# US CENSUS ANALYSIS

STAT 515 (Final Project)

Ashok Vardhan Kari

December 17, 2015

# 1 TABLE OF CONTENTS

| 2 | Introc           | duction                                           | 2  |  |  |  |  |  |
|---|------------------|---------------------------------------------------|----|--|--|--|--|--|
| 3 | Hypothesis       |                                                   |    |  |  |  |  |  |
| 4 | Data             | Collection                                        | 2  |  |  |  |  |  |
| 4 | 4.1 C            | Data Sources                                      | 3  |  |  |  |  |  |
| 5 | Data             | Cleansing                                         | 3  |  |  |  |  |  |
| 6 | Analy            | rsis                                              | 4  |  |  |  |  |  |
| ( | 5.1 Hypothesis 1 |                                                   |    |  |  |  |  |  |
|   | 6.1.1            | TC Maps                                           | 5  |  |  |  |  |  |
|   | 6.1.2            | Micromaps                                         | 8  |  |  |  |  |  |
|   | 6.1.3            | Linear Regression                                 | 10 |  |  |  |  |  |
|   | 6.1.4            | Plotting regression output using VISREG2D         | 12 |  |  |  |  |  |
| ( | 5.2 ⊦            | Typothesis 2                                      | 13 |  |  |  |  |  |
|   | 6.2.1            | Net Migration influencing factors using Micromaps | 13 |  |  |  |  |  |
|   | 6.2.2            | Linear Regression                                 | 14 |  |  |  |  |  |
| 7 | Conc             | lusion                                            | 16 |  |  |  |  |  |

# 2 Introduction

Objective of the project is to analyze US Census data and draw insights from it. Approach of the analysis will look to be more concept driven than objective driven as most of the project is primarily wrapped around the visualization concepts taught in the class.

# 3 HYPOTHESIS

- 1. Factors that led to population rise/ fall from 2000-2010 are the same for 2010-2014.
- 2. Rise in weekly wages and CO2 emissions are significant factors for rise/fall in Net Migration.

# 4 DATA COLLECTION

I have created the dataset by extracting variables from 15 datasets.

My data set contain 42 variables. Most of them taken from different datasets. It took me about two full weeks to finalize and extract all the necessary factors.

This is how my dataset looks like.

| State            | P_2000   | P_2010   | P_2014   | Pop%_Change_1 | Pop%_Change_2 | GDP_2000 | GDP_2010 | GDP_2014 | GDP%_Cha | GDP%_Cha |
|------------------|----------|----------|----------|---------------|---------------|----------|----------|----------|----------|----------|
| Alabama          | 4447207  | 4779736  | 4849377  | 7.48          | 1.46          | 120428   | 176287   | 200414   | 46       | 14       |
| Alaska           | 626933   | 710231   | 736732   | 13.29         | 3.73          | 26932    | 52490    | 56647    | 95       | 8        |
| Arizona          | 5130247  | 6392017  | 6731484  | 24.59         | 5.31          | 166108   | 248110   | 286554   | 49       | 15       |
| Arkansas         | 2673293  | 2915918  | 2966369  | 9.08          | 1.73          | 69111    | 105195   | 120035   | 52       | 14       |
| California       | 33871653 | 37253956 | 38802500 | 9.99          | 4.16          | 1377014  | 1964588  | 2305921  | 43       | 17       |
| Colorado         | 4302086  | 5029196  | 5355866  | 16.9          | 6.5           | 178331   | 257810   | 305871   | 45       | 19       |
| Connecticut      | 3405650  | 3574097  | 3596677  | 4.95          | 0.63          | 166995   | 231060   | 250569   | 38       | 8        |
| Delaware         | 783559   | 897934   | 935614   | 14.6          | 4.2           | 41677    | 57369    | 63404    | 38       | 11       |
| District of Colu | 572086   | 601723   | 658893   | 5.18          | 9.5           | 60458    | 104175   | 116378   | 72       | 12       |
| Florida          | 15982571 | 18801310 | 19893297 | 17.64         | 5.81          | 490538   | 731278   | 838939   | 49       | 15       |
| Georgia          | 8186653  | 9687653  | 10097343 | 18.33         | 4.23          | 304942   | 409747   | 474696   | 34       | 16       |
| Hawaii           | 1211497  | 1360301  | 1419561  | 12.28         | 4.36          | 41247    | 67451    | 76171    | 64       | 13       |
| Idaho            | 1293957  | 1567582  | 1634464  | 21.15         | 4.27          | 38416    | 55576    | 63235    | 45       | 14       |
| Illinois         | 12419927 | 12830632 | 12880580 | 3.31          | 0.39          | 492922   | 653597   | 736285   | 33       | 13       |
| Indiana          | 6080827  | 6483802  | 6596855  | 6.63          | 1.74          | 205807   | 282262   | 318085   | 37       | 13       |
| Iowa             | 2926538  | 3046355  | 3107126  | 4.09          | 1.99          | 95021    | 141552   | 169707   | 49       | 20       |
| Kansas           | 2688925  | 2853118  | 2904021  | 6.11          | 1.78          | 87446    | 127967   | 144407   | 46       | 13       |
| Kentucky         | 4042193  | 4339367  | 4413457  | 7.35          | 1.71          | 115126   | 165550   | 187788   | 44       | 13       |
| Louisiana        | 4469035  | 4533372  | 4649676  | 1.44          | 2.57          | 134251   | 232694   | 251672   | 73       | 8        |
| Maine            | 1274779  | 1328361  | 1330089  | 4.2           | 0.13          | 36684    | 51336    | 54324    | 40       | 6        |
| Maryland         | 5296647  | 5773552  | 5976407  | 9             | 3.51          | 192934   | 314107   | 346857   | 63       | 10       |
| Massachusetts    | 6349364  | 6547629  | 6745408  | 3.12          | 3.02          | 289554   | 398347   | 455732   | 38       | 14       |
| Michigan         | 9938823  | 9883640  | 9909877  | -0.56         | 0.27          | 351996   | 385800   | 448243   | 10       | 16       |
| Minnesota        | 4919631  | 5303925  | 5457173  | 7.81          | 2.89          | 192948   | 271973   | 317237   | 41       | 17       |
| Mississippi      | 2844754  | 2967297  | 2994079  | 4.31          | 0.9           | 66171    | 95258    | 104753   | 44       | 10       |
| Missouri         | 5596564  | 5988927  | 6063589  | 7.01          | 1.25          | 187707   | 256576   | 279835   | 37       | 9        |
| Montana          | 902200   | 989415   | 1023579  | 9.67          | 3.45          | 21884    | 37315    | 44135    | 71       | 18       |

# 4.1 DATA SOURCES

As per the general analysis of census, the top influencing factors for population rise/fall are

- 1. Birth Rate
- 2. Death Rate
- 3. Migration
- 4. Employment
- 5. Salary
- 6. Lifestyle

In quest for the data for above specified factors, I found the following data sources available for public.

- O US Census Bureau (Census Data)
- Migration Policy Institute (Migration Data)
- American Fact Finder (Employment)
- Wikipedia (CO2 Emissions)
- The Disaster Center (Crime Data)
- Bureau of Labor Statistics (Income/ Wages Data)

# 5 DATA CLEANSING

- There wasn't much need for cleaning except for formatting the data.
- Few columns were created in order to calculate the percentage change over a period of time.
- Excel has been used for most of the cleaning.
- Some of the data preprocessing tasks such as breaking down the dataset for a particular analysis has been done using R.

# 6 ANALYSIS

# 6.1 Hypothesis 1

Factors that led to population rise/ fall in the period 2000-2010 are same for 2010-2014.

# A simple choropleth map (using ggplot).

A slight difference in the North Eastern region.





Not a very good resource for comparison.

# 6.1.1 TC Maps

# 6.1.1.1 Congnostic View

Cognostic view in TCMaps has the functionality of grid search algorithm. It sets the slider thresholds and partitions the data into low, middle and high for each period.

- O High R-Squared indicates the stability of values over time relative to the partition.
- High Threshold has only 3% of data.
- Medium Threshold holds about 5% of data
- O Low Threshold holds the maximum data of 92%



Cognostic View of Average weekly wages for years 2000, 2010, 2014.

1. New York has made its way from low (in 2000) to high threshold (in 2014)



# 6.1.1.2 Binary Map

Average Weekly Wages for years 2000, 2010, 2014.

This map explains us two things.

- 1. Detailed view of changes happened between years.
- 2. Divides the data based on the slider. (it helps in categorizing the states based on the slider limits)



Average Weekly Wage for years 2000, 2010, 2014

# 6.1.2 Micromaps

#### 6.1.2.1 Scatter Plot

Scatter plots are extremely helpful is analyzing a trend. In this case a clear trend has been observed.

- ☐ Percent Change in Population to Percent Change in GDP.
- ☐ Linear Trend (Except for North Dakota and Connecticut).



# 6.1.2.2 Cumulative Map

- ☐ Change in population to change in GDP and Crime Index.
- ☐ Though Wyoming has the least increment in population, it contributed highest to the economy.
- ☐ Maine has highest crime rate.

Anyways this doesn't show us any significant linear trend.

So, I've built a linear regression model to further illustrate this linear relationship.



# 6.1.3 Linear Regression

# 6.1.3.1 Linear Regression of Population to several factors – Year 2000

R-Squared – 0.9927 (Very high correlation)

P-Value - 0.0000000000000022

#### **Regressand**

Population

# **Regressors**

GDP, Crime, Birth Rate, Death Rate, Net Migration, Income Median, Average Weekly Wage



# 6.1.3.2 Linear Regression of Population to several factors – Year 2010

R-Squared – 0.9996 (Very high correlation)

P-Value - 0.0000000000000022

#### Left Plot 1

This plot shows the residuals (the vertical distance from a point to the regression line) versus the fitted values. Smooth Curve (red line) very close to gray dashed line. This is expected when the presence of high correlation there between variables.

# Right Plot 1

This plot evaluates that the errors are normally distributed. If, the points lie very close to the dashed line, then errors are normally distributed, which is true in our case.

#### Left Plot 2

No homoscedasticity (the variance in the residuals doesn't change as a function of x) as the red line is not exactly flat.

# Right Plot 2

Standardized residuals centered around zero.

Cooks distance not > 0.5.



# 6.1.4 Plotting regression output using VISREG2D

Change in Population to
Change in GDP and Weekly
Wages 2000-2010

Change in Population to
Change in GDP and Weekly
Wages 2010-2014



These plots tell us that the plane built using the variables "% Change in Weekly Wages" and "% Change in GDP" are both similar, which means a linear relationship is existing.

# 6.2 Hypothesis 2

Rise in weekly wages and CO2 emissions are significant factors for rise/ fall in Net Migration.

# 6.2.1 Net Migration influencing factors using Micromaps

- □ CO2 Emissions has more linearity to Net Migration, compared to Average Weekly Wages.
- ☐ Texas has highest migration as CO2 emissions are high.
- ☐ This doesn't show us any significant linear trend.
- So, I've built a linear regression model to further illustrate this linear relationship.



# 6.2.2 Linear Regression

# 6.2.2.1 Linear Regression of Migration to several factors – Year 2010

R-Squared - 0.4266

P-Value - 0.00009685

#### Regressand

**Net Migration** 

# Regressors

Crime, Income Mean, Average Weekly Wage, Employment, CO2 Emissions

The red line in the Residuals Vs Fitted plot lay close to the grey dashed line, which is expected in the case of high correlation.



# 6.2.2.2 Linear Regression of Migration to several factors – Year 2014

R-Squared - 0.4688

P-Value - 0.00001977

# <u>Left Plot 1</u>

Smooth Curve (red line) not very close to gray dashed line.

# Right Plot 1

Points lie very close to the dashed line except for the edges.

# Left Plot 2

No homoscedasticity, as the red line is not flat.

# Right Plot 2

Standardized residuals centered around zero.

Cooks distance not > 0.5.



# 7 CONCLUSION

- © Factors for population growth in the period 2000-2010 are also influencing for the period 2010-2014.
- I can partly conclude that, Average Weekly Wages, CO2 Emissions and Income mean are playing a significant role in the rise/ fall of Net Migration.