Simulation Experiments in R

Helene Wagner, University of Toronto

Goals:

- Simulate a metapopulation on a resistance landscape
- Compare performance of partial Mantel test and Sunder

Methodological Challenges:

Video 1:

- Workflow of a simulation experiment
- Testing statistical methods with simulations
- Partial Mantel test vs. Sunder

Video 2: Efficient R

Simulation Workflow

1. Initialize

- Landscape map constant

- Populations (A - H) constant

- Individuals (genotypes) variable

Create random maps with 'secr':

- Habitat amount (A)
- Habitat aggregation (p)

2. Time step

- Demographic model
- Mating and reproduction
- Dispersal and recruitment

```
> str(para)
List of 15
$ n.pops : num 8
$ n.ind : num 100
$ sex.ratio : num 0.5
$ n.cov : num 3
$ n.offspring: num 2
$ mig.rate : num 0.1
$ disp.max : num 50
$ disp.rate : num 0.05
$ n.allels : num 10
$ n.loci : num 20
$ mut.rate : num 0.001
```

3. Run a single simulation

- Initialize genotypes
- Run for many time steps
- Collect genotype data
- Summarize results

Fst: degree of differentiation Decide: IBD or IBR?

4. Batch run simulations

- Replicate runs with same parameters
- Run scenarios across parameter space
- Store results and settings

Parameter space:			. space	
	r	ep 1	time	
time: # generations	1	1	5	
	2	2	5	
rep: # replicate sims	3	3	5	
1	4	1	25	
	5	2	25	
	6	3	25	
	7	1	45	
	8	2	45	
	9	3	45	

5. Synthesize results

- Extract summary data
- Visualize in parameter space
- Sensitivity analysis

Robust vs. sensitive

Partial Mantel Tests

IBD IBR PopGenReport::wassermann(eucl.mat = eucl.mat, cost.mats = list(cost=cost.mat), gen.mat = gen.mat, plot=F)\$mantel.tab model <chr> <chr> <chr> IBR | IBD Gen ~cost | Euclidean 0.5366 0.041 IBD | IBR Gen ~Euclidean | cost -0.47530.983

Some issues with (partial) Mantel tests:

- Low statistical power?
- Inflated type I error rates if spatial autocorrelation?

Use simulations to test and compare methods!

Alternative with 'Sunder'

'Bedassle' (Bradburd et al. 2013), alternative implementation in 'Sunder' (Botta et al. 2014)

Run the analysis (parameter settings: http://www.nbi.dk/~botta/Sunder.html#overview)

```
D.G <- as.matrix(dist(para$locs))</pre>
     IBD
           D.E <- cost.mat
     TBR
Iterations
           nit <- 10^3 ## just for the example, should be much larger, e.g. 50000
           output <- Sunder::MCMCCV(Array, D.G, D.E,
                                 nit=nit,thinning=max(nit/10^3,1),
                                 theta.max=c(10,10*max(D.G),10*max(D.E),1,0.9),
                                 theta.init=c(1,2,1,1,0.01),
                                 run=c(1,1,1), ud=c(0,1,1,0,0),
                                 n.validation.set=dim(Array)[1]*dim(Array)[2]/10,
                                 print.pct=FALSE)
           print(output$mod.lik)
                             IBD
                                       IBR
                                                   > names(which.max(output$mod.lik))
                  G+E
                                                   [1] "E"
Likelihood
            -9050.244 -9058.499 -8974.353
```

Testing Method Performance

Assessing error rates requires MANY replicate samples!

Resistance values

1	1	1	1	1
1	В	1	1	1
1	1	1	1	1
1	1	1	1	1
A	1	1	1	С

Type I error rate

- Simulate under null hypothesis
- Expect alpha % false positives

Statistical Power

Statistical power to detect effect

- Simulate under alternative hypothesis
- Assess True Positive Rate (TPR)
- Larger effect size -> higher power
- Larger sample size -> higher power

Compare power between methods!

