Deep Learning

Week 3

Bias and Variance

Regularization Drop-Out

Regularization Drop-Out (Inverted dropout)

25 / 0.25 = 25 25 / 0.25 = 100

Arun Kumar A analaarun.k@gmail.com

Regularization Drop-Out (Why it works?)

Can't rely on single feature, so spread out weights. Reduces overfitting and high variance, since more weights between layers can cause more learning and so overfitting.

Regularization Drop-Out (Downside - Gradient Descent)

Early Stopping

Normalizing a distribution

Original Distribution

Zero Centered Distribution

Normalized Distribution

$$z^1$$

$$(z^1 - \mu)$$

$$(z^1 - \mu^1) / \sqrt{(\sigma^2 + \epsilon)}$$
Arun Kumar A

analaarun.k@gmail.com

Batch Normalization

run Kumar A @gmail.com

Without Batch Normalization - Covariate Shift

Learning of Shifting Input Distribution

Batch Normalization - Covariate Shift

Learning of Shifting Input Distribution

Epoch or Iteration

Train set: 1000 Mini Batch: 200

Epoch or Iteration

Train set: 1000 Mini Batch: 200

The Batch Normalization in Mini batch generates noise which propagates to next hidden layers, so similar to drop out it has slight regularization effect.

So less records in mini-batch, more noise it adds to the next layer.

Arun Kumar A analaarun.k@gmail.com

