2023 春季学期

1 (12 分) 填空题

$$(1) 设 A = \begin{pmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 2 & 2 \end{pmatrix}, b = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}. \quad (1) ||A||_1 = \underline{\qquad}. \quad (2) \underset{x}{min} ||Ax - b||_2 = \underline{\qquad}.$$

$$(3) 设 A = LU, L 是单位下三角阵,则 L = \begin{pmatrix} \\ \\ \\ \end{pmatrix}, U = \begin{pmatrix} \\ \\ \\ \end{pmatrix}$$

2 (11 分)

通过 Newton 插值方法,构造如下数据的 Hermite 插值多项式 f(x).

x_i	1	2	3
$f(x_i)$	1	1	0
$f'(x_i)$	0		1

3 (11 分)

求 $f(x) = x^3$ 在 [-1,1] 上的最佳一致逼近多项式 $p(x) = ax^2 + bx + c$.

4 (11 分)

设 $0 < x_0 < 1, x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}, n \in N$,其中 $f(x) = x - \sin x$. (1) 求证: 迭代数列 x_n 一定收敛。(2) 求上述迭代收敛的阶。

5 (11 分)

设某商家需要把某商品从 A_1, A_2 地运输至 B_1, B_2 地,已知 A_1, A_2 地商品的库存量分别为 u_1, u_2, B_1, B_2 地商品的需求量分别为 v_1, v_2 ,其中 $u_1 + u_2 > v_1 + v_2$,并且把商品从 A_i 运输至 B_j 所需费用为 w_{ij} (元/单位数量)。商家希望运输费用最少,请为上述问题建立线性规划模型,并把线性规划问题表示为标准形式 $\min_{Ax=b \parallel x > 0} c^T x$.

6 (11 分)

设实方阵为
$$A = \begin{pmatrix} a & 1 & 0 \\ 1 & a & 1 \\ 0 & 1 & a \end{pmatrix}$$
, 其中 a 为任意正数。

求证: 线性方程组 Ax=b 的 Jacobi 迭代收敛当且仅当 Gauss-Seidel 迭代收敛。

7 (11 分)

求常数 a,b 是的 $\int_0^1 f(x)dx$ 的数值积分公式

$$I_n(f) = \frac{1}{2n} \sum_{k=1}^n \left(f(\frac{k-a}{n}) + f(\frac{k-b}{n}) \right), n \to \infty$$

的截断误差具有尽可能高的阶数。

8 (11分)

求常数 a,b,c 使得常微分方程初值问题 y'(x) = f(x,y) 的如下数值解公式

$$y_{n+1} = y_n + chK, K = f(x_n + ah, y_n + bhK)$$

的局部截断误差具有尽可能高的阶数,其中 $h = x_{n+1} - x_n \rightarrow 0$.

9 (11 分)

已知 n 阶对称实方阵 A 的特征值 $\lambda_1 > \lambda_2 \geq \cdots \geq \lambda_n$. 我们用如下方法 计算 λ_1 对应的特征向量: 选取实数 s,令 B = A - sI,随机产生非零向量 $x_0 \in \mathbb{R}^{n \times 1}$,构造序列 $x_{k+1} = Bx_k/\|Bx_k\|_2, k \in \mathbb{N}$,其中 $\|x\|_2 = \sqrt{x^T x}$.

- (1) 求 s 的取值范围, 使得 $\{x_k\}$ 收敛到 λ_1 对应的特征向量。
- (2) 求 s 使得收敛速度最快。