1. Reglas de derivación:

Si f(t) y g(t) son funciones derivables y C es una constante real, se verifica lo siguiente:

1.
$$\frac{d}{dt}(C) = 0$$

1.
$$\frac{d}{dt}(C) = 0$$
 2. $\frac{d}{dt}(f(t) \pm g(t)) = \frac{d}{dt}f(t) \pm \frac{d}{dt}g(t) = f'(t) \pm g'(t)$ **3.** $\frac{d}{dt}(Cf(t)) = Cf'(t)$

3.
$$\frac{d}{dt}(Cf(t)) = Cf'(t)$$

4.
$$\frac{d}{dt}(f(t)g(t)) = f'(t)g(t) + f(t)g'(t)$$

4.
$$\frac{d}{dt}(f(t)g(t)) = f'(t)g(t) + f(t)g'(t)$$
 5. $\frac{d}{dt}\left(\frac{f(t)}{g(t)}\right) = \frac{f'(t)g(t) - f(t)g'(t)}{(g(t))^2}$ si $g(t) \neq 0$

6. Regla de la cadena: Si y = f(u) con u = g(t), es decir, y = f(g(t)), entonces se tiene que

$$\frac{dy}{dt} = \frac{dy}{du}\frac{du}{dt} = f'(g(t))g'(t). \text{ De otra forma: } [f(g(t))]' = f'(g(t))g'(t)$$

Esta propiedad puede generalizarse: [f(g(h(t)))]'=f'(g(h(t)))g'(h(t))h'(t).

2 Tabla de derivadas

Derivadas inmediatas		Derivadas con la regla de la cadena	
Función y(t)	Derivada $\frac{d}{dt}y(t) = y'(t)$	Función y(t)	Derivada $\frac{d}{dt}y(t) = y'(t)$
Ct	C	Cf(t)	Cf'(t)
t ⁿ	nt ⁿ⁻¹	${f(t)}^n$	$n\{f(t)\}^{n-1}f'(t)$
\sqrt{t}	$\frac{1}{2\sqrt{t}}$	$\sqrt{f(t)}$	$\frac{1}{2\sqrt{f(t)}}f'(t)$
ln t	$\frac{1}{t}$	$\ln f(t)$	$\frac{1}{f(t)}f'(t)$
e^{t}	e^t	$e^{f(t)}$	$e^{f(t)}f'(t)$
$\sin(t)$	$\cos(t)$	$\sin f(t)$	$\cos(f(t))f'(t)$
$\cos(t)$	$-\sin(t)$	$\cos f(t)$	$-\sin(f(t))f'(t)$
tan(t)	$\frac{1}{\cos^2(t)} = 1 + \tan^2(t)$	$\tan f(t)$	$\frac{1}{\cos^2 f(t)} f'(t) = \left(1 + \tan^2 f(t)\right) f'(t)$
cotan(t)	$-\frac{1}{\sin^2(t)}$	$\cot an(f(t))$	$-\frac{1}{\sin^2 f(t)}f'(t)$
$\arcsin i \mathbf{n}(t)$	$\frac{1}{\sqrt{1-t^2}}$	$\arcsin i \operatorname{n} f(t)$	$\frac{1}{\sqrt{1-\left(f(t)\right)^2}}f'(t)$
arccos(t)	$-\frac{1}{\sqrt{1-t^2}}$	arccos f(t)	$-\frac{1}{\sqrt{1-\left(f(t)\right)^2}}f'(t)$
arctan(t)	$\frac{1}{1+t^2}$	arctan f(t)	$\frac{1}{1+\left(f(t)\right)^2}f'(t)$