Wearing a red uniform shortens lifespan in Starfleet officers

Leonard H. McCoy¹ & S'chn T'gal Spock¹

¹ Starfleet

1

2

3

Author Note

- This is a working paper and we encourage reviewer comments.
- The authors made the following contributions. Leonard H. McCoy:
- ⁷ Conceptualization, Formal Analysis, Investigation, Methodology, Writing Original Draft
- 8 Preparation, Writing Review & Editing; S'chn T'gal Spock: Writing Review & Editing.
- ⁹ Correspondence concerning this article should be addressed to Leonard H. McCoy,
- USS Enterprise (NCC-1701). E-mail: bones@starmail.uni

11 Abstract

Damn it, man, I'm a doctor, not an undertaker!

13 Keywords: Starfleet Uniform, Space Exploration, Lifespan

Word count: 1260

15

Wearing a red uniform shortens lifespan in Starfleet officers

16 Introduction

"Enterprise Medical Log, Stardate 5327.4. Dr. Leonard McCoy recording.

Captain Kirk and First Officer Spock were rescued 48 hours ago, along with

several deceased members of the away team. They do not know why the

creature ignored them during the attack, but I have my suspicions. The victims

were all wearing red shirts."—McCoy (5327)

I am haunted by an uncomfortable reality: Over the past several weeks the number of
deaths I have listed on the *Enterprise*¹ is growing, and no matter the circumstance they all
share one thing in common—each and every one of them wore a red uniform. I approached
First Officer Spock with my concerns, but he brushed me off as thinking with undue
emotions. Our operations division wears red uniforms, so this pattern of deaths was
"logical" (Spock, 2287).

Despite that damn Vulcan's logic, he could not explain why himself and Captain Kirk had not yet suffered similar fates. I can find no reason why they are still alive, except, possibly, that the colour of their uniforms is somehow involved. Although improbable, it is the only hypothesis I have. Captain Kirk has employed Spock and I to conduct a study to investigate.

The aim of our study is simple: We will test whether the uniform colour of Starfleet officers on board the Enterprise cause them to suffer more severe injuries during away missions. I hypothesize that, regardless of their division, officers wearing red uniforms will suffer more severe injuries. Spock states that this is illogical, and hypothesizes that members of the operations division will continue to suffer more severe injuries no matter their uniform colour.

 $^{^{1}}$ The USS Enterprise (NCC-1701), a Constitution-class starship launched by Starfleet in the year 2245.

Methodology

40 Participants

39

41 423 Starfleet officers on board the starship Enterprise participated in our study, 305 42 of which identified as men ($M_{age} = 35.53$, $SD_{age} = 11.27$) and 118 as women ($M_{age} = 36.21$, 43 $SD_{age} = 11.51$). Myself, First Officer Spock, and Captain Kirk did not participate in the 44 study. Six redshirts who were supposed to participate were excluded from the study. A can 45 be seen in Figure 1, Captain Kirk foolishly sent them on an away mission; we have lost all 46 contact since.

Figure 1. Captain Kirk sending a team of redshirts on an away mission to the Klingon supermarkets on Qo'noS.

47 Design

We used a 3x3 independent design to test our hypotheses, with division

(science/medical, command, operations) and uniform colour (blue, yellow, red) as

independent variables. The Starfleet designations for divisions and their uniform colours

can be seen in Figure 2. Severity of injury—our dependent variable—was measured on a

10-point scale developed by Phlox (2153), where one represented the lowest severity and

ten the highest. Examples of lower severity injuries include broken bones, cellular damage,

- or curable infections obtained during copulation with an alien species. Higher severity
- 55 injuries include decapitation by Bat'leth, exposure to delta-particle radiation, or being
- 56 crushed by Tribbles.²

Figure 2. Depiction of Starfleet divisions and their respective uniform colours.

7 Procedure

Our procedure was simple, although imperfect as First Officer Spock wants us to remind you. Each Starfleet officer was randomly assigned a uniform colour they were to wear over a one month period, however, they remained within their current division due to operational constraints. Aside from this, each officer continued with their regular duties aboard the Enterprise. My medical team and I then recorded the severity of injury, division, and uniform colour for any patients that came into sickbay during the study period. Patients with multiple visits had their severity of injury scores averaged at the end of the period so their was only one score per participant.

Results

Two-way ANOVA assumptions

- Our data met two of the assumptions for an independent two-way ANOVA.
- ⁶⁹ Specifically, injury severity was measured on an interval scale, all observations for injury
- ⁷⁰ severity were independent, and Levene's test showed that the variances for injury severity
- between each of the experiment cells were equal, F(8,414) = 0.99, p = .447. One

² A Klingon's worst nightmare.

assumption was not met. Shapiro-Wilk's test of normality showed that the distribution of 72 injury severity within most of the experiment cells was significantly different from a normal 73 distribution (see Table 1); however, as discussed in Mudd (2266), meeting this assumption is unnecessary for our analyses due to statistical advances in the late 21st century. Because of this, we continued with our analysis as planned.

Table 1 Table Showing Assumption of Normality Tests.

Cell	Skewness	Kurtosis	W	df	p
Command Blue	0.09	2.62	0.95	47	.062
Command Red	-0.09	2.37	0.93	47	.010
Command Yellow	-0.04	2.63	0.95	47	.052
Operations Blue	0.21	2.75	0.93	47	.008
Operations Red	-0.49	2.73	0.92	47	.002
Operations Yellow	-0.39	2.30	0.93	47	.010
Science Medical Blue	-0.22	2.67	0.95	47	.029
Science Medical Red	-0.13	2.78	0.94	47	.027
Science Medical Yellow	0.21	2.55	0.94	47	.021

Two-way ANOVA results

- There was no significant main effect of division, F(2,414) = 1.23, p = .292, $\omega_p^2 = .001$, nor was there a significant interaction effect, $F(4,414)=1.64,\,p=.163,\,\omega_p^2=.006.$ In support of my hypothesis (and in contempt of Spock's), there was a significant main effect of uniform colour on severity of injury, $F(2,414)=352.20,\,p<.001,\,\omega_p^2=.624.$ This 81 indicates different uniform colours affected the severity of injuries Starfleet officers suffered.
- Specifically, post-hoc pairwise comparisons corrected using the Tukey method found that

- officers wearing red uniforms $(M=7.85,\,SD=1.37)$ suffered significantly worse injuries than officers wearing blue uniforms $(M=4.00,\,SD=1.32),\,t(414)=23.26,\,p_{adj}<.001,$ d=2.770, or yellow uniforms $(M=4.09,\,SD=1.49),\,t(414)=22.70,\,p_{adj}<.001,$ d=2.704. However, officers wearing blue and yellow uniforms had no difference in the
- severity of their injuries, t(414) = 0.56, $p_{adj} = .843$, d = .066. Thus, my hypothesis was
- confirmed. These differences can be seen in Figure 3.

Figure 3. Two science officers dawning a red Starfleet uniform (A). The result of said uniform on their lifespans (B).

90 Discussion

The results of our experiment confirmed that wearing a red uniform causes Starfleet officers to suffer more severe injuries, regardless of the division they work in. However, our

- results do not confirm the source of causality. That is, are the uniforms causing Starfleet
- officers to behave more recklessly, resulting in more severe injuries; or are the uniforms
- 95 inviting external dangers across the cosmos? As of now we are unsure, but preliminary
- data suggests the former may be the culprit (see Figure 4).

Figure 4. Two science officers dawning a red Starfleet uniform (A). The result of said uniform on their lifespans (B).

7 Limitations

Spock would like to remind our readers that, because their was no random
assignment to division, this is not a true experiment. So our results should be taken with
caution. Future studies building on the work here should consider randomly assigning
participants both a uniform colour and division. Training exercises at Starfleet Academy
would be an excellent candidate for such an experiment.

103 Conclusion

It appears, after careful observation, that wearing a red Starfleet uniform during
space exploration is bad for one's health, often leading to an untimely demise. As a doctor
who does not wish to become an undertaker, it is my recommendation that Starfleet

investigate the cause(s) underlying red uniform's effects on officer behaviour. To boldly go
where no one has gone before.

109 Open Science

The code and materials for analyzing data and generating the manuscript for this
project are available in the project's GitHub repository. This project was written using R
version 4.0.3 (2020-10-10) (R Core Team, 2020) in RStudio version 1.4.1103 (RStudio
Team, 2021). Statistical analyses were done using the moments (Komsta & Novomestky,
2015), car (Fox & Weisberg, 2019), stats (R Core Team, 2020), and emmeans (Lenth,
2021) R packages. To easily inspect the intermediate output of data analysis code pipes
from this manuscript, we suggest using the boomer (Fabri, 2021) R package. All packages
and dependencies used in this project can be seen in Table 2:

Table 2

All Packages and Dependencies for this Project.

Package	Version	Source
ВН	1.75.0-0	CRAN
DBI	1.1.1	CRAN
Formula	1.2-4	CRAN
Hmisc	4.4-2	CRAN
MASS	7.3-53	CRAN
Matrix	1.3-2	CRAN
MatrixModels	0.4-1	CRAN
R6	2.5.0	CRAN
RColorBrewer	1.1-2	CRAN
Rcpp	1.0.6	CRAN
RcppArmadillo	0.10.1.2.2	CRAN

 $\label{eq:continued} \begin{tabular}{ll} Table 2 \\ All \ Packages \ and \ Dependencies \ for \ this \ Project. \ (continued) \\ \end{tabular}$

Package	Version	Source
RcppEigen	0.3.3.9.1	CRAN
SparseM	1.78	CRAN
abind	1.4-5	CRAN
askpass	1.1	CRAN
assertthat	0.2.1	CRAN
backports	1.2.1	CRAN
base64enc	0.1-3	CRAN
bayestestR	0.8.2	CRAN
blob	1.2.1	CRAN
bookdown	0.21	CRAN
boomer	0.0.0.9000	NULL
boot	1.3-26	CRAN
brio	1.1.1	CRAN
broom	0.7.4	CRAN
callr	3.5.1	CRAN
car	3.0-10	CRAN
carData	3.0-4	CRAN
cellranger	1.1.0	CRAN
checkmate	2.0.0	CRAN
cli	2.3.0	CRAN
clipr	0.7.1	CRAN
cluster	2.1.0	CRAN

 $\label{eq:continued} \begin{tabular}{ll} Table 2 \\ All \ Packages \ and \ Dependencies \ for \ this \ Project. \ (continued) \\ \end{tabular}$

Package	Version	Source
colorspace	2.0-0	CRAN
conquer	1.0.2	CRAN
cpp11	0.2.6	CRAN
crayon	1.4.1	CRAN
curl	4.3	CRAN
data.table	1.13.6	CRAN
dbplyr	2.1.0	CRAN
desc	1.2.0	CRAN
diffobj	0.3.3	CRAN
digest	0.6.27	CRAN
distill	1.2	CRAN
downlit	0.2.1	CRAN
dplyr	1.0.4	CRAN
effectsize	0.4.3	CRAN
ellipsis	0.3.1	CRAN
emmeans	1.5.4	CRAN
english	1.2-5	CRAN
estimability	1.3	CRAN
evaluate	0.14	CRAN
fansi	0.4.2	CRAN
farver	2.0.3	CRAN
forcats	0.5.1	CRAN

 $\label{eq:continued} \begin{tabular}{ll} Table 2 \\ All \ Packages \ and \ Dependencies \ for \ this \ Project. \ (continued) \\ \end{tabular}$

Package	Version	Source
foreign	0.8-81	CRAN
fs	1.5.0	CRAN
generics	0.1.0	CRAN
ggplot2	3.3.3	CRAN
glue	1.4.2	CRAN
gridExtra	2.3	CRAN
gtable	0.3.0	CRAN
haven	2.3.1	CRAN
here	1.0.1	CRAN
highr	0.8	CRAN
hms	1.0.0	CRAN
htmlTable	2.1.0	CRAN
htmltools	0.5.1.1	CRAN
htmlwidgets	1.5.3	CRAN
httr	1.4.2	CRAN
insight	0.12.0	CRAN
isoband	0.2.3	CRAN
jpeg	0.1-8.1	CRAN
jsonlite	1.7.2	CRAN
kableExtra	1.3.1	CRAN
knitr	1.31	CRAN
labeling	0.4.2	CRAN

 $\label{eq:continued} \begin{tabular}{ll} Table 2 \\ All \ Packages \ and \ Dependencies \ for \ this \ Project. \ (continued) \\ \end{tabular}$

Package	Version	Source
lattice	0.20-41	CRAN
latticeExtra	0.6-29	CRAN
lifecycle	0.2.0	CRAN
lme4	1.1-26	CRAN
lubridate	1.7.9.2	CRAN
magick	2.6.0	CRAN
magrittr	2.0.1	CRAN
maptools	1.0-2	CRAN
markdown	1.1	CRAN
matrixStats	0.58.0	CRAN
mgcv	1.8-33	CRAN
mime	0.9	CRAN
minqa	1.2.4	CRAN
modelr	0.1.8	CRAN
moments	0.14	CRAN
munsell	0.5.0	CRAN
mvtnorm	1.1-1	CRAN
nlme	3.1-151	CRAN
nloptr	1.2.2.2	CRAN
nnet	7.3-15	CRAN
numDeriv	2016.8-1.1	CRAN
openssl	1.4.3	CRAN

 $\label{eq:continued} \begin{tabular}{ll} Table 2 \\ All \ Packages \ and \ Dependencies \ for \ this \ Project. \ (continued) \\ \end{tabular}$

Package	Version	Source
openxlsx	4.2.3	CRAN
papaja	0.1.0.9997	NULL
parameters	0.11.0	CRAN
patchwork	1.1.1	CRAN
pbkrtest	0.5-0.1	CRAN
pillar	1.4.7	CRAN
pkgbuild	1.2.0	CRAN
pkgconfig	2.0.3	CRAN
pkgload	1.1.0	CRAN
plyr	1.8.6	CRAN
png	0.1-7	CRAN
praise	1.0.0	CRAN
prettyunits	1.1.1	CRAN
processx	3.4.5	CRAN
progress	1.2.2	CRAN
ps	1.5.0	CRAN
purrr	0.3.4	CRAN
quantreg	5.83	CRAN
readr	1.4.0	CRAN
readxl	1.3.1	CRAN
rematch	1.0.1	CRAN
rematch2	2.1.2	CRAN

 $\label{eq:continued} \begin{tabular}{ll} Table 2 \\ All \ Packages \ and \ Dependencies \ for \ this \ Project. \ (continued) \\ \end{tabular}$

Package	Version	Source
renv	0.12.5	CRAN
reprex	1.0.0	CRAN
rio	0.5.16	CRAN
rlang	0.4.10	CRAN
rmarkdown	2.6	CRAN
$\operatorname{rmdfiltr}$	0.1.3	CRAN
rpart	4.1-15	CRAN
rprojroot	2.0.2	CRAN
rstudioapi	0.13	CRAN
rvest	0.3.6	CRAN
scales	1.1.1	CRAN
selectr	0.4-2	CRAN
sp	1.4-5	CRAN
statmod	1.4.35	CRAN
stringi	1.5.3	CRAN
stringr	1.4.0	CRAN
survival	3.2-7	CRAN
sys	3.4	CRAN
testthat	3.0.1	CRAN
tibble	3.0.6	CRAN
tidyr	1.1.2	CRAN
tidyselect	1.1.0	CRAN

Table 2

All Packages and Dependencies for this Project. (continued)

Package	Version	Source
tidyverse	1.3.0	CRAN
tinytex	0.29	CRAN
trekcolors	0.1.2	CRAN
utf8	1.1.4	CRAN
vctrs	0.3.6	CRAN
viridis	0.5.1	CRAN
viridisLite	0.3.0	CRAN
waldo	0.2.3	CRAN
webshot	0.5.2	CRAN
whisker	0.4	CRAN
withr	2.4.1	CRAN
xfun	0.20	CRAN
xml2	1.3.2	CRAN
xtable	1.8-4	CRAN
yaml	2.2.1	CRAN
zip	2.1.1	CRAN

118 Author Contributions

McCoy came up with the idea for this experiment and conducted all data collection and analysis. McCoy and Spock wrote this paper, however, Spock's main contribution was merely questioning McCoy's logic.

Fair Dealing

Any of the trademarks, service marks, collective marks, design rights or similar rights
that are mentioned, used, or cited in this manuscript are the property of their respective
owners. They are used here as fair dealing for the purpose of education, parody, and satire
in accordance with section 29 of the Copyright Act and do not infringe copyright.

127 References

- Fabri, A. (2021). Boomer: Print the output of intermediate steps of a call. Retrieved from https://github.com/moodymudskipper/boomer
- Fox, J., & Weisberg, S. (2019). An R companion to applied regression (Third). Thousand
 Oaks CA: Sage. Retrieved from
- https://socialsciences.mcmaster.ca/jfox/Books/Companion/
- Komsta, L., & Novomestky, F. (2015). Moments: Moments, cumulants, skewness, kurtosis and related tests. Retrieved from https://CRAN.R-project.org/package=moments
- Lenth, R. V. (2021). Emmeans: Estimated marginal means, aka least-squares means.
- Retrieved from https://CRAN.R-project.org/package=emmeans
- McCoy, L. H. (5327). Medical log, stardate 5327.4. USS Enterprise (NCC-1701).
- Mudd, H. F. (2266). Statistical assumptions, who needs them? Antares Pi IV: Mudd
 Publishing.
- Phlox. (2153). Classifying common medical maladies in humans during space exploration.
- 141 Starfleet Journal of Medicine, 1(1), 11–48.
- R Core Team. (2020). R: A language and environment for statistical computing. Vienna,
- Austria: R Foundation for Statistical Computing. Retrieved from
- https://www.R-project.org/

- RStudio Team. (2021). RStudio: Integrated development environment for r. Boston, MA:
- RStudio, PBC. Retrieved from http://www.rstudio.com/
- Spock, S. T. (2287). Personal communication. USS Enterprise (NCC-1701).