新无源 读卡器控制协议 用户手册

	版本控制					
更改日期	版本	变更内容				
2012/05/21	V1.0	初始版本				
2015/01/28	V1.1	去掉未使用功能,命令说明方式更新				

目 录

目	录		1
1.	简介	↑	2
2.	信息	息类型及协议的基本格式	2
	2.1.	信息类型	2
	2.2.	协议的基本格式	2
	2. 3.	数据格式	3
	2.3	3.1. CHKSUM数据格式	3
3.	编石	吗表	4
4.	通信	言协议	4
	4.1.	IS018000-6B 识别	5
	4. 2.	IS018000-6B分区写操作	5
	4. 3.	IS018000-6B分区读操作	6
	4.4.	EPC(GEN 2) 单卡识别	7
	4. 5.	EPC(GEN 2) 多卡识别	7
	4.6.	EPC(GEN 2) 分区写操作	9
	4.7.	EPC(GEN 2) 分区读操作	9
	4.8.	设置基本参数	10
	4.9.	获取基本参数	14
	4. 10.	设置通讯地址	16
	4.11.	获取基本信息	17
	4. 12.	软重启	18
	4. 13.	标签加密	18
	4. 14.	设置TCPIP参数	
	4. 15.	获取TCPIP参数	
	4. 16.	远程控制开出状态	21

1. 简介

通讯协议设计说明

串行通信口采用 RS232/RS485; (支持 CANBUS/TCPIP 连接)

信息传输方式为异步方式,起始位1位,数据位8位,停止位1位,无校验。

数据传输速率为 9.6kb/s;

监控单元 (SU):如 PC 机,或控制类设备;

监控模块 (SM):读卡器;

监控单元(SU)和监控模块(SM)通信方式采用主从方式,SU为上位机,SM为下位机.

SU呼叫SM并下发命令,SM收到命令后返回响应信息,SU在1s内接收不到SM响应或接收响应信息错误,

则认为本次通信过程失败.

注:通讯数据传输均为 16 进制(Hex)数据;

2. 信息类型及协议的基本格式

2.1. 信息类型

信息分两种类型:

- 由 SU 发出到 SM 的命令信息(简称命令信息);
- 由 SM 返回到 SU 的响应信息(简称响应信息);

2.2. 协议的基本格式

表 2.2-1 协议的基本格式

序号	1	2	3	4	5	6	7
字节数	1	2	1	1	1	LENGTH	1
格式	SOI	ADR	CID1	CID2	LENGTH	INFO	CHKSUM

注意: 地址高位在后, 低位在前; 如 65534 (FFFEH), 数据传送时为 (FEFFH);

表 2.2-2 基本格式注解

	次 1.1 1 至 小田 2 (正)州						
序号	符 号	表 示 意 义	备注				
1	SOI	起始位标志(START OF INFORMATION)	命令(7CH)				
			响应(CCH)				
2	ADR	设备地址描述(1~65534,0、65535 保留)	FFFFH				

3	CID1	控制标识码 (数据类型描述)	具体内容参
			见 3
4	CID2	命令信息:控制标识码(动作类型描述)	
		响应信息: 返回码 RTN (返回码见表 2-3)	
5	LENGTH	INFO 字节长度	
6	INFO	命令信息: 控制数据信息 COMMAND INFO	
		应答信息: 应答数据信息 DATA INFO	
7	CHKSUM	校验和码,数据格式见 2.3	

表 2-3 返回码 RTN

序号	RTN 值 (HEX)	表示意义	备注
1	ООН	正常	
2	01H	错误	
3	32Н	主动上送数据到 SU	

2.3. 数据格式

2.3.1. CHKSUM数据格式

● CHKSUM 说明

CHKSUM 的计算是除 CHKSUM 外,其他字符按 16 进制码值累加求和,所得结果模 256 余数取反加 1。例:收到或发送的字符序列是:"CC 02 01 B1 22 04 BB 12 02 03 88".则最后 1 个字节"88"是 CHKSUM,计算方法是:

```
'CC' + '02' + '01' + \cdots + '22' + '04' + 'BB' + '12' + '02' + '03' = CCH + 02H + 01H + \cdots + 22H + 04H + BBH + 12H + 02H + 03H = 0278H
```

0278H 模 256 余数是 78H, 78H 取反加 1 就是 88H。

● CHKSUM 计算公式参考

```
unsigned char CheckSum(unsigned char *uBuff, unsigned char uBuffLen)
{
   unsigned char i,uSum=0;
   for(i=0; i<uBuffLen; i++)
   {
      uSum = uSum + uBuff[i];
   }
   uSum = (~uSum) + 1;
   return uSum;
}</pre>
```

3. 编码表

CID1、CID2 编码分配及分类表见表3-1 和表3-2。

表 3-1 命令类型编码分类表 (CID1)

序号	内 容	CID1	备 注
1	IS018000-6B 识别	01H	
2	IS018000-6B 分区操作	02Н	
3	EPC (GEN 2) 单卡识别	10H	
4	EPC (GEN 2) 多卡识别	11H	
5	EPC (GEN 2) 分区操作	12H	
6	读卡器基本参数	81H	
7	读卡器基本信息	82H	
8	读卡器软重启	8FH	
9	标签加密	30Н	
10	读卡器TCPIP参数	В9Н	
11	读卡器远程控制	ВВН	
12			

表 3-2 命令动作编码分类表(CID2)

序号	内 谷	C1D2 备:	注
1	设置命令	31H	
2	获取命令	32Н	
3	高级参数设置命令	21Н	
4	高级参数获取命令	22H	

4. 通信协议

对于本协议中使用的协议编码见表 4-1。

表4-1 协议编码表

序号	内 容	CID1	CID2	备 注
1	IS018000-6B 识别	01H	32H	
2	IS018000-6B 分区写操作	02Н	31H	
3	IS018000-6B 分区读操作	02Н	32H	
4	EPC(GEN 2) 单卡识别	10H	32H	
5	EPC(GEN 2) 多卡识别	11H	32H	
6	EPC(GEN 2) 分区写操作	12H	31H	
7	EPC (GEN 2) 分区读操作	12H	32H	
8	设置基本参数	81H	31H	
9	获取基本参数	81H	32H	
10	设置通讯地址	82H	31H	
11	获取基本信息	82H	32H	

12	软件重启	8FH	31H	
13	标签加密	30H	31H	
14	设置TCPIP参数	В9Н	21H	
15	获取TCPIP参数	В9Н	22Н	
16	远程控制开出状态	BBH	21H	
17				

注:加*号的命令表示是可选的命令,读卡器暂不具备此功能,如果具备此功能,应按照本协议执行。(下文中出现*号的地方,含义如上所述,下文不再详述。)

4.1. IS018000-6B 识别

快速获取 6B 标签 UID 数据;

4.1.1. 命令

CID1: 01H

CID2: 32H

INFO:

- None

例:

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	CID2	LENGTH	CHKSUM
7C	FF	FF	01	32	00	OxNN

4.1.2. 响应

CID1: 01H RTN:00H

INFO:

- AN (8-bit): 天线号(默认值 0x01)

- UID (variable): 目标标签的惟一标识符 (Target tag's unique identifier)

0xNN

例: AN = 1;

UID = 0xE2003411B802011383258566;

66

012	OXEDUOU1111	00020110002000	,				
HEAD	ADDR (LSB)	ADDR (MSB)	CID1	RTN	LENGTH	AN	UID (MSB)
CC	FF	FF	01	00	OD	01	E2
00	34	11	В8	02	01	13	83
		UID (LSB)	CHKSUM				

4.2. IS018000-6B分区写操作

写数据到 6B 标签数据区.

85

4.2.1. 命令

CID1: 02H CID2: 31H

INFO:

- SA (8-bit): 起始地址字指针 Starting Address word pointer

- DL (8-bit): 写入数据长度 Data Length to write

- DT (variable): 写入数据 Data to write.

例: Start Address = 0x12, Data Length = 0x08,

Data to write = 0x1234567800000000

ADDR (LSB)	ADDR (MSB)	CID1	CID2	LENGTH	SA	DL
FF	FF	02	31	OA	12	08
						DT (LSB)
34	56	78	00	00	00	00
F	F	FF FF	FF FF 02	FF	FF FF 02 31 0A	FF FF 02 31 0A 12

OxNN

4.2.2. 响应

CID1: 02H RTN: 00H

INFO:
- None

例: Success;

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	RTN	LENGTH	CHKSUM
CC	FF	FF	02	00	00	OxNN

4.3. IS018000-6B分区读操作

读取 6B 标签数据区的数据.

4.3.1. 命令

CID1: 02H CID2: 32H

INFO:

- SA (8-bit): 起始地址字指针 Starting Address word pointer

- DL (8-bit): 写入数据长度 Data Length to write

例: Start Address = 0x12,

Data Length = 0x08,

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	CID2	LENGTH	SA	DL
7C	FF	FF	02	32	02	12	08

CHKSUM Oxnn

4.3.2. 响应

CID1: 02H

RTN: OOH INFO:

- AN (8-bit): 天线号(默认值 0x01)

- DT (variable): 读取数据 Data of read.

例: Success;

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	RTN	LENGTH	AN	DT (MSB)
CC	FF	FF	02	00	09	01	12
						DT (LSB)	CHKSUM
34	56	78	00	00	00	00	OxNN

4.4. EPC(GEN 2) 单卡识别

快速获取 EPC (GEN 2) 标签 EPC 数据;

4.4.1. 命令

CID1: 10H CID2: 32H

INFO: - None 例:

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	CID2	LENGTH	CHKSUM
7C	FF	FF	10	32	00	OxNN

4.4.2. 响应

CID1: 10H RTN:00H INFO:

- AN (8-bit): 天线号(默认值 0x01)

- EPC (variable): 目标标签的 EPC (Target tag's EPC)

例: AN = 1;

EPC = 0xE2003411B802011383258566;

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	RTN	LENGTH	AN	EPC (MSB)
CC	FF	FF	10	00	OD	01	E2
00	34	11	В8	02	01	13	83
		EPC (LSB)	CHKSUM				
25	85	66	OxNN				

4.5. EPC(GEN 2) 多卡识别

快速获取 EPC (GEN 2)标签 EPC 数据;

4.5.1. 命令

CID1: 11H CID2: 32H

INFO: - None 例:

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	CID2	LENGTH	CHKSUM
7C	FF	FF	11	32	00	OxNN

4.5.2. 响应

CID1: 10H RTN:00H INFO:

- TC (8-bit): 标签数量(默认值 0x01)

- DL (8-bit): 单个标签数据长度(固定长度 0x0E, 带单独数据校验)

- S_AN (8-bit): 单个天线号(默认值 0x01)

- S_EPC (variable): 单个目标标签的 EPC (Target tag's EPC)

- S CHK (8-bit): 单个标签数据校验

例 1: TC = 0x01, DL = 0x0E,

 $S_AN = 0x01;$

 $S_{EPC} = 0xE2003411B802011383258566;$

 $S_CHK = 0xNN;$

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	RTN	TC	DL	S_AN
CC	FF	FF	11	00	01	0E	01
S_EPC (MSB)							
E2	00	34	11	В8	02	01	13
			S_EPC (LSB)	S_CHK			
83	25	85	66	OxNN			

例: TC = 0x02,

DL = 0x0E,

 $S_AN = 0x01;$

 $S_EPC = 0xE2003411B802011383258566;$

 $S_CHK = 0xNN;$

 $S_AN = 0x01;$

 $S_{EPC} = 0xE2003411B802011383258567;$

 $S_CHK = 0xNN;$

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	RTN	TC	DL	S_AN
CC	FF	FF	11	00	02	0E	01
S_EPC (MSB)							
E2	00	34	11	В8	02	01	13

			S_EPC (LSB)	S_CHK	S_AN	S_EPC (MSB)	
83	25	85	66	OxNN	01	E2	00
34	11	В8	02	01	13	83	25
	S_EPC (LSB)	S_CHK					
85	67	OxNN					

4.6. EPC(GEN 2) 分区写操作

写数据到 EPC (GEN 2) 标签分区.

4.6.1. 命令

CID1: 12H CID2: 31H

INFO:

- MB (8-bit): 目标储存分区 Target memory bank; 0x00 Reserved, 0x01 EPC, 0x02 TID, 0x03 User

- SA (8-bit): 起始地址字指针 Starting Address byte pointer

- DL (8-bit): 写入数据长度 Data Length to write (Word Count)

- DT (variable): 写入数据 Data to write.

例: Target memory bank = User,

Start Address = 0x06,

Data Length = 4 word,

Data to write = 0x1234567800000000

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	CID2	LENGTH	МВ	SA
7C	FF	FF	12	31	0B	03	06
DL	DT (MSB)						
04	12	34	56	78	00	00	00
DT (LSB)	CHKSUM						
00	OxNN						

4.6.2. 响应

CID1: 12H RTN: 00H

INFO:
- None

例: Success;

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	RTN	LENGTH	CHKSUM
CC	FF	FF	12	00	00	OxNN

4.7. EPC(GEN 2) 分区读操作

读取 EPC (GEN 2) 标签分区的数据.

4.7.1. 命令

CID1: 12H CID2: 32H

INFO:

- MB (8-bit): 目标储存分区 Target memory bank; 0x00 Reserved, 0x01 EPC, 0x02 TID, 0x03 User

- SA (8-bit): 起始地址字指针 Starting Address word pointer - DL (8-bit): 获取数据长度 Data Length of read (Word Count)

例: Target memory bank = User, Start Address = 0x06,

Data Length = 4 word,

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	CID2	LENGTH	МВ	SA
7C	FF	FF	12	32	03	03	06
DL	CHKSUM						
04	OxNN						

4.7.2. 响应

CID1: 12H RTN:00H INFO:

- AN (8-bit): 天线号(默认值 0x01)

- DT (variable): 读取数据 Data of read.

例: Success;

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	RTN	LENGTH	AN	DT (MSB)
CC	FF	FF	12	00	09	01	12
						DT (LSB)	CHKSUM

4.8. 设置基本参数

设置基本参数.

4.8.1. 命令

CID1: 81H CID2: 31H

INFO:

- PW (8-bit):功率大小 Power Size(0~30)

- FHE (8-bit): 跳频使能 Frequency hopping enable (Disenabled 0x00, Enabled 0x01)

- FFV (8-bit): 定频值 Fixed frequency value

- FHV (48-bit): 跳频值 Frequency hopping value

值域 0~200 (0x00~0xC8), 对应 860MHz ~960MHz, 步长 0.5MHz

FHV1 (8-bit): 跳频值1 Frequency hopping value1 FHV2 (8-bit): 跳频值2 Frequency hopping value2 FHV3 (8-bit): 跳频值3 Frequency hopping value3

FHV4 (8-bit): 跳频值4 Frequency hopping value4 FHV5 (8-bit): 跳频值5 Frequency hopping value5 FHV6 (8-bit): 跳频值6 Frequency hopping value6

- WM (8-bit): 工作模式 Work Mode

Command (0x01), Active (0x02), Passive (0x03)

- RI (8-bit): 读卡周期 read interval time
- TGR (8-bit): 触发方式 enable the trigger (Disenabled 0x00, Enabled 0x01)
- OM (8-bit): 输出方式 Output Mode

RS232 (0x01), RS485 (0x02), TCPIP (0x03), CAMBUS (0x04),

SYRIS (0x05), WG26 (0x06), WG34 (0x07)

- WG (32-bit): (AUTO READ MODE Effective) Include (offset, interval, width, period)

数据偏移 Offset (8-bit): (0~14) Byte, Default (0x02)

输出周期 Interval (8-bit): (0~255) *10us, Default (0x1E)

脉冲宽度 Width (8-bit): (0~255) *10ms, Default (0x0A)

脉冲周期 Period (8-bit): (0~255) *100us, Default (0x0F)

- AN (8-bit): 天线选择 低 4 位数据表示 4 路天线,
- RT (8-bit): 读卡类别 Read Type

IS018000-6B单卡 (0x01)

EPC(GEN 2) 单卡 (0x10)

EPC (GEN 2) + ISO18000-6B (0x11)

EPC(GEN 2) 多卡 (0x20)

EPC(GEN 2) +其他分区 (0x40)

- SI (8-bit): 相同 ID 输出间隔 The same card ID send to Host in define time
- BZ (8-bit): enable the buzzer (Disenabled 0x00, Enabled 0x01)
- UD (24-bit): (AUTO READ MODE Effective) send the card other data to host; Include (MB, SA, DL)

MB (8-bit): Target memory bank; 0x00 RFU, 0x01 EPC, 0x02 TID, 0x03 User

SA (8-bit): Starting Address byte pointer

DL (8-bit): Data Length (byte Count).

- PE (8-bit): 加密使能 Encryption enable
- PW (16-bit): 密码 Encryption password
- MR (8-bit): 最大读卡数量 Max tag count of read (0x0A~0x40)

名称	字节数	参考值及定义
		可调节读卡器读取标签的距离
功率大小	1	默认值: 30
		参考值: (十进制格式) 0-30
		可设置定频或者跳频方式
跳频使能	1	默认值: 1
		参考值:(十进制格式)1- 定频 2- 跳频
定频值	1	默认值: 110 (915MHz)
上	1	参考值: (十进制格式) 0-200(860MHz~960MHz)
跳频值1	1	默认值: 84 (902MHz)
	1	参考值: (十进制格式) 0-200(860MHz~960MHz)
跳频值 2	1	默认值: 93 (906.5MHz)
	1	参考值: (十进制格式) 0-200(860MHz~960MHz)
跳频值3	1	默认值: 102 (911MHz)

		参考值: (十进制格式) 0-200(860MHz~960MHz)
跳频值 4	1	默认值: 110 (915MHz)
	1	参考值: (十进制格式) 0-200(860MHz~960MHz)
跳频值 5	1	默认值: 119 (919.5MHz)
	1	参考值: (十进制格式) 0-200(860MHz~960MHz)
跳频值 6	1	默认值: 130 (925MHz)
	1	参考值: (十进制格式) 0-200(860MHz~960MHz)
		应答方式:读卡器不读卡,不发送数据,上位机下发命令,读卡器
		读卡并返回数据;
		主动方式: 读卡器读卡,并主动上送数据;
		被动方式:读卡器读卡,不发送数据,上位机下发命令,读卡器返
工作模式	1	回数据;
工下沃风	1	默认值: 2
		参考值:(十进制格式)
		1- 应答方式
		2- 主动方式
		3- 被动方式
读卡周期	1	默认值: 10(x1ms)
	1	参考值: (十进制格式) 5-255(x1ms)
触发方式		默认值: 0
	1	参考值:(十进制格式)
	1	0- 关闭
		2- 低电平有效
		默认值: 1
		参考值:(十进制格式)
		1- RS232(通用协议)
		2- RS485(通用协议)
通讯方式	1	3- TCPIP (通用协议)
		4- CANBUS (通用协议)
		5- Syris(门禁停车场专用协议)
		6- Wiegand26(门禁停车场专用协议)
		7- Wiegand34(门禁停车场专用协议)
		具体参考 Wiegand 协议。
Wiegand 参数数据偏移	1	默认值: 0
		参考值:(十进制格式)0-20
		具体参考 Wiegand 协议。
Wiegand 参数输出周期	1	默认值: 30 (x10ms)
		参考值: (十进制格式) 0-255 (x10ms)
		具体参考 Wiegand 协议。
Wiegand 参数脉冲宽度	1	默认值: 10 (x10us)
		参考值: (十进制格式) 0-255 (x10us)
		具体参考 Wiegand 协议。
Wiegand 参数脉冲周期	1	默认值: 15 (x100us)
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		参考值: (十进制格式) 0-255 (x100us)
天线设置		1字节数据,低4位表示4路天线,
, VA A A	1	举例: 天线 1: 01H (二进制 0000 0001)
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

	1	915MITZ 红刺 你 K
		天线 3: 04H (二进制 0000 0100)
		天线 1+天线 3: 05H (二进制 0000 0101)
读卡类别		默认值: 16
		参考值:(十进制格式)
		1- IS018000-6B 单卡
	1	16- EPC(GEN 2) 单卡
		17- EPC (GEN 2) + ISO18000-6B
		32- EPC(GEN 2) 多卡
		64- EPC (GEN 2) +其他分区
相同 ID 输出间隔	1	默认值: 1 (x1s)
	1	参考值: (十进制格式) 0-255 (x1s)
		默认值: 1
蜂鸣器开关	1	参考值:(十进制格式)
24. 2. 111 八	1	0 读卡时蜂鸣器不响
		1 读卡时蜂鸣器响
分区选择		读卡类别为【EPC(GEN 2)+其他分区】时,此参数为其他分区选择;
		默认值: 1
	1	参考值:(十进制格式)
		1- TID区(全球唯一号码区)
		3- User 区(用户自定义数据区)
起始地址		读卡类别为【EPC(GEN 2) +其他分区】时,此参数为其他分区数据
	1	获取起始地址选择;
	1	默认值: 0
		参考值: (十进制格式) 0~32
数据长度		读卡类别为【EPC(GEN 2) +其他分区】时,此参数为其他分区数据
	1	获取长度选择;
	1	默认值: 2
		参考值: (十进制格式) 1~12
是否加密		使能读卡器加密读卡;
		默认值: 0
	1	参考值:(十进制格式)
		0- 通用版,不加密;
		1- 读卡器加密;
密码		默认值: 0000
	2	参考值: (十进制格式) 0000~9999
		举例:密码 0123 (十进制) =00H 7BH(十六进制)
最大读卡数量	1	默认值: 32
	1	参考值: (十进制格式) 10~64
	1	-

例:

PW = 30dBi (0x1E)

FHE = Enabled (0x01)

FFV = 915MHz (0x6E)

 $FHV = 0x545D666F7882 \ [FHV1 = 902MHz \ (0x54), \ FHV2 = 906.5MHz \ (0x5D), \ FHV3 = 911MHz \ (0x66), \ FHV4 = 915.5MHz \ (0x6F), \ FHV5 = 920MHz \ (0x78), \ FHV6 = 925MHz \ (0x82) \]$

WM = Command (0x01)

RI = 10ms (0x0A)

TGR = Disenabled (0x00)

OM = RS232 (0x01)

WG = 0x001E0A0F [Offset 0x00, Interval 0x1E, Width 0x0A, Period 0x0F]

AN = 天线 1 (0x01)

RT = EPC(GEN 2) 单卡 (0x10)

SI = 1s (0x01)

BZ = Enabled (0x01)

UD = 0x030006 [MB=User, SA=0, DL=6 word]

PE = Disenabled (0x00)

PW = 0x0000

MR = 32 (0x20)

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	CID2	LENGTH	PW	FHE
7C	FF	FF	81	00	1C	1E	01
FFV	FHV (MSB)					FHV (LSB)	WM
6E	54	5D	66	6F	78	82	01
RI	TGR	OM	WG (MSB)			WG (LSB)	AN
OA	00	01	00	1E	OA	0F	01
RT	SI	BZ	UD (MSB)		UD (LSB)	PE	PW (MSB)
10	01	01	03	00	06	00	00
PW (LSB)	MR	CHKSUM		•			
00	20	OxNN					

4.8.2. 响应

CID1: 81H

RTN: OOH

INFO:

- None

例: Success;

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	RTN	LENGTH	CHKSUM
CC	FF	FF	81	00	00	OxNN

4.9. 获取基本参数

获取基本参数.

4.9.1. 命令

CID1: 81H

CID2: 32H

INFO:

- None

例:

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	CID2	LENGTH	CHKSUM
IIIII	IDDIK (DOD)	TIDDIT (MOD)	OIDI	OIDE	DEMOTII	OHROOM

Γ	7C	FF	FF	81	32	00	OxNN
		1 1	1 1	0.1	0		0 111 11 1

4.9.2. 响应

CID1: 81H RTN:00H INFO:

- PW (8-bit):功率大小 Power Size(0~30)
- FHE (8-bit): 跳频使能 Frequency hopping enable (Disenabled 0x00, Enabled 0x01)
- FFV (8-bit): 定频值 Fixed frequency value
- FHV (48-bit): 跳频值 Frequency hopping value

值域 0~200 (0x00~0xC8), 对应 860MHz ~960MHz, 步长 0.5MHz

FHV1 (8-bit): 跳频值1 Frequency hopping value1 FHV2 (8-bit): 跳频值2 Frequency hopping value2 FHV3 (8-bit): 跳频值3 Frequency hopping value3 FHV4 (8-bit): 跳频值4 Frequency hopping value4 FHV5 (8-bit): 跳频值5 Frequency hopping value5 FHV6 (8-bit): 跳频值6 Frequency hopping value6

- WM (8-bit): 工作模式 Work Mode

Command (0x01), Active (0x02), Passive (0x03)

- RI (8-bit): 读卡周期 read interval time
- TGR (8-bit): 触发方式 enable the trigger (Disenabled 0x00, Enabled 0x01)
- OM (8-bit): 输出方式 Output Mode

RS232 (0x01), RS485 (0x02), TCPIP (0x03), CAMBUS (0x04),

SYRIS (0x05), WG26 (0x06), WG34 (0x07)

- WG (32-bit): (AUTO READ MODE Effective) Include (offset, interval, width, period)

数据偏移 Offset (8-bit): (0~14) Byte, Default (0x02)

输出周期 Interval (8-bit): (0~255) *10us, Default (0x1E)

脉冲宽度 Width (8-bit): (0~255) *10ms, Default (0x0A)

脉冲周期 Period (8-bit): (0~255) *100us, Default (0x0F)

- AN (8-bit): 天线选择 低 4 位数据表示 4 路天线,
- RT (8-bit): 读卡类别 Read Type

IS018000-6B单卡 (0x01)

EPC(GEN 2) 单卡 (0x10)

EPC (GEN 2) + ISO18000-6B (0x11)

EPC (GEN 2) 多卡 (0x20)

EPC(GEN 2) +其他分区 (0x40)

- SI (8-bit): 相同 ID 输出间隔 The same card ID send to Host in define time
- BZ (8-bit): enable the buzzer (Disenabled 0x00, Enabled 0x01)
- UD (24-bit): (AUTO READ MODE Effective) send the card other data to host; Include (MB, SA, DL)

MB (8-bit): Target memory bank; 0x00 RFU, 0x01 EPC, 0x02 TID, 0x03 User

SA (8-bit): Starting Address byte pointer

DL (8-bit): Data Length (byte Count).

- PE (8-bit): 加密使能 Encryption enable
- PW (16-bit): 密码 Encryption password
- MR (8-bit): 最大读卡数量 Max tag count of read (0x0A~0x40)

例:

PW = 30dBi (0x1E)

FHE = Enabled (0x01)

FFV = 915MHz (0x6E)

FHV = 0x545D666F7882 [FHV1 = 902MHz (0x54), FHV2 = 906.5MHz (0x5D), FHV3 = 911MHz (0x66), FHV4 = 915.5MHz (0x6F), FHV5 = 920MHz (0x78), FHV6=925MHz (0x82)]

WM = Command (0x01)

RI = 10ms (0x0A)

TGR = Disenabled (0x00)

OM = RS232 (0x01)

WG = 0x001E0A0F [Offset 0x00, Interval 0x1E, Width 0x0A, Period 0x0F]

AN = 天线 1 (0x01)

RT = EPC(GEN 2) 单卡 (0x10)

SI = 1s (0x01)

BZ = Enabled (0x01)

UD = 0x030006 [MB=User, SA=0, DL=6 word]

PE = Disenabled (0x00)

PW = 0x0000

MR = 32 (0x20)

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	RTN	LENGTH	PW	FHE
7C	FF	FF	81	31	1C	1E	01
FFV	FHV (MSB)					FHV (LSB)	WM
6E	54	5D	66	6F	78	82	01
RI	TGR	OM	WG (MSB)			WG (LSB)	AN
OA	00	01	00	1E	OA	0F	01
RT	SI	BZ	UD (MSB)		UD (LSB)	PE	PW (MSB)
10	01	01	03	00	06	00	00
PW (LSB)	MR	CHKSUM			•		•
00	20	0xNN					

4.10. 设置通讯地址

设置读卡器通讯地址.

4.10.1. 命令

CID1: 82H CID2: 31H

INFO:

- ADDRESS (16-bit): Current address

例: ADDRESS = 65534(0xFFFE)

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	CID2	LENGTH	ADDR (LSB)	ADDR (MSB)
7C	FF	FF	82	31	02	FE	FH

CHKSUM OxNN

4.10.2. 响应

CID1: 82H RTN: 00H

INFO:
- None

例: Success;

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	RTN	LENGTH	CHKSUM
CC	FF	FF	82	00	00	OxNN

4.11. 获取基本信息

获取读卡器的基本信息.

4.11.1. 命令

CID1: 82H CID2: 32H

INFO:
- None

例:

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	CID2	LENGTH	CHKSUM
7C	FF	FF	82	32	00	OxNN

4.11.2. 响应

CID1: 82H RTN:00H

INFO: (ASCII code)

Rev (128-bit): 保留字段(16 字节)
TP (24-bit): 读卡器类别(3 字节)(P)
VER (40-bit): 读卡器版本(5 字节)(V3.63)

- ADDR (80-bit): 读卡器类别(ADDR:65534)

例: TP = P

VER = V3.63

ADDR = ADDR: 65534

ADD	ADDR - ADDR: 05554									
HEAD	ADDR (LSB)	ADDR (MSB)	CID1	RTN	LENGTH	REV (MSB)				
CC	FF	FF	82	00	22	OA	20			
77	77	77	2E	41	6F	73	69			
					REV (LSB)	TP (MSB)				
64	2E	63	6F	6D	20	OA	20			
TP (LSB)	VER (MSB)				VER (LSB)	ADDR (MSB)				

50	56	33	2E	36	33	4E	6F
							ADDR (LSB)
2E	3A	00	36	35	35	33	34
CHKSUM							

OxNN

4.12. 软重启

读卡器软重启.

4.12.1. 命令

CID1: 8FH

CID2: 31H

INFO:

- None

例:

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	CID2	LENGTH	CHKSUM
7C	FF	FF	8F	31	00	OxNN

4.12.2. 响应

CID1: 8FH

RTN: OOH

INFO:
- None

例: Success;

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	RTN	LENGTH	CHKSUM
CC	FF	FF	8F	00	00	OxNN

4.13. 标签加密

当读卡器设置加密后可使用此命令加密标签.

4.13.1. 命令

CID1: 30H

CID2: 31H

INFO:

- None

例:

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	CID2	LENGTH	CHKSUM
7C	FF	FF	30	31	00	OxNN

4.13.2. 响应

CID1: 30H

RTN: OOH

INFO:
- None

例: Success;

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	RTN	LENGTH	CHKSUM
CC	FF	FF	30	00	00	OxNN

4.14. 设置TCPIP参数

设置读卡器 TCPIP 参数.

4.14.1. 命令

CID1: B9H CID2: 21H

INFO:

- IP (32-bit):读卡器本地 IP 地址 Local IP

- MSK (32-bit):读卡器子网掩码 Subnet Mask

- GW (32-bit):读卡器网关地址 Gateway

- PT (16-bit): 读卡器本地端口 Local Port

- MAC (48-bit): 读卡器 MAC 地址 Mac Address

- RIP (32-bit):服务器 IP地址 Remote IP

- RPT (16-bit): 服务器端口 Remote Port

- ST (8-bit): 读卡器模式 (读卡器做服务器模式 0x00,读卡器做客户端模式 0x01)

- PCL (8-bit):读卡器网络通讯协议 (TCP 0x00, UDP 0x01, HTTP 0x02) 仅 TCP 有效;

例:

IP = 192.168.1.115

MSK = 255.255.255.0

GW = 192.168.1.1

PT = 49152

MAC = 5E-45-A2-6C-30-1E

RIP = 192.168.1.100

RPT = 49153

ST = Server (0x00)

PCL = TCP

	I CL I CI						
HEAD	ADDR (LSB)	ADDR (MSB)	CID1	CID2	LENGTH	IP (MSB)	
7C	FF	FF	В9	21	1C	CO	A8
	IP (LSB)	MSK (MSB)			MSK (LSB)	GW (MSB)	
01	73	FF	FF	FF	00	CO	A8
	GW (LSB)	PT (LSB)	PT (MSB)	MAC (MSB)			
01	01	00	CO	5E	45	A2	6C
	MAC (LSB)	RIP (MSB)			RIP (LSB)	RPT (LSB)	RPT (MSB)
30	1E	CO	A8	01	64	01	CO
ST	PCL	CHKSUM			•	•	•
00	00	OxNN	7				

4.14.2. 响应

CID1: B9H RTN: 00H

INFO:
- None

例: Success;

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	RTN	LENGTH	CHKSUM
CC	FF	FF	В9	00	00	OxNN

4.15. 获取TCPIP参数

获取读卡器 TCPIP 参数.

4.15.1. 命令

CID1: B9H CID2: 22H

INFO: - None 例:

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	CID2	LENGTH	CHKSUM
7C	FF	FF	В9	22	00	OxNN

4.15.2. 响应

CID1: B9H RTN: 00H

INFO:

- IP (32-bit):读卡器本地 IP 地址 Local IP
- MSK (32-bit):读卡器子网掩码 Subnet Mask
- GW (32-bit):读卡器网关地址 Gateway
- PT (16-bit): 读卡器本地端口 Local Port
- MAC (48-bit): 读卡器 MAC 地址 Mac Address
- RIP (32-bit):服务器 IP 地址 Remote IP
- RPT (16-bit): 服务器端口 Remote Port
- ST (8-bit): 读卡器模式 (读卡器做服务器模式 0x00,读卡器做客户端模式 0x01)
- PCL (8-bit):读卡器网络通讯协议 (TCP 0x00, UDP 0x01, HTTP 0x02) 仅 TCP 有效;

例:

IP = 192. 168. 1. 115

MSK = 255.255.255.0

GW = 192.168.1.1

PT = 49152

MAC = 5E-45-A2-6C-30-1E

RIP = 192.168.1.100

RPT = 49153

ST = Server (0x00)

PCL = TCP

|--|

7C	FF	FF	В9	00	1C	CO	A8
	IP (LSB)	MSK (MSB)			MSK (LSB)	GW (MSB)	
01	73	FF	FF	FF	00	CO	A8
	GW (LSB)	PT (LSB)	PT (MSB)	MAC (MSB)			
01	01	00	CO	5E	45	A2	6C
	MAC (LSB)	RIP(MSB)			RIP (LSB)	RPT (LSB)	RPT (MSB)
30	1E	CO	A8	01	64	01	CO
ST	PCL	CHKSUM					
00	00	OxNN					

4.16. 远程控制开出状态

Remote Custom IO.

4.16.1. 命令

CID1: BBH CID2: 21H

INFO:

- POINT (8-bit) : 开出位置 IO point (继电器 1 0x01,继电器 2 0x02)

- ACTION (8-bit) :开出状态 IO action (Open 0x01, Close 0x00)

例:

POINT = 继电器 1

ACTION = Open

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	CID2	LENGTH	POINT	ACTION
7C	FF	FF	BB	21	02	01	01
CURCIM							

OxNN

4.16.2. 响应

CID1: BBH RTN: OOH

INFO:
- None

例: Success;

HEAD	ADDR (LSB)	ADDR (MSB)	CID1	RTN	LENGTH	CHKSUM
CC	FF	FF	BB	00	00	OxNN