Proof for why HPP does not work if samples are normally distributed

Eirik D. Skjerve

December 11, 2024

1 HPP against normally distributed samples

In the following, we see what happens to the computations the Learning a parallelepiped attack is based on if we replace the uniform distribution by a normal distribution. The key component and assumption of the Learning a parallelepiped attack is that the provided samples are distributed uniformly over $\mathcal{P}(V)$. One runs into trouble if the sampled vectors are on the form $\mathbf{v} = \mathbf{x} V$ where \mathbf{x} follows a normal distribution, i.e. $x_i \sim \mathcal{N}(\mu, \sigma^2)$. Although one might be able to approximate the covariance matrix $V^t V$ and transform the hidden parallelepiped to a hidden hypercube, one can not do a gradient descent based on the fourth moment given such samples using the method from the original attack [2]. We will show that if samples follow a normal distribution, the fourth moment of $\mathcal{P}(C)$ over \mathbf{w} on the unit circle is constant, and therefore a gradient descent can not reveal any information about the secret key V.

Adapting the definition of $\mathcal{P}(V)$ Recall that $\mathcal{P}(V)$ is defined as $\{\sum_{i=1}^n x_i \mathbf{v}_i : x_i \in [-1,1]\}$ where \mathbf{v}_i are rows of V and x_i is uniformly distributed over [-1,1] (generally one can take another interval than [-1,1] and do appropriate scaling). Firstly, the normal distribution $\mathcal{N}(\mu,\sigma^2)$ is defined over $(-\infty,\infty)$, so it does not make sense to talk about samples "normally distributed over $\mathcal{P}(V)$ " without tweaking any definitions. Therefore, let $[-\eta,\eta]$ be a finite interval on which to consider a truncated normal distribution $\mathcal{N}_{\eta}(\mu,\sigma^2)$ such that $\int_{-\eta}^{\eta} f_X(x) dx = 1 - \delta$ for some negligibly small δ where $f_X(x)$ is the probability density function of $\mathcal{N}(\mu,\sigma^2)$, given by $f_X(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$. Now we consider $\mathcal{P}_{\eta}(V) = \{\sum_{i=1}^n x_i \mathbf{v}_i : x_i \in [-\eta, \eta]\}$ and proceed as in the original HPP with $\mathcal{P}_{\eta}(V)$ instead of $\mathcal{P}(V)$.

Approximating $V^t V$ Let $V \in \mathcal{GL}_n(\mathbb{R})$. Let **v** be chosen from a truncated normal distribution $\mathcal{N}_n(0, \sigma^2)$ over $\mathcal{P}_n(V)$. Then $\lim_{n\to\infty} \mathbb{E}[\mathbf{v}^t \mathbf{v}] = V^t V \cdot \sigma^2$.

Proof. Let samples be on the form $\mathbf{v} = \mathbf{x}V$, where \mathbf{x} is a row vector where each element $x_i \sim \mathcal{N}_{\eta}(0, \sigma^2)$. Then $\mathbf{v}^t\mathbf{v} = (\mathbf{x}V)^t(\mathbf{x}V) = (V^t\mathbf{x}^t)(\mathbf{x}V) = V^t\mathbf{x}^t\mathbf{x}V$. Considering $\mathbb{E}[\mathbf{x}^t\mathbf{x}]$, we see that for $i \neq j$, $\mathbb{E}[x_ix_j] = \mathbb{E}[x_i]\mathbb{E}[x_j] = 0 \cdot 0 = 0$ due to independent random variables. For i = j, $\lim_{\eta \to \infty} \mathbb{E}[x_i^2] = \mathbb{V}[x_i] = \sigma^2$ since $\mathbb{V}[x_i] = \mathbb{E}[x_i^2] - \mathbb{E}[x_i]^2 = \mathbb{E}[x_i^2] - 0 = \sigma^2$. Therefore, $\lim_{\eta \to \infty} \mathbb{E}[\mathbf{x}^t\mathbf{x}] = I_n \cdot \sigma^2$, i.e. the matrix with σ^2 on the diagonal. Consequently, $\lim_{\eta \to \infty} \mathbf{v}^t\mathbf{v} = V^t\mathbb{E}[\mathbf{x}^t\mathbf{x}]V = V^t(I_n \cdot \sigma^2)V = (V^tV) \cdot \sigma^2$ and conversely $\lim_{\eta \to \infty} V^tV = (\mathbf{v}^t\mathbf{v})/\sigma^2$.

This means that we can in theory approximate the covariance matrix $V^t V$ by averaging over $\mathbf{v}^t \mathbf{v}$ and dividing by σ^2 . However, it is not immediately clear if one needs more samples for this approximation than in the original attack due to the difference in distributions.

Hypercube transformation Assume now that we know V^tV . Consider instead of $\mathcal{P}(V)$, $\mathcal{P}_{\eta}(V)$. Then by following part 1 of **Lemma 2** and its proof from [2] we can transform our hidden parallelepiped $\mathcal{P}_{\eta}(V)$ into $\mathcal{P}_{\eta}(C)$, a hidden hypercube, since this does not depend on the distribution of the samples - it only assumes one knows V^tV . For completeness, by adapting the second part of **Lemma 2** to our case:

Proof. Let $\mathbf{v} = \mathbf{x} V$ where \mathbf{x} is normally distributed according to $\mathcal{N}_{\eta}(0, \sigma^2)$. Then samples \mathbf{v} are distributed according to $\mathcal{N}_{\eta}(0, \sigma^2)$ over $\mathcal{P}_{\eta}(V)$. It then follows that $\mathbf{v}L = \mathbf{x} VL = \mathbf{x} C$ has a truncated uniform distribution over $\mathcal{P}_{\eta}(C)$.

Thus, we should be able to map our normally distributed samples from the hidden parallelepiped to the hidden hypercube.

Learning a hypercube It is clear that samples uniformly over $\mathcal{P}_{\eta}(C)$ centered at the origin form a hypersphere for which any orthogonal rotation leaves the sphere similar in shape. As a consequence, the fourth moment of $\mathcal{P}_{\eta}(C)$ is constant over the unit circle.

Analogous to [2] we compute the 2nd and 4th moment of $\mathcal{P}_{\eta}(V)$ over a vector $\mathbf{w} \in \mathbb{R}^n$. The k-th moment of $\mathcal{P}_{\eta}(V)$ over a vector \mathbf{w} is defined as $mom_{V,k} = \mathbb{E}[\langle \mathbf{u}, \mathbf{w} \rangle^k]$ where $\mathbf{u} = \sum_{i=1}^n x_i \mathbf{v}_i$ and $x_i \sim \mathcal{N}_{\eta}(0, \sigma^2)$. First we consider $\langle \mathbf{u}, \mathbf{w} \rangle = \langle \sum_{i=1}^n x_i \mathbf{v}_i, \mathbf{w} \rangle = \sum_{i=1}^n x_i \langle \mathbf{v}_i, \mathbf{w} \rangle$. Then for k = 2, $\mathbb{E}[(\sum_{i=1}^n x_i \langle \mathbf{v}_i, \mathbf{w} \rangle)^2] = \mathbb{E}[\sum_{i=1}^n \sum_{j=1}^n x_i x_j \langle \mathbf{v}_i, \mathbf{w} \rangle \langle \mathbf{v}_j \mathbf{w} \rangle]$. Due to independent random variables, $\mathbb{E}[x_i x_j] = 0$ when $i \neq j$, so we have $\sum_{i=1}^n \mathbb{E}[x_i^2] \langle \mathbf{v}_i, \mathbf{w} \rangle^2 = \sigma^2 \sum_{i=1}^n \langle \mathbf{v}_i, \mathbf{w} \rangle^2$ for sufficiently large η due to the well known result that $\mathbb{E}[x^2] = \sigma^2$ for $x \sim \mathcal{N}(0, \sigma^2)$. Thus, we end up with:

$$mom_{V,2}(\mathbf{w}) = \sigma^2 \mathbf{w} \, V^t \, V \mathbf{w}^t \tag{1}$$

We observe that if $V \in \mathcal{O}(\mathbb{R})$, $mom_{V,2}(\mathbf{w}) = \sigma^2 \|\mathbf{w}\|^2$

For k = 4:

$$\mathbb{E}\left[\left(\sum_{i=1}^{n} x_{i} \langle \mathbf{v}_{i}, \mathbf{w} \rangle\right)^{4}\right] = \mathbb{E}\left[\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{l=1}^{n} x_{i} x_{j} x_{k} x_{l} \langle \mathbf{v}_{i}, \mathbf{w} \rangle \langle \mathbf{v}_{j}, \mathbf{w} \rangle \langle \mathbf{v}_{k}, \mathbf{w} \rangle \langle \mathbf{v}_{l}, \mathbf{w} \rangle\right]$$

We consider three cases for the indices i, j, k, and l:

- 1. None equal: if i, j, k, and l are different, the expression equals 0 due to independent random variables.
- 2. All equal: if i = j = k = l, then we have $\sum_{i=1}^{n} \mathbb{E}[x_i^4] \langle \mathbf{v}_i, \mathbf{w} \rangle^4$. A well known result for the normal distribution $\mathcal{N}(0, \sigma^2)$ is that $\mathbb{E}[x^4] = 3\sigma^4$.
- 3. Pairwise equal: if either
 - $i = j \neq k = l$
 - $i = l \neq j = k$
 - $i = k \neq j = l$

we have the following:

$$\sum_{i \neq j} \mathbb{E}[x_i^2 x_j^2] \langle \mathbf{v}_i, \mathbf{w} \rangle^2 \langle \mathbf{v}_j, \mathbf{w} \rangle^2$$

Since $\mathbb{E}[x_i^2 x_j^2] = \mathbb{E}[x_i^2] \mathbb{E}[x_j^2] = \sigma^4$ due to independent random variables, we have

$$\sigma^4 \sum_{i \neq j} \langle \mathbf{v}_i, \mathbf{w} \rangle^2 \langle \mathbf{v}_j, \mathbf{w} \rangle^2$$

Putting together the expressions above we have

$$mom_{V,4}(\mathbf{w}) = 3\sigma^4 \sum_{i=1}^n \langle \mathbf{v}_i, \mathbf{w} \rangle^4 + 3(\sigma^4 \sum_{i \neq j} \langle \mathbf{v}_i, \mathbf{w} \rangle^2 \langle \mathbf{v}_j, \mathbf{w} \rangle^2)$$

since there are three cases where indices pair up two and two. The final result becomes:

$$mom_{V,4}(\mathbf{w}) = 3\sigma^4(\sum_{i=1}^n \langle \mathbf{v}_i, \mathbf{w} \rangle^4 + \sum_{i \neq j} \langle \mathbf{v}_i, \mathbf{w} \rangle^2 \langle \mathbf{v}_j, \mathbf{w} \rangle^2)$$
 (2)

Claim: If $V \in \mathcal{O}(\mathbb{R})$, and **w** is on the unit sphere, $mom_{V,4}(\mathbf{w})$ is constant.

Proof. This can be shown by rewriting (3.2) as

$$mom_{V,4}(\mathbf{w}) = 3\sigma^4(\sum_{i=1}^n \langle \mathbf{v}_i, \mathbf{w} \rangle^4 + \sum_{i=1}^n \langle \mathbf{v}_i, \mathbf{w} \rangle^2 \sum_{j=1}^n \langle \mathbf{v}_j, \mathbf{w} \rangle^2 - \sum_{i=1}^n \langle \mathbf{v}_i, \mathbf{w} \rangle^4)$$

$$mom_{V,4}(\mathbf{w}) = 3\sigma^4(\sum_{i=1}^n \langle \mathbf{v}_i, \mathbf{w} \rangle^2 \sum_{j=1}^n \langle \mathbf{v}_j, \mathbf{w} \rangle^2) = 3\sigma^4(\sigma^2 \|\mathbf{w}\|^2)^2 = 3\sigma^8$$

because $mom_{V,2}(\mathbf{w}) = \sum_{i=1}^{n} \langle \mathbf{v}_i, \mathbf{w} \rangle^2 = \sigma^2 \|\mathbf{w}\|^2$ when $V \in \mathcal{O}(\mathbb{R})$ and $\|\mathbf{w}\|^2 = 1$ when \mathbf{w} lies on the unit sphere.

In conclusion, if samples over the secret parallelepiped $\mathcal{P}_{\eta}(V)$ follow a continuous normal distribution, a gradient descent based on the fourth moment described in [2] is impossible because the fourth moment is constant over the unit sphere of \mathbb{R}^n .

The discrete Gaussian distribution We now do the same computations considering the discrete Gaussian distribution as described in [1]. It turns out that for the parameters used in Hawk, this distribution behaves like its corresponding Normal distribution.

Consider the discrete Gaussian distribution as described in [1].

If
$$X \sim \mathcal{D}_{2\mathbb{Z}+c,\sigma}$$
, we have $\operatorname{Supp}(X) = 2\mathbb{Z} + c$ where $c \in \{0,1\}$, and $\Pr[X = x] = \frac{\rho_{\sigma}(x)}{\sum_{y \in 2\mathbb{Z}+c} \rho_{\sigma}(y)}$

where $\rho_{\sigma}(x) = e^{-\frac{x^2}{2\sigma^2}}$. For $c \in \{0, 1\}$, $\mathbb{E}[X] = 0$ and $\mathbb{V}[X] = \sigma^2$ for appropriate choices of σ .

 \cdots Show definitions and stuff here \cdots

Then by computational results, as η grows large enough, $\mathbb{E}[x^2] = \sum_{-\eta}^{\eta} x^2 f_X(x)$ and $\mathbb{E}[x^4] = \sum_{-\eta}^{\eta} x^4 f_X(x)$ approaches σ^2 and $3\sigma^4$ respectively.

 \cdots Show table of computations here \cdots

References

- [1] Joppe W. Bos, Olivier Bronchain, Léo Ducas, Serge Fehr, Yu-Hsuan Huang, Thomas Pornin, Eamonn W. Postlethwaite, Thomas Prest, Ludo N. Pulles, and Wessel van Woerden. Hawk. Technical report, NXP Semiconductors, Centrum Wiskunde & Informatica, Mathematical Institute at Leiden University, NCC Group, PQShield, Institut de Mathématiques de Bordeaux, September 2024.
- [2] Phong Q. Nguyen and Oded Regev. Learning a parallelepiped: Cryptanalysis of ggh and ntru signatures, 2009.