# ARHITECTURA SISTEMELOR DE CALCUL - CURS 0x01

EVOLUȚIA SISTEMELOR DE CALCUL ȘI SISTEMUL BINAR DE CALCUL

Cristian Rusu

#### **CUPRINS**

scurt istoric al sistemelor de calcul

- sistemul binar
  - reprezentarea binară
  - reprezentarea în complement față de doi
  - funcții logice
- referințe bibliografice

# SCURT ISTORIC AL SISTEMELOR DE CALCUL

#### contribuţii majore ale:

- Blaise Pascal
- Gottfried Wilhelm von Leibniz
- George Boole
- Charles Babbage
- Ada Lovelace
- Konrad Zuse
- Alan Turing
- John von Neumann
- Claude Shannon
- după 1945 interestul în sisteme de calcul a crescut semnificativ iar progresul este dificil de atribuit doar unor indivizi

# **BLAISE PASCAL (1623 - 1662)**

- în 1642, când încă nu avea 19 ani, crează Pascaline
  - un calculator mecanic
  - capabil de adunări/scăderi (utilizat pentru calcul de taxe)
  - nu a fost o maşină practică
  - mai puţin de 50 au fost create
  - era utilizată pe post de "jucarie" pentru aristocrație
- limbajul Pascal e numit în onoarea lui





# GOTTFRIED WILHELM VON LEIBNIZ (1646 – 1716)

- toate contribuţile lui sunt imposibil de enumerat
- două contribuți majore:
  - studiază sistemul binar
  - extinde maşina lui Pascal, adăugând operațiile de înmulțire şi împărțire – tot o maşină mecanică creată în 1673





# **GEORGE BOOLE (1815 – 1864)**

- scrie "The Laws of Thought" (1854)
- introduce logica booleană și analizează operațiile de bază
  - negaţia
  - conjuncția
  - disjuncţia
  - disjuncţia exclusivă
- toate acestea stau la baza teoriei informației



## **CHARLES BABBAGE (1791 – 1871)**

- proiectează Maşina Differențială Nr. 2 (Difference Engine No. 2)
- doar teoretic, design-ul este realizat de abia în 1991
- totuși, este prima mașină de calcul (mecanică) programabilă
- prototipurile sale aveau deja peste 13 tone
- este considerat "tatăl calculatoarelor moderne"





# **ADA LOVELACE (1815 – 1852)**

- colaboratoare a lui Babbage
- scrie primul program, calculează numere Bernoulli
- nu existau limbaje de programare, dar ea a descris o serie de paşi care sa fie executaţi de o maşină
- este considerată primul "programator"

| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                      |                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                              |                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | Data. |      | Working Variables. |       |                         |     |        | Result Variables. |     |                                                                                           |                                 |                                                                      |                             |                                            |                                      |      |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-------|------|--------------------|-------|-------------------------|-----|--------|-------------------|-----|-------------------------------------------------------------------------------------------|---------------------------------|----------------------------------------------------------------------|-----------------------------|--------------------------------------------|--------------------------------------|------|
| $ \begin{vmatrix} -  v_1 - v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_1    v_1 -  v_$                                                                                                                                                                      | Nature of Operation. | acted                                                                                                                                                                                                                                                                                                                                                                            | receiving                                                                                    | change in the                                                                                                                                                                                                                                                                                            | Statement of Results.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 0 0 1 | 0002  | 0004 | 000                | 0     | 0                       | 0   | 0      | 0                 | 0   | 0                                                                                         | 0                               | 0                                                                    | B, in a decimal Offraction. | B <sub>2</sub> in a<br>decimal<br>fraction | B <sub>s</sub> in<br>decin<br>fracti | 0000 |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -+++                 | ${}^{1}V_{4} - {}^{1}V_{1}$ ${}^{1}V_{5} + {}^{1}V_{1}$ ${}^{2}V_{5} + {}^{2}V_{4}$ ${}^{1}V_{11} + {}^{1}V_{2}$ ${}^{0}V_{13} - {}^{2}V_{11}$                                                                                                                                                                                                                                   | 2V <sub>4</sub>                                                                              | $\begin{cases} V_4 = 2V_4 \\ 1V_1 = 1V_1 \\ 1V_5 = 2V_5 \\ 1V_1 = 1V_1 \\ \end{bmatrix} \\ \begin{cases} 2V_5 = 9V_5 \\ 2V_4 = 9V_4 \\ \end{bmatrix} \\ \begin{cases} 1V_{11} = 2V_{11} \\ 1V_2 = 1V_2 \\ \end{bmatrix} \\ \begin{cases} 2V_{11} = 9V_{11} \\ 9V_{12} = 1V_{13} \end{cases} \end{cases}$ | $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1     |       |      | 2 n - 1<br>0<br>   | 2 n+1 |                         |     |        |                   | *** | $   \begin{array}{r}     2n+1 \\     1 \\     2n-1 \\     \hline     2n+1   \end{array} $ |                                 | $-\frac{1}{2} \cdot \frac{2n-1}{2n+1} = A_0$                         |                             |                                            |                                      |      |
| $ \begin{vmatrix} +v_1+v_2 & v_2 & \begin{pmatrix} v_1-v_2 \\ v_1-v_2 \end{pmatrix} & 2+1-3 & 1 \\ +v_1+v_2 & v_3 & \begin{pmatrix} v_1-v_2 \\ v_1-v_2 \end{pmatrix} & 2-1 \\ 2-3 & & & & & & & & & & & & & \\ 2-3 & & & & & & & & & & & \\ 2-3 & & & & & & & & & & & \\ 2-3 & & & & & & & & & & & \\ 2-3 & & & & & & & & & & \\ 2-3 & & & & & & & & & & \\ 2-3 & & & & & & & & & & \\ 2-3 & & & & & & & & & & \\ 2-3 & & & & & & & & & & \\ 2-3 & & & & & & & & & \\ 2-3 & & & & & & & & & \\ 2-3 & & & & & & & & \\ 2-3 & & & & & & & & \\ 2-3 & & & & & & & \\ 2-3 & & & & & & & \\ 2-3 & & & & & & & \\ 2-3 & & & & & & \\ 2-3 & & & & & & \\ 2-3 & & & & & & \\ 2-3 & & & & & & \\ 2-3 & & & & & & \\ 2-3 & & & & & & \\ 2-3 & & & & & & \\ 2-3 & & & & & & \\ 2-3 & & & & & & \\ 2-3 & & & & & & \\ 2-3 & & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & & \\ 2-3 & & & & & & \\ 2-3 & & & & & & \\ 2-3 & & & & & & \\ 2-3 & & & & & & \\ 2-3 & & & & & & \\ 2-3 & & & & & & \\ 2-3 & & & & & & \\ 2-3 & & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & & \\ 2-3 & & & & & & \\ 2-3 & & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & & & & & \\ 2-3 & &$ | +<br>×               | 1V <sub>6</sub> + 1V <sub>7</sub><br>1V <sub>21</sub> × 3V <sub>11</sub><br>1V <sub>12</sub> + 1V <sub>11</sub>                                                                                                                                                                                                                                                                  | <sup>3</sup> V <sub>11</sub><br><sup>1</sup> V <sub>12</sub><br><sup>2</sup> V <sub>13</sub> | $\begin{cases} {}^{0}V_{7}^{7} = {}^{1}V_{7}^{7} \\ {}^{1}V_{6} = {}^{1}V_{6}^{6} \\ {}^{0}V_{11} = {}^{3}V_{11} \\ {}^{1}V_{21} = {}^{1}V_{21}^{21} \\ {}^{3}V_{11} = {}^{3}V_{11} \\ {}^{1}V_{12} = {}^{6}V_{12}^{2} \\ {}^{1}V_{12} = {}^{2}V_{13}^{2} \end{cases}$                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |       |      |                    |       | 2 n                     | 2   |        |                   |     | $\frac{2n}{2} = \Lambda_1$                                                                | $B_1, \frac{2\pi}{2} = B_1 A_1$ | $\left\{-\frac{1}{2}, \frac{2n-1}{2n+1} + B_1, \frac{2n}{2}\right\}$ | B <sub>1</sub>              |                                            |                                      |      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      | 1V <sub>6</sub> - 1V <sub>1</sub><br>1V <sub>1</sub> + 1V <sub>7</sub><br>2V <sub>6</sub> + 2V <sub>7</sub><br>1V <sub>8</sub> × 2V <sub>1</sub><br>1V <sub>6</sub> - 1V <sub>1</sub><br>1V <sub>1</sub> + 2V <sub>7</sub><br>2V <sub>6</sub> + 3V <sub>7</sub><br>1V <sub>9</sub> × 4V <sub>1</sub><br>1V <sub>22</sub> × 5V <sub>1</sub><br>2V <sub>12</sub> + 2V <sub>1</sub> | IV 6                                                                                         |                                                                                                                                                                                                                                                                                                          | $\begin{array}{c} = 2+1=3 \\ = \frac{2n-1}{3} \\ = \frac{2n-1}{3} \\ = \frac{2n-1}{3} \\ = 2n-2 \\ = 3+1=4 \\ = \frac{2n-2}{2} \\ = \frac{2n-2}{3} \\ = \frac{2n-2}{3} \\ = \frac{2n-2}{2} \\ = \frac{2n-2}{3} \\ $ | 1 1   |       |      |                    |       | 2 n - 1 2 n - 1 2 n - 1 | 4 4 | 3<br>0 | 2n-:              |     | $ \left\{ \frac{2n}{2} \cdot \frac{2n-1}{3} \cdot \frac{2n-2}{3} \right\} $ $ = A_3 $     | 1053                            | 10                                                                   |                             | out and                                    |                                      |      |



# **KONRAD ZUSE (1910 – 1995)**

- introduce o serie de calculatoare: Z1, Z2, Z3 si Z4
- primele prototipuri in 1940-1941
- foloseşte sistemul binar
- instrucțiunile sunt stocate pe o bandă
- introduce reprezentarea şi calculul în virgulă mobilă
- face aproape totul în izolare (1936-1945)





## **ALAN TURING (1912 – 1954)**

- celebru pentru publicul larg pentru contribuția lui în spargerea rapidă a mesajelor Enigma utilizând maşina "The Bombe"
  - practic, maşina făcea un brute-force search pentru a reduce numărul de posibilități în decriptarea mesajelor

#### introduce Maşina Turing

- un model teoretic pentru a implementa orice algoritm
- conceptul de Turing-complete
  - intuiția: un sistem care poate recunoaște și analiza seturi de reguli pentru manipularea datelor (o cantitate infinită, teoretic)

#### introduce Testul Turing

• The imitation game: "The original question, 'Can machines think!' I believe to be too meaningless to deserve discussion" A. Turing



# **JOHN VON NEUMANN (1903 – 1957)**

- considerat unul dintre cei mai buni matematicieni ai ultimului secol, aduce contribuții în numeroase domenii
- ajută la crearea primul calculator electronic ENIAC (Electronic Numerical Integrator And Computer), 1939-1944
- îmbunătățește ENIAC ajutând la crearea EDVAC (Electronic Discrete Variable Automatic Computer), sistemul este binar și are programe stocate
- introduce arhitectura von Neumann





# **CLAUDE SHANNON (1916 – 2001)**

considerat "părintele teoriei informației"

- trei contribuții exceptionale:
  - demonstrează faptul că probleme de logică Booleană pot fi rezolvate cu circuite electronice
  - teorema de eşantionare Shannon-Nyquist



- inventează teoria informației
  - cursul următor discutăm detaliat



#### **IDEILE MARI**

- de la mecanic la electric
- de la o maşină care face un singur lucru automat, la o maşină care este programabilă
- design modular
- teorie despre ce este posibil pe aceste maşini
- dorința de a face lucrurile optim, la limită și fără risipă

#### **POST SHANNON ...**

- după al doilea razboi mondial, cercetarea în domeniul calculatoare începe un ritm exponential
- sunt multe, mici invenții și discoperiri tehnologice pe parcurs
- nu avem cum să le acoperim pe toate
- actorii importanţi în domeniu au devenit grupuri profesionale (ex: IEEE, ACM, etc.) şi state (ex: State Unite, programe de cercetare DARPA, etc.)
- la baza acestui progres stau nişte concepte de matematică fundamentale, începem cu sistemul binar

- este baza sistemelor moderne de calcul
- orice număr (întreg sau, general, real) poate fi reprezentat printrun număr (potential infinit) de biţi
- bit = binary digit
- ne aflăm în sistemul de numărare cu baza B = 2
- avem disponibile doar două cifre: 0 și 1

un număr natural reprezentat în baza B = 2

| bit b <sub>i</sub> : | <br>0                     | 1                     | 1                     | 1                     | 1                     | 0                     | 0                     | 0                     | 1                     |  |
|----------------------|---------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|--|
| 2 <sup>i</sup> :     | <br><b>2</b> <sup>8</sup> | <b>2</b> <sup>7</sup> | <b>2</b> <sup>6</sup> | <b>2</b> <sup>5</sup> | <b>2</b> <sup>4</sup> | <b>2</b> <sup>3</sup> | <b>2</b> <sup>2</sup> | <b>2</b> <sup>1</sup> | <b>2</b> <sup>0</sup> |  |

$$\cdot x = \sum_{i=0}^{N-1} b_i 2^i$$

- N este numărul de biți pe care îl folosim în reprezentare
- în exemplul de mai sus:
  - care este numărul reprezentat?
  - pe câți biți este reprezentat acest număr?

• un număr natural reprezentat în baza B = 2

| bit b <sub>i</sub> : | <br>0                     | 1                     | 1                     | 1                     | 1                     | 0                     | 0                     | 0                     | 1                     |
|----------------------|---------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 2 <sup>i</sup> :     | <br><b>2</b> <sup>8</sup> | <b>2</b> <sup>7</sup> | <b>2</b> <sup>6</sup> | <b>2</b> <sup>5</sup> | <b>2</b> <sup>4</sup> | <b>2</b> <sup>3</sup> | <b>2</b> <sup>2</sup> | <b>2</b> <sup>1</sup> | <b>2</b> <sup>0</sup> |

$$\cdot x = \sum_{i=0}^{N-1} b_i 2^i$$

- N este numărul de biți pe care îl folosim în reprezentare
- în exemplul de mai sus:
  - $0 \times 2^8 + 1 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = 241$
  - mai sus avem N = 9, dar defapt avem nevoie de N = 8

- intuiția noastră este în baza B = 10
- este folositor să abstractizăm și să considerăm baza generală B
- în baza B avem:
  - cifre de la *0* la *B-1* (restul se numesc numere)

• reprezentarea este 
$$x = \sum_{i=0}^{N-1} b_i B^i$$

- bitul  $b_0$  se numește Least Significand Bit (LSB) iar bitul  $b_{N-1}$  se numește Most Significant Bit (MSB)
- cum reprezentăm un număr din baza 10 în baza B?
  - împărțiri repetate cu B și păstrăm restul

un exemplu explicit: (4215)<sub>10</sub> = (1000001110111)<sub>2</sub>

| 2 | 4215 |          |                     |
|---|------|----------|---------------------|
| 2 | 2107 | 1        | ← LSB               |
| 2 | 1053 | 1        |                     |
| 2 | 526  | 1        |                     |
| 2 | 263  | <u> </u> |                     |
| 2 | 131  | 1        |                     |
| 2 | 65   | 1        |                     |
| 2 | 32   | 1        |                     |
| 2 | 16   | 0        |                     |
| 2 | 2 8  | <u> </u> |                     |
|   | 2 4  | 0        |                     |
|   | 2 2  | 0        |                     |
|   | 2 1  | 0        |                     |
|   | 0    | 1        | <msb< td=""></msb<> |

- conversia între sisteme de numărare este foarte folositoare
- ce se întâmplă în baza B = 10?
  - ce se întâmplă dacă vrem să trecem din baza  $B_{old} = 10$  în noua bază  $B_{new} = 100$ ?
    - câte cifre sunt în baza  $B_{new} = 100$ ?

- conversia între sisteme de numărare este foarte folositoare
- ce se întâmplă în baza B = 10?
  - ce se întâmplă dacă vrem să trecem din baza  $B_{old} = 10$  în noua bază  $B_{new} = 100$ ?
    - câte cifre sunt în baza  $B_{new} = 100$ ? 100
    - care sunt ciferele în baza  $B_{new} = 100$ ?

- conversia între sisteme de numărare este foarte folositoare
- ce se întâmplă în baza B = 10?
  - ce se întâmplă dacă vrem să trecem din baza  $B_{old} = 10$  în noua bază  $B_{new} = 100$ ?
    - câte cifre sunt în baza  $B_{new} = 100$ ? 100
    - care sunt ciferele în baza B<sub>new</sub> = 100? de la cifra "0" la cifra "99"
    - primesc un număr în baza 10, cum îl transform în baza 100?
    - ex:  $(4837103)_{10} = (?????)_{100}$

- conversia între sisteme de numărare este foarte folositoare
- ce se întâmplă în baza B = 10?
  - ce se întâmplă dacă vrem să trecem din baza  $B_{old} = 10$  în noua bază  $B_{new} = 100$ ?
    - câte cifre sunt în baza  $B_{new} = 100$ ? 100
    - care sunt ciferele în baza B<sub>new</sub> = 100? de la cifra "0" la cifra "99"
    - primesc un număr în baza 10, cum îl transform în baza 100?
    - ex:  $(4837103)_{10} = (4" 83" 71" 3")_{100}$
    - cum am obţinut rezultatul? doar am grupal cifre consecutive, câte două – de ce două?

- conversia între sisteme de numărare este foarte folositoare
- ce se întâmplă în baza B = 10?
  - ce se întâmplă dacă vrem să trecem din baza  $B_{old} = 10$  în noua bază  $B_{new} = 100$ ?
    - câte cifre sunt în baza  $B_{new} = 100$ ? 100
    - care sunt ciferele în baza B<sub>new</sub> = 100? de la cifra "0" la cifra "99"
    - primesc un număr în baza 10, cum îl transform în baza 100?
    - ex:  $(4837103)_{10} = ("4" "83" "71" "3")_{100}$
    - cum am obţinut rezultatul? doar am grupal cifre consecutive, câte două – de ce două?

**Regula generală**: când trecem din baza *B* în baza *B*<sup>p</sup> trebuie doar sa grupăm noul număr în cate *p* cifre

cineva spune: "Am cheltuit 1.000.000 de euro. O cifră enormă!!!"

este corect?



- cineva spune: "Am cheltuit 1.000.000 de euro. O cifră enormă!!!"
- 1.000.000 e număr, nu cifră
- când poate să fie 1.000.000 cifră?
  - doar dacă cel care vorbeşte se refera la numere într-o baza numerică B ≥ 1.000.001
  - și atunci, ar trebui să spună "1.000.000"
- pentru ultima dată
  - în baza B = 10, cifrele sunt de la "0" la "9"
  - restul sunt numere
  - conceptul se generalizează pentru orice B

- un exemplu explicit: (1110111000001)<sub>2</sub>
  - în baza 4:
  - în baza 8:
  - în baza 16 (hexazecimal):

| <b>O</b> <sub>hex</sub> | =  | O <sub>dec</sub>  | II | O <sub>oct</sub>  | 0 | 0 | 0 | 0 |
|-------------------------|----|-------------------|----|-------------------|---|---|---|---|
| 1 <sub>hex</sub>        | II | 1 <sub>dec</sub>  | II | 1 <sub>oct</sub>  | 0 | 0 | 0 | 1 |
| 2 <sub>hex</sub>        | II | 2 <sub>dec</sub>  | II | 2 <sub>oct</sub>  | 0 | 0 | 1 | 0 |
| 3 <sub>hex</sub>        | II | 3 <sub>dec</sub>  | II | 3 <sub>oct</sub>  | 0 | 0 | 1 | 1 |
| <b>4</b> <sub>hex</sub> | II | 4 <sub>dec</sub>  | II | 4 <sub>oct</sub>  | 0 | 1 | 0 | 0 |
| <b>5</b> <sub>hex</sub> | II | 5 <sub>dec</sub>  | II | 5 <sub>oct</sub>  | 0 | 1 | 0 | 1 |
| 6 <sub>hex</sub>        | II | 6 <sub>dec</sub>  | II | 6 <sub>oct</sub>  | 0 | 1 | 1 | 0 |
| 7 <sub>hex</sub>        | II | 7 <sub>dec</sub>  | II | 7 <sub>oct</sub>  | 0 | 1 | 1 | 1 |
| 8 <sub>hex</sub>        | II | 8 <sub>dec</sub>  | II | 10 <sub>oct</sub> | 1 | 0 | 0 | 0 |
| 9 <sub>hex</sub>        | II | 9 <sub>dec</sub>  | II | 11 <sub>oct</sub> | 1 | 0 | 0 | 1 |
| A <sub>hex</sub>        | II | 10 <sub>dec</sub> | II | 12 <sub>oct</sub> | 1 | 0 | 1 | 0 |
| B <sub>hex</sub>        | II | 11 <sub>dec</sub> | II | 13 <sub>oct</sub> | 1 | 0 | 1 | 1 |
| C <sub>hex</sub>        | II | 12 <sub>dec</sub> | II | 14 <sub>oct</sub> | 1 | 1 | 0 | 0 |
| D <sub>hex</sub>        | II | 13 <sub>dec</sub> | II | 15 <sub>oct</sub> | 1 | 1 | 0 | 1 |
| <b>E</b> <sub>hex</sub> | II | 14 <sub>dec</sub> | II | 16 <sub>oct</sub> | 1 | 1 | 1 | 0 |
| <b>F</b> <sub>hex</sub> | =  | 15 <sub>dec</sub> | =  | 17 <sub>oct</sub> | 1 | 1 | 1 | 1 |

- un exemplu explicit: (1110111000001)<sub>2</sub>
  - în baza 4: ("1" "11" "01" "11" "00" "00" "01")<sub>4</sub> =  $(1313001)_4$
  - în baza 8:
  - în baza 16 (hexazecimal):

| <b>O</b> <sub>hex</sub> | =  | O <sub>dec</sub>  | II | O <sub>oct</sub>  | 0 | 0 | 0 | 0 |
|-------------------------|----|-------------------|----|-------------------|---|---|---|---|
| 1 <sub>hex</sub>        | II | 1 <sub>dec</sub>  | II | 1 <sub>oct</sub>  | 0 | 0 | 0 | 1 |
| 2 <sub>hex</sub>        | II | 2 <sub>dec</sub>  | II | 2 <sub>oct</sub>  | 0 | 0 | 1 | 0 |
| 3 <sub>hex</sub>        | II | 3 <sub>dec</sub>  | II | 3 <sub>oct</sub>  | 0 | 0 | 1 | 1 |
| <b>4</b> <sub>hex</sub> | II | 4 <sub>dec</sub>  | II | 4 <sub>oct</sub>  | 0 | 1 | 0 | 0 |
| <b>5</b> <sub>hex</sub> | II | 5 <sub>dec</sub>  | II | 5 <sub>oct</sub>  | 0 | 1 | 0 | 1 |
| 6 <sub>hex</sub>        | II | 6 <sub>dec</sub>  | II | 6 <sub>oct</sub>  | 0 | 1 | 1 | 0 |
| 7 <sub>hex</sub>        | II | 7 <sub>dec</sub>  | II | 7 <sub>oct</sub>  | 0 | 1 | 1 | 1 |
| 8 <sub>hex</sub>        | II | 8 <sub>dec</sub>  | II | 10 <sub>oct</sub> | 1 | 0 | 0 | 0 |
| 9 <sub>hex</sub>        | II | 9 <sub>dec</sub>  | II | 11 <sub>oct</sub> | 1 | 0 | 0 | 1 |
| A <sub>hex</sub>        | II | 10 <sub>dec</sub> | II | 12 <sub>oct</sub> | 1 | 0 | 1 | 0 |
| B <sub>hex</sub>        | II | 11 <sub>dec</sub> | II | 13 <sub>oct</sub> | 1 | 0 | 1 | 1 |
| C <sub>hex</sub>        | II | 12 <sub>dec</sub> | II | 14 <sub>oct</sub> | 1 | 1 | 0 | 0 |
| D <sub>hex</sub>        | II | 13 <sub>dec</sub> | II | 15 <sub>oct</sub> | 1 | 1 | 0 | 1 |
| <b>E</b> <sub>hex</sub> | II | 14 <sub>dec</sub> | II | 16 <sub>oct</sub> | 1 | 1 | 1 | 0 |
| <b>F</b> <sub>hex</sub> | =  | 15 <sub>dec</sub> | =  | 17 <sub>oct</sub> | 1 | 1 | 1 | 1 |

- un exemplu explicit: (1110111000001)<sub>2</sub>
  - în baza 4: ("1" "11" "01" "11" "00" "00" "01")<sub>4</sub> =  $(1313001)_4$
  - în baza 8: ("1" "110" "111" "000" "001")<sub>8</sub> =  $(16701)_8$
  - în baza 16 (hexazecimal):

| <b>O</b> <sub>hex</sub> | II | 0 <sub>dec</sub>  | H  | O <sub>oct</sub>  | 0 | 0 | 0 | 0 |
|-------------------------|----|-------------------|----|-------------------|---|---|---|---|
| 1 <sub>hex</sub>        | II | 1 <sub>dec</sub>  | Ш  | 1 <sub>oct</sub>  | 0 | 0 | 0 | 1 |
| 2 <sub>hex</sub>        | II | 2 <sub>dec</sub>  | II | 2 <sub>oct</sub>  | 0 | 0 | 1 | 0 |
| 3 <sub>hex</sub>        | II | 3 <sub>dec</sub>  | II | 3 <sub>oct</sub>  | 0 | 0 | 1 | 1 |
| <b>4</b> <sub>hex</sub> | II | 4 <sub>dec</sub>  | II | 4 <sub>oct</sub>  | 0 | 1 | 0 | 0 |
| 5 <sub>hex</sub>        | II | 5 <sub>dec</sub>  | II | 5 <sub>oct</sub>  | 0 | 1 | 0 | 1 |
| 6 <sub>hex</sub>        | II | 6 <sub>dec</sub>  | II | 6 <sub>oct</sub>  | 0 | 1 | 1 | 0 |
| 7 <sub>hex</sub>        | II | 7 <sub>dec</sub>  | II | 7 <sub>oct</sub>  | 0 | 1 | 1 | 1 |
| 8 <sub>hex</sub>        | II | 8 <sub>dec</sub>  | II | 10 <sub>oct</sub> | 1 | 0 | 0 | 0 |
| 9 <sub>hex</sub>        | II | 9 <sub>dec</sub>  | II | 11 <sub>oct</sub> | 1 | 0 | 0 | 1 |
| <b>A</b> <sub>hex</sub> | II | 10 <sub>dec</sub> | II | 12 <sub>oct</sub> | 1 | 0 | 1 | 0 |
| <b>B</b> <sub>hex</sub> | II | 11 <sub>dec</sub> | II | 13 <sub>oct</sub> | 1 | 0 | 1 | 1 |
| C <sub>hex</sub>        | II | 12 <sub>dec</sub> | II | 14 <sub>oct</sub> | 1 | 1 | 0 | 0 |
| <b>D</b> <sub>hex</sub> | II | 13 <sub>dec</sub> | II | 15 <sub>oct</sub> | 1 | 1 | 0 | 1 |
| <b>E</b> <sub>hex</sub> | II | 14 <sub>dec</sub> | II | 16 <sub>oct</sub> | 1 | 1 | 1 | 0 |
| <b>F</b> <sub>hex</sub> | =  | 15 <sub>dec</sub> | =  | 17 <sub>oct</sub> | 1 | 1 | 1 | 1 |

- un exemplu explicit: (1110111000001)<sub>2</sub>
  - în baza 4: ("1" "11" "01" "11" "00" "00" "01")<sub>4</sub> =  $(1313001)_4$
  - în baza 8: ("1" "110" "111" "000" "001")<sub>8</sub> =  $(16701)_8$
  - în baza 16 (hexazecimal): ("1" "1101" "1100" "0001")<sub>16</sub> = (1DC1)<sub>16</sub>

| <b>O</b> <sub>hex</sub> | II | 0 <sub>dec</sub>  | II | O <sub>oct</sub>  | 0 | 0 | 0 | 0 |
|-------------------------|----|-------------------|----|-------------------|---|---|---|---|
| 1 <sub>hex</sub>        | II | 1 <sub>dec</sub>  | II | 1 <sub>oct</sub>  | 0 | 0 | 0 | 1 |
| 2 <sub>hex</sub>        | II | 2 <sub>dec</sub>  | II | 2 <sub>oct</sub>  | 0 | 0 | 1 | 0 |
| 3 <sub>hex</sub>        | II | 3 <sub>dec</sub>  | II | 3 <sub>oct</sub>  | 0 | 0 | 1 | 1 |
| <b>4</b> <sub>hex</sub> | =  | 4 <sub>dec</sub>  | H  | 4 <sub>oct</sub>  | 0 | 1 | 0 | 0 |
| 5 <sub>hex</sub>        | =  | 5 <sub>dec</sub>  | II | 5 <sub>oct</sub>  | 0 | 1 | 0 | 1 |
| 6 <sub>hex</sub>        | =  | 6 <sub>dec</sub>  | II | 6 <sub>oct</sub>  | 0 | 1 | 1 | 0 |
| 7 <sub>hex</sub>        | =  | 7 <sub>dec</sub>  | II | 7 <sub>oct</sub>  | 0 | 1 | 1 | 1 |
| 8 <sub>hex</sub>        | II | 8 <sub>dec</sub>  | II | 10 <sub>oct</sub> | 1 | 0 | 0 | 0 |
| 9 <sub>hex</sub>        | II | 9 <sub>dec</sub>  | II | 11 <sub>oct</sub> | 1 | 0 | 0 | 1 |
| <b>A</b> hex            | II | 10 <sub>dec</sub> | II | 12 <sub>oct</sub> | 1 | 0 | 1 | 0 |
| <b>B</b> <sub>hex</sub> | II | 11 <sub>dec</sub> | II | 13 <sub>oct</sub> | 1 | 0 | 1 | 1 |
| C <sub>hex</sub>        | II | 12 <sub>dec</sub> | II | 14 <sub>oct</sub> | 1 | 1 | 0 | 0 |
| <b>D</b> <sub>hex</sub> | II | 13 <sub>dec</sub> | II | 15 <sub>oct</sub> | 1 | 1 | 0 | 1 |
| <b>E</b> <sub>hex</sub> | Ш  | 14 <sub>dec</sub> | II | 16 <sub>oct</sub> | 1 | 1 | 1 | 0 |
| <b>F</b> <sub>hex</sub> | =  | 15 <sub>dec</sub> | =  | 17 <sub>oct</sub> | 1 | 1 | 1 | 1 |

intr-un slide anterior am spus despre "99" ca e cifra in baza 100, pentru ca nu am litere pana la 99

pentru "99" putem continua pe lista ASCII extinsa (pornind de la F care este "15") pana ajungem la "99": š

- numere întregi negative
  - până acum am văzut doar numere naturale
  - ce ați face voi că să reprezentați numere negative?
  - care este prima (cea mai simplă) idee?

- numere întregi negative
  - până acum am văzut doar numere naturale
  - ce aţi face voi că să reprezentaţi numere negative?
  - care este prima (cea mai simplă) idee?
    - pai trebuie să salvăm semnul numărului
    - cât spațiu ocupă asta? 1 bit
    - deci 1 bit pentru semn, restul pentru valoarea absolută
      - 1 101 ar fi -5
      - 0 101 ar fi 5
    - cum arată "zero" reprezentat asa?

- numere întregi negative
  - până acum am văzut doar numere naturale
  - ce aţi face voi că să reprezentaţi numere negative?
  - care este prima (cea mai simplă) idee?
    - pai trebuie să salvăm semnul numărului
    - cât spațiu ocupă asta? 1 bit
    - deci 1 bit pentru semn, restul pentru valoarea absolută
      - 1 101 ar fi -5
      - 0 101 ar fi 5
    - cum arată "zero" reprezentat așa?

- numere întregi negative
  - până acum am văzut doar numere naturale
  - ce aţi face voi că să reprezentaţi numere negative?
  - care este prima (cea mai simplă) idee?
    - pai trebuie să salvăm semnul numărului
    - cât spațiu ocupă asta? 1 bit
    - deci 1 bit pentru semn, restul pentru valoarea absolută
      - 1 101 ar fi -5
      - 0 101 ar fi 5
    - cum arată "zero" reprezentat așa?
      - 1 000 ar fi -0
      - 0 000 ar fi 0
      - este redundant
    - și mai este o problemă: avem nevoie de circuite speciale pentru a face operații cu aceste numere (trebuie verificat primul bit și in funcție de asta trebuie decise operațiile)

numere întregi negative

ce se întâmplă? MSB este negativ

• 
$$x = -b_{N-1}2^{N-1} + \sum_{i=0}^{N-2} b_i 2^i$$

- în exemplul de mai sus:
  - care este numărul reprezentat?
  - pe cati biţi este reprezentat acest număr?

numere întregi negative

ce se întâmplă? MSB este negativ

• 
$$x = -b_{N-1}2^{N-1} + \sum_{i=0}^{N-2} b_i 2^i$$

în exemplul de mai sus:

• 
$$-1 \times 2^7 + 1 \times 2^6 + 1 \times 2^5 + 1 \times 2^4 + 0 \times 2^3 + 0 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 = -15$$

8 biţi

· acesta este sistemul de reprezentare în complement față de doi

numere întregi negative

| bit b <sub>i</sub> : | 1                      | 1                     | 1                     | 1                     | 0                     | 0                     | 0                     | 1                     |
|----------------------|------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| 2 <sup>i</sup> :     | <b>-2</b> <sup>7</sup> | <b>2</b> <sup>6</sup> | <b>2</b> <sup>5</sup> | <b>2</b> <sup>4</sup> | <b>2</b> <sup>3</sup> | <b>2</b> <sup>2</sup> | <b>2</b> <sup>1</sup> | <b>2</b> <sup>0</sup> |

• 
$$x = -b_{N-1}2^{N-1} + \sum_{i=0}^{N-2} b_i 2^i$$

- reprezentarea se numeşte în complement față de doi
  - numerele în intervalul -2<sup>N-1</sup> pana la 2<sup>N-1</sup> 1
  - se "pierde" un bit pentru semn, e optim
  - MSB este semnul, restul biţilor sunt valoarea
  - ca să putem folosi numere înscrise în operații aritmetice avem nevoie să facem niște transformări

vedeți tabelul din dreapta, numerele pozitive sunt la fel ca înainte (dar pe 3 biți doar), cele negative arată la fel doar că primul bit este "1" (jumătatea de sus a tabelului are MSB "0", jumătatea de jos este identică, dar cu MSB "1")

ce se întâmplă dacă adunăm 1 la 7?

| complement<br>față de doi | zecimal |
|---------------------------|---------|
| 0111                      | 7       |
| 0110                      | 6       |
| 0101                      | 5       |
| 0100                      | 4       |
| 0011                      | 3       |
| 0010                      | 2       |
| 0001                      | 1       |
| 0000                      | 0       |
| 1111                      | -1      |
| 1110                      | -2      |
| 1101                      | -3      |
| 1100                      | -4      |
| 1011                      | -5      |
| 1010                      | -6      |
| 1001                      | -7      |
| 1000                      | -8      |
|                           |         |

numere întregi negative



• 
$$x = -b_{N-1}2^{N-1} + \sum_{i=0}^{N-2} b_i 2^i$$

#### reprezentarea se numeşte în complement față de doi

- numerele în intervalul -2<sup>N-1</sup> pana la 2<sup>N-1</sup> 1
- se "pierde" un bit pentru semn, e optim
- MSB este semnul, restul biţilor sunt valoarea
- ca să putem folosi numere înscrise în operații aritmetice avem nevoie să facem niște transformări



| complement<br>față de doi | zecimal |
|---------------------------|---------|
| 0111                      | 7       |
| 0110                      | 6       |
| 0101                      | 5       |
| 0100                      | 4       |
| 0011                      | 3       |
| 0010                      | 2       |
| 0001                      | 1       |
| 0000                      | 0       |
| 1111                      | -1      |
| 1110                      | -2      |
| 1101                      | -3      |
| 1100                      | -4      |
| 1011                      | -5      |
| 1010                      | -6      |
| 1001                      | -7      |
| 1000                      | -8      |
| 1 00002 011               | 0 ndf   |

numere întregi negative

• 
$$x = -b_{N-1}2^{N-1} + \sum_{i=0}^{N-2} b_i 2^i$$

- cum reprezentăm un număr negativ zecimal x? (ex: x = -30)
  - scriem |x| în binar
  - setăm MSB și inversăm restul biţilor

|   | 0 | 0 | 1 | 1 | 1 | 1 | 0 |
|---|---|---|---|---|---|---|---|
| 1 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
| 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |

- adunăm unu
- deci  $(-30)_{10} = (11100010)_2$

numere întregi negative



• 
$$x = -b_{N-1}2^{N-1} + \sum_{i=0}^{N-2} b_i 2^i$$

cum reprezentăm un număr binar x? (ex: x = 1011 1010)

- scriem x în binar
   1
   0
   1
   1
   0
   1
   0
- MSB = 1, deci x este negativ (dacă MSB = 0 atunci x e pozitiv)

0

- inversăm biţii
  0
  1
  0
  0
  1
- adăugăm unu
   0
   1
   0
   0

• deci  $(10111010)_2 = (-70)_{10}$  (negativ, 64 + 4 + 2 = 70)

• operații aritmetice, numere naturale exemplu



- de ce folosim acest sistem în complement față de 2?
- pentru că algoritmul de adunare este la fel ca pentru numere naturale, nu trebuie să schimbăm nimic
- circuitele anterioare care realizează adunarea naturală pot fi folosite și acum

- operații aritmetice, numere întregi exemple
  - numărul negativ este mai mic (magnitudine) decât cel pozitiv



cum am obţinut reprezentarea pentru -39?

|   | 0 | 1 | 0 | 0 | 1 | 1 | 1 | 39                 |
|---|---|---|---|---|---|---|---|--------------------|
| 1 | 1 | 0 | 1 | 1 | 0 | 0 | 0 | inversarea de biţi |
| 1 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | plus unu           |

- operații aritmetice, numere întregi exemple
  - numărul negativ este mai mare (magnitudine) decât cel pozitiv



de unde am obţinut -18?

| 1 | 1 | 1 | 0 | 1 | 1 | 1 | 0 | rezultatul, primul bit e 1 |
|---|---|---|---|---|---|---|---|----------------------------|
| 0 | 0 | 0 | 1 | 0 | 0 | 0 | 1 | inversarea de biţi         |
| 0 | 0 | 0 | 1 | 0 | 0 | 1 | 0 | plus unu                   |

- operații aritmetice, numere întregi exemple
  - ambele numere sunt negative



de unde am obţinut -57?

| 1 | 1 | 0 | 0 | 0 | 1 | 1 | 1 | rezultatul, primul bit e 1 |
|---|---|---|---|---|---|---|---|----------------------------|
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | inversarea de biti         |
| 0 | 0 | 1 | 1 | 1 | 0 | 0 | 1 | plus unu                   |

- operații aritmetice, numere întregi exemple
  - overflow la limită



de unde am obţinut -128?

| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | rezultatul, primul bit e 1 |
|---|---|---|---|---|---|---|---|----------------------------|
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | inversarea de biți         |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | plus unu: 128              |

-128 are aceeși reprezentare

- operații aritmetice, numere întregi exemple
  - ambele numere pozitive, mari



de unde am obţinut -62?

| 1 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | rezultatul, primul bit e 1 |
|---|---|---|---|---|---|---|---|----------------------------|
| 0 | 0 | 1 | 1 | 1 | 1 | 0 | 1 | inversarea de biţi         |
| 0 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | plus unu                   |

119 + 75 = 194 (nu încap pe 7 biţi)

- operații aritmetice, numere întregi exemple
  - ambele numere pozitive, mari



- intuiția, de unde am obținut -62?
  - 119 + 75 = 194 (nu încap pe 7 biţi)
  - maximum e 127, deci avem 194 127 = 67 "extra"
  - overflow începe după 127, după 127 este -128 (folosim un extra)
  - deci 66 extra rămași pornesc de la -128
  - deci avem -128 + 66 = -62

- operații aritmetice, numere întregi exemple
  - overflow la limită



- intuiția, de unde am obținut -128?
  - 127 + 1 = 128 (nu încap pe 7 biţi)
  - maximum e 127, deci avem 128 127 = 1 "extra"
  - overflow începe dupa 127, după 127 este -128 (folosim un extra)
  - deci 0 extra ramaşi pornesc de la -128
  - deci avem -128 + 0 = -128

- operații aritmetice, numere întregi exemple
  - ambele numere negative, mari



- intuiția, de unde am obținut 62?
  - -119 75 = -194 (nu încap pe 7 biţi)
  - minimul e -128, deci avem +194 128 = 66 "extra"
  - underflow începe înainte de -128, înainte de -128 este 127 (folosim un extra)
  - deci 65 extra rămași pornesc de la 127
  - deci avem 127 65 = 62

- extinderea numărului de biți pentru reprezentare
  - să presupunem că avem numărul 01 11 11 reprezentat pe 6 biți
  - ni se spune că numărul este natural
  - ni se spune că putem folosi încă 2 biți pentru reprezentare
    - noua reprezentare este:

- extinderea numărului de biți pentru reprezentare
  - să presupunem că avem numărul 01 11 11 reprezentat pe 6 biți
  - ni se spune că numărul este natural
  - ni se spune că putem folosi încă 2 biți pentru reprezentare
    - noua reprezentare este: 0001 1111
  - ce se întâmplă acum dacă avem numărul 10 00 11 reprezentat pe
     6 biți (dar știm că suntem în complement față de doi)
  - ni se spune din nou că putem folosi încă 2 biți pentru reprezentare
    - noua reprezentare este: 0010 0011 ?

- extinderea numărului de biţi pentru reprezentare
  - să presupunem că avem numărul 01 11 11 reprezentat pe 6 biți
  - ni se spune că numărul este natural
  - ni se spune că putem folosi încă 2 biți pentru reprezentare
    - noua reprezentare este: 0001 1111
  - ce se întâmplă acum dacă avem numărul 10 00 11 reprezentat pe
     6 biți (dar știm că suntem în complement față de doi)
  - ni se spune din nou că putem folosi încă 2 biți pentru reprezentare
    - noua reprezentare este: 0010 0011 ?
    - numărul acesta nici măcar nu este negativ (MSB este 0)
    - deci nu putem extinde cu "zero"
    - cu ce extindem?

- extinderea numărului de biți pentru reprezentare
  - să presupunem că avem numărul 01 11 11 reprezentat pe 6 biți
  - ni se spune că numărul este natural
  - ni se spune că putem folosi încă 2 biți pentru reprezentare
    - noua reprezentare este: 0001 1111
  - ce se întâmplă acum dacă avem numărul 10 00 11 reprezentat pe
     6 biți (dar știm că suntem în complement față de doi)
  - ni se spune din nou că putem folosi încă 2 biţi pentru reprezentare
    - noua reprezentare este: 0010 0011 ?
    - numărul acesta nici măcar nu este negativ (MSB este 0)
    - deci nu putem extinde cu "zero"
    - cu ce extindem? cu "unu"
    - noua reprezentare este: 1110 0011

- înca un exemplu:
- extinderea numărului de biţi pentru reprezentare
  - să presupunem că avem numărul 10111 reprezentat pe 5 biți
  - trecem în baza B = 8
    - numărul în baza B = 8 este 10 111 = 27
    - dar, dacă vedem (27)<sub>8</sub> atunci am putea crede ca în binar avem 010111
    - dar 010111 este pe 6 biţi şi este pozitiv
    - **ideea:** când trecem din binar în baza B = 8 (și știm că aici implicit avem 6 biți de reprezentare) atunci extindem reprezentarea
    - deci, pornim cu 110 111
    - iar în baza B = 8 atunci avem 110 111 = 67
    - problema este generată de faptul ca 3 nu îl împarte exact pe 5
    - ambele variante sunt corecte: (27)<sub>8</sub> dar știi că sunt 5 biți sau (67)<sub>8</sub>
       și crezi că sunt 6 biți (implicit când vezi două cifre în baza B = 8 crezi că sunt 6 biți)

- logica binară (0 = False, 1 = True)
- operații logice:
  - NOT (negația)
  - AND (conjuncția)
  - OR (disjuncția)
  - XOR (disjuncția exclusivă)

| X | NOT X |
|---|-------|
| 0 | 1     |
| 1 | 0     |

| X | Y | X AND Y |
|---|---|---------|
| 0 | 0 | 0       |
| 0 | 1 | 0       |
| 1 | 0 | 0       |
| 1 | 1 | 1       |

| X | Y | X OR Y |
|---|---|--------|
| 0 | 0 | 0      |
| 0 | 1 | 1      |
| 1 | 0 | 1      |
| 1 | 1 | 1      |

| Х | Υ | X XOR Y |
|---|---|---------|
| 0 | 0 | 0       |
| 0 | 1 | 1       |
| 1 | 0 | 1       |
| 1 | 1 | 0       |

 pentru numere reprezentate binar operația logică se face pentru fiecare bit în parte (pentru numere pe N biți, sunt N operații)

logica binară, exemplu



- aparent, valorile zecimale nu au interpretare clară
- totuşi, putem spune ceva: OR încurajează apariţia de biţi "1",
   AND o descurajează, iar la XOR ... depinde
- totuşi, vom vedea că logica binară (în combinații interesante) ne poate spune multe şi despre numere zecimale

### CE AM FĂCUT ASTĂZI

- am discutat despre istoria sistemelor de calcul
- am acoperit elementele de bază ale sistemului binar
  - reprezentarea binară (numere naturale)
  - calcule cu baze B diferite
  - reprezentarea complement față de doi (numere întregi)
  - operații binare elementare
- la seminar, vom vedea cum facem operații în sistemul binar și cum folosim complementul față de doi

#### **DATA VIITOARE ...**

- introducere în teoria informației
- cum măsurăm cantitatea de informație
- entropia lui Shannon
- continuăm să studiem sistemul binar
- ... mai târziu: înmulțirea și împărțirea
- ... și mai târziu: floating point

## **LECTURĂ SUPLIMENTARĂ**

- PH book
  - 2.4 Signed and Unsigned Numbers
  - 2.17 Real Stuff: x86 Instructions
  - 3.2 Addition and Subtraction
- Thomas Finley course notes, <u>https://www.cs.cornell.edu/~tomf/notes/cps104/twoscomp.html</u>
- maşina Turing şi conceptul de Turing-complete:
  - Turing Machines Explained Computerphile, <a href="https://youtube.com/watch?v=dNRDvLACg5Q">https://youtube.com/watch?v=dNRDvLACg5Q</a>
  - Turing Complete Computerphile, <a href="https://www.youtube.com/watch?v=RPQD7-AOjMI">https://www.youtube.com/watch?v=RPQD7-AOjMI</a>

# LECTURĂ SUPLIMENTARĂ (NU INTRA IN EXAMEN)

- dacă sunteți interesați de istoria sistemelor de calcul vă sugerez următoarele prezentări:
  - Computer Pioneers: Pioneer Computers Part 1 (1935 1945), <a href="https://www.youtube.com/watch?v=qundvme1Tik">https://www.youtube.com/watch?v=qundvme1Tik</a>
  - Computer Pioneers: Pioneer Computers Part 2 (1946 1950), <a href="https://www.youtube.com/watch?v=wsirYCAocZk">https://www.youtube.com/watch?v=wsirYCAocZk</a>
  - BBC History of Computers, <u>https://www.youtube.com/playlist?list=PL1331A4548513EA81</u>
  - <a href="https://www.gresham.ac.uk/lectures-and-events/a-very-brief-history-of-computing-1948-2015">https://www.gresham.ac.uk/lectures-and-events/a-very-brief-history-of-computing-1948-2015</a>
  - The Grand Narrative of the History of Computing, <u>https://www.youtube.com/watch?v=njwQgz63rls</u>