1 Rappel de cours

Normes sur \mathbb{R}^d

Définition des normes usuelles sur \mathbb{R}^d

Soit $X = (x_1, \dots, x_d) \in \mathbb{R}^d$. On définit les normes suivantes :

• Norme euclidienne (ou norme ℓ^2):

$$||X|| = ||X||_2 = \sqrt{\sum_{i=1}^d x_i^2} = \sqrt{X \cdot X}$$

• Norme ℓ^1 :

$$||X||_1 = \sum_{i=1}^d |x_i|$$

• Norme ℓ^{∞} (ou norme du maximum) :

$$||X||_{\infty} = \max_{1 \le i \le d} |x_i|$$

Propriétés des normes

Définition (Norme)

Definition 1.1. Pour toute norme $\|\cdot\|$ sur \mathbb{R}^d et pour tous $X,Y\in\mathbb{R}^d$ et $\lambda\in\mathbb{R}$, on a :

1. $\|\lambda X\| = |\lambda| \|X\|$ (Homogénéité)

2. $||X + Y|| \le ||X|| + ||Y||$ (Inégalité triangulaire)

3. $\|X\| \geq 0$ et $\|X\| = 0 \Leftrightarrow X = 0$ (Séparation)

Inégalité de Cauchy-Schwarz

Theorem 1.2 (Inégalité de Cauchy-Schwarz). Pour tous $X, Y \in \mathbb{R}^d$, on a :

$$|X\cdot Y|\leq \|X\|\|Y\|$$

Distances sur \mathbb{R}^d et \mathbb{C}^d

Définition de la distance euclidienne

Definition 1.3. La distance euclidienne entre deux points $X,Y\in\mathbb{R}^d$ est définie par :

$$d(X,Y) = ||Y - X|| = \sqrt{\sum_{i=1}^{d} (x_i - y_i)^2}$$

Définition générale d'une distance

Definition 1.4. Plus généralement, une distance d sur un ensemble E est une application $d: E \times E \to \mathbb{R}^+$ satisfaisant les propriétés suivantes pour tous $x, y, z \in E$:

1. $d(x,y) \ge 0$ (Positivité)

2. d(x,y) = d(y,x) (Symétrie)

- 3. $d(x,y) \le d(x,z) + d(z,y)$ (Inégalité triangulaire)
- 4. $d(x,y) = 0 \Leftrightarrow x = y$ (Axiome de séparation)

2 Exercices résolus

2.1 Exercice 1

Énoncé de l'exercice 1 : On pose pour $X = (x_1, \dots, x_d) \in \mathbb{R}^d$:

$$||X||_1 = \sum_{i=1}^d |x_i|, \quad ||X||_2 = (\sum_{i=1}^d x_i^2)^{1/2}, \quad ||X||_{\infty} = \max_{1 \le i \le d} |x_i|$$

- 1) Montrer que $\|\cdot\|_1$, $\|\cdot\|_2$ et $\|\cdot\|_\infty$ sont des normes sur \mathbb{R}^d , $\forall X \in \mathbb{R}^d$.
 - 2) Montrer que

$$||X||_{\infty} \le ||X||_2 \le ||X||_1, \quad \forall X \in \mathbb{R}^d.$$

3) Montrer que

$$||X||_1 \le d||X||_{\infty}, \quad \forall X \in \mathbb{R}^d.$$

4) Montrer que

$$||X||_2 \le \sqrt{d} ||X||_{\infty}, \quad \forall X \in \mathbb{R}^d.$$

Solution (Solution de l'exercice 1). Soit $X=(x_1,\ldots,x_d)\in\mathbb{R}^d$ et $\lambda\in\mathbb{R}$.

- 1) Pour $\|\cdot\|_1$:
- $\|\lambda X\|_1 = \sum_{i=1}^d |\lambda x_i| = |\lambda| \sum_{i=1}^d |x_i| = |\lambda| \|X\|_1$
- $||X + Y||_1 = \sum_{i=1}^d |x_i + y_i| \le \sum_{i=1}^d (|x_i| + |y_i|) = \sum_{i=1}^d |x_i| + \sum_{i=1}^d |y_i| = ||X||_1 + ||Y||_1$
- $||X||_1 = \sum_{i=1}^d |x_i| \ge 0$. De plus, $||X||_1 = 0 \Leftrightarrow \sum_{i=1}^d |x_i| = 0 \Leftrightarrow |x_i| = 0$ pour tout $i \Leftrightarrow x_i = 0$ pour tout $i \Leftrightarrow X = 0$.

Donc $\|\cdot\|_1$ est une norme.

Pour $\|\cdot\|_{\infty}$:

- $\|\lambda X\|_{\infty} = \max_i |\lambda x_i| = |\lambda| \max_i |x_i| = |\lambda| \|X\|_{\infty}$
- $||X + Y||_{\infty} = \max_{i} |x_i + y_i| \le \max_{i} (|x_i| + |y_i|) \le \max_{i} |x_i| + \max_{i} |y_i| = ||X||_{\infty} + ||Y||_{\infty}$
- $||X||_{\infty} = \max_i |x_i| \ge 0$. De plus, $||X||_{\infty} = 0 \Leftrightarrow \max_i |x_i| = 0 \Leftrightarrow |x_i| = 0$ pour tout $i \Leftrightarrow x_i = 0$ pour tout $i \Leftrightarrow X = 0$.

Donc $\|\cdot\|_{\infty}$ est une norme.

Pour $\|\cdot\|_2$:

- $\|\lambda X\|_2 = \sqrt{\sum_{i=1}^d (\lambda x_i)^2} = \sqrt{\lambda^2 \sum_{i=1}^d x_i^2} = |\lambda| \sqrt{\sum_{i=1}^d x_i^2} = |\lambda| \|X\|_2$
- Inégalité triangulaire (Minkowski) admise.
- $\|X\|_2 = \sqrt{\sum_{i=1}^d x_i^2} \ge 0$. De plus, $\|X\|_2 = 0 \Leftrightarrow \sqrt{\sum_{i=1}^d x_i^2} = 0 \Leftrightarrow \sum_{i=1}^d x_i^2 = 0 \Leftrightarrow x_i^2 = 0$ pour tout $i \Leftrightarrow x_i = 0$ pour tout $i \Leftrightarrow X = 0$.

Donc $\|\cdot\|_2$ est une norme.

2) Montrons $||X||_{\infty} \le ||X||_2 \le ||X||_1$:

• i) $||X||_{\infty} \le ||X||_2$: Soit i_0 tel que $|x_{i_0}| = \max_i |x_i| = ||X||_{\infty}$.

$$||X||_2 = \sqrt{\sum_{i=1}^d x_i^2} = \sqrt{x_1^2 + \dots + x_{i_0}^2 + \dots + x_d^2} \ge \sqrt{x_{i_0}^2} = |x_{i_0}| = ||X||_{\infty}$$

Donc $||X||_{\infty} \le ||X||_2$.

• ii) $||X||_2 \le ||X||_1$:

$$||X||_2^2 = \sum_{i=1}^d x_i^2 = \sum_{i=1}^d |x_i|^2 = \sum_{i=1}^d |x_i||x_i| \le \max_i |x_i| \sum_{i=1}^d |x_i| = ||X||_{\infty} ||X||_1$$

Ceci ne marche pas directement.

On utilise plutôt que $|x_i| \leq ||X||_1$ et donc $|x_i|^2 \leq |x_i|||X||_1$.

$$||X||_2^2 = \sum_{i=1}^d x_i^2 = \sum_{i=1}^d |x_i|^2 \le \sum_{i=1}^d |x_i| ||X||_1 = ||X||_1 \sum_{i=1}^d |x_i| = ||X||_1^2$$

Donc $||X||_2^2 \le ||X||_1^2$. Comme les normes sont positives, on a $||X||_2 \le ||X||_1$.

3) Montrons $||X||_1 \le d||X||_{\infty}$:

$$||X||_1 = \sum_{i=1}^d |x_i| = |x_1| + \dots + |x_d| \le \max_i |x_i| + \dots + \max_i |x_i| = d \max_i |x_i| = d||X||_{\infty}$$

Donc $||X||_1 \le d||X||_{\infty}$. 4) Montrons $||X||_2 \le \sqrt{d}||X||_{\infty}$:

$$||X||_{2}^{2} = \sum_{i=1}^{d} x_{i}^{2} = \sum_{i=1}^{d} |x_{i}|^{2} = |x_{1}|^{2} + \dots + |x_{d}|^{2} \le (\max_{i} |x_{i}|)^{2} + \dots + (\max_{i} |x_{i}|)^{2} = d(\max_{i} |x_{i}|)^{2} = d||X||_{\infty}^{2}$$

Donc $||X||_2^2 \le d||X||_{\infty}^2$. Comme les normes sont positives, on a $||X||_2 \le \sqrt{d}||X||_{\infty}$.

2.2 Exercice 2

Énoncé de l'exercice 2: Soit $\|\cdot\|$ la norme euclidienne sur \mathbb{R}^d . Montrer l'identité du parallélogramme :

$$\|X+Y\|^2+\|X-Y\|^2=2(\|X\|^2+\|Y\|^2),\quad \forall X,Y\in\mathbb{R}^d.$$

Solution (Solution de l'exercice 2). Soient $X = (x_1, \dots, x_d) \in \mathbb{R}^d$ et $Y = (y_1, \dots, y_d) \in \mathbb{R}^d$.

$$||X + Y||^2 = \sum_{i=1}^d (x_i + y_i)^2 = \sum_{i=1}^d (x_i^2 + 2x_iy_i + y_i^2) = \sum_{i=1}^d x_i^2 + 2\sum_{i=1}^d x_iy_i + \sum_{i=1}^d y_i^2$$
$$= ||X||^2 + 2\sum_{i=1}^d x_iy_i + ||Y||^2$$

$$||X - Y||^2 = \sum_{i=1}^d (x_i - y_i)^2 = \sum_{i=1}^d (x_i^2 - 2x_i y_i + y_i^2) = \sum_{i=1}^d x_i^2 - 2\sum_{i=1}^d x_i y_i + \sum_{i=1}^d y_i^2$$
$$= ||X||^2 - 2\sum_{i=1}^d x_i y_i + ||Y||^2$$

Donc en sommant:

$$||X + Y||^2 + ||X - Y||^2 = (||X||^2 + 2\sum_{i=1}^d x_i y_i + ||Y||^2) + (||X||^2 - 2\sum_{i=1}^d x_i y_i + ||Y||^2)$$
$$= 2||X||^2 + 2||Y||^2 = 2(||X||^2 + ||Y||^2)$$

D'où l'identité du parallélogramme.

2.3 Exercice 3

Énoncé de l'exercice 3 : Soit $\delta(X,Y)$ la distance usuelle dans \mathbb{R}^2 . On pose

$$\delta(X,Y) = \begin{cases} d(X,Y) & \text{si } 0, X, Y \text{ alignés,} \\ d(0,X) + d(0,Y) & \text{sinon.} \end{cases}$$

Montrer que δ est une distance sur \mathbb{R}^2 .

Solution (Solution de l'exercice 3). On vérifie les 4 axiomes d'une distance.

- 1. Positivité : $\delta(X,Y) \ge 0$ car d est une distance donc $d(X,Y) \ge 0$ et $d(0,X) + d(0,Y) \ge 0$. OK
- 2. Symétrie : $\delta(X,Y) = \delta(Y,X)$.
 - Si 0, X, Y alignés, alors 0, Y, X alignés et $\delta(X, Y) = d(X, Y) = d(Y, X) = \delta(Y, X)$.
 - Si 0, X, Y non alignés, alors 0, Y, X non alignés et $\delta(X, Y) = d(0, X) + d(0, Y) = d(0, Y) + d(0, X) = \delta(Y, X)$.

OK

- 3. Axiome de séparation : $\delta(X,Y) = 0 \Leftrightarrow X = Y$.
 - Si X = Y, alors 0, X, Y alignés et $\delta(X, Y) = d(X, Y) = d(X, X) = 0$.
 - Si $\delta(X,Y)=0$.
 - Si 0, X, Y alignés, alors $\delta(X, Y) = d(X, Y) = 0 \Leftrightarrow X = Y$.
 - Si 0, X, Y non alignés, alors $\delta(X,Y) = d(0,X) + d(0,Y) = 0 \Rightarrow d(0,X) = 0$ et $d(0,Y) = 0 \Rightarrow X = 0$ et $Y = 0 \Rightarrow X = Y = 0$.

OK

- 4. Inégalité triangulaire : $\delta(X,Y) \leq \delta(X,Z) + \delta(Z,Y)$.
 - Remarque utile : Si 0, U, V alignés et 0, V, W alignés, et 0, U, W non alignés, alors V = 0.
 - i) Si 0, X, Y alignés : $\delta(X, Y) = d(X, Y)$. On veut montrer $d(X, Y) \le \delta(X, Z) + \delta(Z, Y)$.
 - Cas 1) 0, X, Z alignés et 0, Z, Y alignés. Alors 0, X, Y, Z alignés.

$$\delta(X,Z) + \delta(Z,Y) = d(X,Z) + d(Z,Y) \ge d(X,Y) = \delta(X,Y)$$

(Inégalité triangulaire pour d). **OK**

- Cas 2) 0, X, Z non alignés ou 0, Z, Y non alignés. Alors $\delta(X, Z) + \delta(Z, Y) \ge \delta(X, Z)$ ou $\delta(X, Z) + \delta(Z, Y) \ge \delta(Z, Y)$. Comme $\delta(X, Z) = d(0, X) + d(0, Z) \ge d(X, 0) = d(0, X)$ et $\delta(Z, Y) = d(0, Z) + d(0, Y) \ge d(0, Y)$.

$$\delta(X,Z) + \delta(Z,Y) \geq \max(\delta(X,Z),\delta(Z,Y)) \geq \max(d(0,X),d(0,Y)) \geq d(X,Y) = \delta(X,Y)$$

Si X = 0 ou Y = 0, c'est immédiat car $\delta(X, Y) = d(X, Y)$ si 0, X, Y alignés.

• ii) Si 0, X, Y non alignés : $\delta(X, Y) = d(0, X) + d(0, Y)$. On veut montrer $d(0, X) + d(0, Y) \le \delta(X, Z) + \delta(Z, Y)$.

$$\delta(X,Z) + \delta(Z,Y) \ge d(0,Z) + d(0,X) + d(0,Z) + d(0,Y) = d(0,X) + d(0,Y) + 2d(0,Z) \ge d(0,X) + d(0,Y) = \delta(X,Y) + d(0,Y) +$$

Car $d(0, Z) \ge 0$. **OK**

Donc δ est une distance sur \mathbb{R}^2 .

2.4 Exercice 4

Énoncé de l'exercice 4 : On pose pour $x, y \in \mathbb{R}^{+*}$:

$$d_{\log}(x,y) = |\log_{10}(\frac{y}{x})| = |\log_{10}(y) - \log_{10}(x)|$$

- 1) Montrer que d_{\log} est une distance sur \mathbb{R}^{+*} .
 - 2) Calculer $d_{\log}(10^p, 10^q)$ pour $p, q \in \mathbb{Z}$.
 - 3) Montrer qu'il n'existe pas de constante C>0 telle que

$$d_{\log}(x,y) \le C|x-y|, \quad \forall x, y \in \mathbb{R}^{+*}.$$

Indication: prendre x = 1 et $y = y_n$ pour une suite (y_n) bien choisie.

4) Montrer qu'il n'existe pas de constante C > 0 telle que

$$|x - y| < Cd_{\log}(x, y), \quad \forall x, y \in \mathbb{R}^{+*}.$$

Solution (Solution de l'exercice 4). 1) Montrons que d_{\log} est une distance sur \mathbb{R}^{+*} :

- 1. Positivité: $d_{\log}(x,y) = |\log_{10}(\frac{y}{x})| \ge 0$. OK
- 2. Symétrie : $d_{\log}(x,y) = |\log_{10}(\frac{y}{x})| = |-\log_{10}(\frac{x}{y})| = |\log_{10}(\frac{x}{y})| = d_{\log}(y,x)$. OK
- 3. Axiome de séparation : $d_{\log}(x,y) = 0 \Leftrightarrow |\log_{10}(\frac{y}{x})| = 0 \Leftrightarrow \log_{10}(\frac{y}{x}) = 0 \Leftrightarrow \frac{y}{x} = 10^0 = 1 \Leftrightarrow y = x$. OK
- 4. Inégalité triangulaire :

$$d_{\log}(x,z) = |\log_{10}(\frac{z}{x})| = |\log_{10}(\frac{z}{y}\frac{y}{x})| = |\log_{10}(\frac{z}{y}) + \log_{10}(\frac{y}{x})|$$

$$\leq |\log_{10}(\frac{z}{y})| + |\log_{10}(\frac{y}{x})| = d_{\log}(y,z) + d_{\log}(x,y) = d_{\log}(x,y) + d_{\log}(y,z)$$

Donc $d_{\log}(x,z) \leq d_{\log}(x,y) + d_{\log}(y,z)$. **OK**

Donc d_{\log} est une distance sur \mathbb{R}^{+*} .

2) Calculons $d_{\log}(10^p, 10^q)$:

$$d_{\log}(10^p, 10^q) = |\log_{10}(\frac{10^q}{10^p})| = |\log_{10}(10^{q-p})| = |q - p|$$

Donc $d_{\log}(10^p, 10^q) = |p - q|$.

3) Montrons qu'il n'existe pas de constante C>0 telle que $d_{\log}(x,y)\leq C|x-y|$: On prend x = 1 et $y = y_n = \frac{1}{n}$. Alors $y_n \to 0$ et $y_n \in \mathbb{R}^{+*}$.

$$\frac{d_{\log}(1,\frac{1}{n})}{|1-\frac{1}{n}|} = \frac{\left|\log_{10}(\frac{1/n}{1})\right|}{|1-\frac{1}{n}|} = \frac{\left|\log_{10}(\frac{1}{n})\right|}{\frac{n-1}{n}} = \frac{\left|-\log_{10}(n)\right|}{\frac{n-1}{n}} = \frac{\log_{10}(n)}{\frac{n-1}{n}} = \frac{n}{n-1}\log_{10}(n)$$

 $rac{n}{n-1} o 1$ et $\log_{10}(n) o +\infty$. Donc $rac{d_{\log}(1,rac{1}{n})}{|1-rac{1}{n}|} o +\infty$. Donc il n'existe pas de constante C>0 telle que $d_{\log}(x,y) \leq C|x-y|$.

4) Montrons qu'il n'existe pas de constante C>0 telle que $|x-y| \leq Cd_{\log}(x,y)$: On

prend x = 1 et $y = y_n = 1 + 10^n$.

$$\begin{split} \frac{|1-(1+10^n)|}{d_{\log}(1,1+10^n)} &= \frac{|-10^n|}{|\log_{10}(\frac{1+10^n}{1})|} = \frac{10^n}{|\log_{10}(1+10^n)|} = \frac{10^n}{\log_{10}(10^n(10^{-n}+1))} = \frac{10^n}{\log_{10}(10^n) + \log_{10}(10^{-n}+1)} \\ &= \frac{10^n}{n+\log_{10}(10^{-n}+1)} \sim \frac{10^n}{n} \to +\infty \end{split}$$

Donc il n'existe pas de constante C > 0 telle que $|x - y| \le Cd_{\log}(x, y)$.