

Congratulations! You passed!

TO PASS 80% or higher

Keep Learning

GRADE 100%

Value Functions and Bellman Equations

LATEST SUBMISSION GRADE 100%

1. A function which maps ___ to ___ is a value function. [Select all that apply]

1 / 1 point

States to expected returns.

Correct

Correct! A function that takes a state and outputs an expected return is a value function.

- Values to actions.
- State-action pairs to expected returns.

Correct

Correct! A function that takes a state-action pair and outputs an expected return is a value

- Values to states.
- 2. Consider the continuing Markov decision process shown below. The only decision to be made is in the top state, where two actions are available, left and right. The numbers show the rewards that are received deterministically after each action. There are exactly two deterministic policies, π_{left} and π_{right} . Indicate the optimal policies if $\gamma=0$? If $\gamma=0.9$? If $\gamma=0.5$? [Select all that apply]

Correct! Since both policies return to the top state every two time steps, to determine the optimal policy, it suffices to consider the reward accumulated over the first two time steps. For the policy left, this is equal to 1; for the policy right, this is equal to 1.8.

- $lap{1}{
 m For}\, \gamma=0, \pi_{{
 m left}}$
 - ✓ Correct

Correct! Since both policies return to the top state every two time steps, to determine the optimal policy, it suffices to consider the reward accumulated over the first two time steps. For the policy left, this is equal to 1; for the policy right, this is equal to 0.

- \square For $\gamma=0.9,\pi_{ ext{left}}$
- $lap{ }$ For $\gamma=0.5, \pi_{\mbox{right}}$

✓ Correct

Correct! Since both policies return to the start state every two time steps, to determine the optimal policy, it suffices to consider the reward accumulated over the first two time steps. For the policy left, this is equal to 1; for the policy right, this is equal to 1.

- $lap{1}{
 m For} \ \gamma=0.5, \pi_{\mbox{left}}$
 - ✓ Correct

Correct! Since both policies return to the start state every two time steps, to determine the optimal policy, it suffices to consider the reward accumulated over the first two time steps. For the policy left, this is equal to 1; for the policy right, this is equal to 1.

1/1 point

- \square For $\gamma=0,\pi_{ ext{right}}$
- 3. Every finite Markov decision process has __. [Select all that apply]

A unique optimal policy

A unique optimal value function

✓ Correct

Correct! The Bellman optimality equation is actually a system of equations, one for each state, so if there are N states, then there are N equations in N unknowns. If the dynamics of the environment are known, then in principle one can solve this system of equations for the optimal value function using any one of a variety of methods for solving systems of nonlinear equations. All optimal policies share the same optimal state-value function.

A deterministic optimal policy

Correct

Correct! Let's say there is a policy π_1 which does well in some states, while policy π_2 does well in others. We could combine these policies into a third policy π_3 , which always chooses actions according to whichever of policy π_1 and π_2 has the highest value in the current state. π_3 will necessarily have a value greater than or equal to both π_1 and π_2 in every state! So we will never have a situation where doing well in one state requires sacrificing value in another. Because of this, there always exists some policy which is best in every state. This is of course only an

	least one optimal deterministic policy.	
	A stochastic optimal policy	
4.	The of the reward for each state-action pair, the dynamics function p , and the policy π is to characterize the value function v_π . (Remember that the value of a policy π at state s is $v_\pi(s) = \sum_a \pi(a s) \sum_{s',r} p(s',r s,a)[r+\gamma v_\pi(s')]$.) Mean; sufficient	1/1 point
	Distribution; necessary	
	Correct Correct! If we have the expected reward for each state-action pair, we can compute the expected return under any policy.	
5.	The Bellman equation for a given a policy π : [Select all that apply]	1 / 1 point
	Holds only when the policy is greedy with respect to the value function.	
	lacksquare Expresses state values $v(s)$ in terms of state values of successor states.	
	✓ Correct Correct!	
	Expresses the improved policy in terms of the existing policy.	
6.	An optimal policy:	1 / 1 point
	Is unique in every Markov decision process.	
	 Is not guaranteed to be unique, even in finite Markov decision processes. Is unique in every finite Markov decision process. 	
	is unique in every finite markov decision process.	
	✓ Correct Correct! For example, imagine a Markov decision process with one state and two actions. If both	
	actions receive the same reward, then any policy is an optimal policy.	
7.	The Bellman optimality equation for v_st : [Select all that apply]	1/1 point
	Expresses the improved policy in terms of the existing policy.	
	$lacksquare$ Expresses state values $v_*(s)$ in terms of state values of successor states.	
	Correct!	
	✓ Holds for the optimal state value function.	

	Correct!	
	$\hfill \square$ Holds when $v_*=v_\pi$ for a given policy $\pi.$	
	Holds when the policy is greedy with respect to the value function.	
8.	Give an equation for v_π in terms of q_π and $\pi.$	1 / 1 point
	$\bigcirc v_{\pi}(s) = \sum_{a} \gamma \pi(a s) q_{\pi}(s,a)$	
	$\bigcirc v_{\pi}(s) = \max_{a} \gamma \pi(a s) q_{\pi}(s, a)$	
	$ v_{\pi}(s) = \max_{a} \pi(a s) q_{\pi}(s, a) $	
	✓ Correct Correct!	
9.	Give an equation for q_π in terms of v_π and the four-argument p .	1 / 1 point
	$Q_{\pi}(s,a) = \sum_{s',r} p(s',r s,a)\gamma[r+v_{\pi}(s')]$	
	$Q_{\pi}(s, a) = \max_{s', r} p(s', r s, a)[r + v_{\pi}(s')]$	
	$Q_{\pi}(s,a) = \sum_{s',r} p(s',r s,a)[r + v_{\pi}(s')]$ $Q_{\pi}(s,a) = \sum_{s',r} p(s',r s,a)[r + v_{\pi}(s')]$	
	$Q_{\pi}(s,a) = \sum_{s',r} p(s',r s,a) \gamma[r + v_{\pi}(s')]$ $Q_{\pi}(s,a) = \max_{s',r} p(s',r s,a) \gamma[r + v_{\pi}(s')]$	
	$Q_{\pi}(s,a) = \max_{s',r} p(s',r s,a)[r + \gamma v_{\pi}(s')]$	
	✓ Correct Correct!	
10.	Let $r(s,a)$ be the expected reward for taking action a in state s , as defined in equation 3.5 of the textbook. Which of the following are valid ways to re-express the Bellman equations, using this expected reward function? [Select all that apply]	1/1 point
	$lacksquare v_\pi(s) = \sum_a \pi(a s)[r(s,a) + \gamma \sum_{s'} p(s' s,a)v_\pi(s')]$	
	✓ Correct Correct!	
	$q_*(s,a) = r(s,a) + \gamma \sum_{s'} p(s' s,a) \max_{a'} q_*(s',a')$	
	✓ Correct Correct!	
	$q_{\pi}(s,a) = r(s,a) + \gamma \sum_{s',a'} p(s' s,a) \pi(a' s') q_{\pi}(s',a')$	

✓ Correct

Correct!

11. Consider an episodic MDP with one state and two actions (left and right). The left action has stochastic reward 1 with probability p and q with probability q with q

 $\bigcap 13 + 2p = 10q$

 \bigcap 13 + 2p = -10q

 $\bigcirc 7 + 3p = -10q$

 $\bigcap 7 + 3p = 10q$

 $\bigcirc 13 + 3p = 10q$

 $\bigcap 13 + 3p = -10q$

 $\bigcirc 7 + 2p = -10q$

✓ Correct

Correct!

1 / 1 point