Prácticas 0 a 7

Álgebra

Exactas – Ingeniería

2013

PRÁCTICA 0

NOTA A LOS ALUMNOS:

Los temas que se incluyen en esta práctica se suponen conocidos por ustedes.

Debido a que el conocimiento de los mismos será necesario a lo largo de todo el curso, es fundamental que a modo de repaso, resuelvan estos ejercicios consultando bibliografía y/o al docente.

Ejercicio 1.- Calcular

a)
$$1 - (\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5})$$

a)
$$1 - (\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5})$$
 b) $\frac{12}{24} - (\frac{1}{9} + \frac{1}{5}) - \frac{1}{4}(1 - 2 + \frac{1}{5})$

c)
$$\frac{(\frac{1}{9} + \frac{2}{6} - \frac{1}{4})}{(5 + \frac{1}{7})}$$

c)
$$\frac{(\frac{1}{9} + \frac{2}{6} - \frac{1}{4})}{(5 + \frac{1}{7})}$$
 d) $\frac{1}{2} - (\frac{1}{3} + \frac{1}{6}) - (-1 - \frac{1}{5}) + 2(\frac{1}{9} + \frac{1}{18}) - (3(\frac{2}{5} - \frac{1}{4}) - \frac{1}{3}(\frac{2}{7} + \frac{3}{14}))$

Ejercicio 2.- Verificar las igualdades

a)
$$\frac{(\frac{3}{4} : \frac{1}{3})}{(\frac{1}{9} : \frac{5}{6})} = 24,3$$

b)
$$\frac{(\frac{1}{3},\frac{3}{4})}{\frac{2}{9}} = 2$$

Ejercicio 3.- Calcular

a)
$$\left(\frac{1}{8} - \left(\frac{1}{4} + \frac{1}{2}\right)^2\right)^{-1}$$

b)
$$(\frac{1}{27}:\frac{1}{3})^{\frac{1}{2}}$$

c)
$$(\frac{1}{27}:\frac{1}{3})^{-2}$$

c)
$$(\frac{1}{27}:\frac{1}{3})^{-2}$$
 d) $(\frac{1}{27}:\frac{1}{3})^{-\frac{1}{2}}$

Ejercicio 4.- Ordenar de menor a mayor

a)
$$\frac{1}{5}$$
; $\frac{1}{6}$; $\frac{1}{7}$; $\frac{1}{9}$; $\frac{1}{15}$

b)
$$-\frac{1}{5}$$
; $-\frac{1}{8}$; $-\frac{1}{1000}$

1

c)
$$\frac{9}{5}$$
; $\frac{3}{4}$; $-\frac{2}{9}$; $\frac{1}{7}$; $-\sqrt{2}$; $3\sqrt{3}$; 3 ; $-\frac{1}{-17}$; π ; $-\pi^2$; $(-\pi)^2$; $(100)^{\frac{1}{2}}$; $(100)^{-\frac{1}{2}}$

Ejercicio 5.- Si tuviera que elegir la parte más grande de una fortuna F, ¿cuál de las dos fracciones elegiría,

$$\frac{n}{n+1}$$
 de F ó $\frac{n^2-1}{n^2}$ de F ?

Ejercicio 6.- Analizar la validez de las siguientes proposiciones; dar un contraejemplo para las que no son válidas

a)
$$\sqrt{a \cdot b} = \sqrt{a} \cdot \sqrt{b}$$
 $a \ge 0$; $b \ge 0$ i) $a^{m+n} = a^m \cdot a^n$ $a \ne 0$

$$a \ge 0$$
 ; $b \ge 0$

i)
$$a^{m+n} = a^m \cdot a^n$$

$$a \neq 0$$

b)
$$(a+b)^2 = a^2 + b^2$$

j)
$$a^{-2} = \frac{-1}{a^2}$$
 $a \neq 0$

$$a \neq 0$$

c)
$$\sqrt{a+b} = \sqrt{a} + \sqrt{b}$$

k)
$$a^{-2} = -a^2$$
 $a \neq 0$

$$a \neq 0$$

d)
$$\sqrt{a^2} = a$$

1)
$$(a^m)^n = a^{m}$$

$$a \neq 0$$

e)
$$(2^2)^n = 2^{2n}$$

m)
$$a^0 =$$

$$a \neq 0$$

f)
$$(2^2)^n = 2^{(2^n)}$$

n)
$$\sqrt{36 \cdot a} = 6 \cdot \sqrt{a}$$

g)
$$\sqrt{a^2} \ge 0$$

k)
$$a^{-2} = -a^2$$
 $a \neq 0$
l) $(a^m)^n = a^{m \cdot n}$ $a \neq 0$
m) $a^0 = 1$ $a \neq 0$
n) $\sqrt{36 \cdot a} = 6 \cdot \sqrt{a}$ $a \geq 0$
o) $\sqrt{(5+5)a} = 5 \cdot \sqrt{a}$ $a \geq 0$

$$h) \quad \frac{1}{a+b} = \frac{1}{a} + \frac{1}{b}$$

$$p) \quad \frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a \cdot c}{b \cdot d}$$

Rtas: V, F, F, F, V, F, V, F, V, F, F, V, V, V, F, F.

Ejercicio 7.- Una solución se dice más concentrada que otra si tiene mayor proporción entre la sustancia activa y el diluyente que la otra. El boticario tiene un botellón de 1 litro y medio donde 1/5 es sustancia activa y un bidón de 2 litros donde 2/3 es sustancia activa. ¿En cuál de los dos envases la solución es más concentrada?

Ejercicio 8.- El precio de un equipo de audio con el 15 % de descuento es de \$ 3417. ¿Cuál era el precio original?

Ejercicio 9.- Resolver las ecuaciones.

a)
$$6x^2 - 6x - 12 = 0$$

b)
$$9x^2 - 12x + 4 = 0$$

c)
$$2x^2 - 7x + 3 = 0$$

d)
$$15 x^2 = 8x - 1$$

e)
$$3x^2 - 5x = 2$$

a)
$$6x^2 - 6x - 12 = 0$$
 b) $9x^2 - 12x + 4 = 0$ c) $2x^2 - 7x + 3 = 0$ d) $15x^2 = 8x - 1$ e) $3x^2 - 5x = 2$ f) $x^2 + 2\pi x - \sqrt{2} = 0$

Ejercicio 10.- Hallar dos números cuyo producto sea 4 y que sumen 6.

Ejercicio 11.- Representar en el plano

$$A_1 = (2,2)$$

$$A_2 = (3,-1)$$

$$A_3 = (-1,4)$$

$$A_4 = (2,0)$$

$$A_1 = (2,2)$$
 $A_2 = (3,-1)$ $A_3 = (-1,4)$ $A_4 = (2,0)$ $A_5 = (1/4,1/2)$

$$A_6 = (-1, -1/4)$$

$$A_7 = (\sqrt{2}, 1)$$

$$A_8 = (-\sqrt{2}, 1)$$

$$A_6 = (-1, -1/4)$$
 $A_7 = (\sqrt{2}, 1)$ $A_8 = (-\sqrt{2}, 1)$ $A_9 = (-\sqrt{2}, -1)$ $A_{10} = (\sqrt{2}, -1)$

$$A_{10} = (\sqrt{2}, -1)$$

$$A_{11} = (0,-1)$$

$$A_{11} = (0,-1)$$
 $A_{12} = (3,1+\sqrt{2})$

Ejercicio 12.- Representar en el plano los siguientes conjuntos

$$A_{1} = \{ (x,y) / x = 1 \} \qquad A_{2} = \{ (x,y) / x \ge 2 \} \qquad A_{3} = \{ (x,y) / y < 2 \}$$

$$A_{4} = \{ (x,y) / -3 < y < 2 \} \qquad A_{5} = \{ (x,y) / x = 1, y < 2 \} \qquad A_{6} = \{ (x,y) / x = y \}$$

$$A_{7} = \{ (x,y) / x = 2y \} \qquad A_{8} = \{ (x,y) / x = 2 y + 1 \} \qquad A_{9} = \{ (x,y) / x . y < 0 \}$$

$$A_{10} = \{ (x,y) / x . y = 0 \} \qquad A_{11} = A_{4} \cap A_{6} \qquad A_{12} = A_{2} \cup A_{7}$$

$$A_{13} = A_{3} \cap A_{10} \qquad A_{14} = A_{3} \cup A_{4} \qquad A_{15} = (A_{8} \cup A_{3}) \cap A_{9}$$

Ejercicio 13.- Definir algebraicamente los siguientes conjuntos del plano

Ejercicio 14.- Sean los siguientes subconjuntos del plano

$$A = \{(x,y) / 1/2 \le x \le 2; -1 \le y \le 1\}$$

$$C = \{(x,y) / x = -y\}$$

$$B = \{(x,y) / x^2 + y^2 \le 1\}$$

$$D = \{(x,y) / x \ge 1/3; y \le -1/2\}$$

$$E = \{(x,y) / 0 < x < \frac{\sqrt{2}}{2}; 0 < y < \frac{\sqrt{2}}{2}\}$$

Hallar gráficamente $A \cup B$; $A \cap B$; $B \cap C$; $A \cup D$; $A \cap D$; $B \cap D$; $E \cup B$; $E \cap B$; $A \cap E$. Verificar que $E \subset B$.

Ejercicio 15. - Sea S la circunferencia de radio 1 y centro en el origen. Sea α un ángulo, $0 \le \alpha < 360^{\circ}$, con vértice en el origen, uno de cuyos lados coincide con el semieje positivo de las x. Sea P el punto donde el otro lado de α interseca a S.

Si
$$P = (x,y)$$
, se define

$$\cos \alpha = x$$
; $\sin \alpha = y$.

- a) ¿Cuánto valen sen 90°; cos 180°; cos 270°; sen 180°?
- b) Decidir si son positivos o negativos sen 37°; cos 224°; sen 185°.
- c) Para todo α se tiene $\sin^2 \alpha + \cos^2 \alpha = 1$. ¿Por qué?

 $-1 \le \operatorname{sen} \alpha \le 1$ y que $-1 \le \operatorname{cos} \alpha \le 1$. Deducir que

d) La longitud de la circunferencia de radio 1 es 2π . Hallar la longitud del arco que corresponde a los siguientes ángulos: $\alpha = 30^{\circ}$ $\alpha = 45^{\circ}$ $\alpha = 60^{\circ}$ $\alpha = 72^{\circ}$ $\alpha = 300^{\circ}$ $\alpha = 210^{\circ}$ $\alpha = 270^{\circ}$ $\alpha = 750^{\circ}$ $\alpha = 432^{\circ}$ $\alpha = 90^{\circ}$

$$\alpha = 30^{\circ}$$

$$\alpha = 45^{\circ}$$

$$\alpha = 60$$

$$\alpha = 72^{\circ}$$

$$\alpha = 300^{\circ}$$

$$\alpha = 210^{\circ}$$

$$\alpha = 270^{\circ}$$

$$\alpha = 750$$

$$\alpha = 432^{\circ}$$

$$\alpha = 90^{\circ}$$

Graficar en cada caso dichos ángulos y arcos en la circunferencia de radio 1.

e) Sabiendo que

α	0° : 0	$30^{\circ} : \pi/6$	45° : π/4	60° : π/3	90° : π/2
$sen \alpha$	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1
$\cos \alpha$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0

y que

$$sen(\alpha \pm \beta) = sen \alpha \cdot cos \beta \pm sen \beta \cdot cos \alpha$$
$$cos(\alpha \pm \beta) = cos \alpha \cdot cos \beta \mp sen \alpha \cdot sen \beta$$

Calcular

sen
$$7\pi/12$$
 $\cos 5\pi/12$

 sen $\pi/12$
 $\cos 3\pi/4$

 sen $5\pi/6$
 $\cos 7\pi/6$

f) Hallar α sabiendo que

$$i) \begin{cases} \sin \alpha = -1/2 \\ \cos \alpha = \sqrt{3}/2 \end{cases}$$

$$iii) \begin{cases} \sin \alpha = \sqrt{3}/2 \\ \cos \alpha = -1/2 \end{cases}$$

PRÁCTICA 1

VECTORES EN \mathbb{R}^2 **y EN** \mathbb{R}^3

DEFINICIONES Y PROPIEDADES

Una flecha, que sirve para representar cantidades físicas (fuerzas, velocidades), es un *vector*.

Para dar un vector necesitamos un *origen* (*A*) y un *extremo* (*B*) que lo determinan totalmente, proporcionando su dirección, longitud y sentido.

Vectores equivalentes son los que tienen igual dirección, longitud y sentido.

Los vectores de la izquierda son todos equivalentes a **v**.

Los vectores se pueden sumar.

La suma ($\mathbf{v} + \mathbf{w}$), de \mathbf{v} y \mathbf{w} es equivalente a una de las diagonales del paralelogramo de lados \mathbf{v} y \mathbf{w} .

También se puede multiplicar un vector por un número (escalar).

El resultado es un vector de igual dirección que el dado, el número afecta la longitud y el sentido del vector.

En el plano \mathbb{R}^2 los puntos están dados por pares de números reales (sus coordenadas); para dar un vector bastará dar dos pares de números reales que caractericen su origen y su extremo.

$$\mathbf{v} = \overrightarrow{AB}$$
 está dado por $A = (1,2)$ y $B = (5,3)$

$$\mathbf{w} = \overrightarrow{OC}$$
 está dado por $O = (0,0)$ y $C = (2,1)$

Algo análogo se puede decir en el espacio de tres dimensiones \mathbb{R}^3 ; ahora, cada punto, en particular el origen y el extremo de un vector, estará dado por una terna de números reales.

En adelante trabajaremos con vectores cuyo origen O tiene todas sus coordenadas iguales a cero $(O = (0,0) \text{ en } \mathbb{R}^2, O = (0,0,0) \text{ en } \mathbb{R}^3)$ identificando entonces el punto A con la flecha

 \overrightarrow{OA} .

Dados \overline{A} y B en \mathbb{R}^2 , $A = (a_1, a_2)$ y $B = (b_1, b_2)$, definimos

la suma
$$A + B = (a_1 + b_1, a_2 + b_2)$$
 y

el *producto* por un escalar $c \in \mathbb{R}$ $c A = (ca_1, ca_2)$.

Análogamente, en \mathbb{R}^3 , si $A = (a_1, a_2, a_3)$ y $B = (b_1, b_2, b_3)$

la suma

$$A + B = (a_1+b_1, a_2+b_2, a_3+b_3)$$
 y

el *producto* por un escalar $c \in \mathbb{R}$ $c A = (ca_1, ca_2, ca_3)$.

Propiedades:

1)
$$A + (B + C) = (A + B) + C$$

2)
$$A + B = B + A$$

3) Si
$$c \in \mathbb{R}$$
, $c(A+B) = cA + cB$

4) Si
$$c_1 \in \mathbb{R}$$
 y $c_2 \in \mathbb{R}$, $(c_1 + c_2) A = c_1 A + c_2 A$ y $(c_1 c_2) A = c_1 (c_2 A)$

5)
$$O + A = A$$

6)
$$1 A = A$$

7)
$$A + (-1) A = O$$

Notación
$$-A = (-1) A$$

8)
$$0A = 0$$

En este contexto,

- a) \overrightarrow{AB} es equivalente a \overrightarrow{CD} si y sólo si D-C=B-A; en particular, \overrightarrow{AB} es equivalente a \overrightarrow{OP} si y sólo si P=B-A.
- b) \overrightarrow{AB} y \overrightarrow{CD} son paralelos o tienen igual dirección si existe k en \mathbb{R} , $k \neq 0$ tal que

$$B - A = k (D - C).$$

Si k > 0, \overrightarrow{AB} y \overrightarrow{CD} tienen igual sentido; si k < 0, \overrightarrow{AB} y \overrightarrow{CD} tienen sentidos opuestos.

LONGITUD DE UN VECTOR

En \mathbb{R}^2 , si $\mathbf{v} = (v_1, v_2)$, la norma o longitud de \mathbf{v} , que notaremos $\|\mathbf{v}\|$, es $\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2}$

Análogamente, en \mathbb{R}^3 , si $\mathbf{v} = (v_1, v_2, v_3)$ la *norma* o *longitud* de \mathbf{v} es $\|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2 + v_3^2}$

Propiedades:

1) Si A = O, entonces ||A|| = 0; si $A \neq O$, entonces ||A|| > 0.

2)
$$||A|| = ||-A||$$

3) Si
$$c \in \mathbb{R} \| cA \| = |c| \|A\|$$
.

4) Designaldad triangular: $||A + B|| \le ||A|| + ||B||$.

Si A y B son dos puntos de \mathbb{R}^2 , la *distancia* entre A y B es la longitud del vector B - A

(equivalente a \overrightarrow{AB}) y se nota

$$d(A,B) = ||B - A||$$

Análogamente, en \mathbb{R}^3 , la *distancia* entre dos puntos A y B es

$$d(A,B) = ||B - A||$$

Un vector A se dice *unitario* si ||A|| = 1.

ÁNGULO ENTRE DOS VECTORES

Llamaremos *ángulo* entre A y B al ángulo $\theta(A,B)$ que determinan los dos vectores y verifica $0 \le \theta(A,B) \le \pi$.

PRODUCTO INTERNO O ESCALAR

Dados dos vectores A y B llamaremos producto interno (o escalar) de A y B al n'umero real $A \cdot B = ||A|| ||B|| \cos \theta$ $(\theta = \theta(A,B)).$

Propiedad:

$$A \cdot B = \frac{1}{2} (\| B \|^2 + \| A \|^2 - \| B - A \|^2)$$

En particular si A y B son vectores en el plano, $A = (a_1, a_2)$ y $B = (b_1, b_2)$

$$A \cdot B = a_1b_1 + a_2b_2$$

En \mathbb{R}^3 , si $A = (a_1, a_2, a_3)$ y $B = (b_1, b_2, b_3)$

$$A \cdot B = a_1b_1 + a_2b_2 + a_3b_3$$

Observaciones: 1) El producto escalar de dos vectores es un número real.

$$2) \parallel A \parallel = \sqrt{A \cdot A}$$

Propiedades:

PE1.-
$$A \cdot B = B \cdot A$$

PE2.-
$$A \cdot (B + C) = A \cdot B + A \cdot C = (B + C) \cdot A$$

PE3.- Si
$$k \in \mathbb{R}$$
, $(kA) \cdot B = k (A \cdot B) = A \cdot (kB)$

PE4.- Si
$$A = O$$
, $A \cdot A = 0$. Si $A \neq O$, $A \cdot A > 0$

PE5.- Desigualdad de Cauchy-Schwarz:
$$|A \cdot B| \le ||A|| ||B||$$

De PE5 se deduce que si A y B son ambos distintos de cero, vale

$$-1 \le \frac{A \cdot B}{\parallel A \parallel \parallel B \parallel} \le 1$$

Propiedad: el ángulo entre dos vectores A y B $(\theta = \theta(A,B))$ es el único ángulo θ entre 0 y

$$π$$
 que verifica cos $θ = \frac{A \cdot B}{\|A\| \|B\|}$

Diremos que dos vectores A y B son ortogonales o perpendiculares si $A \cdot B = 0$.

PRODUCTO VECTORIAL

Si $A = (a_1, a_2, a_3)$ y $B = (b_1, b_2, b_3)$ son vectores de \mathbb{R}^3 , el producto vectorial de A y B es:

$$A \times B = (a_2b_3 - a_3b_2, a_3b_1 - a_1b_3, a_1b_2 - a_2b_1)$$

Observación: El producto vectorial de dos vectores de \mathbb{R}^3 es un vector de \mathbb{R}^3 .

Propiedades:

PV1.-
$$A \times B = -B \times A$$

PV2.-
$$A \times (B + C) = A \times B + A \times C$$

$$(B+C) \times A = B \times A + C \times A$$

PV3.- Si
$$k \in \mathbb{R}$$
, $(kA) \times B = k(A \times B) = A \times (kB)$

$$PV4.-A \times A = O$$

PV5.- $A \times B$ es perpendicular a A y a B

PV6.-
$$||A \times B||^2 = ||A||^2 ||B||^2 - (A \cdot B)^2$$

PV7.- $||A \times B|| = ||A|| ||B|| || \operatorname{sen} \theta |$ donde θ es el ángulo formado por A y B.

Observación:

De PV7 se deduce que $||A \times B||$ es el área del paralelogramo de vértices O, A, B, A + B.

RECTAS

Dados en el plano \mathbb{R}^2 un vector A y un punto P la ecuación paramétrica de la recta \mathbb{L} que pasa por P en la dirección de A es:

$$X = tA + P \quad (t \in \mathbb{R}).$$

Si $A = (a_1, a_2)$ y $P = (p_1, p_2)$,

se escribe: $(x, y) = t (a_1, a_2) + (p_1, p_2)$

$$\begin{cases}
 x = t a_1 + p_1 \\
 y = t a_2 + p_2
\end{cases}$$

 \overline{A}

Si $c = a_2 p_1 - a_1 p_2$, la recta L es el conjunto de soluciones de la ecuación

$$a_2x - a_1y = c$$

Para describir una recta en \mathbb{R}^2 podemos utilizar la ecuación parámetrica X = tA + P

(donde X = (x, y)) o utilizar la ecuación implícita ax + by = c.

Dados en \mathbb{R}^3 un vector A y un punto P la ecuación paramétrica de la recta L que pasa por P en la dirección de A es:

$$X = tA + P \quad (t \in \mathbb{R}).$$

Si
$$A = (a_1, a_2, a_3)$$
 y $P = (p_1, p_2, p_3)$ tenemos

$$(x, y, z) = t (a_1, a_2, a_3) + (p_1, p_2, p_3)$$

$$\begin{cases} x = t a_1 + p_1 \\ y = t a_2 + p_2 \\ z = t a_1 + p_2 \end{cases}$$

$$\begin{cases} y = t a_2 + p \\ z = t a_3 + p \end{cases}$$

Si $c = a_2p_1 - a_1p_2$ y $d = a_3p_2 - a_2p_3$, la recta L es el conjunto de soluciones del sistema

$$\begin{cases} a_2 x - a_1 y = c \\ a_3 y - a_2 z = d \end{cases}$$

Para describir una recta en \mathbb{R}^3 podemos utilizar la ecuación paramétrica $X = t\,A + P$ (donde

X = (x, y, z)) o un sistema de dos ecuaciones lineales con tres incógnitas.

ÁNGULO ENTRE DOS RECTAS

Para definir el ángulo entre dos rectas usamos sus vectores dirección, eligiendo entre los ángulos que éstos forman, el único θ tal que $0 \le \theta \le \pi/2$.

Dos rectas en \mathbb{R}^2 ó en \mathbb{R}^3 son *perpendiculares* si sus direcciones lo son.

Dos rectas en \mathbb{R}^2 ó en \mathbb{R}^3 son *paralelas* si sus direcciones lo son.

PLANOS EN \mathbb{R}^3

Dados un vector N y un punto Q de \mathbb{R}^3 , la ecuación del plano Π que pasa por Q y es

perpendicular a
$$N$$
 es Π : $(X-Q) \cdot N = 0$

El plano es el conjunto de todos los puntos X tales que (X - Q) es perpendicular a N. Diremos que N es un *vector normal* al plano.

Si $X = (x_1, x_2, x_3)$ y N = (a,b,c), la ecuación resulta:

$$\Pi: \quad a x_1 + b x_2 + c x_3 = d \qquad \qquad \text{donde } d = Q \cdot N$$

Dos planos son paralelos si sus vectores normales lo son.

Una recta es *paralela a un plano* si el vector dirección de la recta y el vector normal al plano son perpendiculares.

Dados un punto P y un plano Π cuya normal es N, se define distancia de P a Π como la distancia de P a P, donde P es el punto de intersección del plano Π con la recta de dirección N que pasa por P.

Si
$$Q$$
 es un punto en el plano, esta distancia es: $d(P,\Pi) = \frac{\left| (Q-P) \cdot N \right|}{\parallel N \parallel}$.

Si
$$P = (x_0, y_0, z_0)$$
 y Π : $ax + by + cz = k$ entonces: $d(P, \Pi) = \frac{|ax_0 + by_0 + cz_0 - k|}{\sqrt{a^2 + b^2 + c^2}}$.

En el desarrollo de la práctica, para simplificar la notación, suprimiremos las flechas arriba de los vectores.

VECTORES EN \mathbb{R}^n

Llamaremos *punto o vector* en el espacio \mathbb{R}^n a la *n*-upla

 $X = (x_1, x_2, x_3, ..., x_n)$ donde $x_1, x_2, x_3, ..., x_n$ son números reales.

Estos números son las *coordenadas* de *X*.

Si
$$A = (a_1, a_2, a_3, ..., a_n)$$
 y $B = (b_1, b_2, b_3, ..., b_n)$

decimos que A = B si y sólo si $a_1 = b_1$, $a_2 = b_2$, $a_3 = b_3$, ..., $a_n = b_n$.

Definimos la suma

$$A + B = (a_1+b_1, a_2+b_2,..., a_n+b_n)$$
 y

el *producto* por un escalar $c \in \mathbb{R}$ $c A = (ca_1, ca_2, ca_3, ..., ca_n)$.

Propiedades:

1)
$$A + (B + C) = (A + B) + C$$

2)
$$A + B = B + A$$

3) Si
$$c \in \mathbb{R}$$
, $c(A+B) = cA + cB$

4) Si
$$c_1 \in \mathbb{R}$$
 y $c_2 \in \mathbb{R}$, $(c_1 + c_2)A = c_1A + c_2A$ y $(c_1 c_2)A = c_1(c_2A)$

5)
$$O + A = A$$

6)
$$1 A = A$$

7)
$$A + (-1) A = 0$$

Notación
$$-A = (-1) A$$

8)
$$0A = 0$$

Llamaremos *norma* de $A = (a_1, a_2, a_3, ..., a_n)$ al número

$$||A|| = \sqrt{a_1^2 + a_2^2 + ... + a_n^2}$$

Propiedades:

1) Si
$$A = O$$
, entonces $||A|| = 0$; si $A \neq O$, entonces $||A|| > 0$.

2)
$$||A|| = ||-A||$$

3) Si
$$c \in \mathbb{R} \| cA \| = |c| \|A\|$$
.

4) Designaldad triangular:
$$||A + B|| \le ||A|| + ||B||$$
.

Si $A = (a_1, a_2, a_3, ..., a_n)$ y $B = (b_1, b_2, b_3, ..., b_n)$, llamaremos distancia entre A y B a la longitud del vector AB

$$d(A,B) = ||B-A|| = \sqrt{(b_1 - a_1)^2 + (b_2 - a_2)^2 + \dots + (b_n - a_n)^2}$$

Si $A = (a_1, a_2, a_3, ..., a_n)$ y $B = (b_1, b_2, b_3, ..., b_n)$ llamaremos producto escalar de A y B al número real

$$A \cdot B = a_1b_1 + a_2b_2 + ... + a_nb_n$$

Propiedades:

PE1.-
$$A \cdot B = B \cdot A$$

PE2.-
$$A \cdot (B+C) = A \cdot B + A \cdot C = (B+C) \cdot A$$

PE3.- Si
$$k \in \mathbb{R}$$
, $(kA) \cdot B = k (A \cdot B) = A \cdot (kB)$

PE4.- Si
$$A = O$$
, $A \cdot A = 0$. Si $A \neq O$, $A \cdot A > 0$

PE5.- Designaldad de Cauchy-Schwarz: $|A \cdot B| \le |A| |B|$

Dados en \mathbb{R}^n un vector A y un punto P la *ecuación paramétrica* de la recta L que pasa por P en la dirección de A es:

$$X = tA + P \quad (t \in \mathbb{R}).$$

EJERCICIOS

Ejercicio 1.- Efectuar las operaciones indicadas.

a)
$$A + B$$
; $A + 2B$; $A - B$; $A + (1/2)B$; $A - 3B$, si $A = (3,2)$ y $B = (2,4)$

b)
$$A - 3B$$
; $A + C - B$; $2A - 2(C + B)$, si $A = (1,2,0)$; $B = (2,0,0)$ y $C = (1,1,1)$

Ejercicio 2.- Hallar, si es posible, x; y; z tales que

a)
$$(x, x+1) = (3, y)$$

b)
$$(2 x + y, x - 2 y) = (1,3)$$

c)
$$(2,4) = (2 x + y, x - 2 y)$$

d)
$$(1,2,3) = x(2,4,3) + y(1,2,12) + z(0,0,3)$$

Ejercicio 3.- Encontrar las coordenadas del punto medio del segmento AB para

a)
$$A = (-2,-1);$$
 $B = (4,-1)$

b)
$$A = (1,0,5);$$
 $B = (2,4,7)$

Ejercicio 4.- Calcular la longitud de los vectores

$$(3,0);$$
 $(2,1);$ $(-3,-4);$ $(\sqrt{3},\sqrt{3},\sqrt{3});$ $(-2,3,0);$ $(2,3,6)$

Ejercicio 5.- Graficar en el plano el conjunto $S = \{(x, y) \in \mathbb{R}^2 / ||(x, y)|| = 1\}$

Ejercicio 6.- Hallar la distancia entre A y B si

a)
$$A = (1,-3)$$
; $B = (4,1)$ b) $A = (4,-2,6)$; $B = (3,-4,4)$ c) $A = (1,2,-3)$; $B = (3,-2,0)$

Ejercicio 7.- Determinar todos los valores de *k* tales que

a)
$$||A|| = 2$$
 si $A = (1, k, 0)$

b)
$$d(A, B) = 2$$
 si $A = (1,1,1)$; $B = (k,-k,2)$

c)
$$||A|| = 1$$
 si $A = k(2,2,1)$

Ejercicio 8.- Si $\mathbf{v} = (2,-1,1)$; $\mathbf{w} = (1,0,2)$; $\mathbf{u} = (-2,-2,1)$, calcular

a)
$$\| \mathbf{v} + \mathbf{w} \|$$
 b) $\| \mathbf{v} \| + \| \mathbf{w} \|$ c) $\| 3\mathbf{v} + 3\mathbf{w} \|$

d)
$$\|\mathbf{v} - \mathbf{u}\|$$
 e) $\|\frac{1}{\|\mathbf{w}\|} \mathbf{w}\|$ f) $\|\mathbf{v} + \mathbf{w} - \mathbf{u}\|$

Ejercicio 9.- En cada caso encontrar los dos vectores unitarios paralelos a A

a)
$$A = (3,-1)$$
 b) $A = (0,3,0)$ c) $A = (2,-3,6)$ d) $A = (a,b,c)$

Ejercicio 10.- a) Sean A = (1,2); B = (-1,-2); C = (-2,1); D = (1,0); E = (0,0); F = (x, y)

Calcular
$$A \cdot B$$
; $A \cdot C$; $A \cdot E$; $B \cdot C$;

$$B \cdot (C + D);$$
 $(D - C) \cdot A;$ $F \cdot A;$ $F \cdot E$

b) Sean
$$A = (1,1,1); B = (1,-1,0); C = (2,-1,-1); D = (2,3,-1); E = (-1,0,2)$$

Calcular
$$A \cdot B$$
; $A \cdot C$; $A \cdot (B + C)$; $A \cdot (2B - 3C)$;

$$A \cdot D;$$
 $A \cdot E;$ $D \cdot (A + E)$

Ejercicio 11.- a) Encontrar y representar en el plano todos los vectores (x, y) ortogonales a

i)
$$A = (1,2)$$
 ii) $E_1 = (1,0)$ iii) $E_2 = (0,1)$

b) encontrar todos los vectores (x, y, z) de \mathbb{R}^3 ortogonales a

i)
$$E_1 = (1,0,0)$$
 ii) $E_2 = (0,1,0)$ iii) $E_3 = (0,0,1)$

iv)
$$E_1$$
 y E_2

v)
$$E_1$$
 y E_3

vi)
$$E_2$$
 y E_3

Ejercicio 12.- Dados A = (1,-2) y B = (3,4), hallar todos los vectores (x, y) de \mathbb{R}^2 tales que $A \cdot (x, y) = A \cdot B$

Ejercicio 13.- a) Encontrar un vector ortogonal a (1,1) de longitud 8, ¿es único?

- b) encontrar todos los vectores ortogonales a (0,0,1) de longitud 1; dibujarlos.
- c) Encontrar un vector que sea ortogonal a A y a B si A = (1,2,-1) y B = (2,0,1)

Ejercicio 14.- Hallar el ángulo que forman A y B en los siguientes casos

a)
$$A = (1,1);$$
 $B = (-1,0)$

b)
$$A = (1,2);$$
 $B = (-2,1)$

c)
$$A = (1, \sqrt{3}); B = (-2, 2\sqrt{3})$$

d)
$$A = (2,1,1); B = (1,-1,2)$$

Ejercicio 15.- En cada caso, encontrar B tal que

a) si
$$A = (1,1)$$
, $\alpha(A, B) = \pi/4$ y $||B|| = 2$

b) si
$$A = (-1,0)$$
, $\alpha(A, B) = \pi/3$ y $||B|| = 1$

Ejercicio 16.- Sea A un vector de longitud 3. Si B es un vector tal que $\alpha(A, B) = \pi/4$ y (A - B) es ortogonal a A, calcular $\|B\|$.

Ejercicio 17.- Encontrar una ecuación paramétrica de

- a) la recta que pasa por (1,3,-1) y tiene dirección (1,-2,2)
- b) la recta que pasa por (1,1) y (2,3)
- c) la recta que pasa por el origen y es paralela a la recta que contiene a A = (2,-2,1) y B = (-3,2,1)
- d) dos rectas distintas L_1 y L_2 que pasen por (-2,1,2) y sean perpendiculares a la recta $L: X = \mu(2,2,-2) + (1,0,1)$

Ejercicio 18.- Encontrar la intersección de cada par de rectas

a)
$$X = \mu (2,2,2) + (1,0,0)$$

$$X = \mu (-1,-1,-1) + (0,-1,-1)$$

b)
$$X = \mu (1,3,1) + (0,-1,2)$$

$$X = \mu (2,-1,0) + (1,1,2)$$

c)
$$X = \lambda (2,-2,1) + (3,0,2)$$

$$X = \lambda (2,1,-1) + (-1,1,2)$$

Ejercicio 19.- Si A = (1,2,2); B = (-1,1,2); C = (-2,2,-1), calcular

$$A \times B$$
; $B \times A$; $A \times C$; $A \times (B \times C)$; $(A \times B) \times C$; $(A \times B) \cdot A$; $(A \times B) \cdot C$

Ejercicio 20.- Hallar v, de norma 1, que sea ortogonal a A = (1,1,1) y a B = (1,1,-1)

Ejercicio 21.- Calcular el área de

- a) el paralelogramo de vértices O, A, B y (A + B) si A = (2,1,0) y B = (1,5,0)
- b) el triángulo de vértices A = (1,3,2); B = (1,5,0) y C = (1,1,-2)

Ejercicio 22.- Dar una ecuación del plano Π .

- a) Π es perpendicular a N = (1,2,-1) y pasa por P = (5,3,3)
- b) Π contiene a los puntos A = (2,-1,3); B = (2,1,1) y C = (3,3,2)
- c) Π contiene a los ejes x e y
- d) Π es paralelo al plano Π' : 3x + y 4z = 2 y pasa por el punto P = (1,1,-2)

Ejercicio 23.- Sean $\Pi: 2x - y + 3z = 5$; $\Pi': x + 3y - z = 2$

L:
$$X = \alpha (1,-1,-1) + (1,0,-2);$$
 L': $X = \alpha (3,5,1) + (0,1,2).$

Calcular: $L \cap \Pi$; $L' \cap \Pi$; $\Pi \cap \Pi'$.

Ejercicio 24.- Sean L: $X = \beta(k^2 + 1, k, k+7)$ y Π : x + 2y - 3z = 2.

Determinar todos los valores de k para los cuales $L \cap \Pi = \emptyset$

Ejercicio 25.- Si L : $X = \alpha (1,-1,3) + (0,2,1)$ y A = (1,2,-3),

- a) hallar una ecuación del plano Π que contiene a L y al punto A
- b) hallar una ecuación de la recta L' perpendicular a Π que pasa por A
- c) calcular $L \cap \Pi$ y $L' \cap \Pi$.

Ejercicio 26.- a) Dar una ecuación del plano Π que contiene a las rectas

L:
$$X = \lambda (1,2,-1) + (3,0,0)$$
 y L': $X = \lambda (-2,-4,2) + (0,1,1)$

b) Si L: $X = \lambda (1,2,0) + (1,1,1)$, dar una ecuación del plano Π que contiene a L y tal que la recta L': $X = \lambda (-1,0,1) + (1,2,3)$ es paralela a Π .

Ejercicio 27.- Sean Π : $x_1 + x_2 + x_3 = 5$ y L: $X = \lambda$ (1,1,-2). Hallar una recta L' contenida en Π que sea perpendicular a L. ¿Es única?

Ejercicio 28.- Sea Π : $3x_1 - 2x_2 + 4x_3 = 1$

- a) Dar las ecuaciones de dos rectas L_1 y L_2 , contenidas en Π y perpendiculares entre sí
- b) Dar la ecuación de una recta L' contenida en Π que sea perpendicular a la recta

L:
$$X = t(-2,3,1) + (2,1,2)$$

Ejercicio 29.- Hallar la distancia entre P = (2,2,1) y el plano que contiene a las rectas

L:
$$X = \lambda (1,2,-1) + (1,3,2)$$
 y L': $X = \alpha (2,-1,3) + (3,2,5)$

Ejercicio 30.- Sea P = (2,1,-1)

- a) si Π : $x_1 + x_2 x_3 = 3$, ¿cuál es el punto de Π a menor distancia de P?
- b) si L: $X = \lambda (1,3,1) + (2,2,0)$, ¿cuál es el punto de L a menor distancia de P?

Ejercicio 31.- Sean L: $X = \beta(2, 3, -1)$ y Π : $x_1 + 2x_2 = 0$. Determinar

- a) todos los puntos de \mathbb{R}^3 que están a distancia $\sqrt{5}$ de Π
- b) todos los puntos de L que están a distancia $\sqrt{5}$ de Π .

Ejercicio 32.- Si Π_1 : $3x_1 + 2x_2 - 6x_3 = 1$ y Π_2 : $-3x_2 + 4x_3 = 3$, hallar todos los puntos P de \mathbb{R}^3 que verifican

a) d
$$(P, \Pi_1) = d(P, \Pi_2)$$

b) d
$$(P, \Pi_1) = d(P, \Pi_2) = 2$$

EJERCICIOS SURTIDOS

1. Demostrar las siguientes igualdades e interpretarlas geométricamente

a)
$$||A - B|| = ||A + B|| \Leftrightarrow A \cdot B = 0$$

b)
$$\|A + B\|^2 = \|A\|^2 + \|B\|^2 \Leftrightarrow A \cdot B = 0$$
 (Teorema de Pitágoras)

2. Sean la recta \mathbb{L} : $\lambda(2,1,-1)+(1,-1,2)$ y los puntos A=(1,0,2) y B=(3,-1,6).

Hallar todos los puntos $P \in \mathbb{L}$ tales que el triángulo ABP es rectángulo en P.

3. Sean P=(-1,2,0), Q=(-2,1,1) y L: $(1,1,-1)+\lambda(0,-1,3)$.

Dar una ecuación del plano Π que contiene a la recta paralela a $\mathbb L$ que pasa por P, y a la recta paralela a $\mathbb L$ que pasa por Q.

- **4.** Sean el plano $\Pi: 2x-2y+z=1$, A=(1,1,1) y B=(3,2,-1). Hallar todos los puntos C y $D \in \Pi$ tales que ABCD es un cuadrado.
- **5.** Sean \mathbb{L}_1 : $\lambda(0,1,-1)+(0,-1,0)$ y \mathbb{L}_2 : $\lambda(1,1,1)+(2,3,0)$.

Encontrar, si es posible, un plano Π tal que $d(P,\Pi) = 2\sqrt{6}$ para todo $P \in \mathbb{L}_1$ y para todo $P \in \mathbb{L}_2$.

6. Sean Π_1 : 3x - 2y + z = 4, y Π_2 el plano que contiene a los puntos A=(0,1,1), B=(3,-1,-1) y C=(3,0,1).

Hallar todos los puntos del plano Π_1 que están a distancia 2 del plano Π_2 .

- 7. Sean $\Pi_1: 7x 5y 2z = 0$, $\Pi_2: 5x 4y z = 0$, y $\mathbb L$ la recta que pasa por los puntos P = (-2, 3, -3) y Q = (-1, 2, -1). Hallar todos los planos Π que verifican simultáneamente:
- i) $\Pi \cap \Pi_1 \cap \Pi_2 = \emptyset$ ii) $d(R, \Pi) = \sqrt{14}$ para todo $R \in \mathbb{L}$.
- **8.** Sean $\mathbb{L}_1: \lambda(k^2+k,k,k-1)$; $\mathbb{L}_2: \lambda(4,1,-1)+(2k,0,2k)$ y $\Pi: x-2y+2z=3$. Hallar todos los $k \in \mathbb{R}$ para los cuales $d(P,\Pi)=d(Q,\Pi)$ para todo $P \in \mathbb{L}_1$ y todo $Q \in \mathbb{L}_2$
- 9. Sean $\Pi: x_1 x_2 + 3x_3 = -1$, $\mathbb{L}: \lambda(0, -2, 1) + (1, 2, 3)$ y P=(-1, 1, 2). Encontrar una recta \mathbb{L}' que satisfaga simultáneamente: $i)P \in \mathbb{L}'$ $ii)\mathbb{L} \cap \mathbb{L}' \neq \emptyset$ $iii)\mathbb{L}'$ es paralela a Π .
- **10.** Dadas $\mathbb{L}:\lambda(1,2,1)+(0,1,1)$ y $\mathbb{L}':\lambda(2,-1,-2)+(1,1,0)$, hallar todos los planos Π tales que $\Pi \cap \mathbb{L}'=\emptyset$ y $d(P,\Pi)=\sqrt{2}$ para todo $P \in \mathbb{L}$.
- **11.** Sean \mathbb{L}_1 : $\lambda(1,-2,2)+(0,1,-1)$; \mathbb{L}_2 : $\lambda(0,1,-1)+(-2,1,-1)$ y \mathbb{L}_3 : $\lambda(1,3,-1)+(0,-5,0)$. Encontrar, si es posible, una recta \mathbb{L} tal que $\mathbb{L}_1 \cap \mathbb{L}_2 \cap \mathbb{L} \neq \emptyset$; $\mathbb{L}_3 \cap \mathbb{L} \neq \emptyset$ y $\mathbb{L} \perp \mathbb{L}_3$.
- **12.** Sean en \mathbb{R}^3 el plano $\Pi: 2x_1 x_2 + 2x_3 = 4$, P=(2,2,2) y Q=(1,0,1). Determinar un plano Π' que contenga a P, a Q, y al punto R de Π tal que $d(P,R)=d(P,\Pi)$.

PRÁCTICA 2

SISTEMAS LINEALES Y MATRICES

DEFINICIONES Y PROPIEDADES

Un sistema lineal de m ecuaciones con n incógnitas es un conjunto de m ecuaciones lineales en las variables $(x_1, x_2, ..., x_n)$:

$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots + a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

donde las a y las b con subíndices representan constantes.

Cuando $b_i = 0$ para todo i, $1 \le i \le m$, se dice que el sistema es *homogéneo*.

Una *n*-upla $(s_1, s_2, ..., s_n)$ es una solución del sistema si y sólo si al reemplazar x_i por s_i ,

 $1 \le i \le n$, se satisface cada una de las *m* ecuaciones.

Un sistema se dice incompatible si no tiene ninguna solución.

Un sistema se dice *compatible* si tiene alguna solución.

Si un sistema compatible tiene solución única es *determinado*, y si tiene infinitas soluciones es *indeterminado*.

Por matriz ampliada o matriz aumentada del sistema, entendemos el arreglo rectangular de

números:
$$a_{21}$$
 a_{21}

En general, dados los números naturales n y m, se llama matriz de m filas y n columnas con

coeficientes reales, al arreglo rectangular $A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$, donde $a_{ij} \in \mathbb{R}$.

Abreviadamente $A = (a_{ij})$.

Llamamos filas de A a las n-uplas $A_i = (a_{i1}, a_{i2}, ..., a_{in})$ con i = 1, ..., m

Llamamos columnas de A a las m-uplas $A^{j} = (a_{1j}, a_{2j}, ..., a_{mj}) \operatorname{con} j = 1, ..., n$

Con esta notación,
$$A = (A^1, A^2, \dots, A^n)$$
 y también $A = \begin{pmatrix} A_1 \\ A_2 \\ \vdots \\ A_m \end{pmatrix}$.

Decimos que dos sistemas de ecuaciones son *equivalentes* cuando tienen el mismo conjunto de soluciones.

Propiedad: Las siguientes operaciones sobre las ecuaciones de un sistema dan lugar a un sistema equivalente al dado:

- 1- Multiplicar una de las ecuaciones por una constante no nula.
- 2- Intercambiar dos de las ecuaciones.
- 3- Sumar un múltiplo de una de las ecuaciones a otra ecuación.

Las anteriores operaciones sobre las ecuaciones se corresponden con las siguientes operaciones sobre las filas de la matriz aumentada del sistema. Se denominan *operaciones* elementales sobre las filas:

- 1- Multiplicar una de las filas por una constante no nula.
- 2- Intercambiar dos de las filas.
- 3- Sumar un múltiplo de una de las filas a otra fila.

El *método de eliminación de Gauss* para resolver sistemas lineales, consiste en llevar la matriz aumentada del sistema planteado, vía la aplicación sistemática de operaciones elementales sobre sus filas, a la forma escalonada en las filas reducida, que a continuación describiremos. La resolución del sistema resultante, que es equivalente al original, es inmediata.

Se dice que una matriz se encuentra en la forma *escalonada en las filas reducida*, si se cumplen las siguientes condiciones:

- 1- Si una fila no consta únicamente de ceros, entonces su primer coeficiente no nulo es un 1 (a este 1 se lo denomina 1 principal).
- 2. Si existen filas que constan sólo de ceros (filas nulas), se agrupan en la parte inferior de la matriz.

- 3- Si dos filas sucesivas son no nulas, el 1 principal de la fila inferior se presenta más a la derecha que el 1 principal de la fila superior.
- 4- Cada columna que contenga un 1 principal tiene ceros en todas las demás posiciones.

Si una matriz tiene sólo las propiedades 1, 2 y 3 se dice que está en la forma escalonada en las filas.

Llamamos *rango fila* (o *rango*) de la matriz A al número de filas no nulas que tiene la matriz escalonada en las filas equivalente a A.

En el conjunto de las matrices de m filas y n columnas con coeficientes reales, notado $\mathbb{R}^{m \times n}$,

están definidos la suma y el producto por escalares, de la siguiente manera:

Si
$$A = (a_{ij}) \in \mathbb{R}^{m \times n}$$
, $B = (b_{ij}) \in \mathbb{R}^{m \times n}$ y $k \in \mathbb{R}$, entonces

$$A + B = (a_{ij} + b_{ij}) \in \mathbb{R}^{m \times n}$$
 $kA = (ka_{ij}) \in \mathbb{R}^{m \times n}$

Es decir, suma y producto por escalares se calculan coordenada a coordenada, en forma análoga a como se hace en \mathbb{R}^n .

Si $A = (a_{ij}) \in \mathbb{R}^{m \times n}$ y $B = (b_{ij}) \in \mathbb{R}^{n \times s}$ se define el *producto* de A por B como

$$AB = C = (c_{ii}) \in \mathbb{R}^{m \times s}$$

donde c_{ij} es igual al producto escalar de la fila i de A por la columna j de B

$$c_{ij} = (\text{fila } i \text{ de } A) \cdot (\text{columna } j \text{ de } B)$$

Es posible calcular AB sólo si la cantidad de columnas de A coincide con la cantidad de filas de B.

Propiedades del producto.

- Es asociativo: (AB)C = A(BC)
- Es distributivo: A(B+C) = AB + AC

$$(A+B)C = AC + BC$$

- La matriz identidad
$$I=\begin{pmatrix} 1 & 0 & \cdots & \cdots & 0 & 0 \\ 0 & 1 & \cdots & \cdots & 0 & 0 \\ \vdots & \vdots & \ddots & & \vdots & \vdots \\ \vdots & \vdots & & \ddots & \vdots & \vdots \\ 0 & 0 & \cdots & \cdots & 1 & 0 \\ 0 & 0 & \cdots & \cdots & 0 & 1 \end{pmatrix} \in \mathbb{R}^{n\times n}$$
, verifica $AI=IA$ para toda

matriz cuadrada $A \in \mathbb{R}^{n \times n}$. La matriz I es el elemento neutro para este producto.

Notación: El sistema
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n = b_2 \\ \dots \\ a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n = b_m \end{cases}$$

puede escribirse
$$AX = B$$
, $\operatorname{con} A = \begin{pmatrix} a_{ij} \end{pmatrix} \in \mathbb{R}^{m \times n}$, $X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^{n \times 1}$, $B = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \in \mathbb{R}^{m \times 1}$.

En adelante identificaremos $X \in \mathbb{R}^{n \times 1}$ con $\mathbf{x} \in \mathbb{R}^n$ y $B \in \mathbb{R}^{m \times 1}$ con $\mathbf{b} \in \mathbb{R}^m$. Así el sistema se escribirá $A\mathbf{x} = \mathbf{b}$.

Propiedades: Sean $A \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^m$,

$$S_{0} = \left\{ \mathbf{x} \in \mathbb{R}^{n} / A\mathbf{x} = \mathbf{0} \right\}$$

$$S_{b} = \left\{ \mathbf{x} \in \mathbb{R}^{n} / A\mathbf{x} = \mathbf{b} \right\}$$

a) Si $\mathbf{x} \in \mathbb{S}_0$ e $\mathbf{y} \in \mathbb{S}_0$, entonces $\mathbf{x} + \mathbf{y} \in \mathbb{S}_0$. Si $\mathbf{x} \in \mathbb{S}_0$ y $k \in \mathbb{R}$, entonces $k\mathbf{x} \in \mathbb{S}_0$.

Esto dice que la suma de dos soluciones de un sistema homogéneo es también solución del mismo, y que los múltiplos de una solución son también soluciones.

b) Si $\mathbf{x} \in \mathbb{S}_b$ e $\mathbf{y} \in \mathbb{S}_b$, entonces $\mathbf{x} - \mathbf{y} \in \mathbb{S}_0$.

Esto es, la diferencia entre dos soluciones de un sistema no homogéneo, es solución del sistema homogéneo asociado.

c) Sea **s** una solución particular del sistema A**x** = **b** (**s** \in \mathbb{S}_{b}), entonces

$$\mathbb{S}_b = \mathbb{S}_0 + \mathbf{s} = \{ \mathbf{y} \in \mathbb{R}^n / \mathbf{y} = \mathbf{x} + \mathbf{s}, \text{ con } \mathbf{x} \in \mathbb{S}_0 \}.$$

Esto significa que cualquier solución del sistema $A\mathbf{x} = \mathbf{b}$ puede obtenerse sumando una solución particular del sistema con una solución del sistema homogéneo asociado.

Una *matriz cuadrada* $A \in \mathbb{R}^{n \times n}$ se dice *inversible* si existe $B \in \mathbb{R}^{n \times n}$ tal que AB = BA = I.

Cuando *B* existe, es única y la notamos $B = A^{-1}$.

Propiedad: Si $A \in \mathbb{R}^{n \times n}$ y $C \in \mathbb{R}^{n \times n}$ son inversibles, entonces AC es inversible y vale $(AC)^{-1} = C^{-1}A^{-1}$.

Diremos que dos matrices son equivalentes por filas si puede obtenerse una de la otra por medio de una sucesión finita de operaciones elementales sobre las filas.

Propiedad: Si $A \in \mathbb{R}^{n/n}$, las siguientes afirmaciones son equivalentes:

- a) A es inversible.
- b) $A\mathbf{x} = \mathbf{b}$ tiene solución única, cualquiera sea $\mathbf{b} \in \mathbb{R}^n$.
- c) Ax = 0 tiene únicamente la solución trivial.
- d) A es equivalente por filas a $I \in \mathbb{R}^{n \times n}$.

EJERCICIOS

Ejercicio 1.- Dado el sistema lineal

$$S \begin{cases} -x_1 + 2x_2 + x_3 = 2 \\ x_1 + 3x_2 - x_4 = 0 \\ 2x_1 + 3x_3 + x_4 = -1 \end{cases}$$

¿Cuáles de las siguientes 4-uplas son soluciones de S? ¿y del sistema homogéneo asociado?

$$\mathbf{x} = (2,2,1,0)$$
 $\mathbf{y} = (1,1,1,4)$ $\mathbf{z} = (0,0,0,0)$

$$\mathbf{x} = (2,2,1,0)$$
 $\mathbf{y} = (1,1,1,4)$ $\mathbf{z} = (0,0,0,0)$ $\mathbf{u} = (-2, \frac{-5}{3}, \frac{10}{3}, -7)$ $\mathbf{v} = (-1, \frac{1}{3}, \frac{1}{3}, 0)$ $\mathbf{w} = (-1, -2, 3, -7)$

Ejercicio 2.- Determinar, si existen, a y b para que (2, -2,1) sea solución de

$$\begin{cases} x_1 + 2ax_2 + x_3 = -1 \\ ax_2 - bx_3 = -4 \\ bx_1 + x_2 + (2a-b)x_3 = 3 \end{cases}$$

Ejercicio 3.- Obtener un sistema equivalente al dado, cuya matriz ampliada sea escalonada en las filas reducida.

a)
$$\begin{cases} x_1 + 2x_2 + x_3 = 2 \\ 2x_1 + 2x_2 + x_3 = -1 \\ -x_1 + 2x_2 + 2x_3 = 0 \end{cases}$$

b)
$$\begin{cases} x_1 + 2x_2 + x_3 + 3x_4 + 2x_5 = -1 \\ x_1 + 3x_2 + 3x_3 + 5x_4 + 3x_5 = 0 \\ -2x_1 - 2x_2 + 2x_3 - 2x_4 - 2x_5 = 2 \end{cases}$$

Ejercicio 4.- Resolver por el método de eliminación de Gauss el sistema cuya matriz aumentada es $(A \\cdot \mathbf{b})$.

a)
$$A = \begin{pmatrix} 1 & 2 & 3 & -1 \\ 2 & 2 & 2 & -3 \\ 1 & -1 & 0 & 4 \\ -1 & 1 & -3 & 3 \end{pmatrix}$$

b) $= (1,2,-1,0)$
b) $A = \begin{pmatrix} 1 & 1 & 2 & -1 \\ 2 & 1 & 1 & 0 \\ -1 & 1 & 2 & -1 \\ 0 & 2 & 4 & -2 \end{pmatrix}$

b) $A = \begin{pmatrix} 1 & 1 & 2 & -1 \\ 2 & 1 & 1 & 0 \\ -1 & 1 & 2 & -1 \\ 0 & 2 & 4 & -2 \end{pmatrix}$

c) $A = \begin{pmatrix} 2 & -1 & 2 \\ 1 & -3 & 2 \\ 1 & 2 & 0 \end{pmatrix}$

b) $A = \begin{pmatrix} 1 & 2 & -1 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 2 & 3 & 1 \end{pmatrix}$

b) $A = \begin{pmatrix} 1 & 2 & -1 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 2 & 3 & 1 \end{pmatrix}$

c) $A = \begin{pmatrix} 1 & 2 & -1 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 2 & 3 & 1 \end{pmatrix}$

b) $A = \begin{pmatrix} 1 & 2 & -1 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 2 & 3 & 1 \end{pmatrix}$

c) $A = \begin{pmatrix} 1 & 2 & -1 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{pmatrix}$

b) $A = \begin{pmatrix} 1 & 2 & -1 & 2 \\ 0 & 1 & 0 & 3 \\ 0 & 0 & 1 & -2 \end{pmatrix}$

b) $A = \begin{pmatrix} 1 & 2 & 3 & 1 & 4 \\ 2 & 4 & 6 & 2 & 1 \\ 0.1 & 0.2 & 0.3 & 3 & 2 \\ -2 & -4 & 0 & -2 & 1 \end{pmatrix}$

b) $A = \begin{pmatrix} 1 & 2 & 3 & 1 & 4 \\ 2 & 4 & 6 & 2 & 1 \\ 0.1 & 0.2 & 0.3 & 3 & 2 \\ -2 & -4 & 0 & -2 & 1 \end{pmatrix}$

b) $A = \begin{pmatrix} 1 & 2 & 3 & 1 & 4 \\ 2 & 4 & 6 & 2 & 1 \\ 0.1 & 0.2 & 0.3 & 3 & 2 \\ -2 & -4 & 0 & -2 & 1 \end{pmatrix}$

b) $A = \begin{pmatrix} 1 & 2 & 3 & 1 & 4 \\ 2 & 4 & 6 & 2 & 1 \\ 0.1 & 0.2 & 0.3 & 3 & 2 \\ -2 & -4 & 0 & -2 & 1 \end{pmatrix}$

b) $A = \begin{pmatrix} 1 & 2 & 3 & 1 & 4 \\ 2 & 4 & 6 & 2 & 1 \\ 0.1 & 0.2 & 0.3 & 3 & 2 \\ -2 & -4 & 0 & -2 & 1 \end{pmatrix}$

b) $A = \begin{pmatrix} 1 & 2 & 3 & 1 & 4 \\ 2 & 4 & 6 & 2 & 1 \\ 0.1 & 0.2 & 0.3 & 3 & 2 \\ -2 & -4 & 0 & -2 & 1 \end{pmatrix}$

b) $A = \begin{pmatrix} 1 & 2 & 3 & 1 & 4 \\ 2 & 4 & 6 & 2 & 1 \\ 0.1 & 0.2 & 0.3 & 3 & 2 \\ -2 & -4 & 0 & -2 & 1 \end{pmatrix}$

b) $A = \begin{pmatrix} 1 & 2 & 3 & 1 & 4 \\ 2 & 4 & 6 & 2 & 1 \\ 0.1 & 0.2 & 0.3 & 3 & 2 \\ -2 & -4 & 0 & -2 & 1 \end{pmatrix}$

b) $A = \begin{pmatrix} 1 & 2 & 3 & 1 & 4 \\ 2 & 4 & 6 & 2 & 1 \\ 0.1 & 0.2 & 0.3 & 3 & 2 \\ -2 & -4 & 0 & -2 & 1 \end{pmatrix}$

b) $A = \begin{pmatrix} 1 & 2 & 3 & 1 & 4 \\ 2 & 4 & 6 & 2 & 1 \\ 0.1 & 0.2 & 0.3 & 3 & 2 \\ 0.1 & 0.2 & 0.3 & 3 & 2 \\ 0.1 & 0.2 & 0.3 & 3 & 2 \\ 0.1 & 0.2 & 0.3 & 3 & 2 \\ 0.1 & 0.2 & 0.3 & 3 & 2 \\ 0.1 & 0.2 & 0.3 & 3 & 2 \\ 0.1 & 0.2 & 0.3 & 3 & 2 \\ 0.2 & 0.3 & 0.3 & 3 & 2 \\ 0.3 & 0.3 & 0.3 & 3 & 2 \\ 0.3 & 0.3 & 0.3 & 3 & 2 \\ 0.3 & 0.3 & 0.3 & 3 & 3 \\ 0.3 & 0.3 & 0.3 & 3 & 3 \\ 0.3 & 0.3 & 0.3 & 3 & 3 \\ 0.3 & 0.3 & 0.3 & 3 & 3 \\ 0.3 & 0.3 & 0.3 & 3 & 3 \\ 0.3 & 0.3 & 0.3 & 3$

Ejercicio 5.- Determinar si el sistema tiene soluciones no triviales, sin resolverlo.

a)
$$\begin{cases} x_1 + x_2 = 0 \\ -x_1 - x_2 = 0 \end{cases}$$
 b)
$$\begin{cases} 2x_1 + x_2 - x_3 = 0 \\ x_2 + x_3 = 0 \end{cases}$$

c)
$$\begin{cases} 2x_1 + x_2 + x_3 - x_4 = 0 \\ x_2 - x_4 = 0 \\ x_3 + x_4 = 0 \end{cases}$$
 d)
$$\begin{cases} a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + a_{14}x_4 = 0 \\ a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + a_{24}x_4 = 0 \end{cases}$$
 c)
$$\begin{cases} x_1 + x_2 + x_3 - x_4 = 0 \\ x_2 + x_4 = 0 \end{cases}$$

Ejercicio 6.- Mostrar tres elementos de cada uno de los conjuntos siguientes.

a)
$$\mathbb{S}_1 = \left\{ A \in \mathbb{R}^{3 \times 3} / a_{ij} = a_{ji}, \ 1 \le i, j \le 3 \right\}$$
 (matrices simétricas)

b)
$$S_2 = \{ A \in \mathbb{R}^{3 \times 3} / a_{ij} + a_{ji} = 1, 1 \le i, j \le 3 \}$$

c)
$$\mathbb{S}_3 = \left\{ A \in \mathbb{R}^{3 \times 3} / a_{ij} = -a_{ji}, \ 1 \le i, j \le 3 \right\}$$
 (matrices antisimétricas)

d)
$$\mathbb{S}_4 = \left\{ A \in \mathbb{R}^{4 \times 4} / \sum_{i=1}^4 a_{ii} = 0 \right\}$$
 (matrices de traza nula)

e)
$$\mathbb{S}_5 = \left\{ A \in \mathbb{R}^{3 \times 4} / A \text{ tiene alguna fila nula} \right\}$$

e)
$$\mathbb{S}_5 = \left\{ A \in \mathbb{R}^{3 \times 4} / A \text{ tiene alguna fila nula} \right\}$$
f) $\mathbb{S}_6 = \left\{ A \in \mathbb{R}^{3 \times 3} / a_{ij} = 0, \text{ si } i > j \right\}$ (matrices triangulares superiores)

Ejercicio 7.- Efectuar, cuando sea posible, los cálculos indicados.

$$A = \begin{pmatrix} 2 & -2 \\ 1 & 3 \\ 1 & 0 \end{pmatrix}, \ B = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 0 & 0 \\ 1 & -1 & 0 \end{pmatrix}, \ C = \begin{pmatrix} 1 & 1 & -1 \\ 2 & 1 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \ D = \begin{pmatrix} 2 & 1 \\ 0 & -2 \end{pmatrix}, \ E = \begin{pmatrix} 2 & 2 & 1 \\ 1 & -1 & 0 \end{pmatrix}$$

i) *BA*

ii) *BC*

iii) CB

iv) AB

v) BA - C

vi) ED

vii) DA

viii) EA + D

ix) AE + 3C

Ejercicio 8.- Dadas $A = \begin{pmatrix} 1 & 3 & 2 \\ 1 & 1 & -1 \\ 7 & 7 & 5 \end{pmatrix}$ y $B = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & -1 \\ 3 & 3 & 3 \end{pmatrix}$, hallar

- a) la tercera fila de AB
- b) la tercera columna de BA
- c) el coeficiente c_{32} de C = BAB

Ejercicio 9.- Determinar todas las matrices *B* que verifican:

a)
$$\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

b)
$$\begin{pmatrix} 1 & 1 \\ -2 & -2 \end{pmatrix} B = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$

c)
$$\begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ -1 & -2 & -3 \end{pmatrix} B = \begin{pmatrix} 3 \\ 6 \\ -3 \end{pmatrix}$$

d)
$$\begin{pmatrix} 1 & 1 & 0 \\ -1 & -1 & -1 \\ 0 & 2 & 3 \end{pmatrix} B = \begin{pmatrix} 2 & 1 & \frac{1}{2} \\ -1 & 0 & 2 \\ 0 & 0 & 2 \end{pmatrix}$$

e)
$$\begin{pmatrix} 1 & 1 & 0 \\ -1 & -1 & -1 \\ 0 & 2 & 3 \end{pmatrix} B = \begin{pmatrix} 2 & -1 \\ 3 & 0 \\ 1 & 2 \end{pmatrix}$$

Ejercicio 10.- Hallar todas las matrices $A \in \mathbb{R}^{2 \times 2}$ tales que $\begin{pmatrix} -2 & 1 \\ 2 & -1 \end{pmatrix} A = A \begin{pmatrix} -2 & 1 \\ 2 & -1 \end{pmatrix}$

Ejercicio 11.- Hallar todas las matrices $X \in \mathbb{R}^{2\times 2}$ tales que AX + B = BX + A.

a)
$$A = \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 0 \\ 2 & -2 \end{pmatrix}$

b)
$$A = \begin{pmatrix} 2 & 1 \\ -1 & -5 \end{pmatrix}$$
 $B = \begin{pmatrix} 1 & 0 \\ 2 & -2 \end{pmatrix}$

Ejercicio 12.- Determinar cuáles de las siguientes matrices son inversibles; exhibir la inversa cuando exista.

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \quad B = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \quad C = \begin{pmatrix} 1 & 2 \\ 0 & -1 \end{pmatrix} \quad D = \begin{pmatrix} 1 & 2 \\ -1 & -2 \end{pmatrix}$$

$$E = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 1 \\ 3 & 1 & -1 \end{pmatrix} \quad F = \begin{pmatrix} 2 & 1 & 1 \\ 0 & 1 & 1 \\ 2 & 0 & 0 \end{pmatrix} \quad G = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix} \quad H = \begin{pmatrix} -1 & -1 \\ 0 & 2 \end{pmatrix} \quad G + H$$

Ejercicio 13.- Sea
$$A = \begin{pmatrix} 1 & 3 & 2 \\ 0 & 1 & 1 \\ -1 & 0 & -1 \end{pmatrix}$$
. Decidir si A^{-1} es solución del sistema

$$\begin{pmatrix} 1 & 5 & 4 \\ -1 & 1 & 0 \end{pmatrix} X = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

Ejercicio 14.- Sea $A \in \mathbb{R}^{3\times3}$.

Si
$$\begin{pmatrix} 1 \\ 3 \\ -1 \end{pmatrix}$$
 y $\begin{pmatrix} 0 \\ 1 \\ 2 \end{pmatrix}$ son soluciones de $A\mathbf{x} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$, hallar 4 soluciones de $A\mathbf{x} = \begin{pmatrix} 1 \\ 4 \\ 5 \end{pmatrix}$.

Ejercicio 15.- Sean (1,3,1), (2,2,4) y (2,0,4) soluciones de un sistema lineal no homogéneo.

- a) Hallar dos rectas distintas tales que todos sus puntos sean soluciones del sistema homogéneo asociado.
- b) Econtrar un plano tal que todos sus puntos sean soluciones del sistema no homogéneo.

Ejercicio 16.- Sea
$$A \in \mathbb{R}^{3\times 3}$$
.
$$\begin{pmatrix} 0 \\ 2 \\ 2 \\ 2 \end{pmatrix} y \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix} \text{ son soluciones de } A\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} y \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix} \text{ es solución de } A\mathbf{x} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}.$$

Encontrar una recta de soluciones del sistema $A\mathbf{x} = \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix} + \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$.

Ejercicio 17.- Sean
$$A = \begin{pmatrix} -1 & 1 & 1 & 4 \\ 0 & 1 & 2 & 3 \end{pmatrix}$$
, $B = \begin{pmatrix} 1 & 1 & 1 & -1 \\ 2 & 1 & 1 & 0 \\ 1 & 3 & 3 & 1 \end{pmatrix}$ $y \, \mathbb{S}_0 = \, \left\{ \mathbf{x} \in \mathbb{R}^4 \, / \, A\mathbf{x} = \mathbf{0} \right\}$.

Encontrar todos los $\mathbf{x} \in \mathbb{S}_0$ tales que $B\mathbf{x} = \begin{pmatrix} 2 \\ 3 \\ 4 \end{pmatrix}$.

Ejercicio 18.- Dadas
$$A = \begin{pmatrix} 5 & 1 & -2 \\ 2 & -1 & -3 \\ 3 & 2 & 1 \end{pmatrix}$$
 y $\mathbf{c} = \begin{pmatrix} a \\ a-3 \\ a+1 \end{pmatrix}$, determinar todos los valores de a

para los cuales el sistema $A\mathbf{x} = \mathbf{c}$ es compatible.

Resolver el sistema para alguno de los valores de a hallados.

Ejercicio 19.-

a) Encontrar todos los valores de $k \in \mathbb{R}$ para los cuales el sistema S tiene solución única.

$$S \begin{cases} (k^{2}-1)x_{1} + x_{2} + kx_{3} = 0 \\ (k-1)x_{2} + x_{3} = 0 \\ (k+2)x_{3} = 0 \end{cases}$$

b) Determinar todos los valores de k para los cuales el sistema S admite solución no trivial

$$S \begin{cases} (k+1)x_1 - 2x_2 + kx_3 + 3x_4 = 0 \\ x_1 + (k+2)x_2 + kx_3 + 4x_4 = 0 \\ x_1 - 2x_2 + kx_3 + (k+4)x_4 = 0 \\ x_1 - 2x_2 + kx_3 + 3x_4 = 0 \end{cases}$$

Ejercicio 20.- Encontrar todos los valores de *a* y *b* para los cuales los sistemas cuyas matrices ampliadas se dan a continuación son compatibles.

a)
$$\begin{pmatrix} 1 & -3 & \vdots & 1 \\ 2 & a & \vdots & b \end{pmatrix}$$
 b) $\begin{pmatrix} 1 & -3 & 3 & \vdots & b \\ 0 & a+1 & a^2-1 & \vdots & b+2 \end{pmatrix}$

c)
$$\begin{pmatrix} 1 & -3 & 3 & \vdots & 2 \\ -2 & 3 & -3 & \vdots & 2 \\ 0 & a+1 & -a-1 & \vdots & b+a \end{pmatrix}$$
 d) $\begin{pmatrix} 1 & -1 & 2+a & \vdots & b \\ 2 & a-4 & -4 & \vdots & 2 \\ a-2 & 0 & 12 & \vdots & 1 \end{pmatrix}$

Ejercicio 21.- Resolver el sistema para todos los valores de *b*.

- Resolver el sistema para todos los valores de *b*.
$$\begin{cases} x_1 + bx_2 + 2x_3 - x_4 = b+2 \\ x_1 + bx_2 - 2x_3 = 2 \\ 3x_1 + 3bx_2 + 2x_3 - 2x_4 = b \end{cases}$$

Ejercicio 22.- Encontrar todos los valores de a y b para los cuales (2,0,-1) es la única

solución del sistema
$$\begin{cases} 2x_1 - ax_2 + 2x_3 = 2 \\ x_1 + x_2 - bx_3 = 3 \\ 2x_2 - 3x_3 = 3 \end{cases}$$

Ejercicio 23.- Hallar todos los valores de *k* para los cuales

 $M = \{\lambda(1,1,0,0) + (2,0,-1,0), \lambda \in \mathbb{R}\}$ es el conjunto de soluciones del sistema

$$\begin{cases} x_1 - x_2 + 2x_3 = 0 \\ (k^2 - 1)x_2 + 2x_4 = -k^2 + 1 \\ (k + 1)x_3 + 4x_4 = -k - 1 \end{cases}$$

Ejercicio 24.- Determinar, para todos los valores reales de a y b, si el sistema cuya matriz

ampliada es
$$\begin{pmatrix} 1 & a & -1 & \vdots & 1 \\ -a & -1 & 2+a & \vdots & 2-a \\ -1 & -a & a & \vdots & b \end{pmatrix}$$
 es compatible determinado, compatible

indeterminado o incompatible.

Ejercicio 25.- Encontrar todos los valores de a y b para los cuales el sistema cuya matriz

ampliada es
$$\begin{pmatrix} 1 & a & -1 & \vdots & 1 \\ -a & -1 & 1 & \vdots & -1 \\ -1 & -a & a & \vdots & b \end{pmatrix}$$
 tiene como conjunto solución una recta.

EJERCICIOS SURTIDOS

1. Sea *A* una matriz cuadrada que verifica $A^2 + A + I = 0$.

Demostrar que $A^{-1} = -I - A$.

2. Determinar $a,b \in \mathbb{R}$ para que (1,-1,2,-1) sea solución del sistema cuya matriz

aumentada es
$$\begin{pmatrix} 1 & -2 & 1 & a & \vdots & 2 \\ -2b & -2 & 0 & 2 & \vdots & 2 \\ a & -4 & -b & 5 & \vdots & 4 \end{pmatrix}.$$

Para los valores hallados resolver el sistema.

3. Se considera el sistema
$$\begin{cases} 2ax_1 - x_2 - 3cx_3 - 3x_4 = 2 \\ -x_1 + ax_2 + 2bx_3 + cx_4 = 1 \\ x_1 - cx_2 + ax_3 + bx_4 = 0 \\ bx_1 - 2ax_2 - 3cx_3 - 5x_4 = -7 \end{cases}$$

Hallar los valores de $a,b,c \in \mathbb{R}$ para los cuales X = (2,-1,-1,2) es solución del sistema.

4. Encontrar una matriz *X* que satisfaga la ecuación

$$X \begin{pmatrix} 0 & 1 & -1 \\ 1 & 1 & 1 \\ 0 & 3 & -2 \end{pmatrix} - \begin{pmatrix} 2 & -1 & 6 \\ 1 & 1 & -2 \end{pmatrix} = X \begin{pmatrix} -2 & -1 & 0 \\ 0 & 1 & 0 \\ 1 & 2 & 1 \end{pmatrix}$$

5. Se sabe que $\begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$ y $\begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$ son soluciones del sistema Ax = b. Hallar alguna solución de

Ax = b que también sea solución de $2x_1 - 2x_2 + x_3 = 9$.

6. Hallar todos los valores de $k \in \mathbb{R}$ para los cuales el conjunto de soluciones del sistema

$$\begin{cases} x + 2ky + z = 1 \\ kx + 2y + kz = k \\ 2y + kz = k-2 \end{cases}$$
 es una recta contenida en el plano $x-4y+2z=4$.

7. Se sabe que $\begin{pmatrix} 2 \\ -1 \\ 1 \end{pmatrix}$ es solución de $3A\mathbf{x} = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$ y que $\begin{pmatrix} 1 \\ -2 \\ 0 \end{pmatrix}$ es solución de $2A\mathbf{x} = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$.

Encontrar cuatro soluciones distintas del sistema $A\mathbf{x} = \begin{pmatrix} 0 \\ 1 \\ -2 \end{pmatrix}$.

8. Hallar todos los valores de $a \in \mathbb{R}$ tales que $\{(2,0,-3)\}$ es el conjunto de soluciones del

sistema
$$\begin{cases} x_1 + x_2 - x_3 = 5 \\ 3x_1 + ax_2 + x_3 = 3 \\ -x_1 + x_2 + ax_3 = a^2 \end{cases}$$

9. Sean $A = \begin{pmatrix} 2 & 3 & -6 \\ 2 & 2 & 6 \\ 1 & 1 & 3 \end{pmatrix}$, $B \in \mathbb{R}^{3\times 3}$ una matriz inversible y $C \in \mathbb{R}^{3\times 3}$ tales que BC = A.

Hallar las soluciones del sistema $B^2C\mathbf{x} = 2B\mathbf{x} \quad (\mathbf{x} \in \mathbb{R}^3)$.

10. Hallar todos los valores de $a,b \in \mathbb{R}$ para los cuales el sistema

$$S: \begin{cases} x_1 + 3x_2 + ax_3 - x_4 = b \\ 2x_1 + 2x_2 - ax_3 + x_4 = 1 \\ x_1 - x_2 + 2x_3 + 2x_4 = b \end{cases}$$
 es compatible indeterminado.

Resolver el sistema para alguno de los valores hallados.

11. Sean
$$A = \begin{pmatrix} 4 & 0 & 0 \\ 1 & 0 & k \\ 0 & 1 & 2 \end{pmatrix}$$
 y $B = \begin{pmatrix} 0 & 0 & 3 \\ 0 & 3 & 0 \\ 3 & 0 & 0 \end{pmatrix}$.

Hallar todos los valores de $k \in \mathbb{R}$ para los cuales el sistema $A\mathbf{x} = 2\mathbf{x} - B\mathbf{x}$ tiene infinitas soluciones. Resolver el sistema para alguno de los valores de *k* hallados.

12. Se sabe que (1,2,0) y (3,0,-1) son soluciones de un sistema no homogéneo S. Hallar una

solución de
$$S$$
 que sea también solución del sistema
$$\begin{cases} x_1 + x_2 = 3\\ 2x_1 + x_2 + x_3 = 2\\ 4x_1 + 3x_2 + x_3 = 8 \end{cases}$$

13. Sean en
$$\mathbb{R}^4$$
 los sistemas
$$S_1 \begin{cases} x_1 + x_2 & -3x_4 = -1 \\ -x_1 + 2x_2 - x_3 & = 2 \\ -3x_1 + 3x_2 - 2x_3 + 3x_4 = 5 \end{cases} \quad y \quad S_2 \begin{cases} x_1 + 2x_2 & = 4 \\ x_1 & +ax_3 = b \end{cases}$$

Hallar todos los valores de $a,b \in \mathbb{R}$ para los cuales S_1 y S_2 tienen infinitas soluciones comunes. Para los valores hallados encontrar todas las soluciones comunes.

PRÁCTICA 3

DETERMINANTES

DEFINICIONES Y PROPIEDADES

Una *permutación* del conjunto $\{1,2,...,n\}$ es un arreglo de estos números en cierto orden, sin omisiones ni repeticiones. Para denotar una permutación cualquiera se escribirá $(j_1,j_2,...,j_n)$, donde j_i es el i-ésimo elemento de la permutación. Se dice que ocurre una *inversión* en una permutación $(j_1,j_2,...,j_n)$ siempre que un entero mayor precede a uno menor. Diremos que una permutación es par, si el número total de inversiones es un número par, y diremos que es impar si el número total de inversiones es impar.

Sea
$$A \in \mathbb{R}^{n \times n}$$
,
$$A = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}$$

Por producto elemental tomado de A se entiende cualquier producto de n elementos tomados de A, sin que dos cualesquiera de ellos provengan de una misma fila ni de una tomados misma columna.

Una matriz $A \in \mathbb{R}^{n \times n}$ admite n! (n!=n(n-1)(n-2)...3.2.1) productos elementales. Estos son de la forma $a_{1j_1}a_{2j_2}.....a_{nj_n}$ donde $(j_1,j_2,...,j_n)$ es una permutación de $\{1,2,...,n\}$.

Se denomina *producto elemental con signo tomado de A* a un producto elemental $a_{1j_1}a_{2j_2}....a_{nj_n}$ multiplicado por +1 ó por -1 según la permutación $(j_1, j_2, ..., j_n)$ sea respectivamente par o impar.

Se define el *determinante* de *A* como la suma de todos los productos elementales con signo tomados de *A*.

Notamos
$$\det(A) = |A| = \sum \pm a_{1j_1} a_{2j_2} \dots a_{nj_n}$$

Propiedades: Si A es una matriz cuadrada que contiene una fila de ceros, det(A) = 0.

Si A es una matriz triangular de $n \times n$, det(A) es el producto de los elementos de la diagonal, es decir $det(A) = a_{11}a_{22}....a_{nn}$.

Propiedad: Sea $A \in \mathbb{R}^{n \times n}$

- Si A'es la matriz que se obtiene cuando una sola fila de A se multiplica por una constante k, entonces $\det(A') = k \det(A)$.
- Si A'es la matriz que se obtiene al intercambiar dos filas de A, entonces det(A') = -det(A).
- Si A'es la matriz que se obtiene al sumar un múltiplo de una de las filas de A a otra fila, entonces $\det(A') = \det(A)$.

Si $A \in \mathbb{R}^{m \times n}$, la matriz *transpuesta* de A es la matriz $A^t \in \mathbb{R}^{n \times m}$ que tiene como filas a las columnas de A.

Propiedades: Si $A \in \mathbb{R}^{n \times n}$, entonces $\det(A^t) = \det(A)$.

Si
$$A \in \mathbb{R}^{n \times n}$$
, $B \in \mathbb{R}^{n \times n}$ y $k \in \mathbb{R}$, entonces $\det(kA) = k^n \det(A)$
 $\det(AB) = \det(A) \det(B)$

A es inversible si y sólo si $det(A) \neq 0$.

Si A es inversible, entonces $det(A^{-1}) = \frac{1}{det(A)}$

DESARROLLO DEL DETERMINANTE POR COFACTORES.

Si A es una matriz cuadrada, entonces el *menor del elemento* a_{ij} se denota M_{ij} y se define como el determinante de la submatriz que queda al eliminar de A la i-ésima fila y la j-ésima columna. El número $(-1)^{i+j}M_{ij}$ se denota C_{ij} y se conoce como *cofactor del elemento* a_{ij} .

Se puede calcular el determinante de una matriz $A \in \mathbb{R}^{n \times n}$ multiplicando los elementos de cualquier fila (o columna) por sus cofactores y sumando los productos que resulten.

Es decir: para cada $1 \le i \le n$ y $1 \le j \le n$,

$$\det(A) = a_{1j}C_{1j} + a_{2j}C_{2j} + ... + a_{nj}C_{nj}$$

(desarrollo por cofactores a lo largo de la j-ésima columna)

y

$$\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + ... + a_{in}C_{in}$$

(desarrollo por cofactores a lo largo de la *i*-ésima fila)

Si $A \in \mathbb{R}^{n \times n}$ y C_{ii} es el cofactor de a_{ii} entonces la matriz

$$egin{pmatrix} C_{11} & C_{12} & \cdots & C_{1n} \ C_{21} & C_{22} & \cdots & C_{2n} \ dots & dots & dots \ C_{n1} & C_{n2} & \cdots & C_{nn} \end{pmatrix}$$

se conoce como matriz de cofactores tomados de A. La transpuesta de esta matriz se denomina adjunta de A y se denota adj(A).

Propiedad: Si A es una matriz inversible, entonces $A^{-1} = \frac{1}{\det(A)} \operatorname{adj}(A)$.

REGLA DE CRAMER.

Si $A\mathbf{x} = \mathbf{b}$ es un sistema de n ecuaciones con n incógnitas tal que $\det(A) \neq 0$, entonces la única solución del sistema es $(x_1, x_2, ..., x_n)$ con

$$x_1 = \frac{\det(A_1)}{\det(A)}$$
, $x_2 = \frac{\det(A_2)}{\det(A)}$,, $x_n = \frac{\det(A_n)}{\det(A)}$

donde A_j es la matriz que se obtiene al reemplazar la j-ésima columna de A por \mathbf{b} .

EJERCICIOS

Ejercicio 1.- Calcular los siguientes determinantes, desarrollando por cofactores por las filas y columnas indicadas.

a)
$$\begin{vmatrix} 2 & 0 & 5 & 1 \\ 0 & 2 & 4 & 2 \\ 0 & 0 & 1 & 5 \\ 1 & 3 & 3 & 0 \end{vmatrix}$$
 por tercera fila por primera columna $\begin{vmatrix} -3 & 0 & 0 & 0 \\ -4 & 0 & 6 & 0 \\ 5 & 8 & -1 & 0 \\ 2 & 3 & 0 & 6 \end{vmatrix}$ por segunda fila por tercera columna $\begin{vmatrix} 5 & 0 & 1 & 0 & 0 \\ 2 & 0 & 3 & 1 & 0 \\ 1 & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 1 & 0 & 3 & 0 & -1 \end{vmatrix}$ por cuarta fila por quinta columna

Ejercicio 2.- Calcular los siguientes determinantes, desarrollando por cofactores por la fila o columna más conveniente.

a)
$$\begin{vmatrix} 1 & 2 & -1 & 0 \\ 0 & 0 & -1 & 0 \\ 1 & 5 & 0 & 2 \\ 0 & 0 & 3 & -1 \end{vmatrix}$$

b)
$$\begin{vmatrix} 1 & 0 & -4 & 0 \\ 3 & 0 & 5 & 6 \\ 0 & -5 & 9 & 0 \\ 0 & 0 & 4 & 0 \end{vmatrix}$$

Ejercicio 3.- Calcular los determinantes de las siguientes matrices usando propiedades.

a)
$$\begin{pmatrix} 2 & 0 & 1 \\ 3 & 2 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

b)
$$\begin{pmatrix} 2 & 0 & 0 \\ 4 & 1 & 0 \\ 0 & 2 & 5 \end{pmatrix}$$

a)
$$\begin{pmatrix} 2 & 0 & 1 \\ 3 & 2 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$
 b) $\begin{pmatrix} 2 & 0 & 0 \\ 4 & 1 & 0 \\ 0 & 2 & 5 \end{pmatrix}$ c) $\begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & -2 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 \\ 0 & 4 & 0 & -4 & 0 \\ -1 & 0 & 0 & 0 & 5 \end{pmatrix}$

Ejercicio 4.- Determinar los valores de k para los cuales det(A) = 0.

a)
$$A = \begin{pmatrix} 2 & k+4 \\ k-2 & -4 \end{pmatrix}$$

a)
$$A = \begin{pmatrix} 2 & k+4 \\ k-2 & -4 \end{pmatrix}$$
 b) $A = \begin{pmatrix} k & 2 & 1 \\ 0 & k^2-1 & 2 \\ 0 & 0 & k-2 \end{pmatrix}$ c) $A = \begin{pmatrix} k & 3 & 0 \\ k^2 & 9 & 0 \\ 3 & 3 & 1 \end{pmatrix}$

c)
$$A = \begin{pmatrix} k & 3 & 0 \\ k^2 & 9 & 0 \\ 3 & 3 & 1 \end{pmatrix}$$

Ejercicio 5.- Sea
$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$
, tal que det $(A) = 7$

Calcular los determinantes de las siguientes matrices.

a)
$$\begin{pmatrix} a_{13} & a_{11} & a_{12} \\ a_{23} & a_{21} & a_{22} \\ a_{33} & a_{31} & a_{32} \end{pmatrix}$$

b)
$$\begin{pmatrix} a_{11} & a_{12} & a_{11} \\ a_{21} & a_{22} & a_{21} \\ a_{31} & a_{32} & a_{31} \end{pmatrix}$$

c)
$$\begin{pmatrix} a_{11} & 2a_{12} & -a_{13} \\ a_{21} & 2a_{22} & -a_{23} \\ a_{31} & 2a_{32} & -a_{33} \end{pmatrix}$$

c)
$$\begin{pmatrix} a_{11} & 2a_{12} & -a_{13} \\ a_{21} & 2a_{22} & -a_{23} \\ a_{31} & 2a_{32} & -a_{33} \end{pmatrix}$$
 d)
$$\begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} + 3a_{11} & a_{22} + 3a_{12} & a_{23} + 3a_{13} \\ ka_{31} & ka_{32} & ka_{33} \end{pmatrix}$$

Ejercicio 6.- Sean
$$A = \begin{pmatrix} 1 & 0 & 3 \\ 2 & 2 & -1 \\ -1 & 0 & 1 \end{pmatrix}$$
 $y B = \begin{pmatrix} 2 & 1 & -1 \\ 0 & 1 & 8 \\ 0 & 0 & -1 \end{pmatrix}$.

Calcular $\det(AB)$ $\det(A+B)$ $\det(A^{10})$ $\det(A^5B-A^5)$

Ejercicio 7.- Sin calcular la matriz inversa, decidir si son inversibles las matrices dadas.

a)
$$\begin{pmatrix} 2 & 1 \\ 3 & -1 \end{pmatrix}$$
 b) $\begin{pmatrix} 2 & 1 & 1 \\ 2 & 1 & 1 \\ 3 & 2 & 2 \end{pmatrix}$ c) $\begin{pmatrix} 2 & 3 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{pmatrix}$ d) $\begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 2 & 2 & 3 \\ 2 & 0 & 0 & 1 \\ 3 & 0 & 3 & 2 \end{pmatrix}$

Ejercicio 8.- Determinar todos los valores reales de *x* para los cuales la matriz es inversible.

a)
$$\begin{pmatrix} x+1 & 2 \\ 2 & x-2 \end{pmatrix}$$
 b) $\begin{pmatrix} 2 & 3 & 2 \\ -1 & 2 & 4 \\ 1 & x & x+1 \end{pmatrix}$ c) $\begin{pmatrix} x+1 & -1 & 3 \\ 2 & 1 & -2 \\ -2 & 1 & x-4 \end{pmatrix}$

Ejercicio 9.- Si $A \in \mathbb{R}^{3\times 3}$ y det(A) = 15, calcular

a)
$$\det(2A)$$
 b) $\det((3A)^{-1})$ c) $\det(3A^{-1})$

Ejercicio 10.- Determinar en cada caso todos los valores de $k \in \mathbb{R}$ para los cuales el sistema tiene solución única.

sistema tiene solución única.
a)
$$\begin{cases} x_1 & + & x_3 = 1 \\ 2x_1 + 2x_2 & = 3 \\ 2x_1 + & x_2 + kx_3 = 2 \end{cases}$$
b)
$$\begin{cases} 2x_1 - 2x_2 + x_3 = 0 \\ (2k-2)x_1 + 2kx_2 + x_3 = 0 \\ (k+2)x_1 + (k-3)x_2 + 2x_3 = 0 \end{cases}$$
c)
$$\begin{cases} 3x_1 - x_2 + kx_3 = 2 \\ x_1 + 3kx_2 - x_3 = 3 \\ 2x_1 + x_2 = 1 \end{cases}$$

Ejercicio 11.- Encontrar el valor de *a* para el cual el sistema tiene infinitas soluciones y resolver el sistema para el valor hallado.

$$\begin{cases} x_1 - x_2 + 2x_3 = -4 \\ a^2 x_2 + 4x_3 = 0 \\ x_1 + 3x_2 + 3x_3 = a \end{cases}$$

Ejercicio 12.- Determinar los valores de *k* para los cuales el sistema tiene:

i) ninguna solución ii) solución única iii) infinitas soluciones

a)
$$\begin{cases} -x_1 & + x_3 = -1 \\ 2x_1 + 2x_2 - x_3 = 3 \\ (k^2 - 3)x_1 & - x_3 = k^2 + k - 1 \end{cases}$$

b)
$$\begin{cases} x_1 + 2x_2 + x_3 = 3 \\ 2x_1 + 3x_2 + 2x_3 = 2 \\ x_1 + 4x_2 + (k^2 - 8)x_3 = k + 14 \end{cases}$$

b)
$$\begin{cases} x_1 + 2x_2 + x_3 = 3 \\ 2x_1 + 3x_2 + 2x_3 = 2 \\ x_1 + 4x_2 + (k^2 - 8)x_3 = k + 14 \end{cases}$$
c)
$$\begin{cases} kx_1 - x_2 + x_3 = 0 \\ (k^2 - 1)x_2 + (k + 1)x_3 = 1 \\ kx_1 + (k^2 + 2)x_2 + x_3 = 2 \end{cases}$$

Ejercicio 13.- Sea $A = \begin{pmatrix} 2 & 0 & 2 \\ 2 & a+1 & a \\ -1 & a & 0 \end{pmatrix}$. Encontrar todos los valores de a para los cuales el

sistema Ax = x admite solución no trivial.

EJERCICIOS SURTIDOS

- 1. Sea $A = \begin{pmatrix} 1 & 0 & -1 \\ 0 & -1 & 4 \\ 2 & 3 & 2 \end{pmatrix}$ y $B \in \mathbb{R}^{3 \times 3}$ tal que $\det(AB) = 2$. Calcular $\det(B^{-1})$. 2. Sea $A = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 2 & -2 \\ 2 & -1 & 2 \end{pmatrix}$ y $B \in \mathbb{R}^{3 \times 3}$ tal que $\det(B) = -3$.

Hallar todas las soluciones del sistema $(BA)\mathbf{x} = -B\mathbf{x}$.

3. Sea $A = \begin{pmatrix} a & 0 & 1 \\ 0 & a-2 & 2 \\ 1 & 0 & 1 \end{pmatrix}$. Decidir para qué valores de a el sistema

 $(A^2 + 2A)\mathbf{x} = \mathbf{0}$ tiene solución no trivial.

4. Sean $A = \begin{pmatrix} 1 & -1 & 0 \\ 0 & k & 4 \\ 1 & 1 & 2 \end{pmatrix}$ y $B = \begin{pmatrix} 2 & 1 & 1 \\ -1 & k & 1 \\ 0 & 1 & 2 \end{pmatrix}$.

Hallar todos los $k \in \mathbb{R}$ tales que $\det(BA^{-1}) = \det(\frac{1}{A}BA)$.

PRÁCTICA 4

ESPACIOS VECTORIALES – SUBESPACIOS

DEFINICIONES Y PROPIEDADES

ESPACIOS VECTORIALES

Un *espacio vectorial real* \mathbb{V} , o espacio vectorial sobre \mathbb{R} , es un conjunto de elementos llamados *vectores*, junto con dos operaciones: *suma* y *producto por un escalar*, que satisfacen las siguientes propiedades.

EV1.- Si $\mathbf{u} \in \mathbb{V}$ y $\mathbf{v} \in \mathbb{V}$, entonces la suma $\mathbf{u} + \mathbf{v} \in \mathbb{V}$.

EV2.- Si $k \in \mathbb{R}$ y $\mathbf{v} \in \mathbb{V}$, entonces el producto $k\mathbf{v} \in \mathbb{V}$.

EV3.- Si \mathbf{u} , \mathbf{v} y $\mathbf{w} \in \mathbb{V}$, entonces $(\mathbf{u}+\mathbf{v})+\mathbf{w} = \mathbf{u}+(\mathbf{v}+\mathbf{w})$

EV4.- Existe un elemento en \mathbb{V} , notado $\mathbf{0}$, tal que $\mathbf{0}+\mathbf{u}=\mathbf{u}+\mathbf{0}=\mathbf{u}$ para todo $\mathbf{u}\in\mathbb{V}$.

EV5.- Para cada elemento $\mathbf{u} \in \mathbb{V}$ existe $-\mathbf{u} \in \mathbb{V}$ tal que $\mathbf{u}+(-\mathbf{u}) = -\mathbf{u}+\mathbf{u} = \mathbf{0}$.

EV6.- Si \mathbf{u} y $\mathbf{v} \in \mathbb{V}$, entonces $\mathbf{u}+\mathbf{v} = \mathbf{v}+\mathbf{u}$.

EV7.- Si \mathbf{u} y $\mathbf{v} \in \mathbb{V}$ y $c \in \mathbb{R}$, entonces $c(\mathbf{u}+\mathbf{v}) = c\mathbf{u}+c\mathbf{v}$.

EV8.- Si $a \lor b \in \mathbb{R} \lor \mathbf{v} \in \mathbb{V}$, entonces $(a+b)\mathbf{v} = a\mathbf{v} + b\mathbf{v}$.

EV9.- Si $a \ y \ b \in \mathbb{R} \ y \ \mathbf{v} \in \mathbb{V}$, entonces $(ab)\mathbf{v} = a(b\mathbf{v})$.

EV10.- Si $\mathbf{u} \in \mathbb{V}$, entonces $1\mathbf{u} = \mathbf{u} \quad (1 \in \mathbb{R})$

Notación: $\mathbf{u} - \mathbf{v} = \mathbf{u} + (-\mathbf{v})$

Si V es un espacio vectorial real valen las siguientes propiedades.

- a) $0\mathbf{v} = \mathbf{0}$ para todo $\mathbf{v} \in \mathbb{V}$.
- b) $k\mathbf{0} = \mathbf{0}$ para todo $k \in \mathbb{R}$.

- c) $(-1)\mathbf{v} = -\mathbf{v}$ para todo $\mathbf{v} \in \mathbb{V}$.
- d) $-(\mathbf{v}+\mathbf{w}) = -\mathbf{v}-\mathbf{w}$ para todo \mathbf{v} y $\mathbf{w} \in \mathbb{V}$.
- e) $k(\mathbf{v}-\mathbf{w}) = k\mathbf{v}-k\mathbf{w}$ para todo \mathbf{v} y $\mathbf{w} \in \mathbb{V}$, $k \in \mathbb{R}$.
- f) $k\mathbf{v} = \mathbf{0}$ si y sólo si k = 0 ó $\mathbf{v} = \mathbf{0}$.

SUBESPACIOS

Sea \mathbb{V} un espacio vectorial real, y sea \mathbb{W} un subconjunto de \mathbb{V} . \mathbb{W} es un *subespacio* de \mathbb{V} si se satisfacen las siguientes tres condiciones:

- El vector $\mathbf{0}$ de \mathbb{V} pertenece a \mathbb{W} .
- Si \mathbf{u} y \mathbf{v} son elementos de \mathbb{W} , entonces su suma $\mathbf{u}+\mathbf{v}$ pertenece a \mathbb{W} .
- Si \mathbf{v} es un elemento de \mathbb{W} y c es un número real, entonces el producto $c\mathbf{v}$ pertenece a \mathbb{W} .

Observación: W es un espacio vectorial real.

Propiedad: Si \mathbb{S} y \mathbb{T} son subespacios de un espacio vectorial \mathbb{V} , entonces la intersección $\mathbb{S} \cap \mathbb{T}$ es un subespacio de \mathbb{V} .

Propiedad: El conjunto de soluciones de un sistema homogéneo con n incógnitas es un subespacio de \mathbb{R}^n .

COMBINACIONES LINEALES

Sean \mathbb{V} un espacio vectorial sobre \mathbb{R} y \mathbf{v}_1 , ..., \mathbf{v}_n elementos de \mathbb{V} . Se dice que un vector \mathbf{w} es una *combinación lineal* de \mathbf{v}_1 , ..., \mathbf{v}_n si se puede expresar en la forma $\mathbf{w} = k_1\mathbf{v}_1 + ... + k_n\mathbf{v}_n$, donde k_1 , ..., k_n son números reales.

Si todo elemento de \mathbb{V} es una combinación lineal de $\mathbf{v}_1, ..., \mathbf{v}_n$ decimos que $\{\mathbf{v}_1, ..., \mathbf{v}_n\}$ es un *conjunto de generadores* de \mathbb{V} .

 $\mathbb{W} = \left\{ \sum_{i=1}^{r} k_{i} \mathbf{v}_{i} / k_{i} \in \mathbb{R} \right\} \text{ es un subespacio de } \mathbb{V} \text{ que se denomina } \text{ subespacio generado por } \left\{ \mathbf{v}_{1}, ..., \mathbf{v}_{r} \right\} \text{ y se nota } \mathbb{W} = \left\langle \mathbf{v}_{1}, ..., \mathbf{v}_{r} \right\rangle.$

Propiedad: Si \mathbb{W} es un subespacio de \mathbb{V} y $\mathbf{v}_1,...,\mathbf{v}_r$ son vectores de \mathbb{W} , entonces $\langle \mathbf{v}_1,...,\mathbf{v}_r \rangle \subseteq \mathbb{W}$. O sea $\langle \mathbf{v}_1,...,\mathbf{v}_r \rangle$ es el menor subespacio de \mathbb{V} que contiene a los vectores $\mathbf{v}_1,...,\mathbf{v}_r$.

DEPENDENCIA E INDEPENDENCIA LINEAL

Sea \mathbb{V} un espacio vectorial sobre \mathbb{R} , y sean $\mathbf{v}_1,...,\mathbf{v}_n$ elementos de \mathbb{V} .

Decimos que $\{\mathbf{v}_1,...,\mathbf{v}_n\}$ es *linealmente dependiente* si existen números reales $a_1,...,a_n$, no todos iguales a cero, tales que $a_1\mathbf{v}_1+...+a_n\mathbf{v}_n=\mathbf{0}$.

Decimos que $\{\mathbf{v}_1,...,\mathbf{v}_n\}$ es *linealmente independiente* si y sólo si se satisface la siguiente condición: siempre que $a_1,...,a_n$ sean números reales tales que $a_1\mathbf{v}_1+...+a_n\mathbf{v}_n=\mathbf{0}$, entonces $a_1=...=a_n=0$.

Propiedad: Sea \mathbb{V} un espacio vectorial sobre \mathbb{R} , y sean $\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4$ vectores de \mathbb{V} . Son equivalentes:

- a) $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ es linealmente independiente.
- b) $\{\mathbf{v}_1, k\mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ con $k \in \mathbb{R}, k \neq 0$, es linealmente independiente.
- c) $\{\mathbf{v}_1 + k\mathbf{v}_2, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ con $k \in \mathbb{R}$, es linealmente independiente.

Propiedad: Si $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ es linealmente independiente y $\mathbf{w} \notin \langle \mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n \rangle$ entonces $\langle \mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n, \mathbf{w} \rangle$ es linealmente independiente.

Propiedad: Si **w** es combinación lineal de $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$, entonces $\langle \mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k, \mathbf{w} \rangle = \langle \mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k \rangle$.

El rango fila de una matriz A es igual al máximo número de filas linealmente independientes de A.

El rango columna de una matriz A es igual al máximo número de columnas linealmente independientes de A.

Propiedad: El rango fila de A es igual al rango columna de A, y lo notamos rgA.

De aquí en más, cuando decimos espacio vectorial entenderemos espacio vectorial sobre R.

BASES

Una *base* de un espacio vectorial \mathbb{V} es una sucesión de elementos $\mathbf{v}_1,...,\mathbf{v}_n$ de \mathbb{V} tales que:

- a) $\{\mathbf{v}_1,...,\mathbf{v}_n\}$ genera \mathbb{V}
- b) $\{\mathbf{v}_1,...,\mathbf{v}_n\}$ es linealmente independiente

Se dice que un espacio vectorial \mathbb{V} , diferente de cero, es de *dimensión finita* si contiene una sucesión finita de vectores que forman una base de \mathbb{V} .

Propiedad: Dos bases cualesquiera de un espacio vectorial $\mathbb V$ de dimensión finita tienen el mismo número de vectores.

Si \mathbb{V} es un espacio vectorial de dimensión finita, la *dimensión* de \mathbb{V} es el número de vectores que tiene cualquier base de \mathbb{V} . Si $\mathbb{V} = \{\mathbf{0}\}$, entonces \mathbb{V} no tiene base y se dice que su dimensión es cero.

Propiedad: La dimensión de $\mathbb{S}_0 = \{\mathbf{x} \in \mathbb{R}^{n \times 1} / A\mathbf{x} = 0\}$, es igual a n - rgA.

SUMA DE SUBESPACIOS

Sea $\mathbb V$ un espacio vectorial, y sean $\mathbb S$ y $\mathbb T$ subespacios de $\mathbb V$; se define la *suma* de $\mathbb S$ y $\mathbb T$ como $\mathbb S + \mathbb T = \{ \mathbf v \in \mathbb V \, / \, \mathbf v = \mathbf s + \mathbf t \, , \, \text{con} \, \mathbf s \in \mathbb S \, \, \mathbf y \, \mathbf t \in \mathbb T \} \, .$

Propiedades: a) $\mathbb{S} + \mathbb{T}$ es un subespacio de \mathbb{V} .

b) Si dim $\mathbb{V} = n$, entonces dim $(\mathbb{S} + \mathbb{T}) = \dim \mathbb{S} + \dim \mathbb{T} - \dim(\mathbb{S} \cap \mathbb{T})$.

Sea $\mathbb V$ un espacio vectorial. Si $\mathbb S$ y $\mathbb T$ son subespacios de $\mathbb V$ que verifican simultáneamente: $\mathbb S+\mathbb T=\mathbb V$ y $\mathbb S\cap\mathbb T=\{\mathbf 0\}$, entonces $\mathbb V$ es la *suma directa* de $\mathbb S$ y $\mathbb T$, y se nota $\mathbb V=\mathbb S\oplus\mathbb T$.

En general, si $\mathbb{W}\subseteq\mathbb{V}$ verifica $\mathbb{W}=\mathbb{S}+\mathbb{T}$ y $\mathbb{S}\cap\mathbb{T}=\{\mathbf{0}\}$, se dirá que \mathbb{W} es la suma directa de \mathbb{S} y \mathbb{T} , y se notará $\mathbb{W}=\mathbb{S}\oplus\mathbb{T}$.

COORDENADAS

Sea \mathbb{V} un espacio vectorial, y $\mathbf{B} = \{\mathbf{v}_1,...,\mathbf{v}_n\}$ una base de \mathbb{V} . Si $\mathbf{v} = a_1\mathbf{v}_1 + ... + a_n\mathbf{v}_n$, entonces $(a_1,...,a_n)$ son las *coordenadas de* \mathbf{v} *con respecto a la base* \mathbf{B} , y notamos $(\mathbf{v})_{\mathbf{B}} = (a_1,...,a_n)$

Observación: Las coordenadas de un vector dependen de la base. Recuerde que cuando se da una base $\{\mathbf{v}_1,...,\mathbf{v}_n\}$, importa el orden en que se dan los vectores.

ESPACIO EUCLÍDEO

Llamamos espacio euclídeo de dimensión n al espacio vectorial \mathbb{R}^n con el producto

interno
$$(x_1, x_2, ..., x_n) \cdot (y_1, y_2, ..., y_n) = x_1 y_1 + x_2 y_2 + ... + x_n y_n$$
.

Si \mathbb{S} es un subespacio de \mathbb{R}^n , el conjunto $\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{x} \cdot \mathbf{s} = 0 \text{ para todo } \mathbf{s} \in \mathbb{S}\}$ se llama el *complemento ortogonal* de \mathbb{S} y se nota \mathbb{S}^{\perp} .

Propiedades: \mathbb{S}^{\perp} es un subespacio de \mathbb{R}^{n} .

$$\mathbb{S} \cap \mathbb{S}^{\perp} = \{\mathbf{0}\}.$$

$$\dim \mathbb{S}^{\perp} = n - \dim \mathbb{S}$$
 y $\mathbb{S} \oplus \mathbb{S}^{\perp} = \mathbb{R}^{n}$

$$(\mathbb{S}^{\perp})^{\perp} = \mathbb{S}$$

Si $\mathbb{S}=\left\langle \mathbf{v}_1,\mathbf{v}_2,...,\mathbf{v}_r \right\rangle$, \mathbf{w} es ortogonal a \mathbf{v} para todo $\mathbf{v}\in\mathbb{S}$ si y sólo si $\mathbf{w}\cdot\mathbf{v}_i=0$ para $1\leq i\leq r$.

$$\mathbf{w} \cdot \mathbf{v}_i = 0$$
 para $1 \le i \le r$

Observación: Si $\{\mathbf v_1$, $\mathbf v_2$, ..., $\mathbf v_r\}$ es una base de $\mathbb S$, para hallar $\mathbb S^\perp$ basta buscar n-r vectores linealmente independientes que sean ortogonales a todos los \mathbf{v}_i .

Si $\mathbf{v} = \mathbf{s}_1 + \mathbf{s}_2$ con $\mathbf{s}_1 \in \mathbb{S}$ y $\mathbf{s}_2 \in \mathbb{S}^{\perp}$, \mathbf{s}_1 se llama la proyección ortogonal de \mathbf{v} sobre \mathbb{S} .

Propiedad: La proyección ortogonal de v sobre S es el punto de S que está a menor distancia de \mathbf{v} , es decir que $\|\mathbf{v} - \mathbf{s}_1\| \le \|\mathbf{v} - \mathbf{s}\| \quad \forall \mathbf{s} \in \mathbb{S}$.

EJERCICIOS

Ejercicio 1.- Determinar cuáles de los siguientes conjuntos son subespacios.

a)
$$\mathbb{W} = \{(x_1, x_2, x_3) \in \mathbb{R}^3 / x_1 - x_2 + 2x_3 = 0\}$$

b)
$$\mathbb{W} = \{(x_1, x_2) \in \mathbb{R}^2 / x_1 + x_2 \le 0\}$$

c)
$$\mathbb{W} = \{ A \in \mathbb{R}^{2 \times 2} / a_{11} + a_{22} = 0 \}$$

d)
$$\mathbb{W} = \{(x_1, x_2) \in \mathbb{R}^2 / x_1 \cdot x_2 = 0\}$$

e)
$$\mathbb{W} = \{ \mathbf{v} \in \mathbb{R}^3 / \mathbf{v} = \lambda(1, -2, 1), \lambda \in \mathbb{R} \}$$

f)
$$\mathbb{W} = \left\{ X \in \mathbb{R}^{2 \times 1} / \begin{pmatrix} 1 & -1 \\ 2 & 1 \end{pmatrix} . X = X \right\}$$

- g) $\mathbb{W} = \{ \mathbf{v} \in \mathbb{R}^n / \mathbf{w}.\mathbf{v} = 0 \}$ donde w es un vector fijo de \mathbb{R}^n .
- h) El plano Π que contiene a los puntos (2,-4,-1), (6,4,5) y (5,2,3).

Ejercicio 2.- Decidir cuáles de los vectores dados pertenecen al subespacio S.

a)
$$S = \langle (1, -2, 4) \rangle$$

$$\mathbf{u} = (\frac{1}{4}, -\frac{1}{2}, 1)$$
; $\mathbf{v} = (2, -4, 4)$; $\mathbf{w} = (0, 0, 0)$

b)
$$S = \langle (1, -1, 3), (2, 1, -1) \rangle$$

$$\mathbf{v} = (0, -3, 2); \quad \mathbf{w} = (-1, -5, 11)$$

c)
$$S = \langle (1,-1,2,4), (2,1,3,-1), (0,-2,1,0) \rangle$$
 $\mathbf{v} = (3,2,4,3); \mathbf{w} = (0,-1,0,1)$

$$\mathbf{v} = (3, 2, 4, 3); \ \mathbf{w} = (0, -1, 0, 1)$$

Ejercicio 3.- Hallar $a \in \mathbb{R}$ para que el vector w pertenezca al subespacio \mathbb{S} .

a)
$$S = \langle (1,2,1), (-1,3,2) \rangle$$

$$\mathbf{w} = (2, a, 0)$$

b)
$$S = \langle (1,0,0,1), (0,2,1,-1), (1,a,-1,0) \rangle$$

$$\mathbf{w} = (1, -1, 2, 3)$$

Ejercicio 4.- Decidir si el conjunto de vectores dado genera V.

a)
$$\mathbb{V}=\mathbb{R}^3$$

$$\{(1,1,1),(3,2,1),(1,1,0),(1,0,0)\}$$

b)
$$\mathbb{V}=\mathbb{R}^3$$

$$\{(1,2,-1),(0,1,-1),(2,5,-3)\}$$

c)
$$\mathbb{V}=\mathbb{R}^4$$

$$\{(1,-1,0,1),(1,-1,-1,2),(0,1,2,1),(1,3,1,3)\}$$

d)
$$V=\mathbb{R}^{2\times 2}$$

$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix} \right\}$$

Ejercicio 5.- Hallar un conjunto de generadores del subespacio S.

a)
$$\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^3 / x_1 - x_2 + 4x_3 = 0 \}$$

b)
$$\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^5 / x_1 + x_2 - 4x_5 = x_2 + 2x_3 - x_4 = 0 \}$$

c)
$$S = \left\{ X \in \mathbb{R}^{2 \times 2} / X \cdot \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 2 & -1 \end{pmatrix} \cdot X \right\}$$

d)
$$\mathbb{S} = \left\{ X \in \mathbb{R}^{2 \times 2} / A.X = 0, \text{ con } A = \begin{pmatrix} 1 & -2 \\ -2 & 4 \end{pmatrix} \right\}$$

Ejercicio 6.- Encontrar un sistema de ecuaciones cuyo conjunto de soluciones sea S.

a)
$$S = \langle (1,0,1) \rangle$$

b)
$$S = \langle (0,1,2,-1), (1,0,1,0) \rangle$$

c)
$$S = \langle (1,1,1,1), (2,1,0,-1), (1,0,1,1) \rangle$$

d)
$$S = \left\langle \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & -1 \\ 2 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\rangle$$

Ejercicio 7.- Estudiar la dependencia o independencia lineal del conjunto de vectores.

a)
$$\{(2,1,2),(1,-3,0),(5,-1,4)\}$$

b)
$$\left\{ \begin{pmatrix} 1 & -3 \\ 3 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 3 \\ 0 & -3 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 1 & -1 \end{pmatrix} \right\}$$

$$d) \ \big\{ (0,2,1,-1), (1,0,0,1), (1,3,-2,1), (2,1,-3,4) \big\}$$

Ejercicio 8.- Determinar los valores reales de *k* para los cuales el conjuntos de vectores es linealmente independiente.

a)
$$\{(0,1,-2),(1,-1,k),(1,-3,0)\}$$

b)
$$\{(1,-1,3),(k,k+1,k+4),(k+1,k+1,k)\}$$

c)
$$\left\{ \begin{pmatrix} 1 & 0 \\ 0 & k \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ -1 & 2k \end{pmatrix}, \begin{pmatrix} -1 & k+1 \\ 0 & -k \end{pmatrix}, \begin{pmatrix} k-2 & -3 \\ 0 & 0 \end{pmatrix} \right\}$$

Ejercicio 9.- Sea $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ un conjunto de vectores linealmente independientes.

a) Determinar si $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ es un conjunto linealmente independiente.

i)
$$\mathbf{w}_1 = \mathbf{v}_1 + 2\mathbf{v}_3$$
; $\mathbf{w}_2 = \mathbf{v}_1 - 2\mathbf{v}_2 + 3\mathbf{v}_3$; $\mathbf{w}_3 = 2\mathbf{v}_2 + \mathbf{v}_3$

ii)
$$\mathbf{w}_1 = \mathbf{v}_1 + \mathbf{v}_2 - \mathbf{v}_3$$
; $\mathbf{w}_2 = 2\mathbf{v}_1 - 3\mathbf{v}_2$; $\mathbf{w}_3 = 5\mathbf{v}_2 - 2\mathbf{v}_3$

b) ¿para qué valores de α es $\{\mathbf{v}_1 - \alpha \mathbf{v}_3, \mathbf{v}_1 + 3\mathbf{v}_2, \alpha \mathbf{v}_2 + 3\mathbf{v}_3\}$ linealmente independiente?

Ejercicio 10.- Hallar base y dimensión de los siguientes subespacios.

a)
$$\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^2 / 6x_1 - 2x_2 = 0 \}$$

b)
$$\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^3 / 3x_1 + x_2 - x_3 = 0 \}$$

c)
$$\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^4 / 2x_1 - x_3 = x_1 + x_2 + 2x_4 = x_1 - x_2 - x_3 + 2x_4 = 0 \}$$

d)
$$S = \left\{ \mathbf{x} \in \mathbb{R}^{4 \times 1} / \begin{pmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -2 & 1 \\ 2 & -1 & 4 & 1 \end{pmatrix} \mathbf{x} = \mathbf{0} \right\}$$

e)
$$S = \left\{ X \in \mathbb{R}^{2 \times 2} / \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} X = X \begin{pmatrix} 1 & 2 \\ -1 & 1 \end{pmatrix} \right\}$$

f)
$$S = \langle (1,2,3), (3,1,0) \rangle$$

g)
$$S = \left\langle (2, 8, -3), (-1, -4, \frac{3}{2}) \right\rangle$$

h)
$$\mathbb{S} = \langle (1,-1,2,1), (2,1,1,1), (1,2,-1,0), (0,1,1,1) \rangle$$

i)
$$S = \left\langle \begin{pmatrix} 2 & 1 \\ -1 & 0 \end{pmatrix}, \begin{pmatrix} -1 & 0 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 4 \end{pmatrix}, \begin{pmatrix} 3 & 1 \\ -2 & -2 \end{pmatrix} \right\rangle$$

Ejercicio 11.- Decidir si el conjunto de vectores dado es base del subespacio

$$\mathbb{S} = \left\{ \mathbf{x} \in \mathbb{R}^4 / x_1 - x_2 + 2x_4 = 0 \right\}.$$

a)
$$\{(1,1,0,0),(0,2,0,1)\}$$

b)
$$\{(1,1,0,0),(0,2,-1,1),(2,0,0,-1)\}$$

c)
$$\{(1,1,0,0),(0,2,-1,1),(1,-1,0,1)\}$$

d)
$$\{(1,1,0,0),(0,2,-1,1),(3,1,1,-1)\}$$

Ejercicio 12.-Sea $\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 - x_2 + 2x_3 = 0 \}$. Hallar una base B de \mathbb{S} tal que todos los vectores de B tienen todas sus coordenadas distintas de 0.

Ejercicio 13.- Determinar la dimensión de \mathbb{T}_k para todos los valores de $k \in \mathbb{R}$.

a)
$$\mathbb{T}_k = \langle (0, -1, k), (1, -1, 0), (-3, 0, 1) \rangle$$

b)
$$\mathbb{T}_k = \langle \mathbf{v}_1 + \mathbf{v}_2 - \mathbf{v}_3 + 2\mathbf{v}_4, \mathbf{v}_1 - \mathbf{v}_3, 2\mathbf{v}_1 + 3\mathbf{v}_2 - 2\mathbf{v}_3 + k\mathbf{v}_4 \rangle$$
, donde $B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ es una base de un espacio vectorial \mathbb{V} .

Ejercicio 14.- Extender, si es posible, el conjunto de vectores a una base de $\mathbb{R}^{2\times 2}$.

a)
$$\left\{ \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 3 & -1 \\ 1 & 0 \end{pmatrix} \right\}$$

b)
$$\left\{ \begin{pmatrix} -1 & 1 \\ 3 & 2 \end{pmatrix}, \begin{pmatrix} 0 & 2 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \right\}$$

c)
$$\left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 3 & 2 \\ 4 & 5 \end{pmatrix} \right\}$$

Ejercicio 15.- Hallar una base de \mathbb{V} que contenga a una base de \mathbb{S} .

a)
$$\mathbb{V} = \mathbb{R}^4$$
 $\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 - x_2 + x_3 = x_2 - x_4 = 0 \}$

b)
$$\mathbb{V} = \mathbb{R}^{3 \times 2}$$
 $\mathbb{S} = \left\{ X \in \mathbb{R}^{3 \times 2} / x_{11} + x_{31} = x_{12} - x_{21} + x_{22} = x_{11} - x_{22} + x_{32} = 0 \right\}$

c)
$$V = \mathbb{R}^5$$
 $S = \langle (1, 2, 0, 1, -1), (2, 1, 1, 0, 0), (1, -1, 1, -1, 1) \rangle$

Ejercicio 16.- Extender, si es posible, el conjunto $\{(1,-1,0,1),(0,1,0,-1)\}$ a base de \mathbb{R}^4 con vectores del subespacio \mathbb{T} .

a)
$$\mathbb{T} = \{ \mathbf{x} \in \mathbb{R}^4 / x_2 + x_4 = 0 \}$$

b)
$$\mathbb{T} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 + x_3 = 0 \}$$

Ejercicio 17.- Extraer, si es posible, dos bases de V, del conjunto de vectores dado. ✓

a)
$$\mathbb{V}=\mathbb{R}^3$$
 $\{(1,0,-1),(0,1,1),(1,1,0),(2,1,4)\}$

b)
$$V=\mathbb{R}^3$$
 {(2,0,0),(0,-1,4),(2,1,-4),(1,-1,4)}

c)
$$\mathbb{V}=\mathbb{R}^{2\times 2}$$
 $\left\{ \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \right\}$

Ejercicio 18.- Determinar si los subespacios \mathbb{S} y \mathbb{T} son iguales.

a)
$$\mathbb{S} = \langle (1,0,2), (1,1,-1) \rangle$$
 $\mathbb{T} = \{ \mathbf{x} \in \mathbb{R}^3 / 2x_1 - 3x_2 - x_3 = 0 \}$
b) $\mathbb{S} = \langle (0,1,0), (1,1,3) \rangle$ $\mathbb{T} = \langle (2,2,6), (1,1,1) \rangle$

b)
$$S = \langle (0,1,0), (1,1,3) \rangle$$
 $T = \langle (2,2,6), (1,1,1) \rangle$

c)
$$S = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 + x_2 - x_3 - x_4 = 2x_1 + x_4 = 0 \}$$

$$\mathbb{T} = \left\{ \mathbf{x} \in \mathbb{R}^4 / 3x_1 + x_2 - x_3 = 2x_1 - x_2 + x_4 = x_1 + 2x_2 - x_3 - x_4 = 0 \right\}$$

d)
$$\mathbb{S} = \langle (1, -1, 0, 2) \rangle$$
 $\mathbb{T} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 + x_2 + x_3 = 2x_2 + x_4 = x_3 = 0 \}$

$$\mathbb{T} = \left\{ \mathbf{x} \in \mathbb{R}^4 / 3x_1 + x_2 - x_3 = 2x_1 - x_2 + x_4 = x_1 + 2x_2 - x_3 - x_4 = 0 \right\}
\mathbf{d}) \ \mathbb{S} = \left\langle (1, -1, 0, 2) \right\rangle \qquad \mathbb{T} = \left\{ \mathbf{x} \in \mathbb{R}^4 / x_1 + x_2 + x_3 = 2x_2 + x_4 = x_3 = 0 \right\}
\mathbf{e}) \ \mathbb{S} = \left\{ A \in \mathbb{R}^{2 \times 2} / a_{11} + a_{22} = a_{11} + 2a_{12} = 0 \right\} \qquad \mathbb{T} = \left\langle \begin{pmatrix} 2 & 1 \\ 0 & -2 \end{pmatrix}; \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right\rangle$$

Ejercicio 19.- Hallar base y dimensión de $\mathbb{S} \cap \mathbb{T}$.

a)
$$\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 + 2x_2 - x_3 + x_4 = x_2 + x_3 - 2x_4 = 0 \}$$
 $\mathbb{T} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 + 2x_4 = 0 \}$

b)
$$\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 - x_2 + 2x_3 = x_2 + x_4 = 0 \}$$
 $\mathbb{T} = \langle (-1, 0, 1, 1), (-2, -2, 1, 4) \rangle$

c)
$$\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^4 / 2x_1 + x_2 - 2x_3 + 3x_4 = 0 \}$$
 $\mathbb{T} = \langle (1, -1, 0, 0), (0, 1, -1, 0), (0, 1, 0, -1) \rangle$

d)
$$S = \left\langle \begin{pmatrix} -1 & 1 \\ 2 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ -1 & 1 \end{pmatrix} \right\rangle$$
 $\mathbb{T} = \left\{ A \in \mathbb{R}^{2 \times 2} / a_{11} + a_{21} - a_{22} = 0 \right\}$

e)
$$S = \langle (2,1,0), (1,1,-1) \rangle$$
 $T = \langle (0,1,2), (1,3,-1) \rangle$

Ejercicio 20.- Hallar base y dimensión de S+T.

a)
$$S = \langle (1, -1, 0, 1), (2, 1, 1, 1) \rangle$$
 $T = \langle (3, 0, 2, 2) \rangle$

b)
$$S = \langle (2,1,-1), (1,0,3) \rangle$$
 $T = \{ \mathbf{x} \in \mathbb{R}^3 / x_1 + 2x_2 + x_3 = 0 \}$

Ejercicio 21.- Sean
$$\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 + 2x_2 - x_4 = 2x_1 - x_3 + x_4 = 0 \}$$
 y $\mathbb{T} = \langle (1,3,1,-1); (0,1,-2,-2) \rangle$.

- a) Hallar una base de $\mathbb{S}+\mathbb{T}$.
- b) Escribir $\mathbf{v} = (3,5,7,1)$ como $\mathbf{v} = \mathbf{s} + \mathbf{t}$, con $\mathbf{s} \in \mathbb{S}$ y $\mathbf{t} \in \mathbb{T}$, de dos maneras distintas.

Ejercicio 22.- Sean $\mathbb{S} = \{\mathbf{x} \in \mathbb{R}^3 / x_1 + x_2 + x_3 = 0\}$, $\mathbb{T} = \langle (0,1,2); (1,-1,1) \rangle$ y $\mathbf{v} = (3,1,2)$. Hallar $\mathbf{s} \in \mathbb{S}$ y $\mathbf{t} \in \mathbb{T}$ tales que $\mathbf{v} \in \langle \mathbf{s}, \mathbf{t} \rangle$.

Ejercicio 23.- Sean
$$\mathbb{S} = \{\mathbf{x} \in \mathbb{R}^4 / 2x_1 - x_2 + x_4 = x_1 + x_3 = 0\}$$
 y $\mathbb{T} = \{\mathbf{x} \in \mathbb{R}^4 / x_2 + 2x_3 = 3x_1 + 3x_3 + x_4 = 0\}$. Hallar una base de \mathbb{R}^4 que contenga a una base de \mathbb{S} y a una base de \mathbb{T} .

Ejercicio 24.- Sea $B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ base de un espacio vectorial \mathbb{V} y sean $\mathbb{S} = \langle \mathbf{v}_1 + 2 \mathbf{v}_2, \mathbf{v}_2 + \mathbf{v}_3 \rangle$ y $\mathbb{T} = \langle \mathbf{v}_3 + \mathbf{v}_4, \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_4 \rangle$.

- a) Hallar base y dimensión de $\mathbb{S} \cap \mathbb{T}$ y de $\mathbb{S} + \mathbb{T}$.
- b) Hallar un vector $\mathbf{v} \in \mathbb{S} + \mathbb{T}$ tal que $\mathbf{v} \notin \mathbb{S}$ y $\mathbf{v} \notin \mathbb{T}$.

Ejercicio 25.- Decidir si $\mathbb{S}+\mathbb{T}=\mathbb{H}$.

a)
$$\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 + 2x_3 = -x_2 - x_3 + x_4 = 0 \}, \mathbb{T} = \langle (1, 2, 1, 0); (0, 0, 1, -1) \rangle, \mathbb{H} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 - x_2 + x_3 + x_4 = 0 \}$$

b)
$$\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^5 / 2x_3 - x_4 = x_1 + x_5 = x_1 + x_2 - 2x_5 = 0 \}, \ \mathbb{T} = \langle (1, -2, 1, 1, 0); (0, 1, 2, 3, 1) \rangle, \ \mathbb{H} = \{ \mathbf{x} \in \mathbb{R}^5 / 2x_1 + x_2 - x_5 = 0 \}$$

c)
$$\mathbb{S} = \langle (1,0,1,3); (2,2,2,3) \rangle$$
, $\mathbb{T} = \langle (3,2,3,6); (0,0,1,0) \rangle$, $\mathbb{H} = \langle (1,1,0,-1); (2,1,1,2); (0,1,1,1) \rangle$

Ejercicio 26.- Hallar dos subespacios distintos \mathbb{T} y \mathbb{T} ′ tales que $\mathbb{V} = \mathbb{S} \oplus \mathbb{T} = \mathbb{S} \oplus \mathbb{T}$ ′.

a)
$$V = \mathbb{R}^4$$
 $S = \langle (1, 2, 1, 0), (-1, 3, 1, 1) \rangle$

b)
$$\mathbb{V} = \mathbb{R}^5$$
 $\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^5 / x_1 - x_3 + 2x_4 + x_5 = 3x_1 - x_2 = x_2 + x_3 + 2x_4 - x_5 = 0 \}$

c)
$$\mathbb{V} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 + 2x_2 + x_3 - x_4 = 0 \}$$
 $\mathbb{S} = \langle (1, -1, 0, -1), (1, -1, 1, 0) \rangle$

c)
$$\mathbb{V} = \{\mathbf{x} \in \mathbb{R}^4 / x_1 + 2x_2 + x_3 - x_4 = 0\}$$
 $\mathbb{S} = \langle (1, -1, 0, -1), (1, -1, 1, 0) \rangle$
Ejercicio 27.- Sean $\mathbb{S} = \langle \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix} \rangle$ $\mathbb{T} = \{A \in \mathbb{R}^{2 \times 2} / a_{11} = a_{12} - a_{21} = 0\}$.

- a) Probar que $\mathbb{R}^{2\times 2} = \mathbb{S} \oplus \mathbb{T}$.
- b) Escribir $\mathbf{w} = \begin{pmatrix} 3 & 3 \\ -5 & 0 \end{pmatrix}$ como $\mathbf{w} = \mathbf{s} + \mathbf{t}$ con $\mathbf{s} \in \mathbb{S}$ y $\mathbf{t} \in \mathbb{T}$.

Ejercicio 28.- Sean
$$\mathbb{S} = \{\mathbf{x} \in \mathbb{R}^3 / x_1 + 2x_2 + x_3 = x_2 - x_3 = 0\}$$
 y $\mathbb{T} = \{\mathbf{x} \in \mathbb{R}^3 / x_1 + x_2 - x_3 = 2x_1 + x_2 = 0\}$. Hallar un subespacio \mathbb{W} tal que $\mathbb{T} \subseteq \mathbb{W}$ y $\mathbb{R}^3 = \mathbb{S} \oplus \mathbb{W}$.

Ejercicio 29.- Sea
$$\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^4 / x_2 = x_1 + x_3 = 0 \}$$
.

Encontrar un subespacio $\mathbb{T} \subseteq \mathbb{R}^4$ que verifique simultáneamente:

$$\mathbb{S} \cap \mathbb{T} = \langle (1, 0, -1, 1) \rangle \text{ y } \mathbb{S} + \mathbb{T} = \mathbb{R}^4.$$

Ejercicio 30.- Sean
$$\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 + x_3 - x_4 = x_1 + x_2 + x_3 + x_4 = 0 \}$$
 y

$$\mathbb{T} = \left\{ \mathbf{x} \in \mathbb{R}^4 / x_1 + x_2 + 2x_3 + x_4 = ax_1 + bx_2 + cx_3 + dx_4 = 0 \right\}$$

Determinar todos los valores reales de a, b, c, d para los cuales la suma $S+\mathbb{T}$ no es directa.

Ejercicio 31.- Sean
$$\mathbb{H} = \{ \mathbf{x} \in \mathbb{R}^5 / x_1 - x_2 - x_3 + 2x_4 - x_5 = 0 \}$$
, $\mathbb{H}' = \{ \mathbf{x} \in \mathbb{R}^5 / 2x_1 + x_2 + x_3 + x_4 + x_5 = 0 \}$, $\mathbb{W} = \{ (1,0,0,1,0); (0,0,1,0,0); (1,-1,1,1,1) \}$, $\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^5 / x_1 - x_2 - x_3 = 2x_4 - x_5 = 0 \}$ \mathbb{Y} $\mathbb{S}' = \{ \mathbf{x} \in \mathbb{R}^5 / 2x_1 + x_2 = x_3 + x_4 + x_5 = 0 \}$.

Encontrar un subespacio $\mathbb{T} \subset \mathbb{R}^5$ que verifique simultáneamente:

$$\mathbb{S} \oplus \mathbb{T} = \mathbb{H} \; ; \; \; \mathbb{S}' \oplus \mathbb{T} = \mathbb{H}' \; ; \; \; \mathbb{T} \cap \mathbb{W} \neq \left\{0\right\}$$

Ejercicio 32.- Encontrar todos los vectores de \mathbb{R}^3 que son ortogonales a todos los vectores del conjunto $\{(1,0,-1);(-1,1,3)\}$.

Ejercicio 33.- Encontrar el complemento ortogonal del subespacio S.

a)
$$\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 + x_2 + x_3 - x_4 = x_1 + 2x_4 = 0 \}$$
.

b)
$$S = \langle (1,1,3); (2,1,-1) \rangle$$

c)
$$S = \langle (2,1,2,0); (1,0,2,1); (3,1,4,1) \rangle$$

Ejercicio 34.- En \mathbb{R}^3 , encontrar el complemento ortogonal de:

- a) el eje *x*;
- b) el plano coordenado yz;
- c) el plano de ecuación $x_1 + 3x_2 2x_3 = 0$;
- d) la recta de ecuación $X = \lambda(-1, 2, 5)$.

Ejercicio 35.- Sea $\mathbb{S} = \langle (2,0,0,3,1); (0,1,1,-1,0) \rangle$. Hallar una base de \mathbb{S}^{\perp} , y dar un sistema de ecuaciones cuyo conjunto de soluciones sea el subespacio \mathbb{S} .

Ejercicio 36.- a) Sean $\Pi: 6x_1 + 4x_2 - x_3 = 0$ y P = (7,5,9). Hallar el punto $Q \in \Pi$ que está más próximo al punto P. Calcular la distancia del punto P al plano Π .

b) Sean $\mathbb{L}: \lambda(-2,4,1)$ y P = (4,1,-8). Hallar el punto $Q \in \mathbb{L}$ que está más próximo al punto P. Calcular la distancia del punto P a la recta \mathbb{L} .

Ejercicio 37.- Sean en \mathbb{R}^3 las bases $B = \{(1,0,0),(0,1,0),(0,0,1)\}$

$$B' = \{(0,0,1),(1,0,0),(0,1,0)\} \text{ y } B'' = \{(3,1,-2),(0,1,-1),(2,0,0)\}$$

Hallar las coordenadas con respecto a las bases B, B' y B'' de:

- a) (4,1,-3)
- b) $(x_1, x_2, x_3) \in \mathbb{R}^3$

Ejercicio 38.- Hallar las coordenadas de la matriz $\begin{pmatrix} 1 & -1 \\ 3 & 2 \end{pmatrix}$ en la base

$$B = \left\{ \begin{pmatrix} -1 & 2 \\ 1 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 2 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 0 & 3 \end{pmatrix} \right\}$$

Ejercicio 39.- Sea $B=\{\mathbf{v}_1,\mathbf{v}_2,\mathbf{v}_3\}$ una base de \mathbb{R}^3 . Determinar si $\{\mathbf{w}_1,\mathbf{w}_2,\mathbf{w}_3\}$ es

linealmente independiente, si \mathbf{w}_1 , \mathbf{w}_2 , \mathbf{w}_3 son los vectores de \mathbb{R}^3 cuyas coordenadas respecto de B son:

- a) (2,3,-1), (0,-2,1) y (0,0,3) respectivamente.
- b) (3,1,-1), (1,0,2) y (5,1,3) respectivamente.

Ejercicio 40.- Sea B=
$$\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$$
 una base de \mathbb{R}^4 y sea $\mathbb{T}_k = \langle \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3, \mathbf{v}_1 - \mathbf{v}_4, \mathbf{v}_1 + 3\mathbf{v}_2 + k\mathbf{v}_3 + 2\mathbf{v}_4 \rangle$.

Determinar todos los valores de k en $\mathbb R$ para los cuales dim $\mathbb T_k=3$.

Ejercicio 41.- Se sabe que $B=\{\mathbf{w}_1,\mathbf{w}_2,\mathbf{w}_3\}$ es una base de \mathbb{R}^3 y que las coordenadas de los vectores (0,-1,1), (1,0,1) y (1,1,-1) en la base B son, respectivamente, (1,2,2), (1,1,-1) y (-1,-1,0). Hallar la base B.

Ejercicio 42.- Sea $\mathbb{S} = \{\mathbf{x} \in \mathbb{R}^3 / x_1 + 2x_2 - x_3 = 0\}$. Hallar una base B de \mathbb{R}^3 que contenga a una base de \mathbb{S} y a una base de \mathbb{S}^{\perp} , y tal que que vector (0,5,2) tenga coordenadas (0,1,4) en la base B.

EJERCICIOS SURTIDOS

1. Sea $B = \{\mathbf{v}_1; \mathbf{v}_2; \mathbf{v}_3; \mathbf{v}_4\}$ una base de un espacio vectorial \mathbb{V} . Sean $\mathbb{S} = \langle \mathbf{v}_1 - \mathbf{v}_3 - 2\mathbf{v}_4; \mathbf{v}_2 \rangle$ y $\mathbb{T} = \langle -\mathbf{v}_1 + k\mathbf{v}_2 + \mathbf{v}_3 + k\mathbf{v}_4; \mathbf{v}_1 - \mathbf{v}_2 + 2\mathbf{v}_3 - \mathbf{v}_4; \mathbf{v}_1 - \mathbf{v}_2 + k\mathbf{v}_3 - \mathbf{v}_4 \rangle$.

Hallar todos los valores de $k \in \mathbb{R}$ para los cuales $\mathbb{S} \oplus \mathbb{T} = \mathbb{V}$.

2. Sean
$$\mathbb{S} = \langle (1,2,0,1); (0,-1,1,0) \rangle$$
 y $\mathbb{T} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 - x_2 + x_3 - x_4 = 2x_1 - x_3 - x_4 = 0 \}$. Hallar, si existe, un subespacio \mathbb{W} de modo que se verifique simultáneamente:

 $\dim(\mathbb{S} \cap \mathbb{W}) = 1$; $\dim(\mathbb{T} \cap \mathbb{W}) = 1$; $\dim((\mathbb{S} + \mathbb{T}) \cap \mathbb{W}) = 1$; $\dim(\mathbb{W} = 2)$

3. Sean en
$$\mathbb{R}^4$$
 los subespacios $\mathbb{S} = \langle (2,1,0,1) \rangle$, $\mathbb{H} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 - x_2 + 2x_3 - x_4 = 0 \}$ y $\mathbb{W} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 + x_2 + x_4 = x_2 - x_3 + 2x_4 = 0 \}$.

Hallar, si es posible, un subespacio $\mathbb T$ que verifique simultáneamente:

$$\mathbb{S} \oplus \mathbb{T} = \mathbb{H}$$
 y $\mathbb{T} \cap \mathbb{W} \neq \{0\}$.

- **4.** Sean $\mathbb{S} = \langle (1,2,1,0); (0,3,0,2) \rangle$ y $\mathbb{T} = \langle (1,1,1,1); (3,-1,3,4) \rangle$. Hallar una base de \mathbb{R}^4 que contenga a una base de \mathbb{S}^\perp y a una base de \mathbb{T} .
- **5.** Sean en \mathbb{R}^4 los subespacios $\mathbb{W} = \langle (1,0,1,2); (1,1,0,-1) \rangle$,

$$\mathbb{H}_1 = \left\{ \mathbf{x} \in \mathbb{R}^4 / x_1 - 2x_2 + x_3 - x_4 = 0 \right\} \ \text{y} \ \mathbb{H}_2 = \left\{ \mathbf{x} \in \mathbb{R}^4 / x_1 + ax_2 - x_3 + bx_4 = 0 \right\}.$$

Hallar $a, b \in \mathbb{R}$ y un subespacio \mathbb{S} tales que se verifique simultáneamente:

$$\mathbb{W} \oplus \mathbb{S} = \mathbb{H}_1 \quad \mathbf{y} \quad \mathbb{W}^{\perp} \oplus \mathbb{S} = \mathbb{H}_2$$
.

6. Sean $\mathbb{S}_1 = \left\{ \mathbf{x} \in \mathbb{R}^5 / x_1 + 2x_2 + x_3 = 0; 4x_1 + x_5 = 0 \right\}$ y

$$\mathbb{S}_{2} = \left\{ \mathbf{x} \in \mathbb{R}^{5} / x_{1} + x_{2} - 3x_{3} + x_{4} - k^{2}x_{5} = 0; x_{1} + 2x_{2} - 5x_{3} + 3x_{4} - k^{2}x_{5} = 0; x_{2} - 2x_{3} + kx_{4} = 0 \right\}.$$

Hallar todos los $k \in \mathbb{R}$ para los cuales $\mathbb{S}_1 = \mathbb{S}_2^{\perp}$.

- 7. Sean $B = \{\mathbf{v}_1; \mathbf{v}_2; \mathbf{v}_3\}$, $B' = \{\mathbf{v}_2 + \mathbf{v}_3; \mathbf{v}_1 \mathbf{v}_3; -\mathbf{v}_2\}$ y $B'' = \{-\mathbf{v}_2 + \mathbf{v}_3; \mathbf{v}_1 + \mathbf{v}_3; -\mathbf{v}_1\}$ bases de un espacio vectorial \mathbb{V} y sean \mathbf{v} y \mathbf{w} tales que $\mathbf{v}_B = (1, -1, 1)$ y $\mathbf{w}_{B'} = (2, 0, -1)$. Hallar $(2\mathbf{v} + \mathbf{w})_{B''}$.
- **8.** Sean en \mathbb{R}^4 el subespacio $\mathbb{S} = \left\{ \mathbf{x} \in \mathbb{R}^4 / x_2 + x_3 x_4 = x_1 + x_2 + 2x_3 + x_4 = 0 \right\}$ y la base $B = \left\{ (1,1,1,1); (1,1,2,0); (1,2,0,0); (2,0,0,0) \right\}$.

Hallar todos los vectores \mathbf{v} que pertenecen a \mathbb{S} y cuyas coordenadas en la base B son de la forma (a,b,a,b).

9. Sean en \mathbb{R}^4 los subespacios $\mathbb{S} = \left\{ \mathbf{x} \in \mathbb{R}^4 / x_1 + x_2 + x_4 = x_2 + 2x_3 = 0 \right\}$ y $\mathbb{T} = \left\langle (5, 5, -1, -1); (3, 1, 0, -1) \right\rangle$. Hallar un subespacio \mathbb{W} de \mathbb{R}^4 , $\mathbb{W} \neq \mathbb{T}$ de manera que se

verifique simultáneamente: $\mathbb{S} \cap \mathbb{W} = \mathbb{S} \cap \mathbb{T} \quad y \quad \mathbb{S} + \mathbb{W} = \mathbb{S} + \mathbb{T}$.

10. Sea $B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4\}$ base de un espacio vectorial \mathbb{V} .

Sean
$$\mathbb{S} = \langle \mathbf{v}_1 + \mathbf{v}_2 - 2\mathbf{v}_3 + 2\mathbf{v}_4, \mathbf{v}_2 - \mathbf{v}_3 + \mathbf{v}_4 \rangle$$
 y $\mathbb{T} = \langle \mathbf{v}_1 + \mathbf{v}_2 + 2\mathbf{v}_3, \mathbf{v}_1 + \mathbf{v}_3 \rangle$.

Hallar un subespacio $\mathbb{W} \subset \mathbb{V}$ tal que $\mathbb{W} \oplus (\mathbb{S} \cap \mathbb{T}) = \mathbb{V}$.

11. Sea
$$S = \langle (1,1,0,2); (0,a,1,-1); (1,0,-1,b); (0,-1,-1,b-2) \rangle$$
.

Hallar todos los valores de a y b tales que $\mathbb{S}^{\perp} = \langle (1, -1, 1, 0) \rangle$.

12. Sean
$$\mathbb{S} = \langle (1, 2, 1, 1) \rangle$$
, $\mathbb{H}_1 = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 - x_2 - x_3 + 2x_4 = 0 \}$ y $\mathbb{H}_2 = \{ \mathbf{x} \in \mathbb{R}^4 / -2x_1 + x_2 - x_3 + x_4 = 0 \}$.

Hallar, si es posible, una base de \mathbb{R}^4 que contenga a una base de \mathbb{S} , a una base de \mathbb{H}_1 y a una base de \mathbb{H}_2 simultáneamente.

13. Sean
$$\mathbb{W} = \langle (1, -1, 0, 0); (0, 0, 0, 1); (a, 0, 1, -1) \rangle$$
 $y \mathbb{S} = \langle (1, 1, 1, 0); (2, 0, 1, 1) \rangle$.

Determinar $a \in \mathbb{R}$ y un subespacio \mathbb{H} de dimensión 2, tal que $\mathbb{S} + \mathbb{H}^{\perp} = \mathbb{W}$.

14. Sean
$$\mathbb{S} = \langle (1, -1, 1, 0); (0, 2, -1, -2) \rangle$$
, $\mathbb{H} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 + x_2 + x_4 = 0 \}$ y la base

$$B = \{(1,0,1,0); (0,1,0,1); (0,2,0,0); (1,0,-1,0)\}.$$

Hallar un subespacio \mathbb{T} de \mathbb{R}^4 tal que $\mathbb{T} \oplus \mathbb{S} = \mathbb{H}$, y para todo $\mathbf{v} \in \mathbb{T}$, las coordenadas de \mathbf{v} en la base B son de la forma (a,b,a,b).

15. Sean
$$\mathbb{T} = \left\{ A \in \mathbb{R}^{3\times 3} / a_{11} + a_{22} + a_{33} = 0 \right\}$$
, $\mathbb{S} \subset \mathbb{R}^{3\times 3}$, $\mathbb{S} = \langle I \rangle$ donde I es la matriz

identidad. Calcular $\dim(\mathbb{S} + \mathbb{T})$.

Si
$$B = \begin{pmatrix} 1 & 2 & 0 \\ -1 & 2 & 2 \\ -1 & -1 & 3 \end{pmatrix}$$
, hallar $S \in \mathbb{S}$ y $T \in \mathbb{T}$ tales que $B = S + T$.

16. La matriz $\begin{pmatrix} 2 & 3 \\ 6 & 3 \end{pmatrix}$ tiene coordenadas (1,2,0,3) en la base

 $B = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix}; \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}; \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}; \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}.$ Calcular las coordenadas de $\begin{pmatrix} -1 & 3 \\ -3 & 2 \end{pmatrix}$ en la base B

17. Sean B= $\{(1,-1,0,2);(0,1,2,0);(-2,1,-1,0);(0,0,0,1)\}$ y

 $\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 - x_2 + x_4 = 2x_2 - x_3 - x_4 = 0 \}$. Hallar todos los $\mathbf{v} \in \mathbb{R}^4$ tales que $\mathbf{v} \in \mathbb{S}$ y las coordenadas de \mathbf{v} en la base B son de la forma (a,0,b,0).

PRÁCTICA 5

TRANSFORMACIONES LINEALES

DEFINICIONES Y PROPIEDADES

Sean \mathbb{V} y \mathbb{W} espacios vectoriales sobre \mathbb{R} . Una *transformación lineal* $f: \mathbb{V} \to \mathbb{W}$ es una función que satisface las siguientes dos propiedades:

TL1: Si
$$\mathbf{u} \in \mathbb{V}$$
 y $\mathbf{v} \in \mathbb{V}$, $f(\mathbf{u} + \mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$

TL2: Si
$$k \in \mathbb{R}$$
 y $\mathbf{u} \in \mathbb{V}$, $f(k\mathbf{u}) = kf(\mathbf{u})$

Son transformaciones lineales:

La función nula $0: \mathbb{V} \to \mathbb{W}$ dada por $0(\mathbf{v}) = \mathbf{0}$, para todo $\mathbf{v} \in \mathbb{V}$.

La función identidad id : $\mathbb{V} \to \mathbb{V}$, dada por id $(\mathbf{v}) = \mathbf{v}$, para todo $\mathbf{v} \in \mathbb{V}$.

Propiedades: Cualquier transformación lineal $f: \mathbb{V} \to \mathbb{W}$ satisface:

$$\mathbf{a})f(\mathbf{0}) = \mathbf{0}$$

b)
$$f(-\mathbf{v}) = -f(\mathbf{v})$$
 para todo $\mathbf{v} \in \mathbb{V}$

$$c) f(\mathbf{v} - \mathbf{w}) = f(\mathbf{v}) - f(\mathbf{w})$$
 para todos \mathbf{v} y $\mathbf{w} \in \mathbb{V}$

d)
$$f(a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + ... + a_n\mathbf{v}_n) = a_1f(\mathbf{v}_1) + a_2f(\mathbf{v}_2) + ... + a_nf(\mathbf{v}_n)$$
 para todos $a_i \in \mathbb{R}$, $\mathbf{v}_i \in \mathbb{V}$

Si
$$f: \mathbb{V} \to \mathbb{W}, \ \mathbb{S} \subset \mathbb{V}, \ \mathbb{T} \subset \mathbb{W}, \ \mathbf{w} \in \mathbb{W}$$
, notamos:

$$f(S) = \{ \mathbf{w} \in W / \mathbf{w} = f(\mathbf{s}), \text{ con } \mathbf{s} \in S \}$$

$$f^{-1}(\mathbf{w}) = \{ \mathbf{v} \in \mathbb{V} / f(\mathbf{v}) = \mathbf{w} \}$$

$$f^{-1}(\mathbb{T}) = \{ \mathbf{v} \in \mathbb{V} \mid f(\mathbf{v}) \in \mathbb{T} \}$$

Propiedades:

Si \mathbb{S} es subespacio de \mathbb{V} , entonces $f(\mathbb{S})$ es subespacio de \mathbb{W} .

Si \mathbb{T} es subespacio de \mathbb{W} , entonces $f^{-1}(\mathbb{T})$ es subespacio de \mathbb{V} .

Teorema. Si $\{ \mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n \}$ es una base de \mathbb{V} , y $\mathbf{w}_1, \mathbf{w}_2, ..., \mathbf{w}_n$ son vectores (no necesa - riamente distintos) en \mathbb{W} , entonces hay una única transformación lineal $f: \mathbb{V} \to \mathbb{W}$ tal que $f(\mathbf{v}_1) = \mathbf{w}_1, f(\mathbf{v}_2) = \mathbf{w}_2, ..., f(\mathbf{v}_n) = \mathbf{w}_n$.

Este teorema nos dice que una transformación lineal está completamente determinada por los valores que toma en una base.

Si $f: \mathbb{V} \to \mathbb{W}$ es una transformación lineal, llamamos:

- n'ucleo de f al conjunto $Nu f = \{ v \in V / f(v) = 0 \}$
- imagen de f al conjunto $\operatorname{Im} f = \{ \mathbf{w} \in \mathbb{W} \mid \mathbf{w} = f(\mathbf{v}), \operatorname{con} \mathbf{v} \in \mathbb{V} \}$ Observación: $\operatorname{Im} f = f(\mathbb{V})$.

Propiedades: Si $f: \mathbb{V} \to \mathbb{W}$ es una transformación lineal, entonces:

- a) Nu f es un subespacio de \mathbb{V} .
- b) Im f es un subespacio de \mathbb{W} .
- c) Si $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ es un conjunto de generadores de \mathbb{V} , entonces $\{f(\mathbf{v}_1), f(\mathbf{v}_2), ..., f(\mathbf{v}_n)\}$ es un conjunto de generadores de Im f.
- d) Si $\{f(\mathbf{v}_1), f(\mathbf{v}_2), ..., f(\mathbf{v}_r)\}$ es linealmente independiente, entonces $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_r\}$ es linealmente independiente.

Decimos que una transformación lineal $f: \mathbb{V} \to \mathbb{W}$ es:

- monomorfismo si es inyectiva, esto es, si verifica " $f(\mathbf{v}) = f(\mathbf{w}) \Rightarrow \mathbf{v} = \mathbf{w}$ ".
- epimorfismo si es survectiva, esto es, si $\text{Im } f = \mathbb{W}$.
- *isomorfismo* si es biyectiva, es decir, si es monomorfismo y epimorfismo.

Propiedades: Si $f: \mathbb{V} \to \mathbb{W}$ es una transformación lineal, entonces:

a) f es monomorfismo \Leftrightarrow Nu $f = \{0\}$.

b) Si f es monomorfismo y { \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_r } es linealmente independiente, entonces

 $\{f(\mathbf{v}_1), f(\mathbf{v}_2), ..., f(\mathbf{v}_r)\}\$ es linealmente independiente.

c) f es isomorfismo si y sólo si: "Si $\{ \mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n \}$ es base de \mathbb{V} , entonces

$$\{f(\mathbf{v}_1), f(\mathbf{v}_2), ..., f(\mathbf{v}_n)\}\$$
 es base de \mathbb{W} ".

Teorema de la dimensión

Si $f: \mathbb{V} \to \mathbb{W}$ es una transformación lineal, entonces

$$\dim \mathbb{V} = \dim \operatorname{Nu} f + \dim \operatorname{Im} f$$

Propiedades:

Si $f: \mathbb{V} \to \mathbb{W}$ y $g: \mathbb{W} \to \mathbb{U}$ son transformaciones lineales, la composición $g \circ f: \mathbb{V} \to \mathbb{U}$, dada por $(g \circ f)(\mathbf{v}) = g(f(\mathbf{v}))$, es transformación lineal.

Si $f: \mathbb{V} \to \mathbb{W}$ es isomorfismo, la función inversa $f^{-1}: \mathbb{W} \to \mathbb{V}$, que cumple $f \circ f^{-1} = \mathrm{id}_{\mathbb{W}} \ \ \ \ \ \ \ \ \ \ \ \ \ \ f^{-1} \circ f = \mathrm{id}_{\mathbb{V}}$, es isomorfismo.

Si $f: \mathbb{V} \to \mathbb{W}$ y $g: \mathbb{W} \to \mathbb{U}$ son isomorfismos, $g \circ f$ es isomorfismo y se verifica:

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}$$
.

Una transformación lineal $p : \mathbb{V} \to \mathbb{V}$ es un *proyector* si $p \circ p = p$.

Propiedad: Si $p : \mathbb{V} \to \mathbb{V}$ es un proyector, entonces

- $\mathbb{V} = \operatorname{Nu} p \oplus \operatorname{Im} p$
- Para todo $\mathbf{v} \in \operatorname{Im} p, \ p(\mathbf{v}) = \mathbf{v}$

Dada la transformación lineal $f: \mathbb{R}^n \to \mathbb{R}^m$, existe una única matriz $A \in \mathbb{R}^{m \times n}$ tal que f puede escribirse en la forma

$$f(x_1, x_2, ..., x_n) = A \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}, \quad \text{o} \quad f(\mathbf{x}) = A\mathbf{x}$$

Esta matriz A tal que $f(\mathbf{x}) = A\mathbf{x}$ se denomina matriz de la transformación lineal f, y escribimos A = M(f).

Propiedad: Las columnas de M(f) son un conjunto de generadores de Im f.

 $\operatorname{Si} A \in \mathbb{R}^{m \times n}$,

el $rango\ columna\ de\ A$ es la dimensión del subespacio generado por las columnas de A; el $rango\ fila\ de\ A$ es la dimensión del subespacio generado por las filas de A.

Teorema: Si $A \in \mathbb{R}^{m \times n}$, entonces

rango fila de A = rango columna de A

Esta igualdad nos permite hablar de rango de *A*, que notaremos rg *A*.

Propiedad: $\dim \operatorname{Im} f = \operatorname{rg} M(f)$.

Teorema: Si $A \in \mathbb{R}^{m \times n}$, la dimensión del subespacio de soluciones de $A\mathbf{x} = \mathbf{0}$ es $n - \operatorname{rg} A$.

Sean B = { \mathbf{v}_1 , ..., \mathbf{v}_n } base de un espacio vectorial \mathbb{V} de dimensión n y B' = { \mathbf{w}_1 , ..., \mathbf{w}_m } base de un espacio vectorial \mathbb{W} de dimensión m.

Si $f: \mathbb{V} \to \mathbb{W}$ es una transformación lineal y $f(\mathbf{v}_j) = a_{1j}\mathbf{w}_1 + ... + a_{mj}\mathbf{w}_m$, $1 \le j \le n$, llamamos *matriz asociada a f* en las bases B y B', a la matriz de $m \times n$:

$$M_{BB'}(f) = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{pmatrix}$$

Notar que en la columna j de $M_{BB'}(f)$ están las coordenadas de $f(\mathbf{v}_j)$ en base B'.

La matriz $M_{BB'}(f)$ es tal que si $\mathbf{v} \in \mathbb{V}$, $M_{BB'}(f)(\mathbf{v})_B = (f(\mathbf{v}))_{B'}$.

Observación: Si $f: \mathbb{R}^n \to \mathbb{R}^m$ y E y E' son las respectivas bases canónicas, $M_{\mathit{EE}}(f) = M(f)$.

Notación: Si $\mathbb{W} = \mathbb{V}$ y B' = B, escribimos $M_{B}(f)$ en lugar de $M_{BB'}(f)$.

Propiedad: rg $M_{BB'}(f)$ = dim Im f; de esto se deduce que el rango de una matriz asociada a una transformación lineal no depende de las bases elegidas.

Propiedad: Matriz de la composición:

 $Sean~\mathbb{U},~\mathbb{V}~y~\mathbb{W}~espacios~vectoriales,~y~sean~B,~B'~y~B''~bases~de~\mathbb{U},~\mathbb{V}~y~\mathbb{W}~respectivamente.$

Si $f: \mathbb{U} \to \mathbb{V}$ y $g: \mathbb{V} \to \mathbb{W}$ son transformaciones lineales, se tiene:

$$M_{BB^{"}}(g \circ f) = M_{B'B''}(g)M_{BB'}(f)$$

Propiedad: Si $f: \mathbb{V} \to \mathbb{W}$ es un isomorfismo y B y B' son bases de \mathbb{V} y \mathbb{W} respectivamente, $M_{B'B}(f^{-1}) = (M_{BB'}(f))^{-1}$.

Si B y B' son dos bases del espacio vectorial $\mathbb V$, llamamos matriz de cambio de base de B a B', a la matriz $C_{BB'}=M_{BB'}(id)$.

Propiedad: $C_{B'B} = (C_{BB'})^{-1}$

Propiedad: Si $f: \mathbb{V} \to \mathbb{V}$ es una transformación lineal y B y B' son bases de \mathbb{V} ,

$$M_{B'}(f) = C_{BB'}M_B(f)C_{B'B}$$

o, en virtud de la propiedad anterior,

$$M_{B'}(f) = (C_{B'B})^{-1} M_B(f) C_{B'B}$$

EJERCICIOS

Ejercicio 1.- Determinar si la función f es transformación lineal.

a)
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
, $f(x_1, x_2, x_3) = (x_1 - x_2, 2x_1)$

b)
$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
, $f(x_1, x_2) = (x_1, x_2, 0, 0)$

c)
$$f: \mathbb{R}^2 \to \mathbb{R}^{3 \times 2}$$
, $f(x_1, x_2) = \begin{pmatrix} x_1 & x_1 - x_2 \\ 0 & 0 \\ -x_1 & 0 \end{pmatrix}$

$$d) f: \mathbb{R}^{2\times 3} \to \mathbb{R}^{3\times 2}, f(A) = A^{t}$$

Ejercicio 2.- Hallar la expresión de la transformación lineal *f*.

a)
$$f: \mathbb{R}^3 \to \mathbb{R}^4$$
 tal que $f(1,0,0) = (2,1,-1,1)$, $f(0,1,0) = (3,-1,1,0)$ y $f(0,0,1) = (0,0,4,1)$.

b)
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 tal que $f(1,1,-1) = (0,3,1)$, $f(1,0,1) = (2,-1,1)$ y $f(1,1,0) = (3,2,4)$.

c)
$$f: \mathbb{R}^2 \to \mathbb{R}^{2 \times 2}$$
 tal que $f(1,-1) = \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix}$ y $f(1,1) = \begin{pmatrix} 0 & 1 \\ 2 & 1 \end{pmatrix}$.

Ejercicio 3.- Decidir si existe una transformación lineal f que satisface:

a)
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
, $f(1,-2,0) = (3,4)$, $f(2,0,1) = (-1,1)$, $f(0,4,1) = (-7,-7)$

b)
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
, $f(1,1,1) = (2,3,4)$, $f(0,1,1) = (1,2,1)$, $f(1,2,2) = (1,1,5)$

c)
$$f: \mathbb{R}^2 \to \mathbb{R}^3$$
, $f(1,1) = (2,1,1)$, $f(1,0) = (0,2,0)$, $f(5,2) = (4,8,2)$

Ejercicio 4.- Hallar una base y la dimensión de $\operatorname{Nu} f$ y de $\operatorname{Im} f$.

a)
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
, $f(x_1, x_2, x_3) = (x_1 + x_2 + x_3, x_1 - x_2, 2x_2 + x_3)$

b)
$$f: \mathbb{R}^4 \to \mathbb{R}^4$$
, $f(x_1, x_2, x_3, x_4) = (x_1 + x_3, 0, x_2 + 2x_3, -x_1 + x_2 + x_3)$

c)
$$f: \mathbb{R}^3 \to \mathbb{R}^{2 \times 2}$$
, $f(x_1, x_2, x_3) = \begin{pmatrix} x_2 - x_3 & x_1 + x_3 \\ x_1 + x_2 & x_2 - x_3 \end{pmatrix}$

Ejercicio 5.- Sea $f: \mathbb{R}^3 \to \mathbb{R}^2$ la transformación lineal $f(x_1, x_2, x_3) = (x_1 - x_2, x_2 + x_3)$

y sean
$$\mathbf{v} = (2,3)$$
; $\mathbb{S} = \langle (1,2,1) \rangle$; $\mathbb{T} = \{ \mathbf{x} \in \mathbb{R}^2 / 3x_1 - 2x_2 = 0 \}$.

Hallar f(S), $f^{-1}(\mathbf{v})$ y $f^{-1}(\mathbb{T})$.

Ejercicio 6.- Calcular dim Nu f y dim Im f.

a)
$$f: \mathbb{R}^3 \to \mathbb{R}^5$$
 monomorfismo

b)
$$f: \mathbb{R}^4 \to \mathbb{R}^3$$
 epimorfismo

$$c) f: \mathbb{R}^4 \to \mathbb{R}^4 \quad f(\mathbf{x}) = 2\mathbf{x}$$

Ejercicio 7.- Sea B =
$$\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$$
 una base de \mathbb{V} . Sea $f: \mathbb{V} \to \mathbb{V}$ una t.l. tal que: $f(\mathbf{v}_1) = \mathbf{v}_1 - \mathbf{v}_2 - \mathbf{v}_3$; $f(\mathbf{v}_2) = a\mathbf{v}_2 + \mathbf{v}_3$; $f(\mathbf{v}_3) = \mathbf{v}_1 + \mathbf{v}_2 + a\mathbf{v}_3$.

Determinar todos los valores de a para los cuales f no es monomorfismo. Para cada uno de ellos calcular el núcleo de f.

Ejercicio 8.- Definir una transformación lineal que verifique las condiciones enunciadas.

a)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 tal que Nu $f = \{ \mathbf{x} \in \mathbb{R}^2 / x_1 + 2x_2 = 0 \}$, Im $f = \langle (1,0) \rangle$

b)
$$f: \mathbb{R}^4 \to \mathbb{R}^4$$
 tal que Nu $f = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 + x_2 + x_4 = x_2 + x_3 = 0 \}$

c)
$$f: \mathbb{R}^3 \to \mathbb{R}^4$$
 tal que $(1,1,2) \in \text{Nu } f$, $\text{Im } f = \langle (1,0,1,1), (2,1,0,1) \rangle$

d)
$$f: \mathbb{R}^4 \to \mathbb{R}^2$$
 tal que $(1,0,1,3) \in \text{Nu } f \text{ y } f \text{ es epimorfismo}$

e)
$$f: \mathbb{R}^4 \to \mathbb{R}^4$$
 tal que Nu $f = \text{Im } f = \langle (2, 1, -1, 0), (0, 1, 0, 1) \rangle$

f)
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 tal que f no es monomorfismo y $(1,1,1) \in \text{Im } f$

g)
$$f: \mathbb{R}^4 \to \mathbb{R}^4$$
 tal que Nu $f = \text{Im } f$ y $f(3,2,1,-1) = f(-1,2,0,1) \neq 0$.

Ejercicio 9.- Sean
$$\mathbb{S}_1 = \{ \mathbf{x} \in \mathbb{R}^4 / 2x_1 - x_2 + x_3 - x_4 = 0 \ ; \ x_1 - 3x_3 + x_4 = 0 \} ;$$

$$\mathbb{S}_2 = \{ \mathbf{x} \in \mathbb{R}^4 / 2x_1 - x_2 - x_3 + x_4 = 0 \} ; \quad \mathbb{T}_1 = \langle (1,0,1), (0,1,1) \rangle ; \quad \mathbb{T}_2 = \langle (2,1,3), (0,0,1) \rangle.$$

Hallar una transformación lineal $f: \mathbb{R}^4 \to \mathbb{R}^3$ que verifique simultáneamente:

$$f(\mathbb{S}_1) \subseteq \mathbb{T}_1$$
 ; $f(\mathbb{S}_2) \subseteq \mathbb{T}_2$; dim Nu $f = 1$.

Ejercicio 10.- Hallar $h = g \circ f$, $t = f \circ g$ y determinar el núcleo y la imagen de f, g, h y t.

a)
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
, $f(x_1, x_2, x_3) = (x_1, x_1 + x_2 - x_3)$, $g: \mathbb{R}^2 \to \mathbb{R}^3$, $g(x_1, x_2) = (x_1 - x_2, x_1, x_2)$.

b) $f: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal tal que

$$f(0, 0, 1) = (0, -1, 1)$$
 , $f(0, 1, 1) = (1, 0, 1)$, $f(1, 1, 1) = (1, 1, 0)$

$$g: \mathbb{R}^3 \to \mathbb{R}^3$$
, $g(x_1, x_2, x_3) = (2x_1 + x_3, x_2 - x_3, 2x_1 + x_2)$

Ejercicio 11.- Hallar la función inversa del isomorfismo f.

a)
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 $f(1, 1, -1) = (1, -1, 1)$, $f(2, 0, 1) = (1, 1, 0)$, $f(0, 1, 0) = (0, 0, 1)$

b)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 $f(x_1, x_2) = (x_1, x_1 - x_2)$

$$c) f: \mathbb{R}^{2\times 3} \to \mathbb{R}^{3\times 2} \quad f(A) = A^t$$

Ejercicio 12.- Sea $\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 + x_2 = 0, x_3 + x_4 = 0, x_1 - x_3 + x_4 = 0 \}.$

Definir una t.l. $f: \mathbb{R}^4 \to \mathbb{R}^4$ tal que $S \subset \text{Nu} f \cap \text{Im } f$ y f(1,0,1,0) = (1,0,1,0).

Ejercicio 13.- Sea $g: \mathbb{R}^3 \to \mathbb{R}^4$ la t.l. $g(x_1, x_2, x_3) = (x_1 - x_2, x_3, -x_1 + x_3, x_1)$.

Definir, si es posible, una t.l. $f: \mathbb{R}^4 \to \mathbb{R}^4$ tal que:

$$f \neq 0$$
 , $f \circ g = 0$ y Nu $f + \operatorname{Im} f = \mathbb{R}^4$

Ejercicio 14.- Sean $\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 - x_2 - x_3 = x_1 + x_3 - x_4 = 0 \}$ y

$$\mathbb{T} = \{ \mathbf{x} \in \mathbb{R}^4 / 2x_1 - x_2 - x_4 = 0 \}.$$

Definir una t. l. $f: \mathbb{R}^4 \to \mathbb{R}^4$ que verifique simultáneamente Nu $f = \mathbb{S}$ y Nu $f \circ f = \mathbb{T}$.

Ejercicio 15.- Definir un proyector p tal que

a)
$$p : \mathbb{R}^2 \to \mathbb{R}^2$$
, Nu $p = \langle (-1,2) \rangle$ e Im $p = \langle (-1,1) \rangle$.

b)
$$p: \mathbb{R}^3 \to \mathbb{R}^3$$
, Nu $p = \langle (1,1,-2) \rangle$. ¿Es único?

c)
$$p : \mathbb{R}^4 \to \mathbb{R}^4$$
, Nu $p = \langle (1,1,1,1), (-1,0,1,1), (1,2,3,3) \rangle$, Im $p = \langle (1,2,0,1), (-1,1,4,2) \rangle$

Ejercicio 16.- Escribir la matriz M(f).

a)
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
 $f(x_1, x_2, x_3) = (x_1 + 4x_2 - 3x_3, x_1 + x_3)$

b)
$$f: \mathbb{R}^2 \to \mathbb{R}^4$$
 $f(x_1, x_2) = (x_1 + x_2, 2x_1 + x_2, x_1 + 3x_2, x_1)$

c)
$$f: \mathbb{R}^3 \to \mathbb{R}^4$$
 tal que $f(1,0,0) = (2,-3,1,1)$; $f(0,1,0) = (2,1,3,2)$; $f(0,0,1) = (0,-1,-2,1)$.

d)
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 tal que $f(2,0,0) = (4,2,2)$; $f(0,4,0) = (1,1,1)$; $f(0,0,3) = (0,0,-1)$.

Ejercicio 17.- Sea
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 tal que $M(f) = \begin{pmatrix} 1 & 2 & -1 \\ 3 & 1 & 2 \\ -2 & 0 & -2 \end{pmatrix}$.

- a) Calcular f(1, 2, 1); f(5, 7, 2); f(0, 0, 1).
- b) Hallar bases de Nu f e Im f.

Ejercicio 18.- En cada caso hallar $M_{RR'}(f)$.

a)
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 $f(x_1, x_2, x_3) = (2x_1 + x_2, x_1 - x_3, x_1 + 2x_2 + x_3)$
B = B' = E

b)
$$f: \mathbb{R}^2 \to \mathbb{R}^2$$
 $f(x_1, x_2) = (x_1 - 2x_2, x_1)$
B = {(-1,0), (1,1)} B' = {(1,1), (0,1)}

c)
$$f: \mathbb{R}^3 \to \mathbb{R}^2$$
 $f(x_1, x_2, x_3) = (x_1 - x_2, x_1 + x_2 + x_3)$
B = $\{(1,-1,2), (0,2,-1), (0,0,1)\}$ B' = $\{(2,1), (1,-1)\}$

d)
$$f: \mathbb{R}^4 \to \mathbb{R}^3$$
 $f(x_1, x_2, x_3, x_4) = (x_1 - x_3, 2x_4, x_2 + x_3)$
B = {(1,-1,2,0), (0,2,-1,1), (0,0,2,1), (0,0,0,-1)} B' = E

Ejercicio 19.- Sean B = $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$, B' = $\{\mathbf{v}_1 + \mathbf{v}_2, \mathbf{v}_2 + \mathbf{v}_3, \mathbf{v}_1 + \mathbf{v}_3\}$ y

B" = {(1,-2,1), (0,1,1), (1,3,1)} bases de \mathbb{R}^3 , y sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la t.l. tal que $f(\mathbf{v}_1) = (2,-3,2), \ f(\mathbf{v}_2) = (0,2,3), \ f(\mathbf{v}_3) = (1,2,0).$

 $\operatorname{Hallar}\ M_{\operatorname{BE}}(f),\ \ M_{\operatorname{BB''}}(f),\ \ M_{\operatorname{B'E}}(f)\ \ \text{y}\ \ M_{\operatorname{B'B''}}(f).$

Ejercicio 20.- Sea
$$f: \mathbb{V} \to \mathbb{V}$$
 tal que $M_B(f) = \begin{pmatrix} 1 & 4 & -5 \\ 2 & 1 & 0 \\ 0 & 3 & 1 \end{pmatrix}$ y sean $B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ y $B' = \{-\mathbf{v}_1 + \mathbf{v}_2 - \mathbf{v}_3, \mathbf{v}_1 + 2\mathbf{v}_3, \mathbf{v}_2\}$ bases de \mathbb{V} . Hallar $M_{B'B}(f)$, $M_{BB'}(f)$ y $M_{B'}(f)$.

B' =
$$\{-\mathbf{v}_1 + \mathbf{v}_2 - \mathbf{v}_3, \mathbf{v}_1 + 2\mathbf{v}_3, \mathbf{v}_2\}$$
 bases de \mathbb{V} . Hallar $M_{B'B}(f)$, $M_{BB'}(f)$ y $M_{B'}(f)$

Ejercicio 21.- Sea $f: \mathbb{R}^{2\times 2} \to \mathbb{R}^{2\times 2}$ la t.l. definida por f(X) = AX con $A = \begin{pmatrix} 2 & -1 \\ 3 & 1 \end{pmatrix}$. Calcular $M_E(f)$.

Ejercicio 22.- Sea
$$f: \mathbb{R}^3 \to \mathbb{R}^4$$
 tal que $M_{BB'}(f) = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 0 & 2 \\ 1 & 2 & 0 \\ 0 & 1 & 1 \end{pmatrix}$, con

$$B = \{(0,0,2), (0,1,-1), (2,1,0)\} \text{ y } B' = \{(1,0,0,0), (1,1,1,0), (1,-1,0,1), (0,1,1,1)\}$$

- a) Calcular f(0,2,-1)
- b) Hallar una base de Im f y una base de Nu f.

Ejercicio 23.- Sea $p: \mathbb{R}^2 \to \mathbb{R}^2$ un proyector que no es idénticamente nulo y es distinto de la identidad. Probar que existe una base B de \mathbb{R}^2 tal que $M_B(f) = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$.

Ejercicio 24.- Sea $f: \mathbb{R}^4 \to \mathbb{R}^3$ la transformación lineal tal que la matriz de f en las bases

B = {
$$\mathbf{v}_1$$
, \mathbf{v}_2 , \mathbf{v}_3 , \mathbf{v}_4 } y B' = { \mathbf{w}_1 , \mathbf{w}_2 , \mathbf{w}_3 } es $M_{BB'}(f) = \begin{pmatrix} 1 & 3 & 1 & 0 \\ 2 & 2 & 1 & 1 \\ -1 & 1 & 1 & -1 \end{pmatrix}$.

- a) Calcular: $f(\mathbf{v}_1 2\mathbf{v}_3)$; $f(\mathbf{v}_3 + \mathbf{v}_4)$ b) Dar bases de Nu f e Im f.
- c) Calcular $f^{-1}(\mathbf{w}_1)$

c) Calcular
$$f^{-1}(\mathbf{w}_1)$$

Ejercicio 25.- Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $M_{BB'}(f) = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & a \end{pmatrix}$ con

$$B = \{(1,1,1), (1,1,0), (1,0,0)\} \ y \ B' = \{(1,1,1), (0,1,1), (0,0,1)\}.$$

Hallar todos los valores de a para los cuales f(1,2,1) = (0,1,-6).

Ejercicio 26.-

a) Sea
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 tal que $M(f) = \begin{pmatrix} k & 2 & 4 \\ 2 & 1 & k \\ 1 & -1 & k \end{pmatrix}$.

Encontrar todos los valores de k para los cuales f no es un monomorfismo.

b) Sean B = $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ base de \mathbb{R}^3 , y $f: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal tal que

$$M_B(f) = \begin{pmatrix} 1 & 2 & 5 \\ 3 & -1 & 2 \\ 2 & a & -3 \end{pmatrix}$$
. Hallar todos los valores de a tales que f es isomorfismo.

Ejercicio 27.- Sea B = $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ base de \mathbb{R}^3 , y sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal

tal que
$$M_B(f) = \begin{pmatrix} 1 & 3 & 2 \\ -1 & 2 & 3 \\ 2 & 1 & -1 \end{pmatrix}$$
.

Hallar todos los $a \in \mathbb{R}$ para los cuales $2a^2\mathbf{v}_1 + 2\mathbf{v}_2 + 3a\mathbf{v}_3 \in \text{Im } f$.

Ejercicio 28.- Sean B = {
$$\mathbf{v}_1$$
, \mathbf{v}_2 , \mathbf{v}_3 } y B' = { $\mathbf{v}_1 - \mathbf{v}_3$, $3\mathbf{v}_1 + 2\mathbf{v}_2$, $\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3$ } bases de \mathbb{R}^3 .
Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $M_B(f) = \begin{pmatrix} 1 & 0 & 3 \\ 1 & -1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$. Hallar $M_{B'B}(f)$ y $M_{BB'}(f)$.

Ejercicio 29.- Sea
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 tal que $M_{BB'}(f) = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 2 & 0 \\ -1 & -1 & -1 \end{pmatrix}$ con B = $\{(1,1,1),(0,1,-1),(0,0,-1)\}$ y B' = $\{(1,-1,0),(0,0,1),(0,1,2)\}$.

Si $\mathbb{S} = \{\mathbf{x} \in \mathbb{R}^3 / 5x_1 - 2x_2 - 2x_3 = 0 \}$, hallar un subespacio \mathbb{T} de \mathbb{R}^3 tal que $\mathbb{R}^3 = \mathbb{T} \oplus f(\mathbb{S})$.

Ejercicio 30.- Sean B = $\{(1,-1), (1,2)\}$, B' = $\{(1,1,-1), (1,-1,0), (-1,0,0)\}$ y las

transformaciones lineales $f: \mathbb{R}^2 \to \mathbb{R}^2$, $f(x_1, x_2) = (x_1 - x_2, x_1 + 2x_2)$

$$g: \mathbb{R}^3 \to \mathbb{R}^2$$
, tal que $M_{B'E}(g) = \begin{pmatrix} 1 & 0 & 1 \\ -1 & 2 & 3 \end{pmatrix}$ y $h: \mathbb{R}^2 \to \mathbb{R}^3$, tal que $M_{BB'}(h) = \begin{pmatrix} 1 & 0 \\ -1 & 0 \\ 2 & 2 \end{pmatrix}$

Hallar $M(f \circ f)$, $M_{RF}(g \circ h)$ y $M_{R'R}(f \circ g)$.

Ejercicio 31.- Sea B = $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ una base de \mathbb{R}^3 y sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la t.l. tal que

$$M_B(f) = \begin{pmatrix} 0 & 2 & -1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{pmatrix}.$$

- a) Calcular $f \circ f(3\mathbf{v}_1)$, $f \circ f(\mathbf{v}_1 2\mathbf{v}_2)$ y $f \circ f(\mathbf{v}_3)$
- b) Hallar dim Nu $(f \circ f)$ y dim Im $(f \circ f)$ y dar una base de cada uno.

Ejercicio 32.- Sean $B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ base de \mathbb{V} y $B' = \{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ base de \mathbb{W} .

Sean $f: \mathbb{V} \to \mathbb{V}$ y $g: \mathbb{V} \to \mathbb{W}$ t.l. tales que:

$$M_{B}(f) = \begin{pmatrix} 0 & 1 & -1 \\ 2 & 1 & 1 \\ 2 & 1 & 1 \end{pmatrix} \quad \text{y} \quad M_{BB'}(g) = \begin{pmatrix} 2 & 1 & -1 \\ 1 & 0 & 0 \\ 2 & 1 & -1 \end{pmatrix}$$

- a) Calcular $g \circ f(2\mathbf{v}_1 + \mathbf{v}_2 3\mathbf{v}_3)$.
- b) Hallar una base de Nu $(g \circ f)$ y una base de Im $(g \circ f)$.

Ejericio 33.- Sea $f: \mathbb{R}^2 \to \mathbb{R}^2$ la t.l. dada por $f(x_1, x_2) = (x_1 + 2x_2, 3x_1 - x_2)$.

- a) Hallar $M(f^{-1})$

b) Hallar $M_{B'B}(f^{-1})$ con $B = \{(1,1), (2,1)\}$ y $B' = \{(-1,2), (0,1)\}$. Ejercicio 34.- Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $M(f) = \begin{pmatrix} 1 & 1 & 0 \\ 2 & 1 & -1 \\ 0 & -2 & -1 \end{pmatrix}$ y sea $B = \{(1,0,2), (0,1,1), (2,1,1), ($

B = {(1,0,2), (0,1,1), (2,1,0)}. Hallar $M_{BE}(f)$, $M_{R}(f)$ y $M_{RE}(f^{-1})$

Ejercicio 35.- Sean $f: \mathbb{V} \to \mathbb{V}$ tal que $M_B(f) = \begin{pmatrix} 2 & 1 & 2 \\ 1 & 0 & 0 \\ -1 & 3 & 0 \end{pmatrix}$ y $g: \mathbb{V} \to \mathbb{V}$ tal que

 $M_{B'}(g) = \begin{bmatrix} 3 & -1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \text{ con } B = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\} \text{ y } B' = \{\mathbf{v}_3, \mathbf{v}_2 + \mathbf{v}_3, \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3\} \text{ bases de } \mathbb{V}.$

Hallar $M_{BB}(g \circ f)$, $M_{B'B}(g \circ f)$ y $M_{BB'}(g^{-1})$.

EJERCICIOS SURTIDOS

- **1.** Definir una t.l. $f: \mathbb{R}^4 \to \mathbb{R}^4$ que verifique simultáneamente:
- i) $\text{Nu } f \cap \text{Im } f = \langle (1,1,1,1) \rangle$ ii) $(1,5,1,0) \in \text{Im } f$ iii) $(3,1,2,2) \notin \text{Im } f + \text{Nu } f$.
- **2.** Sean \mathbb{S}_1 y \mathbb{S}_2 subespacios de \mathbb{R}^3 tales que dim $\mathbb{S}_1 = 1$, dim $\mathbb{S}_2 = 2$ y $\mathbb{S}_1 \oplus \mathbb{S}_2 = \mathbb{R}^3$. Demostrar que si $f: \mathbb{R}^3 \to \mathbb{R}^3$ es una t.l. tal que $f(\mathbb{S}_1) = \mathbb{S}_1$ y $f(\mathbb{S}_2) = \mathbb{S}_2$ y $\mathbf{B} = \{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ es una base de \mathbb{R}^3 tal que $\{\mathbf{v}_1\}$ es base de \mathbb{S}_1 y $\{\mathbf{v}_2, \mathbf{v}_3\}$ es base de \mathbb{S}_2 , entonces

$$M_{B}(f) = \begin{pmatrix} a & 0 & 0 \\ 0 & b & c \\ 0 & d & e \end{pmatrix} \operatorname{con} a \neq 0 \text{ y } \begin{vmatrix} b & c \\ d & e \end{vmatrix} \neq 0.$$

3. Sea $f: \mathbb{R}^4 \to \mathbb{R}^4$ una t.l. que satisface:

$$f \circ f = 0$$
 ; $f(1,0,0,0) = (1,2,2,-1)$; $f(0,1,0,0) = (0,-1,1,0)$

Calcular M(f).

4. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ una transformación lineal tal que $M(f) = \begin{pmatrix} -2 & 1 & 0 \\ -5 & 1 & k \\ 8 & k & 2 \end{pmatrix}$.

Hallar todos los valores de $k \in \mathbb{R}$ para los cuales Nu $f \neq \{0\}$ y Nu $f \subset \operatorname{Im} f$.

5. Sean $\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^4 / 2x_1 - x_2 + x_3 - x_4 = x_1 - 3x_3 + x_4 = 0 \}$ y $\mathbb{H} = \{ \mathbf{x} \in \mathbb{R}^4 / 2x_1 - x_2 - x_4 = 0 \}.$

Hallar una transformación lineal $f: \mathbb{R}^4 \to \mathbb{R}^4$ que verifique simultáneamente:

$$f(\mathbb{S}) \subset \mathbb{S}$$
 ; $\operatorname{Im} f = \mathbb{H}$; $\operatorname{Nu}(f \circ f) = \mathbb{S}$.

6. Sean en \mathbb{R}^4 los subespacios $\mathbb{S} = \langle (1,2,-1,2) \rangle$, $\mathbb{W} = \langle (0,2,3,2); (1,-1,1,2) \rangle$ y

$$\mathbb{T} = \left\{ \mathbf{x} \in \mathbb{R}^4 / x_1 - x_2 + x_3 + x_4 = 0 \right\}.$$

Definir, si es posible, un isomorfismo $f: \mathbb{R}^4 \to \mathbb{R}^4$ que satisfaga simultáneamente:

$$f(\mathbb{S} + \mathbb{T}) = \mathbb{S} + \mathbb{W}$$
; $f(\mathbb{S}) \cap \mathbb{S} = \{0\}$; $f(\mathbb{S}) \cap \mathbb{W} = \{0\}$.

7. Sea
$$f: \mathbb{R}^4 \to \mathbb{R}^4$$
 $f(x_1, x_2, x_3, x_4) = (x_1 + 2x_2 + x_3, -x_3 + x_4, x_1 + 2x_2 + x_4, 2x_1 + 4x_2 + 2x_3)$. Definir, si es posible, una transformación lineal $g: \mathbb{R}^4 \to \mathbb{R}^4$ que verifique simultáneamente: $\operatorname{Im}(f \circ g) = \operatorname{Im} f$ y $g \circ f = 0$.

8. Sea
$$f: \mathbb{R}^5 \to \mathbb{R}^4$$
 la t.l. dada por $M(f) = \begin{pmatrix} 2 & 1 & -2 & 4 & 1 \\ -1 & 0 & 1 & -2 & 0 \\ 3 & -1 & -3 & 6 & 1 \\ 1 & 6 & -1 & 2 & 0 \end{pmatrix}$

- a) Hallar una base B_1 para Nufy encontrar un conjunto B_2 de vectores de \mathbb{R}^5 tal que $B = B_1 \cup B_2$ es una base de \mathbb{R}^5 .
- b) Probar que los transformados de los vectores de B_2 por f, son linealmente independientes y extender este conjunto a una base B' de \mathbb{R}^4 .
- c) Calcular $M_{BB'}(f)$.

9. Sean
$$\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 + x_2 + x_3 = 0 \}$$
 y $\mathbb{T} = \langle (2,0,1,1); (1,1,1,1); (1,2,0,1) \rangle$
Definir, si es posible, una t. l. $f: \mathbb{R}^4 \to \mathbb{R}^4$ que verifique simultáneamente $f(\mathbb{S}) = f(\mathbb{T})$ y dim $(\operatorname{Nu} f) = 1$.

10. Sean en \mathbb{R}^4 los subespacios $\mathbb{W} = \langle (1,0,-1,1); (1,1,0,-1) \rangle$ y $\mathbb{H} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 - x_3 - x_4 = 0 \}$ y sea en \mathbb{R}^3 el subespacio $\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^3 / x_1 + x_2 - 2x_3 = 0 \}$. Definir, si es posible, una transformación lineal $f : \mathbb{R}^4 \to \mathbb{R}^3$ que satisfaga

simultáneamente: $f(\mathbb{H}) = \mathbb{S}$; $f(\mathbb{W}) = \mathbb{S}^{\perp}$; f(1,1,-1,1) = (2,-2,-3).

11. Sean
$$\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 + x_2 + x_3 + x_4 = 0 \}$$
 y $f: \mathbb{R}^4 \to \mathbb{R}^4$ la t.l. dada por $f(x_1, x_2, x_3, x_4) = (x_1 - x_4, x_2 - x_4, x_1 - x_2, 2x_1 - x_2 - x_4)$.

Definir, si es posible, una t.l. $g: \mathbb{R}^3 \to \mathbb{R}^4$ tal que Nu $(f \circ g) = \langle (-1, 0, 2) \rangle$ e Im $g = \mathbb{S}$.

12. Sean $B = \{(1,1,1); (1,1,0); (1,0,0)\}$ y $B' = \{(0,0,1); (0,1,1); (1,1,1)\}$ bases de \mathbb{R}^3 y sea

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 la t.l. tal que $M_{BB'}(f) = \begin{pmatrix} 1 & 3 & 0 \\ -1 & 0 & 3 \\ 2 & 2 & -4 \end{pmatrix}$. Calcular $f^{-1}(2,2,5)$.

13. Sea $B = \{(1,1,0,0); (0,1,1,0); (1,0,0,1); (0,0,0,1)\}$ y sea $f: \mathbb{R}^4 \to \mathbb{R}^4$ una

transformación lineal tal que
$$M_{BE}(f) = \begin{pmatrix} 1 & 1 & a & 1 \\ 0 & 1 & -1 & 0 \\ 1 & 0 & 0 & 0 \\ b & -1 & -1 & -1 \end{pmatrix}$$
.

Determinar *a* y *b* si se sabe que f(2,3,1,-1) = (2,1,2,4) y dim(Nu *f*) = 1.

14. Sean $B = \{ \mathbf{v}_1; \mathbf{v}_2; \mathbf{v}_3 \}$ y $B' = \{ \mathbf{v}_1 + \mathbf{v}_2; \mathbf{v}_2 + \mathbf{v}_3; \mathbf{v}_1 + \mathbf{v}_3 \}$ bases de un e.v. \mathbb{V} ;

$$f: \mathbb{V} \to \mathbb{V}$$
 la transformación lineal tal que $M_{BB'}(f) = \begin{pmatrix} 2 & a & -1 \\ -1 & 0 & 3 \\ 1 & 1 & 2 \end{pmatrix}$ $\mathbf{v} = 5\mathbf{v}_2 + \mathbf{v}_3$

Determinar $a \in \mathbb{R}$ tal que dim(Im f) = 2, y para el a hallado decidir si $\mathbf{v} \in \text{Im } f$.

15. Sea
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 la transformación lineal tal que $M_{BB'}(f) = \begin{pmatrix} 1 & 0 & 2 \\ 1 & 2 & 0 \\ 1 & -1 & 1 \end{pmatrix}$, con

$$B = \{(1,1,1); (0,1,-1); (0,0,-1)\}$$
 y $B' = \{(1,-1,0); (0,0,1); \mathbf{v}\}$ bases de \mathbb{R}^3 .

Hallar **v** para que f(0,0,-1)=(2,-3,-2). Dar una base de $f(\mathbb{S})$, si $\mathbb{S}=\left\langle (-1,1,0)\right\rangle$.

16. Sean
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 dada por $f(x_1, x_2, x_3) = (x_1 + x_2, x_1 - 4x_2 + x_3, 2x_2 - x_3)$ y $g: \mathbb{R}^3 \to \mathbb{R}^3$

la t. l. tal que
$$M_B(g) = \begin{pmatrix} 1 & -1 & 2 \\ 0 & 1 & -1 \\ 0 & 3 & -2 \end{pmatrix}$$
, con $B = \{(0,0,-1); (1,-1,2); (0,1,3)\}$.

Calcular $f \circ g(3,-1,-3)$.

17. Sean
$$B = \{ \mathbf{v}_1; \mathbf{v}_2; \mathbf{v}_3 \}$$
 y $B' = \{ -\mathbf{v}_2 - \mathbf{v}_3; \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3; \mathbf{v}_1 - \mathbf{v}_2 \}$ bases de un e.v. \mathbb{V} y sea

$$f: \mathbb{V} \to \mathbb{V}$$
 la t.l. tal que $M_{BB'}(f) = \begin{pmatrix} 1 & -2 & 1 \\ 2 & 1 & -2 \\ -1 & -3 & 3 \end{pmatrix}$. Hallar una base de $\operatorname{Im}(f \circ f)$.

18. Sean $B = \{ \mathbf{v}_1; \mathbf{v}_2; \mathbf{v}_3 \}$ y $B' = \{ \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3; \mathbf{v}_2 + \mathbf{v}_3; \mathbf{v}_3 \}$ bases de un e.v. \mathbb{V} y

$$f \colon \mathbb{V} \to \mathbb{V} \quad \text{la transformación lineal tal que } M_{\mathit{BB'}}(f) = \begin{pmatrix} 1 & -1 & 0 \\ 0 & 0 & 0 \\ 0 & 1 & 1 \end{pmatrix}.$$

Hallar, si es posible, una base B" de \mathbb{V} tal que M_{B} " $(f) = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

19. Sea $f: \mathbb{R}^4 \to \mathbb{R}^3$ la t.l. $f(x_1, x_2, x_3, x_4) = (x_1 + x_3 - x_4, x_1 + x_2 + x_4, 2x_1 + x_2)$

Hallar una t.l. $g: \mathbb{R}^3 \to \mathbb{R}^4$, no nula, que satisfaga simultáneamente:

$$f \circ g = 0$$
 $y \quad g \circ f = 0$.

20. Definir una transformación lineal $f: \mathbb{R}^4 \to \mathbb{R}^4$ que verifique simultáneamente:

i) Nu
$$f + \text{Im } f = \{ \mathbf{x} \in \mathbb{R}^4 / 3x_1 - x_4 = 0 \}$$

ii) $\dim \operatorname{Im} f = \dim \operatorname{Nu} f$

ii) dim Im
$$f = \dim \text{Nu } f$$

iii) $f(1,2,0,1) = 2f(1,0,1,2) = -2f(0,0,0,1)$

21. Sean $\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^4 / -x_1 + x_2 + 2x_4 = x_2 + x_3 + 3x_4 = 0 \}$; $\mathbb{S}' = \langle (1, 5, 2, 1), (0, 2, 2, 2) \rangle$; $\mathbb{T} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 - x_2 = 0 \}$ \mathbf{y} $\mathbb{T}' = \langle (1, 2, 0, 0), (1, 1, 1, 1), (1, 0, 0, 0) \rangle$.

Definir una t.l. $f: \mathbb{R}^4 \to \mathbb{R}^4$ que verifique simultáneamente:

i)
$$f(S) \subseteq T$$

ii)
$$f(S') \subseteq \mathbb{T}$$

iii) dim
$$f(S+S') = \dim(S+S')$$

i) $f(\mathbb{S}) \subseteq \mathbb{T}$ ii) $f(\mathbb{S}') \subseteq \mathbb{T}'$ iii) $\dim f(\mathbb{S} + \mathbb{S}')$ **22.** Sea $f: \mathbb{R}^3 \to \mathbb{R}^4$, $f(x_1, x_2, x_3) = (x_1 + 2x_3, x_1, x_2 + x_3, x_2)$ y sean

$$S = <(1,0,1); (0,-1,1) > y v = (1,3,-1).$$

Definir una t. 1. $g: \mathbb{R}^4 \to \mathbb{R}^3$ tal que $h = g \circ f$ satisfaga $h(\mathbf{v}) \in \mathbb{S}$ y dim(Nu h)=1.

23. Sea g: $\mathbb{R}^3 \to \mathbb{R}^2$ la t.l. $g(x_1, x_2, x_3) = (x_1 + x_2, 3x_2 - x_3)$

Definir un proyector $p: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $g \circ p = 0$.

24. Sea B={(2,1,-1); **v**; **w**} base de
$$\mathbb{R}^3$$
 y $f: \mathbb{R}^3 \to \mathbb{R}^3$ la t.l. tal que $M_{EB}(f) = \begin{pmatrix} 1 & 2 & -1 \\ 0 & 1 & 3 \\ 1 & 3 & 2 \end{pmatrix}$

Hallar v y w si se sabe que f(6,-3,1) = (1,2,1) y f(5,-2,1) = (1,-1,0).

25. Sea
$$\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^3 / 2x_1 - x_2 = 0 \}$$
. Sea $\mathbf{B} = \{ (1,1,1); (1,1,0); (1,0,0) \}$ y $f : \mathbb{R}^3 \to \mathbb{R}^3$ tal que

$$M_{BE}(f) = \begin{pmatrix} 1 & 0 & 0 \\ -8 + a^2 & -8 + a^2 & -8 \\ a - 1 & a - 1 & a \end{pmatrix}.$$

Hallar todos los valores de a para los cuales $\{f(0,1,2); f(-1,0,4)\}\$ es base de S.

26. Sean B = { \mathbf{v}_1 , \mathbf{v}_2 , $\mathbf{v}_3 + \mathbf{v}_1$, \mathbf{v}_4 } una base de \mathbb{R}^4 , $\mathbb{S} = \langle \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \rangle$ y $f: \mathbb{R}^4 \to \mathbb{R}^4$ dada por

$$M_B(f) = \begin{pmatrix} 0 & -1 & 1 & 0 \\ 1 & -2 & 0 & 1 \\ 1 & -3 & 1 & 1 \\ 2 & -2 & 2 & 0 \end{pmatrix}. \quad \text{Hallar la dimensión y una base de } f(\mathbb{S}) \cap \text{Nu} f.$$

- **27.** Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $M(f) = \begin{pmatrix} -2 & 1 & 0 \\ -5 & 1 & k \\ 0 & 1 & 2 \end{pmatrix}$. Determinar todos los valores de k para los cuales es $\text{Nu} f \neq \{0\}$ y $\text{Nu} f \subseteq \text{Im } f$.

28. Sean B = {(1,1,0);(0,1,1);(0,0,1)} y f y g:
$$\mathbb{R}^3 \to \mathbb{R}^3$$
 dadas por
$$g(x_1, x_2, x_3) = (x_1 + x_3, x_1 + x_2, x_2 - x_3) \text{ y } M_B(f) = \begin{pmatrix} 1 & 0 & 1 \\ 1 & -1 & 0 \\ 0 & 1 & 0 \end{pmatrix}. \text{ Hallar } (f \circ g)^{-1} \langle (1,1,1) \rangle.$$

29. Sea
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 la t. l. tal que $M(f) = \begin{pmatrix} 0 & 1 & -2 \\ 3 & 1 & 1 \\ 1 & 0 & 1 \end{pmatrix}$.

Hallar, si es posible, $\mathbf{v}, \mathbf{w} \in \mathbb{R}^3$ y a, b, c reales tales que $B = \{\mathbf{v}; \mathbf{w}; (a, b, c)\}$ sea una base

de
$$\mathbb{R}^3$$
 y $M_{BE}(f) = \begin{pmatrix} 5 & a & 0 \\ 5 & b & 0 \\ 0 & c & 0 \end{pmatrix}$.

30. Sean B = {(0,1,-1);(1,0,0);(1,1,0)},
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 dada por $M_{BE}(f) = \begin{pmatrix} 1 & 0 & -1 \\ 0 & -1 & 1 \\ 1 & -1 & 1 \end{pmatrix}$ y $\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^3 / 2x_1 - x_2 + 5x_3 = 0 \}$. Decidir si $f \circ f(9,7,2) \in \mathbb{S}$.

31. Sean B = $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ y B' = $\{2\mathbf{v}_1 + \mathbf{v}_2, 2\mathbf{v}_1, \mathbf{v}_2 + \mathbf{v}_3\}$ bases de \mathbb{R}^3 , y f y $g: \mathbb{R}^3 \to \mathbb{R}^3$ tales

que
$$M_{B'B}(f) = \begin{pmatrix} 2 & 1 & 3 \\ -1 & 1 & 0 \\ 3 & 1 & 2 \end{pmatrix}$$
 y $M_{B'}(g) = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 3 & 2 \\ 1 & 2 & -1 \end{pmatrix}$. Calcular $M_{B'}(f \circ g)$.

32. Sean
$$\mathbb{S} = \langle (-1,1,-1); (2,1,1) \rangle$$
 y $\mathbb{T} = \{ \mathbf{x} \in \mathbb{R}^3 / -2x_1 - x_2 + 3x_3 = 0 \}$.

Definir un isomorfismo $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $f(\mathbb{S}) = \mathbb{T}$; $f(\mathbb{T}) = \mathbb{S}$ y exista un vector $\mathbf{w} \neq \mathbf{0}$ tal que $f^{-1}(\mathbf{w}) = \frac{1}{3}\mathbf{w}$.

33. Definir una transformación lineal $f: \mathbb{R}^4 \to \mathbb{R}^4$ que verifique simultáneamente: $(1,-1,0,1) \in \operatorname{Nu} f$ y $\operatorname{Nu} (f \circ f) = \operatorname{Im} (f \circ f)$.

PRÁCTICA 6

NÚMEROS COMPLEJOS Y POLINOMIOS

DEFINICIONES Y PROPIEDADES

NÚMEROS COMPLEJOS

El conjunto \mathbb{C} de los *números complejos* es:

$$\mathbb{C} = \{ z = a + bi / a, b \in \mathbb{R} ; i^2 = -1 \}$$

Si $z \in \mathbb{C}$, la representación a + bi se llama forma binómica de z.

La *parte real* de *z* es *a*:

La *parte imaginaria* de *z* es *b*:

 $\operatorname{Im} z = b$.

Si
$$z, w \in \mathbb{C}$$

$$z = w \iff \operatorname{Re} z = \operatorname{Re} w = \operatorname{Im} z = \operatorname{Im} w$$

Sean z = a + bi y w = c + di dos números complejos;

la suma es

$$z + w = (a+c) + (b+d)i$$

el producto es

$$z w = (ac - bd) + (ad + bc)i$$

La suma es asociativa y conmutativa; el producto es asociativo y conmutativo y vale la propiedad distributiva respecto de la suma.

Notación:

$$a + (-b)i = a - bi \qquad a + 0i = a$$

$$a + 0i = a$$

$$0 + bi = bi$$

Si $z \in \mathbb{C}$, z = a + bi, llamaremos *conjugado* de z a $\overline{z} = a - bi$

y llamaremos *módulo de z* al número real no negativo $|z| = \sqrt{a^2 + b^2}$

Observaciones _

$$1) \left| z \right|^2 = z \, \overline{z}$$

1)
$$|z|^2 = z \overline{z}$$
 2) Si $z \neq 0$, $z^{-1} = \frac{\overline{z}}{|z|^2}$

Propiedades:

C1)
$$\overline{\overline{z}} = z$$

M1)
$$z = 0 \iff |z| = 0$$

C2)
$$\overline{z+w} = \overline{z} + \overline{w}$$

$$\mathbf{M2)} \ |z w| = |z||w|$$

C3)
$$\overline{zw} = \overline{z} \, \overline{w}$$

$$M3) |z| = |\overline{z}|$$

C4) Si
$$z \neq 0$$
, $\overline{z^{-1}} = (\overline{z})^{-1}$

$$\mathbf{M4)} \ |z| = |-z|$$

C5)
$$z + \overline{z} = 2 \operatorname{Re} z$$

M5) Si
$$z \neq 0 \implies |z^{-1}| = |z|^{-1}$$

C6)
$$z - \overline{z} = 2(\operatorname{Im} z)i$$

M6) Si
$$w \neq 0 \implies \left| \frac{z}{w} \right| = \frac{|z|}{|w|}$$

Si $z \in \mathbb{C}$, z = a + bi, $z \neq 0$, llamaremos argumento de z al único número real arg z tal

que
$$0 \le \arg z < 2\pi$$
; $\cos \arg z = \frac{a}{|z|}$; $\operatorname{sen} \arg z = \frac{b}{|z|}$

Si $z \in \mathbb{C}$, la forma trigonométrica de z es $z = |z| (\cos \arg z + i \sin \arg z)$

Si $z = \rho(\cos \alpha + i \sin \alpha)$ y $w = \tau(\cos \beta + i \sin \beta)$, $\cos \rho$, $\tau > 0$, $\alpha, \beta \in \mathbb{R}$, entonces $z = w \iff \rho = \tau(\text{es decir } |z| = |w|)$ y $\alpha = \beta + 2k\pi$ para algún $k \in \mathbb{Z}$.

Teorema de De Moivre. Sean $z, w \in \mathbb{C}, z \neq 0, w \neq 0$.

Si $z = |z|(\cos \alpha + i \sin \alpha)$ y $w = |w|(\cos \beta + i \sin \beta)$ entonces

$$z w = |z||w|(\cos(\alpha + \beta) + i \sin(\alpha + \beta))$$

Corolario.

$$z^{-1} = |z|^{-1} (\cos(-\alpha) + i \sin(-\alpha))$$

$$\overline{z} = |z| \cdot (\cos(-\alpha) + i \sin(-\alpha))$$

$$\frac{z}{w} = \frac{|z|}{|w|} (\cos(\alpha - \beta) + i \sin(\alpha - \beta))$$

$$z^{n} = |z|^{n} (\cos(n\alpha) + i \sin(n\alpha)) \qquad n \in \mathbb{Z}$$

Si $w \in \mathbb{C}$, $w \neq 0$, una *raíz n-ésima* de w es un número $z \in \mathbb{C}$ tal que $z^n = w$.

Propiedad. Si z es una raíz n-ésima de w entonces:

$$z = |w|^{1/n} \left(\cos \frac{\arg w + 2k\pi}{n} + i \operatorname{sen} \frac{\arg w + 2k\pi}{n}\right)$$

para algún entero k tal que $0 \le k \le n - 1$.

Si $z \in \mathbb{C}$, $z = |z|(\cos \alpha + i \sin \alpha)$, la notación exponencial de z es $z = |z|e^{i\alpha}$

Propiedades. Si $\alpha, \beta \in \mathbb{R}$

$$\overline{e^{i\alpha}} = e^{\overline{i\alpha}} = e^{-i\alpha}$$

$$e^{i\alpha}e^{i\beta} = e^{i(\alpha+\beta)}$$

POLINOMIOS

En lo que sigue \mathbb{K} significa \mathbb{Q} , \mathbb{R} ó \mathbb{C} .

Un polinomio con coeficientes en K es una expresión de la forma

$$P(x) = a_0 x^0 + a_1 x^1 + ... + a_n x^n = \sum_{i=0}^n a_i x^i \text{ con } n \in \mathbb{N}_0 \text{ y } a_i \in \mathbb{K}.$$

Indicamos $\mathbb{K}[X] = \{ P / P \text{ es polinomio con coeficientes en } \mathbb{K} \}$, y consideramos en $\mathbb{K}[X]$ las operaciones de suma y producto usuales.

Grado de P: Si
$$P \neq 0$$
, $P(x) = a_0 x^0 + a_1 x^1 + ... + a_n x^n$ y $a_n \neq 0$, definimos grado de $P = \text{gr } P = n$

El polinomio nulo no tiene grado.

Valen las siguientes propiedades: si $P \neq 0$, $Q \neq 0$,

$$gr(P Q) = gr P + gr Q$$

$$gr(P+Q) \le max\{ gr P, gr Q \}$$

$$(si P + Q \neq 0)$$

Dados $P \in \mathbb{K}[X]$, $P(x) = \sum_{j=0}^{n} a_j x^j$ y $z \in \mathbb{K}$, llamamos especialización de P en z al

número

$$P(z) = \sum_{j=0}^{n} a_j z^j$$

Sea $P \in \mathbb{K}[X]$, $z \in \mathbb{K}$. Diremos que z es raíz de P si P(z) = 0.

Algoritmo de división.

Dados $P, Q \in \mathbb{K}[X], Q \neq 0$, existen únicos $S, R \in \mathbb{K}[X]$ tales que:

$$P = Q S + R$$
 con $R = 0$ ó gr $R < \text{gr} Q$

Se dice que Q divide a P (o que P es divisible por Q) y se nota $Q \mid P$, si el resto de la división de P por Q es el polinomio nulo, esto es, si P = Q S con $S \in \mathbb{K}[X]$.

Teorema del Resto.

Si $P \in \mathbb{K}[X]$ y $z \in \mathbb{K}$, el resto de la división de P por (x-z) es igual a P(z).

Corolario. Sea $P \in \mathbb{K}[X]$ y $z \in \mathbb{K}$; z es raíz de P si y sólo si $(x - z) \mid P$.

Teorema.

Si
$$P \in \mathbb{K}[X]$$
 y $a_1, a_2, ..., a_r \in \mathbb{K}$ son raíces de $P \operatorname{con} a_i \neq a_j$ si $i \neq j$, entonces $P(x) = (x - a_1)(x - a_2)...(x - a_r) Q(x) \operatorname{con} Q \in \mathbb{K}[X]$.

Corolario. Si *P* es un polinomio de grado *n* entonces *P* tiene a lo sumo *n* raíces.

Teorema de Gauss.

Sea $P \in \mathbb{Z}[X]$, $P(x) = \sum_{i=0}^{n} a_j x^j \operatorname{con} a_0 \neq 0$. Si $\frac{p}{q} (\operatorname{con} p \in \mathbb{Z}, q \in \mathbb{N} \setminus \{p, q\} = 1)$ es una raíz de P, entonces $p \mid a_0 \text{ y } q \mid a_n$.

Teorema fundamental del álgebra.

Si $P \in \mathbb{C}[X]$ y gr $P \ge 1$, existe $z \in \mathbb{C}$ tal que z es raíz de P.

Teorema.

Sea $P \in \mathbb{R}[X]$, y sea $z \in \mathbb{C}$. Si z es raíz de $P \Rightarrow \overline{z}$ es raíz de P.

Si
$$P(x) = \sum_{j=0}^{n} a_j x^j \in \mathbb{K}[X]$$
, llamaremos polinomio derivado de P a:
$$\partial P(x) = \sum_{j=1}^{n} j a_j x^{j-1} = \sum_{j=0}^{n-1} (j+1) a_{j+1} x^j$$

Propiedades.

$$\partial(P+Q) = \partial P + \partial Q$$
 $\partial(P\cdot Q) = (\partial P)\cdot Q + P\cdot \partial Q$ $\partial(kx^0) = 0$

Notación: Designamos $\partial^{(m)}P = \partial(\partial^{(m-1)}P) = \partial(\partial(...(\partial P)))$

Si $P \in \mathbb{K}[X]$, diremos que $z \in \mathbb{C}$ es raíz de multiplicidad k de $P(k \in \mathbb{N})$ si $P(x) = (x - z)^k Q(x)$ con $Q \in \mathbb{C}[X]$ y $Q(z) \neq 0$.

Teorema.

Sea $P \in \mathbb{R}[X]$, y sea $z \in \mathbb{C}$; z es raíz de multiplicidad k de P si y sólo si $P(z) = \partial P(z) = \partial^2 P(z) = \dots = \partial^{(k-1)} P(z) = 0 \text{ y } \partial^{(k)} P(z) \neq 0.$

Polinomio interpolador de Lagrange

Sean $a_0, a_1, ..., a_n$, $a_i \in \mathbb{K}$, $a_i \neq a_j$ si $i \neq j$, y sean $b_0, b_1, ..., b_n$ arbitrarios, $b_i \in \mathbb{K}$. Existe un único polinomio $L \in \mathbb{K}[X]$, con L = 0 ó gr $L \leq n$, que satisface $L(a_i) = b_i$ para i = 0, 1, ..., n. Se trata del polinomio:

$$L(x) = \sum_{i=0}^{n} b_i L_i(x) \quad \text{donde} \quad L_i(x) = \frac{\prod_{k=0}^{n} (x - a_k)}{\prod_{\substack{k=0 \ k \neq i}}^{n} (a_i - a_k)}$$

81

EJERCICIOS

NÚMEROS COMPLEJOS

Ejercicio 1.- Dar la forma binómica de *z*.

a)
$$z = (3-i) + (\frac{1}{5} + 5i)$$

b)
$$z = (\sqrt{2} + i)(\sqrt{3} - i)$$

a)
$$z = (3-i) + (\frac{1}{5} + 5i)$$
 b) $z = (\sqrt{2} + i)(\sqrt{3} - i)$ c) $z = (3 + \frac{1}{3}i)(3 - \frac{1}{3}i) + (3 + 2i)$

Ejercicio 2.- Dar la forma binómica de *z*.

a)
$$z = (1+2i)(1-2i)^{-1}$$

b)
$$z = (1+i)(2+3i)(\overline{3+2i})$$

c)
$$z = (1+i)^{-1}(\sqrt{2}+\sqrt{2}i)+(-2+5i)$$

Ejercicio 3.- Calcular |z|.

a)
$$z = (\sqrt{2} + i) + (3\sqrt{2} - 3i)$$

b)
$$z = (1+ai)(1-ai)^{-1}$$
 $a \in \mathbb{R}$

c)
$$z = (3i)^{-1}$$

d)
$$z = ||1 - i| + i| + i$$

e)
$$z = (1+i)(1-2i)(3-i)$$

f)
$$z = 3(1+3i)^1$$

Ejercicio 4.- Dar la forma binómica de \overline{z} .

a)
$$z = |1-i|+i$$

b)
$$z = ||1+i|+i|+i$$

c)
$$z = (1-2i)(2-i)$$

d)
$$z = (1+3i)(1-3i)$$

Ejercicio 5.- Representar en el plano todos los $z \in \mathbb{C}$ tales que:

a)
$$|z| = 3$$

b)
$$|z| \le 2$$

c)
$$z = \overline{z}$$

Ejercicio 6.-

- a) Representar en el plano el conjunto $B = \{z \in \mathbb{C} / |z+1-i| \le 2\}$.
- b) Representar en el plano el conjunto B = $\{z \in \mathbb{C} / |z+1| \le |z-3-i|\}$.
- c) Si A = $\{z \in \mathbb{C} / \text{Re } z \le 1, \text{ Im } z \le \frac{1}{2}\}\ \text{y B} = \{z \in \mathbb{C} / |z 1 3i| = 5\}\$, representar $C = A \cap B$.

Ejercicio 7.- Escribir en forma binómica todos los $z \in \mathbb{C}$ tales que:

a)
$$z^2 = 1 - 4\sqrt{3}i$$

b)
$$z^2 = 16 + 14\sqrt{3}i$$

c)
$$z^2 + 2z + 3 = 0$$

d)
$$z^2 = 5 - 2i z$$

Ejercicio 8.- Hallar todos los $z \in \mathbb{C}$ tales que su conjugado coincide con su cuadrado.

Ejercicio 9.- Calcular Re z e Im z.

a)
$$z = 2(\cos \pi + i \sin \pi)$$

b)
$$z = 3(\cos\frac{3}{2}\pi + i\sin\frac{3}{2}\pi)$$

c)
$$z = (\cos\frac{2}{3}\pi + i\sin\frac{2}{3}\pi)$$

d)
$$z = 2(\cos{\frac{7}{4}}\pi + i\sin{\frac{7}{4}}\pi)$$

Ejercicio 10.- Escribir *z* en forma trigonométrica.

a)
$$z = \sqrt{5}$$

b)
$$z = -6$$

c)
$$z = 15i$$

$$d) z = -\frac{1}{3}i$$

e)
$$z = \sqrt{5} + \sqrt{5}i$$

f)
$$z = 3 - \sqrt{3}i$$

$$g) z = -3(\cos 0 + i \sin 0)$$

h)
$$z = 3(\cos\frac{\pi}{2} - i \sin\frac{\pi}{2})$$

i)
$$z = 2(\cos\frac{\pi}{3} + i\cos\frac{\pi}{3})$$

$$j) z = \frac{\pi}{2}i(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2})$$

Ejercicio 11.- Representar en el plano.

a)
$$A = \{z \in \mathbb{C} / \arg z = 0\}$$

b) B =
$$\{z \in \mathbb{C} / \frac{1}{2}\pi \le \arg z \le \frac{5}{4}\pi \}$$

c)
$$C = \{z \in \mathbb{C} / |z| = 5, 0 \le \arg z \le \frac{2}{3}\pi \}$$

c)
$$C = \{z \in \mathbb{C} / | z | = 5, \ 0 \le \arg z \le \frac{2}{3}\pi\}$$
 d) $C = \{z \in \mathbb{C} / | z + 1 - i | \le 3, \ \frac{\pi}{6} \le \arg z \le \frac{\pi}{3}\}$
Ejercicio 12.-

Ejercicio 12.-

- a) Escribir en forma trigonométrica $z = (1+i)(\frac{\sqrt{3}}{2} \frac{1}{2}i)$
- b) Escribir en forma binómica $z = (-3\sqrt{3} + 3i)^{15}$
- c) Escribir en forma binómica $z = \frac{1+i}{(-\sqrt{3}+i)^5}$

Ejercicio 13.- Encontrar todas las raíces *n*-ésimas de *w* para:

a)
$$n = 3$$
 $w = 1$

b)
$$n = 5$$

Ejercicio 14.- Determinar todos los $z \in \mathbb{C}$ tales que $z^8 = \frac{1-i}{\sqrt{2}+i}$

Ejercicio 15.- Encontrar todos los $z \in \mathbb{C}$ que satisfacen:

a)
$$z^3 = i \overline{z}^2$$

b)
$$z^{10} = -4\overline{z}^{10}$$

c)
$$z^5 - \overline{z} = 0$$

d)
$$z^4 + z^{-4} = 0$$

e)
$$z^3 + 9i \overline{z}^2 |z| = 0$$

d)
$$z^4 + z^{-4} = 0$$
 e) $z^3 + 9i\overline{z}^2 |z| = 0$ f) $z^4 = (\frac{3}{2} - i\frac{\sqrt{3}}{2})^8$

Ejercicio 16.-

- a) Escribir en forma binómica $e^{i\pi}$, $e^{i\frac{\pi}{3}}$, $2e^{-i\pi}$, $e^{i\frac{5}{6}\pi}$.
- b) Expresar en forma exponencial las raíces quintas de −1.
- c) Probar que $\forall t \in \mathbb{R}$ es $\cos t = \frac{e^{it} + e^{-it}}{2}$ y $\sin t = \frac{e^{it} e^{-it}}{2i}$

POLINOMIOS

Ejercicio 17.- Calcular PQ, 3P + Q y $P^2 - Q$ e indicar el grado de cada uno.

a)
$$P(x) = 2x + 1$$

a)
$$P(x) = 2x + 1$$
 $Q(x) = x^2 + 3x - 2$

b)
$$P(x) = 3x^2 + x - 1$$
 $Q(x) = -9x^2 - 3x + 6$

$$O(x) = -9x^2 - 3x + 6$$

c)
$$P(x) = x^3 - 3$$

c)
$$P(x) = x^3 - 3$$
 $Q(x) = -x^3 + 2x^2 + 1$

Ejercicio 18.- Encontrar, si existen, a, b y c en \mathbb{R} tales que:

a)
$$3x - 2 = a(x^2 + x + 3) + b(x^2 - 2x + 1) + c(x^2 - 3)$$

b)
$$(2x-1)(x+1) = ax^2 + b(x+1)(x+3)$$

Ejercicio 19.- a) Determinar $a \in \mathbb{R}$ tal que:

i) Si
$$P(x) = ax^3 - 3ax^2 + 2$$
, sea $P(2) = 3$

sea
$$P(2) = 3$$

ii) Si
$$P(x) = x^3 + 3x^2 + a$$

ii) Si $P(x) = x^3 + 3x^2 + a$, P tenga a cero como raíz

iii) Si
$$P(x) = ax^2 + ax + 3$$
, sea $P(-1) = 3$ y gr $P = 2$

$$sea P(-1) = 3 y gr P = 2$$

- b) Determinar $a, b y c en \mathbb{R}$ para que:
- i) $P(x) = ax^2 + bx + c$ tenga a 1 y -1 por raíces

ii)
$$P(x) = x^2 + 2bx + a$$
 y $Q(x) = ax^3 - b$ tengan a 2 como raíz común.

Ejercicio 20.- Determinar todas las raíces de *P*.

a)
$$P(x) = x^2 + ix + 1$$

b)
$$P(x) = x^2 + (1 - i)x + 1$$

c)
$$P(x) = x^2 + 2x + 1$$

$$d) P(x) = ix^5 - 1$$

Ejercicio 21.- Hallar todas las raíces de *P*.

a)
$$P(x) = 3x^3 + x^2 + 12x + 4$$

b)
$$P(x) = \frac{1}{3}x^3 + 2x^2 + \frac{2}{3}x - 7$$

c)
$$P(x) = x^4 + 2x^3 - 9x^2 - 18x$$

d)
$$P(x) = x^4 - x^3 - 9x^2 - x - 10$$
 sabiendo que *i* es raíz

e) $P(x) = x^5 - 25x^3 + 85x^2 - 106x + 45$ sabiendo que (2 + i) es raíz

f)
$$P(x) = x^4 - \frac{9}{4}x^2 - \frac{9}{4}$$

g)
$$P(x) = x^6 - 2x^4 - 51x^2 - 108$$
 sabiendo que $P(-\sqrt{3}i) = 0$

Ejercicio 22.- Dado $P(x) = 2x^4 - 6x^3 + 7x^2 + ax + a$, determinar $a \in \mathbb{R}$ sabiendo que (1+i) es raíz de P y hallar las restantes raíces de P.

Ejercicio 23.- Escribir $x^4 + 1$ como producto de polinomios irreducibles en $\mathbb{C}[X]$ y en $\mathbb{R}[X]$.

Ejercicio 24.- Determinar la multiplicidad de α como raíz de P.

a)
$$P(x) = (x^2 - 1)(x - 1)^3(x^5 - 1)$$

$$\alpha = 1$$

b)
$$P(x) = x^4 + 3x^3 + 12x^2$$

$$\alpha = 0$$

c)
$$P(x) = x^3 - x^2 - 5x + 6$$

$$\alpha = 2$$

d)
$$P(x) = (x^4 + 1)(x^2 + 1)(x^3 + i)$$

$$\alpha = i$$

Ejercicio 25.- Hallar todas las raíces del polinomio P y escribirlo como producto de polinomios de grado 1.

a) $P(x) = x^5 - 6x^4 + 10x^3 + 4x^2 - 24x + 16$, y se sabe que *P* tiene una raíz triple.

b)
$$P(x) = 4x^3 + 8\sqrt{3}x^2 + 15x + 3\sqrt{3}$$
, y se sabe que P tiene una raíz doble.

Ejercicio 26.-

- a) Hallar $P \in \mathbb{R}[X]$, de grado mínimo, que tenga a 1/2 como raíz simple, a (1+i) como raíz doble y que verifique que P(0) = -2.
- b) Hallar todos los polinomios P con coeficientes reales, de grado 3, que tengan a (-2)como raíz doble y que verifiquen P(1) = P(-1).

Ejercicio 27.- Sabiendo que $Q(x) = 81x^4 - 1$ y $P(x) = 9x^4 + 27x^3 - 8x^2 + 3x - 1$ tienen alguna raíz común, encontrar todas las raíces de P.

Ejercicio 28.- Sea $P(x) = 2x^3 - 5x^2 + 4x + 1$, y sean a, b y c sus raíces.

Calcular:

$$a+b+c$$
 abc $a^2+b^2+c^2$

$$\frac{1}{a} + \frac{1}{b} + \frac{1}{c}$$

Ejercicio 29.- Calcular la suma y el producto de las raíces séptimas de la unidad.

Ejercicio 30.-

a) Sea
$$P(x) = 3x^3 - 2x^2 + x + \alpha$$
.

Encontrar $\alpha \in \mathbb{R}$ para que la suma de dos de las raíces de P sea igual a -1.

b) Sea
$$P(x) = x^3 + 2x^2 - 7x + \alpha$$
.

Encontrar $\alpha \in \mathbb{R}$ de manera que una de las raíces de P sea igual a la opuesta de otra.

c)
$$P(x) = 3x^3 + x^2 - 2x + \alpha$$
.

Encontrar $\alpha \in \mathbb{R}$ tal que una de las raíces de *P* sea igual a la suma de las otras dos.

Ejercicio 31.-

a) Encontrar un polinomio *P*, de grado a lo sumo 3, que satisfaga:

$$P(1) = 1$$
 ; $P(0) = -1$; $P(2) = 2$; $P(-1) = 0$

b) Encontrar la ecuación de una parábola que pase por P₁, P₂ y P₃, donde

$$P_1 = (-1,1)$$
 ; $P_2 = (0,1)$; $P_3 = (2,-2)$

c) Encontrar un polinomio de grado 4 que satisfaga:

$$P(-1) = -1$$
 ; $P(0) = 1$; $P(1) = 4$

EJERCICIOS SURTIDOS

1. Hallar todos los $z \in \mathbb{C}$ tales que:

a)
$$z^3 = 3iz\overline{z}$$

b)
$$(1+\sqrt{3}i)z^3=2\overline{z}$$

2. Sea
$$z \in \mathbb{C}$$
, $z \neq 1$, tal que $|z| = 1$. Calcular $\operatorname{Im}(i\frac{1+z}{1-z})$.

3. Hallar un polinomio $P \in \mathbb{R}[X]$, de grado mínimo, que verifique:

$$P(1+i) = 0$$
; -1 es raíz doble de P ; $Im(P(i)) = 28$

- **4.** Sea $P(x) = (x^3 ax^2 a^2x + 1)(x^2 a^2)$. Hallar *a* para que -1 sea raíz doble de *P*.
- **5.** Sean $P(x) = x^4 + x^3 7x^2 8x 8$ y $Q(x) = x^3 1$. Se sabe que P y Q tienen al menos una raíz común. Hallar todas las raíces de P en \mathbb{C} .
- **6.** Hallar un polinomio $P \in \mathbb{R}[X]$, de grado mínimo, que verifique simultáneamente: las soluciones de $z^2 = 5\overline{z}$ son raíces de P; P tiene alguna raíz doble; P(1) = 31.
- 7. Encontrar todas las raíces de $P(x) = x^5 + x^4 + x^3 + 2x^2 12x 8$, sabiendo que tiene alguna raíz imaginaria pura.

- **8.** a) Hallar todas las raíces sextas de (1 + i)
- b) ¿Existe una raíz sexta de (1 + i) cuyo conjugado sea también raíz sexta de (1 + i)?
- c) Hallar el producto de todas las raíces sextas de 1 + i.
- **9.** a) Hallar el resto de la división de P por (x-3)(x+2), si P(3)=1 y P(-2)=3
- b) Calcular el resto de la división de $P(x) = x^n 2x^{n-1} + 2$ por $x^2 + x$.
- c) Los restos de dividir a P(x) por (x+2), (x-3) y (x+1) son 3, 7 y 13 respectivamente. Calcular el resto de la división de P(x) por (x+2)(x-3)(x+1)
- d) Calcular el resto de la división de $P(x) = (\cos a + x \sin a)^n \text{ por } x^2 + 1$.
- **10.** Sea $P \in \mathbb{R}[X]$ y $Q(x) = x^3 2x^2 + x$. Hallar el resto de la división de P por Q sabiendo que P(0) = -1; P(1) = 3; $\partial P(1) = -3$.
- **11.** Encontrar todos los $z \in \mathbb{C}$ tales que $z^7 \overline{z}^3 = -2^{10}i$.
- **12.** Hallar z_1 y z_2 tales que ambos sean soluciones de $(1-i)z^2 = (2+2i)\overline{z}$ y que además verifiquen Re $(z_1) < 0$; Im $(z_1 \cdot \overline{z_2}) > 0$.
- 13. Encontrar un polinomio $P \in \mathbb{R}[X]$ de grado mínimo que tenga por raíces a las $(2 \operatorname{Im} z - i \operatorname{Re} z)^2 = -5 + 12i$. soluciones de la ecuación
- **14.** Hallar un polinomio $P \in \mathbb{R}[X]$ de grado 4, que cumpla las siguientes condiciones:
- i) el coeficiente principal de P es igual a 6
- ii) -1-i es raíz de P
- iii) el cociente entre dos de sus raíces reales es igual a 4 iv) P(0)=192
- **15.** Graficar los $z \in \mathbb{C}$ tales que $z^4 = (\overline{z})^4$ y $|\operatorname{Re}(z)| < 1$.
- **16.** Hallar todos los $z \in \mathbb{C}$ tales que $z^6 = i(\overline{z})^{-4}$ e $\text{Im}(z^3) < 0$.
- 17. Hallar un polinomio $P \in \mathbb{R}[X]$, de grado mínimo, que tenga por raíces a todas las soluciones de la ecuación $z^4 \overline{z} = 2i|z|^4$.
- **18.** Hallar todas las raíces de $P(x) = x^4 4x^3 + 3x^2 + 8x 10$ sabiendo que la suma de sus raíces reales es igual a cero.
- 19. Se sabe que el polinomio $P(x) = x^4 2x^3 + 2x^2 8x 8$ tiene alguna raíz imaginaria pura. Hallar todas las raíces de P y escribir P como producto de polinomios de grado 1.

PRÁCTICA 7

AUTOVECTORES Y AUTOVALORES

DEFINICIONES Y PROPIEDADES

Sea $A \in \mathbb{R}^{n \times n}$. Un vector $\mathbf{v} \in \mathbb{R}^n$, $\mathbf{v} \neq \mathbf{0}$, es un *autovector* de A (o vector propio), si existe $\lambda \in \mathbb{R}$ tal que $A\mathbf{v} = \lambda \mathbf{v}$.

Diremos que el número λ es un *autovalor* de A (o valor propio) y que el vector \mathbf{v} es un *autovector de A asociado al autovalor* λ .

Sea $f: \mathbb{V} \to \mathbb{V}$ una transformación lineal. Un vector $\mathbf{v} \in \mathbb{V}$, $\mathbf{v} \neq \mathbf{0}$, es un *autovector de f* asociado al autovalor λ , si $f(\mathbf{v}) = \lambda \mathbf{v}$.

El conjunto $\mathbb{S}_{\lambda} = \{ \mathbf{v} \in \mathbb{V} / f(\mathbf{v}) = \lambda \mathbf{v} \}$ es el *subespacio asociado al autovalor \lambda*.

Sea $f: \mathbb{R}^n \to \mathbb{R}^n$ una transformación lineal. Si \mathbf{v} es un autovector de f asociado al autovalor λ y A = M(f), entonces \mathbf{v} es un autovector de A asociado al mismo autovalor λ , pues $A\mathbf{v} = f(\mathbf{v}) = \lambda \mathbf{v}$

Propiedad: λ es autovalor de A si y sólo si la matriz $A - \lambda I$ no es inversible, o sea, si y sólo si $\det(A - \lambda I) = 0$.

El polinomio $P(\lambda) = \det(A - \lambda I)$ se llama *polinomio característico* de A. Su grado es n y los autovalores de A son raíces de P.

Propiedad: Si $\lambda_i \neq \lambda_j \ \forall \ i \neq j \ y \ \mathbf{v}_1, ..., \mathbf{v}_r$ son autovectores de A asociados a los autovalores $\lambda_1, ..., \lambda_r$, respectivamente, entonces $\{\mathbf{v}_1, ..., \mathbf{v}_r\}$ es linealmente independiente.

La transformación lineal $f: \mathbb{V} \to \mathbb{V}$ se dice *diagonalizable* si existe una base B de \mathbb{V} tal que $M_B(f)$ es diagonal.

Propiedad: Si $f: \mathbb{V} \to \mathbb{V}$ es una transformación lineal y B es una base de \mathbb{V} formada por autovectores de f, entonces $M_R(f)$ es diagonal.

Propiedad: Si dim $\mathbb{V} = n$ y f tiene n autovalores distintos, entonces f es diagonalizable.

Propiedad: Si B y B' son dos bases de \mathbb{V} , y $f: \mathbb{V} \to \mathbb{V}$ es una transformación lineal, entonces las matrices $M_B(f)$ y $M_{B'}(f)$ tienen los mismos autovalores.

Una matriz $A \in \mathbb{R}^{n \times n}$ se dice diagonalizable si existe una matriz diagonal $D \in \mathbb{R}^{n \times n}$ y una matriz inversible $C \in \mathbb{R}^{n \times n}$ tales que $A = CDC^{-1}$

Propiedad: Una matriz $A \in \mathbb{R}^{n \times n}$ es diagonalizable si y sólo si tiene n autovectores linealmente independientes, $\mathbf{v}_1, ..., \mathbf{v}_n$.

donde λ_i es el autovalor asociado a \mathbf{v}_i .

EJERCICIOS

Ejercicio 1.- Para cada matriz calcular todos los autovalores y para cada uno de ellos hallar el subespacio asociado.

a)
$$\begin{pmatrix} -7 & 5 \\ -10 & 8 \end{pmatrix}$$
 b) $\begin{pmatrix} 4 & 2 \\ 3 & 3 \end{pmatrix}$ c) $\begin{pmatrix} 2 & -1 \\ -4 & 2 \end{pmatrix}$ d) $\begin{pmatrix} 4 & 1 \\ 0 & 4 \end{pmatrix}$

a)
$$\begin{pmatrix} -7 & 5 \\ -10 & 8 \end{pmatrix}$$
 b) $\begin{pmatrix} 4 & 2 \\ 3 & 3 \end{pmatrix}$ c) $\begin{pmatrix} 2 & -1 \\ -4 & 2 \end{pmatrix}$ d) $\begin{pmatrix} 4 & 1 \\ 0 & 4 \end{pmatrix}$ e) $\begin{pmatrix} 2 & 3 & -1 \\ -1 & 1 & 4 \\ 1 & 2 & -1 \end{pmatrix}$ f) $\begin{pmatrix} 3 & -5 \\ 1 & -1 \end{pmatrix}$ g) $\begin{pmatrix} 1 & 2 & -1 \\ 0 & -5 & -4 \\ 0 & 8 & 7 \end{pmatrix}$

Ejercicio 2.-

- a) Hallar todos los $k \in \mathbb{R}$ para los cuales $A = \begin{pmatrix} 0 & 0 & -3 \\ 1 & 0 & -1 \\ k & 1 & -1 \end{pmatrix}$ tiene a 1 como autovalor.
- b) Para los valores de *k* hallados, calcular todos los autovalores de *A*.

Ejercicio 3.- Encontrar una base B de \mathbb{R}^3 para la cual $M_B(f)$ sea diagonal.

a)
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 tal que $M(f) = \begin{pmatrix} 3 & -1 & 1 \\ 0 & -5 & 0 \\ 0 & 7 & 2 \end{pmatrix}$.

b)
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 tal que $M(f) = \begin{pmatrix} -2 & -2 & 4 \\ 0 & 4 & 0 \\ -6 & -2 & 8 \end{pmatrix}$.

Ejercicio 4.- Sean B = { (1, 1, 1); (0, 1, 1); (0, 0, 1) } y $f: \mathbb{R}^3 \to \mathbb{R}^3$ la t. l. definida por

$$M_B(f) = \begin{pmatrix} 5 & 0 & 0 \\ 3 & 1 & -1 \\ -1 & 0 & 3 \end{pmatrix}.$$
 Encontrar una base B' de \mathbb{R}^3 tal que $M_{B'}(f)$ sea diagonal.

Ejercicio 5.- Sea B = $\{(1, -1, 0); (0, 0, 1); (-3, 2, 0)\}$ y $f: \mathbb{R}^3 \to \mathbb{R}^3$ la t.l. tal que

$$M_{BE}(f) = \begin{pmatrix} -3 & 2 & 9 \\ 4 & 4 & -9 \\ 2 & 0 & -6 \end{pmatrix}$$
. Decidir si f es diagonalizable.

En caso afirmativo, encontrar una base B' tal que $M_{B'}(f)$ sea diagonal.

Ejercicio 6.- Determinar si la matriz A es diagonalizable; en caso afirmativo encontrar matrices C y D tales que D es diagonal y $A = CDC^{-1}$.

a)
$$A = \begin{pmatrix} 3 & 5 \\ 3 & 1 \end{pmatrix}$$
 b) $A = \begin{pmatrix} 1 & -1 & 4 \\ 3 & 2 & -1 \\ 2 & 1 & -1 \end{pmatrix}$ c) $A = \begin{pmatrix} 1 & -2 & 4 \\ 3 & -4 & 6 \\ 5 & -5 & 9 \end{pmatrix}$

d)
$$A = \begin{pmatrix} 1 & -1 & 1 \\ -1 & 1 & 1 \\ -1 & -1 & 3 \end{pmatrix}$$
 e) $A = \begin{pmatrix} 4 & 6 & 6 \\ 1 & 3 & 2 \\ -1 & -5 & -2 \end{pmatrix}$

Ejercicio 7.- Dada
$$A = \begin{pmatrix} 0 & 2 & 2 \\ 2 & 3 & 4 \\ 2 & 4 & 3 \end{pmatrix}$$
, calcular A^{10} .

Ejercicio 8.- Sea
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 tal que $M(f) = \begin{pmatrix} 0 & 0 & -3 \\ 1 & 0 & -1 \\ -2 & 1 & -1 \end{pmatrix}$ y $\mathbb{S} = \langle (a+3, a^2-4, 1) \rangle$.

Hallar todos los valores de $a \in \mathbb{R}$ para los cuales $f(\mathbb{S}) = \mathbb{S}$.

Ejercicio 9.- Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal dada por $f(x_1, x_2, x_3) = (4x_1 + 4x_2 + 4x_3, 5x_1 + 7x_2 + 10x_3, -6x_1 - 7x_2 - 10x_3).$

Encontrar una base de B de
$$\mathbb{R}^3$$
 tal que $M_B(f) = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -3 \end{pmatrix}$.

EJERCICIOS SURTIDOS

1. Se sabe que la matriz $A = \begin{pmatrix} 0 & 0 & 2 \\ -1 & 0 & -1 \\ k & 3 & -1 \end{pmatrix}$ tiene un autovalor igual a -2.

Decidir si A es diagonalizable

2. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la transformación lineal tal que $M(f) = \begin{pmatrix} 2 & 0 & 0 \\ 3 & 5 & -6 \\ 3 & 3 & -4 \end{pmatrix}$

Hallar una base B de \mathbb{R}^3 , B = {(-1, 1, 0), \mathbf{v}_2 , \mathbf{v}_3 } tal que $M_B(f)$ sea diagonal.

3. Sea $\{\mathbf v_1, \mathbf v_2, \mathbf v_3\}$ una base del espacio vectorial $\mathbb V$ y $f: \mathbb V \to \mathbb V$ la t.1. definida por:

 $f(\mathbf{v}_1) = -\mathbf{v}_1 - 2\mathbf{v}_2$; $f(\mathbf{v}_2) = \mathbf{v}_1 + 2\mathbf{v}_2$; $f(\mathbf{v}_3) = 2\mathbf{v}_3$. Hallar una base de autovectores de f.

4. Sea B = { \mathbf{v}_1 , \mathbf{v}_2 , \mathbf{v}_3 } base de \mathbb{R}^3 y $f: \mathbb{R}^3 \to \mathbb{R}^3$ la t.l. tal que $M_B(f) = \begin{pmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ -1 & 0 & 2 \end{pmatrix}$.

Hallar los autovalores y autovectores de f. ¿Es f diagonalizable?

5.- Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$, $f(x_1, x_2, x_3) = (-2x_1 + 2x_3, -7x_1 - 3x_2 + x_3, \alpha x_1 + 4x_3)$.

Determinar α para que f no sea isomorfismo y decidir si existe una base B de \mathbb{R}^3 tal que $M_{\mathbb{R}}(f)$ sea diagonal.

6. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la t.l. $f(x_1, x_2, x_3) = (2x_1 + x_2 - x_3, 3x_2 + 2x_3, -x_3)$.

Hallar una base B de \mathbb{R}^3 tal que $M_B(f^{-1})$ sea diagonal.

7. Sean $\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^4 / 3x_1 + x_2 - x_3 + 4x_4 = 0 \}$ y $\mathbb{T} = \langle (1,1,0,-1), (-1,0,1,0) \rangle$.

Hallar una t.l. $f: \mathbb{R}^4 \to \mathbb{R}^4$ tal que sus autovalores sean 3, -2 y 0; Im $f = \mathbb{T}$ y Nu $f \subset \mathbb{S}$.

8. Sean B = {(0,1,1), (1/2,-1/2,0), (0,0,-1)} una base de \mathbb{R}^3 y $f: \mathbb{R}^3 \to \mathbb{R}^3$ la t.l. tal que

$$M_{EB}(f) = \begin{pmatrix} 3 & 2 & 2 \\ 4 & 0 & -2 \\ 5 & 2 & 1 \end{pmatrix}.$$
 Hallar una base B' tal que $M_{B'}(f)$ sea diagonal.

9. Sean B = {(0,0,1), (1,0,0), (0,1,0)}; B' = {(0,0,-1), (-1,-1,-1), (3,2,1)} y

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 la t.l. tal que $M_{BR'}(f) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \end{bmatrix}$. Hallar los autovalores de $f \circ f$.

$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 la t.l. tal que $M_{BB'}(f) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 1 & 2 \end{pmatrix}$. Hallar los autovalores de $f \circ f$.

10. Sea B = {
$$(1,0,-1), (0,2,1), (-1,3,2)$$
} y $f: \mathbb{R}^3 \to \mathbb{R}^3$ la t.l. tal que

$$M_B(f) = \begin{pmatrix} 0 & 2 & a \\ 0 & b & 2 \\ 1 & 0 & 1 \end{pmatrix}$$
. Encontrar $a \ y \ b$ para que $f(-1, -1, 0) = (-1, -1, 0)$.

Para los valores hallados, decidir si f es diagonalizable.

11. Sea
$$A = \begin{pmatrix} 2 & a & 2 \\ 0 & b & -2 \\ 1 & a+2b & 2 \end{pmatrix}$$
.

Determinar a y b para que (1,-1,0) sea autovector de A.

12. Dada la matriz $A = \begin{pmatrix} -3 & 0 & 0 \\ -8 & 5 & -4 \\ -8 & 8 & k \end{pmatrix}$, hallar $k \in \mathbb{R}$ sabiendo que 1 es autovalor de A.

Para ese valor de k, determinar si A es diagonalizable

13. Sean B=
$$\{v_1; v_2; v_3\}$$
 y B'= $\{v_1; v_1 - v_3; v_2 + v_3\}$ bases de \mathbb{R}^3 y sea $f: \mathbb{R}^3 \to \mathbb{R}^3$

13. Sean B={
$$v_1$$
; v_2 ; v_3 } y B'={ v_1 ; $v_1 - v_3$; $v_2 + v_3$ } bases de \mathbb{R}^3 y sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ tal que $M_{BB'}(f) = \begin{pmatrix} 0 & 4 & 4 \\ 1 & -4 & -3 \\ 0 & -1 & 0 \end{pmatrix}$. Decidir si f es diagonalizable.

14. Sean B'=
$$\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$$
 y B''= $\{\mathbf{v}_2 + \mathbf{v}_3; \mathbf{v}_2 - \mathbf{v}_1; \mathbf{v}_2\}$ bases de \mathbb{V} . Sea $f: \mathbb{V} \to \mathbb{V}$ la t. 1. tal

que
$$M_{B''B'}(f) = \begin{pmatrix} -3 & 1 & 0 \\ 0 & -1 & -3 \\ 2 & 0 & 0 \end{pmatrix}$$
 y sea $g: \mathbb{V} \to \mathbb{V}$ definida por $g(\mathbf{v}) = f(\mathbf{v}) - 2\mathbf{v}$.

Hallar una base B de \mathbb{V} tal que $M_{\mathbb{R}}(g)$ sea diagonal.

15. Sea
$$f: \mathbb{R}^3 \to \mathbb{R}^3$$
 una t. l. que verifica: $f(1,1,0) = (2,-10,k)$; $f(0,-1,0) = (0,3,0)$ y $f(0,1,1) = (2,-2,4)$.

Hallar, si es posible, los $k \in \mathbb{R}$ para los cuales f no es monomorfismo.

Para los valores de k encontrados, decidir si f es diagonalizable.

16. Sean $B = \{(1, -2, 2); (0, -1, 0); (0, 1, -1)\}$ y $f: \mathbb{R}^3 \to \mathbb{R}^3$ la t. l. tal que

$$M_{EB}(f) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & -k^2 & -1 \\ 5-k & 0 & -2 \end{pmatrix}.$$

Hallar todos los valores de k para los cuales 1 es autovalor de f y f es diagonalizable.

17. Sean $B = \{ \mathbf{v}_1; \mathbf{v}_2; \mathbf{v}_3 \}$ y $B' = \{ \mathbf{v}_1; \mathbf{v}_1 + \mathbf{v}_2; -\mathbf{v}_1 - 2\mathbf{v}_2 - \mathbf{v}_3 \}$ bases de un e.v. \mathbb{V} y

$$f: \mathbb{V} \to \mathbb{V}$$
 la transformación lineal tal que $M_{BB}(f) = \begin{pmatrix} 5 & -2 & 2 \\ 0 & 1 & a \\ 0 & -1 & -4 \end{pmatrix}$.

Hallar, si es posible, una base de autovectores de f, sabiendo que $2\mathbf{v}_2 - \mathbf{v}_3$ es un autovector de f.

ALGEBRA(27) Primer Parcial A

En cada ejercicio escriba todos los razonamientos que justifican la respuesta.

- **1.** Sean $\mathbb{L}: \lambda(1,-1,2) + (2,1,1)$ y P = (3,1,0). Hallar todos los planos Π que son paralelos al plano que contiene a \mathbb{L} y a P y tales que $d(P,\Pi) = 2\sqrt{11}$.
- **2.** Sea $A = \begin{pmatrix} 0 & -1 & k \\ 6 & -3 & k+4 \\ k & 0 & 0 \end{pmatrix}$. Hallar todos los valores de $k \in \mathbb{R}$ para los cuales los

sistemas $A\mathbf{x} = 0$ y $A\mathbf{x} = -\mathbf{x}$ tengan infinitas soluciones. Para los valores obtenidos resolver el sistema $A\mathbf{x} = -\mathbf{x}$.

- **3.** Sea $\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^3 / x_1 x_2 + 3x_3 = 0 \}$. Hallar una base $B = \{ \mathbf{v}_1; \mathbf{v}_2; \mathbf{v}_3 \}$ de \mathbb{R}^3 tal que $\mathbf{v}_1 \in \mathbb{S}$; $\mathbf{v}_2 \in \mathbb{S}$; $\mathbf{v}_3 \in \mathbb{S}^{\perp}$; el vector (3,6,1) tiene coordenadas (2,3,0) en la base B y el vector (-5,2,-5) tiene coordenadas (0,1,-1) en la base B.
- **4.** Sean $\mathbb{H} = \left\{ \mathbf{x} \in \mathbb{R}^4 / 2x_1 + x_3 + x_4 = 0 \right\}$, $\mathbb{S} = \left\{ \mathbf{x} \in \mathbb{R}^4 / x_1 x_2 + x_3 + x_4 = x_1 + x_2 = 0 \right\}$ y $\mathbb{T} = \left\langle (3, 2, 1, -1); (1, 1, 1, 0) \right\rangle$. $\mathbb{T} = \langle (3,2,1,-1); (1,1,1,0) \rangle.$

Encontrar, si es posible, un subespacio \mathbb{W} tal que $\mathbb{W} \cap \mathbb{T} \neq \{0\}$ y $\mathbb{W} \oplus \mathbb{S} = \mathbb{H}$.

Primer Parcial B ALGEBRA(27)

En cada ejercicio escriba todos los razonamientos que justifican la respuesta.

1. Sean $\Pi_1: x_1 + x_3 = 1$ y $\Pi_2: x_1 + 2x_2 + x_3 = 3$. Hallar dos rectas \mathbb{L}_1 y \mathbb{L}_2 que verifiquen simultáneamente:

Verifique i sinuitaneament. $\mathbb{L}_1 \subset \Pi_1; \ \mathbb{L}_2 \subset \Pi_2; \ \mathbb{L}_1 \cap \mathbb{L}_2 \neq \emptyset; \ \mathbb{L}_1 \perp \mathbb{L}_2.$ 2. Determinar para qué valores de a y b, $X = \begin{pmatrix} 2 \\ 0 \\ -1 \end{pmatrix}$ es una de las infinitas soluciones de

la ecuación
$$\begin{pmatrix} -1 & 0 & 1 \\ 3 & 1 & 1 \\ 1 & 0 & -1 \end{pmatrix} X = \begin{pmatrix} -2 & 1 & 1 \\ 1 & 2 & -1 \\ 1 & -a & 3 \end{pmatrix} X + \begin{pmatrix} b \\ 2 \\ 4 \end{pmatrix}.$$

Para los valores hallados, encontrar todas las soluciones de la ecuación.

3. Se sabe que $B = \{\mathbf{v}_1; \mathbf{v}_2; \mathbf{v}_3\}$ y $B' = \{\mathbf{v}_1 - 3\mathbf{v}_2; 2\mathbf{v}_1 + \mathbf{v}_2; \mathbf{w}\}$ son bases de un espacio vectorial \mathbb{V} .

Determinar w sabiendo que el vector $\mathbf{v}_1 + 4\mathbf{v}_2 + \mathbf{w}$ tiene las mismas coordenadas en ambas bases.

4. Sean $\mathbb{S} = \langle (1, 2, -1, -2); (3, 2, 1, -6) \rangle$ y $\mathbb{H} = \{ \mathbf{x} \in \mathbb{R}^4 / x_4 = 0 \}$.

Hallar, si es posible, un subespacio $\mathbb T$ que verifique simultáneamente:

$$\mathbb{T} \subset \mathbb{H} \; ; \; \dim \mathbb{T} = 2 \; ; \; \mathbb{S}^{\perp} + \mathbb{T} \neq \mathbb{R}^4 \; ; \; \mathbb{S} + \mathbb{T} \neq \mathbb{R}^4 \; .$$

En cada ejercicio escriba todos los razonamientos que justifican la respuesta.

- **1.** Sean $\mathbb{S} = \langle (1, -1, 2, 0); (3, -1, 3, 1) \rangle$, $\mathbb{T} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 x_4 = x_2 x_4 = 0 \}$ y $\mathbb{W} = \langle (1, -1, 2, 3) \rangle$. Definir una transformación lineal $g : \mathbb{R}^4 \to \mathbb{R}^4$ tal que Nu $g = \mathbb{W}$; $g(\mathbb{S}) \subset \mathbb{T}$ y $g(\mathbb{T}) \subset \mathbb{S}$.
- **2.** Sea $B = \{(1,1,0); (2,1,0); (0,0,1)\}$ una base de \mathbb{R}^3 y $f : \mathbb{R}^3 \to \mathbb{R}^3$ la transformación

lineal tal que
$$M_{EB}(f) = \begin{pmatrix} -1 & 1 & k+2 \\ 1 & 0 & -k-1 \\ k & k+1 & 0 \end{pmatrix}$$
.

Hallar todos los valores de $k \in \mathbb{R}$ tales que $\dim(\operatorname{Im} f) = 2$ y $(4,3,-1) \in \operatorname{Im} f$.

- 3. Sea $P(x) = x^4 2x^3 + (\alpha^2 + 1)x^2 + 6\alpha x (5\alpha + 6)$. Hallar todos los valores de $\alpha \in \mathbb{R}$ para los cuales 1 es raíz múltiple de P. Para los valores de α hallados, escribir a P como producto de polinomios de grado 1.
- **4.** Sean $B = \{(1,1,1); (1,1,0); (0,1,-1)\}$ y $B' = \{(0,1,1); (0,0,1); (-1,0,0)\}$ bases de \mathbb{R}^3 . Sean las t. 1.

$$f: \mathbb{R}^3 \to \mathbb{R}^3 \text{ tal que } M_B(f) = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -3 \end{pmatrix} \text{ y } g: \mathbb{R}^3 \to \mathbb{R}^3 \text{ tal que } M_{EB}(g) = \begin{pmatrix} -8 & 8 & 3 \\ 10 & -10 & 0 \\ 3 & -3 & -3 \end{pmatrix}.$$

Se sabe que f y g tienen los mismos autovectores. Hallar los autovalores de g y los de $f \circ g$.

ALGEBRA(27) Segundo Parcial B

En cada ejercicio escriba todos los razonamientos que justifican la respuesta.

1. Sean
$$\mathbb{T} = \langle (1, -1, 2, 1); (1, 0, 1, 0) \rangle$$
 y $\mathbb{W} = \{ \mathbf{x} \in \mathbb{R}^4 / x_1 + 2x_2 + x_3 + x_4 = 0 \}$.

Definir, si es posible, una transformación lineal $f: \mathbb{R}^4 \to \mathbb{R}^4$ que verifique simultáneamente: $f(\mathbb{T}) \subset \mathbb{T}$; Im $f = \mathbb{W}$.

2. Sean $B = \{\mathbf{v}_1; \mathbf{v}_2; \mathbf{v}_3\}$ y $B' = \{\mathbf{v}_1 - \mathbf{v}_2; \mathbf{v}_2 + \mathbf{v}_3; \mathbf{v}_2\}$ bases de un espacio vectorial \mathbb{V} . Sean $f : \mathbb{V} \to \mathbb{V}$ y $g : \mathbb{V} \to \mathbb{V}$ las transformaciones lineales tales que

$$M_B(f) = \begin{pmatrix} 2 & 0 & 1 \\ -1 & 1 & 1 \\ 0 & 1 & -1 \end{pmatrix} \mathbf{y} \ M_{B'B}(g) = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 1 & 0 \\ -1 & 1 & 1 \end{pmatrix}. \ \text{Calcular} \ g \circ f(2\mathbf{v}_1 - \mathbf{v}_2 + \mathbf{v}_3).$$

3. El polinomio $P(x) \in \mathbb{R}[X]$, $P(x) = x^4 - ax^3 + 25x^2 - 36x + b$ tiene al menos una raíz real, y todas sus raíces tienen parte real igual a 2.

Hallar todas las raíces de P(x).

4. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ una transformación lineal tal $M(f) = \begin{pmatrix} 1 & -2 & 0 \\ 0 & -1 & -2 \\ 0 & \alpha & 1 \end{pmatrix}$.

Hallar $\alpha \in \mathbb{R}$ para que (1,-1,2) sea autovector de f y decidir si f es diagonalizable.

Para aprobar el examen es necesario tener por lo menos 8 respuestas correctas, y más respuestas correctas que incorrectas. En cada ejercicio marque la única respuesta correcta.

1. Sean $\Pi: x_1 + x_2 + x_3$	$x_3 = 4 \text{ y } \mathbb{L} : \lambda(1,0,1) + (0,-1,-1)$	1). Si $P = \mathbb{L} \cap \Pi$, entonces d	(P,O) es igual a		
☐ 3			<u> </u>		
2. Sea $\mathbb{S} = \langle (k^2, -1, 0, -1); (0, k, -2, 0) \rangle$. El conjunto de los $k \in \mathbb{R}$ tales que $\mathbb{S} \subset \langle (1, 2, k, 2) \rangle^{\perp}$ es					
3. Sean $\mathbb{S} = \langle (1,-1,0); (0,2,2) \rangle$ y $A = (-1,1,2)$. Una ecuación de la recta perpendicular a \mathbb{S} que pasa					
$\operatorname{por} A$ es					
	0, 2, 1)				
	1,1,2)				
4. Sean $\mathbb{S} = \left\{ A \in \mathbb{R}^{2 \times 2} / AB = BA \right\}$ y $B = \begin{pmatrix} 1 & -1 \\ 0 & 0 \end{pmatrix}$. La dimensión de \mathbb{S} es					
□ 0	<u> </u>	□ 2	☐ 3		
$\overline{\mathbf{5. Sean } B = \left\{\mathbf{v}_1; \mathbf{v}_2; $	\mathbf{v}_3 y $B' = \{\mathbf{v}_1 + \mathbf{v}_2; \mathbf{v}_1; \mathbf{v}_2 - \mathbf{v}_3\}$	bases de un e.v. V. Las coo	ordenadas de		
$\mathbf{v} = 3\mathbf{v}_1 - \mathbf{v}_2 - \mathbf{v}_3 \text{ en }$	la base B' son				
	(2,2,1)	(3,-1,-1)			
6. Si $P(x) = (x^4 + 2x^2 + 1)(2x^4 + 2)$ entonces $-i$ es una raíz de P de multiplicidad					
<u> </u>	□ 3	4	_ 2		
7. Sea $f: \mathbb{R}^3 \to \mathbb{R}^3$ la t.l. $f(x_1, x_2, x_3) = (kx_1 + x_3, 3x_1 + kx_2, x_1 - 2x_2 + x_3)$. El conjunto de los $k \in \mathbb{R}$					
para los cuales f es is	somorfismo es	_	-		
	∐ {−2}	∐ {−2;3}			
8. Sean $A, B \in \mathbb{R}^{3\times 3}$. Si $\det(3A) = 3$ y $\det(AB) = 3$, entonces $\det(B^{-1})$ es igual a					
$\Box \frac{1}{3}$			☐ 27		
9. Sean $A = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & -1 \\ 1 & 1 & -3 \end{pmatrix}$, $\mathbf{v} = \begin{pmatrix} 1 \\ -2 \\ 3 \end{pmatrix}$ y $\mathbf{b} = \begin{pmatrix} 1 \\ 1 \\ 2 \end{pmatrix}$. El conjunto de soluciones del sistema $A(\mathbf{x} - \mathbf{v}) = \mathbf{b}$ es					
	$) \} [] \{\lambda(2,1,1) + (2,-1,3)\}$				
10. Sean $B = \{\mathbf{v}_1; \mathbf{v}_2\}$ una base de un e.v. \mathbb{V} y $f : \mathbb{V} \to \mathbb{V}$ la t.l. tal que $f(\mathbf{v}_1) = 3\mathbf{v}_1$ y $f(\mathbf{v}_2) = 0$.					
Sea $g: \mathbb{V} \to \mathbb{V}$ la t.l. tal que $g(\mathbf{v}) = f(\mathbf{v}) + 2\mathbf{v}$ para todo $\mathbf{v} \in \mathbb{V}$. Los autovalores de g son					
☐ 5 y 2	☐ 3 y 2	☐ 5 y 0	☐ 3 y 0		

11. Si $z^3 = 1 - i$ entonces el argumento de $-5z$ puede ser					
$\prod \frac{7}{4}\pi$	$\prod \frac{5}{4}\pi$	$\prod \frac{3}{4}\pi$	$\prod \frac{1}{4}\pi$		
12. La suma de las raíces del polinomio $P(x) = (2x^4 - 6x^3 + x^2 + 8x - 6)(x+1)(x-2)$ es igual a					
	☐ 7	<u> </u>	7		
13. Sean $B = \{(1,1,1); (1,0,1); (0,0,1)\}$ y $f : \mathbb{R}^3 \to \mathbb{R}^3$ la t.l. tal que $M_{BE}(f) = \begin{pmatrix} 2 & 1 & -1 \\ -1 & -1 & 0 \\ -2 & 0 & 2 \end{pmatrix}$.					
El Nu f es igual a					
$\bigsqcup \langle (-1,1,-1) \rangle$	$\bigsqcup \langle (0,1,1) \rangle$		∐ {0}		
(1	$ \begin{array}{ccc} 2 & -1 \\ -1 & 1 \\ 0 & 1 \end{array} $ entonces Nu $f \cap \operatorname{Im} f$				
$\left[\left(-1,1,1\right) \right\rangle$					
15. Sea λ un autovalor de la matriz A. Dadas I: $(A - \lambda I)\mathbf{x} = \mathbf{b}$ tiene solución única;					
		$\mathbf{x} = \lambda \mathbf{x}$ tiene infinitas solucion			
∐ I es verdadera y I	II es verdadera	☐ I es verdadera y II es fal	sa		
☐ I es falsa y II es v	verdadera	I es falsa y II es falsa			
16. Si $\mathbb{S} = \langle (1,-1,2); (1,1,-1); (0,a,-3) \rangle$ y $\mathbb{T} = \langle (0,2,b) \rangle$, entonces $\mathbb{R}^3 = \mathbb{S} \oplus \mathbb{T}$ para					
		$a = 2; b \neq -3$	$ a \neq 2; b \neq -3 $		
17. Sean $\mathbb{S} = \{ \mathbf{x} \in \mathbb{R}^3 / x_1 - x_2 - x_3 = 0 \}$ y $\mathbb{T} = \langle (-1, -1, 1); (1, 0, 2) \rangle$. Si $f : \mathbb{R}^3 \to \mathbb{R}^3$ es una t.l. que					
verifica $f(S) = T$ y $f(T) = S$, entonces $f(2,1,1)$ puede ser igual a					
	(2,-2,4)	(2,0,4)	(4,2,2)		
18. Sean $B = \{(1,0,1); \mathbf{v}; (0,1,-1)\}$ una base de \mathbb{R}^3 y $f : \mathbb{R}^3 \to \mathbb{R}^3$ la t.l. tal que					
$M_{EB}(f) = \begin{pmatrix} 1 & 1 & 0 \\ 0 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}$. Si $f(2, -1, 2) = (4, 5, 5)$, entonces v es igual a					
[] (1,-1,1)		(0,1,0)			
19. Si \mathbb{S} , \mathbb{T} y \mathbb{H} son subespacios de \mathbb{R}^3 tales que $\mathbb{S} \subset \mathbb{H}^{\perp}$, $\mathbb{H} \subset \mathbb{T}^{\perp}$ y $\mathbb{S} + \mathbb{T} = \mathbb{R}^3$ entonces dim(\mathbb{H}) =					
	<u> </u>	_ 2	☐ 3		
20. Si $\mathbb S$ y $\mathbb T$ son subespacios de $\mathbb R^4$ tales que $2 \le \dim(\mathbb S) < \dim(\mathbb T)$, puede asegurarse que					
-			•		

PROGRAMA

ÁLGEBRA C.B.C. (PARA ALUMNOS DE CIENCIAS EXACTAS E INGENIERÍA)

1.- ÁLGEBRA VECTORIAL

Puntos en el espacio n-dimensional – Vectores – Producto escalar – Norma – Rectas y planos – Producto vectorial.

2.- ESPACIOS VECTORIALES

Definición – Propiedades – Subespacios – Independencia lineal – Combinación lineal - Sistemas de generadores – Bases – Dimensión – Suma e intersección de subespacios – Suma directa – Espacios con producto interno.

3.- MATRICES Y DETERMINANTES

Espacios de matrices – Suma y producto de matrices – Ecuaciones lineales – Eliminación de Gauss-Jordan – Rango – Teorema de Roché-Frobenius.

Determinantes – Propiedades – Determinante de un producto – Determinantes e inversas.

4.- TRANSFORMACIONES LINEALES

Definición – Núcleo e imagen – Monorfismos, epimorfismos, isomorfismos – Composición de transformaciones lineales – Transformaciones lineales inversas.

5.- NÚMEROS COMPLEJOS Y POLINOMIOS

Números complejos – Operaciones – Forma binómica y trigonométrica – Teorema de De Moivre – Resolución de ecuaciones – Polinomios – Grado de un polinomio – Operaciones con polinomios – Raíces – Teorema del resto – Descomposición factorial – Teorema fundamental del álgebra – Fórmula de interpolación de Lagrange.

6.- TRANSFORMACIONES LINEALES Y MATRICES

Matriz de una transformación lineal – Matriz de la composición – Matriz de la inversa – Cambios de Bases.

7.- AUTOVALORES Y AUTOVECTORES

Vectores y valores propios – Polinomio característico – Aplicaciones – Subespacios invariantes – Diagonalización.

BIBLIOGRAFÍA

ANTON, H. Introducción al álgebra lineal – Edit. Limusa.

LANG, S. Algebra lineal - Fondo Educativo Interamericano.

GROSSMAN, S. Algebra lineal – Grupo Editorial Iberoamérica.

KUROSCH, A.G. Curso de álgebra superior – Edit. MIR.

LIPSCHUTZ, S. Algebra lineal – Serie Schaum Mc.Graw Hill.

GENTILE, Enzo Algebra lineal – Edit.Docencia

KOLMAN, B. Algebra lineal – Fondo Educativo Interamericano.

HERSTEIN,I.N. y WINTER,D.J. *Algebra lineal y teoría de matrices* – Grupo Editorial Iberoamérica.