pandas as pd
data = pd.read_csv("turnover.csv")
data.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14999 entries, 0 to 14998
Data columns (total 10 columns):
satisfaction_level 14999 non-null float64
last_evaluation 14999 non-null float64
number_project
                14999 non-null int64
average_montly_hours
                       14999 non-null int64
time_spend_company
                       14999 non-null int64
                       14999 non-null int64
work_accident
                       14999 non-null int64
churn
promotion_last_5years
                       14999 non-null int64
department
                       14999 non-null object
salary
                       14999 non-null object
dtypes: float64(2), int64(6), object(2)
memory usage: 1.1+ MB
```


The dataset

data.head()

	satisfaction_level	last_evaluation	number_project	average_montly_hours	time_spend_company	work_accident	churn	promotion_last_5years	department	salary
0	0.38	0.53	2	157	3	0	1	0	sales	low
1	0.8	0.86	5	262	6	0	1	0	sales	medium
2	0.11	0.88	7	272	4	0	1	0	sales	medium
3	0.72	0.87	5	223	5	0	1	0	sales	low
4	0.37	0.52	2	159	3	0	1	0	sales	low

Unique values

```
print(data.salary.unique())
```

```
array(['low', 'medium', 'high'], dtype=object)
```


Let's practice!

HUMAN RESOURCES ANALYTICS: PREDICTING EMPLOYEE CHURN IN PYTHON

Transforming categorical variables

HUMAN RESOURCES ANALYTICS: PREDICTING EMPLOYEE CHURN IN PYTHON

Hrant Davtyan

Assistant Professor of Data Science American University of Armenia

Types of categorical variables

- Ordinal variables with two or more categories that can be ranked or ordered
 - Our example: salary
 - Values: low, medium, high
- Nominal variables with two or more categories with do not have an intrinsic order
 - Our example: department
 - Values: sales, accounting, hr, technical, support, management, IT, product_mng, marketing, RandD

Encoding categories (salary)

Old values	New values
low	0
medium	1
high	2

Getting dummies

```
# Get dummies and save them inside a new DataFrame
departments = pd.get_dummies(data.department)
```

Example output

IT	RandD	accounting	hr	management	marketing	product_mng	sales	support	techi
0	0	0	0	0	0	0	0	0	1

Dummy trap

departments.head()

IT	RandD	accounting	hr	management	marketing	product_mng	sales	support	techi
0	0	0	0	0	0	0	0	0	1

```
departments = departments.drop("technical", axis = 1)
departments.head()
```

IT	RandD	accounting	hr	management	marketing	product_mng	sales	support
0	0	0	0	0	0	0	0	0

Let's practice!

HUMAN RESOURCES ANALYTICS: PREDICTING EMPLOYEE CHURN IN PYTHON

Descriptive statistics

HUMAN RESOURCES ANALYTICS: PREDICTING EMPLOYEE CHURN IN PYTHON

Hrant Davtyan

Assistant Professor of Data Science American University of Armenia

Turnover rate

```
# Get the total number of observations and save it
n_employees = len(data)
# Print the number of employees who left/stayed
print(data.churn.value_counts())
# Print the percentage of employees who left/stayed
print(data.churn.value_counts()/n_employees*100)
```

```
0 76.191746
1 23.808254
Name: churn, dtype: float64
```

Summary

Stayed	Left
76.19%	23.81%

Correlations

```
import matplotlib.pyplot as plt
import seaborn as sns
corr_matrix = data.corr()
sns.heatmap(corr_matrix)
plt.show()
```


Let's practice!

HUMAN RESOURCES ANALYTICS: PREDICTING EMPLOYEE CHURN IN PYTHON

