AD-AU52 742

BROWN UNIV PROVIDENCE R I LEFSCHETZ CENTER FOR DYNAM--ETC F/G 12/1

THE ROLE OF THE INTERACTOR IN DECOUPLING, (U)

JUN 77 P L FALB, W A WOLOVICH

AFOSR-77-3182

AFOSR-77-318

Approved for public release; distribution unlimited.

Reprinted From

PROCEEDINGS
OF THE
1977
JOINT AUTOMATIC
CONTROL CONFERENCE

SAN FRANCISCO

2

FA27 - 11:40

THE ROLE OF THE INTERACTOR IN DECOUPLING

PETER L. FALB and WILLIAM A. WOL VICH*

Lefschetz Center for Dynamical Systems, Division of Applied Mathematics, Brown University, Providence, R.I. 02912

ACCESSION for	
8700	White Section 😾
808	Bell Section 1
MARION	
JUSTIFICA	TIGE
OT DISTRICE	AVAIL AND/OF SPECIAL
2.01.	AVAIL ME/M SPESIAL

Abstract

Given any proper rational transfer matrix, T(s), a special lower left triangular polynomial matrix, $\xi_T(s)$, called

the interactor has been defined and shown to be (together with the rank of T(s)) a complete invariant under dynamic compensation. In this paper, the interactor is used to develop results on decoupling and pole placement via feedback. For example, it is shown that triangular decoupling with arbitrary pole assignment is always possible using state feedback and that decoupling with arbitrary pole assignment is always possible using dynamic compensation.

1. Introduction

Given any proper rational transfer matrix T(s), a special lower left triangular matrix, $\xi_T(s)$, called the

interactor has been defined and shown to be (together with the rank of T(s)) a complete invariant under dynamic compensation ([1]). In this paper, the interactor is used to develop results on decoupling and pole placement. In particular, it is shown that a square system can be decoupled via linear state feedback if and only if the interactor is diagonal, that triangular decoupling with arbitrary pole assignment is always possible using state feedback, that decoupling with arbitrary pole placement is always possible using dynamic compensation (state feedback and input dynamics) ([2]), and that certain of these properties are "generic".

In section 2, the interactor is defined for reference and some basic results relating the interactor to decoupling via state feedback are developed. The question of triangular decoupling with arbitrary pole assignment is examined in section 3. Some comments and extensions are considered in section 4.

2. The Interactor and State Feedback

Let S be the set of all proper rational transfer matrices T(s) of full rank ρ_T such that the first ρ_T rows, $T_{\rho_T}(s)$, are independent. If T(s) is an element of S, then the interactor is defined by means of the following lemmas (([1]):

Lemma 2.1: Let T(s) be an $m \times m$ element of S. Then there is a unique nonsingular matrix $\xi_T(s)$ of the form $\xi_T(s) = H_T(s) \operatorname{diag}[s] , \dots, s^n] \quad (2.2)$

where

$$H_{\mathbf{T}}(\mathbf{s}) = \begin{bmatrix} 1 & 0 & \dots & \overline{0} \\ h_{21}(\mathbf{s}) & 1 & \dots & 0 \\ \vdots & \vdots & & \vdots \\ h_{m1}(\mathbf{s}) & h_{m2}(\mathbf{s}) & \dots & 1 \end{bmatrix}$$
(2.3)

and h_{ij}(s) is divisible by s (or is zero) such that

$$\lim_{s\to\infty} \xi_{\mathbf{T}}(s)\mathbf{T}(s) = K_{\mathbf{T}}$$
 (2.4)

with Km nonsingular.

Lemma 2.5: Let T(s) be a $p \times m$ element of S with p < m. Then there is a unique nonsingular lower left triangular $p \times p$ matrix $\xi_T(s)$ of the form (13) such that

*This work was supported by the Air Force Office of Scientific Research under Grant AFOSR 77-3182.

 $\lim_{s\to\infty} \xi_{\mathbf{T}}(s)\mathbf{T}(s) = K_{\mathbf{T}}. \tag{2.6}$

W BONESCAN

BUILD SHOULD !

IN NOTE BY STREET, THE STREET,

2015

800

$$\xi_{\mathbf{T}}(\mathbf{s}) = \begin{bmatrix} \xi_{\mathbf{T}_{\mathbf{m}}} & 0 \\ -\gamma_{\mathbf{1}}(\mathbf{s}) & \gamma_{\mathbf{2}}(\mathbf{s}) \end{bmatrix}$$
 (2.8)

 $\begin{array}{cccc} \underline{\text{where}} & \gamma_1(s), \gamma_2(s) & \underline{\text{are relatively left}} \\ \underline{\text{prime and}} & \gamma_2(s) & \underline{\text{is a nonsingular lower}} \\ \underline{\text{left triangular}} & (p-m) \times (p-m) & \underline{\text{matrix in}} \\ \underline{\text{Hermite normal form with monic diagonal}} \\ \underline{\text{entries such that}} \end{array}$

$$\lim_{s\to\infty} \xi_{\mathbf{T}}(s) \mathbf{T}(s) = K_{\mathbf{T}}$$

with K_T a constant matrix of rank m whose final p - m rows are zero.

The interactor is of critical importance in questions relating to decoupling as will be shown in the sequel. Let T(s) be an element of S. Then it is well-known that T(s) can be written in the form $R(s)P^{-1}(s)$ where R(s),P(s) are relatively right prime polynomial matrices and P(s) is column proper. Under linear state variable feedback of the form u = Fx + Gv, G nonsingular, the open loop transfer matrix T(s) is transformed into the closed loop transfer matrix $T_{F,G}(s)$ given by

$$T_{F,G}(s) = R(s) [P(s)-F(s)]^{-1}G = R(s)P_{F,G}^{-1}(s)(2.9)$$

where F(s) = FS(s) with

$$S(s) = \begin{bmatrix} 1 & 0 & \dots & 0 \\ s & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & & & \vdots \\ 0 & 1 & & 0 & \dots & 0 \\ 0 & 1 & & 0 & \vdots \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & s^{2} - 1 & \vdots & \vdots \\ 0 & \vdots & \vdots & \vdots \\ 0 & 0 & s^{m-1} \end{bmatrix}$$
 (2.10)

Object to TOAR

and $\{\partial_1,\ldots,\partial_m\}$ being the column degrees of P ([4]). The feedpack pair (F,G) can be chosen to obtain any arbitrary column proper $P_{F,G}(s)$ having the same column degrees as P(s). It follows that $T_C(s) = P(s)P_{F,G}^{-1}(s)$ and its inverse, $P_{F,G}(s)P^{-1}(s)$, are both proper and hence, that linear state variable feedback can be represented by the dynamic compensator $T_C(s)$ (i.e., by postmultiplication of T(s) by $T_C(s)$). This leads to:

Proposition 2.11: The interactor $\xi_T(s)$ is an invariant under linear state variable feedback.

 $\begin{array}{ll} \frac{\text{Proof:}}{\text{s}\to\infty} & \text{By definition, } \lim_{s\to\infty} \xi_{\mathbf{T}}(s)\mathbf{T}(s) = K_{\mathbf{T}}\\ \text{with } K_{\mathbf{T}} & \text{nonsingular. However,}\\ \lim_{s\to\infty} P(s)P_{\mathbf{F},G}^{-1}(s) = G & \text{and so it follows}\\ \text{that } \lim_{s\to\infty} \xi_{\mathbf{T}}(s)R(s)P_{\mathbf{F},G}^{-1}(s) \end{array}$

= $\lim_{s\to\infty} \xi_T(s)R(s)P^{-1}(s)P(s)P_{F,G}^{-1}(s) = K_TG$ is nonsingular. The proposition follows from the uniqueness of the interactor.

Theorem 2.12 (cf. [4]) A system characterized by a nonsingular, proper, rational m \times m transfer matrix T(s) can be decoupled via linear state variable feedback if and only if the interactor $\xi_{\mathbf{T}}(\mathbf{s})$ is diagonal.

Proof: If $T(s) = R(s)P^{-1}(s)$ can be decoupled using state feedback, then there is a feedback pair (F,G) such that $R(s)P_{F,G}^{-1}(s) = D(s)$ with D(s) a diagonal transfer matrix. Since $\xi_T(s)$ is invariant under state feedback, $\lim_{s\to\infty} \xi_T(s)D(s) = K$ a diagonal nonsingular matrix and so, $\xi_T(s)$ is diagonal.

Conversely, if $\xi_{\mathbf{T}}(s)$ is diagonal, then $\xi_{\mathbf{T}}(s)R(s)$ can be written in the form $P_{\mathbf{F},\mathbf{G}}(s)$ for an appropriate feedback pair (F,G) (where $\mathbf{T}(s) = R(s)P^{-1}(s)$) since R(s) is nonsingular (i.e. det $R(s) \neq 0$). It follows that $T_{\mathbf{F},\mathbf{G}}(s) = R(s)P_{\mathbf{F},\mathbf{G}}^{-1}(s)$ is the diagonal matrix with f diagonal entries f . In other words, f f f is the transfer matrix of an integrator decoupled system.

Suppose that T(s) is a nonsingular, proper, rational $m \times m$ transfer matrix add that $\xi_T(s)$ is diagonal so that T(s) can be decoupled using state feedback. How many poles can be arbitrarily assigned while simultaneously decoupling the system? To answer this question, let $T(s) = R(s)P^{-1}(s)$ with R(s), P(s) relatively right prime and P(s) column proper. Then R(s) can be written in the form

$$R(s) = R_{d}(s)\tilde{R}(s) \qquad (2.13)$$

where $R_d(s)$ is a diagonal matrix with diagonal entries $r_i(s)$ such that $r_i(s)$ is the greatest common divisor of the ith row of R(s). Let $\rho_i = \deg r_i(s)$ and let f_i be as in the definition of $\xi_T(s)$. If D(s) is a diagonal matrix with diagonal entries $d_i(s)$ where each $d_i(s)$ is an arbitrary (Hurwitz)

polynomial of degree $f_i + \rho_i$, then $D(s)\tilde{R}(s)$ is a column proper polynomial matrix with deg $d_i = \delta_i$, the i-th colum degree of P(s). It follows that there a feedback pair (F,G) such that $P_{F,G}(s) = D(s)\tilde{R}(s)$ and hence, that the closed loop transfer matrix $T_{F,G}(s) = R(s)R^{-1}(s)D^{-1}(s) = \tilde{R}_d(s)D^{-1}(s)$. Thus, $\tilde{R}_d(s)D^{-1}(s)$ poles can be assigned arbitrarily using this technique. If deg(det R(s)) = $\tilde{R}_d(s)D^{-1}(s)$ and $\tilde{R}_d(s)D^{-1}(s)$ as $\tilde{R}_d(s)D^{-1}(s)$ and $\tilde{R}_$

It should also be noted that if T(s) is a $p \times m$ transfer matrix in S with p < m, then the above results can be used by simply adjoining additional rows to R(s) in an appropriate fashion.

Theorem 2.14: Let T(s) be a proper rational $p \times m$ transfer matrix with $p \le m$ and suppose that T(s) is of full rank p. Let D(s) be any proper rational $p \times p$ diagonal transfer matrix such that $\xi_T(s)\xi_D^{-1}(s)$ is proper. Then there is an element $T_C(s)$ of S such that $T(s)T_C(s) = D(s)$.

Proof: An immediate consequence of Theorem 4.5 of [1].

This theorem (cf. [2]) essentially states that decoupling with "arbitrary" pole placement is always possible using a combination of state feedback and input dynamics (i.e. so-called dynamic compensation).

Triangular Decoupling Using State Feedback

In this section, it will be shown that triangular decoupling with arbitrary pole assignment is always possible using state feedback.

Theorem 3.1: A system characterized by a nonsingular, proper, rational m × m transfer matrix T(s) can always be triangularly decoupled with all closed loop poles arbitrarily assigned using linear state variable feedback.

Proof: Let $T(s) = R(s)P^{-1}(s)$ with R(s), P(s) relatively right prime, R(s) lower left triangular and P(s) column proper. Let U(s) be a unimodular polynomial matrix which reduces $\xi_T(s)R(s)$ to row proper, lower left triangular Hermite normal form i.e.,

$$\xi_{\mathbf{T}}(\mathbf{s}) \mathbf{R}(\mathbf{s}) \mathbf{U}(\mathbf{s}) = \begin{bmatrix} q_{11}(\mathbf{s}) & 0 & 0 & \dots & 0 \\ q_{21}(\mathbf{s}) & q_{22}(\mathbf{s}) & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ q_{m1}(\mathbf{s}) & q_{m2}(\mathbf{s}) & \dots & q_{mm}(\mathbf{s}) \end{bmatrix}$$
(3.2)

where $q_{ii}(s)$ is a nonzero monic polynomial and deg $q_{ii}(s) = k_i$. Note that

$$\sum_{i=1}^{m} k_{i} = n = deg(det P(s)) =$$

$$= deg(det \xi_{m}(s)R(s)).$$

Now let D(s) be a diagonal matrix with diagonal entries $d_i(s)$ where each $d_i(s)$ is an arbitrary (Hurwitz) polynomial of degree k_i . If D(s) is right divided by $\left[\xi_T(s)R(s)U(s)\right]^{-1}$, then

$$D(s) [\xi_{T}(s)R(s)U(s)]^{-1} = A(s) [\xi_{T}(s)R(s)U(s)]^{-1} + E(s)$$
(3.3)

where

$$\lim_{s \to \infty} A(s) [\xi_T(s)R(s)U(s)]^{-1} = 0$$
 (3.4)

and

$$E(s) = \begin{bmatrix} 1 & 0 & 0 & \dots & 0 \\ e_{21}(s) & 1 & 0 & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ e_{m1}(s) & e_{m2}(s) & \vdots & \dots & 1 \end{bmatrix} .$$
 (3.5)

It follows from (3.3) that $D(s) = A(s) + E(s)\xi_T(s)R(s)U(s)$ or, equivalently, that

$$D(s) = A(s) + \xi_{\mathbf{T}}(s)R(s)U(s)$$

$$+ [E(s)-I]\xi_{\mathbf{T}}(s)R(s)U(s)$$
(3.6)

Let $\tilde{P}(s) = A(s) + \xi_{T}(s)R(s)U(s)$. Then $\tilde{P}(s)$ is triangular and det $\tilde{P}(s) =$ det $D(s) = \prod_{i=1}^{m} d_{i}(s)$ in view of (3.6). By virtue of (3.4),

$$\lim_{s \to \infty} \tilde{P}(s) [\xi_{T}(s) R(s) U(s)]^{-1} = I \qquad (3.7)$$

which implies

$$\lim_{s\to\infty} \xi_{\mathbf{T}}(s) R(s) [\tilde{P}(s) U^{-1}(s)]^{-1} = I \quad (3.8)$$

In other words, $\tilde{P}(s)U^{-1}(s)$ is column proper and of the same column degrees as $\xi_T(s)R(s)$ (a fortiori as P(s)). Thus, there is a feedback pair (F,G) such that $P_{F,G}(s) = \tilde{P}(s)U^{-1}(s) = A(s)U^{-1}(s)_{M} + \xi_T(s)R(s)$ and $\det \tilde{P}_{F,G}(s) = \alpha \prod_{i=1}^{M} d_i(s)_{M}$ for some constant α . Thus, the theorem is established.

4. Comments and Extensions

The results obtained here are

indicative of the role the interactor can play in decoupling problems using state feedback. Extensions to the case of output feedback can be readily developed for, under linear output feedback of the form u=-Hy+Gv, G nonsingular, the open loop transfer matrix T(s) is transformed into the closed loop transfer matrix $T_{H,G}(s)$ given by

$$T_{H,G}(s) = R(s) [P(s) - HR(s)]^{-1}G$$

= $R(s)P_{H,G}^{-1}(s)$. (4.1)

This leads, for example, to an immediate translation of Theorem 2.12 for output feedback.

Since the pole placement results are constructive, they lead to specific procedures for implementing the requisite compensators. However, the questions of minimality and stability of the compensators remain to be treated.

Finally, there is the question of to what extent the results obtained here are "generic". The answer to this question rests on showing that the interactor $\xi_{\mathbf{T}}(\mathbf{s})$ is, in an appropriate sense, a continuous function of the transfer matrix $\mathbf{T}(\mathbf{s})$. This is examined in [6].

References

- [1] W. Wolovich and P. Falb, <u>Invariants</u>
 and canonical forms under <u>dynamic</u>
 compensation, SIAM J. on Control, <u>14</u>
 1976.
- [2] W. Wonham and A.S. Morse, <u>Decoupling</u>
 and pole assignment in linear multivariable systems: a geometric
 approach, SIAM J. on Control, <u>8</u>, 1970.
- [3] W. Wolovich, "Linear Multivariable Systems", Springer-Verlag, New York, 1974.
- [4] P. Falb and W. Wolovich, <u>Decoupling</u> in the design and synthesis of multivariable control systems, IEEE Trans. Aut. Control, AC-12, 1967.

- [5] W. Wolovich and P. Falb, On the structure of multivariable systems, SIAM J. on Control, 7, 1969.
- [6] P. Falb, On generic properties of systems defined by transfer matrices to appear.

19R PORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
AFOSR TR-78-8615 2. GOVT	CCESSION NO. 12 80. 10 NUMBER
TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED
HE ROLE OF THE INTERACTOR IN DECOU	PLING. Interim
	6. PERFORMING ONG. REPORT NUMBER
Zurnong,	8. SONTALOT ON SOMET HOMOTON
eter L./Falb A. Wolovich William	15 AFOSR-77-3182
PERFORMING ORGANIZATION NAME AND ADDRESS TOWN University	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS
Efschetz Center for Dynamical Systems	61102F
rovidence, RI 02912	(6) 23,64, A1 (7) AL
ir Force Office of Scientific Research/NM	12. REPORT DATE
olling AFB DC 20332	13. NUMBER OF PAGES
MONITORING AGENCY NAME & ADDRESS(If different from Cont.	folling Office) 15. SECURITY CLASS. (of this report)
	UNCLASSIFIED
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE
	SCHEDULE
pproved for public release; distribution unlim	
pproved for public release; distribution unlim	
DISTRIBUTION STATEMENT (of this Report) pproved for public release; distribution unlim DISTRIBUTION STATEMENT (of the abstract entered in Block 20 SUPPLEMENTARY NOTES	
pproved for public release; distribution unlim DISTRIBUTION STATEMENT (of the abstract entered in Block 20 SUPPLEMENTARY NOTES Proceedings of the 1977 Joint Automatic Control	, It different from Report)
pproved for public release; distribution unlim DISTRIBUTION STATEMENT (of the abstract entered in Block 20 SUPPLEMENTARY NOTES Proceedings of the 1977 Joint Automatic Control A27-1140 p1456-1460	ol Conference, San Francisco, Jun 22–24,
pproved for public release; distribution unlim DISTRIBUTION STATEMENT (of the abetract entered in Block 20 SUPPLEMENTARY NOTES Proceedings of the 1977 Joint Automatic Control A27-1140 p1456-1460	of the different from Report) ol Conference, San Francisco, Jun 22-24, ony block number)
pproved for public release; distribution unlim DISTRIBUTION STATEMENT (of the abetract entered in Block 20 SUPPLEMENTARY NOTES roceedings of the 1977 Joint Automatic Control A27-1140 p1456-1460	ol Conference, San Francisco, Jun 22–24,
pproved for public release; distribution unlim DISTRIBUTION STATEMENT (of the abstract entered in Block 20 SUPPLEMENTARY NOTES Proceedings of the 1977 Joint Automatic Control A27-1140 p1456-1460 KEY WORDS (Continue on reverse side if necessary and identify to	ol Conference, San Francisco, Jun 22-24, by block number)
pproved for public release; distribution unlim DISTRIBUTION STATEMENT (of the abstract entered in Block 20 SUPPLEMENTARY NOTES Proceedings of the 1977 Joint Automatic Control A27-1140 p1456-1460 KEY WORDS (Continue on reverse side if necessary and identify by	ol Conference, San Francisco, Jun 22-24, by block number)
DISTRIBUTION STATEMENT (of the abstract entered in Block 20 SUPPLEMENTARY NOTES Proceedings of the 1977 Joint Automatic Control A27-1140 p1456-1460 KEY WORDS (Continue on reverse side if necessary and identify to iven any proper rational transfer eft trimangular polynomial matrix, as been defined and shown to be (toomplete invariant under dynamic	ol Conference, San Francisco, Jun 22-24, by block number) matrix, T(s), a special lower (s), called the interactor cogether with the rank of T(s)) compensation. In this paper,
pproved for public release; distribution unlim DISTRIBUTION STATEMENT (of the abstract entered in Block 20	ol Conference, San Francisco, Jun 22-24, block number) matrix, T(s), a special lower (a) (s), called the interactor cogether with the rank of T(s)) compensation. In this paper, esults on decoupling and pole e, it is shown that triangular comment is always possible using