Wärme- und Stoffübertragung I Einstrahlzahlen

Prof. Dr.-Ing. Reinhold Kneer Dr.-Ing. Dr. rer. pol. Wilko Rohlfs

Lernziele

- Prinzip Einstrahlzahlen / Sichtfaktoren
 - Verständnis von abgestrahlter zu ankommender Strahlung

- Diffuse Strahlung im 3-D Raum
 - Verständnis über die von einer Fläche ausgehende Strahlungsverteilung mit Hilfe einer umschließenden Halbkugel

- Strahlungsaustausch zweier Flächen
 - Fähigkeit den Sichtfaktor zwischen zwei im rechten Winkel stehenden Flächen zu bestimmen

Prinzip der Einstrahlzahlen

Frage:

Welcher Anteil der von Körper 1 ausgehenden diffusen Strahlung trifft auf Körper 2?

Prinzip der Einstrahlzahlen

Für den 2-dimensionalen Fall

- 1) Definition des lokalen Anteils an der Gesamtstrahlung: β/π
- 2) Integration über die Oberfläche des Körpers 1

Abhängigkeiten der Einstrahlzahlen

Nächster Schritt: Allgemeingültige Definition für den 3-D Fall

Ausgesendete Strahlung einer Fläche im dreidimensionalen Raum

Frage:

Welcher Anteil der von **dA** ausgehenden Strahlung geht durch das Flächenelement **da** auf der Halbkugel?

Strahlung von Fläche dA und da

$$dx = r \cdot \sin(\varphi) \cdot d\Psi$$
$$dy = r \cdot d \varphi$$

Raumwinkel

$$d\Omega(\varphi, \Psi) = \frac{r \cdot sin(\varphi) \cdot d\Psi \cdot r \cdot d\varphi}{r^2}$$

Strahlung von dA zu da

$$\mathrm{d}\dot{Q}(\varphi, \Psi)_{\mathrm{d}A \to \mathrm{d}a} = \overset{\mathrm{in}}{\widetilde{L}} \cdot \mathrm{d}\Omega \cdot \overset{\mathrm{in}}{\mathrm{d}A \cdot cos(\varphi)}$$

 $\int_{\rm HK} \frac{{\rm d}\dot{Q}}{dA} = \int \mathcal{L} \cos(\varphi) \cdot {\rm d}\Omega$

Ausgesendete Strahlung einer Fläche im dreidimensionalen Raum

Strahlung von Fläche dA und da

$$dx = r \cdot \sin(\varphi) \cdot d\Psi$$
$$dy = r \cdot d \varphi$$

Raumwinkel

$$d\Omega(\varphi, \Psi) = \frac{r \cdot sin(\varphi) \cdot d\Psi \cdot r \cdot d\varphi}{r^2}$$

Strahlung von dA nach da

$$\mathrm{d}\dot{Q}(\varphi,\Psi)_{\mathrm{d}A\to\mathrm{d}a} = \overset{\mathrm{in}}{\widetilde{L}} \cdot \mathrm{d}\Omega \cdot \overset{\mathrm{in}}{\mathrm{d}A \cdot cos(\varphi)}$$

$$\equiv \dot{q}_{HK}^{"} = L \int_{\Psi=0}^{2\pi} \int_{\varphi=0}^{\pi/2} \sin(\varphi)\cos(\varphi) d\varphi d\Psi$$

Ausgesendete Strahlung einer Fläche im dreidimensionalen Raum

Strahlung von Fläche dA und da

$$\equiv \dot{q}_{HK}^{"} = L \int_{\Psi=0}^{2\pi} \int_{\varphi=0}^{\pi/2} \sin(\varphi) \cos(\varphi) d\varphi d\Psi$$

$$\int_{\varphi=0}^{\pi/2} \sin(\varphi) \cos(\varphi) d\varphi = \frac{1}{2} \cdot \sin^2(\varphi) \Big|_{0}^{\frac{\pi}{2}} = \frac{1}{2}$$

$$\int_{\Psi=0}^{2\pi} \frac{1}{2} d\Psi = \frac{1}{2} \Psi \Big|_{0}^{2\pi} = \pi$$

$$\dot{q}_{HK}^{\prime\prime} = \pi \cdot L$$

diffuse Strahler

$$L = \frac{\dot{q}''}{\pi}$$

Strahlungsaustausch zwischen zwei Flächen

Strahlung von Fläche dA und da

$$d\dot{Q}_{1\to 2} = L_1 \cos \varphi_1 \, \mathrm{d}\Omega \, dA_1$$

$$\mathrm{d}\Omega = \frac{dA_2 \cos \varphi_2}{r^2}$$

$$L_1 = \frac{\dot{q}_1''}{\pi}$$
 diffus

$$\dot{Q}_{1\to 2} = \frac{\dot{q}_1''}{\pi} \int \int \frac{\cos \varphi_1 \cos \varphi_2}{r^2} dA_1 dA_2$$

$$\dot{Q}_{2\to 1} = \frac{\dot{q}_2''}{\pi} \int \int \frac{\cos \varphi_2 \, \cos \varphi_1}{r^2} \, dA_2 \, dA_1$$

Geometrische Komponente identisch

Strahlungsaustausch zwischen zwei Flächen

Strahlung von Fläche 1 auf 2

$$\dot{Q}_{1\to 2} = \frac{\dot{q}_1''}{\pi} \int \int \frac{\cos \varphi_1 \, \cos \varphi_2}{r^2} \, dA_1 \, dA_2$$

Definition Einstrahlzahl / Sichtfaktor:

$$\phi_{12} = \frac{\begin{pmatrix} \text{von 1 in Richtung 2} \\ \text{gesandte Strahlung} \end{pmatrix}}{\begin{pmatrix} \text{insgesamt von 1} \\ \text{ausgesandte Strahlung} \end{pmatrix}} = \frac{\dot{Q}_{1 \to 2}}{\dot{q}_{1}^{"} A_{1}}$$

$$\phi_{12} = \frac{1}{A_1} \int \int \frac{\cos \varphi_1 \, \cos \varphi_2}{\pi r^2} \, dA_1 \, dA_2$$

Reziprozitätsbeziehung

Strahlung von Fläche 1 auf 2

$$\dot{Q}_{1\to 2} = \frac{\dot{q}_1''}{\pi} \int \int \frac{\cos \varphi_1 \, \cos \varphi_2}{r^2} \, dA_1 \, dA_2$$

$$\dot{Q}_{2\to 1} = \frac{\dot{q}_2''}{\pi} \int \int \frac{\cos \varphi_2 \, \cos \varphi_1}{r^2} \, dA_2 \, dA_1$$

Geometrische Komponente identisch

$$\frac{\dot{Q}_{1\to 2}}{\dot{Q}_{2\to 1}} = \frac{\dot{q}_{1}^{"}}{\dot{q}_{2}^{"}}$$

$$\phi_{12}A_1 = \frac{\dot{Q}_{1 \to 2}}{\dot{q}_{1}^{"}} = \frac{\dot{Q}_{2 \to 1}}{\dot{q}_{2}^{"}} = \phi_{21}A_2$$

Reziprozitätsbeziehung: $\phi_{12}A_1 = \phi_{21}A_2$

Einstrahlzahlen rechtwinkliger Flächen (Formelsammlung)

Einstrahlzahlen gegenüberliegende Flächen (Formelsammlung)

Verständnisfragen

Welche Größen setzt eine Einstrahlzahl ins Verhältnis?

Gilt die gezeigte Berechnung des Strahlungsaustausch durch Verwendung von Sichtfaktoren, wenn die Körper richtungsabhängig strahlen auch?

Wovon sind Einstrahlzahlen im Allgemeinen abhängig?

