Differential Equations Plus (Math 286)

H48 Determine the general solution of the following ODE's (two answers suffice):

- a) $(2t+1)y'' + (4t-2)y' 8y = (6t^2 + t 3)e^t$, t > -1/2;
- b) $t^2(1-t)y'' + 2t(2-t)y' + 2(1+t)y = t^2$, 0 < t < 1;
- c) $(t^2 4t + 4)y'' + (3t 6)y' + 2y = t^2 + 1, t > 2.$

Hints: The associated homogeneous ODE in a) has a solution of the form $y(t) = e^{\alpha t}$ and that in b) a solution of the form $y(t) = t^{\beta}$ with constants α, β . In both cases a particular solution of the inhomogeneous ODE can be determined by reducing it to a first-order system and using variation of parameters (though this may not be the most economic solution). The ODE in c) is an inhomogeneous Euler equation in disguise.

H49 Determine a fundamental system of solutions for Bessel's ODE with $p=\frac{1}{2}$,

$$y'' + \frac{1}{t}y' + \left(1 - \frac{1}{4t^2}\right)y = 0,$$

using the "Ansatz" $z = \sqrt{t} y$.

H50 On Hermite Polynomials

In the lecture the Hermite polynomials $H_n(X) \in \mathbb{R}[X]$ are defined by $H_n(t) = (-1)^n e^{t^2} D^n[e^{-t^2}]$ for $t \in \mathbb{R}$ (n = 0, 1, 2, ...).

- a) Show that $t \mapsto H_n(t)$ is a polynomial function, justifying the definition.
- b) Show that $\deg H_n(X) = n$ and the leading coefficient of $H_n(X)$ is 2^n .
- c) Show that $H_n(X)$ satisfies the recurrence relation $H_{n+1}(X) = 2X H_n(X) 2n H_{n-1}(X)$, and compute $H_n(X)$ for $n \le 6$.
- d) Show that $t \mapsto H_n(t)$ solves Hermite's differential equation y'' 2ty' + 2ny = 0. Hint: The equation is equivalent to Ly = 0, where $L = D^2 - 2tD + 2n$ id. Express $L[H_n(t)]$ in terms of $D^n[e^{-t^2}]$, $D^{n+1}[e^{-t^2}]$, $D^{n+2}[e^{-t^2}]$, and rewrite the latter using $D^{n+2}[e^{-t^2}] = D^{n+1}[-2t e^{-t^2}]$.

H51 Optional Exercise

The function e^t has no zero and satisfies y' = y. The function $\sin t$ has no zero in common with its derivative $\cos t$ and satisfies y'' = -y. Generalizing this observation, show that a nonzero \mathbb{C}^n -function $f \colon I \to \mathbb{R}$ on an interval $I \subseteq \mathbb{R}$ of positive length satisfies an explicit (possibly time-dependent) homogeneous linear ODE of order n if and only if $y, y', \ldots, y^{(n-1)}$ have no common zero.

Hint: For the if-part work with the function $t \mapsto f(t)^2 + f'(t)^2 + \cdots + f^{(n-1)}(t)^2$.

H52 On Legendre Polynomials (optional exercise)

In the lecture the Legendre polynomials $P_n(X) \in \mathbb{R}[X]$ were defined by $P_n(t) = \frac{1}{2^n n!} D^n[(t^2 - 1)^n], n = 0, 1, 2, \dots$

- a) Compute $P_n(X)$ for $n \leq 6$.
- b) Show that

$$\int_{-1}^{1} P_m(t) P_n(t) = \begin{cases} 0 & \text{if } m \neq n, \\ \frac{2}{2n+1} & \text{if } m = n. \end{cases}$$

Hint: Use partial integration and the fact that $(t^2-1)^n$ has a zero of multiplicity n at $t=\pm 1$. For the case m=n it may be helpful to recall from Calculus III that $\int_0^{\pi/2} \sin^{2n+1} t \, \mathrm{d}t = \frac{(2n)(2n-2)\cdots 4\cdot 2}{(2n+1)(2n-1)\cdots 5\cdot 3}$.

- c) Show that $P_n(X)$ has n distinct zeros $\alpha_1^{(n)} < \alpha_2^{(n)} < \dots < \alpha_n^{(n)}$ in [-1, 1].
- d) Suppose $n \in \mathbb{Z}^+$ and $x_1, \ldots, x_n \in \mathbb{R}$ are such that $-1 \le x_1 < x_2 < \cdots < x_n \le 1$. Show that there are uniquely determined constants ("weights") $c_1, \ldots, c_n \in \mathbb{R}$ such that

$$\int_{-1}^{1} f(t) dt \approx c_1 f(x_1) + \dots + c_n f(x_n)$$
 (GQ_n)

is exact for all polynomial functions f(t) of degree $\leq n-1$.

- e) Show that for the particular choice $x_i = \alpha_i^{(n)}$, cf. c), Formula (GQ_n) is exact for all polynomial functions f(t) of degree $\leq 2n 1$. Hint: Long division of f(t) by $P_n(t)$.
- f) Determine (GQ_n) for n = 1, 2, 3 and the special choice $x_i = \alpha_i^{(n)}$.

Due on Thu Nov 18, 7:30 pm

The optional exercises can be handed in one week later.