Лабораторная работа 4.3.4. ПРЕОБРАЗОВАНИЕ ФУРЬЕ В ОПТИКЕ

Хайдари Фарид, Б01-901 10 марта 2021 г.

Содержание

Теоретические сведения	3
Спектр функции пропускания амплитудной синусоидальной	
решётки	3
Спектр функции пропускания щелевой диафрагмы и перио-	
дической последовательности таких функций	6
Метод Аббе	8
Мультипликация изображения предмета	9
Экспериментальная установка	10
Ход работы	12
	40
Определение ширины щели	12
Определение ширины щели	12 12
Определение ширины щели с помощью линзы	12
Определение ширины щели с помощью линзы Определение ширины щели по её спектру	12 12
Определение ширины щели с помощью линзы Определение ширины щели по её спектру	12 12 14
Определение ширины щели с помощью линзы Определение ширины щели по её спектру	12 12 14

Цель работы: исследование особенностей применения пространственного преобразования Фурье для анализа дифракционных явлений.

В работе используются: гелий-неоновый лазер, кассета с набором сеток разного периода, щель с микрометрическим винтом, линзы, экран, линейка.

Теоретические сведения

Анализ сложного волнового поля во многих случаях целесообразно проводить, разлагая его на простейшие составляющие, например,представляя его в виде разложения по плоским волнам. При этом оказывается, что если мы рассматриваем поле, полученное после прохождения плоской монохроматической волны через предмет или транспарант (изображение предмета на фотоплёнке или стеклянной пластинке) с функцией пропускания t(x), то разложение по плоским волнам соответствует преобразованию Фурье от этой функции. Если за предметом поставить линзу, то каждая плоская волна сфокусируется в свою точку в задней фокальной плоскости линзы. Таким образом, картина, наблюдаемая в фокальной плоскости линзы, даёт нам представление о спектре плоских волн падающего на линзу волнового поля. Поэтому можно утверждать, что с помощью линзы в оптике осуществляется пространственное преобразование Фурье.

Спектр функции пропускания амплитудной синусо-идальной решётки

Рассмотрим вначале простой пример: дифракцию плоской монохроматической волны на синусоидальной амплитудной решётке. Пусть решётка с периодом d расположена в плоскости Z=0, а её штрихи ориентированы вдоль оси Y . Функция пропускания такой решётки имеет вид

$$t(x) = \beta + \alpha \cos(ux) = \beta + \alpha \frac{e^{iux} + e^{-iux}}{2}$$
 (1)

с постоянными $\alpha,\,\beta$ и u $(u=2\pi/d$ - пространственная частота)

Если на решётку падает плоская монохроматическая волна, распространяющаяся вдоль оси Z,

$$E(\vec{r},t) = E_0 e^{-i(\omega t - kz)}$$
(2)

где ω – круговая частота, k – волновой вектор ($k=2\pi/\lambda$), E_0 – амплитуда, то на выходе из решётки мы получим три плоских волны:

$$E_1 = \beta \cdot E_0 e^{-i(\omega t - kz)};$$

$$E_2 = \frac{\alpha}{2} \cdot e^{-i(\omega t - ux - z\sqrt{k^2 - u^2})};$$

$$E_3 = \frac{\alpha}{2} \cdot e^{-i(\omega t + ux - z\sqrt{k^2 - u^2})}.$$
(3)

Действительно, легко видеть, что в плоскости Z=0 амплитуда колебаний, создаваемая суммой этих волн, описывается функцией (1), а фаза колебаний постоянна. Таким образом, в силу единственности решения волнового уравнения при заданных граничных условиях мы нашли искомую суперпозицию плоских волн. Каждая из этих трёх плоских волн фокусируется линзой в точку в задней фокальной плоскости.

Волна $E_1 = \beta \cdot E_0 \, \mathrm{e}^{-i(\omega t - kz)}$, распространяющаяся вдоль оси линзы (оси Z), фокусируется в начало координат, а волны E_2 и E_3 , распространяющиеся в направлении $\sin \theta = \pm (u/k)$, фокусируются в точках $x_{1-2} = \pm Fu/k = \pm F\lambda/d$ (F – фокусное расстояние линзы).

Функция t(x) с самого начала задана в виде суммы гармонических составляющих, т.е. в виде ряда Фурье. Каждой гармонической составляющей мы поставили в соответствие с (3) плоскую волну, собираемую линзой в точку в задней фокальной плоскости (её обычно называют фурье-плоскостью). Проводя аналогию с «временной» координатой, мы можем заключить, что спектр функции t(x) представлен в фурье-плоскости тремя пространственными частотами: 0, +u, -u; с амплитудами соответственно: $\beta, \alpha/2, \alpha/2$.

Теорема Фурье, доказываемая в курсе математического анализа, утверждает, что широкий класс периодических функций t(x) может быть представлен в виде суммы бесконечного множества гармонических составляющих, имеющих кратные частоты, т. е. в виде ряда Фурье. В комплексной форме этот ряд имеет вид

$$t(x) = \sum_{n = -\infty}^{\infty} c_n e^{inux}$$
 (4)

Рассуждая так же, как в случае амплитудной синусоидальной решётки, мы придём к выводу, что картина, наблюдаемая в фурьеплоскости, представляет собой эквидистантный набор точек с координатами

$$x_n = \frac{Fu}{k}n = \frac{F\lambda}{d}n$$

и амплитудами, пропорциональными c_n . Таким образом, с помощью линзы в оптике осуществляется пространственное преобразование Фурье: при освещении транспаранта плоской монохроматической волной картина, наблюдаемая в задней фокальной плоскости линзы, установленной за транспарантом, представляет собой фурье-образ функции пропускания транспаранта.

Последнее утверждение нуждается в уточнении. Распределение света в задней фокальной плоскости линзы будет воспроизводить распределение амплитуд плоских волн, продифрагировавших на транспаранте, но фазовые соотношения при этом, вообще говоря, оказываются искажёнными и не соответствуют аргументам комплексных амплитуд в выражении (4). При изменении расстояния между транспарантом и линзой фазовые соотношения изменяются. Можно доказать, что если транспарант установлен в передней фокальной плоскости линзы, то в её задней фокальной плоскости восстанавливаются и амплитудные, и фазовые соотношения между плоскими волнами, и таким образом строго осуществляется комплексное фурье-преобразование (4).

Во многих практически важных случаях функция пропускания транспаранта чисто амплитудная, как, например, в случае амплитудной синусоидальной решётки (1). Тогда для того, чтобы найти фурье-образ функции пропускания транспаранта, достаточно определить только пространственные частоты и соотношение между амплитудами плоских волн на выходе из транспаранта. Для амплитудной синусоидальной решётки мы получили три плоских волны с пространственными частотами 0, +u, -u и амплитудами, пропорциональными $\beta, \alpha/2, \alpha/2$. В соответствии с (1) мы можем утверждать, что нашли пространственный фурье-образ функции пропускания амплитудной синусоидальной решётки.

Интересно заметить, что наблюдаемая визуально картина фраунгоферовой дифракции в задней фокальной плоскости линзы не зависит от расстояния между транспарантом и линзой, так как глаз не реагирует на фазу волны, а регистрирует только интенсивность (усреднённый по времени квадрат амплитуды поля). Условия наблюдения дифракции Фраунгофера можно выполнить и без применения линзы, если наблюдать дифракционную картину на достаточно удалённом экране. Таким образом, пространственное преобразование Фурье может осуществляться и в свободном пространстве при наблюдении дифракции Фраунгофера.

Спектр функции пропускания щелевой диафрагмы и периодической последовательности таких функций

Картина дифракции Фраунгофера на щели и на дифракционной решётке, имеющей вид периодического набора щелей, хорошо известна из курса оптики. Спектр дифракционной решётки представлен на рис. . Если размеры дифракционной решётки неограничены, то дифракционные максимумы в спектре бесконечно узки. Чем меньше размер решётки (полное число щелей), тем шире каждый отдельный максимум.

Рис. 1: а) $g_1(x)$ — функция пропускания дифракционной решётки (последовательности прозрачных и непрозрачных полос); 6) $G_1(u)$ — спектр функции пропускания дифракционной решётки

Направление на главные максимумы $\theta_n = un/k = \lambda n/d$ (n – целое число) определяется периодом решётки d, а распределение амплитуд в спектре (огибающая) – фурье-образом функции пропускания отдельного штриха.

$$g_2(x) = \begin{cases} 1, -D/2 \le x \le D/2; \\ 0, -D/2 > x > D/2. \end{cases}$$
 (5)

Так как функция $g_2(x)$ непериодична, её фурье-образ представляется непрерывным множеством точек и определяется интегральным преобразованием Фурье:

$$g(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} G(u) e^{iux} du,$$

$$G(u) = \int_{-\infty}^{\infty} g(x) e^{-iux} dx.$$
(6)

Говорят, что в таком виде g(x) и G(u) представляют собой пару преобразований Фурье: G(u) — спектр или фурье-образ функции g(x).

Рис. 2: а) $g_1(x)$ — функция пропускания щелевой диафрагмы; б) $G_1(u)$ — спектр функции пропускания щелевой диафрагмы

Спектр функции $g_2(x)$ хорошо известен, он соответствует картине дифракции Фраунгофера на щели и описывается функцией вида $\frac{\sin x}{x}$ (рис.).

Получим спектр $G_2(u)$ ещё раз с помощью преобразования Фурье:

$$G_2(u) = \int_{-\infty}^{\infty} g_2(x) e^{-iux} dx = \int_{D/2}^{D/2} e^{-iux} dx = D \frac{\sin(uD/2)}{uD/2}.$$

Отсюда видно, что направление на первый минимум θ_1 в огибающей спектра пропускания дифракционной решётки определяется шириной функции пропускания отдельного штриха: $\theta_1 = u/k = \lambda/D$. Если ввести понятия протяжённости функции пропускания транспаранта по координате (Δx) и ширины её спектра (Δu) , то

$$\Delta u \cdot \Delta x = const. \tag{7}$$

Для частного случая функции пропускания щелевой диафрагмы, определяя ширину её спектра по первому нулю функции $\frac{\sin(uD/2)}{uD/2}$, получаем

$$\Delta u \cdot \Delta x = \frac{2\pi}{D} \cdot D = 2\pi.$$

Соотношение (7) в волновой физике играет чрезвычайно важную роль. Его называют соотношением неопределённости.

Измерив на удалённом экране расстояния между максимумами или минимумами в спектре пропускания щели (рис. б) или решётки (рис. б), можно рассчитать размер щели или период решётки.

Размер малого объекта можно рассчитать, если получить его изображение, увеличенное с помощью линзы.

Метод Аббе

Рассмотрим кратко схему образования изображения. Пусть предмет расположен в плоскости P_1 на расстоянии от линзы большем, чем фокусное. Тогда существует сопряжённая предметной плоскости P_1 плоскость P_2 , где образуется изображение предмета-щели.

Рис. 3: Схема, поясняющая метод Аббе построения изображения

Аббе предложил рассматривать схему прохождения лучей от предмета к изображению в два этапа. Сначала рассматривается изображение спектр в задней фокальной плоскости Φ линзы Π_1 (это изображение Аббе назвал первичным).

Затем это изображение рассматривается как источник волн, создающий изображение предмет а в плоскости P_2 (вторичное изображение). Такой подход опирается на принцип Гюйгенса—Френеля, согласно которому любой участок волнового фронта можно рассматривать как источник излучения.

Картина, наблюдаемая в плоскости P_2 , зависит от распределения амплитуды и фазы в плоскости Φ – в первичном изображении. Если плоскость P_2 сопряжена с предметной плоскостью P_1 , то фазовые соотношения в первичном изображении оказываются именно такими, что в плоскости P_2 мы наблюдаем соответственно увеличенное или уменьшенное изображение предмета. Поэтому иногда говорят, что линза дважды осуществляет преобразование Φ урье: сначала в задней фокальной плоскости Φ линзы получается световое поле, соответствующее фурье-образу функции пропускания предмета (с точностью до фазы), а затем на промежутке между фокальной плоскостью Φ и плос-

Рис. 4: а) $G_2(x)$ – спектр функции пропускания щелевой диафрагмы; x – координаты в задней фокальной плоскости линзы;

- б) $\Phi_1(x)$ функция пропускания решетки, установленной в фурьеплоскости линзы;
- в) $G_1(x)$ отфильтрованный спектр щелевой диафрагмы (ср. с рис.)

костью изображений P_2 осуществляется обратное преобразование Фурье, и в плоскости P_2 восстанавливается таким образом изображение предмета.

Мультипликация изображения предмета

Рассмотрим, что произойдёт с изображением предмета, если мы установим в задней фокальной плоскости линзы решётку. Сопоставим вначале спектры щелевой диафрагмы (рис.) и периодической последовательности щелевых диафрагм (рис.).

Легко видеть, что спектр, изображённый на рис. , можно получить из спектра, изображённого на рис. , если исключить из него

часть пространственных частот, поместив в фурье-плоскость решётку – последовательность прозрачных и непрозрачных линий (рис.).

Отфильтрованный таким образом спектр не будет отличаться ни по амплитуде, ни по фазе от спектра периодической последовательности щелевых диафрагм, и в плоскости P_2 мы получим вместо изображения одиночной щели изображение периодической последовательности шелей.

Эти рассуждения можно повторить и для предмета с произвольным спектром, необходимо только, чтобы период решётки был заметно меньше ширины спектра (точное соотношение можно получить из теоремы Котельникова). Таким образом, установив в задней фокальной плоскости линзы решётку, мы вместо изображения одиночного предмет а получим эквидистантный набор изображений таких предметов, т. е. осуществим мультипликацию изображения предмета (увидим изображение несуществующей «фиктивной» решётки).

Поменяв местами сетку и щель, можно проследить влияние размера щели на изображение сетки.

Экспериментальная установка

Схема установки представлена на рис. . Щель переменной ширины D, снабжённая микрометрическим винтом B, освещается параллельным пучком света, излучаемым лазером (радиус кривизны фронта волны велик по сравнению с фокусными расстояниями используемых в схеме линз).

Рис. 5: Схема для определения ширины щели с помощью линзы

Увеличенное изображение щели с помощью линзы Π_1 проецируется на экран Э. Величина изображения D_1 зависит от расстояний от линзы до предмета – a_1 и до изображения – b_1 , т. е. от увеличения

Г системы:

$$\Gamma = \frac{D_1}{D} = \frac{b_1}{a_1} \tag{8}$$

Изображение спектра щели образуется в задней фокальной плоскости Φ линзы Π_1 . Размещая в плоскости Φ двумерные решётки-сетки, можно влиять на первичное изображение и получать мультиплицированное изображение щели.

Рис. 6: Схема для определения ширины щели по спектру

Рис. 7: Схема определения периода решётки по увеличенному изображению спектра

Убрав линзу, можно наблюдать на экране спектр щели (рис.), а если заменить щель решёткой — спектр решётки. Крупные решётки дают на экране очень мелкую картину спектра, которую трудно промерить. В этом случае используют две линзы (рис.): первая (длиннофо-

кусная) формирует первичное изображение – спектр, вторая (короткофокусная) – проецирует на экран увеличенное изображение спектра.

Ход работы

Определение ширины щели

Определение ширины щели с помощью линзы

Схема установки изображена на рис.

Измеряем расстояния a_1 и b_1 для определения увеличения Γ системы: $a_1=4.5$ см, $b_1=126.6$ см. Находим те же a_1 и b_1 с помощью формулы тонкой линзы: $a_1^{\rm reop}\approx 3.9$ см, $b_1^{\rm reop}\approx 128.1$ см.

С помощью короткофокусной линзы Π_1 ($F_1=3.8$ см) получаем на экране Э увеличенное изображение щели. Меняя ширину щели от 50 до 500 мкм (5 - 50 делений от нового нуля), снимаем зависимость размера изображения D_1 от ширины щели D. Также, зная величение линзы и размер изображения, рассчитаем по формуле (8) ширину входной щели D_{Π} .

D, MKM	σ_D , MKM	D_1 , MKM	σ_{D_1} , MKM	D_L , MKM	σ_{D_L} , MKM
50	10	1000	500	36	18
100	10	2500	500	89	18
150	10	4000	500	142	18
200	10	5500	500	195	18
250	10	6500	500	231	19
300	10	8000	500	284	19
350	10	9000	500	320	19
400	10	10000	500	355	19
450	10	11000	500	391	20
500	10	12000	500	427	20

Таблица 1: Зависимость размера изображения от ширины щели

Определение ширины щели по её спектру

Получаем на удалённом экране спектр щели, как на рис. . Измеряем ширину спектра для самой маленькой щели. Проводим серию измерений X(m), меняя ширину щели в тех же пределах, что и в предыдущем пункте. Также измеряем расстояние L от щели до экрана.

По результатам измерений спектра рассчитываем ширину щели D_c («с» – по спектру), используя соотношение

$$\Delta X = \frac{X}{2m} = \frac{\lambda}{D_c} L \tag{9}$$

Длина волны He-Ne лазера $\lambda = 6328 \ \text{Å}.$

\overline{m}	D, MKM	σ_D , MKM	X, mm	σ_X , mm	D_c , MKM	σ_{D_c} , MKM
1	10	10	142	1	11,76	0,08
2	10	10	286	1	11,68	0,04
1	60	10	28	1	60	2
2	60	10	54	1	61, 9	1,1
1	100	10	17	1	98	6
2	100	10	33	1	101	3
1	200	10	8	1	209	26
2	200	10	17	1	197	12
3	200	10	25	1	200	8
1	300	10	6	1	278	46
2	300	10	11	1	304	28
1	400	10	4	1	418	104
2	400	10	9	1	371	41
1	580	10	3	1	557	186
2	580	10	6	1	557	93

Таблица 2: Зависимость размера изображения от ширины щели

Определим подобным образом ширину человеческого волоса.

m	X, mm
1	17
2	32,5

Таблица 3: Измерения спектра волоса

Получаем, что толщина человеческого волоса приблизительно равна: $D_{\mathrm{волосa}} = 100$ мкм.

Строим графики $D_{\scriptscriptstyle
m I}=f(D)$ и $D_c=f(D)$ – рис. .

Рис. 8: Зависимость экспериментально рассчитанной ширины щели от измеренной

Определение периода решёток

Определение периода по спектру на удалённом экране

Ставим кассету с двумерными решётками (сетками) вплотную к выходному окну лазера. Для каждой сетки измеряем расстояние X между m-ми максимумами. Также измеряем расстояние L от кассеты до экрана. Рассчитайте расстояния X между соседними максимумами и определяем период каждой решётки $d_c = f(\mathbf{N}^o)$, используя соотношения

$$\Delta X = \frac{X}{2m} = \frac{\lambda}{d_c} L \tag{10}$$

X, mm	σ_X , MM	m	n	d_c , MKM	σ_{d_c} , MKM
146	0, 5	1	1	11,44	0,04
98	0, 5	1	2	17,05	0,09
48	0, 5	1	3	34,8	0,4
25	0, 5	1	4	66,8	1,3
20	0, 5	1	5	84	2

Таблица 4: Зависимость d_c от X

Определение периода решёток по увеличенному изображению спектра

Схема установки изображена на рис.

Поставили линзу Π_2 с максимальным фокусом ($F_2=11$ см) на расстоянии F_2 от кассеты. В плоскости Φ линза Π_2 даёт фурье-образ сетки — её спектр, а короткофокусная линза Π_3 ($F_3=2.5$ см) создаёт на экране увеличенное изображение этого спектра.

Измерили X и m для всех сеток, где это возможно. Зная увеличение линзы Π_3 ($\Gamma_3 = b_3/a_3$), можно рассчитать расстояние между максимумами Δx в плоскости Φ , а затем период сетки d_π :

$$\Delta x = \frac{\Delta X}{\Gamma_3} = \frac{\lambda}{d_{\pi}} F_2 \tag{11}$$

X, mm	σ_X , MM	m	n	d_l , MKM	σ_{d_l} , MKM
294	0, 5	1	1	10,6	0,2
205	0, 5	1	2	15, 2	0, 3
104	0, 5	1	3	30	0,7
52, 5	0, 5	1	4	59, 5	1,4
38	0, 5	1	5	82	2

Таблица 5: Сбор данных для $d_{\scriptscriptstyle
m I}$

Мультиплицирование

Ставим тубус с щелью к окну лазера (рис. $\ref{puc.}$ у и находим на экране резкое изображение щели с помощью линзы Π_2 ($F_2 \approx 10$ см).

Подбираем такую ширину входной щели D, чтобы на экране можно было наблюдать мультиплицированное изображение для всех сеток

Снимаем зависимость Y (расстояние между удалёнными изображениями щели) и K (число промежутков между изображениями) от \mathbf{N}^o (номер сетки) для фиксированной ширины входной щели.

Y, MM	σ_Y , MM	k	n	ΔY , mm	$\sigma_{\Delta Y}$, mm
54	0, 5	2	1	27,0	0, 3
35	0, 5	2	2	17, 5	0, 3
20	0,5	2	3	10,0	0, 3
21	0,5	4	4	5, 25	0, 13
15	0,5	2	5	7, 5	0, 3

Таблица 6: Собранные данные

Δy , mm	$\sigma_{\Delta y}$, mm	$1/d_c$, mm ⁻¹	$\sigma_{1/d_c}, {\rm MM}^{-1}$
4,38	0,04	87,4	0,3
2,84	0,04	58,7	0, 3
1,62	0,04	28,7	0, 3
0,85	0,02	15,0	0, 3
1,22	0,04	12,0	0, 3

Таблица 7: Результат

Рассчитываем периоды Δy «фиктивных» решёток, которые дали бы такую же периодичность на экране: $\Delta y = \Delta Y/\Gamma_2$, где $\Delta Y = Y/K$.

Строим график $\Delta y = f(1/d_c)$, где d_c – периоды решёток, определённые по спектру.

Рис. 9: Зависимость периода «фиктивных» решеток от $1/d_c$