1. [punti 4,5] Sia dato il sistema retroazionato di figura

Definire e determinare la sensibilità di $T_{ry}(s)$ (funzione di trasferimento fra r ed y) a variazioni di $G(s;\alpha)$ determinate dal parametro incerto $\alpha = \alpha_0 + \Delta \alpha$ (α_0 è il valore nominale del parametro). Interpretare e commentare il risultato ottenuto.

2. [punti 4,5] Il seguente schema elettrico definisca un sistema dinamico Σ orientato da u (tensione di ingresso) ad y (tensione d'uscita).

Si assuma l'amplificatore operazionale come ideale.

- 1. Determinare la funzione di trasferimento G(s) del sistema Σ .
- 2. Determinare poli e modi di Σ .
- 3. Scrivere l'equazione differenziale che descrive il comportamento di Σ .
- **3.** [punti 4,5] Determinare l'evoluzione forzata y(t) in risposta alla rampa $u(t) = 2t \cdot 1(t)$ di un sistema con funzione di trasferimento $G(s) = \frac{1}{(s+1)^4}$. Determinare inoltre il grado massimo di continuità di y(t) su \mathbb{R} .
- **4.** [punti 4,5] Presentare e dimostrare la formula di antitrasformazione zeta, ovvero l'espressione con l'integrale su curva chiusa del piano complesso che determina la sequenza a tempo discreto x(k) nota che sia $X(z) \triangleq \mathcal{Z}[x(k)]$.

5. [punti 4,5] Sia dato il seguente sistema retroazionato

$$r \xrightarrow{+} L(s)$$
 y

dove
$$L(s) = \frac{1}{3} \cdot \frac{(1-s)^2}{s(1+s)^2}$$
.

- 1. Tracciare il diagramma polare di $L(j\omega)$ determinando in particolare l'asintoto, il comportamento per $\omega \to +\infty$ e l'intersezione con l'asse reale negativo.
- 2. Stabilire mediante applicazione del criterio di Nyquist che il sistema retroazionato è asintoticamente stabile. Determinare inoltre il margine di ampiezza (M_A) ed il margine di fase (M_F).
- 6. [punti 4,5] Si tracci il luogo delle radici della seguente equazione caratteristica:

$$1 + 5 \frac{1 + \tau s}{(1 + 2\tau s)(1 + s)} = 0 \quad , \quad \tau \in [0, +\infty)$$

determinando in particolare asintoti e radici doppie

7. [punti 4,5] Si consideri il seguente sistema di controllo

dove $P(s) = \frac{1}{(s-1)^2}$. Si progetti un controllore C(s) proprio di ordine 2 affinché:

- a) l'errore a regime in risposta ad un gradino di comando del set-point sia nullo.
- b) La costante di velocità del sistema retroazionato K_{ν} sia pari a 8 : $K_{\nu} = 8$.
- c) I poli dominanti del sistema retroazionato siano -1 e -2.

8. [punti 4,5] Un sistema a tempo discreto è in evoluzione libera (ingresso identicamente nullo) e la trasformata zeta dell'uscita è $Y_{\text{lib}} = \frac{1}{\left(z - \frac{1}{2}\right)^2 (z^2 - 1)}$. Determinare l'evoluzione libera dell'uscita

 $y_{lib}(k), k \ge 0.$