Проект по дисциплине "Методы искусственного интеллекта в анализе данных" Этап 1

Бобровских Глеб, Иванов Дмитрий, Угадяров Леонид https://github.com/ugadiarov-la-phystech-edu/aimda-project

Группа 4

24 ноября 2020 г.

Набор данных и постановка задачи

- Рассматривается подвыборка за 2014 год из набора данных об убийствах в США Homicide Reports, 1980-2014 https://www.kaggle.com/murderaccountability/homicide-reports
- Задача классификации предсказание значения бинарного признака Crime Solved
- Метрика качества F1 мера для класса нераскрытых преступлений
- Актуальность Российская полиция собралась выявлять серийных преступников с помощью нейросети https://lenta.ru/news/2020/11/16/mvd/

Категориальные признаки

Agency Type, State, City, Crime Type, Victim Sex, Victim Race, Victim Ethnicity, Weapon

Вещественные признаки

Victim Age, Victim Count, Perpetrator Count

Количество объектов: 8637

Вклад:

- Бобровских Глеб композиций алгоритмов (случайный лес, бустинг)
- Иванов Дмитрий метод опорных векторов
- Угадяров Леонид EDA, предобработка данных

Применённые модели

Метод опорных векторов

В качестве реализации алгоритма использовался класс sklearn.svm.SVC библиотеки Scikit-learn. Наилучшие гиперпараметры 1 :

C = 0.1, class weight = None, coef0 = 0, gamma = 'scale', kernel = 'linear'

Случайный лес

В качестве реализации алгоритма использовался класс sklearn.ensemble.RandomForestClassifier библиотеки Scikit-learn. Наилучшие гиперпараметры 1 :

criterion = 'gini', max_depth = 10, max_features = 'auto', n_estimators = 500

Бустинг

B качестве реализации алгоритма использовалась класс catboost. CatBoost Classifier библиотеки CatBoost. Наилучшие гиперпараметры 1 :

iterations = 300, depth = 6, loss_function = 'Logloss', learning_rate = 0.1, l2_leaf_reg = 4.5

¹Значения остальных гиперпараметров оставлены по умолчанию

Результаты экспериментов

Эксперименты проводились на платформе Google Colaboratory. Характеристики предоставляемого оборудования:

- 2 ядра процессора Intel Xeon E5-2699 v4 2.20 ГГц
- 12ГБ оперативной памяти

Метрики качества классификации обученных моделей

	F1	Precision	Recall
SVC	0.735 ± 0.007	0.703 ± 0.005	0.770 ± 0.017
RandomForest	0.737 ± 0.009	0.725 ± 0.005	0.75 ± 0.02
CatBoost	0.748 ± 0.010	0.730 ± 0.008	0.767 ± 0.016

Быстродействие обученных моделей

	Время обучения, с	Время обучения Количество объектов, мс	Время предсказания на одном объекте, мс
SVC	16.4	1.89	1.3
RandomForest	3.4	0.39	37.2
CatBoost	4.7	0.54	1.5