DBSCAN (Density-Based Spatial Clustering of Applications with Noise)

- > DBSCAN is a popular clustering algorithm used in machine learning and data mining.
- ➤ It is well-suited for identifying clusters of varying shapes and sizes in large spatial databases and can handle noise (outliers) effectively.
- > DBSCAN forms clusters based on the density of data points in a given region. A region with a high density of points is considered a cluster, while areas with low density are treated as noise or outliers.
- ➤ The algorithm uses 2 parameters
 - First parameter ε (epsilon) to define the radius of the neighborhood around each point. This radius determines which points are considered neighbors.
 - A second parameter, $min_samples$, specifies the minimum number of points required to form a dense region (core point). If a point has at least $min_samples$ points (including itself) within its ϵ neighborhood, it is considered a core point.
- **Core Points:** Points that have at least min samples points within their ε neighborhood.
- **Border Points:** Points that are within the ε neighborhood of a core point but do not have enough points to be a core point themselves.
- Noise Points: Points that are not within the ε neighborhood of any core points and are considered outliers.

Working of DBSCAN

1. Identify Core Points: For each point in the dataset, the algorithm counts the number of points within its ε neighborhood. If the count is greater than or equal to min samples, the point is labeled as a core point.

2. Form the Clusters:

- o Core points that are within ε distance of each other are grouped together to form a cluster.
- o Border points are added to the nearest core point's cluster.
- o Noise points are identified and ignored for clustering purposes.

3. Expand Clusters:

Starting with a core point, the algorithm recursively visits all points in its ε neighborhood, adding them to the cluster if they are also core or border points. This process continues until all reachable points have been visited and assigned to a cluster.

Advantages of DBSCAN

- ➤ Unlike other clustering algorithms like K-means, DBSCAN can find clusters of arbitrary shapes and sizes.
- Does not require specifying the number of clusters in advance, as opposed to K-means which requires the number of clusters (k) to be defined beforehand.
- > Can handle noise and outliers effectively by labeling them as noise points, ensuring they do not affect the clustering results.

PROBLEM: Apply the DBSCAN algorithm to the given data points and create the clusters with min_samples = 4 and epsilon $(\epsilon) = 1.9 \text{ p1} (3,7) \text{ p2}(4,6) \text{ p3}(5,5) \text{ p4}(6,4) \text{ p5}(7,3) \text{ p6}(6,2) \text{ p7}(7,2) \text{ p8}(8,4) \text{ p9}(3,3) \text{ p10}(2,6) \text{ p11}(3,5) \text{ p12}(2,4)$

Solution: Calculate the distance between each points using Euclidian distance

Distance(
$$A(x_1, y_1), B(x_2, y_2)$$
) = $\sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$

	,	,	/	V		minP	ts = 4 an	d epsil	on (ε) =	1.9V			D4 D2 D40
	PI	P2	Р3	P4	P5	P6	P7	P8	P9	P10	P11	P12	P1: P2, P10
P1	0			- 1									P2: P1, P3, P11
P2	1.41	0											P3: P2, P4
P3 √	2.83	1.41	0										P4: P3, P5
P4	4.24	2.83	1.41	0									P5: P4, P6, P7, P8
P5	5.66	4.24	2.83	1.41	0								P6: P5, P7
P6	5.83	4.47	3.16	2.00	1.41	0							P7: P5, P6
P7	6.40	5.00	3.61	2.24	1.00	1.00	0						P8: P5
P8	5.83	4.47	3.16	2.00	1.41	2.83	2.24	0					
P9	4.00	3.16	2.83	3.16	4.00	3.16	4.12	5.10	0				P9: P12
P10	1.41	2.00	3.16	4.47	5.83	5.66	6.40	6.32	3.16	0			P10: P1, P11
P11	2.00	1.41	2.00	3.16	4.47	4.24	5.00	5.10	2.00	1.41	0		P11: P2, P10, P12
P12	3.16	2.83	3.16	4.00	5.10	4.47	5.39	6.00	1.41	2.00	1.41	0	P12: P9, P11

P1: P2, P10
P2: P1, P3, P11
P3: P2, P4
P4: P3, P5
P5: P4, P6, P7, P8
P6: P5, P7
P7: P5, P6
P8: P5
P9: P12
P10: P1, P11
P11: P2, P10, P12
P12: P9, P11

Point	Status					
P1	Noise	Border				
P2	Core					
Р3	Noise	Border				
P4	Noise	Border				
P5	Core					
P6	Noise	Border				
P7	Noise	Border				
P8	Noise	Border				
P9	Noise					
P10	Noise	Border				
P12	Core					
P12	Noise	Border				

minPts = 4 and epsilon (ϵ) = 1.9


```
import matplotlib.pyplot as plt
import numpy as np
from sklearn.cluster import DBSCAN
# Define the data points
points = np.array([ [3, 7], [4, 6], [5, 5], [6, 4], [7, 3], [6, 2], [7, 2], [8, 4], [3, 3], [2, 6], [3, 5], [2, 4]])
# Plot the data points
plt.figure(figsize=(6, 6))
plt.scatter(points[:, 0], points[:, 1], color='b')
plt.title("Raw Data Points")
plt.xlabel("X")
plt.ylabel("Y")
plt.show()
# Apply DBSCAN
db = DBSCAN(eps=1.9, min samples=4).fit(points)
labels = db.labels
# Extract core points, border points, and noise points
core points mask = np.zeros like(labels, dtype=bool)
core points mask[db.core sample indices ] = True
border_points_mask = (labels != -1) & ~core_points_mask
noise points mask = (labels == -1)
# Plot core points, border points, and noise points
plt.figure(figsize=(6, 6))
plt.scatter(points[core points mask, 0], points[core points mask, 1], color='red', marker='o', label='Core Points')
plt.scatter(points[border points mask, 0], points[border points mask, 1], color='green', marker='o', label='Border Points')
plt.scatter(points[noise points mask, 0], points[noise points mask, 1], color='black', marker='x', label='Noise Points')
# Plot epsilon neighborhoods around core points as circles
for point in points[core points mask]:
  circle = plt.Circle((point[0], point[1]), 1.9, color='blue', fill=False, linestyle='dotted')
  plt.gca().add artist(circle)
plt.title("DBSCAN Clustering with Approximate Boundaries")
plt.xlabel("X")
plt.ylabel("Y")
plt.legend()
plt.axis('equal') # Ensure equal scaling of x and y axes
plt.show()
print("DBSCAN Labels:", labels) # Print the labels assigned by DBSCAN
```

OUTPUT:

