Regular suborbits of finite primitive groups

Hong Yi Huang

University of Bristol

Groups, Graphs and Combinatorics, SUSTech

14 November 2021

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group and $H = G_{\alpha}$. Then an orbit of H is called a suborbit of G at α .

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group and $H = G_{\alpha}$. Then an orbit of H is called a suborbit of G at α .

Examples

• $\{\alpha\}$ is always a suborbit.

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group and $H = G_{\alpha}$. Then an orbit of H is called a suborbit of G at α .

Examples

- $\{\alpha\}$ is always a suborbit.
- $G = S_n$, $\Omega = \{1, \dots, n\}$ and $\alpha = 1$: $\{1\}$ and $\{2, \dots, n\}$ are suborbits.

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group and $H = G_{\alpha}$. Then an orbit of H is called a suborbit of G at α .

Examples

- $\{\alpha\}$ is always a suborbit.
- $G = S_n$, $\Omega = \{1, \dots, n\}$ and $\alpha = 1$: $\{1\}$ and $\{2, \dots, n\}$ are suborbits.
- G is 2-transitive: $\{\alpha\}$ and $\Omega \setminus \{\alpha\}$ are the only suborbits.

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group and $H = G_{\alpha}$. Then an orbit of H is called a suborbit of G at α .

Examples

- $\{\alpha\}$ is always a suborbit.
- $G = S_n$, $\Omega = \{1, \dots, n\}$ and $\alpha = 1$: $\{1\}$ and $\{2, \dots, n\}$ are suborbits.
- G is 2-transitive: $\{\alpha\}$ and $\Omega \setminus \{\alpha\}$ are the only suborbits.

Recall: G is called primitive if G_{α} is maximal in G.

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group and $H = G_{\alpha}$. Then an orbit of H is called a suborbit of G at α .

Examples

- $\{\alpha\}$ is always a suborbit.
- $G = S_n$, $\Omega = \{1, \dots, n\}$ and $\alpha = 1$: $\{1\}$ and $\{2, \dots, n\}$ are suborbits.
- G is 2-transitive: $\{\alpha\}$ and $\Omega \setminus \{\alpha\}$ are the only suborbits.

Recall: G is called primitive if G_{α} is maximal in G.

From now, we assume G is primitive.

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group and $H = G_{\alpha}$. Then an orbit of H is called a suborbit of G at α .

Examples

- $\{\alpha\}$ is always a suborbit.
- $G = S_n$, $\Omega = \{1, \dots, n\}$ and $\alpha = 1$: $\{1\}$ and $\{2, \dots, n\}$ are suborbits.
- G is 2-transitive: $\{\alpha\}$ and $\Omega \setminus \{\alpha\}$ are the only suborbits.

Recall: G is called primitive if G_{α} is maximal in G.

From now, we assume G is primitive.

• G has a suborbit $\mathcal{O} \neq \{\alpha\}$ with $|\mathcal{O}| \leqslant 5$: classified \checkmark

Let $G \leq \operatorname{Sym}(\Omega)$ be a transitive permutation group and $H = G_{\alpha}$. Then an orbit of H is called a suborbit of G at α .

Examples

- $\{\alpha\}$ is always a suborbit.
- $G = S_n$, $\Omega = \{1, \dots, n\}$ and $\alpha = 1$: $\{1\}$ and $\{2, \dots, n\}$ are suborbits.
- G is 2-transitive: $\{\alpha\}$ and $\Omega \setminus \{\alpha\}$ are the only suborbits.

Recall: G is called primitive if G_{α} is maximal in G.

From now, we assume G is primitive.

• G has a suborbit $\mathcal{O} \neq \{\alpha\}$ with $|\mathcal{O}| \leq 5$: classified \checkmark

Question: How large can a suborbit be?

Regular suborbit: A suborbit with length |H| (largest possible length).

Regular suborbit: A suborbit with length |H| (largest possible length).

Question: When do we have a regular suborbit?

Regular suborbit: A suborbit with length |H| (largest possible length).

Question: When do we have a regular suborbit?

Example

Consider the action of $G = D_{2n}$ (n > 2) on $\{1, \ldots, n\}$. Then

•
$$G_{\alpha} \cong C_2$$
;

Regular suborbit: A suborbit with length |H| (largest possible length).

Question: When do we have a regular suborbit?

Example

Consider the action of $G = D_{2n}$ (n > 2) on $\{1, \ldots, n\}$. Then

- $G_{\alpha} \cong C_2$;
- G is primitive iff n is a prime;

Regular suborbit: A suborbit with length |H| (largest possible length).

Question: When do we have a regular suborbit?

Example

Consider the action of $G = D_{2n}$ (n > 2) on $\{1, \ldots, n\}$. Then

- $G_{\alpha} \cong C_2$;
- *G* is primitive iff *n* is a prime;
- if $\alpha = 1$, then $\{2, n\}$ is a regular suborbit.

Regular suborbit: A suborbit with length |H| (largest possible length).

Question: When do we have a regular suborbit?

Example

Consider the action of $G = D_{2n}$ (n > 2) on $\{1, \ldots, n\}$. Then

- $G_{\alpha} \cong C_2$;
- G is primitive iff n is a prime;
- if $\alpha = 1$, then $\{2, n\}$ is a regular suborbit.

Note: G has a regular suborbit $\iff H \cap H^g = 1$ for some $g \in G$.

Base: A subset Δ of Ω with trivial pointwise stabiliser $G_{(\Delta)}$ in G.

Base: A subset Δ of Ω with trivial pointwise stabiliser $G_{(\Delta)}$ in G.

Examples

• G = GL(V), $\Omega = V$: Δ contains a basis of V;

Base: A subset Δ of Ω with trivial pointwise stabiliser $G_{(\Delta)}$ in G.

Examples

- G = GL(V), $\Omega = V$: Δ contains a basis of V;
- $G = D_{2n} \ (n > 2), \ \Omega = \{1, \ldots, n\}: \ \Delta = \{1, 2\}.$

Base: A subset Δ of Ω with trivial pointwise stabiliser $G_{(\Delta)}$ in G.

Examples

- G = GL(V), $\Omega = V$: Δ contains a basis of V;
- $G = D_{2n} \ (n > 2), \ \Omega = \{1, \ldots, n\}: \ \Delta = \{1, 2\}.$

Note: G has a regular suborbit \iff G has a base of size 2 \iff $G_{\alpha\beta}=1$.

Base: A subset Δ of Ω with trivial pointwise stabiliser $G_{(\Delta)}$ in G.

Examples

- G = GL(V), $\Omega = V$: Δ contains a basis of V;
- $G = D_{2n} \ (n > 2), \ \Omega = \{1, \ldots, n\}: \ \Delta = \{1, 2\}.$

Note: G has a regular suborbit $\iff G$ has a base of size $2 \iff G_{\alpha\beta} = 1$.

Problem

Classify the finite primitive groups with a base of size 2.

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

The O'Nan-Scott Theorem divides finite primitive groups into 5 types.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

Problem

Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible $\mathbb{F}_p H$ -module and H has a regular orbit on V.

The **O'Nan-Scott Theorem** divides finite primitive groups into 5 types.

Affine: $G = V: H \leq AGL(V)$, where $V = \mathbb{F}_p^d$ and $H \leq GL(V)$ irreducible.

Problem

Determine the pairs (H, V), where H is a finite group, V is a faithful irreducible $\mathbb{F}_p H$ -module and H has a regular orbit on V.

Partial results when H quasisimple:

- (|H|, p) = 1: Goodwin 2000; Köhler & Pahlings 2001 \checkmark
- $(|H|, p) \neq 1$: Fawcett et al. 2016/19; Lee 2020/21

Almost simple: $G_0 \leqslant G \leqslant Aut(G_0)$.

Almost simple: $G_0 \leqslant G \leqslant Aut(G_0)$.

H soluble: Burness 2021 √

Almost simple: $G_0 \leqslant G \leqslant Aut(G_0)$.

H soluble: Burness 2021 √

• G_0 alternating or sporadic: James 2006; Burness et al. 2010/11 \checkmark

Almost simple: $G_0 \leqslant G \leqslant \operatorname{Aut}(G_0)$.

H soluble: Burness 2021 √

• G_0 alternating or sporadic: James 2006; Burness et al. 2010/11 \checkmark

ullet G_0 Lie type: Partial results (e.g. G_0 classical and $H \in \mathcal{S}$)

Almost simple: $G_0 \leqslant G \leqslant \operatorname{Aut}(G_0)$.

H soluble: Burness 2021 √

• G_0 alternating or sporadic: **James 2006**; **Burness et al. 2010/11** \checkmark

• G_0 Lie type: Partial results (e.g. G_0 classical and $H \in \mathcal{S}$)

Diagonal type: $T^k \leqslant G \leqslant T^k.(\operatorname{Out}(T) \times P)$, where T is non-abelian simple, P is primitive or k=2 and P=1.

Almost simple: $G_0 \leqslant G \leqslant Aut(G_0)$.

H soluble: Burness 2021 √

• G_0 alternating or sporadic: **James 2006**; **Burness et al. 2010/11** \checkmark

• G_0 Lie type: Partial results (e.g. G_0 classical and $H \in \mathcal{S}$)

Diagonal type: $T^k \leqslant G \leqslant T^k.(\operatorname{Out}(T) \times P)$, where T is non-abelian simple, P is primitive or k=2 and P=1.

Theorem (Fawcett 2013)

If $P \neq A_k$ or S_k , then G has a regular suborbit.

Almost simple: $G_0 \leqslant G \leqslant \operatorname{Aut}(G_0)$.

H soluble: Burness 2021 √

• G_0 alternating or sporadic: James 2006; Burness et al. 2010/11 \checkmark

• G_0 Lie type: Partial results (e.g. G_0 classical and $H \in \mathcal{S}$)

Diagonal type: $T^k \leqslant G \leqslant T^k.(\operatorname{Out}(T) \times P)$, where T is non-abelian simple, P is primitive or k=2 and P=1.

Theorem (Fawcett 2013)

If $P \neq A_k$ or S_k , then G has a regular suborbit.

Twisted wreath: $G = T^k : P$, where P is transitive.

Almost simple: $G_0 \leqslant G \leqslant Aut(G_0)$.

H soluble: Burness 2021 √

- G_0 alternating or sporadic: James 2006; Burness et al. 2010/11 \checkmark
- G_0 Lie type: Partial results (e.g. G_0 classical and $H \in \mathcal{S}$)

Diagonal type: $T^k \leqslant G \leqslant T^k.(\operatorname{Out}(T) \times P)$, where T is non-abelian simple, P is primitive or k=2 and P=1.

Theorem (Fawcett 2013)

If $P \neq A_k$ or S_k , then G has a regular suborbit.

Twisted wreath: $G = T^k : P$, where P is transitive.

Theorem (Fawcett 2021+)

P quasiprimitive \implies G has a regular suborbit.

Product-type groups

Product type: $T^k \leqslant G \leqslant L \wr P$, where $T = \operatorname{soc}(L)$ and $P \leqslant S_k$.

Note: G induces L and P in its product action.

Product-type groups

Product type: $T^k \leqslant G \leqslant L \wr P$, where $T = \operatorname{soc}(L)$ and $P \leqslant S_k$.

Note: G induces L and P in its product action.

Theorem (Bailey & Cameron 2013)

 $L \wr P$ has a regular suborbit iff

regular suborbits of $L \geqslant$ the distinguishing number of P.

Number of regular suborbits

Let r(G) be the number of regular suborbits of G (at α).

Number of regular suborbits

Let r(G) be the number of regular suborbits of G (at α).

Question: Can we determine r(G)?

Let r(G) be the number of regular suborbits of G (at α).

Question: Can we determine r(G)?

• Chen & H 2021+: a general method using inclusion-exclusion

Let r(G) be the number of regular suborbits of G (at α).

Question: Can we determine r(G)?

- Chen & H 2021+: a general method using inclusion-exclusion
- Probabilistic method: lower bounds for r(G)

Let r(G) be the number of regular suborbits of G (at α).

Question: Can we determine r(G)?

- Chen & H 2021+: a general method using inclusion-exclusion
- Probabilistic method: lower bounds for r(G)

Problem

Classify the finite primitive groups G with r(G) = 1.

Let r(G) be the number of regular suborbits of G (at α).

Question: Can we determine r(G)?

- Chen & H 2021+: a general method using inclusion-exclusion
- Probabilistic method: lower bounds for r(G)

Problem

Classify the finite primitive groups G with r(G) = 1.

Burness & H 2021+: G almost simple, H soluble and r(G) = 1

Let r(G) be the number of regular suborbits of G (at α).

Question: Can we determine r(G)?

- Chen & H 2021+: a general method using inclusion-exclusion
- Probabilistic method: lower bounds for r(G)

Problem

Classify the finite primitive groups G with r(G) = 1.

Burness & H 2021+: G almost simple, H soluble and r(G)=1 \checkmark e.g. $G=\mathsf{PGL}_2(q)$ and $H=D_{2(q-1)}$.

Distinguishing partition: A partition $\Pi = \{\pi_1, \dots, \pi_m\}$ of Ω such that

$$\bigcap_{i=1}^m G_{\{\pi_i\}} = 1.$$

Distinguishing partition: A partition $\Pi = \{\pi_1, \dots, \pi_m\}$ of Ω such that

$$\bigcap_{i=1}^m G_{\{\pi_i\}} = 1.$$

Distinguishing number D(G): The minimal size of a distinguishing partition.

Distinguishing partition: A partition $\Pi = \{\pi_1, \dots, \pi_m\}$ of Ω such that

$$\bigcap_{i=1}^m G_{\{\pi_i\}} = 1.$$

Distinguishing number D(G): The minimal size of a distinguishing partition.

Examples

• G is any group and $|\Pi| = |\Omega|$;

Distinguishing partition: A partition $\Pi = \{\pi_1, \dots, \pi_m\}$ of Ω such that

$$\bigcap_{i=1}^m G_{\{\pi_i\}} = 1.$$

Distinguishing number D(G): The minimal size of a distinguishing partition.

Examples

- G is any group and $|\Pi| = |\Omega|$;
- $D(G) = 1 \iff G = 1$;

Distinguishing partition: A partition $\Pi = \{\pi_1, \dots, \pi_m\}$ of Ω such that

$$\bigcap_{i=1}^m G_{\{\pi_i\}}=1.$$

Distinguishing number D(G): The minimal size of a distinguishing partition.

Examples

- G is any group and $|\Pi| = |\Omega|$;
- $D(G) = 1 \iff G = 1$;
- G is regular, $\Pi = \{\{\alpha\}, \Omega \setminus \{\alpha\}\}\$ and so D(G) = 2;

Distinguishing partition: A partition $\Pi = \{\pi_1, \dots, \pi_m\}$ of Ω such that

$$\bigcap_{i=1}^m G_{\{\pi_i\}} = 1.$$

Distinguishing number D(G): The minimal size of a distinguishing partition.

Examples

- G is any group and $|\Pi| = |\Omega|$;
- $\bullet \ D(G) = 1 \iff G = 1;$
- G is regular, $\Pi = \{\{\alpha\}, \Omega \setminus \{\alpha\}\}\$ and so D(G) = 2;
- $D(S_n) = n \text{ and } D(A_n) = n 1.$

Theorem (Bailey & Cameron 2013)

 $L \wr P$ has a regular suborbit iff $r(L) \geqslant D(P)$.

Theorem (Bailey & Cameron 2013)

 $L \wr P$ has a regular suborbit iff $r(L) \geqslant D(P)$.

Observations:

• $L \wr S_k$ has a regular suborbit iff $r(L) \geqslant k$;

Theorem (Bailey & Cameron 2013)

 $L \wr P$ has a regular suborbit iff $r(L) \geqslant D(P)$.

Observations:

- $L \wr S_k$ has a regular suborbit iff $r(L) \geqslant k$;
- If r(L) = 1 and $P \neq 1$, then $L \wr P$ has no regular suborbit.

Theorem (Bailey & Cameron 2013)

 $L \wr P$ has a regular suborbit iff $r(L) \geqslant D(P)$.

Observations:

- $L \wr S_k$ has a regular suborbit iff $r(L) \geqslant k$;
- If r(L) = 1 and $P \neq 1$, then $L \wr P$ has no regular suborbit.

Theorem (Burness & H, in progress)

Let r = r(L), $P \leqslant S_k$ with D = D(P). Then

$$r(L \wr P) = \frac{1}{|P|} \sum_{m=D}^{k} m! \binom{r}{m} D(P, m),$$

where D(P, m) is the number of distinguishing partitions into m parts.

Theorem (Bailey & Cameron 2013)

 $L \wr P$ has a regular suborbit iff $r(L) \geqslant D(P)$.

Observations:

- $L \wr S_k$ has a regular suborbit iff $r(L) \geqslant k$;
- If r(L) = 1 and $P \neq 1$, then $L \wr P$ has no regular suborbit.

Theorem (Burness & H, in progress)

Let r = r(L), $P \leqslant S_k$ with D = D(P). Then

$$r(L \wr P) = \frac{1}{|P|} \sum_{m=D}^{k} m! \binom{r}{m} D(P, m),$$

where D(P, m) is the number of distinguishing partitions into m parts.

In particular, we have $r(L \wr S_k) = \binom{r}{k}$.

Suppose $P = C_p$ for some prime p and r = r(L).

Suppose $P = C_p$ for some prime p and r = r(L).

Note:

• D(P) = 2;

Suppose $P = C_p$ for some prime p and r = r(L).

Note:

- D(P) = 2;
- ullet Any partition other than Ω is a distinguishing partition for P.

Suppose $P = C_p$ for some prime p and r = r(L).

Note:

- D(P) = 2;
- Any partition other than Ω is a distinguishing partition for P.

This implies

$$D(P,m)=S(p,m)$$

is the Stirling number of the second kind.

Suppose $P = C_p$ for some prime p and r = r(L).

Note:

- D(P) = 2;
- Any partition other than Ω is a distinguishing partition for P.

This implies

$$D(P,m)=S(p,m)$$

is the Stirling number of the second kind. Thus,

$$|P|r(L \wr P) = \sum_{m=2}^{p} m! \binom{m}{r} S(p, m) = r^{p} - r$$

and therefore $r(L \wr P) = (r^p - r)/p$.

Existence of regular suborbit:

Existence of regular suborbit:

• Almost simple primitive groups of Lie type;

Existence of regular suborbit:

- Almost simple primitive groups of Lie type;
- General product-type groups;

Existence of regular suborbit:

- Almost simple primitive groups of Lie type;
- General product-type groups;
- Diagonal groups $T^k \leqslant G \leqslant T^k.(\operatorname{Out}(T) \times P)$ with $P = A_k$ or S_k .

Existence of regular suborbit:

- Almost simple primitive groups of Lie type;
- General product-type groups;
- Diagonal groups $T^k \leqslant G \leqslant T^k.(\operatorname{Out}(T) \times P)$ with $P = A_k$ or S_k .

Theorem (Fawcett 2013)

If $P = A_k$ or S_k , then G has a regular suborbit only if 2 < k < |T|.

Existence of regular suborbit:

- Almost simple primitive groups of Lie type;
- General product-type groups;
- Diagonal groups $T^k \leqslant G \leqslant T^k.(\operatorname{Out}(T) \times P)$ with $P = A_k$ or S_k .

Theorem (Fawcett 2013)

If $P = A_k$ or S_k , then G has a regular suborbit only if 2 < k < |T|.

Number of regular suborbits:

Existence of regular suborbit:

- Almost simple primitive groups of Lie type;
- General product-type groups;
- Diagonal groups $T^k \leqslant G \leqslant T^k.(\operatorname{Out}(T) \times P)$ with $P = A_k$ or S_k .

Theorem (Fawcett 2013)

If $P = A_k$ or S_k , then G has a regular suborbit only if 2 < k < |T|.

Number of regular suborbits:

Unique regular suborbit;

Existence of regular suborbit:

- Almost simple primitive groups of Lie type;
- General product-type groups;
- Diagonal groups $T^k \leqslant G \leqslant T^k.(\operatorname{Out}(T) \times P)$ with $P = A_k$ or S_k .

Theorem (Fawcett 2013)

If $P = A_k$ or S_k , then G has a regular suborbit only if 2 < k < |T|.

Number of regular suborbits:

- Unique regular suborbit;
- Asymptotic results.

Thank you!