

# Movie Review Classifier

**Project Proposal Presentation** 

**WOO-CHAN KIM** 



## I. Project title

Building the Movie review classifier (Positive or Negative review)

## **II. Project introduction**

#### 1) Objective

: The project objective is to build a classifier that evaluates the positive and negative sentiments of movie reviews. This model has high applicability as it can be used in various NLP fields such as document classification.

#### 2) Motivation

: As a Large Language Model researcher, I want to choose an NLP task.

So, I picked the Movie Review Classifier task, which is a famous NLP task.

I want to compare the performances of ML and DL in NLP fields by making two models.



## III. Dataset description

#### 1) What is IMDB Dataset?

: This is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. They provide a set of 25,000 highly polar movie reviews for training, and 25,000 for testing.





5 heads of IMDB Dataset

Describe of IMDB Dataset



## III. Dataset description

#### 2) Train / Validation / Test dataset

```
[ ] from sklearn.model_selection import train_test_split

    train_df, temp_df = train_test_split(df, test_size=0.3, random_state=42)
    val_df, test_df = train_test_split(temp_df, test_size=0.5, random_state=42)

[ ] train_file_path = '/gdrive/MyDrive/Colab Notebooks/IMDB/IMDB_Train.csv'
    val_file_path = '/gdrive/MyDrive/Colab Notebooks/IMDB/IMDB_Validation.csv'
    test_file_path = '/gdrive/MyDrive/Colab Notebooks/IMDB/IMDB_Test.csv'

[ ] train_df.to_csv(train_file_path, index=False)
    val_df.to_csv(val_file_path, index=False)
    test_df.to_csv(test_file_path, index=False)
```



#### **IV. Conclusion**

I developed 2 kinds of movie review classifiers using both logistic regression and LSTM models, both of which demonstrated high performance. While I initially encountered overfitting with the LSTM model, I resolved this by simplifying the model's structure. Typically, deep learning outperforms machine learning, but due to the relatively small size of the IMDB dataset, both models delivered similar results.

| Validation Accu<br>Classification | ,        |        |          |         |
|-----------------------------------|----------|--------|----------|---------|
| р                                 | recision | recall | f1-score | support |
| 0                                 | 0.89     | 0.88   | 0.88     | 3689    |
| 1                                 | 0.88     | 0.90   | 0.89     | 3811    |
| accuracy                          |          |        | 0.89     | 7500    |
| macro avg                         | 0.89     | 0.89   | 0.89     | 7500    |
| weighted avg                      | 0.89     | 0.89   | 0.89     | 7500    |
| Confusion Matri                   | x:       |        |          |         |
| [[3230 459]<br>[ 396 3415]]       |          |        |          |         |

Logistic Regression



Validation Accuracy: 0.8756 Test Accuracy: 0.8853

**LSTM** 



## **Q & A**

E-mail: kimwc620@korea.ac.kr

GitHub address:

https://github.com/SkyDreamer14/IMDB\_Dataset\_Movie\_Reviews