příjmení, jméno	kruh cvičení	výsledek
	např. Po 14:30	

MI-MPI, Matematika pro informatiku, úkol č.2

k odevzdání do 23:59:59 dne 11. prosince, kdy zveřejníme vzorové řešení. Odevzdat Vaše řešení můžete na jakémkoli cvičení předmětu MI-MPI příp. v jedné z kanceláří A-1431, A-1429, A-1426, A-1426. Odevzdání mailem je možné pouze ve formátu jednoho pdf souboru (viz dále).

Instrukce k vypracování úkolu:

- Měli byste se pokusit vyřešit všechny příklady. V případě, že se Vám jeden nebo dva příklady vyřešit nepodaří, můžete stále získat všechny tři body, pokud zbytek úkolu bude bezchybný.
- Podepište se prosím na každý papír svého řešení a na úvodní stranu napište i jaké cvičení navštěvujete a o jaký dokument se jedná (např. Josefa Vzorová-Nováková, Po 14:30, MI-MPI, úkol č.2).
- Při bodování úkolu (ale i písemek) se nebere ohled pouze na správný postup a výsledky, ale i na přehlednost jejich prezentace.
- Příklady můžete vypracovávat v libovolném pořadí, musí být ale jasné, kde který příklad končí a začíná.
- Svůj výpočet rozumně okomentujte, aby bylo čtenáři vždy jasné, co a *proč* počítáte. Řešení musí být "možno přečíst" a nikoli "nutno vyluštit".
- Nepište do řešení odpovědi na nepoložené otázky! Vědět co je pro řešení příkladu důležité a co nepodstatné je jedním z nejdůležitějších aspektů řešení!
- Ani správné řešení, které nebude v souladu s těmito požadavky, nebude bodováno plným počtem bodů!
- Úkol je myšlen jako důležitá součást přípravy na následující test: za poctivé vypracování nezískáte tedy pouze (zdánlivě neúměrné) tři body, ale i výrazně vyšší pravděpodobnost na úspěch v testu.
- Pokud úkol odevzdáváte ve formátu pdf, musí se jednat o jeden pdf soubor neobsahující černé plochy, které by značně prodražovaly tisk. Jednotliví cvičící si mohou příp. klást další požadavky.

Příklad 1. Jak přesně bude vypadat 32 bitů reprezentujících následující čísla (uvažujeme jednoduchou přesnost, pouze normalizovaná čísla a zaokrouhlování dolů – první bit je znaménko, pak exponent a pak mantisa):

- a) -1/13,
- b) 1/17,
- c) součet těchto čísel.

Nápověda: vyjádřete si čísla ve dvojkové soustavě pomocí hladového algoritmu a pak už je to jednoduché.

Příklad 2. Mějme skupinu pěti žen $(z_1 \text{ až } z_5)$ a pěti mužů $(m_1 \text{ až } m_5)$ s preferencemi pro párování danými následujícími tabulkami.

z_1	z_2	z_3	z_4	z_5
m_12	m_2	m_2	m_1	m_1
m_3	m_3	m_1	m_2	m_2
m_4	m_5	m_3	m_3	m_3
m_5	m_4	m_5	m_4	m_4
m_1	m_1	m_4	m_5	m_5

m_1	m_2	m_3	m_4	m_5
z_14	z_4	z_4	z_4	z_4
z_25	z_5	z_5	z_2	z_3
z_31	z_1	z_2	z_3	z_5
z_42	z_2	z_1	z_1	z_1
z_53	z_3	z_3	z_5	z_2

- (a) Najděte alespoň dvě stabilní párování.
- (b) Najděte všechna stabilní párování a vysvětlete svůj postup.

Příklad 3. (Opakování jednorozměrných derivací.) Najděte lokální extrémy funkcí

(a)
$$\ln\left(x+\sqrt{1+x^2}\right)$$
,

(b)
$$x + \sqrt{1-x}$$
.

Příklad 4. Najděte množinu bodů, ve kterých je tečná rovina ke grafu funkce

$$f(x,y) = 4 + \frac{x^3}{6} + \frac{(y-3)^3}{9}$$

kolmá na vektor (-2, -3, 1).

Příklad 5. Nechť $a, b \in \mathbb{Z}$. Dokažte nebo vyvratte, že pokud $7|(a^2+b^3)$, potom platí 7|b.

Příklad 6. Uvažujme plochu zadanou jako graf funkce

$$f(x,y) = \sqrt{x^2 - 2xy + y^2} \,,$$

kde x a y bereme takové, že $x \geq y$. Najděte bod na této ploše, který je nejblíže bodu (-1,1,0).

Příklad 7. Zjistěte, pro jaké hodnoty parametru a je matice

$$\begin{pmatrix} 1 & 2 & 2a \\ -2 & 0 & 0 \\ 2 & 0 & 1 \end{pmatrix}$$

pozitivně (semi)definitní, resp. negativně (semi)definitní, resp. indefinitní.

Příklad 8. Najděte funkci f(x, y, z) tří proměnných, jejíž definiční obor je celé \mathbb{R}^3 a jež má právě jeden kritický bod (2, -3, 1), který je navíc ostrým lokálním maximem.