Problema C – Caleb, Chefe Competente

Caleb criou uma empresa com n funcionários e estabeleceu uma hierarquia clara de chefias. Ele, sendo o fundador, não tem chefe, mas todos os outros funcionários possuem um chefe direto. Dizemos que a é chefe de b se, ao subir na hierarquia de b, encontramos a. Formalmente, a é **chefe** de b se satisfaz a definição recursiva a seguir:

- \bullet a é chefe direto de b, ou
- a é chefe do chefe direto de b.

Recentemente, Caleb implementou uma nova regra para manter as reuniões mais eficientes e garantir que todos os níveis da hierarquia sejam devidamente representados. Essa regra funciona da seguinte forma. Inicialmente, m funcionários são convidados para uma reunião. Realizamos o seguinte procedimento enquanto possível:

• Processamos todo par de funcionáros a, b convidados para a reunião. Consideremos a lista p_1, \ldots, p_k de funcionários da empresa que são chefes simultaneamente de a e b. Pode ser provado que existe um funcionário dessa lista mais baixo na hierarquia, isto é, existe i tal que p_i é chefe de p_i para $j \neq i$. O funcionário p_i é, então, convidado para a reunião.

Note que, ao convidar um novo funcionário para a reunião, o procedimento acima terá de ser realizado com a nova lista de funcionários convidados, até que não haja mais funcionários convidados.

Os funcionários serão indexados de 1 até n e será informado o chefe direto de cada funcionário, com exceção do fundador Caleb, que terá índice 1. Dada a lista de funcionários inicialmente convidados, ajude Caleb e encontre todos os funcionários que participarão da reunião.

Entrada

A primeira linha de entrada contém dois inteiros $n, m \ (2 \le m \le n \le 10^5)$ — a quantidade de funcionários na empresa e a quantidade chamada para reunião, respectivamente.

A segunda linha de entrada contém n-1 inteiros p_2, p_3, \ldots, p_n $(1 \le p_i \le n) - p_i$ representando o chefe direto do funcionário i.

A última linha de entrada comtém m inteiros c_1, \ldots, c_m $(1 \le c_i \le n; c_i \ne c_j \text{ se } i \ne j)$ — os funcionários chamados para reunião.

Saída

Imprima uma linha contendo um inteiro k — a quantidade total de funcionários que terão que participar da reunião.

Imprima outra linha contendo k inteiros r_1, \ldots, r_k — os índices **ordenados de forma crescente** dos funcionários convidados para a reunião.

Exemplo

Entrada	Saída
5 2	3
1 2 2 4	2 3 4
3 4	
9 4	6
1 2 2 1 5 4 2 4	1 2 3 5 6 7
7 3 6 5	

Notas

A árvore abaixo é a árvore de hierarquias do caso de teste 1, com os funcionários em vermelho sendo os inicialmente chamados para reunião. Considerando o par 3, 4, são chefes simultaneamente deles os vértices 1 e 2. O mais baixo na hierarquia é 2, então este é chamado para a reunião. Realizando o procedimento com qualquer outro par nos da funcionários já convidados para a reunião, então paramos.

