Exam 02 Review

Dr. Maria Tackett

11.20.19

Click for PDF of slides

Announcements

- HW 06 due today at 11:59p
- Project regression analysis due today at 11:59p
- Thursday's Lab: Exam 02 office hours

Exam 02 Outline

- Mostly short answer questions
- Permitted to bring one sheet of <u>handwritten</u> notes (front and back)
 - I will check your notes when you turn in your exam
- Calculator **not** permitted on exam
- Please use black or blue pen (and write neatly!)

How to prepare

- Review lecture notes and readings
- Review HW and lab assignments
- Practice problem sets on Sakai
- Utilize office hours and help hours during lab
- Study while making your page of notes

Topics

- Review: Multiple Linear Regression
- Models:
 - Logistic Regression
 - Multinomial Logistic Regression
 - Poisson Regression (main ideas, no zero-inflated poisson)
- Model Selection
- Modeling in practice
 - Model validation (main ideas, why it's important)
 - Dealing with missing data (main ideas, why it's important)

Logistic Regression

■ Use for response variable *y* that is categorical with 2 levels

$$\log\left(\frac{\hat{p}_i}{1-\hat{p}_i}\right) = \hat{\beta}_0 + \hat{\beta}_1 x_i + \dots + \hat{\beta}_p x_p$$

- Slope: As x_j increases by 1 unit, the odds of y are expected to multiply by a factor of $\exp{\{\beta_i\}}$, holding all else constant
- Intercept: When $x_1 = ... x_p = 0$, odds of y are expected to be $\exp\{\beta_0\}$

Multinomial Logistic Regression

- Use for response variable that is categorical with more than 2 levels
- Suppose we have a categorical variable with k>2 levels. Let y=1 be the baseline category

$$\log\left(\frac{\hat{p}_2}{\hat{p}_1}\right) = \hat{\beta}_{02} + \hat{\beta}_{12}x_1 + \dots + \hat{\beta}_{p2}x_p$$

$$\vdots$$

$$\log\left(\frac{\hat{p}_k}{\hat{p}_1}\right) = \hat{\beta}_{0k} + \hat{\beta}_{1k}x_1 + \dots + \hat{\beta}_{pk}x_p$$

- Slope: When x increases by one unit, the odds of y=k versus y=1 are expected to multiply by a factor of $\exp\{\hat{\beta}_{1k}\}$, holding all else constant.
- Intercept: When $x_1 = ... x_p = 0$, the odds of y = k versus y = 1 are expected to be $\exp{\{\hat{\beta}_{0k}\}}$

Model Selection

- Consider the main objective:
 - Prediction
 - Adjusting for many variables
 - Explanation
- Forward, backward, stepwise selection
 - Optimize some criteria at each step
- Example: Minimize AIC = $n \log(SSE) n \log(n) + 2(p+1)$

Questions?

Data Description

- We would like to identify crab species based on the closing force and propodus height of claws
 - ex0722 data set in the Sleuth3 R package
- Predictors:
 - Force: Closing force of claw (newtons)
 - Height: Propodus height (mm)
- Response:
 - Species: Hemigrapsus nudus (Hn), Lophopanopeus bellus (Lb),
 Cancer productus (Cp)

Data Description

Source: Yamada, S. and Boulding E., 1998, Claw morphology, prey size selection and foraging efficiency in generalist and specialist shell-breaking crabs, *Journal of Experimental Marine Biology and Ecology*, 220: 191-211.

- Suppose we want to use Force and Height to determine whether or not a crab is from the Lophopanopeus bellus (Lb) species.
 - What type of model should we use?
 - What should we do for exploratory data analysis?

■ We will use the mean-centered variables for force and height.

term	estimate	std.error	statistic	p.value
(Intercept)	-1.130	0.463	-2.443	0.015
forceCent	0.211	0.092	2.279	0.023
heightCent	-0.895	0.398	-2.249	0.025

- Write the equation for the odds of a crab being from the Lb species.
- Interpret the intercept in the context of the problem.
- Interpret forceCent in the context of the problem.

- What does **sensitivity** mean in the context of this data?
- What does **specificity** mean in the context of this data?

[1] 0.775641

Which species?

Suppose we want to use force and height to determine a crab's species.

y.level	term	estimate	std.error	statistic	p.value
Hn	(Intercept)	-1.193	1.106	-1.079	0.281
Hn	forceCent	-0.494	0.196	-2.514	0.012
Hn	heightCent	0.179	0.474	0.378	0.705
Lb	(Intercept)	0.021	0.602	0.034	0.973
Lb	forceCent	0.095	0.101	0.941	0.347
Lb	heightCent	-0.902	0.429	-2.103	0.035

- 1. Write the equation for part of the model describing the odds of Hn vs. Cp species.
- 2. Interpret the intercept for this part of the model.
- 3. Interpret the coefficient of forceCent fort this part of the model.

