

Document History

Ver. No.	Release Date	Prepared. By	Reviewed By	A D D C O V A G E V	Remarks/Revision Details

Table of Contents

Activity 1- System/Software Development:	6
SECTION1	
1.1 DEFINITION:	
1.3 Definition of the project:	7
1.4 SWOT analysis:	7
1.5 Requirements:	9
SECTION2	11
2.1 DESIGN	
SECTION3	14
3.1 Test Plan	14
Activity 2- Agile Aspects:	15
2.1 . HIGH LEVEL REQUIREMENT:	15
2.2 Low level Requirement::	15
2.3 Test plan:	16
2.4 User stories:	17
Activity 3- System Software development for gneisses:	19
Annendix:	25

List of Figures

Figure 1. SWOT Analysis.	7
Figure 2: Blood pressure sensor module.	10
Figure 3. use case diagram high level	11
Figure 4. Activity diagram high level	11
Figure 5 Component Diagram High Level	12
Figure 6. use case diagram low level	12
Figure 7 component Diagram Low Level	13

GENESIS Learning Report - Module Name

List of tables

Table 1 High level Requirement	16
Table 2 Low level Requirement:	17
Table 3 Test Plan	17

Activity 1– System/Software Development

IOT based wearable smart health monitoring system

Section 1:

1.1 **Definition:** Health monitoring system is an effective way to review health condition of any condition of any individual. It helps to provide monitoring anytime anywhere. Health monitoring is a useful research area where basic routine health parameters can be reviewed anytime by any individual.

Research:

1.2.1 Aging:

Enhanced and intelligent health-care system is a symbol of developed and prosperous nation. Internet of things(IOT) has abounded the digital health-care system by providing the remote monitoring the patients' health condition and allowing doctors to have access to that information.

The product being developed are capable of monitoring pulse rate and body temperature at a time and requires some volunteer activity [1], however some of the products being used at the hospitals are capable of monitoring and generating reports on multiple parameters, which are then used by medical experts to assist the patient.

1.2.2 Costing:

Health system used at the hospitals are very cost effective and space consuming.

More over the medical staff are needed at every level from interfacing sensor to capturing the parameters.

1.3 Definition of the project

The sensors which are currently being used requires external stimulus. Since the Health monitoring system used at hospitals are capable of monitoring many parameters the cost of deployment is very high.

The Simple BP sensor may cost around Rs.1500 and requires the external stimulus to be applied. Making this data to be available remotely requires additional interfaces.

There for developing a system with a pulse, blood pressure and temperature sensor along with the necessary interfaces is proposed.

1.4 SWOT analysis:

A basic SWOT analysis diagram is most commonly used to assess a product, of four criteria: strengths, weaknesses, opportunities, and threats.

Figure 1. SWOT Analysis.

Strengths

- Reduced Burden on Healthcare Systems
- Patients can get care without going into the office, since data are collected remotely and a qualified provider analyses and responds to the data digitally, such as via email or text.
- Self-Evaluation.
- Ease of Use

Weaknesses

- Security: The most talked about drawback of connecting devices is their security and how it can be
 compromised by a small group of hackers. Recent activities of hackers trying to gain control over smart
 fridges is not doing any good to the reputation of IoT. However, there are attempts being made to revitalise
 security of such devices and to establish a common standard for the same.
- Data Challenges: Every year, we produce data in Exabyte's. This data needs to be stored and analysed for obtaining information about certain parameters. When all devices are connected, the amount of data collected will increase manifold. Collection, analysis and storage of all that data is an arduous task and we need better infrastructure to manage the avalanche of data headed our way.
- Massive Investments: Companies wishing to become early movers in the IoT market have to invest a lot of
 money to make connected devices. Apart from the production costs, there is a huge cost attached to the
 Research and Development of the products as well. This high cost might intimidate new market entrants.
 Companies need to stay poised to reap the benefits of such investments over time.

Opportunities

Healthcare Applications: Paradigm-shifting to the field of personal healthcare is the agenda that is leading
the revolution of connected devices. There are several opportunities for developers to innovate and make
solutions to make our lives easier. Recent development of the Health Kit and Research Kit by Apple is just
a step forward in the direction of improving healthcare. With so many ideas perking up every now and then
and the state of current technology, anything is possible. As potential customers, this is a win-win situation
for us.

Threats

- Vulnerability to hackers: When we think about hackers, we imagine really intelligent individuals working
 tirelessly on their Alien wares to bring down a website. Now, with connected devices in the picture, these
 hackers will be able to control your smart bulbs, garage, watches and even clothes! This open invitation to
 hackers to try to control every device around is a serious threat for IoT and it stands in the way of users
 shifting to connected devices.
- Not Meeting People's Expectations: A classic example to bring home this point can be the console game, Watchdogs. The game was previewed at a conference when it was in its early stages of development. People pinned hopes high expecting an open-world hacking game. But, what was delivered did not live up to the expectations, making it an average product after all. IoT here has reached the peak of it hype. People have realistic and over-the-top hopes from IoT. These exaggerated expectations are a threat to IoT if the products fail to live up to the user expectations.
- Lack of demand due to high cost: Let's face it, smart watches, glasses or even bulbs are not cheap. A pack
 of 3 smart bulbs is almost three times the cost of regular ones. It is great for us that companies are
 developing connected devices, but they will be of no use if the intended target audience is not able to
 afford them. Large selling prices is a very big threat looming over IoT and its growth.

1.5 Requirements:

To design a remote real-time monitoring system for multiple physiological parameters based on IOT, including a heart rate, blood Pressure and temperature. The proposed system should meet fallowing requirements

1.5.1 High Level:

such as sensing, processing, displaying, and real-time transmission and should have the capability to generate an auto alarm based on the analysis threshold values of multiple monitoring parameters. The system should also meet auxiliary requirements such as compatibility, comfort, low power consumption and cost, and small size.

Hardware components used:

Arduino uno

ESP8266.

Heart Rate Pulse Sensor.

LM35.

Blood pressure sensor (should be able to generate the serial output)

LCD Display-16x2.

Software requirements:

Arduino IDE.

Thinks Speak.

1.5.2 Low level:

To meet mentioned high level requirement, the fallowing modules can be used

BLOOD PRESURE SENSOR: Blood Pressure & Pulse reading are shown on display with serial out for further processing. Shows Systolic, Diastolic and Pulse Readings. Compact design fits over your wrist like a watch. Easy to use wrist style eliminates pumping.

Figure 2: Blood pressure sensor module.

Specification

Working Voltage: +5V, 200mA regulated.

Output Format: Serial Data at 9600 baud rate(8 bits data, No parity, 1 stop bits). Outputs three parameters in ASCII.

Sensing unit wire length is 2 meters.

Sensor Pin outs

TX-OUT = Transmit output. Output serial data of 3V logic level, usually connected to RXD pin of microcontrollers/RS232/USB-UART.

+5V = Regulated 5V supply input.

GND = Board Common Ground.

Section 2

2.1Design:

Figure 3. use case diagram high level

Figure 4. Activity diagram high level

Figure 5 Component Diagram High Level

Figure 6 Class Diagram High Level

Figure 7. use case diagram low level

Figure 8 component Diagram Low Level

Figure 9 Class Diagram High Level

Section 3:

3.1 Test Plan

Requirement Based Test Plan.

- Test plan 1: Supply voltage of 7v to 12 v to power up the Arduino Uno.
- Test plan 2: Baud Rate to be initialized 9600.
- Test plan 3: Serial pins (Rx & TX) of Arduino must be connected the TX &Rx pins of blood Pressure sensor.

Scenario Based Test Plan.

- Test plan 4: Configuring the digital pins as Rx & TX.
- Test plan 5: Exchanging Rx and TX pins.

Boundary Condition based test plan.

- Test plan 6: Selecting Baud rate above 9600.
- Test plan 7: Selecting Baud rate below 9600.
- Test Plan 8: Supply voltage below 5v.

Activity 2 – Agile Aspects

2.1. High level Requirement:

	T T
ID	Description
HL-01	Supply voltage for Arduino (5V)
HL-02	Output Format: Serial Data
HI-03	Use serial Communication pins available
HL-04	Digital pins for communication(configure)
HL-05	Sensing unit wire length is 2 meters.
HL-06	Inbuilt supply for sensor in case of standalone unit
HL-07	Memory to store the data

Table 1 High level Requirement

2.2. Low level Requirement:

ID	Description
LL-01	Supply voltage for Arduino between +7v to
	+16v and Blood pressure sensor requires +5v,
	200mA regulated supply
LL-02	Serial data at 9600 baud rate (8 bits' data,
	No parity, 1 stop bits).
	Outputs three parameters in ASCII.
	Systolic
	Diastolic
	• Pulse
LL-03	Serial pins(digital pin 0 & digital pin 1)
	(Rx & TX) of Arduino must be connected the
	TX &Rx pins of blood Pressure sensor.
LL-04	Configure the Digital pins(2 to 13) of
	Arduino to use Rx & Tx
LL-05	Sensing unit wire length is 2 meters with
	serial data converter.

LL-06	Use a battery of +5v output.
LL-07	Memory should be able to store values of
	60 trails.

Table 2 Low level Requirement:

2.3. Test plan

Tes	t ID	Description	Prerequisite	Expected	Expected	Actual output	Remarks
				input	output		
	HH-	Supply voltage	Input	Input:5V	Check	Green LED	Pass
01	LL-	for Arduino	voltage 230v	DC	that the	power indicator is	
01		between +7v to	stepdown to		green LED	ON located near	
		+16v and Blood	5V DC or Plug		power	the reset switch.	
		pressure sensor	the board into		indicator is		
		requires +5v,	a USB port on		ON located		
		200mA regulated	your computer		near the		
		supply			reset switch.		
	HH-	Supply voltage	Input	Input:	Check	Green LED	Fail
01	LL-	for Arduino	voltage 230v	Below 4.9v	that the	power indicator is	
01		between +7v to	stepdown to	DC	green LED	ON located near	
		+16v and Blood	5V DC or Plug		power	the reset switch.	
		pressure sensor	the board into		indicator is		
		requires +5v,	a USB port on		OFF located		
		200mA regulated	your computer		near the		
		supply			reset switch.		
	HH-	Serial data at	Initialize	Input :	Check	Data obtained	Pass
02	LL-	9600 baud rate (8	the baud rate	baud rate	whether able	for	
02		bits' data, No	to 9600	9600	to read the		
		parity, 1 stop			data coming	 Systolic 	
		bits).			at serial pins	Diastolic	
		Outputs three			of Arduino	• Pulse	
		parameters in				T this	
		ASCII.					
		110011.					
		 Systolic 					
		SystolicDiastolic					
		Pulse					

HH- LL-	Serial data at 9600 baud rate (8 bits' data, No parity, 1 stop bits). Outputs three parameters in ASCII. Systolic Diastolic Pulse	Initialize the baud rate to 9600	Input : baud rate 115200	Check whether able to read the data coming at serial pins of Arduino	Garbage data obtained	Fail
±- 11-	Checking Serial pins(digital pin 0 & digital pin 1) (Rx & TX)	Serial pins(digital pin 0 & digital pin 1) (Rx & TX) of Arduino must be connected the TX &Rx pins of blood Pressure sensor.	Systolic, Diastolic and Pulse	Systolic, Diastolic and Pulse output at LCD	Systolic, Diastolic and Pulse output at LCD observed	Pass
IL- LL-	configuring Digital pins for Rx and TX	Configure the Digital pins(2 to 13) of Arduino to use Rx & Tx	Systolic, Diastolic and Pulse	Systolic, Diastolic and Pulse output at LCD	Systolic, Diastolic and Pulse output at LCD observed	Pass
IL- LL-	External supply check	Connect a battery of +5v output.	Input:5V DC	Check that the green LED power indicator is ON located near the reset switch.	Green LED power indicator is ON located near the reset switch.	Pass
IL- LL-	External supply check	Connect a battery of +4v output.	Input:4V DC	Check that the green LED power indicator is ON located	Green LED power indicator is OFF located near the reset switch.	Fail

				near the		
				reset switch.		
HL	Memory	Make	Do trails	Check for	60 patient data	
07 LI		sure memory	for 60	60 Patients	identified	
07		installed in	patients	data		
		BP sensor				
HL	Memory	Make	Do trails	Check for	30 patient data	
07 LI		sure memory	for 30	60 Patients	identified	
07		installed in	patients	data		
		BP sensor				
		installed in				
		BP sensor				

Table 3 Test Plan

2.4 User stories:

1. Description:

a. I want to send ma blood pressure, pulse rate and body temperature to ma doctor

Test case:

- a. Given the module you can interface and monitor the Parameters
- b. Doctor can view the parameters by accessing the cloud

2. Description:

a. I want to store blood pressure of 60 people

Test case:

a. Given the module you can interface and record the parameters of 60 patients and upload the same to cloud.

3. Description:

a. I want to know ma blood pressure remotely and want upload to cloud.

Test case:

- a. Given the module you can interface and record the parameters.
- b. Upload he values using API keys.

Activity 3 -System Software development for gneisses

Badges

Commits

• Build and Make file

Make File Code: SRC = unity/unity.c\ src/biosensor.c\ test/test_biosensor.c\ main.c INC = -lunity\ -linc\ -Itest PROJECT_NAME = BIOSENSOR.out \$(PROJECT_NAME): \$(SRC) gcc \$(SRC) \$(INC) -o \$(PROJECT_NAME) run:\$(PROJECT_NAME) ./\${PROJECT_NAME} doc: make -C documentation clean: rm -rf \$(PROJECT_NAME) documentation/html Git link: https://github.com/99002675

Appendix: CI Workflow for C Programming

Build file ⊙ Unwatch ▼ 1 🛱 Star 0 🖁 Fork 0 ☐ stepin105384 / Prime-number Settings make file changes 🔾 Re-run jobs 🕶 √ C/C++ CI C/C++ CI / build Set up job Run actions/checkout@v2 Post Run actions/checkout@v2 Make file ☐ stepin105384 / Prime-number ♠ Actions
□ Projects
□ Wiki Security ✓ Insights make file changes Re-run jobs 🕶 master -- 3b36300 √ C/C++ CI C/C++ CI ... ✓ build This run Workflow file 1 completed job in 21s Ran 1 hour ago Artifacts No artifacts No artifacts were generated.

• Cpp check and code Quality

Commits

Cpp check

• Make File code:

```
SRC = unity/unity.c\
src/prime.c\
test/test_prime.c\
main.c
INC = -Iunity \setminus
-linc\
-Itest
PROJECT_NAME = PRIME.out
$(PROJECT_NAME): $(SRC)
       gcc $(SRC) $(INC) -o $(PROJECT_NAME)
run:$(PROJECT_NAME)
       ./${PROJECT_NAME}
doc:
       make -C documentation
clean:
       rm -rf $(PROJECT_NAME) documentation/html
```

Git Link: https://github.com/stepin105384/Prime-number

References:

- [1] https://circuitdigest.com/microcontroller-projects/iot-based-patient-monitoring-system-using-esp8266-and-arduino
 - $\hbox{[2]} \ \underline{https://www.sunrom.com/p/blood-pressure-sensor-serial-output}$