

Chapter 11

Outliers and Influential Observations

<u>Overview</u>

- Outliers and Influential observations
 - Ancombe example
- Leverage
- Identifying an outlier
 - Studentized residual, RSTUDENT
- Identifying an influential observation
 - DFFIT and DFFITS
 - DFBETA and DFBETAS

11.1 Introduction

• Sometimes, some observations do not fit the proposed model.

 Observations that do not belong to the model often exhibit numerically large residuals. They are called outliers.

- Two main reasons for outliers:
 - mistakes in inputting or recording the data, (i.e., they don't belong to the model);
 - the algebraic form of the model is incorrect
- Therefore, instead of discarding the outliers, we should study them carefully.
- These outliers may tell us something about the model that we do not know.
- This information can lead to substantial improvements in the model.

- A point has undue influence when it has
 - a large residual or
 - is located far away from other points in the space of the predictor variables.
- Observation 19 is considered as an outlier
- It has a large residual

• The possible influence of Observation 19 is moderated by the fact that there are observations at neighbouring *X*-space

- Observation 18 is considered as an influential observation.
- Being alone in the region, it may have a major influence on the position of the model there
- It may or may not have a large residual, depending on the model fitted and the rest of the data

Anscombe's Example

Ref: Anscombe FJ (1973), "Graphs in Statistical Analysis," The American Statistician, 27, 17-21)

11.2 The Leverage

How to identify influential/outlier observations

- Let $H = X(X'X)^{-1}X'$.
- H is called the hat matrix.
- The leverages h_{ii} 's are the diagonal elements of the hat matrix H. That is,

$$h_{ii} = \underline{x}_i'(X'X)^{-1}\underline{x}_i$$

where $\underline{x_i}'$ is the row of X

• The leverage h_{ii} describes how far away the i^{th} individual data point is from the centre of all data points, $\bar{x} = \sum_{i=1}^{n} \underline{x}_i / n$

The Leverage (Continued)

 Greater influence can be generated at a point far away from the centre, than a point closer to it.

• It can be shown that $\sum_{i=1}^{n} h_{ii} = p+1$, where p is the number of predictor variables.

• Hence, if all h_{ii} 's are **close** to (p + 1)/n and if all the residuals turn out to be acceptably small, no point will have an undue influence.

The Leverage (Continued)

Drawback

 This method for finding influential observations treats all predictor variables the same regardless of how each one affects the response variable.

Remark:

• Leverage does not make use of the information about the i-th observation y_i , or the i-th residuals e_i

11.3 Studentized Residuals

 The Studentized residuals, often called RSTUDENT, is defined by

$$e_i^* = \frac{e_i}{s_{(i)}\sqrt{1 - h_{ii}}}$$
 (11.1)

where e_i is the *i*-th residual and $s_{(i)}$ is similar to s (i.e. \sqrt{MSE}) but the least squares method is run after deleting the *i*-th observation.

- Let $\underline{y}_{(i)}$ denote \underline{y} without the i-th entry and $X_{(i)}$ denote X without the i-th row
- Let $\underline{\hat{\beta}}_{(i)}$ be the least squares estimate of $\underline{\beta}$ based on $\underline{y}_{(i)}$ and $X_{(i)}$, i.e.

$$\underline{\hat{\beta}}_{(i)} = \left(X_{(i)}'X_{(i)}\right)^{-1}X_{(i)}'\underline{y}_{(i)}$$

Clearly

$$(n - p - 2)s_{(i)}^{2} = \sum_{\substack{k=1\\k \neq i}}^{n} \left[y_{k} - \underline{x}_{k}' \underline{\hat{\beta}}_{(i)} \right]^{2}$$

Note:

- $s^2_{(i)}$ is an unbiased and consistent estimate of σ^2
- It can be shown that

$$(n-p-2)s_{(i)}^2 = (n-p-1)s^2 - e_i^2(1-h_{ii})^{-1}$$

- Hence $s^2_{(i)}$ depends on
 - The *s*, (i.e. \sqrt{MSE}), for the full data set
 - The *i*-th residual, e_i and
 - The i-th leverage value, h_{ii}

- Consider adding to the list of predictor variables an indicator variable *w* which is 1 for the *i*-th case but is zero otherwise.
- It can be shown that the t-value associated with this indictor variable w is exactly e_i^* .
- Hence e_i^* has a t-distribution when the underlying distribution is normal.
- With the presence of *w* in the model, the estimates of the coefficients of the other predictor variables and the intercept are not affected by the *i*-th observation.

• Therefore, e_i^* is a standardized measure of the distance between the *i*-th case and the model estimated on the remaining cases.

• Hence it can be served as a test statistic to decide if the *i*-th data point belongs to the model.

• The *i*-th point is considered as a potential outlier or influential observation if $|e_i^*| > 2$ and should be tagged for further investigation.

11.4 DFFIT and DFFITS

• Some other possible measures for influential observations or outliers are to consider how much $\underline{\hat{\beta}}$ and $\underline{\hat{y}}$ would change if a given data point were deleted.

It can be shown that

$$\underline{\hat{\beta}} - \underline{\hat{\beta}}_{(i)} = \frac{(X'X)^{-1}\underline{x}_i e_i}{1 - h_{ii}}$$

<u>DFFIT</u>

Hence

DFFIT =
$$\hat{y}_i - \hat{y}_{i(i)} = \underline{x}_i' \hat{\beta} - \underline{x}_i' \hat{\beta}_{(i)} = \frac{h_{ii} e_i}{1 - h_{ii}}$$

which tells us how much the predicted value \hat{y}_i , at the point \underline{x}_i , would be affected if the *i*-th case were deleted.

DFFITS

• In order to eliminate the effect of units of measurement, standardized version of the statistic DFFITS; is used.

• It can be shown that the variance of \hat{y}_i can be estimated by $s_{(i)}^2 h_{ii}$

Hence

DFFITS_i =
$$\frac{\sqrt{h_{ii}}e_i}{s_{(i)}(1-h_{ii})}$$

DFFITS (Continued)

• The *i*-th case is considered as an influential observation and tagged for further investigation if

$$|\mathsf{DFFITS}_i| > 2\sqrt{\frac{p+1}{n-p-1}}$$

11.5 DFBETA and DFBETAS

Let

$$(X'X)^{-1}\underline{x}_i = \begin{pmatrix} a_{0,i} \\ \vdots \\ a_{p,i} \end{pmatrix}$$

• The effect of the *i*-th observation on the estimate of β_i , j = 0, ..., p is given by

DFBETA_{ij} =
$$\underline{\hat{\beta}}_j - \underline{\hat{\beta}}_{j(i)} = \frac{a_{ji}e_i}{1 - h_{ii}}$$

DFBETAS (Continued)

- Since variance of $\hat{\beta}_j$ is $q_{jj}\sigma^2$, where q_{jj} is the j-th diagonal element of $(X'X)^{-1}$, hence an estimate of the variance of $\hat{\beta}_j$ is given by $s_{(i)}^2q_{jj}$.
- Therefore the standardized version of DFBETA $_{ij}$ is given by

DFBETAS_{ij} =
$$\frac{a_{ji}e_i}{s_{(i)}(1 - h_{ii})\sqrt{q_{jj}}}$$

DFBETAS (Continued)

• The *i*-th case is considered as having large influence on the estimate of β_j and tagged for further investigation if

$$\left| \text{DFBETAS}_{ij} \right| > \frac{2}{\sqrt{n}}$$

DFBETAS (Continued)

 Both DFFITS and DFBETAS are functions of the leverage and the RSTUDENT

DFFITS_i =
$$\frac{h_{ii}}{1 - h_{ii}} e_i^*$$
DFBETAS_{ij} =
$$\frac{a_{ji}}{\sqrt{q_{jj}(1 - h_{ii})}} e_i^*$$

 Therefore, if either the leverage increases or the Studentized residual increases, both measures of influence will increase.

11.6 Other Measures of Influence

Covariance Ratio

Covariance Ratio =
$$\frac{\det \left(s_{(i)}^2 (X'_{(i)} X_{(i)})^{-1}\right)}{\det \left(s^2 (X'X)^{-1}\right)}$$

- A value of this ratio close to 1 would indicate lack of influence of the *i*-th data point
- Cook's Statistics

$$\frac{\left(\hat{\beta} - \hat{\beta}_{(i)}\right)' X' X \left(\hat{\beta} - \hat{\beta}_{(i)}\right)}{(p+1)s^2}$$

 It can be shown that it is essentially the same as the square of the DFFITS_i

11.7 Programs

SAS program

```
proc reg data = chllex1;
  model y = x / influence;
run;
```

R program

```
library(car)
model1=lm(y~x)
influence.measures(model1)
rstudent(model1)
```


11.8 Examples

Example 1

The following data set gives the plots on pages 11.5-7

Case	1	2	3	4	5	6	7	8	9	10	11
У	95	71	93	91	102	87	93	100	104	94	113
X	15	26	10	9	15	20	18	11	8	20	7

Case	12	13	14	15	16	17	18	19	20	21
У	96	83	84	102	100	105	57	121	86	100
X	9	10	11	11	10	11	42	17	11	10

Partial Printout for Example 1 Using SAS

			Hat Diag	Cov		DFBETAS		
Obs	Residual	RStudent	H	Ratio	DFFITS	Intercept	x	
1	2.0310	0.1840	0.0479	1.1659	0.0413	0.0166	0.0033	
2	-9.5721	-0.9416	0.1545	1.1970	-0.4025	0.1886	-0.3348	
3	-15.6040	-1.5108	0.0628	0.9363	-0.3911	-0.3310	0.1924	
4	-8.7309	-0.8143	0.0705	1.1151	-0.2243	-0.2000	0.1279	
5	9.0310	0.8329	0.0479	1.0850	0.1869	0.0753	0.0149	
6	-0.3341	-0.0306	0.0726	1.2013	-0.0086	0.0011	-0.0050	
7	3.4120	0.3112	0.0580	1.1702	0.0772	0.0045	0.0327	
8	2.5230	0.2297	0.0567	1.1742	0.0563	0.0443	-0.0225	
9	3.1421	0.2899	0.0799	1.1997	0.0854	0.0791	-0.0543	
10	6.6659	0.6177	0.0726	1.1521	0.1728	-0.0228	0.1014	
11	11.0151	1.0508	0.0908	1.0878	0.3320	0.3156	-0.2289	
12	-3.7309	-0.3428	0.0705	1.1833	-0.0944	-0.0842	0.0538	
13	-15.6040	-1.5108	0.0628	0.9363	-0.3911	-0.3310	0.1924	
14	-13.4770	-1.2798	0.0567	0.9923	-0.3137	-0.2468	0.1254	
15	4.5230	0.4132	0.0567	1.1590	0.1013	0.0797	-0.0405	
16	1.3960	0.1274	0.0628	1.1867	0.0330	0.0279	-0.0162	
17	8.6500	0.7983	0.0521	1.0964	0.1872	0.1333	-0.0549	
18	-5.5403	-0.8451	0.6516	2.9587	-1.1558	0.8311	-1.1127	
19	30.2850	3.6070	0.0531	0.3964	0.8537	0.1435	0.2732	
20	-11.4770	-1.0765	0.0567	1.0426	-0.2638	-0.2076	0.1054	
21	1.3960	0.1274	0.0628	1.1867	0.0330	0.0279	-0.0162	

Partial Printout for Example 1 Using R

Influence measures of $Im(formula = y \sim x)$:

```
dffit
    dfb.1
             dfb.x
                            cov.r cook.d hat inf
1 0.01664 0.00328 0.04127 1.166 8.97e-04 0.0479
2 0.18862 -0.33480 -0.40252 1.197 8.15e-02 0.1545
3 -0.33098 0.19239 -0.39114 0.936 7.17e-02 0.0628
4 -0.20004 0.12788 -0.22433 1.115 2.56e-02 0.0705
  0.07532 0.01487 0.18686 1.085 1.77e-02 0.0479
  0.00113 -0.00503 -0.00857 1.201 3.88e-05 0.0726
 0.00447 0.03266 0.07722 1.170 3.13e-03 0.0580
 0.04430 -0.02250 0.05630 1.174 1.67e-03 0.0567
9 0.07907 -0.05427 0.08541 1.200 3.83e-03 0.0799
10 -0.02283 0.10141 0.17284 1.152 1.54e-02 0.0726
11 0.31560 -0.22889 0.33200 1.088 5.48e-02 0.0908
12 -0.08422 0.05384 -0.09445 1.183 4.68e-03 0.0705
13 -0.33098 0.19239 -0.39114 0.936 7.17e-02 0.0628
14 -0.24681 0.12536 -0.31367 0.992 4.76e-02 0.0567
15 0.07968 -0.04047 0.10126 1.159 5.36e-03 0.0567
16 0.02791 -0.01622 0.03298 1.187 5.74e-04 0.0628
17 0.13328 -0.05493 0.18717 1.096 1.79e-02 0.0521
18 0.83112 -1.11275 -1.15578 2.959 6.78e-01 0.6516
19 0.14348 0.27317 0.85374 0.396 2.23e-01 0.0531 *
20 -0.20761 0.10544 -0.26385 1.043 3.45e-02 0.0567
21 0.02791 -0.01622 0.03298 1.187 5.74e-04 0.0628
```


Partial Printout for Example 1 Using R (Continued)

> rstudent(model1)

1 2 3 4 5 6
0.18396849 -0.94158335 -1.51081192 -0.81426336 0.83286292 -0.03063183
7 8 9 10 11 12
0.31124676 0.22971575 0.28991014 0.61766026 1.05084716 -0.34283148
13 14 15 16 17 18
-1.51081192 -1.27977575 0.41315320 0.12739342 0.79828114 -0.84511086
19 20 21
3.60697972 -1.07648108 0.12739342

From the printout, we have the following.

<u>Leverage</u>

- The value of h_{ii} for Observation 18 is 0.6516.
- It is much higher than the expected value (p + 1)/n = 0.0952.
- Hence Observation 18 is a potential influential observation.

Studentized residuals RSTUDENT

- The value of e_i^* for Observation 19 is 3.6070.
- It is much higher than 2.
- Hence Observation 19 is a potential influential observation.

DFFITS

 The value of DFFITS for Observations 18 and 19 are -1.1558 and 0.8537.

• They are much higher than $2\sqrt{2/19} = 0.6489$.

 Hence Observations 18 and 19 are potential influential observations.

DFBETAS

For β_0

• The value of DFBETAS for β_0 for Observation 18 is 0.8311.

• It is bigger than $2/\sqrt{21} = 0.4364$.

Hence Observation 18 is a potential influential observation.

DFBETAS

For β_1

- The value of DFBETAS for β_1 for Observation 18 is -1.1127.
- It is much higher than 0.4364.
- Hence Observation 18 is a potential influential observation.
- To summarize, Observations 18 and 19 are potential influential observations or outliers and should be tagged for further study.

Example 2

The data for Example 2 are given in the file "ch11ex2.txt" in the IVLE.

Partial Printout for Example 2 using SAS

		Hat Diag		Cov		DFBETAS			
Obs	Residual	RStudent	H	Ratio	DFFITS	Intercept	x 1	x 2	
1	-0.8092	-0.3780	0.2291	1.5679	-0.2061	0.0482	-0.1776	-0.0454	
2	-1.5768	-0.6812	0.0766	1.2176	-0.1963	-0.0973	-0.0536	0.0599	
3	-1.0650	-0.4715	0.1364	1.3746	-0.1874	-0.1714	0.1085	0.1173	
4	7.7691	9.9314	0.1256	0.0023	3.7646	2.5511	0.8506	-2.2690	
5	-0.6770	-0.2909	0.0931	1.3506	-0.0932	-0.0716	0.0518	0.0362	
6	0.2861	0.1329	0.2276	1.6104	0.0721	-0.0358	0.0026	0.0603	
7	0.5104	0.2437	0.2669	1.6805	0.1471	-0.0815	0.0138	0.1278	
8	0.3437	0.1601	0.2318	1.6162	0.0880	-0.0379	-0.0082	0.0702	
9	0.3860	0.1729	0.1691	1.4929	0.0780	-0.0235	-0.0139	0.0551	
10	-0.2317	-0.0989	0.0852	1.3622	-0.0302	-0.0138	0.0161	-0.0001	
11	-0.3165	-0.1353	0.0884	1.3644	-0.0421	-0.0343	0.0191	0.0199	
12	0.2649	0.1150	0.1152	1.4073	0.0415	0.0244	0.0132	-0.0211	
13	0.9924	0.4382	0.1339	1.3800	0.1723	0.1612	-0.0845	-0.1172	
14	-1.8408	-1.3005	0.6233	2.2972	-1.6729	0.3139	-1.5494	-0.0812	
15	-0.1413	-0.0598	0.0699	1.3417	-0.0164	-0.0017	0.0018	-0.0055	
16	-1.6099	-0.7447	0.1891	1.3589	-0.3597	-0.3485	0.1999	0.2687	
17	-2.2845	-1.0454	0.1386	1.1381	-0.4194	-0.3769	0.2593	0.2495	

Partial Printout for Example 2 Using R

```
dfb.1
            dfb.x1
                     dfb.x2
                               dffit
                                              cook.d
                                                       hat inf
                                       cov.r
  0.04820 -0.17760 -0.045398 -0.2061 1.56788 1.51e-02 0.2291
2 -0.09726 -0.05358 0.059948 -0.1963 1.21756 1.33e-02 0.0766
3 <u>-0.17139</u> 0.10847 0.117314 <u>-0.1874</u> 1.37460 1.24e-02 0.1364
4 2.55105 0.85060 -2.269011 3.7646 0.00226 5.92e-01 0.1256
5 -0.07157 0.05180 0.036238 -0.0932 1.35062 3.10e-03 0.0931
6 -0.03582 0.00261 0.060327 0.0721 1.61043 1.87e-03 0.2276
7 -0.08147 0.01377 0.127822 0.1471 1.68054 7.73e-03 0.2669
8 -0.03790 -0.00824 0.070233 0.0880 1.61625 2.77e-03 0.2318
9 -0.02348 -0.01388 0.055145 0.0780 1.49288 2.18e-03 0.1691
10 -0.01379 0.01607 -0.000133 -0.0302 1.36219 3.26e-04 0.0852
11 -0.03430 0.01909 0.019900 -0.0421 1.36436 6.37e-04 0.0884
12 0.02436 0.01321 -0.021125 0.0415 1.40734 6.17e-04 0.1152
13 0.16119 -0.08454 -0.117175 0.1723 1.38002 1.05e-02 0.1339
14 0.31395 -1.54939 -0.081173 -1.6729 2.29721 8.89e-01 0.6233
15 -0.00169 0.00185 -0.005484 -0.0164 1.34171 9.63e-05 0.0699
16 -0.34855 0.19991 0.268732 -0.3597 1.35890 4.45e-02 0.1891
17 -0.37688 0.25928 0.249471 -0.4194 1.13812 5.82e-02 0.1386
```


Partial Printout for Example 2 Using R (Continued

> rstudent(model2)

1 2 3 4 5 6

-0.37801050 -0.68119342 -0.47146876 9.93141754 -0.29091422 0.13289608

7 8 9 10 11 12

0.24372410 0.16013046 0.17293852 -0.09885476 -0.13532374 0.11495241

13 14 15 16 17

0.43816486 -1.30053194 -0.05975554 -0.74468118 -1.04541119

From the printout, we have the following.

<u>Leverage</u>

- The value of h_{ii} for Observation 14 is 0.6233.
- It is much higher than the expected value (p + 1)/n = 0.1764.
- Hence Observation 14 is a potential influential observation.

From the printout, we have the following.

Studentized residuals RSTUDENT

- The value of e_i^* for Observation 4 is 9.9314.
- It is much higher than 2.
- Hence Observation 4 is a potential influential observation.

<u>DFFITS</u>

• The value of DFFITS for Observations 4 and 14 are 3.7646 and -1.6729.

• They are much higher than $2/\sqrt{3/14} = 0.9258$.

 Hence Observations 4 and 14 are potential influential observations.

DFBETAS

For β_0

• The value of DFBETAS for β_0 for Observation 4 is 2.5511.

• It is bigger than $2/\sqrt{17} = 0.4851$.

• Hence Observation 4 is a potential influential observation.

DFBETAS

For β_1

• The values of DFBETAS for β_1 for Observations 4 and 14 are 0.8506 and -1.5494 respectively

• It is much higher than 0.4851.

 Hence Observations 4 and 14 are potential influential observations.

DFBETAS

For β_2

- The value of DFBETAS for β_2 for Observation 4 is -2.2690.
- It is much higher than 0.4851.
- Hence Observation 4 is a potential influential observation.
- To summarize, Observations 4 and 14 are potential influential observations or outliers and should be tagged for further study.

<u>Recap</u>

- Leverage:
 - Check if h_{ii} is **far away** from to (p + 1)/n
- Studentized residual (RSTUDENT), e_i^*
 - Check if $|e_i^*| > 2$
- DFFIT and DFFITS
 - Check if $|DFFITS_i| > 2\sqrt{(p+1)/(n-p-1)}$
- DFBETA and DFBETAS
 - Check if $|DFBETAS_{ij}| > 2/\sqrt{n}$