

INSTITUTO DE CIÊNCIAS EXATAS

DEPARTAMENTO DE COMPUTAÇÃO

UML 2.X

Eduardo Kinder Almentero ekalmentero@gmail.com

Introdução

OMG

 Fundado em 1989, o Object Management Group, Inc. (OMG) é uma associação aberta, sem fins lucrativos que produz e mantém especificações da indústria de computadores para dispositivos interoperáveis, portáteis e aplicativos corporativos reutilizáveis em ambientes distribuídos e heterogêneos.

• Documentos importantes:

- Especificação OMG da UML 2.5.1 (Dezembro de 2017)
 - https://www.omg.org/spec/UML/ (acesso em fevereiro 2022)
- Definição de Diagrama da OMG 1.1 (Diagram Definition DD)
 - https://www.omg.org/spec/DD/ (acesso em acesso em fevereiro 2022)
 - Estabelece uma base para modelagem e intercâmbio entre diagramas com notações gráficas, principalmente os de estilo nóarco, como os da UML, SysML e BPMN.

Como surgiu a UML?

Versões da UML

Versão	Data de Lançamento
2.5	Junho de 2015
2.4.1	Agosto de 2011
2.4	Março de 2011
2.3	Maio de 2010
2.2	Fevereiro de 2009
2.1.2	Novembro de 2007
2.1.1	Agosto de 2007
2.0	Julho de 2005
1.5	Março de 2003
1.4	Setembro de 2001
1.3	Março de 2000
1.1	Novembro de 1997

Evolução da UML

- Principais mudanças 1.1 para 2.0:
 - Novos diagramas:
 - Diagrama de objetos;
 - Diagrama de pacotes;
 - Diagrama de estruturas compostas
 - Diagrama de Visão geral de interação;
 - Diagrama de tempo;
 - Diagrama de perfil;
 - Digrama de colaboração foi renomeado para comunicação;
 - Melhorias nos diagramas de atividade e sequência;

Fonte da figura: https://umlforum.com/uml-specifications/

O que é a UML (*Unified Modeling Language*)?

Objetivos

- Fornecer ferramentas aos engenheiros de software para analisar, projetar e implementar sistemas baseados em software, além da modelagem de processos de negócio e similares;
- Avançar o estado da indústria, habilitando a interoperabilidade entre ferramentas de modelagem visual de objetos.

A UML fornece:

- Uma definição formal de um metamodelo comum que especifica a sintaxe abstrata da UML.
 - A sintaxe abstrata define o conjunto de conceitos de modelagem UML, seus atributos e seus relacionamentos, bem como as regras para combinar esses conceitos para construir modelos UML parciais ou completos.
- Uma explicação detalhada da semântica de cada conceito de modelagem UML.
 - A semântica define, em um maneira independente de tecnologia, como os conceitos UML devem ser entendidos por computadores.
- Uma especificação dos elementos de notação legíveis por humanos para representar os conceitos individuais da modelagem UML, bem como regras para combiná-los em uma variedade de diferentes tipos de diagramas correspondentes a diferentes aspectos de sistemas modelados.
- De maneira geral, linguagem = vocabulário + regras de combinação (sintaxe)

Modelos

- O que é um modelo?
 - Um modelo é uma simplificação (representação) da realidade.
 - Por que simplificação?
 - A realidade é muito complexa para ser representada em um único modelo.
- O que modelamos?
 - Dimensões: dados, função, comportamento, relacionamentos, etc.

Objetivos da Modelagem

- Documentar e compreender o problema;
- Projetar/criar a solução para o problema;
- Compreender o software (solução) em desenvolvimento;
- Proporcionar uma visão geral do software;
- Documentar decisões tomadas durando o processo de desenvolvimento de software;
- Documentar a solução adotada utilizando diferentes perspectivas – todo software deve ser documento através de um conjunto de modelos;
- Especificar comportamento ou a estrutura de um sistema.

Princípios da Modelagem

- A escolha dos modelos a serem criados tem profunda influência sobre a maneira como um determinado problema é atacado e como uma solução é definida;
- Cada modelo pode ser expresso em diferentes níveis de precisão;
- Os melhores modelos estão relacionados à realidade;
- Nenhum modelo único é suficiente
 - Qualquer modelo n\u00e3o-trivial ser\u00e1 melhor investigado por meio de um pequeno conjunto de modelos relacionados, mas n\u00e3o redundantes.

A UML não é um

um processo;

um método;

• análise e Projeto OO;

• regras de projeto.

Elementos da UML

- Para formar um modelo conceitual da linguagem é necessário aprender três elementos principais
 - Blocos de construção;
 - Regras que determinam como esses blocos poderão ser combinados;
 - Mecanismos comuns aplicados na UML.

Blocos de Construção

- Três tipos:
 - Itens: são abstrações;
 - Relacionamentos: os relacionamentos reúnem esses itens;
 - Diagramas: agrupam coleções interessantes deste item.

Itens da UML

• Estruturais;

Comportamentais;

De agrupamento;

Anotacionais.

Itens estruturais

- São os substantivos dos modelos. São a parte estática, representando elementos conceituais ou físicos
- Sete tipos: classes, interfaces, colaborações, casos de uso, classes ativas, componentes e nós

Itens comportamentais

- Representam as partes dinâmicas dos modelos. São os verbos, representando comportamentos no tempo e no espaço
- Dois tipos: interação e máquina de estado

Itens de agrupamento

- São as partes organizacionais dos modelos de UML.
 São os blocos em que os modelos podem ser decompostos – pacotes
- Um pacote é um mecanismo de propósito geral para a organização de elementos em grupos

Pacote

Itens anotacionais

 Partes explicativas dos modelos UML. São comentários, incluídos para descrever, esclarecer e fazer alguma observação importante sobre qualquer elemento do modelo - notas

Retornar cópia

Nota

Relacionamentos

- Dependência;
- Associação;
- Generalização;

- Realização;
- Composição;

Dependência

 Relacionamento semântico entre dois itens, nos quais a alteração de um (o item independente) pode afetar a semântica do outro (o item dependente)

Associação

 É um relacionamento estrutural que descreve um conjunto de ligações, em que as ligações são conexões entre objetos

Agregação

 A agregação é um tipo especial de associação representando um relacionamento estrutural entre o todo e sua parte

Generalização

 É um relacionamento de especialização/generalização, nos quais os objetos dos elementos especializados (os filhos) são substituíveis por objetos do elemento generalizado (os pais)

Realização

 É um relacionamento semântico entre classificadores, em que um classificador especifica um contrato que outro classificador garante executar

Diagramas

- Apresentações gráficas de um conjunto de elementos, geralmente representadas como gráficos de vértices (itens) e arcos (relacionamentos)
- Nove tipos: classes, objetos, pacotes, casos de uso, sequências, colaborações, estados, atividades, componentes e implantação
- Podem ser classificados como de estrutura, comportamento e interação

Diagramas

Diagramas de estrutura

- Enfatizam os elementos que devem estar presentes no sistema modelado.
- Como representam a estrutura, são muito utilizados para documentar a arquitetura de software.

Diagramas de comportamento

- Enfatizam o que deve acontecer no sistema que está sendo modelado.
- Como ilustram o comportamento de um software, são muito utilizados para descrever as funcionalidades.

Diagramas de interação

- Subconjunto de diagramas de comportamento.
- Enfatizam o fluxo de controle e dados entre os elementos do software.

Diagramas UML

- Diagramas UML
 - Diagramas de estrutura
 - Diagrama de perfil
 - Diagrama de classes
 - Diagrama de estruturas compostas
 - Diagrama de componentes
 - Diagrama de implantação
 - Diagrama de objetos
 - Diagrama de pacotes
 - Diagramas de comportamento
 - Diagrama de atividades
 - Diagrama de casos de uso
 - Diagrama de máquinas de estado
 - Diagramas de interação
 - Diagrama de sequência
 - Diagrama de comunicação
 - Diagrama de visão geral de interação
 - Diagrama de tempo

Diagrama de Classes

 Descrevem a estrutura estática do sistema, exibindo as classes, seus atributos, operações e relacionamentos.

Diagrama de Pacotes

- Organizam elementos do sistema em grupos relacionados a fim de minimizar a dependência entre eles.
- Descrevem as dependências entre os pacotes do sistema.

Diagrama de Objetos

- Descrevem a estrutura estática de um sistema em um determinado momento
- Podem ser usados para testar a precisão dos diagramas de classe

Diagrama de Casos de Uso

- Modelam a funcionalidade do sistema através de atores e casos de uso
- Casos de uso são funcionalidades fornecidas pelo sistema aos seus usuários

Diagrama de Sequência

 Descreve as interações entre as classes através das trocas de mensagens ao logo do tempo

Diagrama de Comunicação

- Representam as interações entre objetos em termos de mensagens em sequência
- Descrevem tanto a estrutura estática como o comportamento dinâmico do sistema

Diagrama de Estados

- Descrevem o
 comportamento
 dinâmico do sistema
 em resposta a
 estímulos externos
- São especialmente úteis para modelar objetos reativos cujos estados são disparados por eventos específicos

33

Diagrama de Atividades

- Ilustram a natureza dinâmica de um sistema modelando o fluxo de controle de uma atividade para outra.
- Uma atividade representa uma operação em uma classe do sistema que resulta na mudança do estado do sistema.
- Tipicamente, são usados para modelar fluxo de trabalho ou processos de negócio e funcionamento interno.

Diagrama de Componente

- Descreve a organização dos componentes físicos de software
- Ex.: código-fonte, código em tempo de execução (binário) e executáveis

Diagrama de Implantação

 Descrevem os recursos físicos em um sistema, incluindo nós, componentes e conexões

Regras UML

 Especificam o que deverá ser um modelo bemformado;

 Modelos bem-formados são aqueles auto consistentes semanticamente e em harmonia com todos os modelos a ele relacionados;

 Regras para: nome, escopo, visibilidade, integridade e execução.

Material de apoio

Bibliografia básica

 BOOCH, G., RUMBAUGH, J., JACOBSON, Ivar. Uml - Guia do Usuário. 2006. Editora GEN LTC.

Bibliografia complementar

— Booch, Grady, Ivar Jacobson, and James Rumbaugh. "The unified modeling language." Unix Review 14.13 (1996).

INSTITUTO DE CIÊNCIAS EXATAS

DEPARTAMENTO DE COMPUTAÇÃO

Perguntas?