Logical agents Propositional Logic

Outline

- Knowledge-based Agents
- Wumpus World
- Logic, models, entailment
- Propositional Logic

Logical Agents

- Human intelligence is achieved not by purely reflex mechanisms but by processes of reasoning that operate on internal representations of knowledge
- In AI, this intelligence is embodied in knowledgebased agents
- Agents seen previously are limited and inflexible cannot do inference or learning of new knowledge
- Develop logic as a general class for representation for KB agents

Knowledge-based Agents (KBAs)

- Knowledge base (KB) = a set of sentences in a formal language, i.e. a computer interpretable language
- A sentence that is known to be true without being derived from other sentences is an axiom
- Add sentences and query a KB by TELL-ing (facts) and ASK-ing (for inference) operators
- Inference deriving new sentences from old
- Declarative approach is one where a KB agent (or any system) is built by TELL-ing it what it needs to know and it can then operate and perform inferences – what
- Procedural approach encodes desired behaviours directly as a program code – how

KBA - Pseudocode

```
function KB-AGENT(percept) returns an action
persistent: KB, a knowledge base
t, a counter, initially 0, indicating time

Tell(KB, Make-Percept-Sentence(percept, t))
action \leftarrow Ask(KB, Make-Action-Query(t))

Tell(KB, Make-Action-Sentence(action, t))
t \leftarrow t + 1
return action
```

- The KB agent must be able to:
 - represent states, actions, etc.
 - incorporate new percepts
 - update internal representations of the world
 - deduce hidden properties of the world
 - deduce appropriate actions

Wumpus World PEAS

Performance measure

- gold +1000, death by wumpus or pit -1000
- -1 for each step, -10 for using arrow

Environment

- squares adjacent to wumpus are smelly
- squares adjacent to pit are breezy
- glitter iff gold is in the same square
- shooting kills wumpus if you are facing it
- shooting uses up the only arrow
- grabbing picks up gold if in same square
- releasing drops the gold in the same square

Actuators (Actions)

 TurnLeft 90°, Turn Right 90°, Forward, Grab, Release, Shoot

Sensors

Stench, Breeze, Glitter, Bump, Scream (Wumpus dies)
 [0, 0, 0, 0, 0] if all not sensed

*

3

2

Q: When does the game end?

Wumpus World Characterisation

- Observable??
 - No only local perception
- Deterministic??
 - Yes outcomes exactly specified and determined by current state
- Static??
 - Yes Wumpus and Pits do not move
- Discrete??
 - Yes there is a finite number of states
- Single-agent?
 - Yes Wumpus is a natural feature, not an agent

Exploring a Wumpus World

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 2,2 OK		3,2	4,2
1,1 A OK	2,1 OK	3,1	4,1

A	= Agent
В	= Breeze
\mathbf{G}	= Glitter, Gold
OK	= Safe square
P	= Pit
S	= Stench
\mathbf{v}	= Visited
\mathbf{w}	= Wumpus

1,4	2,4	3,4	4,4
1,3	2,3	3,3	4,3
1,2 OK	2,2 P?	3,2	4,2
1,1 V OK	2,1 A B OK	3,1 P?	4,1

- The first step at [1,1]
- Percept [0,0,0,0,0] i.e.
 [None, None, None,
 None, None]

- After one move at [2, 1]
- Percept [0,1,0,0,0] i.e.
 [None, Breeze, None,
 None, None]

Exploring a Wumpus World

1,4	2,4	3,4	4,4
^{1,3} w!	2,3	3,3	4,3
1,2 A S OK	2,2 OK	3,2	4,2
1,1 V OK	2,1 B V OK	3,1 P!	4,1

A	= Agent
В	= Breeze
\mathbf{G}	= Glitter, Gold
OK	= Safe squar
P	= Pit
\mathbf{s}	= Stench
\mathbf{v}	= Visited
\mathbf{w}	= Wumpus

1,4	2,4 P?	3,4	4,4		
^{1,3} w!	2,3 A S G B	3,3 _{P?}	4,3		
1,2 s v ok	2,2 V OK	3,2	4,2		
1,1 V OK	2,1 V OK	3,1 P!	4,1		

- After third move at [1,2]
- Percept [1,0,0,0,0] i.e.
 [Stench, None, None, None, None]

- After fifth move at [2, 3]
- Percept [1,1,1,0,0] i.e.
 [Stench, Breeze,
 Glitter, None, None]

WW – Inferencing

- Retreated to [1,1] after realising Pit could be in [3,1] or [2,2] and goes to only safe square which is [1,2]
- Stench at [1,2] means that *Wumpus* is either in [1,3] or [2,2]
- But it can't be in [2,2] because there was no stench at [2,1] which it is adjacent to
- Agent infers that Wumpus is in [1,3] and moves to [2,2] safely
- Without much inferencing, except that square [2,2] is safe, agent moves to [2,3] where it detects a Glitter
- That's enough for it to Grab it!

1,4	2,4 P?	3,4	4,4
^{1,3} w!	2,3 A S G B	3,3 _{P?}	4,3
^{1,2} s	2,2	3,2	4,2
v	v		
ok	ok		
1,1	2,1 B	3,1 P!	4,1
v	v		
ок	ок		

Logic

- ▶ Logics are formal languages for representing information such that conclusions can be drawn
- Syntax defines the sentences (statements) in the language
- Semantics define the "meaning" of sentences; i.e. define TRUTH of a sentence with respect to each possible world
- ▶ E.g., in the language of arithmetic

```
x + 2y \ge 2 is a sentence; x + 2y is not a sentence
```

 $x + 2y \ge 2$ is true iff the number x + 2 is greater than or equal to the number y

```
x + 2y \ge 2 is true in a world where x = 7, y = 1
```

 $x + 2y \ge 2$ is false in a world where x = 0, y = 0

 $x + 2 \ge x + 1$ is true in every world

- Are these well formed logical sentences/propositions?
 - ▶ The window is open
 - Moon Jae In is the president of South Korea
 - Are you going to the party?
 - **▶** 2+3 = 6
 - Stay at home, please!

Models

- To be precise, the word model should be used in the place of "possible worlds"; models are mathematical abstractions, each of which fixes truth and falsehood of every relevant sentence
- Formally, the possible models are just all the possible assignments of real numbers to x and y in the algebra example
- m satisfies a sentence α (or m is a model of α) if α is true in m
- $M(\alpha)$ is a set of all models of α
- $\bullet \quad \alpha : xy = 0$
- M: x = 0, y = 1; x = 0, y = 2; ... x = 0, y = 10,000;... x = 1, y = 1; x = 3, y = 0; ... // some are True and some are False

Entailment ⊨

• A sentence or set of sentences, KB entails the sentence α

$$KB \models \alpha$$

• Knowledge base KB entails (or logically implies) a sentence α if and only if in every model in which KB is true, α is also true

$$KB \models \alpha$$
 iff $M(KB) \subseteq M(\alpha)$

- Examples
 - the KB containing "Spurs won" and "Liverpool won" entails "either Spurs won or Liverpool won"
 - x + y = 4 entails 4 = x + y
 - x = 0 entails xy = 0

Inference +

- $KB \vdash_i \alpha$ sentence α can be derived, deduced or inferred from KB by inference algorithm i
- Entailment = needle α in haystack KB; inference = finding it
- Inference algorithm that derives only entailed sentences is called sound or truth-preserving
 - whenever $KB \vdash_i \alpha$, it is also true that $KB \models \alpha$
- An inference algorithm is complete if it can derive any sentence that is entailed
 - whenever $KB \models \alpha$, it is also true that $KB \models_i \alpha$
- Both soundness and completeness are desirable properties, e.g. for model checking

Soundness & Completeness

- Soundness: Everything that is provable in the system is actually true. In a sound system one cannot derive a proposition and its negative from the axioms (e.g. $p \land \neg p$ which is a contradiction)
- Completeness: Everything that is true in the system is provable. In a complete system all the true propositions can be derived from the axioms

Soundness and Completeness of a Logical System

- Soundness: Everything that is provable in the system is actually true
 - If KB $\vdash \alpha$ then KB $\models \alpha$
 - If something is derivable, then it is valid
 - The inference procedure/proofs don't include anything that's wrong
- Completeness: Everything that is true in the system is provable
 - If KB $\models \alpha$ then KB $\vdash \alpha$
 - If something is valid, then it is derivable
 - The inference procedure/proofs don't exclude anything that's correct
- Propositional Logic is sound and complete

Propositional Logic

- Propositional logic is the simplest logic illustrates basic ideas
- Syntax of well-formed propositional formulas:

```
The proposition symbols P_1, P_2, Q, W_{1,3}, etc. are sentences
```

If S is a sentence, $\neg S$ is a sentence (negation "not S")

If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence (conjunction " S_1 and S_2 ")

If S_1 and S_2 are sentences, $S_1 \vee S_2$ is a sentence (disjunction " S_1 or S_2 ")

If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication " S_1 implies S_2 " /conditional "If S_1 then S_2 ")

If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (bi-conditional / " S_1 if and only if S_2 ")

Propositional Logic - Semantics

- Each model specifies true/false for each propositional symbol
- Rules for evaluating truth with a respect to a model m:

$S_1 \Leftrightarrow S_2$	is true iff	$S_1 \Rightarrow S_2$	is true	and	$S_2 \Rightarrow S_1$	is true
i.e.	is false iff	S_1	is true	and	S_2	is false
$S_1 \Rightarrow S_2$	is true iff	S_1	is false	or	S_2	is true
$S_1 \vee S_2$	is true iff	S_1	is true	OR	S_2	is true
$S_1 \wedge S_2$	is true iff	S_1	is true	AND	S_1	is true
$\neg S$	is true iff	S	is false			

Truth Tables for Connectives

P	Q	¬P	$P \wedge Q$	P∨Q	P⇒Q	P⇔Q
F	F	T	F F		T	T
F	T	Т	F	T	T	F
T	F	F	F	T	F	F
T	Т	F	T	Т	Т	Т
		negation	and	or	implies	iff

T = True

F = False

Implication and Biconditional

S(x) is a necessary condition of P(x)

$$P(x) \Rightarrow S(x)$$

S(x) is a necessary and sufficient condition of P(x)

$$P(x) \Leftrightarrow S(x)$$

Exercise

- Sentences/Statements
 - S The store is open today
 - *M* Mary is going to the store today
 - J John is going to the store today
- Define propositional sentences using the variables above and logical connectives (¬, ∧, ∨,) for the following:
- "Either John or Mary (or both) are going to the store today"
- "John is going to the store today, but Mary isn't"
- "The store is open today, however, neither John nor Mary is going"

Entailment using TT

- KB $\models \alpha$ only if in every model where KB is True, α is also True
- Let's use truth tables to show if

$$P \models (P \lor Q)$$

Use truth tables to show if

$$P \models (P \land Q)$$

P	Q	$P \lor Q$
Т	T	T
Т	F	T
F	T	T
F	F	F

Simple KB for Wumpus World

- Symbols (representation)
- P_{x,y} is true if there is a pit in [x,y].
- $W_{x,y}$ is true if there is a wumpus in [x,y].
- $B_{x,y}$ is true if agent perceives breeze in [x,y].
- $S_{x,y}$ is true if agent perceives stench in [x,y].
- Insert some known facts
- There is no pit in [1,1]

$$R_1$$
: $\neg P_{1,1}$

• A square is breezy if and only if there is a pit in a neighbouring square

$$R_2$$
: $B_{1,1} \Leftrightarrow P_{1,2} \vee P_{2,1}$

$$R_3$$
: $B_{2,1} \Leftrightarrow P_{1,1} \vee P_{2,2} \vee P_{3,1}$

Breeze percepts

$$R_4$$
: $\neg B_{1,1}$

$$R_5$$
: $B_{2,1}$

Truth Table for Inference

$$KB \models \neg P_{1,2}$$
?

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	R_1	R_2	R_3	R_4	R_5	KB
$false \\ false$	$false \\ false$	$false \\ false$	$false \\ false$	$false \\ false$	$false \\ false$	$false \ true$	true true	$true \ true$	$true \\ false$	$true \ true$	$false \\ false$	false false
: false	: true	$\vdots \\ \mathit{false}$: false	$\vdots \\ false$	$\vdots \\ \mathit{false}$: false	: true	$\vdots \\ true$: false	$\vdots \\ true$	$\vdots \\ true$: false
false false false	true true true	false false false	false false false	false false false	false true true	true false true	true true true	true true true	true true true	true true true	true true true	$\begin{array}{c} \underline{true} \\ \underline{true} \\ \underline{true} \end{array}$
false : true	true : true	false : true	$false \\ \vdots \\ true$	true : true	false : true	false : true	true : false	false : true	false : true	true : false	true : true	false : false

KB is true if R_1 through R_5 are true, occurs in just 3 rows out of 128. In those rows, $P_{1,2}$ is false, so there is no pit in [1,2]. But there may or may not be a pit in $P_{2,2}$ or $P_{3,1}$

Summary

- Knowledge-based agents apply inference to KB to derive new information and make decisions
- PEAS for Wumpus World
- Logic, models, entailment and inference
- Soundness and completeness
- Propositional logic

References

- Russel and Norvig, Chapter 7
- Recommended programming language for logic is Prolog