Victoria University of Wellington

QOS AWARE WEB SERVICE DISTRIBUTION DESIGN

Boxiong Tan Supervisors: Hui Ma, Mengjie Zhang

 $July\ 23,\ 2015$

Introduction

Web service providers want to find a way to maximize their profit as well as improve the quality of services.

Main goals:

- Minimize the total cost
- Maximize the quality of services

A promising approach to solve this problem is to allocate services across multiple locations. Unfortunately, it is **NP-hard** to find an optimal plan when consider multiple-factors.

- Single objective algorithms: Linear programming → Low efficiency
- ► Multi-objective genetic algorithm (NSGA-II) → Low scalability

Project Aims

PSO has shown its promise in solving NP-hard problem.

The aim of this project is to propose a multi-objective PSO based algorithm to solve this problem.

- ► To model the Web service location-allocation problem
- ▶ To develop a Multi-objective PSO based approach

Work Done Problem Modeling

Factors that affect the decision making.

Work Done

Modeling Details

Fitness functions:

Work Done Multi-objective PSO

Experimental Design

We designed four test cases with different complexities based on a real world dataset (WS-DREAM).

Table: Test Cases

problem	number of service	number of candidate location	number of user center
1	20	5	10
2	50	15	20
3	100	25	40
4	200	40	80

Conduct experiments on two algorithms:

- ▶ Multi-objective PSO
- ► NSGA-II

Experimental Result

Future Plan

- Develop a single-objective PSO and compare with Multi-objective PSO
- Use hypervolume and Invert Generational Distance (IGD) to analyze the parameter settings and further improve the algorithm.

