

自动控制理论

第四章

控制系统的频率特性

前三章的简单回顾:

- (1) 这门课是研究什么的? 重点研究机电工程的负反馈闭环控制系统。
- (2) 用什么工具来研究?

拉普拉斯变换和反变换,时间函数↔象函数。

- 常用变换表:包含了最基本的工程问题及现象;
- 描述系统的新方法: 传递函数和方块图;
- 求解微分方程。
- (3) 研究系统的哪些东西?
 - 瞬态响应
 - 系统需要花多长时间才能达到稳定?
 - 系统重新达到稳定的过程中是否会振荡?
 - 频率响应
 - 系统的幅值比和相位差与输入频率的关系(幅频特性和相频特性);
 - 幅频特性和相频特性的描述: 乃氏图、伯德图;

$$X_{o}(s) = X_{i}(s) \cdot \frac{b_{0}s^{m} + b_{1}s^{m-1} + \dots + b_{m-1}s + b_{m}}{s^{n} + a_{1}s^{n-1} + \dots + a_{n-1}s + a_{n}}$$
因式
分解
$$X_{o}(s) = X_{i}(s) \cdot \frac{b_{0}s^{m} + b_{1}s^{m-1} + \dots + b_{m-1}s + b_{m}}{s^{r}(s + p_{1})(s + p_{2}) \dots (s^{2} + c_{1}s + d_{1})(s^{2} + c_{2}s + d_{2}) \dots}$$

$$\frac{\partial}{\partial x}$$
展开
$$\frac{\partial}{\partial x}$$

$$\frac{\partial x}{\partial x}$$

$$\frac{\partial x}{\partial x}$$

$$e^{-p_{1}t} \cdot \Delta \Delta$$

$$\Delta \Delta \cdot e^{-\zeta_{1} \omega_{1} t} \cdot \sin(\sqrt{1 - \zeta_{1}^{2} \omega_{1} t + \dots})$$

$$\Delta \Delta \cdot e^{-\zeta_{2} \omega_{2} t} \cdot \sin(\sqrt{1 - \zeta_{2}^{2} \omega_{2} t + \dots})$$

一阶惯性系统的正弦波响应:

$$X_i(s) \longrightarrow \frac{1}{Ts+1} \longrightarrow X_o(s)$$

$$X_o(s) = \frac{\omega}{s^2 + \omega^2} \cdot \frac{1}{Ts + 1}$$

$$\frac{1}{1 + \omega^2 T^2} \cdot \frac{-\omega T s + \omega}{s^2 + \omega^2} + \frac{\omega T^2}{1 + \omega^2 T^2} \cdot \frac{1}{T s + 1}$$

拉氏反变换
$$\frac{1}{1+\omega^2T^2}\left[-\omega T\cos(\omega t)+\sin(\omega t)\right] + \frac{\omega T}{1+\omega^2T^2} \cdot e^{-\frac{1}{T}t}$$

$$\frac{1}{\sqrt{1+\omega^2T^2}} \cdot \sin(\omega t + \tan^{-1}(-\omega T)) + \frac{\omega T}{1+\omega^2T^2} \cdot e^{-\frac{1}{T}t}$$

一阶惯性系统的正弦波响应:

输入: $sin(\omega t)$

输出:
$$\frac{1}{\sqrt{1+\omega^2T^2}} \cdot \sin(\omega t + \tan^{-1}(-\omega T)) + \frac{\omega T}{1+\omega^2T^2} \cdot e^{-\frac{1}{T}t}$$

稳态项

瞬态过渡项

输出达到稳态后,

- 输入和输出是同频率的正弦波,但是会产生振幅的变化和相位差;
- 输出滞后于输入的时间 $\Delta t \frac{tan^{-1}(-\omega T)}{2\pi} \cdot \frac{2\pi}{\omega}$;
- 输出的波形的振幅和相位差随着输入频率的变化而变化,称为频率响应;

二阶振荡系统的正弦波响应:

$$X_o(s) = \frac{\omega}{s^2 + \omega^2} \cdot \frac{1}{T^2 s^2 + 2\zeta T s + 1}$$
 (0 < \zeta < 1)

因式分解
和展开
$$\frac{1}{(1-\omega^2 T^2)^2 + 4\zeta^2 \omega^2 T^2}$$

$$\frac{1}{(1-\omega^2 T^2)^2 + 4\zeta^2 \omega^2 T^2} \cdot \frac{-2\zeta T \omega s + \omega (1-\omega^2 T^2)}{s^2 + \omega^2} + \frac{\ldots}{(s+\zeta/T)^2 + \cdots}$$

拉氏反变换
$$\frac{-2\zeta T\omega\cos(\omega t) + (1-\omega^2 T^2)\sin(\omega t)}{(1-\omega^2 T^2)^2 + 4\zeta^2\omega^2 T^2} + e^{-\frac{\zeta}{T}t} \cdot \Delta\Delta\Delta$$

三角函数 整理
$$\frac{1}{\sqrt{(1-\omega^2T^2)^2+4\zeta^2\omega^2T^2}}\cdot sin\left(\omega t + tan^{-1}(\frac{-2\zeta T\omega}{1-\omega^2T^2})\right) + e^{-\frac{\zeta}{T}t} \cdot \Delta t$$
 输入
$$\frac{\hat{m}\lambda}{\hat{m}}$$

高阶系统的正弦波响应:

线性系统都存在相同的特性:

- (1) 当输入是正弦波(泛指一切正弦和余弦)时,稳定后的输出<mark>包含</mark>相同频率的正弦波;
 - (2) 稳定后的输出的正弦波与输入的正弦波之间存在振幅缩放和相位差;

幅值比
$$=\frac{A_o}{A_i}$$
 相位差 $=\Phi$

任意正弦波输入: $A_i sin(\omega t + \alpha)$

稳态输出所包含的正弦波部分: 幅值比· $A_i \sin(\omega t + \alpha + d)$

(3) 振幅缩放和相位差随着输入正弦波的频率/周期而改变;

瞬态响应 (第三章)

- 1. 输入量多为定值输入(阶跃)
- 2. 关注动态过渡过程;
- 3. 评价时间的滞后(绝对概念)
- 4. 评价终值的大小(绝对概念)

频率响应 (第四章)

- 输入量为周期变化信号(正/ 余弦);
- 2. 关注稳定之后的状态;
- 3. 评价相位的滞后(相对概念)
- ; 4. 评价振动幅值的比值(相对概念);

■ 振幅的幅值比和相位差与输入正弦波的频率 ω 有如下关系;

■ 把矢量 $G(j\omega)$ 在复平面上表示,幅值比是矢量的长度(模),相位差是矢量与实轴的夹角。

§ 4-1 频率特性的基本概念

$$G(j\omega) = U(\omega) + jV(\omega)$$

幅频特性
$$A(\omega) \triangleq |G(j\omega)| = \sqrt{[U(\omega)]^2 + [V(\omega)]^2}$$

相频特性
$$\varphi(\omega) \triangleq \angle G(j\omega) = \arctan \left| \frac{V(\omega)}{U(\omega)} \right|$$

显然
$$U(\omega) = A(\omega)\cos\varphi(\omega)$$
 $V(\omega) = A(\omega)\sin\varphi(\omega)$

$$G(j\omega)=A(\omega)\left[\cos\varphi(\omega)+j\sin\varphi(\omega)\right]=A(\omega)e^{j\varphi(\omega)}$$

对于一般系统,

幅值比相乘、相位差相加。

幅值比:
$$\frac{A_o}{A_i} = |G_1(j\omega)| \cdot |G_2(j\omega)| \cdot \cdot \cdot \cdot |G_n(j\omega)|$$

幅频特性

相位差:
$$\Phi = \angle G_1(j\omega) + \angle G_2(j\omega) + \cdots + \angle G_n(j\omega)$$

相频特性

例题:

已知系统的传递函数为 $s^3+9s^2+20s+12$

输入信号是5sin(2t+1), 求输出达到稳态后的时间函数;

8

原来的方法:

(1) 5sin(2t+1)拉氏变换,得到Xi(s);

(2)
$$Xi(s) = \frac{8}{s^3 + 9s^2 + 20s + 12}$$

求特征方程的根,然后因式分解;

- (3) 部分分式展开;
- (4) 拉氏反变换,求出时间函数的非 衰减的部分;

利用傅里叶变换的方法:

(1) 把传递函数G(s)变成G(jω);

$$\omega = 2 \cdot \text{rad/s}, G(j\omega) = \frac{1}{4j-3}$$

(2) 求 $|G(j\omega)|$ 和 $\angle G(j\omega)$;

$$|G(j\omega)| = \frac{1}{5}$$

$$\angle G(j\omega) = 0 - \left(\pi - \arctan\frac{4}{3}\right) = -2.21$$

(3) 直接写出 $x_o(t)$ 的稳态时间函数。

$$5 |G(j\omega)| \sin(2t+1+ \angle G(j\omega))$$
$$= \sin(2t-1.21)$$

傅里叶变换:
$$s \longrightarrow j\omega$$

幅值比
$$=\frac{A_o}{A_i}=|G(j\omega)|$$
 相位差 $=\Phi=\angle G(j\omega)$

幅频特性

相频特性

直观地表示幅频特性和相频特性: 乃氏图

§ 4-2频率响应的极坐标图(乃氏图)

频率响应 $G(j\omega)$ 是输入频率 ω 的复变函数,是一种变换,当 ω 从0逐渐增长至 $+\infty$ 时, $G(j\omega)$ 作为一个矢量,其端点在复平面相对应的轨迹就是频率响应的极坐标图,亦叫做乃氏图(Nyquist曲线)

- 一. 乃氏图的一般作图法
- 1.写出 $|G(j\omega)|$ 和 $\angle G(j\omega)$ 表达式;
- **2.**分别求出 $\omega = 0$ 和 $\omega = +\infty$ 时的 $G(j\omega)$;
- **3.**求乃氏图与实轴的交点,交点可利用 $\operatorname{Im}[G(j\omega)]=0$ 或 $\angle G(j\omega)=n\times 180^{\circ}$ 的关系式求出;
- **4.**求乃氏图与虚轴的交点,交点可利用 $Re[G(j\omega)]=0$ 或 $\angle G(j\omega)=n\times 90^{\circ}$ 的关系式求出;
- 5.必要时画出乃氏图中间几点,勾画出大致曲线。

二-典型环节的乃氏图

1.放大环节的乃氏图 $G(j\omega) = K$

$$\begin{cases} |G(j\omega)| = K \\ \angle G(j\omega) = 0^{\circ} \end{cases}$$

 λ j $Y(\omega)$

 $\int jY(\omega)$

2.积分环节的乃氏图

$$\begin{cases} |G(j\omega)| = \frac{1}{\omega} \\ \angle G(j\omega) = -90^{\circ} \end{cases}$$

$$G(j\omega) = \frac{1}{j\omega} = -\frac{1}{\omega}j$$

3.微分环节的乃氏图 $G(j\omega) = j\omega$

$$\begin{cases} |G(j\omega)| = \omega \\ \angle G(j\omega) = 90^{\circ} \end{cases}$$

4.惯性环节的乃氏图

惯性环节的乃氏图是圆心在

$$(\frac{1}{2}, 0)$$
 半径为**1/2**的园

$$G(j\omega) = \frac{1}{j\omega T + 1} = \frac{1}{T^2\omega^2 + 1} + j\frac{-\omega T}{T^2\omega^2 + 1}$$

$$|G(j\omega)| = \frac{1}{\sqrt{1 + \omega^2 T^2}}$$

$$\angle G(j\omega) = 0 - tan^{-1}(\omega T)$$

$$\angle G(j\omega) = 0 - tan^{-1}(\omega T)$$

5-二阶振荡环节
$$G(j\omega) = \frac{1}{T^2(j\omega)^2 + 2\zeta T(j\omega) + 1}$$
$$1 - T^2\omega^2$$
.

$$\mathbf{p}_{jY(\omega)} = \frac{1 - T^2 \omega^2}{(1 - T^2 \omega^2)^2 + (2\zeta T \omega)^2} - j \frac{2\zeta T \omega}{(1 - T^2 \omega^2)^2 + (2\zeta T \omega)^2}$$

6.延迟环节 $G(j\omega) = e^{-j\omega\tau} = \cos \omega \tau - j\sin \omega \tau$

显然其乃氏图是单位圆

一般线性定常系统乃氏图的规律

$$G(j\omega) = \frac{b_{0}(j\omega)^{m} + b_{1}(j\omega)^{m-1} + \dots + b_{m-1}j\omega + b_{m}}{a_{0}(j\omega)^{n} + a_{1}(j\omega)^{n-1} + \dots + a_{n-1}j\omega + a_{n}} \qquad m \le n$$

$$= \frac{K(j\omega\tau_{1} + 1)(j\omega\tau_{2} + 1)\dots}{(j\omega)^{\lambda}(j\omega T_{1} + 1)(j\omega T_{2} + 1)\dots \left(T_{n-k}^{2}(j\omega)^{2} + 2T_{n-k}\zeta_{n-k}j\omega + 1\right)\dots}$$

当 $\lambda = 0$ 时,称该系统为0型系统;

当 $\lambda = 1$ 时,称该系统为1型系统;

当 $\lambda = 2$ 时,称该系统为2型系统...

0型、I型、II型...系统的乃氏图

2、举例

例1 某0型单位负反馈系统开环传递函数为

$$G(s) = \frac{K}{(T_1 s + 1)(T_2 s + 1)}; \quad K, T_1, T_2 > 0$$

试概略绘制系统开环幅相曲线。

解:由于惯性环节的角度变化为 0°~-90°,故该系统开环幅相曲线中

起点为: $A(0) = K, \varphi(0) = 0^0$

终点为: $A(\infty) = 0, \varphi(\infty) = 2 \times (-90^{\circ}) = -180^{\circ}$

系统开环频率特性

$$G(j\omega) = \frac{K[1 - T_1 T_2 \omega^2 - j(T_1 + T_2)\omega]}{(1 + T_1^2 \omega^2)(1 + T_2^2 \omega^2)}$$

令 $\text{Im}G(j\omega_x)=0$,得 $\omega_x=0$,即系统开环幅相曲线除在 $\omega=0$ 处外与实轴无交点。

例2 设系统开环传递函数为

$$G(s)H(s) = \frac{K}{s(T_1s+1)(T_2s+1)}; \quad K,T_1,T_2 > 0$$

试绘制系统概略开环幅相曲线。

解 系统开环频率特性

$$G(j\omega)H(j\omega) = \frac{K[-(T_1 + T_2)\omega + j(-1 + T_1T_2\omega^2)]}{\omega(1 + T_1^2\omega^2)(1 + T_2^2\omega^2)}$$

$$|G(j\omega)H(j\omega)| = \frac{K}{\omega\sqrt{(1+T_1^2\omega^2)}\sqrt{(1+T_2^2\omega^2)}}$$

$$\angle G(j\omega)H(j\omega) = 0 - 90^{\circ} - \arctan T_1\omega - \arctan T_2\omega$$

幅值变化:

$$A(0_+) = \infty, A(\infty) = 0$$

相角变化:

$$\angle \frac{1}{j\omega}$$
: $-90^{\circ} \sim -90^{\circ}$

$$\angle \frac{1}{1+jT_1\omega}:0^0 \sim -90^0$$

$$\angle \frac{1}{1+jT_{2}\omega}:0^{0} \sim -90^{0}$$

$$\angle K: 0^0 \sim 0^0$$

所以 $\varphi(\omega)$ 的变化为:

$$-90^{\circ} \sim -270^{\circ}$$

乃氏图的起点:

$$Re[G(j0_{+})H(j0_{+})] = -K(T_{1} + T_{2})$$

$$\operatorname{Im}[G(j0_{+})H(j0_{+})] = -\infty$$

与实轴的交点: 令 $\operatorname{Im}[G(j\omega)H(j\omega)]=0$,得 $\omega_x=1/\sqrt{T_1T_2}$ 于是 $G(j\omega_x)H(j\omega_x)=\operatorname{Re}[G(j\omega_x)H(j\omega_x)]=-\frac{KT_1T_2}{T_1+T_2}$

系统开环幅相曲线如下张图中曲线①所示,图中虚线为开环幅相曲线的低频渐近线。本例中系统型次即开环传递函数中积分环节个数分别取2、3和4,则根据积分环节的相角,可将图中曲线分别绕原点旋转-90°,-180°和-270°,即可得开环概略幅相曲线,如图所示。

例3 已知单位反馈系统开环传递函数为

$$G(s) = \frac{K(\tau s + 1)}{s(T_1 s + 1)(T_2 s + 1)}; \qquad K, T_1, T_2, \tau > 0$$

试绘制系统概略开环幅相曲线。

解: 系统开环频率特性为

$$G(j\omega) = \frac{-jK \left[1 - T_1 T_2 \omega^2 + T_1 \tau \omega^2 + T_2 \tau \omega^2 + j\omega(\tau - T_1 - T_2 - T_1 T_2 \tau \omega^2)\right]}{\omega(1 + T_1^2 \omega^2)(1 + T_2^2 \omega^2)}$$

起点: $G(j0_+) = \infty / \underline{-90^\circ}$ 终点: $G(j\infty) = 0 / \underline{-180^\circ}$

与实轴的交点: 当 $\tau < T_1T_2/(T_1 + T_2)$ 时,得

$$\begin{cases} \omega_{x} = 1/\sqrt{T_{1}T_{2} - T_{1}\tau - T_{2}\tau} \\ G(j\omega_{x}) = \frac{K(T_{1} + T_{2})(T_{1}T_{2} - T_{1}\tau - T_{2}\tau + \tau^{2})}{(T_{1}T_{2} - T_{1}\tau - T_{2}\tau + T_{1}^{2})(T_{1}T_{2} - T_{1}\tau - T_{2}\tau + T_{2}^{2})} \end{cases}$$

变化范围: $\tau > T_1 T_2 / (T_1 + T_2)$ 时,开环幅相曲线位于第 \coprod 象限或第 \coprod V与第 \coprod 3、限, $\tau < T_1 T_2 / (T_1 + T_2)$ 时,开环幅相曲线位于第 \coprod 3、限与第 \coprod 3、限。

开环概略幅相 曲线如图所示。

系统开环概略幅相曲线

习题4-9(第157页):

$$G(j\omega) = \frac{K(T_a\omega j + 1)(T_b\omega j + 1)}{(\omega j)^2(T_1\omega j + 1)}$$

$$G(j\omega) = \frac{\cdots}{\cdots} \left\{ \left[T_a T_b \omega^2 - T_1 \left(T_a + T_b \right) \omega^2 - 1 \right] - j \left[\left(T_a + T_b \right) \omega + T_a T_b T_1 \omega^3 - T_1 \omega \right] \right\}$$

$$\stackrel{\text{Ξ}}{\Longrightarrow}$$

第一步: 分析起点($\omega \rightarrow 0$)和终点($\omega \rightarrow +\infty$);

第二步: 计算与虚轴和实轴的交点; (转折频率 $\frac{1}{T_a} < \frac{1}{T_1}, \frac{1}{T_b} < \frac{1}{T_1}$)

若 $\frac{T_a T_b}{T_a + T_b} > T_1$, 与虚轴有一个交点; 若 $\frac{T_a T_b}{T_a + T_b} \le T_1$, 与虚轴无交点;

又因为 T_a , $T_b > T_1$,与实轴无交点;

习题4-9(第157页):

$$G(j\omega) = \frac{K(T_a\omega j + 1)(T_b\omega j + 1)}{(\omega j)^2(T_1\omega j + 1)}$$

$$G(j\omega) = \frac{\cdots}{\cdots} \left\{ \left[T_a T_b \omega^2 - T_1 \left(T_a + T_b \right) \omega^2 - 1 \right] - j \left[\left(T_a + T_b \right) \omega + T_a T_b T_1 \omega^3 - T_1 \omega \right] \right\}$$

(2) 当
$$T_1 > T_a > 0$$
, $T_1 > T_b > 0$ 时: $-\frac{3}{2}\pi < \angle G(j\omega)H(j\omega) < -\frac{1}{2}\pi$ 负实部

第一步: 分析起点($\omega \to 0$) 和终点($\omega \to +\infty$);

第二步: 计算与虚轴和实轴的交点; $(转折频率 \frac{1}{T_a} > \frac{1}{T_1}, \frac{1}{T_b} > \frac{1}{T_1})$

 $若T_a + T_b < T_1$, 与实轴有一个交点; $若T_a + T_b \ge T_1$, 与实轴无交点;

又因为 T_a , $T_b < T_1$, 与虚轴无交点;

§ 4-3 频率响应的对数坐标图(伯德图)

对于一般系统:

(1) 乃氏图: 幅值比相乘、相位差叠加。

幅频特性:
$$\frac{A_o}{A_i} = |G(j\omega)| = |G_1(j\omega) \cdot G_2(j\omega) \cdots|$$

相频特性: $\Phi = \angle G(j\omega) = \angle G_1(j\omega) + \angle G_2(j\omega) \cdots$

(2) 伯德图:幅值比相加、相位差相加。

幅频特性:

增益
$$20\lg\frac{A_o}{A_i} = 20\lg|G(j\omega)| = 20\lg|G_1(j\omega)| + 20\lg|G_2(j\omega)| + \cdots$$
 相频特性: $\Phi = \angle G(j\omega) = \angle G_1(j\omega) + \angle G_2(j\omega) \cdots$

注意: 频率坐标按对数分度, 幅值和相角坐标则以线性分度。

伯德图幅值所用的单位为分贝(dB)

分贝的定义:在控制学领域,任何一个数N都可以用分贝值n表示

$$n(dB) \triangleq 20 \lg N$$

若 $\omega_2 = 10\omega_1$,则称从 ω_1 到 ω_2 为十倍频程,以 "dec."(decade)表示。

典型环节的伯德图

比例环节: $G(j\omega) = k$

增益:
$$L(\omega) = 20 lgk$$

相位差:
$$\varphi(\omega) = 0^{\circ}$$

图 4-27 比例环节伯德图 积分环节: $G(j\omega) = \frac{1}{iT\omega}$

增益: $L(\omega) = -20 lgT\omega$

相位差: $\varphi(\omega) = -90^{\circ}$

图 4-28 积分环节伯德图*

一阶惯性环节: $G(j\omega) = \frac{1}{Tj\omega + 1}$

两条渐进线:

$$T\omega \ll 1$$
时, $G(j\omega) = 1$
增益= 0
相位差= 0^0
 $T\omega \gg 1$ 时, $G(j\omega) = \frac{1}{jT\omega}$
增益= $-20 \log(T\omega)$

相位差 = -90°

一个点:

$$T\omega = 1$$
时, $G(j\omega) = \frac{1}{j+1}$
增益= $20lg\frac{\sqrt{2}}{2} = -3.01$
相位差 = -45°

T不影响曲线形状,但会曲线前后平移

一阶微分环节: $G(j\omega) = Tj\omega + 1$

$$L(\omega) = 20\lg\sqrt{T^2\omega^2 + 1}$$

$$\varphi(\omega) = \arctan(\omega T)$$

$$G(j\omega) = \frac{1}{T^2(j\omega)^2 + 2\zeta T\omega j + 1}$$

(ω)/dB

两条渐进线:

$$T\omega \ll 1$$
时, $G(j\omega) = 1$

$$T\omega \gg 1$$
时, $G(j\omega) = \frac{1}{T^2(j\omega)^2}$

增益 = $-40\lg(T\omega)$ 相位差 = -180°

一个数值:

 $\zeta \geq \sqrt{2}/2$,增益曲线单调递减

两个点:

- (1) $T\omega = 1$,交点增益= $-20\lg(2\zeta)$
- (2) $(\exists \zeta < \sqrt{2}/2) \ T\omega = \sqrt{1 2\zeta^2}, \longleftarrow \omega_r$

 $\zeta = 0.1$

T不影响曲线的形状。

练习: 画G(s) = $\frac{1}{4s^2+0.4s+1}$ 的伯德图。 10 0.1 0.5 2 相位 90 45 10 2 05 0.1 -90

-180

延时环节: $G(j\omega) = e^{-\tau\omega j}$

增益=
$$20\lg|G(j\omega)| = 0$$

相位差(°) =
$$-\tau\omega \cdot \frac{180^\circ}{\pi}$$

伯德图的一般作图方法:

- (1) 把传递函数的分子、分母的多项式进行因式分解;
- (2) 画出各环节的增益曲线和相频曲线。画各环节的曲线时,需准确画出两条渐近线和一个点,并尽量画出转折频率附近的曲线变化趋势。
 - (3)叠加所有曲线。

$$G(j\omega) = \frac{K(j\omega\tau_{1}+1)(j\omega\tau_{2}+1)...}{(j\omega)^{\lambda}(j\omega T_{1}+1)(j\omega T_{2}+1)...}$$

$$= K \cdot (j\omega\tau_{1}+1) \cdot (j\omega\tau_{2}+1)...\frac{1}{j\omega}...\frac{1}{j\omega T_{1}+1} \cdot \frac{1}{j\omega T_{2}+1}...$$

$$= A_{1}(\omega)A_{2}(\omega)...A_{n}(\omega)e^{i[\varphi_{1}(\omega)+\varphi_{2}(\omega)+...\varphi_{n}(\omega)]}$$

根据伯德图很容易画出乃氏图,而把乃氏图转换为伯德图则很困难,因为乃氏图缺少频率信息。

$$G(s) = \frac{10(s+3)}{s(s+2)(s^2+s+2)}$$

试绘制系统的伯德图。

解 将系统写成如下典型环节乘积形式:

$$G(s) = \frac{7.5\left(\frac{s}{3} + 1\right)}{s\left(\frac{s}{2} + 1\right)\left[\left(\frac{1}{\sqrt{2}}\right)^2 s^2 + 2 \times \frac{1}{2\sqrt{2}} \times \frac{1}{\sqrt{2}} s + 1\right]}$$

 ω_1 =1.414, ω_2 =2, ω_3 =3; 201gK=201g7.5=17.5; 阻尼比 ξ = 0.354。

乃氏图

伯德图

幅值比: $|G(j\omega)|$

相位差: $\angle G(j\omega)$

●幅值比的合成是乘算;

●幅值比、相位与频率的关 系合并在一张图里;

●缺少频率的准确信息。

增益: $20lg|G(j\omega)|$

相位差: $\angle G(j\omega)$

- ●增益的合成是加算;
- ●幅频、相频分开作图;
- ●作图相对更准确且简单;
- ●频率信息比较准确,增益、相位与频率的对应关系清晰。

在Simulink里画伯德图和乃氏图

(仅介绍入门操作,深入研究自行阅读帮助文档。)

(1) 打开matlab的simulink,并构建传递函数的方块图。

在Simulink里画伯德图和乃氏图

(仅介绍入门操作,深入研究自行阅读帮助文档。)

(2) 选中图中的信号箭头,点击右键打开菜单,选择"linear analysis points"。分别定义系统的两个信号箭头为输入和输出。设定完成后,信号箭头上会出现相应的标识

在Simulink里画伯德图和乃氏图

(仅介绍入门操作,深入研究自行阅读帮助文档。)

(3) 选择主菜单里的Analysis→Control design→Linear analysis, 出现新的窗口。 点击新窗口里的bode图标或是Nyquist图标,就会生成系统的频率特性曲线。

§ 4-4 频率特性↔传递函数

前几次课的简单回顾:

- (3) 研究系统的哪些东西?
 - 瞬态响应
 - 系统需要花多长时间才能达到稳定?
 - 系统重新达到稳定的过程中是否会振荡?
 - 频率响应
 - 系统的幅值比和相位差与输入频率的关系(幅频特性和相频特性);
 - 幅频特性和相频特性的描述: 乃氏图、伯德图;
 - 频率特性↔传递函数
 - 控制系统的开闭环关系

<u>最小相位系统</u>: 在s右半平面上既无极点又无零点的传递函数。即,传递函数中不存在负号。

$$G(s) = \frac{(T_{11}s+1) \dots [(T_{12}s)^2 + 2\zeta T_{12}s+1] \dots}{(T_{21}s+1) \dots [(T_{22}s)^2 + 2\zeta T_{22}s+1] \dots}$$

$$\angle G(j\omega) = \angle (T_{11}\omega j+1) + \dots + \angle [2\zeta T_{12}\omega j+1 - (T_{12}\omega)^2] + \dots$$

$$-\angle (T_{21}\omega j+1) - \dots - \angle [2\zeta T_{22}\omega j+1 - (T_{22}\omega)^2] - \dots$$

$$\omega = 0 \sim \infty, \quad 0^{\circ} \sim 90^{\circ} \qquad \omega = 0 \sim \infty, \quad 0^{\circ} \sim 180^{\circ}$$
最小相位

<u>非最小相位系统</u>: 在s右半平面上存在极点或零点的传递函数。

$$G(s) = \frac{-K(-T_{11}s+1) \dots [(T_{12}s)^2 - 2\zeta T_{12}s+1] \dots}{(T_{21}s-1) \dots [(T_{22}s)^2 + 2\zeta T_{22}s-1] \dots}$$

$$-180^{\circ} \quad \omega = 0 \sim \infty, \quad 180^{\circ} \sim 90^{\circ} \qquad \omega = 0 \sim \infty, \quad 360^{\circ} \sim 180^{\circ}$$

$$\angle G(j\omega) = \angle (-K) + \angle (-T_{11}\omega j+1) + \dots + \angle [-2\zeta T_{12}\omega j+1 - (T_{12}\omega)^2] + \dots$$

$$\omega = 0 \sim \infty, \quad 180^{\circ} \sim 90^{\circ} \qquad \omega = 0 \sim \infty, \quad 180^{\circ} \sim 180^{\circ}$$

$$\omega = 0 \sim \infty, \quad 180^{\circ} \sim 90^{\circ} \qquad \omega = 0 \sim \infty, \quad 180^{\circ} \sim 180^{\circ}$$

一个重要的特性:对于最小相位系统而言,知道了系统的幅频特性,它的相频特性就唯一确定。(理解表4-5)

该幅频特性所对应的传递函数 $G(s) = \frac{\pm T_1 s \pm 1}{\pm T_2 s \pm 1}$

如果该系统是最小相位系统,那么传递函数唯一确定。

$$G(s) = \frac{T_1 s + 1}{T_2 s + 1}$$

<mark>最小相位系统幅频,相频对应</mark>关系

环节	幅频 (低频段一高频段)	相频
$\frac{1}{j w}$	-20dB/dec →-20dB/dec	-90° →90° -900
$\frac{1}{Tjw+1}$	0dB/dec →-20dB/dec	0° →-90°
$\frac{1}{T^2(jw)^2 + 2\zeta Tjw + 1}$	0dB/dec→-40dB/dec	0° → −180°
$\tau jw+1$	0dB/dec→20dB/dec	0° → −90° +90 0
(**************************************	******	
$\frac{1}{\prod_{i=1}^{n} (T_i j w + 1)}$	0dB/dec→n(-20)dB/dec	$0^{\circ} \rightarrow n \cdot (-90^{\circ})$
$\prod_{i=1}^{m} (\tau_i jw + 1)$	0dB/dec→m(-20)dB/dec +20	$0^{\circ} \to m \cdot (-90^{\circ}) + 90^{\circ}$

20*L*(ω)

[0]

[0]

知识点: 传递函数为最小相位系 统的话, 伯德图的幅频特性曲线 的斜率与相位存在对应关系。

练习:有一最小相位系统:

$$G(j\omega) = \frac{1 + jT_1\omega}{1 + jT_2\omega} \quad (T_2 > T_1 > 0)$$

另有一非最小相位系统:

$$G(j\omega) = \frac{1 - jT_1\omega}{1 + jT_2\omega} (T_2 > T_1 > 0)$$

两个系统的对数幅频特性均为:

$$L(\omega) = 20 \lg \sqrt{\frac{1 + T_1^2 \omega^2}{1 + T_2^2 \omega^2}}$$

但相频特性不同:

最小相位系统的相角: $\varphi_1(\omega) = \arctan \omega T_1 - \arctan \omega T_2$

非最小相位系统的相角: $\varphi_2(\omega) = \arctan(-\omega T_1) - \arctan\omega T_2$

频率特性曲线→传递函数:

$$G(j\omega) = \frac{K(j\omega\tau_{1}+1)(j\omega\tau_{2}+1)...}{(j\omega)^{\lambda}(j\omega T_{1}+1)(j\omega T_{2}+1)...(T_{n-k}^{2}(j\omega)^{2}+2T_{n-k}\zeta_{n-k}j\omega+1)...}$$

求最小相位系统的传递函数。

$$G(s) = \frac{K_0(\tau_1 s + 1)}{(T_1 s + 1)(T_2 s + 1)}$$

在低频即 ω 很小时: $|G(j0)| = K_0$

由频率特性曲线求系统的传递函数(最小相位系统)

I型系统

在低频即 ω 很小时: $|G(j1)| = K_1$

例、系统的对数幅值曲线如图所示。试推导:系统的传递函数。

解:图中兰色是解题时作的辅助线及环节示意

将对数幅频特性曲线进行分解,从左依次向右可得到如图辅助所示的环节

其中:
$$\frac{1}{T_1} = 8$$
 ; $\frac{1}{T_2} = 2$; $\frac{1}{T_3} = 4$; $\frac{1}{T_4} = 8$; $\frac{1}{T_5} = 24$; $\frac{1}{T_6} = 36$

故:
$$T_1 = 0.125$$
; $T_2 = 0.5$; $T_3 = 0.25$; $T_4 = 0.125$; $T_5 = 0.04$; $T_6 = 0.03$

所以,系统的传递函数:

$$G(s) = \frac{8(0.5s+1)(0.25s+1)}{s(0.125s+1)(0.04s+1)(0.03s+1)}$$

例题4-7:

- (1) 0型系统,比例系数为1;
- (2) 由幅频特性可知包含二阶系统,幅频 无峰值, $\zeta > 0.707$;

$$G(j\omega) = \frac{1}{T^2(j\omega)^2 + 2\zeta T\omega j + 1}$$

- (3) 由-40dB/dec的斜率直线和0轴的交点 可知 T为1/1.7;
- (4) ω=1/7时的增益为-7.5可知 $\zeta = 1.18$;
- (5) $\omega=1/7$ 时的相位小于-90可知包含延时环节;

$$G(j\omega) = \frac{e^{-\tau\omega j}}{T^2(j\omega)^2 + 2\zeta T\omega j + 1}$$

(6) ω=1/T(1.7 rad/s) 时的相位为-130可

知

延时
$$\tau = \frac{(130-90)\pi}{180\times1.7} = 0.41;$$

$$G(j\omega) = \frac{e^{-0.41\omega j}}{0.59^2(j\omega)^2 + 2\cdot0.59\cdot1.18\omega j + 1}$$

频率特性曲线→传递函数

秘笈:

- 1、先看起始段。若是水平线,则系统为○型;若是-20dB/dec斜线,则系统为Ⅰ型;若是-40dB/dec斜线,则系统为Ⅱ型;若是+20dB/dec斜线,则系统有1个微分环节; ···
- 2、在 ω =1处确定系统传递函数的比例环节K=201g K_a ,如 ω =1之前有转折频率,则以第一条斜线的延长线与0dB线的交点来确定K。
- 3、确定幅频特性曲线的各转折点的频率 ω_i =1/ T_i ,并确定各段幅频曲线的斜率。
- 4、根据各段斜率写出该段对应的环节,每减少-20dB/dec表示有一个惯性环节, -40dB/dec则对应二阶振荡环节。
- 5、如有相频曲线,可利用相频曲线校核传递函数。如相频曲线在高频段 不断下降,则表示有延时环节。

§ 4-6 控制系统的闭环频响

一、由开环频率特性估计闭环频率特性

对于图示的系统, 其开环频率特性为 $G(j\omega)H(j\omega)$,

闭环频率特性为

$$\frac{C(j\omega)}{R(j\omega)} = \frac{G(j\omega)}{1 + G(j\omega)H(j\omega)}$$

设系统为单位反馈系统,即H(jω)=1,则

$$\frac{C(j\omega)}{R(j\omega)} = \frac{G(j\omega)}{1 + G(j\omega)}$$

一般,实际系统的开环频率特性具有低通滤波的性质。

所以低频时 |G(jω)|>>1, 此时

$$\left| \frac{C(j\omega)}{R(j\omega)} \right| = \left| \frac{G(j\omega)}{1 + G(j\omega)} \right| \approx 1$$

高频时 | G(jω) | << 1, 此时

$$\left| \frac{C(j\omega)}{R(j\omega)} \right| = \left| \frac{G(j\omega)}{1 + G(j\omega)} \right| \approx G(j\omega)$$

系统闭环频域指标

1、 截止频率(带宽频率)ω_h

对数幅频特性的幅值下降到-3 dB时对应的频率。而 $0 \le \omega \le \omega_b$ 的频率范围,称为系统的带宽BW。带宽反映了系统对噪声的滤波特性,同时也反映了系统的响应速度。带宽愈大,暂态响应速度愈快,但易引入噪声干扰; 反之,带宽愈小(只有较低频率的信号才易通过),暂态响应速度愈慢,但抑制高频干扰能力强。

2、谐振峰值M_r

闭环幅频特性的最大值称为谐振峰值。它反映了系统的相对稳定性。一般而言, M_r 值愈大, 则系统阶跃响应的最大超调量也愈大。通常希望系统的谐振峰值在1.1~1.4之间, 相当于二阶系统的 ξ 为0.4< ξ <0.7。

3、谐振频率 ω_{r}

谐振峰值对应的频率称为谐振频率。它在一定程度上反映了系统暂态响应的速度。 ω_r 愈大,暂态响应愈快。对于弱阻尼系统, ω_r 与 ω_b 的值很接近。

对于二阶系统,闭环频率特性

$$\varphi(j\omega) = \frac{\omega_n^2}{(j\omega)^2 + 2\xi\omega_n(j\omega) + \omega_n^2}$$

其幅频特性为

$$|\varphi(j\omega)| = \frac{\omega_n^2}{\sqrt{(\omega_n^2 - \omega^2)^2 + (2\xi\omega_n\omega)^2}}$$

由
$$\frac{d|\varphi(j\omega)|}{d\omega} = 0$$
得谐振频率 ω r为

$$\omega_r = \omega_n \sqrt{1 - 2\xi^2} \qquad (0 \le \xi \le 0.707)$$

则谐振峰值Mr为

$$M_r = |\varphi(j\omega_r)| = \frac{1}{2\xi\sqrt{1-\xi^2}} \quad (0 \le \xi \le 0.707)$$

$$\pm 20 \lg |\varphi(j\omega)| = -3$$
, $\mp |\varphi(j\omega)| = \sqrt{2}/2$

得截止频率(带宽频率)为

$$\omega_b = \omega_n \sqrt{\sqrt{4\xi^4 - 4\xi^2 + 2} + (1 - 2\xi^2)} \quad (0 \le \xi \le 0.707)$$

以上三式反映了二阶闭环系统频域性能指标与二阶系统参数 ω n, ξ 之间的关系。因此只要给出频域性能指标中的任意两个就可以计算出二阶系统的参数 ω n, ξ ,从而计算出二阶系统的时域性能指标tr、tp、ts等,实现两类指标之间的转换。

小结

- (1)频率分析法是在频域内应用图解法分析控制系统性能的一种工程方法, 在不求解系统的微分方程情况下可以分析系统的动态性能和稳态性能。 同时频率特性可由实验方法得到,因而它具有重要的工程应用价值。
- (2)频率特性是指线性系统在正弦输入信号作用下的稳态输出与输入之比。 它和传递函数、微分方程一样能反映系统的动态性能,是线性系统又一 种形式的数学模型。
- (3)对于最小相位系统,由于其幅频特性和相频特性之间有着唯一的对应关系,因而可仅根据其对数幅频特性曲线写出对应系统的传递函数。
- (4)开环系统的对数幅频特性曲线是控制系统分析和设计的重要工具。开环系统的对数幅频特性曲线的低频段表征了系统的静态特性,中频段表征了系统的动态特性,而高频段则表征了系统动态响应的起始阶段性能及系统的抗干扰能力。

$$G(s) = \frac{16(s+0.1)}{s(s^2+2s+1)(s^2+4s+16)} = \frac{0.1(10s+1)}{s(s^2+2s+1)(\frac{s^2}{16}+\frac{4s}{16}+1)}$$

转折频率为: $\omega_1 = 0.1, \omega_2 = 1, \omega_3 = 4$

$$\omega = 1$$
 | $\sin 20 \lg |k| = 20 \lg 0.1 = -20 dB$

4. 系统的单位阶跃响应为: $y(t) = 1 - e^{-t} + 2e^{-2t} - e^{-4}$ 试求系统的频率特性。

解: 系统单位阶跃响应的拉氏变换式:

$$Y(s) = L[y(t)] = L[1 - e^{-t} + 2e^{-2t} - e^{-4t}] = \frac{1}{s} - \frac{1}{s+1} + \frac{2}{s+2} - \frac{1}{s+4}$$
$$= \frac{1}{s} (1 - \frac{s}{s+1} + \frac{s}{s+2} - \frac{s}{s+4}) = \frac{1}{s} \cdot \frac{3s^2 + 8s + 8}{(s+1)(s+2)(s+4)}$$

因为输入为单位阶跃,即:

$$U(s) = \frac{1}{s}$$

故:系统传递函数:

$$G(s) = \frac{3s^2 + 8s + 8}{(s+1)(s+2)(s+4)}$$

代入 $s=j\omega$,求取系统的频率特性:

$$G(j\omega) = \frac{3(j\omega)^2 + 8j\omega + 8}{(j\omega + 1)(j\omega + 2)(j\omega + 4)} = U + jV$$

其中:

$$U = \frac{21\omega^4 + 84\omega^2 + 64}{\omega^6 + 21\omega^4 + 84\omega^2 + 64}; V = -\frac{\omega(3\omega^4 + 6\omega^2 + 46)}{\omega^6 + 21\omega^4 + 84\omega^2 + 64}$$

- ❖课后习题
- ❖5、6、8(MatLab)、9、11、12、13、13、14、15(MatLab)、16、17、19、21

第四章作业问题反馈

习题4-9: 问题: 乃氏图究竟落在哪几个象限内??

$$G(j\omega) = \frac{K(T_a\omega j + 1)(T_b\omega j + 1)}{(\omega j)^2(T_1\omega j + 1)}$$

$$G(j\omega) = \frac{\cdots}{\cdots} \left\{ \left[T_a T_b \omega^2 - T_1 \left(T_a + T_b \right) \omega^2 - 1 \right] - j \left[\left(T_a + T_b \right) \omega + T_a T_b T_1 \omega^3 - T_1 \omega \right] \right\}$$

$$\text{$\stackrel{\circ}{\cong}$}$$

$$\angle G(j\omega) = -\pi + \arctan(T_a\omega) + \arctan(T_b\omega) - \arctan(T_1\omega)$$

第一种判别方法

由于
$$\frac{1}{T_a} < \frac{1}{T_1}, \frac{1}{T_b} < \frac{1}{T_1}$$
,因此在 $\omega = 0 \to \frac{1}{T_a}$ (或 $\frac{1}{T_b}$) 过程中

环节
$$T_a s + 1$$
与 $T_b s + 1$ 的影响 远强于 $\frac{1}{T_1 s + 1}$,

$$\therefore \angle G(j\omega) \approx \left[-\pi + \arctan(T_a\omega) + \arctan(T_b\omega) \right] \in (-\pi,0)$$

$$\therefore \angle G(j\omega) = \left[-\pi + \arctan(T_a\omega) + \arctan(T_b\omega) - \arctan(T_1\omega) \right] \in \left[0, -\frac{\pi}{2} \right]$$

第二种判 别方法

习题4-11 概念问题: 超前、滞后、超前-滞后、滞后-超前 (低通、高通、带通、带阻) 滤波器

习题4-19 概念问题: 开环传递函数与闭环传递函数 输入与输出的关系

背景知识:

幅值比:
$$\frac{A_0}{A_i} = |G_1(j\omega)| \cdot |G_2(j\omega)| \cdot \cdot \cdot |G_n(j\omega)|$$

幅频特性

相位差:
$$\phi = \angle G_1(j\omega) + \angle G_2(j\omega) + \ldots + \angle G_n(j\omega)$$

相频特性

单位反馈系统的开环传递函数
$$G(s) = \frac{K}{Ts+1}$$
, 当 $x_i(t) = 3\sin(2t+30^0)$, 求 $x_o(t)$.

闭环传递函数
$$\Phi(s) = \frac{X_o(s)}{X_i(s)} = \frac{G(s)}{1 + G(s)} = \cdots$$

己知
$$\omega$$
=2rad/s, $\therefore x_o(t) = |\Phi(j2)| \cdot 3\sin(2t + 30^0 + \angle\Phi(j2))$