BAB IV

HASIL DAN PEMBAHASAN

4.1 Analisis Sistem

Analisis sistem merupakan penjelasan dari salah satu sistem yang utuh kedalam bagian-bagian komponennya dengan maksud untuk mengidentifikasi dan mengevaluasi permasalahan, hambatan yang terjadi dan kebutuhan-kebutuhan yang di harapkan sehingga dapat di usulkan perbaikan-perbaikan untuk membuat sebuah aplikasi yang baik. Pada tahap analisis sistem ini adalah menganalisis kebutuhan-kebutuhan yang ada.

4.2 Kebutuhan Informasi

4.2.1 Analisis Metode *Harris Beneditc*

Untuk mengeetahui besar kalori yang di butuhkan dalam sehari menggunakan persamaan Harris Benedict. Rumus ini akan menghitung jumlah kalori yang di butuhkan tubuh untuk bertahan hidup dan melakukan aktifitas dasar. Besar kalori yang di butuhkan manusia di pengaruhi oleh jenis kelamin, umur, tinggi badan(TB) dan berat badan(BB). Berikut Ini adalah rumus persamaan *Harris Beneditc*:

Rumus perhitungan kalori Haris Beneditc		
Laki-laki	88,36 + (13,4 x BB) + (4,8 x TB) - (5,68 x umur)	
Perempuan	447,60 + (9,25 x BB) + (3,1xTB) - (4,30 x umur)	

Tabel 4.1 Rumus perhitungan kalori Haris Beneditc

Setelah dilakukan perhitungan kalori kebutuhan dasar, hasilnya di kalikan dengan level aktifitas untuk memperoleh kebutuhan kalori harian.

Level Aktifitas Fisik	Total Kebutuhan Kalori
Ringan (Penjahit, Perawat,	1,3
sopir)	
Sedang (Pembantu, Tukang	1,5
kayu)	
Berat (Mendaki, Berenang)	1,75

Tabel 4.2 Level Kalori

Contoh perhitungan:

Langkah 1

Jenis Kelamin: Laki-laki

Berat Badan : 80 Kg

Tinggi Badan : 170 Cm

Umur : 30 Tahun

Level Aktifitas: Sedang

Langkah 2: Menghitung kebutuhan kalori dasar

 $=88,36 + (13,4 \times BB) + (4,8 \times TB) - (5,68 \times umur)$

 $=88,36 + (13,4 \times 80) + (4,8 \times 170) - (5,68 \times 30)$

=88,36+1.072+816-170,4

=1.806 Kalori

Langkah 3 : hasil kebutuhan kalori dasar dikalikan level aktifitas

=1.806 x 1,55 (Sedang) = 2800 Kalori

Langkah 1

Jenis Kelamin: Perempuan

Berat Badan : 65 Kg

Tinggi Badan : 165 Cm

Umur : 21Tahun

Level Aktifitas: Berat

Langkah 2 : Menghitung kebutuhan kalori dasar

 $= 447,60 + (9,25 \times BB) + (3,1xTB) - (4,30 \times umur)$

 $= 447,60 + (9,25 \times 65) + (3,1 \times 160) - (4,30 \times 21)$

=447,60+601,25+496-90,3

= 1.454,55

Langkah 3 : hasil kebutuhan kalori dasar dikalikan level aktifitas

 $= 1.454,55 \times 1,375 \text{ (Berat)} = 2000 \text{ Kalori}$

4.2.2 Data Usulan Makanan

Data usulan makanan di perlukan sebagai saran untuk pengguna aplikasi, usulan makanan berikut akan di pilih sebagai saran makanan yang akan di bawa dalam pendakian.

No	Bahan	Berat	Kalori	Protein	Lemak	Karbohidrat
		(Gram)	(Kal)	(g)	(g)	(g)
1	Beras	100	360	6,8	0,7	78,9
2	Mi Kering	100	337	7,9	11,8	50
3	Jagung	100	307	7,9	3,4	63,6
4	Kentang hitam	100	142	0,9	0,4	33,7
5	Singkong	100	157	0,8	0,3	37,9
6	Ayam	100	302	18,2	25,0	0
7	Telur ayam	100	162	12,8	11,5	0,7
8	Ikan wader	100	198	19,0	13,0	0

9	Ikan teri	100	170	33,4	3,0	6,5
10	Cabe merah(kering)	100	311	15,9	6,2	61,8
11	Bawang merah	100	39	1,5	0,30	0,2
12	Bawang Putih	100	91	4,5	0,3	0,2
13	Kangkung	100	29	3,0	0,3	5,4
14	Sawi	100	27	2,6	0,3	5,2
15	Wortel	100	23	2,0	0,7	2,3
16	Susu kental manis	100	336	4,3	2,3	6,5
17	Keju	100	326	22,8	20,3	13,1
18	Papaya	100	45	0,5	0	12,2
19	Jeruk manis	100	45	0,8	0,3	10,9
20	Alpokat	100	85	0,9	6,5	7,7
21	Biskuit	100	456	6,9	14,4	75,1
22	Bihun	100	360	4,7	0,1	82,1
23	Talas	100	98	1,9	0,2	23,7
24	Tepung Terigu	100	365	8,9	1,3	77,3
25	Jengkol	100	20	3,5	0,1	3,1
26	Tepung Beras	100	364	7,0	0,5	80,0
27	Susu Kedelai	100	41	3,5	2,5	5,0
28	Daging Kambing	100	154	16,6	9,2	0
29	Daging Sapi	100	207	18,8	14	0
30	Daging Kerbau	100	84	18,7	0,5	0
31	Teri Kering	100	170	33,4	3,0	0
32	Sarden Kaleng	100	338	21,1	27,0	1,0
33	Margarine	100	720	0,6	81	0,4
34	Agar-agar	100	0	0	0,2	0
35	Coklat batang	100	472	2	29,8	62,7
36	Minyak Kelapa sawit	100	902	0	100	0

37	Gula pasir	100	364	0	0	94
38	Jahe	100	51	1,5	1	10,1
39	Kopi	100	325	17,4	1,3	59
40	Sirup	100	213	0	0	55

Sumber: DepKes RI 1979

Tabel 4.3 Kandungan gizi bahan pangan local

4.3 Perancangan Sistem

Untuk menggambarkan suatu proses yang di lakukan oleh sebuah sistem makan diperlukan perancangan sistem dalam bentuk diagram, yang terdiri dari:

4.3.1. Context Diagram

Entitas yang digunakan dalam perhitungan kalori pengguna berperan dalam melakukan inputan data yang di butuhkan dan menerima hasil yang di butuhkan. Data-data yang diinputkan akan di hitung oleh system yang akan menghasilkan hasil kalori yang di butuhkan dan kemudian sistem akan memberikan usulan makanan yang akan di pilih oleh pengguna. Berdasarkan identifikasi kebutuhan data dan informasi dari sebuah system, dapat di gambarkan arus data dan informasi dalam bentuk *Context diagram*:

Pada *Data Flow Diagram* level 0 identifikasi antara pengguna dan sistem perhitungan kalori. Didalam ini sistem ini informasi yang didapatkan pengguna berupa hasil perhitungan kalori dan usulan makanan yang pengguna inputkan. Berikut DFD level 0:

Gambar 4.1 Context Diagram

4.3.2. Dekomposisi Diagram

Dekomposisi diagram adalah gambaran tentang penggolongan dan pengelompokan dari semua proses yang terjadi pada suatu sistem.

Gambar 4.2 Dekomposisi Diagram

4.3.3. DFD Level 0

DFD di buat untuk memudahkan penganalisisan system secara visual suatu rangkaian yang saling berkaitan. Data Flow Diagram Level 0 merupakan pengembangan dari diagram konteks. Proses pada data flow diagram level 0 terdiri dari 3 yaitu proses perhitungan kalori, usulan makanan dan inputan makanan baru. Data flow diagram ditampilkan pada gambar 4.3.

Gambar 4.3 . Data Flow Diagram level 0

4.4 Perancangan Data Base

Untuk membantu memodelkan database dalam perancangan database aplikasi desktop perhitungan kalori dan usulan makanan ini. Pada saat user menggunakan aplikasi, pengguna akan menginputkan data berat badan, umur, jenis kelamin, dan level aktifitas lalu data tersebut akan di olah dan di hitung oleh sistem akan menghasilkan kebutuhan kalori.

Database yang digunakan dalam aplikasi ini untuk menyimpan usulan makanan yang ada dalam system dan menyimpan makanan yang di inputkan oleh pengguna.

Gambar 4.4 Entity Relationship Diagram

Pada gambar Entity Relationship Diagram menejelaskan pengguna memilih makanan yang diusulkan. Berikut ini rancangan tabel database Makanan :

Field	Туре	Extra
Id	Tinyint(9) NOT NULL	AUTO_INCREMENT
nama	Varchar(50) NOT	
	NULL	
berat	Float NOT NULL	
kalori	Float NOT NULL	
karbohidrat	Float NOT NULL	
protein	Float NOT NULL	
lemak	Float NOT NULL	

Tabel 4.4 Database makanan

4.5 Perancangan Tampilan

Tahap perancangan tampilan merupakan media visual yang mampu mengkomunikasikan anatara pengguna dan sistem yang dirancang penulis. Perancangan tampilan terdiri dari :

4.5.1 Perancangan Tampilan Perhitungan dan usulan makanan

Dalam tampilan perhitungan menampilkan inputan yang akan lakukan oleh pengguna aplikasi. Dalam tampilan ini juga disertai usulan makanan sehingga dalam satu tampilan terdapat inputan perhitungan gizi dan pemilihan usulan makanan yang dilakukan oleh pengguna. Berikut ini adalah rancangan tampilan :

Perhitungan	Kalori	Gizi Makanan
Berat	Masukan Angka	Usulan (Pilih Makanan makanan)
Tinggi	Masukan Angka	
Umur	Masukan Angka	Lihat Kandungan Gizi
Level Aktifitas	(Pilih)	
Jenis Kelamin	(Pilih)	
Hasil		
		_

Gambar 4.5 Perancangan Tampilan perhitungan Kalori

4.5.2 Perancangan login Admin

Form login digunakan admin untuk melakukan inputan makanan baru. Berikut tampilannya :

Gambar 4.6 Login Admin

4.5.3 Perancangan Tampilan Inputan Makanan

Pada bagian ini Penulis membuat bagian perancangan inputan makanan dalam inputan ini memudahkan admin melakukan inputan makanan baru. Berikut ini tampilanya :

Masukan Ma	kanan	
Nama	Masukan Angka	
Berat	Masukan Angka	
Kalori	Masukan Angka	
Karbohidrat	Masukan Angka	
Lemak	Masukan Angka	
Simpan		

Gambar 4.7 Perancangan Tampilan inputan makanan

4.6 Hasil Dan Pengujian Sistem

Dari hasil penelitian ini dilakukan pengujian serta penerapan kegiatan yang nyata. Tahapan selanjutnya adalah melakukan implementasi pengujian system baru yang dapat berjalan dengan lancar dan sesuai yang di inginkan.

Hasil penelitian dari sistem merupakan tahap akhir dari proses pengembangan perangkat lunak setelah melalui tahapan perancangan. Agar proses implementasi dari perangkat lunak dapat bekerja secara sempurna, maka terlebih dahulu perangkat lunak tersebut harus di uji untuk mengetahui kelemahan dan kesalahan yang ada untuk kemudian dievaluasi.

Hasil penelitian merupakan langkah yang dilakukan setelah perancangan aplikasi desktop perhitungan kalori dan usulan makanan dengan metode *harris Beneditc*. Dalam bab ini akan dijelaskan bagaimana cara menjalankan aplikasi. Berikut ini adalah hasil penelitian aplikasi yang dibuat:

4.6.1 Hasil Tampilan

1. Hasil Tampilan perhitungan kalori

Dalam tampilan ini pengguna melakukan inputan jenis kelamin, berat, tinggi, umur dan level aktifitas, selanjutnya diklik kerjakan maka hasil perhitungan akan muncul.

Perhitungan kalori Kalori

Gambar 4.8 Tampilan perhitungan kalori

2. Tampilan usulan makanan

Pengguna akan memilih makanan yang diinginkan dan akan otomatis terhitung jumlah kalori, protein, lemak dan karbohidrat. Dalam hitungan tersebut akan mencocokan kejumlah perhitungan kalori yang dibutuhkan pengguna. Jika pilihan usulan makanan yang diinputkan pengguna kurang akan ada pemberitahuan makanan tidak sesuai dengan jumlah kalori yang dibutuhkan. Berikut tampilannya:

Usulan Makanan

Usulan Makanan	Pilih Makanan	
Lihat Gizi		
Refresh		

Gambar 4.9 Usulan Makanan

3. Tampilan login

Login digunakan admin untuk menambahkan data usulan makanannya. Berikut ini tampilan login :

Form Logi	n	
Username	0	
Password		
Login		

Gambar 4.10 Login Admin

4. inputan makanan

Untuk melihat tampilan makana harus melakukan login terlebih dahulu. Tampilan inputan makanan hanya bisa dibuka oleh admin sehingga untuk pengguna tidak bisa melakukan dan melihat tampilan makanan dan melakukan inputan makanan. Mengingat makanan yang di konsumsi manusia sangatlah banyak maka penulis membuat inputan untuk memudahkan pengguna. Berikut ini adalah tampilan login dan inputanya:

Masukkan Makanan

Nama	masukkan angka	
Berat	masukkan angka	
Kalori	masukkan angka	
Protein	masukkan angka	
Karbohidrat	masukkan angka	
Lemak	masukkan angka	

Gambar 4.11 Inputan Tampilan

5. Database

Database ini di gunakan untuk menyimpan usulan makanan yang di gunakan dalam aplikasi ini. Sehingga jika ada penambahan dan pengurangan makanan yang ada di dalam system dapat di rubah dengan mudah.

Gambar 4.12 DataBase

4.6.2 Uji Coba Aplikasi

Kuisioner merupakan instrument atau alat yang di gunakan untuk melalukan pengumpulan data dalam penelitian ini. Analisis hasil dari kuisioner menggunakan skala likert. Dalam ujicoba dilakukan pengujian sistem aplikasi dan pengisian kuisioner oleh mahasiswa pencinta alam di wilayah Semarang. Sampel yang di ambil menggunakan sampel 10 responden dari berbagai organisasi mahasiswa pencinta alam yang berbeda. Hal ini di lakukan untuk melihat apakah sistem ini sudah layak dan cukup baik dan melihat seberapa besar di butuhkan pengguna.

Agar lebih jelas maka dibuat sebuah persentase hasil dengan menggunakan rumus prosentase interpretasi (P) sebagai berikut :

$$(P) = \frac{\text{Skor (S)}}{\text{Smax}} \times 100\%$$

Berikut hasil pengujian sistem yang di lakukan penulis:

a. Data pengisi kuisioner pengujan progam
Pengujian system dilakukan dari berbagai organisasi
pencinta alam yang berjumlah 10 terdiri dari 5 laki-laki, 5
wanita dan ditambahakan 5 pencinta alam freelance :

No	Nama	Organisasi Pencinta Alam	Universitas
1	Dizka Marantika	Kamapala	Upgris
2	Lilis Setyowati	Kamapala	Upgris
3	Ervian novi v	Mapalast	Unisbank
4	Ari Kurniawan	Mapalast	Unisbank
5	M Habib Z	Aldakawanaseta	Udinus
6	Ali mahmudin	Aldakawanaseta	Udinus
7	Koerul albab	Lekmapala	Unnes
8	Fauzan maarif	Himalaya	Unimus
9	Rizqi agus ditasari	Wapalhi	Polines
10	Nur afifah	Argajaladri	Unissula
11	khumaidah	Rumah sahabat	Udinus
12	Syarif anrulloh	Freelance	Unissula
13	Ahmad abror	Freelance	Unissula
14	Ahmad khasan	Freelance	Unisbank
15	Nunung pamungkas	Freelance	Unisbank

Tabel 4.5 Data pengisi kuisioner

b. Berikut ini adalah hasil dari kuisioner yang di bagikan kepada responden.:

No	Pertanyaan	Jawaban				Skor	Persentase
INU		SS (4)	S (3)	TS (2)	STS (1)	SKUI	reisemase
1	Apakah tampilan aplikasi cukup menarik?	5	7	3	-	47	78%
2	Apakah mudah dipahami dan dimengerti?	1	12	2	-	44	73,3%
3	Bagaimana dengan penggunaanya, apakah aplikasi ini mudah dioperasikan?	4	10	1	-	48	80%
4	Aplikasi ini dapat bermanfaat bagi pendaki gunung?	8	5	2	-	49	81,7%
5	Informasi didalam aplikasi cukup lengkap?	1	9	5	-	41	68,3%
6	Apakah aplikasi berjalan cukup baik?	2	11	2	-	45	75%

Keterangan:

SS : Sangat Setuju S : Setuju TS : Tidak Setuju STS : Sangat Tidak Setuju

Tabel 4.7 Hasil Kuisioner

Dengan demikian maka kategori penilaian setiap pertanyaan dan penilainan terhadap variable yang di teliti dan di masukan ke dalam tabel kategori persentase menurut Arikunto (91998:246), yaitu :

Baik	76 % - 100 %
Cukup	56 % - 75 %
Kurang Baik	40 % - 55 %
Tidak Baik	Kurang dari 40 %

Tabel 4.8 penilaian kuisioner

4.6.3 Hasil Analisis

Berdasarkan tabel diatas maka dapat di dekripsikan tanggapan dari kuisioner yang sudah di bagikan sebagai berikut:

- Pada pertanyaan nomor satu tentang tampilan aplikasi di dapatkan persentase sebesar 78% jadi dapat disimpulkan tampilan aplikasi ini baik.
- Pada pertanyaan kedua tentang aplikasi mudah di pahami dan di mengerti mendapatkan persentase sebesar 73,3 % maka dapat di katakan cukup baik.
- Pada pertanyaan ketiga aplikasi ini mudah di gunakan mendapatkan persentase sebesar 80% maka aplikasi ini baik dan mudah untuk di gunakan.
- 4. Pada pertanyaan keempat aplikasi ini berguna bagi pendaki gunung mendapatkan persentase sebesar 81,7% maka aplikasi ini baik dan berguna bagi pendaki gunung sebagai tujuan utama pembuatan aplikasi ini.
- 5. Pada pertanyaan kelima tentang informasi yang ada di dalam aplikasi cukup lengkap mendapatkan persentase sebesar 68,3% maka aplikasi ini cukup baik dalam memberikan informasi kepada pengguna.

6. Pada pertanyaan keenam aplikasi ini berjalan baik, mendapatkan persentase sebesar 75 % maka di simpulkan aplikasi ini cukup baik dalam kerjanya.