Database Systems 10127 Lab 5

Relational Algebra Exercise

Given the following relations

S (sid, sname, age)	this is a table of sailors
B (bid, bname, color)	this is a table of boats

R (sid, bid, date) this is a table of reservations

Basic Operators:

- ▶ Unary (single relation) operators
 - SELECT ($\sigma_{selection-condition}$)
 - ▶ PROJECT ($\pi_{attribute-list}$)
 - \blacktriangleright RENAME ($\rho_{new-name}$)
- Binary (two relation) operators
 - ► UNION (∪)
 - ▶ SET DIFFERENCE ()
 - ► CARTESIAN PRODUCT (x)

Derived Operators:

- ► INTERSECTION (∩)
- ► GENERAL JOIN(⋈ condition)
- ► NATURAL JOIN (⋈)

Write relational algebra statements for each problem

0) Find the color of boat number 103

$$\pi$$
 color (σ bid = 103 (B))

1) Find IDs of sailors who reserved boat number 103

```
\pi sid ( \sigma bid = 103 (R))
```

- 2) Find all reservations of boat number 103 $\sigma_{bid=103}$ (R)
- 3) Find names of sailors who reserved boat number 103 π sname ($S \bowtie (\sigma \text{ bid}=103 (R))$)
- 4) Find the IDs of boats reserved by Harry π bid (R $\bowtie \pi$ sid((σ sname = "Harry" (S))))
- 5) Find the colors of boats reserved by Harry π color $\{B \bowtie [\pi \text{ bid } (R \bowtie \pi \text{ sid}(\sigma \text{ sname} = \text{"Harry"}(S))))]\}$
- 6) Find names of sailors who reserved a red boat π sname (S \bowtie { π sid (R \bowtie [π bid (σ color = red (B))])})
- 7) Find names of sailors who reserved a red **or** a green boat π sname (S \bowtie { π sid (R \bowtie [π bid (σ color = red OR green (B))])})
- 8) Find names of sailors who reserved a red **and** a green boat Red_sids = π sid {R \bowtie [π bid (σ color = red (B))]} Green_sids = π sid {R \bowtie [π bid (σ color = green (B))]} π sname (S \bowtie { Red_sids \cap Green_sids })
- 9) Find IDs of sailors over age 20 who reserved a red boat Red_sids = π sid {R \bowtie [π bid (σ color = red (B))]} (π sid [σ age > 20 (S)]) \cap Red_sids
- 10) Find IDs of sailors over age 20 who did not reserve a red boat Red_sids = π sid {R \bowtie [π bid (σ color = red (B))]}

(
$$\pi$$
 sid [σ age > 20 (S)]) - Red_sids

11) Find the IDs of the oldest sailors

$$\pi$$
 sid (S) - (π s1.sid { σ s1.age < s2.age [ρ s1 (S) x ρ s2 (S)] })

12) Find the name and age of the oldest sailors

O =
$$\pi$$
 sid (S) - (π s1.sid { σ s1.age < s2.age [ρ s1 (S) x ρ s2 (S)] })
 π name, age (O \bowtie S)