

Mathématiques 2

Oral

PSI

Pour traiter ce sujet le candidat est vivement invité à utiliser l'ordinateur à sa disposition, équipé de Python/Pyzo et de Scilab.

1. Avec le logiciel, créer un tableau b tel que pour tout (i,j) de $[0,12]^2$ on ait

$$\begin{cases} b_{i,j} = \begin{pmatrix} i \\ j \end{pmatrix} & \text{si } j \leqslant i \\ b_{i,j} = 0 & \text{si } j > i \end{cases}$$

2. On note $e = \exp(1)$ et pour tout (n, k) de \mathbb{N}^2 , on pose $u_{n,k} = \frac{k^n}{k!}$.

a. Montrer que pour tout n de \mathbb{N} , la série de terme général $u_{n,k}$, pour k de \mathbb{N} , est convergente.

On note
$$A_n = \sum_{k=0}^{\infty} u_{n,k}$$
 sa somme.

b. Donner la valeur exacte de A_0 et A_1 .

c. Exprimer pour tout $n \ge 1$, A_{n+1} en fonction de $(A_i)_{0 \le i \le n}$.

d. En déduire les valeurs exactes de A_n pour n dans $[\![0,12]\!]$.

3. On considère la série entière $\sum_{n=0}^{\infty} \frac{A_n}{n!} x^n$.

a. Montrer que cette série entière est de rayon de convergence R non nul, au moins égal à 1.

Pour tout
$$x$$
 de $I=]-R,R[$, on note $f(x)=\sum_{n=0}^{\infty}\frac{A_n}{n!}\,x^n.$

b. Donner une représentation à l'écran de f sur un intervalle convenable.

c. Montrer que f est solution sur I d'une équation différentielle linéaire homogène que l'on précisera.

d. En déduire une expression de f(x) sans le signe de sommation et une nouvelle représentation à l'écran de f sur un intervalle convenable.

e. Avec cette expression donner une nouvelle méthode pour calculer les A_n et vérifier pour n de [0, 12].

f. Préciser le rayon de la série entière $\sum_{n=0}^{\infty} \frac{A_n}{n!} \, x^n.$