Rapport partie commande

TALENT Julien et RUIZ Evan

Rôle de la fonction :

Elle permet de choisir la tension de sortie en modulant la largeur de l'impulsion (la pwm).

Schéma:

Sans le potentiomètre

avec le potentiomètre

Fonctionnement:

Grâce au potentiomètre on peut modifier la largeur des impulsion ce qui permet de modifier le rapport cyclique.

La diode fait passer le courant jusqu'au condensateur lorsqu'il est en charge.

En charge le courant passe par RA et la diode, et en décharge il passe par RB et va dans le 555

Choix des résistances :

Afin de choisir les résistances adéquats, nous avons procédé a une série de calculs :

Appareil à alimenter avec tension panneau = Ve = 20V	Pour le téléphone (5V) :	Pour la carte altéra (7.5V) :
Tension à la sortie du hacheur :	5V	7.5V

Appareil à alimenter avec tension panneau = Ve = 20V	Pour le téléphone (5V) :	Pour la carte altéra (7.5V) :
rapport cyclique : $lpha = rac{Vs}{Ve}$	$=rac{5}{15}=25\%$	$=rac{7.5}{15}=38\%$
période d'oscillation $T=rac{1}{f}$	$=rac{1}{40k}=25\mu s$	
temps à l'état haut $t_1 = lpha * T$	$=0.25*25^{-6}=6.25 \mu s$	$=0.38*25^{-6}=9.5 \mu s$
$Ra=rac{t_1}{0.693*C}$	$=rac{6.25^{-6}}{0.693*1^{-9}}=9k\Omega$	$=rac{9.5^{-6}}{0.693*1^{-9}}=13.7k\Omega$
$t_2 = (1-\alpha)*T$	$=(1-0.25)*25^{-6}=18.75 \mu s$	$=(1-0.38)*25^{-6}=15.5 \mu s$
$RB=rac{t_2}{0.693*c}-P$	$=27k\Omega$	$=22.4k\Omega$
RA+RB	= $36k\Omega$	= 36kΩ

Simulation avec RA et RB:

	RA normalisée	Rb normalisée	rapport cyclique que l'on devrait obtenir	rapport cyclique vaec la simulation
Vs = 5V	8.2kΩ	27kΩ	23%	25%
VS = 7.5V	15kΩ	22 kΩ	41%	43%

On constate que la simulation est proche du résultats que l'on attendait.

Ajout d'un potentiomètre :

évolution de la tensions par rapport à l'ensolellement	il faut malgré tout avoir une tension en sortie du hacheur VS de :	rapport cyclique correspondant	position du potentiomètre
descend à 16V	7.5V	maximal de 47%	basse (x=100%)
monte à 22V	5V	minimal de 23%	haute (x=0)

calcul de RA et Rb

On utilise la formule suivante :

•
$$RA = \frac{\alpha_{min}*P}{\alpha_{max-\alpha_{min}}}$$

•
$$RB=rac{RA-lpha_{min}(RA+P)}{lpha_{min}}$$

obtenue à partir de la formule du rapport cyclique pour X=0 :

•
$$\alpha = \frac{RA}{Ra + RB + P}$$

avec

•
$$RA+RB+P=rac{RA+P}{lpha_{max}}$$
 pour X=0 et

•
$$RA + RB + P = \frac{RA}{\alpha_{min}}$$
 pour x=1.

RA = $6.4k\Omega$, valeur normalisée : $6.8k\Omega$ RB = $17k\Omega$, valeur normalisée : $18k\Omega$

Simulation:

pour V1=16v ou pour V1=22V, les rapports cyclique et tensions de sortie sont identique.

Position du Potentiometre	rapport cyclique prévue	rapport cyclique obtenue	fréquence d'oscillation observée
Haute(x=0)	19.5%	21%	40,2kHz
Basse (x=100%)	48%	50%	39,5kHz

Mesures et chronogrammes

Problème!

Notre coupe RA-RB nous empêchez de descendre en dessous de 26% de rapport cyclique or on souhaite définir un rapport cyclique de 20% donc on change les résistances.

On obtient

- RA =4.3k Ω et RB = 14k Ω .
 - On utiliseras des résistances normalisées E12 :
- RA = $3.9k\Omega$ et Rb = $15k\Omega$.

P en position basse(Potentiomètre à 100%) :

En position basse, le rapport cyclique doit être maximal

calculs:

tension VC	la tension de sortie Vs est à l'état	formule (p=10k)	rapport cyclique (pratique) :	Rapport cyclique (théorie) :
monte	haut pendant 11.4μs	$t_1 = 0.693(RA + P)C = 9.6 \mu s$	51%	48%
descend	bas pendant 10.8μs	$t_2 = 0.693 RB * C = 10.3 \mu s$		

P en position haute(Potentiomètre à 0%) :

En position haute, le rapport cyclique doit être le minimum voulu :

calculs:

tension VC	la tension de sortie Vs est à l'état	formule (p=10k)	rapport cyclique (pratique) :	Rapport cyclique (théorie) :
monte	haut pendant 44μs	$t_1 = 0.693(RA + P)C = 2.7 \mu s$	19.6%	13.5%
descend	bas pendant 16.4μs	$t_2 = 0.693RB*C = 17.3 \mu s$		

Conclusion:

Donc nous avons assemblé la partie commande :

- Grâce à la PWM, on peut adapté le rapport cyclique par rapport à nos besoins(20% > 50%).
- De plus, les résistances choisis sont calculer pour obtenir une tension de sortie adéquate.
- Alors on peut alimenter une carte Altera en 7.5V ou un téléphone portable en 5V.