	Name: Om Maruti Dis
	MAHAVIR EDUCATION TRUST'S PRN: 23UF17933AIO12 SE+13
0	Shah & Anchor Kutchhi Engineering College
4	8/1924 CG CJAP ASSIGNMENT 2 Date: 18 10 2024
(3.)	Describe the process and significative of the viewing
	Transformation Pipeline in 2D graphics
Ans	The viewing transformation pipeline in 2D graphics in a series
	of steps involved in transformation 2D objects from
	their local coordinate System to the screen's
	coordinate system, making them visible on display
	1. Model - to- world transformation.
	· Each object is defined in its local coordinate system,
	which is specific to the object.
	This stage involves transforming the objects coordinates
	from its local system to the world coordinate system
	 The world coordinate system is often centered at a
	coailing asint which must be the most convinient
	specific point, which might not be the most convinient
	viewpoint.
	3. Viewport Transformation: The camera's coordinate system is typically in 3D,
	white the screen is 2D.
	. This stage projects the 3D coordinates from the camerais
	coordinate system onto the 2D plane
	4. Clipping:
	· After some projection, some objects or parts of objects
	might be outside the viewport.
	5. Normalisation:
	. The final coordinates after clipping might still be in a
	range that is not suitable for display device.
	Correct Positions
	Visible Represent
	Perspective Effects.
-	> Efficient Rendering

MAHAVIR EDUCATION TRUST'S

Anchor Kutchhi Engineering College

	Shah & Anchor Kutch	Date:
(0)	2 Differentlate between Bezie	r curves and B-spline curves
94	DIFFERENTIALE NETWERN GEFTE	losibility
٨٥	in terms of control and f Bezier and B-spline curves	are both parametric curves
An	used in computer graphics ar	d CAD for creating smooth
	of the continuous shapes.	0
Parameter		Bapline curves.
Tuib VI Cap	1. 150721 (11063	03 11/10
Control	· Beizer curves are defined by	· B-Spline curves are also
	a set of control points. Each	defined by a set of
	control point directly	control points, but the
	influences the shape of curve	influence of each control
	Moving a control point will	point is not as direct
	directly a ulter the curve's	as in Beizer curves. The
	path.	shape of the curve is
		determined by a basic
		function that weights
		the contribution of each
Flexibility	Offer limited flexibility. The	B-spline curves offer
	shape of wave is constrained	greater flexibility than
	by the control points. Adding	
	or removing control points	
	car be challenging, and the	
	cuove's shape can be difficult	conics and free form
	to manipulate es	curves. Adding or removing
	,	control points is easier
		and curve's shape can be
		manipulated more
		intuitively.
		J

MAHAVIR EDUCATION TRUST'S

Shah & Anchor Kutchhi Engineering College

	Shan & Anchor Rutchin Ling
	Date:
v.3	Explain the Back-face Detection method in visible surface determination
Ans.	RUCK - FULL MATORITION IS A SIMPLE MILL CALLES
_	
	visible to a viewer. Its based on principle that surfaces
	facing away from the viewer
	How it works:
	1. Colculate normal vectors: For each parygon, find its normal
	vector (a perpendicular unit vector).
	2. Calculate view vectors: Determine the vector pointing
	from the viewer's eye to the polygon's center.
	3. Calculate dot products: If the dot product of the
	normal and view vectors is positive, the polygon
	is facing the viewer and is potentially visible.
1	limitations:
	Back-face detection doesn't handle objects that overlap
	or penetrate each other.
	Transparency, it doesn't handle transparent objects
	Efficiency:
	Back-face detection is a relatively fast algorithm.
	often used as a first pass to eliminate many
	invisible polygons before applying more complex
	methods.

MAHAVIR EDUCATION TRUST'S

Shah & Anchor Kutchhi Engineering College Date .

	Date.
<i>m</i>	
7	interpolation help in creating smooth animations? Reversing is a technique used in animation where
Λ	interpolation help in creating smooth animations
An	a cechnique voca
	specific points or posses along an an animation
	timeline are defined as keyframes.
	Interpolation is the process of calculating intermediate
	values between two known values. In animation
	it involves determining positions and orientations
	of an object at frames between keyframes
	Interpolation is essential for creating smooth
	animations because
	1. It fills in the gaps: It creates frames between
	keyframes, making animation smooth
	2. It avoids about transitions. Prevents sudden
	jumps
	3. It enhances realism: Creates more notural looking
	motion that is closer to now objects move in
	real world.
1	
1	