Lecture 10: Sorting Algorithms

(Chapter 11, Sections 11.1, 11.2, 11.3 from the book)

Agenda

- Sorting
 - Sorting Problem
 - Merge Sort
 - Quick Sort
 - Bucket Sort
- Sorting Lower Bound

Sorting Problem

- Sort a given sequence of data items according to their keys.
 - Examples
 - 1) Input: (15, ...), (26, ...), (11, ...), (23, ...), (7, ...), (31, ...), (30, ...) Output: (7, ...), (11, ...), (15, ...), (23, ...), (26, ...), (30, ...), (31, ...)
 - 2) Input: ("go", ...), ("did", ...), ("me", ...), ("bet", ...), ("kit", ...)

 Output: ("bet", ...), ("did", ...), ("go", ...), ("kit", ...), ("me", ...)
- Sorting is a fundamental application for computers.
- Sorting is perhaps the most intensively studied and important operation in computer science.
- An initial sort of the data can significantly enhance the performance of an algorithm.

Divide-and-Conquer

- Divide-and conquer is a general algorithm design paradigm:
 - Divide: divide the input data S in two disjoint subsets S_1 and S_2
 - Recur: solve the subproblems associated with S_1 and S_2
 - Conquer: combine the solutions for S_1 and S_2 into a solution for S

Merge-Sort

- Merge-sort on an input sequence S with n elements consists of three steps:
 - Divide: If S has zero or one element, return S immediately. Otherwise, remove all the elements from S and put them into two sequences, S_1 and S_2 , each containing about half of the elements of S; S_1 contains the first $\lceil n/2 \rceil$ elements of S and S_2 contains the remaining $\lceil n/2 \rceil$ elements
 - Recur: recursively sort S_1 and S_2
 - Conquer: merge S_1 and S_2 into a sorted sequence S
- The base case for the recursion are subproblems of size 0 or 1
- $\lceil n/2 \rceil$ ceiling of x the smallest integer m, such that x <= m, e.g: $\lceil 5/2 \rceil = 3 \rceil$ $\lceil n/2 \rceil$ floor of x the largest integer k, such that k <= x, e.g: $\lceil 5/2 \rceil = 2 \rceil$

Merge-sort

```
Algorithm mergeSort(S, C)
Input sequence S with n elements, comparator C
Output sequence S sorted according to C
if S.size() > 1
(S_1, S_2) \leftarrow partition(S, n/2)
mergeSort(S_1, C)
mergeSort(S_2, C)
S \leftarrow merge(S_1, S_2)
```

Merging Two Sorted **List**-based Sequences

```
Algorithm merge(A, B, S)
   Input sorted sequences A and B and an empty
sequence S implemented as linked list
   Output sorted sequence S = A \cup B
   while \neg A.isEmpty() \land \neg B.isEmpty()
       if A.first().element() \le B.first().element()
           {move the first element of A at the end of S}
           S.addLast(A.remove(A.first()))
       else
           {move the first element of B at the end of S}
           S.addLast(B.remove(B.first()))
```

```
{move the remaining elements of A to S}
while \neg A.isEmpty()
   S.addLast(A.remove(A.first()))
{move the remaining elements of B to S}
while \neg B.isEmpty()
   S.addLast(B.remove(B.first()))
return S
```

```
S
ii)
     В
iii)
     В
iv)
     В
v)
     В
```

Merging Two Sorted **Array**-based Sequences

Algorithm merge(A, B, S)

Input sorted sequences *A* and *B* and an empty sequence *S*, all of which are implemented as arrays

Output sorted sequence $S = A \cup B$

$$i \leftarrow j \leftarrow 0$$

while $i < A$ size() A $i < B$ size() do

while $i < A.size() \land j < B.size()$ do if A.get(i) <= B.get(j)

{copy ith element of A to the end of S} S.addLast(A.get(i))

 $i \leftarrow i+1$

else

return S

S.addLast(B.get(j)) {copy jth element of B to the end of S}

 $j \leftarrow j+1$

{move the remaining elements of A to S} while i < A.size() do S.addLast(A.get(i)); $i \leftarrow i+1$

{move the remaining elements of B to S} while j < B.size() do $S.addLast(B.get(j)); j \leftarrow j+1$

i) A 24 45 63

 $\begin{array}{c|c}
B & 1 \\
\hline
17 & 31 \\
\hline
j
\end{array}$

S 0 1 2 3 4

ii) A 24 45 6

 $\begin{array}{c|c}
0 & 1 \\
17 & 31
\end{array}$

0 1 2 3 4

A 24 45 63

iii)

j 0 1 2 3

iv) ...

Merge-Sort Tree

- An execution of merge-sort is depicted by a binary tree
 - each node represents a recursive call of merge-sort and stores
 - unsorted sequence before the execution and its partition
 - sorted sequence at the end of the execution
 - the root is the initial call
 - the leaves are calls on subsequences of size 0 or 1
- ♦ Sequence: (7,2,9,4)

Execution Example (7,2,9,4,3,8,6,1)

Recursive call, partition

Recursive call, partition

Recursive call, base case

Recursive call, base case

Recursive call, ..., base case, merge

7 2 9 4 | 3 8 6 1 $7 \ 2 \ | \ 9 \ 4 \rightarrow 2 \ 4 \ 7 \ 9$ $2 \rightarrow 2 \ 7$

Recursive call, ..., merge, merge

Analysis of Merge-Sort

- The height h of the merge-sort tree is $O(\log n)$
 - at each recursive call we divide in half the sequence,
- The overall amount or work done at the nodes of depth i is O(n)
 - tree has 2^i nodes at depth i
 - we partition and merge 2^i sequences of size $n/2^i$
 - Overall time spent at all the nodes at depth i is $O(2^i \cdot n/2^i)$ which is O(n)
- Thus, the total running time of merge-sort is $O(n \log n)$ depth #seqs size

- Quick-sort is a randomized sorting algorithm based on the divide-and-conquer paradigm:
 - Divide: If S has at least two elements (otherwise nothing needs to be done) pick a random element x (called pivot). Remove all the elements from S and put into three sequences:
 - L elements less than x
 - *E* elements equal *x*
 - *G* elements greater than *x*
 - lacksquare Recur: sort L and G
 - Conquer: Put back the elements into S in order by first inserting the elements of L, then those of E and finally those of G.

- We partition an input sequence as follows:
 - We remove, in turn, each element y from S and
 - We insert y into L, E or G, depending on the result of the comparison with the pivot x
- Each insertion and removal is at the beginning or at the end of a sequence, and hence takes O(1) time
- Thus, the partition step of quick-sort takes O(n) time

```
Algorithm partition(S, p)
```

Input sequence S, position p of pivotOutput subsequences L, E, G of the elements of S less than, equal to, or greater than the pivot, resp.

```
L, E, G \leftarrow \text{empty sequences}
x \leftarrow S.remove(p)
E.addLast(x)
while \neg S.isEmpty()
y \leftarrow S.remove(S.first())
if y < x
L.addLast(y)
else if y = x
E.addLast(y)
else \{y > x\}
G.addLast(y)
```

return L, E, G

Quick-

Quick-Sort Tree

- An execution of quick-sort is depicted by a binary tree
 - Each node represents a recursive call of quick-sort and stores
 - Unsorted sequence before the execution and its pivot
 - Sorted sequence at the end of the execution
 - The root is the initial call
 - The leaves are calls on subsequences of size 0 or 1

Execution Example (7,2,9,4,3,7,6,1)

Pivot selection

7 2 9 4 3 7 <u>6</u> 1

Partition, recursive call, pivot selection

Partition, recursive call, base case

Recursive call, ..., base case, join

© 2010 Goodrich, Tamassia

Recursive call, pivot selection

© 2010 Goodrich, Tamassia

Partition, ..., recursive call, base case

Worst-case Running Time

- The worst case for quick-sort occurs when the pivot is the unique minimum or maximum element
- \bullet One of L and G has size n-1 and the other has size 0
- The running time is proportional to the sum

$$n + (n - 1) + \dots + 2 + 1$$

 \bullet Thus, the worst-case running time of quick-sort is $O(n^2)$

depth time

Expected Running Time

- Consider a recursive call of quick-sort on a sequence of size s
 - **Good call:** the sizes of L and G are each less than 3s/4
 - Bad call: one of L and G has size greater than 3s/4

Good call

Bad call

- ♠ A call is good with probability 1/2
 - 1/2 of the possible pivots cause good calls:

Expected Running Time, Part 2

- lacktriangle Probabilistic Fact: The expected number of coin tosses required in order to get k heads is 2k
- \bullet For a node of depth i, we expect
 - i/2 ancestors are good calls
 - The size of the input sequence for the current call is at most $(3/4)^{i/2}n$
- Therefore, we have
 - For a node of depth $2\log_{4/3}n$, the expected input size is one
 - The expected height of the quick-sort tree is $O(\log n)$
- The amount or work done at the nodes of the same depth is O(n)
- Thus, the expected running time of quick-sort is $O(n \log n)$

total expected time: $O(n \log n)$

Exercise – Merge-sort and Quick-sort

 Perform merge-sort and quick-sort on the following sequence of numbers:
 (3, 5, 1, 9, 3)

In-Place Quick-Sort – optimisation of "divide" step

39

- Quick-sort can be implemented to run in-place
- "Divide" step can be done "in place", that is, without using any additional array, in the following way.
- \bullet Assume we want to divide A[leftEnd...rightEnd] with respect to pivot A[rightEnd].
- lacktriangle Maintain two indices, L (left cursor) and R (Right cursor), with initial values leftEnd and rightEnd-1, respectively. The elements which have not been considered yet are in A[(L+1)..(R-1)].

In-Place Quick-Sort – optimisation of "divide" step

\square Iterate until L <= R:

- Keep increasing L by 1 until an element A[L] is smaller than the pivot and L <= R.
- Keep decreasing $m{R}$ by 1 until an element $m{A}[m{R}]$ is larger than the pivot and $m{L} <= m{R}$.
- If L < R swap A[L] and A[R], and proceed to the next iteration.
- lacksquare Swap A[L] and pivot

Summary of Sorting Algorithms

Algorithm	Time	Notes
selection-sort	$O(n^2)$	in-placeslow (good for small inputs)
insertion-sort	$O(n^2)$	in-placeslow (good for small inputs)
quick-sort	$O(n \log n)$ expected	in-placefastest (good for large inputs)
heap-sort	$O(n \log n)$	in-placefast (good for large inputs)
merge-sort	$O(n \log n)$	sequential data accessfast (good for huge inputs)

Bucket-Sort

Bucket-Sort

- Bucket-sort does not use comparison
- Let S be a sequence of n (key, element) entries with keys in the range [0, N-1]
- Bucket-sort uses the keys as indices into an auxiliary array B of sequences (buckets)

Phase 1: Empty sequence S by moving each entry (k, o) into its bucket B[k]

Phase 2: For i = 0, ..., N - 1, move the entries of bucket B[i] to the end of sequence S

- Analysis:
 - Phase 1 takes O(n) time
 - Phase 2 takes O(n + N) time

Bucket-sort takes O(n + N) time


```
Input sequence S of (key, element) items with keys in the range [0, N-1]

Output sequence S sorted by increasing keys

B \leftarrow \text{array of } N \text{ empty sequences}

while \neg S.isEmpty()
f \leftarrow S.first()
(k, o) \leftarrow S.remove(f)
B[k].addLast((k, o))
for i \leftarrow 0 to N-1
```

while $\neg B[i]$. is Empty()

 $f \leftarrow B[i].first()$

S.addLast((k, o))

 $(k, o) \leftarrow B[i].remove(f)$

Algorithm *bucketSort(S, N)*

Example

♦ Key range [0, 9]

Exercise – Bucket-sort

Perform bucket-sort on the following sequence of numbers:(3, 5, 1, 9, 3, 7, 8, 8)

Stability of sorting

- Sorting algorithm is stable if the relative order of any two items with the same key in an input sequence is preserved after the execution of the algorithm.
- Stable sorting algorithms:
 - Merge-sort
 - Bucket-sort
- Unstable sorting algorithms:
 - Quick-sort

Sorting Lower Bound

Comparison-Based Sorting

- Many sorting algorithms are comparison based.
 - They sort by making comparisons between pairs of objects
 - Examples: selection-sort, insertion-sort, heap-sort, merge-sort, quick-sort
- Let us therefore derive a lower bound on the running time of any algorithm that uses comparisons to sort n elements, x₁, x₂, ..., x_n.

Counting Comparisons

- Let us just count comparisons then.
- Each possible run of the algorithm corresponds to a root-to-leaf path in a decision tree

51

Decision Tree Height

- The height of the decision tree is a lower bound on the running time
- Every input permutation must lead to a separate leaf output
- ◆ If not, some input ...4...5... would have same output ordering as ...5...4..., which would be wrong
- Since there are $n!=1\cdot 2\cdot ...\cdot n$ leaves, the height is at least log (n!)

52

The Lower Bound

- Any comparison-based sorting algorithms takes at least log (n!) time
- Therefore, any such algorithm takes time at least

$$\log (n!) \ge \log \left(\frac{n}{2}\right)^{\frac{n}{2}} = (n/2)\log (n/2).$$

That is, any comparison-based sorting algorithm must run in $\Omega(n \log n)$ time.