Fluïdummechanica Leidingstelsels

Brecht Baeten¹

¹KU Leuven, Technologie campus Diepenbeek, e-mail: brecht.baeten@kuleuven.be

24 november 2015

Inhoud

Inleiding

- 3 Lokale ladingsverliezen

4 Serie en parallel schakeling

Voorbeeld

Bron: http://www.etftrends.com/

Inhoud

1 Inleiding

- 2 Mechanische energie
- 3 Lokale ladingsverliezen

4 Serie en parallel schakeling

Bernoulli

Behoud van mechanisch energie:

$$p_2 + \rho \frac{1}{2}v_2^2 + \rho g z_2 = p_1 + \rho \frac{1}{2}v_1^2 + \rho g z_1$$

Lokale ladingsverliezen

Bernoulli

Inleiding

Behoud van mechanisch energie:

$$p_2 + \rho \frac{1}{2}v_2^2 + \rho g z_2 = p_1 + \rho \frac{1}{2}v_1^2 + \rho g z_1$$

Lokale ladingsverliezen

Door viskeuze wrijving wordt een gedeelte van de mechanische energie gedissipeerd:

$$p_2 + \rho \frac{1}{2}v_2^2 + \rho g z_2 = p_1 + \rho \frac{1}{2}v_1^2 + \rho g z_1 - \Delta E$$

Bernoulli

Inleiding

Behoud van mechanisch energie:

$$p_2 + \rho \frac{1}{2}v_2^2 + \rho g z_2 = p_1 + \rho \frac{1}{2}v_1^2 + \rho g z_1$$

Door viskeuze wrijving wordt een gedeelte van de mechanische energie gedissipeerd:

$$p_2 + \rho \frac{1}{2}v_2^2 + \rho g z_2 = p_1 + \rho \frac{1}{2}v_1^2 + \rho g z_1 - \Delta E$$

Voor een rechte horizontale cilindrische leiding:

$$\Delta E = p_1 - p_2$$

Behoud van mechanisch energie:

$$p_2 + \rho \frac{1}{2}v_2^2 + \rho g z_2 = p_1 + \rho \frac{1}{2}v_1^2 + \rho g z_1$$

Door viskeuze wrijving wordt een gedeelte van de mechanische energie gedissipeerd:

$$p_2 + \rho \frac{1}{2}v_2^2 + \rho g z_2 = p_1 + \rho \frac{1}{2}v_1^2 + \rho g z_1 - \Delta E$$

Voor een rechte horizontale cilindrische leiding:

$$\Delta E = p_1 - p_2$$

$$\Delta E = f \frac{1}{2} \rho v^2 \frac{L}{D}$$

Ladingsverlies

Stel de vergelijking voor mechanische energie voor in eenheid hoogte:

$$\frac{p_2}{\rho g} + \frac{v_2^2}{2g} + z_2 = \frac{p_1}{\rho g} + \frac{v_1^2}{2g} + z_1 - h_L \tag{1}$$

Ladingsverlies

Stel de vergelijking voor mechanische energie voor in eenheid hoogte:

$$\frac{p_2}{\rho g} + \frac{v_2^2}{2g} + z_2 = \frac{p_1}{\rho g} + \frac{v_1^2}{2g} + z_1 - h_L \tag{1}$$

Ladingsverlies voor een cilindrische leiding:

$$h_{\rm L} = f \frac{v^2}{2q} \frac{L}{D} \tag{2}$$

Ladingsverlies

Stel de vergelijking voor mechanische energie voor in eenheid hoogte:

$$\frac{p_2}{\rho g} + \frac{v_2^2}{2g} + z_2 = \frac{p_1}{\rho g} + \frac{v_1^2}{2g} + z_1 - h_L \tag{1}$$

Ladingsverlies voor een cilindrische leiding:

$$h_{\rm L} = f \frac{v^2}{2q} \frac{L}{D} \tag{2}$$

$$h_{\rm L} = 8f \frac{\dot{V}^2}{g\pi^2} \frac{L}{D^5} \tag{3}$$

Grafische voorstelling

Inhoud

Inleiding

- 2 Mechanische energie
- 3 Lokale ladingsverliezen
- 4 Serie en parallel schakeling

Verliescoëfficient

Lokale ladings verliezen kunnen in rekening gebracht worden met behulp van een empirisch bepaalde verliescoëfficient ζ

Verliescoëfficient

Lokale ladings verliezen kunnen in rekening gebracht worden met behulp van een empirisch bepaalde verliescoëfficient ζ

Lokale ladingsverliezen

$$h_{\rm L,lokaal} = \zeta \frac{v^2}{2g}$$

Lokale ladings verliezen kunnen in rekening gebracht worden met behulp van een empirisch bepaalde verliescoëfficient ζ

$$h_{\rm L,lokaal} = \zeta \frac{v^2}{2g}$$

$$h_{\rm L,lokaal} = \zeta \frac{\dot{V}^2}{2qA^2}$$

$$p_1 A_2 - p_2 A_2 = \rho A_2 v_2 (v_2 - v_1)$$

$$p_1 A_2 - p_2 A_2 = \rho A_2 v_2 (v_2 - v_1)$$

$$\frac{p_2}{\rho g} + \frac{v_2^2}{2g} = \frac{p_1}{\rho g} + \frac{v_1^2}{2g} - h_L$$

$$p_1 A_2 - p_2 A_2 = \rho A_2 v_2 (v_2 - v_1)$$

$$\frac{p_2}{\rho g} + \frac{v_2^2}{2g} = \frac{p_1}{\rho g} + \frac{v_1^2}{2g} - h_L$$

$$h_L = \frac{v_1^2}{2g} \left(1 - 2\frac{v_2}{v_1} + \frac{v_2^2}{v_1^2} \right)$$

$$p_1 A_2 - p_2 A_2 = \rho A_2 v_2 (v_2 - v_1)$$

Lokale ladingsverliezen

$$\frac{p_2}{\rho g} + \frac{v_2^2}{2g} = \frac{p_1}{\rho g} + \frac{v_1^2}{2g} - h_L$$

$$h_L = \frac{v_1^2}{2g} \left(1 - 2\frac{v_2}{v_1} + \frac{v_2^2}{v_1^2} \right)$$

$$h_L = \frac{v_1^2}{2g} \left(1 - \frac{A_1}{A_2} \right)^2$$

Voorbeeld van empirische data

r/D	1	2	4	6	10
ζ glad	0.21	0.14	0.11	0.09	0.11
ζ ruw	0.51	0.30	0.23	0.18	0.20

Het totale ladingsverlies is steeds het lokale verlies plus het verlies ten gevolge van de lengte van de leiding.

Serie en parallel schakeling

Inhoud

1 Inleiding

- 2 Mechanische energie
- 3 Lokale ladingsverliezen

4 Serie en parallel schakeling

Serieschakeling

Serieschakeling

$$\dot{V}_{
m serie} = \dot{V}_i$$
 $h_{
m L,serie} = \sum h_{
m L,i}$

Serieschakeling

Het totale ladingsverlies in een serieschakeling van elementen is de som van de ladingsverliezen

Parallelschakeling

Parallelschakeling

Parallelschakeling

Het ladingsverlies in elke tak van een parallelschakeling is gelijk aan het totale ladingsverlies