RHCEv8 Online Class 30052021 10:00pm

RHCSA-sysadmin

- Managing Networking II

Managing Networking

3-Network

- -output is packet
- -as device router, I3switch
- -as protocols ipv4, ipv6

what is binary, decimal and hexadecimal units

wnat is bin	ary, decimai and	ı nexadecimai units
binary	decimal	hexadecimal
0/1	0	0
on/off	1	1
	2	2
	3	3
	4	4
	5	5
	6	6
	7	7
	8	8
	9	9
		A 10
		B 11
		C 12
		D 13
		E 14
		F 15

smallest unit computer science, its bit it's on/off 0/1

1bit

4bits nibble 8bits byte/octet

7	6	5	4	3	2	1		0			
2 power bit number											
7	6		5		4		3		2	1	0
2	2		2		2		2		2	2	2
128	6	4	32		16		8		4	2	1
128+	65+3	2+16	+8+4	+2+1	=25	5					

if whole bits be on/1->255

||00|000->200

what is ipv4

its 32bits in to 4byts/octet divided by . and each byte is between 0 to 255

ipv4 class

to better use ipv4 divided in to default 5classes

A0	to	126
B128	to	191
C192	to	223
D224	to	239

multicasting R/D

E240 to 255

NOTE:

- -to detect ip's class check first octet from left with ip's classes
- -127 uses for loopback interface, internal peruse
- -0 uses to define network-id
- -255 uses to define broadcast-ip

ipv4 comes in to 2types:

1-public, means has ping over internet network.

2-private, means doesn't have ping over internet network.

10.255.255.255 A10.0.0.0 B172.31.255.255 B172.16.0.0 to C192.168.0.0 192.168.255.255 to

ipv4 by default has 2parts

network part + host part

changeable

A ||||||.|||| most ipv4's

Н Н

C||||||.||||||.|||| least ipv4's

Ν Ν

ipv4 example

192.168.50.12

10.1.1.1

172.25.36.20

180.56.25.63

when2ipv4 can connect direct to each other without router

1-should be in same CLASS

2-should has same network part

10.1.1.1.1 and 11.1.1.2

->no direct ping

172.25.10.1 and 172.25.12.25 ->yes, direct ping

В В

how machine will detect ip's class

humans:

compare with default classes

152.36.25.89 ->B class

machines:

through subnet mask.

what is subnet mask

defines ip's class for machines

who calculate

to calculate subnet mask Network part should be 1/on and Host part should be 0/off

A 255.0.0.0

B 255.255.0.0

C 255.255.255.0

192.168.1.1 255.255.255.0

172.25.250.10 255.255.0.0

NOTE: subnet mask decides about ip's behavior

ipv4 comes in to:

-classfull

standard ip and subnet mask

10.1.1.1 255.0.0.0

-classless

ip doesn't match with subnet mask

10.1.1.1 255.255.255.0

what is cidr/prefix instead of subnet mask use prefix to calculate prefix, count each class network bits A/8 B/16 C/24 ex: classless 10.1.1.1/24 10.1.1.1/8 10.1.1.1/16 classfull 10.1.1.1/8 172.25.250.10/16 192.168.100.1/24 150.41.23.125 ->B class

NOTE: ip without subnet mask or prefix, should take it as classfull

ipv4 Analyze

CLASS

Network-ID

First IP

Last IP

Broadcast IP

number of hosts

ex:

192.168.10.1/24

CLASS

->Host part should be 0 Network-ID

192.168.10.0

First IP ->network-id +1

192.168.10.1

Last IP ->Broadcast IP - 1

192.168.10.254

-> Host part should be 1 Broadcast IP

192.168.10.255

number of available hosts

2^h-2

2^8-2=256-2=254

192.168.10.1 to 192.168.10.254

NOTE: don't set network-id and broadcast-ip over nic card.

what is ipv6

it comes to 128bits in binary language. 8parts*16bits=128bits

ipv6 example

binary should concert to hexadecimal

00:0000000000000001

[0000][1101][1011][1000]

[0000] [1011] [1000] 3 2 1 0 -> bits number 3 2 1 0 3210

3210 8+4+0+1 8+0+2+1

8 ->0DB8 2222 13 11

0

after convert to Hexadecimal

2001:0db8:0a0b:12f0:0000:0000:0000:0001

3rules to make ipv6 better

1-dicard leading 0

2001:0db8:0a0b:12f0:0000:0000:0000:1

2001:db8:a0b:12f0:0000:0000:0000:1

2-if 2 or more Oblock coming after each, remove Oblocks and put ::

2001:db8:a0b:12f0:0000:0000:0000:1

2001:db8:a0b:12f0::1

3-replace 0000 to 0 2001:db8:a0b:12f0::0000

2001:db8:a0b:12f0::0

ipv6 type

1-global-unicast ->ipv6 public, it has ping on internet ipv4public == ipv6 public 2-link-local ->ipv6 private, doesn't ping on internet ipv4private == ipv6 private 3-unique-local ->in public network acts as ipv6 public and in private network acts as private ipv6

ipv6 ipv4 ::1/128 127.0.0.0 local host default route 0.0.0./0

global-unicast 2000::/3 link-local fe80::/64 unique-local fd00::/8

Network services 1-DNS-Domain Name Service maps name to ip and ip to name # cat /etc/resolv.conf search lab.example.com nameserver 8.8.8.8 bindserver 8.8.8.8 2-DHCP-Dynamic Host Configuration Protocol method to set ip 1-manual/static set ip manual on nic 2-dynamic DHCP Service take responsibility through: **DORA** process Discover Offer Request Ack **3-GATEWAY** its exit interface mostly to access from lan to Internet How to set ip on NIC on linux 1-nmcli 2-nmtui 3-change through NIC configuration file 1-nmcli-Network Manager Command Line # ip link # ip addr show or #ipas # ifconfig # ifconfig -a # ifconfig ens160 till rhel6 nic cards came by eth0, eth1, ... rhel7 onwards linux shows us nic card firmware name ens192 en ->Ethernet ->wireless wan ww ->wireless wl ->hostplug ->onboard 0 ->pci **Format** Description o<index> on-board device index number s<slot>[f<function>][d<dev_id>] hotplug slot index number MAC address x<MAC> p<bus>s<slot>[f<function>][d<dev_id>] PCI geographical location p<bus>s<slot>[f<function>][u<port>][..][c<config>][i<interface>] USB port number chain # ifconfig ens160: flags=4163 ->interface is up ->maximum transfer unit 1500bytes mtu 1500 inet 192.168.216.3 netmask 255.255.255.0 broadcast 192.168.216.255 ->ipv4 inet6 fe80::2398:bdf9:43b4:51fa ->ipv6 ether 00:0c:29:92:a4:30 ->mac address what is connection/profile create connection for each time as u want change configuration on nic and next time just call it ex: ->dynamic/dhcp coss ibm ->static dell ->static

create connection

-coss dhcp

-ibm

ip: 10.1.1.50/8

-dell

ip:150.16.35.188/24 dns: 150.16.35.254 gw: 150.16.35.253 dns-search: dell.in

-show number of connections

nmcli connection show

NAME UUID TYPE DEVICE ens160 27b51475-262c-456c-a3ca-a5c2aad262ff ethernet ens160

nmcli connection show --active

-create new connection

nmcli connection add con-name "coss" type ethernet autoconnect yes ifname ens192 ipv4.method auto # nmcli connection add con-name "ibm" ifname ens192 autoconnect yes type ethernet ipv4.addresses "10.1.1.150/24" ipv4.method manual # nmcli connection add con-name "dell" autoconnect yes type ethernet ifname ens192 ipv4.addresses "150.16.35.188/24" ipv4.dns "150.16.35.254" ipv4.gateway "150.16.35.253" ipv4.dns-search "dell.in" ipv4.method manual

-reload nmcli after interaction

nmcli connection reload

-connection details

nmcli connection show "dell"

nmcli connection show "dell" | grep -i "ipv4"

nmcli connection show "dell" | grep -i "ipv4.address"

-active connections

nmcli connection up "dell"

-modify connection

-ibm

ip: 10.1.1.201/8

nmcli connection modify "ibm" ipv4.addresses "10.1.1.201/8" ipv4.method manual

nmcli connection reload

nmcli connection show "ibm" | grep -i "ipv4"

-delete connection

nmcli connection delete "coss"

nmcli connection reload

How to set hostname

hostnamectl set-hostname <new name>

bash

->when type bash history will clean

2-nmtui

nmtui

its semi gui mode

hostnamectl

3-change through NIC configuration file

II /etc/sysconfig/network-scripts/ifcfg-

ifcfg-dell ifcfg-ens160 ifcfg-ens192 ifcfg-ibm # cat /etc/sysconfig/network-scripts/ifcfg-ens192

DEVICE=ens192

ONBOOT=yes == autoconnect NAME=ens192 == con-name

BOOTPROTO=none none/static ->static dhcp ->dynamic

check connectivity

ping 8.8.8.8

ping -i 3 8.8.8.8 delay
ping -c 3 8.8.8.8 limit request
ping -I ens160 8.8.8.8 select exit Interface

Managing Network Security

firewall helps us and control incoming and outgoing traffic in to network, host, device

on linux

FIREWALL ARCHITECTURE CONCEPTS

The Linux kernel includes **netfilter**, a framework for network traffic operations such as packet filtering, network address translation and port translation.

Nftables enhances netfilter

The Linux kernel also includes **nftables**, a new filter and packet classification subsystem that has enhanced portions of netfilter's code, but retaining the netfilter architecture such as networking stack hooks, connection tracking system, and the logging facility.

Introducing firewalld

Firewalld is a dynamic firewall manager, a front end to the nftables framework using the nft command. https://firewalld.org/

work with firewalld

1-cli

2-qui

3-web access(cockpit)

4-edit firewalld configuration files

firewalld info

package:

cli->firewalld.noarch

gui->firewall-config.noarch

daemon: firewalld.service

config file:

running->/etc/firewalld/main->/usr/lib/firewalld/

log: /var/log/firewalld

Implement firewalld on linux

yum list firewall*

yum install firewall* -y ->install/update

systemctl enable firewalld.service

systemctl start firewalld.service

systemctl status firewalld.service

systemctl restart firewalld.service

-verify

firewall-cmd -- press tab tab

firewall-config

firewall-cmd --version

0.8.2

firewall-cmd --state

running

firewalld in cli

firewall-cmd --

firewalld in gui

firewall-config

firewalld in direct config files

firewall-config cat /etc/firewalld/zones/public.xml

```
firewalld concepts
to operates firewalld need to know about:
1-zone
2-service-name
1-zone
zone is level of trust
# firewall-cmd --get-zones
block dmz drop external home internal public trusted work
# firewall-cmd --list-all-zones
# firewall-cmd --get-default-zone
public
2-service-name
instead of port can select service-name too
# cat /etc/services
how many ports are available?
65535 in to
                1023 ->well-known ports
0
       to
1024 to
                49151 ->registered ports
49152 to
                65535 ->dynamic/private ports
current opened service in firewalld
# firewall-cmd --list-services
cockpit dhcpv6-client ssh
list of total service-name
# firewall-cmd --get-services
firewalld-cli
ex:
open port 23/tcp
current zone
# firewall-cmd --list-all
remote zone
# firewall-cmd --list-all --zone=drop
# firewall-cmd --permanent --add-port=23/tcp
# firewall-cmd --permanent --add-port=23/udp
after interaction with firewall, reload is mandatory
# firewall-cmd --reload
# firewall-cmd --list-all
ex:
remove dhcpv6-client from public zone
# firewall-cmd --list-all
# firewall-cmd --permanent --remove-service=dhcpv6-client
# firewall-cmd --reload
# firewall-cmd --list-all
add dns service-name
# firewall-cmd --permanent --add-service=dns
# firewall-cmd --reload
# firewall-cmd --list-all
add multiple service-name tftp, http, https
# firewall-cmd --permanent --add-service={tftp,http,https}
# firewall-cmd --reload
# firewall-cmd --list-all
add telnet to internal zone
# firewall-cmd --permanent --add-service=telnet --zone=internal
# firewall-cmd --reload
# firewall-cmd --list-all --zone=internal
firewalld in direct config files
# firewall-cmd --get-default-zone
public
# vim /etc/firewalld/zones/public.xml
<zone>
<service name="dhcp"/>
<port port="53" protocol="tcp"/>
</zone>
:wq!
```

Analyzing Servers and Getting Support DESCRIBING THE WEB CONSOLE

Web Console is a web-based management interface for Red Hat Enterprise Linux 8 designed for managing and monitoring your servers.

web console(cockpit) info

package: cockpit.x86_64 daemon: cockpit.socket

port: 9090/tcp

implement web console on rhel

yum install cockpit.x86_64 -y

systemctl enable cockpit.socket

systemctl start cockpit.socket

systemctl status cockpit.socket

firewall-cmd --permanent --add-port=9090/tcp

or

firewall-cmd --permanent --add-service=cockpit

firewall-cmd --reload

open browser and type:

https://172.25.250.10:9090/

u: root p: redhat