Aufgaben zu Kapitel 7

Abitur 2021 B1

- $\begin{tabular}{l} \textbf{1} & \textbf{Gegeben ist die in IR} \setminus \left\{-2;2\right\} & \textbf{definierte Funktion } f:x \mapsto \frac{6x}{x^2-4}. & \textbf{Der Graph } \\ & \textbf{von f wird mit } G_f & \textbf{bezeichnet und ist symmetrisch bezüglich des } \\ & \textbf{Koordinatenursprungs}. \\ \end{tabular}$
- **2** Betrachtet wird die Schar der Funktionen $f_{a,b,c}: x \mapsto \frac{ax+b}{x^2+c}$ mit $a,b,c \in \mathbb{R}$ und maximaler Definitionsmenge $D_{a,b,c}$.
- a) Die Funktion f aus Aufgabe 1 ist eine Funktion dieser Schar. Geben Sie die zugehörigen Werte von a, b und c an.
- b) Begründen Sie: Wenn a = 0 und b ≠ 0 gilt, dann ist der Graph von f_{a,b,c} symmetrisch bezüglich der y-Achse und schneidet die x-Achse nicht.
- c) Geben Sie für a, b und c alle Werte an, sodass sowohl D_{a,b,c} = IR gilt als auch, dass der Graph von f_{a,b,c} symmetrisch bezüglich des Koordinatenursprungs, aber nicht identisch mit der x-Achse ist.
- **d)** Für die erste Ableitung von $f_{a,b,c}$ gilt: $f'_{a,b,c}(x) = -\frac{ax^2 + 2bx ac}{\left(x^2 + c\right)^2}$.

 Zeigen Sie: Wenn $a \neq 0$ und c > 0 gilt, dann besitzt der Graph von $f_{a,b,c}$

genau zwei Extrempunkte.

Abitur 2019 B1

2

3

4

- Betrachtet wird die Schar der in IR definierten Funktionen $g_k \colon x \mapsto kx^3 + 3 \cdot \left(k+1\right)x^2 + 9x \;\; \text{mit} \;\; k \in IR \setminus \left\{0\right\} \;\; \text{und den zugehörigen Graphen}$ G_k . Für jedes k besitzt der Graph G_k genau einen Wendepunkt W_k .
- a) Geben Sie das Verhalten von g_k an den Grenzen des Definitionsbereichs in Abhängigkeit von k an.
 - ь) Bestimmen Sie die x-Koordinate von W_k in Abhängigkeit von k.

(zur Kontrolle: $x = -\frac{1}{k} - 1$)

 $_{\rm c}$) Bestimmen Sie den Wert von k so, dass der zugehörige Wendepunkt $W_{\rm k}$ auf der y-Achse liegt. Zeigen Sie, dass in diesem Fall der Punkt $W_{\rm k}$ im Koordinatenursprung liegt und die Wendetangente, d. h. die Tangente an $G_{\rm k}$ im Punkt $W_{\rm k}$, die Steigung 9 hat.

Abitur 2019 A2

- **3** Gegeben ist die Schar der in IR definierten Funktionen p_k : $x \mapsto kx^2 4x 3$ mit $k \in IR \setminus \{0\}$, deren Graphen Parabeln sind.
- 2 **a)** Bestimmen Sie den Wert von k so, dass der Punkt (2 | -3) auf der zugehörigen Parabel liegt.
- b) Ermitteln Sie diejenigen Werte von k, für die die jeweils zugehörige Funktion p_k keine Nullstelle besitzt.

Abitur 2018 A1

2

3

- **5** Für jeden Wert von a mit $a \in \mathbb{R}^+$ ist eine Funktion f_a durch $f_a(x) = \frac{1}{a} \cdot x^3 x$ mit $x \in \mathbb{R}$ gegeben.
 - a) Eine der beiden Abbildungen stellt einen Graphen von f_a dar. Geben Sie an, für welche Abbildung dies zutrifft. Begründen Sie Ihre Antwort.

b) Für jeden Wert von a besitzt der Graph von f_a genau zwei Extrempunkte. Ermitteln Sie denjenigen Wert von a, für den der Graph der Funktion f_a an der Stelle x=3 einen Extrempunkt hat.

Abitur 2015 A2

4 Gegeben ist die Schar der in IR definierten Funktionen $f_a: x \mapsto xe^{ax}$ mit $a \in IR \setminus \{0\}$. Ermitteln Sie, für welchen Wert von a die erste Ableitung von f_a an der Stelle x = 2 den Wert 0 besitzt.

Abitur 2020 B1

5

6

3

7

Gegeben ist die in IR definierte Funktion $f: x \mapsto \frac{x^2-1}{x^2+1}$; die Abbildung 1 zeigt ihren Graphen G_f .

 $\begin{array}{l} \textbf{3} \ \ \text{Für jeden Wert } \ k>0 \ \ \text{legen die auf } \ G_f \ \ \text{liegenden Punkte } \ P_k\left(-k\,|\,f\left(-k\right)\right) \ \text{und} \\ \ Q_k\left(k\,|\,f\left(k\right)\right) \ \ \text{gemeinsam mit dem Punkt } \ R\left(0\,|\,1\right) \ \ \text{ein gleichschenkliges} \\ \ \ \text{Dreieck } \ P_kQ_kR \ \ \text{fest}. \end{array}$

a) Berechnen Sie für k = 2 den Flächeninhalt des zugehörigen Dreiecks P_2Q_2R (vgl. Abbildung 3).

Zeigen Sie anschließend, dass der Flächeninhalt des Dreiecks P_kQ_kR allgemein

durch den Term $A(k) = \frac{2k}{k^2 + 1}$ beschrieben werden kann.

b) Zeigen Sie, dass es einen Wert von k>0 gibt, für den A(k) maximal ist. Berechnen Sie diesen Wert von k sowie den Flächeninhalt des zugehörigen Dreiecks $P_k Q_k R$.

Abitur 2020 B2

Gegeben ist die Funktion $f: x \mapsto 1 + 7e^{-0.2x}$ mit Definitionsbereich IR_0^+ ; die Abbildung 1 zeigt ihren Graphen G_f .

1 a) Begründen Sie, dass die Gerade mit der Gleichung y = 1 waagrechte Asymptote von G_f ist. Zeigen Sie rechnerisch, dass f streng monoton abnehmend ist.

Für jeden Wert s>0 legen die Punkte (0|1), (s|1), (s|f(s)) und (0|f(s)) ein Rechteck mit dem Flächeninhalt R(s) fest.

b) Zeichnen Sie dieses Rechteck für s = 5 in die Abbildung 1 ein.
 Zeigen Sie, dass R(s) für einen bestimmten Wert von s maximal ist, und geben Sie diesen Wert von s an.

(zur Kontrolle: $R(s) = 7s \cdot e^{-0.2s}$)

Abb. 1

4

1 Abbildung 1 zeigt den Graphen G_f einer ganzrationalen Funktion f dritten Grades mit Definitionsmenge IR. G_f schneidet die x-Achse bei x=0, x=5 und x=10 und verläuft durch den Punkt (1|2).

(zur Kontrolle: $f(x) = \frac{1}{18} \cdot (x^3 - 15x^2 + 50x))$

Abb. 1