二分类模型评价

混淆矩阵 (confusion matrix)

使用 sklearn 计算混淆矩阵

sklearn.metrics.confusion_matrix

主要参数:

-- y_true: 真实的 y 值 -- y_pred: 预测的 y 值

精度 (Accuracy)

$$Accuracy = \frac{TP + TN}{TP + TN + FP + FN}$$

准确率 (Precission)

$$Precision = \frac{TP}{TP + FP}$$

在所有正类的预测当中,有多少是正确的?

召回率 (Recall)

$$Recall = \frac{TP}{TP + FN}$$

有多少正类被预测出来了?

FPR (False Positive Rate)

$$FPR = \frac{FP}{FP + TN}$$

有多少负类被预测出来了?

F1-Score

$$F = 2 \times \frac{\text{precision} \times \text{recall}}{\text{precision} + \text{recall}}$$

优点:结合了 precision 和 recall 两个指标

缺点: 难以解释其数值的意义

使用 sklearn 计算评价指标

sklearn.metrics.classification_report

主要参数:

-- y_true: 真实的 y 值 -- y_pred: 预测的 y 值

分类阈值

默认情况下,将 y_prob > 0.5 或者 y_decision > 0 的样本分类为**正类**

即 y_pred = y_prob > 0.5 or y_pred = y_decision > 0

准确率 - 召回率曲线 和 ROC 曲线

如何在两条曲线之间进行比较?

使用 sklearn 生成曲线

```
from sklearn.metrics import precision_recall_curve
from sklearn.metrics import average_precision_score, roc_curve, roc_auc_score
precision, recall, thresholds = precision_recall_curve(y,y_prob)
ap = average_precision_score(y,y_prob)
fpr, recall, thresholds = roc_curve(y,y_prob)
auc = roc_auc_score(y,y_prob)
```