Lecture 1

Review of Simple Linear Regression

DSA 8020 Statistical Methods II January 9-13, 2023

> Whitney Huang Clemson University

Notes		

Agenda

- Simple Linear Regression
- 2 Parameter Estimation
- Residual Analysis
- 4 Confidence/Prediction Intervals
- 6 Hypothesis Testing

Notes			

What is Regression Analysis?

Regression analysis: A set of statistical procedures for estimating the relationship between response variable and predictor variable(s)

Simple linear regression: The relationship between the response variable and the predictor variable is approximately linear

Notes			

Simple Linear Regression (SLR)

Y: response variable; x: predictor variable

• In SLR we assume there is a linear relationship between x and Y:

$$Y = \beta_0 + \beta_1 x + \varepsilon$$

- We need to estimate β_0 (intercept) and β_1 (slope) based on observed data $\{x_i,y_i\}_{i=1}^n$
- We can use the estimated regression equation to
 make predictions
 - study the relationship between response and predictor
 - control the response
- Yet we need to quantify our estimation uncertainty regarding the linear relationship

Simple Linear Regression
Parameter Estimation
Residual Analysis
Confidence/Predicti-Intervals
Hypothesis Testing

Notes

Notes

Regression equation: $Y = \beta_0 + \beta_1 x$

- β_0 : E[Y] when x = 0
- \bullet β_1 : $\mathrm{E}[\Delta Y]$ when x increases by 1

Assumptions about the Random Error ε

In order to estimate β_0 and $\beta_1,$ we make the following assumptions about ε

- $E[\varepsilon_i] = 0$
- $Var[\varepsilon_i] = \sigma^2$
- $Cov[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

Therefore, we have

$$\mathrm{E}[Y_i] = \beta_0 + \beta_1 x_i, \; \mathrm{and} \; \ \mathrm{Var}[Y_i] = \sigma^2$$

The regression line $\beta_0 + \beta_1 x$ represents the **conditional mean curve** whereas σ^2 measures the magnitude of the **variation** around the regression curve

CLEMS N
Simple Linear Regression
Confidence/Prediction Intervals

Notes			

Estimation: Method of Least Squares

For given observations $\{x_i,y_i\}_{i=1}^n$, choose β_0 and β_1 to minimize the *sum of squared errors*:

$$L(\beta_0, \beta_1) = \sum_{i=1}^{n} (y_i - (\beta_0 + \beta_1 x_i))^2$$

Solving the above minimization problem requires some knowledge from Calculus....

$$\hat{\beta}_1 = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$\hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

We also need to $\mathbf{estimate}\ \sigma^2$

$$\hat{\sigma}^2 = \frac{\sum_{i=1}^n (Y_i - \hat{Y}_i)^2}{n-2},$$
 where $\hat{Y}_i = \hat{\beta}_0 + \hat{\beta}_1 x_i$

Simple Linear Regression Parameter Estimation Residual Analysis Confidence/Predicticulatory

Notes

-		

Example: Maximum Heart Rate vs. Age

The maximum heart rate MaxHeartRate of a person is often said to be related to age Age by the equation:

$${\sf MaxHeartRate} = 220 - {\sf Age}.$$

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm)

- Compute the estimates for the regression coefficients
- Compute the fitted values
- lacktriangle Compute the estimate for σ

Notes			

Maximum Heart Rate vs. Age

Output from (Studio)

<pre>> fit <- lm(MaxHeartRate ~ Age) > summary(fit) Call: lm(formula = MaxHeartRate ~ Age)</pre>
Call:
lm(formula = MaxHeartRate ~ Age)
이번 그렇다 나를 가는 사람들이 되는 것이라 되었다. 그런 사람은 얼마나 되었다고 되었다.
Residuals:
Min 10 Median 30 Max
-8.9258 -2.5383 0.3879 3.1867 6.6242
Coefficients:
Estimate Std. Error t value Pr(> t)
(Intercept) 210.04846
Age -0.79773 0.06996 -11.40 3.85e-08 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 4.578 on 13 degrees of freedom
Multiple R-squared: 0.9091, Adjusted R-squared: 0.9021
F-statistic: 130 on 1 and 13 DF, p-value: 3.848e-08

Notes			

Assessing Linear Regression Fit

Question: Is linear relationship between max heart rate and age reasonable? \Rightarrow Residual Analysis

Notes

Residuals

 The residuals are the differences between the observed and fitted values:

$$e_i = y_i - \hat{Y}_i,$$

where $\hat{Y}_i = \hat{eta}_0 + \hat{eta}_1 x_i$

 \bullet Residuals are very useful in assessing the appropriateness of the assumptions on $\varepsilon_i.$ Recall

- $E[\varepsilon_i] = 0$
- $\operatorname{Var}[\varepsilon_i] = \sigma^2$
- $Cov[\varepsilon_i, \varepsilon_j] = 0, \quad i \neq j$

CLEMS N
Residual Analysis
Confidence/Prediction

Notes

Maximum Heart Rate vs. Age Residual Plot: ε vs. x

CLEMS#N
Residual Analysis
Confidence/Prediction Intervals

Notes

Interpreting Residual Plots

Figure courtesy of Faraway's Linear Models with R (2005, p. 59).

Simple Linear Regression Parameter Estimation Residual Analysis Confidence/Prediction Intervals Hypothesis Testing	CLEMS IN Y
Estimation Residual Analysis Confidence/Prediction Intervals	
Confidence/Prediction Intervals	
	Residual Analysis
1.13	1.13

Notes		

How (Un)certain We Are?

Can we formally quantify our estimation uncertainty? \Rightarrow We need additional (distributional) assumption on ε

Notes			

Normal Error Regression Model

Recall

$$Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$$

- $\begin{array}{l} \bullet \ \, \text{Further assume} \\ \varepsilon_i \sim \mathrm{N}(0,\sigma^2) \Rightarrow Y_i \sim \mathrm{N}(\beta_0 + \beta_1 x_i,\sigma^2) \end{array}$
- With normality assumption, we can derive the sampling distribution of $\hat{\beta}_1$ and $\hat{\beta}_0 \Rightarrow$

$$\begin{split} \frac{\hat{\beta}_1-\beta_1}{\hat{S}E(\hat{\beta}_1)} \sim t_{n-2}, \quad \hat{S}E(\hat{\beta}_1) &= \frac{\hat{\sigma}}{\sqrt{\sum_{i=1}^n (x_i-\bar{x})^2}} \\ \frac{\hat{\beta}_0-\beta_0}{\hat{S}E(\hat{\beta}_0)} \sim t_{n-2}, \quad \hat{S}E(\hat{\beta}_0) &= \hat{\sigma}\sqrt{(\frac{1}{n} + \frac{\bar{x}^2}{\sum_{i=1}^n (x_i-\bar{x})^2})} \end{split}$$

where t_{n-2} denotes the Student's t distribution with n-2 degrees of freedom $\,$

Notes				

Assessing Normality Assumption on ε

CLEMS N
Confidence/Prediction Intervals

Confidence Intervals for β_0 and β_1

• Recall $\frac{\hat{\beta}_1-\beta_1}{\hat{SE}(\hat{\beta}_1)}\sim t_{n-2}$, we use this fact to construct a confidence interval (CI) for β_1 :

$$\left[\hat{\beta}_1 - t_{\alpha/2,n-2}\hat{SE}(\hat{\beta}_1), \hat{\beta}_1 + t_{\alpha/2,n-2}\hat{SE}(\hat{\beta}_1)\right],$$

where α is the **confidence level** and $t_{\alpha/2,n-2}$ denotes the $1-\alpha/2$ percentile of a student's t distribution with n-2 degrees of freedom

• Similarly, we can construct a CI for β_0 :

$$\left[\hat{\beta}_0 - t_{\alpha/2,n-2}\hat{SE}(\hat{\beta}_0), \hat{\beta}_0 + t_{\alpha/2,n-2}\hat{SE}(\hat{\beta}_0)\right]$$

CLEMS#N
Confidence/Prediction Intervals

Notes

Notes

Confidence Interval of $\mathrm{E}(Y_{new})$

- ullet We often interested in estimating the **mean** response for an unobserved predictor value, say, x_{new} . Therefore we would like to construct CI for $\mathrm{E}[Y_{new}]$, the corresponding **mean response**
- ullet We need sampling distribution of $\widehat{\mathrm{E}(Y_{new})}$ to form CI:

$$\begin{array}{l} \bullet \ \ \frac{\widehat{\mathrm{E}(Y_{new})} - \mathrm{E}(Y_{new})}{\widehat{SE}(\widehat{\mathrm{E}(Y_{new})})} \sim t_{n-2}, \quad \ \hat{SE}(\widehat{\mathrm{E}(Y_{new})}) = \\ \hat{\sigma} \sqrt{\left(\frac{1}{n} + \frac{(x_{new} - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)} \end{array}$$

OI:

$$\left[\hat{Y}_{new} - t_{\alpha/2,n-2} \hat{SE}(\widehat{\mathbf{E}(Y_{new})}), \hat{Y}_{new} + t_{\alpha/2,n-2} \hat{SE}(\widehat{\mathbf{E}(Y_{new})})\right]$$

• Quiz: Use this formula to construct CI for β_0

Notes

Prediction Interval of Y_{new}

- Suppose we want to predict the response of a future observation Y_{new} given $x = x_{new}$
- We need to account for added variability as a new observation does not fall directly on the regression line (i.e., $Y_{new} = \mathrm{E}[Y_{new}] + \varepsilon_{new}$)
- Replace $\widehat{SE}(\widehat{\mathrm{E}(Y_{new})})$ by $\hat{SE}(\hat{Y}_{new}) = \hat{\sigma} \sqrt{\left(1 + \frac{1}{n} + \frac{(x_{new} - \bar{x})^2}{\sum_{i=1}^n (x_i - \bar{x})^2}\right)} \text{ to construct }$ CIs for Y_{new}

CLEMS#N
Confidence/Prediction Intervals

Notes		

Maximum Heart Rate vs. Age Revisited

The maximum heart rate ${\tt MaxHeartRate}$ (${\tt HR}_{\it max}$) of a person is often said to be related to age Age by the equation:

$$HR_{max} = 220 - Age.$$

Suppose we have 15 people of varying ages are tested for their maximum heart rate (bpm)

- \bullet Construct the 95% CI for β_1
- Compute the estimate for mean MaxHeartRate given ${\tt Age}=40$ and construct the associated 90% CI
- Construct the prediction interval for a new observation given Age = 40

Notes

Maximum Heart Rate vs. Age: Hypothesis Test for Slope

- \bullet $H_0: \beta_1 = 0 \text{ vs. } H_a: \beta_1 \neq 0$
- ② Compute the **test statistic**: $t^* = \frac{\hat{\beta}_1 0}{\hat{SE}(\hat{\beta}_1)} = \frac{-0.7977}{0.06996} = -11.40$
- **③** Compute **P-value**: $P(|t^*| \ge |t_{obs}|) = 3.85 \times 10^{-8}$
- **①** Compare to α and draw conclusion:

Reject H_0 at α = .05 level, evidence suggests a negative linear relationship between MaxHeartRate and Age

No	tes			
_				
_				
				_

Maximum Heart Rate vs. Age: Hypothesis Test for Intercept

- \bullet $H_0: \beta_0 = 0 \text{ vs. } H_a: \beta_0 \neq 0$
- ② Compute the **test statistic**: $t^* = \frac{\hat{\beta}_0 0}{\hat{S}E(\hat{\beta}_0)} = \frac{210.0485}{2.86694} = 73.27$
- **③** Compute **P-value**: $P(|t^*| \ge |t_{obs}|) \simeq 0$
- $\textcircled{ \ \, Ompare to } \alpha \text{ and draw conclusion:}$

Reject H_0 at $\alpha=.05$ level, evidence suggests evidence suggests the intercept (the expected MaxHeartRate at age 0) is different from 0

CLEMS N
Confidence/Predictio Intervals
Hypothesis Testing

Notes			

Summary

In this lecture, we reviewed

- Simple Linear Regression: $Y_i = \beta_0 + \beta_1 x_i + \varepsilon_i$
- Method of Least Squares for parameter estimation
- Residual analysis to check model assumptions
- Confidence/Prediction Intervals and Hypothesis Testing

Notes

Notes			