General Disclaimer

One or more of the Following Statements may affect this Document

- This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible.
- This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available.
- This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white.
- This document is paginated as submitted by the original source.
- Portions of this document are not fully legible due to the historical nature of some
 of the material. However, it is the best reproduction available from the original
 submission.

Produced by the NASA Center for Aerospace Information (CASI)

NASA-CR-168086 SOL. I

(NASA-CR-168086-Vol-1) FREE-JET ACCUSTIC
INVESTIGATION OF HIGH-RADIUS-RATIC CCANNULAR
FLUG NCZZLES. COMPREHENSIVE DATA REPORT,
VOLUME 1 (General Electric Co.) 859 p
Unclas
HC A99/MF A01
CSCL 20A G3/71 08621

FREE JET ACOUSTIC INVESTIGATION OF HIGH-RADIUS-RATIO COANNULAR PLUG NOZZLES

Contract NAS3-20619

Comprehensive Data Report

VOLUME I

By

P.G. Vogt P.K. Bhutiani P.R. Knott

January 1981

Prepared for
National Aeronautics and Space Administration
Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135

FREE JET ACOUSTIC INVESTIGATION OF HIGH-RADIUS-RATIO COANNULAR PLUG NOZZLES

Contract NAS3-20619

Comprehensive Data Report

VOLUME I

By

P.G. Vogt P.K. Bhutiani P.R. Knott

January 1981

Prepared for
National Aeronautics and Space Administration
Lewis Research Center
21000 Brookpark Road
Cleveland, Ohio 44135

1. Report No.	2. Government Accession	No.	3. Recipient's Catalog	No.	
NASA CR-168086 4. Title and Subtitle			5. Report Date		
Free-Jet Acoustic Investigat	.0	January 1983			
Coannular Plug Nozzles		6. Performing Organization Code			
7. Author(s)			8. Performing Organiza	ntion Report No.	
P.R. Knott, B.A. Janardan, R.K	. Majjigi, P.K. Bhutiar	11, P.G. Vogt	R81AEG212		
			10. Work Unit No.		
 Performing Organization Name and Address General Electric Company 	3				
Aircraft Engine Business Gro	up		11. Contract or Grant	No.	
Cincinnati, Ohio 45215		·]	NAS3-20619		
10 Commission Assessed Name and Address			13. Type of Report an Contractor Rep		
12. Sponsoring Agency Name and Address	a. Administration				
National Aeronautics and Spa	ce Administration		14. Sponsoring Agency	Code	
15. Supplementary Notes Contract Comprehensive Designmechanics and Acoustics Divi	n Report (CDR): Projection, Cleveland, Ohio	t Manager, Orlan	do A. Gutierez, F	luid	
This report is a companion document to the Contractor Final Report issued under this contract. The report describes the acoustic test models, the test facility, and the data acquisition/reduction procedures. A detailed definition of all test points is listed in tabular form. Results of both the acoustic and laser velocimeter tests are presented in a reduced data format following the standard practice of General Electric's Jet Noise Technology Section. Discussions and interpretations of the test results are contained in the Final Report, In all, six coannular plug nozzle configurations, having inverted velocity and temperature profit and a baseline convergent conical nozzle were tested for simulated flight acoustic evaluation in General Electric's Amechoic Free-Jet Acoustic Facility. The nozzles were tested over a range of test conditions that are typical of a Variable Cycle Engine for application to advanced high speciaircraft. The outer stream radius ratio for most of the configurations was 0.853, and the inner-stream-outer-stream area ratio was tested in the range of 0.2 to 0.54. Other variables investigated were the influence of bypass struts, a simple noncontoured convergent-divergent out stream nozzle for forward quadrant shock noise control, and the effects of varying outer stream radius and inner-stream-to-outer-stream velocity ratios on the flight noise signatures of the nozzles. It was found that in simulated flight, the high-radius-ratio coannular plug nozzles maintain their jet noise and shock noise reduction features previously observed in static testing The presence of nozzle bypass struts will not significantly effect the acoustic noise reduction features of a General Electric-type nozzle design. A unique coannular plug nozzle flight acoust: spectral prediction method was identified and found to predict the measured results quite well. Special laser velocimeter and acoustic measurements were performed which have given new insight into the jet and shock noise reduction mechanisms of coannular plug					
		f coannular plug	MOZZIES WILH IES	new insight	
	1 research efforts.			new insight	
17. Key Words (Suggested by Author(s))	1 research efforts.	f coannular plug		new insight	
17. Key Words (Suggested by Author(s)) Coannular plug nozzle jet no: jet noise reduction; variable acoustic flight noise simular velocimeter measurements	l research efforts. 18 se; supersonic cycle cogine;			new insight	
Coannular plug nozzle jet no jet noise reduction; variable acoustic flight noise simular velocimeter measurements	l research efforts. 18 se; supersonic cycle tagine; ion; laser	. Distribution Statemen	18	new insight ard to	
Coannular plug nozzle jet no: jet noise reduction; variable acoustic flight noise simular	l research efforts. 18 se; supersonic cycle cogine;	. Distribution Statemen		new insight	

^{*} For sale by the National Technical Information Service, Springfield, Virginia 22161

TABLE OF CONTENTS

Section			Page
1.0	INTRO	DUCTION	1
2.0	νESCR	IPTION OF ACOUSTIC MODELS	2
3.0	DESCR	IPTION OF TEST FACILITY	11
	3.2	Acoustic Facility Description Acoustic Characteristics of Anechoic Chamber 3.2.1 Inverse Square Law Tests 3.2.2 Background Noise Description of Aerodynamic Tests 3.3.1 Mean Velocity Profile Test 3.3.2 Turbulent Velocity Profile Test	11 13 13 17 22 22 26
	3.4	3.3.3 Tertiary Plume Symmetry Test 3.3.4 Tertiary Plume Development Facility Operating Domain	26 30 35
4.0	DATA	ACQUISITION AND REDUCTION	37
	4.2	Acoustic Data Acquisition and Reduction Description of the Flight Transformation Technique 4.2.1 Objective and Concept 4.2.2 Algorithm Description	37 - 42 - 42 - 43 - 43
		4.2.3 Further Details Laser Velocimeter Data Acquisition and Reduction 4.3.1 Basic Idea for LV Measurements 4.3.2 Histogram 4.3.3 Mean Velocity 4.3.4 Turbulent Velocity 4.3.5 Statistical Errors for LV Mean and Turbulent Velocity 4.3.6 LV Traverses for Mean Velocity Profiles Aerodynamic Data Acquisition and Reduction 4.4.1 Nozzle Pressure and Temperature Measurements 4.4.2 Performance Data Processing 4.4.3 Humidity and Temperature Measurement	53 55 55 57 57 57 59 60 60 60 62
5.0	TEST	POINT DEFINITION	64
6.0	TEST	RESULTS	76
	6.1	Acoustic Test Results 6.1.1 Measured Acoustic Data for Model 1 6.1.2 Measured Acoustic Data for Model 1A 6.1.3 Measured Acoustic Data for Model 2 6.1.4 Measured Acoustic Data for Model 3 6.1.5 Measured Acoustic Data for Model 4	76 80 138 202 269 324
		6.1.6 Measured Acoustic Data for Model 5 6.1.7 Measured Acoustic Data for Model 6 6.1.8 Measured Acoustic Data for Model 7	355 419 480

TABLE OF CONTENTS (Concluded)

Section				Page
	6.2	Laser Velocimeter Test Re	esults	733
		6.2.1 Laser Velocimeter	Data for Model 1	734
		5.2.2 Laser Velocimeter	Data for Model 1A	853
		5.2.3 Laser Velocimeter	Data for Model 2	868
		5.2.4 Laser Velocimeter	Data for Model 3	1171
		5.2.5 Laser Velocimeter	Data for Model 5	1217
		6.2.6 Laser Velocimeter	Data for Model 6	1263
		5.2.7 Laser Velocimeter	Data for Model 7	1433
	7.0	References		1627

LIST OF FIGURES

Figure		Page
1.	Details of Models 1, 2, and 3 Assemblies.	3
2.	Details of Model 4 Assembly.	5
3.	Details of Conic Model 5 Assembly.	7
4.	Details of Models 6 and 7 Assemblies.	8
5.	Details of Nozzle Area Calculations.	10
6.	General Electric Anechoic Free Jet/Jet Noise Facility Schematic.	12
7.	Free Jet Arrangement in Cell 41 Anechoic Facility.	14
8.	Overhead View of the Tertiary Flow Stream with a Conic Nozzle Installed.	15
9.	Inverse Square Law Test at 90° with Tertiary and Coannular Nozzle Hardware (Bass, Bauer and Evans Atmospheric Correction Included), Lossless for 160 Hz <f< 1000="" 620="" 80="" <f<="" air="" and="" ball.<="" for="" hz="" hz,="" khz,="" speaked="" td="" used=""><td>16</td></f<>	16
10.	Standard Deviation of Inverse Square Law Tests with Tertiary and Coannular Nozzle Hardware.	18
11.	Comparison of Coannular Jet Noise Spectra with the Tertiary (Background) Noise Spectra $\theta_{\rm I}$ = 50°, 40 Ft Arc Data.	19
12.	Comparison of Coannular Jet Noise Spectra with the Tertiary (Background) Noise Spectra $\theta_{\rm I}$ = 90°, 40 Ft Arc Data.	20
13.	Comparison of Coannular Jet Noise Spectra with the Tertiary (Background) Noise Spectra $\theta_{\rm I}$ = 150°, 40 Ft Arc Data.	
14.	Schematic of Free Jet Test Arrangement, View Looking East.	23
15.	Radial Variation of Free Jet Mean Velocity Laser Velocimeter Data.	24
16.	Axial Variation of Free Jet Mean Velocity Laser Velocimeter Data.	25
17.	Radial Variation of Free Jet Axial Turbulence Laser Velocimeter Data.	27
18.	Axial Variation of Free Jet Axial Turbulence Laser Velocimeter Data.	28
19.	Azimuthal Variation of Free Jet Mean Velocity at	20

LIST OF FIGURES (Concluded)

Figure		Page
20.	Azimuthal Variation of Free Jet Mean Velocity at $M = 0.174$ Laser Velocimeter/Hot Wire Data.	31
21.	Azimuthal Variation of Free Jet Turbulence Intensity at M = 0.3 Laser Velocimeter/Hot Wire Data.	32
22.	Azimuthal Variation of Free Jet Turbulence Intensity at $M = 0.174$ Laser Velocimeter/Hot Wire Data.	33
23.	Axial Variation of Free Jet Mean Velocity HW/LV Data.	34
24.	Dual Flow Operating Domain.	36
25.	Flow Chart Showing the Acoustic Data Acquisition and Reduction Procedure.	38
26.	Flow Chart for the Full Scale Data Reduction Program.	41
27.	Algorithm Description.	44
28.	Laser Velocimeter System Installed in the Anechoic Chamber.	. 54
29.	Schematic of Laser Velocity Measurements.	56
30.	General Electric Anechoic Chamber Aerodynamic Data Processing System.	61

LIST OF TABLES

<u>Table</u>		Page
I.	Detailed Dimensions of Model Nozzles.	9
II.	Estimated Percent Error in the LV Measurement of Mean Velocity with 95% Confidence.	58
III.	Estimated Percent Error for LV Turbulent Velocity Measurements with 95% Confidence.	- 58
IV.	Aerodynamic Test Matrix for Laser Velocimeter Tests.	66
V.	Aerodynamic Test Matrix for Acoustic Data, Model 1.	67
VI.	Aerodynamic Test Matrix for Acoustic Data, Model 1A.	68
VII.	Aerodynamic Test Matrix for Acoustic Data, Model 2.	69
VIII.	Aerodynamic Test Matrix for Acoustic Data, Model 3.	70
IX.	Aerodynamic Test Matrix for Acoustic Data, Model 4.	71
X.	Aerodynamic Test Matrix for Acoustic Data, Model 5.	72
XI.	Aerodynamic Test Matrix for Acoustic Data, Model 6.	73
XII.	Aerodynamic Test Matrix for Acoustic Data, Model 7.	74
XIII.	Sample Data Sheet.	77
XIV.	Sample Data Sheet.	78
XV.	Sample Data Sheet.	79
XVI.	LV Log Sheet Model 1.	735
XVII.	LV Log Sheet Model 1A.	854
XVIII.	LV Log Sheet Model 2.	869
XIX.	LV Log Sheet Model 3.	1172
xx.	LV Log Sheet Model 5.	1218
XXI.	LV Log Sheet Model 6.	1264
XXII.	LV Log Sheet Model 7.	1434

1.0 INTRODUCTION

This Comprehensive Data Report includes the basic test description and test results which are analyzed and documented in the Final Report.

2.0 DESCRIPTION OF ACOUSTIC MODELS

Seven nozzle configurations (six coannular plug and one circular conic nozzle) were selected and tested in this program. The nozzle selections and design details are discussed in a Design Report (Reference 1). The coannular plug nozzles selected were generic to General Electric's exhaust nozzle concepts for application to Advanced Supersonic Technology Variable Cycle Engine (AST/VCE). These AST/VCE nozzles are generally of a high outerstream radius ratio design with coannular (noncoplanar) flows and on a plug nozzle arrangement. The flows are of an inverted velocity and temperature nature.

Drawings of nozzle arrangements for Models 1, 2, 3 and 4 are shown in Figure 1. As shown, this figure shows Model 1. This model had the inner nozzle lip with a non-contoured, convergent-divergent (C-D) termination. Note 4 on Figure 1 defines throat to exit areas for this configuration. design was not actually desired but inadvertently fabricated when the manufacturer used a boring process to terminate the inner nozzle rather than facing the inner nozzle outer shroud so that a simple convergent termination could be obtained. This C-D termination was only noticed when post test geometry measurements were being taken. As can be noted from the insert note 4 on Figure 1, the C-D area expansion of $A_e^i/A_t^i = 1.21$ occurred within a length of only 0.118 inches and was not at first detected in the hardware checkout. This model was tested and the data is contained herein, but this C-D inner stream lip was reworked to have an inner stream convergent termination and was designated as Model 1A. All of the other models were also tested with this inner stream conic termination. Model IA then was a near similitude coannular plug nozzle to a YJ101 engine test nozzle which was tested under NASA3-20582 (See CR-159869). Other detailed nozzle dimensions for these models and the others are contained in Table I. Of particular note for Model IA (and 1) is the existence of eight

(

Figure 1. Details of Models 1, 2, 3 and 4 Assemblies.

struts. These struts were designed as near similitude designs to the YJ101 engine design, as noted above, and are used in engine application to pass the outer fan duct flow into the inner nozzle. Since the General Electric Anechoic Free-Jet Acoustic Test Facility contains independent temperature and pressure of each stream, it was not necessary to physically invert the flow. Thus the nozzle flow conditions and flow distributions around the outer struts were simulated in these model scale experiments, but the duct flow through the struts was not attempted or considered important to these acoustic simulations. The area distribution through the region of the strut is shown in the upper right hand corner of Figure 1. Any other design details should be obtained from Reference 1.

Model 2 was obtained by simply removing the struts; thus, by comparing Models 1A and 2 a determination of the influence of struts on the nozzle exhaust noise radiation can be made. Model 3 was similar to Model 2 in terms of outer flow radius ratio and inner to outer nozzle area ratio $(R_{\mathbf{r}}^{0} \sim .85 \text{ and } A_{\mathbf{r}}^{i} \sim .2 \text{ --} \text{ See Table I})$ and without struts. But now the outer stream nozzle was configured to be a convergent termination rather than the C-D terminations of Models 1, 1A and 2. This termination was obtained by the removal of a .554 inch spacer located in the outer flow hardware at axial station ~ 150 (See Figure 2 for the location of this space piece). Thus, by comparing Models 2 and 3, the effect of outer stream terminations can be evaluated.

Model 4 was obtained by removing the 1.480 inch spacer from the inner plug identified in Figure 1. Figure 2 shows the assembly drawing of Model 4. This drawing also shows the location of the tertiary nozzle and the locations of nozzles and tertiary charging stations (designated by axial station numbers). Thus by comparing Models 4 and 3, an acoustic evaluation of the influence of CRIGINAL PAGE.

Figure 2. Details of Model 4 Assembly.

2 Probes 180° Apart (Each Having 3 P_t and 3 T_t Elements) 1 Probe (Having 6 P_t and 6 T_t Elements)

Remarks:

inner stream area ratio from 0.526 to 0.194, for the same outer and inner nozzle terminations and the same outer nozzle radius ratio ($R_r^o \sim .85$), can be made.

Model 5 was the baseline circular convergent conical nozzle. Figure 3 and Table I define the important geometric parameters for this model.

The coannular plug nozzles 6 and 7 designs are shown in Figure 4. These nozzles were previously tested statically under contract NAS3-19777 (NASA CR-3149). By comparing Models 6 and 4, the influence of outer nozzle radius ratio can be determined ($A_r^i \sim .52$ for both while Model 6 has $R_r^o \sim .901$ and Model 4 has a $R_r^o \sim .85$). Model 7 was similar to Model 1A but did not have struts or a similitude outer nozzle flow path to the YJL01 engine test nozzle mentioned earlier. The inner to outer nozzle area ratio, A_r^i , was also slightly larger ($A_r^i \sim 0.324$ vs 0.194 for Model 1A). Since this model was existing, testing was initiated on this model first; and much of the aerothermodynamic acoustic parametric testing described in Section 5.0 was performed on this nozzle.

Table I summarizes the detailed model dimensions. Note that the inner nozzle exit dimensions are only shown for Model 1, since all other models were with a convergent conic nozzle termination (i.e., with the same location for the throat and exit). Other details of the nozzle area calculations are contained in Figure 5. Note that the $\cos \theta$ is needed in the area calculations for the nozzles with a throat at an angle θ to the vertical.

()

()

Figure 3. Details of Conic Model 5 Assembly.

Figure 4. Details of Models 6 and 7.

Table I. Detailed Dimensions of Model Nozzles.

				- <u></u> -	Mod	el .			
Parameter	Symbol Symbol	1	1.4	2	3	4	5	6	7
Outer Throat Height	-h _t , inches	0.675	0.675	0.675	0.675	0.675		0.432	0.580
Inner Throat Height	h <mark>i</mark> , inches	0.140	0.20	0.197	0.20	0.582		0.309	0.307
Outer Throat Area	Ato, in.2	18.049	18.049	18.049	18.049	18.049	20.38	11.224	18.171
Inner Throat Area	A_t^1 , in. ²	2.470	3.496	3.446	3.496	9.499		5.847	5.815
Throat Area Ratio,	At/Ac	0.137	0.194	0.191	0.194	0.526		0.521	0.324
Total Throat Area	At, in.2	20.519	21.545	21.495	21.545	27.548	20.38	17.071	23.986
Equivalent Diameter Based on Throat Area	Deq inches	5.11	5.24	5.23	5.24	5.92	5.09	4.66	5.53
Outer Exit Height	he, inches	0.757	0.757	0.757					
Inner Exit Height	h <mark>e</mark> , inches	0.1705							
Outer Exit Area	Ae, in.2	20.060	20.060	20.060					
Inner Exit Area	A. in. 2	2.992							
Exit Area Ratio	A_e^1/A_e^0	0.149							
Outer Exit/Throat Area Ratio	A _e ^o /A _t	1.11	1.11	1.11					
Total Exit Area	Ac, in.2	23.052					, 		
Equivalent Diameter Based on Exit Area	D _{eq} , inches	5.42							
Outer Hub Radius	R_1^0 , inches	3.918	3.918	3.918	3.918	3.918		3.918	3.918
Outer Tip Radius	R ₂ , inches	4.593	4.593	4.593	4.593	4.593	2.547	4.350	4.593
Inner Hub Radius	R ₁ , inches	2.740	2.686	2.686	2.686	2.317		2.858	2.858
Inner Tip Radius	R ⁱ , inches	2.875	2.879	2.879	2.879	2.879		3.167	3.167
Outer Radius Ratio	$R_r^o = (R_1^o/R_2^o)$	0.853	0.853	0.853	0.853	0.853		0.901	0.853
Inner Radius Ratio	$R_{\mathbf{r}}^{\mathbf{i}} = (R_{1}^{\mathbf{i}}/R_{2}^{\mathbf{i}})$	0.953	0.933	0.933	0.933	0.805		0.902	0.902
Outer Exit Stagger	X ^o , inches	3.466	3.346	3.346	3.900	3.900		3.176	3.150
Outer Stagger/Outer Throat Height	xº/ht	5.13	4.96	4.96	5.78	5.78		7.35	4.63
Shroud Angle	θ ¹ _s , degrees	15*	15*	15*	15*	15*		11*	112
Plug Angle	θ_s^2 , degrees	15*	15*	15*	15*	15*		15*	15*
Internal Struts		Yes	Yes	No ···	No	No	No	No	No
C-D or Convergent Outer		C-D	C-D	C-D	Conic	Conic	Conic	Conic	Conic
C-D or Convergent Inner		C-D	Conic	Conic	Conic	Conic		Conic	Conic

Figure 5. Details of Nozzle Exits.

3.0 DESCRIPTION OF TEST FACILITY

3.1 ACOUSTIC FACILITY DESCRIPTION

All acoustic testing was performed in the General Electric jet noise anechoic test facility located in Evendale, Ohio. This facility can accommodate model exhaust nozzle configurations ranging in size from a 0.08 in. to a 6.25 in. diameter model and has the capability to run both single and dual flow models. In addition, a 4 foot diameter tertiary duct surrounds the model nozzles with airflow which can be used to simulate forward flight.

A schematic of the jet noise anechoic facility showing the triaxial flow arrangement (i.e., fan, core, and tertiary flow) is presented in Figure 6. The fan and core airflows separate off from the main header and flow through individual orifice flow rate meters, combustors, silencers, and plenum chambers before entering the model nozzle. The dual flow arrangement is described in detail in Reference 2.

The tertiary air system consists of a 250,000 scfm (50 inches H₂O static pressure) fan and 3500 hp electric motor. Transition ductwork and silencer route the air from the fan discharge to the tertiary plenum chamber. The silencer reduces the noise level by 30-50 dB. Air supply to the fan is pulled through the existing buildup area inlet silencer. The tertiary plenum chamber (14 feet x 12 feet x 10 feet) is located just below the test deck. Three walls and the floor are covered with acoustic treatment (4 inch thick fiber glass pillows covered with fiber glass cloth and perforated plate). The coannular plenum chamber remains, as before, in the new tertiary plenum chamber. Air enters the plenum flowing horizontally, then turns vertically, and enters a 6 feet long cylindrical test section which is 7 feet in diameter mounted on the top of the test deck. This cylindrical duct contains a flow straightening screen and honeycomb (10 inch length x 14 inch hexagonal cells) section. duct then smoothly transitions to the 4 foot diameter tertiary discharge nozzle at the exit plane. This yields a free-jet-to-jet-nozzle area ratio of about 63 (based on 6-inch equivalent diameter nozzle). Maximum tertiary flow rate of about 310 lb/sec permits simulation of Mach numbers in excess of 0.30. Mach number variation is obtained by varying the fan inlet vanes (changing the tertiary airflow rate).

Figure 6. General Electric Anechoic Free Jet/Jet Noise Facility Schematic.

A Mach number of approximately 0.41 was obtained with the vanes fully open. Entrained flow from the outside passes through a silencer and enters the anechoic chamber through the acoustic wedges on the floor. The airflow exits through the "T" exhaust stack in the ceiling of the chamber directly over the nozzles. A schematic of the jet noise anechoic facility showing the tertiary flow arrangement and microphone locations is shown in Figure 7.

Visual observations of tufts located on the exhauster and ceiling mikes during maximum tertiary flow conditions indicated that no chamber recirculation existed. A windmeter at the 130° mike indicated velocities below 1 ft/sec.

The tertiary flow rate can be determined from either a total pressure rake or from static pressure taps located around the tertiary exhaust. The total pressure rake was removed during acoustic testing to avoid additional strut noise.

An overhead view of the tertiary with a conic nozzle installed is shown in Figure 8. Acoustic wedges surround the outside of the tertiary duct as well as on the walls, ceiling, and floor of the anechoic chamber. The walk-way grating is removed prior to acoustic testing. The laser velocimeter (LV) shown in the far right of the figure is also removed during acoustic testing.

3.2 ACOUSTIC CHARACTERISTICS OF ANECHOIC CHAMBER

Both inverse square laws and background noise level tests were conducted at no cost to this NASA program to provide information on the acoustic characteristics of the anechoic chamber. The results of these tests are reported herein.

3.2.1 Inverse Square Law Tests

The inverse square law tests at the 90° microphone position are shown in Figure 9. Both tertiary and coannular nozzle hardware were in place for this static test. A speaker was used as the sound source for frequencies from

Figure 7. Free Jet Arrangement in Cell 41 Anechoic Facility.

Overhead View of the Tertiary Flow Stream with a Conic Nozzle Installed. Figure 8.

Figure 9. Inverse Square Law Test at 90° with Tertiary and Coannular Nozzle Hardware (Bass, Bauer and Evans Atmospheric Correction Included), Lossless for 160 Hz < f< 630 Hz, Used Speaker and for 1000 Hz < f< 80 kHz Used Air Ball.

160 Hz to 630 Hz, and an air ball was used for frequencies from 1000 Hz to 80 kHz. The details of the procedure are given in Reference 2. A microphone was traversed from a position of 5 feet from the noise source to a position near the far wall wedges. Data recorded at six to seven positions along the traverse are shown in Figure 9. The data follow the 6 dB reduction per doubling of distance trend quite well.

The standard deviation of the inverse square law tests for five angles is shown in Figure 10. The calculation for the standard deviation is derived and described in Reference 2. Two axial locations of the air ball sound source downstream of the tertiary (66 inches and 101 inches) were used in addition to the standard 36 inch distance in order to obtain the actual standard deviation for the 40° microphone. It was realized that the air ball located at Location A (see Figure 7) did not represent the source location of the lower and midfrequencies. The "line-of-sight" for those frequencies, whose sources are located further downstream, would be less influenced by the wedges. The data for the two positions "B" and "C" (Figure 7) are shown in Figure 10. Very little difference in levels is found between the two positions. Comparison of this data with that at position "A" (i.e., 36 inches downstream of the tertiary) shows the interference caused by the wedges. Basically, the large fluctuations in the standard deviation have been replaced with a more realistic curve.

3.2.2 Background Noise

The effect of the tertiary flow on the background noise level is shown in Figures 11, 12, and 13 for the 50° , 90° , and 150° microphones, respectively. Only data above the facility design cutoff frequency of approximately 250 Hz are shown. Typical spectra for a coannular nozzle having a mixed velocity $(V^{\rm M})^*$ of 1066 ft/sec are shown with and without tertiary flow. The jet noise levels are considerably above the free jet background. Even in the worst case (i.e., $V^{\rm M}=1066$ fps with the tertiary Mash number $(M_{\rm T})=0.3$ spectra versus $V^{\rm M}=0$ fps with $V^{\rm M}=0.3$ spectra), the jet noise is $V^{\rm M}=0.3$ spectra tertiary flow background noise. Thus the tertiary flow is not expected to influence the jet noise levels or spectra for jet velocities of $V^{\rm M}=0.3$ fps or more.

^{*} See Section 5.0 for the definition of the mixed velocity V^{M} .

Frequency, Hz

Figure 10. Standard Deviation of Inverse Square Law Tests with Tertiary and Coannular Nozzle Hardware.

Comparison of Coannular Jet Noise Spectra with the Tertiary (Background) Noise Spectra $\theta_{\rm I}=50^{\rm o},~40$ Foot Arc Data. Figure 11.

Comparison of Coannular Jet Noise Spectra with the Tertiary (Background) Noise = 90°, 40 Foot Arc Data. Spectra $\theta_{\rm I}$ Figure 12,

Comparison of Coannular Jet Noise Spectra with the Tertiary (Background) Noise Spectra $\theta_{\rm I}$ = 150°, 40 Ft Arc Data. Figure 13.

3.3 DESCRIPTION OF AERODYNAMIC TESTS

Studies were made at no cost to this NASA program of the mean velocity and turbulence intensity distributions at the tertiary exit plane and at various locations downstream. The development of the free jet (tertiary) plume was also studied. A schematic of the free jet test arrangement is shown in Figure 14. A nominal 6 inch diameter coannular inner jet with the core flow plugged upstream is shown extending 3 feet downstream of the free jet. For most tests, the inner jet velocity equalled the free jet velocity to prevent any "dead" flow regions. The directions (N, S, E, and W) are shown around the tertiary for later reference to traverse direction. Laser velocimeter and hot wire measurements were made at Stations A, B, C, and D as shown in Figure 14. Measurements were made at tertiary Mach numbers of 0.3 and 0.174. Axial, radial, and azimuthal test results are as follows.

3.3.1 Mean Velocity Profile Test

The radial variation of the mean velocity for two axial positions is shown in Figure 15. Note that at the tertiary exit plane (i.e., X/D = 0) the radial mean velocity profile is relatively uniform for the two radial traverses and for both Mach numbers. Note that at the inner jet exit plane (i.e., X/D = 0.75), the mean velocity has decayed slightly from its value at X/D = 0. This is discussed below in detail. The radial mean velocity profile is uniform for both Mach numbers at this test location, except near the test nozzle wall (due to boundary layer buildup, also discussed below) and in the tertiary mixing (i.e., shear) layer. The mean velocity in the tertiary shear layer is lower for the Mach number 0.174 condition than for the 0.3 condition.

The axial variation of the mean velocity is shown in Figure 16 for two radial positions. It is seen that the tertiary potential core (i.e., $r/r_0 = 0$ position) extends to at least five tertiary diameters for both Mach numbers. Thus, the jets issuing from the inner nozzle do not detect any decay in the tertiary flow from two to at least five tertiary flow diameters. Note the reduction in centerline mean velocity between Location 1 and 2 diameters downstream for both Mach numbers. This reduction is due to the %nner nozzle exit velocity being equal to the tertiary nozzle exit velocity. Since the

Figure 14. Schematic of Free Jet Test Arrangement, View Looking East.

•	D	=	4.0	ft
•:	r	. =	= 2.0	0 ft

Symbol	М	U _{Max} fps	Traverse		
0 • 🗆	0.300 0.174 0.300 0.174	349 213 349 213	$ \begin{array}{cccc} E & \longrightarrow W \\ E & \longrightarrow W \\ S & \longrightarrow N \\ S & \longrightarrow N \end{array} $		

Figure 15. Radial Variation of Free Jet Mean Velocity Laser Velocimeter Data.

Figure 16. Axial Variation of Free Jet Mean Velocity Laser Velocimeter Data.

tertiary mean velocity at the inner nozzle exit is 10% less than that at the tertiary exit (as discussed below), the mixed velocity will be reduced. The complete extent of the potential core could not be described due to the limit of the laser velocimeter track system in the facility. However, beyond X/D=6 (i.e., 24 ft), the velocity is expected to decay at the rate of 1/X as shown in Reference 2. The axial variation at $r/r_0=1$ shows a typical decay of mean velocity to approximately 60% of its maximum value, and thereafter maintains the same value for X/D between 2 to 5. This region of uniformity suggests a similarity of tertiary mean velocity profile throughout the range of traverse. Note that the value of mean velocity for M=0.174 is again somewhat less than that for M=0.3 at the shear layer region (i.e., $r/r_0=1$).

3.3.2 Turbulent Velocity Profile Test

The radial variation of axial turbulence velocity is shown in Figure 17 for two axial positions. The turbulence intensity levels appear relatively unaffected by Mach number or by traverse direction at the tertiary exit plane (i.e., X/D=0). The turbulence levels are approximately 2.5% at the tertiary exit plane. At the exit plane of the inner jet (i.e., X/D=0.75), the inner nozzle sees turbulence levels of less than 0.5% at M=0.3 and approximately 2.5% at M=0.174. Note that the turbulence intensity for M=0.174 is greater than that for M=0.3 for all radial positions at X/D=0.75.

The axial variation of normalized turbulence is shown in Figure 18 for two radial positions. The turbulence level is relatively constant at $r/r_0 = 1$ for both Mach numbers for values of X/D greater than 2. The general distribution found here for the tertiary is similar to what has been observed for model scale subsonic tests (Reference 2).

3.3.3 Tertiary Plume Symmetry Test

The azimuthal variation of the mean velocity at the tertiary nozzle exit (i.e., X/D = 0) for M = 0.3 is shown in Figure 19. Hot wire data taken every 30° are shown for three radial positions. Laser velocimeter data were taken for only North and West traverses. The azimuthal variation in mean velocity

()

Figure 17. Radial Variation of Free Jet Axial Turbulence Laser Velocimeter Data.

Figure 18. Axial Variation of Free Jet Axial Turbulence Laser Velocimeter Data.

()

Figure 19. Azimuthal Variation of Mean Velocity at M = 0.3 Laser Velocimeter/Hot Wire Data.

for M = 0.174 is shown in Figure 20 for the same radial positions. Hot wire and laser velocimeter data show good agreement. The LV data for the West traverse were used to smooth out the curve at that location. Even through the actual variation at M = 0.3 appears worse than that at M = 0.174, on a percentage basis, the opposite is true. The average LV variation in mean velocity was calculated to be 2.33% for M = 0.3 and 2.80% for M = 0.174. The same trend is shown for averaged values obtained from hot wire data which are 2.60% for M = 0.3 and 2.95% for M = 0.174. Thus the design value of 3.0% was successfully achieved with some margin.

The azimuthal variation of turbulence intensity at the tertiary nozzle exit (i.e., X/D = 0) for M = 0.3 is shown in Figure 21. The azimuthal variation in turbulence for M = 0.174 is shown in Figure 22 for the same radial positions. Hot wire and LV data agree better in the M = 0.3 case (Figure 21) than in the M = 0.174 case (Figure 22). The average azimuthal turbulent intensity was calculated to be 2.26% for M = 0.3 and 3.26% for M = 0.174 for LV data. The same trend is again shown for hot wire results of 1.83% for M = 0.3 and 2.13% for M = 0.174. These results are considerably better than the design target of 6.0%.

3.3.4 Tertiary Plume Development

The normalized mean velocity profiles at various axial locations are shown in Figure 23 to describe the tertiary velocity decay and boundary layer buildup. The profiles shown are from hot wire radial traverses at five axial locations. The tertiary exit Mach number was 0.3 and the inner jet was "just bleeding flow" to eliminate any "base" regions. It is seen that the tertiary velocity profile is relatively constant at the tertiary exit plane (i.e., Station A, X/D = 0) and is equal to U_{Max} (i.e., $\overline{U}/U_{\text{Max}} = 1$). However, at X/D = 0.27 (Station B), the tertiary velocity profile has decayed to nearly $\overline{U}/U_{\text{Max}} = 0.9$. At X/D = 0.75 (Station C), the tertiary velocity profile peaks at $\overline{U}/U_{\text{Max}} = 0.9$. This peak value of $\overline{U}/U_{\text{Max}}$ is constant for the downstream positions of X/D = 1.5 and 2.3. The constant nature of the peak value of $\overline{U}/U_{\text{Max}}$ in the axial direction is consistent with the constant values at $r/r_0 = 0$ and $r/r_0 = 1$ shown in Figure 16. This initial velocity decay, which is of the order of 10%, is a result of the tertiary flow expansion caused by the inner jet area reduction between Stations A and C. In addition, a sizable

Figure 20. Azimuthal Variation of Free Jet Mean Velocity at M = 0.174 Laser Velocimeter/Hot Wire Data.

Figure 21. Azimuthal Variation of Free Jet Turbulence Intensity at M=0.3 Laser Velocimeter/Hot Wire Data X/D=0.

Figure 22. Azimuthal Variation of Free Jet Turbulence Intensity at M = 0.174 Laser Velocimeter/Hot Wire Data.

s

4

Axial Variation of Free Jet Mean Velocity HW/LV Data. Figure 23.

velocity deficit, due to the boundary layer buildup along the outside of the inner nozzle, is shown at Station C. Laser velocimeter traverses at Station C, with the inner jet flowing at the tertiary velocity, also showed the same results over the length of the inner jet nozzle (i.e., 10% reduction in tertiary mean velocity and large growth in boundary layer). The magnitude of these effects will, of course, depend upon the type of inner nozzle tested (i.e., tertiary expansion area ratio). For most tests in Cell 41, these effects should be taken into account.

The data show that the tertiary plume does not start spreading appreciably until it reaches the test nozzle exit plane. It then spreads at an angle of approximately 5.5° starting at X/D = 0.8 (See Figure 23). This spreading is assumed to be true for all azimuthal positions. This spreading rate of the plume is reasonably close to the classical spreading rate ($^{\circ}7^{\circ}$).

3.4 FACILITY OPERATING DOMAIN

The temperature-velocity-pressure ratio operating limits of the acoustic facility are shown in Figure 24. The upper limits for either fan or core flow are 1750°R in temperature and 4.5 to 6.0 in pressure ratio, as shown by the dashed line. Jet velocities below 600 ft/sec may be influenced by flow noise.

The range of test conditions set during this program is shown on this operating domain (Figure 24). Note that the outer (fan) flow conditions reached the facility limits in temperature and practically in pressure ratio. The inner (core) flow conditions were at substantially lower temperatures and pressures with two test points (Points 313 and 401) below the flow noise limit. The mixed flow conditions were, however, above this lower limit. The conic nozzle conditions extended the outer flow curve as shown.

Total Temperature at Nozzle Exit Plane, ° R 1750° R 400 800 1200 1800 2000 1200 1100 Outer Nozzle Conic Pressure Inner 1000 Ratio . 6.0 5.0 3000 900 4.0 800 2600 3.0 Jet Velocity, m/sec 700 2200 2.0 600 1800 1.5 500 1400 400 1.25 1000 300 1.1 200 600 Flow Noise 100 0 100 300 500 700 900 1100 1300

Total Temperature at Nozzle Exit Plane, ° K

Figure 24. Dual Flow Operating Domain.

4.0 DATA ACQUISITION AND REDUCTION

4.1 ACOUSTIC DATA ACQUISITION AND REDUCTION

A flow chart of the acoustic data acquisition and reduction system is shown in Figure 25. This system has been optimized for obtaining the acoustic data up to the 80 kHz 1/3-octave center frequency. The microphone type used to obtain 80 kHz data is the B&K 4135, 0.64 cm, condenser microphone for far field measurements. All testing is conducted with microphone grid caps removed to obtain the best frequency response. The cathode followers used in the chamber are transistorized B&K 2619 for optimum frequency response and lower inherent system noise characteristics relative to the 2615 cathode follower. All systems utilize the B&K 2801 power supply operated in the direct mode.

The output of the power supply is connected to a line driver adding 10 dB of amplification to the signal as well as adding "preemphasis" to the high frequency portion of the spectrum. The net effect of this amplifier is a 10 dB gain at all frequencies, plus an additional 3 dB at 40 kHz and 6 dB at 80 kHz due to preemphasis thus increasing the ability to measure low amplitude high frequency data. In order to remove low frequency noise, high pass filters with attenuations of approximately 26 dB at 12.5 Hz decreasing to 0 dB at 200 Hz were installed in the system.

The tape recorder amplifiers have a variable gain from -10 dB to +60 dB in 10 dB steps and a gain trim capability for normalizing incoming signals. High pass filters are incorporated in the acoustic data acquisition systems to enhance high frequency data previously lost in the tape recorder electronic noise floor for microphones from 110° to 160°. The microphone signal below the 20 kHz 1/3-octave band is filtered out, and the gain is increased to boost the "signal-to-noise" ratio of the remaining high frequency signal. For microphones from 110° to 160°, both the filtered and unfiltered signals are recorded on tape. The sound pressure levels for frequencies below 20 kHz are calculated using the filtered signal. The jet noise spectra at a given angle are then obtained by computationally merging these two spectra.

en al constant a de la contratate en tentral de la contratate de la contratate de la contratate de la contrata

Figure 25. Acoustic Data Acquisition and Reduction System.

The prime system used for recording acoustic data is a Sangamo/Sabre IV, 28-track FM recorder. The system is set up for wideband Group I (intermediate band double extended) at 120 ips tape speed. Operating at 120 ips tape speed provides the improved dynamic range necessary for obtaining the high frequency/low amplitude portion of the acoustic signal. The tape recorder is set up for ±40% carrier deviation with a recording level of 8 volts peak-to-peak.

During recording, the signal gain is ajusted to maximum without exceeding the 8 volt peak-to-peak level.

Individual monitor scopes are used for observing signal chracteristics during operation. On-line data monitoring was available for this program via a Rockland narrow band analyzer or a General Radio 1921 1/3-octave analyzer with their outputs on display scopes or hard copy via Tektronic plotter.

mentation and Data Room (IDR). The data tapes are played back on a CBC37008 tape deck with electronics capable of reproducing signal characteristics within the specifications indicated for wideband Groups I and II. An automatic shuttling control is incorporated in the system. In normal operation, a tone is inserted on the recorder in the time slot designed for data analysis. Tape control automatically shuttles the tape initiating an integration start signal to the analyzer at the tone as the tape moves in its forward motion. This motion continues until an "integration complete" is received from the analyzer at which time the tape direction is reversed and the tape restarts at the tone in the forward direction advancing to the next channel to be analyzed until all the channels have been processed. A time code generator is also utilized to signal tape position of the readings as directed by the computer program control. After each total reading is completed, the number of tape channels at each point is advar ed to the next reading.

All 1/3 octave analyses are performed on a General Radio 1921 1/3 octave analyzer. Normal integration time is set for 32 seconds to insure good interaction for the low frequency content. The analyzer has 1/3 octave filter sets from 12.5 Hz to 100 kHz and has a rated accuracy of $\pm 1/4$ dB in each band. Each data channel is passed through an interface to the GEPAC 30 computer where the data are corrected for the frequency response of the microphone and

the data acquisition system, corrected to standard day (50° F, 70% RH) atmospheric attenuation conditions using the Shields and Bass model (used for this program), and processed to calculate the perceived noise level and OASPL from the spectra. For calculation of the acoustic power, scaling to other nozzle sizes, or extrapolation to different far field distances, the data are sent to the Honeywell 6000 computer for data processing. This step is accomplished by transmitting the SPL's via direct time-share link to the 6000 computer through a 1200 Band Modem. In the 6000 computer, the data are processed through the Full Scale Data Reduction (FSDR) Program where the appropriate calculations are performed (discussed below). The data printout is accomplished on a high speed "remote" terminal. In addition, the FSDR Program writes a magnetic tape for CALCOMP plotting of the data which will be used in the course of data analysis of the test results of this program.

The detailed FSDR Program flow chart is shown in Figure 26. The asmeasured data are first extrapolated from the measured distance to a common 40 ft arc. This is accomplished by subtracting out both the distance correction (i.e., 20 log (40 ft distance/measured distance)) and the atmospheric attenuation correction over the Δ distance (i.e., where Δ distance = 40 ft - measured distance). Note that the Shields and Bass Pure Tone Method was used for all atmospheric attenuation corrections. The data are then converted to standard day at the 40 ft arc location by adding in the standard day correction (i.e., Δ dB = α amb - α std day). The data are then printed out in tabulated form for SPL (from 250 Hz to 80 kHz), OASPL (based on 250 Hz to 80 kHz), and PWL (for full sphere, over-range 250 Hz to 80 kHz based on lossless data). For this program, data will not be shown below the chamber cutoff frequency of 250 Hz.

The full scale data for standard day at a 40 ft arc will then be extrapolated to a 2400 ft sideline. This is accomplished by subtracting out the distance correction, i.e., 20 log (40 ft distance/measured distance) and the atmospheric attenuation over the distance (i.e., where Δ distance - 40 ft measured distance). The data are then printed out in tabulated form for SPL (from 50 Hz to maximum frequency), OASPL (based on 50 Hz to maximum frequency), PNL (based on 50 Hz to 10 kHz), and PWL (for full sphere, over 50 Hz to maximum frequency but based on losseless data). The maximum frequency in this case depends upon the noise level, since only the positive levels are printed out.

Figure 26. Acoustic Data Processing Flow Chart.

4.2 DESCRIPTION OF THE FLIGHT TRANSFORMATION TECHNIQUE

4.2.1 OBJECTIVE AND CONCEPT

The objective of the General Electric Free-Jet transformation process is to employ far field SPL spectra at various angles to the jet axis (typically for $20^{\circ} \leq \theta_{\rm j} \leq 150^{\circ}$ in increments of 10°) obtained in a free jet experiment and transform it to yield SPL spectra as would be measured in a true moving frame experiment.

The concept employed is that with area ratios of 50:1 or so and with the primary nozzle exhaust plane displaced aft of the free-jet plane sufficiently to permit acquisition of acoustic data in the inlet arc (say up to θ_i = 150°), proper aerodynamic simulation of the effects of forward flight is achieved, but that in terms of the acoustic simulation of the effects of uniform flow over the primary jet plume noise sources, the free jet achieves this only to a limited extent. In other words, the free jet achieves the effect of the right source mix radiating however into an environment that more nearly approaches a static environment rather than the environment of sources shrouded by either a finite or infinite extent of uniform nonturbulent flow. (The basis of several previous investigations has been to assume that a well defined region of uniform, nonturbulent flow surrounds the sources. This well defined region is taken as a doubly infinite cylinder of constant circular section equal to the cross section of the free-jet exhaust plane.). The acoustic sources in a free-jet, of course, do not radiate into a completely static environment and hence some propagation effects of the free-jet flow do have to be accounted for.

Based on the above picture, the broad outline of the procedure adopted is as follows. Defining as the "static" directivity, the directivity pattern (in various frequency bands) that the sources (of the primary jet exhaust plume altered by the effects of relative velocity due to imposition of the free-jet) may be expected to produce if they radiated into a quiescent environment, we first deduce this "static" directivity from the measured free-jet experimental data by correcting the latter for propagation effects of the free-jet. Since the free-jet flow field includes intensely turbulent shear layers through which the sound field of the sources must pass before

it reaches the far field microphones (located in the quiescent ambient), some degree of empiricism (especially for the high frequency sound) is involved in attempting to account for these propagation effects.

Once such a static directivity is extracted, it still remains to deduce what the noise signature of the source distribution would be if the source distribution was not stationary relative to the ambient but moving relative to the ambient at the flight velocity. A multiple decomposition procedure suitable for the broad band jet noise problem which attempts to synthesize the static directivity by ascribing it to a mix of uncorrelated singularities was developed in order to enable the prediction of the flight noise. Once such a decomposition is completed, we simply apply the dynamic exponent applicable to each singularity to derive the flight noise signature.

In summary, the method starts with narrow band directivities from the free-jet experiment in various third octave bands, corrects these directivities for free-jet propagation effects in a frequency dependent manner to retrieve the "static" directivity, synthesizes the "static" directivity by a suitable mix of uncorrelated singularities and finally applies the dynamic effect appropriate to each singularity to predict the flight noise. It is an inherent feature of the method that it works separately with each third octave band directivity pattern. The final flight predictions can then be summed to yield either <code>OASPL</code> or PNL directivities or simply displayed as flight SPL spectra at various angles to the jet axis. (Doppler shift effects on the frequency are fully accounted for).

4.2.2 ALGORITHM DESCRIPTION

A detailed algorithm description is shown in Figure 27.

4.2.3 FURTHER DETAILS

The recommended procedure for transformation of free-jet noise to flight noise consists of first extracting the "basic" directivity from the measured free-jet data and then applying the "dynamic" effects to determine the noise in flight. The "basic" directivity is the directivity that the sources associated with the primary nozzle plume would create, if they

Figure 27. Algorithm Description.

(______

(

Figure 27. Algorithm Description (Continued).

•

(

()

Figure 27. Algorithm Description (Continued).

List of Symbols

		9	M		A Acronym Used to Identify a Uniquiarity Considered Term Acromym Used to Identify a Unique Algebraic Grouping		345	Solution of the	used to Identify the Refraction and/or Turbulence	Numerical Value Varies with Lavel of Singularity Considered Mach Fumber = (Free Jet Velocity) + (Ambient Speed of Sound) Normalizing Factor, Function of Singularity Libear Sound Pressure 0.0002 Microbars Subscript for Refraction Correction Singularity Subscript Sound Pressure Lavel = 10 log (P ² /P ² _{ref}) Subscript for Turbulance Correction Acronym Used to Identify a Unique Algebraic Grouping Bessel Panction Argument, x = ka sin θ A Vector Derived from Least Squares Fitting, Function of Singularity Bessel Function argument, y = ka [cos ² θ - (1 - M cos θ) ² Bessel Function of the Second Kind of Order m, Argument x Angle from the Jet Axis Referred to the Exhaust Critical Angle that Defines the Jet Zone of Silence = cos ⁻¹ (1/1 + M)	A MAN HAM WE	An Input Matrix to the Least Squares Pitting Procedure An Input Vector to the Least Squares Pitting Procedure An Acronym used to Identify the Refraction and/or Turbulence Correction Fersal Root of Denominator Term in Solution of the Sound Pressure for the Plug Frow Model Fressure for the Plug Frow Model Sound Pressure for the Plug Frow Model Sound Pressure for the Plug Frow Model Subscript for Filght Corrected Spt. Maserical Value Varies with Lovel of Singularity Considered Subscript on Spt. to Identify an Intermediate Calculation Modified Bassel Function of the Pirst Kind of Order n, Argument in is x Modified Bessel Function of the Pirst Kind of Order n, Argument in is y Bessel Punction of the First Kind of Order n, Argument in is y Bessel Punction of the First Kind of Order n, Argument in is y
9. Critical Amgle that Defines the Jet Zone of Silence cos (1/1 + M)	9. Uritical Angle that Defines the Jet Zone of Silence		to find it is x.	M Beysel Punction of the First Kind of Order n, in is m y Bessel Function of the First Kind of Order n, in is y in is y	t on SPL to Identify an Intermediate Calculation R RASAR Punction of the Pirst Kind of Order n, Beasel Function of the Pirst Kind of Order n, T Y Y An is y In is y	I value Varies with Lovel of Singuisarity Considered E on SPL to identify an intermediate Calculation E Rysel Punction of the Pirst Kind of Order n, P Sessel Function of the Pirst Kind of Order n, y T (x)	I for Filght Corrected SPL. I Value Varies with Lovel of Singularity Considered Term Ton SPL to identify an intermediate Calculation E.yael Punction of the Pirat Kind of Order n, Desael Function of the First Kind of Order n, Y To y	if for Filight Corrected SPL. I Value Varies with Lovel of Singularity Considered Term I on SPL to identify an intermediate Calculation E.yael Punction of the Pirat Kind of Order n, Desarel Function of the First Kind of Order n, This x	To the Pluz Torm in Solution of the Sound for the Pluz Torm Model R R R R R R R R R R R R R	Augle from the Jet Axis Referred to the Exhaust	6 0 (unction of the First Kind of Order n, Argument
9 Angle from the Jet Axis Referred to the Exhaust 9	8 Angle from the Jet Axis Referred to the Enhaust 8c Critical Angle that Defines the Jet Zone of Silence 1.7.1.4.3.3.	oo (Asker runtion of the first also of Order n, y Seems Direction of the State West of Order n, y	Reasel Punction of the First Kind of Order n, in is R	t on SPL to identify an intermediate Calculation R. Sael Punction of the Pirat Kind of Order n, It is R. Punction of the Pirat Kind of Order n, Person Provided the Pirat Kind of Order n,	form I value Varies with Lovel of Singularity Considered I on SPL to identify an intermediate Calculation R. Rasal Punction of the Pirat Kind of Order n, Y. Peacal Nucleon of the Pirat Kind of Order n, Y. Peacal Nucleon of the Pirat Kind of Order n, Y. Peacal Nucleon of the Pirat Kind of Order n,	I for Filght Corrected SPL. I Value Varies with Lovel of Singularity Considered Term En SPL to identify an intermediate Calculation En SPL to identify and intermediate Calculation En SPL to identify and intermediate Calculation For the SPL to identify and identify and identification For the SPL to identify and identification For the SPL to identify and identify and identification For the SPL to identif	For Flight Corrected SPL. I Value Varies with Lovel of Singularity Considered Form English to identify an intermediate Calculation English to identify an intermediate Calculation English to identify an intermediate Calculation Form F	on the Pluz Term in Solution of the Sound Pref for the Pluz Pluz Plose Model for the Pluz Plose Model seater for the Pluz Flow Model (Value Varies with Lovel of Singuiarity Considered for Splus Varies with Lovel of Splus Varies Wind of Order n, y y y y y y y y y y y y y y y y y y	Bessel Punction of the Second Eind of Order n, Argument x	Y (x)	
X X X X X X X	(x) a 0 0 a	in 16 y (x) In 17 y (x) In 17 y (x) In 17 y (x)	to is x	Rysel Punction of the Pirst Kind of Order n, in is R	t on SPL to Identify an Intermediate Calculation Rexael Punction of the Pirst Kind of Order n, in is x	I value Varies with Lovel of Singularity Considered t on SPL to identify an intermediate Calculation Revsel Punction of the Pirst Kind of Order n, in is x	It for Filght Corrected SPL. I Value Varies with Lovel of Singularity Considered Form I on SPL to identify an intermediate Calculation RASSEI Punction of the Pirst Kind of Order n, in is x	t for Flight Corrected SPL. I Value Varies with Lovel of Singularity Considered Term I on SPL to identify an intermediate Calculation Revsel Punction of the Pirst Kind of Order n, in is x	of Denominator Term in Solution of the Sound Pref for the Plug Pice Models Rect of Denominator Term in Solution of the Sect of Denominator Term in Solution of the Sect of Denominator Term in Solution of the Pinght Corrected SPL. Value Varies with Lovel of Singularity Considered Term on SPL to identify an intermediate Calculation Term Name Punction of the Pirst Kind of Order n,	Bessel Function Argument, $y = kn \left[\cos^2 \theta - (1 - 10 \cos \theta)^2\right]$.	
(x) (x) (x) (x) (x) (x) (x) (x) (x) (x)	χ , , , , , , , , , , , , , , , , , , ,	y Y In 16 y In 16 y H Order n, In 16 y H O H O O O O O O O O O O			t on SPL to identify an intermediate Calculation R. Seel Punction of the First Kind of Order in	Term To no SPL to Identify an Intermediate Calculation R. Sea Punction of the First Kind of Order	t for Fiight Corrected SPL 1 Value Varies with Lovel of Singularity Considered Term t on SPL to Identify an Intermediate Calculation R. Seel Punction of the First Kind of Order	t for Flight Corrected SPL 1 Value Varies with Lovel of Singularity Considered Tons Tons Tons Tons B. Seal Punction of the Plant Kind of Order in	of Denominator Term in Solution of the Sound Perform the Plug Piow Models Rect of Denominator Term in Solution of the Sound Sense for the Plug Flow Model for Flight Corrected SPL Transporm Sense for the Plug Flow Singularity Considered SPL Transporm Sense on SPL to identify an intermediate Calculation Sense Punction of the Pirat Kind of Order in Sense Punction of the Pirat Kind of Order in Sense S	/1 6		
dered	derect derect on Transition on	For the Plug Flow Model seare for the Plug Flow Model for Flight Corrected SPL (Value Varies with Lovel of Singularity Considered T (Value Varies with Lovel of Singularity Considered En SPL to Identify an Intermediate Calculation En SPL to Identify an Intermediate Calculation T En SPL T T T T T T T T T T T T T	Solution of the SPL inquisity Considered Term	Solution of the SPL SPL Inquisity Considered Term	Solution of the Salution of th	Solution of the SPL	Solution of the		of Denominator Term in Solution of the Sound Fee	Subscript for Refraction Correction	•	for the Flug Flow Model
derad derad derad derag	dered	For the Flux Flow Mode! Fasture for the Plux Flow Mode! Fasture for the Plux Flow Mode! For Flight Corrected SPL I value Varies with Lovel of Singularity Considered Form To SPL to identify an Intermediate Calculation R. Asel Punction of the First Kind of Order n, in is m. Feater! Function of the First Kind of Order n, in is m. Fastel Function of the First Kind of Order n, in is m. Fastel Function of the First Kind of Order n, in is m. Fastel Function of the First Kind of Order n, in is m. Fastel Function of the First Kind of Order n, Argusent	Solution of the Sign. It inquisity Considered Term	Solution of the Signature of the Signature of the Signature of the Signature of Series	Solution of the Sale	Solution of the S	Solution of the S	(ur the Flug Flow Mode)	•	0.0002 Microbars	a.	t of Denominator Term in Solution of the Sound
dered	Performed derection on the performance of the perfo	t of Denominator Term in Solution of the Sound for the Plug Plow Model Reflect of Denominator Term in Solution of the Sessue for the Plug Flow Model (Value Varies with Lovel of Singularity Considered (Value Varies Wind of Order n, Nature of Order n, Nature of Order n, Argument (Xalue Varies Wind of Order n, Argument	of Denominator Term in Solution of the Sound Fer Refer the Flux Flow Model Rect of Denominator Term in Solution of the Sauce for the Flux Flow Model Sauce for the Flux Flow Model Flux Flux Flow Model Flux Flux Corrected SPL The Flux Flux Flux Flux Flux Flux Flux Flux	of Denominator Term in Solution of the Sound Fer Ref (or the Plug Plow Mode) Rest of Denominator Term in Solution of the Saute for the Plug Plow Mode) Spt. for Flight Corrected SPL Tylue Varies with Lovel of Singularity Considered Term	of Denominator Term in Solution of the Sound Feff for the Plug Flow Model Rect of Denominator Term in Solution of the Surve for the Plug Flow Model Spir. for Flight Corrected SFL.	of Denominator Term in Solution of the Sound Fefficial the Plug Flow Models Rect of Denominator Term in Solution of the Surface for the Plug Flow Model SPL	of Denominator Term in Solution of the Sound Feffor the Plug Flow Models Rect of Denominator Term in Solution of the S	of Denominator Term in Solution of the Sound Fef for the Plux Flow Node?		Linear Sound Pressure	a.	
ulence (f. b) Pref Ref Grad Grad TT TT TT TT On On On On On On	ulence (1, 1) Pref Pref Gered Ger	m used to Identify the Refraction and/or Turbulence on to Denominator Term in Solution of the Sound for the Plux Flow Model seasor of Denominator Term in Solution of the seasor of Denominator Term in Solution of the Plux Flow Model to Flight Corrected Spt. Term Term Term M. As A Management of the Plux Kind of Order n, This A Management of the Plux Kind of Order n, This A Management of the Plux Kind of Order n, Term Te	n used to identify the Refraction and/or Turbulence P P P P P P P P P P P P P P P P P P P	n used to identify the Refraction and/or Turbulence P (f, h) of Denominator Term in Solution of the Sound Perfect to Plong Flow Model Rect of Denominator Term in Solution of the Saure for the Plug Flow Model for the Plug Flow Model T Value Varies with Lovel of Singularity Considered Term	n used to identify the Refraction and/or Turbulence P P Per of Denominator Term in Solution of the Sound Per Per Roct of Denominator Term in Solution of the Sound B Per Sound Per Inc. The Plug Flow Model Solution of the Sound Per Solution of the Solution of the Spirit Corrected SPI.	n used to identify the Refraction and/or Turbulence P P Per of Denominator Term in Solution of the Sound Per Per (or the Plux Plow Mode) R Rect of Denominator Term in Solution of the Surefrow Mode) SPL	n used to identify the Refraction and/or Turbulence P Of Denominator Term in Solution of the Sound For the Plux Flow Model Rect of Denominator Term in Solution of the	N (f, h) n used to identify the Refraction and/or Turbulence P of Denominator Term in Solution of the Sound Fer for the Plux Flow Model R		Mach Rumber = (Free Jet Velocity) + (Ambient Speed of Sound)	2	
ulence M(f, h) p p p ref dered dered Term T T T T T T T T T T T T T T T T T T T	ulence M(f, h) pref pref pref pref gradered Term on M(x) f (x) gradered Term on M(x) gradered Grad	Weeter to the Least Squares Fitting Procedure Make to Identify the Refraction and/or Turbulence The City of Denominator Term in Solution of the Sound For the Plux Flow Mode For the Plux Flow Mode For Elight Corrected SPL I value Varies with Lovel of Singularity Considered I value Varies with Lovel of Singularity Considered I value Varies with Lovel of Singularity Considered Reseal Punction of the First Kind of Order n, This As X The Reseal Function of the First Kind of Order n, The Reseal Function of the First Kind of Order n, This As X The Reseal Function of the First Kind of Order n, The Reseal Function of the First Kind of Order n, This As X The Reseal Function of the First Kind of Order n, The Reseal Function of the First Kind of Order n, The Reseal Function of the First Kind of Order n, The Reseal Function of the First Kind of Order n, The Reseal Function of the First Kind of Order n, The Reseal Function of the First Kind of Order n, The Reseal Function of the First Kind of Order n, The Reseal Function of the First Kind of Order n, The Reseal Function of the First Kind of Order n, The Reseal Function of the First Kind of Order n, The Reseal Function of the First Kind of Order n, The Reseal Function of the First Kind of Order n, The Reseal Function of the First Kind of Order n, The Reseal Function of the First Kind of Order n, The Reseal Function of the First Kind of Order n, The Reseal Function of the First Kind of Order n, The Reseal Function of the First Kind of Order n, The Reseal Function of the First Kind of Order n, The Research Function of the First Kind of Order n, The Research Function of the First Kind of Order n, The Research Function of the First Kind of Order n, The Research Function of the First Kind of Order n, The Research Function of the First Kind of Order n,	Wecter to the Least Squares Fitting Procedure Note to Identify the Refraction and/or Turbulence of Denominator Term in Solution of the Sound Rect of Denominator Term in Solution of the Rect of Denominator Term in Solution of the Square for the Plug Flow Model for Fight Corrected SFL Value Varies with Lovel of Singularity Considered T Value Varies with Lovel of Singularity Considered T Term	Wecter to the Least Squares Fitting Procedure Notice to Identify the Refraction and/or Turbulence P of Denominator Term in Solution of the Sound for the Plug Flow Model Sect of Denominator Term in Solution of the Rect of Denominator Term in Solution of the Square for the Plug Flow Model Government of the Plug Flow Model T Value Varies with Lovel of Singularity Considered Term	Wecter to the Least Squares Fitting Procedure No. (f. h) a used to identify the Refraction and/or Turbulence P of Denominator Term in Solution of the Sound tur the Plux Flow Model Rect of Denominator Term in Solution of the Square for the Plux Flow Model Issuer for the Plux Flow Model T T	Wecter to the Least Squares Fitting Procedure Notice to Identify the Refraction and/or Turbulence P of Denominator Term in Solution of the Sound tur the Plux Flow Model saure for the Plux Flow Model Spr.	Wecter to the Least Squares Fitting Procedure Notice to Identify the Refraction and/or Turbulence P of Denominator Term in Solution of the Sound Pref Cut the Plux Flow Model Rect of Denominator Term in Solution of the	Wecter to the Least Squares Fitting Procedure Note to Identify the Refraction and/or Turbulence P of Denominator Term in Solution of the Sound Fer Full Cur the Plux Flow Model R	Wecter to the Least Squares Fitting Procedure	Numerical Value Varies with Level of Singularity Considered	7	

Figure 27. Algorithm Description (Concluded).

radiated into a static rather than the free-jet environment.

Two phenomena are involved that change the directivity of the noise radiated by the sources associated with the jet plume when the jet is exhausting into a free-jet environment as opposed to a static environment.

These are

a. Refractive Effects of the Free-Jet Flows

To deduce the refractive effects of the free-jet flow, the following procedure is adopted.

 At low frequencies (k_o a < 3), the plug flow model solution for a point pressure source is used.

$$p' \propto (1 - M_{f_1} \cos \theta)^{-2}$$

2. At high frequencies $(k_0 a > 3)$, the asymptotic high frequency solution for a pressure source is used

$$p' \sim (1 - M_{fj} \cos \theta)^{-1}$$

At these values of the frequency parameter $(k_0 a < 3)$, the exhaust arc was used to deduce the refractive effect following the method due to Schubert (Reference 7). In this method,

• First the refractive dip in dB along the jet exhaust axis is determined as being proportional to the product of the jet Mach number and the frequency parameter.

$$R_{\theta_{i}} = 0^{\circ}$$
 $M_{fi}k_{o}a$

- Then, a shape factor that is essentially Mach number and frequency independent is used to determine the refractive dip at other angles. For the range 3<k a<6, Ribner's results were used with a linear extrapolation in the range 6>k a>1.25.
- Based on experimental data, the refractive dip in the exhaust arc for k_0 a>6 was considered independent of k_0 a, but still linearly proportional to M_i .

b. Absorptive Effects of the Fine Grain Turbulence in the Shear Layer of the Free-Jet

This relates to the fact that fine-grained turbulence in the shear layer of the free-jet can absorb sound, especially at high frequencies. This correction is based on Crow's theory that states that the effective absorption coefficient is proportional to the frequency, distance the sound traveled in the shear layer, and the square of the Mach number.

Based on the path length that the sound has to traverse, the absorption coefficient is assumed to vary with $\theta_{\tilde{1}}$ as shown in Figure below

The absorption was calculated assuming an eddy viscosity $= 70~\mu$ for M = 0.25 and f = 50 KHz. This yields corrections for k a>30. The actual expressions used were

Corr_T
$$\theta_{I} = 90^{\circ}$$
 $\theta_{I} = 90^{\circ}$ $\theta_{I} = 90^{\circ}$ for ka < 30

where M = Free Jet Mach number

$$k = \frac{2 \pi f}{C_0}$$

a = Radius of the Free Jet

$$\begin{vmatrix}
\text{Corr}_{T} & & = \text{Corr}_{T} & & \times (1.5 - \frac{180 - \theta_{I}}{180}) \\
\theta_{I} > 90^{\circ} & & 1
\end{vmatrix}$$

$$\begin{vmatrix}
\text{Corr}_{T} & & \text{Corr}_{T} \\
\theta_{T} < 90^{\circ} & & \theta = 90^{\circ}
\end{vmatrix}$$

$$\times (2.8 - \frac{180 - \theta_{I}}{50})$$

From the measured free-jet data, the refraction and turbulences absorption corrections are added to obtain the "basic" directivity of the sources.

The basic directivity obtained above is assumed to be generated by a set of singularities F_0 , F_x , F_y , etc., such that the sound field is a solution to

$$\nabla_p^2 + k_0^2 p = Fo \, \delta(x) \, \delta(y) \, \delta(z) + F\alpha'(x) \, \delta(y) \, \delta(z) + Fy \, \delta(X) \, \delta(y) \, \delta(z)$$
 where F_0 , F_x , F_y are mutually uncorrelated, so that they contribute to the far field only additively. As the mean square pressure of any singularity is symmetric about both θ = 0° and θ = 90°, the inlet and exhaust are are synthesized separately.

The procedure adopted to determine the dynamic effect is as follows:

- From the "basic" directivity pattern, obtain the normalized SPL's based on the least SPL in both the forward and aft quadrants.
- 2. Determine the linearized levels using

$$\frac{1}{p^2} = 10 \frac{\text{SPL-SPL}_{min}}{10}$$

- 3. Decide on a level of fitting using the criterion that the data ought to be reconstructed to within an error of 2 dB on the average. Then, assuming that the data ought to be reconstructed with the least singular distribution of uncorrelated sources possible, the problem simplifies to one of solving a least squares problem of the type find \bar{x} to minimize $|\bar{r}| = (A\bar{x} b)$ subject to nonnegative constrain \bar{t} $\bar{x} \geq 0$. This done using an algorithm based on the Kuhn-Tucker theorem of optimization theory.
- 4. The singularities obtained using the Kuhn-Tucker theorem are then combined to obtain the least singular decomposition of the sources.
- 5. The appropriate dynamic effect is then applied to each singularity type to determine the correction that is applied to the measured free-jet data corrected for refraction and turbulence absorption. If the mean square of the sound pressure is obtained by adding the singularities as

$$P_{\theta}^{'2} = F_{o} c^{6} + F_{1} c^{4} s^{2} + F_{2} c^{2} s^{4} + F_{3} s^{4}$$
where $C = \cos \theta$

 $S = Sin \theta$

the dynamic effect is calculated using the relation

Dynamic Effect = 10
$$\log_{10} \frac{P_F^{'2}}{P_S^{'2}} = 10 \log_{10} \frac{\frac{F_0C^6}{k^8} + \frac{F_1C^4S^2}{k^8} + \frac{F_2C^2S^4}{k^8} + \frac{F_3S^4}{k^6}}{P_S^{12}}$$

where
$$k = (1 + M_{fi} \cos \theta)$$

6. The levels are then corrected to

7. Doppler frequency shift results in the flight frequency given by

$$f_{flight} = \frac{f_{free jet}}{(1 + M_{fi} \cos \theta)}$$

8. Hence SPL = SPL doppler shifted from free-jet to flight.

Thus, using the above transformation, the free-jet data can be transformed into flight data. Further discussion of this procedure is found in Reference 2.

4.3 LASER VELOCIMETER DATA ACQUISITION AND REDUCTION

The laser velocimeter system used to measure the jet plume mean velocity and turbulence levels was developed under a USAF/DOT-sponsored program and reported in detail in References 8 and 9. The general features of the systems are described below.

The basic optical system is a differential Doppler, backscatter, single-package arrangement mounted on a traverse platform as shown in Figure 28. This remotely actuated platform allows motion in three directions viz., in and out, sideways, and axial and the corresponding traverse capabilities are 32 in. (0.813 m), 32 in. (0.813 m) and 240 in. (6.1 m). Resolution was $\pm 1/16$ in. (0.1588 m) for each direction except for the axial travel, which has a resolution of $\pm 1/8$ in. (0.3175 m).

Aluminum oxide (Al_2O_3) powder of a nominal size of 1 micron diameter was used for seeding by injection into the inner, outer, and tertiary flows. The white appearance of the coannular model and tertiary in Figure 28.was caused by the seeding.

The laser velocimeter signal processor used is a direct-counter (time domain) type. Turbulent velocity probability distributions (histograms) were

Figure 28. Laser Velocimeter Installed in the Anechoic Chamber.

recorded by a 256-channel pulse-height analyzer (NS633) and shown on an X-Y plotter. Both mean and rms turbulent axial velocities at discrete points were calculated using a PDP-11 computer with the tabulated data printed out on-line.

4.3.1 Basic Idea for LV Measurements

The concept of using laser velocimeter measurements for obtaining the mean and turbulent velocity profiles may be described as follows. Two beams of monochromatic light intersect at a point in space and set up a fringe pattern of known spacing (see Figure 29). The flow is seeded with small particles which pass through the measuring volume; the light scattered from the particles is collected, and the laser signal processor measures the time it takes for the particles to pass through each fringe. Knowing the distance and time for each validated particle enables the construction of the usual histogram (see insert on Figure 29). Then, by statistical techniques, the mean value (which corresponds to the mean velocity) and standard deviation (which corresponds to the turbulent velocity) are constructed. Although the principle of measurement is easy, the practical aspects of designing an electronic parocessing unit to monitor valid particles is of no small consequence. Investigators have had great difficulty performing measurements even in low velocity jets, and the extension to heated supersonic jet measurements represents a major achievement. The method of calculation used to obtain the mean velocity and turbulent velocity from laser velocimeter measurements is described below.

4.3.2 Histogram

A histogram is an estimate of the first-order probability density of the amplitude of a given sample. To obtain a velocity histogram, the time-dependent laser velocimeter velocity, V(t), is accumulated and divided into classes bounded by values of velocity increments V_i . For each independent sample of velocity, a class interval is formed such that $V_i \leq V(t) \leq V_{i+1}$. During a measurement period, k_i number of velocity samples are accumulated in each sample class V_i . From the total sample of measured velocity points, the histogram is constructed as shown in Figure 29. The mean velocity and turbulent velocity derived from the histogram are obtained as described below.

Figure 29. Schematic of Laser Velocity Measurements.

4.3.3 Mean Velocity

The mean velocity of the jet, \overline{v}_j , obtained from the discrete velocity sample is calculated by:

$$\bar{v}_{j} = \sum_{i=1}^{\infty} \left(\frac{v_{i+1} + v_{i}}{2} \right) \frac{k_{i}}{N}$$

All Class Intervals

where

ki is the number of velocity samples in the class interval

N is the total number of velocity samples (Σ k_1) in the histogram

4.3.4 Turbulent Velocity

To obtain the axial turbulent velocity, u', from the sampled data contained in the histogram, the standard square root of the statistical variance is performed. This calculation is performed using the following equation:

$$u' = \left[\sum_{\substack{\text{All Class } N\\ \text{Intervals}}} \left(\frac{v_{i+1} + v_{i}}{\frac{2}{1}} - \bar{v}_{j} \right) k_{i} \right]$$

4.3.5 Statistical Errors for LV Mean and Turbulent Velocity Measurements

With any large data sample, as obtained through the collection of velocity samples in a laser velocimeter historgram, guidelines for estimating the accuracy of each measurement are required. Tables II and III provide estimates of the percent error obtained for a mean velocity or turbulent velocity LV measurement.

Table II. Estimated Percent Error in the LV Measurement of Mean Velocity with 95% Confidence.

N	u'/⊽;					
	0.2	0.1	0.05	0.025		
10	14.1	7	3.5	1.76		
20	9.3	4.7	2.3	1.20		
30	7.4	3.7	1.9	0.93		
40	6.3	3.2	1.6	0.80		
60	5.0	2.6	1.3	0.65		
120	3.6	1.8	0.9	0.45		

Table III. Estimated Percent Error for LV Turbulent Velocity Measurements with 95% Confidence.

N	Percent Error
20	31.5
40	21.8
60	17.8
120	12.6
240	9.12
480	6.45
960	4.56
5,000	2.0
25,000	0.89

Table II lists the percent error for a 95% confidence statement of mean-velocity measurement as a function of the total number, N, of velocity samples contained in the histogram, and the turbulence level $\mathbf{u}'/\bar{\mathbf{v}}_j$. Table III gives the percent error for a 95% confidence statement of the turbulent velocity estimate as a function of N, the total velocity sample. As can be seen from Table II, a fairly small sample of velocity measurements is required to obtain a good estimate of the mean velocity. For the turbulent velocity, the number of data samples required for a good estimate increases substantially. The usual number of samples obtained with the General Electric laser velocimeter during a routine data-taking measurement performed during this program is approximately 1000 samples. For simple and quick diagnostic-type information, this amount of samples is sufficient. For more advanced measurements, such as turbulence spectra or two-point cross correlations, many more data samples are required and are currently obtained on a routine basis.

4.3.6 LV TRAVERSES FOR MEAN VELOCITY PROFILES

(. . .

In addition to the above described stationary mode of LV operation for the determination of both mean and turbulent velocities at discrete points, the laser velocimeter is operated also in a traversing mode to obtain continuous profiles of mean velocities. These traverses are possible along any of the three LV axes. During these traverses, the data describing the velocity levels and the location of the measurement volume are recorded continuously on an X-Y plotter. The traversing speeds are adjusted as well as traverses repeated for obtaining well defined mean velocity profiles. While exact sampling rates during these traverses were not recorded in any way, an estimated rate of ~250 samples per inch of traverse is felt needed for a well defined smooth profile. Section 6.0 shows copies of the diagnostic mean velocity traverses taken for this program.

4.4 AERODYNAMIC DATA ACQUISITION AND REDUCTION

The facility operating parameters are monitored during testing at the control console to ensure that prescribed facility limits are not exceeded and for setting test point conditions.

The core and fan discharge pressures are measured from a single element on their respective rakes and are used for setting the desired nozzle pressure

ratios. These parameters also are routed through Dymec scanning system and recorded along with nozzle performance data by the aerodynamic data handling (ADH) system.

Facility temperatures are monitored at the control console using a Doric multichannel temperature indicator. The unit has a 24-channel capability and is designed for use with Type K thermocouples (chromel-alumel). It is used for safety monitoring and setting test point temperatures for the dual-flow system, which uses Type K temperature rakes. A system schematic is shown on Figure 30.

4.4.1 Nozzle Pressure and Temperature Measurements

A critical parameter used in evaluating acoustic test results is nozzle exhaust velocity. Determination of this velocity depends on an accurate determination of the exhaust temperature and pressure which, in turn, depend on adequate sampling across the stream to account for profile effects. Special multielement rakes have been designed for use on the single- and dual-flow systems.

The dual-flow system uses four rakes, two on each stream, each having three pressure and three temperature elements with spacing of the elements corresponding to centers of six equal area annular segments of the flow stream. These rakes use shielded Type K thermocouples (chromel-alumel) that have a recovery factor very close to unity.

Pressure measurement accuracy is controlled by the accuracy of the transducer used for the measurement. The scanivalve transducers used for nozzle performance measurements are rated at 0.1% of full-scale range.

4.4.2 Performance Data Processing

Aerodynamic parameters are calculated based on the temperature and pressure information acquired. The input information for nozzle performance consists of ambient pressure (P_0) , nozzle discharge total temperature (T_T) , and nozzle discharge pressure (P_T) . For the case of dual-flow, similiar parameters are required for the secondary stream, likewise for the tertiary stream.

Figure 30. General Electric Anechoic Chamber Aerodynamic Data Processing System.

Output of the processing program consists of tabulations of the individual input parameters with their identification, averages of similar parameters (i.e., P_T rake average), and calculated parameters as indicated in the following paragraphs:

1. Gamma

For
$$T_S \le 440^{\circ}$$
 K (788.3° R); $\gamma = 1.4$
For $T_S > 440^{\circ}$ K (788.3° R); $\gamma = \frac{2.23708}{(T_S)^{0.070271}}$
with T_S in ° R

2. Isentropic or Ideal Mach number

$$M = \left(\frac{2}{\gamma - 1}\right)^{1/2} \left(\binom{P_{T}}{P_{o}}\right)^{\frac{\gamma - 1}{\gamma}} - 1^{1/2}$$

$$\frac{T_{T}}{T_{S}} = 1 + \left(\frac{\gamma - 1}{2}\right) M^{2}$$

$$T_{S} = T_{T} / \left(T_{T} / T_{S}\right)$$

where T_S is initially assumed equal to T_T . Starting with the gamma calculation, the above calibrations are repeated by an iteration procedure until the difference in T_S between iterations is <1.0.

3. Local Sonic Velocity

$$c = \sqrt{\gamma g RT}_S$$

4. Ideal Velocity (fully expanded)

$$V = M c$$

5. Calculated Ideal Thrust

$$F = V W/g$$

4.4.3 Humidity and Temperature Measurement

One of the parameters necessary for correcting acoustic data for atmospheric absorption is the humitidy content of air through which the signal is propagating. Since varying nozzle operating conditions may cause changes in the chamber environment during the course of testing, a means of remote humidity readout is required. This is accomplished through the Hygrometrix Model 8501 Relative Humidity System. This system utilizes a Xeritron sensor that is an assembly of hygromechanical crystallite structures and piesoresistive silicon strain gages on a common substrate. The sensing element responds to changes in relative humidity by a dimensional change reflected in the strain gage resistance with its resistance being proportional to the relative humidity.

Temperature at the humidity sensor location is measured using a Type K thermocouple. Readout of both temperature and relative humidity is provided at the cell control panel and is logged for each test point. Provision exists for humidity readout from any of the microphone positions; however, the sensor is mounted at the 40° microphone position, as this location represented a good approximation of mean chamber conditions as determined from the environmental survey. The manufacturer's stated accuracy for this system is ±2% over the range of -40° C to 1250° C.

5.0 TEST POINT DEFINITION

The following tables define the measured aerodynamic test conditions for both the laser velocimeter and the acoustic test points taken on each model.

The aerodynamic test matrix for the LV tests is shown in Table IV. The outer and inner flow aerodynamic conditions shown were obtained from on-line data since no data were taped during LV testing. In addition to the outer and inner conditions, the "mixed" conditions are also tabulated. These "mixed" conditions were calculated assuming that the outer and inner streams are perfectly mixed together. The resulting mixed velocity (V^M) and total temperature (T_T^M) are defined as:

$$v^{M} = \frac{v^{o}w^{o} + v^{i}w^{i}}{w^{o} + w^{i}}$$
,

and

$$T_{T}^{M} = \frac{T_{T}^{o} W^{o} + T_{T}^{i} W^{i}}{W^{o} + W^{i}}; \text{ see the definition of symbols following.}$$

The free jet velocity $({\rm V}_{\rm a/c})$ was obtained directly from LV measurements at the exit plane of the scale model nozzle. The total temperatures of the inner and outer streams and the free jet were measured using the total temperatures and the pressure ratio of the flows determined through total pressure rakes. Using these measurements, the velocities of the flows were calculated using isentropic gas dynamic relations.

The acrodynamic test matrix for the acoustic tests is shown in Tables V through XII for Models 1, 1A, 2, 3, 4, 5, 6 and 7, respectively. The aerodynamic conditions were obtained from taped data. The "mixed" conditions were calculated as described above. The free jet velocity $(V_{a/c})$ was determined by subtracting the velocity reduction from the measured value. The free jet velocity reduction was caused by the model area reduction between the free jet nozzle exit station and model nozzle exit station. This free jet velocity correction method is detailed in the Final Report. In addition to the aerodynamic conditions, both model scale and scaled acoustic data are tabulated. The nominal area of the full size engine is 1400 in. The definition of symbols used in these tables are as follows:

DEFINITION OF SYMBOLS

Pr Measured nozzle pressure ratio
V Ideal nozzle velocity, ft/sec
Tr Measured nozzle total temperature, ° R
T Ideal calculated static temperature, ° R
W Ideal calculated weight flow, lbm/sec
o Designates outer nozzle
i Designates inner nozzle

Table IV. Aerodynamic Test Matrix for Laser Velocimeter Tests.

					Outer				I	pner				xed	
Model	Test Point	Va/c ft/sec	Pr	V ⁰ ft/eec	TT R	T ^O	yo lbm/sec	Př	y ⁱ ft/sec	. T.T.	.TR	wi lbm/sec	yH ft/sec	.TR	v ⁱ /v ^o
1	101	0	3.17	2416	1708	1263	10.52	3.19	1636	790	567	2.16	2283	1146	0,677
	101A	ю.	1.00	0	592	592	0	3.21	1635	785	563	2.18	1635	563	
	103	400	3.17	2427	1722	1274	10.47	3.19	1633	787	565	2.17	2291	1155	0.673
	113A		1.00	0	571	571	0 .	1.62	1104	784	683	1.08	1104	683	
	116	0	2.43	2175	1735	1381	8.00	2.08	1348	801	650	1.40	2051	1276	0.620
	119A	0	2.26	2092	1733	1405	7.44	1.02	262	1013	1005	0.18	2050	1403	0.125
	1505	0	1.45	1447	1720	1567	4.53	1.45	898	666	599	1.01	1348	1393	0.621
	1506	400	2.45	1453	1733	1579	4,51	1.43	899	693	626	0.97	1355	1413	0.619
14	101A	0	3.19	2453	1722	1272	10.54	3.22	1648	789	565	3.09	2270	1114	0.672
	1164.	0	2.45	2184	1721	1366	7.96	2.20	1338	735	587	2.15	2003	1511	0.613
2	201	U	3.17	2435	1733	1283	10.44	3.24	1629	774	553	3,10	2250	1118	0.669
	203	400	3.18	2425	1716	1268	10.52	3.20	1630	782	561	3.04	2247	1112	0.672
	204	0	3.79	2551	1.688	1186	12.65	3.23	1638	784	561	3,06	2372	1069	0.642
	206	400	3.76	2559	1707	1203	12.48	3.24	1635	780	557	3.08	2376	1080	0.639
	210	0	2.28	2088	1710	1384	7.56	2.09	1264	700	567	2.10	1909	1210	0.605
	212	400	2.28	2084	1704	1379	7.57	2.11	1265	693	560	2.13	1904	1203	0.607
	213	0	3.15	2430	1734	1286	10.37	1.58	1097	817	717	1.43	2268	1229	0.451
	215	400	3.18	2429	1722	1273	10.50	1.61	1104	789	696	1.49	2265	1213	0.455
	216	0	3.79	2551	1689	1187	12.65	1.59	1098	808	708	1.45	2402	1151	0.430
	219	0	2.27	2085	1713	1388	7.52	1,39	1092	800	701	1.46	1924	1283	0.524
	221	400	2.29	2089	1704	1377	7.61	1.61	1094	783	683	1.50	1925	1270	0.524
	222	0	2.42	2165	1727	1376	7.98	2.18	1324	731	585	2.14	1987	1213	0.612
	222A	0	2.45	2184	1713	1360	8.12	2.18	1334	739	591	2.13	2000	1510	0.611
3.	301	0	3.17	2434	1732	1282	10.44	3.22	1634	782	560	3.10	2250	1119	0.671
	303	400	3.17	2433	1731	1281	10.44	3.21	1634	784	562	3.09	2251	1119	0.671
5	513	0	3.14	2428	1735	1288	11,67						2428	1288	
	515	400	3.19	2431	1720	1270	11.90						2431.	1270	
6	3009R	0	2.26	2088	1726	1401	4.64	1.37	795	611	558	2.26	1664	1145	0.361
	3011	400	2.23	2070	1722	1402	4.58	1.39	796	587	534	2.37	1636	1127	0.385
	3015R	0	2.78	2292	1704	1306	5.74	1.63	1438	1327	1156	1.98	2073	1278	0.628
	3016	300	2,73	2290	1727	1332	5.60	1.63	1426	1294	1136	2.00	2063	1290	0.623
	3017	400	2.74	2293	1726	1329	5.62	1.63	1431	1303	1144	1.99	2068	1291	0.624
	3018	0	2.70	2285	1736	1343	5.52	1.96	1630	1259	1049	2.3 *	2082	1258	0.713
	3020	400	2.70	2281	1730	1338	5.53	1.95	1622	1255	1047	i	2078	1254	0.711
7	7009	0	2,25	2085	1730	1406	7.46	1,48	868	592	529	2.59	1772	1195	0.416
	7011	400	2.25	2090	1737	1412	7.45	1.48	869	593	530	2.59	1775	1199	0.416
	7015	0	2.73	2295	1735	1338	9.04	1.83	1406	1036	874	2.54	2100	1244	0.613
	7016	300	2.71	2287	1734	1340	8.98	1.83	1411	1043	881	2.53	2094	1247	0.617
	7017	400	2.70	2292	1746	1351	8,91	1.83	1410	1042	880	2.53	2097	1255	0.615
	7018	0	2.67	2269	1729	1341	8.86	2.73	1643	901	676	4.08	2072	1134	0.724
	7019	300	2.68	2267	1721	1333	8.91	2.714	1650	905	679	4.08	2073	1130	0.728
	7020	400	2.67	2274	1736	1347	8.84	2.78	1644	888	663	4.18	2071	1129	0.723

v1/v0 ጟ. Mixed ۳. ۳ 3.1949 3.14472 2.14682 2.14682 1.08588 1.08588 1.08588 3.1863 3.1 3.1619 2.94719 2.94528 1.94528 1.94528 3.74832 3.7484 2.2759 2.2759 2.42759 2.42759 2.42759 OLH Outer ٠. × 1723 1723 1723 1693 1693 1693 1693 1759 1728 OLH. ft/sec Va/c ft/sec Test

Aerodynamic Test Matrix for Acoustic Data, Model

Table V.

AREA MODEL SIZE - INNER = 2.47 , OUTER = 18.05

v¹/v Aerodynamic Test Matrix for Acoustic Data, Model 1A. 2239 2274 2274 1627 1627 1627 1929 1929 2376 2667 2667 2667 2663 2674 2674 4 3.1941 2.2773 2.2773 2.2773 1.8384 1.8384 3.1938 2.1884 2.1422 2.1284 2.1284 1.7187 1.7187 Inner ₹, 3 3.2311 2.2311 2.2311 2.2316 2.2316 2.2316 2.2316 3. O_LH Table VI. Outer ٠. × 2554 25564 25564 2116 2116 2177 2157 2267 2426 2426 2426 2426

AREA MODEL SIZE - INNER = 3.50 , OUTER = 18.

*1/v UT 1bm/sec 98977 1118 11118 11118 5279 6293 6293 6866 2322 2322 2322 2313 8888 8888 89112 7448 4448 4537 1155 3337 ***** 11117 11114 11114 11114 11166 11176 11176 11176 11176 11176 11176 11176 11176 11176 11176 11176 11176 11176 11176 11176 11176 Hixed ጜ. 작다**.** @@@@@@@QQQQQQ 4 Inner ۳.۳.۳ ┺ 3 3.1553 3.1553 3.1553 3.1655 3. OL H Outer 1273 1267 11085 11183 11183 11183 11183 11195 11 ٠<u>.</u> . Va/c ft/sec Test

Model.

Acoustic Data,

Matrix for

Test

Aerodynamic

VII.

Table

AREA MODEL SIZE - INNER = 3.45 , OUTER = 18.6

1112 1014 1014 1014 1007 11007 11176 11176 11177 1177 117 1ba/sec ٦, up 1bm/sec Outer 1278 11268 11268 11287 11287 11287 11388 11388 11388 11388 11388 11388 11388 11388 11388 11388 11388 11388 . . 9.4. 8 Va/c ft/sec Test

Acoustic Data,

Matrix for

Test

Aerodynamic

Table VIII.

EA MODEL SIZE - INNER = 3.5% , OUTER = 18.0

Inner Outer

Aerodynamic Test Matrix for Acoustic Data, Model 4,

Table IX.

AREA MODEL SIZE - INNER = 9.56 , OUTER = 18.8

*1/0 WT 1bm/sec 22.7453 22.7453 22.75223 22.75223 22.75223 22.75223 23.7523 23.753 23.7523 23. ເດ Aerodynamic Test Matrix for Acoustic Data, Model 13067 13067 13067 13119 Mixed 6999 6999 6999 6999 6999 6999 2416 2422 2546 2556 2556 2556 1219 1213 ft/sec 1bm/sec 74 Inner TH. - i- a ft/80c 7 υο 1bm/sec Table X. 2.7463 2.7463 2.5463 2.5139 2.5139 2.5324 2.1539 2.1539 2.9482 3.1694 3. Outer 11299 1131907 1131907 1131907 1131907 11325 1132 1699 1699 1676 1676 1676 1675 1672 1672 1662 QH. 1685 1618 1686 2368 2363 2364 5 Va/c ft/sec

NREA MODEL SIZE - INNER = 6.00 , OUTER = 20.38

v1/vg 3.9.9893 2.9.9893 2.9.9893 2.9.9893 2.0.9893 2.0.9893 2.0.9893 2.0.9893 2.0.9893 2.0.9893 2.0.9893 2.0.9893 2.0.9893 2.0.9893 3.0 **X**, H 939 16156 11267 11267 11267 11138 11138 11138 11138 111287 11289 11289 11289 11289 11289 \mathbf{v} 33.22 2.26633 2.26633 2.26633 1.365741 1.365741 1.365741 1.46574 1.66744 1.667 Inner **ᲙᲐᲥᲙᲥᲡᲡᲡᲥᲥᲥᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡ ᲙᲡᲓᲘ**ᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡᲡ**Დ** ᲡᲡᲓᲡᲡᲡᲡᲡᲡᲡ 3.2146 3.1977 2.3834 3.1977 2.3934 2.7716 2.7716 2.7716 2.7834 2.7548 2.7548 2.7548 2.7548 2.7548 2.7548 2.7548 2.7548 2.7548 2.7548 2.7548 2.7548 2.7558 2. _{ال}م Outer 0 H . Va/c ft/sec 299 388 298 384 298 389 382 384 299

Areodynamic Test Matrix for Acoustic Data, Model

Table XI.

:A MODEL SIZE - INNER = 5.85 , OUTER = 11.2;

v¹/vo 3 Mixed Aerodynamic Test Matrix for Acoustic Data, Model Inner 1421 1652 1744 1746 1746 1746 1316 1316 1316 1652 1316 1652 125 22122 22122 22122 22128 چ Table XII. Outer <u>.</u> " 2184 2287 2275 2283 2298 2291 2291 2291 2291 2291 2076 2080 2100 2100 1710 1694 Wa/c ft/sec

AREA MODEL SIZE - INNER * 5.81 , OUTER = 18.0

()

Model 7 (Concluded)

Acredynamic Test Matrix for Acoustic Data,

Table XII.

۲, Ę., ۳.۳.[#] Outer 2002 2002 2002 2002 2003 ٠. « Ve/c ft/sec

6.0 TEST RESULTS

6.1 ACOUSTIC TEST RESULTS

In this section, the measured acoustic far field data are presented for each test point defined in Section 5. The acoustic far field data consist of 1/3 octave band sound pressure levels at angles to the inlet from 40° through 160° in 10° increments. The power level spectra are also presented along with the calculated OASPL and PNL at each angular location. Three different tabulations of the acoustic far field data are presented for each test point. The first table shows the "Untransformed Model Sound Pressure Levels" (i.e., as-measured SPL data) on a 40 ft arc. Only the data above the anechoic chamber cutoff frequency of 250 Hz are shown. The second table shows the "Flight Transformed Model Sound Pressure Levels". Both the refraction and turbulence corrections are employed in the flight transformation. The third table shows the "Flight Transformed, Scaled, and Extrapolated Sound Pressure Levels" for a nozzle of area 1400 in. 2 at a 2400 ft sideline. In addition to the OASPL, the PNL, and PNLT (i.e., tone corrected PNL) are shown.

A detailed description of the three types of tabulations is presented in Tables XIII through XV with all the key parameters identified. These tables are self-explanatory. The acoustic test results are presented in Sections 6.1.1 through 6.1.8 for Models, 1, 1A, 2, 3, 4, 5, 6, and 7, respectively.

The measured SPL data is corrected to standard day conditions (i.e., $T_{amb} = 59^{\circ}$ F and relative humidity = 70%) from the actual ambient temperature and relative humidity conditions of the anechoic chamber by applying the Bass and Shields air attenuation model.

Table XIII. Sample Data Sheet.

UNTRANSFORMER BB.O DEG. F., 70 PERC IDENTIFICAT AGG. BG. 100. 100. 100. 100. 100. 100. 100. 10

Sheet.
Data
Sample
XIV.
Table

DIAMETER (IN) TURBULANCE CORRECTION - YES

Table XV. Sample Data Sheet.

FIIGHT TRANSEGRMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 69.0 DEG. F., 70 PERCENT R.H. STD. DAY, SG 2400.0 FT. SL

		- e u	2	IDENTIFICATION	ENTIFICATION .	14.	J-ZERRFMODL FROM INLET.	X01016 DEGREES	9 8		PunoS-L		Power (1/3 Octave Band)	
Octave	Band Frequency	cy 70.		90. 1	100. 11		. 130.		160.	160.	Level			
3. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	Flight Transfor Engine Using Di Mentioned Below line Distance.		led Mode] meter Ra and Exti	Dat jio apol	65 ⊑	a Scaled to a Full Size and Frequency Shift ated to 2400 Feet Side-ull Size Engine of Model	a Full Size cy Shift O Feet Side-	o			ORIGINAL PAGE IS OF POOR QUALITY			
5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Frequency Shift = 10 log10 Frequency Shift Indicates the Frequency is Shifted I	Shift Shift ency is	= 10 log ₁₀ X Indicates the		X Diameter the Number of	of of	g t	unded O	ff to N	Rounded Off to Nearest Integer ave Bands	Integer			
10000000000000000000000000000000000000	Overall Sound Pressure Le Perceived Noise Level Tone Corrected Perceived	ressure Level Perceive	Level	e Leve)		98	FRECUENCY		e-					
79	TEST DATE LOCATION	05-0 04-0	7-76 ANECH CH		TAPE NO. AERO, RDG.	NO. N291 IDG. ADHO41	1 041	I ALPHA PARB	SB59 29.6938	! !	TAMS 16.88 RELHUM 43.40	20		
:35EL TE	TEST POINT	ACOUSTIC		RANGE				SIZE				FREE-JET SPEED	160	

6.1.1 Measured Acoustic Data for Model 1

ORIGINAL PAGE IS OF POOR QUALITY

 $R_r^0 = 0.853$ C-D outer nozzle

 $R_{r}^{i} = 0.953$ C-D inner mozzle

 $A^{1}/A^{0} = 0.137$

with struts in outer flow

											OI OI	RIG F F	iiN PO(AL	. F	PAG	E	IS IY						***	FPS)		Control of the statement of the statemen
																								1 6 .8 8 43.40	FREE-JET SPEED , M/SEC (0,		$\label{eq:constraint} define the definition of the definition $
PRESSURE LEVELS CORRECTED FOR RCENT R.H. STD. DAY, SB 40	IDENTIFICATION - MÖDEL FJ-ZERRFMODL X01010 BACKGRÖUND	ANGLES MEASURED FROM INLET, DEGREES	40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160,				87.8 92.1 91.1 91.4 91.7 94.3 96.5 98.9 103.6 108.9 113	657.8 507.7 517.4 517.7 53.6 53.7 567.5 103.4 1117.0 1157.8 1157.0 1157.	93,1 94,9 95,7 95,4 96,5 98,9 99,5 103,4 111,4 118,0 121,4 120,8 118,2	97.9 95.9 96.9 96.9 97.2 97.8 99.9 101.1 104.7 112.7 119.0 122.9 121.6 118.0 1	101.7 101.6 101.6 100.1 99.9 101.8 102.7 106.1 114.1 119.1 122.6 120.9 117.1 1100.9 103.4 103.2 101.7 103.0 104.2 104.5 107.7 114.3 118.8 124.1 120.3 114.9 1	110,0 105,3 103,5 101,4 101,9 103,1 104,7 107,9 115,2 119,2 123,4 118,1 113,6 1	108.8 108.8 109.1 109.1 107.2 105.0 105.9 109.1 115.5 121.0 119.1 115.3 110.1	167.6 168.1 167.9 167.9 169.2 168.8 166.9 169.9 115.8 126.2 118.1 113.8 169.3 1	106.1 105.6 105.6 106.1 106.7 108.3 108.2 108.6 114.8 119.0 116.7 111.8 107.4 1104.9 105.2 106.0 106.0 106.0 107.6 109.3 111.2 114.6 117.9 116.0 110.9 107.2 1	103.3 104.4 105.7 104.9 105.9 108.3 108.2 111.2 114.3 116.8 114.4 109.4 106.1 1	100.5 103.1 104.5 104.1 105.7 107.4 106.8 110.3 112.1 114.6 111.8 107.7 104.1	96.0 59	89,3 92,3 94,9 95,0 99,4 100,5 97,3 98,0 101,9 101,9 09,5 97,0 97,6 1	87.1 88.1 92.6 38.5 94.1 94.3 93.8 95.3 97.4 99.9 96.3 91.3 90.9 1	82.1 83.6 86.5 87.6 91.8 92.5 88.1 90.1 92.5 94.6 91.4 86.8 86.5 1 74.6 76.6 79.3 81.6 83.8 84.8 83.2 83.2 88.1 89.1 85.4 81.5 80.7 1	69.0 70.6 72.5 75.4 75. 3 76.5 77.5 77.3 84.4 82.8 79.9 75.7 75.5 1	117.0 116.9 117.6 116.6 117.1 118.1 118.0 120.9 126.0 130.4 132.3 130.2 127.0 167.8	TEST DATE 02-07-78 - TAPE NG, N291 IALPHA SB59 TAMB 1 LOCATION C41 AHECH CH AERG, RDG, ADHO41 PAMB 29,6938 RELHUM 4	TEST PGINT ACMUSTIC RANGE 0 0101 12.2 M (40.0 FT) ARC 132.4 SQ CM (20.52 SQ IN) - MODEL 0.		The second secon
				FRED 50	áä	100 125 160 200	250	2 4 8 20 5	93(900	200 200 200 200 200 200 200 200 200 200	1600	2500	213	400 2000 2000	6350	10000	15000	25000	31500	40000 00000 00000	63000	OASPI		MØDEL 0100	81	

8
99
7
•
7
6
5
7
0

										₹		C)RI)F	GI P	N#	AL DR	PA QU	GE		S Y						ON - YES ON - YES		- 1	FREE-JET SPEED M/SEC (0. F/PS)	
59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC	IDENTIFICATION - FJ-ZERRFMÖDL X01010	ANGLES MEASURED FROM INLET, DEGREES	40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PWL.					.8 92.1 91.1 91.4 91.7 94.3 96.5 98.9 103.6 108.9 113.8 116.7 117.4 150	. 9 . 90, 7 . 91, 4 . 91, 7 . 93, 6 95, 7 . 95, 3 . 98, 5 . 105, 4 . 11, 5 . 115, 9 . 116, 3 . 117, 0 . 151 . 4 . 91, 9 . 92, 7 . 92, 5 . 93, 8 . 96, 0 . 96, 8 . 95, 5 . 107, 2 . 115, 0 . 118, 4 . 119, 6 . 117, 0 . 153	03.0 94.5 94.1 94.7 97.5 98.4 100.8 109.0 116.9 120.8 121.2 117.3 155	0 04 0 05 0 07 0 07 8 07 8 00 0 101 1 100 7 110 0 100 0 100 100 10	7 101,8 101,6 100,1 99,9 101,8 102,7 106,1 114,1 119,1 122,8 120,9 117,1 156	.9 103.4 103.2 101.7 103.0 104.2 104.5 107.7 114.3 118.8 124.1 1	1 109,4 107,9 105,7 102,3 103,1 104,5 108,4 115,8 120,3 121,2 116,2 111,4 156	8 108.8 109.1 109.1 107.2 105.0 105.9 109.1 115.5 121.0 119.1 115.3 110.1 156	0 108,1 107,9 107,9 109,2 108,8 106,9 109,9 115,8 120,2 118,1 113,8 109,3 1 1 105 6 106 6 106,1 106,7 109,3 108,2 108,6 114,8 119,0 116,7 111,9 107,4 1	9 105.2 106.0 106.0 106.0 107.6 109.3 111.2 114.6 117.9 116.0 110.9 107.2 154	3 104.4 105.7 104.9 105.9 108.3 108.2 111.2 114.3 116.8 114.4 109.4 106.1 17 104.0 104.9 105.0 106.3 107.2 107.8 110.9 113.8 115.4 113.0 107.9 106.0 1	5 103.1 104.5 104.1 105.7 107.4 106.8 110.3 112.1 114.6 111.8 107.7 104.1 152	.1 101.4 101.8 102.9 104.7 105.9 105.1 107.9 109.8 112.0 109.9 105.6 102.6 101. .0 99.2 101.3 101.9 104.1 105.1 103.8 106.4 107.6 110.5 106.9 103.8 101.2 151	.8 97.3 99.0 102.3 103.6 100.8 103.3 104.4 106.8 103.6 100.6 99. .8 94.9 95.0 99.4 100.5 97.3 98.0 101.9 101.9 99.5 97.0 97.	1 88.1 92.6 93.5 94.1 94.3 93.8 95.3 97.4 99.9 96.3 91.3	6 76.6 79.3 61.6 83.8 84.8 63.2 83.2 86.1 89.1 85.4 81.5 80.7 1	2 64.6 63.1 70.9 69.6 71.8 70.1 72.2 78.8 76.0 74.0 63.3 67.3 1	117.0 116.9 117.0 116.6 117.1 118.1 118.0 120.9 126.0 130.4 132.3 130.2 127.0 167.8	MODEL/FULL SIZE SCALE FACTOR FREE JET VELOCITY (FT/SEC) O. REFRACTION CORRECTION IMPUT 1.000 CALC 1.000 FREE JET DIAMETER (IN) 48.00 TURBULAMCE CÓRRECTION	TEST DATE 02-07-78 TAPE NO. N291 IALPHA SB59 TAMB 16.88 LOCATION CALANECH CH AERO. RDG. ADHO41 PAMB 29.6938 RELHUM 43.40		TEST PCINT ACGUSTIC RANGE SIZE SIZE OTO 12,2 M (40.0 FT) ARC 132.4 SG CM (20.52 SG IN) - MODEL 0.	
			FRED	S 22	800	125	200 200 200	250	318 200	500	000	1000	1250	2000	2500	3150	5000	6300 8000	10000	12500	20000 25000	31500	50000	80000	OASPL.				MODEL 0100	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

()

					OI OI	RIGINAI POOI	PAG QUA	E IS LITY				88 40	FREE-JET SPEED M/SEC (0, FPS)
			4040	9 175	6 174 8 173 9 172 9 172	72.5 171.8 71.1 171.3 67.8 171.0 64.2 169.6	6 169 1 168 7 166	-			98,6 186,0 97,8 99,0	TAMB 16.	- FULL 0.
X01015	DEGREES	. 15	ကယ္လယ္	4 97 6 96 6 93 1 91	6 0 0 0 0 8 8 9 0 0 8 8 9 0	89,8 81,5 88,0 79,4 86,4 78,3 83,2 74,9	5 71. 5 65. 6 56.	2 24			110.3 105.8 112.7 106.1 113.7 106.1 CY SHIFT -9	PHA SB59 AMB 29.6	S12E 400.00 SQ 1N)
FJ-ZERRFMÖDL	FROM INLET, D	. 130.	7 95.5 5 97.3 9 98.3 1 99.3	4 2 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9 100 2 6 99 C 6 97 5	93.5 94.4 92.7 92.8 90.8 91.6 86.0 88.5	4 86.3 0 74.1 67.1	34.5		•	06.2 109.7 11 11.7 114.3 11 11.7 114.9 11	N291 1A	SQ CM (1
1	ANGLES MEASURED FI	0. 110.	55 81.7 0 83.0 1 85.6 86.8	- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88.9 91.3 88.3 90.8 87.1 90.1	3 75.0 2 75.0	1 58 3 1 40.6 15.5			1 101.5 1 .4 108.5 1 .4 108.5 1	APE NO.	SL \$032,2
IDENTIFICATION	ANGLES	. 90.	.5 78.7 .3 50.3 .1 81.6 .4 82.6	84.4 86.6 85.6	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6 89 1 8 87 9 8 87 9	85.2 78.8 78.8	.8 63.0 7 45.5 1 9.4			98.1 99.3 99 06.0 107.4 106 07.2 108.6 106	Но	RANGE O.O FT)
		60. 70.	2 74.7 0 76.3 1 77.6 3 79.3	9 82.1 3 83.5 6 83.1	5 90,4 0 88.8 4 86.8	0000	2 81.1 3 77.5 0 71.9	. 6 56.0 . 3 39.0 . 1 13.6			97.0 97.3 6 03.2 104.1 10 03.2 104.1 10	02-1	ACCUSTIC 731.5 M (240
		40. 50.	3 72.4 9 73.4 9 75.3	3 82.0 1 85.2 85.2	86.9 86.9 84.1	8 82.1 7 81.4 1 80.1	7 75.1 7 71.4 9 64.5	6 43.7			.3 95.7 .7 101.2 1	TEST DATE LØCATIØN	TEST PGINT 0101
		-	ļ		ŀ	800 78 1000 77 1250 75	1 .		12500 16000 20000 25000		600000 CASPL 94 PNL 98	NING BOAT	30 0100 0100

ì

9
•
683
•
4
•
_
0
6
è
-
`
~
07

														OF	RIC	SIN PO	A OI	L R	P#QU	G	E Ll'	IS TY													T SPEED (284) OFFICE (284)	
																																	14.54	·I	FREE-JET	
COUND NOISE					PWL					1 147.2	7 149.1	-	. 8 151.	9 152		7 153.7	8 154	2 154.	9 60	4 153.	2 152.	. 4 152.3 151.6	9 151.	9 150.	.6 150.1	7 147.	8 147.	.4 146.0	1 143.	6 14	.3 165.7		TAMB	ı	MÖDEL	
FOR BACKGROUND NOT	X01020		ES	150. 160						114.0 114	116,6 114	117.	117.71	117.3		15.5	115.61	113.7	10.3	108.6 1	106.7	103.0	103, 3	101.7	100.4 94.	94.1	4	ص ب		4.2	126.8 121		SB59 29,7020	1	N CS	
CORRECTED	FJ-300-FM6DL	B300-FMCDL	INLET, DEGREE	130. 140.						05.4 110.8	0 112	.0 115.	.1 117.		9	.2 121.	.4 121.	7 120.	.5 1.8.	.1 116.	.4 115.	1 2 3	5 110.	. 1 108,	09.6 106.3	.0 98.	.5 ,95,	93.7 30.0 87 7 82 5	6.	.4 72.	127.8 130.4	-	I ALPHA PAMB		SIZE (20.52	
URE LEVELS	3	CKGROUND FJ	RED FROM IN	120.						100.3	102.2	103.2 1	105.5	108.4 1) - C	112.1	112.7	200	. 4.	113.6 1	113.7	9.81	112.8	110.2 1	0 107.7 1	101.7	97.5	92.4 4.0	83.2	6'92	3 124.4 1		N292 ADH053		32.4 SQ CM	
SOUND PRESSU	Σ	BAC	MEASU	100. 110						6		1.	6 /	2 5	0.4	3 10	10	5 C	4.	.5 10	ت. ت:	106.9 109	6 10	.2 10	102.9 105	7	o :			9.	116.9 119.		TAPE NG. AERG. RDG.	l	ARC	
	TIFI		ANGLES	80. 90.						5 91.	.0 92,	.8 92.	94.	4.0 95.6	26 6	5 100.	. 2 101.		2 109.	.0 107.	105		8 105.	8 104	02.5 103.7	5 99.	Q (6. 6. 2. 6.	75	0.	5.5 116.6		CH CH		IC RANGE	1
UNTRANSFORMED MOI				. 70.						88.1	88.2	89.0	91.1	92.2	95.0	97.7	99.66	108.61	106.6	103.7 1	104.55	102.9	102.01	101.3 1	.4 100,5 10 .2 97 6 10	93.8	92.4	85.6 79.7	73.3	68.0	6 115.1 11		E 02-08-78 N C41 ANECH		ACGUSTIC	
TNO				50. 60						6 87	6 88	2 90	5	99	96	6 98	0 103	- 8 108	6 104	2 105	8 104 104	200	4 102	0 100	98.4 99.	7 93	7 90	77	4 71	.7 64.	115.4 115.6		TEST DATE		T POINT	
-				- 11	50 50	88	20	25	00 00	84.3	92.6	87.9	88.2	89.8 -	96.0	98.8	107.7	105.0	104.8 1	103.8	102.9	101.2	100.1	97.4	00 00 00	89.	87.	74	68	62,	114.6		•		TEST 0 01	
					F .	~ u	15	~	160	180	က်	4	ត	, e	<u> </u>	125	160	250	316	4000	2000	8000	10000	12500	16000	25000	31500	50000	63000	90000	GASPL				MODEL 010	

FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC

IDENTIFICATION - FJ-300-FMODL X01020

						ORIGII OF PO	1	GE IS ALI TY			- YES - YES	i i	ET SPEED (209.0 FPS)
	60. PWL		2.6 146.0	. 5 146. . 3 151. . 8 152.	3.1 152.9 1.6 153.2 2.9 153.8 2.0 153.6		.8 153. 153. .7 153. .0 152.	04.2 152.3 02.8 151.7 03.7 151.5 97.1 150.5	0477	D (N	SORRECTION SORRECTION	RELHUM 55.60	MODEL 88.09 M/SEC
DEGREES	140. 150. 1		106.9 113.1 11	112.6 115.3 11 116.1 117.1 11 117.7 117.2 11 119.0 118.5 11	.2 117.6 1 .2 117.0 1 .6 117.2 1 .8 115.2 1	8 114.0 1 5 111.9 1 3 110.6 1 6 109.2 1	2 2 2 2	.6 105.0 1 .1 103.0 1 .9 101.5 1 .7 95.8	.3 91.4 .1 86.3 .7 81.6 .1 74.3	3 64.4 5 127.1	88	ALPHA 5859 PAMB 29,7020	20.52 SQ IN) -
ILES MEASURED FROM INLET,	120. 130.		7 99.6 104.7	101.4 10 104.2 11 106.9 11 108.7 11	1 110.2 114.4 2 111.0 113.9 6 111.8 115.2 9 112.4 116.3	3 112.5 116. 3 113.7 116. 1 113.4 116. 0 114.0 116.	2 114.9 116.8 3 116.1 114.8 4 114.6 114.9 2 112.3 112.9	116.4 1 107.6 1 106.3 1 102.0 1		~ -	FT/SEC) ER (IN)	ADHO53	32,4 SQ CM (2
ANGLES MEASURE	90. 100. 110	-	.3 92.1	.5 92.5 .7 93.4 .2 95.0 .9 96.0	.9 97.8 1 .9 98.7 1 .6 100.6 1	.8 101.8 1 .1 103.4 1 .1 106.4 1 .7 108.8 1	.1 109.0 1 .0 108.3 1 .3 108.7 1 .7 107.7 1	7.5 106.3 1 6.7 105.0 1 5.0 102.2 1 2.1 99.2	7.0 95.0 4.1 69.9 6.4 84.7 8.1 78.2	70.8	FREE JET VELO FREE JET	AERO, RDG.	r) ARC
	70. 80.		89.5	.6 91.3 .3 92.1 .5 93.2 .7 95.4	95.8 98.0 99.6 1	.8 102.9 1 8 109,5 1 .6 110.2 1 .4 106.0 1	6 106.5 1 1 107.1 1 8 107.2 1 1 107.4 1	4 106.4 1 5 106.5 1 5 105.1 1 8 102.5 1	V 0 4 V	.3 118.1 1	SCALE FACTOR	C41 ANECH CH	12.2 M (40.0 F
). 50, 60,		92.7 90.	92.7 92.2 92.8 94.0	95,2 95, 95,6 96, 98,8 99, 101,8 101,	.5 106. .2 113. .1 111. .2 106.	108.8 1 107.6 1 107.8 1 107.6 1	6, 7 106. 3, 7 104. 3, 3 103. 0, 5 99.	1 55,3 96,5 9 85,8 91,4 1 85,0 86,9 7 77,3 78,0	0 119.3	ZE	LOCATION ST POINT	0102
	40 FREG	50 63 00 00 00	125 160 200 250 89.		-			12500 16000 20000 25000	31500 94. 40000 88. 50000 85.	OASPI.		#SOEL TE	0

85

										OI OI	RIO F I	GIN PO	IA	L R	P# Ql	iG JA	E Lſ	is TY	•														EED 9.0 FPS)	
AND EXTRAPGLATED	.0 DEG. F., 70 PESTANT	O-FMGDL	ANGLES MEASURED FROM INLET, DEGREES	. 50. 60. 70. 80. 100. 110. 120. 130. 140. 150. 160.	9 72.6 73.2 73.5 74.7 75.8 76.1 76,2 85.7 82.9 95.0 93.8 87.1 1	6 73.2 74.9 75.7 75.8 76.9 77.6 78.1 88.4 93.6 96.6 93.9 96.4 74.4 76.0 76.8 77.9 78.6 78.6 80.7 90.2 94.7 97.8 95.1 87	0 75.5 76.8 78.4 78.4 79.6 80.4 82.2 91.6 94.7 97.9 94.1 86.2	3 75,8 77,7 79,6 80,4 80,5 81,2 83,2 92,3 94,1 98,8 93,4 84,4	.9 78.8 80.1 81.4 82.0 83.0 83.0 84.0 92.8 85.3 99.0 93.4 90.1 83.8 82.7 84.1 84.3 85.6 93.4 96.2 98.0 90.9 84.0 1	8 89.1 87,3 90,4 84,9 82,9 83,8 85,8 93,2 96,2 96,7 89,4 81.9	.0 94.5 93.9 92.1 91.2 87.0 85.1 86.6 94.2 95.9 85.0 85.7 78.7 1 7 88.9 91.5 90.5 91.6 91.7 87.8 88.0 93.5 95.4 93.2 84.8 77.0 1	6 87.6 88.2 87.0 87.2 90.0 89.9 88.6 93.7 94.8 92.0 82.7 75.3	.8 86.9 87.8 87.9 87.3 88.1 89.8 90.5 94.3 93.8 90.6 81.0 74.2 1	.6 85,3 86,6 87,2 87,8 89,8 88,9 90,5 94,2 92,4 89,2 79,4 72,4 1	6 84.6 85.1 85.9 87.7 89.3 88.0 89.8 91.0 89.9 85.1 76.4 68.7 1	4 83.1 84,7 84,8 86,5 87,7 86,3 87,9 88,6 88,4 82,4 74,2 65,6 1	.1 79.6 81.8 34.7 86.3 86.9 84.9 85.7 85.5 84.3 78.8 70.7 81.1 1	1 72 7 74 8 75 7 80 4 80 4 77 1 75 3 77 1 75 8 67 2 55 7 42 2 1	4 62.7 67.8 70.2 71.7 72.3 69.9 69.3 69.2 66.3 56.6 42.3 24.6	.4 48.7 56.4 59.5 64.6 64.6 59.8 56.8 58.9 53.0 40.7	9.6 15.6 19.5 21.0 20.0 15.2 16.8 4.0							7 98.5 99.0 98.9 99.0 99.4 98.6 99.5 104.6 108.3 107.5 102.6 95	.5 105.4 106.1 106.3 107.6 108.1 106.6 107.4 110.6 .9 106.3 106.8 106.3 108.8 109.2 107.1 107.4 111.2	FULL CONTRACTOR OF THE STATE S	DIAMETER RATIO 8.260 PREQUENCY SHIFT -8	TEST DATE 02-08-78 TAPE NO. N292 IALPHA SB59 TAMB 14.54 LOCATION C41 ANECH CH AERO. RDG. ADHOS3 PAMB 29.7020 RELHUM 55.80	FREE-JET SPEED 812E 8032.2 SQ CM (1400.00 SQ IN) - FULL 88.09 M/SEC (289.0 F	
6				FREG 40		63 71	1	I	160 77		315 92			82	80	78	4 6	N 65	4000 55	40		10000	16000	20000	31500		00008	OASPL 96	PNL 102				MODEL TI 0100	

C

							OF OF		INA OOF		PAC		IS IY			•				SPEED 385.0 FPS)	
																			14.54 55.60	FREE-JET SI 17,35 M/SEC (3	
40.0 FI. ARC - X01030 - X01400		160.		146	12.7 147.7 11.8 149.8 08 8 15.	2 2		9 151	02.4 153.2 02.8 153.3	6 152	0.152	5 151	. 1 151	6 149	5 147	9 146	6 143	19.2 164.8	TAMB D RELHUM	MGDEL 1	
40.0 F1. 0L X01030 0L X01400	8 2	. 150.		0 113.6 1	116.6	115.5	12.2	11.3	9 110.6 10	110.3	106.2	104.2	103.5	100.4	94.1 69.4	98.7 7.99.7	72.3	0 124.9 1	IA SB59 IB 29.6970	- (NI 0S	
J-400-FMGDL J-400-FMGDL	INLET, DEGREE	130. 140		6		7 118		7 1 8	116.8 118. 116.7 117.	3 115	2.5	20	. 0 110 . 9 107	9 105	76 97	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	27 27	127.2 129.	I ALPHA PAMB	812E M (.20.52	•
ENI K.M. SID. Model FJ Background FJ	-	0. 120.		3 99	un -	9 107	3 100	5 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1.2 113.0	113	0	U C	9 1 2 0	3 107	9 102 1 97	928	2 83	.9 124.3	1. N292 1. ADH054	32.4 8Q CM	•
י קַ	ME,	100, 110		6		- 6	 -	N 4	101.5 105	7		- 6	- c	4	9	α-	0 –	116.7 118	TAPE NO AERO. RDG	ARC 1	
TIF	ANGLES	80. 90.		.3 90.	и ю e <u>e</u> e	0 94		99.00	01.0 99.9 08.7 104.8	2 107	3 104.	105	105	0.0	10 P		- m	5.3 116.4	78 5CH CH	FIC RANGE 40.0 FT)	
SS.U DEG.		. 70.		87.2	68.2 - 2.8 - 2.8	90.7	94.1	100.8	2 105.9 10 8 108.8 10	103.2	104.0	102.6	102.0	99.8 1 96.8 1	93,6 91,9	86.1 79.7	72.5 67.0	0 114.8 11	E 02-08-78 N C41 ANECH	ACOUSTIC	•
		50, 60		9 86.	2 4 8 2 8 8 2 8 8	6 90.		3 103.	08.4 108.	9 103.	a 103.	9 102	5 101. 5 99.	6 9 9 5	5 92. 2 90.	94.	.4 70. .7 64.	14.8 115.	TEST DATE	ST POINT 0103	
		40.		9	0 0 ₹	0	י א פ	ကြ	07.1	00	~ 0	2	- 	б —	7	~ 0	- w	114.11		TEST 010	

4.663							(RIGIN/ OF PO	AL PAI	GE 18 ALITY					FP3)	
07/18/79				•			-						RECTION - YES	.	FREE-JET SPEED 35 M/SEC (365,0	
	FT. ARC			160. Pui		110.2 143.8	111.6 149.6 110.4 150.0	0000	20 ch - 30	109.6 153.8 108.0 153.6 107.9 153.1 106.6 152.5	2070	04846	.9 166. RACTION	TAMB 14	- MGDEL 117.6	
PRESSURE LEVELS	17, SB 40.0 I	3DL X01030	T, DEGREES	140. 150,		.6 106.9 110.8	.9 111.9 114. .1 116.3 116. .4 11@.3 115. .6 117.2 115.	.6 119.0 11 6 119.0 11 6 119.4 11	117.9 114. 4 117.8 114. 6 116.4 111. 2 118.2 109.	3 114 6 112.5 0 109.3	.2 107.9 106 .0 106.3 108 .5 103.4 102 .3 100.0 97	.4 96.3 .3 90.6 .1 84.8 .0 78.8	126.3 125. 385.00 48.00	≥	\$12E 20.62 SQ IN)	
ED MODEL SOUND PRESSURE			SURED FROM INLET,	110. 120. 130		90.8 98.0 102	100.0 10 102.0 11 105.2 11	109. 109. 111.	112.7	7 115. 7 115. 7 114.	110.4 1 108.7 1 107.2 1 101.6 1	95.0 96.2 99 90.2 94.6 92 63.0 90.5 97 76.3 84.3 82	18.8 124.8 1 ELGCITY (FT/ ET DIAMETER	NG. N292 IDG. ADHO54	132.4 SQ CH (
FLIGHT TRANSFORM	70 PERCE	IDENTIFICATIO	ANGLES MEASURED FROM	. 90. 100.		90.2 90.8	91.3 90.7 92.1 92.5 93.5 94.3 94.7 94.8	96.1 96.7 97.9 96.4 99.4 98.9 101.2 101.0	101.1 101.3 106.3 103.8 111.7 107.2 109.5 110.0	109.4 109.3 108.7 108.1 108.3 108.2 107.8 1	7.0 105.6 1 6.5 104.3 1 5.0 101.7 1 1.1 96.6	96.0 94. 94.1 89. 85.9 84. 77.8 78.	118.8 117. FREE JE FRE	TAPE CH AERO. R	RANGE 40.0 FT) ARC	
Ì	59.0 DEG			60. 70. 80		.1 90.2 89.	.1 90.2 91. 8 90.4 91. 9 91.3 92. 8 92.5 95.	.4 94.0 95. 3 96.0 96. 7 96.8 98. 4 99.2 101.	.7 104.3 103. 7 110.6 111. 5 112.5 110. 4 109.5 106.	.0 107.3 108. 1 108.7 108. 7 107.3 107. 3 107.0 107.	6 106.1 106. 9 104.1 106. 9 104.1 105. 6 100.5 102.	1 96.5 96. 1 92.8 94. 8 87.8 86. 4 80.4 77. 6 70.7 70.	.4 118.9 118. SCALE FACTOR	ATE 02-08-78 ION C41 ANECH	ACGUSTIC 12.2 M (4	
				40. 50.		5 92.6	5 92.6 2 93.7 5 94.5	7 95.8 6 96.5 4 98.3 8 106.4 1	2 112.4 2 116.7 3 110.6 1 10.2	108 108 108	7 107.% 1 2 104.8 1 2 104.7 1 8 101.4 1	95.6 96.2 97 90.1 69.9 92 87.3 86.4 87 78.7 76.3 79 68.7 68.3 69	.8 121.4 126 EL/FULL SIZE NPUT 1.000	TEST DATE LCCATION	TEST POINT 0103	A Company of the Comp
38			•	FREG	63 63 60 60	125 200 250 250					12500 16000 20000 25000		OASPL	LNIVA 25 VA	HONEXAEL	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SS : 2400.0 FT. SL

Tup.

												R	IGI P	000	AL R	F	PA U	GF A!	: \ _[7]	is iy			•												
					*																											5.60 5.60	FREE-JET SPEED		
		7	67.9		59.7	20.7	9.0	2.4	2.5	- e		6.1	4.6		70.4	9.0 9.0) - 3 g	37.8	9.9	64.7	27.0								?			TAMB 14 RELHUM 65	117.		
		160.	0	, c	9 0	20	(O) H	84.9 17	7.	, r	. 0	4		r 60	6	- ·	- œ	-		7;								•	<u>.</u>	8.2		REL	FULL		
		150.	4	vi a	. –	-	ب ا		a (ā u	۸ ا	01		. 0	-	4.	4 K											•	9.0	•	9	SB59 29.6970	2		
X01035	DEGREES		ı					90. K	l			i			1													•	. 3 102 102		SHIFT		9		
		0. 140	0	6 C			6 (0 F	. e	4 P	~ 4	0	N C	·		ries N	O 4		60	•							355		100	1.	FREQUENCY	I ALPHA PAMB	81ZE (1460.00		
FJ-400-FMGDL	INCET	. 130	10	ā ð	9	6	9 6	3 6	6	9 9	9	85	G 1	8	94	9 1	א פ	20	32	a								(Ξ	FREG	54	동		
FJ-40	FROM	120	1			ŀ		900. 200. 24.	1						l			1											10.6		õ	N292 ADH054	2.2		
	MEASURED	110,	78.	77.8	80.7	82.	60 0		86.3	4.78 4.78	90.7	90.	9.0	86.7	. C.	ai e	0.8	58.	40.	14.6								•	106.0	9	8.260	R NG.	9032		
		100.	76.1	76.9	79.2	80.8	62.0	N 6.	85.3	0 - 0 -	- 0	6.0	8) c	9 60	84.2	0. U	46.6 7	38	44.6	19.8									106.2	106.7	RATIO	TAPE AERO.	ا ا		
I DENT I	ANGLES	9	١.			i .		83.2					•		١.	•	•	64.6		•									108.0		AMETER F	ı	RANGE 10.0 FT)		
		80.		75.3				835.B	١.			ı .			1 -	2		64.0										(07.8	09.1	DIAM	18-78 Anech Ch	TIC RA 2400.	-	
		70.	١.	•			•	80.8 85.8	٠.			١.			١.			٠I .		•									06.8	07.4 1		02-0 8-78 C41 ANEC	ACCUSTIC 5 M (240		
			6	4.6	. 60	9	ص ،	86.7	2	œς	i 4	<u>س</u>	٠. ٥		8	ص د		<u>.</u>	60	0								•	y –			- 1	731		
		20.	-	<u>د</u>	· -	1	4.	, 0	G 1	n u	۰,	4	<u> </u>) /	.7	<u>س</u> د	<u>ه</u> د	0											- ^	R)		TEST DATE LOCATION	POINT 03		
		ö	0	٥،	7	6	ص م	0.0	4	N a	e no	6	ი -	- ෆ	6	- e	n a	واد	_									ı	1.4 106	2			TEST PO		
		4				1		250 93	l						1			1			9	8 2	0	9	88	00	300			ľ			0		
		FRED		-	_		- è	v Ñ	0	4 5	ာ ဖိ	ō	0 0	9	2000	200	9 6	000	69	8000	001	120	200	_	40000		.1		ס	PNLT		3874	MCDEL 010	89	

90

|--|

										OR OF	rigi P	INA 00	R	P# QU	IG JA	E I	IS TY												JET SPEED (C (O, FP8)	
, -		PWL	70.6	72.6	0 4	. 6. . 6.	0.6 -	2.9	70.8	0.0	9.0 - 0	8.7 7.6	2.2	0.4	4.1	63.5 61.8								4.4			AMB 16.88 HUM 43.40	!	FREE-JET O. M/SEC (
7 8.			_		-1-			•	75.6 17	-1-					_		9 9	2						98.7 184	99.1		TAMB 10 RELHUM		- FULL	
SB 2400.0 FT. \$	ES	150.]	96.4	J		9 6	6	85 50 50 50 50 50 50 50 50 50 50 50 50 50	8	200	28	ļ			24.								105.5 6.60	100	1FT -9	SB59 29.6910		SQ IN)	
	, DEGREE		1	.3 98.4		_		1	7 92.6				ı			0 42.2	<u>.</u>							5 108.7	8 112.3	JENICY SHI	I ALPHA PAMB		\$12E (1400.00	
H. STD. DAY, FJ-ZER-FMGDL	FROM INLET	120. 130.	75 e 20 e 20 e 20 e	96	18 87	96	96 7	4 97	6 94	900	96	66 89.	2 84	7 20	2 65	. 3 23.	; -							107	0 112	FREQUENCY	N291 ADH043		SO CM (1	
2 1	URED	o.	~ 4		وام	.	40		88.89	ای	00	ഗ മ	60 0	3 C	Q.	<u>ن</u> و	0							99.2 105	0	8.260	9.66 16.0		9032.2	
O DEG. F., 70 PERCENT IDENTIFICATION	ANGLES MEAS	100.	١.		-1		85.4 85.0	-1 -	. 64. 64.6	اہ						١.								96.3	ila	RATIO	TAPE AERO. R		.	
F., 70	ANGL	90.	77.	80.	8	83.	84.	83.	84.4	84.	9 9	8 8 2	91.	9 6	66.	59.	0.							_	105	DI AMETER R	5		RANGE 10.0 FT)	
			3 75.	17 (3 79.	4 63.	4 82.	9 82.	0 82.8	6 82.	9 82.	81.8	6 80.		.2 65.	.55 25 26	5.4. 							Θ K	5 103	10	-07-78		ACCUSTIC RANGE 5 m (2400.0 Ft)	
6 6		60. 70	۰ م	ç ;	_	n c o	- 1	n 1	7. 82.	6	` w	и ю	01 0	:0 N	4		9 0							1.8 92.	0		92		731.5	
			ဖ စ	90	v) c	i ro	40	i in	79.8 81	~	၁ ဖ	- o	- 1	× 10	e)	40								90.5 91	101		TEST DATE		0104	
		40.	6 0 -	4.	ص ا	o no	o 10	ο ı	76.8	- إي	- N	ص د <i>ر</i> ا	0.	4.4	-	ო -	-							87.2	3.0				ŭ.	
		FREG	0 0 0 0 0 0 0	8	00 2	160	200 250	315	500	630	1000	1250	2000	3150	4000	5000	8000	12500	16000	25000	31500	50000	80000	OASPL	PNLT				MODEL 0100	

											OR OF	IIGI P	NA DO	IL R	P Q	AG UA	E I	7.4						:					
																			•							19.76 49.40	FREE-JET SPEED 09 M/SEC (289,0 FP\$)	•	
UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE	TIFICATION - MODEL FJ-300-FMSDI	RED FROM INLET, DEGREES	40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160,	į				0 86.8 85.8 86.6 87.2 89.8 91.9 93.6 96.6 103.5 106.5 112.0 111.6 145	85.5 96.9 67.7 89.6 91.7 93.1 94.7 102.7 110.3 114.4 116.3 111.3 1	5 88,3 89,5 89,3 90,7 93,3 84,7 86,1 104,0 112,1 115,7 115,7 108,6 3 89,4 90,5 94,5 94,4 95,8 98,4 106,4 113,2 117,1 115,5 106,9 1	6 90,2 91.9 92.2 53.6 95.4 96.8 99.7 108.4 114.0 117.6 115.3 104.7	7 92.5 84.0 93.6 94.7 96.5 98.4 101.3 110.0 113.6 117.5 113.7 102.6 1 1 94.4 95.2 95.7 97.0 98.6 99.3 102.9 110.6 113.5 117.9 113.3 101.7 1	2 93.0 94.6 95.6 96.9 89.5 101.4 103.6 111.2 113.4 117.6 112.3 101.6	0 99.8 99.3 97.1 96.9 98.8 101.7 105.1 112.0 116.2 117.4 111.3 101.8 1	6 100,1 100,4 100,4 99.0 99.8 101,5 105.6 112.0 114.3 116,2 110,4 101.6 1	6 97,2 98,7 99,0 100,0 109,4 101,5 105,2 111,6 114,1 114,0 107,4 95,9 17 96,8 96,6 97,8 123 1 106,0 97,5 1	0 97.4 97.9 97.4 98.6 101.2 102.7 105.1 111.5 113.6 111.3 104.8 97.3	9 97.5 97.6 97.0 98.8 100.4 102.5 105.3 110.5 112.4 110.2 102.8 86.4	0 94.7 95.6 96.7 97.7 99.6 100.8 103.2 107.1 105.8 105.8 101.1 94.3	3 93,3 94,6 95,2 97,6 99,4 98,6 102,4 105,1 107,6 104,5 89,5 5 91,4 91,6 92,7 96,3 98,1 96,3 99,3 102,4 104,4 101,4 96,6	3 87.2 89.4 89.5 93.6 94.5 92.8 93.6 99.4 99.7 87.6 93.8 90.1 1	1 79.4 82.3 83.6 87.1 87.0 83.4 86.1 90.1 92.2 88.5 82.8 80.3 1	9 /2.7 /4.9 /0.9 /0.0 /3.6 /0.0 /0.0 /0.1 00.2 00.7 02.0 //.0 /4.2 0 66.2 68.8 70.5 70.6 72.2 72.8 71.9 81.5 79.4 75.9 71.0 66.3	0 59,7 62.5 65.4 63.7 66.6 65.4 66.0 73.9 75.4 70.9 62.4 60.3	107.3 108.3 108.9 108.6 110.0 111.7 112.8 115.9 122.4 125.7 127.8 124.8 116.7 163.0	TEST DATE 02-08-78 TAPE NO. N292 TALPHA SR59 TAMB 19.	ACCUSTIC RANGE 2.2 H (40.0 FT) ARC 132,4 SQ CH (20.52 SG IN) - HODEL 80.		
	· · · · · · · · · · · · · · · · · · ·		·	FRED	8 8 8	100	160	250	204	200	0	1000	1600	2000 2000	3150	4000 6000 6000	6300	2000	12500	1 6000 20050	25000	40000	90000		OASPL.		MODEL		93

					0	RIG F F	N	AL I	AC U	GE 1 ALIT	IS IY) FPS)	
																				CORRECTION - YES CORRECTION - YES	19.76 49.40	FREE-JET SPEED 3.09 M/SEC (289.0	
		160. PWL		10.1 143.8	11.4 147.3	10.2 149.6	lo (08.5 150.6 08.5 150.6	-	06.0 160.2	-1		-1	4 4	02.4 148.2 06.2 147.2	146		142	121.1 163.2	REFRACTION CO TURBULANCE CO	TAMB 0 RELHUM	MODEL 68	•
X01050	DEGREES	140. 150. 1		07.1 110.6 11	-0	4 116.4 1	6 115.2 1		6 112.8	0.00	2 08.0	6 106.4 1 9 106.3 1	6 105.1	2 101.6	.9 100.6 1 .2 94.9	0.090.7	79.5	. 9 62.5	126.9 125.1 12	289.00 RE 48.00 TL	1ALPHA 5859 PAMB 29.7210	52 SQ IN) -	
- FJ-300-FMGDL X010	INLET,	. 130.		6 103.2 1	6 110.4	4.01	112.3 1	10.2 112.1 11	115.1	13.7	4 113.6 1	9 112.5	1 110.5	5 107.1	.6 103.6 1 .5 102.2	.6 97.4	93.6	.1 73.2	.4 125.1	(IN)	N292 1 AL ADH057 P	SQ CM (20.52	
Z	MEASURED FROM	0. 110. 120		5 91.0 98	91.6	94.6	96,0		102.3	26.7	105,0	105.2 1	105.6	103.3	100.3 94.9	91,4	78,	67.0	5 115.6 122	VELOCITY JET DIAN		132.4	
IDENTIFICATION	ANGLES P	90. 100		06 8 80	90.6 90 91.8 92	93.55 94	95, 7 96	96.1 98	98.5 99	100.9	103.2 103	103.3 103	103.9 103	102.6 102	101.1 98 97.5 95	92.6 90	82.8 80 75.0 74	69.6 67	113.5 113.	FREE JET FREE	TAPE CH AERG. F	RANGE 40.0 FT) ARC	
		70. 80.		80	6 0	8 69 5	5 94.	95,7 95,8 98,3 98,5 98,3	2 96.	20 g	2 102.	. 0 101 102	5 102.	9 - 9	.7 100. .5 97.	,9 91.	8 82.	4 67.	112.1 112.6	SCALE FACTOR	1:	ACGUSTIC 2.2 M (
		50. 60.		6	0.89	0.0	94	94.3 95.2 96.1 96.9	96	- 4. 201. 201.	8 102	9 100	0 101	98	. 2 . 3 . 3 . 3 . 3	7. 92	93	5 66	12.4 112.3	\$1 ZE	TEST DATE LOCATION	TEST POINT 0105	
•		40, FRE0	50 63 80 00	-	98.1	200	93.5	96.4 97.6	99.6	103.4	101.9 1	101.0	100.7	-	93.0 90.0	88.5	50000 82.0 53000 73 9	64.6	0ASPL 111.9 1	MODEL/FULL INPUT 1.		MODEL TEST 0100 01	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

		160.	84.9 167 83.5 167 83.2 168	4	79.6 169.1 75.5 168.6 73.7 168.6 73.0 168.6	68.9 168.2 67.0 167.5 64.6 167.3 59.7 166.9	24.2 165 24.2 164 164 165 165 160 160	5 92.0 181.4 7 93.0 7 94.2	7210 RELHUM 49.40	FREE-JET SPEED - FULL 68.09 M/SEC (209,0 FPS)
16N - FJ-300-FM6DL X01055	ASURED FROM INLET, DEGREES	110. 120. 130. 140. 150	75.6 84.1 90.8 92.9 91 76.8 86.3 91.8 94.3 92 78.9 88.5 92.8 95.2 92	61.7 90.7 92.3 95.5 91 63.2 91.4 92.2 95.1 89.8 83.5 91.9 93.6 94.0 88 83.8 92.0 94.7 94.4 88	85.3 91.2 91.2 87.0 78	86.0 89.6 89.9 84.9 77 85.4 87.8 87.5 82.2 75 82.4 85.9 86.2 80.3 73 82.5 83.3 82.9 76.9 69 78.8 80.6 78.3 72.8 69	71.9 74.7 74.4 65.8 54.65.1 66.9 64.9 65.3 41.5 55.6 56.2 61.1 39.4 23.3 7.4 41.1 31.3 16.1 11.1 13.6 3.9	96.1 102.6 104.1 104.7 100.6 104.1 108.3 109.1 107.7 101.7 104.1 109.0 109.1 107.7 101.7 8.260 FREQUENCY SHIFT -1	E NG. N292 IALPHA 8859 RDG. ADH057 PAMB 29.721	SIZE 9032.2 SG CM (1400,00 SG IN)
IDENTIFICATION	ANGLES MEASU	60. 70. 80. 90. 100.	.8 72.2 73.4 74.6 .6 74.0 74.6 76.2 .5 75.3 78.4 77.3	.5 77.7 76.3 79.4 60.1 1 60.2 80.0 80.7 81.5 81.0 81.0 81.0 81.0 81.0 81.0 81.0 81.0	7 80.5 80.1 81.5 83. 3 83.5 82.0 82.6 82. 8 82.8 83.4 83.0 83. 0 81.5 83.0 84.2 84. 6 81.1 82.1 84.1 84.	7 80.9 82.6 83.8 3 81.3 82.9 84.4 1 80.2 81.4 82.9 6 79.3 81.8 82.5 7 76.2 79.6 80.7	53. 16. 16.	91.8 92.5 93.4 94.5 94.5 94.5 99.8 100.9 102.7 102.7 00.6 101.4 104.0 104.8 103.2 D!AMETER RATIO	DATE 02-08-78 TAPE TION C41 ANECH CH AERO.	ACGUSTIC RANGE 731.5 M (2400.0 FT) SL
		40. 50. FREQ	69.0 71.5 70.1 72.5 71.7 73.2	75.0 74.5 76.2 76.1 75.7 78.8	315 77.8 78.3 7 400 60.3 62.3 8 500 78.5 81.6 9 630 77.8 79.9 8	76.1 79.3 75.3 79.0 72.2 77.0 68.8 74.2	56.0 67.8 49.8 58.1 36.6 44.9 15.8 27.3	88.3 90.4 94.5 97.6 94.5 97.6	TEST DATE LOCATION	MODEL TEST POINT 0100 0105

683
•
1
-
_
ø
►
•
•
•
(3)
•
-
•
N
a

							•		Oi Oi	RIG F F	SO VII	IAL OR	. P	AG UA	E Ll'	IS TY				•					FREE-JET SPEED .04 M/SEC (384.0 FPS)	ž
		60.	, ,		ir –	.9 144.	146.	8 148.	.7 149.	.3 149.	.7 149.	1 149. 9 149	6 150.	7 149.	5 149.	148.	3 148.	146.	1 144		4 141.	140	6.6 162.0	TAMB 19.76	FRE MODEL 117.04 M	
FJ-400-FMCDL X01060 FJB400-FMCDL X01400	, DEGREES	140. 150. 1				1 108.5 111.7 1	7 110.1 113.3 1	4 115.2 115.9 1	5 115.8 113.0 1	9 115.5 109.4	0 115,9 108.3	2 115.1 107.3	0 114.6 107.3	4 113.5 106.4	5 112.4 105.3	4 109.9 103.1	2 108.1 101.9 1 105.5 100.3	103.5 99.0	96, 3 93.0	7 87,7 82,8 8	77.3	A 62.4	9 126.3 122.4 11	IALPHA SB59 PAMB 29.7190	SIZE 20.52 SQ IN) -	
MCDEL FJ-40 BACKGROUND FJB40	SURED FROM INLET,	110. 120. 130				8 87.8 103.	99.4 105.	5 103.5 111.	7 105.4 112.	. 5 107.7 113. . 6 109.3 112.	9 109,8 113.	6 110.7 113. 4 111 6 114	D .	7 111.6 113.	.3 111.5 113.	1 110.5 111.	109.7 110.	.7 105.6 106. 8 102 4 103	1 99.4 96.	91.5 85.2 97. 85.9 90.3 90.	7 85.0	3 73.6	115,6 122,1 124.	NG. N292 RDG. ADHO58	132.4 SQ CM (:
DENTIFICATION - M	ANGLES MEAS	90, 100,			-	.7 91.1	0.16	0 93.6	.6 95.0	.6 96.5	.1 98.0 1	7.66.0	3 100.7	7 101.0	3 102.2 1	.2 101.7	. 9 101.6 1 . 1 100.1	4 98.8 1	5 92.6	89.6 89.0 87.0 83.9	78.8	.3 65.1	111.3 112.3 1	TAPE AERO.	RANGE 40.0 FT) ARC	
IDENTI		70. 80.				.2 86.	. 1 88.	5 89.	.6 94.	9.00 93.	.2 95.	. 9 95.	1 96.	2 100.	.86	. 2 98.	99.	9,1	5 93.	86.	. 1 79.	4	108.4 109.7 1	02-08-78 C41 ANECH CH	ACCUSTIC RA	
		50, 60,				.3 65.	.1 86.	5 88.	.1 89.	.2 90. 92.	.4 94.	5 93.	1.09	2 97.	. 1 96.	7 96.	.1 87. 94.	3 93.	7 89.	79.6 81.8	4 74.	ī Q	107.8 108.2	TEST DATE LOCATION	POINT 106	
		40,	60 C	80	0 1 2 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	82.		86.	87.	90.	90	93	98.	95.	92	95	. <u>.</u>	90.	84.	31500 83.1 40000 78.6	71.	30.	GASPL 106.4		MGDEL TEST 0100 01	

C077
Ŧ
Ž.
_
•
C
œ
_
•
_
Ç.
6

										00	RIG F P	אנו	AL	PQ	AC UA)E	13	<u>.</u>									
																								CORRECTION - YES	19.78 49.40	FREE-JET SPEED # M/SEC (364.0 FPS)	
ILS FF. ARC), 160, PWL	7		'	1 100 7 142.1	108.6 147	.0 107.7 148.5	108.9 148	7 108.7 148.8	110.0 150	111.5 150	107.7 150	5 107.4 150	105.9 149	106.7 149	3 107.5 149 0 106.3 149	9 104.7 148 8 100.3 147	97.5 147	96.4	8 142.	.9 121.3 162.7	TURBULANCE CORR	3859 TAMB 19 29.7190 RELHUM 49	1) - MODEL 117.04	
SOUND PRESSURE LEVELS STD. DAY, SB 40.0 FT	FJ-400-FMGDL X01060	INLET, DEGREES	130. 140. 150				101.5 105.4 109	108.9	110.8 115.1 112	111.3 114.6 111	111.8 114.9	114.2 114.4 110	114.2 115.2 112	113.9 113.0 108	112.9 111.5 167	110.9 109.1 105	109.5 107.5 105	109.2 106.4 105	103.4 101.3 100	97.1 94.7 92	9 6	67.5	124.4 125.5 122	/SEC)	IALPHA	SIZE CM (20.52 SQ IN)	
TRANSFORMED MODEL SC. 70 PERCENT R.H. ST.	ĎENTIFICATI G N - FJ-400	ANGLES MEASURED FROM	100, 110, 120,				6	90.00	. / 93.15 . 0 95.15	6 97.3		0 101 9	8 102.9	1 104.5	6 105.4	2 105.2	0 105.2	. 9 103.8 . 9 102.4	3 100.0 1	1 92.3	86.3 87.5 82.0 81.2 80.4 88.1	- 4	.2 115.2 1	JET VELGCITY FREE JET DIAME	TAPE NG. N292 AERO. RDG. ADHO58	ARC 132.4 SQ	
FLIGHT TRA 59.0 DEG. F., 70	IDENT	ANGL	70. 80. 90.	:			1 88.2 88.	2 90.1 91.	7 96.4 94.	0 94.4 95.	5 97 2 97	4 96,8 98.	0 98.9 99.	7 103.5 103.	6 102.8 104.	7 102.5 103.	01.6 102.9 103.	01.5 103.0 103. 00.6 102.4 102.	2 101.0 100. 4 98.4 97.	4 93.1 92.	84.7 83.6 83.1	8 68.2 69.	112.4 113.3 113.6	LE FACTOR FREE	02-08-78 C41 ANECH CH	ACGUSTIC RANGE	
			40. 50: 60.				21.0	9 91.9 90.6	.9 92.4 91.9 .1 93.4 93.5	9 95.2 94.7	6 96.8 97.2	4 98.6 98.2	.0 101.1 99.2	. 4 105.0 103.6 1 .0 104.1 103.6 1	3 102.6 102.9 1	.7 163.1 102.8 1	.7 103.9 102.2 1	.0 101.9 102.3 % .7 101.6 101.0 1	.5 100.4 99.6 .7 97.1 96.5	2 92.4 93.8	2 84.1 84.9	.3 75.9 76.8 .8 66.3 67.6	3.1 113.7 113.1	MODEL/FULL SIZE SCALE INPUT 1.000 CALC.	TEST DATE LCCATION	TEST POINT 12	
			FREO	50 63 60	100	125 160 200	1					-						-		31500	50000	80000	OASPL	S SNITHII	d 15v	MGDEL 0100	97 10H

•
883
0
4
_
_
œ
Ĺ
>
9//8
_
-
6
J

						RIGIN OF PO	AL PA DR QU	GE 15 ALITY					SPEED 364.0 FPS)
٦. «		160, PWL	0 10 0 C	. 2 167.0 . 2 167.2 . 5 167.6 . 4 168.4	0 6 6 9	2.9 166.1 1.1 167.7 3.4 167.5 3.9 167.7		5 164. 164. 162.			1.5 186.9 4.7 5.8	TAMB 19.76 RELHUM 49.40	FREE-JET FULL 117.04 M/SEC (
H. STD. DAY, SB 2400,0 FT. 8 FJ-400-FMCDL X01065	DEGREES	140. 150.	91,8 92,5 93,9 89,5 93,9 88,5	93.4 92.7 86.8 80. 92.0 85.2 80. 92.3 85.7 81.	92.7 86.8 91.4 84.6 99.5 82.3 87.5 80.3	86.3 79.0 84.2 77.3 82.0 76.1 80.1 74.5	76.9 71.6 72.2 66.7 66.0 56.7	15.6	:		103.2 97.6 91 106.8 100.6 94 107.8 100.6 96	1ALPHA SB59 PAMB 29.7190	81ZE (1400.00 SQ IN) - F
IT R.H. STD. DAY, IN - FJ-400-FMÖDL	URED FROM INLET,	0, 120.	74,2 83,0 89,3 775,7 84,8 90,4 77,6 87,3 91,2	89,89 89,89 8 90,8 91 8 91,7 92	2 92.6 93 2 92.4 92 92.1 92 91.1 52	2 80.7 89.8 87.8 86.5	.5 83.9 82 .5 81.4 78 .6 74.9 74	. 5 7.1 50 . 9 41.1 30 . 6 13.8 0			95,6 102.3 103.3 10 03.5 108.5 108.6 10 03.6 109.1 109.2 10 8.260 FREQUENCY	NG. N292 RDG. ADH058	9032.2 SQ CH (1.
O DEG. F., 70 PERCENT IDENTIFICATION	ANGLES MEASURED	. 90. 100.	73.9 74.1 76.0 75.3 76.7 76.6	7 79.0 3 79.7 3 81.4 2 81.0	61.6 62.6 64.3 63.2 65.3 64.6	84.5 84.8 83.8 83.7 84.4 83.3 83.4 82.0	82,5 80.7 80.5 77.6 75.8 73.0	60.6 56.2 43.8 41.1 17.6 16.9			0 84.6 94.1 3 103.6 102.4 1 5 104.7 102.9 1 AMETER RATIO	TAPE CH AERO.	IC RANGE 2400.0 FT) SL
59,0 DEG		. 70.	.1 71.5 72. .4 72.0 74. .9 73.9 78.	6 6 6 6	.6 78.3 80. .7 81.1 83. .4 85.3 84. .4 83.0 83.	3 81.6 83. 8 81.6 83. 8 81.4 83.	.8 79.8 82. .6 77.7 80. .6 73.4 76.	.6 57.2 61. 9 42.2 43. 5 16.0 16.			92.5 82.6 9 00.7 101.2 10 01.4 102.3 10	DATE 02-08-78 Ition C41 Anech	ACGUSTIC 731.5 M (240
		40. 50.	69.6 72,3 70.8 72.8 72.0 73.7	125 75.5 75.4 160 76.0 76.8 200 75.6 79.4 250 78.3 78.1	79.5 80.4 81.4 83.9 79.5 82.5 78.3 60.7	77.8 80.2 77.7 80.5 77.2 80.9 73.7 78.4	72.4 77.5 69.4 75.0 60.2 69.3	0 29.7	12500 16000 20000 25000	31500 40000 50000 60000 80000	69.3 91.7 95.8 99.3 1 95,8 99.3 1	TEST DATE LOCATION	MODEL TEST POINT 0100 0106

															DF DF	: F) ()	AI OF	L (PA QU	GE	: 1	3 Y				-t			SPEED 0. FPS)	
																													14,36	FREE-JET 0. M/SEC (
70		160.	ŧ					107.1 140.2	107.5 141.4	-	107.8 143.4	40	104.3 142.1	141			103.3 141.4				i	- ,	-	•		-1	68.0 133.5 60.0 133.6	117.5 155.0	TAME 88 RELHUM	ğ	
1100L X01070	DEOREES	140, 150,						03.8 106.5	04.6 108.1	4	07.6 109.4		05.5 105.2	•	,		2 2	1	2 3	101.2 103.4	102	96.1 97.5	9	9 3	7 2	74	67.5 67.9 63.0 60.2	117.2 118.5	1ALPHA \$859 PAMB 29,6989	! 🔀	<u> </u>
FJ-ZER-FMOO	FROM INCET, D	120, 130,						1 7 88 7 1	,	,	-1	19, kg	105.	104.5	104.7	23	102.7	102.0	102,3	101.6	100,8					1	73,3 66.7 56,2 62.1	114.4 116.0 1	N291 1/ ADH051		
4 - MODEL BACKBROUND	HEASURED	100. 110.						89.3	20.7	91.3	92.6	2,0	96.6	97.7	96,1	98,2	980	98.9	96,90	97.8	97.5	96.	82.0	67.0	75.0	71.6	65,7 65,2 58,7 59,4	9 109.8	TAPE NO. N. AERO. RDG. AI	132,	
I DENT I FICATION	AMOLES	80, 90, 10						8 86.8	3 67.5	3 88.2	7 89.3	4,090,4	92.8	3 93.9	6.4.3	4,00	2 6	2 94,0	0 t 2 t 4 t	94,9	9 95,3	4 C.	91.8	98.7	80.7	73.0	63,5 64,6 6 56,5 59,7 5	1.4 106.2 106	¥5	. RANGE 40.0 FT)	
01		. 76.						82.9 84	84.5 85	84.5 85	85.6 87	66,9	85.6 90	90.2 91	90.6 91	90,9	5 10	90.9 92	90,00	9 6	90,3 92	8 9 9 S	62,3	20 20 20	75,2	68.8	,9 62,1 63 ,0 57,6 56	6 102.6 104	TE 02-07-78	2.2 ACC	
		50, 60						84.6	83.7	84.8	85.0	800	89.3	80.8	89.3	000	91.6	91.3	90,7	90'08 90'08	88.5	85.2 87	82.5 84	76.6 81	69.7 73	62.8 66	57,3 59 50,6 54	101.9 102.	TEST DATE		
		40.	7.8E0	80	100	125	160	250 79.0			1	630 63,6			1600 88,2			4000 89,3		6300 87:1 6000 87:1	l		20000 74.0		40000 65.8		63000 53.0 80000 47.1	0ASPL 59,2		MODEL TEST 0160 01	9

									٠	0	RIC F	GIN PO	AL OF	- i	PA(QU	GE	: 1: :T	3								CORRECTION - YES	.36	FREE-JET SPEED M/SEC (0, FPS)	7	edes).
T. ARC			160. PWI				107.1 140.2	141		143	7 - C	102.9 141.9	2	9 141	— — — —	4	4	9 m	9 139	- - -	3 137	.6 137 7 136	74.1 134.2	0.00	117.5 155.0	REFRACTION CORR TURBULANCE CORR	TAMB 14	- MODEL 0.		
STD. DAY, SB 40.0 FT.	3DL X01070	T, DEGREES	30. 140. 150.				9.4 103.8 106.5	0 104.6	9 107.6	2 107.9 1	.105.5	7 105.4 105	5 104.0 1	7 102.9 1	.7 102.4 1	3 102.2 104	0 102.3	.6 101.2 .8 100.0 1	0 97.7	5 82.3 94.	.8 88.7 90.	5 86.2 34.		.1 63.0 60.	.0 117.2 118.5	(IN) 48,00	1ALPHA SB59 PAMB 29.6989	SIZE (20.62 SQ IN)		•
RODEL R. H.	IÓN - FJ-ZER-FMÖDL	ASURED FROM INLET,	110. 120. 13				a	7 96.71	.6 98.81	7 100.9 1	.6 103.1	<u>.</u> -	2 103.3	8 102.7 1	.3 103.5	9 102.8	.4 102.8	.8 102.0 1 .5 101.1 1	.1 98.7	0 94.3	.0 91.8	9 87.8	71.6 77.6 75	4 66.2	109.8 114.4 116	VELGCITY (FT/SE JET DIAMETER (1	E NG. N291 RDG. ADHO51	132,4 SQ CM (
FLIGHT TRANSFORMED DEG. F., 70 PERCENT	IDENTIFICATI	ANGLES MEA	90. 100.				86.8 88.	87.9 88.	7 89.3 89.	90.4 91.	92.8 93.	3 93.9 94. 7 94.3 98	3 93.4 95.	9 94.3 95.	94.3	94.4 95.	95.3 95.	94.8 95. 95.3 95.	4 93.3 93.	5 91.8 90.	88.7 86.	82.8 82.	5 73.0 71.9	59.7 58.	.4 106.2 106.9	FREE JET FREE	TAPE CH AERO.	RANGE 40.0 FT) ARC		
59.0 DEG			60. 70. 80				.8 82.9	9 84.3	95.6	2 86.9	9.68 9.	3 90.2	4 90.9	1 91.3 91	.6 91.8 .4 90.9	6.06 2.	.1 91.6	. 6 91.0 . 8 90.3	0 89.4 91	0 85.9	.8 81.9	4 75.2	66.0 68.8 71.	0 57.6	102.6 102.6 104.	ZE SCALE FACTOR CALC. 1.000	DATE 02-07-78 Tion C41 ANECH	ACGUSTIC 12.2 M C 4		
			40. 50.				79.0 84.8	80.4 83.7	83.5 85.0	83.6 86.9	88.0 89.3	86,9 90,9 88,2 89,3	88.6 90.9	87.8 90.1	89.3 91.8 89.3 91.3	88.8 90.7	87.5 90.9	84.7 63.5	80.0 85.2	74.0 82.5	72.8 78.8	65 A 69 7	50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	47.1 50.8	99.2 101.9 10	MGDEL/FULL SIZ INFUT 1.000	TEST DATE LOCATION	TEST PGINT 0 0107		Market and the second s
			FREQ	9 9 9 9	100	220	200 220	315	200	630	1000	1250	2000	2500	4000	2000	9 900	10000	12500	20000				<u>.</u>	MASPL MASPL	S SNITNI	NG 3544	MODEL 0100	ENOH	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SCUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

											0 0)RIO F	GII	A <i>M</i>	L R	F.Q	AG UA	E	N.												SPEED 0. FPS)	
					,		,				•																		14.36	10, 50	FREE-JET SP O. M/SEC (
		160. PWL	9 16	9	3 161	7 160	74.8 160.3	3 159	8 159 183	9 6	4 160	3 159	2 158	3 157	4 156	2 155	2.00	151.8	-1							88.3 173.0 88.6	89.7		TAMB		- FULL	
X01075	DEGREES	140. 150.		88	8	<u>e</u> <u>e</u>	83.3 79.9	78	7 4	77	92	1 6	89	() () ()	20	38	_) :								94.9 93.4	94	Y SHIFT9	ALPHA SB59	- 1	ZE . OO SQ IN)	
FJ-ZER-FMØDL	FROM INLET, DE	. 130.	84.7	92.0	85.8	94.6	84 84 85	82.9	81.00 60.00	80.4	79.6	77.8	75.4	73.8 69	62.0	56.0	25.7									95.3	99.1	FREQUENCY			S1ZE CM (1400.00	
ı	URED FROM	110. 120	73.5 80.2	9 9	8.	9 0	79.9 84.2	1.0	0.4		10 10	. 0.	83	4 C	9	9.7	47.2 47.5 29 1 30 5	3.4								90.6 94.6		8.260	. NG. N291		9032.2 SQ	
DENTIFICATION	ANGLES MEASURED	100.	71.7	74.1	75.1	7.07 7.04 9.09	40	27.6	77.1	70.0 70.0	76.6	78.0	73.3	0 0 0 0 0 0	64.6	57.4	47.0	4.7								55 68 . 2 5 7 5 6	98	RATIO	Ä	AERO. N	T) SL	
IDEN	A	80. 90.	17.0	9 y	6 74.	97.	73.9 76.	6 76.	3 73.	5 4 6 15	3 76.	, 6 6	5 73.	2 2 2 2 2 2 2	.0 67.	.0 58.	.0 2.5									85.7 87.	0	DIAMETER	:	ANECH CH	ACCUSTIC RANGE 5 M (2400,0 FT)	
		. 70.	.99	69	70.	72	727.4	5 72.	7 72.	6 71.	3 71.		69.	9 67.	9 58.	54.	43.	0	- 1							83.3	90.		05-0	<u> </u>	ACOUS 731.5 M (
		20. 60	4.	<u>د</u> س	Q.	0	69.2 71.	၁ဗ	6 71	۸.	ب م	n n	~	.0 64	- 0	10	<u>ه</u> د	Ţ								80.6 82.	0		TEST DATE	LOCATIC	POINT 107	
		40.	61.1	62.4 62.4	65.4	90.00	66.4	65.2	65.2	65. 7 64. 8	63.0	0 0 0 0 0 0	55.4	52.7	40.0	31.6	17.3		0	0 (0	00	00	0	76	1				TEST 0 01	
		FRF	i i		10	<u> </u>	500	316	41	0 0 0	80	100	160	200	9.5 9.5 9.5	400	800	000	10000	1250	20002	2500	9150 4000 000	50000	9000	OASP	PNLT	-			MGDEL. 0100	101

	A Proposition of the Community of the Co									OR OF	IGII P(N	AL OR	PA QL	GI IAI	E I	3									ET SPEED (289.0)		
																									22.10 48.40	98		
.0 FT. ARC K01080 K01300		160.	P¥F	-			6 137	0.138	6 137	2 137	8 137	. 9 137	. 3 137 6 136	6 136	4 136	.6 136	. 2 137 137	9 137	6	8 136	. 5 135 25	1 132	<u> </u>	106.4 150.6	TAMB SO RELHUM	19 (1)&1		
•	ES	40, 150,					-	.103.	0 102.	.3 100.	9.6	1 93.	8 G	9	3 89	4.89.		2 92.	6	5 82.	. 56 7.69.	4 66.	63,1 60.6 5 7.1 51.3	.5 110.5	ALPHA SB59 PAMB 29.6620	9		
FJ-306-FYGDL	INLET,	130.					94.4	96.1	100.4	100.5	101.22	101.2 1	100.0	100.7	98.4	98.6	8 6 8 6 8 6	99.0	8.9	89.2	87.4	73.4	.9 65.3 6 6 58.6 8	2 112,4 112	- g	200		- Acceptor
MODEL F.	ASURED FROM	110. 120					6	a r		_	N	6	– د و	94.6	93.0	9.5	9.00	95.7	93.6	36.7	94.2	70.9	64.3 71 57.7 64	106.5 111	E NC. N292 RDG. ADHO6	5	ď	
CATION -	ANGLES ME	90. 100.					.5 83.	6 83.	.00	.6 86.	, 0	. 1 90.	6 6 6 6	92.	2 92.	.693.	. ce 93.	.7 92. 5 91		2.88	.5 81.	.0 71.	64,1 65,2 58,0 57,3	103.0 103.9	TAPE	RANGE ABC	1	
IDENTIFI		70. 80.					.5 79.		3 6	.2 89.	9.00	.9 87.	. 1 87.	.88	88	.4 89.	. 7 . 8 . 90.	.55 90.	.1 89.	9 86.	4. 80.	8 70.	2.9 63.7 7.4 56.1	.3 101.2	2-08-78 11 ANECH CH	COUSTIC R		
		60. 7					78.0	79.0	80.08	82.6	83.0	86.1	85.5 86.5	86.3	87.5	87.7	88.5	87.9	86.55	61.1	78.8	66.3	9 61.0 62 1 54.4 57	9 98.8 99	ST DATE 02	3	i	
		40. 50.					.1 78.	0,0	.2 80.	.8 81.	.4 81. .7 82.	.1 85.	0 0 0 0 0 0 0 0 0 0	.3	. 7 86.	ය. මේ	.6 87. .4 87.	.6 86. 1 A6	7 85	7 78.	7 75.	5 63.	56,9 57,8 50,6 51,4	96.2 97.9	TEST	TEST POINT	5	
			FREG	8 8 8	80	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	250	315	00 to	630	1000	1250	1600	2500	4000	2000	6300 8000	10000	16000	000 20	00°	00	63000	OASPL		MGDEL.	3	F

									OF	RIGI P	N OC	AL OR	đị Đị	Gi Al											SPEED 289, 0 FPS)
														•									CORRECTI on - YES Correcti on - Yes	22.10 48.40	FREE-JET SF 66.09 M/SEC (26
2			Ž			133.2		100 E	7	135	7		136.5		128.0	139	139		137	135.		151.4	REFRACTION (TURBULANCE)	TAMB	
FT. ARC			160.				80 G		8		80	8	8 0	92	4 CB	8 8	93.2	98	25		54	106.9	REFRA		- MODEL
40.0 FT	XO10%0	ES	150.			99.6		9 6	86	9 Q	- 1	9 .	91.9	2	95.9	93.	92.	8	2 4		2	109.4	000	\$859 29,6620	SO 1N)
20		DEGREES	140.			96.4	20		8	3 3	6	6	96.2	6	6	9 6		98	8 2 76	_	62	111.2	289.00 48.00	IALPHA	SIZE 20.62
). DAY,	FJ-300-FMODL	INLET,	130.			92.6	2.7.0	98.2	8		36		98.1	9.88		99	96.3	6		71.	56.	111.8	(FT/SEC) ETER (IN)	N	₩ 5
R.H. STD.	FJ-30(FROM	120	3			6 9 2		97		- 1	99.8		i		ı	97.	16		78.6		3 111.5	VELOCITY (FT JET DIAMETER	N292 ADH062	2.4 80
<u>-</u>	Tion -	ANGLES MEASURED FROM INLET	. 110				8 83 53	8 85.5	68		93	9 6	8 8 8	8		56	94	88	70.0	72	58.	7 106.3	VELC	R NG.	132
, 70 PERCEN	DENTIFICATION	OLES M	100			91	89 89 83 83	8 8	67	9 6 9	9	92	0 0 0	8	9 0	56	5 93.1 2 90.9	88	5 4 6 8	73	29	104.	FREE JET FREE	TAPE AERG.	r) ARC
DEG. F.,	DEN	Ž	9			18	6 62.	9 8 5 5	97.	9 6	90	96	92.	93.	9 9	940	7 94.	90	8 60	5.78	.19	0 105.0		동	RANGE 40.0 FT)
os. o Ded						8	8 25.	9.0	86.	88.	99	90	90.	16	93.	93.	93.	90	82.	74.	.09	9 104.	FACTOR	-08-78 1 ANECH	ACCUSTIC
50			70			80.	5 91.	4 85.	4 86.	6 88.	88	1 89.	- 7 90.	91.		92	7 92.(6 89.	86.	79.	73.	62.	.6 102.	SCALE I	22	12.2 h
			9			91.	8 T.	9 6	87.	88	8	90	0 0 0	91.	. 26	5 6	6 90.	86.	7 6	75.	58.	6 102.	SIZE 000 C/	TEST DATE LOCATION	E
•			. 50			•	4 83.	83.	87.	87.	98	99.	6 1 90.	9 91.	92.	2 91.	1 91. 2 90.	87	76.	2 S	56.	102.	MGDEL/FULL INPUT 1.	1E	ST POINT 0108
			40 FREG	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	16.5	- 1	80. -	8 2.	96.	88	89.	89.	89 90.	69.	9 6	90	89.	9	3, 3,		55.	101.5	MODE I N		DEL TES 0100

07/19/79 14.663

									OF	NG: P	IN CO	AL	P. Q	AG UA	E LL:	1 Y		• -								.T SPEED (381.0 FPS)	
																									22.64	FREE-JET 116.13 M/SEC (
				Ę	 - 	34.0	35,0	135.5	135.4	135.4	35.4	135.2	135.2 2.8	134.0	135.3	136.10	135.9	136.7	136.1	135.4 135.3	134.4	132.2	131.1	149.3	TAMB		
10,011	0 0		160.	•		6.88	98.0	91.3	87.9	94.0	83.8		82.3				٠.				69.2	٠l	40.00	03,9		ğ	-
-	X01090 X01400		50.			4	0.00 0.00 0.00				-1								ı			- 1		07.9 1	\$8 59 29.6570	S	
ŕ	200	DEGREES	140. 1			97.7.10							25.4						- 1			- 1		0.4 10	N. P.K.	3	
	FJ-400-FHGDL FJB400-FHGDL		130. 1			1	94.9	-		•	- 1								- 1			- 1		.2 11	. <u>इ</u> n	60 (4	-
		M INLET,					- 1	0	, ,		0	F 10	ب م	1	e e	, 4	e (40	6	0 4		۰	. 0	.0 111	63 063	E C	
	HODEL BACKGROUND	D FROM	120			1	6 a	1		G	6	9 9	8 0	96	86	9 09	98	9 6	92	00 6	5	2		4 110	N292 ADH063	32.4 80	
-	- MODE BACK	MEASURED	110			1	3 83.7	ı			-		1 93.3									. 1		0 105.	PE NO.		
, /O TENCEIN	- 1		100			, ,	82.6	1											.,,					103.0	TAPE) ARC	
	IFICATION	ANGLES	80			79.0	80.0	82.3	83.00 80.00	86.1	87.5	87.8	88.5	90,4	90,0	91.5	92.2	9.10	89.7	67.78 4.7.6	79.4	72.2	36.3	102.1	3	RANGE 10.0 FT)	
	IDENTI		80,			77.3	78.7	82.1	90,7	63.7	84.9	65.4	86.9	87.5	839 4,0	89.4	89,8	88.8	88.7	80 80 80 80 80 80 80 80 80 80 80 80 80 8	78.5	7.07	55.6	100.3	. 1		
0,0			70.				77.8							٠I .	•				+1			• •		98.2	02-08-78 C41 ANEC		
			60.			6	77.5	'n	6 4	0	ro r	9 6	က္စ	in.	4 (n 0	٠- ١	. 00	0	ω «	10	2	i di	7.8		<u>N</u>	
			20			وا	78.5 7	_	ლ ი	100	e	n 6	Ö (101	, ,	0 1	3.4		a		ماه	9.4	6.6 9	TEST DATE	PGINT 09	
			0,			10	9	-	<u>-</u>	0	٠, ۷	, m	Ó K	اور	o c	, 4	٠- ١	4	1	ە ر _ە		1 00	, N	.3	·	TEST PG 0109	
			4	2	125	1	27	11	8 8	8	8	9 0	60 0	2	80	6 8	84	8 6	76			-		95		0100	

683
•
Õ
•
7
_
/10
Ñ
`
à
⋍
-
0777
2
u

												0	RIF	GII	A <i>V</i>	L	P/ QI	AG UA	E	IS TY												4		SPEED 301.0 FPS)		Laur,	
FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS	70 PERCENT R.H. STD. DAY, SB	IDENTIFICATION - FJ-400-FMODL X01090	ANGLES MEASURED FROM INLET, DEGREES	40. 50, 60, 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PWL			100 100	091		80.0 82.0 80.5 80.2 78.7 79.8 79.8 79.8 87.4 91.2 94.7 37.5 95.	81,7 82,6 81,8 80,8 80,6 81,6 81,7 82,7 90,5 96,2 98,5 98,2 93,7 1	82.6 83.1 82.5 80.8 83.9 82.6 82.7 83.3 92.5 96.6 98.0 95.4 91.	84.2 84.7 83.2 82.6 93.1 84.2 83.9 85.6 94.4 98.3 98.1 93.8 93.2 1	88.4 87.0 87.2 87.1 88.1 85.6 86.7 86.9 88.2 96.3 98.1 87.0 90.8 91.9 134	88.1 86.5 87.4 85.6 87.0 88.2 89.8 97.2 98.0 96.8 90.1 92.0 134	88.0 89.4 89.4 87.6 88.4 89.6 89.1 90.7 97.6 98.2 85.5 90.0 81.5 134	90,9 89,1 89,4 88,4 87,9 89,0 90,0 90,8 98,0 98,3 84,8 90,4 91,4 135 89,6 89,6 89,6 88,4 89,6 89,9 91,3 92,2 99,4 97,0 94,5 90,6 91,6 135	90.2 90.3 90.4 90.0 90.4 91.9 92.4 93.6 99.4 97.0 94.6 90.0 91.2 136	000 90.7 90.9 91.1 90.7 90.9 92.7 92.8 93.8 99.5 98.0 93.9 90.1 91.2 136.4	92.0 91.0 91.0 91.0 92.0 92.0 94.0 97.7 100.1 94.1 95.7 100.1 92.0 92.0 10.1 92.0 92.0 92.0 10.1 92.0 92.0 92.0 92.0 92.0 92.0 92.0 92.0	92 1 92 0 93 4 99 9 93 3 94 6 95 1 99 8 99 0 95 0 92 6 93 8 138	91.2 92.2 92.2 91.9 94.3 95.2 93.9 95.6 98.7 98.7 95.4 94.3 96.7 138	.2 93.9 93.7 92.4 93.3 94.2 93.7 95.1 98.3 58.6 94.6 94.4 97.1 139	81.2 83.0 81.6 81.4 83.2 84.0 92.6 84.1 90.7 80.6 82.4 93.1 80.1 138 80 6 01 5 31 4 90 8 93 1 92 7 90 6 92 1 96.3 93.3 80.0 89.6 94.5 140	84.2 88.2 83.1 88.3 90.3 90.4 88.2 87.9 91.3 \$1.4 87.3 88.1 89.7 139	82.7 83.7 84.9 84.0 84.4 84.5 84.0 84.6 87.9 86.7 83.6 84.9 86.5 138	75.3 74.7 76.6 76.1 75.2 75.2 73.4 72.4 79.3 72.9 70.8 74.0 75.6 136	67.4 67.3 60.5 69.0 66.7 66.9 67.3 65.4 72.8 66.9 66.3 66.9 68.9 135	.2 57.4 59.3 60.3 59.6 61.3 59.4 59.0 63.0 57.1 56.5 57.1 59.1 133	SPL 102.7 103.2 103.2 102.4 103.9 104.5 104.3 105.4 110.6 110.6 108.9 106.9 107.0 150.9	MODEL/FULL SIZE SCALE FACTOR FREE JET VELGCITY (FT/SEC) 381.00 REFRACTION CORRECTION - YES INPUT 1.000 CALC. 1.000 FREE JET DIAMETER (FN) 48.00 TURBULANCE CORRECTION - YES	00-00-70 TABE NA NOOS IAI BHA 9850 TAMP 22	н сн 🗚	- TEST POINT ACGUSTIC RANGE SIZE SIZE FREE-JET SIZE 12.2 m (40.0 FT) ARC 132.4 SQ CM (20.52 SQ IN) - MODEL 116.13 M/SEC (ATT.		
)6				FRE	•	· •	-		ัล	Ö	ა <u>4</u>	ŭ	6	ğ	12	<u>ğ</u>	, S	316	40	500	80.0	1000	125(0000	2500	31500	5000	(0)	8000	OASPL				MODEL	1		

(*··.

											•	0	RIG F	ilN PO	A	L	PA QÜ	G	E LI7	IS IY									ő			
																															ET SPEED : (381,0 FPS)	
,			Ž	51.7	e	~ 6	4.	60.0	7.4	3.8	9 0	5.7	56.8	9.5	3.0	- 4.	10.	5.4) - S	- O 10	· F					7			UNB 22.64 TUM 47.80		FREE-JET 116.13 M/SEC (
3F			60.	-	0	4 6	7	ь. С.	6 /	- 1	3.7 164	6	4 O	41	2	0 0	6	-	- T	50 50		-				75.3 169.	1		TAMB		FELL	
SB 2400.0 FT.			50. 10		0	m 0	-	٠. د	٥.	4 (63.5 69	مام	4.0 00	a (~	o 4	0	۰	-				•			90.1 7 22.7 2		@	SB59 29.6570		- (N.	
2400	X01095	DEGREES	40. 1	4	.	00		01 6	٥ ٨	G 1	70.3 6	4	00	0	N.	- a	60	6	- 3 10	•				•		0.0	1	SHIFT	ALPHA SI PAMB 2		9	
JAY, SB	10DF.		130, . 1	1	0	. .	9	0 0) (A	a .	76.4	6	2 4	~	۰	T ()	ю	_	- 10							900	1	FREQUENCY.	¥.		\$12E (1400.00	
H. STD. DAY,	FJ-400-FMÖDL	FROM INLET	120.	-	0	o ru	9	4 0	۰۲	۰ ا	20.00	واه	۰,	4	اری	<u>ه</u> د	ĸ,	a	D (7	4						90.3	1	FRE	N292 ADH063		SOCA	
Я.	ا 7	RED	110.	0	10	0 4	0.3		4 60	3.4	6 4 6 4	0.0	0 0	4.6	5.5	, o	0.4	0	. 0	9			-			9.00	3 60	8.260	00	ĺ	9032.2	-
) PERCENT	DENTIFICATION	ANGLES MEASI	100.								7.0	40	y	ر	-	. 0	N	- 1						: :		92.0	9 00	RATIG	TAPE ERG. R		SL	
02 ''	DENTIF	ANGLE	90.		•			•		٠.	4.0				-1			- 1								4.0			<		INGE 0 FT)	
.O DEG. F., 70	-		90					_			72.1	- 6		_	- 4									•		84.7	100	DIAMETER	8-78 ANECH CH		ACOUSTIC RANGE 5 M (2400.0 FT	-
59.0			70.								2. 2. 3. 3.															82.5			02-08 C41 AN		ACOUS 1.5 M (
			90.					•			20.0	٠.I			-4			٠.								62.4			TEST DATE LOCATION		73	
-			20.		•						69.3	.1						.1								80.9	٠١ ٠		TEST		POINT 109	
			40.					•		•	67.2	•			•			-1	- 0							78.7					TEST 01	
			FREG	20	ဗ္ဗ	50	125	160	250	315	200	630	1000	1250	1900	2500	3150	4000	6300	8000 10000	12500	20000	25000	31500 40000 50000	80000	OASPL PNI	PNLT				MODEL 0100	1

			₫	DENTIFICATION	CATION	. E	FJ-ZER-FMGDL X01		X01100	O .							
				ANGLES MEASU	MEASU	JRED FROM	ROM INLET,	1	DEGREES								
	50. 60.	6	80.	90.	100.	10.	120.	30.	140. 1	150.	160.	PWL					
				;													
	6		,	1	a	7	4		-		9						
0 4	0 4 0 9 0 4	01 ID		1 '	6 –	1 2 2	. 0	100	,	20.3 1	8.8	153.7					
N 60	.0 96. .9 97.		-	. 3 1	1	8 1	2 7	18.9 12 20.2 12			19.9	157.4					
99.6 98 106.2 107 107.4 107	0,00 c	n & O -		01.9 10 04.3 10 05.7 10		20 - 01 d	4000	ი – ი თ			19.7 18.8 16.7 15.3	158.6 159.2 158.8					
600	4 111. 8 110. 1 108.	N 00 -		400	200	444	-00	60 to 61			13.2	158.7 158.3 157.9				NAL I	
	0040	9 10 9 9	08.0 08.8 11 07.9 10	- 60	0000	0 7 9	18.4 17.8 16.3 116.3	20.4 19.0 17.6		0.00	07.4	156.0 155.0 155.0				AGE I	
99.6 102 98.0 101 92.5 98	5 103. 5 99.	-		08.4 08.4 07.4 10 05.1 10 8	2-000	04.8	n 0 - 0	NO-4	108.2 10 105.4 10 105.4 10	40410	03.1 02.0 99.7	153.4 152.9 151.7				\$	
	. 3 88	-1	- n a r	9 9 9 9	1	000-	400-	10 - 0 m	l .	1	87.0 81.7 75.8	150.1 149.7 148.0					
6 0	1 69. 2 119.	0 0	6 4	0 9	0 4	1	10 GI	0 0	က တ	6 6	0 1	149.6					
MODEL/FULL INPUT 1.	LL SIZE SCALE 1.000 CALC.	CALE FACTOR	TOR	FREE	JET VE FREE JE	ELOCIT ET DIA	VELGCITY (FT/SEC) Jet diameter (IN)		46 .00		REFRACTION Turbulance	1	CORRECTION Correction	- YES			
	TEST DATE LOCATION	02-07-78 C41 ANECH	76 IECH CH	AE	TAPE NAERO	RDG.	N291 ADH042	A.	IALPHA S	3859 29, 6869	ļ	TAMB	16.88 43.40				
DEL TEST PO 0100 0110	TNT	ACGUS 12.2 M (ACGUSTIC RANGE 2 M (40.0 FT)		ARC	132.4	80 CH	\$12	812E 20.52 SQ	2	MODEL	ر ا	FREE-JET O, M/SEC (JET SPEED	:0 FPS)		

												0	RIQ F I	31N PO(AL	. F	PA(3E	IS TY										SPEED 0, FP8)	
•								-					N1								e a							16.68	FREE-JET SF 0. M/SEC (
URE LEVELS	T. SL			160. PWI	1 17	4 -	.8 176.		87.3 177.1 84.5 177.0	1 176		9 174	0 0	8 173.	171	1 170.	7 168	168	186.6	100					100.3 188.2	100.5		TAMB 69 RELHUM	- FULL	
SOUND PRESSURE	B 2400,0 F	X01105	DEGREES	140. 150.	6	8 50 9 60	1 99	6 97.	02.6 95.9	5	6 .02	85.	8 63.	T	71.0	99 0	43.	7 24.	2 2						.9 107.	15.1 107.9	Y SHIFT -9	ALPHA SB59 PAMB 29.6869	SQ IN	
AND EXTRAPOLATED	STD. DAY, S	FJ-ZER-FMÖDL	FROM INLET, D	120. 130.	.5 97.7 1	.1 100.6 1	6 101.6 1	0 101.3	99.2 101.8 1 99.8 102.9 1	.4 102.7	. 3 . 39.55 . 3 . 39.55	.8 98.4	7 86.7 83.0	6.00	4 88.8	.1 83.7	7 76.6	8 57.0	6 6.1						9.4 112.2 1	0 117	FREQUENCY	N291 IA ADH042	\$12E SQ CM (1400.00	*
4	Z	CATION - FJ-	MEASURED FR	. 110.	.7 83.7	6 87.4	9 88 6	4 91.1	.1 92.1	.6 92.6	. 1 . 93.3 . 0.3.3	.1 94.3		91.6	5 86.8	3 83.3	76.5	60.1	7 17.3						.6 103.7 109. E 110.2 11E	0 110.3	8.260	P. S.	9032.2	
TRANSFORMED, SCALE	. F., 70 PE	IDENTIFIC	ANGLES	90. 100	80.7 81	83.6 84	84.6 85	68.1 68	9 67.9 69 8 88.5 68	92.9 90	91.4 93	91.2 92	90.1.00	90.2 88	87.5 85	84.7 81	79.8 77	65.0 59	21.6 20						5 101.8 101.	110.9	AMETER RATIO	TAPE CH AERG'	1C RANGE 2400.0 FT) SL	
FLIGHT TRANS	59.0 DEG			70. 80	7 78.	4 63.	6 82.	9 67.	92.2 90.4	1 92.	ы 89.	8 89.	96	88	85.	2 83.	2 79.	3 64	9 .						99.9 100.6	06.3 109.	/10	02-07-78 C41 ANECH	ACOUST	
I I				50. 60.	.9 76.	30.	5 79.	.0 87.	90.4 90.8 91.0 92.4	0.91	. 1 . 87.	.0 86.	4 85	6 84.	8 79.	.2 76.	5 71.	2 53.	; 						98.2 99.4	0 105.		TEST DATE LGCATION	PGINT 731	
				Ġ	71.3	73.7	78.4	82.8	250 91.9 250 88.7	86.5	83.3	82.3	79.5	77.1	70.7	63.4	58.6 50.1	35.6	<u>.</u>	2500	000	000	0000	. 000	96.5	102.21	:		TEST 0 01	
0				Ľ.					19		/				2	ณ ์	<u>ი 4</u>	ñ	3 8 5	122	200	_1	30000 50000 63000		GASPL		FF WIC		£	

 $\langle \cdot, \cdot \rangle$

)Ri	,				GE ALI	IS TY		**************************************						T SPEED (209.0 FPS)		
		٧					:																		17.78	Ö		
				Ę				149.8	163.3	154.2	100 100 100 100 100	156.7	157.4 FB R	159.6	158.9	165.9	20.0	153.8	161.9	149.4	149.4 148.6	146.9	146.3 8.3	168.9	TAMB	. 66		
40.0 FT. ARC	X01110 X01300		160.					116.6	9	=	=======================================	108	107	98	107	103	20.5	8	9 60 6	8		76.		123.9		Ş		
40,0		3 3	. 150.						20.		- 50	=	118		115	= 5	108	8	.4 102.2	66	2 Q	79	. ii	1 129.5	A SB59	8	·	
DAY, SB	J-300-FM0DI JB300-FM0DI	T, DEGREES	0, 140				:	0.113		9 120	3 183	6 123	.5 125	182	0.0	9 180	7117	6 11	500	2 101		98 6.	- 5	.9 134.	I ALPHA PAMB	\$12E 20.62		
H. STD. DA	11 11	M INLET,	120. 130		j			5 107	10	116	2 - 2	119	118	123	124	61.0	100	116	09.6	104	.6 103 .0 97	18 8		3.3 131	N292 ADH056	S CM		
R.H.	MODEL BACKGROUND	EASURED FROM	110. 1				:		- 4-	- -		-	۔ا۔			- v		- ,	06.7 109	-	6.0 88 10.8 95	ı		21.4 128		32		
70 PERCENT R.H.	•]	Σ	100.				•		a: co	4	00	Q .	0		G 10		- , ,- 1	- 0	03.00	0 00	N O		. o	18.5	TAPE NG	ARC		
	FICATION	ANGLES	90.					ص ه	. 0	٠,	4 4	Ю	0	9 0	10 -	6		90	24.	200	- 0	بر	4 Ni	118.0 1	•	NGE O FT)		
DEG.	IDENTIFI		90.			-				.1			•			.i .			102.9			•		116.5	18-78 ANECH CH	ACCUSTIC R		
59.0 DEG. F.			70.					8	9 9	8	9 6	98	10	. 60	108.	104	500	102	100.2	96	92. 86.	90	68.	116.2	02-0	0		
			. 60					80	92.	8	9 6	100	9	9 =	107	20.5	36.	105	99.60 0 99.60	93.	9 95	77.	63.	9 116.4	TEST DATE	5		
			50				ļ	69	900	16	 	66	105	108.	105.	103	20.00	101		6	83.	75.	62	9 115.	Ä	TEST POINT 0111		
			49	g e	e o	0 10	0.0	i		•		•						- †	16000 94.			- 1		CASPL 114.		MCDEL TE		

,

							OR	igit PC	AL	. PI	GE	: IS		•				- YES - YES		JET SPEED C (289.0 FPS)
ARC). PWL							-		-		-	.9 152.3		5 149.8	7 147.7	REFRACTION CORRECTION Turbulance correction	TAMB 17.78 RELHUM 62.60	FREE-JET
SB 40.0 FT. X01110	DEGREES	140. 150. 160		, 111.1 114.6 114.	116.7 116.0 115	120.1 119.6 116 122.2 121.1 116	122.8 120.4 116	124.6 119.7 115 194.3 118.2 114	122.5 116.4 113	119.8 113.7 111	118.2 111.5 109	116.3 109.0 107	111.8 106.7 105	105.0 100.9 102	97.8 92.0 94 91.9 87.3 88	63.4 75.8	73.6 66. 133.2 129.	289.00 48.00	IALPHA SB59 PAMB 29.7230	817E 20.62 SQ IN) - MC
ENT R.H. STD. DAY, ION - FJ-300-FMODL	ASURED FROM INLET,	110. 120. 130.		101	112	109.3	113.6	9 60 6	9.0	7.00	117.9	116.1	112.2	108	100	. 8 89.4 . 8 89.4	1 128.2	OCITY (FT/SE DIAMETER (1	NC. N292 RDG. ADH056	132.4 SQ CM (
F., 70 PERC	ANGLES MEAS	80. 90. 100.		.1 93.3 94.	.3 94.0 .0 95.1	. 9 96.2 96. .4 97.6 98.	.0 99.7 99.	7 104.1	3 105.3 104.	5 111.1 110.	8 108.2 108.	108.6	5 107.1 106.	5 105.3 102.	.1 97.1 95. .2 95.0 90.	4 78.4	3 72.5 71.	FREE JET	TAPE H CH AERG.	IC RANGE 40.0 FT) ARC
59.0 DEG		60. 70. B		7 92.4	7 9 2. 2 93.	6 95.4 96.4	9 98.4	9 103.2	12.0 111.9	8 107.9	0 107.2	5 106.9 1	3 105.3 1	7 102.7	96, 6 96, 6 97, 91, 8 95, 5	4 77.6	8 73.8	ZE SCALE FACT	FEST DATE 02-08-78 LOCATION C41 ANECH	F ACOUSTI
		40. 50. FREG	50 63 80 100	91.5 94.	91.5 93.3	95.7 95.	.78 7.96	103.8 102.	114.4 113.	109.4	107.5 107.	106.0 106.	103.3 105.	100.3 102.	31500 93,5 95,4 40000 88.5 89.2	84.7 85. 76.6 77.	67.8 67.	MODEL./FUL	TEST	MODEL TEST POINT 0100 0111

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SGUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

MILITAN JOHNS-OCE-19 - NOTIFE-19-19-19-19-19-19-19-19-19-19-19-19-19-	
ANGLES MEASURED FROM INLET, DEGREES	
0. 80. 90. 100. 110. 120. 130. 140. 150. 180.	
72.2 74.6 74.7 75.5 76.7 77.8 78.6 73.5 75.4 76.9 77.6 77.5 78.9 79.4 74.5 76.4 78.1 78.6 80.9 80.5 80.6	•
75.5 78.0 79.3 80.5 80.6 82.4 82.1 84.4 95.0 98.5 101.5 96.9 89.3 17	
78.5 79.6 80.7 82.2 82.4 83.4 83.9 85.9 95.2 97.3 102.7 96.5 67.3 17 85.5 17 85.5 17 87.5 17	
85.3 88.9 87.1 90.5 86.9 87.1 87.0 88.8 99.5 102.0 102.5 94.0 86.5 1	
92.3 93.0 92.7 93.4 91.3 87.4 86.5 89.2 99.7 102.4 100.3 91.7 85.0 1	
86.3 89.2 90.9 88.8 89.9 92.7 91.8 91.5 97.6 98.2 98.7 87.8 80.5 1	
85.6 88.2 08.2 87.7 87.9 89.5 91.2 91.4 97.3 98.2 95.4 85.3 78.6 1 83.4 85.8 87.5 87.5 87.8 89.2 89.6 91.8 97.3 97.4 84.2 84.3 77.3 1	
82.9 84.8 86.1 86.8 87.3 89.9 89.8 92.3 96.2 95.9 83.0 82.2 75.2 173.8	00
81.0 84.0 86.4 85.0 87.6 89.2 89.9 91.2 95.0 95.3 91.4 80.6 72.6 173.5 173.5 170.1 1	RI F
77.0 61.8 64.6 64.7 86.6 67.3 86.8 68.4 90.4 91.2 65.5 76.0 66.6 1	Gli
73.5 78.7 31.5 84.3 86.2 87.2 86.7 87.8 87.6 81.1 72.2 81.9 171.2	NA IOI
71.2 77.5 60.7 61.2 64.6 64.8 61.8 63.0 65.1 62.1 70.8 63.7 60.4 170.7 72.0 74.5 76.1 60.3 80.8 77.6 76.5 79.2 79.6 69.0 56.2 43.0 170.1	L
54.8 62.8 67.9 70.3 72.1 72.5 70.2 70.6 71.7 70.3 59.1 42.9 25.0 169.1	P. Qi
40.0 49.1 56.8 59.7 65.2 65.5 60.4 60.1 61.7 57.0 43.4 24.5 166.6	AG JA
18.5 31.0 40.3 42.7 46.4 47.2 44.8 42.1 47.3 37.0 80.0 10.1 16.0 15.8 19.1 21.3 20.6 17.1 21.1 10.1	E
1.991	IS IS
12500	
	•
4 80	
9	
00000	
OASPL 96.9 98.8 99.7 99.9 100.0 100.8 100.1 101.6 108.4 110.4 111.2 105.3 97.9 167.2 PM, 102.4 104.8 106.3 106.7 106.3 109.0 107.6 109.0 114.0 116.4 114.0 105.9 96.2	
PNLT 103,0 104,8 107,1 107,3 109.6 110,2 107,6 109,0 114,7 115,4 114,0 105,9	
DIAMETER RATIO 8, 260 FREQUENCY SHIFT -9	•
TEST DATE 02-08-78 TAPE NG. N292 TALPHA SB59 TAMG 17.78 LGCATION C41 ANECH CH AERG, RDG. ADHOS6 PAMB 29.7230 RELHUM 52.80	
HODEL TEST POINT ACOUSTIC RANGE 81ZE 82 CM (1400.00 80 IN) - FULL 88,09 M/8/2C (289,0 FPS)	•
113	

-
¥
•
•
•
÷
•
•
`
Ξ
-
₾
0

7000												0	RI F	GII P(A <i>N</i>	L R	PA Ql	ige Jal	19	3 Y							90	FREE-JET SPEED 4 m/sec (384.0 FP8)	
	UNTRANSFORMED MODEL SOUIND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC	IDENTIFICATION - MODEL FJ-400-FMODL X01120 BACKGROUND FJB40G-FMODL X01400	40, 50, 60, 70, 80, 90, 100, 310, 120, 130, 140. 150, 160,					85.4 89.2 87.7 89.0 89.9 92.0 94.9 97.1 102.1 106.9 112.3 116.0 115.9 1	87.1 88.6 89.1 89.4 91.5 93.6 94.0 96.4 104.2 109.7 114.1 117.6 116.7 150.	56.8 69.7 91.1 90.2 92.1 94.4 95.6 97.0 105.0 116.6 117.7 116.6 114.6 1 89.2 90.5 91.6 92.3 93.1 95.3 96.9 99.1 107.0 116.1 120.0 118.7 112.1 1	91.1 91.9 93.4 93.2 95.0 96.9 98.0 101.4 109.4 117.2 121.1 118.0 109.4 154.	94.4 94.4 90.2 90.0 90.0 96.0 97.8 99.3 103.2 111.8 118.0 122.4 117.1 108.0 199.0 99.0 99.0 98.3 98.1 98.1 98.1 99.8 100.2 104.6 113.5 118.6 121.7 115.7 106.6 1	103,3 104,6 103,7 100,9 101,0 101,9 102,5 106,2 115,1 118,7 123,4 115,5 105,4 156,	106.9 106.8 107.8 106.1 102.4 103.8 104.4 108.1 117.0 120.4 124.4 115.6 107.1 157.	101.5 103.1 104.8 105.8 107.4 109.6 107.4 110.3 119.0 122.7 122.1 114.8 106.6 1	101.1 102.4 102.1 103.6 104.7 107.8 109.7 110.9 118.8 122.0 120.9 113.9 106.3 157.	99.6 101.2 102.2 101.7 103.0 105.6 108.5 111.5 118.4 120.1 118.8 111.4 103.9 155 99.7 100.3 101.3 101.8 102.9 105.2 107.9 111.6 117.2 119.2 118.1 109.6 102.5 155	99.2 100.6 101.6 101.3 103.1 106.2 107.4 111.3 116.7 118.5 116.5	97.5 99.8 100.7 100.8 103.4 105.3 105.7 109.8 114.4 116.4 113.0 105.6 99.2 153	95.3 98.1 98.6 99.9 102.2 104.1 104.8 107.6 112.3 113.0 111.0 103.3 97.5 151 93.5 96.7 98.1 99.4 101.8 103.8 103.0 106.7 109.3 112.3 108.7 102.2 95.9 151	89.7 94.3 84.6 96.7 100.5 102.1 100.2 103.3 106.6 108.4 105.3 98.8 94.1 150	88.3 90.4 92.6 92.7 97.8 99.2 97.5 97.8 104.1 103.7 100.5 95.3 92.4 148	88.3 88.0 84.8 86.0 90.5 91.2 88.1 90.6 95.0 96.4 91.9 85.5 82.5 147	74,4 74,9 77.6 79.3 82.0 83.5 82.5 83,4 90,9 90,1 85.7 80,0 76,4 146	68.7 68.6 71.0 72.9 73.8 74.9 77.0 76.8 86.9 84.6 79.1 73.9 70.5 146 62.2 61.4 64.6 67.6 66.8 69.8 68.8 71.2 81.3 80.1 74.1 65.1 62.5 147	112.8 113.9 114.6 114.6 115.3 117.0 117.8 121,0 128.1 131.4 132.9 127.8 122.3 168.1	TEST DATE 02-08-78 TAPE NO, N292 IALPHA SB59 TAMB 17 LOCATION C41 ANECH CH AERO, RDG, ADHOSS PAMB 29.7170 RELHUM 62	TEST POINT ACGUSTIC RANGE S12E S1	
14				FRED 50 63	90	125	160	250	315	₩ 00%	630	1000	1250	1600	2500	3150	2 2 0 0 0 0 0 0 0	6300	10000	12500	20000	25000	40000	20000	90000 90000	GASPL		MODEL. C100	

						4.7							OI OI	RIC F	ilN 200	AL R	P# Ql	(Gi	e is	3 Y							D FPS)	
							. 10	a (N G	0		• •	90		₩	9	.	4	100		9 -	- e •	8	4	I CORRECTION - YES CORRECTION - YES	IB 17.78 M 62.80	FREE-JET SPEED 117.04 M/SEC (364.0	
) E			3				2 146.	149	162	- 2	0 0	156	157	167	156	155	0 0	153	100	15	150	2 4	7 146.	168.	REFRACTION TURBULANCE	TAMB RELHUM)EL	
			160.				113.	114	<u>-</u>	115.	100	116.	117.	18.5	4.5	112.	109	108.	107.5	9	88	96.0	200	127.1	REFR/ Turbi	170	- MODEL	
	50	5	150.		,		113.3	116.4	1.0.0	118.3	2 7 2	118.1	118.4	17.6	114.0	0.0	109.5	107.5	9.5	96.6	94.3	82.7	68.6	128.7	0.0	3869 29.7170	Ž.	
	X01120	DEGREES	140.				09,4	14.6		80.0	22. C	83.6	23.3		6.00 6.00 6.00	17.2	. .	0 C	90.00	90.	97.4	95.1	71.7	132.2	364.00 48.00	I ALPHA PAMB	812E 20.62 SQ	
	IQDF.	j .	130.				5.5	-		•= ·		(- -		0.0	8.9		4.4	10.6		4.6	9 0	7.4	130.8 1	İ	S	202	
	FJ-400-FMGDL	FROM INLET,	120. 1				0.6 10			٦,			-1-					_ -	09.60			· - •	DIN	128.2 13	ELOCITY (FT/SEC) ET DIAMETER (IN)	N292 ADH055	SO CH	
	- FJ-4	URED FR					.6 100	Ψ.		٦,		-	_			-		-1-			_		1	9	DI AM	١	32.4	
•	FICATION	EASUR	. 110					1	1 97.2	- 1			-			<u>ا</u> - ۱			106.8	_	l		6 71.6	7 120	> -	TAPE NO		
	IFICA	KNOLES MEAS	100				93.	92.	96.	97.	98	10	104	107	0.0	109.	9 6	107	26.	9 6	95.	9.00	20.	118.	FREE JET FREE	TAP AERO.) ARC	
•	IDENTI	ANG.	8				•			-1						ن ا		•	106.8					119.2	F	푱	RANGE 10.0 FT)	
			90							٠			-1		9 2 90			07.4	90.4			86.5		118.6	FACTOR . 000	-78 VECH	STIC F	
)			70.						-	2			- 4		09.8		02.0	-1	9.00		ł •			118.3		02-08 C41 Af	ACOUSTIC	
			. 09				0	0 (0 0	9	oi o	6	9	, 6	04	~	5 –	- 0	0.00	0 ~	0 0	ာ ၈	00	6	E SCALE CALC. 1	- 1	12	
			20.				7	7.	4	9	0 4		- -	- ^	47	9	. o.	- 4		- 0 00	- c	, ro	4 10	9.6 119	L SIZE	TEST DATE LOCATION	N N	
										Į		_	- -			-	2 106	_ -	900		l		1	.4 119.	MODEL/FULL INPUT 1.		ST POINT 0112	
			40	63 63						ı	_		- -		108	· '	106	0000 106.	6000 103	-	1	50000 86.	- 1	CASPL 119	MOD		DEL TE 0100	

883	
•	
•	
•	
4	
÷	
6/2	
~	
`	
à	
5	
•	
2	
6	
•	

									CRIGI OF P	NAL OOR	_ P/	AGE IS					78 80	FREE-JET SPEED I M/SEC (364.0 FPS)	Company of the Compan
RESSURE LEVELS	OFT. SL			150, 160, PWL	.7 88.2 1 .8 87.4 1 .9 88.4 1	.8 89.4 .2 87.8	.2 89.3 .2 89.1 .1 87.7	0 83.6 9 81.2	.l	6 68.8	3 29.31	a			1.1 98.3 186.7 5.8 100.2 5.8 101.6	6-	\$859 TAMB 17.	IN) - FULL 117.04	
KTRAPOLATED SOUND PE	R.H. STD. DAY, SB 2400.0 FT.	FJ-400-FMGDL X01125	FROM INLET, DEGREES	120. 130. 140. 18	.7 94.4 96.8 .0 95.4 98.0 .8 96.9 99.7	.8 97.6 89 .1 97.4 101	.1 99.2 102.0 .2 101.5 101.6 .2 101.4 89.6	2 100.9 96.5 0 99.1 96.3 1 96.0 95.2	6 2 2 2	3 86.6 80.9	.6 78.2 67.7 .7 68.8 58.7	.5 55.1 42.8 .1 35.9 19.8 .6 8.1			08.3 110.0 110.1 104 14.1 114.9 113.0 105 14.7 114.9 113.0 105	FREQUENCY SHIFT	N292 IALPHA SE ADHO55 PAMB 20	SQ CM (1400.00 SQ	.22
SCALED.	70 PERCENT	IDENTIFICATION - FJ	ANGLES MEASURED FI	0. 100. 110.	.4 77.2 77.9 .3 78.7 79.4 .0 79.7 81.5	9 82.6 84.7	.1 84.2 86.2 .8 86.1 88.1 .4 86.8 89.2	.9 89.2 90.4 .3 91.6 91.1 .3 90.7 91.8	90.0 89.5 91.5 88.3 88.7 90.0 88.7 90.0 88.6 89.6 89.6 89.6 89.6 89.6 89.6 89.6	0 84.6 86 7 7 81.5 82.3	.5 77.6 75.9 .0 70.1 69.4	60.2 59.6 44.4 41.5 20.5 15.4			100,3 99.7 101.0 1 108.6 107.1 108.3 1 109.8 107.1 108,3 1	DIAMETER RATIO 8.260	TAPE NG. Aerg. Rdg.	IC RANGE 2400.0 FT) SL 9032.2	
FLIGHT TRANSFORMED				0. 70.	75.3 74.9 76. 77.1 75.5 77. 77.8 77.8 79.	79.6 78.6 80. 80.5 80.4 82.	83.0 82.5 85. 88.6 85.4 86. 92.6 90.5 91.	91.3 92.1 91. 90.1 90.8 89. 87.2 88.4 87.	96.1 85.6 97.7 96.0 85.8 97.2 84.8 85.3 87.7 84.0 84.3 86.7	82.8 83.7 86. 80.8 82.2 84.	.8 77.3 80. .3 69.3 71.	.0 60.9 65. 9 45.1 46. 4 18.2 19.			99.2 98.9 99.6 105.7 106.3 107.9 106.4 106.9 109.3	DIAM	TEST DATE 02-08-78 LOCATION C41 AMECH CH	ACOUST 731.5 M (
16				6.	73.3 75. 74.5 75. 75.4 77.	78.6 79.	83.1 84. 87.9 89. 91.2 91.	8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	800 82.3 84.4 1000 81.2 84.2 1200 81.2 84.2 1600 77.6 82.1	76.6 81.	56.4 63.	20.7	12500 16000 20000 25000	31500 40050 50000 63000	80000 OASPL 96.% 90.2 PNL 102.1 104.4 PNLT 102.7 104.4		TES LÕ	MCDEL FEST POINT 2100 0112	

07/19/79 18.690								00	RIII	3IN POO	AL PR	PA QU	GE ALI	IS		•						FREE-JET SPEED M/SEC (0, FPS)		
iui																					14.36 46.30			
SOUND PRESSURE LEVELS	. F., 70 PERCENT R.H. STD. DAY, SB NTIFICATION - MODEL FJ-ZER-FMODL	BACKGROUND	AMOLES MEASURED FROM INLET, DEGREES	60. 70. 80. 90. 100. 110. 120, 130. 140. 150. 160.			.6 86.9 87.7 89.8 92.0 93.9 99.1 103.4 108.5 110.7 111. 7 87.7 89.8 91.4 91.8 94.2 100.9 106.3 110.4 112.8 112. 2 88.3 89.3 91.5 92.8 95.0 102.2 109.3 112.4 113.6 112.	.3 89.6 91.4 93.0 94.2 96.6 103.3 110.4 113.5 114.2 112.8 148.	.9 90.9 96.8 84.4 96.0 98.4 105.4 110.7 114.1 114.6 113.4 149. .4 92.7 93.6 95.7 96.8 100.0 107.2 111.5 113.9 116.3 114.2 149.	.8 94.3 94.9 96.8 98.2 101.1 108.6 111.6 112.8 114.4 113.6 1 .7 95.0 96.3 98.2 98.5 102.2 108.6 111.3 113.1 114.8 112.9 1	3 94.4 95.9 98.3 99.4 102.6 109.0 110.9 112.6 113.8 112.8 149	7 2 35.6 96.4 97.8 100.2 103.3 108.5 110.6 112.6 112.6 119.3 148.6 119.6 119.3 148.6 119.3 148.6 119.3 148.6 119.3 148.6 119.6 119.3 148.6 119.3 148.6 119.3 148.6 119.3 148.6 119.5 111.1 110.8 3 148.8 119	7 95.1 96.2 98.5 99.7 103.4 108.2 109.2 11.4 109.6 106.8 147 7 96.7 98.5 100.2 103.4 107.8 108.5 110.8 109.6 106.8 147	6 94.6 95.9 99.0 190.7 103.4 107.3 108.6 108.6 108.9 106.3 146.8 95.9 95.0 99.7 103.4 107.3 108.6 108.9 106.3 146.8 95.9 96.0 98.9 99.0 102.1 105.7 106.6 107.7 107.1 105.7 148.8	4 94,3 96,4 98,8 98,2 101,8 105,1 105,8 106,3 106,6 104,5 145	5 92.6 95.3 86.8 95.5 98.1 100.8 101.9 101.1 102.7 101. 0 89.7 93.7 95.6 92.2 95.3 97.6 98.0 98.5 99.1 97.	.3 85,4 90,8 92,2 90,0 90,2 94,6 93,6 94,5 95,0 95,8 141	78.5 63.2 84.5 80.3 82.3 85.4 86.5 86.6 85.0 85.0 140	.3 60.1 59.0 62.5 61.5 62.7 70.7 67.6 70.7 68.2 66.2 138	.6 106.6 108.2 110.1 110.9 114.2 119.6 122.1 124.2 125.0 123.5 160.8	02-07-78 TAPE NG. N291 IALPHA SB59 TAMB C41 ANECH CH AERG. RDG. ADH050 PAMB 29.7001 RELHUM	RANGE 10.0 FT) ARC		
3				50.			87.8 86 87.2 87 88.4 89	ro c	5) 1-	ოი	ო ი	ი. ი.	. m <	100	900		æ «	n c	20 0	6.1 106	TEST DATE LCCATION	POINT 13		
				40.			63.3 64.6 85.9 8	7	(3) V	o	4 -	- ຜ ແ	0 4	007	lio k	N 10	0 1		ရ က	03.7 106		TEST PO 0113		
					FREG 50 63 80	123 123 160 200		- 1					ŀ		1 1	16000	25000	40000	63000 63000	OASPL 1	BNI I NI W	MODEL 0100	117	

																						.]		
						ORI OF	GIN PO	AL	. PA	GE	is Ity										ec ec		SPEED O, FPS)	- order
																					CORRECTION - YES CORRECTION - YES	14.36 1 46.30	FREE-JET S O. M/SEC (
ARC			160. PWL		277	0 146	4 4	149	13.6 149.4 12.9 149.5 12.8 149.5	- ,	09.3 148.6 08.3 148.1 06.8 143.1	- -					- 0		- 67	123.5 160.8	REFRACTION Turbulance	TAMB 1 RELHUM	MODEL.	
RE LEVELS 40.0 FT.	x01130	DEGREES	140. 150.		1 2 011 %	4 4	14.2	9 115.3	114.4	2 12 9	112.6	6 109.4	7 107 1	3 106.6	.7 104.1	.55 99.1 .55 95.0	.2 90.8 85.0	6 79.4	7 68.2	.2 125.0	0. 48.00 T	LPHA SB59 PAMB 29.7001	- (NI 05 29	
SCUND PRESSURE STD, DAY, SB		FROM INLET, DEG	. 130.		401 4 501	106.3	110.4	111.5	311.6 112 311.3 113 51.5 51.5 51.5 51.5 51.5 51.5 51.5 51.5	110.8	109.7	108.6		105.8	103.2	98.0 93.6	92.0	79.7	67.6	6 122.1 124	/SEC) (IN)	2	\$12E CM (20.52	
MODEL R. H.	ı	ASURED FROM	110. 120		0	0 0		0	101.1 108.8 102.2 108.6	ľ	103.3 108.5 104.1 109.2 103.4 109.2	1		٠.		თ იკ	7 90	75.4 81.3	7 70	114.2 119.6	VELOCITY (FT Jet diameter	E NO. N291 RDG. ADHO50	132.4 50	
TRANSFORMED 70 PERCENT	DENTIFICATI	ANGLES MEA	90. 100.		0	9 6	9 9	7 96.	96.8 98.2	66 6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 100	0.0 0.0 0.0	8 98.	97.	98.	85.	2.6	5 61.	0.1 110.9	FREE JET FREE	TAPE AERO.	RANGE 40.0 FT) ARC	
FL 1 GHT 59.0 DEG. F.	, =		. 80		7 TA	89.8	9.19 4.18	93.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 00 00 00 00 00 00 00 00 00 00 00 00	96.4 96.4	96.0	95.9	96.4	95.7 95.3	93. 7 90. 8	85.8	7.45 1.78	59.0	.6 108.2 110	FACTOR . 000	02-07-78 C41 ANECH CH	ACCUSTIC RAN	
25			60. 70		4	.7 87.		.4 92.	95.8	2 95.	6 6 6 6 6 6 6 6 6 6	7 94.	.6 94.	.4 94.	50 62.	.0 89. .3 85.	.0 84.	. 6. 6. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	.3 60.	106.6 106.	ZE SCALE CALC, 1	TEST DATE 02- LOCATION C41	12.2	
			40. 50.		7.4	6 87	68 C	.4 90.	4.2 95.3 1.1 94.9	1 96.	დ ი ი 9 9 9	6 94.	. 8 93.	5 93.	.5 91. .7 89.	.5 86.	.5 78.	. 66 R	6 53.	103.7 106.1	MODEL/FULL SI.	TEST LOC	TEST POINT 0113	- Signa
18				S 8 8	200 200 200 200 200 200				1250 94	1	2500 92 3150 93	-		- 1				50000 62 50000 62		CASPL 103	HOI		MODEL 1 0100	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SCUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

						ORI OF	GINAL POOR	PAGE QUALI	is TY				ED .
												14.36 46.30	FREE-JET SPEED O. M/SEC (O.
}		ó			79.8 166.8 77.8 166.4 75.4 165.7 74.4 165.4	163		156 156 157			95.1 176.9 95.8 97.0	TAND	FULL
ឆ្ន	8	150.	0040	6 6 6 6	85.2 7 85.2 7 83.1 7 82.2 7		e a a e	م			100.3 102.0 102.0 FT -9	\$859 29.7001	SQ IN) -
DL X01135	T, DEGREES			'	.5 89.1 .7 87.9 .6 86.4 .6 86.4			ĺ			101.4 101.9 105.3 104.8 105.3 105.8 FREQUENCY SHI	FALPHA PAMB	\$1.2E 400.00
FJ-ZER-FMODL	INE	120. 130 _.	V 60 60 70	-108	88.9 90.4 89.3 88.5 88.0 87.7 87.3 86.6	10 eo 01	9 2 9	D G 4			99.9 101 05.1 105 05.6 105 FREQI	N291 ADH050	SQ CM (1
. Z	MEASURED FROM		77.2 78.8 80.6 82.1	83.1 84.1 84.4 85.0	84.6 85.0 83.8	82.0 79.8	77.3 73.8 67.2 61.4	32.3 6.4			95.1 101.3 1 101.3 1		9032.2
IDENTIFICATI	ANGLES ME	Ġ	2 75. 6 76. 1 78. 4 79.	4000	8 80. 8 80.	8 79. 4 78. 6 77.	.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			1.6 92.2 3.4 98.0 3.6 96.0	TAPE AERO. R	FT) SL
. IO		Ġ	004-	40-10	78.1 79 77.8 60 77.3 79 76.9 79 76.5 79	10 00 1	4007	0 0 0			89.5 91, 97.3 99. 98.5 100, DIAMETER	7-78 ANECH CH	STIC RANGE (2400.0 F
			70. 71. 73.		8 76.8 4 76.8 9 75.8 1 75.0	642		46. 29. 3.			7 94.4	02-0 C41	ACGUSTIC 731.5 H (240
		o. 60	.9 70. .9 71. .3 72. .0 73.	.5 77. .0 76. .2 75. .5 76.	3 74 75 73 74 74 75 75 75 75 75 75 75 75 75 75 75 75 75	3 73.	.5 69. .3 65. .0 60. .7 53.	.3 41.			2 86. 2 82. 2 82.	TEST DATE LOCATION	TN.
			897-	တက မေ	70.2 73 70.2 74 69.5 72 68.6 72 66.3 71	400	4400	ri.			81.1 85 84.9 90 85.4 91		TEST PO 0113
		FREG	50 63 00 100	125 160 200 250	3.15 5.00 6.30 0.00 0.00 0.00	1000 1250 1600	2000 2500 3150 4000	5000 6300 8000 10000	12500 16000 20000 25000	31500 40000 50000 63000 60000	OASPL. PNL PNLT		#ODEL 0100

20			UNTRAR	ISFORME	G MODE		ID PRES	SURE LI	LEVELS	CORRECT	ED FOR	BACKGR		3810	32/81/20	-	4.663		
				59.0 DEG. F.	DEG.	•	70 PERCENT R.H.	T R.H.		DAY, SB	6	O FT.	40.0 FT. ARC						
					IDENTIF	FICATION	ON . MC	ODEL ACKOROUND		FJ-300-FMGDL FJB300-FMGDL		X01140 X01300				·			
						ANGLES	S MEAS	JRED	FROM IN	INLET, DE	DEGREES								
	40.	60.	.09	70.	.08	.06	100.	110.	120.	130. 1	140. 150	0. 160				•			
7. 50 50													IM.	呈					
6 8 8									•										
00 t																			
9 6																			
250		0	0	1 .	6					99.4 104	4.0 107	0.108	9 140	4					
315	•	- <	<u>ښ</u> د	-	10 1		Φ.	o r		10 1	-	100	142	:-I					
500	• •}	i w	າ ຫ	1	ای ہ		0 4		7.6	n on	40	. 8 102 . 9 102	0 143 8 144	. .					
630		د	9 0		ر د		10 C	7.0	60.0	0 6		60.0	2 144	Q -			RI F		
1000		. 0	1 00		. 0		4	- -	. 0	2 -	4 N	. 4. 83	144	- 4			GIN PC		
1250	- 1	- -	-	-1	-1-	•	8	4.	0	20	9	5 91	2 143	a			AV OC		
2000		o –	0 0				N 0	- 4	? -	ა ო	> 0	5 4 2 6	143 143	0 0			L R (
2500	88.0	89.8	9 1	90.8	92.7	94.0	96.9	99.9	05.7	08.0 106.	0.0	: -:	3 143	ın (PA QU		
4000	·I ·	0	n	-1 -	ناد		v -	4 W	0 6	2 0	-	5 G	2 143	n @			GE AL		
5000	•	- 0	QI T	_	oi c	-	91	- (9	(a (6 92	142	.			i II		
8000		n œ	1 (1		نمن		- 0	N (0	 • -	۸ ۵	ກຕ	4	5 1 4 2 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2 4 2	53 P			S Y		:
0000		લ લ	-,	_	ا تعا		80	9	0	10	4	5 92	3 142	7					
0009		. -	4 (Ni e		ر ا		, r	02.4	- C	6. 4 6. 6	4 C	<u>د</u> ه					
0000	1	21	~				9	. ~	13	- (0	5 87	7 140	7					
5000		ه د	ო c	_	ش د		თ -	် တ ¬	ان		0.0	.4 86	0 139	Q 1 Q					
40000		N.	^		i		- 01	۲ ۲	۰۲		4 00	9 25	138	» —					
0000	-1	6	ω 7	- 1	e l	- 1	-	0	٥	0	6	4 70	135	0) [
0000		? -	1 4		. ·	60.7	2 N		0.0	63.5 63.5 63.0	- 0	າທ	7 O	~ 0					
DASPL 1	100.4 1	102.2 1	02.7 1	02.7 1	04.7 1	06.5 1	07.9 1	10.9 116	Ŋ	119.1 119	9.9 117	.6 112	.6 156.	4					
		!																	
		TEST DATE	1	02-08- C41 AN	8-78 ANECH CH		TAPE N AERG. RD	0 0	N292 ADG061	I ALI	ALPHA SB PAMB 29	SB59 29.6610	TAMB	古 五 4 8.	56 70				
IODEI. 0100	TEST 01	POINT 114	5	ACGUSTIC	TIC RA	; RANGE 40.0 FT)	ARC	132.4	SO	812E (20.52	S		MODEL	87.17	FREE-JET	SPEED	FPS)	•	
								1								1			
	2						-												
ř										m								e de la companya de l	

C.

							OR OF	IGIN PO	AL OR	PA QU	GE AL	: IS								D O FPS)
																		CORRECTION - YES CORRECTION - YES	1.56 8.70	FREE-JET SPEED 17 M/SEC (288.0
ARC	-	160. PWL	-	04.8 139.2	8 141. 6 143.	3 142	8 142	9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	6 142	98.2 142.8 09.5 142.8	0 143	4 4 4	2 143	6 142	90.2 141.2 84.9 140.7 79.9 139.3	- 0	114.1 156.6	REFRACTION CORF TURBULANCE CORF	TAMB 21 0 RELHUM 48	MODEL 87.
40.0 FT 140	DEGREES	140, 150,		102.7 105.9 10	3 108.3	3 108.5 1 7 107.0 1	9 104.0	5 100.6	0 100.3	105.8 100.9	7 102.5 1	103.4	5 101.1	2 96.9	.3 86.9 .0 81.9	69.1	.9 117.2	286,00 R 48,00 TI	ALPHA SB59 PAMB 29.661	SIZE 20,52 SQ IN) -
R.H. STD. DAY, SB - FJ-300-FMGDL X01	INLET,	120, 130.		2	96.7 103 98.2 104	100.3	103.6	4 6 6	104.9	105.3 106.2 105.0 105.7	105.4	104.8	101.6	98.4	90.08 86.08	75.9 72.	116.4 118.	ITY (FT/SEC) IAMETER (IN)	N292 1 ADG061	.4 SQ CM (
., 70 PERCENT R.P. Dentification - F	ANGLES MEASURED FROM	100. 110.		96.5 87	87.0 88 88.2 89	89.7 90 90.7 93	92.2 94	94.1 96	95.6 97	96.7 98	97.8 99	97.6 100	96,8 98	92.9 95	86.5 87.7 81.7 82.4	70.4 68	108.4 110	FREE JET VELOCITY FREE JET DIAME	TAPE NO. AERO, RDG.	r) ARC 132
O DEG. F., 7	PNO	80, 90.		6 88	86.3 87. 86.7 87.	88.2 88. 95.2 90.	90.4 91.	93.0 9.0 9.0 9.0 9.0	93.55	94.5 94. 95.0 96.	95.2 96.	95.5 97.	96.1 97.	95.8 95.	3 86.1 85.1 0 77 7 77 7	69.4 69.	107.3 108.	FACT OR FR	-08-78 1 ANECH CH	ACGUSTIC RANGE 2 M (40.0 FT)
0		60. 70.		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	84.8 85. 86.8 86.	88.4 87.	91.3 90.	93.3 93.	93.4 93.	93.6	95.3 94.	95.0 95.3 94.	95.9 95.	94.3 92.	88.0 87. 82.7 82. 78.1 75.	69.3 69.	106.5 106.	SIZE SCALE	TEST DATE 02-(LOCATION C41	12
		40. 50.		9 87	84.2 87. 85.9 87.	87.1 88. 88.2 89.	91.1	92.8 90.	93.5 93.	92.9 93.3 94.	94.1 95.	94.9 94.8 95.	95.1 96.	90.4	78.1 79.4 74.3 75.5	66.2 67.	105.3	MODEL/FULL. INPUT 1.0	TES	DEL TEST PGINT 0100 0114

62
Ö
Ö
٦,
4
-
•
~
`
•
-
•
Ò

(

																													pi's			N.Z		
																																5		
												,		R	iGi P	N.	AL R	. F	PA(2U/	GE	I I	S											286.0 FPS)	
8				3	6.	W 65	9 10	0.	• · •		181.2	N to	-	. U	-		8,	9.	4.0	0.69	9.			•								MB 21.56 NM 46.70	FREE-JET 87.17 M/SEC (
E LEVEL	e I			160.	0	73.4 161	. 60	-	69.3 160 68.9 161		~ 1	 	n	6	0 0	9	20	- I	. 6	169	101	5 5							63.3 174	,		TAMB	FULL	_
SOUND PRESSURE LEVELS	2400.0 FT.	•		150, 1	85.8 7	-) IO		~	. ~	.	75.5 68	n		o -	4	-	•	37.8 20	۱.										93.2 84	a	3859 29.6610	- (<u>N</u>	
SOUND	S 5 240	X01145	DEGREES	140.	87.0	- 1C	~	60	0 6	.	_	ກເລ	~		- 60			.	٠.		10.0								% !	99.7	Y SHIFT	ALPHA 9	ZE . 00 SQ	
OLATED			ŀ	130.	85.4	4 1	. 7	0	u r	٠ ح		u nu	ď	<u>ه</u> و		4	-	n () (C)	0	0									102.4	FREQUENCY	₹	81ZE	
EXTRAPOLATED	. STD.	FJ-300-FM&DL	SURED FROM INLET,	120.	79.7	83.6	85.0	85, 5	85.9	85.7	55.7		.84.9	84.8			77.9		62. 62. 62.	51.5	35. 20.									102.9		N292 ADG061	2 SQ CM	
AND	ž Ž		SURED	110.	71.6	7.57	76.3	77.3	78.6	79.3	79.8	80.08 80.75	1.08	80.4	79.2	77.8	76.5	_		50.7	33.1	0							O.	98.7	8.260		9032.	
HT TRANSFORMED, SCALED			LES MEA	100.	0					:	78.4		1					_	61.5		_	_								98.0	RATIO	TAPE AERO. I	JS .	
ORMED,	•	IDENT	ANGLES	8	70.	2 2	74	73	19	76.		7.	78.	78.	9 6	77.	77.	9 6	6.5	52	99 9	ų -							69.3	-1 -	AMETER F	CH.	: RANGE 100.0 FT)	
TRANSF	סיים סיים		-	. 8	69		73.	74.	6 15	75		36.	76.	76.	9.9	76.	76,	9 6	62.	56,	37.	:							86.2	66	DIA	-08-78 1 ANECH	ACGUSTIC RAW .5 m (2400,0	
FL IGHT	n n			2	68.	<u> </u>	73.	73	4 K	74.	0 74.9	5.4	74.	4.5	3.15	74.	74.		60.	50.		,				-			96.6	95.		02-C	31	
			· .		0 68.	70.	0 72.	9 72.	3 0 0 7 4 . 7 4 .	9 74.	9 74.	6 74.	3 74.	3 74.	3 73.	8 74.	5 72.	. אר האר	2 59.	2 47.	ے د								7 88 9	93		TEST DATE LOCATION	11 7	
					8 68.	69	72.	- 4 20:	3 73.	72.	72.	3 6	73.	5 5	19.	72.	9.5	9 6	53.	66	2								• .	92.		Ħ L	ST POINT 0114	
2					64.	67.	69	9	69	2	6,5	25	2	90.0	20.	68	64		44.	53	Ď	0	0	o	0	00		0	. 69	88.			L TEST 00 01	i de Soleti
				FRE	50	. .	10	- (28	25	<u>د</u> و	9	63	8 5	5.50	160	000	2 LS	400	200	800	98	1250	1600	2500	3150 4000	50000	8000	OASPL PNI	PNL			MCDEL 0100	, ,

_
77
3
Õ
•
7
-
70
~
`
2
=
`
Ĕ
-

															P# QU												.56 .70	FREE-JET SPEED 3 M/SEC (382.0 FPS)		
ARC MOISE				7				139	7	4 4	12	4 2	4 4	142	4 4	42	4	7	4	4 4	139	138	137	- '	134 F	•	TAMB 21 RELHUM 48	MODEL 118.43		
DAY: SB 40.0 FT. ARC	L X01150 L X01400	EES	. 150. 160					106.2	107.6	107.6	105.8	103.1	98.3	97.6	9.90	97.4 0 7.0	98.9	8.98 8.98	97.2	96.7	92.0	87.9	76.9		26.2 2 4		A SB59 3 29.6580	- (NI 08	:	
DAY, 38	FJ-400RFMGDL FJB400-FMGDL	INLET, DEGREE	130. 140					9.68	101.2	104.5	106.2	107.2	107.7	107.1	107.2	105.8	92.	104.6	103.5	101	96.6	91.6	83.6	68.6 67.3	, o	9.01	I ALPHA	8 N	•	
NT R.H. STD.	MODEL BACKGROUND	MEASURED FROM	110. 120.				•	93	0	0 0 0 0 0	101	9 6	104	100	7 3 <u>5</u>	9 2	- 2	201	1 102		4 95	93	(N) 4	67.2 73.8	4 4 65 4 65 4 65 4 65 4 65 4 65 4 65 4		. NG. N292 RDG. ADHOGO	132,4 SQ (
, 70 PERCENT	DENTIFICATION -	ANGLES MEA	90. 100.					4 86	.0	0 4	.8 89.	. 3 92.	6 94.	. 3 94.	, ro	. 3 96. 96.	3 96.	.8 97.	4 95.	7 93.	.0 90.	7 88.	41	67.			TAPE AERO. §	: RANGE 40.0 FT) ARC		
1	IDENTI		70. 80.					.2 63.3	.7 83.5	.0 84.6 .9 86.0	3 91.7	89.1	9 90.5	.0 90.6 -	8 91.4	5 91.7	1 91.4	6 91.9	4 92.8	5 G	6 91.4	83.5 83.5	4 81.7	3 64.9	0 103 8 1		02-08-78 C41 ANECH CH	ACGUSTIC RAN		
59,0 DE0			. 60.					61.6	7 83.2	83.7 84.4	85.3	88.4	89.6	3 88,3	93.6	90.4	80.9	90.9	91.6	90.4	86.2	84.3 82.0	76.4	3 62.4 64	100.4		TEST DATE 02 LOCATION C4			
			40. 50					.2 81.	.8 82.	6 83.	0.83.	96.0	5 88.	97.	0.98	68 89.	5 90,	8 89.	. 8 91.	4 88.	4 86.	9 82.	73.	59.4 60.	. 101 101		TES	TEST POINT		
				FR 60 80	3 8	001	9 6 6	250	315	500 500 500	630	000	1250	- 2 000	2500	3150	2000	6300	10000	16000	20000	25000 31500	40000	63000				MODEL 0100	123	

14.683

07/19/79

															OR OF			AL)U/												SPEED 382.0 FPS)	
																						•									21.56	FREE-JET 116.43 M/SEC (
EXTRAPGLATED SGUND PRESSURE LEVELS	<u>.</u>		160.	74.5	73.0	72.6	71.5	21.6	20.00	69.7	68.3	2 70.2 161.5	69.4	67.0	65.5	59.8	9.14	21.2	Τ,	157.9	154.4								87.5	Ģ	TAMB	- FULL	
SOUND PRES	X01155	DEGREES	140. 150.	85.3 83	85.3 82	83.1 77	83.9 75	83.2 75	81.4	81.0 78	80.6 73	79.6 74.2	79.4 73	77.0.77	75.3 71	71.1 66	4.50	48.5 36	32.7	_	•							6 .	36	ENCY SHIFT -	IALPHA SB59 PAMB 29.6560	\$12E (1400.00 \$0 IN)	
H STO DAY	FJ-400RFMGDL	FROM INC	120. 130.	78.3	90.4	83.0 83.0	84.6		94.7	96.1	85. 85.	84.8 63.6	83.9	2 0	80.8	78.1	. C	61.7	51.3	84.7 8.0	•							96.1.96	102.8	O FREQUENCY	 N292 ADH060	SOCM	
		LES MEASURED	100, 110.	p	<u>ب</u> ب	. .	4	<u>.</u>	- 10	0		78.8 80.6	ص ر	ر ا	-	4.	4 a	0	٠ ي	- e								90.	97.7 98.4	RATIG 8.260	 TAPE NO. AERO. RDG.	S. 9032.2	
O DEG F 70 PERCENT	IDENTI		. 80.	. 8 70.	4.	73.	.6 74.	.0 -	- 20	.9 76.	.2 77.	76.2 78.2	.5 78.	79.	.8 77.	.1 76.	, s	.4 63.	.1 55.	7 12								88	97.6 98.4	DIAMETER R	18-78 ANECH CH	STIC RANGE (2400.0 FT)	
0.05			60.	.0 67.	289	20.0	.7 72.	.73.	0.074.	7 74.	.8 74.	75.6 75.2	.6 74.	5 4 7 4	8 73	.8 74.	0. 4 7. 6	.9 60.	.9 52.									4.	95.5 95.9		DATE 02-0	ACGUSTIC 731.5 M (240	
				.1 68.	.7 69.	2 2	. 8 71.	72.	33.	6 73	2 73.	71.5 73.9	74.	7.5	0 73.	.3 71.	9 6	0 55.	.3 41.	23.								2.9 85.	39.7 93.4		TEST I	TEST POINT 0115	
				1						1.			i					ł			10000	12500	20000	25000	40000	50000	80000	OASPL 8	PNLT			MODEL 0186	1

0
ă
Ö
_
•
-
0
à
$\overline{}$
<u></u>
ö

08		æ								1.0		iG	ijΝ	AL		PA(GE	V/2														
										1	OF	F	יטי	OR				J, 8	■,												FPS)	
					•									•								÷ -, .									SPEED 0. f	
										•																			4 5	43.20	FREE-JET 0. M/SEC (
40.0 FT. ARC				PW					45.9	47.7	20.7	51.3	51.8 4.1	52.0	51,3	50.0	50.2	40.00	46.6	47.7	46.0	45.9	43.4	42.0	6.00	39.9	40.7	162.9	TAMB	RELHUM		
ARC	•		160.						1.0	0 c	3 <u>4</u> 5 –	١.	•	15.2			1.60	80 a	07.9	9.90		00 00 00 00 00 00 00			87.4	75.9		24.9			MODE	
O FT	X01160								١.	•	- •	0	-	10	9,0		-	- r	0	, 101		8 1	-	ø	ຫ. ແ	0	4	-	g K	29.6949	Ž	1
40	ا لــ	EES	150						5 112	0 4 		-	_		-			- -	200	_		0 103	-			2 75		0 127		- 1	80	
SB	-FMOD	DEGREE	140						109.	•	- 2								12.						•	77.	•	127.	. 6	PAME	S ZE 20.52	
DAY, SB	FJ-ZER	INLET,	130.						00	27.5		١.				5 CO		•	10.9	-1		•	-1 -			75.9	•	124.3			J	
PERCENT R.H. STD.			120.						99.6	01.6 3.6	04.8		9.00 1.00	10.1	0.5	0.0	10.5		09.1	07.4	96	02.4	6.7	2.0	- 6			-	. <u>ē</u>	ADH044	80 C M	
Α. Η.	MODEL. BACKGROUND	ED FR					٠		-	ю.	, 0	4		7	- 0	 o o	9	۰. م	 	4		10 -	4	-	ص ھ	-	9	.6 121			32.4	
ENT	- MODI	ASURED	110			:			8	90 G	9 6	66	0 5	103	104	2 0	105	0.0	9 0			100	92	88		9		2 115	E N	RDG	"	
PER		ES MEA	100											100.			٠.	•	20	-4		97,7			81.5			112.	TADE	AERO.	ARC	
., 70 P	DENTIFICATION	ANGLES	90.									١.					-1			- 1		98,90	٠l •			.) -		11.6			RANGE 40.0 FT)	
E0. F	DENTI		80.						10	9 -	- ^	0	ب د	3 1	ص د	o r	8	oj u		9	- - 0	თ ჟ	0	-	ဖ္ခ	ရ	ņ	.7.1	ď	동 당	C RA 40.	
0. D	11									0 0	9 00	Ì		0	- 0		- 1					2 x 96 x 3	1		7 66			5 109	A7-70-60	ANECH	ACOUSTIC 2 M (:
59.0 DEG. F.			70							60 0							-					94.						108	_		AC 12.2	
X			.09						1 4								-1		97.7	-1		•			77.8	64.3	•	108.7	77.40	LOCATION	; ·	
			50.						4 4	28.5							1			• •		90.8					o.	8.2	TEST	Ž Ž	POINT 16	
			40.						6	တ္ ဂ	, c	Θ.	- -		4.	7.0	20	က် ရ) -	ci (ာ့ ဖ	4-	၂	0	4.0	4		9 10			TEST P	
				.			0 10					r					ŀ			- 1		85	1					105			0	
				FREG	öö	ĕ	<u> </u>	160	25.	ال ال	20	63		125	160	2500	315	400	6300	8000	12500	16000	25000	31500	4000K	63000	8 0000	OASPI			MODEL. 0100	

							Ċ	F	igi P(NA OC	IL R	PA QU	GE ALI	is YT		,								PEED 0, FP3)	
																						CORRECTION - YES CORRECTION - YES	18,68	PREE-JET SPE O. M/SEC (C	
ARC			160,		2.4 145.9	N D	14.1 150.7	6	3 151	-	11,2 150,6		100	·	04.2 146.0	02.5 145.9 99.5 144.6	3	91.2 142.8 87.4 142.0	7.	9 0	124.9 162.9	REFRACTION C TURBULANCE C	TAMB	MODEL	
40.0 71.	X01160	REES	. 150.		5 112.5 11	115.6	116.2 1	117.1	116.0	116.6 1	12.0	112,1	110.5	- m	105.4	103.6 1	96.1	8 90.6 9. 8 85.9 8	80.8	66.4	127.1	0, RE	(A 5859 16 29.6949	SO IN) -	
AL R.H. SID, DAT, SB 40.0 TI		NLET, DEBREES	130, 140		105.1 109.	111.5 111.	113.1 116.	5 116	113.1 116. 112.8 116.	4 115	3 115 3 115	22	7 112		.6 106 .6 106	104.4 104.	96 0	.0 9 3	82.2	. 6	124.3 127.0	/SEC) (IN)	IALPHA	812E CM (20.52	:
A.n. 310,	I - FJ-ZER-FMODL	ANOLES MEASURED FROM INLET,	110, 120,		ľ			1	02.1 109.6	. — [- ,	103.4 107.4	A AU	00.5 102.4 97.1 99.2	4	69,1 92,5 83,9 67.1		64.6 72.4	15.6 121.1	VELOCITY (FT Jet diameter	NC. N291 RDG. ADHO44	132.4 50 0	
, /U TERVENI	DENTIFICATION	OLES MEASU	. 100.		93.2	94.3	94.0	97.3	100.3	100.7	100.3	20	101.6	0 100.6	98.51	97.4 1	90.8		76.8	63.1	112.2 1	FREE JET VE FREE JE	TAPE N AERO, RD	T) ARC	,
	IDEN	NY	80, 90		.5 91.	9 8 9 8.	7 94.	3 96.	. 3 150.	9 99.	7 98.	500,00	9	6 100.	. 100. . 8 99.	. 98. 6. 96.	.2 93.		.0.	5 63	109.7 111.6	S.	17-78 ANECH CH	ACCUSTIC RANGE 2 M (40,0 F	
O A			60. 70.		.8 87.	6	30°	4 94.	96,	.6 96.	97.	, o 4	5 97.	2 97.2	. 1 95,	.1 94.	7 87.	G O	73.	ગળ	108.5	SCALE CALC. 1	02-C	n	
			50. 6		•	88.2 88 89.4 89	0 6	0	٥,	-			1	96.8 97	N O	80 60 60 60	4	79.7 8 3, 74.4 77.	~	55.0 58	108.2 108.7	\$12E	TEST DATE		
			40,		84.3		88.2		93.3	1		95.5		93.1		85,4		76.9		52.0	105.9	MODEL/FULL INPUT 1.		TEST	

									OR OF	IGIN PO	1A (0)	L i	P <i>A</i> QU	IG IA	E	IS IY										T SPERD (0, FPS)
																									18.68 43.20	FREE-JET O, M/SEC (
			.9 167.9 .4 169.1 .1 169.7	5 170	170	5 169	5 1	167	166	165.8		162	5 161.7	9		158.3							6 181.0		TAMB	FULL
		ė.	92.3 86 92.8 87 93.6 88	0	1 87	. w	- 2	9 6	-	78.4 69.	- 10	10	55.9 42	۰									102.6 96.6 104.1 97.1 104.1 98.2	Ģ	3859 29.6949	2
L X01165	, DEGREES		8 9 8 8 2 8				ŀ	98	1	60 00 60 00	76	7	64.	4 O	-						•		104.8	ENCY SHIFT	I ALPHA PAMB	SIZE (1400.00 SQ
FJ-ZER-FMGDL	SURED FROM INLET,		85.2 92.0 86.3 93.5 88.5 93.1	i					1					٥	0	6 .0							101.4 103.6 106.6 107.7 106.6 107.7	FREQUENCY	N291 ADH044	SQ CM (1)
NO I			78.5 79.5 81.6	83.1	93.6	85.5 55.5	85.9 86.6	85.8	84.8	63. 63.	80.9	75.6	69.0	20.0	34.2	6.4							96.5 102.9	8.260	RDG.	9032.2
DENTIFICAT	ANGLES MEA	90. 100.	.0 76.7 .0 77.5 .9 78.6	3 79.	62.0	8 62	6 82.	985	1 81.	. 60	7 78.	5 73	.1 68.	2 2	1 36.	2.		•					9 93.6 0 100.4	R RATIO	TAPE AERÖ.	FT) SL
1DE	Y	0	72.7 76 74.3 77 75.6 77	6 -		- w	4 a	2.4	-	79.4 81	20 00	œ.	- -	_ 6		9							90.6 92.9 98.9 101.0 00.2 102.3	DI AMETER	07-78 ANECH CH	RANG 00.0
		70.	71.2 73.0 74.1	76.	189	78.	78.	77.	77.		73	70.	64	. AA		-							89.3 96.2 96.2		02- C41	ACGUSTIC 731.5 M (24
		. 60.	9 71.2 4 73.0 0 73.6	74	78.	96	77.	77.	76	75.55	72.	66	61.	000	83								.0 86.7 .1 94.6		TEST DATE LOCATION	
		40. 50	66.1 69. 67.1 70. 67.7 72.	<u>ه</u>	0	o 01	מ מ	– σ	ြယ	ກຸດກຸ	ო –	. 0	લા લ	אוס)								83.2 87 . 87.1 92. 87.7 92.		F -	TEST POINT 0116
		FREG	90 0 90 0 90 0	- 1	160				1	1250	1		3150	-		8000 10000	12500	16000 20000	1	:	20000	80000	CASPL B PNL C		,	MGDEL 0100

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SCUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

						INAL OOR	PAGE QUALIT	S Y			SPEED 0. FPS)
										14.90 45.50	FREE-JET O, M/SEC (
40.0 FT. ARC X01170		PWL.			14.2 150.6 14.2 151.0 13.8 150.5 13.2 150.5	6 150 6 149 6 149 6 149	- 148 - 147 - 147 - 146	04.0 146.2 001.3 144.3 000.4 144.3 97.6 143.3	85.2 140 73.7 138 66.7 139 23.6 161	TAMB 79 RELHUM	- MODEL.
•	E3	140.		.6 112.6 1 .9 114.1	115.8 116.8 116.2 16.0	6 115.3	4 110.1 2 109.4 8 109.6 1 107.6	07.8 106.9 1 05.2 104.3 1 03.1 102.2 1 89.3 99.6	6 80.7 6 74.9 7 67.5 7 67.5	I ALPHA SB59 PANB 29.6979	82 SQ IN) -
TD. DAY, SB FJ-ZER-FMGDI	INLET,			7. 3 104.7 10 1. 4 107.0 11 1. 2 110.5 11 1. 6 112.1	1221	====	3 110.0 8 109.0 5 107.6	107.1 104.2 103.0 99.3 94.3	9 97.0 9 87.0 3 74.0 68.4 0 123.1	N291 1AL ADH049 P	81 ZE 80 CM (20.52
ICENT R.H. STD. - MODEL FJ BACKGROUND .	EASURED F	0000		4 95.8 1 9 95.8 1	0 99.2 1 1 100.7 1 7 101.6 1 3 102.5 1	9 103.1 3 103.4 7 103.8 4 103.8	9 9 – 9	5 100.9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	69.0 63.4 114.6 1	NG.	132.4
EG, F., 70 PERCEN Dentification - P	3LES			9 5 5 6 9 6 7 8 8 9 6 7 8 8	99 95. 99.	98.0 98.0 98.1 98.0	98.8 96.6 99.3 7.88	99.6 98. 97.8 97. 96.1 93.	62.7 110.6 1	TAPE CH AERO. F	RANGE 10.0 FT) ARC
59.0 DEG, F,		.00		4 0 0 0 - 6 0 0 0 0 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 96. 0 93. 0 94.	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		95.8 96.9 96.9 96.0 93.1 95.3 96.0 96.4 96.0 96.4 96.0 96.4 96.0 96.0 96.0 96.0 96.0 96.0 96.0 96.0	79.2 84. 72.0 75. 65.6 67. 60.3 60.	02-37-78 C41 ANECH (ACOUSTIC
		.00		8 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 8 92 97	- 4 - 94 - 96 - 96 - 96	6 95 6 95 95	2.0 95.2 9.9 93.2 7.0 88.5 85.3	5 63. 6 57. 9 107.	TEST DATE LOCATION	ST POINT 12
		5		83. 86.6 87.2 87.2	98.6 92.6 95.7	94.7 95.4 93.8	94.8 93.6 92.0	10000 69.2 94. 12500 66.8 91. 16000 84.3 89. 20000 78.7 87. 25000 77.5 82. 251500 77.5 82. 251	69.8 62.6 57.0 50.6		0100 0117 0100 0117 0100 0117

0
•
Ö
⁻•
-
•
ĸ
`
ã
Ξ
•
Ñ
ö
•

					ORI OF	GIN PO	IAL OR	P# QL	GE AL	IS ITY									EE0 0. FPS)	
FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, 8B 40.0 FT. ARC IDENTIFICATION - FJ-ZER-FMODL X01170	SURED FROM INLET, DE			87.8 86.8 87.4 88.0 90.3 92.7 94.4 99.3 104.7 108.5 110.7 111.4 1	86.9 86.2 88.0 89.6 92.2 92.8 94.7 101.4 107.0 110.6 112.8 112.0 1 88.4 89.0 88.5 90.3 92.5 93.6 95.8 103.2 110.5 112.9 114.1 112.3 1	89.3 90.8 90.1 91.4 93.8 94.4 97.1 104.6 112.1 114.5 114.9 112. 90.9 91.4 91.2 96.3 95.2 96.0 99.2 106.2 111.7 116.1 115.8 114.	91.2 92.4 93.0 93.8 95.9 97.1 100.7 107.7 112.8 115.9 116.6 114.2 1 96.8 97.3 95.8 94.9 97.3 98.7 101.6 108.8 112.4 114.5 116.2 113.8 1	95.9 96.2 96.0 97.3 99.4 99.3 102.5 108.8 111,8 115.1 116.0 113.2 1 94.1 94.6 94.9 96.2 98.6 99.9 103.1 109.2 111.7 114.6 115.3 132.6 1	97.4 96.9 95.4 96.0 98.1 99.3 103.4 109.6 112.0 113.5 114.2 110.2 1 95.1 96.1 96.1 96.9 98.5 100.7 103.8 109.2 111.7 113.6 112.6 108.6 1	96.8 96.1 96.1 96.4 98.8 100.4 103.8 110.0 111.2 113.4 110.8 107.8 1 95.8 95.4 95.1 96.2 98.8 100.2 103.6 108.8 110.0 112.4 110.1 107.1 1	94.9 95.7 95.7 96.6 98.6 100.2 103.9 108.3 110.1 111.2 109.4 106.1 147. 94.6 95.6 95.1 96.7 99.3 100.2 103.1 107.8 109.0 109.8 108.6 105.8 147. 95.0 95.3 95.7 96.5 98.7 99.7 102.6 106.5 107.6 108.4 107.6 105.2 146.	94.0 95.4 95.8 96.9 99.6 98.7 102.0 105.1 107.1 107.8 106.9 104.0 146	89.9 92.0 93.1 95.3 97.6 95.8 99.1 100.8 103.0 103.1 102.2 100.4 144 87.0 88.5 90.4 94.0 96.1 93.5 95.0 97.8 99.3 99.3 99.6 97.6 143 82.5 85.3 86.4 91.3 92.5 89.8 90.7 95.1 94.3 95.5 95.7 95.8 142	79.0 82.5 84.5 85.8 86.6 86.0 87.7 91.3 92.8 82.7 90.8 73.2 77.2 79.2 84.0 84.7 80.3 82.5 86.0 87.0 87.1 85.3	50.5 63.2 65.6 67.0 68.4 69.4 70.77.3 80.2 81.6 80.7 79.1 86.0 87.3 74.0 75.8 74.9 73.7 87.8 87.3 87.8 87.8 87.8 87.8 87.8	107.4 107.3 108.6 110.6 111.3 114.6 120.6 123.1 125.6 125.9 123.6 1	MODEL/FULL SIZE SCALE FACTOR FREE JET VELOCITY (FT/SEC) 0. REFRACTION CORRECTION - YEC Input 1.000 calc, 1.000 Free Jet Diameter (In) 48.00 turbulance correction - Yes	TEST DATE 02-07-78 TAPE NJ. N291 IALPHA SR59 TAMB 14.90 LOCATION C41 ANECH CH AERO, RDG, ADHO49 FAMB 29.6979 RELHUM 45.50	POINT ACCUSTIC RANGE 17 12.2 M (40.0 FT) ARC 132.4 SQ CM (20.52 SQ IN) - MOREL O, M/SEC (
0		40 FREQ	63 100		86.	87. 88.	92. 95.	92.	93. 93.	9 9	5000 93.6 6300 92.0 8000 91.6	89. 86.	16000 84. 20000 78. 25000 77.	31500 75. 40000 69.	63000 57.	OASPL.		d 10ya	MODEL TEST	and the second s

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SGUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

ANGLES MEASURED FROM INLET, DEGREES	. 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160,	1 66.9 70.5 70.7 73.0 76.2 76.2 76.0 64.7 91.0 91.6 90.6 65.6 1 69.7 72.3 72.3 74.0 76.5 77.0 79.3 86.0 92.5 93.4 91.6 86.1 4 71.3 72.9 73.4 78.9 77.9 78.6 81.4 87.6 92.1 94.9 92.4 87.4 71.5 73.8 75.1 76.4 78.5 79.6 82.8 89.1 93.1 94.6 93.1 87.3 1	4 77.0 78.6 77.9 77.4 79.9 81.1 83.6 90.1 92.6 93.1 92.5 86.7 0 76.0 77.3 77.9 79.6 81.9 81.6 84.4 90.0 91.8 93.6 92.1 85.6 9 73.9 75.6 76.6 78.4 80.9 82.1 84.9 90.2 81.5 92.8 91.1 84.6 2 77.0 77.0 78.0 80.3 61.3 85.0 90.3 91.6 91.3 89.5 91.5	2 74.3 76.5 77.3 78.6 80.4 82.4 85.1 89.7 90.9 91.1 87.4 79.1 167.5 7 75.6 76.2 77.0 77.8 80.3 81.8 84.8 90.1 90.0 80.3 84.9 77.3 167.2 2 74.3 75.1 75.8 77.3 80.1 81.3 84.3 88.5 88.4 88.9 83.6 75.6 166.3 45.6 75.6 75.6 75.6 165.0	5 72.3 74.8 75.2 77.3 60.1 80.8 83.2 86.9 86.7 85.3 60.7 72.2 165.4 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	65.8 69.9 72.3 75.2 77.7 75.7 78.3 78.6 78.8 75.8 69.9 58.8 61.6 65.5 68.9 73.3 75.7 72.8 74.5 74.8 73.9 70.2 64.4 51.1 54.7 60.4 63.4 69.3 70.7 67.7 70.2 66.5 63.0 55.6 40.9 46.5 53.8 58.1 60.7 61.9 60.9 61.4 62.6 60.2 54.0 41.7 19.9	33.1 42.3 47.5 54.0 55.2 50.3 50.8 51.0 44.9 38.6 22.5 159.0 159.1 12.2 22.8 29.5 35.1 37.4 35.1 32.8 34.3 25.9 15.4 157.1 3.8 8.7 11.3 11.2 7.2 9.0 15.4 157.4 157.4			4 85.8 87.5 68.1 69.8 92.0 92.7 95.4 100.3 102.5 103.4 101.3 95.2 179.7 2 90.9 93.3 95.0 97.6 99.9 99.2 101.7 105.6 106.3 106.1 103.0 95.6 7 91.5 93.9 95.0 98.9 101.1 99.2 101.7 105.6 106.3 106.1 103.0 96.8 DIAMETER RATIO 8.260 FREQUENCY SHIFT -9	TEST DATE 02-07-78 TAPE NO. N291 IALPHA SBE9 TAMB 14.90 LGCATIÓN C41 ANECH CH AERG. RDG. ADHO49 PAMB 29.6979 RELHUM 45.50	ST POINT ACGUSTIC RANGE 81ZE 81ZE 617
		1 68. 4 71.	9 73.	22.42	72.72.71.	65. 61. 54.	33. 12.			.4 85.8 .2 90.9 .7 91.3	TEST	150
	FREG 40	J	}	315 71. 400 71. 500 71. 630 69.	65 63 63 60	ţ	1]	31500 40000 50000 63000	86	1144 1844	131 000 131

(

1 /-

									0			NA DOI		AC UA	VLI. 3E	IS TY	;									SPEED 0. FPS)		
						·	•						1											15.62	44.80	FREE-JET 0. M/SEC (
				\$		145,1	146.7	149	4-		-1	_ +-	3 150.1	1				145.4	J	4	139	139.0	2 162.2	TAPE	RELHUM			
40.0 FT. ARC	X01180		50. 160,			11.6 111.4	4.6 112.5	113	6.3 114.2	115	114	113	13.8 109.8 12.8 108.6	107,	_ •			103.0 102.0 99.9 98.1	1	, e o	10		126.5 124.2	385 9	848	IN) - MODE		
DAY, SB 40	-FHODL	DEGREES	140, 1			109.0	130.6	114.8	115,9	115.0	115.4	115.1	114.9	13.2	110,6	109,4	105.7	103.4	95.7	68.1	82.4	76.1	126.2		PAMB	\$1 ZE 20.52 80		
	FJ-ZER-F19001	M IMLET,	120. 130,			,6 104	-	-	4m 4m	. 4	-1	-	44	9.5 110.6	-			-		9 ED	81.	77. 6 75.2 72.0 69.2	0.6 123.5	Ç.	ADH047	S CH		
ENT R.H. STD.	MODEL. BACKGROUND	ASURED FROM	110. 1			*	95.0 101 96.3 103	-	4.	412	•		104.1	-l• •		- I		99,6 10 96,8 9	i		- 1	69.8 7 64.2 7	115.2 120	9	90	132.4		
70 PERCE	ATION -	ANGLES HE	. 100.				. .		~ 0	40		60 (0 60 (0	. W. C			<u>.</u>	- à		١,,	o so	6	.7 70.2	2 112.0	TAP	AERO, R	E T.) ARC		
F30EL.	IDENTIFICATION	*	90.		1	.	- 0	6	0 4	<u>.</u> 00	0	~ •	40	36.7 98.1	0 4	ام	- >	8 0	0	n in	0	67.5 68. 61.1 63.	109.2 111.	7 9	ANECH CH	TIC RANGE		
UNTRANSFORMED 59.0 D			70,			9	(V. eq	8	0,1	, m	7	<u>ه</u> م	10 0	, mar	4.1/	N.		- o	lo c	N IO	0	65,9 60,8	107.9 1	02-07-78	C41	ACOUSTIC		
ST ST			. 60.			3 87.	6 6 6 6	3 91.		3 87,	97,	8 6 9 7,	90	96	9 9 8	98	96	5 92.	86,	78.	3 69,	.0 63.7 .8 58.1	5 108.0	TEST DATE	LOCATION			
	:		40, 50			3 88	67 88	06 0	6 91	96	.1 56	94	93	28	8) ro.	96 9	989	7 87	0.83	0 C	.6 66	.0 61 .7 54	05.3 107.			TEST POINT 0118		
				2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	00 12 00 00 00 00 00 00 00 00 00 00 00 00 00	1			ĺ		. [- [1		- 1	000 57	OASPL 10			MODEL 0100	133	

`\

690
•
•
0
•
•
-
•
6
`
0
_
7
7

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS
. 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

					ORI OF	GINAL POOR	PAGE QUAL	IS TY						T SPEED (0. FPS)
			o. Pwt.	0 4 4 0 0 0 0 0 0 0 0 0	4000	ω − 4 œ	.4 166.2 .5 165.3 .5 165.3 .5 163.9	6 0 0 0		And the second s		.9 180.4 .6	TAMB 15.62 RELHUM 44.80	FREE-JET
1	YOI 192	DEGREES	140. 150. 160	.3 91.3 95 .6 92.1 86 .7 92.9 87 .1 93.6 88	4 92.8 67.8 67.9 86.3 81.6 85.3 82.3 82.3 82.3	3 88.6 80 3 86.9 78 6 84.8 76	86.1 81.3 73 84.5 79.3 71 82.6 77.5 68 79.4 73.9 64	.1 70.6 .7 64.7 .3 55.8 .8 42.0	.7 22.0			103.9 101.9 95.9 106.9 103.6 96.6 106.9 103.6 97.6 CY SHIFT -9	1ALPHA SB59 PAMB 29.6949	- (N) 08
	. i	SURED FROM INLET, C	. 120; 130.	835.2 86.0 87.9 89.6	91.1 92 91.0 92 91.2 92 91.3 92	90.7 91 90.3 69 89.3 69	0 87.9 87.7 3 96.7 86.0 8 85.3 84.9 8 82.0 81.9	79.9 79 76.3 74 70.7 67 63.1 61	31.8 35.6 26 9.5			101.2 102.9 106.3 106.8 106.9 106.8	N291 1A	.2 SQ CM (14
	DENITE ICALION	ANGLES MEASURE	5. 100.	76.5 77.5 78.9 80.1	6 82 8 82 8 82 8 82	6 82.6	80.8 81.3 84.0 80.1 80.7 83.3 80.6 79.8 82.8 79.1 78.3 80.8	2 76.9 7 73.3 5 68.5 62.2	0 51.3 9 35.6 12.0			92.6 93.3 96.0 00.6 100.1 102.4 01.8 100.1 102.4 TER RATIO 8.260	TAPE NG. AERG. RDG.	9E FT) SL 9 032
	2		70. 80.	0 73.0 0 74.5 4 78.6 8 77.1	4 78.4 6 79.9 4 78.9 7 78.8	9 79.1 5 78.6 8 77.6 78.4	76.2 78.0 8 76.2 78.0 8 75.8 78.3 8 74.5 76.8 7	3 76.2 4 74.6 4 70.3 9 61.5	7.7 54.5 0.5 35.9 4.1 9.3			95.8 96.5 100.9 96.3 99.8 101.	02-07-76 C41 ANECH CH	ACCUSTIC RANGE
			0. 50.	.8 69.4 71. .9 70.7 73. .4 71.5 73. .6 72.5 74.	.6 76.5 78. .5 76.5 78. .1 74.2 76. .0 77.7 78.	.7 74.5 76. .5 76.1 76. .3 74.3 75. 8 74.5 76.	.0 73.6 75.8 .7 73.6 75.3 .5 72.1 74.6 .4 69.3 72.3	.2 66.3 70. .6 61.9 66. .6 55.2 61.	.1 33.9 43. 12.5 22.			. 7 86,3 98.1 . 5 91.5 94.1 . 0 92.1 94.1	TEST DATE LOCATION	TEST POINT 731
			4	50 65 63 66 80 67 100 71	4284			2000 57 2500 50 3150 45 4000 37	5000 22 6300 8000 10000	44	1	OASPL 62 PNL 86 PNLT 67	d 1 97 d	MODEL 0100

										1			INA OO		PAI	GE ALI'	S Y								La coren	M/SEC (0, FPS)		
																•								9.50	•1	M/8		
NOISE				7				6.4 2.9	49.7	9.0	, 7 c	800		. o	9.6 4.0	8.8	5.5	90.7	3.5	e 6	4.6		3.4		1	Ö		
ARC			60.					1.1.5.14	60.0	0,0	4 60	01-	7 151		6 6	7 148	ب ا	9 9	6	2 143	4	. 7 140	.0 163	TAMB	MEL	MODEL.		
FOR BACKGROUND NOISE	X01190							.0 113 .6 113	113	8 11	7	6 ¢	5.0	8 - - 1	ტ ე	- 6	4 6	7.000		0 10	~	ກຕ	.8 125	SB59	8	IN) - M		
FOR 40.	ار ×	REES	150					3 113 9 114	4 116			_ -		~ ~	2 110.	8 109	107	9 103	97	1 86		58 / 58	9 127		ا	80		
CORRECTED DAY, SB	-ZER-FMODI	, DEGREE	. 140					-	3 114.			- -					-	103	-)		- }		8 127.	IALPHA	14 L	20.62		
S COR	FJ-ZE	INLET,	130					105.	113	113	4	13	2	113.	112.	1 2	108.	2.5	96	90.0	83.	26.	124.	9	0	S E		
LEVEL.	ROUND	FROM	120					102.4	104.0	107.7	100.0	110.6		110.7	110.3	109.3	1	102.3	96.6	92.6	83.1	72.2	121.6	N291		4 50	•	
SSURE NT R.	MODEL BACKGROUND	SURED	110.						97.0	1.		- 4	104.4	105.1	105.4	104.9	103.5	100.4	92.5	89.5	76.4	69.7 64.4	116.0			132		
SOUND PRESSURE LEVELS 70 PERCENT R.H. STD.	1 0N - N	ES ME/	100					93.7	94.3	97.0			100.3			50.0			-l -		76.2		112.6	TAPE	AERO.	ARC		
	!	ANGLES	8	!					93.5			• 1									+1		11.9			10.0 FT)		
MODE DEG	DENTIFI		90,						6.10			٠.							.I .			67.7	09.9 1	m :	מא מי	40.		
FORNE 59.0			70.					- <u>a</u>	89.5	9 0	4 60	<u>.</u> -	- თ.	- ღ	- 4	9.		- 4 0		io io	ဆ.		08.7 1	02-07-78	NA P	2 M C 4		
UNTRANSFORMED MODEL 59.0 DEG. F.			.09					.	0 0	a r	. 0	۲ -	- 4	ထက	ب ب ب		~ 0		<u>.</u>	٥.	6	4 w	0		1	12.		
5			50.					- ~	90.0	- 0) က ၊	<u>.</u> -	- 4	မ ဇ	ල දැ	ص م د	ي ا	40	0	ص در د	8	စ်စ	3.6 109	TEST DATE	A)(1)	10 III		
								io 0	7. 89	_ <	r ou -	- 0	i o	0 8	0 -	0 4	O K		20	യവ	0	ი –	.4 108	-	9	0119		
			40	g o	က္က ဝ	Q 10			00 87. 00 88.	l		- 1					1		1		- 1		1, 106.			. 0	100	
				FREG 50		100	20	ซี 6	24.00	် ရ	50	125	200	25C 315	40C	630	1000	16000	2500	315C 4000	5000	63000 80000	CASPL			1001	135	

									OR OF	IG P	SIN POC	AL	. F	PAC PUA	E	IS TY		•							ION - YES		M/SEC (0, FPS)	
59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC	ON - FJ-ZER-FMODL	ANGLES MEASURED FROM INLET, DEGREES	FREO 40. 50. 60. 70. 80. 80. 100. 110. 120. 130. 140. 150. 160. PWL	100	125	84.5 89.1 87.8 88.1 89.6 91.8 93.7 95.6 99.8 105.2 110.3 113.6 11	87,7 89,7 90,0 89,5 81,3 93,5 94,3 97,0 104,0 111,3 114,4 116,1 113.8	88.0 90.0 92.3 91.1 91.9 94.5 95.4 97.8 105.1 113.1 116.5 116.7 114.6 1	93.4 92.9 93.7 94.2 95.3 97.4 98.1 101.7 109.4 114.3 117.6 118.6 116.2	97.2 98.3 98.8 97.3 96.7 98.8 99.4 103.1 110.3 114.1 117.0 118.7 115.3	94.1 97.7 97.7 97.7 99.0 100.9 101.0 103.7 110.6 113.5 116.1 116.3 115.2 196 2 95.1 96.1 96.1 97.4 100.1 101.2 104.4 111.0 113.2 117.4 117.3 114.1	96.9 99.4 98.4 96.9 97.3 99.1 100.3 104.7 111.3 113.8 116.7 115.7 110.7	95.0 96.6 98.8 97.1 98.2 99.8 101.7 105.1 110.7 113.4 117.1 113.8 109.3	95.8 98.3 97.3 97.3 98.2 100.0 101.7 105.8 111.5 113.2 116.4 113.1 1 96.0 98.3 97.6 97.1 97.7 99.6 101.4 105.4 110.3 112.5 114.4 111.3 1	96.1 98.2 98.2 97.4 97.8 100.1 101.5 105.4 110.1 112.1 113.2 110.9 106.6 1	92.4 96.2 97.1 97.7 98.5 100.4 101.0 104.1 108.2 109.8 110.7 108.1 105.7	2 94.5 96.7 96.1 98.7 100.9 100.2 103.5 107.1 108.6 108.8 107.4 104.5	85.3 91.4 93.3 94.4 97.1 98.8 97.5 100.4 102.3 104.5 103.9 103.7 100.9 1	80.0 88.0 90.3 91.9 95.7 97.1 94.5 97.8 99.3 101.0 100.8 1 78.5 83.8 87.1 87.7 92.6 94.2 91.5 92.5 96.6 96.1 96.7	76.8 79.8 84.3 86.5 87.3 88.3 87.5 89.5 92.6 95.3 83.7 91.5 90.4	71.5 75.2 78.7 80.5 85.0 86.0 81.8 84.3 87.5 89.0 89.1 86.5 86.2	.3 67.8 71.3 73.8 76.2 78.0 76.2 76.4 63.1 63.2 63.6 60.7 78.4 1 .5 61.8 64.4 67.1 67.7 69.7 70.9 69.7 78.6 76.0 76.8 75.9 74.2 1	52,1 55,6 58,8 61,6 61.3 64,2 63.0 64,4 72,2 70,9 72,5 68,3 67.7 140	0 108.7 109.9 111.9 112.6 116.0 121.6 124.8 127.9 127.8 125.0 163.4	NGDEL/FULL SIZE SCALE FACTOR FREE JET VELOCITY (FT/SEC) 0. REFRACTION CORRECTION INPUT 1.000 CALC. 1.000 FREE JET DIAMETER (IN) 48.00 TURBULANCE CORRECTION	TEST DATE 02-07-78 TAPE NG. N291 IALPHA SB59 TAMB 14.90 Location C41 Anech Ch Aero. RDG. Adho48 Pamb 29.6949 Relhum 45.50	MODEL TEST PWINT ACCUSTIC RANGE 0100 0119 12.2 M (40.0 FT) ARC 132.4 SQ CM (20.52 SQ IN) - MODEL 0, M/	

()-.

SGUMD PRESSURE LEVELS SØ Z400.0 FT. SL X01195 DEGREES 140. 150. 160. PML 83.3 92.8 87.9 169.4 85.9 94.4 88.4 170.3 86.4 95.1 160.1 86.4 95.1 160.1 86.4 95.1 160.1 86.4 95.1 160.1 86.5 94.8 77.8 169.8 84.5 97.8 16.8 171.1 85.6 93.1 86.1 170.5 85.6 93.1 86.1 170.5 85.6 93.1 86.1 170.5 85.6 93.1 86.1 170.5 85.6 93.1 86.1 170.5 85.6 93.1 86.1 170.5 85.6 93.1 86.1 170.5 85.6 93.1 86.1 167.8 85.3 70.6 63.3 163.8 85.3 70.6 63.3 163.8 85.3 70.6 63.3 163.8 85.3 70.6 63.3 163.8 85.3 70.6 63.3 163.8 85.3 70.6 63.3 163.8 85.3 70.6 63.3 163.8 85.3 70.6 63.3 163.8 85.3 70.6 63.3 163.8 85.3 70.6 63.3 163.8 85.3 70.6 63.3 163.8 85.3 70.6 63.3 163.8 85.4 80.8 70.8 160.8 85.5 7 103.3 96.8 161.8 85.6 104.7 96.8 80.6 104.7 96.8 80.6 104.7 96.8 80.6 104.7 96.8 80.6 104.7 96.8 80.6 104.7 96.8 80.7 103.8 8539 TAMB 14.90 80.6 53.1N - FULL 0. M/SEC.	
150. 160. PRESSURE LEVELS 150. 00.00 FT. SL. 150. 160. PR. 150. PR. 160. P	
100.0 FT. SELECTOR 150. 160. 0 FT. SELECTOR 150. 160. 150. 160. 150. 160. 150. 160. 150. 150. 150. 150. 150. 150. 150. 15	
7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
20 SQUAD P SQU	
POLATED SGUN - DAY, S6 2 - DAY, S6 2 - THCDL X01 130, 140. 93.5 93.5 93.4 93.6 96.9 93.6 96.9 93.7 94.6 93.6 96.9 93.6 96.9 93.7 94.6 93.8 95.7 93.6 96.9 93.7 94.6 93.8 95.9 93.8 95.9 93.8 95.9 93.8 95.9 93.9 95.9 93.9 95.9 93.9 95.9 93.0 95.9 93.1 106.9 106.1 106.7 106.1 106.6 106.1 106.6 106.1 106.6 106.1 106.6 106.1 106.6 106.1 106.6 106.1 106.6	
20. 7 2 20.00	
R.H. STD. - FJ-ZER-F ED FROH III 00. 120. 01.20. 02. 120. 03. 120. 03. 120. 03. 120. 04. 1 107. 2 1 107. 7 2 80. 7 2 80. 1 2 80. 1 3 80. 1 3 80. 1 3 80. 1 4 71. 7 5 80. 1 5 80. 1 6 80. 1 6 80. 1 7	
$ \mathbf{c} = \mathbf{c} + $	
SCALED SCALED O PERCEI 100. 100.6 100.6 12.7 TAPE ARATIO	
N	
81	
70. 60. 70. 60. 71.7 74.0 73.3 74.5 73.3 74.5 73.3 74.5 73.3 74.5 73.3 74.5 73.3 74.5 73.5 77.0 73.5	
29 27 27 27 27 27 27 27 27 27 27 27 27 27	
40. 66,6 66,6 66,9 66,9 672.1 72.3	
000111111000000000000000000000000000000	4 11
A S S S S S S S S S S S S S S S S S S S	137

ORIGINAL PAGE IS OF POOR QUALITY

6.1.2 Measured Acoustic Data for Model 1A

 $R_r^0 = 0.853$ C-D outer nozzle

 $R_r^i = 0.933$ conic inner nozzle

 $A^{1}/A^{0} = 0.194$

with struts in outer flow

				ORIG OF	INAL POOR	PAGE QUALI	is T			53.96 34.20	FREE-JÉT SPEED O. M/SEC (O, FPS)		
UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC IDENTIFICATION - MODEL FJ-ZER-AMODL X01010 BACKGROUND	ANGLES MEASURED FROM INLET, DEGREES		66.3 91.6 91.3 91.1 91.0 93.6 96.0 99.9 100.6 107.7 112.6 119.0 115.9 1 67.9 99.9 90.7 91.5 93.8 95.9 96.1 96.7 102.7 110.0 114.6 120.3 117.0 1 69.2 91.2 92.2 92.0 93.1 95.5 96.8 99.2 104.2 114.0 116.9 122.1 116.8 1 90.3 92.0 93.5 93.6 94.9 97.3 97.9 100.3 105.3 115.6 118.7 122.9 117.1 1	91.8 93.9 96.1 94.9 96.5 96.1 99.3 102.4 107.9 116.5 120.3 123.5 117.9 155 96.1 94.4 98.2 97.2 97.3 99.4 100.6 104.4 109.9 117.0 120.9 120.9 120.8 117.7 156 98.9 98.7 100.7 99.0 99.4 101.0 102.1 105.5 117.5 117.1 121.4 124.1 117.5 156 99.3 102.1 103.6 102.9 102.5 103.8 104.0 107.1 111.3 116.7 122.5 123.5 116.1 156	167,3 163,2 102.5 102.0 101.3 103.5 104.1 107.7 112.5 117.0 122.8 121.7 114.2 156 107.5 106.3 106.0 104.6 101.7 102.3 103.9 108.1 112.8 117.6 121.3 119.1 111.6 155 105.7 105.7 107.2 106.1 104.7 105.1 108.7 112.4 119.0 119.7 118.0 110.0 155 104.2 105.0 105.0 105.0 106.3 107.1 107.7 106.3 109.5 113.0 118.6 118.0 116.7 109.5 154	102.8 102.4 104.2 104.2 105.0 106.8 107.5 109.7 112.4 118.0 116.9 114.9 107.4 153 101.8 102.7 103.2 103.9 104.0 105.8 107.7 110.4 111.9 118.1 115.7 114.6 106.3 153 99.5 101.9 103.5 103.2 103.9 106.0 107.0 110.7 112.1 116.6 114.1 113.4 106.1 152 99.0 101.6 102.9 103.4 104.2 105.6 106.2 109.5 111.6 115.3 113.4 111.3 105.0 152	96.8 100.2 102.3 102.8 104.1 106.0 104.9 108.6 110.6 114.6 112.3 110.7 104.8 152. 93.9 97.6 99.7 101.4 103.1 104.0 104.0 106.9 108.8 112.7 110.1 108.4 102.9 151. 91.9 95.8 98.4 100.0 102.6 104.1 102.3 105.5 106.8 111.2 108.2 106.7 101.1 150. 85.8 93.2 95.2 97.9 100.8 102.1 99.3 102.5 104.4 108.2 105.4 103.3 98.5 149.	84,1 89.6 92.3 92.6 97.8 96.7 96.3 57.4 101.9 103.1 101.8 101.1 96.4 146. 82.4 86.5 89.6 92.5 92.4 93.3 92.6 94.5 97.9 101.8 97.4 94.5 90.7 148. 77.5 80.5 84.4 86.8 90.6 91.3 87.7 89.6 92.9 96.1 93.1 89.3 86.8 147. 70.2 75.1 77.5 80.6 82.3 84.0 82.5 83.4 89.0 90.3 87.7 84.4 81.2 146.	65.0 70.7 71.3 74.1 74.8 75.6 77.0 77.5 85.0 84.5 81.3 79.0 58.9 64.2 65.7 69.6 67.6 70.7 70.0 71.7 79.7 80.3 76.7 71.4 114.2 114.3 115.0 115.1 115.5 116.8 117.0 120.2 123.4 129.1 131.4 132.9	TEST DATE 03-29-78 TAPE NO. N313 IALPHA \$859 TAMB LGCATION C41 ANECH CH AERO. RD6. ADH214 PAMB 29.5600 RELHUM	MODEL TEST POINT ACGUSTIC RANGE SIZE SIZE O 0100A 0101A 12,2 H (40.0 FT) ARC 139,0 SQ CH (21.55 SQ IN) - MODEL 0	139	

					ORIGIN OF PO	AL PA OR QU	GE IS	-		ł	CTION - YES CTION - YES		FREE-JET SPEED M/SEC (0, FP3)	
FORMED MODEL SOUND PRE ERCENT R.H. STD. DAY, CATION - FJ-ZER-AMODL	ANGLES MEASURED FROM INLET, DEGREES 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, PWL	63 63 60 100	3 81.6 91.3 91.1 91.0 93.6 96.0 98.9 100.6 107.7 112.8 119.0 115.9 1	67.9 69.9 90.7 91.5 93.6 95.9 96.1 98.7 102.7 110.0 114.6 120.3 117.0 152 89.2 91.2 92.2 92.0 93.1 95.6 96.8 99.2 104.2 114.0 116.9 122.1 116.8 153 90.2 92.0 93.5 93.6 94.9 97.3 97.9 100.3 105.3 115.6 118.7 122.9 117.1 154 91.8 95.1 94.9 96.5 98.1 99.3 102.4 107.9 116.5 120.3 123.5 117.9 155	96.1 94.4 96.2 97.2 97.3 99.4 100.5 104.4 109.9 117.0 120.9 123.8 117.7 1 99.9 99.7 100.7 98.0 99.4 101.0 102.1 105.5 111.5 117.1 121.4 124.1 117.5 1 99.8 102.1 103.6 102.9 102.5 103.8 104.0 107.1 111.3 116.7 122.5 123.5 116.1 107.3 103.2 102.5 102.0 101.3 103.5 104.1 107.7 112.5 117.0 122.8 121.7 114.2 1	107.5 106.3 106.0 104.6 101.7 102.3 103.9 108.1 112.8 117.6 121.3 119.1 111.6 105.7 106.7 107.2 106.7 106.1 104.7 105.1 108.7 112.4 119.0 119.7 118.0 110.0 104.2 105.0 105.0 106.3 107.1 107.7 108.3 109.5 113.0 118.6 118.0 116.7 109.5 109.8 102.4 104.2 104.2 104.2 104.2 104.2 105.0 105.8 107.5 109.5 112.4 118.0 116.9 114.9 107.4	101.8 102.7 103.2 103.9 104.0 105.8 107.7 110.4 111.9 118.1 115.7 114.6 106.3 199.5 101.9 103.5 103.2 103.9 106.0 107.0 110.7 112.1 116.6 114.1 113.4 106.1 199.0 101.8 102.9 103.4 104.2 105.6 106.2 109.5 111.6 115.3 113.4 111.3 105.0 106.8 100.2 102.3 102.8 104.1 106.0 104.9 108.5 110.6 114.6 112.3 110.7 104.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10	93.9 97.6 99.7 101.4 103.1 104.0 104.0 106.9 108.8 112.7 110.1 108.4 102. 91.9 95.8 98.4 100.0 102.6 104.1 102.3 105.5 106.8 111.2 108.2 106.7 101. 85.9 93.2 95.2 97.9 100.8 102.1 99.3 102.5 104.4 108.2 105.4 103.3 98. 84.1 89.8 92.3 92.8 97.8 98.7 96.3 97.4 101.9 103.1 101.8 101.1 96.	1500 82.4 65.5 69.6 92.5 92.4 93.3 92.6 94.5 97.9 101.6 97.4 94.5 90.7 0000 77.5 80.5 84.4 86.8 90.6 91.3 87.7 88.6 92.9 96.1 93.1 89.3 86.6 0000 77.5 80.5 84.4 86.8 90.6 91.3 87.7 89.0 90.3 87.7 84.4 81.2 0000 70.2 75.1 77.5 80.6 82.0 84.0 82.5 83.4 89.0 90.3 87.7 84.4 81.2 3000 65.0 70.7 71.3 74.1 74.8 75.6 77.0 77.5 85.0 84.5 81.3 79.0 75.7	2 65.7 69.6 67.6 70.7 70.0 71.7 79.7 80.3 76.7 71.4 68.4 147.9 3 115.0 115.1 115.5 116.8 117.0 120.2 123.4 129.1 131.4 132.9 126.9 167.5	C. 1.000 FREE JET VELGCITY (FT/SEC) O. REFRACTIÓN CO C. 1.000 FREE JET DIAMETER (IN) 40.00 TURBULANCE CO	LOCATION C41 ANECH CH AERG. RDG. ADH214 PAMB 29.5600 RELHUM 34.	MODEL TEST POINT ACCUSTIC RANGE 0100 0101 12.2 M (40.0 FT) ARC 139.0 SQ CM (21.55 SQ IN) - MODEL 0.	to the second se

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

					OR OF	IGINAL POOR	PAGI QUAL	IS IS		?. :			SPEED 0. FPS)
		160. PWL	9000	90.1 174.9 66.4 175.0 66.0 174.6 62.7 173.6	0000	20 70	200	165.7 164.4 164.1			96.4 195.5 97.8 96.8	TAMB 63.96 RELHUM 34.20	FREE-JET SI
X01016	DEGREES	140. 150. 16	o - a -	9 00 0 9 00 0 9 0 0 9 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	85.3 77.2 50.3	.7 74.1 .1 67.9 .1 60.8 .5 45.2	. 2 . 26. 3		,	9.1 108.3 2.1 108.9 3.1 108.9 SHIFT -9	1ALPHA \$859 PAMB 29.5600	- (N1 OS
FJ-ZER-AMGDL	FROM INLET,	. 120. 130.	88 65 65 60 65 65 65 65 65 65 65 65 65 65 65 65 65	2 2 2 2	92.7 98 92.9 97 92.0 96 91.2 95	91.0 94 90.3 92 89.1 91 86.9 88	94.4 96. 81.2 82. 76.8 75. 69.0 69.	57.6 - 41.0 - 6.4			7 103.3 107.9 10 5 109.2 113.0 11 5 109.7 113.6 11 61 FREQUENCY	N313 1	2 SQ CM (14
IDENTIFICATION -	ANGLES MEASURED	90. 100. 110.	6 80.3 82 6 81.6 84 82.9 86	4-00	3 86.6 89 9 87.5 90 8 88.4 90 6 88.4 90	8 87.4 90 3 85.0 88 0 83.0 88	0 82.0 84 5 78.4 80 7 74.0 74 6 67.3 67	6 57.4 57 5 42.2 40 3 18.8 15			. 8 97.9 100.7 . 9 105.0 107.6 . 1 105.0 107.5 .R RATIO 8.061	TAPE NG. AERO. RDG.)E FT) 3L 9032
106		70. 80.	. 0 75.5 8 77.3 9 78.9	80.9 9 1.0 83.0 85.9 85.4 85.4 85.4	8 8 8 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 84.3 6 84.5 6 84.5 6 93.0	.0 82.3 2 79.9 6 75.6 67.1	.8 60.4 .8 42.0 .1 16.3			95.7 96.4 97.8 102.3 104.4 105.9 102.3 105.7 107.1 DIAMETER R	03-29-76 C41 ANECH CH	ACGUSTIC RANGE
		. 60. 60.	71.4 73.72.2 74.0 76.0 76.0 76.0	3 79.7 81.0 0 81.9 84.6 3 82.8 83.2 2 85.6 86.6	83.6 84. 80.6 83. 80.5 83.	79.4 62. 76.9 81. 77.0 壽、	71.5 76. 67.6 72. 61.7 67. 52.7 60.	40.2 20.5 30.			4 93.0 94.9 8 96.4 101.0 7 96.4 101.0	TEST DATE	TEST PGINT 731
		FREG 40	7.862	125 160 76 250 85 85	7288	74.71.00	54. 56. 43.	ရွိ ဗ	12500 16000 20000 25000	40000 63000 63000	98.	a 357a '	700 141 0000

					•			01	RIG	ANI: 200	N. P.	PA QL	GE JAI	19							58.10 12.70	FREE-JET SPEED 8.87 M/SEC (390.0 FPS)	
ACENT R.H. STD. DAY, SB 40.0 FT. ARC - MODEL FJ-400-AMODL X01030	INLET, DEGREES	. 110. 120. 130. 140. 150, 160.	TMA		95.3 97.1 103.1 106.8 116.0 112.9 194.7 98.4 105.8 110.9 117.6 113.5	94.7 99.7 109.0 113.7 119.1 112	98.2 103.4 112.5 116.6 118.8 107.4	100.6 107.3 113.9 117.0 115.9 102.6	103.6 108.6 114.5 117.4 113.6 102.4	.4 164.5 110.3 115.4 117.1 113.8 102.0 151.9	105.4 110.9 116.0 117.2 114.3 102.3	109.0 110.8 115.5 114.3 109.9 100.1	106.7 10.7 112.6 110.6 106.9 97.7 1	105.0 109.3 111.5 109.0 105.6 96.4 1 103.6 106.2 109.0 106.0 103.3 94.7 1	8 101.7 103.5 107.0 103.3 101.5 92.6 1 5 98.1 100.9 103.2 99.7 98.1 90.8 1	92.9 97.4 98.0 95.9 94.3 89.1	85.0 88.8 90.1 87.6 83.9 79.3	77.4 83.5 83.8 81.0 77.6 73.3 1	65.0 73.2 71.6 69.1 62.5 59.4 1	.1 117.3 121.0 126.0 127.8 127.9 119.6 163.7	PE NG. N313 IALPHA SB59 TAMB RDG. ADH216 PAMB 29.5600 RELHUM	SIZE 139.0 SQ CM (21.55 SQ IN) - MODEL 11	
59.0 DEG. F., 70 PERCE IDENTIFICATION -	ANGLES M	40. 50. 60. 70. 80. 90. 100	FREG 50 63 80	100 125 160 200	62.4 86.3 86.5 87.6 87.6 89.5 91. 83.6 85.4 86.9 86.9 89.0 90.9 92.	86.1 86.7 67.9 67.4 89.0 91.2 91.	85.7 88.6 90.6 90.7 92.5 94.1 94.	92.5 91.5 93.1 93.6 94.2 96.5 97.	104.5 103.6 101.9 99.6 97.7 99.8 100.	104.2 104.8 105.8 105.0 100.6 99.5 100. 101.4 103.2 105.3 106.0 106.1 104.2 102.	99.3 99.6 100.9 102.9 104.9 107.0 105. 98.7 99.1 100.8 100.0 101.3 104.2 105.	97.9 98.3 100.1 100.5 101.3 103.1 105.	96.7 97.4 99.7 99.6 100.3 103.4 103. 96.9 97.6 98.5 99.1 100.1 102.0 103.	95.3 97.1 99.0 99.0 100.1 102.2 101.	90.55 91.6 94.7 95.9 99.1 99.6 97.	83,6 86.0 88.3 88.8 94.2 94.8 92.	77.1 76.4 81.0 82.7 86.9 87.1 83.	70.0 71.5 73.4 76.1 78.5 79.2 78.	58.8 58.0 61.0 64.1 63.3 65.2 64.	OASPL 110.6 111.2 112.2 112.4 112.7 114.0 114.	TEST DATE 03-29-78 LOCATION C41 ANECH CH AERO	MODEL TEST POINT ACCUSTIC RANGE 0100Å 0103Å 12.2 M (40.0 FT) ARC	

()

				ORIG OF P	INAL P	AGE I IJALIT	\$ Y				YES	SPEED 390.0 FPS)
N €	FROM INLET, DEGREES		.0 101.5 106.1 113.2 110	.0 105.4 109,6 115.8 111.2 1.3 109.3 113,5 117.9 112.3 1.2 110.9 115.2 119.2 112.3 1.5 119.9 112.9 1	6.7 113.2 117.0 119.2 113.0 7.3 112.6 117.1 118.4 111.7 8.1 113.8 117.5 117.1 113.1 19.9 114.9 117.3 117.4 113.0 1	6 115.6 118.0 117.9 113.9 14.3 14.3 116.4 116.8 116.6 113.3 14.4 115.8 116.6 113.3 15.5 11	.3 115.1 113.6 113.3 110.9 113.5 110.5 110.5 110.5 100.5 508 0 110.4 108.1 108.6 107	.9 109.1 106.0 167.5 106.0 1 .4 106.5 103.7 105.4 105.3 1 .3 102.5 100.7 101.9 103.4 1 .6 100.3 98.1 97.4 98.9 1	.2 96.3 94.5 94.0 96.4 .2 90.4 88.2 88.0 90.7 .6 84.6 82.5 83.1 85.9 .3 79.4 77.5 74.2 78.5	67.7 64.3 56.7 141.3 127.8 129.2 124.6 164.9	JET DIAMETER (IN) 48.00 TURBULANCE CORRECTION - YE NG. N313 IALPHA SB59 TAMB 58.10 RDG. ADH218 PAMB 29.5600 RELHUM 12.70	SQ CM (21.65 SQ IN) - MODEL 110.87 M/SEC (
69.0 DEG. F., 70 PERCENT R.H. 1	ANGLES MEASURED 70 90 100 110		1 80.9 69.1 89.5 80.1 81	.1 90.9 90.6 91.1 90.7 92 7 90.2 90.7 91.4 90.9 92 3 90.5 92.2 92.6 92.4 94 1 93.2 94.4 94.5 94.1 96	(8 94.1 95.3 95.7 95.5 96 4 95.9 96.1 57.1 97.4 99 6 96.8 97.7 98.7 98.6 101 9 98.9 99.7 100.6 99.9 102	5 102.9 102.7 100.7 100.3 103 9 108.0 108.8 105.7 103.1 104 3 109.9 108.1 109.0 105.9 105 3 107.1 104.9 106.6 107.0 107	4 104.6 105.3 106.1 106.8 108.8 108.8 108.4 109.2 104.2 104.1 105.0 104.8 106.9 103.5 103.5 104.1 105.2 103.4 106	1 103.2 103.7 103.3 101.3 103 3 102.6 103.6 102.6 99.5 102 5 100.3 101.3 101.1 97.7 99 5 97.0 98.7 97.8 94.8 94	.8 91.8 92.1 91.7 \$.0 88.9 91.5 90.1 8 .3 84.4 83.0 82.2 8 .7 76.8 74.3 74.5 7	116.3 116.1 116.3 115.1 CALF FACTOR FREE LET	C. 1.000 FREE 03-29-78 TAPE C41 ANECH CH AERG.	ACCUSTIC RANGE 12.2 M (40.0 FT) ARC 139.0
	40. 80 60	•	89.7 92.2	68.6 92.2 91 91.0 91.6 91 92.7 92.3 92 93.3 93.5 94	93.1 94.9 97.1 95.2 98.9 97.1 103.0 103.3 1	111.6 109.5 1 110.6 110.0 1 108.3 109.3 1 106.6 106.1	106.0 1 105.1 1 103.8 1	102.0 103.1 104 100.8 100.9 102 98.9 98.8 100 93.1 95.5 96	90.8 91.9 92 85.6 84.7 88 82.9 81.0 84 74.9 75.2 75	117.6 117.1 117	ST DA	MODEL TEST POINT 0100A 0103A

											v	
					ORIGIN OF PO	AL PA OR QU	ge IS ALITY					FP8)
		PWL	167.8 169.2 170.3 170.3	169.5 170.0 170.6 171.7	172.9 172.3 171.1	169.7 169.0 168.0 167.4	167.2 166.5 165.4 164.4	164.0 163.0 161.7 159.5		182.9	TAMB 56.10 RELHUM 12.70	FREE-JET SPEED . 118.87 M/SEG (390.0
			3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8 8 8 8 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5 82. 2 80. 2 80.	7 73.4 7 73.4 0 70.9 5 67.2	63. 5 56. 7 26.	0		6 90 - 6	\$859 29.5600 R)) - FULL
X01035	DEGREES	ė.	- 0 4 D	8 r r r s	ဖြစ် စ က	87.2 63. 85.4 81. 82.4 79. 79.4 76.	9440	ro –		105.4 104.5 108.8 106.6 108.8 106.6 CY SHIFT -	ALPHA SB5 PAMB 29.	if 00 SG IN)
-AMODL	INLET, DE	ċ	N - 4 W	6790	NO 4 0		~ 0. ci 10.	00		104.9 10 110.0 10 110.0 10 FREQUENCY	_	SIZE CM (1400.00
FJ-400-AMGDI	FROM		88 88 89 87	8 89 4 8 90 7 8 90 7	6866		92. 79. 73. 66.			101.4	N313 ADH218	2 80
CATION -	MEASURED	ė.	6 7 8 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9 8 9	6 8 8	6 - 6 5 6 6 8 7 8 8 8 9	86 - T - C - C - C - C - C - C - C - C - C	- 81 8 77 8 71 8 63	5 36 7 10		6.9 97.3 2.8 104.1 2.8 105.1 10 8.06	TAPE NG. Ierg. Rdg.	1 9032
IDENTIFICATI	ANGLES	ö	000-	စ္အအဖ	4000	0400	D D G G			6.9 97.2 95. 4.8 104.8 102. 6.2 106.0 102. DIAMETER RATIO	сн АЕ	RANGE
		•	74.	78. 79. 81.	9 9 9 9	9 84.8 0 84.4 83.2 53.5	83. 80. 76.	61. 42. 15.		0 1 0 0 1 0	29-78 ANECH	ACCUSTIC RAN.
				10 10 10 0	- 01 80 90	11	0040	a o -	·	. 8 96. . 7 104. . 5 104.	82	731.5
		Ġ	0 10 0 0	N O 0 0	-004	0000		ພະນ		95.6 96 101.5 103 101.5 104	TEST DATE LOCATION	POINT 103A
	•		69. 71. 71.	75. 77. 89.	97. 95.	90. 78. 75.	V 9 9 10	36. 16.		94.3 99.7 100.5		TEST O A O
		FREG	88 80 00 00 00	180 180 200 200 200 200	316 400 800 800	800 1000 1250 1600	2000 2500 3150 4000	5000 6300 8000 10000		PNL 1		MODEL 0100

4
-
1
•
ö
_
•
_
•
2
170
179
9/79
9/19
19/79
119/79
196
97/18/79

		- :	7				- 1	0	OR)F	IG P	100 00	AL PR	Q	AG JA	iE Li7	IS Y										FREE-JET SPEED M/SEC (0. FPS)	
			·																	•			,	54.32	8		
		60.	Ē		٠,	L N		0 r	• 0	4	60 (6	, ci	80	14	Un U	4	- a	9	4		N M	9	.7 166.6	TAMB	RELHUM	MODEL	
X01040		150. 16			2	18.6 114 20.3 114	. ~	0	6 117	0 118	6 117 8 113	7 113	8 109	2 7 7 2 10 2 10 2 10 2 10 2 10 2 10 2 10	2 106	105	46	. 6	L 1	88.9	- k		133.0 126	5859	29.5600	· £	
J-ZER-AMODIL	DEOREES	140.			111.0	12.6	117.2	116.3	7.0	121.0	121.3	100	118.4	16.0	114.5	0	0.00	105.6	101.6	92.7	90.0	76.3	130.0	IALPHA		\$12E 21.65 \$0	
li.	M INCET,	.0. 130.				. 109	6 113	211 1.0	7 15	3 116	. 5 116	5 118	6 117	5 15	4 115	9 112	6. L	4 105	6 101	9.0	/ 00	35 77	.5 127.7	e	216	. ₩ 8	
HODEL	SURED FROM	110. 120			1	97.5 101 98.0 103	-	4-6	- *-	-			- -			-		-		86.4 90	-1		18.5 122	NG. N313		139.0 8	
	1	100.			1	- 4	•		9	7	103.1	-	103.8	• •	90			7	9 1) <u> </u>	واد		114.9 1	TAPE	AERO. R) ARC	
DENTIFICATION	ANGLES	0. 90.				6. – 2. 9. 4. 6.	96.	6.		102	102	102	200	103.	50.00	103	3 102.	5 99.	95.	7 88.1	200		3 114.2		3	RANGE 40 O FT)	
10		70. 80				~ 0	ဖ	a r	76 87	9 101	. 8 100 8 2	5 100	100	.0	3 101	6 100	0 4 -	3 97	.1 94	83.8 87.	٥	65.7 64.	1.5 112.	03-29-78	A1 ANECH	ACGUSTIC	
		.09				^ 0		ю с	. 10	6	0 6	-	0	00	.	98.6	4 K)	0	e r) Tr	4 0	62.5	111.1 111	TEST DATE 0	- 1	12	
		60.			8	96.7	8	8 8	8	8		8	9	8	8	97.0	3 a	8		96.	27		110.1	TEST	LOC	17 POINT 0104A	
		6	FREG 50 63 80	200 200 200 200 200	5	80 80	69	8 8		98	9 9	8		6	20 9	92	8 2	9	98	73.6	٥		108.8			DEL TEST 0100A 0	

_
-
7
1
•
ø
_
_
2
~
•
9
_
•
07/1
õ
0

							OR OF	IGII PC															SPEED 0. FPS)	
																					CORRECTION - YES	54.32 29.30	FREE-JET SP 0. M/SEC (
ZER-AMODL X01040		160. PWL		113.9 1	7.4.	115.1 153	16.7 154	18.	117.8 157	113.6 155 111.2 154	09.8	07.4 152	106.99 151 105.6 151	04.4 150	60.00	97.4	90.4 346	80.2 144.2	9 144.	126.7 166.6	REFRACTION C Turbulance C	TAMB DO RELHUM	- MODEL	
X01040	DEGREES	140. 150.			D (1		စ	17.9 122.6 21.0 125.0	ဂ	ဖြစ		1 116.2	12.6	112.1	106.4	99.7	94.7	86.6 84.0	İ	130.0 133.0 1	48.00	IALPHA 5859 PAMB 29.5600	SIZE 21.55 SQ IN) -	
FJ-ZER-AMODL	INLET,	120. 130.	•	0	100		115.2	11.3 116.4 12	116.8 1	117.4	13.7.1	116.2	2 113.6 1	3 112.7	3 109.3	6 101.5	3 99.0	86.7 88.9	5 77.2	.5 127.7	ELOCITY (FT/SEC) ET DIAMETER (IN)	N313 1AI ADH216 F	SQ CM (21.	
ı Z	ANGLES MEASURED FROM	. 110.		97.4	000	99.0	103.4	7 106.4 11	106.5	106.8		108.5	106.9	107.1	103.4	95.2	91.1 86.4		68.1	9 118.5 122	77		139.0	
IDENTIFICATI	ANGLES !	90, 100		92.1	4.4.	96.0	98.4	100.00	102.5	102.0	102.3 1	103.2 1	103.2	103.0	101.2	95.7	80.00		67.1	114.2 114.	FREE JET FREE	TAPE CH AERO. F	RANGE 10.0 FT) ARC	
		70. 80.		0	, o	9	7 96.	97.	9 100	5 100.	7 100.	0 101	9 0	000	900	1 94.	9 89	77.6 79.1	7 54.	111.5 112.3	ALE FACTOR C. 1.000	03-29-78 C41 ANECH	ACGUSTIC 2.2 M (4	
		60.		9	86	10. 4 9. 9.	6 94	2 6 2 6 3 6	2	8. 7. 100.	6 0 0 0	8 100.	900	98 0	9	2 89		72.2 74.4	0 62	110.1 111.1	ULL SIZE SCALI 1.000 CALC.	TEST DATE LOCATION	POINT 104A	
		•	ව සු ක ර ව සි ක ර	 85.3	68.7	88.0 80.0	93.9	86.0 86.0	97.9	96.0	100.5	97.4		60.00	0.79	80.2	78.2	\$0000 67.0 7	53.6	GASPL 108.8 11	MODEL/FULL INPUT 1.		L TEST P	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEB. F., 70 PERCENT R.H. STD. DAY, SB. 2400.0 FT. SL

)R																										•
																																		54.32 29.30	FREE-JET SPEED M/SEC (0, FPS)	
		Ę	170.2	172.4	172.9	172.9	175.2	75.2	72.0	172.2	170.7	170.6	169.9	169.3	166.6	67.6	166.3	164.8	164.1	163.6	162.3	163.0								164.5	,			TAMB 6	0.	}
		160.	67.7	9	89.5	9.69	90,6	60,0	¥ .	79.1	76.8	74.7	73.0	70.5	3. C	200	53.2	42.3	20.8			•										100.1			- FULL	
0	ð	150,	96,8 97,8	96.4	98,8	96.8	100.6	100.3	2 70	92.7	89.7	87.8	1 98	63,0	92, 4 0, 4	74.2	68,9	59.3	45.4	25.9										106.3	6	10.3	FT9	3859 29,5600	Ē	
AUTU45	วรสหยาย	140.	93.0 53.0	9	-	96.4	ů (ú c	ع م	-	0		•						i	44.0	20,1									107.6	-	112.2	CY SHI	PAMB	\$12E (1400.00 \$Q	
. 1		130.	92.7	93.	95.3	95, 1	96, 3	86,40 4,40	97.0	93.0	93.6	94.1	92.5	800	0, 44 0, 44	200	60.2	73.5	•	53.7	•									106.6	6	112.3	FREQUENCY SHIFT		S CH (140	
I - FJ-ZEK-ANOUL	5	120.	84.3	87.4	88.6	90.8	92.3	9 9 9 9	92.7	92.5	91,1	89.8	89.4	•	7,70		79.1	74.5	67.4	55.7	0,0	3.0								102.5	108.2	108.8	u.	N313 ADH216	2 80 0	
	3	110.	80.0	63.1	85.3	86,1	88,1	90.0	88.3	88,5	88.4	99.6	87.7	86.6	96.4	80.2	78.4	71.9	64.6	54,4	7,00	N									105.5	95. S	8.061	200 200 200 200 200 200 200 200 200 20	9032.	
DENTIFICATION	3	100,	76.3	60.1	81.8	63.1	94.0	92.7	4 6	65,1	64.7	84.7	85.0	2 .	63.	79.6	75.0	71.3	64.3	54,5	30.7	0,0								96.0	102.8	102.6	RATIO	TAPE AERO. 1	S.	
L L L	į	90,	76.6			872.4						1		•						58.4										95.2	103.2	4.4	AMETER F	- 5	1C RANGE 2400.0 FT)	
		80,	74.5			79.9		62.3	81.8	97.89	82.0	82.2	81,9	61,6	9 0	78.6	76.6	72.4	64.1	57.5	9,0									93.2	9	102,4	NIO.	-29-78 1 ANECH	ACGUSTIC	
		70.	73.0	75.9	77.6	79.4	95.6	90.0	81.6	61.8	81.2	61.1	80,2	79.5	18	76.3	72.6	66.9	62.3	51.9	9,0) P								92.0	1 .66	99.7		<u>82</u>	AC01	
			72.	7	76.		92,	9 6	91	8	80.	79.	78	11		73	68	2	57.											90.0	98.0	97.3		TEST DATE LOCATION		
		8 0.	70.2	72	73	26	8	76	78	78	7	76	76.	9	5 6	67	3	58,	49.						-							2		TES	T POINT 0104A	
		4	67.3	99	72	7:	7	7 0	76	7.	7.4	73	71.	200		200	52	47	38.	2.0	j									85.8	• •	. 10 20 30			163	
		FREG	6	2	100	125	200	, v	315	9	800	630	00	0 0	5 6	2000	2500	3150	4000	2000		2000 0000 0000	12500	16000	25000	31500	40000	50000	90000	DASPL	E	PR			MODEL 0100 A	147

80. 70. 80. 90. 100. 110. 120. 130. 140. 140. 180. 140. 180. 140. 180. 140. 180. 180. 180. 180. 180. 180. 180. 18	X01060 X05220		160.			110.4 145.3	110.2 146.5	108.8 147.8 106.1 148.7	102.9 149.2	100.7 148.6 98.8 148.1	3 97.5 148.5	97.4 148.4	5 98.2 149.7	96.8 149.4	98.0 148.6	1 96.5 147.9	94.6 146	93.7 145	90.1 143	66.9 142 63.4 142	79.1 141	72.5	59.1 139	9 116.3 161.1	9 TAMB 58.46 5600 RELHUM 12.50	FREE-JET SPEED) - MODEL 118.87 M/SEC (390.0 FPS)
ANGL 60. 70. 60. 90. 90. 65.1 65.1 65.1 65.1 65.2 66.7 90.4 90.2 66.1 67.5 90.4 66.7 90.2 66.1 67.5 90.4 90.2 90.2 90.2 90.2 90.2 90.2 90.2 90.2	- MODEL FJ-400-AMGDL BACKGROUND FJB400-FMODL	MEASURED FROM INLET, DEGREE	00. 110. 120. 130.			93.3 95.0 101.4	8 92.7 96.9 105.0 108.6 115	8 93,7 97,9 108,3 111,7 116 6 95,1 99,5 110,1 113,5 116	0 97.2 102.4 110.7 154.6 116	0 98.5 103.7 111.5 114.9 114 4 00 8 105 6 111 6 114.0 112	5 101.7 106.9 113.0 113.9 110	7 102.1 108.1 113.0 113.7	6 102.6 106.6 114.1 113.6 1 6 104.0 109.0 114.9 114.0 1	4 104.6 109.1 113.8 113.2 1	8 104.8 108.8 112.3 112.6 1 8 105.0 108.1 112.8 111.6 1	4 105.1 108.0 111.6 110.3 107	9 104.2 106.5 109.5 107.3 104	3 100 2 101 A 104 3 101 S 1	.8 97.1 99.4 101.1 98.2 97	.9 91.6 96.2 96.5 93.7 93 1 A8.9 92.9 94.3 91.2 B8	.7 84.0 87.5 88.1 85.9 83	0 77.2 62.0 60.8 79.5 77	.5 65.2 70.7 69.6 67.6 62	.2 115.0 119.1 124.2 125.0 1	NG. N313 106. ADH224	SIZE 139.0 SQ CM (21.55
4 4 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	IDENTIFICATIO	ANGLES	. 70. 60. 90.			2 84.7 86.0 86:1 87.6	1 65,1 65.9 67.5 69.4	.4 66.4 66.7 88.0 90.2 5 88.3 88.5 89.1 91.0	4 69.1 89.7 91.5 92.6	.9 89.7 91.0 91.8 93.9 R 91.8 91.6 92.6 98.9	9 93.7 94.0 94.0 96.4	1 92.4 93.4 94.5 97.3	3 94.3 94.3 94.1 97.0 5 98.3 97.3 96.1 97.7	9 98.1 99.9 99.2 99.0 1	.3 97.1 97.8 99.1 100.2 1 8 96.1 96.5 98.0 100.9 1	2 96.9 96.6 96.8 99.9 1	9 96.0 95.8 97.6 99.7	2 94.1 94.9 96.1 97.8 2 02 7 03 7 05 0 07 8	4 89.5 91.0 94.3 95.9	3 87.1 87.3 91.9 93.0 6 84 6 86 6 86 6 87.4	2 80.3 81.4 84.9 85.9	6 72.9 75.6 77.2 78.2	7 60.3 63.4 62.3 64.2	107.3 107.7 108.5 110.4 1	03-29-78 C41 ANECH CH	ACCUSTIC RANGE 2.2 M (40.0 FT)

							OR OF	RIGIN PO	AL DR	PA QU	GE ALI	IS TY			n.			CORRECTION - YES	58.46 12.50	FREE-JET SPEED 7 M/SEC (390.0 FPS)	
			ایے		S	က္စ	0 0	6. 6. 6	5 9	6 4	, o.	ا ا	o 5 -	- 0	ei 4 rü	7 8	o,	1	1	118.87	- political - 18
ARC			E	,	7 1				-			148	0 / 0	146	4 4 4 4 4 6	0 142	2 162.0	REFRACTION Turbulance	TAMB	MODEL	2
			0. 160		.0 107.		60	· 4 4	<u> </u>	* *		.2 106.9	201	.5 99.4	8 8 8	2 69	.9 121.2	REF! TURE	5859 29, 5600	18 FE	
RE LEVELS	0	REES	0. 150		.0 111			2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	~~	-	-	100	707.8	97		9 75	125	390.00 48.00	1	8	
RESSU	}	r, DEGREES	3. 140		1	.3 108.3 .1 111.5 .0 113.2		V 60 +-	с –			ω σ ₃	6 6 8	.3 96		4 67	.0 124.7	6	IALPHA PAMB	\$12E 21.55	
SOUND PRESSURE	FJ-400-AMODL	1 IMET,), 13Q.				_ _ '	e 40	6 114	13	2 112	0.10	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	98	0,00 9,00 2,00	.7 68	.5 124.0	VELOCITY (FT/SEC) Jet Diameter (IN)	224	5	
MODEL S	' '	ED FROM	0, 120			. 88.0 4 101.0	20	5 C G	0 0	109	3 109	108	<u> </u>	8 6	2 5 2	.0 79 4 69	.7 119.5	OI AME	. N313	139.0 50	
		MEASURED FROM	0. 110,	i		000		8 9 5 8 9 5	101 7		103		102		8%,4 90.1 84.2 85.6 79.4 78.9	.6 66	1 \$14.7	JET VEL FREE JET	TAPE NS. (RO. RDG.		
TRANSFORMED	DENTIFICATION	AMOLES	0. 300		10	. 4 . 90. C	0	a N 6	0 0	0 6	G G	B P		3 O	400	io io	0	FREE J FR	TAP AERO.	E FT) ARC	-
HO.	_	×	0. 90			60 80 80 80 80	40	~ N @	თ თ	200	0 0	00	-40	o ni	.55 90 .55 88 .50 81	4	_		E CE	C RANG 40.0	
c)		•		-	- 4 0 6 0 0	93	4 - 8	- 8	~ -	6 6	900	0 10 C	.	.3 90 .6 89 .2 81	ن 4	.8 112.0	FACTOR 1.000	03-29-78 C41 ANECH	ACGUSTIC RANGE 2 M (40.0 FT)	
	•		0. 70			n a -	~ 0	6 8 6 4 8 9	2 97	0 to	6 102	2 4 0 0	- 7 . 98	5 Z	.55 .55 .55 .55 .55 .55	.2 76 .8 67	111	SCALE CALC.		12.2 2.2	
			0. 60		~	2 C C C	5 23	0, 50 0 2, 50 8	78 8		102	6 102	101	- 0		E) E	•	\$12E	TEST DATE LOCATION	INT A	
			0. 50		-	2000		9 9 9	0 0		10 0		500	 	. 4 91 . 4 94 . 2 90	4	.5 111	MODEL/FULL INPUT 1.		TEST POINT 0106A	
			4 0	0 8 0 0	200 200 200 200 88	<u> </u>	- 1	1250 97.		-		-	1		000 000 000 000 000 000	- 1	11	101 1		Ş	149
			8	t≠	00	₩ 4 ₽	0	5 2 6	2 2	6	8	8 5	12500	8 8 8 8	31500 40000 50000	6300				2	

				00	RIGINA F POÜ	L PAG R QUA	e is Lity				46 50 FREE-JET SPEED 7 M/SEC (390.0 FPS)
		160. PWL	O — 10 00	-070	61.0 168.8 79.4 168.7 78.2 168.5 75.8 167.9	60 60 FD	6 0 0 0 10	162.5 161.6 160.8 158.7		91.3 180.0 94.1 94.1	TAMB 58.
X01065	DEGREES		90.2 92. 91.6 93. 92.6 92.	91.6 39. 91.3 87. 91.7 86.	900	85.5 82. 83.8 80. 81.0 78. 78.4 76.	75.0 72. 67.6 64. 64.2 57. 53.5 43.	37.7 24. 14.4		102.8 102.2 100.9 107.7 105.8 103.4 107.7 105.8 103.4 FREQUENCY·SHIFT -9	SIZE SO SO IN) - F
FJ-400-AMODL	FROM INLET,		79.3 88 82.3 89 83.7 90 85.9 90	88.2 91 88.8 92 88.8 92 89.2 93	89.7 91.8 88.7 91.8 88.7 91.8	87.6 38 86.7 87 84.4 85 82.8 83	81.0 80 76.6 73 73.0 71 65.3 61	53.9 47 37.7 26 11.0		99.4 105.4 106.0	N313 ADH224 .2 SQ CM (1
DENTIFICATION -	ANGLES MEASURED	. 100.	72.7 74.3 76.6 4.6	78.7 79.1 80.3	9 81.2 83.9 3 82.3 84.8 7 82.7 85.3 7 84.0 85.4	5 83.3 9 82.3 1 81.6 79.7	8 78.0 1 75.2 64.1	2 53.9 7 39.1 2 16.0		6 92.9 95.0 2 100.5 102.3 4 100.5 102.3	TAPE NG. AERG. RDG.
IDEN	NY	0. 80. 90	2 72.2 72. 9 73.3 73. 9 75.8 75. 0 76.1 76.	3 77.0 78.8 78.4 78.1 78.8 80.1 5 78.0 80.0 80.0 80.0 80.0 80.0 80.0 80.0	4 79.9 80. 0 83.5 82. 5 83.6 83. 4 82.7 84.	8 81.2 83. 8 81.9 82. 8 81.7 83.	5 80.1 80. 3 77.9 78. 5 74.2 74. 7 65.4 65.	7 59.2 59. 4 41.5 41. 3 14.9 16.		.9 92.6 93. .1 101.4 102. .7 102.7 103. DIAMETER	33-29-76 241 ANECH CH ACGUSTIC RANGE 5 M (2400.0 F1
•		50. 60. 70	5 71.2 71 5 72.3 71 9 74.4 73 7 75.2 75	2 75.7 76 6 77.5 76 9 79.5 79 8 78.0 78	9 78.4 78 7 81.9 81 6 83.1 84 7 81.9 82	8 60.7 7 81.2 7 9 9 9	4 62.6 62.6 62.6	2.361.4 6.6		.8 91.6 91 .7 99.4 100 .7 100.2 100	ST DATE O
		F0 40.	69.4 70.3 70.3 69.6	2.47	5 76.8 77 0 78.9 81 0 76.3 78	77.1	.	35.7	12500 16000 220000 25000 31500 50000 63000	80000 CASPL 87.6 69 PNL 93.6 96 PNLT 93.6 96	TE: LO MODEL TEST POIL 0100 A 0106 A

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL (·

Comparison Com								0	F	lGII Po	NA PO	L R	P# QU	IG!	E 1 17	S Y									FPS)		
Transferred Model Scuing Pressure Levels Corrected Formation F																								44	FREE-JET M/SEC (
40, 60, 60, 70, 80, 80, 100, 310, 120, 130, 140, 15 ANGLES MEASURE LEVELS CORRECTED FORM TO THE TOTAL STID. DAY, 88 40, 100, 80, 80, 100, 80, 100, 110, 120, 130, 140, 15 ANGLES MEASURED FROM INLET, DEOREES ANGLES MEAKGROUND BELL MEASURED FROM INLET, DEOREES ANGLES MEAKGROUND BELL MEASURED FROM INLET, DEOREES ANGLES MEAKGROUND BELL MEASURED FROM INLET, DEOREES ANGLES MEAKGROUND BELL MEASURED FROM INLET, DEOREES ANGLES MEASURED FRO	ARG MOISE			!		9	10	9 0	4	۲. 0	7	(O) II	, ci	0 0	-	οi -	10	90	0	5 60	V 0	- 10	6.3	TAMB	HODEL G		
MATRANSFORMED MODEL SQUIND PRESSURE LEVELS CORRESOLVE DEVISION BY STOL DAY IDENTIFICATION - MODEL FLORM INLET, ANGLES HEASURED FROM INCE, ANGLES	\$ 4		150.			.8 108.2 1	4 109.6 1	0.11.2	6 110.5	. 108.6 1 .0 106.4 1	1 106.1 1	.2 105.6 1	0 105.2 1	6 106.3 1	3 107.1	0 107.3 1	9 104.7 1	1 98.6	6 95.0	.6 94.2	.55 79.55 7.3 A.55	67.8	.9 120.4 1	ļ	3	•	
ANOLES MEASURE 10 100		I INLET,	. 130.			6 97.9 1	00.3	103.6	4 103.7 1	104.3 103.4	7 103.8 1	4 103.7 1	0 103.9	1 102.5 1	6 102.2	2 101.8 1	2 99.6	2 2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	5 92.3	5 87.3 0 85.6 8	79.9 7	9 66.5 0 59.4 6	7 115.1 11				
10				•		٥	o c) ~ _~	1	95.2	97.0	97.4	98.2	- 68		98.0 0.0	97.4	8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6 8 6	90.3	8 2 2 3 3 3 3	77.1	6 0	109.51	E NG.	9		
100. 7 100. 7 102. 7 103. 40. 40. 40. 40. 60. 70. 60. 106. 40. 60. 70. 60. 106. 60. 70. 60. 60. 70. 60. 60. 70. 60. 60. 70. 60. 60. 70. 60. 60. 70. 60. 60. 70. 60. 60. 70. 60. 60. 70. 60. 60. 70. 60. 60. 70. 60. 60. 70. 60. 60. 70. 60. 60. 70. 60. 60. 70. 60. 60. 70. 60. 60. 70. 60. 70. 60. 70. 60. 70. 60. 70. 70. 70. 70. 70. 70. 70. 70. 70. 7		o o				3 67	7. 87	5 89	06		.9 93.	.6 94	7 95	2 24	6 95	4.4	4 93	4.6	5 87	4 10 2 02	2 74.	1 65 8 57	05.5 105.	AE	1		
77.5 60.0 60.0 60.0 60.0 60.0 60.0 60.0 60	50.0 DEG.					6 83.	60 c	3 86.	.7 90.	98	7 91.	4 K	8	3 92	95	95.	2 91		98	7 20	3 77.	2 62 55	.5 103.	29-78 ANECH	ACCUSTIC		
7.7.7.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•	0.0			.3 62.1	.7 82.9	3 85.8	7.98 6.	. 3 89.3	2 90.2	9 6	2.10	200 E	910	- e - e - e - e - e - e	5 89.4	5 86.1	4 82.3	7.97 0.	.8 71.9	69 G	.7 102.0 1		<u> </u>		
7 0 0 0 0 0 0 0 0 0 0 0 0 0			40.	ට ෆ ට	0 to 0	77.5	4.0	91.2	62.1	84. 87.5	96.1	87.2	86.9	88.4	98.1	9.0	82.3	76.1	71.1	68.3	64.3	52.9	98.1 1	F	TEST P		

07/19/79 15.714							OF	RIG	iiN 200	AL	P/ Ql	AG U <i>P</i>	E	IS TY								•			STION - YES	14 30	© 144 € 57 144 144 144 144 144 144 144 144 144 14		Castal.	The state of the s
	FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC	IDENTIFICATION - FJ-ZER-AMODL X01070	ANGLES MEASURED FROM INLET, DEGREES	40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PUI	63 63 80	100 125	77.5 83.3 82.1 82.6 83.5 85.3 87.7 89.9 91.6 97.9 101.8 108.2 79.4 81.7 82.9 84.2 85.8 87.7 87.8 91.0 93.9 90.3 103.4 109.8	80.9 83.2 84.2 84.3 85.1 87.5 88.3 91.0 95.0 103.3 105.4 111.3 107.0 143	81.2 84.3 85.8 85.3 86.4 88.5 89.2 92.1 96.1 103.6 106.0 111.2 106.8 182.1 84.9 86.7 86.7 90.0 89.9 90.3 93.7 97.4 103.7 105.6 110.5 106.4 1	84.9 85.7 87.4 89.0 88.6 90.9 91.6 95.2 98.9 104.3 105.1 108.6 104.7 142	87.5 87.3 89.3 88.8 89.9 92.3 92.4 96.6 100.1 103.4 104.0 106.4 102.3 1 86.1 89.2 90.2 90.7 91.6 92.9 93.3 97.0 99.7 103.8 104.1 106.1 100.7 1	87.2 88.9 89.9 90.4 91.7 93.6 94.2 97.4 100.4 103.7 104.2 105.6 100.6 141	87.2 90.0 90.3 90.3 90.9 93.2 93.8 98.0 100.8 103.6 103.8 105.0 99.5 140	87.5 80.3 80.9 91.6 92.4 94.5 94.8 99.1 101.1 102.5 102.9 106.3 102.0 141	86.1 90.2 91.0 91.3 92.1 93.7 94.8 98.8 100.8 101.7 101.6 106.7 102.9 141 86.1 90.2 91.0 91.5 92.3 94.6 95.2 99.2 99.8 102.2 101.3 107.1 103.1 141	86.9 90.1 91.6 91.8 92.5 94.4 95.1 98.3 100.2 101.8 101.0 107.3 103.2 141	63.3 66.6 30.2 31.2 32.0 34.4 34.2 37.6 33.6 100.5 100.2 105.8 102.1 1 62.3 87.5 89.4 90.2 91.8 94.4 93.1 97.4 96.2 99.6 98.9 104.7 100.5 1	78.6 85.4 87.5 88.8 80.3 92.4 91.9 95.3 96.1 97.6 96.4 101.9 97.9 139	71.1 80.8 82.3 84.4 88.4 89.5 67.	68.3 73.0 76.7 79.5 79.5 80.5 79.7 82.5 85.0 85.6 83.6 84.2 83.6 134	64.3 67.8 71.9 74.3 77.8 79.2 74.3 77.1 79.4 79.9 78.5 79.5 78.7 134	52.9 57.9 59.3 62.4 62.7 64.1 65.1 64.3 69.9 66.5 66.1 67.8	47.4 50.0 53.3 57.2 55.4 57.8 57.1 58.6 63.0 59.4 60.9 60.3 59.5 131	CASPL 98.1 100.7 102.0 102.5 103.6 105.5 105.8 109.5 111.7 115.1 115.9 120.4 116.3 154.4	MODEL/FULL SIZE SCALE FACTOR FREE JET VELOCITY (FT/SEC) 0. REFRACTION CORRECTION INPUT 1.000 CALC. 1.000 FREE JET DIAMETER (IN) 40.00 TURBULANCE CORRECTION	TEST DATE 03-29-78 TAPE NG. N313 IALPHA SB59 TAMB 54.14 Location C41 Anech CH Aero. RDG. Adh227 Pamb 29.5600 Relhum 14.30	T ACCUSTIC RANGE SIZE	0A 0107A 12.2 M (40.0 FT) ARC 139.0 SQ CM (21.66 SQ IN) - MODEL 0.		

BO. 60. 70. 60. 90. 100. 110. 120. 130. 140. 160. 160. PML 63.6 65.6 66.3 67.2 70. 70. 8 71. 71. 71. 71. 71. 8 71. 71. 8 71. 71. 8 7									PRIDE	IGI P	NA DO	L R	P/Q	AG JA	E Li1	9								.30	FREE-JET SPEED M/SEC (0. FPS)
### BOLD TO THE PROPERTY OF TH			¥			-		- -			-	_	-1			_ -	150.6	149.9			172	0		TAMB 64 RELHUM 14	
Second Process Total Control Contr	X01075	S	50. 1	1		1		1			ŀ		- 1				2				0 4	0		SB59 29.5600	2
## ANOLES HEASURED FROM ## ANOLES HEASURED FR	"	١.		9 9 4	9 6	200	98	98	18	77.	2 76.	73.	69 8	5 66. 7 61.	3 54.	9 44.					2 58	96		IALPHA	S1 ZE 400.00
100. 11	-ZER-	FROM	. 120. 1	76.3	78.6	81.2	9.59	80.2	91.0	79.0	79.1	76.6	74.2	72.1	63.4	56.1	27.1	7			91.6	97.1	e	N313 ADH227	. s sa
FO. 60. 70. 80. 90. FILENTI PENTI PE	FICATION			8 9	7.7	,	4 (d)	9 B	-1	· •	10 1	. u	7	46	, o	10 -	- 1	~			6 , 0	· ·	ø.	1 111	SL
60. 60. 70 63.4 65.5 66. 64.8 67.1 67.6 65.0 67.9 68.6 67.3 70.4 70.6 69.2 71.7 72.6 69.0 70.8 72.7 69.0 70.6 71.7 69.1 70.2 71.7 72.69.0 70.8 72.7 69.1 70.2 71.7 72.7 72.7 69.1 70.2 71.7 72.7 72.7 69.1 70.2 71.7 72.8 69.9 70.6 64.3 67.4 66.9 64.3 67.4 66.9 64.3 67.4 66.7 65.9 68.9 70.6 64.3 67.4 66.7 65.9 68.9 70.7 65.1 70.2 71.7 72.4 36.7 72.6 69.0 70.8 72.7 69.0 70.8 72.7 69.0 70.8 72.7 60.0 70.7 60.	IDENTI	ANGL		5 70.	72.	2 74.	, r	9 29	6 75.	0 0 4 16	9,	20.	.1 72.	2. 2 20. 8	5 64.	3 55.	32	6.			98	2 2			TIC RANGE 2400.0 FT
2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			•	5 66.3 1 67.3	9 68 6	70.7	7 71.9	7 72.3	8 72.3	2 71.6	5 71.7	8 69.7 8 69.7	5 68.0	7 66.3	1 56.9	53.0	25.7	4.0			6 83.1	4 89.5		03-2 C41	
			•	5 65	0 67	900		2 7	0.1	20 20 20	5 70	. s 67	. 6 65	 63		2 47	6 17 50 50 50 50 50 50 50 50 50 50 50 50 50)			.3	.3 87		TEST DA	TEST POINT 0107A

												OR OF	iiGi P	NA OC	IL)R	P	AG UF	ië Ali											JET SPEED C (290.0 FPS)	.	و ال
ROUND NOISE ARC			60.	PWL				1 0 125 8	.0 136	.0 137	9 136	.7 136	. 5 135 . 9 135	6 135	. 135 136	7 135	1 135	. 1 136 . 8 136	8 136	4 136 8 135	6 135	4 133	8 132		9 12	.2 149	TAMB 52.34	21.1	FREE-JET MODEL 88,39 M/SEC (
CORRECTED FOR BACKGROUND DAY, SB 40.0 FT. ARC	FJ-300-AMDDL X01080 FJB300-FMDDL X05230	ET, DEGREES	30, 140, 150, 16					0 07 2 104	0 98.6 104.8	.8 100.9 106. 6 101 2 104	2 101.3 103.0	.0 100.9 100.1	. 8 100.0 97.4 .0 99.6 95.8	9 99 3 95.1	5 97.9 94.1	4 97.0 93.9	1 96.5 92.4	7 95.6 92.9	4 96.0 93.6	.6 95.6 93.6 2 93.2 92.4	9 90.6 90.0	0 83.4 82.4	6 79.7 77.5	9 74.6 71.8	9 54	.4 111.3 112.8 1	I ALPHA SB59	- 1	SIZE (21.55 SQ IN) - P	, ver	The state of the s
D PRESSURE LEVELS CONFERENCE OF THE STD. DI	- MODEL BACKGROUND	MEASURED FROM INLET,	00. 110. 120. 1					1 AK 1 A7 0	.0 85.4 88.7	.6 86.2 89	7 88.9 .92.1	3 90.7 94.2 1	. 9 92.0 95.3 .0 92.9 95.1	6 93 6 96.0	4 94.6 96.6	.0 95.6 97.8	2 95.4 96.5	7 95.2 95.7	0 95.1 97.2	7 95.0 95.1 4 93.3 94.2	9 92.2	0 84.5 87.4	6 83.6	.6 75.7 77.8 .6 68.6 72.7	.4 62.8 67.3 62 .9 56.4 60.4 54	.1 106.2 108.0 1	PE NO. N313	RDG.	139.0 SQ CM		
UNTRANSFORMED MODEL SOUND 59.0 DEG. F., 70 PE	IDENTIFICATION	ANGLES	70, 80, 90, 10					0 78 8 80 0	.2 80.0 82.4	.9 80.0 82.9 8 81 6 83.3	.9 85.0 84.9	.7 83.3 86.4	.8 85.1 87.5 .9 86.5 88.4	8 87.4 89.3	. 4 86.5 89.1 . 67.9 89.1	7 88.8 90.9	.4 88.5 90.8	9 69 2 61 6	8 90.0 92.2	.8 90.4 92.0 .3 88.6 90.5	.7 37.9 30.1	5 83.3 84.9	.8 78.5 79.3	.9 76.6 77.0 .0 69.7 70.6	3.9 61.2 62.6 64 5.8 54.2 56.1 55	.9 100.4 102.3 1	29-78		ACCUSTIC RANGE		
UNTRANSF			. 50. 60.					7 6 77 8 77	77.3 78.3 7	77.7 78.9 7	79.6 61.4 8	79.9 82.4 8	80.7 83.3 8 83.4 85.1 8	83.5 84.9 8	7 83.1 84.9 8 5 84.1 86.4 8	1 84.7 86.0 8	C 84.7 86.2 8	3 86.7 88.0 8	1 86.1 86.7 8	4 84.9 86.6 8 8 83.7 84.8 8	0 81.7 84.3 8	76.2 77.5 7	71.9 75.3 7	65.9 70.5 7 62.1 64.2 6	4 56.8 57.7 60 7 48.9 52.2 55	96.2 97.8 9	TEST DATE 03-	- 1	TEST POINT A 0108A 12.2		
•			40	FREG 50	8 8	001	160	2	4	76.		78	8 6	85	8 6	89	93	0 0 0	94.	8	7.0	72	9	66.	85 G	9			MODEL TES		

					•							155	
	FREE-JET SPEED M/SEC (290.0 FPS)	. 88. 39 M.	- MODEL	SO IN	SIZE (21,55	9.0 SQ CM	ARC 139	: RANGE 40.0 FT) A	ACOUSTIC R	12.2 L	0100A		700EL 010
		•) 	•				. 1		
		B 52.34	TAPE	4A SB59	IALPHA	N313	TAPE NO.	CH AE	03-29-78 C41 ANECH C	ī	TEST DATE		
	ı		TURBULANCE	49.00		AE.	i JET	L .	. 000	-	1 1.000	J N D	
	ON - YES	CORRECTION	REFRACTION		(FT/SEC) 29	≥	VELC	FREE	FACTOR	SCALE	FULL SIZE	MODEL/FULL	
		ø.	106.7 150.	112.0	110.9 110.3	108.	04.0 105.9	104.2 10	7 103.2	.9 102.	101.2.101	100.2	GASPL
				2 62.	-	1	~	_		9	-	54.	90
		·	. 8 132	- 0	1 0	69	0	9	64	.8 65.	4	62.	8
		٥٠	133		77.0 75			. .	73.6	72.	68.2 72		50000
		_	6 135	.7 81.	4.0	94.	@ (ო (89 69	. 3 42.	10 (4	72	
		.0	6 136	5 84	-	88	10	0	87.	2 84.	4	2	8
		o 4	90.6 137.	200	0 0		36	- 0		. 4		94.6	20000
3		9	0	26 /	63	6	.7 94	ο.	92.	9.		9	200
E !		50 40	93.6 138. 93.2 138.	7 90 7) 6 6 7 8		90	, O	. 48 	9	, ci	8	9
AG UA	-	r 04	14	4 97.	26	8	96	9	92.	a c	6	8	300
P		9	96	6 94.	96 8	60	7 94 1 96	N C	6	.	20	98	
AL OR		4 ~	4 W		9 6	9 0		- 0	98	· (97.	35
N		4	4	26 0	3 97	93	3 92	6 0 •	98	ب ا	- r	9 6	ğ
RIG F F		o 0	89.5 134.9	90.0	98.0	9. 9. 9. 50. 9. 50.	89.3 91. 90.1 91.	89.09 69.09	3 88.0 89.0	3.00 BB.	85.3 86 87.9 88	85.5 85.5	0 0 N
0			-0	, a	9 G 9 G		, - , -	. 0	96	0	1 10	4	ĕ
	,	N e	. 8 135	4 100.	6	- 1	.0 87	-	96.	0	9	-6	63
		<u>س</u> و	97.7 136.	6 104 3	3 6		9 6	ο σ	82.0 82.0		9 60		2 0
		2		9		-1 -		0	81.	0		78.	31
		(r			9	70 7		•	4	200
												9	12
							,					. .	ᅙ
					•							.	5 & C
		7	160. PWL	0. 150.	130. 140.	. 120.	100. 110	8	. 90	60. 70	20.	6	FREG
				DEGREES	INLET, DEG	FROM	MEASURED	ANGLES					
				X01080		FJ-300-AMGDL	CATION -	IDENTIFICATI					
:			T. ARC	40.0 FT.	DAY, SB	. H. S7D.	/O PERCENT R.H.	 2	OS. O DEG.	Õ			

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SGUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

AMALES HEAVIER DRIPE PRESSURE TREE PRESSURE PRE																													
40. 50. 60. 70. 80. 80. 100. 110. 120. 130. 140. 130. 160. FML ANALES HEAVING PRESSURE LIVELS COMPRETED FOR BACKGROUND NOTSE ANALES HEAVING PROPERTY RICH TO THE TOTAL STATE TO THE TABLE										ı															,				
40. 60. 60. 70. 80. 90. 100. 110. 120. 130. 140. 180. 160. 160. 160. 160. 160. 160. 160. 16	36								-																	- 42 - 3.	FREE-JET 18.87 M/SEC (
10. 10. 10. 10. 10. 10. 10. 10. 10. 10.		T. AKG 20 20		60.	PWL		Г			Γ.			•		_			-	- a	60 (1	0	.6 130	2 128	1 127	.7 148.		HODEL 1		
10 TRANSFORMED HODEL SOUND PRESSURE LEVELS CORREST TO THE TOTAL TOWN TRANSFORMED HODEL SOUND FIGURAL	TED FOR BAC	SB 40.0 F AMGDL X010 FMGDL X052	ES				6	40	 N 10	6	4 K		L.	9 6	, –	16 7	· -		ω r	. വ ഗ		٠ ا		e 0	09.4	1	2F 55 90		
40. 50. 60. 70. 80. 80. 100. 110. 110. 110. 110. 110.	KVELS	STS ON	INLET,	20.			.18	.7		2 99.	0.0	5 98.	- 88°.		4 97.	96. 7	6 97.	96	96	9 8	83.	.0	3 67.	0 C	.1 110.2	_	S CM C	;	
ANGLE SQUE TO THE	PRESSURE	ERCENT R.	MEA	. 110.			1.6 64.1	2.7	. 7 . 85. 3 . 65. 3	.5 87.7	4 90.9	.3 92.0	.5 92.7		2 94.3	. 6 94.5	9.25.00	.3 94.4	2 92.1	7 90.4	6 82.3	.7 79.8	67.3	5 61 5	.1 105.1	88 80 80 80 80 80 80 80 80 80 80 80 80	139.		
10. 50. 60. 70. 77. 9 77	JOEL SOUP	F., 70 NTIFICATI	ANGLES	. 80.			.2 79.6	2.12	. 6 61.7 . 9 82.3	.3 83.9	4 86.1	1 87.4	9.88 2		4 90.0	2 90.4	0.10 0.10	.4 90.8	8 2.2 2.0 3.0	98.0	6 83.2	.8 77.8	69.6	2 61.3	.5 101.3 1	5	RANGE		
73.6 76.3 76.4 77.2 75.1 76.4 77.1 2 76.4 77.1 2 76.4 77.1 2 77.1 2 76.4 77.1 2 76.4 77.1 2 76.4 77.1 2 76.4 77.1 2 76.4 77.1 2 76.4 77.1 2 76.4 77.1 2 76.4 77.1 2 76.4 77.1 2 82.7 77.1 2 82.7 77.1 2 82.7 78.9 82.7 84.3 77.2 84.3 77.2 84.3 77.2 84.3 77.2 84.3 77.2 84.3 77.2 84.3 77.2 84.3 77.2 84.3 77.2 86.0 86.2 84.4 95.6 86.2 86.0 86.2 87.7 72.6 86.0 86.2 87.7 72.6 86.0 86.2 87.7 72.6 87.7 72.6 87.7 72.6 87.7 72.6 87.7 72.6 87.7 72.6 87.7 74.9 77.7 72.6 87.7 72.6 87.7 74.9 77.7 72.6 87.7 74.9 77.7 72.6 87.7 74.9 77.7 72.6 87.7 74.9 77.7 72.6 87.7 74.9 77.7 7	NANSFORMED	28. G DE		8	•		77.9	78.0	70.0	80.5	80 20 20 30 40	94.2	84.7	86.0	87.1	96.2	87.4	87.3	85.5	64.1	77.2	76.3	65.4	59.6	97.8		0		
	ATNO			0.			3 76.	7.2	, e	. 9 80.	4	7 84.	6 83.	7 6	3 85.	20.00	2 8	.1 85.	65.	7 69 7	9 75	8. 5 6. 6	9	6 57.	96.	TEST DATE	1 12 12 1		
				4	FREG 50 63	100 160 160	73.	78.	9,6	77.	9 6	8	95.	8 6	82.	8	6 6	83.	8 Z	78	72	į	9 8	5 6 6	4		<u>ح</u>		

													-																		,			
					4 July 100 100 100 100 100 100 100 100 100 10							OR OF	P			Q		YL.	ľ	_										· YES			ET SPEED (390.0 FPS)	
		•								133.5	134.1	133.5	133.6	133.7	134.5	134.6	135.3	135.9	136.9	137.6	47.0	137.7	96.9	135.4	134.0	2 CI	131.9	130.3	(V	TION CORRECTION ANCE CORRECTION	- 1	RELHUM 13.60	FREE-JET L 116.87 M/SEC (
E LEVELS		X01090	FES	. 150. 160.					8 6		101.6 94	9 60	95.6 94	94.0	93.9	2		93.0	94.3			94.9 95.	92.4	85.4 65.1	79.7 82	68.2 70.	62.6	0Z.8 cb. D	109.7	.00 REFRACTION .00 TURBULANCE	07.00	20.5800	SQ 1N) - MODEL	
೫		FJ-400RAMODL XO	FROM INLET, DEGREES	20. 130. 140				•		93.9	95.0	96.7	8 97.3	2007.00	2 97.9	3 97.9	8.98	7 97.4	0.88.0	98.1	7 96.4	2 95.9	22.7	3 0	.3 81.1	.1 66.6	.0 63.3	7. 03.4	.7 109.7 1	DIAMETER (IN) 49		ADH232 PAMB	SI 2E SO CM (23 5.55	1,444
TRANSFORMED MODEL		ı Z	MEASURED	100. 110. 12				•		8	63.0		2 86.6	99.00	9.09	89.9 91.7 95	0 . CG	94.5	2	2 95.7	2 62 20 62 51 63	4 93.1	9.16	- 0	2 81.4	68.0 7	7 62.4	9. 00. 00.		JET VEL(FREE JET	- 1		ARC 139.0 8	
FLIGHT		IDENTIFICATI	ANGLES	.00					70 7 70	80.8 81.4	81.3 82.0	87.2 84.3	85.1 85.4	85.5 86.7	89.1 89.6	88.5 69.2	91.6 91.9	91.6 92.8	92.7 93.8	92.9	93.4 93.4 93.4	91.9 52.0	91.1	87.1 86.2	80.8 80.8	72.9 72.6	64.2 64.3	۵٬۰۱۵ ا	103.7	ACTOR FREE	0-78	ANECH CH A	ACGUSTIC RANGE .2 m (40.0 FT)	
0 08	•			. 60. 70.						80.8 80.	82.2 81.	87.1 82.	1 85.0 83.	96.1 86.	89.0 87.	88.5 88.	90.0	8 90.5 91.	8 91.1 90.	92.6	91.1 91.	92.2 91.	69.0 69.	9 84.1 85.4	80.1 80. 75 0 77	72.3 73.	64.5 66.	00.4 07.	2 102.2 102.1	SIZE SCALE F 000 CALC. 1.	S	LOCATION C41	2	
			••	40. 50 REG 40.	50	9 9	100	125	0	80.0	62.05		94.6	4.70	87.6 87.6	0.00	200	90.1	90.7	7 0	9 00	92.2	98.7	200 81.2 84.	79.3	71.8	65.3	90.60	DASPL 102.0 102.	MODEL/FULL INPUT 1.	31	<u> </u>	IDEL TEST POINT	
				ŭ.						ľ	•	. •		= ‡	-	Ñ 6	ŭ (7)	4	ñà	ió à	ğ	2	ğ č	ă Č	- č	ğ	63	5	Š				MODE! 010	

		Q.									01	RIC	GII Pû	AP IOC	L R	P# Ql	IGE JAL	IS	;		÷						ET SPEED (390.0 FPS)	
		169.	67.6 15 66.0 15	67.1 1	66.0 1	64.0	63.8	50.4	59.3	60.5	58.1	56.61	51.1	32.01	12.4		150.0						76.2 167.2 78.0	İ	Ø-	.800 RELHUM 13.60	FREE-JET - FULL 118.87 M/SEC (
MODL X01095	INLET, DEGREES	o. 140.	76.0 76.2 78.1 76.9 76.2 75.8	76.5	3 75.3	. 6 73.5 6 73.5	2 72.6	2.2	6 70.5	6 70.1	. 3 69.4 . 2 68.0	.2 65.8	.3 62.0	. 55 . 55 . 56 .	.4 40.7	22.6	•						88.4 85.5 63.6 93.4 86.3 85.5	.4 68.3 85	FREQUENCY SHIFT -	1ALPHA SB59 PAMB 29.5800	S12E	
CATION - FJ-400RAMODL	MEASURED FROM	00. 110.	64.2 65.0 69.1 65.3 65.5 70.5	.0 67.5 72. 5 68.5 73.	9 70.6 74.	.6 /1./ /5. .0 72.5 76.	7 73.1 75.	.2 74.6 76.	.0 74.9 75.4	6 75.6 76.	.7 74.9 76. .4 74.1 74.	.3 72.3 73.	.8 70.8 70.	.9 59.5 62.	. 9 54.9 54.	.7 43.0 8 83.0	6.4						84.0 85.2 87.3 91.7 92.7 94.0	.7 92.7 94	8.061	TAPE NG. 9313 Aerd, RDG. Adh232	SL 9032.2 SQ CM	
IDENTIFICATI	ANGLES		.3 63.7 64.5 .4 65.1 65.1	7 69.6 66.8 8 67.4 67.9	.8 67.8 69.0	.4 71.1 71.7	7 70.2 71.1	.8 72.8 73.3	9 72.5 73.9	8 73.3 74.9	.7 73.6 74.2	.0 71.7 72.1	.8 70.8 70.9	.1 64.9 64.3	6 55.6 56.0	.3 49.6 49.6 5 32 5 33 -	2 5.7 7.0						1 83.7 84.5 5 92.3 92.8	.1 93.5 93.9	DIAMETER RATIO	-29-78 1 ANECH CH	ACGUSTIC RANGE 5 M (2400.0 FT) S	
		. 60	2 62 6 63.5 63 7 63.1 65.0 63	63.6 68.3	55.7 67.2	68.6 69.8 68.6	68.3 69.0 69	68.8 70.2 70	68.6 70.3 70	69.9 71.5	69.8 70.7 68.2 69.6	68.7 70.2	65.8 66.7	56.9 59.0	48.0 51.2	33.7 40.7							9 80.0 81.5 82.7 5 67.8 89.4 90.	67.8 69.4		TEST DATE 03 LGCATION C4	EST POINT A00109A 731.5	
				92.	65.	65 63	67.	99 90	99	98	66. 64.	65		6 6	6	ų K	;	12500	2000	31500	40000 40000 00000 0000	00000	OASPL 77.9	84.				 159

07/19/79 15.714								OF	IGII	JAW 700	Pi Q	AGE UAI	IS ITY									FREE-JET SPEED M/SEC (0. FPS)	dom m.	A desirated to the second seco
	tu																				54.32 29.30	F.		
	BACKGROUND NOISE			.09	PWL		1.1 152.9	5 156.	.9 158. 5 158.	.55 166. 90 160.	3 158 3 159	3 157.	4 156.	4 155	. 6 155.3 . 1 154.1 . 7 153.9	2 152.	200	5 150 148	, a	. 1 171.8	TAMB RELHUM	MGDEL		
	FOR BACKGR	XC1100	S.	150. 16			121.2 118	123.0 110	ω O	4 4	20 0	7.0	V 4 0	9 1	113.1 104 110.4 103 106.5 101	6	40		e –	136.9 130	SB59 29.5600	SQ IN - M		
	CGRRECTED I	-ZER-AMGDL	ET, DEGREE	30. 140.			5 115	3 119	. 2 122 . 0 123	. 2 132 . 2 125	. 8 123 7 123	.8 121 7 121	6 119	117	7.9 116.4 5.7 113.3 1.3 111.5	8 108	300	9 97	10 OI	3.8 136.2	I ALPHA PAMB	SIZE 21. (ES		
•	EVELS STD.	Z	FROM INLE	120. 1:			103.6 1	107.5	111.1	119.0 1	115.2 1	116.0 1	116.2	114.9 1	113.7 117 111.6 115 109.6 114	107.1	100.6	95.9 91.4	87.1 81.7	127.3 133	N313 Adh215	O SO CM	(
	SOUND PRESSURE 70 PERCENT R.H	1 - MODEL BACKGROUND	MEASURED	00. 110.			W @	co ce	ი 0	a 0	0 4	9 -	900	0 60	7.2 110.4 7.7 108.6	0	, 0 1	ه ه	4 4	1.9 123.6	TAPE NG. Ro. Rog.	139.		
] =	IFICATION	ANGLES	90. 10		-	0 4	SI IN	. 2	8.0	. 8	5.7	7.7.4	2 -	108.5 107 107.4 105	6	1 10	စ က	- a	122.0 120	TAI CH AERO	RANGE 40.0 FT) ARC		
	UNTRANSFORMED MODEL 59.0 DEG. F.	IDENTIF		0. 80.			- 0	7 95.	7 99. 4 99.	.0 107. .1 105.	3 107. 8 114.	.0 111. .8 108.	.0 109. 8 109.	5 108.	4 106.8 4 105.7	104.	900	မ (၁ (၁ (၁)	73.	7 120.9	29-78 ANECH	ACGUSTIC R		
	UNTRANSF			60. 70			- 0	N B	9 7	D 0	2 1	0 0	2 109 108 108	7 107	103.7 105.106.102.7 105.105.105.105.105.105.105.105.105.105.	C) a	1 000	၁ က	90	20.1 120	82	12.2		
				200			93.6	93.9	96.4 97.6	110,7	118.7 109.3		106. 106.	105.6	3 101.8 1 3 99.9 1	97.3	90.0	9 9	60 60 60 60 60 60 60 60 60 60 60 60 60 6	5 119.5 1	TEST DATE LOCATION	TEST POINT 0110A		
160				40	7. 7.00 0.00 0.00 0.00	125 125 200 200	9.18	83.	8 9 9 0	9 0	903	98	96.	8	88. 87.	82	įėi	67.	62. 57.	CASPL 111.		MODEL TES		
		- 1		- 1						l				ľ	. •	"	- •• ì	~ -	~ ~	٦		-		i

HONEYWELL PAGE PRINTING SYSTEM - PI185-09

T													OR OF		iN.			AU!				7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -					N - YES			E-JET SPEED SEC (O. FPS)		
TOANGEADUED MADE: 641115 BBF66115F	59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC	IDENTIFICATION - FJ-ZER-AMODL X61100	ANGLES MEASURED FROM INLET, DEGREES	0. 50. 60, 70. 80. 80. 100. 110. 120. 130. 140. 150. 160. PUL				.3 93.6 93.1 94.1 93.7 95.6 98.2 101.4 103.6 110.7 115.3 121	4 92.4 92.9 94.0 95.6 96.4 96.6 101.2 105.7 113.5 117.4 122.6 116.6 1	7 94.8 95.5 97.1 97.2 99.6 100.9 104.1 1 96.4 97.6 97.7 99.3 100.0 102.3 106.2 1	1 97.6 99.2 100.4 99.8 102.7 104.0 107.7 113.7 121.0 123.4 125.0 119.5	2 111.7 110.5 112.0 107.4 106.5 105.9 109.3 119.0 128.3 132.9 133.4 125.5 1	.3 110.1 106.6 107.1 105.5 105.6 106.0 110.1 115.6 122.2 125.6 126.2 116.9 1 .1 111.7 112.2 111.3 107.4 106.7 106.6 110.5 115.2 120.8 123.0 122.5 116.3 1	3 109.5 111.1 112.8 114.9 114.8 107.4 110.8 116.8 122.7 123.4 122.6 113.3	.7 108.7 109.0 110.0 111.6 113.7 110.6 111.3 116.0 122.8 121.8 120.7 111. .7 108.5 109.6 109.8 108.9 111.6 113.1 112.8 117.1 121.7 121.4 119.5 110	6 107.0 108.5 109.0 109.1 109.7 111.6 113.7 116.2 120.6 119.8 117.7 108.4 1	.9 106.8 108.3 108.8 109.1 110.7 110.3 114.3 115.5 120.7 118.8 116.4 107.4 1 6 106 1 107 A 108 0 109 0 110 6 110 6 114 0 115 9 119 9 117 K 11K 9 106 7 1	. 9 105.6 106.7 107.5 108.6 109.7 109.6 113.1 114.9 118.1 117.0 114.6 105.4 1	3 103.7 105.9 106.4 108.2 110.0 109.0 112.3 113.7 117.9 115.4 113.1 104.6 1	.3 101.0 103.7 103.4 106.6 106.5 107.2 110.4 111.6 115.7 113.3 110.4 103.1 1 .3 99.9 90.2 102.5 104.4 105.7 107.4 105.7 108.6 109.6 114.3 111.5 108.5 101.7	.1 97.3 99.2 101.1 104.5 105,3 103.0 105.7 107	7 84.2 30.0 90.8 100.8 102.8 83.3 100.7 104.6 105.2 103.6 101.7 80.0 7 80.0 8 80.8 102.8 103.8 100.7 100.6 103.0 108.0 1	.1 85.0 88.6 90.6 93.9 94.6 90.5 93.4 95.9 98.8 94.2 89.1 86.0 1	.5 80.0 81.9 84.3 86.1 87.3 86.0 86.4 91.4 92.9 87.6 8 75.3 75.9 78.8 78.5 80.1 80.4 80.4 87 1 86.5 82.7	1 69.5 71.0 75.0 73.0 75.9 73.4 75.6 81.7 81.2 77.8 72.1 66.9 150.	.5 119.5 120.1 120.7 120.9 122.0 120.9	MODEL/FULL SIZE SCALE FACTOR FREE JET VELGCITY (FT/SEC) 0. REFRACTION CORRECTION Input 1.000 Calc. 1.000 Free Jet Diameter (IN) 48.00 Turbulance correction	TEST DATE 03-29-78 TAPE NG. N313 TALPHA SB59 TAMB 54.32	ECCALLON CALL AMECA CIT ACENC. NOS. ADARIO FARIO ESCUDIO MELMON	TEST POINT ACQUISTIC RANGE FREE-JET SIZE SIZE (12.2 M (40.0 FT) ARC 139.0 SC OM (21.55 SQ IN) - MODEL 0. M/SEC (
				FREG 40	63 63 60 60	00	200	- 1		0000	1				9 6	98					20000 82	215000	40000	63000	00000	GASPL 111	ENITHI GÖ S	Wa 3		MODEL 0100A	161 XXINO	

					OI OI	rigin PO	IAL O F	. P	AG UA		\$ Y								SPEED 0. FPS)
		. PWL	.7 174.1 .2 175.5 .9 176.4	3 176.7 1 185.1 1 178.4	176 177	.0 176.5 .6 176.0 .8 175.0	174		2 173.5 3 172.3		5 169.4	168	166, 9 166, 5 168, 1			.0 169.6		TAMB 54.32 RELHUM 29.30	FREE-JET LL 0. M/SEC (
SB 2400.0 FT. SI X01105	DEGREES	140. 150. 160	100.3 91 101.4 92 101.6 92	.9 101.3 92 .4 109.5 98 .0 102.1 91	98. 3 86 97. 7 84	99.0 95.3 82. 98.1 93.5 79. 96.0 91.0 76.	89.0 74	87.1 72 85.8 70	83.5 68 79.5 64	76.0 59	9 61.1 41.	.5 26.1	21.12			114.2 112.5 102. 116.9 114.0 102.	SHIFT -0	ALPHA SB59 PAMB 89.5600	IZE),00 SQ IN) - FULL
ient R.H. STD. DAY, S ION - FJ-ZER-AMODL	ASURED FROM INLET, I	0. 120. 130.	88.8 90.1 92.4 1	100.1 100.1 96.6	96.0	96.12	94.8	93.6 95		87.2 89	79.5 78	60.7 68	2 20			107.4 113.1 112.9 117.2	1 FREQUEN	N313 ADH215	81 ZE 32.2 SQ CM (14G0.00
PERC FICAT	ANGLES MEASUR	0. 100.	80.8 82.0 84 82.1 83.3 86 83.4 84.6 88	- G -	.8 88.6 .7 89.2	95.4 92.1 92 92.9 94.3 93 90.7 92.6 94	0.10	90.0	.4 89.1 5 87.0	3 65.3	9 77.	£ 60.3	0 0			103.2 101.9 104.0 110.1 109.0 110.8	RATIG 8	TAPE NG	IC RANGE 2400.0 FT) SL 9032
IDENTIL		. 70.	0 76.8 78.3 8 79.1 79.6 9 79.6 81.6	62.3 82. 63.9 69. 88.8 67.	92.8 89. 94.2 96.	89.4 90.	88.9 89.	67.2 89.	8 8 9 7	63.3 85. 79.3 83	73.6 78.	58.6 63.	41.6 45. 16.8 20.			2 101.6 102.1 3 107.3 109.0	DIAM	E 03-29-78 N C41 ANECH CH	ACGUSTIC R/
		0. 60.	61.6 74.2 76. 62.4 75.0 77. 63.7 76.5 78.	6 91.7	. 1 91.3 88.9	0 10 0 0 0 0 0 0 0 0 0	6 84.6	. 7 82.0	.7 80.6 .8 76.0	8 75.5	0.00	4 44.7	20. 4.05.			89.4 96.5 100. 91.9 102.9 105.		TEST DATE LOCATION	TEST POINT 0110A
		- 1	8 8 8 8 8 8	- 1	1		- 1			1				12500 16000 20000 25000	31500 40000 50000 63000	ASPL PNL PNL			MODEL 0100 A

						PAGE QUALIT	9 Y			.46 .30	FREE-JET SPEED 7 M/SEC (390.0 FPS)		
UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB. 40.0 FT. ARC IDENTIFICATION - MODEL FJ-400-AMGDL X01120 BACKGROUND FJB400-FMGDL X05220	ANGLES MEASURED FROM INLET, DEGREES	FREG 40, 50, 60, 70, 80, 100, 110, 120, 130, 140, 150, 160, FWL 50 63	86.5 89.6 90.6 91.6 91.7 94.1 95.7 96.9 101.1 106.9 113.8 119.7 116.1 1 80.1 80.9 90.9 91.7 95.9 97.0 100.0 103.4 111.5 115.6 121.6 116.0 1 80.9 90.4 92.0 92.5 93.8 56.4 97.6 100.7 105.0 114.6 116.7 123.1 114.5 1 80.9 91.3 93.6 94.1 94.9 97.3 96.7 101.6 106.0 116.6 120.0 122.7 110.6 1	91.0 93.4 94.9 94.7 96.3 98.4 99.6 103.4 108.2 117.5 120.6 121.0 108.2 102.4 105.9 108.7 96.7 102.1 100.7 102.8 108.7 113.9 123.8 127.9 125.6 108.2 104.2 102.3 101.1 99.6 99.2 100.8 102.2 106.1 111.6 118.6 121.0 118.2 104.8 107.1 108.4 107.2 104.2 102.2 103.0 107.2 111.9 117.5 120.6 116.0 102.7 1	107.0 109.1 112.1 177.9 119.0 109.1 105.2 108.1 113,1 116.2 120.7 115,1 103.6 1 102.7 103.7 106.0 109.5 111.6 111.7 107.8 108.5 114.3 119.6 120.5 115.0 104.0 1 105.7 106.2 105.2 104.5 106.6 111.9 113.6 110.5 114.5 120.9 120.0 116.2 104.9 1 104.0 105.1 106.9 107.6 106.7 107.8 111.7 112.4 115.4 120.3 119.2 115.3 104.6 1	104.2 104.) 104.8 106.0 107.1 107.2 108.8 112.8 115.1 119.0 118.4 113.7 103.0 1 102.9 103.6 104.8 106.0 105.8 108.2 108.8 113.3 114.8 119.1 117.1 113.2 102.7 1 101.5 103.0 104.2 105.4 105.6 107.7 108.4 112.4 115.1 117.4 115.6 111.1 101.5 1 101.2 102.5 103.3 104.6 105.4 106.8 107.4 111.2 114.3 116.5 113.9 109.5 99.7 1	10000 99.4 100.5 102.1 103.6 105.2 106.8 106.2 109.8 112.6 114.6 111.9 106.1 96.2 152 1250 1250 96.3 96.3 99.5 102.3 103.5 104.6 104.4 107.5 110.1 112.1 109.9 105.6 96.1 151 15000 94.3 96.5 98.1 100.1 102.2 103.7 102.4 106.1 108.2 115.7 106.9 102.8 94.5 150 2000 69.4 93.6 94.9 96.7 100.9 102.0 98.7 103.0 105.6 107.1 103.1 100.2 92.5 149	25000 87.7 90.2 92.2 93.0 97.8 97.9 96.2 98.3 102.3 102.2 99.1 96.2 90.5 1 31500 86.3 85.6 91.3 81.8 93.1 92.5 94.8 85.6 99.4 95.6 91.3 85.0 1 40000 81.3 81.1 84.2 86.3 90.3 90.8 87.1 89.9 93.7 94.2 90.8 85.8 81.0 1 50000 74.6 75.5 77.3 80.2 82.6 84.1 82.8 83.6 89.4 87.8 85.2 80.8 74.9 1	83000 68.6 69.8 70.8 74.4 74.5 75.4 77.2 77.8 64.7 81.1 79.4 74.6 69.4 1 80000 62.2 61.6 65.4 69.8 67.7 70.1 69.9 71.6 78.6 75.5 74.8 66.4 61.5 1 80000 62.2 116.3 117.6 120.2 121.2 119.3 119.7 122.0 125.4 130.9 132.6 131.7 122.0 1	. N313 14 PHA SB59 TAMB 56	MODEL TEST POINT ACOUSTIC RANGE 0100A 0112A 12.2 M (40.0 FT) ARC 139.0 SQ CM (21.65 SQ IN) - MODEL 118.67	163	

									ORI OF	GII	NA 191	L R	PA QU	GE IAL	IS ITY	, I										FPS)
								•																CORRECTION - YES	56.46 13.30	FREE-JET SPEED .87 M/SEC (390.0
				5			49.0	88. 84. 94.0	0.4	55.2	55.3 2.4 2.5	56.1			90.0		-1.		1		48.9		169.2	i i	TAMB RELHUM	118
	T. ARC			160.			113.4 1	 - 0				4	0 4		-	44	76	10.4	9	e -	87.3 1 78.6 1	8	126.3 1	REFRACT I ON Turbulance		- MODEL
	40.0 FT.	22	9	150.			117.5	120.9	121.4	121.1	118.8	118.0	119.8	0.0	115.2	2.3	1.00.1	106.9	99.0	95.1 90.4	94.9	66.9	132.4		5859 29.5600	2
1 201100	SB	X01120	DEGREES	140.			110.9	150 100 100	118.9	120.5	120.0	120.2	120.2	4	116.6	3.0	111.4		!		86.4	., .	131.9	390.00 48.00	I ALPHA PAMB	SIZE 21.55 SQ
	DAY, SB	AMGDI.	INLET,	130.			107.2	12.4	3.50	117.5.	116.2	118.7	120.4	19.0	18.0	115.4	13.2	109.8	103.4		87.6		130.3	/SEC)		SA C
	1. STD. D/	FJ-400-AMSDL	FROM 1	120.			100.1	102.9	106.5	41 -	110.9	• •	•		116.0	• •	111.6	108.7	103.1	900	91.5 86.3	76.4	125.7	VELGCITY (FT/SEC) JET DIAMETER (IN)	N313 ADH223	0 80 0
ç	INT R.H.	N N	SURED	110.		•	93.3	6. 0 0.0 0.0	1000.1	106.6	104.2 6.2	105.5	1.07.1	7.2	1.00.	2	109.9	106.4	99.5	9 9 4 9 9	84.5		121.6	VELOCI JET DI	NG.	139,
MODE	, 70 PERCEN	DENTIFICATI	ES MEA	100.			93.8		0.70				107.4		20.0				1		95.0	.1 .	120.4	EE JET FREE	TAPE AERO.	ARC .
AT THE	F., 7	LOENT	ANGLES	8			94.1			-1 -					11.2		٠		!		97.1		121.4	FREE	5	RANGE 40.0 FT)
ū	O DEG. F.			9			93.	9 9	96	104.	90.5	121.	114.	60.	200	108	109	106	102	9 95	87.2	72.	124.4	: FACTOR 1.000	1-29-78 11 ANECH	ACGUSTIC 2 M (4
	28			70.			94	2 8		88	20.00	107.	122.	60	-	200	109		18	9 93	88.1	72.	124.9	SCALE F	92	AC0 12.2 M
				99			9	6 6 6	96	6	= 5 - 6 - 6	= 2	118.	100	10.	108.	108	50.5	9 6	96	87.4	70	123.7	. 000 CA	TEST DATE LOCATION	<u> </u>
				. 20			96	96.	96.	8	- 4 - 6 - 6	112	117.	7	5 110.6	9 6	-1	106.0	88		286		5 123.6	MGDEL/FULL INPUT 1.0	TES LC	TEST PGINT 0112A
L				•	0.55	000	94.	2 8	52	8	5 :	114	117.	22:		108	90	50.0	97.	20.00	1 87 1	69	. 123.6	MODEL		₩ e
				FREG	888	200	250	315	800	900	1000	1600	2000	3150		900	2000		2000	1500	3000	000	CASPL			MODEL 010

									0	RI F	GI P(NA DO	L R	P Q	A(GE	i I	3	,															
	·																																	E-JET SPEED SEC (390.0 FPS)
																																	13.30	FREE-JET 118.87 H/SEC (
			됩	9 172.1		8 173.4	4 173.5	172.9	-	7 175.9			· •				_		-		165.9	164.0							167.2	200			TAMB	
,			160	86.9				966		.96		80.0	76.	4.	- 8	64.7	29.	40	- 1	5							:			100.0			009	- FULL
- - - -	15 15	S	150.	98.6	103.6	97.3	94.9	9 6	94.00	94.0	-	87.8	1 .	-		74.3	68.8	58.6	92	4.73									107.7	108.6	6- 1-	ı	SB59 29.5600	2
, 38 Z400.0 FI. 3L	X01125	, DEGREES	. 140.	8 96.7	100	99	l		•	3 97.1			I			1			- 1		9								109.7	0 0	FNCY SHIFT		I ALPHA PAMB	\$12E (1400.00 SQ
	FJ-400-AMODL	INLET,	130	9.	102	97.	96	9 0	90	89.3	200	900	94.	200		93	80.	75	99	9 6	6								109.3	- 1	FREGUENCY		.	5
3.0	J-400		120.	85.7	93.6	91.7	92.0	93.7	94.0	95.9	95.7	90.0	94.2	9.00	- T	86.3	83.4	78.0	70.4	44.0	17.7								105.5	112.1			N313 ADH223	80
Z .	NO I	URED FROM	10.	91.0	83.4 4	88.6	96.0	87.1	88.4	90.5	92.2	93.6	92.4	50.0	9 Q	95.3	82.0	76.2	68.0	4 6	16.7								9.50	09.3	A 061	5	 	9032.2
/U PERCENI K.H. SID. DAY,	CATIC	S MEAS	100.	79.2												ы.														2.80	, C	2	TAPE IERG. F	8
?	DENTIFICAT	ANGLES	ė	79.2	- e	9	8	ui u	, ao		- ^	. 0	6	<u>.</u>	- 1	9	4	0	aj.	<u>-</u> نو	· -								6	4 10	FR RATE	ı	₹	E FT)
U DEG. F.,	0		90.	78.0 7	- 10	10	0	o d	01	4	<u>.</u> د	ю	0	٠, ٥	20	0 4	9	, .	٥	ρŒ	0								۰.	4.1.109	DIAMFTER		₽ 5	COUSTIC RANG
0.00 0.00 0.00			Ġ	0.	0 4	0	7.	ن د -	-	9	40	1		٠. ١	ء و	2	۲.	-	4	<u>ه</u> د	0								9	2 1 1 2 1 1 2 1 1 2 1 1 2 1			3-29-78 11 ANECH	COUST
			0	77	O (1	0	0	4.4	7		- r	. 0	4	n c	n o	14	7	Ö	æ	ے م د	ı -						•		.0 105	0			TE 03	731.5
				77		1	1 96	9 6	9	3 93	5 E	4 89	9	0 °	0 d	1													.5 103	8 =			TEST DATE LOCATION	F .
			8	76.	7.	79.	94.	87.	6	-10	G	98	87.	90	0 0	91.	78.	72.	63.		;								102	800		į	H H	TEST POINT 0112A
			6	74.3															-1										100.6	105.5				
			FREG	200	9 6	100	125	160	200	315	4 K	930	800	000		2000	2500	3150	4000	2000	9000	0000	12500	20000	1500	40000	3000	80000	ASPL	PNLT				MODEL 0100A

07/19/79 15.714				00	RIGIN/ F POC	PAG R QUA	ie is Lity					FREE-JET SPEED M/SEC (0. FPS)
PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE RCENT R.H. STD. DAY, SB 40.0 FT. ARC	BACKGROUND ES MEASURED FROM INLET, DEGREES	100, 110, 120, 130, 140, 150, 160,	PWL		.6 94.1 96.3 102.7 106.6 113.2 110.1 1.1 94.2 96.2 104.3 106.4 114.6 110.5 1.6 95.3 99.5 106.3 110.7 115.6 111.3 1.6 95.8 100.5 106.1 111.8 115.6 111.3 1.6 95.8 100.5 106.1 111.8 115.6 111.3 1.6 95.8 100.5 106.1 111.8 115.6 111.3 115.8 115.	.6 98.2 102.7 109.7 112.4 117.3 112.4 13.0 100.0 104.9 110.0 111.6 117.1 113.0 1.7 100.8 106.1 110.4 110.5 116.2 112.1 1.3 102.0 106.4 111.3 112.1 117.3 112.5 1	98.7 102.6 106.1 110.0 110.4 116.1 111.9 1 99.1 103.3 106.8 110.4 110.3 116.0 111.0 100.1 103.2 106.5 111.1 110.5 115.7 109.4 100.4 104.3 106.9 110.3 110.4 115.0 108.5 1	00.1 103.8 106.3 108.7 110.3 113.4 107.4 1 00.2 103.7 105.5 108.7 109.8 112.4 106.9 1 99.8 103.3 105.0 107.5 108.3 111.5 106.4 1 99.0 101.8 104.6 106.3 106.2 110.1 105.4 1	.6 101.4 102.9 104.3 104.4 108.4 103.3 1.9 99.5 100.4 101.8 101.7 105.7 101.1 1.7 97.1 97.9 100.1 99.1 103.1 98.8 1.7 93.3 94.8 96.0 95.8 100.0 25.7 1	87.0 88.8 91.8 90.8 91.0 95.4 93.5 139.3 83.2 85.0 88.2 88.6 88.3 90.2 87.6 138.5 79.8 90.1 82.9 83.6 83.0 84.3 83.2 137.7 73.0 72.5 77.3 77.2 77.6 79.8 77.9 136.0 67.6 66.3 72.7 70.2 71.1 74.3 72.3 135.3 59.8 61.1 66.8 63.4 67.4 67.3 65.0 136.1	TAPE NG. N313 IALPHA SB59 Rg. Rdg. Adh228 Pamb 29.5600 Re	SIZE ARC 139.0 SQ CM (21.55 SQ IN) - MODEL 0.
L sauk	ANGLES	40, 50, 60, 70, 80, 90,	FREG 50 63 60		82.0 86.3 85.3 87.1 87.0 89.3 83.1 86.2 87.2 87.5 89.6 91.4 85.2 86.9 88.2 88.3 89.1 91.2 86.0 88.0 89.6 80.4 90.8	86.6 89.4 90.9 90.9 92.8 94.2 90.1 89.9 91.7 92.7 92.6 95.2 94.2 94.1 94.2 96.3 91.1 94.4 95.7 96.2 96.6 98.4	95.2 92.6 94.1 94.9 95.7 98.3 94.5 94.7 85.3 95.3 95.4 87.6 93.4 94.5 95.2 96.0 96.3 97.9 194.7 94.8 95.1 96.1 96.4 98.8 1	94.1 94.3 95.8 95.5 96.6 98.4 1 93.8 93.7 94.5 95.2 96.3 98.4 1 91.4 92.6 94.4 94.5 96.0 99.1 90.3 93.6 94.7 94.5 95.5 97.4	67.3 92.2 93.9 93.4 95.6 97.9 63.8 69.9 91.6 92.8 94.3 95.7 81.1 86.7 89.6 91.3 93.2 95.0 76.1 84.0 85.3 88.2 91.7 92.7	25000 74.2 80.2 82.7 83.7 88.3 89.4 831500 72.0 75.5 79.7 82.5 82.8 83.8 40000 67.3 69.8 74.4 76.6 81.0 81.2 50000 65.6 64.9 67.0 69.9 73.1 73.8 63000 75.4 59.4 61.0 64.1 64.9 65.6 6000 49.4 51.5 55.1 59.0 58.4 60.5 10000 49.4 51.5 55.1 59.0 58.4 60.5 10000 49.4 51.5 55.1 59.0 58.4 60.5 10000 49.4 51.5 55.1 59.0 58.4 60.5 10000 49.4 51.5 55.1 59.0 58.4 60.5 10000 49.4 51.5 55.1 59.0 58.4 60.5 10000 49.4 51.5 55.1 59.0 58.4 60.5 10000 49.4 51.5 55.1 59.0 58.4 60.5 100000 49.4 51.5 55.1 59.0 58.4 60.5 100000 49.4 51.5 55.1 59.0 58.4 60.5 100000 49.4 51.5 55.1 59.0 58.4 60.5 100000 49.4 51.5 55.1 59.0 58.4 60.5 100000 49.4 51.5 50.5 100000 49.4 51.5 50.5 100000 49.4 51.5 50.5 100000 49.4 51.5 50.5 100000 49.4 51.5 50.5 100000 49.4 51.5 50.5 100000 49.4 51.5 50.5 100000 49.4 51.5 50.5 100000 49.4 51.5 50.5 100000 49.4 51.5 50.5 100000 49.4 51.5 50.5 100000 49.4 51.5 50.5 100000 49.4 51.5 50.5 100000 49.4 51.5 50.5 100000 49.4 51.5 50.5 100000 49.4 51.5 50.5 100000 49.5 50.5 50.5 50.5 50.5 50.5 50.5 50.5 5	TEST DATE 03-29-78 LOCATION C41 ANECH CH	MGDEL TEST PGINT ACCUSTIC RANGE 0100A 0113A 12,2 M (40.0 FT)

To The same of the

						DRI DF	P(NA OO	L R	PA(QU/	3E ALI	is TY			•					YES		SPEED O. FPS)
,			·																	CORRECTION - Y Correction - Y	64.14 14.30	FREE-JET O. M/SEC (
. ARG		160. PWL	10.1 144.9	10.5 146.2	12.1 148.8	10	- 4	3 0	11.0 148.9	08.6 148.5	. 0		03.3 144.6	- 0 !	- w	67.6 38.5 83.0 137.7	9	72.3 135.3 65.0 136.1	122.8 160.7	REFRACTION (Turbulance (TAMB 30 RELHUM	HODEL
130	DEGREES	140. 150.	1.0 113.2 1	7 11	1.0 116.9 1	1	==	116.	116.0 1		12.4	n	108.4	103.1	.0 100.0 .0 95.4	3 80.2	9.00	4 67.3	122.5 127.5 1	0. 46.00 T	LPHA 5859 PAMB 29.5600	56 SQ IN) -
FJ-ZER-AMODL XO1	INLET,	. 130.	3 102.7 106	104.3 10	109.1	110.011	4.011	10.01	110.4	10.0	108.7	107.5	104.3	• .	- 6	(a) (d		63.4	121.4	/SEC) (IN)	Y.	S12E CM (21.56
	SURED FROM	110. 120	94.1 96.		— -	1	106	9 19	-	104.3 106.9	200		102	- > (88.8 94.	0 -	- w	3 72	114.1 117.2	VELOCITY (FT, Jet diameter	NG. N313 RDG. ADH228	139.0 80
ENTIFICATI	ANGLES MEA	90. 100.		2 92.	93.	2 96.	.3 97.7	.08	.66 99.	988	100	- 4	.9 97.	. 0 !	.4 87.	.8 83.	73.	. 5 67. 5 59.	09.7 110.7	FREE JET FREE	TAPE AERG. 1	OE FT) ARC
		. 60.	0	89.6 89.1	9.00	92.6	1 94.2	93.7	95.4	96.4	96.3	96.0 95.0	95.5	83.5	91.7 88.3	82.8 0.29	73.1	58.4	.6 107.6 10	FACTOR . 000	03-29-78 C41 ANECH CH	ACCUSTIC RANGE 2 M (40.0 FT)
3 .		60. 70		2 87.	9	7 92.	.3 94.	. 1 94	.3 95.	95 96.	5	4 7	93	6.0	.3 88. 7 83.	.7 82.	69 .0	1 59.	106.2 106.	ZE SCALE CALC. 1	TEST DATE 03-	12.
		40. 60.	96		98	- 89	s:-	2 92.	5 94.	94.7	833	4 6 9 9	.3	96.	- 2 - 8 - 8 - 8 - 8	0 75.	6 64.	4 50	04.0 105.1	MODEL/FULL SI INPUT 1.000	TEST	TEST POINT 0113A

)R)F	ie) 	VA OC	iL R	FC	PA QU	G A	E		3 Y															•		EED 0. FPS)
																																	54.14		FREE-JET SPEED O. M/SEC (O.
	PW	85.9	6.99	67.4	167.5	167.0	168.1	67.0	67.0	0.79	, c	00.00	64.7	63.8	6.29	61.3	60.5	128.1	57.4	56.6	62.9	54.1	63.4	04.0					78.5				TAMB	LMC	
6																62.3						_							2.1	94.0					FULL
9		6	4	~	4	<u>س</u>	oj i	٠.	-			٠.	2	(2	•	74.7	ю	ဖ	-	0									9	4.4	ŗ	م	SB59	9. 5500	- (X
•	- -	4	4	0	N	o.	4	4.	اد	٠.	<u> </u>	<u>ه</u> و	2 10)	_	-	9	e,	4	4	6	<u>-</u>							_	-	•	SHIFT	ALPHA S		ZE . 00 SQ
		l			- 1				ł				ŀ			10.	1				43.3 3	_							10	.5 102.8	•	FREQUENCY	₹ 1	ì	\$1 1400
•		ļ			- 1				1				1			4 78	1				İ	22	_						O	4 104	r	FREG	e 6	922	CMC
Š		l			Į				ł	٠			l			7 78	l				1 47	900	_						20	102	-	61	N313	AUR	2.2 SQ
		77.	77.	80	9	82	63	80.	97	9 6	9	4. (200	8	80	78	76.	7	65	58.	48.	80.	4						9	100.7	2	8.06	R S		8032
				•	-1	٠	•		-1		•		٠.								48.6								9.19	97.8		RATIO	TAP	AERO.	SL
6			-		1			-	-1	-	-		-1 -				. 1 -		-		51.6	-								97.9		ETER		_	RANGE 10.0 FT)
•		٠.			-1		•	•	-1	•	•		-1						•	•	50.8	•	•							95.8		DIAM	29-78	ECH CH	TIC R 2400
(;	6	80	a	او	.	on ·	4 (ام	5 6	D (3 C		· N	0	. ~	6	4	4	0	44.6	œ	_							93.6	•		03-29-		ACCUSTIC .5 M (240
		0	0		9	4	9	9 (اره	0 0		d L		٦	ď	ю	0	_	9	80	39.2	Φ.							-	91.5	>				73!
٥		8	ď	ro.	o	ر د	ن د	ú.	- -		D 6	() (I	2 27	σ		-	4	4	-	~	4	e.			٠				^	8.7.9			TEST DATE	LOCA	POINT 13A
•			^	N I		٠.	<u>ن</u>	Ņ.	-	.	•	4. a		N	6	e	0	80	ĸ.	-	-	ĭ							-	0 4)				51
•			2	8	ı	72	8	7	77	?;	- 6	2 8	98	65	9	2	53	46		į	5000 18	_			 20000	31500	 63000	0000	19	PNL 85	3				MODEL TE

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SGUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

X01135

IDENTIFICATION - FJ-ZER-AMODL

									Ol Ol		Gil PO			Ac VU(3 Y								58.46 12.50				
NOISE					PWL		40.0	6.0	42.3 6.0	6.18	7.5	. e	61.0 60.0	1.1	40.9	40.7	40.5 80.5	40.3	30.0	37.6	35.3 35.3	35.1	32.2 32.9	54.1	TAMB 5	1 9	-1		
	. ARC	00		160.			05.114	0	02.5 14 98.6 14	4	io «	4	ω 0	G	60 0	9 0	90.0 14	- 6	i	م اره	4 6	9		09.9 18		5	1		
	40.0 FT. ARC	X01150 X05220	40	150.				6			- 0	. –	. c	0	_	۰.	98.6	0		-	5 4	76.9	0 N	117.4 1	SB59 29.5600	3		:	
	-	AMODIL	DEGREES	140.			102.0		106.4	167.4	106.6	105.6	104.4	103.0	102.9	102.1	101.6	100.5	96.0	- 1		78.4		116.7	ALPHA	SIZE			
CORRECTED	DAY,	FJ-400-AMGDL FJB400-FMGDL	INLET,	130.	,		1.72	90	103.0	105.2	106.3	106.3	106.0	106.4	105.0	9.9	103.6	102.0		94.1	9 0 9 0 9 0	80.6	65.7 58.8	117.1	_	3	-		
	4. STD.	ROUND		120.	•			8	9.4 0.4	97	_	5		9	102	10.	5	6	3 6	8	5 G	197	70.6 63.5	112.9	N313 ADH225	S	3		
ESSURE LI	ENT R.	MODEL BACKGROUND		110.			1	8	8 8	92	Q 0	6	68	8 6	6	9 69	8 8	6	2 9	6	8 8	78	65.4 59.7	109.8	E NO.		2		
SGUND PRE	O PERC	- NDIT	ANGLES ME	100			98	98	88	89.	8 8	8	9 9	ä	8	98	8 9	93		88.		76.	İ	106.2	TAPI				
, 	•	DENTIFICATION	ANG	.06			83	8		36	9 6	8	20.0	8	8	8 8	1 94.2	68	6 92.	8	8 .		6 65.2 8 60.4	7 104.9	3	RANGE			
	ш	IDE		90			62	8	83.	88.	87.	8	8 6	8 6	5	9 6	2 2	6	06	68	80.0	7.0	0 64. 9 58.	5 102.	-29-78	ACOUSTIC			
UNTRANSFORMED	29.0			70			81	95		85.		89.	88	98	8	8 6	86	8		82.	. 99 . 90	75.	59.	8 101.	93	9	ע ע		
LNJ				. 60				2	6	94	8	9 8	87.	88	88	8 6		ā	8 89.	- 1	78		56.	6 100.	TEST DATE	N T			
				50		-	9	90	50 00 0.00	83.	95	9 67.	2 86. 86.	87.	97.	98	80 0	93		85		20.0	63.	7 99.	16	TEST POINT			
•				40	<u>a o e o</u>	0000	77	2	90.	74	6	9 8	90	96.	96	96	64	98	8 2 2 3	2	76.	22	50.	98.		3	169		
			L (2.18.18		FRE 60	1 2 5 1 2 5 1 6 0	N C	<u> </u>	4 R	63	96	2 8	180	250	315	300	900	1000	1250		_			OASPL		MODEL			

4
_
7
•
9
_
9
2
/19
9/79
a
2
2
a

						RIGIN F PO	AL PA DR QU	ge is Ality			YES YES		SPEED 390.0 FPS)
SSURE LEVELS SB 40.0 FT. ARC X01150	DEGREES	140. 150. 160. PWL		0.1	4040	104.2 99.4 102.0 98.7 100.5 97.5 100.2 98.2	.2 102.7 99.7 16 101.8 98.9 1	103.2 100 104.3 103 105.1 103 104.5 102	102.8 101.8 98.6 99.0 93.8 95.9 90.7 92.7	8 94.3 87.6 8 79.2 81.8 8 73.6 76.5 6 66.8 70.4 8 57.0 60.6	115.8 117.3 113.6 154.8 390.00 REFRACTION CORRECTION - Y 48.00 TURBULANCE CORRECTION - Y	ALPHA SBS9 TAMB 56.46 PAMB 29.5600 RELHUM 12.50	SIZE 21.55 SQ IN) - MODEL 118.87 M/SEC (3
TRANSFORMED MODEL SOUND PRESSURE 70 PERCENT R.H. STD. DAY, SB. SHIFICATION - FJ-400-AMODL X01	MEASURED FROM INLET,	00. 110. 120. 130.		65.0 89.5 95	.8 85.6 91.6 1 .9 87.6 93.1 1 .3 88.5 95.6 1 .5 90.6 97.8 1	.9 92.1 99.7 104 .1 94.0 100.1 104 .8 95.2 100.9 104 .7 96.1 101.6 104	. 9 97.3 102.7 104 . 9 97.3 102.7 104 . 4 98.9 102.7 104 . 4 99.4 102.4 105	6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	.5 96.9 98.7 101 .1 96.1 97.4 97 .0 93.1 92.6 91 .1 87.2 92.1 91	0 85.4 1 72.0 0 65.5 60.1	.0 109.3 113.2 116.4 ET VELÖCITY (FT/SEC) EE JET DIAMETER (IN)	TAPE NO. N313 I.A.A.ERO. RDG. ADH225	ARC 139.0 SQ CM (2
FLIGHT TRANSFORM 59.0 DEG. F., 70 PERCE IDENTIFICATI	ANGLES	. 70. 80. 90. 1		64.5 83.6 83.6 8	84.5 85.1 86.0 85.3 85.5 86.1 85.7 86.8 87.5 87.6 91.7 89.0	99.6 89.4 90. 90.4 89.9 91. 90.6 92.0 92. 93.1 92.6 93.	92.6 92.6 93.7 93.1 93.3 94.4 93.6 94.5 95.7 94.3 94.6 96.4	4 94.8 94.7 96.9 5 95.0 95.1 97.2 5 94.7 94.9 96.2 4 94.2 95.3 96.7	94.4 94.9 95.3 93.8 95.1 95.1 93.3 93.8 93.1	3 84.3 84.9 84.7 84 3 81.6 84.0 83.1 78 3 77.4 76.5 76.0 73 2 70.6 68.6 68.2 68 1 62.2 62.8 63.4 61	0 105.6 106.1 107.1 1 SCALE FACTOR FREE ALC. 1.000	03-29-78 C41 ANECH CH AE	ACOUSTIC RANGE 12.2 M (40.0 FT) A
		40. 50. 60 FREQ	50 63 100 100	84.3 86.2	84.3 86.2 86.4 86.9 87.1 87.4 87.4 88.4	85.0 91.5 91.3 89.1 92.7 90.0 92.3 93.5	93.7 92.7 92.6 92.9 93.6 94.2 94.1 94.1	95.0 94.8 94.1 94.6 94.6 94.5 97.1 96.2	95.5 95.9 91.8 92.8 91.1 92.9 85.8 89.0	31500 83.6 85.4 86. 40000 78.1 77.2 80. 50000 76.2 74.8 77. 63000 68.9 69.0 69. 80000 60.6 61.1 61.	105.7 105.9 106 MGDEL/FULL SIZE INPUT 1.000	TEST DATE LOCATION	MODEL TEST PO:NT 0100 A 0115 A

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

(Jr

											OI OI			NA OO				GE AL		3 Y				,									(T. SPEED (390.0 FPS)	
		PWL	69.3	50.1	38.5	58.5	50.0	36.6	- G	39.6	0.09	60.4	6.09	60.8	160,5	9'65	100	26.2	55.6	0. FU	163.7							172.7			TAMB 58.46 RELHUM 12.50		FREE-JET . 118.67 M/SEG (
		50. 160.	4 -	72.9	5 72.2	1 71.3	69.7	. 67 05. 1 0 05.	3 70.0	7 68.2 1	.9 68.0 1	5 69 9	3 68 0 1	9 66.2	.8 63.0	1 57.2	- 100	0 17.8	2	_	 •	_					-	4 6	93.7 85.0	gi I	SB59 29.5600 RE		IN) - FULL	
	DEGREES		83.	9.0	82,2	82.8	81.00 0.00	4.0	90.08	79.3		78.6	77.8	76.8	72.3	68.2		. 6 . 6	28.1	4								0.0	96.1	NCY SHIFT	IALPHA SB PAMB 29		SIZE (1400.00 SQ I	
FJ-400-AMGDL	SURED FROM INLET,		74.4 82.5	100	9	2 84	e .	4 -	- 6	9	82.0 83.4	20 60) N	7 79.	.7 77.	.1	4.00 0.00 0.00) N	6 37.	.3 16.								93.0 95.3	100	FREQUENCY	N313 ADH225	4	SQ CM	
– . ∣	MEASURED F		ω r	9, 75	Q	.3 75.	.0	۰. ٥	4 78	6 79	-	3 70	7 78	7 77	4 76	8:	- 6	0 e0	2 46	•	ю. ю					•		7.8 89.7	3 97	8.061	TAPE NG. N		9032.2	
	ANGLES		9 66.6 68	2.5	72.8	74.0	75.2	75.7	76.1	77.1	77.5	77.8	76.7	77.0	75.3	92.0	0 0 N 0	. O. O.	53.4	36.4	9.0							8 68,0 67		DIAMETER RATIO	퓽		IC RANGE 2400.0 FT) SI	
		. 80	67.3 67.1	5 74.	.5	.2 72.	.3 74.	.6 7.4	2 74	.5 75.	.8 75	9 6	75	.7 75.	6 74.	7. 74.	7 7	7 59.	. 7 53.	.7 36.	.6 10.							96	20.	210	03-29-78 C41 ANECK		ACOUSTIC 1.5 M (240	
			67.8	2 2	6 72.	.17	25.	7.4.	73	8 73.	3 73.	73	73	0 72.	0 74.	, ia		6 65.	8 45.	2 30.	9.0							1.7 85.3	50 10 10 10 10		TEST DATE		73	
		40.	68.1 67.	66.0	63.5	69.7	9.02	70.3	6.69	70.3	4.05	60.0	9.09	71.4	68.9	64.0	. c	44.7	29.4	٠.	•							60 0	88.4				TEST 01	
		FREG	000	8	100	125	160	000	315	400	900	900	1000	1250	1600	5000	2000	4000	2000	6300	0000	0000	16000	20000		20000		OASPL					MODEL 0100A	71

								DR DF	iG P	IN PO	AL	. P	U	GE AL	IS ITY	7									ET SPEED (0, FPS)	. (
																		,						55.58 21.60	0	
		.09	J AA		1.1 146.0	- (3.1 150.5 3.1 150.5	3.7 151.2		· ·	60 0	,	4		, co	:1 0	6	20 00 20 00		٥ «	7	4.0 138.5 7.1 139.5	4.2 162.5	TAMB	Ş	•
X01160	Ø	150. 10			114.5 11	116.3 11	= =	119.3 11:	0.4	. 0	0	4 0	4	က 	0	5 6	0	က် လ –	ļ.	<u>-</u> σ	, r	77.7 74	129.6 124	3859 29.5600	(S)	
J-ZER-AMODL	T, DEGREE	30. 140.			-	.8 109		711	4 6	=	113	. 4	.3 113	2 112.4	0 110	6 107	6 105.	. 50 . . 50 . . 50 .	.0 95.	ė o		.6 76.2 .0 72.1	.7 125.0	I ALPHA PAMB	SI ZE 21.65	
UND F	FROM INLE	120. 13			.1 103	7.	. o	-	==		5 111		111 8	106.7.110	108	1 106	. 8 103		.7 94	5 e	. 2	75.6 72 69.5 67	118.1 122	N313 ADH217	O SO CM	
ATION - MODEL BACKGROUND	MEASURED !	110.			0 95.1		4.86.6	·	 o a	~		7 104.1	104	4 v	9	3 103	500	7 9 7 6	05 9	, c	75	1 69.5 3 63.9	5 115.0	RDG.	139.	
. 2	ANGLES M	90. 100		, <u>,</u>	-	d d	N CO	9 (2 A A	9	۰ م	- •	4			היי	78 0.		4.	۳ (C	10	69.8 70. 65.3 62.	10.7 111.	TAPE AERO	RANGE 10.0 FT) ARC	
IDENTIF		90.			67.7	00.00	92.0	93.3	9 6	97.7	96.9	97.7	97.3	96.7	97.4	93.70	96.1		91.1	- 100	75.3	1 67.1 5 61.1	2 108.9 1	-29~78 ANECH CH	ACGUSTIC RA	
		60. 70			.1 67.	68 88	90.	.1 91.		97.	.3 96.	. 20	.4 97.	96 0	.8 97.	. 96	94.	.7.98	.1 86.	200	4 73.	64.4 67.1 58.3 62.5	07.9 108.2	82	ACC 12.2 P	
		20.				٠,	E 10		8 P		.	- છ		4 ()	0 (NIG	6	o os	9 (5 0	2	61.6 54.0 5	106.8 10	TEST DATE	T POINT 0116A	
		40.	9 9 9 9	100 160 160 000 000	95.	4	8 6.	88		83	9.	2	96	0 Q	8	98	9	77.		5 8	62.	63000 56.5 60000 50.3	GASPL 105.2	-	MODEL TEST 0:00Å 0	€

### 80. 70. ### 80. 190. 11C. 120. 130. 140. 160. 160. FML ### 80. 70. ### 80. 190. 11C. 120. 130. 140. 114. 160. 160. 160. FML ### 80. 70. ### 80. 190. 190. 11C. 120. 130. 140. 114. 111. 1146.0 ### 80. 80. 80. 80. 80. 80. 190. 190. 114. 111. 1146.0 ### 80. 80. 80. 80. 80. 80. 190. 190. 114. 110. 114. 110. 110. 110. 100. 10					0	RI: F	Gii Po	VAI OF	L (PA U	GE AL	11	16 S.									83A		T SPEED
40. 70. 80. 90. 100. 112. 120. 130. 140. 150. 160. 160. 160. 160. 160. 160. 160. 16			5	0:	5	i io	2.	ຸຕຸ	0.4	9.6	in c	9.	9.1) ल ७	2.5	19 (9 :	3 6		N 10	5,5	10 m	3	1	FREE-JET 0. M/SEC (
1 87.1 87.6 67.7 90.1 93.0 95.1 97.1 103.4 104.3 1 2 87.2 80.2 80.3 90.1 93.0 95.1 97.1 103.4 104.3 1 2 87.2 80.2 80.3 90.2 82.8 93.2 100.2 109.3 112.7 1 2 80.0 0.8 15 80.8 93.2 82.8 93.2 100.2 109.3 112.7 1 2 80.0 0.8 15 80.8 93.2 82.4 85.5 100.2 109.3 112.7 1 2 80.0 0.8 15 80.8 93.3 94.6 95.8 103.1 111.2 114.6 1 2 81.3 91.2 97.4 93.3 94.6 95.8 103.1 111.2 114.6 1 2 81.3 91.2 97.7 99.8 90.7 102.7 102.7 111.0 114.1 1 2 85.6 95.9 96.0 96.8 107.2 109.0 111.3 113.2 1 2 85.8 95.9 96.0 96.8 107.2 110.6 114.6 1 2 85.8 95.9 96.0 96.8 107.2 110.6 111.3 113.2 1 2 87.2 97.2 97.2 99.8 90.7 102.7 102.7 111.2 114.6 1 2 87.2 97.3 99.7 99.1 100.7 104.7 106.0 111.3 113.5 1 2 87.8 96.6 87.9 99.1 90.2 107.2 110.2 112.7 1 2 87.0 97.4 97.2 97.0 99.1 100.7 104.7 106.6 107.2 110.4 1 2 87.2 97.9 99.1 99.7 102.				6 111.1 146	3 111.7 147	? —		4.0	114.7	6.11	110.1	<u> </u>	107.1 1	106.2 147	102.6	97.8	, u			67.1	124.2	REFRACTIO TURBULANC	600 RE	١,
ANGLES MEASURED FROM IN. 1 37.1 37.6 67.7 90.1 93.0 96.1 97.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	. 1	DEGREES		106.3 114	109.6 116.	7 E	7	110,2 119	114.1 120	112.7 116	117	112.4 114.	112.0 113	109.1 110	105.1	96.9	95.2 9	87.3	75.4	72.1	125.0			\$
### ANGLES PEASI. ### ANGLES PE	FJ-ZER-AMODL	FROM INLET,	.	97.1 103.	-	200	=	==	112	F	107.3 112.4		~ ~		- 0	9 6	3				118,1	ITY (FT/SEC IAMETER (IN	N313 ADH217	5
1 97.1 97.6 97.7 90. 90. 1 97.1 97.8 97.7 96.0 90.0 90.0 91.2 91.2 91.2 91.2 91.2 91.2 91.2 91.2			8,	0					70		- c	 				0 -	, a	o	D ~		-	JET REE	W E	130
20, 70. 70. 70. 70. 70. 70. 70. 70. 70. 70.	I DENT P			.7	.3 92.	6 6 8 8	2,2	96.	7.	98,	288,	9 N	0	r (0 •	-	2	.3 77.	. 1 65.	110.7		3	FIC RANGE
CAT 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2				1 87.6	.2 68.2	90.0	27.5		4,79	90.0	8 97.3	96.4	0 97.2	97.6	2 2 2 2 2 2 2 2	5 93.4 4.09	.1 86.6	79.6	73.4	3 62.5	108.2	SCALE SALC. 1	1	Acoust
				-	7 87	88.5	20.	2.7.	95.	97.1	95.6	96.4	96.2	96.2	91.3	8e.6 55.8	82.9	72.9	67.5	0.75	106,8	\$15E	TEST DA	TEST POINT

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

						(O)	iG F	iiN O	AI Of	. F	?A	G E	: K	3 Y															FREE-JET SPEED M/SEC (0, FPS)	· · · · · · · · · · · · · · · · · · ·
: 1																												55.58 21.80	O.	
	3	167.5	69.0	169.4	170.1	169.5 168.8	168.7	166.9	166.8	166.1	164.7	163.3	162.9	160.4	155.3	158.8	156.6	157.7							180.4			TAMB		
	160.	65.4	900	87.4	86.9	83.0	80.4	76.4	74.3	72.9	68.4	63.8	 	40.6	19.9										95.7	97.6			- FULL	
£ 63	150.	2.7	- P 6	95.0	95.9	9.00 0.00 0.00	32.1	9 6	96.2	64.0 0.0	30.2	77.0	67.0	38.3	43.8	4.									204.0	106.6	FT -9	\$859 29.5600	SO IN	٠
XO1165 DEGREES	140.	91.3	9.00	91.0	92.3		90.6	86.7	87.7	65.7	81.7	78.5			-1	38.6									102.4		ICY SHIFT	ALPHA	\$12E (1400.00 \$	
R-AMODL INLET,	130.	89.7	4.	- C.	92.3	90.72	9 9 9	9 69	88.0	86.4	63.4	79.9	70.0	63.9	59.1	45.00 0.10	63.					•			101.8	106.0	FREQUENCY	-	C# (140	
FJ-ZER-AMODL FROM INLET,	120.	81.5	4.4.5	87.1	68.1	68.3 88.2	87.6	86.7	85.9	60 K	(a)	75.9	74.0	69.6	61.1	50.1	2,0									103.6	u.	N313 ADH217	2 80 6	
JON - F	110.	77.6	90.00	83.4	84.4	84.8 84.8	65.1		84.8	6 2 2 2 3	82.9	79.6	74.3	67.6	60.8	30.0		, ,							98.6	101.7	8.061	E NG.	9032.	
SAT ME	100.	75.5	20.00	90.1	81.9	. 10 04 10	82.2	81.4	4.19	80.6	70.2	77.3	70.7	67.3	60.3	50.00 0.00 0.00	11.6								92.8		RATIO	TAPE AERO.	SL	
IDENTIFI	8	74.0	77.1	70.1	62.1	80.0	80.4	80.7	79.9	70.0	80.1	78.1	74.0	70.5	61.6	55.0	20.00								9.00		DIAMETER F	.	1C RANGE 2400.0 FT)	
	90.	72.3	75.6	76.9	79.9	78.9	79.2	77.6	77.6	77.8	70.0	76.0	73.0	68.8	59.9	53.0	9 6	. !							. 60	-1 -	DIA	_	COUSTIC F	
	70.	70.5	73.1			77.8									.1	47.8 20.7		. !							98	• •		03-2 C41	ACGI 731.5 M	
	60.		72.4			76.1			1						1										67.7	•l •		TEST DATE		
	8	67.	20.9	7	7;	73. 76.	74.	, 4	7	, ç	69	67.	9 6	4	43										4.00	. 1.		TES	T POINT 0116 A	
	6	20	66.7	7	2	3 %	2.55	, <u>-</u>	70	99	62	28	. 4 . 6	43	ह	<u> </u>									82.3	67.			ok ملا	
	. 01	100	3 2 3	125	160	200	315	800	630	000	1250	1600	2000	3150	4000	5000 5000	0000	10000	12500	2000	20000	40000	50000	90000	OASPL	PNLT			100EL 0100	74

()

07/19/79 15.714			ORIGINAI OF POOF		IS TY	3.42	• 1 1 1
PRESSURE LEVELS CORRE ERCENT R.H. STD. DAY, N - MODEL FJ-ZER- BACKGKGUND	ANGLES MEASURED FROM INLET, DEGREES FREG 40, 50, 60, 90, 100, 110, 120, 130, 140, 150, 160, FREG 53 80	0 67.8 67.3 67.1 67.8 89.6 92.5 95.1 97.1 103.4 106.0 114.5 110.6 145.1 86.2 87.4 88.2 90.3 92.4 93.1 95.0 96.9 105.8 109.9 115.8 112.0 147.9 87.9 88.2 88.5 89.6 92.0 93.6 95.8 100.2 109.5 112.4 116.8 112.3 148.2 87.1 101.0 110.4 114.0 117.9 112.5 150.	87.6 89.9 91.2 91.2 92.8 94.7 95.8 98.9 103.7 111.0 114.4 118.3 113.4 191.1 90.4 92.2 93.7 93.6 95.9 97.1 100.2 105.2 111.3 114.1 118.6 114.0 195.0 93.8 95.3 94.3 94.7 96.8 96.4 101.1 106.3 111.1 113.0 117.9 113.6 192.6 95.4 97.2 96.7 97.5 98.9 99.8 102.6 106.9 111.3 114.1 119.6 113.9 194.5 93.8 94.9 95.7 97.5 98.9 99.8 102.6 107.4 111.7 112.9 118.6 113.9 194.1 95.2 96.7 97.0 97.0 99.2 100.8 104.0 107.2 111.6 112.8 117.4 110.4 1	95.5 96.6 96.1 96.8 97.1 99.8 100.9 104.8 108.1 110.8 113.1 116.3 108.5 149 94.6 95.5 96.5 96.3 97.3 99.7 100.3 104.5 107.0 109.5 113.1 114.2 108.2 148 93.8 95.7 96.5 96.8 96.9 101.0 104.7 107.0 109.7 112.0 112.9 106.9 148 91.4 96.6 96.4 96.8 97.6 99.9 101.0 104.7 107.0 109.7 112.0 112.9 106.9 148 91.4 95.6 96.2 96.8 97.6 99.9 100.9 104.3 106.0 109.1 110.3 112.8 106.9 148 91.4 95.6 96.2 96.5 97.1 99.0 99.8 103.1 105.4 107.6 108.5 110.9 105.1 146.9 105.1 146.	88.2 90.2 93.1 95.9 96.0 97.1 98.7 98.9 102.2 104.0 106 85.2 90.2 93.1 94.1 95.6 07.3 96.7 100.4 101.6 103 82.2 88.1 90.6 92.4 94.5 \$6.1 95.0 97.7 89.0 101 77.2 84.2 87.4 69.7 93.0 94.2 92.0 94.8 96.4 97 74.8 81.2 83.6 85.3 89.9 91.3 88.6 83.8 93.6 92.7 75.8 76.6 81.0 85.3 82.6 83.1 84.6 86.4 89.1 96 67.9 71.1 76.0 77.9 82.6 83.1 79.7 81.7 84.2 84.	61.0 66.0 68.6 72.3 73.9 75.4 74.4 74.6 79.4 78.3 79.9 82.4 77.7 137 55.2 59.8 62.6 65.4 66.0 67.4 68.7 67.6 74.0 71.9 75.2 75.6 72.9 137 49.0 51.6 56.7 60.6 60.0 62.1 60.7 61.9 68.1 65.7 71.0 63.6 64.8 138 104.7 106.3 107.5 107.7 108.5 110.5 111.5 114.9 118.1 122.4 124.7 129.0 123.8 162 104.7 106.3 107.5 107.7 108.5 110.5 111.5 114.9 118.1 122.4 124.7 129.0 123.8 162 162 163.8 163 163 163 163 163 163 163 163 163 163	ACCUSTIC RANGE 2.2 M (40.0 FT) ARC 13\$.0 SQ CM (21.55 SQ IN) - MODEL Q

59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB. 40.0 FT. ARC IDENTIFICATION - FJ-ZER-AMODL X01170 ANGLES MEASURED FROM INLET, DEGREES 70. 60. 90. 100. 110. 120. 130. 140. 15G. 160. PMI	PVIL				88	170
DEG. F., 70 PERCENT R.H. STD. DAY, SB. 40.0 FT. IDENTIFICATION - FJ-ZER-AMDL X01170 ANGLES MEASURED FROM INLET, DEGREES 60. 90. 100. 110. 120. 130. 140. 150. 16	1				138 162 CT 10 LANC TA	ó
DEG. F., 70 PERCENT R.H. STD. DAY, IDENTIFICATION - FJ-ZER-AMDDL ANGLES MEASURED FROM INLET, 60. 90. 100. 110. 120. 130.	156. 1	114.6 110 116.6 112 117.9 112	01110.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.7.	112.0 112.9 106.9 110.3 112.8 106.9 106.9 107.2 110.0 104.1 101.2 101.7 101.7 101.7 101.2 93.6 93.8 93.8 93.8 93.8 93.8 93.8 93.8 93.8	68.6 64.8 129.0 123.6 00 TURBU 3859 29.5800	SO IN) - MOI
DEG. F., 70 PEKCE IDENTIFICATI ANGLES MEA 60. 90. 100.	. 130.	.0 96.9 .6 100.2 .1 101.0	2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 -	4.7 107.0 109.7 4.3 106.0 109.1 3.1 105.4 107.6 2.2 104.0 106.4 0.4 101.5 103.2 7.7 99.0 101.5 4.8 93.6 92.7 6.4 89.1 90.2 1.7 84.2 84.8 7.6 79.4 78.3 7.6 74.0 71.9	.9 68.1 65.7 .9 116.1 122.4 3CITY (FT/SEC) DIAMETER (IN) N313	39.0 SQ CM ()
59.0 DEG.	100.	89.6 92.6 92.4 93.1 93.5 94.2 94.7 95.8	96.0 98.4 1 98.6 9 98.4 1 98.6 1 98.0	99.9 101.0 1 99.9 100.9 1 99.0 100.9 1 99.7 3 96.7 1 96.7 1 96.0 1 91.0 91.0 91.0 91.1 24.6 93.1 79.7 75.4 74.4 68.7	62.1 60.7 110.2 73.5 FRE TENE	NGE O FT) ARC
9.	. 70.	.3 86.5 89. .3 80.1 91. .3 90.1 91. .2 91.2 92.	2 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 95 95 95 95 95 95 95 95 95 95 95 95 95	60.6 60.0 107.7 108.5 ALE FACTOR C. 1.670 03-29-76 C41 ANECH	ACGUSTIC
40. 60.	8	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	.0 51.6 7 106.3 1 EL/FULL SI NPUT 1.000 TEST LGCA	TEST POINT A 0117A

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SGUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

("

						-					-	
						ORIGIN OF POO	AL PAC R QUA	E IS				FREE-JET SPEED M/SEC (0. FPS)
			- 8 4 0	n n – m		-000		~ ~ ~ ~ ~			5 53.42 H 15.40	FREE O. M/S
		Ę	167.1 168.2 168.7 169.0	169. 169. 169.	168.4 167.9 167.0	166. 1 165. 0 164. 3	162.1 160.7 159.3	157.5 155.9 155.3 156.1		179.9	TAMB RELHUM	
		160.	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				57.8 49.8 38.7	•		95.2 97.1	1	FULL
	:		0 4 V 0	0 0 0 0	0 01 10 10	r - 4 @	-000			a a	SB59 29.5800	. (X
X01175	ES	150	ļ	l		i	67.73.	1		SHIFT	[]	g
×	DEGREES	140.	91.1 92.7 93.0	200	900.0	85.0 83.0 77.	73.7 68.6 61.0 52.0	37. 13.		1 (41.85)(85	ALPHA	\$1 ZE (1400.00
MODI	LET,	130.	890.6 800.6 1.19		80.6 89.4 87.7	86.5 84.7 83.2	77.1	23.7		101.5 10 105.4 10 105.4 10	•	
FJ-ZER-AMGDL	FROM INLET,	20.	D 0 0 4	4 0 - 10	0000	O - 4 K	~ α κ ε ≅	~ 01 KD		98.2 03.5 1.1.1	N313 ADH231	50 OS
FJ-1		· -	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	G 01 01	0000	04878	6 76 6 68 6 68 6 69	700		20 4 4 10	NS OA	2.2
NO	SURE	-	77. 79. 80.	8 8 8 9 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	0 0 0 0 0 0 4	92.0	76. 73. 66.	8 E		8. 6	E NG.	803
IDENTIFICATION	ANGLES MEASURE	100.	76.0 76.6 78.1	81.9 81.9		79.6 79.0 79.0		0.40		92.6 98.7 98.7 RATIG	TAPE AERG. F	3F
ENTIF	ANGLE	.		79.2 80.7 80.7		80.8 70.0 70.0 6	0 7 8 8	53.4 35.9		Cales		RANGE 30.0 FT)
ā				1	1	0000	6-9-			6.9 96. 6.3 100. DIAMETER	5	
		8	ĺ	1	1	1	7.7. 67. 67.			600	-29-76 1 ANECH	UST (
		6.				76.2	71.4 68.0 62.0	29.5		95.7 95.3	03-2	
		. 60				74.9	0 4 0 0 0 0 4 -	21.4		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ATE	731
			0 r O r	@ N B -	N N O 0	0 r 0 4	7000	0.4		0	TEST DATE	POINT 37A
		8	88 22	73 23	7525	2 2 2 8	8 8 8 8 4	8 =		288	=-	V. 1
		9	64.6 64.9 68.2				7.4.7 42.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6			86.38 86.50		TES
		FRED	ဥ စ ခ င	125 160 200 250	6 4 8 6 0 0 0 6 0 0 0	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	8 0000 0000 0000 0000	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	80000 OASPL PNL PNLT		177 177 0100¥ 0100¥

•
4
~
•
2
_
a
79
•
9
-
`
22
$\boldsymbol{\alpha}$

										0	RI F	GI P	N	AL	. F	A U U	GE Al	: 1: .IT	3 4										ET SPEED (0, FPS)
																									•			53.42 15.40	FREE-JET O, M/SEC (
			PWL			146.8	148.0	149.9	150.7	. E	5 6	152.9	153.1	51.5	150.8	149.6	149.1	148.72	T		144.0 8.0	141.2	140.5	139.9	137.5	138.7	163.0	TAMB RELHUM	ដ
X01180		160.				111.6	112.5	113.0	2		=	115.	115	112.2	- 0	107	107		103.	102	0 G	94	87.	83.	72.2	64.	124.5		- MODEL
	EES	. 150				5 115.	4 116.6	118.1	9		9	120.	120.	<u>0</u> !	4	113	2	100	108	106.	0 103.9 4 100.6	98.		999	74	_	129.6	A SB39 B 29.5300	(X)
R-AMODI	, DEGREE	140				7 106.	8 110.	0 112.	-1	. 4	13	115.	116.	7	9 10	13	112	8 109.	107		.0 102. 6 98.	93	6	9	38		8 126.	I ALPHA PAMB	SI ZE 21.55
FJ-ZER	M INLET	0. 130				.1 103.	2	.7 11	800		. 9	.2 11	6	10. II	. 6.	9			2 107	0 7	. 7 103 1 98	6 83	ر و	V 850	8 73	.1 67	.3 123.	230	E G
MODEL BACKGROUND	RED FROM	110. 120				ь.		٠. د	-	- 0	6 107	2 108	6019	.3 103	3 109	8 107	.5 107	.1 106	9 105	6 102	. 2 . 6 . 6 . 9 . 7	1 93	-	ď.	- 0	۲.	8.119). N313). ADH230	39,0 80
•	MEASURED	100. 11			-	-	93.6 95	6	u c	2 6	98.7 102	0	0	φ. •	1.4	8	<u>Б</u>	0.3 103	9	က မာ ၊	95.5 99	-	_		•	4.	2.3 115	TAPE NO ERG. RDG	ARC 1
DENTIFICATION	ANGLES	1 .06				6	92.9	ю	9	7 7	- 10	7	9		00.55 101	6	ب ر م ر	 \ 10	6	ლ .	97.~ 94.8		œ	- 0		4	1.3 11	AE	Ä T
DENTIF		90.				Q	90.0	დ	4 6) -		0	7	6	- -	80	o,	98.1	9	4 (6 0	a		a 0	67.3	Ġ	09.2 11	9-78 ANECH CH	TIC RANG
		70.				_		0	٥	n c		2	_	s (.	6	· ~ (ი ო	_	σ,	92.9 90.4	6	4.6	ر. د د	o ou	9.	08.7 1	03-29-7 C41 ANE	ACCUSTIC
		.09				98.1		89.5	-1					•					١.		91.6 88.2						108.3 1	FEST DATE	<u> </u>
		50.				6	86.7	•	-1	، ت		- 1			97.3		٦.	96	93.8		60 60 60 60 60 60 60 60 60 60 60 60 60 6				62.0		107.2	TEST LGC	ST POINT
		6					84.4	•	-1								•			•	83.4 77.7			•		•	105.9		DEL TEST 0100Å O

71.70								0		GIN PO			PAG										CORRECTION - YES	.40	FREE-JET SPEED M/SEC (0, FFS)	
TOLIOOTOO CHILDO ITCAM CTXCATONACT	59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB. 40.0 FT. ARC	IDENTIFICATION - FJ-ZER-AMODL X01180	ANGLES MEASURED FROM INLET, DEGREES	40. 50. 60. 70. 60. 90. 100. 110. 120. 130. 140. 150. 160. PUL	80 63 60 60	83.5 88.1 88.1 88.2 90.3 92.7	84.4 86.7 87.9 89.0 90.6 92.9 93.6 95.7 99.2 105.6 110.4 116.6 112.5 146.	400 60.7 60.2 68.0 68.0 80.5 87.0 85.2 87.1 101.0 112.8 116.1 112.6 150.7 650 68.0 68.1 67.0 87.2 67.0 68.3 67.0 68.3 67.0 68.3 67.0 68.3 67.0 68.3 67.0 68.3 67.0 67.0 67.0 67.0 67.0 67.0 67.0 67.0	92.1 90.9 93.4 94.0 94.1 96.4 97.8 101.2 105.7 111.6 114.6 119.6 114.7 151	96.0 95.5 96.3 95.3 95.4 97.6 98.7 102.6 107.6 112.1 113.8 119.4 114.8 151 94.1 96.2 98.2 98.0 99.7 101.0 104.2 108.2 113.5 115.0 120 K 115.2 152	95.0 94.3 96.1 97.1 97.7 99.6 101.0 104.6 109.9 114.0 116.7 120.4 115.1	96.7 97.5 97.0 96.8 96.8 98.9 100.6 104.3 109.6 112.6 114.0 118.7 112.2 151 95.4 96.7 98.2 98.0 98.0 99.7 101.8 105.2 108.5 113.1 115.0 117.4 110.4 151	96.7 97.3 97.1 98.1 97.9 100.5 101.4 105.3 109.3 112.5 115.4 115.9 109.0 1	95.1 96.0 97.0 97.7 98.0 99.9 101.6 105.6 107.6 111.5 112.8 112.9 107.1 143	93.4 96.1 97.1 97.6 99.1 100.7 101.6 105.1 107.2 110.1 110.6 111.5 106.4 146 91.6 96.1 97.2 97.3 96.1 99.5 100.3 104.1 106.4 108.6 109.0 109.9 105.1 147	89.1 98.8 95.7 96.7 97.6 100.0 99.6 102.9 105.2 107.4 107.7 108.5 103.8 146	63.4 89.1 91.6 92.4 94.6 97.1 95.5 99.2 99.7 103.0 102.0 103.9	77.7 85.9 88.2 80.5 93.0 94.8 92.7 95.6 97.1 98.6 98.4 100.6 96.1 142 76.8 62.7 84.5 86.3 90.9 91.5 89.1 90.1 93.9 93.7 93.6 96.5 94.3 141	74.3 78.1 82.3 84.6 85.1 85.9 85.1 87.1 90.3 91.5 91.2 91.1 87.4 140	63.2 67.7 69.6 73.3 74.9 76.9 74.9 75.1 79.9 80.0 80.4 80.6 77.7 136 87.7 62.0 64 67.2 67.3 60.7 80.0 68.5 74.8 73 1 75.3 74.9 75.3 60.7 80.0 68.5 74.8 73 1 75.3 74.6 72.3 137.3	51.2 53.6 57.9 61.8 60.2 65.4 61.4 62.7 69.1 67.0 71.0 67.6 64.8 1	DASPL 105.9 107.2 108.3 108.7 109.2 111.3 112.3 115.8 119.3 123.8 126.1 129.8 124.5 163.0	MODEL/FULL SIZE SCALE FACTOR FREE JET VELGCITY (FT/SEC) 0. REFRACTION CORR Input 1.000 Calc. 1.000 Free Jet Diameter (In) 48.00 Turbulance corr	CH AERG. RDG. ADH230 PAMB 29.5600 RELHUM 15	MODEL TEST PGINT ACCUSTIC RANGE 0100A 0110A 12.2 M (40.0 FT) ARC 139.0 SQ CM (21.65 SQ IN) - MODEL 0,	

				ODIO N						
				ORIGINA OF POO	AL PAGE IS OR QUALITY					SPEED O. FPS)
								•		FREE-JET SP M/SEC (
						•			53.42 15.40	O. M/S
	7	91.00				156.0 155.6 156.4		180.9	TAMB	
	160.	86.2 85.9 87.2	87.4 86.8 83.4		70.1 67.4 63.3 49.3 39.2 17.8			6 6 6 6 6 6 6 6 6 6 6 7 6 8 7		FULL
တ	150.	94.6 955.1	0 0 0 0 0 0 0 0 0 0 0 4 0 0	92.0 92.7 93.2 93.4	91.1 78.9 77.3 65.2 66.2 41.8	22 -		105.0 106.8 106.8 FT -9	SB59 29.5800	SO IN
DEGREES	140.	2 6 9 8 6 6 9 6 6 6 6 6	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		83.8 777 74.9 69.1 69.1 69.1	37.9 14.0		103.5 10 105.8 10 107.8 10 ICY SHIFT	I ALPHA PAMB	\$12E 400.00 s
KLET,	130.	90.00 92.00	92.1 93.6 92.0	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		4 to		102.9 10 106.9 10 106.9 10 FREQUENCY		5 (7)
SURED FROM INLET,	120.	82.0 83.1	0 0 0 0 0 0 0 0 0 0 0 0	88.7 89.7 87.3 86.2	85.1 83.7 77.4 73.9 68.8	8.00 0.00 0.00		99.4 104.7 105.2	N313 ADH230	2 SQ CM
URED	110.	78.7 79.1 81.6	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	86.2 86.2 85.2 85.8		32.2 6.6 6.6		96.6 102.2 102.2 8.061	RDG.	9032.
ANGLES MEAS	100.	76.3 77.6 78.6	6 8 8 8 0 0 0 0 0 0 0 0	8 8 8 8 3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	80.5 77.3 75.2 71.9 59.8	24.6 24.6 0.5		93.4 99.4 93.4	TAPE AERO. F	-B
ANGLE	6	75.0 76.6 77.9	.l		79.9 80.3 77.0 74.2 69.6			D 60 (O) I	_	RANGE 30.0 FT)
	90.	1			78.3 77.7 76.2 72.1 59.6	1		90.3 92. 97.4 99. 98.6 100. DIAMETER	29-78 ANECH CH	2400.0
	20.	1		79.0	77.0 73.3 71.4 68.8 68.0	30.5		6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	03-29-78 C41 ANEC	ACCUSTIC .5 M (240
	. 09	.	4 - a n	10 0 0 n - c	777 774.9 669.0 639.0 74.9	O 4.		9 9 9 3 3 8 5 5 5		731
	2 0.	4 10 10 0	n 0 0 0	N 0 0 0 0 0	667.2 667.2 667.2 768.7 66.3 768.7	. w		6 0 0 0 0	TEST DATE LOCATION	POINT 16A
	9	000	4000	0 D 4 0 L 4	44004-4	s		63.0 6 67.0 9 87.0 9		TEST 01
	FRED		1	315 7 400 7 500 7 630 7 800 6	1 1	- 1	12500 16000 20000 25000 31500 40000 63000	GASPL 6 PNL 6 PNL 7		MGDEL 0100A

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SGUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

X01185

IDENTIFICATION - FJ-ZER-AMODL

					ORIGIN OF PO	AL PA DR QU	GE IS ALITY				FPC)	
	·									3,42	FREE-JET SPEED M/SEC (0.	
CORRECTED FOR BACKGROUND NOISE DAY, SB 40.0 FT. ARC J-ZER-AMODL X01190	0. 160.	ļ		.6 112.0 147 6 112.0 147 6 112.5 149 9 112.6 150	3 113.9 151 2 114.2 151 8 114.3 151 8 15.0 153	9 114.1 152.7 112.0 151.7 110.7 151.0 151.	.2 107.7 149 .9 107.4 149 .5 106.7 148 .6 105.4 147	7 104.1 146. 0 101.9 145. 2 99.9 144. 0 96.6 143.	94.1 9 84.5 9 78.7 1 73.7 6 66.3	SB59 TAMB 63 29.5600 RELHUM 15	Ş	
DAY, 38 40.0	INLET, DEGREES			.9 109.0 114 .0 109.9 115 .3 112.9 117 .4 114.3 117	0 114.9 118 8 115.4 119 1 113.5 119 3 116.1 120	0 115 4 119 6 114 6 119 6 115 0 117 6 115 4 116	.5 113.6 114 .2 113.0 113 .1 111.3 112 .1 109.8 110	.4 107.7 109 .9 105.0 107 .7 102.5 104 .6 99.2 101	93.7 94.6 97. 91.2 91.9 91. 96.0 87.1 86. 79.8 81.2 80. 72.5 75.2 78.	123.9 126.0 1 IALPHA PAMB	S12E 1 (21.56 SG	
RCENT R.H. STD - MODEL BACKGROUND	MEASURED FROM			95.4 97. 95.7 99. 96.0 100. 97.6 101.	8 199.7 101.8 103.6	3 104.1 108.3 108.9 105.0 108.	3 105.5 106. 5 105.7 107. 1 104.8 106.	1 102.9 104. 5 100.9 102. 8 98.9 99. 8 95.6 96.	69.1 90.1 93.9 65.1 67.1 90.1 79.7 81.5 64.3 74.9 75.1 79.2 69.0 68.6 74.3 61.2 62.7 68.1	112.1 115.7 118.8 TAPE NO. N313 AERO, RDG. ADH229	139.0 SG	
UNINANSPONDED FOUEL SOUND 59.0 DEG. F., 70 PE IDENTIFICATION	ANGLES			1 67.5 90.1 7 90.1 92.7 0 90.3 92.5 8 91.4 94.0	93.6 94.9 94.3 96.6 95.7 97.3	97.2 99.8 1 26.8 98.7 1 98.0 99.4 1 97.9 100.3 1	3 97.6 99.7 1 2 97.8 100.1 1 97.6 100.2 1 0 97.6 99.5 1	98.1 99.5 96.4 97.5 95.1 97.1	00040-	3 109.2 111.1 29-78 ANECH CH	RANGE 40.0 FT)	
99	60. 60. 70			. 6 67.3 66. . 7 69.2 69. 3 90.3 90.	.4 91.2 92. 9 92.7 93. 8 96.1 95. 9 97.9 98.	.6 95.4 96. .7 97.0 96. .5 97.5 97.	5 97.3 97. 2 97.0 97. 6 57.4 97.	.3 95.7 96. .7 92.8 94. .1 91.6 92. .9 87.7 89.	92.2 64.5 85. 77.8 92.0 84. 72.1 77.0 79. 67.0 68.9 73. 62.0 63.4 67.	07.1 108.1 108. TEST DATE 03-	PGINT 19A 12.	
	Q q		100 160 200	83.3 86.2 96.7	90.00 90.00 90.00	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	66.6 63.4 77.7	25000 76.3 31500 73.6 40000 69.4 50000 62.5 63000 57.4 60000 51.0	0ASPL 105.6 10	TEST A 01	81

BITS -METRYS SHITHING SEAS JARWYSHOH.

s.ž

INLET, DEGREES	140, 150, 160,	91.6 92.6	5 95.7 96.9 1	91.9 95.3 86.9	94.3 96.7 67.2	92.4 93.9 83.1	2 92.3 61.0 1 90.5 78.3	1 87.5 76.0	6 84.4 72.8	6 61.9 70.4	80.1 67.6 1 76.0 63.1	71.6 58.0	0.00	9 60		165.6					. 9 95.6 180.9 . 8 95.4	0	6-	SB59 TAMB 63.42 29.5600 RELHUM 15.40	FREE-JET IN) - FULL 0, M/SEC (
INLET, DEGREES	140, 150.	91.6 94.1 6	93.5	91.9 95.3 86	04.3 96.7 97	92.4 93.9 83	2 92.3 61 1 90.5 78	1 67.5 76	6 84.4 72	6 61.9 70	80.1 67 76.0 63	71.6 58	2 6	0 0	23.4			-			9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0	0 1		
INLET, DEGREES	140.	91.6 92.6	0.00	30.	0 5 0 7	92.7 4 7	~ -	- ·	0	φ.		1	66.	9.4	23.4				1	- 1			•	, G	2
INLET,	1			1 1	•	S 9	9 2	8	ᆝ			٦,	o, c	0	4,						98	901 6	SHIFT	1	8
1				őik	8	2 S	4.10	2.00	1			1			45.7 .38			-			103.0 103.6 107.0 106.9		FREQUENCY	IALPHA	\$1 ZE (1400.00
FROM	120		900	88.4	0.0	69.4 69.0	88.5	87.6	000 000 4	84.6	83.0 80.2	77.2	73.4	61.2	49.1	3.7						!	_	N313 ADH229	2 SQ CM
Ω	.				2 4 8 5 . 2 4 5 . 2 4 5 . 2 4 5 . 2 4 5 . 2 4 5 . 2		1		1			1									2 96.3	9	8.061	IPE NG.	9032
LE3		0 6	4.0		40	a	- 6	<u>ب</u>	2	•	. 0	0	و و	e -	si o	9							RATI	TA	GE FT) SL
7		•		.	40	и 4	9 –	. D. 1	40	•	બં બં	6	<u> </u>	. 0	<u>ن</u> و	- ო					01 E	6	DIAMET	70 ECH CH	ACCUSTIC RANG
	2	71.	7	76.3	5,5	77.	78.	123	76.	9.	7.3	7	68	52.	47.	ģ		: :			•	• •		82	ACGUS 731.5 M (
	00	70.	22	77.	7.8	76. 77.	77.	7 76.	9	10	4.0	69	64	0 0 0	4.5						67.	93.		ST DATE	
ti T	ċ	0 4		NO	φ,	4 0	- 0	2.4	ماه	. ^	0 4	•	4 (۵,۷	۲.	<u>i</u>					2.9	7.3		27	TEST POINT 0119A
1		40. 50. 60. 70. 60. 90. 10	40. 50. 60. 70. 80. 90. 10 64.8 67.9 70.5 71.0 72.8 75.0 76 68.8 69.8 71.8 72.8 72.8 77.8	40. 50. 60. 70. 60. 90. 10 64.6 67.9 70.5 71.0 72.6 75.0 76 65.4 69.5 71.8 72.8 73.6 75.0 76 65.7 70.5 72.4 74.1 76.2 77.4 78	40. 50. 60. 70. 60. 90. 10 64.6 67.9 70.5 71.0 72.6 75.0 76 65.4 69.5 71.8 72.8 73.8 75.0 76 65.7 70.5 72.4 74.1 76.2 77.4 76 70.2 71.0 73.9 75.4 76.6 76.9 78	40. 50. 60. 70. 60. 90. 10 64.6 67.9 70.5 71.0 72.6 75.0 76 65.4 69.5 71.8 72.8 73.8 76.5 77 66.7 70.5 72.4 74.1 76.2 77.4 76 70.2 71.0 73.9 75.4 76.6 76.9 77 74.9 74.6 77.1 76.9 77.9 79.7 80	40. 50. 60. 70. 80. 90. 10 64.6 67.9 70.5 71.0 72.6 75.0 76 65.4 69.5 71.8 72.8 73.8 76.5 77 65.7 70.5 72.4 74.1 76.2 77.4 78 70.2 71.0 73.9 75.4 76.6 78.9 78 71.6 75.7 78.9 79.7 80.4 82.4 82 73.4 74.2 76.1 77.9 79.2 81.9 82 73.4 76.1 77.5 77.8 78.2 81.9 82	40. 50. 60. 70. 60. 90. 10 64.6 67.9 70.5 71.0 72.6 75.0 76 65.7 70.5 71.6 72.8 73.8 75.0 76 65.7 70.5 71.8 72.8 73.8 77.4 78 74.9 74.0 73.9 75.4 76.2 77.4 78 71.6 75.7 78.9 79.7 80.4 82.4 82 72.4 74.2 76.1 77.9 79.2 81.9 82 73.6 76.1 77.5 77.8 79.2 81.9 82 73.6 76.1 77.5 77.8 79.4 80.6 62 73.6 76.1 77.5 77.8 79.4 80.6 62 73.7 77.7 78.7 77.8 78.4 80.6 62 73.6 75.5 77.7 78.5 78.4 80.6 82 73.6 75.5 77.7 78.5 78.4 80.6 82 73.6 75.1 77.5 77.7 87.8 78.4 80.6 82	40. 50. 60. 70. 80. 90. 10 64.8 67.9 70.5 71.0 72.8 75.0 76 65.4 69.5 71.8 72.8 73.8 76.5 77 74.9 74.8 77.1 76.9 77.9 79.7 80 71.6 75.7 78.9 79.7 80.4 82.4 82 72.4 74.2 77.5 77.8 78.2 81.9 82 72.1 75.5 77.7 78.5 79.6 81.1 83 73.0 75.7 78.7 78.5 79.6 81.1 83 73.0 75.7 78.8 77.7 78.5 80.7 82 71.9 74.7 76.8 77.7 78.5 80.7 82	40. 50. 60. 70. 80. 90. 10 64.8 67.9 70.5 71.0 72.8 75.0 76 65.4 69.5 71.8 72.8 73.8 76.7 77.4 70.2 71.0 72.4 74.1 76.2 77.4 78 74.9 74.8 77.1 76.9 77.9 79.7 80 72.4 74.2 76.1 77.9 79.2 81.9 82 72.1 75.5 77.7 78.5 79.6 81.1 82 73.0 75.7 78.7 78.5 88.9 88.7 73.0 75.7 78.7 78.5 88.7 88.6 81.1 82 73.0 75.7 78.7 78.5 88.7 88.7 88.7 78.5 88.7 88.7	40. 50. 60. 70. 60. 90. 10 64.6 67.9 70.5 71.0 72.6 75.0 76 65.4 69.5 71.8 72.8 73.8 76.5 77.4 70.2 7.0 72.4 74.1 76.2 77.4 78 74.9 74.6 77.1 76.9 77.9 79.7 80.4 82.4 82 72.4 74.2 76.1 77.9 79.2 81.9 82 73.6 76.1 77.5 77.9 79.2 81.9 82 73.6 76.1 77.5 77.8 79.6 81.1 85 73.7 75.5 77.8 78.8 80.6 82 73.7 75.5 77.7 78.5 78.6 81.1 85 73.7 75.7 78.5 77.8 80.6 82 73.7 76.2 77.7 78.5 80.7 82 73.7 76.3 76.3 76.9 80.7 81 68.7 73.2 75.9 76.7 77.8 79.9 81	40. 50. 60. 70. 60. 90. 10 64. 6 67. 9 70. 5 71. 0 72. 6 75. 0 76 66. 7 70. 0 73. 9 72. 6 73. 6 76. 77. 4 76 74. 9 74. 6 77. 1 76. 9 77. 9 79. 7 80. 7 72. 4 74. 2 76. 1 77. 9 79. 7 80. 4 82. 4 82. 7 72. 4 74. 2 76. 1 77. 9 79. 2 81. 9 82. 7 72. 1 75. 5 77. 7 79. 2 81. 9 82. 7 73. 6 76. 1 77. 5 77. 6 79. 6 81. 1 83. 7 73. 0 75. 7 76. 5 77. 6 80. 7 82. 7 73. 0 75. 7 76. 5 77. 7 83. 8 80. 7 82. 7 70. 6 74. 1 76. 2 77. 3 78. 4 80. 9 82. 7 66. 7 74. 1 76. 2 77. 3 78. 4 80. 9 82. 7 66. 7 74. 1 76. 2 77. 3 78. 4 80. 9 82. 7 66. 7 74. 1 76. 2 77. 3 78. 4 80. 9 82. 7 66. 7 74. 1 76. 2 77. 3 78. 4 80. 9 81. 6 82. 7 66. 7 74. 1 76. 3 76. 9 78. 2 79. 8 75. 8 75. 8 75. 8 75. 8 75. 8 75. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77	40. 50. 60. 70. 80. 90. 10 64.8 67.9 70.5 71.0 72.8 75.0 76 65.4 69.5 71.8 72.8 73.8 76.5 77.4 74.9 74.8 77.1 76.9 77.9 79.7 80.7 72.4 74.2 76.7 77.9 79.2 81.9 82 72.1 75.5 77.7 78.5 79.6 81.1 83 73.0 75.7 78.7 78.5 79.6 81.1 83 73.0 75.7 78.7 78.5 79.6 81.1 83 73.0 75.7 78.7 78.5 79.6 81.1 83 73.0 75.7 78.7 78.5 79.6 81.1 83 73.0 75.7 78.7 78.5 79.6 81.1 83 73.0 75.7 78.7 78.5 79.6 81.1 83 68.7 73.2 75.9 77.3 78.4 80.6 82 68.7 73.2 75.9 77.3 78.4 80.7 81 68.7 73.2 75.9 76.9 78.5 80.7 81 68.7 73.2 75.9 76.9 78.6 80.7 81 68.7 73.2 75.9 75.9 78.6 78.6 78.6 78.6 78.6 78.6 78.6 78.6	40. 50. 60. 70. 80. 90. 10 64.8 67.9 70.5 71.0 72.8 75.0 76 65.4 69.5 71.8 72.8 73.8 76.5 77.4 74.9 74.8 77.1 76.9 77.9 79.7 80 72.4 74.2 76.7 76.9 77.9 79.7 80 72.1 75.5 77.8 79.7 80.6 81.1 80 73.0 75.7 78.7 79.5 79.6 81.1 80 73.0 75.7 78.7 78.5 79.6 81.1 80 73.0 75.7 78.7 78.5 78.6 81.1 80 73.0 75.7 78.7 78.5 78.6 80.7 80 66.7 73.2 75.9 76.9 78.6 80.7 80 66.7 73.2 75.9 76.9 78.0 80 66.7 73.2 75.9 76.9 78.0 80 66.7 73.2 75.9 76.9 78.0 80 66.9 70.1 74.2 75.6 78.2 79.8 78 66.9 70.1 74.2 75.6 78.2 79.8 78 65.9 70.1 74.2 75.6 74.8 77.0 74 66.9 70.1 74.2 75.6 74.8 77.0 74 66.9 70.1 74.2 75.6 74.8 77.0 74 66.9 70.1 74.2 75.6 77.6 77.0 74	40. 50. 60. 70. 60. 90. 10 64. 6 67. 9 70. 5 71. 0 72. 6 75. 0 76 65. 4 69. 5 71. 6 72. 6 73. 6 77. 4 78 70. 2 7. 0 72. 4 74. 1 76. 2 77. 4 78 71. 9 75. 7 77. 9 75. 2 81. 9 82 72. 1 75. 5 77. 7 76. 9 79. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7 80. 7	40. 60. 60. 70. 60. 90. 10 64. 6 67. 9 70. 5 71. 0 72. 6 75. 0 76 66. 7 70. 5 71. 6 72. 6 73. 6 75. 0 76 66. 7 70. 5 72. 4 74. 1 76. 2 77. 4 78 74. 9 74. 2 76. 1 77. 9 79. 7 60. 4 82. 4 82 72. 4 74. 2 76. 1 77. 9 79. 7 80. 7 80 72. 1 75. 5 77. 7 79. 5 81. 9 82 73. 0 75. 7 77. 7 79. 5 81. 9 82 73. 0 75. 7 76. 2 77. 8 80. 7 88 71. 9 74. 7 76. 2 77. 8 78. 4 80. 8 82 71. 9 74. 7 76. 2 77. 3 78. 4 80. 9 82 66. 7 73. 2 75. 9 76. 7 78. 7 80. 9 81 66. 7 73. 2 75. 9 76. 7 78. 7 80. 9 81 66. 7 73. 2 75. 9 76. 7 78. 7 80. 8 81 66. 7 73. 2 75. 9 76. 7 78. 7 80. 8 81 66. 7 73. 2 75. 8 76. 7 78. 7 78. 7 80. 8 81 66. 7 73. 2 75. 8 76. 7 78. 7 78. 7 80. 8 81 66. 7 73. 2 75. 8 76. 7 78. 7 78. 7 80. 8 81 66. 7 73. 2 75. 8 76. 7 78. 7 78. 7 78. 7 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78. 8 78.	40. 60. 70. 60. 70. 60. 90. 10 63 65.4 69.5 71.8 72.6 73.6 77.0 70 63 65.4 69.5 71.8 72.6 73.6 77.0 70 100 70.2 71.0 73.9 77.1 76.9 77.9 79.7 80 200 72.4 74.2 76.1 77.9 79.2 81.9 82 200 72.4 74.2 76.1 77.9 79.2 81.9 82 200 73.6 76.1 77.5 70.5 79.2 81.9 82 200 73.6 76.1 77.5 70.5 79.6 81.1 85 315 72.1 75.5 77.7 76.5 80.7 82 316 72.0 74.7 76.8 77.7 76.9 80.7 82 800 71.9 74.7 76.9 77.7 76.9 80.7 82 1250 62.9 70.1 74.2 75.9 76.9 78.0 80.7 81 1250 62.9 70.1 74.2 75.9 76.9 78.0 80.7 81 22000 66.7 73.2 75.9 76.7 77.8 79.9 81 1250 62.9 70.1 74.2 75.9 76.7 77.0 74 22000 75.9 64.7 69.3 71.6 77.0 74 22000 75.9 64.7 69.3 71.6 77.0 74 22000 75.9 64.7 69.3 71.6 77.0 74 22000 75.9 64.7 69.3 71.6 77.0 74 22000 75.9 76.1 77.0 75.9 75.9 80 22000 75.9 76.1 77.0 77.9 75.9 80 22000 75.9 76.1 77.0 77.9 75.9 75.9 60 22000 75.7 75.8 75.8 75.8 77.0 77.0 74 22000 75.9 76.1 77.9 75.9 75.9 75.9 75.9 75.9 75.9 75.9	40. 60. 60. 70. 60. 90. 10 64. 6 67. 9 70. 5 71. 0 72. 6 75. 0 76 66. 7 70. 0 72. 4 74. 1 76. 2 77. 4 76 74. 9 74. 6 77. 1 75. 4 76. 2 77. 4 76 72. 4 74. 2 76. 1 77. 9 79. 7 80. 4 82. 4 82. 72. 4 74. 2 76. 1 77. 9 79. 2 81. 9 82. 73. 6 76. 1 77. 5 77. 8 79. 2 81. 9 82. 73. 6 76. 1 77. 7 70. 5 79. 2 81. 9 82. 73. 0 75. 7 70. 5 70. 4 80. 6 62. 73. 0 75. 7 70. 5 70. 6 81. 1 80. 71. 9 74. 7 76. 9 77. 7 76. 5 80. 7 82. 70. 6 74. 1 76. 2 77. 3 76. 4 80. 9 82. 66. 7 74. 1 76. 2 77. 3 76. 4 80. 9 82. 66. 7 74. 1 76. 2 77. 3 76. 4 80. 9 82. 66. 7 74. 1 76. 2 77. 3 76. 2 77. 6 73. 66. 7 74. 1 76. 3 76. 7 70. 7 70. 7 70. 7 70. 70. 70. 70. 70	40. 60. 70. 70. 60. 90. 10 64. 6 67. 9 70. 5 71. 0 72. 6 75. 0 76 66. 7 70. 0 72. 4 74. 1 76. 2 77. 4 76 74. 9 74. 6 77. 9 79. 7 80. 4 82. 4 82. 72. 4 74. 2 76. 1 77. 9 79. 7 80. 9 78 72. 4 74. 2 76. 1 77. 9 79. 2 81. 9 82. 73. 6 76. 1 77. 5 77. 8 79. 2 81. 9 82. 73. 6 76. 1 77. 5 77. 8 79. 6 81. 1 83. 73. 0 76. 7 77. 7 78. 5 80. 7 82. 73. 0 76. 7 78. 7 78. 1 81. 6 82. 73. 0 74. 7 78. 7 78. 5 80. 7 82. 74. 1 76. 2 77. 7 78. 5 80. 7 82. 70. 6 74. 1 76. 2 77. 7 78. 5 80. 7 82. 66. 7 74. 1 76. 2 77. 3 78. 4 80. 9 82. 66. 7 74. 1 76. 2 77. 3 78. 4 80. 9 81. 66. 7 74. 1 76. 2 77. 3 78. 7 80. 9 81. 66. 7 74. 1 76. 2 77. 3 78. 7 80. 9 81. 66. 7 74. 1 76. 3 76. 9 79. 9 81. 66. 9 70. 1 74. 2 75. 6 77. 8 79. 9 81. 66. 9 70. 1 74. 2 75. 6 77. 8 77. 8 77. 55. 9 64. 7 69. 3 71. 6 74. 8 77. 0 74. 40. 4 60. 3 64. 5 69. 0 72. 1 74. 0 71. 40. 4 60. 3 64. 5 69. 0 72. 1 74. 0 71. 40. 4 60. 3 64. 5 69. 0 72. 1 74. 0 71. 40. 71. 8 77. 6 77. 8 77. 6 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8 77. 8	40. 60. 70. 60. 70. 60. 90. 10 65.4 69.5 71.6 72.6 77.6 77.6 77.6 66.7 70.5 71.6 72.6 77.6 77.6 77.6 74.9 74.0 77.1 76.9 77.9 79.7 80.7 72.4 74.2 76.1 77.9 79.2 81.9 82.7 73.6 76.1 77.5 77.9 79.2 81.9 82.7 73.6 76.1 77.5 77.9 79.2 81.9 82.7 70.6 74.1 76.2 77.7 78.5 80.7 82.7 70.6 74.1 76.2 77.7 78.5 80.7 82.7 70.6 74.1 76.2 77.7 78.5 80.7 82.7 86.7 73.2 75.9 76.7 77.8 79.9 81.6 86.7 73.2 75.9 76.7 77.8 79.9 81.6 86.7 73.2 75.9 76.7 77.8 79.9 81.6 86.7 73.2 75.9 76.7 77.8 79.9 81.6 86.7 73.2 75.9 76.7 77.8 79.9 81.6 87.9 66.9 70.1 74.2 75.6 77.8 79.9 81.6 87.9 70.1 74.2 75.8 76.2 77.6 77.0 74.8 87.9 74.1 76.3 76.9 78.0 78.1 77.0 74.8 87.9 74.1 76.3 76.3 76.3 77.0 74.8 87.9 74.1 76.2 77.6 77.9 77.9 77.9 77.9 74.8 87.9 74.1 77.9 74.2 75.6 61.1 55.8 87.9 74.1 77.9 74.2 75.6 61.1 55.8 87.9 74.1 77.9 74.2 75.6 61.1 55.8 87.9 74.1 77.9 74.2 75.6 61.1 55.8 87.9 74.1 77.9 74.2 75.8 77.0 74.8 87.9 74.1 77.9 74.2 75.8 77.0 74.8 87.9 74.1 76.2 75.8 75.8 75.8 77.0 74.8 87.9 74.1 76.2 75.8 75.8 75.8 75.8 75.8 87.9 74.1 76.2 75.8 75.8 75.8 75.8 75.8 75.8 75.8 75.8	40. 80. 90. 10 50 64.6 67.9 70.5 71.0 72.6 75.0 76 63 66.7 70.5 71.6 72.8 75.0 77.4 76 100 70.2 70.5 72.4 74.1 76.2 77.4 76 100 70.2 70.5 72.4 74.1 76.2 77.4 76 100 70.2 70.5 72.4 74.1 76.9 79.7 80 100 70.2 70.5 72.4 74.1 76.9 79.7 80 100 70.2 70.5 70.1 70.9 79.7 80 100 70.2 70.5 77.7 76.9 79.7 80 100 70.6 74.1 76.2 77.3 78.4 80.9 82 100 66.7 74.1 76.2 77.3 78.4 80.9 82 100 66.7 74.1 76.2 77.3 76.5 80.7 80 100 66.7 74.1 76.9 77.7 76.5 80.7 80 100 66.7 74.1 76.2 77.3 76.5 77.0 70 100 66.7 74.1 76.2 77.0 70.5 77.0 70 100 66.7 74.1 76.2 77.0 70.5 77.0 70 100 66.7 74.1 76.2 77.0 70.0 70 100 67.9 64.7 69.3 71.6 74.6 77.0 70 100 60.0 70.0 70.0 70.0 70 100 70.0 70.0 70.0 70 100 70.0 70.0 70 100 70.0 70.0 70 100 70.0 70 100 70.0 70 100 70.0 70 100 70.0 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70 100 70	FREG. 40. 60. 70. 60. 90. 10 60. 66.4. 66.7. 9 70.6 71.0 72.6 76.0 76 60. 66.7. 70.6 71.6 72.6 73.9 76.0 77.9 78.7 100 100 70.2 76.0 73.9 75.4 76.9 77.9 78.7 100 200 73.6 76.1 77.5 77.8 78.4 80.6 82 200 73.6 74.7 78.7 78.7 78.6 81.1 86.8 100 200 73.0 74.1 76.2 77.3 78.4 80.6 82 200 73.0 74.1 76.2 77.3 78.4 80.6 82 200 68.7 74.1 76.2 77.3 78.4 80.9 81 1250 68.7 74.1 76.2 77.3 78.4 80.9 81 1250 68.7 74.1 76.2 77.3 78.4 80.9 81 1250 68.7 74.1 76.2 77.3 78.4 80.9 81 1250 68.7 74.1 76.2 77.3 78.4 80.9 81 1250 68.7 74.1 76.2 77.3 78.4 80.9 81 1250 68.7 74.1 76.2 77.3 78.4 80.9 81 1250 70.6 74.1 76.2 77.3 78.4 80.9 81 1250 70.6 74.1 76.2 77.9 77.8 79.9 81 1250 88.7 78.7 78.7 77.8 79.9 87.9 87.9 88 1250 70.6 74.1 76.3 76.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.9 77.8 77.8	FREG. 40. 60. 70. 60. 90. 10 63 64.6 67.9 70.5 71.0 72.6 75.0 76 63 66.7 70.5 71.6 72.6 77.4 76.1 76.2 77.4 76 100 70.2 71.0 73.9 75.4 74.1 76.2 77.4 76 125 74.9 74.6 77.1 76.9 77.9 79.7 60.4 82.4 82.4 82.6 73.6 77.1 76.9 77.9 79.7 80.4 82.4 82.4 82.6 73.0 73.0 74.7 77.7 76.9 77.9 79.7 80.6 82.4 82.6 82.4 82.6 82.4 82.6 82.4 82.6 82.4 82.6 82.4 82.6 82.4 82.6 82.4 82.6 82.4 82.6 82.4 82.6 82.4 82.6 82.4 82.6 82.4 82.6 82.4 82.6 82.4 82.6 82.6 77.7 76.8 77.7 76.8 87.7 76.8 81.1 82.6 82.6 73.0 74.7 76.8 77.7 76.8 81.1 82.7 82.6 73.0 74.7 76.8 77.7 76.8 81.1 82.7 82.6 82.8 77.7 76.8 77.7 76.8 81.1 82.7 82.6 82.8 77.7 76.8 77.7 76.8 77.0 74.2 72.6 77.8 77.0 74.2 72.6 77.8 77.0 74.2 72.6 77.8 77.0 74.2 72.6 77.8 77.0 74.2 72.6 77.8 77.0 74.2 72.6 77.8 77.0 74.2 72.6 77.8 77.0 74.2 72.6 77.8 77.0 74.2 72.6 77.8 77.0 74.2 72.6 77.8 77.0 74.2 72.6 77.8 77.0 74.2 72.6 77.8 77.0 74.2 72.6 77.8 77.0 74.2 72.6 77.0 74.2 72.6 77.0 74.2 72.6 77.0 74.2 72.6 77.0 74.2 72.6 77.0 74.2 72.6 77.0 74.2 72.6 77.0 74.2 72.6 77.0 74.2 72.6 77.0 74.2 72.6 77.0 74.2 72.6 72.6 72.6 72.6 72.6 72.6 72.6 72	FREG. 40. 60. 70. 60. 90. 10 63 64.6 67.9 70.5 71.0 72.6 75.0 76 63 66.7 70.5 72.4 74.1 76.2 77.4 76 100 70.2 71.0 72.4 74.1 76.2 77.4 76 125 74.9 74.2 76.1 77.9 77.9 79.7 79.7 80.7 79.2 81.9 82 200 72.4 74.2 76.1 77.9 79.2 81.9 82 200 72.4 74.2 76.1 77.9 79.2 81.9 82 200 72.4 74.2 76.1 77.9 79.2 81.9 82 200 72.4 74.2 76.1 77.9 79.6 81.1 81.6 83 400 73.0 73.0 73.2 78.9 77.7 78.6 81.1 81.6 83 500 71.9 74.7 78.8 77.7 78.6 81.1 81.6 83 1120 62.9 70.1 78.7 78.9 77.9 78.9 81.1 81.6 83 200 00.5 73.2 75.9 76.7 77.9 78.9 79.9 81 1250 62.9 70.1 74.2 76.8 77.7 78.6 81.1 81.6 83 200 00.7 73.2 75.9 76.7 77.9 78.9 79.9 81 1250 62.9 70.1 74.2 76.8 77.7 78.6 81.1 81.6 83 200 00.7 73.0 73.2 75.9 76.7 77.9 79.9 81 1250 62.9 70.1 74.2 76.8 77.7 78.9 79.9 81 1250 62.9 70.1 74.2 76.8 77.7 78.9 79.9 81 1250 62.9 70.1 74.2 76.9 77.9 77.9 79.9 79.9 81 1250 62.9 70.1 74.2 76.9 77.9 77.9 79.9 81 1250 62.9 70.1 74.2 76.9 89.9 90.2 92.3 93 PNL 86.6 90.8 93.4 95.2 97.6 99.8 99.8 99.8 99.8 99.8 99.8 99.8 99	40. 60. 60. 70. 60. 90. 10 64.6 67.9 70.6 71.0 72.6 76.0 76 66.7 70.6 72.4 72.6 73.2 76.0 77 72.2 76.0 73.9 75.4 76.8 78.9 78 72.4 74.2 76.7 77.1 76.9 77.9 78.7 80 72.1 75.5 77.7 76.5 77.6 62.4 85 72.1 75.5 77.7 76.5 77.6 80.7 81 72.1 75.5 77.7 76.5 78.4 80.6 82 72.1 75.5 77.7 76.5 78.4 80.6 82 72.1 76.2 77.7 76.8 77.0 80.9 82 68.7 74.1 76.2 77.3 76.4 80.9 82 68.7 74.1 76.2 77.3 76.4 80.9 82 68.9 70.1 74.2 75.6 77.0 77.0 78 68.9 70.1 74.2 75.6 77.0 77.0 78 68.9 70.1 76.2 77.3 76.4 80.9 82 68.9 70.1 76.2 77.3 76.4 80.9 82 68.9 70.1 76.2 77.3 76.4 80.9 82 68.9 70.1 76.2 77.3 76.4 80.9 82 68.9 70.1 76.2 77.3 76.4 80.9 82 68.9 70.1 74.1 76.2 77.0 74.0 71 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.1 74.0 77 68.9 70.0 77 70.1 74.0 77 70.1 74.0 77 70.1 74.0 77 70.1 74.0 77 70.1 74.

*****....

									OR			IAL OR	PQ	'AG	E \LI	19 TY	.										
W															,											53.60 39.70	
GUND NOISE				PWL			1 149.7		. 60 153.4 153.4	7 155.3	7	.3 156.1	.2 156		7 153	6.6	.2 152.2	.7 1519 150.5	7 148	7 148	.1 146.	.5 146.2 .0 147.9	.2 167.1	TAMB RELHUM	
FOR BACKGROUND 40.0 FT. ARC	X01210		150. 160				116.2 118	6.	121.6 115	10		123.6 118	10	0 1	10	6. R	113.5 107	-		107.2 101	a	95.3 92	7	74.0 78	132.9 127	8859 29.5500	
ECTED	R-AMODL	, DEOREE!	140.	•			4 111.5		6 116.9	6	120	8 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	121	2 2	118	116	5 114.8	=	1 2 2	8 108.0	10	9 9 9	8	9 83.5	2 130.6	IALPHA	
VELS STD.	FJ-ZER	FROM INLET	120. 130				6	4 109		6 116	116	.2 116	7 116	116	.7 117		11.2 115.	7	. ro		•	. 6	4	84.2 84.9 79.9 79.9	122.8 128.	N313 Adh213	
SSURE ENT R.	- MODEL BACKGROUND	ASURED	110.				99.4	97.7	3 98.7 1 4 99 A 1	101.9	103.9	105.0	106		108		100	107.9	106.3		97.3	O 10	83.0	77.1	8 119.1 1	R NG.	
SOUND PRE	CATION	ANGLES ME	90. 100				3 95	. A	. 2 96. 4	98	9 100	01.0 101.4	4 103	102	2 104	0 103	17	0 105	03.7 103.4	4 101.	3 96.	922.	.8 82.	6.0 77. 0.5 69.	5.5 115.	TAPI AERG.	
MODEL EG. F.	IDENTIFI		.00			:		- (9 6	0	ю	98.6 1	6	4.0	-	 	. 9		 	0, E		9.09 9.09 9.09	9	68.2	113.8 11	9-78 Anech ch	
UNTRANSFORMED 59.0 D			60. 70.				3 91		5 6	6 94.	.7 96.	D G	66 0	2 4	2 102.	. 8 102.	.8 102.	.0 101	4 0 	5 99.	0 93	98	.8 80.	0 %	.9 113.1	DATE 03-29	
5	N.*		60.				0	41		9	-	 ي ي	7		~	Ф (4	- - -	-	N	o io	9	70.7 72 63.7 66	112.0 112.	TEST DA	
			40.									99.2	.1 -		4	-	98.7	-1	8 G		انحا	81.2 76.6	1	64.1 58.3	110.6		

					00)Ri(F	GIN PO	JA OF	L (PA QU	GI	E LIT	IS Y										•	YES		SPEED O. FPS)
																			`					<u> </u>	53.60 39.70	FREE-JET M/SEC (
		o. PWL			. 1 149.7		. 6 154.6		3 156	 o	0 155	01 I	3 152	3 152	20 152 152	- 15 - 15	150	7 149	-	7 148	1 146	00	.2 167.1	WEFRACTION CORRECTION Turbulance correction	TAMB RELHUM	MODEL 0
019	ຶ່	150. 160	:		118.2 115	9.	122.4 116.	.8 118	118	0. 116	113	17 C		.5 107	200	. so .	103	96	.2 97	. 3 . 4 . 5 . 7	85.7 82	-	132.9 127.2		\$859 29.5500	# - (NI OS
1	T, DEGREES	130. 140.			7.4 111.5		5.6 118.7 6.5 119.8	~	6	110	0	6 , -	- 0	10	io -		11.4 110.3	_	-1		90.3 89.2	o	.2 130	SEC) 0. (IN) 48.00	1ALPHA PAMB	\$12E (21.65 \$
DE 1	SURED FROM INLEY	120. 1	•		ים	104.0	105.3 11	109.4 11	110.2	111.7	112.3 11	112.2	111.8 11	111.3 11	11.2	109.5	107.5	103.9	101.1	97.69	88.4	79.2	122.8	VELOCITY (FT/SEC) Jet diameter (IN)	N313 ADH213	36.0 SG CM
ı No	MEA	00. 110.			95.7 98.4			0	41	. 69	•	က d	9	-	ن د	, ro		0	-ŀ	- "	10	- -		JET VELOC FREE JET D	TAPE NO. AERO. RDO.	ARC 139
1 DENT I F I CAT I	ANGLES	90.			0.00	9 6 0 0 1 0	96.8	98.9	20.0	102.4	102.0	102.1	103.0	104.2.1	105.7	105.6	103.7	. 6.	98.3	93.1	83.8	70.5	115.51	FREE	CH AE	
		70. 80.			-	91.55 92.6	ယ ဇ	96 6	.3 98.		.0 99	e .	. 6 102.	.8 103.	. 8 103.	7	- 4	100	.5 97.	6. P	G	0 68.	.1 113.	LE FACTOR . 1.000	03-29-78 C41 ANECH	ACCUSTIC RANGE.
· ř.		. 60.			C .	i vi	60 60 60 60 60 60 60 60 60 60 60 60 60 6	95.7	90.00	0.66	100.0	101	103.8	102.8 1	101.0	10.4	99.80 F R	94.7	92.0	. 0 . 0	77.8	72.0	112.9 1	SIZE SCALE GOO CALC.	TEST DATE C	NT 12.
		40. 60						2	9 5	97.	100	5	300	101	9 9	8	. Ag	8	90	60 6	78	70.	-	MODEL/FULL INPUT 1.0	1E	TEST POINT 0121A

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB. 2400.0 FT. SL

											*		
					ORIGIN OF PO	AL PA	ge is Ality					SPEED 0. FPS)	
			D C 4 0	a ~ a -	60 ús 60 01	4 5 5	~ ~ 6 -	- 1 0 00 0		•	E 63.60	·	
		60. FW	171 9 7 1 7 7 1 7 7 1 7	0 174 0 174 0 174	0.171	3 170.4 6 169.7 0 169.5 2 168.5	0.0 9.167 6.166 6.166	164 164 164		0 D 0	TAME	FULL	
		50. 16	- 0 0 -	r-10 r	ω 4 0 −	85.4 73 83.4 70 81.3 69 77.9 64	-000	7		108.3 108.5 109.5 98		S .	
X01215	DEGREES	140.		'i -	1	90.0 98.4 86.5 7	ŀ	Ĭ		100.3	SHIR PHA	8	
-AMGDL	INLET,	130.	0 0 0 0 0 0 0 0 0 0 0 0	8 0 0 0 8 0 0 0	96.00 9.00 9.00 9.00 9.00 9.00	92.3 90.5 90.5	96 74 67	3 25		107.2		M (146	
FJ-ZER-AMGDL	FROM		9 9 9	2 2 2 2].	8 2 8	l	24 15 15		102.7 108.7 108.7	N313 ADH21	83	
ATION -	MEASURED	0. 110	i			6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		1		. 2 106.7 2 106.7			
DENTIFICATI	ANGLES P	90. 10(0 0 T T	4000	0 10	2 4 0 V	0 01 0 0	20 W G		4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	RATI		
10		9		9 6 6 6	იი-o	84.0 86 83.3 85 83.6 85 81.9 83	0044	- 0 0		94.5 03.3 105 04.5 105	AMA I	1 0 1	
		79.	စ်လေထ	- 604	0 100	62.7 601.2 60.3 60.3	0440	001		93.6	69.	1 02	
		8	1		/	79.7	!			20	A S	73	
		20.	0.22	9.00	8 19 19 10 10 10	76.9	67.	2.1		4.4.4	<u> </u>	F 64	
		6	69.22	2882	2228	0 72.2 0 72.2 0 70.0 0 66.2	8 8 8 9 8 6 9	22.9	000000	92.6 93.8		L TEST 00 A O	
		FRE	D & Q	0 0 0 0 0	6 4 B 8	1000 1000 1250 1600	000 000 000 000 000	630 630 000 000	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		MODE 01	

						PAGE QUALI	is Y		t i	67 M/SEC (390.0 FPS)	
H. STD. DAY, SB. 40.0 FT. AGC H. STD. DAY, SB. 40.0 FT. AGC FJ-400-AMODL X01220 ROUND FJB400-FMODL X05220) FROM INLET, DEGREES 120: 130, 140, 150, 160.		96.3 102.9 106.3 115.0 111.4 146. 97.7 106.0 109.6 116.1 111.5 147. 99.0 109.0 113.2 117.6 110.0 149. 100.8 111.6 115.0 117.7 107.6 150.	103,2 112,5 116,4 117,5 104,7 150, 104,9 113,0 116,6 115,8 102,5 150, 106,6 113,4 115,5 113,7 100,6 149, 107,2 112,5 115,4 112,0 98,7 149,	107.9 113.0 114.4 111.1 56.4 1 109.0 113.6 113.8 109.5 58.7 1 109.2 114.6 114.3 110.7 59.4 1 109.6 114.0 113.9 110.8 59.3 1	109.6 113.6 113.9 109.5 98.7 149 109.3 114.6 112.8 108.4 98.2 149 109.8 113.9 111.4 107.6 98.0 149 109.0 112.5 109.9 106.0 96.7 148	107.6 111.1 108.1 105.1 95.4 1 105.6 108.1 105.9 103.1 93.8 1 103.4 106.4 102.9 101.1 92.3 1 100.3 102.8 99.3 97.7 90.7 1	97.1 97.4 95.1 94.2 69.0 1 93.6 95.2 92.1 69.0 63.3 1 88.2 89.5 87.1 63.8 79.2 1 63.9 62.6 80.4 73.0 73.4 1 79.0 76.9 73.7 71.6 67.6 1 72.1 71.8 66.0 62.9 56.5 1	N313 IALPHA SB59 TAMB 5 ADH219 PAMB 29.5600 RELHUM 1	.0 SQ CM (21.55 SQ IW) - MODEL 118.	
UNTRANSFORMED MODEL SOUND PRESSURE LEVE 59.0 DEG. F., 70 PERCENT R.H. ST SDENTIFICATION - MODEL BACKGROUND	ANGLES MEASURED		.0 87.3 86.9 86.7 90.6 94 .1 86.9 88.2 90.4 91.5 93 .4 86.9 88.2 90.9 91.8 94 .0 89.0 89.9 91.8 93.1 96	9 69.7 92.0 93.4 94.8 4 91.2 91.5 94.4 95.5 3 92.3 92.9 95.8 97.7 1 4 94.5 95.0 96.9 98.0 1	1 93.6 95.2 97.8 99.6 103 6 94.3 94.8 96.7 99.3 104 5 97.5 96.3 97.9 100.3 104 1 100.6 98.7 99.6 100.9 105	6 99.0 99.8 100.4 701.1 106 1 97.5 99.3 101.4 102.3 106 7 97.7 97.9 101.5 102.2 105 3 97.4 98.7 100.3 101.9 105	8 97,4 98,9 101.1 100.6 105 0 96.5 97.5 98.9 99.4 103 1 95.3 97.2 99.0 97.7 101 1 92.4 96.2 97.2 94.9 98	92.8 94.4 92.0 93 87.8 88.8 88.2 90 86.1 86.8 83.4 85 77.9 79.4 76.3 78 69.7 70.9 72.4 71 62.9 64.8 63.9 63	DATE 03-29-78 TAPE ATION C41 ANECH CH AERG.	12.2 M (
	9		83.1 83.1 85.4 85.3	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	91.0 91.0 91.0 97.4 98.	94.4 95.4 95. 95.2 95. 95.0 96.	93.7 95. 91.0 93. 89.1 91. 84.6 89.	25000 83.2 86.2 31500 81.3 82.3 40000 76.5 76.3 50000 69.6 71.5 83000 64.4 65.5 80000 58.4 57.1		V2210 V0010	

6HT TRANSFORMED MODEL SCUND PRESSURE F., 70 PERCENT R.H. STD. DAY, 38 IDENTIFICATION - FJ-400-AMCDL X012 ANGLES MEASURED FROM INLET, DEGREE 90. 100. 110. 120. 130. 140. 91.2 91.0 92.6 99.2 109.6 113.0 92.1 92.4 94.4 101.7 110.7 114.2 92.9 94.9 94.0 95.9 103.7 111.6 113.0 92.1 92.4 94.4 101.7 110.7 114.2 92.9 94.9 97.0 107.7 1112.1 114.2 92.9 94.9 97.1 101.8 106.4 112.8 113.7 92.9 99.2 102.5 100.7 114.3 114.6 92.9 99.2 102.6 103.7 110.2 114.3 114.6 102.9 102.2 106.0 110.3 113.1 113.9 103.3 103.4 105.3 110.2 113.3 111.1 102.9 102.2 106.0 110.3 113.1 113.9 103.3 103.4 105.9 109.0 112.1 109.6 104.1 102.0 105.7 107.9 114.6 112.9 105.9 90.4 102.0 103.9 106.2 103.4 101.9 100.9 103.7 107.9 109.6 107.9 103.3 103.4 105.9 109.0 112.1 109.6 100.9 103.7 106.1 110.2 113.3 111.1 101.9 100.9 103.7 107.9 109.6 107.9 103.3 103.4 105.9 109.0 112.1 109.6 101.9 100.9 103.7 107.9 109.6 107.9 103.3 103.4 105.9 108.6 107.9 113.6 112.9 115.8 120.4 124.9 125.9 FREE JET VELGCITY (FT/SEC) 390.0 FREE JET DIAMETER (IN) 48.0 PANEL	07/19/70	LEVELS 40.0 FT. ARC	02		150. 160. PWL	111.7 108.9 143.4	109.8 146.	109.7 150.2 110.2 150.5	6 150.3 0 149.5	3 108.9 149. 8 109.4 149.	.6 110.6 150.6 .2 111.1 151.0	110.6 151.3 109.7 151.3	0 109.7 151.0 4 108.5 150.3	. 6 107.3 149.8 .4 106.3 149.1	.2 105.7 148 1 105.2 148	6 99.1	# 96.3 146	86.1 144.	6 67.7 141	127.0 122.2 163.1	TURBULANCE CORRECTION - YES TURBULANCE CORRECTION - YES	SB59 TAMB 56.46 29.5600 RELHUM 13.30
		TRANSFORMED MODEL SOUND PRESSURE, 70 PERCENT R.H. STD. DAY, SB	FICATION - FJ	MEASURED FROM	. 90. 100. 110. 120. 130. 140.	66.4 66.7 66.6 90.6 54.3	90.0 90.6 90.2 91.0 96.7 106.0 1 90.0 91.2 91.0 92.6 99.2 109.6 1	91.7 92.1 92.4 94.4 101.7 110.7 11 93.9 93.8 94.0 95.9 103.7 111.6 11	93.5 94.9 94.6 97.6 105.7 112.4 115.3 11	97.2 97.7 97.5 100.7 107.1 112.1 114.2 11 97.6 98.8 99.1 101.8 108.4 112.8 113.7 11	97.0 97.9 99.2 102.6 109.1 114.3 114.6 1 98.6 99.4 100.5 103.5 110.0 114.3 114.9 1	101.7 101.4 101.6 105.3 110.5 114.5 115.1 1 103.4 102.9 102.2 106.0 110.3 115.1 113.9 1	103.3 104.4 103.6 106.4 110.9 114.6 112.5 1	102.7 103.3 103.4 105.9 109.0 112.1 109.6 1 102.9 104.1 102.0 105.7 107.4 109.6 107.9 1	101.5 101.9 100.9 103.7 105.9 108.6 105.6 1	100.7 100.2 97.1 99.3 102.0 101.8 99.6 1 97.3 97.4 94.5 94.8 98.7 99.9 97.4	91.8 91.8 90.4 91.3 94.8 96.0 94.1	92.4 42.4 80.7 79.8 86.9 84.0 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1.1 1	66.9 67.8 65.9 66.5 70.4 69.7 66.4	112.9 113.6 112.9 115.8 \20.4 124.9 125.9 127	JET VELOCI FREE JET DI	NG. N313 IALPHA NG. ADH219 PAMB

METRYE BUITHING BOAT JISWYENOH.

																OR OF	RIG F) (1)	AI OF	L ? (PA QU	GE AL	IS YT							. 4	O FPS)
																													,		ET SPEED: (390.0
																					-						•		59.46	20.00	FREE-JET .87 M/SEC (
		Z	167.1	50.00 EA.00	68.5	9.79	67.4	167.5 68.6	69.1	169.4	69.4	. B. A.	67.79	67.3	166.7	66.3	65.6	64.2	63.6	62.8	59.1					101.1			TAMB	- 1	1.0
		160.	83.5	0 0	83.7	91.6			81.4	79.9	78.0		72.4	70.0	66.8	63.3	26.7	26.7		1	 .						94.9			ŀ	- FULL
10	80	150.	93.6		83.	91.2	80.5	86 .0	83.8	88.0	96.0	200	8.1	78.9	76.2	72.5	66.7	2.4	25.5							102.1	103.9	FT -9	3859 36 8600	KB. 30	SO EX
X01225	DEGREES	140.	7 16	0 6 0 6	93.0	93.4	92.4	9.00	92.	8.18	- 6	2 E	4.4	82.2	79.1	75.8	20.3	0 K	39.1	15.6							106.8	ACY SHIFT	IALPHA	D.	S12E (1400.00 S
FJ-400-AMGDL	INLET,		89.9			5			1		6) 4 60 60 60 60 60 60 60 60 60 60 60 60 60	1				.10	76.		49								109.4	FREQUENCY			CM C
FJ-400		120.	80.5	ָם פּינ פינ	86.9	87.4	60		333	90.3		ł		85.0	83.9	81.6	78.6	2 10	55.6	39.7	-					100.2	107.0	-	N313	AUne	2 50
Z	MEASURED FROM	10.	74.6			1	95		64.	86.		0 4	2 10	93	82.	90.			5		_				•	•	103.4	8.061	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7. S	9032
DENTIFICATI	ANGLES ME		73.	7.4.	7.	79.	79.	6	92.	82.	93	9	6	69	90.	79.	76.	, K	55.5	40	<u>.</u>					6		RATIO	TAPE	AERO.	3e (
IDEN	V	8	73.	7.4	77.	78.	79.	90	6	82.	8.		0 6	94	9	.18	ė į	67.0	4 60.1	42	<u>.</u>					3	- -	DIAMETER	1	5	TIC RANGE 2400.0 FT)
		8	72.	7.4	Ŕ	77.	79	9 4	80.	82.	8.	0 0	9 0	93	9	91.	6	9	3 60.4	42	<u>.</u>					•	6 104.0	/IQ	03-29-78	ANECH	COUSTIC M (240
•			2 72.	72.	20	76.	77.	9 6	78.	5	1	3	9 6		80.	79.	78.	, A	0 56.	=	4					92.	2 101 .		1	- 1	AC(
		•	27	/ S /	3 12	26	78	90	28	63	83.0	70 7		3 81.	9 80.	77.	76.		8 52.	36.						20	100		TEST DATE	011430	· <u>F</u>
		0. 60							1	85	82.	3 6		8	77	74	73	0 6	1 44.				•			8	200		1 2 -	ا د	TEST POINT 0122A

15.714	
07/18/79	
	NOISE
	BACKGROUND
	PRECTED FOR
•	LEVELS COR
	PRESSURE

	00	RIGINA F POO	L PAG R QUA	e is Lity						FREE-JET SPEED M/SEC (0. FPS)	, 1884.
UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB. 40.0 FT. ARC I DENTIFICATION - MODEL BACKGROUND ANGLES MEASURED FROM INLET, DEGREES 40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PWL		66.0 90.6 90.3 90.9 91.0 92.6 95.2 87.9 100.3 107.7 111.6 116.0 114 86.9 99.2 90.2 90.7 91.5 92.6 95.2 96.1 86.0 102.2 109.7 113.9 119.6 115 89.2 90.4 91.7 91.5 92.6 95.0 96.3 99.0 103.7 113.8 116.9 121.3 115 89.7 91.6 93.5 93.6 94.2 96.8 97.7 100.1 105.6 115.6 119.2 122.4 115	91.3 93.6 94.4 94.7 96.0 98.1 99.0 102.4 107.6 117.0 120.3 123.0 117.4 155 96.1 94.4 96.2 96.9 97.3 99.4 100.3 103.9 109.9 117.5 121.1 124.0 118.4 156 100.4 100.7 100.2 99.5 98.6 101.0 107.9 105.0 110.5 117.3 120.7 123.9 118.0 156 97.5 101.1 103.1 102.9 102.0 103.1 103.2 106.9 111.1 116.7 121.5 124.5 117.4 156	98.1 97.9 99.2 100.2 100.8 102.7 103.8 107.0 112.2 116.8 121.7 323.5 116.2 156 98.5 100.0 100.0 99.5 99.4 101.2 103.8 107.5 112.3 117.1 120.3 120.5 112.8 155 99.1 99.6 100.7 100.4 100.8 102.1 104.3 107.4 112.2 117.7 119.2 118.4 111.2 154 101.4 101.4 100.7 100.7 100.5 103.1 104.5 108.5 112.4 116.8 118.2 117.7 109.9 153	100.7 101.5 102.3 100.8 100.6 102.7 104.1 108.6 111.6 116.4 116.8 116.3 107. 99.4 101.3 101.6 102.5 101.8 103.4 104.3 108.6 111.3 116.7 115.8 114.7 107. 97.9 100.3 101.3 102.2 102.5 104.6 104.8 108.0 111.1 115.9 114.7 113.7 106. 97.3 101.0 100.9 101.5 102.7 104.1 104.4 107.6 110.6 114.7 113.7 113.1 106.	95.1 99.2 101.5 101.6 102.4 104.8 103.7 107.0 109.6 113.6 112.3 111.5 105.6 151 92.2 96.9 99.0 100.7 102.0 103.3 102.8 105.7 107.4 111.5 110.2 109.8 103.7 350 85.4 95.3 97.9 99.8 101.4 103.1 101.6 104.0 105.8 110.7 108.4 108.2 102.6 150 84.3 92.4 94.2 96.3 100.2 101.8 99.0 101.4 103.2 107.0 105.6 105.5 99.7 149	89.0 51.0 92.5 97.0 98.1 95.9 96.6 100.4 103.4 101.5 101.3 97.5 146. 84.7 88.2 90.7 91.0 92.0 91.5 92.7 97.5 100.9 97.7 95.4 90.8 147. 79.2 83.4 85.2 89.2 90.4 86.3 88.2 92.6 96.5 93.6 90.6 86.7 147. 75.7 75.4 78.6 80.9 83.3 81.8 81.5 83.2 91.1 68.3 84.9 91.1 146.	57.0 67.0 64.1 69.8 66.5 71.1 68.9 70.7 79.0 60.8 77.5 73.8 68.6 1 109.9 111.6 112.5 112.8 113.3 115.1 115.5 116.9 122.8 128.5 131.0 133.1 127.0 1	TEST DATE 03-29-76 TAPE NG. N313 IALPHA SB59 TAMB 51.80 LGCATION C41 ANECH CH AERG, RDG. ADH212' PAMB 29.5500 RELHUM 45.00	ACGUSTIC RANGE 2.2 m (40.0 FT) ARC 139.0 SQ CM (21.55 SQ IN) - MODEL 0.	

										OI OF			IAL OR		AG UA	E	13						,			D FPS)	
																								YES YES		SPEED O.	
																	•							CORRECTION -	51,80	FREE-JET O. M/SEC (
			Ę		5.6	6.12		55.7	56.6	56,9	56.6	5.45 5.65	53.7	52.7	52.2	51.3	50.3	4.0	47.5	47.3		7.7	167.2		TAMB		
			160.		6.4 %	5.5 18	6.6	7.4 15	8.0 18		5.2 18	7.0.7 7.0.1	9.4		- -	9	, e		9	7	7.1 14 6.0 14	6.6	127.0 16	REFRACTION TURBULANCE	RE	MODEL	
					.0 11	11 8	, 4	0	0.0	S.	.5	. . .	7 109	*	/, /,	5	0.00	i sú c	5 4	60	.9 61	0		A 5	\$659 29.5500	- (N)	
}	X01230	EES	150		0110	811.6	2 122	3 123	1 124	-	7 123			F	7 513 7 113	-	201 2		7 95.		0 0 0 0 0 0	5 73	.0 133.1	46.00	1	8	
}		DEGREE	140		. 111.	113.	7.00	120	200	121.5	121.	118.	118.2		<u> </u>	112.	100.2	106.6	6	83.6	- 48 82.	3 77.	131		TALPHA	\$12E 21.65	
	FJ-ZER-AMGOL	SURED FROM INLET,	130.		107.7	109.	115.6	117.0	117.0	116.7	116.6	117.7	116.6	116.7	115.9	113.6	12.0	107.0	00	96	20.00	8 0.	128.5	(FT/SEC)		5	
	1-ZER-	E	120.		90.3	2.20	03.0	97.6	9 6	=	25.2	2.2	12.4	11.3	110.1	9.60	4, K	• •	97.5		83.2		122.8	Y (F)	N313 ADH212	8	
	•	JRED 1	110.		87.9	98.0	90.0	4.20	9 0	6.90	07.0	07.70	08.5	08.5	0.00	07.0	7.0	4.10	95.0	88.2	81.8	70.7	110.9	VELOCITY (FT, Jet diameter	RDG.	139.0	
	CATION	2	100.		8	-, ¢		-1	ω q	, ci	-	9 69		- 65	0 4	1	 «	99.0	2 40		o -	0	ю	JET VI	TAPE AERO. R	ARC	
	DENTIFICAT	ANGLES			•	si c	.	-	4 c	· –	7	 		4	ø -		٠ 	•	-0	4	ن د	-	1112	FREE	AE	Œ	•
3	100	*			0	60		- 1	9 2				5 103	-/-		۱	0 103		ı	9		3 71	3 115.1		₹	PAN O.O	
			8		1	i i		- 1		•	-1	•		-1				100.2	- 1			1	113.3	FACTOR 1.000	03-29-78 C41 ANECH	ACGUSTIC.	
			2		8	8	83.0	98	96	102.	100	100	8	102.	205	101.	8	96.3	200	93	9 K	69.	112.8	SCALE CALC. 1	j ·	AC 12.2	
			8		90.3		93.5	94.4	96.2	53.7	2.66	100.0	700.7	101.8	E. 601	101.5	99,0	2	2000	83.4	7,5,6		112.5	ZE	LEST DATE		
			8		8		91.0	93.6	4 6	25.	97.9	9.00	4.	300	000	99.2	96.9	4.20	88.0	79.2	78.7	67.0	111.6		TEST	T POINT 0123A	
					0,0	1		- 1			ı.	-		- -	***	•		64.3	-			1	109.9 1	HODEL/FULL INPUT 1.0		TEST 01:	
				S & S S	125 200 250 8	1		ı	•	1250 19				5000		į			31500 6		30000 B	1.	GASPL 10	2		MODEL 0100A	

•
•
-
N
-
Ю
•
•
•
~
•
•
•
_
•
~
~
0

								OF OF	RIG F	N	AL OR	PQ	AG	E Ll'	19													T SPEED (0. FPS)	
		160. PWL	~ ~	40	6 0	8.0 174.7	2 0	0	- ^	0	- 01	0	~ a	4	oi L	160.4	164.0	165.6						8.7 165.1	D	•	TAMB 51.80 RELHUM 45.00	FREE-JET FULL 0. M/SEC (
X01235	DEGREES	140. 150. 1	97.8	.6 100.4 .6 100.3	100.0	99.7 99.0 98	93.0	91.6	89 .6	96.6	9.78 0.09 0.00	78.9	75.6		46.1	27.5	A -							08.7 108.5	111.7 109.9 96	ICY SHIFT -9	ALPHA SB59 PAMB 29.5500	- (NI 08 00	
- FJ-ZER-AMODL	URED FROM INLET,	110. 120. 130.	81.0 85.0 94.0 82.1 87.1 95.8	88.9 91.1	91.6	93.0	92.4	92.3	÷.08	90.0	69.3 68.1	85.5	4.0	75.3	68.5	20.2	. 4.			. •				102.8 307	06.2 106.5 112.1	. 061 FREQUENCY	N313 A0H212	9032.2 SQ CM (140	
DENTIFICATION	ANGLES MEASUR	90. 100. 1	.5 78.6 .3 80.1	81.4	94.1	84.8	65.6	885.7	85. 63.	4 85.2	.6 84.7 .1 83.8	3.4 82.7	0.081.3	73.7	. S 66.2	7 26.0			٠	•				80	9 104.4	AMETER RATIO , 8.	TAPE NO	JE FT) SL	
		. 70. 60.	0 73.5 75.0 8 75.6 76.6	76.6 78.	61.3 80.	61.6	80.9 81.	91.4 61.	81.2 81. 82.7 82.	82.1 82.	61.4 63.	79.9 81.	78.8 01.	69.3 74.	64.1 65.	93.20	11.3 14.		•					93.3	9 102.8	DIAM	E 03-29-76 N C41 ANECH CH	ACGUSTIC RANG 731.5 M (2400.0	
		40. 50. 60	.6 70.7 73. .4 72.0 74.	6 74.5 77.	.8 80.7 81.	77.6	3 78.6 80.	1 80.0 80.	.0 79.8 81. .2 79.1 81.	.1 77.7 80.	.1 78.2 79. .4 76.0 80.	.7 73.1 77.	0 71.0 75.	61.0 65.	.7 52.0 59.	. 5 36.9 46.			•					90.1	7 96.1 99		TEST DATE	TEST POINT 0123A	
		FREG	63 63		125		ŀ	400		1	1250	- 1			- [000	10000	18000		L	4 ID	00000	GASPL	PNL			MODEL 0100 A	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, 58 2400.0 FT. SL

•	₹
i	Ξ
1	ö
	_
	_
•	2
ļ	
	>
1	3
1	7
1	2
ď	6

									OR OF				PA QU	IGE Jal		3							ET SPEED (390.0 FPS)		
NOISE				ב ב		0	. v. –		o –	6	ο φ.	Φ.	0.0	יט פ	2	-	20	4 %	4	100	N 60	13 30 46	9.87		
FOR BACKGROUND NO	X01240 X05220	-	150. 160.	Md		16.0 111.4 146.	110.0 149	104.2 151	2 -	. 8 100.2 150	.1 100,6 150 .2 100.0 150	0.00	7 58.5 149	0.00	2 96	400	.0 91.2 145	. 9 69 5 143 .0 63 6 143	1 79.2 142	72.1 67.4 139.	63.4 59 26.5 117	3859 29.5600 R	IN) - MOD		
CORRECTED	FJ-400-AMGD FJ-400-FMGD		. 130. 140.	1		6 103.1 108.0 1 2 108.0 108.9 1	109.6	113.5	114.5	113.5 11	114.6 11	5 5	114.5 113.9	114.6 113.1	112.0 110.1	108.6 105.7 1	106.7 102.9 1 102.6 99.6	97.4 94.6	89.2 87.1	76.6 74.7	71.8 69.0	I ALPHA PAMB	SIZE CM (21,65 SC		
ID PRESSURE LEVELS	- MODEL BACKGI	AE.	00. 110. 120			24.6	92.0 94.5 99.2 93.6 96.1 101.3	98.2	100.00	3 102.7	3 104.3 1	104.7	105.5	105.6	3 108.0	103.0	98.5	5 93 3 89 8	85.4 89	2 71.6 79	. 65.6 72 0 116.0 120	TAPE NG. N313 Rg. RDG. ADH2	139.		
MODEL SOUP	DENTIFICATI	ANGLES	80. 90. 1			87.1 88.5	89.0 91.2 90.1 92.3	92.2 93.9	94.2 96.0	96.0 97.9	95.0 98.6 7	96.3 98.4 1	98.1 99.4	98.3 100.4 1	98.2 100.3 1	98.89	96. 2 99. 0 96. 4 97. 5	93.3 94.2 87.8 88.8	85.00	69.7 70.6	62.2 64.3 109.3 111.1 1	9-78 ANECH CH	RANGE 10.0 FT)		
UNTRANSFORMED			50. 60. 70.			.6 65.7 66.	9 6	9 90.4 90.	. 4 90.9 92. 8 92.8 92.	.9 95.4 95.	S 94.0 94.	.5 96.5 95.	1 97.3 97.	2 96.7 96.	7 96.8 97.	90.00	. 7 93.3 95. .1 89.9 92.	8 87.0 38.	79.2 81	5 65.8 69.	.9 59.9 63. .2 107.6 108.	EST DATE 03-	NT 12.2		
			40.	FREG 50 63	100 125 160 200	0.10 0.50	400 85.9 857 500 85.8 87	95.4	0. E. C. C. C. C. C. C. C. C. C. C. C. C. C.	90.6	92.7	0.6	94.2	9.4.6 9.5.0	96.2	94.0	86.8 83.9	82.2 80.8	75.8	ĺ	57.2		MGDEL TEST PG! 0100A 0124A	193	
						<u> </u>		Ц					Щ.			_		20-1	1811	برت اور	IN LUX	BINITHIN	1d 25 Vd	MEXMET	ън

)ر

			ORIO OF	GIN P3	IAL OR	Pi QI	ige Jal	i is									- YES - YES		ET SPEED : (390.0 FPS)
	¥	143.7	146.7	151.2	3 3	51.3	151	151.4	150		148 148	147.9	145	149.1	140.9	163.7	REFRACTION CORRECTION TURBULANCE CORRECTION	TAMB 58.86 RELHUM 13.30	FREE-JET
MGDL X01240	145. 150. 160.	05.1 112.2 108.9	3.3 116.9 109.9 3.3 116.9 109.8	6.7 117.9 109.8	.5 116.8 110	6 110	5 116.9 113	2 114.3 111	1.5 110.9 10	9.9 109.9 107 7.6 107.6 106	107.3 1	.9 100.9 1 .6 97.6	. 1 93.3 .8 88.8	82.7 83.4 85.7 77.4 75.1 78.7	67.6 65.3 60.9	7.2 127.8 122.9	390.00 REFRA 48.00 TURBU	1ALPHA SB59 PAMB 29.5600	55 SQ IN) - MODEL
FJ-400-AMODL	120. 130.	94.8 101.7.10	97.0 106.8 10 99.7 110.1 11	104.5 11	106.8 11	107.9 113.1 11	114		110.4 114	109.0 112.1 1	105.6 108.9 1 104.6 106.2 1	1 101.7	.8 95.7 .2 89.6	86.9 84.1 8 80.5 79.6 7	70.7 69.8 · 6	120.8 125.5 127	(FT/SEC) ETER (IN)	N313 IAL ADH221 F	SIZE .0 SQ CM (21.55
NTIFICATION -	, S	10	.1 90.2 91.6 .4 91.2 92.6	9 82.0	6 95 6 95	7 98.01	7 99.2 1	9 101.3 104	4 102.8 105 2 103.5 106	3 103.1	9 100.9 103 0 99.6 101	5 97.4 94.5	5 90.4 5 85.8	a w	3 66	3.4 112.8 115.6	FREE JET VELGCITY FREE JET DIAM	TAPE NO. AERO. RDG.	FT) ARC 139
10E	70. 80. 9	99.6	89.8 90.2 91. 90.2 90.7 91.	9 94.0	.6 94.3 96.3	98.2	76 G	8 99.9 1	5 102.3	5 102.2	.8 103.3 1 .5 102.8 1	.4 100.9 1 .9 97.8	2 92 4 90	5 73.7	.3 66.7	112.2 112.9 113	ALE FACTOR C. 1.000	03-29-78 C41 ANECH CH	ACCUSTIC RANGE 2.2 M (40.0 FT)
	40. 50. 60.	91.5	.8 91.5 90.2 .8 91.3 91.2	93.2 94.	95.1 95.	100.2 100.	97.7 98.	101.2 100.	101.6 102.	101.6 102.	101.9 103. 100.2 101.	98.0 99.	90.8 91. 85.8 88.	73.9 82.	64.5 64.	.3 112.4 112.9	MODEL/FULL SIZE SCALE INPUT 1.000 CALC. 1	TEST DATE LOCATION	TEST POINT 0124A 12

												0	RI F	GI P	OC NA	AL OR	1	γA QU	GE AL		g Y							SPEED 390.0 FPS)
		Ę	6/ K	, e, i	7	HQ.	ei ei	7	φ,	4.40	.3	•	-, ¢	n G		-		0	9 00	0							15 56,46 UH 13,30	FREE-JET 8 118.87 H/SEC (3
X01245		160. PH	82.9 167 82.2 168	82.8 169.3		-	82.5 169	1		_ •		-		-1-	_	•	•	79	191	169	•			161	96.0		TAMB 0 RELHUM	FULL
25	S	150.	4.69	2.6	92.28 92.9	92.2	2 2 6 0	91.3	88,3	86.3	82.7		78.0	70.3	65.6	57.2	44.0							102.9	106.0	IFT -9	5859 29, 5600	SQ IN) -
	r, DEGREES	3. 140.	3 92.0		1			1			ĺ			- 1			- 1							3 104.9	8 107.8	Ç	TALPHA	\$1 ZE 1400,00
FJ-400-AMODL	URED FROM INLET,	120, 130	61.0 90.3		1			ł			ì			ł			- 1							20.6	107.3 109.8	FREG	N313 ADH221	8
·	SURED FF		74.6		1			1			1			1			- 1				•			95.9 10	103.2 10	6.061	2 8	9032.2
DENTIFICATION	ANGLES MEAS	, 100.	73.	76.9	78	80	2 5	62.	62.	8 63	93.	83.	85.	Š	78	72.	65.	, d	5 6					8	.3 101.6	RATI	TAPE AERO. I	T) 3L
IDENTIF	NY	80. 90	74	76.	7.07	4 80.	6	.2 01.	.1 82.	2 2	5 34	.4 63.	63.		79.	6 75.	.1 67.		3 16.					2	04.2 104.	DIAMETER	SH CH	1C RANGE 2400.0 FT
		70.		91	n n	a	- 0	9	ın (Ø 7	4	(N	4 (٠ اد	Ē,	.	9	4.						ú į	102.3 10		03-29-78 C41 ANECH	ACOUST 1.5 H (
		8	3 72.5	18	76,	78	2 2	79.	8	2 20	9	61,	8	-	6 K	76	62,	, 10 10 10 10 10 10 10 10 10 10 10 10 10	ຸ່ ທ່					92.1	101.1		FEST DATE LOCATION	73
		40, 50.	69.5 71.8		5	. 🚓	0 6	0	a .	- 6	_	à	10 i	٥,	, c	0	6	ლ .	_					å i	96.0 96.4		TE3T L0C)	TEST POINT 0124A

	T						I	<u> </u>		- Linguis	ij				ripun.	T		T					•		
											Ì												·		
																-	•								
5.714								(R	G	N	L	PA:	BE.	13									FPS)	
Ď.	1				•			(F	P	ρο	R	QU	AL	TY									SPEED O. F	
9/79					·																				
07/18/79			•		•		ļ																	FREE-JET M/SEC (
																							63.86 49.00		
					¥ .		4.6	53.2		57.1	7.7	0 P	0. 4. 0. 0.	200	52.3		50.4	0	9 60 1	7.7	5.6	8.2		0	
					_		0 151	5 5 5 4 5		0 0		2 10	a -	N C) (D K		D C	e 6		2 CI	0	1 168	TAMB	MODEL	
		X01250		160			115	2 2	F	117.	=	==	- -				56				L	126.	200	•	
	40.0 FT.	XOX	ø	150.	• • •		119.8	121.1	123.0	123.3 123.4	123.2	116.8	117.6 116.1	114.4	12.7	10.4	107.9 106.9	104	96.2	92.39 88.4	83.4 76.4	132.4	SB59 29.5500	(NI DS	
	4	1GDL	DEGRÉES	140.			5 G	9 0		2 <u>2</u> 9 9	23.3	20.0	10.0 10.0	80 R	46	9	09.7	50.0	98.4	37.2	88.2 83.9	131.6	ALPHA PAMB	SIZE 21.66 S	
0	DAY, SB	FJ-ZER-AMGDL		130.				 	ر د د	0.0	9	. e	9,1	50 0	ior	0	4 to	90	,	4 vi	9 0	0	<u> </u>		
		J.	INLET,				6 107 2 109	2 114		7 120	-		6 120 4 150		116			8 109		- 4 5 9	1 93	.6 131		CM C	
	H. ST	EL KGRØUND	FROM	120				104		===	125		112	112.	===	109	107.	103	98	9. 93.	90.	123.	N313 ADH21	39.0 80	
1 2 2	R F F	MODEL	SURED	110.							-1			1 -			105.5 104.2	-1		9.1.98 	81.1 77.4	119.5	RDG.	139	
i d	ERCE	•	MEASUR	90			l	96.3		01.0	- 1			1 -		- 1 -	00 20 00 5	-1			2.2	5.0	TAPE ERG. F	ARC	
	70 PERCENT R.H. STD.	FICATION	ANGLES	90.			0 4	0 D												_ =	٨	.1 11	AE		
į	1	DENTIFI	•	9			1	200	1	_	٦					_	5 102. 6 102.	-				6 115.	3	RANGE 40.0 FT)	
1	DEG	I DE		8			93				- 1		<u> </u>	1 -			<u>5</u> <u>5</u>	-1			73	113.	29-78 ANECH	ACGUSTIC 2 M (4	
	50 C			62			1 • •	93.6			8			1.			90.0	٠.				112.9	03-29-78 C41 ANEC		
	59.0 DEG			90.			1	93.7			i					• (•	99.0 97.6	•1				12.8 1	ATE	12	
]			6			01	40	4	40	9	, ~	6 B		9 4	200	0 m	n)	0	N O	0 –	.9 11	TEST DATE LOCATION	POINT 25 A	:
				20			8 6	88	i .	20	102	35	55	101	8 8	3	9 G	8	9 6		l	0 111	Ţ	-	
196	:			6	~		95	88 0	ā !	6 6 6	6	8 6 8 6	5 5 5 5	9.66	9.7.6	2.5	92.0 90.1	64.	82.6	73.1	68.5 63.8	110.0		TEST	
			•		F B B B B B B B B B B B B B B B B B B B	0 1 1 0 0 0 2 0 0 0	250	4 0 0 0 0 0	630	3 0 0 0 0 0	1250	2000	2500 3150	4000	8300	0000	2500 6000	0000	31500	40000 50000	3000	GASPL		MODEL	
			:		=											<u> </u>		Q C	N O	4 Ŋ	60 60	Ö		Ž	

412.20 82.781.70 A					africa de la companya de la companya de la companya de la companya de la companya de la companya de la company						R TF	IG P	10°	LR	P	AG NUP	E	IS IS			•				CORRECTION - YES		49. GO	FREE-JET SPEED M/SEC (3. FPS)		
	FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC	IDENTIFICATION - FJ-ZER-AMOUL X01250	ANGLES MEASURED FROM INLET, DEGREES	FREO 40. 50. 60. 70. 60. 90. 100. 110. 120. 130. 140. 150. 160. PML		128	160 200	85.5 90.8 90.1 91.1 90.7 92.8 95.2 96.1 100.6 107.9 111.6 117.7 114.4 1	87.4 89.7 90.2 91.5 93.3 95.4 95.6 95.0 102.2 109.6 113.8 119.6 115.0 1 88.9 90.4 91.7 91.8 93.3 95.2 98.3 96.5 104.2 114.3 116.종 경기.1 115.6 1	90.2 92.0 93.3 93.6 94.4 96.6 97.7 100.1 106.3 116.9 119.0 121.9 115.8 1	95.9 94.4 96.2 97.2 97.3 99.4 101.0 104.2 110.9 120.5 121.9 123.3 117.2 1	100.7 101.0 101.2 99.8 99.4 101.0 102.4 105.8 111.7 120.6 121.9 123.4 117.0 157.	97.5 102.6 103.8 103.4 103.0 104.1 104.5 107.4 112.1 120.6 123.3 123.2 115.9 1 or s. dr. o. 100 4 161 0 101 3 102 0 104 6 108 0 112 0 120 5 120 7 122 0 114 0 1	100.5 101.2 101.0 100.0 100.4 101.7 104.1 108.0 113.5 120.8 120.8 118.8 111.5 155	100, 1 101, 3 102, 4 101, 6 101, 5 103, 3 105, 0 108, 6 112, 6 120, 9 119, 9 117, 6 109, 9 155	101.3 101.6 101.4 102.1 101.7 103.3 103.0 108.4 113.4 118.7 116.1 116.1 106.1 104.1 104.1 104.1 104.1 104.1 104.1 104.1 105.1 105.1	98.5 100.1 101.1 102.3 102.7 103.6 105.2 109.1 112.6 118.2 115.6 113.6 106.0 153	97.0 100.6 100.7 100.8 101.9 103.5 104.3 107.9 110.7 115.5 1/3.3 111.0 104.5 1	94.9 99.2 101.0 100.9 101.7 103.8 103.5 107.6 109.3 113.0 111.8 110.4 103.5 03.5 03.5 03.5 03.5 03.5 03.5 03.5	90.1 95.5 97.6 99.0 101.6 102.3 100.5 104.2 105.9 111.8 107.9 106.9 100.3	84.9 92.5 94.1 96.4 99.8 100.9 98.6 101.8 103.8 109.6 105.5 104.1 98.3 183.8 89.9 92.2 83.4 97.3 98.6 96.5 97.4 102.3 106.2 102.7 101.1 97.3 1	82.6 87.0 91.0 92.8 93.1 94.3 94.0 95.1 100.3 105.7 99.4 96.2 92.3 78.7 83.2 82.9 88.8 88.8 88.8 88.8 88.8 88.8 88	73.1 80.9 80.6 84.2 85.7 87.4 85.4 86.1 93.4 98.2 95.1 88.4 84.2 151.	68.5 78.8 76.2 79.7 78.3 81.1 80.7 81.1 90.4 93.6 88.2 83.4 79.8 152. 63.8 76.1 71.6 76.1 73.2 77.2 74.2 77.4 87.1 88.8 83.9 78.4 73.7 155.	 MODEL/FULL SIZE SCALE FACTOR FREE JET VELOCITY (FT/SEC) 0. REFRACTION COR Input 1.000 Calc. 1.000 FREE JET DIAMETER (IN) 40.00 TURBULANCE COR	000-00-00-00-00-00-00-00-00-00-00-00-00	SOO RELHUM	MODEL TEST POINT ACGUSTIC RANGE SIZE SIZE OTOOA 0125A 12.2 M (40.0 FT) ARC 139.0 SQ CM (21.55 SQ EN) - MODEL 0.	197	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SGUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

IDENTIFICATION - FJ-ZER-AMODL X01255

		1			1																											
•			•	•									R	IGI	N	AL.	P	A(GE	i is	3										FPS)	Applied to the second s
													F	P		/K	Y			•											SPEED 0. FI	
	•								•										•										•	63.86 49.00	FREE-JET O. M/SEC (
		7 171 3		2 174	٥١٤	72	.0 175	.6 174	si d	4 K	27.00	021 9	ים מי	7 168.6	168		168	169.8	69.0	173.3							.7 186.2	y e		TAMB	FULL	
4	160. 160	97 G AA		99.4 90	3 0	8	90	82			86.4 73		62.2		74.3 58	•			ი -								107.8 97.	38	FT -9	SB59 29.5500	. (NI	
, DEGREES	. 140.	A AG	6	8	-1-		—	- 1	6		3 6	88	7 68.1	8 8 9	1	9 6	8	48.	.6 26.6	N							4.00.1	113.3	HS	I ALPHA PAMB	SI ZE 400.00 SQ	130-
SURED FROM INLET,	120. 130	1		90.1 98.6	92.1 100.6 92.4 100.6		_	94.0 100.2	_						83.6 87.5			1	4.	- .		:					103.6 110.		FREQUENCY	N313 ADH211	S0 CM (1	40012
	.0	A CA	62. ~	84.6	97.2	- C	89.8	89.3	689.7	- 0	80.2	1.88	87.6	84.7	83.2	24.0	68.6	60.0	43. 6.0	<u>.</u>							100.1	106.7	8.061	RDG.	9032, 2	
ANGLES ME!	90. 100.	7.	9	4.81.6	83.	3 86	.0 86.	935	96.	- K	9	2 85	• • • • • • • • • • • • • • • • • • •	2 82.	.2 80.	.3 77.	5.	.4 59.	ه. 5								98.9	0 10	R RATIO	TAPE AERG.	E FT) SL	
	.0	-		78.6 80	ی ام	? -		-	0 0	, r	. 0	a.	<u> </u>	. ი	6	. c	9	0	4 (»							4.6	04.2	DIAMETER	19-78 ANECH CH	RANG DO. O	
	70.	7.2	3 12	76.6	2 2	9 6	82.		80.0	0 0	8 6	91.	90.	2	77.	4 6	66.	56.	4 ;	-							8	101.9		03-2 1-2	ACGUSTIC 731.5 M (24	
	60, 60.	7 73	. 4	.5 76.1	5 7	4.00	.5	.6 81.	.3		. o.	.4 79.	9 2	. 27.	.1 75.	9 57.	.3	. 9 51.	.4 33.								98	0.00		TEST DATE	TN.	
			9	69.9 73	q -	- N	ŅC)	-	86	.	9 7 9	77 8	o (2 ID	9	- ي	_	0	ø								-1	92.8 96		-	TEST POI	
	FREG	1		00	ı			- 1				i			l			i		10000	12500	20000	25000	31500	20000	80000		PNLT			MGDEL 0100 /	

4
÷
Ē
•
2
-
73
▶
`
ò
_
`
2
a

()

			•					ORI OF	GI P(NA DOI	IL I	PA QU	GE	e r									ET SPEED (390.0 FPS)	
			,			OD 11		sn c		10 ff		.	. 61	 10		· • • • •		4 0	8	a e		3 58.46 1 13.30	FREE-JET 118,67 M/SEC (
0 0		160.			11.5 147.		4 151	.2 152. 5 153.	.2 154.	9.7	4 153	2 152	.0	7 150.	96.2 148.7	3 146.	5 143	.0 143.	.9 140.	67.6 139.9 59.5 140.0	118.1 164.4	TAMB O RELHUM	MODEL	
JL X01260	KES.	150.		•				60	116.0	0 K	116.2	113.8	109.4	- ^	106.6	91	96.2	ır. –	10		9 127.5 1	1A SB59 1B 29.5600	- (NI DS S	
.J-400-AMGDL.	INLET, DEGRÉE	130. 140			103.6 108 106.3 110	0.0		116.3 119.		9.6		n 0	-	0 10	112.1 109.	4 4	7 97	95.9 93.	6	72.3 70	127.8 129.	, I ALPHA PAMB	312E. H (21.55	•
MODEL FJ BACKGROUND FJ	FROM	0. 120.	•	•	96.1	- - 10 c	104	2 106.	108.	5 709.	20	110	110.	200	107.9	202	3 97.	n 4	6 83.	- 0	. 8 120.9	1. N313 1. ADH222	39.0 SG CM	•
CATION - MOD BAC	MEAS	100. 110	•			•	0	600	0	2 4	-	0	9	~ a	100.2 105	9.4	7 00	<i>u</i> 4	-	W 60	112.3 116.	TAPE NG AERO. RDG	ARC 1	
IDENTIFICAT	ANGLES	80. 80.			@ 10 @ 0	•	2	98	5 96.	.2 100. - 27	95	100	100	.4 101.	98.2 99.8	7 98.	. 83.	.0 88. .6 36.	.6 79.	<u>.</u> ه	109.4 111.3	29-78 ANECH CH	STIC RANGE .	
		60. 70.			. 5 67.	7 87.	00	7 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 97.	96.		9 60	6 97.	7 97.	5 96 2	- 6	2 88	7 86.	3 75.	7 68.	.3 108.7	03-2 141	ACGUSTIC 12.2 M (4	
	•	60.			o -	~ E	9	ol c	9	60 0		4 6	ෆ	~ 0	95.0 97	. N C	24		~	0 4	107.0 108	TEST DATE	IT POINT 0126A	•
	•	40.	8 8 8 8	. 002	83.3	98	97.	8	92.	94.	98	8 3	6	9.8	93.7	8	95	90. 76.	69	63000 63.4 60000 57.4	106.1		DEL TEST 0100A 0	

					, c	RIGINA F POC	L PAC R QU	JE IS ALITY.					390.0 FPS)	
		160. PWL		0.9 143.7	0000	. 7 153 . 3 154 . 1 155 . 6 154	4.7 154.6 4.1 154.0 2.1 152.9 0.1 152.3	. 5 151 2 150 4 150	0 r - 0	2444 844 844 844 844 844 844 844 844 844	124.4 165.1 Refraction correction - yes Turbulance correction - yes	TAMB 58.46 RELHUM 13.30	FREE-JET SP MODEL 118.87 M/SEC (39	4 Commission of the Commission
-400-AMGDL X01260	INLET, DEGREES	130. 140. 150.		6 102.0 105.6 112.0 100	4 107.2 1.10.3 116.3 108 6 110.7 113.9 117.1 110 1 112.6 116.0 116.0 109 9 114.5 117.6 116.3 110	115.7 119.2 119.6 11 115.5 120.6 116.9 11 116.3 121.7 119.8 11 117.0 120.2 119.0 11	- 20 - 20 - 20 - 20 - 20 - 20 - 20 - 20	116.6 114.4 112.3 114.4 112.3 113.1 111.2 111.2 111.0 111.4 11.4 11.4 11.4 11.4 11.4 11	109.6 107.1 107.6 1 106.7 104.6 105.8 1 103.1 101.9 103.0 1 100.3 98.8 97.8	36.7 94.4 93.9 90.8 88.6 88.9 84.9 82.9 83.7 79.8 78.1 75.0 70.0 68.3 68.2	390.00		SIZE CM (21.55 SQ IN) -	of the state of th
IDENTIFICATION - FJ-400	ANGLES MEASURED FROM	90. 100. 110. 123		8.00 B.00 B.00 B.00 B.00 B.00 B.00 B.00		.9 95.7 99.2 107. 6 97.2 100.2 107. 7 99.4 102.1 109. 1 100.9 103.1 109.	.2 100.5 104.2 109. .9 101.3 105.0 111. .4 102.5 106.1 111. .6 103.0 106.5 111.	.7 103.8 107.1 110. .0 103.2 106.5 116. .6 102.4 105.6 109. .8 101.8 105.3 106.	1 100.2 103.2 105. 2 98.5 101.4 103. 5 96.3 99.0 102. 4 93.9 94.8 98.	90.2 90.2 95 85.7 85.7 90 80.4 80.0 86 74.5 73.4 80 65.5 66.3 70	113.5 113.1 116.3 121.2 127.4 FREE JET VELOCITY (FT/SEC) FREE JET DIAMETER (IN)	TAPE NO. N313 Aeko. RDO. Adh222	RANGE 40.0 FT) ARC 139.0 SQ	
		. 60. 70. 60.		91.1	9 91.1 90.1 90. 3 91.2 90.2 90. 3 92.1 90.6 91. 5 94.5 92.6 94.	1 95.8 94.1 94.8 4 96.6 96.2 96.9 8 98.6 97.4 99.7 1 102.3 100.5 99.6 1	2 100.7 100.1 98.1 0 100.8 96.6 100.4 1 4 103.9 102.7 102.8 1 8 103.0 103.3 101.6 1	8 102.9 101.8 102. 8 102.3 102.0 101. 1 102.3 101.8 101.	3 99.1 99.9 101.3 101.3 105.8 98.9 98.9 99.7 99.7 99.9 98.9 99.7 99.8 99.7	\$1.7 90.9 91.0 86.7 87.8 90.1 82.9 83.1 82.2 74.6 76.5 72.7 65.0 66.8 66.5	0 113.4 112.7 112.8 SIZE SCALE FACTOR 000 CALC, 1.000	DATE 03-29-78 ATION C41 ANECH	IZ ACCUSTIC	
		40. 50 FREG	o e o o o	8	80.0 80.0 80.0 80.0 80.0 80.0 80.0	94.7 95. 97.8 95. 99.3 97. 59.8 102.	102.2 100. 103.4 102. 101.9 103. 103.1 102.	2 101. 8 102.	96.7 96. 97.3 98.	8.00 8.00 8.00 8.00 8.00	MADEL/FULL MADEL/FULL INPUT 1.00		MODEL TEST POINT 0100A 0126A	p Mee.

FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, 56 40.0 FT. ARC

													0101	RI(GI P(N	IL R	F	PA	ei Ai	E Lii	IS IY									- The second second second second second second second second second second second second second second second		•		We see that	der unt generalistische der der der der der der der der der de
00L X01265	ET, DEGREES	130. 140. 150. 160. PWL	.0 92.6 93.6 63.1	.0 94.6 94.4 82.4 1	96.4 94.6 63	W/. 6 93. 66.3	200 0.00 0.00 0.00 0.00 0.00 0.00 0.00	98.1 94.5 86.3	85.8	95.6 92.6 64.4	93.6 89.9 61.4	.92.2 86.7 78.4 170.4	80.2 64.8 //.2 108.0	25. 2 20. 7 73. 2 163. 3	83.3 79.1 70.7 167.3	80.6 76.7 67.8 166.9	73.2 63.9 166.4	72.6 67.8 57.3 166.1	86.2 U7.4 44.4 U64.9	39.9 25.9 163.6	16.4	5.191								107.5 104.4	111.0 110.1 106.5 97.6	PRECOENCY ONLY	'1ALPHA S859 TAMB 58.46 PAMB 29.5600 RELMM 13.30	** SIZE FREE-JET SPEED FREE-JET SPEED 1400.00 SQ		
IDENTIFICATION - FJ-400-AMODE	ANGLES MEASURED FROM INLET,	40. 50. 60. 70, 60. 80. 100. 110. 120.	69.5 71.5 72.5 72.2 72.9 74.2 73.4 74.6 81.1 91	71.4 72.5 73.4 72.5 74.1 75.1 75.2 76.5 64.4 93	72.0 73,6 75.7 74.5 76.5 76.5 76.5 78.8 86.1	73.2 75.2 77.0 76.0 77.1 78.4 75.0 51.1 55.2	76.2 75.4 77.7 76.0 78.1 60.0 78.4 62.0 68.0	77 A A17 A3 1 A2 1 B1 6 A3 2 A2 B B4 6 B0.6	79.0 79.6 81.3 81.5 79.9 81.1 62.2 85.6 90.4	80.7 81.0 81.1 79.7 81.9 82.6 82.8 86.1 92.0	76.6 62.0 63.8 83.5 84.0 63.8 63.7 86.8 91.1	79.4 81.0 82.6 83.8 82.6 83.7 83.9 86.9 90.8	75.0 79.7 52.1 51.9 52.7 54.0 54.0 57.3 30.0	77.0 78.0 01.2 01.8 01.0 04.0 00.0 00.4 08.4 14.7 14.0 14.0 00.4 08.4	76.5 79.3 An.4 Al., 82.3 A3.1 Bl.9 84.8 85.3	73.8 77.1 60.2 80.5 61.1 81.2 80.0 82.4 83.1	69.1 73.9 76.7 76.6 80.9 81.1 78.2 80.3 81.5	68.0 72.9 75.7 77.2 78.6 78.9 75.5 77.3 78.6	56.6 66.9 69.6 71.9 74.6 74.5 71.6 71.5 73.7 co. co. co. co. co. co. co. co. co. co.	25.6 42.3 51.5 55.8 59.9 59.3 55.4 53.7 55.5	15,6 25,9 35,7 40,3 41,9 42.6 40.1 37,3 39.3	6.1 14.5 14,3 16.3 16.0 11.4 11.4	, , , , , , , , , , , , , , , , , , , ,			000	00	00	00	89.2 91.1 92.3 92.9 93.5 94.4 84.0 96.7 101.1	94.9 97.9 100.4 101.0 102.3 102.9 101.2 103.5 106.9 94.9 98.4 101.1 101.6 103.7 103.9 101.2 104.0 107.6	DIAMETER MAIIS 6.061 FREG	TEST DATE 03-29-78 TAPE NG. N313 LOCATION C41 ANECH CH AERG, RDG. ADH222	OA 01264 731.5 H (2406.0 FT) SL 9032.2 SG CH	201	The second secon
		FRE	Ď	Ö	0	٥ ا	N 9	Š è	รถี	31	4	8	63	2 2	3 6		2000	200	310		930	9000	10000	1250	20000	25000	3150	90000	9000	GASP	PR			MODEL 010	TOT	

ORIGINAL PAGE IS OF POOR QUALITY

6.1.3 Measured Acoustic Data for Model 2

 $R_r^0 = 0.853$ C-D outer nozzle

 $R_r^i = 0.933$ Conic inner nozzle

 $A^{i}/A^{o} = 0.191$

without struts in outer flow

8
=
6
٠.
0
8
`
5
_
`
6
0

()

)R)F	IGI P	OC	AL OR	Q	Ų.	ALI	IS TY										SPEED O. FPS)		
					-				-																	54.50 61.80	١.	· :	
<u>ي</u>				A		÷	4 150.3	.0 153.7	- 1			- 1			- 1					ł			1		.2 167.9	TAMB	MODEL		
40.0 FI. ARC	X02010 000000		150. 160				- *	17.										110.4 105.0		- 1		91.1 87.			132.8 127.	SB59 29.4200	- (NI		
DAY, SB 4	FJ-ZER-FMDDL 000000000000	, DEGREES	140.				112.3	116.9	119.0	121.1	121.4	122.5	121.8	119.6	117.0	115.9	113.4	111.8	108.3	106.0	99.5	96.5 5	86.5		4 131.4 1	IALPHA	l is		
H. SIU. DAY	FJ-ZE	FROM INLET	120. 130				101	.7 113	0.115	175	.2 117	6 117	2 118	8 119	7 118	. 1 118	12.1 % 15.0 11.9 115.0	10.8 114.5		- c	, ID	4.0	-	6	123.6 129.	N312 ADH192	SO CM (ş.	
O PERCENT R.H.	- MODEL BACKGROUND	MEASURED F	110.				98.9	98.7	9	104.2	105.3	106.6	107.5	108.4	109.1	110.6	110.7	109.1	105.7	102.6	95.9	91.3	80.0	75.0	4 120.1 1	. NO 206.	138	4	
., 70 PER	ICATION	ANGLES MI	90. 100															106.6 105.5							17.4 117.	TAPE AERO, F		J	
-	IDENTIFICA		80.				91.5	93.6	93.9	97.5	99.4	103.4	102.6	107.0	107.7	104.7	105.0	104.9	103.8	101.7	93.4	92.2	76.3	70.1	116.3 1	23-78 ANECH CH	್ಷ ಲ್ಡ್		
59.0 DEG.			60. 70.				- 1	- 10	.0 93.	4 96	5 99	103	5 t-	6 107	4 106	3 104	5 103	3.3 103.6	5.7. 5.05 5.05	1 97	0.92	4 87	2 75	7.7 70	6.0 115.5	03-	2		
			50.				6	4 0	8	- œ	, in	ω	NF	-	-0	-	4	101.7 103	o 4	E) 6 0	<u>ب</u>	حي أب	5.9 6	115.6 116	TEST DATE	TEST POINT		
			40		. E C		86.5	8 8	91.0	98.9	101.2	90.8	108.0	107.3	105.6	103.3	101.6	98.4	93.3	88.0	84.4	79.7	66.6	61.0	115.6	:	DEL TEST		

02/15/80 9.180		ORIGI OF P	NAL PAGE IS OOR QUALITY		CORRECTION - YES CORRECTION - YES B 54.50 M 61.80 FREE-JET SPEED O. M/SEC (O. FPS)	
FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC IDENTIFICATION - FJ-ZER-FMODL X02010	ANGLES MEASURED FROM INLET, DEGREES FREQ 50 63 80	86.5 92.3 91.1 90.9 91.5 94.1 96.5 98.9 100.8 107.4 112.3 118.5 116.4 87.9 90.4 90.7 91.5 93.8 95.3 96.3 98.7 102.9 110.0 114.1 119.8 116.7 82.7 91.9 92.5 91.5 93.6 95.7 97.1 98.7 103.9 110.0 114.1 119.8 116.7 91.0 92.8 94.0 93.3 93.9 97.0 98.2 100.1 106.0 115.4 119.0 122.7 117.6 92.2 94.1 95.4 94.4 96.5 98.9 99.8 102.4 108.1 116.5 120.1 123.5 118.4 96.3 94.6 96.4 96.9 97.5 99.6 100.8 104.2 109.7 117.2 121.1 124.0 118.2 101.2 101.5 101.5 99.5 99.4 101.2 102.6 105.3 111.2 117.3 121.4 123.9 117.8 100.8 102.6 103.1 103.4 104.1 104.4 106.6 111.6 117.6 122.5 123.4 116.4	108. 6 104. 2 102. 9 101. 2 101. 6 103. 0 104. 3 107. 5 113. 2 118. 6 121. 8 119. 0 107. 3 107. 7 106. 7 104. 5 102. 6 103. 0 104. 3 107. 5 113. 2 118. 6 121. 8 119. 0 107. 3 108. 4 108. 6 107. 6 108. 1 106. 7 109. 1 113. 6 119. 2 118. 1 116. 9 103. 9 103. 9 105. 4 104. 7 105. 8 107. 6 108. 0 109. 4 112. 7 118. 0 117. 0 115. 4 103. 3 104. 1 104. 3 104. 7 106. 5 108. 4 110. 6 112. 1 118. 2 115. 9 114. 1 101. 6 103. 2 104. 5 103. 7 105. 0 106. 8 107. 0 110. 7 112. 1 116. 6 114. 4 112. 7 103. 1 104. 0 103. 8 104. 6 106. 3 106. 1 109. 4 111. 9 115. 0 113. 3 114. 7 106. 7 103. 1 104. 0 103. 8 104. 6 106. 3 106. 1 109. 4 111. 9 115. 0 113. 3 114. 7 104. 7 105. 7 103. 1 104. 0 103. 8 104. 6 106. 3 106. 1 109. 4 111. 9 115. 0 113. 3 114. 7 104. 7 105. 7 103. 1 104. 0 103. 8 104. 6 106. 3 106. 1 109. 4 111. 9 115. 0 113. 3 114. 7 104. 7 105. 105. 105. 5	3 103.6 104.9 100.6 103.3 103.1 110.8 114.3 111.8 110.7 110.3 103.3 103.2 104.2 105.4 104.3 107.2 108.6 112.4 109.2 108.8 103.3 100.2 103.8 105.2 103.4 105.2 102.7 105.1 101.1 111.3 108.3 107.1 101.2 103.9 99.1 103.9 99.1 103.9 99.2 100.0 97.4 98.3 102.6 104.9 102.3 100.5 96.9 103.9 93.4 94.4 93.9 95.9 99.5 104.1 99.5 96.0 91.4 87.5 92.2 92.6 89.0 91.3 95.4 100.3 96.5 91.1 87.8 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10.3	MODEL/FULL SIZE SCALE FACTOR FREE JET VELOCITY (FT/SEC) O. REFRACTION CORRES INPUT 1.000 CALC. 1.000 FREE JET DIAMETER (IN) 48.00 TURBULANCE CORRES FEST DATE 03-23-78 TAPE NO. N312 IALPHA SB59 TAMB 54. LOCATION C41 ANECH CH AERO. RDG. ADH192 PAMB 29.4200 RELHUM 61. MODEL TEST POINT ACDUSTIC RANGE SIZE SIZE 0200 C201 12.2 M (40.0 FT) ARC 138.7 SQ CM (21.49 SQ IN) - MODEL O.	

٠.

()

								•						OR OF					P A QU	GE AL	IS TY								00	FREE-JET SPEED M/SEC (0, FPS)		
DUND PRESSURE LEVELS 2400.0 FT. SL	X02015	DEGREES	140, 150, 160, PWL	58.3 90.2	99.1 90.7	91,0	100.0 90.4	99.3 6.79	94.1 83.1	92.7 80.9	88.7 76.5	86.7 75.1	83.0 71.2	86.2 80.8 68.5 170.3 82.6 77.9 64.5 169.2	74.5 59.4	68.6 52.3	46 x 21 x		168	168.0 170.0						109.1 108.3 98.8 185.8 112.2 108.9 98.2	108.9	SHIFT -9	IALPHA 5859 TAMB 54.50 PAMB 29.4200 RELHUM 61.80	SO IM) - FULL O.		
SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS PERCENT R.H. STD. DAY, SB 2400.0 FT. SL	ICATION - FJ-ZER-FMODL	ANGLES WEASURED FROM IMLET, DE	100. 110. 120. 130. 1	80.8 85.0 94.0	82.1 87.3 95.6	86.1 90.8 97.3	87.1 92.3 97.3	88.3 92.5 97.5	85.8 93.8 97.9	89.4 93.1 98.7	89.9 92.2 96.3	90.7 91.3 96.0	89.1 90.6 92.2	85.6 88.6 89.3 91.3 8 84.2 86.4 86.7 88.6 8	84.6 84.8 86.9	80.9 81.9 82.8	50 4 70 6 71 4	59.4 60.3 60.0	42.9 44.6 41.6	18.0 19.5						98.3 100.5 103.5 108.3 10 105.5 107.6 109.6 113.5 11	107.6 110.1 114.2	TID 8.070 FREQUENCY SHIFT	TAPE NO. N312 Ero. Rog. Adh192	\$12E SL 9032.2 SQ CM (1400.00		
FLIGHT TRANSFORMED, SC 59.0 DEG. F., 70 F	1	ANGLES	60. 70. 80. 90.	73.5 76.0 78.3	75.3 76.3 79.6	76.4 78.9 81.4	81.4 81.6 83.6	24.28 85.6 86.3 20.2 20.2 20.3	85.8 84.4 84.9	88.7 88.5 87.0	85,1 86,7 88.7	84.5 85.3 87.3	83.5 84.9 86.7	61 ◀	79.1 83.4 85.2	76.1 80.8 82.4	70.8 76.9 78.1	55.6 62.0 62.9	38.5 44.0 A6.2	13.3 17.8 21.0						96.1 97.2 98.4 102.8 105.3 106.8	1 102.8 106.6 107.9	DIAMETER RAI	03-23-78 C41 ANECH CH A	ACOUSTIC RANGE 731.5 M (2400.0 FT) 9		Semantine and the semantine of the seman
			40, 50,	68.4 72.2	69.6 73.0	70.9 74.3	79.6 81.5	79.0 82.4	86.6 87.1	84.6 87.1	80.1 82.1	79,0 81,9	75.5 80.3	1250 72.8 78.5	65.8 73.0	58.7 69.2	53.5 64.0	31 0 42 2	5,8 23,5		12500 16000	25000 25000	31500 40000	50000	80000	92.8 94.2 97.0 99.8	.2 59.8		TEST DATE LOCATION	MODEL TEST POINT 0200 0201	205	1

. 180							OR	IGINA POO		PAGI	E 19								FPS)	, est al.
02/15/80 9						47.7, 49.2 51.1	52.1	152.9 153.4 153.2	54.2	6. 40. 00. 00. 00. 00. 00. 00. 00. 00. 00	52.4 52.2	51.5 50.8	50.6 19.4 19.3	18.5	17.8 17.6	46.6 46.3 48.1		TAMB 46.94 RELHUM 83.10	FREE-JET SPEED 30.22 M/SEC (296.0	
CORRECTED FOR BACKGROUND NOISE		, DEGREES	. 140. 150. 160.			109.5 116.2 113.6 111.1 117.8 114.5 114 7 119 6 113.8	116.5 120.2 112.6	118.1 120.5 110.7 118.9 120.5 108.9 119.2 119.1 107.0	121.0 118.7 105.7	120.8 117.2 105.3 119.9 115.4 104.1 118.6 113.8 102.6	116.4 111.4 100.9	114.1 108.7 99.1 112.2 106.9 97.9	111.0 106.7 97.1 108.5 104.7 95.6 106.5 103.1 94.8	104.2 100.4 92.6	97.9 92.3 86.2 93.9 86.5 81.5	89.1 81.2 75.6 81.8 75.0 70.1 77.5 65.9 62.3	130.0 129.6 121.4	IALPHA SB59 PAMB 29.4300 REI	SQ IN) - MOD	٠
EVELS	- MODEL BACKGROUND	MEASURED FROM INLET,	100. 110. 120. 130			95.6 97.6 95.0 99.2	96.8 101.8	96.0 98.9 104.4 113.7 97.5 100.9 106.4 114.7 99.4 102.0 108.7 115.0	104.1 109.1	105.0 110.7 105.4 110.3 106.9 111.6	107.7 111.1	109.4 111.5 107.9 110.8	107.4 105.1	100.3 104.0	5.2 96.2 101.2 102.4 1.7 93.2 98.5 101.3 5.5 88.0 94.0 96.8	75.5 85.6 69.0 79.7	118.0 121.9	TAPE NO. N312 Ro. RDG. ADH199	138	•
MODEL S	DENTIFIC	ANGLES	70. 80. 90. 10			.9 88.0 90.1 .7 90.1 92.2	8 91.4 93.5	91.2 93.3 94.6 96 93.2 93.8 96.1 97 94.5 95.6 97.5 99	.8 98.2 99.6 .7 98.5 100.7	.3 101.8 100.2 .4 105.7 104.3 1 106.2 107.8	3 102.1 105.6	3 102.6 104.0	.7 102.1 104.2 .3 101.3 102.7	9 99.6 101.1	.6 96.8 97.9 .7 91.7 92.4 .7 89.2 90.6	. 1 81.5 83.1 .9 73.4 74.9 .6 66 7 69 5	0 113.9 115.3	03-23-78 TAI	DUSTIC RANGE W (40.0 FT)	
UNTRANSFORMED			40. 50. 60.			.0 87.1 87.3 .9 86.6 87.4	. 6 87.9 88.7 .4 88.3 90.3	87.9 89.9 91.4 9 91.6 90.6 92.4 9 94.2 93.7 95.7 9	.5 98.0 98.1 .8 103.9 102.2	.5 105.7 106.2 .1 105.1 106.3	3 100.9 101.9	.3 100.9 101.9 .4 100.8 101.4	.6 100.5 101.4 .6 97.2 98.8	0 93.2 94.0	.3 90.1 91.6 .7 86.0 89.2 .7 80.9 84.5	.4 70.8 70.7	.8 113.0 113.6	TEST DATE O	2	
206				FRE 50 63 80	100 125 160 200			630 800 1000								50000			MODEL 0200	 3

0
8
=
6
•
_
U
8
`
2
-
\
2
\sim

(__)

										OR OF	IG P	IN/		. P.	AGI UA	E I	S Y									S		SPEED 296.0 FPS)	
			PWL				0		50.8	9 50	0.	• 0	.3	.9	153.2	9:	en c	 6	151.3 50.8	150.5	5.2	4.04	48.7	2	2	IN CORRECTION - YES	TAMS 46.94 LHUM 83.10	FREE-JET S 90.22 M/SEC (2	
			. 160. P				3 112.3 346	113.0	9 113.8 150	9 114.7 153	114.6	9 113.4 154	4 113.0 1	111.8	108.5	107.6	106.6	۲.	4 6	. 10	7 03 8 440		5 83.7 148. 8 77.4 149.	0 67.6 147	4 124.3 166	REFRACTION TURBULANCE	5859 TAMB 29.4300 RELHUM) - MODEL	
	X02020	DEGREES	140. 150.				107.3 114.3	.5 117.	4'0	118.3 121.9	.0 121	120.2 121.4	_	119.5 117.5 118.3 116.0	3 113		ri T	110.2 108.6	108.8 107.6	. ru		. .	88.1 83.5 85.3 75.8	5.5	129.6 130.4	296.00	IALPHA SB5	SIZE 21.49 SQ IN)	
	FJ-300-FM0DL		120. 130.				96.5 103.4	-	-	105.7 113.8	1-	108.3 114.3	115		116	12.5 115.7	115	1 2	108.8 111.8	106	102.8 105.1	7 4	92.1 92.4	.8 80	122.3 127.1	VELOCITY (FT/SEC) JET DIAMETER (IN)	N312 1 ADH199	SQ CM (
TENCHAL MAIN	FICATION - FJ-	ES MEASURED FROM INLET	110.				92.9	92.8	83.8	95.4	7'66	100.7	103.1	103.7	105.9	109.0	109.6	108.6	105.8	101.1	97.3	5 60 5 60 5 60 5 60	82.5	69.7	117.8		TAPE NO. N.	138.7	
	IDENTIFICA	ANGLES	90. 100.					1.		93.7 94.1	ı	97.8 98.8 100.0 100.2		100.9 101.3		- 1			105.7 104.0	104.1	100.9 97	93.6 93.5	86.1	S.	117.1 116.1	FREE JET	CH AER	RANGE 40.0 FT) ARC	
			70. 80.					91	91.	ن د	95.		1 99	106.5 103.2	2.08	104 6 105 1	9 104	w 0	r.	4.0	ဖ	94.9 95.3 90.8 93.9	9 -	9 70.	116.2 116.5	LE FACTOR 1.000	03-23-78 C41 ANECH	ACOUSTIC .2 M (
			. 60.				6	90.7	91.0	92.3	95.0	ტ. დ ტ. დ	100.7	105.6	109.0	105.7	105.1	106.0	105.3	102.2	97.7	4 0	·- o	68.6	.2 117.0 1	LL SIZE SCALE 1.000 CALC. 1	TEST DATE LOCATION	2	
			40. 50					88.4 91.	90.4 91.	92.1 92.	93.4 94.	96.8 95.	102.5 101.	111.1 108.3	107.6 108.	107.5 107.	105.7 105.	104.5 105. 105.4 105.	103.3 104.	<u> </u>	6	93	83.8 83.	69	117.6 117.	MODEL/FULL INPUT 1.		TEST POINT 0202	
			FRED	20	8 9 9	8	25 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	315	8	500 500 500 500 500 500 500 500 500 500	808	5 5 5 5 5	009	2000	3150	8 6	9300	0000	2500	20000	2000	31500	2000	80000	OASPL			MODEL 0200	

				-																			•							
02/15/80 9.180								1						01 01	RIG F F	IN O	AL OF	. •	PAG QUA	iÉ I	3							0	FREE-JET SPEED 2 M/SEC (296.0 FPS)	optile.
SOUND PRESSURE LEVELS	FT. SL			. 160. PWI	16	87.2	87.7	85.8 172	85.7 172	.0 84.8 172.4 .6 83.0 172.2	80.6		74.9	70.9	68.2 65.6	60.8	50.4 20.8	7		167.6 165.4					.0 95.7 184.2	1	6-	59 TAMB 46.94 .4300 RELHUM 83.10	- FULL 90.22	
OLATED SOUND PRE	DAY, SB 2400.0		NLET, DEGREES	130. 140. 150	93.1 95	95.5 97	96.9 98	98.6 97	98.9 96	98.4 97.1	95.6	9 6	6.0	87.3 81	84.6 79 82.3 76	79.4 72	75.2 67 69 4 58	60.0 44	56.4 45.8 25. 37.8 21.6	10.6			•		105.9 107.3 106.	111.5 106	FREQUENCY SHIFT	IALPHA SB PAMB 29	SIZE M (1400.00 SQ IN)	£.
LED, AND EXTRAP	ERCENT R.H. STD. DAY,		MEASURED FROM INLET,	00. 110. 120.	75.8	77.4	79.6	82.0	84.4		85.3	87.4	89.1	88.3	85.0	83.1	79.4	67.4	58.2 56.9 60.2 43.0 39.7 44.9	14.4 19					6.9 98.0 102.0	105.4 109.2	10 8.070 F	TAPE NO. N312 RO. RDG. ADH199	9032.2 SQ CM	
SC.	O DEG. F., 70 PE	U	ANGLES	80. 90. 10	4.1 75.1	5.2 76.2	.0 77.4	9 2 80 2	1.5 82.3	1.9 83.3	8.7 86.9	9.5 90.3 6.0 88.1	5.3 86.8	6.3 37.2	5.8 87.5 4.8 85.8	4.7 85.2	2.7 83.5	0.1 70.6	63.0 63.9 58 45.2 46.6 43	8.5 20.6					97.2 97.9 96	1 107.9 10	DIAMETER RATI	03-23-78 T C41 ANECH CH AER	ACOUSTIC RANGE 5 M (2400.0 FT) SL	
FLIGHT T	f			5. 60. 70.	72.3 72.	73.5 74.	75.1 75.	1 77 0 78	3 79.7 80.	7 86.2 87.	8 89.6 88.	8 88.9 87. 8 85.3 85.	4 85.1 84.	7 84.7 85.	2 84.0 84. 2 83.4 83.	7 79.9 82.	9 78.5 79.	0 65.5 68.	9 54.8 58.8	9.4 15.					4 96.5 96.	7 104.2		TEST DATE 03-23 LOCATION C41 A	731.	
208	A CONTRACTOR OF THE PARTY OF TH			40. 50	69.1	70.7 72	71.6 73	72.0 74	76.7 77	80.5 81	87.6	83.8 85	82.4	79.3 82	79.7	72.3	70.3 74	52.8 61	5000 37.6 46.	•	12500	000	31500 40000 50000	80000	94.2 95	5 5		F 1	MODEL TEST POINT 0200 0202	

MALE WONE

/80 9.180														OI OI	RIG F P		AL OR	PQ	AG UA	E II	\$						T SPEED (396.0 FPS)		
ISAS I SONO CHINO	EG. F.,	IDENTIFICATION - MODEL FU-400-FMODL X02030 BACKGROUND FUB400-FMODL X05220	ANGLES MEASURED FROM INLET, DEGREES	40. 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160.					3 86.5 86.5 87.0 87.4 89.5 91.9 94.6 97.1 103.6 1	3 86.7 88.2 86.9 88.8 91.4 92.3 94.7 99.4 109.5 113.7 118.8 118.0 15.0	.3 89.3 90.9 90.1 93.0 94.1 95.5 98.2 103.6 113.4 117.3 118.5 106.7 151	3 90.1 91.6 92.2 92.7 95.1 97.0 99.9 105.9 114.2 1	. 4 93.0 94.0 93.5 94.1 97.0 98.1 101.3 107.5 115.0 119.0 114.4 102.9 152.	6 105.2 104.2 101.5 98.5 99.7 101.0 304.2 109.2 115.0 120.0 114.5 103.5 153	.3 104.6 106.3 106.4 106.7 104.6 102.7 105.4 109.8 117.2 119.1 114.4	. 1 102.1 103.1 103.9 105.7 107.8 106.2 107.1 111.1 116.7 117.6 113.3 102.8 1 6 100 9 102.4 101.4 102.7 105.1 107.0 107.9 110.9 115.5 115.4 111.4 100.4 1	2 100.8 101.8 101.5 101.9 103.7 106.4 109.5 111.0 116.2 114.3 109.5 100.0 1	.6 100.4 101.9 101.4 101.9 104.3 105.0 108.7 112.0 115.0 113.1 108.4 99.4 1 .4 100.8 100.9 101.3 102.6 103.5 104.8 108.1 111.6 113.9 112.2 107.1 98.4 1	.1 99.5 101.4 101.2 102.3 104.0 103.6 107.4 110.2 113.1 110.2 106.7 97.1 1	9 95.4 98.0 98.9 101.5 102.8 100.7 103.4 106.3 109.7 106.0 102.9 94.8 149	.5 93.0 94.6 96.2 99.9 101.2 96.9 101.1 103.9 105.9 105.9 105.4 91.1 147 .1 89.6 91.6 92.4 96.8 97.9 95.5 95.9 101.2 101.5 99.9 96.4 91.1 147	5 85.3 89.2 90.9 91.7 92.2 92.2 92.9 97.5 100.8 96.5 91.6	.2 80.9 84.3 86.5 90.0 90.3 87.0 88.8 93.3 95.9 91.7 80.1 62.3 347 .2 76.1 77.0 79.6 81.7 83.4 81.9 82.2 88.3 90.6 86.4 81.0 75.4 145	.9 71.1 70.9 72.9 73.4 74.4 76.1 76.0 84 .8 63.9 65.0 68.1 66.4 69.2 67.9 70.0 78	5 113.3 113.9 113.5 114.0 115.1 115.3 117.9 121.6 126.9 129.0 127.6 119.6 164.7	TEST DATE 03-23-78 TAPE NO. N312 IALPHA SB59 TAMB 47.30 LOCATION C41 ANECH CH AERD, RDG, ADH198 PAMB 29.4300 RELHUM 81.60	TEST POINT ACOUSTIC RANGE SIZE SIZE SOON 12.2 M (40.0 FT) ARC 138.7 SQ CM (21.49 SQ IN) - MODEL 120.70 M/SEC (The state of the s
		· Jane			FREQ 50	8 8 8	125	500 200 200	1		- 1			1 .	2500 103				1		- 1			63000 67 80000 61	0ASPL 112		M0DEL 1 0200	209	

and the state of t

										of Ol	RIG F P	ANI	IL R	PA(QU	3E ALI	ie Ty							- YES - YES		ET SPEED (396.0 FPS)	400
FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS	R.H. STD. DAY, SB - FJ-400-FMODL X02	ANGLES MEASURED FROM INLET, DEGREES	40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160.					2 90.9 90.0 88.8 88.5 90.0 91.0 95.0 106.6 100.0 10.5 111.2 147.	1.9 92.4 91.2 90.0 90.4 91.7 91.4 92.5 99.6 110.2 113.7 117.7 112.0 1 2.8 92.2 92.6 90.0 92.2 92.8 93.7 94.9 102.3 111.8 115.9 119.1 111.8 1	7 94.0 94.5 92.3 94.9 94.5 94.8 96.5 104.7 112.9 117.5 118.9 112.6 152	95.7 95.8 93.6 94.7 95.6 96.3 98.1 106.6 114.1 118.0 118.0 113.7 152 96.1 96.4 95.5 95.3 97.6 97.5 99.5 107.7 114.1 118.7 117.6 113.4 152	.1 97.9 98.0 96.5 98.9 99.3 99.1 101.1 108.6 114.2 119.9 117.9 114.3 153 5 107.3 102.8 100.2 100.6 100.7 100.7 102.7 109.9 115.4 119.4 118.1 114.7 153	.9 111.3 109.0 104.8 104.2 101.2 100.8 103.1 109.8 117.0 119.7 118.4 114.9 155	.5 112.2 111.0 108.6 109.4 106.1 103.0 104.5 111.6 117.1 116.6 116.0 115.0 155. .3 110.0 111.0 110.0 108.9 109.8 106.9 106.7 111.9 116.2 116.8 116.1 112.5 154	1 107.5 108.1 106.0 105.9 106.7 107.9 109.7 113.0 115.6 114.2 112.7 111.0 153	.6 107.4 107.6 106.4 106.0 107.3 106.5 108.8 112.7 114.6 113.4 111.5 110.1 152.8 106.9 107.5 106.1 106.6 106.5 106.2 108.2 111.5 114.0 111.6 111.3 109.1 152	.4 107.1 106.4 105.7 106.4 107.0 105.1 107.5 109.5 111.4 110.0 109.8 108.7 108.0 151. .9 105.6 106.6 105.5 105.4 105.5 103.7 105.6 108.6 111.7 108.5 108.7 108.0 151	.4 102.5 104.0 104.3 106.1 105.8 102.4 103.7 106.8 109.6 106.9 107.0 .5 102.8 103.9 103.3 104.4 104.2 100.8 101.7 105.9 106.0 105.0 104.7 20.0 20.0 20.4 100.0 27.8 27.3 104.5 104.3 100.5 28.9	.3 95.6 96.2 95.4 95.8 95.2 93.8 93.1 98.7 100.9 97.4 95.1 98.8 149	.0 94.3 95.3 69.1 69.2 95.1 95.4 95.4 95.2 15.0 15.1 15.1 15.1 15.1 15.1 15.1 15.1	7 71.2 70.1 71.1 70.5 72.2 69.3 70.0 76.0 77.0 73.5 66	119.5 119.3 118.9 117.5 117.5 116.3 117.7 122.3 126.9 129.0 129.0 125.1 166.0	MODEL/FULL SIZE SCALE FACTOR FREE JET VELOCITY (FT/SEC) 396.00 REFRACTION CORRECTION - INPUT 1.000 CALC. 1.000 FREE JET DIAMETER (IN) 48.00 TURBULANCE CORRECTION -	TEST DATE 03-23-78 TAPE NO. N312 IALPHA SB59 TAMB 47.30 LOCATION C41 ANECH CH AERD, RDG, ADH198 PAMB 29.4300 RELHUM 81.60	TEST POINT ACOUSTIC RANGE SIZE SIZE FRFE-JET 0203 12.2 M (40.0 FT) ARC 138.7 SQ CM (21.49 SQ IN) - MODEL 120.70 K/SEC (
210			000	50	63 8	3	125 160 200	1	4 R	- 1			1				- -	- -	31500		80000	DASPL 1	X		MODEL 0200	()

5/80 9.180	_
/80 9.1	0
/80	8
/80	_
/80	_ •
<u> </u>	o
<u> </u>	
<u> </u>	
<u> </u>	
<u> </u>	_
<u> </u>	0
	8
£	
	មា
•	•
`	`
8	0
0	$\overline{}$

											OI			NA)										المستواطية المتعادية والمتعادية والمتعادية والمتعادية والمتعادة وا			and the second s				.00 .60	FREE-JET SPEED 120.70 M/SEC (396.0 FPS)
:			1		170.2	1			- 1			1		169.8				- 1	166.7	166.3	164.1							184.0			TAMB 47.	
- -			ĺ			(i			1		80.3 72.2 77.8 69.2	1			- (1.07										106.3 98.3	6- 1:	SB59 29.4300	IN) - FULL
	T, DEGREES	140.	92.4	94.6	96.1 	97.2	98.2	97.3	4. 70	93.5	91.6	88.6	86.4	88.2 84.4	79.4	75.7	67.8	58.5	, -C					***************************************				106.7	9 -	FREQUENCY SHIFT	IALPHA	S12E (1400.00 S0
FJ-400-FM0DL	MEASURED FROM INLET,	120.	80.9	83.6	86.0	88.8	89.5	90.7	4.00	91.8	91.5	91.6	90.2	87.9 86.6	84.5	82.7	76.4	69.8	40.4	17.3								101.9 105.7	109.0		N312 ADH198	.2 SO CM
4	100		1			1								85.2 87.1				- 1										97.0	04.5 105.2	T10 8.070	TAPE NO. ERO. RDG.	SL 9032
IDENI IF	ANGLE	. 90	9 74.2	6 75.4	3 77.0	80.0	1 81.6	6 82.8	83.1	91.2	3 88.7	87.9	9 86.9	5 87.3	8 85.7	6 83.6	2 79.0	5 70.4	46.7	20.1								.2 98.3	1 108.0	AMETER RA	¥ #5	1C RANGE 2400.0 FT)
		70. 80	0	ó	ن س	٦	7	80	ءأد	- 60	φ.	7/17	89	85.3 86.	- 0	ω	80	6	Óπ	ຸເກ								7	9 8	10	03-23-78 C41 ANECH	ACOUST 1.5 M (
		50. 60.	7 72.	1 73.	75.	177	8 79.	0 83.	7 89.	90.	9 88.	86.	1 86.	83.9 84.8	- A	2 80.	7 74.	67.	56.	- e								7 98.4	8 105.2 6 106.0		TEST DATE LOCATION	POINT 73
		40.	9	ស	₹,	• -	. r.	'n	ហ	p		20	9	80.8 83	2 0	. ~	60	4	ស ស			1						N	102.9 104.			TEST 02
		FREO	20	63	8	3 5	160	200	250	400	200	800	000	1250	35	2500	3150	000	200	200	10000	12500	20002	25000	31500	2000	80000		PNLT			MODEL 0200

	4				ORIG OF F	INAL OOR	PAGE I	S Y				FPS)		
				:							54.50 61.80	FREE-JET SPEED M/SEC (O.		
OR BACKGROUND NOISE 40.0 FT. ARC XO2040		PWL		.9 152 .7 154 .5 156 .8 156	C 0 80 -	2 158 8 158 6 158	108.2 156.7 107.5 156.3 107.4 155.6 105.5 155.2	155 153 154 153	9 152 4 152 0 153 4 152 4 153	9 155	TAMB	MODEL 0.		
LL I	ES			121.0 122.1 124.3	124.8 125.8 129.4 125.2	122.2 1 120.8 1 119.9 1	116.7 115.6 114.2 7.2	112.4 110.1 108.6 105.2	101.5 97.8 92.3 88.8	135.2 1	A SB59 B 29.4200	- (NI 0S	-	
S CORRECTED DAY, SB FJ-ZER-FMODL	INLET, DEGREES			l .	1	1	120.5 119.2 120.0 118.1 118.6 116.9 117.8 115.5		1 1	1	IALPHA PAMB	SIZE M (21.49	•	-
OUND PRESSURE LEVELS CORRE 70 PERCENT R.H. STD. DAY, ATION - MODEL FJ-ZER- BACKGROHND COCCCC	FROM				1		3.2 116.2 4.3 115.6 3.7 114.8	ł.	101.3 106.1 99.2 102.8 95.1 99.2 89.3 96.0 85.0 91.8		ND. N312 RDG. ADH191	138.7 SQ CM		•
SOUND PRESS 70 PERCENT CATION - MC	SLES ME	3		98.3 7 98.3 7 98.8 5 100.4	101.5 102.8 104.6	106.1 106.6 110.0	8 110.9 10.9 6 09.6	108.7 107.6 106.2 103.6	97.1 97.1 89.0 83.9	76.8	TAPE NO AERO. RDG	T) ARC		
MODEL EG. F., DENTIFI	AN			4000	98.0 100. 99.3 101. 105.9 105. 105.7 106.	- 4100	10400	.2 108 .5 108 .7 106	103 98 96 90 82	.6 121.	1-78 INECH CH	ACCUSTIC RANGE 2 M (40.0 FT)	•	
UNTRANSFORMED 59.0 D	, c			- 6 4 5	7 105.	7 109. 0 112. 1 110.	5 108. 5 108.	0 4 4 6	.5 97. 2 96. 7 91. 2 86.	.2 76.	ATE 03-23-78 ION C41 ANECH	ACCU 12.2 M		
3				93.8 93.4 95.0	1	112.2	108.1 107.0	104.7 102.9 101.4	.4 95.8 97 .9 92.1 95 .7 87.5 90 .8 83.1 84 .8 79.1 78	73.7	TEST DATE LOCATION	EST POINT 0204		
2			25 26 26 26 26 26 26 26 26 26 26 26 26 26	90 0 0	99	4 = 5	5000 108. 5000 107. 6300 105.	100 100 88 89	92 90 86 78	120		MODEL TES	†squ-r	

9978 XO48.

sometimes of the second

180
•
σ
8
8
~
ŝ
•
`
ũ

FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS	CENT R.H.	IDENTIFICATION - FJ-ZER-FMODL X02040	ANGLES MEASURED FROM INLET, DEGREES	50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PWL		8 93.1 92.9 93.2 95.8 98.2 100.6 103.1 110.2 114.8 121.0 117.9 152 4 92.9 93.2 95.8 97.7 98.3 100.2 104.9 113.0 116.9 122.1 118.7 154	9 94.2 93.7 95.3 97.7 98.8 101.0 106.7 116.3 119.9 124.3 118.5 156 0 96.5 96.1 96.7 99.5 100.4 102.8 107.8 118.1 121.0 124.4 118.8 156 1 97.1 96.7 99.0 100.9 101.5 104.7 110.4 119.5 122.3 124.8 119.7 157	4 98.7 98.7 99.3 101.6 102.8 106.4 112.2 120.5 123.6 125.8 119.9 158.8 5 101.6 102.8 109.3 105.3 105.9 105.7 104.6 108.0 115.5 124.1 129.2 129.4 122.8 163.2 5 105.7 105.3 105.7 105.1 1 3.9 109.1 114.6 120.9 125.5 125.2 118.1 159.6 5 105.7 105.1 1 109.5 115.2 120.3 123.7 122.2 115.2 158.3 5 105.7 105.1 109.5 115.2 120.3 123.7 122.2 115.2 158.3	0 112.0 112.5 112.4 110.2 106.6 110.0 116.7 121.6 122.5 20.8 112.8 158.3 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 108.6 108.6 109.4 110.8 110.9 114.3 115.6 120.0 118.1 115.6 107.5 156.3	1 104.2 105.0 107.2 108.6 107.6 110.0 111.6 114.6 112.2 110.1 103.5 153.8 1 104.2 105.0 107.2 108.0 106.2 108.7 109.8 114.3 110.0 108.6 102.2 154.0 1 99.9 101.8 104.7 106.0 106.9 108.3 111.4 1\subseteq 3.5 105.2 100.6 153.4 1 07.5 27.5 107.4 107.5 100.4 101.3 106.1 107.9 105.0 101.5 97.9 152.7	1 95.2 96.4 97.2 98.1 97.1 99.2 102.8 106.4 101.0 97.8 91.4 152 5 90.7 91.5 96.0 96.6 92.5 95.1 59.2 103.0 97.3 92.3 88.0 153 1 94.2 86.5 88.3 90.5 89.0 89.3 96.0 98.1 92.8 88.8 82.4 152 1 78.7 80.6 80.8 82.6 83.9 85.0 91.8 92.3 87.7 83.7 77.4 153	7 74.2 76.6 75.1 77.9 76.8 80.5 86.9 88.8 83.5 76.6 70.9 155.3 3 120.2 119.8 120.6 121.4 120.9 123.1 126.8 132.4 134.6 135.2 129.2 170.9	ULL SIZE SCALE FACTOR FREE JET VELOCITY (FT/SEC) O. REFRACTION CORRECTION - VES 1.000 CALC. 1.000 FREE JET DIAMETER (II.) 48.00 TURBULANCE CORRECTION - YES	TEST DATE 03-23-78 TAPE NO. N312 IALPHA SB59 TAMB 54.50 LOCATION C41 ANECH CH AERO, RDG. ADH191 PAMB 29.4200 RELHUM 61.80	POINT ACOUSTIC RANGE 104 12.2 M (40.0 FT) ARC 138.7 SQ CM (21.49 SQ IN) - MODEL O. M/SEC (O. FPS)	
		•			50 80 80 80	0 93.8 ¥3.1	92.7 93.9 94.2 93.0 95.0 96.5 94.8 96.1 97.1	99.1 97.4 98.7 113.2 112.5 108.7 110.3 109.8 108.1	111.2 111.0 112.0 109.3 110.1 110.1 109.1 109.6 109.6	108.1 108.6 107.0 108.5 106.4 107.0	100.3 102.9 104.2 98.3 101.4 103.2 93.5 93.5 95.5 95.5 95.5 95.5 95.5 95.5	. 9 92.1 95. .7 87.5 90. .8 83.1 84. .8 79.1 78.	69.0 73.7 74.2 120.6 120.3 120.2	L SIZE	TEST DATE LOCATION	MÜDEL TEST POINT 0200 0204 1	2

TOPINITE NAME FORMED SCALED AND EXTRAPOLATED SOUND PRESSURE LEVELS	02/15/80 9.180						ORIG OF P	NAL F	AGE I						FREE-JET SPEED M/SEC (0. FPS)
1GHT TRANSFORMED, SCALED, 59.0 DEG. F., 70 PERCENI 59.0 DEG. F., 70 PERCENI 59.0 DEG. F., 70 PERCENI 59.0 DEG. F., 70 PERCENI 59.0 DEG. F., 70 PERCENI 59.0 DEG. F., 70 PERCENI 59.0 DEG. F., 70 PERCENI 59.0 DEG. F., 70 PERCENI 59.0 DEG. F., 80.0 DEG. DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG.		2 F	09	٩									488	TAMB 54 RELHUM 61	o
1GHT TRANSFORMED, SCALED, 59.0 DEG. F., 70 PERCENI 59.0 DEG. F., 70 PERCENI 59.0 DEG. F., 70 PERCENI 59.0 DEG. F., 70 PERCENI 59.0 DEG. F., 70 PERCENI 59.0 DEG. F., 70 PERCENI 59.0 DEG. F., 70 PERCENI 59.0 DEG. F., 70 PERCENI 59.0 DEG. F., 80.0 DEG. DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG. F., 80.0 DEG.	ED SOUND PRESSUR	, SB 2400.0 FT. L X02041	DEGREES	130.	. 98.6 100.8 99.7 100.9 101.0 101.2 102.1 102.1	107.6 105.5 103.7 101.1 101.7 97.8	99.1 94.5 97.4 92.3 95.5 89.9	92.2 86.1 90.4 84.0 88.7 82.8	79.2 69.8 72.4 61.1	48.6 29.3 26.3 1.7			2.4 110.7 5.2 111.9 5.9 112.5 SHIFT -		- (NI 0S
1GHT TRANSFORMED, SCALED, 59.0 DEG. F., 70 PERCEN. 59.0 DEG. F., 70 PERCEN. 59.0 DEG. F., 70 PERCEN. 59.0 DEG. F., 70 PERCEN. 59.0 DEG. F., 70 PERCEN. 59.0 DEG. F., 70 PERCEN. 59.0 DEG. F., 70 PERCEN. 59.0 DEG. F., 70 PERCEN. 59.0 DEG. F., 70 PERCEN. 59.0 DEG. F., 70 PERCEN. 59.0 DEG. F., 70 PERCEN. 59.0 DEG. F., 70	AND EXTRAPOLAT	T R.H. STD. DAY N - FJ-ZER-FMOD	FROM INLET	7. 140. 48	0 88.0 8 89.4 6 94.6 83.3	9 96.6 0 96.0	96.3	6 93.8 93.8 4.6	6 87.5 2 85.1 4 81.0	. 1 64.0 6 48.8 0 23.3			106.7 112.8 113.4		.2 SQ CM (
100. 100. 100. 100. 100. 100. 100. 100.	FORMED, SCALED,	F., 70 PERCENIDENTION	SLES I		80.3 81. 82.1 82. 83.4 83.	88.1 86. 88.3 88.	94.5 91. 93.7 93. 91.0 93.	90.9 91. 90.2 89. 90.7 88.	87.9 85. 85.4 82. 81.6 78.	66.9 62. 50.9 48. 25.2 25.			102.4 101.8 1 110.2 109.0 1 111.3 109.5 1 HETER RATIO	TAPE CH AERO.	SE FT)
		6	Ş	J. 70. BC	.5 75.8 77. .8 78.1 79. .4 78.6 80. 8 80.6 81	.6 87.1 88. .5 91.3 88.	.3 91.7 94. .5 89.6 91. .0 88.9 89.	.4 88.3 89. .7 87.3 89. .5 86.1 88.	.3 84.2 87. 9 83.1 86. 7 80.1 83. 4 74.3 80.	.5 59.6 65. .0 43.8 48.			55	FEST DATE 03-23-78 LOCATION C41 ANECH	31.
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	214	1.		FREQ	9 9 9 9 9	125 200 200 200	315	1000 1250	2500 2500 3150	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	12500 16000 20000 25000	31500 40000 50000 63000	1		MODEL 0200

(,)

												0	RI F	G! P(N/ OC	AL OR	PQ	A(UA	3E ALI	13 TY										ET SPEED (295.0 FPS)		
																													46.94 83.10	FREE-JET		
				٠ ٢	-			121.1	152.5	154.4	155.9	160.2	160.1	57.4	157.4	156.8	56.2	155.0	154.4	53.8	152.5	152.9	151.0	151.4	150.6	150.8 153.2	169.4		TAMB	68		
F. ARC	30 20		160.					9	_	∞ -	-	8		•					101.4	- 1			1	-			123.7		1	- MODE		
40.0 FT. ARC	X02050 X05230	so	150.					119.7	121.1	122.6	122.8	126.3	125.9	120.4					110.9					- 4	, ru	0 6	133.0		SB59 29.4300	SQ IN)		
88	FMODL	DEGREES	140.					113.0	<u>ق</u>	4 6	i lu	6	٠. ٥	2	. m	-	119.6	9	က္ျ	<u>ب</u>	ĸ,	0 4	(0)	4.66	90.6	85.0 82.8	133.8		IALPHA PAMB	SIZE 21.49 S		
. DAY, SB	FJ-300-FMODL FJB300-FMODL	INLET,	130.					107.4		114.5	117.7	121	121	- 1 a	120	121	2 2	118	117.8	9 -	114		9	105	5 2	90.0	131.3	4) E		
H. STD.	1	FROM	120.					100.8		5 5	108.6	113	4 :			114	115	1 1 2	114.5	113.2	110.7	109.6	105.4	102.2	94.3	90.6	_		N312 ADH200	.7 S0		
70 PERCENT R.H.	MODEL	MEASURED	110.		- 1			1 :						106.6			=	112	112.2	10	108.6	107.7	99.6	97.7	87.0	82.3			E NO.	138		
O PERC	- NOII	LES	\$					- 1		97.6	t			- 1			- 1		108	i			1			73.6			TAPE AERO. F	r) ARC		
٠.	IDENTIFICA	ANG	96					_	_	96.2	مار	. ~	_	_	· -			_		3 108.0			- -			79	6	1	E E	RANGE		
O DEG	IDE							91	6	.5 93.6	2 0	5	102	ē	1 1	107	106		106	2 106.			9	7		9 78.9			03-23-78 C41 ANECH	ACOUSTIC .2 M (4		
59.0 DEG. F.			. 70					91	9	.2 91.	20	97			.2112.		8 107.4	- 0		5 5	5	.7 102.	95	94	50 CC	.77 7.	-	1		24		
). 60					3	8	92	200	105	2 106	8	109	3 107	106	2 5	106	105	102	101	94	8 93	88	75		2	TEST DATE LOCATION	7.		
			50					3 90.	68	5	2 6		5	9		8 8	9	5 5	5				8 6	83	4 84 79	7 75	5 4		1 T	TEST POINT 0205		
			9	FREQ 50	m O	25	n Ω:	250 86	88	86	0 0	000	0 103	107	5 5 8	S S S	104	2 5	103.6	5 5	66	96	916	31500 89	77	63000 72	•			MODEL TI 0200	215	

02/15/80 9.180	ARC							O 10		155.4 160.0	160.6 156.7	155.7	158.3 156.8		155.6	155.6 155.6	154.8	154.7 154.3 154.0	-			3 152.5	6 170.0	REFRACTION CORRECTION - YES TURBULANCE CORRECTION - YES	TAMB 46.94 RELHUM 83.10	FREE-JET SPEED DEL 89.92 M/SEC (295.0 FPS)	is a part of the second of the	
ESSURE LEVELS	STD. DAY, SB 40.0 FT.	CATION - FJ-300-FMODL	ANGLES MEASURED FROM INLET, DEGREES	90. 100. 110. 120. 130. 140. 150. 160.				93.8 94.5 96.2 99.8 107.1 111.1 117.6 1	96.0 95.5 96.6 102.8 112.3 115.9 120.6 115. 96.3 96.9 98.8 105.0 115.0 118.6 122.1 116.	97.5 97.6 99.5 107.4 116.3 120.1 123.0 1 98.6 99.1 102.0 112.5 120.1 125.8 127.3 1	100.7 100.8 104.6 113.6 120.8 126.2 127.9 1 101.3 101.7 105.0 110.9 117.8 122.6 122.3 1	103.2 102.1,105.1 112.3 117.4 123.1 121.4 1	111.7 106.2 107.4 114.1 120.4 120.4 118.8 1	112.4 111.2 108.4 119.4 119.9 119.1 117.7 110.0 1	110.5 109.5 112.5 115.5 118.4 117.3 114.2	110.5 109.9 112.3 116.2 118.1 115.8 112.7 110.8 110.1 112.4 114.9 117.7 115.2 112.0	111.5 109.3 111.2 112.7 115.8 113.3 109.9	5 to 5	104.6 100.6 100.9 106.7 109.2 103.6 99.4	99.2 97.2 98.6 103.6 105.2 101.2 95.7 97.3 92.8 94.4 100.0 101.1 96.0 91.1	90.1 88.0 87.9 97.2 96.2 91.4 85.6 82.7 83.4 83.2 93.4 94.3 90.6 78.9	77.2 75.6 78.1 83.6 84.5 80.8 69	121.4 120.1 121.5 126.1 130.8 133.1 133.8 126.6	FREE JET VELOCITY (FT/SEC) 295.00 REFRA FREE JET DIAMETER (IN) 48.00 TURBU	CH AERO. RDG. ADH2OO PAMB 29.4300	SIZE 40.0 FT) ARC 138.7 SQ CM (21.49 SQ IN) - MODEL		
216	59.0 DEG.			46. 50. 60. 70. 80.	50 50 63	80 100	125 160	91.9 94.8 93.8 93.7	91.9 94.8 93.8 93.4	95.9 95.9	97.7 97.7 98.3 100.8	108.7 107.1 108.9 105.3	112.7 113.6 114.8 117.4	111.5 111.1 110.3	109.5 109.4 109.8 109.2	109.8 109.5 110.0 109.4 108.7 109.3 110.5 109.3	108.1 108.9 109.5 108.4	106.3 107.2 108.8 107.5 103.3 104.8 105.9 107.4	97.1 101.2 101.9 100.6	95.4 97.5 97.4 98.9 90.8 91.0 94.2 94.5	.5 87.1 89.9 88.9 1 81.4 81.9 82.1	71.4 73.5 73.6 78.2	0ASPL 121.3 121.6 122.2 122.4 122.9	MODEL/FULL SIZE SCALE FACTOR INPUT 1.000 CALC. 1.000	TEST DATE 03-23-78 LOCATION C41 ANECH C	MODEL TEST PGINT ACQUSTIC R 0200 0205 12.2 M (40		_

ħ

BONE XONEX

o
60
_
6
_
0
60
S
Ξ
Ø
\sim

10. 120FMDL 10. 120. 1301 10. 120. 130. 1 10. 120. 1 10.		S	15
70. 60. 90. 100. 110. 120. 140. 150. 160. PML 718.3 77. 78. 90. 100. 110. 120. 140. 150. 160. PML 718.3 77. 78. 90. 100. 110. 120. 130. 140. 150. 160. PML 718.3 77. 78. 90. 100. 100. 110. 120. 130. 140. 150. 170. 170. 170. 170. 170. 170. 170. 17	FICATION -	ا د	
70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PPH. 78.3 77.3 78.6 80.0 80.0 86.3 9.3 97.3 91. 180. PPH. 78.3 77.3 78.8 80.0 90. 178.1 91. 180. 180. 180. 190. 178.1 91. 180. 180. 180. 190. 190. 178.1 91. 180. 180. 180. 190. 190. 190. 190. 190. 178.1 90. 180. 180. 180. 190. 190. 190. 190. 190. 190. 190. 19	ES		
78.7.2 78.6. 80.0 80.0 80.0 80.5 85.5 97.3 98.6 89.5 172.5 98.0.3 81.1 81.5 84.0 93.7 100.2 100.4 103.7 90.7 178.1 80.1 80.8 80.3 178.4 80.8 80.8 80.3 178.1 83.5 80.7 80.4 80.8 80.3 80.7 80.4 178.1 80.8 80.3 81.1 83.2 86.5 94.0 93.7 100.2 100.4 103.7 90.7 178.1 18.1 81.5 84.0 93.7 100.2 10.4 170.2 91.3 178.7 81.4 10.8 80.5 81.6 18.5 84.2 86.5 94.0 91.0 91.0 91.0 91.0 91.0 91.0 91.0 91	5. 80. 90. 100.	120. 130. 140. 150.	9.
716 9 60 2 817 1815 815 810 917 100 100 91 91 1181 91 91 91 91 91 91 91 91 91 91 91 91 91	2 78 4 80 0 80 0	86.3 95.3 97.3 98.6 89	2.4
81.0 85.7 81.7 81.6 85.9 82.0 97.8 100.0 98.5 87.4 174.8 87.9 87.8 100.0 98.5 87.4 174.8 87.9 87.8 100.0 98.5 87.4 174.8 87.9 87.8 100.0 98.5 97.8 100.0 98.5 97.8 100.0 98.5 97.8 100.0 98.5 97.8 100.0 98.5 97.8 100.0 98.5 97.8 10.0 97.8 10.0 98.5 97.8 10.0 98.5 97.8 10.0 97.8 10.0 98.5 97.8 10.0 97.8 10.0 98.5 97.8 10.0 97.8 10.0 98.5 97.8 10.0	9 80.3 81.1 81.5	93.7 100.2 104.4 103.7	
67.0 84.8 86.5 84.2 86.5 87.9 94.3 97.3 101.3 87.4 174.8 96.9 97.8 87.4 174.8 96.7 175.5 96.7 175.5 96.7 175.5 96.7 175.5 96.7 175.5 96.7 175.5 96.7 175.5 96.7 175.5 96.7 175.5 96.7 175.5 96.8 175.5 96.7 175.7 175.5 96.7 175.7 175.5 96.7 175.7 17	3 85.5 83.7 84.0	92.0 97.8 101.0 98.5	•
98.7 100.7 09.2 94.1 92.7 98.6 97.8 94.7 99.8 99.9 96.1 97.5 97.8 97.8 99.9 98.9 96.1 97.7 173.8 99.1 100.0 90.2 94.1 92.7 98.8 96.0 96.7 94.7 99.8 96.1 99.9 96.1 97.1 174.9 99.8 96.1 99.1 99.9 96.1 97.1 174.9 99.8 96.2 96.1 99.7 96.1 99.7 97.1 174.9 99.8 96.2 96.1 99.7 96.1 99.7 97.1 174.1 97.1 174.7 96.2 96.1 96.2 97.1 174.3 89.6 96.2 96.1 96.2 97.1 174.3 89.8 96.2 96.1 96.2 97.1 174.3 89.8 96.2 96.1 97.2 174.1 174.7 96.3 97.1 174.1 174.7 96.2 96.1 97.1 174.2 96.2 97.1 97.1 174.2 96.2 97.1 97.1 174.2 97.2 97.2 97.1 97.2 97.1 174.2 97.1 174.2 97.3 97.2 97.1 97.3 97.2 97.1 97.3 97.2 97.1 97.3 97.2 97.1 97.3 97.2 97.1 97.3 97.2 97.1 97.3 97.2 97.1 97.3 97.2 97.1 97.2 97.1 97.2 97.2 97.1 97.2 97.2 97.2 97.1 97.2 97.2 97.1 97.2 97.2 97.1 97.2 97.1 97.2 97.1 97.2 97.2 97.1 97.2 97.1 97.2 97.1 97.2 97.2 97.1 97.2 97.2 97.2 97.1 97.2 97.2 97.1 97.2 97.2 97.2 97.2 97.2 97.2 97.2 97.2	0 84.8 85.5 84.2	93.3 97.3 101.3 97.3	
91.0 90.2 914.192.7 89.4 95.6 98.9 96.4 82.3 82.1 114.2 9 91.0 1 90.2 914.192.7 89.4 95.6 98.9 96.4 82.3 82.1 114.2 9 91.0 1 90.2 915.9 92.7 89.4 95.5 94.2 95.0 89.7 114.2 9 91.0 1 90.2 915.9 92.7 92.1 94.9 97.2 95.2 95.0 89.7 113.3 8 99.6 89.6 89.0 3 90.2 92.2 94.9 97.2 93.1 86.8 77.1 113.7 9 89.0 90.0 91.2 90.2 92.2 95.1 95.1 96.3 92.1 113.7 7 88.0 90.0 91.2 90.2 92.2 95.1 95.1 96.3 92.1 113.7 7 88.0 90.0 91.2 90.2 92.2 95.1 95.1 96.3 92.1 113.7 7 88.0 90.0 91.2 90.2 92.2 92.1 95.1 92.6 91.1 84.9 713.7 7 88.0 90.0 91.2 90.2 92.2 92.1 92.6 91.2 92.6 91.1 84.9 713.7 7 88.0 90.0 91.2 90.2 92.2 92.1 92.6 91.2 92.6 91.1 84.9 74.0 92.1 7 88.0 90.0 91.2 90.2 92.2 92.1 92.2 92.6 91.1 84.9 74.0 92.1 11.2 92.6 91.2 92.1 92.6 91.2 92.1 92.6 91.2 92.1 92.1 92.1 92.2 92.1 92.2 92.1 92.2 92.1 92.2 92.1 92.2 92.1 92.2 92.1 92.2 92.1 92.2 92.1 92.2 92.1 92.2 92.1 92.2 92.1 92.2 92.2	.9 97.6 89.6 86.0 .7 100.0 93.6 88.0	94.4 98.8 99.5 95.3 94.7 99.8 98.1 93.9	
89.5 89.9 90.3 90.7 90.7 90.7 90.7 90.7 90.2 90.2 88.4 78.4 173.8 89.8 89.9 90.3 89.7 88.4 78.4 173.8 89.8 89.8 89.8 89.8 89.8 89.1 86.8 77.1 173.7 78.8 89.0 89.1 88.1 73.7 88.6 89.2 89.1 88.5 77.8 81.9 89.1 89.1 89.1 89.1 89.1 89.1 89	.1 90.9 94.1 92.7	95.6 98.9 96.4 92.3	
89.3 90.1 91.3 90.3 92.2 95.1 95.6 91.1 84.6 74.9 173.7 46.8 95.3 90.3 90.3 92.2 95.1 95.5 91.1 84.6 74.9 173.7 4.9 90.3 92.2 95.1 95.1 95.2 95.1 95.3 90.1 83.7 94.9 90.1 83.7 94.9 90.1 83.7 94.9 90.1 83.7 94.9 90.1 83.7 94.9 90.1 83.7 94.9 90.1 83.7 94.9 90.1 83.7 94.9 90.1 83.7 94.9 90.1 83.7 94.9 90.1 83.7 94.9 90.1 83.7 94.9 90.1 84.9 78.0 66.6 172.8 90.4 92.8 17.3 7.2 91.2 90.4 92.1 92.2 92.1 93.7 94.9 90.1 84.9 78.0 66.6 172.8 90.0 90.0 91.2 90.1 91.2 90.1 92.2 92.1 94.9 76.5 66.5 91.2 92.9 92.1 74.6 92.9 92.1 74.6 92.9 92.1 74.6 92.9 92.1 74.6 92.9 92.1 74.6 92.1 92.2 70.2 92.1 74.6 92.1 92.2 70.2 92.1 92.2 70.2 92.1 92.2 92.2 93.0 108.0 92.0 92.2 92.1 92.2 92.1 92.2 92.1 92.2 92.2	6 89.9 50.3 90.7	94.9 97.2 94.2 88.4	
88.0 90.1 91.2 90.4 92.1 93.7 94.9 90.1 83.7 27.7 173.7 75.7 88.0 90.0 90.0 91.2 90.4 90.8 91.2 90.4 91.2 90.4 91.2 90.4 91.2 90.4 91.2 90.4 91.2 90.4 91.2 90.4 91.2 90.4 91.2 90.4 91.2 90.4 91.2 90.4 91.2 90.4 91.2 90.4 91.2 90.4 91.2 90.4 91.2 91.2 91.2 91.2 91.2 91.2 91.2 91.2	3 90,1 91,1 90.3	95.1 95.6 91.1 84.6	173.7
86.7 88.2 88.3 89.8 87.7 88.6 90.2 92.1 84.9 78.0 66.6 172.8 86.4 88.2 88.3 88.3 88.3 88.3 88.5 88.1 74.6 62.0 172.5 90.0 68.5 87.0 89.2 87.0 89.2 87.1 74.6 62.0 172.5 90.0 83.7 81.9 81.2 74.6 62.0 172.5 90.0 83.7 81.9 81.2 77.4 82.3 86.4 87.5 81.2 77.6 81.6 81.2 77.9 95.1 43.3 771.9 77.4 82.3 82.7 78.3 77.6 81.6 81.2 70.9 59.1 43.3 771.9 72.0 72.0 72.0 74.6 72.6 62.0 74.6 75.6 62.6 62.0 77.6 62.0 74.6 75.6 62.0 74.6 75.6 62.0 74.6 75.6 62.0 74.6 75.0 64.7 64.5 75.0 74.7 72.0 72.0 74.7 72.0 72.0 74.9 75.0 74.0 74.9 75.0 74.9 75.0 74.9 75.0 74.9 75.0 74.9 75.0 74.9 75.0 74.9 75.0 74.0 74.9 75.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0 74	89.0 90.0 91.2 90.4	93.7 94.9 90.1 83.2 01.0 02 6 87 6 80 4	173.7
B6.4 88.2 88.2 88.2 88.2 88.2 88.5 81.7 74.6 5.6 4.7 55.0 712.5	7 88.3 89.8 87.7	90.2 92.1 84.9 78.0	172.8
77.4 82.3 82.7 78.3 77.6 81.6 81.2 70.9 59.1 43.3 171.9 77.4 82.3 82.7 77.6 81.6 81.2 77.9 59.1 43.3 171.9 77.4 82.3 82.7 78.3 77.6 81.6 81.2 73.4 62.3 46.5 25.7 171.5 771.5 62.5 62.5 62.5 62.6 62.8 60.8 47.4 28.1 171.6 171.1 62.5 62.5 62.5 62.5 62.5 62.5 62.5 62.5	86.4 88.2 88.9 86.4	88.2 88.5 81.7 74.6	172.5
72.3 73.6 74.4 72.0 72.0 74.6 73.4 62.3 46.5 25.7 171.5 62.5 64.8 60.8 47.4 28.1 171.6 62.5 67.6 67.6 62.5 64.8 60.8 47.4 28.1 171.1 6.2 67.6 67.6 67.6 67.5 64.8 60.8 47.4 28.1 171.1 6.2 67.6 67.6 47.6 47.6 47.6 47.6 47.6 47.6	4 82.3 82.7 78.3	81.6 81.2 70.9 59.1	171.9
62.5 67.7 67.6 62.5 62.5 64.8 60.8 47.4 28.1 171.6 46.2 49.7 50.6 47.6 47.6 45.1 50.0 47.7 25.0 177.1 171.1	.3 73.6 74.4 72.0	74.6 73.4 62.3 46.5	171.5
103.2 104.2 102.4 100.9 101.7 105.8 109.7 111.1 109.5 98.0 188.0 103.2 104.2 102.4 100.9 101.7 105.8 109.7 111.1 109.5 98.0 188.0 109.8 111.2 110.7 108.5 109.5 112.3 114.7 113.0 109.9 - 98.3 111.4 113.0 110.7 108.5 109.5 112.3 114.7 113.0 109.9 - 98.3 DIAMETER RATIO 8.070 FREQUENCY SHIFT -9 03-23.78 TAPE NO. N312 IALPHA SB59 TAMB 46.94 C41 ANECH CH AERO. RDG. ADH200 PANB 29.4300 RELHUM -83.10 ACQUISTIC RANGE ACQUISTIC RANGE 11.5 M (2400.0 FT) SL 9032.2 50 CM (1400.00 SQ IN) - FULL 89.92 M/SEC (295.0 FPS)	.5 67.7 67.6 62.5 2 49.7 50.6 47.6	50.0 41.7 25.0) Ai
103.2 104.2 102.4 100.9 101.7 105.8 109.7 111.1 109.5 98.0 188.0 109.8 111.2 110.7 108.5 109.5 112.3 114.7 113.0 110.4 98.3 111.4 113.0 111.9 108.5 109.5 112.8 114.7 113.0 110.4 98.3 DIAMETER RATIO 8.070 FREQUENCY SHIFT -9 03-23-78 TAPE NO. N312 IALPHA SB59 TAMB 46.94 C41 ANECH CH AERO. RDG. ADH200 PAMB 29.4300 RELHUM 83.10 ACOUSTIC RANGE 11.5 M (2400.0 FT) SL 9032.2 SO CM (1400.00 SQ IN) - FULL 89.92 M/SEC (295.0 FPS)	20.1 24.0 25.4 24.9	24.9 14.9	-11 ·
103.2 104.2 102.4 100.9 101.7 105.8 109.7 111.1 109.5 98.0 188.0 109.8 111.2 110.7 108.5 109.5 112.3 114.7 113.0 109.9 98.3 111.4 113.0 111.9 108.5 109.5 112.8 114.7 113.0 110.4 98.3 DIAMETER RATIO 8.070 FREQUENCY SHIFT -9 03-23-78 TAPE ND. N312 IALPHA SB59 TAMB 46.94 C41 ANECH CH AERO. RDG. ADH200 PAMB 29.4300 RELHUM 83.10 ACOUSTIC RANGE ACOUSTIC RANGE 11.5 M (2400.0 FT) SL 9032.2 S0 CM (1400.00 SQ IN) - FULL 89.92 M/SEC (295.0			
103.2 104.2 102.4 100.9 101.7 105.8 109.7 111.1 109.5 98.0 188.0 109.8 111.2 110.7 108.5 109.5 112.3 114.7 113.0 109.9 - 98.3 111.4 113.0 111.9 106.5 109.5 112.8 114.7 113.0 110.4 98.3 DIAMETER RATID 8.070 FREQUENCY SHIFT -9 03-23-78 TAPE NO. N312 IALPHA SB59 TAMB 46.94 C41 ANECH CH AERO. RDG. ADH2CO PAMB 29.4300 RELHUM 83.10 ACOUSTIC RANGE 1.5 M (2400.0 FT) SL 9032.2 SO CM (1400.00 SQ IN) - FULL 89.92 M/SEC (295.0			
103.2 104.2 102.4 100.9 101.7 105.8 109.7 111.1 109.5 98.0 188.0 109.8 111.2 110.7 108.5 109.5 112.3 114.7 113.0 109.9 98.3 111.4 113.0 111.9 108.5 109.5 112.8 114.7 113.0 110.4 98.3 DIAMETER RATIO 8.070 FREQUENCY SHIFT -9 03-23-78 TAPE NO. N312 IALPHA SBS9 TAMB 46.94 C41 ANECH CH AERO. RDG. ADH200 PAMB 29.4300 RELHUM 83.10 ACOUSTIC RANGE 1.5 M (2400.0 FT) SL 9032.2 SO CM (1400.00 SQ IN) - FULL 89.92 M/SEC (295.0			
103.2 104.2 102.4 100.9 101.7 105.8 109.7 111.1 109.5 98.0 188.0 109.8 111.2 110.7 108.5 109.5 112.3 114.7 113.0 109.9 98.3 111.4 113.0 111.9 108.5 109.5 112.8 114.7 113.0 110.4 98.3 DIAMETER RATIO 8.070 FREQUENCY SHIFT -9 03-23-78 TAPE NO. N312 IALPHA SB59 TAMB 46.94 C41 ANECH CH AERO. RDG. ADH200 PAMB 29.4300 RELHUM 93.10 ACOUSTIC RANGE 1.5 M (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 89.92 M/SEC (295.0			
103.2 104.2 102.4 100.9 101.7 105.8 109.7 111.1 109.5 98.0 188.0 109.8 111.2 110.7 108.5 109.5 112.3 114.7 113.0 110.4 98.3 111.4 113.0 111.9 108.5 109.5 112.8 114.7 113.0 110.4 98.3 DIAMETER RATID 8.070 FREQUENCY SHIFT -9 C41 ANECH CH AERO. RDG. ADH200 PAMB 29.4300 RELHUM -83.10 ACOUSTIC RANGE ACOUSTIC RANGE 1.5 M (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 89.92 M/SEC (295.0			
103.2 104.2 102.4 100.9 101.7 105.8 109.7 111.1 109.5 98.0 188.0 109.8 111.2 110.7 108.5 109.5 112.3 114.7 113.0 109.9 98.3 111.4 113.0 111.9 108.5 109.5 112.8 114.7 113.0 110.4 98.3 DIAMETER RATIO 8.070 FREQUENCY SHIFT -9 03-23-78 TAPE NO. N312 IALPHA SB59 TAMB 46.94 C41 ANECH CH AERO. RDG. ADH200 PAMB 29.4300 RELHUM 83.10 ACOUSTIC RANGE ACOUSTIC RANGE 1.5 M (2400.0 FT) SL 9032.2 SO CM (1400.00 SQ IN) - FULL 89.92 M/SEC (295.0			
111.4 113.0 111.9 108.5 109.5 112.8 114.7 113.0 110.4 98.3 DIAMETER RATIO 8.070 FREQUENCY SHIFT -9 03-23-78 TAPE NO. N312 IALPHA SB59 TAMB 46.94 C41 ANECH CH AERO. RDG. ADH200 PAMB 29.4300 RELHUM 83.10 ACOUSTIC RANGE ACOUSTIC RANGE 1.5 M (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 89.92 M/SEC (295.0	.2 104.2 102.4 100.9 .8 111.2 110.7 108.5	105.8 109.7 111.1 109.5	188
DIAMETER RATID 8.070 FREQUENCY SHIFT -9 03-23-78	4 113.0 111.9 108.5	112.8 114.7 113.0 110.4	6.
03-23-78 TAPE NO. N312 IALPHA SB59 TAMB 46.94 C41 ANECH CH AERO. RDG. ADH200 PAMB 29.4300 RELHUM -83.10 ACOUSTIC RANGE SIZE SIZE FREE-JET SPEED 1.5 M (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 89.92 M/SEC (295.0	RATIO 8	FREQUENCY SHIFT -	
ACOUSTIC RANGE FREE-JET SPEED 1.5 M (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 89.92 M/SEC (295.0	03-23-78 TAPE C41 ANECH CH AERO.	IALPHA	83
	ACOUSTIC RANGE .5 M (2400.0 FT) SL	SIZE .2 SQ CM (1400.00 SQ IN) -	FREE-JET SPEED 89.92 M/SEC (295.0

##ED MODEL SOUND PRESSURE LEVELS CORRECTED FOR TO DEG. F., 70 PERCENT R.H. STD. DAY. SB 40. IDENTIFICATION - MODEL FU-400-FMODL X BACKGROUND FUB400-FMODL X BO. 90. 100. 110. 120. 130. 140. 15 112.2 121.2	(396.0 FPS)	
SOUND PRESSURE LEVELS CORRECTED , 70 PERCENT R.H. STD. DAY, SB ICATION - MODEL BACKGROUND FUB400-FMDDL BACKGROUND FUB400-FMDDL BACKGROUND FUB400-FMDDL BACKGROUND FUB400-FMDDL 5.2 95.8 98.7 102.4 110.7 115.5 5.2 95.8 98.7 102.4 110.7 115.5 5.2 95.8 98.7 102.4 110.7 115.6 6.0 97.9 100.3 105.5 116.1 120.0 7.6 99.0 102.7 107.9 117.5 121.0 0.6 101.3 106.7 111.8 118.4 122.0 7.4 109.5 112.7 115.6 119.0 122.0 7.4 109.5 112.7 115.6 119.7 118.1 8.0 108.1 111.2 115.8 118.4 122.0 7.4 109.5 112.7 115.6 119.7 118.6 8.0 108.1 111.2 115.8 116.4 115.6 8.0 108.1 111.2 115.8 116.4 115.6 8.0 108.1 111.2 113.7 116.4 117.0 8.5 109.4 113.5 115.3 119.4 117.0 8.5 109.4 113.5 115.3 119.4 117.0 8.5 109.4 113.5 115.0 118.0 115.8 8.0 108.1 113.7 110.3 113.2 108.8 8.0 108.1 110.3 113.2 108.8 8.0 108.1 100.4 105.7 109.7 105.3 95.9 95.4 98.2 095.1 106.1 90.1 88.0 95.1 98.0 95.1 96.1 90.2 88.4 80.8 82.0 91.8 90.2 85.8 88.4 80.8 82.0 91.8 91.2 133.7 9.5 119.7 122.1 125.6 131.2 133.7	- MODEL 120.7	
SOUND PRI 1 CAT ION - 1 CAT I	SIZE M (21.49 SQ I	
	CH AERO. RDG	
86.5 90.0 89.8 90.70 86.5 90.0 89.8 90.2 90.9 90.1 90.1 90.1 90.4 91.4 91.4 91.4 91.5 90.1 90.4 91.5 90.1 90.4 91.5 91.5 91.5 91.6 103.1 104.6 105.0 106.8 106.6 105.0 104.6 105.0 106.8 106.6 105.0 106.0 106.9 105.0 106.0 106.9 105.0 106.0	1 21	

BONE NORTH

0
=
8
-
_
6
8
m
_
~
ĸ
-
-
-
Ø

(

)Ri(IAL OR		PAG UA	E I	3 Y								YES YES		T SPEED (396.0 FPS)	
ARG			O. PWL			6 (5)	9 77	.6 159.6	20	4	<u>σ</u>	.2 157.1	Б п	י עוי ע	1	7 154.7	4	۵ ru د	.4 151.5	.2 169.7	REFRACTION CORRECTION TURBULANCE CORRECTION	TAMB 46.94 RELHUM 83.10	FREE-JET MODEL 120.70 M/SEC (
SB 40.0 FT.		ET, DEGREES	130. 140. 150. 160			9 119.4 11	119.6 121.7	121.8 120.7	117.2 121.5 119.3 115	121.3 118.2 1	120.7 118.6 1	119.1 117.6 1	116.9 115.4	114.5 112.5	110.6 109.5	106.2 104.9	96.3	95.7 91.3 91.4 86.4 87.9 79.4	82.9 78.0 69.6 72	130.7 132.4 131.5 127.2	396.00 48.00	IALPHA SB59 PAMB 29.4300	SIZE (21.49 SO IN) - P	
PERCENT R.H. STD. DAY,	ICATION - FJ-400-FMODL	ANGLES MEASURED FROM INLET.	100. 110. 120.			4 95.9 162.1	98.6 106.2	110.7	103.3 110.8	105.8 113.6	5 116.1	6 111.2 116.4	113.6 116.0	112.2 114.9	109.3 112.5	6 109.5 6 109.5	98.3 103.2	93.9 100.2 88.1 97.9 82.3 92.9	.5 76.9 83.1	120.6 121.8 126.1 13	JET VELOCITY (FT/SEC) FREE JET DIAMETER (IN)	TAPE NO. N312 ERO. RDG. ADH201	ARC 138.7 SQ CM	
59.0 DEG. F., 70 F	IDENTIFICATION	ANGLE	70. 80. 90.			6 95.4	8 94.5 95.4 4 96.0 96.3	9 97.7 98.0	7 100.5 101.3	9 118.5 108.4	8 113.7 112.2 5 110 1 113.1	7 110.1 110.3	4 110.1 111.5	6 110.3 111.0	0 109.1 109.2	.8 109.4 109.2 .8 107.9 107.4	4 99.0 98.9	97.1 89.9	6 76.5 76.7	.4 123.2 121.7	FACTOR FREE	03-23-78 C41 ANECH CH AL	ACDUSTIC RANGE	
			40. 50. 60.			6 95.9 94.4	.7 96.0 95.0 .8 96.1 95.9	.3 97.7 97.9 1 99 9 99 B	7 114.5 112.8	.3 114.2 112.1	.1 116.9 119.4 E 112 4 112 7	9 113.4 112.0	5 111.2 112.1	3 110.6 111.5	108.3 109.3 1	106.0 107.0 106.0 106.9	99.5 99.7	91.9 94.7 88.9 91.1	74.2 73.6	1.6 123.7 124.1 124	MODEL/FULL SIZE SCALE INPUT 1.000 CALC.	TEST DATE O	0206 12.	
			FREQ.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		93	400 95 500 96	9	1000	7	2000 116	12:	Ξ	123	12500 108		1	တထားစ	80000 72	0ASPL 123.6	MOD		MODEL T 0200	21

40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 171. 5 40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. 150. 171. 5 40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. 190. 190. 140. 150. 140. 150. 150. 140. 150. 140. 150. 150. 140	02/15/80 9.180								OR	igiñ PC	IAI POF	- P!	AG UP	E '	IS IY								REE-JET SPEED A/SEC (396.0 FPS)	
FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, B9.0 DEG. F., 70 PERCENT R.H. STD. DAY, ANGLES MEASURED FROM INLET, ANGLES MEASURED FROM INLET, ANGLES MEASURED FROM INLET, A 76.2 76.3 75.4 76.4 76.9 76.0 100. 110. 120. 130. 5 77.3 77.2 76.4 76.9 76.0 100. 100. 100. 120. 130. 5 77.3 77.2 77.9 19.1 77.9 80.1 80.5 80.7 80.4 85.3 94.4 5 77.3 77.7 76.4 78.4 78.9 78.0 18.0 80.5 82.7 91.9 101.5 8 87.9 86.9 83.7 88.6 10.5 80.5 82.7 91.9 101.5 8 87.9 86.9 83.6 82.8 83.7 86.6 87.7 86.4 91.6 97.8 8 87.9 86.9 83.5 100.5 90.5 90.6 80.4 82.7 86.4 91.6 8 90.0 91.3 90.5 91.3 91.7 92.8 92.8 91.9 91.0 8 90.0 91.3 90.5 91.3 91.7 92.8 92.8 91.8 91.6 8 90.0 91.3 90.5 90.8 92.3 91.6 93.8 92.8 91.8 8 90.0 91.3 90.5 90.8 92.3 91.6 93.8 92.8 91.8 8 90.0 91.3 90.5 90.8 92.3 91.6 93.8 92.8 91.8 8 90.0 91.3 90.5 90.8 92.3 91.6 93.8 92.8 91.8 8 90.0 91.3 90.5 90.8 92.3 91.6 93.8 92.8 91.8 8 90.0 91.3 90.5 90.8 92.3 91.6 93.8 92.8 91.8 8 90.0 91.3 90.5 90.8 92.3 91.6 93.8 92.8 91.8 8 90.0 91.3 90.5 90.8 92.3 91.6 93.8 92.8 91.8 8 90.0 91.3 90.5 90.8 92.3 91.6 93.8 92.8 91.8 8 90.0 91.3 90.5 91.8 91.0 91.6 93.8 92.8 91.8 8 90.0 91.3 90.5 90.8 92.3 91.6 93.8 92.8 91.8 8 90.0 91.3 90.5 90.8 92.3 91.6 93.8 92.8 91.8 8 90.0 91.3 90.5 90.8 92.3 91.6 93.8 92.8 8 90.0 91.3 90.5 90.8 92.3 91.6 93.8 92.8 90.5 91.8 8 90.0 91.3 90.5 90.8 92.3 91.6 93.8 92.8 90.5 91.8 8 90.0 91.3 90.5 90.5 91.3 91.0 91.6 93.8 92.8 8 90.0 91.3 90.5 90.5 91.3 91.0 91.6 93.8 92.8 8 90.0 91.3 90.5 91.3 91.0 91.6 93.8 92.8 90.5 91.8 8 90.0 91.3 90.5 91.3 91.0 91.6 93.8 92.8 90.5 91.8 8 90.0 91.3 90.5 91.3 91.0 91.6 93.8 92.8 90.5 91.8 8 90.0 91.3 90.5 90.5 91.3 91.0 91.0 91.9 91.0 91.6 8 90.0 91.3 90.5 91.0 91.4 91.0 91.0 91.8 91.0 91.6 8 90.0 91.3 90.5 91.0 91.4 91.0 91.0 91.8 91.0 91.6 8 90.0 91.3 91.3 91.0 91.4 91.0 91.0 91.8 91.0 91.0 91.0 91.0 91.0 91.0 91.0 91.0	LEVELS			4	3 172	.6 177 .8 173	8 174	2. 175 2. 175 2. 175	9 175	.6 175	6 174	.5 173 .0 173	.4 172	.3 172 .9 172	.7 171	171	171.7			187		TAMB 46. ELHUM 83.		
FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, B9.0 DEG. F., 70 PERCENT R.H. STD. DAY, A 76.2 76.3 75.8 76.9 76.0 100. 110. 120. 130. ANGLES MEASURED FROM INLET. ANGLES MEASURED FROM INLET. ANGLES MEASURED FROM INLET. A 76.2 76.3 75.8 76.9 76.0 100. 110. 120. 130. 5 77.9 79.1 77.9 80.1 80.5 80.7 80.4 85.3 94.4 5 77.9 79.1 77.9 80.1 80.5 80.5 82.7 91.9 101.5 95.7 91.9 101.5 95.7 91.9 101.5 95.2 95.8 95.8 95.8 95.8 95.8 95.8 95.9 99.7 96.6 97.9 91.9 101.9 97.6 97.9 90.7 91.9 91.0 91.5 91.5 91.5 91.5 91.5 91.5 91.5 91.5	DUND PRESSURE 2400.0 FT. X02061	GREES	150.	00 2 2	.3 98.1 87	101.3 89 97.0 88	95.5 87	93.7 87	93.6 86	91.5 84	86.3 78	83.7 75 80.6 72	78.6 70	75.6 66 69.5 60	59.6 46 47.0 28	28.3 1	n			3 106.8 3 107.9	SHIFT	28 29	SQ IN) -	
FLIGHT TRANSFORMED, SC 59.0 DEG. F., 70 P IDENTIFI ANGLES BO. 90. 90. 90. 90. 90. 90. 80. 80. 80. 80. 80. 80. 80. 80. 80. 8	XTRAPGLATED S STD. DAY, SB -400-FMODL	0	130.		94.4	101.5 97.9	97.2	98.e	99.8	98.8 98.0	96.4	94.2	91.1	87.8	80.5	60.4	13.3	·		109.6 114.7 114.7	FREQUENCY		SQ CM	
FLIGHT TRANSFORMED, 59.0 DEG. F., 70 IDENTIT ANGL. 4 76.2 76.3 75.8 76.9 78.0 5 76.3 77.2 76.4 78.4 78.9 5 76.3 77.2 76.4 78.4 78.9 5 76.3 77.2 76.4 78.4 78.9 5 76.3 77.2 76.4 78.4 78.9 5 76.3 77.2 76.4 78.4 78.9 5 76.3 77.2 76.4 78.4 78.9 5 94.5 93.9 83.6 82.8 83.7 8 87.9 86.9 83.7 85.6 85.4 8 87.9 86.9 83.7 85.6 85.4 8 91.5 93.0 94.5 91.3 91.7 8 90.0 92.3 92.6 91.5 91.0 9 87.2 88.8 89.5 90.5 91.3 6 82.6 91.3 90.5 91.3 91.4 9 87.9 88.8 89.5 90.6 91.4 9 87.0 88.8 89.5 90.6 91.4 1 87.8 90.3 90.6 91.4 1 87.8 90.3 90.6 91.4 1 87.8 90.3 90.6 91.4 1 110.7 112.0 111.3 110.8 TEST DATE 03-23-78 TEST DATE 03-23-78 TEST DATE 03-23-78 COZOG 73.5 M (2400.0 FT)	SCALED, AND E PERCENT R.H. FICATION - FJ	MEASURED	00. 110.		79.4 80.6	82.7	85.2	87.4 87.4	89.6	92.0	93.8 92.9	91.9	88.5	886.9 83.9	78.0	62.0	20.3			1.4 102.0 B.6 109.3 9.2 109.3	8 01	TAPE NO. Ro. RDG.	L 9032	
FLIG FLIG	RANSFORMED, STO	ANGL			2. 4. 28. 69.	- 80°.	8 83.	13.00 10.00	6 94.	5.3 91.	4 91.	.5 91.	.0 89.	.0 .0 .86	.6 82.	5 67.	5 24.			.4 102.7 .3 110.8 .8 112.0	IAMETER	CH CH	STIC RANGE (2400.0 FT)	
7. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	91				2 75. 76.	.77 0	9 83.		.9 103. .0 94.	.9 90. .3 92.	5 90.	. 3 89.	4 88.	. 6 85. . 7 85.	.3 80.	6 63.	1 22.			1 105.2 7 112.0 3 113.9		03-2	731.	
220 S S S S S S S S S S S S S S S S S S			•		5 76	77 6.	2 94	.3 93	8.96	.6 92 .8 90	S 83	. 1 87	6 84	4. 80	.5 75	4.51	4. 4. 6.			6 102.4 5 108.1 1 109.9		TEST	165	

S. .

MENGK 9700

0
8
-
•
O
0
8
`
N.
~
`
2
\sim

(3

								OF	RIG F	iII 20	IAI OF	_ [2W	GE	: 19 .IT	S													SPEED O. FPS)		
																											51.44	67.90	FREE-JET O. M/SEC (
				<u> </u>				49.0	52.6	53.5	54.4	55.2	57.0	55.5 55.5	55.1	53.3	52.8	52.0	51.4	50.3	48.3	48.7	48. 5. 8.	49.2	51.2	167.1	TAMB	THE T			
ARC	0.0		160.					14.6	'nω	-	4 1	. 0	4	и 0	•	4	ı,	4 N	-		ω (σ	6		ស	រ ក	127.2			MODEL		
40.0 FT. ARC	X02070 000000		150.					** *	- 60	2.1	 	. 4	-	 	-	- 4	ı.	លក	112.1 10	ın.	œ œ	, m	0,0	7		132.8 1	5859	29.460	- (NI OS		
	MODL	DEGREES	140.					10.8 1	0 6				- 1	• .			-		112.6 1					1		130.5	ALPHA	- (SIZE 21.49 SO		
DAY. S	FJ-ZERRFMODL	INLET, D	130.					106.4	12.8										113.0				98.9			128.1	11				
O PERCENT R.H. STD. DAY, SB	UND OO	FROM IN	120.		:			99.8 1		- 1			- 1						109.3 1		- 1			1		122.9 1	N312	DH 195	SQ CM		
H H	MODYEL BAČKGROUND	MEASURED F	110.					į .		- 1			- 1			- 1			106.8 1		- 1			1		118.4 1	Q	DG.	138.7		
PERCEN	TION - W	3	100					•		J			,			J			104.2 1					1		115.4	TAPE	AERO. R	ARC		
	FICATI	ANGLES	90.					ı		- 1			- 1	102.4		- 1			103.8		- 1			مام	₹	114.7			RANGE 40.0 FT)		
DEG. F	IDENTIFICA		80.					~ 0	0 0	4	ນຸນ	9 00	-		~	7 8	8		r u	9 6	- c	0		.1 .	6.99	112.7	78	ANECH CH	71C R/		
59.0 DEG. F.			70.					1	N 0	6	r 0	. 0	a	98.7	-	- ~	. ന	io m	99.6	ത	- }	r N	0.4	ł	9.79	111.5 1	- 7	C41 AN	ACOUSTIC .2 M (4		
		. •	99					89.8	91.7	92.8	94.1 on a		- 1			- 1			1		- 1			70.4	64.4	11.4		- 1	12		
			50.					۔ ۔		أم						ماد			98. +	-	ساء.	-			_	110.8 1	TEST	LOCATION	ST POINT 0207		
			40.					R (5 0	R)	ල 4	Ó	80	œ C	8	m +	0	6	93.4	o e	4	2 0	9 4	rφ	0.0	109.2 1			TEST PO 0207		
				FREQ 50	6 3	100 125	9 2														20000 8			3000	000	DASPL 10			MODEL 0200	221	

										OF	iG'	INA!	L P	AGÎ	is Lit											· ·
9. 180										OF	P	001	RY	<u>J</u> UM	IT										FPS)	
80				•																			YES YES		SPEED 0.	:
02/15/80										•													CORRECTION -	51.44 67.90	FREE-JET	
					PWL				150.6	152.6 153.5	155.2	155.2 157.0	155.5	154.4	152.8	151.4	150.1	149.3 148.3	148.7 149.2	148.8	151.2	167.1	TION CO Ance co	TAMB	0	
	1	T. ARC			160.				115.2	115.3 116.1	117.7	118.0	114.0	1.00	108.5	107.5	104.5	100.8 98.6	92.2 89.0	83.6		127.2	REFRACTION TURBULANCE		- MODEL	
	LEVELS	40.04	070	S	150.			1	<u> </u>	120.8 121.2	122	222	121.8	189	115.5	112.5	109.6 108.5	104.8 101.8	97.3 92.0	88.2	76.1	132.8	.8	SB59 29.4600	S0 1N)	
	ND PRESSURE	28	X02070	DEGREES	140.				112.9	116.4	1		120.3	119.4	116.6	114.0	110.9	105.7	100.0 97.0	92.1 86.5	82.0	130.5	0 8 0.	IALPHA PAMB	SIZE 21.49	
•	SOUND PR	. DAY.	RFMODL	INLET.	130.					114.8	= :	116	117	117		114	= =		102 98		&	128.1	T/SEC) R (IN)) 35	1
	MODEL SO	H. STD	FJ-ZERRFMOD1	FROM INLET	120.			1	90	103.2	8		122	113	-	100	105	<u> </u>	98 94	90	8	122.9	DCITY (FT/ DIAMETER	N312 ADH195	.7 SQ	
	ED	E E E		ASURED	110.				97	966	-	105	90		0 0	106	505	•	93 88	82 76	2	118.4	VEL	PE NO.	138	
	TRANSFOR	70 PER(IDENTIFICAT	ANGLES M	400				mlm .	5 96.1 5 97.4		~ ~ •	* ~ .	- m (n -	- m - m	100	~ ~	++ m	m m	₹.	7 115.4	FREE JET	TAP AERO.	T) ARC	
	FLIGHT T	u.	IDEN	Ž	06				9	6 95.0 4 96.5 8 6	66	555	102	202	5 6 6	5 5	102	100 97.	91. 90.	.2 82.	69	7 114.7	L	B	RANGE 40.0 FT)	
	1	0			80					0 92.6 3 93.4 7 88.4								66	91	81 73		5 112.7	FACTOR 1.000	03-23-78 C41 ANECH	ACOUSTIC 2 M (4	
		29			0. 70				6	.7 91.0 .8 92.3	4	9 00 0	N 64 .		- 6 1	~ a	40	ω 4	ဝ ဖ	ω 4	-	.4 111.	SCALE CALC. 1	1	AC 12.2	
					09 .0				8 8	9 9 9	95	858	8 2	553	2 5 E	666	97	60	888	76	64	=	S12E	TEST DATE LOCATION	IN I	
					0. 50					.9 .5 .92.0							3		t .	74		.2 110.8	II.	F	TEST POINT 0207	
2:					40 FREQ	ဝ၈	00	125 160 200		0 88 0 0 89 0	•				1			20000 83 25000 82	1		80000 70	OASPL 109	MODEL/ INPU		MODEL TI	

0
8
_
6
O.
_
O
8
`
2
-
•
-
22

02/15/80 9.180					and the second s	•		AND THE RESERVE THE PROPERTY OF THE PROPERTY O							AL)R				3													***	06.	FREE-JET SPEED M/SEC (0. FPS)	
E LEVELS	18			160. PWI											69.7 169.3					167.0	167.4	1.00						1	98.8 185.0 99.2	O.3		TAMB	RELHUM 67	FULL 0.	
SOUND PRESSUR	SB 2400.0 FT. SL	X02071	DEGREES	140. 150. 1	.9 97.3	.4 97.6	.0 98.4 .9 99.1	4 93.7	.7 100.6	6.96 6.96	.1 93.7	7 83.7	4 88.2	0 83 7	86.9 82.5 6	.3 78.6	.5 76.0 .4 69.5	.0 61.5	3 29.0	5.6									108.2	.5 110.0	y SHIFT -9	1	1ALFTA 3523 PAMB 29.4600	SQ IN) -	
XTRAPOLATED	STD. DAY,	FJ-ZERRFMODL	INLET.	120. 130.	93.0	94.6	95.4 95.6	92.6	96.0	95.9 96.7	98.2	90.0	94.0	92.8	87.8 89.8	87.3	86.3	75.2	58.6	4	₽								102.8 107.0 108.8 112.4	108.8 113.0	FREQUENCY		N312 1A	S1ZE 2 SQ CM (1400.00	
SCALED.	PERCENT	ICATION -	ES MEASURED FROM	100. 110.	1			1			1		- 1		84.3 86.3	- 1			1										96.4 98.9 103.6 105.7	03.6 105.7	RATIO 8.070	9	AERO. RDG.	SL 9032.	
TRANSFORMED.	59. O DEG. F., 70	IDENTIF	ANGLE	8G. 90	75.0	75.8 79.	77.9	80.1 82.	83.8 85	82.0 80.9	82.2 83	81.4 84	82.8 84	82.4 84.	81.8 84.1	80.3 82.	79.9 82.	73.8	59.2 60.	40.9 43.	14.6 17.								93.5 95.	103.3 105	DIAMETER F		03-23-78 C41 ANECH CH	ACGUSTIC RANGE 5 M (2400.0 FT)	
FLIGHT				. 60. 70.	7 73.0 73.	2 74.1 74.	0 75.4 75.	2 80.3 79.	9 81.8 82.	5 79.0 80. 8 80.8 80.	9 80.3 81.	2 80.0 80.	4 79.8 81.	4 79.4 80.	0 78.2 79.1	8 75.5 77.	5 73.8 76.	6 65.3 68.	4 48.4 53.	8 29.1 35.	1.9 10.								91.2 92.	97.4		1 .	LOCATION C41	731.	
				40. 50	67.6 70.	68.1 72.	69.9 73.	77.3 79.	75.0 79.	75.8 77.	76.1 78.	76.4 23	73.8 77.	71.9 76.	67.7 75.	63.9 71.	60.8 69. 54 1 65	49.4 60.	29.0 39.	6.9 19.		0	·	0 0	0		0		86.2 89	91.6 95.			<u> </u>	L TEST POINT 00 0207	223
				0	5(6	<u> </u>	125	16(20X	31	4 \$ \$	9	800	1250	160	200 200 2100 2100 2100	3150	2000	6300	8000	2000	16000	20000	31500	4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	63000	8 0000	OASPL	PNLT				MODEL 0200	

22															02/15/80	/80	9.180		
24	5	NTRANS	UNTRANSFORMED MODEL 59.0 DEG. F.	MODE JEG. F	L SOUND	ND PRE	SSURE NT R. F	LEVEL!	PRESSURE LEVELS CORRECTED RCENT R.H. STD. DAY, SB		FOR BACKGROUND NOISE 40.0 FT. ARC	CKGROU	ND NO	ISE					
	-			IDENTI	IDENTIFICATION	-	MODEL BACKGROUND		FJ-300-FMODL FJB300-FMODL	-FMODL	X02080 X05230	230							
					ANGLES		MEASURED	FROM 1	INLET,	DEGREE	. s:								
40.	50.	60.	70.	80.	90.	₫	110.	120.	130.	140.	150.	160.							
FRE0 50 63	·												2				٠	•	
100 125 160																			
83	ω ≠ α	0 4 1	4 10 0	88.5	6 - 0	4	94.0	96.3	ł		115.8	111.6	146	20.2			Ol		
8 8	2 12	- 60	- د		מי א	1	96.1	100.8	- 1		118.4		- 1	4			RIG F		
90.	၈ ဖ ဝ ၊	440	6.20.	91.8 92.8 93.9	93.9 95.4 96.7		98.2 99.9 101.5	103.4 105.1 107.0	112.0	116.1	118.0	104.7					INAL POOR		
92	m 6	<u>سا</u> د	- 6	•1 •	2	•	103.2	109.4	ł	116	114.5	5 5		0 00 1			P/ QI		
92 94 97	رم ب رم	٠. ۵. د.	ri 0. 4	6 0 0	~ ~		104.3 105.9 4.9	110.8			114.0 114.9 14.8			. 0 ~			ige Jali		
96	400	687	4 80 4	044	m io m		105.2 105.8 105.7	110.4 109.0 109.3	ł		112.1 109.3 108.4	101 99 97		0036			IS [Y		
12500 95.1 12500 94.1 16000 90.1	96.8 97 95.3 97 94.2 96	- 4 - 0 4	00001	დ ო ~ α	1.	102.3 101.4 100.4 98.7	105.1 104.7 102.8 101.9	108.8 107.7 104.1	1		106.3 108.7 102.4 102.4	95.9 94.9 94.0	148 148 148				×		
83 78 78 74	- w w w	் கொர	. e 4 a	1	000-	1	94.0 90.8 85.7	99.0 95.6 90.7	1		95.9 90.9 85.9	90.6 85.6 81.2 75.3	145 145 145	ri r					
59.6	40	00 6	22 6	9 7 7	. m . «	ſ	73.1 67.6	82.4 76.2	ł	1	74.3 66.2	69.8	144. 146.	64 R					
0	EST	•}	-23	ر د		TAPE	9.0			IALP	ין נו) Δ	B 48.74	7.4				<u> </u>
MODEL TEST 0200 03	2 8	2	ACDUSTIC	ric RA	NGE O FT)	ARC ARC	. 8	7 50 0	_	S12E 21.49 S	(NI OS	JOW -	1	90.50	FREE-JET	T SPEED (297.0) FPS)		
				-							:								
								- -											ga ^{ara} ng

1	ζ	,
1	Ì	3
-	4	
		'n
•	ç	n
4	c	>
		2
		200
		200
		20/02
		00/01
		ì
		00/01/20

1 - 1

					OF	RIGINA POOF	L PAG QUA	E IS						(S	
59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC IDENTIFICATION - FJ-300-FMODL X02080	ANGLES MEASURED FROM INLET, DEGREES	70, 80, 90, 100, 110, 120, 130, 140, 150, 160, PWL		89.3 89.8 91.4 95.2 101.9 106.1 112.3 109.8 144	89.9 90.8 90.2 91.8 97.4 106.8 110.6 115.6 1 90.6 91.3 91.4 93.2 99.4 109.0 113.0 117.4 1 91.8 92.7 93.1 94.7 102.3 110.6 114.9 118.3 1 93.2 94.1 94.7 96.8 104.2 111.5 115.5 118.5 1	95.9 98.5 105.1 112.1 115.2 117.4 109.8 1 97.7 100.0 107.7 112.3 116.5 117.7 108.9 1 98.6 101.1 108.6 112.9 116.1 116.4 108.8 1 99.8 101.8 109.9 114.5 116.4 115.9 109.0 1	.3 97.6 98.9 99.7 102.9 110.2 117.1 117.7 116.9 8 99.1 100.2 101.5 103.7 111.1 116.2 118.1 117.4 8 99.8 101.2 102.0 104.5 110.5 115.1 115.0 115.0 100.2 101.3 102.1 104.6 109.4 114.5 114.6 112.2	102.0 102.3 103.1 105.5 110.3 114.3 113.5 111.9 106.7 102.4 104.0 103.7 105.9 110.4 113.6 112.5 110.2 106.1 102.0 103.6 104.1 105.8 109.4 112.9 111.2 109.9 104.7 102.2 104.0 103.2 105.4 108.2 111.3 108.8 107.7 104.0	.1 102.0 102.5 102.3 103.6 106.6 111.6 107.8 106.9 103 .0 102.1 102.5 100.6 102.7 105.0 108.4 105.6 104.9 103 .5 100.7 100.9 98.2 99.6 102.9 104.9 103.0 102.5 102 .7 97.7 98.0 95.2 95.1 99.9 104.0 101.6 97.2 97	.5 92.7 92.5 91.1 91.5 95.8 100.0 98.3 93.1 93.4 147.4 91.4 91.0 86.2 86.4 91.8 94.5 93.7 88.2 88.0 147.6 83.2 84.1 81.2 80.9 88.8 90.1 87.8 82.7 83.4 146.4 75.2 75.9 75.9 73.8 84.2 88.3 83.8 76.1 76.9 147	70.8 67.8 68.3 74.4 78.5 74.0 66.3 67.1 145.3 113.5 113.4 115.6 120.9 125.9 127.2 128.1 121.9 164.0	LE FACTOR FREE JEI VELOCITY (FT/SEC) 297.00 REFRACTION CC 1.000 FREE JEI DIAMETER (IN) 48.00 TURBULANCE CC	03-23-78 TAPE ND. N312 IALPHA SB59 TAMB 48.74 C41 ANECH CH AERU, RDG. ADH196 PAMB 29.4500 RELHUM 78.60	ACOUSTIC RANGE 12.2 M (40.0 FT) ARC 138.7 SQ CM (21.49 SQ IN) - MODEL 90.53 M/SEC (297.0 FPS)	
		. 50. 60.		1 1	90.8 90.0 91.5	.9 93.5 94.0 .7 94.3 95.1 .2 95.5 96.8 .6 98.0 99.0	•	100.8	99.7 98.1 97.5	90.9 91 84.9 87 81.1 84 75.2 76	66.8 67.	MODEL/FULL SIZE SCAL INPUT 1,000 CALC.	TEST DATE LOCATION	TEST POINT 0208	
		40 FREQ	08 0 08 0 00 0		99.00	92 95 96	86 89 60	8558	12500 98 16000 96 20000 95	88 84 81 73	80000 64.5 0ASPL 110.8	MODI		MODEL TE 0200	22

												01 01	RIC	≥iñ PC	10(10(1 2	P# Ql	(Gi JA	E 1	3														ţ.
																																0	FREE-JET SPEED .53'M/SEC (297.0 FPS)	
LEVELS				7 167.3			- 1		8 169.5									9 166.4 8 165.6		164.7	163.5							.6 182.0	2		TAMB 48.74	82	6	
UND PRESSURE 1 2400.0 FT. SI	X02081	DEGREES	0. 150. 160	93.9 84.	94.7 84.	94.9 83	93.7 82	92.3 84	94.4 91.5 80.	92.0 84	88.9 79	85.5 76	82.1 72	81.2 69	78.1 67	72.3 61	67.2 56.	56.9 41. 43.8 23.	25.2	ღ.								7 103.3 92	8 105.3 95	SHIFT -9	HA SB59		O SQ IN) - FULL	
SCALED, AND EXTRAPOLATED SOUND PRESSURE PERCENT R.H. STD. DAY, SB 2400.0 FT.	FJ-305-FMODL X	FROM INLET, DEG	120. 130. 140.	89.3	90.8	91.7	92.2	92.6	90.7 94.1 94	95.2	93.7	92.8	91.0	90.1	88.1 87.4	84.0	79.4	76.0	54.2	35.6	1			-	•				107.4 110.1 109	FREQUENCY	N312 IALPHA		SIZE SQ CM (1400 00	
CALED, AND EXPERCENT R.H.	FICATION - FJ-	ES MEASURED FR	100. 110. 1	75.2	76.7	78.8	80.4	82.8	81.8 83.3 9	84.7	85.2	85.0	85.8	85.5	85.0 85.0	81.6	77.9	65.0	54.5	38.2	11.8							95.9	102.3 104.2 10	ATIO 8.070	TAPE NO. N3	DG.	SL 9032.2	
FORMED,	IDENTIF	ANGLE	80. 90.	3.0 73.9	2 75.2	5.5 76.6	.5 78.1	.6 /9.5 9 8 6.0	2 81.6	80.8	.0 82.5	.1 82.4	8 84.6	.3 84.0	.3 84.3 82.5	8 82.4	.8 80.3	7 76.0	2 61.3	.9 44.6	.8 18.6							0.94.3	103.9 104.6 1	DIAMETER RA		CH	ACOUSTIC RANGE 5 M (2400.0 FT)	
FLIGHT TRANS 59.0 DEG			60. 70.	7.4		7 74.	76.7	77.4	.	79.7	3 80.6	9 81.7	8 81.0	5 81.1	80.7	80.0	1 76.8	2 71.5	56.5	6.96.9	.7 13.4							2 92.0	100.9		DATE 03-23-78	LOCATION C41 AN	ACOUS 731.5 M (
			40. 50.	70	7	72.	.4 73.	. 1 74. 4 75	74.5 77.6	.8 76.	6 78.	.6 80.	5 80	.1 77	ໝຸດ	6 73	.6 71	.5 66	.8 44.	5.0 26								6	93.0 96.5 93.0 96.5 1		TEST	7007	TEST POINT 0208	
26				FREG	8 6	80	<u>\$</u>	125	500	250	8	500	900	<u>5</u>	1250	2000	2500	3150	2000	6300	0000 0000 0000	12500	16000	25000	31500	20000	80000	OASPL	PNLT				MODEL 0200	

Andrew Company of the

9. 18ي
80
15/8
2

								C	F	P	00	R	Q	AC U	Li	TY													SPEED 396.0 FPS)	
																											47.30 81.60	8	FREE-JET 70 M/SEC (
				P		145 4	146.7	148.2	149.3	149.2	148.3	148.8	149.8	151.7	150.3	149.9	148.6	148.4	147.2	146.4	144.9	144.9	143.3	142.3		162.4	TAMB		L 120.	
40.0 FT. ARC	X02090 X05220		160.			0 00		108.8			20.00	98.0	98.8	000	101.1		96	95	υ Q υ Δ	92.3	06	85.2	75		2.70	116.9	.00		- MODEL	
40.0		ES	150.			711	115.3	116	1						1			1			i .			73.8	3	124.9	1 SB59		SQ IN)	
SB	FJ8400-FMDDL FJ8400-FMDDL	, DEGREE	. 140.			101		5 112.4	115	115	1 1 4	1-14	114	2 116.4 4 116.9	114	= = =	- 2	108	5 5	0	96		82	7 77.8	2	7 126.2	IALPHA		S1ZE 21.49	
TD. DAY	FJ-40	M INLET	0. 130		:	405			- -	-		-	_		-				. 2 109.0 108.0					.3 80.7		125.	N312 ADM 107		SQ CM (
R.H. STD.	MODEL BACKGROUND	RED FROM	110. 120			c	2.9 97.2	40						105.1 110 105.9 111				1						73.3 81		6.0 120.6			138.7 S	
PERCENT R.H.	ION - MOI	S MEASURED	100.				. ~			ο.		- 10	~	~ ~	1	- 0	20	-	~ R	, O	0	0 C	4	73.5 7	n	112.2 116.	TAPE NO.	-1	ARC	
. 70	_	ANGLES	.06				2 6.68 89.9	۲ م	- 0	4	n c	2	ល	- «	9	0 0	o ro	-	9	່ ຍ	o.		4	4 (111.1			. RANGE 40.0 FT)	
59.0 DEG. F.	IDENTIFICA		80				87.7	~ .	٥١٥	D.	co <	10	ო	۰. ٥	, L	-, •	• 60	m	œ n	4	-	oi o	. ~	- 1	04./	108.8	3	בי	STIC RA	
59.0			70.			- 1	85.68 85.68	•				• •										•		٠.		107.6	03-23-78	4 A	ACOUSTIC 2,2 M (4	
			60				8 5 5 6 6 6																			107.7	TEST DATE	NO I	-	
			50.				85.0 84.6	86.1	88.6	87.9	0.00 0.00	92.3	92.4	95.4	97.9	95.5	90.00	95.5	93.7	90.3	87.6	83.5	73.9	68.1	6 0.6	106.7	TEST	ž	T POINT 0209	
			ę.	FREQ 50 63		- 1	83.3	82	- 1	89.		99.		94.6			92.		•					65.2		105.8			DEL TEST 0200 03	

										0	RIC F	PC	AA OO	L I	PA QU	GE AL	_11	S											FPS)	
																						;					CORRECTION - YES CORRECTION - YES	47.30 81.60	FREE-JET SPEED 120.70 M/SEC (396.0 F	
ပ္			PWL						142.7		148	1			1 '		1		-	11		149.2	1		143.6	163.4	REFRACTION TURBULANCE	RELHUK		
FT. ARC			. 160						108		2 108.5	1		5 108.3 5 109.1	5 111.8	113.6						2 105.3 100.8	ļ ,		69.3	2 122.5	REFR/ TURBL	SB59 29.4500) - MODEL	
LEVELS 40.0 FT	X02090		150.						- -	5 1	116.2	114	112	3 111.6	ı		- 1		2 2	109.3	9	_	1	84.6		126.2	88		SQ IN)	
SB		_	140.			•			104.5	122	3 113.7	3 113.	6 114	2 113.8	5 116.4	0 117.8	4 113.6	112.4	8 109.4	108.		8 102.0 2 99.8	97	855	5 70.4	5 126.0	396.00	IALPHA PAMB	SIZE 21.49	6
STD. DAY,	FJ-400-FM0DL	ES MEASURED FROM INLET,	130						90		109.3						- 1			ı		104.8 102.2	86	87	74.	0 125.6	VELDCITY (FT/SEC) JET DIAMETER (IN)	26) WS	ŧ,
י עו	FJ-40	FROM	120						93.			1									ភូចិ		1	8 6 6	73.	3 121.0	SITY (I	N312 ADH197	3.7 50	
	- NOI	ASUREC	10.						89.		93.6											99.8	1		67.	115.6	1	PE NO.	138	
TRANSFOR			\$						88.															8 4 1		5 113.1	REE JET FREE	TAPE AERO. F	r) ARC	
FLIGHT TR	IDEN	ANG	06						- 1			1			1					- 1			1	83.4	1	4 113.5	<u>#</u>	퓽	RANGE 40.0 FT	
0									87	7 C)	5 91.2	6	94	96	97	80 G	5	103	25		5 2	호 8 6	92		68	112.	FACTOR 1.000	03-23-78 C41 ANECH	ACDUSTIC 2 M (4	
59.			6						88	8 6	88	92	94	9 6	96	97	99	102	35	5 5	3 8	66	92	84.8	8/ 69	3 111.7	SCALE F	1	12.2 h	
			60.												1			ı		- 1			ı	85.1		7 112.8	L SIZE S	TEST DATE LOCATION	=	
			50.																					83.7		112.7	17-	TES	1 POINT 0209	
	:		\$,												84.9		112.5	MODEL/FI Input		TES	
8			FREC	20	60	\$ \$	125	88	250	315 400	200	800	1000	1250	2000	2500	4000	5000	800	10000	16000	20000	31500	500 500 500 500 500	80000	DASPL			MODEL 0200	

•

ij

s we are

180
•
0
_
•
2
_
N.
_
•
05/

FLICHT TRANSFORMED AN AN 10EN 10EN 10EN 11.0 72.4 73. 11.0 72.4 73. 11.0 72.4 73. 11.0 72.4 73. 11.0 72.4 73. 11.0 72.4 73. 11.0 72.4 73. 11.0 72.4 73. 11.0 72.4 73. 11.0 72.4 73. 11.0 72.4 73. 11.0 72.4 73. 11.0 72.4 75. 11.0 72.4 75. 11.0 72.4 75. 11.0 72.4 75. 11.0 72.4 75. 11.0 72.4 75. 12.0 82.9 85. 12.0 82.1 83. 13.0 82.9 85. 13.0 82.9 85. 14.5 75.4 76. 15.7 3 61.3 60. 15.7 3 61.3 60. 16.2 16.7 18. 16.2 16.7 18. 17.0 14.103.9 104. 17.0 14.103.9 104. 17.0 14.103.9 104. 17.0 14.103.9 104. 17.0 14.103.9 104. 17.0 14.103.9 104.

•	02/15/80 9.180								Ċ)RIG	GIN PO	AL OR	. Ol	AG	E I	S									53.60 65.60	FREE-JET SPEED M/SEC (0, FPS)			
	#OISE					J.A.C				80 -			- 7.	4.6	ພູ ສຸ ຍຸ ທຸ	e. e. e. ≠.	1.1	æ ?;	0.5	6.3			5.5 6.9	9.6		ó	:		
	OUND N	ARC				a.				7 146	60 -	6	- r s :	4	2.5 148 0.8 148	44	60	6 6	- 0.	1.2 144	6 14	2.0 140	5.5 140 5.1 141	3.0 160.	TAMB RELHUM	MODEL			
	FOR BÁCKGROUND NOISE	.0 FT.	x02100 000000		150. 160		į		**	3.0 110	90,7	0	6.5 112 5.9 112	4	0 ii - 1	 	တ ဆ	6 1	_ ~	3.1 99.	•	~ ~		7.5 123	SB59 29.4200	וא) -			
	ED FOR	40	1	DEGREES	140. 1					07.0 11	140		12.1 116 10.4 115	-	2 L	11.1 11. 10.9 11!	-		3.8 10	9.2 10	3.4 9	3.6 8	78.1 80.	3.1 127	ALPHA SI	SO			
	CORRECTED	AY, SB	FJ-ZER-FM0DL 0000000000000	INLET, DE	130. 1					-	108.0	-		-									75.0 7 69.5 7	121.0 123	IAL	SIZE (21.49			alesanda area de la composición dela composición de la composición dela composición de la composición dela composición dela composición dela composición de la composición del composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición dela composición
	VELS	STD.		FROM IN	120.					96.1 10		22.4 10		- 1			•				ı		78.0 7	117.0 12	N312 ADH 194	SO CE			
	SURE LE	70 PERCENT R.H.	MODEL BACKGRÜUND		110.					94.1	94.7	97.9 10		- 1			1		1		1	83.1	1	113.9 1	E NO. N. RDG. AL	138.7			
	D PRES	PERCEN	'	S MEASURED	90					0 0	92.6	A R	<u>س</u> م	-			0.00		1		ı		70.8 63.5	10.9 1	TAP	ARC			
		F., 70	FICATION	ANGLE	96					9 0	ມ່ານັດ	0 4	- w	-	7 O	1.0	- 6		ro co	. o	ന്മ	4.6	.8	110.0 1	-	RANGE			
	300M 03	DEG. F	1DENT IF I		80.						ກ່ຕໍເ	ناد	46	2	io ii	10 4e	တ် ဖ	6	o G	4 6	0.4	84.0	68.4 62.0	107.7	-78 VECH CH	STIC RA			
	ASFORME	59.0 DEG.			70.							*1 *		· ' • I			4 .						67.2 62.5	106.3	03-23-78 C41 ANECH	ACGUSTIC 2 2 M (4			
	UNTRAN				.09					86.3	88.2	90.6	91.7	92.6	93.4	80 P.	95.2	94.5	95.0	91.7	85.5	77.9	65.1 59.4	106.3	TEST CATE	¥			
					50.					1 .													63.9 57.4	105.5	TEST				
					40.					82	20 00 0	8 8	9 6	91	92	92	6 6	9 9	8 8	83	75	9 6	59.7	103.6		16.5		مل الماسان	
	23 0					FREQ 50	9 9	125	6 5	200	200	930	8 5 8 5	1250	1600 2000 2000	2500	9 5	9300	10000	6000	25000	96	63 000 8 0000	OASPL		MODEL	30		
		1						1		1					i		1		1		1		1		l	1	1	1	- 1

•

180
6
08/
02/15

FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC IDENTIFICATION - FJ-ZER-FMODL X02100	ANGLES MEASURED FROM INLET, DEGREES , 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PWL		86.3 86.4 87.0 89.6 92.0 94.1 96.1 102.7 107.0 113.0 110.4 1	4 86.7 87.5 89.6 91.9 92.3 94.2 97.7 104.2 108.4 114.6 1 7 88.2 87.5 89.3 91.5 92.6 94.7 99.2 108.0 111.4 116.3 1 5 89.5 89.3 90.4 92.8 94.2 95.8 100.3 108.9 112.2 116.7 1 6 00.6 00.9 03.8 94.4 05.5 07.9 102.4 109.5 112.6 117.0 1	91.7 91.9 92.8 95.1 96.3 99.4 104.2 110.0 112.1 116.5 112.7 149.1 94.2 93.5 93.9 96.5 97.9 100.3 105.5 110.4 115.9 112.5 148.7 95.6 94.9 95.7 98.1 98.7 101.9 105.8 110.6 112.3 116.4 112.4 149.4 95.7 98.1 98.7 101.9 105.8 110.6 112.3 116.0 112.5 148.9	94.7 94.5 95.3 97.0 95.3 102.3 106.5 109.6 110.5 115.5 110.8 148.5 94.8 95.1 96.2 98.3 100.0 102.9 105.8 110.2 111.1 116.1 109.4 148.9 95.1 96.0 98.6 100.2 103.9 106.3 109.2 111.1 115.1 108.4 148.4	4 95.2 94.8 96.4 98.5 99.9 103.3 105.3 107.9 110.9 112.8 107.0 1 94.3 94.8 95.9 96.5 103.2 105.3 107.1 109.1 111.9 106.6 1 8 95.4 94.8 95.9 95.9 107.1 104.6 106.2 108.0 110.7 104.8 95.9 95.9 95.1 107.7 104.6 106.7 108.0 110.7 104.8 95.9 95.9 95.1 107.7 107.8 107.8 105.5 108.0 110.7 104.8 95.9 95.9 95.9 95.1 107.7 104.6 106.7 105.5 108.0 110.7 104.7 104.8 95.9 95.9 95.9 95.9 95.9 95.9 95.9 95	95.0 94.6 96.8 38.5 98.7 101.8 103.3 103.2 105.2 105.1 103.7 103.0 144.5 103.2 93.7 95.2 97.3 97.3 99.7 101.3 102.8 107.3 103.0 144.5 103.7 92.6 94.7 96.9 95.6 98.3 99.5 101.7 102.2 105.3 101.2 144.3 103.1 89.9 93.6 95.1 93.1 95.3 97.3 98.3 99.2 103.1 99.0 143.6	.5 85.4 90.9 91.5 85.5 90.5 94.6 95.5 93.4 95.0 90.4 17.7 84.6 84.9 85.9 86.1 87.4 91.5 93.5 93.4 95.0 90.4 17.5 84.0 84.4 87.5 89.1 89.8 87.3 17.5 75.9 77.3 76.1 75.9 82.3 81.7 83.6 85.9 82.0 17.5 67.2 68.4 69.7 70.8 69.8 78.0 75.0 78.1 80.5 76.5 1	4 59.4 62.5 62.0 64.8 63.5 64.1 72.4 69.5 74.2 74.5 70.1 141.9 5 106.3 106.3 107.7 110.0 110.9 113.9 117.0 121.0 123.1 127.5 123.0 160.9	SIZE SCALE FACTOR FREE JET VELOCITY (FT/SEC) U. KEFKACIION CL	DATE 03-23-78 TAPE NU. N312 TALFHA SB39 TAMB 33-30 TION C41 ANECH CH AERO, RDG. ADH194 PAMB 29.4200 RELHUM 65.60	NT ACOUSTIC RANGE 12.2 M (40.0 FT) ARC 138.7 SQ CM (21.49 SQ IN) - MQDEL O. M/SEC (O. FPS)	
			.3 86.4	.7 87.5 2 87.5 5 89.3	2 93.5 6 94.9	8 95.1 95.4	2 2 2 3 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	2 93.7 7 92.6 1 89.9	.7 84.6 .9 79.5 .3 73.6	.4. 62.5 .3 106.3	= ·			
	40. 50. 6		87.6	86.4 87.7 88.5	92.7	94.5 94 94.1 94 95.1 95	94.4 95 94.2 94 94.8 95	93.4 95 91.5 93 89.6 91	1	4 10	MODEL/FULL SIZE INPUT 1.000	TEST DA LOCATI	TEST FOINT 0210	
	C	000000000000000000000000000000000000000	1	1	1	I.		1	31500 40000 50000 63000		Ĭ		MODEL 0200	231

		_	===	1	-	T	=	-	Ŧ	-	_	T	=	=	T	==	==	Ţ	=	=	=	 	=	==	Ī	_		=		==	1	-	Ť	==			T			=
													. ()R	16	IN	AL		P#	/G	E	3	<u>.</u>		كالمراجعة والمراجعة														(man)	, i
9. 180													Č)K)F	P	00	OR	2 \$	Qι	JA	,LI	Y	7															FPS)		
80																					-																	SPEED 0.		
02/15/80																																			- :			FREE-JET M/SEC (
												-																								6	65.60	0. FR		
	ELS				3	166.3	6.99	67.4	67.2	67.5	167.1	67.0	66.5	62.9	65.5	63.0 64.4	64.1	62.7	62.5	61.7	60.4	59.9	58.9	58.6 60.0								178.8				TAMO	RELHUM	Ü		
	ZE LEV	. SL			160.	1			1		84.2 1												_	- -								က	95.3	96.4		1	[FULL		
	HT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS	.0 FT			150.	1			- 1		91.5	1			- 1			- 1				1											104.8		6 -	0	29.4200	- (NI		
	d GNNO	2400	X02101	DEGREES	140.	1			- 1		89.2	- 1			- 1							1											103.8 10		SHIFT	1	PAMB 2	SQ		
	TED S	Y, SB		-	130.	- [- 1		89.4				- 1							1										0.1 10	.3 10	1.3 10	FREQUENCY		IAL	SIZE (1400.00		1
	RAPOLA	<u>.</u>	FJ-ZER-FMODL	M INLE		1			- 1			1			- 1			- 1				1		4.								ο. Φ	5 104.3	104	FREG		194	SQ CM		*
	D EXT	2.H. S		D FRO). 120.	1			- [8 87.0	- 1			- 1							1											8 102.5		070		N312 ADH194	. 4		
	ED. AA	CENT	CATION -	MEASURED FROM INLET	110	ì			- 1		0 83.8	- 1			- 1				1			i											.7 100.8		80		TAPE NO.	9032		
	SCAL	70 PER	IIFICA	ANGLES M	. 100	-	_			w œ	3 81.0	0	0 00	. 60	8	יונס		-	-	-	שיש	ישוני	(C)	_								લ	86	86	RATIO	,	TAP AERO.	r) st		
•	ORMED.	L.	IDENTIFI	ANG	6	74.	75.	76.	77.	8 6	8 8	8	9 6	79.	79.	79.	78	77.	76.	74.	9 6	54.	37.	1 2								9	99.		DIAMETER		Æ	IC RANGE 2400.0 FT)		
	FRANSF	o DEG.			. 08		72.8				77.5	• 1									68.67											88	96		DIA		03-23-78 C41 ANECH	ACOUSTIC .5 M (240		
	FLIGHT	59.			70.	69	71.	72.	73.		75.5	75.	2 2		• 1		74.1				62.2	• 1										86.9	94.1	94.1				-		
	Ţ.				.09	69.5	70.8	71.9	72.8	75.3	74.2	75.3	7.07	74.7	73.6	73.4	73.5	71.2	69.3	64.9	60.4 4.03	42.8	23.1									86.1	92.5	92.5			TEST DATE	73		
					20.	67.9	68.7	8.69	70.2	72.7	72.3	73.8	73.7	72.6	71.9	71.6	70.2	67.8	65.2	61.1	54.9	33.2	14.1										89.4				TEST LOC	T POINT 0210		
					40				1		70.5	-1	- a			66.4			55.5			• 1										80.6	84.8	84.8				TEST 02		
2	32				Ç	200	63		1		200	- 1			- 1				1		3150	1		0000	200	16000	20000	31500	000	000	80000	OASPL		PNLT				MODEL 0200	-	,
	·			<u> </u>		•							-					_	4	C4		2	. ¥	ω ς	12	9	2 2	9	4	ະ ພິ	8	Ŏ						¥		

	¢	9
	g	Ò
	•	-
		٠
	c	D
	Ć	2
	è	9
•	•	-
	U	n
	٩	-
		7
		\ \

							#		OR OF	IG P	DO	AL R (PA U	GE AL	: I:	3								ED .O FPS)		
																							56.48 66.80	FREE-JET SPEED 53 M/SEC (297.0		
) Y				Ž .		6 141.5	44	2 144.6	14.4		-	143.5	- -	*				1	- 1		1 137.5	0 156.5	TAMB 5 RELHUM 6	.06		
40.0 FT. ARC	X02110 X05230		150. 160			10.0 108.	. e.		5 96	5 G	1	102.4 92.	- 1	60	9 6	92 1	96	. 1 86	4	.4 72	4 %	120.3 113.0	SB59 29.4400	IN) - MODEI		
DAY, SB	FJ-300-FMODL FJB300-FNODL	T, DEGREES	140.			.6 103	108.2	109.5	108.9	109.8	108.2	107.4	106.2	106.3	105.2	104.2	90	91.7	89.1	78.5	72.4 67.6	119.9	I ALPHA PAMB	S1ZE 21.49 S0	-	
STD.		FROM INLET.	120. 130			86	95.5 104	96.8 105.4			103.4 107.8		103.8 107.2								76.6 73.5 70.6 66.5	114.4 118.8	N312 ADH20@	.7 SQ CM (
PERCENT R.H.	N - MODEL BACKGROUND	MEASURED	100. 110.			l l	3.6 90.7	- 1			1		5.9 100.6 5.5 100.2			-	•	-			70.5 69.8 64.0 63.2	107.7 110.9	PE NO.	ARC 138.		
. 70	IDENTIFICATION	ANGLES	90. 1C			6	N 4 1	v -	φı	ָר ה	4		- 4	4	si ci	ص ح	. 00 1	0 4	<u>ښ</u> د	າ ເວ	68.8 7(64.6 64	106.6 107	TAI CH AERO	RANGE 40.0 FT) AF		
59.0 DEG. F.	IDEN		70. 80.			2.8		88.	89	920.	92.	1.1 92.9	93.	93.	93.	0.0	92.	7 88.	83	2 75.	67.2 67.8 62.9 62.6	3.0 104.8	03-23-78 C41 ANECH	ACOUSTIC 2 M (4		
			.09	-		81.5 8	84.2	86.9	87.4	90.6	89.9	90.2 90.6	90.6	91.3	91.1	92.6	89.0	83.2	81.6	69.7	65.7 59.9	102.7 103	TEST DATE O			
٠			40. 50.					- 1			1	87.2 87.7 87.8 89.1						-			2.6 64.6 7.3 58.8	0.5 101.3	TES	TEST POINT 0211		
				FREQ 50 63	25 25 25 26 26 26 26 26 26 26 26 26 26 26 26 26	ŀ		- 1.					. i			1		-	31500 7		1	DASPL 100	4	MODEL 0200	233	

234						TOA		9007				FVE			02/	02/15/80	9.180	•	
				59.0	0	EG. F., 70 PE	PERCE	RCENT R.H.	STD.	STD. DAY, SB	1.	40.0 FT.	ARC						
						IDENTIFIC	FICATION	i	FJ-300-FM0DL	HODE	X02110	_							
						ANGLES	1	SURED	MEASURED FROM INLET	-	DEGREES								
FREQ	40	50.	.09	70.	80.	90.	100.	110.	120.	130.	140.	150. 1	160.	PWL					
50 80 50 50									14										
125 160 200 250	0.48	87.0	1 .	85.2	85. 1	i .	0.9	i	l.		101.1 107	60	0	39.5					•
1	84.0 85.4	87.0 86.3	85.0 86.5	85.9 85.9	86.6 86.8	87.3 87.6	87.0 87.9	89.3 89.3	93.8 95.5		105.6 11 107.8 11	10.6 105 11.5 105 11.7 103		42.4 43.6 44.0					
- 1	88.3	88.4		89.0	90.1	1			- }	- 1		- 1	. 4-1.	43.7				O O	
	86.5 91.4	90.0 89.8		91.0	90.5 91.6		0.0 0.4					108.4 10 106.7 9		2.5				RIG F P	
	53.0 92.1	90.9 93.5		93.5 93.0	93.8		4 r 6 c				- 1			2.5				NA 00	
1	93.9	92.9		93.1	93.4		9.9	1				103.7 9 105.7 9		12.9				L I	
	93.3	93.8	F + 1	94.9	95.3		0 8		103.6	105.4				43.7				PA(QU/	
1	95.3	94.9	• 1 •	95.5	96.0		-	1	1		1	1	Į-,	44.2				E	
	95.0 95.2	94.8 95.1		95.1 95.8	96.2		7.9				- m		'	44.5				is TY	
- 1	95.0	96.6	• (•	95.3	96.4		5.3	- 1	,	ł	- 1			13.6					
	92.0	93.0		95.0 92.3	96.8 95.7		9.4			100.4 96.8	99.8 t0	101.5 9 98.4 9	99.6 14 98.7 t4	43.0					
- 1	85.3	88.8	•1	88.7	92.9	•1			- 1	95.2	1		- +	42.2					
	78.7	85.6 79.4		83.4 83.4	87.0 87.0		- 10 -	83.2	- 60. 4	85.9			- 4- 4-	42.0					
	75.3 69.1	70.6		71.4	71.4		9.0	71.6	נטי	75.1		1	(40.8					
ſ	m .	63.0	•	67.1	66.2		eo e	64.8	<u>د</u>		66.9 6	64.1 6	66.8 13	139.8					
4	_	7 1	SIZE SO	ALE FA	FACTOR	FREE	JET	VELOCI	VELOCITY (FT/SEC)	í	10	1	10		CORRECTION	- YES			
	INPUT	0		CALC. 1.0	8		FREE	JET DI	AMETER	(IN)	48.00	2	RBULAI		RRECTION	- YES			
		TEST	TEST DATE LOCATION	03- C41	! -	.	TAPE AERO. R	. 20 20 20 30	N312 ADH208		IALPHA 9	5859 29.4400	1	TAMB	56.48 66.80				
MODEL 0200	TEST 02	T POINT		AC0U	ACDUSTIC R	RANGE 40.0 FT)	ARC	138.7	7 SO CM	-	SIZE 21.49 SQ	- (NI	MODEL	6	FREE-JET 90.53 M/SEC (JET SPEED	ED .O FPS)		
										1									1
ļ											1								

02/15/80 9.180															OR OF		NA DOI			AGI JA										.48 .80	FREE-JET SPEED 1 M/SEC (297.0 FPS)	
0 1 5 / E / E	re revers			160. PWL		75.2 161.9	٠,			1		70.3 161.9 70.1 162.4	1					- 1	159.8	159.0	0.05						84.5 175.0	86.1		TAMB 56. 400 RELHUM 66.	- FULL 90.53	
1900 CHINO CO	SB 2400.0 FT. SL		, DEGREES	ď	86.5	86.3	85.7	85.2	84.4	84.2	83.0	7 83.3 79.3 1 82.9 79.4	82.3	81.2 78.4	75.3	72.3	61.6	52.4	14.0									100.0	ENCW SHIFT -9	IALPHA SB59 PAMB 29.44(S12E (1400.00 SQ IN)	
	R.H. STD. DAY,	- FJ-300-FMODL	MEASURED FROM INLET,	0. 120. 130.	76.8	81.1 86	83.0 86	83.9	83.7 86	83.1 86	83.5 84	8 8	83.0 83	81.6 82	5 78.4 79	76.8 76	2 69.8 67	6 62.8 58	6 37.1 26	7 0							94.4 97.	101.3 101.	.070 FREQUENCS	. N312 . ADH208	9032.2 SQ CM (14	
400	O PERCENT	DENTIFICATION	ANGLES MEASUR	90. 100. 110	.1 70.3		.4 74.9	.2 75.6 76.4	1 77.2	.6 77.7 0 78.9	5 78.2	77.9 77.8 79.9	6 78.4	.5 78.1	5 76.2	7 74.6	67.9	61.9	38.1 38.1	5 14.6							.3 89	97.5	RATIO 8	TAPE NO AERO. RDG	GE FT) SL	
	59.0 DEG. F.,	01		70. 80.	69.3	9 72.5	72.8	73.9	75.9	75.1	7 76.5	75.6 76.3 7	9.9/	77.3	5 76.3	76.5	70.6	2 61.7	39.2	13.0							.88 93.2 94.5	0.66	DIAMETER	03-23-78 C41 ANECH CH	ACGUSTIC RANGE 1.5 M (2400.0 F	
				50. 60.	5 67.	- 10	1 71.	72.	75.	2 74.	74.	72.0 74.1	2 74.	73.	74.	71.	8 64.	57.	30.	-							83.8 85.9	1.4 94		TEST DATE LOCATION	TEST POINT 73:	
				40.	ľ		- 1	125 69.8				500 70.0	1			1		- 1	5000 30.0 6300 8.9		10000	16000	25000 25000	31500	50000	80000	OASPL 81.8	88			MODEL TEST 0200 0	235

236									ŧ					02/15/80	9.180	
	P .	UNTR	UNTRANSFORMED MODEL 59.0 DEG. F.	DEG.	EL SOUND		SURE L	PRESSURE LEVELS CORRECTED RCENT R.H. STD. DAY, SB	SORREC JAY, SI	TED FOI	FOR BACKGROUND NOISE 40.0 FT. ARC	ARC	NOISE			
				IDENT	IDENTIFICATION	1 -	MODEL	FJ.	FJ-400-FMODL FJ8400-FMODL	MODL	X02120 X05220					
					ANGLES	ME	MEASURED F	FROM IN	INLET, DI	DEGREES		-			-	
	4 0.	50. 60.	70.	80.	.06	100	110.	120.	130.	140.	150. 1	160.				
FRE0 50 63						-							PWL			
8 8											1.					
\$																
125 60 55 55																
1	2.2	- 0	89.	82.9			1	1 .	97.9 10	103.0 10	109.0		40.5		(
400	. 	, e. e.	82.6	84.4	- c						· • •		42.6		ORI OF	
1	2	3 85	8 8		, J			- 1		1		- -	• •		GII P	
	ω. c	.3	86.		m •										IAN IQC	
		. 2 87. . 0 89.	88		• 0								42.8		L I	
1.	ن د	. ± 88.	89. 88.		0,1		1	ŀ		1	i	-	42.1		PA(QU	
	. w	66.6	80	91.2	. w u								42.1		àE ALI	
ł	- 6	4 90.	90	.i .	-			- 1	1	1		-	41.4		13	
	n, co	.4 89.	9 9 9		r 0								41.6 41.2			
- 1	4	.8 92.	90	۱.	ro r		- 1			- 1	- 1	-	41.2			
	-	90	9 9		ດຕຸ				101.3		97.5	90.2	40.4			
	- 6	5 89.	89. 86.	92.4	4.0						ı		40.3 39.4			
l	o c	4 82 80	83.		9		[6.		i	- -	38.3 38.2			
	4 1-	0 76.	77.	- 4	5.8			84.7	- 0		79.5 7	7 9	38.0			
1	62.4 65 57.2 58	5.5 65.1 3.8 60.3	66.7	67.6 62.6	68.9 64.4	70.8 63.3	68.3 63.3		70.6 64.3	69.4	0 0	65.2 1: 57.9 1:	36.1 37.2			
OASPL 9	9.4 100	3.7 101.8	101.7	103.6	105.9 1	107.0	110.11	113.6 11	118.2 1	118.0 1	117.8 11	110.4 1	55.2			
	-	LEST DATE	82	3-23-78 11 ANECH CH		TAPE Aero. R	E NO. N	N312 ADH209	IAI	IALPHA S	SB59 29.4400		TAMB SE RELHUM GE	55.04 65.10		
			1												:	
MODEL 0200	TEST P0 0212	POINT 212	ACOU 12.2 M	ACDUSTIC RANG	ű E	ARC	138.7	SQ CM	\$17 (21	SIZE 21.49 SQ	SQ IN) -	MODEL	120.	FREE-JET SPEED 120.70 M/SEC (396.0	ED .0 FPS)	
															•	
1									×5.4.							ĺ
								ν,	- 4		***************************************					, market

8
Ď
=
٠.
9
8
m
•
`
IO.
=
_
8
ö

FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC IDENTIFICATION - FJ-400-FMODL X02120	ANGLES MEASURED FROM INLET, DEGREES 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PWL		.9 85.3 84.9 84.4 84.1 84.4 84.9 89.4 95.4 99.5 105.7 102.4 1 .9 85.2 84.9 85.9 86.2 85.0 85.6 92.1 100.6 103.9 108.5 102.9 1 .6 86.9 85.6 86.1 87.3 87.1 87.8 93.9 103.1 106.1 109.1 102.3 1 .2 87.7 85.8 87.3 87.5 88.0 88.4 95.8 103.5 106.2 108.2 100.6 1	7 90.0 87.3 89.6 89.5 89.0 90.0 90.0 90.2 105.3 104.4 101.5 141.5 7 90.5 88.3 89.7 90.8 90.3 92.5 100.1 106.2 106.8 103.5 100.6 141.9 92.0 93.8 93.5 95.1 101.3 105.5 105.5 100.2 100.1 141.5 92.6 93.8 93.5 95.1 101.3 105.5 105.5 100.8 141.5 92.6 93.8 93.5 95.1 101.3 105.5 103.5 100.8 141.7	1. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 94.6 94.7 95.6 96.7 98.0 103.4 109.1 104.0 103.2 101.3 142.8 CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	. 6 97.1 95.5 96.4 97.3 95.9 98.2 100.6 103.6 100.7 103.5 103.5 143.8	87.3 86.5 87.0 87.2 86.6 87.2 91.3 90.2 87.9 88.4 91.3 82.6 83.3 86.3 85.8 82.1 82.5 85.5 82.3 81.6 82.7 85.6 79.7 79.3 79.3 79.3 78.6 76.6 74.9 80.7 76.0 75.1 77.0 80.8 72.1 72.8 71.6 71.9 72.2 68.3 78.2 73.3 73.2 71.9 76.4 64.3 64.9 66.7 67.4 65.5 64.8 68.4 63.4 63.4 63.1 62.1 66.6	107.1 107.2 105.8 107.2 108.2 107.8 109.7 114.0 117.6 117.2 117.8 114.7 156.1 FULL SIZE SCALE FACTOR FREE JET VELOCITY (FT/SEC) 396.00 REFRACTION CORRECTION - YES T 1.000 CALC. 1.000 FREE JET DIAMETER (IN) 48.00 TURBULANCE CORRECTION - YES	TAPE ND. N312 IALPHA SB59 TAM3 55.04 NERO. RDG. ADH209 PAMB 29.4400 RELHUM 65.10	POINT ACCUSTIC RANGE 1212 12.2 M (40.0 FT) ARC 138.7 SQ CM (21.49 SQ IN) - MODEL 120.70 M/SEC (396.0 FPS)	
			1 86.9 85 1 86.9 85 0 87.6 86 4 88.2 87	5 90.7 90 4 90.7 91 3 91.5 92	9 93.7 94.3 94.3 94.3 94.3 94.3 94.3 94.3 94.3	94.9 94 1 96.0 96 8 95.9 95 9 96.9 96	9 96.6 97 9 94.5 95 9 94,4 95	1 87.4 9 80.5 7 72.8 7 65.6	107.1 107 /FULL SIZE UT 1.000	TEST DA LOCATI	EST 0.	
	4	63 63 100 125	250 85. 315 85. 500 87.	1		Į.	1	31500 85 40000 79 50000 78 63000 71 80000 63	OASPL 106.8		MODEL T 0200	237

9.180										C)RI)F	GIN PO	íAL OF	PQ	/AC	GE ALI	IS TY											SPEED 396.0 FPS)	
02/15/80																											.04	FREE-JET SPI 70 M/SEC (396	
	EVELS]		159.5	1		-1-	_ — .		_ +		- -	•		158.9 158.0	158.2						174.0			TAMB 55 RELHUM 65	120.	
	SURE L			9	75	73.3	73	72	7	69	99	69	67	59	S.	2 4									86.5	o	400	- FULL	
	SOUND PRESSURE LEVELS SB 2400.0 FT. SL	121	ES	ŧ.	85	82.6	79	77	77	16	76	75	4	72	50	3 3 3 3 3	19								94.4	IFT -	SB59 29.4	(NI bs	
	SOUN SB 2	X0212	DEGREE	140.	84.8	84.6	85.2	83.7	82.2	81.4	80.3	79.2	76.6	74.2	63.0	49.0	32.9							4.4	97.8	ICY SHI	IALPHA	SIZE (1400.00	
	OLATED DAY,	-FMODL	INLET,	130.	83.4	85.55 85.55	86.2	85.4 85.6	86.0	84.4	84.4 83.3	82.3	80.7	79.8	68.8	67.0 57.4	42.0							96.4	101.5	FREQUENCY		SW (140	
	STD.	FJ-400-	FROM I	120.	75.2	79.4	81.6	82.3 83.0	82.7	83.7	83.0 82.7	82.2	80.0	78.6	72.1	69.7 62.4	50.3	9.7							20.5		N312 ADH209	.2 S0 C	
	ED, AND EXTRAPOLATED CENT R.H. STD. DAY,	ı	MEASURED	110.	69.8	72.5	76.2	76.8	78.3	80.1	80.0 80.3	79.3	78.4	77.4	72.9	65.0 60.6	50.5	6.4							97.8		NJ.	9032.	
	CALED,	ICATION	1	100.	69.6	71.4	74.3	75.6 76.6	76.7	78.2	78.0	78.2	76.9	75.7	72.1	66.5	51.9	13.8						•	96.6 96.6		TAPE AERO. P	SL	
	MED, S	DENTIFICA	ANGLES	.06		22.0	• •		•1					•1										89.0	97.8			NGE O FT)	
	HT TRANSFORMED, SCAL 59.0 DEG. F., 70 PER	Ħ			י טו	72.0)-	ထတ	מ	ဖွဲ့က	n in	- 0	מ פ	6	. m	rv ee	- 0	N						7	97.3	IAME	78 ECH CH	STIC RANGE (2400.0 FT)	
	59.0 E				ω .	69.2	10	m -	6	- 2	- 6	r 1	nφ	r- α	9	N 0	m 4	60						6	95. 1 95. 7		03-23-78 C41 ANECH	ACOUST 5 M (
	FLIGHT 59			Ġ	7	71.3 6	- 2	4.0	6	ri α΄	- e	r 0	. .	4	. თ	e. 4	4 11	. ហ						6	0 8 8		1	731.	
				50.	.	4 4 6	0	e -	0	- 0	- 0	4	- 6	6	1 00	27	200							<u>ق</u>	2.7 9		TEST DATE LOCATION	ST POINT 0212	
				40.	1	7.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6	2 8	ب ب	2	0 80	6 0, 60	- 0	o, ec.	6	0	9.0	2)						∞,	9.4 92			TEST P	
2:	38			FRED		63 67 80 66	1					1		- 1		50 55	1		8	20000 20000 20000	38	88	88		PNL T 89			MODEL 0200	

9848 X

•....

0
8
-
•
9
٥
8
•
15/
-
_
02
0

									OR OF	lGii PO	A) OF	L F	PA 2U	GE ALI	IS TY					in the second se				SPEED O. FPS)		
																							54.50 61.80	FREE-JET M/SEC (
				ž		149.6	155.3 53.3	154.4	155.5	156.4	156.4	155.2	153.7	152.7	152.0	151.3	150.1	148.5	148.9 149.1	148.6	150.8	167.2	TAMB	0		
40.0 FT. ARC	X02130 000000		160.			7 115.1	115.5	116.3	118.2	118.3	116.0	113.3	110.1	108.4	107.7	105.7	101.00 101.00	96.7	91.9 87.3	82.7		127.2	. 8) - MODEL		
		EES	. 150			.0 117.	-		122	123	122		116	114	5 111.5	2 5	7 106.5 8 106.6	\$ 5	3 96.0 3 91.1	87	5 82.2 0 75.3	.2 132.6	29 88	SQ IN)	2	
Y, SB	F-J-ZER-FM0DL 0000000000000	T, DEGREES	0. 140.			.4 112	.0 113	.6 119	.7 126	5 6 6	0	is c	2.	7 116	411 0	5 112	4 60 6	2 102.		4 91.	.6 85. .6 82.	5 131	IALPHA	S12E 21.49		
PERCENT R.H. STD. DAY, SB		FROM INLET,	120. 130	•		00.6 107	02.4 110	.0	.4 11	10.7 117	7117	12.5 117 12.4 118	- 60	- -	11.3 115	9		0	ni e	6	86.8 89 82.0 84	122.8 128	N312 ADH189	SQ CM (
IT R.H.	MODEL Background	MEASURED FR	110.		•	-	97.7 10			1	106.7			108.2 1	108.0	-		- -	94.2	- 1	77.5	118.7 13		138.7		
) PERCE!	NOI	ES	100			- 1		97.7		102.1	103.6	103.6	104.5	104.8 2.50	105.3	104.2	103.3	95.9			78.0	115.8	TAPE NO.) ARC		
F., 70	IDENTIFICAT	ANGL	90.			93	90	96	97	100.7	36	5 5	-	l' '					92.	84.	76.6	115.3	용	RANGE 40.0 FT)		
59.0 DEG. F.	IDEN		. 80.			91	93.	1 94.	2 95.	2 97.3 8 98.6	28	99.	50	101.	103.	103	N 60 (36	7 91	0 82	8 74.5 1 68.1	6 113.7	03-23-78 C41 ANECH	ACOUSTIC 2 M (
53			0. 70			ø	9.	ئە د	4 94	2. 2. 98 2. 98 3. 98	2	ĵů .		101 4	.s. 102	0.	0. 400 . 4 98 . 98	3 92	ų 4	.2 80.		.7 112.		12.2		
			50. 60			-	. 🕳 .	מו א	94	4.4 0.5 to1	201 5	5	73 eri	102	500	5	97.4 99		5.5 89		1.3 71 4.9 66	112.1 112	TEST DATE LOCATION	JINT 3		
		:	40. 5							100.2 100.	•							- 1				110.6 112		TEST POINT 0213		
				78 00 00 00 00 00 00	100 125 160	- 1								1	200	,	12500	1		50000 7		DASPL 11		MODEL 0200	239	

																								- 42
02/15/80 9.180								0	RIC	GIN/ POC	AL OR	PA(QU/	ge Ali	IS TY							- YES		-JET SPEED EC (O. FPS)	
02/	U			PWL		149.6	153	155	156	156	155	153.7					148.9 149.1	148.6 149.1	120	167.2	88	7AMB 54.50 RELHUM 61.80	FREE-JET EL O. M/SEC (
	40.0 FT. ARC	X02130	DEGREES	140. 150. 160.		2.0 117.7 115.1	119.8 115 121.1 116	121.9 116 122.8 118	123.5 118	123.7 11	119.8 113	716.6 110 114.9 108	113.3 107	111.7 106		103.9 99 100.2 96	.a m	.6 82.	75.3 70	1.2 132.6		IALPHA SB59 PAMB 29.4000	E 49 SQ IN) - MODEL	
	H. STD. DAY, SB	FJ-ZER-FMODL	FROM INLET,	120. 130. 1		100.6 107.4	102.4 110.0	105.0 115.6 107.4 116.7	108.9 117.0	111.1 116.6	112.5 117.3	112.8 117.2	111.3 116.7	110.9 114.0	107.1 111.4 106.1 110.3	103.8 106.9 101.6 103.2	98.5 102.9 94.9 98.5	90.0 94.4 86.8 89.6	82.0 84.6	122.8 128.5 13	VELOCITY (FT/SEC) JET DIAMETER (IN)	N312 IAL ADH189 P	.7 SQ CM (21.49	400
	TANSFURMED MUDEL	IDENTIFICATION -	ANGLES MEASURED	90. 100. 110.		95.5	r 0	9 99.8	6 100.3	3 103.2 168.6	0 103.5		3 105.2	6 104.2 107.1	0 101.7	5 99.1 8 95.9	9 92.6	.2 83.3 .6 78.0	70.3		FREE JET VELOC FREE JET D	TAPE NO.	3E FT) ARC 138	
	FLIGH: 59.0 DEG. F.	IDE		70. 80. 9		0.16	93.3	94.2	97.3	102.2	9.08	200	102.7	101.3 103.1 104.1 100.9 103.2 105.	101.7	97.7	91.9 90.2		68.1	6 113.7	ALE FACTOR C. 1.000	03-23-78 C41 ANECH CH	ACQUSTIC RANGE	
				50. 60.		9.00 E	91.2 92.0	92.5 93.5	94.4 96.2	101.3 102.3	100.5 100.5	100.3 105.1	102.6 103.1	100.6 101.2 99.7 101.6	97.4 99.0	93.1 94.4 90.0 91.3	85.6 89.2 80.8 84.4	76.6 77.2	64.9 66.0	112.1 112.7	MODEL/FULL SIZE SCALE INPUT 1.000 CALC.	TEST DATE LOCATION	TEST POINT 0213 12	
240				40.	08 08 0 8 0 0	125 160 200 250 A5 5	89	90 6	95	36.8	66	102	100	8000 98.0	92	8 8 8	81 76	70		0ASPL 110.6	MODEL/F INPUT		MODEL TES 0200	· · · · · · · · · · · · · · · · · · ·

02/15/80 9.180								ORIO OF I	INAL OOR	PAQU	GE I	S Y					JET SPEED C (O. FPS)	
02/	LS				J.A.	2.3 3.7 5.7	174.5 174.9 174.5	1.9 0.9	6.2 6.6 4.6	8.2	7.4 16.6 17.1	167.2 166.8 167.2 169.0			15, 2	TAMB 54.50 RELHUM 61.80	FREE-JET O. M/SEC (
	SOUND PRESSURE LEVELS	} :				I	90.9 17 89.6 17 87.7 17	3	,	J)			98.8 98.6 98.6		- FULL	
	NO PRESS		X02131	EES		f	4 99.5 2 99.6 7 98.3 94.9	ĺ	1	- 1		(1.9 108.0 1.9 109.1 1.9 109.1 SHIFT -9	A SB59 B 29:4000	SQ IN)	
	ATED SOU			ET, DEGREE	30. 140.	∞ ∞ ∽	97.6 99.4 96.5 100.2 96.6 100.0	புறைப	0 00 00	ဖြ	6 4 -	0.00 0			9 112 9 112 JENCY	IALPHA	S12E (1400.00	
	EXTRAPOLATED	: :	FJ-ZER-FMODL	FROM INLET	120. 1	000-	92.0 993.0	6 - R	- w m	718	6 6 6	ထားက			102.8 108.8 108.8	N312 ADH189	2 SQ CM	-
	D. AND		- NOI	MEASURED	140.	80 80 80 A	8. 88 88 88 88 88 88 88 88 88 88 88 88 8	888	86 86 86	833	73	.6 57.6 .0 40.9 .5 15.5			.8 99.2 .2 106.2 .2 106.2	E NO.	9032	
	ED, SCALE	•	IDENTIFICAT	ANGLES M	90. 100	4 82	883.1 84. 855.6 85.	2 86 0 85	2 85 9 85 8 85	9 83	9 78	7 57 7 43 3 19			3 96 8 104 0 104 RATI	TAP AERO.	JGE) FT) SL	
	HT TRANSFORMED, S		21		80.	n n o o	88 89 89 80 90 90 90 90 90 90 90 90 90 90 90 90 90	044	m - 4 w	0	ω 4 Γ	0 m -			94.5 96. 103.0 104. 104.2 106. DIAMETER	-23-78 I ANECH CH	ACOUSTIC RANGE 5 M (2400.0 F	
	FLIGHT T	n n			. 70.	73.	8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 8 8	83. 84. 80.	79.	68.	53. 11.			5 93.0 8 100.4 8 100.9	03	AC0U	
				-	50. 60	73.	80.5 82. 81.1 83. 77.3 80.	8 8 1.	79.	77.	66.	30.6			4 4 98. 4 98.	TEST DATE	INT	
					.0 .e	0000	75.5 81 76.6 77		က ထ က	0 0	ហេត	m -			87.5 90 92.4 96 93.5 96		TEST P0 0213	
					EDEO	1	i i	1		- 1		6300 8000 8000 8000	12500 16000 20000 25000	31500 40000 50000 63000 80000	OASPL PNL PNLT		MODEL 0200	241

. . .

•								- 1	RIGIN				: 13									0	<i>(</i>)
9.180								OF	PO	JK	Ų	JAL	ITY									SPEED 296.0 FPS)	
02/15/80													٠								48.38 79.70	FREE-JET	
FOR BACKGROUND WOISE	7. ARC 10 30		160.				<u> </u>		109.2 152.0 106.7 152.3 105.3 152.2	- 1		1	-		1	1			69.8 143.8 62.3 145.0	120.1 164.3	TAMB RELHUM	- MODEL 90	
CTED FOR BACK	SB 40.0 FT. FMODL XO2140 FMODL XO5230	DEGREES	140. 150.				109.3 116.0	113.7 118.8 116.5 119.4	117.3 119.3 117.9 119.0 118.2 117.9	119.0 117.7	119.0 116.0	117.9 113.8	115.7 111.4	112.3 107.9 111.5 106.9	109.5 106.0 108.0 104.4	105.5 102.4 103.2 99.9	99.7 95.9 96.8 91.2	92.4 86.2 88.1 80.4	82.0 74.0 76.1 65.4	128.9 128.7	IALPHA 5859 PAMB 29.4300	SIZE 21.49 SQ IN)	
LEVELS CORRECTED	H. STD. DAY, SB FJ-300-FMODL ROUND FJB300-FMODL	FROM INLET,	120. 130.				96.8	100.2 101.5	103.6 113.2 106.1 114.5 107.7 114.5	107.8	10.2	110.8	110.4 109.8	110.3 109.6	108.7	105.4 102.8	99.8	91.7	82.6 77.0	120.9 126.5	N312 ADH204	.7 SQ CM (
SOUND PRESSURE LI	2 '	ANGLES MEASURED	100. 110.				92.5 92.6	93.1	95.5 98.9 97.0 100.4 98.6 101.8	4.66	8.66	101.5	102.0 102.6	103.0 103.0	102.4	99.7 96.9	93.6 90.0	85.1 80.4	74.3	113.1 116.2	TAPE NO. AERO. RDG.	r) ARC 138	
MODEL	EG. F., DENTIFIC	ANG	80. 90.				88.0 89.6	90.3 90.7	92.5 94.6 93.5 95.4 94.6 96.7	96.7	95.8	97.2 97.7	99.0 100.4	101.4 100.6	100.6 99.8	99.8 98.1	95.1 89.8	88.6 79.9	72.3	5 110.8 112.4	03-23-78 C41 ANECH CH	ACOUSTIC RANGE 2 M (40.0 FT)	
UNTRANSFORMED	59.		60. 70.				86.6 87 86.9 87	88.7 87 90.3 89	90.9 90.7	96.1 95	95.0 94	97.3 95 98.1 98	101.4 98	99.7 100	98.9 99 97.1 98	96.0 97 92.6 94	89.7 89 86.8 88	82.0 83 75.5 77	69.5 70 63.0 65	109.8 109.	TEST DATE 03-2 LOCATION C41	12.	
			40. 50.				82.5 87	86.4 86.4	91.1 89	91.3 94	93.5 93	95.1 96 98.6 98	99.8 100 98.0 99	96.6 97	95.1 97	90.6 93 85.7 90	83.9 87 81.8 83	77.8 78	65.4 69 59.8 61	107.3 108.4	TES	TEST F	
242				FREQ 50	80	5 t t 5 6	250 315	4 6	630 800	1250	2002	2500 3150	5000 5000 5000	6300	12500	2000	25000 31500	50000	90000 800000	DASPL		MODEL	3

***							GINAL PCOR	PAGE QUALI	19 Y					FPS)	
URE LEVELS 40.0 FT. ARC X02140	ES	150. 160. PWL		113.8 111.0	1 116.5 111.8 148.2 1 118.5 112.9 150.6 1 119.6 112.8 151.7 1 120.3 112.4 152.5	120.0 112.8 119.8 111.7 119.3 111.3	116.2	111,2 107.1 110.4 106.5 109.7 105.4	106.9 103.9 105.1 102.4 102.5 103.0	93.8 95.0 1 87.9 87.9 1 82.5 83.4 1 75.4 77.4 1	5 65.5 67.5 144.5 5 129.5 123.1 164.8	.00 REFRACTION CORRECTION - YES .00 TURBULANCE CORRECTION - YES	A SB59 TAMB 48.38 3 29.4300 RELHUM 79.70	FREE-JET SPEED SQ IN) - MODEL 90.22 M/SEC (296.0	•
MODEL SOUND PRESS R.H. STD. DAY, SB - FJ-300-FMODL	S MEASURED FROM INLET, DEGREES	100. 110. 120. 130. 140.		.0 92.2 96.5 103.4 107.3	3 98.4 108.7 100.2 110.6 111.	99.0 107.0 113.7 1.17 100.3 107.0 113.5 118 101.7 108.4 113.8 119	102.1 109.6 114.9 1 103.5 109.6 115.9 1 104.0 110.5 115.3 1 105.2 110.4 115.0 1	105.0 110.1 115.5 105.5 111.2 114.7 105.8 110.1 114.1	106.2 108.9 111.5 104.1 107.6 111.1 103.2 105.8 107.9 100.4 103.1	2 81.2 89.1 88.3 88. 1 74.5 84.9 85.3 83.	.2 68.5 75.1 75.5 .9 115.9 121.3 126.2 1	JET VELDCITY (FT/SEC) 296.00 FREE JET DIAMETER (IN) 48.00	TAPE MO. N312 IALPHA Ro. Rdg. Adh204 Pamb	ARC 138.7 SQ CM (21.49	
FLIGHT TRANSFORMED 59.0 DEG. F., 70 PERCENT IDENTIFICATION	ANGLES	60. 70. 80. 90. 10		24 C C C C C C C C C C C C C C C C C C C	89.0 90.8 92.0 90.2 91.7 92.3 92.0 93.0	94,7 94,9 95,7 95,6 95,9 97,1 98,0 98,3 99,2	97.7 98.5 99.7 97.5 97.6 98.9 98.6 99.0 100.4 100.4 99.4 100.9	100.9 100.9 101.8 103.8 102.9 103.0 103.9 104.4 104.8 103.1 104.0 105.3	103.2 104.2 105.5 103.1 103.9 104.0 102.2 103.8 104.0 99.0 102.1 101.9	π. π. φ. 4	69.9 68.6 70.3 113.1 113.8 114.4	ZE SCALE FACTOR FREE CALC. 1.000	TEST DATE 03-23-78 TAP LOCATION C41 ANECH CH AERO.	ACDUSTIC RANGE 12.2 M (40.0 FT) AR	
		40. 50. FREQ	50 63 60 60 60 60 60 60 60 60 60 60 60 60 60	0 0 7	87.9 91.4 89.9 90.8 91.9 91.8	92.3 93.8 96.5 93.9 97.7 96.1	96.8 99.0 98.1 97.1 98.7 98.2 99.8 100.5	102.1 101.7 103.7 103.7 102.5 103.9 101.7 102.6	99.8 101.4 98.5 100.4 96.4 98.3	25000 90.9 95.0 31500 88.2 91.6 40000 85.4 86.2 50000 73.1 75.1	64.2 67.5	MODEL/FULL SI	TEST	MODEL TEST POINT 0200 0214	243

															OF OF	ng F	NI:	AI OF	F	As Ug	GE AL	IS IT	ž														
9.180																																			ED FPS)		
02/15/80																			والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة والمراجعة											***************************************			48.38		FREE-JET SPEED		
TEVELS					-	_	7 170.9	=	171	5	169	.1 169.3	169	168		167	3 167	.4 165.8	165	164.5	164.7								.3 182.8	.3			TAMB 4		FULL 90.		
D PRESSURE	SB 2400,0 FT.	X02141	ES	150. 160	95.0 86	0.96	96.7 96.3	96.0	95.2 93.8	93.0	87.8	86.0 75.1	20.00	80.9	78.9	72.5	67.1		24.9	_	`								104.9 94	105.9 96		SHIFI -9	SB59 29.4300		SQ IN) - F		
MATED SOUN	DAY, SB 2		INLET, DEGREES	130. 140.				1		- 1		93.7 91.0				1			1		6.0								105.0 106.2	110.5 109.3		FREQUENCY SP	IALPHA		SIZE 4 (1400.00	100	in The
AND EXTRAPE	PERCENT R.H. STD. DAY.	- FJ-300-FMODL	S MEASURED FROM IN	110. 120.	1			1		- 1		85.5 89.7				1			1		1								101.0	104.1 107.9		.070	O. N312 G. ADH204		9032.2 SO CM		
S. S. S. S. S. S. S. S. S. S. S. S. S. S	70 PERCENT	TIFICATION	ANGLES MEASU	. 100.	74.8	5 76.2	77.3	5 80.3	5 81.0 8 82.3	8 84.3	2 82.8 2 0 0 0 0 0	93.3	8 84.0	7 85.1	8 84.3	9 81.3	3 77.9	73.5	8 57.0	0 41.9	1 17.7								94.6	7 103.5 10		RATIO 8	TAPE NO.		SL		
DANSFORMED	.0 DEG. F., 70	IDENTI	Y	80. 90		4 75	76.5 77.	2 79.	4 4 8 8 1 6	. k 80.	.5 82.	81.9 82.	5 83.	3 85.	3 85.	5 83.	3 81.	.9 77. 68	4 61.	.6 45.									4.2 95	3 104		DIAMETER	-23-78 1 ANECH CH		ACDUSTIC RANGE 5 M (2400.0 FT)		
T 1497 13	59.0			60. 70.	8 72.	6 74.	75.1 75.2 75.7 76.6	77 6	97 67 87	7 78	6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	80.3 81.3	83	8 6 6 6	7 82	8 1	77 0	17 7	7 56	33	6								92.5 93.1	100.8 102.0	•	-	03-:	;	ACOU 731.5 M		
				. 50.	71.0	6 72.0	5 72.6 73.9	9 73.9	9 76.0 8 78.6	7 76.5	77.3	80.0	81.6	6 79.7	2 79.5	0 76.1	1 72.7	2 66.9	7 45.9	26.2									8 90.3	7 97 9 10			TEST DATE		TEST POINT 0214		.
244				40				125 74.		. [500 78.	- 1			2000 71.			5000 36.		8000 0000 0000	12500	16000	25000	31500	0000	93000	80000	87	PNI 94	n				MODEL 18 0200)

Т

													01	R	GII PC	AV IOI		19 19 19	IAL		¥ Y				and the second s					EED 6.0 FPS)			
GAIDAGOUD STANAT BONDSSOO WENS	59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SR 40.0 FT. ARC	IDENTIFICATION - MODEL FJ-400-FNOOL X02150 BACKSROUND FJB460-FNOOL X05220	ANGLES MEASURED FROM INLET, DEGREES	50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160.					85,7 86,8 87,1 89,3 91,2 93,8 96,3 102,9 108,3 14,7 111,6 1	85.1 85.4 85.5 90.6 91.5 93.4 97.9 105.5 109.9 116.3 111.7 187.7 87.2 85.5 90.9 91.8 93.9 98.9 109.3 112.9 117.3 109.8 1	29.0 22.3 29.9 92.2 93.4 95.0 100.5 111.4 115.0 116.9 107.6	30,1 83,1 91,2 93,6 94,7 97,9 103,4 112,2 116,5 116,3 104,7 1	91.7 92.0 93.6 96.0 97.6 100.8 107.2 113.6 116.4	94.8 93.8 94.9 97.2 98.7 102.1 107.5 113.5 117.3 112.7 100.9	93,2 93,7 95,8 98,2 99,8 103,2 107,9 113,3 117,5 113,0 100,5	95.8 94.8 95.9 98.2 100.7 104.6 109.1 115.7 116.4 112.4 101.4 1	96.8 96.6 96.9 99.5 101.7 105.6 110.3 114.4 115.4 111.2 100.8	100.4 97.9 97.2 99.1 101.7 105.9 105.0 114.0 114.2 109.6 93.4 100.5 100.0 40.0 101.6 105.0	99.1 99.6 100.1 102.0 102.7 105.4 109.7 113.7 111.0 107.1	48.1 38.7 103.4 102.4 103.4 108.4 111.0 108.1 105.4 96.0	95.9 98.0 99.2 100.9 100.8 103.5 105.6 109.1 105.9 103.1 95.0 1	94,6 95,6 95,9 100,9 93,4 102,1 105,0 105,3 91,8 93,2 97,1 99,1 95,8 99,5 102,2 105,2	1 LOS 3.26 3.76 4.001 4.66 4.46 93.7 94.8 93.8 95.5 90.7 1	87.1 89.3 89.5 91.0 90.5 92.5 95.1 98.5 80.4 84.4 80.4 80.0 86.4 88.7 40.1 94.0	76.3 78.9 81.2 83.1 81.7 82.3 28.6 88.8 86.3 81.9 77.0 1	71,3 71,1 73,1 74,0 75,2 76,9 76,8 84,8 83.8 80,4 76,3 72,0 145,4 65,3 66,3 68,8 68,2 70,2 69,8 70,6 79,3 79,7 76,0 68,0 65,1 147.1	.3 108.8 108.8 103.9 111.9 112.6 116.0 120.3 125.5 127.1 126.0 117.8 163.0	TEST DATE 03-23-78 TAPE NO. N312 IALPHA \$859 TAMB 56.66	CA1 AMECH CH AERO, ROG, AMEZOS PARS 29,4600 HELFILM	18 3	72.2 H (40.0 F1) ARU 100.1 39 CH (21.12 34 M)		
				40.	FREG	n 0	82	2 8 8	82.7	# 6 # 6	20 CE CE CE CE CE CE CE CE CE CE CE CE CE	85.3	6.00	90°	31.8	9,7,69	93.5	69	96.0	- 20	92.0	80 m	84.2	0,0	72.5	53000 68.2 7 80000 62.7 69	0ASPL 105.8 107			TEST	0200 0215	245	

 	T																	1					
		-						ORI OF	GIN/ PO	AL OR	PA(QU	GE ALI	is Ty										
02/15/80 9.180	•				•															- YES - YES		-JET SPEED EC (396.0 FPS)	
05/																				CORRECTION CORRECTION	56.66 70.30	FREE - JI 120. 70 M/SEC	
	U			PWL		671	146.4	149.5	150.9	151.4	152.1	151.4	150.9 150.9	150.4	150.2	149.6 149.0	148.8	148.7	164.2	CTION	TAMB		
	FT. ARC			160.	•	90	•	109.7	111.3	111.2	112.9	111.5	109.6 108.9	108 108	108	105	99.8 94.1	90.1	_	REFRACTION TURBULANCE		- MODEL	
EVE	40.0 FF	150	S	150.		0	114		115	116.	146. 16.	114.4	= =		108		l	78	127.	ł	SB59 29.4300	SQ IN)	
2000	SB	X02150	DEGREES	140.	: .	S. S. S. S. S. S. S. S. S. S. S. S. S. S							l	109.8 108.0	107.3		1	83.4		396.00 48.00	IALPHA PAMB	SiZE 21.49	
	STD. DAY, SB	-FMODL	INLET,	130.	-	6	- T		112.6			114.7	114.4	112.1	5 5	105 102	96	8 9	, 2	r/SEC)) No	West.
į.	1. STD	FJ-400-FM0DL	FROM	120.		4 70	96.7	101.8	106.4	107.3 109.2	109.1 110.8	110.6	110.7	109.8	107.5	104.3	98.1 94.6	91.6		VELOCITY (FT/ Jet Diameter	N312 ADH205	.7 S0 (,
2	NT R.H.	TION -	EASURED	110.	:	6	• • •	93.4	97.8 99.0	100.4	102.6 103.7	105.2 105.9	106.4	105.4	103.8	4.001	93.3 89.9	77.6	115.7	VELOCI JET DI	RDG.	138	
	, 70 PERCENT	FICATI	Ξ	0		0	1	92.7	95.2	98.1 99.5	99.5 100.9	102.4 102.9	103.3	103.5	102.5	98.9	92.5	83.8	113.6	E JET FREE	TAPE AERO.	ARC	
, ,	F. 70	IDENTIFICA	ANGLES	90.		0	90.8	92.6	95.4	98.1	98.7 99.9	101.5 101.6	103.5	105.4	103.9	102.1 98.8	94.0 92.2	78.2	114.4	FREE	동	ACOUSTIC RANGE 2 M (40.0 FT)	
i	PEIGHI DEG. F.			80.		0	800	91.7 93.2	94.5	97.2 98.2	97.2 98.7	99.6 100.3	103.3	104.3	103.8	101.7	93.6 93.6	78.0	113.6	FACTOR 1.000	I	STIC R (40	
	59.0			6		i e	1		1		,		1		1		1	86.2 79.8		FA .	03-23-78 C41 ANEC	ACOU	
				.09		•	1				[1				L	86.4 78.6		SIZE SCALE OO CALC.	TEST DATE LOCATION	+	
				20.			ء ــاء		۱		l_		ــ حا				.l	84.2		N 8	TEST LOC	ST POINT 0215	5
				40.		l .	၂ ဖ	4 (1 4	93.9		4 R	G R	0.0	103.2	- co	9 6	91.4	2.9	o. r	~ ~		TEST 02	
246				FREO	5 63 63				i				5000		12500	•	ļ	50000 63000		_ <u> </u> _		MODEL 0200	

180
-α
6
0
8
`
15/
-
-
02/
0

02/15/80 9.180				٠	7.	4 •	0	4 IV	2	·	0	O. R	C)F	P		2		A	: ES				the second secon	8			MB 56.66 JM 70.30	FREE-JET SPEED 120.70 M/SEC (396.0 FPS)	
	SURE LEVELS			160. PWL	83.6 16 82 8 16	83.0	84.0	83.5 84.5	84.0	80.9	79.0	75.0		65.2	58.8	30.2	2.6	166.6	164.							96.6	ნ	TAMB	- FULL	
	AND EXTRAPOLATED SOUND PRESSURE L R.H. STD. DAY, SB 2400.0 FT. SL	X02151	DEGREES	140. 150.	1	94.2 93.5						l		i			1	1.12								108.0 104.8 108.0 104.8	SHIFT	ALPHA SB59 PAMB 29.4300	SIZE 1400.00 SQ IN)	
	TRAPOLATED STD. DAY,	FJ-400-FMODL	INLET,	120. 130.	1	85.4 91.9	1		1			1		- 1			l								104.2	107.9 110.1	FREQUENCY	N312 I/ADH205	SQ CM, (1400	
-	SCALED, AND EX	CATION - FU-	MEASURED FROM	. 110.	74.1		80.8	82.1 83.2	83.9	85.9	86.4 86.6	85.4	. 4.0 - 6.0	83.0 4.18	78.7	72.7	58.0	45.6 45.6							9 20 9	.6 103.7 10 .6 103.7 10	8.070	E NO.	9032.2	
	-12	IDENTIFICA	ANGLES M	90. 100	7 73	76.5 76.	0 79	3 80	6 81	9 83	3 83	6 84	983	8 82	5 78	9 73	58 6	9.0							94	105.5 102.	DIAMETER RATIO	TAP CH AERO.	NANGE O.O FT) SL	
	GHT TRANSFORMED 59.0 DEG. F.,			70. 80.	8 72	73.7 75.5	5 78.	.3 79.	9 79.	3 6 3 6	.3 83.	7 84.	2.7.	7 83	3 80.	3 68	4 63.	8 19.							- 76	102.1 103.7		03-23-78 C41 ANECH C	ACOUSTIC RANGE	
	FL IGHT			0. 60.	.4 72.3	5 75.2	5 77.0	9 80.7	5 78.9	.79.0 .0 80.8	.8 80.3 83.8	84.9	3 82.0	2 80.0	1 77.4	0 72.0	.5 54.0	10.1							0.69	- 2		TEST DATE C	INT 731.	
				40. 50	- 0	72.0 73.	.3 75	.1 78	.0 77	.1 80	æ , ø	5 82	4. 81	5 78	6 74	.0 5 69	0	N							9 91			4	TEST POINT 0215	
•				FRED	50	888	125	160	250	2 P	900	800	1250	2000	2500	3150	2000	8000	10000	12500	20000	31500	50000 50000	63000	80000	PNL			MODEL 0200	247

9.180								OR OF	IGIN PC	VAL	, PA QI	AGE JALI	IS TY							SPEED 0. FPS)		* 4
02/15/80 SE																	•		54.50 61.80	FREE-JET 8		
FOR BACKGROUND NOISE 40.0 FT. ARC	X02160 000000). 160.			117.4	117.5	118.2	117.3	114.7	111.9	108.7	105.7	.6 105.2 153.2 .3 103.3 152.3 .1 102.0 152.5 .9 99.3 151.8	97.4	88.0	76.7.	.8 127.5 169.0	SB59 TAMB 29.4000 RELHUM	. MODEL .		
CORRECTED FOR B	FJ-ZER-FM0DL XC	٥	130. 140. 150			113.8	118.7	122.3	122.2	122.2	119.4	116.5	113.5	116.5 111.6 110.6 114.6 109.9 108.3 113.8 108.3 106.1	102.0	96.5 96.5	86.5 82.8	4 132.0 132	IALPHA SB! PAMB 29	SIZE (21.49 SQ IN)		· Aug
EVELS STD.	MODEL FJ-7 BACKGROUND 0000	RED FROM INLET,	110. 120. 13			9 101.8		2 110.1	8 113.5	114.9	9 115.8	3 115.4	114.8	112.6 110.6 109.1	1 105.4	4 101.5 8 98.7 4 95.0	5 91.1 2 85.7	121.2 126.1 132	ND. N312 RDG. ADH190	138.7 SQ CM	,	
SOUND PRESSURE L 70 PERCENT R.H.	Z	ANGLES MEASURED	90. 100.			2 97.2	3 99.7	9 101.0	7 103.6	9 106.1 7 105.6	6 106.5	9 106.6	8 107.8 8 107.6	.8 106.7 .6 105.3 .5 103.7	5 97.9	4 94.4 6 89.8 85.8	8 80.5	.6 118.0	TAPE ! AERO. RI	SE FT) ARC		
UNTRANSFORMED MODEL 59.0 DEG. F.,	IDENTIFICATIO	•	. 80.			1 92.7 5 94 6	7 94.6	7 97.8	5 101.4	7 102.3	9 103.5	105	3 104.9	.2 104.9 .2 104.2 .2 103.8	5 99.7 1	4 6 6	6 77.3	.6 115.9 117	-23-78 1 ANECH CH	ACDUSTIC RANGE .2 M (40.0 FT)		· · · · · · · · · · · · · · · · · · ·
UNTRANSFO			. 60. 70			92.6 92	93.7 92 93.7 92	96.4 95	103.5 101	100.9 101	103.8 102	103.6 104	103.7 103	4 103.0 103 1 101.0 102 9 100.5 101	94.3		1 74.4 9 69.5	2 114.9 114	TEST DATE 03-: LOCATION C41	12		
			40. 50.			92		95	102	385	25.	5 5	102. 103.	98.2 101.4 95.5 99.1 93.3 97.9	92.	83.	74.	113.2 114.2	TE	TEST F		
248			7 7 7 7	7 7 0 0 0 0 0 0 0	100 125 160	250	2 4 G	630	\$ 5 £	200	2500	5000	9 9 9 9 9 9	10000 12500 16000	25000	31500 40000 5000	80000	OASPL		MODEL		

ţ

0
8
-
0
_
8
8
`
10
-
`
Ñ
\sim

Ĺ

Ĺ

.5×							_	T										==					=													
02/15/80 9.180																						i I											Co	8 .	RREE-JET SPEED M/SEC (O. FPS)	
	LEVELS) 	173.1	174.0	75.2	75.8	176.0	175.8 175.2	175.0	74.2	172.6	72.2	4.17	70.4	170.6	69.0	169.3	170.1	8.69	171.7		•						187.0			2	RELHUM 61.	ó	
	JRE LEV			160.	-	۲.	9 0	၁တ	4	86.5 83.6	2	N C	9 (9)	0,	- œ	, R	- 1	ه ره	າເດ			- 🕶								98.9	99.4		1	1	- FULL	
	SOUND PRESSURE	19	S	150.	9.66	99.4	99.7	99.8	98.3	96.8 94.4	92.7	6. 8. 6. 8.	86.4	84.9	82.78 2.12	77.4	73.5	80.00	46.3	28.3										108.1	108.6	FT -9	CRSO	29.4000	SQ IN)	
	SOUND SB 24	X02161	DEGREES	140.	97.4	99.2	0.5	100.0	101.0	100.2 98.4	96.6	94.6	91.4	89.4	א מ מ מ מ	83.4	80.8	76.2	61.6	47.9	25.8		•							109.8		SHI	AH DHA	PAMB	SIZE (1400.00 S	
	SCALED, AND EXTRAPOLATED TO PERCENT R. 1. STD. DAY,	FMODL	INLET,	130.	1	98. 1		- 1		102.1	1						1			1									: :-	111.5	117.0	FREQUENCY	-		S CM (140	
	EXTRA	FJ-ZER-FMODL	FROM	120.	1			1		95.7	1			ł			1			1										106.0			Nata	ADH 190	.2 50	
	D. AND	CATION -	S MEASURED FROM INLET	110.	1			1		90.5]			1			1										101.7		8.070	5	RDG.	9032	
	SCALE	31	ANGLES ME	100		82				0 88.0 6 87.4									_											•	106.8	RATIO	TABE	AERO.	.) St	
	TRANSFORMED, O DEG. F., 7	IDENTIF	AN	. 90	79.	8	8 8	85.	87.	3 87.0 1 85.6	86.	86.	87.	88	. 78		85.	80 6	2 70.6	63.	47.									7 98.6	• •	AMETER		CH	C RANGE 400.0 FT)	
				. 80	77.	78.	8 8	83.	86.		85.	. 45 10 10 10 10 10 10 10 10 10 10 10 10 10	86.	85.	ນ ຜ	84.	83.	82.	. 69	62.	44	2								96	6 106.	01/	20-70	1 ANECH	ACDUSTIC 5 M (24C	
	FLIGHT 59			. 70	74.	76.	. 2	833.	85.	.7 83.	83.	84.	84.	83.		8 .	80.	77	. 1	56.	39.	4								6 95.	2 102.		8	32	AC 731.5	
				. 60	75	76	77	7 84	1 85	8 81	6 84	80 0	8 0	82	87	79	78	73	6.0	52	32	'n								.7 94.	101		110	LOCATION	Ä	
				0. 50	9	6		8 82	.2 83	6 79.	3 83	- 0	n eo	4	O 11	. 0	80	۲. (ם נס	0	9.									92	.99		1	 	EST POINT 0216	
25 0				40	1			8 2	78	250 79	82	8 7	7.0	1			ſ			5000 31.		8 6 8 6 8 0 8 0	12500	16000	25000	31500	40000 10000	63000	80000	6	TIES.				MODEL TE	and the second

8
-
•
a
8
8
•
ĸ,
-
•
8

02/15/80 9.180									•		OF		INA OOI		PA(QU/							FREE-JET SPEED 2 M/SEC (296.0 FPS)		
SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE 70 DEBCENT R.H. STD. DAY. SB 40.0 FT. ARC	ICATION - MODEL FJ-300-FMODL BACKGROUND FJB300-FMODL	ANGLES MEASURED FROM INLET, DEGREES	40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160.	F R E Q 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6	100 125 160 200	88.4 88.7 88.7 91.3 93.9 94.1 96.2 100.7 108.7 112.6 119.6 115.7	88.7 89.7 90.7 89.7 91.3 94.0 94.6 96.7 101.7 111.8 116.2 120.8 115.0 188.7 90.3 92.0 91.6 92.9 94.8 96.2 97.8 103.5 114.9 118.0 121.4 113.6	89.8 91.4 92.6 92.4 94.3 96.4 97.0 100.2 106.1 116.5 120.3 121.8 111 93.8 92.9 93.9 94.2 94.8 97.1 98.8 102.4 107.9 118.2 121.1 121.0 109	95.9 96.0 97.2 96.3 96.9 99.2 100.4 104.0 110.2 119.3 120.9 119.9 108.0 94.8 97.8 99.6 19.7 100.4 101.6 101.4 105.1 111.1 119.6 122.0 119.2 107.1	96.1 96.4 97.9 98.0 99.8 102.4 103.3 106.2 112.2 120.5 121.7 118.7 106.5	101.8 102.4 101.8 99.9 100.2 102.1 103.2 107.4 113.3 122.2 119.6 116.1 105.6	100.4 100.9 103.2 102.7 103.3 104.1 103.8 108.2 113.7 118.8 116.9 113.4 102.2	100.0 100.3 101.8 102.3 103.4 105.0 104.9 109.1 113.1 118.9 115.0 112.0 101.5 99.6 100.7 101.9 100.9 102.2 105.8 105.2 108.4 110.5 117.5 114.1 110.4 100.6 1	98.7 100.8 101.7 100.8 102.6 104.8 103.0 107.9 112.1 116.0 113.0 105.7 33.7 98.4 99.4 101.2 101.0 102.9 104.8 103.7 107.5 111.0 115.9 111.3 107.8 98.2	97.5 99.4 100.4 102.4 103.5 102.2 106.4 109.3 113.0 108.8 106.0 96.7 3 as 0 as 6 as 8 101.4 103.1 101.6 105.0 107.4 112.1 106.9 103.9 95.6	88.8 93.3 94.9 96.0 100.4 101.5 98.9 101.9 105.4 109.1 104.3 101.5 93.9	87.4 90.4 91.9 92.7 97.1 98.5 95.3 96.5 103.3 105.3 101.2 97.2 91.9 pr. p. pr. p. pr. p. pr. p. pr. p. pr. p. pr. p. pr. p. pr. pr	80.2 80.4 84.3 85.7 90.4 91.1 87.2 89.5 94.5 99.3 93.9 87.5 82.0	67.8 70.2 71.0 72.7 74.0 75.0 76.7 76.1 86.4 88.6 82.6 75.1 70.9 147 61.9 63.4 64.5 67.7 66.8 69.3 68.9 70.0 81.2 84.7 77.3 67.0 62.9 149	0ASPL 110.3 111.2 112.5 112.1 113.4 115.2 115.1 118.8 123.7 130.9 130.9 130.6 122.7 167.1	TEST DATE 03-23-78 TAPE NO. N312 IALPHA SB59 TAMB 48.20 LOCATION C41 ANECH CH AERO. RDG. ADH203 PAMB 29.4300 RELHUM 76.40	ACDUSTIC RANGE 12.2 M (40.0 FT) ARC 138.7 SQ CM (21.49 SQ IN) - MODEL 90.22	251	

25 2									<u>.</u>			02/15/80	9.330		
		29.0 D	PLIGHT 1 DEG. F.,	TRANSFOR 70 PERC	PERCENT R.H.	1. STD.	STD. DAY, SB		40.0 FT.	ARC					
			IDE	IDENTIFICAL	ICATION - F	FJ-300-FMODL	MODL	X02170	•						
			A	ANGLES ME	S MEASURED	FROM INLET		DEGREES							
40. 50.	·. •	.02	80. 90	5. 100.	110.	120.	130.	140. 1	150.	160.	PWL				
8 6				3 3 3				•							
125 160															
89.9	92.6	0	_	.1 92.5	93.9	98.0 1	105.4 1	108.8 11	6.1 1		47.7				
89.9	92.5	7	، ما	l l	94.1	99.7	109.1	l' '	~ *		50.0				
93.6 93.9	92.3 94.0		94.3 95.0	.0 95.6		-		· - (122.0 11	15.50 1.50 1.50 1.50 1.50 1.50 1.50 1.50	54.4				
94.2	95.6	0 4	ဖြင			9 6	0 2	. 1.	- -	- 1	55.4		O		
	96.9	4	- (2:	40	, m	- *		55.5		F	DIG.	
0.00	103.3	an 1~	o iu			112				1	55.3		PO	:IN	
7	101.7	1	6 1	9 101.9	9 105.3	112.6	- σ			4 6	155.2		OR	AL	
106.1	104.7		. ن			133				φ.	. 23 23 24 25 26 26 26 26 26 26 26 26 26 26 26 26 26		QI	P	
105.7	107.0	m	ه ام	8 105.	107.5	133	2	٦,		- -	53.8		JA	nG'	
105.3	105.8		· 03 ·		1 108.6	113	- , 0				53.4		LIT	E	
104.8	106.0 105.8	ກຸຕຸ	- 10		2 10	111	9 9	1	i	1	52.5		~	5	
12500 103.1 103.7	105.2	Ψ α		5 104.		109 108					52.5 52.1				
99.5 101	102.8		េស		200	80 0	4 (51.6				
. 1	94.8	- 6	~ ~	- 1	1	99.7	- ابر	1	ı		50.6				
89.3 88	91.5		4		90.3	ლ ი	٠ ت	φο			50.8				
50000 83.3 82.8 63000 76.1 77.3	85.9 77.9	84.3 86. 76.9 77.	2 86 6 78	.6 84.2 .0 78.6	76	92.8 89.2	94.7		76.9	77.9 1	50.9				
66.6 68	69	i	4 72		70.	6.9	₹.	ო.		_	48.5				
115.1 115.5	116.1	115.6 11	116.2 117.	.2 115.8	3 118.4	124.0 1	130.3 1	130.2 131	o.	125.3 16	167.4				
MODEL/FULL SI INPUT 1.000	SIZE SCALE	LE FACTOR 1.000		FREE JET FREE	VEL	DCITY (FT/SEC) DIAMETER (IN)	1	296.00 48.00	≅ ≓	REFRACTION TURBULANCE	ION CORRECTION NCE CORRECTION	TION - YES			
TEST	TEST DATE	03-23-78 C41 ANECH	8 CH CH	TAPE AERO.	PE NO.	N312 ADH203		IALPHA S	SB59 29.4300	1	TAMB 48.20 RELHUM 76.40	c o			
				;									27		
MODEL TEST POINT 0200 0217	12		ACOUSTIC RANGE 2 M (40.0 F	FT) ARC	138	.7 SQ CM	, .	SIZE 21.49 SQ	IN)	MODEL	90.22	FREE-JET SP 2 M/SEC (29	SPEED 296.0 FPS)		
							-							I.	

and a second of the second of the

	. 180													RIC	SIN PO(AL OR	. P.	AGE UA	is ity	•						FPS)	
	02/15/80 9.								•								•								48.20 76.40	FREE-JET SPEED	
		E LEVELS SL			3	170.5	173.3	173.7	173.5	172.8	172.1	171.5	170.6	170.2	169.8 169.2	168.8	168.9 167.9	169. † 166. 6				185.4			TAMB	06	
		URE LE			160.	88.2 88.6	88.6 88.3	87.1 86.1	84.3 83.6	81.6	77.5	74.5	69.3	62.1	55.8 43.0	24.6						96.6	96.8	G	59 7.4300 F	- FULL	
		SOUND PRESSURE SB 2400.0 FT.	171	S	150.	96.9 98.5	98.6 98.1	97.1	94.4	91.8	88.0	4.0	80.4	73.8	67.4 58.3	45.4	25.7					90	107.0	FT -	SB59 29.4	SQ IN)	
		SB 2	X0217	DEGREE	140.	94.7		į.		1		1		- 1		- 1		- 1					110.5	NCY SHI	IALPHA PAMB	S1ZE 1400.00	
1		EXTRAPOLATED 4. STD. DAY,	FMODL	INLET,	130.	•			0.00 4.00	1				- 1		- 1						109	114.3	FREQUENCY		CM (14	
		EXTRA	FJ-300-FMODL	FROM	120.			1	93.1	1		į.		- 1		1	1						10.0	o`	N312 ADH203	.2 50	
		D. AND E	- NOI	ASURED	110.	77.1		l		1		1		1		- 1	•					98	106.6	8.070	E NG.	9032	
		SCALED 70 PERCE	IDENTIFICAT	LES ME	100	76.	8 8	82.	9 00 00 4 60	84.		86.	85.	83.5	80.	68.	58. 43.	20.				96	104.8	RATIO	TAPE AERO.	JS (
		F., 7	IDENT	ANGLE	90.	76.	79	82.	8 80	88. 7. 7.	86.	88	9 8 9 8 9 9	86.	83.	71.	64.	20.				97.	107.1	AMETER	.	RANGE 10.0 FT	
		TRANSFORMED O DEG. F.,			80.	75.	78.	80.	83.4	833.	89.0	85.	86.	86.	833.	71.	64. 45.	<u>6</u>			-	96	106.2	014	3-78 ANECH	USTIC RANGE	
		FLIGHT 59.			70.	74.	76.	80.	82.2	833.	8 8	84	84.	82	79.	69,	58.	ឆ្ម				95.	104.2		03-2	ACOU	
					.09	73.	76.	78.	4.0	8 4	86	84.	84.	83.	79.	65.	56.	o ·				Ø	103		ST DATE	7	
					50.	73.		76.	82.0	80.	80	82.	82.2	.08	75.	61.	48.					89	100.7		TES	ST POINT 0217	
					6	70.6	72.9	76.6	78.3	79.5	81.9	80.6	79.6	73.8	70.2	52.9	16.8					-	98.7			MODEL TES 0200	

			֓֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜	OD KACKAMA			
S9.0 DEG. F.	70	PERCENT R.H. STO.	DAY, SB	40.0 FT. ARC	15121		
IDENTIFICATI	NO NO	MODEL BACKGROUND	FJ-400-FMDDL FJB400-FMDDL	X02180 X05220			
	ANGLES MEA	MEASURED FROM	INLET, DEGREE	v			
70. 80.	90. 100.	110. 120.	130. 140.	150. 160			
) M.		
6.88	ო თ	1 98.	104.9	D 19	148.5 150.1		
2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	, r, c		111.3	8	151.6		
7 93.2	9 6	9 105.	116.0	000	153.5		
94.5	יי פוני	3 109	119.1	2 0 5 2 0 5 2 0 5	15.4.3 6.4.3 6.4.3	OR'	
98.0	000	0 4	120.2	0 105	155.0	PC	
99.2) -	9 113	121.9	9 0	155.4	NAL OOR	
9 103.0	0 6	2 113	118.6	40	153.6 153.2	PA	
102.2	n e	4 112	117.5	- 6	152.6 152.2	ige Jal	
7 102.8	2 2	9 110.	115.1	0 %	151.5 150.5	13	
7 101.3	L 4	~ 8		9 7	150.6 149.7		
.1 97.0 .3 91.9 .4 90.9	- o n	- 95		010 ~	148,9 149,4 149.9		
5 74.6	ල අ අ	2 91. 4 88.	94.9 90.6	တ ု က ဖ	149.6 152.1	er de la companya de la companya de la companya de la companya de la companya de la companya de la companya de	
0 113.0	, 6	6 123.	130.6	60	166.7		
23-78 ANECH CH	TAPE	NO.		39 4300	TAMB 52.88		
OUSTIC	ARC	138.7 50	SIZE M (21.49	IN) - MO	120.70	-JET SPEED EC (396.0 FPS)	
			e de la companya de l	•			ar a
100000000000000000000000000000000000000			e de la companya de l				
	88.6 88.9 87.9 89.8 87.9 89.8 88.2 90.3 90.5 91.9 91.7 93.2 94.3 95.6 97.8 98.2 100.1 99.2 100.1 99.2 100.2 103.0 102.6 101.4 102.9 103.0 102.9 103.0 101.7 102.8 101.2 102.5 101.3 19.0 95.7 100.2 101.3 19.0 95.7 100.2 101.0 113.0 112.0 113.0 73.5 74.6 68.5 68.0	88.9 91.3 92.9 93.5 99.8 99.9 99.9 99.9 99.9 99.0 99.8 99.9 99.0 99.9 99.0 99.9 99.0 99.9 99.0 99.9 99.0 99.2 99.3 99.3 99.2 99.3 99.2 99.3 99.2 101.1 103.7 100.2 104.2 104.1 103.7 102.2 105.5	88.9 91.3 92.9 96.1 98.6 99.8 90.3 99.8 99.8 99.8 99.5 99.5 99.7 100.5 90.3 92.7 99.8 90.3 92.7 100.5 90.3 92.7 99.8 90.3 92.7 100.5 90.3 92.7 99.8 97.2 99.9 105.6 97.1 102.5 99.8 101.7 107.4 99.2 100.9 94.0 95.6 97.1 102.3 109.8 97.3 100.0 102.8 103.3 109.8 97.3 100.0 102.8 106.0 111.3 99.2 101.1 103.7 107.9 113.6 101.4 102.3 104.2 108.9 114.2 99.2 101.4 102.3 104.2 108.9 114.2 97.3 100.0 102.8 104.5 108.9 114.2 97.0 103.7 107.9 110.0 102.1 103.2 105.5 107.8 112.2 102.5 107.8 112.2 102.5 103.9 104.1 107.9 110.0 102.1 103.2 102.9 106.0 108.7 101.3 102.7 101.2 104.7 107.9 110.0 102.1 103.2 102.9 104.8 112.2 100.2 101.8 92.8 94.6 99.7 97.1 102.3 104.2 91.9 92.6 92.8 94.6 99.7 97.1 102.3 97.9 92.6 92.8 94.6 99.7 97.1 102.2 113.0 114.6 115.2 118.6 123.9 90.9 91.5 88.2 90.5 95.8 94.6 90.9 91.5 88.2 90.5 95.8 94.6 90.9 91.5 88.2 90.5 95.8 94.6 90.9 91.5 88.2 90.5 95.8 94.6 90.9 91.5 88.2 90.5 95.8 94.6 90.9 91.5 92.8 94.6 90.8 91.9 92.6 92.8 94.6 92.8 94.6 90.9 91.5 92.8 94.6 90.9 91.5 92.8 94.6 90.9 91.5 92.8 94.6 90.9 91.5 92.8 94.6 90.9 91.5 92.8 94.6 90.9 91.5 92.8 94.6 90.8 94.6 90.9 91.5 92.8 94.6 90.8 94.6 90.9 91.5 92.8 94.6 90.8 94.6 90.9 91.5 92.8 94.6 90.8 94.6 90.9 91.5 92.8 94.6 90.8 94.6 90.8 94.6 90.9 91.5 92.8 94.6 90.8 94.6 90.9 91.5 92.8 94.6 90.8 94.6 9	6 88.9 91.3 92.9 96.1 98.1 104.9 110.3 99.9 90.0 112.9 90.3 92.9 93.5 95.2 99.9 108.0 112.9 90.3 92.9 93.5 95.2 99.9 108.0 112.9 90.3 92.9 93.5 95.2 99.9 108.0 112.9 113.15.9 93.2 95.9 94.0 95.6 97.1 102.8 114.1 117.5 17.9 93.2 95.9 94.0 95.6 97.1 102.8 114.1 117.5 17.0 19.2 96.9 98.0 101.7 107.4 117.0 119.0 19.2 100.3 100.9 102.3 103.5 119.1 120.4 121.3 98.0 100.0 9102.3 106.5 113.2 121.0 120.2 120.0 11.9 97.3 100.0 9102.3 106.5 113.2 121.0 120.2 120.0 11.9 97.3 100.0 9102.3 106.5 113.2 121.0 120.2 120.0 103.5	6 88.9 91.3 92.9 96.1 98.1 104.9 110.3 1/7.0 114.4 2 99.8 93.5 95.2 99.5 108.0 112.1 116.3 115.0 114.4 2 90.9 93.5 93.5 95.2 99.5 108.0 112.1 116.3 115.8 119.8 113.2 2 91.9 94.0 95.6 97.1 102.8 114.1 117.5 120.2 111.1 7 94.2 96.9 98.0 101.7 107.4 117.7 120.6 118.3 106.5 3 95.6 98.2 99.3 103.3 109.5 119.1 120.4 116.6 105.5 8 98.2 100.3 100.4 104.6 110.6 119.4 120.2 120.7 116.0 105.5 9 9 0.0 10.3 100.4 104.6 110.6 119.4 120.2 120.7 116.0 105.5 9 10.3 100.0 102.8 106.5 113.2 121.0 120.7 116.7 105.5 9 10.3 100.2 100.2 106.9 113.6 121.9 118.6 114.9 105.5 103.6 104.5 104.5 108.9 113.6 121.9 118.6 114.9 105.5 103.6 104.5 104.9 108.0 112.1 118.6 114.9 105.2 17.0 102.5 104.5 104.9 106.0 115.2 116.7 107.9 99.7 102.5 103.2 102.9 104.9 106.0 108.7 113.4 108.5 103.6 96.7 100.1 101.2 94.4 103.0 102.3 104.5 107.9 110.9 110.9 110.4 106.5 103.6 96.7 103.1 103.2 102.9 104.7 107.1 112.4 108.5 103.6 96.7 103.1 103.2 102.9 104.8 105.1 102.1 104.0 101.2 94.9 103.0 91.5 88.9 91.6 8 105.5 104.9 91.0 91.0 91.0 91.0 91.0 91.0 91.0 91	BB 9 91.3 92.9 96.1 98.1 104.9 110.3 1.77 0 114.4 148.5 99.8 92.9 93.5 95.2 99.9 108.0 112.1 114.3 151.6 99.8 92.9 93.5 95.7 109.9 110.3 111.9 110.2 111.1 152.6 99.8 92.9 93.5 95.7 100.9 110.3 111.5 120.2 111.1 152.6 99.8 92.9 93.5 93.7 102.8 114.1 117.5 120.2 111.1 152.6 99.9 10.0 10.3 10.3 10.3 10.3 10.3 10.3 10.3	BB.9 91.3 92.9 96.1 98.1 104.9 110.3 1/7.0 114.4 148.5 9 91.9 91.3 92.9 96.1 98.1 104.9 110.3 1/7.0 114.4 148.5 9 91.9 91.0 10.0 11.3 115.9 119.8 113.3 151.6 91.0 1 91.0 1 91.0 91.0 91.0 91.0 91.0

BOYE MOREX

					59.0	FLI DEG.	DEG. F., 70	ANSFO	PERCENT R	R.H. S	SOUND TD. DA	SID. DAY, SB	URE LE	LEVELS 40.0 FT.	ARC								
				•			IDENTIF		ICATION -		FJ-400-FMODL		X02180										
							ANGLE	LES M	S MEASURED		FROM INLET	1 -	DEGREES										
	0000	40	50.	.09	70.	80.	90.	100.	. 110	. 120		130. 1/	140. 15	150, 10	160.	PWL							
	200																						
	63																						
	8 2																						- [
	125																						
	5 8 5 5 8 5	Œ		9	7	06				96	RU.	7	7.3 114	1.4.1		16.2		!					
	1	91.6		92.9	91.6	91.	1	ı		1	1	6	1			48.7							
				93.0	91.3	91.					_					51.3							
	200	94.1 95.1	93.8 8.8	93.9	91.2	93.7	94.3		93.4	1 106.1		16.2 119	119.5 120	120.0	114.8	153.9							
	1			97.6	95.1	96		1		ł		ł				54.5				ŀ			
Ť				97.9	97.1	97.					_					55.0				C			
- 1				99.9	97.4											55.2 4.85.4				F			
7			1	102.4	101.3	99.4		ı			-	1				55.8				P			1
8				101.9	99.7						_					55.3				OÇ			
ლ 4	3150 10	107.7		106.2	103.3		104.3									9. 4. 9. 6.				R	AL		
r K	•	- 1		109.1	107.5	10	1	1		1	-	1				54.0				Q			
6			Ø	107.1	107.1	106					•					53.6				U			
6			106.9	107.0	105.8	106.6		106.9								52.9 52.6				ÁL	GE		
2 5	10000	- 1	2 0	10/ 10	103 405 9			- 1	1	- (1		•		1	52.5				T			
1 0			ຸຄ	103.7	103.7	105					•	ហ្គ				52.1				Y			
20				104.2	103.1						•	က်၊				52.3							
50		- 1	100 20	9	99.5	9		- 1	- 1	- 1	- -	u a	1	1	وإد	-							
- C		46 6.0	0.00	96.1		9.00						•	r 0		٠.	 -							
S O		86.8	85.9		88.2	87	87.3	8.4.8			.5 96	5.1 89.	ס ָו	86.0 88	φ,	51.4							
63		78.9	80.0	80.0	• 1	78.7	-	- 1		- 6	e l	e II	ro a	J	o la	52.8							
80		69.7	71.6		7.1.7	72.0	_					n.	0.			2							
ð	OASPL 1	116.8	117.1	117.2	116.0	116.6	117.1	116.1	1 118.1	1 124.0	.0 130.3		129.9 129	129.9 12	126.6 16	167.4							
	Ī	ODEL/I	MODEL/FULL SI INPUT 1.000	Z.	SCALE FI	FACTOR 1.000	11	FREE JET FREE	VEL	VELOCITY JET DIAME	DCITY (FT/SEC) DIAMETER (IN)	į.	396.00 48.00	T UT	REFRACTION TURBULANCE	TON CI	CORRECTION CORRECTION	ON - VES	S S				
			TEST	TEST DATE LOCATION	- 1	03-23-78 C41 ANECH	₹	TAP AERO.	TAPE NO.	N312 ADH202	2 202	IALPHA PAMB	1	SB59 29.4300	æ	TAMB	52.88 73.10						1
								j		ļ						-		- 1					- 1
2	MODEL 0200	TEST 02	TEST POINT 0218		ACDI 12.2 M	ACOUSTIC RANGE 2 M (40.0 F	RANGE O.O FI	iE FT) ARC	<u>5</u>	ि. 7 SQ) WO O	SIZE (21.4	05 6	IN) -	MODEL	120	FREE-JET 120.70 M/SEC (SPEED 396.0 FI	FPS)		•	
	25															e) Australia (1,6 pp. mar.)							-
	5																						
																							ŀ

9.180		٠									ORI OF	GI	NA OC	IL R	P# QL	(GI	Ē Li	S			The second secon									D FPS)	Super-
02/15/80				1															•							~			52.88 73.10	FREE-JET SPEED 120.70 M/SEC (396.0	
	E LEVELS SL			160. PWL	7 16	4 5	4	4 0	œ. ω	F 4		1	4	60 00	(m)	ທຸດ	. 6		171.0							97.6 185.4 99.7	100.8		TAMB RELHUM	FULL 120	
	SOUND PRESSURE SB 2400.0 FT.	181	ES	150. 16	95.7	96.8 4.96	95.8	95.8 94.9	93.5 87	92.2	9.88	83.0	82.4	80.4	75.0	ט ת מ	45.8	27					-			105.2	106.8	IFT -9	SB59 29.4300	SQ IN) -	
	AY, SB 2	0DL X0218	ET, DEGREES	130. 140.	93	96	8	5 8 6 6	99.9 97.8	95	60 6	288	88	& & 2	62	7.5	9	4 c	1						7,3	109.2 107.6	.9 110.	FREQUENCY SHI	IALPHA PAMB	SIZE (1400.00	
	EXTRAPOLATED H. STD. DAY.	FJ-400-FM0DL	FROM INLET		82.4	85.5	89.6	90.7	93.4	94.8	93.0	92.9	90.8	88.7	85.5	83.0	71.5	61.5	21.8							103.8	110.8		N312 ADH202	.2 SQ CM	
	ALED, AND EX ERCENT R.H.	- NOIL	MEASURED	100. 110.	6.4	m d		m C	83.9 85.9) (D (7	~	~ ~	,	~ ~		4 11								96.8 98.4	1	10 8.070	TAPE NO.	9032	¥ 1
	DRMED, SCALE	IDENTIFICA	ANGLES M	90.	r.	76.9	79.9	81.2 83.4	84.0	84.3	87.2	88.3	87.4	87.5	85.7	83.6	70.8	ထားခ	-							r = 0		DIAMETER RATIO	CH AE	RANGE D.O FT) SE	
	HT TRANSFORMED 59.0 DEG. F.			70. 80.	3 74.	.2 76	78	97 9	83.0 82.5	7 83	.3 87	7 88	.5 86	.3 87	7 85	.4 83	5 79	4 u	20.							96.0 97.1 04 6 106.5	.2 107.	DIA	03-23-78 C41 ANECH	ACOUSTIC RANGE 5 M (2400.0 F	
	FLIGHT 59			.09	74.3	75.2	78.8	79.0	84.3	82.1	86.6	88.3	85.7	85.5	81.3	81.0	67.2	56.3	11.5							96.3	105.		TEST DATE O	731.	
				40. 50.	1 74	8. 74	. 17	8. 8. 8. 8. 8.	79.4 82.6	3 82	. 8. 85.	85	4 84	.7 84	8 78	2.1 77	3.0 /2 5.3 63	0.3 48	, 0					•		7 94	0 102		TES	TEST POINT 0218	
25	6			FRED					200 7			- [-	מו פ	5000	¥	12500	16000	25000	31500	2000	80000	OASPL 9	1			MODEL 0200	3.10.8

														0	RI F	PO	VAI OF	L I	PŲ.	GE ALI	g	5						1 .	:T SPEED (0. FPS)	*><*><*>	चें (च्	
																											51.26 63.60	00.00	FREE-JET O. M/SEC (<*><*><*>	*	
				7				144.7	147.8	148.7	149.2 148.9	148.0		147.5	148.0	147.0	147.0	145.8	145.4	144.1	143.2		141.2	139.7	40.5	160.4	TAMB	ELICH		><8><	2.4	
T. ARC	96 00		160.					101			112.7	111.8	10.6	10.01	110.1		107.6	106.3	105.5	101.8	99.3		87.0	76.2	0.60	122.7	59	1	- MODE	<9><4><4><4><4><4><4><4><4><4><4><4><4><4>		
40.0 FT. ARC	X02190 000000	ES	150.					113.0		116	117.	1.4	=	1 5	114	==	113	110		0.0	98.4		89.3	• •	8.7/	126.8	SS	67	SQ 1N)	*><*><		
DAY, SB	FJ-ZER-FM0DL 000000000000	DEGREE	140.					106.8		-			- 1	109.7		1		107.3		5	98.5	92.		1	7.7.7	122.4	IALPHA		SIZE 21.49	><*><*	.	
DAY,	FJ-ZER 000000	INLET	130.					1		108				108.8 109.1		2 107.8			104		1	92	87.	74.5	89 e	5 120.6	ç	20	J	1	T.	
.H. STD.	MODEL BACKGROUND	FROM	120					9 95.3		\$		•				4 105.2				2 99.4				1	2 70.5	3 116.5	N312	AUHI	8.7 50	<*><*><*><*><*><*><*><*><*><*><*><*><*>	,	
70 PERCENT R.H.	- MODEL BACKG	3LES MEASURED	110			-		93.9	- w	4 95.6	60 () 4	4	 M		- 10	_	1 104.5	00 4	96	95	.	8 6	5 69.4	_	113.	TAPE NO.		<u>.</u>	<*><*>	Ç .,	
	ATION	IGLES M	. 100		:			۵,	2 2	5	1 94	- 92 0	98	4.08	9	.1 99.	e (. ம	4 4	5 95	7	.3 85.	- c	3 70.	.8 63.	6. 110.4	⊢ .	AERO	T) ARC	****	4 1	j. K
3. F.	IDENTIFIC	AN	0. 90					39	9 60	92	94	96	97	97	7 97	86	6 68		98	. 6 96.	4 94	85	84	.3 69.	63	.5 109.		- -1	C PANGE	<*><*><*>	,	
59.0 DEG. F.	101		70. 80					4	င် ကြောင်း	. 6	9.0	, o	9	ი ი ი ი	 	- 4 0 0	4.	6. - .	9 0	າ ດ .	6 0 6 0	0.00	60.0		© <u></u> -	.0 107	03-23-78	1 ANECH	ACOUST SC	E *	Total A	5
E.			60. 7					}∞ (- 15₹	i se	-	ე ტ	i Oùt	A	- د	3 0	÷ (က္ဆ	<u> </u> - 0	מופ	φ	non	60 0	1.0 67	6	3.2 106		L	4 C	*		
			50. 6					7.8 85.	9	. 80	છ ક	D P~	ارته	્રે આ જ	ų ati	m c	201	r 6	0	מ א	ω	ח ת	- 1		ဏ	5.4 106	TEST DATE	LOCAT	POINT	*><*><		
			40.	-				0	- o	0	9	- 6	8	ω u	, æ		· m	ဖ ဝ	20	ဆ တ	r.	- 1	r .	58.1 63	-	03.6 105	•		TEST P0]	<*><*><*>	t	
				REQ 50	6 60 60 60 60 60 60 60 60 60 60 60 60 60 6	100	160	250 8					- 1						1					630000 5		DASPL 10		-		0500	, , , <u>, , , , , , , , , , , , , , , , </u>	1.

. 180¥!!??¥F!!										OR OF	igi P	NAI OOF	- P	AG QUA	E	[3] [3]	- 114/00/									FPS)	
102/18/80		:																						CORRECTION - YES CORRECTION - YES	51.26 63.60	FREE-JET SPEED O. M/SEC (O.	
प्रतिविधिक्याः स्टब्स्	LEVELS 40.0 FT. ARC	Q		150. 160. pwl				45 6 446 7	9	111.8	.3 112.7 148	111.8 148	0 111.2 147	.9 110.1 148	.2 108.2 147		105.5	103.1.144 101.8 144		94.5 91.1 141.6 89.3 87.0 141.2	81.9 1	69.6	126.8 122.7 160.4	REFRACTION TURBULANCE	\$859 TAMB 29.4000 RELHUM	IN) - MODEL	
	STD. DAY, SB 4	نـ	FROM INLET, DEGREES	120. 130. 140.			S	,	104.2	108.3	109.7		108.8		107.8	108.0 107.1	.2 105.8 107.3 .9 104.6 105.7	.2 102.5 104.0 .4 101.6 101.8	. 1 98.4 98.5 .5 93.5 94.9	.7 92.0 92.6 .8 87.1 88.7	82.7	.9 68.8 72.2	116.5 120.6 122.4 1	(FT/SEC) 0. ETER (IN) 48.00	N312 IALPHA ADH188 PAMB	SIZE SQ CM (21.49 SQ	*Agran
The second secon	TRANSFORMED MODEL.	DENTIFICATION - FJ-	ANGLES MEASURED FR	. 100. 110.			•	6	92.1 93.7	93.4 95.6	96.0 98.9	.0 97.4 100.0 10 .6 98.4 100.9 10	98.3 101.7	99.7 102.1	99.5 102.4	99.7 102.9 99.1 102.5	99.1 101.5 97.8 101.1	96.4 95.3	92.9 95.1	85.6 87.6 80.2 82.3	76.0 75.8 70.5 69.4	63.1 63.2	.6 110.4 113.3 11	FREE JET VELOCITY (FT FREE JET DIAMETER	TAPE NO. N3 AERO. RDG. AD) ARC 138.7	
Prince Traces M. Comment of the Comm	FLIGHT T 59.0 DEG. F.,	IDEN	AN	70. 80. 90				6	0 89.3 91	5 88.8 91 5 90.4 92	7 92.8 94	93.0 93.9 96. 94.6 95.9 97.	2 95.1 97	9 95.7 97	4 95.5 98	.4 95.9 98 .7 95.5 98	.1 95.7 97 .4 96.0 98	3 95.6 96 0 94.6 96	3 93.4 94 9 89 8 91	8 84.6 85 5 83.2 84	9 75.8 77.	1 60.7 63.	106.0 107.5 109.	1.000	03-23-78 C41 ANECH CH	ACCUSTIC RANGE 2.2 M (40.0 F*	
10. CVFT				0. 50. 60.					. 1 85.9 86.	.9 87.2 87. .0 88.8 89.	6 89.6 90. 1 89.8 90.	.9 93.7 95.0 .8 93.5 94.8	8 91.9 93.	.8 93.8 95.	.1 95.3 95. .1 94.2 94.	.3 93.8 94. 6 93.7 94.	.0 94.9 94. 2 94.0 95.	8 91.2 92. 6 89.5 91.	5 86.6 87.	7 73.1 76.	5 68.7 69.	.1 55.6 57.	105.4 106.2	MODEL/FULL SIZE SCALI INPUT 1.000 CALC.	TEST DATE LOCATION	EST POINT 12 0219 12	
3049 1.107 258 3011 1.07 258				40	50	ස ස දි ද	125	•	i		- 1	6 6	9	9 6	9 9	93	91	84	77	73	63	21	0ASPL 103.6	MODI 11		MODEL TE 0200	

DOTE XOUR

80. 80. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PML 91. 100. 110. 120. 130. 140. 150. 160. PML 92. 100. 111. 121. 121. 121. 121. 121. 12	ANGLES MEASURED FROM INLET, DEGREES 80. 100. 110. 120. 130. 150. 160. 160. 8 69.5 71.3 73.8 75.0 76.8 80.5 88.5 89.6 92.3 84.7 8 71.1 72.8 75.1 75.8 77.6 80.9 85.1 89.8 90.6 92.6 85.5 1 73.6 74.9 76.1 78.4 80.9 85.1 89.8 90.6 92.6 85.5 1 74.9 76.1 78.4 79.6 81.9 85.8 89.8 88.9 91.0 84.4 8 76.3 78.1 79.8 80.6 82.5 85.8 89.0 89.0 90.3 82.9 2 75.8 77.0 79.5 80.3 82.3 86.7 88.4 87.7 90.5 83.0 2 75.9 77.2 79.2 80.2 83.2 86.5 88.4 87.2 89.1 81.1 3 75.9 76.5 79.2 80.5 82.9 84.8 86.0 85.7 86.5 76.5 2 74.5 76.6 79.5 80.3 82.4 85.6 85.4 85.5 76.5 2 74.5 76.5 79.5 80.3 82.4 85.0 85.7 86.5 76.5 2 74.5 76.5 79.5 80.3 82.4 83.0 85.5 85.5 77.6	OF POOR QUA
90. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PML 10. 87. 17. 37.8 15.0 76.8 10.5 10.5 10.5 10.5 10.0 PML 10. 87. 17. 37.8 15.0 76.8 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	30. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. 18 69.5 71.3 73.8 75.0 76.8 80.5 88.5 89.6 92.3 84.7 18 71.1 72.8 77.1 79.4 80.5 89.1 91.2 93.1 84.9 1 73.6 77.1 79.4 80.9 85.1 89.8 89.6 92.6 92.3 84.9 1 74.9 76.1 78.4 79.6 81.9 85.	OF POOR QUA
70.8 68.4 90.7 19.1 72.8 17.2 17.6 18.0 9.5 88.5 89.2 84.7 166.0 70.8 17.8 17.8 17.8 17.6 18.8 19.6 91.2 91.1 91.2 91.3 18.9 166.0 70.8 17.8 17.8 17.6 18.4 19.6 18.9 19.6 91.6 19.1 167.3 71.1 17.2 17.2 17.2 17.6 18.4 19.6 19.4 19.2 91.4 19.1 167.3 71.2 17.3 16.1 17.6 18.4 19.6 19.8 19.8 19.9 19.1 19.1 19.1 167.2 71.2 17.3 16.1 17.4 19.2 19.1 19.2 19.1 19.1 19.1 19.1 19.1	8 69.5 71.3 73.8 75.0 76.8 80.5 88.5 89.6 92.3 84.7 1 72.8 75.1 75.8 77.6 81.3 89.1 91.2 93.1 84.9 1 73.6 74.6 77.1 79.4 83.4 89.4 91.2 93.1 84.9 1 73.6 74.6 77.1 79.4 83.4 89.4 91.2 93.1 84.9 1 74.9 76.1 78.4 79.6 81.9 85.8 89.8 88.9 90.6 92.6 85.8 1 74.9 76.1 78.4 79.6 81.9 85.8 89.8 88.9 90.6 92.6 85.8 75.3 76.6 77.0 90.3 82.9 91.0 84.4 75.9 77.0 79.5 80.4 82.8 86.5 88.4 87.7 89.5 80.4 75.9 77.2 76.6 78.9 80.1 82.8 86.5 88.4 87.7 89.5 80.4 75.9 77.2 79.2 81.2 83.2 85.1 89.2 86.4 89.5 80.4 75.9 76.5 79.2 80.5 82.9 84.8 86.0 85.7 86.5 76.5 76.5 74.5 76.6 79.1 80.3 82.4 86.0 85.7 86.5 76.5 76.5 77.5 76.6 79.5 82.9 84.8 86.0 85.7 86.5 76.5 76.5 77.6 75.6 75.9 79.5 82.4 85.0 84.8 85.8 85.4 85.2 74.8	OF POOR QUA
71.6 71.4 75.1 76.6 77.4 79.4 89.4 89.4 89.7 89.7 89.7 89.7 89.7 89.7 89.7 89.7	6 71.1 72.6 75.1 75.1 75.0 75.2 85.2 85.1 85.2 85.2 85.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5	OF POOR QUA
172. 73.6 14.6 17.6 18.4 80.9 85.1 89.8 90.6 92.6 85.5 167.0 176.8 16.1 71.6 17.6 18.4 80.9 85.1 89.8 90.6 92.6 85.5 167.0 176.8 176.3 71.6 176.4 92.6 81.9 85.8 89.0 89.0 90.2 82.9 165.2 176.8 176.3 71.6 176.4 80.6 82.6 82.8 89.0 89.0 90.0 82.9 165.3 176.8 176.3 71.0 71.0 80.3 82.8 81.8 81.8 81.0 81.0 90.0 82.9 165.1 176.8 176.9 176.2 90.1 82.8 81.8 81.8 81.0 81.0 90.1 81.0 165.1 176.3 176.9 176.2 90.1 82.8 81.0 81.2 81.0 81.0 81.0 165.1 176.3 176.9 176.2 90.1 82.8 81.0 81.2 81.0 17.0 165.1 176.3 176.9 176.2 90.1 82.8 81.8 81.8 81.0 17.0 165.1 176.3 176.9 176.9 18.0 82.8 81.0 81.2 81.0 17.0 165.1 176.3 176.9 176.9 18.0 18.0 18.0 18.0 18.0 18.0 18.0 18.0	1 73.6 74.6 77.6 78.4 80.9 85.1 89.8 90.6 92.6 85.8 1 74.9 76.1 78.4 79.6 81.9 85.8 89.8 89.6 92.6 85.8 85.8 76.3 78.1 79.6 81.9 85.8 89.0 89.0 99.0 91.0 84.4 8 76.3 78.1 79.8 80.6 82.5 85.8 89.0 89.0 99.0 90.3 82.9 82.9 75.3 76.6 78.9 80.1 83.2 86.7 88.4 87.7 90.5 83.0 81.1 4 75.9 77.2 76.9 79.7 80.9 83.4 86.0 87.3 86.4 88.3 77.9 75.9 76.5 79.2 80.5 82.9 84.8 86.0 85.7 86.5 76.5 76.5 74.5 76.6 79.1 80.3 82.4 85.0 87.3 86.1 88.3 77.9 74.5 76.6 79.1 80.3 82.4 85.0 85.7 86.5 76.5 76.5 77.5 76.6 79.1 80.3 82.4 82.0 85.8 85.8 85.8 85.7 86.5 76.5 77.5 76.5 79.5 82.4 82.0 84.5 85.8 85.8 85.4 85.2 74.8	OF POOR QUA
76.1 74.2 76.1 78.4 79.5 81.9 85.8 89.8 88.9 81.0 84.4 166.2 776.2 76.3 77.2 79.5 80.0 82.2 86.7 88.4 87.7 90.5 81.0 166.1 77.4 75.9 76.7 79.5 80.0 82.2 86.7 88.4 87.7 90.5 81.0 166.1 77.5 77.2 77.2 79.2 80.2 82.2 86.5 86.7 88.4 87.7 90.5 81.0 166.1 77.5 74.9 76.5 79.2 80.2 82.2 86.5 86.7 88.4 87.7 86.5 185.8 77.2 77.2 77.2 79.2 80.5 82.9 84.8 86.0 87.3 86.1 88.3 77.9 185.8 77.2 74.5 76.5 79.2 80.5 82.9 84.8 86.0 87.3 86.1 88.3 77.9 185.8 77.2 74.5 76.5 79.2 80.5 82.9 84.8 86.0 87.3 86.1 88.3 77.8 164.0 77.2 74.5 76.5 79.2 80.5 82.9 84.8 86.0 87.3 86.1 88.3 77.8 164.0 77.2 74.5 76.5 79.2 80.5 82.9 84.8 86.0 87.3 86.1 88.3 77.8 164.0 77.5 77.9 79.9 79.7 77.9 81.4 81.2 82.9 82.7 164.0 164.0 77.5 77.9 79.9 79.7 77.9 81.4 81.2 82.9 82.9 162.2 80.0 183.5 77.6 77.5 77.5 77.5 77.5 86.9 87.8 87.8 87.8 87.8 87.8 87.8 87.8 87	. 1 74.9 76.1 78.4 79.6 81.9 85.8 89.8 88.9 91.0 84.4 76.3 78.1 79.8 80.6 82.5 85.8 89.0 89.0 90.0 84.4 75.3 75.1 79.8 80.6 82.5 85.8 89.0 89.0 90.3 82.9 83.0 83.0 75.3 76.6 78.9 80.1 83.2 86.5 88.4 87.2 89.5 83.0 75.9 77.2 79.2 81.2 83.2 85.5 89.4 87.2 89.5 80.1 81.1 83.2 75.9 76.9 79.7 80.9 83.4 86.0 87.3 86.1 88.3 77.9 74.9 76.5 79.2 80.5 82.9 84.8 86.0 85.7 86.5 76.5 76.5 77.5 76.6 79.1 80.3 83.0 84.8 86.0 85.7 86.5 76.5 76.5 77.5 77.5 77.5 77.5 77.5 7	OF POOR QUA
7.5.8 76.5 77.6 79.5 80.7 82.8 89.7 89.7 89.7 82.9 16.5 82.0 166.7 75.4 77.5 75.8 77.7 79.5 80.7 82.8 89.7 89.7 89.7 80.5 82.9 16.5 87.9 16.5 75.8 76.5 77.9 18.2 80.2 82.8 89.7 89.5 80.1 165.6 75.4 75.8 76.5 77.9 18.2 80.2 82.4 86.7 89.5 80.4 165.6 16.5 87.2 89.5 80.4 86.7 86.5 18.5 18.5 18.5 18.5 18.5 18.5 18.5 18	2 75.3 78.1 79.8 80.6 82.5 85.8 89.0 82.5 82.0 83.0 90.3 82.9 2 75.8 77.0 79.5 80.4 83.2 86.5 88.4 87.2 83.0 3 75.9 76.5 77.2 78.2 86.5 88.4 87.2 89.5 83.0 4 75.9 77.2 78.7 80.3 83.4 86.0 87.3 86.1 88.5 80.4 5 74.9 76.5 79.2 80.5 82.9 84.8 86.0 85.7 86.5 76.5 3 74.5 76.5 79.5 82.0 83.8 85.8 85.4 85.5 74.8 2 73.6 75.9 79.5 82.4 83.0 84.6 85.5 85.4 85.5 74.8	OF POOR QUA
75.4 75.2 76.6 78.9 80.1 82.2 86.5 88.4 81.2 89.1 81.1 166.6 1 75.4 75.2 76.6 78.9 80.1 82.2 86.5 88.4 81.2 89.1 81.1 166.6 1 75.4 75.3 76.6 79.2 81.2 83.2 85.1 89.2 86.4 89.5 80.4 166.1 74.5 74.5 76.5 77.2 79.2 81.2 81.2 85.1 89.2 85.4 81.2 76.5 16.5 2 74.5 74.5 76.5 79.2 81.2 81.2 81.2 81.2 81.2 71.2 16.5 16.5 2 74.5 74.5 76.6 79.1 81.2 81.4 81.2 81.4 81.2 81.5 16.5 2 73.6 74.0 76.1 78.7 71.9 70.7 81.4 81.2 81.4 81.2 81.6 81.5 71.1 16.5 6 73.6 74.0 76.1 78.7 71.9 70.7 81.4 81.2 81.4 81.2 81.6 81.6 81.6 70.1 16.5 6 73.6 74.0 76.1 78.7 71.9 70.7 81.4 81.0 81.2 81.0 81.0 81.0 81.0 81.0 81.0 81.0 81.0	2 75.2 76.6 78.9 80.1 82.8 86.5 86.4 87.2 89.1 81.1 3 75.3 76.6 78.2 80.1 82.8 86.5 86.4 89.5 80.4 3 75.9 76.5 77.2 80.2 83.2 85.1 89.2 86.4 89.5 80.4 3 75.9 76.5 79.7 80.5 82.9 84.8 86.0 85.7 86.5 76.5 3 74.5 76.6 79.5 82.0 83.8 85.8 85.4 85.7 85.2 74.8 2 73.6 75.9 79.5 82.4 83.0 84.6 83.5 83.6 73.6	OF POOR QUA
13.4 17.5 17.2 19.2 18.2 18.2 18.2 18.5	.4 75.9 77.2 79.2 81.2 83.2 85.1 89.2 86.4 89.5 80.4 .3 75.9 76.9 79.7 80.9 83.4 86.0 87.3 86.1 88.3 77.9 .5 74.9 76.5 79.2 80.5 82.9 84.8 86.0 85.7 86.5 76.5 .3 74.5 76.6 79.1 80.3 83.0 83.8 85.8 85.4 85.2 74.8 .2 73.6 75.9 79.5 82.4 83.0 84.6 83.5 83.6 73.6	OF POOR QUA
75.3 75.9 76.5 79.7 80.3 83.4 86.0 85.7 86.5 188.3 77.9 165.8 73.2 74.5 76.5 79.2 80.5 82.9 82.8 86.0 85.7 86.5 76.8 165.1 73.2 74.5 76.5 79.1 80.2 82.9 82.8 86.0 85.7 86.5 76.8 165.1 73.2 74.5 76.5 79.1 80.2 82.0 82.8 85.8 85.8 85.2 74.8 165.1 73.2 74.5 76.6 79.1 80.2 82.0 82.8 85.8 85.8 85.8 12.7 71.3 164.0 73.6 72.5 75.4 76.5 79.5 79.0 78.4 81.4 80.0 79.6 62.1 163.5 60.2 70.9 74.3 76.0 79.4 81.4 80.0 79.6 82.2 83.0 11.9 160.1 60.2 70.9 74.3 76.5 76.3 78.9 77.2 77.1 77.2 74.3 72.1 59.9 162.5 60.2 70.9 74.3 76.5 76.3 78.9 77.2 77.1 77.2 74.3 72.1 59.9 162.5 60.2 70.9 74.3 76.5 76.3 78.9 77.2 77.1 77.2 74.3 72.1 59.9 162.5 60.2 70.9 74.3 76.5 76.3 66.9 69.2 69.2 60.2 65.0 11.9 160.1 60.2 70.9 74.3 76.5 76.3 66.9 69.2 60.2 66.9 165.2 74	.3 75.9, 76.9 79.7 80.9 83.4 86.0 87.3 86.1 88.3 77.9 .5 74.9 76.5 79.2 80.5 82.9 84.8 86.0 85.7 86.5 76.5 76.5 .3 74.5 76.6 79.1 80.3 83.0 83.8 85.8 85.4 85.2 74.8 .2 73.6 75.9 79.5 79.5 82.4 82.0 84.6 83.5 83.6 73.6	OF PODR QUA
74.5 74.5 76.5 79.1 80.5 82.9 84.8 85.0 85.7 85.2 74.8 165.1 195.2 74.8 14.9 76.5 79.2 84.8 85.0 85.7 85.2 74.8 165.1 195.2 74.8 173.5 74.5 76.6 79.1 80.5 82.9 84.6 83.5 83.6 73.6 164.0 73.5 79.5 79.5 79.5 82.4 82.0 84.6 83.5 83.6 73.6 164.0 76.1 72.0 72.4 76.3 82.9 83.0 82.7 81.2 76.3 72.5 72.8 76.3 79.0 79.3 78.7 77.9 92.7 81.4 81.4 81.4 81.2 82.9 83.0 82.7 86.1 163.5 83.6 72.5 72.5 72.4 76.5 76.3 79.0 79.3 78.7 77.4 76.0 69.1 163.5 83.0 82.6 86.4 76.5 76.3 76.2 79.6 93.7 77.4 76.0 69.1 163.5 83.0 82.6 86.4 76.3 76.3 77.4 76.0 69.2 86.5 52.6 161.3 53.4 80.0 75.4 76.3 86.2 89.4 85.5 86.5 52.6 161.3 78.4 77.3 77.4 76.0 65.5 86.5 65.2 86.6 52.8 163.2 80.0 163.9 74.3 76.3 76.3 76.2 76.3 76.3 76.3 76.3 76.3 76.3 76.3 76.3	.5 74.9 76.5 79.2 80.5 82.9 84.8 85.0 85.7 86.5 76.5	OF POOR QUA
73.2 73.6 75.9 75.7 75.9 75.7 75.9 82.4 83.0 84.6 83.5 83.6 73.6 164.6 4.0 40.0 73.5 73.8 75.0 75.4 83.0 84.6 83.5 83.6 73.6 164.0 40.0 73.4 81.2 82.0 84.6 83.5 83.6 73.6 164.0 40.0 73.4 81.2 82.0 82.2 81.2 71.3 164.0 40.0 73.4 81.4 80.0 73.4 71.3 164.0 40.0 73.4 71.3 164.0 40.0 73.4 71.3 163.5 76.3 75.5 76.3 75.5 75.4 76.3 75.9 75.9 75.9 75.9 75.9 75.9 75.9 75.9	2 73.6 75.9 79.5 79.5 82.4 83.0 84.6 83.5 83.6 73.6	OF POOR QUA
1 73.5 73.8 76.0 78.0 79.4 81.2 82.9 82.0 82.2 81.2 71.3 164.0 4.3 162.5 4.0 4.3 162.5 4.0 64.3 162.5 4.0 64.3 162.5 4.0 64.3 162.5 4.0 64.3 162.5 4.0 64.3 162.5 4.0 64.3 162.5 4.0 64.3 162.5 4.0 64.3 162.5 4.0 64.3 162.5 4.0 64.3 162.5 4.0 64.3 162.5 4.0 64.3 162.5 4.0 64.3 162.5 4.0 64.4 67.2 5 76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.3 76.2 76.3 76.2 76.3 76.2 76.3 76.2 16.3 162.2 86.0 6.3 16.3 162.5 4.0 70.0 70.0 70.0 70.0 70.0 70.0 70.0		F POOR QUA
13.6 74.0 76.1 78.7 77.9 30.7 81.4 81.4 80.0 79.6 69.1 163.5 60.0 14.6 72.5 72.2 72.4 76.5 78.9 79.7 78.7 78.7 78.7 76.0 69.3 162.5 15.4 66.5 78.9 77.2 77.1 77.2 74.3 72.1 69.9 162.5 15.4 67.5 72.5 74.1 72.2 77.1 77.2 74.3 72.1 69.9 162.5 15.4 67.5 72.5 74.1 72.0 77.4 77.2 74.3 72.1 69.9 162.5 15.5 67.6 69.7 60.4 61.1 61.8 69.2 66.6 52.6 161.3 15.6 75.7 35.4 50.0 50.4 61.1 61.8 59.2 53.7 45.2 21.5 159.7 15.6 30.2 35.6 57.7 35.7 33.0 34.4 26.3 16.2 21.5 159.7 15.6 30.2 35.6 37.7 35.7 33.0 34.4 26.3 16.2 21.5 159.7 15.6 30.2 35.6 98.4 90.7 91.5 93.9 96.5 99.7 99.8 101.7 93.8 178.2 15.6 92.3 93.6 97.7 99.8 100.4 102.7 104.0 103.9 103.9 95.9 15.7 92.3 93.6 97.7 99.8 100.4 102.7 104.0 103.9 103.9 95.9 15.8 92.3 93.6 97.7 99.8 100.4 102.7 104.0 103.9 103.9 95.9	5 73.8 76.0 78.0 79.4 51.2 82.9 83.0 82.2 81.2 71.3	PODR QUA
4 70.6 72.5 75.4 76.5 76.2 79.0 79.3 78.7 77.4 76.0 64.3 162.5 OCX 66.4 67.2 70.9 74.3 76.2 77.2 77.2 77.2 74.3 76.0 64.3 162.5 OCX 66.4 67.5 70.9 74.3 76.2 76.2 77.2 77.2 77.2 74.3 76.0 64.3 162.2 OCX 66.4 67.5 70.9 74.1 72.0 73.4 73.9 77.2 74.3 77.2 74.3 76.2 75.6 161.3 PGO.1 66.4 67.5 69.4 67.0 73.4 73.9 77.2 77.2 74.5 169.2 66.6 52.6 161.3 PGO.1 66.5 69.4 67.5 66.9 66.9 66.9 69.1 67.2 66.9 52.6 161.3 PGO.1 67.5 70.5 70.5 59.4 60.5 60.4 66.1 61.8 69.2 66.6 52.6 159.4 FGO.1 67.5 70.5 70.5 59.4 60.5 60.0 50.3 50.6 46.8 40.0 26.3 158.2 758.2 77.7 35.7 33.0 34.4 26.3 16.2 6.3 158.6	6 74.0 76.1 78.7 77.9 30.7 81.4 81.4 80.0 79.6 69.1	ODR QUA
1 69.2 70.9 74.3 75.5 74.9 77.2 77.1 77.2 77.2	.6 72.5 75.4 76.5 76.3 79.0 79.3 78.7 77.4 76.0 64.3	OR QUA
86.0 86.6 88.4 90.7 91.5 93.9 96.5 99.8 101.7 93.8 178.2 9 66.0 86.6 88.4 90.7 91.5 93.9 96.5 99.8 101.7 93.8 178.2 9 66.0 86.6 88.4 90.7 91.5 93.9 96.5 99.7 89.8 101.7 93.8 178.2 9 73.3 93.6 97.7 99.8 98.2 100.4 102.7 104.0 103.9 103.9 95.9 DIAMETER RATIO 8.070 FREQUENCY SHIFT -9	2 70.9 74.3 75.5 36.9 77.2 77.1 77.2 74.3 72.1 59.9	QUA
9 53.0 57.3 59.4 60.5 60.4 61.1 61.8 59.2 53.7 45.2 21.5 159.7	0.10 0.00 1.50 0.11 1.60 0.40 0.40 0.11 1.60 0.12 0.10 0.10 0.10 0.10 0.10 0.10 0.1	AUS
1.8 41.6 46.5 53.0 54.4 50.0 50.3 50.6 46.8 40.0 26.3 159.4	.0 57.3 59.4 60.5 60.4 61.1 61.8 59.2 53.7 45.2 21.5	A
5.0 9.8 12.0 12.0 7.4 8.1 158.2 158.2 158.2 158.6 5.0 9.8 12.0 12.0 7.4 8.1 158.6 15	.6 46.5 53.0 54.4 50.0 50.3 50.6 46.8 40.0 26.3	
5.0 9.8 12.0 12.0 7.4 8.1 158.6 158.6 20.0 158.6 158.6 158.6 158.6 20.0 158.6 158.6 20.0 158.6 158.6 20.0 158.2 20.0 158.2 20.0 168.6 100.4 102.1 104.0 103.9 94.8 108.2 20.0 103.9	6 30.2 35.5 37.7 35.7 33.0 34.4 26.3 15.2	LAT.
9 86.0 86.6 88.4 90.7 91.5 93.9 96.5 99.7 89.8 101.7 93.8 178.2 4 92.3 93.6 96.5 98.2 100.4 102.1 104.0 102.7 103.9 94.8 4 92.3 93.6 97.7 99.8 98.8 100.4 102.7 104.0 103.9 103.9 95.9 DIAMETER RATIO 8.070 FREQUENCY SHIFT -9	0 9.8 12.0 12.0 7.4 8.1	
.9 86.0 86.6 86.4 90.7 91.5 93.9 96.5 99.7 99.8 101.7 93.8 178.2 .4 92.3 93.6 97.7 99.8 98.2 100.4 102.7 104.0 103.9 94.8 .4 92.3 93.6 97.7 99.8 98.8 100.4 102.7 104.0 103.9 103.9 95.9 DIAMETER RATIO 8.070 FREQUENCY SHIFT -9		
.9 86.0 86.6 88.4 90.7 91.5 93.9 96.5 99.7 99.8 101.7 93.8 178.2 .4 92.3 93.6 96.5 98.8 100.4 102.1 104.0 103.9 94.8 .4 92.3 93.6 97.7 99.8 98.8 100.4 102.7 104.0 103.9 103.9 95.9 DIAMETER RATIO 8.070 FREQUENCY SHIFT -9		
.9 86.0 86.6 88.4 90.7 91.5 93.9 96.5 99.7 99.8 101.7 93.8 178.2 .4 92.3 93.6 96.5 98.6 98.2 100.4 102.1 104.0 102.7 103.9 94.8 .4 92.3 93.6 97.7 99.8 98.8 100.4 102.7 104.0 103.9 103.9 95.9 DIAMETER RATIO 8.070 FREQUENCY SHIFT -9		
.9 86.0 86.6 86.4 90.7 91.5 93.9 96.5 99.7 99.8 101.7 93.8 178.2 .4 92.3 93.6 97.7 99.8 98.2 100.4 102.7 104.0 103.9 94.8 .4 92.3 93.6 97.7 99.8 98.8 100.4 102.7 104.0 103.9 103.9 95.9 DIAMETER RATIO 8.070 FREQUENCY SHIFT -9		
.9 86.0 86.6 86.4 90.7 91.5 93.9 96.5 99.7 99.8 101.7 93.8 178.2 .4 92.3 93.6 96.5 98.6 98.2 100.4 102.1 104.0 102.7 103.9 94.8 .4 92.3 93.6 97.7 99.8 98.8 100.4 102.7 104.0 103.9 103.9 95.9 DIAMETER RATIO 8.070 FREQUENCY SHIFT -9		
.9 86.0 86.6 88.4 90.7 91.5 93.9 96.5 99.7 99.8 101.7 93.8 178.2 .4 92.3 93.6 96.5 98.6 98.2 100.4 102.1 104.0 102.7 103.9 94.8 .4 92.3 93.6 97.7 99.8 98.8 100.4 102.7 104.0 103.9 103.9 95.9 DIAMETER RATIO 8.070 FREQUENCY SHIFT -9		
.9 86.0 86.6 88.4 90.7 91.5 93.9 96.5 99.7 89.8 101.7 93.8 178.2 .4 92.3 93.6 97.7 99.8 98.2 100.4 102.1 104.0 103.9 103.9 94.8 .4 92.3 93.6 97.7 99.8 98.8 100.4 102.7 104.0 103.9 103.5 95.9 DIAMETER RATIO 8.070 FREQUENCY SHIFT -9		
4 92.3 93.6 97.7 99.8 98.2 100.4 102.1 104.0 102.7 103.9 94.8 4 92.3 93.6 97.7 99.8 98.8 100.4 102.7 104.0 103.9 103.9 95.9 DIAMETER RATIO 8.070 FREQUENCY SHIFT -9	8. E8 T. 101 8. 99 T. 99 S. 30 Q G S. 99 T. 00 L. 8 B. 101. T. 93.8	
.4 92.3 93.6 97.7 99.8 98.8 100.4 102.7 104.0 103.9 103.9 0.3.9 10	.3 93.6 96.5 98.6 98.2 100.4 102.1 104.0 102.7 103.9 94.8	
RATIO 8.070 FREQUENCY SHIFT	.3 93,6 97,7 99,8 98.8 100.4 102,7 104.0 103,9 103,9	
	RATIO 8.070 FREQUENCY SHIFT	
	כיייבים אינון אינון אינון אינון אינון אינון אינון אינון אינון אינון אינון אינון אינון אינון אינון אינון אינון	
LUCATION CAT AMECH CH AERU, NOG, AUTTED 757-7007 RELIES 45.50	ACOUSTIC RANGE S12E S12E S12E S12E S12E S12E S12E S12	FREE-JET SPEED 0. M/SEC (0. FPS)

₹ 3 3 3 3 3 3 3 3 3 3	9.180							· · · · · · · · · · · · · · · · · · ·	ORIG OF	N PO	AL OR	P)	ige Vali	is TY	,							-		FPS)		
17 14 15 15 15 15 15 15 15 15 15 15 15 15 15	02/15/80									O. T. T. T. T. T. T. T. T. T. T. T. T. T.													50.72 68.60	FREE-JET SPEED 90.22 M/SEC (296.0		
1957 2. 3334 A		FOR BACKGROUND NOISE 40.0 FT. ARC	200		160.	i i		106.4 141.2	105.0 142.5 105.8 144.4 102 6 144 7	-	96.4	91.9	91.5	91. 1.	92.1	92.5	91.3			76.4 138.1	-	112.3 156.3	59 TAMB .4300 RELHUM	- MODEL 9:		
			-FMUDL X02200 -FWODL X05230	DEGREES	140. 150.		•	103.5 1	108.2 112	109.8 111	108.2	108.8	107.1 102.6	106.4	105.4	105.0	101.4	99.0 98 95.7 95	91.3 91 88.7 85		70.5 68 64.5 60	119.7 120.2	IALPHA S859 PAMB 29.43	SIZE 21.49 SO IN)	33095	
		E LEVELS CORRECTED. H. SID. DAY, SB	MODEL FJ-300-FMODL BACKGROUND FJB300-FMODL) FROM INLET,	. 120. 130.			91.8	95.2	98.9	102.5	102	5 103.5 107.3 5 103.1 107.9	103.8	102.6 102.8	102.4	98. 6. 6.	97.8 95.5	92.7	84.2	74.1	114.2 118.7	N312 ADH207	138.7 SO CM (- KA.
* 1		SOUND PRESSURE L 70 PERCENT R.H.	ICATION - MODEL BACK	SLES MEASURED	. 100. 110.			87.4	88.3 88.3 8.0 8.0 8.0 8.0	91.0	93.9	95.2	5 95.3 99.5 3 98.7 99.6	96.7	96.9 96.5	96.1	94.3	93.2	87.7	78.9	70.1	6 107.5 110.9	TAPE NO. AERO. ROG.	ARC		
		MODEL EG. F.,	IDENTIFIC	ANGL	. 80. 90.			83.7 85.	85.6 87.	88.8 90.	89.3 91. 90.1 92.	91.9 94.	91.3 93. 92.5 94.	93.0 95.	93.2 95. 93.0 95.	93.1 95.	93.5 94.	93.0 94. 90.8 92.	88.3 89.	81.6 82.	67.4 68. 59.6 62.	104.7 106.	-23-78 I ANECH CH	AČOUSTIC RANGE .2 m (40.0 FT)		
		UNTRANSFURMED 59.0 D	-		60. 70.			82.1 82.	83. 3 83. 84.2 83.	86.4 86.	88.2 88.	89.3 90.	89.5 89.8 90.3 90.1	89.8 91.	90.5 90	92.5 91.	92.8 92.	85.5 87.	82.6 83.	75.7 77.	63,7 66. 56.6 59.	102.3 102.7	FEST DATE 03-2 LOCATION C41	12		
\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$		bid tanana description description description description description description description description des			40. 50.			78.2 82.	81.9 83. 87.6 83.	80.9 84.	85.6 85.	88 + 88	87.2 87.7 87.3 88.6	88.6 89.	88.5 89. 90.6 89.	92.2 93.	90.2 91. 87.0 89.	84.8 87. 79.2 84.	77.8 80.	71.8 71.	59.9	100.3 101.2	TES? LOC	TEST POINT 0220		eric at ma . I handigaligation of transported word of
	260					FR 60 80 80 80 80 80 80 80 80 80 80 80 80 80	25 25 26 26 26 26 26 26	250	2 4 R	630	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1500	2000 2000 2000	3150	2 000 2 000	0008	12500	2000 2000 70000	25000 31500	4 0 0 0 0 0	63000 80000	OASPL		MODEL 0200	()	Andread way .

											OF	RIG	IN	AL OR		AG JA	E	3							4 - YES		-JET SPEED EC (296.0 FPS)	
			PVL				42.4	43.7	43.8	42.9	42.7	42.1	42.6	42.5	43.2	44.2	44.5	44.0	43.0	41.8	41.0	39.7 39.3	38.0	156.8	TON CORRECTION INCE CORRECTION	TAMB 50.72 RELHUM 68.60	FREE-JET . 90.22 M/SEC (
40.0 FT. ARC	90		150. 160.				110.6 105.6	- 4-	111.3 102.7 1	108.1 100.1 1	106.4 98.6 1		104.0 97.9 1		105.3 99.5 1	•		ł	٠. ا	93.3 93.5 1	85.5	79.1 80.5 1		120.2 174.5 1	OO REFRACTION OO TURBULANCE	S859 29.4300	SO IN) - MODEL	
R.H. STD. DAY, SB	FJ-300-FM0DL X02200	INLET, DEGREES	. 130. 140.				7 98.0 101.5 5 102.5 105.6	7	5 104.8 108.4	4		ດຸດ	3 106.8 106.3		4 6	12	5 106.0 105.7 2 104.5 103.9	1.	. 98 . 96	. 1 93	1 84.3 84.2	.9 78	6 62.9 64.0	4 118.1 118.9	(FT/SEC) 296.00 TER (IN) 48.00	IALPHA 07 PAMB	SIZE CM (21.49	
	FICATION - FJ-300	ES MEASURED FROM INLET). 110. 120			,	7 87 8 93		5 90.4 97.8 3 92.8 99.6	94.5 1	95.0	97.4	1	100.1	99.8	100.3		99.2	97.5	1.1	83.2	76.4	8 64.4 67.	.1 110.5 114.4	VELOCITY JET DIAME	TAPE NO. N312 RO. RDG. ADH207	138.7 50	
G. F., 70 PERCENT	IDENTIFICA	ANGLES N	0. 50. 100.				85.3 86	- ~	90.8	7 91.7	92.8	94.5	94.2	95.2	m 6	97.8	97.8	97.9	3 95.9	3 92.1	N 10	74.4	7 65.2	.5 108.4 108.1	R FREE JET	1 CH AE	C RANGE 40.0 FT) ARC	
59.0 DEG			0. 70. 80				7.88 7.7 27.0	7 85.9	.7 87.8 88.0 1 88 7 90	0 90.3	.6 91.1 91	92.8 93.00	9 92.6 93	.3 93.1 94 .2 94.2 95	7 94.4 94	.6 94.2 96	5 95.5 96 4 97 1 97	7 96.3 97	.3 95.1 97 .7 92.4 94	2 88.1 92	4 82.7 85	3 76.5 78	9 64.9 63	.3 106.3 107	SCALE FACTOR	TE 03-23-78 ON C41 ANECH	ACOUSTIC 12.2 M (4	
			40, 50. 60				9 86.6 85	.1 86.8 86	2 87.6 87	5 89.5 90	.1 90.0 90	0 90.9 91	6 92.1 92	7 92.4 93 8 93.3 94	0 94.1 93	8 94.0 94	.8 94.4 94 6 07 6 06	96.0.96	.2 94.6 95 .6 92.2 92	.3 88.9 89	7 79.8 82	9 74.3 77	7 62.9 62	.6 105.9 106	MODEL/FULL SIZE INPUT 1.000 (TEST DATE LOCATION	TEST POINT 0220	
			-	50 63	8 6	125 160 200	83	9 0	87	88	6	9 9	93	92	6	6	95	6	6 6	84	7.3	74	9	0ASPL 105.6	MOD		MODEL T 0200	

																OR OF		IN PO	AL	. F	PA QU	GE ALI	is TY	,										, S.)
																																		SPEED 296.0 FPS
																																	50.72 68.60	FREE-JET 90.22 M/SEC (
LEVELS				3	161.9	161.9	161.8	161.0	160.8	160.3	160.7	160.6		162.1	162.7	162.3	162.2	161.1	159.9	159.2	157.8	157.5								174.7			TAMB	
	T. SL			160.	77.8	75.8	74.9	72.9	70.0	69.6	69.0	67.4	67.9	0.69		65.4	• 6	51.7		21.4										83.7	85.1			- FULL
PRESS	0.00	01	S	150.	-88.1	87.8	86.8	34.4	82.0	78.9	79.1	77.9	78.6	19.4	78.2	76.1	- C	63.3	52.9	40.4	_			:						94.7	96.3	FT -9	SB59 29.4300	So IN)
SOUND PRESSURE	SB 24	X02201	DEGREE	140.	86.5	87.0	86.8	85.7	85.0	83.9	83.9	83.1	82.2	82.3	80.6	78.3	75.7	67.3	61.0	51.0	12.5									96.1	99.5	SHI	IALPHA PAMB	SIZE (1400.00 S
OLATED	DAY.	FMODL		130.	84.9		86.1	86.5	85.4	85.6	86.2	83.8	84.6	- 84	83.4	81.3	79.7	71.5	67.1	58.	23.4				į			***************************************		96.9	101.8	FREQUENCY	H	S CM (140
SCALED, AND EXTRAPOLATED	. STD.	FJ-300~FMODL	ES MEASURED FROM INLET	120.	76.5	78.8	80.9	82.5	82.2	83.3	82.8	83.0	82.6	83.2	82.3	79.6	78.8	74.5	69.0	61.7	34.0	8.9								94.2			N312 ADH207	2 SO C
AND	Ι. Έ		SURED	110.	71.5	72.4		76.5	78.9	78.7	79.4	80.8	80.2	80.7	80.0	79.2	78.4	73.4	67.8	60.3	33.7	8.8								90.9		8.070	NO.	9032
SCALED	PERCE	FICATION	ES MEA	1 00.	70.1	71.9	72.7	74.1	7,7 4,0 4,9	77.0	76.7	0.87	77.8	78.3	78.2	77.3	76. 1	72.6	68.0	60.0	37.0	14.2								88.9	97.0	AT10	TAPE AERO. 1	-
-1	2	IDENTI	ANGL	90.	70.1	- :	3	4			• •		77.4	•1			-1	75.3		•	33 38 30 30 30				- '					89.2	99.5	~	Ī	ACOUSTIC RANGE 5 M (2400.0 FT)
TRANSFORMED	DEG.			80.	6			- 1		75.4	•			- 6			•	74.0		• 1										88.0	•1 •	DIAMETER	-78 VECH CH	STIC R
- J-10	59.0			70.	67.9	6		• • •	73.0	74.2	• • •	74.9		•	75.0	76.6	75.5	70.7	64.9	6.0	33.7	4.0								•	95.2		03-23-78 C41 ANECH	ACOU
F				.09		69.0	70.4	71.2	71.7	74.8	73.5	73.5	73.3	74.1	73.0	74.8	74.8	73.0	64.1	56.5		4.0								85.5	94.7		TEST DATE LOCATION	73
				50.	67.0			•1	•	72.9	• • •			• ?			• (• 6										83.7	91.6		TEST LOCA	TEST POINT
				40.	63.8	S	80	0	ه د	70.0	a	O (6		0	- œ	0	4			7										9.6	89.3			TEST
2					N C			- 1		8 8	- 1						- 1	2000		000	2000	000	12500	16000	20000 25000	31500	40000 10000	3000	0000		PNLT			Madel

0
8
Ġ.
Q 1
8
80
3
_
22
ö

The state of the s

FICATION PAGE 88.3 9 99.1 99.2 99.3 99.3 99.3 99.3 99.3 99.3 99.3	ANG 50. 60. 70. 80. 90. 90. 11.1 81.3 81.6 82.7 84.1 12.1 81.3 81.6 82.7 84.1 12.1 82.8 83.9 85.0 86.9 13.1 85.9 87.1 87.1 88.6 13.1 85.9 87.1 87.1 88.6 13.1 85.9 87.1 87.1 88.6 13.1 85.9 87.1 87.1 90.3 92.6 13.1 85.9 87.1 87.1 92.1 92.1 13.1 88.8 89.4 91.2 92.8 13.1 88.8 89.4 91.7 94.2 13.2 90.2 91.0 92.9 93.8 13.3 92.0 90.8 93.2 94.8 13.4 88.8 89.4 91.7 93.7 13.9 90.2 91.0 92.5 93.8 13.9 89.2 91.7 93.7 14.1 82.3 82.6 87.8 88.6 15.0 69.4 71.7 73.8 75.4 15.0 69.4 71.7 73.8 75.4 15.3 56.4 59.8 58.9 61.4 10.0 77.1 101.7 103.5 105.6 10.0 77.1 101.7 103.5 105.6
---	---

																						, t _e , §	The second secon
9. 180								0	RIGII F PC	IAL OR (PA QU	GE ALI	is TY						-		FPS)	·	
02/15/80																			- YES - YES	·	ET SPEED (396.0		
02/1																			CORRECTION CORRECTION	50.72 68.60	FREE-JET 120.70 M/SEC (
				Ā		137.1	140.3 141.8 141.6	141.6	141.2	141.6	142.3	142.7	143.4	142.7	139.5	139.6 139.0 139.1	137.3	155.7	TION CO	TAMB			
·	FT. ARC			160.		· ·	162 102 102 102			•				100.5			1	114.8	REFRACTION TURBULANCE	S859 29.4300 F	- MODEL		
	40.0 FT	X02210	RES	. 150.		i i	8 108.3 1 109.3 6 108.2	1	500		- 1			4 103.8 4 100.3 1 94.8	- 1			0.117.9	396.00 48.00	1	(NI 0S 6		
	STD. DAY, SB		ET, DEGREES	130. 140.		(.9 103 .1 106 .5 106	ณ 4	4 80 4	4 10 1	: -	ص ص	<u>ه</u> د.	3.1 100.4 9.3 97.4 3.5 92.1	ص ر	4 7 15	i	117.2 117.0	(IN) 48	IALPHA PAMB	S12E (21.49		
	STD. D	FJ-400-FMDDL	ES MEASURED FROM INLET	120. 1		4 08	4 - 6	21-	-64	101.6 106 103.2 105	9	6 0		00.4 103 98.7 99 94.9 93	- }		į.	113,6 11	(FT) TER	N312 ADH206	SQ CM	ARCHA!	
	TO PERCENT R.H.	1	SURED F	110.		6 78	[1		1 - 7		-		97.6 1 96.5 93.9	-		63.9	109.4 1	VELOCITY JET DIAME		138.7		
	O PERCE	IFICATION		5		7 78	85.3 86.4 87.7	- 1			1				-	75.4		107.3	E JET FREE	TAPE NO.) ARC		
	DEG. F., 7	IDENTI	ANGL	. 90.		3	401	8	7 91.6 1 92.8 7 93.9	93	96	97	97	96. 96. 95.	91.	2 85.0 4 78.4 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	9 64.4	0 107.9	FRE	₹	RANGE 40.0 FT)		
į	0.6			70. 80			5 85. 1 86.	1 89. 5 89.	7 90.	10 0 H	2 2	3 96. 1 95.	8 95. 9 97.	1 96. 7 ණී. 8 95.	5 92.	9 86.	-	.8 107.0	FACTOR 1.000	03-23-78 C41 ANECH	ACOUSTIC .2 M (4		
	ŭ,			60. 7		2	5.6 6.6 8.8 8.8 8.8	000	9.7	- 50 5	. 8	5.88 5.38	5.8	2.6.	6 0	0.00	3.5	106.9 105	E SCALE CALC.	l .	12.2		
				20.		· ·	00000	00	. ന — ദ	000	9 40	6 2	9 9	000	00	. 60 . 60 . 60 . 60 . 60 . 60 . 60 . 60	9	106.6 10	ULL SIZE 1.000 (TEST DATE LOCATION	POINT 221		
				4 0		C	0 ~ 0	O w	40	- 00	n m	ဖြစ	വര		2	- 10 CO K	, C	106.5 1	MODEL/FULL INPUT 1.0		TEST		
264	-			FDEO	80 80 80	200 200 200 200 200	3 + 3 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	630	1250	2000	4000	2000	8 0 0 0 0 0	12500 16000 20000	25000	5 4 0000 10000 10000 10000	80000	OASPL			MODEL 0200	3	-

* 1. . .

021:2					•								01	RIO F	NI:	AL	- 1	PA(ge Ali	197										50.72 68.60	FREE-JET SPEED 120.70 M/SEC (398.0 FPS)	
	ELS			PWL	59.9	59.7	59.4	59.2	159.3 159.7	60.0	60.5	60.9	61.5	61.7	60.9	59.7	57.9	57.8	57.2	0.00							173.7			TAMB	120	
	RE LEV			6	40	. 6	ءاٰه	, æ	71.6 170.9 1	40	. ec 1	n o	4	4	ł	۲.	9										83.8 1 86.5	87.8			FULL	
	ALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS ERCENT R.H. STD. DAY, SB 2400.0 FT. SL	_					1		76.6	1		- 1			1		i	18.3									92.0		6- L	SB59 29.4300	- (NI	
	2400	X02211	DEGREES	140.	1		1		82.1			- [1		- 1										94.3	4.	/ SHIFT	IALPHA	7E .00 SQ	
	ATED S	юрг		130.	1		1		85.0 8	1		- 1			1												96.001	l	FREQUENCY	IAL	S12E (1400.00	
	TRAPOL STD. D	FJ-400-FM0DL	MEASURED FROM INLET	120. 1	i		- 1		82.2 g 82.2 g	1		- 1															93.4 9 99.8 10		FR	N312 ADH206	SQ CM	
	R.H.	- FJ-	RED FR		t		ı		77.7 8	1		- 1			1		ì								.		89.7 9 97.4 9	1	0.070	١	9032.2	
	RCENT	CATION	MEASUR	8.	1		- 1		75.5 7	1		- 1			1												96.1.9	_	10 8	TAPE NO.		
	20 P	IDENTIFIC	ANGLES	-	- 6	8 L'	-	9 -	0.6	0:	- 10	6	. K	- 6	9	יי ט יי	9	6.0	. .								۲.	œ	RAT	TAF	if FT) SL	
	FLIGHT TRANSFORMED 59.0 DEG. F.,	106	V	90			-		7 76	1		-			{	1 69		9 55) -								88 9.	1	DIAMETER	동		
	HT TRANS					7.1	- 1		8 7 4 7 4	1				77.				0 55	, ~								60 60	5 98	ā	-23-78 1 ANECH	ACOUSTIC RANG 5 M (2400.0	
	L1GHT 59			20	67.	69.	5	72.	73.	73.	7.4.	74.	7.	74.	73.	72.	59	51.	5.0								95	95.		60.4	31.	
				60.	67.9	71.3	71.2	72.0	74.4	73.7	74.4	75.1	74.6	75.2	72.5	7. 7. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9. 9.	58.0	46.8	3.2								95.0	95.7		TEST DATE	7	
				50.	67.5	67.9 68.8	70.5	70.5	73.6	72.2	72.6	73.4	72.4	74.5	69.7	68.1 62.9	54.3	39.6	22.3								84.3	92.4		TEST	T POINT 0221	
				4 0,	65.4		- 1		70.8		70.6							30.9	•								82.5	89.3			TEST 00	
				202	K	e 0	8	125	200	315	6 8 8 8	630	8 <u>8</u>	1250	2000	2500	000	2000	000	000	16000	20000	31500	5000 5000 5000	63000	80000	DASPL	PNLT			MODEL 0200	265

						(ORI OF	GINA POO	k Qi	4GE J A L	: IS .ITY									- Sanger
02/15/80 9.180								•										.94	FREE-JET SPEED M/SEC (0. FPS)	
CKGRQUND NOISE	40.0 FT. ARC XOC.220 XOS.220		160. PWL			111.6 146 112.5 147 113.0 150	113.6 151	114.9 152.0 114.8 151.9	114.2 152	110.4 151 109.1 150	.4 149 .5 149 .1 148	105.4 147	101.3 146 98.8 145	96.6 14	83.5 142	71.5 143	124.5 163.3	TAMB 46 400 RELHUM 80	- MODEL 0.	
	. DAY, SB 40.0 FT. FJ-ZER-FMODL XOC.220 FJB400-FMODL XOS.220	ES	130. 140. 150.			.9 108.5 114 .2 110.4 116 .0 113.2 118	114.7 118	11.9 115.1 119.3 12.7 115.1 119.8 12.5 114.7 119.6	2 114.7 119 5 114.8 118	4 114.9 117 7 114.6 116	1.5 113.2 114.6 1.7 111.8 113.8 0.5 110.9 112.7	2 107.5 111	2 03 5 2 03 5 5 5 5 5	97.1 100	9 84.4	5 74.4 73	3.9 125.9 129.9	IALPHA SB59 PAMB 29.4400	SIZE (21.49 SQ IN)	
EVELS	CENT R.H. STD. D - MODEL FJ- BACKGROUND FJB		110. 120. 1		:	97.8 1 99.7 1 100.9	102.3	99.4 104.1 11 100.9 105.6 11 102.0 107.2 11	108.9	107.8 1 108.6 1	104.4 107.9 1 104.8 107.6 1 104.4 106.8 1	103.9 106.6 1 103.5 105.5 1	100.2 101.4 97.1 99.3	92.2 96.7 89.9 93.0	78.5 84.4	65.9 73.8	115.4 119.0 123	E NO. N312 RDG. ADH210	138.7 SQ CM	•
L SOUND P	. 70 PER	ANGLES ME	0. 90. 100.			8 93.1 5 92.7	6 94.3 95	2.08. 2.09. 3.98. 3.98.	3 99.4 (01 3 98.2 100	.7 99.8 101 .4 100.1 101	.7 99.9 .6 100.0 .7 100.3	6 100.5	. 8 98.3 97. . 4 96.7 94.	.6 93. 2 87.	6 79.5 78.	.4 65.9 65.	5 111.5 112.4	TAP CH AERO.	C RANGE 40.0 FT) ARC	
NTRANSFORMED N	59.0 DEG. F		60. 70. 80			.0 87.8 .9 87.9 7 89.2	0 90.8	92.1 91.6 93.9 94.8 95.5 94.8 95.8	.4 96.0 97 .2 95.5 96	.3 97.1 97 .1 96.6 97	.4 95.9 97 .1 96.8 97 .9 96.9 97	9 97.3 98 0 97.0 98	. 1 95.1 97. 8 93.5 96 3 91.5 95	7 86.4	3 75.2	0.9 64.3	98.5 108.1 109.)ATE 03-23-78 ION C41 ANECH	ACOUSTIC	
7			40. 50.			88.3 87.4	1 89.7	8 90.6 1 91.1 2 95.2	4.8 94.4 6.0 96.2	6.3 97.1	5.9 96.4 5.0 96.8 3.3 96.9	9.4 94.6	4.4 90.5 8.8 87.8	7.3 84.3	3.8 69.7	N 60	105.6 107.4 108	TEST DATE	TEST POINT 0222	
266			FREQ	80 80	125 160 200 200]	j		1		j	- 1		1	- 1	80000 80000	OASPL 1	-	MODEL 0200	***************************************

the p

BOTE NORTH

_
Q
8
_
•
O)
_
^
\mathbf{z}
₩.
/80
n
-
`
Q.
0

()

FORMED MODEL SOUND PRESSURE LEVELS	70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC	TIFICATION - FJ-ZER-FMODL X02220	SLES MEASURED FROM INLET, DEGREES	100. 110. 120. 130. 140. 150. 160. PWL.						93.2 95.1 97.8	93.8 95.9 99.7 106.2 110.4 116.1 112.5	94.0 96.2 100.9 110.0 113.2 118.3 113.0	95.1 95.8 102.3 111.4 114.7 118.9 115.0 96.2 99.4 104.1 111.9 115.1 119.3 114.4	97.8 100.9 105.6 112.7 115.1 119.8 114.9	99.1 102.0 107.2 112.5 114.7 119.6 114.8 151.9	100.4 103.1 10/.6 113.1 113.3 120.7 114.9 132.7 101.6 103.5 108.9 113.2 114.7 119.7 114.2 152.2	100.1 103.5 108.7 112.5 114.8 118.5 111.5 151.3	101.5 104.6 107.8 113.4 114.9 117.6 110.4 151.2	101.7 103.4 108.6 112.7 114.8 116.1 103.1 130.6 101.5 104.4 107.9 111.5 113.2 114.6 108.4 149.5	101.6 104.8 107.6 111.7 111.8 113.8 107.5	100.8 103.9 106.6 109.0 109.5 111.4 106.4 147.9	99.9 103.5 105.5 108.2 107.5 111.3 105.4 147.7	99.2 101.6 103.0 105.8 105.5 109.2 102.9 146.4 97.5 100.2 101.4 104.3 103.3 106.7 101.3 146.0	94.4 97.1 99	87 9 89 9 93 0 95 7 93 9 95 3 92.0 1	82.9 84.9 88.7 91.2 90.8 90.9 88.2 1	78.3 78.5 84.4 84.9 84.4 85.6 83.5 142 72 6 72 3 80 3 79 4 78 2 80 8 77 6 142	65.3 65.9 73.8 73.5 74.4 73.6	5 112.4 115.4 119.0 123.9 125.9 129.9 124.5 163.3	REE JET VELOCITY (FT/SEC) O. REFRACTION CORRECTION - YES FREE JET DIAMETER (IN) 48.00 TURBULANCE CORRECTION - YES		TAPE NO. N312 IALPHA SB59 TAMB 46.94 AERO. RDG. ADH210 PAMB 29.4400 RELHUM 80.30	SIZE FREE-JET SPEED F) ARC 138.7 SQ CM (21.49 SQ IN) - MODEL O. M/SEC (O. FPS)	
TRANSFORMED MODEL	, 70 PERCENT R.H. S	ı	ANGLES MEASURED FROM I	110.						5 93.2 95.1	4 93.8 95.9	7 94.0 96.2	6 96.2 99.4	6 97.8 100.9	0 99.1 102.0	4 101 \$ 103.5	2 100.1 103.5	.8 101.5 104.6	04.4 4.4.4	101.6 104.8	103.9	99.9 103.5	.3 99.2 101.6 103 .3 97.5 100.2 101	7 94.4 97.1 99	9 87 9 89 9 93	.0 82.9 84.9 88	.5 78.3 78.5 84	9 65.3 65.9 73	12.4 115.4	VELOCITY JET DIAM	- 1	TAPE NO. Aero. Rdg.	T) ARC 138.7 SQ	
FLIGHT	59.0 DEG.		The second secon	. 50. 60. 70. 80.						88.0 87.8 88	87.4 87.9 87.9 90	88.4 89.7 89.2 90	90.6 92.1 91.6 93	91.1 93.1 93.9 94	95.2 96.5 94.8 95	96.3 97.1 96.8 98 94.4 95.4 96.0 97	96.2 97.2 95.5 96	96.1 97.3 97.1 97	97.1 97.1 96.6	96.8 97.1 96.8 97.6	96.9 97.9 96.9 97.7 97.0 97.9 97.3 98.3	94.6 97.0 97.0 98.6	92.0 94.1 95.1 97 90.5 92.8 93.5 96	87.8 8	94.3 50.4 67.0 32	74.8 79.4 81.1 85	69.7 72.3 75.2 77	58.5 60.9 64.3 63	6 107.4 108.5 108.1 109.5	MODEL/FULL SIZE SCALE FACTOR INPUT 1.000 CALC. 1.000		TEST DATE 03-23-78 LOCATION C41 ANECH CH	NEST POINT ACOUSTIC RANGE 0222 12.2 M (40.0 F	
•				40.	50	63	8 8	125	160	4	84	87	87	92	95	93	96	94	0 0 0	95	92	83	86	20000 78.8	75	2 2	63	80000 52.8	0ASPL 105.6	MODEL	. :		MODEL TES	26

	1	ī					1								T			ī					T				<u>-</u>	T			-		.
																																	and the second s
0 9.180											0)FI	GII PC	AV OC	R	P# Ql	igi JA		IS [Y	•												SPEED 0. FPS)	*
02/15/80									:																					46.94		FREE-JET O. M/SEC (
	E LEVELS SL		-	PWL	168.2	169.6	170.1	170.0	170.3 169.5	169.3	167.7	167.3	166.0 166.0	165.8	164.1	163.3	162.2	162.0	160.4	160.3							181.2			TAMB			
	UKE LE			160.	86.2	6. 4 4. 4	ردًا. 1.8	87.4	86.0 82.6	80.7	76.7	74.8	71.4	68.9	59.5	52.1	41.5 20.5	2									96.0	96.7	_	59		- FULL	
,	SB 2400.0 FT.	21	S	150.	94.8	95.7	96.1	95.7 96.6	95.3 93.6	92.2	87.9	86.4	84.6	81.7	74.1	68.8	59.8	28.0									105.1	107.1	IFT -9	SB59		SQ IN)	
	SB 24	X0222	DEGREES	140.	91.9	93.7	93.6	93.1	92.7	92.1	89.5	87.6	86.1	81.8	75.8	71.2	64.5	42.2	18.0									107:9	4CY SHI	IALFHA		SIZE 1400.00 9	
	EXTRAPGLATED H. STD. DAY,	-FMODL	INLET.	130.	90.3	92.1	92.8	92,0 93.0	92.9	92.4	89.7	89.5	88.0 86.1	85.0	79.9	75.7	68.9	50.0	30.4	0.1							103.0	107.9	FREQUÊNCY			CM (140	Section 2
 	EXTRAP		FROM I	120.	82.3	8 8 8 8 8 8 8 8 8	86.8	88 88 .0 .0	89.7	88.	87.5	86.8	85.7	84.0	79.1	76.1	71.6	53.5	37.2	-							99.0	105.1		N312	א אוועא	.2 SQ (
	HT TRANSFORMED, SCALED, AND E 59.0 DEG. F., 70 PERCENT R.H.	ION - F	ASURED	110.	78.2	81.4	82.8	83 83 80 80 80	85.0	85.7	86.3	85.0	84.3 83.6	83.0	80.6 2.6	75.4	68.9	53.0	35.8	10.3						-	96.0	102.5	8.070	E NO.	, NO.	9032	
	SCALED PERCE	DENTIFICATI	Ξ	1 00.		78.6	- 1		83.0	1		1			- 1			-1									93.5		RATIO	TAP	ACKU.	SI (
	RMED.	IDENTI	ANGLES	90.	75.2	76.8	79.1	80.4	81.5	81.5	81.4	80.8	80.9	80.8	78.2	76.1	71.7	57.	39.9	<u>ස</u>							92.6	101.9	DIAMETER		5		
	RANSFC DEG.			80.	73	75	16	28 0	79.3	26	78	78	78	78	77	7 4	200	2 2	37	₽							90.4	99.8	DIA	03-23-78	ANECH	ACGUSTIC RAN 5 M (2400.0	
	FL IGHT 1			70.	71.2	72.8	75.8	76.6	77.5	78.2	77.3	76.9	76.8	76.6	74.3	69.8	64.4	29.9	32.5	7.1							88.6	95.6				AC01	
	디			6 0.					76.2	• •					• 1	. ,	61.3	•									88.2	94.2		TEST DATE	NOT I E	7	
				50.	68.6	70.0	71.2	75.2	74.0	75.1	75.7	74.6	74.4	71.4	68.2	62.2	56.3	34 5	15.2								85.9	91.2		TES	9	T POINT 0222	
				.	66.1	65.8 4.8	70.6	74.1	72.8	71.8	73.0	70.7	68.6	63.7	60.1	49.5	44.7	36.1									82.7	87.3				TES	
268				FREO	20	63	100	125	200	315	4 F	630	800	1250	1600	2500	3150		9300	8000 0000 0000	12500	2000 2000 2000	25000	31500	50000	80000	OASPL	PNLT				MODEL 0200	

÷

6.1.4 Measured Acoustic Data for Model 3

ORIGINAL PAGE 19 OF POOR QUALITY,

 $R_{r}^{o} = 0.853$ conic outer nozzle $R_{r}^{0} = 0.933$ conic inner nozzle

					OR OF						IS ITY												SPEED 0. FPS)	
R.H. STD. DAY, SB 40.0 FT. ARC - FJ-ZER-FMODL X03010	ED FROM INLET, DEGREES	0. 120, 130, 140, 150, 160, PML		6 100.8 107.6 112.0 115.7 115.4 1	7 102,7 109,7 113,6 117,3 116,2 1 2 104,0 313,5 116,9 118,3 116,3	1 105.5 13.1 110.7 119.7 116.8	0 109,4 117,2 120.9 120.5 117.7	3 111.0 116.3 120.7 119.9 116.5 1 7 110.9 116.5 122.1 119.7 114.9	3 111.8 117.4 121.6 117.6 113.8	7 112.4 116.0 120.2 115.1 110.9 1 1 112.3 119.2 119.1 114.8 110.3	9 112.7 118.6 117.5 113.6 1	111.6 116.8 115.4 110.8 107.0	A 111.0 114.1 112.6 108.4 104.9	6 107.0 110.7 108.2 104.7 101.6	0 105.6 109.3 105.8 102.7 100.1 1 4 103.0 105.5 102.8 99.4 96.9 1	5 99.8 100.7 98.3 95.4 94.7	5 96.5 99.2 95.8 90.0 88.7 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 36.9 88.0 85.1 80.2 79.3 1 7 82.2 81.6 79.1 75.2 74.0 1	0 76.3 76,7 74.4 65.2	8 122.9 128.6 130.8 129.4 126.4 166.3	DOITY (FT/SEC) 0, REFRACTIÓN CÓRRECTION - YEST DIAMETER (IN) 48.00 TURBULANCE CORRECTION - YEST	. N310 IALPHA SBS9 TAMB 41,00 . ADH180 PAMB 29.4500 RELHUM 31,90	39.0 SQ CM (21.55 SQ IN) - MODEL	
58.0 DEG. F., 70 PERCENT IDENTIFICATION	AMOLES MEASURI	40, 60, 60, 70, 80, 90, 100, 110	C # 0 0	3 91.1 91.1 90.9 91.7 93.6 96.7	67.4 89.7 90.7 91.2 94.1 95. 70.9 91.2 92.5 91.5 93.3 95.	74.2 91.8 93.8 93.1 94.4 96.3 97.7 1	82,4 94.1 95.9 96.0 97.5 98.8 100.5 1	88.2 101.0 101.3 89.5 89.6 100.8 101.9 1 A8 6 101 4 102 6 102 2 103.5 103.6 104.0 1	98.6 103.5 102.8 100.6 101.4 102.5 103.9 1	100.3 107.9 107.4 164.2 101.5 101.6 103.5 1 99.3 107.3 108.6 108.1 107.4 104.3 104.7 1	97.6 105.4 106.7 107.2 108.5 108.1 106.0 1	96.2 103.4 104.9 104.6 105.9 106.0 108.4 1	93.7 102.1 103.3 103.3 105.1 105.8 106.3 1	81.9 100.7 102.8 102.4 104.8 105.8 105.5 1 89.4 96.9 100.6 101.3 103.3 104.0 103.7 1	87.0 96.6 100.0 100.7 103.1 103.1 101.6 1	80.6 91.2 93.4 93.7 98.7 98.9 96.2	78.7 86.8 90.7 92.5 93.2 93.0 92.2 73.7 81.8 85.7 87.1 91.0 91.5 86.8	.8 76.4 78.3 80.2 83.6 83.6 82. .5 70.7 72.8 74.1 74.9 75.5 76.	55,3 63,5 66.8 69,4 68,8 70,5 69.3	0 116.0 115.4 116.5 116.8 117.0	HODEL/FULL SIZE SCALE FACTOR FREE JET VELC INPUT 1.000 CALC, 1.000 FREE JET	TEST DATE 03-16-78 TAPE NO LOCATION C41 ANECH CH AENO. RD3	MODEL TEST POINT ACGUSTIC RANGE 0300 0301 12.2 M (40.0 FT) ARC 1	

	3 609
AMBLES MEASURED FROM INLET, DEGREES AMBLES MEASURED FROM INLET, DE	MODEL TEST POINT ACEMBISC RANGE S12E S12E S12E FULL O. M/SEC (O.

FLIGHT TRANSFGRMED, SCALED, AND EXTRAPGLATED SGUND PRESSURE LEVELS 59:0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

_	
•	
Ö	
209	
•	
~	
_	
_	
9	
•	
•	
a	
Ξ	
-	
0	

(F

19. 0 DEG. F., 70 PERCENT R. H. STD. DAY, SB. 40.0 FT. M. B.C. DAY, SB. 40.0 FT. M. B.C. DAY, SB. 40.0 FT. M. B.C. DAY, SB. 40.0 FT. M. B.C. DAY, SB. 40.0 FT. M. B.C. DAY, SB. 40.0 FT. M. B.C. DAY, SB. 40.0 FT. M. B.C. DAY, SB. 40.0 FT. M. B.C. DAY, SB. 40.0 FT. M. B.C. DAY, SB. 50.1 B.C. T. 100. 110. 120. 140. 150. 160. 160. 160. 160. 160. 160. 160. 16		FGL	ORIGINAL P OF POOR Q	JALITY	E4 63 .
2. 56. 60. 70. 80. 90. 100. 110. 120. 130. DAY, 38 DACKGROUND FURDLE FUNDIL BACKGROUND FUNDIL BACKGROUND FURDLE FUNDIL BACKGROUND FURDLE FUNDIL BACKGROUND	X03020 X01300		6 113 6 113	201 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	25.6 120.3 28.59 29.4500
39. 0 DEG. F., 70 PERCENT R.H. STD. DENTIFICATION - MODEL F.	u u	}	10.9 1 113.9 1 117.1 117.6 118.0	8 8 4 - 6 8 0 4 8 8 4 8 8 4 7 7 7 7 7 7 7 7 7 7 7 7 7	10 72.0 128.4 1ALPHA PAMB S12E 21.55 S0
ANGLES MEA ANGLES MEA ANGLES MEA D. 50. 60. 70. 80. 90. 100. 2 86.6 86.8 87.4 88.5 90.1 92.7 7 85.6 86.9 87.7 89.8 91.4 92.8 1 89.4 91.4 92.4 92.5 94.6 93.1 5 88.6 90.6 90.7 92.5 94.6 93.1 1 89.4 91.4 92.4 92.5 94.6 93.1 5 88.6 90.6 90.7 92.5 94.6 93.1 5 88.6 90.6 90.7 92.5 94.6 93.1 5 89.6 90.7 92.5 94.6 93.1 5 80.6 90.6 90.7 92.5 94.6 93.1 5 80.7 92.6 93.1 90.7 5 102.5 101.0 97.5 97.6 99.7 99.7 5 102.1 103.2 104.9 107.2 107.6 104.7 5 102.1 103.2 104.9 107.2 107.6 104.7 5 102.1 103.2 104.9 107.2 107.6 104.7 5 102.1 103.6 102.2 103.9 103.3 103.3 102.7 5 102.1 103.6 102.2 103.9 103.3 103.3 102.7 5 102.1 103.2 101.1 102.4 104.0 104.6 6.7 5 102.4 103.2 104.9 107.2 107.6 104.6 5 102.4 103.2 104.9 107.2 107.6 104.6 5 102.4 103.2 104.9 107.2 107.6 104.6 5 102.4 103.2 104.9 107.2 107.6 104.6 5 102.4 103.2 104.9 107.2 107.6 104.6 5 102.4 103.3 101.1 102.4 101.9 100.6 5 90.5 90.5 99.6 90.1 107.2 97.6 97.6 6 112.9 114.0 113.7 114.4 115.0 115.0 5 112.9 114.0 113.7 114.4 115.0 115.0 5 102.2 M (Alone Herel CHIT) ARCOLOTTI A	FROM 1	. 120.	9 97.3 7 100.0 6 101.5 9 104.1 5 106.4 2 108.4	0 0 0 - 4 0 0 0 0 4 0 0 0 0 - 4 4 - 4 0 0 0 0	6 75.4 3 120.6 N310 ADH179
59.0 D 59.0 D 70. 50. 60. 70. 70. 70. 70. 70. 70. 70. 70. 70. 7	MEA	. 100.	92.7 92.8 93.1 95.6 97.0 1	- 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	115.0 1 TAPE TAPE AERO. R
2. 50. 60. 60. 60. 60. 60. 60. 60. 60. 60. 6	DENTIFIC AN	o l	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	97.6 106.9 5 107.2 1 107.2 1 100.1 2 100.1 4 100.1 .6 68. 6-78 ANECH CH OUSTIC RANGE	
25.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		6	6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 0 0 0 0 4 - 0 0 - 0 0 0 0 0 0 0 0 0	65.4 114.0 1 DATE ATION
			2 96. 5 98. 7 98. 7 98. 7 99. 8 95.		6 11 6 11 6 11

				•			Of Of	RIG F F		IAI OF	- F	PA ZU	(GI	: 1 LIT	S									•			ED O FPS)	
FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC	DENTIFICATION - FJ-	ANGLES MEASURED FROM INLET, DEGREES	40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PML			60.9 92.1 90.8 90.3 89.9 90.1 91.	69.0 91.7 91.6 91.0 91.5 92.1 92.3 94.0 100.2 110.1 114.2 116.0 112.9 1	74.3 93.2 93.3 92.5 92.8 92.9 94.1 95.3 102.9 111.2 115.8 116.4 112.7 1	76.5 93.7 95.1 94.0 94.2 94.6 94.8 97.5 105.4 12.3 116.6 117.2 113.2 79.8 94.7 95.4 95.8 95.3 95.9 96.4 99.0 106.6 113.0 117.4 116.8 112.5 1	84.4 95.5 96.2 96.5 96.6 97.3 98.0 100.0 107.4 112.0 117.6 116.0 110.6 1	87.8 98.3 99.2 98.5 98.6 99.5 99.1 101.6 108.1 112.4 118.3 110.0 1 9 9 9 9 9 9 100 9 100 6 10 6 10 6 10	31.2 39.7 100.2 33.0 30.3 100.5 100.0 10 30.1 115.4 115.5 115.5 100.1 103.0 114.1 115.5 115.5 115.5 100.1	103.9 112.5 111.4 110.3 108.8 104.1 102.2 173.8 110.2 115.2 116.7 111.8 108.5 1	101.6 110.4 111.3 108.7 109.7 108.7 104.7 105.1 109.6 114.3 114.9 109.1 106.1 1	95.8 106.7 107.5 108.7 105.7 105.4 107.3 108.0 111.1 113.6 113.2 107.2 105.7 1	98,6 105,9 106,3 106,2 106,5 107,2 105,6 108,7 111,9 113,6 112,2 106,0 104,5 1	99,6 106,2 107,2 105,9 106,1 106,7 106,6 108,3 110,5 112,3 110,5 105,9 103,7 1 98,9 105,5 106,0 104,9 106,2 106,9 105,3 107,3 108,4 110,2 108,4 104,0 102,9 1	98.0 104.3 105.7 104.6 105.1 105.2 104.0 105.6 107.6 109.7 106.3 103.3 102.5 150	96.1 102.8 103.6 103.7 105.4 104.9 102.7 103.2 105.2 106.6 104.0 101.3 101.1 149	93.8 101.4 103.4 102.3 104.4 103.2 99.7 101.1 104.0 103.4 101.7 99.9 101.6 149. 88.5 97.9 99.1 97.2 101.6 100.7 97.7 96.6 100.9 101.9 98.7 95.0 149	86.1 94.0 95.0 96.8 96.0 95.6 94.1 94.1 97.0 97.0 94.6 89.5 91.6 I	78.2 83.2 86.8 85.2 86.4 86.1 84.0 02.8 천원.0 85.0 83.7 79.2 81.	70.4 77.1 77.7 78.6 78.2 77.4 78.3 75.2 83.6 81.8 80.0 71.6 74.3 1 63.1 70.4 70.7 73.5 71.6 71.5 69.9 69.7 73.6 72.0 70.2 61.8 64.5 1	110.7 118.2 118.4 117.4 117.2 116,9 115.8 117.1 121.1 125.4 127.7 125.9 122.5 1	MODEL/FULL SIZE SCALE FACTOR FREE JET VELGCITY (FT/SEC) 289.00 REFRACTION CORRECTION - YES INPUT 1.000 CALC. 1.000 FREE JET DIAMETER (IN) 48.00 TURBULANCE CORRECTION - YES	TEST DATE 03-16-78 TAPE NO. N310 IALPHA SB59 TAMB 40.82 LOCATION C41 ANECH CH AERO. RDG. ADH179 PAMB 29.4500 RELHUM 32.90	MODEL TEST POINT FREE-JET SPEED 81ZE SIZE 12.0 SQ CM (21.55 SQ IN) - MODEL 86.09 M/SEC (289.0	
				<u> </u>		 \perp						1									<u> </u>					 <u> </u>		

									7	OF OF	RIG P	iiN 'O	AL OR	Q	A. U.	SE VLI	IS T	S C												SPEED 289.0 FPS)
																													40. 82 32.90	FREE-JET .09 M/SEC (
ĭ				0 187.4	-		- -			-			6 169.6		_			٠- -	164.6	163.7						.7 102.4	0		TAMB	FULL 88
30 2400.0 FI. 3L	22	5	150. 160	1	9 8	96	8	85	6 6	78	75	72	77.9 70.	9 9	63	ט ג מ ג	9 6	22	_							101.3 93.	7 95	FT -9	\$859 29.4500	î Î
	DL X03025	T, DEGREES	30. 140.	4 92	4	50.00	- 0	3 96	7. 200 7.	2 83	a 6	4.		4.0.00 0.000	9 79	.2 76 75	99 66	2 22		ID.						1.00	108.3	FREQUENCY SHI	I ALPHA PAMB	\$12E 1400.00 SQ
י פוסי יסוס יב	FJ-300-FMGDL	FROM INLET	120. 13	K	, a	Ļ(2 10	0	ه د	4	n c		90,8 91	N O	9	a		-	3 0	0						100.0 104.2		FREG	N310 ADH179	2 SQ CM (
TENCEN N.T.	ž O	MEASURED	00, 110,	A 76	5 22	2.0	2 81	3 83	.6 84	7 84	9.	68	.0 88.5	. 4. 86	9 84	4.82	73	.9 67	, o o o o o	.8 13					-	101	4	8.061	R NG.	9032.
3 t O / 1 · L	IDENTIFICATI	ANGLES	90, 10	4	117	e .	4	. 00	4.4	1 0	۰,	ŧ 0	87.8 86	- 0	6	. 4		1	- 9	o					12	97.6	4	AMETER RATIO	TAI CH AERG	RANGE 0.0 FT) SL
9. U DEG: F., 7U			. 60.	73	3	9 76.	70.	2 80.	0,0	90.	4.00 9.00	. 86.	-	96.	8 84.	7.885.	9	.2 70.	5 63.	9						9.79 7.9	107.	DIAM	-16-76 1 ANECH C	COUSTIC RA
n D			60. 70	a	9	<u>ن</u>	0 00	, ci	0.6	2	4 .		85.2 86	9 4	7	ن د	10	-	מ כ	-						97.8 97	05.6 104		TEST DATE 03-	731.5
			. 60.	7 72	73.	73.	78	70.	97 8 9. 8	1.5	300	5 00. 5 06.	63	9 63	4 80.	76. 78.	9	2 61.	28.							96.55	103.8		TEST	ST POINT 0302
			0	1			1						800 73.					- 1			500	000	31500	000	0000	OASPL 86.	0			MODEL TES

										-																			
																										-			-
17.289			•							OR OF	GI P	NA 00	L R	P/ Ql	AGI JAI	= 19 - T	E Y										ID O FPS)		
07/18/79																										_	JET SPEED C (386.0]	
															•											41.72	9		
ND NOISE					74			7 27 -	146.7	148 149	149	149	149	150	12	120	150	149	148	147	- 4 5 K	. 4 . 5	145		-	TAMB	117		
3ACKGRØU!	40.0 FT. ARC	X03030 X01400		0. 160.				9	<u> </u>	.9 111.3	105	5.5	.5 100	.3 100 .6 101	100	98	10 IU	. 2 95	94	101	7	. 5 . 8 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4	0.0	5 68.1	9 118	SB59 29.4550	Ď		
TED FOR I	3 40.		DEGREES	140. 150					10.4 114	13.4 115	=:		10	109 108	80	-	100	102	_		- 1			74.9 70	•	ALPHA SB! PAMB 29	S		
CORRECT	DAY, SB	FJ-400-FMGDL FJB400-FMGDL	INLET, DE	130.			•		, o	R) 4	0		~	9.	on ·	- ო	-	2 01	9	9.	-0	i io	- 4	76.6	ď	_	8 0	ć s.	
	R.H. STD.	MODEL BACKGROUND F		120.						80.00	2 102	7 105 3 107	7 107	80 1 08 20 1 09	60109	100	0 109	2 110	8 108	20.00		96	100	8 81.5	120	N310 ADH184	39.0 50 0		
PRESSUR	70 PERCENT R.	'	AE.	00. 110					4 V	94.	7 98.	4 101.	.5 102.	6 103.	104.	0 107	.60 109.	6 108.	5 106.	103	00 8	7 93.	.6 87.	74.	9 117.	TAPE NG. Aero. RDG.			
) -	DENTIFICATION	ANGLES	. 06					9	9.	9	9 ~	9	7 9		4 60	ص د د	0	0,0	900	N-	- 00	٠.	74.8 7	_		NGE O FT)		
RMED MODEL	. O DEG.	1 DENT		90				1	98	900	95	92. 94.	96.	97.	107.	102.	200.5	102.	102.	88	100	92.	90.	6 73.9	114.2	I			
ITRANSFOR	59.0 DEG			60. 70	: 				. 6 . 86.	98	.6 90.	.2 93.	. 6 95.	.0 98.	.3 107.	6 101.	.102.	. 8 101.	.6 100.	. m. (96.	.7 92. .7 991.	.2 85.	3 72	.0 113.	82	2. 2		
Š				6 0.			·		3 (7)	- ^	-	o ri	6	8 4	· – ·	4 0	4 u	9	10 F	4 (0	v -	0 H	69.8 71 62.1 65	13.0 1	TEST D	POINT		
				40.		j				64.9	70.4	75.3	86.5	97.1 1	94.8	94.2	93.0	6.10	90.7	87.7	93.0	78.5	74.8	62.1	104.3 1		TEST	,	
276			:		FREG	90	100 125 160	200	315	400 2000	630	1000	1250	1600	2500	4000	2000	8000	10000	16000							MODEL 0300	!	

				_	00	RIC F I	GIN/ PO(AL R	P. Q	AG U <i>A</i>	E	IS TY											ON - YES		E-JET SPEED SEC (386.0 FPS)	
FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FTJ ARC	ION - FJ-400-FMGDL	ANGLES MEASURED FROM INLET, DEGREES	40. 60. 60. 70. 60. 90. 100. 110. 120. 130. 140. 150. 160. PWL.	550 63 80 00	.5 93.0 91.7 91.0 89.4 89.5 89.5 90.8 95.0 101.7 10E	73.5 93.0 91.7 90.9 90.7 90.8 90.4 91.5 96.6 106.0 109.5 112.2 110.5 145 75.0 93.6 93.0 91.0 91.2 91.1 91.4 92.3 99.1 109.2 112.6 115.0 111.4 146	74.3 94.0 94.1 91.1 92.7 93.0 92.7 93.9 101.3 110.1 115.0 115.2 110.8 1	80.5 96.4 96.1 94.6 94.8 95.1 95.5 97.8 106.0 112.4 116.0 114.7 111.6 150	85.3 97.3 97.4 96.0 96.6 96.3 96.7 99.4 106.4 111.5 116.3 113.3 111.0 149	95.6 106.2 102.2 99.2 99.9 99.2 99.2 102.2 108.6 114.0 115.6 111.9 111.9 150	107.0 113.8 109.5 103.3 103.6 99.8 99.3 102.5 109.0 114.4 115.8 112.5 113.4 152	102.3 110.6 111.7 111.2 109.9 110.2 106.1 106.3 110.6 114.8 115.2 111.6 111.0 153	104.1 111.0 109.9 109.2 106.3 108.2 108.0 107.2 110.7 114.7 113.1 109.1 108.4 152	103.2 109.8 110.3 106.9 106.9 106.7 107.1 109.4 111.5 113.1 111.1 107.4 108.0 151 100.1 106.8 107.8 107.3 107.5 107.9 107.0 109.0 111.6 111.8 110.3 106.0 106.2 151	101.6 108.1 108.5 107.2 106.6 107.0 106.2 108.4 110.0 111.4 108.8 104.	99,9 106.6 107.3 105.4 105.4 105.0 104.5 105.3 107.6 109.4 106.2 105.0 107.2 150	97.6 105.0 105.0 103.5 105.1 104.9 103.1 104.3 106.1 106.9 104.8 103.5 106.5 150.	96.0 103.6 104.3 103.0 104.6 103.2 99.7 101.4 104.2 102.7 100:4 99.4 103.8 150 90.7 100.6 100.8 100.6 102.0 101.1 97.4 97.2 101.4 101.4 99.7 96.4 100.9 150	88.6 95.9 96.9 95.4 96.8 95.8 94.0 94.3 97.7 97.7 95.7 92.6 97 88.6 91.0 93.3 93.1 94.8 93.7 89.0 89.6 93.4 90.7 89.5 87.3 91	80.4 85.1 88.4 87.3 86.6 86.1 94.5 83.1 89.5 84.6 83.5 81.9 87.0 1	65.3 71.8 72.1 71.9 71.9 72.0 70.4 69.7 73.8 69.6 68.9 63.5 69.4 144	113.4 120.8 120.3 118.	MODEL/FULL SIZE SCALE FACTOR FREE JET VELOCITY (FT/SEC) 396.00 REFRACTION CORRECTION INPUT 1.000 CALC. 1.000 FREE JET DIAMETER (IN) 40.00 TURBULANCE CORRECTION	TEST DATE 03-16-78 TAPE NG. N310 IALFHA SB59 TAMB 41.72 LGCATION C41 ANECH CH AERG. RDG. ADH184 PAHB 29.4550 RELHUM 31.20	MODEL TEST POINT ACOUSTIC RANGE 530.0 SQ CM (21.55 SQ IN) - MODEL 117.65 M/SEC (2.55	The state of the s
		<i></i>	<u>.</u>							• •	01 G	N 60	4	in id	.	120	9		i		1	OASPL	• PAITHI	NG 3849	₹ 277	

	72 20 20 FREE-JET M/SEC (
F 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	TAMB 41.	- v - v - p. stanet Ada veneda in privabile nepreb
24.3 27.8 93.6 93.6 93.6 93.6 93.7 93.7 93.7 93.7 93.7 93.7 93.7 93.7	29.4550 29.4550 SQ IN) - FUL	A T. A. S. A. S. S. S. S. S. S. S. S. S. S. S. S. S.
	1ALPHA PAMB 81ZE 4 (1400.00	
0.051	NG. N310 RDG. ADH18 9032.2 SQ	
ANGLES ME/ ANGLES ME/	TAPE CH AERG. I RANGE DO.O FT) SL	
2	03-16-78 C41 ANECH ACGUSTIC .5 M (240	-
	TEST DATE LOCATION T POINT 731	
FRED 40. FRED 40. 550 55.9 653 57.9 100 58.0 125 68.1 220 73.5 220 73.5 220 73.5 220 73.5 220 73.5 220 73.5 220 73.5 220 73.6 2200 73.4 1000 75.4 1000 75.4 1000 75.4 1000 75.4 1000 75.7 100	MODEL TEST 030G 00	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

					·							GE IALI							1,18 0.60	FREE-JET SPEED M/SEC (0, FPS)	•	
CONTRACTOR OF STATE O	ONINANSIONALE SOUND FRESSORE LEVELS CORRECTED FOR BACKGROUND NOTSE.	IDENTIFICATION - MODEL FJ-ZER-FMODL X03040 BACKGROUND	ANGLES MEASURED FROM INLET, DEGREES	50. 60. 70. 60. 90. 100. 110. 120. 130. 140. 150. 160.		.6 92.6 93.1 93.5 96.3 96.0 100,1 102,8 109,6 114,6 116,0 117,4 161. 9 91.9 93.2 95.1 97.2 97.6 100.2 105.2 112.0 116,4 119.3 118.0 152.7 93.7 93.5 95.1 96.7 94.1 100.7 106.0 116.0 119.3 120.6 117 5 155.5	. 5 95.5 95.1 96.2 98.3 99.4 102.1 107.5 117.6 121.0 121.4 116.1	.9 \$6.6 96.2 98.3 99.6 101.3 104.2 109.6 118.7 122.3 121.3 118.7 1 .7 97.7 98.5 98.8 100.9 102.3 106.0 111.2 119.5 122.9 121.8 116.2	.5 105.8 105.5 103.4 103.0 103.6 106.8 112.5 119.3 123.7 121.1 117.3 16 105.9 105.4 105.0 104.9 105.5 108.4 113.1 119.2 124.8 120.3 115.7	.5 109.0 106.8 104.1 104.5 105.6 108.6 113.5 119.8 124.1 118.5 113.6	6 109.6 110.1 111.2 109.8 107.7 110.1 114.1 121.5 120.6 115.8 110.6 1.2 107.9 108.4 109.8 111.6 110.8 111.2 114.4 120.8 119.0 114.4 108.6	.4 107.9 108.1 108.2 109.0 110.9 111.6 113.9 119.5 117.7 112.6 106.0 107.1 107.1 108.2 109.0 108.9 113.1 113.9 119.1 117.2 111.5 106.3	.1 106.8 106.8 107.3 109.6 109.8 112.8 113.7 118.0 115.7 110.5 106.1 1 .6 106.5 106.6 107.8 108.5 109.0 111.7 113.4 116.4 114.3 108.9 104.4	103.2 105.3 105.3 107.2 108.6 108.2 111.0 112.3 115.5 112.3 107.6 103.4 153.4 100.6 103.0 104.3 106.3 107.4 106.6 109.0 109.6 112.9 110.2 104.9 101.6 152.1 99.1 102.4 103.1 105.5 106.6 104.7 107.4 107.7 111.0 107.7 103.4 99.8 151.9	7 98.2 100.8 104.2 105.1 101.7 104.1 104.9 106.9 104.2 100.3 97.6	.3 95.6 90.5 101.4 101.3 99.1 96.6 102.2 103.1 99.9 95.6 34.6 9 93.1 94.9 95.4 95.7 94.9 95.9 96.4 100.6 96.7 91.1 66.4 10.0 66.1 69.7 92.9 94.1 69.7 90.6 93.6 95.6 95.9 92.2 65.7 64.3	.1 80.7 83.6 85.2 86.5 84.7 84.4 89.3 90.2 86.5 80.9 79.0 1 .9 75.2 77.2 77.3 78.2 75.5 78.6 95.1 84.5 80.6 76.1 73.7 1	.8 116.8 118.7 119.2 119.6 119.7 122.1 124.9 131.1 133.1 130.7 127.4 1	N310 IALPHA SES9 ADH181 PAMB 29.4550	ACGUSTIC RANGE 2.2 m (40.0 FT) ARC 139.0 SQ CM (21.55 SQ IN) - MODEL 0		
	•			40.	FREQ 50 63	66.3 69.1 72.9	75.5	76.3	94.0 1	103.7	200.3	99.5	97.1 1 86.6 1	94.8 91.8 10.7	95.0	76.9	5.4 7.2 7.2 7.2	109.8 1		\$20EL TEST 0300 03	279	

						OR	yGIN PO	AL 3R	PA	SE ALL	IS ITY						TION - YES	6 Q	FREE-JET SPEED H/SEC (0, FPS)	
		PV.		61.0	62.4 54.2 55.5	56.9	67.3 67.7	56.9	56.1	65.0	0.00 0.00 0.00 0.00	52.1	50.7 49.4	90	46.5	168.5	TIÓN CORRECTIÓN NCE CORRECTIÓN	TAMB 41.18 RELHUM 30.60	ö	
040		50. 160.	,	.0 117.4 1		8 118.2 1	3 115.7	1 111.61	4 108.6	5 106.3 1	0.00.00.00.00.00.00.00.00.00.00.00.00.0	4 99.8	. 3 97. . 8 94.	.1 68.4 1 .7 64.3 1 .9 79.0 1	6 67.1	127.4	TURBULANCE	SB59 29.4550 RE	IN) - MODEL	
-MGDL X03040	DEGREES	140. 15		114.5 110		122.3	123. 7 121 124. 8 120 124. 1 118	122.4 118	119.0 114	117.2 111	114.3 108	110.2 104	99.9 95	96.7 91 92.2 85 86.5 80	76.1 67	133.1 130.7	48 .00	IALPHA SE PAMB 29	SIZE 21.56 30 1	
- FJ-ZER-FMODL	ASURED FROM INLET,	120. 130.		02.6 109.6	. 2 112 . 0 116 . 5 117	11.2 119.5	10 - 10 11 - 12	9 120	120	-	13.4 116.4 12.9 115.8	111	. 9 106 . 2 103	98.4 100.8 93.6 95.9 89.3 90.2	7 78	124.9 131.1	VELGCITY (FT/SEC) JET DIAMETER (IN)	N310 ADH181	SO CM C	
NO I		110.		1	6 100.2 1 1 100.7 1 4 102.1 1	3 106.0	8 106 108 108	109	110.1	113.1	0 111.7	5 109.0 1 7 107.4 1	7 104.1 1 1 98.6 1	9 95.9 7 90.0 7 84.4	73.7	7 122.1	I	E NG. RDG.	139.0	
IDENTIFICATION	ANGLES ME	90. 100		6	01 N				n		0 10 e	T 0	- e	95.7 94.9 94.1 89. 86.5 84.	N 4	119.8 119.	FREE JET FREE	TAP H AERG.	RANGE 10.0 FT) ARC	
101		70. 80.		1 93.	3.2 95.1 3.5 95.1 5.1 96.2	01 12 03 03 03 03 03	4 103 105	7 108.	4 109	108	3 107.	3 106. 1 105.	. 8 104. . 6 101.	95. 6 92. 6 95.	.8 71.	119.2	FACTOR 1.000	03-16-76 C41 ANECH CH	ACCUSTIC R	
·		60. 7		92.6	91.9 93 93.7 93 95.5 95	96.6	103.6	111.41	107.9	107.1	106.55	103.0 1	98.2	93.1 88.1 80.7	76.2	118.8 118.7	SIZE SCALE 000 CALC.	TEST DATE 03 LOCATION CA	22	
•		45. 50.		3 92	9.1 90.9 2.9 92.7 5.5 93.5	5 G	0.05	8 108	2 - 108 2 - 108 3 - 108	5 105	. 6 104 6 104 103	. 7 . 89	0 0 0 0 0	99 7 79	7 56	109.8 117.8	MODEL/FULL S INPUT 1.00	TES	TEST POINT 0304	
			0 6 6 0 0 0 0		315 69 400 72 500 75	-	-	-		1		1		l	- 1	GASPL 10	운		MODEL 0300] !

									0	OR OF	IG P	N.	AL OR	- I	2/4 2/1	iG Al	E	IS TY													JET SPEED C (O. FPS)
		Par	72.3	74.0	75.0	75.4	75.8	70.4	74.8	74.2	73.5	72.6	9.17	27.5	80.08	68.8	67.6	67.0	65.7	64.7	60. g				96.4				TAMB 41.18		FREE-JET O. M/SEC (
		ė.	-		- 0	a	ص ر م	82.6	0	o .	4 K	6	4	0.0	c	_	٠. ص	9			-				* >	97.7) 		ļ		- FULL
5	တ္	150.	97.1						l l			1			1	65.0	55.4	41.8	22.7						108	106.1		SHIFT -9	\$B59	- 1	SQ IN
	DEGRÉES			•		-		1.00	1			ł			1			l	2. C						_	7 113.3	٠.		IALPHA		\$1 ZE (1400.00
FJ-ZER-FMGDL	INCET,		3 96.2			1 .										9 5		99							100	6 114.7	-	FREQUENCY	[6]	5	동
- FJ-ZE	URED FROM		.6 87.3			1			1			1			1	•	4	4	0 ^	. ن					10	3 110 6	,	.061	N310	.	9032.2 SQ
NO LTK		00. 110.	10	.	σ	9	9	0 4	N	0	0 6	N	9	ص ا	0 4	r (3)		0	•	0						7.6 109	-	•	TAPE NO		
DENTIFICATIO	ANGLES MEAS	90.	6,0	.	- 47	_		86.6 87	-	٥,	- «	٨	a .	k	0	ثد	4			a						08.7 107	- •	IER RATIG	V	É	VGE O FT) SL
=		2	0	ب	ė	ဖ		96.1 90.3	-	0	- «	-	-	ო.	- 0	4	N	~	<u>،</u> ه	9					00.1	07.71	- D.	DIAMETER	6-78 ANECH CH	-	ACGUSTIC RANGE 5 M (2400.0 FT)
		99.	75.5			.1 -		88.0	.i .				•		-1			-1	•						99.4	105.6 1	N .		03-16-78	1	
		60.	78.	9, 1	78	96.	.98	00 00 0	89	87.	. 49 20 20 30 30 30 30 30 30 30 30 30 30 30 30 30	33	85	89	5	į į	2	64.	20 60 60 60 60 60 60 60 60 60 60 60 60 60	9 0						9	,		TEST DATE	E	731
		00	72.	į,	9	98	96.	89. - 0	87.	86.	8 4	92		8	9		65	56.	43.	į					98		2		TEST	2	TEST POINT 0304
		6		_		. 1 -	_	91.67 70.78	-1 -	_		-1 :						1								91.3	4.7				DEL TES

												0			NAL POR		'AG UA								FREE-JET SPEED M/SEC (289.0 FPS)
		ina.			0	4	~ •	0.	9.	9 (9	6.3	- თ	12		9-	4.		.3	G	· ·	9	- 93	8.9	MB 41.15	9.0
X03050 X01300	;	160.			118 1 128	. vi	115.5 152	112.2 154	.5 154	105.3 154	8 156	704.3 155	4 154	3 153 153	152	191 6	200	149	90.4 148	79.9 147	73.8 145 68 R 145		123.1 166.8	TAMB	2
1	en en	. 150.			0 118 0	4 117.6	4.0	F	***	~	.8 117.0		T		7 106.5 8 105.2	, 	.0 100.2	- 1		0	-	4 63.5	1 128.5	HA SB59 MB 29.4550	S
FJ-300-FMCDL FJB300-FMCDL		130. 140.			0119	109.2	112.8 117	0	<u>.</u> .	17.0 123	9		9	ი ი ი	115.8 114.7	Γ.	й ю - С	-	_	 16 1		76.2 74	128.9 132	I ALPHA PAMB	SIZE 1 (21.55
ROUND		120.		•	4 00 4	2.101	7 102.7	_			=:	1 12.1			4 113.4	•		-	۲ c	9 0	DE	79.5	123.6	N310 ADH162	6
•	MEA	100. 110			QR 9 Q7		95.1 97.7	0	0.0	» 0	-	o on	6	108.4 110.6 107.4 111.3	- 10	10 7	102.8 105.4	n	N a	9	- 1	0 10	117.5 120.1	TAPE NG. AERG. RDG.	ARC
DENTIFICATION		. 80					- 4 94.0	98	66		102	2 110.0	109	50.2	0 106.9	203		102.	66 0	8	94		.0 117.5	픙	RANGE 40.0 FT)
- 0		70. 90			1 00	- ^-	90.0 92.	>	۲.		(0)		0	- »	04.0 105,	4 6	2 CI	9	O) K	.	4	٥.	116.6 117.	03-16-78 C41 ANECH	. ≥ CG
		60.			1 04	4.0	9.20	93.1	0.6	102.6	109.3	100.00	105.4	104.9	- 10	103.1	100.20	97.0	0 0 0 0	86.2	79.3	67.0	4 116.6 1	TEST DATE	<u> </u>
		40. 80.				4	4 0	90.	95.	0 6 0 6 0 6	9 109.	0.0	6 104.	7 102.	94.4 102.3	4 100.	2 98.	C 94.	6 92	82,	6 77.	9.0	6 115.	TE	TEST POINT 0305
		FRED	9 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	100 125 160	j j			•			1		- }			j		,			- 1		CASPL 106		MODEL 0300

						OF	RIGI	NA 001		PAG QUA									YES YES	Annie de Company de Co	SPEED 289.0 FPS)
		PWL		6.	0.00	. 4	2.	ω 10.	9 -	₹-		, ei	.0	ar.	0.	o in c	× 03	ei.	CORRECTION -	HB 41.16 UM 31.30	FREE-JET 88.09 M/SEC (
		. 160.	٠	.1 114.1 147	52.5		116.4		110.9	108.6	7 107.7	7 106.4	103.6	101.9	92.3	N = 1	64.9	125.3 167	REFRACTIO TURBULANCI	5559 TAMB 29.4550 RELHUM	N) - MODEL
)L X03050	, DEGREES	140, 150		9 110.7 114.	3 114.6 7 7 117.8 9	4 4	9 121.3 17 122.5 1	4 123.0 1	7 118 4 119	117.711	4 115.7 109	6 115.2 108 7 113.0 107	9 109.8 104	106.4 102	300	7 85.6 81.4	72.4	2 131.3 128.8		IALPHA SB59 FAMB 29.4	\$12E 21.55 SQ IN)
FJ-300-FMODL	SURED FROM INLET,	. 120. 130		7 96.6 105.	100.9	105.1 114	109.6 115 109.6 115	110.5 116	111.3 118	113.2 117	114.3 116	113.2 114	110.3 111	108.8 108	99.2 96.	93.0 93.	76.0 74.	8 123.9 128.2	VELGGITY (FT/SEC) Jet diameter (IN)	N310 ADH162	9.0 SQ CM (
DENTIFICATION -	ANGLES MEASURED	100. 110.		6	63.0 64.4 96	95 8 97 47 8 98	100,2 102	101.4 104 02.6 104	103.1 105	10% 7 108	108.0 111	108.3 110	106.5 108	103	0.0	90.4 91.5 95.5 84.7	72	116.2 119.8	JET FREE	TAPE NG. AERG. RDG.) ARC 139.
DENT	ANO	80. 80.		.7 92.	2 0 0 0	. 95. . 0 96.	.5 97. 6 99.	101.	2 105	4 0	2 107.		8 107.	3 105.	9 97	96.0 95.4 87.8 87.8	9 C	119.7 119.2	FACTOR FREE	6-78 ANECH CH	ACCUSTIC RANGE 2 M (40,0 FT)
		60. 70.		4	3.4 92	9. 9. 96.	. 8 97 . 5 99	5 103	6 113	00108	7 107	08.3 108.4	107	8.00 601 601	0 0	93.1 92.7 87.7 86.4	8 78	120.9 120.2	C.	03- C41	ACOUS
		40. 50.		4.49	7 94.4	7 94.8 1 95.8	9 97.0 5 98.8	0 103.7 1	9 114.8 1	3 110.8 1	0 107.2 1	3 108.4 1	9 106.8	8 104.2 1 8 102.3 1	83.0	2 00 0 2 0 0 2 0 0 2 0 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0 3 0	0 71.8	113.0 120.8 12	MODEL/FULL SIZE INPUT 1.000 C	TEST DATE LOCATION	TEST POINT 0305
			50 63 100		1			_	-		-}-		1	18000 96 20000 94	ı	40000 84. 50000 79.	1	GASPL 113	MOL		100EC 0300 283

Œ
Š
N
.•
~
_
9
~
>
•
-
-
v

			ORIGII OF PC	IAL PA	GE IS	N.					(209.0 FPS)
	PWL			1	171.6 171.4 170.8 170.7		1		165.2	TAMB 41.10 RELHUM 31.30	FREE-JET L 88.09 M/SEC (
		V 20 4 0	2 2 3 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3 80. 3 77. 3 76.	80.6 72.6 79.1 70.6 76.1 67.7 73.9 64.6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2. 2		104.2 98.7 104.4 95.4 104.4 97.6 FT -9	SB59 29.4550	IN) - FULL
DEGREES	_	9 9 9 9 6 7 9 9 7 9 9 9	100 101.2 99.8 7.7	94.6 93.2 4.2 4.2	900 900 900 900 900 900 900	78, 9 75, 1 68, 2 4, 75	0 -		- 99 II	IALPHA SI PAMB 23	SI ZE 400.00 SQ
URED FROM INLET,	20. 130.	0 4 0 0 0 0 0 0 0 0 0 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	~ - 0 to	93,5 93,0 91,9 91,9 89,5 89,7 88,3 89,7	1 04 0 79 0 75 0 66	N N G		103.6 107.2 10 110.1 111.6 11 110.6 112.4 11 FREQUENCY	N310 ADH162	SO CM (14
i (C)	-	ł		1	0.00 0.00 0.00 0.00 0.00 0.00 0.00	ł	1 1		100.0 10 107.6 11 107.6 11 8.061		9032.2
ANGLES MEA	Ġ	6 7 6 4 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2 0 0 7 7 9 9 3	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	86 89 6 3 89 6 3 87 6 3 86 3	7 77. 2 77.	52 450. 21.			TAPE AERG. I	FT) SL
¥	.00	01 D 4 0	0	0000	88.4 899 89.0 889 87.6 887	10 4 01 1	ν D 4		100.5 100. 108.9 108. 110.2 109. DIAMETER	6-78 ANECH CH	STIC RANGE (2400.0 FT)
	Ġ	4 6 6 7 7 8 7 7 6 7 7 6 7 7 6 7 7 6 7 9 7 9 7 9 7 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2 88 3 3 8 4 5 5 8 8 5 8 8 5 5 8 6 5 8 6 5 8 6 5 8 6 5 8 6 5 8 6 5 6 5	2 85 1 81 7 76	9 60. 3 17.		8 100.8 1 107.5 1 107.5	1-62	ACGUSTIC 731.5 M (24
	60.	n00-	6 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 - 4 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6	84.7 87 85.6 87 83.7 86	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0		99.4 100 105.4 107 105.9 107	TEST DATE LOCATION	POINT 305
	6.	9 9 9 9	8 2 8 2	90.00	76.2	8.65. 26.05.	35.	12500 16000 22000 25000 31500 40000 83000	0ASPL 89.6 PNL 95.0		MGDEL TEST PO 0300 0305

				4																					ć				*	
											AL OR		PA()UA		13	7										•		FPS)		
		•																										FREE-JET SPEED S M/SEC (385.0		
let																											31.30	FRE 7.35 M/	·	
NO NO S				ŧ			147.9	149.4		Γ,					_ [_	-				149.1	Γ,		145.4	144.6	165.8		TAMB	1	•	
BACKGRGUND NGISE	X03060 X01400		0. 160.				.0 115.1		111	8 108	?-	5 104	201 a	-	6 102	5 100	. 5 99.1	1 97.	4. 20. 20.	¥	- (. 2 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6	0 75	.0 69.8 5 61.1	.6 121.4		550	- MOI		
5 4		DEGREES	140. 150				11.0 116	- 0	7	_ •	4 %		0 6	0	0	7	14.2 105	9	io r		6	? @	0	78.3 72 73.2 63	30.8 126		ALPHA SB59 PAMB 29.4	ZE . 65 SQ 1		
CORRECTED DAY, SB	FJ-409-FMGDL FJB400-FMGDL	NLET,	130.				10		0	2.1		5	- 0		-0	9	116.0	-	ن د د	; 0	۱ ب	· 0	0	80.3 75.9	128.3 1		-	CM (21	:	
R. H. STD.	MODEL BACKGROUND F	D FROM 1	. 120.			•	8	8 5	103	105	2 2	=	==	=	2 2	= =	=======================================	10	100	0.0	101	מים מים מים	88	0 84.4 5 77.7	8 122.9		N310 ADH163			
2 =	t	MEASURED	00. 130					.	•	0 1) 4	7	- 10	0	0 4	9	9	0	٠.	, 0	α c	N G	0	8.1 77.0 0.0 71.6	7.3 119.		TAPE NG.	_		
L. SGUND PRES	FICATION	ANGLES	90.				20		0	- '	4 ID	4	<u> — —</u>		3 6	0	06.6 107		٠. د د	- 4	0		•	76.5 78 70.7 70	17.3 117		<	RANGE		
HED MODEL O DEG. F.	IDENTIFI		90.	•											-1 -			. 1.			ι.			75.6 69.0	116.7 1		16-78 ANECH CH	ACGUSTIC RA		
UNTRANSFORMED MG 59.0 DEG.			. 70.				0 89.	- 6	3 90.	1 91.	96.	4 101.	5 107. 1 109.	8 106.	105	4 104	3 103.	1 103.		98.	2 93	7 83.	8 81.	3 75.1 3 70.2	8 116.2		82	N		
CNT			50. 60				4			9	» α	9	04	6	4 6	4 104	60 6	0	٠.	- - 0	41	0 0	G	1.2 72. 3.0 66.	5.5 116.		LEST DATE	ST POINT 0306		
	-		40.				•	Œ	0	9			O 6	0	9	10	4-	4	.		٠.	. 0	. 60	63.5 71 57.3 63	106.6 115.			TEST PA		
				FRED 50 63 60	100	160	250	318 400	200	630	000	1250	1600 2000	2500	3150	2000	6300	10000	12500	2000	25000	40000	50000	0000 9	GASPL			MODEL	285	

NTIFICATION - FJ-400-FMODL X03060 NOLES HEASURED FROM INLET, DEGREES D. 100. 110. 120. 130. 140. 150. 160. 160. PML 8 92.1 83.1 97.3 104.0 108.4 112.5 112.7 145.6 9 92.4 9.9 10.7 10.9 111.2 114.0 113.1 148.1 9 92.4 9.9 5.7 104.9 111.2 112.5 112.7 145.6 9 92.4 9.9 5.7 104.9 111.2 112.5 112.7 145.6 9 92.4 9.9 5.7 104.9 111.2 112.5 112.7 145.6 9 92.4 9.9 5.7 100.9 111.2 113.2 117.9 114.0 150.5 1 100.1 103.1 109.9 111.2 115.1 113.1 114.0 153.6 1 100.1 103.1 109.9 111.2 117.1 113.1 115.1 114.0 153.6 1 100.1 103.1 109.9 111.2 117.1 118.1 118.1 118.1 118.5 1 100.1 103.1 109.9 116.0 121.4 116.2 115.2 154.0 1 100.1 103.1 109.9 116.0 121.4 114.9 155.6 1 100.1 103.1 103.1 10.9 117.2 111.0 110.2 154.1 2 101.7 10.6 10.0 110.9 112.8 117.9 117.0 110.2 154.1 2 101.7 10.0 10.0 110.9 112.8 117.9 117.0 110.2 154.1 2 101.7 10.0 10.0 110.9 112.8 117.9 117.0 110.2 154.1 2 101.7 10.0 10.9 11.2 114.4 113.9 10.7 1 10.8 4 153.9 1 105.8 100.0 110.9 112.8 117.9 117.9 10.7 1 10.8 152.6 1 105.8 10.0 110.9 112.8 117.9 10.7 1 10.8 10.9 10.8 10.8 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9								IS Y	PAGE QUALI	NAL OOR	ORIG OF						
FREQ 40. 50. 60. 70. 80. 90. 90. 63. 63. 63. 63. 63. 63. 63. 63. 63. 63	MODEL/FULL SIZE SCALE FACTOR FREE JET VELGCITY (FT/SEC) 385.00 REFRACTION CORRECTION - INPUT 1.000 CALC. 1.000 FREE JET DIAMETER (IN) 46.00 TURBULANCE CORRECTION -	66.7 73.2 73.0 74.3 73.6 73.7 71.8 71.9 75.7 73.3 70.8 64.0 68.4 146 115.3 123.0 122.8 120.6 120.3 119.6 118.2 119.5 123.4 127.8 130.2 127.3 125.6 167	73.5 80.5 81.0 81.9 80.1 79.5 80.4 78.2 85.5 83.1 60.7 73.8 78.2 147 66.7 73.2 73.0 74.3 73.6 73.7 71.8 71.9 75.7 73.3 70.8 64.0 68.4 146	81.9 86.5 80.8 81.0 81.9 80.1 79.5 80.4 78.2 85.5 83.1 60.7 73.8 78.2 147	90.0 98.1 98.5 96.5 98.7 97.2 96.2 95.7 99.5 100.0 97.2 93.1 98.6 150 87.0 92.4 95.2 93.1 96.8 95.2 90.6 91.6 95.3 93.2 91.2 88.3 92.8 150 81.9 86.5 88.9 89.2 88.6 87.8 86.3 84.8 91.6 87.2 85.9 82.9 88.0 149	97.2 105.2 105.2 105.3 105.3 107.1 105.3 107.1 105.7 105.7 105.7 106.6 106.6 107.1 106.1 107.1 106.1 107.2 106.2 104.2 106.6 105.2 105.2 105.2 105.3 105.3 103.7 106.8 105.8 104.0 102.9 105.5 101.9 101.5 101.9 102.5 102.8 99.6 99.5 102.6 100.7 95.2 100.2 101.5 101.5 102.5 104.2 102.8 99.6 99.5 102.6 100.7 95.2 100.2 1	102.6 108.8 110.0 108.8 109.3 109.6 108.8 110.8 113.2 114.4 113.9 107.9 108.4 104.0 108.8 107.1 107.8 108.0 110.0 110.8 110.9 107.1 107.8 109.0 110.0 112.3 108.8 107.7 108.4 108.4 108.6 108.0 110.3 112.3 109.9 105.7 106.6	103.0 103.0 110.6 109.3 109.4 109.0 108.4 111.4 113.6 116.4 115.0 109.1 109.4	104.2 112.7 114.2 113.5 111.3 107.0 106.0 112.6 117.9 118.4 114.3 113.9 155 106.0 112.8 112.7 111.9 109.1 110.7 110.0 108.7 113.0 117.3 117.2 112.4 112.1 155 103.0 110.3 111.0 109.4 108.4 107.7 109.4 110.1 113.4 116.9 116.0 111.0 110.2 154	89.1 100.9 100.2 99.9 98.7 99.1 98.7 101.4 109.3 115.1 121.1 116.1 114.8 153 96.5 105.3 102.3 100.2 102.3 101.1 100.1 100.1 100.1 100.9 116.0 121.4 116.2 115.2 154 105.9 116.0 111.7 105.7 106.1 102.5 101.7 104.2 111.2 117.1 121.3 115.9 114.9 155	74.6 95.4 94.5 93.0 93.8 93.2 93.7 94.9 101.9 111.3 115.6 117.1 114.0 174.0 96.0 96.5 93.7 94.2 94.3 94.9 96.7 104.3 113.2 117.5 118.2 113.6 178.5 96.7 97.5 95.1 96.6 95.5 96.2 98.3 107.0 114.3 119.2 117.9 114.2	73.7 94.9 93.6 93.4 91.5 91.5 92.1 93.1 97.3 104.0 108.4 112.5 112.7 73.7 94.9 93.8 93.4 93.0 92.8 92.4 93.7 99.1 108.4 112.3 115.0 113.1	50 63 80 100	40. 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160.	SURED FROM INLET,	- FJ-400-FMODL	FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS. O DEG. F., 70 PERCENT R.H. STD. DAY, 58 40.0 FT.

											0	RF	igi P C	NA DO	R	P. QI	AG	E	IS TY:												:-JET SPEED SEC (365.0 FPS)	
T. 3L			5	67.2	67.2	87.8	67.4	96.7	65.9	81.4 173.1	78.8	74.5	72.8	70.1	6.0	59.7 170	29.0 1	1.3 169	167.4	.64.6 .64.6							5 96.7 185.0 0 98.2		6-	5859 TAM 41.18 29,4554 RELHUM 31,30	FREE-JET) - FULL 117.35 M/8EC (
7, 38 2400.0 FT.		r, Degrees	140.	94.3	2. A	98.2	29.5	, o	97.6	96.9 90.6 66.7 96.0 93.9 86.3	92.3	000	65.0	2:	78.7	74.7	9 6	42.5 25		9.0		•					8.7 108.0 102.5 1.7 110.8 104.0	.7 110.8	FREQUENCY SHIFT	IALPHA SB5	\$1.2E (1400.00 \$0 IN)	
œ	- FJ-400	URED FROM INLET,	Ġ	76.9 63.2 92	92.0	69.4	90.4		91.8	83.0 83.0	83.0	82.6	9 6	88.7	67.7	83.6	76.3 77.5 75	60.2	4.4	16.9							98.7 103.0 106	110,2	8.061 FRE	NG, N310 RDG, ADH163	9032,2 SG CH	
O DEG. F., 70 PERCENT	I DENT I FI CATION	ANOLES MEAS	90. 100.	7 76.1	77.00		6 90.8	83.2	95.1	92.9 68.6	7.08	89.0	20.00	4 87.0	8 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 .	4.10	9 77.4	5 60.4	2 46.0	2 21.9							100.4 98.0	109.e 107.3	DIAMETER RATIO	TAPE CH AERG.	TIC RANGE 2400.0 FT) SL	
59.0 DEG. 1			70. 80.	75.0 76.	75.7 76.	77.0 79.	8 61.7 80.	8 61.9 84.	93.1 92.	5 94.5		8 89.4 90	9 56.7 69	67.2 69	67.5 88	60.2 67	82	70.0 73	16.4	19.9 21.							5 101.1 101.	1 109.2 110.7		03-16-78 C41 ANECH	ACOUSTIC 731.5 H (.240	
			50. 50.	75.6 75	76.2 77	76.9 78	80.9 81	68,1	95.7	91.7	4.19	7 86.9 89.	96.3 68.	3 85.6 87.	85.5 87.	0 62.6 64.	2 73.4 76.	65.3 69.	32.0 60.	1.1							9 101.7 102	5 108 9 110		TEST DATE LOCATION	TEST POINT	
;			9	FRE0 50 53.			- 1			315 01.4			ı							0000 0000 00000	12500	16/00 20000	25000	31500 40000	50000	00000	DASPL 91	PNL 97	į	1124 32V	HODEL	28

∤--.

07/19/79 17,289										OR	nGI P	NA OO	L I	PAQ	(GE	: 18								39.74 33.60	FREE-JET SPEED O. M/SEC (O. FPS)	erry.
	O FT. ARC	X03070		150. 160.]		113	.3 114.2 148 .1 114.5 150	.2 114.0 151	.5 116.2 152 .8 117.0 153	.1 117.0 153 .7 115.9 153	3 114.5 152	0 109.5 152	3 108.6 151	.7 106.0 150	.2 105.9 150 .2 104.0 149	.4 103.3 149	03.2 100.1 147.5	2 24 7 45	0 90.3 145	.4 79.7 142	.9 74.6 142 .4 67.0 143	28.5 125.6 164.3	3859 TAMB 29.4700 RELHUM	IN) - MODEL	
	DAY, SB	FJ-ZER-FMODL	INLET, DEGREES	130. 140. 1			106.6 111	108.2 112.6 1 112.5 115.7 1	113.9 117.0 1	114.2 117.8 1 114.7 117.8 1	114.3 117.6 1	113.8 116.3 1	115.4 116.9 1	114.7 117.2 1	114.5 114.9	113.5 112.7 1	111.0 110.0 1	106.9 105.3 1	98 3 97 4	97.2 94.7	92.0 95.0 94.0	79.8 79.3 75.2 74.1	126.0 128.6 12	I ALPHA PANB	SIZE CM (21.55 SQ	
	ERCENT R.H. STD.	ON - MODEL BACKGROUND	MEASURED FROM	00, 110, 120,			0.96.0	97.7	9 99.1	. 3 101.2 . 3 102.9	5 103.8	6 105.8	4 106.5	4 107.4	6 107.0	3 106.7	3 105.7	102.6	0.80	91.4	2 79.9	74.5 73.4 79.9 66.9 67.7 74.7	4.4 117.6 121.	TAPE NG. N310 ERG. RDG. ADH17.	ARC 139.0 SQ	
<u> </u>	O DEG. F., 70 PERC	IDENTIFICATIO	ANGLES	. 80. 90. 1			90.5 92.6	2.7 2.7 2.7	93.2 96.0	98.8 88.8	97.6 99.5 1	99.6 101.0 1	100.1 101.2 1	99.9 101.6 1	100.6 101.9	7 103.1 1	101.3 102.9 1	101.9	20.00 G 7.00 7.00 7.00 7.00 7.00 7.00 7.0	90.0	85. W 85. G	73.2 67.9	6 112.0 113.5 11	16-78 ANECH CH AE	RANGE 10.0 FT)	
	59.0 D			50. 60. 70			6 69.3 69.	7 99.4 9 0.7 91. 0 9 0.	8 92.5 92.	6 95.4 94.	2 99.8 97.	2 97.5 97.	0.08	3 99.1 98.	8 100.1 99.	3 100.0 100. 2 98.6 99.	6 98.4 99.	2 95.7 97.	A 00 3 01	2 68 4 99	4 76.0 78.	70.7 72. 66.0 67.	09.1 110.7 110.	TEST DATE 03- LGCATION C41	ST POINT AC	
288				40.		0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	63.0	65.6 69.2	71.5	74.8	9.29	87.1	88.7	90.8	90.7	87.6 87.4	84.8	6000 60.4	5000 74 9	72.8	0000 68.8 0000 62.2	56.4 51.7	0ASFL 99.0 10		MGDEL TEST F	

().

								OF	iG F	iN O	AL OR	Q	Ż	GE AL	: IS										•		ED FPS)	
			•																						- YES - YES		ET SPEED (0.	
																									CORRECTION CORRECTION	74	FREE-JET M/SEC (
									•	. (0	0.5			- «			. m		·		0 10	•		"		3 39.74 1 38.60	o.	
O			Z				147.3		9.00	152.		100			151.8	Ψ.	,	- -		-			7	164.3	CT ION	TAMB	급	
T. ARC			160.				113.9	114.2	14.0	116.2	117.0	115.0	114.5	100.6	108.6	106.0	104.0	102.3	1001	1	90.3 85.3		• í •	125.6	REFRACTION TURBULANCE		- MODEL	
.80.0 FT	2	S	150.				114.0	116.3	116.2	118.5		1.0.7	-1		113.0	110.7	108.2	106.4	වි ව ග ග	95.9	91.0 85.6	4.5	67.4	128.5		3859 29.4700	(N)	
9	X03070	DEGREES	140.				11.0	12.6	•		17.9 7.7			•	27.		11.3				94. 7 90. 4	84.8	74.1	128.6	0. 48 .00	TALPHA PAMB	SIZE 21.55 SQ	
DAY,	MODI.	1	130.				9 90		•	14.2	•	13.90	•	•	7.4	-	2.2.	-1 -			97.2 92.0			126.0 1	SEC) (IN)	=	-	Ì
R. H. STD. DAY, SB	FJ-ZER-FMODL	ASURED FROM INLET,	. 50.				1 6	<u>ا حان</u>	7 8 6	5.9	38.2 1	20.00	0.0	0.0 0.0	9.0	-		_ _		- 1				121.1 1	VELOCITY (FT/SEC) Jet diameter (IN)	N310 ADH174	SO CM	
E.	1	RED FI	10.				98	-	7.06	9	O3 0) 4	0	- K	07.4	901	06.0	-0	10 C	-	40	0	1	9	LOCIT T DIA	1	139.0	
RCENT	SATION	MEASU	00.				C	-	o	ص ح	6.0	0	9	4 4	4 4	90	·	2 60	- 0	9	0 0	~ II	0	1.4 117	JET VE FREE JE	TAPE NO.	ARC	
70 PERCENT	DENTIFICAT	ANGLES	90.				Œ	4	0 0	9	6 R	9 0	0	-	. e. c. c. c. c. c. c. c. c. c. c. c. c. c.		- 0	7 6	ن د م	. ~	0 9 09	a c	v a	.6 114	FREE .	TAI	1	
L.	1 DE	X	•				E .		- a	1 10	e 4	_ Q(5	 	9			200	— დ «	. 60		0	20	0 113		용	ACCUSTIC RANGE 2 M (40.0 FT)	
0			8									_		•		-·		- -			,		.	.6 112	FACTOR 1.000	03-16-78 C41 ANECH	OUSTIC M (
28			2				6	8		93.	94.	9	97.	8	8 8	8	96	98	97.	9	89 9.4	78.	67.	110	SCALE CALC. 1	ŀ	12.2	
			. 60			i .					١.		1		98.	., .		-l -						110.7	E C	TEST DATE LGCATION		
			20.			٠							1		8 8	.l -		.1 .			83.2 78.0		-1 -	109.1	FULL \$1.	TES	TEST POINT 0307	
			ė					.1 -					- 4	•	900	-1 -		-1 -		• •i	1 . .			98.0	MODEL/FULL INPUT 1.		ı	
			FREG	63	90 00 00	125 160	200 200 200 200 200	315		630	900	220	900	8 8	120	800	000	200	0 0	80	200	000		GASPL			MODEL 0300	289

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SQUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

X03075

IDENTIFICATION - FJ-ZER-FMODL

													OF	el C	ill PC	NA DO	LR	FQ	PA U	GA	<u>.</u> 17	is TY	·			en e									FREE-JET SPEED M/SEC (0, FPS)	
																																		36.74 36.60	FREE 0. M/S	
	ā	£ .	700.	170.7	171.1	171.2	171.6	171.0	170.6	170.5	169.8	166.9	166.	160. 187.	167.0	166.0	165.7	164.6	163.2	163.1	161.0		161.6								182.3			TAMB		
	160.) · · · · · · · · · · · · · · · · · · ·	80.0	89.8	89.6	98.1	96.3	81.7	78.6	77.9	76.3	20.00		9 4	63.G	58.3	49.6	39.6	20.											97.3	0.78			- FULL	
6	150.	[6	0 K	9	92.	96.3	92.6	93.0	o (86.6	87.3	86.0	20.0	- 6	1 0	74.2	70.6	64.6	55.6	41.8	0 · XX										103.8	0.00	FT -9	\$859 29.4700	ŝ	
DEGREES	140.	9		96	96.4	96.9	96.5	96.3	96.0	92.0	8			0 0	7 60	9.	77.8	73.0	64.7	55.8	- d) }									106.2		Ŧ	ALPHA PAMB	\$1 ZE 400.00 SQ	
	130.		7.78	4	94.0	94.3	93.8	93.5	0.0	4.6	93.0	92.7	22.0		9 6	9.0	82.5	77.6	70.3	64.4	<u> </u>	, c	;						;		105.0		FREQUENCY	1	5 (_
EASURED FROM INLET,	120.	- 1	6 4 5 4 5 -	22.	89.3	90.3	•	90.0	-4		•		• •		•	82.9		-		-1	04.0		•								101.1	9	Ē	N310 ADH174	2 80 CM	
URED	110.	- 1			84.9	85.6	87.1	87.3	87.4	87.6	68.1	87.6	4.70	8 6 0 7		93.6	81.4	77.3	70.8	64.8	0 6 7 6	•	•								28.2	.h.	8.061	RDG.	9032.	
Ī	100.		9 6	9	91.6	83.1	84.6	84.6	94.5	8 4	9.7	84.3	27.7			9	79.7	76.5	21.6	64.8	9 0	9 6)								8 6	02.6	RATIO	TAPE AERG. F	36	
ANGLES	90	- 1						-	-1				-1	_		81.7				-1											28	0.70	AMETER RA		RANGE 10, 0 FT)	
1		1						-	.,	•		•	-1			80.1	ι.			- 1											92.9	02.7	DIAME	6-78 ANECH CH	, 유	
	70.		0 -	-	•	4	<u>ب</u>	<u>.</u>	4	6	19 1	י פו		. -	- 4	4	0	ď	a	ر ا	ם פ	٥ د	4								0 1	200		03-16- C41 AN	ACOUSTIC 5 M (24	
	9	,	N «	.	9	8	9	e .	-	ლ (0 (9	2) K	9 d	24.5	4	O)	cu ·	4	N d	٥ ر	Ł					. •			80.8	فأذ		LOCATION	731	
	20		» c) E	۰.	a	۲.	.	aj.	0	o (0	ام		, ₄	70.3	8	O	۲.	4	٠.	•							-		P 6	· [•		LOCA	TEST POINT 0307	
	6		0 -	- 7	4	4	9	- 1	7	0 1	0	<u>م</u>	4 0	n c	? -	56.5	0	ď	ო (9	N					•					75.6	: -		er Program	TEST 03	
	9	- 1				ŀ			- 1				- 1				ı			- 1			10000	12500	16000	2000	31500		90009	00009	GASPL				MODEL 0300	

									0)RIG	00			GE ALIT	EY						40.10 36.80	FREE-JET SPEED 0.09 M/SEC (200.C FPS)		менициялиналиту реймининалурунда акайманалурунда ж. Тунастрарунда жейтердей дей бурай бур
				160.	Ę		1.2 145.9	90	20	64 1 600 1000	n a	0-	6	i o k	10 K	91.6 145.3	40	40	6.3 140.4	7.7 161.2	TAMB	MODEL 3		Management in the state of the
	40.0 FT. ARC	L X03080 L X01300		150.			6 111.6 11	7 114.7 10	113.61		108.6	109.3	6.	0 1 7			-	00		9 123.4 117	A 5859 B 29.4600	- (N) 06		
Chancita	DAY, SB	FJ-300-FMØDL FJB300-FMØDL	INLET, DEGREES	130. 140			02.6 107. 05.0 108.	0.0	2 116. 7 116.	114.	4114	10	~	200	06.7 106.		0 -	90.6 88. 83.1 82.	76.5 75.	123.7 125.	I ALPHA PAMB	81.ZE		manus de la companya
EVEL	1. STD.	MODEL BACKGROUND F.	FROM	0. 120.			0 96.1	6.7	20	07	0 4	4 108	6 106	. o r	7 105	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 97.	N 0	6 6	.0 118.6	I. N310 I. ADH175	39, 0 SQ CH		
	, 70 PERCENT R.	'	AMOLES MEASURED	100. 110			9.2	93.4	0.4.0 0.5.0	96.71	99.1	1000	106.1	900	0.00	2.8	92.9	79.3	73.6 65.3	111.4 115	TAPE NO	T) ARC 1		erin en majorit de majorit de la composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition della composition del
	. F.	IDENTIFICATION	AMG	.00	Polyment		4 to	20.8	5 5 2 6 3 7	a 10	4 98	8 8 9 8	.1 96.		8 8	97.8 99.0 97.3 97.6	7 94.	. 88 . 80	. 7 72. . 1 66.	08.9 110.5	16-78 ANECH CH	RANGE 40.0 F		
	20.0			60. 70.	(17-7)		9 6	6 8 8 8	6 6 6 6	2. 4.	- 93 93		96	900	96.	1 G G	0.8	5 83	.9 71. .2 66.	.1 107.3 1	S 2	ACOUSTIC 12.2 M (
	5			50.			92.0	9 6	87.6	89.2 93.1	90.3	92.5	95.3	200	0.40	92.8	87.4	77.9	56.5 59.1	105.3 107	TEST DATE LOCATION	T POINT 0308		
				40.	7850 80 80 80	1 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	80	65.	70.2	7.0	82.	63.	88	9 69	96.	6000 84.6 0000 79.0	78.	72.	53. 53.	ASPL 96.7		MODEL TEST 0300 00	291	
					_	<u> </u>										- ~ ñ	L		L	Y	AUT DIO	Ĭ - 15va		

										or of		IN OO	AL		PA QU	GE AL	is m	3 7 .								· · · · · · · · · · · · · · · · · · ·				SPEED 269.0 FPS)	**************************************
						•																						correction - yes correction - yes	40.10	FREE-JET SF 88,09 M/SEC (26	
								1 142.0	5 147.7	9	-	7	3 148.2	7	, 4	.7 148.0	9 (4	_	. 2 147.7 R 147.3	-	3 147.4	4	6 145.9	4		.5 142.1	.7 161.5	REFRACTION TURBULANCE	TAMB	MODEL	
		150.			•			109.9 108	112.4 110.5	114.8 109	114.5 109		9	105	0 0	104	0 0	105.0 103.0	200	2 101	101.0 101		86.3 90.5	- 4		61 .1 63	123.6 119.7		3859 29.4600	i Ž	
80X	, DEGREES	. 140.						7 105.9	20.5	133	7	2 113.7	13	13		-		1 110.0	. 108.3 . 108.3	-	6 102.9	1 97.1	6 93.3	9.09	٠-١	1 67.7	125.1) 289.00) 48.00	I AL PHA PAMB	312E 21.55 30	
FJ-300-FMGDL	IOM INLET,	12¢. 130					2	5.3 101.	201 2 98	.00	.9 110.		10	0	0 4	07.9 111.3	30	9	07.5 110.	7 107	03.6 104.	0	r- (86.3 82.	6	71.5 69.	119.0 123.1	VELOCITY (FT/SEC) Jet diameter (IN)	N310 ADH175	SQ CM (ķ
NTIFICATION - FJ-	EASURED FROM	110.				,		a	9 e	94.2	96.6	50.00	100.7	101.3	102.0	103.4	103.8	104.1	4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	102.8	101.6	95.3	92.3	80.8 80.8	73.9	67.6	114.6 11	1	APE NO. NO.	139.0	
DENTIFICATI	ANGLES ME	90. 100.								4 92.	. 94	9 6	3 98.	98	0 6	4 100.2	100.	0	85 c	6 101	9.6	95.	.5 91.	7 G	6 75.	.3 67.	1.4 112.1	FREE JET FREE	TAP AERO.	E FT) ARC	
IOE	K					-		0	N IC	4	0	9 1	. 0	4	D ~	98.2 99	4 -	'n	a c	0	æ .	, ₍	10 c		7	-	112.0 112	FACTOR .	6-78 ANECH CH	ACCUSTIC RANGE 2 M (40.0 FT)	
		70.						9.69	> 0 0 0 0	9.10	93.0	60 0 4. 80 60 4	96.2	97.0	2 0 7 7 8 10	98.4	100.4	101.2	101.1	101.2.1	100.6	9.50		8 6	76.	71.	111.4	SCALE FAC	03-1 C41	ACOUS 12.2 M (
		50. 60.						.3	9 G	92.	.93.	, x	4 97.	.0 89.		. ^ !	2 100 t	4 100.	9 k	7 102.	٠. وق		.0 92.		.4 75	.4 67.	5.8 111.7	\$12E 000 C	TEST DATE LOCATION	TNIC	
								0	ė u	i vi	0	<u>ه</u> د	, or	7		90.8	4	-	60	0	۲. د	40	İ	0 0	a	9.	102.9 110.	MODEL/FULL INPUT 1.		TEST POINT 0308	
	-	- 1	FRED	9 8 6	100	125	200	250	3 2 2	8 8	630	000	1250	1600	2000	3150	4000 0000 0000	6300	0000	12500	16000	25000	31500	50000	63000	80000	OASPL 1			MODEL 0300	

IANSFORMED, SCALED, AND EXTRAPGLATED SOUND PRESSUR	URE LEVELS
T R.H. STD. DAY, SB 2400.0 FT.	16.
IDENTIFICATION - FJ-300-FMODL X03086	
ANGLES MEASURED FROM INLET, DEGREES	
0. 120. 130. 140. 150.	160. PWL
45.9 71.2 71.6 72.0 72.9 73.4 73.6 75.3 60.5 69.4 91.8 90.6 63.7 1 Hi a 72 2 73 3 73 8 73 8 78 0 78 1 76 1 83 0 89 8 92 8 91 2 82 7 1	
5 73.0 74.9 74.9 75.6 76.4 78.6 85.2 90.4 92.9 90.8 82.0 1	
56.5 73.8 75.6 76.2 76.7 77.4 77.4 80.3 86.4 91.0 92.2 89.9 81.2 81.0 73.5 76.3 77.2 78.0 78.7 81.0 87.3 92.2 94.1 88.6 79.7 1	7
63.5 76.2 78.3 79.9 79.5 80.5 80.2 32.4 87.5 90.4 92.1 87.4 78.5 1	. 10
64.6 78.6 80.5 78.5 79.4 80.6 80.3 82.8 87.7 80.9 91.2 85.6 77.4 1 66.6 76.0 78.4 78.5 78.6 79.4 80.6 83.3 87.4 91.8 92.3 86.1 78.0 1	- 0
68.6 76.5 78.2 78.5 79.6 80.5 81.4 83.4 88.7 91.0 91.3 86.4 76.7 1	
72.1	1.00.1
69.5 77.7 80.1 80.5 80.8 81.0 82.1 84.3 88.0 89.4 86.9 78.5 71.4 87.7 78.9 78.5 71.4	5 166.3
67.6 77.3 60.1 80.8 82.1 82.9 88.8 83.9 86.2 87.2 83.1 75.1 67.2 1	2 165.6
69.3 76.3 79.7 80.7 82.1 83.2 81.9 84.0 64.1 84.8 80.8 73.2 65.0 1 66.5 76.9 80.0 80.4 82.0 81.6 80.9 82.0 82.7 83.5 78.1 71.2 62.3 1	0 6
63.2 74.3 77.4 79.6 81.5 81.9 79.4 80.5 81.2 80.4 75.4 68.4 59.9 1	9 165.5
60.9 72.2 75.8 76.6 80.4 80.0 76.8 77.9 79.1 76.0 70.8 63.5 54.6 1	6 165.6
01.3 66.5 /U./ /I.8 /6.5 /3.8 /3.2 /2.0 /3.8 /2.1 64.4 02.7 39.2 / 43.4 68.2 63.8 67.2 68.3 67.7 66.5 65.7 65.8 62.9 54.4 39.0 20.8 1	8 164.0
31.1 45.5 54.5 56.8 61.5 61.8 56.2 55.3 55.1 48.8 39.8 22.1	164.1
8.5 25.6 36.8 39.4 43.8 44.3 41.9 38.1 39.1 28.2 15.5	162.4
0.31 8.11 5.71 5.01 7.71 1.11 8.0	re
12500 1800	
20002	•
25000	
40000	
50000	
1	
OASPL 78.2 86.6 90.6 91.4 92.4 93.1 92.8 94.9 98.7 102.0 102.6 98.8 90.5	90.6 179.4
PNL 85.4	81.1 82.2
DIAMETER RATIO 6,061 FREQUENCY SHIFT -9	
TEST DATE 03-16-76 TAPE NG. N310 IALPHA 3B59 LOCATION C41 ANECH CH AERO. RD9. ADH175 PAMB 29.4600	7445 40.10 00 RELHUM 36.60
MODEL TEST POINT ACGUSTIC RANGE 812E 0300 0308 731.5 M (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL	FREE-JET SPEED - FULL 66.09 M/SEC (269.0 FPS)
293	

)R')F	iG F	IN/	AL OR	A O	AU NU	/Ll	is in				•								ET SPEED (3es.0 FPS)
							143.6	146.3	147	147	146	ᆦ	146	4	14/4	147.	146	45	44	144.6	143	43.6	141.3	140.2	160.	TAMB 39.92 RELHUM 35.20	FREE-JET EL 117.35 M/SEC (
1 40.0 FT. ARC Fabl X03090 FODL X01400	DEGREES	140. 150. 160.					07.0 11.0 109.9	7 112.6	7 112.9	0 111.0	7 107.4	1 106.0	4 103.6	104.5	104.0	6 103.2	08.7 101.7 95.9 07.6 100.4 94.7	2 99.6	97.7	94.5	2 91.2	 	.0 75.6	3 50 6 58.	0 120.9 1	ALPHA SB59 PAMB 29.4500	SQ IN) - MOD
NT R.H. STD, DAY, SB MGDEL FJ-400-FM3DL BACKGRGUND FJB400-FMGDL	FROM INLET,	120, 130.					95.2 101.3 1	107.8	6 109.6 11	110.5	11.3	105.9 111.9 11	107.4 111.5 11	107.1 112.2 11	107.6 1/1.2 11	107.6 111.5 11	107.4 111.0 1	106.4	103.3 105.5	99.6 100.7	96.3	- T	0.19	74.8 58.9	118.2 122.9 1	N310 IAL	31.0 SQ CM (21.65
70 PERCE	ANGLES MEASURED	90. 100. 110					9 90.1 92.	9 90.0	.0 82.6 95.	.a 94.2 96.	.2 96.91	.1 97.2	2 98.6	66	5 99 6	5 100.1	100.6	1 100.3 1	.5 99.2 101	.2 96.2 98.	7 93.6 93.	- C 100 - C	4.08	74.6 73. 66.4 66	3 111.2 114.	TAPE NG.	_
DENTIFI		70. 60.					85.4 86.8	85.9 87.7	87.8 86.6	88.6 90.9 90.4	90.0	92.4 94.0	92.0	93.6 95.1	93.9 95.2	97.1 98.1	96.5 97.7	96.4 98.0 1	96.1 97.4	93.9 97.7	90.0 94.9	69.6 69.8 64.0 67.0	77.6 80.7	71.2 72.0 66.6 65.5	107.0 108.5	03-16-78 C41 ANECH CH	ACGUSTIC 2.2 M (
		40. 50. 60.	*				200	- 86.	.4 85.4 87.	7 86.8 88.	3 86.2 91.	6 91.1 93.		5 92.0 93.	2 95 6 97	4 95.1 97.	6 94.0 96. 7 95.2 96.	7 95.0 96.	2 94.0 96.	4 91.4 92.	.7 08.0 89.	.8 83.8 87.	2 73.6 75.	7 59 2 63.0	4 105.3 107.	TEST DATE	TEST POINT 0309
			7. 0.00	6 63	100	200	250	. 4 . 0 . 0	500 61			- 1			-		6300 85.		2500		25000 78			63000 59	ASPL		MODEL TI

								OR	ıgi	VAL	P	AGE	: 19									
								OF	P	POC	Q	JAL	171									ED 1.0 FF8)
																				YES		:T SPEED (385.0
									•	•										CORRECTION -	39.92 35.20	FREE-JET 17.35 M/SEC (
			ᡓ		1.1	43.6 46.1	46.8	4 6 6 5	46.0 46.0	47.4	6 6 6 4 4 4	46.2	47.7	47.6	47.7	47.0 27.0	45.8	42.8	161.1	1	TAMB	
AMC			160.		07.4 1	06.3 1 08.7 1 06.8 1	96.5	37.2 36.3.1	55.0 5.0 1.0	07.4	8.8 20.8 10.0	07.0 06.1	36.4 36.0		02.0	96.4	85.6	69.0	120.1	REFRACTION TURBULANCE		MODEL
40.0 FT.	080E0X	ES	160.		108.0 10	110.3	171.3	0.80	106.7	109.5	106.5	105.7	104.6	103.7	97.0	91.4	80.0	63.5	121.2		A 5859 8 29.4500	- (NI OS
TD. DAY, SB	XO3	DEGREES	140.		103.8	100	112	===	==	112	===	109	106	104	97.0	9 9	9	6	123.3	385.00 48.00	TAL PHA PAMB	312E 21.55
STD. DAY,	FMODL	INLET,	130.		100.0	104.6	109.3	109.6 110.3	109.9	111.5	111.8	111.6 109.7	109.6 107.5	107.5	86.0	96.3 89.2	82.9	67.7	122.4	/SEC)		- 5
0)	FJ-400-FMGDL		120.		93.3	0.00	05.5 5	04.3 04.6	02.0 06.0	06.6 08.3	08.4	08.4 07.9	05.5	04.6	88	- 96 - 10 5	87.7		118.6	OLITY (FT/SEC) DIAMETER (IN)	N310 ADH176	os S
Ξ. H.		EASURED FROM	110.			8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			•- •-	-		-		F	00.3	1	91.6	68.0	14 .0	VELOCITY	NG.	139.0
ERCENT	CATION	Σ	00.			80.0		4 –	ro	10 10	10 N	80		0		4			2.2	JET V FREE J	AERG. R	ARC
70 PERC	DENTIFICA	ANGLES	90. 1		0	10 C	, ^	- 0	6 0	0 10	0 3	4-	9-	6 0 (i di v	- «	4	9	2.7 11	FREE	¥ V	
ie.	10		0.			V 0 0	4	0 4	N 10	10 4	6 6	- 6	410	G 1	. u 4	4 4	01	0	.8 112	œ	H H	C RANGE 40.0 FT)
. O DEG			•			808								<u>ا</u> - ا		1			.6 112.5	FACTOR	1-16-78	ACGUSTIC 2 M C
20			20		68	68 68		•		l				٠,		1]	=	SCALE CALC. 1	82	12.2
			.09		9.08		94.	95.0 4.96.4	960	98.7	100.4	103.	103.2	103	101.3	2.2	96.0		113.3	. SIZE S 000 CA	TEST DATE	
			90	,	1 .	92.3													113.1	FULL S	TES	TEST POINT 0209
			9		20.5									• 1 •		• •	77.5	-1 -	105.3	MODEL/FULL INPUT 1.		TEST
			FREG	8885	1			l		ļ		1		1		1		-1	GASPL 1	E		7300 295 295

FLIGHT TRANSFORMED, SCALED, AND ESTAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

X03095

IDENTIFICATION - FJ-400-FMCDL

							00	RI F	Gil Pi	<i>N</i>	AL)R	P. Q	A(U	GEAL	I.	Š														SPEED 385.0 FPS)	
PVI	164.3	164.4	164. /	164.6	164.4	164.6	160.0	90.00	166.5	166.3	165.6	165.7	166.0	166, 5	186.0	165.1	165.4	3 C C C C C C C C C C C C C C C C C C C	160.9							179.1		•	TAMB 39.92 RELHUM 35.20	FREE-JET 117.35 M/SEC (
. 160.	1			Į			- [- 1			- 1	63.5		1	_									9.0	1	Ģ	\$859 29.4500 R) - FULL	
140. 150.	ŀ			1			- [ı			ļ	76.6 70.0				-					•			. 7 96.9		SHIFT		(N 0 0 0	
	1			ł			- (- 1			- 1	80.7 76							•					101.2 100.7	4	FREQUENCY	I ALPHA PAMB	\$12E (1400.00	
120.	0	~ (0 4		. a	e (N) e	-	او	D 4	. 0	~	9	o on	a	e 1	0 4	9 V							98.4	-	F	N310 ADH176	2. SG CM	
110.	1			1			- [- 1			1	. 19 6. 13		į										2.00	102.8	8.061		9032.	
100.	72.	4.	9 9	78	78	90	9	5	9	82.	8 0 6	92.	91.	- 80.1	72.	67.	67.	4 - 7 d	<u>.</u>							e -	102	RATIO	TAPE AERG.	FT) SL	
.00	4	<u>ن</u> ا	٠,	2	•	ıp (ار د	9 0	80	-	٠. ٧	9 0	7	2.1 82.	2 -	-	Ġ.	. -	-							900	3 104.	DIAMETER	- 5	RANG 00.0	
9	1	٠. ا	- 0			10 (وام	, 4	9	-	6 0	4	8	79.8 82	- 4	4	۲.	- °								91.6	10	.	03-16-78 C41 ANECH	ACGUST . 5 M (
90.			4 (ار	0	₩.	N -	- e	N	9	6 0	9	9	90.5	- 0	6	(U (.	-								9.10		TEST DATE	731	
9	72.	73			76	79		6 6	9	20	9 0	9	2	77.1	69	9	9	28			•					90.0	98.0	,	TEST	T POINT 0309	
9	20	4	4 R	3	2	9		9 6	72	7	9 6	32	9	66.3	9 10	46	8	_	2 9	<u> </u>	20	2	2 9	0 9	0	ار 90.4	500			TES	1
FREG	2	40 (D C	2 2	9	8		- Q	8	63		28	160	2000	315	9	200	9 9	900	12500	2000		40000	50000	00000	GASPL	ZZ			ACDEL 030	

()

										RIG F. P														37.40 46.30	FREE-JET SPEED . M/SEC (0, FPS)		
Selbe owner	40.0 FT. ARC				764		1.1 143.0	.0 146.4	2 148.0	. o .	3 46	1.6 147.5	5 147	0 146	9,	6 144	-0	5		. 7 140.03 0.03 x	:-	. 2 138.5		TAMB	MODEL 0		
FOR BACKER	46.0 FT.	X03100	ES	150. 160			111.0 110	112.6 110	6 10	112.6 112	90	112.6 110		- 0	9		100.00	97.6 96		94 .6 84	وماد	124.7 122		\$859 29.4800	80 IN) - M		·
CORRECTED	DAY, SE	FJ-ZER-FMODL	INLET, DEGREES	130. 140.	•		- %	06.0 111.2 09.1 112.2	09.5 112.6 10 2 112.4	10.1 110.9		7 109.	06.9 111.1	- 4	•	2 105.		.6 \$7.	38	86.55 855.90	• •	67.0 70.4 121.9 123.8		I ALPHA PAMB	\$12E (21.55		
E LEVELS	CENT R. H. STD. DAY, SB	MODEL FJ BACKGROUND	FRCA	120.			98.6	100.61	102.4	0 105.7	106.7	0 106.8 1	106.6	и ю	9.	103.0	100.5 89.2 1	80.3	9 60 50 60 7 00 7	a -		oi e		N310 ADH173	39.0 SG CM		
WO PRESSU	, 70 PERCENT	•	FE	160. 110			2 2	92.6 95	86 5	35	102	102	5				9 6	8	8 6	8 1 1 1	70.5 69	-	1 3	AERO. RDO	ARC 1		1) H
		CENTIFICATION	ANGLES	80. 90.				<u>ه</u> م	0 R	9	6 97	4 96.	4 98	96	2.5	1 97		.3 94.		4 84.		63.		сн сн	IC RANGE 40.0 FT)		
ANSFORMED	59.0 DEG. F.	-		70.			96.4 67.7	67.5 69.3	90.4	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	94.0	9.00 0.00 0.00	95.3	9 9 9 8 1 0	94.7	94.3	92.8	90.1	85.0 85.0	80.7	67.7	62.6		. 03-16-78 I C41 ANECH	ACEUSTIC 12.2 M (4		-
RIMI				50. 60.			3 86 . 7 6 7.	87.2 88.5 88.0 \$0.3	4 90,	93.0 94.7	9	0 0	93	. 2. 8.5.	0.05	3 95	90.4 93.1 88.5 91.6	.68	.7 86. .7 83.	.5 78.	63.2 65.3	.7 58.		TEST DATE	17 POINT 0310		***************************************
				40.	50 80	•	60.0 62.9	66.2 68.7	71.6	600.	82.4	84.5 7	96.0	85.4 85.6	84.3	61.3	7 6 .1 76.3	71.2	68.2	64.0	6	45.7			169		
					FREG 50 63 63	00 1 1 00 00 00 00 00 00 00 00 00 00 00	25	4 B	69	20.0	160	200	315	4 8 6 8 0 0	630	1000	1250 1600 1	2000	3150	4 1000	63000	90000			MODEL 0300	297	

					-		0	RI F	GI P	N/ 00	IL R	P/ Ql	JA	E I	is ry,									2 22		O, FPS)
								-																CORRECTION - YES CORRECTION - YES	37.40 46.30	PREE-JET 8 0, M/SEC (
		160. PWL		08.1 143.0	0.2 144	10.0 146.4	11.9 148.0	61 (- a	12.3 148.0	e i	o no	4		•	- اه	.0 142	96.5 141.9	8 140		1 137	2 138	CM .	REFRACTION TURBULANCE	TAMB 00 RELHUM	- MODEL
X03100	DEGREES	140. 150.		08 5 109.7 1	8.9 111.8 1	<i>a</i> i <i>a</i>	12.8 113.8 1	4 113.		0.	112.6	11.1 110.8	.8 108.7 1	106.9	8 105.9 1	0	2 100	97.3 97.6	8	85.9 84.6	7	99	123.8 124.7	46.00	ALPHA 3859 PAMB 29.4600	SIZE 21.55 SQ IN)
FJ-ZER-FMÖDL XO3	INCET,	120. 130.			2 104	2 100	02.4 109.5 1	4 110	.7	06.7 110.1 1	801.9	108	108	105.5 108.2 1	106	000	5	96.3 97.6	6	84.9 86.5	- a	2 67.	117.3 121.9	SCITY (FT/SEC)	N310 1/	SQ CM (
ENI R.D. 10N - FJ-	MEASURED FROM	00. 110. 1			2.40	95.0	3 96.6	100.2	101.0	102.4	102.8	99.6 103.0 1	103.2	103.7	8 101.9	3 101.4	9.70	3 94.0	7 87.6	7 82.0	4.07 E	1 63.4	110.6 114.1 1	JET VELGGITY FREE JET DIAM	TAPE NG. A	ARC 139.0
DEG. F., /O FENCE IDENTIFICATI	ANGLES ME	. 90. 1			91.5	9	92	5 94.9	1 96.5	7 100 1 1	4 96.8	1 97.7	5 92.8	97.6	1 97.3	1 97.9	200	94.6	2 S S S S S S S S S S S S S S S S S S S	4 84.6	4.77.4	9 63.6	1 109.7	Free	3	ACGUSTIC RANGE 2 M (&0.0 FT) /
98.0 DE6		70. 80		•	- 1	87.5	900	92.4	93.8 94	97.4 97	24.5	95.0 96	94.2	95.0	. 64 . 65 . 65	94.5	20.00 - 0.00	90.1	97.0 87.0	80.5	74.1	62.6	106.7 108	SCALE FACTOR CALC. 1.000	E 03-16-76 N C41 ANECH	ACOUSTI
		60.			3 96.	2 98	96	9 6	9	98.	9 6	200	7 80	2 95.	0 -	3 95	4	86.2 88.8	2 86	78	7	7 28	105.5 107.0	\$12E 000 (TEST DATE LGCATION	TEST POINT 0310
		ė.	63 80		60.0	90 90	99	- 	8	2	92	40	9 6	98	4	9	78	7.2.5	2	0.40	9	63000 51.9	GASPL 94.8	MODEL/FULI INPUT 1		MODEL TEST 0300 0

													OR OF		IN/ 00				- 1	: 1: .IT												EED 0. FPS)		
FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F. 70 PERCENT R.H. STD. DAY. SB. 2400.0 FT. SL	IDENTIFICATION - FJ-ZER-FMODL	ANGLES MEASURED FROM INLET, DEGREES	40, 50, 50, 70, 60, 90, 100, 110, 120, 130, 140, 150, 160,	44.8 67.4 69.7 69.5 71.8 74.0 75.2 77.0 80.5 88.2 89.6 69.1 83.9 1	47.4 66.2 71.6 71.3 73.3 75.1 76.1 76.6 62.1 69.3 90.9 69.9 64.4 1	50.2 69.5 71.9 72.4 77.4 76.9 77.6 80.6 83.6 89.6 91.4 90.1 84.9 1	04.2 92.1 75.0 74.5 76.4 78 9 80.1 82.9 86.1 80.4 86.7 84.6 1	60.0 77.4 79.6 79.1 79.8 82.3 82.1 85.1 86.8 95.5 96.0 94.3 86.1 1	60.3 71.6 75.0 75.5 77.6 79.8 81.1 84.3 87.5 89.7 89.0 88.3 84.0 1	62.2 73.4 75.4 75.7 77.2 78.7 80.9 84.2 87.4 89.0 87.5 87.7 82.0 et a 75.5 77.7 77.2 75.4 et a 10.4 et a 25.6 75.6 75.6 75.6 75.6 75.6 75.6 75.6 7	62.7 73.4 75.2 76.0 77.6 79.4 80.8 84.3 86.7 87.5 87.8 84.7 76.9 1	62.6 71.9 74.8 74.7 76.5 79.0 80.2 83.7 85.8 86.4 87.0 82.0 74.9	61.4 72.1 74.2 75.1 76.7 78.5 80.2 83.9 84.7 86.0 85.5 80.5 72.2	58.5 /1.4 /4.4 /4.5 /5.5 /8.1 /8.5 62.5 53.5 54.5 53.4 /6.6 /0.8 57.7 7 7 7 7 7 1 8 1 6 82 9 63.3 8 1 6 77 2 68.7 1	55.6 69.1 74.2 74.0 76.2 78.3 77.6 81.0 81.5 82.0 79.3 74.9	51.5 66.6 71.1 73.3 75.4 76.5 76.2 78.6 78.7 76.2 71.2 62.3	48.8 64.2 69.3 71.8 75.1 76.8 74.6 76.8 76.9 76.9 72.0 67.9 67.2 67.1 1	37.4 55.2 60.9 63.7 69.0 69.9 66.9 66.7 68.3 65.3 60.9 53.5 39.0 1	29.3 45.9 54.7 59.0 61.1 61.7 60.5 61.0 61.0 58.9 52.0 40.0 19.1 1	15.4 33.2 43.5 48.2 54.1 54.9 50.4 50.0 49.7 46.2 37.3 21.6	5.7 9.6 12.1 12.0 7.1 6.3		00	00	00	00	00	71.4 84.2 86.9 87.3 89.1 90.9 91.6 94.8 97.4 101.2 101.4 99.9 94	76.1 90.0 93.5 95.0 96.3 99.6 90.7 100.7 103.2 106.1 105.	DIAMETER RATIO 8.061 FREQUENCY SHIFT -9	TEST DATE 03-16-70 TAPE NG. N310 IALPHA SB59 TAMB 37.40 Location C41 Anech CH Aero. RDG. Adh173 Pamb 29.4800 Relhum 46.30	TEST POINT ACOUSTIC RANGE SIZE SIZE FREE-JET SPEI 0 0310 731.5 H (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 0. M/SEC (0		
						-	1"	9	2	N	. 4	20	8	2 5	2	160	2000	315	400	200	000	1000	12500	2000		 			PNLT			ADEL O30	299	

												() ()	- 1		IN O				AG JA		is T								•						SPEED 289.0 FPS)		- August V
					•																													38.12 33.40	FREE JET		
O.				¥						140.	141.6	143	7	4 4	243		143	142	144.	142	4 4			Γ	_	140.1	_	_	138.0	33	134.8	185.6	1	TAMB			
4	FMGDL X01300	DEGREES	140, 150, 160,							103.6 106.7 106.6	108.8	109.8 105.	109.2 102.	107.8 99.	200.0	200	96.6 90.	£7.6 9G.	99.6 92.	98.9 90.	98.55		103.2 96.6 90.6	96.2 89.	94.5 89.	63.0 0.0	5 67 4 84	3 62.7	3 76.8	.6 71.5 69.		121.5 117.1 112.3		IALPHA \$859 PAMB 29.4850	- (2		
10	BACKGROUND FJB300-FMODL	ED FROM INLET,	0. 120. 130.							1.1 92.6 99.1	6.78	5 96.2 105	1 97.3 106	2 99.6 107	7.101.2	4 106 a 115	1 103.8 107	104.1 107	105.1 110	104.4 107	103.1 106.	102.9 106.	3 101.1	100.2 102.	97.8 100.	96.4	90.8 90.0	.8 88.5 88.	.1 83.7 83.	.8 78.1 76.	.0 65.7 61.6	6 114.9 120.2		N310 ADH187	S S S S S S S S S S S S S S S S S S S		ंद्रमुक
70 PERCENT CATION - MOD		ANGLES MEASURED	0. 100. 110							1	7 88.6	38.6	80.08	92.3	4 (101	96.1	96.0	97.2	97.0 1	200	96.00	0.00	94.9	93.8	7 92.9 95.1	87. S	94.0	<u>ه</u> .	74.3	7 62.7 61	4 108.3 111		AERG, RDG	JAP		
59.0 DEG. F.,		Ž	70. 80. 90						•	.1 63.9	2 95.5	.5 36.8	.6 87.7	2.89.2	0.000	- 6	1 92.9	.4 92.0	.1 93.4	.9 93.3	.8 93.4	. 1 93. 1		5 94.3	.2 94.2	. 8 93	7 89.6	.5 84.5	.3 62.8	9 74.8	61.4 60.1 61.	14.6 105.9 107.		03-16-78 C41 ANECH CH	COUSTIC		
			. 60							82.3	83.8	85.0	96.9	87.1	00 00 00 00 00 00 00 00 00 00 00 00 00	0.90	500	90.6	91.1	90.7	2 6	20 20 40 40 40 40) () () () ()	94.0	95.6	80.0	20.00	82.4	77.9	70.3	0.04.0 0.08.0 0.06.0	7 104.2 104		TEST DATE 0	9	i i	
			40. 50.							1 .	95	.6 93.	.3 84.	.7 85.	000		98	.8 87.	.3 90.	.3	9	e. e. e.	9 6	6 92	000	5 88 .	4 85.	7.9	.0 73.	. 1	25.3 53.4 49.3 55.(6 102.		瓦瓦	TEST POINT	3	
		i Thuas		FRO	9 6	90	000	125	200	250			- 1				Į.			ı				1			20000	91500	40000	50000	00000	GASPL			MODEL PASE		44.

9
ล
•
~
-
_
9
_
0
-
•
Ŀ
0

													PA QU										YES		SPEED 289.0 FPS)
•			PWL			138.8	Γ.	142.6	Τ,			143.9		-		_				_		156.8	REFRACTION CORRECTION - TURBULANCE CORRECTION -	7AMB 38.12 RELHUM 33.40	FREE-JET EL 88.09 M/SEC (
	110	ES	150. 160.		_	105.4 104.3	3 105	107.4 102.3	2 97	99.7 96.2	98.7	<u> </u>	100.6 98	101.4 99	96 6.96	1 . CO	9 9	90.7 93.	86.5 90. 81.4 84.	76.0	58.9 63.	116.5 113.6		3659 29.4850	SQ IN) - MODEL
י אין		INLET, DEGREES	130. 140.			6	601	0.40	0.		106.4 105	109.7	105.8	105.3	104.3 103	101.8	99.1 97	93.9 92	න ල ග ග ග	76.7 77	61.2 62	119.1 120.3	T/SEC) 289.00 R (IN) 40.00	T PAMB	SI ZE CM (21.55
	ON - FJ-300	MEASURED FROM	110. 120.			87.4 92.3	4. 94.	4 4	10	101.7 102.6	103	- 0 0 0 0	99.9 103.0	103	•	98.1 99.6		- 1	4 W		9	111,0 114.6	VELOCITY (FT/SEC) Jet Diameter (IN)	: NO. N310 RDG. ADH187	139.0 SQ
		ANOLES MEA	90. 100.			.88	.0 67.	89.4 90.1	. 7 92.		5 95.	6 6 8	95	2 97.	6 97	3 96.	7 10 10 10 10 10 10 10 10 10 10 10 10 10	7 90.	2 86.	6 76.	7 65.	109.0 108.7	FREE JET FREE	TAPE H AERG. F	RANGE 40.0 FT) ARC
	_		70. 80.			93.	4 87.	89.7 89.3	0 91	3 100.	5 94.	0 0	9 6	4 95.	- 21	1 98.	.7 97.	. 7 93.	0 00 0 00 0 00	9 78.	4 64.	108.4 108.6 1	N.E. FACTOR 3. 1.000	03-16-78 C41 ANECH CH	ACGUSTIC .2 M (
			50. 60.			7.6 86.	7.6 86.	89.89	5	. 1 92. 94.	.3 101.	6 95.	98	7 95.	.0 97.	98 6	6 97.	3 91	2 87.	79.	3 63.	07.8 108.5 1	JLL SIZE SCALE 1.000 CALC.	TEST DATE LOCATION	PGINT 12
			40. FREG	50 63 90		69.4	% .69 80 80 80 80 80 80 80 80 80 80 80 80 80	69.6	75.1	9 70	88.1 1	86. 2 86. 1	89.6	88.3	- 6.	9.00	87.9	80.5	78.5	21.0	55.8	#ASPL 100.0 10	MODEL/FULL INPUT 1.		MODEL TEST PGINT 0300 0011

•
•
Ñ
Ļ
_
•
ř
`
0
_
D

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

								1	OR OF	G P	00°	AL	PQ	A(GE AL	7	e Y									:T SPEED . (269.0 FPS)	
																								24	38.12 33.40	FREE-JET 88.09 M/SEC (
		¥	160.7 160.6 180.0	159.7	167.2	160.6	162.1	160.8	160.8 160.9	160.8	160.8	161.0	161.0	160.3	300	159.3	157.6	156.3 155.6	!			174.7			TAMB		
		160.	77.0 76.4 71.8	•			• •		67.9					•		·ł						0.0	92.0			FULL	
10 '		150.	84.6 83.8 81.0	-1			- (•											90.8		6- L	SB59 29.4850	- (N	
X03115	DEGREES	.	Ì	7	0 10	2.	4	4	₹-		o o	9		ო -	- 1	m						97.9	•	Y SHIFT	ALPHA PAMB	ZE . 00 SQ	
fa Dr.	١.	30.	84.8 85.1 85.4	-	n o	0.	4 6	4	ro o	0	4 0	. 0	~	n c) O		-					102.4	φ	FREQUENCY	Y.	\$1 ZE (1400.00	
FJ-300-FMGDL	FROM INCET	120. 1	76.9 79.2 81.3	8	~ 9	0, 0	-	- 0	~ ~	9	۲ı	. 6	G,	O) P	- 6	-	oj i					r-	•	FRE	N310 ADH187	SO CM	
t	ASURED FR	ė	- 4 4	6	0.4	0	0	1 0	G 4	0	æ «		9	N T	4 4	0	- (9.				10 ED	6	. 061		9032.2	
SATION	MEASU		2.6 73 3.6 75	0	- 4	0	, ,	1 01	a -	0	٠. ٥		9	D (<u>ه</u> د	<u> </u>	1 0	0.				7.2 96	_	6	TAPE NO AERO. RDG	*	
I DENT I FI CAT	ANOLES	<u>-</u>	17 0.1		N 10			D 10	40		- c) 4	6	6 0 f		. 0	01	0				0.0 69	0	R RATI	AEF	រីគ FT) នL	
106	*		.6 70 7 72 3 73	2	o e	9	ماره	0 10	ω «	~	- c	0	6	W I	0 6		ID	a.				40		IAMETER	¥ .	TIC RANGE 2400.0 FT)	
		•	6 70 4 71 73				1									1						90.00		0	1-16-78	COUSTI	
			9 69. 9 71. 6 72.				ı						l			1						0 0 0 0 0 0			82	AC 731.5	
		8	69. 70.	73.	× 5	85	2	4.	74.	78	15 K	36	74.	֡֟֝֞֝֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֟֝֟֓֓֓֟֟֓֓֓֓֟֓֓֟֟֓֓֓֟֓֓֓֓֓֟֓֓֓֟֓֓֡֓֡֓֡	0 0 0	49.	32.		. '			8 9	97.		FEST DATE		
		90	68.4 70.0 70.6	71.	7.2	62	13	5 65	73	73.	4.5	3 5	71.	67.	, A	4	2					93.0 93.1	4		TEST LOC	TEST POINT 0311	
		ė	48.6 46.3 7.00				-1			. i	•			•	•		•					78.58 82.58	•			4	
		FRED	S & 8	9	125	800	220	400	200	900	1000	1600	2000	2500	4000	5000	6300	8 000 1 0000	2000 22000		1	OASPL PNL			- 1949 .	MODEL	

07/19/79 17.269											C	OR OF	IG P	INA DO	AL R	₽A QU	GE		ş							N. C		FREE-JET 8PEED M/SEC (305.0 FPS)		
egilah bercelbr i furi e gaberten	59.0 DEG. F., 70 PERCENT R.H. STD. DAY, 58 40.0 FT. ARC IDENTIFICATION - MODEL FJ-400-FMODL X03120	BACKGROUND FJB400-FMCDL	ANGLES MEASURED FROM INLET, DEGREES	50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160.					.0 61.3 62.7 63.6 65.0 87.2 69.5 91.9 99.1 103.5 106.5 1	3 84.5 84.6 86.2 88.1 88.9 91.4 95.4 105.3 108.2 108.1 101.7 1 4 85.1 85.5 87.3 89.2 90.1 92.5 97.0 108.8 109.5 106.9 96.6 1	5 86.6 86.6 91.7 90.3 91.7 94.6 99.1 106.7 109.3 105.0 94.2 142	.1 67.1 66.1 69.0 91.3 92.7 96.2 101.2 107.2 106.6 101.3 92.2 1 .2 68.2 68.2 90.3 92.7 94.1 97.8 102.2 107.6 106.5 97.9 90.0 1	.6 94.6 96.4 97.2 98.3 100.0 102.9 106.6 115.5 114.6 103.5 96.9 149	.5 89.0 89.5 91.6 94.2 95.6 89.5 103.3 107.1 106.3 97.3 90.0 142. 8 89.1 89.4 91.0 93.1 95.0 99.6 103.9 107.0 104.2 95.9 89.6 141	.5 90.8 91.1 92.4 94.0 96.6 100.1 104.6 109.7 106.1 97.5 91.0 143	. 1 90.3 90.8 92.1 94.2 96.1 99.8 102.9 105.5 103.1 96.0 88.8 141	.3 91.4 91.3 92.6 94.7 96.1 100.1 102.4 105.1 102.4 96.3 69.0 141 .6 91.8 91.3 92.5 95.1 96.3 99.3 101.9 103.8 101.2 95.2 69.6 140	.1 92.5 92.1 93.1 94.7 95.1 98.9 101.0 102.9 100.1 95.2 89.4 140	.5 94,4 92,9 93,7 95,3 94,6 97,8 99,6 101,6 99,4 94,9 89,2 140 n 92 a 93 o 94 1 94,7 93 o 96 a 97,5 99,5 97,0 93,2 87,0 139	7 2 30.0 92.0 94.4 95.4 92.8 95.5 96.1 90.1 94.3 92.2 96.	7 85.2 85.5 89.8 90.4 87.5 87.3 91.1 89.7 87.8 86.2 84.0 137	.3 62.5 64.6 65.0 65.6 64.5 85.8 66.1 66.5 65.4 61.8 76.6 1 6 77 5 79 4 83 3 84 0 79 4 81 2 83 3 82 6 80 9 76.3 75.2 1	.0 70.4 73.0 75.1 76.9 74.6 74.3 77.9 75.3 74.2 71.0 68.7 135.	. 5 64.1 66.7 67.2 60.1 68.9 67.6 72.8 67.9 67.4 64.5 62.6 134. . 9 58.4 61.8 60.4 62.8 61.3 61.6 65.0 61.0 60.7 56.0 54.2 134.	02.4 103.4 103.9 105.4 106.9 107.7 111.1 114.5 120.0 119.6 115.3 110.0 155.9	TEST DATE 03-16-78 TAPE NO. N310 IALPHA SB59 TAMB 40.62	C4! ANECG CH AERO, RDS. ADHITO FRID ES.4500 NELIGIT OF	INT ACCUSTIC RANGE 12.2 M (40.0 FT) ARC 139.0 SQ CM (21.55 SQ IN) - MODEL 117.35		
				9	7 Y Y C	63	00.	200			80.4	73.0	90.7	77.2	800	81.7	60 63 64 64 64	96.2	88.4 4.2	79.8	25000 73.9	31500 72.2	50000 61.1	63000 55.9 80000 49.4	OASPL 93.4 1			MODEL TEST 0300 03	TEMATN	303

17.209						00	RI F	IGIN PO	AL OF	. P	PAC LUA	ie '	is ry											SPEED 385.0 FPS)
07/19/79				<u>.</u>		9	90	9 ^ @	9	► 16	7	m 0	୯ ୯	4 9	, E. G	e 19	U 4	-	1. 50 N	•	Ф.	CORRECTION - YES CORRECTION - YES	M 32, 90	FREE-JET SPEI 117.35 M/SEC (385
	FT. ARC			. 160. PWI		.0 137.	.9 140	5. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4. 4.	140	105.0 147.	98.4 142	100.2 143 98.8 142	98.9 142	101.3 142	102.1 142	101.4 143	96.4 142	89.3 141	76.1 139	63.7 13	113.6 156.	REFRACTION TURBULANCE	\$859 TAMB 29.4500 RELHUM) - MODEL
	DAY, SB 40.0 FT.	X03120	DEGREES	140. 150		101.3 104.4	108.6	_,	104.7	113.0	103.2 97	103.9 100	103.7 99	102.5	101.8 100.6	60 60 60 60 60 60 60 60 60 60 60 60 60 6	90.7	85.3 83		60.9 59	118.1 114.7	385.00 48.00	IALPHA \$B59 PAMB 29.4	SIZE 21.56 SQ IN)
	STD.	FJ-400-FMCDL	ED FROM INLET,	120. 130.		7.26 2.16	.3 102.	00	- -				0.0		103	-		1	79.0 73.7	1	114	OCITY (FT/SEC) DIAMETER (IN)	N310 ADH178	.0 SQ CM (
	TRANSFORMED MODE 70 PERCENT R.H.	DENTIFICATION - F	MEASUR	100. 110.		4 86.	.0 67.	90	7 93.	2 95.	.1 97.	.7 98. .7 98.	7 89.	6 100 8 9	0.00	2 97.	93.	.0 87.	76.3 74.4	7 63	108.4 110.5	JET VEL FREE JET	TAPE NO. AERO. RDG.	ARC 139.
	FLIGHT TRAN DEG. F., 70	IDENTIF	ANGLES	90. 90.		10 10	.6 37	88. V.	100	60	9 9		8. 1. 96. 1.	- R	76 7	6 97	4.6	.6	79.7 79.9	9 65	0 109.0	OR FREE	H CH	IC RANGE 40.0 FT)
	59.0 D			. 70.		96.7	96.7	87.4 88.9	91.1	6 92.7	101.0	94.3 94.3	96.1	96.3	90.00	98.0	0.00	88.4	6 81.0 7	62.9	6 108	SCALE FACTOR CALC. 1.000	TE 03-16-78 3N C41 ANECH	ACOUSTIC 12.2 M (
				50. 60	•	~	~	0 4 1	9	4.4	7 101	.	0 0	r 0	o c	4 R	ო -	4 (78.1 80.	0	109.9 109.	J.L. S1 ZE 1.000	TEST DATE LOCATION	TEST POINT 0312
				9			69	969	3/5	9.0	8 8	87. 86.	8 8	2 8	9 6	8 6	88 6	90	2 2 8	29	101.8	MODEL/FL INPUT		DEL TEST

									0		P	90	R	Q	U									40.82 32.80	FREE-JET SPEED
	. 5	58.7	50.00 50.00	56.6	65.0 60.0 60.0	60.0	61.4	60.4	60.3	60.7	60.6	60.7	61.7	60.4	60 8 8	59.6	87.8	56.8 56.0			74.3			TAMB A	
	160.	71.91	71.3	70.8	77.6 1	70.1	6		ю. -	a	-	0 6		9	39.51		_				62.6	96.8			
	150.	61.9	80.7		0 <	7	-	73.4	<u> </u>	-اب	•	oi a	4	ĸ.	50.6 24.6	16.8					9.0		(G)	SB59 29.4500	
DEGREES	140.	-	0.00 0.00 0.00			91.2	- 1		79.3	1			1		0 4	30.4					98.0		SHIFT	ALPHA	je je
- 1		0		او	10 e		_[9 4 4 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	ю ч	- 60	10	.		_	66.3	ماد	-				0.0	6	FREQUENCY	¥ .	SIZE
FROM INLET.		7.	- 4		u c	<u>, , , , , , , , , , , , , , , , , , , </u>	D	– ო	٠.	2	4	• -	6	0	0 0		•	7.1			70. 4.4		FRE	N310 ADH178	
MEASURED FROM	10.	8/ 9.	- 0		7.4 BG	, a	4	30.0	0.6	200	N	oi e	-	Ø	1.1 69	<u>-</u> က	.7	•			9.0	10	. 061		
MEASUR	90.					-	20	N 00	- 0	2 0	0		-		<u>-</u> ۱	0	0	0			66		•	TAPE NO AERO. RDO	
ANOLES MEA	_	6	0 0	9	<u>ا</u> ۲	, ()	ai.	. 6 77	<u>~</u> 1	۱۰	N	\ •	9	6	ni c	9	e.	•			0.		R RATIO	AER	l tu
•	· · ·	1	- K		25.5	5 77		77	77	28	78	78	78	72	2.2	57	Ş				900		DIAMETER	5	ACCUSTIC RANGE
	8	ı	72	- 1			- 1	. //. B //.		1			1									100.	5	-16-78 1 ANECH	USTIC
	6	١.	•	• •1				79.8		ы.			. I		•	-1 -					90.0			82	VCC
	60.		-	1	-		-i	77.5		., .				-				_			900			TEST DATE	
	90			1				75.6					.1 .								99.0	-7 -		TEST	TEST POINT
	Ģ.	8	o -	. 0	ω r	9 19	6	- O	10.0	20	^	ن د م	100	۲.		ماه	10				00	14			TEST

									1	OI OF	RIC F I	0	NA POI		PA QU			S Y							- YES - YES		ET SPEED
		PWL			146.0	147.7	148.8	152.3	153.5	163.6	53.4	152.2	151.00 4.03.	150.0	149.6	140.U	148.0	146.6	145.5	43.8	143.2	141.2	141.9	164.0	TION CORRECTION	TAMB 37.04 RELHUM 47.40	FREE-JEI
9		150. 160.		:	112.5 112.4	14.3 113.0	17.4 113.0	17.5 114.7	115.	16.9 115.5		1			09.2 105.6			- •		90.3 90.3		80.6 78.4 74.9 73.9	6	127.7 124.4	REFRACTION TURBULANCE	3859 29.4900 R	
. i	ET, DEGREES	130. 140.		!	05.6 109.6	2 111	. 3 114 4 117	15.2 117.6	118	6.3.116.7		_			13.9 113.3		7		_	1		84.3 83.6 78.4 77.6	6	126.5 128.8	SEC) 0.	I ALPHA PAMB	SIZE
- FJ-ZER-FMGDL	URED FROM INLET,	10. 120. 1			98.8 1	100.7 1	102.5	106.4	107.9	90.00	10.0	109.6	109.7	0.00	106.2 108.5 11	107.7	106.3	102.2	7 100.0	93.4	5 88.1	2 78.7	.4 72.5	16.9 120.4 12	/ELOCITY (FT/SEC) JET DIAMETER (IN)	. N310	
CATIO	ANGLES MEASUR	. 100. 1	,	•	94.2	94.1	935	0.0	6.30		102.1	101.7	102.1	101.8	102.0	101.8	100.8	9 60	95.35	2 6	83.7	7 78.9 78	65.7	113.4 1	FREE JET VEL FREE JET	TAPE NO AERO. RDG	<u> </u>
IDEN	2	80. 90			7 91.	6 93.	60 0 60 0 60 8	2 6	8 97.	4	000	7 99.	9 100	0.00	5 100	200	3 101.	90	8	9	6 87.		0 65.	110.9 112.5	FACTOR F	-16-78 1 ANECH CH	ACQUSTIC RANGE
		60. 70.			8	.7 89.	10 c	6 92.	9 94.	. 2 9. 9	200	.6 97.	2 38	2 97.	.2 97.	. 20	.0 98		83.	4 87	1 82.	72.5 75.6 66.3 69.3	5 63.	109.4 109.4	ZE SCALE CALC. 1	03-1 C41	ACOL
		40. 50.			98	1 87.9	99.0	9.0	8 92.1	200		8 98.5	80.00	2 10 10 10 10 10 10 10 10 10 10 10 10 10	9 97.2	2.790	6 94.1		4 87.8	0.00	3 74.8	58.2 69.7 52.4 64.7	9 56.5	98.0 108.1 1	MODEL/FULL SI	TEST DATE LOCATION	TEST POINT

30:

07/19/79 17.269										OR OF	IGI P	NA 000	L R	P/ QI	AGI JA	EU	IS IY												:		FREE-JET SPEED M/SEC (0, FPS)
	. 3L			160. PWL	S.	a	-	-	0 0	2 10	30 a	o io	9	7 0	91	o	ю	39.0 162.3 19.6 161.9		159.4 158.8	160.0						96.0 162.0	20.00 20.00 20.00		TAMB 37.04	FULL 0.
TED SGUND PRESSU	Y, SB 2400.0 FT.		T, DEGREES	. 140. 150.	5 93.6 92.6	5 95.9 93.9	4 96.2 93.9 8 97.4 95.3	3 97.1 95.0	5 98.3 94.6 57.8 93.4	5 96.0 69.7	9 94.5 87.8	3 90.5 83.5	8 89.0 81.8	8 35.6 77.9	3 83.6 76.4	2 77 2 70.2	0 72.9 63.7	7 55.1 41.0	7 40.3 22.4	æ							7 106.5 103.2	8 109.2 104.2	FREQUENCY SHIFT -9	IALPHA SB59 PAMB 29.490	S12E (1400.00 SQ IN) -
2	NT R.H. STD. DAY,	-	SURED FROM INLET	110. 120. 130	5 83.7	5 85.3 94	87.6 95 8.10 1.05	90.1 96	89.8 95	8 60.0 84 80.1 94	1 90.0 94	89.0 92	6 97.7	6 86.4 88	0 84.7 87	20 07	76.8 77	3 72.0 69 6 64.5 53	5 53.0 50	35.9 35.6 29 10.2 10.1							7.6 100.5 105	103.9 106.0 109	8.061 FREGI	E NO. N310	9032.2 SQ CM (1
	O DEG. F., 70 PERCENT		ANOLES MEASU	ด้	.0 76.3 77.	.3 77.8 78.	.9 79.1 80.	6 81.4 82.	6 83.8 84.	4 81.5 83.	.3 82.1 83.	0 61.2 82.	2 81.2 82.	1 61.6 62.	.4 82.3 81.	9 79 3 78	.9 77.7 74.	3 65 0 64	4 57.6 53.	8.4 40.1 38.6 2.1 14.1 14.5							8 93.6 94.	1.5 102.9 101.8	DIAMETER RATIO	O TAPE	1C RANGE 2400.0 FT) SL
	59.0 D			60. 70.	.7 72.0	.6 73.6	.9 74.6 1 76 8	3 79.6	.3 81.1	78.9	.5 79.1	.6 77.4	.8 77.4	.2 78.0	.4 77.5	A 74 5	6 71.3	ب ا	0.20.0	.3 32							9.2 90.0	95.2 97.1 100	-	TEST DATE 03-16-76	ACOUST 731.5 M (
308				40. 50. FREG	47.3 69.	49.6 70.	52.7 72.	64.6 78.	61.5 77.	66.4 77.	64.4 75.	65.1 74.	64.6 75.	62.5 /4. 60.7 73.	58.1 70.	54.8 68.	44.1 62.	38.7 56	16.6 34.		000	12500 16000	000	500	000	000	74.7 86.	PNL 79.2 91.7		TEST	MODEL TEST POINT 0300 0313

(

 \cdot

0//18//9 1/.208					OR OF	IGINAI POOR		IS ITY			18 20	FREE-JET SPEED 35 M/SEC (365.0 FPS)	
UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE	EG. F., 70 PERCENT R.H. STD. DAY, SB. 40 Dentification - Model FJ-400-FMGDL Background FJB400-FMGDL	ANGLES MEASURED FROM INLET, DEGREES	FREG 40. 50. 70. 50. 30. 100. 110. 120. 130. 140. 150. 150. 150. 150. 150. 150. 150. 15	82.9 63.6 64.9 65.7 67.1 66.6 91.6 94.5 101.4 106.3 109.7 1 63.5 84.7 84.8 86.7 86.3 89.4 91.9 96.4 104.0 108.4 111.1 1 64.6 85.9 85.9 87.5 89.6 90.2 92.7 97.7 107.8 111.2 111.6 1 54.9 85.2 87.5 87.2 88.6 90.5 92.4 94.5 99.5 110.4 113.2 111.4 1	68.1 86.8 88.3 88.4 91.4 92.1 94.0 97.2 101.6 112.0 115.1 110.5 98.4 73.8 86.6 89.6 89.4 90.5 93.1 95.0 98.7 103.9 112.7 115.9 108.8 97.9 76.3 88.5 91.3 91.3 92.1 94.2 96.4 100.0 105.3 112.6 115.5 107.1 97.5 77.4 91.1 93.4 92.6 94.2 96.1 97.2 101.4 105.1 112.4 116.3 107.0 97.9	79.8 69.2 91.0 91.8 93.6 96.0 97.6 101.5 106.3 112.1 116.1 106.8 96.0 1 80.3 89.3 91.6 91.4 92.7 94.8 97.7 102.1 106.9 112.5 115.2 105.3 97.9 1 81.5 90.8 91.8 92.3 93.6 96.0 98.9 102.3 106.8 112.7 113.6 106.0 97.5 1 84.5 91.4 91.9 92.4 94.5 96.3 99.0 103.2 107.4 111.8 112.4 105.1 97.4 1	86.0 92.3 93.8 92.6 93.6 96.0 96.9 103.1 106.6 110.6 110.6 103.5 95.6 90.5 95.6 94.6 94.6 94.6 96.5 96.5 103.1 106.4 110.6 110.1 102.5 95.0 99.6 97.1 98.6 96.3 95.6 98.1 102.8 105.9 109.0 108.0 100.7 94.1 98.6 97.4 96.3 96.1 98.1 97.8 98.3 102.0 105.0 107.7 106.3 99.2 93.2	86.0 94.3 97.4 98.2 99.5 99.4 98.3 101.6 104.2 106.7 104.9 98.4 93.0 1 84.4 92.5 94.4 96.1 98.4 99.3 97.7 99.9 101.8 104.0 102.3 97.0 92.2 1 82.8 91.2 94.3 95.1 97.7 99.2 97.1 99.3 100.2 102.7 99.9 95.6 91.5 1 77.6 95.4 90.7 93.0 96.9 97.5 95.2 97.6 98.6 99.4 96.6 93.8 90.0 1	0 85.6 86.1 69.1 94.1 95.6 93.3 93.4 96.4 95.3 92.9 90.7 66.6 142 8 81.7 85.6 86.1 88.9 89.6 89.3 90.9 93.9 93.9 31.5 85.1 83.4 142 6 76.0 80.3 82.2 86.6 87.3 84.2 85.8 88.3 88.2 87.2 80.1 79.3 142 7 70.8 72.7 75.8 79.2 80.2 78.9 78.7 83.8 81.2 79.8 74.4 72.5 140	57.2 64.9 66.2 69.5 70.3 71.7 73.2 72.4 78.6 73.8 73.3 66.6 66.7 139 51.0 56.7 60.7 63.6 63.5 65.4 64.7 66.2 71.4 67.1 67.8 60.1 56.5 139 96.9 105.0 106.5 106.6 108.1 109.3 110.0 113.8 117.4 123.1 125.4 120.1 114.1 160	TEST DATE 03-16-78 TAPE NG. N310 IALPHA 5859 TAMB 41.16 LGCATION C41 ANECH CH AERG. RDG. ADH177 PAMB 29.4500 RELHUM 33.20	MODEL TEST POINT ACGUSTIC RANGE 0300 0314 12.2 M (40.0 FT) ARC 139.0 SG CM (21.55 SG IN) - MODEL 117.35	30

_
•
_
•
ΟĬ.
**
•
-
_
•
_
•
-
• -
•
_
•
•
_
•
-
•

FLIGH 59.0 G6. 70. 60. 70. 60. 70. 60. 70. 60. 70. 60. 70. 60. 70. 60. 70. 60. 70. 60. 70. 60. 70. 60. 70. 60. 70. 60. 70. 60. 70. 60. 70. 60. 70. 60. 70. 70. 70. 70. 70. 70. 70. 70. 70. 7	T TRANSFORMED MODEL SOUND PRESSURE LEVELS ., 70 PERCENT R.H. STD. DAV. SB 40.0 FT. ARC DENTIFICATION - FJ-400-FMODL X03140	ANGLES MEASURED FROM INLET, DEGREES	90, 100, 110, 120, 130, 140, 150, 160, PWL	2 74 9	.5 66.1 69.2 95.9 105.5 106.8 10.2 107.0 143.6 6 91.0 97.2 107.6 110.5 110.3 104.6 144.6 6 92.3 99.3 109.1 112.4 109.8 103.5 145.9	.5 92.9 94.8 102.0 110.3 113.7 109.2 104.4 146.9	94.0 96.4 103.6 110.6 114.2 1 95.5 97.9 103.6 110.8 115.2 1 96.5 99.4 105.2 110.6 175.3 1	9 97.2 99.8 106.1 111.4 114.6 108.3 107.8 148.3	97.5 100.6 106.4 112.0 113.5 109.2 108.0 1 99.0 101.2 107.5 111.7 113.0 109.0 108.5 1	2 99.5 102.5 107.3 111.2 111.6 107.7 107.1 147.5 4 99.9 102.9 107.2 111.0 111.0 106.4 105.9 147.2	5 100.1 103.2 106.9 109.6 109.0 104.8 105.3 146.5	8 99.8 102.1 105.7 107.8 106.6 103.3 105.1 1		8 99.4 99.4 97.8 95.8 96.5 101.2 1	6 91.7 92.4 95.3 94.9 94.2 90.1 95.9 146	81.4 80.5 86.9 81.9 81.9 80.2 85.0 144.	4 67.0	11.7 110.9 113.2 117.7 122.3 124.5 120.6 119.2 160.7	FREE JET VELOCITY (FT/SEC) 385.00 REFRACTION CORRECTION - YES FREE JET DIAMETER (IN) 48.00 TURBULANCE CORRECTION - YES	TAPE NG. N310 IALPHA 5859 TAMB 41.16 AERG. RDG. ADH177 PAMB 29.4500 RELHUM 33.20) RANGE SIZE SIZE FREE-JET SPEED 40.0 FT) ARC 139.0 SQ CM (21.55 SQ IN) - MODEL 117.35 M/SEC (385.0 FPS)
2. 2 90. 6 9	FL 10H		. 70. 8	20 00	86.8 86.9 80.9 89.8 80.2 80.8	91.6 93.9	92.8 93.0 93.9 94.7 95.9 96.9	97.2 96.5	96.6 95.8 96.3 86.9	97.4 97.5	97.2 98.6	100.8 102.1	103.4 102.9 1	99.3 101.4 1	91.9 93.4	83.9 83.7	76.5 74.8 68.7 68.0	111.2 112.0 1	1	03-1 C41	ACOUSTIC 2.2 M (
			. 60.	8	2 90.8 69. 9 91.7 91. 7 93.0 92	8 93.4 93.	8 95 2 94.	1 99.3 99.	. 8 97.7 97. . 2 97.8 98.	.4 99,3 98.	2 98.7 99.	4 103.2 104.	2 102.3 104.	96.4 100.	9 91.5	3 80.5	4 74.4 74.	112.1 112	121	TEST DAT	

Ų

- [)R')F	IG F	OC	AL)R	Į.	'A(GE ALI	17 T	i f						JET SPEED C (365,0 FPS)
		F	62.9	65.0	55.8	566.2 66.8	36. 4	36.3	0. k	38.0	34.6	 	31.0	35.7	35.5	38.1	34.2	84.2 2.1	61.0	28.4		i .	176.7		•	TAMB 41.18 RELHUM 33.20	FREE-JET 117,35 M/SEC (
			Γ,		•	79.8 16			-							_	-	~ ~		1			89.1 17.1.17	92,1	•		- FULL
X03145 ·	EES					6 85.2		- 1			[į			- 1	5	r				96.3	6	SHIFT -9	IA \$859 IB 29.4500	(X. 06
. !	ET, DEGREES	7	1			90.6 93.6					1			- 1			- 1						101.3 102.1		FREQUENCY &	1ALPHA PAMB	S1 ZE (1400.00
	FROM INCET,		i .			84.9		i			١			- 1			- 1						97.5 10	100		N310 ADH177	2 SQ CM
· z	MEASURED			3 76.8		79.7					- 1			- 1			ļ		2 12.2				93.5	101.6	8.081	PE NG.	9032.
	ANOLES H			, 0	.0 76.	.2 77.	- 0	9 79	- 6	30	.3 80.	9.6	7 80.	.3 79.	- 0 7 29.	6 72	.8 66.	7 56	•				1001	4 100	ER RATIO	TAF	3E FT) SL
Ö	-		ú.		8	76.9 77) ID	10	41	. 0	8	o	! 		ص د ع	4	-	ص ح	. 4		The second second		92.3 92.002.5 102.	03.6	DIAMETER	16-78 ANECH CH	TIC RANGE 2400.0 FT
		70.	9	, 65 7	74.	75.7	78.	72	77.	7.	77.	9 6	6.5	82.	9,7	73.	65.	28 5	7				100.7	101		-22	ACGUSTIC 31.5 M (24
			72.	2 15 2 15 2 15	2 76.	.0 77.2	99	0 78.	78.	76.	6 78.	79.	92.	5 82.	6 7 8 7	9 20.	6 63.	20 24.	, ,				8 100	8 101.		TEST DATE	
				4 4	7	62.2 75.	۰ –	4	n c	i 65	0	.	ıφ	9	<u>ب</u> ھ	ဖ	0	oi.a	•				79.8 89.	6		-	TEST POINT 0314

								RI F	GII P(AP OO	L R	P# Ql	(GE		S								-		SPEED SPEED	ļ
																								37.04 47.40	FREE-JET	
		3				146.0	147.6	150.0	151.1	5 7	151.5	151.6	150.7	150.2	149.0	148.6 148.0	147.7	46.4	140.3	44.0	143.6 141.9	141.3	162.9	TAMB (
X03150		56. 160.				111.9		3.0 113.6 3.0 113.6			.2 114.	.5 113.	0	. 5 107.	7 105	3.9 104.8 7.4 104.7	20 0		98.6	- •		1	7.3 124.2	\$859 29 4900	5	
. 1	EES	140. 150				110.0112	111.6, 114	116.2 116	.3 -1	116.9 117	0 11	5 - 1	=	115.4 112	, m	- -	0,		o k	000	N G	77.8 76	127.0 127	ALPHA SB		3
FJ-ZERRFMODL	INLET,	130.					107	- 2	113	 	112	515	=	12			200	900	-		9 0	1	124.7	-		5
MODEL F. BACKGROUND		110. 120		* 1		4	si c		81	- 6		04.8 109.0	, m	Ø K	> ~	47	~ 0	· - ·	4 6	9 9	۰۲	72.7 79.4 66.7 73.2	16.3 119.	NG. N310	. 9	
- 20 0	MEA	100				94.2	2.5	96.6	97.3 1	9 6	100.7	101.1	101.6	102.1	102.3	101.01	100.8	9 60	20.00	80.0	83.8 78.9	73.2 65.7	112.9 1	TAPE		
IDENTIFICAT		90.				.10 5.	93	. 4	.3 96.	<u> </u>	7 100.	6 106.	9 00	4 100.	0 100.	7 4	.0 101	- -	0 0		. 59 50 50	1.5 72.7 4.7 66.6	0.4 112.0	80 H	- 1 ~ 3	•}
31		70.				4	10 I	ດ ຕ	4	N 0	-	0.4	, ro	e) R	90	a e	7.0	? - .	B	4	ب باز	70.5 71 65.1 64	.9	03-16-78	V CC	i
		. 60.				8	7 88.	3 8	92.	. C	87.	95.	6	97.	2 97.	86	97		- 6	36.	74.	7 68.0 8 62.0	-	TEST DATE		
		50				. 8 88.	.1 97.	96	.6 91.	2.09	.8 95.	.4 94.	20.	.0 97.	97.	.58 97.	8 94.	96	2.	.2.	75.70	54.2 65. 48.4 57.	6 107.		TEST POINT	3
		000	2 0 0 0 2 0 0 0	100	123	1											1					1			MODEL	

					•			O!	R	gii PC	AV OC	L R	P. Qi	AG AL	E	18 TY											RECTION - YES	37.04 47.40	FREE-JET SPEED M/SEC (0, FPS)		
ទ		Ę				146.0	3 147.6	3 150.9	7 151.1	5 101.0 5 151.4	_	-	7 151.0				_	5 147.7	_ •	-	-	7 144.0		5 141.3	2 142.1	2 162.9	REFRACTION CORRECTION TURBULANCE CORRECTION	TAME 2	0,		
40.0 FT. ARC 50		150. 160.				12.7 111.1	14.6 113.0	16.9 113.0	16.6 114.7	17.5 114.8 17.1 114.5	17.2 114.	17.5 113.	16.1 111.6	12.5 107.6		08.9 104.6	_	- -	03.0 89.7		96.1 94.9		79	1	(18.6 67.	127.3 124.2		26.490 0	1300H - (N1		
88 X031	8	140,			·	110.01	5 111.6 1	116.2 1	0 116.3 1	4.01.1	7 116.0 1	116		7 115.4 1	113.6 1	111.1	110.1	108.0	200	100.5	96,6	2, 2	93.6		_	127.0) 0,) 46.00	TAL PHA PAPE	812E 21.55 \$0		
H. STD. DAY, FJ-ZERRFMOOL	MEASURED FROM IMLET,	120. 130.				96.6 105.0	00.7 107.	112	04.9 113.0	-		-	06.8 113.	. 4	-	107.7 112.9 107.8 112.2	_	- -	02.5 105.8	Ó	- 1	93,7 95,8 8,0 97,8			73.2 73.	119.7 124.7	VELOCITY (FT/SEC) JET DIAMETER (IN)	N310 ADH171	\$ 98 50 50 50 50 50 50 50 50 50 50 50 50 50		
	RED	, 110.			·	2 96.4	96,2	98.1	2 100.2	701.0	10.1	104.8	0 5 0 5 0 7	105.8	5 105.5	5 105.7	3 104.7	9 103.7	9 102.6	2 96.4	93.3		78.7	72.7	1 66.7	116.3	4	E 70.	139.0		
EG. F., 70 PERCENT IDENTIFICATION	ANDLES H	90, 100				2	2 2	8	.1 97.				98.8 100.		101	102.	101.	8	90 / 98	1.	.1 93.	89.8 89, 87 8 82	78.	.7 73.		112.0 112.9	FREE JET FREE	*	MOE 0 FT) ARC		
O		8				80,00	6,19	92.4	94.3	8 6 6 7 6	96.7	97.6 1	96. 6. 80 6. 80	98.4	97.5	98.0	99.4	100.0		97.0	94.8	89,7 7,0	79.5	71.5	1 64.7	110.4	FACTOR 1.000	03-16-78 C41 ANECH CH	ACCUSTIC RANGE 2 H (40,0 F		
•		8 0. 70				66.3 66.	86.7 89.5		ŀ			i			- 1	97.2 57.					- 1	86.6 88.4 11 6 62.7		0		109.1 108.9	ZE SCALE CALC.	3	AC 12.2	i i	
		8			-	1 99 1	67.7	W (0)	1.16	9 0 0 8	98.3	94.0	97,3	97.3	96.5	97.2	96.4	2,0	0 27.00	89.0	86.3	4. 10 4. 14	70.9	65.7	57.8	107.6	MODEL/FULL SIZ	TEST DATE LOCATION	TEST POINT 0315		
		40.	88	100 00	22 80 80	200	315 65.1		- 1			i	2000 67.5		- 1	5000 88.9 6300 87.5		10000 83.						83000 54.2		GASPL 97.6	#00EI		HODEL TES		33

)RI)F	IGI P	IN O	AI	- !	P/ Ql	AG JA	E	IS TY									-			ET SPEED (0, FPS)
										***																					37.04 47.40	FREE-JET O. M/SEC (
	Ę	167.8	169.2	169.7	169.5	369.6	169	168.8	168.3	167.4	167.1	166.7	165.9	164.6	164.5	163.5	162.3	161.7	0.09	159.4	200.2							190.6			TAMB	
	160.	86.2 86.7		• 1	•	•		• 1 •			• 1	20.08 0.08				•	•	-1										88. 89. 9	97.0			- FULL
	150.	92.3	93.1	93.8	93.2	23.	- 0	88.6	86.5	4.7	82.3	80.8 78.6	6.77	74.2	70.5	64.7	22.0	0.00										102.5	04.2	FT -9	SB59 29.4900	Ē
DEGREES	140.	93.3	9.79	94.9	94.4	94.3	2 6 2 6 3 6	93.3	92.1	90.0	88.3	86.4	82.3	79.2	76.4	7.2	83. 193.	-1	17.1									104.8	•	SHI	ALPHA PAMB	\$12E 100.00 SQ
INLET, D	130.	92.0	· –	6	ن ا	ю.	4 R	عاد	6	9	8	د	. 6		4	io.	ن د	N	, n				•					103.7		FREQUENCY	_ ≤	\$12E (1400.00
FROM IN	120.	3.2	-	-	- (<u>ب</u>	P	r o	4	0	0	86.8	40	<u>^</u>	-	•	01		. O	•								L 4	0	T.	N310 ADH171	. GS
ASURED FR	ė.	79.2 8		ļ				1			- 1	85.3						1	35.0	۲.								103.4 105	ı	.061	١	9032.2
MEASU	_	77.0 7		1		.	- 1	- 67	9	ED.	9	a 4	9 0	<u> </u>	•	Φ,	۲.	2	. 6	•								00	0	8	TAPE NG AERG. RDG	
ANGLES	ó	0 0	9 19	4	9	.	- r	-	φ	10	9	- 0		10	-	D.	oi o	-	98	4								- 4 2 0	0	R RATIO	AE	E FT) SL
	;	8 76		1					. 6	IO.	-	- "		4	ı				40	-								N 0	N	IAMETER	퓽	1C RANGE 2400.0 FT)
	_	73		1				9	20	78		7 79	9 9	78				1	30				•					6 6	101	10	16-78 ANECH	ACCIUSTIC 5 M (24
	2	71.	74	76.	77.	78	/ / 4 /	78	78.	76	77.	77.	7.	73	75.	72.	. 66	9										97.2	97		82	AC 731.5
	. 60	71.5				•		-1		•					٠.	•	•	•										96.0			LEST DATE	
	20.	69.2	71.3	71.0	76.5	76.2	73.6	74.7	75.9	74.7	75.1	2. 4. 0. 5.	7.5	69.2	67.7	63.4	60 (A 50.	16.4	· .								96.1			TEST	T POINT 0315
	.	47.1						.I .			- 4				l			•1	•									74.1	1 .			TEST
	FREG	20	3 8	100	125	160	000	315	904	200	630		200	009	000	200	150	4000	6300	8000	0000	0000	20000	200	40000 50000	63000	000	GASPL PNL	PNLT			MODEL 0300

•	
è	ä
t	Ĭ
-	
ı	•
•	-
	_
•	Я
Į	•
3	2
•	
:	_
	•
7	3
	-

			IDENTIFICATION		- MODEL	Ţ.	-400-FM		103160				
					BACKGROUND	IGUND FJB	FJB400-FMGDL		X01400				
			₹.	ANGLES ME	MEASURED	FROM INL	INLET, DEC	DEGREES					
40.	50. 60	0. 70.	80. 90	0, 100.	110.	120. 1	30.	140. 15	50. 160	.00			
									•	2	2		
	.	9 2	60 60 60 60 60 60 60 60 60 60 60 60 60 6	9	. 6	и - -		50 C C C C C C C C C C C C C C C C C C C	3. 7 10.7 10.7 10.7	27.0	9 N		
) 	.	98	90		96.4	. n	7	. 	17		0	
	4	.3 86.	97.6	4 91.		8	07.6 11	1.7 110	-	.8 145	o,)R)F	
	5 67	69	90.7	6 92			78.7 11	2.1 105	0 6	. 2 145	4	iGi P	
<u>.</u>	1 67	4 88.	89.7	9			20.00		.		ŧ.	IN O	
-		5.5	. C. C.				20.00	9.0	3.0	145		Al OF	
200	06 0	06 0	92.4	2 96.	8 100.6	Γ.	-	9	þ	.8 145	0		
78.	4 89	6.	92.0	96.	_	-	_	ui —	_	.1 145		P.P.	
80.	9	- 6	93.2	.0		-		9.1 101	φ. (. 0 144	œ, r	(Gi	
85	ri a	20 0	93.0	, K	7	· [- [y G		6 144	A	Eur	
98	94.9 94	4	93.	8	102.9	•	_	107.4 101.	1.0 94	0.	2.	is ry	
8	3 97	.3	95.0	- 1	-	9.4.9		ri.	0 (4.	ni e	•	
- 1	4	. 5	97.6	98	7	104.0		-	20 87	6 144	7-		
0) o	- C	9 G	2		100.7		00.7	O	143	• •		
9 8		7 94.	97.76	9 97.		80.00	•	_	N	6 143	-		
78.	8	.5 92.	96.0	. 6 94.	1	97.5	- 1	~	_	142	.7		
76.	3 87	.6 88.	93.7	. 191.		95.0		92.0	.	141	ص. د		
75.	٠, ۱	.4 86.	9			27.6		, c	- 0	7 - 4 - 4 - 1			
9 6	o e	7 62	7.00	782		9 0		, m	14	.3 139			
63000 57.2	65.1 66	7 68.8	169.6 71	0 72.	6 71.4	76.9	72.3 7	6	7.7 68	.2 138	0.		
Q	56.7 60	63.	62.8	.9 64.		69.2		-	N	\E- a.	D		
SPL 96.0	104.6 105	.8 105.9	107.4 108	.6 109.	3 112.8	116.1 12	120.8 121	21.8 118	8.3 113	3.1 157	6.		
	TEST DATE	03-1-	16-78 ANFCH CH	TAPE AERG F	PE NG.	N310 ADH186	I A L	ALPHA SE	SB59 29.4600	TAMB	78 42.06 29.60	•	
	12021							1		1			
MODEL TEST 0300 0	TEST POINT 0316	ACG 12.2 M	ACGUSTIC RANGE 2 M (40.0 FT)	E FT) ARC	139	.0 SQ CM	\$12E (21.55	S	- (N	MODEL	FREE-JET 117.65 M/SEC (SPEED 396.0 FPS)	
err 4 r													

239
Ø
W
٠.
7
-
_
9
/10
`
ò
7
`
Ď
6

					-																			
		:				OR OF	GI P	NA 00		P A (QU	GE AL	IS	,								YES	}		SPEED
																					CORRECTION - Y		42.08 29.60	FREE-JET
		F			6 142.3 5 143.5	4 4	144	44		14 Z	145.	2 (45.8 8 145.5	4 146.		146	0 5	1 145.0	7 143.3 6 142.0	8 140.6	4 159.0	REFRACTION TURBULANCE		RELHUM	MODEL
		156. 160		10	08.6 105.	. 6 102 7 102	2	- e .	• •	. 4 a	.2 105.	. 5 106. 6 104.	3 104.	601 6	558	30		به م	4	118.5 117.4	REFR		3859 29.4600	12
X03160	DEGREES	140.			107.1 106		-		08.4 10	, 10 c	4		40	9,0		ग	oi o	76.6 7		120.6 11	366.00 48.00		ALPHA S PAMB 2	SIZE
FJ-400-FMODL	4	130.		98.5	103		108		60				107		98	L	50		65.	120.2	(FT/SEC)			90 0
- FJ-400	ASURED FROM INLET,	0. 120.		10	94.	_	102.	4 103	. 0 104		105.	.0 106.0 2 105.7	9.0	6 103		94.0	6 89.	.7 84.4 .7 79.0	.1 69.	.6 116.5	BCI TY		. ADH186	000
CATION	¥	110		N	6 6	90.1 92.0 91.0 93.4			-	. o .	, 0	0. 60		0	-	-1 -		30.59 79 74.60 72	4	110.3 112.5	JET	į	TAPE NO AERO. RDG	004
IDENTIFI	ANGLES	90.		6	0.	6.00	-	e –	oi k	i ini in	o o	-	~ 9	4.	φ.	- 01	9.1	<u>ب</u>	o.	111.1	FREE	-	CH	RANGE
				87.	98	0 0 0 0 0 0 0 0 0 0 0 0	92	9 6	93	9 6	9 6	. 66 . 68	101	102.	56.5	92	90	82. 74.	67.	5 111.4	FACTOR		03-13-78 C41 ANTCH C	ACGUSTIC R
		0. 20		0 66.	0 88.	. v. a	9		95.		2 96.	- 96. 0	1 99.	6 102.	9 6 6 8 6 6	96 0	.9 89.	.3 83.	.4 68.	.9 110.	SCALE		1	ACC
		50. 60		7	~ 0	91.5 91.9 92.6	0 1	ი –	٠,١	n on -	- ^	- 6	O R	0 0	101	<u>.</u>	9	81.0 83 74.4 75	١.	1.18 111	\$12E	}	TEST DATE LOCATION	POINT
		Q		60	• •	20.00	6	0 1	٠. ا		ი ი	04		0.1	- : 0 !	- 0	N.		R)	104.2 11	MODEL/FULL	5 E		TEST
		FRED	8 8 8 9	125 160 200 250	315	900	900	1250	1600	2500	1000 1000 1000	5000	0000	2500		2000	0000	0000	90000	GASPL				MODEL

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

													•									·				•	7					ATT	
													OR OF	IG	N O	O	R	Q	JA	E I	Y	•										JET SPEED C (386.0 FPS)	
		<u>ي</u>	Ž	10 (4)	9	0	2 P	0	e e	o o	G	9 6	n o a	9	٠,	4	4 0	2	4	- ^							•				5 42.08	FREE-JET 117.65 M/SEC (
		. 3	7 161.	7 161.6 9 162.2	_	.0 162.		-	7 163.	9 9	163	163	3 164.9	.3 165.	1 164.	154.	3 - 64.	163.	161.	1 60 1 60 1 60								.6 177.			TAMB RELHUM	FULL	
		. 160	l l	9 9	76	76	5 12	75	7	<u> </u>	73	200	7 68.	99			26.											000	6	Ģ	SB59 . 29.4600	•	
X03165	ES	150	90	0.0	82	6	2 0	79	0 6	, 8 , 8	77.	6:	7.67	71.	67.	90.		20.	i i									9.50	8	FT	1	SQ IN	
X X Q	DEGREES	140.		D 0	99	8	0 4	86	60	0 0	83			2	75	9 2	5 K	36	-									98.2	102.6	NCY SHI	I ALPHA PAMB	\$12E (1400.00	
FMODE	INLET,	130.	85.3	87.2	88.2	87.6	A	88.5	88.1	0.70	86.9	64.7	82.4	61.4	78.2	71.3	- 0	45.6	24.9									98.0	104.0	FREGUENCY		CM C14	,
FJ-400-FMGDI	FROM	120.	77.5	79.5 81.6	83.5	63.7	. K.	65.2	96.2	0.00	85.3	94.6	82.0 82.0	61.3	79.6	74.6	3.6	54.0	37.2	10. 10.		•						96.2	103,5	•	N310 ADH166	.2 30 0	
1	ED	110.	72.2	73.9	: eni	60 (• -	30		W N	mi	N -				~ 1		vier	m	<i>!</i> •								٨.	-	8.061		9032.	
DENTIFICATION	S MEASUR	100.		72.0		_			١.		l		90.0	1	-		9.0	.l .		-				•		•		9.0	00.7	RATIO	TAPE AERG. I	3.	
DENTIF	ANGLES	90		72.3			•									•		. ·										5 6	02.6	AMETER RA		NGE O FT)	
P-00		.00	1.	72.3					l							•												91.7	6	DIAME	6-78 ANECH CH	TIC RANGE 2400.0 FI	
		70.	4	72.5	D.	٥.	- «	9	φ.	- 6	4	a ·	4 0	0	Si (si e	, c	0	N	œ.								20.5	-		03-16- C41 AN	ACCUSTIC 5 M (240	
		60.	~	72.5	0	0.0	۰ ۲	- 6	a 6	۰ N	4	0.0	<u>ه</u> د	•	o i	ú (<u>ء</u> ج		-	ဖ								90.0	9			731	
		20.	ю.	- 1	0	io e	, e	9	0.1	٠.	9	•	4 4	2	.	4 1	٠, و	9	Ю									9.5	2		TEST DATE LOCATION	POINT 16	
		•	0	1.0 72 3.6 72	•	4 (ه <u>د</u>	. 0	0.0	N IO		9	» –	6	0	٠.	<u>ب</u>	200	-									69	9			TEST PO 0316	
		RFO 4	1	63 54 80 53					l		- 1			- 1						88	90	88	00	00	88	38	8	PL 79			•		
		ı.					- 6	1 (1)	e ;	4 10	9	•	2 6	1	8	23	. q	S S	63	10000	125	- 180 200 200 200						DASPL			13802	MODEL	31

												00)R)F	IĢ	ili O	NA O	L R	P. Qi	A G	SE \L	ES	S Y											FREE-JET SPEED M/SEC (0, FPS)	
																					٠											36.68 60.00	FREE O. M/S	
			¥						7		9 151.2	162	-	152.8	-1	22		2	149	149	49.4	140	5 147.3	147	146	145.	145	, c	142	4	9 163.9	TAMB	:	
X03170		150. 160							٠.	i c	. 6	3 115	.3 115	.4 115	0 115	0.0		.0	3 106	.5 106	. 3 105	5 104	8 101	99	.3 97	.0 95.	.7 88.	7 0	.2 74.	.2 66.	.7 124.8	\$859 29.4900	IN) - MODEL	
.]	DEGREES	140. 16							20.0	•	16.51	118	E	•	6	ن د .	- r	16.5 113	2	4	ن د	o k	i 4		6		٠.	84 64 88.5	6	4.	128.4 127.7	ALPHA SE PAMB 29	SI ZE 27.55 SQ 1	
FJ-ZER-FMODL	INLET, D	130.		٠					105.8	•	į	2	<u>.</u>	_	0	٠. د	- c	14.5	0	ص -	- •	מי			.5	_	4 (D 0	1	4.2	125.8 1	_	CM C 81	
MESSEL BACKGROUND	FROM	120.							- 66		104.3	103	108	108	108	000	3 6	2 110.0	109	108	90	200	9 0	2 103	4 101	26	-	94.5	• •		7 120.4	N310 ADH169	39.0 80	
•	MEASURED	00. 110						ļ	D (6		3 101	.0 102	.6 103	7 104	.3 105	4. CO - 4	. 1 106	2 105	7 106	4 105	0 104	3 102	0.01	.7 98	9	ı,	9 P	4 73	29 8.	3.5 116.7	TAPE NO.	ARC 13	
DENTIFICATION	ANGLES	90. 10							- 1	- 1	. 0	4	9	99.0	01.1			00.7 102	-	- 10	ن د .	-	 > @		6	2	1 0	86.89	0	0	112.5 11	AE	RANGE 40.0 FT) AF	
IDENTI		.00							~ (D 4	o a	10	ĸ,	ø.	50	ი	- °	2 0	6	2	.	200	2 0		0			0 6 0 6	., .		111.0 1	6-78 ANECH CH	ACCUSTIC RA	
		. 70.						ķ	9	7 4	9 6	92.	94.	97.	98	97.	3	98.0	96	97.	9 6	90		96	94.	90.	900	93.8	7	66.	.8 109.6	03±1 C41	ACG(
		50. 60	,			•			9 6		200	4 92.	.9 94.	.7 99.	. 8 98.	. 86.		0.0	.3 98.	.3 97.		96.0	98	.96 6	.5 92.	.9 89.	.7 87.	7 82	7 68.	.5 63.	6 109	TEST DATE	TN I	
		40 5							<u>ب</u>	4 L	, IO	8	Φ.	4	6	<u>ن</u> د	<u>ب</u>	<u>.</u> م	10	۲.	o •	- -	0 1	.	4	2	<u>ه</u> (68.8 77 62 0 72	<u></u>	IO.	98.4 108	-	TEST POINT 0317	
			FREG 50	88	100	125	160	-1				1			ŀ			3150	İ			-1	2000					40000			GASPL		NGDEL C300	

UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE 59.0 DEG. F., 70 PERCENT #.H. STD. DAY, SB 40.0 FT. ARC

											00)R)F	IG F	11N 20	IA OI	R	P	'A	GI AL	E 17	ei YT																	FPS)		
																																		0	YES			SPEED 0.		
																																		SEAST AND	CORRECTION -		36.68 60.00	FREE-JET M/SEC (
			7							2.87	4.62	20.0	51.2	152.1	52.8	52.8	53.1	52.6	52.1	0 -	40 - e	49.9	149.4	4 8.7	46.3		46.5		145.6		42.0	144.7	163.9		NCE COR		TAMB 3	0		
FT. ARC			160.							1 119.4		113.3	113.8	115.2	115.9	15.6	115.4	114.2	11.3	9 6	0.80	106.3	105.5	104.6	103.6	5 8		95			74.0	5 66.1	124.8	BINESTA	TURBULANCE			- MODEL		
40.0 FT	X03170	DEGREES	140. 150.							0.011	114.	_	_	_	 	_	_	6	ن د د	•	4.0 113.0	4	6	10	2 106	4. 4.	00 00	. 5 95	2 69	- x	27	4	128,4 127.7		46.00		LPHA SB59 PAMB 29.4900	55 SQ (N)		
R.H. STD. DAY, SB		i	130. 14							105 a 116	11000	12.3 11	113.6 116	114.2 11.	115.0 117	114.3 11	113.9 11	.3	_; _;	- ; ? •	= =	9	113.2 112	ا ا	- k	106.7 106	10	4 10	l	-	V K	2	125.8 128	10407				\$12E M (21.55		
.н. sто.	FJ-ZER-FMODL	ED FROM INLET,	. 120.							1 00 1	7 100 0	7 103 5	1 104.3	2 105.9	ļ —	_	9 108.6	7	109.8	200.0	100.0	1 108.9	₿ 108.4	8 107.9	4 106.5	7 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	101.1	9 97.8				4 74.5	120.4	***	DIAMETER (IN)		N310 ADH169	9.0 SG CM		***************************************
70 PERCENT R.	- NOILE	ANGLES MEASURED	00. 110.							ď	۰		4	-	.0 102.	.6 103.	.7 104.	3 105.	4 c	- ·	- °	-	4	ъ.	-	, c	·	8	.5	.7 86	7 4	8.6 67.4	3.5 116.7	į	JEI VELOG FREE JET I		TAPE NO. AERO. RDO.	RC 139		
	DENTIFICATION	ANGLES	90. 10							_			. 6	च	9	-	_	7	- ·	- •	 	- 10	~	7	0	- -	. e	~			D 16	67.0 68	112.5 11	TI.	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			RANGE 10.0 FT) AR		
.O DEG. F.			. 80.				-			9	Sa	ā	6	96	95.	98.	66	98	86	D (98	99	96	100	98		80	95.	90	00 0	7 0	56.	111.0	1	. 000	ζ.	16-78 ANECH CH	ACCUSTIC R		
8			60. 70.								7		5	6 92.	.2 94.	.0 97.	.86	.7 97.	.3	.4	96	9 97	.68	.7 99.	.2		6	.7 90.	.4 89.	. 0		.8 66.	9.8 109.6		SCALE CALC. 1		6 - -	12.21		
	•		20.							q	٥	io	. 0	4	6	۲.	₽.	N	.	Ņ (ی د	9	6	0	ø.	- 0	10	O)	~	,	4 6	59.5 63	108.6 109	ŀ	FULL SIZE T 1.000 (TEST DATE	ST POINT 0317		
			40.							69	i K		3 5	73	79.	93	83.	86.	8	2		6	. 87.	87.	9	, G	200	74	72.	99	ָאַ מָּ	51.3	98.4		MODEL/FULL INPUT 1.			16		
			FREG	20	83	8	001	123	000		212	4 5		630	800	1000	1250	1600	2000	2500	3150	2000	6300	8000	10000	12500	20000	25000	31500	40000	20000	80000	GASPL		**			MSDEL 0300	31	L

80. 70. 80. 90. 100. 110. 120. 130. 140. 180. 180. 190. PML NOILES MEASURED FROM INLET, DEGREES 80. 70. 80. 90. 100. 110. 120. 130. 140. 180. 180. 180. PML 80. 70. 80. 90. 100. 110. 120. 130. 140. 180. 180. 180. 180. PML 80. 70. 80. 90. 100. 110. 120. 130. 140. 180. 180. 180. 180. 180. 180. 180. 18						OF OF	RIGI P		AL OR		AG	E LI	is Ty										19 19		SPEED 0. FPS)	
89.0 DEGO. F., 70 PERCENT R.H. STD. DAY, SB. 40.0 FT. AN IDENTIFICATION - FJ-ZER-FMODL X03170 ANOLES PRESURED FROM INLET, DEGREES 60. 70. 80. 90. 100. 110. 120. 130. 140. 190. 160. 160. 160. 190. 190. 140. 190. 160. 190. 190. 190. 190. 190. 190. 190. 19							D N		.	- α		. 60	- 0	6 4	: N	33	· 60 i	n w	•	10	0	. 0	CORRECTION -	36	FREE-JET S O. M/SEC (
8. 86. 6 86. 6 89.7 92.1 94.8 96.1 99.1 105.9 110.0 113.0 140. 150. 150. 150. 150. 150. 150. 150. 15	•		•		97. 7.6			15.2 152.		40	i w	151	.6 149	.3 149		.5 147				- 0	2		REFRACTION TURBULANCE	1	· MODEL	
89.0 DEG. F., 70 PERCENT R.H. IDENTIFICATION - FJ- ANGLES MEASURED FR ANGLES MEASURED FR E. 60. 70. 60. 90. 100. 110. 1 2 90.7 90.0 91.6 93.7 94.6 96.7 10 2 90.7 90.0 91.6 93.7 94.6 96.7 10 2 90.7 90.0 91.6 93.7 94.6 96.7 10 2 90.7 90.0 91.6 93.7 94.6 96.7 10 2 90.7 90.0 91.6 93.7 94.6 96.7 10 2 90.7 90.0 91.6 93.7 94.6 96.7 10 2 90.7 90.0 91.6 93.7 94.6 96.7 10 2 90.7 97.2 96.9 96.3 96.1 100.2 101.0 102.4 100	40.0 rg	RÉES			0 61	6 114.61	.2 116.8 1	.6 117.3 1	8 - 6 - 6	0110	8 118	7 113.7	2 110.3	109.5	106.6	103.8 1	102.3	8 6 8 6	69.7	79.2	.3 74.2	197.7	00	Į.	SQ (N)	
89.0 DEG. F., 70 PERCENT R.H. IDENTIFICATION - FJ- ANGLES MEASURED FR ANGLES MEASURED FR E. 80. 70. 80. 90. 100. 110. 1 2 90. 7 90. 91. 6 93. 7 94. 6 96. 7 10 2 90. 7 90. 0 91. 6 93. 7 94. 6 96. 7 10 2 90. 7 90. 0 91. 6 93. 7 94. 6 96. 7 10 2 90. 7 90. 0 91. 6 93. 7 94. 6 96. 7 10 2 90. 7 90. 0 91. 6 93. 7 94. 6 96. 7 10 2 90. 7 90. 0 91. 6 93. 7 94. 6 96. 7 10 2 90. 7 90. 0 91. 6 93. 7 94. 6 96. 7 10 2 90. 7 90. 0 91. 6 93. 7 94. 6 96. 7 10 2 90. 7 90. 0 91. 6 93. 7 94. 6 96. 7 10 2 90. 7 97. 2 90. 3 100. 2 102. 3 103. 1 10 2 90. 8 90. 0 90. 0 100. 2 102. 3 103. 1 10 2 90. 1 90. 9 90. 0 100. 2 102. 3 103. 7 10 3 97. 9 97. 0 90. 1 90. 1 102. 2 102. 3 103. 7 106. 1 10 3 97. 9 97. 0 90. 1 102. 2 102. 3 103. 7 106. 1 10 3 97. 9 97. 0 90. 0 100. 2 102. 3 103. 7 106. 1 10 3 98. 0 90. 0 90. 0 100. 2 102. 3 103. 7 106. 1 10 3 98. 0 90. 0 90. 0 100. 2 102. 3 103. 7 106. 1 10 3 98. 0 90. 0 90. 0 100. 2 102. 3 103. 7 106. 1 10 3 98. 0 90. 0 90. 0 90. 0 90. 0 101. 2 102. 2 105. 9 10 3 98. 0 90. 0 90. 0 90. 0 90. 0 101. 2 102. 2 105. 9 10 3 98. 0 90. 0 90. 0 90. 0 90. 0 101. 2 102. 2 102. 9 10 3 98. 0 90. 0 90. 0 90. 0 90. 0 101. 2 102. 2 105. 9 10 3 98. 0 90. 0 90. 0 90. 0 90. 0 101. 2 102. 2 102. 9 10 3 98. 0 90. 0 90. 0 90. 0 90. 0 101. 2 102. 2 102. 9 10 3 98. 0 90. 0 90. 0 90. 0 90. 0 101. 2 102. 2 102. 9 10 3 98. 0 90. 0 90. 0 90. 0 90. 0 101. 2 102. 2 102. 9 10 3 98. 0 90.	FMODE XI	- 1		•	9 50		116		117	9118	. 1 117	.3 117	.0.	3 113	מיי	50		5. 40 10 10 10	4 0	i di	.5 83		!		-	
80.0 DEG. F., 70 PERCE IDENTIFICATI ANGLES MEA ANGLES MEA ANGLES MEA ANGLES MEA B. 66.6 66.0 90. 100. 2 98.7 92.1 94.6 9 92.2 91.6 93.7 94.6 9 92.3 91.8 93.7 94.6 9 92.6 92.4 94.5 96.3 96.4 9 92.6 92.4 94.5 96.9 93.7 96.4 9 92.6 92.4 94.7 95.9 95.0 100.6 8 94.2 94.7 95.5 97.6 99.0 2 96.7 97.2 98.3 100.1 102.2 9 96.9 97.3 96.1 99.6 101.2 9 96.9 97.3 96.1 102.1 9 96.9 97.9 100.1 102.2 9 96.9 97.9 100.7 101.6 9 97.2 98.2 100.7 101.7 9 96.9 97.9 97.9 100.7 101.6 9 97.2 98.2 100.7 101.7 9 96.9 97.9 97.9 100.7 101.6 9 97.2 98.9 97.9 96.0 98.7 96.7 9 96.9 97.9 97.9 100.7 101.8 9 97.9 96.9 97.9 100.7 101.8 9 97.9 96.9 97.9 100.7 101.8 9 97.9 96.9 97.9 96.9 98.7 96.7 9 96.7 99.7 99.7 90.7 98.7 96.7 9 96.7 99.7 99.7 90.7 98.7 96.7 9 96.7 99.7 96.7 98.7 96.7 9 96.7 99.7 96.7 98.7 96.7 9 96.7 99.7 96.7 98.7 96.7 9 96.7 99.7 96.7 98.7 96.7 9 96.7 99.7 96.7 98.7 96.7 9 96.7 99.7 96.7 98.7 96.7 9 96.7 99.7 96.7 98.7 96.7 9 96.7 99.7 96.7 98.7 98.7 9 96.7 99.7 96.7 98.7 98.7 9 96.7 99.7 96.7 98.7 98.7 9 96.8 98.8 98.8 98.8 98.7 9 96.8 98.8 98.8 98.7 9 96.9 96.7 98.7 9 96.9 96.7 98.7 9 96.9 96.7 98.7 9 96.9 96.7 98.7 9 96.9 96.7 9 96.7 9 9	ж.н. 510. - FJ-ZER-	ED FROM I	•	,	- d	7	<u> </u>	~			- -			יין			_	0 6	94		1	120.4	OCITY (FT DIAMETER	1	39.0 80	
86. 6 86. 6 86. 6 89. 7 95. 8 90. 7 90. 8 90. 7 90. 8 90. 7 90. 8 90. 7 90. 8 90. 9	NO NO	포					6 4	3		7.	3 4	е	- 01		1 10 ·	- lc	0	<u>-</u> 9	10 1	, 10	4	66.6 12.8	JET	im	ARC 1	
860. 70. 69.0 DE 29.0		ANGL	•		9	93.	0 0 0 0 0	5 96.	60. 80. 80.	5 101.	200	3 100.	6 100.	2 100.	9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3 2 100.	8 88	6 9 96.	0 90.	- 80°.	2 72.	.4 67.		i	C RANGE 40.0 FT)	
6 109. ST ZE 6 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			•			0	0 0	4	۰.0	σ,	y m	N C	. 0	9 0	2 10	0110	4	ဝ္	4 0	۰۲	78	0 4	ш.	03-1 C41	ACOUST	
7. 1					3	2 88	8 8 8 8	4 92.	7 94.	98	9 60	88	38.69	3 97.	98.0	1 96.	.96	2 G	.7 87.	75.	.7 68.	. 5 63.8	SIZE SC 000 CAL	EST DATE LGCATION		
4 2000 L C C C C C C C C C C C C C C C C C						4	N 10		0 4	.	20	60	N IO	~ 0	» –	1 0	•	4 (1	0	0	_	io 4	7FU 1 1	L	TEST PO 0317	

										00	RI F.	GI	NA OC	LR	PQ	AG NU	EL	IS	5									8	9.00 0.00		FREE-JET SPEED M/SEC (0, FPS)	
		ž	- 6	20.0	0	ر د ا	~ cı	6.	ผ ๑	. 0	9	6 0 1	0.4	41	\ r	0	6.	4 C								•			800	- 1	ó	
				2 170	-		170	Γ.			, I				0 - 0 - 0 0	163	163	161	162							14	9		TAMB		FULL	
		. 160		9 6	İ	67		1	7,		1												•			96.4	1	o,	3859 29.4900		1	
X03175	E3	150	2 8	9 9	2	2.8		88	9 6	8 6	9	77.	6 %	69	2 2		2	_								103	10	FT	1	- 1	SO IN	
EOX	DEGREES	140.	93.0		• •	•									•		١.	•								106.0	109.3	ICY SHI	ALPHA		\$12E 400.00	
FMODL	INLET,	130.	92.5			93.7	9 69 7 40 69 10	94.3	92.7	92.1	90.7	98.7	84.4 84.4	92.3		64.6			•							104.6	109.9	FREQUENCY	_		5 1	1
FJ-ZER-FMØDL	FROM 1	120.	84.7 85.6	1.6	89.6	89.5	9 9 9 9	99.4	00.00	88.1	97.4	96.6	82.8 82.9	81.0	72:0	65.1	53.6	36.6	:							100.4		Ľ.	N310 ADH169		SGCA	
<u>.</u> 1	SURED	110.	79.7	83.1	95.1	96.6	87.0 86.4	96.7	87.0	86.2	85.7	94.00 0.00	97.0	80.1	70.4	64.6	54.9	37.1	•								~	8.061	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	. (9032.2	
CATION	MEA	. 00		6 6	0	.		6	ო -	- თ	60	<u>~</u> 0	V	6	. c	? N	10	N a					-			97.6	7	D	TAPE	. 1	٠ ـ	
DENTIFICATI	ANGLES	08	ෆ ග	o -	4	<u>ن</u> د	9 N	0	o -	- ო	~	- 0	, o	~ 1	٠.	? N	o (si o								. 60	-	ER RATIO	¥		3Ε FŢ) S	
<u> </u>		ö	0 6	9.0	-	<u>ه</u> و	, O	6	.	. 0	8	ı,	4.0	4.	- •	ŧ 0	9 1	٠,٢								91.6 93	.8 103	DIAMETER	5		C RANGE 400.0 FT	
		•	'	77		9 (. 0	01	~		0	Q C		4 (, ,											19 7		•	-16-76 ANECH		ACCUSTIC RAN 5 M (2400.0	
			22	74	78	8	9,8	79	7 7 7	12	78	73	22	26	7 6	62	10									96	97		100 140		731.5	
		9	72.	73	90	79	79.	78.	77.	77.	78.	. 1	6.4	73	9 6	8	47.		•							6 6	6		TEST DATE			
		9		71.5	.i .	•		ł .						ı .												0.70	• •		TES		F POINT	
		9	1	30 4 4		4					•															75.0	-l -				TEST 03	
		FREG	9 6	86	125	160	200	315	400	930	800	1000	1600	2000	0000	4000	2000	6300	10000	12500	20000	00002	40000	\$0000 83000	80000	CASPL	PNLT				MGDEL 0300	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

07/19/79 17.200

											00)R)F	iG F	N O	AI OR		A(5						<u>,</u>))			JET SPEED C (377,0 FPS)	
	·																											41.72	FREE-JET 114.91 M/SEC (
DAY, SB 40.0 FT. ARC	00		160.	Ę				06.9 142.7	06.2 143.6	. –	99.9 146.6	96.0 146.7	7 14	3 14	90.6 140.0	4 14	95.3 145.8 95.5 145.7	7	93.4 144.7	91.4 143.3	2.	88.8 142.8	0.	76.2 142.0	6	N	114.2 156.6	TAMB O RELHUM	MODEL	:
40.0 FT	DL X03160 DL X01400	DEGREES	150.			**		-	. 9 110.6 1	7 111.7	.6 110,3	0 108.1	104.7	.6 104.0	4 102.8	2 102.9	.1 103.0 7 102.3	5 101.0	.3 99.4	9 66.2	.8 95.7	200	.6 95.5	7 74.5	.9 68.3	0. 0.	119.7	HA 5859 MB 29.4550	S 50 IN) -	
, DAY, SB	FJ-400-FMGDL FJB400-FMGDL	INLET, DEG	130. 140					101.1.106	103.5 107	109.4 112	0	111.0.110	8	- 9	011 9 011		110,0 110	109.5	108.2 105	10.2	च	20.1.20	6	87.6 85	<u>.</u> -,		121.6 123.1	1 ALPHA 5 PAHB	SI ZE CM (21.65	÷
NT R.H. STD.	MODEL BACKGROUND	FROM	110. 120.					91.6 94.2	92.1 96.1	9 (7)	9	99.3 104.0	4	Γ,	4.6	-	02.6 106.1	5 100	01.9 105.0	. 6	99	96.7 87.5 92.8 98.6		64.9 66.0 78 1 82 4	0	_	13.3 116.9	NG. N310 RDG. ADH165	139.0 80	
, 70 PERCEN	•	ANOLES MEASURED	100.		.2			99.3	4.6	92.1	93.0	200 200 200 200 200	6 96.5	97.6	27.20	6 95.2	0 98.2 7 7 98 9 1	6 96.3	3 97.6	27.70	96.8	84.3	98.0	~	73.1	8 4 9	0 109.6 1	TAPE ! AERG. RI	T) ARC	
	IDENTIFICATION	*	. 60. 90					96.0	97.5	2 69.1 90.	93.5 91	90.0	93.2 95	93.4	92.5	94.2 96	3 93.9 96.	95.3 97	97.1 97	0.00 0.00	86.9	96.6	86.8 90.	96.5	70.4 7	63.4	2 107.6 109.	16-78 ANECH CH	ACGUSTIC RANGE 2 H (45.0 FT)	i i
59.0 DEG. F.			6 G. 70.					.5	 2	67.2 67.2	.3 68.		9	.00		2 92.		.0	.3 97.	9 6	.7 95.		.0	.7 82.	67.1 69.4	66 64	105.9 106.2	TEST DATE 03-1 LGCATION C41	0	•
			40. 50.		- 1			١.	93.0		3 86.	37.0	.00	.3 86.	, a	. 1 90.	.7 91.	96	4 96.	70	7 92.	5 69	5 91.	9 76.	٠١.	.6 57.3	5 104.3	TEST	TEST POINT 0318	
				F 600 000	5 6	100 125	160	250	313	200				1					- 1			-			3000 57		OASPL 96		MODEL T	321

79 17.289						OR! OF	GINAL POOR	PAGE QUAL	is TY			YES YES		SPEED 377.0 FPS)
LEVELS		DEGREES	140. 150. 160. PWL		103.2 106.6 105.7 139.8	08.1 110.4 10.3 110.8 11.3 110.0	11.8 108.2 106.0 1 11.9 106.8 104.7 1 10.7 106.3 104.6 1 09.8 105.5 105.3 1	10.2 106.4 106.5 146 10.7 106.6 107.3 146 11.1 107.2 106.4 146 09.7 106.4 106.6 146	06,5 105,0 105,3 146,06,5 103,6 104,6 146,05,3 103,1 104,3 146,03,9 102,1 104,4 146,	03.0 103.0 105.3 1 00.6 101.0 103.5 1 94.7 96.9 100.7 1 96.9 94.6 95.0 1	95,55 94.3 98.5 145.7 79.8 143. 143. 145. 1 72.7 78.2 142. 142. 156.2 62.9 66.4 141.	377.00 REFRACTION CORRECTION - Y 40.00 TURBULANCE CORRECTION - Y	ALPHA \$859	SIZE 21,55 SQ IN) - MODEL 114,91 M/SEC (
TRANSFORMED MODEL SOUND PRESSURE		MEASURED FROM INLET,	00. 110. 120. 130.		7.5 88.1 92.8 99.	.1 69.5 95.0 .5 91.3 96.7 .2 92.2 99.0 .0 94.7 101.7	6 95.8 102. 8 97.2 103. 8 98.4 104.	7 101.2 105. 7 102.0 106.7	.4 103.3 106.7 106.4 102.1 105.4 104.1 105.4	99.8 100.7 103.6 105.9 10 99.2 100.0 102.2 103.4 10 90.8 98.6 98.6 97.3 9 93.7 92.8 98.0 98.6 97.3 93.0 94.7 94.7 94.7 94.7 94.7 94.7 94.7 94.7	1 96.8 89.5 86.8 3 79.7 85.1 80.9 5 73.0 79.6 76.2 0 66.8 69.8 66.4	JET VELOCITY (FT/SEC) FREE JET DIAMETER (IN)	TAPE NO. N310 AERO. RDO. ADH165	ARC 139.0 SG CM (2
FLIGHT	. U UEG. F.,	ANGLES	60. 70. 80. 90. 1		.3 86.8 87.9 86.9	.3 66.6 69.4 66.7 .0 69.1 69.7 69.6 .9 90.2 91.4 90.7	.6 92.7 93.2 93.3 .2 94.3 94.1 94.6 .9 95.0 95.9 96.3 .3 96.4 96.2 96.7	.3 96.2 95.6 96.2 .5 96.2 96.6 97.2 .0 97.0 97.7 98.4 .0 97.5 97.3 98.3	.9 97.1 96.2 99.6 1 .4 97.9 99.2 100.6 .7 99.8 101.1 100.3 .5 101.9 102.9 102.3	.4 102.6 101.6 101.2 .3 99.9 101.3 101.4 .4 99.2 101.1 100.2 .4 97.2 99.7 93.0	. 4 90.0 91.0 90.5 . 7 84.2 83.1 83.1 . 4 76.6 74.9 74.8 . 7 68.5 67.8 68.8	SCALE FACTOR FREE	03-16-78 C41 ANECH CH AE	ACCUSTIC RANGE 12.2 M (40.0 FT) A
322			40. 50.	50 63 60 100	76.3 90.4	76.3 90.4 77.1 91.6 77.1 92.4 77.1 93.1	77.1 94.5 82.4 94.0 85.3 95.4 86.6 98.0	89.0 96.7 89.3 97.4 91.0 97.9 93.8 99.2	92.8 97.6 96.2 100.9 95.4 102.2 1	95.2 101 93.3 100 91.8 99 86.0 95	68.3 74.8 60.8 67.4	MADEL/FULL SIZE	TEST DATE LOCATION	MODEL TEST POINT 0300 0318

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

(-)

									R	IGII PC	N# 00	LR	PA QU	IGI IA	E	is IY.											SPEED 377.0 FPS)	
		160. PWL	76.6 162.9 77.4 163.2 77 a 163 a	9	က ဏ	- 6	0	74.9 165.0 72.6 164.6		က အ	4	9 0	44.0 164.9	4	0.181	0.08 7.08 6.0	3.20						88.2 177.7		:	TAMB 41.72	FREE-JET FULL 114.91 M/SEC (
X03165	DEGREES	140. 150.	66.4 66.4	4 84.5	4 62.9 82.2	0.00	9 01.2	- 1- 0	8 76.5	74.3	1 72.1	3 68.4	. 4. . 10.	41.3	N) :							4.40	96.7	CY SHIFT -9	ALPHA SB59 PAMB 29.4550	1.ZE 0.00 SQ IN) -	
:J-400-FMGDL	RED FROM INLET,	. 120.	.3 78.0 87.1 .2 80.3 87.7 # 82.0 87.7	63.8 89	04.4 88 1 85.4 88	1 86.1 88 2 86.0 88	2 87.3 88		85.1 88	84.1 84	81.6 82	79.6 79	73.7 70	66.1 61	04.0 0.70	11.1							. 2 96.9 100.0	104.0	061 FREQUENCY	N310 I	S1ZE 032.2 SQ CM 11400.00	
DENTIFICATION -	ANGLES MEASURE	0. 100. 11	3 73.6 74	.8 75.9 77	9 77.0 79 8 77.8	79.1 81	8 60.2 82	4 80.0 83	2 80.3 82	7 79.6 81	3 79.7 79	3 78.9 78	2 71.5 69	2 66.2 64	.6 55.6 54 6 41 0 36	17.0 11					•		0 91.2 93	1 100.6 101	RATIO 8.	TAPE NG. AERO. RDG.	T) SL 9	
Ö		·.	71.1 72.1 72 72.2 73.8 73	6 75.5	7 78.0	5 78.1	2 76.1	78.5	8 79.6	5 61.3	0 81.7	. 9 61.0	9 76.55	5 68.0	42.6	6 16.5							90.5 91.8 92	01.3 103.3	DIAMETEI	03-16-76 C41 ANECH CH	ACGUSTIC RANGE	
		20.	7 72.6 73.2	74.5 75.	74.0 76.	77.7 79.	5 76.4 77.	77.55	76.4 76.	79.4 61.	78.1 81.	75.7 78.	67.6 71.	59.0 63.	46.2 26.6 36.3	9.							9 90.7	97.3 100.6		TEST DATE	EST POINT 731	
			60 63 63 63 63 63 63				99		1					- 1			10000	00091	25000	31500	4 0000 0000 00000 00000	80000	97	88			MODEL TE	32:

ORIGINAL PAGE IS OF POOR QUALITY

6.1.5 Measured Acoustic Data for Model 4

 $R_r^0 = 0.853$ conic outer nozzle $R_r^0 = 0.805$ conic inner nozzle $A^1/A^0 = 0.526$ without struts in outer flow

														IAL OR											SPEED 0. FPS)	
																								39.50 28.00	FREE-JET M/SEC·(
40.0 FT. ARC				Ę				4 146.2	5 150.4		6 153.5		7 152.5	6 152.0	3 150.0	7 149.7 6 146.9	2 47.5	146	2 144.6	143	142.4	6 139.6	4 163.9	TAMB		
0.0 FT.	X04010		150. 160					12.5 112.	16.3 113.	90	9.	4 0			نان	09.3 104. 08.7 104.	20 4	. 6	- S	4 5 5 8 5 8	34.5 83.		27.4 1	SB59 29.4900	- 2	
DAY, 88 4	J-ZER-FMODL	, DEGREES	140.					6 110.0 1	3 116.2	- -	130.		119	0 116.9 1	16.21	1,0,1	100.1	105.9	- - •	97.6	. 0. 4	76.8	128.5 1	IALPHA	SIZE 27.55 SQ	
S T0.	14	FROM INLET,	120. 130	•		•		99.1 106.	113	4 116	.7 116	 	5116	09.6 116.8	4114	.6 114 .3 112	- 0	107	5 105	0 to 0		6 77	4 127.	N301 ADH169	S S	
X K	MODEL. BACKGROUND	SURED	110.					96.4 4.8	97.7	100.9	103.01	104.7	105.3	105.1	105.6	105.8	104.3	101.6	8.05 87.0	92.3	4.4	21.0	116.4	₹ 26.	2	
70 PERCE	•	ANGLES MEA	100.		-			2 8		98	.86	9 100. 102.	102	102	105	102. 102.	101	9 100		20. 8	93.6)	113.	TAPE AERG.	T) ARC	
59.0 DEG. F.,	IDENTIFICATION		70. 60. 90					6 69.7	85.1 82.1	4 95.0	· · · · · · · · · · · · · · · · · · ·	. 6 . 97 . 2 . 2 . 3 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4 . 4	3 98.41	1 98 5	9 97.7	.3 98.1 1 .2 97.9 1	1 98.5 100	92.0	.3 97.5 .2 95.9	.7 93.0 A A7 E	92.0	3 69	.3 110.4 1	03-10-78 C41 ANECH CH		
			.09					69.1	20.0	93.6	7.7	9.00	96.0	9.00	97.4	97.4 98.0	86.8	4.4	60 60 60 60 60 60	86.7	78.6	0.00	109.5	TEST DATE 0	51	
			40. 50.					.00		0.0	4.		98			. 2 95. .3 96.	0.0	36	.6 89. .6 87.	93.		63 8 5	.1 107.	TES	TEST POINT 0401	
				7. 0.00 0.00	90	100 125	160 200	1		i					1		ı			ļ		63000 59	_		MODEL 1	325

								0	OR!	GI P	N/A DO	IL R	F!	AG JA	E '	1817											N - YES N - YES			-JET SPEED	M/SEC (0. FPS)	· **	の こうか かくし こうか (Manager Company) (Manager Compa
			نــ			·	e e	.	▼ ~	0	០២	· . -	- 40		-(6	· Oi	0 10	0	& &	3	a ·	4 R)	8	N.	•	CORRECTION CORRECTION		8 39.50 M 26.00	FRE	O. M/S	- :	and the second s
T. ARC			160. PWL				112.4 146.	0.		•	٠ د د	114.4 153.6	-	. 0	107.4 151.1	-	6 146	103.8 148.0 102.2 147.0	6 146	10 W	93.0 143.	-	77.1 140.	9	4	124.4 163.9	REFRACTION TURBULANCE		TAMB 00 RELHUM		- MODEL	to distribution in the second	makes a signer and subspecial special special short
SURE LEVELS	X04010	DEGREES	140. 150.			•	10.0 112.5	12.1 114.3	2 2	10.1 117.3	0 15	19.1 117.8	2	.9 113.	.52	100	4	10.1 107.5	0	04.1 102.1	2	.1 89.	89.0 84.5 82.8 79.5	.8 73.	ď	28.5 127.4	46.00		IALPHA \$859 PAMB 29.4900	ZE	(NI 08 8		
STD. DAY. SB	FJ-ZER-FMODL	INLET,	120, 130.			-	1.1 106.6 1	4 109	611 B	4 115	0 116	9	0 - 0	6 116.8	.2.15.4	6 114 3	3 112.9	2.011.0	1 107.3 1	7 105.6	8 97.3	. 5 95.1	83.6 83.6	.6 77.4	73	120.4 127.1 13	(FT/SEC) ETER (IN)		N301 ADH159	18	SG CH (27.5	***	
MODE!	ION - FJ	EASURED FROM	. 110.					96.6	8 97.7 103 7 98.6 104	100.9	103.0		100.3	105.1		9.00	105.2	.6 104.3 107 .0 103.6 105	101.5		92.3	89.5	84.4 78.0	71.0		116.4	T VELOCITY (FT/SEC) E JET DIAMETER (IN)		R NG.		177.7		Leading and Table Construction of the construc
HT TRANSFORMED	ă	ANGLES ME	90. 100.				9	0	904. G 905.	98	66 C	108	0 102	6 102	2 102	50 102 102	0 102	101	001 6	oi K		88 2	.0 83	.0 72	.7 64	112.5 113.6	FREE JET		AERO	ANGE	O FT) ARC		- Character and Contract Contr
FL 10HT			70. 80.					2 91.	92.4	4 95	0.00		50 07 07	. 188	7 98	200	. 20		8 97.	6.0 700 700	.7	. 8 87.	81.1 85.8 74.2 77.3	.3 69.	.1 63.	.3 110.4	E FACTOR		03-10-78 . C41 ANECH CH	ACCIUSTIC R	2 M (40.0 FT)		Description of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second
			. 60				60	2.69		93.6	20.4 7.00	99.4	D 0	0 0 0 0 0 0	5 97.7	97.4 07.4	0.0	6	94.4	63.0	26.7	84.2	9 78.6 8	66.2	60.7	9 109.5 109	L SIZE SCALE		TEST DATE 0		<u>5</u>		
			40. 50		•		90	6.4 88.	6 6	.8	4.0	.8 97.	200	96	.6 97.	6. 10. 10.	. 96 . 96	93.0	3 91.	.6 89.	.00	.0 79.	ი დ) -	-	107.1 107.	MODEL/FULL INPUT 1.		<u> </u>	TEST POINT	<u> </u>		
6			CHA	6 6 6 6 6	8 <u>8</u>	125 160	000	315	4 8 0 6	630	9 6	1250	1600	2500	3150	4000	6300	8000	12500	16000		1			1	OASPL		LNI	14 35V	MANNE		lox-	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, 56 2400.0 FT. SL

					0	RIGINA F POO	L PAG R QUA	E IS				9	FREE-JET 8PED H/SEC (0, FP8)
		یے	10 10 10	4 6 81 10	0	0-0-	3040	v & a u				8 39.50 H 28.00	0
		Ę	166.9	170.4 170.2 170.2		L	162.9 161.6 160.4 160.0	159.5 157.6 156.9			90	TANB	
		160.	85.8 85.9 87.1	85.6 83.6 80.7	77.6 75.7 73.6 70.9	69.6 67.7 64.7 39.7	55.6 47.4 36.8 16.3				828 646		- FWL
n		160.	92.3 92.6	93.6	8 8 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9	78.5 7.7.7 7.9.1	66.4 62.3 53.0	2 0.5			101.7 102.6 102.6 FT -9	5659 29,4900	2
X04015	DEOREES	140.	i	1	93.1 91.2 89.4	1		0, 0,		,			30 SQ
,	į.				L	1.		6. 0. 8. 7.			1 25 1	IALPHA	\$1 ZE (1400.00
1-F#OC	ME	130.	2222	i	1	í	3 5 5 5 E	28			1 108.2 109.1 109.1 FREQUE	9	5
F.J-ZER-FMOD	ARED FROM INLET,	120.	83.7 86.6	0.00 0.00 0.00 0.00	88.1 89.1 87.9 85.8	86.2 84.7 83.3	76.0 74.3 69.6	24.20			104.7	N301 ADH159	8
L		110.	78.7	85.3 85.3	65.9 65.9 65.0	84.0 82.9 82.0 79.6	77.7 74.2 67.9 61.9	51.3 34.2 7.8			96.0 102.0 102.5 7.129	RDG.	9032, 2
DENTIFICATION	HEASI	8	70.02	- 0 0 0	82.8 82.7 82.0 82.0	0000	9.40	0 0 0			900	TAPE AERO. R	18
HIF	ANGLES		ŀ	ļ	1	l .	ł	1			10 7 10	AE	
105	7	•	76.8	i	6 80.3 80.2	<u>l</u>	l	1			4 92.6 2 100.4 5 101.6 AMETER F	5	RANG 20.0
		8	17.7.5	76.3	72.77	77.3	76.				90.4 98.2 99.5	-10-78 1 ANECH	COUSTIC M (240
		8	1		76.2			0.08 0.08 0.03			9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	22	<υ
		8	2002	9 6 6 4	77.6 76.6 75.9	0 2 2 2 2	9 6 9 7	23.7			99.5	ATE	731
			0400	0 - 00	0004	7000	0 40 40	40			7.70	TEST DATE	P01NT
			M - T 6	- 0 - K	22.55	000	0840	i .			3 65. 7 90. 6 91.		7EST P0 0401
		4	62.7.	1.25.5	22.25	63. 83.	0 4 4 6	12			27.		0
		FRED	388	2000	8 4 00 8 00 00 9 00 00	1250	2000 2350 3150 0000	6300 6300 6000 6000	16000 20000 250000	31500 40000 50000 63000	OASPL PW.	•	90 327 20 327

								OR OF	IGII	NAI OOF	_ F)Aq	GE ALI	IS TY									33.50 59.80	FREE-JET SPEED 96 M/SEC (367,0 FPS)		
R BACKGROUND NOISE	O FT. ARC	X04020 X01400		150. 160.	É		.6 107	7.145	98.21	96.8	97.1	97.6	97.7 1	95.4	94	93.0 145	92.0 144	3 89.6 143	86.9 84.2 143.3 81.8 79.7 142.8	.8 73.4	70.1 .97.4 139.6 60.9 59.0 139.6	119.4 113.4 160.1	3859 TAMB 3: 29.2700 RELHUM 5	IN) - MODEL 117.		
YE!	STD. DAY, SB	FJ-400-FMGDL	FROM INLET, DEGREES	120. 130. 140.			6	100	111.9 114	.9 113.5 116 .7 113.8 114	6 113.4 116	5 113.9 113	===	7 111 1 100	5 109.5 107	107.4 104	5 103.4 1	3 96 3 93	93,9 94.4 91.2 88,9 88.8 86.2	.1 81.4 79	78.0 /4.0 /2.6 71.6 68.≅ 56.9	117.3 124.0 124.7	N301 IALPHA ADH166 PAMB	SIZE .7 SQ CM (27.55 SQ		
SCHOOL PRESSURE	, 70 PERCENT R.	TIFICATION - MODEL BACKGROUND	ANGLES MEASURED	90, 100, 110,	٠		67.6 69.8	90.00 80.00 90.00 90.00 1.00 90.00	92.6 94.	93.4 95.8 94.5 96.6	96.3 97.4	95.3 97.9 102	95.9 98.5	96.1 98.2 102	0.70	100.9 99.3 101.	99.7 99.5	95.8 93.8	89.08 88.03	80.2 79.9	65.9	109.8 110.5 113.6	TAPE NG. CH AERO. RDG.	RANGE 40.0 FT) ARC 177		
HINTEANSEGRAFF MANEL	59.0 DE0.	IDENTIFI		60. 70. 80.			84.3 65.7 66.	65.3 65.1 co.	88.8 89.1 95.	89.6 90.4 90. 91.7 91.8 92.	93.3 93.1 94.	92.0 91.6 93.	91.9 92.5 93.	93.9 93.1 93.	90.6 90.5 0	98.4 98.9 100.	94.9 95.6 98.5	68.7 89.4 94.	86.3 88.3 89. 80.6 82,7 87.	73.3 76.1 78.	67.3 69.5 70. 61.6 64.4 63.	107.2 107.2 108.6	TEST DATE 03-10-78 LOCATION C41 ANECH	ACCUSTIC		
•				40. 50.	60 00 00 00 00 00 00 00 00 00 00 00 00 0	125	81.5 83.	83.2 84.6 85.	85.2 85.	89.4 86.	88.8 91.	89.3 89.	89.4 90.	94.1 92.	97.2 97.	94.0 95.	16000 89.6 91.4	25000 83.5 85.	31500 81.7 81. 40000 76.8 75.	50000 69.9 71.	63000 63.9 65. 80000 57.9 56.	GASPL 105.0 105.3		MODEL TEST POINT 0400 0402	328	

						0	RIG F F	3 N	IAL OR (PAC	GE	3						Z - YES		-JET SPEED EC (367.0 FPS)
ARC	60,		9.	5,9 143.5 3.3 144.2	1.9 145.3 3.0 146.7	-	. 74	_	07.8 147.9 106.5 147.1		6.3 146.9 7 146.9 7 7 7 7 7			95.9 146.6 89.7 146.5	84.3 144.5 70 2 143 4	4	18.7 160.8	REFRACTION CORRECTION Turbulance correction	TAMB 33.50 RELHUM 59.80	FREE-JET MODEL 117.96 M/SEC (
Y, SB 40.0 FT. DL X04020	, DEGREES		.1 103.7 107.0 104	.6 109.6 1 .9 108.7 1	.0 111.7 108.6 1	.8 113.1 107.6	0.70	112.8 108.7	112.2 108.9	.1 108.3 104.4	.6 106.2 104.7 1	0 104.5 104.1	.8 96.4 97.0 l	.5 93.1 91.5 .4 86.9 85.6	6 80.4 80.5	0 64.2	123.5 119.8 1	367.00 48.00	IALPHA \$859 PAMB 29.2700	SIZE 27,55 SQ IN) -
ENT R.H. STD. DAY, SB	ASURED FROM INLET		87.5	90.0 91.5	92.4 99.7 1	96.3 103.1 111	98.8 105.1 112	100.5 106.0 113	101.0 107.6 112 102.1 106.8 111	103.2 106.5 1	102.0 105	101.8 104.3 1	96.9 99.3	93.0 95. 88.2 90.	81.4 86.0	68.3	113.2 117.5 123.1	VELOCITY (FT/SEC) : Jet Diameter (IN)	E NG. N301 RDG. ADH166	177.7 SG CH (
DEG. F., 70 PERCE IDENTIFICATI	ANGLES ME/ 80. 90. 1중한.		8 87.6 88.	6 69.5 69.0	.7 92.0 92.	7 93.8 94.	97.1 96.	7 96.5 97.	96.3 97.4 98.6 96.9 98.3 99.4	6 99.8 100.	.101.2 101.	0 102 7 100	2 101.2 98.	.8 92.5 93. 9 91.0 87.	5 83.2 82.	3 68.9 68.	112.3 112.2 111.5	OR FREE JET	CH CH AERO.	IC RANGE 40.0 FT) ARC
69.0 D	60. 70.		88.7	66.9 88.7 90.9 89.3	91.7 89.7	95.3 93.6	95.0 95.0 95.0 95.0	96.8 95.9	97.2 95.4	98.6 97.1	102.6 100.1 1	103.5 103.1 1	100.7 100.0 1	93.1 92.3 89.9 97.4	83.8 64.4	68.1 68.8	112.1 111.2 11	L SIZE SCALE FACTOR .000 CALC. 1.000	TEST DATE 03-10-78 LOCATION C41 ANECH	T ACGUSTIC
	40. 50.	60 63 60 100	9.7	90.2 90.	9.1.0	95.6 95.	96.0	96.2 97.		98.3 97.	101.6 101.	100.6 101.	8 8	90.5 91. 87.8 86.	82.5 80.	67.2 67.	GASPL 111.3 111.1	MODEL/FULL INPUT 1.0	TES	MGDEL TEST POINT 0400 0402

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

												OF OF	tiG	SIN PO	AL	. •	PA QU	GE Al	: I LIT	S											*	JET SPEED 3 (367.0 FPS)	
		160. PWL	75.4 161.2	9 163	. 1 164	4. 164	7.7	.0 165	77.0 165.0 7≥ 7 164.2	4.	6 163	.7 163	20.0	.6.165	6 165	. a.	.2 163	163.5	0 0 0								87.2 177.7 90.5	91.6			TAMB 33.50 0 RELHUM 59.60	FREE-JET FULL 117,96 M/SEC (
X04025	DEGRÉES	140. 150.	87.5 84.1	90.7 82.9	90.6 82.8	91.2 62.0	90.0	89.3 82.7	86.4 82.4 86.5 79.4	85.3 78.0	83.0 75.9	81.8 73.8	76.4	76.9 72.1	72.7 67.7	63.6	53.1 41.1										100.1 93.1	103.0 \$6.2	NCY SHIFT 9	1	IALPHA 5859 PAMB 29.2700	SIZE (1400.00 SQ IN) -	
FJ-400-FMGDL	URED FROM INLET,	120.	77.7 86.9	82.0	83.3	2 8 0 6 0 0	85.4 4.0	85.5	86.8 85.0	83.0	84.6	79.9	73.6	62.9	54.2	9 C	•		•	•				7 103 0 105 6	103.6	. 129 FREGUENCY		N301 ADH166	.2 SQ CM	
CATIO	ANGLES MEASURE	Ġ	2.4 71.9 72.4 3.E 73.9 73.9	74.7	2 76.0	76.9	78.5	3 76.4	-	70.0	5 80.3	79.6	2 c	80.8	5 79.	7.00	6 66.8	.3 56.	16.0								1.7 91.1 92.4 1.8 100.4 100.7	0 100 8	RATIG 7		TAPE NG. AERG, RDG.)E FT) SL 9032	
0		. 90	70.2 71.4 7	70.00	.4 74.0	.6 75. 27.4	2 76.8	.2 76.4	.4 76.8	9 92 9	.2 78.2	.4 78.7	2 C	82.6	.9 61.7	70.00	7 67.5	.3 60.									69.8 91.6 91 99.8 101.8 101	9 103.0	DIAMETER		03-10-78 C41 ANECH CH	ACCUSTIC RANGE	
		0. 50. 60.	.9 69.8 71.	1 71.2 73.	.1 74.5 75.	0 72.2 74.	1 75.9 78.	.3 73.8 76.	73.5	4 74.5 75.	.4 75.0 76.	.9 76.9 77.	70.0 80.	0 76.3 80.	.7 75.1 78.	0 66.3 71.	.5 57.9 63.	.0 45.4 53.	. 62 . 7 . 42	.						•	.8 87.5 89.9	4 95.9 99.			LGCATION	TEST POINT 731	
			50 67.		- 1	73	73	- 1		12	74			2 %	2000 71.	80		l	8300	10000	12500	20000	25000	31500	63000	80000	CASPL 85.	94				MODEL TE 0400	

0
-
1
•
•
~
•
•
Õ
_
•
~
0

07/18/79 17:710										0	RIG F (21F PO			PA QU														.80	FREE-JET SPEED M/SEC (Q. FPS)		
	59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC	IDENTIFICATION - MODEL FJ-ZER-FMODL X04030 BACKGROUND	ANGLES MEASURED FROM INLET, DEGREES	40, 50, 60, 70, 60, 90, 100, 110, 120, 130, 140, 150, 160,		6.3	00		85.0 86.8 89.1 89.1 89.7 92.1 85.0 96.1 96.3 105.6 109.6 112.7 112.9 1	86.4 86.2 89.7 90.0 91.6 93.7 94.6 97.0 101.2 107.7 111.4 114.3 113.2 147	67.9 69.4 90.5 90.0 91.3 93.7 96.1 97.2 1 88.2 90.0 92.3 92.1 92.7 95.3 96.7 96.1	89.6 91.4 92.6 92.9 94.5 96.6 96.0 100.4 105.1 112.7 115.6 116.3 114.9 1	92.6 91.7 93.9 95.0 95.1 97.7 99.3 101.7 106.9 113.2 115.6 116.8 115.2 1 95 5 95 3 97 3 96 1 96 1 98 3 99 9 103 3 108 3 113 1 115.0 116.6 115.1	\$3.6 96.1 97.6 97.2 98.3 99.9 101.3 103.9 108.1 113.0 115.8 118.0 115.7 151.	95.7 93.8 95.8 96.8 97.7 100.0 101.4 104.6 108.8 113.1 116.1 117.6 115.1 151.	96.1 97.1 97.7 97.4 97.0 99.1 101.6 104.9 109.2 113.3 116.5 115.8 112.4 151 95.3 95.8 97.1 97.4 98.2 99.6 102.5 105.4 106.9 113.7 115.2 113.6 110.3 150	96.1 97.0 97.2 98.0 98.3 100.4 102.8 106.0 109.5 112,9 114.5 113.2 108.7 1	95.5 96.1 97.1 97.4 97.4 100.3 102.2 105.6 108.9 112.6 113.2 110.8 107.3 1	92.6 95.5 97.6 97.0 98.5 101.1 102.8 105.7 107.6 111.7 110.4 108.2 105.9 148	91.8 95.0 97.1 97.2 98.7 100.6 101.9 104.6 107.1 109.5 109.4 106.6 104.6 1	89.8 93.0 96.4 96.9 98.6 101.2 101.1 103.9 100.7 109.1 107.7 106.2 1 As s on a as o as 6 97.6 99.5 99 9 101.8 103.2 106.1 104.7 103.5 1	84.2 38.3 92.9 94.4 96.8 99.1 98.0 100.4 101.2 104.2 102.2 101.9 99.4 14	76.7 86.1 89.7 91.8 95.7 97.3 95.7 97.1 99.1 100.1 99.7 99.1 96.3 144	75.6 76.9 63.5 66.6 67.4 86.6 86.6 89.9 93.1 94.2 92.2 90.1 86.4 142	71.1 73.6 78.5 81.2 85.6 86.3 83.2 84.7 87.5 89.0 87.9 84.1 85.1 1	58.4 62.5 64.8 67.7 69.5 70.9 72.7 71.6 78.0 75.8 74.6 73.2	52.9 54.8 59.8 62.7 65.1 64.8 65.9 72.8 70.2 72.0 66.6 66.0 140.	PL 105.8 106.9 108.5 108.8 109.9 112.0 113.5 116.3 119.7 124.5 126.3 127.1 124.9 162.6	TEST DATE 03-10-78 TAPE NO. N301 IALPHA 5859 TAMB 39.	MODEL TEST POINT ACQUSTIC RANGE 0400 0400 0403 12.2 M (40.0 FT) ARC 177.7 SQ CM (27.55 SQ IN) - MODEL 0.	331	
					ī.			180		· (v)	4 67				= 6	ă ă	j,c	4 5	6 6	ĕ	2 2	9	-		_			OASI	SNIINI		TEMAER	le br

							OR OF		IN.A	N. R	P/ QI	AG JA	E 1	S Y			•					× × × × × × × × × × × × × × × × × × ×		
		¥		2.87	147.6	150.4	150.7	201.2	121.0	101.0	150.0	- 100 - 1 - 100 - 1		47.4	145.5	145.2		142.6	140.3	140.6	162.6	TION CORRECTION	TAMB 39.50 RELHUM 29.40	- E06E - 15
		150. 160.		2.7 112.9	4.9 113.2			.a 115 .6 115	8.0 115.7	٥		13.2 108.7 10.8 107.3	10 0	06.6 104.6	- -	o -	· 6	00.1 000.4 1 1 25.4	0 0	9	127.1 124.9	REFRACTION TURBULANCE	SB59 29.4900 R	
L X04030	, DEGREES	. 140.		6 109.5 11	7 111.4 11	6 115.2 11	7 115.6 11	116.6 11	0 115.8 11	3 116.5	7 115.2 11		117.91	5 109.4	104.7	102.2 1	95.6		85.2		126.3) 0.) 46.00	IALPHA S	9175
FJ-ZER-FMGDL	FROM INLET	120. 130	·	6.00	101.2 107.	103.0 112.	105.1 112.	106.9 113.	133	2 -	-	2 2	112.	107.1 109.	- -		-	93.1 94.	4.0	72.6 70.	119.7 124.5	JCITY (FT/SEC) DIAMETER (IN)	N301 ADH159	
, Z	MEASURED	00. 110.			6	- ~	مام	0.00	0,			 	60 0	1.9 104.6		- -	92.	8 69 8 69	78.4 77.6	8 65.	3.5 116.3	JET VELOCI REE JET DI/	TAPE NG. AERO. RDG.	
	ANGLES	90. 1		92.1	83.	93.3	96.6) O	0.66	99.0	8	100.4	100.2	100.6	99.5	99.1	94.3	86.6	9.0	65.1	112.0 11	FREE	CH AEF	DANGE
		70. 80.		- 0	.16 0.	<u>-</u>	94.	. – . 96.	.2 98.	4 97.	.4 98.	. 4 . 98. . 4 . 97.	.6 98.	98.	.9 .6	4.96.	1 93.	9 67	74.8 77.7	. 8 62.	9.8 109.9	E FACTOR 1.000	03-10-78 C41. ANECH	ACCIISTIC RANG
		60.		8	2.68	92.3	92.6	9 CO	97.6	93.0	97.1	97.79	96.9	97.1	94.0	92.9	86.5	78.5	71.6	59.6	108.5 108	SIZE SCALE 000 CALC.	TEST DATE O	
		40. 50.		0.0 00.0	6.4 88.	8.2	9.6	5 . C. C. C. C. C. C. C. C. C. C. C. C. C	3.6 96.	6.1 97.	3.0 9.0 9.0	5. u . g . g . g . g . g . g . g . g . g	4.7 95.	9.00	6.6	4.2 86. 8.7 86.	7.5 83.	5.8 78.	64.0 68.5	2.9 54.	05.8 106.9	MODEL/FULL INPUT 1.0	TES	TEST BAINT

															OI OI	RIC	GII PC	AV IOC	F (PA QU	G A	E L17	is ry									SPEED 0. FPS)
																														39.50	76.10	FREE-JET (
			PWL	166.5	67.50 87.80	168.2	169.1	68.8	168.1	167.6	167.2	166.0	165.3	164.5	162.6	162.2	2.181	159.7	159.1	156.6	167.7		•			179.5				TAMB		
.			160.	6.03	-	97.0						0.77						30.4								4	98.0					- FULL
0.0 FT	10		160.		9 6	95.0	91.7	80.00 60.00	0.0	87.4	0.0	33.0	79.0	76.7	4.5	68.3	N (30.7	20.1							01.2	102.9	N	6	\$859 20 4000	4.4	ŝ
SB 2400.0 FT. SL	X04035	DEGREES	140.		. -		6	٠ د	90	6	oi 4	. 0	9	vi o	. –	9	ب د	25. C	- 1	7.7							106.6		Y SHIFT	ALPHA	ı	ZE). 00 SQ
DAY, S	. 1	_	130.	.7	•		0	<u>ب</u> ا	. 0	1	41	. ن	-	ه به	9 (7)	•	i i	66.6 60.4	9	N							106.7		FREQUENCY	5		\$12E
R.H. STD. DAY, 1				0	N C	, 0	6	0 1	. 0	0	ه ب	£ (5)	ю	<u>,</u> -		•	a (63.1	ი.	- 4							- 1		F	N301	20140	SOCM
NT R.H.	JA - ND	SURED FROM	10.	2.	د		4.1	4 F		4	φ (ب ا	IO.	Ņ.	, 0	0	ن د	0 0	۲.	88.00 00.00							05.0	מא.	7.129	9	.	9032.2
		Z Z	100.			80.6	91.1	82.3	82.c	85.9	85.8	82.0 82.0	82.1		79.7	76.6	73.6	68.8 62.3	51.9	37.0 13.2					٠		100.2	_	RATIO	TAPE	.	S.
0, ,	DENTIFICATI	ANGLES		o .	.		စ		- 0	4	۲.	, O	9	۰,	4 10	0	<u>ه</u> و	m •	9	38.3 12.5						-	- 0	5				NOE O FT)
.0 DEG. F., 70		\$	9					79.9										69.8 61.1		36.3 10.0	.					•	_	- - -	DIAMETER	10-78	ECH CH	TIC RANGE
28 .0			90.		_														1 .	31.0							95.2			03-10		ACGUST
60			<u>.</u>	~	D	0 0	6	10.1	n –	6	0	<u>ه</u> د	4	Φ.	D C	B	4.	50.4 53.5	6	e,						6.7	_			1 1		731
			20	6	N I	٥ ٢	0	.	, d	•	10	ن ا	a	- 0	0 -	6	ı,	40.4	a.	۰.		! !				10	6	9		TEST DATE	1007	POINT 1403
			9	p .	۰ و		6	~ (9 P	n)	6 0 !	~ 4	0	9	. c	0	e .	8.00 0.00 0.00	4		!						85.8	o.				TEST 04

0
\simeq
۲
•
_•
-
2
Ñ
•
a
=
~
ä

								0	RIG F	PC	A.V.	iL R	P (2)	AG U	šE ALI	37					•				•	:		50 70	FREE-JET SPEED 96 m/Sec (367.0 FPS)	•	
NO I SE				-			2.0	-1	. o.	8.0	1-1	450. V	• 1 •	 	C		45.0 0.0 0.0	9.0			3.8	0.0			, o	8.7	8	93	F 117.96		
ARC		160.					107.9 14	107.2 14	100.6 14	-	ai d	94.6 145		. 6	95.0 146	-	ი. ∢ 	9	92.8 145	· -	.3	89.2 143	. e.	2	58.8 139	113.0 158		TAMB 00 RELHUM	- MODEL	-	
	S	. 150.						2 :	0.01	108	90.		1	1 102.3		-			98		S	90.6	9 2	2	60.0 60.2	118.4		A S859 B 29.2700	S		
S CORRECTED 1. DAY, SB FJ-400-FMDDL FJB400-FMDDL	0	130. 140					6 105	.7 107	09.1 112.	9 112	.7 112	0.00	3 111	.4 111	1.6 110.	8 109	10.1 108.	90	.2 104	2 G	95 9	6 93 7	.6 85	97. 6	73.7 71.9 67.4 66.0	122.2 122.5		I ALPHA PAMB	SIZE (27.55		
STE	FROM INLET,	120, 1		,			-			4		- -	-	=	105.2 11	-	105.4 11		103.9 10		_			- 1	78.0 7	116.5 12		N301 ADH165	.7 SG CH	! !	
RESSURE CENT R. - MODEL BACKG	ũ	110.					6	~ !	- -			D 4	. 6	2	3 101	5 102		201	101	900	8 97	7 93	98	79	6 66.0	3 113.0		PE NG. RDG.	177		
SOUND F 70 PER ICATION	ANGLES M	90. 100					-	8 ·	- 10	6	6 t	-	- 0	.8	00 G	8	ن د ا	4	4 99	. 4	6 95	69 69	, 4	,	70.7 73. 65.4 65.	09.4 110.	i	TA AERO	RANGE 10.0 FT) ARC		
MODE EG. F		90.					_	4 (5 6	1	ui e	0 4	10	ø.	10 c	a	٥.	9 00	10 0	0 09	ю	0 -	. ~	8	63.3	107.9 10		10-78 ANECH CH			
UNTRANSFORMED 59.0 D		0. 70.			•		.0 84.	.0 85.	2 65.	.6 87.	98	3 6	7	.06 0.	200	7 92.	.7 94.		6 98.		. 1 93.	.3 89.	.26	.3 75.	. 69 69 3 . 9 64 2	.5 106.7		03- C41	8 8 8 8		
N5		50. 60					-	ю	. 0	6	@ !	. K	0	.8	۲. و و	4	9.0	1 98	10 (10	0	0,7	. s.	0	55.0 66 56.6 60	04.8 106		TEST DATE	N E		
		9					80.7	82.0	83.0 64.0	84.5	86.8	90. V	89.3	88.3	9 6	92.3		96.9	93.5	9 60	84.2	82.6	76.6	69.0	63.5 57.5	104.0 1		•	TEST 04	ŕ	
		202	F 0 0 0		125	160	250	35	500	630	000	000	1600	2000	2500	4000	2000	0008	10000	16000						CASPL			MODEL 0400		

					•)Ří	iGi P	O(AL OR	P/QI	AG	IE IE	is ry	1			•			X - YES N - YES					
200	GN - FJ-400-FMODL	ANGLES MEASURED FROM INLET, DEGREES	40. 60. 60. 70. 80. 80. 100. 110. 1.20. 130. 140. 150. 160.		200	9		86.3 66.3 66.6 66.0 67.3 67.1 67.7 67.0 42.0 48.0 102.4 88.3 48.3 48.5 105.2 107.8 8	89.6 89.6 89.8 88.7 89.3 89.9 90.7 96.1 106.2 109.2 109.0 103.0 143	90.3 90.6 90.4 69.0 90.4 90.8 91.0 91.5 98.1 107.2 109.9 107.9 101.8 143	94.6 93.7 94.1 92.1 92.2 92.8 93.5 95.6 102.5 109.0 110.1 105.5 104.4 144	94.2 92.0 93.7 92.3 92.9 94.3 94.7 96.4 102.7 109.1 110.4 104.5 103.5 1	96.1 92.9 95.1 93.8 94.6 95.8 95.7 97.8 104.5 109.7 110.5 103.8 103.4 1	96.7 94.5 95.6 94.7 94.4 96.0 96.9 99.3 104.7 110.9 109.6 105.4 104.8 1	95.6 95.1 96.2 94.4 95.3 97.2 98.4 100.5 106.3 110.1 109.8 106.0 105.2 1	96.5 96.1 96.4 96.2 96.5 98.4 99.6 102.0 106.3 110.2 109.8 105.8 1 96.8 96.4 96.6 96.7 96.7 98.3 99.8 102.2 106.3 110.5 108.8 105.0 1	99.5 97.8 98.1 96.6 97.4 99.3 100.7 102.8 106.3 110.0 108.0 104.4 106.3 1	100.5 99.2 99.5 98.3 98.4 100.7 100.7 102.3 106.1 108.7 106.9 104.3 105.6 1	102.3 103.2 103.6 102.7 103.6 103.4 101.6 102.2 104.2 107.2 104.6 103.3 104.8 147	100.1 101.4 103.7 103.1 103.3 102.7 101.5 101.1 104.3 107.2 103.7 103.6 106.0 147 99.5 100 2 101.7 101.7 102.5 102.4 100.5 100.7 103.1 105.0 101.5 101.3 104.7 147	97.5 98.7 100.4 100.1 101.0 100.6 98.2 99.0 99.4 96.4 96.5 96.4 101.6 1	89.6 91.8 92.7 92.4 92.6 92.3 92.2 92.8 95.2 95.3 92.4 90.8 95.5	67.4 86.6 89.2 90.0 91.2 90.4 87.4 87.7 90.9 87.8 86.0 85.2 89.5 1	82.3 80.8 84.4 84.4 83.3 82.7 82.1 81.1 86.3 81.7 80.0 80 73.7 74.6 75.6 76.6 74.6 73.7 76.3 74.2 80.7 76.9 76.1 73	64.1 64.9 65.9 67.5 67.8 68.4 87.9 67.8 70.9 67.1 66.2	110.5 110.7 111.6 110.8 111.6 111.8 111.3 112.7 116.9 121.5 121.4 118.6 117.7 159.	MODEL/FULL SIZE SCALE FACTOR FREE JET VELGCITY (FT/SEC) 307.00 REFRACTION CORRECTION INPUT 1.000 CALC. 1.000 FREE JET DIAMETER (IN) 40.00 TURBULANCE CORRECTION	TEST DATE 03-10-76 TAPE NG. NGO! IALPHA SB59 TAMB 33.50 LOCATION C41 ANECH CH AERO, RDG. ADH165 PAMB 29.2700 RELHUM 56.70	TEST BALLY ACALISTIC BALCE	L IEST FOINT ACOUSTIC KANGE. 00 0404 12.2 H (40.0 FT) ARC 177.7 SQ CH (27.55 SQ IN) - MODEL 117.96		
			FREG	100		100	200 200 200 200 200 200 200 200 200 200	3 6	4	9	2	100	120	200	250	818 8004	500	089	1000	12500	2000	3150	4000	9000	9000	OASPL				900	335	

0
•
•
~
_
•
~
•
•
-
•
0

							0	RI	GI P	NA OC	LR	P	A U	GE	. IT	S Y.													SPEED 367.0 FPS)
	PAI.	60.5		2.1	8	4 u	9 01	0.0	P (63.4 63.4	1.2	9.	4.0	0.0	-	e	63.1	- 4		1.2				2.3			'	UN 56,70	FREE-JET 8
	•	76.1 160	. ~	2	0	 1 0	- 60	7	4 (0 0		о •	 ;; -	- 6		_	9	163	909	158				65.6 176.7 88.9	90.0			TAMB 10 RELHUM	FULL
ES	160.	4.4	8 6	80	79	9 0	2 0	62	2 1		28	7		67.7	9.00	54.2		21.1						9 9 9 9	94.6	IFT -9	1	SB59 29.270	- (NI 08
r, DEGREES		96	9 3	97	67	9 6	98	99	9		10	8	77	72	99	63	52.		i					3 101.3	2	FREQUENCY SHI		I ALPHA PAMB	\$1 ZE 1400.00
FROM INLET,		76.4 85.4) G	G	,	.	• 0	98	187	96	0 85	1 84	9 12	707	72	17 8	2 61	7 46	9 -					95.6 99.2		FREGI		N301 ADH165	SQ CM (
URED		71.6 7				^	. 10				L				. ~1	_	_		u					91.6		7.129		 9 0 2 0	9032.2
ANGLES MEAS	100.	7.5	7 6	74.	75.	1,0		78.	6		80.	90	90.0	200	76.	. Z	00	56.	9					100.0	100	RATIO		TAPE AERO. F	. s.
Y Y	90.	0 1	73.	.5 74.	.1 75.		76.	.8 77.	.6 78.	ه د	7 80	.8	.5	9	.1 78.	.2 74.	.3 66.	. 00 00 00 00 00 00 00 00 00 00 00 00 00	15.					0.101	2 102.	DI AMETER		동	FIC RANGE 2400.0 FT)
			9 04	a	- '	4 4	10	4	φ.	75.7 77	_	9	oi o	y G	(7)	^	8	on u	9 (9					89.3 90 99.4 100	0 102	٥		03-10-78 C41 ANECH	ACOUSTI 5 M (2
			0 -	N	8	ه و	2 0	4	ტ.	_ e	0	_	10		-	_	~	۰.	- a					69.2	20		1	LOCATION C	731.
	20.	98	70	72.	71.		. 6	73	73		75.	77.	9 0	2	72	. 66.	58.	4 6						98.0	53			TEST	3T POINT 0404
	9									72.0	.1 .						!				20000			95.0	.i .				DEL TEST 0400 04

()

07/18/79 17.710				OI OI	RIGINA POOI	L PAG R QUA	E IS			3.00 3.90	FREE-JET SPEED M/SEC (0. FPS)		
UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, 35 40.0 FT. ARC	ICATION - MODEL F. BACKGROUND	ANGLES MEASURED FROM INLET, DEGREES	FREG 63	84.0 88.6 88.3 89.1 89.7 91.6 94.6 95.9 96.6 105.4 109.5 112.2 1 85.9 87.9 89.4 109.5 112.2 1 85.9 87.9 89.4 90.0 91.6 93.2 94.3 96.0 89.9 107.0 110.6 113.6 1 87.2 88.9 90.2 90.2 91.3 93.7 95.1 96.7 100.7 110.0 112.4 114.3 1 88.5 89.5 91.5 91.3 91.9 94.5 96.2 97.6 102.0 111.1 113.2 114.2 1	86.3 90.9 92.4 92.7 95.0 95.9 97.0 99.9 103.9 111.4 113.1 1/13.6 112.4 1 91.6 91.1 93.9 94.2 94.6 96.6 99.0 101.4 105.7 112.5 112.6 113.6 112.7 1 94.7 94.2 96.2 95.5 95.6 97.7 99.9 102.3 107.2 112.1 111.7 113.1 112.3 1 92.3 94.3 96.6 96.1 97.2 99.6 100.2 103.6 107.6 111.9 113.3 114.7 113.1 1	94.6 93.7 95.5 96.0 97.1 99.7 100.8 104.0 108.2 111.8 114.0 116.2 113 95.8 96.8 98.5 96.8 96.9 95.3 101.1 103.8 108.5 112.6 114.1 115.3 112 95.2 95.4 96.9 97.7 97.5 99.9 102.5 105.0 107.9 112.5 114.2 114.4 110 96.7 97.2 97.7 97.8 98.1 100.7 102.3 105.5 108.7 112.4 114.0 113.0 108	96.3 95.9 97.4 96.6 98.0 100.1 102.2 105.6 106.4 111.5 113.4 110.6 106.6 148 95.8 96.4 97.8 97.6 98.4 100.3 102.7 105.9 107.9 111.3 111.9 109.6 105.3 148 94.7 96.6 98.6 97.6 99.1 101.2 102.1 105.3 107.5 111.3 110.8 108.5 105.0 148 93.8 96.5 98.7 98.2 99.3 100.9 102.2 104.6 107.6 110.3 109.7 106.8 103.8 147	91.2 94.6 97.6 98.4 100.0 101.6 101.18 104.4 105.9 108.9 108.2 106.2 102.5 147 88.8 92.7 95.1 96.6 98.6 100.5 100.7 103.1 104.2 106.3 106.0 103.9 101.1 146 87.2 91.4 94.7 95.7 98.3 100.0 99.3 101.4 102.3 105.2 103.8 102.7 99.1 146 81.6 89.2 91.3 93.5 97.5 98.0 96.7 98.6 100.0 101.9 100.2 99.0 96.5 145	.1 90.3 94.8 95.1 93.7 93.3 97.2 97.7 96.6 95.1 .2 88.4 89.1 90.1 90.1 91.2 94.5 96.1 94.1 90.1 .6 83.1 87.0 87.9 84.5 86.1 88.8 90.8 86.9 86.0 .0 76.8 79.1 80.6 79.8 79.1 84.0 84.8 83.2 80.7 .8 70.2 70.9 72.1 73.9 72.8 79.7 79.0 77.8 75.8 .3 64.8 63.9 66.3 65.8 67.4 74.0 72.3 73.1 68.3	TEST DATE 03-10-78 TAPE NO. N301 IALPHA SB59 TAM LOCATION C41 ANECH CH AERO. RDG. ADH168 PAMB 29.2550 RELHU	ACGUSTIC RANGE	337	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70. PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

				ORIGINAI OF POOF			Ć.				IT SPEED (0, FPS)
	ž	J		20022	162 162 161	158			178.6	TAMB 33.00 RELHUM 63.80	FREE-JET L 0, M/SEC (
DEGREES	10. 150. 160.	60 00 00 00 00 00 00 00 00 00 00 00 00 0	89.0 69.2 63.6 89.0 69.2 63.6 64.3 69.5 64.3 64.3 69.7 64.3 69.7 64.4 69.0 79.9 69.7 69.5 69.5 69.5 69.5 69.5 69.5 69.5 69.5	79.4 70 77.0 67 75.5 65	69.0 56 62.6 48 53.7 38	21.9			.0 95.2 53.6 .9 101.6 94.5 .9 101,6 95.7 SHIFT -9	SB59 29.2550	00 SQ IN) - FULL
FROM INLET, DEG	120. 130. 140	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	i i	3 86.3 84.7	7 75.2	6 29 4 4 9 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			96.1 101.5 101.0 103.6 106.1 104.9 103.6 106.1 104.9 FREQUENCY SHI	N301 IALPHA ADH168 PAMB	S12E 2 SQ CM (1460,00
ANGLES MEASURED F	100.	76.4 77.6 76.3	82.0 84.0 83.0 83.0 84.0 84.0 84.0 84.0 84.0 84.0 84.0 84	- 6. 1. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6. 6.	74.8 7	38.4 14.4			93.3 95.6 100.7 102.4 101.2 102.4 ATIO 7.129	TAPE NG. N AERG. RDG. A	.) SL 9032.2
ANG	70. 80. 90.	2 72.7 76. 2 73.2 76. 6 76.3 77. 0 76.0 78.	76.8 79. 7 76.3 80. 5 78.0 80. 1 77.6 80. 7 78.0 80.	7 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6 76 9 78. 7 75.5 76. 9 71.5 72.	.1 55.7 57. .9 37.7 40. .1 11.4 13.			.3 89.9 92.1 .0 96.8 100.6 .0 100.0 101.7 DIAMETER	3-10-78 11 ANECH CH	ACGUSTIC RANGE
	50. 60. 7	2 72.5 74.0 74.0	73.1 76.3 76 73.1 76.5 76 72.3 75.2 76 75.1 78.0 77 73.4 76.1 77	2	6 67.0	2 25.7			94.4 97.6 68 90.2 94.3 96 90.2 94.3 96	TEST DATE 03 LGCATION C4	POINT 731.5
	FREG	6.66.0 6.00 6.00 6.00	125 72.0 160 69.4 200 71.5 256 72.3 315 71.3	68.9 67.6 64.5	0.00 4 6 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	7	12500 16000 20000 25000	31500 40000 50000 63000	91.7 96.4 86.4		MODEL TEST P 0400 046

												90	OF		SHI PC	AP OC	L R	PQ	A G	YL.	15									•).	SPEED		· ·	
SOUND PRESSURE LEVELS CORRECTED F	EG. F., 70, PERCENT R.H. STD. DAY, SB 40	IDENTIFICATION - MODEL FJ-400-FMODL X04060 BACKGROUND FJB400-FMODL X01400	ANGLES MEASURED FROM INLET, DEGREES	40. 50, 60, 70, 50, 90, 100, 110, 120, 130, 140, 150, 160,					1 82.4 63,2 84.9 65.2 86.6 88.5 90.0 93.2 100.5 105.0 108.2 107.4 141.	7 62.9 64.2 64.6 65.9 86.0 66.9 90.6 94.8 102.6 106.1 109.1 106.5 14	.O 83.8 84.8 84.5 85.4 88.3 69 6 83.0 85.7 86.0 87.6 88.0 90	0 AR R A7 3 A7 1 93 7 90 6 92 B 95 1 100 1 108 7 109 3 106 0 96 7 143	5 85,6 87,8 89,1 89,5 92,1 93,7 96,9 101,6 109,2 109,1 103,3 94,2 143	6 86.2 89.5 89.2 90.1 93.2 94.6 97.8 103.5 110.1 108.2 100.6 92.8 144	0 86.8 90.8 90.6 91.7 94.3 95.7 99.4 104.1 109.4 109.3 99.7 92.1 144	.1 87.9 90.2 91.0 92.3 95.2 96.8 100.2 104.2 109.8 108.3 99.0 92.0 144	0 00.5 20.0 30.0 0 1.8 30.0 0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.	. 8 89.7 91.2 92.0 93.3 96.2 98.3 102.5 106.0 109.1 106.5 100.0 92.5 1	.8 90.4 91.9 92.1 93.2 36.1 98.5 102.4 105.4 108.8 106.9 98.9 93.1 144	.0 93.9 94.9 93.1 93.9 96.8 59.2 102.9 105.1 109.1 107.2 100.3 93.8 144	2 96.3 97.1 93.1 93.6 97.7 98.1 102.6 103.2 108.0 106.5 100.3 94.0 143.1 07.5 98.1 93.3 145.	2 94.8 98.4 98.4 99.0 99.9 99.0 102.4 104.2 107.4 104.2 98.9 92.5 145	6 92.4 94.8 96.3 97.8 99.2 98.9 100.6 102.6 105.2 101.7 96.9 91.3 144	.6 91.9 94.2 94.9 96.3 99.3 97.7 99.7 100.8 103.9 100.0 95.6 91.8 1	0 68.7 81.0 82.7 80.E 87.8 80.4 87.0 80.7 100.1 80.8 80.8 140.	5 82,2 85,9 87,9 88,3 89,3 89,3 90,6 93,5 94,5 91,0 86,0 83.5 142	.3 76.8 81.2 82.8 86.7 88.1 84.2 86.1 88.7 88.4 85.5 81.1 79.3 142	7 71 8 73 2 76 4 79 0 60 5 78 0 63 7 61 2 78 4 70 7 70 139 66 9 139	8 56.7 61.2 64.5 63.8 65.2 65.5 66.1 70.9 68.0 66.0 60.5 58.8 1	.5 104.4 106.1 106.1 107.4 109.2 109.9 113.1 116.2 121.0 120.0 116.7 112.2 157.7	1EST DATE 03-10-78 TAPE NG. N301 IALPHA SB59 TAMB 33.00 LGCATION C41 ANECH CH AERG, RDG. ADH167 PAMB 29.2650 RELHUM 62.70	POINT ACGUSTIC RANGE	40.0 FT) ARC 177.7 SG CR (Z7.05 SG IN) - MOJEL 117.90 M/SEC (
10			•		0 0	200	100	125				1							1			1		88		000	00	000	80000 67	GASPL 103		1	0400		

FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS	.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB IDENTIFICATION - FJ-400-FMODL X04	ANOLES MEASURED FROM INLET, DEGRÉES	. 80. 80. 10¢. 110. 120. 130. 140. 160. PUL		96.7 96.6 98.7 96.5 91.5 99.2 1	0 87.6 88.2 87.6 87.9 94.3 103.7 105.6 107.6 104.7 1 88.2 86.6 89.0 89.7 95.0 105 3 106.9 106.9 102.7 1 89.4 89.2 89.8 91.1 97.6 105.9 106.7 105.4 100.9 1 8 89.4 89.2 89.8 91.1 97.6 105.9 106.7 105.4 100.9 1 8 89.4 89.5 8 106.7 105.4 100.9 108.7 105.4 100.8	6 91.4 92.6 92.9 94.6 101.0 103.5 101.9 100.0 142.6 92.1 93.0 93.7 95.5 102.6 107.5 107.7 101.1 100.3 142.9 95.1 95.0 97.3 103.0 108.1 107.0 100.7 100.4 143.1 96.3 98.4 104.4 108.3 105.9 100.1 100.8 143.4	5 96.7 98.5 99.5 104.4 108.8 106.4 101.1 101.7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 97.8 99.6 100.7 103.0 106.2 109.6 107.6 104.5 105.3 146.0 6 99.2 100.7 100.6 103.0 106.2 109.0 106.8 103.3 104.7 146.2 0 100.8 \01.2 100.7 102.5 105.6 108.5 105.7 103.6 104.4 146.5 5 103.0 142.9 100.8 102.7 104.2 107.1 104.2 102.7 104.5 147.0	102.3 102.2 101.0 101.3 104.3 107.2 103.9 102.6 106.1 147.7 101.1 102.3 100.1 101.0 103.3 104.4 101.8 101.8 104.5 147.6 100.7 100.2 97.9 99.1 99.4 98.9 96.2 96.6 101.3 146.8 98.5 98.6 24.1 93.6 98.9 98.8 96.9 95.2 99.7 147.2	92.3 92.3 91.6 92.1 95.8 95.2 92.6 90.9 95.6 146 91.2 91.1 86.7 88.0 91.1 88.4 86.9 85.9 89.9 145 83.6 83.5 82.0 81.0 86.4 82.1 80.4 79.9 84.5 144 75.4 74.8 76.0 74.2 80.4 77.4 76.1 73.7 79.1 143	68.4 68.2 67.9 67.8 70.6 67.6 68.3	FREE JET VELGCITY (FT/SEC) 387.00 FREE JET DIAMETER (IN) 48.00	
THO!	. F .,	ANGLES MEA			7 86.6 86.	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	4 92.6 92. 1 93.6 92. 7 95.1 95.	4 95.7 97. 4 98.1 96.7 96.7 96.7 98.1 98.1 98.	8 99.6 100.2 100.7 100.0 11.2 100.	3 102.2 101. 7 100.2 97. 5 98.6 94.	3 92.3 91. 2 91.1 86. 6 83.5 82. 4 74.6 78.	.4 68.2 67.9	FREE JET FREE	1-7e TABE
	0.00 0.00		50. 60. 70.		99.0	.6 89.0 87.	93.9 93.6 91.6 91.5 91.6 91.6 91.6 91.6 91.6 91.6 91.6 91.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.8 100.2 97.4 96. .8 100.2 97. .3 101.6 99.	7 103.5 102. 0 101.0 101. 0 106.0 99.	0 93.2 92. 0 \$7.8 88. 4 84.4 84.	67.4 68.	SIZE SCALIOO CALI	TEST DATE 03-10-78
			40.	0 6 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	87.7	87.7 89.9	9 9 9 9 9 4 5 5 2 9 - 0 0 4	8 8 8 8 8 8 8 6 8 8	100.3	0 0 0 0 0 0 0 0 0 0 0 0	1 1	80000 67.0 67.0 67.0 67.0	MODEL/FULL INPUT 1.0	

9
F
7
•
2
9
5
0

												OR! OF	1G P	NA 00		P# Ql	IGE JALI	i s TY							SPEED 367.0 FPS)	्राण्यस्य
		PVL	156.7	159.2	159.7	9.00	160.4	160.9	162.1	162.6 163.1	163.3	164.0	164.7	163.9	163.2 163.2	163.0	160.3 156.7				176.0			TAMB 33.00 RELHUM 62.70	FREE-JET 117.96 M/SEC (
X04068	8	ċ	82.3 74.6	7 0 0 0	77.1	76. 26. 26.	7.4.0	75.2	78.0	76.4	74.1	72.1 67.0	68.2	60.1 53.	6.04 0.05 0.05	İ					89.1 83.6 92.6 87.3	92.6 67	ļ	5859 29. 2650	Sa IN) - FULL	
_	INLET, DEGREES	130. 140.		95.0	67.0 83	86.4 85	95	. 1 83	. 6 6 6 6	6 83	4 81	62.9 77.5	2/0	99	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	0. 37	o.				8 5	103.7 99		I ALPHA 7 PAMB	\$12E CM (1400.00	ere s
	SURED FROM	110. 120.	70.6	73.7 79	75.4	76.3 62	78.9 84.	79.2	61.3 64.	81.5	81.6 84.	. 1	78.9	76.3 75.	64.2 54.2	55.0	11.1 10.0			[100.3 102.5		7.169	E NG. N301 RDG. ADH167	9032.2 SQ	
IDENTIFICATION	ANOLES MEA	ċ	70.0 70.	72.4 72.	74.0 74.	75.1 74.	77.2 77.	76.5 77.	78.4 78.	76.5 79.	80.2 80.	82.1 79.8 02.1 79.8	91.2	78.6 75.	75.6 70. 66.4 65.	60.4 55.	4 - 7 0				101.2	102	DIAMETER RATIO	TAPE CH AERO. I	FIC RANGE 2400.0 FT) SL	
		70. 80.	68.8 69.	70.2 77.	72.4 72.	73.3 73.	74.7 75.	74.9 75.	75.1 76.	75.6 76.	76.4 78.	79.9 82.0	78 9 79	76.4 78.	72.1 75. 64.8 66.	55.8 59.	14.1 15.			1	98.8 100.5	99.4 10		03-10-78 C41 ANECH	ACGUSTIC 731.5 M (240	
		6	3 69	69.1 70.	72.9 73.	70.7 72.	73.6 75.	72.5 74.	73.6 75.	73.6 75.	76.1 78.	76.5 60.2	74 6 77	72.4 75.	56.9 70.	43.6 51.	20.8				95.3 98.5	•		TEST DATE	ST POINT 7.	
			1	. 69	2	<u>_</u> 5	, Z	23.	::	72.	4	1250 74.6	N/S	67.	0 0 0	33.	4	12500 16000 20000 25000	31500 40000 50000 63000	0000	OASPL 84.5 PNL 92.1				MODEL TES 0400	

()

						OR OF	GINAI POOF	PAGE QUAL	1 5						ED . FPS)	
	•		PWL		6	50.6 61.5 52.0		52.2 51.8 51.7	0.04 0.05 0.08 0.08 0.08	46.7 46.3 45.1	43,5 42,9 41.3 40.8		88	38.30 32. 8 0	FREE-JET SPEED 0. M/SEC (0.	
URE LEVELS	X04070	DEGREES	140. 150. 160.		1.0 114.0 113.4 147	2.9 116.6 113.5 148 6.4 116.8 114.0 150 6.7 117.4 114.6 151 6.6 118.3 116.9 152	. 9 116.8 116.7 1 7 119.4 117.3 1	. 6 116.9 113.9 113.0 114.0 115.9 115.0 115.9 109.9 115.0 109.9 115.0 109.9 115.0 11	2 109.9 106.4 1 2 108.6 105.1 1 2 107.0 104.1 1	6.6 104.8 101.7 1 4.6 102.5 98.9 1 1.3 99.4 97.4 1 7.5 95.6 94.7 1	3 91.0 86.5 1 7 86.7 83.7 1 6 80.5 78.1 1 3 76.0 72.3 1	73.1 67.9 66.4 141. 127.8 128.9 126.0 163.	REFRACT 00 TURBULA	A 3859 3 29.4900 RE	SI ZE 27.55 SQ IN) - MODEL	
MODEL SGUND PRESSURE LEVELS		SURED FROM INLET, DE	110. 120. 130. 1		97.4 99.6 106.9 11	60.001 60	108.5	6 4 6	7 108.9 113.6 7 108.9 113.2 3 107.9 111.3	.4 104.0 107.7 1 .0 101.8 105.8 1 .0 99.8 102.0 1 .7 96.5 97:3	.0 93.0 95.6 .8 87.6 90.4 .0 82.8 84.9 .9 78.4 78.5		CITY (FT/SEC) Diameter (IN)	RDG. ADH161 F	177.7 SQ CM (27.	98.
FLIGHT TRANSFORMED MODEL	IDENTIFICATIO	ANGLES MEAS	80. 90. 100.		0 92.6 95.6	6 94.7 96.1 1 94.7 96.6 7 96.3 97.7 8 07.4 98.8	6 99 6 101.1 1 6 101.2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	7 101.6 102.6 7 101.6 103.4 7 100.6 103.8	9 101.2 103.4 0 101.8 103.3 1 0 101.4 102.5 1	2 100 3 100	89.2 83.3 79.0 73.3	3 65.4 65.2 0 113.1 114.3	R FREE JET FREE	TAPE H CH AERG.	STIC RANGE (40.0 FT) ARC	
G			50. 60. 70.		60	2 90.7 91. 3 93.3 93.		2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 98 4 98 9 97 9 98	7 94 9 96 2 93 7 95 5 91 1 92 6 87 7 88	80.0 85.2 87.2 74.5 79.9 82.3 69.1 72.8 75.9 64.4 66.5 69.3	.4 60.2 64.4 .4 110.1 110.1	SIZE SCALE 000 CALC.	DATE 03-1	TEST POINT ACCUSTIC	
			FREG 40.	5 6 8 0 0 0 0 0		i	4 8 8 8	•i • • •	8 2 9 8	95.	31500 77.2 40000 72.0 50000 65.6 63000 59.5	54.0	MODEL/FULL INPUT 1.		MGDEL TEST 0400 0	3

									•	,	OF	RIGI P	O	AL	P/ Ql	Gi	E											ET SPEED : (0, FPS)	
				-																							36.30 32.60	FREE-JET O. M/SEC (
E LEVELS			160. PWL		66. 1 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7		-1			Ι-,		٠.			Γ,	1.00. 4.00.	158.8						96.6 180.7 96.9	9. N		TAMB	FULL	
SGUND PRESSURE SB 2400.0 FT.	X04075	E S	150.	92.3	93.0	2.5	2 2 6 0	92.0	87.00 87.00	8 83.0	80.8	76.3	72.8	90.00	54.2 6.2	21.7	_							103.1	<u>0</u>	SHIFT -9	. 29.4900	- (NI OS	
ATED SOUN		ET, DEGREES		6 2	92.5	S	28	6	2 00	6 8	98		2	25	63 4	9	_							102.9 104.2 107.5 107.5	D.	FREQUENCY SH	IALPHA	\$1 ZE (1400.00	
AND EXTRAPOLATED R.H. STD. DAY,	FJ-ZER-FMODL	URED FROM INLET,	120. 1	83.2 0.2		88.5	88.3 80.3	4.69	9 0	87.6 87.0	86.7	85.5 84.1	91.0	7 20	70.3	51.4	9 6	5						2.20	104.7	129 FR	N301 ADH161	2.2 SQ CM	
· 🗠	ICATION -	ANGLES MEASURE	100. 110	9 78	60.1	3 84.		.2 86.	96.	986	. 6 84.	7 84.	9	9 6	68.	0 51	•			-				94.4 96.5 00.6 102.6	.3 102	RATIO 7.13	TAPE NG. Aerg. RDG.	SL 9032	
TRANSFORMED, SCALED, O DEG. F., 70 PERCEN	IDENTIFICATIO	ANGLE		76.2	9.00	9.10	83.1 82.3	81.5	9	55 80.6 81.0	81.3	2 80.6 1 81.8	79.3	76.0	72.1	56.2	20.00	5		-				9 93.2 7 100.0 1	6.101	AMETER	.) RANGE 100.0 FT)	
FLIGHT TRANS 59.0 DEG	•		70. 80	a c	75.1 76.	9	<u>က</u> က	0	- 9	<i>a</i> 4	0	- « <u>·</u>	6	4 0	ص «	0	_							89.6 90. 96.4 98.	4	10	03-10-78 C41 ANECH	ACGUSTIC RANC 1.5 M (2400.0	
3			. 60			2		2	7.9	77.	76.		71.	6 . 66 .	. F.	43	24.							0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 94.		TEST DATE LOCATION	73	
			40. 60	10 e	68.4 72.	20	n c	4 77.	40	9 74.	5 73	6 69.	1 66.	9 6	7 55.	2 33								83.7 86 . 87.4 91.	0		<u>1</u>	TEST POINT 0407	
			FRED	í .		i i		- 1					- 1			1	6300	0000	12500	20000	31500	00000	0000	GASPL PNL				MODEL 0400	345

_
9
7
<u>_</u>
_
_
0
70
•
•
_
•
7

								•)R)F	G P	IN/OC	AL	FQ	PA	GE AL	1	S													FREE-JET SPEED 3 M/SEC (387.0 FPS)	•	(40) ₃
							٠						•															*		34.00	52.50	ă		
KOIS				PWL					43.6	7 - K	46.9	٠.	2 K	a	46.2	45.1	45.6		•	46.0 75.0			44.6		42.9	4 7 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	38.9	B - 02		TAMB	RELHUM	117		
GROUND			160.	,					09.9		02.8	99.4	2	93.00	93.6	93.6	20.00	95.9	4.20	95.00 0.00 0.00	93.0	91.5	- 1.08 - 1.08 - 1.08		•	72.6	66.6					MODEL		
FOR BACKGROUND NOISE	X04080 X01400	i	150.						10.71	0 00	1.7.1	10.5	0.7.0	02.7		9.0	20.0	02.7	02.1	- 6	99.1	97.3	96.2	90.8	96.1	80.7 75.7	68.7	i a	2	SB59	29.2550	- (N)		
TED FC		DEGREES	140.						07.5	9.7	13.2		2.0	• _•	10.0	69.60	09.3	09.5	0.00	07.6	04.7	02.1	97.1	97.5	90.6	85.1 78.9	71.9		1		PAMB	SIZE 27.55 SQ		
CORRECTED	FJ-400-FMGDL	INLET, C	130.						02.9	0 6	10.0	10.4	7.01		09.8	20.0	10.6		•	9.00	07.6		03.09 0 10	• • •	•	87.9	73.6		1	2		J	Admand	_ - -
VEL S			120.						95.2	200	99.8	01.9	03.1	94.6	05.5	06.1	06.2	06.5		06.55	04.4	02.4	8.00			88.2	77.8		اب	1301	ADH164	SQ CM		
SURE L	MODEL BACKGROUND	ASURED F	110.						93.0	9 2.0	95.3	4	200	9	_	-		-	-		-	0.10	99.00 8.00	93.1	90.6	85.8 79.3	72.3				RDG.	177.7		
OUND PRESSURE LE	ION - M	MEA	100.						90.9		93.4	94.2	955. 8. 6.	97.2	-	a (<u>ب</u>	9	<u> </u>	a c	0	60	- 0	0	98.6	79.8	73.3		2	m	ERG.	ARC		
2	: FIC	ANGLES	.06							•			•				96.4		•						•		71.6	9 9	2		4	RANGE 40.0 FT)		
RMED MODEL	DENTI		.00													*			•	•							6.02	3 8	2	78	ANECH CF	9		
UNTRANSFORMED	•		70.		•				١.	•					١.			-1 -			.l .			·i •			69.6	2			C41 AN	ACGUSTI		
UNTRAN			.09										_			-		-1 -	-		-! -			- 1 -	_		6.99	. 6		DATE	LGCATION	12		
			.09																•	•	.l .						65.5		9	TEST	LOCA	TEST POINT 0408		
			40.						1.									.I .			ai a			.i .			63.8	,	2			TEST 04		
				FREG	8 8 8	80	125	1 60 200	250	2 6	200	630		1250	1600	2000	2500	4000	2000	6300	0000	2500	0000	5000	11500	0000	3000		.1			MODEL 0400		
				_		L						_				_						-	- "		(3)	4 6		_		NIII	NIN	2 38V2	HE WATE	OH-

(1

											OR OF		N AI	F	PAG	iE Li	IS TY						- YES - YES		ET SPEED (367,0 FPS)	
						1	e c	o d d) (0	40	9	o 4.	- 0	0	30.	1 0		a . r.	a •	· w -	2	-	CORRECTION CORRECTION	18 34 00 M 62.50	FREE-JE 117.96 M/SEC	
ARC			60.			6.7 141.	771 7.		144	. 0 . 44 . 0 . 44 . 44	144	145 146	107.6 147.	147		147	14	.0 347	145	9		116.3 160.1	REFRACTION TURBULANCE	TAMB	MODEL	
40.0 FT.	0		150. 1			07.5 106	11.0 107	10.2	4	04.5 102 02.8 102	_	9		Τ,	04.0	-		- • •	90.3 95 85.8 89	•	9	119.5 11		3859 29.2550	CN .	
}	X04080	DEGREES	140.			104.8 1	106.9 1	22.5	110.01	109.6	Ť	108.8 1		Γ.	90	9 7		102.3 96.6	86.19	80.5	66.1	121.7 1	367.00 46.00	TALPHA PAMB	812E 27.55 SQ	
	FJ-400-FMGDL	INLET,	. 130.			5 101.0	3 105.9		108	2 108.4	_		3 110.4	. سا			2	6 100.6 8 99.9	2 94 6	1 0 1 0		8 121.5	(FT/SEC) ETER (IN)	49	5	
	- FJ-40	URED FROM INLET,	10. 120			Ď	<u>ه</u> د	200.7		6 103.				Ţ-,				n	İ	Q C	i e	13.5 117.6	/ELOCITY (FT Jet diameter	. ADH164	177.7 80	
	CATION	MEASUR	. 00			0		92.4 93.1	10	10 E	8	7 4		60	1.6 102.8	n a	0	0 0 0 0	0.92	9	0	11.7 113	JET REE	TAPE NO AERO. RDG	ARC 1	
	DENTIFICATION	ANGLES MEAS	. 06			•	ن دن ه	900	9	v) (7	a	0 0	0.0	4	102.0 10	6		ю .	4 4	•	0	112.4 11	FREE		RANGE 40.0 FT) A	
	_		90.					28.7	.l .					عاء		.1					-1 -	112.1	FACTOR . 000	0-78 ANECH CH	ACCUSTIC RA	
			. 20			69.	60 4	4 80.0	93	9 9	96		96.	97.	•	103	5	g 9		2.	. 49	2 111.2	SCALE FI	03-1 C41	ACG 12.2 M	
						.0	.8 99.	. . .	2 95	4 7 9 8 5 8	.6 97.	.0 97. .1 96.	.8 97.	7 98.	.3 100.	7 104	2 101.	.6 100. .4 97.	4 93.	4.	5 66.	.5 112.	L 31 ZE . 000	TEST DATE LOCATION	N.	
			40. 50			က	ი ი	9.00	4	6 93	2 96	7 . 9.	0.0	98	2 100 102	0 0	20	6 6 6 6 6	01 E	9	54	11.2 111	MODEL/FULI INPUT 1		TEST POINT	
			FREG	5 & e	100	125 160 200 250			ı					1 '		-	-		31500 8		1	GASPL :1	₹		MODEL 0400	

										(OR	IG F	O.	A) PO	. 1	Ĵί	iGl JA		IS IY	•														ET SPEED) (367.0 FPS)	
					•																												34.00 52.50	FREE-JET 7.96 M/SEC (e man i va - ;
		¥	162.0	162.3	161.9	161.4	161.6	162.4	163.5	164.2	164.1	164.0	164.7	164.9	165.0	200	163.0	162.9	161.6	160.2	200								177.0				TAMB	11	-
		160.	77.5						75.1																				86.2	89.8	_		õ	- FULL	-
10	တ	150.	86.0 85.0		- 1			-1			• • •	•					6 4 6 6	٠.									-		9 20 20 20 20 20 20 20 20 20 20 20 20 20	96.3	FT -8		SB59 29.25	S (N)	
. X04085	DEGREES	140.	99.2	99.5	87.5	60 C	84.8	95.4	86.3	93.1	83.3		7 0	76.5	73.5	. C	0 0 0 0 0 0 0 0	36.5	12.7										97.8	2	ICY SHI		I ALPHA PAMB	SIZE (1400.00 S	
-FMODL	INLET,	130.	86.6	87.6	97.6	87.3	87.4	88.0	88.1	88.55	87.2	96.1	9 6	82.0	79.4	4.5	60.0	47.1	26.2										28.1	104.5	FREQUENCY			CM C146	
FJ-400-FMGDL	FROM	120.	77.7	81.5	85.9	83.2	84.9	85.2	86.0	85.6	85.7	83.	200	91.0	80.0	20.00	/ K. 7	54.1	37.8	9.0									103 -		-		N301 ADH16	.2 80 (
NO NO	ASURED	110.	72.9		-1	•		-1	81.5		٠.	9 5					64.0 64.0		37.4										100.6	101.1	7.129		E NG.	9032	
CAT	분	100.	72.3		-1			٠.,					•			•													91.3	8	RATIO		TAPI AERO.) SL	
IDENTIFI	ANGLES	8	72.1	74.6	1	_		1	_		1	_	_		1 -	_			_	-									9.50	2	AMETER !		₽	RANGE 0.0 FT)	
		90.	71.5	81.7				-1			1																	٠	20.00	02	DIA		0-78 ANECH	26	
		70.	70.8	73.0		•						•	•		٠.	•			•										80	ilo			24- 1- 1- 1-	ACGUSTI	
		60	71.5		-1	4		- 4	-			-	-					.l .											90.0				TEST DATE	73	
		200	9,5		2	6 6 6	100	77	7.7	4	192	77.	9 9	76	74.	120	, eg	43.	29 131										87.8	9			TES	T POINT 0408	
		9	80 8		73.	73	2 6	74.	2, 52 5, 50	2	74:	ŔI	2 1	<u> </u>	7.	99		35	5										95.7	8				TEST	, , ,
		FRED	90 8	8	100	123	2002	250	313	200	630	000	000 L	009	2000	2500	4000	2000	6300	0000	0000	18000	20000	25000	31500	20000	63000	80000	OASPL	PNLT				MODEL 0400	
	-		٠.		_			1				· • • • • • • • • • • • • • • • • • • •			<u></u>	-	-:		_					-	6 -	481	14	-70	ITEX	. d . d .	HIIN	14	1 3045	HEAMETT	OH-

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70. PERCENT R.H. STD. DAY, SB 2400.0 FT. SL ()

									OF	IGI P	0	AL DR	P# QI	JAI	E II	Y	5.								1 _	1. rrs)	
-				•	-						-						-							38.00 37.00	FREE-JET SP	0. 1/3kc (0	-
X04090		160.	Z.				D 10	3 152.	7 153.	 რო	7 154.	3 153.	110.1 152.3	0 150.	.2 150.	148	148.	99.0 146.4	143	63.7 142.7	143	72.3 140.4 65.4 141.3	126.1 164.5	59 TAMB		- HOURE	
J-ZER-FMODL X04090	, DEGREES	. 140, 150.				6 111.6 114.7	113.1	9 117.7 118.4	118.6 119.	116.7 119.	119.3 120.	119.6 118.	4 116.4 116.1	115.6 111.	114.9 110.	111.7 107.			98.3 94.	8 c	£4.6 79.	73.6 67.	.9 129.4 129.0	IALPHA SB59		(NI DS 90 ./Z	
OND F	ED FROM INLET	0, 120, 130				100.1 107.	101.9 109.	104.6 114.	106.4 114.	108.6 114.	108.9 114.	110.0 113.	6 109.3 114.	8 109.3 114.	.6 106.6 114.	6 108.1 111.	7 106.5 110.	8 101.8 105.	0 96 3 96.	. 55 . 55 . 55 . 55 . 55 . 55 . 55 . 5	5 81.8 84.	.6 77.1 78. .7 71.0 72.	.3 120.5 125.	N301		2 ES OS / 1/2	
ַ וְ	ANGLES MEASURED	90. 100. 110				.6 9E.2 97		8 98.4 99	1 99.6 101	5 101.6 104	1 103.7 105	0 103.6 105	8 103.9 106	5 102.9 106	7 103.9 106	7 103.0 105	2 102.1 104 3 100 8 102	7 98.9 100	9 92 0 93	.0 89.0 89 .0 83.6 84	8 78.8 78	7 65.5 65	.6 114.8 117	TAPE NG		ARC	
DENTIFI	4	70, 80. 9		-		4 91.0	- 6 6 6 6 7 7	94.2	2 96.0	5 98.4	7 102.2 1	1 100.1	8 100.4	6 99.4 1	8 99.9	7 99.5	0 100.1 1	27. 02. 09. 09. 09. 09. 09. 09. 09. 09. 09. 09	2 93.5	. 0 86.0 86.0	. 7 78.3	1 63.5	.9 111.7 113	1-10-78	COUSTIC	- 1	
		. 60				3 91.1	6 6 7 6 7	94.3	4 94.6	7 102.0	9 101 6 1	80 C	8.00	3 99.1	8.88	0 97.4	96.9	1.7 94.0 95 0.6 93	7 87.7	.5 85.4 .8 79.9	.9 72.3	.2 66.7 .7 60.5	.4 111.0 110	TEST DATE 03		2	
		40. 50		1		20	0 4	r 0	0	- ^ *	9	- °		5 20	2 97	-	ω c	85.3	0	10 P	9		08.4 109	F.	2	0409	

•			•						OF!	igi P	N 0	AL)R	P	AQ IUI	E	1 9	1											SPEED 0. FPS)
																	2								•	CORRECTION - YES CORRECTION - YES	36.00 1 37.00	FREE-JET SI O. M/SEC (
			E	·	6	10.	52.0	153.2	53.6	34.0	53.6	52.6	2 C C C C C C C C C C C C C C C C C C C	50.7	50.0	2 4 4 4 4 4	48.	147.0	4 0 4 0 4 7	143.7	6.0 6.0 6.0	14	6	<u> </u>	164.5	TION	TAMB	١.
) . JAC			160.		1.4.4	114.5	14.0	116.7	ci c	116.7	6		- 4	0	2.0	100	8	101.0	0 0 0 0 0	93.5	87.8	77.4	72.3	65.4	126.1	REFRACTION Turbulance		- MODEL
	<u>.</u>		160.		14.7	16.6	10.4	•			1								98.7	•	0.0		- 1	•	129.0		\$859 29.4900	2
	X04090	DEGREES	140.		11.6	113.1	117.71	118.6 1	118.9 1	.00	119.6 1	118.7	1.0.4	115.6	114.9	113.2	110.7	108.1	105.6	98.3	9 9 6 6 6	84.6	78.3	73.6	129.4	0. 48 .00	ALPHA PAMB	312E 27.55 30
	MØDL	LET,	130.		07.6	09.7	5 4 0 0	14.7	15.2	- 0	13.6	13.5	4.4		14.3	5 - 4 -	10.7	07.7	02.0	• • •	80 d 60 d	. 4	6	72.8	125.9	(IN)		-
	FJ-ZER-FMØDL	ED FROM INLET,	120.		80.1	01.9	04.0	16.4 1	1 8 70	9.90	0.0	10.1	. D. G.	9.3 1	38.6 1	36.60	5	3 1		6		9.5	77.1	0.	120.5 1	CCITY (FT/SEC) DIAMETER (IN)	N301 ADH162	SOCA
	- FJ.	ED F	ö		9	0.1		0	8	9	9	.7.	9 1	. 0	æ r	· "	į.	G,		0	io o	9 10	101	۲.	.	CCITY	1	77.77
	I GN	ANGLES MEASUR	=		ł	ł	5 4 9 9 9 9					-		-			-	•		ł			- 1		9 11 <i>7</i>	r VEL	PE NG RDG	-
i	FICA	ES M	100				88				1	-				-				i					114.8	E JET FREE	TAPE AERG. F	ARC
:	DENTIFICATION	ANGL	8		1.		8 . 9 8 . 9 8 . 9	•															- 1	'n	13.6	FREE		ACCUSTIC RANGE 2 M (40.0 FT)
	=		.0		0	- 0		0	0,	1 (4	-	2 .	4 6	4	6	- K		7		ю	ი ი	, n	4	IO.	.7 1	<u>~</u>	- 1	C RA
)			•) 6 9 9			-		•	_				-			- 1			- 1	ဖို -	9 111	FACTOR	10-78 ANECH	OUST!
)			20				9 6 9 8				• • •			• •		•					•		1	64	110.	SCALE SALC. 1	62	તાં
			6 0.	• 1			9 9 7 4 8 6	-															1		111.0	M C	TEST DATE LOCATION	
			90		ه ا	6	9.5 7.0 8.0	6	0		6	0.0	o o	7	2	0	4	0		4	٠ و ح	iai	4	œ.	109.4	ULL S17	TES	T POINT
			40.			١.	9 0 9 0 4 0				-1									• • •			1		108.4 1	MODEL/FULL INPUT 1.		TEST 04
			FREG	0 0 0 0 0 0 0 0	200 200 200 200 200 200 200 200 200 200	315	5 0 0 0 0 0	630	800	1250	1600	2000	2500	4000	5000	6300	0000	2500	0000	5000	1500	0000	53000	0000	DASPL 1			MODEL 0400

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SGUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

()

											OR OF	rig P	iN 'O'	AI	L	P#QU	IG JA	E	is ry											SPEED 0. FP3)	
																													36.00 37.00	FREE-JET O. M/SEC (
	F	69.4 69.6	70.3	70.9	70.6	7 6	89.8	69.3	68.8	67.7	68.9	65.9	65.6	64.0	200	60.8	60.4	59.7	57.5	56.4						7.101			TAMB		
	o.	8	9	0	0		۰ ر د	10	0	0 1		. 0	65.3	_	- ·	_	-	•		-						96.7 26.3	96.3			FULL	
		0.50		- 1				1			1			- 1				5.2								103.4	1	9	3859 29.4900	- (X	
IEES				- !				l						- 1				.5 20	-									SHIFT	l	8 8	
DEGREE		60 g	96	- 1				1		8	1	9	9		10	. 3	5	40	-							105.9	109.7		I ALPHA PAMB	\$12E (1400.00	
NLET,	130.	92.7	93.6	94.3	0.00	, c	2 6	92.4	91.6	Q	80.0	87.3	86.4	82.5	0 0	67.5	61.3	48.1	. O.							103.9	107.8	FREQUENCY		8	
RED FROM INLET,	120.	83.7	96.6	88.0	88.8	1 0	900	88.5	89.2	87.6	86.5	85.7	83.8	81.2	0 K	70.1	62.5	50.7		.						105.0		-	N301 ADH162	SG	
		79.4						1			1			- 1			- 1	51.8	4.4							9 0	3.4	7. 129		032.2	
MEASU	ö	œ r	-	0	6 0 6	•	e a	6	4	۲.	# C) N	a	0	د د	. 0	.7	e .	. G							9 2	-	D	TAPE NG.		
ANGLES	-	77 7		ŀ							0	٠.	Ю	- 1			į	2 52								2 101	101	RATI	TAI	T) &F	
AN	8	76. 7A	6	80.	91.	4	9 6	82.	85.	<u>e</u> :	- 68	9 6	9	70	9 6	2	63.	56.	2 0							8 5	102	IAMETER	픙	RANGE 30.0 FT)	
	0	74.7		- 1				.I .			٠î ٠			• 1			• •			. 1						99.3	100.5	PIQ	-78 NECH		
	92	72.9				-					-1			- 1			1									90.5	١.		03-10 C41 AI	ACGUSTIC 5 M (24	
	ċ	4 K	ο .	0	01	0 1	٠ م		10	<u>ه</u> د	5 0	9 0	<u>ر</u>	ام	D (1	10	10	7.								00	0		ļ	731.	
	•	3 72		ļ						77				١	N C		7	4 (9 9	100		TEST DATE	F	
	200	69.		- 1							1				6 6	90	46		Ė							26	92		=-	TEST POINT 0409	
	49.	67.0 67.6	69.4	73.3	78.0	2	6 K	73.7	73.7	72.7	2 6	66.8	63.8	60.3) (C	45.	37.5	23.0								84.7 88.0	100			,	
	REG	6	8	90	125			315	400	200	200	000	1250	1600	2000	3150	1000	2000	0000	0000	2500	2000	40000 40000 0000	3000	00009	OASPL PNL	NL :			MODEL 0400	35 I

0
·
Ë
~
٠.
~
=
_
_
•
179
119/7

												!	O I	RIG	Gi P(N.	AL OR	_	PA	GA	E Li	is T	5										34.00		FREE-JET SPEED 96 M/SEC (367.0 FPS)		
NO NOISE				Ī						144.8	145.4	147.2	147.0	147.7		•		•	146.2	140.0	. 0 . 0	146.3	145.9	145.6	. 44. 64.00	43.0		142.8	4. 6. 6. 6. 6.	138.7	138.8	159.7	TAMB 3	ſ	117.		
FOR BACKGROUND NOISE 40.0 FT. ARC	X04100 X01400		150. 160.							1.5 110.9	2.6 110.0	3.6 108.5	3 101 2	28	.6	0.95	9.	92	oi a		2.0	4 95	.1	.6 93.		9.	.2 88.	.5 83.	œ «	6 66.	.1 67.	0.8 115.9	C M	000	IN) - MODEL		
CORRECTED FOR		DEGREES	140.							108.3 11	109.4	112.7 11	14.0	. –	113.2 106	B	6	0	.	, L	110.0	4	8	- (<u>ت</u> و	97.0	9	ď	95.9	0	-	124.0 120	≨ 9	1	S1 ZE 27.55 30		
LEVELS CORREH. STD. DAY,	FJ-400-FMGDL D FJB400-FMGDL	M INLET,	130.							0	9 106	.7 .09.		=======================================	2 111.	3 110.	2 110.	3 111.	=======================================		. 5 110.7	3 110.	109.	2 108.	105.		96	4 93.	3 87.	730	7 67.	.5 122.7	_ 5	3	S CM		
PESSURE LEV	MODEL BACKGROUND	EASURED FROM	110. 120							ł		4.40	-1-		_	_	1	_		-}-	104.0 106.	_	-	٠.	- •	_	Î			1		114.3 117	Ż		.7.7		
SOUND PRE 70 PERCE	CATION -	ANGLES MEA	. 100.							2 91.	<u>.</u>	9 6	200	9	2	1 98.	.0	.98	99	000	00.00	0 100	.9 100.	.99	98.	2 6	7 92.	.3 89.	93.	73	4 64.	0 11 1.1	TAPE	.]	JE FT) ARC		
MODEL EG. F.,	IDENTIFIC	₹	90.							6	0	ن	- 0	9	9	0	-	~	96 9	20.	96.0 97	200	88 8	જ ા	86 -	8 6 9 6	10	Φ.	9	. 6	N	08.3 110	ě		2 RANG 40.0		
UNTRANSFORMED 59.0 D			. 70.							87.	87.		9	6	ā	6	93.	92.	8		0.00	9	97.	97.	96.	, e	69	88.	85	9	64.	0 107.0 1	- 50	20	ACGUSTIC	i	
LIN			60.			į				.5	.3 86.	9.68			2 92	3 93.	.9 92.	.3 92,	2.6	2	94.7 96.0	9 97	.3 98.	.5 97.	92.	2 6	2 89	.9 86.	.2 d	67	5 61.	04.9 107.0	TEST DATE	FOCALIO	ST POINT		
			40.			•				82.0	84.3	80.00	7 00 d	0 6	200	89.3	91.4	88.8	68.0	2		95.3	94.9	93.2	2.5	9 10 9 10	83.7	82.0	77.1	200	57.8	104.2 10			Ţ		
			-	FREG	9 6	8	100	125	500	250	3.5	400	2000			1250	1600	2000	5200	3130	4 K	6300	8000	10000	12500	0000				1		DASPL	SHITH		MODEL 0400		NAC.

();

								OF	RIGII F PC	NAL OOR	. PA	GE	EI ;		:				- YES		ET SPEED (367.0 FPS)	
• • •																			CORRECTION CORRECTION	34.00 50.40	FREE-JET 17.96 M/SEC (
	. ARC			160. PWL		07.4 141.6	09.0 145.2 07.8 146.0 05.7 146.2	07.2 146.5	4.4. 0.4.1	200	05.8 147.1 07.0 147.7 07.0 147.5	.2 147	04.3 147.2	6 147	3 146	6.		56.2 140.9 119.2 150.4	REFRACTION C Turbulance C	TAMB 10 RELHUM	MODEL 1	
ME LEVELS	40.0 FT	X04100	DEGREES	1∛0, 150,		.6 108.2 1	. 7 111.6 . 7 111.9 . 3 111.0	3 109.3	.4 106.1	3 105.1	. 50 . 50 . 50 . 50 . 50 . 50 . 50 . 50	3 105.4	102.9	0 101.7	2 95.9	90.0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	120.6	387.00 R 48.00 T	HA SB59 WB 25.2550	56 SQ IN) -	
UNING PRESSU	STD. DAY, SB	FJ-400-FMGDL X	{	130. 13		101.7 104	106.7 10 107.9 11 108.9 11	109.8	200	900		110.91	, ,	106.8 1	9.0	3 94.5 93 1 87.9 86	76.3	•	TY (FT/SEC) 38 Ameter (IN) 4	I ALPHA 33 PAMB	SI ZE CM (27.55	
MODE	R.H.	ON - FJ-400	SURED FROM INLET,	110. 120.		_	90.2 96.7 92.7 99.5 93.8 100.5		40.0	V (9	103.1 107.2 103.1 107.2	-	000	1 '	N 0	91.8 95.3 87.6 90.4	က ဆ	67.0 70.2 113.8 117.#	VELGGITY (F Jet Diamete	: NO. N301 RDG. ADH163	177.7 SQ	
	, 70 PERCENT	DENTIFICATION	ANGLES MEAS	90. 100.		2 69.	6. – 0.	9 6	98.8	20 CO CO CO CO CO CO CO CO CO CO CO CO CO	. 2 100. 4 20. 7	9 101.8	200	1 100.5	41	.3 91.		.4 67.3	FREE JET V	TAPE AERO. F	FT) (FC	j
FILENT	.0 DEG. F.	<u> </u>		.08		99.9	4 89.7 90 6 90.1 91 2 91.9 92	93.7	94.6	96.2	4 V C	100.0	101.6	101.7 1	101.1	92.8	74.3	111.9 1	FACTOR . 000	03-10-78 C41 ANECH CH	ACCUSTIC RANGE 2 H (40.0 FT)	
	29			60. 70		0.4 90.	2.2 2.3 90.	92.	න න න න	0.0	9 6	2 98	96.6	7 101.	8 8 86 86	7 89.	0 77	.2 111.	ZE SCALE CALC. 1	TEST DATE 03-1 LGCATION C41	ACC 12.2 h	
				10. 50.		.6 90.	0 io -	5 C	7. 60 2. 60 1. 60	7 96.	N 0 €	9.	200	9 100 8	9 9	9 4	0.74	.3 111.2	MODEL/FULL SI INPUT 1.000		TEST POINT 0410	
				FREG	8 8 6 0 8 8 0 0	125 160 200 250 89	315 89 400 91 500 92			ĺ		-		1		31500	9 0000 9 3000	GASPL			٥	353

•				OR OF	IGINAL POOF	PAGE	IS ITY	•					SPEED 387.0 FPS)
			5555	163 163 162 163		164	6 164.0 1 164.0 1 163.0 1 1 163.0				8 177.3 3 3	TAMB 34.00 RELHUM 60.40	FREE-JET
X04105	EES	150. 16	97.3 79 86.4 77 95.9 77 84.5 79	82.1 76 80.9 76 79.2 75	81.0 76 80.9 75 79.2 74	75.1 70 73.1 68 72.0 67 70.8 65	68.1 69.5 64.3 40.5 24	21.7			9.3 94.1 67.6 2.6 96.2 90.3 2.6 96.2 90.3 SHIFT -9	IA S859 IB 29.2550	· (NI Os
O-FN3DL	I INLET, DEGREE	. 130.	-000	88.0 88.5 88.5	r-4r	85.1 82.8	27 17 69 60	26.0 26.0			.5 99.7 99.3 .1 104.6 102.6 .7 104.6 102.6 FREQUENCY SHI	I ALPHA 63 PAMB	SI ZE 1 CM (1400.00
NO NO	EASURED FROM	. 110.	1 73.6 78 3 74.7 80 3 76.3 82 3 77.8 84	3 60,3 65 3 60,3 65 3 60,7 65 9 60,7 65	82.0 86 82.0 86 83.2 85	92.6 84 9 82.1 84 1 81.2 82 3 79.5 80	3 78.4 79 6 75.9 75 4 68.5 72 3 64.2 65	1 54.6 54 0 36.6 37 2 10.7 10			6 93.1 96 0 100.7 103 0 100.7 103 7.129	TAPE NG. N301 Rg. Rdg. Adh163	9032.2 80
IDENTIFICATI	NOLES MEA	. 80	72.22	77.7.7.9.0	78.8 79.7 80.1	81.3 82.1.3	2 80.9 78. 1 78.7 75. 7 74.7 70. 5 66.4 65.	59.6 42.3 40 15.5 16			1.2 92.0 91.6 1.2 101.6 100.0 2.5 102.7 100.0 DIAMETER RATIO	CH AE	1C RANGE 2400.0 FT) SL
		. 70.	5 71.6 5 71.1 0 73.2 0 73.6	7 75.9	27.72	9 9 9	2 76.9 79.6 72.5 74.6 64.5 66.	25.0 40.6 40.0			1 69.6 9 1 99.4 10 8 100.1 10	E 03-10-78	ACCUSTIC
		20	70.5 71. 71.2 72. 72.1 74.	73.0 75. 74.1 76. 76.1 78.	74.6 76. 75.1 76. 75.9 77.	7.77 7.00 7.00 7.00 7.00 7.00 7.00	7 72.7 76. 9 72.8 55.6 5 67.0 .c.	43.3 ©2. 25.1 36.	- 1		0 67.7 80. 7 86.0 99. 7 96.0 99.	TEST DATE LOCATION	TEST POINT 0410
			86.2	4466	6.6.4.k	2888	2000 68. 2500 67. 3150 59.	35.		# 1500 # 40000 # 50000 # 60000	0ASPL 86.0 PNL 92.7 PNLT 92.7	3 38 92	MGDEL 0400

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SGUND PRESSURE LEVELS 58.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

ORIGINAL PAGE IS OF POOR QUALITY

6.1.6 Measured Acoustic Data for Model 5

without struts conic nozzle

ANGLES HEASURED FROM INIET, DEGREES D. 80. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. 160. 160. 160. 160. 160. 160. 16		ORIGINAL POPE CO	AGE 18	₹ :	SPEED .
ANOLES HEASURED FROM IN.ET, DEGREES ANOLES HEASURED FROM IN.ET, DEGREES B. 90. 80. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. 160. 190. 190. 110. 120. 130. 140. 150. 160. 160. 190. 190. 190. 190. 190. 190. 190. 19				70.	
BACKGROUND ANALES HEASURED FROM INLET, DEGREEE 5. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. ANALES HEASURED FROM INLET, DEGREEE 4 89.2 89.2 99.2 91.5 93.8 94.7 97.1 99.5 104.2 113.0 117.2 10.0 113.6 10.0 117.6 10.0 113.6 10.0 117.6 10.0 113.6 10.0 117.6 10.	.09	11.5.2 11.6.2 11.6.3 11.6.3 11.6.3 11.6.3	112.8 112.8 111.1 103.9 105.0 105.0 103.7 103.7 103.7 103.7 103.7 103.7 103.7 103.7	40000	•
ANGLES MEASURED FROM ANGLES MEASURED FROM ANGLES MEASURED FROM ANGLES MEASURED FROM ANGLES MEASURED FROM ANGLES MEASURED FROM ANGLES MEASURED FROM ANGLES MEASURED FROM ANGLES MEASURED FROM A 89. 2 89. 2 81. 5 83. 6 84. 7 86. 3 86. 0 102. 7 86. 3 86. 0 102. 7 86. 3 86. 0 102. 7 86. 3 86. 0 102. 7 86. 3 86. 0 102. 7 86. 3 86. 0 102. 7 86. 3 86. 0 102. 7 86. 3 102. 4 103. 1 102. 4 103. 4 103. 1 103. 4 103.	I-FMODL DEGREES	113.6 113 117.2 116 119.2 117 120.8 118 120.9 118	120.5 114 117.9 112 115.8 111 116.0 109 113.8 106 113.3 106 111.3 105 106.8 103	97.9 94.6 88.5 83.0 79.0 131.3 1	OS
ANOLES MEA ANOLES MEA ANOLES MEA B. 90. 60. 70. 80. 90. 100. 100. 100. 100. 100. 100. 100	·	102.7 104.2 106.8 106.8 111.1 112.7	113.6 113.6 112.6 112.6 112.6 108.2 108.2	7 97.7 104. 0 93.1 99. 0 69.4 92. 7 85.0 86. 7 79.9 83. 2 124.0 130. NZ81 ADH006	80 80
5. 50. 60. 70. 5. 50. 60. 70. 5. 90. 80. 91.5 92.5 91.5 92.5 92.5 92.5 92.5 92.5 92.5 92.5 92	O KEA	2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	3 105.4 2 105.4 2 105.4 3 105.2 3 105.2 3 109.2 3 105.3 5 105.3 6 104.0	7 93.5 95 0 89.1 91 8 84.4 85 3 78.4 78 1 73.0 74 1 73.0 72 1 18.7 121 TAPE NO AERG. RDG	ARC 1
5. 50. 60. 60. 60. 60. 60. 60. 60. 60. 60. 6		2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	104.9 1 104.9 1 108.3 1 108.3 1 105.9 1 105.8 1 102.8 1 96.8 9 6.8	0 92.2 7 85.5 9 80.1 8 75.6 1 72.7 4 118.8 1 15-77 ANECH CH	ACGUSTIC RANG
24 4 5 0 6 6 5 12 4 6 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	.09	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 4 109.7 1 10	.7 88.7 .4 83.7 .6 76.6 .0 67.3 .7 116.3 1	12.
### PERFO ### PE	l I.	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4 7 5 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	83.1 78.2 70.5 65.3 60.3	TEST 00 00 00 00 00 00 00 00 00 00 00 00 00

UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR C CKOROUND NOISE 59.0 DEG. F. 70 PERCENT R.H. STD. DAY, SB. 40.0 FT. ARC

(-

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SGUND PRESSURE LEVELS
59.0 DEG. F., 70 PERCENT R.H. SID. DAY, SR. 2400.0 FT, SL

X05015

INENTIFICATION - FJ-ZER-FMODL

(),

						OI OF	RIGINA POOF	L PAG	E IS LITY				-JET SPEED EC (278.0 FPS)		
												37.40 74.50	FREE-JET 84.73 M/SEC (
BACKGROUND NOISE O FT. ARC). PWL		1 146.7	.7 147.7 .0 149.8 .6 150.7	9 153 6 153 7 156	155	152 152 151 2	2 149 9 149 149		1 8.	TAMB	MODEL 8		
		150. 160		111.5 116	112.6 116. 114.6 116. 114.2 113.	047	B-70	4444	0000	0000	.0 1	SB59 29.4572	M - (NI 08		
S CORRECTED FOR LOAN SB 40 FJ-300-FMGDL	DEGREES	140.		6 109.3	5 110.9 8 115.2 6 117.0	23.5	120.		60.00	2 95.7 0 85.6 79.7	7 76,	I ALPHA PAMB	\$12E 20.36 S	-	
		120. 130	•	97.8 104.	99.4 106. 101.5 110. 104.0 113.	2 116	6 119	12.4 116	111000	2 101 2 96 9 89 83	6	N281 ADH011	S SQ CM (
SURE LR.	MEASURED F	110.		7 94.6	96.37 2.00 2.00 2.00	40-1	1 107.0 1 2 107.9 1 0 108.9 1	8000	00	9 94.3 9 89.2 75.7	71.1	E NG.	131.5	·	
SOUND P ZO PER ICATION	ANGLES M	90. 100		90.1.92	0 0 0 0	801	8 103 104 106 106	6 100	964	89.7 91. 85.4 87. 79.9 82.	.4 75	AE	: RANGE 40.0 FT) ARC		
UNTRANSFORMED MODEL.		.00		60	80.0 80.0 80.0	96.5	102.9	0000	99.5 1 97.4 1	3 89.7 7 78.7 7 78.7	71.2	15-77 ANECH CH	ACCUSTIC RA		
NTRANSFOR		60. 70.		2 78 8	0 4 C	2	7 104.	4 102	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	88. 78.	.6 115.	52	ACC 12.2 P		
ž		20.	·	C	9.78	4000	106.5 10 107.1 10 103.9 10	0-4	000	92.7 8 7 72.4 7	66.9	TEST DATE LOCATION	17 POINT 0502		
		40. FREG	80 80 00 00	125 160 200 55 55	83. 85.	1	105.	100. 99.	12500 93.2 16000 91.0 20000 86.8	80 72 80 80 80 80 80 80 80 80 80 80 80 80 80	113.		MGDEL TEST 0500 0	 35	9

FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS EG. F., 70 PERCENI R.H. SID, DAY, SB. 40.0 F (}

							•					0	RI(F	G I	NA IOI	IL' R (PA QU	GI AI	E II	3				•					JET SPEED (C (278.0 FPS)
			7	.5 169.5		٦	6 4		Τ.	172				יר	791 27	. 0	165.2	166.6	166.7						.1 104.4	•		TAMB 37.40 RELHUM 74.50	FREE-JET FULL 84,73 M/SEC (
X05025	DEGREES	40, 150, 160	8 88 0	5.8 91.2 98	0.00	5 92.5	-	î 6 7.1	6 83.5	4 82.	5 61.4 7 79.1	6 77.9	a	8 66.6	4 59 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	38.6 21	7 18.	•			•				107.7 99.8 98.1 10.3 101.2 99.4	101.2	SHIFT -9	HA SB59 IMB 29.4572	- (N1 G8
FJ-300-FMCDL)	INLET	120. 130. 14	2 92.3	86.6 94.8 95 80.2 06.8 06.	9,79	5 98 1 1	92.5 98.1 98.	9.00	2 95.4	4 95.2	2.4 94.2 9U. 1.8 93.8 89.	.0 92.9	. 1 90.5 1 89.1	2 84.6	.5 80.7	9.89 6.	- 1	6.0							3 108.1	8 112.7	FREQUENCY	N281 IALPHA ADHO11 PAMB	81ZE SQ CM (1400.00
N N	MEASURED FROM	100. 110. 1	.0 78.7	.5 79.2	93.0	9 84.3	7 86.55		4 88.9	80	0 00.7	.1 91.3	86.2 66.4 87	1 85.7	2 6 61.4	6.89	2 58 5	3.9 15.6 17							18.5 100.2 103 16.2 107.9 109	2 107 9	10 8.288	TAPE NG. NZ AERG. RDG. AD	SL 9032.2
IDENTIFICATI	ANGLES	80. 90. 1	2 74.9	77.6 77.2 7	79.1	2 80.7	83.7 83.8	93.6	90.3	4.10	2 88.2	.1 88.0	.5 85.5	2 83.4	78.	.7 68.2	5 43 6	2							100.5 98.5 98. 107.5 105.8 106.	4 105.8	DIAMETER RATIO	СН АЕ	ACGUSTIC RANGE 5 M (2400.0 FT) S
•		60. 70.	S 73.6	3 75.6	.7 78.5	2 81.0	8 4.0	. 22 . 68 . 2 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3 . 3	7 91.7	87.7	8 86.2	86.5	3 63.4	2 81.6	7.00.1	.0 66.8	2 57 0	5.9 17.4							.9 99.6 .8 106.6	4 107.4		DATE 12-15-77 TION C41 ANECH	ACOUST 731.5 M (
			70.4	69.7 72.0 7	73.5	74.0	78.4	94.0	89.6	.4 86.8	3 84 0	.1 82.9	76.7 81.7 8 74.5 78.9 6	6 26 9	7.2 /3.6	.0 57.2	2 0 25 D)								103.7		TEST DATE	TEST POINT 0502
			-1	63		- 1				500	ł	000					5000	•	10000	16000	25000	1500	40000 50000	63000 80000		,			MODEL 0500

-				Ol Ol	RIG F F	IN O	AL	8 6	PA(èE Ali	EZ TY												FPS.)	all of the second secon
									-													35.06 79.20	FREE-JET SPEED 2.78 M/SEC (370.0	
	60. PWL	9	6 144 9	1.5 145.9 0.2 148.3	149.	~	10	٥.	0	4.4 154.8 3.4 153.9	'n	ග ෆ	8.9 151.5	4 149.	94.1 149.5	4 146.	6 146.	4 4		- 0 0	18.6 165.2	TAMB	MODEL 11	
X05030 X05220	150. 1		111.2.111	= =	113.4	111.5	110.1	7.0.	110.3	7 109.9 104.	10Z.5	106.4		100.5 100.5	98.4	90.4	86.3	74.8	69.9	5 60.7 3	5 122.8 11	A SB59 B 29.4513	- (NI 08	
FJ-400-FMGDL FJB400-FMGDL			03.9.109.0	06.0 110.6	12.6 116.5	2 119.	1 10	ب د د	9.0	19.7 118.7	6.4	4 4		d-	ဖ		~	95.4 91. 88.1 84.	4	78.8 74.	129.2 129.	I AL PHA PAMB	\$12E M (20.38	
ROUND	120.	# 2 2 2 3 3	1 97.1 1	98.91	38	4 108 4 1			=======================================	7 112.3 1		===	Ξ		3 106.	. 7 103 4 100	5 96	.7 91.5 87.3	.1 83.	.7 76.9	8 122.8	1. N281 1. ADH020	31.5 SQ CM	
	ES MEASURED 100. 110.	:	91.7 94	ص ب	94.4 97	7,	, eo	102.2 105.6	94	104.2 107.7	9	D 4	4.W	0 K	_	99.5 101	4	86.3 88	ا	69.8	117.2 119.	TAPE NO AERO. RDG) ARC 1	
DENTIFICATION	ANGLES		6 04 1	.5	2.00 83.55	98		.66 6	100	7 104	901.0	9 106.	 	2 103		96.	.88	84.	8 71	3.4 66.3	7.0 115.8	7 сн сн	1C RANGE 40.0 FT)	
01	70.		9	67.1	90.3 92	91.9	9 9 9	99.9	106.5	10	107.9	104.5 1	103.1 103	100 8	97.5	94.8	88.5	83.4	69.0		9 115.9 117	E 12-15-77 V C41 ANECH	ACGUSTIC 12.2 M (
•	50. 60.			6 95.	86.1 87.2 88.0 88.3	8 90	89.4 91.4 93.0 95.5	.5 98.	4 102		. 105.	103	100.9 101.7 100.6 101.2	g		9	7 84.	77.7 79.5	5 66.	62.	4,4 114.	TEST DATE	PGINT 03	
	.04			9	85.0 86.9 8	~	- 0	, e	102 1	2500 105.8 10	102.8	101.1		96.7	12500 93.6 g	87.0	4 0	74.9	4.79	o,	ØASPL 113.6 11		MODEL TEST PGINT 0500 0503	

·	•					0	RIGINA	I PAG	E IS				-		
						O		R QUA	LITY			KES		ET SPEED (370.0 FPS)	
			PVIL		42.2 6.3	47.7 48.9 50.5	552.9 553.5 54.5 5	6.65 6.65 6.65 6.65 6.65 6.65 6.65 6.65	553.4 552.7 52.1	49.7 48.9 47.4	46. 1 45. 3 46. 1	CORRECTION	3 35.08	EREE-JET 112.78 M/SEC (
RE LEVELS	X05030	REES	0. 150. 160.	-	0.0107.9 109.0 1.	.0 112.4 109.5 1 .9 112.7 108.7 1 .9 111.7 108.5 1	.3 112.1 113.4 1 .6 113.1 113.8 1	.4 112.7 113.7 1 .0 111.3 112.2 1 .7 109.9 110.8	.0 107.2 109.1 1 106.5 108.5 1 1 2 106.5 108.5 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	6 99.8 102.2 1 7 92.8 95.5 1 7 92.8 95.5 1	5 82.6 85.0 1 7 77.7 79.3 1 9 70.9 72.2 1 1 61.1 62.4	123.6	SB59 10KBU SB59 29.4513	19 SO IN) - MODEL	
EL SOUND PRESSURE STD. DAY. SB	FJ-400-FMGDL X	FROM INLET, DEGREES	120. 130. 140		95.7 101.9 106 99.1 107.8 111	101.4 110.0 134 103.5 112.8 1%4 106.4 114.8 116	.6 119.4 11	117.9 11	1	105.7 1	.6 92.9 .3 86.8 .5 85.9	128.4 1 (SEC)	DIAMETER (IN) 48. NZ81 IALPHA ADHO20 PAMB	SIZE SIZE	
TRANSFORMED MODEL 70 PERCENT R.H.	DENTIFICATIÓN - F	ANGLES MEASURED	90. 100. 110.		.3 89.9 90 1 91.0 91	.9 92.8 94 .6 93.4 95 .7 95.7 97	.6 99.0 101 .5 101.5 103 .1 102.3 105	2 104.3 106.2 106.2 106.9 107.5 109.5 109	.7 111.0 .6 107.9 .8 107.9	.4 104.3 106 .6 101.3 102 .8 97.9 97	.4 87.9 88. .9 82.7 81. .3 77.4 75. .3 70.6 70.		FREE JET D TAPE NG. AERO, RDG.	3E 51, 480, 131	
FL 1 GHT 59. 0. DEG. F.	106	A	70. 80. 9		89.7 86.6 89 89.7 81.2 91		9 99 8 3 102 8 1	2 112.1 2 114.4 9 111.1	7 109.6 9 109.7 6 107.6 1 107.1	101 98.98	4 84.8 9 77.8 0 72.3 0 67.8	0.0 BR	LC. 1.000 12-15-77 C41 ANECH CH	ACOUSTIC	12.2 m (40.0
			0. 50. 6Û.	, isa	1. 91.5 89.6	.6 91.5 90. .7 92.0 91. .9 93.9 92.	0 94 6 1 95.3 0 98.9 1 9 103.5 1	.6 114.3 112.3 113.0 110.2 110.	.9 107.9 108. .7 107.0 107. .7 106.5 106.	9 104 2 104 3 101.0 101. 7 99.4 99. 2 97.5 96.	6 87.2 87. 1 81.9 82. 6 73.0 74.	119.9 119.	OOO C	INT	0803
	·		FREG 40	2 0 0 Z	160 200 250 69		1000 98 1250 100 1600 102	2500 113 2500 113 3150 111 4000 109	7	12500 102 16000 99 20000 96 25000 94	31500 40000 50000 63000	OASPL	PHITHIRS	MODEL	363

								00	Ri F	GII P(AA OO	L R	Q	iGi JA	E I	19	•													35.06 79.20	REE-JET SPEED		3.
	Ę	1.991	67.3 68.8	70.2	0.	25.9	72.6 73.4	73.6	72.8	72.1 71.7	71.1	70.4 7	68.1	67.3	65.8	64.5	63.7	64.5	62.6							94.0				TAMB 3	١,	112	1
	.09	a	0.6	85.1 17 86.3 17	, e	₹.	46	8	4	77.9 17 75.5 17	.7 1	ø, r	- 7	55.7 16	o e		10	=	=							96.1 1						FULL	
	150. 1	4	4 6							81.8 79.3																~	101	31 1-		SB59 29.4513	ı	2	
DEGREES	140.	9	8 1	. 10. d	1			1		90.1	ı		ı		57.5	ŗ -	4										109.7 1 109.7 1	FREQUENCY SHIFT		ALPHA PAMB		00 SQ	
1	130.	i		97.0				ŀ			1			د	n -	- @	N.	•								_	12.3 1	PEDLIENC		2	- 1	1 (1400.00	- 1
FROM INLET	120.	- 1		69.7	i			ı			1			81.4			4 •									103.1	109.0 109.6			N281 ADH020	1	2 SQ CM	
IRED	110.	76.3	90	82.3	و اد	0	@	9	9	8 N	6		67.4 85.8		74.1 67.8	27.0	39.4	13.8								9	4 4	880		. SQ.		9032.	
ANGLES MEAS!	100.	75.4	•	9 6	4 .	4				91.9		•	86.3		9.0	•	4 .									1.66	106.4 106.4		2	TAPE AERG. 1		ษ	
ANGLE	9	74.7		78.8			83.8			00 00 00 00 00 00 00 00 00 00 00 00 00			83.0 83.0		•	•	• •	17.2	-							Ø	106.2			퓽	RANGE	. 0 FT)	
	90.	75.4	77.3	6.00	27.00		87.1 03.0	ı .		-		87.5	8 4 .0 2 4 .0		24.2	•	4 .	4.								6		1	Š	-15-77 1 ANECH C	ACGUSTIC R	(2400.0	
	20.	72.5		77.2	a a		82.0		95.6		4 .	87.4			75.3		4 .	14.2	;							O	40			12-1	ACOU	-	
	60	71.7			4		67.5		80.3				83.2 79.6		71.7	•	1.	6.2				•				99.4	106.0			LOCATION		73	
	80.	71.9		2.4	4	83.4	88.8	4 .	98.7	•			76.9		69.6		4 2									98.6	104.6			TEST	POINT	- tO	
	6	80		76.8			9 6	1 .	86.3	•	1 -	79.3	76.6	67.7	•	5.4	4 7	,								97.1	102.0				TEST	•	
	0	7 7 7 8 8	63	2	125	500	520	400	200	630	1000	1250	1600	2500	3150	4000	6300	8000	10000	16000	20000	25000	40000	90000	BOODD						MODEL	1	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS
59.0 DEG. F. 70 PERCENT R.H. STD. DAY. SB. 2400.0 FT. SL

X05035

IDENTIFICATION - FJ-400-FMODL

_
-
-
•
_
7
•
•
~
•
_
•
w
•
•
_
•
•
•
_
•
•
0

UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND MOISE 59.0 DEG. F., 70 PERCENT R.H. STD. DAY. SB. 40.0 FT. ARC

					والمتعاولة والمتعاورة والمتعاورة والمتعاولة والمتعاولة والمتعاولة والمتعاولة والمتعاولة والمتعاولة والمتعاولة)F	GII PC	OI	L i	P#QU	GI	E R	Y								41.36 68.20	FREE-JET SPEED O. M/SEC (O. FPS)		
		Pul		97.	148.3	150.3	153.3	155.0	185. 185. 185.	155.1	154.4	152.6	152.6	151.2	150.6	148.4	146.7	147.2	147.1	145.1	147.1	165.9	TAMB	•		
		160.				17.0	18.2	N 60	18.6	15.8	0.00	11.0	09.4	106.2	02.9		. 86.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8					128.1	_	- MODEL		
	•	150.		0 01	13.6		16.5	9.0	16.9	13.8	12.4	9.00	7	- 4	4	102.01	955. 1	87.4	82.4	71.8		126.2	SB59 29.4930	(N	:	
	JEGREES	140.	-		12.1	15.2	9.6		6.6	20.3	18.4	5 (C	15.5		ı			1	94.5		•	30.0	ALPHA PAMB	S1ZE 20.38 SQ		
-		130.		6	0	04	٦	N O		-	<u>_</u>	0	8		9	40	_	ď	98.9 8.9	96.0	81.3	129.5 1	2		:	
	FROM IN	120.	. • 1		4	03.5	٦.		12.21	1-			-	10 to 100	٦.	04.5 1		1-				122.7 1	N281 ADH005	SQ CM	:	
	ASURED F	1.10.		4	10	<u> </u>	۸.	4 0	06.6 1	1	- •			08.60	7		_	1	88.7	n u	6	19.5	RDG. A	131.5		
1	E	100.			e .	- a		. o	44	4	04.0	, -	0	N ID	با	ب ب ب	_	0	86.3	9	a,	16.5 1	TAPE AERG. R	ARC		
i iona	ANGLES	. 06			41	ت ن	┥.	00.00	9.	-	•	. 6	7.1	9.0	8	i 4 - −	96.1	-	84.4	G	0	15.2 1	¥	£		
		9 0.		0	e .	93.7	4	-	0 4	9	0.0	07.8 10	4	00	d	99.6 10 97.5 10	<u>ه</u> و	4	40	9 0	4	5.6	77	IC RANGE 40.0 F	:	
		70.			ומו	~ 6	الم	- 0	0 x	20	4,	4 6	.7.1		٩	. 4	94.2 9	6	82.9 8	; q	6.	4.2 11	12-15-77 C41 ANECH	ACGUSTIC		
		.09	-	•	9	٠.٥	┥.	4 R	و ۱	-	40	N IS	20	- a	4	O 10	60 K	6	<u>ښ</u> د	o d	.7	3.1 114	_	12.		
		.09			0	ο io	۹.	- ^		7		- 6	2		6	5.1 96 3.7 94	o r	-	٠. د) C	4	2.9 113	TEST DATE LOCATION	POINT 504		
		40.			-1	6.7 89 8.7 90	١.	- ~		5	- (1.6 106	1	9.0 100 7.0 99	7		.	8	3.9 76	- 2	N.	2.4 112	•. 	TEST PO 0504		
		FRED.	80 80 80 80	125 200 200 200		0 0		800 93			2560 107	3150 104. 4000 101					00 83		00 73		_	PL 112		0	365	
		FR		186	6.	4 R)	9	~ <u>C</u>	<u> </u>	8	8	31	20	8 8	a	12500	20000	31500	40000	63000	80000	GASPL		MØDEL. 050		

										!	01 01	R	31 ! P(NÆ OC	IL DR		A U	GI	EL	IS TY	i de										YES					1	o. FPS)	of the second se	, , , , , , , , , , , , , , , , , , ,		The second of the second secon
								•				9	O 1	ın e		4	r 60	9	9	7	~	9 7	0	7:	a (1			J	G,	CORRECTION -	CORRECTION -		M 68.20	j	٦	0. M/SEC (And Assessment Confession of the Confession of t	
		160. PHI						115.1 146.9	4		118.2	118	119.3	118.6	17.2	133.0	0	11:0	4		1 106.2 151.2	OP 1	100 8 149	3 146	9.	4	4	10	2 60.8 14Z.	128.1 165	REFRACTION	TURBULANCE	TAMB	DEP.		1) - MODEL			The second secon	
X05040	DEGREES	140. 150.						110.3 112.2	112.1 113.6	2 :	2	119.6 116.	119.9 116.	121.3 11	121.2 115.	1.60.3	116 9 110	115.51	115.5	113.8 1	112.3 1	110.61	108.4 102.5	4.101	98.3	97.6	4 K	82.8		3 130.0 126.2		48.00	ORGO ANGIAT	1	ē		20.38 SQ IN)				
	FROM INLET	120. 130.			•			99.3 105.9		= :	•		.2 119.	.2 118.	112.3 119.	112.1 120.	110.0118.	111 7 116 6	111.4 116.	110.3 115.	109.6 115.	108.2 113.	106.7 111.	101.8 106.	99.3	95.7 102	90	82.6 86.		122.7 129.5	HTY (FI/SEC)	DIAMETER (IN)		NZBI	ADHOUS		. 5 SQ CM () (The state of t	
CATION -	ES MEASURED	100. 110.						94.2 96.6	9	- (100 3 103 4	9	.4 106	8 107	104.4 102	104.0 108) C	201 C 202	107.2 109	-	_	g	- a	95.0 95.9	q.	86.3 88.7		9 70	116.5 119.5	FREE JET VELOCITY	FREE JET	į	#	AERO. KDG.) ARC 131				
IDENTIFI	ANGL	.06 .080						80.2 91.6	2 3 93	. 1 93.	96.	97.33 95.49	100	9 102.	8 101.	٦	0 0	107.3 103.7	0 4	6	0.104	0	6 102	900	. 6	4 90	4 64	67.8 70.9	4 65.	115,6 115.2	EACTOR FR		1	1:	ANECH CH	ACCUSTIC RANGE	(40.0 FT)				
· •		60. 70.						9 44 9 44	7.0	.7 90.	93.	93.1 94.4	2	8 100.	~	7 100	4 104.	106.2 107.4		100	2010	.001	0 98	.5 97.	90.0 34.E	9 87	.3 82.	72.0 75.3	7 64	113.1 114.2	3 5 60 3C 3C	CALC. 1		12-1	LOCATION C41		-2				
		40. 50.						0	85.1 67.9	.7 89.	.7 90.	-: -:		100	4	9 103	105	9	103		2 8	95.7 97.9	5 95	.1 93.	82.3 85.5	B B1	.9 76.	66.7 69.3	2 59	112.4 112.9	i	0		IES	Ž	TEGT DAINT	Ö				
		FREG	20	83	86	125	160	000	2.00 3.150	400	200	630	200	1250	1600	2000	2500	3150	4000	2000	0000	10000	12500	16000	20000	31500			٦	OASPL					4 46V		0200				

FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS 59.0 DEG. F. 70 PERCENT R.H. SID. DAY, SB. 40.0 FI. (L

•																						e 19 Lity					
							(O. #		"	·•• «			0.4		۰.				.	i a	2	v a				O	
SOUND PRESSURE LEVELS				PWL 158.7	4 170.0	4	3 172.6	_	2 173.6		1	_	9 171.0	92:	200	7.791.8	162	165	154	2 165.6 165.4	4 -	163.				9 184.2 2	
SSURE I			. 160	90	1 90.	<u>.</u>	- o	1 91.	5 89.	_	l		.3 76.	1		9	-		7 38.	4 . 6.						9.00 9.00 9.00 9.00	Ģ
NO PRESSUR	X05045	EES	150	<u> </u>			4 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		6	20 20 20 20 20	85	83		7			67.	60,		9						.9 101.8 .9 102.8 2 102.8	SHIFT
_⊝ `]		DEGREES	140	94	i	97		8	66	8 8	83	92	5	60	, a	8 2	79		0 65.9		21.	Ot.		•.		501	
EXTRAPOLATED	FJ-ZER-FMODL	INLET	130	6	94.	9	60 0			5 99.7 5 00	1		94.9	1		87.9	1		75.	69 K	37.	ဗ ဗ	اً			0 109.6 4 113.4 114.4	FREQUENCY
EXTRA	FJ-ZER	EROM	120.	955	67.	8	8.18	83	93	92.0			3.06	1		922.0				, 67 , 67	39.	4				3 103. 1 108.	æ
FORMED, SCALED, AND EXTRAPOLATE	- NO	ANGLES MEASURED FROM INLET	110.	0.18	9	83.		88.5				89.4		8		0 60		78.			39	13.8				100 107 107	8.288
SCALE O PERÒ	IDENTIFICATION	LES ME	100.	7.87	ŀ	9			98	96.4		87	87	20	9 6	93.0	E	78.	73		6	16.8				104.7	RATIO
ORMED,	IDENT	SHY.	8	76.0	ĺ			93	8	94.2	93	87	87	9	9	9.00	BD	75		0 t	38.					96.5 103.5	METER
TRANSF			90	7.87	77.	79.	69	86.	84	8 8	98		87.	S	63	9 0	77	72.	99	83	32.	oi.				96.9 103.3	_
FL 10HT 59			70.	7.3	٠.		77.8					86.4		8	95.	7 6	76			67.6	1.	7.2				95.0 101.8	
Œ		-	9	2 6	ι.		75.0	1.	79.7		ι.			- 1	•	74.0	• }	٠.	62.7		١.	,				99.3	
			3 0	0			72.5	1 .	77.3				79.3	- 1	•	6 K	•		57.7	48.6	م ا	;				9.7.0 0.7.0 0.1.0	
			9		١.	•	21.9	1 ,			1 .				-	9 c			•	66.1	4.0					89.6 94.5	

FPS) FREE-JET SPEED M/SEC (0. 41.3**6** 68.20 ö TAMB RELHUM - FULL SB59 29, 4930 SIZE 9032.2 SQ CM (1400.00 SQ IN) I ALPHA PAMB N281 ADH005 TAPE NG. AERO. RDG. ACCUSTIC RANGE 731.5 M (2400.0 FT) SL 12-15-77 C41 ANECH CH TEST DATE TEST POINT 0504 MODEL 0500

367

OASPL PNL PNL T

-
7
۲
=
_
_
ø
r
>
•
_
•
Ŀ

							-														
				0	RIG F	IN/ 100	AL I	PA QU	GE ALſ	S	•									SPEED 278.0 FPS)	
																•			38.84 73.50	FREE-JET 84.73 M/SEC (
	ā			7 145.9	6 149.1 4 150.0	.4 151.2	•- •	10	9 151.8	7-	2 149.0	7	2 146.4	2 142.9	<u>~</u> 0	6 140.8	142.	.0 163.6	TAMB	MODEL 8	
00700	150. 160				13.4 112.	107	11.2 107.	7-	109.6 107. 107.9 105.	103	03.4 102.	8		92.3 90. 88.0 88.	84.5 83.	.0.4		122.5 122	S859 29.4562	- (NI	:
INLET, DEGREES	. 140.		600	1	3 115.2 1	117.8 1	20.0	120.0	.7 118.2 1	114.2		1 601	0 104.7	100	94.	682.9	4 .	.3 128.8	I ALPHA PAMB	\$12E · 20.38 sū	2,22,9
- 1	120. 130			97.7 104.	5 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	112	109.2 116.	18	3 117	114	09.1 113.	117	03.4 107.	7 103	86	9 6	0	120.2 127.	N281 ADH010	S SQ CM (* :
MEASURED FROM	.110.			83.00 0.00	- 4	100.9	103.6	104.8		106.7	2 106.9 1	107.3	102.4	9.2	90.2	3 77.4	ļ	1 117.0 1	NG .	131.5	
ANGLES ME	90. 100.		;	A 4	92.5 93.4	4 97.	. s . 90.	3 101		105	105	3 103	98		.7 87.	12 i	2.7 65.	13.1 114.	TAPE AERG. (RANGE 40.0 FT) ARC	
	8	•		88.3	2.2	95.3	100.7	66 60 60 60	102.7	106 6	103.0	99.5		96.2 87.8	95.0	3 71.0	64.6	5 113.7 1	15-77 ANECH CH	ACGUSTIC RANG	
	60. 70.		1	40.	87.3 89.8 87.3 89.8	6 92.	95.0 95.3	0 99	106	104	98	3 97	95.	.7 90.	.4 84.	70.0 73.3	.1 67.	11.3 112.0	DATE 12-1 TION C41	ACC 12.21	
	20	•	1	94.1	67.0	87.9	93.7	102.2	103.9	100	97.1	93.9	91.3 89.4	95.6	77.2	9 72.1 9 67.2	60.8	110.01	TEST DATE LOCATION	TEST POINT 0505	
	40. FREG	53 63 80		1	500 85.9	88	9 9	102		98	6300 95.7	9	88. 85.	9	12	93.	63000 67 5 80000 59.9	OASPL 109.3		MODEL TES	

UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE

(]

							OR OF		NAI DOR		PAG PUA		is ry										.*	FPS)		
																				١	ion - Yes			1		
			F.		43.1 45.4	47.5	200	1 -	52.0 53.0		51.7 51.8	50.9	50.4	49.0 20.05	47.0	45.4		43.4	163.7		ຮ	TAMB 38.84	RELHUM 73.50	84.73 M	-	
LEVELS 40.0 FT. ARC	0		150. 160.		07.7 112.6 1 30.0 113.1 1	.9 113.3 1	12.3	6 114.0 1	3.4.	2 113.4 1	6 112.1 1	8 110.8	6 108.7 7 108.7	9 104.7	0 99.4	0 89.1	2 77.2	67.6 69.9 1 57.8 60.1 1	.8 125.0			1	29, 4562 RE	IN) - MODEL		
STD. DAY, SB. 4	10DL X05050	ET, DEGREES	130. 140.		01.0 105.3 1	2 13	14.0 116.4 1	6 119.1	901	5 116.3 1	87	7 112.6.1	2.00.2	.6 108.7 1 2 107.2 1	.2 103.1 .1 99.6	02.2 98.4 98.4 95.3	.1 88.3	တ ရ	26.6 128.1 1	8	(IN) 48.00	IALPHA	PAMB	_		
MODEL B. H.	1 - FJ-300-FMODL	SURED FROM INLET	110. 120.	•	91.1 95.1 10 91.4 96.8 1	5 100.0 1	97.1 105.3 1	6 108.1 1	0 /	109.2	3 109.2 1	4 109 9 1	6 109.6	107.3 105.1	.3 102.7 1 .8 100.5 1	97.3	3 89.† 3 85.9	81.0	.7 120.3 1	VELOCITY (FT/SEC)	JET DIAMETER	NG. N291	рв. Арното	131.5 SQ CM		
TRANSFORMED 70 PERCENT	DENTIFICATION	ANGLES MEASU	90. 100. 1		88.3 89.6 8 89.5 90.3 9	6 91.4	93.3 94.9 5	0.57.6 1	99.6 100.3	2 102.0	7 102.5 1	3 106.3	8 105.3 1	3 105.3 1 5 102.5 1	5 100.7 1	7 89 2	2 84.2		4.7 114.8		FREE JE	쒸	AERO.	FT) ARC		
FLIGHT	<u>a</u>		70. 80.		0.087.0	3 91.1	90.00	7 99.0	5 100.7	4 104 1	5 108.9 1	6 106.7	က (၈) - (၂)	0 100.4	0 97.8 1	3 91.8	1 74 9	0 70.8 4 68.1	.5 116.0 1		1.000		- 6	2 % 4 40.0 F		
			50, 60, 7		.5 86.3 6 88.3 8	.5 88.3	. 4 90.7 92.	2 94.1	.1 98.4 .9 99.3	99 0	3 108.0 1	4 104 7 1	6 0 0 0 0 0 0 0	. 1 102.1 1 5 100.2 1	.3 97.3	7 90.	6 82.1	3 70.	.3 114.8 1		. 000 CALE	1	S NOTES	12.		
			40.	200 H	00 00 00 00 00 00 00 00 00 00 00 00 00	87.3	91.1 91	95.0	96.4 96 96.7 97	101 8 97	107.3 107	103 2 104	102.	99.99	94.4	86.6	78.1	0 67.6 68	114.1 11	MODEL ZEUL	TŲ.	I		0500 0505		
	•		FREG	0 0 0 0	160 200 250 315	9	930	1000	1250	2500	3150	2000	8000 8000	10000	16000	25000					SNIIN				369	}

								•		0)RI)F	G	N.	IL)R	P	AG U/	ie Al	11 T1	5 7															(278.0 FPS)	
	60.	PWL 6 7 16R B	1	9		9 6	9	<u></u>	9,	1 170	m	<u>ار</u>	מונ	1 166	90	. 8 . 163	7 163	161.3		161.8 160.6								5.2 162.0	7.7			TAMB 38.84 RELHUM 73.50	.u - 3363	FULL 64.73 M/SEC (
U L	150.	9	- 00	88.9	88 80 80 80	89.0		86.9	0.00	. F. G.	79.	77.3	72.4	70.2	20 8	9 (2		16.4										96.3 96		FT -9		SB59 29.4562		SQ [N] - F	
T DEGREES	↓ .	7	6	4	.0 96.	ω	-	101	۵			٥	3 (0	.7 80.9]"	6.0	.8 56.	0 39	.0 18.	N.								0 106.0	a	FREGUENCY SHIFT		I ALPHA PAMB	SIZE	9	
FROM IN FT	120. 130	81.5	6		ώ κ 89 g	96		41	٩	N		.	- 0	84.4 85.	5 77	7	.3 65	2.5	38.99 33	ų.								106	8 119	FREGI		N281 ADHO10		SQ CM	
ANGLES MEASURED FROM	110.	0 75.7	76.	5 79.3		2			1			- 1		84.8	1			23	900	ħ								97.2 1	104.7	8.288		RDG.		9032.2	
ANGLES M	90. 100	73.4 74.	.5 75.	76.1 77.	78.78	.2 81.	.3 82.		3 83.	9 95.	87.	5 6 65	9 85.	92.	.2 77.	.57	.1 64.	8 54		<u>:</u> ?				1				5.9 95.8 3.1 103.1	1 103.	RATIO		TAPE AERO. 1	Įį.	FT) SL	
	80.		9.	77.9 7	N IO	S.	a c	N a	4	a		9	~		'n	₩.	a.	۱,		- >								97.2 95 103.8 103	03.8	DIAMETER	ļ	ANECH CH	RAN	0.0	
	8	8 72.6	74	1 76.0) / 	91	9	2 6	1 90	87	8 2	9	82	79.4	23	68	9 6	2 6	5. C.	:								1 103.2	103.2			2 - 4	Acous	731.5 M (240	
	50 . 66	۹	Q	71.7 72.	ם כ	. 2 79.	. 69 80.	3 00	0 68.	.8 88.	ю. В 64	4 82.	.2 80.	6 K	7 72.	1.9 65.	1.8 57.	200										6 101.	4 101.		1000	LOCATION	POINT		
	÷.	86.2	68.2	90°7	73.7	74.8	י ש		8	4		4	n i	71.6 7	ď	4.1 6	43.7 5	7 6	•				_					90.8 92 96.3 98	e		•		TEST PC	0202	
	0	D C	63	8 5	125	160	200 200 200 200 200 200 200 200 200 200	315	400	200	68.00 C.C.C.	1000	1250	000 000 000 000 000 000 000 000 000 00	2500	3150	4000	9300	8000	10000	DOC'S:	20000	25000	000018	50000 00000 00000	63000	80000	GASPL PNL	PNL T				MODEL	0200	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS
58.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB. 2400.0 FT. SL

X05055

IDENTIFICATION - FJ-300-FMODL

()

### ST CATION - MODEL ### PJ-400-FMODL ### BACKGRCUND FJB400-FMODL ###), 160, P.T.		100.5 100.5 100.5 100.5 103.6 100.9 100.9 100.8	98,3 148.8 96,4 148.7 96,4 148.7 92,1 145.6 92,1 145.6 85,5 143.6 81,1 142.4 74,5 141.2 68,5 138.5	523 RE
ANGLES MEAS ANGLES MEAS ANGLES MEAS B 00, 90, 100, B 07,7 88.6 90.2 B 07,7 88.6 90.2 B 07,7 88.6 91.8 B 07,7 88.6 91.8 B 07,7 88.6 100.6 B 08,7 98.7 91.8 B 08,7 98.7 100.6 B 08,7 98.7 100.6 B 08,7 98.7 100.6 B 08,7 98.7 100.7 100.6 B 08,7 98.7 100.7 100.8 B 08,8 95.7 100.8 B 08,8 95.5 100.6 B 08,8 95.7 100.8 B 08,8 95.7 100.8 B 08,8 95.7 100.8 B 08,8 95.8 95.7 B 08,9 95.7 100.8 B 08,8 95.8 95.7 B 08,9 95.7 100.8 B 08,8 95.8 95.7 B 08,9 95.8 95.8 95.7 B 08,9 95.8 95.8 95.8 95.8 95.8 95.8 95.8 95.	FROM INLET, DEGREES 120, 130, 140, 1	97.2 103.7 108.6 110 99.7 108.3 112.4 111 101.3 110.6 114.5 111	106.1 115.5 117.1 107.7 116.3 117.2 109.0 116.4 119.7 110.1 117.1 118.5 110.5 117.2 116.9 110.1 114.6 115.5 104.2 114.6 113.3	108.6 112.1 111.1 102 108.6 112.1 108.6 101 105.4 110.5 108.1 100 103.6 107.6 105.6 97 100.2 102.3 98.3 92 82.7 96.7 91.0 83 87.5 92.1 85.5 77	O 70.7 72.8 66.0 O 120.3 126.5 127.6 1 N281 IALPHA
	ANGLES MEAS	85. E 87.2 89.6 87.7 88.6 90.2 89.3 89.4 91.8 90.9 91.7 93.1	94.3 94.1 96.8 96.6 95.7 96.3 99.2 99.1 96.3 100.6 103.2 100.5 101.2 107.3 103.0 104.5 103.5 103.9 104.5 105.5	102.5 102.7 104.9 100.2 101.6 103.3 198.0 89.5 101.2 198.6 198.6 198.6 198.5 101.2 198.6 1	59.4 60.8 62.1 113.5 112.6 113.0 1 5-77 TAPE

•									-		• • · · · · · · · · · · · · · · · · · ·	•													•	· 14.4	
				0	RI	GIN PC	IAV IOC	L F	AC 2U	ALI E	IS TY		÷											£ [*]		0 FP3)	
																					•	1) - - Z			H	EC (370.0	
																			. '		REFRACTION CORRECTION	CORRECTION	- 1	79.20	EREE	12.78 M/SEC	
ARG	7			0 140 2.2	1-	7 146.9		5 150.7			.9 152.1	3	6 150. 2 150.	7 1	9	3 145. 0 144.	2 143.	3 140.	·	5	RACTION	TURBUL.ANCE	TAMB	RELHUM		MODEL 1	
	150. 160			06.1 107.	6 107	10.3 105.	- 6	 	11.0 113	= -	108.7 111 108.3 110]	105.4 106. 104.3 107.	9	90	95.3 100	q	79.6 82	. o. 4	.7 122			SB59	29.4523		SQ 1N) - P	
X05	DEGREES 140.			0.70	2 111.8 1	= :	115.8	7 117.3 1 4 117.8 1	10		7 114.2 1	112		3 107.7		0 97.7	30	.6 83.2		126.9	9	48.00	I AL PHA	PAMB	SIZE	60	
-400-FMODL	FROM INLET. 120. 130.			8	95 4 105 U	6 110	24	1.4	116.	14	9 113.	9 112			03.1 104.		2 96	3. 88 88	9.9 9.3 19.0	120.4 125.8	Y (FI/SEC)	ш	N281	ADH019		S SO CM (4
ENT R H	110.			88.7	93.0	93.7	97.9 97.9	7.66	102.5	104.0	106.0 1	107.5	107.4	106.91	102.8	98.3	90.06	84.7	70.3	id ο	T VELOCITY	JEŢ	2	RDG.	•	131.5	
DENTIFICATION	ANGLES, MEA 90, 100.			.2 87.	8 8	0.00	5 94.	6.0	- 68	d 5	7. 103	.3 103. 2 107.	.7 106.	5 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	601	97.	B 89	.7 83.	.3 %	3 P 63 4.9 114	FREE JET	1111	TAP	AE	ti On	O FT) ARC	
DEG. F.	90.			87.0 87	99 4 89	φ.		ω a	99.00	4	Q -	- 7	107.0 1	103.6	100 4 1	94.2	88.7	80.3	73.3	116.8	ACTO	. 000		ANECH CH	140 01101	2 M (40.0 F	
59 0	0. 70.			.6 67.		. 60 . 60	. 1 92.	.5 95.	99.3	102	901	.5 110. A 108.	6 106.		4	. 6		.4 85.	5.1 79.6 3.5 71.5	5 62 0 116.	14 14	CALC. 1		541	•	12.2 M	
	50. 60			69.3 67	9	4 6	92.4 91	100			941	108.5 109	6.	101.5 101	7,		91.3	•	ص « <u>.</u>	0 0		1.000	1	LOCATION	 	TEST POINT 0506	
	40.		005	87.	87			96	0 97.5	45		107	9	0 104.7	g	93.	98.4	20.00	74.	57. B						g	(k.
		FREG 50 63	802	160 200 250	315	500	630	1000	1250	2000	3150	4000	9300	10000	12500	20000	2500	40000		POUDO -			TEST			2	- 1

0

												OR OF.	GII PC					GE				*								. 06	.20	FREE-JET SPEED
		:	PWL 164.1	165.3	166.8	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	169.9	170.4	170.4	170.5	170.8	169.1	168.3	166.7	165.0	163.9	162.7	139.0	158.6	158.5 156.6							181.4			TAMB 35	2	
		160.	80.4		79.2	9 6	84.3	8 8 10 10	83.00 0.00	81.5	78.6	72.9	72.4	66.0	. 4	53.8	39.	Ð. 0									93.3	98.0		1		
10	8	150.	87.3	87.0	85.7	86.3 2.4	87.0	86.8	80 4 7. K	83.9	81.8	77.5	75.8	70.07	66.3	60.1	20.0	16.4	1			•					7.96.7		FT -9	SB59	29.4523	
X05065	DEGREES	140.	80.8	92.1	93.6	94.0 0.0	96.3	96.3	94 8 6	91.5	90.7	86.2	84.5	20 Z	74.0			34.4									104.0		X SHIFT	/LPHA	PAMB	SIZE
MODI	INLET	130.	88.6	٠.	93.4	94.6		93.9	•	4 ^	1.00			84.3	80.7	76.7	72.4			9 .0					٠		105.1	9 (FREQUENCY			1
FJ-400-FMGDL	ROM IN	120	80.6	83.2	85.6	87:7	89.7	90.4	89.00 0.00	90.0	89.6	88.9	87.8	84.2	81.0	77.9	•	52.6		•							100.8		1	N281	(DHO19	
ı	EASURED EROM	110.	75.3	75.9	77.6	80.0 7	83.6	84.3	85. 	86.9	86.3	87.5	87.3	85.0 84.6	82.0	76.8	70.00 10.00	53.0	34.6	•							-	• 4	8.268	١.	RDG.	
ICATION	7	100	73.7	74.8	76.8	76.07 20.03	80.8	82.0	82.4	9		, a	6	- A		a,	ص ا		0								95.8	الم	RATIO	TAPE		
DENTIFICA	ANGL ES	8	72.4			27.3		81.4			88.6	. 4		82.7				54.2		તાં							96.1					NGE
_		80.	73.6			7.0.4	-	81.7		9	٠ د		9.	80.c	1	10	١.	50.3	Ci.								0.0	o rd	D! AMETER	-77	ANECH CH	ACOUSTIC RANGE
		92	71.2	9.		~ K	6	0.0	د	0	91.6	4 C		91.9	9		ი (2 6	-								a a	ם מ		12-15-		ACOUS
	.	.09	6 69	7	ا و	- 0	9	81.1	<u>ب</u>	4	٠ ر		.7	, 10	q	9	ص (-].			• •	- N		1		
		20.	6.9		φ.		~	o . (6	ص د د		8	77.55	ĸ	41		0 6	9.								94.7	•		TEST C	LOCATION	DINT
		40.	67.7.6	0	۲.	76.4	6	77.3 7	ro σ	4	<u>و</u>	82.2 B	10	0 4	4	10 (0.0	 4	9.								4.0	ا م				TEST POINT
		i	FREG		00		1		220	1	200			1600	- 1			5000		8000 10000	12500	16000	25000	40000	50 000 6 3000	BOODD	OASPL 9	ı				MODEL

						ORIG OF	iN PO	AL I	PAC	ge IS ALIT									-JET SPEED EC (0, FPS)	
- GE	:					, O 0	60 15) O 4	9	თ – к	4-0	0 K	ာ်ထံတာ်င	900	- 0	8	8.	MB 41.36 UM 68.20	FREE-JET 0, M/SEC (
OR BACKGROUND NOISE	. 020		160. PW			113.0 145. 113.6 145.	4	i 0 4	125.3	120	0 2 3 6	106.9 143	103.8 140 97.3 137	89.4	94.2 78.4	64.8	129.4 160	TAMB	- MODEL	n
"	10DL X05070	DEGREES	140. 150.		03.0 106.2	.9 108. .7 110. .5 1110.	113	13.7 113.1 14.0 112.7	N O	9 01	C6.2 110.2 04.8 108.1	6	95.8 100.6 91.9 94.9	a 6	- «	7-	122.8 125.1	ALPHA SB59 PAMB 29.4720	SIZE. 20.38 SQ IN)	
ELS CORRECTED TD. DAY, SB	FJ-ZER-	INLET,	. 130.		. 3 98.4 1	.2 99.7 1 .7 104.3 1 .8 106.1 1	4 107 9 1		8 102 6 108	.5 107.5 1 .8 105.7 1	. 1 104.3 1 . 8 102.8 1	7 100.6	5 95.8	9 86.2	1 80.6 8 72.2	3 59.1	4.3 118.4 1	N281 1/ ADH004	SQ CM (20	
ESSURE LEVELS ENT R. H. STD.	MODEL BACKGROUND	MEASURED FROM	110. 120			9 9 9	95.7	98.00	101.2	0.0	100.7	9.66	95.	83.2	78.5	58	7 112.0 114	RDG.	131.6	
SOUND PRESSURE	- ICATION -	ANGLES ME	90. 100.	•	06	200	8	- 0 a	4 97	7 2 2	99.8 99.8 99.2 98.8	2 60	o 4 e e e e	9 8	900	40	109.0 109.7	TAI	RANGE 40.0 FT) ARC	
RMED MODEL	IDENTIFICAT		. 80.			0 87.8 7 88.6	7 92.5	2 94.0 5 96.1	2 96 1	4 102.0 7 98.5	0 101 6 2 99 9	4 94.7	0 92.1 7 89.2 85.8	6 83.3	73.00	5 66.5	.8 110.8	15-77 1 ANECH CH	ACGUSTIC RA	
UNTRANSFORMED M	-		60. 70		93	. 2 86.	9 89	-04	92.9 94	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	95.5 99. 95.5 97. 94.4 95.	- 8 - 8 - 8	98 86 86	828	96.4	0 2	9.	TEST DATE 12 LOCATION C4	51	
			0. 50.		4 4 1	9 83.	6 85. 6 87.	8 87. 7 94.	4 91.2	98.6 99.9	. 8 95.2 . 7 94.1	0 92. 0 90	4 86	200	2 4 0 2 8 0 2 8 0	0 0 10 40 10	.9 107.	TEST	TEST POINT 0507	
			PRED 40	0000	200 200 200 200 200 200 200 200 200 200		- 1			_	4000 95 5000 95 6300 93			- 1	31500 72	1	9		MODEL 1	

· 9400 ...

									OF		iN.					ין : רדו									١	TON - YES			T SPEED	M/SEC (0. FPS)		
FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS 59 0 DEG. F. 70 PERCENT R.H. SID. DAY, SB. 40.0 FT. ARC	1 DENTIFICATIO	ANGLES MEASURED FROM INLET, DEGREES	40, 50, 60, 70, 60, 90, 100, 110, 120, 130, 140, 150, 160, PWL	20	63	78.5 65.6 63.3 63	80.4 83.7 84.2 87.7 86.7 88.6 89.2 91.8 94.0 96.7 104.3 108.7 110.3 113.0 1	.0 86.0 86.0 87.6 90.2 91.0 91.9 94.1 97.8 106.1 110.5 111.7 113.6 146	87.6 87.4 87.9 89.7 92.5 91.6 93.6 90.7 99.4 107.9 112.1 113.5 115.4 1 88 8 87 4 89 1 91.2 94.0 93.1 94.8 98.4 101.4 109.0 113.6 112.8 115.4 1	92.7 94.7 94.0 94.5 96.1 95.0 96.4 99.3 102.5 109.0 113.7 113.1 117.3 149	5 94.1 93.6 95.1 98.4 97.6 98.7 100.6 103.0 106.4 114.0 112.7 116.7 149	100 9 102 2 104 0 103 0 105 6 99 8 99 6 101 5 104 6 108 3 114 0 119 8 125 3 1	99.1 98.6 100.4 99.4 102.0 98.2 09.2 101.2 103.5 107.5 110.9 15.1 120.9 151	6 99.9 99.7 99.7 98.5 96.7 98.5 101.4 103.6 103.7 105.2 107.0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	95,8 95,2 95,5 97,2 99,9 99,2 98,8 100,7 103,1 104,3 106,2 110,2 113,9 1	93.7 94.1 94.4 95.9 97.5 97.9 98.2 100.4 101.8 102.8 104.8 108.1 112.3 145	0 92.9 83.7 83.4 84.7 95.8 96.7 99.6 89.7 100.6 100.9 104.8 108.9 143	85.7 88.1 89.0 91.0 92.1 94.0 95.1 97.5 97.5 97.7 98.6 102.3 106.	83.4 86.7 87.5 89.7 89.2 92.4 93.0 95.7 95.5 95.8 95.6 100.6 103.6 140	8 82.6 83.3 85.3 86.2 86.4 89.5 88.1 87.8 91.1 94.4 136	72 0 73 6 76 9 80.2 80 9 81,1 82,0 83.2 84 8 60.6 83.8 88.4 88.2 1	60.9 61.8 66.5 68.8 69.2 69.2 71.3 70.9 74.8 72.2 74.2 75.4 78.4 133.	64.2 56.3 62.4 66.3 64.6 70.1 64.5 68.7 72.1 71.5 1 c1.5 1	106.9 107.7 108.6 108.8 110.8 109.0 109.7 112.0 114.3 118.4 122.8 1	٩	UT 1.000 CALC. 1.000 TURBULANCE	TAMB 41	C41 ANECH CH AERG. RDG. ADHOO4 PAMB 29.4720 RE	SIZE	507 12.2 H (40.0 FT) ARC 131.5 SQ CH (20.36 SQ IN) - MODEL. 0.	33	75
			· .							1									-		1			- KS	181	S SNI	INI				ALLA	NOH-

											•																						i di	
					-)Ri)F	IGI P	NA OC	IL)R	P/ QI	AG JA	E	K T	¥														SPEED 0. FPS)		
																														41.36		FREE-JET S O, M/SEC (
		7	163.3		166.9	7	167.0	173.4	169.7	165.0	164.8	163.4	161.5	159.3	156.3	155.2	154.6	•	101	153.1							179.1			TAMB				
		160.	.98	90 8	88.5	9	8 6	98	a i	4 4	2	2 1	2 %		20	30	80										00	- 1	O P	SB59 29.4720) - FULL		
X05075	ES	150.			89.3				ì		8	1		3 71.6	1	100	37	6 18.4	0						•		6	3 104.2 5 105.1	SHIFT			SOLN		
	DEGREES	140			•	8	N C	9.18	ı		4 82.2	ı			1		7 47.	5 32	 60 60								100	1 03	FREQUENCY S	I ALPHA PAMB	•	SIZE (1400.00		
FJ-ZER-FMØDL	URED FROM INLET). 130	-		89.00	- 1	0 6	97	ı		6 82.4		- 4	20 4	1 66	- 69		40	.8 17.	ø.								99.7 101.3 99.7 102.4	FREGI	N281 ADH004		SO CM		
- FJ-ZE	ED FROM	o. 120	2 78		.6 82.8	- 1			- 1				. 9 7 8 . 9	9		. 4	(1)	đ	.4 27	- -								96.7 99 98.7 99	. 288			9032.2 \$		
ATION	MEASUR	11 .00	5 76	ю.	8 60	ط.	- 0	0	þ	a c		۹.		- (9	- 0	10	4	1.2 28							•	- -	od	•	TAPE NG AERG. RDG				
IDENTIFICATI	ANGL ES	90. 10	2.0 74	6 .	5.6 77	g	- a		4	() -	80.3 79	4	0.4	74.3 75	4 ×		56.6 57	٩	6 6 6								IO.	96.5 97 96.5 92	ER RATIÖ	AE		IOE O FT) SL		
<u> </u>		.00	1.2 72	6.	75.1 /4 76.8 75	9	. .	, œ	7	o , a		4	o -		90	i o		a	28.2	•							ю	98.2	DIAMETER	5-77 ANECH CH		ACCUSTIC RANGE 5 M (2400.0 F		
		70.	69.0	8	73.00	g	0 0		7	٠ ٢ ٧		d	0 -	70.4	مام) (C	9 09	7	26.3								•	95.7 96.8		12-15-77 C41 ANEC		1 •		
	-	.09	67.2	ن	66.4 70.6	e	6 0 (G	a 0		4	, K		4	ه م	48.2	7	19.5							-		94.4		TEST DATE		731		
		20.	4.5	10	67.8 67.7	ø	- (9.5	۹	•	6.67 4.6.						41.7		7.5									91.6 93.0		TEST		17 POINT 0507		
		.	60		66.4 67.6			78.6		•	73.4		_	59.4		•	9 4 7 6 7 4										. 84	88				TES		
		0		63	08 C	125	160	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	315	400	200	800	1000	1600	2000	2500	4000	2000	6300	8000	12500	16000	25000	40000				PNL				MODEL 0500		

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F. 70 PERCENT R.H. STD. DAY, SB. 2400.0 FT. SL

												GII PC			P/ Ql	A GI JAI	E LIT	S Y			•					T SPEED (278.0 FPS)		
						7					0.0	0.0	0.	4.0	9.1	8 0 4	iż	4.6	· -	7.1		1.5	•	1.2	MB 36.14 IUM 77.20	FREE-JET 84.73 M/SEC (•
X05080 X05230		160.				7	04.7 137		95.9 143	0	- •	98.5 143	•	90.7 140.4	10	137	9 136	<u>ر</u> ه	76.5 132	7	6 W	4	40.2 126	111.2 153	TAMB 2 RELHUM	MODEL	•	
X05080 X05230	S	150.			·	4	26	4.	1	g /m	2.5	1			Į.	ص م	- 1	ol L		4		d	43.4	115.6 1	\$859 29.458	- (NI 08	·	
FJ-300-FMGDL FJB300-FMGDL	, DEGREES	140.				1000		. – .	90	=	20.5	90	.2 103.9	3 102.0	66	.0 97.1	93.	91.6	4 94.4	77.	5 64.4	57	0 50.9	.5 118.7	IALPHA	S12E 20.38		
	FROM INLET,	120. 130		•		-	30.4 95.7 31 p 100 0	93.0 102.	7 ~	8.5 105.3	99.0 104.	2 2	103	00.1 101.3	7-	98.3 99.0	7 96	95.2 94.	10 -	9		4	9	110.3 114.	N261 ADH015	SO CH		
SEE	RED	110.				4	0 0	·- c	4 01	D	- r	9 6	^	4 0	0		10	/ E	9 9	9	. v.	8 2		108.0 11	₽ <u>2</u>	131.6		
ATION - MO	ANGLES MEASU	100.		-		4	6	87.	2 6	92	89	8	93.	94.	9	9 9 9	93	. 68 - 68	90.6	78.	67.	60		105.4	TAPE AERO.) ARC	; ;	
] 2	ANG	0. 80.				28	6 4	9 67.0	8	90	2 5	325	91	•	95.	60 K	7 91		94.1	77.		57.		7 104.1	5	C RANGE 40.0 FT)		
I DENTIF		70.				4	oi L	83.8 85	1	•	88.6 92	90	4 91	98.4 95	0	92	90	a	82.6 81 78 4 78	٥.		9	11.1 56	04.6 105	12-15-77 C41 ANECH	ACGUSTIC 2 M (
		60.				4	• •	61.3	9	0		9 01	-	a c	0	ن د	<u>.</u> ط	۵ 4	0 4	6		-		103.7 10	DATE	12.		
		50.		•	·.	78	7.0	9.0	82.	84	8 8	8	94	98	ā	8	86		78.	69	57.5	23	48.	102.9	TEST LGC/	TEST POINT 0508		-
		40. FRED	50 63	90	125 160 200	78	7 20	80.2	8 8	83	83	92	96	3150 96.3	6	300 89.2	8	20.0	20000 74.3	67.	40000 62.0 50000 54.5	48	80000 43.6	GASPL 102.2		MODEL TES 0500		

					OF	aigiNAL	PAGE	S				F P8)
					OF		PAGE QUALI			CORREC	1 77.20 FREE-1FT SPEED	EC (278.0
ARC	•		o.	6 134 7 140	- 6 7 9 7 0	. 6 139.6 . 1 140.6 . 5 143.4	900	n n o -	17 -	REERACTION. TURBULANCE	RELHUM	MODEL.
LEVELS 40.0 ET. /	_		150. 160	 720	06.5 102. 06.7 102. 05.3 101.	460-	92.0 92 92.0 92 90.4 90		ena 0		29.4582	î.
	X05080	DEGREES	140.	577	20170	- 7	9000	84.0 81.0 81.0	0000	98		20.38 SQ
JAD PRE	FJ-300-FMGDL	INLET	. 130.	100	52465		9588	9 94 7 0 91.4 5 87.9 6 85.7	4 72. 6 65. 7 50. 7 13.	LETZSEC) TER (IN)	10	5 5
MODEL SOU R.H. STD.	- FJ-30	RED FROM	10. 120	000	96.	2 6 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 98 97 97	9 9 9 9	75.6 76.66.9 71.60.9 65.	DI AME	G. ADHO1	131.5 50
TRANSFORMED 70 PERCENT	FICATION	ES MEASURI	100.	020		9 4 40 0	9,00	0000		JET	AERO. RDG	ARC
. 1	IDENTIF	ANGLE	9		90.00	1 .	94.	2 6 9 9	75.1 67.5 60.4 54.2	FRE	.	40.0 FT)
FLIGHT			. 60.	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3		1 98 7 94.	3 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 72. 2 72. 2 66. 2 63.	EACTOR 1.000	12-15-77 C41 ANECH	M C
50		-	60. 70	 r10	83.5 86 84.6 87 86.0 89 89.4 91		8 7 9 10	n-00		୍ୟୁ ପ୍	OCATION C41	12.2
			9	997	86.23 86.73 86.73 86.73 86.73 86.73 86.73	9 6 10 6 10	4-0-	n 0 0 n	6040 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	7	0508
378			6		83.6 85.4 88.5 89.1			882	20 9 8 6 7 5 6 4 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6 5 6	CODEL		0500 08

À

FLIGHT TRANSFORMED, SCALED, AND EXTRAPCLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD., DAY, SB. 2400.0 FT. SL.

			ORIGINA OF POO	L PAGE IS	5		.20 FREE-JET SPEED 3 M/SEC (278.0 FPS)	
	PWI	60.04 60.04	55 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		! ! !	•	67. 7.4	
		11	1	1	146	8 171 8 2	TANB RELHUM	
	160	1	63.00	_		4.0.2	9	
80 81 80 81	150.	4 4	66.66 66	23.7 23.7			29.4562 29.4562 50 IN) -	
X05085 DEGREES	140.	86.42 86.42 86.42 86.42 86.43	2 4 4 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	38.6 4.8 4.8 4.0 6.0 6.0		96.0 9 97.3 9 97.9 9 CY SHIFT	PAMB PAMB SIZE, (1400.00 S	
. 2	1 · c	1222122		62.5 57.9 47.8 10.7		93.1 9 96.5 9 96.5 9	2	
		27.77 27.67 20.07 20.03 4.00 4.00				0.08 0.08 0.08 E	ADH015	
- E	10.	00000-00	40-0000	0 ~ 0 a to		444 8	38	
ATION	0. 11 5 69	04000040	4-10-00x	- 9 9 7 0 6		-07	ω ^α	
DENTIFICATI	10 6	6122448	25 27 26 27 28 28 28 28 28 28 28 28 28 28 28 28 28			8 94. 8 94. RATIO	AERO AERO SE FT) SL	
I DEN	06 29	1		1 1		9.2 96. 6.3 93. 8.8 93. DIAMETER		
	80.	4 4	20.00 20.00 20.00 20.00 20.00 20.00			996.3 96.3 01A	T 04	
	70.	4	4			98.7	12-15-77 C41 ANECH ACGUSTIC .5 M (24(
	0 ^	44000	n-neonoc	04r-a		4-11	1 -	
		9000	∠ 0 10 € 4 € 6 0 €	9200-		60 C	LEST DATE LECATION OINT 73	
	9 20		7227222			988		
	40.	68. 69. 69. 69.	74. 74. 79. 65.	25. 28. 22.		94.3 99.9	TEST	
	FREG	250 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	600 1000 1000 1000 1000 1000	2500 3150 4000 5000 6300	25000 25000 25000 25000 25000 25000 25000 25000 25000	OASPL PNL PNI T	MODEL 0500	79

-· -				• • -	-	, and a second										sur.						¥.								
							00	Ri F	GIN PO	AI OF	L F	ΣŲ.	GE AL	19 (TI	5												SPEED 370.0 FP8)			
																										35.96 78.90	FREE JET 12,78 M/SEC (
ND NOISE			PWI				7		38	=	3 141.3	139	139	139.0	139	13,5	2 136.7	136	133		129	200	124	0 124.4	5 151.7	TAMB	MODEL 1			;
OR BACKGROUND	X05090 X05220		150. 160.				.601.0		20	83	600	7 92	3 92	14.4 90.6 12.6 89.1	2 86		80	90	82.7 79.3	. 1 75 0 73	.7 68	60 R	9 48	.0 40.	12.3 108.	SB59 29.4533	î Î			
CORRECTED FOR DAY, SB. 40		DEGREES	140. 1				ヿ	9.	106.0 10	9-	108.4	105.2	104.5	99.2	97.0	00 00 00 00 01 00 01 00	60.00	90.08	87.1	83.6 78.9	76.5	71.1	57.1	20.8	116.6 1	IALPHA	SIZE 20.38 SQ			
	FJ-400-FKGDL D FJB400-FMGDL	M INLET,	20. 130.				9 83 8	900	0 101	7-	104	- -	6 102.	7.8 102.5 3.5 100.5	86 9	9. 9.0 9.0	8.76 8.8	98	.3	<u>ه</u> -	4	.9 74	5 C	.7 51.	9.0 113.6	NZB1 ADH018	SO CM C			7
SSURE LEVELS	MØDEL BACKGRÖUND	MEASURED FROM	110. 12				85.3 87	10	86.7 92	d 0	94.0 97	6 C	9	95.6 .97	. ~	4.4	96.8.96	d-	91.5	ب د	વ		D 6	0	107.2 109	F 160.	131.6			
SOUND PRES	1	ANGLES MEAS	100.				83.4	2;	- ``.	A 99 4	8	<u>.</u>	92.	0 0 0 0	8	9. 6	4 to 00 to 0	8 5	88	82.	15	6 72.4	9 6	25	9 104.8	TAPE AERG.	T) ARC			
UNTRANSFORMED MODEL SO	NT I F	ANG	. 60. 90.				4 78.5 01.1	61.2 öZ.	5 82.7 53.7 4 84.7 85.1	86.9 85.	89.30 mg.	3 90.1 FF.	91.1	9 91.7	5 100 B 95	7 97.4 97.	4 93.8 94. 8 91.9 92.	90 Z 91		4 80.0 83.	75.2 76.	3 66.8 71.	59.8 63.	49.1 50.	.9 105.4 103.	-15-77 1 ANECH CH	ACCUSTIC RANGE 2 M (40,0 FT)			
UNTRANSFO	•		60. 70				77 0 78	7.4 79.	79.2 80.79.8 82.	2 83	96	.3 87.	2 2 32	85	9 E	.0 93.	92. 2 91.	5 88	84.4 85. 82.3 85.	0	d -	64.9 63.		0	103.9 104.	TEST DATE 12-	51			
			0. 60.				11.0	.2. 77.		18	0.0	.7 84.	9 82	98	6. 69 6. 69 6. 69	. 8 92.	3.2 90.1 7.2 88.3	2 86	4 R	8 77.	23		.5	7 48.	2.7 103.6	TES	TEST POINT			
380			40	20 CG CG CG CG CG CG CG CG CG CG CG CG CG	300	125	r	1	400 77	-	800 82 1000 82	1250 82	1	2500 97		1	6300 89	- 1	12500 81	20000 73	25000		20000	80000 43	OASPL 102		MODEL	i		
		1		1				_				-	_			_	_		1	_	- 12	5-6	111	7-7	O LEA	E SKITH	184 194	4 113M	ABNO	JH-

٠		والمراقب المراز والمراز والمراز والمراز والمراز والمراز والمراز والمراز والمراز والمراز والمراز والمراز والمراز					RIGINA	1	E IS				FP3)	
SOUND PRESSURE LEVELS	X05090	ET, DEGREES	130, 140, 150, 160, PML		91.4 96.0 98.9 99.7 132.7 oc 4 100 4 101 6 100 3 135 6	3 103.8 103.4 98.9 137.8 .1 105.5 103.9 99.5 1€3,1 .9 107.1 103.2 99.9 140.1	. 1 107.6 101.4 102.0 140.5 105.6 101.8 102.2 139.9 104.8 100.7 102.6 139.8 104.8 101.3 139.8	9 100.3 97.0 100.5 139.1 S 99.0 95.5 98.6 141.3 O 95.1 95.1 95.1 95.1 95.1 95.1 95.1 95.1	8 95.0 90.9 93.6 140.4 0 94.2 90.9 94.4 139.3 1 91.3 90.7 94.0 137.6	6 88.5 87.3 90.9 (5 84.9 84.0 89.0 82.4 79.8 84.3 4 79.6 84.3	72.9 71.4 69.5 73.9 131.3 65.6 65.9 64.9 68.0 129.5 59.9 59.9 56.4 59.7 127.5 50.0 50.1 46.6 49.9 125.9	112.9 115.6 112.5 112.5 153.0 /SEC) 370.00 REFRACTION CORRECTION - YES (IN) 48.00 TURBULANCE CORRECTION - YES	ALPHA SB59	
FLIGHT TRANSFORMED MODEL SOUND	IDENTIFICATION - FJ-400-	ANGLES MEASURED FROM INLET	70, 80, 99, 100, 110, 120, 1		61.2 79.9 81.1 81.6 82.0 85.5 9	.6 86.4 85.4 86.0 90.0 .6 86.4 85.4 85.4 86.8 92.1 1 .6 88.2 86.1 87.5 88.5 94.4 1	. 1 91.2 88.7 89.8 92.1 96.9 1 .3 92.2 90.4 90.8 92.8 97.4 1 .5 92.2 91.0 91.4 93.5 95.3 1	6 93.9 92.0 92.6 94.7 99.1 1 99.5 93.4 94.1 96.3 99.1 1 96.3 99.1 1 96.3 99.1 1 96.3 99.9 1	1 97.7 97.4 98.2 '98.6 98.3 85.8 95.3 95.7 97.3 97.8 1 94.6 94.6 95.3 95.0 97.1 96.6 91.8 91.8 91.8 91.8 91.8 91.8 91.8 91.8	. 1 88.7 90.7 91.2 93.1 91.6 4 84.5 86.9 88.2 89.2 89.6 .9 82.5 83.9 84.1 84.2 84.7 9 79.6 79.4 79.9 80.6 80.4	.8 71.2 74.6 74.9 75.5 75.9 .8 64.2 66.8 68.8 67.7 71.1 .4 58.2 60.0 63.0 60.1 63.5 .7 53.0 53.5 54.8 53.2 53.7	19.2 108.7 106.2 106.1 107.3 109.7 FE FACTOR FREE JET VELOCITY (FT 1.000	C41 ANECH CH AERO, RDG, ADHO18 ACQUISTIC RANGE ACQUISTIC RANGE ACQUISTIC RANGE ACQUISTIC RANGE ACQUISTIC RANGE ACQUISTIC RANGE ACQUISTIC RANGE ACQUISTIC RANGE	A 40.0 TO ARC 191.0 SE
			40. 50. 60. FREG	8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	81.4 82.7 81.2	82.2 83.4 82.0 84.2 83.8 83.7 86.1 85.7 84.4	89.1 86.4 87.5 89.9 89.1 89.1	ဖစ္ဝ	96.6 98.3 97.3 95.9 96.2 96.2 93.7 94.2	89.6 90.4 90.3 86.3 88.0 87.6 81.0 83.6 82.9 76.7 79.0 78.7	72.2 73.1 74.3 66.5 67.8 67.8 57.8 59.5 60.4 48.5 50.9 51.0	MASPL 110.3 110.3 109.3 109 MADEL/FULL SIZE SCALE INPUT 1.000 CALC.	LOCATION TEST POINT	8003 0000

												OI			IAI OR		PA	GI Al	E	S											96.	FREE-JET SPEED 78 M/SEC (370.0 FPS)	
ÆLS				₹ 5	57.4	58.4	59.4	58.2	58.1	57.2	59.6	63.2	58.8	57.7	56.0	55.0	53.8	- G	. 4	•	4.0				. •		171.3				TAMB 35 RELHUM 78	112.74	
SL LEVEL			.09	73.3.1		-	~ ·				1		9	9.	55.4	9		10.2									\ \r	84.9				FULL	
NO PRESSURE			50.	1 08	ما		– a		ю			ω σ	, c	ტ •	50.4 50.5 0.0	9	ب ص		7								-	0 0	8		SB59 29.4533	2	
SOUND P	X05095	DEGREES	40. 1		4	0	غ د د	۱-	0	10 P	0	o r	'n	oi o	N O	2	.		d								9	.7 88 7 88	SHIF			S	
TED SO		- 1	-	7 82	l	•	ro -		0	-	.0 76	(O N		~ (900	4	. 2 5 5 5		B 23	_								94			I ALPHA PAMB	S12E (1400.00	
EXTRAPOLATED	FJ-400-FMCDL	ERCM INLET	. 130	62 9		85	7 683 9 9	9	85	E	79	70	76	200	32	1	60 g	47	32	= =							8	20.00	FREGUENCY		<u>•</u>	E	
	FJ-40		120	7	73	2	77	78	20	8 6	62	6 6	77	76.	30.0	9	9 6	<u>a</u>	1	24.							8	95.3	6		N281 ADH018	2 80	
D, AND E	NOI	ASURED	110.	68.2	•	70.7		1.	75.3	o e		. 6		× 0	74.6	di	÷		e	ıo.							\ \cdot\	94.9	A. 288		RDG.	9032	
, SCALED, ZO PERCENT	FICAT	NIGIES MEAS	100.	6.9							75.5				73.5	- 1	•	54.8	ı	28.7	,							9 9 0 0	RATIG		TAPE AERG. F	SF	
RMED,	I DENT I FI CATIO	ANG	8	66.2	٠,	63.8									73.0	- 4		54.8	- 1	27.5								94.5 5.5				NGE 0 FT)	
TRANSFORMED O DEG. F.			90	67.1		70.8			•						7.5	- 4		54,6	- 1	24.2								96.7 98.0	DIAMETER		77 ECH CH	FIC RANGE 2400.0 FT)	
			70.	B4. 7		•				75.9					72.2	9		ω.	4	28.3 0.7							~	96.3			12-15-77 C41 ANECH	ACGUSTIC 5 M (240	
FL10HT		.	.09	63.5	Ņ	63.0	0 49	6.	0.0	72.0	9.0		4	- c	70.7	9) C	0	4	60							•	9 0		-1		731.	
			20.	9	6	<u>-</u>		a	د	<u>ء</u> ط	0	າຕ	d	ب ق	, a	9-	. 6		4	ro ca							7.	0.0 8 8	•		TEST DATE	TNT	
			ö	1 63	0	99 6	- 7	4	O 1	; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	on c	90.	4	0 "	.1 68	4 6	7 W	0	2	ພ. ເ						-		0 95				TEST POINT 0509	
382	2		4	20 E1		96	- 1			5 72		77	77		65	1			1	0	0.0	0	00		00	0.0		92.		Í			
				, K	9	æ Ç	7	16	20 8	315	4 5	9	BOO	1000	1600	2000	9 6	4000	900	6300	10000	16000	20000	3150	#0000 #0000	63000	148YO	PN PN PN PN PN PN PN PN PN PN PN PN PN P			•	MODEL 0500	

UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE 59 0 DEG F 70 PERCENT R H SID DAY, SR 40 0 FT ARC

,														
		•						PAGE UALIT	S Y			SPEED 0. FPS)		, market and the control of the cont
•					•						40.46 72.90	FREE-JET . M/SEC (
. 8		160. Pul		1.49	16.0 150.2 16.5 152.5 15.8 154.2	. 4 156 . 9 157 . 9 160	04-R	106.6 155.2 105.5 154.6 103.7 154.2	1	407.04	TAMB TAMB RELHUM	- MODEL 0		The state of the s
FMGDL X05100	DEGREES	140. 150.	-	60 50 50	115.1 115.8 116.2 117.3 120.5 116.9	3 121.	4.4.5.		55 8 8	7 91. 3 60. 1 68.	132.9 128.4 12 ALPHA SB59 PAMB 29.4620	SIZE 20.36 SQ IN)	: 1	
FJ-ZER-FMODL GUJAD	FROM INLET, I	120, 130.		100	103.9 110.7 106.5 114.8 108.5 117.9	6 121. 0 122. 7 123.	1	9 60 0	2.0 0.0 100 0.0 0.0 0.0 0.0 0.0	10 4 01 10 10	126.1 132.4 N281 I/ADH007	S CM (20		
ION - MODEL BACKGROUHD	MEASURED	100. 110.		7 20 20 20 20 20 20 20 20 20 20 20 20 20	9.6	0-4-	12.0	0.000 0.000 0.0000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 97. 1 93. 7 86. 0 77.	120.5 123.1 TAPE NO. 1	ARC 131.		
IDENTIFICATION	ANGLES	80. 80.		2	7.7 96.1 7.7 96.1	6 4 0 -	0 105 0 105 1 109	.5 108. 7 108.	60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 89. 6 83. 3 72.	1.0 121.4 119.5 1-15-77 11 ANECH CH	STIC RANGE (40.0 FT)	:	
:		60. 70.		60 60 71 80	4 4 0 0 0	0.0100	7. 0 109.	000	2 7 8 0 2 2 0 3 2 9 8 8	2 34. 2 89. 4 82. 8 72.	18.3 119 DATE 12 TION C4	ACGUSTIC 12.2 M (4		
		40. 50.		87.0.01.6	4400	96.6 95. 99.7 100. 10.3 111.	10.2 110 08.3 107 07.1 107	04.3 104 02.9 104 01.4 103	4.0.0 0.096	.1 87. .2 83. .0 76. .3 67.	17.6 11	TEST POINT 0510		
		FRFQ	0 8 0 C	125 160 200 30	[1	' ' '	12500 20000 25000	31500 40000 50000 63000 8000©	OASPL 1	MODEL 0500	383	Б Н

•
•
~
•
~
•
•
2
5
5
5
5
19/7

				ORI(OF	GIN PO	AL OR	P/ Ql	GE	: IS						YES	YES		SPEED	
		•		, , ,	4 0	0 10) - 0	י מו	4 (V) (V	9 67 7-10		- 22	N 60 4	8	ᅦ	CORRECTION -	H 72.90	FREE-JET SPEED	-
	160. PWL		5.1 149.	.5 152. .8 154.		000	6.0 158.1 4.0 158.1	4	7.55 155.25 6.6 155.22 7.55 155.22	10 10	3.3 149.		4.7 148.8 8.6 149.1 4.151.4	0	FRACTION	RBULANCE	RELHUM	MADE	1
00 %	150.		115.2 115	===	- F		118.2 116	-	111.5 107	6 0 P	101.6 97 98.1 83	. 9	80.5 74 76.2 68	4		_	29.4620	4 - (N) 00	
OL XO5100			1 113.5	6 118.2 9 120.5	9 120.8 5 122.1	0 121.9	126	22:	9 117.3	511	7 109.3 2 102.4		2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	132.9		•	PAMB	SIZE	
FJ-ZER-FMGDL			02.1 109. 03.9 110.	06.5 114. 08.5 117.	10.9 119.	0.122	.6 122.	3 122	118	. 8 118 . 1 117 . 9 116	08.0 112. 04.8 108.		933.4 100. 91.2 94. 87.5 89.	6.1 1	((FT/SEC)	HETER (IN)	ADH007	NO OS	5
- NO	110.	•	96.9 10 99.2 10	1.2 1	104.4 11	20 0	or	4	4.21	000	108.3	97.7	86.8 81.0 80.0	123.1	VELOCITY (FT		RDG.	121	2
DENTIFICATION			.6 96.7 7 97.6	98.	101.8	201	7 107.	108	6 111.	965	9 105.	9 6	6 85.4 6 80.7 7 74 0	.5 120.	EREE JET	FRE I	AERO.	ET ABC	
IDE	80. 90		91.5 94.	.7	99.8 99.	40	9 6	0.	14.5 111. 09.6 110. 10.4 108	10 10 01	55	2 2 2	86.0 80.6 83. 75.2 77.	.4 119	OR	o !	ANECH CH	ACCUSTIC RANGE	
	70.		91.4 8	7.6	-	6.4	i No c		108.2	800	102.2 10	9 00	88.7 82.7 76.1	0.	SCALE FACTOR	.c. 1.000	12-15-72 C41 ANEC	0	E 4
•	. 60		6 90.3 4 90.4		9	101	7 108.	108	2.701 0 2.701 0 4.701 0	4 104 6 104 6 103	99.99	g	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7 118.	7	.000 CALC	LOCATION	NT	•
	40. 50		87.0 91.	.5 93.	8.00 9.00 9.00	7 100.	4 107.	3 107.	05.4 106.	.9 104. .4 103. .7 101.	8 - 0 -	1 87	74.0 76.0 68.1 71.0	.6 117.	MODEL ZEULL	INPUT 1.		TEST POINT	3

								0		GIN PO			PA QU	GE AL	i li							SPEED 0. FPS)
		PWL 9 170.9	.2 172.6		.3 178.8			-	9 172.6	7 172.1	``]	_	0 168.9	168.6	167.2	169.0			8 187.1 0	•	TAMB 40.46 RELHUM 72.90	FREE-JET 0. M/SEC (
X05105	DEGREES 140. 150. 160	1 94.1 89	93,6		97.3 92	9.00	97.1 78.	82.7 74.	6 78.4 68.	.6 76.2 5 72.8	0 69.2	.3 63.0 46.	0 41.9 17.	21.7					.0 104.0 98.8 1.9 105.3 99.0	9	HA S859 MB 29,4620	IC SQ IN) - FULL
R-FMODL	. 130,	68.0 95.2 97	90.0 98.3 99.4 92.4 100.3 99.7	1 101.6	9.0	4.101	99.3	97.4	2.20	93.6	88.6	8 82.8	70.8 72.5 60	5 60.9	44.2 40.5 23	!			106.4 111.6 111 111.6 116.2 113 111.8 116.7 115	FREQUENCY SHIFT	N281 IALPHA ADHOO7 PAMB	\$12E \$0 CM (1400.00
- NOIL	MEASURED F 00. 110.	2 83.5	. 7. 04.0 4. 86.6	89.6	92.8	69,1 92.1	7 93.4	93.4 93.4	8 92.8	91.8	4 87.6	7 62.8	.6 71.4	1 61.6	6.44.00 0.00	!			 101.7 103.6 10 100.6 1 108.6 110.6 1	0	TAPE NG. N.	SL 9032.2
IDENTIFICA	80, 90, 1	78 5 79.2	S 4	3.00 63	1.3 88	69.9 67.5	6.0	91.2 89.8	2 88	88	B 84	.7 80	. 2 . 69	2 60	17 0 20 8				102.8 100.8 109.2 107.9 110.1 107.9	AMETER	-15-77 1 ANECH CH	ACGUSTIC RANGE 5 M (2400.0 FT)
•	60. 70.	73.7 76.0	بر در	76.3 61.1	.5 87	i to 4	8	2 4 (9 67	2.4	9	9 78	2 6	3 57	32.4 40.2				98.7 99.9 103.7 106.6 104.8 197.4		TEST DATE 12-15 LOCATION C41 A	731.
	40. 50.	68.3 72.1	41	46	L, a	• •		a S	1	٠	- 4	o i	. 4	7 43	7.8 22.6	•			95.2 96.9 98.8 101.7 100.0 103.0		TEST	TEST POINT 0510

					ORIG OF	GINAL POOR	PAGE 1	5				37.04 75.70	FREE-JET SPEED 1.73 H/SEC (278.0 FPS)		
		3		27.8	50.00 50.00 50.00 50.00	55.7	55.8 55.8	54.0 52.9 4.0	50.7 48.5	48.8 47.7 45.8 46.0	7.6	AMB	40		
				7	10 10 1	7	1, , , ,	1, , , ,	, , , , , , ,			TAMB RELHUM	MODEL		7
X05110 X05230		\$60	:	911	116	20015	109.5	,	1	86.5 80.5 74.1 67.2	_	533	,		
ŏ ŏ	တ္သ	150.		-	15.0	0.411	109.6	105.7	99.7	86.5 80.9 75.6 69.7	60.6	SB59 29.4533	(N1 0S		
MODIL	DEGREE	140.		6	0.00 0.00 0.00	20.8 20.8 29.0 29.0	20.5 19.7 18.7	3 4 5 1 3 6 0 0	09.3 07.4 02.9	97.7 93.0 87.5 82.0	76. 32.	ALPHA PAMB	SIZE 20.38 S	-	
FJ-300-FMODL FJB300-FMODL		30.		đ	0 20 00	20.5	,	,		03.7 98.2 90.9		_	S S S	(
	M INLET	-		0.0	и ю.	0 1 1 0	ဖကက	01	4 9 6	0 V - 4	8 0.	1 012	<u>v</u>		
MODEL BACKGROUND	FROM	120		0	555	1	4446	465	100	9 9 9 9	_	N281 ADH012	.5		
MODEL	SURED	110		98	99.5	200.00	100.	112.2	109.2 107. 102.6	95.7 91.2 84.3 77.9	73.6	RDG.	131		
NO	S ME	100.		2		03.6	4	4				TAPE AERO.	ARC		
DENTIFICATION	ANGLES	80 .		4 10		4	4	05.2 05.2 05.6			9 -		IGE FT)	:	
ENTIF		. 09		-	0-4 0		4 20 00 0	œ ∞ O №	0.1	ra-a	α 6	풍	C RANGE 40.0 F		
2	* ,			6	l	404k		1	_		7 66 2 119	15-77 ANECH	ACOUSTIC .2 M (4		
÷ .		70		8	888		6 - 6	201	101 99 96 93	91 86 79 72	118.	12- 641	12.2		
•		90		87.6		1					62.9	TEST DATE			
	-	20.		-	88.7 91.3 91.3	{ · · ·			7.96.6		ი. ნ .	TEST LOC	3T POINT 0511		-
		40.		6	011	8 6 0 -	~ 9 8 0	- 2 20	ଜନଦେଶ	40	ø. 0.		TEST 051	ļ	
			50 63 100	•	000 00		1				ت ت	٠		!	3
		FRED		# # # # # # # # # # # # # # # # # # #	6 4 D	4 9 5 9 9	2500 3150	5000 6300 8000 10000	12500 16000 20000 25000	31500 40000 50000 63000	80000 GA SPL		MODEL 0500		

UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB. 40.0 FT. ARC

FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS
59.0 DEG. F. 70 PERCENT R.H. SID. DAY, SB. 40.0 FT.

					O OI	RIGINA POOI	L PAG R QUA	E IS LITY					70	FREE-JET SPEED
		PWL	•	0. c		86.0 86.0 86.0 86.0 86.0 86.0 86.0 86.0	57.1 55.0 54.6	54.5 53.5 7	50.4 50.6 50.6		. 60	1 1	1	2
	ŀ			146	. 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0 . 0	200 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			6 6 6 4	420-	- 5	TURBULANCE	RELHUM	MODEL
		. 160		5116	8 115 8 115 115 115	22:==		====	103	.2 86 .5 72 .5 63			. 4533	-
X05110	ES	150		110	4048	0.45 4.65	=====	7000	00.00	8258	126.0	8	2	SO IN
X	DEGREES	140.	,	109.3	118.4	128.1 120.3 119.6		113.2		93.0 88.4 84.3	131.9 1	48.00	PAMB	\$1.7E 20.38.80
FMGDL	INLET	130.		6.00 6.00	4.00		119.2	4		96.3 91.7 68.7 78.9				
FJ-300-FMGDI	FROM L	120.		9.69	05.0 10.4 10.4	7.01		• • • •	07.2 05.7 02.6	94.9 92.1 87.9 76.1	5.0	l m	ADHO12	83 C8
. 1	ASURED F	. 10.		6.2	87.50 00.00 1 2.10		• • • •				4.		1.	131.5
CATION	뷬			93.1	0.000	0 - 0 0	V 4 - a	4000	075-	600%	.0		AERG. RDG	ARC
DENTIFICAT	NIGHES	50. 1	-	• "	0400	0 / 4 0	7000	-000	0.00.	٠ 9 9	10		AE	+13) -
<u>=</u>		•		9 6						!	0 1		E E	40.0
		. 80		0 C	20 20 20 20 20 20 20 20 20 20 20 20 20 2	5000	108	108 108 108	103 99 97		- 5	000	12-15-77 C41 ANECH	ACCUSTIC RANGE
		20		2.8	94. 95.	100.	100	8000	100	91. 83. 77.	121.		70	12.2 12.2
	-	.09		8.00	93.6 93.6 94.7		113.9	700	101 101 96		•	5	LOCATION	
		90.	-	9 5 2 5 5 6		1	100.3	107.6 106.0 105.9	101.1 100.7 95.8	87.6 82.3 74.0 66.2		1	LOC	TEST POINT
		40.		80 60 60 60 60 60			108.3 108.9 108.9	02.0 03.9	99.0 98.8 92.1		, n	INPUT		TEST
		FREG	63 100 25				1				_			387

				RIGIN OF PO	AL PĀ	CE IS						37.0% 75.70	FREE-JET SPEED 3 M/SEC (278.0 FPS)	
IDENTIFICATION - FJ-300-FMGDL X05115	. 50. 60. 70. 80. 90. 100. 110. 120. 130.	74.0 75.1 77.9 80.3 80.2 80.4 82.2 89.1 96.8 97.3 92.0 89.1 76.0 76.1 79.5 81.9 80.6 82.1 83.7 91.9 98.8 98.1 91.2 88.3 76.5 78.5 81.0 93.2 81.6 83.5 86.3 93.9 99.4 99.5 92.3 89.0 77 0 79 4 83.5 85.5 85.4 87.6 95.0 101.3 106.8 97.3 94.4	80.8 84.8 89.0 89.6 87.2 86.4 89.5 94.8 99.3 98.7 90.7 88.5 173 84.8 90.7 86.4 86.5 85.8 87.0 90.0 94.7 100.0 97.8 88.9 88.0 173 88.6 89.5 91.7 86.4 87.2 89.4 94.3 99.7 96.7 87.4 86.4 173 90.0 91.0 99.4 100.4 90.6 88.5 80.4 94.3 99.7 95.6 85.8 84.8 175	89.1 94.0 88.5 93.6 92.5 90.9 90.9 93.9 96.5 93.1 84.5 82.9 1 87.8 88.1 88.9 89.6 69.6 92.2 91.2 94.1 96.7 92.9 82.5 80.7 1 86.7 88.9 89.0 91.1 88.1 90.7 91.2 93.6 95.6 91.6 81.2 78.9 1	6 83.4 85.6 88.0 88.6 88.7 89.7 91.8 91.5 94.7 88.3 78.0 75.6 172 4 82.9 85.0 86.7 88.4 88.1 90.1 91.5 90.3 92.2 85.9 75.9 71.2 171 9 90.2 90.3 92.2 85.6 75.9 71.2 171 9 90.2 90.3 92.2 85.6 75.9 71.2 171 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	75.4 78.6 79.3 78.5 80.3 82.1 82.4 82.7 82.4 73.2 61.0 55.7 168. 68.0 71.3 75.6 75.6 76.5 77.5 76.6 77.8 80.0 69.5 52.7 42.7 168. 60.2 64.8 69.8 69.7 70.1 70.4 70.4 70.6 59.4 39.0 23.0 168.	28.0 36.6 41.3 41.0 43.3 44.9 42.8 45.1 37.4 22.2 166. 6.9 15.6 17.4 19.2 20.8 17.2 19.6 9.6 165.			9 97.1 99.6 102.4 103.5 99.6 100.5 101.9 105.2 109.8 110.1 101.7 99.3 186.1 2 103.1 106.5 109.5 110.4 107.3 108.1 109.5 110.9 114.2 112.9 103.5 100.6 2 103.1 107.4 111.4 111.9 107.3 108.1 109.5 111.5 114.2 114.2 104.5 101.8	DIAMETER RATIO 8.288 FREQUENCY SHIFT -9	TEST DATE 12-15-77 TAPE NG. N281 IALPHA SB59 TAMB 37 LGCATION C41 ANECH CH AERG. RDG. ADHO12 PAMB 29.4533 RELHUM 75	TEST POINT ACGUSTIC RANGE S12E SIZE S12E S11.5 H (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 84.73	
	FRE0 40	72. 74.	986.	85. 82.	90. 78.	52.	Ì	16000 20000 25000	50000 63000 63000	GASPL 95. PNL 101. PNL T. 102	•		MGDEL TE 0500	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG F. ZO PERCENT R H. STD. DAY, SR. 2400.0 FT. SL.

					OI OF	RIGINA POOF							SPEED 370.0 FPS)	
JUND NOISE			TAG.	1 146.3		7 153.6 .3 154.6 7 156.7	7	9040		- 0 4 0	4 -	TAMB 35.42 RELHUM 79.50	FREE-JET 81 MODEL 112.78 M/SEC (3)	
DAY SE 40.0 FT. ARC	FJ-400-FMGDL X05120 FJB400-FMGDL X05220	INLET, DEGREES 130, 140, 150, 160		105.4 110.3 112.7 113	107.2 111.6 113.6 111.8 115.7 115.1 114.1 117.7 114.9	118.7 120.1 1 119.8 120.9 1 119.6 121.8 1	6 121.0 111.3 0 119.2 110.4 3 117.7 109.4	1 ' '	112.1 109.1 101.2 96 110.8 106.9 99.7 95 106.6 102.6 95.6 91 103.0 98.1 92.0 89	101.8 97.0 87.9 84 97.2 93.1 82.0 78 89.7 86.1 76.7 72 84.5 80.0 71.0 66	9 75.2 61.9 57 4 130.7 124.1 120	1 ALPHA SB59 1 PAMB 29.4523	SIZE CM (20.36 SQ IN) - M	
SOUND PRESSURE LEVELS 70 PERCENT R. H. STD.	- MODEL BACKGROUND	ANGLES MEASURED FROM I 90, 100, 110, 120,		5 92 9 95 1 98 6	. 5 96.1	.9 95.3 103.2 109 .0 100.6 105.5 111 .1 102.7 106.9 112	8 104.4 108.5 114 5 106.5 108.9 114 2 109.5 110.4 114	2000	.0 106.5 109.4 110 .2 104.8 108.3 108 .4 101.3 103.5 103	6 94.0 96.1 0 88.9 91.5 2 83.5 84.2 4 78.5 78.2	.9 72.2 74.4 80 .1 119.3 121.5 124	TAPE NG. N281 AERĞ. RDG. ADHOZ1	ARC 131.5 SQ	
UNTRANSFORMED MODEL : 59.0 DEG. F.		A 06 07		2	.4 86.4 90.5 .2 89.7 91.6 .8 91.0 93.9	92.4 94.2 97.0 97.7 97.8 99.6 100.6 100.2 100.6 100.6 100.6 100.6 100.6 100.6 100.7 10.7 10.7 10.7 10.7 10.7 10.7 10.	.2 110.3 107.6 1 .6 111.9 113.7 1	.0 106.5 108.4 1 .9 105.9 108.0 1	.6 101.6 102.2 1 .1 100.5 100.1 1 .2 97.6 96.5	.5 91.9 91.4 .6 86.7 84.0 .4 80.6 78.0	68.2 70.5 68.5 6 16.8 117.9 119.4 11		ACGUSTIC RANGE 12.2 M (40.0 FT)	
				125 160 200 230 A2 9	86.1 86.4 86.1 86.9 87.6 88.7	.3 90.1 .3 101.8 1	108.4 110.5 1 105.3 106.9 1	8 103.7 7 103.4 2 102.3	96.4 98.7 93.9 \$7.3 89.7 94.2	84.0 85.8 79.2 81.1 71.7 74.7	61.9 65.7	TEST DATE LOCATION	MODEL TEST POINT 0500 0512	389

						. 4	origin F PO	AL PA	ge IS ALITY			YES		(370.0 FPS)	
D MODEL SOUND PRESSURE LEVELS T.R.H. STD. DÄY. SB. 40.0 FT. ARC	- FJ-400-FMGDL X051	EASURED FROM IN ET, DEGREES	110. 120. 130. 140. 150. 160. PWL		91.7 96.9 103.1 107.0 109.4 110.7 143.6 92.3 100.3 109.2 112.8 113.0 112.2 147.5	95.5 102.4 111.6 115.3 114.0 111.3 149.2 96.8 105.0 114.4 116.9 114.5 110.8 150.7 98.7 108.0 116.3 118.0 113.1 110.7 151.6	111.2 118.0 120.7 113.7 114.6 1 112.5 119.4 121.6 114.7 115.9 1 113.3 120.3 120.3 113.5 115.3 1	.0 118.9 117.8 112.6 114.6 1 .6 117.8 117.4 111.8 112.8 1 .7 118.3 116.2 110.9 111.8 1	114.6 116.8 114.0 107.7 109.6 1 113.1 115.7 112.0 107.3 109.3 1 112.1 113.3 110.6 105.5 106.8 1	7 107.7 108.8 105.1 100.8 103.4 1 .9 106.5 106.0 101.4 98.2 102.3 1 .1 102.8 105.3 100.3 94.5 97.1 1 .5 98.6 101.6 97.7 89.4 92.4 1	.9 95.3 94.6 91.2 84.5 86.7 .6 91.7 90.3 86.1 79.9 81.5 .7 87.8 88.2 82.7 72.2 74.1 .8 78.0 78.4 72.9 62.3 64.3	0.4 121.3 124.8 129.6 129.8 124.7 125.2 167.5 Jet Veldcity (FT/SES) 370.09 Refraction Correction - Yi Ree Jet Diameter (In) 48.00 Turbulance Correction - Yi	HA SB59 TAPB 35.	131.5 SQ CM (20.36 SQ IN) - MODEL 112.78 M/SEC (370.0	
FLIGHT TRANSFORMED	IDENTIFICA	ANGI ES MEAS	40. 50. 60. 70. 80. 90. 100. FREQ 50	63 60 100 25	160 200 250 90.2 92.4 90.8 90.8 90.1 90.5 91.1 315 90.2 92.4 90.7 90.8 92.2 91.6 92.0	90.9 92.2 90.9 91.5 93.5 92.9 94 93.2 92.8 92.7 92.9 95.6 84.8 95 94.7 94.6 93.3 94.2 97.5 95.5 56	98.4 96.0 97.0 97.5 101.5 98.5 99 101.1 101.0 102.2 101.0 103.7 101.7 102.1 105.1 105.9 104.8 103.0 104.0 102.3 103	117.6 118.2 117.2 114.5 116.6 108.8 106 113.3 113.9 115.4 116.3 116.7 114.0 109 114.6 113.6 115.6 113.9 111.1 112.3 113	109.6 109.8 110.3 110.9 112.0 110.9 111 108.4 109.4 109.2 110.3 110.1 109.5 110 106.7 108.2 108.3 110.1 108.9 108.8 108	102.1 103.8 104.0 105.1 104.0 105.2 1 99.2 101.9 102.0 103.6 100.5 101.9 94.4 98.3 97.5 100.1 98.5 99.4 93.6 95.4 95.4 96.6 95.8 95.6	40000 89.6 90.3 91.8 93.7 88.4 90.0 90.6 50000 84.4 85.2 85.4 88.2 82.4 83.2 85.3 83.00 76.0 77.9 79.3 81.1 76.9 77.4 80.3 80.0 80.0 80.0 80.0 80.0 80.0 80.0	OASPL 123.2 122.8 122.4 122.1 122.6 120.3 120.4 MODEL / FULL SIZE SCALE FACTOR FREE JET J INPUT 1.000 CALC. 1.000 FREE	LOCATION C41 ANECH CH AERO.	OSOO OS12 12.2 M (40,0 FT) ARC	THE TAX PROPERTY OF THE PROPER

()

												Gii PO			PA QU	GE	IS	A00							35, 42 79, 50	FREE-JET SPEED .78 M/SEC (370.0 FPS)	
SOUND PRESSURE LEVELS			0. 160.	90.7 84.7 187.8 91.2 84.1 169.1	89.7 83.9 170.1	87.6	88.3	88. A. 26. 51.74.5	82.3	80.4 174	76.0	8 74.5 1 2 70.5 1	6 67	55.7	3 42.2	40.3 23.0 166.3 21.8 167.3	166	165.6					99.9 96.4 165.8 101.6 98.4 101.8 98.4	6- 1-	SB59 TAMB 35. 29.4523 RELHUM 79.	SQ IN) - FUL 112.70	
STD. DAY.	FJ-400-FMODL X05125	FROM INLET, DEGREES	o.	0 92.0 94.2 8 94.8	96.7 96.8	98.3 88.4 68.3 99.3	99.5 100.1	94.3 100.2 58.5 94.3 99.7 96.7	98.1.95.3	96.7 92.7	94.5 89.5	93.1 87.1	9 69.1 82.6	6 84 7 77 8	0 77.5 68.4	70.0 69.0 59.0	8 36.0 19.9	ශ භ ග					104.8 108.9 107.8 110.9 113.5 110.5	8 FREQUENCY SHIFT	N281 IALPHA ADH021 PAMB	SIZE .2 SQ CM (1400.00	
TRANSFORMED, SCALED, AND EX O DEG. F. 70 PERCENT R.H.	IDENTIFICATION - FJ	ANGLES MEASINED E	90, 100, 110.	7 76.7 77.	77.8	96	2 84.4 86.	84.7 85.5 88.0 86.1 86.1 88.6	7 88.3 89.	6 91.3 gu.		90.2 91.0 92	89.3 90.1	85.3 86.6 87.	91.5 82.	71.0 70.7	43.9 45.3	20.3 22.1 17			•		101.5 101.3 101.7 108.6 108.5 109.4	METER RATIO	TAPE NG.	RANGE 00.0 FT) SL 9032	
FLIGHT TRANSFOR			60. 70. 80.	73.0 76.	2 75.1 78.	9 5	4 79.5 B4.	85.8 84.8 86.2	9 08.6 92. 7 95.7 98.	6 97.2 98.	2 80.0	2 90.3 90.	89.8 89.	9 84.3 B3.	9 82.1	7 70.3 70.	8 62.0 45.7	.0 19.3 18.							TEST DATE 12-15-77 LOCATION C41 ANECH	AC 731.5	
			40. 60.	FREG 69 8 72.7	72.1 73.	100 77.4 76.9	77 n 76	160 79.6 81.1 200 83.3 85.7	95.2 92	90.3 92	500 91.1 92.0 630 86.3 89.4	85 1 87		79.1 82.	70.2 76.	3150 62.0 72.5 4000 55.0 62.9	41.2 50	6300 18.2 30.3 8000	12500	16000 20000 25000	40000	63000	100.3 1	4	TES	MODEL TEST POINT	

-
. 761
•
7
_
_
4
8
2
170
9/19
-
5
200
5

						OF OF	ligi P	INA I OO F		PAGI	19	3 Y						8	FREE-JET SPEED M/SEC (0, FPS)	
IDENTIFICATION - MODEL FJ-ZER-FMODL X05130 BACKGROUND	AMGLES MEASURED FROM INLET, DEGREES	50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, Pur		02 1 01 8 02 8 03 2 08 1 07 7 00 0 100 4 112 8 118 7 118 4 140 7	4 91.4 93.5 55.8 96.7 98.3 99.7 104.4 111.2 115.9 116.8 117.5 151	106.5 116.0 119.2 118. 108.8 118.4 121.0 118. 110.6 120.7 121.8 119.	8 97.4 89.4 102.3 101.4 104.0 107.9 113.4 122.2 122.8 119.3 116.9 157	.3 10.5.0 102.0 104.1 103.2 103.0 109.0 114.7 153.0 126. 8 110.8 109.1 110.7 106.8 110.2 110.6 115.0 124.9 129 4 108 9 106 % 106 6 108 & 107 6 111 2 114 8 122 % 129	.7 112.2 112.5 110.9 106.8 107.9 111.0 114.9 122.6 120.5 115.3 112.8 157.	116.9 112.2 109.7 112.2 114.0 122.5 120.9 114.6 110.9 156. 113.6 113.5 113.5 114.5 112.9 114.3 121.3 116.4 113.4 109.9 156. 110.3 111.1 113.6 113.0 113.7 119.6 117.6 111.7 108.0 155.	4 107.5 109.0 111.9 109.2 112.3 114.0 113.1 119.9 116.8 110.2 107.2 155.	105.1 110.6 110.2 110.7 114.1 112.6 110.6 110.3 106.3 100.6 104.1 106.6 110.6 110.7	3 102.5 104.7 105.8 107.0 108.0 110.7 108.7 115.4 110.6 104.3 98.7 153.4 101.5 103.4 103.5 105.8 106.2 108.9 106.0 114.0 108.5 102.3 9B.7 152.	9 97.2 101,1 100.0 101.8 104.0 105.2 103.0 108.6 102.3 97.8 92.5 150. 1 94.6 97.4 98.1 100.2 99.9 100.7 100.9 104.9 98.6 94.5 90.5 149.	.5 95.5 95.9 96.6 98.2 97.5 104.8 97.9 90.3 85.2 1 .7 88.4 91.2 92.0 93.5 93.3 101.0 95.0 85.9 80.0 1	. 2 56.5 59.1 77.7 78.6 81.7 81.8 85.0 87.1 82.6 75.5 68.0 148.	75.8 77.5 80.2 84.4 78.3 68.4 59. 121.5 123.7 125.1 133.1 133.8 129.6 127.	TEST DATE 12-15-77 TAPE NG. N281 IALPHA SB59 TAMB 39.92 LOCATION C41 ANECH CH AERG. RDG. ADHOOS PAMB 29.4403 RELHUM 69.50	POINT ACCUSTIC RANGE 113 12.2 M (40.0 FT) ARC 131.5 SQ CM (20.38 SQ IN) - MODEL 0.	
		40. FREG	80 80 50 50 50 50 50 50 50 50 50 50 50 50 50	125 160 200 210	88	500 90.2 500 91.7 530 94.1	. 19	100	110.2		105.8	8000 103.51 10000 103.51	99.2 1	20000 92.9 25000 90.7	31500 87. 40000 83.	63000 71.	80000 68.4 ØASPL 120.4	S MILNE	MODEL TEST 3500 08	

UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC

FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. CAY, SB. 40.0 FT

				ORIGI OF P	NAL P DOR Q	AGE !! UALIT				- YES		ET SPEED : (0. FPS)	
	PVL		49.7 51.2		7.7 2.5 7.7	6.6 6.2 8.7 8.7	2 2 2 6 0 0 0 -	552.7 502.3 49.3 50.5	50.3 48.6 48.1 51.0	127.2 169.6 REFRACIION CORRECTION TURBULANCE CORRECTION	TAMB 39.92 RELHUM 69.50	O. M/SEC (
	150. 160.		116.4 1	117.0 1	6 117.8 7 118.1 0 114.5 3 12.5	109.9	9 105.6 4 103.2 8 101.7	7 10 10 0	9 80.0 1 6 74.6 1 5 68.0 1	29.6 127.2 169 REFRACTION TURBULANCI	SB59 I 29.4403 REL	IN) - MODEL	
-FMODL X05130			09.4 113.6 1	121.01	122.2 129.8 122.5	120.9 118.4 117.6	12.3.3	7	95.0 68.6 78.6	133.8 1	IALPHA	\$12E	
- FJ-ZER	10. 120.		99.9 102.6 1	106.5 108.8 110.6	114.7	114.0	112.6	106.0 103.0 100.9	-	123.7 125.1 133.1 Velocity (FT/SEC) Jet Diameter (IN)	RDG. ADHOO8	131.5 SQ CM	•
IDENTIFICATION			96.1 97.7	.0 99. .3 100. .1 102. 4 104.	105. 110. 107.	5 109	20.00	8 106. 2 99. 9 96.	2 92. 9 86. 6 81. 7 75.	120.7 121.5 FREE JET	CH AERG. F	RANGE 40.0 FT) ARC	
	70. 60.		ı:	.0 97. .3 98. .7 100.	104.	113.7 118.5 110.2 113.8 109.5 110.3	1 110. 1 109. 9 108.	. 4 103. . 4 100. 5 98.	.7 88. .8 81. .1 77. .4 74.	4 120.4 122.8 SCALE FACTOR ALC. 1.000	12-15-77 C41 ANECH C	Acquistic R	
•	50. 60.		92.1 91.6	. 2 93. 4 94. 9 96.	.5 102. .6 110. .7 108.	4004	. 7 106. . 2 106. . 3 105.	46-7	.1 87. 2 81. 0 76. 3 73.	8 119.	IEST DATE LOCATION	DEST POINT 0513 1	
	40. FREG 50	63 80 100 125	160 200 250 87.8 315 88.1	·	101.	108.	103	97. 92. 90.	000 83. 000 76. 000 71.	OASPL 120.4 119. MODEL/FULL INPUT 1.		MODEL TEST 0500 0	

																			•						- - - -					 ¥
										01	RÎC F	3II PC	AP OO	R	P/ QI	AG JA	E LI)į	Y										T SPEED (0. FPS)	
																,												39.92 69.50	FREE-JET O. M/SEC (
	160.	171 A	40	90.0 175.7	1	10	1.1 175.8 4 176 6	0	91	.9 173.3	4	in .	171.5	6	6.6 167.7	æ.	167.0	166.4	169.4					A 781 6				TAMB	FULL	PORREGUERARIO SPRINTITURES (* - 4) RE-
S	150. 16	95.1 90		- 60 0	1		90.6 7 04.	ļ		83.0 74. 81.0 71.	ļ		73.6 60.	1	54.4 35	N C	ı							ŀ		9-		SB59 29.4403	SQ (N) - F	
T. DEGREES	30. 140.	100	0	- IO 4	0 108	1.4 100.7	. 2 98.	1 95.	1 94.	. 9 92.7	7 88.	4 87.	8 64.3	3 73.	.1 66.	200	0 22.	0						6 112 0	7 114.	FNCY		IALPHA	\$12E	4-
FROM INLET	120. 13	88.0.86	6.	94.6 102	2	95.9 102	95.7 102	4	بر ا	92.6 97.	-	on (18 0'/9 83.9 8.58	0		<u>ب</u>	9	16.7						-	110.6 116.			N231 ADH008	2 SQ CM (
MEASURED	00. 110.		.3 85.		6	8 93.	09 K	6 63	58		. 8 93.	.1 92.		.4 83.	•		7 44.							7 104 4)	RDG.	9032.	
ANO! ES	90.	79.7.82	- 0		6	₩.		-	4 (0		87.3 UB	4	78.5 77	4.0	ဖ	21.6 23	<u>)</u>					-	109.3 109.7	, C		¥	ANGE . O FT) SL	
	70. 80.		50.0	. 60 64 - 60 64	.0	.2 86.	.1 92. 101	. 1 95.	.2 91.	3 92.	.0 90.	.6		.6 79.	4.		3 41.	19						4 104 3	6 112.2			-15-77 1 ANECH C	ACGUSTIC RANGE 5 M (2400.0 F	
-	60. 7	74.5 76	600	76.6 61	0	0	93.0	0	<u>د</u>		8	ص ا	79.4 B2	a	69.8 74	o •	10	8.3 17				:			105.1 107			TEST DATE 12 LOCATION C4	731.5	
	40. 50.	1 72.8	.6 74.		.7 94.	.1 89.	 91.	5 87.	.98 86.	.8 84.5 12 83.3	.5 82.	.a 180.	.9 77.	.9 71.	.3 65.	.2 57.	2							9 99 1	4 103.3			TEST	TEST POINT 0513	
	7	FREG 50 69		2001 2001 2001			250 88	ľ		630 81 800 80	000	250	1600 .72 2000 .70		3150 58				10000	00091	20000		63 000 8 0000	Ido				d 157d	MODEL 0500	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F. 70 PERCENT R.H. STD. DAY, SR. 2400.0 ET. SL

X00135

IDENTIFICATION - FJ-ZER-FMODL

						00	RIG F F	IN/	AL I		E I	3							S-EED 278.0 FP3)	:	
			Ç	40		10 (, o -	0 (i – c	0.4	i vi a	ဖြ	6 00	ယ္ဇ	0.0	6.	.3	HB 37.04 UM 75.70	FREE-JET 64.73 M/SEC (
ao	160. PW		19.1 149.	10 0	17.1 163.	4 155		e .	10.1 137.3 06.7 156.1	0.0	+	\ \ \ -	9 149 6 148	.5 149	8 147	•	126.7 168	TAMB	HODEL		
X05140 X05230	EES 150.		114.0.1	115.6 1	117,71	116.0 1	0.27	112.8 1	4.011	107.4	4.	101.2	9.4.9	87.3	οĸ	61.3	4 126.6 1	A SB59 B 29.4562	- (N) -		
111	LET, DEGREES 130. 140.		6.4.111	8.2 113	15.8 119.2 18.0 120.8	121 2.	. 4 . c	121	20.5 110.	4 116	17.6 113.5	4 110	102	80 c	2 87	.2 76	32.0 132.	IALPHA	\$12E (20.38		
	FROM INLET, 120. 130.	•	100.1	4,	105.0	9	113.7 12	9	115.1	900		111.4	105.6	99.7		80	125.3 13	N281 ADH013	.6 SG CH		
- MODEL BACKGF	EASURED . 110.		0 97 1	9-	4.000.1	io (2 108.4	4.		-	5 E E	0.4	6 104.3	e r	7 85.3	.4 74	.1 122.5	TAPE NG. RG. RDG.	131		
Z 1	ANGLES M 90. 100		92. A 95	.7	96.0 97	4:	8 104	60	.0 108 .7 111 	07.7	07.8 109	7.0	00.2 102	~0		9	19.6 120	AE	RANGE 40.0 FT) ARC		
IDENTI	80.		0 08	92.	95.70	98	446	113.6	116.21	100	1 107.5	7 103.8	200	. R	70.0	67.	2 121.2 1	15-77 ANECH CH	ACGUSTIC RA		
	60. 70		3 89	4 90.	90.09	.1 96.	6 103	0 115		.0 107.	.2 107.	88	ស់ 4 ខ្លួ		6 K	. 17 . 8.	18.6 120.	12-	AC 12.2 I		
	50.		8 88	41	× 60 ×	-	- 6	7	6 -	200	9.00			41		-	117.6 11	TEST DATE LOCATION	T POINT 0514	•	
	40.		24		90.00	٠.	105.8	1.	106.8	1 .	103.5	98.4	92.0		74.0	64.3	117.1		MODEL TEST 0500 09		

				•		Ç	ORI OF	IGINA POO	L PA	GE ALI	IS TY				ij	YES YES		(278.0 FPS)	
					~ 6	10 - 01		. 4 O &	0 21 ~	2	10 Qi		4	0 6 6	60	REFRACTION CORRECTION - TURBULANCE CORRECTION -	B 37.04 H 75.70	64.73 H/SEC (278.0	
S FT. ARC			160. PWL		117.4 147.		120.2	118	115.6 1	113.8	109.0	103.0	93.2 151.	67.2 150. 81.5 149. 73.7 150. 63.9 148.	129.3 168	TURBULANCE	L TAMB 562 RELHUM	- MODEL	
AY SB 40.0 FT.	X05140	DEGREES	140. 150.	•	109.0 112.2	116.7 115.9 119.7 117.7 120.8 116.9	12	121.9 116.0 120.7 114.2	7 112. 0 110. 4 109.	901 0		7 100 0 97	9 86.	92.9 83.2 87.2 78.0 84.6 71.3 74.8 61.5	131.6 126.8	278.00 48.00	ALPHA SB59 PAMB 29.4562	20.38 SQ IN)	
SID. D	FJ-300-FMCDL	FROM INLET.	120. 130.		98.9 105.0	. 4 113. .5 118.	4 .	13.1 120.6 113.7 121.9	14.6 119.7 14.6 118.8 14.8 119.3	40	13.9 118.1 13.6 116.2		1 104	96.7 97.8 93.2 93.6 89.0 91.0 79.2 81.2	125.5 131.3	TY (ET/SEC) AMETER (IN)	N281 ADH013	S CH C	1
ZO PERCENT R.H.	: Z	KEASURED	100. 110.		93.6 94.6 6.75	- 0 10	- 4	900	. 7 109. . 5 110.	5 112	1.0	20 00 00 00 00 00 00 00 00 00 00 00 00 0	4 98.0	92.6 93.2 86.8 86.4 80.8 80.8 74.5 75.6	20.9 122.4	JET VELDGITY FREE JET DIAM	TAPE NG. PAERO. /	ARC 131.1	
54	IDENTIFICATI	ANGLES	80.		0. c	- 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0	1 98 E	6 103.2	5 114.7	5 111 1	8 110.3 1	9 103.2 1	2 96 7	.5 92.2 6 85.9 7 79.8	4 121.1 1	FREE	3	ACCIUSTIC PANGE 2 M (40.0 FT) /	
59.0 DEG			. 70.		6 91.6 91	94. 1 95. 4 96. 3	98.8	7.000	1 116.7 11 1 171.0 11 3 111.5 11	110.9 11	109.4	2 103.8 1	3 98 6	8 93.5 89 8 87.3 82 7 79.6 76 2 75.3 71	.1 123.2 123.	SCALE FACIOR CALC. 1.000	IE 12-15-77 3N C41 ANECH	ACGUST 12.2 M (
			50. 60		93.0 0.0	92.7 91 94.0 94 95.1 94	95.5 96	162.2 106	112.5 114	100 6 100	106.9 109	104.1 105 102.5 103	94.4 94	1	121.9 122	NPUT 1.000 C	LOCATION	T PGINT 0514	7
6			FREG 40.	moor	200 200 250 250 250 250 250	98.9	298	10.05	2500 112.4 3150 113.8 4000 111.9	9 2		20.8	8	40000 89.4 50000 84.3 63000 76.6 80000 67.3	GASPL 122.1	HODEL		9500 0	:

					•								OF	Rig	:IN	iAL	F	PAC	Œ	IS	ŀ	c							
													OF		PO:	OR	Q	UA	\LI	TY	•							JET SPEED (C (278.0 FPS)	
ø,			Ę	8	4 6	O. I	.7	. 0 0	1	3 4	0 0	0		8	2.02		.7	• 0 (-		HB 37.04	FREE-JET 84.73 M/SEC (
RE LEVELS SL			160.	0.16	92.3 172	93.3 176.2	7	89.9 174.9	П	84.5 174 81.9 174	78 4 174 2	l - `	72.8 173.5 68.9 172.5	Ή.	ن - د	23.8 169.7	168	169.0	167						100.9 187 101.4 101.4		TAND 2 RELHUM	FULL	
SOUND PRESSURE	145	ES	150.	4		92.0	92.1	90.0 88.3	86.8	9.4 93.0	60.00	6		g.	- K	'n	20.4								102.5 1 103.1 1	SHIFT9	SB59 29.4562	- (NI OS	
TED SOUN	DL. X051	I. DEGREES	0: 140.	0. 95.6	98.6	10.	9 2		0.95	۰ د	2.6	5 88	N O	7. 78	٠ د	9.	44.4	; ; e;	•			•			.6 109.7 .1 111.6	FREQUENCY SH	I ALPHA PAMB	\$12E (1400.00	
AND EXTRAPOLATED	FJ-300-FMGDL	FROM INLET	120. 130:	4	98 9 97	<u> </u>] e	94.8 101	0 99	.7 .6 97			82.3 93 89.9 91	7	84.0 82 79.4 70		92 30	=							05.6 110. 11.7 115. 12.3 115.	FREG	N281 ADH013	SO CM	•
TRANSFORMED, SCALED, AND E) O DEG. F. 70 PERCENT R.H.	ION - FJ	ASURED	110.	q	6 7	921	88.8	88.8 89.5	90.5	91.4 92.6	93.2	93.6	93.1	88.6	64.0 77.0	7.7	61.5	10.0							102.8 1 110.4 1	8.288	R NG.	9032.2	
D, SCALE ZO PERC	DENTIFICAT	NO ES ME	90. 100.	.4 77.	9 79	3 82	7 86		6 89	6. 4. 9.29.	8 6	16 0	. 68 . 0	1 82	200	72	7 62 6 46	. 7 22.							.3 101.6 .8 109.4 4 109.4	R RATIO	TAPE AERG.	FT) SL	
ANSFORME Deg. F	10E		80.	7		82.7 61	-		4	ထ် ထဲ	92.9 90		90.1 90 87.4 89	4		72.2 72	10 10								104.8 102. 111.5 109. 112.6 110	DIAMETER	5-77 ANECH CH	ACCUSTIC RANGE	
FLIGHT TR			.02	76.3	77.6	91.0	87.6	90.00 8.00	9Z 9 1	8 8 8 8 8	0.10	90.8	89.2 87.2	86.3	82.3 78.8	72.3	44.8	17							104.2			9	
1.			0. 60.	2 73	75.6	.8 77.	3 87.		7 36.	4 0 2 2	n e	.6 88.	.9 87.7 .2 86.0	9 83	- 6	99	30 56								.6 102.1 .5 108.4 5 109.2		TEST DATE LOCATION	,	
			40.	ıq	4 8	14.0	82	3 87	8	9 9	85.4 88	1	81.4 85 79.0 83	d	5 c	4.).)							99.3 100. 104.6 106. 105.8 106.		F	TEST POINT 0514	
			FRED		8 9 9		1	500 520 520	- 1		630	1	1600	- 1		4000	1	8000	12500	16000	20000	40000	20000	90000				MODEL 0500	397

•	
ē	
F	
ું•	
7	
-	
•	
ř	
ř	
ř	
19/7	
6/1	
19/7	
6/1	

	- 8 4		. ••• :												Y.			
					9	RIGIN F PO	NAL OOR	. PA QU	GE ALI							ED), 0 FPS)	4	
															36.14 79.30	FREE-JET SPEED 78 H/SEC (370.0		
			147.7	151	2 153.7		7-	.4 157.2	15	. 4 154.0	998		2 140.8 3 147.5 147.5	6 150.1 8 168.0	TAMB	HØDEL 112.		
X05150 X05220	s 150. 160		711 0 711	115.1 115.	000	114.9 107. 113.4 107.	5 107 0 107	110.9 106.	9 102	105.4 100.	20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	8	24.0	.8 59.	59	OH - (NI DS		
FJ-400-FMGDL FJB400-FMGDL	ET, DEGREES 30. 140.			.0 116.	225	.5 122. .4 122.	123	2.8 119.4 0.5 118.2	9:	7.3 113.5	6 109 - 107	99	1007	4	IALPH	\$12E (20.38 \$		
MODEL BACKGRÖUND FJB	FROM INL 120. 1		900	101.2	108.1	112.2	115.1	115.0	114.6	4 4 0	1090.1	103.4	903.0	0.18 0.18 7.	N281 ADH022	.5 sa cH		
ŧ	S MEASURED		6 6	2 88	201	106	6 109.		3 114.	= = = = = = = = = = = = = = = = = = =	z) − α	7 100	93.2 91.0 93.2 85.9 86.3	75.4 76.	TAPE NO	ARC 131		
DENTIFICATION	ANGLES 0. 90. 1			9 8	9 6	. 6 99.5 2 102.1	9 106.1	3 114.2	4 108		2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	98	.6 89.7 .6 83.1 .7 77.1	7. 0		C RANGE 40.0 FT)		
IDEN	70. 80			4 10 (3.0	95.4 98 102.3 103 103.1 104	9 6	112.4 116	97	107.4 109 107.0 108	0110	q	89.6 86 24.0 80 74.0 80	0 0	12-15-7 C41 ANE	ACGUSTIC 12.2 M (4		
• .	50. 60.	w *** *.		8 7	2 2 2	91.9 93.4 00.7 103.5 06.3 103.8	2 110	108	9 105.	4 4 105.	0.00 0.00 0.00	9 6 6	64.2 64.2 65.4 65.5 7	4 73	EST DAT	POINT 1		
	40.			85.6 87.4	93.2	92.6 98.4 1 106.3 1	108.9 1	106.1 106.8	104.6	101.9 103	98.4	89.3	86.4 86 82.1 84 75.6 78	66.5		TEST 05		
		2 6 6 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6	125	315	900	800 1000 1250	2000	3150	5000	0000	16000	25000	40000 50000	00000	15	MODEL 0500		İ

FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS

					•			PAGE QUALIT	3				SPEED 370.0 FPS)
		7	:		6 – n u	ro vi ei c	40-0	6,7-	,	6 4 0 0	CORRECTI ON -	INCE CORRECTION - YES	79.30 FREE-JET 12.78 M/SEC (
		160. T		2.7 145.	ω w − a	664	200	. 6 156 . 4 155 . 4 155	.0 153 .6 152 .7 151	7 150 .7 150 .3 151 5 149	126.6 168.9 Refraction	RBULANCI	RELHUM MODEL 1
		150. 16		10.9 112		10 0 C	13.7	64-10 	47-0	0 - e	1	\$ 8 59	29.4523 IN) -
X05150	DEGREES	140.		108.8 1	116.6 1	122.3 120.0	110.4	D. C C	106.0 1	92.0 97.6 74.4	136.7 126.1	48.00 [ALPHA	PAMB (
FJ-400-FM6DL	- 1	130.		104.6	1		72==:		110.2	1	8 130.9 ET/SEC)	2	E
FJ-400	RED FROM INCET	. 120.		8.28	- C - C - C - C - C - C - C - C - C - C	7 112.4	122	.5 115.6 .0 114.4 .2 112.9		6 96 9 20 93 3	21.6 122.8 125.8 130.9 JET VEI OCITY (FT/SEC)	JET DIAMETER : No. N281	G. ADHO22 131.5 SQ C
ATION -		0. 110.		4. 89	16 0 D	2000	20.47	41.00	6 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 93 6 96 7 76	121.6 122. E.JET.VELC	FREE JET TAPE NO	2
IDENTIFICATION	ANGLES MEASU	90 . 100	:	91.6	0 0 0	207-	Z-00	400	u v 0 0 1	92.7 92. 86.1 87. 80.1 82. 75.3 77.	122.1 121 EREE	i.	1
01					1	2000	47-	4-0	-	891.0 80.0 80.6	4 124.5 1% FACTOR	00 -77	41 ANECH CH ACGUSTIC RANGE P M (40,0 F
		70.		2.7	93.5 93.6 7.7	105.1		N-80	40-	95.9 91.1 84.5	124.4 CALE EA	.c. 1.000 12-15-22	ACOU
	•	8			228	100 100 100	2 6 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	7	105	93.4 93.4 92.4 75.4	1 123.8 124. Size scale	1.000 CALC.	ATION
.•		8	. !.		2 2 2 3 3 4 4 5 4 5 4 5 4 5 4 5 6 5 6 5 6 5 6 5 6	9 6 6	3637	100.00	103.0	.0 93.2 .3 88.4 .6 81.4	124.9 124.4 123.8 124.4 124.5 Mone: /FIM: SIZE SCALE FACTOR	INPUT 1.000	LOC TEST POINT
		FRED 40.	2 5 5 £	6	9228	8 5.5. 2.5.5.	11.7	1111	104 104 104	31500 95 40000 92. 50000 87. 63000 79.		=	MODEL TE

					OR OF	igin Pod	AL PAG DR QUA	re is Ality						370.0 FPS)	of "
IDENTIFICATION - FJ-400-FMODL X05155	ANGLES MEASURED FROM INLET, DEGREES	60, 70, 60, 90, 100, 110, 120, 130, 140, 150, 160.	76.4 78.0 79.0 85.0 94.1 95.8 92.0 86.7 78.6 78.8 79.7 97.6 96.0 97.0 92.7 96.8 79.2 80.1 82.0 90.3 97.6 98.5 92.0 86.3 81.0 82.4 84.4 92.3 100.2 100.6 93.4 89.8	78.3 78.0 79.4 80.8 87.0 85.2 85.3 87.6 84.7 100.2 130.8 91.7 86.8 774 82.3 85.5 88.5 87.0 89.1 86.2 130.8 91.7 86.8 174 82.3 85.5 88.6 87.6 89.1 86.4 89.0 95.3 101.2 98.3 90.1 88.4 174 97.6 96.5 96.0 92.9 97.3 89.3 87.3 89.3 95.0 101.1 96.8 88.6 86.9 176 95.0 98.3 98.3 98.3 98.5 98.8 88.5 86.4 127	400 92.6 93.1 95.1 98.2 97.1 97.5 93.8 92.3 95.7 97.8 94.3 86.4 83.1 1 500 92.8 94.0 93.8 93.6 93.3 95.3 95.3 95.2 97.2 93.7 84.9 81.4 1 630 87.8 90.4 92.2 93.6 95.0 92.3 93.6 94.8 95.3 95.3 95.4 91.7 82.6 79.4 1 80.4 92.2 93.6 94.8 95.3 95.3 96.4 91.7 82.6 79.4 1 80.4 91.7 92.0 93.7 93.3 94.4 88.4 79.5 75.5 1	250 83.0 86.8 88.0 91.1 91.2 91.3 91.9 93.0 91.6 91.9 85.7 77.2 72.1 1 68.3 1 60.6 80.6 84.4 86.5 89.3 88.5 89.4 90.8 89.7 90.4 83.7 75.1 68.3 1 60.0 76.8 80.4 80.5 86.1 78.1 68.3 1	72.4 77.9 80.8 84.1 81.9 83.5 84.6 83.8 84.3 82.0 74.1 64.5 58.1 64.5 72.5 74.5 79.1 78.8 80.3 79.8 78.2 79.1 78.7 69.3 55.0 43.8 57.1 64.7 68.8 72.4 73.1 72.4 72.1 71.2 69.8 59.5 41.3 24.7 64.7 68.8 5.5 61.5 51.5 52.8 61.0 61.0 66.0 43.5 22.5	2.2 14.1 22.7 22.4 23.0 24.6 20.0 20.5 10.6 168.	15000 20630 25000 31500	40000 50000 63000 80000	DASPL 102.0 103.3 103.8 105.2 105.8 103.4 102.7 103.2 105.8 110.2 108.7 101.4 97.8 187.2 PNL 106.9 109.1 110.1 112.0 112.4 110.1 110.7 111.9 114.8 111.2 102.9 99.5 PNL 107.7 102.7 109.8 111.1 112.9 113.5 111.4 110.1 112.4 114.8 111.2 102.9 100.6	DIAMETER RATIC 8.288 FREQUENCY SHIFT -9	1A SB59 TAMB 36.14 4B 29.4523 RELHUM 79.30	MODEL TEST POINT ACGUSTIC RANGE S032.2 SQ CM (1400.00 SQ IN) - FULL 112.78 M/SEC (370.0500 0515 731.5 M (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 112.78 M/SEC (370.0500 0515 731.5 M (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 112.78 M/SEC (370.0500 0515 731.5 M (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 112.78 M/SEC (370.0500 0515 731.5 M (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 112.78 M/SEC (370.0500 0515 731.5 M (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 112.78 M/SEC (370.0500 0515 731.5 M (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 112.78 M/SEC (370.0500 0515 731.5 M (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 112.78 M/SEC (370.0500 0515 731.5 M (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 112.78 M/SEC (370.0500 0515 731.5 M (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 112.78 M/SEC (370.0500 0515 731.5 M (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 112.78 M/SEC (370.0500 0515 731.5 M (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 112.78 M/SEC (370.0500 0515 731.5 M (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 112.78 M/SEC (370.0500 0515 731.5 M (
		i.		- 14 14 13	7 3 3 5	- 	999	2000	\$ 50 E	6 5 5 6 6 9 9 9	8 8			£	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB. 2400.0 FT. SL

UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE
TIFICATION - MODEL FJ-ZER-FMODL BACKGROUND
ANGLES MEASURED FROM INLET, DEGREES
40. 50. 60. 70. 60. 90. 100. 110. 120. 130. 140. 150. 160.
125 180 200 250 89 5 94 1 93 6 94 4 94 5 96 8 101 6 104 6 110 6 118 3 119 0 122 1 163 3
90.1 92.4 92.4 94.5 97.1 97.9 99.6 101.5 105.7 113.2 117.9 119.6 122.7 1 92.2 93.7 94.7 95.5 97.8 98.0 100.3 103.5 107.7 117.3 121.2 121.3 123.0 1 93.5 95.0 95.3 97.3 99.4 99.6 101.4 103.6 109.6 120.1 123.2 121.7 123.1 1 96.4 97.1 98.4 101.5 100.4 103.3 106.2 112.1 122.2 121.3 122.7 123.1
100.1 97.9 99.1 100.4 103.0 102.1 104.8 108.7 114.1 123.5 125.3 121.8 122.7 159.5 115.2 115.2 107.0 105.0 106.4 105.0 106.1 109.8 116.5 125.0 126.9 121.6 122.5 161.0 116.0 114.6 110.3 108.1 109.2 106.8 107.4 111.1 117.0 124.6 126.5 120.2 120.6 160.7 114.9 115.7 114.9 115.7 114.9 115.7 114.9 115.7 114.9 115.7 114.9 115.7 114.9 115.7 114.9 115.0 115.0 117.1 124.5 123.7 118.2 119.0 160.0
112.2 114.2 115.2 117.3 118.1 110.6 109.9 112.5 117.4 125.1 122.3 116.3 117.1 112.6 111.4 112.6 114.4 119.0 116.7 112.5 112.9 117.3 124.7 120.9 115.6 116 111.1 111.6 112.4 113.2 114.8 116.2 116.5 115.2 17.6 122.8 119.2 113.9 114.0 119.5 116.5 116.5 117.2 121.4 118.0 112.7 113.0 114.1 112.6 116.6 116.3 117.2 121.4 118.0 112.7 113.8 114.8 115.5 116.5 116.5 116.5 116.5 116.5 116.5 117.5 121.4 118.0 112.7 113.8 113.5 114.8 115.5 115.5 116
109.1 109.2 110.6 112.2 114.6 113.2 113.8 117.2 116.9 121.4 117.5 112.2 111.9 157.9 T 108.0 108.6 109.4 111.6 114.0 113.9 113.7 116.9 116.1 120.0 115.8 110.4 111.1 157.3 T 106.5 108.4 109.2 111.6 112.0 112.8 113.3 115.6 119.6 115.3 108.9 108.7 157.1 T 112.1 113.0 115.1 114.5 118.8 113.4 107.6 108.2 156.7
500 103.5 105.3 106.5 108.2 108.8 110.5 110.8 113.5 112.5 116.7 112.1 105.3 105.0 155.5 100.0 10
1500 91.6 93.9 95.2 99.2 99.0 99.4 99.6 100.2 103.5 107.5 99.7 93.0 91.2 153 0000 87.4 89.1 91.3 94.4 91.7 95.2 95.0 96.7 98.8 103.3 95.8 87.7 85.5 153 0000 81.2 83.2 86.0 88.1 85.0 88.7 90.3 89.7 94.8 97.4 89.7 82.9 78.6 152 0000 76.7 78.0 80.9 82.9 80.5 82.7 85.2 85.1 91.0 92.2 84.1 78.3 73.0 152
80.6 77.1 73.2 79.3 80.5 86.7 123.7 125.2 123.9 124.2 125.9 128.0 1
TEST DATE 12-15-77 TAPE NO. W281 IALPHA SB59 TAMB 39.74 Location C41 Anech Ch Aerg. RDG. Adhoos Pamb 29.4393 Relhum 70.30
MODEL TEST POINT ACGUSTIC RANGE SIZE SIZE FREE-JET SPEED 6500 0516 12.2 H (40.0 FT) ARC 131.5 SQ CH (20.38 SQ IN) - MODEL 0. M/SEC (0. FPS)
401

		CRIGINAL OF FOOR	PAGE I	Š Y		CORRECTION - YES 1 39.74 1 70.30 FREEIFT SPEED	
ANGLES MEASURED FROM IN.ET, DEGREES 40. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160.	89.5 94.1 83.6 94.4 94.5 96.8 99.5 101.8 104.6 110.6 116.3 119.0 122.1 153.	315 90 1 92 4 92 4 94 5 97 9 7 9 7 9 8 9 10 10 10 10 10 7 113 2 117 8 119 6 126 400 92.2 93.7 94.7 95.5 97.8 98.0 100.3 103.5 107.7 117.3 121.2 121.3 123 2 121.3 123 2 121.3 123 2 121.3 123 95.0 96.1 96.4 97.1 98.4 101.5 100.4 103.3 106.2 112.1 122.2 123.2 121.7 121.7 123 2 121.7 123 2 121.7 123 2 121.7 123 2 121.7 123 2 127.7 123 2 127.8 122.7 123 8 122.0 123 8 122.7 113.2 107.0 105.0 106.4 105.0 106.1 109.8 116.5 125.0 126.9 121.6 122 2 120 116.0 114.6 110.3 108.1 109.2 106.8 107.4 111.1 117.0 124.6 126.5 120.2 120.2	112.2 114.2 115.2 117.3 118.1 110.6 109.9 112.5 117.4 125.1 122.3 115.3 117.8 150.1 112.2 114.2 115.3 117.8 150.1 112.6 111.4 112.6 114.4 119.0 116.7 112.9 117.3 124.7 120.9 115.6 116.1 159.1 111.1 111.6 112.4 113.2 114.8 116.2 115.2 117.6 122.8 119.2 113.9 114.7 159.1 109.9 110.7 111.5 113.0 114.1 112.6 116.6 116.3 117.2 121.4 118.0 112.7 113.0 159.1 109.2 110.5 112.2 114.6 113.2 113.6 117.2 116.9 121.4 117.5 112.2 111.9 157.	108.0 108.6 109.4 111.6 114.0 113.9 113.7 116.9 116.1 120.0 115.8 110.4 111.1 157 106.5 108.4 109.2 111.6 112.0 112.8 115.3 115.9 115.6 119.8 115.3 108.9 108.7 157 106.0 107.4 108.3 110.1 111.7 112.1 113.0 115.1 114.5 118.8 113.4 107.6 108.2 156 103.5 105.5 106.5 108.2 108.8 110.1 111.7 112.1 113.0 115.1 114.5 118.8 113.4 107.6 108.2 155 101.8 104.7 105.5 107.1 106.7 109.3 109.7 111.6 110.7 115.5 110.3 104.1 102.7 155 97.7 101.9 101.4 104.6 103.5 105.6 106.7 107.2 108.2 111.9 103.6 100.3 101.1 103.4 103.1 103.2 108.6 100.4 100.4 100.4 103.5 103.6 100.5 103.5 107.5 99.7 93.0 91.2 153.0 91	87.4 89.1 91.3 94.4 91.7 95.2 95.0 96.7 98.8 103.3 95.8 87.7 81.2 83.2 86.0 88.1 85.0 88.7 30.3 89.7 94.8 97.4 89.7 82.9 76.7 78.0 80.9 82.9 80.5 82.7 85.2 85.1 91.0 92.2 84.1 78.3 72.9 74.8 77.8 80.6 77.1 78.2 79.3 80.5 86.7 89.4 79.5 71.2 123.2 122.7 122.7 123.2 123.9 124.2 125.9 128.0 134.7 134.5 131.0	INPUT 1.000 CALC. 1.000 FREE JET DIAMETER (IN) 48.00 TURBULANCE CORRECTION TEST DATE 12-15-77 TAPE NG. N281 IALPHA SB59 TAMB 39.74 LGCATION C41 ANECH CH AERG. RDG. ADHOOS PAMB 29.4393 RELHUM 70.30	00 0616 12.2 M (40.0 FT) ARC 131.5 SQ CM (

FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F. 70 PERCENT R.H. STD.: DAY, SB. 2400.0 FT. SL

															**											
							-			66	RSI F. (ZIN PO	A1 OR	- 1	PA ZU		E (3							T SPEED (0. FPS)	
																								39.74 79.30	FREE-JET O. M/SEC (
	160. PWL	4 12	.4 176		179	0 178	178	.2 177	1.6 176.4 9.4 176.3	4 175	. 8 175 7,1	4.	7 172	171 8.	.8 172	170.4	170.0	174.0				104.2 169.6 103.0		TAMB	FULL	
	150.	4	4 a		de	0	91.6 89.10	-	86.3 81 85.0 79	4	<u>م</u> ٰ	i io i	2	0	0.0						•	106.5 10 106.6 10	FT -8	SB59 29.4393	- (NI OS	
ODL XOS165 ET DEGREES		7	ان ا	. 9	2 105	4 102	7.000	96	99.8 94.5	9	9 6	8 6	4	69	61	2 6		•				4.1 112.7 8.5 114.5	JENCY	IALPHA	S12E (1400.00	
FJ-ZER-FMGDL	120.	89.2	6.0	95.6 103	97.8	98.1	99	97.7	97.0 96.3	95.2	900	200.7	922	81.8	74.8	8 2 V	22.7					114.0 118	60	N281 ADH009	. 2 SQ CM	
RED	10.	0 85.	0.0	90.	9 6	.0	œ 0 9 9	.96 6.	7.8 96.9 4.7 97.6	3 97.	. a . g5.	9 09 0	85.	.1	6 73.	67	.0.					5.3 106.4 2.5 113.5		TAPE NG. AERG. RDG.	L 9032	
IDENTIFICATION	90.	7	.	84.8 87	6 6		92.7 91		93.9 97	7			9	۰.	74.9 74	4	25.6 27					105.2 105. 112.2 112.	METER R	CH AE	RANGE O.O FT) SL	
	70. 80.	7	5.0	98	98	93.	Ø r	.1 96.		B 94	92,	φ	8 8	5 4	2.9 74.0	1 2	1.1 22.3					4.7 106.7 0.9 113.0	_	12-15-77 C41 ANECH	ACGUSTIC RANGE 5 M (2400.0 FT	
•	60. 7	2		9) ^	96.0	20	91.3 93	g	oi c	84.7 87	4 6	73.8 77		9 0	12.6 21					103.0 104 108.3 110		DATE	731.	
	0. 50.	4	75.	.02	4 x	. 9 94.	- 93.	0.00	.4 89.	5 86	.u.		2 20	8.69	.9 61.	0 00						. 1 102.0 1.6 106.4		TEST	TEST POINT 0516	
	FREG 4	.	63 72	100 78	ł	200 95	250			-		1600 77	25000 24			5000 38	-	10000	16000 20000 25000	31500	50000 50000 630000	CASPL 101 PNL 104	i		EL. 500	4 03

_
ø
~
•
~
-
_
9
•
`
•
-
7
5
220

						OI	R	GIN PO	IAL OR	P/ Ql	AGE JAL	I.	3 Y										FREZ-JET SPEED 8 M/SEC (278.0 FPS)	
		J.M.G			151.6	53.8	156.4	57.6	59.9	60.2	0.00	157.7	157.0	56.4	50.0	53.1	53.0	152.2		•	170.6	TAMB 37.58 RELHUM 74.90	94.73	
X05170 X05230		150. 160.			17.8 118.7	19.6 116.5	3 116	8 114	4.12	0.00	12.2 106.4	4 102	07.9 103.8	3 101	03.33	8 6	8 87	84.7 81.3	3 69	O.	29.3 126.2	SB59 29.4552 RE	IN) - MODEL	
FJ-300-FMODL FJB300-FMODL	ET, DEGREES	130. 140.			0.7 115.6 1	.3 121.7 1	7 122.8	0 124.1	1 125.0	3 123.0	3 119.7	4 118.0	6 115.8	3 113.6	4 109 4	104.7	3 99.3	.8 94.3	. 6 82.6	.3 77.5	.8 133.8 1	I ALPHA PAMB	\$12E (20.38 SQ	
MGDEL FJ-: BACKGRÖUND FJB:	ED FROM INLET	. 120.			103.4	0.6	7 109.4	.7 111.9	5 114.7	3.116.4	9 117.1	2 117.4	9 116.6	5 115 0	7 113.4 A 111 A	1 108.6 111.	6 103.0	5.0	5 90.7	.2 85.4	.7 127.3 133	. N281 . ADH014	31.5 SQ CM`(
1	ANGLES MEASURED	100. 110			96.6 99	97.6 100 98.4 101	100.0 103	102.0 105 103.9 107	105.7 108	109.1 111	117.8 114	113.5 117	113.7 116	112.7.115	111.3 113	106.1 107	99.1 100	94.3 96	83.7 83	76.8 79	1 124.1 125	TAPE NO AERO. RDO	ARC 1	
IDENTIFICATION	ANG	8 G. 9 0.			94.	95.3 95.2 96.9 96.8	.3 9Z.	8 5	9 104.	.6 111.	113.5 115.5	5 112.	113.0 112.9	2 111	0.00	102.4 104.2	.0 98	90.4 93.5	8.5 80.	.5 76.	124.7 123.4	15-77 ANECH C!!	STIC RANGE (40.0 FT)	
		60. 70.			9.7 91.	91.7 92.5 92.0 94.8	1 96	100	108	117	11.4 111.9	-	7 110	8 109	107 201 201	00.6 103.2	.2 98	•	90	N.	2.2 123.2	12-	ACGUSTI 12.2 M (
		. 20.			89.4 8		92.1	104.7	112.6	113.5	9.00	108.4	5 107.6 1	106.1	104.5	8 100.0 10	92.5	- 6	76.5	72.0	8 121.3 12	TEST DATE	TEST POINT 0517	
		40 FREG	8 8 8 5	•	1	00 89.	- 1	00 98.	1250 113.	-	3150 109.	7-	6300 107.	٦,	2500 102.	20000 96.		40000 86.			GASPL 120.		HODEL TE 0500	 -

FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS

SE. O DEG. F. ZO PERCENT R.H. STD. DAY, SB. 40.0 FT. ARC.

						L	PAGE QUALI	IS TY			- YES	•		
		P.F.		۲	ω r . α π	a – e c	00,7	F 4 0 4	ဆက္ဝ	0.000	.4 N CORRECTION	E CORRECTION	ī	84.73 H/SEC
		160. P		116.6 148	118.7 154 119.5 155 119.5 156	116.2 159	112.6 158	100.3	102.2	99.4 1 76.1 1 66.2 1	1	TURBULANCE (552 R	- MODEL
X05170	DEGREES	140. 150.		112.0 114.0	120.1 119.5 121.5 120.4 122.9 120.6	0.00	- 0.00	-48-	6 6 8 8 8	5. 67. 57. 67.	132.8 129.4	46.00		20.38 SQ IN)
FJ-300-FM6DL	FROM INLET.	120 130.		100.9 107.5 102.6 111.5	106.3 115.8 108.2 118.3 110.6 120.5	0 0 4 6	0076	118.1 121.0 117.0 120.0 115.8 118.6	0.00	4000	.7 1 (FT/	DIAMETER (IN)	7	> W2 C₩ (
•	MEASURED	100. #10.		4. a 0. a 0. a 0. a	96.6 96.0 97.8 100.1 99.4 102.3	01 - 10 h	0000	000	0 6 9 6	10,000	7 7	<u>P</u>		ARC 131.5
IDENTIFICATION	ANG! ES	90.		20.00 20.00 20.00	6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 107.9	24.00	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 197.2 9 105.0	4 6 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9 124.9 1 FREE	i.i.	H CH PANOF	10.0 FT)
		. 20.		6 93.6 92 6 93.5 95	94.8	3 108.4 1 3 117.7 1	9 116.7 12 0 114.8 11	7 113.8	1 109.9 10 2 107.3 10 7 103.4 10	20.00 20.00 20.00 20.00 20.00	126.3 1 CALE FAC	LC. 1	ľ	12.2 M (
		. eo		95.0 93.	93.7 94.0 95.0	98.4 1	9.55	112.8 113	108.1 109 106.5 107 102.6 102	94.9 90.1 83.1	126.0 1	000	•	
		FREG 40.	8.00 0.00 8.00 8.00 8.00 8.00	160 200 250 91.5	92. 94.	102.	574	2 2 2 3	106 104 99	4 8 8 2		INPUT	MODEL TERM	e l

											OR OF	IGI P	00	IL IR	P/Q!	A(U)	iE \Li	IS	5									9 O O	FREE-JET SPEED 3 M/SEC (278.0 FPS)	
	=	FWL 2.6	- 6		4	۰.	4.0	20		ø. •	\ -	9	6 6	.7	4 c		2	ui e	•					.7			6	5	64.73	
		FWL 1 172.6		176	176	1 177	179	91	177	.3 176	176	176	6 175	173	4 173	172	172	173	5					6 189	D 10		4446	RELHUM	FULL	
	160	92.	92.	8 6	7 8	97.	98		8	2 1	72	7	67 61	55	4 6 6	Ì									100.5	Ģ		. 4552	'	
S	150.	96.2		98.5	94	9.19	90.0	88.5	85.0	83.8	8	78.1	75.5	64.	56.1	24.								1	105.6 105.6			26. 4.	SQ IN)	
DEGREES	140.	99.0	100.4	103.4	102.7	100.1	98.1	90.0	94.7	92.8	90.5		8 8 9 9 9	75.1	2.5	46.3								110.9	112.9	ICY SHIFT	4110	PAMB	S12E (1400.00	
INLET	130.	96.2	98.7	02.5	220	03.8	02.9	90.7	- 8 - 60 - 8	98.5	97.4	92.6	93.4 4 .6	96.6	82.7			•						112.4	117.2	FREQUENCY	•		1	(
FROM 11	120.	87.8	•	94.1	94 9	96.4	96.2	97.1	97.0	97.0	97.3	94.5	92.6	86.9	82.8		50.6							07.6	14.2 14.8			NZ81 ADH014	SQ CM	
IRED	110.	30.2	92.3	86.2	88.3	11	4	١	96.6	97.3	97.3	96.5	94. 92.3	86.8	81.6 25.4	100	48.6	ai					3	9	3.7	8.288			9032.2	:
MEASU	100.	79.3	10.0	93.0	4		۱۸	40		- (به ام		10 10	.7) IC	-	F°o.				: ! :		•	113.3 11			TAPE AERG. R	پر	
ANGLES	90.	-	~ (o – .	4 "	, n	-	٩	. 0	0	1 10	9	no o	۵	ö.	<u> </u>	G.	œ.						N	4-	Œ		¥	62 FT) S	
	90	2 78	80 (ภ่ด	- .		0	٦,	2 CS	· - ·	1 94		<u>ري</u>	6	. 3 83	5 4	9	Φ.						. 6	6 113	DI AMETER		5	1C RANGE 2400.0 FT)	
		79		N (C)			5 102	٦		0 97	1	o ou			3 82	o «		Ň		-				6	.6 114 8 215			11 ANECH	ACGUSTIC 5 M (240	
	. 2	77.	l	9 0	9 8		_	1	9 60		8 8	6	0 8	93	90.		1						•	107	2 113 113		- -	- 8 - 8	731.5	
	09	74	76.	9.00		9 6	<u></u>	8	9 6	6	26	5		8	5.5	÷ 6	44.	5						106	112.			LOCATION		:
	20	74.2	ł .	76.8		9.96		97.1	9.00	92.2	80 5		. 86.7		74.8	0 K		3.9						2	110.5			LOC	TEST POINT 0517	
	9	7 17		73.5			99.3	6 6	2 Cd	89.7	87.4		83.3		67.2	•	٠.							103.7	108.7				TESI]
		FREO S	63	38	125	500 - 200 - 200	250	315	4 R	630	000	1250	1600	2500	3150	4000	6300	8000	10000	16000	25000	40000	63000	J .	!	•			MODEL 0500	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F. 70 PERCENT R.H. STD. DAY, SB. 2400.0 FT. SL

IDENTIFICATION - FJ-300-FMODL X05175

•	
6	۰
į	ζ
•	
ľ	•
ė	-
¢	Þ
(ς
i	_
1	<u>.</u>
ò	-
٠	•
P	
ò	٠

		47 1												
				-			GINAL POOR	PAGE QUALI	IS TY				SPEED 370.0 FPS)	
	•				• - o a	no − π	a – o a	(0 (V) ao K	4000	00 D 0	₹. 0.	18 36.14 JH 79.30	FREE-JET 112.78 M/SEC (
X05180 X05220		160. PW	-	7.4 180	151	3 161	7	1		W - 60 W	.1 154	TAMB	MODEL	
X05180 X05220		150. 16	- 1	16.7.11		, — -	7	10.2 10.8 10.4 10.4 10.4 10.4 10.4 10.4 10.4 10.4	1 -	0000	68.3 64 28.6 124	SB59 29.4513	· £	
	DEGREES	140.		13		127.7	122.8	116.2	100.0	4 00 d	134.4	I ALPHA PAMB	SIZE 20.38 SQ	
FJ-400-FMGDL FJB400-FMGDL	I INLET,	130.		901 6		1	,	6 120.0 6 119.5 7 8 8	7	107. 102. 96.	.3 88.4	123	. ₹	
MODEL BACKGRÖUND F	RED FROM	10. 120		102	9-8	0,00 k	947	V 0 0 E	3.9 2.0 113.9 2.0 109.0 7.7	7789	9.3 85 8.1 128	G. N281 G. ADH023	131.5 80	
'	ES MEASU	100.	. : ;	96.7.99	9 0 4	0000	970	0 7 0 7	00	8 C Q 4	77.9 7	TAPE NG AERG. RDG	ARC	
TIFIC	ANGLES	.06		6	9 9 9	0.60		525	0.00	9.6.9	77.1 123.5	H	RANGE 10.0 FT)	
IDEN		0. 80.		â		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0	7 4 6 d	0 0 7 0	7 6 6 8 9 0 7 8 3	.9 124.5	12-15-77 C41 ANECH	ACGUSTIC .2 M (4	
		60. 70		9	01 N 20 0	4 0 - 0	2 4 -	0000	9 108 108 103	6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	75.9 78. 21.8 122.		12. 2 12. 2	
		20.	•	6 6	940-	400	20-0		NO0-	0 N & G	77.6	TEST BATE LOCATION	T PGINT 0518	
		40.		0.79		000	100.6	-44	- 100	4	70.5	:	TEST	ه میشد پ
3		FREG	50 83 60 60	200 g	315 400 500 500	000 000 000 000 000 000	2000 2500 3150	8000 8000 8000 8000	12500 20000 20000	31500 40000 50000 63000	80000 0ASPL	!	KODEL 0500	40

		-			ORIGI	VAL PA	AGE IS	<u>-</u>		-			FPS)	
FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS	IDENTIFICATION - FJ-400-FMODL X05180	40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PWL.		93.9 98.0 94.4 94.5 93.4 93.8 94.9 96.0 100.7 107.6 111.5 114.1 115.5 148.2	. 9 95.5 94.4 95.1 97.3 95.9 97.6 99.5 106.3 116.7 119.7 119.1 116.6 154.0	39 101.3 101.5 102.2 113.8 105.0 108.0 109.2 114.7 123.1 125.0 118.9 120.3 159.1 3.8 121.2 115.2 112.4 110.4 107.2 105.5 108.7 115.8 123.5 118.4 119.7 161.7 3.1 121.0 117.5 112.2 114.3 108.8 107.1 109.8 116.1 123.7 122.2 116.8 119.5 160.4 3.1 12.0 117.5 112.5 121.0 114.4 109.8 110.1 123.7 122.2 116.8 119.5 160.6	74 118.2 118.4 120.4 119.9 118.6 113.8 112.2 117.5 122.1 120.3 115.3 117.4 160.7 117.7 116.9 116.7 115.9 116.4 117.7 114.9 117.5 121.2 118.6 115.0 117.2 160.0 116.2 115.9 116.6 113.5 117.0 116.9 118.5 121.6 319.0 113.7 115.3 159.6 115.7 115.3 159.6 115.7 115	9 114,6 114.8 115.1 116.9 115.6 115.5 117.3 117.9 120.3 116.8 111.2 113.7 159.2 9 113.7 113.4 114.8 114.9 114.8 116.3 116.9 119.5 115.6 110.8 112.9 158.6 9 113.2 113.3 114.6 114.4 114.3 114.6 116.0 115.7 115.7 113.7 109.1 111.4 158.2	.8 108.8 109.0 110.4 109.3 111.5 110.9 112.6 112.1 113.5 197.5 104.7 107.3 156. 107.7 107.8 109.9 110.4 105.8 108.0 107.9 108.0 107.8 111.1 111.1 104.6 101.5 105.9 155. 2 104.1 103.5 106.1 104.3 105.5 105.1 103.6 107.5 111.0 104.3 98.9 102.3 155. 3 99.4 100.4 101.7 101.9 102.0 101.6 101.2 104.2 107.3 100.9 94.3 97.6 155.	.2 95.1 96.3 98.6 94.0 97.2 97.1 97.1 100.8 101.3 93.9 89.5 92.1 154.6 91.9 92.4 95.1 88.1 90.1 91.8 69.9 97.8 96.8 69.1 85.1 87.5 154.9 83.8 85.5 87.0 82.8 84.3 87.3 84.5 93.0 95.7 86.9 78.6 80.8 155.9 75.2 78.1 79.1 78.6 80.1 79.7 79.7 83.2 85.9 77.1 68.8 71.0 153.	130.7 128.1 126.7 126.7 127.5 125.6 125.2 125.9 128.3 133.6 133.4 129.1 129.7 172.1 MODEL/FULL SIZE SCALE FACTOR FREE JET VELOCITY (FIZSEC) 370.00 REFRACTION CORRECTION - VES INPUT 1.000 CALC. 1.000 FREE JET DIAMETER (IN) 48.00 TURBULANCE CORRECTION - VES	LOCATION C41 ANECH CH AERO, RDG. ADHO23 PAMB 29.4513 RELHUM 79.30 TEST DATE 12-15-77 TAPE NO N281 IAIPHA SB59 TAMB 36.14 LOCATION C41 ANECH CH AERO, RDG. ADHO23 PAMB 29.4513 RELHUM 79.30	516 12.2 M (40.0 FT) ARC 131.5 SQ CM (20.38 SQ IN) - MODEL 112.78 M/SEC (
408	•	FRED	8 6 6 2	1	·		, -		16000 1 20000 1 25000 1	40000 50000 63000	GASPL OASPL B			

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SCUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB. 2400.0 FT. SL.

												۰	•				z 4			* B	-	-			. ••								
												00	Ri F	GIN PO	VA CI	L R	P. QI	A(F	IS TY											0 FPS)		
)										-		8.14 9.30	FREE-JET SPEED .78 M/SEC (370.0		
	,	160.	80.0 172.4	3 173	D +-	1 177	1 180	5 7	0 179	7 178	2) v	0 177	1 176	71.8 175.9	7 174	4 174.	3 174	172	172.	173.7 172.1							01.2 190.4			TAMB 36 RELHUM 79	FULL 112.		
X05185	EES	. 150, 1	95.8	95.7	9 0 0 7	95.2	94.5	92.6	90.1	89.1	2. Z	83.4	82.3	77.4	72.4	66.4	58.7	26.7									104.6	105.6 1	SHIFT -9	A SB59 B 29.4513	SQ IN) -		***
	INLET, DEGREES	130. 140	٦	•			, ,	_	- 1			- 1		1 94.7 88.2 3 93.4 86.2	- 1				1	16.5							13.0 111	117.3 113.6 117.8 113.6	ENCY	I ALPHA PAMB	\$12E		
- FJ-400-FMODI	SURED FROM 11	10. 120.	- 1			96.	96.	97.	98.	97.	98.	97.	93.	93.0 93.0	90.	89	82.	93	.3 50.	. 8 24.							3 108.3	7 114.7	. 288 FI	3. N261 3. ADHO23	9032.2 SQ CM		
DENTIFICATION	ANGLES MEASU	. 100. 1	90.2	 	8 6 6	90.5	87.9	69.3 0.0	95.5	99.2	K	96.1	95.3	8 92.8 8 92.9 99.9	90.9	87.3	83.0	67.1	51.	29.1							1.06.1	9 113.6 113. 5 114.2 113.	RATIO 8	TAPE NO. AERO. RDG	.) SL		
IDEN	AM	80. 90	79.9 70.		0 «	3 87	88		01.6 100.	.3			.4	. 2 g	2 91	87.	.3 7.7	. 1 67	.0 50.	4.6 27.							.901 06.	115.0 113.	DIAMETER	5-77 ANECH CH	STIC RANGE (2400.0 FT)		
		60. 70.	8.0 77.3	.87	5 G	9 84	.4 94.	6 94.	9 101	.1 97.	.0 96.	95	4.	9.7 92.3	.9 89.	.8 87.	.7 83.	4 66	.4 52.	.2 25.							. 8 107.5	.4 114.3		12-1 C41	ACGUSTIC 731.5 M (24		
		. 20.	8 76.0 78	76	70.0	; x1	101.3	3 100.9 98 0 98.2 99	97.5	98		92.3	91.1	5 90.3 92 1 87.7 69	84.7	82.4	8 76.3 78		37.6 4	.7							107.3 1	9 111.7 112		TEST DATE LGCATION	ST POINT 0518	W. Program	
		FRED 40.	73	63 75.8	. 6	3 2	106.	250 100.3	94	97.	8 8	g	80	1600 85.1	81	76.		. K	25.	9000	12500	16000 20000	25000	40000	50000	80000	108.	11.			MODEL TEST 0500 0	409	•

_
_
2
•
• -
•
7
•
•
•
w
•
•
C
7
2/18
•
•
•
•
=
=
=
•

						ORI OF	GIN PO	IAL OR	PA QL	GE	is ity							41.36 68.20	FREE-JET SPEED 0. M/SEC (0. FPS)		
		Ž			33.7 36.0 37.0	36.6	35.3	33.4 32.6	32.2	30.8	29.6	27.5	24.6 29.6 30.6	23,1	19.9	19.2	46.8	TAMB RELHUM			
		160.		0	l	4						4 .	70.3 70.3 1		46.94 46.90	4 -	1.8 1		MODEL		•
X05190		50.		7 2	000	- a	2.0	r) 4	N 10	0.0	900	30.	4 0 4	0	0 4 4	7	0.8 11	SB59 £9,4523	- (N)		
1	DEGREES	40.		0	9 ~ 0	000	æ 0	6. 4	۰,٥	n -	. 0 4	4 4	7 71	6.	۰ ن ق ک	6	.7 110		SG		
-ZER-FMODI		-		-		7-							00 E			i	3 109	I ALPHA PAMB	S12E 20.38	depo	
FJ-ZE	INLET	130	•	5	952	97	96	96	9 9	92	8 8	888	8 6 2	73	59 50	43	107.	33	- - -	`.	
RGUND	FROM	120.		8	989.	98.	93.	93	88	92.	60	36.	96.	73.			104.4	N281 ADH003	.5 SQ		
MODEL BACKGROUND	SURED	110.		2	83.28 87.0 87.0	22.0	91.6 92.0	91.8	9 6	90 80 -	89.2	86.5	84.8 80.3 74.9	71.7	67.0 59.4		102.7	NG.	131		
	S MEAS	100.		7 08		4			89.08		87.0	4 .	82. 79.0 79.0		80.08 80.08 80.09		90.2	TAPE AERO. I	ARC		;
DENTIFICATI	ANGLES	.06				1	88.1 87.9				86.1	4 .	81.1 77.6 74.5		58.0 58.0 7		98.7 1	•	RANGE 40.0 FT)		
DENTIF		.00	1. 1			n 00	4.0	- 2	10 G	a r	00			.7	د د د	G.	10	ун сн			
					000	5 86	.6 88 .5 87				. 60 4 40 8	1			4. 0. 10. 10. 10. 10. 10. 10. 10. 10. 10.	.2 48	.4 98	-15-77 1. ANECH	ACOUSTIC	:	
		. 20		78	4 to 80	9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8				1		}	5 75 3 71		- 8 6 4 8 6 4 8 6		5 96	12 C4	12.2		
		60		7.8	266	2 6	83. 83.	83.	83.	82. A	2 6 6	2.5	72. 69	65.	53.60	41.	94.	FEST DATE LGCATION	<u>F</u>		
		60.		77		1	84.1	83.2	1			4 .	72.0		51.0	40.4	93.8	TEST LGC/	T POINT 0519		
		40.	s.	7 B		79.8 81.7					77.0	4 .	71.1 66.8 63.6		25.0 2.0 2.0 2.0	• •	91.4		TEST 00	ı	
		FREG	00000	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3.5 200 300	8 6	1250 1600	2000	3150	5000	9000	12500	16000 20000 25000	31500	50000 50000	90000	GASPL		MGDEL 0500		
		السلم		I		<u> </u>				<u> </u>		<u></u>	-	20-	* 6 1 1 4		LEAS	PHITHIE	2 4602 ·	TEALER	00

UNTRANSFORMED MODEL SCUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB. 40.0 FT. ARC

						ORIGIN F POO	AL PA R QU	GE 18			CORRECTION - YES	ET SPEED	M/SEC (0. FPS)
FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS 59 0 DFG F ZO PERCENT R. H. SID. DAY, SB 40.0 FT. ARC IDENTIFICATION - FJ-ZER-FMODL X05190	ANGI ES MEASURED EROM INLET, DEGREES	40, 50, 60, 70, 30, 90, 100, 110, 120, 130, 140, 150, 160, PWL 50	63 80 100 125	160 200 250 71.8 77.8 76.1 76.9 77.7 80.6 82.7 84.1 86.1 91.1 95.0 97.7 89.9 132.1 315 73 6 76 7 77.4 80.0 81 1 81.7 83 6 85.2 87.9 92.0 96.6 99.3 101.7 133.7	74.4 77.9 79.5 80.0 82.1 82.7 84.8 87.0 89.5 95.8 99.7 101.8 103.0 136. 76.5 79.8 79.8 81.6 83.7 84.8 85.2 87.3 90.0 97.1 101.0 102.9 103.6 137.7 76.6 80.1 80.9 82.9 85.5 84.9 87.0 89.2 91.4 97.4 101.8 103.8 104.2 137.7 6.6 80.1 80.9 82.9 85.5 84.9 87.0 89.2 91.4 97.4 101.8 103.8 104.2 137.7 101.8 102.5 103.5 137.8 103.8 1	81.7 84.0 84.0 84.5 87.6 86.7 88.6 91.0 93.7 97.5 99.9 101.1 102.3 136 80.0 84.1 83.8 85.6 88.4 88.1 89.4 91.6 93.7 96.6 98.8 98.2 100.1 135 81.1 81.9 83.7 85.5 87.6 87.9 89.3 92.0 93.8 95.8 97.0 96.0 97.0 134 81.3 81.3 81.3 81.3 81.3 81.3 81.3 81.3	81.3 82.4 82.6 85.4 87.7 87.5 89.5 91.9 93.3 95.5 93.4 91.4 91.1 132 80.3 82.9 83.4 85.4 87.5 87.7 89.6 91.9 93.6 94.0 92.7 89.7 132 79.6 81.7 89.8 91.3 92.7 92.1 91.0 87.5 87.5 130 25.7 95.6 91.7 85.8 87.5 97.5 87.5 97.5 97.5 97.5 97.5 97.5 97.5 97.5 9	78.5 80.9 81.7 84.1 86.5 86.6 87.9 90.1 91.3 90.5 86.1 84.9 84.3 130 77.0 80.4 81.5 83.4 84.0 86.1 87.0 89.2 89.9 90.3 87.0 80.3 81.3 80.7 129 75.2 78.4 80.3 80.4 81.5 82.4 83.7 84.8 86.2 89.1 88.7 88.6 85.4 81.3 80.7 129 75.2 77.4 87.4 87.4 87.4 87.4 87.4 87.4 87.4	71.1 75.2 76.8 78.7 78.0 81.1 82.5 84.9 84.0 83.5 79.6 76.4 74.5 126 66.8 72.0 72.5 75.4 74.8 77.6 79.3 80.3 80.8 80.0 75.7 71.6 70.3 124 65.8 72.5 63.5 63.5 67.5 69.3 71.3 72.5 74.5 75.2 74.9 77.3 77.3 67.4 66.9 123 67.4 66.9 123	55.9 56.1 60.1 64.2 61.6 64.9 65.8 67.0 67.6 67.3 62.6 55.6 54.2 1 48.7 51.0 53.3 56.8 56.0 58.0 60.3 59.4 62.9 59.0 44.8 47.7 43.4 46.9 1 37.0 44.8 47.7 48.9 48.9 48.3 51.8 55.0 52.1 56.9 50.8 47.7 43.4 40.5 1 37.0 40.4 41.2 48.2 55.0 57.1 56.9 50.8 47.7 43.4 40.5 1	91.4 93.8 94.5 96.4 98.5 98.7 100.5 102.7 104.4 107.3 109.7 110.8 111.8 146.8 MODEL/FULL SIZE SCALE FACTOR FREE JET VELOCITY (FI/SEC) 0. REFRACTION INPUT 1.000 CALC. 1.000 FREE JET DIAMETER (IN) 48.00 TURBULANCE	5-77 TAPE NG. N281 TAIPHA SB59 TAMB 41 ANECH CH AERG, RDG. ADHOO3 PAMB 29.4523 RELHUM 68 USTIC RANGE SIZE	8

				•					OF OF	RIG : F		IAL OF	. P	AG U	λĽ.	IS IT												41.36 68.20	FREE-JET SPEED M/SEC (0. FPS)	
		7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	55.4	56.2 55.8	54.9		51.7	51.0	50.6 40.6	20.00	48.5	47.6 3.0		43.9	41.6	. 6 . 5 . 6	37.6	36.8	37.6							164.0		TAMB	0	
	160.	76.4.1	6	77.4 1 76.3 1	-	9.	- -	7	~ -	53.4	Ŋ.	ט ה ה	6	90	1.9	خـر		_	-							80.3 80.3			- FULL	
S	150.	78.6		80.4 79.1			6.89 6.89	- 4	-	59.7	- 4			4 .	27.2	•										86.7 84.3	FT -9	SB59 29.4523	SQ IN)	
DEOREES	140.	. 78.6	• •	80.7 80.6			73.6 73.6			66.2		52	56.1	46.6	_	29.2	4		•							87.9 87.7 87.7	ICY SHIFT	I ALPHA PAMB	\$12E (1400.00 \$	
INLET	130.	76.2		77.8	. 4			- 4		70.0			61.9	54.6	•	0.14 0.0	4 .									86.9 89.2	FREQUENCY		CM (140	
FROM	120.	71.0	7	72.9	75	74.	4.4	73.		71.6	200	68.8 67.4	•	57.9	٠	44.00 20.00	15.6									84.8 89.2 2		N281 ADH003	2 50	
ASURED	110.	9	69	73.4	73	5.5	56	73.	22.		9	68		28	5	4 6 4 6	16.									83.8 88.7 88.7	8.288	E NG.	9032	
ANGLES MEA	100.	67.5	67.		77	<u>.</u> :	::	7	2 2	69	9	66.		58.	53.	46 6	20.									82.0 87.1 87.1	RATIO	TAPE AERG. F	3 S.L.	
ANG	8	60	67.	67.6	69	5,5	. 69	69	69	67.	67	65 65		57.	52	4 8. 8.	18									85.4 85.4	DIAMETER	퓽	RANGE 10.0 FT)	
	90.	2 64.7	96.	- 68.1 8 68.8	70		, é	69	6.7	67.	67.	6 6		5.	20	4 6	15.									80.2 84.7 84.7	70	-15-77 1 ANECH	ACGUSTIC RANGE 5 M (2400.0 F	
	76.	000	63	4 65.1 3 66.3	99	67	0 66.6	99	9 6	9 64.8	20 8	2 G 0 G	0 59.6	53.	48	01 0 4 0 4 0 4 10	14.									82.3 82.3		5 2	AC6 731.5 P	
	99	61.0	61.	62. 63.	65	63	2 2	63			g	5 59.0 5 59.0	56.	49	44.	•	9									9 74.8 8 79.1 8 79.1		LEST DATE		
	8	3 58.4	60.		64	9.6		9	6	89	28	8 8 9	9 53.5	9	39.	ဗွ် ဧ										72. 76.		TEST	ST POINT 0519	
	4	23	55.	3 3 3 5	9	. 00 00 00 00 00 00 00 00 00 00 00 00 00	58.	28	57.	200	24	9 2 20 2	46.	37.	<u>ن</u>	2,	1	0	0.0	0	0 0		٥٠	00		L 68.9 L 71.8 T 21.8			L TEST	
		FREG	9	<u>8</u> 6	12	160	250	315	400 100 100 100 100	089	908	1250	1600	250	3150	4000 7000	6300	8000	10000	16000	20000	3150	40000	63000	80000	OASPL PNL PNL PNL			MODEL 0500	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB. 2400.0 FT. SL

IDENTIFICATION - FJ-ZER-FMODL X05195

		,				OI OI	RIGI F P	NA 00	NL I	PAG	E IS								EE-JET SPEED /SEC (278.0 FPS)	
	9. PVI		4 126.7	00	- 6	2 129		0 127	.4 126 .6 126	125	. 4 124.0	.1 122		.5 117.	.9 113.7 .2 112.5	.8 112.	.5 140.0	TAMB 36.14 RELHUM 77.20	FREE-JET	
1	DEGREES 140, 150, 1⊄9		90.3.92.7.93	1 93.3	95.2 93.9 68.	8 91.3 82	93.8 85.4 81	0 81.7	88.2 80.1 75 86.7 78.6 74	7 76.1	82.8 75.3 73 81.3 74.1 70	6 70.7	64.3	8 55.6	3 43.8	.9 26.8	04.1 101.7 98	IALPHA SB59 PAMB 29.4572	SIZE 20.36 SQ IN) - M	
FJ-300- FJB300-	FROM INLET, DE 120. 130. 1		A0.7 A6.3 9	6 96.7	6 6	6 92.5		4 90.3	87.5 90.2 8 87.5 88.2 8	86.8	85.5 85.5 84.4 85.0 62.0	80.1	4.0	67.0 61.0	53.0	38.7	98.8 101.9 10	N281 1AL ADH016 F	SI2 5 SQ CM (20	
- MODEL BACKGR	MEASURED 00. 110.		78.7 78.4	3 78		2 85	63. 60 60. 60 63. 60 66. 60	9	a n	33.2 85	82.7 85.1 81.6 83.9	79.2 61	74.3 75	65.9 66	0 4 55 4	.2 40	94.9 97.3	TAPE NG. AERO. RDG.	ARC 131.	
IDENTIFICATION	ANGLES		8 72.8 74.2	75.2 76.	8 28	80.7 80.	6 82.4 82.0	82.3 82.	8 82.	81.3 81.	9 81.0 81.4 5 78.9 80.5	75.7 77.		64.6 65.	2 49.4 55.55 2 49.4 55.55 2 43.5 45.9	39.0 40.	3 93.0 93.3	2-15-77 11 ANECH CH	ACCUSTIC RANGE 2 M (40.0 FT)	
	. 60. 70.		5 70 4 71 8	72.2 73.	73.9 76.2	76.1 78.		77.0 79.		75.9 78.	9 75.4 77.9 6 75.7 77.9	4.5	66.7 69.	60.8 63.	48.4 51.	37.1 39.	4 86.3 90.	TEST DATE 12-1 LOCATION C41	12.	
	40. 50		67 8 70	.6 71.	72.5 74.	0 74.	76.	.2 76.		3 75.	72.5 74.	4.	62.2 66.	8.58	. 4 a	.5 36.	86.6 87.	1 1	TEST POINT 0520	

					Ž	-•																		ester.
						origi of P	NA OO	IL PI	AGE UAL	IS ITY								YES	7 E S					
					S	a e	8	N 98 (3	- W C	e c) T K	O 0	7	9	20 CJ 60	60	CORRECTION -	CORRECTION :	IB 36.14 IM 77.20		64.73 M/SEC (
ď			75		124,3		128.	126.	126.	126.	126	20.00	123	120	118	115.	139.	REFRACTION	LANCE	RELHUM		Ę,		
T. ARC			160.		90.9	89.8 87.9 86.8	87.7		93.1	80.6	79.0	76.3	4		54.8	4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	98.5	REFRA	TURBU	.4572		- MODEL		
LEVELS 40.0 FT	Q		150.		90.0		4 1		4 -	78.6	4 -	38.5	4	62.4	4 •	39.5 29.5	•	d		29.4		SQ IN		
	Q	DEGREES	140.		67.5	93.3 94.2	4 .	88.9	4 -	88. 85. 60.		79.6	4			51.0 46.5	ıo.	278.00	48.00 0	PAMB		20.38 S		
SOUND PRESSURE	MODI.	INLET, D	130.		83.5 4.6			0.08		85.8 87.0	4 .	82.3			4 .	51.5 47.1 37.3	9	(SEC)	2	1	•	-		
SOUNI	FJ-300-FMGDL	FROM IN	120.		79.3	- ^-	9		ed (4) I	86.9 86.8	900	83.5 83.5 83.5	78.6	25.3		58.2	98.4	EE	DIAMETER	ADH016		SQ CM		
MODEL.	,	SURED FE	10.	. :	75.6	240	- 1				1		i		İ	55.6 4 8 . 6 6 4 . 6	,	VEL CICLTY	JET DIA	NO S	•	131.5		
GRMED		MEASU	00.		9.0	V 0 4	4 4		40	~ B ·	9.0		n io R	900	0	0 V 4	Q.	JET VE		AFRG R		ARC		
TRANSFORM	DENTIFICATI	ANGLES	-		.2 75	-00	9	. 4 93 . 6 82	901		- m	0 8 8	0.0		0	n 01 -	4	EREE	i.	AF		1	1	
H	-	4	8		74		d	9 60 60	d -	4 01 8 83 6 93	1	6 83		101	1	000 844	9 00			10		40.0 FT)		
- L			00		73.	1	82	4 - 62. 7 - 83. 83.		6 8 9 4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1	6 8 8 8 8 8		3 T S		66 53	1	FACTOR	000	12-15-77 641 ANECH		ACQUISTIC 2 M (1	:
ğ			70.		74.0	4		8 80	85.	9 2	85.	8 9	27.5	52.5		8 4	93.4	SCALE			•	12.2	٠.	
1			.09		73.6	1		9 6 6		80.7	79.7				٠.	56.4	4 .	SIZE S	0	INST DATE				
			20.		74.7			78.7 80.0 81.2		o - ∙			4 -	70.5	d o	55.9 47.7		ZEULLS	1.0	IESI	<u> </u>	TEST POINT		
			40.		73.1	4		80.3 80.3 80.3	4 *			80.6 77.1			e 6		91.9	MODEL 21			-	IESI)	l ,
4:	 4 		FREG	8 8 5 <u>7</u>		4 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	g	1550 1600 1600	- 1		1		l .	22000	40000		GASPL		SNIL			MODEL		

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS
59.0 DEG F, 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

					,						•				, ***																					
													di di	RIC F	GIN PO	14	R	Ç	PA QU	4	e Li	IS TY													ET SPEED (278.0 FPS)	
			16	, .	46.9	46.5	10.	. 4	04			10	9	vi æ	9 09.	6	4	1	aj o	- T	u	o								•				NB 36.14	FREE-JET 64.73 M/SEC (
			7 7 148	=	-	- -	1-	_		144.7		9 144	144		- (-	٦	140	_	138.5		2 6	133								157				TAMB RELHUM	ب	
		160	63	•	•	90.0	56.	54	52.8	d	9	48	45	4 4	36.0	- 4	23.0	•												68.0	99	_		572	- FULL	
33		150.	8	70.3	68.1	65.6	60.6	58.5	56.7	50.7	52.2	51.4			45.00 0.00		31.1	22.3												78.6	21.2	۰ ا-		SB59 29.4572	SQ IN)	
X05205	DEGREES	140.	72.2		73.1	71.7			65.2			59.9		9.00			40.5	_	24.0 0.0	4										20°	29.4	K SHIFT		I ALPHA PAMB		
MODIL.	- 1	130.	8.69	4	71.0	o	-	o.	۲.	٩٠	'n		۹,	0.00 0.00	. 0	4	ل ة (43.8	ص ه	9									ı	80.0 82.0	- 1	FREQUENCY		Ξ-	SiZE CM (1400.00	
€J-300-FMGDI	IRED FROM INLET,	120.	64.6	ď	9	68.4	ب ا	4	91	٧	φ		۹.		. eo	4	<u>-</u>	4 1	39.00	3 6	-								1	78.8	ł	FR		N281 ADH016	SO CM	
	RED EB	10.	7	9	-	٠ •	0	ø	<u>~</u> 1	9	. 0	0	٩) (C	, or	٩	œ.	41	٠. ٥	١-	-									7.6 3.2 0		288			032.2	
TION	MEASUE	<u>-</u>	4 61		0 64	0 66]	0	9	֓֞֟֓֓֓֟֟ <u>֟</u>	. •	99	٦	_	9 62	1	•	4 4	4 6	7 "	•								'	6 83 83	٦	ø,		TAPE NO RO. RDO	06	
DENTIFICATION	NGI ES P	100	60	-		. 49 8. 69	1					•	4	9 6		ı	22	20.	4. 6.	1	2								1	. 76 82.	- 1	RATIO		TAP AERO.	્ર જ	
DENT	ANG	8	59.9		62.2	63.5			•	65 3			4		• •	- 4	54.5		43. U	4										76.0 82.0				•	IC RANGE 2400.0 FT)	
		90	60. B		64.1	64.6 51.6	1 -	65.8	•	4 .		64.6	54.7		59.7	- 4	52.B		9 C	ł.	;									76.6 81.7		DIAMETER		5-77 ANECH CH	2400	
		70.	59.4	•		62.69 50.09		63.5	63.2	1 .		61.7	62.2		58.6		53.0		47. E	i	i							-		74.4 80.1	4			12-15-77 C41 ANECH	ACGUSTIC 5 M (240	
		.09	+	N	60	- a	-	₩.	٠. ٥	۹	· -	φ.	4 0	1 0	4	4	د	N F	٠ ه	-	ŗ									- 0	٩		1		731.	
			3 57			. 00 00 00 00 00	-		1 61	1	10		1	- 01	4 57	1	8 51		200											8 72 0 77	0 22			TEST DATE	<u> </u>	
		20	56			. a	l		8 S	28	90				23		4 6 6	4 c	מ מ		•								1	70.9				<u> </u>	3T POINT 0520	
		6	52 7	٠	56.5	59.9	ι.		59.2	1.		56.2	24 A			ı	42.9		10.4	7									1	69.1 72.8	4				TEST	
		0303	200	63	0	125	160	200	250	400	200	630	PDD C	1250	1600	2000	2500	3150	00 K	6300	8000	10000	12500	20000	25000	40000	20000	63000		OASPL PNL	PNLT				7300£ 41	5

					• •																					***************************************	
					,		0)F	IGIN PO	IAI IOI	_ [? (PA(U	GE A	: 1: TI.	S Y										SPEED 370.0 FPS)		
07/19/7 E					•																			35.96 78.90	FREE-JET 2:78 M/SEC (
BACKGROUND NO! SE	ARIC				6 7 7	2 125.6	9 126.7 4 127.3	127	3 126.8	- 126 B 126	125	4 125.4	5 124	123	1 122.8	122	3 120.8	117	116	9 114.9		-:	.4 138.3	TAMB RELHUM	MODEL 11		
	X05210 X05220		150. 160		0	10		۹.	8 69	- 7	۰.	78.1 76. 76.9 77.	4 76	ro e		4		64.2 61.	9	49.7 47.		oi.	98.6 97.	SB59 29.4543	- (NI		
CORRECTED FOR	1	DEGREES	. 140.			89.5	92.1 93.4	93.5	.6 93.1 .0 91.6	91.0	87.2	85.8 84.0	82.8	85.0 0.0	79.5	77.2	72.2	69.3	1		4 4 8 6	ဗ	4 101.8	I ALPHA PAMB	S1 ZE 20.38 SQ		-
(A)	•	FROM INLET,	120. 130			0.1		90	888	5 88	.3 89		2 85	.3 85	. 7	7 81	.0 78 .4 76	73.5 73.	99 0.	61.1 59.		.1 38	97.7 100.	N281 ADH017	SG CM (•	,
SSURE	MODEL BACKGROU	ASURED FR	110.		a c			٩	883 843.6	8 50.2 8	85.1	<u>م</u> 10	7	ب ص 1	. ~	82.3	80.2 78.3	73.7	62.9	60.8	2. 2. 2. 2.	39.6	96.1	E NG. RDG.	131.5		
SGUND PRE	₩ '	ANGLES ME	90. 100.		7	6 75	. 2 77.3 . 6 78.3	BO	. 7 . 8	3 0	5 82.		7 82	.4 82.	90.	1 79	or io	3 72.	8 64	.2	g (C	.9 40.	.7 93.6	TAPI AERO.	E FT) ARC		
		*	80.		9 07	4	75.2 75	7		80.5 80	0	80.5	Œ	۲,	77.1 78	۲		67.8 70		10 I	44.0	6	91.4 91	-15-77 11 ANECH CH	STIC RANGE (40.0 FT)		
UNTRANSFORMED MODEL	59. 0. DEG		. 70.		,	2	9 73.8 8 74.5	76	1 76.8 8 76.8	::	77.	77.6	77	76	3 76.7	74	72.		62.		00 4		88.8	-2	ACGUSTIC 12.2 M (4		
IND			50. 60		9	.17	72.7 72.0	1 74	73.1 75.	, 76. 9. 76.	.3 75.	75.	0 74	.2 74.	72.7 74.	2 72	9.4 70.	.3	7 59.	93	. 4 47.	6.0 38.	5.9 87.	TEST DATE	POINT 121		
			6.		9	6	70.1 7	.	ه ه		D.		id	oj (, o	٩	- 0	~	8	۲.	4.4	-	86.3 8		TEST OF		
416			Chon	00 8 8 0 00 00 00	200 100 100 100 100 100 100 100 100 100	315	4 8 0 0 0 0	630	1000	1250	2000	2500 3150	4000	2000	9000 9000	1000	12500	20000			20000		OASPL		HODEL OSOG		

				•		OR OF	GINAL POOR	PAGE QUAL	is TY			N - YES N - YES		-JET SPEED EC (370.0 FPS)
I. ARG			160. PWL		88.7 122.0 89.1 124.6		0 126		2 1 2 5 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7 123 7 123 0 120 120	8 118 0 115 2 115	101.5 139.4 Referaction correction Turbulance correction	1ANB 35,96 43 RELHUM 78.90	FREE-JET - MODEL 112.78 M/SEC (
PRESSURE LEVELS	XOS	T, DEGREES	130. 140. 150.		1.6 84.9 87.3 6.3 89.2 89.4	. 9 92. 6 92.	2 88.2 83.8 83.8 83.8 83.8 83.8 83.8 83.	5 86.6 82. 9 85.8 81.	3 82.4 2 81.2 5 79.7	2 70.7 69. 6 67.8 65.	.4 57.3 .8 52.3 .9 46.9	100.2 100.9 97.9 (SEC) 370.00 (IN) 48.00	IALPHA SB59 PAMB 29.4543	\$12E (20.36 80 IN)
MODEL SOUND R.H. STD. DA	- FJ-400-F	EASURED FROM INLET,	. 110. 120.		73.1 76.9 6	77.7 81.2 8 78.2 83.2 8 79.9 85.0 8	3 86.9 3 87.7 7 87.7	85.0 89.1 86.5 88.8	85.5 86.4 84.2 85.2 84.1 83.7	80.2 77.9 75.4 76.5 70.9 71.4	6000	96.2 98.7 Velácity (et Jet diameter	TAPE NG. N281 RG. RDG. ADHO17	131.5 SQ CM
FLIGHT TRANSFORMED	106	ANGLES MEASU	80. 90. 100		.4 72.6 72. 0 73.8 74	75.4 76. 77.8 77. 78.2 79.	.0 80.3 81. 6 81.6 82. 7 81.8 82.	1 82.5 83. 2 82.8 84. 9 81.9 84.	. 9 62.9 83. .1 81.8 82. .1 81.1 81.	77.5 78. 73.3 75. 71.0 71.	.2 61.2 61. .0 54.4 56. .7 47.6 50. .8 41.9 43.	8 94.2 93.4 94.6 FACTOR FREE JET . 000	H CH VE	ACCIUSTIC RANGE 2 M (40.0 FT) ARC
59.0			50. 60. 70.		4.4 73.6 74.1	. 9 73.5 74. 6 76.4 77. 6 77.4 77.	.0 79.8 80. .2 80.5 80. .7 81.0 80.	3 80.6 81.5 81.2 81.2	.4 80.1 80. .1 80.8 81. .6 79.4 81.		2 56.6 59. 2 49.8 51.	1.4 92.3 92. 1. SIZE SCALE .000 CALC. 1	IEST DATE 12-15-27 LOCATION C41 ANEC	12.
			40. TEG	6.0 0.0 2.5 2.5	73.7 7	75.1 77.1 79.9	98.00	80 00 00 00 00 00 00 00 00	1	75.3 72.7 67.9	40.4	OASPL 94.5 92		MGDEL TEST POINT 0500 0521

						OF	RIG F	iiN O	AL	PQ	PA NU	SE AL	IS	1													35.96	78.90	FREE-JET SPEED 112.78 M/SEC (370.0 FPS)	
		PWI.	145.8	145.7	145.2 45.2		45.6	144.9	144.8	144.2	143.55 43.55	141.4	140.3	137.9	137.0	135.6	133.0							167.5			TAMB	RELHUM		(* a d is valent) - ald grig
	160.	61.3	63.8 65.4	64.1	10 10 10 10 10 10 10 10 10 10 10 10 10 1	28.7	58.7	55.4	55.1 51.9		46.7		•	•											72.5				- FULL	
S	150.	66.2			60 80 9.00	57.3			53.3		40 6 6 6 -		•		- 1										71.3	8- 1-	SB59	29. 4543	SQ 1N)	
DEGREES	140.	70.0		70.3 ZD D	67.8	64.4	62.8	61.2	59.9		54.3			2.53 2.62	. 4									78.9	78.6 78.6	ICY SHIFT	ALPHA	PAMB	\$12E (1400.00 \$	
INIET	130.	68.2	69.3	9 e	68.5	68.2	66.7		65.4 64.0		59.6			33.4	. 4									79.5	82.3 82.3	FREQUENCY			CM (146	
	120.	62.B	66.4	68 68 3	68.3		69 6		• •	64.1	62.4	55. 55.9		38.7		11.0									83.7		N281	ADH017	2 80 (
ASURED FROM	110.	9	62.1	6.4 6.5 6.4	66.0		67.4	66.7	65 65 65 65 65 65	64.1	63.0	. 4	54.0	4 4	30.5	12.4								77.1	82.7 82.7	8.288	N S		9032	
ANGLES ME	100.	60		63.3 64.2	64.	93		9	65.3	63.	62.2	. 1		42.0		16.2								26	81.8 81.8	RATIO	TAP	AERO.	S C	
ANG	8	80		61.8 62.9	64.1	63.7			63.2		61.6			4 4 2 4 2 6		15.1							-	74.9	80.8 80.8	DIAMETER		퓽	1C RANGE 2400.0 FT)	
	90	9		64.0 64.0	•		4 .	64.0	63.3		51.55			4 / 4 / 5 / 5 / 5 / 5 / 5 / 5 / 5 / 5 /										75.7	80.6 80.6	DIAI	-15-77	I	ACCUSTIC I	
	90.	7 22				62.7	62.6	62.2	6. La	61.6	60.7			4 6 6		16.6									7.9.7		5	12	ACGI 731.5 M	
•	60.	. 0		61.7	61.	62.	9 2		4.00 4.00		58.1		51.7	37.6										72.4	78.1		F DATE	LOCATION		
	90	£.	6 6	59.4	60.2	59.0	6 6 7 7	58.9	58.2	58.5	55.7			43.7	. 1	1.9									76.2		TEST	i i	T POINT 0521	
	6	2		69.9 59.9	50		35	36.	10 10 10 10 10 10 10 10	35.	51.7	. 48 48	43.												74.5				TES	
	:	FREG	8 8 80	100	160	520	315	200	630	1000	1250	2000	2500	3150	2000	6300	8000	12500	16000	25000	40000	•	90000						MODEL CSOO	

X05215

IDENTIFICATION - FJ-400-FMODL

6.1.7 Measured Acoustic Data for Model 6

ORIGINAL PAGE IS OF POOR QUALITY

R_r = 0.901 conic outer nozzle

(7)

 $R_r^i = 0.902$ conic inner nozzle

 $A^{1}/A^{0} = 0.324$

without struts in outer flow

ŏ
Ñ
•
-
_
~
Ĺ
2
<u></u>
Ξ
2
ö

										OF	P		OR	Q	•	AL.													1 39.92 1 22.40		FREE-JET SPEED O. M/SEC (O. FPS)	
Ş	IRC IRC				PWL				-		 o		 - e	2		 o 0		- a	ю.		-				. 6	4 142.2	6 163.8		TAMB		MODEL	
PACKOP	40.0 FT. ARC	X30010		150. 160					11.6	9		0 (5 4 	3		N 4	0	φ N	0.	2	6	- n o	9	ö 4	r –	75.9 74. 68.4 67.	28.5 125.	!	SB59 29.5000		- (NI	
CTEN EAD	1	FMODL	DEGREES	140.						•				•			• • •	116.2 11	6.4	-	0	- , o	٠	. (c	9 4	78.1 7 73.9 6	127.8 12	i	ALPHA S PAMB 2	1	SI ZE 17.07 SQ	
S CORPECTED		FJ-ZER-FMGDI	INLET,	130.						200	2 =	=:	2 =	111	112	2 (1	123	2 12 2 2 3	128	100	106		96		84.	9 77.9 5 72.5	8 123.9		99		€ 5	
DE I EVE	ENT R.H. STD.	MODEL BACKGROUND	ED FROM	0. 120					1.	8 5 8 5	.6 101	2 103	. 8 . 105 . 106	107	108	2 0	12	109	108	90	50.	36	26	2) q	84	74.1 79.9 69.1 74.5	.0 119.		N300 ADH1		110.1 89	
PRESS.	PERCENT	•	MEA	100. 110					0.	. .		96.8 99			Ю	 9 @	60				6	- 3 (0	6 .	- a	. 4	75.2 74 68.1 69	14.3 117		TAPE NO AERO, RDG		ARC	
	F., 70 PERCE	DENTIFICATION	ANGLES	.06					9	.		0 (3 63	4	6,0	. 9	7	9 P	~ 0	υ	40	, v	- (N C	9	74.9 63.6	114.1 11		CH A		3 RANGE 40.0 FT) /	
MADE!	O DEG.	IDENT		80.					88	9 9	97.	108	96	.66	98.		101	101.	50.5	0	50.	66	96.		91.	73.7	113.9		-16-78 1 ANECH C		ACGUSTIC R	
TRANSFOR	59.0 DEG			60. 70.					.8 88.	9 K	90.	92.	.3 84.	2 99.	.1 97.	9 0	. 8 102.	. 9 102.	6 100.	9 100	.90	2 86.	0 92.		.8 80.	.3 73.7 .1 69.0	.2 112.0		82		ACC 12.2 P	
3				50. 6					9	ú L	. 00	9 1	٥	g	9	7 N	8 102	G 60	101 6	<u> </u>	. 5 9 9 7	4 94	B) (œ	68.9 71 62.6 66	1.7 112		LOCATION		3001	
				40.	4				0	<u>ه</u> م	, N	.	7) (V		01	- 6	4	6 4 	6-	- lo	0 (20	ი .	- o	0	68.0 62.5	111.2.111				TEST P	
O·					FREG 50	80	00.	2 0 0	250	8 6	200	630	900	1250	1600	2500	3150	4000 5000 5000	0009	10000	12500	20000	25000	31200	20000	00000	GASPL				MODEL. 6	

				ORIG OF P	NAL POOR Q	AGE IS VALITY					ED), FPS)
										88	1 22.40 1 22.40 FREE-JET SPEED 0, M/SEC (0,
FT. ARC	. 160.		7 112.9 145.9	6 114.6 149.6 0 114.6 150.5 0 157.7 151.6	116.3	2 113.5 152.3 4 110.2 151.8 0 109.0 151.9 6 107.1 150.8	105.9 105.5 104.1	6 101.1 147.6 5 100.0 147.6 9 96.9 146.6 6 94.2 145.4	89.6 84.4 79.3 74.4 67.1	REFRACTION TURBULANCE	5859 TAMB 29.5000 RELHUM 1N) - MODEL
R.H. STD. DAY, SB 40.0 FT. - FJ-ZER-FMGDL X30010	7, DEGREES		9 109.3 112.	5 113.0 113.0 116.0 16.6	117.1 118. 116.0 118. 116.9 119. 117.2 119.	117.0 11 6. 117.0 116. 117.6 115. 116.2 111.	2 114.6 111. 0 112.8 110. 4 111.4 108. 5 110.1 107.	9 107.8 104. 4 105.3 102. 6 101.9 99. 6 98.1 95.	94.9 90. 89.6 85. 84.4 81. 78.1 75. 73.9 68.	46.00	IALPHA 3859 PAMB 29.56 812E 17.07 SQ IN)
R.H. STD. DAY, - FJ-ZER-FMODL	SURED FROM INLET,		. 1 97.6 103.	100.65 101.3	105.4 106.6 107.4 108.6	001 001 001 001	6 108.6 1 6 108.5 1 7 106.3 1	5 103.3 6 103.3 7 6 100.9	6 94.5 96.4 7 89.5 90.9 9 84.7 94.9 1 79.9 77.9 1 74.6 72.5 0 119.6 123.9	20	G. N300 G. ADH169 110.1 SG CM (
., 70 PERCENT DENTIFICATION	OLES MEA		9 6	0.00 0.00 0.00 0.00 0.00	9 98.6 5 99.7 4 101.8	7 101. 6 102. 7 102. 3 102.	7 104.6 2 103.7 6 102.5	2 100 9 7 97 6 1 94 6	6 85.9 81.4 6 66.1 1.4.3	FREE JET VELC FREE JET	TAPE NAERO. RD
.0 DEG. F.			60 60	97.2 94 108.3 95	2 94.8 1 96.7 0 99.3 1 1 98.2 1	7 97.8 7 99.8 1 3 101.6 1 6 1 1 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 102.3 6 101.6 0 101.6 1 7 1	0 101.0 5 100.9 6 99.3 7 1	9 89.9 90. 9 89.9 90. 7 73.7 74. 0 67.2 68.	FACTOR . 000	18-78 ANECH CH BUSTIC RANK
8	. 60. 70		67.6 6	8 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	93.7 98.3 99.2 97.1	100.5 101.9 102.9	100.00	5 92.0	95.0 85 77.8 80 71.3 73 66.1 69	ALE C. 1	ATION
	40.	1	0 60	86.4 88. 87.7 89. 88.8 91.	92.9 51. 98.2 58. 95.1 97. 99.0 96.	101.7 101. 103.9 102. 103.4 103. 101.3 101.	98.9 100. 98.1 100. 96.5 99.	84.0 87. 92.3 96. 87.0 93.	73.0 74. 73.0 74. 68.0 68. 62.5 62.	MODEL/FULL INPUT 1.0	TEST LOC TEST POINT 3001

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

		IDENTI	I DENTIFICATION	•	FJ-ZER-FMODL	DL X30015	016			
		ANGLES	MEAS	URED FROM	M IN ET,	T, DEGREE	E3			
.40. 50.	0.0	0. 80.	ö		120. 13	130. 140.	150.	160.	4	
50 67,4 71.0 73,4 63 68,5 72,9 75,2 80 72,5 72,8 75,9	73.6 80. 75.2 91.	7 79.1	79.78 80.24	80.6 83.	9 6 6	7 96	4 10 (89.0 169.7 89.8 170.9		
77.8 79.1 80.	9 0	82.	0	v 6	8 6	-	95.7		? 9 .	
78.2 77.5 79.	8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 6 6 4 7 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	- 6	ω 4	9 8	m –	96.4		9	
80.7 81.9 82. 82.6 82.6 83.	3 80	8 82. 6 83.	e 6		9.9	0.96.0	9.00	86.3 171	- 1	
91.7 63.8 84.	4 1	2 65.	4	، ما	93	6	90.6	- J '	OF	
77.8 80.2 82.	. 6 . 8 . 8	4 65.	ے ق		3 6		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		P	
75.9 79.9 82.	2 83	7 85.	0		6		83.9	-	DC	
72.9 77.6 81.	N O	9 85. 85.	n e	60 (2	98		81.6 70.0)K	
2 76.1 79.	82	94	.	.	. 6		76.9	66.4 166.8	PA	
62.3 71.8 74.	σ	8 83.	- 0	2	3 29	5 a	70	6		
59.9 67.3 72.	5 79	2 80.	-	. 6	7	4		9 - 6		
55.6 62.4 68. 46.0 53.7 61	N 4	4.5	91	72.6 73	92	ю.	5	9	•	
29.7 39.9 48.	1 4	58	وا	ار	40	- S	- 60	1		
7.8 20.7 30.	N	4	N	9			•	161	- 4	
.	6 0	oi Oi	10	a,	a n	o.		162	6	
12500										
20000										
25000										
20000						•				
١										
									•	
MASPL 89.5 91.5 93.2 PNL 84.0 97.3 99.5 1	93.9	6 96.6 7 105.6	96.6 9	98.8 101.0	0 104.0	106.3	7.70	98.2 162.6 97.5	9	
PNLT 94.7 97.8 99.5 1	01.	8 105. U	03.6			109.5	105.8	97.5		
	10	AMETER	RATIO 9	9.056	. FREG	FREQUENCY SHI	FT - 30			
TEST DATE	03-16-78	2	TAPE		N300	IALPHA	\$B59	TAMB	39.82	
NOTI VOCI	-	5	Ž	.	80	OLY.	ZW. 5000		22.	v:
MODEL TEST POINT 731	ACGUST .5 M (1C RANGE 2400.0 FT)	ا د	9032.2 8	CH3 OS	\$12E 400.00	- (NI OS	FULL	FREE-JET SPEED O. M/SEC (O. FPS)	į
- N										

ď	
ñ	į
-	
-	١
-	
•	
_	
9	į
r	١
۰	
-	
•	
•	
	١
- 12	
- 6	

									OF			ial Of		P# Q U		E LIT	S										•		ET SPEED : (308.0 FPS)		
ana s																											j	39.56 21.20	FREE-JET 3.26 M/8EC (
ARC NOISE	0.0		160.	Ĭ				02.9 141.1	06.5 144.0	3 144	.4 145	97.0 145.2	. 4. 14. 14. 14. 14. 14. 14. 14. 14. 14.	4 144	94.0 144.7	94.0 145.9	94.3 145.8	24.8 145.6	0	93.7 145.7 92 8 144 A	9 145	6	66.8 343.6	· ·	7	59.2 140.8	113.7 158.6	TAMB O RELHUM	MODEL 118		
AO.O FT. ARC	DL X30020 DL X01400	DEGREES	150.					 . 2 .		á	1	0.00 0.00 0.00 0.00	. 9 103.3	7 100.6	,00,0 100,0	20.7	101.6	2 101.2	6 100.3	0 C	0.90 0.90 0.00	6 94.6	0 t	6.19	.0 76.0	0 62.0	118.9	HA 5859 HB 28.5450	- (NI OS Z		
S CORRECTED . DAY, SB	FJ-400-FMGDL FJB400-FMGDL	INCET, DEG	130. 140.	•					201 20 201	-	107.2 111	108.3 111	- -	106.5 108	109.4 108	- ~	109.3 108	108.2 108	.6 106	106.9 105	50.	26 97	96.39 8.39	69.0 86	82.2 80	73.0 73 68.6 67	120.4 121.4	I ALPHA 2 PAMB	S12E CH (17.07		
SSURE LEVELS NT R. H. STD.	MODEL BACKGROUND	MEASURED FROM	110. 120.					90.2 92.6		96	4	96.2 101.2 e7 6 102 8	. 0	6	00.8 105.7	i ri	02.4 105.9	04.8 105.6	0 106	03.7 105.5	00.4 102.2	8 99.	93.5 97.0	8	94,	72.7 72.5 67.2 72.6	13.7 116.7	NG. N300 RDG. ADH152	0.1 80		
SOUND PRE 70 PERCE		ANGLES MEAS	90. 100.					20 8	. 4 4 5 . 4	7.	.1 92.	6.6	95.	.1 96.	9.6	00.00	3 100.7	9	1 100.9 1	9.88 0.	.79	.0	.7 93.	.0 85.0	.1 80.5	5 67.0	.9 110.6 1	TAPE AERO. R	ARC		
	IDENTIFICATION	<	80. 8					63	88.6 A.5.4	69.4	99.8	89.3	91.6	92.7	93,	100.8 1	66	0.80	98.7 1	98.9 1	98.3	96.7	9	98.38 38.38	80.8	72.6 /3 65.8 67	109.9 110	16-76 ANECH CH	ACGUSTIC RANGE		
UNTRANSFORMED NODEL 59.0 DEG. F.			66. 70.						- E	9	6 86.	-	2 6	5	8. 8.	5 100.	99.4 99.1	96	5 97.	.4 97.	30	.3 94	.6 90.	83.6 85.0	.7 78.	69.6 72.0 63.7 66.9	108.9 108.7	<u>2</u>	2.2 AC0		
			0. 50.					5 62.1		6 83.7	3 65.6	6 65.4	99.4	5 93.1	.4 99.0	100.00	.3 97.6	26.7	5 97.2	6 95.3	93.2	.2 91.3	.8 67.9	. 00 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	.4 73.5	.8 67.8 (.6 108.1	TEST DATE	TEST POINT 3002		
			40	FREG 50	8 9	100	- 10 G				1	90	9 6		8 6	3 6	4000 97.					- 1		40000 80	- 1	63000 67 80000 61	GASPL 107.		MODEL TE	423	

6
•
286
•
_
•
73
ò
=
•
~
5

					0	RIG F	IИ	AL OR	PA QU	GE AL	17	i										ED FP3)
																			à	CORRECTION - YES CORRECTION - YES	1 39.86 1 21,20	FREE-JET SPEED 116.26 H/SEC (368.0
		PW		2 138.6	9 141 . 2 143.	3 144.0 4 144.0	144	9 143.3 6 143.3	0 144		6 147.8	47	3 148.0 6 147.9	1 147 3 3 148		7 147.0	7 146.6	0 143.0	3 160.3	REFRACTION TURBULANCE	TAMB	MODEL 1
020		50. 160		.7 105.	- 4		. 6 104.7	. o .	14	. o	1.1 106.8	0	. 1 106. . 5 195.	. 9 106. . 6 105.	7.	2 95.	9.0	4	1.4 118.3	REPR TURB	\$859 29.5450	IN) - MG
X30020	DEGREES	140. 15		105	05.2 106 09.3 110	09.8 110 10.5 109	0.0	07.7 102	ַן דו	109.1 105 109.6 105	09.2 106.	· ·	07.5 105 05.6 104	04.6 103. 02.5 102.	04	r io	in c		120.9 119.4	388.00 48.00	IALPHA SB PAMB 29	SIZE 17.07 SQ 1
- FJ-400-FM3DL X30		130.		97.0 16	- 4	105.1 106.4	~	107.0	163	9 1	109.6 1		108.3 10 107.3 10	107.1 10 105.3 10	04	N. 10	o i o	68.0	120.3 13	(SEC)	_	- [
FJ-400-FM3DL	FROM INLET	120.	v.:	6. 0	92.6 95.1	60 7.60 4.60	101.6	2 0 C		106.3	106.5	107.6	107.3	105.4	100.0 96.6	95.9	•	72.2	117.4	/ELGCITY (FT. Jet diameter	N300 ADH152	. 1 SB CH
	ANGLES MEASURED	. 110.		86.7	6 67.6 9 66.9	3 90.3 1 92.4		0.79	8	-	7 102.2			1 102.7 0 101.5		3 91.9		1	0 113.6	1-	TAPE NO. RO. RDO.	110.1
DENTIFICATION	NOLES M	90. 100		10	.2 6 6.	o n	16		98	- •	70	9	- 0	6. G	0.	ω ω	<u>-</u> •	2 10	4 112.	FREE JET FREE	TAF AERO	E FŢ) ARC
I DE	 	80.8			n -	w o	oi o	, O a) (2)	, .	W R.	. n	. 6	- n	<i>u</i> 4	0 -	40	0	113.4 113.		CH CH	IC RANGE 40.0 FT)
		70.		98.3	6.0	ص ص	0 0	900	201	. 6	10	0		<i>a</i> a	- 9	41	<u>.</u> .	- 0	112.6 11	LE FACTOR	03-16-78 C41 ANECH	ACGUSTIC
		.09		7.00	86.9	. .		e in a	ı çı	or is	-		9.	n n	n n	- 0	60		113.8 1	ZE SCA CALC	TEST DATE LOCATION	Š.
		6 0	•	 60	8 8	8 8 9 9	2.5			5.5	105	103	103.	1 02 0 0	98.	93.	8		113.9	/FULL SI	TEST	3002
		6		65.7	85.7 88.3			2 6 9 2 4 6	• • •		•1				97.1	6 8	6	6 6	114.2	MODEL/FULL INPUT 1.		TES

												OI	RI(31N	AI	L (PA QU	GE Al,	IS TY					- 4						E-JET 8PEED) 'SEC (348.0 FPS)	
ج م			160, PM.	78.4 163.1	78.5 164.0	77.0 162.6	Γ,	76.9 163.1 76.6 163.9				_	,	68.6 167.2	"	56.7 167.0	. "	165.7	162.1							95.4 179.3 91.9	6.18		TAMB 39.56	FREE-JET - FULL 118,26 M/8EC (
2	X30025	DEOREES	150.	ľ	6 60 60 60	93.0	90,0	79.3	61.5	61.3		78.4	77.3	74.2	66.9	63,7	42.0									99.1 94.3 102.9 97.0	102.9 97.0	NCY SHIFT -10	1ALPHA 5859 PAMB 29.5450	\$12E (1400.00 80 IN) -	
R.H. STD. DAY,	FJ-400-FH30L	RED FROM INLET,	120. 130.	3 79.7 86.3	9.00	5 64.4 67.6	.85.9	8 6,9	87.8	l .	67.5	-	96,0		80.4	78.7	67.8	58.1	17.7			1					106.3	9.056 FREGUENCY	M300 ADH:152	9032,2 8Q CH (14	
70 PERGERI	DENTIFICATION -	ANDLES MEASURE	90, 100, 110,	\$ 72.8	74.5	77.0	3 77.9	79.4	1 01.2	8 62,	65.4	7.28	63.7	A 683	7 80.3	5 77.2	4 67.4	58.2					•		i	95.8 94.2 95.3 04.8 102.4 103.0	102.9 1	RATIO	TAPE NG. AERG. RDG.	PE FT) SL	
59.0 DEB. F.,	70.		70. 80. 9	74.6	85.4	74.6	77.2	77.7	70.7 82.6	ı		2.2	2.70	2.	83.7	81,8	72.8	60.5	16.0 19.2 2							102.8 104.8 104.	3 105,8	DIAMETER	03-16-78 C41 ANECH CH	ACCUSTIC RANGE	
			60. 60.	70.0 71.2	71.1 73.1	75.1 75.3	74.3 76.3	75.5 76.1	65.1 83.5	65,2 86.1	63,5 65,6	82.3 84.2	82.0 63.2 82.1 83.2	80,8 82,8	76.6 79.0	75.7 77.7	69.8 74.1 50.6 66.1	50.0 57.0	26.9 36.0				,			93.4 94.6	101.4 103.2		TEST DATE LOCATION	ST POINT 731	
			40,	-1			ı			1	500 82.0	- 1			- 1					10000	000s	20000	31500	0000	00000	OASPL 91.9				HEDEL TEST	

10.206	
07/18/79	
	R BACKGROUND NOISE
	CORRECTED FOR
	RESSURE LEVELS CORRECTED FOR BACKGROUND
	SGUND P
	MANSFORMED MODEL

### BOLD FOR THE SQUAD PRESSURE LEVELS CORRECTED FOR BACKGROUND MOISE 93.0 DEG. F., 70 FERCENT R. H. 510. DAY, 58 40.0 FT. ARC IDENTIFICATION - BACKGROUND EACKGROUND FACTOR	FREE-JET SPEED M/SEC (0, FPS)
80UND PRESSURE LEVELS 1 70 PERCENT R. H. STD. 1 ANGLES MEASURED FROM IN BACKGROUND 7.4 88.6 91.3 95.2 1 8.8 90.2 92.1 95.2 1 1.7 98.6 91.3 95.2 1 1.7 92.6 91.3 95.2 1 1.7 92.7 7 94.2 1.7 92.6 91.3 95.2 1 1.7 92.7 94.2 1.	FREE-JI O. M/SEC
80UND PRESSURE LEVELS 1 70 PERCENT R. H. STD. 1 ANGLES MEASURED FROM IN BACKGROUND 7.4 88.6 91.3 95.2 1 8.8 90.2 92.1 95.2 1 1.7 98.6 91.3 95.2 1 1.7 92.6 91.3 95.2 1 1.7 92.7 7 94.2 1.7 92.6 91.3 95.2 1 1.7 92.7 94.2 1.	- MODEL (
800ND PRESSURE LEVELS 1 70 PERCENT R. H. STD. BACKGRGUND BACKGRGUND 7.4 88.6 91.3 95.2 1 8.8 90.2 92.1 95.2 1 1.7 98.6 91.3 95.2 1 8.8 90.2 92.1 95.2 1 1.7 92.6 91.3 95.2 1 1.7 92.7 94.2 1.7 98.6 91.3 95.2 1 1.7 92.7 94.2 1.7 98.6 91.3 95.2 1 1.7 98.6 91.3 95.2 1 1.7 98.6 91.3 95.2 1 1.7 98.6 91.3 95.2 1 1.7 98.6 91.3 95.2 1 1.8 93.1 98.3 100.6 1 1.9 93.1 98.2 102.0 1 1.9 95.3 99.5 100.5 1 1.9 95.3 99.5 100.5 1 1.9 95.3 99.5 100.5 1 1.9 95.3 99.5 100.5 1 1.9 95.3 99.5 100.5 1 1.9 96.6 95.6 95.6 95.6 95.6 95.6 95.6 95	SQ IN) - M
80UND PRESSURE LEVELS 70 PERCENT R. H. STD. 11CATION - MODEL F. H. STD. ANGLES MEASURED FROM IN BACKGROUND 7.4 88.6 91.3 95.2 1 8.8 90.2 92.1 95.2 1 1.7 92.8 91.3 95.2 1 1.7 92.9 92.1 95.2 1 1.7 92.9 92.1 95.3 1 2.9 93.1 96.3 100.4 1 3.4 94.3 97.6 101.1 1 2.9 95.1 96.3 100.6 1 2.9 95.1 96.3 100.6 1 3.4 96.3 99.4 101.2 1 4.4 96.3 99.5 100.5 1 4.4 96.3 99.5 100.5 1 4.4 96.4 98.8 100.5 1 4.5 96.4 98.8 100.5 1 4.6 95.9 95.1 95.6 65 8.6 95.6 95.6 67.0 82.6 82.6 82.6 82.6 82.6 82.6 82.6 82.6	S12E
	1 SQ CM (
	110.1
ANECH A SECTION OF SEC	: RANGE 40.0 FT) ARC
07	ACGUSTIC F
	12
	TEST POINT 3003
FREG. 1000 69. 12.55 65.00 69. 12.50 69. 1000 69. 12.50	MODEL TI 6

Cs.

						•		RI	IGII PC	N/ DO	IL R	PA QU	IGI AL	: <u>I</u>	3								YES		T SPEED (O. FPS)
			PWL		0	40.6 0.03	42.0	9	N 60		2.1 5.1	42.4	\ O		4 m	5.1	N 60.	138.4	0.0	(N 10)		. 6.3	SO CORRECTION -	ME 40.28 HUM 22.00	0. M/SEO
VELS 1.0 FT. ARC			50. 160.		1.1	106.7	0 107.3	8 106.7	06.7 105.6 142.06.0 105.5 142.	105.9	104.7	12.	34.8 103.6 141 34.7 103.2 141	103.5	102.8	99.6	. 6.	92.2	2 63.1	76.9 77.3 138 72.1 71.2 136	63.6	119.1 117.9 155.	TURBULANCE	3859 TAMB 29.5100 RELHUM	IN) - MODEL
STO. DAY, SB 40.0 FT	MGDL X30030	LET, DEGREES	130. 140. 1		102.0 1	99.0 104.1 10	6 107.5	. 0 107.1	106.5	.0 106.4	105.3	. 04.0	7 103.9	103.3	100.7 102.9 10 100.7 101.8 10	93.8	6 95.4	.4 91.1	. 5 66.7 83.3	77.4	5 67.4	116.0 117.9 1	(IN) 48.00	I ALPHA PAMB	SIZE 1 (17.07 SQ
R.H. S	GN - FJ-ZER-FMODL	SURED FROM INLET,	110. 120.		89.6 91.6	90.7 94.2	100	6	, ,-	101	98.2 102.0 1	102	0	8 100.5		96.6	91.4 92.6	9.	به و <u>د</u>	76.4 78.9	.1 67.	109.9 112.4	VELOCITY (FT/SEC) Jet Diameter (IN)	. NG. N300 RDG. ADH143	110.1 SQ CM
F., 70 PERCENT	IDENTIFICATION	ANGLES MEA	90. 100.		.1 66.	7 88.	88.8	7 92.	60 A	8 95.	9.00	4 96	7 95.	96	94.4 95.7	4 93.	4	9	N 0		6	106.2 107.1	FREE JET FREE	CH AERG.	: RANGE 40.0 FT) ARC
59.0 DEG. F.,			70. 60.		83.	95	85.3	7 89.	5 90.	6 91.	7 91.	98	92	92	92.	92.		.3 89.	- 7 8 8 8 4		0 60	102.9 105.5	SCALE FACTOR CALC. 1.000	03-16-78 C41 ANECH	ACOUSTIC F
			50. 60.		6 82.	7 62.	84.5 86.0	4 87.	6.4 0.00	. 69	.2 91.	, io	6 6 6	90.	0.0	.7 90.	. 6 90. . 4 87.	.2 85.	.3 82. 78.	. S. Z.	3 58.	101.8 102.7	S1 ZE	TEST DATE LOCATION	TEST POINT 3003
			40.	8.0 8.0 0.0 0.0 0.0		2	500 82.5	98	9 8	9 6	98	9 6	88	88	87.	83.	77.	76.	2.5	• •	52	CASPL 99.5	MODEL/FULL INPUT 1.		MODEL TES

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SGUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

3
Ñ
_
=
Ċ
N
Ö

()-

																								الله ال	-							
10.206											O I	F I	GII PO	NAI POF		PA QÜ	GE	i IT	3 Y									9		SPEED 302.0 FP8)		
07/19/70																											3	<i>A</i> .		1		
_																												39.56		FREE-JET 92.05 M/SEC (
				160.						9.1 142.3	6.6 145.5	4 14	0 146	8.6 146.2 7.0 145.7	.9 145	6.2 145.9		41 0	7 146	4.5 146.3	7 145	9,140	9	.9 143	9.2 143.5 2.9 141.6	6.6 140.5	5.9 159.6	TAPB RELHUM		MODEL.		
Ere Barke	40.0 FT. ARC	X30040 X01300	ES	150. 1						109.5 109	112.6 108	100	. . .	106.6 97	ŀ.	105.7 9	. ~	105.6 96	10	0		97.4 91	9	io.	<u>-</u> ب	70.3 66 61.2 58	.6	\$859 29.5450		SQ 1N) - I	:	
Concret	DAV, SB	FJ-300-FMODL FJB300-FMODL	ET, DEGREES	130, 140.		•				9.6 105.6 2.0 107.4	•	0.6	.0 113.	6.9 112.3 6.5 111.6	.2 111.	.9 110.	; ; : =	5.11.0	.2 109.	a -		-	ų	.2 92.	.3 87.	6.3 74.5	.2	IALPHA		\$12E (17.07		
	STO.	,	FROM INLET,	120.						93,6 94	in r	; ·		103.8 108		106.0 109	. 0	105.9 1	_	105.7	103.4	_	96.7	93.7		79.3 76	116.9 121	N300 ADH151		.1 50 CH		
	N K	N - MODEL BACKGROUND	MEASURED	00. 110.						į.	9.8 92.0	1	6		100		200	102	103		35	-	92	8	98	74.1 72.4	.2	TAPE NO.		ARC 110		
	F., 70 PERCE	TIFICATION	AMOLES	90.						87.78	.	1	0	0 1	8	٥ نا	4	80 %	-	9	מיי	ن د	1	9	ဝ် က	G 41	111,2	∄ V HS		RANGE 40.0 FT) A		
	59.0 DEG. F.	IDENTI		70. 60.						84 . 86.	N U	9 97	7 90.		6 93.	55 93.	. a 100.	i	5 96.	98.	6 98.	ω α	0.95	.3 89.	rú ci en en	6 9	9.3 110.0	03-16-78 C41 ANECH		ACOUSTIC .2 H (4		
SUACTION				.09						0 -	00		4	ن م	9	o o	-	100.4	98.1	97.8	9 07	95.1	-	9	به به	70.1 7	109.3 1	TEST DATE 0	1	12		
				40. 50.					į	3 64.	- K	85.	6 86.	6 4	91.	70.5	- 0	3 98.	. 0	3 97.	2		3 87	.3 84.	6 -	7.3 67.0	9	TES		TEST POINT 3004		
				,	FREG	888	100	128 160			400	1			1	•	-	4000 98		- 1			1			9 00009	OASPL 1			MODEL 6	429	

Ø
Õ
8
_
_
ø
79
_
91
91

99.91								OR!	P C	SAI OF	_ P/	AGE UAI	: 19 LITY						CORRECTION - YES	39, 56 21, 20	FREE-JET SPEED DS M/SEC (302,0 FPS)	
Tellooped Civilse (School Charles)	59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC	IDENTIFICATION - FJ-300-FMODL X30040	ANGLES MEASURED FROM INLET, DEGREES	FREG 40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160.	.1 88.8 86.5 86.7 85.9 87.1 88.0 88.6	85.1 86.8 86.5 87.0 87.4 86.5 86.2 69.3 94.4 187.0 87.0 87.7 86.8 89.1 90.3 96.2 188.6 88.6 88.6 89.1 90.3 90.0 90.6 91.7 98.4 1	89.1 89.5 90.6 91.4 99.6 91.6 91.9 94.0 100.8 107.7 112.1 113.2 106.7 14	93.3 91.2 92.2 92.7 92.9 94.4 94.8 96.3 103.4 107.3 110.9 110.7 104.5 146	94.8 92.8 93.9 94.9 94.9 96.1 95.9 97.9 104.1 107.9 110.5 108.6 108. 94.0 95.0 96.2 94.7 95.0 97.2 96.7 99.1 105.1 108.7 109.9 107.4 103.	98.7 94.6 95.3 96.8 94.8 96.4 96.9 99.3 105.0 109.8 110.9 108.3 1 102.9 101.6 100.2 101.8 99.1 97.8 99.1 100.7 106.4 109.5 112.1 109.0 1	104.9 104.7 104.1 103.6 102.4 101.6 99.6 101.6 105.9 109.3 112.1 108.6 105.2 148 103.6 103.8 103.8 103.3 102.0 103.0 101.3 102.0 106.5 110.1 111.9 107.7 104.8 148	103.1 102.7 104.1 102.5 102.5 103.0 102.3 103.3 107.0 110.0 110.7 107.1 104.8 148 102.6 102.6 102.9 102.4 101.8 103.4 103.3 104.0 107.2 109.9 109.4 105.1 103.3 148	102.2 102.6 102.2 102.4 102.3 103.5 102.7 104.7 107.2 109.4 107.8 104.0 102.9 147 101.4 102.4 102.0 102.0 103.0 103.8 102.3 104.2 105.5 107.5 106.4 102.7 102.3 147	99,7 101.3 101.9 100.9 102.0 102.5 101.2 102.4 104,7 107.3 105.2 102.7 1 97.5 98.8 99.7 100.9 101.4 102.3 100.2 102.0 103.0 104.7 102.5 101.4 1 95.4 97.3 98.1 99.3 100.8 101.5 98.1 98.5 101.7 101.3 100.3 98.3 1	92.8 95.7 95.8 96.1 99.1 98.5 95.3 94.4 98.3 39.5 97.1 93.5 95.5 146.	31500 90.8 91.7 93.3 94.5 93.4 93.6 91.9 91.6 95.6 95.6 93.8 90.6 94.6 14 40000 87.0 86.0 89.5 89.6 92.8 80.6 94.6 14 50000 87.0 86.0 89.5 89.6 95.8 84.6 92.0 87.1 87.2 91.0 89.3 88.0 86.0 88.5 14 50000 83.6 82.9 85.3 84.0 84.6 83.0 80.7 86.7 83.4 82.1 80.5 83.0 14	80000 66.2 65.5 68.2 72.7 69.6 71.2 68.8 67.7 71.0 69.3	0ASPL 112.6 112.7 112.9 112.7 112.8 113.3 112.2 113.6 117.4 120.9 122.9 122.0 118.3 160.6	MODEL/FULL SIZE SCALE FACTOR FREE JET VELOCITY (FT/SEC) 302.00 REFRACTION INPUT 1.000 CALC. 1.000 FREE JET DIAMETER (IN) 48.00 TURBULANCE	TEST DATE 03-16-78 TAPE NO. N300 IALPHA SB59 TAMB LOCATION C41 ANECH CH AERO. RDG. ADH151 PAMB 29.5450 RELHUM	MODEL TEST POINT ACCUUSTIC RANGE SIZE SIZE SO04 12.2 M (40.0 FT) ARC 110.1 SQ CM (17.07 SQ IN) - MODEL 92.05	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

								O O	Ri¢	GII PC	N. XO	AL.	FQ	PA(GE NL	IT	S Y															FREE-JET Speed 5 m/sec (302.0 FPS)	
																								•	•					1	39.58 21.20	92.05 P	
		¥	165.3	65.5	164.7	164.4	165.3	166.5	167.2	167.2	167.1	167.1	166.7	166.6	166.5	100.0	165.8	164.5	162,8	162.0							179.5				TAMB		
		160.	8 2.3	80.5	76.4	76.8	77.0	77.1	76.6	74.2	71.8	4.05	9 0 0 0	65.5	62.1	- 4	2 60								-		69 90.0	92.0			- 1	- FULL	-
1 0		150.	90.2	90.0	98.0	9 6	9.4	82.5	82.7	91.6	78.9	77.0	0.7	78.0	68.5		4 7	22.9							-		97.7	99.1	FT -10		SB59 29.5450	2	;
X30045	DEGREES	140.	91.5	50	000	99.0	89.8	90.8	80.4	68.1	86.4	4.4	0 C	78.3	75.6		5.4	38.8	17.4						-		101.2	02.0	E SE		ALPHA PAMB	S1 ZE 100.00 SQ	-
HODE		130.	~ 0		-1		90.5	- 1			ı					e :	5.19	48.5	30.9								100.6		FREQUENCY		2	· 2	•
FJ-300-FMODL	FROM INLE	120.	1	83.1	- [- 1			- 1				l			l		2.0					.:		105.3		E		N300 ADH151	SO CM	
. F.	URED F		74.7		- 1			- 1			- 1				•			1							-		95.3		9.026			9032.2	
	MEAS	. 00	0,6	76.0	-	V 60	9	9	N G	4	7	n c	i c	ń 4	9	.	0 0	a	ĸ.	α.							4.4	9	0		TAPE AERG. R	동	
DENTIFICATIO	ANGLES	08	10 0	76.7	0	מומ	9	8	() IC	, ci	20	ب د	1 G		a e	N C	٥ ر	က	-	۲.							95.6	G.	ETER RATI		Ā	2	
2			~ 0	9 09 0	N C	N N	0	9	ס פ	9	~	<u>-</u> (9 C	۸ د	cu (<u>ه</u> و	, c	10	•	o.					٠.		- 6	10	DIAMET		CH CH	1C RANGE 2400.0 F	
		70.	0 4	7.0	واو	0 4	4	-	.	<u>_</u>	~	6		A 4	01	٠.	4 -	4	-	ın.							41				3-16-78 41 ANECH	ACGUSTIC 5 M (240	
			0.0		4	ب اه د	-		4.4	9 0	4	10		¥	9	۰.	4 6	0	-	₹.							7.1	-			ON C4	731.	
		3 0.	91	22	ဂျ	9 49	a	اره	٠. K	· -	~	4.	- 9) T	<u> -</u>	4	ė o	0	-	,-							6 101	6			TEST DATE LOCATION	POINT	
	12.7	•	e •	23	.	N C	~	وا	W 4	110	6	.	.	a (1)	9	.	n -	0	4								6.0	100			•	TEST PO 3004	
		9	1	200	1			- 1		6	2		7		1			1		8 <u>5</u>	2 9	2 2 2	2 2	329	22	0	1. 90	26					431
<i>.</i>		FRE	200	. 40) - -		, K	K	დ 4	6	65	ĕ ;	ŏ	16.	200	ž i	S 4	300	930	10000	12500	20000 20000 20000	7000	40000	2000	80000	OASPL	PN				MODEL 6	

6
0
ø
_:
3
_
0
ŗ
≥
9
τ
Ñ
-

		•					OR OF	PC	VA VOI	L P R Q	A	SE ALI	IS TY				ŗ								۾	364.0 FPS)
																	•							40.46 23.40	FREE-JET	.04 M/SEC (
CGROUND NOTES	O FT. ARC	88		160.	PAL		100.1 133.7	10 -	981 8	87.6 136.3 85.0 136.2	1 36	7 136	136	8 135	. 5 136 . 0 136 . 3 136	9 136	. 136.		3 136	73.7 137.7	.3 135	53.7 133.9	104.6 150.4	TAMB 00 RELHUM		- MODEL 117
FOR	9	FMGDL X30050 FMGDL X01400	ES	140. 150.			97.5 100.4	900	38	102.4 96.3	- (9 6 9 6		99	6 6	9	10	94.4 91.4 91.3 89.3	.3 85.	78.7 78.5	3 64.	6	112.1 109.1	ALPHA SB59		SO IN
LEVELS CORRECTED	I. STD.	FJ-400-FMGDL	1	120. 130.			5.7 92		5 99	94.1 100.7 95.7 101.4	101	5. 20 20 20 30 30 30	2 100	55	86 86 86 87	4 98	96	9 9	0.0	9 6	9	60	108.7 112.2	N300 I ADH144		1 SQ CM (
SOUND PRESSURE	70 PERCENT R.H	TION - MODEL BACKGROUND	MEA	100. 110.			٥	. . .		88.0 91.0	al		~ 0	2	- 6 - 6 - 6 - 6 - 6 - 6 - 6	- 1	. ~		85.2 85.2		1	7	103.2 105.8	TAPE NG. AERG. RDG.		ARC 110.
MODEL	EO. F.,	IDENTIFICATION	ANGLES	80. 90.			.6 79.		3 84	84.4 85.4	7 88.	.7 .88	8 8 8 8	. 1 89.	o	3 90.	90		.9 87.	. 50 19 19 19	89	.3 61.	104.4 102.1	6-78 ANECH CH	JSTIC	
UNTRANSFORMED	29.0			60. 70.			.6 77.	77.7 78.5	.3 60.	81.7 83.0 82.9 83.2	. 6 34.	. 4.	.6 85. .7 86.	.6 86.	0 01	4 86.	.7 87.	.0 87. .6 85.	.9		<u>, </u>	.4 60.	97.8 98.2	TEST DATE 03-16-78 LGCATION C41 ANECH		E N
:		*******		40. 50.			3 75.	76.4 77.9	5 79.		92.	86.	8 83.	5 84.	84.2 84.6	85.	86.	6 86.	5 80.	74.0 74.9	9 60.	3	95.3 96.6	TES	TEST POINT	3002
					FRED 50 63 60	100 125 160 200	250	4 70	630	800 1000 1000	1250	2000	3150	4000	0000	9000	12500	20000	25000	40000	9 0000	00000	OASPL	-	MODEL	10

				-	OR OF	GII PO	NAI OF	L F	PAG QUA	SE	19 YT									20 00		SPEED 364.0 FPS)
	PWL		30.7	33.7 33.9	34.5	35.2 35.1	35.3	35.8	36.2 36.8	37.1	37.6 38.3	36.9 39.2	40.0	39.3 39.3	40.1	41.3	41.6	37.0	152.2	ION CORRECTION - YES NCE CORRECTION - YES	TAMB 40.46 RELHUM 23.40	117.04 M/DEG (3
	160.		5		93.2	93.4	000	83.0 4.0	92.9	93.7	94.5	7.70	100.2	97.8	92.9	83.8	79.4	63.1	109.0	REFRACTION TURBULANCE	8859 29.5100 REL	- MODEL
X30050	140. 150.	-	93.8 97.5	96.3 100.2 99.5 99.5	9 10	9 9	99.4	04			တ္ထ	98.2 96.8 98.2 97.9	0 97.	0 -		6	75.2 75.3	5 58.	111.2 109.2	364.00 48.00	TALPHA SB59 PAMB 29.1	SIZE 17.07 SQ IN)
. 1				93.73 53.72	97.0	99.4	8.69	9.00.0	4.00	86.8	100.1 99.6	100.1	99.2	96.08 90.08	92.5	82.0 82.0	76.8	60.6	111.7			5
- FJ-4	10. 120	•	0.3 84.6	ο 🔻		17.9 94.1	. . .	2 96	13.2 98.1 7 43	. 9 98	35.7 98.2 35.6 98.9	4. r.	18 97	94.2 95.9 91.3 92.0	16	98 6 7	.0 61	63	05.6 109.3	ELGCITY (FT/SEC) ET DIAMETER (IN)	NO. N300 DG. ADH144	110.1 80
DENTIFICATION		•	.00	900	83.1 8	96.	88	800	2.0	92.	9 9 9 4.	9. 2	92	<u>e</u> 8	96		80.7	63.2	104.2 1	E JET VI FREE JI	TAPE N	r) ARC
IDENT	60. 90.		.1 79.	7 81	2.7 84.0	3 85.	89.	3 89.	7 90.	6 92.	6 93.	93	5 93	٥.	.3	. 2 87. . 0 87.	3 82.	.3 64.	7.3 104.5	OR FREE	ж сн сн	ACGUSTIC RANGE 2 M (40.0 FT)
	70.		1	0 4	81.6	- <	. ~	9	900	9 0	n a	o 4	9	90.08 0.09 0.09	9	ن د د	4.0	0	102.2 107	SCALE FACTOR	03-16-78 C41 ANECH	, vi
	. 60.		۰	9 80.	7 82.2	900	8 87.	0 0	80	9 6 9 6	5 91. 7 91.	1 93.	6 92.	₹-	. 8 89.	ဖ စ	.3	8 64.	.9 103.0	\$12E 000 0	TEST DATE	LN
	40.		4	41	83.1 83.	10 1) (N	0	.	9 0	~ 0	83	0	4 4 9 9	6	დ 4	6	90	02.8 102.	MODEL/FULL INPUT 1.	F -	TEST POINT 3005

							•		C)R)F	iGi P	N. 0	AI OF	- 1 R	P.	IGI JA	E	IS TY											JET SPEED
		<u>ئ</u> ے	7	- •	> N	20	•	3 c	a	a	6 0 7	4 0	o (1	, . -	G	40	V 7	r IO	6) (I								18 40.46 JA 23.40	FREE-JET
		£	-			_	,		-	_	156.8	٦ ٦		_	-			160.5	160.8	156.				171.				TAMB	ہ ا
		160.	67.3	6 7 8 8	67.4	66.9	9.6	50.00	64.3	64.1	64.0	000	92	65.6	61.4	56.6	•	.0.						78.1	82.1	82.1	•	8	- FULL
ğ		150.	75.6	2 5	70.0	69.9	69 69	9 6	68.7	68.6	68.7	9 C	70.7	70.1	67.0	6.1			17.7					63.0	87.3	87.3	FT -10	SB59 29.5100	ŝ
X30055	DEGREES	140.	79.6	6 0.1		78.	76.		2	73	21	양	, <u>'</u>	,	2	8	9 K	4	31.9	<u> </u>				6	93.0	6	NCY SHIFT	I ALPHA PAMB	\$12E (1400.00 SQ
FMODL	INLET,	130.	78.3) i	900	79.8	80.8	80.0	79.9	79.6	79.0	10.0	78.1	77.9	75.2	69.2	N 4	. 45 . 60	41.8	i				5.	96.9	98.5	FREQUENCY		CM C14
FJ-400-FM6DL		120.	72.6	_	76.6		_	76.9			78.9			77.5	-1		_ K	62.1	51.8	4.				60	97.3	97.9	L	N300 ADH144	S,
•	MEASURED FROM	110.	67.0	68.7	7	72.9	74.0	4 5 0 K	76.3	76.7	77.3	20,0	76.8	73.8	75.8	73.1		58.4	51.7					87.4	95.4	3 6.6	9.056	RDG.	9032.2
CATION		90	ID .	u o	o. 10	-	0 1	ກຸແ	<u>-</u>	0	ن د		o a	9	-	9	v c	9 0	æ •						94.8		0	TAPE IERO. R	8
DENTIFICATI	ANGLES		10	י מ	1 0	4	0	4 R	2	0	-1	٥		. ن		0 I	٠, د) ~	a (, ~				a	ဖ	9.	ER RATI	¥	1
<u> </u>		0	CI.	- r	. G	-	9	ن دن لا	<u>.</u>	a	۰.	oj.	- «	10	N	- ·	• -	- 0	.5 57	r				Ġ	.7 96	8	IAMETER	¥ 5	15 RANGE 2400.0 FT)
		•				1													92 6	15					7 96		10	1-16-78	ACGUSTIS 5 M (24
		20	64.	99	9	.69	20.	9.0	7	72.	72.	72	35	72.	72.	72.	- 6	62.	20.0	50.					93.	94.		82	AC 731.5
		60							., ,			-1							51.2	, w					92.9	94.1		TEST DATE LOCATION	
		20	. ·						-ì ·			.,							44.4						91.0	٠.		TEST	ST POINT
		9		-					.i .										36.3						87.0				TEST

															1		AL				is T									00.	EE-JET SPEED	TABEC (O. PPS)		
DEL SOUND PRESSURE LEVESS CORRECTED FOR	ERCENT R.H. STO. DAY, SB	IDENTIFICATION - MODEL FJ-ZER-FMODL X30060 BACKGROUND	ANGLES MEASURED FROM INLET, DEGREES	40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160.					5 85.1 83.3 84.1 85.2 87.8 89.5	3.7 84.9 86.0 87.3 89.4 89.8 91.7 95,7 102.3 106.1 108.6 107.7 142.	. 2 80.4 80.7 86.0 87.3 88.7 80.8 91.9 93.8 98.6 108 .0 86.0 88.0 67.3 88.4 90.8 91.9 93.8 98.6 108	6 87.4 88.4 88.2 92.0 92.4 93.5 95.9 100.4 108.7 111.9 111.8 108.9 146	.9 67.3 69.4 90.7 91.3 93.2 94.3 97.5 101.7 109.0 111.6 110.6 106.7 146 5 92.5 94.3 92.8 92.7 94.8 95.7 98.8 103.6 100.6 110.8 110.4 107.6 146	1 92.2 93.4 93.2 94.3 96.7 96.8 100.0 104.2 109.5 111.4 110.3 107.0 146	2 91.1 91.6 92.4 93.7 95.6 97.2 99.9 105.1 110.0 111.2 109.6 106.6 146	7 82.5 83.2 82.0 83.1 85.4 87.1 101.0 106.0 111.1 110.6 109.2 104.5 146	4 92.7 93.3 93.3 94.6 96.7 98.3 102.0 105.8 110.2 109.0 108.2 103.7 145	8 91.9 92.9 93.1 93.9 96.3 97.9 102.1 104.9 108.6 108.2 106.6 102.5 145.	. 4 92.8 93.6 93.3 94.5 97.9 98.6 101.8 103.9 108.7 107.0 106.2 105.4 143	0 93.7 93.3 94.2 95.2 97.6 98.9 101.8 103.5 106.6 106.4 105.8 101.8 144	7 93.8 94.7 94.3 86.6 98.5 59.2 101.5 102.3 105.4 105.3 105.1 101.2 144	99.2 101.6 480	5 87.1 89.1 51.7 95.7 97.3 95.0 96.1 97.0 98.7 97.6 98.3 94.3 143	3 78,2 83.4 85,8 87,1 87,8 83,0 88,3 90,9 92,5 90,8 87,8 86,4 141	3 73.6 78.3 80.6 85.1 86.0 82.8 83.4 85.3 87.3 85.5 82.6 81.8 1	8 59.8 64.4 67.3 68.9 70.6 72.3 70.7 76.6 73.8 74.3 75.7 37.8 76.7 38.8 39.8 64.4 67.3 68.9 70.6 72.3 70.7 76.6 73.8 74.3 74.3 75.7 75.8 74.8 74.8 75.8 75.8 75.8 75.8 75.8 75.8 75.8 75	6 53.4 57.9 62.9 62.0 64.5 64.7 65.0 70.4 68.4 70.8	101.3 104.1 105.1 105.4 107.1 109.2 109.9 112.7 116.0 121.1 121.9 121.6 118.7 158.6	Chart Cana Alle La Cook Ma Table To Table Cook	LOCATION C41 ANECH CH AERG, RDG, ADH158 PAMB 29.5700 RELHUM 23.	RANGE SIZE SIZE	16.6 T (40.0 T) AND 110.1 SE CT (17.0/ SE IN) - HOUEL 0.		
					FREG	60 60	20.5	196	250	318	500	630	1000	1250	1600		3150	A004 0005	6300	8000	10000	16000	20000	31500	40000	90000	00000	CASPL			MODEL	٥	435	

ANOLES HEASURED FROM INLET, DEGREES - 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. 160. PML - 44.9 86.0 87.3 89.4 89.8 90.9 89.9 10.3 108. 108. 140.2 - 45.1 86.0 87.3 89.4 89.8 90.9 89.9 10.3 108. 108. 146.1 - 46.0 87.3 89.4 89.5 99.8 90.9 100.4 100.7 110.1 111.9 110.9 109.3 144.2 - 46.0 87.3 89.7 99.8 90.9 90.9 100.4 100.8 106.7 106.4 140.2 - 46.0 87.3 89.7 99.8 90.9 90.9 100.4 100.8 106.1 10.8 146.1 - 46.0 87.3 89.7 99.8 90.9 90.9 100.4 100.8 10.8 10.8 146.1 - 46.0 87.3 89.7 99.8 90.9 90.9 100.4 100.8 10.8 10.8 146.1 - 46.0 87.3 89.7 99.8 90.9 100.4 100.7 100.9 111.6 110.0 108.9 10.8 146.1 - 50.4 90.7 91.3 93.8 90.1 90.1 90.2 111.6 110.0 108.9 10.8 146.1 - 50.4 90.7 91.3 93.8 90.1 90.1 10.1 10.8 10.8 10.8 10.8 10.8 146.1 - 50.5 90.7 90.7 90.7 90.8 90.1 10.0 10.2 100.5 10.8 10.8 10.8 146.1 - 50.5 90.7 90.7 90.7 90.8 90.1 10.0 10.8 10.8 10.8 10.8 10.8 10.8 1								Oi	RIC	SIN/ POC	AL)R	PA QU	GE IAL		7		•				10N - YES 10N - YES		FREE-JET SPEED M/SEC (0, FPS)
ANOLES HEASURED FROM INLET, DEGREES ANOLES HEASURED FROM INLET, DEGREES 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 1 83.3 84.1 65.2 87.8 89.8 90.8 83.8 99.4 103.8 106.7 7 94.8 86.0 87.3 88.4 89.8 97.7 102.3 106.1 106.6 106.8 110.3 111.8 11.8 11.8 111.8 111.8 111.8 111.8 111.8 111.8 111.8 111.8 111.8 11.8 111.8 111.8 111.8 111.8 111.8 111.8 11.8			¥	140.2	142.1		146.3						<u>4</u> 4	143	2.0.1 2.0.1	141.6	,	139	139.2		1	1	ó
1 63.3 64.1 65.2 67.6 39.5 90.9 93.6 99.4 10 7 34.9 66.0 67.3 69.4 99.1 90.9 93.6 99.4 10 7 34.9 66.0 67.3 69.4 99.6 91.7 95.7 102.3 10 6 85.0 87.3 89.7 90.8 91.7 95.7 102.3 10 6 85.0 87.3 89.7 90.8 91.7 95.7 102.3 10 6 85.0 87.3 89.7 90.8 91.7 95.8 101.7 105.7 11 9 16.9 14.9 96.0 67.3 69.4 93.5 90.9 93.6 99.4 10 7 34.9 66.0 87.3 89.7 90.8 91.7 95.7 105.3 10 8 99.4 90.7 91.0 92.4 93.5 91.0 92.8 90.8 101.7 101.7 11 9 10.0 91.3 92.8 92.7 94.8 95.7 90.8 103.6 103.6 103.6 103.8 1	0900	ES	150.	7.	9 6	0, 0	0	.4 107 .3 107	9.	108.9 104	106.6	106.2 1	105.8 101	103.0	7 8 6 8 6 8 7			% % %	8 64.2 62.7	121.6			(N) 08
ANOLES MEA ANOLES		•		•	7 102.3 106. 2 106.0 108.9	. — —	-	8 6	의	111.6 110	108.8 108.	108.7 107.	106.6	103.1	98.7 97	93.5	67.3	73.6	68.4 70.1			YI .	-
ANGLES ANGLES ANGLES 60. 70. 80. 90. 10 1 83.3 84.1 85.2 87.8 99.4 99.4 90.8 91.8 94.3 92.4 90.8 91.2 94.3 99.7 90.8 91.8 94.9 90.8 91.8 93.2 94.9 90.8 91.8 93.2 94.9 90.8 91.8 93.2 94.9 90.8 91.8 93.2 94.9 90.8 91.8 93.2 94.9 90.7 91.9 90.7	Z	ASURED FROM		6. 06	91.7	0.00	97.5 101	98.8 103 100.0 104	99.9	9 6 6	102.1	102.2	101	100.1	96.1 97	91.3	83.4	76.8 80 70.7 76	65.	112.7		RDG.	1
1 83.3 84.1 85. 7 34.9 86.0 87. 4 85.7 86.0 87. 9 89.4 90.7 3 88. 8 94.3 92.9 92. 7 93.3 93.2 94. 9 92.9 93.3 94. 9 92.9 93.3 94. 9 92.9 93.3 94. 9 92.9 93.3 94. 9 92.9 93.3 94. 9 92.9 93.7 94. 9 92.9 93.7 94. 9 92.9 93.7 94. 1 93.3 94.6 96. 1 93.5 94.6 96. 1 93.5 94.6 96. 1 93.5 94.6 96. 1 93.5 94.6 96. 1 93.5 94.6 96. 1 93.5 94.6 96. 1 93.5 94.6 96. 1 93.5 94.6 96. 1 93.5 94.6 96. 1 93.5 94.6 96. 1 93.5 94.6 96. 1 93.5 94.6 96. 1 93	IDENTIFICA			87.6 59.	89.4 89.	90.8 91.	93.2 94.	94.8 95. 96.7 96.	95.6 97.	96.1 98.	96.3 97.	95.9 98.	97.6 98.	98.3 99.	97.3 95.	83.7 91. 87.8 88.	86.0 82.	78.8 77.	64.5 64.	109.2 109.	FREE JE FREE	AE	1 =
000 ST 1 05 7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	•		•	. 84.1 05.	86.0 87. 86.0 87.	87.3 88. 88.2 92.	90.7 91.	92.8 92. 93.2 94.	92.4 93.	90.00 90.00 90.00 90.00	93.1 93.	93.2 94. 93.3 94.	94.2 95.	94.6 96.	91.7 95.	85.8 87.	80.6 85.	73.9 75. 67.3 68.	62.9 62.	105.4 107.	ш [—]	03-1	ACGUSTIC
			Ö	5.1 83.	3.7 34. 5.4 85.	0 98,	9 89.	2 8 2 8 3 6	1 91.	. 7 u	9 92.	5 92. 8 93.	93.	1 93.	96.	2 G	6 78.	5 70. 8 64.	4 57.	-	L 312E .000 C	TEST DATE	TEST POINT 3006

().

											(OF	RIG P	in O	OR	- I	PA QU/	GE AL	: I	S Y										-JET SPEED EC (0. FPS)	
																													37. 94 23. 20	FREE-JET 0. M/SEC (
SL			60. Pul	0	- 1	, 4 	9	a .	. u	5.1 165.1 3.0 164.1	9	4	? N	91		, <u> </u>	4		157.4	156.3						90.7 177.4	1.4		TAMB	FULL	
SB 2400.0 FT. SL		S	150. 16	4	ن د	N L	4	ri, «	- (83.9 75	9	60	- 0 3	<u>ن</u>	4 K	0	9	2								97.4 90	1	FT -10	\$859 29.5700	SQ 1N) - F	
Y, SB 24	DL X30065	T, DEGRÉE	0. 140.	9	o e	۷۲	n	. «	0	5 85.0	-	0 4	? –	۲.	~ -	- ო	91	o e	ဖ					•		4,000 8	0	FREQUENCY SHI	I ALPHA PAMB	S1 ZE 1400.00	
4. STD. DAY,	FJ-ZER-FMODL	FROM INLET	120. 130	-	٠. (85.8	6	- «		87.1 90 85.9 38	10	4 9	, no	٠.	(a)	, ai	ö.	4 0		9.0						97.2 101	103	FREG	N300 ADH158	SQ CM	
Ε	r Z	EASURED FROM	110.	76	28	۰.	95	8 6	83	9 84.1 2 83.9	63	7 83	0 92	0 81	31	72	G. (200	9 6	9						94.6	101.4	9.026	₩. 26.	9032.2	
., 70 PERCEN	DENT! F! CAT!	ANGLES MEA	£6. 100	.4 75.		.02	.1 80.	6. c	1 80.	79.4 80. 78.7 80.	80	90.0	.6	. 6 93 .	70	5 74	69	23 62	3 38.	.0 .4		. :				91.7 92.	7 100.	TER RATIO	TAPE AERO. F	RANGE 10.0 FT) SL	***************************************
DEG. F	71		90.	71.9	75.0	76.0	77.6	76.9	75.6	77.1	76.9	75.4	78.0	78.4	78.2	74.6	69.0	5 6	34.9	7.7						89.4	-	DIAMETE	16-78 ANECH CH	ACGUSTIC RAN 5 M (2400.0	
29.			.00 70.	4 70.	.7.	.8 75.	.6 76.	.6 75	3	.6 75.4	5 74.	0.8 7.4	38.	.6 76.	3 6	.1 68.	.4 66.	4 00	30.	ø.						67.3	2 93.		03-	ACGI 731.5 M	
			50. 6	6	.	-	2	o -		72.8 74	0)	3 K) IO	φ.	- b	· Ci	e (9							83.8 86	~		TEST DATE LOCATION	T POINT 3006	
				63	6.0	8 %	67.	9 6	68	68.6	67	3	6.	9	200	<u>a</u>	46.	ġ <u>a</u>	:							79.6	94			TEST	
			FREG	50	9 6	5	125	760	250	313	200	630	1000	1250	2000	2500	3150	5000	6300	10000	12500	20000	31500 40000	50000	80000	GASPL	PNLT			MODEL	4

							•			OF	RIG F	C	A1	L R	10	A(GE Al	: I	3 Y																FREE-JET SPEED M/SEC (299.0 FPS)		Manager 1
										N C	. 4	_	તા -	.	200	B C) m) 6 0		0	on o	9) (3)	e (9	0 1			o e	7)	22		B 39.38		FRE 91.14 M/		
ARC		160.	THE STATE OF						6 136	0.7	· –	.2 142	.7 142	.3 141	9 142	4 - 12 - 14 - 14 - 14 - 14 - 14 - 14 - 1	143		.3 142	4 142	0.2 141.9 0.151.4	0 142	0 141	.2 142	6 141	0.0		.7 138	961 1.	75 77	.7 155.		TAMB		MODEL		
40.0 FT. X30070	X01300	150.							103.7 102	106.3 102	· · ^:	8			1			100.2 90	1		00 00 00 00 00 00 00 00 00 00 00 00 00		98.3	ا	4	n a	80.4 77	(1)	69.1 66	7	115.3 108		SB59 29.5550		- (NI OS		
SB	O-FMODIL , DEOREE								9.00	20 C C C C C C C C C C C C C C C C C C C	6	-	109		٦,			-	1027	_	7 104.8	7	5	_	96		9 6	3 79.1	9 71.6	. 66.1	.4 119.1		I AL PHA PAMB		SIZE 17.07 S		
									0 1	4.00 1.00 4.00 1.00	(7)	Г	9	- (9	- K) a		œ.	ა _	01.9 105.7	2	99.7 102.9	0	0	- c	<u>.</u> د	3 80.	.1 72.	. 7 66.	5 118		N300 ADH154		SOCM		
ENT R.H. ST	BACKGRGUND ASURED FROM								w (ń R	စ	9	۲.	ص ۱ ص		4 K		. n	9	6	99.3 10			۲.	9		9 0	! - .	a (٥.	109.8 113.	-			110.1	i	
PERCE	ANGLES MEA	8				i.			20	0 4	87.	89.	90	<u>a</u> (3	D G	9 9	9	94.	96.	96.1	98	96	95.	92.	0		76	1	20	1 105.9		TAPE AERO.		T) ARC		
FIL	ANG	60. 90									.98	.5 87.	88		8 6) c			.7 93.	.8 93.	6. K	96	.9	.96	8 95		1 84	.4 77.	.7 68.	. 4 63.	.0 106.	1			C RANGE		
59.0 DEG		70.							က ၊	· c	, m	8	N)	ω ι	۰	4 C	و م	9 (7)	-	8	90.3 91	. -	4	٠,	20	m (9 4	0	9	on .	102.0 104		03-16-78 C41 ANECH	1	ACOUSTIC	• 4	
		.09							2	. 0		83.	8	84	6	7) d		8 6	88.	89.	90.1	00	9	90.	88	9	77	70.	63.	24.	101.5	·	LEST DATE		F		
		40. 50.			•				4 79 .			.1 82.	.9 82.	5 84.	. 6			. 58	3 86.	.6 87.	9 88 6	000	8	.88	.8 86.		7 7	.0 66.	.4 60.	4 53.	.5 100.0		TES		TEST POINT		
			FREG	83 60	90	00 1	09	- 1							- 1				1		6300 88	1			- 1	25000	40000	20000	63000	00008	DASPL 99				MODEL		*

UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE

MEASURED FROM INLET, DEOREES 00. 115. 120. 130. 140. 150. 160. 160. PML 3.5 83.8 89.2 95.3 99.8 102.0 100.5 135.2 3.6 87.0 92.4 101.9 105.5 105.1 99.8 101.3 3.7 102.9 103.9 103.5 103.4 104.8 101.3 138.5 3.8 87.0 92.4 101.9 105.5 105.1 103.1 138.5 3.9 93.0 99.6 104.2 106.1 103.1 95.9 141.0 2.9 93.0 99.6 104.2 106.1 103. 95.6 141.0 2.9 93.0 99.6 104.2 106.3 101.3 97.7 142.3 3.4 96.0 102.1 107.9 106.3 101.3 97.7 142.3 3.4 96.0 102.1 107.9 106.3 101.3 97.7 142.3 3.5 99.9 103.0 106.8 105.9 101. 9 97.7 142.3 3.6 99.0 102.9 104.8 103.8 103.1 101.4 143.9 8.3 99.3 101.9 104.8 103.9 103.3 101.7 143.7 8.3 99.3 101.9 104.8 103.9 103.3 101.7 143.7 8.3 99.3 101.9 104.8 103.9 103.3 101.7 143.7 8.4 96.0 92.4 93.1 91.3 99.2 99.3 99.8 144.6 8.5 96.4 97.5 95.5 96.3 99.8 99.8 144.6 8.6 77.7 98.9 90.7 90.7 100.1 100.0 100.8 144.7 3.6 84.8 87.9 86.7 85.9 84.7 86.7 142.9 3.6 84.8 87.9 86.7 85.9 84.7 86.7 143.9 3.6 64.4 68.5 65.2 64.9 61.7 64.5 138.6 7.8 109.6 113.9 118.0 118.3 115.8 112.3 156.4 3.7 75.0 74.9 90.0 74.8 103.9 104.8 29.5550 RELHUM RG. RDG. ADHISA PAMB 29.5550 RELHUM				٠					OI OI	RI(GIN PC	IAI	R	PAQU	igi Ja	EL	IS IY				-						ION - YES ION - YES			FREE-JET SPEED
60. 70. 60. 90. 100. 116. 120. 130. 140. 150. 160. 160. 160. 20. 90. 100. 110. 120. 130. 140. 150. 160. 160. 160. 160. 160. 160. 160. 16			70				ı,	6.5	. 4	1.0	9.0		2.1	0 e	2.7	2.3	, o	3.7	9,0	. 4 . v	9.6	3.1	2.9	- თ	١.		ON CORRECTION	- 1		FR
60. 70. 60. 100. 116. 120. 130. 140. 140. 150. 170. 60. 90. 100. 116. 120. 130. 140. 140. 150. 150. 150. 150. 150. 140. 150. 150. 150. 150. 150. 150. 150. 15			160.				100.5	101.3	97.4	96.6 1	96.89	96.5	97.8	27.78	96.7.1	97.4	9 6	101.7	101.4	100.0	99.8	92.2	86.7	74.3	64.5	112.3	REFRACTI TURBULAN			
60. 70. e0. 90. 100. 116. 120. 130. 130. e3.0 e3.0 e3.0 e3.0 e3.0 e3.0 e3.0 e	X30070	GREES					.8 102.	4 104	0 10	4			1		-	ľ			-r	100	9 G	6	94		9	115.	299.00 48.00	- 1		
60. 70. 60. 90. 100. 110. 110. 63.0 63.0 63.0 63.0 63.2 64.3 64.6 64.5 65.3 63.0 63.0 63.0 63.0 63.0 63.0 63.0 63	FJ-300-FMGDL '	INLET,			•		93.3	100.3	102.5	103.5	20.20	103.9	107.2	106.8	106.1	106.5	105.8	105.9	104.8	102.1	99.0	93.1	86.7	73.0	65.2	118.0 1	/SEC) (1N)			
ANGLES MEAS 60. 70. 60. 90. 100. 63.0 63.2 64.3 64.6 64.5 63.0 63.2 64.3 64.6 64.5 63.0 63.2 64.3 64.6 64.5 63.0 63.2 64.3 64.5 64.5 63.0 63.2 64.3 64.5 64.5 63.0 65.2 64.3 64.5 64.5 63.0 65.0 64.4 64.3 64.5 90.9 90.9 91.2 91.6 92.3 90.9 90.9 91.4 92.8 94.3 90.9 90.9 91.4 92.8 94.3 90.9 90.9 91.4 92.8 94.3 90.9 90.9 91.4 92.8 94.3 90.9 90.9 91.4 92.8 94.3 90.9 90.9 91.4 92.8 94.3 90.9 90.9 91.4 92.8 94.3 90.9 90.9 91.4 92.8 94.3 90.9 90.9 91.4 92.8 94.3 90.9 91.9 91.4 92.8 94.3 90.9 91.9 91.4 92.8 94.3 90.9 91.9 91.4 92.8 94.3 90.9 91.9 91.4 92.8 94.3 90.9 91.9 91.4 92.8 94.3 90.9 91.9 91.4 92.8 94.3 90.9 91.9 91.4 92.8 94.3 90.9 91.9 91.4 92.8 94.3 90.9 91.9 91.4 92.8 94.3 90.9 91.9 91.4 92.8 94.3 90.9 91.9 91.4 92.8 94.3 90.9 91.9 91.4 92.8 94.3 90.9 91.9 91.4 92.8 94.3 90.9 91.7 91.8 91.7 91.8 91.5 90.9 91.9 91.4 92.8 94.3 90.9 91.7 94.3 95.1 92.8 90.9 91.9 91.4 92.8 94.3 90.9 91.7 91.8 91.7 91.8 91.5 90.9 91.8 91.4 92.8 94.3 90.9 91.8 91.4 92.8 94.3 90.9 91.8 91.4 92.8 94.3 90.9 91.8 91.4 92.8 94.3 90.9 91.8 91.4 92.8 94.3 90.9 91.8 91.4 92.8 94.3 90.9 91.8 91.4 92.8 94.3 90.9 91.8 91.4 92.8 94.3 90.9 91.8 91.4 92.8 94.3 90.9 91.8 91.4 92.8 94.3 90.9 91.8 91.4 92.8 94.3 90.9 91.8 91.4 92.8 94.3 90.9 91.8 91.4 92.8 94.3 90.9 91.8 91.4 92.8 94.3 90.9 91.8 91.4 92.8 94.3 90.9 91.8 91.4 92.8 94.3 90.9 91.8 91.4 92.8 94.3 90.9 91.8 91.4 92.8 94.3 90.9 91.8 91.4 92.4 92.8 90.9 91.8 91.4 92.8 94.3 90.9 91.8 91.4 92.4 92.8 90.9 91.8 91.4 92.8 90.9 91.8 92.8 94.3 90.9 91.8 91.4 92.8 90.9 91.8 92.8 94.3 90.9 91.8 92.8 94.3 90.9 91.8 92.8 94.3 90.9 91.8 92.8 94.3 90.9 91.8 92.8 94.3 90.9 91.8 92.8 94.3 90.9 91.8 92.8 94.3 90.9 91.8 92.8 94.3 90.9 91.8 92.8 94.3 90.9 91.8 92.8 94.3 90.9 91.8 92.8 94.3 90.9 91.8 92.8 94.3 90.9 91.8 92.8 94.3 90.9 91.8 92.8 94.3 90.9 91.8 92.8 94.3 90.9 92.8 92.8 94.3 90.9 92.8 92.8 94.3 90.9 92.8 92.8 94.3 90.9 92.8 92.8 94.3 90.9 92.8 92.8 94.3 90.9 92.8 92.8 94.3 90.9 92.8 92.8 94.3 90.9 92.8 92.8 94.3	I - FJ-300	JRED FROM					88	6	2 9 2 4	96	800	00	102	N 0	102	200	0 0	102		38	5 5	0.92	.8 87	.0 78.	.4 68.	.6 113		١.		- 1
60. 70. 60. 60. 60. 60. 60. 60. 70. 60. 60. 60. 70. 60. 60. 60. 60. 60. 60. 60. 60. 60. 6	DENTIFICATION	MEAS					83.5	94.5	87.1	88.2	89.7	92.3	92.8	9 G	9 	95.3	9 60 27 .00	98.0	98.3	9.0	9 9 9 9 9 9	88.8	83.6	73.7	65.2	107.8 1	JET (M	E	
60. 60. 60. 60. 60. 60. 60. 60.	IURA	ANG					3 83.	3 64.		.3 87.	. a 89.	4 92.	.6 93.	9 6	5.	.1 94.		.0 97.	900	9	98.	9	.1 87.	7 71.	.4 66.	.0 108.				RAN
CATTO 6 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			.02					a.	i	9	- ₅	r Q	a	. 0	4	4	n	0	2		ô. 4	9	4.0	٠.	6.0	Ø,		03-1	2	1
40. de 104 de 104 de 105 de 10			•				0 83	0 93.	4	4 88.	69 8 89 8	- 90	.1 91.	7 90.	.7 92.	.3 92.	4	.3	4 C	. 1 94.	0.0	2 88	85.	.1 71.	e.	.7 105.	S12E	EST DATE	LGCATION	
			•				0	۰,		-	Ļ k	9 09	aic	3 P	4	4	٠.	- (وام		90	n	0,4	ė oi	લ	Φ.	MODEL/FUL INPUT 1	1	N.	TEST PO

3
Ñ
ë
Ξ
•
C
à
Ξ
?
ö

							RIC	AIE	IA	L	PA	G	E I	19														123	Ä
	• •					O	• •	PO			Qu		-11															FREE-JET SPEED 1 M/SEC (200.0 FPS)	
																											39.36 22.40	FR 91.14 M	
	2	159.6 160.1	159.6	160.8				161.9	162.2	163.0	163.4	163.8	163.0	162.2	162.1	160.4	108.0	2						176.3			TAMB		
	160.	71.5	70.8		70.3	69.8	57. A	68.2	68.0	67.6		}	51.6		22.1								;	85.3	65.3	•		- FULL	·
83	150.	63	80.67	78	12	78.		26	22		7	72	61.2	53	8	23								90.8	94.1	IFT -10	SB59 29.5550	SQ. IN)	: :
DEGREES	140.	86.3	85.7	86.5	85.4	84.7		83.2	82.5	80.0	79.2	76.5	60.0	62.8	52.0	36.4	0						1	96.5 100.3		ICY SHIFT	I ALPHA PAMB	\$12E 400.00 \$	
NLET,	130.	83.8 84.7	85.3		98.6	87.2	0 4 0 4	85.8	94.0	83.	83.2	80.7	78.9	69.2	58.9	45.00 10.00	•						!	97.9 103.0	103.0	FREQUENCY		GH C140	
SURED FROM INLET,	120.	76.9	80.9	83.0	94.0	84.5	9.4	83.7	84.0	200	81.2	91.1	20.00	71.5	64.0	54.	4.7.						. !	95.0 102.2	102.9		N300 ADH154	2 80 0	
	110.	70.8	74.8	76.8	78.6	79.3	5 6 5 6	80.6	80.0	90.0	80.2	80.4	74.4	6.69	63.3	51.7	9.0							99.8	€.66	9.026		9032.	
ANGLES MEA	100.	1	73.1			-1			- 1			•1	75.4		-1								;	99.0 99.0	99.5	RATIO	TAPE AERG.	SL	
ANGL	90.	1	73.0	1 .		• •			- 1						٠.		•							9 0 0 0	100.6	DIAMETER R	3	RANGE 10.0 FT)	
	90	1	71.6			٠.			-1			٠.	2 (S		٠l									89.3 99.3	100.3	DIAM	-76 NECH	ACCUSTIC RANGES MENONES (12 M (12400.0	
	70.	1	72.0		٠ ٠	٠.			-1			-1			-1	•								87.6 97.0			03-16 C41 A		
	.09		71.1	1 .		-1						- 4			.,									95.2	•		TEST DATE	73	
	90.	1	70.4	1 .		.,			-1			-,			-4	•								.84.0 92.6			TEST	ST POINT 3007	
	40	1	68.3 69.0			-1			•1			•	61.3		انه		•							82.1 89.2				TEST	
	FRE	50 63	85	125	202	250	2 0	200	630	1000	1250	1600	2500	3150	4000	2000		0000	12500 16000	20000	1	i		OASPL PNL			11	AGDEL.	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

X30075

IDENTIFICATION - FJ-300-FMODL

	B	١
- 2	5	i
•	g	,
•	١	Ì
		•
•	Ê	۱
ē		
-	_	
•	ı)
	٠	١
•		
7	٠	١
-6		١
•	×	,
_		
•		
•		
_	*	•
r	٠	
-	-	í
C	2	ı

()

40.	900	UNTRANSFORMED 59.0 D	59.0 DE	DEG. F., IDENTIFICAN	SGUND PRES. 70 PERCEN ICATION - M BANGLES MEAS	SURE IT R. ACKG URED	ø, 22 2	S CORRECTED 1. DAY, SB FJ-400-FMODL FJB400-FMODL INLET, DEGREI 130. 140.	CTED FOR SB 40. FMODL X FMODL X DEGREES	R BACKGRO 0.0 FT. A X30080 X01400	FOR BACKGROUND NGISE 40.0 FT. ARC X30080 X01400 EES 150. 160. PHL	07/19/79 SE	9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		
	007000-	0 0 1 - 11 - 11 0	n-00n-0-	60 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9	700000	6 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 4 6 - 0 6 - 10	0 0 r r 10 0	10 NO 10 F 10	- 10 0 0 C 0 0 C 0 0 C 0 0 C 0 0 C 0 C 0				
000 84.8 4 000 84.7 4 000 84.8 4 000 85.3 4 000 85.3 5	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	88 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	- n d n n n n o o o o o o o	2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1 10 10 10 10 10 10 10 10 10 10 10 10 10	007.4 1050 007.4 1050 007.4 1050 005.2 103 007.2 103 007.2 103 007.2 103 007.2 103 007.2 103 007.3 103 007	0 1 1 - 10 0 10 10 10 10 10 10 10 10 10 10 10 1					RIGINAL PAGE IS F POOR QUALITY	
98. 98.	0 4 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	-	8 8 - 0 8 4 1 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	66 92. 66 77. 77. 105.	90. 86. 81. 76. 70. 106.	7 8 8 8 7 5 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	® 10 L 10 L 10 L 10 L 10 L 10 L 10 L 10	00000000000	0004 V ₹	3 871 3 71 3 71 5 57 1 107	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	39.38			
1831 Jagoet 441	58	N N	M (C RANG 40.0	FT) ARC	110	S CM	\$12E (17.07	8	¥ - (NI	MODEL. 1	FREE-JET 18.26 M/SEC (36.0 FPS)		

80
•
6
•
••
N
100
•
₩
_
-
•
_
,-
•
•
_
•
•
_
_
•
•
~
_
~
•

### Control of the co					or of	GIN PO	AL OR	P! Q!	ige Jal	is ITV	7						•					SPEED 366, 0 FPS)
ANOLES HEASURED FROM INLET, DEGREES ANOLES HEASURED FROM INLET, DEGREES B			L		9	- 2	• 0	၈ 9	40	-	· o a	7	- 4 (in	0 -	3	. . .	N Ø	0	CORRECTION -	I	REE-JET M/SEC (
## 60. 70. 80. 100. 110. 120. 130. 140. ## 82.5 62.3 61.7 61.9 61.6 62.2 67.3 83.7 87.3 16. 62.5 82.5 82.3 64.9 81.9 61.6 82.2 87.3 83.7 87.3 16. 62.5 82.5 82.3 82.9 84.9 84.1 85.1 80.7 100.1 103.8 18.5 82.9 84.9 84.1 85.1 80.7 100.1 103.8 18.5 82.9 84.9 84.1 85.1 80.7 100.1 103.8 18.5 82.9 84.9 84.1 85.1 80.7 100.1 103.8 18.5 82.9 84.9 84.1 85.1 80.7 100.1 103.8 18.5 82.9 84.9 84.1 85.1 80.7 100.1 103.8 18.5 82.9 84.9 84.1 85.1 80.7 100.1 103.8 18.5 82.9 84.9 84.1 85.1 80.7 100.1 103.8 18.5 82.9 84.9 86.6 83.3 101.2 105.5 105.					6.3 13	7 137	.4 140	ر د و	910	2 10	20 01	0 1	0-	. 6	1 – 9	61 a	9	0.61		REFRACTION TURBULANCE		1
MANUALES MEASURED FROM INLET, DE	X30080	OREES			.3	1 1 0 1		. 0 99. 2 98.	- 9	3 100	681	9 100	4 t	9 103	6 4 6 8	. 8 86. A A 2	9 76.	- 2	.0 114.3		1.	SO IN
ANGLES MEASURED FINE BOLD BOLD BOLD BOLD BOLD BOLD BOLD BOLD	8	INLET,	. 130.		93.7	100.1	102.9	103.2 1	105.1	107.4	106.5	105.8	102	104.6		90.0	77.1	64.8	117.4	/SEC) (1N)	Y.	5 5
## ANOLES MEA ## ANO	3	SURED FROM			2.2 67.	e - 6	. 55 953.	.6 97. .1 98.	4 100 101	6 101.	2 102. 103.	1 102.	0.00	2 101.	4 96.	90	.7	.1 68.	09.4 113	TY AME	1	-
6 82.5 82.3 81.7 86.8 86.9 86.9 86.9 86.0 86.0 86.0 86.0 86.1 86.1 86.1 86.1 86.1 86.1 86.0 86.1 86.0 86.1 86.0 86.1 86.0 86.1 86.0 86.1 86.0 86.1 86.0 86.1 86.0 86.1 86.0 86.1 86.0 86.1 86.0 86.1 86.0 86.1 86.0 86.0 86.0 86.0 86.0 86.0 86.0 86.0		MEA		•	9	0 0 • 0 0 0 0 0 0	.1 87.	.3 88. .1 89.	4 75 90 92	9 83 9 8	6 8 2 8	2 98.	9 6 6	6 97.	800	.9 89.	7.	. 8 64.	.2 107.3	JET REE	Ψ.	
60.000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	<u> </u>	Y				.	- 4	~ 6	40	- 0	0 0	10 d	000	0	4 G G	ه بو	9 04 1	04	r.	CCTOR 300	Ŧ	STIC RANG
7 1.000 1.	<u>;</u>		0		6 82.	5 4 6 83.	. 9 86.	9 88	4 98 90.	4 90.	7 0	4 93.	- r	8 96.	9 4 -	- 0 88.	.6	2 /3	.9 105.	SCALE CALC. 1	03-1 C41	Ni Ni
			ô		•		-0	9 0	10 4	m m	101	(O K	د د	97.0	2 6 6 2 6 6 3 6 6	87.7	78.5	62.5	105.8	MODEL/FULL SIZE INPUT 1.000	TEST D/ LGCAT	TEST POINT 3008

(*)

																															=				
:												OI	R	ĞII PC	NA DOI		P. Qi	AG UA	E	IS TY						· ·								SPEED 366.0 FPS)	
																																	39.38 22.40	FREE-JET 8.26 M/SEC (
ELS				Ş	57.9	59.1	58.8	59.5	60.4	61.2	61.2	4.10	61.9	63.3	63.8	63.7	93.1	61.5	161.9	50.7	158.0							176.0					RELHUM	11	
RE LEV	38			160.	6.	ni L	72.2	6	.	71.7	G) (6	20.0	~		0	0		ď	u.	,-								n	67.4	87.4				FULL	
RESSU). O FT	•		150.				Ì			ĺ	78.5	- 1			- 1		10	n	6									92.8		1 -10		8659 29. 5550	- (NI	
SOUND PRESSURE LEVELS	240	X30065	DEGREES	140.	85.2	•	84.0 84.0	6	6 4			90	- 1			- 1			ı		<u>.</u>								98.8		Y SHIFT	1	PAMB	ZE . 00 SQ	
ATED \$	AY, S			130.				1				85.1	-			- 1												97.4			FREQUENCY		<u> </u>	\$1 ZE (1400.00	
EXTRAPOLATED	STD. D	FJ-400-FMODL	URED FROM INLET,	120. 1	1		7.9.7 B	1			ŀ	63.3	- }			- 1												7.7		102.6 10	FR		N300 ADH153	SQ CM	
AND EX	IT R.H.	1	RED FR	110.	ļ	٠		1			1	80.7	- 1			- 1												6,	•	i	. 056	1		9032.2	
LED, /	RCENT	DENTIFICATION	MEASU	00.	69	ю (o -	•	ო -	- 0	4 4	0 0	0	D N	.	~	4 0	•	9	ω d	<u>-</u>	• -	-						9	9	о Б		TAPE N AERO, RD	0	
SCA	O DEG. F., 70 PERCEN	TIFIC	ANGLES MEAS	_			.		.	. m	. "	6, 6		n 60			n e	·	7		- m								. 5 96	0	R RATI		AEF	FT) SL	
ORMET	L.	IDE	¥	8	1			1				6 78.	- }			- 1			i									8	100	100	DIAMETER		동	RANG 00.00	
FRANS	59.0 DEG.			0	7		72.	73.	4.5	. 4.	75.	9.	76.	78.	78	90	9,1	7	67.	55.	13.							9	9.6	66	ō	1.5	6-76 ANECH	COUSTIC RANG	
FLIGHT	.			70.	٠.							74.9				1	•												97.6	١.		1	2 2 2	< 10	
Ę.				60.								74.1	•			•	•			٠.									96.2				FEST DATE	731	
•				9	4	N	© (7	20	oj c) L	6	72.0	9	n a		-	9 1	. 01	4	9.									O	a.			TEST	POINT 008	
				9	6	9	0 N	0	oi c) IO	0	9 0	-	4 6	, oi	4	oj c	, ru	•	- 4	9							Œ	~	0				TEST PO	
				000				1			1	500 70	- 1			ı				l	0000	10000	12500	20000 25000	31500	50000	63000		PNL 90	l				MODEL. 6	443

õ
Š
7.
"
•
•
=
_
_
G,
▶
79
œ
_
•
~
6
0

		•							00	RI	GIN PO	AI OF	P	'A'	SE ALI	IS TY							•	6 4 a	FREE-JEY SPEED H/SEC (0, FPS)	
SGUND PRESSURE LETELS CORRECTED FOR 70 PERCENT R.H. STD. DAY, SB 40	IDENTIFICATION - MODEL FJ-ZER-FMODL X30090 BACKGROUND	ANGLES MEASURED FROM INLET, DEGREES	40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160,	50 63	08	126	77.0 62.3 60.6 81.6 62.5 84.8 87.0 68.4 90.6 96.7 101.0 1	79.9 82.2 83.0 83.3 84.6 86.7 87.8 90.3 93.2 101.3 104.7 106.6 1	61.1 84.4 85.4 85.7 90.3 89.7 90.0 92.9 96.4 102.7 105.5 105.8 103.4 1	84.1 84.7 86.4 87.2 88.1 80.7 91.6 94.5 98.2 103.8 105.1 104.8 102.2 1	86.2 86.5 89.1 88.3 89.2 91.8 92.7 95.6 99.6 103.9 104.8 104.4.1 85.1 88.7 89.7 89.5 90.6 93.2 93.5 96.5 99.7 104.0 105.4 104.6 1	86.7 88.1 88.6 89.6 90.5 93.1 94.0 96.9 100.6 104.2 105.4 104.4 102.1	86.1 88.4 90.2 90.2 90.6 93.1 95.5 97.9 101.2 105.1 105.2 104.9 101.5 1	86.4 90.0 90.3 90.8 91.6 94.4 95.3 99.3 101.8 104.2 105.3 105.2 100.7 1	86.4 88.5 89.5 80.7 91.6 94.4 95.8 99.2 100.5 104.5 105.0 103.4 100.2 1	85.1 87.8 89.8 90.5 91.5 94.9 96.1 98.8 100.4 103.2 104.5 104.0 101.7 184.8 88.2 89.3 90.2 92.0 94.4 95.4 98.8 100.0 102.1 104.1 104.0 101.6 1	83.2 86.0 89.7 90.6 92.4 95.0 95.2 98.3 96.8 101.1 103.0 103.6 100.9	81.5 87.6 88.8 30.1 31.9 93.6 34.0 36.6 36.9 99.1 100.5 101.3 99.0 1 80.0 86.0 87.8 89.4 91.3 93.3 92.5 95.4 95.7 98.1 98.4 99.9 96.9 1	74.7 82.8 84.8 87.2 90.7 92.1 89.7 92.1 93.0 94.2 95.3 95.6 94.1 1	73.5 76.9 82.2 83.5 87.8 89.5 87.0 87.5 90.5 90.2 91.3 92.0 91.6 172.1 74.7 79.9 82.0 82.8 83.8 84.0 84.3 86.9 86.8 88.3 86.5 86.4 1	.6 69.9 74.6 76.6 80.8 81.5 78.1 79.6 82.3 83.5 83.5 81.3 81.8 19 6.5 5 69 9 72 6 73 8 73 9 72 8 77 9 77 9 76 9 75 9 1	54.1 55.8 60.2 63.0 63.6 65.6 67.6 65.9 72.8 70.5 71.0 71. 47.6 49.2 53.7 57.4 56.8 59.2 59.5 60.5 66.6 63.9 67.3 63.	.2 100.1 101.4 102.0 103.4 105.8 106.6 109.6 111.9 116.7 117.2 117.4 114.9 1	TEST DATE 03-16-78 TAPE NG. N300 IALPHA SB59 TAMB 38.4	ACCUSTIC RANGE 812E 817.07 SQ (N) - MODEL 0.	

where the area and the control of th

om, bibidaliyabilbadilbadinareede e erbbeereb

													AL DR			GE AL		S Y									ED FPS)
			AND THE PROPERTY OF THE PROPER																~						CORRECTION - YES CORRECTION - YES	38.46 22.60	FREE-JET SPEED . M/SEC (0.
				6 137.3		. 6 140.2		-	_	.5 141.1	1	4	4		<u> </u>	4	- -	40.4		4 137 8	_	9 135.5	9 35.3	9 154.3	REFRACTION COI Turbulance coi	TAMB	MODEL 0
2		150. 160		03.7 103.	6 104	06.6 104.	. 6	.6 102	0	.6 101 201	5 100	9	N	04.1 99.5	, O	0	9 0	? G	6.0	38.8		76.5 75.		117.4 114.9		8859 29.5700	- SE
)L X30090	r, DEGREES	0. 140.		7 101.0		3 104.7	7 105.6	-	_	.00105.4	- -	1 105.2	2 105.3	04.9	104.0	1 104.1	103.0	2.66	2 95.3	-1	83	3 77.3	+} -	117.2	5) 0. 40.00	I ALPHA PAMB	\$12E 17.07 SQ
FJ-ZER-FMODL	ROM INLET,	120, 130		96 9.06	4	93.2 101.		2 103	6 103	9 5	104	 N (01.1 103	. –	-	98.8 101	• ^	93.0	o a	0		ماه	111.9 115.7	OLAMETER (IN)	N300 ADH157	SQ CM (
NO	EASURED FROM	. 110.		99.4	6		8 6	9	60 (8	6	68	_	96	4 98	2 98	o 10	7 92.1	98	1 79	72	88	6 109.6	VELC	PE NG.	110.1
DENTIFICAT	ANGLES ME.	90. 100		•	4	~ c	, ,	1	.	vi -	-	. - .	4	20 Z	r on	4 95	000		92.1 89.		.5 78	•	0 01	105.8 106.	FREE JET FREE	TAPI AERO.	NGE O FT) ARC
-		.00		82 22 53	84.6	84.6 84.6	90.9	88.1	89.2	900	90.1	90.8	91.6	4.19	<u>9</u>	92.0	92.4		2 90.7	82.8	80.8	72.6	36.8	103.4	FACTOR . 000	16-78 ANECH CH	ACCUSTIC RANGE
		60. 70.		6.	.4 83.	93.	4.	.4 87.	 	. v 89. v	7 89	.2	.3	- E	.08	.3	. 7 90.	.68	84.8 87.2	9 82	.6 76.		7 57.	1.4 102.0	ZE SCALE F CALC. 1.	ATE 03-16-7	ACC 12.2 P
		20.		6	4	oi c	4		ı0 I	·-		4	0	0) K	9 0	Q.	٥	. 0	92.8 78.9		.	ri e	0	.2 100.1 101	MODEL/FULL 312 INPUT 1.000	TEST PATE LOCATION	TEST POINT 3009

														OF.	IG F	W O	IAI Ol			A(U	3E AL	IS IT	3 Y									•	6	FREE-JET SPEED M/SEC (0, FPS)	
		.	•	•	98	4	ın (20 (o n	• •	8	~	e e	o (c	0	4	œ ·	4	1 Q	٠ «								-				38	22	o o	
		Ē		139.0				7		_		-,	_,		158.	_	_ •	-	40.0	2 2	5							173	L			TA	RELHUM	ų	
		160.	78.5	76.2	75.2	75.	74.3	3.0	70.07	69.6	70.2	69.1	67.5	6.4	55.0	46.5	33	17:1										98.0	97.	_			00	- FULL	
1 2		150.	84.2	85.2	91.7	81.3	81.1	91.	9.00	77.9	77.8	77.3	76.4	2.5	65.8	60.0	50.3	37.0	9. 8.									92.5		-T -10	•	SBS9	29.5700	ŝ	
X30095	DEGREES	140.	85.2	9 0	-1		83.6	-1			1		•		.i .			oil.	4	5							•	20.0	6.9	THIEL	- 1	¥H.	PAMB.	00 SQ	
	-	130.	4 0	9	0) -	(C)	o	N K	0	6	0	0 1	- 1	9	0	ص •	8		?									100.1	FDEGLIFINGY		¥.		SI ZE (1400.00	ļ
FJ-ZER-FMGDL	INCET		4 1	. R	- 1	6 8 6 9		- 1	5 6 		Į							- 1	0 d	N	n							- (• -			0	157	E C	
FJ-ZE	FROM	120		8	6	8 0	8	-			- 1							- 1	4	2								8	66	g	2	OEN	ADH157	2.2 SQ	
Z	SURED	110.	73.9	72.	78.	3 6	80.6	80.	80.4	80.6	80.	80.0	79.	78.	73.6	69.	65	58.	46.2	•	•							5	9.70	980		2	RDG.	9032	
ICAT!	S MEA	100.	72.4	30.0	76.0	77.1	7	78.3	7.87	77.9	78.0	77.2	77.0	76,0	72.2	69.5	62.8	27.9	48.5	, , ,	0							89.8	96.4			TAP	AERO.	SL	
DENTIFICATI	ANGLES	9		74.2	- 1						1		_	_	- 1		_	-1	_	_	_							•	96.8		- 1			VGE 5 FT)	
-				10	10	0 (0	-	او	ði v	. 60	4	8	oj e	oj K	2	<u>ب</u>	~	ဖ	© I	٠,	Ŋ							. 60	14	GETEMPIO			CH CH	1C RANGE 2400.0 FT)	
		•	41	25	n		<u>-</u>	٥	o 0	ا ا	9	4	a 1	ຄຸດ	a		0	0	<u>س</u> (ه م	N						-		5 G			1	_	ACOUSTIC .5 M (240	1
		2		28	7	7 V	72	- 1	72	7 2	7	71	F i	7	- 89	65	62	- 1			"								9 0			1	2	A 731.5	
		9	67.4	68.			7	71.6		70	70.	69.	20.	.09	65.	62.	58.	20.	36.	2									900			T DAT	LOCATION		
		20	1 .	65.0	-1				-					-	٠ له				27.5									79.9	85.4 4 4			TES	Ž	T POINT 3009	
		9	1 .	63.6					-									1											79.3					TEST	
		FREG	ł	38	- 1			- 1				!			1			- [6300	0000	12500	16000	25000	<u> </u>	pΦ		GASPL	PNLT		-			MODEL.	

### 40			5	28,0 D	59.0 DEG. F.,	FICATION	N - P MEAS	MODEL FOREISTON	() - rrl -	SB O-FMOD O-FMOD	ES	1. ARC 00 00	0 FT. ARC (30100		
73. 1 76.2 76.2 77.2 77.8 79.9 13. 61.4 63.9 67.5 93.3 97.9 100.6 98.0 133.7 97.7 77.9 77.9 77.9 77.9 14.9 15.4 63.9 67.5 10.5 10.1 6 98.0 133.7 97.7 97.7 77.9 78.1 78.1 78.2 76.2 76.2 78.2 62.0 7				70.	90.		9	7			150.	160.	Ħ.		
74.2 76.2 77.8 77.8 77.8 77.8 77.8 77.8 77.8 77								i .	-	1					
77. 3 79. 4 81.1 80.9 81.2 84.1 85.5 88.4 92.6 89.7 102.4 95.0 89.0 103.5 13.8 81.8 81.8 81.8 81.8 81.8 81.8 81.8	1 1	- cı - cı	2 76. 7 77. 9 78. 2 82.	77. 78. 78. 79.	0010	V 0 4 %	@ 4 % @	1	1		2000	9 9 9 9 5 6 6 6 6 6 6 6	132.8 133.7 135.3	ORIGIN OF PO	
82.7 82.1 83.8 85.1 86.7 86.4 90.6 97.9 102.0 102.1 82.5 85.0 137.4 82.6 82.6 83.1 83.7 84.2 82.8 83.1 83.7 84.2 83.8 83.4 83.8 84.2 83.6 83.8 83.4 83.8 84.2 83.2 83.2 83.2 83.2 83.2 83.5 84.5 137.5 84.4 83.2 85.8 84.2 85.2 85.2 85.2 85.2 85.2 85.2 85.2 85		3 79 9 79 8 80 8 82	4 81. 7 81. 8 83. 4 84.	80. 83. 85.	0 040	- 4 6 8	80 V 6	1		r	3 2 4 G	67.7 85.5 83.8	136.3 136.4 136.5 136.9	IAL PA	
84.6 84.6 86.1 86.2 86.2 86.1 39.2 4 86.1 130.1 39.2 3 84.3 137.3 84.4 84.6 86.1 86.2 86.2 86.2 86.2 137.8 85.8 84.8 86.3 87.2 137.8 85.8 86.2 86.2 87.8 101.2 100.3 83.2 86.2 137.8 85.8 85.2 137.8 85.8 86.2 87.0 86.2 193.6 86.2 87.0 193.6 85.8 87.0 193.6 86.3 87.2 138.0 87.8 138.0 87.8 138.0 87.8 138.0 87.8 138.0 87.8 138.0 87.8 138.0 87.8 138.0 87.8 138.0 87.8 138.0 87.8 138.0 87.8 138.0 87.8 138.0 87.8 138.0 87.8 138.0 87.8 138.0 87.8 138.0 100.4 100.4 100.4 100.3 87.8 138.0 87.8 138.0 87.8 138.0 87.8 138.0 87.8 138.0 100.4 100.4 100.4 100.4 100.3 87.8 138.0 87.8 138.0 87.8 138.0 87.8 138.0 10.3 10.3 10.3 10.3 10.3 10.3 10.3 10	1	.7 82 .7 83 .4 84 .9 85	2 85.	85. 85. 86.	V 6 12 0	-447	~ 9 60 9					6 6 6 6 6 5 4 6 6 6 6 6 6 6 6 6	137.4 137.2 137.6	ige is	
85.9 86.3 87.0 87.3 88.9 92.1 83.0 95.6 96.8 100.2 100.1 95.6 87.7 138.4 89.9 92.1 83.0 95.8 95.6 100.2 100.1 95.6 87.7 138.4 89.9 92.1 91.0 93.9 95.0 96.4 96.3 95.6 87.7 138.4 89.8 93.1 91.5 93.9 95.0 96.4 96.3 93.7 87.7 138.4 96.8 93.6 86.6 87.2 88.9 93.1 91.6 93.2 93.0 95.6 93.7 87.7 138.1 77.0 88.6 86.6 87.2 88.9 91.4 90.6 93.2 93.7 97.6 96.5 93.7 87.7 138.1 77.0 88.6 88.3 96.1 80.9 85.6 137.2 77.0 88.4 90.1 81.1 81.9 81.6 83.3 86.5 88.3 86.1 82.8 78.7 136.3 74.9 75.0 78.4 90.1 81.1 81.9 81.6 83.3 86.8 83.3 86.1 82.8 78.7 136.3 62.7 136.3 62.7 73.7 75.6 78.9 79.0 78.4 90.1 81.1 81.9 81.6 83.3 86.8 88.3 86.1 82.8 78.7 136.3 62.1 132.1 62.2 63.3 65.8 63.0 77.2 72.4 76.5 76.1 76.1 76.1 67.4 67.1 65.1 62.1 132.1 50.7 50.0 83.7 56.4 55.9 57.8 57.6 58.3 63.7 50.5 51.1 65.5 53.8 131.9 50.7 50.0 83.7 56.4 55.9 57.8 57.6 58.3 63.7 60.5 113.4 109.7 104.1 150.7 7 104.1 150.7 7 105.7 7 105.7 7 105.1 705.7 7 105.1 705.7 7 105.1 705.7 7 105.1 705.7 7 105.1 705.7 7 105.1 705.7 7 105.1 705.7 7 105.1 7 105.7 7 105.1 7 105.7 7 105.1 7 1		8 94 2 65 6 94 6 95	.6 86. 6 86. 7 86.	86. 87. 87.	01 00 00 0	67-9	4000	1			0000	85.2 85.2 86.2 87.4 87.4	137.3 137.5 138.0 138.0		
76.1 76.4 80.5 81.6 86.4 87.3 86.1 89.6 89.8 89.1 87.3 83.6 195.3 74.9 75.0 78.4 80.5 81.8 86.4 87.3 85.3 86.1 89.6 89.8 89.1 87.3 83.6 195.3 74.9 75.0 78.4 76.1 81.9 81.9 81.6 83.3 86.5 86.5 86.3 86.1 162.8 78.7 136.3 69.2 63.3 65.6 69.0 71.2 72.4 71.6 72.1 76.1 74.6 74.6 71.1 66.2 133.4 56.9 57.1 59.5 62.1 62.7 63.9 65.2 77.1 67.4 67.1 65.1 65.2 133.4 56.9 57.7 56.4 55.9 57.8 57.6 58.3 63.7 60.5 61.1 56.5 53.8 131.9 56.7 50.7 50.0 53.7 56.4 55.9 57.8 57.6 58.3 63.7 132.1 56.9 57.7 98.5 100.6 102.5 103.6 106.5 109.1 113.2 113.4 109.7 104.1 150.7 TEST DATE 03-16-78 TAPE NG. N300 IALPHA SB59 TAMB 39.38 LGCATION C41 ANECH CH AERO. RDG. ADH155 PAPS 29.5550 RELHMM 22.40 TEST POINT ACCUSTIC RANGE S12.2 M (40.0 FT) ARC 110.1 SQ CM (17.07 SQ IN) - MODEL 91.14 M/SEC (209.0		96 96 .8 86 .0 85	.3 87. .4 86. .6 86. .6 83.	87. 87. 87. 85.	a r a a	4-	ဝာဂေးစ			2 100 4 98 5 96 93	8 9 8 8	87.7 85.0 87.7 85.6	138.4 137.6 138.1 137.2	-	
95.6 96.5 97.7 98.5 100.6 102.5 103.6 106.5 109.1 113.2 113.4 109.7 104.1 150.7 TEST DATE 03-16-78 TAPE NG. N300 IALPHA SB59 TAMB 39.36 LGCATION C41 ANECH CH AERO. RDG. ADH155 PAMS 29.5550 RELHAM 22.40 TEST POINT ACGUSTIC RANGE S1.2 ACGUSTIC RANGE S1.0 ACGUSTIC RANGE S1.14 M/SEC (298.0	! !	- 78 9 75 9 75 9 63	4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	80. 75. 69.	4 - 0 01 - 0	00040	, , , , ,	ł I	1 1	- a	762	68.2 68.2 68.2	136.3 136.3 135.5 132.1		
LGCATIGN C41 ANECH CH AERO. RDG. ADH155 PAMS 29.5550 RELHUM 22.40 TEST POINT ACGUSTIC RANGE 3010 12.2 M (40.0 FT) ARC 110.1 SQ CM (17.07 SQ IN) - MODEL 91.14 M/SEC (299.0	0	5.6	.5 97.7	i		D 10	<u> </u>	מ מ		0 01 -	-		150.7 TAMB	38.38	
			LOCATION	0	STIC RAP	VGE AE	2	. 0	-	ZE ZE	5	Q	1	22.40 FREE-JET SPEED .14 M/SEC (299.0	
	447		:										:		

07/19/79 18,286		
	•	RANSFORMED MODEL SOUND PRESSURE LEVELS
		FLIGHT TRANSFORME

90 00 00 00 00 00 00 00 00 00 00 00 00 0	7 7 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	FLIGHT TRANSFORMED MODEL SGUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC IDENTIFICATION - FJ-300-FMGDL X30100	ANGLES MEASURED FROM INLET, DEGRÉES	50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160.	8 79.7 79.6 79.0 79.7 80.1 80.8 84.8 90.0	7 79.7 80.6 80.2 81.5 60.6 82.0 87.4 95.3 98.7 100.4 86.5 133 4 81.5 133 4 81.5 133 8 82.0 82.1 84.2 83.4 83.0 84.2 80.7 97.3 100.0 98.2 90.5 134 85.6 85.6 85.6 84.3 93.3 84.3 84.6 86.7 97.4 98.6 100.3 98.8 89.7 134 85.6 84.3 93.3 84.3 84.6 86.7 97.4 98.6 100.3 98.8 89.7 134 85.6 84.3 93.3 84.3 84.6 86.7 97.4 98.6 100.3 98.8 89.7 134 85.6 84.3 93.3 84.3 84.6 86.7 97.4 98.6 100.3 98.8 89.7 134 85.6 84.3 93.3 84.3 84.6 86.7 97.4 98.6 100.3 98.8 89.7 134 98.6 100.3 98.8 89.7 134 98.6 100.3 98.8 89.7 134 98.6 100.3 98.8 89.7 134 98.6 100.3 98.8 89.7 134 98.6 100.3 98.8 89.7 134 98.6 100.3 98.8 89.7 134 98.6 100.3 98.8 89.7 134 98.6 100.3 98.8 89.7 134 98.6 100.3 98.8 89.7 134 98.6 100.3 98.8 89.7 134 98.8 89.7 134 98.8 89.8 89.8 89.8 89.8 89.7 134 98.8 89.8 89.8 89.8 89.8 89.8 89.8 89.	7 86.0 85.3 84.7 85.7 86.2 88.0 94.6 99.6 100.1 95.3 80.6 135.2 95.4 85.6 86.0 85.9 87.1 87.8 89.2 95.1 99.8 100.6 94.5 89.6 135.5 95.5 95.1 99.8 100.6 94.0 90.0 136.3 95.3 88.2 87.9 88.2 87.9 88.6 90.1 92.0 97.2 100.7 99.9 93.6 91.3 136.4	.8 87.6 87.8 87.6 89.1 90.1 93.3 97.4 101.7 99.8 94.0 91.2 1.7 88.3 89.4 89.4 90.3 91.5 93.9 98.3 100.8 100.0 95.2 91.4 1.9 89.6 90.4 89.7 91.8 92.6 94.7 98.5 100.9 99.5 95.5 91.7 1.0 89.7 90.2 90.6 91.7 92.8 95.4 98.2 101.3 100.7 95.9 93.1 1	4 90.2 90.8 91.2 93.5 94.0 95.7 98.9 102.2 101.3 97.4 95.0 138.9 7 7 8 90.2 90.8 91.7 92.2 94.4 94.8 96.5 99.6 101.5 101.8 97.9 96.2 139.5 7 9 90.3 91.4 91.6 92.5 94.5 94.8 96.3 98.6 101.6 101.8 99.8 97.5 140.0 7 90.3 91.6 93.6 95.1 94.8 96.6 97.2 100.4 100.7 99.5 98.6 140.0	8 91.0 91.6 92.3 54.1 93.4 54.8 96.8 100.5 99.8 99.6 99.1 140.4 3 89.8 92.3 92.8 94.4 92.8 94.4 95.8 97.7 97.6 97.6 97.8 140.4 7 90.9 90.6 92.3 93.1 90.2 91.9 94.6 94.6 94.6 94.6 96.1 140.3 2 87.3 86.9 90.4 90.3 87.9 88.1 91.5 93.1 91.3 90.6 92.0 139.7	2 83.4 84.3 84.7 84.9 83.9 84.7 86.1 86.6 87.8 b3.0 89.3 138 3 79.3 80.7 82.9 82.8 79.4 80.1 83.1 81.8 82.0 80.9 83.4 138 5 75.3 74.0 75.2 74.0 75.2 75.4 75.5 76.9 136 9 66.5 66.3 66.3 66.9 68.5 67.3 72.8 69.4 70.5 68.5 71.2 136 5 57.5 61.5 59.9 60.8 60.0 60.0 63.0 59.5 60.7 58.7 61.4 135	3 101.7 10; SIZE SCALI 000 CALC.	TEST DATE 03-16-78 TAPE NO. N300 TALPHA SB59 TAMB 39.36 LOCATION C41 ANECH CH AERO: RDG. ADH155 PAMB 29.5550 RELHUM 22.40 POINT ACOUSTIC RANGE	14.4 H
	0			.09	79.7	7.9.7 81.5 82.0 85.6	86.0 85.6 87.3	87.6 88.3 89.6 89.7	8 6 6 6 8 4 4 6	0.00 0.00 0.00 0.00 0.00 0.00	20.00 20.00 20.00 20.00 20.00	O1.7 ZE SC CAL	DATE	N -

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

														NA OO					IS ITY											(299.0 FPS)
	PVL	53.3 54.3	6.1	4.7	7 10	0.0	5.2	56.5		9.6	1.0	- 10°	9.5	4.		4.7	6.1	4.0	0						70.8				AMB 39.38 HUM 22.40	FREE-JET 91.14 M/SEC (
	0.	64.6 153 63.0 154	91	n u		0	9	- «	'n	8	0	- in	6	0 4		2 /		Ďì							_	61.1)	TAMB 10 RELHUM	FULL
S		75.7	~	0	N R	9	7	– •	• •	8	- 6) c	0	. 4	ه د		က									60.0)	FT -10	SB59 29.5550	- (NI 08
, DEGREES	4	6 79.7 8 80.0	20		9 Q	7	78	77	2 8	78	7.8	200	73	9	א פ	4	32	2							G	2 95.5		ENCY SHI	I ALFHA PAPB	\$12E 400.00
RED FROM INLET,		73.0 78.6 74.7 79.8		t			- 1										1		N.						9	7.7 98.2	•	FREQUENCY	N300 ADH155	SO CM CI
	ن	67.3 73 69.5 74	0	-) N	. 6	6.	0 .		6	10	0 0	8		` *) (0)	4	a :	1						ď	95.6 97	•	9.056	5.6	9032.2
ANGLES MEASUR	ċ	68.4	0	N/e	0 (1	-	6	۰ به		7	ω :	- 4	0	9	4 0	0 0	က	10							•	2.0	•	RATIO	TAPE NO	ار د
TONY	0	67.0					1																			86.3	•	AMETER R	3	RANGE 10.0 FT)
		1 67.7	69	69	: 5	. 6	72.	72.	, E	74.	7.	6.4	75.	74.	, i	9 0	50.	35.	9							95.2		DIA	16-78 ANECH	ACGUSTIC RAN
	0. 70	3 65.	3 68.	. 8	4. 	20.	. 9 71.	.9 72.	72.	.8 73.	.8 72.	2,67	.2 73.	.3 72.	.5	4 64 0 10 0 0	.6 47.	.6 29.	. 1						8	6 93.			62	731.55
	6 0. 6	63.8 64	a	0	o c	'n	-	G a	0 40	9	.8 71	- 4	9	- (on (9 K	10	۲.							•	0.00	ŗ		TEST DATE LOCATION	OINT
		62.2 8	10	0	7	. e	σ.	Si 0	2 (2	φ.	0	<u>.</u> و	. 6	9	<u>ب</u>	<u>ء</u> د	0	4							4 4	85.3	3			TEST POINT 3010
	REG	90	00	9	0 C	200	250	315	000	630	800	2000 2000 2000	1600	2000	2500		2000	6300	0000	2500	0000	1500	40000 50000	3000		PNI				MODEL

•
•
16.286
•
•
-
0
/79
>
à
-
`
5

											00	RI F	GII PI	N/OC	AL)R	PQ	AK	3E AL	IS TI	5									JET SPEED C (308.0 FPS)	
UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC IDENTIFICATION - MODEL FJ-400-FMODL X30110	rJB400-FMDDL	ANGLES MEASURED FROM INLET, DEGREES	<u>40. 50. 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160. </u>					.4 73.9 74.0 75.6 76.2 77.4 79.5 62.0 63.6 90.5 95.2 98.	7 75.3 75.6 76.0 77.1 79.9 79.8 81.9 85.7 92.3 96.3 98.5 95.2 131	.5 76.1 76.7 78.5 80.5 81,3 83.1 86.8 95.7 98.6 99. 4 79.5 76.0 82.4 82.0 82.7 84.7 84.1 97.0 99.5 97.	6 78.0 79.2 79.5 92.2 82.7 83.6 87.2 90.7 97.9 100.3 95.5 86.9 134	3 78.1 79.8 80.9 82.0 84.1 85.3 88.3 93.1 98.7 100.9 93.0 85.1 184	.6 78.0 81.6 81.9 83.0 85.3 86.8 89.7 94.7 99.6 99.5 90.6 83. 2 81 5 83 0 83 3 84 4 87 0 87 7 00 0 05 1 00 0 00 0	.6 80.2 82.2 83.5 84.6 87.5 89.1 92.3 96.3 100.0 99.2 90.1 83.6 135	9 81.6 83.4 83.9 84.7 87.9 89.5 93.0 97.5 100.6 98.0 89.7 83.7 135	3 83.4 84.4 84.5 86.2 88.3 90.7 94.2 97.7 101.1 97.5 89.9 83.1 136	.4 64.0 64.0 63.8 87.0 89.9 91.0 93.3 96.7 99.9 97.0 90.2 82.7 136.	.6 84.5 85.5 86.4 87.8 91.1 92.8 95.7 97.5 100.2 98.0 91.4 84.4 1	39 84.5 86.3 87.0 88.5 92.1 83.0 95.7 97.9 100.7 98.5 92.2 88.7 137. 5 84.7 84 86 9 89.7 60 100 00 00 00 00 00 00 00 00 00 00 00 0	6 85.8 86.7 87.0 89.1 92.0 92.9 95.5 96.7 99.4 97.5 93.5 87.7 137	2 85.1 85.8 86.6 88.4 91.3 91.5 94.1 95.1 97.3 96.2 92.8 87.5 136	. 5 85.0 86.0 86.6 88.5 80.5 80.2 92.9 93.9 96.3 94.9 91.9 87. .9 83.0 84.1 85.2 88.4 89.8 88.2 90.0 92.0 92.9 91.8 90.1 85.	2 78.1 80.9 81.7 86.1 87.4 85.5 85.8 89.5 88.2 87.3 85.7 83.5 135	.8 75.4 78.6 90.7 90.5 82.1 82.0 82.7 86.2 87.0 84.8 81.0 78.3 135. 3 70 1 7% 6 75 3 78 8 90 3 76 6 77 8 90 8 90 7 70 7 75 7 7	. 9 63.2 65.9 68.6 70.8 72.3 72.3 71.5 75.7 73.5 72.5 70,0 67.9 1	.8 57.0 59.1 62.0 62.4 64.3 65.5 64.7 70.3 66.0 65.2 63.3 61.6 131. .3 50.4 53.9 56.8 55.5 57.4 57.5 57.9 63.1 59.1 59.3 66.2 53.4 131.	94.3 95.6 96.9 97.C 100.1 102.0 102.9 105.8 108.5.111,7 111,1 107.2 102.1 149.4	TEST DATE 03-16-78 TAPE NG. NBCS IALPHA SB59 TAMB 38.84 LOCATION C41 ANECH CH AERG. RDG. ADH156 PAMB 29.5700 RELHUM 21.90	ACGUSTIC RANGE 2.2 M (40.0 FI) ARC 110.1 SQ CM (17.07 SQ IN) - MCDEL 118.26	
				FREG	63 60 60	00.	2 <u>2</u>	1			1			1						1	2500		1			63000 80000 5	CASPL		MODEL. 6	

C.

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SGUND PRESSURE LEVELS 59:0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

X30115

DENTIFICATION - FJ-400-FMODL

											00	RI	GII PC	NA DO		P# QU			IS TY									FREE-JET SPEED
			_			N 10		7	~ c	. 60	4	6		·	8	N 6	•	2	" च	10	9	N	6	e		0	3 40.28 4 22.00	i A
			Z			0 4 6	44	145.	146	145	•	,			,			•		•	٠.			138.3	•	.00	TAMB RELHUM	
120		160.				108.2	108.8	• • •	109.7	108.3	108.5	108.1	107.5	105.5	104.3	103.4	102.9	102.3	98.0	95.2	93.4	0 0 0 0 0 0	78.0	72.2	•	9,0	-	
×		150.				09.3	110,6	7	5 -	10.2	11.0	110,6	200	0.60	107.3	06.7	05.3	05.6	0.20	2.88	94.3	0 0 0 0 0	79.1	73.9	} ;	2	5859 29.5000	
FJ-ZER-FMODL	DEGREES	140.			- 1			. L		•	•	,		•	ľ '	107.8	1	, ,	•		į			73.9		121.0	I ALPHA PAMB	36.126
FJ-ZEF	INLET,	130.			- 1		, ,		- •	- •	-	, ,		, ,	ļ- '	109.0	`	, ,			66			73.9		120.3	8	
		120.				9 0	97.2	98.0	98.8	103.1	103.7	104.4	105.10	106.0	104.7	104,3	103.6	101.8	98	96.4	94.1		80.6	76.2		10,0	N300 ADH142	
MODEL	SURED	110.			- 1		92.8	• •	90 0 0 0	98.6	99.7	100.4	100.7	102.0	101.9	102.3 101.8	100.8	100.8	9 6	94.9	80.8	9 0	76.4	70.3	,	0.2	RDG.	
•	Æ	100.						- N			1						1					•	1	71.7		108.4	TAPE AERO. F	
DENTIFICATION	ANGLES	.06						٠i			٠ ، ا		٠		i .	97.2	1		4 1			86.70		70.4		5 5 7		RAMOE
IDENTI		.00			- 1			•			٠ ١		•		١.,				•					69.2		108.8	16-78 ANECH CH	ACCHISTIC RA
		70.						· · l			1		•	• •	١.	٠.	٠ ا	•			١.		!	68,9	4	0.00	03-10	ACO
		60.			- 1	* *		-			• •1	٠	•		١.	92.8 94.1	•							80.00 80.00 80.00		00.7	DATE	
		50.			- 4	• 1	. *	•			۱ ۱		٠.			* *	٠ ٠				٠.		٠ ١٠	62. 62. 4		104.6	TEST (TNICE
		40.				ن دن	0	0	0 0	, IO	ဖ	بن ا	0 4	4	60 (<i>N</i> 4	60	iú c	<u> ۱</u>) PU	ο.	- σ	7	59.0 39.0	, (02.0		TEST POINT

		,				or of	IGI P	00	AL OR	P	A C	3E ALI	IS TY			-										ED FPS)
					7	ו מו	• 4	7	. •	3	40	၁ ග	- "	2	~ ~	. 2	3		9	2	- o n	1	p	CORRECTION - YES CORRECTION - YES	B 40.28 M 22.00	FREE-JET SPEED O. M/SEC (O.
		60. PWL			4	3.2 142.		7 14	. u	.5 146	146	ი. - —	. 50 146 146	4 145	0 2 4 7 7	3 144	6 143	2 143	4 141	3.2 141.2 1 4 141.1	0 138	2 8	.6 158.	REFRACTION TURBULANCE	TAMB	MODEL
o.		150. 16			2		11.2 109	- -	10.2 108	0.0	٥	10.2 10.7 09.7 105				υ	6.		က	<u>ი</u> თ) -	73.9 72 66.4 64	121.9 119		SB59 29.5000	î î
X30120	DEGREES	140.		ŀ	-1	106.4	110.5	- 6	10.5	11.1.1	0.0	. n		1 8	106.8	9 6	. 1	۵. ا	-	~ 6	. ~	73.9	121.8 1	48.00	ALPHA	SI ZE 17.07 SQ
FJ-ZER-FMODL	4 INLET,	5. 130.			66	102	107	107	108	7 108	200		0 109	3 109	.7 107.5 6 106.4	9 105	0	8 101. A	93	ю ю	80	3 67	6 120.5	FT/SEC) FER (IN)	42	5
I - FJ-ZI	RED FROM	10. 120			6 93	66 8.	1 98	102	6 103	7 103	4 C	100	0.106	3 104	8 103 8 103	8	6	၁ ၈	G	თ	4	70.3 76. 65.1 70.	2.5 115.	LOCITY (FT/ T DIAMETER	10. N300 10. ADH142	110.1 SQ
DENTIFICATION	ES MEASU	100.			<u>, </u>		N.	ء د	9 09	0.0	-	- m	۵, ر د		٥ <i>،</i>	S.	(7 CO	9	- «	0.1		109.4 11	JET VE FREE JE	TAPE N AERG. RD	ARC
IDENTI	ANGLES	8			87.	9 G	90.	92	9 8	96.	e e		96	97.	96	97.	97.	96	93.		78.	64.	108.8	FREE	퓽	RANGE 40.0 FT)
		. 80,			93	87.	94	9 5	60	8 8	200	2 93.8	9 6	94	9 9	6 95.	2 96.	, ic	3 92.	87.	77.	62.	5 109.8	FACTOR . 000	16-78 ANECH	ACOUSTIC 2 M (4
		60. 70			ဖ	N O	<u>ر</u> ا			o , c	פות	2.9	0 1	6		95	500	9.00	3 88	N 10	1	ဂ္ဂဗ	5.4 105.	E SCALE CALC. 1	ATE 03-	12.2
		20.			-	٧ĸ	0.0	٥	, m	ص را م	٥	ia	ო დ	6	– ო	-	٠. (o di	10	8	ტ.	55.8 59	104.8 105	TULL SIZE	TEST DATE	TEST POINT 3012
		40.	: :		•1						•I	90.4				1			1			-1 -	102.0 1	MODEL/FULL INPUT 1.0		TEST 30

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

IDENTIFICATION - FJ-ZER-FMODL X30125	ANGLES MEASURED FROM INLET, DEGREES	50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160.	67.3 69.6 70.4 78.4 74.4 75.6 77.1 80.4 88.6 90.2 88.7 83.3	69.1 71.7 73.2 75.0 76.7 77.7 81.0 84.4 89.4 90.5 88.5 83.2 1	72.4 74.5 74.5 75.8 78.0 79.3 81.5 85.3 89.7 90.1 87.5 82.2	72.9 75.1 75.6 77.1 79.6 80.3 82.6 85.8 89.3 90.6 88.2 82.1	71.5 73.8 74.9 76.6 79.4 80.1 83.1 86.3 90.3 90	72.8 74.8 74.8 75.1 78.5 80.1 63.3 67.0 90.3 50.0 65.6 60.3 72 5 74.8 75 75 75 78 1 1 83 8 85 8 91.3 80 9 85 8 78 1 1	73. 74.3 75.6 76.9 79.7 81.4 84.1 87.3 89.5 88.6 76.8 185.3	72.4 73.7 74.7 76.0 79.0 80.5 83.7 85.7 88.8 86.3 82.4 74.7	72.7 73.5 74.6 76.2 79.4 80.4 83.9 85.0 88.4 85.2 81.1 72.9 164.3	73.2 74.6 74.7 76.5 79.5 80.5 83.2 84.2 86.6 83.8 80.1 72.5 163.8	74.1 74.9 75.0 76.6 78.9 80.0 82.1 83.9 85.3 82.6 78.6 70.4 163.5	73.8 76.1 76.9 77.5 79.6 79.3 82.1 83.7 81.2 78.4 68.8 163.4 30.0 30.0 30.0 30.0 30.0 30.0 30.0 3	7. 3 7. 4 3 7. 6 5 7 8 5 7 8 5 7 8 7 8 7 8 7 8 7 8 7 8 7	67 6 71 7 74 7 75 7 75 7 75 7 7 7 7 7 7 7 7 7 7	62.3 67.4 70.0 74.9 76.6 73.1 72.5 74.3 70.9 67.2 62.3 50.0 160.8	56.9 63.8 67.5 69.3 70.4 69.0 68.8 69.6 68.0 62.1 52.7 37.2 160.4	48.0 55.5 59.9 65.2 67.0 62.0 61.7 61.5 59.1 51.4 39.6 19.7 160.2	33.4 42.3 48.7 52.6 54.2 52.1 49.8 50.9 45.5 36.4 21.5 158	2 24.6 32.5 35.3 37.2 37.7 33.9 35.3 25.7 13.8	. 5 11.6 15.1 13.2 10.9 9.5								84.4 85.4 87.3 92.7 91.3 91.8 94.5 96.9 100.6 100.2 97.7 91	91.1 94.0 95.7 99.0 100.2 98.7 100.8 102.4 104.9 103.0 99.6 92.0	91,1 94,0 95,7 99.0 101.3 98.2 100.8 102.9 104.9 103.0 99.6 92	DIAMETER RATIO 9.056 FREQUENCY SHIFT -10	TEST DATE 03-16-78 TAPE NG. N300 IALPHA SB59 TAMB 40.28	LON C41 ANECH CH AENO: NOG: ADIII4E CAI COO NELINI EE
		30.	67.3	69.1	72.4	72.9	77.00	8.27 8.07	73.3	72.4	72.7	73.2	74.1	73.8	74.0	67.6	62.3	56.9	48.0	33.4	Ņ									84.4 85	1.1 94	91.1 94		TEST DA	
e pel e			50 63.7									- 1				-					6300	10000	12500	16000	25000	31500	40000	3 0000	80000	80	PNL 84	82			

FPS)

FREE-JET SPEED M/SEC (0.

ö

SIZE 9032.2 SQ CM (1400.00 SQ IN) - FULL

ACCUSTIC RANGE 731.5 M (2400.0 FT) SL

TEST POINT 3012

98
=
286
a
**
•
0
0
-
•
_
91
~
•
_
•
-
_
•
. •
r
0
_

												OI OF	RIC I	3II PC	A <i>I</i>		PQ	A(U/	G E	i I	S													JET SPEED	
tu																																40.28		FREE-JET	5
UND NOISE			نن	J.Md.					A 127 R	138.5	140	141	141	7	4 4	142	142	142	142	3 141.9	4	14	142	0 141.5	4	140	140	140.0 138.0	136	3 137.0	1 155.3	TAMB RELHUM		MODEL	
FOR BACKGROUND 40.0 FT. ARC	X30130 X01300		150 160						100 × 100	, o	। । ।	7 98.	8 94.		D &	1 89	a	~	ا.	98.1 89.3	O	6	- (97.3 90.8	, 4	-	.181.	74.6 71	4 65	.3 57.	114.9 109.	SB59 29.5250		ı X	
CORRECTED FOI DAY, SB 4	FJ-300-FMØDL FJB300-FMØDL	DEGREES	140						101 2	102.9	105.4	107.2 1	108.1	107.6 1	108.1	107.9	106.8	106.5	106.6	100.2	104.3	103:4	103.3	9.6	6.96 6.96	92.4	90.1	77.0	71.9	65.7	118.6	I ALPHA S	ł	SI ZE 17.07 SO	
LEVELS CORR		ł							20	4	102	103	4.00.0	200.00	.7 106.8	4	•		۱.	1005.3	•	•	.3 104.5		-	Į		2007	1		.6 118.2	0 146		2	
<u>ا</u> ـ	IGDEL JACKGRGUND	URED FROM	10.						A7 1 AG	. ~	n		oj d	•	- 10	4	۲.	u i		- •-	0	9			i o	9	- ·	75.8 81.4	1	ო.	09.7 113	NG. N300 DG. ADH146		110.1 SQ	J
SOUND PRESSURE 70 PERCENT R.	M . NOIT	ES MEA	} =						8	8	86.	87.			- 66 60	94.	94.	9	60	0 0	96	95.	93	9 0	0	89.	8 8 8	76.4	70	62.	106.7 1	TAPE N) ARC	1
JOEL F.	I DENTIFICATION	ANGL	80.						A 83	50.00	.3 85.	.4 86.	88 86	- 0	3.00	5 92.	.3 92.	ი. ი.	93.	9 6	3 94.	0 94.	93.	0 0 0 0	3	. 2 91.	4 86.	9 77 7	2 68.	.9 62.	.0 105.9	H CH		C RANGE 40.0 FT)	
UNTRANSFORMED MC	01		70.						6	4	_	6	4 c	Nα	N	4	a,	4 F	o] <	4 0	· -	'n	9	٠ ،	ر ا	9	თ •	73.55 75	4	Ю	02.4 105	03-16-78 C41 ANECH		ACGUSTIC	'1
UNTRAN			90						79	91	82.	94.	. 40 4	0 0	. 76	87.	88.	00 0	000	0 0	90.	92.	9	n o	88.	86.	1 00	20.6	63.	57	102.0 1	TEST DATE	ŀ	T 21	
	-		0.						4 79	.6 79	.6 80.	.0	.e 82.	. o	.98	.7 85.	.4 86.	4 87.	. Z 0		2 89.	. 8 92.	.7 92.		0 87.	.3 83.	9.79	. 55 . 56 . 56 . 56 . 56 . 56 . 56 . 56	.2 61.	.7 54.	.8 100.8	TES		TEST PGINT 3013	
5			4		20	63 80	100	160				- 1				1			1			- 1						50000	l		CASPL 99		et i	MGDEL T	

80
ō
-
"
Ξ
•
1
Σ
1.
>
•
-
•
~
₾
0

Ct.

### BOOK NOTES HEASURED FROM INLET, DEGREE ANALES HEASURED FROM INLET, DEGREE ANALES HEASURED FROM INLET, DEGREE BS. 0. 100. 110. 120. 130. 140. 140. 140. 140. 140. 140. 140. 14	The printing control of the contro		82	FL 19HT	, ,	TRANSFORMEI	D MODEL	၂ဟ	SOUND PRESSURE TD. DAY, SB	RE LEVELS 40.0 FT.	FT. ARC				
70. 80. 90. 100. 110. 120. 130. 140. 160. 160. PML 22. 82. 82. 83. 3 84. 2 84. 3 86. 1 82. 1102. 1100. 8 136. 4 84. 84. 85. 86. 97. 180. 130. 140. 100. 130. 140. 130. 140. 140. 140. 140. 140. 140. 140. 14	70. 80. 90. 100. 110. 120. 130. 140. 160. 160. PML 82.9 82.6 83.9 84.2 84.3 85.8 12.0 130. 140. 160. 160. PML 82.9 82.6 83.0 84.2 84.3 85.8 12.0 100. 103. 103. 103. 103. 103. 103. 10				. 5	ICATIO	Z	300-FMG		30130		· .			
70. 80. 90. 100. 110. 120. 130. 140. 150. 160. 160. PML 82.9 82.6 83.3 64.2 84.3 86.6 94.9 99.1 102.1 100.9 138.4 64.5 85.6 85.7 10.2 130.5 100.8 102.1 100.9 138.4 64.5 85.6 85.7 10.2 130.5 100.8 102.1 100.9 138.4 64.5 85.6 85.7 10.2 130.5 100.8 100.2 139.6 100.2 139.6 100.8 10.2 139.6 10.2 139.	70. 80. 90. 100. 110. 120. 130. 140. 160. 160. PML 82. 82. 82. 83. 94.2 84.3 86.8 12. 100. 8 132. 100. 8 133. 4 82. 82. 82. 84.8 85.7 82.8 102. 102. 102. 102. 103. 83. 8 83. 83. 86. 85.7 82.8 86.7 82.8 102. 102. 102. 103. 83. 8 83. 83. 86. 85.7 82.8 86.7 82.8 102. 102. 102. 103. 83. 8 83. 83. 86. 85.7 82.8 86.7 102. 2 102. 102. 103. 83. 83. 103. 103. 83. 83. 103. 103. 103. 103. 103. 103. 103. 10				ANGLE	MEAS	UREO FR	OM INLE	1	REES					
83.0 82.9 82.6 83.3 84.2 84.3 88.8 84.9 890.1 102.1 100.9 138.4 83.9 84.2 84.3 890.1 102.1 100.9 138.4 83.9 84.2 84.3 86.5 10.1 81.5 10.0 4 105.4 105.6 102.1 138.6 84.7 84.2 84.6 85.9 87.9 87.1 86.1 87.1 87.1 87.1 87.1 87.1 87.1 87.1 87	85.0 82.9 82.8 83.3 84.2 84.3 88.9 84.9 89.1 102.1 100.9 135.4 89.8 89.1 89.2 89.8 89.1 102.1 138.8 89.8 89.8 89.1 89.1 89.1 102.1 138.8 89.8 89.1 89.1 89.1 89.1 102.1 138.8 89.8 89.1 89.1 89.1 89.1 89.1 89.1 8		•		8		-	20. 1			160.	ā			
65.0 62.9 62.6 63.3 64.2 64.3 66.6 94.9 99.1 102.1 1100 9 135.4 65.0 67.0 67.0 67.0 67.0 67.0 67.0 67.0 67	83.0 82.9 82.6 83.3 84.2 84.3 88.8 94.9 89.1 102.1 100.9 138.4 84.8 84.8 84.8 84.8 85.7 1 82.1 102.1 102.1 102.9 138.4 84.8 84.8 85.8 85.9 85.9 87.1 82.1 102.1 102.1 102.1 102.9 138.4 84.8 85.8 85.9 85.9 87.1 82.1 102.1 102.1 102.1 102.1 103.8 86.8 140.0 86.8 140.0 86.8 140.0 86.8 140.0 86.8 140.0 86.8 140.0 86.8 140.0 86.8 140.0 86.8 140.0 86.8 140.0 86.8 140.0 85.8 140.0 86.8 140.0 85.8 140.0 85.8 140.0 86.8 140.0 85.8 140.	•													
43.7 6 4.5 6 5.6 6 5.7 6 5.7 6 5.7 6 5.7 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	43.0 83.9 83.6 85.0 84.9 85.7 91.5 100.4 103.1 103.5 100.2 103.1 93.6 83.6 83.6 83.6 83.6 83.6 85.7 91.5 100.4 103.1 103.5 100.2 103.6 100.2 103.6 83.6 83.6 83.6 83.6 83.6 83.7 103.6 83.1 103.6 103.1 95.6 103.7 95.7 103.7 103.7 103.7 103.7 103.7 103.7 103.7 103.7 103.7 103.8 103	1	0	9 62.	6	N	64.3	9.0	6	1 102.1	100.	135.4			
91. 91. 91. 92. 93. 96. 97. 97. 107. 107. 107. 107. 107. 107. 107. 10	96.7 93.6 93.6 93.6 93.7 90.7 90.7 90.7 90.7 90.7 90.7 90.7 90	۱	0 1	93	۰.	0	١.	6	4 .	4 106.5	102.1	136.6			
83. 86. 86. 86. 86. 86. 86. 86. 86. 86. 86	89. 8 86. 8 89. 8 86. 8 89. 8 88. 8 89. 8 89. 8 89. 1			7 60 6	٠. د د	o			r		20.0	10.0			OR OF
90.8 91.1 90.9 82.6 92.3 94.7 101.2 106.1 106.0 100.0 95.5 141.4 91.9 91.8 91.1 90.8 91.1 90.8 91.1 90.8 91.1 90.8 91.1 90.8 91.1 90.8 91.1 90.8 91.1 90.8 91.1 90.8 91.1 90.8 91.1 90.8 91.1 91.1 92.9 93.6 92.3 94.7 101.2 106.0 106.5 6 99.9 96.5 141.4 91.1 91.1 92.9 93.6 93.6 96.3 101.9 100.7 106.5 100.7 96.6 142.0 92.9 94.0 95.0 96.3 101.9 100.7 106.5 100.7 96.7 142.4 92.9 94.0 95.3 95.4 95.3 95.4 95.4 95.3 95.4 95.4 95.3 95.4 95.4 95.3 95.4 95.4 95.4 95.3 95.4 95.4 95.3 95.4 95.4 95.3 95.4 95.4 95.3 95.4 95.4 95.3 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4	91. 91. 91. 92. 92. 92. 92. 92. 92. 92. 92. 92. 92	، ما	88	88	10 0	٠ ٠	0	-	8 -	- - •	8 3	140.3			igii Po
91.1 91.1 91.1 92.9 93.6 96.3 101.9 107.2 105.6 100.7 96.6 141.9 91.3 92.4 92.2 94.0 95.0 96.9 103.6 105.1 106.0 100.7 96.6 142.0 91.3 92.4 92.2 94.0 95.0 96.9 102.6 105.4 106.7 106.7 106.7 100.7 96.6 142.0 91.3 92.5 92.7 94.8 95.3 96.1 96.1 102.6 106.4 106.7 100.7 96.7 142.4 91.3 92.6 92.9 94.8 95.3 96.1 96.2 103.2 106.6 105.4 99.9 97.1 142.4 91.4 93.3 95.2 94.3 99.2 103.2 103.2 106.6 105.9 100.4 98.9 97.1 142.4 91.4 93.3 95.2 94.3 99.2 103.2 106.5 105.9 100.4 98.9 100.4 98.0 142.7 91.4 94.7 95.5 95.4 97.1 97.5 99.2 103.6 104.7 100.9 100.9 143.5 91.6 96.9 96.9 97.1 97.5 98.3 103.6 104.0 102.7 101.3 143.9 91.7 91.6 91.4 97.2 97.7 100.6 104.0 102.7 101.3 143.9 91.8 95.3 96.6 97.1 97.5 96.2 97.7 100.6 104.0 102.7 101.3 143.9 91.9 91.9 91.9 91.9 91.0 91.0 10.4 10.0 102.7 101.3 143.9 91.9 91.9 91.9 91.9 91.0 91.0 10.0 104.0 102.7 101.3 143.9 91.9 91.9 91.9 91.9 91.0 91.0 10.0 104.0 102.7 101.3 143.9 91.9 91.9 91.9 91.9 91.0 91.0 10.0 104.0 102.7 101.3 143.9 91.9 91.9 91.9 91.9 91.0 91.7 91.6 91.0 97.0 91.7 101.9 10.9 10.9 10.9 10.9 10.9 10.9 10.	91. 91.1 91.1 91.1 92.2 93.6 96.3 101.2 103.5 105.2 105.6 105.0 96.8 141.3 101.9 91.1 91.1 91.1 92.3 92.4 92.2 94.0 95.0 96.9 103.0 106.1 106.0 100.7 96. 6 142.0 102.2 94.0 95.0 103.0 106.1 106.0 100.2 96.7 141.9 102.2 94.0 95.0 96.9 103.0 105.9 105.9 100.2 96.7 141.9 102.2 94.0 95.0 96.2 94.0 95.0 96.2 95.3 98.4 102.2 105.9 105.9 105.9 105.9 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.2 105.3 105.4 99.0 142.2 94.7 95.5 95.4 97.3 99.0 103.6 103.6 103.2 105.9 105.9 105.9 103.8 103.2 105.8 104.2 101.9 105.9 143.5 95.0 95.4 97.3 99.3 101.6 104.4 103.7 101.9 100.9 143.5 95.0 95.4 97.1 97.5 96.2 97.7 100.6 104.0 103.7 99.7 144.2 95.0 96.4 97.1 96.2 97.7 100.6 104.0 103.7 99.7 144.2 95.0 96.4 97.7 96.2 97.7 100.6 104.0 103.7 99.7 144.2 97.6 96.7 19.4 96.7 99.3 101.6 104.4 103.7 101.9 100.0 144.0 97.1 97.6 96.7 99.4 96.7 99.3 97.6 97.6 97.6 97.6 97.6 97.7 97.6 97.6		666		•	- რ ძ	17,	. ui u	- 4 (NAL IOR
91.8 92.4 92.2 94.0 95.0 96.9 103.0 106.1 106.0 100.7 96.6 142.0 PT 92.3 92.4 92.2 94.0 95.0 96.9 102.0 106.0 100.7 96.6 142.0 PT 92.3 92.7 95.0 95.0 96.9 102.0 102.0 105.0 105.0 105.0 106.9 105.0 106.9 107.0 99.7 142.9 PT 142.9 PT 92.3 96.4 102.4 106.6 106.4 96.0 142.7 PT 92.3 96.4 102.4 106.6 106.4 96.0 142.7 PT 92.3 96.4 102.4 106.8 106.4 96.0 142.7 PT 92.3 97.1 96.2 103.8 103.6 104.9 96.7 142.9 PT 92.3 103.6 103.8 106.8 100.9 103.8 104.9 PE 142.9 PT 93.0 103.8 106.8 104.9 100.9 142.7 PT 93.5 95.7 103.6 104.9 103.7 101.9 101.9 100.9 143.5 PT 93.0 103.8 101.8 100.7 99.7 101.9 101.9 100.9 143.5 PT 93.0 103.8 106.8 100.9 143.5 PT 93.9 101.8 100.7 99.7 101.9 101.9 100.9 143.5 PT 93.9 101.8 100.7 99.7 101.9 103.7 104.0 144.0 PT 93.9 101.8 100.7 99.7 104.0 144.0 PT 93.9 101.8 100.7 99.7 104.0 144.0 PT 93.9 101.8 100.7 99.7 144.0 PT 93.9	92.3 92.6 92.7 93.0 96.9 103.0 106.1 106.0 100.7 96.6 142.0 92.3 92.6 92.8 94.0 95.0 96.9 102.0 106.2 96.7 141.9 92.3 92.6 92.7 93.3 96.5 102.0 102.6 105.4 99.9 97.1 142.4 92.7 93.3 94.6 95.3 96.1 102.4 102.6 105.4 106.9 99.7 1 142.4 92.7 93.5 94.9 97.2 97.3 99.2 103.2 106.5 106.7 100.9 99.7 142.9 93.4 93.5 94.9 37.2 97.3 97.2 99.2 103.0 105.8 104.7 100.9 99.7 142.9 94.7 95.5 96.9 97.1 97.2 97.3 97.2 100.5 104.4 102.7 101.9 100.9 143.5 95.0 95.4 97.1 97.6 97.7 97.2 99.9 101.6 100.7 7 101.9 100.9 143.5 95.0 95.4 97.1 94.4 94.9 98.9 99.0 97.8 97.8 97.8 97.8 97.8 97.8 97.8 97.8	. _	<u>-</u>	-	9	9	3	y a		1-	1	1 0			
92.7 93.5 93.7 96.0 97.3 99.2 103.2 106.5 105.3 100.4 99.0 142.7 43.4 93.4 93.5 93.7 96.0 97.3 99.2 103.2 106.5 105.3 100.4 99.5 142.9 98.5 142.9 93.4 97.2 99.0 103.6 104.9 101.9 98.5 142.9 98.5 142.9 93.7 3 99.0 103.6 104.9 101.9 98.5 143.9 98.5 143.9 93.7 3 97.2 99.0 103.6 104.4 103.7 101.8 100.9 143.5 95.0 97.1 99.3 103.6 104.4 103.7 101.8 100.9 143.5 95.0 97.1 99.2 91.0 100.5 7 101.7 107.3 143.9 99.0 97.2 99.0 97.2 99.0 97.2 99.7 100.0 144.0 97.2 95.0 97.3 99.0 97.3 97.0 97.8 97.0 97.4 92.3 91.0 97.2 91.0 97.3 97.0 97.2 97.0 97.3 97.0 97.3 97.0 97.3 97.0 97.3 97.0 97.3 97.0 97.3 97.0 97.3 97.0 97.3 97.0 97.3 97.0 97.3 97.0 97.3 97.0 97.3 97.0 97.3 97.0 97.3 97.0 97.3 97.0 97.3 97.0 97.3 97.0 97.0 97.3 97.0 97.3 97.0 97.3 97.0 97.0 97.0 97.0 97.0 97.0 97.0 97.0	92.7 93.5 93.7 96.0 97.3 99.2 103.2 106.6 105.3 100.4 99.0 142.7 93.8 93.7 93.8 93.7 95.0 97.3 99.2 103.2 105.6 104.9 101.9 98.6 142.9 93.8 94.3 97.2 97.3 99.0 103.8 105.8 104.7 100.9 98.6 142.9 93.7 142.9 94.7 10.0 10.8 105.8 104.9 101.9 98.7 143.5 49.7 10.1 101.6 104.4 103.7 101.9 101.9 104.5 99.7 103.8	N 40 M	.	4 6 9 2 5 2 5 2 5 2 5 5 5 5 5 5 5 5 5 5 5 5	0 6 6	000	0 D 4	0 0 4	-06			142.0 142.0			PAGE UALI
94.7 95.5 95.4 97.3 97.5 99.3 103.0 105.6 104.9 101.9 99.7 143.4 99.7 143.4 95.5 95.4 97.3 97.5 99.3 103.0 105.6 104.9 101.9 105.5 103.5 143.5 99.7 143.4 97.5 99.3 103.0 105.6 104.4 103.7 101.8 100.9 143.5 99.7 197.9 97.1 100.6 104.0 102.7 101.7 101.3 143.9 99.7 196.9 10.8 10.6 104.0 102.7 101.7 101.3 143.5 95.6 97.1 94.4 94.9 98.9 99.0 97.6 99.7 104.0 104.0 99.7 104.0 97.8 97.7 104.2 99.9 101.6 104.9 101.6 104.4 102.7 102.9 99.0 10.8 10.6 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8	94.7 95.5 95.4 97.3 97.5 99.3 103.0 105.6 104.9 101.9 99.7 143.4 97.9 95.5 95.4 97.1 99.5 99.3 103.0 105.6 104.9 101.9 99.7 143.4 97.9 95.5 95.4 97.1 99.5 103.0 105.7 101.8 100.9 143.5 95.9 97.1 99.2 3 101.6 104.4 102.7 101.8 100.9 143.5 95.9 97.1 99.2 3 101.6 104.4 102.7 101.8 100.9 143.5 95.9 97.1 99.2 99.9 101.0 102.7 101.8 100.0 144.0 99.7 96.4 97.5 97.9 96.9 97.7 100.6 104.0 102.7 101.0 102.7 101.3 143.9 99.0 99.0 97.8 97.8 97.8 97.8 97.8 97.8 97.8 97.8	L -	7. 93	5 83.	0 0	e .	200	0 e	-	6.	1	142.7			IS TY
97.5 96.9 97.1 97.6 96.2 97.7 100.6 104.0 102.7 101.7 101.3 143.9 95.0 96.4 97.5 97.9 95.7 97.2 99.9 101.0 100.7 99.7 100.0 144.0 94.4 95.3 96.6 97.1 94.4 94.9 98.9 99.0 97.8 97.8 97.8 97.1 04.2 94.4 95.3 96.6 97.1 94.4 94.9 98.9 99.0 97.8 97.8 97.8 97.1 44.2 94.4 95.3 96.6 97.1 94.4 94.9 98.7 91.0 10.0 144.0 94.4 95.3 96.6 97.1 94.4 94.9 98.7 94.8 97.1 100.0 144.2 95.0 96.4 97.5 97.9 96.7 97.8 97.3 94.9 92.7 94.7 144.2 95.2 97.9 96.7 78.9 7.1 91.6 96.0 97.3 94.9 92.7 94.7 94.3 14.3 14.3 1 95.5 95.2 87.9 87.6 83.4 84.1 88.2 86.6 85.1 84.3 87.0 142.9 79.6 78.6 80.0 80.7 78.9 77.7 83.5 80.1 80.0 79.0 82.0 141.4 77.3 71.4 71.3 71.9 77.7 74.7 74.5 70.9 94.7 138.5 105.8 106.2 107.7 107.9 107.5 109.4 113.9 117.7 117.8 115.0 111.9 156.1 812E SCALE FACTOR FREE JET VELOCITY (FT/SEC) 296.00 TURBULANCE CGRRECTION - YES TOTAL OF TAME TER (IN) 46.00 TURBULANCE CGRRECTION - YES TAME 03-16-78 TAPE NO. N300 TAME 29.5250 RELHUM 21.80 T ACCUSTIC RANGE S10.1 30 CM (17.07 SO IN) - MODEL 90.83 M/SEC (298.0	97. 5 96. 9 97.1 97.6 96.2 97.7 100.6 104.0 102.7 101.7 101.3 143.9 95. 0 96. 4 97.5 97.5 97.7 100.6 104.0 102.7 101.7 101.3 143.9 95. 0 96. 4 97.5 97.9 95.7 97.2 99.9 101.6 100.7 39.7 100.0 144.0 94.4 95.3 96.6 97.1 94.4 94.9 99.0 97.0 97.0 97.1 94.9 92.4 94.7 144.2 92.3 91.6 94.2 94.8 91.7 91.6 96.9 97.9 94.9 92.4 94.7 144.2 92.3 91.6 94.2 94.8 91.7 91.6 96.9 97.9 91.0 66.7 91.6 143.1 98.5 96.9 90.9 89.4 69.7 86.1 68.3 92.4 92.9 91.0 66.7 91.0 142.9 79.6 79.6 70.0 80.7 7 86.1 68.3 92.4 92.9 91.0 66.7 91.0 142.9 71.3 71.4 71.3 71.9 73.4 71.1 77.9 74.7 74.5 70.7 74.5 139.9 63.0 66.5 63.9 65.6 64.7 64.8 68.1 64.8 64.7 60.9 64.7 138.5 105.8 106.2 107.7 107.9 107.5 109.4 113.9 117.7 117.8 115.0 111.9 156.1 105.8 106.2 107.7 107.9 107.5 109.4 113.9 117.7 117.8 115.0 111.9 156.1 105.8 106.2 107.7 107.9 107.5 109.4 113.9 117.7 117.8 115.0 111.9 156.1 105.0 106.2 107.7 107.9 107.5 109.4 113.9 117.7 117.8 115.0 111.9 156.1 105.0 106.2 107.7 107.9 107.5 109.4 113.9 117.7 117.8 115.0 111.9 156.1 105.0 106.2 107.7 107.9 107.5 109.4 113.9 117.7 117.8 115.0 111.9 156.1 105.0 106.2 107.7 107.9 107.5 109.4 113.9 117.7 117.8 115.0 111.9 156.1 105.0 106.2 107.7 107.9 107.5 109.4 113.9 117.7 117.8 115.0 111.9 156.1 105.0 106.2 107.7 107.9 107.5 109.4 113.9 117.7 117.8 115.0 111.9 156.1 105.0 106.2 107.7 107.9 107.5 109.4 113.9 117.7 117.8 115.0 111.9 156.1 105.0 106.2 107.7 107.9 107.5 109.4 113.9 117.7 117.8 115.0 111.9 156.1 105.0 106.2 107.7 107.9 107.5 109.4 113.9 117.7 117.8 115.0 111.9 156.1 105.0 106.2 107.7 107.9 107.5 109.4 113.9 117.7 117.8 115.0 111.9 156.1	- 10 C	7.7		i 6. ⊿	, rb -	900	904			8 6	4.6			
94.4 95.3 96.6 97.1 94.4 94.9 98.9 99.0 97.8 97.6 99.7 144.2 92.3 91.6 94.2 94.9 91.7 91.6 96.0 97.3 94.9 92.4 94.7 143.7 92.3 91.6 94.2 94.9 91.7 91.6 96.0 97.3 94.9 92.4 94.7 143.7 92.3 91.6 94.2 94.9 91.7 91.6 96.0 97.3 94.9 92.4 94.7 143.7 92.3 91.6 94.2 94.9 91.7 91.6 96.0 97.3 94.9 92.4 94.7 143.7 92.3 91.6 94.2 94.9 91.7 91.6 96.0 97.0 143.1 92.3 91.6 96.7 91.6 143.1 92.3 91.6 96.7 91.6 143.1 92.3 91.0 86.7 91.6 143.1 92.3 91.0 86.7 96.7 97.7 142.9 92.4 94.7 143.7 92.8 97.0 94.7 143.1 92.9 91.0 86.7 91.0 142.9 92.9 91.0 86.7 91.0 142.9 92.9 91.0 86.7 91.0 142.9 92.9 91.0 86.7 91.0 142.9 92.9 91.0 86.7 91.0 142.9 92.9 91.0 86.7 91.0 142.9 92.9 91.0 86.7 91.0 142.9 92.9 91.0 86.7 91.0 142.9 92.9 91.0 86.7 91.0 142.9 92.9 91.0 86.7 91.0 142.9 92.9 91.0 86.7 91.0 142.9 92.9 91.0 86.7 91.0 142.9 92.9 91.0 86.7 91.0 142.9 92.9 91.0 86.7 91.0 142.9 92.9 91.0 86.7 91.0 142.9 92.9 91.0 86.7 91.0 142.9 92.0 92.0 141.4 92.0 1	94.4 95.3 96.6 97.1 94.4 94.9 98.9 99.0 97.6 97.6 99.7 144.2 92.3 91.6 96.0 97.3 94.9 99.0 97.8 97.6 99.7 144.2 92.3 91.6 96.0 97.3 94.9 99.0 97.3 94.9 99.7 144.2 92.3 91.6 96.1 96.1 96.1 96.1 96.1 94.2 94.7 143.7 92.3 91.6 96.1 96.1 96.1 96.1 96.1 94.2 94.7 142.9 79.6 78.6 97.7 97.9 77.7 93.5 90.1 80.0 78.0 92.0 141.4 79.6 78.6 80.0 80.7 78.9 77.7 83.5 80.1 80.0 78.0 82.0 141.4 71.3 71.4 71.3 71.9 73.4 71.1 77.9 74.7 74.5 70.7 74.5 139.9 63.0 66.5 63.9 65.6 64.7 64.8 68.1 64.8 64.7 60.9 64.7 138.5 105.8 106.2 107.7 107.9 107.5 109.4 113.9 117.7 117.8 115.0 111.9 156.1 SIZE SCALE FACTOR FREE JET VELOCITY (FT/SEC) 236.00 TURBULANCE CGRRECTION - YES T DATE 03-16-78 TAPE NO. N300 IALPHA S859 TAPE 40.28 CATION C41 ANECH CH AERO. RDG. ADH146 PAMB 29.5250 RELHUM 21.80 T ACCUSTIC RANGE T ACCUSTIC RANGE T 2.2 M (40.0 FT) ARC 110.1 SQ CM (17.07 SQ IN) - MQDEL 90.83 M/SEC (298.0	lo -	n c	9 97.	60	01 L	-	9	0	7 101.7	6	143.9			
68.9 90.9 69.4 69.7 68.1 68.3 92.4 92.9 91.0 68.7 91.6 143.1 68.5 1 68.5 1 68.5 1 68.7 91.6 143.1 68.5 69.5 1 68.5 69.0 68.5 1 64.3 67.0 142.9 67.0 142.9 77.7 69.2 66.6 69.1 64.3 67.0 142.9 77.1 78.9 77.7 69.5 60.1 80.0 79.0 82.0 141.4 71.3 71.9 77.7 77.9 74.7 74.5 70.7 74.5 139.9 63.0 66.5 63.9 65.6 64.7 64.8 68.1 64.8 64.7 60.9 64.7 138.5 64.7 103.9 117.7 117.0 115.0 111.9 156.1 81.2 8.2 8.2 8.2 107.7 107.9 107.5 109.4 113.9 117.7 117.0 115.0 111.9 156.1 81.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8.2 8	68.9 90.9 69.4 69.7 68.1 68.3 92.4 92.9 91.0 68.7 91.6 143.1 85.5 85.2 87.9 87.6 83.4 84.1 68.2 86.6 85.1 84.3 87.0 142.9 71.3 74.6 70.9 77.9 77.1 77.5 80.6 85.1 84.3 87.0 142.9 71.4 71.3 71.9 73.4 77.1 77.5 80.1 80.0 74.5 139.9 63.0 66.5 63.9 65.6 64.7 64.8 68.1 64.8 64.7 60.9 64.7 138.5 105.8 106.2 107.7 107.9 107.5 109.4 113.9 117.7 117.8 115.0 111.9 156.1 SIZE SCALE FACTOR FREE JET VELGCITY (FT/SEC) 298.00 REFRACTION CORRECTION - YES T DATE 03-16-78 TAPE NO. N300 IALPHA SB59 CATION C41 ANECH CH AERO. RD9. ADH146 PAMB 29.5250 RELHUM 21.80 T ACCUSTIC RANGE SIZE 12.2 M (40.0 FT) ARC 110.1 SQ CM (17.07 SQ IN) - MQDEL 90.83 M/SEC (298.0	- 60 (5	4 6	96) — «	41	1006	- . o c) 0 4 7 8	66	83	44.2			
71.3 71.4 71.3 71.9 73.4 71.1 77.9 74.7 74.5 70.7 74.5 139.9 77.3 71.9 73.4 71.1 77.9 74.7 74.5 70.7 74.5 139.9 64.7 139.9 64.7 13.9 11.1 77.9 74.7 74.5 70.7 74.5 139.9 64.7 139.9 130.9 110.1 10.1 10.1 10.1 10.1 10.1 10.1	79.6 78.6 80.0 80.7 78.9 77.7 83.5 80.1 84.3 87.0 141.4 71.3 71.4 71.3 71.9 73.4 77.1 77.5 80.5 80.1 80.0 82.0 141.4 71.3 71.4 71.3 71.9 73.4 77.1 77.5 80.5 80.1 80.0 82.0 141.4 71.3 71.4 71.3 71.9 73.4 77.1 77.5 80.5 80.1 80.0 82.0 141.4 105.8 106.2 107.7 107.9 107.5 109.4 113.9 117.7 117.8 115.0 111.9 156.1 SIZE SCALE FACTOR FREE JET VELGCITY (FT/SEC) 298.00 REFRACTION CORRECTION - YES T DATE 03-16-78 TAPE NO. N300 IALPHA 3859 TAPB 40.26 CATION C41 ANECH CH AERO. RDG. ADH146 PAMB 29.5250 RELHUM 21.80 T ACCUSTIC RANGE T AC	ما	o 1	98	r. 4			4 (0 0	98	5	143.1			
71.3 71.4 71.3 71.9 73.4 71.1 77.9 74.7 74.5 70.7 74.5 139.9 63.0 66.5 63.9 63.6 64.7 64.8 68.1 64.8 64.7 60.9 64.7 138.5 63.0 66.5 63.9 65.6 64.7 64.8 68.1 64.8 64.7 60.9 64.7 138.5 63.0 66.5 63.9 65.6 64.7 64.8 68.1 64.8 64.7 60.9 64.7 138.5 63.0 66.5 63.9 65.6 64.7 64.8 68.1 64.8 64.7 60.9 64.7 138.5 63.0 66.5 63.9 65.6 64.7 64.8 68.1 64.8 64.7 138.5 63.0 66.5 63.9 64.7 138.9 63.0 66.5 63.9 64.7 138.9 63.0 66.5 63.9 64.7 138.9 63.0 64.7 138.9 63.0 66.5 63.9 64.7 138.9 64.7 60.9 64.7 138.7 65.1 10.1 80 CM (17.07 80 IN) - MODEL 90.83 M/SEC (298.0	T1.3 71.4 71.3 71.9 73.4 71.1 77.9 74.7 74.5 70.7 74.5 139.9 63.0 66.5 63.9 65.6 64.7 64.8 68.1 64.8 64.7 60.9 64.7 138.5 105.8 106.2 107.7 107.9 107.5 109.4 113.9 117.7 117.8 115.0 111.9 156.1 SIZE SCALE FACTOR FREE JET VELOCITY (FT/SEC) 298.00 REFRACTION CORRECTION - YES T DATE 03-16-78 TAPE NO. N300 IALPHA SBS9 TAMB 40.28 CATION C41 ANECH CH AERO. RD9. ADH146 PAMB 29.5250 RELHUM 21.80 T ACCOUSTIC RANGE	N 10	9 0	90.		7 00	- ^-	, io	0 0	7 6	82.	141.4			
SIZE SCALE FACTOR FREE JET VELOCITY (FT/SEC) 296.00 REFRACTION CORRECTION - YES SIZE SCALE FACTOR FREE JET VELOCITY (FT/SEC) 296.00 REFRACTION CORRECTION - YES TO CALC. 1.000 TURBULANCE CORRECTION - YES TO CALC. 1.000 TAPE NO. N300 IALPHA SBS9 TAMB 40.26 CATION CAI ANECH CH AERO. RDG. ADHI46 PAMB 29.5250 RELHUM 21.80 T ACCUSTIC RANGE FREE JET DIAMETER (IN) - MODEL 90.03 M/SEC (298.0	105.8 106.2 107.7 107.9 107.5 109.4 113.9 117.7 117.8 115.0 111.9 156.1 SIZE SCALE FACTOR FREE JET VELOCITY (FT/SEC) 298.00 REFRACTION CORRECTION - YES CO CALC. 1.000 TURBULANCE CORRECTION - YES T DATE 03-16-78 TAPE NO. N300 IALPHA SBS9 TAMB 40.26 CATION CA! ANECH CH AERO. RD9. ADH!46 PAMB 29.5250 RELHUM 21.80 T ACCUSTIC RANGE FREE-JET SPEED 12.2 M (40.0 FT) ARC 110.1 SQ CM (17.07 SQ IN) - MODEL 90.83 M/SEC (298.0	9 4	m 0	5 63		4.7	- 0	o –	6		64.	138.5			
SIZE SCALE FACTOR FREE JET VELGCITY (FT/SEC) 296.00 REFRACTION CORRECTION - YES 00 CALC. 1.000 FREE JET DIAMETER (IN) 48.00 TURBULANCE CGRRECTION - YES T DATE 03-16-78 TAPE NJ. N300 IALPHA SBS9 TAMB 40.26 CATION C41 ANECH CH AERO. RD9. ADH146 PAMB 29.5250 RELHUM 21.80 T ACCUSTIC RANGE SIZE FREE-JET SPEED T ACCUSTIC RANGE SIZE FREE-JET SPEED	SIZE SCALE FACTOR FREE JET VELGCITY (FT/SEC) 296.00 REFRACTION CORRECTION - YES 100 CALC. 1.000 FREE JET DIAMETER (IN) 48.00 TURBULANCE CORRECTION - YES 1 DATE 03-16-78 TAPE NO. N300 IALPHA SBS9 TAMB 40.26 CATION CA! ANECH CH AERO. RD9. ADH146 PAMB 29.5250 RELHUM 21.80 1 ACCUSTIC RANGE SIZE FREE-JET SPEED 12.2 M (40.0 FT) ARC 110.1 SQ CM (17.07 SQ IN) - MODEL 90.83 M/SEC (298.0		0	.2 107	07.9	10						156.1			
DATE 03-16-79 TAPE NO. N300 IALPHA SB59 TAMB 40.26 ATION C41 ANECH CH AERO. RDG. ADH146 PAMB 29.5250 RELHUM 21.80 ACOUSTIC RANGE SIZE SIZE 12.2 M (40.0 FT) ARC 110.1 SQ CM (17.07 SQ IN) - MODEL 90.63 M/SEC (298.0	DATE 03-16-78 TAPE NO. N300 IALPHA SB59 TAMB 40.26 ATION C41 ANECH CH AERO. RDG. ADH146 PAMB 29.5250 RELHUM 21.80 ACCUSTIC RANGE S12E FREE-JET SPEED 12.2 M (40.0 FT) ARC 110.1 SQ CM (17.07 SQ IN) - MODEL 90.83 M/SEC (298.0	MODEL/FULL S INPUT 1.00	ZE SCALE CALC.	FACTOR 1.000	FREE	JET V REE J	ELOCITY ET DIAN	(FT/SE IETER (1	1	3.00	REFRAC TURBUL	ł .	ORRECTION -	YES YES	
. ACGUSTIC RANGE FREE-JET SPEED 12.2 M (40.0 FT) ARC 110.1 SQ CM (17.07 SQ IN) - MODEL 90.03 M/SEC (298.0	. ACOUSTIC RANGE SIZE FREE-JET SPEED 12.2 M (40.0 FT) ARC 110.1 SQ CM (17.07 SQ IN) - MODEL 90.83 M/SEC (298.0	<u>ا⊢</u> ن		16-78 ANECH				100 1H146	IALPH	į.	1	TAMB	40.2 6 21.80		
		11-		SOUSTIC F	l E	ARC	0	ह		S	•		FREE-JE 0.83 M/SEC	SPEED 298.0	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SGUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, 58 2400.0 FT. SL

				OR OF	IGINAL POOR		IS ITY					T SPEED (298.0 FPS)
	·	159.1 159.0 159.0	160.4 160.6 161.0 161.1	161.0 161.5 161.8	162.5 162.7 163.0 163.1	163.3 162.8 162.2 162.1	160.5 159.0 157.6			175.0	TAMB 40.20 RELHUM 21.80	FREE-JET
0	150. 160.	000	0 0 0 0 0 0 0 0	75.9 63.1 74.9 67.5 74.8 68.5 74.7 67.0	7 67 7 67 1 66 1 63	0400	ā			69.4 60.7 92.9 64.6 92.9 64.6	SB59 29.5250 R	IN) - FULL
idul Agulas ET, DEGRÉES	30. 140.	65 65 65 65 65 65 65 65 65 65 65 65 65 6	84.9 84.9 7.7	.0 68.3 .5 63.3 .9 62.7	20.1 76.9 76.9	69.0 62.0 67.5	36			97.6 95.9 9 102.9 99.9 9 102.9 99.9 9 FREQUENCY SHIFT	IALPHA	SIZE (1400.00 SQ
ION - FJ-300-FMOUL NSURED FROM INLET,	0. 120. 1	76.9 0 81.4 18.1	83.3 84.2 83.7	64.1 63.4 64.3	8 60.0 80.0 80.0	7 79.3 2 76.2 71.4 6 64.3	.1 53.7 .7 37.0 .6 7.4			. 2 85.0 . 9 102.1 . 9 102.8	. N300 . ADH146	9032.2 SQ CM
ANGLES MEASUR		70.5 71.6 73.1	75.6 76.8 76.6 77.8	5 77.9 80 7 78.6 80 2 79.4 80 2 79.2 80	7 7 7 8 . E	76.8 74.2 70.0 63.2	554 39 14			99.7 98.4 99.0 ?ATIC	TAPE NO AERO. ROG	36
AS.	90.	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 76. 3 76. 1 76. 0 77.	2 79.	7 0 0 0	78.0 79. 76.7 77. 71.3 71. 67.7 67.	. 1 56. . 3 38. . 3 16.			90.2 90.3 99.3 100.1 99.3 100.1 DIAMETER	6-78 ANECH CH	ACCUSTIC RANGE
		0 68.	2 74 4 73 4 74	73.6 74.7 73.5 74.6 73.4 75.1 73.8 75.2	4 9 7 8 7 8 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9	4.9 //. 2.5 73. 7.9 71. 1.6 63.	49.8 52.0 30.4 35.0 2.2 12.3			95.6 97.5	FEST DATE 03-16-78 LOCATION C41 ANEC	ACOL 731.5 M
		8 66. 8 70.	2 70. 2 71. 2 70. 1 70.	70.2 72.0 70.5 72.0 69.6 72.0 71.3 72.1	9 7 7 6 7 7 7 9 7 9 7 9 7 9 7 9 7 9 7 9	69. 63.	စ ဖ			92.2 94.5 90.1 94.1	TEST	TEST POINT 3013
			1	315 7 400 7 500 6 630 7				12500 16000 20000 25000	50000 50000 63000 60000	ļ	•	MODEL 6

													OI OI				IL R															.00	FREE-JET SPEED 4 M/SEC (364.0 FPS)		
DEL SGUND PRESSURE LEVELS	70 PERCENT R.H. STD. DAY, SB CATION - MODEL FJ-400-FMODL	FJB400-FMGDL	ANGLES MEASURED FROM INLET, DEGREES	40. 50. 60. 70. 80. 50. 100. 110. 120. 130. 140. 150. 160.						1 78 % 78 7 70 7 70 6 82 8 1 1 88 7 88 7 88 7 100 6 10	. 8 76.3 79.3 79.6 81.6 83.8 84.4 86.2 80.4 87.4 102.1 104.1 101.2 1	.8 79.9 80.4 80.7 82.5 84.7 85.5 87.5 91.5 101.3 104.4 104.6 98.2 138	. 6 81.4 84.5 83.5 103.5 87.0 87.9 90.6 95.3 103.2 106.9 102.5 81.4 1	.5 81.5 84.1 84.8 85.9 85.0 89.2 92.9 97.7 104.8 106.6 99.6 \$0.2 140	9 62.9 65.7 65.5 66.8 69.2 90.6 94.0 99.3 105.4 105.5 96.7 69.1 140	3 85.3 86.9 87.4 88.2 80.9 81.7 85.4 100.2 105.5 106.1 86.3 88.7 1	.4 84.3 86.1 87.1 86.7 91.3 93.2 96.1 101.1 103.5 103.6 96.5 67.6 14. .6 85.2 86.7 87.2 88.3 90.6 93.3 96.7 102.0 106.6 104.5 96.0 89.5 141	.3 85.9 87.7 88.4 89.2 92.1 94.5 97.9 102.2 106.8 104.2 95.9 88.6 1	.2 86.5 87.2 89.0 90.0 93.4 95.1 99.0 102.8 105.9 104.1 96.7 88.5 141	.0 00:3 00:1 00:0 30:4 22:0 34:8 30:3 10:3 103:1 103:4 30:1 00:1 140:7 37:8 38:3 30:1 38:10:13 102:8 08:3 102:8 08:1 38:10:13 102:8 08:2 08:3 140	.4 89.1 89.9 89.6 90.8 84.4 85.9 89.1 102.0 104.5 102.0 96.3 89.5 140	6 92.3 91.1 90.7 91.3 93.9 95.7 98.6 101.6 103.7 101.5 95.6 90.1 140	.7 92.1 93.6 92.6 93.0 94.9 95.0 98.6 100.9 103.2 101.1 96.2 90.0 1 .6 90.5 91.9 92.0 93.5 94.9 94.6 97.5 98.5 101.5 99.8 95.9 89.6 1	8 89.1 90.4 91.8 93.4 95.4 93.6 96.5 97.5 100.5 98.3 95.0 89.5 141	.6 86.7 88.0 89.6 92.3 94.2 91.6 93.7 95.4 97.1 95.5 92.7 88.4 140	. 02.0 03.3 00.1 30.0 MI.! 08.2 08.4 83.1 82.4 MI.2 08.4 00.7 138. ,4 79.1 63.3 64.9 65.4 66.5 65.6 67.1 90.1 91.2 66.4 £4.4 61.5 139.	83.4 79.4 77.6 139. 76.4 73.9 71.8 137	2 61.4 64.3 66.7 67.8 68.7 70.7 68.8 75.2 71.0 70.2 68.1 65.7 1	5 54.3 57.8 61.3 60.2 62.9 62.4 62.6 68.0 64.3 64.2 59.4 56.8 136.	99.5 100.2 101.4 101.7 106.4 105.4 106.1 109.4 112.8 117.0 116.9 112.7 107.2 154.2	Or chart cand allows cook and here are no contract to	LÖCATION C41 ANECH CH AERO, RDG. ADH145 PAMB 29.5100 RELHUM 22.	TEST POINT ACGUSTIC RANGE SIZE SIZE 3014 12.2 H (40.0 FT) ARC 110.1 SQ CH (17.07 SQ IN) - MODEL 117.04		
			-		FREG	9 6	90	0 5	160	200	9.50	9 6	900	000	1000	1250	2000	2500	3150		6300	9000	12500	16000	20000	31500	40000	63000	80000	OASPL			MODEL. 6	459	

•
•
N
•
•
_
_
•
•
•
•
~
0

AMALES HEASURED FROM INLET, DEGREES 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PML 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PML 82. 2 83. 3 84. 0 83.4 82.5 87.3 83.4 97.6 99.9 80.8 133.6 83.2 83.7 80.5 83.7 80.5 83.7 80.5 83.7 80.5 83.7 80.5 83.7 80.5 83.7 80.5 83.7 80.5 83.7 80.5 83.7 80.5 83.7 80.5 83.7 80.5 83.7 80.5 83.7 80.5 83.7 80.5 83.7 80.5 83.7 80.5 83.7 80.5 83.8 83.7 80.5 83.7 80.5 83.8 83.7 80.5 83.7 80.5 83.8 83.0 83.7 80.5 83.8 83.7 80.5 83.8 83.0 83.7 80.5 83.8 83.0 83.0 83.7 80.5 83.8 83.0 83.0 83.0 83.7 80.5 83.8 83.0 83.0 83.0 83.0 83.0 83.0 83.0							0	RI(GII PC	NA O				E I												- YES - YES		ET SPEED : (384,0 FPS)
### ANGLES HEASURED FROM INLET, DEORRES ### ANGLES HEASURED FROM INLET, DEORRES ### ANGLES HEASURED FROM INLET, DEORRES ### ANGLES HEASURED FROM INLET, DEORRES ### ANGLES HEASURED FROM INLET, DEORRES ### ANGLES HEASURED FROM INLET, DEORRES ### ANGLES BOLS BOLS BOLS BOLS BOLS BOLS BOLS BOL				• •		.6 133.	5	4 d	פונים	4	ن د د	1 (1	6 -	- 4 - 4	6 141	, o	4-	S	? -	6	0 142	141	.5 140	9	155.		TAMB	FREE-JET MODEL 117.04 M/SEC (
ANGLES HEASURED FROM IN 100. 120. 120. 100. 100. 110. 120. 120.		DEGREES				.4 97.6 99.9	.9 102.0 103.4	7 103.6 102.6	3 104.4 99.9	.4 103.9 98.1	.6 104.6 97.7 8 104 4 98 2	2 103.5 97.9	.8 103.6 98.3	3 104.0 99.6	.6 103.5 99.2	.7 102.9 100.3	.5 103.0 101.3 1	. 8 102. 2 102. 1 1	.0 94.0 95.1	.7 94.5 93.5	.3 88.4 87.2 0 81 3 81 7	.5 76.0 76.8	.8 74.2 72.3	64.4 62.3	116.1 113.3	384.00	l l	ı
ANGLES ANGLES ANGLES B. 60. 70. 60. 90. 1 ANGLES ANGLES B. 62. 2 61.3 62.2 8 B. 62. 2 63.3 64.0 6 B. 63. 0 64.2 64.9 6 B. 63. 0 64.7 65.9 6 B. 63. 0 64.8 64.7 65.9 6 B. 63. 0 64.8 64.7 65.9 6 B. 63. 0 64.8 64.7 65.9 6 B. 63. 0 64.8 64.7 65.9 6 B. 63. 0 64.8 64.7 65.9 6 B. 63. 0 64.8 64.7 65.9 6 B. 63. 0 64.8 64.7	dN - FJ-40	SURED FROM	5			62.5 67.3	83.8 89.6	85.7 80.7	88.3 95.7 7	90.6 97.7	91.8 98.7	94.3 101.0 1	95.1 101.6 1	98.2 102.4 1	98.6 102.6 1	99.2 102.9 1	98.8 102.5 1	98.3 101.0 1	95.4 96.2	89.5 95.9	88.8 90.6	76.5 81.2	68.9 77.7	64.4 67.K	109.1 113.3	VELGCITY (FT/ Jet diameter	80 €.	8 0
60. 70. 60. 70. 60. 70. 60. 70. 60. 70. 60. 70. 60. 70. 60. 60. 70. 60. 60. 60. 60. 60. 60. 60. 60. 60. 6	DENT#FIC	ANGLES				62.2 62.	.3 64.0 63.	12 04.00	.9 87.4 86.	.9 68.5 88.	. 9 69.8 89. 4 01.5 01.	0 92.2 92.	.8 91.8 93.	95.3 95.	.9 95.1 95.	.0 97.4 97.	.0 96.9 97.	5 97.9 96.	. 8 97.2 94.	.0 94.1 90.	.4 89.5 88. 4 87 9 82	.0 80.5 77.	7 71.7 72.	90. W	107.8 107.	FREE	CH AE	RANGE
83.0 63.6 69.6 69.6 69.9 69.0 69.0 69.0 69.0 69		\$		•		2.6 82.2	6 82.2	0.00	.5 86.5	0.88.0	98.2	8 91.0	90.8	. 8 92.4	5 93.1	.4 94.0	.3 94.1 A 94.1	8 96 8	. 55 g2. 6	.1 93.2	.6 89.0 89.0	9 61.3	.8 73.7	4. 0. 0.	.4 105.6	ZE SCALE CALC. 1	52	
			.			63.6	.0 83.8	4.46	.2 88.6	6 89.8	3 89 1	6 91.6	.8 90.5	6 92.2	92.8	. 6 94.2.5.5.2.5.2.5.5.5.5.5.5.5.5.5.5.5.5.5.	4 95.4	3 98.0	. 4 . 65. 6	.2 93.2	.0 88.5	3 79.2	2 71.1	5.	_		TEST	

()-

														OR OF	IG F	20	JA Of				E I								T SPEED (384.0 FPS)
																												40.64 22.00	FREE-JET 17.04 M/SEC (
!			3	7 167.2	•	.4 158.0	8 158.8			-1	•	.0 161.2	ľ	-		Ť	.0 162.0	٠	191	160.2	157.3				.1 174.5	260		TAMB	FULL 11
	_		150. 160	4	70	75.5 71.	4 69	17 8.	6.0	2 69	3 69	5. 2.	60 /U	69 8	.4 68	0 65	60 K	8.4	4	9.8					87.5 62.	99	10	SB59 29.5100	IN) - FU
	X30145	DEGREES	140.	6	-	พ -	- 0	₩.	١.٦		9	4.0	عاد	·-	4	4	ب دن	9	4	32.7	•					98.0	CY SHIFT	ALPHA SI PAMB 2	S I ZE 400.00 SQ
	FJ-400-FMGDL	INLET,	. 130.	1						ì						- 1				41.5						103.2	FREQUENCY	-	CM C140
	- FJ-40(SURED FROM	120	1			1			1			- 1			- 1					10.2 7.1				2	96.9 102.1	. 056	5. N300 8. ADH145	9032.2 SQ
	NO.	MEA	100. 11	-	Ġ	<u>ه</u> -	- m	6	۰.	4	N	- (- -		9	-	r -	- 0		- 0	14.2 10				40	96.5 98	0	TAPE NO	St. 90
•	IDENTIFICAT	ANGLES	.06	4	a	0 6	0	ю	01	٥	ဖ	-1	٥	a	0	•	6 0 a) N	-	N 1	16.0 4.0				80.5	100.1	AMETER RAT	CH A	
•			. 80.	77.	80	7.5	73.	74.	73	75	76.	76.	9	78.	79.	79.	79		68	33	5 37.0 6 14.1		٠.		86	6 100.8	DIA	16-78 ANECH	COUSTIC RANGE M (2400.0 FT
			60. 70	4	80	α -	-	•	ġ.	4 0	i io	<u>ب</u>	2	. 0	_	8	o .) N	· N	- 0	2.6 10.					200		ATE 03-	731.5
			20.	-	Φ.	ص «	-	4	si e	2 6	ø	٠.	ء اد	! -	0	4	4 0		0	44.3 5					6.0	95.1 9		TEST DATE LOCATION	POINT 014
			9	1 .	•	•			•				-1			-1	•			37.0	•				6	92.1			TEST

ø
•
Ñ
•
Ē
•
~
3
•
-
•
~
₾
0

												O1	RIG F	PC PIN	Al O	L !	PA QU	GE Al	. 19 .IT	5 Y										IT SPEED	
																									•				39.92	FREE-JET	
ARC			.09	PAIL					1.1 142.3	77. 0	. 6 147. p	9 149	6 148.0	io.	1 148	in u	0 147		(A)	9	? -	0.0	9 147	2 14	1.1 141.2 8 139.8	4 138	.3 139	.3 160.4	TAMB	l l	
40.0 FT. ARC	X30150	S	150. 16						Γ.	G :	7.	.5 111	4 4	4.0	13.9	0 9	110,5	108.8 107		106.1 104		100.3 100	1		63.4 85	r lo	66.1 67	124.4 122	SB59	2 2	
DAY, SB	FJ-ZER-FMGDL	ET, DEGREES	130, 140.						-	.	• -	0.5 115.1	2 4 1 4	0 114		6 6 7 7 8	112	109.3 111.7		108	- 	102.	- 4	.s. 92.	6.9 87.1	2 76	.8 72.	1.7 124.8	IALPHA	S12E	
STD	MGDEL FJ- BACKGROUND	FROM INLET	120.						95.3	96.00	100.3	101	103.6	104.8	105.9	106.2	106.5	106.2	104.7	104.3	100.00	ල (ල (0 7		88.08 0.08	3	69.8	116.8 121	N300	5	
짍	'	MEASURED	00. 110.						.7 92	 	5.4.	16	- N	.0 101	0.101	30.00	.6 103	99.2 102.8	1 102	2 101	66 7.	5.1 98	0.4	. 8 87	81.9 82.7 77 4 76 1	7.	œ.	0.4 113.5	TAPE NG.	.)	
F., 70	TIFICATION	ANGLES	90.						99.8	20.0	92.3	94.2	. 10 . 10 . 10	98.7	97.1	9 0	97.9	9 98.1 9 3 97.7 9	88	97.4 67.6	96.9	97.7	93.6	87.9	96.1	70.7	65.3	3 109.6 110	HO HO	NGE O FT)	
59.0 DEG.	IDENTI		70. 80.						.6 86.	.58	. 6	.9 107.		.5 96.	.9 94.	7 98	3 95.	93.6 94.9	93.	0 8 8 8 8	2 96.	2 × 96.	6 92	.6 87.	21 25 24 25 25 25	7 69.	.5 63.	06.4 110.6	03-16-78 C41 ANECH	GUSTIC	
			. 60						94.9	9 6 7 8	, 0	90.4	90.0	95.2	92.9	2 Q C Q	94.5	8 94.2	60.00	94.9	94.6	94.2	87.5	85.2		66.8	61.3	0 106.5 10	DATE	2	
			40. 50.						.5 85	.6 85.	5 87.	.6 89.	4 O	. 1 93.	.7 91.	200	.2 55.	93.55 93.6	94.	- 0 5	3	- 6	4 85	.6 81.	9 76.	5 63	.0 56.	104.1 106.0	TEST	TEST POINT	
				F.R.G 60	8	100	22.	200 200	1			l						2 000 to		- 1			1		40000 7	1		GASPL 10		MODEL	

40. 80. 60. 70. 80. 80. 100. 110. 120. 130. 140. 180. 160. 160. 160. 160. 160. 160. 160. 16			59.0	FLIGHT DEG. F.	T TRAN	TRANSFORME	D MODEL IT R.H.	၂ဟ	DAY, SB	SGUND PRESSURE LEVELS	١.	ARC				
### 60. 70. ### 60. 90. 100. 110. 120. 130. 140. 180. 160. PML				· =	DENTIF	I CATIO	•	-ZER-FM		X30150						
80. 70. 80. 80. 100. 110. 120. 130. 140. 150. 160. 160. 180. 180. 180. 180. 180. 180. 180. 18					ANGLE		URED FI	ROM IN	1	OREES						
8 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	20.	6	70.						-	40. 1	-					
8 64.6 65.6 66.8 66.8 69.6 90.7 92.1 95.3 101.7 106.3 109.0 106.1 142.3 7 87.5 87.0 66.8 91.2 92.3 93.4 95.5 100.3 110.1 13.2 113.7 110.5 14.5 8 90.0 69.0 69.0 91.2 92.3 93.4 95.3 100.3 110.1 113.2 113.7 110.5 14.5 8 90.0 91.0 7.3 94.2 93.3 93.1 95.1 10.3 110.1 113.2 113.7 110.1 149.5 8 90.0 91.0 7.3 94.2 93.7 95.5 100.3 110.3 113.2 113.7 110.5 110.9 149.5 9 90.2 93.7 93.7 93.5 94.7 97.1 99.0 101.2 104.9 110.0 114.2 112.6 149.5 9 90.2 93.9 94.7 97.1 99.0 101.2 104.9 110.0 114.6 114.8 112.9 149.5 9 90.2 93.9 94.7 97.1 99.0 101.2 104.9 110.0 114.6 114.8 112.9 149.5 9 90.2 93.9 94.7 97.1 99.0 101.2 104.9 110.0 114.6 114.8 112.9 149.5 9 90.2 93.9 94.7 97.1 99.0 101.2 104.9 110.0 114.6 112.9 112.7 149.9 9 90.2 93.9 94.7 97.1 99.0 101.2 104.9 110.0 114.6 112.8 111.9 192.2 47.9 9 90.9 94.7 97.1 99.0 101.2 104.9 110.0 114.6 112.8 111.9 192.2 47.9 9 90.9 94.7 97.1 99.0 101.2 104.9 110.2 110.2 111.9 192.2 47.9 9 90.9 90.9 90.0 10.2 104.9 110.2 110.2 111.9 190.2 47.9 9 90.9 90.0 10.8 10.2 100.2 110.2 110.2 110.3 111.9 100.2 147.9 9 90.0 90.0 90.0 10.2 100.2 110.2 110.2 110.2 111.9 190.2 47.9 9 90.0 90.0 90.0 10.2 100.2 100.2 110.2 110.2 110.3 110.7 110.6 10.7 110.6 10.7 110.6 10.2 46.0 9 90.0 90.0 90.0 90.0 90.0 10.2 100.2 100.2 100.2 100.3 100.0 100.3 10.0 100.3 100.0 100.3 100.0 100.3 100.0 100.3 100.0 100.3 100.0 100.3 100.0 100.3 100.0 100.3 100.0 100.3 100.0 100.3 100.0 10.3 10.0 100.3 100.0 10.3 10.0 1																
2 56.5 56.5 6.7 6 90.7 91.3 93.5 96.9 100.4 10.04 10.1 10.05 5 144.3 8 9.0 1 8 9.0 2 91.2 93.4 94.5 97.1 10.0 11.2 11.2 11.2 11.0 14.5 9 8 9.0 1 8 9.0 1 97.2 94.2 94.5 97.1 10.1 11.3 11.2 11.2 11.2 11.2 11.2 11.2 11			1 .	50		7	-	6		8	0	142.	6			
4 90.7 98.5 95.4 92.3 92.4 95.3 100.3 110.3 110.3 113.2 113.7 110.9 147.9 147.9 148.5 10.0 147.9 147.9 148.5 110.0 147.9 148.5 110.0 147.9 148.5 110.0 147.9 148.5 110.0 147.9 148.5 110.0 148.5 110.0 147.9 148.5 110.0 147.9 148.5 110.0 147.9 148.5 110.0 17.0 147.5 110.0 147.9 148.5 110.0 17.0 147.5 110.0 17.0 147.5 148.5 110.0 17.0 147.5 110.0 17.0 147.5 110.0 17.0 147.9 148.5 110.0 17.0 147.5 110.0 147.5 110.0 147.5 110.0 147.5 110.0 147.5 110.0 147.5 110.0 147				7.8	~ 0	ن د	n c		0 4	0,7		77	e r			
2 90.7 91.7 92.6 94.7 95.6 94.7 95.1 10.3 114.9 114.9 112.7 148.5 97.2 95.6 95.7 95.6 94.3 95.6 94.3 95.7 95.7 95.7 95.7 95.7 95.7 95.7 95.7				4 6	900	4 10			- r	. N -) N K	144) (a t			
8. 85. 8 94. 8 95. 7 95. 8 95. 10. 10. 2 104. 8 110. 0 114. 2 112. 5 148. 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			-1 -	0		<u>.</u>	<u>ا</u> ا	. ات	6	9		ا	0			
0 55.2 93.9 93.7 97.1 99.0 101.9 105.9 110.7 113.7 113.9 112.1 148.9 0 95.2 94.2 94.2 94.9 95.1 99.0 101.9 105.9 110.0 110.0 114.9 0 95.2 94.2 94.2 94.9 96.1 99.0 106.2 110.6 113.0 110.0 10.0 147.9 0 94.5 95.3 95.6 97.9 99.6 102.5 106.5 110.7 110.6 107.1 106.9 107.1 146.9 0 94.5 95.3 96.1 99.1 102.3 106.7 110.6 107.7 106.7 105.7 106.7 106.9 107.1 146.9 0 94.5 95.6 95.9 99.1 102.3 104.7 109.0 110.6 107.7 106.1 104.6 107.1 146.9 0 94.6 95.6 95.9 99.1 102.3 104.7 106.0 109.8 107.0 106.2 146.0 0 94.6 95.6 95.9 99.1 102.3 104.7 106.0 109.8 107.0 106.2 146.0 0 94.6 95.2 96.2 96.8 98.7 99.1 102.3 104.7 106.1 104.1 104.6 104.3 104.0 104.8 107.0 106.1 104.1 104.0 104.8 107.0 106.1 104.1 104.0 104.1 102.1 104.9 104.9 104.				N 10	10 P	w O			40	0.6	~		a e			
0 95. 2 94.2 94.6 95.9 99.6 102.0 106.2 110.6 113.3 113.0 110.2 148.4 3.4 94.7 96.0 97.9 99.6 102.4 106.2 110.6 113.0 110.5 148.4 3.4 94.7 96.0 97.9 99.6 102.4 106.5 110.5 110.8 109.2 147.9 4.7 9 4.7 96.0 97.9 99.6 102.4 106.5 110.5 110.8 107.0 106.2 146.9 4.7 9 91.8 99.2 102.9 106.2 110.6 117.7 109.8 107.7 106.2 146.9 9 91.8 99.2 102.9 106.2 106.0 107.0 106.8 107.7 106.2 146.0 9 94.9 94.0 95.5 97.4 99.1 102.9 106.2 106.0 107.0 106.1 104.1 104.0 107.0 106.2 146.0 9 94.9 94.0 95.5 97.4 98.5 104.7 106.4 106.7 106.1 104.8 145.0 9 94.0 95.5 97.8 99.6 99.7 104.7 106.0 107.0 106.1 104.8 145.0 9 94.0 95.5 97.8 99.7 99.7 104.7 106.0 109.8 107.0 106.1 104.8 145.0 9 94.0 95.5 97.8 97.8 97.9 97.0 107.0 106.1 104.1 105.1 143.9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9		1	!	7	-	0			7	7 113	9	_	. 0.			
6 94.5 95.3 95.6 97.8 99.6 103.5 106.5 110.7 112.6 110.5 108.0 147.8 6 6 94.5 96.9 95.3 95.6 97.8 99.6 103.5 106.5 110.7 112.6 110.5 108.0 147.8 6 8 94.0 94.0 95.3 97.4 98.1 102.3 103.0 105.0 110.6 107.7 146.9 6 8 94.0 94.0 95.3 97.4 98.1 102.3 103.0 105.0 110.6 107.7 106.1 104.6 146.4 6 8 94.2 94.0 95.5 97.4 98.1 102.3 101.6 104.3 106.1 104.3 145.0 6 8 94.2 94.2 96.7 97.5 96.8 96.3 99.2 100.3 103.5 107.7 102.0 106.3 104.3 104.3 145.0 6 8 94.2 94.2 96.7 97.5 101.1 102.8 103.5 107.7 102.0 102.3 104.3 104.3 145.0 6 8 94.2 94.2 96.7 97.5 101.1 102.8 103.5 107.7 102.0 102.3 104.3 104.3 145.0 6 8 94.2 96.7 97.5 96.9 98.3 101.7 102.0 102.3 100.0 143.8 6 8 94.2 96.7 97.7 96.1 98.0 98.3 107.7 102.0 100.3 100.0 143.8 6 8 95.2 87.6 87.9 87.9 86.8 87.6 80.4 87.7 78.4 86.5 89.2 141.8 6 8 95.2 87.9 87.9 87.9 86.8 87.9 86.8 87.1 83.4 89.5 141.2 8 8 66.8 69.7 68.5 70.7 71.7 69.8 75.9 74.2 75.7 80.8 89.2 141.8 8 8 66.8 69.7 68.5 70.7 71.7 69.8 75.9 74.2 75.1 80.4 81.7 78.4 78.8 139.5 8 8 66.8 69.7 68.5 70.7 71.7 69.8 75.9 74.2 75.8 124.4 122.3 160.4 8 8 17.8 87.8 87.8 88.8 88.8 88.8 88.8 87.8 88				6	a a	60 K			9 6	. 3 113 5 113	0 0		40		•	
8 93.8 94.0 95.3 95.7 99.3 103.0 105.5 106.5 1106.7 106.7 146.8 107.1 146.8 10				9 0	۰.	900	110			9 (9)	'					
3 93.6 93.6 93. 398.2 99.1 102.3 104.7 109.0 109.8 107.0 106.2 146.0 Fe 96.3 99.3 99.5 97.4 99.5 101.2 3 104.7 109.0 109.8 107.0 106.2 146.0 Fe 96.3 97.5 97.4 99.5 101.1 102.3 106.7 106.1 104.3 145.0 Fe 96.3 97.5 97.5 97.5 97.5 97.5 101.1 102.3 106.7 106.1 104.3 143.9 Fe 97.5 97.5 97.5 97.5 97.5 97.5 97.5 97.5			-1 -	3 0	- -	N G	20	_ _	20	-1-			4	AG UA		
6 96.3 94.6 95.5 97.6 97.5 101.1 102.8 105.5 107.1 104.3 145.0 6 96.3 94.6 95.5 97.6 97.5 101.1 102.8 105.5 107.1 106.1 104.3 145.0 8 94.2 94.2 96.2 96.9 96.1 98.1 98.0 100.3 100.0 143.8 8 94.2 94.2 96.2 96.9 96.1 98.0 99.3 100.7 100.3 100.0 143.8 8 95.2 96.2 96.2 96.9 96.9 96.6 98.1 98.9 97.2 97.2 142.9 8 95.2 85.8 96.2 92.8 94.9 26.6 98.1 98.9 97.2 97.2 142.9 8 95.2 85.8 96.6 97.6 94.1 93.4 93.4 95.1 141.9 8 95.2 87.8 97.9 97.9 96.6 97.6 94.1 93.4 95.1 141.9 8 95.2 85.9 86.1 81.9 82.7 85.2 86.9 87.1 83.4 141.9 8 95.2 87.8 2 78.2 78.2 77.7 76.1 95.2 87.1 83.4 95.1 141.2 8 95.2 85.8 86.1 81.9 82.7 86.9 97.1 93.9 141.9 8 95.2 87.8 2 78.2 78.2 77.7 76.1 95.2 87.1 93.9 141.9 8 95.2 86.5 85.2 86.1 81.9 82.7 86.9 87.1 83.5 141.9 8 95.2 86.6 89.7 141.0 8 95.2 85.3 86.1 87.9 87.7 75.7 75.7 75.7 75.6 73.6 73.6 73.6 73.6 73.6 73.6 73.6 73				က္ဆ	u 4	- 6	ი დ		0 4				0 4	E I		
5 94.5 95.2 96.2 96.9 96.3 99.2 100.3 103.2 104.6 102.9 102.1 143.9 5 94.2 94.2 96.2 96.9 96.9 96.3 99.2 100.3 103.2 104.6 102.9 102.1 143.9 5 94.2 94.2 96.2 96.9 97.7 97.7 95.1 98.0 99.3 101.7 102.0 100.3 100.0 143.6 5 90.7 92.5 95.8 97.9 97.2 92.9 97.2 142.9 6 97.5 68.6 92.9 93.6 90.4 96.6 94.1 93.4 93.1 93.9 141.9 7 80.5 92.8 93.6 90.4 96.6 94.1 93.4 93.1 93.4 93.1 141.2 7 80.5 92.2 85.9 96.1 91.9 82.7 85.2 86.9 97.1 83.4 85.1 141.2 8 72.8 75.5 78.2 79.2 77.4 76.1 86.9 80.4 81.7 78.4 78.8 139.5 6 61.3 64.5 63.2 65.3 63.9 64.1 69.8 67.8 72.2 66.1 67.3 139.7 8 12.2 8 110.6 109.6 110.4 113.5 116.0 121.7 124.6 124.4 122.3 160.4 8 12.2 8 12.2 8 12.2 8 12.2 8 12.2 8 16.0 8 110.4 113.5 116.0 121.7 124.8 124.3 128.3 160.4 8 12.2 8 1			1	n	ဖ	3	-		ю	_	_	-	0	IS IY,		
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				ø, r, e	a	ი – e	4 O C		87.			(a	0 • (
3 85.2 87.6 87.9 87.9 86.8 87.6 90.6 92.6 92.7 86.6 89.2 141.6 7 80.5 82.2 85.9 86.1 81.9 82.7 85.2 86.9 87.1 83.4 85.1 141.2 7 80.5 82.2 85.9 86.1 81.9 82.7 85.2 86.9 87.1 83.4 85.1 141.2 8 65.8 69.7 69.5 77.4 76.1 80.9 87.1 78.4 78.8 139.5 6 61.3 64.5 63.2 65.3 63.9 64.1 69.8 75.9 74.2 75.6 73.4 138.6 6 61.3 64.5 63.2 65.3 63.9 64.1 69.8 75.9 74.2 75.6 73.4 138.6 6 61.3 64.5 63.2 65.3 63.9 64.1 69.8 75.9 74.2 75.6 73.4 138.6 7 812E SCALE FACTOR FREE JET VELOCITY (FT/SEC) 0. REFRACTION CORRECTION - VES ST DATE 03-16-78 TAPE NO. N300 IAL. SAS SSO TORBULANCE CORRECTION - VES ST DATE 03-16-78 TAPE NO. N300 IAL. SAS SSO TORBULANCE CORRECTION - VES ST DATE 03-16-78 TAPE NO. N300 IAL. SAS SSO FE.HUM 22.40 NT ACCOUSTIC RANGE NT ACCOUSTIC RANGE ST DATE 03-16-78 TAPE OF T. ARC 110.1 SQ CM (%7.07 SQ IN) - MODEL 0. M/SEC (0. 0. M/SEC (0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.				. 0	νo	.	.		- 4							
3 72.8 75.5 78.2 79.2 77.4 76.1 80.9 80.4 81.7 78.4 78.8 139.5 6 61.3 64.5 69.7 69.5 70.7 71.7 69.8 75.9 74.2 75.6 73.6 73.4 138.6 6 61.3 64.5 63.2 65.3 63.9 64.1 69.8 67.8 72.2 66.1 67.3 139.7 0 106.5 106.4 110.6 109.6 110.4 113.5 116.8 121.7 124.8 124.4 122.3 160.4 SIZE SCALE FACTOR FREE JET VELOCITY (FT/SEC) 0. REFRACTION CORRECTION - YES ST DATE 03-16-78	1			0 0	a -	6 3	9 ^	ı	ဖ စ	1	98		00			
SIZE SCALE FACTOR FREE JET VELGCITY (FT/SEC) 0. REFRACTION CORRECTION - YES SIZE SCALE FACTOR FREE JET VELGCITY (FT/SEC) 0. REFRACTION CORRECTION - YES SIZE SCALE FACTOR FREE JET DIAMETER (IN) 46.00 TURBULANCE CORRECTION - YES ST DATE 03-16-78 TAPE NO. N300 IALPHA SBS9 TAPE 39.92 GCATION C41 ANECH CH AERO, RDG, ADH141 PAMB 29.5000 RELHUM 22.40 NT ACCUSTIC RANGE FREE JET SQ CM (\$7.07 SQ IN) - MODEL 0. M/SEC (0.				oi r	Q١	41	- 0		4.0				110		•	
SIZE SCALE FACTOR FREE JET VELOCITY (FT/SEC) 0. REFRACTION CORRECTION - YES SIZE SCALE FACTOR FREE JET DIAMETER (IN) 40.00 TURBULANCE CORRECTION - YES ST DATE 03-16-76 TAPE NO. N300 IALPHA SBS9 TAMB 39.92 SCATION C41 ANECH CH AERO. RDG. ADH141 PAMB 29.5000 RELHUM 22.40 NT ACQUSTIC RANGE SIZE FREE-JET SPEED 12.2 M (40.0 FT) ARC 110.1 SQ CM (\$7.07 SQ IN) - MODEL 0. M/SEC (0.	·i ·		-1 -	0	6	•	0		y eo	بهاو	1					
SIZE SCALE FACTOR FREE JET VELGCITY (FT/SEC) 0. REFRACTION CORRECTION - YES 000 CALC. 1.000 FREE JET DIAMETER (IN) 48.00 TURBULANCE CORRECTION - YES ST DATE 03-16-78 TAPE NO. N300 IALPHA SB59 TAPE 39.92 CATION C41 ANECH CH AERG. RDG. ADH141 PAMB 29.5000 RELHUM 22.40 CATION C41 ANECH CH AERG. RDG. ADH141 SIZE STZE FREE-JET SPEED FREE-JET SPEED 12.2 M (40.0 FT) ARC 110.1 SQ CM (\$7.07 SQ IN) - MODEL 0. M/SEC (0.	.1 106.0	106.	4	ø	Φ	4	ED.	•		•	4		4			
DATE 03-16-78 ATION C4) ANECH CH AERO, RDG, ADH141 PAMB 29.5000 RELHUM 22.40 ACGUSTIC RANGE 12.2 M (40.0 FT) ARC 110.1 SQ CM (\$7.07 SQ IN) - MODEL 0. M/SEC (0.	MODEL/FULL S INPUT 1.00	ZE C	<u>u</u> .	TOR	FREE	JET V REE J	ELOCIT ET DIA	_	EC) IN)	0. 46.00	REFI	RACT TON SULANCE	CORRECTION -	12. 12.8		
ACGUSTIC RANGE 12.2 M (40.0 FT) ARC 110.1 SQ CM (\$7.07 SQ IN) - MODEL O, M/SEC (0.	TEST	T DATE	03-16- C41 AN	78 IECH CH		m c	9 9 9 9	300 DH141	IAL	1	. 5000	RELH				
	T POIN	-		TIC RA	NGE O FT)	\RC	110.1	•	\$12 (\$7.	S	1	JOEL	١.	ì.,		

AMOLES MEASURED FROM INLET, DEGREES 90. 100. 110. 120. 130. 140. 150. 160. PM. 77. 77. 9 0. 0 0. 0 0. 0 0. 0 0. 0 0. 1 0. 0 0	100 110 120 130 140 150 160 PML 160 PML 160 110 120 130 140 150 160 PML 160 160 PML 160	100. 110. 120. 130. 140. 160.
100. 110. 120. 130. 140. 150. 160. PML 7 77.9 80.4 84.2 81.4 82.0 81.2 86.0 167.1 7 77.9 80.4 84.2 81.7 84.8 82.0 86.1 168.7 8 78.8 82.8 86.2 82.9 84.8 82.0 86.1 168.6 8 82.3 84.1 87.1 81.0 84.1 81.3 85.1 168.6 8 82.3 84.1 87.1 81.0 84.1 81.3 167.1 8 82.3 84.1 87.1 81.0 84.1 81.3 167.1 8 82.2 85.6 86.0 89.1 89.2 86.1 168.0 8 82.3 84.1 87.2 87.8 81.0 81.7 168.1 8 82.3 84.1 87.7 19.1 81.2 81.1 167.1 8 82.3 84.1 87.8 81.0 81.2 81.3 167.1 8 82.3 84.1 87.8 81.0 81.7 168.1 8 82.3 84.1 87.8 81.0 81.7 168.1 8 83.4 86.0 89.1 84.2 87.8 160.1 8 72.3 72.3 72.3 72.3 72.3 72.3 160.1 8 72.3 72.3 72.3 72.3 72.3 72.3 160.1 8 72.3 72.3 72.3 72.3 72.3 72.3 160.1 8 72.3 72.3 72.3 72.3 72.3 72.3 72.3 160.1 8 72.3 72.3 72.3 72.3 72.3 72.3 72.3 160.1 8 72.3 72.3 72.3 72.3 72.3 72.3 72.3 160.1 8 72.3 72.3 72.3 72.3 72.3 72.3 72.3 160.1 8 72.3 72.3 72.3 72.3 72.3 72.3 72.3 160.1 8 72.3 72.3 72.3 72.3 72.3 72.3 160.2 8 72.3 72.3 72.3 72.3 72.3 72.3 160.2 8 72.3 72.3 72.3 72.3 72.3 72.3 72.3 160.2 8 72.3 72.3 72.3 72.3 72.3 72.3 72.3 72.3	90. 100. 110. 120. 130. 140. 150. 160. PHL 97. 97. 97. 97. 96. 48. 62. 6 91.4 93.0 91.2 86.0 167.1 97. 97. 97. 96. 4 82. 6 91.4 93.0 91.2 86.0 167.1 97. 97. 97. 96. 4 82. 6 91.4 93.0 91.2 86.0 167.1 98. 82. 82. 8 82.	100. 110. 120. 130. 140. 160. 160. PML 77. 8 80.4 86.2 81.4 83.0 81.2 86.0 187.1 77. 8 80.4 84.2 81.7 81.0 82.9 80.8 81.0 187.1 80.8 82.8 87.0 81.0 84.1 82.2 86.1 188.0 80.8 82.8 87.0 81.0 84.1 82.2 86.1 188.0 80.8 82.8 82.8 86.8 83.0 187.1 88.0 80.8 82.8 82.8 86.8 83.0 187.1 88.0 80.8 82.8 82.8 86.8 83.0 187.1 88.0 80.8 82.9 80.8 83.0 18.2 86.1 183.1 187.1 88.0 80.9 82.8 82.9 80.8 83.0 18.2 86.1 183.1 187.1 88.0 80.9 82.8 82.9 82.8 82.8 82.8 82.8 82.8 82
7 77.9 9 76.4 82.6 91.4 93.0 91.2 85.0 167.7 77.9 90.4 84.2 91.7 94.8 92.0 95.1 168.7 77.9 90.4 84.2 91.7 94.8 92.0 95.1 168.7 168.7 168.7 168.8 62.5 82.5 87.0 91.5 92.5 91.6 82.9 86.7 168.6 6.0 168.1 168.7 168.1 168.7 168.1 168.2 168.1 168.2 168.1 168.2 168.1 168.1 168.2 168.1 168.2 168.1 168.1 168.2 168.1 168.2 168.1 168.1 168.2 168.2 168.1 168.2 168.2 168.1 168.2 168.2 168.1 168.2 168.2 168.1 168.2 168.2 168.1 168.2 169.2 168	77.5 77.6 07.6 48.2 01.4 93.0 91.2 05.0 107.1 7 77.7 77.9 07.6 90.4 94.2 92.4 94.6 92.2 06.1 107.1 7 77.7 77.9 07.6 90.4 94.2 92.4 94.6 92.2 06.1 108.6 7 78.7 78.8 08.6 92.8 92.7 91.6 92.8 06.1 108.6 8 02.1 02.0 02.2 02.6 02.2 92.6 92.8 06.1 108.6 8 03.4 02.2 03.6 03.6 93.6 93.9 93.9 95.6 93.0 107.7 8 03.2 03.6 03.6 03.6 03.6 93.8 93.9 95.6 93.0 107.7 8 03.2 03.6 03.6 03.6 03.6 03.6 93.8 93.9 77.5 165.1 8 03.2 03.6 03.6 03.6 03.6 03.6 93.8 93.9 77.5 165.1 8 03.2 03.6 03.6 03.6 03.6 03.6 03.6 03.6 03.6	76.9 76.4 62.6 91.4 93.0 91.2 96.0 167.1 77.9 90.4 62.2 96.7 198.7 77.9 90.4 62.2 91.7 93.0 91.2 96.0 167.1 77.9 90.4 62.2 91.7 93.0 91.2 96.1 198.7 77.9 90.4 62.2 92.9 92.9 96.7 198.6 90.4 62.2 92.9 92.9 91.7 198.6 91.7 91.8 92.9 92.9 92.9 91.8 91.7 198.6 91.7 198.6 91.8 91.8 91.8 91.8 91.8 91.8 91.8 91.8
2 79. 6 82. 8 67. 2 92. 4 94. 5 92. 2 86. 7 168. 6 0 80. 6 82. 8 97. 0 91. 5 92. 9 91. 9 92. 9 91. 6 96. 1 168. 1 80. 1	7.96 7.96 82.8 87.2 82.4 82.5 82.2 86.7 183.6 86.8 86.8 86.8 86.8 86.8 86.8 86.8	79.9 82.8 86.2 82.4 84.6 87.8 81.8 86.7 188.6 86.8 86.7 188.6 86.8 86.7 188.6 86.8 86.7 188.6 86.8 86.7 188.6 86.8 86.7 188.6 86.8 86.7 188.6 86.8 86.7 188.6 86.8 86.7 188.6 86.8 86.7 188.6 86.8 86.7 188.6 86.8 86.7 188.6 86.8 86.7 188.6 86.8 86.7 188.6 86.8 86.7 188.6 86.8 86.7 188.6 86.8 86.7 188.6 86.8 86.7 188.6 86.8 86.8 86.8 86.7 187.6 86.8 86.8 86.8 86.8 86.8 86.8 86.8
2 92.8 95.4 96.0 101.9 103.3 100.6 94.7 179.2 95.0 100.7 181.0 95.0 100.7 181.0 95.0 100.7 181.0 95.0 100.7 181.0 95.0 100.7 182.1 184.6 187.6 181.0 167.1 182.1 184.6 187.6 1	8 92.2 92.8 95.4 96.0 101.9 103.3 100.6 94.7 179.2 8 92.2 92.8 95.4 96.0 101.9 103.3 100.6 94.7 179.2 8 92.2 92.8 95.4 96.0 101.9 103.3 100.6 94.7 179.2 8 92.2 92.8 95.4 96.0 101.9 103.3 100.6 94.7 179.2 8 92.2 92.8 95.4 96.0 101.9 103.3 100.6 94.7 179.2 8 92.2 92.8 95.4 96.0 101.9 103.3 100.6 94.7 179.2 8 92.2 92.8 95.4 96.0 101.9 103.3 100.6 94.7 179.2 8 92.2 92.8 95.4 96.0 101.9 103.3 100.6 94.7 179.2 8 92.2 92.8 95.4 96.0 101.9 103.3 100.6 94.7 179.2 8 92.2 92.8 95.4 96.0 101.9 103.3 100.6 94.7 179.2 8 92.2 92.8 95.4 96.0 101.9 103.3 100.6 94.7 179.2 8 92.2 92.8 95.4 96.0 101.9 103.3 100.6 94.7 179.2	92.8 95.4 96.0 101.9 102.3 100.6 94.7 179.2 84.7 180.1 180.8 180.1 180.8 180.1 180.8 180.1 180.8 180.1 180.8 180.1 180.8 180.1 180.8 180.1 180.8 180.1 180.8 180.1 180.8 180.1 180.8 180.1 180.2 180.2 180.1 180.2
4 62.1 64.6 87.8 91.6 92.9 \$0.8 65.4 168.0 1 81.6 84.6 88.0 91.3 92.3 80.8 65.4 168.0 2 81.5 84.6 88.0 91.3 92.3 80.8 85.4 168.1 2 81.5 84.7 87.2 89.0 89.7 89.3 77.5 166.1 2 81.0 83.7 85.2 87.1 86.8 80.9 74.7 167.1 4 80.3 82.8 84.6 65.3 85.3 76.4 72.1 164.5 2 81.0 83.7 86.5 87.1 86.8 80.9 74.7 167.1 4 80.3 82.8 84.6 65.3 85.3 76.4 72.1 164.5 6 78.3 80.6 80.6 81.8 81.0 75.1 67.4 163.0 7 72.3 79.5 79.7 80.3 77.8 77.1 69.5 161.0 2 68.7 68.5 89.6 87.7 87.1 76.4 74.2 67.4 163.0 2 68.7 68.5 89.6 87.7 77.1 69.5 161.0 2 68.7 68.5 89.5 87.1 76.4 74.2 67.4 160.9 2 68.7 89.5 51.1 45.5 51.2 59.1 20.5 160.9 1 37.2 3 3.4 35.0 26.0 15.5 70.6 85.0 2 89.2 895.4 896.0 101.9 103.3 100.6 84.7 179.2 5 89.7 101.3 103.8 105.6 105.7 701.6 95.0	8 90.4 8.2.1 844.6 87.8 91.6 82.9 82.9 82.9 82.9 86.4 168.0 8 90.4 82.2 1844.6 87.6 91.3 82.9 82.9 82.9 82.9 86.4 168.0 8 90.6 82.2 84.6 87.6 91.0 91.2 88.1 81.3 167.1 8 90.5 81.2 84.6 87.6 81.0 81.2 81.0 81.2 167.1 8 90.5 81.2 84.6 87.6 87.2 80.0 80.7 80.9 77.5 166.1 8 90.5 81.2 84.6 87.6 87.8 80.9 80.9 77.5 166.1 8 90.2 81.4 86.2 80.4 86.9 80.9 80.9 77.5 166.1 8 90.2 81.4 81.6 87.6 87.9 80.9 77.5 166.1 8 90.2 81.4 81.6 81.8 81.0 81.9 77.5 166.1 8 90.2 81.4 81.6 81.8 81.0 81.9 77.5 166.1 8 90.2 82.8 82.8 84.6 87.9 80.9 77.5 167.9 81.0 81.0 81.0 81.0 81.0 81.0 81.0 81.0	92.6 95.4 99.0 10.9 10.2 90.0 87.7 179.2 99.0 15.4 168.0 169.0 169.2 94.6 87.6 91.0 91.2 98.1 91.1 167.1 69.0 169.0 17.2 95.1 91.2 95.1 91.2 167.1 69.0 169.0 17.2 95.1 91.2 167.1 91.2 95.1 91.2 91.2 91.2 167.1 91.2 167.1 91.2 91.2 91.2 91.2 167.1 91.2 91.2 91.2 91.2 167.1 91.2 91.2 91.3 184.3 184.3 1
1 81. 8 43. 6 88.0 91.3 92.3 88.6 83.0 167.6 86.1 81.3 167.1 87.8 83.6 87.8 83.8 85.6 83.0 167.6 86.1 81.3 167.1 86.2 85.6 87.6 89.0 89.7 85.9 165.1 165.1 84.4 86.7 89.0 89.7 85.9 165.1	8 90.1 81.0 84.6 81.0 81.0 81.2 81.6 83.0 167.6 8 90.2 81.6 82.2 85.6 87.6 81.0 81.2 81.6 81.0 167.6 8 90.7 82.2 85.6 87.6 81.0 81.0 81.2 81.1 81.3 167.0 8 90.7 81.2 85.6 87.6 81.0 81.0 81.2 81.1 81.3 167.0 8 90.7 81.4 84.6 81.0 81.0 81.2 81.7 81.7 164.5 8 90.2 81.0 82.0 84.6 85.0 88.0 82.1 77.5 164.5 8 90.2 81.0 82.0 84.6 85.0 88.0 82.1 77.5 164.5 8 90.3 82.0 82.0 84.6 85.0 88.0 184.2 81.0 77.1 164.5 9 90.1 77.3 79.6 87.2 87.2 87.2 87.2 87.2 87.2 87.2 87.2	82.8 86.4 89.0 101.9 103.2 100.6 84.7 179.2 89.8 85.0 107.6 6 81.0 84.8 87.8 89.0 89.1 38.2 1 86.1 87.0 167.6 6 81.0 84.6 87.8 89.0 89.1 86.1 77.5 165.1 64.5 6 81.0 82.8 84.6 85.3 86.3 77.5 164.5 77.5 165.1 64.5 77.5 165.1 64.5 77.5 164.5 77.
7 82. 2 85.6 87.6 90.8 90.9 86.1 79.3 167.0 56.1 81.5 84.7 87.2 166.1 44.8 81.6 81.5 84.7 87.2 166.1 44.8 81.6 81.6 81.6 81.7 81.2 166.1 44.8 81.0 83.7 81.0 82.8 81.0 83.7 82.8 82.8 83.1 84.2 83.5 77.9 77.9 164.5 70.8 164.1 82.0 78.3 82.8 82.9 83.1 84.2 83.5 77.9 77.9 72.9 72.8 186.8 81.0 77.7 87.9 72.8 72.9 72.9 72.8 77.1 69.2 67.4 162.0 77.1 69.2 67.1 162.0 77.9 72.9 72.9 72.9 72.9 72.9 72.9 72.9	2 80.7 82.2 85.6 87.6 80.8 80.9 86.1 75.3 167.0 3 60.7 82.2 85.6 85.0 89.8 80.9 75.5 166.1 3 79.9 81.7 86.8 86.0 89.8 80.9 75.7 166.1 3 79.4 80.8 85.0 89.8 80.9 72.7 166.1 3 79.4 80.8 80.8 84.6 85.3 80.9 72.1 166.1 3 79.4 80.8 80.8 84.6 85.3 80.9 72.1 166.1 3 79.4 80.8 80.8 80.8 80.8 77.8 77.9 70.8 162.9 3 70.2 80.1 77.3 79.5 79.7 17.1 80.8 81.1 162.0 3 70.2 80.7 70.5 70.7 17.1 80.8 81.1 162.0 3 70.2 80.7 80.8 80.8 80.8 80.8 80.8 80.8 18.2 80.8 180.9 3 70.2 80.7 80.8 80.8 80.8 80.8 80.8 80.8 180.8 80.8	82.8 98.4 98.0 101.9 103.3 100.6 94.7 179.2 167.0 101.9 103.2 103.8 103.8 179.3 167.0 101.9 103.3 100.6 94.7 179.2 168.1 101.3 103.8
8 1.5 84.7 87.2 29.0 89.8 83.9 77.5 166.1 40.0 81.4 81.4 81.5 81.7 87.2 165.1 40.0 81.4 81.4 81.6 82.0 82.1 77.5 166.1 40.0 81.4 81.6 82.0 82.1 77.5 166.1 40.0 81.4 81.6 82.0 87.1 86.8 80.0 74.7 165.1 64.5 166.1 40.0 81.4 81.6 82.0 87.1 81.8 80.0 78.3 78.4 72.1 164.5 10.0 81.6 81.6 81.6 81.6 81.6 81.6 81.6 81.6	3 70.5 61.5 61.5 64.7 65.0 69.7 63.3 77.5 166.1 470.9 69.8 63.9 77.5 166.1 470.9 69.8 69.0 69.7 69.7 166.1 470.9 69.0 69.7 69.7 166.1 470.9 69.0 69.7 69.7 166.1 470.9 69.0 69.7 166.1 69.0 69.7 166.1 69.0 69.7 166.1 69.0 69.7 166.1 69.0 69.7 166.1 69.0 69.7 166.1 69.0 69.7 166.1 69.0 69.8 16.1 16.1 16.1 16.1 16.1 16.1 16.1 16	11.0 84.7 87.2 89.0 89.7 83.9 77.5 166.1 44.8 84.0 89.7 89.8 87.5 166.1 44.6 84.0 89.7 89.8 87.5 166.1 44.0 89.0 89.7 89.8 87.9 166.1 67.0 89.7 89.8 87.9 86.8 80.9 74.7 166.1 67.9 164.5 6
2 81.0 83.7 85.2 87.1 86.8 80.9 74.7 165.1 64.5 67.9 86.8 80.9 74.7 165.1 64.5 67.3 82.3 85.3 75.4 72.1 164.5 67.9 82.8 83.5 77.9 70.8 164.1 80.0 83.7 86.2 83.5 77.9 70.8 164.1 80.0 83.0 83.0 83.5 77.9 70.8 164.1 82.0 83.0 83.0 83.0 83.0 83.0 83.0 83.0 83	2 90.2 81.0 83.7 85.2 87.1 86.8 80.9 74.7 165.1 90.0 74.7 165.1 90.2 81.0 83.7 85.2 87.1 86.8 80.9 74.7 165.1 90.0 74.7 165.1 90.0 74.7 165.1 90.0 74.7 165.1 90.0 74.7 165.1 90.0 74.7 165.1 90.0 74.7 165.1 90.0 74.3 82.1 84.1 84.2 84.2 85.1 85.1 84.2 85.1 85.1 84.2 85.1 85.1 84.2 85.1 85.1 84.2 85.1 85.1 85.1 85.1 85.1 85.1 85.1 85.1	82.8 85.4 86.0 101.9 103.3 100.6 84.7 179.2 89.2 101.3 103.6 105.7 101.3 103.6 105.7 101.3 103.2 SG CM (1430.00 SG IN) - FULL O, Mysec (0. FPs)
4 80.3 82.6 84.6 65.3 85.3 75.4 72.1 164.5 90.3 82.3 83.5 77.9 70.8 164.1 84.2 83.5 77.9 70.8 164.1 80.5 80.6 83.6 84.2 83.5 77.9 70.8 164.1 80.6 78.3 80.6 80.6 80.6 80.3 77.8 71.7 63.5 162.0 90.3 77.3 79.5 79.7 70.3 77.9 70.3 77.1 76.4 74.2 67.4 58.1 162.0 90.3 77.1 76.4 74.2 67.4 58.1 162.0 90.3 77.1 76.4 74.2 67.4 58.1 162.0 90.3 160.9 157.8 158.6 159.0 90.3 77.1 76.4 74.2 67.4 58.1 160.9 157.8 158.6 159.7 7 33.4 35.0 26.0 15.5 38.4 20.8 158.6 159.9 153.2 99.2 101.3 103.3 105.6 105.7 101.6 95.0 95.0 95.0 101.3 103.6 105.7 101.6 95.0 95.0 101.3 103.6 105.7 101.6 95.0	3 79.4 6 79.3 82.6 84.6 65.3 95.7 75.1 67.4 163.1 2072 2 79.0 79.3 80.6 80.6 81.8 81.0 75.1 67.4 163.0 0072 2 79.0 79.3 80.6 80.6 81.8 81.0 75.1 67.4 163.0 0072 3 78.6 78.3 76.6 77.7 76.4 77.7 6 77.7 6 71.8 67.4 163.0 0072 3 78.8 75.3 76.5 77.1 6 8.5 81.0 10.0 161.0 0072 4 76.3 72.3 74.3 77.1 6 8.5 81.0 161.0 0072 5 6 5 6 1.7 61.2 61.3 59.1 53.2 59.1 20.5 160.3 0072 5 6 1.7 61.2 61.3 59.1 63.2 59.1 20.5 160.3 0072 5 8 2.2 82.8 85.4 85.0 101.9 103.3 100.6 84.7 179.2 6 100.5 99.2 101.3 103.3 105.6 105.7 101.6 95.0 6 100.5 99.2 101.3 103.3 105.6 105.7 101.6 95.0 6 100.5 99.2 101.3 103.3 105.6 105.7 101.6 95.0 6 100.5 99.2 101.3 103.3 105.6 105.7 101.6 95.0 6 100.5 99.7 101.3 103.3 105.6 105.7 101.6 95.0 6 100.5 99.7 101.3 103.8 105.6 105.7 101.6 95.0 6 100.5 99.7 101.3 103.8 105.6 105.7 101.6 95.0 6 100.5 99.7 101.3 103.8 105.6 105.7 101.6 95.0	90.3 82.6 84.6 65.3 93.5 77.4 72.1 164.5 90.7 77.3 77.9 77.9 77.9 77.9 77.9 77.9 77
2 92.6 95.4 96.0 101.9 103.3 100.6 94.7 179.2 101.2 103.0 173.3 102.6 103.0 173.3 103.6 103.3 103.5 103.3 103.5 103.3 103.5 103.3 103.5 103.3 103.5 103.3 103.5 103.5 103.5 103.3 103.5 10	2 73.0 78.3 96.3 95.3 95.1 94.2 95.3 77.8 77.8 77.8 77.8 77.8 77.8 77.8 77	78.3 96.5 95.1 94.2 95.3 76.3 76.3 194.1 76.3 76.3 194.1 76.3 76.3 76.3 194.1 76.3 196.2 9 76.3 76.3 196.2 9 76.3 76.3 196.2 9 76.3 76.3 196.2 9 76.3 76.3 196.2 9 76.3 76.3 196.2 9 76.3 76.3 196.3 196.2 9 76.3 76.4 196.2 9 76.3 196.3
1 77.3 79.5 79.7 80.3 77.8 71.7 63.5 162.9 72.3 76.6 77.1 76.4 74.2 67.4 58.1 162.0 72.3 76.6 77.1 76.4 74.2 67.4 58.1 162.0 72.3 74.3 71.1 69.5 61.1 50.5 161.0 72.5 61.2 61.3 74.3 71.1 69.5 61.1 50.5 160.9 72.5 61.7 61.2 61.3 59.1 53.2 39.1 20.5 160.9 72.5 61.7 61.2 61.3 59.1 53.2 39.1 20.5 160.3 77.8 59.1 20.5 160.3 77.7 33.4 35.0 26.0 15.5 20.8 158.9 158.9 13.2 9.9 95.4 98.0 101.9 103.3 100.6 94.7 179.2 599.2 101.3 103.3 105.6 105.7 101.6 95.0 599.7 101.3 103.8 105.6 105.7 101.6 95.0	9 80.1 77.3 79.5 79.7 80.3 77.6 71.7 63.5 162.9 CD 2 3 78.8 78.3 76.6 77.1 76.4 74.2 67.4 68.1 162.0 CD 2 4 76.3 72.9 72.9 72.1 69.2 67.1 76.4 74.2 67.4 68.1 162.0 CD 2 4 76.3 72.9 72.9 72.1 69.2 61.3 71.1 69.2 61.0 0.0 CD 2 4 76.3 61.7 61.2 61.3 59.1 53.2 39.1 20.5 160.9 CD 2 5 61.7 61.2 61.3 59.1 163.2 39.1 20.5 160.9 CD 2 5 61.5 9 13.2 9.9 9.0 101.9 103.3 100.6 94.7 179.2 CD 3 5 77 7 33.4 98.0 101.9 103.3 100.6 94.7 179.2 CD 3 5 82.2 92.8 95.4 98.0 101.9 103.3 100.6 94.7 179.2 CD 3 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	77.3 79.5 79.7 60.3 77.6 71.7 63.5 162.9
2 92.6 95.4 96.0 101.9 103.3 100.6 94.7 179.2 57.1 75.4 74.2 67.4 56.1 162.0 77.3 75.6 77.1 76.4 74.2 67.4 56.1 162.0 77.3 72.3 74.3 77.1 69.5 61.1 50.5 161.0 77.3 61.2 61.3 59.1 56.2 59.1 20.5 160.3 77.7 33.4 35.0 26.0 15.5 38.4 20.6 155.6 55.5 57.7 33.4 35.0 26.0 15.5 20.6 155.9 155.9 2 20.9 9.0 101.9 103.3 100.6 94.7 179.2 59.2 101.3 103.3 105.6 105.7 101.6 95.0 55.0 55.0 55.0 57.7 101.3 103.8 105.6 105.7 101.6 95.0	3 78.8 75.3 76.6 77.1 76.4 74.2 67.4 56.1 162.0 PS 9 75.3 72.3 77.1 76.4 74.2 67.4 56.1 162.0 PS 9 75.3 72.3 77.1 76.4 59.5 161.0 PS 9 70.2 68.7 68.5 68.9 68.7 64.1 52.4 38.2 160.3 PS 9 70.2 68.7 68.5 68.9 68.7 64.1 52.4 38.2 160.3 PS 9 7.5 31.4 25.6 15.5 PS 9 7.5 31.4 35.0 26.0 15.5 PS 9 7.7 33.4 35.0 26.0 15.5 PS 9 7.7 7 33.4 35.0 26.0 15.5 PS 9 7 179.2 PS 9 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	75.3 76.6 77.1 76.4 74.2 67.4 56.1 162.0 PC D 68.7 68.5 68.9 68.7 64.1 52.4 30.2 160.9 68.7 68.5 68.9 68.7 64.1 52.4 30.2 160.9 56.7 7 33.4 35.0 26.0 15.8 2 39.1 20.5 160.9 57.7 33.4 35.0 26.0 15.8 155.6 157.8 13.2 9.9 9.0 101.9 103.3 100.6 84.7 179.2 92.8 95.4 98.0 101.9 103.3 100.6 84.7 179.2 92.8 95.4 98.0 101.9 103.3 100.6 84.7 179.2 92.8 95.4 98.0 101.9 103.3 100.6 84.7 179.2 93.7 101.3 103.8 105.6 105.7 101.6 95.0 TAPE NO. N300 3ALPHA SB39 TAMB 39.92 AFRO: RDG. ADHI41 PAMB 29.5000 RELHUM 22.40 SIZE SIZE SIZE SIZE SIZE SIZE O . M/SEC (0. FPS)
2 68.7 (6.5 69.9 68.7 68.1 50.4 50.0 160.9 161.0 161.7 61.2 61.3 59.1 53.2 39.1 20.2 160.9 161.7 61.2 61.3 59.1 53.2 39.1 20.0 150.0	# 70.2 68.7 68.5 69.9 68.7 64.1 52.4 36.2 160.9 7 66.3 61.7 61.2 61.3 59.1 53.2 39.1 20.5 160.9 7 66.3 61.7 61.2 61.3 59.1 53.2 39.1 20.5 160.9 7 66.3 61.7 61.2 61.3 59.1 53.2 39.1 20.5 160.9 7 61.9 52.6 49.5 51.1 45.5 38.4 20.8 158.6 6 15.9 13.2 9.9 9.0 26.0 15.5 38.4 20.8 158.9 6 16.9 13.2 9.9 9.0 101.9 103.3 100.6 94.7 179.2 6 100.5 99.2 101.3 103.3 105.6 105.7 101.6 95.0 7 AMETER RAII 9.056 FREQUENCY SHIFT -10 TAPE NG. N300	68.7 68.5 68.9 68.7 63.1 52.3 56.2 160.9 Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr Tr
2 92.6 95.4 96.0 101.9 103.3 100.6 94.7 179.2 2 92.6 95.4 96.0 101.9 103.3 100.6 94.7 179.2 5 99.7 101.3 103.8 105.6 105.7 101.6 95.0 FATIO 9.056 FREQUENCY SHIFT -10	7 66.3 61.7 61.2 61.3 59.1 53.2 39.1 20.5 160.3 54.5 54.5 54.5 51.1 45.5 38.4 20.8 158.6 56.1 59.9 50.0 15.5 38.4 20.8 158.6 56.1 59.9 50.0 15.5 38.4 20.8 158.9 57.7 37.7 39.2 9.9 9.0 10.1 50.0 15.5 10.5 50.9 50.9 50.0 10.1 50.0 15.5 10.5 50.0 56.0 50.0 10.1 50.0 10.1 50.0 10.1 50.0 10.1 50.0 10.1 50.0 10.1 50.0 10.1 50.0 10.1 50.0 10.1 50.0 10.1 50.0 10.1 50.0 10.1 50.0 10.1 50.0 10.0 1	82.6 95.4 96.0 101.9 103.3 100.6 94.7 179.2 99.2 101.3 103.3 105.6 105.7 101.6 95.0 ATIC 9.056 FREQUENCY SHIFT -10 TAPE NG. N300 (ALPHA SB59 TAMB 39.92 TAPE NG. N300 (ALPHA SB59 TAMB 39.92 SL. 9032.2 SG CM (1400.00 SG IN) - FULL O. M/SEC (0. FPS)
2 92.6 95.4 95.0 101.9 103.3 100.6 94.7 179.2 5 99.7 101.3 103.6 105.7 101.6 95.0 5 99.7 101.3 103.6 105.7 101.6 95.0 5 99.7 101.3 103.6 105.7 101.6 95.0	4 54.9 52.6 49.5 51.1 45.5 38.4 20.6 156.6 55.3 57.5 37.7 33.4 35.0 26.0 15.5 157.8 157.8 158.9 13.2 3.9 9.0 101.9 103.3 100.6 94.7 179.2 5 100.5 99.7 101.3 103.3 105.6 105.7 101.6 95.0 AMETER RATIO 9.056 FREQUENCY SHIFT -10 TAPE NG. N300 SALPHA SES9 TAMB 39.92 CH AERG. RDG. ADHIAI PAMB 29.5000 RELHUM 22.40	92.6 95.4 95.0 101.9 103.3 100.6 94.7 179.2 99.2 101.3 103.6 105.7 101.6 95.0 105.6 105.7 101.6 95.0 105.8 105.6 105.7 101.6 95.0 105.8 105.6 105.7 101.6 95.0 105.6 105.7 105.6 1
2 92.6 95.4 98.0 101.9 103.3 100.6 94.7 15 99.2 101.3 103.3 105.6 105.7 101.6 95.0 RATIO 9.056 FREQUENCY SHIFT -10	6 12.2 92.8 95.4 98.0 101.9 103.3 100.6 94.7 179.2 6 100.5 99.2 101.3 103.3 105.6 105.7 101.6 95.0 6 100.5 99.2 101.3 103.8 105.6 105.7 101.6 95.0 AMETER RATIO 9.056 FREQUENCY SHIFT -10 TAPE NG. N300 1ALPHA SES9 TAMB 39.92 CH AERG: RDG. ADH141 PAMB 29.5000 RELHUM 22.40	13.2 9.9 9.0 20.0 10.0 10.0 10.0 10.0 10.0 10.0 10
2 92.6 95.4 98.0 101.9 103.3 100.6 94.7 179 5 99.2 101.3 103.3 105.6 105.7 101.6 95.0 5 99.7 101.3 103.8 105.6 105.7 101.6 95.0 RATIO 9.056 FREQUENCY SHIFT -10	5 92.2 92.6 95.4 98.0 101.9 103.3 100.6 94.7 179.2 6 100.5 99.2 101.3 103.3 105.6 105.7 101.6 95.0 6 100.5 99.7 101.3 103.8 105.6 105.7 101.6 95.0 AMETER RATIO 9.056 FREQUENCY SHIFT -10 TAPE NO. N300 SALFHA SB59 TAMB 39.92 CH AERO: RDG. ADH141 PAMB 29.5000 RELHUM 22.40	92.8 95.4 98.0 101.9 103.3 100.6 94.7 179.2 99.2 101.3 103.8 105.7 101.6 95.0 99.7 101.3 103.8 105.6 105.7 101.6 95.0 ATIC 9.056 FREQUENCY SHIFT -10 TAPE NG. N300 JALPHA SB59 TAMB 39.92 AERG. RDG. ADH141 PAMB 29.5000 RELHUM 22.40 SIZE SL 9032.2 SG CM (1450.00 SG IN) - FULL 0. M/SEC (0, FPS)
2 92.6 95.4 98.0 101.9 103.3 100.6 94.7 179 5 99.2 101.3 103.3 105.6 105.7 101.6 95.0 5 99.7 101.3 103.8 105.6 105.7 101.6 95.0 RATIO 9.056 FREQUENCY SHIFT -10	5 92.2 92.8 95.4 98.0 101.9 103.3 100.6 94.7 179.2 6 100.5 99.2 101.3 103.3 105.6 105.7 101.6 95.0 6 100.5 99.7 101.3 103.8 105.6 105.7 101.6 95.0 6 100.5 99.7 101.3 103.8 105.6 105.7 101.6 95.0 AMETER RATIO 9.056 FREQUENCY SHIFT -10 TAMB 39.92 CH AERO. RDG. ADHIGI PAMB 29.5000 RELHUM 22.40	92.8 95.4 96.0 101.9 103.3 100.6 94.7 179.2 99.2 101.3 103.6 105.7 101.6 95.0 99.7 101.3 103.6 105.7 101.6 95.0 ATIO 9.056 FREQUENCY SHIFT -10 TAPE NO. N300 IALPHA SB59 TAMB 39.92 AERO. RDG. ADH141 PAMB 29.5000 RELHUM 22.40 SIZE SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 0. M/SEC (0. FPS)
2 92.6 95.4 98.0 101.9 103.3 100.6 94.7 179 5 99.2 101.3 103.3 105.6 105.7 101.6 95.0 5 99.7 101.3 103.8 105.6 105.7 101.6 95.0 RATIO 9.056 FREQUENCY SHIFT -10	TAPE NG. N300 1ALPHA SB59 TAPE NG. RDG. ADH141 PAWB 29.5000 RELHUM 22.40	92.8 95.4 98.0 101.9 103.3 100.6 94.7 179.2 99.2 101.3 103.3 105.6 105.7 101.6 95.0 99.7 101.3 103.8 105.6 105.7 101.6 95.0 ATIC 9.056 FREQUENCY SHIFT -10 TAPE NG. N300 JALPHA SB59 TAMB 39.92 AERC. RDG. ADH141 PAMB 29.5000 RELHUM 22.40 SIZE SL 9032.2 SG CM (1400.00 SG IN) - FULL 0. M/SEC (0. FPS)
2 92.8 95.4 98.0 101.9 103.3 100.6 94.7 179 5 99.2 101.3 103.3 105.6 105.7 101.6 95.0 6 99.7 101.3 103.8 105.6 105.7 101.6 95.0 RATIC 9.056 FREQUENCY SHIFT -10	5 92.2 92.8 95.4 98.0 101.9 103.3 100.6 94.7 179.2 6 100.5 99.2 101.3 103.3 105.6 105.7 101.6 95.0 6 100.5 99.7 101.3 103.8 105.6 105.7 101.6 95.0 AMETER RATIO 9.056 FREQUENCY SHIFT -10 TAMB 39.92 CH AERO: RDG. ADH141 PAMB 29.5000 RELHUM 22.40	92.6 95.4 96.0 101.9 103.3 100.6 84.7 179.2 99.2 101.3 103.3 105.6 105.7 101.6 95.0 99.7 101.3 103.8 105.6 105.7 101.6 95.0 ATIC 9.056 FREQUENCY SHIFT -10 TAPE NG. N300 IALPHA SB59 TAMB 39.92 AERG. RDG. ADH141 PAMB 29.5000 RELHUM 22.40 SL 9032.2 SG CM (1430.00 SG IN) - FULL 0, M/SEC (0, FPS)
2 92.8 95.4 98.0 101.9 103.3 100.6 94.7 179 5 99.2 101.3 103.3 105.6 105.7 101.6 95.0 6 99.7 101.3 103.8 105.6 105.7 101.6 95.0 RATIO 9.056 FREQUENCY SHIFT -10	5 92.2 92.8 95.4 98.0 101.9 103.3 100.6 94.7 179.2 6 100.5 59.2 101.3 103.3 105.6 105.7 101.6 95.0 6 100.5 99.7 101.3 103.8 105.6 105.7 101.6 95.0 AMETER RATIO 9.056 FREQUENCY SHIFT -10 TAPE NG. N300 SALFHA SES9 TAMB 39.92 CH AERG. RDG. ADH141 PAMB 29.5000 RELHUM 22.40	92.6 96.4 98.0 101.9 103.3 100.6 94.7 179.2 99.2 101.3 103.3 105.6 105.7 101.6 95.0 89.7 101.3 103.8 105.6 105.7 101.6 95.0 ATIC 9.056 FREQUENCY SHIFT -10 TAPE NG. N300 JALPHA SB59 TAMB 39.92 AERG. RDG. ADH141 PAMB 29.5000 RELHUM 22.40 SIZE SL 9032.2 SG CH (1400.00 SG IN) - FULL 0. M/SEC (0. FPS)
2 92.6 95.4 98.0 101.9 103.3 100.6 94.7 179 5 99.2 101.3 103.3 105.6 105.7 101.6 95.0 5 99.7 101.3 103.8 105.6 105.7 101.6 95.0 RATIO 9.056 FREQUENCY SHIFT -10	5 92.2 92.8 95.4 98.0 101.9 103.3 100.6 94.7 179.2 6 100.5 99.2 101.3 103.3 105.6 105.7 101.6 95.0 6 100.5 99.7 101.3 103.8 105.6 105.7 101.6 95.0 AMETER RATIO 9.056 FREQUENCY SHIFT -10 TAPE NO. N300 LALPHA SB59 TAMB 39.92 CH AERO. RDG. ADH141 PAMB 29.5000 RELHUM 22.40	92.6 95.4 98.0 101.9 103.3 100.6 94.7 179.2 99.2 101.3 103.3 105.6 105.7 101.6 95.0 99.7 101.3 103.8 105.6 105.7 101.6 95.0 ATIC 9.056 FREQUENCY SHIFT -10 TAPE NG. N300 JALFHA SB59 TAMB 39.92 AERG. RDG. ADH141 PAMB 29.5000 RELHUM 22.40 SIZE SL 9032.2 SQ CH (1400.00 SQ IN) - FULL 0, M/SEC (0, FPS)
2 92.6 95.4 96.0 101.9 103.3 100.6 94.7 179 5 99.2 101.3 103.3 105.6 105.7 101.6 95.0 5 99.7 101.3 103.8 105.6 105.7 101.6 95.0 RATIO 9.056 FREQUENCY SHIFT -10	2 92.6 95.4 96.0 101.9 103.3 100.6 94.7 179.2 5 99.2 101.3 103.3 105.6 105.7 101.6 95.0 5 99.7 101.3 103.8 105.6 105.7 101.6 95.0 RATIC 9.056 FREQUENCY SHIFT -10 TAPE NG. N300 JALPHA SB59 TAMB 39.92 AERG. RDG. ADH141 PAMB 29.5000 RELHUM 22.40	92.6 95.4 98.0 101.9 103.3 100.6 94.7 179.2 99.2 101.3 103.3 105.6 105.7 101.6 95.0 99.7 101.3 103.8 105.6 105.7 101.6 95.0 ATIC 9.056 FREQUENCY SHIFT -10 TAPE NG. N300 JALFHA SB59 TAMB 39.92 AERG. RDG. ADH141 PAMB 29.5000 RELHUM 22.40 SIZE SL 9032.2 SQ CH (1400.00 SQ IN) - FULL 0, M/SEC (0, FPS)
2 92.6 95.4 98.0 101.9 103.3 100.6 94.7 179 5 99.2 101.3 103.3 105.6 105.7 101.6 95.0 5 99.7 101.3 103.8 105.6 105.7 101.6 95.0 RATIO 9.056 FREQUENCY SHIFT -10	2 92.6 95.4 98.0 101.9 103.3 100.6 94.7 179.2 5 99.2 101.3 103.3 105.6 105.7 101.6 95.0 5 99.7 101.3 103.8 105.6 105.7 101.6 95.0 RATIC 9.056 FREQUENCY SHIFT -10 TAPE NO. N300 JALPHA SB59 TAMB 39.92 AERO. RDG. ADH141 PAMB 29.5000 RELHUM 22.40	92.6 95.4 98.0 101.9 103.3 100.6 94.7 179.2 99.2 101.3 103.3 105.6 105.7 101.6 95.0 99.7 101.3 103.8 105.6 105.7 101.6 95.0 ATIC 9.056 FREQUENCY SHIFT -10 TAPE NG. N300 LALPHA SB59 TAMB 39.92 AERG. RDG. ADH141 FAMB 29.5000 RELHUM 22.40 SLZE SL 9032.2 SQ CH (1400.00 SQ IN) - FULL 0, M/SEC (0, FPS)
5 99.2 101.3 103.3 105.6 105.7 101.6 95.0 5 99.7 101.3 103.8 105.6 105.7 101.6 95.0 RATIO 9.056 FREQUENCY SHIFT -10	5 99.2 101.3 103.3 105.6 105.7 101.6 95.0 5 89.7 101.3 103.8 105.6 105.7 101.6 95.0 RATIC 9.056 FREQUENCY SHIFT -10 TAPE NG. N300 LALPHA SB59 TAMB 39.92 AERG. RDG. ADH141 PAMB 29.5000 RELHUM 22.40	99.2 101.3 103.3 105.6 105.7 101.6 95.0 99.7 101.3 103.8 105.6 105.7 101.6 95.0 ATIC 9.056 FREQUENCY SHIFT -10 TAPE NG. N300 JALPHA SB59 TAMB 39.92 AERO. RDG. ADH141 PAMB 29.5000 RELHUM 22.40 SIZE SL 9032.2 SQ CH (1400.00 SQ IN) - FULL 0, M/SEC (0, FPS)
5 99.7 101.3 103.8 105.6 105.7 101.6 RATIO 9.056 FREQUENCY SHIFT -10	6 106.5 99.7 101.3 103.8 105.6 105.7 101.6 95.0 AMETER RATIC 9.056 FREQUENCY SHIFT -10 TAPE NO. N300 JALPHA SB59 TAMB 39.92 CH AERO. RDG. ADH141 PAMB 29.5000 RELHUM 22.40	99.7 101.3 103.8 105.6 105.7 101.6 95.0 ATIC 9.056 FREQUENCY SHIFT -10 TAPE NG. N300
RATIO 9.056 FREQUENCY SHIFT	AMETER RATIO 9.056 FREQUENCY SHIFT -10 TAPE NO. N300 SALPHA SBS9 TAMB 39.92 CH AERO. RDG. ADH141 PAMB 29.5000 RELHUM 22.40	ATIO 9.056 FREQUENCY SHIFT -10 TAPE NG. N300
	TAPE NG. N300 [ALPHA S559 TAMB 39.92 Aero. Rdg. Adh141 Pamb 29.5000 Relhum 22.40	TAPE NG. N300 (ALPHA SB59 TAMB 39.92 AERG. RDG. ADH141 PAMB 29.5000 RELHUM 22.40 SIZE SL 9032:2 SQ CH (1400.00 SQ IN) - FULL 0, M/SEC (0, FPS)
		SI 9032:2 SQ CM (1400.00 SQ IN) - FULL 0, M/SEC (0,

1	į	ì	١
(Ì	i	١
1	ŀ	١	Ì
			•
1		Ē	١
٩			•
(į	Ì	Ì
ì	ŀ	٠	•
٠	١	١	,
•	į)
1			۰
1		:	١
ì	į	į	١

4,

	1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 +			OF OF	IGINAI POOR	PAG QUAI	TTY S!S				JET SPEED EC (298.0 FPS)	
BACKGROUND NOTSE 0 FT, ARC (30160 (01300		7 8.		139.0 140.7 142.6	4 4 4 4	4444	142.7 142.6 142.3	3444		156.6 TAMB 40.20	80.83	
E 6	ES			109.2 109.2	108.5 107.6 106.2 104.5 93	103.1 102.0 101.9 101.9	100.1 99.5 99.0	99.1 92 97.8 91 96.0 90 93.7 88	96 77 72 63 57	120.9 117.6 111.3 IALPHA \$859	1 8	
IUNE LEVELS CORRECTED R.H. STD. DAY, SB IDEL FJ-300-FMODL CKORDUND FJB300-FMODL	D FROM INLET,			91.3 96.1 93.2 100.5 95.2 104.5 96.8 396.4	98.4 107.2 100.2 108.5 101.8 108.4 102.2 108.3	103.1 107.7 103.5 108.6 103.7 108.6	103.2 106.8 102.6 107.0 102.7 105.8 102.3 104.7	100.8 105.0. 99.6 102.9 98.3 101.4 95.9 98.9	9.9 93.3 93.6 6.9 90.5 92.4 2.4 85.4 86.6 9.5 75.4 72.7 3.6 68.7 66.8	.8 114.2 119.3 N300		
., 70 PERCENT 70 PERCENT FICATION - MOI	ANGLES MEASUR			.8 66.9 6 .9 67.0 8 .2 58.1 8 .3 69.7 9	92.00 92.00 92.00 94.7 98.00 98.00 98.00	6 95 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	23 96.4 96.3 10 96.6 10 86.0 9	.6 95.2 9 .1 94.1 9 .9 93.1 9 .8 91.5 9	91.6 89.4 89 66.9 86.1 86 85.3 81.7 62 78.4 76.6 76 69.9 71.4 69 64.1 63.1 63	TAPE NO TAPE NO	NSE O FT) ARC	
UNIKANSFORMED MODE 59.0 DEG. F	, ,			.0 62.1 62. .6 62.4 64. .7 63.7 95. .9 65.3 87.	.1 66.2 97. 7 67.7 88. 8 88.1 89. 4 90.2 91.	6 89.9 91. 2 90.2 90. 90.3 91.	4 69.9 91.4 90.6 91.4 90.5 92.	5 92.4 92. 4 92.7 93. 4 92.7 93. 2 90.3 93.	.0 87.1 90.7 .7 86.6 85.8 .3 74.7 76.9 .3 67.9 68.7 .5 62.7 61.9	102.9 105.0 03-16-78	ACGUSTIC 2.2 M (4	
5	\$			8.0 81.3 8 8.6 80.8 6 1.6 83.2 8 2.7 83.8 6	는 8 84.6 8 5.4 84.7 8 7.2 86.3 8 6.1 88.2 8	7.2 86.6 86.7 87.5 86.4 88.2 66.9 88.5 8	7.5 87.9 8 8.2 88.3 8 0.2 89.8 9 2.1 92.2 9	2.0 93.4 9 9.8 92.4 9 7.5 91.1 9 2.8 87.9 8	61.6 84.7 87.7 87.7 87.5 4 6.5 6.5 79.8 65.7 65.8 79.8 65.7 65.7 65.4 66.8 66.4 56.0 59.	100.5 101.7 102.6 TEST DATE	TEST POINT 3016	
		FREQ 50 63 80	100 125 160 200	250 315 500	630 600 1000 1250	1600 2000 2500 3150	4000 5000 6300	10000 12500 16000 20000	25000 31500 40000 50000 63000	GASPL 1	MODEL 6	46:

	· rap.
FREE-JET SPEED 90.83 M/SEC (298.0 FPS)	
SIZE 110.1 SQ CM (17.07 SQ IN) - MODEL	
110.1 SQ CM (
M (40,0 FT) ARC	
12.2 M (
TEST POINT 3016	
MODEL 6	

REFRACTION CORRECTION - YES TURBULANCE CORRECTION - YES

298.00 48.00

FREE JET VELGGITY (FT/SEC) FREE JET DIAMETER (IN)

MODEL/FULL SIZE SCALE FACTOR INPUT 1.000 CALC. 1.000

10000 12500 20000 25000 31500 40000 63000

OASPL 105.5 106.1 106.3 106.6 107.7 108.2 107.9 110.3 114.4 118.6 120.0 117.7 114.0 157.1

40.28 21.80

TAMB

SB59 29.5250

TALPHA PAMB

N300 ADH147

TAPE NO. AERO. RDG.

03-16-78 C41 ANECH CH

TEST DATE

8

3

6.

			}			; ;										
					IDENT	DENTIFICATIO	ı Z	FJ-300-FMCDL	FMODL.	X30165	10					
					ANO	ANOLES MEASI	JRED	FROM II	INLET, C	DEGREES						
, oga	1 2. 6	50. 60.	70.	9	8	100.	110.	120.	130.	140.	160.	160.	2			
	9	.69 8	70.	72.	72.	72.	72.9	78.9	86.3			75.0	161.9			
	0	7 7.	72.	82.	73	73.	75.1	80.9	87.8	9		74.0	162.9			
	0	.1 73.	73.	73.	75	75	76.8	82.7	87.8	_		74.5	162.5			
- [10	5 72.	73	74.	76.	76.	78.2	93.1	87.6		ĺ	73.3	162.5			-
	N C	0 t	13	76.	77.		9.0	. 40 24.	67. 48 27. 48	4 a		20.00	162.2			
	n «	7 6	. 47	6 10	77	7 0	90.0	9.4	9 6	9		200	162.3			
	9 09	6.74	7	76.	77	78	80.5	85.1	87.2	N		71.6	162.3			
	0	0 74	75.	76.	78.	79	91.6	84.4	86.5	_	l	70.1	162.0			
	ص <i>ء</i>	0.74	2	76.	78.	9.0	60 6	93.9	86.8	0 1		69.0	162.1			
	4 10	73.	76.	76.	9 6	9 6	81.7	6 4 6 6 6	9 0	· -	76.7	. 60	162.6			
1	0	4 74.	75.	77.	79.	79.	80.8	82.9	85.2	N	1	69.4	163.0			
	₩.	.1 75.	77.	77.	79.	78.	80.8	82.2	83.5	۲.		68.4	162.9		(
	- 1	.9 77.	78.	79	79	77.	79.6	81.4	82.6	us (66.9	163.1		0 0	
-		.9 76.	78.	9	90	77.	78.0	76.0	90.1	a	-1	63.8	163.2		RI.	
	۰ -	7 6	73.	77		7.	73.4	73.0	74.7	7 10		50.0	162.9		GI PC	
	- 00	68	7	7.	72.	20	69.0	7.0	69.2	a		4	162.5		N, DO	
	6	5 61.	64.	68.	68.	64.	62.8	64.2	58.8	a		22.7	162.4		AL R	
92	5.0	1.0 51.3	53.2	26.1	57	54.0 6.0	51.4	53.7	45.6	36.5	21.6		161.1		Q	
	0			, iii	<u>,</u>	5 4	- a	, c		<u>.</u>			58.0		A.U.A	
0000				2				2							GE	
88															IS TY	
3 8															3	
88																
31500																
888																
0000						Mark 10 10 10 10 10 10 10 10 10 10 10 10 10										
,		į		í			,	. (
OASPL OR	3.0 8.0 8.0	1.4 87.1	88.3	N 0		\$ 16 5 6	0 0	102.5	103.6	200	7.7	83. 7 86. 2	3.07			
9	.2 95	. 1 96.		8	100	6	6	•		6	1	86.2				
				VIQ.	AMETER	RATIO	9.026		FREQUENCY	SHI	FT -10					
		TEST DATE LOCATION	- 2	16-78 ANECH	CH	TAPE AERO. F	 	N300 ADH147		ALPHA	5859 29.525(TAMB	40.2 8 21. 80		
MODEL 6	TEST POINT 3016	7	ACG 31.5 H	ACGUSTIC R	ANGE . O FT) SL	9032.	.2 SQ CM	5	S12E 400.00 SQ	- (N) c	FULL	06	FREE-JET	SPEED 298.0 FPS)	
467																

άĠ	
=	
_	
N	
•	
•	
•	
×	
•	
σ	
-	
•	
•	
-	

														DF	i F	ilN PO	IA'O	L R	Q!	A G	iE AL	IS IT	Ϋ́													FREE-JET SPEED M/SEC (389 O FPS)	,	
End.																																		•	21.60	5		
NOIS				PWE						38.2	39.4	4.14	42.6	43.4	4 6 4 6	42.6	42.8	42.5	42.6	42.3		6.	41.3	41. 0.0	41.4	40.9	40.0	40.3	40.1	37.0	37.0	155.5		TAMB	RELHUM	118		
ROUND	- 00		160.							104.1		0		.21	- 0	92.0	-	0	- 1 	0	- 0	90.5	9	ο -	- 10	9 09	4	٠. د		N	6	109.5			ļ	MODEL		
FOR BACKGROUND NOISE	X30170 X01400		150.							06.2 10	9	_	o,	ا		4 6.	0	0	٠.	٥) N	96.3	-	<u> </u>	2 10		9	φ.	_	-	-	Q		859	29.5250	î	1	
ED FOR		ES	140.							0	9	4.	-2	- (0 K	. . .	4	₩.	٠.	ص ا	. 40	, w	6	-	- 10	۰.	4	. م	-	. 6	4.00	9.6 115	ļ		PAMB 2	E 07 SQ	4	
CORRECTED	FJ-400-FMGDL FJ8400-FMGDL	T, DE	30.			4				3.8 102	. ~	10	6.	ب ا	- o	90. m. 7	5	9	- ·	<u>ت</u> ا	9 0	5.3 103	2		4	10	က	.	n -	- 6	0	.5 119		IAL	۵	\$12E	1	
ELS CO		1	_	Ì						36 6	· •	5		~ ·	~ :	107		_	4 108	יום מומ	ie	9		 	, ,	- ന	9	6 0 (N Œ		0	.5 118		0	148	5		
E LEVELS	MODEL BACKGROUND	D FROM	120							1 90	· 10	_	0	O 1	- -	101	9	~	4 102		 r 60	3 101.	9	m Log	• CJ		4	4 (N C		_	C 113		N3O	ADH1	10.1 So		
RESSURE L)	. ≪	110							1	0 87.		8	7 92.	3) Q		97	98.	, U	ရွ်	6	8 99.	98	60 0	96	93	1 89.	87.	76.	69	63.	110.			RDG.	Ξ		
SOUND PR	TION	ANGLES ME	100							.95	.98	87.	88	60	- 6	, c	94.	9	0	e C	0 0	2	94.	9 0 4 6	, e	91.	89.	90.0		02	62.	106.5		TAF	AERO.	ARC		
တ	FIC	ONA V	90.							1.			1				1 .		•	-1		94.1	1	•			۱.		78.0	.1 .	ė	105.6			돐	RANGE 40.0 FT)		
ED MODEL	I DE		.09							-	83.2	ю. П				93.9	6					91.0					90.7		76.4	9	61.6	105.3		-78	1 ANECH	ACCUSTIC F		
UNTRANSFORMED			70.							١.			83.9	•	00 d		1 .			-1		8. 69	-1						74.0		63.0	102.3		03-16	C41 A	ACOU 2.2 M		
UNTRA		-	.09								91.0		٠,	•		89.4			88.2	-1			-		9		86.2	•	70.8		58.8	102.0		DATE	TION	-		
			50,							1 .	6	0	4	ю. •		· -	10	4	<u>م</u> ا	o.	r m	89.3	10	- σ) m	6	0.1	n e		6	0	01.1		TEST	LOCATION	POINT		
			40.							6			_	ıo o	3 F	65.3	6	~	φ.	n c) –	on.	က		0	10	8	۰,	1 1	8	ø.	99.8 10				TEST PG 3017		
			-	FREG	200	8 8	00	22	09 c				ı										- 1				25000 8		30000	9	,iO							
		:		Ē					- "			•	-		-		Ξ	ă	ถี ถึ	S	מיי	ő	ĕ	<u> </u>	9	800	25(E .	200	63(90	OASPL				HODEL 6		

()·

				OR OF		INA OOI		PA@ QUA		IY								10 60		SPEED 369.0 FPS)
		D	4	0 10		3 01 0	24	8	9 6		N (O	n &		3	- 0		G.	CORRECTION - YES	3 40.28 1 21.80	FREE-JET 8
	160.	7 135.	102.2 139.0 89.8 140.4	100.5 142.6	101.6 142.	101.7 142.	101.6 142.	102.4 142.	100.7 142.	5 142	5 143	.6 .0 .4 .4 .4	99.9 143.7	60 0	6 141	67.3 139.3	115.1 156.6	REFRACTION TURBULANCE	TAMB 250 RELHUM	- MODEL 1
X30170	DEGREES 140. 150.	96.9 102.3	. 9 106.	107.5 105.0	oi c	07.5 102.2		106.1 102.5	~ [9	3 C	.6 .6 .8	94.2 95.3	5 67	76		116.7 115.7	389.00 46.00	ALPHA	Si ZE 17.07 SQ (N)
FJ-400-FMØDL	INLET, 130.	19.0 96.5	91.9 101.1 92.8 102.9	97.3 104.7	99.3 106.1	- 6	01.9 107.2	9-	03.1 106.6	8	105.	 	96.6 95.9 96.6 97.4	2 91.	81.9 77.4	78.8 74.4 68.9 64.6	114.0 117.9 1	(FT/SEC) ETER (IN)	N300 17	SO CM (17
•	EASURED F . 110.		.9 84.9 .3 87.2	6 90.5	8 92.4	94.9	1 96.7	.3 98.8 1	3 99.2	980	1 98.9	0 98.0 1 7 97.7 1	.0 95.6 .6 89.4	3 89.0	27.1	3 65.0	3 109.6	ET VELÖCITY (FT EE JET DIAMETER	E NO.	110.1
	ANGLES M 90, 100	83.6	85.4 86.5	87.7 88.9	90.1	93.0	93.1	2.8	95.7	97.1	97.6	96.9 98.1	97.1 94.3	89.4 87.8	9.19	66.9	107.9 157.	FREE JET FREE	TAI CH AERG	RANGE 40.0 FT) ARC
	70. 80.	2 63,	84.2 85.0 84.7 85.5	3 102.	.3 89.	988	1 91.	7 93.	5 93.	95	7 96.	98.	. 7 95,	5 90.	3 81.	3 66.	106.1 108.5	LE FACTOR . 1.000	03-16-78 C41 ANECH (ACGUSTIC F.
	0. 60.	2.5	3 84.5 85.8	7 87.3 6 89.0	92.3	95.6	9 92.4	92.9	9 93.7	94.0	96.0	3 96.5 4.06.4	99.0 83.0	3 90.7	82.1	8 64.6	.0 106.9 10	SIZE SCALE .000 CALC. 1	TEST DATE C	57
	40. 50	•	4.8 85. 5.9 86.	ຕ ນ	9.	. on a	0 4		ကြေ	ৰ ৫	٦,	Ņ —	က က	6 -	α (ماه	06.6 107.	MODEL/FULL INPUT 1.	F -	TEST POINT 3017

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

IDENTIFICATION - FJ-400-FMGDL X30175

								(OR F	IG P	IN OC	AL R	FQ	PA(SE	. I:	Ŝ								T SPEED (389.0 FPS)	
ANGLES MEASURED FROM INLET, DEGREES	40. 50. 60, 70. 80. 90. 100. 110. 120. 130. 140. 150. 160.	67.0 68.9 69.6 68.4 74.9 71.3 70.6 71.2 77.7 85.0 87.2 82.5 73.6 160 58.2 69.8 71.3 70.3 86.1 72.5 72.0 73.6 79.6 85.9 88.4 82.0 74.7 161	71.3 71.2 72.5 72.8 73.5 75.1 74.9 76.6 82.3 86.7 87.5 79.6 75.1 1	72.3 72.1 74.7 73.1 75.2 76.5 76.3 77.8 82.9 87.1 86.9 79.3 75.3 161	72.4 72.5 74.2 74.7 74.9 76.3 77.1 79.3 83.7 87.9 85.3 78	71.3 73.4 74.7 74.6 76.5 78.3 78.9 80.9 84.4 86.1 84.9 77.3 73.8 161	71.1 72.6 74.4 75.3 76.0 78.2 78.8 81.1 84.1 86.3 83.1 75.4 71.1 161	71.0 72.2 74.4 75.2 76.4 78.4 79.4 81.4 83.7 85.2 81.7 74.9 71.3 161 71.4 72.9 74.5 75.4 76.9 79.2 78.2 80.8 83.8 84.1 81.3 74.6 71.1 161	72.6 74.6 75.4 75.7 77.1 78.5 78.3 80.0 82.8 84.0 80.6 75.8 71.4 162	73.1 76.4 76.3 75.9 78.4 79.6 77.9 80.2 82.2 82.9 79.6 76.6 71.1 162 73.4 77.1 78.8 78.1 79.9 79.0 77.0 79.3 82.1 82.7 78.8 78.0 69.9 163	71.9 75.9 76.8 77.6 80.1 80.5 77.9 79.3 80.6 79.9 75.4 71.0 65.8 163	68.7 73.7 76.5 77.4 80.0 79.8 76.4 77.4 77.0 74.2 69.4 65.5 60.8 162	64.4 72.3 74.1 73.7 77.7 77.1 73.1 71.1 76.7 73.1 68.6 61.3 34.0 163 60.3 66.2 69.7 70.4 72.0 71.6 70.2 69.9 71.3 67.6 61.0 81.1 41.0 163	50.2 55.5 62.2 65.8 68.9 68.0 63.4 62.8 62.9 56.8 48.8 38.2 22.2 162	37.9 45.6 52.4 55.8 56.1 56.9 54.1 50.5 52.1 42.5 33.1 19.2 161	13.4 24.6 33.2 36.8 38.5 33.7 38.2 33.4 37.9 26.2 13 3 0 10 1 15 6 17 3 14.7 10 8 8 9	4:0 0:0: 11:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0				7 91.4 95.1 2 99.2 101.9	7 \$6.2 98.1 98.4 101.2 100.2 \$8.2 99.2 102.8 104.1 100.1 \$3.4 88	DIAMETER RATIO 9.056 FREQUENCY SHIFT -10	TEST DATE 03-16-78 TAPE NO. N300 IALPHA SB59 TAMB 40.28 Location C41 Anech Ch Aero. RDG. Adh148 Pamb 29.5≗50 Relhum 21.80	TEST POINT ACOUSTIC RANGE SIZE SIZE SIZE SOLT 118.57 M/SEC (
	C 8 0 1	900	100	125	500	315	004	200	900	1000	1600	2000	3150	4000	2000	6300	10000	12500		63000	0	PNLT			MODEL	

()-

		•										DI	CIN	AL	D	a c	F 1	Ø									
16.256											0	F	PO	OR	Q	UA	LIT	Y								D FPS)	
8																										r SPEED	
07/19/79																									. 92 . 40	FREE-JET M/SEC (-
	31 SE				Ę				61 L	6 0 (2	· (N)	o 0	ص <i>د</i>		101	6 0	6	၈ ဖ	က်က	9.6		- 6	G,	25 E 38	ŏ	
	OR BACKGROUND NOISE		•		Ž				143	146	148		6 150 7 150	-	148	- -			3 144.9	0 4 4 4 6 4 6 4	2 141	4 5	7 138 3 138	6 160,	TAMB	MODEL	
	FT. A	X30180		160		-			109	Ξ	111.	Ξ	7 13.	212	108	105	10 C	103		8 8 8 8	93.	28	65.	3 122.	8859 29.5000	ı	
	FOR B/	X	S H	150					2:	- 6	4 5	= 2	= = = =	==	2	- 60	108	103	105.	9.00		94.	6.3	125.		SQ IN	
	SB	-FMØDL	DEGREE	140.					107.0		14.0	116.9	115.0	114.9	114.2	112.2	100.00	103.4	107.3	102.8 99.2	94.6	86.1	74.1	125.6	I ALPHA PAMB	S1 ZE 17.07	
	CORRECTED DAY, SB	-ZER	INLET,	130.					0.101 0.10 0.10	108.5	109.9	9.	111.4	110.7	9.	109.1	109.0	106.7	105.5 103.2	101.4 97.8	93.6	86.9	73.7		_	CM C	
	LEVELS H. STD.	FJ	FROM I	120.					96.3	99.0	00.8	04.2	05.3	106.1	06.2	08.2 08.2	05.8	04.3	8.00 00.00		93.4		75.4		N300 ADH140	1 sa c	•
	R. R.	IODEL. Jackground	SUKED F	10.				•	92.9	94.0	- -	99.7	Ø 1	02.1			03.9		2.68	94.6	90.6	83.0	69.6	3.7	NG. I	110.	
	SOUND PRESS	NO NO	MEAS	9					N 4	9 0	7	9 6	9 6	~ a		-4	0 4	30	6 6	- 0	- œ	N T	70.9	. 0	TAPE AERO. R	ARC	
	SOUNDS , 70 F	CATI	ANGLES	90.					- 0	. 0	(2)	ı a	6 4	- 0	i ai	4 0	~ 4		- a	9 9	- 0	. – 1	70.2	9	V	: RANGE 40.0 FT)	
	MODEL 0. F.	DENTIFI		90.		Elizabeth and the second secon			~ •	9 0	4 6	.	40	~ c	, 65	0 4	ع ر د	9 69	80 P	~-	~ 4	~	0 0	. 6	ъ ж	0	
	ORMED 9.0 DE	2		70.					- 0		- 0	- N	ო 0	9 0	4	r) -	٥,	Q	- ^	C in	- o	9 01 0	2 4 6	, ,	1-16-78	ACGUSTI 2 M (
	UNTRANSFORMED MODEL 59.0 DEG. F.									N 10	0	7	9 ^	ر وا) 4	00	6 0 (9	ო —	ດ ແ	10 1	. ~ <	0 69	. 60	ы к 82	N	
	TN)			9	-				ł							- 1		,	9 95. 94.				9 66.	_	TEST DATE	¥	
				20					96	86.	97.	800	96.	93.	93.	98	9	94	94.	. 88	2.0	998	9 8 K	106.	Ħ Ä	L 2	
				6					100	. 4 	82	. 06	96	94.	9 6	9	60 6	91.	89. 87.	80.0	78.	33.	00 E	104.		TEST	
					FREG 50	69	00.5	200	250	6 5 5	200	8 8	000	1600	2000	3150	5000	8000	00 000 2 500	6000	2000	0000	00000	DASPL	عور فو	MODEL	4

								ORI(OF	BII.	VAL NOR	- 1	PAC QU/	BE ALI	S											SPEED 0, FPS)
			Pul			143.2	146.8	148.5	150.2	150.0 150.3	149.9	148.8	148.2	146.8	145.0	144.9	143.5	142.6 141.6	141.3	139.1	38.9	160.9	TION CORRECTION - YES Ance Correction - Yes	TAMB 39.52 RELHUM 22.40	FREE-JET . 0. M/SEC (
40.0 FT. ARC	0		150. 160.			16.0 109.4	13.0 110.0	14.2 111.6	6 113	15.7 113.6 15.8 112.7	6 112	. 4 108	4	7 104	. e.	101 6	8 98	 	89.1 87.7 84.2 84.1	.9 78.	o o	125.3 122.6	REFRACTION TURBULANCE	SB59 29.5000 RE	IN) - MODEL
88	IGDL X30180	ET, DEGREËS	130. 140.			11.9 107.0 1	08.55 111.4	0.0	18	1.3 115.9 1	0.7 114.9 1		10.2 113.6 1	111.3	. 4 	107.3	102.8	οi ο	.4 90.9 .9 86.1	80.4	0 69.4	122.1 125.6 1	EC) 0. IN) 48.00	I ALPHA PAMB	\$12E (17.07 SQ
R. H.	- FJ-ZER-FMGDL	SURED FROM INLET,	110. 120. 1			2.9 95.3 10	20.00	. — -	_		יודי		103.5 106.5 11 103.4 106.2 10	105.8	104.3	102.8	98.5	96.4 93.4	90.5 85.7	80.4	69.8	13.7 117.0 12	VELOCITY (F†7SEC) Jet Diameter (IN)	3. N300 3. ADH140	110.1 SQ CM
70 PERCENT	DENTIFICATION	ANGLES MEASU	. 100.			=	D (5	93.7	96.6	97.9	99.7	20 .00 20 .00	- 4	9.06	9 09 9 09 9 00 4 10	97.8 9E.3	95.1	92.6 90	86.6 82.2	77.4	64.1	.9 110.7 11:	FREE JET VEI FREE JE'	TAPE NG. AERO. RDG.	T) ARC
O DEG. F.,	IDE	Į.	90. 90			96.7	99.0	4.20	93.1	94.4 97.0	95.7	90.00 00.00	5 95.8 98.	95.8	95.3 97	95.5	95.7	95.1 92.7	87.4	77.7	62.9	108.8 109	: FACTOR 1.000	03-16-78 C41 ANECH CH	ACGUSTIC RANGE 2 M (40.0 F
59.			60. 70.			. 0 06.	5 67.	69	4 92.	. 8 95. 7 96.	6 93.	4 . 9 . 50.	95.3 95.5	8 94.	6 94.	1 95.	9 94	8 g	7 86.	3 75	. 8 64.	106.8 106.7	ZE SCALE CALC.	TEST DATE 03-1 LOCATION C41	5.
			40.			5	98	5 87.	98	. 7 96.	.0 93	. 22 . 93.	95.4 96.3	2 93.		5 94	.3 91.	.0 88. .1 84.	.6 80. 2 76.	69	1	104.9 106.3	MODEL/FULL ST.	TEST LOC	TEST POINT 3018
			FRED	0.00 0.00 0.00 0.00	125 160 200	- 1			1		- 1			1					ŀ		1	CASPL 10	Ē		MODEL 6

				•							•	DR DF	SIG	SIN PO	A! OF	- 1 R (PAQU	GE AL	: IS							3 C	FREE-JET SPEED M/SEC (0, FPS)	
31			PWL		.2 169.3	-1-	_		Т				-		Г		•	156.2	156.1				.1 179.7	o		TAMB 39.92 RELHUM 22.40	FULL 0. P	
38 2400.0 FT. SL	X30185	EES 160	7 00	92.8 86	93.0 87	92.9 86	92.5 85	90.6	86.9 78	84.9 76	83.1 74 81.4 73	79.1 71	77.9 68	72.2 62	58.1 56	62.1 49	30.00	22	o				101.5 95	102.5 94	SHIFT -10	IA 5359 IB 29.5000	- (NI 08	
	FJ-ZER-FMODL X3	FROM INLET, DEGREE 120, 130, 140.	0		92.9	92.3	91.6		90.3	88.8	85.4 87.6	85.5	64,2	80.08 0.08	76.2	4.17	50.0	1	0.0				3 102.3 104.3 3 105.6 106.4	105.6	FREQUENCY S	IALPHA 40 PAMB	\$12E CH (1400,00	
ENT R.H. STD. DAY,	1 Z	URED	- 1	60.7	0 82.7 86.4	84.6 87	84.9 88	84.8 88	85.6 87	85,2 87	84.8 83.7	63.1 64	82.3 83	79.5 78	76.4 76	72.3 73	61.4 61	49.5	- O				95.7 £6.3 101.5 103.3	101.5	9.026	PE NJ. N300 . RDG. ADH140	9032.2 80	
0 DEG. F., 70 PERCEN	IDENTIFICATIO	ANGLES MEAS	25.0	77.7 78.	78.5 80.	82.8 82.	81.4 82.	80.3 81.	61.2 62.	80.3 81.	79.9 61.	79.6 80,	80.1 79.	79.0 78.	78.6 75.	75.8 72.	66.3 62.	54.2 52.	15.1 13.				92.5 93.1	6 99	AMETER RATIO	TAPE CH AERO. F	IIC RANGE 2400.0 FT) SL	
59.0 DEG.		70 90		93.	75.2 76.5	80.	.6 78.	.8 78.	6 78	.0 77.	.6 77.	.5 77	.4 77.	5 77.	.3 77.	.75.	. 6 68. . 65.	.7 52.	. 6 . 2 . 2 . 2				96.1 99.1	.1 99.	DIA	03-16-76 C41 ANECH	ACGU31	
		0		73.	70.3 73.7	4 77	0 75	.6 78.	3 76.	9 75.	0 0 0 0	.6 74.	6 75.	7.2	8 70.	.5 67.	100	2 42.	, o				96.2 69.0	.2 94		TEST DATE LOCATION	T POINT 73	
		9		9	80 70.5		73	200		72.	68	67.	69	9	55.		. 00 . 00	23.	j .	12500 18060 20000 25000	500	0000	0ASPL 83.4 PNL 87.0	87			MODEL TEST 6 30	47

										•	OF		il PO	IAI		P# Ql	(GI		is ry	• .									T SPEED
																											40 04	22.30	FREE-JET
X30190 X01300			PW		139.9	7 141.3	143	144.3	-	45	140.0	144	· ·			_	142.6 6.051	Τ	7	2.141.8	140		40.4	-	_	157.0	TAM	RELHUM	
X30190 X01300		160.			7 106	9	9	7	ო .	9 7	6. 69 94. 6	1 94	.5	7.29 93.7 83.7	6 92	_	- 4	2 92.	.4	5.0 90.2 2 8 6 7	8 86	4	.9 77.	1 66	1.1 58.6	1.4 112.1	9	29.5450	
	DEGREES	140, 150			03.6 106	4		7	_	4 (4	6		2	07.1.100.	05.8 100	9	9	99.8 96	a	o.	4.0	71 2 6	۲.	121.9 118.	I	PAMB 29	SIZE
FJ-300-FMGDL FJB300-FMGDL	INLET, D	130.	•		98.6	0	. 8	4		108.5	108. 108. 108.	2	6		- 6	_	œ κ 		4	101 8 8	عاد	_		2		119.5			is .
ROUND	Ĭ	. 120.			1 91.8	9	9	96	•	5	0 0	-	-		103	_		0	66		1			- G		9 114.7	1	ADH150	
,	MEASURED	00. 110				n	673	۲.	ო.	- (N O	10	-1	ກຸດ) V	9	99.00		-	1.1 96.7 1.8 63.7	9	a	n c	2	a	.4 110.9	YAPE NG	. RDG.	
•	ANGLES	90. 10			0.9	6.7	7.2	20	o .	4 F	22.0 24.4 855	က	۲.	O) %		Q.	94.40	-	9	94.7 93	• 1 •	GI.	4.0	-1	4	06.4 107		AERO	RANGE ABO
1 DENTIFI		90.			0	10	€.	o.	<u>ن</u> د	1	. 0	1	91	ıç «		,	ه د	10	ĸ,	93.7		4	OP P		4	105.5 10		ANECH CH	ACGUSTIC RANG
		70.			82.	83.	83.5	82	96.	9 6	8 6	.69	90	က် က ်	98	90.	90.6	93	93.	98.00	87.	87.		68	(5)	103.3	5	2	Acdu
	11	. 60			10	32.	83.	83.	9	÷ 6	9 60	89,	.00	တ် ဇ	98	69	6.00.00 0.00.00	93.		4. 10 4. 46 7. 48	87	94		99	•	6 102.7	ST DATE	LOCATION	
		40. 50			7.	.3 61.	. 1 82,	2 83.	7	4.3	. 4.	.0 86.	.986	- A 487.	3 87.	.7 89.	6.00 0.00	7 92.	-	87.6 90. 83.3 88	9	N	ú a	عام	S CI	00.8 101.			TEST POINT

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. D.Y, SB 2400.0 FT. SL

											0	RI	GI P	OC N) R	. F	PA 2U	G	E	is TY	7			,						•			SPEED 301.0 FPS)	
																	•															40.2 4 22,30	FREE-JET 91.74 M/SEC (
		돌	162.7	163.6	163.4	163.2	162.9	162.6	162.3	162.7	162.8	163.3	162.9	163.2	163.	- 62	162.7	162.6	161.2	159.8	106.6							176.3				TAMB RELHUM	_	
		160.	76.1	7.9.							70.4																	95 .0	87.2		1		- דערר	
ıp.		150.									78.0																Ì	93.6 95.5		710		SB59 29.5456	<u>S</u>	
X30195	DEGREES	140,	89.8	90.0	90.2	89.7	96	86.6	85.9	85.3	84.4 83.4	82.3	80.2	78.8	70.2	4.00	62.8	51.6	36.2	18.0								90.30 02.0	02.0	Y SHIFT		ALPHA	\$12E 400.00 SQ	
HOD.	-	130.	96.6	0 10	-	Θ,	4 -		က	•	86.0	6	0	9	ه ام	ם ע	<u>ر</u>	0	1	Φ.								103.4 1	_	FREQUENCY		₹	\$1 (1400	-
FJ-300-FMGDL	FROM INLET	ė	1	א פ	4	4 (vi c	٠ ر د	9	a,	0 0	-	ď	4.6	وأد	د	9	N	Q	د								102.5	N	F.		N300 ADH150	SQ CM	
1	SURED FR	ė	4 (<u>.</u>	4	9	<u>.</u> د	? 6 0	ပ	0	ó R	واو	-		2	٥٠	ی ب	က	7	د	N							6 6	0	. 056			9032.2	
SATIGN	MEASU		1 .	o (2)	1	9	٠ ۲		0	-	4 K	0	۲.	م	4	0 1	-	•	9	ო (Đ.							0.0 0.0 0.0	0	о Ю		TAPE NO AERO. RDO	•	
DENT I FICATI	ANGLES			. 0	4	ص ر	N 4	٥ ٨	6	0	<u>ო</u> ო	6	,	φ.	- -	- «	N	ø	~	۲.)							7 88	-	R RATIO		AEF	E FT) SI	
105	<	_							1		9 7 8																	.7 .8 .00 .00	-	DIAMETER		풍	1C RANGE 2400.0 FT)	
			6 74						1		9 76.	12			1				1							•		2 9 90	100	۵		16-78 ANECH	ACOUSTIC 5 M (240	
		2	2	, 4	74.	76.	i k	76.	76.	4.	15 K	77.	78.	78.	9	. 42	72.	64.	54.	36.	4.							60 G	98			C41	AC 731.5	
		90.									7.47										•							67.3				TEST DATE		
		6 0.			1		•				72.9		•		-1	•			١.									93.8	4			TES	T POINT 3019	
		40.	66.8		1					•	71.2				٠,					•								83.55 89.55					TEST	
· ·		FREG	9	9 6	100	123	9 6	7 K CO	315	400	200	800	1000	1250	1600	0000	3150	4000	2000	6300	10000	12500	20000	25000	31500		_ l_	5					MODEL	

()L.

	i														11.11.112	70.		
			UNTRAP	SFORM 59.0	UNTRANSFORMED MODEL 59.0 DEG. F.		SOUND PRESSURE 70 PERCENT R.I	SURE L	EVELS STD.	CORRECTED DAY, SB		40.0 FT. ARC	ARC	36 10 10 10 10 10 10 10 10 10 10 10 10 10				1
					I DENT	DENTIFICATION	ON - R	IODEL ACKGROUND	- 1	FJ-400-FMGDL FJB400-FMGDL		X30200 X01400						i
						ANGLES	ES MEAS	URED		INLET, DE	DEGREES							
	40,	50.	.09	70.	.00	.06	100.	110.	120.	130. 1,	140, 1	50. 1	160.					
FRE© 50 63														Z				
100) 						2							7		1
200																		
ł	5 C		Ι.	1 .	1.	1.	40	1	90.0	97.6 102	2.6 106	ď-	40	39.1				1
		00	92.6			96.0	; ~ @		- I				9 0	900		ORIO OF		
1	0 10	מות					a ?c	1	6	07.2 110	9	1 10	_	44.0		PO		. 1
	6 4	٠ •			•	_	0 -	1	~ 6		41	6 0 0		4.6		IAL OR		
ı	·	u w	1		1	1	- စ		2 (2)			9 (5)		13.6		- F		
	4,	10 L		•			<u>ب</u> «	<u></u>	6 C		- K	4 G		43.2 42.8		A(U		
	. 0 <						, <u>,</u>	4.00	0 0		7.0	,,,		0.00		BE ALIT		
	1 0	တ				.1 .	9	9.86	-	- -		0	-1	9.1		N 以 以		Т
	प प	<u>ه</u> ه					6 64	89.99 1.00 1.00	. .		- 0	и ю		5.5 5.6 6.6				
- 1	80	8	· -1		• • •		E .		4	-1		6	-1	41.6				$\neg T$
	~ 0	9 ~					6 6		40		# M	<u>-</u> ب		40.9				
	6 6	99					- 0		<u>.</u>	•	e n	٠.		41.2				
1	40	ص a	١.			1 -	- 4	i	4 6	ì	W 0	- 4	-	39.9				1
	46		79.0		94.0			_	, r. o		82.6	. 0. 4						
1	64.0	4 0	65.8 59.8	68.2	68.3	59.7	71.2		1	71.5 70 64.5 66	6.2 61	0 0	65.5 1 57.6 1	36.8				
OASPL 1	100.1 1	01.0 1	02.2 1	02.5	105.5	105.9	106.8 1	10.4	113.6 1	118.6 12	120.2 116	6.1 110.	6	55.9				
		TEST DATE	DATE	03-16· C41 At	1-16-78 11 ANECH CH		TAPE AERG R	9	N300 ADH149	IAL	ALPHA SI	SB59 29.5450		TAMB	40.28 22.30		•	
MODEL	TEST F	TEST POINT 3020	81	_ ~ ·		NGE 0 FT)	ARC A	110.	\$5 50 80		8		#ODEI	=	FREE-JET	SPEED 388.0 FFS)		1
							1											
477										•								1

FLEGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS AS O DEG E 70 DEBCENT B H STD DAY SR 40.0 FT ARC	IDENTIFICATION - FJ-400-FMGDL X71120	ANGLES MEASURED FROM INLET, DEGREES	50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PWL		91.7 91.6 90.8 91.0 91.6 92.6 99.3 104.7 108.6 112.0 111.7 145	.3 91.7 91.6 91.7 92.6 91.9 93.7 102.2 109.6 112.9 114.7 112.5 146 .5 92.9 91.4 92.2 93.4 93.3 94.7 103.7 112.4 115.9 116.5 112.9 150	.9 94.3 92.1 93.7 95.1 94.0 95.9 165.3 112.6 117.0 117.0 112.2 151.2 .9 95.6 94.1 97.9 96.0 95.6 98.1 108.1 114.4 118.3 117.0 113.1 152.2	.0 96.5 95.0 95.9 97.1 96.9 99.9 109.6 114.4 116.9 116.0 113.4 152.4	2 99.1 57.6 99.1 100.4 99.6 102.5 112.0 114.9 120.2 115.0 113.3 153.3 153.3 151.0 100.9 103.6 112.8 115.0 115.8 115.1 113.7 153.6	7 104.4 100.9 101.5 101.3 101.0 104.2 113.3 117.9 119.1 114.3 113.3 154.1	107.0 105.3 105.3 107.0 106.0 116.9 116.7 116.7 110.2 110.4 153.5 C. 107.0 106.6 105.3 105.9 107.8 115.0 115.7 110.2 110.4 153.4 C.	.4 106.7 105.0 105.2 106.9 106.3 109.1 114.9 115.5 114.0 109.2 109.8 152.9	.2 107.2 106.0 107.1 107.6 106.1 108.1 113.4 314.3 111.6 107.3 107.6 152.5 .6 106.9 106.0 107.2 108.3 105.3 107.9 111.2 112.3 109.7 105.6 106.8 152.0	.3 106.4 106.0 106.8 107.4 104.7 106.7 110.5 111.9 108.9 106.4 108.6 152.6 105.6 105.0 107.7 104.8 106.1 108.6 108.9 106.6 104.9 107.6 152.6 108.6 108.6 104.9 107.6 152.6 108	.4 101.8 101.6 103.8 103.7 100.0 100.0 102.9 104.0 100.7 98.0 101.5 151	.5 97.8 95.7 95.9 100.0 99.9 97.7 9 .3 95.8 91.0 91.4 95.6 93.2 91.3 8 .1 87.8 85.8 84.0 91.4 87.6 85.4 8	. 0 71.8 72.7 72.7 73.7 72.2 70.8 75.7 73.1 71.2 65.0 68.6 146	-	SIZE SCALE FACTOR FREE JET VELOCITY (FT/SEC) 397.00 REFRACTION CO 100 CALC. 1.000 FREE JET DIAMETER (IN) 40.00 TURBULANCE CO	TEST DATE 02-27-78 TAPE NO. N299 IALPHA SB59 TAMB 30.20 Location C41 anech ch aero. RDG. Adh989 Pamb 29.5700 Relhum 44.80	TEST POINT ACCUSTIC RANGE 7112 12.2 M (40.0 FT) ARC 154.7 30 CM (23.99 SQ IN) - MODEL 117.96 M/SEC (387.0 FPS)	
				:	3.3	3 5 92.	9 9	0.96	98.2 99.	.7 104.	0 107	4 106. 7 107.	.2 107. 6 106.	3 106. 6 105.	4 101.	O 10 1	- 0	.5 117.	\$12E	TEST DATE LOCATION		
			FREG	8 8 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		2 8	2 8	96. 8	200	2.5	107	107.	106. 106.	103	98.	31500 96.4 40000 90.9 50000 89.0	208	OASPL 118.0	MODEL/FULL INPUT 1.0		_8	575

8
•
_
ø
_
_
79
'n
>
۲
_
>
<u></u>

Page 10 Page 10 Page 11 Page													≽સા)F	GI	N/OC	AL)R	P. Q	A(U/	GE AL	15	3 Y													SPEED 387.0 FPS)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
or the property of the control of th	IRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE O DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT.	16N - FJ-400-FM8DL	MEASURED FROM INLET,	40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160.	71.7 73.2 73.7 73.0 74.2 75.5 75.2 76.2 84.5 92.1 94.1 92.5 85.6 16	72.6 /3.6 /0.2 /3.6 /0.6 /7.1 /6.0 /7.4 67.2 92.6 90.2 92.9 84.9 7.1 / 7.5 / 7.6 9 94.9	74.8 75.7 77.2 76.5 77.8 79.1 78.8 81.3 90.5 94.0 97.0 91.8 85.8 1	76.8 76.0 77.9 77.6 79.1 60.5 80.4 82.4 91.2 93.0 98.2 91.1 84.8 1	77.9 77.6 79.6 78.8 80.8 82.2 81.2 83.7 92.5 94.2 97.9 90.4 85.0 1	78.7 61.4 61.3 60.5 61.0 63.1 62.4 64.7 83.2 85.2 87.3 87.3 80.2 65.0 67.0 87.0 87.0 86.0 64.0 1	84.9 85,7 86.9 85.4 87.5 85.7 84.0 86.2 .94.3 96.0 94.4 87.4 82.6 1	83.5 85.1 86.4 85.6 86.1 87.9 85.7 87.1 94.2 95.1 92.9 85.2 79.6 1	83.5 85.3 85.1 85.6 85.7 85.5 86.3 67.8 84.1 84.8 81.0 85.0 78.3 88.7 82.8 85.5 85.3 81.3 75.4 1	82.6 83.7 85.7 85.3 86.0 87.3 86.1 87.6 93.2 91.9 87.5 79.2 74.4 1	81.1 83.9 85.4 85.2 86.9 87.5 85.9 87.3 91.7 90.9 86.0 78.1 72.1 1	76.3 82.0 83.9 84.7 86.1 87.0 84.1 85.4 88.0 87.7 81.9 75.0 69.3 1	75.1 79.8 82.2 82.8 86.2 87.2 84.0 84.6 85.8 85.1 78.6 71.9 65.3 1	74.4 78.8 81.9 82.5 85.4 85.4 81.1 80.9 84.2 80.8 76.0 67.0 60.1 1	65.5 72.9 76.2 77.9 61.1 81.3 77.2 76.3 77.3 70.4 67.6 67.6 67.6 77.8 72.5 70.0 68.9 70.6 66.6 58.3 44.3 29.1 1	41.8 49.7 58.0 61.3 65.6 65.6 60.3 58.9 60.0 52.4 42.1 25.7 0.7 168	22,1 32.7 41.9 46.0 47.3 47.8 45.1 40.8 43.7 32.6 18.4 167	0.3 12.2 19.2 20.4 21.8 20.9 14.8 16.5 3.1 165 163		20000 35000	31500	00000	00000	90000	93.7 94.8 96.1 95.8 97.1 97.9 96.1 97.8 104.1 105.8 106.6 101.1 94.8 183.	99.9 102.5 104.8 105.0 107.2 107.7 105.1 106.1 (10.3 111.0 109.6 102.6 96 100.7 103.4 105.6 105.7 108.6 108.9 106.1 111.0 111.5 109.5 102.6 98	S PLANT TO THE PROPERTY OF THE	AMEIEK KAIIO 7.640 FREGUENCY SHIFI	02-27-78 TAPE NO. N299 IALPHA SB59 TAMB 30 C41 ANECH CH AERO. RDG. ADH989 PAMB 29.5700 RELHUM 44	TEST POINT ACCUSTIC RANGE SIZE SIZE FULL 117.96 M/SEC (7112 731.5 M (2403.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 117.96 M/SEC (

7.60	59.0 DEG. F., 70	ZO PERCENT R.H. STD.	TD. DAY. SB	40.0 FT.	ARC		
	IDENTIFICATION	IÓN - MODEL BACKGRÖUND	FJ-ZER-FMØDL D	JL X71130			
	ANGLES	S MEASURED FROM	M INLET, DEGREES	REES			
40. 50. 60. 70.	90.	100. 110. 120	0. 130, 140.	150.	160.		
50							
63							
100							
100 m							
200							
89.8 93.8 \$3.1 93.	94.2 96.	0 100.4 1	9	3 118.5 11	9.131.9		
91.1 92.9 93.2 94.	95.6 97.	.1 100.5	.7 113.8	120.6 11	o o		
400 92.8 84.0 94.7 84.7 84.0 500 94.0 94.3 96.6 96.6	80.00 A.7.0	100.7 102.6 110	6 119.4 721.8	121.4	8.1 156.3 156.3		
95.4 97.2 97.2 97.	102.8 100.	02.1 104.7 1	9 120.5	121.8 11	10	00	
99.9 98.0 98.7	99.6 101.	.8 106.5 11	.7 122.1	121.8 31	8	RIF	
104.8 106.1 105.3 103.	102.2 103.	04.7 107.4 11	3 122.2	,	•	GI PC	
110.6 109.6 108.	105.2 105.3	105.6 108.5 115 107.0 109.4 116	20.0	2 2		N/ DG	
111.2 111.5 111.2 110.	138.1 105.	6 109.7 11	.4 122.6	116.0 1	SO.	AL R	
8 110	111.5 110	108.7 109.6 116	.5 122 :51	14.9		P. Qi	
107.6 103.1 105.9 103.	108.0 108.	10.2 110.9 11	8 12 6	12.4	2 01	A (
105.1 105.9 106.7 107.	107.8 108.	5 112.0 11	1 119.1	110.9 1	05.4 154.8	E	
100.4 106.4 106.	106.4 108	200	2 4 1 6 0	402.4	שים	19 17	
100.2 103.3 104.7 105.	107.0 108	07.5 109.3 112	6 115.8	106.4	6		
2500 97.5 101.6 102.3 103.9	105.7 106	3 107.4 110	0 113.2	104.1	01.1 351.7		
90.0 100.0 101.3 102.	103.7 104.	102.8 104	3 107	99.5	9		
89.5 93.1 95.6 96.	100.3 101.	.0 98.0 101	8 102.8	95.0	9		
87.3 89.3 92.6 95.	95.3 95.	4.8 95.2	6 100.1 95	90.6	6		
n o	85.1 85.8	9 0	. 3 . 34 . 3 . 7 . 89 . 4 . 85	. 55 . 65 . 55 . 56 . 57 . 7	78.7 146.6		
69.9 72.2 74.8 76.	77.6 77.	9.1 77.4	2 83.4 79	75.5	٩		
92	71.5 72.	72.2 72.7 79	.2 78.	68.	55.5 147.3		, i
OASPL 118.7 118.9 118.9 118.8	119.1 119.6	119.7 121.3 126.	.9 132.7 133.0	130.8 1	27.3 169.0		- *:
	A2-00-00			•		76 46	ŀ
ATION 541	н сн	AERO, RDG. ADHO78	078 PAMS	15 29.2900	RELHUM	22.40	
MODEL TEST POINT ACCI 7100 7113 12.2 M	ACCUSTIC RANGE 2 M (40.0 FT)	ARC 184.7 SQ	SIZE 0 CM (23.99	- (NI 05 6	MODEL	FREE-JET SPEED O, M/SEC (û. FPS)	
577							

						O	RIGIN/ F. POC	AL PAC R QUA	e is Lity			•	CORRECTION - YES	٥	
FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS SA D DEA F 70 PERCENT R H STD DAY SR 40 0 FT ARC	IDENTIFICATION - FJ-ZER-FMODL X71130	ANGLES MEASURED FROM INLEY, DEGREES	40. 50. 60. 70, 80. 90. 100. 110. 120. 130. 140. 150. 160. PML 50	68 60 100 100 120 120 120 120	160 200 250 89.6 93.6 93.1 93.9 94.2 96.1 99.0 100.4 105.6 111.4 115.3 118.5 118.1 151.6 315 91.1 92.9 93.2 94.0 95.8 97.4 98.1 100.5 107.7 113.6 117.1 120.6 118.2 153.4	.9 94.5 94.7 94.5 95.6 97.5 99.6 101.5 109.2 117.3 120.4 121.1 118.0 155.0 94.5 \$5.6 96.6 97.4 98.8 100.7 102.6 110.6 119.4 121.8 121.4 118.1 156.4 97.2 97.2 \$7.2 102.8 100.4 102.1 104.7 112.9 120.5 123.4 121.8 118.5 157.9 98.0 98.7 99.5 99.6 101.5 103.8 106.5 114.7 122.1 124.2 121.8 117.8 158	104.8 106.1 105.3 103.1 102.2 103.6 104.7 107.4 115.3 122.2 123.8 121.2 116.4 107.6 108.2 106.5 105.7 105.6 106.2 105.8 108.5 115.9 122.6 124.4 119.3 114.2 113.5 110.6 109.6 108.2 105.2 105.3 107.0 109.4 116.0 122.5 123.2 118.1 113.4 111.2 111.5 111.2 105.4 106.6 109.7 116.4 122.6 120.8 116.0 111.5	108.8 110.1 110.6 110.9 111.5 110.1 108.7 109.6 116.5 122.7 119.7 114.9 110. 107.6 109.1 108.9 109.4 109.7 111.3 110.5 110.6 116.8 121.8 118.2 113.8 109. 106.6 107.4 107.9 107.4 108.0 108.8 110.2 110.9 115.6 119.8 116.7 112.4 106. 105.1 105	103.1 105.1 106.4 106.7 107.4 108.8 109.2 110.9 114.8 118.5 114.4 109.4 104.9 102.4 104.7 105.1 106.0 106.8 107.7 108.3 109.8 113.8 116.9 112.9 107.6 103.4 100.2 103.3 104.5 105.1 107.0 108.4 107.5 109.3 112.6 115.8 111.3 106.4 102.3 107.5 101.6 105.3 107.4 110.0 113.2 108.7 104.1 101.1	96.0 100.0 101.3 102.9 105.3 105.9 104.8 105.6 107.8 111.0 105.9 102.5 99.5 1 91.0 97.3 97.8 100.2 103.7 104.3 101.7 102.8 104.3 107.8 103.1 99.4 96.9 1 89.5 93.1 95.6 96.2 100.3 101.5 99.0 98.0 101.8 102.9 59.0 95.0 94.6 1 87.3 89.3 92.6 95.0 95.3 95.8 94.8 95.2 97.6 100.1 95.8 90.6 98.6 1	82.6 84.5 87.5 89.3 93.0 93.3 89.6 90.3 93.3 94.9 91.2 85.6 84.8 1 75.2 77.9 80.6 83.4 85.1 85.8 84.8 83.5 89.7 89.4 85.5 80.5 78.7 1 69.9 72.2 74.8 76.8 77.6 77.6 79.1 77.4 85.2 83.4 79.0 75.5 73.4 1 64.9 65.8 69.6 72.6 71.5 72.7 72.2 72.7 79.2 78.0 75.0 68.7 65.5 1	118.7 118.9 118.9 118.8 119.1 119.6 119.7 121.3 126.9 132.7 133.0 130.8 127.3 169.0	.000 CALC. 1.000 FREE JET DIAMETER (IN) 48.00 TURBULANCE ST DATE 02-20-78 TAPE NO. N294 IALPHA SB55 TAPE	LOCATION C41 ANECH CH AERO, RDG. ADHO78 PAMB 29.2900 RELHUM INT ACCUSTIC RANGE	7100 7113 12.2 M (40.0 FT) ARC 164.7 SQ OM (23.99 SQ IN) - MODEL 0.

(...

											OI OF		SIN PO			P/ QL			IS TY											T SPEED
		•																											28.94 22.40	FREE - JET
			PML. 7 172.8	.7.1	.0 175.1		-	.7 175.7	7	.2 174.3	- 0	S	171.1	. 0	.1 169.0		.5 166.1	165.8	164.3	165.0						1 186.5	-	•	TAMB	
=		150. 160			10 7.70	26.9 88.55		93.2 84.			83.0 72.		78.4 67) N	69.4 57	ю (40.8 18									96	105.4 96.	6- <u>1</u> :	SB59 29.2900	
. X71131	DEGREES	140.		100.0	201.5	102.2	102.2	100.7	96.4	4 i	0.78	89 1	67.3	91.7	77.9	<u>ن</u> د	50.5	42.0		•						•	112.1	ENCY SHIFT	I ALPHA PAMB	\$1.7E
FJ-ZER-FMODL	MEASURED FROM INLET.	120. 130.			93.7 100.2	95.4 101.7]_	96.3 101.7 96.5 101.5	3 101	96.2 99.9	94.9 93.9 96.3	3 95	93	87.6 89.0	0 86.	۲.	75.3 74.4 68.2 66.9	7 54	0.	Ŋ					.1.1	06.5 111.8	.8 115. 4 116.	FREQUENCY	N294 ADH078	
٠,	ISINED FR	110. 1		-		3 1		9 G	١		9.08	ı		4 -	-	9.		۹	<u>ن</u> و	».						101	107.6 1	7.640	E NG.	
IDENTIFICATION	ANGLES MEA	-		6	io.		.0 87.	.0 88.0 87.5	3 89	21.		8		, v	6	.3 80.4	~	2	.8 44.	N						-	60	2	TAPE AERO.	
IOE	×	00		4	۲.		~	86.7 87. 89.4 86	10	4	88.4 89.	9	.6 87		. 4	4	30.67	4	ن د	- `.						•	07.1 107 08.3 108	DIAMETER	20-78 ANECH CH	20140
		62		-	~ (0	99.5	'n	6 0 ·	87.4		N C		4	0.1	n c	9	0	4. 						0 66	4.0		ļ .	0.1000
		09		77.		4 79.4 4 0 0 0	97.	8 6	g	88		4		20.00	78	-			32.	•						8 40	23		TEST DATE	
		40	72	.2 74.	5 76.	0 t	.4 87.	0.0	6 88	.8 87.	4 85.	92	.8 81.	- K	0 75	.2 71.		43	. 2 22.							07	99. 7 102. 00. 9 102.		ğα	
			FRED	ŀ		100 7 4		000 000 000 000 000 000 000 000 000 00			000	ı					3150 5	1		10000	18000	20000	25000 31500	40000	50000 63000					1

				-)F	IGII PC	NA OI	L R (PA Qu	GE AL	: 19 !TY							- YES - YES		JET SPEED C (307.0 FPS)
			•			•																		CORRECTION CORRECTION	29.30	FREE-JET 117.96 M/SEC (
ARC			160. PWL				3.4 147.0	i 0.	0	-6	6	6.7 156.5 5.8 156.9	0, 0	ب ان د	8	- K	08.6 154.3 07.8 153.7	0.4	7.4 153.4	6		9.3 147.3	126.8 168.4	REFRACTION TURBULANCE	TAMB	MODEL 1
40.0 F1.	140	S	150. 16				113.7 11	==	119.0	F	4.	116.3 11	0	90	111.7 11	.0			103.2 107	9 1		66.2 69	128.5		5859 29.5700	- (NI 08
STD. DAY, SB 40.0 FI	DL X71140	T, DEGREE	30. 140.				.0 109.9	2 114.1	6 119.0	8 122.4	.0 123	. 1 123	9	. 6 . 1 . 6	.8 117	.5 115	w 0		8 0 104	98	98	5 71.4	7.181 6.0	(C) 367.00 N) 48.00	I ALPHA PAMB	\$12E 23.99
K.H. SID. UA	FJ-400-FMODL	EASURED FROM INLET,	120. 13		-		100.5 107	103.1 111 105.5 114	108.1 115	. 0	112.6 119	_ z	2	5 E	116.7 118	 0 0	114.9 116	111.3 113	108.1 107	Ļ.	- 01	76.9 74	126.5 130.3	VELGCITY (FT/SEC) Jet diameter (IN)	N299 ADH990	.7 SQ CM (
CENI K. H	TION -		. 110.				8 94.1	9 9	60	00	102	2 0 C	106	0 0			3 109.9	107		1	90	72	.9 120.2	- tu	PE NG.	154
., /O PERCENI	DENTIFICA	ANGLES M	90. 100				ю			-		41		8 P	. 9	•	0 4	o 0	06.7 103.0	~	89.2	9	20.5 118	FREE JE FREI	TAI	NOE O FT) ARC
o DEG. P	=		90.				91.6	92.7 92.9	9.40	97.2	99.5	103.5	111.81	109.3	107.9	2 8 9 9 9	108.6	108.4 1	40	90.4		73.	1 120.4 1	FACTOR . 000	02-27-78 C41 ANECH CH	ACGUSTIC RANGE 2 M (40.0 FT)
0,00			80. 70.				3 93.	6 93.	8 8	7 96	7 97.	0.0	111.	112	8 109.	.2 107. .7 108.	.7 108.	5 107	05.3 105.0	98		6 83.	.1 120.	SCALE ALC. 1	1 -	12.2 P
			20.		-		~	94.2 93.7	e t		N	- 4	4		9	9 /			6	6		တ	122.3 122	7FULL S12E JT 1.000 C	TEST DATE LOCATION	T POINT
			6			125 160	93.		100	98	<u>.</u>	===	117		=	100.	90.5	107.	103	8		72.	GASPL 123.2	MODEL/FULL INPUT 1.		DEL TEST 7100 7

										OR OF		0			200	A U	G A	E		1											•						ED O FP8)	32000	
ANGLES MEASURED FROM INLET, DEGREES	40. 50. 60. 70. 60. 90. 100. 110. (20. 130. 140. 150. 160.		72.7 (3.0 /4.4 /3.2 /4.0 /0.1 /0.4 /7.3 00.3 43.4 80.0 80.6 00.0 17.3 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	74 9 75 4 77 3 75 0 82 0 79 0 78 8 81 2 91 1 97 4 99 2 95 4 88 6 1	7 78.4 77.5 79.1 80.1 80.0 62.1 92.7 98.5 100.4 94.4 89	79.2 76.7 79.4 76.7 81.3 62.3 81.9 84.1 93.2 98.5 101.3 84.0 88.5 1	66.7 67.4 65.4 62.6 85.2 65.2 83.7 85.5 94.2 98.5 100.9 92.6 88.5 1	94.4 94.3 90.2 92.7 93.1 09.2 00.3 97.0 94.5 98.0 97.2 80.0 00.0	04.	00.1 08.0 80.0 80.1 80.0 00.3 00.0 81.8 00.1 01.0 11.0 11.0 11.0 11.0	85.2 86.2 89.0 87.3 89.0 89.2 91.2 85.7 84.8 90.6 82.8 77.9 172.7	65.1 86.7 88.1 87.6 89.5 90.1 88.6 90.6 94.9 93.6 69.2 80.4 75.1 172.4	83.9 85.9 87.9 87.4 88.4 89.0 88.2 89.5 93.1 92.9 87.2 79.3 73.1 172.0	82.6 85.4 87.1 87.1 88.8 89.6 86.9 89.0 90.7 90.4 84.3 76.0 70.8 171.3	80.7 83.7 83.1 85.9 87.8 88.2 86.1 85.9 86.9 88.9 81.7 74.4 67.7 171.0	.6 81.5 83.6 84.3 87.4 87.8 83.8 84.5 86.6 86.1 78.7 71.9 66.1 170.9	73.4 78.5 61.7 62.8 86.0 85.6 61.7 81.7 84.4 61.7 75.2 67.3 60.2 171.1	67.1 74.8 76.1 78.8 82.3 82.0 77.8 76.2 77.9 76.4 66.3 57.6 46.1 170.3	56.0 65.6 70.4 71.3 73.7 73.4 71.1 68.5 70.7 67.6 58.3 44.9 28.2 169.5	10 01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			2500	; O009	20000	0000	11500	COORD		80000	100.4 101.3 100.1 100.8 100.9 89.2 100.0 105.8 108.8 108.0 103.3 97	104.9 106.2 107.7 107.1 109.3 109.3 106.7 107.2 111.8 113.4 111.2 104.1 98.7	105.4 107.0 108.5 107.7 110.5 110.5 107.2 107.2 112.4 113.4 111.2 104.1	DIAMETER RATIO 7.640 FREQUENCY SHIFT -9	27-78 TAPE NG. N299 IALPHA SB59 TAMB	C41 ANECH CH AERG. RDC. ADH990 PAMB 29.5700 RELIMM 44	MODEL TEST POINT ACCUSTIC RANGE 5120 CM (1400.00 SQ IN) - FULL 117.96 M/SEC (307.00 7100 7114 TO 12400.00 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 117.96 M/SEC (307.00 7100 TO 1240 TO 12400.00 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 117.96 M/SEC (307.00 TO 1240 TO		
		•											_	_	1	.4	'U	(7 '			y 4	9 =	-	=	<u>بر</u>	Ň			9 6	1		۱	Q.,						

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

X71141

IDENTIFICATION - FJ-400-FMODL

										OR	RIGI P	N.	AL OR	P. Qi	AG	E i	13 7									: !	T SPEED (0. FPS)	
																									29.12	20.20	FREE-JET O. M/SEC (
		Pur				6 149.4	.7 151	. 4 152.6 152.6	3.	. s 156		2 154	3 154.	9	6	- 6	2 150.2	.6 148.	1 147.0]-	9-		9 14	.3 166.6	TAMB	RELHUM	MODEL	
X72010	60	150. 160				116.0.115	117.0 115	118.6 115	٦-	119.2 114	110.6 113	1-	ر د د		9	- .	. 103	8	6. 4 79. 9	0	96.0 85	מיכ	.7	128.9 125	\$B59	29.2980	- (N)	
FJ-ZER-FMODL	, DEGREES	. 140.				7 112.8	3 115.1	1119.8	25	2	6 122.2	15	19	115	4.	. 6 111.4	7-	105	102. 97.	8	•	1 78.4	9 73.9	1 130.9	IALPHA	PAMB	812E 23.99 SQ	
	FROM INLET,	120. 130			•	03.3 100.	05.4 111.	3 117		. n	13.4 179.6	9	10.1	. 8		.a 113	125	.5 108	98 9 104.	5.	89.2 92.	90	.7	124.2 130.	N294	DH075	SQ CM (
- MODEL BACKGRØUND	MEASURED F	. 110.				2 98.1 1	98.2 1	1000.0	103.0		3 106.8	1 106.7 1	4 107.1	7	_	106.9	105.5	102.3 1	99.0	91.4	55 .06 .05 .05 .00 .00 .00 .00 .00 .00 .00 .00	73.3	68.1	118.1	ñ 36.	RDG.	154.7	
I DENTIFICATION	ANGLES M	90. 100				7	.7 102.	2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	100	.6 108.	3 110	2 110.	= :	.0 8 110.	.3 111.		3 108 107	.3 106	99.5 103.9	.8 97	.7	7 82.	.2 77.	5.3 121.9	TAPI	AERO.	GE FT) ARC	
IDENTIF		90.				92.0	•	9.00	d -	- 0	60 0	7-	41	. 4	0	- •	101.9 103	10		0	89.2 89	, -	66.7 68	114.3 115	-20-78	ANECH CH	ACCUSTIC RANGE 2 M (40.0 F	
		0. 70.				- +	.2	o - ·	9 6	8 701.	501 202		9	102	102	46		7 97.	7 e	0,50	0 5. 5. 5.	0 72.		.7 113.5	02-2	C41	ACOU 12.2 M	
		50. 60				9	۲,	93.3	25 5 95	- 9	50 +	,	105	6 103	9 10 10 E	99.7 100.) 	92.7 93.	0	80.5 82 73 8 76	9		13.8 113	TEST DATE	LOCATI	TEST POINT 7201	
		40. FRED	63 6	g	200	98	80		800 97 2	102.	- 6	105.9	600	101.5	100.1	9 8	12500 92 0	8	80 60	9	40000 77.0	64	60000 58.3	113.0 1			DEL TEST 7200 72	

C7/19/79 18,682								ORMIN OF PO	IAL PA	GE 19 ALITY			B CORRECTION - YES		20.20 FREE-JET SPEED	M/SEC (0, FPS)
				P¥		4.04	154.2	156.0 156.2 156.0	154.7 153.9 152.7	150.9	148.9 147.8 146.9		166.8 TION CORF	ANCE CORP	RELHUM 20	نا 0
LEVELS	מ בויי שנגי		50, 160.			0 115.6	6 115	200-0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 000	9 9 9 9	0000	ø,	TURBI	0 8 6	IN) - MODE
SSURE LEV	X72010	DEGREES	140. 15		. ;	112.8 116	117.7 118 119.6 119 120.4 119	1===:	116.9 114.115.4 111	6000	V-01-0	o vi ≤ o	130,9 128	4 4	PAMB	OS CB
SOUND PRESSURE		M INLET.	20. 130.			1.3 108.7	114.	20.00	13.5 119.7 12.6 116.7	22.5.5	ស	2 92. 6 85. 7 74.	4.2 130.1 (FT/SEC)	S	ADH075	SO CM (2
MODEL.	4 '	SURED FROM	110. 12	,		98.1 98.1 0.03	1	7	7	7		86.8 89 79.7 85 73.3 81 68.1 75	8.1 12. GCITY	JET DIAM	00	154.7 \$
TRANSFORMED	DENTIFICATION	ANGLES MEASU	90. 100.	•	1.	1.1 103.2 4 501 7.1	2 0 0 1 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 108 110.	000	10 4 % C	3 106. 3 103. 3 101.	7 92. 8 87. 7 82. 2 77.	.3 121.9 FREE JET	FREE	AERO.	FT) ARC
FLIGHT		8	80.			92.0 82.0	a a w -	400	94740	- 60 00 0	in a c c	40-1	5 114.3 115 FACTOR	000	ANECH CH	2 M (40.0 F
G G			60. 70.	-	1	6. 6. 6. 6. 7.	0 ~ 4 L	6 100 100 100 100 100	. 6 105.1 1.8 104.6 1.1 102.6	4 6 9 9	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9 85. 1 78. 0 72. 5 67.	7 113. SCALE	ALC.	O	12.2 M
			50.			91.8 90	929	222	2000	5 6 8 C	92.7 93 92.7 93 98.7 91	! !	113.8 113.	1.000 TEST DA	LOCATION TEST POINT	7201
584			40	E0 50	88 00 01	50 50 50 86.8	8 2 8 5	9.00	50.50	98.98	i	77. 69. 56.	113.0			8
				FREG		200 200 250 315	4 2 9	10119	20 6 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	900	16000 20000 25000	40000 50000 63000 80000	GASPL.		N.	2

														O? OF	RIC) ()	IA Ol			\G JA	E I	3												T SPEED (0, FPS)		
:				_1 69	•	n on		ca r	. (0)	9	. •	a e	9	a "		10	10		8	~ 4	n								-			3 29.12		FREE-JET 0. M/SEC (
LEVELS Si.				70.3	171.9	173.9	173.6	173.9	172.6	1.		169	168.6	167.9	166.6		•	163		161	20								9			TAMB	ZEL HO			
URE LI T. St.			160.	67,7			-	85.5	80.9	77.4	74.4	72.7	69.1	86. 86. 86.			39.4	•											900					- FULL		1
JNO PRESSUR! 2400.0 FT.	_		150.	94.6	95.4		94.9	2.0	93.6	86.9	84 . A	82. Y	78.6	76.8	60.09	64.4	55.6	7 00										3	104.2	104.2	Ģ-	SBS9	29. 2980	3		
ี ถึ	¥	DEGREES	140.	95.9		90.0 90.4			8.98										ļ									•	20.0	n	SHIFT	IALPHA		E 00 SQ		
NTED SO			130.	g	00.0	n (1)	- 1		98.0	1			ı			i			1	8	!								9 00	2	FREQUENCY	IAL	L	\$12E (1400.00		
KTRAPOLATE STD. DAY.	FJ-ZER-FMODL	1 INLET		6 94			- 1			1			l) /	8	ou o	N G	a									1		3 113	FREG	_ ;	8	5		
D EXTI		FROM	. 120			5 93.4	- 1		93.9	1			88	9 6	2 0	77	23	2 10	37	2								ł	30	50	<u>0</u>	N294	¥0¥	2.2 SQ		
D, AN	TION -	EASURED	110	80.1	82.	9 6	88	98	87.6	92.	87	87. 86.	85.	2 6	90	76.	200	54.4	36.				,						104.0	104	7.640	2	KDG.	9032		•
SCALE PERC	FICAT	7	100.		٠		90.5	92.0	2.4	91.0	5	90.2	89.7	88.6	95.4	95.6	78.5	61.8	46.7	23.3									108.2	1	RATIO	TAPE	AERO.	Si		
MED.	DENTIFI	ANGLES	0	78.3			4		83.6	4.		84.7		93.5	• 4		- ·	0.00		Ġ								(103.0	Ŋ	AMETER R			NGE O FT)		
TRANSFORMED, SCALED, AND E O DEG. F., 70 PERCENT R.H.	-		90	75.8	77.9		- 4		61.9	1 .	3.0		۱.	9 c		-	•	2 2 3 3 3		•								4) A i		DIAME		5 5	FIC RANGE 2400.0 FT		
			20.	-	41		d	0 10	- r	٩	9	.	a	- 6	, e	2	oi a	4 0	<u>ن</u>	۲.								•	2 102	N		17.	I ANECH	ACCUSTIC 5 M (240		
FLIGHT 59				.0.74	ص د	4	10	9 6 9 6	.0	4 6	N	رب ھ	ທ	.6 79 77	9	0	٠.	9 6	₹.									!	300	7		TE 02	_	731.		
:			9	2 72	74	22	83		9			8 8 8 6 8 6		77 R					28	_								١.		1		TEST DATE	DCA110	L		
			8	72	73	12	82	C	84.6	8 8	80	78	76	7 10 10	70	98	8	900	18.										26	4		TE	3	T POINT 7201		
			40.	68.4	69.4	73.00	80.0		83.1	4 .				68.0				27.4										1	90.00	4				TES		
•			İ	7. 50	88	3 2	125	160 200	220	400	200	630 800	1000	1250	2000	2500	3150	4000 5000	0069	0008	12500	00091	20000	31500	40000	20000	6 3000 8 0000	0019	PNL	PNET			•	MGDEL 7200	5	85

9 112.7 112.5 113.0 114.3 114.7 117.4 121.5 128.5 131.6 128.9 123.5 165. ST DATE 02-27-78 TAPE NO. N299 IALPHA SBS9 TAM GCATION C41 ANECH CH AERO. RDG. ADH131 PAMB 29.5900 RELHU NT ACCUSTIC RANGE NT ACCUSTIC RANGE 12.2 M (40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL	EL TEST PC 7200
.0 74.7 77.4 79.7 81.6 82.0 81.2 79.8 85.4 88.0 85.9 78.4 73.8 143.2 2 69.2 71.4 73.3 73.4 74.0 75.3 73.5 80.8 81.3 79.2 72.4 67.5 142.2 69.2 65.6 68.2 66.8 68.7 67.5 68.3 75.1 75.6 74.7 64.4 59.6 144.2 7111.9 112.7 112.5 113.0 114.3 114.7 117.4 121.5 128.5 131.6 128.9 123.5 165.5	74.0 74.7 77 68.2 69.2 71 62.2 62.6 65 111.7 111.9 112
.7 69.8 92.4 92.5 97.1 86.4 93.6 94.6 99.2 99.7 99.4 84.9 89.5 145. .3 86.2 89.7 91.4 91.7 92.2 90.6 91.7 95.8 99.1 96.6 89.3 84.1 146. .6 81.5 84.7 85.8 89.7 89.9 85.8 86.6 90.2 93.9 91.3 83.9 79.6 145. .0 74.7 77.4 79.7 81.6 82.0 81.2 79.8 85.4 88.0 85.9 78.4 73.8 143	87.7 69.8 92 85.3 86.2 89 80.6 81.5 84 74.0 74.7 77
.0 98.0 99.1 99.2 101.0 102.6 102.3 105.9 107.9 111.7 111.2 105.1 96.0 15 96.6 97.5 98.0 99.8 101.2 100.4 103.8 105.9 109.2 109.2 102.9 95.3 1.6 96.0 97.4 97.6 99.7 100.9 99.4 102.8 104.0 108.1 106.7 101.3 93.2 1.5 93.6 94.1 95.9 98.6 99.9 96.8 99.5 101.8 104.4 103.6 98.6 91.3	97.0 98.0 99 94.5 96.6 97 93.6 96.0 97 88.5 93.6 94
.8 99.4 101.2 101.7 102.0 104.3 104.7 106.4 110.4 115.6 116.5 109.9 100.1 151.6	99.8 99.4 101 99.8 99.1 99 97.7 96.4 99 97.8 98.8 99
.6 99.4 98.7 99.0 100.6 102.5 103.1 106.0 110.7 117.8 122.8 118.0 108.7 155.5	103.6 99.4 98 103.8 104.0 103 103.2 104.2 105 102.0 102.2 103
.1 91.1 92.9 \$3.2 94.3 96.9 97.8 100.7 107.4 116.9 120.3 119.5 114.4 154.3 .3 92.4 94.4 94.9 95.8 98.4 99.0 102.4 108.9 118.0 121.9 119.8 113.4 155.3 .9 99.0 99.5 96.3 98.1 99.2 100.9 104.0 110.0 118.8 122.2 119.4 112.5 155.6 .0 101.3 102.8 102.4 102.5 102.8 102.2 104.9 109.8 118.2 123.0 118.7 110.4 156.0	91.1 91.1 92 94.3 92.4 94 99.9 99.0 98 98.0 101.3 102
.3 69.8 68.8 69.6 90.0 92.6 95.0 97.1 99.8 107.1 112.0 116.5 115.1 148.5 .9 86.2 69.2 90.0 91.8 93.9 94.3 97.0 101.7 109.7 113.9 117.1 115.2 149.9 .4 86.9 90.7 90.0 91.6 93.7 95.3 97.5 102.7 113.3 116.7 118.6 114.8 151.8 .2 90.3 91.5 92.1 92.4 95.3 96.4 98.6 104.3 115.6 119.2 119.4 114.6 153.4	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6
ANGLES MEASURED FROM INLET, DEGREES . 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160.	40. BO.
UNTRANSFORMED MODEL SQUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC IDENTIFICATION - MODEL FJ-150-FMODL X72020 BACKGROUND FJB150-AMODL X01500	LWA .

(, ž.

14 109.0 113.7 114.0 146.6 10. 140. 150. 160. PWL 14 109.0 113.7 114.0 146.6 10 111.9 115.2 114.6 146.4 1.2 115.5 117.7 115.4 1E1.0 1.3 119.4 119.3 115.9 153.7 1.3 122.3 120.2 11.9 153.1 1.3 122.3 120.2 11.9 153.1 1.3 122.3 120.2 11.9 153.6 1.9 119.9 114.2 104.7 155.3 1.9 119.9 114.2 104.7 155.3 1.9 119.9 114.2 104.7 155.3 1.9 119.9 114.2 104.7 155.3 1.9 119.9 114.2 104.7 150.7 1.9 119.9 114.2 104.7 150.7 1.9 119.9 114.2 104.7 150.7 1.9 119.9 114.2 104.7 150.7 1.9 119.9 110.7 150.7 1.9 119.9 110.7 150.7 1.9 114.4 108.1 101.7 150.7 1.9 114.9 105.2 100.2 149.7 1.9 114.9 105.2 100.2 149.7 1.9 114.9 103.1 98.0 148.7 1.9 114.9 103.1 98.0 148.7 1.9 104.7 101.0 97.4 148.5 1.9 90.5 92.9 92.8 148.0 1.9 90.5 92.9 124.3 163.7 1.6 130.6 126.9 124.3 163.7 1.6 130.6 126.9 124.3 163.7 1.7 101.0 97.4 148.5 1.8 90.5 90.0 REFRACTION CORRECTION As.00 TURBULANCE CORRECTION As.00 TURBULANCE CORRECTION As.00 TURBULANCE CORRECTION As.00 PAMP 29.5900 RELHUM 59.70 1.9 12.5 12.5 10.1 - MODEL 45.11 M/SEC-1			•							OF	RIG F	ilN,	AL OR		AG JAI	E	S Y							- YES - YES	A pet transcent		ET SPEED (148,0 FPS)
99. 0 DEG. F., 70 PERCENT R.H. STO. DAY, 54 40.0 FT. AND IDENTIFICATION - FJ-150-FMOL X72020 ANOLES HEASURED FROM INLET, DEGREES ANOLES HEASURED FROM INLET, DEGREES ANOLES HEASURED FROM INLET, DEGREES ANOLES HEASURED FROM INLET, DEGREES 80. 70. 80. 70. 100. 110. 120. 130. 140. 180. 160. 160. 160. 180. 180. 180. 180. 180. 180. 180. 18				PVL		146.6	148.4	152.0	154.8	155.3 255.6	155.0	154.0	152.5	150.7	150.0	149.6	146.7	140.6	148.0	146.5	146.3	• •	165.7	CORRECTION			45.11
89.0 DEG. F., 70 PERCENT R.H. STD. DAY, 54 1 DENTIFICATION - FJ-150-FMODL ANALES MEASURED FROM INLET, DE 80. 70. 80. 90. 100. 110. 120. 130. 1 80.8 91.2 92.4 94.0 95.9 96.0 100. 110. 120. 130. 1 80.8 91.2 92.4 94.0 95.9 96.0 100.4 106.0 1 80.9 91.2 92.4 94.0 95.9 96.0 100.4 106.0 1 80.9 91.2 92.4 94.0 95.9 96.0 100.4 106.0 1 80.9 91.2 92.4 94.0 95.9 96.0 100.4 106.0 1 80.9 91.2 92.4 94.0 95.9 96.0 100.4 106.0 1 80.9 10.1 92.9 10.1 102.9 10.4 110.0 116.9 112.2 1 80.0 105.1 100.1 102.9 100.1 102.9 100.0 116.9 12.0 1 80.0 105.1 100.1 102.9 101.1 102.6 102.7 103.4 114.6 114	40.0 FT. ARC	72020	REES	150. 1		0 113.7 114.0	5 115.2 114.0	2 116.9 116	0 120.0 115	5 120.0 113	0 118.4 108	116.0 107	0 12.3	4 108.1	4 107.2	2 106.3 1	104.3	7 101.0 97	2 97.9 92	5 92.3 97.3	9.10	6 67.4	126.9		2	\$859 29.5900	- (N1 DS
80. 70. 60. F., 70 PERCEI BO. 70. 60. 90. 100. ANGLES MEA. BO. 90. 70. 60. 90. 100. 90. 8 91. 2 92. 4 94. 0 93. 9 8 90. 8 91. 2 92. 4 94. 0 93. 9 8 90. 8 91. 2 92. 2 93. 7 95. 0 9 93. 3 93. 3 93. 1 95. 3 96. 0 9 94. 7 94. 4 94. 9 96. 9 97. 3 8 94. 7 94. 4 94. 9 96. 9 97. 3 8 96. 1 96. 2 96. 4 96. 5 96. 0 1 04. 5 103. 6 103. 1 102. 9 101. 8 1 104. 5 103. 6 103. 1 102. 9 101. 8 1 104. 5 103. 6 103. 1 102. 9 101. 8 1 105. 1 101. 3 99. 0 100. 5 102. 7 1 101. 2 101. 4 101. 9 103. 1 103. 8 1 101. 2 101. 4 101. 9 104. 7 103. 8 1 101. 2 101. 4 101. 9 104. 7 103. 8 1 101. 2 101. 4 101. 9 104. 7 103. 8 1 101. 2 101. 4 101. 9 104. 7 103. 8 1 101. 2 101. 4 101. 9 104. 7 103. 8 1 101. 2 101. 4 101. 9 104. 7 103. 8 1 101. 2 101. 4 101. 9 104. 7 103. 8 1 101. 2 101. 4 101. 9 104. 7 103. 8 1 101. 2 101. 4 101. 9 104. 7 103. 9 1 101. 2 101. 4 101. 9 104. 7 103. 9 1 101. 2 101. 4 101. 9 104. 7 103. 9 1 101. 3 101. 4 103. 9 104. 7 107. 7 103. 9 1 101. 5 101. 4 103. 6 103. 1 104. 9 114. 6 1 101. 5 101. 4 103. 6 103. 1 104. 9 114. 6 1 101. 5 101. 4 103. 6 103. 1 104. 9 114. 9 1 101. 5 101. 4 103. 6 103. 1 100. 9 1 101. 5 101. 5 101. 5 100. 9 100. 9 1 101. 5 101. 5 100. 6 100. 9 100. 9 1 101. 5 101. 5 100. 6 100. 9 1	STD. D		i	20. 130.			108.0	4 114.5 118	1 117.0 121	3 118.0 121	0 116.9 122	.3 116.9 120 K 116 9 118	6 118.8 118	2 114.8 115	9 113.3 113	.0 111.5 111	2 109.3 1	.7 108.6	9 101.2 1	.6 100.9	6 69.8	7.2 77.5	.0 127.6				SO CH C
59.0 DEG. F. 50. 70. 60. 10. 10. 10. 10. 10. 10. 10. 10. 10. 1		NO	MEA	90.		94.2 95.7	93.9 96.0	96.0 97.7 1	98.6 101.5	100.4 103.1	102.7 105.0 1	102.0 104.9 1	163.3 105.4 1	105.1 106.2 1	103.9 106.1	102.6 105.7 1	101.0 103.9 1	100.4	95.6	0.0	83.8 81	70.0 70.	114.6 116.8	121		RDG.	ARC 164.
8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	. O DEG. F.	IDENT	ANG			.7 90.6 92.	2 82.4 94.	3 93.1	2 96.4 98.	2 98.6 99.	9 101.1 102.	.3 99.0 100.	0 105.1 104.	6 102 9 104.	4 101.4 103.	.4 101.8 103. 8 102.3 103.	.9 101.3 102.	.6 101.4 102. 5 100.8 101.	5 99.6 98.	.3 94.5 94.	- 64.0 85.	76.4 77.	9 114.0 114	FACTOR	000	27-78 ANECH	COUSTIC RANGE M (40.0 FT
그 그 그는 그는 그는 그는 그는 그는 그를 그 살으면 그를 보고 있으면 그를 보고 그를 보고 그를 보고 있다. 그를 보고 그를 보고 있는 그를 보고 있다.	30			9		9 90.5	90.8	93.0	6 96.1 96	7 100.6 99	3 100.1 99	0 105.1 101	2 104.9 105	4 101 3 101	7 101.9 101	101.2 101.4	1 99.7	6 99.7	3 95.6	0 92.6	9.09 90.09	3 69 2 7	0 114 4 113	SIZE SCALE	بن	22	INT 12

												£.	~										1	ý														
																									-													
							•				0	eri F	P	IN O	AI OF	.	P. Q	A(AL	: 1 .17	S Y															SPEED	148.0 FP8)	
			~ ·			. 60	10		OI :	6	· · · · · · · · · · · · · · · · · · ·	10	5 6	2 6			_	2	8	•	•	0									.			33.00	- G	FREE-JE	45.11 H/SEC (
2	166.6	170.	171.4	172.	173	172.6	171.	170.	170.2	168.	168.4	167	10/	166.3	166.7	166.3	165.7	166.2	185.8	163.9	.62. B	164.								9	0			TAMB	RELIECT			
160.	63.		88.0	8.8	83.7	79.1	77.7		72.0			•	63.7	200		50.1	37.2	19.0												1	9 6	94.0			8		- FULL	
180.	93.7	0.70	8 8 8 6 8 7 8 7 8	929	9	10 10 10 10 10	90.7	88.3	85.8	69.7	80.2	78.7	27.7	70.6	70.1	65.1	67.0		23.5											6	04.6	9.0	a -	SBS9	29.5900	1	2	
140.	93.7	96.4	97.5	- 6	100.1	90.3	φ	-	e .	(O)	-	N •	4 0	0 00	4	a	0	-	44.1	20.9													ICY SHIFT	 ALPHA	PAMB	•	(1400,00 \$0	6.
130.		9	•	27.5		96.0	93.6	95.4	93.0	92.5	92.3	9 ·	90	9 - 6	63.8	79.3	72.7	67.7	55.0	34.8	ი ი										110.6		FREQUENCY	-				Ì
120.	52.7	. 7	87.3	6.00	89.6	90.3	90.4	89.3	90.0		88.0		0.76	9 6	.! .	79.3				39.9										_		106.9		N299	ADH131		2 SQ CM	
<u>.</u>	٠,	79.2	81.3	84.4	95	86.1	65.7	82.8	85.7	92.6	82.0	92	7 Q	 	81.0	78.2	72.3	66.6	56.2	•											8 2 5 6	04.2	7.640	2			9032.	
.joo.	-1 -	•	79.2	10	4	Q.	n	~	0	0		٠ ب	4 (α	10	•	6													102.5	_	RATIO	M	AERO. R		SL	
9			0.0	. I.							.,		-	•	.) .						œ.									•	2	w.				RANGE	.0 FT)	
90	١.		76.8	٠,				٠.		•								•												•	• -	1	DIAMETER		ANECH CH	TIC RA	0	
70.	1	60	75.9	2	•	0	N	6	ص ا	0	6	1 0 (ē (<u>ي</u> د	-	<u>ر</u>	~	6	6	0	G, E									•	2.5	•		, c	C41 AN	ACOUSTIC	E E	
.09	6	·	40	9		•	8	6	د	Ġ.	-	ن د	g C	i c	9	b	0	8	7.		e.									•	9 0	9				1	731.	
. 60	0	9	.1 75	40	. 40	4.	9	पं	4	io.	8	٠.			-	a	•	80	4.	ල ල										•	N O	0		EST D	LOCATION	POINT		
4 0.		· —	71.9 73		, Q	i e	4	a	10	3		N (Où K	2.0			Q.	9	_	~											7.0	6.7 99		F		TEST POI	7202	
	.1		200					L							1						0000	1 0000	12500		25000	31500	40000 10000 0000	50000 83000	80000	•	PASPIC PNIC						7200	از ا

FLIGHT TRANSFORMED, SCALED, AND EXTRAPCLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

X72021

IDENTIFICATION - FJ-150-FMODL

										0	RIF	GI P	00 N/N	VL)R	PQ	AG U <i>P</i>	出し	is T	i f										
																													60,00
				Z				6 147.0	7 146.2	4.050.4	7 162.6	4 153.4	3 153.9	7 154 7	•	7 153.0	0	.8 150.0	.5 149.2 .1 146.4	0	.6 147.1	1.0	4	4.02.4	Ø 142.7	6 141 5		TANAT	RELHUM
	X72630 X01300		150. 160		•		•	14.2 113	16.6 113	17.3 113	17.5 109	•	16.1 106	. 80	_	0.6	9	٦,	03.3 86	95	01.1		•	•		70.8 67		9	29.5900
	-FMODL -FMODL	DEGREES	140					110.01	11.0	15.2	116.61	120.1	120.7	122.5		10.0	0	0	- 0	-	106.6 10	9 0	7.8	4.40	٠.	76.0	130.4	A10 14	PAMB
	FJ-300-FMGDL D FJB300-FMGDL	M INLET,	0. 130.					1 108.4	107	0 212	12	1117	7 117.8		117.	7 117.3 5 115.4	Ξ	7		110.	4 108.6	9	66 9	6		79.1	-		130
	MODEL BACKGROUND	SURED FROM	110. 120					95.4 96	8	95.5 101 97.1 103	7	-	32.8 108.7 34 4 108.2	-1-	_	05.0 109.7	7	5.9 109.2		107	3.0 105.4		88	 		72.8 80 66.6 72	. 6	ļ	RDG. ADH130
	•	MEA	100.					0		9 1	l.	-	20.4.10	-	4		~	_	N 61	0	•	- מופ	9	N O	ω.	75.1 7	•	TAPE	AERO. RD
•	DENTIFICATION	ANGLES	8					7 90.0		9 9	92	96	98.0	20	8	6 100.9 105.9	103.	2 102.3	102.	5 101.	0 0	-	96	5	4 81.6	4 73.1 6 67.0	13.5		ᆼ
	IDE		70. 80					0	.7	200	4 93.	.9	0.4	5	.1 97.	5 102 102 103	.101	100.	4 7	.2 99.	8	98	4 96.		5 81.	. 9 72. 7 65.	.3 112.	9-27-78	11 ANECH
			60.					6	,	0 4	9	۲.	96.2 96		60	20. 20 104 20. 20 104	_	41	98.7 98 98.2 98	0	97.2 97	, 0	0	د	77.0 78	70.4 71 64.2 66	, <u> </u>	1	TION CA
			20					-	ب	98.3	4	4	7.4	وام	0	103.2	a	ø.	. 70 . 70	4	60.0	. 0	a.	<u>ب</u>	.0	67.8	0.6	TEST	LOCATION
			40.					83.5		87.5			9. K	.ı .		01.0g			9.9 96.6		93.00 0			000		67.8 61.6			

							ori Of	G P	NA OO	IL I	PAQU	GE IAI	: I: _IT	5 Y												- YES - YES		ET SPEED (326.0 FPS)
																										CORRECTION CORRECTION	32,00 60.00	FREE-JE1
ARC								144.0	150.4	5 151.7	153.7	153.9	153.3	0 152.7	4 181.4			6 149.7 2 149.0	149.0	3 148.7 9 148.8	9 148.3	147.4	7 146.0	8 142.8	9 164.8	REFRACTION C TURBULANCE C	TAMB RELHUM	
FT.			160					.0 111.	0	.6 113.	.114.	9:1	.0.	.1 111.	4 0 	6 106	. e .	. 6 104.6 . 1 103.2	0	ი. 			φ σ	. 1 64.	.0 123.8	REFR/ TURBI	3859 29.5900	IN) - MODE
SB 40.0	X72030	DEGREES	140, 150					07.7 111	16.6 117	17.3 117	19.9	-	19.9 115	D (16.6 112	9-	- 4	10 c	0	6 4 	4	86.9 85	83.1 80	69.1 62	129.5 127	326.00 48.00	IALPHA SB PAMB 29	S1 ZE 23.99 SG 1
DAY,	-FMODL	INLET, D	130.					104.1			19	115,5	116.2	116.4 1	114.6	114.6	112.7	120.01	109.6 1	107.1	6	9.7.0	85.7	70.8	126.7			CM (23
R.H. STD.	FJ-300-FMGDL	HEASURED FROM I	. 120.					- 1	_	0 104.1	7		9 0	Γ.	6 109.0			4 109.2	Γ.		65		6 87.1	1	8 120.7	JCITY (FT/SEC) DIAMETER (IN)	N299 ADH130	7 80
CENT		MEASURE	00. 110						- a	1.0 95.6 8.0	9	6 101.	- 9 20 103 80	1 103	3.5 103.8 3.5 104.6	104	90.	9 105 105 105	6 103	5 101 8 101	3 95	- 87 87 87	2.9 80.6	0 67	1.5 115.8	T VELC E JET	TAPE NG. Rg. RDG.	25 154
., 70 PER	DENT!F!C/	ANGLES	90. 100								, r	4.	4 4	0	- n	0		4 a	9	- - •	-		84.6 82. 76.1 77.	0	15.4 114	FREE JE FRE	TA	NGE O FT) AR
DEG. F	=	:	90.					0	, a	٠. K	9	ų i	- -	0	. n	0	. .	0 d	6	o 0	٥		85.6 76.2	က	114.8 1	FACTOR	-27-78 ANECH CH	STIC RANGE
20.0			20					8		9.2	93.	8	66	103.	9 6	503	100		101	 	98	9 6	1 83.9	71.	114.8	SCALE FA	92	ACGUSTIC
			. 60.					•	5 5	•	95	98	108	101	107	0 105	2 103	7 103.	.1 103.		88	9 8	96.4	68	3 115.2	S12E 000 0	TEST DATE	INT
			.10. 50				•	8	0 0	•	0	۲.	. 4 _	D (- r	6	. ro	02.5 102.	8	ო –	-	0 0	76.4 76.7	Q	5.5 115.	MODEL/FULL INPUT 1.	F-	TEST POINT 7203
			FRED	30	889	125	160 200						_	-		-1-			Γ,		- 1		50000 6	ì	GASPL 115	A		MODEL 7200

												OI Or	RIC	GIN PO				PA(32, 00 60, 00
	2	RA 1	- e	9.0		1.8	7. 8.	a ·	4 0	0	8.8	18.2	9.2	 	9	6.3	6.4	0.9		- 1	62.0	7						e.	.				RELHUM 60
	ġ.	-	١ ٥	-	- 40	0	ю. П	α (- اِد	- 0	· ~	4	0.	- 0	2 @	0	~	9	9		9.	2						.0 162	a	-		'	REL
	. 160	1				i			-							1		3 40		,									4 94	ļ	G,		29.5900
ES	9	1				ı			- 1							1		63.3	- }									102	102	102.	SHIFT	ı	
DEGREES	140.	7 60	9 6	27.	0.00	98	99.4	7.1	200	2 0	90.4	88.4	96.2	4 4 2 4	80.0	76.8	72.7	65.3	500	16.1								106.9	109.1	109.1			PAMB
INLET,	130.	910	93.6	95.3	96.1	95.1	95.1	4.00	200	92.0	92.4	91.5	89.7	86. /	855.1	82.2	77.6	73.1	64.0	30.7	0.8								n	110.1	FREQUENCY	•	
	120.	le C	a	9	ෆ		N	~ (NIC) 4	o o		4.	40	4 10	6	a	74.2	0	1 4	•								106.0		Ŧ		ADH130
RED FROM	ö	4	N	<u>ш</u>	9	4	9	4 (هاد	2 0	9	10	ro (۰ و	۲N	9	Ġ	4 (٠.	- 4	9							~	0	0	640		
MEASUR	-					l	~	_,				ı				ļ		6 71										•	10	0		1	R RDG
ANGLES P	00_	L				1			1			ŀ				ı		73.											102.	-	RATIG	1	AERG
ANG	8	1 .							-1			- 4						76.7	-1										104.4		AMETER		=
	90.	ь.							-1							.i .	-	77.9	-1		_								N	10	DIAM		ANECH CH
	.02	6	· -	_	N.	9	o.	۰ ا	D R		ø	0	۰ و م	4 1	, N	0	ď	<u>-</u> (Na	<u> </u>				-					02.4	-		3	N
		a	10	0	a	a	Φ.	<u>ن</u> ا	o a	9	^	0	4 .	0 1	. ^	a	D.	<u>ه</u> و	20 (4	0	-								4	_			- K
	9	L				77			0 4	98	8	-	5	- 6				72						-				3	5	_			LOCATION
	8	1 .					•	•	-1			-1	•					9.69											99.8				בֿב
	ę								-1			-1				1 -	-	61.0	-1										97.2				
	3EQ	1				l			1			- 1				l		3150	1			8	000		000	00000	200		PN				

0
8
٦.
o
-
_
9
5
-
-
`
-
6

						0 0)RI)F	GI P	N/ OC	AL)R	P	A) U	ge Al	: I'	8												SPEED 367.0 FPS)	Sixon
																				i				•		29.30 44.60	FREE-JET 7.96 M/SEC (
			2	:		146.5	47.6 7.0 8.0	20.3	51.5	62.3	3 6	53.5	53.0	152.4	50.4	120.1	49.7		146.7	45.5	4.	43. N	141.6	41.4	163.9	TAMB	1	
X72040 X01400		160.				. •	8.5	07.6	05.4	03.7	000	03.0	02.4	9.00	98.5	97.2	0.00	94.2	80.00	90.7	88.7	79.1	72.8	56.9	118.5		MODE	
X72040 X01400		150.				13.5 1	9.4	16.7	0	7.0	r K	2	-	- 00.00		a ·	9	0	- H	0.76	9.0	מו פ	4	70.4 61.3	24.4	SB59 29.5700	(N)	
MODI. MODI.	DEGREES	140.				10.01	1.6.7	16.3	19.1		2 - 2	0	4	 +	, e	6.		9		0.0	~!	87.7	91.2	75.7 69.4	29.4 1	ALPHA PAMB	SI ZE 23.99 SQ	
FJ-400-FMGDL FJB400-FMGDL	INLET, D	130.				06.4 1	26.55	30.0	2	ю. -		a	2	<i>a</i> •	- -	7	13.1 1.8.1	7	ri F		10	10	0	76. 8 72.6	27.2 1		_	ţ
		120.				20		04.9	06.9	08.4	2 6	12.2	11.5	12.2	11.5	11.4 1	0.01 0.01	0	41	- -	φ.		0	80.5 73.2	122.2 1	N299 ADH991	SQ CM	
MODEL BACKGROUND	EASURED FI	110.				l. '	40	96.9	2	+		-	_	-	- -	_		-					ŀ	72.1	116.1 1	RDG.	154.7	. •
ı	ME.	100.				_	m a						-	~ (-	- -		- ·	- 	N .	۸ ۵	_	74.0	12.9 1	TAPE	ARC	
ICATION	ANGLES	90.				1	40	• •	4	φ (, A	. 0	6	0.0	20	2	4 R	-	- ·	4 W	9	o a	a	72.9	12.6 1	Ā	RANGE	
DENTIFI		.00				6	<u>ب</u> د	9 0	0	0 (, c	ı o	10	<u></u>	0	6	- 7	9	- 0 (N W	0	N IO	0	64.4	1.0.1	78 CH CH	11C RA!	
-	<i>‡</i>	70.				N	a r	, 10	4	W I	ه م	0	-	- (i N	'n	.	0	4 (n	4	4 R	0	71.9 7	10.1 11	02-27-78 C41 ANECH	ACGUSTIC 2 M (4	
		.09				9	6	ر د د	9	- (7 10	9	6.	4 0	ю	4.0			0.0	4	0 -	a	69.1 7 64.1 6	0.2.1		12.	
		50.				o.	• ·	- ^	6	ip i	n u	0	4	6.	4 6	~	-	0	a (ب ان ق	6	4 6	4	0 O	11	TEST DATE	T N I	
						6	5.3	3	_	_ (3 (o	<u>۔</u> ص	10	2 4		~ <		0	. 0	L		0	7.2 67 5.9 60	8.9 109		TEST POINT 7204	
		•	FREG 50 63	о ю	00	1			i i			-	_	_	1						1			0 67. 0 60.	DASPL 106		MGDEL 1 7200	

IGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC	CATION - FJ-400-FMODL	ANGLES MEASURED FROM INLET, DEGREES	. 90. 100. 110. 120. 130. 140. 150. 160. PWL		8 89.7 80.3 91.1 98.0 1	5 91.6 90.2 91.7 100.5 109.0 7 92.1 92.0 93.2 102.3 110.7 6 93.0 93.2 94.8 104.8 112.7 9 94.7 94.8 96.9 106.7 114.4	9 96.1 96.4 98.8 106.9 115.2 118.4 114.6 112.1 151.9 8 97.6 97.6 100.0 109.6 114.9 120.0 114.7 111.6 152.8 2 100.1 98.6 101.4 110.2 115.6 120.1 114.1 112.9 153.0 5 100.7 100.4 102.8 110.8 116.1 118.9 112.8 112.3 152.6	5 99.6 99.8 103.2 110.8 116.5 117.7 113.2 112.3 152.6 0 101.5 101.6 103.7 112.1 115.6 117.0 112.5 111.6 152.5 0 106.2 102.7 104.7 112.0 115.0 116.0 110.4 109.1 151.8 3 105.4 104.1 105.3 112.2 115.0 113.9 108.7 107.4 151.4	3 104.2 105.3 105.8 111.7 113.5 111.6 107.2 106.8 150.3 1 104.4 103.9 105.9 111.4 112.4 110.9 106.0 105.9 149.6 4 103.5 103.3 105.3 110.1 111.4 109.3 105.2 104.8 149.3 5 103.8 102.2 104.8 107.9 109.5 107.0 103.4 104.6 148.6	2 102.4 100.8 102.8 106.7 108.8 105.8 102.9 104.8 148.5 2 102.4 100.1 101.6 104.5 106.4 103.8 102.1 105.1 148.3 9 101.2 98.0 99.2 103.7 103.4 101.2 100.4 104.1 148.7 8 98.6 95.6 95.4 99.0 100.6 98.0 95.5 99.3 148.2	2 94.0 91.9 91.5 95.9 96.3 95.0 91.9 96.5 0 91.9 96.5 0 91.9 95.2 0 91.9 95.5 0 91.9 95.5 0 91.9 95.5 0 91.9 95.2 0 91.9 95.3 0 91.9 95.3 0 91.9 75.9 75.9 76.3 73.3 80.9 79.8 77.0 71.9 76.0 70.1 68.2 66.5 71.1 70.0 67.2 62.1 66.2	FREE JET VELOCITY (FT/SEC) 387.00 REFRACTION CORRECTION - YES FREE JET DIAMETER (IN) 46.00 TURBULANCE CORRECTION - YES	TAPE NG. N299 IALPHA SB59 TAMB 29.30 Ch aerg. RDG. adh991 Pamb 29.5700 Relhum 44.80	RANGE SIZE SIZE FARGE 117.96 M/SEC (307.0 FPS)	
59.0 DEG. F., 70 PER	DENTIFI		. 70. 80. 90.		.2 68.9 69.7 90.	90.2 90.6 91.6 90. 90.2 90.7 92.1 92.9 90.7 92.4 93.0 93.0	93.6 94.9 96.1 96. 95.5 96.8 97.8 97. 97.8 99.2 100.1 98.	99.6 99.5 99.6 99. 103.2 105.0 101.5 101. 106.3 105.6 106.2 102. 105.4 103.4 105.4 104.	102.8 103.3 104.2 105. 102.2 102.1 104.4 103. 101.4 102.4 103.5 103. 101.7 102.6 103.8 102.	101.2 101.9 103.1 100. 100.0 102.2 102.4 100. 99.5 101.9 101.2 98. 97.5 99.8 98.6 95.	94.3 94.2 94.0 91. 90.4 93.0 91.9 87. 86.2 84.5 84.2 82. 78.6 75.3 75.9 76. 70.1 68.4 70.1 68.	FREE	02-27-78 C41 ANECH CH AE	ACGUSTIC RANGE 12.2 M (40.0 FT) ARC	
			40. 50. 60 FREG	50 63 60 100	3 91.7	90.3 91.7 90. 92.7 92.0 91. 93.2 92.6 92.	98.3 95.3 95.0 98.0 96.4 98.1 98.1 98.	108.6 105.1 101. 107.8 107.7 106. 105.6 105.9 106. 104.6 104.8 104.	102.7 102.8 103. 103.0 102.2 102. 102.7 102.7 102.	101.5 102.2 102. 99.0 100.3 100. 98.2 99.6 100. 95.3 98.8 99.	94.1 94.1 95 88.4 88.1 90 85.7 84.4 86 77.8 77.0 78 67.8 67.1 68	MODEL/FULL SIZE		MODEL TEST POINT 7200 7204) 3

0
8
Τ,
0
_
79
ŗ
2
-
5
6

CATION - FJ-400-FMODL X72041	S MEASURED FROM INLET, DEGREES	120, 130, 140, 150,	.0 74.7 83.1 90.5 92.4 90.9 83.0 1 .1 76.3 85.6 92.4 94.0 90.6 82.6 1 .7 78.4 67.4 94.1 95.6 91.0 83.3 1 .2 80.2 89.6 94.8 96.5 90.4 84.4 1	79.3 81.3 90.1 94.4 98.0 90.4 83.8 170.4 80.2 82.7 90.7 94.9 97.8 89.5 84.6 170.7 81.9 83.9 91.1 95.3 96.4 87.9 83.6 170.3 81.1 84.0 80.9 95.4 94.9 87.9 82.9 170.2	.8 84.3 91.9 94.1 93.8 86.6 81.4 170.2 .6 84.9 91.5 93.1 91.3 83.9 77.9 169.5 .6 85.3 91.3 92.8 89.7 81.5 75.3 169.0 .6 85.5 90.4 90.8 87.1 79.3 73.6 167.9	.6 85.3 89.9 89.4 85.7 77.4 71.6 167.5 .1 84.5 88.3 88.1 83.7 76.0 69.3 166.9 .8 83.9 85.9 85.8 80.8 73.4 67.6 166.2 .2 81.5 84.3 84.6 78.8 71.5 65.6 166.2	.3 80.0 81.7 81.5 76.8 89.1 62.8 166.0 .7 77.0 80.0 77.4 71.4 64.6 56.9 166.3 .9 71.7 73.4 72.1 64.8 64.7 43.7 165.9 .2 64.4 66.5 63.0 55.6 42.2 26.4 165.2	.6 54.6 56.1 48.9 39.4 23.5 164.9 .3 37.2 40.1 28.9 16.5 163.9 16.9 16.9 16.9 16.9		94.1 95.5 101.7 105.0 105.6 99.5 93.3 101.7 101.6 102.7 107.5 109.3 106.2 100.9 95.0 101.6 102.7 106.2 109.3 106.2 100.9 95.0 ATIC 7.640 FREQUENCY SHIFT -9	TAPE NG. N299 IALPHA 3859 TAMB 29.30 AERG. RDG. ADH991 PAMB 29.5700 RELHUM 44.80 SIZE SLZE SLZE SLZE SLZE SLZE SLZE SLZE SL	
ı Z	MEASURED	. 110.	74.7	9 83.9 84.0	6 8 8 8 4 8 8 8 6 6 6 8	6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 - 6 -	2 77.0 2 71.7 2 64.4	3 37.2 10.9		.1 95.5 101 .6 102.7 107 .6 102.7 106	E NG. RDG.	
IDENTIFICATIO	ANGLES	ċ	6 74.2 4 76.1 6 76.0	76.6 79.8 78.0 80.0 81.9 8	3 87.1 8 86.0 5 84.5	0 84.6 3 83.6 3 82.7	5 69.1 5 69.1 5 68.7	.3 61.6 .7 44.2 .3 18.2		94.5 95.2 94 103.6 103.8 101 104.9 105.0 101 DIAMETER RATI	H CH C RANGE 100.0 FT)	
		.	7 72.1 71. 3 73.1 72. 6 75.3 74. 2 76.2 75.	0 76.4 76.9 4 79.2 79.0 1 82.0 80.2 0 81.9 80.7	3 86.6 83. 1 86.2 86. 5 83.9 85. 1 82.1 82.	2 80.6 81. 4 81.1 80. 4 80.3 80. 0 80.4 79.	5 77.4 78. 5 76.4 77. 3 73.6 73. 9 66.4 67.	3 55.1 58. 4 38.5 42. 9.1 16.		6 83.6 83.6 101.1 101.4 6 102.1	DATE 02-2 ATION C41 AC0 731.5 M	
		6	70.9 71. 71.4 72. 72.2 73. 73.5 76.	125 75.9 75. 160 77.1 77. 200 78.1 81. 250 85.8 84.	84.6 86. 81.9 84. 80.4 82. 78.0 80.	77.8 79. 77.1 79. 76.1 79. 74.5 76.	71.1 75. 68.4 73. 62.2 70. 54.7 60.	39.2 47. 18.7 29.	12500 16000 250000 25000 31000 40000 63000	98.5 90.3 90.1 99.1	TEST LGC. LGC. TEST POINT 7200 7204	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, 88 2400.0 FT. SL UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE 59.0 DEG. F., 70 PERCENI R.H. S.TD. DAY, SB. 40.0 FI. ARC

(4

, IDENTIFICATIÓN - MODEL FJ-ZER-FMODL X72050 BACKGROUND	
ANGLES MEASURED FROM INLET, DEGREES	
40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160.	PVL
125	
	1
88.6 91.4 91.2 92.2 93.6 95.7 96.6 96.5 105.7 111.3 114.6 117.3 115.5 1	50.6
90.2 92.5 92.5 92.3 94.1 96.2 97.6 99.3 107.2 115.0 117.4 116.4 115.3 1	52.5
94.3 93.6 95.4 97.8 98.9 100.6 108.8 116.9 119.0 118.9 115.3 195.2 100.8 98.7 100.3 102.7 111.2 118.2 120.1 119.3 116.0 1	54.8
97.4 95.7 96.7 97.5 97.8 99.7 101.6 104.0 112.7 118.8 121.2 119.8 115.5 1	F
101.8 102.6 103.1 101.4 100.4 101.3 102.7 105.4 113.6 118.9 120.8 118.4 114.4 1	P
. 1 101.2 101.3 102.0 103.6 104.9 104.6 106.7 113.4 116.1 122.2 116.3 113.0 1 .7 98.9 99.1 99.4 101.0 103.1 104.5 107.4 114.3 118.5 121.7 117.1 112.4 1	55.4
100.7 102.5 102.0 100.7 100.3 102.2 104.1 107.0 114.9 119.3 119.8 114.5 110.2 1	R
6 100.4 100.4 100.9 101.5 102.8 105.0 107.4 114.0 119.5 117.9 113.6 109.1 1	. Q
98.8 102.4 100.6 100.8 101.2 102.6 103.0 107.8 114.5 118.6 116.4 112.6 107.8 1 98.3 100.9 100.9 100.4 101.0 102.1 104.5 107.7 113.6 117.3 115.0 110.4 106.1 1	U
98.1 100.0 100.7 101.2 101.3 102.4 104.8 107.7 112.6 116.6 113.8 309.4 105.2 1	NL I
96.1 98.9 100.5 100.4 101.5 103.6 103.8 106.9 112.1 115.1 112.1 108.2 104.9 1	
101.6 103.3 103.0 105.3 110.6 113.4 110.7 106.7 103.3 101.3 101.3 103.4 103.0 105.3 103.7 112.5 108.8 106.2 102.1 1	Y
90.1 95.4 96.8 97.9 100.2 101.6 101.8 103.9 106.8 109.8 106.5 104.1 100.4 1	48,1
3 95.6 96.9 99.4 100.9 100.1 102.2 104.6 108.5 104.2 102.0 99.2 1 3 92 6 94 7 98 8 99 9 57 5 98 8 101 4 104 6 101 1 98 9 96 7 1	47.8
82.3 87.9 90.1 90.8 96.1 96.8 94.3 94.3 98.9 99.9 96.8 95.1 93.9 1	5.5
80.4 84.1 87.4 89.8 90.6 91.1 91.0 91.5 94.9 97.9 93.3 89.8 87.7 1	45.1
.8 89.1 80.4 86.4 89.8 92.4 86.7 80.4 83.1 1 .6 81.4 80.1 79.5 86.2 86.9 82.8 79.6 77.2 1	43.0
63.1 66.5 68.6 71.5 71.9 73.1 74.6 72.9 81.3 80.7 76.8 75.1 71.4 1	12.3
67.5 76.3 75.5 72.5 67.3 64.3 1	43.7
GASPL 109.8 111.7 112.0 112.1 113.3 114.7 115.7 118.3 124.7 129.6 130.6 128.6 125.1 1	166.1
TABE ME NOOA 141 DUA CDRO	1.6
LOCATION C41 ANECH CH AERO, RDG. ADHO79 PAMB 29.2940 RE	RELHUM 25.00
MODEL TEST-PGINT ACGUSTIC RANGE 7200 7205 12.2 M (40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL	FREE-JET SPEED 0. M/SEC (0. FPS)
59	

The state of the s

						· · · · ·	•		-										-	***	-	-	• • •	· · ·	-
07/19/79 18.662							OI OI	RIGIN PO	ANA)	Z PA	∖GE J A L	: IS									CORRECTION - YES	98	25.00	FREE-JET SPEED M/SEC (0. FPS)	
				•	.		ल ७	2.0	o ro	ن ن د	4 7	- ID	.4	a	. 1	9 ~	ب م	9 0	967	-				ö	
	ARC				PVI		6 149.		52	155	154	153	1 152. 2 151.	150		2 147. 7 146.			4 142. 3 143.	1 166.	REERACTION TURBULANCE	TAP	RELHUM	DEL	
	ᆸ			160			115.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9 2	4.00	10	109.	106. 105.	104.	102. 100.	98	93. 87.	83.	7. 69	125.1	TURB		. 2940	- MODE	
:	LEVELS 40.0 F	020	S	150.		1 1. 1.	116.0	118.4	119.0	118.4	14.5	113.6	109.4	108.2	106.2	102.0			75.1	128.6	00.	SB29	29.5	SQ IN	
	PRESSURE	X72050	DEGREES	140.			113.0	117.4	120.1	120.8				112.1		104.2 101.1	96.8	•	76.8	130.6	48	ALPHA	PAMB	S12E 23.99	- 22
•	NO PRE	-MODIT				:	109.2	16.9		9 - 1		119.0 118.0							80.7 80.7 75.5	129.6	(FIZSEG)				3
	STD. DA	FJ-ZER-FMGDI	FROM INLET	120.		:	03.1	07.2		13.6		4 4 0 8	13.6 12.6	12.1	09.7	04.6	98.9	89.8	90. 2 81. 3 76. 3	124.7	• и	N294	ADH070	SQ CM	
	D MODEL		g	•			4.00	6 9		47	- a	07.4 1	07.7 1 07.7 1	06.9	. c	2 6	94.3 5	86.4 70 E	72.9	6	VELOCITY JET DIAM			154.7	
	TRANSFORMED ZO PERCENT	IDENTIFICATION	ANGLES MEASURE	100.		:	96.7 96.7	600	. u	V 8 I	-	00		æ m		- 10	00	4.	74.6 67.0	115.7 1	JET V FREE J	TAPE NO	AERO. R	ARC	
	TRANS	ENTIFI	ANGLES	8.			93.0	01 60 I	,,	60	- 7		- 4	9 6	4.9	6.0	.		73.1	۲.	FREE		AE	FT)	
	FLIGHT EQ. E.	2		8			00	- 4		4.0) E	10 Si	0 6	10 0 1	6.0	4 1	- 9	6 0 (1	9 09 0	113.3 114	E S		н сн	LC RANGE 40.0 F	
	9			6.			- 0	၈ မ		40.	7	a 6	4. s	40	00		00	ဖ ့	.5 71		FACTOR 1.000	02-20-78	C41 ANECH	ACOUSTIC 2 M (
	20					je	60 0 10 0		2 Z	- 20	- a	6 100.	9 100 101	5 100 100	'		1 90		6 71	.0 112.1	SCALE CALC.			12.2	
				9			6 4 0 4		2 85. 7 85.	6 103. 2 101.	٦		9 100.	-		ļ	9 90.		5 68. 63.	.7 112.0	\$1ZE	TEST DATE	LOCATION	i i	
				8			55	88	9 8	102. 101.	102	100	000	98	97.	94.	87.	6.5	5.66	111	VEULT.	<u> </u>	-	IEST POINT 7205	
				6		: : : 	86.88	8.2	92.6 97.4	101	100		0 0	l	92	88.	82.3	15.5	63.1	-	MODEL ZE I NPUT				
59	96			_	FREG 50	63 80 100 125	160 200 250 315	400	630 800	1000	2000	2500 3150	4000 5000	6300	10000	16000	25000	40000	63000	DASPL				MODEL 7200	

	1
/EL.8	
	4
SE	1
ESS	9
20	9
SOUND PRESSURE	.B 2400.
60	3
KAT	PA
ZP0	STD. DAY, SE
EXT	8
), AND EXTRAPOLATED SOI	BH
9	H
D, SCALED	PERC
Ņ,	20
TED	
SFO	9
TRAN	ä
Ħ	9
FLIGH	
_	
	1

IDENTIFICATION - FJ-ZER-FMODL X72051

														00)R F	ig P	11/10	IA OF	L	P Qi	A C	ie L	: [5 [TY		•											-JET SPEED EC (0. FPS)		
																																		27. 86 26.00		FREE-JET 0. M/SEC (
		Ę	170.1	171.4	1,6,4	172.9	173.3	173.0	172,4	8 TZ	27.17.	180.0	166.5	167.8	167.3	165.8	165.6	164.4	- 605	162.0	160.7	160.0	161.4								163.5			TAMB RELHUM				
	9	3	87.8		0 0	86.5	7.78	83.7	90.9		7.9.7	2.0			65.1	61.1	- 1	•	20,0	•									j		9 0	96.1				- FULL		
		<u>.</u>	94.4	9.4.9	N 0	96.1	93.7	92.2	89.1	27.7	20.7	20. 20. 10. 10. 10. 10. 10. 10. 10. 10. 10. 1	79.6	77.4	76.1		0.69	53.	7.6	20.0 0.10										,	103.4	D3 A	6	SB59 29.2940		Ē		
DEGREES	9	Š	95.6	97.2	20.00	98.7	۹		œ i	١,	7.78	. -	. a			79,5	797	., t		» «											106.0		FREQUENCY SHIFT	IALPHA PARB		ZE . 00 SQ		
- 1			4	œ c	7 · 4	, 4		9		۱,		- 0.70				65,5	1	_	i, l	٠ «	٥	0.9								l '	12.3	7	COUENC	₹-		\$12E (1400.00		
ASURED FROM INLET			d	9	, ·	r 0	٥	9	0 (٩	ن د	٠,	9		۲.	4	ا	٠, ٥	, k	ن د	20	ġ								,	4 10	q	FRE	N294 ADH079		SQ CM		
ED FR	Ċ		9	- (2 × ×		o	ĸ	.	٩٠	vi o	9 4	7	-	Ţ	<u>, </u>	4		9 4	i a	6	1.5 12								ı	. 50 104 . 50 109	1	7.640			9032.2		
HEASUR			- 1	a c	7	r M	10	0	٦.	d,	٠. ٥		7	6		9	٦,	ان ان	, و	5 C	_	.7 10									0.20	a		TAPE NO		Ğ		
MOLES	5		l	8	N 6	3 4	98	98	60	9	6	9 4	83	83		5	2	2 5	- 4	¥ 0		3 15									3 5	3 102	RATIO	TAF AERO.		T) SL		
4	8	3	78	8				84.7		1		2 C C C				91.2	1	2 ?	4 A	0 K	4	5								1		ğ	DIAMETER	3		1C RANGE 2400.0 FT		
	9		- 4	77.4	7.00	82.2	85.2	82.5	81.6	82.5	92.0		A1.4	81.4	80.8	79.6	78.6	17.7	5.0	9 6	٠.	13.0									101.0	103.0	AIQ			ACGUSTIC .5 M (240		
	6	į	- 4	78.1	70,4			•	9,19	ı.	2	2 6	29.9	79.3		76.7		97.0			٠.	-									96.0	90.6		02-20-78 C41 ANECH		. 5 AG		
	9	Š	73.3	75.1	10.	83.7	82.0	79.4	82,1	80.2	- C	900	78.9	76.9	76.3	74.4	72.6			40.0	i٠										0.96	0 98		FEST DATE LOCATION		731		
	Ş	j	2	<u>ن</u> د	6 K	? -	9	0		۵,	1 0	70.7	d	0	۲.		۹,		<u>1</u> 0	P (4									,	- m			LOCA		POINT 205		
	•		4	4.	o e	2	a.	Q.	a e	1		10,00	ı		w	- (e (? (ń c	 	0										9.06	- 1				TEST PO 7205		
		FREG	- 1	93		3 %				1		2000					1	0000			1		10000	16000	20000	25000 31500	40000	50000	63000 80000		PN	1			- 1	MGDEL 7200	59	7

									·							GI P					AG JA		IS	L.								,	and the second s		KO	FREE-JET SPEED M/8E): (148.0 FPS)	
36															- د ـ	. =					_	. ~										,=		33.00	9	45.11	
2 C				Ē						146.1	149.6	161.7	153	_ •		155.0	1	-	153	152	151.7	500	49	149	6 4	14	146	<u>4</u>	146.	144.0	, <u>, , , , , , , , , , , , , , , , , , </u>	165.5		TAMB		4	
FOR BACKGROUND NOISE 40.0 FT. ARC	000		160.							114.6	115.0	•	•1	114.2	•		1	•	,	٠Į.	_			ł			1.			1	30.0	123.4	ı		١	- MODEL	
FOR BA	X72060 X01500	ES	150.							116.5	116.6	116.6	119.4	110.0	==		i			i i					103.1	98.4	94.7	89.0	83.0	70.5	64.2	128.9		SB59	ï	(N)	
CORRECTED DAY, SB	-FMGDL -AMGDL	DEGREE	140.							111.0	_	116.4	_1,	- +			1		-	-1.			=	-	108.5		'			1	78.5	130.7		IALPHA	2	512E 23.99	
	J-150 JB150	INLET,	130.							108.4	_	-	٦į,			_	ייו	_	'	٠,١	116.6		•	-			7	-			78.0	128.1		ç	,	5	<u> </u>
PERCENT R.H. STD.	RGUND	FROM	120.							99.6	101.7	103.5	104.8				1			٠,١			-	۳.			Ĭ.		9.50	0/.0	76.9	122.0	I	N299	AURISE	8	:
ESSURE ENT R.	MODEL BACKGROUND	ASURED	110.							96.4		6	ď	- •		104	105.5	105.8	106.0	107.0	106.7 106.6	105.6	105.6	105.6	103.8	100.00	95.2	95.8	67.7	0.00	68.4	117.3	ł	E SE	3	2	
	CATION -	분	100.							7.78	2	95.3	96.4	97.00	100	102.0	102.8	101.9	103.1	103.3	103.0	102.9	102.5	102.6	9.00	4.79	94.0	9.2	93.0	0 4	68.3	114.2	1	TAPE	ACNO.	. ARC	
HODEL SOUR		ANGLES	8	: :									-4	-		٠.				-1	100.6		1	-	_				-		69.3	113,4	i	5	Ę	. RANGE 40.0 FT)	
	IDENTIF		8									92.1	· · l				ι.		99.1	80.00	100	100.3	100.3	101.0	9 9	9	4 .			- I	67.1	1111.7		-27-78		ACGUSTIC	
UNTRANSFORMED 59.0 DI			70.							89.6	89.2	90.2	91.6	20 20 20 20 20 20	6.79	101.4	97.7	97.1	0.00	80.00	2 Q	98.8	96.5	99.5	90 20 20 20 20 20	96.2	95,6	9. 18	9 20 0	73.0	68.8	110.7		20	3	ACOL 12.2 H	
UNTR			60								•	•	٠.	•			ł٠		•	•	4.00						.1 .	•	•	٠i	66.0	110.6	i .	TEST DATE	5		
			20.							99		90	8	5 8	9	90	98	98	97.	9		97	98	97.	9 8	9	89.	96.	9		62.5	109.6		TEST		TEST POINT 7206	
			40.							,			- 1				1		•	-;											61.0	109.1					
				FRED	2 6	8	9	125	160	250	315	90	200	9 6	1000	1250	1600	2000	2500	3150	2000 2000 2000 2000	6300	8000	10000	12500	20000	25000	31500	40000	20000	00000	GASPL				MODEL 7200	

ORIGINAL PAG OF POOR QUA	YES	FREE-JET SPEED 45.11 M/SEC (148.0 FPS)
59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 F. 10ENTIFICATION - FJ-150-FMOL X72060 10ENTIFICATION - FJ-150-FMOL X72060 ANGLES MEASURED FROM INLET, DEGREES ANGLES MEASURED FROM INLET, DEGREES 80.4 50.2 50.4 51.9 53.7 54.1 56.0 100.4 106.0 111.4 115.0 140.1 50.1 50.1 50.1 50.1 50.1 50.1 50.1 5	100.6 100.1 101.3 101.3 101.4 102.0 103.1 106.0 110.4 115.4 114.1 106.3 102.2 150.6 100.2	MODEL TEST POINT ACOUSTIC RANGE 7200 7206 12.2 M (40.0 FT) ARC 164.7 SQ CM (23.99 SQ IN) - MODEL 45.1 9 9

																				~ 9	. 2										\$zagas*)
79 10.160											01	RK F	3IN PO	IAL OR	P	A(žΕ	is Ty													T SPEED (148.0 FPS)	
8.7/17/70 8.				1	7	- (70.8 71.9	- 7		4.		.3	4	io fi	2	66.4	•		6.0	4						0				MB 33.00	FREE-JET 45.11 M/SEC (
ZE LEVEL	SB 2400.0 FT. SL			160.	6	4.	- 4	a -	80.8 171	0	0 4 	0	<u> </u>	٠. R	9	0 L	. 6	166 164	163							95.7 162	4.4			TAMB RELHUM	FULL	
PRESSUR	30.0 FT.	15		150.	a	ai d		6 1		90	۳.	ומ	. u	u -	-	9 4	-	23. 3								0.70		6- L:		\$859 29.5900	2	
SGUND	SB 24(X7206	DEGREES	140.	93.4	9 6	0 0	4.89	90.0	94.0	9 9 9 9 9	99.4	97.7	84.5	79.2	70,2	58.7	4 0 4 0 6 0								107.2		NCY SHIFT		I ALPHA PAMB	\$12E 400.00 \$0	i
EXTRAPOLATED	DAY,	FJ-150-FMGDL	INLET,	130.	6	8	3 8	6	4.4.6 4.4.6		9 8	92	9 6	98		9 7	99	, 10 G 10 ID	•							106.9	1	FREQUENCY			CM C146	
		FJ-150	D FROM	120.	0	e (ს რ	10 (90.00	. lo .	4 0	9	O 10	Ď «	ا وا	~ 8	, ,	ಬ 4	•		•						N			N299 ADH132	2.2 80	
LED. AN	70 PERCENT R	ATION -	MEASURE	00. 110		a c	йV	~ 0	M 00 0	0	• (4	6	<u>.</u> خ	ω a	4	40	•	۲. 6.	e e	24472						98	o o	7.6		TAPE NG. Aerg. RGg.	800	
ED. SCA	, 70 PE	DENTIFICATION	ANGLES	90, 10	0	- <u>-</u> 1	٠.٥	a c		0 0	.	6	, 0		- 60	- 4	01	– ø	9							10 C	0	ER RATIO		AER	OE F!) SL	
NSFORM	0 DEG. F.,	<u>-</u>		.00	4.7	5.7	. 6	4.	80.0		w w	9	? (N	0.4	-	N O	0	ဖ ဖ	N							0	04.0 104	DIAMETER		27-78 ANECH CH	TIC RANGE 2400.0 F	
E HE	20			20	0	د	0) ID	10		0	0 IO	0	ە بە	۰-	- 4	<u>د</u> و	0	.	o.							92.1	- -		1	02-27- C41 AN	ACCUSTI	
2				60	١.	•	75.7		78.8	.1 .		-1			.l .		1	32.00 0.00 0.00								ю (80.00			TEST DATE LOCATION		
				20	71.	26	2 2	79	76.6	77.		77.	32	78.	73	6. 4	9	4 4 3									98			TEST	TEST POINT 7206	
				ę	69	6;		78.	76.6	96		12	6.4	73	67.	62.	49			0				o o	0	. 60	1					. ,
600				FREC	ğ	6	ğ	20.0	0 0	310	4 №	63	200	125	2000	250	400	300 830 830	10000	1250	2000 2000 1000 1000 1000 1000 1000 1000	2200	4000	5000	80001	OASPI	PNLT				MGDEL 7200	

()

										0	RI(GEN PO	IAI OR	L F	AG UA	E I	3 Y						SPEED 200.0 FPS)	•	
		-					0	. 6	- 0	7	04	6		છ (પ	7	- on c	0.0	מו מ	20	~ 4	0	# 33.00	FREE-JET 91.14 M/SEG (
40.0 FT. ARC X72070 X01300		160. PWI			4	113.2 147.9		F (3)	104.5 152.1	ი ი	, 0	10	9 9	e a	10 0	93.4 147.	1 146		.1 143	68.5 142. 60.4 143.	120.1 164.	TAMB	Ş		
B 40.0 FT. MGDL X72070 MGDL X013C0	DEGREES	140. 150.			09.8 114.0	5 1 4 . 5 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1 5 6 1	7 117	110	19.2 114.6	3 113	: e	109	200	. 3 104 103	2 103.	0.05.1.500.0	0.0	K	.0 78.	5 72.	29.4 125.8	IALPHA SB59 PAMB 29.5900	الإ		
STD. DAY, SB FJ-300-FMCDL ND FJB300-FMCDL	INLET,	20. 130.			5	111.3	113.4	15.2	116.1	115.1	116.8	116.7	15.6	113.9	112.1	0	100.7	9 9 9 3. 6	87.2	80.8 75.1	.9 127.0 1	m	ر ج		
ENT R.H. MODEL BACKGROU		110.			84.6	96.0	97.3	20.00	0.0	104.0		105.3	0.00	105.4	104.6	102.0	94.7	92.0 87.2	1.08	73.3 67.8	116.0 120	PE NO. N299 RDG. ADH13	104.		
., 70 PERCI FICATION -	ANGLES ME	90. 100.			. 92	4 4	200	90	86	101	30	101	6 20 20	201 201	101	4.00	-	8 8	1 80	0 67	12.0 112.6	TAPI	NOE T		
59.0 DEG. F. IDENTIF		70. 60.			6 66.	2 90.3	100	4 0	5 94.	8 96	20.	9 97.	4 69	4.0	66	9 9 9	1 86		.3 81.	73 73 65.	1.9 110.1 1	02-27-78 C41 ANECH CH	3716		
		60.			86.0	67.4 86.9	0.0	9 6	2 4	24.5	80.5 80.5	97.6	97.4	97.2	97.9	90.00	91.0	89.0 84.0	76.7	4.5 4.4	108.6 108	TEST DATE 02	51		
		40. 50.			5 66.	4 86.	80	9	7 82.	6 92	9 6	200	8	0.0	96.	92,0	99	2 6 65	.8 74.		06.8 1ÜY.6	TES	TEST POINT 7207		
		FREG	6 6 6 6	001 001 000 000 000 000 000 000 000 000	1		- 1			1		- 1			1		1		1		OASPL 10		₩∂ÐEL 7200	601	

0
菡
Ξ
_
_
_
_
_
•
•
•
_
•
~
õ

FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC	
NTIFICATION - FJ-300-FMODL X72070	
ANOLES MEASURED FROM INLET, DEGREES	
40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PWL	
125 180 200	
89.2 91.4 90.3 90.0 69.6 90.6 91.3 91.9 97.2 104.3 107.8 111.6 111.0 1	
08.2 81.4 80.3 80.2 80.6 81.5 81.5 82.6 89.4 106.9 111.7 114.2 112.2 147.5 91.0 91.6 91.0 90.6 81.6 92.6 83.2 84.2 101.7 111.7 116.6 112.9 150.0	
92.5 92.3 92.3 92.6 92.8 93.7 94.8 95.9 103.8 112.8 116.6 117.1 113.0 151.0 93.1 92.7 93.6 94.0 97.6 95.1 95.5 97.6 105.6 113.7 117.9 116.9 112.5 151.7	
94.2 94.1 24.6 95.4 95.2 96.2 96.5 99.3 106.9 113.7 118.3 116.3 111.8 151.8	
97.1 94.4 95.2 96.8 96.2 97.3 98.2 100.3 107.5 113.6 119.4 116.6 110.4 152 98.2 96.4 97.7 98.8 99.3 100.0 99.6 101.5 108.7 113.7 119.3 114.8 110.4 152)
87.9 99.3 99.6 98.3 98.5 100.0 100.6 102.5 108.9 115.1 118.6 113.2 109.2 152.0	
99.2 97.5 98.3 98.1 97.7 99.3 100.3 102.9 109.2 115.7 118.0 112.5 108.9 151.8	
100.5 99.3 99.6 99.1 99.4 100.9 101.9 104.3 110.1 115.4 115.6 109.3 106.3 150.8	
101.1 102.0 100,6 101.1 99.9 101.1 101.8 104.8 109.8 115.7 114.6 108.6 105.6 150.7	
101.3 101.1 102.3 101.9 101.6 102.4 102.7 105.1 110.3 115.3 113.4 108.0 106.1 150.6	
101.2 101.4 101.3 102.2 101.8 104.1 103.8 105.3 109.8 113.4 110.6 106.8 104.4 150	
101.2 101.8 101.6 102.1 102.9 104.4 103.1 105.3 108.3 111.7 108.9 105.0 103.2 148	
97.5 99.5 98.9 101.0 102.0 103.4 101.2 102.8 105.4 106.0 104.7 102.5 101.6 149	
95.6 98.5 99.6 100.3 102.0 102.0 98.9 99.9 103.8 104.7 102.5 100.93.1 97.3 87.4 97.2 100.2 100.1 97.0 96.1 100.9 103.5 99.3 95	
31500 91.3 92.9 94.8 95.3 94.6 94.7 92.9 92.9 96.8 98.3 95.2 90.5 92.8 147	
40000 86.5 86.8 89.8 90.9 93.1 92.7 87.9 86.1 92.2 92.5 89.4 85.6 86.9 147	
83000 75.1 75.5 77.4 77.1 76.8 76.8 77.2 74.2 83.4 82.7 80.3 73.5 75.6 145	
80000 66.4 66.5 68.1 72.8 69.9 71.0 69.3 68.7 73.6 72.9 70.5 63.7 65.8 144	
GÄSPE 111.6 111.8 112.2 112.4 112.9 114.0 113.5 115.6 121.1 126.4 128.6 126.0 122.3 164.1	
MODEL/FULL SIZE SCALE FACTOR FREE JET VELOCITY (FT/SEC) 299.00 REFRACTION CORRECTION - YES INPUT 1.000 CALC. 1.000 FREE JET DIAMETER (IN) 48.00 TURBULANCE CORRECTION - YES	
TEST DATE 02-27-78 TAPE NO. N299 IALPHA 5859 TAMB 33.00 LOCATION C41 ANECH CH AERO: RDG. ADH133 PAMB 29.5900 RELHUM 56.60	
NODEL TEST POINT ACCUSTIC RANGE SIZE FREE-JET SPEED 7200 7207 12.2 H (40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 91.14 M/SEC (299.0 FPS)	

40. 60. 70. 80. 70. 90. 100. 110. 120. 130. 140. 160. 160. 160. 160. 160. 160. 160. 16	X72071
40. 60. 60. 70. 60. 90. 100. 110. 120. 130. 140. 160. 160. 160. 68. 71.3 71.9 72.2 73.6 74.7 75.1 75.8 62.5 91.4 93.3 92.6 95. 64.7 72.7 72.4 72.1 72.4 72.1 72.4 72.1 72.2 72.1 72.1 72.1 72.1 72.1 72.1	IES
70.7 72.0 73.1 71.9 72.2 73.6 74.7 75.1 75.6 82.5 91.4 92.3 92.6 95.6 95.6 72.7 72.0 72.1 74.1 75.6 72.0 72.1 74.1 75.6 72.0 72.1 74.1 75.6 72.0 72.1 74.1 75.6 72.0 72.1 74.2 72.0 72.1 74.2 72.0 72.1 74.2 72.0 72.1 74.2 72.0 72.1 74.2 72.0 72.1 74.2 72.0 72.1 74.2 7	_
71.2 72.0 73.1 74.3 74.1 74.1 77.4 77.4 84.6 82.5 84.8 83.1 85.0 77.2 72.2 73.7 75.8 77.8 77.8 77.8 77.8 77.8 77.8 77	92.6 85.6 167
75.2 77.7 75.3 76.9 77.0 75.2 76.4 60.7 67.6 93.4 96.4 92.1 64.7 75.7 75.4 75.5 76.9 75.9 75.0 75.9 75.0 75.9 75.0 75.9 75.0 75.9 75.0 75.9 75.0 75.9 75.0 75.9 76.2 75.0 75.9 76.2 75.0 75.9 76.2 76.0 75.9 76.2 76.0 75.9 76.2 76.0 75.9 76.2 76.0 75.9 76.2 76.0 75.9 76.2 76.0 75.9 76.2 76.0 75.9 76.2 76.0 75.9 76.0 75.9 76.0 75.9 76.0 75.9 76.0 75.9 76.0 75.9 76.0 75.9 76.0 75.9 76.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75	93.1 85.6 168.7 62 8 8K 0 169 4
75.0 73.9 75.6 75.6 76.2 76.0 78.3 78.9 81.7 86.1 83.1 83.1 83.1 87.2 82.2 82.2 75.5 76.9 75.5 76.9 75.9 75.9 75.9 75.9 75.9 75.9 75.9 75	92.1 84.2 1
76.4 76.5 79.5 79.9 79.0 91.0 91.7 91.6 92.7 92.7 92.7 92.7 92.7 92.7 92.7 92.7	92.2 82.5 1
76.4 76.4 78.3 79.0 79.0 80.7 81.6 83.7 89.3 84.6 85.1 87.2 79.2 77.4 78.4 78.8 79.2 80.2 81.0 81.0 82.9 84.6 85.1 87.3 85.1 77.3 76.7 77.4 78.8 78.9 79.4 80.1 81.0 82.6 81.0 80.6 89.6 89.6 89.6 89.6 81.9 77.7 76.7 77.4 78.1 80.4 80.1 81.7 82.9 84.5 89.6 89.0 82.4 80.4 81.4 73.4 73.4 78.6 78.1 80.4 81.7 82.9 84.7 88.9 83.4 80.4 81.9 77.7 75.0 77.7 80.0 80.6 81.1 80.4 81.7 82.9 84.7 86.9 89.9 89.1 80.7 87.7 70.7 77.7 80.0 81.1 81.0 82.9 83.1 85.0 80.1 80.7 87.7 70.7 77.7 80.0 81.2 82.6 83.9 84.7 86.3 80.0 82.8 77.7 70.7 77.7 80.5 81.2 82.6 83.2 77.7 80.1 70.7 77.7 80.5 81.2 82.6 83.2 77.7 80.1 70.7 72.7 82.6 81.2 82.6 83.2 77.7 80.1 70.7 72.7 82.6 81.2 82.6 83.2 77.7 80.1 70.7 72.7 82.7 83.0 83.0 83.0 83.0 83.0 83.0 83.0 83.0	80.7.08 80.3.00
76.7 77.4 79.1 79.2 79.2 90.2 90.2 90.2 90.3 90.3 90.3 90.3 90.3 90.3 90.3 90.3	87.2 79.5
76.9 79.6 79.7 81.1 80.4 81.7 82.3 84.7 86.9 83.4 80.4 81.4 73.4 78.7 76.2 77.5 80.1 80.0 80.6 81.1 81.8 81.8 81.8 81.8 81.9 85.4 80.4 87.1 76.2 77.7 80.0 80.0 80.6 81.1 81.9 83.9 83.1 85.0 89.3 91.4 87.1 78.3 71.2 75.6 77.5 80.0 80.0 80.6 81.1 82.9 84.6 84.6 84.9 83.3 91.4 87.1 78.3 71.2 75.6 77.5 80.1 85.0 89.3 91.4 87.1 78.3 71.5 75.6 77.6 81.8 81.8 81.8 81.8 81.8 81.8 81.8 81	62.6 75.1 1
76.2 77.7 60.0 80.6 81.1 83.9 83.1 85.0 89.3 81.4 87.1 78.3 71.7 75.0 80.0 80.6 81.1 83.9 83.1 85.0 89.3 81.4 87.1 78.3 71.7 75.6 72.1 72.5 81.4 81.6 84.0 83.6 84.6 88.1 80.1 85.0 77.6 65.8 75.0 65.2 75.0 75.1 72.4 72.9 81.2 82.6 83.2 84.2 82.6 83.2 76.0 65.1 85.0 77.6 65.8 77.7 75.0 77.7 74.3 72.4 72.4 72.4 72.9 72.4 72.9 72.1 78.7 72.4 72.4 72.4 72.4 72.5 72.7 72.4 72.4 72.4 72.5 72.7 72.4 72.4 72.5 72.7 72.4 72.4 72.5 72.7 72.4 72.4 72.5 72.4 72.4 72.5 72.7 72.4 72.4 72.5 72.7 72.4 72.4 72.5 72.7 72.4 72.5 72.7 72.4 72.5 72.7 72.4 72.5 72.7 72.4 72.5 72.7 72.5 72.7 72.4 72.5 72.7 72.7 72.4 72.5 72.7 72.7 72.4 72.5 72.7 72.7 72.4 72.5 72.7 72.7 72.4 72.5 72.7 72.7 72.4 72.5 72.7 72.5 72.7 72.7 72.7 72.7 72.4 72.5 72.7 72.7 72.7 72.7 72.7 72.7 72.7	80 1 73.4
75.6 76.1 79.5 81.4 81.6 84.0 83.6 84.6 86.1 90.1 85.0 77.6 68.8 75.0 76.1 78.5 81.2 82.8 84.2 82.7 84.9 86.3 86.0 82.8 75.0 66.3 77.1 78.5 81.2 82.8 80.4 81.2 82.8 84.9 86.8 80.3 77.1 78.9 81.2 82.8 80.4 81.2 82.8 84.9 86.8 80.3 77.7 80.1 76.7 77.7 77.7 77.7 77.7 77.7 77.7 77	78.3 71.2 1
72.7 76.6 79.4 79.9 91.5 92.7 84.2 86.3 86.0 82.8 70.0 95.2 69.5 69.5 69.4 73.1 63.2 69.5 74.6 77.1 79.5 91.2 82.0 91.3 82.2 84.9 96.6 90.4 73.1 63.2 69.1 72.4 77.9 77.9 77.5 77.7 77.7 77.7 77.7 77.7	77.6 68.9
69.5 74.6 77.1 79.5 81.2 82.8 80.4 81.2 82.6 83.2 76.7 68.4 58.3 66.1 72.4 72.7 80.1 72.7 80.1 72.7 80.1 58.0 85.6 66.1 72.4 40.8 51.9 66.6 8.8 77.5 77.7 74.3 72.4 72.7 66.1 63.4 40.8 51.9 69.7 65.6 69.2 77.5 77.7 74.3 72.4 72.7 72.7 66.0 55.6 67.6 69.1 64.4 40.8 51.9 69.7 65.6 69.7 65.6 67.6 65.1 56.8 40.8 22.7 37.4 46.0 54.2 56.7 65.6 57.2 56.7 56.5 51.7 40.2 22.2 16.3 37.4 46.0 54.2 56.7 65.6 51.7 40.2 22.2 16.3 37.4 46.0 54.2 56.7 65.6 51.7 40.2 22.2 16.3 37.4 46.0 54.2 56.7 56.5 51.7 40.2 22.2 16.3 16.3 36.4 10.2 22.2 16.3 38.4 16.3 16.3 100.3 83.4 16.3 100.3 83.4 16.3 100.3 83.4 16.3 100.3 101.2 102.9 103.8 102.3 103.3 100.4 101.3 108.4 101.5 84.3 105.5 96.9 99.5 101.2 102.9 103.8 102.3 103.3 107.3 110.3 108.4 101.5 84.3 105.4 105.4 101.5 84.3 105.4 105.	73.1 63.8 167.0
60.0 66.8 71.9 73.7 77.7 74.3 77.4 75.0 65.1 66.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0	69.4 59.3 166.6
16.3 28.6 55.5 68.2 68.9 69.5 67.2 65.6 65.1 55.6 40.8 22.2 16.3 28.6 38.0 41.1 44.4 46.1 42.1 37.6 40.5 31.9 16.9 8.4 14.7 17.9 19.0 18.2 11.7 14.4 2.9 16.3 28.6 89.0 82.0 92.9 94.2 93.6 95.4 100.4 104.0 105.0 105.9 100.9 93.5 96.9 99.5 101.2 102.9 103.3 107.3 110.3 106.4 101.5 94.3 93.5 96.9 100.3 101.7 104.2 105.0 102.3 103.3 107.3 110.3 106.4 101.5 94.3 DIAMETER RATIG 7.640 FREQUENCY SHIFT -9 TEST DATE 02-27-70 TAPE NO. ADH133 PAND 29.5900	60.0 05.6 166.7
37.4 46.0 54.2 56.5 62.4 62.6 57.2 55.7 56.5 51.7 40.2 22.2 16.3 28.6 38.0 41.1 44.4 45.1 42.1 37.8 40.5 31.9 16.9 8.4 14.7 17.9 19.0 18.2 11.7 14.4 2.9 87.2 89.1 90.9 92.0 92.9 94.2 93.6 95.4 100.4 104.8 105.8 100.9 93.0 93.5 96.9 89.5 101.2 102.9 103.8 102.3 103.3 107.3 110.3 108.4 101.5 94.3 93.5 96.9 100.3 101.7 104.2 103.8 103.3 107.3 110.3 108.4 101.5 94.3 TEST DATE 02-27-78 TAPE NG. NZ99 IALPHA 8859 LOCATION C41 ANECH CH AERG. RDG. ADH133 PAMB 29.5900	40.6 22.7 165.5
10.0 20.0 30.0 41.1 44.4 40.1 42.1 37.0 40.0 31.9 10.9 87.2 89.1 90.9 92.0 92.9 94.2 93.6 95.4 100.4 104.8 105.0 100.9 93.0 93.5 96.9 90.5 101.2 102.9 103.6 103.3 106.0 100.9 100.4 101.5 94.2 93.5 96.9 100.3 101.7 104.2 103.0 102.3 103.3 107.3 110.3 100.4 101.5 94.3 93.5 96.9 100.3 101.7 104.2 105.0 102.3 103.3 107.3 110.3 100.4 101.5 94.3 107.5 100.3 101.7 104.2 105.0 102.3 103.3 107.3 110.3 100.4 101.5 94.3 103.5 100.3 101.7 104.2 105.0 102.3 103.3 107.3 110.3 100.4 101.5 94.3 103.5 100.3 101.7 104.2 105.0 102.3 103.3 107.3 110.3 100.4 101.5 94.3 103.5 100.3 101.7 104.2 105.0 103.3 107.3 110.3 100.4 101.5 94.3 103.5 100.3 101.7 104.2 103.3 107.3 110.3 100.4 101.5 94.3 103.5 100.3 101.7 101.5 94.3 103.3 107.3 110.3 100.4 101.5 94.3 103.5 100.3 101.7 101.5 94.3 103.3 107.3 110.3 100.4 101.5 94.3 103.5 100.3 101.7 101.5 94.3 103.5 100.3 101.7 101.5 94.3 103.5 103.	22.2 165.2
67.2 69.1 90.9 92.0 92.9 94.2 93.6 95.4 100.4 104.8 106.8 100.9 93.0 93.5 96.9 100.3 101.2 102.9 103.8 102.3 103.3 105.8 108.4 101.5 93.0 93.5 96.9 100.3 101.7 104.2 105.0 102.3 103.3 107.3 110.3 108.4 101.5 94.3 93.5 96.9 100.3 101.7 104.2 105.0 102.3 103.3 107.3 110.3 108.4 101.5 94.3 103.5 96.9 100.3 101.7 104.2 105.0 102.3 103.3 107.3 110.3 108.4 101.5 94.3 103.5 96.9 100.3 101.5 94.3 103.5 96.9 100.3 101.5 94.3 103.5 96.9 100.3 103.3 105.4 101.5 94.3 103.5 96.9 100.3 103	163.1
67.2 69.1 90.9 92.0 92.9 94.2 93.0 95.4 100.4 104.0 106.0 100.9 93.0 93.5 96.9 99.5 100.3 101.2 102.9 103.0 103.3 106.0 100.0 101.5 93.0 93.5 96.9 100.3 101.7 104.2 105.0 102.3 103.3 107.3 110.3 100.4 101.5 94.3 103.5 96.9 100.3 101.7 104.2 105.0 102.3 103.3 107.3 110.3 100.4 101.5 94.3 103.5 96.9 100.3 101.7 104.2 105.0 102.3 103.3 107.3 110.3 100.4 101.5 94.3 103.5 96.9 100.3 101.7 104.2 105.0 102.3 103.3 107.3 110.3 100.4 101.5 94.3 103.5 90.0 100.3 101.5 94.3 103.3 107.3 100.3 101.5 94.3 103.5 90.0 100.3 101.5 94.3 103.3 103.3 104.0 103.3 103.3 105.0 103.3 103.3 104.0 105.0 103.3 103.3 105.0 103	9.
67.2 69.1 60.9 92.0 92.9 94.2 93.6 95.4 100.4 104.8 106.8 100.9 93.0 93.5 96.9 99.5 101.2 102.9 103.8 102.3 103.3 106.8 109.8 100.4 101.5 93.0 93.5 96.9 100.3 101.7 104.2 105.0 102.3 103.3 107.3 110.3 108.4 101.5 94.3 03.5 96.9 100.3 101.7 104.2 105.0 102.3 103.3 107.3 110.3 108.4 101.5 94.3 01.5 96.9 100.3 101.7 104.2 105.0 102.3 103.3 107.3 110.3 108.4 101.5 94.3 01.5 01.5 01.5 01.5 01.5 01.5 01.5 01.5	EIS
67.2 89.1 80.8 82.0 82.9 84.2 83.8 85.4 100.4 104.8 106.8 100.9 83.0 83.5 86.8 100.3 101.2 102.9 103.8 102.3 103.3 106.8 108.4 101.5 83.0 83.5 86.8 100.3 101.7 104.2 105.0 102.3 103.3 107.3 110.3 108.4 101.5 84.3 103.5 86.8 100.3 101.7 104.2 105.0 102.3 103.3 107.3 110.3 108.4 101.5 84.3 103.5 86.8 100.3 101.7 104.2 105.0 102.3 103.3 107.3 110.3 108.4 101.5 84.3 103.5 84.	
67.2 69.1 90.9 92.0 92.9 94.2 93.6 95.4 100.4 104.8 105.8 100.9 93.0 93.5 96.9 99.5 101.2 102.9 103.8 103.3 106.6 109.8 100.4 101.5 93.0 93.5 96.9 100.3 101.7 104.2 105.0 102.3 103.3 107.3 110.3 108.4 101.5 94.3 03.5 96.9 100.3 101.7 104.2 105.0 102.3 103.3 107.3 110.3 108.4 101.5 94.3 01.5 96.9 100.3 101.7 104.2 105.0 102.3 103.3 107.3 110.3 108.4 101.5 94.3 01.5 01.5 01.5 01.5 01.5 01.5 01.5 01.5	
93.5 96.9 100.3 101.7 104.2 105.0 102.3 103.3 107.3 110.3 108.4 101.5 94.3 DIAMETER RATIG 7.640 FREQUENCY SHIFT -9 TEST DATE 02-27-76 TAPE NG. N299 IALPHA 8859 LOCATION C41 ANECH CH AERG. RDG. ADH133 PAMB 29.5900 TEST POINT ACQUSTIC RANGE	9.00
TEST DATE 02-27-78 TAPE NG. N299 IALPHA 8859 LOCATION C41 ANECH CH AERD. RDG. ADH133 PAMB 28.5900 TEST POINT ACOUSTIC RANGE	101.5
TEST DATE 02-27-78 TAPE NG. N299 IALPHA 8859 LOCATION C41 ANECH CH AERD, RDG. ADHIJJ PAMB 29.5900 TEST POINT ACOUSTIC RANGE	
TEST POINT ACOUSTIC RANGE	
731.5 H (Z400.0 F1) St. 803Z.Z SG CH (1400.00 SG IN) -	FREE-JET SPEED SQ IN) - FULL 91.14 M/SEC (299.0 FPS)
603	

١		ì	
•			
		•	
(3	١
•			•
4	į	Ì	١
ļ		۰	٠
1		١	٠
٠	١		
ļ			•
1	į	į	ı

							OR OF	GII Pi	NAL DOF	P.Q	AGE UAL	is T). 7		,						•		- 18 J
		•																			FREE-JET SPEED 5 M/SEC (306.0 FPS)		
100						-	• – a	9	7 6 0 K	9 0	3 – C		9 - ^	- 10 4 -	10 ~	e 0	0	9	8	B 33,00 H 55,40	17.6		
FOR BACKGROUND NOISE	000		160.	TMA.		12.4 146.	3 150	2 100	01.8 150.6	90	201.0.101.2 201.0.101.2 201.1.101.0.101.2	97.	0.4	95.0 148.5	9 146	3 145	8 145	5 142 6 142	118.3 163.	TAMB 30 KELHUM	Ď		
		ES	140. 150.			1 114 6	4.	3 114	. o. c	200	6.00	2 107	90.0	7 103		7. 8. 9.	9.0	7. 64	4 124.3	HA 9859	8		
S CORRECTED		INLET, DEC	130. 14			20	110.0	113.7 11	14.0	14.3	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00	115.1	20.0	109.4	107.9 1	99.7 08.3	92.1 85.6	79.	126.3 128	I ALPHA PAMB	57 N	•	
ESSURE LEVELS	g	SURED FROM	110. 120.			94.3 97.3		0 (i eo a	9 00	04.6 109.7	01 0	i @	4 %	úю	a 0	-0	10 01	115.8 120.6	NO. N299 RDG. ADH134	4		
SGUND PR	CATION -	ANGLES MEAS	90. 100.			6 a	40	.0	- A -	100	2010	0 -	0 0	101 100	6 8 8 9	∽ a 2.0	~ 0 80 80	2 67.	.6 112.5	TAPE AERG. F	E FT) ARC		
MED MODEL O DEG. F.	IDENTIF	V	80.			87.0	60.0	95.0	9 69 6	6.0		97.0	9.00.4	98.0	98.6 1	95.4	89.2 80.8	72.8	109.6 111	27-78 ANECH CH	. 47		
UNTRANSFORMED 59.0 D			60. 70.			.6 87. 8 86	.3 65 7.	.3	- 62 5	0 6	94.7 95.5 97.0 96.5	5 60 5 60 5 60 5 60 5 60 5 60 5 60 5 60	96.0	5 96.	4. 96.	0.0 0.0 0.0	.7 85. 4 78.	3 67.	08.0 108.2	DATE 02-2	ACO 12.2 M		
			0. 50.		, , , , , , , , , , , , , , , , , , ,	5 85.9	.0 07.1	3 88.8		6 6	2 7 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	.4 96.4 98.2	22.00	2 95.9	3 92.7	.2 89.1 6 85.2	3 73.6	.0 67.9 .0 61.1	2 106.8 10	TEST (ST PGINT 7208		
)4				7. 8.0 8.0 8.0 8.0 8.0	1 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	ĺ	98	88	9 6 6		9 6 6	98		8 8	9 9			l	CASPL 106		MODEL TE		7 2

							0	RI(GII PO	AV 104		P# QU	AG JAI	E	is Ty										IV		FP3)
																			•						CORRECTION - YES CORRECTION - YES	33.00 55.40	FREE-JET SPEED 117.65 M/SEC (366.0
			Z		•	46.0	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	50.4	60.6	- 15 - 19		61.3	9 6	50.8	00 00 00 00 00	9.6	49.4	49.4	2 4 2 6 3 4	48.7	40.3 47.1	45.6	43.6	163.8		TAMB	
			60.		•	9.		9 (4	۱۳۰	4 0		- •	6. do	_	4 o	6.	- -	-	, a	0	- 9	20	7.7	122.6 1	REFRACTION TURBULANCE		MODEL
			-				920	0 1 0	11	8.4	9	' '	. s 11	_		-	0 4	_	9 6	1	982	9 7	1 69		REI	\$859 29.5900	1
	000	5	160			===	===	2				112.	2 =	10	109.3	107.	9 9	108	96	95.1	0.00	75.	66.	125.0	88	i	S S
	X72080	DEGREES	140.			111.3	0.41	116.8	117	118.2	100	116		_	112.7			0.0	2 8	8	_		69.1	127.7	386.00 46.00	IALPHA	S1 ZE 23.99
	HODE.	KLET,	130.			38	10.3	12.8	112.9	0 E	4.8		15.0	116.2	113.0	12.8	0.00		104.5 102.6	98.3	92.0	81.5	71.7	125.8	/SEC) (1N)		u E
	FJ-400-FMGDL	SURED FROM INLET,	120.			97.9	9.00	0.00	105.8	107.2	108.6	109.4	0.0	110.5	110.5		107.2	106.0	0 0	97.6	92.4	82.6	72.8	120.9	VELGCITY (FT/SEC) JET DIAMETER (IN)	N299 ADH134	.7 30 CH
	- NO	URED	110.				93.2	96.0	1.86	98.6	101.8	02.4	603	105.0	05.3		0 0 0 0 0 0 0 0 0		100.4 96.6	95.8	88.6	74.7	68.0	115.3	VELOC JET D	3 00.	5
	ICATIO	MEA	100.) 4	0.0) H	-	<u>ه</u> د	, æ	10	9.5	02.3	03.0 1	0	0	9	98.5 97.3		88.7		69.5	113.3 1	JET	TAPE AERO. R	ARC
,	DENTIFICATI	ANGLES				- I -	_		.I .	-		1 -		- ო	03.1		-1 -							4.0	FREE		VOE FT)
	2		30.			20		4 0	ю	a -	-	8		. 6	0.4	. m	0 4	9	4 0	N	٠, «	•	ro.	.1 1	Œ	¥ 5	ACGUSTIC RANGE 2 M (40.0 F
			69			1			1			ļ		-	103	_	- -	_	_	1			1	0 113.	FACTOR	-27-78 ANECH	OUSTI
			9				8		93.		90	97.	60	9	101.8	10	0	9	6 6	95.	2 6	7.67	70.	112.0	W	9 2	AC AC
			99	. !		3 8 5 6	91.8	4 0	95.2	0.98	00.0	98.0	4.00	9.0	03.4	9.20	02.5	0.0	4 6	96,3	90.9	78.6	68.8	12.9	E C	DATE	
			20.			٥٥	-	4.4	0	0 0	- •	S.	- •	ص ص	0,1	~	7	4	ه ه -	9	o, k		€	2.7 1	1 0	TEST DATE	POINT
									-	4,	. 4	10	6 F	- 0 0	4 102				ω C					0 112	MODEL/FULL INPUT 1.		TEST PO 7208
			9		(al a									102		•							112.	MODE IN		MODEL TE 7200

e	,
ě	ó
•	-
c	i
•	-
0	9
ř	
•	٠
P	•
	-
2	•
t	`
C	3

	(
	506															07/1	07/11//0	10.160	
				FI IGHT		TRANSFORMED	450	CALFO	2	FXTRAP	" ATEN		PPFAC		I EVEL &				
						JEG. F	22	PERCEN	2	1. STD. DAY,	DAY,	SB 24	SB 2400.0 FT.						
-						. =	DENTIFICATI	CATIO	ı Z	FJ-400-FMGDL	FMGDL	X72081	<u>ē</u>						
							ANGLES	S MEAS	JRED	FROM 1	INLET,	DEGREES	S						
		9	20	90.	70.	90.	6	100.	110.	120.	130.	140.	150.	160.	. 2				
	l	۰.	a -	es c	9.			١.	74.7	80.4			91.0	82.6	166.2				
		- u		٧ĸ	- •	7 Ø	4 6		78.3	9 69			9 09 09 09 09 09	82.0	166.9 168.1				
	- 1	7	9	0	ala	9	9	- 1	79.5	86.5	۰۱		90.3	83.7	168.3				
		, 4	ာ က	0 10	, r	o e o	'nΦ		82.0	88.0 88.0				83.0 83.0	166.8				
		75.9	79.2 8	80.4 78.1	79.3	79.2	80.9	81.2 80.8	82.8 83.2	88 89 9. 4	94.0 4.0	9 9 9 9 9 9	87.9	82.4 2.2	169.4				
	ı	4	9	0	0	a ·	a		83.8	90.7				81.2	169.3				,
		۰ ر	o -	Ø 4	<u>ه</u> 0	- œ	0 0		85.1 85.0	0 0 0 0 0				76.7	168.7				
	- 1	7	4	-	10	a	4		95.0	89.2	1	:		75.0	167.9				
		0 4	o a	- ^	9 1	<u>ه</u> -	- a		83.7	88 7 8 8 8		-		72.7	167.5			ORI SF	
		90	-	10		9	0		83.5	86.0				69.3	166.9			igi P	
	ı	ro c	٠,	0	0	0	۰	-1	82.1	84.7	- 1	-1	- 4	67.1	166.9			N 00	
- (V		? @	, 0	v 1	۰.	o –	o -			81.1				36.	167.3		•	IL)R	
(7 1		o	~ 4	0	G (N E	a 1		22.9	76.6			67.6	45 60 60 60	167.1	-		P/ QI	
	1	0		2	y In	0		-1		57.2	-1	- 1	-1	2 - 2 -	166.4			AG JA	
. •		9	110	10	9 00	10	90			40.6				;	164.8		•	E L	
10	000			D	œ.	.	œ		•	_	7.				163.2 161.3			IS IY.	
~ = 0	12500 16090 20000		*		:	•					·								
	0001																		
	000															-			
	000																		
	000																		
	OASPL	88.2	•	500	4	93.0	-:	93.6	200	100.2	104		90.8	92.7	161.3				
	1	0	0	10	10	100	0.00	-1 -	03.1	07.4	20	0	101.7	96.0					
UINIS						DIAMETER	FER RATE	TIG	7,640	Ē	FREQUENCY	SHI	FT -8						
2 254			TEST DATE		02-27-78 C41 ANECH	78 CH CE		TAPE AERG. R	20	N299 ADH134	=	ALPHA	SB59		TAMB REI HIM	33.00			
_					. [. I											
S SELMET	MGDEL 7200	TEST PO 7208	PO:NT	731.	ACGUST	.5 ¥	9E FT)	SL	9032.	2 SQ CM	\$12E	1 ZE 0.00 SQ	ŝ	- FULL	-	FREE-JET 17.65 M/SEC (ET SPEED (386.0	ED FPS)	
юн-																			

CA-

						0	RIGINA F POO	L PAG R QUA	F IS				14
											24 . 80 39 . 00	FREE-JET SPEED . M/SEC (0. FPS)	
JUND NOTSE			THE		L	01 L & 4	6 155 9 3 155 9 5 154 6		000700	3 145 3 145 7 144 2 146	TAMB	MODEL 0	
40.0 FT. ARC	X72090	9	150. 160	•	116.7 116 117.6 116 119.1 116	120.0 117 121.1 117 120.7 116 120.3 115	4-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	0640	040400	96.1 95. 91.9 79. 77.1 73. 71.0 66.	3 859 29, 3620	80 IN) - M	
SS SS	FJ-ZER-FMODL	INLET, DEOREES	130. 140.		39.1 113.0 11.2 114.6 14.8 117.4 16.9 119.0	7.6 120.1 16.3 121.1 16.4 120.7	.0.0	0-0			I ALPHA PANB	\$12E (23.99	•
8	MODEL FJ. BACKGROUND	FROM	120.		103.6 0 105.9 1 108.6	015-0		114.0	106.9 106.4 108.7 102.0	91.7 87.8 83.6 77.1		164.7 SQ CM	
E 2	,	ES MEASURED	100.		96.7 98.4 96.3 99.0 97.3 100.0	0-40	103.9 107. 104.0 107. 105.2 108.	6 108 7 107	2 4 - 4 6 2 4 - 4 6 2 4 6 2 6 3 8 8		TAPE NO AERG. RDG	ARC	
DOEL.	DENTIFICATION	ANGLES	.00		2000	8 8 0 5	2000	102.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	7000 0	21-78 ANECH CH	FIC RANGE 40.0 FT)	
UNTRANSFORMED M 59.0 DEG	-		70.		2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 98.3 2 98.3 6 100.4	0 101.5 1 1 103.1 1 1 103.4 1	3 102.4 1 100.7 9 98.0 7 94.1	69.9 113.3	02-2	ACGUST:	
E			.09		8000	8 00 0	9000	601 6 103 103 103	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	20 70 70 70 70 70 70 70 70 70 70 70 70 70	EST D	17 POINT	
			40. 50 63	0000	250 67.5 315 66.4 400 89.7	9.00	8885	288	8 8 8 8	41 0 - D		MODEL TEST 7200 72	607

19.462

08/30/79

(

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SGUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, 58 2400.0 FT. SL

										ĝ Ô		P	AA OO	R	P# Ql	igi !A!	117	S Y												SPEED 181 O FPE:
															•							,							51.40	FREE-JET S
				ž				47.7	149.2	161.4	163.4	154.2	154.3	154.6	154.1	53.6	61.0	131.00 10.00	50.00	9.09	40.7	149.1	148.0	147.3	45.4	146.1	165.7		RELHUM	
X72100	200		160.					1.711	114.6	17.0	14.4	113.7		100.2	707		101	8 8		96	9 9	92	06	80	58.4	60	123.2		300	MODE
	j	Ë	150.					114	116.2	117.6	1.0.4	=	- 6		2	4 5	50	- -	000	105		8		8			128.4	1	29.3300	2
-FMODL	FJB150-AMCDL	DEGREE	140.					111	112.9	116.7	19.6	_	120.7	-1-			-			111	90	10	100.1 26.1	8	1	7	130.9		PARB	S12E
FJ-150	FJB150	INLET,	130.					107.4	109.2	133.0	116.0	116	116.3	120		116	116	91		113	- 60	105	500	94.0	69.2	77.7	127.8		6	
	SACKGROUND	FROM	120.					9.66	101.7		106.6	-	==	-	=:	12.0	=	= =		109.5	105.6	103.7	101.4	93.0		77.7	122.2	000	ADH123	6
MODEL	BACKG	ASURED	110.					96.9	97.2	97.7	101.4	102.9	0.40	105.5	106.	107.0	106.9	107.2	106.4	106.7	104.7	102.1	97.3	89.1	76.5	71.3	117.9			
TION -	- 1	ANGLES MEAS	100.					Ι.			.i .		4.001		•			103.2				1		88.2	.l .		114.7		AERG.	V V V
TIFICATI	. 1	ANG	90.					a	8.5		-1 -		99.0	-	•			_	1	-		1		9	- 4	-	114.7		동	RANGE 40.0 FT)
IDENT			.00										96.0									• • •		91.7	-1 -		113.5	C P	HCH HCH	<u>o</u> `
			70.								.i .	_	97.0	-I -	_	90.00		4.60	I	101.0		-1		87.5	.I .		112.2	•	C41 A	ACCUST
			.09					89.1					98.2	-1 -					1			-1		86.2	al e		112.2		ATION	
			90.					89.8		99.7			97.2	2	•	100.3		201.20	100.6	100.3		94.5		82.2	69.4		110.8		LOCA	PGINT
			40.					1 .			.i .		00 07 07 07 08		•			0. 0. 0. 0. 0.	I	_		-1		8.1.8	_i .		110.8			TEST PGI
				F. 0.00 0.00 0.00	20	8	6 6	250	315	4 5	630	800	000	1600	2000	3150	4000	2000	9000	0000	16000	0000	25000	40000	30000	80000	DASPL			MODEL 7200

				ومردستين من يكونون و مندسيد و المراوية و مندسيد و المراوية و مندسيد و المراوية و مندسيد و المراوية و		•		,	GR OF	IGI PC	NA POI	L R	PA QU	GE ALI	IS TY	,			;	•						FP3)	
																								CORRECTION - YES CORRECTION - YES	37.00 51.40	FREE-JET SPEED 46.02 M/SEC (151.0	
			3				6.0	50.7	52.1	04.0	4 6 2 0 2 0	54.2	63.5	52.2	i •	50.7	50.2	51.0	50.8 50.2	50.4 49.4	47.9	47.4	165.7	ION NCE CO	TAMB	1	
ARC			.09				3.2 1	4.4 6.0	0 6	4	4.4	Si	06.5	03.2	ල ග	9	00.4	2		89.9		9 0	124.5 1	REFRACTION TURBULANCE	22	MODEL	
45.0 FT.			50. 1				.5	7.6	9-	-	5 T	9	8. j		a -	- m	2	•	ei di		g.	• •	10	RETU	SB59 29, 3300	- E	
4	X72100	EES	_				112	3 E	4 6	-	2 120 7		5 TE	5 112	4 109	0	9 100	6	- 60	5 92		2 28	_	151,00 48.00	l l	S	
8		DEGREES	140				108.	5 5	===	-	2 2		= =	117.	=:	==	108		102.0	98	6	91.	-	ļ	IALPHA PAMB	S1 ZE 23.99	
DAY,	FMGDL	NLET,	130.				104.	107.0	4.6		1 4 6 1 4 6 1 4 6	114.9	115.4	115.8	115.4	13.0	113.2	109.6	106.8 103.1	101.4	5	79.3	127.0	(FT/SEC) ETER (IN)		- W5	
R.H. STD. D	FJ-150-FMGDL	ROM -	120.	,			97.8	0 0 0 0 0	8.0	07.7	9 9 9 9	10.3	10.6	10.6	1 •		09.6		03.0	00 0 00 0 00 0		79.0	121.6	OLTY (FT	N299 ADH123	S	
	•	MEASURED FROM INLET,	110.				95.4	96.2	9.6	02.0	03.00	14.6	105.1 105.6	106.4 1	06.5		105.6	05.3	103.22 96.89	1.96	. W	80 E	4	VELOCITY Jet diame	RDG.	154.7	
RCENI	ATION	MEAS	90.			,	0		- 10	-	0 0	0	n io	• •	- 0) (I	0 4	_	4 v	- •		9		JET VE FREE JE	TAPE I	ARC	
70 PERCENT	DENTIFICATI	ANGLES	-				•	on a	96	'	- ^	4			000		- -		- 8 	1		- 1	_	FREE	AEF	1	
<u>:</u>	IDE	1	8				- 1		9 9	6	8 5	5	8 6	101.	102	20	000	105	105			-	= =		푱	ACGUSTIC RANGE	
] 	90				1		93.6	.l .				100.3			-1 -					-1.		FACTOR . 000	2-27-78 11 ANECH	STIC (
20.0			6					-	900			1			1 -							-1 .		m	02-27 C41 A	1 .	
			. 09				~	~ @	93.0	10		-	4 W	7 9	9 0	2 60	- 6	~	4 0 -	۲۹	. 0	r 0	· -	E SCALE CALC.	ŀ	2	
			_					~ c	900		ے در د		_ ด ต	0 0	9	·	9 2		.	4.0	. –	10 A		L 312E	TEST DATE	TN	
			2				- 1		95	ļ	_	١.			-		- -	_					113	MGDEL/FULI I NPUT 1	F	TEST POINT 7210	
			9						92.0								-i -					-1		MODEL		1	
			FREG	S 8 6	58	125 160 200	220	8 10 0 0	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	000	1250	1600	2000	3150	2000	2000	2000	2000	20000	1500	2000	0000	GASPL			MGDEL 7200	6

												7		b.											\G JA		•									SPEED 151.0 FPS)
	PWL	66.3	9	70.6	21.0		71.8	2.12	70.6	89.69	0.69	58.9	2.2	ტ. -		57.9	91.0			57.7	•		65.0	٠١						8 3.2				37.	RELHUM 51.40	FREE-JET 46.02 M/SEC (
160.		7.6 1	2.0	9.00	-		140	. L	8	-	0	_	S.	4	D	e	_ '	- ·		•	=;	= ;								96.9	0 0					FULL
150.		92.9	7	0 0	u) IG		φ.	8	0	_	9	ю.	_	(6	.)			23.0										200	a ⊢		SB59	29.3300	î Z
140.		93.8	۰	9 6 9 6	ماد	4 4	. 10	97.7	_	60	m		0	N.	œ (0		0 0	» ·	- 1	3 . (j							-	4.70	3 -	Y SHIFT		ALPHA		S1 ZE 400.00 SQ
130.		92.2	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	24. V	200	2 6	1.78	94.3	95.2	83. 83.	93.3	92.8	90.8	80	89.00 0.00	86.3	64. 0 1	-	-	-1	200	9 1	0 4							98.5	- -	FREQUENCY		¥1		. 5
120.		N ۱		م	i R) 4	u		ю	•	_	Ī	a	ю.	9	5	83.6	- l - l	7:7	5	0 C	N (9.							101.1	9	81		1299	ADH123	SQ CM
10.		78.5		6 6 7 8 8 8	200	8 2	95.6	96.0	86.1	86.7	86.1	86.2	92.0		85.7	84,3				-										87.3		7.640			RDG.	9032, 2
100		77.2		-	-1							-1			-			-	-	-1		-								96.1	0.4.0	RATIO		TAPE	ń	SL
8		76.6			٠.	•		81.4	ι.	-		-1	•	u	•		N (•		- 1	•		-							95.6	200		ı			RANGE 10.0 FT)
90		7.	•		-1					•	•	1	•	•		• 1		•		-1		•	•							~ 0	06.3	DIAMETER		27-78	ANECH CH	
20.	- 1	72.8	٠	6, t 4 : 6	-1								•	•			•			-1	•					٠.				9 4	1			O.	_	ACGU
6 0.	1	73.1	•		-1							-4					9 F	•	-	•1										90	9.10			TEST DATE	ATION	73
20.	ı	71.8	•		-1								•	•				•		•	5.5									90.4	0			TEST	Ž	T POINT
9		69.00	•		-1						٠	-1	•		•	-1				-1	•									86.8	فان					TEST 73

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, 58 2400.0 FT. SL

X72101

IDENTIFICATION - FJ-150-FMODL

			OI OF	IGINA POOF	PAG QUAI	E IS			SPEED	(298.0 FPS)
		¥	•••	4 a o v	e n r e	ဝ်ကေးမ	O - 0 00	r-000 4	15 37,00 UM 64.00 FREE-JET	90.63 M/8EC
40.0 FT. ARC L X72110 L X01300		E	113.2 14.	06.4 106.4 102.9	103.2 102.3 102.2	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 1	2 4 2 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		1300H -
DAY, 86 40.0 J-300-FMGDL X72 JB300-FMGDL X01	ES	140.	110.0 113.7 111.9 114.0 114.9 116.0	6-46	6 112 6 112 110 110	0 4 - 6 0 0 0 0 0 0 0 0 0	6. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	25.00 8 95.00 8 95.00 8 95.00 8 95.00 9 95.00	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	3. 99 GO IN
510. DAY, 98 FJ-300-FMGDL IUND FJB300-FMGDL	=	70.	201 100 100 100 100 100 100 100 100 100	04.9 114.0 07.2 115.0 08.0 114.3		1111	201	96.1 99.7 96.1 99.7 96.7 97.5 63.6 80.3 77.6 76.0	298 DH122	<u>.</u> इ
TENCENI R.H. SID. ION - MODEL F. BACKORGUND F.	EASURED		6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 100.4 102.5 104.6	3 104.6 3 105.1 6 106.8	2 106.7 2 106.6 4 106.4 3 106.4	4 106.7 8 104.9 6 104.6 3 102.7	2	APE NG.	ARC 154.7
I CAŢ	ANGLE	3	90.00 90.00 92.7 93.0	96.1 96.4 97.5	2 98.7 1 1 99.7 1 1 99.7 1	7 100.3 1 0 102.3 1 1 103.6 1	105.2 103.6 103.6 102.9	93.7 93.7 93.7 93.7 94.2 93.7 94.2 93.7 94.2 93.7 77.7 77.7 77.7 70.7 70.7 70.7 70.7 7	CH	0.0 FT)
IDENTIF			66.0 69. 66.0 69. 66.5 90. 69.8 91.	6 C O O	សុខសុខ	2 96. 9 101. 9 102. 6 102.	.0 102. 3 102. 4 101.		02-27-78 C41 ANECH	CI
					. 2 94. . 2 95. . 2 97.	. 1 101. . 6 102. . 6 102. . 9 101.	.6 102. .3 100. .1 95.	1-0484 4	LOCATION	
			84-0	60 00 00	0 7 S O	0000	90700	60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00 60.00	153	721

					ORK OF	INAL POOR	PAGE QUALI	S Y			•	CORRECTION - YES Correction - Yes		FREE-JET SPEED	
		¥		•	44.44.65.69.69.69.69.69.69.69.69.69.69.69.69.69.	52.2 52.2 52.2 52.2	- c e e	B 51 B 6	51.2 51.4 50.8	8.00 8.7 9.7 9.7			TAMB 3 RELHUM, 0	.06	
		160.	·	2				06.8 151 05.6 151 03.0 151		V - 0 C 5	122.2 164	<u>₹</u>		MODEL	
		50. 10			0000	a n ⊳ ~	~ 01 RD CD	V 4 V -	0 10 10 0	2 2 2 2 2	N	RE TU	55 59 29.3300	- (N)	
X72110	DEGREES	-			2 0 0 0	467	0000	-000	0049		128.8 126	22		g	
	-	0. 140		5	2112	0000	611 4.	50000	0 0110 00	2 96 90 90 90 90 90 90 90 90 90 90 90 90 90	-		I ALPHA PAMB	\$12E 23.99	
FJ-300-FM0DL	1 INLET	0. 130	- :	2	8====	E E E E	2 2 2 2			6 86 6 86 6 86 73	.1 125.8	(FT/SEC) IETER (IN)	9 122	O GM C	
FJ-3(SURED FROM	120		6	6 0 - 6 0 - 6 0 - 6 0 - 6 0 - 6 0 - 6 0 - 6	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		6 112.2		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	<u> </u>	≥ ≨	N299 ADH122	54.7 80	
- NOIL		110		6		80120	5000	106 107 107	201 201 201 201	9 96. 9 90. 0 84.		VELC	PE NO.		
DENTIFICAT	ANGLES ME	100		ā	2028	68.00	0.200	103	00.00	86. 28. 28.	116.	FREE JET FREE	TAPE AERO.) ARC	
IDENT	ANG	.06		8	2 2 2 2	96.7 97.8 100.0	8000	105	90.00		116	.	픙	RANGE 40.0 FT)	3
		9 0.			- 100 C C C C C C C C C C C C C C C C C C	0.000	97.8 98.6 99.6	103.2 105.1 106.3	105.5 105.6 102.4	96.6 95.4 96.7 78.7	115.5	FACTOR . 000	7-78 ANECH	ACGUSTIC .2 M (4	
		70.		1				105.6		96.8 92.3 78.7 78.3	4	SCALE FA	02-27-78 C41 ANECH	2.2 M	
		.09		8	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0440	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0	96.3 97.3 70.3 67.3		ZE SCAL	TEST DATE LOCATION	-	
		50.		4	6 6 6 6	01 C 10 10	0 6 4 0	0 0 4 K	0-40	1		ULL 31	TEST LGC/	POINT 1.1	
		40.			N 00 00 00	0 N - M	4004	2-70	03.3	1011P	114.5	MODEL/FULL INPUT 1.0		TEST POIN 7211	
		FREG	8 8 8 0 0 0 0 0 0 0 0 0 0	125 125 200 200 200 200	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	I			12500 10 15000 10 20000 10 25000 8	1 1		Ä		MODEL 7200	
	<u> </u>			<u> </u>			<u></u>			20-8811d -	# 1 1 4 A	BNILMI		THANK	- H

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

11/

ANGLES HEADURED FROM INET, DEGREES 40. 60. 60. 70. 80. 100. 110. 120. 130. 140. 150. 160. PML 60 68.2 71.3 71.8 72.5 73.6 74.9 76.1 76.3 82.4 91.3 93.4 92.0 85.0 187.4 100 68.2 71.3 71.8 72.5 73.6 74.9 76.1 76.3 82.4 91.3 93.4 92.0 85.0 187.4 101 71.0 72.2 72.0 73.3 71.8 72.5 73.6 74.9 76.1 76.3 82.4 91.3 93.4 92.0 85.0 187.4 102 71.0 72.8 72.0 73.3 71.8 72.5 73.6 74.2 77.5 73.6 73.9 90.6 82.1 86.2 82.0 74.4 81.8 82.0 74.6 77.5 82.0 82.1 86.2 82.1 86.2 82.1 86.2 82.1 82.1 82.2 82.2	•				ORIGII OF PO	VAL PA	IGE IS			37.00 64.00	FREE-JET SPEED 90.83 M/SEC (298.0 FP8)
40. 60. 60. 70. 60. 90. 90. 10. 120. 130. 140. 190. 160. 160. 170. 20. 170. 171. 72. 71. 72. 71. 72. 71. 72. 71. 72. 71. 72. 71. 72. 71. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72			Ž	69.9 69.9 70.1 69.9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	69.0 69.3 67.2	67.1 65.6 64.9		• 1	TANB	ă
40. 60. 60. 70. 60. 80. 100. 110. 120. 130. 140. 150. 160. 170. 60. 80. 170. 80. 80. 100. 110. 120. 130. 140. 150. 140. 140. 150. 140. 140. 140. 140. 140. 140. 140. 14	!		160.	865.0 84.4 84.4 82.2 80.7	776.4 775.6 775.6 773.6 771.2 69.5 69.5 64.4	60.0 56.4 41.4 23.6			1	2	ľ
ANOLES HEASURED FROM INLET, DEGREES ANOLES HEASURED FROM INLET, DE	-		150.	00000-00	0 - 0 0 0 0 0 N	10 V 60 4	a		0.00	\$859 29.330	2
DENTIFICATION - FJ-300-FHODL ANALES HEASURED FROM INLET, ANALES HEASURED FROM INLED, ANALES HEASURED FROM INLED, ANALES HEASURED FROM INLED, ANALES HEASURED FROM INLED, ANALES HEASURED FROM INLED, ANALES HEASURED FROM INLED, ANALES HEASURED FROM INLED, ANALES HEADING FROM INLET,	X7211	GREES	40.	4 to 0 to 4 to 0	0-044400	0000	0 ~		0 HS	1	7E 00 SQ
ANGLES HEASURED FROM INI 40. 50. 60. 70. 60. 90. 100. 110. 120. 1 68.2 71.3 71.6 72.5 73.6 74.9 75.1 76.3 82.4 5 71.7 72.5 74.6 75.9 83.2 77.7 77.7 79.3 86.6 5 75. 72. 74.6 77.9 76.1 77.7 77.7 79.3 86.6 5 75. 75. 75. 77.8 76.1 77.9 76.1 77.7 77.8 86.1 6 75. 75. 75. 76.4 77.9 76.1 77.9 76.1 86.1 6 75. 75. 75. 76.4 77.9 76.1 77.9 86.1 6 75. 77. 7 7 79.8 80.4 61.8 81.2 80.7 87.6 84.2 87.5 75.8 80.4 61.8 81.2 80.7 87.6 84.2 87.5 75.8 80.4 61.8 81.2 80.7 87.6 84.2 87.5 75.8 80.4 61.8 81.2 80.7 87.6 84.2 87.7 77.7 79.8 80.8 81.8 81.8 81.8 81.8 81.1 87.7 79.8 80.8 81.8 81.8 81.8 81.8 81.8 81.8 81		-	30.	1 1		Ì	1 1		4.0 10 19.1 10 19.1 10	Y	C1400
ANGLES HEASURED ANGLES HEASURED ANGLES HEASURED ANGLES HEASURED TO 8 72.0 73.3 72.5 73.6 74.9 75.1 76.3 70.8 72.0 73.3 72.5 75.6 73.6 74.0 77.7 72.9 71.7 72.9 74.6 75.8 93.2 77.4 77.7 75.9 75.9 76.2 74.2 76.4 77.9 76.9 76.2 77.7 77.9 76.2 74.2 77.7 79.6 76.9 77.7 79.8 90.2 90.3 90.3 90.3 90.3 90.3 90.3 90.3 90.3	300-FM			40000	-0-0-000	10 to - N			1.2 10 8.0 10 8.6 10 FRE	99 H122	동
ANGLES HEASU ANGLES HEASU ANGLES HEASU ANGLES HEASU ANGLES HEASU ANGLES HEASU TO 8 72.0 73.3 73.6 74.9 76.1 7 71.7 72.9 74.6 75.9 73.6 74.9 76.1 7 74.0 72.9 74.6 77.9 78.6 93.2 77.4 77.7 7 74.0 72.9 74.6 77.9 78.6 93.2 77.4 77.7 7 74.0 77.7 72.9 78.6 78.9 80.3 81.9 82.3 8 76.0 76.9 77.7 79.6 79.1 80.9 81.8 81.8 81.2 81.8 81.8 81.8 81.8 81.8	•	RED FR	ö	00000000	00000 T W D	0 40 0	900		044 4		N
40. 50. 60. 70. 60. 69.2 71.3 71.6 72.5 73.6 73.6 70.8 70.8 70.8 72.0 73.3 71.6 75.2 73.6 75.2 71.7 76.8 71.7 76.9 74.0 74.9 76.2 77.7 76.8 83.1 76.9 76.9 77.7 76.9 76.9 76.9 76.9 77.7 76.6 76.9 76.9	ATION		-	-4704800	-00-1000-	ය – හ ස	901		4 6 6	R. R.	ă
40. 50. 60. 70. 60. 40. 50. 60. 70. 60. 70.8 72.0 73.3 71.6 72.5 73.6 71.7 72.9 74.6 75.8 73.8 74.0 74.8 72.0 73.3 73.8 73.8 74.0 74.8 72.0 73.3 73.8 73.8 75.9 77.7 72.9 76.4 77.9 78.1 75.9 77.7 72.9 76.4 77.9 78.1 75.9 77.7 72.9 78.1 76.6 76.8 78.1 78.2 78.1 76.6 76.8 78.1 78.2 78.1 76.7 78.8 81.9 80.8 81.2 82.3 83.7 83.8 78.8 81.9 84.1 85.0 85.1 78.9 81.9 83.9 84.3 86.1 78.9 81.9 83.9 84.3 86.1 78.9 81.9 83.9 84.3 86.1 78.9 81.9 83.9 84.3 86.1 78.9 81.9 81.0 83.8 85.4 70.8 76.3 79.9 80.2 84.2 70.8 76.3 79.9 80.2 84.2 70.8 76.3 79.9 80.2 84.2 70.8 76.3 79.9 80.2 84.2 70.8 76.3 79.9 80.2 84.2 70.8 76.3 79.9 80.2 84.2 70.8 76.3 80.7 83.6 85.1 70.8 76.3 80.7 83.6 85.1 70.8 76.3 80.7 83.6 85.1 70.8 76.3 80.7 83.6 85.1 70.8 76.3 80.2 84.2 70.8 76.3 80.7 83.6 85.1 70.8 76.3 80.7 83.6 85.1 70.8 76.3 79.9 80.2 84.2 70.8 76.3 80.7 83.6 85.1 70.8 76.3 80.7 83.6 80.4 70.8 76.3 80.7 83.6 80.4 70.8 76.3 80.7 83.6 80.4 70.8 76.3 80.7 83.6 80.7 70.8 76.3 80.7 83.6 80.7 70.8 76.3 80.7 83.6 80.7 70.8 76.3 80.7 83.6 80.7 70.8 76.3 80.7 70.8 76.3 80.7 70.8 76.3 80.7 70.8 76.3 80.7 70.8 76.3 80.7 70.8 76.3 80.7 70.8 76.3 80.7 70.8 76.3 80.7 70.8 76.3 80.7 70.8 76.3 80.7 70.8 76.3 80.7 70.8 76.3 80.7 70.8 76.3 80.7 70.8 76.3 80.7 70.8 76.3 80.7 70.8 76.3 80.7 70.8 76.3 80.7 70.8 76.3 80.7 70.8 76.3 80.7 70.8 70.8 70.9 70.8 70.9 70.8 70.8 70.9 70.8 70.8 70.9 70.8 70.8 70.9 70.8 70.	NTIFIC		_	00470000	V D 4 4 0 0 - 4	6000	- a a		. e a a	ا نقا ا	Fİ
40. 60. 70. 40. 60. 70. 70.8 72.0 73.3 73.6 73.9 73.7 72.6 77.2 76.4 77.2 76.4 77.9 77.5 6.7 77.9 77.5 6.7 77.9 77.5 6.7 77.9 77.5 6.7 77.9 77.5 6.7 77.9 77.9 77.9 77.9 77.9 77.9 77.9	IDE	¥	•	74 76 79 79 19 19 19	- 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	96 90 71	20 47		3 96. 7 106. 1 107. AMETER		RANG 00.0
40. 50. 60. 70. 8 72. 0 73. 3 71. 5 71. 7 72. 6 72. 0 73. 3 71. 7 72. 6 74. 6 74. 6 75. 9			8	73 73 73 73 73 73 73 73 73 73 73 73 73 7	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	88 8 2 C	29 C C		<u>a 5 5</u>	27-78 ANECH	3USTIC 1 (24
40. 60. 60. 60. 60. 70. 71. 3 71. 72. 0 73. 71. 0 74. 0 74. 0 74. 0 74. 0 74. 0 74. 0 74. 0 74. 0 74. 0 75. 9 75.			2	72. 73. 73. 75. 75. 75. 75. 75. 75. 75. 75. 75. 75	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	83. 75. 69.	2 4 5 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		201	202	•
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7			8	71.0 73.3 74.6 76.2 76.2 79.6 79.6	78.1 61.1 61.1 63.7 65.0 63.9	81.0 79.9 74.0 66.9	39.8 10.3		000	L DATE	
			80	1					99.6 99.6 8.6	TEST	POIN 112
### ### ### ### ### ### ### ### ### ##			9	1			1		99.6 96.4 96.4		TEST
			FREG	250 250 250 250 250 250 250 250	315 400 500 1000 1250	2000 2500 3150 4000	6300 6300 10000 12600	20000 3-15000 50000 50000	OASPL PNL PNLT		MGDEL 7200

8
_
0
Ξ
-
_
9
•
•
1
_
7
Ň
0

																									***	(<i>\$</i>	
												01 01	RIG F	SIT PC	IA OI	L I	PA	GE	E IS	3									SPEED 389.0 FPS)		
18E									9			2	3 ~	_		n (~	10.5	V 4			- N	ю O	0	no ca		.	•	8 37.00 8 32.00	FREE-JET 18.57 M/SEC (,	
FOR BACKGROUND NOISE	20 00		160.	\frac{1}{2}					112.6 146.	97.0	· -	ci c	N W		,			9 (7	•	-	- 🔻	- 0	0	85.9 147.5 81.1 146.9	-	D 10	117.9 163.	TAMB 100 REL HUM	MODEL		
TED FOR BAC	HGDL X72120 HGDL X01400	DEGREES	140. 150.						09.3 113.2	11.1 114.1	16.0 115.2	17.1 113.6	4	.0 110	901	.5 107	8 108	100	104	5 103		9. e.	5 93	94.7 89.1 89.9 83.6	1.1	4 % 5 4	127.8 123.4	1ALPHA 8859 FAMB 29.3300		•	
LEVELS CORRECTED	FJ-400-FMGDL	INCET,	120. 130.						7.3 104.4 1	99.4 107.2 I		- ا			•		-1		113.6	112.6	10,1	108.5	100.8	93.4 93.3	96.7	75.4	.3 126.0	N299 IA ADH121	F	٠٠ ٢.	
SSCRE	- MODEL BACKGROUND	MEASURED FROM	110.						9	95.2	96.5	7 98.9	101.4	102.9	1 104.2 1	105.50	6 106.3	5 106.6	107.1	107.0	4 105.7	105.0	98.4	9.4	83.2	70. 10.	117.3 121	PE XG.	75		
F. 70 PERCE	DENTIFICATION	ANOLES H	90. 100						69.5 91.	- «	2	.3 95	- ^:	.3 99	.7 100		101	? 0	200	200	ă	6 4 	0.	92.3	.7 63		114.1 114.	TA!	NOE T		
UNTRANSFORMED MODEL 59.0 DEG. F.	IDENT		70. 80.						.2 67.		3 91	4. 99.	.0.	6 95.	.2 85.	. w.	7 98	4 101.	6 103.	0 103	4 102.	. a 103. . 102.	1 98.	92.5 93.5 96.9 91.3	93.	99	11.6 112.8	02-27-76 C41 ANECH C	COUSTIC M (
UNTRANS			. 60.						95.9	9 6	69.7	90.6	63	94.0	20 K	, n	2 99.3	102.2	9 102.4	100	7 99.9	0 98.8 4 95.9	6 93.2	9 60	77.8	65.7	1 111.1 11	TEST DATE O	<u> </u>		
			40. 60						63.1	86. U	86.7	68.3	. 4.	90.5	6 10 6 10 6 11	97.7	101.0	0.00	99.2 99	38	96.4 98	8 8 0 0 0	88.2	81.2 81.	74.1	62.2	139.4 110.	# J	TEST P		
8				FREG	8 6	8	123	200	250	5 0	200	930	88	1250	1600	2800	3150	0000	6300	10000	12500	16000 20000					CASPL	Kar- uk	MODEL 7200		•

							RI	GIN PO	AL OR	PA QU	IG⊋ /AL	: IS	8						N - YES N - YES		FREE-JET SPEED ' M/SEC (369.0 FPS)	
FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC IDENTIFICATION - FJ-400-FMODL X72120	ANGLES MEASURED FROM INLET, DEGREES), 60, 60, 70; 60, 80, 100, 110, 120, 130, 140, 150, 160, PM		91.6 90.5 90.3 89.3 89.5 89.8 91.3	91.6 90.6 90.3 90.2 91.3 90.4 91.4 98.7 107.9 111.3 113.1 110.4 146. 92.0 91.3 90.2 91.0 91.9 92.3 93.4 100.3 110.0 113.7 114.4 109.9 148.	92.8 92.5 91.0 93.5 93.0 93.2 94.6 102.1 110.8 114.9 113.7 108.6 148 93.4 94.5 92.6 101.4 94.7 94.0 96.7 104.4 112.1 116.4 113.6 109.4 149	97.3 97.1 94.9 95.0 95.6 96.1 98.3 106.4 112.5 116.4 112.7 109.9 1	44.4 40.5 40.8 40.8 40.7 40.5 47.0 48.7 100.0 112.1 117.1 14.0 108.5 196.5 108	97.5 98.5 98.0 97.9 99.0 100.2 103.1 109.6 114.4 116.4 110.9 120.7	100.5 89.0 96.1 99.2 101.0 101.9 102.2 105.6 111.1 114.7 115.3 1	105.2 106.3 104.1 105.0 104.8 103.9 106.7 111.7 114.0 112.6 108.3 108.4 1	106.8 107.1 106.6 107.1 107.2 104.9 107.2 111.7 113.4 111.4 137.4 107.1 106.3 108.0 107.2 107.6 107.2 105.5 106.5 110.5 113.2 110.3 106.7 106	106.3 106.6 107.0 107.6 108.0 105.9 107.1 109.9 111.8 109.0 106.4 108.3 151	104.2 104.7 105.1 106.8 106.4 102.8 103.8 107.9 106.0 103.2 101.8 106.9	101.0 101.1 101.6 103.4 103.0 100.3 100.3 103.5 103.6 99.9 97.6 102.0	85.5 97.6 97.0 96.0 97.0 96.4 95.9 98.8 99.4 96.9 94.1 96.6 150. 91.7 93.7 94.6 95.9 95.3 90.8 91.5 95.2 93.0 91.1 89.2 92.9 150. 86.0 86.3 86.6 87.7 87.7 86.0 84.6 91.0 87.4 85.4 84.0 86.5 149.	78.5 80.1 81.9 78.8 78.9 80.3 77.6 85.9 82.7 79.7 74.5 68.9 70.5 72.7 72.5 74.1 71.5 71.2 75.0 72.9 89.9 84.7	115.8 116.1 115.6 116.8 116.8 115.1 117.0 121.9 125.5 127.1 124.0 1	MODEL/FULL SIZE SCALE FACTOR FREE JET VELDCITY (FT/SEC) 389.00 REFRACTION CORRECTION INPUT 1.000 CALC. 1.000 FREE JET DIAMETER (IN) 48.00 TURBULANCE CORRECTION	TEST DATE 02-27-78 TAPE NG. N299 IALPHA 3059 TAPE 37.00 LOCATION CAI ANECH CH AERO. RDG. ADHIZI PAND 29.3300 RELHUM 53.60	TEST POINT ACCUSTIC RANGE SIZE 12.2 H (40.0 FT) ARC 164.7 SQ CH (23.99 SQ IN) - MODEL 118.57 H/	
		40 FRED	8885	125 160 200 250 90			1	1250	I	3150 102.5	5000 106		0000		25000 97.	31500 85.2 40000 82.5 50000 87.0	63000 79 A0000 69	ASPL 1				17

7.7.	10. 120. 130. 14 10. 120. 130. 14 10. 120. 130. 14 10. 120. 130. 14 10. 120. 130. 14 10. 120. 130. 14 10. 120. 130. 14 10. 120. 130. 14 10. 120. 130. 14 10. 120. 120. 130. 14 10. 120. 120. 130. 14 10. 120. 120. 120. 120 10. 120. 120. 120 10. 120 1	DENTIFICATION - FJ-400-FMODL NO. 100. 100. 110. 120. 130. 17. 35. 36. 36. 36. 36. 36. 36. 36. 36. 36. 36	ANGLES MEASURED FROM INLET, DEC ANGLES MEASURED FROM INLET, DEC 2.9 74.0 74.2 75.0 81.1 89.7 91 56.4 76.1 75.1 76.1 82.9 90.5 95.3 95.2 95.2 95.2 95.2 95.2 95.2 95.2 95.2
------	--	--	---

										OR OF		IN O		F		GE AL										ET SPEED (0, FPS)	
 																									30.56 17.90	· FREE-JET O. M/SEC (
X73010		160.			0.7 145.9	10	2.1 148.9	1-	13.9 150.1	9 140.4	0	— ·	7.7.7.	-	103.5 144.5	142.9		95.5 140.3	4	-	63.0 138.2 76 4 136 4	ָם ד	1.4 136.4	2.8 160.5	TAMB	MODEL	
40.0 FT X73010	E3	150. 16			112.6 110	114.1 111	110.0 112	-	ó.	115.6 113	-	112.6 107	20.00] "	- •	103.3 100	-		- 1		52.7 63 78 9 76		64.7 64	125.7 122.8	3859 29.1940	SQ IN) - P	. :
DAY SA FJ-ZER-THOOL	ET, DEGREES	130. 140.			6.0 109.9	=;	10.9 113.6	1.6 115.4	10.9 114.6	10.2 114.7	-	110.0 112.9	~ ~	1-	107	, ra	5	5.4 95.7	19	,	3,3 84,3 8 7 7 8	6 72		121.3 124.8	I ALPHA PAMB	\$1.2E (23.99 :	
1 14	FROM INLET,	120. 1		8	101.2 106	102.5	503.6	106.7 1	107.1	108.0	107.9	107.7	106.0	106.3	105.3	103.0	100.2	9 6 0, 0	91.7	87.8	0 P	73.6	66.9	118.4	N294 ADH072	S	· · · · · · · · · · · · · · · · · · ·
- I	HEASURED FROM	100. 110.		8				l '_	N (19.3 102.3 19.7 102.7		100.2 102.1	v 6	0	4 0	: 4	5 97	و م	4	ú (73.5 79.7 73.5 70.0	q	œ	10.6 113.1	TAPE NG. AERG. RDB.	ARC 154.7	
' 2	AMBLES	8		8	97.6	92.2	8 6 8 6 8 6	95.7	97.1	98.5	97.2	98,0	97.0	97.1	97.2	96.5	85.3	92.7	5 9 7	54,55	92.4 4.8	66.7	62.2	109.3 1	SH AE	RANGE 40.0 FT) A	
59.0 DEA E		70. 60.			3	88.3 90.4	10 100 8		S S	6.5 96.0 4.9 96.0	95.	igi k	מ מ	1	9 2	9	91.5 93.6	92.	4	.2	72 0 74 3	4 66	61.0 61.0	06.2 108.1	02-20-78 C41 ANECE	ACOUSTIC 2 H (4	
		8			87.4	88,5	9 9 9 9	92.0	96.4	83.3	96.5	25.7	2.5	95.6		, 4		i vi			4 4	1	6	106.0 1	TEST DATE OF LOCATION C	12.	
		40. 50.	:		4	.98		7 91	o o	4.2 93.4	a	3.50	. 4	rú.	ú c	2	8	7.7 65.7	2 81	.0.	. c	5 60	2.3 53.3	4.2 105.9	TESI	TEST POINT 7301	
		EPED	S 8 8	•		400		l	1000	1600 91		2500 93	4000 92	ĺ	6300				1	31500 75	\$0000 \$0000 \$0	-	80000 52	DASPL 104		1300 T	619

FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS	IDENTIFICATION - FJ-ZER-FMGDL X73	40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, PWL		33.0 86.6 86.6 67.1 86.2 80.3 93.2 94.1 89.1 103.7 108.0 111.0 110.6 144.4	. 9 88.7 88.5 88.3 90.4 92.2 93.4 95.5 102.5 109.6 112.9 114.1 111.5 148.0 .0 89.5 90.8 90.1 92.9 93.3 94.9 96.9 103.6 110.9 113.6 115.0 112.1 148.9 .2 90.7 90.9 91.0 100.6 94.4 95.8 98.5 105.2 111.3 114.6 115.6 113.0 149.7 .7 91.5 92.0 93.3 93.9 95.7 97.9 100.0 106.7 111.8 115.4 116.4 114.0 150.5	20 96.6 96.4 95.6 95.2 97.1 98.2 100.9 107.1 110.9 114.6 116.0 113.9 150.1 15.9 150.1 15.9 95.5 95.5 96.5 97.1 99.5 99.3 102.3 107.9 109.8 114.9 116.8 113.2 150.4 15.9 11.9 149.9 96.0 98.4 99.7 102.7 108.0 110.2 114.7 115.9 111.9 149.9 149.9 96.0 98.4 99.7 102.7 108.0 110.2 114.7 115.9 111.9 149.9 148.3 17.9 96.5 95.5 97.2 98.8 102.5 107.9 109.3 113.0 113.2 109.0 148.3	.5 94.8 95.1 95.9 96.2 98.0 100.2 102.1 107.7 110.0 112.9 112.6 107.1 148.2	2 92.1 93.1 93.6 94.8 97.2 98.6 101.1 105.5 105.7 107.0 106.3 103.5 144. 3 92.1 92.5 92.7 94.5 96.9 97.7 100.0 104.4 104.0 105.6 104.8 102.4 143. 2 90.9 91.6 92.3 94.1 96.5 96.7 99.5 103.0 102.5 103.9 100.4 100.4 143. 4 90.0 90.2 91.5 93.6 95.3 95.7 97.3 100.2 100.6 101.6 101.5 100.0 147.	7 86.1 89.2 90.8 93.3 94.5 93.5 95.8 98.2 98.9 99.0 99.9 98.1 141.4 7 85.7 86.2 87.8 92.1 92.7 90.9 92.9 95.0 95.4 95.7 96.3 95.5 140.3 2 81.7 83.5 84.1 89.3 89.7 88.2 87.8 91.7 90.5 91.6 92.5 92.5 138.9	.0 72.9 76.4 77.9 82.2 82.4 78.8 79.7 83.4 83.3 84.3 82.7 83.0 1 8 66.3 68.8 72.0 74.3 75.5 73.5 72.9 78.6 76.5 78.6 78.2 76.4 1 5 60.1 62.5 65.4 66.1 66.7 68.0 66.1 73.6 69.6 72.1 72.4 70.8 1 3 53.3 57.3 61.0 61.0 62.2 60.9 60.9 66.9 62.9 63.2 64.7 64.4 1	.2 105.9 106.0 15J.2 108.1 109.3 110.6 113.1 118.4 121.3 124.8 125.7 122.8 160.1 El felle seze scale factor - Free Jet Veldolty (FT/SEC) - 0	OUT 1,000 CALC, 1,000 FREE JET DIAMETER (IN) 48,00 TURBULANCE CORRECTION - TEST DATE 02-20-78 TAME 30.56	LOCATION C41 ANECH CH AERO. RDG. ADHO72 PAMB 29.1940 RE	12.2 M (40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 0. M/SEC (
		40.	m 0 0 m	83.0 88.	85.9 88. 87.0 89. 87.9 90.	96.0 91.9 94.2 95.2 93.0	93.5 94.5 92.8 93.	89.3 87.2 89.3 87.2 87.2	82.7 88. 77.7 85. 76.2 81.	70.0 72. 63.8 66. 57.5 60. 52.3 53.	104.2 105.9 Manel /Fill 1. S	Į,	i di	č 0 –	
		FRED	885	160 200 250 315	400 630 630	1000 1250 1600	250 2150 4000	8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 0. 01 td	63000 80000 80000	SASPL SASPL	SNITHIS	1 3 3 9 V a		

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. E. 70 PERCENT R.H. STD. DAY, SB. 2400.0 FT. SL

(

											01	RI(F.	PC	AJ O(L R	P.F.QI	JG AL	E	S												9	, .	FREE-JET SPEED M/SEC (0. FPS)	
												:					•											:			30.56	12	o.	
		ā	165.6	166.6	157.4	167.7	168.0	167.6	165.0	164.9	163.7	162.9	161.3	160.5	139.4	157.9	156.6	156.2		153	154.1							177.9			TAMB	RELHUM		
		160.	84.2	•	80.0		85.0	83.2	79.67	74.9		70.7			55.7	4 .	36.9	•										94.0	83.4	_			- FULL	
_		150.	1.08	80.08	9 9 9 9	97.6	92.2	0.1	87.5	83.8	61.1	79.0	75.6	73.3	70.1 66.8	60.4	51.3	38.7	4									100.6	101	6. 14	SB59	29.1940	CN1 DS	
X73011	DEGREES	140.	2 18	_		2 . 2		92.2	90.2 80.2	88.4	86.4	94.2	90.0	77.8		٠.	58.5	49.0	7	•								102.0	N	Y SHIFT	IALPHA	PAMB	. 00 S	
10DL	1	130.	89.3	9		4 N	N	₹ :	99.20 51.20	9	N	84.4 80.4	-	78.8	76.4		62.0	•	J.	0.								100.1		FREQUENCY	=		\$12E (1400.00	
FJ-ZER-FMØDL	FROM INLET	120.	3.3			87.5	ł	4	0.70 0.70	4	0	0 0	9	0	7.7.7	90	N	4	90	9 4 7 4								103.0	1	F.	294	ADH072	SQ CM	
1	SURED ER	110. 1	7.1 8	4	01	81.5	10	~	83.3	9	o o	81.3	2		۰ د	9 00		-:	٠,		;					•		n a	98.9	7.640	2		9032.2	
CATION	MEASU	00.	5.3 77	œ.	٠.	٠. ٥	0	α.	<u>-</u> (مام	9	- u	90	9		100	, IO	ю.	┦,									91.3 97.2 9	2		TAPE	45	-S	
IDENTIFICATI	MOLES.	90.	3 75	4	io i	7.79	6		œ c	4	9	7.4 79	19	4	.	-	<u>ر</u>	N.	۹,	n o o	,			•				N 0	4	ER RATIO		A	ł	
I DE		٠	3 74	0	i D	77 77		ю	. 78 . 78	V @	9 09	77 4.	9 67	•		•	, n		4	ن ب	-							90		DI AMETER		ቼ ቼ	1C RANGE 2400.0 FT)	
		2	8 72	74	85	٠ ر ا	7 78	0	3 76			75	1		9 43	1	٠ 4	. 1 58	,	8 C								6.6			-20-78	ANECH	COUST M (
		2	3 69			74.	ĺ	92	5 76.			73.1					88	20	45	1 28.	ń										02	2	731.5	
		99	69	71	7	72.7	76.	74	76.	42		2	15		67.	9	20.	2	q.												T DAT	LOCATION	=	
		8	E			71.1			76.1	1		69.7			65.7	4		44.3		1.3							1	84.3			TES	įZ	TEST POINT 7301	
		9	54			69.7	1.		72.1	Ł		86.8			57.4	4	• ' •	35.6	- 4									81.0 84.6	- 1				1	
			FREG	63	80	8	160	200	250	315	200	630	900	1250	1600	2000	2.000 0.000 0.000 0.000	4000	5000	6300	10000	12500	16000 20000	25000	31500	50000 50000	80000	GASPL	PNI T				MGDEL 7300	 21

8
_
6
_
_
9
730
•
7
_
2
<u></u>
0

											(ORI OF	GII PC	AN OC	L R	P/Q	AG UA	E	is TY										Approximation of the state of t
																											FREE-JET SPEED 1 M/SEC (306.0 FPS)		
NO NO SE	•			PWL				140.3	143.0	143.6		142.6	Ι			Γ,	140.6	_		'	- -			132.4		1 22	117.60		
40.0 FT. ARC	L X73020 L X01400	EES	. 150. 160.					0.	4 109.1 103.5	9	105.0	5 g	89.0 88	4.00	97,1 88	96.2 88.	000.4 000.4 000.0	94.1 87.	93.7 67.	96.	86.4 63.	79.6 76.	72.	1 62.3 60.3	116.3 111.	SB59	SQ IN) - MQC		
SOUND PRESSURE LEVELS CORRECTED 70 PERCENT R.H. STD. DAY, SB	FJ-400-FMGDL D FJB400-FMGDL		20. 130. 140			•		5 99.6 104	.4 101.2 106 .7 105.5 108	106.6 110	9 107.5 109	5 106.8 108 0 106.5 107	4 106.1 106	. 8 105.2 104 . 5 106.4 103	1 105.0 102	7 104.5 102	0 103 3 100	6 102.0 99	8 101.1 98	9 97.4 93	20 20 20 20 20 20 20 20 20 20 20 20 20 2	0 86.6 83	7 80.1 78.	6 65 6 65	.3 58.9 58.	D IALPH			40
ERCENT R.H. S	N - MGDEL BACKGRØUND	ME	00. 110. 1					98.2		92.0	63.7	93.4 96.5 103	98.1	9.00	99.4	98.5	0 6 0 6	97.4	96.9	93.7	90.08	82.6	77.9	1	9.0 08.2 6.2 109.6 1	TAPE NO.	154.		
DEG. F., 70 P	IDENTIFICATION	ANGLES	60. 90. 1	-				3.0 85.3	6 97.0	7.6 86.4	9.00	92.2	4 93.6	10 10 10 10 10	7 93.8	.6 93.2		1 93.0	4 93.5	6. 91.6	0.00	1 82.4	.6 80.6 73.4	0	58.8 61.0 03.2 105.1 1	92 92	RANGE 40.0 FT)		
59.0 DEG. F.,			60. 70.					.0 62.	63.7 83.6	. 8 34	1 87.	87.2 87.5 88.6 88.9	8 89.0	. 00 00 00 00	1 89.4	0 88.3	6 88 3	9 68.0	60 g	4.	60	7	7.07	62.2 64.3	0 100.7	DATE 02-2	ACC 12.2 P		
			40. 50.			·		78.8 81.	95.0 95.0	62.4 63.	85.6 94.	86.2 85.4	86.9 86.	80.0 80.0	85.9 86.	85.7 85.	85.8 86.	87.1 87.	86.1 88. 85.0 87.	82.0	77 3 79	76.3 76.	71.6	60.4 60.	97.9 98.8		TEST PC	,	
				F B B B B B B B B B B B B B B B B B B B	900	128	2 2 8 9 9 9 9	250	2 6 6 0	200	000	1000	1600	7 7000 7 7000 7 7000 7 7000	3150	4000	9000	9000	0000	16000							MODEL 7300		,

							•				ŕ,	\											0			L PA			J		
																										N – YES N = YES			FREE-JET SPEED MYSEC (386.0 FPS)		TREE-JEI STEEU S M/SEC (366.0 FPS
							•	7		. 9.	0 M	· - (Ne	ar	~ ~	10	? (V		, w.	rù eò	9	9.	7	9) (D .	CORRECTION	28.	H 43.40	FREE 117.65 M/S		117.65 M/
r. ARC			160. Pui				103.2 137.	141	00.9 141.	.4 142	9 6	4	3 141	7	4.9	-	4.0.	.3 140	. 2 140 140	95.1 139.1 92.8 139.	.1 133	. 2 138 . 0 137	.6 136	פיים י	113.4 164.	REFRACTION Turbulance	TAM	10 RELHUM	HODEL		- FULL
40.0 FT	X73020	DEGREES	0. 150.				-	101		108	30	•	Sa	5	a a	8	3 8	8) 3 3	.7 90.5	95	72	67.	2.70 5.	.0 115.6	88	- 1	HB 29.5700	(NI 08 6	•	PC 90 1N)
. DAY, SB		INLET, DEG	130. 140				•	Γ,		-1			_ -	_		1- •	_	- 1		91.7 89.7	1	72.9 72	0		-	7/SEC) 386 7 (IN) 40		PAMB	SIZE CM (23.99		81 CH (1400.00
K.H. 810.	•	ED FROM	10. 120.				0	8		101	4 102 102	3 103	8 103	6 105	6 104 3 104	6	7 108	100	- 0	92.6 93.0 86.2 91.9	3 86.	6 24. 6 79.	8 74.	ָּע ל	7	VELOCITY (FT/SEC) Jet Diameter (IN)	1.	19. ADH992	154.7 30 (9032.2 \$0
DEG. F., /U PERCENI	0	ANGLES MEASUR	. 100. 1				66.1	8 5. 8	· •	88.8	9 6	83.3	94.2	92.0	9 90	97.0	0.0	92.0	92.3	3 90.4 0 86.5 8	84.2		68.7	0.20	9 2	FREE JET VE FREE JE	TAPE NO.	AERG. RO	T) ARC		SL.
DEG. F.,	DEN	AK	.00				4.5	.5 86.	. 6 97. . 6 98.	.2	200	41	3	8	6 6 6 6	2 96.	9	0.0	9	53.55 93.3 90.6 91.0	.1 85.	.4.	.1 68.		0	•	78	ANECH CH	TIC RANGE 40.0 FT)		\$11C KANGE (2400.0 FT)
			. 70.		37			92.0	96.0 86.0	98.3		0.0	92.7	95.0	8 8 9 9	5 92.7	9.0.	4.20	97.10	5 51 6 69	1 84.7	0 IO	71.2	ָּטְ פּי		SCALE FACTOR Calc. 1.000	02-5	2	ACCUSTIC 12.2 M (4		ACOUS! 731.5 M (3
			20.00		7)		N	2	9 0	0	<u>.</u> ო	٠. ٥	ناد	4	– ო	~ 1	. 0	,) ř-	90.5 91. 89.7 88.	0	ָא כ	4		601.2	\$1 ZE 000	TEST DATE	LOCATIO	- POINT -302		17 PCINT 7302
			40.	0 5	<u> </u>	125 160	92	92	86.	8	2 0	8	2	83	0 0 0 0	92	8	2	3 6	00 00 00 00 00 00 00 00 00 00 00 00 00	9.	7.5	8		UASFL 100.4	MODEL/FULL INPUT 1.			MODEL TEST 7300 73	623	MODEL TEST 7300 7

. M. M. d. d. d.

Ö
Ø
•
-
0
_
20
>
_
τ
ĸ
ò

07/17/79 10.160														00)Ri)F	GI P		AL OR	. F	À	GE AL	19 1 T Y											. 40	FREE-JET SPEED 5 M/SEC (386.0 FPS)	
E LEVELS	16			160.	78.4 189.7	D)		4	0 158	69.4 156.6 68.9 159.0	2 159	۵,	55.6 159.2		ø.		9 158	.8 157	37.2 157.5	. U 105	165.3	164.3 163.1								62.5 172.2 83.6	14.6		TAMB 20 RELHUM 43	FULL 117.65	
SOUND PRESSUR	SB 2400.0 FT.	X73021	DEGNEES	140. 150. 1	7 84.0	9 62.7	61.8	1 76.8	75.1	73.5	4 74.2	73.2	7 7 6	0 0	4.69.4		62.9	9 54.7	6 47.9	32.9	10									96.1 99.6	1 90.1	24 SHIFT -S	ALPHA \$859 PAMB 29.5700	SIZE 00.00 SQ IN) -	
EXTRAPOLATED	i. STD. DAY,	FJ-400-FMGDL	FROM INLET, I	120, 130,		•	90.	2	۲.	vi o	.7 83.	.7	٥,	6 79	.7 79.	ه م	73	.3 65.	66.3 63.8	30 2	31.6 17.9									94.0	4 100	FREGUENCY	N299 I./ ADH992	SIZE .2 SQ CM (1400.00	
SCALED, AND	59.0 DEG. F., TO PERCENT R.H. STD. DAY,	DENTIFICATION - F	ANGLES MEASURED	100. 110.	69	70.5 71.	71.8 73.4	74.3 7	4:	, , ,	76.6 78.	78.7	77.2 79.	76.4 78.	75.8 76.	0 K	71.6 73.	69.1		00.00 47.0	33.2 29.	⊕. œ.								67.3 66.9 94.5 95.0	94.6 96	RATIO 7.640	TAPE NG. Aerg. RDG.	SL 9032	
TRANSFORMED,	.o DEG. F., 7	IDENT	ANG	. 60. 90.	68.2 89	71.6 70.	8 81.1 72.2 v 71 8 72 1	72.7 74.	74.1 75.	73.6 75.	74.0 76.	74.5 76.	74.4 76.	74.5 77.	73.8 75.	73.7 76.	72.8 74.	72.2 72.	67.9 68.	53.4 53	98 99	9.2 10.								87.0 87 85.2 96	96.5 97.	DIAMETER	-27-78 1 ANECH CH	ACGUSTIC RANGE 5 M (2400,0 FT)	
FLIGHT	89). 60. 70	1 68 1 67	58.7 68.	70.3 69.	3 71.6 72.	72.6 72.	72.9 73.	3 72.8 72.	3 72.2 73.	72.3 72.	71.8 73.	5 73.0 73.	20.00	69.5 70.	4 67.8 58.	63.3 65.	2 46.0 49	2 30.2 34	.7								0 04.3 04.5 1 02.0 02.8	1 92.6 93		TEST DATE 02-3 LOCATION C41	731.	
				40. 50	66.0 67.	66.6 68.	67.9 69.	70.9 69.	71.3 71.	71.4 71.	69.9 71.	68.8 71.	68.2 70.	67.8 69.	69.7 71.	67.6	63.2 67.	58.3 64.	52.5 61.	30.6 38	10.3 21.	0 0	0	9 (20	0 0	0	0		81.4 82.	86.8 90.		# #	L TEST POINT	
624				Q U	200	(20	8 2	12	916	02 10 10 10 10 10 10 10 10 10 10 10 10 10	31	4 1	9 9	90	8	2 2 2	200	220	3150	500	630	0000 0000	1250	1600	2500	31500	2000	63000	7000	OASPL PNI	PNL			MODEL 7300	

										SPEED 0. FPS)	: 1
61					-				30.29 18.50	FREE-JET 8 0. M/SEC (
PRESSURE LEVELS CORREERCENT R. H. STD. DAY. N - MODEL FJ-ZER- BACKGROUND	ANGLES MEASURED FROM INLET, DEGREES 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, PUL	50 63 60 100 125 160	8 87.1 £5.1 88.2 90.6 93.0 94.4 99.3 103.7 1 7 87.7 88.5 90.6 91.9 93.1 95.0 100.9 105.5 1 7 88.5 88.3 90.1 92.5 94.1 95.8 102.2 109.0 1 3 90.3 90.1 92.2 93.8 94.9 96.9 103.6 110.1	87 9 90 7 90 7 91 2 98 8 94 9 96 3 99 0 100 4 110 3 112 9 115 1 114 0 1 91 7 51 2 92 0 92 5 93 6 95 7 97 4 100 0 106 7 110 8 113 7 115 1 114 0 1 93 8 94 3 95 4 94 4 95 0 96 8 98 7 100 9 107 9 110 2 112 8 115 0 114 1 1 91 4 95 0 95 0 95 5 96 1 96 2 99 3 102 0 107 9 110 1 112 9 115 1 113 5 1	93.2 95.5 94.7 94.7 95.3 97.4 99.3 102.2 108.4 110.6 112.0 113.7 111.0 148 93.0 94.3 94.4 95.2 97.6 99.9 102.9 108.0 110.7 112.3 109.1 148 93.0 94.3 94.6 95.3 96.2 97.6 99.9 102.9 108.0 110.7 112.6 112.3 109.1 148 93.5 95.6 94.6 95.3 96.2 97.6 97.6 97.6 97.7 108.0 110.6 107.6 147	93.3 94.6 93.8 94.1 94.1 95.5 97.6 99.5 102.6 106.8 108.0 109.7 107.9 105.1 146 92.6 93.9 94.1 94.1 95.5 97.6 99.5 102.1 106.2 107.2 108.0 106.6 104.5 145 91.2 94.6 95.3 94.3 95.6 97.1 98.7 102.8 105.4 105.5 106.4 105.3 103.4 144 99.3 93.3 93.4 94.0 96.4 98.0 97.7 100.8 105.4 104.2 104.7 104.8 102.0 144	84.9 91.0 92.4 93.1 95.1 96.8 96.5 98.6 101.2 101.9 102.4 102.3 63.9 89.6 91.2 92.3 94.5 96.0 95.0 97.1 99.2 100.1 100.3 100.9 78.4 86.9 87.9 90.1 93.4 94.0 92.1 94.2 96.5 97.0 97.5 97.8 77.2 82.5 84.8 86.1 90.8 91.7 89.5 38.2 93.8 92.8 93.9	75.3 79.3 82.5 84.7 86.0 86.3 85.7 86.7 84.8 80.5 80.9 80.7 80.7 87.2 77.7 79.9 84.2 84.4 80.5 81.7 84.9 84.8 85.8 83.5 83.5 83.5 83.6 67.6 70.0 73.5 76.8 77.5 77.0 75.1 81.1 78.3 79.9 78.0 77.9 83.6 67.6 70.0 73.5 76.8 77.5 77.0 75.1 81.1 78.3 79.5 78.0 77.9 85.0 61.4 64.2 67.4 68.5 69.7 62.9 63.4 63.3 70.1 65.9 69.7 66.4 64.4 151.3 54.2 57.7 61.5 61.7 62.9 63.4 63.3 70.1 65.9 69.7 66.4 64.4 1	DATE 02-20-78 TAPE NG. N294 IALPHA TION C41 ANECH CH AERG. RDG. ADHO74 PAMB	MODEL TEST POINT ACGUSTIC RANGE 7300 7303 12.2 M (40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL	625

07/19/79 16.662													1,3		O R	RIG F	iiN PO	AL OR	- F	PA	GE AL	H	B Y					RECTION - YES	CORRECTION - YES	G ()	18.50	FREE-JET SPEED		, sage:	新 · · · · · · · · · · · · · · · · · · ·
FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS	IDENTIFICATION - FJ-ZER-FMODL X73030	ANGLES MEASURED FROM INLET, DEGREES	40. 60. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160.					83.3 88.6 87.	86.2 88.7 88.5 88.3 90.1 92.5 94.1 95.8 102.2 1	87.0 89.3 90.3 90.1 92.2 93.8 94.9 96.9 103.6 110.1 113.3 114.9 112.4 148	87.9 80.7 80.7 81.2 98.8 94.9 96.3 99.0 105.4 110.3 113,6 115.1 113.5 149	93.8 94.3 95.4 94.4 95.0 96.8 98.7 100.9 107.9 110.2 112.8 115.0 114.1 149	91.4 95.0 95.0 95.5 96.1 98.2 99.3 102.0 107.9 110.1 112.9 115.1 113.5 149	93.0 93.1 93.9 94.2 96.0 98.1 99.7 102.4 108.5 110.5 112.7 114.9 11	93.0 94.3 94.4 95.4 96.2 97.6 99.9 102.9 108.0 110.7 112.6 112.3 109.1 148	93.5 95.6 94.6 95.3 96.2 98.3 100.2 103.3 108.2 109.0 111.9 110.6 107.6 147	93.3 94.6 93.8 94.1 95.4 97.3 99.4 102.6 107.7 108.2 110.9 108.6 1 92.6 93.9 94.1 94.1 95.5 97.6 99.5 102.6 106.8 108.0 109.7 107.9 1	91.2 94.6 95.3 94.3 95.6 98.0 99.7 102.1 106.2 107.2 108.0 106.6 104.5 145	90.0 93.4 94.3 95.4 96.0 97.1 98.7 100.8 105.4 105.5 106.4 105.3 103.4 1	88.4 92.7 93.9 94.0 96.4 98.0 97.7 100.5 103.8 104.2 104.7 104.8 102.0 144 84.9 91.0 92.4 93.1 95.1 96.8 96.5 98.6 101.2 101.9 102.4 102.3 100.0 142	83.9 89.6 91.2 92.3 94.5 96.0 95.0 97.1 99.2 100.1 100.3 100.9 98.4 1	78.4 86.9 87.9 90.1 93.4 94.0 92.1 94.2 86.5 97.0 97. 77.2 82.5 84.8 86.1 90.8 91.7 89.5 89.2 93.8 92.8 93.	75.3 79.3 82.5 84.7 86.0 86.3 85.7 86.7 89.8 90.5 90.7 89.0 87.6 140	70.3 73.7 77.7 79.9 84.2 84.4 80.5 81.7 84.9 84.8 85.8 83.2 83.5 1	63.6 67.6 70.0 73.5 76.8 77.5 77.0 75.1 81.1 78.3 79.9 78.0 58.0 61.4 64.2 67.4 68.5 69.7 72.0 69.6 76.6 71.0 73.6 73.2	51.3 54.2 57.7 61.5 61.7 62.9 63.4 63.3 70.1 65.9 69.7 66.4 64.4 138.	103.7 105.8 106.1 106.5 108.2 109.6 110.9 113.6 118.9 121.4 123.9 125.2 123.3 160.4	E FACTOR FREE JET VELOCITY (FT/SEC) 0. REFRACTION	(IN) 48.00 TURBULANCE	N294 IALPHA SB59 TAMB	C41 ANECH CH AERG. RDG. ADHO74 PAMB 29.2980 RELHUM	TEST POINT ACGUSTIC RANGE SIZE	7303 12,2 M (40.0 FT) ARC 154.7 SQ CM (
626				63	200	125	160	250	400	200	630	1000	1250	1600	2500	3150	4 000	6300	0000	12500	16000	20000	31500	40000	20000	80000	OASPL					MODEL	7300		

LEVELS	
ID PRESSURE LE	0.0 FT. 3
	R.H. STD. DAY. SB. 2400.0 F
, AND EXTRAPOLATED SOUN	L DAY
D EXTRA	.H. STD
SCALED, AN	PERCENT R
÷	F. 70
H TRANSFORME	P.O DEG.
FLIGHT	25
	- 1

															0	Ri F		N/O				GE AL		3 Y													
																																			JET SPEED (C (0, FPS)		
	٠																																	30.29 10.60	FREE-JET O. M/SEC (
•			Ö	7.18	0.0	.0 166.6 4 167 1	. 6	.3 1	6 166 3		4	.7	ن د د	y o	Ó	.7 160.5	۱,	4	1 0	157.4	156.0	155.5	• 1						1		4			TAMB	FULL		
7	5	9	150. 160	90.1 84	o, c	.		n	80.08	7 7	0	9	80.0 71	ļ-	74.8 65	•	70	53.1 37	N	19.8									,	101.4 2.101.4 2.4.101.4	101.4	FT -9		3859 29. 2960	SO 173 - F		
	1	T, DEGREES	0. 140.	8 90.2	9	5. 5 5. 5	9	90	 90	98	. 1 88	.0 86	 88.ε	4 0	6 73	6 75	270	2 60	.3 51	0 36	.2 13.0		·				•			. 100.8 . 103.7	7.501.8	FREQUENCY SHIFT		PARB	\$12E (1400.00 S		
E 1-750-FMCC		FROM INLET	120. 130	83.1 88	60	86.2 90	88.5 89.7		00 0	9 6	6	90	85.6 85	9 8	. 60	78.7 77		68.2 64	.4 57	9.3 44	36.4 23	•						•	1	8 5 5 5 6 6 7	104.1.103	FREG		N294 ADH074	SQ CM		
2		ASURED	. 110.	İ	78.	9 6		83.	83.5	2 6	1	9 82.8	6 62.3	8	79	6 77.3	95	65	59.	48	31.9	7.							1	9 6 6	88.7	7.640		8 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9032.2		
DENTIELCAT		ANGLES ME	90. 100	9	a (77.0 78.2	. 7	0	<u>ر</u> و	» N	N	œ.	6 6	<u> </u>	77.9 77.		٩٠	69.3 66.	0	4.3	37.5 36.	o .		-					1	90.4 91.6	ı	TER RATIO		AE	NGE O FT) SL		
	•		. 60	8 72.1	7		78	77.	27.5	9 /	76.	75.		73	76		35	4 68.0	.09	23	3 36.0	o i								000 000 000 000 000 000 000 000 000 00	78	DIAMETER		02-20-78 C41 ANECH CH	ACGUSTIC RANGE 5 M (2400.0 F		
			60. 70	69.3 69.		9 6	٠ م	ıņ.	74.2 75.		0				71.9 73.	70.0 71.	٩٠	59.2 62.	-	4	22.3 30.	ห์							,	85.5 86. 91.6 93.	ď		- 1		AC 731.5		
			20.	68.5	69.0	70.7 4.0.4	73.9	74.3	72.3	2.07	73.7	72.3	2 5	70.1	_	66.8	٩	54.0	0	a				-						20 20 00 00 00	82.2			TEST DATE LOCATION	TEST POINT 7303		
			•	50 64.4	65,	80 66.0	37	69	200 70.5	2 6	69	69	67.	64	62	57.	9	4 4	33.	- [2	2 2	2 9	2.2	22	g	22	22			Bd						
			FRED		ا بي 	- 6	- 1	16	ă 6	ĭ ē	4	2	8	1000	1250	160	2000	316	4000	2000	6300	0000	12500	16000	25000	31500	40000	63000		DASPL	- NA				MODEL 730	6	27

			1				7	ÖR ÖF	P	D(» E	C	U	AL.	8		4 O	0	.	96	7	·- (G		6-	4	B 29.66 H 43.80	17.65	
			JAG				6 140.	2 141	5 4 5	2 142.	74.	142	3 142.	6 142.	5 142.	5 142.	 - 0		V 10	0 140.3		0 136.		2 135.9 0 135.1	1 155.	TAMB	MODEL	
		160					106.	105.	8	8	3 0	8	000		90	9	3 6	8		980	98			4 63. 6 55.	7 111.	S859 29.5700	£ .	
	ES	150					107.		107	105	M G C C	8	78	9 G	6	6	3 8	98	33	e e	8	7.0	72.	65. 56.	1.0		5	
	DEGREES	140.					104.0	100.4	108.5	109.1	108.4	107.3	106.3	104.	104.7	103.0		1		98.6				67.9	118.4	ALPHA	31 ZE 23.99	
	INLET,	130.	•	÷			98.6	20.5	105.8	106.2	107.6	107.5	107.4	107.2	106.5	106.0	106.2	104.6	102.4	100.0	91.7	9 6	76.0	69.0 62.3	118.5		_	
	1	120.					2.7	96.4	98.7	6.00	0.00 0.00 0.00	9.20	9.9	9 60	05.8	08.0	0.40 N. 0.	1.7	9.00	97.7	92.8	83.4	78.9	75.5 67.7	116.1	N299 ADH993	SOCM	-
BACKGROUND	SURED F	110.					99.6	9.0	91.7	93.4	100	97.4	98.3	0.00	00.4	60.00		98.9	- 0.96 96.90	50.00 0.00	87.9	0.0	73.4	67.8 61.3	110.4 1	ROG.	4.	
e e	MEA	90						- 0	1 10		-	. 0	80 P	.	7	•	- , a		a 0	92.0		- ^			1 6.90	TAPE	1 1	
	ANGLES	90.					•	6	4	10 C	D N	. 0	10 -	- 10	0	٠. <i>١</i>	ŧ 0	10	0 M	- 4	0	٠ a	N	u –	.0	AE		
		o.					0	•	9	0.0	V @	0	4 0	y a	a	<u>ب</u> و	. •		- 0	200	0	, a	,	. 5 62 62	.1 106	ᇙ	. 4	
		9													4	9 6		0		0.4			ĺ	9 7 59 7	.8 104	-27-78 ANECH		
	-	70					0 82			5 95			7 89	9 6	88	G G	8 8	5	8	90	9		- 1	3 66	6 101	7 0 0 2	2	
		8					l.	0 C		80		68	97		8						ĺ		2	52.	101.	FEST DATE	Ŀ	
		8					1 .	4.7							1	-		-1		87.4		73.6		6. 4. 4. 6.	100.3	TES	TEST POINT 7304	
		6					78.8	60.0	82.1	63.2	9 0	95.3	87.6	96.2	96.6	87.2	20.0	90.7	86.7	80.0	79.9	73.9	67.5	54.9	99.7			
			F. C. C. C. C. C. C. C. C. C. C. C. C. C.	8 8	100 125	160	280	8 0 8 0	200	630	1000	1250	1600	2500	3150	0004	8300	9000	2000	0000	2000	0000	0000	3000	OASPL		MGDEL 7300	

								OI OI	RIG F F				AC UA	ALI'	13 TY							YES		3FEED 386.0 FPS)	
									10 C				N	\$ ••	e -		N 6			960	0	CORRECTION -	8 29.66 H 43.80	FREE-JET 117.85 M/SEC (
	160.	Pal		.7 137	0,4	1 99.5 140.8	100.0	0.08	7.00	99.7	100.4	100.6	102.0	102.6	102.8	.00	4 97.6 142.2 2 95.6 142.3	90.1	9	2 65.6 137.0	2 114.3 156.0	REFRACTION TURBULANCE	SB59 TAMB 29.5700 RELHUM) - MODEL	
. t	, DEGREES . 140. 150.			0 100.6 103.	105.6	106.6 105	306.3	105.8 99	7 105.0 99.2	104.3 99	104.6 100	4 4	104.0	102.4	101	97.7	95.0	86.3	76.4 76.	2 62.2 60.	7 117.2 116.2	386.00 386.00	IALPHA SESS PAMB 29.5	SI ZE 23.99 SQ IN)	
) FROM INLET. 130			0.68	96.1	98.7	101.2	103.	103.7	104.6	105.7	106.0	105.7	0.40	102.1	90.00	0 05.00 04.0	89.0	63.9 77.	67.7 62.	9 116.1 117.7	ELOCITY (FT/SEC) Et diameter (IN)	N299 ADH993	4.7 SQ CM (
CATION	ANGLES MEASURED 90. 100. 110.			8 85 1 86.0	86.0	98.8	8	92.5	N -	2	96.2	9 9	97.6	97.4 97.6 99.0	96.8	20.00 20.00	92.8 94. 89.1 88.	86.6 86.	2 76.8 74.7	63.5 63	_	FREE JET VELO Free jet (TAPE NO. Aero. RD9.	T) ARC 154	
IDENT	ANG 80.			84.6	85.5 86.	89.4 86.	98.4 69.	90.00	92.1 93.	92.8 94.	93.7 95.	94.3 96.	95.0 97.	95.0	97.1 98.	96.4 97.	900.00 00.00 00.00	87.9 87.	79.3 79.	63.7 65.	107.4 1	FACTOR F1	-27-78 1 ANECH CH	ACGUSTIC RANGE	
	60. 70.				7 65.	0 0 0 0 0	88	90	90	8 92	5 92.	0 0 0 0 0	3 93	- 94	50.	6 4 6 4	0.4	0 87.	80.4 80.1	65.	106.8 1	. \$1 ZE SCALE F 000 CALC. 1.	DATE 02 NTION C4	Ž.	
•	40.		•		4 86.	.00	80	5 4 5 6	6.0	0.0	.2 93.	က် (၁၈) (၁၈)	4 93.		.4 97.	. 8. 8.	6.6 9.4	. 8 87.	79.6 78.3	9 6	.9 1.06.	MODEL/FULL S INPUT 1.00	TEST LGC/	TEST POINT 7304	

40. 60. 70. 60. 80. 10. 11. 12. 13. 140. 160. 160. 160. 160. 160. 160. 160. 16	D. 60. 60. 70. 80. AGLES MASUNED FROM INLET. DEGREES AGLES MASUNED FROM INLET. DEGREES 1 86.1 66.1 10. 10. 12. 10. 180. 164. 180. 180. 180. 180. 180. 180. 180. 180	40. 80. 60. 70. 60. 80. 70. 10. 10. 110. 120. 1700. 100. 160. 160. 160. 160. 160. 160. 1	ANGLES MEASURED ANGLES MEASURED ANGLES MEASURED 60. 70. 60. 90. 100. 110. 67.7 67.6 69.3 70.1 69.4 70.2 1 69.6 67.6 71.3 70.6 70.5 71.2 0 70.0 69.5 60.3 72.0 71.3 72.6	30-FMGDL	X73041			
0. 80. 60. 70. 80. 90. 100. 110. 120. 130. 140. 180. 180. 180. 90. 60. 70. 80. 90. 100. 110. 120. 130. 140. 180. 180. 90. 60. 70. 80. 90. 100. 110. 120. 130. 140. 180. 180. 90. 60. 60. 60. 60. 80. 10. 10. 10. 120. 130. 140. 180. 190. 90. 60. 60. 60. 60. 60. 10. 10. 10. 120. 130. 140. 180. 190. 190. 190. 100. 100. 100. 100. 10	0. 60. 60. 70. 60. 90. 100. 110. 120. 130. 140. 160. FM. 180. 160. FM. 180. 160. FM. 180. 160. FM. 180. 160. FM. 180. 160. FM. 180. 160. FM. 180. 160. FM. 180. 160. FM. 180. 160. FM. 180. 160. FM. 180. 160. 160. FM. 180. 160. 160. FM. 180. 160. 160. FM. 180. 160. 160. 160. 160. 160. 160. 160. 16	0. 60. 60. 70. 60. 90. 100. 110. 120. 130. 140. 160. 160. 170. 160. 170. 160. 160. 170. 160. 160. 170. 160. 160. 170. 160. 160. 170. 160. 160. 170. 160. 160. 170. 160. 160. 170. 160. 160. 170. 160. 170. 160. 170. 160. 170. 160. 170. 160. 170. 160. 170. 160. 170. 170. 170. 170. 170. 170. 170. 17	ANGLES MEASURED FRO 60. 70. 80. 90. 100. 110. 12 67.7 67.8 69.3 70.1 69.4 70.2 77 1 68.8 67.8 71.3 70.8 70.5 71.2 79 0 72.0 71.3 72.6 82 0 72.7 71.3 72.6 82					
0. 60. 60. 70. 60. 80. 100. 110. 120. 130. 140. 160. 160. 160. FM. 1 67.2 67.5 67.6 67.5 70.1 70.6 70.5 77.6 59.1 84.3 82.0 84.8 81.0 72.1 189.7 1 68.1 68.0 67.7 67.6 67.5 70.6 70.6 77.5 70.6 93.1 84.3 82.0 44.7 70.2 189.7 2 62.0 70.7 71.2 72.2 72.2 72.2 72.6 189.7 2 70.0 72.0 72.0 72.0 72.0 72.0 72.0 72.	0. 60. 60. 70. 60. 80. 100. 110. 120. 130. 140. 160. 160. 160. 160. 160. 160. 160. 16	0. 60. 60. 70. 60. 80. 100. 110. 120. 130. 140. 160. 160. 160. 160. 160. 160. 160. 16	2 67.7 67.6 69.3 70.1 69.4 70.2 77 1 68.6 67.6 71.3 70.6 70.5 71.2 79 0 70.0 69.5 80.3 72.0 71.3 72.6 82	INCET,	EOREES			
8 97. 2 97. 7 97. 9 98. 9 98. 9 97.	8 97.2 87.7 87.8 87.8 87.8 97.8 93.1 83.2 84.8 81.0 72.1 188.5 86.0 87.2 84.8 81.0 72.1 188.5 86.0 87.2 87.8 87.8 87.8 87.8 87.8 87.8 87.8	8 97.2 87.7 87.8 87.8 87.8 87.8 87.1 87.8 87.8	2 67.7 67.8 69.3 70.1 69.4 70.2 77 1 68.8 67.8 71.3 70.8 70.5 71.2 79 0 70.0 67.9 70.8 70.9 71.3 72.6 82 92 72.7 72.7 72.6 82 72.7 72.7 72.6 82 72 72.7 72.7 72.6 82 72 72 72 72 72 72 72 72 72 72 72 72 72	130.			٠	
1	1	1. 1	0 000 010 010 010 010 010 010 010 010 0	63.1	.3 82.	=		
4 69.5 72.7 72.5 72.7 72.5 72.7 72.7 72.5 72.5	4 69.6 17.7 17.5 72.7 72.7 17.5 72.7	4 69.6 72.0 72.7 71.5 72.0 72.1 72.2 74.2 74.2 74.2 74.2 74.2 74.2 74.2		0.0	54.6 61.0 74.4 79.0		o	
4 59.6 72.1 72.9 72.0 73.0 73.4 73.0 75.2 83.7 85.1 85.7 75.3 75.3 77.2 199.1 75.2 73.0 73.0 73.0 73.0 73.0 73.0 73.0 73.0	4 59.2 72.7 72.7 72.7 72.7 72.7 74.2 74.0 75.2 83.7 85.1 85.7 75.3 77.2 199.1 75.2 77.2 199.1 75.2 77.2 77	4 83.9 85.7 27.2 72.7 72.7 72.7 72.7 72.7 72.7 7	3 /2./ /1.5 /2.0 /3.1 /2.9 /4.6 85	85.3	57.	_		
2 71. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72	2 71. 73.2 77.2 77.2 77.2 77.2 77.2 77.2 77.	2 71. 73. 74. 75. 75. 75. 77. 75. 75	6 72.1 72.2 72.7 74.2 74.0 75.2 83	.7 85.1	7 78.	ا سا		
### STATE 73.5	2 73.5 73.5 73.6 73.1 73.5 73.5 73.5 73.5 83.7 83.5 83.5 73.5 73.5 73.5 73.5 73.5 73.5 73.5 7	2 73.3 73.6 73.7 73.6 73.7 73.6 77.8 84.7 85.8 84.8 81.2 73.5 70.7 183.7 70.2 180.3 70.4 183.7 70.2 180.3 70.4 183.7 70.2 180.3 70.4 183.7 70.2 180.3 70.4 183.7 70.2 180.3 70.4 183.7 70.2 180.3 70.4 183.7 70.2 180.3 70.4 183.7 70.2 180.3 70.4 183.7 70.2 180.3 70.4 183.7 70.2 180.3 70.4 180.4 180	72.9 72.0 73.8 76.4 74.9 76.5 64	. 5 62	7.		~ •	
711.7 73.3 73.0 77.1 77.2 79.5 84.9 64.3 60.7 77.2 79.5 86.9 64.3 60.7 77.2 79.5 86.9 64.3 60.7 77.2 79.5 86.9 64.3 60.7 77.2 79.5 86.9 64.3 60.7 77.2 79.5 86.9 64.3 60.7 77.2 79.5 86.9 64.3 60.7 77.2 86.9 64.3 60.2 77.2 86.9 64.3 60.2 77.2 86.9 69.0 65.9 180.9 80.4 77.2 77.2 77.2 78.3 82.5 87.7 77.2 86.9 180.9 80.2 77.7 7 78.3 82.5 87.7 77.2 86.9 180.9 80.0 77.2 86.9 180.9 80.0 77.2 87.2 87.2 87.3 87.3 87.3 87.3 87.3 87.3 87.3 87.3	711 733 732 732 732 742 772 772 782 84.5 64.5 64.5 64.5 67.7 773 86.5 64.5 64.5 64.5 64.5 64.5 64.5 64.5 6	711 733 730 730 770 770 770 770 80 80 80 80 770 770 77	0 /4.4 /3.8 /4.2 /6.1 /5.6 /7.5 84 1 72.9 73.6 74.1 75.7 75.6 77.9 84	7 85.6	2 K			
71.5 73.4 75.0 77.1 77.2 76.6 64.9 64.3 60.7 73.9 66.5 160.0 7 70.3 73.0 75.0 77.1 77.2 76.6 64.9 64.3 60.2 73.9 66.5 160.0 7 70.3 73.0 75.0 77.3 77.3 77.3 78.0 64.5 62.9 72.2 67.7 160.9 7 70.3 73.0 75.1 77.3 77.3 77.3 78.3 62.5 62.3 72.2 67.7 160.9 7 74.4 75.4 75.4 75.9 77.5 77.3 77.3 78.3 62.5 67.3 72.2 67.7 160.9 7 74.1 75.4 75.4 75.9 76.6 77.3 77.3 78.3 62.5 67.3 76.7 72.2 67.7 160.9 7 74.1 75.1 75.1 75.2 75.5 75.5 75.3 76.4 76.3 78.7 72.2 67.7 160.9 8 68.2 71.0 72.1 67.1 76.2 76.4 76.3 76.4 76.3 78.7 72.2 67.7 160.9 8 68.2 71.0 72.1 75.1 76.8 76.8 77.3 71.4 76.3 76.7 77.3 78.4 89.0 65.1 66.1 66.1 66.1 66.1 66.1 66.1 66.1	71.3 72.4 72.3 72.4 72.3 72.6 72.7 77.2 78.6 84.9 84.9 84.3 86.7 73.9 86.5 186.4 90.0 77.3 86.5 186.4 90.0 77.3 72.8 78.5 18.1 84.3 86.2 77.3 78.6 86.5 186.4 90.0 77.3 86.5 186.4 90.0 77.3 78.5 78.5 78.5 78.5 78.5 78.5 78.5 78.5	11. 37. 3. 4. 73. 37. 57. 77. 77. 77. 79. 64. 9 64. 9 64. 9 64. 9 65. 9 66. 9 66. 9 60. 9 77. 9 69. 9 66. 9 60. 9 77. 9 69. 9 60. 9 77. 9 69. 9 60. 9 77. 9 69. 9 60. 9 77. 9 69. 9 60. 9 77. 9 69. 9 60. 9 77. 9 74. 4 75. 7 60. 9 60. 9 64. 5 62. 9 77. 7 7 60. 9 60. 9 64. 5 62. 9 77. 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	7 73.3 73.0 74.7 76.2 77.2 78.7 85	5 84.6	77	-1-		
16 71.3 72.8 73.5 74.5 78.7 73.7 8 0.6 85.1 84.3 80.2 72.7 66.6 160.6 00.6 8.7 82.3 72.7 72.5 66.6 160.6 00.6 8.7 82.3 72.7 72.5 66.6 160.6 00.6 8.7 82.3 72.7 72.5 66.6 160.6 00.6 8.7 82.3 72.7 72.5 67.1 160.9 0.6 72.3 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5	10 71.3 72.0 73.0 73.5 74.5 77.3 78.5 83.1 84.3 80.2 72.7 86.6 160.6 80.6 80.6 80.6 80.6 80.6 80.6 80.6	16 71.3 72.8 73.5 74.5 77.3 79.5 83.1 84.3 80.2 72.7 86.6 160.0 8.0 10.0 8.1 84.3 80.2 72.7 86.6 160.0 8.0 10.0 8.0 72.7 72.3 72.0 72.1 72.1 72.0 80.6 160.0 8.0 72.3 72.7 72.0 80.6 160.0 8.0 72.3 72.7 72.0 80.6 160.0 8.0 72.3 72.7 72.0 80.6 160.0 8.0 72.3 72.7 72.0 80.6 160.0 8.0 72.3 72.7 72.0 80.6 160.0 8.0 72.3 72.2 87.1 181.1 1.0 7.3 72.1 72.2 87.4 72.3 80.1 80.1 72.2 87.2 86.2 87.0 85.9 81.0 81.0 81.0 81.0 81.0 81.0 81.0 81.0	5 73.4 73.3 75.0 77.1 77.2 79.6 84	94.3	7	-		
7.1.2 73.3 73.0 73.0 77.3 77.3 78.1 82.3 78.7 72.1 67.7 160.9 80.0 84.5 82.9 79.3 72.7 67.7 160.9 80.0 80.0 71.2 73.1 73.0 73.0 73.0 73.0 73.0 73.0 73.0 73.0	77 70 3 73 0 73 1 75 2 77 7 78 0 90 0 84 5 82 3 72 3 72 1 67 7 160 0 90 0 84 5 82 9 72 3 72 1 67 7 160 0 90 0 84 5 82 9 72 3 72 1 67 7 161 1 90 0 94 1 72 3 72 1 67 7 1 161 1 90 0 94 1 72 3 72 1 67 7 1 161 1 90 0 94 1 72 1 72 1 74 1 74 1 74 1 74 1 72 1 74 1 74	77 70 3 73 0 73 1 75 2 77 7 78 0 80 0 84 5 82 3 72 3 72 1 67 7 160 0 80 0 84 5 82 9 72 3 72 1 67 7 160 0 80 0 80 0 80 0 80 0 80 0 80 0 80	3 72.8 73.5 74.5 76.7 77.3 79.5	.1 84.3	2 73.	-	PC	
72.3 76.7 72. 57.1 73.8 75.8 75.8 75.8 75.8 75.8 76.8 76.8 76.8 77.8 72. 57.1 161.1 10.0 10.0 75.3 72. 57.1 161.1 10.0 10.0 75.3 72. 57.1 161.1 10.0 10.0 75.3 72. 57.1 161.1 10.0 10.0 75.3 72. 57.1 161.1 10.0 10.0 75.3 72. 57.1 161.1 10.0 10.0 75.3 72. 57.1 161.1 10.0 10.0 75.3 72. 57.1 161.1 10.0 10.0 75.3 72. 57.1 161.1 10.0 10.0 75.3 72. 57.1 161.1 10.0 10.0 75.3 72. 57.1 161.1 10.0 10.0 75.3 72. 57.1 161.1 10.0 75.8 76.8 76.8 76.8 76.8 76.8 76.8 77. 76.2 76.9 65.9 161.0 10.0 76.3 70.0 65.9 161.0 10.0 75.8 76.8 76.8 76.8 76.8 76.8 76.8 76.8 76	72.3 74.4 73.9 75.6 77.3 77.3 78.1 83.7 72.2 67.1 161.1 72.2 67.1 161.1 72.2 74.4 73.3 76.5 87.4 72.2 67.1 161.1 72.2 74.4 72.3 76.5 87.6 87.2 87.5 87.5 76.5 76.5 87.5 87.5 76.5 76.5 87.5 87.5 87.5 87.5 87.5 87.5 87.5 87	72.3 74.4 73.9 75.6 75.8 76.4 77.3 78.1 83.7 72.2 67.1 181.1 72.2 74.4 73.3 76.5 81.2 81.7 72.2 67.1 181.1 72.5 74.4 75.3 76.5 81.2 81.2 81.1 10.1 10.1 10.1 10.1 10.1 10.1 10.1	3 73.0 73.1 75.2 77.7 76.0 80.0	5 82.9	3 72.	_)O	
71.3 74.1 75.5 74.8 75.8 77.4 74.3 82.5 81.7 75.7 75.7 75.7 75.2 65.9 161.1 75.6 74.1 75.5 75.9 65.9 161.1 1 161.1 1 161.1 1 161.1 75.5 75.9 75.9 75.9 75.9 75.9 75.9 75.9	71.3 74.1 76.5 74.8 76.8 77.9 77.4 78.3 82.5 81.7 76.7 76.7 76.7 76.7 76.7 76.7 76.7 7	71.3 74.1 76.5 74.8 76.8 77.0 77.4 78.3 82.5 81.7 76.7 72.2 67.1 181.1 75.5 74.1 76.5 75.9 181.1 75.5 74.1 76.5 74.2 67.1 181.1 75.5 74.1 76.5 74.2 67.1 181.1 1 75.5 74.1 76.5 74.2 67.1 181.1 1 75.5 74.1 76.5 76.5 76.5 181.1 1 75.5 76.5 76.5 76.5 76.5 76.5 76.5 181.1 1 75.5 76.5 76.5 76.5 76.5 76.5 76.5 76.5	2 73.1 73.6 75.8 76.1 77.3 79.1	7 82.3	7 72.	•	R	
18.7 71.9 74.1 74.1 75.5 75.6 75.6 75.6 75.7 75.4 69.0 65.1 61.1 0 75.2 75.4 69.0 65.1 61.1 0 75.2 75.6 75.6 75.6 75.7 75.4 69.0 65.1 61.1 0 75.5 75.6 75.6 75.6 75.7 75.4 69.0 65.1 65.1 61.1 0 75.3 75.6 75.6 75.6 75.7 75.4 69.0 65.1 65.1 65.0 65.1 65.0 65.2 65.2 75.6 75.6 75.6 75.6 75.6 75.6 75.6 75.6	### 17.5 74.1 74.2 74.5	68.7 71.9 73.9 73.9 161.0 75.6 76.6 76.7 76.8 76.0 76.3 77.6 60.0 63.8 161.0 75.6 76.6 63.8 161.0 75.6 76.6 76.7 76.1 77.9 63.8 161.0 75.6 76.6 76.7 76.1 76.9 76.5 160.6 76.8 161.0 75.6 76.6 76.2 76.2 76.2 76.2 76.2 76.2 76	75.4 73.9 75.6 77.5 77.4 76.3	6 61.7	72.	_	Ç	
64.6 69.2 71.6 72.5 75.6 76.6 74.7 76.1 63.7 75.1 63.7 76.1 63.8 76.2 74.0 74.2 76.2 66.2 66.2 66.2 66.2 66.2 76.2 76	64.6 69.2 71.6 72.5 75.6 76.6 74.4 76.3 76.7 75.4 69.6 65.1 60.6 191.1 65.8 160.6 160.5 160.5 160.6 160.5 160.6 160.5 160.6 160.5 160.6 160.5 160.5 160.6 160.5 16	64.8 69.2 71.6 72.5 75.6 76.6 74.4 76.3 76.7 75.4 69.6 65.6 16.5 160.6 161.6 1	1 /3.3 /4.6 /6.8 /6.6 /6.4 /6.3 5 74 : 74 : 78 8 76 6 78 8 76 8	20.0	30.	- •	Y	
63.8 68.5 71.3 72.1 74.0 74.3 74.4 72.8 72.2 68.6 66.6 69.0 60.4 169.9 65.9 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0	62.4 63.9 66.5 85.4 7.7 60.5 64.7 60.6 65.2 82.2 8.4 40.0 185.9 65.6 85.8 65.8 65.8 65.8 65.9 65.9 65.9 65.9 65.9 65.9 65.9 65.9	62.6 66.5 71.3 72.1 74.0 74.3 74.4 70.5 72.7 66.4 66.5 62.0 66.5 100.0 1	0 11 6 10 E 18 6 14 4 1E 0	27		-ا	A	
### 12.7 23.3 5.6 5.9 67.6 70.2 66.4 64.3 68.6 66.6 59.8 80.4 40.0 169.9 ### 14.0 7.3 6.6 66.6 59.8 80.4 40.0 169.9 ### 15.6 14.4 14.0 7.3 6.5 22.2 9.4 7.6 36.0 169.5 ### 15.6 14.4 14.0 7.3 6.5 22.2 9.4 7.6 36.0 169.5 ### 15.6 14.4 14.0 7.3 6.5 22.2 9.4 7.6 36.0 169.5 ### 15.6 14.4 14.0 7.3 6.5 22.2 9.4 7.6 36.0 169.5 ### 15.6 14.4 14.0 7.3 6.5 22.2 9.4 7.6 36.0 169.5 ### 169	82.4 83.9 85.5 85.4 87.7 88.6 88.1 88.7 86.6 85.8 86.6 83.8 80.4 40.0 159.9 84.7 87.8 85.8 85.8 85.8 85.8 85.8 85.8 85	#67.4 69.0 68.9 67.0 70.6 70.2 66.4 64.3 69.6 66.6 59.8 60.4 40.0 159.9 64.4 40.0 159.9 64.4 40.0 159.9 65.8 67.0 70.6 70.8 70.2 66.4 64.3 69.6 66.6 59.8 60.4 40.0 159.9 64.5 10.8 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0	5 71 3 72 1 74 0 74 9 71 4 72 R	4.0.4			L)	
### ### ### ### ### ### ### ### ### ##	47.4 63.6 56.6 60.0 62.2 62.4 66.9 59.6 60.4 55.6 47.6 30.6 20.0 156.5 5 12.7 20.3 92.6 56.0 62.2 62.4 66.9 59.6 60.4 55.6 47.5 30.6 20.0 156.5 5 12.7 20.3 92.6 56.5 95.6 95.6 95.6 95.6 95.1 6 9.5 22.2 9.4 169.5 5 12.7 20.3 92.6 56.5 95.6 95.6 95.6 95.6 95.8 9.4 165.5 5 3.6 11.3 12.6 14.4 14.0 7.3 8.5 22.2 9.4 165.5 5 105.5	47.4 63.6 56.6 62.2 62.4 66.9 59.6 60.4 55.6 47.5 30.6 20.0 156.5 5 12.7 23.3 24.6 82.0 65.6 85.6 85.6 85.1 6 17.3 8.5 22.2 8.4 1656.5 5 12.7 23.3 24.6 82.0 65.6 85.6 85.6 85.1 6 16.2 22.2 8.4 1656.5 5 12.7 23.3 24.6 82.0 65.6 85.6 85.6 85.1 6 16.2 22.2 8.4 1656.5 5 12.4 63.9 65.5 85.4 67.7 86.6 86.1 86.7 86.5 86.0 83.9 86.4 165.5 86.8 85.4 86.8 85.4 86.8 85.4 86.8 85.4 86.8 85.4 86.8 85.4 86.8 85.4 86.8 85.4 86.8 85.4 86.8 85.4 86.8 85.4 86.8 85.4 86.8 85.4 86.8 85.4 86.8 85.4 86.8 85.4 86.8 86.8 87.3 101.2 105.9 87.2 80.9 86.4 86.4 86.2 87.3 102.0 102.0 96.3 96.4 86.4 86.2 87.3 102.0 102.0 96.3 96.4 86.4 86.2 87.3 102.0 102.0 86.3 86.4 86.4 86.4 86.2 87.3 102.0 102.0 86.3 86.4 86.4 86.2 87.3 102.0 102.0 86.3 86.4 86.4 86.4 86.2 87.3 102.0 102.0 86.3 86.4 86.4 86.4 86.2 87.3 102.0 102.0 86.3 86.4 86.4 86.4 86.2 87.3 102.0 102.0 86.3 86.4 86.4 86.4 86.2 87.3 102.0 102.0 86.3 86.4 86.4 86.4 86.2 87.3 102.0 102.0 86.3 86.4 86.4 86.4 86.2 87.3 102.0 102.0 86.3 86.4 86.4 86.4 86.2 87.3 102.0 102.0 86.3 86.4 87.8 88.8 86.4 87.8 88.8 86.4 87.8 88.8 86.4 87.8 88.8 87.8 88.8 87.8 88.8 87.8 88.8 87.8 88.8 87.8 88.8 87.8 88.8 87.8 88.8 87.8 88.8 87.8 88.8 87.8 88.8 87.8 88.8 87.8 88.8 88.8 88.8 88.8 87.8 88.	0 65.9 67.8 70.8 70.9 68 4 64.3					
19 40.0 47.6 52.0 55.6 55.6 55.6 50.1 48.4 50.0 41.5 31.5 17.6 156.5 15.6 156.5 17.6 156.5 17.6 156.5 17.6 156.5 17.6 156.5 15.6 15.5 17.6 156.5 15.5 17.6 156.5 15.5 15.6 15.5 15.6 15.5 15.6 14.4 14.0 7.3 6.5 22.2 9.4 156.5 156.	4 63.9 65.5 65.4 67.7 66.6 69.1 89.7 86.0 41.5 31.5 17.6 166.5 166.5 166.5 3.6 11.3 12.6 14.4 14.0 7.3 6.5 22.2 9.4 156.5 166.	19 40.0 47.6 52.0 55.6 55.8 50.1 49.4 50.0 41.5 31.5 17.8 156.5 166.5 17.8 156.5 15.5 17.8 156.5 15.5 17.8 156.5 15.5 15.5 17.8 156.5 15.5 17.8 156.5 15.5 15.5 17.8 156.5 15.5 15.5 15.5 15.5 15.5 15.5 15.	8 58.6 60.0 62.2 62.4 60.9 59.8	9.00			•	
3.6 11.3 12.6 14.4 14.0 7.3 8.5 2.2.2 9.4 169.5 165.5	7 23.3 32.8 36.9 38.5 38.2 36.0 31.5 36.2 22.2 9.4 169.5 167.5 167.5 167.5 166.3 166	7 23.3 32.8 36.9 38.5 38.2 36.0 31.5 36.2 22.2 9.4 169.5 167.5 167.5 166.3 36.5 22.2 9.4 167.5 165.5 16.4 14.0 7.3 8.5 22.2 9.4 167.5 165.5 16.5 16.4 14.0 7.3 8.5 9.5 9.5 9.5 9.5 165.5 1	0 47.6 52.0 55.8 55.8 50.1 49.4	0 41.5	5 17			
3.6 11.3 12.6 14.4 14.0 7.3 6.5 155.	3.6 11.3 12.6 14.4 14.0 7.3 6.5 155 156.3	3.6 11.3 12.6 14.4 14.0 7.3 6.5 156.	3 32.8 36.9 38.5 39.2 36.0 31.5	2 22.2	•	169.	· 10	
105.3 105.3 105.3 105.3 105.0 10	185.3 14 83.9 85.5 85.4 87.7 88.6 88.1 88.7 85.5 86.0 83.9 88.6 173.5 19 81.9 94.3 94.6 96.9 97.7 98.2 97.3 101.2 100.9 97.2 90.9 85.4 19 81.9 94.3 94.6 96.9 97.7 98.2 97.3 101.2 100.9 97.2 90.9 85.4 10 81.9 95.1 95.3 98.0 98.6 96.2 97.3 102.0 102.0 96.3 80.9 86.4 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 TEST DATE 02-27-78 TAPE NO. N299 IALPHA 8859 TAMB 29.5700 RELHUM 43.80 EST POINT ACCUSTIC RANGE 730.4 731.5 H (2400.0 FT) SL 9032.2 SQ CH (1400.00 SQ IN) - FULL 117.65 M/SEC (386.0	185.3 14 83.9 85.5 85.4 87.7 86.6 80.1 80.7 85.5 86.0 83.9 80.5 82.6 173.5 19 91.9 94.3 84.6 96.8 97.7 96.2 97.3 101.2 100.9 97.2 90.9 85.4 19 91.9 94.3 84.6 96.8 97.7 96.2 97.3 102.0 102.0 97.2 90.9 85.4 DIAMETER RATIG 7.640 FREQUENCY SHIFT -9 TEST DATE 02-27-76 TAPE NO. N299 IALPHA \$859 TAMB 29.05 LOCATION C41 ANECH CH AERG. RDG. ADH993 PAMB 29.5700 RELNUM 43.90 531 POINT ACCUSTIC RANGE 730.4 731.5 H (2400.0 FT) SL 8032.2 SQ CM (1400.00 3Q IN) - FULL 117.65 M/SEC (386.0	6 11.3 12.6 14.4 14.0 7.3			167.		
14 83.9 85.5 85.4 87.7 88.6 88.1 88.7 85.5 86.0 83.9 88.5 82.6 173.5 8.9 84.3 84.3 84.8 86.8 87.7 86.2 87.3 101.2 100.9 87.2 80.9 85.4 85.4 85.4 86.2 87.3 102.0 102.0 86.3 90.9 85.4 BIJAHETER RATIO 7.640 FREQUENCY SHIFT -9 TAMB 29.65 TAMB 29.65 LOCATION C41 AMECH CH AERG. RDG. ADH993 PAMB 29.5700 RELNIM 43.80 FREE-JET SPEED 7304 731.5 H (2400.0 FT) SL 8032.2 SQ CH (1400.00 SQ IN) - FULL 117.65 M/SEC (386.0	14 63.9 65.5 65.4 67.7 66.6 66.1 69.7 95.5 96.0 93.9 66.5 62.6 173.5 6.9 91.9 94.3 94.3 94.6 95.8 95.4 97.7 96.2 97.3 101.2 100.9 97.2 80.9 85.4 95.3 95.0 96.6 97.7 102.0 102.0 102.0 86.3 90.9 85.4 DIAMETER RATIG 7.640 FREQUENCY SHIFT -9 TEST DATE 02-27-76 TAPE NO. N299 IALPHA 8859 TAMB 29.66 LCCATION C41 ANECH CH AERG. RDG. ADH993 PAMB 29.5700 RELHUM 43.90 55T POINT ACCUSTIC RANGE 7304 731.5 H (2400.0 FT) SL 9032.2 SQ CH (1400.00 SQ IN) - FULL 117.65 H/SEC (386.0	14 63.9 65.5 65.4 67.7 66.6 66.1 68.7 85.5 96.0 93.9 66.5 62.6 173.5 19 91.9 94.3 94.0 95.0 97.7 66.2 97.3 101.2 100.9 97.2 90.9 65.4 19 91.9 95.1 95.3 96.0 96.2 97.3 102.0 102.0 97.2 90.9 65.4 DIAMETER RATIG 7.640 FREQUENCY SHIFT -9 TEST DATE 02-27-76 TAPE NO. N299 1ALPHA 8559 TAMB 29.65 LOCATION C41 ANECH CH AERG. RDG. ADH993 PAMB 29.5700 RELHUM 43.60 EST POINT ACQUSTIC RANGE \$120.0 50 IN - FULL 117.65 M/SEC (386.0				165.		
14 83.9 85.5 85.4 87.7 86.6 86.1 89.7 85.5 86.0 83.9 86.5 82.8 173.5 19 91.9 94.3 94.6 95.9 97.7 96.2 97.3 101.2 100.9 97.2 90.9 85.4 DIAMETER RATIG 7.640 FREQUENCY SHIFT -9 TEST DATE 02-27-76 TEST DATE 02-27-76 TAPE NO. N299 IALPNA 5859 TAPE 29.66 TAPE NO. N299 IALPNA 5859 TAPE 29.66 TAPE NO. N299 IALPNA 5859 TAPE 29.66 TAPE NO. N299 IALPNA 5859 TAPE 29.66 TAPE 29.66 TAPE 29.66 TAPE 29.66 TAPE 29.66 TAPE 29.66 TAPE 29.66 TAPE 29.66 TAPE 29.66 TAPE 29.66 TAPE 29.66 TAPE 29.66 TAPE 29.66 TAPE 29.66	14 63.9 65.5 65.4 67.7 66.6 66.1 69.7 95.5 96.0 93.9 68.5 62.6 173.5 6.9 91.9 94.3 94.3 94.4 67.7 86.2 87.3 101.2 100.9 97.2 90.9 85.4 6.4 6.4 6.4 6.4 6.6 96.3 96.9 86.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4 6.4	-4 63.9 65.5 65.4 67.7 66.6 66.1 69.7 95.5 96.0 93.9 66.5 62.6 173.5		•				
14 63.9 65.5 65.4 67.7 66.6 66.1 69.7 85.5 86.0 93.9 66.5 62.6 173.5 19.9 91.9 91.9 94.3 94.6 96.8 97.7 96.2 97.3 101.2 100.9 97.2 90.9 85.4 1.9 102.0 96.2 97.3 102.0 102.0 96.3 90.9 85.4 1.9 104.6 96.2 97.3 102.0 102.0 96.3 90.9 85.4 1.9 104.6 104.6 104.6 96.2 97.3 102.0 102.0 96.3 90.9 86.4 1.9 104.6 10	4 83.9 85.5 85.4 87.7 86.6 88.1 88.7 85.5 96.0 93.9 88.5 82.6 173.5 9 91.9 94.1 95.3 96.2 97.3 102.0 102.0 96.3 90.9 85.4 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 TEST DATE 02-27-76 TEST DATE 02-27-76 TEST POINT ACCUSTIC RANGE TAPE NO. R299 ACCUSTIC RANGE SIZE SIZE SIZE FIRE-JET 9FEED FIRE-	14 83.9 85.5 85.4 87.7 86.6 88.1 89.7 85.5 96.0 83.9 88.5 82.6 173.5 1.9 81.9 84.3 84.6 86.2 87.3 102.0 102.0 88.3 80.9 85.4 85.4 85.4 87.3 102.0 102.0 88.3 80.9 85.4 85.4 85.4 85.4 85.4 85.4 85.4 85.4						
14 63.9 65.5 65.4 67.7 66.6 66.1 69.7 95.5 95.0 93.9 66.5 62.6 173.5 19 91.9 94.3 94.6 96.6 97.7 96.2 97.3 101.2 100.9 97.2 90.9 85.4 19 91.9 94.3 94.6 96.6 97.7 96.2 97.3 101.2 100.9 97.2 90.9 85.4 19 91.9 94.3 94.6 96.6 97.7 96.2 97.3 101.2 100.9 97.2 90.9 85.4 10 10 10 10 10 10 10 10 10 10 10 10 10 1	-4 63.9 65.5 65.4 67.7 66.6 66.1 69.7 95.5 96.0 93.9 86.5 62.6 173.5 . 9 91.9 94.3 94.6 96.8 97.7 96.2 97.3 101.2 100.9 97.2 90.9 65.4 . 9 95.3 96.0 96.2 97.3 102.0 102.0 96.3 90.9 65.4 . DIAMETER RATIG 7.640 FREQUENCY SHIFT -9 TAMB 29.66 TAMB 29.66 . TAMB 29.66 . TAMB 29.66 . TAMB 29.66 . TAMB 29.66 . TAMB 29.66 . TAMB 29.66 . TAMB 29.66 . TAMB 29.66 . TAMB 29.66 . TAMB 29.66 . TAMB 29.66 . TAMB 29.67 . TAMB 29.67 . TAMB 29.67 . TAMB 29.66 . TAMB 29.66 . TAMB 29.67 . TAMB 29.66 . TAMB 29.68 . TAMB 29.66 . TAMB 29.68 . TAMB 29.66 . TAMB 29.66 . TAMB 29.68 . TAMB 29.66 . TAMB 29.66 . TAMB 29.67 . TAMB 29.68 . TAMB 29.68 . TAMB 29.68 . TAMB 29.68 . TAMB 29.68 . TAMB 29.68 . TAMB 29.68 . TAMB 29.67 . TAMB 29.68 . TAMB 29.68 . TAMB 29.68 . TAMB 29.68 . TAMB 29.68 . TAMB 29.68 . TAMB 29.68 . TAMB 29.68 . TAMB 29.68 . TAMB 29.69 . TAMB 29.68 .	-4 63.9 65.5 65.4 67.7 66.6 66.1 69.7 95.5 96.0 93.9 86.5 62.6 173.5						
14 63.9 65.5 65.4 67.7 66.6 66.1 68.7 85.5 95.0 93.9 66.5 62.6 173.5 6.5 95.4 67.7 86.2 97.3 101.2 100.9 97.2 90.9 85.4 67.4 85.3 96.0 98.6 97.3 101.2 100.9 97.2 90.9 85.4 85.4 85.3 96.0 98.6 96.2 97.3 102.0 102.0 96.3 90.9 65.4 BILLIAN SEC.4 BILLIAN SEC.4 BILLIAN SEC.4 BILLIAN SEC.4 BILLIAN SEC.4 BILLIAN SEC.4 BILLIAN SEC.4 BILLIAN SEC.4 SEC.4 FREE JET SPEED TANK SEC.4	14 63.9 65.5 65.4 67.7 66.6 66.1 89.7 85.5 96.0 83.9 66.5 62.6 173.5 19 91.9 94.3 94.6 96.8 97.7 96.2 97.3 101.2 100.9 97.2 90.9 65.4 19 91.9 94.3 94.0 96.8 97.7 96.2 97.3 101.2 100.9 97.2 90.9 65.4 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 TEST DATE 02-27-76 TEST DATE 02-27-76 TAPE NO. N299 IALPHA \$859 TAMB 28.66 LOCATION C41 ANECH CH AERO. RDG. ADH993 PAMB 28.5700 RELHUM 43.80 FREE-JET SPEED FREE 7304 731.5 H (2400.0 FT) 3L 9032.2 SQ CM (1400.00 SQ IN) - FULL 117.65 M/SEC (386.0	14 83.9 85.5 85.4 87.7 88.6 88.1 88.7 85.5 96.0 83.9 88.5 82.6 173.5 19 81.9 94.3 94.8 96.8 97.7 86.2 97.3 101.2 100.9 97.2 80.9 85.4 19 81.9 95.1 95.3 98.0 98.8 96.2 97.3 101.2 100.9 97.2 80.9 85.4 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 TEST DATE 02-27-78 TAPE NO. N299 IALPHA SB59 TAMB 29.86 LOCATION C41 ANECH CH AERO. RDG. ADH993 FAMB 28.5700 RELHUM 43.80 EST POINT ACCUSTIC RANGE T30.4 731.5 H (2400.0 FT) SL 8032.2 SQ CH (1400.00 SQ IN) - FULL 117.65 M/SEC (386.0						
14 83.9 85.5 85.4 87.7 88.6 88.1 88.7 85.5 96.0 83.9 88.5 82.6 173.5 8.9 81.9 84.3 94.8 96.8 87.7 86.2 87.3 101.2 100.9 97.2 80.9 85.4 85.4 85.4 85.3 98.0 88.6 96.2 87.3 102.0 102.0 96.3 80.9 86.4 86.4 86.4 86.4 86.4 86.4 86.4 86.4	-4 83.9 85.5 85.4 87.7 86.6 86.1 89.7 85.5 96.0 83.9 86.5 82.6 173.5 86.9 86.4 86.8 86.2 87.7 96.2 87.3 101.2 100.9 87.2 80.9 85.4 85.4 86.4 86.2 87.3 102.0 102.0 86.3 80.9 86.4 B6.4 B1.9 95.1 95.3 96.0 96.2 97.3 102.0 102.0 86.3 80.9 86.4 B1.4 B1.4 B1.4 B1.4 B1.4 B1.4 B1.4 B1	-4 83.9 85.5 85.4 87.7 88.6 88.1 88.7 85.5 96.0 83.9 88.5 82.6 173.5 8.9 81.9 84.3 84.6 86.8 87.7 86.2 87.3 101.2 100.9 87.2 80.9 85.4 85.4 85.4 87.7 86.2 87.3 102.0 102.0 88.3 90.9 86.4 BIAHER RATIO 7.640 FREQUENCY SHIFT -9 TEST DATE 02-27-76 TAPE NO. N299 IALPHA SB59 TAMB 29.66 LOCATION C41 ANECH CH AERG. RDG. ADH993 PAMB 29.5700 RELHUM 43.80 FREE-JET SPEED FREED TABLES ADH993 FAMB 29.5700 RELHUM 43.80 FREE-JET SPEED FREED TABLES ADH993 FAMB 29.5700 RELHUM A3.80						
-4 83.9 85.5 85.4 87.7 86.6 86.1 89.7 85.5 96.0 93.9 80.5 82.6 173.5 -8 19.9 94.3 94.8 96.9 97.7 96.2 97.3 101.2 100.9 97.2 90.9 85.4 -8 100.0 95.1 95.3 96.0 98.6 96.2 97.3 102.0 102.0 98.3 90.9 85.4 -8 100.0 98.6 96.2 97.3 102.0 102.0 98.3 90.9 85.4 -8 100.0 98.6 96.2 97.3 102.0 102.0 98.3 90.9 85.4 -8 100.0 98.6 96.2 97.3 102.0 102.0 98.3 90.9 85.4 -9 100.0 98.4 16.7 -9 100.0 98.4 16.7 -9 100.0 98.4 16.7 -9 100.0 98.4 16.7 -9 100.0 98.4 16.7 117.65 M/SEC (386.0 730.4 731.5 M (2400.0 FT) SL 8032.2 SQ CM (1400.00 SQ IN) - FULL 117.65 M/SEC (386.0	-4 83.9 85.5 85.4 87.7 88.6 88.1 88.7 85.5 96.0 93.9 88.5 82.6 173.5	14 83.9 85.5 85.4 87.7 88.6 88.1 88.7 85.5 86.0 93.9 88.6 82.6 173.5 19 91.9 94.8 96.9 97.7 86.2 97.3 101.2 100.9 97.2 90.9 85.4 19 91.9 94.0 96.8 97.7 96.2 97.3 101.2 100.9 97.2 90.9 85.4 19 91.9 95.1 95.3 98.0 98.6 96.2 97.3 102.0 102.0 98.3 80.9 85.4 DIAMETER RATIG 7.640 FREQUENCY SHIFT -9 TEST DATE 02-27-78 TAPE NO. NZ99 IALPHA SB59 TAPE 29.65 LOCATION C41 ANECH CH AERG. RD0. ADH993 PAMB 28.5700 RELHUM 43.80 FOUNT ACCUSTIC RANGE 730.4 731.5 M (2400.0 FT) SL 8032.2 SQ CM (1400.00 SQ IN) - FULL 117.65 M/SEC (386.0						
.4 63.9 65.5 65.4 67.7 66.6 66.1 89.7 85.5 96.0 93.9 86.5 62.6 173.5 9 91.9 94.3 94.6 96.8 97.7 86.2 97.3 101.2 100.9 97.2 90.9 65.4 9 91.9 94.3 94.6 96.8 97.7 86.2 97.3 101.2 100.9 97.2 90.9 65.4 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 TEST DATE 02-27-76 TAPE NO. N299 IALPHA SB59 TAMB 29.65 LOCATION C41 ANECH CH AERO. RDG. ADH993 PAMB 29.5700 RELHUM 43.60 FREE-JET SPEED 730.4 731.5 H (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 117.65 M/SEC (386.0	14 03.9 05.5 05.4 07.7 00.6 00.1 09.7 95.5 96.0 93.9 00.5 02.6 173.5 19 91.9 94.3 94.6 96.8 97.7 96.2 97.3 101.2 100.9 97.2 90.9 05.4 19 91.9 95.1 95.3 90.0 90.6 96.2 97.3 102.0 102.0 90.9 95.4 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 TEST DATE 02-27-76 TAPE NO. N299 IALPHA SB59 TAMB 29.06 LOCATION C41 ANECH CH AERG. RDG. ADH993 PAMB 20.5700 RELHUM 43.00 EST POINT ACCOUSTIC RANGE 730.4 731.5 H (2400.0 FT) SL 9032.2 SQ CH (1400.00 SQ IN) - FULL 117.65 M/SEC (386.0	TEST DATE 02-27-78 TEST DATE 02-27-78 TEST POINT ACCUSTIC RANGE ST. 2 96.0 93.9 98.5 95.4 100.9 97.2 90.9 85.4 101.2 100.9 97.2 90.9 85.4 102.0 102.0 102.0 96.3 90.9 85.4 102.0 102.0 102.0 86.3 90.9 85.4 103.0 102.0 102.0 86.0 96.4 103.0 102.0 102.0 86.0 96.0 96.4 103.0 103.0 96.0 97.3 101.2 100.9 97.2 90.9 85.4 103.0 103.						
-4 63.9 65.5 65.4 67.7 66.6 66.1 68.7 85.5 96.0 93.9 66.5 62.6 173.5 63.9 94.3 94.8 96.8 97.7 96.2 97.3 101.2 100.9 97.2 90.9 65.4 63.4 63.5 96.0 96.4 63.2 97.3 102.0 102.0 96.3 90.9 65.4 65.4 65.4 65.3 96.0 96.6 96.4 65.4 65.3 96.0 96.6 96.4 65.4 65.4 65.4 65.4 65.4 65.4 65.4 6	-4 63.9 65.5 65.4 67.7 66.6 66.1 69.7 95.5 96.0 93.9 66.5 62.6 173.5 6.9 6.9 94.3 94.6 95.9 95.4 95.1 95.3 94.6 95.8 97.7 96.2 97.3 101.2 100.9 97.2 90.9 65.4 95.4 95.1 95.3 96.0 96.6 97.3 102.0 102.0 102.0 96.3 90.9 65.4 96.4 96.2 97.3 102.0 102.0 96.3 90.9 65.4 96.4 95.1 95.3 96.0 96.4 96.4 96.2 97.3 102.0 102.0 96.3 90.9 65.4 96.4 96.4 96.2 97.3 102.0 102.0 96.3 90.9 66.4 96.4 96.4 96.2 97.3 102.0 102.0 96.3 97.2 90.9 66.4 96.4 96.4 96.4 96.4 96.4 96.4 96	14 63.9 65.5 65.4 67.7 66.6 66.1 69.7 95.5 96.0 93.9 66.5 62.6 173.5 19 91.9 94.3 94.6 96.8 97.7 96.2 97.3 101.2 100.9 97.2 90.9 65.4 19 91.9 94.3 94.6 96.8 97.7 96.2 97.3 101.2 100.9 97.2 90.9 65.4 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 TEST DATE 02-27-76 TAPE NO. N299 IALPHA SB59 TAMB 29.65 LOCATION C41 ANECH CH AERO. RD9. ADH993 PAMB 29.5700 RELNUM 43.60 SST POINT ACOUSTIC RANGE 730.4 731.5 H (2400.0 FT) 3L 9032.2 SQ CH (1400.00 SQ IN) - FULL 117.65 M/SEC (386.0			•			
- 9 91.9 94.6 96.0 97.7 96.2 97.3 101.2 100.9 97.2 90.9 65.4 - 9 91.9 95.1 95.3 96.0 98.6 96.2 97.3 102.0 102.0 88.3 90.9 66.4 - 9 91.9 95.1 95.3 96.0 98.6 96.2 97.3 102.0 102.0 88.3 90.9 66.4 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 TEST DATE 02-27-76 TAPE NO. N299 IALPHA \$859 TAMB 29.65 LOCATION C41 ANECH CH AERO, RDG. ADH993 PAPB 29.5700 RELHUM 43.60 FREE-JET 9FEED 7304 731.5 H (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 117.65 M/SEC (386.0	19 91.9 94.3 94.6 96.0 97.7 96.2 97.3 101.2 100.9 97.2 90.9 65.4 19 91.9 95.1 95.3 96.0 98.6 96.2 97.3 102.0 102.0 98.3 90.9 86.4 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 TEST DATE 02-27-76 TAPE NO. N299 IALPHA \$859 TAME 29.65 LOCATION C41 ANECH CH AERO, RDG, ADH993 PAMB 29.5700 RELHUM 43.60 TOCATION ACCUSTIC RANGE 730.4 731.5 H (2400.0 FT) 3L 9032.2 5Q CM (1400.00 3Q IN) - FULL 117.65 M/SEC (396.0	- 9 91.9 94.6 96.0 97.7 96.2 97.3 101.2 100.9 97.2 90.9 65.4 - 9 91.9 95.1 95.3 96.0 98.6 96.2 97.3 102.0 102.0 86.3 90.9 66.4 - 9 91.9 95.1 95.3 96.0 98.6 96.2 97.3 102.0 102.0 86.3 90.9 66.4 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 TEST DATE 02-27-76 TAPE NO. N299 IALPHA \$859 TAMB 29.65 LOCATION C41 ANECH CH AERG. RDG. ADH993 PAMB 29.5700 RELHUM 43.60 FREE-JET SPEED 7304 731.5 M (2400.0 FT) SL 9032.2 SQ CM (1400.00 3Q IN) - FULL 117.65 M/SEC (286.0	.9 65.5 65.4 67.7 66.6 66.1 89.7	8.0				
TEST DATE 02-27-78 TEST DATE 02-27-78 TEST POINT ACCUSTIC RANGE TARE NO. N. N. 102.0 10	TEST DATE 02-27-76 TEST DATE 02-27-76 TAPE NO. N299 IALPHA \$859 TAMB 29.65 LOCATION C41 ANECH CH AERO. RD6. ADH993 PAND 29.5700 RELHUM 43.60 \$126 7304 7304 7305 TAMB 29.05 TA	TEST DATE 02-27-78 TEST DATE 02-27-78 TEST POINT ACCUSTIC RANGE TARE NO. N. N. 102.0 INC. U. 102.3 NO. 20.0 No. 20.0	9 94.3 94.8 96.8 97.7 96.2 97.3	9.0	8	95.4		
EST DATE 02-27-78 TAPE ND. N299 IALPHA SB59 TAMB 29.66 LOCATION C41 ANECH CH AERO. RD0. ADH993 PAPB 29.5700 RELHUM 43.80 INT ACCUSTIC RANGE S0.2.2 SQ CM (1400.00 SQ IN) - FULL 117.65 M/SEC (386.0	EST DATE 02-27-78 TAPE NO. N299 IALPHA SB59 TAMB 29.65 LOCATION C41 ANECH CH AERG. RDG. ADH993 PAMB 29.5700 RELHUM 43.60 INT ACCUSTIC RANGE S1ZE S1ZE FREE-JET 9PEED 731.5 H (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 117.65 M/SEC (386.0	EST DATE 02-27-76 TAPE NO. N299 IALPHA SBS9 TAMB 29.06 LOCATION C41 ANECH CH AERG. RDG. ADH993 PAMB 29.5700 RELHUM 43.00 INT ACCUSTIC RANGE SIZE SIZE FREE-JET 9PEED FREE-JET 9PEED FREE-JET 9PEED FREE-JET 9PEED		102.0	8	42.4		
EST DATE 02-27-78 TAPE NO. N299 IALPHA SBS9 TAMB 29.86 LOCATION C41 ANECH CH AERO. RDG. ADH993 PAMB 29.5700 RELMM 43.80 INT ACCUSTIC RANGE S1 ZE S1 ZE S1 ZE FREE-JET 9FEED	EST DATE 02-27-76 TAPE NO. N299 IALPHA SB59 TAMB 29.06 LOCATION C41 ANECH CH AERO. RDG. ADH993 PAMB 29.5700 RELHUM 43.00 INT ACCUSTIC RANGE S1 ZE S1 ZE 731.5 M (2400.0 FT) SL 8032.2 SQ CM (1400.00 SQ IN) - FULL 117.65 M/SEC (386.0	EST DATE 02-27-78 TAPE NO. N299 IALPHA SBS9 TAMB 29.86 LOCATION C41 ANECH CH AERO. RDG. ADH993 PAMB 29.5700 RELHUM 43.80 INT ACCUSTIC RANGE SIZE SIZE SIZE FREE-JET SPEED 731.5 H (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 117.65 M/SEC (386.0	IAMETER RATIO 7.6	FREQUENCY	SHIFT	_		
LOCATION C41 ANECH CH AERG. RD9. ADH993 IALPHA SB59 TAMB 29.06 LOCATION C41 ANECH CH AERG. RD9. ADH993 PAMB 29.5700 RELHUM 43.00 INT ACOUSTIC RANGE SIZE SIZE S1ZE 731.5 H (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 117.65 M/SEC (386.0	LOCATION C41 ANECH CH AERO, RD0, ADH993 IALPHA SB59 TAMB 29.06 LOCATION C41 ANECH CH AERO, RD0, ADH993 PAMB 29.5700 RELHUM 43.00 S1 ZE S1 ZE S1 ZE FREE-JET 9FEED 731.5 H (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 117.65 M/SEC (386.0	EST DATE 02-27-76 TAPE NO. N299 IALPHA SB59 TAPE 29.66 LOCATION C41 ANECH CH AERG. RDG. ADH993 PAPE 28.5700 RELHUM 43.60 S. S. S. S. S. S. S. S. S. S. S. S. S. S						
LOCATION C41 ANECH CH AERG. RDG. ADH993 PAMB 29.5700 RELHUM 43.80 TEST POINT ACOUSTIC RANGE 7304 731.5 H (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 117.65 M/SEC (386.0	LOCATION C41 ANECH CH AERG. RDG. ADH993 PAMB 29.5700 RELHUM 43.80 TEST POINT ACOUSTIC RANGE S12E S0 CM (1400.00 S0 IN) - FULL 117.65 M/SEC (386.0	LOCATION C41 ANECH CH AERG. RDG. ADH993 PAMB 29.5700 RELHUM 43.80 TEST POINT ACGUSTIC RANGE 7304 731.5 H (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 117.65 M/SEC (386.0	02-27-76 TAPE NO.	_			8	
TEST POINT ACGUSTIC RANGE SIZE SIZE SIZE T304 731.5 M (2400.0 FT) SL 8032.2 SQ CM (1400.00 SQ IN) - FULL 117.65 M/SEC (386.0	TEST POINT ACCUSTIC RANGE 7304 731.5 H (2400.0 FT) SL 8032.2 SQ CM (1400.00 SQ IN) - FULL 117.65 M/SEC (386.0	TEST POINT ACCUSTIC RANGE SIZE SIZE SIZE T304 T31.5 M (2400.0 FT) SL 8032.2 SQ CM (1400.00 SQ IN) - FULL 117.65 M/SEC (386.0	C41 ANECH CH AERG. RDG.				2	
731.5 H (2400,0 FT) SL 8032.2 SQ CH (1400,00 SQ IN) - FULL 117,65 M/SEC (286,0	731.5 H (2400,0 FT) SL 8032.2 SQ CH (1400,00 SQ IN) - FULL 117,65 M/SEC (286,0	ACOUSTIC RANGE POSS.2 SQ CM (1400.00 SQ IN) - FULL 117.65 M/SEC (386.0	4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1 4 1					
			731.5 M (2400.0 FT) SL 9032.2	2	g		.65 M/SEC (366.0	

N
8
Ŧ
•
•
_
9
73
•
0
e
`
•
Á

06/30/79 19.452										ori OF	Gii PO	VAI IOR	# Q	PA(ge Ali	IS IY							And the second s				FREE-JET SPEED M/SEC (0, FPS)		
8				,			- - - - -																			23.00 46.00	.		
	OR BACKGROUND NOISE 40.0 FT. ARC				Ę				145.0	147.9	146.7	10.0	149.5	149.2	149.1 146.6	148.0	147.4	146.5	145.4	143.4	143.0 142.6	142.0	130.8	140.7	101.6	TAMB	0		
	XGROUNE T. ARC	050		160.	•				111.4	2.0	1.2.4	200	112.4	10.9	108.8	105.5	3	6 G	100.4	96.0	94.0 8.0	93.0	72.5	- •		1	- MODE		
	FOR BAC	X73050	8	150.					111.7	114.3	114.6	9	14.5	113.4	13.0	0.00	107.7	105.7	103.5	_	94.4 4.04	84.2	74.7	86.9		5859 29.3260	SOLN		
	CORRECTED DAY, SB	FJ-ZER-FMODL	DEGREES	140.					106.3	112.2	113.1	28.	- -	-		111.6	109	105.8	2	99.	95.5	88.1	76.7	7	154.	. IALPHA PAND	S ZE 23.99		
	S CORF		INLET,	130.					104.	0 0 0	5 110.2	==:		-	120	==	60	3 107.8	2 105.5	3 100.6	95.7	90.7	7 83.9 0 77.2		2		5 8		
	E LEVEL	MODEL BACKGROUND	D FROM	120					98. 2	. , ,	-	106	_ _	5		5 109.4	•	107	-	-			. 4 82. 8 78.		0 150.0	N294 ADH085	. 7 80		
	OUND PRESSURE LEVELS 70 PERCENT R.H. STD.	- MODE BACK	MEASURED	110					 2 2	0.00	'	35	_ -	3 102.7	,-	7 104.5		- -	1	2 2 2 2 3	000	2	6 77.	63.	0	TAPE NG. RG. RDG.	2		
	SOUND P	ATION	ANGLES P	100	,			. !	SS	10 C	60	38	66	8 8	3 <u>100</u>	7 100	0.0	7 200	8		200	9 6	2 77	•		TAF	T) ARC		
		DENTIFICATION	NV	8					5. 9 0		8	7 87.		95	4 10 89 9	3 98	. ~	-1.	8	D 4	1		3 69.	•	-	H CH	C RANGE 40.0 FT)		
	FORMED MODEL 59.0 DEG. F.	10		•				٠.		8 2	4	3 2	4 -	- ~	<u>ه</u> م	رن د	. 4	6	0.	- 0	i •	<u> </u>	.7 68	٠ ا	100	02-21-78 C41 ANECH	ACGUSTIC 2 M (
	UNTRANSFORMED 59.0 DI			60. 70							-	N O	ဖ	۰,	9 ^	n 0	n	0	10	 	.	- 0	5 67	• 1	/01		0		
	5			50.						000	-	N ID	- -		• -	0 4	4		n	40	e •		8	0	90. 2	TEST DATE	PGINT 305		
				40.					0 1		<u> </u> -	. .	- 0	9	10 6	۰ د	? –	<u>د</u> ه	æ	~ - ~	10.1	. 0	•	۲.	90 0 0	• • • • • • • • • • • • • • • • • • •	TEST PG 7305		
					FREG	S & &	125	<u> </u>	1	004	1					1		- 1							SPL 104		MODEL 1 7300	, 40	
					E			- 14					- 4	~ ~ ~	ณี ส	4	ö	و م	ğ	ĕ 8	25.				6	MILEIL	2 28 V 2	631	100

FLIGHT TRANSFORME 59.0 DEG. F., 70 PERCEN	D MODEL SOUND PRESSURE	ESSURE LEVELS	, ARC	
IDENTIFICATIO	IN - FJ-ZER·FMODL	X73050		
ANGLES MEAS	MEASURED FROM INLET,	DEGREES		
40. 60. 60. 70. 80. 90. 100.	110. 120. 130.	140. 150.	160. PW.	
50 63 80 100		-		
64.0 66.6 66.6 67.9 66.5 90.6 93.	94.9 99.9 104.1	108.3 111.7	11.4 145.0	
84.4 87.4 87.4 88.2 89.8 91.9 93.	2 101.9 1	110.1 113.1	11.7 146.3	
. 2 86.7 89.0 86.7 90.1 92.5 .0 89.5 90.3 90.6 91.2 94.0	.0 103.0 109 .0 104.3 110	113.5 114.3	12.0 147.9	
86.1 91.1 91.4 91.4 94.0 95.1 95.8		113.1 114		9.6
90.9 91.2 92.2 93.0 93.6 95.9 97.3	104.4	118.1	12.0 148.1 10.3 148.5)RI)F
91.1 95.1 94.6 95.4 95.8 98.1 99.0		112.6	4.	Gil P(
92.9 93.3 93.8 95.1 95.7 98.3 99.9	109.7	112.9	9	NA OC
92.9 94.6 94.7 94.7 90.6 97.6 99.3 92.3 92.5 93.8 94.6 95.6 96.4 99.3 100.7	102.7 110.6 111.5 103.9 109.6 112.2	12.0	10.8 148.K	IL IR
93,3 95,1 94.7 95.9 96.5 99,1 101.0	110.6 11	112.7	.4 148.	PI QI
92.9 95.0 34.5 95.3 96.3 98.7 100.1 03.3 05.4 04.0 95.4 96.7 09.3 100.7	5 109.4 110 8 108 8 110	9.0	05.5 148.0	7
93.1 96.4 96.5 96.4 97.2 100.3 101.2	108.6	8	1 147.	E LIT 0
92.7 96.3 96.0 97.3 97.9 99.8 100.6 1	4 107.9 108 4 106.3 107	108.8	03.5 147.0 01.9 146.5	•
87.6 83.3 93.5 95.0 97.3 89.7 99.7	5 104.2 105	104,4 103.	4 146.	
81.1 89.0 89.5 91.6 95.4 96.7 95.2	5 99.3	99. 3 98.		
79.5 64.3 86.8 67.4 93.0 93.9 92.5	5 97.1 95.	95.5	• •	
31500 77.7 80.8 84.1 86.4 87.2 88.3 58.2 40000 73.0 75.3 79.0 80.7 85.0 85.9 82.5	.7 92.4 .0 87.5	<u> </u>	. o	
65.8 68.6 70.9 74.1 76.5 78.3 77.	.4 82.7 83.	92.4 76.9	140.	
53.7 55.0 58.8 62.2 61.2 53.3 64.		71.9		
GASPL 104.0 106.5 106.7 107.4 108.8 111.0 111.9 1	15.0 120.5 122.6	124.1 125.1	122.8 161.2	
MODEL/FULL SIZE SCALE FACTOR FREE JET V INPUT 1.000 CALC. 1.000 FREE J	/ELOCITY (FT/SEC)	48.00	REFRACTION CORRECTION - 1 Turbulance correction - 1	YES
TEST DATE 02-21-78 TAPE LOCATION C41 ANECH CH AERO. R	NG. N294 Dg. ADH085	IALPHA 3859 PAMB 29.3260	TAMB 23.00	
MODEL TEST POINT ACCUSTIC RANGE 7300 7305 12.2 M (40.0 FT) ARC	154.7 SQ CM (SIZE 23.99 SQ IN)	FREE-JET	SPEED O. FPS)
	ACCO.			AND THE PARTY OF SAME PROPERTY OF SAME P

															01	RICE I	GII	NA DO	NL R	PQ	AGI	E I	SY					•	23.00 46.00	
		Ę	6 5.8	66.3	86.8	66,5 66,8	67.1	66.0	66.3	165.7	45.4	7.7	2.5	63.	61.8	60.7	60.3	25 6 25 6 25 6	67.5	56.4						170.6			TANB	
	:	160.	7. Z	, o			_	٦-٢	76.2 1		•	. ~	o,	81 1	, ú	4	18.2 1									93.7	85.3		İ	
		150.	4.00	7.00	90.6	900		- 1	34. b		70.0	77.5	76.4	1.2.1	62.4	53.6	39.5	20.8								8.5	101.5	Ģ ⊢	3859 29.3260	
100574	DEGREES	140.	4.08	, W		88		1		87.3							- 1	39.0	<u>;</u>							101,0	-	Y SHIFT	IALPHA	
. 1	INCET, D		89.5			400.4		7.06			ł	85.4		40.7			ı	48.6									108.7	FREQUENCY	1	
		ο,	٥,	66.4				90.6		99,50	1							0 K								100.1		Œ	N294 ADH085	
	RED FROM	10,	7.5			82.9								1			- 1									٠-, ١	101.6	7.640	RDG. A	
	ANGLES MEASU	o.		77.7	ú	79.9	. *	80.6	•	ю (90.0	4	ıņ.	- 6	73.6		2		, 6	. 1						4		RAT10	TAPE AERO. R	
	ANGLE	8	φ.	77.2	œ.	O D 0			0.00	.		r e	9	ان	78.7	. 10	0	55.6	, 4								101.2		₹	
		9	۵.	_ a			- 64	_	0 N			- ~	01) -	. 67	20	() ()	4								98.9 10	DIAMETER	₩ 50.00	
		ó	63 •	72.9 7	4	21	. N	ļ	NN	N .	-	9			69.4 7	<u></u>	Ì	u a	50.20 20.20 20.20 20.20							4	20.		02-21-78 C41 ANECH	
			1	72.2 7		i		-	۲-	6	٠	ė d	6	0) «	, G	1	4 (ų								92.6			
			4 (•	0.1	, m	n	4.6				0	0	ρσ		6	1,5 43	Ď.								20.2		TEST DATE LOCATION	
		6	4	707	ı o	.2 73	9 4	0	3 72		6	,	4	ø		46.3 55			-								2.7.2			
			2	6 6 6	8	128	8 2	2	8 8	8	8	2 6 2 6 3 6 6 6 6 6					1		9000	100001	00	20000	31500	40000 50000 63000	80000		PNT 2			

					00	RIC F	SIN PO	IAI POF	. F	A V	ge Al	i IT	3						•									SPEED 386.0 FPS)	
			-				•	•	eo o	90	40	N 4	9	9	:- 4	no o	.	9	.	· 01 -		0.0		6 (6) ()	38	M 56.00	FREE-JET 117.65 M/SEC (
X73060 X01400		150. 160.	184				AR 7 10R 0 150	, s.	07.8 102.2 141	8 94.9 142	92.4	. 0	5 69.0	5 89.3 141	.7 89.7 142 .7 89.2 142	6 69 8	0.19	4 91.6 1	92.7	95.4 90.3 142	7 87.2	2 81.9 141	.6 77.7 140 .4 71.5 138	2 65.5 136 5 57 4 136	.1 110.5 155	92		IN) - MODEL	
FJ-300-FMGDL FJB400-FMGDL	INLET, DEGREES	130. 140.					1 0 201 1 00	7 104.6	104.3 107.2 10	5.7 108.1	.5 106.6 1	\ K	5 105.0	.9 103.8	1 104.0	104.4	0.00	.8 104.3	103.7 100.9	103.0 98.8	94.4 92.0	92.6 89.2	79.4 77.5	72.1 70.3 68.2 64.7	.7 117.9	IALPHA	PAMB	SIZE CM (23.99 SQ	
- MODEL BACKGROUND	i	0. 110. 120.	•				A AG K GS 1	90.0	% C	4 93.6 98.	94.9		1 98.6 103	98.8 103.	_	7 101.1	101	0 101.4 104.	6 101.0 103 1 99.5 101	98.4	1 91.4 95	2 88.6 92	5 63.3 85 5 76.3 81	6 69.9 75.9 3 63.2 68.8	111.6 115.	2	20	154.7 50	
DENTIFICATION	ANGLES M	80. 90. 100					3 A4 4 AR	3 86.8 87.	8 87.0 86.	3 89.3 90.	.7 89.6 91.		5 93.2 95.	.993.0 994.	.5 94.7 97.	.7 94.5 96. 7 95.3 97	3 96.2 98.	.3 96.4 98.	0 97.1 97.	.3 96.8 96.	1 92.7 91.	.0 67.3 67.	6 77.0 76.	4 62 3 62	2 107.3 108.	AT.	3	C RAMGE 40.0 FT) ARC	
01		60. 70. 8					7 82 4	1 82.7	. 8 83.3 84.4	3 85.3 1	.6 &6.6	0.00	7 89.2	99.0	7.06 0.7	.6 90.1	9.26	2 93.8	92.6	~ a	7 86.4	3.4 65.1	0.3 73.2	7.6 66.7 67 7.6 61.1 60	6 103.1 1	05	2	ACGUSTIC 12.2 M (
		40. 50.					5 80.7	80.8	1 82.4	2 83.7	63.8	90.0	8 85.6	7 86.5	9 87.7	3 67.6	83.3	6 92.1	9.68	9 88.7	2 62.2	79.4	2 68.0 7	62.0 61.2 6 55.3 54.4 5	4 101.0 1	TEST DATE	LOCAT	TEST POINT 7306	
			FREG	(((((((((((((((((((100	196	1						1		- 1			- 1			1			ı	-			MGDEL 7300	•

ANOLES MEAS	N - FJ-300-FMGDL URED FROM INLET, DE 110. 120. 130. 1	0		
66.6 85.3 85.5 84.6 87.0 80.4 86.5 88.3 85.5 86.0 86.4 88.2 81.2 88.3 81.2 88.3 81.2 88.3 81.2 88.3 81.2 88.3 81.2 88.3 81.2 88.3 81.2 88.3 81.2 88.3 81.2 88.3 81.2 88.3 81.2 88.3 81.3 82.3 81.3 82.3 81.3 82.3 81.3 82.3 82.3 82.4 88.3 82.7 82.8 92.4 88.3 82.7 82.9 92.4 88.3	URED FROM INLET,			
66.6 60. 70. 80. 80. 10. 10. 10. 10. 10. 10. 10. 10. 10. 1	. 110. 120. 130.			
86.6 85.3 85.5 84.6 84.4 84 86.6 85.3 85.5 86.0 86.9 86 87.0 86.8 86.0 86.4 87.3 87 87.6 87.4 86.5 91.2 87.9 88 88.5 88.9 87.8 102.7 89.7 89. 80.0 90.4 90.0 90.9 91.5 92 93.0 93.8 92.7 92.9 94.1 94 91.9 92.7 92.9 92.4 94.2 94		150. 160.	•	
96.6 95.3 95.5 94.6 94.4 94 96.6 95.3 95.5 96.0 86.9 96 97.0 96.9 96.0 96.4 87.3 97 87.6 87.4 86.5 91.2 87.9 88 89.5 98.9 87.8 102.7 89.7 80 92.1 91.7 89.8 89.7 90.3 90 90.0 90.4 90.0 90.9 91.6 92 93.0 93.8 92.7 92.9 94.1 94 91.9 92.7 92.9 92.4 94.2 94			LAT	
86.6 85.3 85.5 84.6 84.4 84.6 85.0 86.6 85.3 85.5 86.0 86.9 86.0 86.4 87.3 87.0 86.8 86.0 86.4 87.3 87.9 87.6 87.4 86.8 91.2 87.9 88.9 82.1 91.7 89.6 89.7 90.9 90.9 90.9 91.5 92.9 94.1 94.2 94.1 94.2 94.1 94.2 94.1				
86.6 85.3 85.5 84.8 84.4 84 86.6 85.3 85.5 86.0 86.9 86 87.0 86.8 86.0 86.4 87.3 87 87.6 87.4 86.5 91.2 87.9 88 89.5 88.9 87.8 102.7 89.7 89 90.0 90.4 90.0 90.9 91.6 92 90.6 92.3 91.0 91.8 931.6 92 93.0 93.8 92.7 92.9 94.1 94				
96.6 95.3 95.5 84.6 84.4 84 96.6 95.3 95.5 96.0 96.9 96 97.0 96.8 96.0 96.4 87.3 87 87.6 87.4 86.8 91.2 87.9 88 89.5 98.9 87.8 102.7 89.7 89 92.1 91.7 89.8 89.7 90.3 90 90.0 92.3 91.0 91.8 93.6 92 93.0 93.8 92.7 92.9 94.1 94 91.9 92.7 92.9 92.4 94.2 94				
96.6 95.3 95.5 94.6 94.4 94 96.6 95.3 95.5 96.0 96.9 86 97.0 96.9 96.0 96.4 87.3 97 97.6 97.4 96.8 91.2 97.9 88 98.5 91.7 99.8 91.5 92 90.0 90.4 90.0 91.8 93.5 92 93.0 93.8 92.7 92.9 94.1 94 91.9 92.7 92.9 94.1 94				
86.6 85.3 85.5 84.8 84.4 84.4 84.4 84.4 84.4 84.4				
96.6 95.3 95.5 96.0 96.9 96 97.0 96.9 96.0 96.4 97.3 97.6 97.6 97.9 98.0 98.1 91.7 99.7 99.7 99.7 99.7 99.7 99.0 90.4 90.0 90.8 91.6 92.9 90.6 92.7 92.9 94.1 94.9 91.9 92.7 92.9 94.1 94.9 91.9 92.7 92.9 94.1 94.9 94.2 94.1	86.0 90.9 96.5	.0 102.2 1	10	
97.6 87.4 86.8 91.2 87.9 88 88.5 88.9 87.8 102.7 89.7 89.9 90.0 90.4 90.0 90.9 91.6 92.9 93.0 93.8 92.7 92.9 94.1 94 91.9 92.7 92.9 92.4 94.2 94	3 86.9 93.3 102.0 104.7	106.4 103.3 140	- 0	
86.5 68.9 87.6 102.7 89.7 80.3 80.0 80.4 80.0 90.9 91.6 80.6 82.3 91.0 91.8 93.6 83.0 93.8 92.7 92.9 94.1 91.9 92.7 92.9 92.4 94.2	89.7 96.2 103.1 1	104.4 99.3	ł	
92.1 91.7 89.8 89.7 90.3 90.0 90.4 90.0 90.9 91.6 90.6 92.3 91.0 91.8 93.5 93.0 93.8 92.7 92.9 94.1 91.9 92.7 92.9 92.4	91.3 98.5 104.1 1	102.1 99.1 1		
90.0 90.4 90.0 90.9 91.6 90.6 92.3 91.0 91.8 93.5 93.0 93.8 92.7 92.9 94.1 91.9 92.7 92.9 92.4 94.2	92.6 100.1 104.5 104	99.2 98.3 1	0.	
90.6 92.3 91.0 91.8 93.5 93.0 93.0 93.0 92.7 92.9 94.1 91.9 92.7 92.9 92.4 94.2	93.8 101.4 104.3 1	98.3 97.2 1	0,	C
91.9 92.7 92.9 92.4 94.2	95.5 102.2 104.9 1	.1 97.4 1	Ø. (Ŕ
With Five and Cine of the	96.6 102.6 105.5 102.	97.3 98.1 141		IE
0 70 C 70 0 C0 0 C0 W C0	98 5 104 6 106 6 104	- C 00 - C		in
93.5 93.9 93.7 94.6 35.6	5 99.7 104.9 107.2 105.0	100.1 100.0	OF	IA
94.1 94.3 94.9 95.2 96.9 97	100.9 104.9 107.6 105	100.8 101.3 1	7.	L
94.0 95.1 94.5 96.6 \$5.3	101.2 104.7 107.6 106	102.3 102.8		P
96.6 96.3 96.1 97.3 99.2	101.2 105.5 107.5 1	4.20	·. 0	4 G
	104.6 107.0 160 103 6 105 7 103	103.01.04.4	vi e	SE.
99.1 99.4 98.7 99.5 100.1	1 100.2 102.9 105.8 102.	102.2 104.2	0	
97,1 97.2 97.2 98.8 99.8 98	2 99.4 102.0 103.6 100	101.0 103.6 1) .	s
95.8 96.5 96.0 98.3 98.6	97.6 98.3 96.9	95.5 99.7 1	.7	-
92.9 93.5 93.5 95.6 95.7	91.5 97.7 97.9	4 98.1	6.	
	20.00 20.00 20.00 20.00		D 00	
28.8 81.4 81.5 80.1 80.0	78.2 64.2 79.8	82.4	9	-
71.6 72.5 74.0 71.2 71.3	71.8 78.4 74.7	.6 77.31		
61.1 63.1 64.9 64.9 65.3	64.9 68.6 64.9	62.	9.	
108.0 107.8 108.2 107.4 109.7 108.7 108.	4 111.2 115.5 118.3 117.1	115.1 114.6 157.	-	
SIZE SCALE FACTOR FREE	VELOCITY (FT/SEC)		CORRECTION -	
CALC. 1.000	JET DIAM	00 TURBULANCE	E CORRECTION - YES	
TEST DATE 02-27-78 TAP LOCATION C41 ANECH CH AERO.	TAPE NG. N299 IALPHA Rg. Rdg. Adhio9 Pamb	29.3300 RELHUM	TB 36.00	•
				•
TEST POINT ACOUSTIC RANGE	3Z I S		FREE-JET SPEED	

								_								OF	IG F	il) PC	NA OO	R	F	PA U	GI AI		IŚ TY	•								:			FREE-JET SPEED M/SEC (306.0 FPS)	
																																		i	36.00	56.	FR 117.65 M	
		Ž	ľ		157.6	ľ	•	•	_[1	_	-	_	Γ,	N (0	162.6	101	. 0	158	156.3								174.6			i	TAMB	RELHUM		
		160.	74.2		7.07	69.4	69.2	69.4	69.5	68.8	9 0	9.00	68.4	68.89	66.9		61.3		4 0 20 0	- 1											82.0	85.8 86.8		0 8		l	- FULL	
191	စ္	150.	62.1	4.08	7.0	7.0	72.5	72.6	72.6	73.8	2 6	74.0	73.9	74.3	72.9	70.8	68.0	2 (200	200											88.0	21.7		-	SBSS	29.3	SQ IN	
X73061	DEGREES	140.	83.6	90	82.7	91.9	81.5	80.4	90.0	9.0		9 0	80.1	78.7	77.4	75.3	72.7	900	2 .	- W	; -										93.3	97.7	•	ICY SHI	ALPHA	PAMB	\$12E (1400.00 \$	
FMODL	INLET,	130.	82.4	82.8	84.0	83.8	84.3	84.7	85.5	82.5	0 X	2. 4.	84.5	63.7	82.0	81.6	78.7	5.6	8 0	0 Y		1									96.3	102.5		FREGUENCY	-			-
	FROM I	120.	75.2	77.0	9 0	82.0	82.7	83.5	83.4	4.4	0 d	83.4	83.9	85.8	91.6	80.5	28.5	9 .	2.7	• 1		9	-								2.0			_	N299	ADH108	2 SQ CM	
NO .	SURED	110.	70.2	2.2	74.0	75.1	76.8	77.7	78.1	0.0	, q	80.0	90.6	80.7	80.4	79.0	27.9	6.6	0 . 0	- 0) (c	ල ල										2 20		7.640	2		9032.2	
-	MEA	100	69.4		72.6				1				-1 -			- 4			_		_		-		•						89.0	4.88		RALIO	TAPE	ERO.	36	
I DENTIFICAT	ANGLES	00	69.4	•	72.3					•	•					-1	21.2	•		•												200		בובע אל			RANGE	
-	i F	2	68.3	•	7			•	• •	•					•	-1				-1												- 00 00 00 00 00 00 00 00 00 00 00 00 00		UIAME		ECH CH		
		6			71.2	4	N	~	۵	4 (a 0	9 0	D	4	Q	n	<u> </u>	0 4	0 0	۰	٠,	10	,								•	96.4 97.0 1			02-27-78	C41 AN	ACCUSTIC 5 M (24	
		.09	67.7	йı	. IC	-	6	-	٥	٠. ه		ŗa	-	ø	ю	0	4 0	0 0	د د	-	•	4									Ю	95.7			Ì	1	731	
		á	66.7			EO.	0	u .	ابع		O	, d	9	4	6	0	ن د	•	<u>.</u> L	عاد	•)									9	93.4			TEST DATE	Lack	POINT 306	
			}	» a		8	0	م	4	1	٠, د	9	4	ი.	<u>ස</u>	0	٠.	i.			4)							ě		-	90.78		-			TEST POI 7306	
			ì						- 1				1			- (2000						10000	12500	16000	25000	31500	40000	\$0000 83000	90000	OASPL	PNLT					MGDEL 7300	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. CAY, SB 2400.0 FT. SL

07/17/79 10.160									0			NA DOI			NGI											••	FREE-JET SPEED M/SEC (148.0 FPS)		
	:																									31.00 54.20	ļ -		Region of the second
ORGUND NOTSE	. 00	9	100.	1.				0 140	9 (4	-		0	4 0	9		4	0	6	0	a 6	20	81.5 146.1	68.8 145.0	4	124.7 155.6	TAMB	ğ		
DACK BACK	X74020 X01500		.00				•	16.7 1		4	9 19	9	90	9	16.2 1.0 1.0	a -	- •	9	9	<u>ب</u> ه	9 6	4.	- 6	65.6	29.7 1	5859 29.5600	2		
CORRECTED FOR BACKGROUND	FJ-150-FHODL FJ-150-AMODL	DEGREES	130.					8.9 111.6 1	·	~ ·	2 119.1	1117.91	0.01	9 119.3	116.21	6 116.7	8 113.0	3 112.0	100.1	.7 106.1	98.8	91.7	6 79.6	5 74.6	2 129.4 1	IALPHA S	1 3		
SSURE LEVELS CA		=	120.					1 '	2 103.7 11:	` I`	108.9	110.01	11.0	112.3 1	•	111.7	10.	10.0	107.9	106.7 1	101.6 1	9 6	84.2	78.7	.6 122.7 127	N299 ADH124	i '		
ESSUR FNT B	FADE PACK	ASURE	2					1	98.2	- 1			- -	_		·		_ -				000	-		110	. Х В 36	7		-
SOUND PRES	CATION -	ANGLES ME	3					8	88	97.		9	102	69	503	103.	<u> </u>	9	50	5.5	98.	20.0	407	7.	115.8	TAPE AERÓ. F	ARC	i	
UNTRANSFORMED HODEL SO	1		80.					.6 92.		.4		9	101	100	.3 101.	102.	3 106.	7 106.		. 0 108. 104.	.5 100.	92.9 93.8	.0 85. 76.	, di	114.7 116.1	27-78 ANECH CH	TIC RANGE		
SFORME		•	9.						90.0	-1		•										88.5	-1	72.3	113.5	02-27- C41 AN	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		
UNTRAN			90.					69.3	9 9	92.5	9 8 2 4 2 4	98.0	0.70	98.3	100.0	105.4	4.4	9.50	102.5	101.6 98.3	95.C	67.4	24.3	60.00	114.1	TEST DATE	<u>-</u>		
			40.						4	0.0	3 8 6	.79		.3	4 6	.6 103.	2 102.	6 103	5 101.	.7 96.	.9 92.		. 4 77.	- 8	.6 113.0	168	TEST POINT		
				38	8 8	8 8	228	20				700	1		00 102 50 105	-		-1-	-		i		1		PL 112		g		
			0303	<u> </u>			2000	000	9 4		• •	2	18	80	8 6	9	63	96	125	200	250	40000	2000		MASPI	<u>enitni</u>	700E	637	ОН

					ORI OF	GINAL POOR	PAGE QUALI	is TY			8 9		148.0 FPS)	gra.
FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB. 40.0 FT. ARC I DENTIFICATION - FJ-150-FMØDL X74020	ANGLES MEASURED FROM INLET, DEGREES	40. 50. 60. 70. 80. 100. 110. 120. 130. 140. 150. 160. PWL	88.4 92.7 91.0 91.2 91.0 92.8 94	90.1 90.9 91.2 91.2 93.2 94.6 94.5 96.1 101.0 107.4 111.6 115.4 115.2 148 92.1 92.2 93.2 93.2 93.2 94.5 95.2 97.5 102.8 112.1 115.4 117.4 115.9 150 92.7 92.8 94.3 93.0 94.1 96.1 96.8 99.1 104.1 113.7 117.3 119.0 117.2 152 94.3 94.4 95.4 95.4 95.4 95.4 95.4 113.7 117.3 119.0 117.2 152 94.3 94.4 95.4 94.3 95.4 95.4 95.4 95.4 95.4 95.4 95.4 95.4	. 6 102.0 106.4 114.5 116.5 120.6 11 .6 103.0 106.4 114.5 116.5 120.6 11 .1 104.1 110.2 114.5 116.5 120.9 11 .0 105.5 111.0 114.5 119.2 120.9 11	100.2 99.7 99.7 96.8 99.0 100.9 10;; 8 106.2 111.7 115.2 118.9 119.4 110.8 104.6 102.8 101.9 100.2 99.9 101.6 103.0 106.1 111.3 116.0 117.6 116.8 108.7 1 107.6 106.5 104.6 102.6 101.2 102.7 103.6 106.7 111.6 115.3 116.6 114.9 106.4 105.6 105.4 106.8 104.7 102.7 102.9 103.5 106.9 111.1 115.0 115.0 115.3 105.0 1	105.1 104.7 106.0 105.4 105.5 105.0 104.1 107.0 110.9 115.1 113.9 110.6 104.6 7 104.6 105.1 10.6 105.5 105.2 105.2 105.2 105.0 105.3 106.2 105.0 105.3 106.2 107.3 110.9 114.3 113.4 109.5 103.2 1 104.9 105.5 105.6 105.0 105.8 106.2 107.0 110.7 112.9 111.7 108.7 103.0 1 103.9 105.1 106.4 105.1 106.8 107.5 106.2 107.5 110.0 112.5 110.9 107.5 101.9 1	101.2 103.8 104.7 104.8 106.0 107.0 106.0 106.7 108.3 110.6 108.5 106.1 101.8 100.4 101.8 100.4 101.8 100.8 104.5 106.8 107.3 104.8 106.4 107.5 110.4 106.9 104.7 100.1 195.3 100.1 101.3 102.2 105.2 105.3 102.9 103.9 103.8 107.2 104.8 102.0 99.2 193.5 96.0 98.2 98.9 103.1 103.1 100.1 99.5 103.5 102.8 100.7 98.9 94.8 1	.1 100.9 101.9 96.2 93.3 91.2 1 .4 95.2 96.8 93.8 88.5 85.0 1 .5 91.1 90.1 87.6 83.2 79.5 1 .2 96.4 84.6 81.3 78.4 73.4 1	115.0 115.2 115.9 115.1 116.0 116.9 116.0 118.1 122.4 126.6 128.8 129.9 126.2 166.0	ALE FACTOR FREE JET VELOCITY (FT/SEC) C. 1.000 FREE JET DIAMETER (IN)	TEST DATE 02-27-78 TAPE NG. N299 Löcation C41 Anech Ch Aero. RDg. Adh124	MODEL TEST POINT ACGUSTIC RANGE 512E 512E 7402 7402 12.2 M (40.0 FT) ARC 154.7 SG CM (23.99 SG IN) - MODEL 45.11 M/SEC (14.	

i ,L

												00	RI	iG Pi	N/ DC	AL	Q	AU	GE										1	51,00 64.20
	i	Ę	70.2	71.0	71.6	2.2	6.2	71.3	70.5	69.3	69.2	69.2	69	68.8	69.7	69.3	68 68 10 10	68.4	66.3	65.5					1	103.5				RELHUM
	160.	9 91		_	٠-١٠				78.5					_	_	52.0	7										96.4			
	150.		10	9	4	vi c	0	0	0 4	r - -	7	o r	2 10		9	٠.	ی -	-								σ.	4 4	Ģ		5859 29.5600
DEGREES	140.	q		4	101	۰, م	٠.	-	4 0	. 0	-	બં -	- 0	10	a	0.4	<u>ه</u> و		7.7				-				110.3 106	SHIFT	ļ	ALPHA S PAMB 2
,			3 4				96	- 1	n. 4		- 1							1	 	5 0								FREQUENCY		1 2
INCET	130	Č	- (?)	9	8	9 6	9 0	9	9 0	9 0	8	2 8		98	8	6	4 E	200	80	4		٠					9 110.6	FREG		2
5	120		9 0	96	69	000	ā	1	5 5						1				43.	17.				, <i>'</i>		10	ı	0		N299 ADH124
SURED	110.	0	90	82.2	83.4	94.7	86.6	86.1	86.7	96.9	86.6	86.7	86.6	85.4	84.9	81.7	9 0	59.8	42.3	16.7							106.4	7.640		
S MEASU		- 1			- 1	_		1	6 4 0 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6 0 6							-		.i .	45.9							98	105.3 105.3	RATIO		TAPE AERO. I
ANGLES	.00					-			82.0 83.0				-			•						:				9	08.6	~		
	. 0		3 C	9 0	0	- 6	o e	0	a c	-	7	e .	Ţ T	r es	-	œ (in L	4	4	a,						•	0.0	DIAMETE		CH CH
	90.	,	N G	a	-	ب ا	- 0	^	.		0	4 (N O	. (0	0	٥.	. K	2	e	<u>ب</u>						9	3.8 10 4.3 10			2-27-76 41 ANECH
						•		. 6	900						l			1								O	0 4		1	7E 02
	8				- 1	2:	- 01 0	79																		9	7 102. 8 103.			TEST DATE
	90	- 1			1				0.0									.i .									100			μĭ
	9	t	0.0			77.4		77.4	4.0		اء ۔	79.4	L						13.1			ļ				90.7	97.7			

^
×
8
•
•
0
≍
_
0
20
179
`
2/79
`
71/
`

													() ()	RIC F (31 N PO	A O	L R	PĀ QU	GE AL	: is	3 Y								.00	EE-JET	M/SEC (300.0 FPS)	THE C	
	UNITRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC	IDENTIFICAȚION - MODEL FJ-300-FMODL X74030 BACKGROUND FJB300-FMODL X01300	ANGLES MEASURED FROM INLET, DEGREES	40, 50, 60, 70, 80, 80, 100, 110, 120, 130, 140, 150, 160,						3 67.6 67.3 68.4 69.5 91.6 93.7 96.1 99.3 106.4 111.0 114.7 1	.9 87.4 88.2 88.7 90.5 92.7 93.5 96.0 100.9 106.2 112.6 116.3 113.7 1	.5 69.0 91.0 90.8 91.9 94.3 95.7 97.8 1	.8 89.9 91.4 91.7 93.2 95.9 96.8 100.2 106.1 114.4 118.1 116.8 108.4	.1 90.6 92.4 92.9 94.0 96.4 97.8 101.4 107.4 114.2 117.6 116.3 105.4 1	. 6 94.1 95.3 95.4 97.0 99.3 100.2 103.9 109.1 113.9 115.6 111.5 99.1 1	6 92.9 95.0 95.2 97.1 100.0 101.1 104.7 110.2 113.5 116.3 109.7 99.5 1	.5 95.3 96.5 95.6 96.7 99.0 101.4 105.1 110.8 115.1 115.6 108.6 99.3 1	. 0 104.7 103.3 101.0 99.4 101.5 102.4 106.5 111.5 115.1 115.6 108.7 100.0 1	105.9 103.9 101.7 102.1 103.0 106.2 111.7 115	0 102.4 104.1 104.1 105.3 106.2 105.1 106.8 111.0 114.5 113.0 105.3 98.7 1	3 103.0 103.6 103.7 104.8 106.2 105.7 107.3 110.8 113.8 111.5 104.3 97.6 1	.7 102.2 104.1 103.9 105.0 106.3 106.3 107.6 109.9 112.6 110.1 104.1 97.0 1 7 100 8 102.5 103 2 104 7 105 4 105 1 106 7 107 9 110 9 108 1 102 1 95 5 1	.5 99.2 101.3 102.5 104.7 106.1 104.1 105.3 106.9 110.2 106.1 100.7 94.2 150.	.9 96.0 98.0 99.8 103.2 104.5 101.7 103.4 104.5 107.1 103.2 98.1 92.5 1	.0 86.6 93.1 94.6 95.3 96.1 95.0 95.3 99.4 100.7 96.5 99.5 .0 86.6 93.1 94.6 95.3 96.1 95.0 95.3 99.4 100.7 96.5 89.5	.8 83.7 87.4 89.2 93.1 93.1 89.7 90.5 94.1 95.3 91.0 64.1 81.2 1	70.9 74.3 76.5 76.8 77.4 79.2 77.4 84.2 81.4 78.8 73.3 54.5 75.3 76.5 77.4 79.2 77.4 84.2 81.4 78.5 75.5 54.5	1 110 R 113 7 113 4 114 4 111 R 111 A 112 7 100 0 106 R 107 A 100 0 16	TEST DATE 02-27-78 TAPE NG. N299 IALPHA SB59 TAMB 31. LGCATIGN C41 ANECH AERG. RD8. ADH125 PAMB 29.5600 RELHUM 64.	ACGUSTIC RANGE SIZE	7403 12.2 H (
640					FREG	888	100	125	7 200 7	1			1			•	•		1	-		-		20000	31500	40000	63000	00000 0 M			7400	TIMAN	

(L

96.0 DEG 1. TANNSPORMED MODEL SQUING PRESSURE LEVELS. 96.0 TO. 80. 90. 100. 110. 120. 130. 140. 180. 180. PM. 98.0 PM. 100. 90. 100. 110. 120. 130. 140. 180. 180. PM. 98.0 PM. 100. 90. 90. 100. 110. 120. 130. 140. 180. 180. PM. 98.0 PM. 100. 90. 90. 100. 110. 120. 130. 140. 180. 180. 180. PM. 98.0 PM. 100. 90. 90. 100. 110. 120. 130. 140. 180. 112. 111. 181. 180. 180. 180. 180. 180. 180	001.01											OI OI					PA QU												10N - YES 10N - YES			FREE-JET SPEED M/SEC (300.0 FPS)		
### Page 100		FLIGHT TRANSFORMED MODEL SOUND FRESSURE LEVELS DEG. F., 70 PERCENT R.H. STD. DAY, 58 40.0 FT.	10N - FJ-300-FMODL	MEASURED FROM INLET,	40. 80, 60, 70, 60, 90, 100, 110, 120, 130, 140, 150, 160.		001	091	90.0 92.4 90.6 90.7 90.6 91.6 92.3 93.4 98.2 104.8 1	90.0 92.4 90.8 91.2 91.9 92.6 92.6 10.1 110.4 113.3 116.6 112.9 1	91.5 92.1 91.8 92.0 92.7 93.6 93.9 95.1 102.0 111.6 116.0 116.6 112.6 93.2 93.4 93.5 93.4 93.3 94.5 94.9 96.3 104.6 112.6 116.5 116.7 111.9 1	94.1 93.7 94.7 94.2 94.6 96.1 96.0 98.5 106.1 112.7 116.4 116.2 111.0	94.4 94.6 95.1 95.4 95.4 96.7 97.0 99.6 107.7 112.6 115.4 115.7 110.2 1 97.3 95.1 95.9 96.3 96.8 96.1 96.9 101.4 107.9 112.4 114.6 112.8 106.1 1	98,4 96,7 98,3 98,1 98,6 99,8 99,5 102,2 109,1 112,3 175,1 110,9 106,2 1	97.4 98.8 99.1 98.0 98.8 100.5 100.5 103.1 109.8 113.8 114.5 109.7 105.7	100.2 97.7 98.6 98.1 98.3 99.7 101.0 103.6 109.9 114.7 114.9 110.1 105.6 1	105.9 103.9 102.1 103.6 101.1 102.6 102.4 105.5 111.6 114.6 115.1 110.3 106.6 151	110.0 109.0 106.7 106.5 103.7 103.5 103.3 105.5 111.3 115.6 114.6 108.5 106.8 152	106.9 106.9 108.4 107.9 106.4 106.5 106.3 107.1 112.4 114.9 112.6 107.9 106.3 1	107.2 107.1 108.3 107.9 108.3 109.0 107.6 108.1 111.7 114.0 111.7 107.9 105.9 1	105.5 169.6 108.1 107.5 108.4 108.4 107.1 107.7 109.6 112.5 108.6 105.4 104.0 1	103.0 104.7 105.9 107.6 108.7 109.1 106.2 106.3 107.7 109.8 106.2 103.2 102.9 1	102,4 104,4 105,6 104,9 107,3 107,6 103,9 104,5 106,9 106,6 103,6 101,5 104,4 153, 97,2 100,6 101,7 100,8 104,3 104,1 101,4 99,9 103,9 104,8 100,7 96,0 97,4 152,	95,1 96,0 98,2 98.8 98,9 99,1 97,1 96,4 99,6 100,3 96,2 91.5 93,6 151	90.6 89.9 93.9 94.3 97.2 96.1 91.8 91.6 95.2 94.0 90.4 86.9 88.2 150.	87.1 86.2 89.1 87.3 88.0 89.7 80.8 80.0 30.0 30.8 87.2 84.8 81.6 75.2 76.6 148	70.0 69.3 72.2 76.9 74.2 74.8 73.7 73.0 77.4 74.9 71.7 65.4 66.8 147	117.0 116.9 117.4 117.2 117.6 118.0 118.5 117.6 122.4 126.1 126.9 125.3 121.6 165	SCALE FACTOR FREE JET VELOCITY (FT/SEC) 300.00 SALC. 1.000 FREE JET DIAMETER (IN) 40.00	02-27-78 TAPE NG. N299 JALPHA SB59 TAMB	CAI ANECH CH AENO, RUG. AURIEG FATS ES. SOUG NELFUR 64.	. TEST POINT ACGUSTIC RANGE 10 7403 12.2 M (40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 91.44	6	41

												01	RIC F	3II P C	AP OC	L R	P. Q	AG UU	GE AL	19		0	•							-JET SPEED EC (300,0 FPS)	
		50. 160. PWL	.8 85.5 1 7 84 6 1	.1 83.5 168	.5 82.6	3 77 9 167	8 77.0 167	.8 76.51	6 79.0 168 A 78.4 168	3 74.7	.8 74.1 170	.3 /2.0 1/0	.1 67.6 170	.0 64.7 170	2 60.5 170	. 2 41.8 169	8 23.7 166	.4 168	166.9	165.2						99.8 91.6 162.6 00.6 91.9	6	Q .	\$859 TAMB 31.00 29.5600 RELHUM 64.10	FREE-JE IN) - FULL 91.44 M/SEC	
-FMODL	M INLET, DEGREES	136. 140. 1	82.9 81.5 94.2 92 85.4 92.4 94.6 99	92.4 94.5	92.5 93.5	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	92.9 92.0	93.6 92.0	92.8 91.8	93.4 90.3	92.6 69.4	3.7.0 2.7.0 2.7.0 2.7.0 2.7.0 3.7.0 3.7.0	88.8	68.3 51.6	85.0 78.2 7.6.2	76.3 67.6	67.1 55.8	53,2 41,3	32.7.18	ř						104.2 103.8	110.0 107.2	FREQUENCY SHIFT	N299 IALPHA SB ADH125 PAMB 29	\$1 ZE \$0 CH (1400.00 SQ	
DENTIFICATION - FJ-3	ANGLES MEASURED FROM		75.7 75.9 76.6 92 76.6 76.9 77.8 85	1 77.9 80.0	7 76.9 81.2	6 81.2 83.4	2 82.0 84.2	.2 82.3 84.4	.0 82.9 85.0 53 - 85.0	2 63.6 85.4	.5 84.8 86.3	0 85.3 65.0	2 87.9 87.5	.9 86.5 86.4	.6 85.4 84.6 80 8 80 0	7 78.6 76.1	8 71.4 69.4	.9 61.1 59.2	.7 46.0 41.8	0.01 4.22 0.						97.9 96.4 97.2 101.5 08.1 105.9 106.0 106.5	2 105.9 106.0	ER RATIO 7.640	TAPE NG. N29 AERG. RDG. ADH	SL 9032.2	
01		0. 70. 80.	72.6 73.5 74.6 7	4 75.7 76.5	6 76.9 77.3	8 79.3 80.2	.4 79.1 80.8	.9 79.0 79.6	.6 60.1 83 0 80.2	7 06.4 64.2	.7 87.6 87.2	3 67.3 60.3 3 87.1 88.3	.9 87.2 88.2	.6 86.2 87.7	.1 56.1 57.9 0 82.7 85.0	2 77.1 81.6	.8 71.8 73.2	.3 61.8 66.5	.4 44.7 48.2 7 19.2 21.8	. 10.3 £1.0						95.7 96.5 97.3 9 104.5 106.0 107.5 10	05.2 106.5 108.8 1	DIAMETE	TEST DATE 02-27-78 LOCATION C41 ANECH CH	ACGUSTIC RANGE 731.5 H (2400.0 FT)	
		.	63 71.4 73.1	72.2 73.	72.5 74.	76.1 76.	74.9 78.	77.4 76.	76.7 77.	85.8 86.	83.7 85.		81.2 84.	78.5 82.	75.0 79.	64.0 72.	55.7 62.	41.5 49.	20.1 31.	10000	12500	20000	25000	31500 40000 50000 63000	80000	CASPL 92.0 93.6 PNL 98.9 101.6	100.4 102.7		TEST	MODEL TEST POINT 7400 7403	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SQUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

	•					0	RIG F. P	61N/A	L F	PAG	E IS					32.00	FREE-JET SPEED 11 M/SEC (148.0 FPS)	
		ž		150.0 151.2 153.0	154.2	166.0 166.0	155.4	154.0	153.2 152.9	152. 1 151. 7	151.6 150.5	149.3	148.7 148.6 148.2	146.1	147.2	TAMB 32	4	
40.0 FT. ARC X74060 X01500	9			900	9 6	20.9 115.0 21.2 113.4	100	5 136	101		96.	830	95.7 91.5 90.6 85.6 85.0 81.4		150 E	130.3 125.6 SB59	1N) - MOC	
), DAY, 88 4 FJ-150-FMCDL FJB150-AMCDL	DEGREES			0-1	120.6	- 12 12	123.6	120.7	117.4	115.3	110.2	N O	.7 101.0 .1 €?.1 .7 92.6	86.5	7 76.3	132.3		
STD.	FROM INLET,			101.3 106 102.7 110 104.2 114	00	110.7 117	0 10	40		.0	110.9 114	. 8 106	101.7 102 98.8 101 93.5 95	200	76.9	N299	ADHIEV 7 SO CH (
RCENT R. - MODEL BACKO	Œ		1	0 0 0	70		ო თ		10 CI	8 6		N 60	0	0	9 0	6.2 119.1 TAPE NO.	ARC 154.	
EG. F., 70 PE Dentification	ANGLES			0 0 0 0 4 0 0 0 0	96.5	9 01 0	102.5	103.2	104.6	104.7 1	105.6 1	103.2		95.1	72.0	6.0	RANGE 0.0 FT)	
49.0 DEG.	· · · · · · · · · · · · · · · · · · ·			2 2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	7 100 99	3 103 104	2 103. 9 162.	.3 103. .2 103.	. 5 104.	. 3 103. . 6 102.	94.8 100. 93.5 94.	2 8 4	70.	13.4 114.	ACCUSTIC	
	\$			9 90.8 9 90.2 7 92.2	60 60 60 60 60 60 60 60 60 60 60 60 60 6	6 93.4 6 99.7	7 100.0	104.7	1 102.7 1	102.6 1	9 102.4 1 6 100.8 1	3 100.4 1		70.00	68.5	3.0 114.0 1 TEST DATE	AT I ON	-
				86.5 88.4 86. 89.9 90.	2 - 2	- 4 c	6 20	2 a	. 6 101 6 102	7 101.	.5 99.		2 91. 4 98. 7 83.	77.	64.0	12.5	TEST POINT 7406	
		FREG 50 63	100 125 160 200	ĺ	1								25000 31500	- 1		CASPL 1	MODEL. 7400	643

FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, 58 40.0 FT

(A

0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	ANGLES MEASURED FROM ANGLES MEASURED FROM ANGLES MEASURED FROM ANGLES MEASURED FROM 75. 7 77.6 77.9 79.3 84.2 76. 7 70.6 79.2 80.8 85.3 76. 1 79.6 80.6 82.9 87.8 84.5 84.5 80.6 82.9 87.8 84.5 84.5 84.4 86.6 91.8 85.4 84.6 84.7 87.1 91.2 85.6 86.1 87.8 87.8 89.0 85.8 86.1 87.8 87.8 89.0 85.8 86.1 87.8 86.8 89.0 85.8 86.1 86.2 80.1 85.9 86.1 87.8 86.8 89.0 85.9 86.1 87.2 89.1 85.0 86.1 87.8 86.8 89.0 85.0 86.1 80.4 86.8 89.0 85.0 86.1 80.4 86.8 89.0 85.0 86.1 80.7 87.2 89.1 86.0 96.6 96.6 96.5 96.8 100.2 86.0 106.6 106.7 59.6 60.2 86.0 106.6 106.7 70.9 70.0 86.0 106.8 106.7 70.9 70.0 86.0 106.8 106.7 70.9 70.0 86.0 106.8 106.7 70.9 70.0 86.0 106.8 106.7 70.9 70.0 86.0 106.8 106.7 70.9 70.0 86.0 106.8 10
ANGLI IDENTIL	50. 60. 70. 60. 70. 60. 73.6 72.7 74.6 74.0 75.7 74.6 75.9 75.1 76.7 75.6 75.9 75.1 76.7 75.6 75.9 75.1 76.7 75.6 75.9 75.1 76.7 75.6 75.9 75.1 76.7 76.0 94.5 95.2 95.2 95.1 95.1 95.2 94.6 95.2 95.2 95.2 95.2 95.2 95.2 95.2 95.2
	50. 60. 72.7 74.6 75.9 74.6 75.9 75.9 75.9 75.9 75.9 75.9 75.9 75.9

																	,	-11-12-												
										0	RIG F		IA IOI	L I	PA	GE AL	18 TT							•					M/SEC (304.0 FPS)	•
	SE												,													9.	63.80	<u> </u>	92.66 M	
	FOR BACKGROUND NOISE						146.2	2 5	152	153	9 19 1	154	10	153	152	152	<u> </u>	150	150.0	149	148.4	147	145	4.00	165.7	TAMB	RELHUM			
	ACKOROL	X74070 X01300		. 160.			116.1	15.2	113	111	6 107.3		5	103	100	88	6	96	9 9	85	8 6	9	75	9	122.1		900		- MODEL	
	FOR B	X X X	ES	150			116.		2	116.		2 2	1.4	=======================================	- 1	7 107.8				1			78.6		9 127.9	SB	29		SQ [N]	
	CORRECTED	J-300-FMGDL JB300-FMGDL	, DEGREE	140				- io	6	0 0	120.2			_ =		96	3	6	 0 10		2 100 2 8	0 91.7	92	2 74.	1 130.9	IALPH	PAMB	27	23.99	
			-	0. 130			•		- 1		9	1	117	118	116	116	1	113	- 0	107	102	.6 95.	88	9 77.	.5 128.	_	26		2	
	쁴	: 2	ED FROM	0. 120			66 9	5 5 2 6 2 6	.8 104	106	90.0	110	12.0	= = = = = = = = = = = = = = = = = = = =	7 11	=======================================	6 111	1110	5 107	9 104	7 101 198	8	64 64		.1 122	N299			54.7 SQ	
	PERCENT R P	'	MEASURED	100. 110			6		~			105	2 105	106	5 107	701 6	0 107	•	- -	0	4 1	4	4	Φ.	.0 118	APE NO				
	SOUND	CATION	ANGLES	90. 10			-	4 4	80	(i) (c	9	0	0	4 K	9	90	6	e -		5	1.6 93	- (3 4	ဖ	1.9 115	TAPE	AER	<u>u</u>	FT ARC	
	190EL	F		90.				o –	₩.	O «	96.6 98	٥	4	- -	2	2.2 103	6	3.55	·	~	- 0 0		-	N	3.8 114		H	ONAG CI	40.0 FT)	
	UNTRANSFORMED	-		70.			4 (i i		40	95.3 96	-0	9	() ()	-	4-	0	- r	. n	10	94.8 93.6 94	r: 0		<u>.</u>	11	02-27-78	41 ANECH	ACCINST.	2 M C 4	
	MTRANS			60.			e.	• •	N	4 1	96.0	N	0	٠ . م د		4 a	4	- 0	- -	8	N Ø	4	2 10	~	3.1 112		- 1		12.	
				50.			е с	e ce	10	0 4	20 20 20 40 40 40 40 40 40 40 40 40 40 40 40 40	94	6	O 10	9		3	٠ ر	 	Q (-	- 1	ဂြဗ	0	12,1 11	TEST DATE	LOCAT	FX I C	27.	
				40.			0 (ب ب	7	.	20.00	?	0	(4 0	0	10 of	80	٠, -		4	. 0	0.0	- ارد	4	11.6 1			TEST PRINT	7407	
46					F F F F F F F F F F F F F F F F F F F	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	l		- 1			-	_		-1-		. 1			- 1			1		OASPL 1				7400	
			<u> </u>				L,	·														ELL				BHILL				

								0	ORI OF	IGI PC	NA DO	AL R (PA QU	IGE AL		15 Y									YES YES			(304.0 FPS)	
ARC			7				0 146.4	9 149.1	, • •	-1-	V -	.0 154.3 .3 153.8	,	.2 152.6	-1		7 182.4 7 182.4	1	•	1	Ĭ	8 140.7	5 147.9		REFRACTION CORRECTION -	TAMB 31.00	RELHUM 63,60	FREE-JET MODEL 92.66 M/SEC (
40.0 FT.		T, DEGREES,	0. 140. 150. 160				.3 109.2 113.5 113.	113.2	116.3 119.0 115	119.7 119.7 115	121.0 116.8 112	120.3 116.3 112	119.3 114.5 111	116.6 111.4 108	116.1.110.6 107	116.4 110.2 507	106.1 105	109.2 105.8 104	107.0 103.3 102	100.9 96.2 97.	96.6 91.4 93.	.4 65.5 61.2 62.	9 82.2 74.4	6 130.2 128.3 1	304.00 48.00	I ALPHA 5859		\$1.2E 23.99 80 II.) -	
E ex	ATION - FJ-300-FMODL	ANGLES MEASURED FROM INLET,	0, 110, 120, 130	•			0.83.8	2 94.3 100.3 1	0 96.5 104.9	1 100.6 108.6 1	2 101,5 109.1	.1 103.0 109.5 1 .6 103.7 110.4 1	3 104.4 110.5	6 106.3 111.6 1	.8 107.0 112.3 1	7 107.6 112.5 1 8 108.1 113.1 1	7 108.3 111.6	7 106.2 109.7	1 105.3 107.7	7 98.7 102.8 1	1 96.6 99.0 1	ο'n	6 77.4 86.0	.8 117.8 122.9 1	JET VELOCITY (FT/SEC) FREE JET DIAMETER (IN)	TAPE NO. N299		IC 154.7 SQ CH (
59.0 DEO. F., 70 PE	IDENTIFICATION	ANGLES	0. 60. 90. 100				92.1	8 91.9 92.6	6 93.0	7 96 2 96 9 96 9 96 96 96 96 96 96 96 96 96 96	.5 97.9 98.6 99	.6 100.2 101.0 1 .3 89.9 101.3 1	6 100.8 100.8	.8 105.2 105.6	.0 104.5 104.8	.6 104.8 105.4 105 0 105.7 106.5 105	2 106.9 106.9 105	0 106.4 107.1 104	4 107.2 107.1 104	.1 103.5 103.1	9 27.7 97.6	. 8 87.8 80.1 . 8 87.8 87.9	7 79.4 79.4	.4 116.8 117.1 1	FACTOR FREE		₹ 5	ACGUSTIC RANGE .2 H (40.0 FT) ARC	
5			. 60. 60. 70				93.6	93.0 91.9	93.4 93.7	95.4 96.1	95.8 97.2	96.3 99.1 99	104.7 102.5 1	106.2 105.9 105	105.9 106.0 1	104.8 105.3 104	5 105.9 107.1 106.	105.2 106.1 1	103.3 104.5	99.9 101.0	95.6 97.2	89.5 85.6 89	78.2 80.1	4 116.4 116.7 1	WODEL/FULL SIZE SCALE INPUT 1.000 CALC, 1	TEST DATE 02-	_	TEST POINT AC 7407 12.2	
			FREG	0 0 80	888	2.00 160	8	90.	8	2 8	6	8 5	108	9 6	105	105	98.	200	5	25000 95.	31500 94.	40000 68. 50000 66.	63000 73.	60000 68.	XODEL NI			MODEL 7400	647

							-								ORI OF	GIP	0C	AL)R	PQ	A(ge All'	S									-JET SPEED EC (304.0 FPS)
		0. 160.	87.6	87.8	88.01	87.4	100		81.7	79.1	72.0	74.7	72.0	.8 70.2 1	.3 67.6 169.7 4 64.7 169.7	3 60.5	.8 55.5 169	.3 41.6 169	8	166	165.5				•		1.3 95.5 163.7	6	0	SB59 TAMB 31.00 29.5600 RELHUM 63.80	FREE-JET IN) - FULL 92.68 M/SEC (
O-FMODL	IOM INLET, DEGREES	130. 140.	92.4 94.7	93,4 96.5	94.4 97.8	94.7 97.8	94.2 99.0	0.4.0	95.00	95.1 94.1	94.5 92.9	24. 4. 60	92.3 66.8	91.8 86.5	88.6 89.5 84.3 76 87.3 88.4 82.2 74	64.8 79.0	80.1 74.3	76.2 67	53.3 41.9 2	33.3 18.5	'n		•		•		106.0 107.4 103	3 111.0 110.1 103	FREQUENCY SHIFT	N299 IALPHA SB ADH126 PAMB 29	81 ZE SQ CM (1400.00 SQ
- NOILY	ANGLES MEASURED FROM	ö	7 75.8 76.4	0 27.0 78.0	9 78.6 80.4	9 80.0 82.1	5 81.0 82.9	0 01.7 04.2 0 0 0 0 0	83.1 85.0	6 83.9 85.6	5 85.4 86.5	4 85.3 87.0 85.0 87.0	6 85.6 87.5	9 85.5 87.5	87.7 85.2 86.9 I	6 83.3 83.8	5 80.7 80.6	7 77.0 75.0	20 A 05 C	9 44.7 40.4	6 20.9 14.9						96.0 97.5	104.8 105.6	DIÁMETER RATIO 7.640	TAPE NO. N.	FIC RANGE 2400.0 FT) SL 9032.2
:		60. 70. 80.	72.9 73.1 74.	74.5 75.2 75.	75.7 76.5 77.	76.6 78.1 78.	77.8 78.9 79.	79.6 80.8 81.	82.5 84.4 82.	86.4 86.0 85.	85,4 86,0 85,	83.9 85.	84.2 85.4 35.	85,3 85,5 86.	1 84.7 85.5 86.8 3 4 7 84 7 88 7	81.7 84.9 86	61.0 81.5 84.	75.5 76.3 80.	67.8 70.9 72.	41.4 43.7 47.	11.0 17.3 20.						95.3 96.0 96.7	104.8 105.9 108.2	DIÂM	TEST DATE 02-27-78 LOCATION C41 ANECH C	ACGUST 731.5 M (
		40. 50.	70.5 72.	71.7 73.	72.6 74.	73.6 75.	75.7 76.	77.3 77.	55.4 83.	83.6 85.	62.2 64.	61.7 83.	80.6	79.9 82.	1250 78.8 82.4	73 1 78	72.0 77.	62.6 71.	55.1 62.	10.01		12500	16000	25000	31500 40000 50000	90000	92.1.93	50		169	MODEL TEST POINT 7400 7407

0
8
9
-:
0
-
-
Ō.
•
730
~
_
-
2
Š
0

									00	RI F	GII PC	VA OF	L ? (P <i>A</i> QU	GE AL	E E	S									SPEED 146.0 FPS)	
																									32.00 63.00	FREE-JET	
ARC				.			3.4 151.5 3.5 152.8	9.6	-	ai k	? -	0 6	٠.	-	4 W	0.0	0 0	9	, e		90	, ca	N O	.6 168.8	TAMB		
7	X74100 X01500	ĒS	150, 160				120.1 118	- 0	122.0 1	122.3	120.2	117.7	1.0.0	112.7	109.0	107.3 1	105	103.1		7.7	63.0	79.7	65.4	130.9 126	S659 29.5700	- (NI DS	
DAY, SB	J-150-FM0DL JB150-AM0DL	INLET, DEGREES	130. 140.				09.6 114.6 12.5 116.4	15.8 119.4	2 123	. 2 . 23 . 23	. 9 124	0 124	3 120	11.8	.1 116	0 115	6 112	2 109	12.8 107.9 09.2 104.6	.9 100.	9 09	0 86.	9 9	132.3 133.1	IALPHA	-	
.	MGDEL F.	FROM	0. 120.				. 7 102 . 7 104	0 106.0	801.6		12.	.7 113		0 114		6 114	12	3 110	. 8 108 . 7 105	. 9 103	4.	.6	0.0. 8.00 8.00	.4 125.0	N299 ADH128	2	
짍	CATION - MGD BAC	ANGLES MEASURED	100. 110				97.5	68	99.9	201.00	104.5	105.6 1	108.1	110.01	100.4	108	107.0	105.9	104	98.8 8.8	0.0	95.0	72.9	119.1 121	TAPE NO AERG, RDG	ARC 1	
EG. F.	IDENTIFICA	ANG	90. 80.	•.			 8	94.1 96.5	5 98		0 104.	.8 105.	6 130.	4 111.	4.08.	.8 108.	0 107.	.3 106.	. 1 105.	.6 101 9 96	4	.6 87.	3 77.	18.3 119.3	27-78 ANECH CH	TIC RANGE 40.0 FT)	
59.0 DI			0. 70.				- 2. - 2. - 2. - 3.	.2 92.5 0 94.3	4 95.4	7 101.0	3 105.4 1	.2 108.5 1	5 110.0	.5 107.8 1	.7 106.1	6 105.3	9 104.7 1	.5 103.0 1	. 6 100.9.1 . 6 100.9 1	.4 96.6 8.5	80.00	4 83.2	6 73.2	.3 118.2 1	02-% 14	2. ACC	
			50. 6) 4	91.7 93	a ·	- م به	07.6	- K	. 0	0		9.	102.9	101.3	3 6	93.08	85.8	79.2	67.9	117.4 118	TEST DATE		
;			.40		9 22 9	5	. eg	92.2	68	104	108	20.0	20.	106	98	503	102	90.5	20000 94.0	8 8 8	8	2	67.	SPL 118.0		MODEL TEST 7400 74	

_
~
•
ō
•
-
-
0
•
_
•
_
•
70
_
,-
•
2
-
-
•
•
•
6
•

	•		-			OF Of	RIG	Di IN	AL OF	- F	ρ¢	GE	; 15 .IT	3 Y													8.0 FPS)	
FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS 69.0 DEG. F., 70 PERCENT R.H. STD. CAY, SB. 40.0 FT. ARC	CATION - FJ-160-FMODL	ANGLES MEASURED FROM INLET, DEGREES	70. 60. 90, 100. 110. 120. 130. 140. 150. 160. PWL		6, 40 6, 60 80, 60	.4 94.7 96.2 96.6 97.6 102.6 110.7 114.3 116.1 116.1	./ 84.7 86.5 87.0 88.2 105.1 114.6 116.1 120.0 116.7 153. .5 95.6 97.3 96.5 100.1 106.3 116.9 120.5 121.7 119.0 155	.6 97.2 98.7 99.3 103.0 108.8 118.2 122.2 121.8 119.5 1	.4 98.3 100.0 101.1 104.3 110.7 120.3 122.9 122.6 118.9 157 0 101 1 102 1 102 4 105 6 111 5 120 7 123 1 121 7 116 8 457	.3 105.5 104.4 104.0 106.4 112.1 120.9 124.0 120.6 113.7 1	6 105.4 105.3 105.1 107.7 112.5 121.0 123.1 117.9 111.0 1	.0 110.0 106.2 104.7 107.9 113.5 121.9 120.9 116.5 109.5 1	.1 109.2 111.7 110.5 110.2 113.9 120.2 118.0 113.0 106.4 1	4 107.3 108.4 110.3 110.9 113.6 118.8 117.0 111.0 104.6 1	. 0 107.3 108.0 108.4 111.2 113.0 110.4 110.8 108.8 104.0 104.0 106.9 106.0 108.2 111.1 113.8 117.5 114.9 108.0 103.5 1	1 106.9 107.9 108.0 110.8 113.5 116.5 113.8 107.0 102.5 1	. 9 106.8 107.5 106.6 108.5 110.6 114.4 110.3 104.6 101.6 1	1 106.7 107.1 105.7 107.4 109.2 113.4 108.7 103.4 100.1 1	.3 105.8 101.3 99. .6 102.8 97.7 94.	3 99.0 98.9 97.6 97.9 100.4 105.5 98.6 93.1 90.9 1	.6 90,8 90.3 87.6 86.6 91.4 93.9 88.2 82.8 79.1 1	.8 84.3 83.3 82.4 80.5 87.2 88.7 81.7 76.5 72.8 1 6 80 5 80 4 74 8 75 3 83 8 8 6 77 0 66 5 62 9 1	6 119.3 119.9 119.2 120.9 124.6 131.5 132.3 130.7 127.		E SCALE FACTOR FREE JET VELOCITY (FT/SEC) 148.00 REFRACTION CORRECTION - YES CALC. 1.000 FREE JET DIAMETER (IN) 48.00 TURBULANCE CORRECTION - YES	02-27-78 TAPE NG. N299 IALPHA SB59 TAMB 32.00 C41 ANECH CH AERG. RDG. ADH128 PAMB 29.5700 RELHUM 63.00	ACCUSTIC RANGE 12.2 M (40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 45.11 M/SEC (148.0	
			20.		6	.7 92	6 G	. 1 97	.6 8	5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	8 111	0 112 112	3 108	8 108) 	200	104	3 104	101.2 101.7 97.3 99.6	96 9	8 6 6 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	79	1 20		\$12E	TEST DATE LOCATION	TEST POINT 7410	
0	*.		FREG	50 63 00 00 00	125 160 200 250 90.7	26	2 2	98	90.	<u> </u>	114.	===	8	107	106.	103	100	<u>10</u>	25000 97.6 25000 95.8	6	95	76.	120.	.	MODEL/FULL INPUT 1.0		MODEL TEST 7400 7	

		-											0	RI F	GI P(N/	AL	- F	PA QU	GI Al	E (:	10 24											SPEED 148.0 FPS)
								_																								32.00 1 63.00	FREE-JET 46.11 M/SEC (
			Ę	171.2	174.0	175.0	175.0	170.4	174.7	174.2	3.00	171.9	171.6		170.1	170.8	170.6	169.9	200	168.0	167.7						186.3					TAMB	_1
			160.	91.4		91.3	88.4	80.0	80.2	77.5	. 0 . 4	7.3	69.1	0.78 67.0	62.3	67.8	52.5	38.9	20.8					•			99.0	96.0	96.8		1		- FULL
	_		150.	0.98	9.7.8	96.4	97.4	0.0	1.10	60.00 60.00 60.00	0 e	20.0	78.4	9.0	, c	70.4	65.4	56.9	4 6)							06.7	105.6	9.90	G -		SB59 29.5700	ž
	X74101	DEGREES	o ·	e 1				200	ı							1			-									12.2 1		Y SHIFT	t	I ALPHA PAMB	ZE . 00 SQ
	JOE -	1	130.	94.3	-	•	<u>.</u> ا		- 1	100.2			I			1			- 1								10.1	a	4	FREQUENCY		-	S1 ZE (1400.00
	FJ-150-FM3DL	JH INLET,	120. 1	a.	- 4		ŧ			93.3 10			2					79.4 7									-	.3	_	FRE		N299 ADH128	SQ CM
	- FJ-1	RED FROM		.0 85			ı						l			1			- 1								0.4 103		6	640			032.2
		MEASURI	. 110				•			8 88 2			1						-1	43							10	3 10	3 10	Υ΄.		TAPE NO RG. RDG	06
	DENTIFICATION	ANGLES M	100	78	9 6	8	94.	60 8	96.	88.	S	6 6	88.	87.) N	94	-	77.	7									107	107	RATIO		AERG	7S (.
•	I DENT	ANG	8							92,3						• •		61.3	-									60	0	AMETER		퓽	RANGE
			90		_		1 -	_		92.3						-4 -		-	• 1								٠.,	80	99	DIA		7-78 ANECH (ACGUSTIC RANG 5 M (2400.0
			9.	75.2	_		1 .	_		91.8						Li.			-4									90	06.4			02-27 C41 A	•
			6 0.		.	• 0	0	ო -		90.9	.		-	a c		واد	0	0	٠,	T (7	4						K	0	6		ì		731
			20	-	ρ «	, c	C4	a c	g G	6	4.1	, 0	0	a i	٠. د	2	Q.	₩.	တဖြ	o «)						<	- -	3.1			TEST DATE	TNIC
			Ö	0	- 1	- N	0	~ <	r 0	88 8	d L	. 0	a	- 1	9 6	-	0	_	ماد	» c	ŀ		*				ď	0.03	2			•	TEST POINT 7410
			₹ .	l			8	000		96	9 6	9 0	5	0	6 k	35	67		- 1		8000		. ~	0000	40000	 90000	70	PNL 102	103				MODEL T

0
ŏ
_
•
•
0
•
_
-
•
-
•
•
•
• -
_
-
•
•
ò

				70				0	RIC F	GII PC	A <i>P</i>	IL I	PA QU		E I	8 Y										FPS)	
																	•									SPEED 327.0 FPS)	
																								9	9	FREE-JET 67 M/SEC (
												.		.										35	61.50	79.62	
			Ž		160.		_ -	-		- -	_	156.5	-			Γ.		-1	149.7	149.2	147.	147.3	168.1	TAME	RELHUM	E	
X74110 X01300		160.			117.	=	0 0	_	100.	-1-	106	105.2	7	•	9 69 N 69 . 69	İ		8			1	61.7	124.2	_	200	- MODEL	
-	S	150.			117.		_	_		-1-	_	113.2	_	108		2	101.0	98.1	<u>2</u> 8	4.4	25	64.8	129.4		29.5700	SO IN	
FJ-300-FMCDL FJB300-FMCDL	DEGREE	140.			113.3	9	121.6	123.1		124	122	120.5	-			-	108.4	104.8	<u>5</u> 6	92.2	96	74.6	133.1	IALPHA	PAMB	SIZE 23.99	•
FJ-300	INLET,	130.				140	- -	119.7		121.	122.	122.1	1.9	9		<u>6</u>		108.	5 5	96	e e	7 6.1	131.4		0	S E	;
MGDEL BACKGRGUND	FROM	120.			100.0		000	_		113	13	113.2	113	= 3	113.4	111		105.8	e 8	9	9	7.00	124.5	N299	ADH129	1.7 80	
- MODEL BACK	ASURED	110.			1	8 8	201	5	000	0	10	108	100		100.6	109	106	103	00 G	00	200	7.	3 120.5	ñ 80.	200	154	
NO.	ANGLES MEA	100			98	- 00 - 00 - 00 - 00	3 8	8	5.5	3 2	104	108	109.	107.	107.	100	2 2 3 3 3	101	9 6	8	9		5 116.3	TAPE	AERO	r) ARC	
TIFICAT	¥ ,	0			93	2	6	8	96	3 2	103	9	106.	106	106.	107.	<u>8</u>	104	<u></u>	6	90	, 6, 6, 6,	6 118.		푱	RANGE 40.0 FT)	
I DENT		90			68	98	200	96	98.	9	109.	100.	105.	105	2 8	105		103.	6 8 8	8	93	72.	3 117.	27-78	ANECH	ACGUSTIC 2 M (4	
Ş		70	•		95	9	200	90	96	108	110	108.	104.	104	2 6	103	200	100	9 6	8	83	72.	2 117.		C41 A	12.2 I	
		90			60	200	228	8	9 5		110.	107	105	104	9 6	103.	<u> </u>	98	9 8	98	6	6.6	7 117.	ST DATE	LOCATION	+	
		60			60	90	3	69	9 5	60	109	106	103.	102.	103	102.	8	97.	က် (၁)		9	66.	7 116.7	TEST	T	TEST POINT 7411	
		9			J .	90	-1 .			., .			.J .					93.	8 8			68	116.			MODEL TES 7400	

ANOLE 0. 60, 70, 80, 90, 6 93.0 94.7 92.3 93.6 6 93.0 93.2 93.5 94.3 7 93.4 93.4 94.5 94.9	MEASURED FROM INLET, D		
6 93.0 94.7 92.3 93.6 93.4 93.4 94.5			=
6 93.0 94.7 92.3 93.6 6 93.0 93.2 93.6 94.3	100. 110. 120. 130. 140.	150. 160. PWL	
6 93.0 94.7 92.3 93.6 6 93.0 93.2 93.6 94.3 5 93.4 93.4 94.5 94.9			
.6 93.0 93.2 93.6 94.3 .5 93.4 93.4 94.5 94.9	4.4 95.4	15.0 114.9 148.0	
	3.9 95.1 101.6 111.2 114 5.1 96.4 103.8 114.9 116		
0 95.2 95.4 95.2 96.0 4 96.3 96.5 96.0 97.8	. 5 98.4 107.1 116.7 120.2 1	22.1 118.5 156.4	OI Oi
3 97.4 98.0 97.6 99.0	1 102.1 110.6 119.1 123.1	3 116.3	
.1 102.6 105.1 103.6 103.9 1	103.6 110.8 118.4 124.6 104.6 111.9 119.6 123.7 1		iin, POC
7 1108.8 111.3 106.1 105.4	0 105.6 112.6 120.8 121.8 1	.3 113.3	
.3 113.0 112.0 112.3 112.0 1	.9 107.2 113.6 119.4 116.9 1		
.5 111.8 109.8 109.5 111.3 1 .5 109.4 108.4 107.8 108.6 1	109.0 113.7 119.0 118.0 1 110.3 114.5 118.6 117.6 1	110.01	AG UA
4 109.3 108.3 108.5 109.0 1	7 111.5 115.2 116.3 116.6 1	5 108.4	E
108.7 108.8 108.1 108.8 1	110.4 113.5 116.3 114.0 1		IS Y
5 108.3 108.4 109.2 110.1	6 109.9 111.8 114.3 112.1 1	105.5	
105.5 106.8 107.4 108.2 1	7.0 107.9 111.1 114.2 110.6 1 5.3 107.0 108.7 110.8 107.5 1	, W	
. 2 105.2 105.4 108.0 107.1 1	.0 104.2 107.1 107.1 104.6 1 6 99 4 104 0 105 6 101 3	100.4 102.5 153.1 06.0 98.0 152.6	
9 99.4 99.3 99.1 98.8	7.0 96.6 100.2 101.4 97.3	8 94.9	
1.80 85.0 95.4 86.1 86.6 6.6 80.8 88.5 89.9 89.5	.0 91.7 95.6 95.3 92.2 2 84.6 91.8 89.6 85.9	86.9 90.1 151.7 81.6 84.3 150.4	
0.5 82.5 81.2 81.5 81.4	0 78.5 87.0 86.1 82.4	.1 77.6 1	
1.6 73.4 77.3 75.7 75.9	3.6 72.6 77.2 76.3 72.6	65.2 67.8 148.3	
121.4 121.1 120.7 120.3 120.4 11	9.0 120.2 124.7 130.6 132.2	129.7 126.9 168.5	
MODEL/FULL SIZE SCALE FACTOR FREE INPUT 1.000 CALC. 1.000	: JET VELGCITY (FT/SEC) 327.00 Free Jet Diameter (IN) 48.00	TURBULANCE CORRECTION - YES	
TEST DATE 02-27-78 LGCATION C41 ANECH CH A	TAPE NO. N299 IALPHA AERO. RDG. ADH129 PAMB	5859 TAMB 32.00 29.5700 RELHUM 61.50	
TEST POINT ACQUSTIC RANGE 7411 12.2 M (40.0 FT)	51ZE ARC 154.7 SQ CM (23.99 SQ	FREE-JET SPEED 1 IN) - MODEL 89.67 M/SEC (327.0	ED 7.0 FPS)
	•		

					ORIGI OF P	NAL PA OOR QU	GE IS					FREE-JET SPEED 7 M/SEC (327.0 FPS)	
			0000 0000 0000 0000	87.8 86.8 84.6 83.3	78.8 173.2 1 77.4 172.7 5 75.2 172.6 1 73.6 172.3 1 73.6 171.8 69.6 171.3	65.9	169 169 167 167		7 86.1 186.0	6	59 TAMB 32.00 .5700 RELHUM 61.50	- FULL 89.67	
-FMGDL X74111	INLET, DEGREES	140,	94,7,96,4,96 96,4,96,4,96 98,1,100,3,99 98,7,101,1,97	99.0 102.0 95 99.0 101.5 93 99.9 99.3 91 99.9 96.9 89	97.2 94.3 65.9 96.4 93.4 94.1 92.7 92.1 82.6 94.4 90.4 80.4 80.4 90.7 90.7 90.7	90.0 83.6 74 86.0 79.6 70 81.0 74.8 64 77.3 68.2 65	54.5 43.1 23 34.5 19.0 6.2		109.2	113.7 112.8 104. FREQUENCY SHIFT	IALPHA SB	\$12E CM (1400.00 SQ IN)	
SATION - FJ-30	MEASURED FROM	0. 110.	.0 78.0 64 .4 79.9 87 .7 81.9 90 .9 83.5 91	6 65.7 92 9 66.7 92 9 66.7 92 9 67.8 93	NO - 10 N	.3 86.6 88 .6 85.4 85 .6 82.0 83	3 59.2 59. 4 41.3 44.		60 d	.4 107.6 111.0 5 7.640	TAPE NG. N299 Aerg. RDG. Adh129	sL 9032.2 SQ	
IDENTI	ANGLES	90.	9 76.5 77. 9 77.1 78. 0 77.9 79. 5 79.5 61.	5 91.6 92.4 85.3 85.7 92.3 88.6 83.3 93.3	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 87.6 88. 3 86.6 87. 5 86.6 86.	9 67.4 66. 3 49.1 49. 8 22.6 23.		8.000.8	07.8 110.8 110.6 DIAMETER	02-27-78 C41 ANECH CH	ACCUSTIC RANGE 1.5 M (2400,0 FT)	
		40. 50. 60.	5 74.8 76. 5 76.1 77. 8 76.9 78.	77.4 79 8 82.5 88 3 93.6 94.		4 78 2 81. 1 74 2 77.	6 51.1 59. 9 33.6 43. 0.7 13.		98.6	0.00	TEST DATE LOCATION	TEST POINT 73:	
		FREG	8 8 9 0 8 9 0	125 160 200 250 315	8 8 9 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2500 2500 3150		12500 18000 20000 25000	1	PNLT		MODEL 7400	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

				0		L PAC					FPS)	
	=			.	۲. ن ن	9:1	- Z	0 3	ന വാവ 4 മ ദ	IMB 28.04 IUM 23.50	FREE-JET SPEED O. M/SEC (O. F	
اغدا	LET, DEGREES 130, 140, 150, 160. PU		4.2 109.3 113.5 112.9 1	.0 110.6 115.1 114.2 .8 113.7 116.6 114.3 .4 115.8 117.4 114.6	116.4 118.1 115.3 115.5 117.5 114.9	115.3 115.7 112 115.4 114.9 111	110.4 106.4 148 109.2 105.6 148 107.4 104.9 147	104.7 104.1 102.6 146 102.1 102.2 100.7 146 99.0 99.1 97.6 146	1 92.7 90.3 89.6 144 6 87.6 85.1 85.0 144 6 82.2 80.0 79.2 142 8 75.9 74.7 73.1 141 3 72.6 68.4 67.1 142 0 126.5 127.7 125.0 162	IALPHA SB59 TAMB PAMB 29.6320 RELHUM	SIZE HODEL.	
RCENT R.H. STD - MODEL BACKGROUND	MEASURED FROM IN 00. 110. 120.		94.5 95.6 99.8 10	96.0 101.4 1 96.8 103.0 1 97.8 104.1 1	.1 100.5 107.5 .2 101.4 108.1 .1 102.7 107.9	. 6 103.4 109.0 . 6 103.4 109.3 . 5 103.6 109.3	6 103.5 108.1 5 103.4 107.8 3 103.1 107.3	102.1 103.8 100.9 101.8 98.3 98.8	2 91.0 92.4 1 86.1 97.7 7 79.4 83.6 8 73.1 78.9 4 67.3 72.9	TAPE NG. N294 AERG. RDG. ADH068	ARC 154.7 SQ CM	
59.0 DEG. F. ZO PE	ANGLES 70. 60. 90. 10		8 8 8 90.0 92.1	90.2 91.6 89.3 90.9 91.1 92.7	92.5 87.1 85.2 94.0 94.6 96.2 97.4 97.2 97.8 97.2 98.6 100.7	96.7 97.3 98.4 99.6 99.6 99.6 101.6 100.0 100.6	103.2 102.3 1 102.4 102.7 1 161.7 102.3 1	100.6 102. 100.1 102. 97.2 101.	92.2 92.8 92.8 86.5 90.8 90.8 90.7 73.9 74.1 74.6 69.2 68.2 69.1 112.2 112.8 113.	02-20-78 C41 ANECH CH	ACGUSTIC RANGE 12.2 M (40.0 FT)	
	40. 50. 60.		69 5 69 1.1 67	85.6 88.7 87.2 90.0 88.3 90.3	93.2 92.7 94. 93.5 97.1 98. 93.9 97.2 97.	98.0 96.4 96. 100.7 100.5 99. 102.3 101.9 100. 104.0 104.1 102.	103.3 103.9 103. 101.1 102.9 103. 100.1 101.9 102. 99.9 102.2 101.	97.5 101.3 101. 95.0 100.1 100. 93.5 98.2 99. 88.5 95.3 95.	85.6 87.3 90. 80.1 83.0 85. 73.1 75.9 77. 62.0 63.2 66.	TEST DATE LOCATION	TEST POINT 0 7501	
	FREG	8 8 8 5	125 200 200 200 200 200	300 200 200 200	630 1000 1250	2500 2500 3150	\$300 \$300 \$300	12500 16000 20000	31500 31500 40000 50000 60000		MØDEL 7500	65

											OI OI	RIC F	ilN PO	IAL OR		\U <u>i</u>	3E ALI	IS TY	t.											0. FPS)		e de l'agranda de l'agranda de l'agranda de l'agranda de l'agranda de l'agranda de l'agranda de l'agranda de l
							-																		·	- YES			FREE_JET SPEED) 23		
																									REFRACTION CORRECTION	ECT I DI	28.04	3.50	FREE	M/SEC		
		7					6.0	10 .0	د د ا	N 6.	9.	.3	9.	o –	7	N P	د د د		o .	, G		ο 4	20	a.	N CORF	E COR				o		
		•			.		9 146 2 147	-	2 151.3	2 2 2		.1 151	1 150.6	. 3 150.0 . 6 149.1	٦,	9 147	0 147.3][6 146.0	6 144	-	.1 141	.1 142	.0 162	RACTIO	BULANC	I	RELHUM		MODEL		
		. 160					5 112.	6 114.	4	5 115	6 114	1 114 7 112		8 109 107 107	7	2 105.6 4 104.9		2 100.7		3 89	85		4 67	.7 125.0	REF	TUR.	9	29.6320		•		
X75010	ES	. 150.					5 113.	7 116.	9 117.	5 118	4 117,	9 117. 3 115.	-	4 = 13.	П	6 109.		1 102.		7 90.	85		6 68.	127		40.00	A SB59			(N1 08 (
	DEGREES	140.					109.	113.	120	15.	_	2 2	115.	9 1 2 2		110		102.		92.	87	8 82. 75.	3 72.	0 126,5			I AL PHA	PAMB	SIZE	23.99		
FJ-ZER-FMODL	INLET.	130.					106.0	109.		12.	125	2 2	125	= 0	109	108.		102.		9.00	_	74.0	. 68	123.0	VELOCITY (FT/SEC)	CR CIN		96		U WS		
FJ-ZER	SURED FROM INLET,	120,					8 5	103.0	100	108.1	-	109.0	109	109.3	- 1	107.8		101.8	86	92.4	87	83.6 78.9	72.5	119.8	ITY (JET DIAMETER	N294	ADH068		. 7 Sa		
Z	SURED	110.					93.0	96.9	97.8	100.5		103.4	103.4	103.6	103.5	103.4	60.0	100.9	98.3	93.0	86.1	79.4	67.3	114.8	VELOC		NO.			154.7		
IDENTIFICATI	ANGLES MEA	100.					2 2 5 5 5 5 5 5 5 5 5	95.1		1 68	5	100.7 8 .7	1 .	<u>5</u>	a	102.00		99.3		6 6 6 6		81.7 75.8		113.1	E JET		TAPE	AERO.		ARC		
DENTI	ANGL	8					92.1	4 .	94.3 95.7	96.2 97.8	100.7	99.1		9.001	102.1	103.3		101.8		0.00 0.00	٠.	83.1 74.5	- 4	113.2	FREE		1	I	A NOR	40.0 FT)		
-		9					90.0	4 -				97.0	4 .	0 0		02.7	25.2	02.7		00 00 00 00 00 00 00 00 00 00 00 00 00	4 .	82.8 74.1	- 4	112.8	FACTOR	0	-78	ECH CH	ACMAG CITALION	5		
		9					80.00	4 .	91.1 92.5	94.0	97.2	96.7	9.66	0.00	103.2	02.4	01.6	00.6	97.2	68.00 0.00 0.00	86.5	80.3 73.9	69.2	112.2	L.	<u> </u>	02-20-78	C41 ANECH	¥1004	12.2 M		
		.09					97.9	0		d -	. 0	<u> </u>	0		· d			7-				77.6		112.5	ZE SCAL	1	DATE:	T ON		2		
		20					1.10	e	ю 4	۸-	- 01	4 R	9	-0	9 0	9.0	, w	08.1			90	Q) 4	~	112.7 1	11 S17F	-	TEST DATE	LOCATION	1710	5		
."		40.					10 U	9 00	ы 4	dr	9.00	9.	6	0.4	, -		97.5	q k	מי	0.4	9-	- ro	d	4	MADE! /E!!!	INPUT			TW:50 F02+	7501		
		0000	20	8 8 9	001	160	•	1		1		•	1-		7			12500 9					- 1	OASPL 113	2				į	7500		
		و ا					- /A 6	1	"		- ``	- 6	Ň	6	ř	ö	<u> </u>	2 2	200	88				- ₩3 1	.s.	SHI.	INI	10 31			AXER	он-

59.0 DEG. F. 70 PERCENT R.H. STD. DAY. SB. 40.0 FT

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F. 70 PERCENT R.H. STD. DAY, SB. 2400.0 FT. SL.

														0	RI F	GI P	NA CO	AI POP	- 1	P/ QI	JA	E Ll	IS TY						•					•			SPEED O. FPS)	
			2	· ·	.		2			8	~ •	~ ~		0	0						2	0	Qi.								6.				B 28.04		FREE-JET 0. M/SEC (
		Ę	167.	166.5	166.9	168.9	169.2	169.0	168.	160.3	167.	166.7	165	165.3	165.	164.	164	200	500	162	160.2	159.	•								160.				TAMB		•	
		0	- 4	87.2	87.7		86.3				•		75.5	69.4		63.3	4		9 6	•											96.0	20.5					FULL	
		ö	۵		2.60 0.60 0.00		ı	N	4	d	6	N R		0	6	۲.	ما		» ×	9 (03.7	9		5859 29.632 0		- (N)	
X75011	REES	-	1				N	4 92	4	ما	<u> </u>	٠.	2 4	3 78	9	~	N o			i 10	6										9	2 6	SHIFT		i		8	
	DEGREES	140	٩	2	8 6	6	2	8	8	3	8	0 G) K	8	8	7	7	9 9	A C												7 103.	- 7			IALPHA		\$12E (1400,00	.
FHODE	N.ET.	130.	89.5	91.			91.4		91.2					84.0							26.									1.	101	105.6	FREQUENCY			·	Š	
FJ-ZER-FMGDL	SURED FROM INLET	120.	83.8	84.9	86.4	88.7	98.4	69,3	89.2	0.68	88.7	87.6 80.6		85.5	83.6	81.3	28.0			96	35.9	0									4.66	105.4	u.	1	N294 ADH068		So	
1	RED E		6		S. C		ļ	1 0	9.8	9	œ .			82.3								9,0										102.0	. 640		RDG.		9032.2	
TION	74	-	ŀ				1			ı				1	4	4	.) 4) 4	1		٠								ю	9 9		•	M			
DENTIFICATI	ANGLES MEA	100	77	77.9			Į.							İ	10	80	78	76	7 7	0 K	4	9									8	5 5	RATIO		TAF AERO.		ъ С	
DENT	ANG	8 0.	75.3		77.7	70.0	62.5		79.9	- 1			מיא מיא מיא	82.4		91.7	á		•		4 4	16.7									93.6	102.8 104.0	DIAMETER		 #5		ANGE . O FT)	
-		9	72.6	_		9 0	30.2			- 4				92.1		91.6	- 4				ı,	15.2									0	102.4 103.6	DIAM		1 -		ACGUSTIC RANGE 5 M (2400.0 F	
		70.	9	9	a ·	4 L	n	~	. 19	a	a (w (» «	0	~	4	٩	0.1	٠.	ų -	-	ю										N 0			02-20-78 C41 ANECH		SUDO!	
			20) ()	1		3 78	j			, d	8		6 79	1		59 (P	7	١.	7										6 100 6 100			1		731.5	
	1	9	Z0. A			4 0	4 4			- 1	91.	•		1.	79	77.	76.			•	1.							•			6	98.			ST DATE			
		20	69.7			72.0	4 .	76.55	79.4	80.4			90.00	78.0		75.0	4	•	62.8	- 04	₹.	;										96. 8 97. 8			TEST		POINT 501	
		9	4	4	ro (N K	4 6	10	.	4	e e		4 0	7		0	4	۲.	a (vi e	0	!									10	- 2	!			• •	TEST PO 7501	
	-	FREG	50 65		9	27 200			250 77	- 1			630 76				9	2500 55	K)	4000 46	3		10000	18000	0000	25000	31500	40000	50000 63000	80000		PNL 93					500	657

()

											R F.	IGI P	IN/	IL R	P	AG	E	IS T¥	•						-					FPS)
																	,							•				CORRECTION - YES CORRECTION - YES	29.30 43.00	FREE-JET SPEED.
			Ę				000	41.5		43.7	44.1	43.6	43.6	44.1	45.3	45.9	48.3	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	47.9	46.3	47.00 0.00	48.7	47.2	46.5	64.7	42.9	160.3		TAMB	117
			160.				, 1	08.1	06.2 1	02.01	٠ .	2.1	03.00	34.5	_	105.1	I	55.6	5.2 1	34.8 1		10.01	91.6 1	33.2	78.6 1	30.0	117.9 1	REFRACTION TURBULANCE		MODEL
			150.				6	100	.7.		- -	_		- -		103.7 10	-			-		8	1	, m	6	io.	118.8 11	2 F	\$559 29.5600	EN -
).	X75020	DEGREES	140.				•		_	109.1	T.			1		107.5 10 106.3 10	1		- 1				l		l		120.1 11	385.00 48.00	PAMB 2	80
•	_	1					•		0	0.	10	in.	60 K	3/2	10	, o	2	^ 4	-			0	- u		-	6	a		IALI	\$12E 23.99
	FJ-400-FH5D	FROM INLET,	. 130				4	3 101	· —	201 20		-	106	100	7 107		2 107		-	2 105.1		7	90	9 4		9	4 118	OLAMETER (IN)	287	5
	FJ-40	D FRO	. 120				ê			98	- -	-		-	-	3 106.6 7 106.6	 			•			1 91.			7 71	.8 117.	VELOCITY JET DIAME	N299 ADH\$97	4.7 80
	- NOI	ASURED	10						8					97.6			100.8			,	_		1 92.1		ĺ		Ξ	VELC JET	E NG.	- 7
	DENTIFICATIO	ANGLES MEAS	100.				:			69.3	٠ .			al a		97.5			:								110.9	EE JET FREE	TAPE AERO. I	ARC
•	i DENT	ANG	8				3							.I .		100.8					•		93.2			•	113.8	FREE	8	RANGE 40.0 FT)
• • •			90											.i .		. e				-		• •	95.1		•		113.9	FACTOR . 000	27-78 ANECH C	STIC R
			70.				1				٠ ا٠		-			000		4	:		•		6	i'n	1	ò	13.8	LE FA	02-27 C41 AI	ACGUSTIC .2 M (4
			90				•					À	~ _		_							-	96.9	37.6	0.6	6	5.1	ZE SCALE CALC. 1	ŀ	5
			9						0	٠٠		a	ы -	-	N I	٠ o	6		-	0	si R	7		ە ە	6.7	ص ص	6.5 11	800	TEST DATE	POINT
									10	10 1	مام	95	4 1				1.5 107	~ ~		2	2.2	7	5.7 95	ວ ຄ	7 7	2	1.1 116	MODEL/FULL INPUT 1.		TEST PO
			FREG	53 63	00	100	200	1			1			1	•	3150 104. 4000 109.	•	6300 106 8600 106		_	16000 102 20000 100	•					GASPL 116.1	HOH 1		MODEL T

•	×
c	,
Œ	•
200	٠,
•	
	÷
_	3
c	2
Ç	2
v	7
a	ń.
Ø	ì
ğ	•
10	•
•	
•	
•	
•	
•	
•	
1111	

						OR OF	IGINAL POOR	PAGE	18 1TY					FREE-JET SPEED MOSEC (306.0 FPS)
FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL	IDENTIFICATION - FJ-400-FMODL X750	ANGLES MEASURED FRCM INLET, DEGREES	40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150.	66,7 67.8 68.5 68.1 69.1 70.4 69.8 71.0 78.0 84.6 97,3 86.7 78.9 181 67.7 69.5 69.6 69.0 70.0 71.5 71.2 72.8 80.0 84.9 97.3 85.8 77.7 161 68.6 69.2 70.6 70.3 74.5 72.5 72.0 74.2 82.4 86.1 88.6 85.1 77.3 162 70.0 70.6 71.1 71.4 72.8 73.7 75.8 83.5 86.8 87.5 83.0 77.7 161	71.7 70.5 72.8 72.6 72.9 75.0 74.9 76.2 83.5 86.0 87.4 80.8 76.2 161 72.1 71.5 73.7 72.6 74.6 76.1 75.2 77.5 84.7 86.2 86.4 80.0 75.6 161 72.2 74.2 75.4 74.5 74.7 76.3 75.9 78.2 85.0 86.7 85.5 77.9 74.2 161 74.0 73.0 73.7 73.8 74.3 76.0 75.5 78.5 85.4 86.6 85.4 78.1 75.1 161	79.5 79.8 78.8 75.8 77.7 77.7 77.3 79.0 86.5 86.1 85.1 79.2 75.5 162 81.2 81.3 80.5 80.8 80.1 78.2 79.5 85.9 85.7 84.2 81.9 82.1 81.2 79.1 79.6 85.6 84.7 82.1 76.5 72.6 164 83.8 84.7 86.7 84.5 85.3 83.7 80.2 80.5 85.9 84.5 82.1 76.5 73.1 166	0 81.0 82.3 84.5 86.0 84.7 85.8 82.0 81.0 85.2 83.7 80.3 74.7 71.5 185.7 0 80.6 83.0 83.5 83.4 84.2 82.1 81.2 85.1 83.1 78.8 75.0 39.9 165.6 0 78.8 81.4 82.9 82.9 84.2 84.3 80.8 81.7 83.3 81.6 77.2 73.0 68.3 165.6 0 77.1 80.6 82.6 82.6 83.0 82.9 80.5 80.8 82.8 80.9 74.9 70.3 65.5 165.9	74.2 78,4 60.3 80.7 83.0 83.5 79.5 79.9 78.1 74.7 68.2 64.0 53.6 165 70.6 75.5 78.6 79.7 82.4 82.3 76.4 75.0 75.6 70.1 63.7 58.7 53.1 166 64.6 72.2 74.5 76.2 78.2 78.4 72.4 69.5 73.1 69.4 62.1 53.0 42.3 166 75.4 62.5 67.5 68.7 69.4 69.5 73.1 69.4 62.1 53.0 42.3 166	40.9 48.0 56.0 60.1 63.2 62.9 55.6 52.8 52.9 43.0 33.4 18.6 164 20.4 31.0 35.9 44.4 45.1 45.6 40.9 35.2 38.7 24.3 12.1 16.0 17.8 17.6 11.0 12.4 16.0 17.8 19.1 17.5 11.0 12.4 16.0 17.8 19.1 17.5 11.0 12.4 16.0 17.8 18.1 17.5 11.0 12.4 16.0 17.8 18.1 17.5 11.0 12.4 17.8 18.1 17.5 11.0 12.4 17.8 18.1 17.5 11.0 12.4 17.5 11.0 12		00 00 00	10 11 91.2 92.5 \$3.5 \$2.9 \$3.6 \$3.7 \$0.9 \$1.4 \$6.5 \$7.3 \$7.2 \$3.1 \$7.2 177.9 11 98.0 \$9.9 101.7 102.1 103.8 103.9 100.1 100.4 103.4 102.4 100.0 \$4.5 \$9.6 17 98.0 \$9.9 102.5 102.7 105.1 105.0 100.1 100.4 104.1 103.7 101.3 \$5.6 \$0.8 10 98.0 \$9.9 102.5 102.7 105.1 105.0 100.1 100.4 104.1 103.7 101.3 \$5.6 \$0.8	TAPE NG. N299 IALPHA SB5 H CH AERG. RDG. ADH997 PAMB 29.	TEST POINT ACCUSTIC RANGE 7502 731.5 8 4 2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 117.65
			FRE		== % %	<u>6 4 9 8</u>	1000 1250 1600	202 203 204 204 204	63 63 60 60 60 60	12500 16000 20000 25000	31500 40000 50000 63000	60000 GASPL PNLT		MODEL 7500

	IDENTIFICATION	•	MODEL BACKOROUND	FJ-ZER-FMODL	X75030			
	WW	ES ME		INLET, DEGREES	ES			
40. 50. 60. 70.	.06 .09	100.	110. 120.	130. 140.	150. 160			
						ž		
						į		
86.8 85.6 86.	67.2 69.	0	ŀ	-	109.5 109.	1 142.9		00
4 66.2 86.2 87.	86.8 90.	е.		0.0	11.0 11.	5 144.6)RI F
7 86.3 89.0	- 0 0 0 0 0	- 1		- -	112.4 110.	6 143.5		GII PO
1 59.9 89.9 89.	94.3 93.	10 (•	-	112.0 11			NA Or
	9 G	۸٥		0.4	11.2.	146		L ? (
1 93.4 92.9 93.	94.5 97.	0			112.0 1	7		P) Qu
.7 91.6 92.6 93.	94.7 96.	7	•		112.1 110	8 146.		lG AL
. 1 93.9 93.4 93. .6 93.1 93.4 93.	94.0 96.	7 W		9 N	110.8 107	.6 146.3		E ,
3 93.9 93.2 93.	94.5 97.	~			109.9 105		T.	is Y
92.8 93.0	94.6 96.	- a		~ ~	107.7 104	1 144.8		
89.3 91.6 81.7 92.4	8	च	100.9 105.1	104.8 105.3	105.4 102	.8 143.6		
5 80.8 80.8	93.6	90	-1	- 2	103.4 100	142.3		
3 88.2 88.6 90.	92.3 94.	4	-		100.6 98	_		
.1 86.6 87.	G 6	- •		₩ 0	99.0 97	.3 140.0 130.5		
6 80.2 83.0 83.	88.2 89.	9	1	8	92.1			
.9 77.2 80.2 82.	83.6 84.	9		0.00	96.6			
7 67.3 70.9 7		78.6 78		5 82. 5 76.		3 138.1		
.7 60.3 63.7	4 69.	J.,	I.	5 70.	-	7.3		
1.9 52.9 57.2 6	. 8 62.				64.8 61.	.5 137.0		
102.2 104.0 104.2 104.6	3 106.2 109.E	109.	2.4 117.6	119.3 120.8	122.9 121	.2 158.3		
TEST DATE 02-21	21 - 78 AMECH CH	TAP	0. N294	IALPHA	5859 20 3800	TAMB	24.80	
					1			
TEST POINT ACO 7503 12.2 M	ACOUSTIC RANGE	ARC	154.7 SG CM	\$12E (23.99	SO IN) - MO	MODEL	O. M/SEC (O. FPS)	
			•					

N
ö
₹
•
0
-
à
-
78
78
178
97/0
30/18
/30/78

						0	RI(GIT	AV OO	L R	P# QU	IG JA	E LI	EI Y												FPS)
			And the second s																					CORRECTION - YES	24.80 39.00	FREE-JET SPEED 0. M/SEC (0.
		30. PWL			0.14.6	. 5 146.1 6 146.1	. u	2 146	7.6 146.2 7.7 146.6	8 146	a 4	9 6	0	1.1 144.3 P. B. 143.5	9	-	3 M	.9 139.5	N	. W	•	4 10	.2 158.3	REFRACTION TURBULANCE	TAMB	MODEL
30	60	150. 160		800	111.3 110	9.7	112.8 111	0.0	112.0 110	-	111.7 108	0 0	7	106.1 103.	i 4	۳	90.0		92 92) -	a, .	64.8 61	122.9 121.2		\$859 29.3600	2
	, DEGREES	. 140.		9		9 108.0	2 110.9	5 109.9		.7 108.9				. 8 106.90 8 105.3	3 2		20.00 20.00 30.00	0.95.2	3 20 20 20 20 20 20 20 20 20 20 20 20 20	85	76	6 65 8	.3 120.8) 0.) 48.00	I ALPHA PAMB	SIZE 23.99 SQ
FJ-ZER-FMGDL	URED FROM INLET,	120. 130		97 6 109	-	01.0 107.	108	80 5	106.6 107.	15	000	00.	106	0.00	03.8 103.	102	97.6 98	20.0	08	.4 83	77.	1 64.	S. 55 119	ELOCITY (FT/SEC) ET DIAMETER (IN)	N294 ADH096	SO CM (
10N - FJ	ASURED FI	110.		0 00	0.7	0 0 7 0	97.7	98.7	9.00	101.3	0.101	102.2	102.1	101.6	9.00	1.00	7 10		4 -		5 50 60 10		112.4	>7	200.	164.7
DENTIFICATIO	ANGLES MEAS	90. 100.		. 5	6	2 K	4 94.			.8 97.	- 97.	98	.98	8.0	2 97.	2.5	7 7		2 83	.1.	٠.	3 64.	.5 109.2	FREE JET FREE	TAPE AERO. 1	JE FT) ARC
106	•	.00		27.0						~	Ö۷	. w	0		- 10			<u>ب</u>	v o	. ca	76.2 78	1 60	106.2 108.5	FACTOR 1.000	21-78 ANECH CH	AAN O.O
		70.		4	87.	88.8	88	9	9 6	93.	8		93.	0.20	8	2 8	8	86.		78.	73.	61.	104.6	SCALE FAC	02-2	ACGUSTIC 12.2 M (4
		50. 60.				3 89		90.2 90.8	4 9 8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9 92.			9 93.	5 6 6 6	80.	9.0	6 97.	9.0	2 08 80 80	.2 76.	د	57.	1.0 104.2	\$12E	TEST DATE	LNI.
		40.		2	4		-	9.00	-	~	- "	92.3 93.1		80.8	၂၈	86.5 89	? -	9	0 0	4	53.7 67	9	102.2 104	MODEL/FULL INPUT 1.		TEST POINT 7503

FLIGHT TRANSFORMED, SCALED, AND EXTRAPCLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

60. 70. 80. 90. 100. 110. 120. 68.6 66.6 71.0 73.3 74.0 76.0 81.6 69.8 70.4 72.1 74.8 75.6 77.4 83.1 70.7 71.4 76.2 75.4 76.4 73.2 84.4 71.7 73.4 74.7 77.7 76.4 80.9 86.7 73.4 74.7 77.7 78.4 80.9 86.7 73.4 74.7 76.2 76.9 77.4 80.9 86.7 73.4 74.7 75.7 76.8 91.0 86.7 73.1 74.0 75.7 76.2 76.9 77.4 80.9 86.5 73.6 74.3 75.3 77.6 78.6 81.8 87.4 72.1 74.0 75.7 76.0 78.6 81.8 87.4 72.1 74.0 75.7 76.0 79.5 82.4 86.5 72.6 74.2 75.5 74.8 77.1 77.1 77.4 80.3 83.6 85.1 77.1 77.1 77.4 80.3 83.6 85.1 77.1 77.1 77.4 80.3 83.6 85.1 77.1 77.1 77.4 80.3 83.6 85.1 86.5 77.1 77.1 77.4 80.3 83.6 85.1 86.5 77.1 77.1 77.4 80.3 83.6 85.1 86.5 77.1 77.1 77.4 80.3 83.6 85.1 86.5 77.1 77.1 77.1 77.1 77.1 77.1 77.1 77	99. 70. 90. 90. 100. 110. 120. 130. 140. 160. FML 98. 60. 71. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72	7 77. 60. 80. 80. 100. 110. 120. 130. 140. 160. 160. PM. 6 80.6 71.0 72.3 74.0 76.0 81.6 67.5 86.1 80.6 83.2 163.1 7 77.4 72.4 72.7 74.8 75.6 77.4 83.1 87.8 80.0 80.1 87.8 183.1 85.1 7 77.4 76. 72.7 74.8 75.6 77.4 80.1 80.2 80.2 80.1 80.1 80.1 80.1 80.1 80.1 80.1 80.1	1. 60. 70. 60. 90. 100. 110. 120. 130. 140. 160. 160. PH. 4 68.6 70.4 72. 72. 74. 76. 72. 74. 60. 110. 120. 130. 140. 160. 160. PH. 5 70.4 73. 74. 76. 75. 74. 76. 72. 64. 60. 16. 60. 60. 60. 16. 16. 16. 16. 16. 16. 16. 16. 16. 16
7. 70. 60. 90. 100. 110. 120. 130. 140. 160. 160. 160. 160. 160. 160. 160. 16	70. 80. 90. 100. 110. 120. 130. 140. 180. 190. PM. 88. 8 71. 73. 37. 37. 37. 38. 38. 38. 38. 38. 38. 38. 38. 38. 38	70. 80. 90. 100. 110. 120. 130. 140. 180. 180. 180. 190. 190. 190. 190. 190. 190. 190. 19	70. 80. 90. 100. 110, 120. 130. 140. 160. 160. PM. 70. 80. 90. 100. 110, 120. 130. 140. 160. 160. PM. 70. 70. 70. 70. 70. 70. 70. 10. 10. 10. 100. 160. 160. 160. 160. 70. 70. 70. 70. 70. 70. 70. 10. 10. 10. 10. 10. 10. 10. 10. 10. 1
## 68 6 9 1 10 73 3 74 0 75 0 8 1 6 6 7 6 6 1 8 8 6 8 2 164 1 ## 73 2 74 4 76 75 75 78 4 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1	94. 9 91. 0 73. 7 14. 7 15. 7 15. 0 1. 0 7. 5 66. 1 80. 6 93. 2 163. 7 71. 4 72. 7 12. 7 15. 7 15. 7 15. 7 15. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1. 0 1.	96.9 94.0 96.2 96.3 74.0 76.4 76.9 71.0 97.1 98.0 98.7 98.2 88.2 88.4 76.2 77.4 78.2 77.4 78.2 77.4 78.2 77.4 78.2 77.4 78.2 77.4 76.2 77.4 78.2 77.4 98.0 98.7 98.0 98.7 98.5 18.5 77.4 78.2 77.4 76.2 77.4 76.2 78.4 76.2 78.4 76.2 78.5 78.5 78.5 78.5 78.5 78.5 78.5 78.5	96.9 71.0 73.3 74.0 76.0 81.0 87.5 88.1 87.5 88.2 184.1 77.7 78.4 87.2 184.1 87.5 74.4 78.2 77.4 87.2 87.4 87.2 88.2 88.1 87.5 87.1 184.0 77.3 78.4 80.2 88.7 88.2 184.1 87.2 78.2 78.4 78.2 78.4 87.2 88.4 87.1 86.2 88.1 87.5 184.2 78.3 78.4 78.2 78.4 78.2 78.2 88.4 87.1 86.2 88.1 87.5 184.2 78.3 78.4 78.2 78.4 78.2 78.4 78.2 78.2 88.4 87.1 86.2 88.4 87.2 88.2 184.2 78.2 78.4 78.2 78.2 88.4 87.2 88.4 87.3 88.2 88.4 87.3 88.2 88.4 87.3 88.2 88.4 87.3 88.2 88.4 87.3 88.2 88.4 87.3 88.2 88.4 87.3 88.2 88.4 87.3 88.4 87.3 88.2 88.4 87.3 88.3 87.3 88.3 87.4 88.2 88.4 87.3 88.2 88.4 87.3 88.2 88.4 87.3 88.3 87.3 88.3 87.4 88.2 88.3 87.3 88.4 87.3 88.3 87.4 88.2 88.3 87.3 88.3 87.4 88.3 87.4 88.3 87.4 88.3 87.4 88.3 87.4 88.3 87.4 88.3 87.4 88.3 87.4 88.3 87.4 88.3 88.3 88.3 88.3 88.4 88.4
7 70.4 72.1 74.6 75.6 77.4 63.1 87.6 89.2 88.4 89.2 164.1 77.2 71.4 76.2 73.4 76.4 87.2 89.0 89.0 89.1 80.1 87.6 89.2 164.1 77.2 71.4 76.2 77.4 80.2 65.1 67.9 89.1 89.1 80.1 80.5 164.3 77.4 80.2 65.2 66.1 80.1 67.9 89.1 164.3 77.4 77.4 77.4 80.2 77.4 80.2 67.4 87.2 80.1 164.3 77.4 77.4 77.5 78.6 81.8 77.4 87.2 82.4 80.9 86.8 86.4 87.2 82.1 164.3 78.5 78.5 78.6 78.6 81.8 87.2 82.4 87.2 82.1 164.3 78.5 164.3 78.5 164.3 78.5 17.8 78.5 78.5 78.5 78.5 78.5 78.5 78.5 7	70.7 70.2 70.4 70.2 70.4 70.5 70.6 70.6 70.6 70.6 80.4 80.4 80.4 80.4 80.4 80.4 80.7 80.4 70.7 70.4 70.5 70.4 70.5 70.6 70.4 70.6 70.6 70.6 70.6 80.6 80.7 80.7 80.7 80.7 80.7 80.7 80.7 80.7	70.7 71.4 76.2 71.4 76.2 77.4 76.2 77.4 63.1 87.2 68.1 87.2 68.1 87.1 68.1 70.7 70.7 70.7 70.4 77.2 87.4 87.2 88.1 87.2 88.1 87.2 88.1 87.2 88.1 87.2 87.2 87.2 87.2 87.2 87.2 87.2 87.2	70.7 71.4 72.2 74.4 76.4 76.4 76.4 76.4 76.4 76.4 76.5 86.2 86.4 86.7 86.7 164.1 70.7 71.4 76.2 76.4 76.4 76.2 86.9 86.1 86.1 86.1 86.1 86.1 86.1 86.1 86.1
7 71.4 76.2 76.4 76.4 76.4 76.5 86.0 86.7 87.8 88.0 88.7 88.7 184.5 77.4 76.5 76.4 76.8 77.4 76.2 76.4 87.6 86.2 86.6 86.4 87.2 86.1 86.3 164.3 87.4 76.2 77.4 76.2 77.4 80.2 86.9 86.1 87.2 86.0 86.2 86.0 86.2 86.0 86.2 87.2 87.2 87.2 87.2 87.2 87.2 87.2 87	71.7 71.4 72.4 74.4 75.4 75.4 75.4 75.2 64.4 87.9 85.0 85.7 85.7 184.8 7 71.7 71.4 72.4 74.4 76.5 77.4 76.2 76.4 87.9 86.1 86.7 86.7 184.8 7 72.4 73.4 73.2 74.4 76.5 77.8 76.8 17.8 18.1 86.1 86.7 86.7 184.8 7 73.4 73.4 73.2 74.4 76.5 77.8 76.8 17.8 18.1 87.1 86.1 86.1 86.7 184.3 7 73.5 73.4 73.4 77.5 76.8 70.5 86.7 86.2 86.2 86.2 86.2 86.2 86.2 86.2 86.2	71.7 71.4 74.2 74.4 76.4 77.4 76.4 77.2 64.4 87.9 86.0 86.7 66.7 66.7 66.7 66.7 71.4 77.2 71.4 77.2 71.4 76.2 76.4 76.2 76.4 87.9 86.7 66.7 66.7 66.7 66.7 66.7 76.4 76.2 76.4 76.2 76.4 76.2 76.4 76.2 76.4 76.2 76.4 76.2 76.6 76.8 76.7 76.4 76.2 76.4 76.4 76.4 76.4 76.4 76.4 76.4 76.4	70.7 71.4 78.2 78.4 78.4 78.2 84.4 87.2 84.6 85.0 86.1 83.0 184.5 71.7 73.2 78.4 78.4 77.4 86.2 85.8 86.1 85.0 86.1 83.0 184.5 71.7 73.4 78.2 77.4 86.2 85.8 86.1 87.6 184.5 87.0 185.5 87.4 78.2 78.4 78.2 78.4 78.2 78.4 78.2 78.4 78.2 78.4 78.2 78.4 78.2 78.4 78.2 78.4 78.2 78.4 78.2 78.4 78.2 78.4 78.2 78.4 78.2 78.4 78.2 78.4 78.2 78.4 78.2 78.4 78.2 78.6 78.5 86.3 78.6 184.1 83.9 77.8 78.6 78.6 81.8 78.6 78.5 78.6 78.5 78.6 78.5 78.6 184.1 83.9 77.2 85.7 78.6 78.5 78.6 78.5 78.6 78.5 78.6 184.1 83.9 77.2 85.7 78.6 78.5 78.6 78.5 86.3 78.6 184.1 83.9 77.2 87.6 78.5 78.6 78.5 88.6 88.6 18.5 87.8 88.6 88.6 18.2 88.6 77.8 78.6 78.6 78.6 88.6 88.6 18.2 88.6 77.8 78.6 78.6 78.6 88.6 88.6 18.6 79.6 88.6 78.6 88.6 88.6 18.6 77.2 78.6 78.6 78.6 78.6 78.6 78.6 78.6 78.6
7.3.2 7.4.7 77.7 78.4 90.2 95.9 96.1 97.8 96.1 96.3 90.1 97.9 97.9 97.4 73.2 74.4 77.7 78.4 90.2 95.9 96.1 96.3 97.4 90.2 96.1 96.3 97.4 96.2 96.4 96.3 97.4 96.2 96.4 96.3 97.4 96.2 96.4 96.2 96.8 97.4 97.2 92.1 16.4 97.4 96.2 96.8 97.4 97.2 92.1 16.4 97.4 97.2 92.1 16.4 97.4 97.2 95.7 96.9 97.4 97.2 95.7 96.9 97.4 97.2 95.7 96.9 97.4 97.2 95.7 96.9 97.3 96.4 96.3 96.8 97.4 97.2 95.7 96.9 97.3 96.4 96.3 97.4 97.2 95.7 96.4 96.3 97.4 96.3 97.4 97.2 95.7 96.4 96.3 97.4 97.2 95.7 96.4 96.3 97.4 97.2 95.7 96.4 96.5 97.4 96.3 97.4 96.5 97.4 96.3 97.4 97.4 97.4 97.4 97.4 97.4 97.4 97.4	11.7 73.2 74.4 76.8 77.4 80.2 80.3 80.3 80.3 80.0 80.3 80.0 80.3 73.4 74.7 75.2 74.4 76.2 75.4 77.5 78.4 80.2 80.3 80.3 80.3 80.3 80.3 80.3 80.3 80.3	73.4 73.2 74.4 76.3 77.4 80.2 80.5 80.8 80.8 80.8 80.0 80.3 73.4 77.3 78.4 80.2 80.2 80.5 80.5 80.5 80.5 80.5 80.5 80.5 80.5	73.4 73.2 74.4 77.7 77.7 80.2 80.3 881.9 87.2 86.3 86.8 83.0 183. 87.3 87.3 87.3 87.3 87.3 87.3 87.3 8
4 7.1 7 76. 7 76. 7 76. 7 6. 7 6. 7 7 1 6. 7	73.4 73.4 76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	73.4 73.7 76.2 76.3 76.2 76.3 76.3 76.3 76.3 76.3 76.3 76.3 76.3	13.4 73.7 76.2 76.7 76.4 76.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2 6.2
7.4. 7 76. 2 70. 4 79. 2 82. 4 87. 3 86. 6 86. 4 87. 2 82. 1 164. 3 6. 74. 3 75. 7 76. 7 76. 6 12. 8 65. 4 87. 2 86. 7 87. 2 85. 7 86. 1 64. 3 6. 74. 3 75. 7 76. 7 86. 6 12. 8 65. 8 65. 7 86. 3 74. 1 163. 9 6. 74. 2 75. 7 76. 7 86. 6 10. 8 10. 8 10. 0 10. 1 10. 1 10. 1 10. 1 7. 2 75. 7 76. 7 76. 7 82. 82. 4 86. 5 85. 7 86. 0 10. 7 71. 8 162. 4 7. 2 75. 7 7 7 7 7 7 80. 3 85. 8 10. 8 10. 5 7 10. 8 161. 9 7. 2 72. 6 74. 9 77. 7 7 7 82. 8 10. 7 86. 7 86. 1 160. 0 7. 2 72. 6 74. 9 77. 7 7 7 82. 8 10. 7 86. 7 86. 1 160. 0 7. 2 70. 2 73. 4 76. 7 7 82. 8 10. 7 70. 7 86. 7 86. 1 160. 0 7. 2 80. 7 71. 6 7 7 7 7 7 8 2 80. 7 7 7 7 7 8 2 80. 1 160. 0 7. 2 80. 7 71. 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	72.5 74.7 76.2 76.2 76.2 76.4 77.5 76.5 76.5 77.5 77	72. 77.4 77.2 77.6 78.2 82.4 87.2 85.4 87.2 85.1 86.4 37.2 85.1 86.4 37.2 85.1 86.4 37.2 85.1 86.4 37.2 85.1 86.4 37.2 85.1 86.4 37.2 85.1 86.4 37.2 85.4 87.2 87.2 87.2 87.2 87.2 87.2 87.2 87.2	72.8 74.4 782 78.4 78.2 82.4 87.3 86.4 86.4 87.3 86.4 87.3 77.4 163.3 77.4 163.3 77.4 163.3 77.4 78.2 78.4 78.2 82.4 87.3 86.4 88.5 77.4 163.3 77.4 163.3 77.4 163.3 77.5 17.6 17.6 17.6 17.6 17.6 17.6 17.6 17.6
73.6 74.3 75.3 77.6 78.6 81.8 87.4 87.2 86.7 86.3 79.6 164.1 73.6 74.0 75.7 76.5 78.6 81.8 87.2 85.7 86.3 79.6 164.1 72.8 74.0 75.7 78.6 78.5 82.2 86.5 85.7 86.0 83.3 74.4 163.4 77.8 78.6 78.5 82.2 86.5 85.2 85.0 74.5 163.4 77.8 78.6 78.5 82.9 83.8 83.8 83.8 83.8 74.5 163.4 74.1 77.1 77.4 80.3 83.6 81.8 80.1 76.8 80.5 161.9 80.5 71.8 74.9 77.1 77.4 80.3 83.6 81.8 80.1 76.8 80.5 161.9 80.6 77.4 80.3 83.6 81.8 80.1 76.8 80.5 161.9 80.6 161.9 80.5 71.2 73.4 76.2 76.8 76.2 76.8 76.2 76.8 76.2 76.8 76.2 76.8 76.2 76.8 76.2 76.8 76.2 76.8 76.2 76.8 76.2 76.8 76.2 76.8 76.2 76.5 76.2 76.5 76.2 76.5 76.5 76.5 76.5 76.5 76.5 76.5 76.5	7.2 7.3 7.3 7.5 7.5 7.6 7.6 81.8 87.4 87.2 85.7 86.7 86.5 76.6 164.1 7.2 7.3 7.3 7.5 7.6 7.6 81.8 81.4 81.4 85.0 7.4 163.4 7.2 7.3 7.3 7.5 7.6 7.6 81.8 81.4 81.4 81.4 81.4 81.4 81.4 81.4	73.5 74.5 77.5 77.6 75.6 81.8 87.4 87.2 85.7 85.5 77.4 183.9 77.5 77.6 81.8 81.8 87.4 87.2 85.7 85.5 184.1 77.8 77.8 87.4 87.2 87.2 87.2 87.2 87.2 87.4 87.3 77.4 183.9 77.5 77.6 70.5 82.2 66.5 87.2 87.2 87.2 87.2 87.2 87.3 87.4 87.3 77.4 183.9 77.5 70.5 182.6 82.2 83.2 87.2 87.2 87.2 87.2 87.3 87.2 87.3 87.2 87.3 87.3 87.3 87.3 87.3 87.3 87.3 87.3	72: 77: 77: 75: 77: 76: 6 11: 6 17: 4 17: 75: 6 15: 17: 75: 77: 77
73.7 74.0 75.7 75.0 79.5 62.2 66.3 67.3 65.4 455.0 77.4 163.9 72.8 74.2 75.2 76.5 79.5 62.4 66.3 67.3 65.4 65.0 63.3 74.5 163.4 72.8 74.2 75.2 76.5 79.5 62.4 66.5 65.2 65.0 63.3 74.5 162.4 71.2 73.6 75.0 77.6 70.8 62.0 65.3 63.2 65.0 63.3 74.5 162.4 71.2 73.6 74.9 77.1 77.4 60.3 63.6 61.8 60.7 71.8 162.4 71.2 73.4 75.2 76.0 75.7 76.2 62.2 78.2 63.1 160.6 66.5 60.7 71.8 77.1 77.4 60.3 63.6 61.8 60.1 76.6 66.5 161.9 66.5 60.7 71.8 77.1 77.4 75.2 77.6 77.5 67.2 66.5 160.6 66.5 60.7 71.8 77.1 77.4 75.2 77.7 75.6 77.5 67.2 66.0 160.6 65.1 67.0 71.1 77.1 77.4 75.2 77.7 75.6 77.5 67.2 66.0 160.0 65.1 67.0 71.1 77.1 77.4 75.2 77.7 75.6 77.5 67.2 66.0 160.0 65.1 67.0 71.1 77.1 77.3 76.2 67.4 61.9 17.7 71.2 36.6 150.7 71.2 71.2 160.0 65.1 67.0 71.1 77.1 77.3 77.3 77.3 77.4 160.0 1	72 17. 75. 75. 75. 75. 75. 75. 75. 75. 75. 7	72. 73. 74.0 75.7 75.0 75.5 76.5 87.3 86.5 87.3 86.7 85.7 18.18.3 74.5 18.3	731 74.0 75.0 75.0 75.0 75.0 82.2 66.5 65.2 65.0 63.3 74.5 163.4 72.6 74.2 75.2 75.5 79.5 82.4 66.5 65.2 65.0 63.3 74.5 163.4 72.1 73.0 75.0 77.6 70.5 82.4 66.5 63.2 63.6 80.5 71.6 162.4 72.1 73.0 75.0 77.1 70.1 10.3 61.6 63.2 63.2 63.2 63.2 69.5 161.9 68.5 70.2 70.2 77.1 70.1 10.3 61.6 63.2 63.2 63.2 63.2 63.1 160.0 68.5 70.2 70.2 70.2 70.2 70.2 67.0 17.6 70.2 65.4 160.0 68.5 80.7 77.1 6 74.0 77.1 70.1 10.3 61.6 82.0 60.1 76.6 65.0 160.0 68.5 80.7 77.1 6 74.0 77.1 70.1 10.2 82.0 17.6 17.2 66.0 17.2 69.1 160.0 68.5 80.7 77.1 6 74.0 73.7 75.2 74.0 77.6 70.6 65.0 74.9 160.0 68.5 80.7 77.1 6 74.0 73.7 75.2 74.0 77.0 6 70.2 60.0 17.2 70.6 65.0 74.9 160.0 68.5 80.7 77.1 6 74.0 73.7 77.6 70.2 70.8 65.0 70.8 65.0 74.9 160.0 68.5 80.7 77.1 6 74.0 73.7 77.6 70.2 70.8 63.9 60.0 17.2 160.0 68.5 80.7 77.1 6 74.0 70.2 70.2 70.8 63.9 60.0 74.9 160.0 68.5 80.0 77.1 6.6 70.2 70.8 63.9 60.0 17.5 10.2 16.6 150.2 70.8 80.0 77.1 6.6 70.2 70.8 63.9 60.0 17.0 10.0 10.2 70.1 10.0 10.0 10.0 10.0 10.0 10.0 10.0
72. 6 74.2 75.2 76.5 79.5 62.4 86.5 85.2 85.0 83.3 74.5 163.4 71.2 72.6 74.2 75.6 79.5 62.4 86.5 85.2 85.0 83.3 74.5 163.4 71.2 72.6 74.9 77.1 74.1 81.2 82.2 82.2 78.2 69.9 161.2 71.2 72.6 74.9 77.1 74.1 81.3 82.8 81.8 80.1 76.6 69.9 161.3 69.1 71.2 73.4 76.2 76.8 78.8 82.0 80.1 76.6 66.9 161.3 69.1 71.2 73.4 76.2 76.8 78.8 82.0 80.1 76.6 775.2 69.9 161.3 69.1 71.2 73.4 76.2 76.8 78.2 80.7 76.5 77.4 63.1 160.0 6 69.1 71.1 73.1 72.3 74.0 77.7 75.6 77.8 66.0 54.9 160.0 69.1 71.1 73.1 72.3 74.0 77.7 75.6 76.9 86.9 85.9 160.0 61.2 64.6 69.0 71.1 68.5 70.2 70.8 68.9 65.4 160.6 165.7 70.6 160.0 61.2 64.6 69.0 71.1 68.5 70.2 70.8 68.9 65.4 160.0 175.2 61.3 65.9 65.7 66.7 64.9 67.9 66.9 150.9 150.0 15	72.6 74.2 75.5 75.5 75.5 75.5 22.4 66.5 65.2 65.0 65.0 65.3 74.5 75.5 75.5 75.5 75.5 75.5 75.5 75.5	72.6 74.2 75.5 75.5 75.5 75.5 75.5 75.5 75.5 75	72. 7 72. 7
72.1 73.0 75.0 77.6 76.5 82.0 83.8 83.8 80.5 71.8 162.4 71.2 72.6 74.9 77.1 78.1 81.0 84.6 83.8 80.5 71.8 162.4 70.1 71.2 72.7 74.9 77.1 78.1 81.0 83.1 86.1 76.6 86.5 161.3 70.1 71.2 72.4 76.2 76.8 78.8 81.8 80.1 76.6 66.5 161.3 68.2 69.7 71.2 73.2 76.0 75.7 78.5 60.7 73.6 69.2 59.6 168.7 68.2 69.7 71.6 74.0 73.7 78.5 67.7 75.6 69.2 59.6 168.7 68.2 69.7 71.6 74.0 73.7 78.5 77.7 75.6 69.2 59.6 168.7 68.3 10.7 71.1 68.5 77.7 75.6 69.2 59.6 168.7 69.6 65.5 66.7 64.9 63.8 66.4 61.9 67.7 51.2 36.6 165.2 70.8 55.8 67.9 58.9 57.9 57.9 57.9 55.9 15.6 163.5 72.6 30.3 35.4 39.2 37.6 37.1 77.9 55.8 78.9 163.4 4 72.9 30.9 30.4 39.2 37.6 37.1 77.3 3.8 18.7 185.6 89.7 84.9 86.9 89.2 89.9 82.6 87.2 89.0 87.7 87.5 82.5 175.6 89.1 90.9 94.0 96.3 96.7 98.7 101.8 101.8 99.2 92.5	712. 73.0 75.0 77.1 77.1 77.1 77.1 77.1 77.1 77.1 77	712. 73.0 75.0 77.6 78.6 82.0 85.3 85.9 85.6 85.6 16.9 78.1 85.4 71.2 73.7 77.4 78.1 91.3 85.9 85.6 85.6 85.6 161.9 78.2 78.2 85.3 85.9 85.6 85.6 85.6 161.9 78.2 85.7 78.1 91.3 85.8 91.6 85.7 78.2 85.7 78.2 85.7 78.2 85.7 78.2 85.7 78.2 85.7 78.2 85.7 78.2 85.7 78.2 85.7 78.2 85.7 78.2 85.7 78.2 85.7 78.2 85.7 78.2 85.7 78.2 85.7 78.2 85.7 78.3 85.8 85.8 86.5 86.5 86.5 86.5 86.5 86.5	712. 72. 73. 77. 77. 77. 78. 1 81.3 83. 8
71.2 72.5 74.9 77.1 78.1 81.3 84.6 83.2 82.2 78.2 69.9 161.9 68.1 71.2 73.4 76.2 76.0 78.5 81.6 83.2 82.2 78.2 66.9 161.3 68.5 70.2 73.2 74.7 76.8 76.0 73.7 78.5 66.7 76.2 76.4 160.0 68.5 70.2 73.2 74.7 75.8 77.7 78.6 77.6 69.2 59.6 159.7 68.1 67.0 71.1 73.1 72.3 74.0 74.6 73.6 66.0 54.9 160.0 68.2 66.7 61.0 71.1 67.1 70.2 70.8 68.9 65.4 59.6 150.7 68.2 66.7 61.0 71.1 67.1 72.3 74.0 74.6 73.6 66.0 54.9 160.0 69.1 67.0 71.1 73.1 72.3 74.0 74.6 73.6 66.0 54.9 160.0 61.2 64.6 63.0 71.1 63.1 72.3 74.0 74.6 73.6 66.0 54.9 160.0 61.2 64.0 65.9 65.7 66.7 76.8 77.9 75.8 70.9 65.0 74.9 160.0 62.4 61.0 71.1 73.1 72.3 74.0 74.6 73.6 65.0 74.9 160.0 63.6 63.6 63.6 63.7 64.9 63.8 67.9 63.8 64.5 36.9 15.6 155.6 64.1 3 45.7 52.2 63.0 47.0 46.8 42.8 33.6 16.7 165.2 65.8 63.8 63.8 63.8 63.9 64.7 7.3 3.8 2.8 48.5 36.9 15.6 155.7 65.8 63.8 63.8 63.8 63.8 63.8 63.8 63.8 63	71.2 72.6 74.9 77.1 78.1 91.3 84.6 83.2 82.2 78.2 69.8 161.9 70.1 77.1 77.1 77.1 78.1 91.3 84.6 83.2 82.2 78.2 69.8 161.9 161.9 70.1 77.1 77.1 77.1 78.1 91.3 84.6 83.2 86.4 85.6 64.8 161.6 68.5 70.2 73.2 78.2 66.4 85.6 64.8 160.6 68.5 70.2 73.2 78.2 78.2 78.2 78.2 78.2 78.2 78.2 78	70.1.2 72.6 74.9 77.1 78.1 91.3 94.6 93.2 92.2 78.2 69.9 161.9 70.1 71.6 74.1 77.1 78.1 91.3 94.6 93.2 92.2 78.2 69.9 161.9 70.1 71.6 74.1 77.1 78.1 91.3 94.6 93.2 92.2 78.2 69.9 161.9 70.1 71.6 74.1 78.2 78.2 78.2 96.0 77.7 78.5 78.5 69.2 59.6 180.6 69.1 71.2 73.4 76.2 78.2 78.2 96.0 77.7 78.5 78.5 69.2 59.6 180.7 69.1 64.6 69.0 71.1 63.2 78.2 78.2 77.7 78.6 73.6 69.2 59.6 180.7 69.1 64.6 69.0 71.1 64.8 77.2 78.5 77.3 78.5 69.2 96.1 187.2 69.1 64.6 69.0 71.1 73.1 73.1 73.2 77.2 78.5 69.2 96.1 187.2 69.1 64.6 69.0 71.1 64.8 77.2 77.3 78.5 69.2 96.2 18.5 185.2 69.1 67.1 68.8 77.2 77.3 77.3 97.8 98.0 97.7 97.8 92.1 178.6 99.1 90.2 99.9 92.6 97.2 98.0 97.7 97.8 92.1 178.6 99.1 90.9 94.0 96.2 99.9 92.6 97.2 98.0 97.7 97.8 92.1 178.6 99.1 90.0 94.0 96.2 99.9 92.6 97.2 98.0 97.7 97.8 92.1 178.6 99.1 90.0 94.0 96.2 99.9 92.6 97.7 97.8 92.1 178.6 99.1 90.1 91.8 96.3 96.7 96.2 102.7 101.8 107.8 92.2 92.7 ACCUSTIC RANGE ACCUSTIC RANGE 7.3 1.5 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7 1.7	71.2 72.6 74.3 77.1 77.4 80.3 84.6 83.2 82.2 78.2 80.9 161.9 69.1 71.2 73.4 76.7 77.4 80.3 82.6 81.6 86.5 161.3 69.1 71.2 73.4 76.2 76.8 76.8 82.0 80.1 76.6 66.4 160.6 69.2 69.7 71.6 73.4 76.2 76.9 76.8 76.8 60.2 73.6 63.1 160.0 69.2 69.7 71.6 74.0 73.7 76.2 76.7 75.8 77.6 80.2 59.6 156.7 61.2 64.6 69.0 71.1 66.5 70.2 73.7 75.8 77.6 86.0 86.0 73.7 75.8 160.0 61.2 64.6 69.0 71.1 66.5 70.2 73.7 75.8 77.6 86.0 86.0 77.1 160.0 61.2 64.6 69.0 71.1 66.5 70.2 73.7 75.8 77.6 86.0 86.0 77.1 160.0 61.2 64.6 69.0 71.1 66.5 70.2 70.2 75.8 77.6 80.0 87.7 16.2 156.1 160.0 61.2 64.6 69.0 71.1 66.5 70.2 70.2 70.8 60.0 60.0 10.0 10.0 10.0 10.0 61.2 64.6 69.0 71.1 66.5 70.2 70.2 70.8 60.0 77.1 75.2 70.0 10.0 10.0 10.0 61.2 64.6 69.0 71.1 66.0 70.1 76.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0 61.2 64.6 69.0 71.1 66.0 70.2 70.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
70.1 71.6 74.1 77.1 77.4 80.3 83.6 80.1 76.6 86.5 181.3 68.5 70.2 73.2 76.2 76.6 76.8 82.0 80.1 76.6 66.5 181.3 68.5 70.2 73.2 76.0 75.7 78.2 60.7 78.5 73.4 63.1 160.0 68.2 68.7 71.6 74.0 73.7 78.5 67.7 78.6 86.2 88.2 186.7 66.2 68.7 71.6 74.0 73.7 78.5 67.3 6 80.2 88.6 186.7 67.0 71.1 73.1 72.3 74.0 74.8 73.6 86.2 86.2 88.8 186.7 65.4 69.0 71.1 68.5 74.0 74.8 73.6 86.3 66.2 88.8 185.2 67.4 65.8 65.7 66.7 64.8 66.3 66.3 66.3 16.7 16.2 16.1 165.2 71.3 45.7 52.2 53.0 45.6 47.0 46.8 42.8 33.6 16.7 165.2 72.6 30.3 35.4 38.2 37.6 32.1 31.1 22.5 8.7 87.8 92.1 178.6 83.7 84.8 86.9 89.2 89.8 92.6 97.2 98.0 97.7 97.8 92.1 178.6 89.1 90.9 94.0 96.3 96.7 98.9 102.7 101.8 101.6 99.2 93.7	70. 71.6 71.6 71.7 77.4 82.6 0.7 78.5 78.5 85.5 18.6 0.1 78.6 85.5 181.3 77.6 6.6 18.6 0.1 78.6 78.5 66.4 180.6 6 6.6 180.6 6 6.6 180.6 6 6.6 180.6 6 6.6 180.6 6 6.6 180.6 6 6.6 180.6 6 6.6 180.6 6 6.6 180.6 6 6.6 180.6 6 6.6 180.6 6 6.6 180.6 6 6.6 180.7 77.7 75.6 77.7 75.6 77.7 75.6 77.7 75.6 77.7 75.6 77.7 75.6 77.7 75.6 77.7 75.6 77.6 77	69.1 71.2 73.4 76.2 76.2 6.0 78.5 61.8 60.1 76.6 68.5 161.3 68.5 61.6 68.5 161.3 69.5 68.5 76.2 76.2 66.2 66.6 69.2 76.2 66.1 60.6 66.5 76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2	69.1 71.2 73.4 76.2 76.8 76.3 63.5 61.8 60.1 76.8 61.5 161.3 66.6 61.5 161.3 66.5 161.3 66.5 161.3 66.5 161.3 66.5 161.3 66.5 161.3 66.5 161.3 66.5 161.5 161.5 66.5 161.5 161.5 66.5 161.5 161.5 66.5 161.5 161.5 66.5 161.5 161.5 66.5 161.5 161.5 66.5 161.5 161.5 66.5 161.5 161.5 66.5 161.
69. 1 71. 2 73.4 76. 2 76. 6 70. 6 70. 1 70. 6 75. 2 66. 4 160. 6 60. 5 71. 2 73.2 76. 0 70. 70. 5 70. 5 70. 6 70. 2 66. 4 160. 6 60. 5 71. 2 73. 2 76. 0 73. 7 76. 2 77. 7 75. 6 73. 6 60. 2 50. 6 150. 7 60. 2 60. 7 71. 6 74. 0 73. 7 76. 5 77. 7 75. 6 73. 6 60. 2 50. 6 150. 7 61. 2 60. 7 71. 6 74. 0 73. 7 76. 5 77. 7 75. 6 73. 6 60. 2 50. 6 150. 7 61. 2 60. 0 71. 1 73. 1 72. 3 74. 0 74. 8 73. 5 70. 8 66. 0 54. 9 160. 4 61. 2 60. 0 71. 1 60. 7 70. 0 60. 9 60. 0 60.	17.2 73.2 73.4 75.5 75.6 75.7 75.5 67.7 75.6 75.2 65.4 65.1 160.0 66.5 65.4 65.1 160.0 66.5 65.7 75.5 75.6 75.2 75.2 75.2 75.2 75.2 75.2 75.2 75.2	69.5 70.2 73.2 76.0 75.3 76.2 60.7 78.5 60.7 76.5 76.2 60.4 60.6 60.4 60.6 60.6 60.6 60.6 60.6	66.5 77.2 73.4 76.2 76.8 78.6 82.0 80.1 78.6 77.2 66.4 160.6 6 66.5 77.2 73.4 76.2 76.8 78.5 82.0 80.1 78.5 77.5 63.1 160.0 6 66.5 68.7 71.6 73.7 75.5 77.5 73.6 69.2 59.6 156.7 76.5 76.6 69.2 69.1 160.0 78.7 78.5 76.6 73.6 69.2 69.2 160.0 78.7 78.5 76.6 73.6 69.2 69.2 160.0 78.7 78.5 76.6 73.6 69.2 69.2 160.0 78.7 78.5 76.6 73.6 69.2 69.0 78.7 78.5 76.6 73.6 69.2 69.0 78.7 78.5 76.6 73.6 69.2 69.0 78.7 78.5 76.6 73.6 73.6 73.6 73.2 76.0 74.9 73.5 70.0 74.0 73.5 73.2 74.0 74.0 73.5 73.2 74.0 74.0 74.0 74.0 73.5 74.0 74.0 74.0 74.0 74.0 74.0 74.0 74.0
66.5 70.2 73.2 76.0 75.7 76.5 76.2 73.4 66.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	68.5 66.7 71.6 74.0 73.7 75.6 73.6 66.0 56.1 160.0 68.2 66.7 71.6 74.0 73.7 75.5 75.6 73.6 66.0 54.9 160.4 61.2 66.7 71.1 73.1 75.3 77.5 75.6 73.6 66.0 54.9 160.4 61.2 64.6 66.0 0 71.1 66.5 70.2 70.6 66.0 66.0 54.9 160.4 61.2 64.7 71.6 74.0 73.7 75.6 74.2 75.6 70.6 66.0 54.9 160.4 61.2 64.7 71.6 74.0 73.7 75.6 70.2 66.4 61.9 65.4 56.4 61.9 65.4 56.4 61.9 65.4 56.4 61.9 65.4 61.9 61.5 61.5 61.5 61.5 61.5 61.5 61.5 61.5	66.2 68.7 71.6 74.0 75.7 75.6 77.7 75.6 68.2 86.1 56.7 66.6 65.6 66.6 66.6 66.6 66.6 66.6	66.2 66.7 71.2 73.2 76.0 75.7 76.2 60.7 76.5 76.2 76.2 76.2 76.2 76.2 76.2 76.2 76.2
66.2 66.7 71.6 74.0 73.7 75.6 77.7 75.6 69.2 59.6 158.7 66.1 67.0 71.1 72.1 72.3 74.0 74.6 75.6 70.6 66.0 54.9 158.7 66.4 65.0 67.9 158.7 66.4 66.0 71.1 72.1 72.3 74.0 74.6 75.6 70.6 66.0 54.9 158.2 55.0 71.1 66.8 74.0 74.6 75.8 70.6 66.0 54.9 158.2 55.0 57.1 158.2 56.0 77.1 51.2 36.5 158.2 56.0 77.1 51.2 36.5 158.2 56.0 77.1 51.2 36.9 15.6 158.5 57.9 57.1 57.1 57.1 57.2 36.9 156.1 158.5 57.9 57.1 57.1 57.1 57.2 58.0 158.7 57.2 58.0 158.7 57.2 58.0 158.7 57.2 58.0 158.7 57.2 58.0 158.7 57.2 58.0 158.7 57.2 58.0 57.2 58.0 57.7 57.2 58.2 58.2 58.2 58.2 58.2 58.5 58.2 58.2	66.2 66.7 71.6 74.0 73.7 77.5 6 75.6 76.8 68.2 85.6 158.7 7 7 6 69.2 64.9 168.4 7 107.2 6 69.2 64.9 168.4 7 107.2 6 69.2 64.9 168.4 7 107.2 6 69.0 71.1 73.1 72.3 74.0 74.0 73.5 70.6 66.0 54.9 168.7 107.2 6 109.2 65.6 158.7 7 7 10.8 66.9 65.4 59.6 158.7 7 10.2 36.6 158.7 7 10.2 36.6 158.7 7 105.2 10.9 10.5 10.9 10.5 10.9 10.9 10.9 10.9 10.9 10.9 10.9 10.9	66.2 66.7 716 73.7 77.7 75.6 73.6 68.2 68.5 156.7 75.6 75.6 68.2 68.2 165.7 7.7 75.6 73.7 75.6 73.6 68.2 68.5 156.4 7.8 73.7 75.6 73.6 68.2 64.9 156.4 7.8 73.7 75.6 73.6 73.6 73.6 73.6 73.7 75.2 73.6 68.3 65.0 54.9 156.4 7.8 73.2 74.0 73.2 36.6 153.2 76.6 153.2 76.6 153.2 76.6 153.2 76.6 153.2 76.6 153.2 76.6 153.2 76.6 153.2 76.6 153.2 76.6 153.2 76.6 153.2 76.6 153.2 76.6 153.2 76.6 153.7 7.3 3.6 14.3 36.6 16.7 1153.7 7.3 3.6 14.5 36.9 16.7 155.7 7.3 3.6 14.2 36.3 16.7 155.7 7.3 3.6 14.3 16.5 36.2 16.7 175.6 164.4 7.1 154.4 7.2 16.8 16.7 16.8 16.7 16.8 16.7 16.4 16.4 16.4 16.4 16.4 16.4 16.4 16.4	66.5 66.7 0 71.1 6 74.0 73.7 75.6 73.6 66.0 24.9 156.4 61.2 64.6 69.0 71.1 72.3 74.0 74.6 75.7 75.6 73.6 66.0 24.9 156.4 61.2 64.6 69.0 71.1 72.3 74.0 74.6 70.2 70.9 63.9 65.4 59.0 65.0 150.2 61.2 64.6 69.0 71.1 60.5 70.2 70.9 63.9 65.4 59.0 6.10 150.2 61.2 64.6 69.0 71.1 60.5 70.2 70.9 63.9 65.4 59.0 61.2 36.1 150.2 61.3 65.2 67.9 68.7 70.9 67.9 67.0 57.9 67.9 36.9 15.6 155.7 62.2 6.3 70.3 35.4 79.6 70.0 67.9 70.0 69.0 70.7 155.7 62.2 6 30.3 35.4 79.6 27.9 7.0 3.6 2.5 30.7 155.7 62.2 6 30.3 35.4 79.6 27.9 7.0 3.6 2.5 30.7 155.7 62.2 6 30.3 35.4 79.6 20.0 82.6 97.2 99.0 97.7 97.5 92.1 175.6 89.1 90.9 94.0 96.9 96.1 96.1 10.0 100.6 99.2 92.5 80.1 90.9 94.0 96.3 96.1 96.1 10.0 100.6 99.2 92.5 80.1 90.9 94.0 96.3 96.1 96.1 10.0 100.6 99.2 92.5 80.1 90.9 94.0 96.3 96.1 96.1 10.0 100.6 99.2 92.5 80.1 90.9 94.0 96.3 96.1 96.1 10.0 100.6 99.2 92.5 80.1 90.9 94.0 96.3 96.1 96.1 10.0 100.6 99.2 92.5 80.1 90.9 94.0 96.3 96.1 96.4 102.2 101.0 100.6 99.2 92.5 80.1 90.8 94.0 96.3 96.1 96.4 102.2 101.0 100.6 99.2 92.5 80.1 90.8 94.0 96.3 96.1 96.4 102.2 101.0 100.6 99.2 92.5 80.1 90.8 94.0 96.3 96.1 96.4 102.2 101.0 100.6 99.2 92.5 80.1 90.8 94.0 96.3 96.1 96.1 96.0 97.7 97.5 93.7 80.1 91.6 60.0 94.0 96.3 96.1 96.0 97.7 97.5 92.5 93.7 80.1 91.6 60.0 94.0 96.3 96.1 96.0 97.7 97.5 92.0 17440.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0
65.1 67.0 71.1 73.1 72.3 74.0 74.8 73.5 70.8 66.0 54.9 156.4 61.2 64.6 69.0 71.1 68.5 70.8 66.9 65.4 59.6 46.7 157.2 61.2 64.6 69.0 71.1 68.5 70.2 70.8 66.9 65.4 59.6 46.7 157.2 60.6 55.8 67.9 66.7 64.9 63.6 66.4 61.8 67.7 51.2 36.9 15.6 155.5 60.8 55.8 57.9 58.9 57.1 57.9 55.9 48.5 36.9 15.6 155.7 60.8 55.8 57.9 58.9 57.1 57.9 55.9 48.5 36.9 15.6 155.7 60.9 55.8 57.9 58.9 57.1 31.1 22.7 57.9 16.5 16.7 155.6 60.1 51.6 56.9 69.2 69.8 52.6 57.2 59.0 57.7 57.5 52.6 60.1 51.6 55.3 56.3 56.7 56.9 102.7 101.8 100.6 59.2 53.7	61.5 64.6 69.0 71.1 68.5 74.2 70.2 70.8 66.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0	65.1 67.0 71.1 72.1 72.3 74.0 74.8 73.5 70.8 66.0 54.9 156.4 61.2 64.6 69.0 71.1 65.6 70.2 70.2 66.4 66.0 54.9 156.4 61.2 64.6 69.0 71.1 65.6 70.2 70.2 66.4 61.9 67.7 51.2 36.6 155.2 61.2 64.6 69.0 71.1 65.6 70.2 70.6 63.4 61.8 67.7 51.2 36.6 155.2 61.3 56.6 57.9 58.9 57.9 57.1 57.9 57.8 71.2 36.6 155.6 61.3 55.7 52.2 63.0 49.6 47.0 46.8 42.8 36.6 16.7 7 155.6 61.3 56.4 36.2 37.6 37.1 37.9 7.3 3.8 7 16.7 155.6 61.3 56.4 36.2 37.2 36.0 57.7 37.7 37.8 52.1 175.6 61.3 56.9 56.9 56.7 36.9 102.2 101.8 100.6 59.2 52.5 61.3 57.8 56.9 57.8 36.9 102.7 101.8 101.6 59.2 52.5 61.3 57.8 57.8 36.9 102.7 101.8 101.6 59.2 52.5 61.3 57.8 57.8 36.9 57.8 36.9 102.7 101.8 101.6 59.2 52.5 61.3 57.8 57.8 57.8 57.8 57.8 57.8 57.8 57.8	65.1 67.0 71.1 73.1 72.3 70.6 65.0 54.9 168.4 61.2 64.6 69.0 71.1 6.0 70.2 70.4 67.3 70.8 66.0 54.9 168.4 61.2 64.6 69.0 71.1 6.0 70.2 70.4 67.3 70.8 65.3 65.4 16.7 157.2 61.2 64.6 69.0 71.1 6.0 70.2 70.4 63.9 77 51.2 36.6 155.2 61.2 64.6 65.5 66.7 64.9 63.6 65.4 61.9 97.7 51.2 36.6 155.2 61.3 13.3 13.7 7.3 3.6 18.7 18.7 155.2 63.6 18.6 18.6 18.8 18.2 18.7 7.3 3.6 18.7 18.7 155.2 63.7 64.8 66.9 69.2 69.0 82.6 97.2 96.0 97.7 97.8 92.1 175.6 63.7 64.8 66.9 66.9 96.3 96.1 98.4 102.2 101.8 100.6 99.2 92.5 63.7 64.8 66.9 96.3 96.1 98.4 102.2 101.8 100.6 99.2 93.7 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 ACCUSTIC RANGE
61.2 64.6 69.0 71.1 68.5 70.2 70.8 69.9 65.4 59.8 46.7 157.2 50.4 55.8 67.9 65.5 66.8 66.4 61.8 67.7 157.2 50.6 55.8 67.9 67.9 57.1 57.9 55.8 48.5 36.9 15.6 155.6 41.3 45.7 52.2 53.0 49.6 47.0 46.8 42.8 33.6 18.7 155.7 22.6 30.3 35.4 38.2 37.6 32.1 31.1 22.5 9.7 157.2 3.6 8.5 11.3 13.7 7.3 5.8 2.7 157.9 15.6 157.7 154.7 63.7 64.6 85.9 69.2 89.6 92.6 97.2 96.0 97.7 97.5 92.5 175.6 69.1 90.5 94.0 96.3 96.7 96.9 102.7 101.6 101.6 99.2 92.7	67.7 63.6 63.6 65.7 64.8 65.8 65.4 65.7 51.2 56.6 155.2 6.6 65.6 65.4 61.8 67.7 51.2 56.6 155.2 6.6 65.7 64.8 65.8 65.7 51.2 56.6 155.7 15.2 156.6 155.7 156	63.7 64.6 68.9 68.2 68.7 70.8 68.9 65.4 58.8 48.7 71.2 6.4 68.6 70.2 70.8 68.9 65.4 58.8 48.7 71.2 6.4 68.8 66.7 64.9 68.9 68.9 65.4 58.9 15.6 155.6 72.7 71.2 6.6 6.8 6.4 61.8 67.9 15.2 6.9 7.1 15.2 6.9 7.2 88.0 87.7 87.7 89.2 82.8 74.8 74.9 74.9 74.9 74.9 74.9 74.9 74.9 74.0 74.9 74.9 74.9 74.0 74.9 74.9 74.9 74.9 74.9 74.9 74.9 74.9	61.2 64.6 66.0 0 77.1 66.6 7 70.2 70.2 66.9 65.4 65.4 56.4 65.4 56.7 157.2 57.6 57.9 57.6 57.9 57.6 57.9 57.9 57.9 57.9 57.9 57.9 57.9 57.9
57.4 59.6 65.5 66.7 64.9 63.6 66.4 61.8 57.7 51.2 36.6 185.2 41.3 65.6 57.9 57.1 57.9 35.8 16.4 15.7 165.2 22.6 30.3 35.4 38.2 37.6 32.1 31.1 22.5 9.7 155.2 165.2 3.6 8.5 11.3 13.7 7.3 5.8 16.4 156.4 41.4 4.6 66.9 69.2 69.0 82.6 97.2 96.0 97.7 97.5 92.1 175.6 83.7 84.6 66.9 96.2 99.0 82.6 97.2 96.0 97.7 97.5 92.1 175.6 83.1 90.9 94.0 96.3 96.7 96.9 102.7 101.6 101.6 99.2 93.7	### 65.5 ### 65.5 ### 65.7 ### 65.4 ### 65.4 ### 65.5 ###	83.7 84.8 85.8 65.7 44.9 63.8 66.4 81.8 87.7 51.2 36.6 185.2 41.3 45.7 52.2 53.0 49.6 47.0 46.6 42.8 36.5 16.7 155.7 22.6 30.3 35.4 13.7 7.3 36.6 42.8 33.6 16.7 155.2 3.6 8.5 11.3 13.7 7.3 3.6 2.5 13.1 1 22.5 9.7 155.2 83.7 84.8 86.9 89.2 89.8 87.2 98.0 97.7 87.5 92.1 175.6 83.7 84.8 86.9 89.2 89.8 87.2 98.0 97.7 87.5 92.8 175.6 83.7 84.8 86.9 86.3 86.1 88.4 102.2 101.8 100.6 89.2 82.8 83.7 84.8 86.9 86.3 86.1 88.4 102.2 101.8 100.6 89.2 83.7 DATE 02-21-78 TAPE NO. N294 1ALPHA 8859 TAMB 24.80 ACOUSTIC RANGE SAC. 80.0 87.2 80.0 80.0 10.7 FULL 0. M/SEC (0. FP8)	83.7 84.8 86.9 66.7 96.8 97.1 97.4 93.6 18.7 17.5 18.2 18.6 185.2 18.6 185.2 18.6 185.5 18.6 185.5 18.6 185.5 18.6 185.5 18.6 185.5 18.6 185.5 18.6 185.5 18.6 185.5 18.6 185.5 18.6 185.5 18.6 185.5 18.6 185.5 18.6 185.5 18.6 185.5 18.6 185.5 18.6 185.5
41.3 45.7 52.2 53.0 49.6 42.8 33.6 18.7 155.7 157.9 55.8 48.5 36.9 15.6 155.6 155.7 22.6 30.3 35.4 38.2 37.6 42.8 33.6 18.7 155.7 155.2 3.6 30.3 35.4 38.2 37.6 32.1 31.1 22.5 8.7 155.2 154.4 154.7 7.3 5.6 22.6 37.7 154.7 154.7 154.7 7.3 5.6 22.6 37.7 37.8 82.1 175.6 83.7 84.8 85.2 89.8 82.6 87.2 88.0 87.7 87.5 82.5 175.6 89.1 90.9 94.0 96.9 96.7 96.9 101.6 99.2 92.7 93.7	83.7 84.8 86.9 69.2 89.8 52.6 97.2 56.0 97.7 97.8 92.1 175.6 89.9 89.3 96.9 18.5 185.5 7 7.3 9.8 9.7 185.6 185.6 7 185.7 185.7 185.6 185.7 185.7 185.6 185.7 185.6 185.7 185.7 185.6 185.7 185.7 185.6 185.7	43.7 6.2. 65.8 65.9 65.9 67.1 67.9 65.0 48.5 36.9 15.6 155.6 155.7 74.4 1.3 44.5 36.2 1 31.1 42.5 3.7 1 15.2 1 15.	63.7 64.6 66.9 69.2 69.6 97.1 57.2 95.6 46.5 36.9 15.6 165.5 22.6 30.3 35.4 36.2 37.6 37.1 31.2 2.5 9.7 155.7 22.7 30.3 35.4 38.2 37.6 37.1 31.2 2.5 9.7 155.7 3.6 8.5 11.3 13.7 7.3 5.8 16.6 42.6 97.7 97.8 92.1 175.6 89.1 90.9 94.0 96.2 69.6 92.6 97.2 98.0 97.7 97.5 92.5 175.6 90.1 91.5 96.9 94.0 96.7 96.1 96.4 102.2 101.8 100.6 \$9.2 92.5 90.1 91.5 96.9 94.0 96.7 96.1 96.4 102.2 101.8 100.6 \$9.2 93.7 DATE 02-21-78 ACQUISTIC RANGE ACQUISTIC RA
41.3 45.7 52.2 53.0 49.6 47.0 46.6 42.6 33.6 16.7 155.7 155.7 155.2 22.6 30.3 35.4 36.2 37.6 32.1 31.1 22.5 9.7 155.2 15	41.3 45.7 52.2 53.0 49.6 47.0 46.6 42.6 93.6 18.7 155.7 155.7 22.6 30.3 35.4 13.2 27.6 32.1 31.1 22.5 9.7 16.7 155.7 155.2 154.4 154.4 164.4 154.7 156.6 15.0 15.0 15.0 156.7 156.4 156.4 156.7 15.0 15.0 15.0 15.0 15.0 15.0 15.0 15.0	41.3 45.7 52.2 53.0 49.6 47.0 46.6 42.6 93.6 18.7 155.7 155.7 155.2 53.0 49.6 47.0 46.6 42.6 93.6 18.7 155.7 155.2 156.2 1 31.1 22.5 9.7 15.6 156.4 156.4 156.4 156.4 156.4 156.7 156.4 156.4 156.7 156.6 156.7 156.6 156.7 156.6 156.7 156.6 156.7 156.6 156.7 166.6 156.7 166.6 156.7 166.6 156.7 166.6 156.7 166.6 156.7 166.6 166.7 166.6 166.7 166.6 166.7 166.6 166.7 166.6 166.7 166.6 166.7 166.6 166.7 166.6 166.7 166.6 166.7 166.6 166.7 166.6 166.7 166.6 166.7 16	41.3 45.7 52.2 53.0 49.6 47.0 46.8 42.6 33.6 18.7 155.7 22.6 30.3 35.4 38.2 37.6 32.1 31.1 22.5 9.7 155.2 3.6 8.5 11.3 13.7 7.3 5.6 22.1 31.1 1 22.5 9.7 154.7 41.3 45.7 52.2 55.0 49.6 32.1 31.1 1 22.5 9.7 154.7 41.3 45.7 84.8 86.9 89.2 89.8 82.6 57.2 88.0 87.7 87.8 92.1 175.6 48.7 84.8 86.9 89.2 89.8 82.6 97.2 88.0 87.7 87.8 92.1 175.6 48.7 84.8 86.9 89.2 89.8 82.6 97.2 101.8 101.6 89.2 83.7 41.3 45.7 84.8 86.9 89.7 86.9 102.7 101.8 101.6 89.2 83.7 42.1 56.1 86.9 102.7 101.8 101.6 89.2 83.7 43.1 56.1 87.2 80.8 102.7 101.8 101.6 89.2 83.7 44.1 47.1 47.1 47.1 47.1 47.1 47.1 47.1
22.6 30.3 35.4 38.2 37.6 32.1 31.1 22.5 9.7 155.2 154.4 154.7 3.6 0.5 11.3 13.7 7.3 3.8 154.7 154.7 154.7 154.7 156.6 156.8 15	22.6 30.3 35.4 38.2 37.6 32.1 31.1 22.5 9.7 155.2 154.7 155.2 154.7 155.2 154.7 155.2 154.7 155.2 154.7 155.2 154.7 155.2 154.7 155.2 155.	22.6 30.3 35.4 38.2 37.6 32.1 31.1 22.5 9.7 155.2 155.2 154.7 155.8 157.	22.6 30.3 35.4 36.2 37.6 32.1 31.1 22.5 9.7 155.2 3.6 8.5 11.3 13.7 7.3 5.6 9.7 155.2 154.7 154.7 154.7 154.7 155.2 154.7 155.2 157.2 157.3 157.
3.6 6.5 11.3 13.7 7.3 5.6 154.4 154.7 154.7 154.7 154.7 154.7 154.7 154.7 154.7 154.7 154.7 154.7 154.7 154.7 154.7 154.7 154.6 154.7 154.7 154.6 154.7 154.7 154.6 154.7 154.7 154.6 154.7 154.7 154.6 154.7 154.7 154.6 154.7 154.7 154.6 154.7 154.6 154.7 154.7 154.6 154.7 154.	3.6 6.5 11.3 13.7 7.3 5.6 154.4 154.4 154.7 156.6 154.7 156.6 156.4 156.4 156.6 156.7 156.6 156.7 156.6 156.7 156.6 156.3 56.3 56.3 56.3 56.3 56.3 56.3 56.3	83.7 84.6 86.9 89.2 89.0 82.6 97.2 98.0 87.7 97.5 92.1 175.6 89.1 90.9 94.0 96.3 96.7 98.4 102.2 101.8 100.6 \$9.2 82.5 92.5 93.7 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 TAME 24.80 ATION C41 AMECH CH AFRO. RDG. ADHOGS PANS 29.3600 RELHMT 39.00 ACOUSTIC RANGE STORY (1400.00 SQ IN) - FULL 0. M/SEC (0. FPS)	3.6 6.5 11.3 13.7 7.3 3.6 154.4 3.6 6.5 11.3 13.7 7.3 3.6 156.4 154.7 154.7 154.7 154.6 154.7 154.7 154.7 154.7 154.7 154.7 154.7 154.7 154.7 155.6 155.7 155.6 155.1 155.7 155.6 155.7 155.7 155.6 155.7 155.6 155.7 155.6 155.7 155.6 155.7 155.6 155.7 155.6 155.7 155.6 155.7 155.6 155.7 155.6 155.6 155.7 155.7
83.7 64.6 86.9 89.2 89.6 97.2 98.0 97.7 97.5 92.1 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 59.2 92.5 90.1 91.5 95.3 96.9 96.7 98.9 102.7 101.8 101.6 59.2 93.7	83.7 84.8 85.9 89.2 89.8 92.6 97.2 98.0 97.7 97.5 92.1 175.6 89.1 90.9 94.0 96.3 96.1 96.3 96.1 96.2 101.6 100.6 59.2 92.5 93.7 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 DATE 02-21-78 TAPE NO. N294 IALPHA 8559 TAPE 24.80 ATION C41 ANECH CH AERO. RDG. ADHOGE PARE 29.3600 RELHUM 39.00 ACCUSTIC RANGE AC	184.7 83.7 64.6 66.9 68.2 68.0 82.6 87.2 88.0 87.7 87.5 82.1 175.6 89.1 80.9 84.0 96.3 86.1 98.4 102.2 101.8 100.6 58.2 82.5 80.1 81.5 86.9 96.7 96.9 102.7 101.8 100.6 59.2 92.7 DATE 02-21-78 ACCUSTIC RANGE ACCUSTIC RANGE ACCUSTIC RANGE 7.31.5 M (2400.0 FT) SL 8032.2 80 CM (1400.00 SQ IN) - FULL 0. M/SEC (0.	83.7 84.8 86.9 89.2 89.8 92.6 97.2 88.0 97.7 97.5 92.1 175.6 89.1
83.7 84.8 86.9 89.2 89.8 92.6 97.2 98.0 97.7 97.5 92.1 175. 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 \$9.2 92.5 90.1 91.5 95.3 96.9 96.7 98.9 102.7 101.8 101.6 99.2 93.7	83.7 64.6 66.9 69.2 69.0 82.6 87.2 96.0 97.7 97.5 92.1 175.6 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 59.2 92.5 90.1 91.5 95.3 96.9 96.7 98.4 102.7 101.8 101.6 101.6 89.2 93.7 DATE 02-21-78 ACOUSTIC RANGE ACOUSTI	83.7 84.8 86.9 89.2 89.8 92.6 97.2 98.0 97.7 97.5 92.1 175.6 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 59.2 92.5 90.1 91.5 95.3 96.9 96.7 98.9 102.7 101.8 101.6 99.2 93.7 DATE 02-21-78 TAPE ND N294 IALPHA 8859 TAMB 24.80 ACOUSTIC RANGE ACOUSTIC RANGE ACOUSTIC RANGE S1ZE ACOUSTIC RANGE S1ZE ACOUSTIC RANGE S1ZE ACOUSTIC RANGE S1ZE ACOUSTIC RANGE S1ZE ACOUSTIC RANGE S1ZE ACOUSTIC RANGE BY SEC. 175.6 FREGUENCY SHIFT -9 FREE-JET SPEED FREE-JET SPEED FREE-JET SPEED FREE-JET SPEED ACOUSTIC RANGE BY SEC. 10.0 0. M/SEC (0.	83.7 64.6 66.9 86.2 85.6 97.2 96.0 97.7 97.5 92.1 175.6 89.1 90.9 84.0 96.3 96.1 96.4 102.2 101.8 100.6 \$92.2 92.5 90.1 91.5 95.3 96.9 96.7 98.9 102.7 101.8 101.6 89.2 92.5 DATE 02-21-70 TAPE NO. N294 IALPHA 8859 TAMB 24.80 ATION C41 ANECH CH AERO. RD6. ADHO96 PAPB 29.3600 RELHUM 39.00 731.5 M (2400.0 FT) SL 8032.2 SG CM (1400.00 SG IN) - FULL 0. M/SEC (0.
83.7 84.8 86.9 89.2 89.8 92.6 97.2 98.0 97.7 97.5 92.1 175. 89.1 90.9 84.0 96.3 96.1 98.4 102.2 101.8 100.6 59.2 92.5 90.1 91.5 95.3 96.9 96.7 98.9 102.7 101.8 101.6 99.2 93.7	#3.7 64.6 66.9 68.2 69.6 97.2 98.0 97.7 97.5 92.1 175.6 #8.1 90.9 84.0 96.2 69.6 97.2 101.8 100.6 59.2 92.5 #8.1 90.9 84.0 96.3 96.1 98.4 102.2 101.8 100.6 59.2 92.5 #8.1 90.9 84.0 96.3 96.1 98.4 102.2 101.8 100.6 59.2 92.5 #8.2 102.2 1.7 101.8 102.7 101.8 101.6 101.6 59.2 93.7 ### DATE 02-21-76 ### TAPE NO. NZ94 IALPHA 8859 TAMB 24.80 ### ACOUSTIC RANGE #	83.7 84.8 86.9 88.2 88.8 92.6 97.2 98.0 97.7 97.5 92.1 175.6 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 59.2 82.5 90.1 91.5 95.3 96.9 96.7 98.9 102.7 101.8 101.6 59.2 92.5 DIAMETER RATIG 7.640 FREQUENCY SHIFT -9 DATE 02-21-78 TAPE NO. N294 IALPHA 8859 TAMB 24.80 ATION C41 ANECH CH AERG. RD9. ADHO96 PAMB 29.3600 RELHUM 39.00 ACCUSTIC RANGE ACCUSTIC RANGE S1ZE ACCUSTIC RANGE S1ZE ACCUSTIC RANGE O. M/SEC (0.	83.7 64.6 86.9 69.2 89.6 92.6 97.2 98.0 97.7 97.5 92.1 175.6 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 \$9.2 92.5 90.1 91.5 95.3 96.9 96.7 56.9 102.7 101.8 101.6 99.2 93.7 DIAMETER RATIO 7,640 FREQUENCY SHIFT -9 DATE 02-21-78 TAPE ND. N294 IALPHA 8859 TAMB 24.80 ATION C41 ANECH CH AERO. RDG. ADHO96 PAMB 26.3600 RELHMH 39.00 ACCUSTIC RANGE S12E 731.5 H (2400.0 FT) SL \$032.2 SG CH (1400.00 SG IN) - FULL 0. H/SEC (0.
83.7 64.6 66.9 69.2 69.6 92.6 97.2 98.0 97.7 97.5 92.1 175. 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 59.2 92.5 90.1 91.5 95.3 96.9 96.7 98.9 102.7 101.8 101.6 99.2 93.7	#53.7 64.6 66.9 69.2 69.6 92.6 97.2 98.0 97.7 97.5 92.1 175.6 #99.1 90.9 94.0 96.3 96.1 98.4 102.2 101.6 100.6 \$9.2 92.5 #90.1 91.5 96.3 96.1 98.4 102.2 101.6 101.6 69.2 92.5 #90.1 91.5 96.3 96.7 98.9 102.7 101.6 101.6 69.2 92.7 ### DATE 02-21-78 ### DATE 02-21-78 ACCUSTIC RANGE ACCUSTIC RANGE ACCUSTIC RANGE ACCUSTIC RANGE ### S12E ACCUSTIC RANGE ### S12E ACCUSTIC RANGE ### S12E ACCUSTIC RANGE ### S12E ACCUSTIC RANGE ### S12E ACCUSTIC RANGE ### S12E ACCUSTIC RANGE ### S12E ACCUSTIC RANGE ### S12E ACCUSTIC RANGE ### S12E ACCUSTIC RANGE ### S032.2 SG CH (1400.00 SG IN) - FULL 0. H/SEC (0.	83.7 84.8 86.9 89.2 89.8 92.6 97.2 98.0 97.7 97.5 92.1 175.6 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 \$9.2 92.5 80.1 91.5 86.3 96.7 98.9 102.7 101.8 101.6 59.2 92.5 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 DATE 02-21-78 TAPE NO. N294 IALPHA 8859 TAMB 24.80 ATION C41 ANECH CH AERO. RD9. ADHO96 PAMB 29.3600 RELHUM 39.00 ACOUSTIC RANGE S12E 731.5 H (2400.0 FT) SL \$032.2 SQ CH (1400.00 SQ IN) - FULL 0. H/SEC (0.	83.7 84.6 86.9 89.2 89.8 92.6 97.2 98.0 97.7 97.5 92.1 175.6 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 99.2 92.5 80.1 91.5 96.3 96.9 96.7 96.9 102.7 101.8 101.6 99.2 92.5 DATE 02-21-79 TAPE ND. N294 IALPHA 8859 TAMB 24.80 ATION C41 ANECH CH AERO. RD9. ADHO96 PAMB 29.3600 RELHUM 39.00 ACOUSTIC RANGE 731.5 H (2400.0 FT) SL 8032.2 SG CH (1400.00 SG IN) - FULL 0. M/SEC (0.
83.7 64.6 66.9 69.2 69.6 92.6 97.2 96.0 97.7 97.5 92.1 175. 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 59.2 92.5 90.1 91.5 95.3 96.9 96.7 98.9 102.7 101.8 101.6 99.2 93.7	83.7 84.8 86.9 89.2 89.8 92.6 97.2 98.0 97.7 87.5 92.1 175.6 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 59.2 92.5 90.1 91.5 96.3 96.9 96.7 102.2 101.8 100.6 59.2 92.5 DIAMETER RATID 7.640 FREQUENCY SHIFT -9 DATE 02-21-78 TAPE ND. N294 IALPHA 8559 TAMB 24.00 ATION C41 ANECH CH AERO. RD9. ADH096 PAMB 29.3600 RELHUH 39.00 FREE-JET SPEED 731.5 H (2400.0 FT) SL 8032.2 SQ CH (1400.00 SQ IN) - FULL 0. M/SEC (0.	83.7 64.6 86.9 69.2 89.6 92.6 97.2 96.0 97.7 97.6 92.1 175.6 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 59.2 92.5 90.1 91.5 96.3 96.3 96.7 98.5 102.7 101.8 101.6 59.2 92.5 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 ACCUSTIC RANGE ACCUSTIC RANGE ACCUSTIC RANGE SIZE SIZE SIZE SIZE FILL 0. H/SEC (0.	83.7 84.8 66.9 69.2 89.8 92.6 97.2 98.0 97.7 97.5 92.1 175.6 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 59.2 92.5 90.1 91.5 96.9 96.3 96.7 98.9 102.7 101.6 101.6 59.2 93.7 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 DATE 02-21-70 TAPE NO. N294 IALPHA 8859 TAMB 24.80 ATION C41 ANECH CH AERO. RD0. ADHO96 PAMB 29.3600 RELHUM 39.00 ACCOUSTIC RANGE 731.5 M (2400.0 FT) SL 8032.2 SG CM (1400.00 SG IN) - FULL 0. M/SEC (0.
83.7 64.6 66.9 69.2 69.6 92.6 97.2 98.0 97.7 97.5 92.1 175. 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 59.2 92.5 90.1 91.5 95.3 96.9 96.7 98.9 102.7 101.8 101.6 59.2 93.7	83.7 84.8 86.9 69.2 89.8 92.6 97.2 98.0 97.7 97.5 92.1 175.6 89.1 80.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 59.2 92.6 90.1 91.6 96.3 96.7 96.9 102.7 101.8 101.6 99.2 92.5 DATE 02-21-76 TAPE ND. N294 IALPHA 8859 TAMB 24.80 ATION C41 AMECH CH AERO. RD0. ADHOGE PAMB 29.3600 RELHUM 39.00 ACOUSTIC RANGE S12.2 SG CH (1400.00 SG IN) - FULL 0. M/SEC (0.	83.7 84.6 86.9 69.2 89.6 92.2 98.0 97.7 97.5 92.1 175.6 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 59.2 92.5 80.1 81.5 95.3 96.9 96.7 96.9 102.7 101.8 101.6 99.2 93.7 DATE 02-21-78 TAPE NC. N294 IALPHA 8859 TAMB 24.80 ATION C41 ANECH CH AERO. RD9. ADHO96 PAMB 29.3600 RELHUM 39.00 ACOUSTIC RANGE 731.5 H (2400.0 FT) SL 8032.2 SG CM (1400.00 SG IN) - FULL 0. M/SEC (0.	83.7 84.8 86.9 69.2 89.6 92.6 97.2 98.0 97.7 97.8 92.1 175.6 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 \$9.2 92.5 90.1 91.5 95.3 96.9 96.7 98.9 102.7 101.8 101.6 69.2 93.7 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 DATE 02-21-78 TAPE ND. N294 IALPHA 8859 TAMB 24.80 ATION C41 ANECH CH AERG. RDG. ADHO96 PAMS 29.3600 RELHUM 38.00 ACCOUSTIC RANGE 731.5 M (2400.0 FT) SL \$032.2 SQ CM (1400.00 SQ IN) - FULL 0. M/SEC (0.
83.7 64.6 66.9 69.2 69.6 92.6 97.2 98.0 97.7 97.5 92.1 175. 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 59.2 92.5 90.1 91.5 95.3 96.9 96.7 98.9 102.7 101.8 101.6 59.2 93.7	83.7 84.8 85.2 85.8 92.6 97.2 98.0 97.7 97.5 92.1 175.6 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 59.2 92.5 80.1 91.5 95.3 96.9 96.7 96.9 102.7 101.6 101.6 59.2 92.5 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 DATE 02-21-78 TAPE ND. N294 IALPHA 8859 TAMB 24.80 ATION C41 ANECH CH AERO. RD9. ADH096 PAMB 29.3600 RELHUM 39.00 ACCOUSTIC RANGE 731.5 H (2400.0 FT) SL \$032.2 50 CM (1400.00 50 IN) - FULL 0. H/SEC (0.	83.7 84.8 86.9 89.2 89.8 92.6 97.2 96.0 97.7 97.5 92.1 175.6 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 59.2 92.5 90.1 91.5 96.9 96.7 98.9 102.7 101.8 101.6 59.2 93.7 DATE 02-21-76 TAPE NO. N294 IALPHA 8559 TAMB 24.80 ATION C41 ANECH CH AERG. RDG. ADH096 PAMS 29.3600 RELHUM 39.00 ACCUSTIC RANGE ACCUSTIC	83.7 84.8 86.9 89.2 89.8 92.6 97.2 98.0 97.7 97.8 92.1 175.6 89.1 90.9 84.0 96.3 86.1 98.4 102.2 101.8 100.6 89.2 82.5 90.1 91.5 95.3 96.9 96.7 98.9 102.7 101.8 100.6 89.2 92.5 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 DATE 02-21-78 TAPE ND. N294 IALPHA 8859 TAMB 24.80 ACCUSTIC RANGE ACCUSTIC RANGE ACCUSTIC RANGE 731.5 H (2400.0 FT) SL 8032.2 SG CM (1400.00 SG IN) - FULL 0. M/SEC (0.
83.7 84.6 86.9 89.2 89.6 92.6 97.2 98.0 97.7 97.6 92.1 175. 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 59.2 92.5 90.1 91.5 95.3 96.9 96.7 98.9 102.7 101.8 101.6 59.2 93.7	83.7 84.8 86.9 89.2 89.8 92.6 97.2 98.0 97.7 97.5 92.1 175.6 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 \$9.2 92.5 90.1 91.5 96.3 96.9 96.7 98.9 102.7 101.8 101.6 69.2 92.5 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 DATE 02-21-78 TAPE ND. N294 IALPHA 8859 TAMB 24.80 ATION C41 ANECH CH AERG. RDG. ADHOG6 PAMB 29.3600 RELHUM 39.00 ACDUSTIC RANGE ACDUSTIC RANGE ACDUSTIC RANGE ACDUSTIC RANGE ACTURE 1 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -	83.7 84.8 86.9 89.2 89.6 97.2 98.0 97.7 97.5 92.1 175.6 99.1 90.3 94.0 96.3 96.1 98.4 102.2 101.8 100.6 59.2 92.5 90.1 91.5 95.3 96.9 96.7 98.9 102.7 101.8 101.6 69.2 92.5 DATE 02-21-78 TAPE ND. N294 IALPHA SB59 TAMB 24.80 ATION C41 ANECH CH AERO. RD9. ADHO96 PAMB 29.3600 RELHUM 39.00 ACOUSTIC RANGE ACOUSTIC RANGE S1ZE ACOUSTIC RANGE S1ZE ACOUSTIC RANGE S1ZE ACOUSTIC RANGE S1ZE ACOUSTIC RANGE ATION - FULL 0. M/SEC (0.	83.7 64.6 66.9 69.2 69.6 92.6 97.2 98.0 97.7 97.5 92.1 175.6 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 58.2 92.5 90.1 91.5 95.3 96.9 96.7 98.9 102.7 101.8 100.6 59.2 92.5 DATE 02-21-70 DATE 02-21-70 TAMB 24.00 TAMB 24.00 ACCUSTIC RANGE ACCUSTIC RANGE ACCUSTIC RANGE ACCUSTIC RANGE ACCUSTIC RANGE S12E ACCUSTIC RANGE S12E ACCUSTIC RANGE ACCUSTIC R
83.7 84.6 86.9 89.2 89.6 92.6 97.2 98.0 97.7 97.6 92.1 175. 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 99.2 92.5 90.1 91.5 95.3 96.9 96.7 98.9 102.7 101.8 101.6 59.2 93.7	83.7 84.6 86.9 89.2 89.8 92.6 97.2 98.0 97.7 97.5 92.1 175.6 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 59.2 92.5 90.1 91.5 95.3 96.9 96.7 80.4 102.2 101.8 101.6 99.2 92.5 DATE 02-21-78 ACCUSTIC RANGE ACCUSTIC RANGE ACCUSTIC RANGE ACCUSTIC RANGE ACCUSTIC RANGE S1ZE S1ZE ACCUSTIC RANGE S1ZE ACCUSTIC RANGE S1ZE ACCUSTIC RANGE ACCUS	83.7 64.6 66.9 69.2 69.8 92.6 97.2 96.0 97.7 97.5 92.1 175.6 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 59.2 92.5 90.1 91.5 95.3 96.9 96.7 96.9 102.7 101.8 100.6 59.2 93.7 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 DATE 02-21-78 TAPE ND. N294 IALPHA SB59 TAMB 24.80 ATION C41 ANECH CH AERO. RD0. ADHO96 PARB 29.3600 RELHUM 39.00 ACOUSTIC RANGE	83.7 84.8 86.9 89.2 89.8 82.6 97.2 98.0 97.7 97.5 92.1 175.6 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 59.2 92.5 90.1 91.6 96.3 96.7 96.9 102.7 101.8 101.6 99.2 92.5 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 DATE 02-21-78 TAPE ND. N294 IALPHA 8859 TAMB 24.80 ATION C41 ANECH CH AERG. RDG. ADHO96 PAMB 29.3600 RELHUM 38.00 ACCUSTIC RANGE 731.5 M (2400.0 FT) SL 8032.2 SQ CM (1400.00 SQ IN) - FULL 0. M/SEC (0.
83.7 84.8 86.9 89.2 89.8 92.6 97.2 98.0 97.7 97.5 92.1 175. 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 59.2 92.5 90.1 91.5 95.3 96.9 96.7 98.8 102.7 101.8 101.6 99.2 93.7	83.7 84.6 86.9 89.2 89.6 92.6 97.2 98.0 97.7 97.5 92.1 175.6 89.1 90.9 84.0 96.3 96.1 96.4 102.2 101.8 100.6 59.2 92.5 90.1 81.5 95.3 96.9 96.7 96.9 102.7 101.8 101.6 99.2 93.7 DATE 02-21-78 ACCUSTIC RANGE ACCUSTIC RANGE ACCUSTIC RANGE ACCUSTIC RANGE S12E S12E S12E ACCUSTIC RANGE ACCUSTIC RANGE ACCUSTIC RANGE S12E ACCUSTIC RANGE ACCUS	89.7 84.6 86.9 89.2 89.6 92.6 97.2 98.0 97.7 97.5 92.1 175.6 89.1 90.9 84.0 96.3 86.1 86.4 102.2 101.6 100.6 59.2 92.5 90.1 61.5 95.3 96.9 96.7 96.9 102.7 101.6 101.6 59.2 93.7 DATE 02-21-78 ACCOUSTIC RANGE	83.7 84.6 86.9 89.2 89.6 92.6 97.2 98.0 97.7 97.6 92.1 175.6 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 \$9.2 92.5 90.1 81.5 96.3 96.7 98.9 102.7 101.8 101.6 69.2 93.7 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 DATE 02-21-78 TAPE ND. N294 IALPHA 8859 TAMB 24.80 ATION C41 ANECH CH AERO. RD9. ADHO96 PAMB 29.3600 RELHUM 39.00 ACQUISTIC RANGE 731.5 M (2400.0 FT) SL 8032.2 SQ CM (1400.00 SQ IN) - FULL 0. M/SEC (0.
83.7 84.6 86.9 89.2 89.6 92.6 97.2 98.0 97.7 97.0 92.1 175. 89.1 90.9 94.0 96.3 96.1 98.4 102.2 101.8 100.6 99.2 92.5 90.1 91.5 95.3 96.9 96.7 98.9 102.7 101.8 101.6 99.2 93.7	83.7 64.6 66.9 69.2 69.6 97.2 98.0 97.7 97.5 92.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6	83.7 64.6 66.9 69.2 69.6 97.2 98.0 97.7 97.5 92.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 69.1 170.6 170.1 170.6	83.7 64.6 66.9 69.2 69.6 97.2 98.0 97.7 97.5 92.1 175.6 69.1 175.6 69.1 175.6 99.1 175.6
90.1 91.5 95.3 96.9 96.7 98.9 102.7 101.8 101.6 99.2	DATE 02-21-78 ACGUSTIC RANGE ACGUSTIC RANGE ACGUSTIC RANGE DATE 02-21-78 TAPE ND. N294 IALPHA 8859 TAPE 24.80 SIZE SIZE FREE-JET SPEED FREE-JET SPEED	DATE 02-21-78 ACQUISTIC RANGE ACCOUNTING ACQUISTIC RANGE ACCOUNTING ACQUISTIC RANGE ACCOUNTING ACQUISTIC RANGE ACCOUNTING ACQUISTIC RANGE ACCOUNTING ACQUISTIC RANGE ACCOUNTING ACQUISTIC RANGE ACCOUNTING	DATE 02-21-76 ACCUSTIC RANGE ACCUSTIC RANGE DATE 02-21-76 ACCUSTIC RANGE
	DATE 02-21-78 TAPE ND. N294 IALPHA 8859 TAPE 24.80 ATION C41 ANECH CH AERG. RDG. ADHO96 PAMB 29.3600 RELHAM 39.00 ACCUSTIC RANGE S032.2 SQ CM (1400.00 SQ IN) - FULL 0. M/SEC (0.	DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 DATE 02-21-78 TAPE ND. N294 IALPHA 8859 TAPE 24.60 ATION C41 ANECH CH AERG. RDG. ADHO96 PAMB 29.3600 RELHUM 39.00 ACCOUSTIC RANGE 731.5 M (2400.0 FT) SL \$032.2 SG CM (1400.00 SG IN) - FULL 0. M/SEC (0.	DATE 02-21-76 TAPE ND. N294 IALPHA 8859 TAMB 24.80 ATION C41 ANECH CH AERO. RDG. ADHO96 PAMB 29.3600 RELHUM 39.00 ACOUSTIC RANGE SIZE 731.5 M (2400.0 FT) SL \$032.2 SQ CM (1400.00 SQ IN) - FULL 0. M/SEC (0.
	DATE 02-21-78 TAPE ND. N294 IALPHA 8859 TAPE 24.80 ATION C41 ANECH CH AERG. RDG. ADHO96 PAMB 29.3600 RELHAM 39.00 ACCUSTIC RANGE S032.2 SQ CM (1400.00 SQ IN) - FULL 0. M/SEC (0.	DATE 02-21-78 TAPE ND. N294 IALPHA 8859 TAMB 24.80 ATION C41 ANECH CH AERG. RDG. ADHOS6 PAPB 29.3600 RELHUM 39.00 ACCOUSTIC RANGE 731.5 H (2400.0 FT) SL \$032.2 SG CM (1400.00 SG IN) - FULL 0. M/SEC (0.	DATE 02-21-78 TAPE ND. N294 IALPHA 8859 TAMB 24.80 ATION C41 ANECH CH AERO. RDG. ADHO96 PAMB 29.3600 RELHUM 39.00 ACOUSTIC RANGE S1ZE S1ZE FREE-JET SPEED 731.5 M (2400.0 FT) SL 8032.2 SQ CM (1400.00 SQ IN) - FULL 0. M/SEC (0.
	ATION C41 ANECH CH AERG. RDG. ADHO96 PARS 29.3600 RELHAM 39.00 ACCOUSTIC RANGE 731.5 M (2400.0 FT) SL \$032.2 SQ CM (1400.00 SQ IN) - FULL 0. M/SEC (0.	ATION C41 ANECH CH AERG. RDG. ADHOS6 FAMB 29.3600 RELHAM 39.00 ACCOUSTIC RANGE 731.5 M (2400.0 FT) SL \$032.2 SG CM (1400.00 SG IN) - FULL 0. M/SEC (0.	ATION C41 ANECH CH AERG. RDG. ADHOS6 PAPS 29.3600 RELHUM 39.00 ACGUSTIC RANGE \$12E 731.5 M (2400.0 FT) SL \$032.2 SQ CM (1400.00 SQ IN) - FULL 0. H/SEC (0.
76 4171 0340 174 171 7071 47 2072	ACDUSTIC RANGE 512E 731.5 M (2400.0 FT) SL 8032.2 SQ CM (1400.00 SQ IN) - FULL 0. M/SEC (0.	ACDUSTIC RANGE 512E 731.5 M (2400.0 FT) SL \$032.2 SQ CM (1400.00 SQ IN) - FULL 0. M/SEC (0.	ACDUSTIC RANGE 512E 731.5 M (2400.0 FT) SL 8032.2 SQ CM (1400.00 SQ IN) - FULL 0. M/SEC (0.
DATE 02-21-78 TAPE NO. N294 IALPHA 8859 TAMB 24 ATION C41 ANECH CH AERO. RD9. ADHO96 PAMB 29.3600 RELHUM 39			
DATE 02-21-78 TAPE NO. N294 IALPHA 8859 TAMB 24.80 ATION C41 ANECH CH AERG. RDG. ADHO96 PAMB 29.3600 RELHAM 39.00 ACCUSTIC RANGE ACCUSTIC RANGE 51ZE FILL 6. H/SEC (0.			

ŧ		
Ċ	į)
•		
c		į
į		
¢	ļ	Ì
ļ	•	١
i		
٠		
ì	١	
Ċ		į

								R! F	(3) P(NA OC	AL)R	- 1	2U:	GE AL		S Y													SPEED 306.0 FPS)
														•														29.64 42.70	FREE-JET .65 M/SEC (
						.6 138.6	.0 139	.0 140.7	4 140	.9 140.	0	140	0 4	6.5	. 1 140	.5 139	5 139	.7 138	9.	75. 0	1 136	. 2 1		.0 135	2 135.0	-	!1	RELHUM	MODEL 117
X75040 X01400	s	150. 160				2	6	_	9	00			0 6	9	6	ن	93.1 86	7	0 1	0 10		84.1 82	- 4	4	63.1 60 64.3 52	9		SB59 29.5600	- (XI 08
FJ-400-FMGDL FJB400-FMGDL	r, degree	. 140.				_	60	0 000	90	105	0	200	2 0	<u>=</u>	9	28	8.00.0	8	6))	88	98	7 0		5 65.4	0 116 0		I ALPHA PAMB	S1 ZE 23.99 S
	FROM INLET,	120. 130				92.9 97	_	96.1 103	3 4	ď	02.8 105	۵,	7 K	. L		04 I	02.3 102.3	4	e (2 P	. e	10 (,		74.4 67.864.7 59.	14.1.1		N299 ADH998	SOCH
- MODEL BACKGROUND	ASURED	. 110.				1			1						- }		97.6					4 84.6	-		4 68.3 3 59.8	3 108.7 1		PE NO.	164.7
ICATION -	ANGLES ME	90. 100				.9 65.	.4 86.	. a 96.	2 89	.6 91	4 92.	92.		2 24.	. 8 94.	8	9 6	7 93.	.5 92.		.9 87.	3 84.		2 74.	68.9 70. 60.0 59.	200		TAP AERG.	RANGE 10.0 FT) ARC
IDENTIF		90.				6.1		œ ĸ	2	0	9	٠,١		. a.	9	ص <u>ا</u>	, G	ဖ	9 !	۰۰	0		ήL	, IO	66.7 6 57.1 6			-27-78 1 ANECH CH	ACCUSTIC RANG
		60. 70.				. 8 31.	.3 82.	1 G	5 84	.6 86.	.5 86.	6 87.	200	.0 87.	.4 88.	88	. 4. 88. 1	.0 87.	2 87.	4 CO	7 84.	.3 81.	0 C	1 72	3 58.4	9		02-2 C41-2	ACG
		50. 6					.	o •	90	9	۲.	B) (•	9	ıı I	o	-	io d	N C	10	ن د	?	, ca	59.9 62 52.5 55	Œ		TEST DATE LOCATION	T POINT 7504
		40.	750 50	ස දිරි දිරි	200	77.	20	0.0	8	94	9.	94		4	93		6300 64.7	92	9.0	5 6	77.		9 6	. 99	000 60.2	9			MODEL TEST 7500 71

													00	RIC	SIN PO	A	L I	P# Ql	\G JA	LI'	IS IS	7				•							
)											•								ET SPEED (306,0 FPS)	
																															29. 64 42. 70	FREE-JET	
EL.8				Ę	56.8	55.5	- 6 26.9	56.8	57.1	57.7	57.8	58.4	56.3	58.1	58.1	58.3	57.6 Re p	56.8	55.5	56,5	7 C	53.8						171.1			TAMB	117	
RE LEVELS	ಪ	•		160.	Г	e (,	4	٠	- 0	66.7 1	. m	9	0, 0		8	<u>,</u> ,	7 40	9	_		-						79.0	83.2			FULL	
AND PRESSURE). O FT	_		150.	L	~ 4	: N			. a	71.0	T 60	G G	4 (D ~	a	60 C	.	. 00	4.3								96.0		9	SB59 29.5600	- (N:	
SOUND	2400	X75041	DEGREES	140.	1	10) sp	0	<u>-</u> !	, 10	77.7	0	a	80 (7	.	1 4	N	9	9.							20.20	<u>-</u>	SHIFT	I ALPHA S	7E 00 SG	
ATED 8	¥, S	GD L.	ł	130.	0	ю (3 0	9	<u>ن</u>	o –	4 (2 0	-	~	9 10	0	6) (f	0	0	0							4.6	1.	FREQUENCY	A.	\$12E (1400.00	
EXTRAPOLATED	370. O		OM INLET,	120. 1	İ			1			83.5					- 1						,						10 -	-	FRE	N299 ADH998	SQ CM	
AND EX	E E	- FJ~	EASURED FROM	110. 1	9	٠ و	<u>-</u>	-	ن د	٠ 4	a c	» -	_	(N) 1		-	0 H	9 0	•	8	•							- 6	18	.640		9032.2	
2	CEN	ATION	MEASUR	00.	-	۱ ج	o a	a	<u>ه</u> و	00	77 0.1	<u>م</u> د	•	4.	. u	6	æ	• -	-	0 1	<u>~</u> c	,		•				800	0	^	APE NO	Ğ	
HT TRANSFORMED, SCAL	5 P	DENTIFICA	ANGLES	90. 10		۲.	, 0	0	4.	- ^:	.9 76	٠ م و م	0	10	. 6.	9	<u>ن</u> و	a	4	ا	м -	-						. v	4	R RATI	TAI	E FT) SL	
SFORME	F	106	<		ŀ			ł			7. 74					- [8 8 8 8		I AMETER	H CH	1C RANGE 2430.0 FT	
TRAN	. o DE			•	6			1			8 73					1	N U	9 0	N		ם כ				and the susual of			9 62	5	٥	-27-78 ANECH	ACCUSTIC 5 M (24	
FL 10HT	ñ			20	_	.	9 N		a (.	. 17.	. <i>a</i>	. 0	72	D 03	0	9 9	900	3 57	1 49		,						7 63.	a		2.2	AC 731.5	
				9	68.	67.		71.	<u>.</u>	, v.	7 71.	7	72.	7 5	ָב קי	71.	67.		56.	46.	<u>,</u>	,						63.	92		TEST DATE LOCATION	+	
				9	.99	67.	`.	69	6	- 6	8	200	69	66	įģ	69	92		5	36.	N N							6 6	00		TE:	TEST POINT 7504	
				6	8	99	9 6	69	99	9 6	89	9 9	67.	67.	6 6 6 0	99			1	30	_							80.6					
6				FREG	20	8	2 6	125	160	520	315	200	630	008	1250	1600	2000	3150	4000	3000	0000	10000	12500	20000 20000	25000	 -	3.1	 CASPL				MODEL 7500	

											· ·	9	0	م ر	0.	- 10	, 0	A	E	Υ	D			9.	Ø 1	à e	9:	a		Α,	PB 23.00		FREE-JET SPEED O. M/SEC (O. FPS)
			2						-	,	9 - 133	-	134		45.	133	133			131			8 8	129	132	3 6	125	7 124.	- 0	.1 146.	TAMB REI HIM		MODEL
X75050		0. 160								8 8	9 G				- 1			- 1			- 1			- 1				.4 51.7		07.6 106.	SB59		£ .
_	EES	150									7 27.7	1	1 95.8		-			Í			ı			- 1				6 52.4	4	.5 107			8
R-FMOD	, DEGREE	140							98	8) O	ŧ			- 1			- 1	a. e.		ı			- 1		- 4	1	54		107	IALPHA		\$12E 23.99
FJ-ZER	INLET	130								8	9 6	96	87	96	9 6	3 6	G	8	CH C	9 2	5	8	8	94	79	26	65			2 107.4	9		3
MODEL BACKORGUND	FROM	120							•		9 60 60 60 60 60 60 60 60 60 60 60 60 60				Ì				20 0 20 0										D	9 107.	N294		54.7 80
	MEASURED	110.								•	0 «	9	•	O (30	R CI	(7)	9	O) O		G	6 0 0	9 60		6 0 F	• [. 9	56.5	D	102.	Z		Ž
- NOIL	ANGLES ME	100.				٠			93	63		98	87.	88	9	98	60	80	00 00	8	. 88		. e	. 18	82.	- 6	65.	59.9	9	100.9	TAPE		ARC
IFICATI	ANG	90.									6 4 6 6 6 6 6 6 6	.i .			-1			•			-1			1				2.7		100.2	3		RANGE
IDENI		.00							78.7	-	25.7	86.8	95.1	84.0	86.0	85.6	86.9	96.2	85 G 85 G	85.4	85.6	94.0	83.7	82.6	84.7	74.0	65.2	58.0	2	98.5	-76 NECH		
		70.		. :					١.			ء اہ			-1			- 1			- 1	•		· •I		•		57.6		97.2	, (N	_	ACGUST!
		60.							۱.			.l .			•			-1	•		-1			1		•		55.3		96.8	TEST DATE		_
		20.								-	-	.l .		-	٠.			-1			1			:				53.4		96.7	TEST		T POINT
		40.							0	Œ (O) K	9	-	oi e	0	, 0	•	6		. 6	~	.	» «	9	4 (9 6	9.0	48.7	.	92.3			TEST
			FREG	28	200	00	125	200				1			- 1			ı			ı			- 1	ł			-	•	GASPL			MODEL

FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC

													OF	RIG		IAL OR	F Q	PAG		IS TY					•				6	
												-								•								23.00 45.00	FREE-JET SPEED M/SEC (0, FPS)	
RE LEVELS			160. PM	69.4 151.4	_	64.7 151.6	2	63.6 151.7 62.1 151.2	60.9 151.3 50.0 150.8		53.7 149.5	_	148	6 148	0	1.9 151.2	146	143.3	141.6						76.5 163.7	75.4		TAMB	FULL 0.	
SOUND PRESSURE	X75051	DEGREES		75.6 74.6 75.9 73.7	72.4	70.6	70.4	69.4 68.1	70.7 67.4	63.0	61.7	58.9	57.7	56.1 51.0	₽.		Į								64.3 61.4	5	CY SHIFT -9	IALPHA \$859 PAMB 29.3720	SIZE 100,00 SQ IN) -	
KTRAPOLATEC STD. DAY,	FJ-ZER-FM3DL	INLET,		ო -	- 0	4 0	5.	ဝ ဖ	75.8 74.3	90	.6 70 50 A	6 67	2.	2 0 0	4 58	57.5 51.4 50.7 45.9	1 31	.4 10.							0.99	1	FREQUENCY	N294 1/	SQ CM (14	
SCALED, PERCEN	DENTIFICATION - F.	ANGLES MEASURED FROM	ċ	1 .		-1 4	9	N -	70.7 72.4	•	90	-	5 68.	5 00	3 61	0 1	0 38	40	,						61.5 63.2	6 68.7	RATIO 7.640	TAPE NG. I	SL 9 032.2	
TRANSFORMED,	IDENTI	ANGL	.00	0 66. 1 67	.7 69.	69 69	70.	- 70. 68.	68.0 69.5	8	68.	67.	5 67.	96	9 63.	63.	5 44.	4			J				79.1 80.9	89	DIAMETER R	-78 NECH CH	ACGUSTIC RANGE	
FLIGHT TI			6 0. 70.	62.	. N	8 65	9 66.	8 66.	66.4 66.9	8	64.	89	62.	200	8 57.	98	37.	<u>.</u>			E				76.1 77.2	210		DATE 02-2 ATION C41	ACOU 731.5 M	
			40. 50.	60.	62.	88	66.	4 - 60.	58.6 65.9	92.	60	90	7 58.	533	1 51.	62.	6 28	•			-		•		7.			TEST	TEST POINT 7505	
	47 A		FREG	20 6	3 5	100	160	70 70 70 70 70 70 70 70 70 70 70 70 70 7	316		830	1000	1250	1600	2500	3150	2000	9000 9000 9000	10000	12500 16000	20000	31500		80000		PNL			MODE 75	669

									01	RIC F	O	OF		PA	GI		8 Y	•									00.	30	FREE-JET SPEED 117.96 M/SEC (367.0 FPS)	etal y
TATOM CHIDGOX	40.0 FT, ARC	090		160.	PVL			0	90.7 125.9	86.7 127.2	1			, ,				75.3 126.2	_	-		Į-			43.8 124.0 35.8 126.8	97.5 140.9	TAMB 39	RELHUM 54	- MODEL 117.96	
CARRECTED FOR BAC	DAY, SB 40.0 F	FJ-300-FMGDL X75060 FJB400-FMGDL X01400	INLET, DEGREES	130. 140. 150.				6.5 90.2	<u>ب</u> د	92.5	.3 92.2	90.0	.8 89.4 75.	.9 88.4 79.	.4 65.6 75.	.9 85.4 79.	0 04.2 77.	95.3	8 80 8 78	4 78.9 74.	.4 77.0 73. .9 74.5 71.	.5 70.5 67.	60 K	4 57.1 52.	51.9 50.0 46.2 15.6 44.6 38.3	02.4 101.1 97.6	I ALPHA SB	Į	SIZE (23.99 SQ (N)	
FASILME I FVELS	ENT R.H. STD.	- MODEL FJ- BACKGROUND FJE	1	. 110. 120.				7 78.0 80.0	7 78.3 82.1	7 81.3 84.3	9 82.3 86.0	2 85.0 88.7	4 86.2 88.6	86.8 89.6	3 67.1 69.0	1 87.6 89.5	2 67.0 88.2 87.3 88.0	86.2 87.5	7 85.6 85.6	83.4 83.9	8 79.3 79.9	9 75.3 77.3	4 72.8 75.1 57 R 69 7	59.8 63.9		4 98.0 100.0 102	E NG. N299	RDG.	164.7 SQ CM	
MODEL SOLD	EG. F.,	IDENTIFICATION	ANGLES M	60. 90. 100				7 74.1 74.	9 76.3 76.	2 78.1 78.	0 79.2 79.	6 65 63.	3 82.2 83.	0 82.7 83.	5 83.1 84.	3 83.7 85.	63.3 64.	2 83.55 83.55 83.60	7 83.2 82	1 61.1 61.	.7 81.3 80. .2 80.4 77.	.1 78.7 74.	.8 74.8 73.	63.3 62.	.0 54.6 56. .3 46.8 48.	98.8 94.8 95.		ECH CH AERO	TIC RANGE 40.0 FT) ARC	
UNTRANSFORMED	59.0 DEG			50. 60. 70.				7 70.9 72.	3 73 8 74	.8 76.7 74.	5 76.9 75.	6 77 5 77	9 78.4 78.	.8 77.9 78.	2 79.5 79.	3 79.5 81.	2 78.7 79.2	20.2	2 77.9 78.	5 76.4 77.	6 74.1 75.	0 73.8	4 ER 9 67	6 57.8	0 45.3 48.	.9 40.6 91.3	TEST DATE 02-27-	3	INT ACCUSTIC	
)				40.	FRED GO	2 9	100 125 160 200	70.2	0, 7 0, 6 0, 4	72.0	73.3	0 0 0 0 0	75.5	77.6 76.8	78.6	78.1	77.7	6350 76.4 77	75.3	73.4	68.7	69.8	69.0	54.6	40.7	CASPL 88.6 E8			MODEL TEST POINT 7500 7506	

				_	DENTI	DENTIFICATION	1	FJ-300-FMGDL	FMODE	X76060	90						
					ANGLES	ES MEAS	URED	FROM 11	INCET,	DEGREES	80						
40.	90.	.09	90.	90	0	100.	10.	120.	130.	140.	150.	160.	7				Š
88 88 00 00 00																	•
ă,	-	-	1	l .	7	•	44	7 47	7	5	9	1.00	122.3				
9	-	-	78.4	. i	.l .		75.6	٠ ٠			. I	69.3	124.6				
77,6	. O 1	77.0	76.4	76.5	76.9	77.0	77.3	ď,	8.0	0.00	7.98	99.0	125.5				
8 8	۵ –	- 0					80.4		0	9 00		6 6 6 6 6 6	132.7			0	
93.		4		. 1			92.3		- 10	88.8		92.4	127.8			F	
6	.	٠ و				F-1	- W		.	G 0	-	92. 22. 32. 13.	128.3			P	
, c	. -	i 4					9	90.5	6.0	87.8		90.7	128.5			OC	
82	-	0					86.7	90.3	91.6	87.5		91.6	126.9			R	
4	4 (a i		_	_	_	87.3	- 6	80.00 4.00			90.0	129.			Q	
60 g	9 1	٠. ٥					88.2	90.00 80.00	G (0	86.9	8 8 8 8 8 8	980.7	20.00)U/	PA
9	4	-			.1 4		88.7	90.3	89.7			89.4	129.5			L	
4		41		٠.		_	87.8	•	4.68		-	87.8	129.2			IT	
	6 4	Ď 4					€7.0 47.4		89.7	2. 00 0. 00 0. 00			20.0			Y	
94	0	9					85.0		84.8			85.5	128.7				
8.	- °		•				95.6	•	80.8	79.6	7 9 7 7	60.4 4.4	126.7				
- 10		, w			; <u>.</u>		78.5		78.4		72.7	77.5	129.7				
78.	Ø 1	a c	77.0			l -	74.2	76.2	73.3 56.9	71.1	68.3	73.7	130.0				
68	o, on	? 0					61.3		60. 80.	50.0	9 9 9 9		129.5				
59	8		• • !		7	1	55.3		54.9		61.9	•	128.7				
52,	9	4			-		48.9		43.1	44.9	42.1	47.1	131.1				
96.2	9.00	1.98	95.4	101.7	96.9	96.8	98.4	101.2	102.4	100.3	2.98	102.7	143.2	\			
MODEL/FULL INPUT 1.	800	ZE SCALI CALC.	Щ.	FACTOR .000	FREE	JET	VELOCI JET DI	ELOCITY (FT/ ET DIAMETER	(SEC)	387.00 48.00		REFRACTION TURBULANCE	ANCE	CORRECTION CORRECTION	- YES - YES		
	TEST DATE	1	02-27- C41 AN	7-78 ANECH CH		TAPE AERO. I		N299 ADH111		ALPHA	3859 29.3300	}	TAMB	39.00 54.60			
MODEL TEST	TEST POINT 7506	21	ACOUSTIC		RANGE 40.0 FT)	ARC	10.	7 50 CM	_	SI ZE 23.99 SG	2	- MODEL	-	FREE-JET	SPEED 387.0	FPS)	
	. •																

ď)
9	į
0	
_	•
•)
•	-
á	
5	Š
•	
đ	ì
•	-
•	•
5	:
c	,

85.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC IDENTIFICATION - FJ-JOO-PHODL X30200 AMOLES HEASURED FROM INLET, DEGREES 60. 70. 80. 90. 100. 110. 120. 130. 140. 180. 160. FML AMOLES HEASURED FROM INLET, DEGREES 61. 60. 70. 80. 90. 100. 110. 120. 130. 140. 180. 160. FML 62. 70. 80. 90. 100. 110. 120. 130. 140. 180. 180. 180. 180. 180. 180. 180. 18)RI	IGIN PO	AV O(L R	PA QU	(GI	E 1	5													EO. . C FPS)	
MODEL 1 0 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	FLIGHT TRANSFORMED MODEL SOUND PRESSURE	O DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT.	ON - FJ-400-FMODL	MEASURED FROM INLET,	40. 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160,	100	125	85 1 85 0 84 8 85 0 83 5 84 2 84 6 88 6 95 4 99 6 102 7 101 4 136	85.1 85.9 84.8 85.0 85.0 86.7 84.7 85.3 92.3 101.8 105.3 107.0 103.0 140.	86.4 87.0 86.1 84.7 83.8 86.5 86.8 93.4 102.8 107.0 106.2 100.3 140. 87.7 87.6 87.0 85.9 91.2 87.7 87.7 88.5 95.6 104.5 108.0 106.0 99.7 141.	89.0 88.1 89.6 87.3 103.2 89.2 89.1 90.8 97.8 105.5 109.4 105.5 100.8 143.	92.6 91.9 92.6 69.6 69.7 92.1 92.3 94.4 100.6 105.8 109.0 103.3 101.8 142.	33.7 91.4 92.4 90.8 91.7 93.4 93.1 95.7 101.8 106.1 108.3 102.7 102.3 142.	92.5 93.9 94.2 92.8 92.5 94.0 94.2 96.6 102.2 106.5 106.9 102.6 101.6 142. 93.9 91.9 93.2 92.3 91.9 93.9 94.6 97.5 102.5 107.0 106.7 102.5 101.8 142.	93.1 93.1 93.4 92.1 93.3 94.9 95.8 98.2 103.9 106.5 106.4 103.4 102.5 142.	93.0 93.0 93.7 92.7 93.7 95.6 96.3 99.3 102.9 106.1 106.3 103.1 102.7 142. 93.8 93.4 93.6 93.5 94.0 96.2 87.0 99.5 103.7 106.5 106.0 102.3 102.2 143.	94.1 93.1 94.4 93.6 95.1 97.2 97.3 100.4 103.6 105.8 105.4 102.1 103.4 143	95.6 94.3 54.7 94.0 95.3 97.7 97.4 100.0 103.5 105.3 105.4 102.8 103.6 143 97.5 96.2 95.9 94.7 95.5 96.9 97.0 98.9 103.5 105.1 104.6 103.3 104.6 143	97.2 97.9 96.5 95.4 97.2 98.1 96.5 99.6 101.9 103.9 103.7 103.7 104.6 143	97.4 98.6 98.9 97.5 97.7 97.6 96.8 98.4 101.3 104.2 102.2 102.8 104.6 144 94.9 96.1 96.5 96.3 97.2 97.7 95.5 97.5 120.2 100.6 99.0 99.9 102.0 143	93.5 94.9 95.1 95.5 97.1 96.9 93.3 95.5 96.4 95.2 94.2 95.9 99.2 143.91.1 94.5 93.7 93.8 95.2 94.3 90.6 89.5 96.2 96.6 93.6 92.9 97.2 144	89.4 90.1 91.0 90.0 89.9 89.9 88.1 89.2 90.3 89.6 87.1 86.6 91.7 142	84.6 83.6 86.0 87.4 69.5 88.4 63.2 83.0 66.4 63.4 81.9 62.5 86.3 143. 82.2 81.1 82.7 83.1 81.3 81.2 78.5 76.8 82.4 77.9 77.0 78.3 81.5 142.	73.8 73.0 74.4 75.8 72.3 72.7 73.0 70.2 77.6 73.8 75.8 74.3 77.0 141.	106.9 107.0 107.2 106.4 108.7 108.3 107.7 110.1 114.3 117.9 119.3 116.7 115.6	SIZE SCALE FACTOR FREE JET VELOCITY (FT/SEC) 389.00 REFRACTION CORRECTION -	000 CALC, 1.000 FREE JET DIAMETER (IN) 48.00 TURBULANCE CORRECTION -	03-16-78 TAPE NG. N300 IALPHA SB59 TAMB C41 ANECH CH AERO. RD9. ADH149 PAMB 29.5450 RELHUM	MODEL TEST POINT ACOUSTIC RANGE 6 3020 12.2 M (40.0 FT) ARC 110.1 SQ CM (17.07 SQ IN) - MODEL 118.57 M/SEC (389.6	

(L

																		AL OR			!S TY									
																				•										(D) FPS)
																										•			34. 34.	JET SPEED (389.0
																													8.8	FREE-JET 57 M/SEC (
			¥	60.8	162.1	61.8	51.8	61.8	62.1	62.5 62.5	62.3	62.5	62.8	- œ	63.1	1.	•	20.00		50.3 58.4					75.7	r .			TAMB 40 RELHUM 22	118.57
			160.	73.9 1	4	ဖ	7 -	74.6 10	~	၁ ဖ	8	N		- o	, NO	-		21.0		_ =					9	a.	98.9			FULL
	ις O	6	_	83.5		ا،	a 10		ار،	n m	10			o.c		6	o n (300	1						ю	94.3	6	FT -10	SB59 29.5450	· (N)
:	X30205	DEGREES	140.	87.7	89.1	88.5	87.7 86.1	85.7	95.1	84. 83.0	85.8	- 1				i	67.7	48.0	33.7	3.6					7.76	100.4	100.4	ES	IALPHA PAMB	S1 ZE (1400.00 SQ
		INLET,	130.	85.7 86.7	67.3	87.0	87.1	87.7	86.9	86.2	85.2	84.4	94.0	9 0 0 0 0 0	79.2	73.5	4.4) (1) (2) (3)	43.0	22.6					97.9	102.5	104.1	FREQUENCY		S CM (140
	FJ=400-FMCDL	FROM 1	120.	977.9	82.1	-1	8 63	84.3	85.4	84.7	84.3	83.9	83. 83.	8 7 7 8	80.6	76.8	76.4	0.00 4.00	52.7	36.7					93.4	101.9	102.7		N300 ADH149	2 50 0
	' Z	URED	110.	71.5	75.6	77.3	9 6	80.0	90.6	9 2 4 4 . 4	82.0	81.4	80.0	9 6	79.0	77.2	- ·	 	50.2	33.7			•		9	99.4	99.4	9.026	RDG.	9032.
	DENTIFICATIO	ANGLES MEAS	100.	71.2	73.0	-1			-1			-1		٠											0.06	98.1	98.6	RATIO	TAPE AERO.) SL
	IDENT	ANG		7.52		78	76	77.	77.	8	79.	79.		0 0 0	80	79.	2	. v	56.9	38.					0	9	100.	DIAMETER	. 5	C RANGE 2400.0 FT)
			0	74.6 86.6		4	6 6	4.	76.	9 9	77.	77.	77.	, ¢	79.	79.		- 6	56.	. 4 4					6	0.00	101	DIA	16-78 ANECH	ACOUSTIC 5 M (240
			. 70.	3 68.9 207	2 %	733	2 6	4.	74.	4 15	75.	75.	73	9 6	77.	77.	9.0) (2)	56.						80	0 97.9	98		- 2 2	ACC 731.5 M
			. 60	8 69.	74.	133	76.	10.	2	6 4	73	73	76.	9 6	76.	75.	9.9	5.6	52.	မ္တ ဗ					88	0 97.0	98		LEST DATE	
				68.		7	72.	72	73.		72.	73.	1 20	10	74	73.	72.	9 8	46.	24					3 86.	2 95.	96		TEST LGC	TEST POINT 3020
			40	67.		+		• •	- 1			-1				١.	•									91				7

ORIGINAL PAGE IS OF POOR QUALITY

6.1.8 Measured Acoustic Data for Model 7

 $R_r^0 = 0.853$ conic outer nozzle $R_r^i = 0.902$ conic inner nozzle $A^i/A^0 = 0.521$ without struts in outer flow

-																					-					
•							. ,																			
								OR OF	GI P	NA 00	R	P# Ql	AGE JAL	13	, ·				•						:T SPEED (0, FPS)	
			•																					27.68 29.00	FREE-JET O. M/SEC (<i>a</i> . 1
		IMA.	f			49.7	50.9	100 K	55.2	55.1 55.0	55.1	55.0	53 4.6	52.4	2 - 1	49.4	149.1	47.0	146.6	146. 144.0	45.2	· · ·	, ,	TAMB		
X70010		150. 160.					116	10.00	11/2	= = 3 = 3	113	109	108	5	38	10	600	9	88	7.00	74.4 72.0 67.1 65.1	8 126 5		SB59 29.3220 RI	IN) - MODEL	÷
FJ-ZER-FMGDL	INLET, DEGREES	130, 140.				08.9 113.3	3 114.6	16.1 119.0	8 120.9	4 120.3 0 121.4	2 121.4	8 120.8 3 119.0	3 117.5	5 114.6	112.1	9 108.2	105.3	98.2	93.0		4	_		IALPHA	SIZE (23.99 SQ	
MODEL FJ BACKGROUND	URED FROM IN	10. 120.				98.4 103.8 1	105.4 1	100.6 108.1 1	112.0 1	113.3 1	113.8.1	114.6 1	4.0	112.7	111.9	107.9 1	106.2	100.5	96.3	91.5 87.4	83.2	124 7		NG. N294 (DG. ADHO83	154.7 SQ CM	
1	ANGLES MEASU	90. 100. 1	-			8 97.2	96.6	0.086.7	4 101.3	7 103.8	1 104.2	2 103.8	6 106.0	5 107.4	105.9	8 104.2	3 102.2	7 96.5	.3 92.4	.4 87.5 .8 82.7	2 78.0		2.01	TAPE N AERO. RE	E FT) ARC	
IDENTIFICATION	V	6 .				92.7.94	93.8	900.00 900.00	ی و	-	101.0		106.5	103.0	0.4.0	3 102.9 103	102.0	1 101.2 101 4 98.3 98	93.2		7 9	1.8.7	5	02-20-78 C41 ANECH CH	ACGUSTIC RANGE	
		60. 70				ā	4 92.	94.3 93.	7 97.	.3 100	100	2 103.	05.7 105.	3 103		7 101	. •	ព្រ	.8 92.	87. 80.	3 73		-		12.2	
		20.				92 3 91	91.2	93.7	96.2	101.5	102.6	106.7	105.2	102.6	9.10	100.0 98.3	96.4	93.7	86.5	75.1	71.4		4.4	TEST DATE	T POINT 7001	
		6				87.3	88	90.4	6	100.7	18	107.	0 0	102	99.3	97.4	92			79.2			4.		TES	
		C L	50	000	125	0 K	315	200 200 000	900	1000	1600	2000	3150	5000	6 300	10000 12500	16000	20000	31500	40000	B3000		DASFL		MODEL 7000	48

																														<u> </u>			**	
																															à			
							: *																			**							***	
													-14	~1P	וםנ	L_ '	PΑ	GE JAI	. 15	3												2		
												0	RI F	P(01	R	Ql	ΙΑΙ	TI.	4												FPS		
																										1.7	YES	YES			SPEED			
																											•	ı			F.R.F 16 T	M/SEC (
																	1								!		CORRECTION	CORRECT I ON	68		Ü.	È		
			1					~					· 10	 (9	₹.	დ 4	80.	- ^	4	÷. C	000	g 6	10	O 0	6				Z3		ó		
				2				149.	150.8	153	154.6	2 2	155	155.	154.	153.	152.8	151	151.1	149.	•	147	146.	44	144.	166.	CTION	LANCE	TAMB	RELHUM		岀		
ARC			160.					16.1	2.9		17.5						96. 4 R		03.8	2	99.4		83.4		72.0	126.5	REFRACTION	TURBULANCE				- MODE		
LEVELS 40.0 FT			50.					6.5		, , ,	20.01	9 0	0.8	8.61	14.9	3.9 1	0 0 0	0.6	07.0	35	9.6	93.5			74.4	80			8	29.3220		N.		
	X70010	RES	_			e Star			9	4 C	-	J (. 4	4	9~	ر د	ი <u>"</u>	~	- <i>u</i>	٦	<u>ი</u> (4 64	م د	· ·	9,1	7.	c	48.00		}		08 6		
ESSU	×	DEGREES	140					113	114	119	120	225	3.5	121	1.0	117	116	9 113	===	8	105	88	8 8	9 6	78 73	-		}	AHG IA I	A P		23.99		
MODEL SOUND PRESSURE R.H. STD. DAY, SB	FMODL	INLET	130,					108.9	11	•	116.2							14.0	•			8	88	86.	90	128.1	C/SEC	DIAMETER (IN)		_		₩ ₩	•	
STD	FJ-ZER-FMODL	FROM	120.					03.6	8	0.4	00.0	25.0		13.8	4 P	14.1	13.9	12.7	G (4		06.2		6 9 10		63.2		<u> </u>	METER	700	ADH083		SQ		
MODE!	Ę			3				4	d	ن د د	· -	٦.	- 0		2 2	7.7	0.0	0.0	7.57	. 9		- N	40	9.00.	٠ ر	c		JET DIAME].		154.7		
	Š	MFASIIRED	=					2	. 4	- 1 0	0 102	77		0			3 108.	1	9 108	2	٦,	96	1	0 00	75	-				RO. RDG				
TRANSFORMED 70 PERCENT	DENTIFICATI							97		60		4	100		5 2 2		106.	7-	105		-		92		78.	-			ì	AERO) ARC		
	DENT	ANGIES	8					4		96.0	98.0	4	7 201	03.1	03.2	9.90			105.1		i .	101.7 98.7	69 2		75.2		ü			-		40.0 FT)		
FLIGHT DEG. F.			80	tions List Up ti					83.B	93.0		4	200		05.7	06.5	60 (ဖ	04.4			98.3	1		74.8	V .	Q			ANECH CH	(ACCUSTIC RANGE 2 M (40.0 F		
59.0 D									0	٠ د	<u>۔</u> اہ ہ	10	ء -	9	7 0	. 7	0.6	5 IO		0 M	8.	- 4	~ 0	и ю	01	d o		-	9			Cours.	:	
Š			2								3 63	1.		- 4	2 103	-	-	7-	3 103		1	5 6 6 7			3 73	9 =	1	CALC.				12.2	i	
			9			. " 			. 1	•	9.00	4	202.201		106.2	105.7	104.5	103.6		5		93.	- 1		72.			10	į	LEST DATE				
			92						21.2		90.0	4	-	02.6	2 5			9 6	_	00.80	1 .	93.7 90.3	- 1	75.1	71.4			10		LOC		ED IN	;	
			90						2 0	4.	N O	1			44	9	_	7 7	6	4 r	4	4 N	4	ol G	. 60 1	d o	į	INPUT 1.				IEST POINT		
32			4			0.01			3 6 8 6		5 6 0 0	1,		100	7-		_	7-	,		١.		ļ	0 79		1						٩	}	í
				FREG	8	88	7 5	200	Se	4	930	800	1000	1600	2000	3150	4000	5000	8000	10000	16000	20000	31500	40000	63000	ADDOD Gaspl						MODE	,	
							1_		_						Ţ	_		1.				٠	- E	0-6	8116	ME	IS.	S SH	11,24	Ha!	15 Y d	44	ELME	NOH-

### FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SCUND PRESSURE LEVELS ### AGO							ORIO OF I	INAL POOR	PAGE QUALIT	1 3 1 Y				FPS)	
### FILOHIT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS #### Control of the con														SPEED 0.	
FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED 40. 66. 60. 70. 60. 90. 100. 110. 120. 130. 68. 72. 8 72. 8 72. 8 72. 8 72. 8 72. 8 72. 8 72. 9 85. 9 77. 0 72. 8 72. 9 7			0. 160.	8 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 87.5 7 85.2 82.1	3 77.2 7 74.3 9 72.3 5 70.6	68.3 2 65.7 1 61.9 6 57.1	4 49.8 3 38.7 7 18.2			7 97.6 183. 1 96.6 1 97.6		TAMB	IN) - FULL	
FLIGHT TRANSFORMED, SCALED AND 100. DEG. F. 70 PERCENT R. 1	ا" ۵	Ę	130. 140.	. 9 95.9 97.2 . 7 95.9 98.3 . 7 96.4 99.0	.6 95.4 98.9 .1 95.4 98.9 .7 96.1 97.9	.5 94.5 93.7 .0 94.1 92.1 .5 93.8 89.9 2 91 9 88.0	.2 89.7 86.5 .3 88.9 84.1 .5 85.7 81.1 4 83.6 77.3	.1 78.5 72.5 .0 71.6 65.0 .9 64.8 55.6	7 31.8 17.7		.2 106.7 108.0 1 .5 111.0 110.5 1		IALPHA	SIZE CM (1400.00	
40. 60. 70. 68. 70. 69. 70. 69. 4 73. 3 73. 69. 4 73. 3 75. 1 75. 4 78. 5 76. 7 74. 8 75. 9 76. 7 75. 2 75. 8 1. 8 82. 4 82. 83. 6 83. 8 8	ED, SCALED, AND EX	ı Z	0. 100. 110.	. 1 80.6 82.1 8 81.9 84.2 1.5 85.7	.5 85.5 87.5 .7 85.7 88.2 .6 85.1 88.1	.5 86.7 87.9 .0 86.8 87.9 .8 87.6 88.2 8 86.3 88.4	.1 85.7 87.7 .1 84.8 86.8 .3 83.6 84.3 .7 81.4 82.6	.7 78.0 78.8 .3 73.7 72.5 .0 68.7 66.4	.8 41.9 38.7 .4 19.1 12.9		.9 97.3 99.0 .9 104.5 105.8 1 104.5 105.8	RATIO 7	RDG.	평	
TEST T	1		0. 70. 80.	.1 75.4 77.6 .9 76.7 83.7 .4 78.9 79.4	4 83.2 84.7 4 82.0 82.5 3 86.4 82.0	.1 85.9 87.2 6 83.9 85.3 1 83.5 84.1 0 82.9 84.5	.5 82.4 84.2 .6 81.8 84.3 .3 80.0 82.2 9 78.3 81.2	.8 74.9 79.8 .0 69.7 75.5 .4 65.2 67.5 .5 54.8 60.8	.4 37.3 42.2 .2 11.5 15.9		5 94.8 96.1 5 101.5 104.0 1 0 101.5 105.4		02-20-78 C41 ANECH	ACGUST	
### ### ##############################			40. 50.	69,4 73,3 75 71.0 74.8 75 75.2 75.8 77	76,1 81.1 62 76,1 81.3 92 83,2 81.8 82 84.6 85.6 86	80.9 83.3 85 78.9 81.0 83 77.5 79.9 83 75.0 78.8 82	73.6 77.8 80 71.2 76.3 79 67.7 74.0 77	57.6 67.6 71 53.3 61.8 68 45.1 53.3 61	5.4 20.1		90.9 92.6 94 95.3 98.0 100 96.4 98.0 101		TEST DA		

				•	ORIGI OF PO	IAL P	AGE 19 VALITY					JET SPEED C (386.0 FPS)	
Lú											30.02 42.40	FREE-JET 17.65 M/SEC	
FOR BACKGROUND NOISE 40.0 FT. ARC X70020 X01400	160.	PWL		113.1	105.7	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	98.7 98.7 98.0	1	85.2 85.2 80.6 74.3	66.7 60.8 118.8	TAMB	- MODEL 1	
S CORRECTED FOR BA). DAY, SB 40.0 FJ-400-FMODL X70 FJ8400-FMODL X01	r, DEGREES), 140, 150,			109.3 112. 111.1 114. 113.9 116.	116	116.3 107 114.9 107 114.6 107	113.9 106 113.1 105 111.8 104	0.05.0	2 92 2 93 2 78	76.2 70.9 126.6	1ALPHA SB59 PAMB 29.5400	SI ZE 23.99 SQ IN)	
RE LEVEL R.H. STC EL KGROUND	ED FROM INLET, 0. 120, 130.			.6 99.3 104 .4 100.9 106 .0 101.9 110	.4 106.1 112 .7 108.2 113 .3 109.5 113	6 111.2 111.6 11.6 11.6 11.6 11.6 11.6 11.	3 112.2 113 6 113.2 114 9 113.3 113	7 112.1 112.7 7 109.7 109.7 106.9 108.4 104.3 104.3	.7 101.6 100 .7 97.1 98 .5 92.5 91 .6 87.9 85	.6 83.7 78 .8 76.9 73 .7 123.1 125	. N299	54.7 SQ CM (
SOUND PRESSU 70 PERCENT CATION - MOD BAC	ANGLES MEASUR 90, 100, 11			0 92.4 0 92.2 0 93.3	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	3 102.4 1 03.6	2 106.4 9 105.1 105.1	8 104 8 102 8 101 8 101 8 101	8 8 8 6 8 6 8 6 8 6 8 6 8 6 8 8 8 8 8 8	. 9 76.9 . 0 69.1 . 8 115.2 1	TAPE NO AERO. RDO	r) ARC 1	
MODEL EG. F. DENTIF	70. 80.			98.00	6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	6 106.2 6 106.4	6 103.6 1	0 4 - 6	4 98.7 2 93.9 8 83.0	6.9 74.5 7 1.2 68.1 7 3.7 114.5 11	02-27-78 C41 ANECH CH	ACCUSTIC RANGE 2 M (40.0 F	
UNTRANSFORMED 59.0 DI	60.			86.9 86.4 8 86.1 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 80.4 7 93.0 7 93.0	3 103.8 4 107.1 6 106.1 1	8 104 1 1 4 103 6 1	99.8 99.8 5 99.4	28 94.6 28 94.6 78.5 28.5	9.2 72.1 2.3 66.5 3.6 114.5 1	TEST DATE O	POINT 12.	
	Ç		0 10 0 0	83.7 86.3 86.3	87.6 92.7 92.7	4 60 6	101.9	98.19 97.50 96.00	25000 90.6 9 91500 97.9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	63.9 63.9		MODEL TEST PG 7000 7002	

								OF		iINA POO			GE ALI											F78)	
																						- YES - YES	1	JET SPEED	
																						CORRECTION CORRECTION	30.02 42.40	FREE-JE 17.65 M/SEC	
		160. PWL				2 1	80	0.5 149.0	00.0	9.4 149.2	0	۰,9	96	0	ا	08.1 151.7	_		ო -	3	122.6 164.9	REFRACTION C Turbulance C	TAMB RELHUM	MODEL 11	
020	ES	150. 16				0	112.8 1 115.0 1	116.1	113.1	110.4 109	110.0	112.4 110.3	90	106.8	106.8	106.2 1 104.1 1	101.5	94.1	63.6	64.5	124.1		29.5400	- (NI 08	
- FJ-400-FMGDL X70020	ET, DEGREE	130. 140.				02.2 106.4		D 4	0	11.8 114.6	9 0	6 0		010	2 6	0 0	•	0 C	85.9 84.0	9	125.0 126.0	386	I ALPHA PAMB	\$12E (23.99	
FJ-400-FMGDL	D FROM INLET	. 120.				3 97.5 10	0 2	104.5	108.4	108.0	111.0.1	112.5	113.5	114.3	113.0	108.8	107.0	99.5	0.10	74.9	.6 123.7 12	VELOCITY (FT/SEC) Jet diameter (IN)	N299 ADH999	4.7 SQ CM	
N	S MEASURED	100. 110				6		9.9	0	98.3 100.5	70	6 0	07.6 108.	01	-	a o	<u>-</u>	u 4		2	116.4 117.	JET VELO FREE JET	TAPE NG. Aerg. RDG.	ARC 154	
IDENTIFICATI	ANGLES	0. 90.				.1	. 2 . 91. 0 . 91.	G 6	0	. 7 80 7 . 0 . 0 80 . 0	3 101.	-0	7 107.	60 108	9 -	0 - -	8 0	0 0 70		6 73.	118.3	8 38 38	5	C RANGE 40.0 FT)	
		70. 60				91.6 89.	7.6 4.5		0	96.5 97.	3 10 104	3 109	107.2 105	7 107	. z 107 . 7 107	46	2	6 ∠	0 1	- 0	117.5 118.0	SCALE FACTOR ALC. 1.000	02-27-76 C41 ANECH	ACGUSTI 2.2 M (
		.0. 60.				0	0 0	0 e	0 95	2 96.3	4 108.	2 110.	3 108	.2 108.	.7 109. .3 107.	.a 106.	6 103.	0.89	9	3 72	119.3	\$1 ZE 000 C	TEST DATE LOCATION		
		40. 60				ю	10 W	- 0	0	99.0 97	7 -	3 109	109	0 108	. 5 107 . 0 107	103.7 105	7.10	ю с	900	0.	120.2 119.4	MODEL/FULL INPUT 1.		TEST POINT 7002	
		FREG	69 69	8 5	125 160	200	315	500	800	1250	2000	2500 3150	5000	6300	0000	12500 16000	20000	31500	0000	80000	GASPL			MODEL 7000	48

	ì										O 1		GII P	A <i>N</i>	7.1.		A(GE Al	! !T	8 Y													30.02 42.40	FREE-JET SPEED .65 M/SEC (386.0 FPS)	
	Z	7 166.3	2 166.7	8 167.3	- -	_	_	-	_	_ ,		- -	_	_	– r		_	4 168.2	2 167.9	166.9	163.7								5 182.5				TAMB 3	FULL 117.	
	150. 160	91.0 64.	Φ.	හ අ ග										76.8 71.8	- 1	71.1 55.1	6 45	.3 28	25.3 0.										8	100.6 96.	6- -		3859 29.5400	- CE	
PEAREES	. 140.	,6 92.0		9 7 6 6 6 7 7	1		9.16 0.	1				2 0	1	91.9	0	~ 4	r 0	10	2 41.2	/1 6	_								103.0	106.5	FREQUENCY SHIFT		I ALPHA PAMB	SIZE (1400.00 SQ	
HEED FROM IN FT	120, 130	1 89	00	9	- G	6	0 92	1 92	3 92	95	95	000	4 89	89.2 88	4	4 63	74	-	0	4 1						•			102.0 103.2	109.9 109.3			N299 ADH999	.2 SQ CM (
	0. 110.	-	20	10 d	90	0	a	. 8 83.	. 5 84.	•	9 1	Ja	5 87.	.8 87.1	~	o c	, 4	5 67.	.7 57.	wi.									6 97.2	6 105.4	7.640		E NG.	9032	
AND FR MEAS	90.	0	•	77.0 76	3 6	9	a	ю		₹ 1		- -	. iO		4	ن د			5.2	٠.	-								98.5	108.6 104	DIAMETER RATIO		H AE	IC RANGE 2400.0 FT) SL	
	70. 80.	.0 72.	9 74.	.3 78.8	78	7	3 81	2 85.	.0 90.	5	. 86.	- 00°	4 87.		.1	.7		3 72.	.9 65.	.6 46.	. 20.								8	. 6 108.E	DIAM		:-27-78	COUST M (
	60,	4	á	75.2 75	a	a	•	0	_	N I	١.	•	4	85.3 85	က	81.6 82 70 0 81		9 0	-	0	N								98.2 97	_			TEST DATE 02 LOCATION C4	731.	
	40. 60.	.4 72.	.3 72.	.3 73.	74.	8 76	.7 84.	.9 90.	. 5 90.	.5 97.	.2 87.	4 a	8 84.	.9 83	.7 81.	. 50 20 20 20 20 20 20 20 20 20 20 20 20 20	7 6	63	.2 49.	.7 32.									3 87.2	4 104.2			TEST	TEST POINT 7002	
	4 0383	20		80 72	1							1	•	1250 80	- 1				ł		0000	12500	16000	20000	31500	40000	50000 63000	00008		PNL 102		गाध		MODEL 7	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SCUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

X70021

IDENTIFICATION - FJ-400-FMGDL

7,0
2
 200
0

						OR OF		INA DOF		'ĀG										09	FREE-JET SPEED H/SEC (0, FPS)	
UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SS. 40.0 FT. ARC IDENTIFICATION - MODEL FJ-ZER-FMOCL X70030 BACKGROUND	AMBLES MEASURED FROM IMLET, DEGREES	0. 60. 70. 60. 80. 100. 110. 120. 130. 140. 150. 160.			67.4 88.0 89.3 91.4 91.8 94.7 100.4 104.5 108.6 113.1 111.0	86.7 88.5 89.8 91.7 82.8 84.7 102.0 107.8 110.9 114.6 111.0 1 90.0 89.3 91.2 93.3 94.2 86.3 102.8 108.6 111.5 115.2 111.6 1	90.9 91.2 96.5 94.1 95.8 96.2 104.9 109.2 111.6 114.5 111.7	94.0 92.8 93.9 96.3 97.2 100.8 107.3 109.9 109.7 113.7 111 94.4 94.4 95.3 97.9 98.5 101.7 107.8 109.2 110.9 114.5 111	23.3 24.6 25.4 26.0 29.4 102.1 108.0 108.2 110.6 115.1 111.6	24.1 95.8 96.2 97.6 100.2 103.1 108.3 110.2 111.4 114.8 106.6 104.4 05.4 05.5 05.8 05.7 05.7 108.3 110.2 111.4 114.1 14.1 14.1 14.1 14.1 14.1	94.3 94.5 95.6 92.6 93.7 103.6 107.0 108.0 111.7 113.4 100.8	94.2 94.7 95.7 99.5 99.7 102.9 106.8 107.6 108.4 109.4 104.1	93.8 94.2 96.5 96.2 97.6 101.7 104.7 105.5 105.8 107.5 102.6	92,2 93,5 95,8 97,2 97,2 99,8 102,7 103,0 103,6 104,4 100,4 1 91,0 92,3 95,2 96,7 95,4 96,3 100,5 101,2 101,3 102,3 96,6 1	88.2 90.1 93.9 95.2 92.9 95.7 97.5 98.3 98.5 100.2 08.5 1	86.3 86.4 81.2 82.1 80.4 80.4 84.6 83.4 84.4 85.4 84.5 86.5 86.4 87.2 87.7 87.4 86.9 80.6 81.9 81.7 80.7	73.3 75.8 79.2 80.2 80.7 77.6 82.4 80.9 80.2 80.7 77.8 1	66.0 67.9 69.5 70.2 74.2 71.3 77.4 74.4 74.1 75.4 72.2 62.0 62.7 63.1 64.3 67.3 66.8 70.9 67.4 70.6 68.6 64.6	.7 105.8 106.5 107.9 109.8 110.8 114.0 119.0 120.9 122.6 125.6 122.0 160.2	TEST DATE 02-21-78 TAPE NG. N294 IALPHA 8859 TAMB 24.80 LOCATION C41 AMECH CH AERG. RDG. ADHO92 PAMB 29.3600 RELHUM 41.00	INT ACGUSTIC RAMSE 12.2 M (40.0 FT) ARC 154.7 89 CM (23.98 89 IN) - MODEL 0.	
		40. 50.	50 50 80 80 80 80 80 80 80 80 80 80 80 80 80	888	2.2	0 0 0 0 0 0	87.3 80.8	1000 83,0 83,3	92.2	85.3	28	90	0000 87.8 82	63.6	- 4	25000 78,2 83.3 31500 76,7 80.8	63.0 83.0	İ	0A8PL 103.2 105		MODEL TEST PG 7000 7003	487

								OI OI	RIG F F		AL	P/Q	AGI UA		ïs TY							CORRECTION - YES	000	FREE-JET SPEED M/SEC (0, FPS)	
ELIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC IDENTIFICATION - FJ-ZER-FMODL X70030	ANOLES MEASURED FROM INC. TO THE TANGES MEASURED FROM INLET, DEGREES	FREG 40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PWL		150	63.3 86.3 86.8 67.6 87.7 90.8 92.7 94.4 98.3 102.9 107.5 112.0 (10.	84.1 86.9 87.4 88.0 89.3 91.4 91.8 94.7 100.4 104.5 108.6 113.1 111.0 145 85.9 88.2 88.7 88.5 89.6 91.7 92.8 94.7 102.0 107.8 110.9 114.6 111.0 147	86.18 89.3 90.0 89.3 91.2 93.3 94.2 96.3 102.8 108.6 1	90.6 80.9 91.7 92.5 93,1 95.7 96.3 99.7 106.7 109.8 110.6 114.6 111.7 148	93.0 93.3 94.0 92.8 93.9 96.3 97.2 100.8 107.3 109.9 109.7 113.7 111.1 147 90.3 94.1 94.4 94.4 95.3 97.9 98.5 101.7 107.6 109.2 110.9 114.5 111.4 148	92.2 92.8 93.3 94.6 95.4 98.0 99.4 102.1 108.0 109.2 110.6 115.1 111.6 148	93.1 95.2 94.7 95.2 95.0 96.9 96.8 102.4 108.6 109.8 110.7 114.2 109.7 1	93.6 95.2 94.4 95.4 96.2 98.6 99.7 103.2 108.6 109.3 111.7 113.4 106.9 148	92.0 93.9 93.7 94.9 95.5 98.3 99.7 103.9 107.3 108.3 109.7 109.8 104.3 146	90.6 94.2 94.2 94.7 95.7 98.5 99.7 102.9 106.8 107.6 108.4 109.4 104.1 146	89,9 95,1 83,9 94,6 95,9 97,8 99,1 102,2 105,6 106,2 107,3 107,7 103,2 145 87,8 92,9 93,8 94,2 96,5 98,2 97,8 101,7 104,7 105,5 105,9 107,5 102,6 145	85.4 90.8 92.2 93.5 95.8 97.2 97.2 99.8 102.7 103.0 103.6 104.4 100	90.1 93.9 95.2 92.9 95.7 97.5 98.3 98.5 100.2 96.5 142 86.9 91.2 92.1 90.4 90.4 94.8 93.4 94.4 95.4 94.0 141	76.7 80.8 84.5 86.4 87.2 87.7 87.4 86.9 90.6 91.9 91.7 90.7 88.0 141.	72.2 76.2 80.0 81.7 85.2 87.2 83.7 82.5 65.5 80.8 85.1 65.0 63.4 141 65.8 69.1 73.3 75.8 79.2 80.2 80.7 77.6 82.4 80.9 80.2 80.7 77.6 140	.5 62.6 66.0 67.9 69.5 70.2 74.2 71.3 77.4 74.4 74.1 75.4 .5 55.5 62.0 62.7 63.1 64.3 67.3 66.8 70.9 67.4 70.6 68.6	103.2 105.7 105.8 106.5 107,9 109.8 110.8 114.0 119.0 120.9 122.6 125.6 1	MODEL/FULL SIZE SCALE FACTOR FREE JET VELOCITY (FT/SEC) 0, REFRACTION CORRI Input 1.000 Calc. 1.000 FREE JET DIAMETER (IN) 48,00 TURBULANCE CORR	TEST DATE 02-21-78 TAPE NG. N294 IALPHA SB59 TAMB 24 LOCATION C41 ANECH CH AERO, RD9. ADH092 PAMB 29.3600 RELHUM 41	MODEL TEST POINT ACCUSTIC RANGE 7000 7003 12.2 M (40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 0.	

							ORIGII OF PO	AL PA OR QU	GE IS					T SPEED (0. FPS)
			•										24.80 41.00	FREE-JET O. M/SEC (
KE LEVELS				3.7 164 4.2 165 6.2 165	- 2 2 3 5 5 5 5 5 5 5 5 5	3 164		3 160 159 159	158 156 156 156			92.8 177.6 93.6 94.5	TAMB 10 RELHUM	FÜLL
38 2400.0 FT.	X70031	DEGREES	0. 150.	.1 90.6 .7 91.2 .7 90.4	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	83.2 80.8 81.6 78.4 79.8 77.4	66.4.4	2 0 0 2 0 0 2 0 0 3 0 3			.3 100.1 .1 102.4 .1 102.4 SHIFT -9	ALPHA SB59 PAMB 29.3600	00 SQ 1N) -
H. STD. DAY, SB	R-FMODL	INCET,	130.		4 6 6 6	86.7 86.0 86.2 1	82.0 82.0 92.0 92.0 92.0	76.4	25.0 25.0 25.0 25.0			.6 99.4 99 .9 103.7 103 .6 103.7 103 FREQUENCY		SIZE 3 CM (1400.00
~	<u>.</u>	MEASURED FROM	÷	76.3 77.9 79.7	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	82.3 85.3 81.4 84.1 80.7 82.7	76.8	34.4 9.6 9.6			94.1 98 100.4 103 100.9 104 7.640	PE NG. N294 RDG. ADH092	9032.2 80
ODEG F., 70 PERCENT	IDENTIFICATION	ANGLES ME	90. 100.	73.8 74.8 75.4 76.1 76.2 77.7	7 28.	100	78.6 79.7 77.7 78.9 78.0 77.5	2 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	2 39.			4 90.5 91.4 6 98.5 98.1 8 99.7 98.6 AMETER RATIG	TAPE CH AERG' I	RANGE 10.0 FT) SL
			70. 80.	0 71 9 73 7 78	7 76.	27.72	74.1 75.8 73.8 75.7 73.3 76.2	. 1 68.	2 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			96.5 88.4 93.7 96.6 94.3 97.8	02-21-78 C41 ANECH C	ACGUSTIC RANG. 5 M (2400.0
200				9 69.6 0 70.8 3 71.7	8 74.7 5 74.9 0 73.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2 7 2 7 2 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2	68 68 2 6 60 7	25.6			20 0 20 0 1 0 1 0	TEST DATE C	INT 731.
			40.	64.1 67 64.7 69 65.5 70	86 68 68	69.9 72 68.5 72	65.3 71 64.3 71 61.7 69	55.6 49.1 61.0 54.0	23.1			79.7 63.7 84.0 89.1 84.0 90.1	F	TEST 70
			FREG	8 8 8 8 8	82.50	200 200 200 200 200 200 200 200 200 200	000 T 000 S	3 1 20 0 3 1 20 0 3 1 20 0	6300 6300 6300 6300 6300	12500 16000 20000	31500 40000 50000 63000	60000 GASPL PNL PNLT		1300 489 1300 489

							Tu)																						
																												•	
										OR	GI	NA	11	P	AG	E	s ~										FP3)		
										OF	P	00	R	QI	UA	LIT	Y										T SPEED (294.0		
																										<u>40</u>	FREE-JET M/SEC (
				4				.2	-	3	NO 14	. w	4	0 4	ימו	4 0	no di	6.	D 4	બ છ	4.	- 10	9 09	.7	6.	9 4	99.61	:	
40.0 FT. ARC			160.	Ī				1.1 147	4	3 . c	2.161		4 151	. 152 . 6 152	3 162	7 16	6 5 5 5 5 5	9 150	. 2 130 149	.4 149	3 147	0.46	6 144	. 9 144	0.9 164	TAMB	Ş		
3.0 FJ.	X70040 X01300		150. 1					14.0 11	E		17.8 110	. 4	8	 • -	9.	ص ا	06.9 98	9	йó	0, 0	0	83.1 80	00	ю.	26.3 120	SB59 29.5400	· E	:	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	MODIL	DEGREES	140.		. •			110.3	11.6	• •	117.3 1		9		9	N (9	-	0	40	a -	.	0 0 0 0	_ e	0	128.3 1	ALPHA S			
. UAY, 35	FJ-300-FMODL FJB300-FMODL	INLET,	130.					106.4	108.5	12.0	113.2	4 -	113.5	113.9	115.2	2 4 2 4 3 6	114.7	112.8	108.8	108.4	8	9.60	79.4	74.2	125.9	• •			- C. C.
	MODEL BACKGROUND I	FROM	120.					1.001	102	<u>5</u>	106	200	=	111	=	112	112	112	109	106	101	92.2	88	77.	0 123.2	N299 ADH100	.7 SQ		
TOEN! N. P.	BACK	MEASURED	011 .0						9		66.	200	9 102	104	201	100	3 108 108	3 108	6 108 0 106	0 0	96 9	96	3 81.	2 68.	6 118.	APE NG. 3. RDG.	164		
יייייייייייייייייייייייייייייייייייייי	CATION	ANOLES I	90. 100					6	۲		- 1) 6 1 0	-	0 4	0	40	0.4	8	ာ က က	10 eq	N .		40	•	6.1 115	TAPE AERO.	RANGE 40.0 FT) ARC	-	
שנים ביי	IDENTIFI		.09					4	<u>.</u>	90.1 92	OI a	0 4	0		01	-1 -	3.3 104	9			-	93.6 94	a	0	14.7 116.	17-78 ANECH CH			
			70.					-	0 (N 60	a c	ე რ	4	Φ 4 -	6	4 6	0 6	8	ν φ 		e .	83. 1 87. 6	al co	e.	114.21	02-27-78 C41 ANECE	병원		
			.09					1 .					• • •	• •		-1 -		• • •				91.7	-1 -		114.8 1	FEST DATE	-		
			20.					87.	90	98	8	9 6	98	104. 106.	9	102	102	<u>ē</u>	100 98.	6 g	5	87.5	200		113.8	TEST LOC/	TEST POINT 7004		
			40.	a o	ღ 0	0	000	94	9 9	9 9	99	9 8	98	107.	5		102	5	6 6 6 6	96	00	60.00 63.60	2 2	64.	L 114.2	· . ·	0		
				F E E	6	0.	2 9 6	S S S	31	4 B	8	3 <u>5</u>	125	160	520	400	500	900	1000	1600	2500	31500	5000	8000	CASPL		MODEL 7000		

												N/ 00			AC UA		IS TY								YES		SPEED 294.0 FPS)	
								:											-						CORRECTION -	29.12 1 42.10	FREE-JET 89.61 M/SEC (
		. 160. PWL					110	113.7 149	113.8 151	113.0 151	110.8 151	170.4 151	109.6 153	109.0 153	107.0 152	106.0 152	105.6 152 105.2 152	104.3 151	102.2 150	103.7 151 96.6 150	93.2 149 87.0 149	82.3 147	65.2 145	123.1 165	REFRACTION TURBULANCE) - MODEL	:
	DEGREES	140. 150.					•	114.5 116	116.2 118	116.5 117	117.2 116	117.4 115	117.2 113	116.9 112	115.4 110	113.3 108	112.9 107	108.9 105	105.0 101	0 = 0	95.6 90 89.7 85	84.8 80	9 63	127.6 126	294.00 48.00	IALPHA SB59 PAMB 29.5	\$12E 23.99 SQ IN)	
009-7	5	120. 130.					101.0	103.4 110.	105.6 111.	109.5 113.	109.3 112.	110.8 112.	111.0 114.	112.1 114.	112.1 114.	114.0 114.	113.4 113.	111.2 111.	102.6 110	10 10 10 10	.68 97.	4	75.4	123.6	CITY (FT/SEC DIAMETER (IN	N299 ADH100	4.7 SQ CM (
- 1		100. 110			-	· (92.3 83.	92.8	94.0	97.2 99	98.5 100	99.2 101	100.6 103	103.0 104	106.0 105	107.0 108	106.9 109	106.7 109	104.1 105	101.3		4.4	71.3 69.	116.5 117	JET FREE	TAPE NG. AERS. RDG.	ARC	
DEN	NY.	.00					69.6	91.4 92.	92.5 94.	95.2 96.	96.7 98.	97.9 59.	103.1 101.	108.6 105.	107.8 109.	106.8 106.	106.3 108.	107.4 108.	105.7 107.	105.0 104.	97.2 97.	86.9 87.	71.6 72.	117.4 11		27-78 ANECH CH	RAN O.O	
		60. 70.					90.00	91.2	92.3	94.5 95.	95.4 96.	98.4 98.	107.2 107.	110.6 108.	109.6 107.	108.2 107.	107.8 107.	106.5 106.	106.3 105. 103.6 104.	102.1 102.	78 0.78	88.0 86	79.1 78.	118.3	ZE SCALE CALC.	02-1 C41	5	
		40. 50.					7 2	4.	6 K	94.	.3 94.	.6 97.	9 110	5 11.	108 108 108	6 106	. 2 106.	105	6 102.	2 100	. a 95	7 85.	.8 78.	119.6 118.1	MODEL/FULL : INPUT 1.00	TES		
	ION - 13-800-1100EL	ASURED FROM INLET, DE	ANGLES MEASURED FROM INLET, DEGREES . 60. 50. 70. 80. 100. 110. 120. 130. 140. 150. 160.	ANGLES MEASURED FROM INLET, DEGREES 40. 60. 50. 70. 80. 100. 110. 120. 130. 140. 160. 160.	ANGLES MEASURED FROM INLET, DEGREES 40. 60. 50. 70. 80. 80. 100. 110. 120. 130. 140. 160.	ANGLES MEASURED FROM INLET, DEGREES 40. 50. 70. 80. 80. 100. 110. 120. 130. 140. 150.	ANGLES MEASURED FROM INLET, DEGREES 40. 60. 50. 70. 80. 80. 100. 110. 120. 130. 140. 150. PW	40. 60. 60. 70. 80. 80. 100. 110. 120. 130. 140. 160. 160. 89.7 92.2 90.5 90.4 69.6 \$1.3 92.3 83.2 99.5 105.1 107.8 112.1 112.0 14	40. 50. 50. 70. 80. 90. 100. 110. 120. 130. 140. 160. 160. P 89.7 92.2 90.5 90.4 69.6 51.3 92.3 93.2 89.5 105.1 107.8 112.1 112.0 145 89.7 92.2 90.5 90.4 91.6 92.8 91.7 93.6 101.6 108.5 112.0 1147 91.4 91.0 91.2 90.6 91.4 92.8 92.9 94.2 103.4 110.8 114.5 116.6 113.7 149	ANOLES MEASURED FROM INLET, DEOREES 40. 50. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PWL 69.7 92.2 90.5 90.4 69.6 51.3 92.3 93.2 99.5 105.1 107.8 112.1 112.0 145.3 91.4 91.0 91.2 90.5 90.4 91.8 92.8 94.2 103.4 110.6 114.3 112.7 147.7 92.6 92.1 92.3 92.9 94.2 103.4 110.6 114.5 116.6 113.7 147.7 92.6 92.9 94.2 94.8 94.7 105.6 111.9 116.2 116.1 113.7 113.6 151.2	40. 50. 50, 70. 80. 100. 110. 120. 130. 140. 150. 160. PML 89. 7 92. 2 90. 5 90. 4 69. 6 51. 3 92. 3 93. 2 99. 5 105. 1 107. 8 112. 1 112. 0 145. 3 91. 4 91. 6 92. 9 94. 2 103. 4 110. 110. 0 114. 3 112. 7 147. 7 92. 6 92. 1 92. 3 92. 9 94. 2 103. 4 110. 6 113. 7 114. 5 115. 6 113. 7 148. 9 92. 6 92. 9 94. 2 103. 4 110. 6 114. 5 115. 0 114. 3 112. 7 147. 7 92. 6 92. 1 92. 3 92. 9 94. 2 103. 4 110. 6 114. 5 115. 0 114. 3 112. 7 147. 7 92. 6 92. 1 92. 3 92. 9 94. 2 94. 2 103. 4 110. 6 114. 5 115. 6 113. 7 13. 6 151. 5 94. 5 94. 5 95. 7 97. 2 99. 0 109. 5 113. 2 116. 5 117. 5 113. 0 151. 5	40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PML 89.7 92.2 90.5 90.4 69.6 51.3 92.3 83.2 99.5 105.1 107.8 112.1 112.0 145.3 91.4 91.0 91.2 90.5 90.4 91.6 91.7 93.6 101.6 108.5 112.0 114.3 112.7 147.7 91.0 91.2 90.5 91.4 92.8 92.9 94.2 103.4 110.8 114.5 116.6 113.7 149.9 93.5 92.1 92.3 92.5 94.2 94.2 103.4 110.8 114.5 116.6 113.7 149.9 93.5 92.1 92.5 94.6 95.7 103.6 112.8 116.6 117.7 113.6 151.2 94.1 92.3 92.6 95.4 95.7 99.0 103.5 113.2 116.6 117.7 113.6 151.5 97.3 94.6 95.7 98.4 98.5 100.6 109.3 112.3 117.2 116.6 110.8 151.3	40. 50. 50. 70. 50. 100. 110. 120. 130. 140. 150. 160. FWL. 40. 50. 50. 70. 50. 100. 110. 120. 130. 140. 150. 160. FWL. 69. 7 92. 2 90. 5 90. 4 69. 6 51. 3 92. 3 93. 2 99. 5 105. 1 107. 8 112. 1 112. 0 145. 3 92. 6 92. 9 94. 2 103. 4 110. 6 112. 1 112. 0 145. 3 92. 6 92. 9 94. 2 103. 4 110. 6 112. 1 112. 0 145. 3 92. 6 92. 9 94. 2 103. 4 110. 6 112. 1 113. 0 147. 7 93. 5 92. 9 92. 9 92. 1 10. 5 112. 1 113. 0 151. 5 94. 1 92. 3 92. 9 95. 7 105. 6 111. 9 116. 2 118. 1 13. 6 151. 5 94. 1 94. 0 94. 0 94. 0 95. 7 105. 6 111. 9 116. 5 117. 7 113. 6 151. 5 97. 3 94. 6 96. 7 98. 7 98. 7 100. 6 109. 5 112. 3 117. 2 116. 6 110. 0 151. 5 97. 3 94. 6 96. 7 98. 5 100. 6 109. 5 112. 3 117. 2 116. 6 110. 0 151. 5 97. 3 94. 6 96. 7 98. 5 100. 6 109. 5 112. 7 17. 4 115. 6 110. 0 151. 4 97. 5 97. 6 98. 7 97. 6 98. 5 101. 4 10. 6 112. 7 17. 4 115. 6 110. 0 151. 4 97. 6	40. 50. 50. 70. 50. 90. 100. 110. 120. 130. 140. 150. 160. PWL 40. 50. 50. 70. 50. 90. 100. 110. 120. 130. 140. 150. 160. PWL 69.7 92.2 90.5 90.4 91.6 92.3 93.2 99.5 105.1 107.6 112.1 112.0 145.3 92.6 92.4 92.9 94.2 10.5 112.0 145.3 112.7 147.7 93.6 101.6 106.5 112.0 114.3 112.7 147.7 93.6 101.6 106.5 112.0 114.3 112.7 147.7 93.6 10.5 10.5 113.6 113.6 113.6 151.2 94.1 94.0 94.5 95.4 95.5 95.7 96.1 107.7 112.8 116.6 113.6 151.2 94.1 94.0 94.5 95.7 96.1 107.7 112.8 116.8 117.7 113.6 151.5 94.3 94.3 94.3 94.5 95.7 107.7 112.8 116.8 117.7 113.6 151.5 94.3 94.3 95.7 98.4 96.5 100.5 112.7 117.2 116.6 110.9 151.3 103.1 103.1 103.1 100.1 100.6 102.6 111.2 113.6 115.3 117.5 113.0 151.4 103.1 100.4 99.6 102.4 100.1 100.6 102.6 111.2 113.6 116.3 117.2 116.6 170.4 151.4 151.4 151.4 151.6 100.4 99.6 151.7 2 117.2 113.3 109.6 153.0	40. 50. 60, 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PHL 40. 50. 60, 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PHL 89.7 92.2 90.5 90.4 69.6 51.3 92.3 93.2 89.5 105.1 107.8 112.1 112.0 145.3 92.6 90.7 92.6 92.1 92.8 94.2 103.6 112.0 114.3 112.7 147.7 91.4 91.0 91.2 90.8 91.4 92.8 94.2 103.4 110.8 114.5 116.6 113.0 151.2 92.6 93.3 92.9 94.2 103.4 110.8 116.5 117.7 113.6 151.5 93.5 93.6 93.4 95.7 103.6 111.9 116.5 117.7 113.6 151.5 93.7 93.6 93.8 94.2 103.3 112.3 117.7 113.6 151.5 93.8 93.8 93.8 93.8 93.8 93.8 93.8 93.8	40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PML 40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PML 89.7 92.2 90.5 90.4 69.6 51.3 92.3 93.2 99.5 105.1 107.8 112.1 112.0 145.3 89.7 92.2 90.5 90.4 69.6 51.3 92.3 93.2 99.5 105.1 107.8 112.1 112.0 145.3 89.7 92.2 90.5 90.4 91.2 92.8 91.7 93.6 101.6 108.5 112.0 114.3 112.7 147.7 89.8 92.1 92.3 92.3 92.3 92.4 92.8 92.9 92.1 103.6 113.9 116.5 113.6 151.5 89.9 92.1 92.3 92.3 92.3 92.5 94.2 94.2 103.4 110.8 114.5 116.5 117.7 113.6 151.5 99.1 94.0 94.5 95.4 95.5 96.7 98.1 107.7 112.8 116.5 117.7 113.6 151.5 99.8 95.9 95.4 95.4 95.5 96.7 98.1 100.6 103.5 113.2 116.6 110.8 151.3 110.1 100.4 99.6 102.4 100.0 100.6 100.6 102.6 111.2 113.6 116.8 112.7 113.8 103.9 151.3 114.9 110.5 110.6 108.7 103.1 101.1 100.8 102.6 111.2 114.0 116.8 112.6 109.0 153.1 110.5 111.0 110.6 108.7 108.4 105.4 106.0 105.7 112.1 114.0 116.8 112.6 109.0 153.1 110.5 110.6 108.7 107.8 107.4 107.7 105.7 112.1 114.0 116.8 112.6 109.0 153.1 110.5 110.6 108.7 107.8 105.4 107.7 107.7 112.1 114.0 116.8 112.6 109.0 153.1 110.5 110.5 110.6 108.7 108.4 107.7 105.7 112.1 114.0 116.8 112.6 109.0 153.1	40. 50. 50, 70. 80. 80. 100. 110. 120. 130. 140. 150. 160. PML 89.7 92.2 90.5 90.4 69.6 \$1.3 92.3 93.2 99.5 105.1 107.8 112.1 112.0 145.3 92.4 91.7 93.6 101.6 103.6 112.0 1143.3 112.7 147.7 91.4 91.0 91.2 90.5 90.4 91.6 92.8 91.7 93.6 101.6 103.6 112.0 1143.3 112.7 147.7 91.4 91.0 91.2 90.6 91.4 92.8 94.2 103.4 110.6 114.5 116.6 113.7 149.9 92.6 92.1 92.3 92.3 92.3 92.4 91.6 92.8 94.2 103.4 110.6 114.5 116.6 113.7 149.9 92.6 92.1 92.3 92.3 92.3 92.3 92.3 92.3 92.3 92.3	40. 60. 60. 70. 80. 90. 100. 110. 120. 130. 140. 160. 160. PML 40. 60. 60. 70. 80. 90. 100. 110. 120. 130. 140. 160. 160. PML 89.7 92.2 90.5 90.4 91.6 92.9 91.7 93.6 101.6 105.1 107.8 112.1 112.0 145.3 91.4 91.6 92.9 91.7 93.6 101.6 106.5 112.0 114.3 112.7 147.7 91.6 92.9 92.9 94.2 103.4 110.8 112.0 144.3 112.7 147.7 147.7 91.6 92.1 92.3 92.3 92.3 92.3 92.3 92.3 92.3 92.3	40. 50. 50. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PML 40. 50. 50. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PML 88.7 92.2 90.5 90.4 69.6 51.3 92.3 93.2 99.5 105.1 107.8 112.1 112.0 145.3 92.4 92.5 90.5 90.4 91.6 91.4 91.7 91.6 112.1 112.0 145.3 92.6 92.1 92.2 90.5 90.4 91.6 91.7 92.6 100.6 112.0 112.7 147.7 92.5 92.9 92.9 92.9 92.9 92.9 92.9 92.9	40. 50. 50. 70. 50. 90. 100. 110. 120. 130. 140. 150. 160. PWL 69.7 92.2 90.5 90.4 69.6 51.3 92.3 93.2 99.5 105.1 107.6 112.1 112.0 145.3 92.6 92.4 91.6 92.2 90.5 90.4 91.6 92.2 91.7 93.6 101.6 112.0 14.3 112.7 147.7 91.6 92.1 92.2 90.5 90.4 91.6 92.4 91.7 93.6 101.6 110.8 116.2 114.3 112.0 145.3 92.6 92.1 92.2 92.6 92.4 91.7 93.6 101.6 110.8 116.2 114.3 112.0 145.3 92.6 92.1 92.3 92.9 93.4 93.6 97.7 102.6 111.9 116.2 114.3 112.0 145.3 93.6 93.4 93.6 93.4 93.5 93.4 93.5 93.4 93.5 93.4 93.5 93.6 93.4 93.5 93.6 93.7 102.8 116.2 116.5 117.7 113.6 115.5 113.6 115.5 113.6 115.3 113.6 1	40. 50. 50. 70. 80. 100. 110. 120. 130. 140. 150. 160. 160. PML 80.7 92.2 90.5 90.4 69.6 51.3 92.3 93.2 99.5 105.1 107.6 112.1 112.0 145.3 91.4 91.0 91.4 91.0 91.2 90.5 90.4 99.6 51.3 92.3 93.2 99.5 105.1 107.6 112.1 112.0 145.3 91.4 91.0 91.2 90.6 90.4 91.6 91.4 91.0 91.2 90.6 90.4 91.6 91.4 91.0 91.2 90.6 91.4 92.8 94.2 100.6 10.6 112.0 144.3 112.0 145.3 91.4 91.0 91.2 90.6 91.4 92.8 94.2 100.6 10.6 112.0 114.3 112.0 145.3 91.2 90.5 92.6 92.1 92.3 94.2 100.6 10.6 10.6 110.7 112.6 116.6 110.7 113.6 151.2 97.3 94.6 95.7 98.4 96.7 105.7 112.9 116.6 110.7 113.6 151.2 97.3 94.6 95.7 98.4 96.7 100.5 100.6 10	40. 50. 50. 70. 80. 100. 110. 120. 130. 140. 160. 160. PML 40. 50. 50. 70. 80. 100. 110. 120. 130. 140. 160. 160. PML 80. 7 52. 2 50. 5 50. 4 51. 5 52. 5 51. 5 52. 5 50. 5 105. 1 107. 6 112. 1 112. 0 145. 3 51. 5 5	40. 80. 60. 70. 80. 90. 100. 110. 120. 130. 140. 160. 160. PML 40. 80. 60. 70. 80. 90. 100. 110. 120. 130. 140. 160. 160. 160. 160. 160. 160. 160. 16	40. 80. 90. 70. 90. 90. 100. 110. 120. 130. 140. 180. 180. 180. PML 40. 80. 90. 70. 90. 90. 100. 110. 120. 130. 140. 180. 180. 180. PML 80. 7 82.2 90.6 90.4 90.6 51.3 92.3 93.2 99.5 105.1 107.9 112.1 112.0 145.3 192.5 147.7 192.6 183.7 147.7 193.6 193.6 193.7 147.7 193.6 193.7 193.6 193.7 193.7 193.6 193.7 193.7 193.6 193.7 193.7 193.6 193.7 193.6 193.7 193.7 193.6 193.7 193.7 193.6 193.7 193.7 193.6 193.7 193.7 193.6 193.7 19	40. 80. 60. 70. 80. 90. 100. 110. 120. 130. 140. 160. 160. PML ANNIES HEASURED FROM INLET, DEOREES 40. 80. 70. 80. 90. 100. 110. 120. 130. 140. 180. 160. 160. PML 80. 7 82.2 90.6 90.4 80.6 51.3 92.9 80.2 90.5 106.1 107.0 112.1 112.0 145.3 80.4 80.7 82.5 90.5 90.4 81.6 82.9 82.9 92.9 92.9 92.9 92.9 92.9 92.9	40. 60. 60; 70. 60. 90. 100. 110. 120. 130. 140. 160. 160. PML 40. 60. 60; 70. 60. 90. 100. 110. 120. 130. 140. 160. 160. PML 40. 60. 60; 70. 60. 90. 100. 110. 120. 130. 140. 160. 162. 162. 162. 143. 143. 144. 144. 144. 144. 144. 144	40. 60. 60; 70. 60. 90. 100. 110. 120. 130. 140. 160. 160. FML 40. 60. 60; 70. 60. 90. 100. 110. 120. 130. 140. 160. 160. FML 40. 60. 60; 70. 60. 90. 100. 110. 120. 130. 140. 160. 160. 160. FML 40. 60. 60; 70. 60. 90. 100. 110. 120. 130. 140. 160. 160. 160. FML 40. 60. 70. 60. 90. 60. 40. 100. 110. 120. 130. 140. 160. 160. 160. 160. 160. 160. 160. 16	40. 60. 00. 70. 80. 80. 100. 110. 120. 130. 140. 160. 160. PML 40. 60. 00. 70. 80. 80. 100. 110. 120. 130. 140. 160. 160. PML 88.7 82.2 80.5 80.4 80.6 81.3 82.8 82.8 10.8 10.8 11.8 11.8 11.8 0 145. 180. 180. 180. 180. 180. 180. 180. 180

(c	1)
1	į	į)
•			•
4	•	í	
•			,
4	6)
İ	į	ì	
	٠	١	
п	,	٠	•
	۰		
1	į	١	
1	t	3	ì

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS

	•																																		(
										0	RI	GII P(1A 10	R	P Q	AC U/	λL	: I: TI.	S																SPEED 294,0 FPS)	
											•																						29.12		FREE-JET 89.61 M/SEC (
		Ç	PWL	86.4 167.5	0 % 0 %	85.4	82.9	22.20	80.2	78.8	75.8	72.8	71.2	69.7	63	59.9	56.5	41.01	23.1	_	164.6	163.1								93.8 182.7	95.1		TAMB		- FULL	
SB 2400.0 FT X70041	DEGREES			92.8 92.7	4.0	9	.1 92	- 4 - 4	4.	5 86	.7 83	. 6 8 1	7 78	4 77	. 7 73	0	. 1 65	0.0	41	22 0 0					•					104.7 101.6	9 102	ICY SHIFT -9	 ALPHA SB59	- 1	\$12E 400.00 SQ IN)	
. STD. DAY, J-300-FMGDL	FROM INLET.	•	;	84.2 90.5	4 R	8	.16 0	6. K	- 93.	9 92.		- 69	9	7 90.	. 2 87. 4 86.	3 82	8 78.	0 73	4 64.	9 1	, a									102.8 103.8	-	FREQUENCY	N299 · I ADH100		2 SO CM (140	
PERCENT R.H.	ASURED					80.0	.3 81.		- 03 - 03	0 84.	.7		88.8	.0 88	. 3 88. 86.	3 83	.0	.3 74.	.4 68.	<u>-</u> ۲	9 .0									97.6	0 105.6	T10 7.640	TAPE NG. I	.	SL 9032.	
DEG. F., 70 PERC	ANGLES			74.9	. 4 76.3	.0 78.7	5 80.3	5 G G G G G G G G G G G G G G G G G G G	. 4 . 92. 15	6 87.1	. 20°3	87.0	.2 88.7	88.0	98.3	9 86.0	.6 83.7	.4 79.8	5 71.8	. 9 64 9	.6 21.3				AMA (A) (A) (A) (A) (A) (A) (A) (A) (A) (A					97.5 98.3	9 108.3 1	DIAMETER RATI	- -		COUSTIC RANGE M (2400.0 FT)	
29.0 D				.0 72.2	73.6	2 76.9	1 77.9	9.00	. 00 00.1	.3 89.3	.0 87.6	96.0	3 86.4	.6 86.1	. 5 85.5 9 83.7	8 82.8	.4 80.5	.7 75.5	.6 70.2	.8 60.2	15.0				41.10.00					2 97.2	9 105.4		NTE 02-27-78		ACGUST 731.5 M C	A CONTRACTOR OF THE CONTRACTOR
				6 70.7 72	72.6	73.6	74.1	7. 0.6 8	89.4	89.5	86.5) N	83.5	83.2	8 8 8 8 8	77.8	74.9	71.8	62.4	47.00 0.00	9									· .	03.0		TEST DATE		TEST POINT 7004	
			FREG	50 69.						1			1						٠ ا			10000	12500	20000	25000	31500	20000	63000	00000	GASPL 95.					MODEL TE 7000	

							0															
07/17/79 10.160									OF.	RIGIN Pod	AL PR	PA QU	GE ALI	IS Y		-			000	FREE-JET SPEED 5 M/SEC (306.0 FPS)		
NOI SE			ž			400	40.8	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	40.9	4 0.04 7.0.03 7.0.03	40.1	6.0 0.0	40.8 39.9	40.2 39.3	38.7 38.9	39.7	36.8 35.8	54.2	TÁMB 33	17.6		
R BACKGROUND 3.0 FT. ARC X70050	1400	160.				8 <u>9</u> 29	94.4	200	98.5	88.6 88.7 87.5	86.9 8.6	98.0	89.2 88.7	88.6 86.1	79.3	75.3	63.9	110.01		9		
A 40.0	13	140. 150				102. 8 106.7 103. 9 107.3 106.2 107.3		_	i		i		ŀ	ı			i	6.5 114.5	ALPHA SB59	, ×		
S CORRECTED 1. DAY, SB FJ-400-FMODI	FJB400-FF					20.20 20.20 20.00	104.9	106.0	106.1	20.20 20.20 20.20	103.9 104.6	103.9	102.9 100.8	9 9 9 9 9 9	91.6		ı	117.0 11	. X	SI ZE CH (23.99		
SUME LEVELS 4T R.H. STD., MOEL F.		120.				40-6	6 97	- o. «	7 102	. 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6 . 6	.6 102 .7 102	.4 102 .6 101	.3 7.01 .2 88	2 2	e e	10 0	ဖ ဖ	.9 113.4	1. N299	54.7 SQ		
SOUND PRESS 70 PERCENT CATION - MG	HEAS	90			,	66.6 6.7 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0 6.0	1	ب ان هن در		4 40 00	0 %	on to	. 0	0 0	n 0	۲ A	ю-	106.6 109	TAPE NO	ARC		
ED HODEL SOU DEG. F., 70	ANGLES	•					0 88.		92.		2 93. 0 93.	9.8	28	8 8	9 8	8 8 8 0	93.69	8 105.3	3	RANGE (0.0 FT)		
UNTRANSFORMED I 59.0 DE		70. 80			k	82.28 82.28 83.08 83.08 83.08 83.08	3 95		2 69	2000 2000 2000	2 4 90 9 2 9	86	φ <i>γ</i> ι	a	20 40 20 80 20 80	7 85	V 60	01.6 103.	02-27-78 C41 ANECH			
		. 60.				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	85.0	9 67 69 60 7 69 60 7 69	87.2	88.5 87.5	87.9	89.2 89.7	89.7	86.4	94.69 93.4	79.6	65.2 58.7	100.8	TEST DATE	4		
		40. 50.			9	79.3 80.8 80.7 82.0 81.6 82.4	2 63.	0 - V	3 85.	5 7 0 5 6 6	1 86.	98.	8 8	0 95	78.	.0 76.	.9 62. .9 56.	8.7 99.7	TE8	TEST POINT 7005		
			7. 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0	00110	- 1		ı			. 1		ł		20000 8				GASPL 98		100EL 7000	493	

10.160						OI OI	IGINAI	PAGI QUAI	: IS .ITY						FPS)
10 82/21/20	•												ON - YES		FREE-JET SPEED S M/SEC (386.0
			PWL		<u> </u>	0.4 % 0	න න න න බ හ හ ග	7.0 1.0 1.0	2.5 2.5 2.5	0.0.0.0 0.0.0.0 0.0.0.0	41.5 43.2 43.7 98.9	0 0 0 10 4	ON CORRECTION ICE CORRECTION	TAMB 33.00 RELHUM 54.10	117.65 M/
LEVELS 40.0 FT. ARC			50. 160.		3.0.101.9.13	20 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2 88 6 4 4 9 6 6 9 9 6 9 9 6 9 9 6 9 9 6 9 9 6 9 9 6 9	4 97 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 100.3 100.9 101.8 102.0	9 102.8 2 100.4 1 97.2	.0 89.9 .0 85.7 .0 81.9 .2 75.2	.0 113.0 1	TURBULANCE	SB59 7900 REL	IN) - MODEL
ND PRESSURE LEIDAY, SB 40	X700	T, DEGREES	30. 140. 1		9	6 103 6 104.8 6 104.8 8 8 8	3 103 8 103.5 4 103.2 	44-0	5 101.9 102.4 1 102.2	0 100.3 1 97.4 1 92.0 2 92.9	1.7 86.4 84 1.1 82.6 82 1.3 77.4 77 1.7 72.2 71	3 115.3	SEC) 386.00 (IN) 48.00	I ALPHA SI PAMB. 23	31 ZE 23.99 SQ
MODEL SOUND	-J-400-	ED FROM INLET	0. 120. 13		6 7 8	92.7 93.4 95.5	99.4 99.9 100.9	101.7 102.7 103.0 103.0	103.1 102.7 101.2	100.9 1 89.0 1 95.7 95.1	.5 89.7 88 .0 88.1 84 .0 84.3 79 .6 77.2 72	6 113.7 1	FT/	N299 ADH135	64.7 SQ CM (
TRANSFORMED P	ATION	ANGLES MEASURE	100, 11			86.6 87.6 88.7	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	97.7 97.6 97.1 96.0	95.9 95.9 92.8	6 83.4 83.4 83.4 83.4 83.4 83.4 83.4 83.4	107.6 1	FREE JET VELK FREE JET	TAPE NO AERO. RDG	ARC 1
FL 19HT		NA N	90. 90			85.6 867. 88.6 87. 97.4 89.	89.1 90. 90.1 91. 91.4 92. 92.2 93.	91.0 93.1 94. 93.1 94.	95.0 96. 94.8 97. 95.3 96.	96.4 96. 96.8 96. 96.4 95. 94.1 92.	89.3 88. 90.2 88. 83.2 83. 72.0 72.	107	FACTOR 1.000	-27-78 1 ANECH CH	ACGUSTIC RANGE
			60. 70.			400 6 60 6 70 6 70 6 70 6	0 - 0 2 0 - 0 2	2 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0	4 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9	88.9 88.7 85.3 86.4 82.8 83.4 74.7 76.8	, ei	ZE SCALE CALC.	TEST DATE 02-2 LOCATION C41	12
			40. 60.		96	0 96 7 97 0 98		7 0 0 6 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0	900	966. 92.	67.9 88.0 83.2 82.6 81.8 80.9 73.7 74.1	— Э ов	MODEL/FULL SI	TEST	TEST POINT 7005
494			FREG	8 8 8 5	125 160 200 250	8 4 0 8 0 0 8 3 0	000 000 000 000 000 000	2000 2500 3150 4000	8300 8300 0000 0000	12500 16000 20000 25000	31500 40000 50000 63000				MGDEL 7000

Ö	
•	ı
÷	•
0	ŀ
-	•
•	١
~	•
•	
	•
-	
•	
0	

0	•	07/17/76 10.160									0)RIII F	GII PO	NA POR	L I	A() UA	ge VLI												FREE-JET SPEED 5 M/SEC (306.0 FPS)	
			R.H. STD. DAY, SB 2400.0 FT. SL	FJ-400-FMGDL X70051	FROM INLET, DEGREES	20. 130. 140. 150.	3 82 1 82 5 74 7 71 5 155	.5 83.3 82.0 77.5 70.9 157 .1 83.9 81.7 74.9 70.9 157	5 83.3 81.4 74.0 69.2 157	01.2 03.0 01.0 /2.0 00./ 10/.0 01.7 04.0 79.6 72.1 00.6 157.9 81 7 83 70 1 72 0 68 6 157.9	5 82.8 79.1 72.6 67.1 158	.1 82.7 78.7 71.7 66.7 159	6 81.9 77.2 72.2 67.1 159	9 80.8 76.5 72.2 65.0 160	.2 79.3 75.0 70.8 65.0 160 .5 78.8 73.3 69.5 63.5 160	2 75.2 69.4 65.4 58.1 160	.0 68.0 62.2 67.3 50.0 159 .5 66.7 59.7 51.3 39.9 180	.3 55.5 47.0 35.1 19.8 159	6 24.3 10.4	156.					12.9 94.5 91.9 87.2 81.0 172.9 19.7 100.0 95.6 90.3 84.1	.4 101.1 96.7 81.4	FREQUENCY SHIFT -9	N299 IALPHA SB59 TAMB 33.00 ADH135 PAMB 29.5900 RELHUM 54.10	SIZE FREE SQ CM (1400.00 SQ IN) ~ FULL 117.65 M/S	
		(A) E0	59.0 DEG. F., 70 PERCENT R.H.	CATION -	ANGLES MEASURED FR	0. 70. 80. 90. 100.	66.9 67.0 67.8 69.1 68.6 66.9 68.6 67.5 70.6 69.3 69.5 69.9	69.0 68.7 79.3 71.2 70.6 71.9 72.2 71.2 71.0 72.0 72.3 73.3	71.2 71.6 71.9 72.9 73.5 75.2	73.9 73.2 73.7 75.9 75.1 77.0 77.1 77.0 77.1 77.1 77.0 77.1 77.1	72.7 72.7 74.1 75.8 78.4 77.8	72.0 73.4 74.2 76.4 76.5 79.2	72.2 73.3 75.1 77.2 77.9 79.4 71 8 73.5 74 8 77.3 77.5 79.0	72.9 73.7 75.1 76.4 76.9 78.1	73.0 73.5 76.1 77.2 76.1 77.6 73.7 73.5 75.8 75.9 75.2 76.7	71.4 73.3 76.0 76.2 74.5 76.0	66.0 68.1 71.4 70.3 67.0 65.2	10 7 82 6 61.7 63.6 63.1 61.7 60.5	35.1 40.2 42.5 43.9 41.5 36.8	.7 14.4 13.1 14.4. 15.0 10.1					28	94,5 95,3 98,6 98,4 97,0 98,2	DIAMETER RATIO 7.840	TEST DATE 02-27-78 TAPE NG. N2 LGCATION C41 ANECH CH AERG. RDG. AD	ACGUSTIC RANGE 731.5 M (2400.0 FT) SL 9032.2	
						40.	64.9 66. 65.9 67	67.1 68.	69.9 68.	250 70.6 71.9	69.6 70.	68.5 70.	68.9 70.	70.1 72.	67.7 71.	64.0 68.	55. 6 63.	48.5 54.	4.00	6 000 10000	12500 16000		4.4	l	OASPL 81.4 83.1 PNL 88.1 91.6	PMLT 88.1 91.	LNI	TES	MGDE 70	495

and the selfice of

•	400
ı	D
•	
	٠
(Э
•	-
•	я
t	2
٠	
4	-
•	_
(
•	•
	ò
- >	3

HATTAMSFORMED PROBLE SOUND PRESSURE LEVELS CORRECTED FOR BACCORDUNO MOTER UNITAMSFORMED PROBLE SOUND PRESSURE LEVELS AT 0.0 FF. ACC. 10.0 FM. 10.0				•									٠				_			, S.			-		A project		1887° 1	
40. 80. 60. 70. 80. 80. 100. 110. 120. 130. 140. 150. 180. PML ANGLES REAUNED FROM INLET, DEGREES ANGLES REAUNED FROM INLET, DEGREES ANGLES REAUNED FROM INLET, DEGREES ANGLES REAUNED FROM INLET, DEGREES ANGLES REAUNED FROM INLET, DEGREES ANGLES REAUNED FROM INLET, DEGREES ANGLES REAUNED FROM INLET, DEGREES ANGLES REAUNED FROM INLET, DEGREES BO 2 80. 80. 90. 91. 80.4 97. 77 106. 013.0 144. 116. 6113.0 147. 99. 94. 97. 77 106. 013.0 144. 116. 6113.0 147. 99. 96. 97. 98. 97. 97. 97. 97. 97. 97. 97. 97. 97. 97								* 海	00	RI(F	GIN PO	IAN	F (PA(QU/	3E ALI	19									24.28	39.00	FREE-JET SPEED . M/SEC (0.	The state of the s
HE A CO CO CO CO CO CO CO CO CO CO CO CO CO	UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED	, 70 PERCENT R.H. STD. DAY, SB ICATION - MODEL FJ-ZER-FMODI BACKGROUND	ANGLES MEASURED FROM INLET, DEGREES	40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160.	63		85.0 89.6 88.3 89.1 89.7 92.1 94.0 96.4 101.8 108.6 109.5 113.2 112.4 146	88.4 88.9 89.4 90.0 91.6 93.4 94.3 97.0 104.4 109.0 111.4 114.6 113.0 1	88.7 91.8 92.8 92.3 92.7 95.3 96.4 98.8 107.3 114.6 115.7 116.7 113.6 1	89.8 92.6 93.2 93.2 94.6 96.6 97.3 101.2 108.9 115.5 116.6 117.5 114.2 152.	97.7 96.5 98.0 96.8 96.7 99.0 99.9 103.6 111.8 115.1 116.7 117.4 114.3	93.6 97.6 97.4 97.9 98.3 100.6 101.0 104.4 111.8 115.3 117.4 118.0 113.7 152	95.4 95.6 95.6 95.7 96.7 97.0 99.1 101.0 104.5 113.1 116.5 116.5 114.9 110.9 152	94.6 97.6 97.1 96.9 99.0 100.1 101.5 105.4 113.0 116.2 115.7 113.6 108.6 151	96.7 99.5 97.8 97.0 97.6 98.9 101.8 105.8 111.9 114.2 112.8 110.7 105.9 1	95.5 98.9 96.9 96.4 98.7 100.5 101.9 106.1 111.0 113.3 112.4 110.6 105.3 1 94.5 98.9 99.1 99.1 99.9 101.5 102.2 104.9 110.0 112.8 111.1 110.1 105.0 1	94.1 98.3 98.6 99.2 100.3 102.2 102.0 104.6 109.8 111.2 110.7 108.6 104.4 1	91.7 96.6 96.3 98.9 100.5 103.1 102.0 104.3 108.4 110.7 109.1 107.4 103.8 106.3 94.9 96.1 97.4 99.7 101.1 101.6 102.7 106.1 107.8 107.5 105.9 102.1 1	86.3 93.5 95.1 96.4 99.6 101.4 99.8 101.4 103.9 106.6 105.7 104.8 100.5 1 81.8 90.4 91.9 94.5 98.3 99.4 97.0 98.6 101.2 103.4 103.4 100.9 98.2 1	80.1 86.2 89.2 90.3 95.1 96.5 94.3 93.8 98.4 99.2 99.8 96.6 96.4	78.4 82.9 86.9 89.3 90.1 91.1 90.6 90.6 94.2 97.2 94.6 91.1 09.2 144 73.9 78.1 81.6 83.8 88.1 89.1 85.8 86.1 89.1 92.3 89.5 85.9 84.6 144	66.7 71.0 74.0 76.9 79.6 80.9 81.3 79.8 85.0 86.7 84.1 81.3 78.5 142	61.4 64.5 67.6 70.3 71.7 72.3 76.3 74.2 80.8 80.6 77.5 76.0 72.9 142. 56.1 58.4 62.1 65.6 66.0 66.7 70.7 70.4 74.5 75.3 72.8 69.5 65.7 143.	106.6 109.5 109.4 109.6 110.8 112.9 113.3 116,5 123.1 126.7 127.2 127.5 124.0 163.	DATE 02-21-78 TAPE NO. N294 1ALPHA SB59 TAMB	TION C41 ANECH CH AERO. RDG. ADHOSB PAMB 29.3700 RELHUM	TEST POINT ACGUSTIC RANGE 0 7006 12.2 M (40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL	

all a

				O	P(DOF	LP,	AGI JAI	E (S Y									SPEED O. FPS)
	•		. п				•										CORRECTION - YES CORRECTION - YES	24.26 39.00	FREE-JET SP O, M/SEC (
FI. ARG	160. PUL	112.4 146.4	TT T '		114.5 152.7		6 152				-	98.2	89.2 84.6	78.5 142.9	.7	124.0 163.9	REFRACTION C TURBULANCE (TAMB 700 RELHUM	- MOEL
STD. DAY, SB 40.0 FI ZER-FMODL X70060	DEGREES 140, 150.	108.5 113.2	441	116.6 117.5	.7 116.	1117	7 11 4.	10.		109.1 107.4	2 7	4 8	.6 91 5 85	- 10	69	127.2 127.5	0. 49 .00	1ALPHA 3859 PAMB 29.3700	SIZE 23.99 80 IN)
H. SID. DAY, FJ-ZER-FMODL	FROM INLET, 120. 130.	101.0 106.6		9 114.	25	2 2	113.1 116.5 113.0 116.2	- 7	13	110.	1 107. 9 106.	2 103.	~ _	98	3 75	123.1 126.7	VELGCITY (FT/SEC) JET DIAMETER (IN)	N294 ADH098	S S
ERCENT R.	ES MEASURED 100. 110.	o. 2 0 2 4. 8	60	4 6	ල ශ	9	101.0 104.5		101.9 106.1 102.2 104.9	o o o	9 0	0 6	ဖ ဖ	81.3 79.8 76.3 74.2	7	113.3 116.5	JET	TAPE NG. AERG. RDG.	ARC 154.7
59.0 DEG: F., 70 IDENTI	ANGLES 80. 90. 10	,	6. 9.	. 7 95. 8 96.	7 99.	2 100 100	97.0 99.1 98.0 100.1	.68 .89	2 100. 101.	5 102.	7 9	.3 99.		6 80.	0 66.	110.6 112.9	FACTOR FREE	78 ЕСН СН	IIC RANGE 40.0 FT)
D . 8 C	80.	•	41	2 93	94	96	4 – (9 6	a – 8 6	9 8	1. 97	9.0	α ω	0 76.	.1 65.	109.4 109.6 1	SCALE ALC.	02-; C41	ACGUSTIC 12.2 H (4
	8	9 0	2 90.7	.7 91.8 .8 92.6	93.4	.6 97.6 .4 95.6	98.2	7 89.2	. a . a . a . a . a . a . a . a . a . a	.↑ 98.3 7 96.6	3 94.9	90.4	4 82.9 9 78.1	0.17	58.4	106.6 109.5 10	MODEL/FULL SIZE INPUT 1.000 (TEST DATE	TEST POINT 7006

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

X70061

IDENTIFICATION - FJ-ZER-FMODL

		ANGLI	ANGLES MEASURED FROM INLET,	URED FR	OM INC		DEGREES						(True)
40. 60.	70. 80.	.08	100.	110.	20. 13	30. 14	40. 150	091 .0	ė)
		:							-				
66.4 70.4 71.5	.3	76.	٠ •	ო.	φ.	00. (ω (60 E	.2 168 5				
66.9 71.6 73.6	9 1	2	4.0	4 I	- t		D 1		N r				
4 73 0 74 9		6 6				N 4	- 0	+ 6	8 170.3				
75.7 78.1 78.7	2 78	80	1	0	-	မ	1	L	6				
71.3 77.0 77.9	.2 79.	82.	~	~	<u>ო</u>	9.	.1 93	4	.6 170				
73.0 74.7 76.1	.7 78.	81.	4.	si e	ص (φ.	.6 92	₩ (- (
73.3 77.1 77.6	78.	80.	, e		N	4 0	89 /		0/1 9.				***************************************
70 0 77 2 76 8	2 4	0 a	o K		0 K	0 4	4. 7.0 7.0		7 158				
72 4 77 2 76 9	7 0	- 6			9 0	ŧ a	6.83	- 10	8 167				
70.8 76.2 77.6	0 78	80.	· -	. 	9	. ~	.7 82	. ~	-			OF OI	
69.3 75.9 77.6	2 79	91.	-	e.	20	8	9		7 167			RIC	
68.5 74.9 76.9	500	9 6	0 1	æ ·	۰.	æ (- (.	. 9 166	•		ali PC	
1250 65.6 72.8 76.3 7 1600 61.3 70.7 73.6 7	76.2 79.1		80.9 80.9	4.28	83.6 83	9.0	74	5 P	8 165.2	- 0		A <i>l</i>	
58.3 68.7 72.3	9 78	80.	0	a	-	8	1		2 165			LR	
0 64.3 68.2	.3 76.	78.		4	ю	4	•		.9 164			P	
46.9 57.7 63.6	.5 72.	74	œ (- (a (٠.	~ (7 40	8 163			AC U/	
39.0 49.7 57.5	.3 64.	65	0		æ	0	N.	-	.1 162			3E	
.7 37.3 46.0	.4 57.	28	O) 1	٠. ٥	o c	<u>ء</u> م	22.	ব	162.0			1 17.	
9:0:0	7.8 12.7	14	9 4	0 1	2 00	٠	•		160.1			S	
	<u>:</u>		•	:). -				161.4				
12500													• • • • • • • • • • • • • • • • • • • •
16000													
L													
0000					•								
									-				
•													
CASPL 83.2 87.5 86.6		93.4	•	~	-	5.3 104.	-	8	.0 161.4				
PNLT 87.9 93.9 95.3	97.2 101.4	103.4	101.6	03.2 108	- o	o la	3 103.9	96	- 4				
Ň	Š			000		VONSIGNOS	FETT	q					<u>.</u>
N		ا و	2		TRE	- 1	פחונו						
TEST DATE	02-21-78		Ä	NG. NZ	N294	IALPHA		9	TAMB	24.26			
LOCATION	C41 ANECH	E	AERG. RI		860H	Z		29.3700	RELHU	8			
MODEL TEST POINT	ACGUSTIC	RANGE				SIZE		•		FREE-JET	ET SPEED		
10 7006 731	.5 M (2400,	00.0 FT)	SL	9032.2	SQ CM (1400.00	O SQ IN)	1	FULL	O. M/SEC	0	FPS)	
OH					3.1							3	
	And the second of the second o	Control of the pastern Spiness (Spiness)	1	20 To 10 To		and a second	A CONTRACTOR OF THE CONTRACTOR	A CONTRACTOR OF THE PARTY OF TH	- pair up out of the gapenship			egyttatsjattskeetine age i tujer ege i	MMRS (State) - Seven 18 Sharkston, Sect. 1841

0
8
_
ö
=
•
2
•
7
₹
6
0

8	•		ORIGII OF PO	VAL PAGE IS OR QUALITY		6
07/17/79 10.160						93.00 49.40 FREE-JET SPEED 1.63 M/SEC (296.0 FPS)
UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC	IDENTIFICATION - MODEL FJ-300-FMODL X70070 BACKGROUND FJB300-FMODL X01300 ANGLES MEASURED FROM INLET, DEGREES	0. 120. 130.	81.2 84.6 84.6 85.1 86.4 88.3 89.9 92.1 95.8 102.1 106.5 110.5 109.4 143.2 82.9 84.4 85.1 86.0 87.3 89.4 90.6 92.5 97.9 105.0 108.9 111.6 109.2 144.6 84.9 85.9 87.1 86.0 87.8 90.2 81.8 83.7 96.9 105.0 112.2 112.8 103.0 146.7 85.2 86.0 89.2 97.8 92.7 94.8 100.0 110.1 113.7 112.9 105.3 147.5 85.6 87.1 88.6 89.2 97.8 92.7 94.8 100.0 110.1 113.7 112.9 105.3 147.5 85.6 87.9 90.2 80.4 91.5 92.4 100.0 110.1 113.7 112.9 105.3 147.5 90.6 87.9 90.2 90.4 91.5 93.6 95.7 98.4 100.0 105.5 112.3 113.9 109.4 97.5 148.1 90.1 92.6 92.6 94.0 96.3 97.2 100.9 106.6 112.2 114.8 108.0 96.5 148.2 90.1 99.5 91.9 93.2 96.1 98.2 102.0 107.0 113.1 114.5 106.8 96.3 146.5 90.2 90.5 92.3 92.5 93.9 96.5 98.6 102.0 107.0 113.1 114.5 106.8 96.6 148.9 90.2 90.5 92.3 92.5 93.9 96.5 102.0 107.0 113.1 114.4 113.9 105.8 96.3 148.9	3 92.3 92.6 92.8 94.2 94.2 94.3 99.2 103.1 103.1 113.2 112.6 104.6 90.6 146. 95.9 146. 95.2 94.7 94.8 95.2 95.4 99.1 103.0 107.8 112.2 111.0 103.5 94.7 147. 94.8 95.2 95.3 95.4 99.1 103.0 107.8 112.2 111.0 103.5 94.7 147. 94.8 95.5 95.5 95.7 95.8 100.2 106.6 111.1 108.9 101.9 94.8 146. 3 95.2 96.7 96.9 96.5 99.5 102.5 106.6 111.1 108.9 101.9 94.8 146. 3 95.8 97.0 98.5 99.7 102.6 106.4 109.8 108.2 101.9 94.8 146. 1 94.6 96.8 96.8 101.3 100.2 102.6 105.6 109.8 107.1 101.6 93.9 146. 1 93.9 95.1 96.1 97.3 100.2 102.8 103.7 107.0 105.0 99.9 93.1 145. 5 92.4 94.3 95.0 98.2 99.6 98.8 101.0 102.6 106.4 102.8 98.7 90.7 145.	0 86.5 89.3 89.8 93.8 95.2 93.3 94.1 98.7 192.3 95.9 92.5 88.8 144 1 82.6 86.6 88.6 89.1 89.6 89.8 91.6 95.6 96.4 93.2 86.1 83.8 144 6 77.8 80.8 82.9 87.1 87.6 84.4 86.2 89.8 90.7 87.9 82.4 79.5 143 7 70.5 73.2 76.6 78.4 79.9 78.9 79.4 84.7 83.2 81.5 76.3 73.5 141 9 64.3 66.9 69.7 70.2 71.4 72.9 73.1 79.6 77.5 75.0 70.3 67.1 140 9 57.6 60.4 64.0 63.1 65.5 65.1 66.6 72.8 72.8 70.2 61.5 59.0 141 3 105.0 106.4 106.6 108.4 110.2 110.8 114.0 118.4 124.1 125.0 121.4 115.4 160	TEST DATE 02-27-78 TAPE NG. N299 IALPHA SB59 TAMB 3 LGCATION C41 ANECH CH AERO. RDG. ADH138 PAMB 29.5900 RELHUM 4 TEST POINT ACOUSTIC RANGE S1ZE S1ZE S12.2 M (40.0 FT) ARC 164.7 SQ CM (23.99 SQ IN) - MODEL 90.

60. 70. 60. 90. 100. 110. 120. 130. 140. 160. 160. PML 60. 1 67. 6 67. 6 69. 100. 110. 120. 130. 140. 160. 160. PML 60. 1 66. 7 6 6. 6 65. 6 69. 6 69. 4 95. 3 101. 7 105. 1 102. 1 105. 1 141. 5 60. 1 66. 7 66. 6 65. 6 69. 6 80. 8 90. 4 97. 6 107. 2 110. 2 111. 6 106. 7 146. 0 90. 5 90. 1 3 91. 7 91. 6 93. 1 100. 7 102. 1 102. 2 105. 9 146. 7 90. 5 90. 1 3 91. 3 91. 3 91. 4 95. 3 101. 7 102. 1 112. 7 112. 0 107. 2 146. 0 91. 82. 6 92. 6 93. 1 90. 3 91. 4 95. 3 101. 7 112. 7 112. 0 102. 3 147. 6 92. 6 92. 6 93. 1 90. 3 91. 4 95. 4 102. 3 10. 7 112. 7 112. 0 105. 3 147. 6 92. 6 92. 6 93. 6 92. 6 92. 1 100. 7 112. 7 112. 7 102. 1 102. 3 147. 6 92. 6 92. 6 92. 6 92. 6 92. 1 100. 1 107. 1 113. 7 112. 7 107. 0 102. 3 147. 7 92. 6 92. 6 92. 6 92. 7 102. 1 102. 1 102. 1 102. 1 102. 1 102. 3 147. 6 92. 6 92. 6 92. 6 92. 1 102. 1 107. 6 111. 7 110. 3 102. 1 147. 1 92. 6 92. 6 92. 6 92. 7 103. 1 107. 6 111. 7 110. 3 102. 1 147. 1 92. 6 92. 6 92. 6 92. 1 102. 1 107. 6 111. 1 103. 1 102. 1 107. 1 147. 1 92. 6 92. 6 92. 6 92. 1 102. 1 107. 6 111. 1 103. 1 102. 1 102. 3 147. 6 93. 6 101. 1 102. 0 102. 8 102. 8 102. 8 105. 8 105. 3 102. 3 147. 6 93. 6 101. 1 102. 0 102. 8 101. 8 103. 7 107. 3 111. 1 103. 6 105. 3 102. 3 147. 6 93. 7 6 96. 8 96. 9 97. 9 90. 1 103. 2 107. 8 111. 8 109. 9 105. 6 102. 3 147. 6 93. 8 100. 1 102. 2 102. 8 102. 8 103. 3 102. 1 103. 3 102.		RANGE 812E 812E 812E 80.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) -	, 4
60. 70. 60. 90. 100. 110. 120. 130. 140. 160. 160. PM. 46.1 67.5 67.6 66.0 90. 100. 110. 120. 130. 140. 160. 160. PM. 46.1 67.5 67.6 66.0 90. 100. 110. 120. 130. 140. 110. 141.6 40.1 60.7 6 67.6 66.0 90. 90.4 85.3 101.7 106.1 110. 111.6 106.7 145.3 40.1 60.7 6 67.6 68.6 69.9 80.4 87.5 101.7 110. 111.6 106.7 145.0 40.2 60.3 60.1 80.2 80.4 80.4 80.4 102. 110. 111.7 112.0 107.2 145.0 40.2 6 60.3 60.1 80.3 80.4 80.4 102. 110. 111.7 112.0 107.2 147.7 40.2 6 60.3 60.1 80.3 87.3 80.6 60.2 100. 111.5 110. 2 107.0 102.8 147.7 40.2 6 60.3 80.1 80.2 80.4 80.5 100. 110. 111.5 110. 100. 102.4 147.7 40.3 80.2 80.3 80.5 80.6 80.5 80.5 80.5 100. 110. 111.5 110. 2 107.0 102.8 147.7 40.4 80.7 80.6 80.6 80.6 80.6 80.6 80.6 100. 111.5 110. 2 107.0 102.8 147.7 40.5 80.7 80.7 80.8 80.8 80.8 80.8 80.8 100. 110. 111.5 110. 102.8 147.7 40.6 80.7 80.7 80.8 80.8 80.8 80.8 80.8 100. 110. 102. 102.8 147.7 40.8 80.8 80.8 80.8 80.8 80.8 80.8 80.8	TAMB 33.00) RELHUM 49.40	CH AE	TEST DATE 02-27-78 LOCATION C41 ANECH
60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. 160. PML 80. 1 80. 5 80. 180. 100. 110. 120. 130. 140. 150. 160. 160. PML 80. 1 80. 5 80. 180. 180. 180. 180. 180. 180. 1107. 1141. 180. 107. 1441. 180. 180. 180. 180. 180. 180. 180. 18	FRACTION CORRECTION -	FREE JET VELOCITY (FT/SEC) 298.00 FREE JET DIAMETER (IN) 48.00	SCALE SALC. 1
60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PML 4 86.1 87.5 87.6 86.3 86.4 85.3 101.7 106.1 107.1 141.6 160. PML 4 86.1 86.7 86.5 86.8 86.8 80.4 87.5 107.2 110.2 111.6 107.1 141.6 160. PML 5 80.5 80.1 80.1 80.3 80.4 87.5 107.2 110.2 111.2 112.0 107.2 146.7 10.	0	5 112.4 111.6 113.7 118.5 123.4 123.9 121.2	4 110.6
60. 70. 60. 90. 100. 110. 120. 130. 140. 160. 160. PM. 4 85.1 67.5 67.6 66.3 66.6 98.4 95.3 101.7 106.1 108.1 107.1 141.5 68.5 68.5 68.6 98.6 99.4 97.6 107.2 110.2 111.6 100.7 146.3 69.5 69.5 99.1 91.3 91.2 92.4 97.6 107.2 110.2 111.6 100.7 146.3 69.5 99.6 99.6 99.1 91.3 91.2 92.1 100.7 110.2 111.6 100.7 146.3 147.6 91.6 91.6 91.6 91.6 91.6 91.6 91.6 91	3 141.	68.5 67.1 67.5 71.1 70.6 68.3 61.8	66.1 69.0
4 66. 70. 60. 90. 100. 110. 120. 130. 140. 150. 160. 160. 160. 160. 160. 160. 160. 16	1 143	74.4 75.2 '74.3 80.9 80.4 78.1 71.6	.0 73.9 74.7
60. 70. 60. 90. 100. 110. 120. 130. 140. 160. 160. PML 66.1 67.6 67.6 66.3 66.6 89.4 95.3 101.7 106.1 107.1 141.6 66.1 66.7 6 67.6 66.9 66.9 90.4 97.5 101.7 106.1 107.1 141.6 66.1 66.7 68.7 66.6 89.6 90.4 97.5 101.7 102.1 110.6 105.7 146.3 66.1 68.7 6 69.6 89.6 89.6 99.1 100.7 102.1 112.0 107.2 146.0 7 91.6 92.6 93.6 93.9 93.1 93.4 96.5 102.9 114.0 112.0 105.3 147.6 8 93.8 93.9 93.9 93.1 93.4 96.5 103.7 110.7 112.0 105.3 147.6 8 95.3 95.0 95.3 95.0 96.8 96.5 96.1 105.6 113.7 112.7 105.6 102.7 147.3 9 95.4 95.0 95.0 95.0 96.9 96.1 105.0 113.7 112.7 105.6 102.7 147.3 9 95.4 95.7 95.8 97.4 98.6 107.6 113.7 113.7 110.8 105.2 147.0 9 95.4 95.7 95.8 99.7 102.2 107.7 113.0 1105.3 102.3 147.6 9 95.4 95.7 95.8 99.7 102.3 107.1 111.7 110.1 105.3 102.3 147.0 9 95.4 95.7 95.8 99.7 102.3 107.3 111.1 109.5 105.3 102.3 147.0 9 95.8 95.9 95.0 95.0 100.6 100.6 107.0 111.6 105.3 102.3 147.0 9 95.9 100.7 99.9 100.6 100.6 103.7 107.9 110.9 105.8 105.3 102.3 147.0 9 95.9 100.7 99.9 100.6 100.6 103.7 107.9 110.9 105.8 105.3 102.3 147.0 9 95.9 100.1 101.4 101.2 96.3 100.1 103.2 105.7 105.7 105.7 105.7 105.7 105.8 105.3 102.3 147.0 9 9 9 9 0 0 100.6 100.6 100.6 100.6 100.6 100.7 105.3 103.3 102.3 147.0 9 9 0 0 10.1 102.2 102.6 100.6 100.6 100.7 105.7 105.7 105.7 105.8 105.8 105.3 102.3 147.0 9 9 0 0 10.1 102.2 102.6 100.6 100.6 100.7 102.7 105.7 105.7 105.7 105.7 105.7 105.7 105.7 105.7 105.3 105.3 105.3 107.3 117.0 107.9	145	90.6 86.6 87.7 91.1 89.3 88.0 85.4 82.0 81.3 80.0 86.5 84.0 81.9 70.7	.5 68.6 88.0 2 80 R 81.0
4 88.1 87.5 87.6 88.5 89.6 89.4 95.3 101.7 106.1 107.1 141.5 87.8 88.5 89.5 89.5 80.4 95.3 101.7 106.1 107.1 141.5 88.5 89.5 89.5 80.4 95.3 101.7 106.1 107.1 141.5 87.8 88.5 89.5 89.5 80.4 97.8 100.2 111.6 106.7 145.3 89.5 80.5 90.5 90.1 91.3 91.7 91.6 93.1 100.7 112.0 107.2 146.0 89.5 89.5 100.7 100.1 112.0 105.2 146.0 89.5 89.5 100.7 100.1 112.0 105.3 147.6 89.5 89.5 89.5 89.5 100.2 113.0 112.7 112.2 105.9 146.0 146.0 147.3 89.5 89.5 89.5 89.5 100.2 113.0 112.7 112.0 105.3 147.6 147.3 89.5 89.5 89.5 89.5 89.5 100.4 107.1 113.0 112.7 110.8 102.9 147.3 147.3 89.5 89.5 89.5 89.5 89.5 100.4 107.1 113.0 112.7 105.8 102.9 147.9 147.3 89.5 89.5 89.5 89.5 102.7 112.2 110.5 112.7 117.6 102.9 147.0 147.0 14	0 146.	92.6 91.8 92.5 95.7 96.3 93.9 91.0	3 92.2 93.7
4 66. 70. 60. 90. 100. 110. 120. 130. 140. 160. 160. PM. 4 66.1 67.5 67.6 66.3 66.5 69.4 95.3 101.7 106.1 107.1 141.5 66.7 69.7 69.5 69.5 69.5 90.4 97.5 100.7 110.6 107.2 146.0 7.2 14.2 14.2 14.2 14.2 14.2 14.2 14.2 14	7 148.	101.2 98.3 100.1 103.2 102.6 100.6 99.8 1 98.2 98.8 2 98.8 3 97.4 94.4	6 98.5 98.7 1 9 95.3 94.8
4 98.1 97.5 97.6 90. 100. 110. 120. 130. 140. 150. 160. PM. 4 98.1 97.5 97.6 98.3 99.4 95.3 101.7 106.1 103.1 141.5 4 98.1 97.5 97.6 98.5 99.4 95.3 101.7 106.1 107.1 141.5 9 90.5 90.1 91.3 91.2 92.4 99.5 107.2 110.6 104.7 145.3 9 90.6 90.1 91.3 91.2 92.4 99.1 100.7 102.1 10.2 146.0 9 90.6 90.1 91.3 91.3 91.4 95.4 102.9 114.0 112.0 107.2 146.0 9 90.6 90.1 91.3 91.4 95.4 102.9 109.9 114.0 112.0 105.3 147.0 9 90.6 90.1 91.3 91.4 95.4 102.9 109.9 114.0 112.0 105.3 147.0 9 90.6 90.7 95.6 96.6 96.7 96.6 107.0 113.2 110.5 110.2 147.0 9 90.9 90.9 90.9 90.0 10.2 107.6 112.7 110.9 105.3 147.0 9 90.9 90.9 100.0 100.6 103.2 107.6 111.7 110.1 105.3 102.3 147.0 9 90.9 90.0 102.5 101.6 103.2 107.6 111.7 110.9 105.3 102.3 147.0 9 90.9 90.0 102.5 101.6 103.3 107.9 111.8 109.9 106.3 102.3 147.6 9 90.9 90.0 102.5 101.6 103.3 107.9 111.1 109.6 105.3 102.3 147.6 9 90.9 90.0 102.5 101.6 103.5 106.8 106.3 102.8 148.0 9 90.9 101.1 102.0 102.5 101.6 103.5 106.8 106.3 102.3 147.6 9 90.9 101.1 102.0 102.5 101.8 103.5 106.8 106.3 102.3 147.6 9 90.9 101.1 102.0 102.5 101.8 103.5 106.8 106.3 107.9 148.0	7 147	102.6 100.6 101.8 103.7 105.7 103.3 102.0 1	4 99.7 100.1
4 98.1 97.5 97.6 90. 100. 110. 120. 130. 140. 150. 160. PM. 4 98.1 97.5 97.6 98.3 98.4 95.3 101.7 105.1 107.1 141.5 108.7 141.5 141	3 147 0 148	104.3 102.0 103.5 105.7 108.5 106.8 103.9 1	5 100.1 101.9 1
70. 60. 70. 60. 90. 100. 110. 120. 130. 140. 150. 160. PML 4 66.1 67.5 67.6 86.3 86.5 89.4 95.3 101.7 105.1 107.1 141.5 4 66.1 67.5 67.6 86.3 89.5 80.4 97.3 101.7 105.1 107.1 141.5 10 66.7 86.3 69.1 90.3 91.2 92.4 96.3 101.7 102.1 11.6 106.7 145.3 2 90.5 90.1 91.3 91.7 91.6 93.1 100.7 112.7 112.2 105.9 145.3 4 53.6 53.0 53.0 53.0 93.9 94.7 96.6 104.2 110.7 112.7 112.0 107.2 145.0 6 53.8 94.3 95.3 95.6 95.6 95.6 95.7 99.1 113.7 112.7 110.6 104.3 147.3 8 55.0 95.3 95.0 95.0 96.9 95.1 100.5 111.2 7 112.7 107.7 102.9 147.3 9 56.3 95.0 95.0 96.9 97.8 100.6 107.7 112.7 106.5 102.2 147.3 9 56.4 95.7 95.8 97.4 99.4 102.3 107.7 112.1 106.5 102.2 147.1 9 56.4 95.7 95.8 97.9 99.4 102.3 107.1 111.7 110.8 105.6 102.1 147.7 9 56.4 95.7 95.8 97.9 99.4 102.3 107.1 111.7 110.8 105.8 103.0 147.6 1 97.6 95.8 96.9 99.7 103.2 107.7 111.7 110.8 105.8 105.8 103.0 147.6 1 97.6 96.8 96.9 99.7 103.2 107.7 111.7 110.8 105.8 103.0 147.6 1 97.6 96.8 96.9 99.7 103.2 107.8 110.8 103.9 105.8 103.0 147.6	8 148.0	102.5 101.6 103.3 107.3 111.1 108.6 105.3 1	9 100.8 101.1
70. 60. 70. 80. 90. 100. 110. 120. 130. 140. 160. 160. PWI. 4 98.1 67.5 67.6 86.3 86.5 69.4 95.3 101.7 106.1 106.1 107.1 141.5 6 86.1 86.7 86.3 86.5 89.8 90.4 97.5 101.7 106.1 106.1 107.1 141.5 10 86.7 86.3 89.1 90.3 91.2 92.4 96.3 110.2 111.6 106.7 145.3 12 90.5 90.1 91.3 91.7 91.8 93.1 100.7 102.1 112.0 107.2 146.0 13 90.1 91.6 92.6 93.1 93.4 95.4 102.9 109.9 112.7 112.2 105.9 146.7 14 93.6 93.0 93.0 93.1 93.4 95.4 102.9 109.9 112.7 110.6 104.3 147.0 15 93.8 94.3 93.6 95.6 96.7 105.6 110.7 112.7 110.6 104.3 147.0 16 93.8 95.3 95.0 95.0 96.0 100.4 107.1 113.0 112.7 105.6 102.8 147.3 18 95.0 94.7 95.0 96.0 100.4 107.1 113.0 112.7 106.6 102.6 148.1 13 96.4 95.5 96.9 97.8 99.4 102.2 107.6 112.7 106.5 102.8 147.6 13 96.4 95.7 95.8 97.9 99.4 102.1 107.6 111.7 110.1 105.3 147.0 14 98.1 97.9 96.4 95.7 102.3 107.1 111.7 110.1 105.3 147.0	3 147.4 0 147.6	98.9 99.7 103.2 107.6 111.6 109.9 105.3 1 100.8 100.6 103.1 107.9 110.9 109.6 105.4 1	.1 97.6 98.8 .0 99.8 100.7
4 68.1 67.5 67.6 69. 90. 100. 110. 120. 130. 140. 150. 160. PM. 4 68.1 67.5 67.6 68.3 68.4 95.3 101.7 106.1 108.1 107.1 141.5 6 68.1 68.7 68.6 68.5 68.6 99.4 97.5 101.7 106.1 108.1 107.1 141.5 9 68.7 68.3 69.1 90.3 91.2 92.4 98.3 101.7 106.1 108.1 107.1 141.5 9 68.7 88.3 69.1 90.3 91.2 92.4 98.3 108.0 111.7 112.0 107.2 146.0 2 90.5 90.1 91.3 91.7 91.6 93.1 100.7 109.1 112.7 112.0 107.2 146.0 4 93.6 92.6 93.6 93.6 95.6 96.2 105.3 110.7 112.0 107.3 147.0 6 93.8 94.3 93.6 95.6 96.2 105.3 110.5 113.4 108.9 102.9 147.1 9 95.3 95.3 95.3 95.0 96.8 97.8 100.6 107.0 113.7 112.7 106.6 102.8 146.1 9 95.4 95.5 95.8 97.8 100.6 107.0 113.7 112.7 106.6 102.8 146.1 9 95.4 95.5 95.8 97.8 100.6 107.0 113.7 112.7 106.5 102.7 147.6	3 147.0	97.9 99.4 102.3 107.1 111.7 110.1 105.3 1	9 96.4 95.7
4 66.1 67.5 67.6 66.3 86.5 89.4 95.3 101.7 106.1 107.1 141.5 67.5 67.6 66.3 86.5 89.4 95.3 101.7 106.1 107.1 141.5 6.5 89.1 90.3 91.2 92.4 96.3 110.7 112.0 107.2 146.0 6.2 90.5 91.3 91.7 91.6 92.6 93.1 91.7 91.6 92.9 114.0 112.0 107.2 146.0 6.3 93.5 93.1 91.7 91.6 93.1 91.7 91.6 93.1 91.7 91.6 93.1 91.7 91.6 93.1 91.7 91.6 91.7 112.7 112.2 105.3 147.6 6.5 93.6 93.6 95.6 96.2 103.3 110.7 112.7 110.6 104.3 147.0 6.6 93.3 95.3 95.3 95.3 95.3 95.3 95.3 95.3	147.6 147.6	97.4 98.4 101.2 107.6 112.4 112.1 106.5 1	96.4 95.5
4 66.1 67.5 67.6 66.3 66.5 69.4 98.3 101.7 108.1 108.1 107.1 141.5 66.1 66.7 66.5 69.5 69.6 89.4 98.3 101.7 108.1 108.1 107.1 141.5 69.5 69.5 69.5 80.4 87.6 107.2 110.2 111.6 108.7 146.3 69.1 90.3 91.2 92.4 98.3 100.7 108.1 108.1 107.1 141.5 69.5 146.0 69.7 98.8 99.1 91.3 91.7 91.6 93.1 100.7 102.1 112.7 112.2 108.9 146.7 67.7 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8	147.9	97.3 98.0 100.4 107.1 113.0 112.7 107.0 1 96.8 97.8 100.6 107.0 113.7 112.7 106.6 1	9 96.3 95.0
70. 60. 70. 60. 90. 100. 110. 120. 130. 140. 150. 160. PWL. 4 86.1 67.5 67.6 66.3 86.5 89.4 95.3 101.7 106.1 108.1 107.1 141.5 9 86.7 88.3 89.1 90.3 91.2 92.4 98.3 169.0 111.7 112.0 107.2 148.0 2 90.5 90.1 91.3 91.7 91.8 93.1 100.7 109.1 112.7 112.2 105.9 146.7 3 90.5 90.1 91.3 91.7 91.8 93.1 100.7 109.9 114.0 112.0 105.3 147.6 4 93.5 93.0 93.6 93.6 95.6 96.2 105.3 110.5 113.4 106.9 147.1	147.3	96.8 96.5 99.1 105.8 111.5 113.2 107.7	0 95.3
70. 60. 70. 60. 90. 100. 110. 120. 130. 140. 150. 160. PM. 4 68.1 67.5 67.6 66.3 86.5 69.4 95.3 101.7 105.1 108.1 107.1 141.5 0 68.7 68.3 69.1 90.3 91.2 92.4 96.3 160.2 111.6 100.7 146.0 2 90.5 90.1 91.3 91.7 91.6 93.1 100.7 109.1 112.7 112.2 105.9 146.7 7 91.6 92.6 99.6 93.1 93.4 95.4 102.9 109.9 114.0 112.0 105.3 147.6	147.1	93.9 94.7 96.6 104.2 110.7 112.7 110.6 1 95.6 96.2 105.3 110.5 113.4 106.9 1	6 83.5 83.5 84.0 84.0
0. 60. 70. 60. 90. 100. 110. 120. 130. 140. 150. 160. PML. 4 68.1 67.5 87.6 86.3 88.5 89.4 95.3 101.7 106.1 108.1 107.1 141.5 4 68.1 68.7 86.6 89.5 80.9 90.4 97.5 107.2 110.2 111.6 106.7 145.3 5 90.5 90.1 91.3 91.7 91.6 93.1 100.7 109.1 112.7 112.2 105.9 146.7	147.6	93.1 93.4 95.4 102.9 109.9 114.0 112.0 1	7 91.8 92.6
0. 60. 70. 60. 90. 100. 110. 120. 130. 140. 150. 160. P	146.7	90.3 91.2 92.4 96.3 106.0 111.7 112.0 191.7 91.6 93.1 100.7 109.1 112.7 112.2 1	.0 68.7 68.3 .2 90.5 90.1
60. 70. 80. 100. 110. 120. 130. 140. 150. 160. 486. 1 87.5 87.8 88.3 88.5 89.4 95.3 101.7 105.1 108.1 107.1 14	7 146	89.5 89.9 90.4 97.5 107.2 110.2 111.6 1	4 68.1 88.7
. 60, 70, 60, 90, 100, 110, 120, 130, 140, 150, 160,	7.1 141.5	86.3 86.5 89.4 95.3 101.7 105.1 106.1 1	.4 68.1 87.5 8
60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160,			
60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160,			
. 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160,			
. 60, 70, 60, 90, 100, 110, 120, 130, 140, 150,	P.K.		
	•	. 90. 100. 110. 120. 130. 140. 150.	. 60. 70.

FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS

													0)R)F	IG P	00	AL OR	- F	A(3E	15	,									
																															ED FPS)
																															JET SPEED
																								1						33.00 19.40	FREE-JET 90.83 H/SEC (
			3	183.7	64.3	65.3	64.8	65.0	65.6	65.2	64,8	64.6 -	65.2	65.7	85. G	65,8	165.7	64.7	63.6	60.7	59.2					178.4				TAMB 3	9
1. or			160.	79.9	78.6	77	1	7	74.2	1		70.2	99	67	0 0 0	9	20	30.00			•						67.6	Ot			- FUIL
1. SIU. DAY, SB ZAUU.U FI. SL	X70071	EES	. 150.	9 86.1						1			ı			ı		63.6	1	3							96.7	SHIFT -		A S859 3 29,590	SO
90 1		T, DEGREE	0. 140	88		.6 92.1	1			1			1		•	1		54.2								.6 100.9		FREQUENCY SI		IALPHA PAMB	\$12E (1400.00
	FJ-300-FMGDL	OM INLET	120. 130	1		83.6 89.6				-			1			1			1		- 1					•	7 106 3 106			N299 ADH138	- S
2	1	URED FROM	110. 1	-		76.9 8	1			1			1			į			1		- 1					93.4	00	7.640	- 1	RDG. AD	9032.2
יבאכבאי	DENTIFICATION	ES MEASU	100.	-	60	75.3	9	N	ю -	4	a,	6 0	8	ώ ι	- 0	60	.	o –	-	o e							00.00	RATIO		TAPE AERG. R	ë
. u nea. r., /u	IDENTI	ANGLES	8	1	73.	75.1	77.	78	78.	78.	79.	9, 6	90.	85.	82.	82.	90	67.	90		-					92.6	102.4	DI AMETER R	1	퓽	RANGE
. c ucu.			. 60.	71.	6 73.	0 01.5	73	6 77.	1 76. 6 76.	1 76.	1 77.	7 76.	79.	4 81.	9 6	.18	50	7 67.	90		•					9 .	c c	710		-27-78 ANECH	ACCUSTIC RANGE 5 M (2400.0 FT)
,			60, 70	0	m	24.	i io	•	~ +	0	60	rù 4	0	0.4	- 0	a	92 6	ED 60	0	0 01						о •	. 8 99.			DATE 02-	AC 731.5
			50. 6	0	0	70.4 72	-	'n	o -	a	4	, K	0	ဖ ့	0.4	9	'n,	40	7	,						6.0	95.4 98			TEST DA	T POINT 7007.
			.	1	_	a 0		4	on o	0	o,		-	œ (v d	4	0 1		10	×						4.7	93.3				TEST P

0
õ
_
_
•
0
=
•
2
~
`
~
_
_
•
~
0
_

										d ·	OF OF	: I	SIN PO	AL DF	. P	A U	ge Al	IS ITY	7										
																												33,00	00.60
SC NOISE				P 4				3 142.6	143	1 146.7	147.	147.	146.9	147	6 147.6 7 148.2	147	146 146	145.8	145	1 4 6 5 4 5 5 4 5	145	8 144.0	143	143.3	4 139 7	-	8 159.9	TAMB	- 1
FOR BACKGROUND 40.0 FT. ARC	X70080 X01400		150. 160					١.	100	200	96 0	97	04.6 95.8 04.0 95.4	96 0	9 8	3 95.	7 94	6 94.	93.	99.0 92.1	.3 92.	88	4 84.	81.4 80.	9 67	1.1 58.	19.4 113.	SB59	0060 .
DAY, SB 40	FJ-400-FMGDL FJB400-FMGDL	DEGREES	140.					106.8 1	108.1	2.6	114.1	14.6	13.6	112.3	12.0	110.9	00.00	107.4	107.0	103.0	101.6	26.2	92.5	86.55	73.6	9.89	123.7	IALPHA	1
LEVELS CCRR H. STD. DAY,	1	FROM INLET,	120. 130.					.0 102.	6 104.	98.4 108.0	6 110	6 111	05.0 111.6 05.8 111.7	2 112	. T	3 113	15 T	60	109	900	4 105	201	7 95	89.9 89.8	75	72.7 69.9	8.3 123.5	N299	H137
CENT R. H.	MSSEL BACKGROUND	ASURED FR	110.					91.0	₹.	20.00 4.04 00.00	9	۰. م	2 4	8	ი ი	8	10 C	102.4 10	_ ,	o 4	8	ی م	N	86.1 8		65.9	113.5 118	E NG. N2	
70 PERC	CATION -	ANGLES ME	90. 100.					-	9.	7 90.2	9	a (o –	4		.5 98	a a	.7 98	2	- 6	7. 98	.l .	.7 89	a c	9	6 65.4	.8 110.4	TAP	AEKO.
FO. F.,	IDENTIFICATION		70. 80. 9					.1 85.2	.8 86.1	6 87.2	6 95.7	90.0	93.0 83.0	. 7 93.1	- 10 93.	.8 93.9	0.00 0.00 0.00 0.00	4 97.1	3 98.5	.6 97.	9 97.7	0	2 89.2	.0 87.	5 70.6 7	.1 63.2	6.2 108.2 109		ANECH CH
UNIKANSFORMED			. 60.					1	64.7	N N	88.1	98.1		80.5	 	92.3	94.7 7.7	96.5	200	ာ ဖ	94.6	9	86.9	~ a	67.0	0	7 106.0 106	DATE	
			40. 50.					83.	9 2	9 6	5 86.	96.		.6 88.	2 4 2 9	5 93	6. 6. 6. 6.	3	95	4.6	92.	3 86.	6 82.	4 a	0 64	0 67.	14.1 104.7	TEST	1
				7. 0.00 (8.0	90 90	100	160	1.			1		1250 8			- 1						25000 8			1		CASPL 104		

									01		GIN PO	1				IS TY										3
																			•					TION - YES	0.0	FREE-JET SPEED 5 M/SEC (386.0 FPS)
		60. PWL				5.4 139.8	06.5 143.9		04.6 145.8	_	3.4 146.1 1.4 146.8	.9 147	- 9	6 146	7.5 146.8 1.9 147.1	9-	8 148	» –	4 147.	» œ	9 145.	3 20	118.0 160.6	REFRACTION CORRECTION TURBULANCE CORRECTION	TAMB 33.00 RELHUM 50.60	FI 117.65
X70080	DEGREES	140. 150. 16	•			03.4 106.5 106	_	000.00	7 106.3	105.6 1	10.4 104.8 104	5 105.	10.8 106.3 105 10.1 105.2 104	1 104.9 1	٥ ظ 	6 104	8 103.8 1	מופ	.1 96.3 1	.7 86.	ıo e	5 63.	122.5 119.4 116	386.00 REF 48.00 TUR	1ALPHA SB59 PAMB 29.5900	S12E 23.99.50.1NV - P
FJ-400-FMODL	INLET,	120, 130.				93.2 99.7 1	100	900	2 S	4 109.	 - 0	.9 113.	108.0 111.6	5 111.	107.5 109.7	2 109	108	- -	99	900		4 68.	118.6 122.8	ITY (FT/SEC) IAMETER (IN)	N299 IA ADH137	7 SO CM (
DENTIFICATION -	ANGLES MEASURED FROM	. 100. 110.				87.	87.9 88.	9 6	93.5 94.	94.5 97.	9 6	96.9 99.	000	99.8 102.	100.6	2 101.0 102.2	102.3	- -	96.1 95.	87.5	82.2 80.	67.	3 111.5 113,1	FREE JET VELOCIT	TAPE NO. AERG. RDG.	ARC 154
IDEN	AN	0. 80. 90				67.	.1 87.9 88.	7 90.9 91.	1 91.6 93.	0 93.7 94.	0 95.4 97.	5 94.5 96.	. 55 . 56 . 55 . 55 . 55 . 55 . 55 . 55	7 96.3 98.	1 101.1 101.	0 102.5 102.7 102.9 104.	7 102.4 102.	1 102.0 101.	9 99.2 98.	2 92.2 96.	7 83.3 83.	7 67.7 68.	.3 112.0 112.3	FACTOR 1.000	02-27-78 C41 ANECH CH	ACOUSTIC RANGE
		60. 60. 70				2 86.	20.00	988	9 94.5	6.93.9	8.96 8.96 9.96	95.5	6 96.4 96.5	6 97.1	6 101.5	.5 102.0 101.	5 101.4 1	900.	7 97.1	7 86.8	7 84.8	2 66.1	0.9 111.2 110.3	SIZE SCALE	TEST DATE 02-	5
		40.	50 63	00	125 160	87.9	87.9	9.00	92.6	98.0	9 69 50 50 60 60 60 60 60 60 60 60 60 60 60 60 60	97.0	96.0	9.66	100.0	8000 101.3 101. 0000 100.9 101.	99.7	98.4	95.8	v 0	83.1	ol io	GASPL 110.9 110.9	MODEL/FULL INPUT 1.0		DEL TEST POINT

0
•
-
0
_
_
_
•
2.
•
•
82/2
,
_
`
_*
Ē
О.

									OR OF	IG P	00 N/	IL R	P/ QI	NG JA	e i	3 7													
										:																		SPEED 386.0 FPS)	
																												FREE-JET SI	
		·	2	. 60	4	0 0	. IO 0		oo k	מוי		· e (20 6	. a.	(O 10		. –							~			9 33.00 H 50.60	FRI 117.65 M.	
		60. Pwi	ص ا) N	0	u o	5.6 164.5	0	10 K	, 0	6 4	-1	0	o on	00 00		162.	159.						6 6	9.6		TAMB	FULL	
=		150. 16	0 .	4 (V	-	ო -	79.9 75	04	9 1		ល់ ន	74.8 69	4 0	٠.	4 4	9								93.1 86 95.7 89	6.7	FT -9	SB59 29.5900	i Ž	
3J-400-FMGDL X70081	DEGREES	140.	88	8 8	68	6 0 4	92.00	87	96	8 8	62 1	28	7.7	2.2	6 K	38	9 .							99.5 102.9	102.	SHI	I ALPHA PAMB	\$12E 1400.00 SQ	
-J-400-FMGDL	M INLET,	20. 130.	.0 86.	. K . 69.	.2 89.	- r	9.19	.0. .18	10. a	.5 67.	.99 86.	i di d	63	7	9.6 72.6	0 48		, 1						• 0	.7 106.4	FREQUENCY	N299 ADH137	SQ CM (14	7
NO	SURED FROM	110. 12	2	7 0	-	4 (80.0 87	စစ	<u>ن</u> د	4 1	G K	•	ر م	1 01	6 4	r In								92.8 97	6	7.640	NG. N29 RDG. ADH	9032.2 \$	
DENTIFICATIO	ANGLES MEAS	100	41	. 0	4	ب د	78.9	4		? .	4 •		- 6	9 40	4 K	0	4.14							1 0		RATIO	TAPE AERG. R	- S C	
I DENT	ANG	0. 90.	.8 71.	74.	.8 75.	.4 76.	78.6	2 78.	9.79	.00	.1 61.	63	82.	.6	5 76.	50.	. 6 . 6 . 6							• α	6 103.	DIAMETER	3	IC RANGE 2400.0 FT	
		70.	9	, œ	D	4 R	77.0 76	מוני	77 8.	. 0	no c	۱۲.	D a	9 09	йı		D 4	.						99.3 102			02-27-76 C41 ANECH	ACOUSTI	
		.09	6	4 1	9	ب رو	12	بہام	a , c	מ ע	0 ,		ماد	۰.	9.5	r cu	- 0							9 -	9		DATE	731	
		. 60	69	2 5	74	5 5 7 8	72.7	24	74	9 9	77.	7.	78		68	44	26.							5 96.5	96		TEST LOCA	TEST POINT 7008	
		E0 40			- 1		200 72.	1 .			1					1			00	20000	31500	6 0	000	OASPL 86. PNL 93.	PNLT 93.			HODEL TE 7000	J 1

								- Transferration - Complete Co				OR OF			AL DR		AG		IS										FPG)	
																					-						23.00	EE-JET SPEED	6	
MRC MOISE			•	Ę				4 143.0	0 0	.1 146.2			-1			-1-			-						0 137.2	8 158.9	TAMB 2		MODEL 0.	
40 0 FT. ARC	X70090	8	150. 160					18	9.	111.9 110	111.3 109	100.7	110.8	113.3	=	108.0	106.6	106.4	104.5	102.55	98.0	93.4	83.2	78.7	73.2 74.0 65.6 66.1	122.2 120.	SB59		- (X	
CAY SB		INLET, DEGREES	130. 140.					5	- ·		-		-1			_ -	-		1		_			1	72.7 74.7 65.9 70.4	120.6 122.0	IALPHA	31.26	53.88	
STO	e e	1	. 120.					96.1	8 5	102.0	104.1	107.3	106.8	108.0	107.2	108.1	107.1	106.4	164.3	701	96.8	83.8	9 0	79.9	67.8 75.9 61.8 69.2	.3 118.4	N294		154.7 SQ CH	
70 PERCENT R.H.	FICATION - MOD BAC	ANGLES MEASUR	100. 110					91.7	6	93.7	0.28	9. 9. 9. 9. 9.	97.6	97.9	88	29.7	99.0	0.60	98.1	96.4 8.4	92.6	89.5	90.0	74.7	68.7 60.8	110.2 113	TAPE NO		ARC	
.1	· :-	ANG	.00					2 89.	9 9 •	.4 92.	5 93.	9	.5 96.	7 96.	97.	98.	2 88.	2 97.	6 88	.3 86.	7 94.	.5 90.	. 2 83.	.3 75.	65.5 66.2 58.9 60.8	07.2 109.2	1-78 AMEGU GU	TIC RANGE	40.0 FT)	
SP. 0 DEG. 5			60. 70.					.8 86.	.7 87.	90		92.	4 93.	.6 93	6 94.	7 8 84.	2	5 63	6 94.	2 83.	.0 88.	.8 84.	3 78.	.4 71.	0 64.4 5 59.2	1.1 105.6 1	02-2	5 P	12.2 H	
5			50.					87.1	96.7	88.3	200	92.0	93.4		83.6	9.20	93.4	93.4	93.7	80.8	86.2	81.8	73.0	65.9	59.4 62 52.3 55	104.9 105	TEST DATE	_	2009	
			40.	7.00 0.00	6	00 E	188		6		98	3 5	8	<u>a</u> a		8 5	<u>.</u>	8 8	88	. C		76.	9 9	62.	63000 56.7 80000 50.5	GASPL 102.5		TES	2000	505

															1.0E	19											
						·					OR OF	PC	VAL OR	Q	UAL	TY											\
19.452																										D FPS)	
/79									: :	÷.														YES		T SPEED (0.	
08/30/79									,		•													- 10 K	00	FREE-JET M/SEC (
																								CORRECTION CORRECTION	23.00 46.00	.0	
	U				PWL				143.0	144.6	146	146.2	146 147	146.	146.8	145		143.4		140.	137.6		158.9	REFRACTION TURBULANCE	TAMB	릴	
	S FT. ARC				160.				109.4	110.0	100		109.	108	106	-	40 60 60	-	9 2	8	7.07	. 6	120.8	REFRA		- MODE	
	LEVELS 40.0 FT	080		2	150.				109.5	110.6	11.9	110		109		106. 106.	_ =	-	•	1	78.7	1	122.2	9	SB59 29.3810	SO IN	
	SOUND PRESSURE STD. DAY, SB	0600X	74074	DEGREES	140.		•	•	106.5	108.6 110.4	==	1.001	110.6	==	100.2	108.9				91.7	80.2	70.4	122.0	69.	IALPHA	S1 ZE 23.99	
	UND PR	-FMODL		NE L	130.		3		-	104.7	108		108	109.		108.3	106.0	102.7	97.4		79.4	62.9	120.6	T/SEC) R (IN)		5	des
	DEL SO H. STD	FJ-ZER-FMODL		FROM INCE	120.				8	100.2	102.0	105.7	106.8	107.6	108.1	107.1	105.9	101.7	9.00		9 6		118.4	VELGCITY (FT/SEC) JET DIAMETER (IN)	N294 ADH086	.7 80	
	¥œ	•		MEASURED	110.				93.4	20 20	95.8	ł	55		102.9	102.9	101.7	1	9 9		2 7 6	1	113.3	1	R NG.	154	
	TRANSFORMED 70 PERCENT	DENTIFICATION	1	ANGLES ME	100.				91.7	· -	93.7			1		80.00					74.7	• 1	110.2	EE JET FREE	TAPE AERO. F) ARC	
		IDENT		ANG	8					l	92.0	.1 • •			• • '	98.3							109.2	FREE	5	RANGE 40.0 FT)	
	FLIGHT 0 DEG. F.				.00						9.00		94.5			95.23						.1 .	107.2	FACTOR .000	02-21-78 C41 ANECH	ACGUSTIC 2 M (4	
	59.0				2						89.8					• • •		1					105.6	SCALE FI		AC01	
		•								1 .	8 6			.1 .		•1 • •				·I·		.1 .	105.1	SIZE SO	TEST DATE		
					20.			**		1 4	86.3	.)				، ، اه							104.9	⊒	TES	TEST POINT 7009	
- [‡] 50	6				6				82.	83.	96.7	8 6	8 6	5	92.	5	8 8	9 65	7.00	100		200	102.5	MODEL/FI INPUT		1	
					FRED	8 83 83	8 5	125 160	500 500 500 500	315	9 00 00	000	1250	2000	3150	2000	8000	12500	20000	31500		80000	OASPL			MODEL 7000	

(),

ANOLES HEASURED FROM INLET, DEGREES ANOLES HEASURED FROM INLET, DEGREES 1. 90. 100. 110. 120. 130. 140. 150. 160. 160. 4 74.6 75.6 77.3 82.0 87.0 88.6 88.1 82.7 82.7 77.7 76.9 77.3 82.8 87.8 89.2 87.8 87.8 89.2 87.8 87.8 89.2 87.8 89.2 87.8 89.2 87.8 87.8 89.2 87.8 89.2 87.8 89.2 87.8 89.2 87.8 89.2 87.8 89.2 87.8 89.2 87.8 89.2 87.8 89.2 87.8 89.2 87.8 89.2 87.8 89.2 87.8 89.1 89.3 89.1 88.2 87.8 89.2 89.3 89.1 89.2 89.3 89.1 89.2 89.3 89.1 89.2 89.2 89.3 89.1 89.3 89.2 89.3 89.1 89.3 89.2 89.3 89.1 89.3 89.2 89.3 89.2 89.3 89.2 89.3 89.2 89.3 89.2 89.3 89.2 89.3 89.2 89.3 89.2 89.3 89.3 89.3 89.3 89.3 89.3 89.3 89.3	ANGLES MEASURED FROM INLET, DEGREES 90. 100. 110. 120. 130. 140. 150. 73.8 74.8 76.3 82.0 87.0 88.6 88.1 74.8 77.3 82.8 87.0 88.6 88.1 75.7 76.9 77.2 82.8 87.0 88.6 88.1 76.7 77.7 80.2 86.4 89.1 88.2 85.9 76.7 77.7 80.2 86.4 89.1 88.2 85.9 76.7 77.7 80.2 86.4 89.1 88.2 85.9 76.7 77.9 82.8 82.8 87.3 88.1 88.3 86.2 78.6 82.6 83.2 87.3 88.1 88.3 86.2 78.6 82.6 83.2 87.7 86.5 82.3 78.7 78.8 82.7 87.0 88.8 67.4 85.3 78.7 78.8 82.7 87.0 88.8 77.8 78.7 78.8 82.7 87.0 88.8 77.8 78.7 78.8 82.7 87.0 88.8 77.8 78.7 77.9 78.8 82.7 87.0 88.8 77.8 78.7 78.8 82.7 87.0 88.8 77.4 77.9 78.8 82.7 87.0 88.8 77.4 77.9 78.8 82.7 87.0 88.8 77.4 77.9 78.8 82.7 87.0 88.8 77.4 77.9 78.8 82.7 87.0 88.8 77.8 78.7 78.8 82.7 87.0 87.0 87.0 87.0 77.5 78.8 82.7 87.0 87.0 87.0 87.0 77.5 78.8 82.7 87.0 78.3 78.3 78.3 78.3 78.7 79.9 78.9 87.7 87.0 77.9 78.8 88.9 80.7 83.4 88.0 89.2 88.7 86.5 89.1 97.7 99.9 103.3 103.5 103.3 98.9 75 78.6 82.8 103.3 103.5 103.3 98.9 75 78.6 82.8 103.3 103.5 103.3 98.9 75 78.6 82.8 103.3 103.5 103.5 98.9
ANGLES HEASURED FROM 90. 100. 110. 120. 73.8 74.8 76.9 82.0 74.6 77.7 80.2 84.8 75.7 76.9 79.2 84.8 77.7 78.2 80.9 87.9 78.2 77.7 80.2 86.4 77.7 78.2 80.9 87.0 78.2 70.2 82.2 87.3 78.2 80.0 82.7 87.0 78.3 77.6 82.8 82.4 77.5 78.6 82.6 85.8 77.5 78.6 82.7 87.0 78.1 79.8 82.7 87.0 78.1 79.8 82.7 87.0 78.1 77.8 80.2 82.3 78.1 77.8 80.2 82.3 78.1 77.8 80.2 82.3 78.1 77.8 80.2 82.3 78.1 77.8 80.2 82.3 78.3 75.8 70.5 70.5 78.3 75.8 70.5 70.3 78.3 75.8 70.5 70.3 78.3 75.8 70.5 70.3 89.0 97.7 99.9 103.3 99.1 97.7 99.9 103.3 99.1 97.7 99.9 103.3	ANGLES HEASURED FROM ANGLES HEASURED FROM 70. 80. 90. 100. 110. 120. 69.0 71.0 73.8 74.5 76.3 82.0 71.4 77.4 75.7 76.9 79.2 84.9 73.4 77.4 77.7 76.2 80.9 87.9 74.9 76.2 78.2 78.2 80.9 87.8 74.9 76.2 78.2 78.2 80.9 87.8 74.7 76.2 78.2 78.2 80.9 87.6 74.7 76.2 78.2 78.2 82.2 87.6 74.7 76.2 78.2 78.2 82.2 87.6 74.7 76.2 78.2 78.2 82.2 87.6 74.7 76.2 78.2 78.2 82.2 87.6 74.7 76.2 78.2 78.2 88.2 87.6 73.1 75.2 77.5 78.6 80.8 82.7 86.3 73.1 75.2 77.5 78.6 80.8 82.7 86.3 73.1 75.2 77.5 78.6 80.8 82.3 73.1 75.2 77.5 78.6 80.8 82.3 73.1 75.2 77.5 78.6 80.8 82.3 73.1 75.2 77.5 78.6 80.8 82.3 73.1 75.2 77.5 78.6 80.8 82.3 73.1 75.2 77.5 78.6 80.8 82.3 73.1 75.2 77.5 78.6 80.8 82.3 73.1 75.2 77.5 78.6 80.8 82.3 73.1 75.2 77.5 78.6 80.8 82.3 73.1 75.2 77.5 78.6 80.8 82.3 73.1 75.2 77.5 78.6 80.8 82.3 73.2 75.2 78.1 77.8 80.2 82.3 73.1 75.2 78.1 77.8 80.2 82.3 72.0 74.7 76.3 77.8 80.2 82.3 72.0 74.7 76.3 77.8 78.6 80.8 85.3 78.5 78.3 72.5 78.1 85.3 78.5 78.3 72.5 78.1 85.3 85.3 85.3 86.7 80.8 80.0 85.4 88.0 85.7 85.7 85.7 89.9 103.3 85.7 86.9 89.1 87.7 89.9 103.3 87.7 86.9 89.1 87.7 89.9 103.3 87.7 86.9 89.1 87.7 89.9 103.3 87.8 80.8 80.8 80.0 88.4 ARRO. RDG. ADHOB
	70. 60. 71.0 70. 60. 71.0 70. 60. 71.4 77.4 77.4 77.4 77.4 77.4 77.4 77.
	70. 71.4.7.7.7.4.9.7.7.7.4.9.7.7.7.7.7.7.9.9.7.7.7.9.9.7.7.7.7

0
80
<u>-</u>
0
=
70
<
~
=
$\overline{}$
Ē
6
•

SPEED 294.0 FPS)	8.00 3.80 FREE-JET 61 M/SEC (135 134 135 134 137 134 100 EL TA	87. 8 33 82.4 78 75. 9 72 62. 9 58 117. 7 115 117. 7 115 PAMB 29 81 ZE 23. 99 SG 1	09.3 89 84.1 83 78.5 89 73.5 69 66.1 63 66.1 63 113.9 117 ADH114	13.3 83.3 83.4 80.5 80.4 80.5 80.4 80.5 80.4 80.5 80.4 80.5 80.5 80.5 80.5 80.5 80.5 80.5 80.5	27-78 ANECH CH BUSTIC RANGE	2. A C C C 1 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3
			94 97 28 29 29 29 29 29 29 29 29 29 29 29 29 29	1001 1001 1001 1001 1001 1001 1001 100	92.1 92.2 92.2 92.2 92.2 92.2 92.2 92.2	92.3 99.17 92.2 94.17 90.4 92.17 90.4 92.17 90.4 92.17 92.6 93.6 93.6 93.6 72.6 73.7	90 89 80 80 70 70 70 70 70 70 70 70 70 70 70 70 70
IS TY		0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	102.7 105 102.4 105 102.3 105	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	9 92.2 94. 1 91.6 95. 0 92.1 94.	
PAGE QUAL		.5 141 .2 142 .2 142	105.5 97 105.1 96 105.0 96 105.0 97	103.0 106 103.0 106 102.9 107 103.8 106	94.8 98 94.6 98 96.3 99 96.1 100	.5 91.1 93. 2 91.8 93. 2 92.3 94.	
GINAL POOR		7 4 6 4 1 4 1 4 1 4 1 4	8 4 4 6 10 4 6 10 8 8	4 105 9 106 7 106	90.5 94 92.3 95 93.1 96 94.0 97	99.0 89. 88.3 90. 89.4 91. 90.7 92.	
ORI OF		6 1 3 9 1 4 0 0 1 4 0 0 1 4 0 0 0 0 0 0 0 0 0 0	102.8 106 103.6 107 106.4 107 106.7 106	92.3 98 94.2 100 94.7 103 96.0 104	87.4 89 87.5 89 88.3 90 89.4 91	8 83.4 85. 9 84.8 86. 7 85.6 87. 8 89.2 88.	
		PWL					
		.00	ES		3LES ME/	AN 70. 80. 90	
	7 4	000	XX	GUND	N N	IDENTIFI	
		ביושה שהטהטהטה שלו אל	CONNECTED TON BAC	211	TO CLUCKE	7	

					•								(O! OF	R	GII PO	NA Oi	L (P/ QU	igi Al	E .//	IS Y												
																													YES YES			SPEED 294.0 FPS)		
																													CORRECTION - N		38.00 53.60	FREE-JET		
ARC			٥. ڇ						2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	4 139		5 140	.2 140	. 5 140	5 140	0 141	1 141	1 142	2 143	9 143	. 1 142	. 9 142	.0 142.3 5 141.5	4 140.	4 138	.0 137.		.9 155.2	REFRACTION COR TURBULANCE COR	- 1	TAMB 3	MODEL 89.		
40.0 FT.	X70100	ES	. 150. 160					•	204.	105.5	6 103.3 98	100.2	99.5	98.1	97.9	0. 7 g	2.66	100.2	- 0	က	00.9	9.0	4 95.5 98	87.4	82.4 77.4	70.1	60.3	114.4 111	88	- 1	A SB59 B 29.3300	SQ IN)		•
STD. DAY, SB		INLET, DEGREE	130, 140						20.0	.8 104.	103.2 104.6	7 104	.7 104.	.5 104.	.0 104	0.0	3 104.	6 104.	100	104	3 102.	. 1 50.	97.0 96.7	68	.4 83.	8 72.		117.2 116.8	/SEC) 294 (IN) 48		IALPHA PAMB	S12E M (23.99	•	
ж. Н.	- FJ-300-FMGDL	ASURED FROM I	110. 120.				-	ć	200	96	96 -	5 100	4 100	1 101	9 102	102	2 102	9 102	103	1 102	7 101	96	4.8 97.4	8 90	0.0 0.0	2 75	9 9	.2 114.0	VELOCITY (FT/SEC) Jet Diameter (IN)		G. N299 G. ADH114	154.7 SQ CM		
, 70 PERCENT	DENTIFICATION	ANGLES MEASU	100.					9	00 g	67.7	98.6	91.4	92.3	93.2	94.2	94.2	96.1	96.3	97.8	97.3	97.0	9 60	4 92.6 94	85.7	81.7 75.6	69.7	61.9	9 107.7 110	FREE JET VE FREE JE		AERO. RDG	E FT) ARC		-
DEG. F.	I OEN	Z	80. 90					•	0 - 0 -	9 87.	80 8	7	. 16	3 93.	7 94.	2 94.	4	.8	96.9	5 97.	98.	. 10 . 10 . 10 . 10		.6 86.	.0 84.	.0 68.	.0 63.	107.5 107.9	FACTOR F		-27-78 1 ANECH CH	RANG 40.0		
59.0			60. 70.					į	5 C	.4 86.		7 90	.3 90.	.92	.5	20.00	.8	.1 93.	0 4 9 8	94.	95	.1 83.	92.1 91.7	9 87.	.2 25.	.2 69.	.5 53.	.3 105.8	ZE SCALE FA CALC. 1.0		02-2 C41	ACCUSTIC		
			20.					•	90.0	96.4	0.0	90.1	89.0	89.8	. TG	o 4	92,4	92.7	9 6 7 6 8 6	83.3	94.4	9.00	3 90.6 9	83.5	79.7	66.0	58.7	7 104.5 105	MODEL/FULL SIZ		TEST DATE	FEST POINT 7010		
			FRED 40.	20	83	00	125 160		2	9	87.	a	8	6	<u>a</u>		92.	8		93	6	3 6		82.	9 7	. 99	58.	GASPL 104.7	MODEL			MODEL TES	5	0:

-	_
¢	3
	3
_	=
•	
	٠
C	3
	_
_	
6	2
ň	2
•	-
•	
R	Ĺ
•	_
	-
•	
	3
	Š
c	э.

										OF Of	RIG F [IN O	AL OR	Q!	JA	e i Lit	8												(
											3	•																SPEED 294.0 FPS)	
																•												FREE-JET SPI M/SEC (29.	
	****															•						 					38.00 53.60	FREE 9.61 M/S	
l:			2					158.4		- -				- -			157.8	- 60 K	2			***		172.7			TAMB	•	
			0. 160.	.6 74.	.3 71.	.0 66.	99 66	0.0	5 65	.7 64 64	.2 65	.6 64	.9 63.2	4 56	.7 50	.7 20	6	_						4.0	3.00		300	IN) - FULL	
	X70101	DEGREES	140. 150	a ·	. 4	. ~	0 0	81.5 73	200	ි ල 10	9 0	4 K	76.5 70	9	ω a	9 60	6	? <u>.</u>						76	7.3 80	SHIFT	PAMB 29.3	ଓ	
	-300-FMGDL	INLET, DE	130.	10	<u>ه</u> د	4	oi a	oi o	-اد	ro d	, w	io e	79.6	0	o -	- 9	9.	n .						4.00	1	FREQUENCY	¥.	S12E M (1400.00	
	3	FROM	. 120.	4 75.1	C 6	91	8 6	8 6	83	6 6	82	82 81	79.3	35	6.7 8.8							• .		60.0	100.4	40 FI	N299 ADH114	. 2 SQ CM	
	- NDILE	MEASURED	00. 110.	.6 70.	23.7	0	- 75 77	*	70	6 N	3 79	~ €	6 78.	3 76.	u K	0 50	4 0	, io						0.08	2 97	0 7.6	TAPE NO. Ro. Rog.	9032	
	•	ANGLES	90. 10	6	N a		ю —	a -	0 77	76 7	9 77	10 Q	78.1 76	4	7 7 6	3 60	0.0	-						98.2 68	10	RATI	TAP AERO.	10E 1 FT 3L	
	=		90.	.	4 V	10	<u>ب</u> م	~	2	01 O	0	හ ල	75.6	,	- c	0	ო ი	•						- K		DIAMETER	7-78 ANECH CH	STIC RANGE (2400.0 FT	
			70.	67.	7 6	7	73	73	33.	74.	74.	73	74.3	33.	9 6	60	9 6	9						85. 5.3	9		02-2 C41	ACGUSTIC 731.5 M° (24	
			0. 60.	67.	69	7	72	72.	72.	22.00	72	72.	0 72.3		00 %	56.	46	.						1.00	_		TEST DATE LOCATION		
			40. 50	9	9 (7)	6	0 N	юк	× -		- 10	e 0	68.9 70.8		ió ic		- u	,						4.	8		F -	TEST POINT 7010	
			FREG								ı		1250 6	1		- 1			12500	20000	31500	50000 50000 50000	80000	OASPL 8	İ			MODEL 7000	

												OF	P)O(IAI OR	. P. Qi	AG. VAL	IT	S Y								SPEED 388.0 FPS)		
M																									38.00	3	FREE-JET 18.26 M/SEC (
FOR BACKGROUND NOISE 40.0 FT. ARC X70110	တ	150, 160.	ž.			•	- 1	3 102.5	105.6 99.5	101.0 92.4	97.55 90.7	94.4 88.1	94.5 87.5	93.55 88.55	95.3 67.5	95.1 87.9 94.8 88.5	000000000000000000000000000000000000000	86.0 90.1	93.3 68.0	90.7 86.4	85.6 84.6	76.4 75.1 71.2 68.8	65.3 63 56.8 54	113.0 108.4 153.9	8	28.3300	SG IN) - MODEL 11		
STD. DAY, SB FJ-300-FMDDI		120. 130. 140.		The second secon			A 40	100.0 103.	103.0	105.2	106.2	200	105.5	106.1	105.0	104.8 1	0.00	102.8	100.4 99.6	96.1	0 0 0 0 0 0	83.3 75.4	73.0 66.3 67.8 65.3 61.2 61.7	113.6 117.3 116.4			S12E .7 SQ CM (23.99 8		
L SOUND PRESSURE 7. 70 PERCENT R.H FICATION - MODEL BACKGR	ANGLES MEASURED	90, 100, 110.					0 6 2 0	96.0	5 67.1 6	3 89.9 92.	3 91.0 94.		2 94.3 97.	.2 93.9 98.	7 95.6	.6 95.5 9 3 96.4 9	00.00 00.00 00.00	0 95.1 98.	.1 94.0 96. .2 93.2 95.	.0 90.4 93.	.1 87.2 88. .9 83.8 85.	.4 78.3 80. .1 73.6 72.	65.4 67.4 65.9 60.3 58.9 59.5	05.3 106.6 109.9	TAPE NO	AERO. P	: RANGE 40.0 FT) ARC 154.		
UNTRANSFORMED MODEL 59.0 DEG. F.		60, 70. 60.					0 .0	1 62.2 63.	3 82.8 84.	7 64.8 100.	8 86.6 87.	87.0 88.	2 68.2 89.	8 88.3 89.	86.8 0 80.0 0 90.0	6 89.4 90. 1 89.4 90	89.6 91	7 90.5 92.	5 89.7 91. 2 89.4 91.	8 86.2 90.	1 63.0 87. 2 81.9 82.	3 76.4 80.	60.8 63.5 64.2 55.1 58.4 56.7	0.4 101.2 104.9 1	02-27-78	ON C41 ANECH CH	ACGUSTIC RA		
. 5		40. 50.	7860 50	63	000	09	400 000	79.5 80.6	81.0 81.2	61.7 63.2	84.3 83.5	85.1 84.4	86.6 85.4	85.5 86.0	86.7 87.2	86.6 86.9 86.8 86.9		67.1 69.3	87.3 85.3	78.3 83.0	78.1 79.8 75.8 76.3	71.7 71.4	63000 58,8 58,7 60 80000 52,9 52,6 50	98.2	TE3T	LOCAT	MODEL TEST POINT 7000 7011	511	

١	١		į		
1		l	١)	
•				۰	
			•	•	
(Š		į	۱	
•	,			•	
(ĺ	į	١	١	
ı	Ī	١	١		
۹	١	١			
į		١			
•				,	
•	۰	۰			
1	ŀ	۰			
	ė		į	١	
١	٠	•	۰	,	

10. 60. 70. 80. 80. 100. 110. 120. 130. 140. 160. 160. PHL NALES MESURED FROM INLET, DEGREES 10. 60. 70. 80. 80. 100. 110. 120. 130. 140. 160. 160. PHL 10. 851. 852. 853. 865. 2 854. 865. 2 82. 3 100. 102. 102. 130. 140. 15							OF	ilG F	IN O	AL	. F	PA()U/	JĒ AL	1 71.	3 Y													0 FPS)
### ANGLES MEASURED FROM INLET, DEGREES ### ANGLES MEASURED FROM INCOME FREE JET DAMFIETER (IN) 48.00 TURBULANCE ### ANGLES MEASURED FROM INCOME INCOM																									ŀ		38.00 53.60	FREE-JET SPEED
## ANALES MEASURED FROM INLET, DEGREES ## ANA	2				130	.7 136	138	140	5 138	20.	4 140	2 140		.8 141	0.42	.0 143	142	7 142	141	141	2 140	.8 138	. 8 138 . 8 138	15.4			TAMB	
The color of the	x70110	GREES	. 150.		1 102.5	104.1		97.4	96.0	90.0	96.6	0.0 0.0 4.0 4.0	9.00	98.4	4.00	101.4	100.7	98.4	95.3	1.16	9 9 9 9	74.4	6 59.6	3 112 7	00	88	1 .	(NI OS
DENTIFICATION ANGLES MEASUR ANGLES MEASUR ANGLES MEASUR ANGLES MEASUR ANGLES MEASUR ANGLES MEASUR ANGLES MEASUR ANGLES MEASUR ANGLES MEASUR ANGLES MEASUR B	300-FMGDL	INLET,	. 130.		3 96.3	100.5	20.00	103.6	104.2	0.60	104.8	0.50	0.0	105.1	04.0	104.3	102.6	100	94.0	94.5	8 8 6 6 6 7	74.4	60.8	7 2 2 2				- - - - - - - - - - -
60. 70. 60. 60. 60. 60. 60. 60. 60. 60. 60. 6	- z	URED	110.		3 64 6	1 86.2	7 88 4	6 90.4	92.0	96.0	8 95.6	96.55	1 98.7	5 98.9	. 00 00 V	4 99.4	0.66 0.	4 97.6	8 94.8	.7 88.3	8 65.9	.6 73.8	3 61.3	4 901 8	ET VEL	LET LET	E NG. RDG.	154.7
60. 70. 60. 20. 60. 60. 60. 60. 60. 60. 60. 60. 60. 6		ANGLES	 ,		83.0	86.2	87.0	98.6	89.8	0 10 0 0	93.1	83.54 64.54	9.00	96.0	97.3 67.3	96.9	98.0	- 6	92.0	92.1	85 60 26 4.	77.1	63.3	107 6 1			F F	RANGE 40.0 FT)
AN CATION SIZE 05 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					0.04	.0 85.	6 6 6 6	3 103.	88) ()	2 92.	o -	- 0	.2 94.	6. 00 0. 00 0. 00 0. 00	.a.	.2 96.	. e	. 7 94.	.16 8.	9 67.	.0 76.	.7 61.	F.	EACTOD	ų –	02-2 C41	ACCUSTIC.
TEST					a	.9 85.	0 0 0 0	.a 88.	.6 91.	200	5 92.	.7	. 69 93.	.6 93.	ი ი გ	.7	.5	200	50	.6 90.	986	9 77.	6 59	4 70 201	21.26	000	TEST DATE	TEST POINT 1

(ć		þ
1	į	į)
٠			•
			•
4	ς		Ì
•			-
4	,		١
1	ì		۰
		۹	١
ı	į	١	۰
		۰	•
•	١	١	۰
1	ŀ	١	۰
d	i		١

									•																				-				
,												0			NA OOI					IS TY									•			ED , O FPS)	: : :
																														8	60	FREE-JET SPEED 3 m/sec (368.0	
E LEVELS	•			PW	155.9	155.7	-	157.0					_[_ -			٦٢	107.6	154.9						172.3			38	RELHUM 53.	116.20	
SOUND PRESSURE LE	00.00 FT. SL	=	6	150. 160.	.9 71		0	10 C	ی م	0 67	67 0 66	71.2 66.7	0 67	2 67	7 65	200	15 15 15 15 15 15	2 39	50	0							85.1 80.0	4	FT -9		29.3300	SQ IN) - FULL	
LATED SOUND	DAY, SB 24	MGDL X701	INLET, DEGREE	130. 140.	0.		9 6	20 (2 G	8	6 6	82.9 78.8	73.	7.	6	7 0	6 6	28	48.	19.4 7.2			•				100 1 95 8	6	FREQUENCY SHI	IALPHA	PAMB	\$12E (1400.00	
AND EXTRAPOLATED	R.H. STD.	- FJ-300-FMCDL	RED FROM	10. 120.	8.7 74	0.0	3.4 80.5	4.3 80.7	6.7 82.4	7.3 82.0	9.0 82.9	8.9 82.3	9.1 82.0	8.6 81.1	8.1 79.6	5.3 /8.2	2.6 71.5	4.6 69.0	9.09 6.6	4.0	0				•			99.7	7.640 FR	Ι.	DG. ADH113	9032.2 SQ CM	
D, SCALED,	70 PERCENT	DENTIFICATION	ANGLES MEASU	90. 100. 1	.8 68.2 6	7 69.6 7	8 71.8	4 73.0 7	7 6.87	9 74.9 7	.3 78.4 7 76.8 7	6 76.9	.6 78.1 7	.9 77.2	.0 76.7	, 6 75.5	71.6	.7 65.9	6 60.5	20.00 A C C C C C C C C C C C C C C C C C C	6 10.2						9 67.6	1 96.6	R RATIO 7	TAPE	DE 1	ᅜ	
FLIGHT TRANSFORMED, SCALED,	. O DEG. F.,	301	Y	.00	67.8	73.6 8.5	7.0.1	72.	3 73.0 7	73.6	7 74.1	2 74.4 76	75.6	75.0	3 75.7	74.8	70.0	2 69.0	61.7	36.6	0						1 66.9 67	97.7	DIAMETER	-27-78	ANECH CH	ACGUSTIC RANGE 5 M (2400.0 FT)	
FLIGHT	20			60. 70	67.7 67.	67.8 67.	72.0 70.	71.1 71.	72.6 71.	72.3 72.	72.7 72. 72.8 73	72.4 74.	72.9 73.	74.6 74.	72.8 73.	73.4 73.	69.3	64.4 66.	57.1 58.	79.2	6						4 6	94.		6	LOCATION C41	731.	
* * * * * * * * * * * * * * * * * * *				40. 50.	a	.3	.00	.69	70.	2 70	.6 70. A 71	69.8 71.4	70,	73.	41		. 66.	.19 61.	. 7 52.	32.8 40.4	<u>.</u>						81.6 83.2	9		168	7	TEST PGINT	
•				FREG	20	8 8	3 5	125	900	220	318	200	630	<u> </u>	1250	1600	2500	3150	4000	2000	8000	12500	16000	31500 40000		1	OASPL					MODEL 7000	513

				ORIG OF	INAL POOR	PAGE QUALI	IS TY		000	FREE-JET SPEED M/SEC (0, FPS)	
UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC IDENTIFICATION - MODEL FJ-ZER-FMODL X70120 BACKGROUND	40. 50. 50. 70. 80. 90. 100. 110. 120. 130. 140. 160.		85.3 89.6 88.8 89.4 90.0 92.1 94.5 96.6 100.6 105.6 110.0 114.5 112.9 86.1 89.2 89.4 89.7 92.1 93.7 94.3 96.5 103.4 108.2 111.9 116.6 113.2 86.4 90.4 91.2 90.7 91.8 94.2 95.6 97.2 104.5 111.5 114.2 116.3 113.8 88.7 91.3 92.0 91.8 93.2 95.5 96.4 98.6 105.5 112.4 115.5 118.7 114.3	89.8 92.6 92.4 92.9 97.3 96.1 97.5 100.7 107.4 112.2 115.4 119.0 115.2 93.4 93.2 93.9 94.5 95.3 97.9 99.1 102.2 109.2 113.3 115.4 119.6 115.2 95.7 96.3 97.0 96.1 96.4 98.8 99.9 103.1 110.5 113.1 114.5 118.9 114.3 93.1 97.1 97.2 97.8 100.4 101.0 103.9 110.3 112.5 115.6 119.8 114.2	2 95.5 95.8 96.6 97.7 100.3 101.7 104.8 111.5 113.7 116.1 120.1 114.3 4 97.7 97.4 97.2 97.3 99.6 101.0 104.7 112.1 114.3 116.0 118.4 111.7 96.1 97.1 97.4 98.2 100.1 102.4 105.1 111.5 114.7 115.7 117.1 110.3 96.2 96.7 97.7 98.0 100.0 102.2 106.4 112.3 113.6 114.5 115.7	94.9 97.0 96.8 96.8 97.6 100.4 102.1 105.8 111.4 112.7 113.3 113.5 106.7 94.9 97.0 96.8 97.1 98.2 100.8 102.5 105.9 110.3 112.3 113.5 106.7 93.8 97.9 97.7 98.2 98.7 101.8 102.5 105.4 110.1 111.8 111.1 111.7 105.8 93.9 98.3 97.4 101.3 101.6 104.9 109.1 110.2 110.0 110.4 104.7	91.1 95.9 97.6 98.7 99.8 101.7 101.1 104.4 108.0 109.8 108.4 109.0 103.8 88.6 94.8 95.2 97.0 98.8 100.5 100.4 102.5 105.4 106.7 106.4 107.4 101.8 86.4 93.1 95.2 96.0 98.2 100.0 98.9 101.5 103.2 105.5 103.8 104.8 100.8 16.6 99.7 92.0 94.1 97.1 98.5 96.1 98.7 100.8 101.8 101.0 101.5 97.	80.2 86.0 89.0 89.4 94.5 95.6 93.2 93.7 98.3 96.9 97.4 98.6 45.2 78.7 82.5 86.5 88.4 89.5 90.0 89.4 90.9 93.6 96.1 93.9 92.2 89.5 73.7 77.5 31.0 82.9 86.9 87.9 83.7 85.5 89.0 90.6 89.1 87.0 84.9 86.3 70.3 73.6 76.3 78.7 80.2 79.2 78.6 84.9 84.9 84.9 83.7 81.7 79.1 86.5 86.6 87.9 87.9 77.5 72.6 87.9 87.9 87.9 77.5 87.9 77.5 87.9 77.5 87.9 77.5 87.9 77.5 87.9 77.5 87.9 77.5 87.9 77.5 87.9 77.5 87.9 77.5 87.9 87.9 87.9 87.9 87.9 87.9 87.9 87.9	105.7 108.6 108.8 109.2 110.5 112.6 113.3 116.5 122.2 124.8 126.5 129.6 124.7 163.7 TEST DATE 02-21-78 TAPE NG. N294 IALPHA SB59 TAMB 24.	ACGUSTIC RANGE STATE 154.7 SQ CM (23.99 SQ IN) - MODEL 0.	

																			:									
													NA DO		A U	GE ALI	EI TY	ing.									FPS)	
																				: ' 				YES YES			SPEED 0.	
																								1			FREE-JET M/SEC (
														O1						. .	0."			CORRECTION CORRECTION		1.4		
ARC). PWL			9 147.0	· -		-			-1			י דוד	7 146.6	_	7 146.7	.2 144.	. C	- 1	9 0	.7 163.7	REFRACTION TURBULANCE	TAM	RELHUM	MODEL	
40.0 FT. /			50. 160			5 112	9	8.3 113 8.7 114	0	6 9	. 6		4 -	5.6 108	9	-4	0 4	6 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	6 95	92.2 89 87.0 84	1.7 79	4 60	9.6 124.7	REFI	950	29.3620	- (X	
	X70120	DEGREES	140.			10 01		15.00	11	4 R		12	- C	E .	200	,	44	60 0	4	93.9 9 89.1 8	~	-	126.5 129	48.00		PAMB 2	\$1 ZE . 23.99 SQ	
DAY, S	FMODL	INLET, D	130.			105 6	• •	111.5 1	• •!	•		113.7 1	114.3	113.6	112.3	110.2	109.6	105.6	96.9	96.1 90.6		73.7	124.8 1	(18EC)			CM C 23	
R.H. STD. DAY, SB	FJ-ZER-FMØDL	FROM	120.	i		100	, T		-			-1			-	90	108.0	103.2	•	l		0 74.4	5 122.2	SITY (FT/SEC)	7000	ADHO91	.7 50	
=	- NOIL	MEASURED	. 110.			80	0	0 4	. 10	- 0	• 0		, ,	2 106.4		6 104.9			83	7 85.5	2 78.	67.	.3 116.5	ET VELOCI	20	RO. RDO.	15	
, 70 PERCEN	DENTIFICATI	ANGLES P	90. 100					2 2	. 1 97	66 6	101	6		0,	4 60	3 102	5 100	88	, œ	0.0	2 79	4 60	2.6 113.	FREE JET FREE		AERO	JE FT) ARC	
DEG. F.,	20				-	c) -	6 0 (4	(0)	() T	- 0	7	ر ان را	98.0 100	0 0	99.4 101	8		- IO	in a	6	9	110.5 112	TOR		ANECH CH	TIC RANGE	
29.0			70.			Ψ,	-	r- 40	a	10 ÷	- 01	9	Ø 4		0	98.0	~ 0	0 -	- 4	4 a	.	44	109.2 1	SCALE FACTOR ALC. 1.000	.00	02-21-78 C41 ANEC	ACGUSTIC 2.2 M (
			9			a	-1 -	91.2		_						97.7							108.8	ZE C	1000	LOCATION	-	
			8			•	8	8 5	92.	93.	6	93	97. 89.	9 (20.	97.0	8	8	8 8	82.	2	57.	7 108.6	MODEL/FULL SIZ		TES LQ	EST POINT 7012	
			Ĝ			e e	-1 -	98.4				1	-		- i	93.5							105.7	MODE			DEL TE: 7000	

Q.

					-																						
												0	RI F	GIN PO	AL DR	P/ QL	IGE	[. T	S							G O FPS)	
:				:										• .												-JET SPEED EC (293.0	
:																								28.40	44.00	FREE-JET 89.31 M/SEC (
ARC		60. Pul					.9 143	3.7 144.8 3.146.9	.3 147	.4 146	3 146	.9 146	6 147	.3 147	7 147	. 5 146 2 146	3 146	4 145	. 1 144	.8 143 .4 142	7 142	- 2	1.8 159.9	TAMB	RELHUM	MODEL	
40.0 FT. ARC . X70130 . X01300	ξ ύ	150. 16					2	- 4	2	1	? 09	R) R) (a	e; -	0 0		10	ب به م	ø	0 9	ဖြ	69.3 66 60.2 57	4	\$B59	29.5400	SQ IN	
SB -FMGDL -FMGDL	T, DEGREE	0, 140.					.1 107.	9 r	9 113.	5 113.		5 111	- 0	46	2 110	000	9 107	4 104	0 99	6 92.	0 -	2 69	8.	_	PAMB	S12E 23.99 S	
STD.	FROM INLET,	120. 930				•	9	99.7 105	3	1 1.	.0	6	4 0	10 e	0, a			ი -	8	7.	46	79.4 75	- -	1	ADH1C8	SQ CM C	
ENT R.I Model Backgi	MEASURED F	110.					92.	6	9	97.	100	5	105.	7 103.	4 103.	4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	102.	2000	0 97.	92.		6 70.2 64.4	6 114.	2	RDG.	154.7	
EG. F., 70 PERCI Dentification -	ANGLES M	30.					9	ü ⊿	. 0	a 0	, o	ωļ	, 4	ი –	0.0		.7 98.	.3	. 8 94.	.0 91. .3 88.	5 82.	71.	.9 110.		AERO.	RANGE 10.0 FT) ARC	
O DEG. F		. 80					96.4	87.8 87.8	90.2	98.0	92.0	93.8	. 60 . 60 . 60	94.2	94.6	96.1	97.6	96.6	95.2	92.9 88.1	85.8	a n	107.8 1]	ANECH CH	ACCUSTIC RAI	
59.0 DEG. F. IDENTIF		60. 70.					.3 65.	.6 96.	4 87.	.4 88.		1 92.	92.	9 6	3 93.	98.	96 6	e 6	.4 92.	.0 88. 5 87.	9 91.	65.7 68.0 59.2 62.6	. 6 106.	02	2	ACC 12.2 h	
		20.					84.3	94.6	85.8	86.5	98.2	4.00	9 00 9 00 5 00 5 00	6.0	92.0	000	94.0	92.6 9.6	89.4	85.7	76.4	63.6	104.4	}	LGCATION	T POINT 7013	
		40	90	න න ල ට	Ö i	0.00	18	60 4	9 0	98	0 0	88) (1) (1)	0 5	8 2	2 8	200	9 4	8	82	R	63C00 63.1 80000 56.3	103			MODEL TEST 7000 70	517

O.

													OR OF	G	IN	AL	PQ	A(U	GE ALI	IS TY							00.	FREE-JET SPEED 1 M/SEC (293.0 FPS)	
FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL IDENTIFICATION - FJ-300-FMODL X70131	ANOLES MEASURED FROM INLET, DEGREES	FREG 40. 50. 60. 70. 80. 80. 100. 110. 120. 130. 140. 150. 160. PWL	.1 69.0 70.0 70.4 70.8 72.7 72.6 73.7 81.4 87.5 89.2 87.3 79.8 1	68.9 70.0 71.8 73.5 81.7 75.1 75.1 77.2 85.9 88.3 89.1 85.6 76.4	71.6 72.4 73.9 74.4 74.6 76.4 76.6 78.6 67.3 88.7 67.6 63.5 73.7	72.3 71.3 73.4 74.5 75.4 77.3 77.9 79.6 87.6 88.3 88.1 81.9 71.9 1 72 9 72 2 74 9 76 5 77 0 78 8 78 4 80 6 88 7 88 9 88 8 80 8 71 8 1	71.5 74.2 76.1 75.8 77.3 79.5 79	73.6 72.8 75.1 75.8 76.5 78.5 79.1 81.5 88.8 90.2 88.2 80.3 72.4	71.5 73.6 75.8 77.0 77.3 80.1 80.5 83.4 88.5 88.9 86.7 78.5 70.8 1	72.3 74.3 75.1 76.2 77.4 80.0 80.1 82.8 88.3 88.7 86.6 77.6 69.5 1	74.3 75.5 76.9 79.2 78.9 81.2 80.4 83.1 88.1 87.6 84.1 74.6 68.4	74.4 76.6 78.1 79.5 79.6 81.5 80.8 82.9 87.0 86.9 82.8 73.9 66.6 1	72.7 76.7 78.5 79.2 80.8 82.6 80.4 82.0 84.3 84.3 80.4 72.4 64.5 1 64.5 1	68.3 73.2 75.1 77.6 79.3 80.5 78.2 79.3 80.5 79.8 74.0 86.6 57.0	64.6 70.7 74.1 75.0 77.9 78.7 74.7 76.1 78.5 75.5 69.9 62.3 53.3 1	55.9 65.3 68.4 69.3 74.2 74.6 71.5 70.4 72.1 70.2 64.0 52.2 38.4 5 47.7 86.1 61.4 68.1 66.4 66.9 64.4 64.0 64.9 61.2 84.1 99.9 22.1 5	35.4 43.7 51.8 53.9 59.1 59.4 54.3 53.4 54.6 46.8 37.5 19.4	12.0 23.8 33.8 36.5 40.8 41.8 39.0 34.7 38.5 25.8 13.8	4.4 10.0 13.6 10.3 14.9 6.9 11.12	12500 16000	00000	0091		84.4 86.1 88.1 89.3 80.8 92.0 91.6 93.6 89.8 90.8 90.8 94.4 97.0 98.5 100.4 101.5 99.9 101.3 105	.0 94.4 97.7 99.0 101.6 102.7 99.9 101.3 106.0 105.5 103.1 95.3 67	DIAMETER RATIO 7.640 FREQUENCY SHIFT -9	TEST DATE 02-27-78 TAPE NG. N299 .IALPHA 5859 TAMB 28. LGCATION C41 ANECH CH AERO. RDG. ADH105 PAMB 29.5400 RELHUM 44.	TEST POINT ACCUSTIC RANGE S032.2 SQ CM (1400.00 SQ IN) - FULL 69.3	519

_
0
9
_
•
0
_
2
•
~
_
`
~
Ö

																															,		ľ		
		. :																	1												. 1				
																			Ì																
						-									IN																				
												Ļ		۲	O	7	((QU			I T													•	ô
																																			221
																												•						SPEED	200
		-	:																																
																																_		FREE-JET	125
																																29.64	3.5	<u>.</u>	8
NO ISE									,	6	ب د د	i io		.	N G	6	0	9 (۰	• 4	е.		(OR U	o c o	6	IO I	~ 4		10	٥.	l	- I		
					Z					142.	6. K	45	45.7	45	145.2 2.2	45	146.	146.	40.0	46.	146.	146.	146.1	44.	43.0	42.	142.5	141		38.	159.	TAMB	3		اد
BACKGROUND	ARC			60.							NR	9	4	3	0 4	6	9	- 0		1	0		٠		0 1	2.5	8			5 0	a		2		TODE
S	FT	X70140 X01400		16						108	107			8				8						6	- 69	١.	8	7 2	92	ò	112		9		•
8 8	40.0 FT.	X01		150.						09.7	9 - -	00.8	07.8	06.3	9 6	• 1 •	99.4	900.6	- C	8	00.8	99.4			9 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠.	86.2		69	50.1	118.3	SB59	29.2		Ē
FOR		44	REES							6	 - 0	 		_ '						- 60	_			<u> </u>	۰ م <u>ا</u>	0	N		9	_	.8 1		- 1		9
CORRECTED	SB	FJ-400-FMGDL FJB400-FMSDL	DEGREES	140			1.			106.	108	=	112.		109	110.1	108	109.6	200	5	107.	106.	105.5	8	2 6	93.	2	60 0	7	99	121.	IALPHA	Ž	SIZE	5
ORRE	DAY.	400-	i	130.			-			4.4		-	١.	•	9 0	٠ .		o (2	0		• •			. 4	٠.	0.				2.3			:Ø:(V
		FJ-, FJB	INLET,	-						0 102	104		-	-		-	-	=:		=	_	108	_	_ •	35	<u> </u>		87	L		7 122		او	1	5
LEVELS	STD.	ON D	FROM	120							9 0	25.3		93	06.8	08.2	0.60	0.60	300	08.5	08.8	89	90	2 S	99.0		93.4	88.6		•	119.7	N299	E		9
1	Œ.	MODEL BACKGROUND		o.						<u>ن</u>	 	. 69	-	a (٥ م م		4	٠. د	2	, W	4	9	ر د	.	- - 0	1	۲.		9	-	.0				7.7
SSU	L	MOD	ASURED	110						<u> </u>	5 6	9 6	96	97	96	20	5	102	700	500	103	102	102	9	R (7)	92	88	9 7	70	64	113	S S			-
ā.	E	Z	뮢	.00						89.1	0 C	9.5	١.	94.3	- °	•ł •	2	27.7	ກ <u>ແ</u>	99.0		- 1		10 4 10 4	94.6	1 *	•	0.6	71.5	ნ 4	08.8	0_	E.S	}	ARC
SGUND	70 PERCE	DENTIFICATION	ANOLES							_,	n –	- 01		.	N C		.	œ.	_	. ~	~		0 :	6 0 7	.			3 5			10		7		
.07	١.	FIC	AK	8						87.	0 0	8	9	8	9 6	98		8) k	6	98	98	8	0	90	1.		96.	0	64	109.			RANGE	-
MODEL	9	ENT		80.							- c			•	- 0	., .		•	• •			٠.			v			ر د د		•	ď	ì	5	S (40.0
		=		•						85			0					66	- [9			97		9 60	92	87	69 7	69	9	107	7-78	ANECH	Acquistic	_
UNTRANSFORMED	28			70.						84.9	•	87.0		39.1	0.00	.I .			•1	7.0					 	1 .		31.57 8.8	68.4		05.2	02-27		ACG	E N
RAN											~ c		6	41		. 6	o o	ო •	- 6	, ი			د		.		_	- ^	. 6		8 10		ł	(2
Ş				9						83.	0 d	98	. 2	88	0) G	6	8	<u>.</u>	- 6	2	S.	93	S S	6	9 6	87.	85.	96.	65	90	104.	DAT	10		
				60.									١.		0 -	. I .		n .	•	0		٠.	9		10			 			8	TEST DATE	20	INI	
				•						60			1		8 8 9	1		80	1						- G	1			9	D	103	,-		TEST POINT	707
•				40.						١.	2		1 .		88.4	• 1 •			•			!			84.0 84.3		81.7	•	63.2		03.2			TES	
0					EO	8 63	88	ဂ္ဂ (1						1			1			ŀ				1				_	-			، بر ابر	2000
					FREG	, w «	12	- ·	200	250	. A	, io	8	5	1 2500	160	2000	2500	200	2000	6300	8000	10000	12500	20000	25000	31500	40000 30000	63000	8 0000	CASPL			MODEL	7
							1								<u> </u>												-		<u> </u>		_			_	

Q.

70. 80. 80. 100. 110. 120. 130. 140. 150. 150. 150. 150. 150. 150. 150. 15		PVI.	-		. 1	05.7 143.4 03.3 143.4	4	9 143.8	14.00	. 4 145.2	.2 146.1 6 146.5	4 146.8	3 147.2	100	2 147.4		5 145	84.5 144.0 77.5 142.2	7 140	116.4 159.7	REFRACTION CORRECTION - YES Turbulance correction - Yes	TAMB 29.84 10 RELHUM 43.50	FREE-JET SPEED MODEL 117.35 M/SEC (365.0 FPS)
ANGLES MEAS 70. 60. 90. 100. 67.9 67.0 87.4 67.2 68.1 88.6 69.0 88.6 68.1 88.6 69.0 88.6 68.1 90.9 90.5 90.5 90.3 99.4 92.2 91.7 92.6 93.2 94.8 95.6 93.0 94.4 95.6 95.2 93.0 94.4 95.6 95.5 95.0 94.4 95.6 95.6 95.0 94.4 95.6 95.6 95.0 94.4 95.6 95.6 95.0 94.4 95.6 95.6 95.0 94.4 95.6 95.6 95.0 94.4 95.6 95.6 95.0 94.4 95.6 95.6 95.0 94.4 95.6 95.6 95.0 94.2 96.9 95.0 94.2 96.9 95.0 94.4 95.6 95.6 95.0 94.4 95.6 95.6 95.0 94.4 95.6 95.6 95.0 94.4 95.6 95.6 95.0 94.4 95.6 95.6 95.0 94.4 95.6 95.6 95.0 94.4 95.6 95.6 95.0 94.4 95.6 95.6 95.0 94.4 95.6 95.6 95.0 94.4 95.6 95.6 95.0 94.4 95.6 95.6 95.0 94.4 95.6 95.6 95.0 94.2 96.6 95.0 95.6 95.0 9	FROM INLET, DEGREES	u. 120. 130. 140. 1			.8 96.1 100.5 103.9 107.0 1	7 96.2 105.1 108.4 109.6 1	5 101.3 106.6 109.4 107.1	6 105.1 108.5 107.7 103.1 1	5 105.8 108.1 108.3 101.9 1	2 106.1 109.9 107.5 101.4 1	8 108.4 111.0 109.0 103.0 1	109.7 110.7 108.7 104.5 1	3 109.7 110.5 108.0 104.4	0 108.1 109.7 106.6 103.7 1	5 105.3 107.1 103.9 103.0 1 6 103.7 105.1 101.6 102.9 1	5 102.9 101.5 97.9 98.2 1 6 98.4 98.8 96.7 94.9	.8 95.4 94.3 93.1 91.2 3 90.6 87.6 86.8 86.6	9 87.2 81.1 80.4 80.8 2 80.4 76.5 75.7 72.5	2 70.6 66.7 65.9 62.7	.1 119.9 121.6 120.6 117.8	385.00 48.00	. N299 I	SIZE .7 SQ CM (23.99 SQ
- OCD 0 4 00 4 4 00 CD D 00 00 00 00 D 00 00 00 00 0 0 0	ANGLES MEAS				87.9 87.0 87.4 87.2	67.9 67.9 69.0 66.5 6 1 6 6 6 6 6 6 6	88.1 90.9 90.5 90.5	90.3 99.4 92.2 91.7 92.3 92.0 93.1 93.3	92.6 93.2 94.8 94.2	93.0 95.2 96.9 96.6	94.5 94.8 96.8 97.2	95.8 97.0 99.0 99.4 1	96.7 98.2 100.6 100.5 1	99.7 100.8 101.8 100.8 1	100.5 100.7 101.6 100.5 1	97.8 99.6 99.9 96.9 95.0 97.0 97.4 93.9	91.0 91.2 92.2 90.9 87.9 90.0 89.9 85.5	83.1 81.8 81.7 79.9 75.5 74.3 73.7 73.9	67.7 67.2 67.8 65.6	109.4 110.8 111.9 110.8 1	FACTOR FREE JET V 1.000 FREE J	27-78 TAPE ANECH CH AERO. R	ACCUSTIC RANGE .2 M (40.0 FT) ARC

ATTENDED TO THE PERSON OF THE

	-										-				*				3															
										OF OF	E E	ili Os	A O	L R	P/ Ql	G	E	11																
											, •			•																			D FPS)	
																																	T SPEED (385.0	
																																	REE-JE	
•																											٠					29.84	FREE-JET 117.35 M/SEC (
		ā	181	161.1	161.6	161.5	161.6	162.9	163.8	164.2	164.8	164.8	164.8	163.0	165.1	164.9	164.8	163.9	162.7	161.6	159.9)							177.2			TAMB		
		160.	76.0	74.1	73.5	73.3	7 7 7 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	72.7	72.9	72.4	71.7	71.1	69.1	98	63.8	62.0	•	4 6 5 6 5 6	• 1										64.3	87.8			- FULL	
4	S	150.	- 1 -	83.0	61.4	78.9	0.7%	76.5	77.6	78. 7. 9. 0	77.3	76.6	10. 15. 15. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	7.4	71.6	69.0	62. 4.	- K	23										0.0	-	FT -8	SB59 29.5400	SQ IN	
X7014	DEGREE	140.	86.9	87.6	87.2	85.8	0 6 0 6 0 6	85.0	86.2	85.4 4.0	84.2	83.3	82.2	200	76.9	73.6	68.	0 P	37.7	13.4								٠	97.1	101	су зні	ALPHA PAMB	S12E (1400.00 S	. apparent
FMODL	INLET,	130.	96.0	86.4	87.4	88.1	87.0 88.0	89.1	89.9	4 6	89.0	87.8	86.4	84.4	82.8	80.3	75.5	51.3	46.8	26.1									90.00		FREGUENCY	-	1	
FJ-400-FMGDL	FROM 1	120.	79.8	82.1	4	82.0	85.4 4.7	88.4	88.5	89.0	88.8	88.4	87.6	84.0 84.0	82.9	80.9	79.2	72.8	55.0	39.5	7							· ·	1.00			N299 ADH106	2 SQ CM	
ı Z	JRED	110.	72.3	73.0	75.3	77.0	70.0	80.3	80.7	81.7	82.8	83.0	82.9	81.3	80.2	79.1	76.3	9.00	53.9	35.7	Ø.								95.9	00.0	7.640		9032.2	
IDENTIFICATIO	ES MEASI	100.	1 .		_	- 11			1	78.7		- 1	١ .	90.0		٠.	_	. K	. 1		_							 	0 4	ø	ATIO	TAPE AERO. I	35	
DENTI	ANGLES	8			74.2	- 1			-1	78.4 79.4		- 1						•	·I •										92.0	02.8	AMETER R		1C RANGE 2400.0 FT)	
		90	1 .		-	-1			-1	77.0		-1							.ì .										900	9	DIAM	7-78 ANECH CH	COUSTIC R	
		70.			•					75.8 76.1		- 1																	88.8	a		02-27-78 C41 ANEC		
		99	. 1 .			-1			• • •	75.00		• 1				•	•	*	.) .		٠								88.8	امان		TEST DATE	731	
		20								27.2		-1					•		٠ .										87.3			TEST	POINT	
		6.		9	oi .	4	א נפ	N	_	72.9	o o	ď	0 0	o 0	-	2		0 0	O	Q									92.0	9 0			TEST PO	
		FRFO	8	63	8	200	0.00	200	220	315	200	630	900	1250	1600	2000	2200	4000	2000	6300	9000	12500	16000	25000	31500	5 0000	33000	80000	CASPL	PNLT			MGDEL 7000	
			1			-						- 1			i				į .					- 14	•		_	_	_	1			_	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

N	
Ö	ì
==	
₹	١
	ĺ
_	
α	ľ
•	
•	Ì,
N	
_	
-	
•	
30	
=	
•	
- 2-	
•	
_	
•	
-	
•	
_	

				•												E I									FPS)		
																									FREE-JET SPEED M/SEC (0.		
								9	D 60 1		60 i	o –	0 0	1010	2 0	3 0 1		~	N 84	00	9	3	a	8 24.80	o		
40.0 FT. ARC	0		160.	.				4.5	0.0	- 6	<u>۲</u>		- 0	100 -	- IO	04.6 149.8 04.6 149.3	9	. .	N G	0-	. 8		25.5 163.	TAMB	Ş		
	1L X70150	EES	. 150.		. •			0 114.5 1	2 117.1	118.01	119.1	10.00	118.8 1	7 114.8 1	7.7	~ - •	4 107.2	5 102.5	92.8	90.6	- 4	8 74.6 1 69.0	.8 128.6 1	IA SB59 IB 29.3550	200		
DAY, SB	FJ-ZER-FMGD	INLET, DEGREES	130. 140							2 117.	.8 117.	.4 116. .7 117.	.4 117.	15.0 117.	2 114.	12.0 113.	.4 108.		• 1 •	ب ا	. 0	79.1 76. 73.1 73.	125.3 127.	I ALPHA PAMB			
R.H. STD.	EL (GRŒUND	ED FROM IN	0. 120.					1	50.0	7 108	5 109	7 110	.3 111		0 11.	400	107	. 7 105. .5 103.	_ _ _	6 0 0	.3 83.		.7 122.3	N294 ADH093	4		
RCENT	- MGD	ES MERSONR	100. 11					0	2.03 0.03 0.03 0.03	-	-	4 10	63 a		9 0	102.4 105	9	9 - ·	م م	-0	-	6.8	113.6 116	TAPE NO	ARC		
	DENTIFICATION	ANGLES	80. 90.					0.	94.2	38 38 38	. 6 97	. 8 101.	.7 101. A 99	7 100.	3 100		7 102.	. 4 . 100. 199.	4 95	.9 89.	. 9	.7 71. .3 66.	0.9 112.7	E	C RANGE 40.0 FT)		The same section of the same
59.0 DEG. F.			70.) N	04	ю (6. L			98.1	၁ ဖ	N 0 I	ဂ္ဂဇာ		N	70.1 70 65.1 64	109.6 110	02-21-78 C41 ANECH	2.2 M		
			50. 60.					3 69.	• •	93.	4.	0 4 0 8	8 96.	100	8 97.	7.6 98.7		6 4 8 4	90.0	2.0	5 73.	4.3 67.4 8.2 61.9	8.9 109.4	TEST DATE	ST POINT 7015		
			40.					85.8		80.00	94.4 4.6	9 6 7 6 8 . 8	96.4	92.0	4.00	90.0 94.3 90.0	. O.	88.3 86.3	80.4	78.4	66.5	55.	106.5 108	• • • • • • • • • • • • • • • • • • •	TE		
				FREG 50	69	1 00 52	160 200	250	. 6 . 6	930	800	1250	1600	5200	4000	0000	10000	12500	25000	31500	50000	63 000	OASPL		MGDEL 7000	523	

										. (OF OF	RIG F	iN/	AL DR	P Q	AG UA	E	IS IY										FPS)
	• • • • • • • • • • • • • • • • • • •																				•					CORRECTION - YES	24.80 39.00	FREE-JET SPEED M/SEC (0.
			150. Pul					113.9 147.6	114.0 148.8	· -	9	116.1 152.5	115.7 153.1	- 01	8	106.5 150.2	104.8 149.9	.7 148	102.6 147.9	ر د د	94.9 145.2	88.0 144.0 84.1 143.2	. 6	73.4 141.1 66.0 142.3	125.5 163.9	REFRACTION COR TURBULANCE COR	TAMB	- MODEL 0.
}-		T, DEGREES	0. 140. 150.					.9 111.0 114.5	.6 112.6 11	4 116.7 117.	2 117.1 11	4 116.2 11	7 117.4 119.	0 117.2 116.	.0 117.7 114.	2 114.1 111.	3 113.	7 110.0 107.	4 106.1 104.	6 103.5	.0 100.7 gg. .5 96.9 95.	5 94.1 90. 6 89.0 85	.0 83.1	.1 76.8 74.	.3 127.8 128.6	C) 0. N) 48.00	IALPHA SB59 PAMB 29.3550	SIZE 23.99 SQ IN)
	1	SURED FROM INLET,	110, 120, 130					97.1 101.6 106			-	110.3	04.7 110.8.113	112.1	112.0 11	06.2 112.1 114 06.0 111.4 113	.4 110.6 11	. 0 . 601 6.	02.7 105.1 107	.5 103.1	. 6 100.0 1 . 9 97.7	93.5	ი	5 73.8	16.7 122.3 125.3	VELGCITY (FT/SEC) JET DIAMETER (IN)	. NG. N294 RDG. ADH093	154.7 SQ CM (
	DENTIFICATION	ANOLES MEASI	90. 100.					. 1 95.2	2. 24. 6 8. 8	6 96.7	98.0	3 100.4	4 101.5	9 101.8	.3 102.7 1	.7 102.6 1	0 102.7 1	0 102.0	99.9	2 98.1	9.25 95.00	. 9 89.1 83.0	0.2 79.1	1.6 73.4 6.5 66.8	112.7 113.6 11	FREE JET VE FREE JE	TAPE AERO.	RANGE 40.0 FT) ARC
			70. 80.					0.1 90.0	92.3	83.0	2 98.5 5 8.5	6 97.2	7 99.81	7 97.8	1 98.7 1	0.00	98.7 1	5.00	2 98.5	0.98.4	3 94.4	6 88 9 1 86 9	78.9	.1 64.3	109.6 110.9 1	SCALE FACTOR	02-21-78 C41 ANECH CH	ACOUSTIC RA
			60. 60.					.3 89.	.7 89.	92.	93.		4 98	2 8	1 98	. 60	.4 97	. 6 97	2 96		80	. 2 86. 80.	5 73.	2 61.	108.9 109.4 1	SIZE 000 C	TEST DATE LOCATION	ST POINT 7015
			FREG 40.	50 63	000	25	8 8	ł	98	8	8	56		8	n (93	8	8		- 08	78.		- 1	0ASPL 106.5	MODEL/FULL INPUT 1.		MODEL TEST 7000 70

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

### 40, 80, 80, 70, 80, 80, 100, 110, 120, 130, 140, 180, 180, 180, 180, 180, 180, 180, 18							IDENTI	DENTIFICATIO	1. 22	FJ-ZER-FMODL	MODIL	X70151								
40. 60. 60. 70. 60. 90. 100. 110. 120. 130. 140. 180. 180. PML 66. 6 60. 70. 60. 90. 100. 110. 120. 130. 140. 180. 180. PML 66. 72. 71.0 72.0 72.3 72.3 72.8 72.8 72.8 80.1 87.1 82.1 82.1 86.7 186.2 66. 72. 71.0 72.0 72.3 72.3 72.8 72.8 80.1 87.1 82.1 82.1 82.1 86.7 186.2 772. 77.0 72. 74.2 72.2 72.3 72.8 72.8 80.1 87.1 82.2 82.2 82.2 82.2 82.2 82.2 82.2 82																				
40. 80. 40. 70. 40. 90. 100. 110. 120. 130, 140. 180. 180. 180. 180. PHL 86. 70.4 72.0 72.3 72.3 72.3 72.8 76.8 01. 87.1 87.1 87.1 87.1 87.1 87.1 87.1 87							ANGL	ES MEA	URED		_•	EGREES								
96. 8 70.4 72.0 72.3 72.8 72.8 72.8 72.8 72.8 72.8 86.0 82.0 83.4 85.1 86.7 18		9	90.	90.	70.	90.	90.	100.	110.	120.			150.	160.	i					
86.2 77.4 72.5 72.5 72.5 72.5 72.5 72.5 72.5 72.5	FREG		- 1	- 1	- 1	- 1		- 1				ŀ			Ę					
12. 72. 72. 72. 72. 72. 9 0.0 1 0.0 10.0 10.0 10.0 10.0 10.0 1	ខ្លួន	9 6		•			76.3		0 -	86.0 1		4 d	- o	87.7 87.7	7.09					
72.4 77.0 72.4 77.0 72.6 72.4 77.7 72.8 60.9 82.9 90.4 82.4 82.4 84.2 84.2 84.2 84.1 170.4 70.2 72.6 77.0 72.6 77.0 72.8 77.0 72.0 72.8 77.0 72.8 77.0 72.8 77.0 72.8 77.0 72.8 77.0 72.8 77.0 72.0 72.0 72.0 72.0 72.0 72.0 72.0	3 8	88					78.0		82.2			. 0			69.0					
72.6 77.0 78.2 78.9 81.4 83.2 83.2 83.2 83.2 83.2 84.2 83.2 83.2 83.2 83.2 83.2 83.2 83.2 83	8	72.					79.9		83.9			N	•	59.1	70.4					
72.6 77.0 76.9 76.4 76.2 81.4 81.2 83.2 83.2 83.2 83.1 83.1 83.1 83.1 86.4 81.0 82.7 81.0 81.4 81.7 81.7 81.8 81.8 81.8 81.8 81.8 81.8	125	78.		١.		1 .	81.2	۱.	85.2	ļ		8		88.2	70.2					
73.3 75.0 75.0 75.0 75.0 75.0 75.0 75.0 75.0	160	72.					63.2		833			_	æ	87.5	170.8					
72.3 76.7 77.8 78.6 78.6 78.1 81.3 83.7 86.7 81.8 83.7 84.4 83.0 78.7 188.8 88.8 84.8 88.0 88.8 84.8 88.0 88.8 88.8	88	73.					82.7		96.4			4	•	86.4	170.7					
72.3 76.7 77.5 76.2 79.7 82.2 83.7 86.5 91.8 83.5 94.4 83.0 78.7 77.0 189.9 77.0 189.0 77.0 77.0 77.0 77.0 77.0 77.0 77.0 7	250	73.	1	- +1			61.3	٠ı	85.8	- 1	ı	4	_	82.8	69.8					
72.4 76.8 76.8 76.8 76.2 76.2 25.3 76.6 4 81.0 82.2 25.2 77.2 77.3 76.8 81.2 83.7 86.4 81.0 82.2 77.3 76.8 16.7 6 70.3 74.7 76.2 77.3 76.8 81.2 83.7 86.4 81.0 82.2 81.0 81.2 81.0 16.7 6 70.3 74.7 76.2 77.3 76.8 81.4 82.2 86.0 80.2 80.2 80.2 81.8 74.3 16.7 6 70.3 74.5 76.1 77.7 76.8 81.4 82.2 86.0 80.2 80.2 80.2 81.8 74.4 61.2 16.5 16.6 0 70.3 74.5 76.1 77.7 76.8 81.4 82.2 86.8 81.8 82.2 74.4 61.2 16.5 16.6 0 81.1 89.9 72.7 74.9 77.7 76.8 81.8 81.8 81.8 82.2 74.4 81.7 17.0 16.2 9 82.2 87.7 74.9 77.7 76.8 81.8 81.8 81.8 81.8 82.2 76.1 16.1 9 83.2 87.2 74.9 77.7 76.8 81.8 81.8 81.8 81.8 81.8 81.8 81.8 8	315	72.					81.5		88.5			4 (0	79.7	69.0					
70.2 74.7 76.4 77.0 76.8 61.4 82.9 86.0 93.0 83.0 83.0 83.0 76.8 71.8 167.9 75.8 86.1 86.2 86.2 86.2 86.2 71.8 167.9 75.8 86.2 86.2 86.2 86.2 86.2 86.2 86.2 86	900	72.					27.70	•	4,0			Ņ.	9 H	_ •	20.00					
69.1 74.6 77.7 77.8 76.8 614.4 62.4 65.3 69.0 64.1 61.4 61.2 166.8 65.5 67.5 67.5 77.7 77.8 76.8 61.4 62.2 77.4 61.2 166.8 61.8 67.5 77.7 77.8 77.8 61.8 62.3 67.5 62.7 77.4 61.2 166.8 61.8 61.8 62.3 62.1 77.7 77.8 61.8 61.8 62.2 62.1 77.2 77.8 77.8 77.8 77.8 77.8 61.8 62.2 62.1 77.2 77.8 77.8 77.8 77.8 77.8 77.8 77.8	900	7				-	5		9 6			D K	o K		D / C		7.			
61.5 77.5 76.9 60.9 61.8 61.1 61.2 77.1 65.5 165.5 65.5 165.5 65.5 165.5 65.5	200	9	.,	•	•1	.1	4 1 1	•	9 6 6 C	1		-	2	_ -	86. U				000	
66.1 67.7 72.6 77.7 72.4 62.7 72.4 62.7 72.6 62.2 62.2 72.7 72.5 61.6 164.3 CO. 664.0	200	6	•	• .	•		000		84.1			. 6	-	_	66.0				OF F	
61.1 69.9 72.7 74.9 77.9 79.2 81.4 82.7 83.1 79.5 61.6 164.3 CS CS CS CS CS CS CS CS CS CS CS CS CS	1250	9		•			82.0		83.2			N			65,6			i,	?1(
65.2 67.2 72.7 74.5 77.6 78.6 77.6 78.6 77.6 78.6 78.6 78.6	1600	91					78.7		81.4			-	ю	_	64.3				GII PO	
51. 5 63.4 67.2 71.4 75.7 76.8 74.2 75.5 76.3 75.9 70.9 64.1 60.0 162.9 75.9 70.5 67.2 70.0 162.9 70.2 69.1 72.2 69.0 63.7 60.0 162.9 70.0 162.9 70.2 69.1 72.2 69.0 63.7 60.0 162.9 70.0 161.9 70.0 161.9 70.0 161.9 70.0 161.9 70.0 161.9 70.0 161.9 70.0 161.9 70.0 161.9 70.0 161.9 70.0 161.9 70.0 161.9 70.0 161.9 70.0 161.9 70.0 161.9 70.0 161.9 70.0 161.9 70.0 161.9 70.0 161.0 160.9 7.1 160.0 161.0 162.0 1	2000	58.		١.	١.		78.6	١.	80.0	ļ	ļ	80	0	Г	64.0				N/O	
### ### ### ### ### ### ### ### ### ##	2500	5				٠.	76.8		75.5			œ.	_	50.0	162.9				AL R	
39.0 49.0 57.1 61.6 63.2 64.6 63.4 62.8 64.1 63.3 54.7 40.9 17.9 161.6 72.7 160.9 7.7 16.9 7.7 16.0 16.2 7.7 160.9 7	3150	47.					72.9		69.1			۲.	0	39.3 1	161.9				- (
24.5 36.1 45.3 56.7 56.2 57.5 53.0 49.8 39.9 21.7 160.9 75.6 10.8 13.8 14.5 3.5 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8	4000	30					64.6		62.8			~	•	17.9	161.6				P/ Ql	
15.5 25.6 33.0 36.1 40.2 36.3 35.1 36.1 30.0 16.2 1569.3 1569.6 1560.0 16.5 25.6 33.0 36.1 40.2 36.3 15.1 36.1 30.0 16.2 1569.0 1560.0	2000	4		١.	١.	6	57.5	٠.	52.5	}			21.7		60.8				AC JA	
7.6 11.6 13.8 14.5 9.5 10.6 156.0 15	6300			'n	•	6	40.2	•	35.1	36.1	0.0	16.2		_	159.3				3E	
83.2 67.1 66.7 89.7 91.4 93.4 94.2 96.9 101.9 103.9 104.9 103.4 96.6 181.3 67.1 92.3 95.1 97.0 100.8 102.4 100.9 103.2 106.3 106.0 104.6 95.4 67.1 92.3 95.1 97.0 100.8 102.4 100.9 103.3 107.2 106.3 106.0 104.6 97.6 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 TEST DATE 02-21-78 TEST DATE 02-21-78 TAPE NO. N294 IALPHA \$859 TAMB 24.80 LOCATION C41 ANECH CH AERG. RDG. ADH093 PAMB 29.3550 RELHM 39.00 TEST POINT ACCUSTIC RANGE \$12E	0000				•	,	13.8	•	œ œ	10.8					158.6				 T	
83.2 67.1 68.7 69.7 91.4 93.4 94.2 96.9 101.9 103.8 104.9 103.4 96.6 181.3 67.1 92.3 95.1 97.0 100.8 102.4 100.9 103.3 107.2 106.3 106.0 104.6 96.4 67.1 92.3 95.1 97.0 100.8 102.4 100.9 103.3 107.2 106.3 106.0 104.6 97.6 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 TEST DATE 02-21-78 TEST DATE 02-21-78 TEST POINT ACCUISTIC RANGE TEST POINT ACCUISTIC RANGE \$126 \$	10000														2				S	
63.2 67.1 68.7 89.7 91.4 93.4 94.2 96.9 101.9 103.6 104.9 103.4 96.6 181.3 67.1 92.3 95.1 97.0 98.6 101.3 100.9 103.3 107.2 108.0 104.6 96.4 67.1 92.3 95.1 97.0 100.8 102.4 100.9 103.3 107.2 108.3 108.0 104.6 97.6 DIAMETER RATIG 7.640 FREQUENCY SHIFT -9 TEST DATE 02-21-76 TAPE MG. N294 IALPHA SB59 TAMB 24.80 LOCATION C41 ANECH CH AERG. RDG. ADH093 PAMB 29.3550 RELHUM 39.00 TEST POINT ACOUSTIC RANGE TEST POINT ACOUSTIC RANGE TOTS 731.5 H (2400.0 FT) SL 9032.2 SQ CH (1400.00 SQ IN) - FULL 0. M/SEC (0.	2000																			
63.2 67.1 66.7 69.7 91.4 83.4 94.2 96.9 101.9 103.6 104.9 103.4 96.6 181.3 67.1 92.3 95.1 97.0 100.8 102.4 100.9 103.3 107.2 106.3 106.0 104.8 97.6 67.1 92.3 95.1 97.0 100.8 102.4 100.9 103.3 107.2 106.3 106.0 104.8 97.6 67.1 92.3 95.1 97.0 100.8 102.4 100.9 103.3 107.2 106.3 106.0 104.8 97.6 67.1 92.3 95.1 97.0 100.8 102.4 100.9 103.3 107.2 108.3 108.0 104.8 97.6 67.1 92.3 107.2 108.3 108.0 104.8 97.6 67.1 97.0 100.8 102.4 100.8 103.3 107.2 108.3 108.0 104.8 95.5 104.8 97.6 107.2 108.3 108.0 104.8 97.6 107.2 108.3 108.0 104.8 108.3 108.0 104.8 108.0 104.8 108.0 104.8 108.0 104.8 108.0 104.8 108.0 104.8 1																			13	
63.2 67.1 66.7 69.7 91.4 93.4 94.2 96.9 101.9 103.8 104.9 103.4 96.6 181.3 67.1 92.3 95.1 97.0 99.6 101.3 100.9 103.2 106.3 106.0 104.8 96.4 181.3 67.1 92.3 95.1 97.0 100.8 102.4 100.9 103.3 107.2 106.3 106.0 104.8 97.6 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 TEST DATE 02-21-76 TAPE NG. N294 IALPHA 8859 TAME 24.80 LOCATION C41 ANECH CH AERG. RDG. ADH093 PAMB 28.3550 RELMM 39.00 TEST POINT ACCUSTIC RANGE S12.2 5G CH (1400.00 S0 IN) - FULL 0. M/SEC (0.	00000								:			•								
63.2 67.1 66.7 69.7 91.4 93.4 94.2 96.9 101.9 103.6 104.9 103.4 96.6 181.3 67.1 92.3 95.1 97.0 99.6 101.2 100.9 103.3 107.2 106.3 106.0 104.6 95.4 67.6 100.8 102.4 100.9 103.3 107.2 106.3 106.0 104.6 97.6 107.6 100.8 102.4 100.9 103.3 107.2 106.3 106.0 104.6 97.6 104.6 104.6 97.6 104.6 97.6 104.6 97.6 104.6 97.6 104.6 97.6 104.6 97.6 104.6 97.6 104.	31500											***************************************								
63.2 67.1 66.7 69.7 91.4 93.4 94.2 96.9 101.9 103.6 104.9 103.4 96.6 181.3 67.1 92.3 95.1 97.0 100.8 102.4 100.9 103.3 107.2 106.3 106.0 104.6 97.6 67.1 92.3 95.1 97.0 100.8 102.4 100.9 103.3 107.2 106.3 106.0 104.6 97.6 DIAMETER RATIG 7.640 FREQUENCY SHIFT -9 TEST DATE 02-21-78 TAPE NG. N294 IALPHA SB59 TAMB 24.80 LOCATION C41 ANECH CH AERG. RDG. ADH093 PAMB 29.3550 RELHUM 39.00 TEST PGINT ACCUSTIC RANGE S1.25 G CM (1400.00 SQ IN) - FULL 0. M/SEC (0.	40000																			
63.2 67.1 66.7 69.7 91.4 93.4 94.2 96.9 101.9 103.6 104.9 103.4 96.6 181.3	20000																			
83.2 67.1 66.7 69.7 91.4 93.4 94.2 96.9 101.9 103.6 104.9 103.4 96.6 181.3	63000																		- Company - Company	
83.2 87.1 88.7 89.7 91.4 93.4 94.2 98.9 101.9 103.6 104.9 103.4 96.6 101.3	8																			
67.1 92.3 95.1 97.0 99.6 101.3 100.8 103.3 107.2 108.3 108.0 104.6 96.4 67.1 92.3 95.1 97.0 100.8 102.4 100.9 103.3 107.2 108.3 106.0 104.6 97.6 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 TEST DATE 02-21-78 TAPE NG. N294 IALPHA SB59 TAMB 24.80 LOCATION C41 ANECH CH AERG. RDG. ADH093 PAMB 29.3550 RELHUM 39.00 TEST POINT ACCUSTIC RANGE SIZE SQ CM (1400.00 SQ IN) - FULL 0. M/SEC (0.7015 731.5 H (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 0. M/SEC (0.	DASPL		•	٠.				N.	96.9	0			4	•	101.3					
TEST DATE 02-21-76 TEST DATE 02-21-76 TEST POINT ACQUSTIC RANGE TEST POINT ACQUSTIC RANGE TOTAL TOTAL CATALOGUE TO THE TOTAL CONTINUE STATE	P.	•		- 41	• 1	98.6	01.3	8	63.3	a			.	96.4						
TEST DATE 02-21-76 TAPE NG. N294 IALPHA SB59 TAPB 24.80 LOCATION C41 ANECH AERG. RDG. ADH093 PAMB 29.3550 RELMM 39.00 TEST POINT ACCUSTIC RANGE S12E STATE FULL 0. M/SEC (0.	P.H.	•	•	60	•	Ġ.	02.4	300	n .	N		_	•	0.78						
TEST DATE 02-21-78 TAPE NG. N294 IALPHA 5859 TAMB 24,40 LOCATION C41 ANECH CH AERG. RDG. ADHO93 PAMB 29.3560 RELHUM 39.00 TEST POINT ACCUSTIC RANGE 812E FREE-JET SPEED 7015 731.5 H (2400.0 FT) SL 9032.2 SQ CM (1400.00 \$Q IN) - FULL 0. M/SEC (0.						DIAM		ATIO	7.640	F	EQUENC	SHI	.1							
TEST DATE 02-21-76 LOCATION C41 ANECH CH AERG. RDG. ADH093 IALPHA SB59 TAMB 24.80 LOCATION C41 ANECH CH AERG. RDG. ADH093 PAMB 29.3550 RELMUM 39.00 TEST POINT ACCUSTIC RANGE TEST POINT ACCUSTIC RANGE 7015 731.5 H (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 0. M/SEC (0.																				
TEST POINT ACCUSTIC RANGE 812E 812E FULL 0. M/SEC (0. 7015 T31.5 H (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 0. M/SEC (0.			TEST	DATE		-76 NECH		m.	Ęġ.	1294 DH093	S		5859 29.355		146	39.00				
TEST POINT ACCUSTIC RANGE 812E 812E FULL 0. M/SEC (0. 7015 731.5 H (2400.0 FT) SL 9032.2 SQ CH (1400.00 SQ IN) - FULL 0. M/SEC (0.														- 1						
	MODEL 7000		POINT	_	. •	STIC R	in r		032.	SQ	5		2							
	52																			
																- According - Comments				

_
8
8
_
0
-
_
9
2
_
-
•
0

The state of the s

07/1//9 10.160					The second secon							00	RIF	IGI P	20	AL	_ [2 P	(GI	E :	IJ															FREE-JET SPEED M/SEC (294,0 FPS)	
																							• .											43.20	•	FRE 99.61 M /	
UND NOISE	y Y					PWL						-	9	3 148.4	148	148	_ `	148	4 4 6	149	149.	. 48 . 48	147	146.		6 145.1	144.	143.	5 4	4	8 139.6	2	8 160.9	TAMB			
FOR BACKGROUND	- -	X70160 X01300			150. 160							2 110	6 1 10	0.801e.	5 104	.3 102	.4.	97.). 100	.6 98.	.4 97	5.5 96.7	96	. 1 94	oi L	, 4	3 90.	.7 88	 70 %	. 0	.2 65.	. , .	.5 116.	3859 29, 5400		IN) - MODE	
			ű	•	140.							0	9		9	9	<u> </u>	تار د	. u	4	0	ن د د	; 0	20	— О 1	٥٩	-	- 4	o K	φ.	74.5 70	?	125.3 122	IALPHA SI	1	S12E 23.99 SQ	
S CORRECTED	. UAY.	FJ-300-FMGDL FJB300-FMGDL	1 1 N		130.			.5				103	000	3 5		Ξ	Ξ		- R	113	12	112.5	==	100	00		102.			92	75.6		123.7				
RE LEVELS		MODEL BACKGROUND	WWG5 C5		0. 120.							98	90.0	, s 100 100 100	9 105	.6 107	3 108	108	100	6 110	.7 111	.6 110 110	801	6 108	9 107	- 9	.3 100	6 97	9 6	. 8 84	7 79.6	V	.8 120.8	. N299	1	54.7 80	
SOUND PRESSURE	=	ON - MOD BAC	3	į	100. 110							S S	9	9 6	0.	99	e.	0 -	3 6	. p 103	2 104	.6 104	103	. 5 103	4 102		5 97	0.8		.8 77	72.3 70	9	110.9 114	TAPE NO AERG. RD9		ARC	
딦	_	IFICATI	A IONA		.08							9.1	٠. ٥	N C	9	7	ю	ماد	· -	ю	6	0 ('n	0	<u>~ </u>	0 0		~ u	6 K) –	71.3	V.	110.2 1	₹ CH		RANGE 10.0 FT)	
UNTRANSFORMED MODI	o DEG	IDENT			. 80.							.98	000	6 G	93	6	92	40	200	94	95.	9 0 7 6		96	97.	9 60	96.	93	, K	78.	5 69.4		0 107.6	-27-78 1 ANECH C	١	ACCUSTIC F	
TRANSFO	200				60. 70							.8 86.	. 66	98	. 1	.2	0.0 2.0	920	4 9 9 7	.1 93.	.7 93.	- K	95.	.2 96.	9	96	9 92.	2 6		0 75.	4 69.		.9 106.	9 2	1	12.2	
5					50.				:		*	e (3 7	4 0	9	0	ni d	3	9 09	-	-	ف د	10	8	٠. ۵	٥ و	•	oi R	٥ ر	0	64.3 66		104.7 105	TEST DATE		PGINT 16	
6					40.							81.5	9 U	900	86.3	88.8	90°	9.50	90.0	90.2	9.16	92.7	8 8 4	93.9	9.00	9 6	84.7	83.3	77.3	68.8	64.6	9.	104.2 1			TEST 70	
					. 1	FREG 60	63	90	8	160	200	250	0 C	200	630	800	1000	1230	2000	2500	3150	4 5000 0000 0000	6300	8000	10000	16000	20000	25000	4000	50000	63000	0000	CASPL			MODEL 7000	

,

(J.

							OR OF	RIGI PC	NA DO	IL R	PA QU	GE AL	is Ity							•			SPEED 294.0 FPS)	
								- 0			60 to	7			. m						CORRECTION - YES CORRECTION - YES	1 43,20	FREE-JET SP 89.61 M/SEC (29	
40.0 FT. ARC		150. 160. PVI		09.1 108.1 142.4	. 5 109 . 2 109	108.3	9 106.6	11.1 104.8 147.4 09.4 104.2 147.6	2 104.1	0 104.7	.6 104.0 1 .8 103.7	3 104.4	102.9	9 101.2	0.001.4	4 93.8 1	88.4 91.7 145.0 84.3 85.9 144.5	.0 79.8 1 .8 72.8 1	.0 63	122.5 118.6 161.1	TURBULANCE	S859 TAMB 29.5400 RELHUM	IN) - MODEL	
JAND PRESSURE DAY, SB FMODL X70	INLET, DEGREES	. 130. 140.		5 102,4 105.9 10	107.0 110	5 5	109.9 113.0 1	.3 110.6 113.1 1	111.4 113.1	112.0 113.4	112.0 112.2 1	111.9 111.0 1	110.4 108.6	107.3 104.5	102.4	99.1 96.8		77.4 77.2	67.6 67.4	124.3	TY (FT/SEC) 294.00 AMETER (IN) 46.00	I ALPHA PAMB	SIZE CM (23.99 SQ	
NT R.H.	ANGLES MEASURED FROM	100. 110. 120		90.4 97.	91.9 100 92.8 101	4 94.0 103	6 97.7 107	96.2 98.6 107. 97.3 100.0 108.	6 101.5 109	7 102.3 110	103.6 110 103.8 110	.6 104.7 110	3 104.4 109	1 101.8 105	100.4 103	5 94.1 97	83.4 85.7 90.	.9 79.1 86 .6 71.8 81	.5 66.2 71	111.6 114.3 120.	JET VELOCI FREE JET DI	AERG. RDG. ADH104	ARC 154.7 SQ	
.0 DEG. F.	ANGLE	. 90. 90.		.60.1	89.1 90. 89.9 91	91.55 92.	93.2 94.	9 94.4 95.9 6 95.8 97.3	95.5 98.	96.00	97.1 99.4 1	97.8 100.4 1	100.2	99.2 101.	100.0	97.4 97.	6 89	82.1 82. 73.0 74.	66.5 68.	110.4 112.0	FACTOR FREE	02-27-78 C41 ANECH.CH A	ACCUSTIC RANGE 2 M (40.0 FT)	
		50. 60. 70.		68.	98.3 68.	90.8 90.	8 94.0 93.	92.5 93.8 93.8 94.1 95.7 95.6	7 96.6 95.	6 26.2 96.	. 8 86. 9 86. 86. 3 86.	5 97.0 97.	5 100.8 100.	1 98.5 98.	4 96.9 98.	3 94.5 93.	87.	.6 82.2 80. .5 73.6 73.	.7 64.4 69.	109.2 109.6 109.6	SIZE SCALE 000 CALC.	TEST DATE 02-2	INT 12.	
		FREG.	0 0 0 0 0 0 0 0	-	87.1 89.4	90.0	93.8	0 0 0 0 0	- 0	96.1	96.0	1.88.1	9.00	97.2	8 8 8 8 8 8 8 8 8 8	88.8	87.6 83.6	80.4 72.0	63.3	GASPL 109.2 10	MODEL/FULL INPUT 1.		TEST 70	27

(C)	
•	U)	
1			
į	C	3	
٠	•	-	
	_	_	
1	Į	•	
		•	
1	۲	Ġ	
•	•	-	•
		•	
1	è	i	

40. 90. 90. 70. 90. 90. 10. 10. 10. 10. 10. 10. 10. 10. 10. 1							2										
ANOLES HEASURED FROM INLET, DEGREES 6 05. 70. 80. 100. 110. 120. 130. 140. 160. 160. 161. 6 05. 70. 80. 80. 100. 110. 120. 130. 140. 160. 160. 161. 6 05. 70. 80. 80. 100. 110. 120. 130. 140. 160. 160. 161. 7 10. 72. 72. 72. 72. 72. 72. 72. 72. 72. 72					DENTI	TICALL	•	1-300-1		NO/K	5						
69.2 70.6 70. 60. 70. 60. 100. 110. 120. 130. 140. 160. 160. FML 69.2 70.6 70.6 70.7 71.8 73.4 73.1 74.4 82.0 80.7 90.8 80.2 80.1 80.4 80.4 80.4 80.4 80.4 80.4 80.4 80.4					ANGL		JRED	ľ	٠,	DEGREE	5						
8 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		. 60	70.	 6		100.	110.	120.	130.	140.	160.	160.	F	:	. :		
9 72.5 72.7 72.7 72.7 72.7 72.7 72.7 72.7	69.			٠.	1 -		74.4		88.7	90.8	89.2	- 0	164.8				
9 73.5 74.7 75.1 76.8 76.8 76.8 76.8 10.8 10.8 10.8 10.8 10.8 10.8 10.8 10	- 6						77.7		. 80 . 80 . 80	7 7	9 00 0 00 0 0		165.5				
3 72. 74.4 75.2 76.1 77.8 77.9 77.9 77.9 87.7 89.0 91.2 86.8 76.0 165.3 66.7 76.9 76.0 165.3 66.7 76.9 76.0 165.3 66.7 76.9 76.0 165.3 66.7 76.9 76.0 165.3 66.7 76.9 76.0 165.3 66.7 76.9 76.0 165.3 66.7 76.9 76.0 165.3 66.7 76.9 76.0 165.3 66.7 76.9 76.0 76.0 165.3 66.7 76.0 165.3 66.7 76.9 76.0 165.3 66.7 76.9 76.0 165.3 66.7 76.9 76.0 165.3 66.7 76.9 76.0 165.3 66.7 76.9 76.0 165.3 66.7 76.9 76.0 165.3 66.7 76.9 76.0 165.3 66.7 76.9 76.0 165.3 66.7 76.9 76.0 165.3 66.7 76.9 76.0 165.3 66.7 76.9 76.9 76.9 76.9 76.9 76.9 76.9	9 73.			1		1	79.2	- 1	89.5	91.0	87.7	78.9	165.2				
A 73. 76. 76. 77. 76. 77. 76. 77. 76. 76. 76	3 72				-		9.00		0.0	<u>2</u> 6	86.8	76.9	165.1				
7.35 76. 76. 77. 8 70. 8 72. 8 70. 8 72. 8 70. 8 80. 8	0 G	•					9 - C				9.00	0 K	200				
2 73.9 76.3 77.8 78.6 80.7 82.8 90.3 90.5 90.1 83.1 74.5 166.3 2 73.9 76.3 77.0 77.8 90.3 91.0 93.9 80.9 90.3 90.1 83.1 74.5 166.2 2 73.9 76.3 77.0 77.8 90.3 91.0 93.9 80.9 90.3 90.1 83.1 74.5 166.2 2 73.9 76.3 76.3 76.8 76.9 90.2 91.0 90.4 93.9 80.5 97.8 94.6 91.7 71.6 166.2 3 77.2 78.1 78.2 80.0 91.7 91.2 93.6 94.3 96.2 97.3 94.6 77.1 66.1 166.2 3 77.2 78.1 78.2 80.0 91.7 91.2 93.6 97.9 94.6 77.1 69.1 166.2 3 77.2 78.1 78.2 80.0 91.7 91.2 93.6 97.9 94.6 77.1 69.1 166.2 3 77.2 78.1 78.2 80.0 91.7 91.2 93.6 97.9 94.6 77.1 77.1 75.6 19.1 164.3 3 77.2 78.1 78.2 78.4 90.5 77.6 78.3 78.6 90.9 90.4 77.6 77.1 78.6 19.1 164.3 4 70.3 78.4 77.3 78.4 90.5 77.6 78.3 78.9 90.6 90.4 77.6 77.1 77.1 77.1 77.1 77.1 77.1 77.1	73.						82.8		60.00	90.7	83.6	75.2	166.0				
7.4.5 75.6 76.6 77.8 80.7 80.1 80.2 80.2 80.2 80.4 80.1 77.6 80.1 80.2 80.4 80.1 77.6 80.2 80.2 80.4 80.2 80.2 80.4 80.2 80.2 80.2 80.2 80.4 80.2 80.2 80.2 80.2 80.2 80.2 80.2 80.2	8 74.						82.9	Į.	90.5	90.1	83.1	74.5	166.3				
73.9 75.9 76.9 76.9 76.9 76.0 80.7 80.0 84.3 80.2 80.3 86.3 76.5 71.2 166.1 77 71.2 166.1 77 71.2 166.1 77 71 71 71 71 71 71 71 71 71 71 71 71	73.									4.00	0.02	2 Z	166.0				
9 76.4 76.6 78.2 78.4 81 5 81 2 83.4 88.6 87.9 64.6 77.1 66.9 155.9 67.4 165.7 78.5 67.4 165.7 78.5 78.5 80.6 81.6 82.6 80.2 82.1 80.2 87.1 85.9 78.6 64.8 164.3 77.1 66.9 155.9 77.1 66.9 155.9 77.1 66.9 156.4 77.1 66.7 78.4 78.6 78.8 82.6 80.2 82.7 80.2 77.2 78.5 64.8 164.3 78.6 78.8 82.6 80.2 82.0 77.2 78.5 64.9 164.3 78.6 78.8 78.6 78.6 83.0 77.7 70.0 61.9 164.4 77.2 78.4 78.4 78.3 78.6 77.6 78.9 80.9 82.0 70.0 77.6 61.9 164.4 78.6 78.6 78.6 78.6 78.6 78.6 78.6 78.6	0 4 73.						8 84.0		89.0	86.3	76.5	2.7.	166.1				
3 77.2 78.1 78.6 80.0 81.7 81.1 83.6 87.2 87.1 82.8 77.5 77.5 164.3 164.3 4 2 73.8 76.1 76.2 78.6 81.1 79.4 80.0 81.2 83.0 77.5 77.5 61.8 164.3 164.4 4 2 73.8 76.1 76.2 78.6 81.1 79.4 80.6 83.2 83.0 77.5 77.5 77.5 61.8 164.3 164.4 4 2 75.4 76.3 78.6 78.7 78.6 81.1 79.4 80.6 83.2 83.0 77.5 77.5 77.5 77.5 77.5 164.3 164.4 4 2 75.8 76.1 77.3 78.6 81.1 77.4 80.6 82.8 80.0 83.1 83.0 184.4 1 2 75.8 76.1 77.3 78.6 81.1 77.4 80.6 82.8 80.0 83.1 83.1 83.5 164.3 3 2 7 66.8 81.8 77.5 77.5 77.5 77.5 77.5 77.5 77.5 77	9 75.						83.4		87.9	84.6	77.1	68.8	165.8				
7 75.7 78.3 78.5 80.5 82.5 80.9 82.7 8 70.0 80.1 73.5 64.8 184.9 4.4 8 70.7 70.6 8 11.7 70.5 84.8 11.7 70.5 84.8 11.7 70.5 84.8 11.7 70.6 81.1 70.2 70.6 81.1 70.2 70.6 81.1 70.2 70.6 81.1 70.2 70.6 81.1 70.2 70.6 81.1 70.2 70.6 81.1 70.2 70.6 81.1 70.2 70.6 81.1 70.2 70.6 81.1 70.2 70.6 81.1 70.2 70.6 81.1 70.2 70.6 81.1 70.2 70.6 81.1 70.2 70.6 81.1 70.2 70.6 81.1 70.2 70.6 81.1 70.2 70.6 81.1 70.2 81.6 161.0 70.0 74.6 74.2 70.6 70.2 70.6 81.1 70.6 81.1 70.6 81.1 70.2 70.6 70.7 70.6 81.1 70.6 81.1 70.2 70.6 81.1 70.2 70.6 81.1 70.2 81.6 10.2 70.6 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1	3 77.						83.6		87.1	82.8	76.7		165.7				
7 72.6 74.1 77.3 78.4 80.2 77.6 78.9 80.9 80.4 74.4 66.0 59.1 184.3 80.2 77.6 76.9 80.9 80.4 74.4 66.0 59.1 184.3 80.2 77.6 76.9 76.5 70.0 63.1 63.1 63.6 5.5 61.5 62.6 70.0 74.6 74.8 71.8 70.4 72.3 70.0 63.1 63.1 63.2 63.2 63.2 63.2 63.2 63.2 63.2 63.2	29. 29.			•			82.7		83.0	77.5	73.6		164.9				
4 70.4 73.4 75.3 76.6 76.7 75.4 76.3 76.5 75.7 70.0 63.1 53.6 164.5 70.0 63.1 56.6 164.5 70.0 63.1 56.6 164.5 70.0 74.6 63.6 66.3 66.3 66.3 66.3 66.3 66.3 6	3 72.			-1 -		۰ اـ	78.9	1	80.4	74.4	68.0	-1 -	164.3				
1.7 65.8 68.9 70.0 74.6 74.6 71.8 71.8 70.6 63.6 62.6 63.6 62.6 62.6 62.6 62.6 62	4 70.					-	76.3		75.7	70.0	63.1		164.5				
2 96.5 91.6 95.0 95.3 96.3 96.3 96.3 95.4 64.7 53.2 91.4 1 16.1 0 15.5 9.3 11.9 161.0 161.	.7 65					-	70.4		70.6	63.6	62.6	-	163.5				
15 24.6 34.5 37.7 41.3 42.1 40.1 38.9 38.6 26.9 14.1 161.0 159.8 1	2 26.	٠ŧ	-1	-1	.i	-1	53.4	1	47.1	9 h	900	-1	162.6				
4.6 11.3 14.1 16.5 15.5 9.3 11.9 156.9 156.9 156.9 156.4 156.4 156.4 156.4 156.4 156.5 156.5 156.4 156.5 156.4 156.5 156.4 156.5 156.4 156.5 156.4 156.5 156	24.						90.		26.9	~ T			161.0				
48 66.3 68.3 69.2 90.5 92.3 91.6 94.2 100.1 101.3 101.3 96.9 68.5 178.6 1.0 94.3 96.9 98.3 100.6 101.7 99.9 101.6 105.9 106.4 104.6 96.1 90.1 2.0 94.3 95.9 98.3 100.6 101.7 99.9 101.6 105.9 106.4 104.6 98.1 90.3 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 TEST DATE 02-27-78 TAPE NG. N299 IALPHA SB59 TAME 28.56 LGCATION C41 ANECH CH AERO. RD9. ADHIO4 PAMB 29.5400 RELHUM 43.20 FREE-JET SPEED 7016 731.5 M (2400.0 FT) SL 9032.2 SG CM (1400.00 SG IN) - FULL 89.61 M/SEC (294.0 FPS)				4		ю.	e.						159.8				
													100				
-8 86.3 68.3 68.2 90.5 92.3 91.8 94.2 100.1 101.3 101.3 96.9 88.5 176.5 -0 94.3 97.6 98.8 101.8 102.8 100.5 102.1 106.4 104.6 98.1 90.3 -0 94.3 97.6 98.8 101.8 102.8 100.5 102.1 106.5 106.4 104.6 98.1 90.3 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 TEST DATE 02-27-78 TAPE NO. N299 IALPHA SB59 TAMB 28.56 LOCATION C41 ANECH CH AERO. RDG. ADH104 PAMB 29.5400 RELHUM 43.20 FREE-JET SPEED TOTO TOTO TOTO TOTO TOTO TOTO TOTO TO																	
8 66.3 68.2 90.2 90.5 92.3 91.8 94.2 100.1 101.3 101.3 96.9 68.5 170.5 0 94.3 96.9 98.3 100.6 101.7 99.9 101.6 105.9 106.4 104.6 98.1 90.3 0 94.3 96.9 98.3 100.6 101.7 99.9 101.6 105.9 106.4 104.6 98.1 90.3 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 TEST DATE 02-27-78 TAPE NG. N299 IALPHA SB59 TAMB 28.50 LOCATION C41 ANECH CH AERG. RDG. ADH104 PAMB 29.5400 RELHUM 43.20 EST POINT ACCUSTIC RANGE TOTO ST. ST. ST. ST. 9032.2 SG CM (1400.00 SG IN) - FULL 89.61 M/SEC (294.0																	
.8 86.3 88.2 90.5 92.3 91.6 94.2 100.1 101.3 101.3 96.9 80.5 178.5 .0 94.3 96.9 98.3 100.6 101.7 99.9 101.6 105.9 106.4 104.6 98.1 90.1 .0 94.3 97.6 98.8 101.8 102.8 100.5 102.1 106.5 106.4 104.6 98.1 90.3 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 TEST DATE 02-27-78 TAPE NG. N299 IALPHA SB59 TAMB 20.58 LOCATION C41 ANECH CH AERG. RDG. ADH104 PAMB 29.5400 RELHUM 43.20 TOTAL ACQUISTIC RANGE ST POINT ACQUISTIC RANGE ST POINT ACQUISTIC RANGE ST POINT ACQUISTIC RANGE ST POINT ACQUISTIC RANGE TOTAL SPEED																	
.8 66.3 68.3 89.2 90.5 92.3 91.8 94.2 100.1 101.3 101.3 96.9 66.5 176.5																	
. 8 86.3 88.2 90.5 92.3 91.6 94.2 100.1 101.3 101.3 96.9 88.5 178.5 3 94.3 96.9 98.3 100.6 101.7 99.9 101.6 105.9 106.4 104.6 98.1 90.3 3 DIAMETER RATIO 7.640 FREQUENCY SHIFT -9 TEST DATE 02-27-78 TAPE NG. N299 IALPHA SB59 TAMB 20.50 LOCATION C41 ANECH CH AERO. RDG. ADH104 PAMB 29.5400 RELHUM 43.20 EST POINT ACCUSTIC RANGE S12E SQ CM (1400.00 SQ IN) - FULL 89.61 M/SEC (294.0																	
10 94.3 96.9 98.1 176.5 10 94.3 96.9 98.1 176.5 10 94.3 96.9 98.1 100.6 101.7 99.9 101.6 105.9 106.4 104.6 98.1 90.1 10 94.3 96.9 98.3 100.6 101.7 99.9 101.6 105.9 106.4 104.6 98.1 90.3 10 94.3 97.6 98.8 101.8 102.8 100.5 102.1 106.5 106.4 104.6 98.1 90.3 DIAMETER RATIS 7.640 FREQUENCY SHIFT -9 TEST DATE 02-27-78 TAPE NG. N299 IALPHA SB59 TAMB 20.50 LOCATION C41 ANECH CH AERG. RDG. ADH104 PAMB 29.5400 RELHUM 43.20 EST POINT ACCOUSTIC RANGE TOTIS M (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 89.61 M/SEC (294.0																	
TEST DATE 02-27-78 TAPE NG. RDG. A DH104 SB59 TAMB 20.50 TEST DATE 02-27-78 TAPE NG. RDG. ADH104 PAMB 29.5400 RELHUM 43.20 EST POINT ACCUSTIC RANGE TOTIC NG. B 105.6 105.6 105.5 106.4 104.6 98.1 90.3 TAPE NG. N299 IALPHA SB59 TAMB 20.50 TAPE NG. N299 IALPHA SB59 TAMB 20.50 TAPE NG. N299 IALPHA SB59 TAMB 20.50 TAPE NG. N299 IALPHA SB59 TAMB 20.50 TOTIC ACCUSTIC RANGE TOTIC ACCUSTIC RANGE TOTIC ACCUSTIC RANGE TOTIC ACCUSTIC RANGE TAPE NG. N299 IALPHA SB59 TAMB 20.50 TAPE NG. N299 IALPHA SB59 IALPHA SB59 TAMB 20.50 TAPE NG. N299 IALPHA SB59 IA	8		- 1	E.		6	0	000	•	101	9	1					
TEST DATE 02-27-78 TAPE NG. N299 IALPHA SB59 TAMB 20.50 TEST DATE 02-27-78 TAPE NG. N299 IALPHA SB59 TAMB 20.50 LGCATION C41 ANECH CH AERG. RDG. ADH104 PAMB 29.5400 RELHUM 43.20 EST POINT ACCUSTIC RANGE SG. CM (1400.00 SG IN) - FULL 89.61 M/SEC (294.0	2		10	9.00	9	a	01.6	02.0	4	04.6	98.1	-	•				
TEST DATE 02-27-78 TAPE NG. N299 IALPHA SB59 TAMB 20.50 LGCATION C41 ANECH CH AERG. RDG. ADH104 PAMB 29.5400 RELHUM 43.20 POINT ACQUISTIC RANGE S12E S12E FREE-JET SPEED FREE S15.5 M (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 89.61 M/SEC (294.0	.0 94.			۵	8	ю	02.1	90	4	104.6	98.1	90.3					
TEST DATE 02-27-78 TAPE NG. N299 IALPHA SB59 TAMB 20.56 LGCATIGN C41 ANECH CH AERG. RDG. ADH104 PAMB 29.5400 RELHUM 43.20 POINT ACCUSTIC RANGE S1ZE SG CM (1400.00 SG IN) - FULL 89.61 M/SEC (294.0			• .	DIAM		0111	7.640		EQUEN								
TEST DATE 02-27-78 TAPE NG. N299 IALPHA SB59 TAMB 20.50 LGCATIGN C41 ANECH CH AERG. RDG. ADH104 PAMB 29.5400 RELHUM 43.20 SIZE FREE-JET SPEED 1400.00 SQ IN) - FULL 1400.01 M/SEC (294.0)																	
POINT ACOUSTIC RANGE S1ZE SQ CM (1400.00 SQ IN) - FULL 89.61 M/SEC (294.0	TES	T DATE	~ - I	I		14.3	NG.	N299 ADH104	1	PAMB	3859 29.54(TAMB	20.50 43.20			
				3TIC R/ 2400.	NNGE 0 FT)			S	5	1 ZE 3.00 SC	ŝ			6	SPEED 294.0	PS.)	

()

															RIC F				PA U	GE AL	17	3 Y											7 SPEED (386.0 FPS)		
ú		4																				-	•								42.70	-	FREE-JET 7.65 M/SEC (
ROUND NOTSE				160.	3					09.6 143.6	7 144	06.8 146.2 03.6 147.2	4 147	0 147.		3 147	147	95.9 147.6	7 147	7 147	2 146	7 146	91.7 145.0	144	10.			7	4.7 160.0		RELHUM		MODEL 117		
FOR BACKGROUND	40.0 FT.	7L X70170 7L X01400	REES	150.						7.	4 111.8	5 112.7	6 110.5 1	6 108.5	0 100	3 103.0	7 102.9	0 0 0	3 103.5	5 103.2	5 100.4	7 100.3 5 98.5	2 87.0	7 94.1	2	90.00	69.6	? ?	8 120.2 114		1A 3639 18 29.5400		SO IN		
S CORRECTED	, DAY, 38	FJ-400-FMODL	INLET, DEGREE	130. 140						102.1	0.00	110.1 113	110.7 113	111.0 113	111.0 112	111.1 112	12.0	11.9	111.7	110.6	109.8	108.9	104.9	201	9 6		i 🗠	00.00	123.1 123.		3 PAMB		SI ZE CM (23.99		
SSURE LEVELS	STO	MODEL BACKGROUND	SURED FROM	110. 120.						8 97	800	93.4 100.7	0	(N E	o	6	м·	- -	103.8 109.2		-	~ a	7 103) G	84.4 88.5		04.0	114.1 120.2		RDG. ADH103		154.7 80		
SOUND PRESSURE L	., 70 PERCE	, 2	ANGLES MEASI	90. 100.						.9	 	0.7 92.4	.3 93.	9.6	1 96.7	.3 98.	.6 97.	? 0	٠.	4 100	.7 99.		3 97.	9 6	. 8		• •	04.0	109.3 110.2	9	AERO. I		RANGE 10.0 FT) ARC		
5	59.0 DEG. F., 70	IDENIIL		0. 60.						66.3	96.7	30.00	95.5	90 00 00 00 00	. CG	93.1	92.7	9. 2. 2. 3.	94.1	9.00 0.00 0.00	96.9	6. 2 6. 3	96.4	96.0	87.8	95.9	6 70.2 7	06.3	8 107.4 10	4CC.	` <		ACCUSTIC RANGE		
UNTRANSFORMED	8			60, 70						0	ю,	4 N	98.1	90.0	92.7	91.0	91.6	9.10	92.3	96.4	95.5				9 09	<u> </u>	67.3 69.		105.3 105.		LOCATION C41		12		
				40. 50.	*					10	. 6	- 0	3 86.	1 86.	300	4 68.	90	90.	0 1		9 94	- 4 8 8 8	90	90	6 82.	41	64.4 64.1		03.5 104.1	H	S O		TEST POINT 7017		
					FREG	8 6	100	125	8 68	1			1								- 1			- 1			1		DASFL 10	· Geografia			MODEL 7000	52	9

									OR OF		NA OO			(GE JAI		3 Y										FPS)	
			•									-												CORRECTION - YES CORRECTION - YES	29,4 6 42,70	FREE-JET SPEED .65 M/SEC (306,0	
T. ARC			160. PVL				6	107.9 144.6	600	-	104.3 145.3		-	106.3 147.9	- 1		u u		102.4 147.1	4 -	-	68.0 140.8	118.3 160.5	REFRACTION CORE TURBULANCE CORE	TAMB	- MODEL 117.6	
RESSURE LEVELS	- X70	, DEGREES	. 140. 150.				9 104.6 10	3 109.6	00.00	11.2	111.6 106	110.7 104	111.3 106		109.3 106	108.4 104	105.5 103	104.1 103	.7 98.2 98.1 3 96.7 95.0	93.0 91) (53 63	122.8 120.1	386.00 48.00	IALPHA SB59 PAMB 29.5400	SIZE 23.99 SG (N)	tulkius.
MODEL SOUND PRESSURE R.H. STD. DAY, SB	- FJ -	SURED FROM INLET	10. 120. 130				.3 96.2 1	0.00.0		0 105.8	4 106.4	.5 108.9	6 108.7	0.00	8 109.8	109.6	.0 108 .8 106	3 104 2 105	3 98.7 99	6 95.4 94	20.00	7 70.	113.5 120.3 122.4	VELOCITY (FT/SEC) JET DIAMETER (IN)	6. N299 6. ADH103	154.7 SQ CM (
HT TRANSFORMED	DENTIFICATI	ANGLES MEASU	90. 100. 1				0.68 6	. 3 68 60 6	- 01	1 93.6	0.000	.2 97.6 1	. 8 97.2 1	7 100.0	6 100.6 1	4 101.6 1	.7 100.8 .2 100.6 1	0.00	96.4	2 90.8	7 80.6	5 66.8	111.6 1111.1 11	FREE JET VE FREE JE	TAPE NO.	RANGE 40.0 FT) ARC	
59.0 DEG. F.			70. 60.				69.0 67.	69.0 68.	88.00	92.6 92.	93.1 93.	65.0 65.0 65.0	95.2 95.	96.3 97.	97.1 97.	98.4 99.	100.2 100.	99.6 99.	6 6	92.0 91.	84.3 82.	67.8 66.	109.8 110.9	SCALE FACTOR CALC. 1.000	02-27-78 C41 ANECH CH	ACGUSTIC R/	
			. 50. 60.				90.0 88.	0.00	90.00	94.9 94.	92.8 94.	96.6 97.	95.0 96.	96.7 97.	97.3 97.	100.3 99.	101.7 101.	98.9 99.	6 97.5 98.3	91.5	82°.0	64.0 66.	4 110.2 110.4	MODEL/FULL SIZE S INPUT 1.000 CA	TEST DATE	EST POINT 7017	
			FREG 40	200	3 6	96	 88.	80 0	5 5 6	200	8		. 20	90	8 8	5	101 8	98	9 0	5	9 6	92	GASPL 110.4	MODE		MODEL TE 7000	

į.

0
8
•
•
<u>.</u>
-
•
79
C
>
=
•
Ŀ
9

			PRIGIT OF PO	NAL PAGE IS OR QUALITY		FPS
						29.48 42.70 FREE-JET SPEED .65 M/SEC (388.0
				164.7 164.7 164.7 163.2 165.3 166.3 166.3 166.3 166.3 166.3 166.3	2 178.0	TAMB ELHUM 117
SB 2400.0 FT. SL X70171 DEGREES	150. 160.	4 75. 4 75. 5 75. 6 75. 75.	25 25 25 25 25 25 25 25 25 25 25 25 25 2	2 43 56 20 20 20 20 20 20 20 20 20 20 20 20 20	96.5 90.2 7 - 9	29.5400 R
, SB 2400 L X70171 , DEGREES		8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	89.08 87.3 86.7 84.6 83.2 79.3	68.5 63.6 63.6 53.6 14.2	3.2 SHIR	PAMB PAMB SIZE SIZE 1400.00 SQ
R.H. STD. DAY, : - FJ-400-FMGDL RED FRGM INLET,	130	l I	0 2 2 2 2 2 2 2 2 2 3 2 4 2 4 2 4 2 4 2 4	40400	99.6 100.6 9 105.7 106.0 10 106.4 106.0 10 FREQUENCY	N299 ADH103
	10.	7.00.00 0.00.00 0.00.00 0.00.00 4.10.00	8 8 3 3 - 4 4 6 8 6 8 6 8 6 6 6 6 6 6 6 6 6 6 6 6	78.8 76.0 76.0 70.6 63.6 53.9 36.4	93.4 101.1 7.640	RDG.
DENTIFICATION ANGLES MEASU	90. 100.	2.2 72.2 3.1 73.3 4.7 74.4 6.1 76.7 7.2 76.6 77.7 76.0 77.7 76.0 70.0	6 80 6 80 7 7 80 7 80 7 80 8 80 8 80 8 80 8 80	9 75. 9 75. 9 65. 7 39. 8 16.	1.8 91.3 1.5 89.9 2.6 89.8 ER RATIO	AERG. I
O DEG. F., 70 IDENTII	8	71.1 72.9 73 72.9 74 3 76 77 77 77 77 77 76.6 78 78 76.6 78	-0-en.00	200000000	90.9 91. 101.1 101. 152.3 102. DIAMETER	2-27-78 41 ANECH CH ACQUSTIC RANGE 5 M (2400.0 FT
8		00000-4-	3 76. 3 77. 7 77. 1 79.	2 2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	C & & & & & & & & & & & & & & & & & & &	
		69.0 71.7 70.3 71.7 72.3 74.5 74.5 74.5 74.5 74.5 74.5 74.5 74.5	0.00-0400	9 9 9 9 9 9	95.3 95.5 95.5 98.5	TEST DATE LOCATION POINT 73
		60.6 60.6 73.7 73.2 74.3 74.8	6.644.65.5		92.4	MODEL TEST PO 7000 701

								海 "		 															
	-							0	FRIO	GIN PO	AL OR	. P	AG UA	ELIT	IS [Y										D FPS)
																									FREE-JET SPEED M/SEC (0.
		=				a	6.6	10.0	o.	. .	0	٥.	0.	9	a o	4	- 00	٠ •	4	ග ර	0	3	.7	8 27.68 M 29.00	FRE 0. M/
		160.				1.4 147	0 149	8 152 0 153	5 153	5 153	4 154	5 153 6 152	1 152	8 150	2 149 149	9 148	й 4 	8 145	8 144	.2 143	141	. 0 - 4K.	4 164	TAMB	MODEL
X70180	6	150. 1				14.7.11		18.9	7-	119.9 117.	п.		- 0	20		ď,		00.3 97	d si	85.0 85	<u>.</u>		129.2 126.	SB59 29.3290	2
FJ-ZER-FMGDL	, DEGREES	. 140.				111.3	112.9	117	118.9	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	119.9) eo		114	112.7		104.3 1	101.2	2	89.6 83.6	175	2	129.3	I ALPHA PAMB	SIZE 23.99 SQ
	SM INLET,	120, 130				.8 106.5	1.2 108.6 5.5 112.6	3.6 114.1	.0 114	.1 113.9 .6 113.0	5 113		9 -	.2 114.		109	7 105	~ «	.3 96.	. 00 o	4 78	? •	.9 125.7	4 084	SQ CM (
MODEL BACKGROUND	SURED FROM	110. 1			- 1	97.4 101	98.3 105	8.7	7			06.4 112	- -			04.5 108				<u></u>	72.1 81		17.1 122	. NG. N294 RDG. ADHO84	154.7 S
1	ANGLES MEAS	100.			•		9 9		100.3	101.7 103.1	103.2	103.5	104.0	ဖ (102.9	101.2	· ^		~	84.5 79.5	7 0		114.6 1	TAPE AERO. R) ARC
DENTIFICATION	ANG	60. 90.				2 93.	– ო	. 9 96. 0 97.	.3 98.	9 9	101	0	0 101	4 102.	101 6	101 6			.08 0.		7 66.		.8 113.2	# #	C RANGE 40.0 FT)
		70.				9	~ 0	93,3 94 93,9 102	0	-0	97.99	41	99.7 100. 98.5 99.	ල <u>අ</u>	97.6	- 6	96.3 98	j) -	7.	77.8 79	9		10.2 111	02-20-78 C41 ANECH	ACGUSTI
		.09				89.8	90.4	93.	95.2	96.6	97.4	99.4	98.7	98.1	96.5	95.4	0.0		ن ن	٠ .	63.0	(109.9	TEST DATE (12.
		0. 50.				5 91	0.080 E. 0.00 E.	2 92.	94	6 89 4	97.	98.	98		96.6	2 95	7 93.6	5 87	83.	72.27	ાં .		6 109.9	TES1 LOC	TEST POINT 7018
		FRED 40	8 8 8 8 8 8 8 8	25	160 200	98	315 87. 400 88.	8 6			1	97	98	•	66.6	68	86	9 6	79	67.	63000 62. 80000 56.		DASFL 107.		MODEL TES 7000

99. 90.9 91.2 93.1 96.0 97.4 101.6 106.9 111.3 114.7 114.4 147.9 90.9 91.2 93.1 96.0 97.4 101.6 106.9 111.3 114.7 114.4 147.9 90.9 91.2 93.1 96.0 97.4 101.6 106.9 111.3 114.7 114.4 147.9 90.9 91.2 93.1 96.0 97.4 101.6 106.9 111.3 114.7 114.4 147.9 91.2 91.2 91.2 91.2 91.2 91.2 91.2 91						SINAL POOR						9	g	0. FPS)
400. 70. 60. 90. 100. 110. 120. 130. 140. 150. 150. 160. 70. 60. 90. 100. 110. 120. 130. 140. 150. 150. 160. 91. 2 93. 1 96. 97.4 101. 6 106. 9 111. 3 114. 7 99. 6 97.7 91. 6 106. 9 111. 3 114. 7 91. 2 91. 2 93. 1 96. 0 97.4 101. 6 106. 9 111. 3 114. 7 91. 2 91. 2 91. 2 93. 1 94. 9 95. 0 97. 7 104. 2 108. 9 91. 2 91.											1	'	29.00 FREE-JET	
### ### ### ### ######################				114.4 147.9	000	0004	100-4	a 01 – 0	4 6 10	0000	126.4 164.7 REFRACTION (TURBULANCE (
### SECONDO SE	X70180	EGREES		11.3 114.7	.3 118. .1 118.	0 120 0 120 190	7 114. 0 114. 3 111.	2 108 0 108 0 108	2 2 2 4 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	6 85 .6 85 .6 75 .6 75	129	lŏ l	9	08
AND ES HEASURED AND ES HEASURED 99. 8 90. 9 91. 2 93. 1 96. 0 97. 4 90. 93. 3 94. 5 96. 6 98. 6 93. 3 94. 5 96. 6 98. 6 93. 7 98. 6 93. 7 93. 9 102. 0 97. 7 98. 6 93. 7 93. 9 102. 0 97. 7 98. 6 93. 7 93. 9 102. 0 97. 7 98. 6 93. 7 93. 9 102. 0 97. 7 93. 9 102. 0 97. 7 98. 6 93. 7 100. 0 100. 6 102. 2 103. 1 105. 6 93. 7 100. 0 100. 6 102. 2 103. 1 105. 6 93. 7 100. 0 100. 6 102. 2 103. 1 105. 6 93. 7 100. 0 100. 6 102. 2 103. 1 105. 6 93. 7 100. 0 101. 8 103. 5 106. 3 93. 7 93. 7 100. 0 101. 8 103. 5 106. 3 93. 7 93. 7 100. 0 101. 8 103. 5 106. 3 93. 7 93. 7 100. 0 101. 8 103. 5 106. 3 93. 7 93. 7 100. 0 101. 8 102. 9 105. 6 93. 7 9	-ZER-FMOOL	INLET		• 0	5 112. 7 114.	6 113 13.	4 4 4 4	109	201 201 201 201 201 201 201 201 201 201	Į.	2.9 125.7 (FT/SFC)	ETER (IN)	_	SQ CM (
99. 8 90. 9 91.2 90. 8 90. 9 91.2 90. 8 90. 9 91.2 90. 2 91.0 92.3 90. 2 91.0 92.3 90. 3 90.3 94.9 90. 7 90.0 100.6 90. 7 90.0 100.6 90. 7 90.0 100.6 90. 7 90.0 100.6 90. 7 90.0 100.6 90. 7 90.0 100.6 90. 90.0	z	HEASURED	110.	0.097.4	.6 98.3 7 98.8 0 101.7	7 104.1 1 105.0 1 2 105.6 1	3 106.9 1 3 106.9 1 3 106.9 1	6 105.8 1 9 105.0 1 2 104.5 1	0 102.8 7 100.8 .1 97.7 .0 92.9	5 95.3 7 72.1 66.3	.6 117.1 ET VELOCI	E E	RDG.	
99. 60. 70. 991.2 910.2	IDENTIFI	ANGLES	8	2.2	9 96.0 97.2	2 99 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 101.6	8 102.0 8 102.2 1 101.1	3 99.8 9 98.2 0 95.2	5 88.2 8 80.3 7 71.7	8 113.2 1 FPEE		CH RANGE	10.0 FT)
ATT			02	8 C	93.9 93.9	96.0 100.0 100.0	89.4 98.7 1 7.00 98.7	98.3 98.5 97.6	96.3 93.9 90.1	84.2 77.8 71.2		.c. 1	C41	2
86. 5 91.3 88. 9 91.3 88. 9 91.3 90. 2 92.0 90. 2 92.0 90. 2 92.0 90. 2 92.0 90. 2 92.0 90. 2 92.0 90. 2 92.0 90. 2 92.0 90. 2 92.0 90. 3 90.5 90. 9 90. 9 90.5 90. 9 90.5 90. 9 90.5 90. 9 90.5 90. 9 90.5 90. 9 90.5 90. 9 90.5 90. 9 90. 9 90.				91.3	91.9 91. 92.0 93. 93.4 93.	94. 7. 95. 100.0 99. 99.4 99.	99. 6 99.	97.6 98. 97.3 98. 96.6 96.	93.6 95. 91.0 92. 87.8 89.	79.2 81. 72.1 74. 65.9 69.	9 09	000	LGC	7018

## FLIGHT TRA ## 59.0 D ## 50.0 D ## 5	FORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS	IDENTIFICATION - FJ-ZER-FMODL X70181	ANGLES MEASURED FROM INLET. DEGREES	061 061 011 001 00	3 76 5 78 6 70 8 86 3 92 5 94 1 93 9 87	78.1 79.6 80.4 87.4 93.9 95.4 94.9 88.5	79,2 80,0 83,2 89,4 93,9 96,3 94,7 89,5 170 80,4 82,2 84,4 90,7 94,4 97,0 95,6 89,9 171	81.7 83.5 85.5 91.7 93.4 96.5 95.6 89.7 171	84.0 84.7 86.2 92.1 92.4 97.6 95.7 88.2 172	81.9 84.1 86.8 92.2 93.0 96.2 91.6 83.1 170	82.7 84.7 87.2 92.2 92.2 93.2 87.6 78.0 169.6	82.0 83.8 86.4 91.2 92.1 91.1 84.7 75.3 168.8	82.3 83.8 86.5 90.0 91.6 89.4 82.6 73.5 168.3 82.3 83.5 85.2 89.2 89.9 87.5 81.0 71.9 167.6	81.1 82.7 84.2 87.9 88.0 85.5 78.8 69.6 166.6	79.6 80.3 81.5 83.8 83.2 79.6 73.6 62.9 164.8	77.2 74.8 75.5 77.1 76.5 71.5 64.4 50.6 163.4	72.8 70.2 69.2 72.7 69.3 64.3 54.3 39.9 162.2	65.0 64.0 63.7 64.9 62.8 55.3 40.5 19.7 162.1 58.0 53.8 52.8 53.9 49.6 40.5 21.5	40.3 38.7 35.2 37.2 29.6 16.5 159.7					4 93.9 95.3 97.3 102.5 104.2 106.5 104.1 97/6 182.2 4 101.7 101.8 103.4 107.8 108.5 109.2 105.2 97.2 8 102.9 101.8 103.4 107.8 108.5 110.2 105.2 98.3	DIAMETER RATIO 7.640 FREQUENCY SHIFT -9	TAPE NO. N294 IALPHA SB59 TAMB 27.68 CH AERO. RDG. ADH084 PAMB 29.3290 RELHUM 29.00	IC RANGE SIZE SIZE SIZE FULL 0, M/SEC (0, FPS)	
## FLIGHT TRANSFOR FOLD TO BO. ## P.	SCALED, AND	-	MEASURED	100	5 78 5 79 8	.1 79.6 80.4	. 2 80. 9 83. 2 4 82. 2 84. 4	7 83.5 85.5	.0 84.7 86.2 F 84.7 86.2	9 84.1 86.8	7 84.7 87.2	0 83.8 86.4	.3 83.8 86.5 .3 83.5 85.2	.1 82.7 84.2	6 80.3 81.5	2 74.8 75.5	.8 70.2 69.2	.0 64.0 63.7 .0 53.8 52.8	.3 38.7 35.2 9 14 8 9 6					.9 95.3 97.3 .7 101.8 103.4 .9 101.8 103.4	RATIO 7.	RDG.	SL 9032.	
73.2 2 73	TRANSFO	1		70 8G	0 72 5 74 3 7	1 74.9 76.9	9 77.4 78.2	2 79.5 80.0	2 81.2 82.2	3 79.6 80.1	1 79.9 80.7	6 78.4 79.5	.8 78.0 79.6 .8 77.9 79.7	6 76.9 79.7	0 75.3 77.5	3 71.7 76.6	0 66.4 72.3	. 9 62.7 64.3 .1 51.8 57.8	.9 34.6 39.0 8 7 12 9	- - -				.4 90.4 92.4 .5 97.5 100.4 1 5 97.5 101.8 1	DIAMET	02-20-78 C41 ANECH	ACGUST.	
### ### ##############################				50	67 1 71 7 7	68.4 71.8	69.2 73.1 73.2 74.3	77. 2 79. 6	73.4 78.8	75.1 79.6	74.1 78.0	72.7 76.2	71.3 74.9 68.7 74.3	67.4 73.3	62.2 70.8	52.6 64.9	48.3 59.3	40,1 49.8 26.1 38.4	0.9 17.1	10000	16000	20000 25000 31500		84.6 88.2 88.4 93.5 89.7 94.6		TEST DA	DEL TEST POINT 7000 7018	

									OF DF	ĭG P	N/ 00	AL)R	P 0	'AG	iE (LI	ISY Y								12 40	FREE-JET SPEED	M/SEC (
UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC	IDENTIFICATION - MODEL FJ-300-FMODL X70190 BACKGROUND FJB300-FMODL X01300	40. 60. 60. 70. 60. 90. 100. 110. 120. 130. 140. 150. 160.		8		81.7 86.0 44.6 85.8 86.7 89.3 91.4 83.6 98.3 104.4 108.3 111.5 111.4 144	. 6 86.2 87.1 86.5 86.3 90.9 91.8 94.0 101.2 108.5 112.4 114.6 1	86.0 86.5 88.5 88.8 88.7 82.0 83.2 85.5 102.8 108.8 114.2 114.7 105.9 140 86.6 87.1 89.4 89.2 83.7 83.6 84.8 87.9 104.9 110.5 114.3 114.3 105.9 148	89.6 67.9 90.2 90.7 92.0 94.9 95.8 99.0 106.9 111.7 114.1 113.6 103.5 148	91.0 89.2 91.8 91.3 93.1 95.5 97.1 100.3 106.0 111.3 113.2 111.4 100.6 147 89.3 91.4 92.9 93.2 94.5 97.1 98.0 101.7 108.0 110.5 113.6 110.8 98.4 147	90.0 92.0 92.8 94,6 97,8 98.9 102.6 109.4 111.4 113.8 108.5 98.1 148	91.9 91.6 92.9 92.9 94.2 97.1 95.5 102.7 109.3 11].5 114.2 107.4 97.9 146 92.8 92.8 94.6 94.1 95.4 98.3 99.9 103.3 109.0 112.7 115.1 108.1 98.3 149	94,1 93.9 94.4 94.9 96.0 98.9 100.5 104.7 110.3 112.1 114.2 108.1 98.4 148	94.2 93.3 94.8 94.8 96.1 98.7 99.9 104.1,109.7 112.0 112.9 105.3 97.2 148	93,7 94,1 95,4 95,3 96,3 96,7 100,1 103,6 106,8 111,3 110,5 103,1 95,7 147	93.4 93.8 94.2 95.0 96.6 99.2 99.8 103.6 108.1 110.3 108.8 101.4 94.2 146	93.1 93.5 94.9 94.7 36.6 39.7 39.1 102.3 106.6 103.1 107.0 101.2 33.0 146.9 92.2 93.6 94.3 94.3 96.1 97.8 96.2 101.1 104.3 107.1 104.5 99.2 92.7 143	90,7 92.6 94.4 94.9 96,1 97.6 97.0 99.6 102.1 105.4 102.9 97.9 91.4 145.8 86.7 90.4 91.6 93.0 95.7 95.8 94.2 95.8 99.4 102.0 99.4 94.6 90.1 144	85,8 86,9 89,7 80,5 83,8 84,5 81,8 92,6 97,0 97,1 85,1 81,5 88,1 143	83.8 83.7 88.0 89.8 88.8 88.4 88.5 89.1 92.5 95.1 92.5 65.6 86.6 62.4 143. 79.1 78.7 82.7 83.9 87.3 87.5 83.4 84.4 87.7 88.9 87.3 81.1 77.8 142	71.9 72.3 75.3 77.4 79.4 80.4 78.6 77.0 83.6 81.9 81.1 75.8 71.7 140	55,8 68.7 70.6 71.1 71.8 72.8 70.5 78.9 75.4 75.1 69.3 65.6 139 59.2 62.4 65.9 64.0 66.0 64.7 64.5 71.6 69.7 69.5 69.6 60.2 57.4 140	104.5 104.7	TEST DATE 02-27-78 TAPE NG, N299 IALPHA 5859 TAMB 29.12 LOCATION C41 ANECH CH AERO, RDG, ADHIOI PAMB 29.5400 RELMM 42.40	ACGUSTIC RANGE	00 7019 12.2 H (40.0 FT) ARC 154.7 SQ CH (23.99 8Q IN) - MODEL 89.61	535	

										01	RIG F F	200	AL	. P	AG U	E LI	15	· ·			•	And the second s					0 FPS)	and the second s
						•																			CORRECTION - YES CORRECTION - YES	29.12 42.40	FREE-JET SPEED .61 M/SEC (294.0	
7		160. PWL				8 109 0 142.9	-	1109.5 147.8	109.0 148	105.6 147	104.6 147.5	105.1	105.6 148.	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	104.2		101.7	101.4		92.4 145	9 86.5 145.5	72.6 142	62.	119.4 161.2	REFRACTION CONTINUES CONTINUES	3859 TAPB 2 29.5400 RELHUM	- HODEL 69	
AT, 36 40.0 FT.	ET, DEGREES	130. 140. 150.				7	109.7	08.9 112.6 114.1 08.9 113.0 114.4	113.1 114	112.5 113	10.0 112.8 109.9	114.3 109	113.7 110	112.4 106		108.5 104	106.3 103	102.7 100	100.0 0.7	93.5 69	88.0 87.6 84.9 81.8 81.7 78.2	4 77.5 70	.6 67.7 60	-	EC) 294.00 IN) 48.00	IALPHA SB59 PAMB 29.5	\$12E (23.99 SQ IN)	
:N K:N: 310: UAT, 38	SURED FROM INLEY	110. 120. 1				90.9 97.3 103	3 99.4		4 105.7	7 107.0 1	1 108.3	01.2 108.2	02.1 109.8	108.4	04.4 109.7	108.5	03.7 106.3	102.8	101.6	93.7	9 6	79.7	63.9	114.2 120.2 12	VELOCITY (FT/SEC) JET DIAMETER (IN)	E NG. N299 RDG. ADH101	154.7 SQ CM	
DENTIFICATION	ANGLES HEAS	90. 100.					90.3 90.	6 91.1 0 92.2	1 93.9 94.	5 95.2 95. 6 95.9 96.	1 97.6 97	97.8 96.	3 99.2 99.	4 100. 1 100.	100.	0 102.0 101.	2 102.7 100.	7 100.6 28.	000.0	4 92.4 90.	6 4 6 6 6 6	7 74.8 75.	.0 66.	7 112.2 111.6	REE JET FREE	TAPE	ACCUSTIC RANGE 2 M (40.0 FT) ARC	
		60. 70. 60				18 3 88 2 87	3 68.4	89.4 86.9 69. 90.5 91.1 91.	1 91.7 95	0.00 0.00 0.00	9 5 5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 95.7	7 97.0 97	9 9 9 6 0 0 0 0		4 99.1	3 98.	6 99.1	9 98.	5 94.0	8.7 88.9 91 4.0 82.5 83	5.9 74.8 74	6.6 70.9 6	109.8 109.9 110.7	ZE SCALE FACTOR CALC. 1.000	10N C41 ANECH	ACOUSTIC 12.2 M C	
		40. 50.				8	3 89.5	.7 90.5	.5 91.1	20.7	9.00	4 94.7	.3 86.3	0.79 0.69 0.69	6 98.0	7.96 9.	96.4	3 97.4	رب هر د	.1 90.6	5.4	.1 73.8	5.0 64.2	109.6 109.2 10	MODEL/FULL SIZE INPUT 1.000 (TEST DATE	TEST POINT 7019	
		FREG	88	38		200	315	6 8	630	000	1250	2000	2500	4000	2000	0000	10000	16000	20000				0000	OASPL		83 38 43	MODEL 7000	

														RI(GIN	ΑĽ	P	AG	E	15											
10.160								-					ф	FI	PO	OR	Q	UP	LIT	ΓY										SPEED 294.0 FPS)	
07/11/10																													4.	FREE-JET SP M/SEC (29	
	E LEVELS				3	165.1	165.5	165.4	165. 1 165. 1	165.2 166.1	166.3	166.2	165.1 165.8	165.5	164.7 164.4	164.2	163.8	163.2	161.6	160. i 168. s						178.6			TAPS 29.	69.61	
	RESSURE LE	.o FT. SL			50. 160.	-	4 x	0 80.	8.1 77.8 5.3 76.6	2 75.	.1 75.	9	3 68	.7 66.	.0 64.	.3 59.	- 9	.2 22.	•							7.9 69.6	7 90.	Ģ	59 . 5400	IN) - FULL	
	ED SOUND PRESSURE	. 38 2400	L X70191	, DEGREES	. 140. 1	90.8	<u>.</u> .	90.6	.7 90.7 66 .3 90.5 85	5 90.7	80.08 0.08	60.1	86.0	82,8	78.2	74.7	63.8	54.1	14.8							0 101.3 97	2 104.9	ENCY SHIFT	IALPHA SB	\$12E 11400.00 \$0	
	EXTRAPOLATED	. STD. DAY	FJ-300-FM0DL	FROM INLET	120, 130	4 68	4 K	7 69	87.6 88. 88.8 89.	6 6 6 6 6 6	9,0	98	5 69	.7 87	6 8 8 8	0 80	, co	2 61	. 0. 1 26. 1	10.7						99.6 101.	901 6	FREQUENCY	N299 ADH101	2 SO CH C	
	SCALED, AND E)	~	•	ANGLES MEASURED	00. 110.	.1 74.	. 18. 18.	9 78.	8.2 80.0 8.0 81.3	82.	.7 82.	93.	2 64.	93.	ω 4	.1 78.	.6 70.	.0 63.	- a -	.1						2.2	6 101.5	10 7.640	TAPE NG. AERG. RDG.	9032	
	- 4	×	IDENTIFICATION	ANGLES	200	73.2	74.3	77.2	4 77.8 78 7 79.3 79	80.0 79.2	80.3	80.7	87.2	62.0	82.6 80.3	80.0	75.7	67.1	. 4	17.0						95.8	102.9	AMETER RATIO	3	IC RANGE 2400.0 FT) SL	
	FLIGHT TRANSFORMED	59.0 DE0			70. 60.	.4 71.	6 72.	7 75.	75.2 76.4	6 77.	6 78.	78.	2 79	3 79		.6 78.	75	.0 66.	42.	.3 15.						8 8	9.4 102.	710	02-27-78 C41 ANECH	ACGUSTI	
	FLI				60. 60.	.5 70.	. 27 . 77	4 73.	1.1 74.4	6 76.	.9 76.	4	2 77.	4. 77.	.8 76. .6 76.	.6 74.	.3 69.	4 63.								4.	4 97.		TEST DATE LOCATION	POINT 731	
					.0	67.3	6.0	70.1	73.1 72	72.3	74.1	70.0	74.9	73.2	72.2	68.3	58.4	50.7	10.2							9 Y	2 2			TEST 70	
						300	63	100	125 160 160	500 720 720 720	315	200	800	1000	1250	2000	3150	4000	6300	10000	12500 16000	20000	31500	50000	80000	CASPL	PNLT			MODEL 7000	53

				•	FLIGHT		TRANSFORME	ED MODEL	EL SOUND	NO PRE	URE	LEVELS				•				
				59.0	DEG.	٤٠٠ 70	PERCE	-	STD.	DAY,	88	40.0 F	T. ARC							
						DENT	DENTIFICATIO	ı Z	FJ-400-FMGDI	FMODL	X70200	8								
						ANGLES	ES MEASI	JRED	FROM I	INLET,	DEGREE	S								
FRED	9	8	8	70.	8	8	100.	110.	120.	130.	140.	150.	160.	됩						
8 8 9 0 8 8 0 0																				
200 200 200 200 200 200 200 200 200 200		6	0			1 '	1	0	, c	7 9	7 701		107	5						
2 4 8 2 0 0 0 2 0 0 0	.1	90.4	000				800	9 5 8 9 6 8 9 6 8	98.7 99.7	105.5 107.7 108.0	111.4	: [888	44. 146.1						
000	-4	2 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2 2 2 3 2 4 2 4 3 6 6 6	.1			-1	96.6 96.6 9.0	06.3 06.5	109.2 108.4	111.3	109.9	07.4	146.6 146.0			F PO	RIGIN F PO		
1600	1	96.9	97.4	1	1	1	1	100.0	08.4	110.2	111.0	105.0	104.7	47.4			UR			
31500 4000 0000		2 0 0 0 2 7 0 0 3 4 0 0	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9					103.4 103.4	4.00.0	112.6	0 20 0	0.8.0	108.1 107.7 106.8	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4			QUAL	PAGE	· .	
6300 6300 6300 6300		0.00 0.00 0.00 0.00	100.1 100.7 101.4				1	104.3	09.9 09.9 7.90	111.3 1109.6	110.2 108.1 107.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	06.7 04.9	148.3 147.8 147.5			ITY	is Is		
12500 16000 20000 25000	4 5 6 6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	98.08 97.28 96.37 96.38	99.7 98.5 97.1	98.9 98.4 67.6 7.6	99.8 100.3 98.4	100.0 100.0 99.8	0 0 0 0 0 0 0 0	102.2 101.3 98.8	05.6 04.3 02.7	105.0	102.2 97.4 96.6	102.1 97.3	05.8 101.9	47.1 47.3 146.8						
31500 40000 50000 63000	1	93.2 86.5 83.7 76.1	94.1 89.3 85.8	1				90.7 86.3 79.4 73.0	94.7 80.9 87.0		92.8 87.0 81.5 76.7	90.7 86.0 80.1 72.7	95.0 89.7 85.1 77.7	46.1 45.4 43.4						
80000 0ASPL	67.7	<u></u>	0 0	~ 0				0 0	4 0	66.3	0 0	on N	a w	141.4						
	MODEL/FULL INPUT 1.0	FULL SI T 1.000	SE C	щ	FACTOR . 000	규 전	E JET FREE	VELOCI JET DI/	ELOCITY (FT/SEC) ET DIAMETER (IN)	(IN)	388.00 48.00	,	2 8	TION C	CORRECTION CORRECTION	- YES				
		TEST	TEST DATE LGCATION	02-27 C41 A		ı.	TAPE ERG.		N299 ADH102		I ALPHA PAMB	\$859 29.5400		TAMB	28.76 42.40	1		. •		
MODEL 7000	1	ST POINT 7020	-	ACOUSTIC 2.2 M (RANGE 40.0 FT)	ARC	154	7 SQ CM	J	SIZE 23.99 SQ	(N)	- MODEL	L 118	FREE-JET 8.26 M/SEC (JET SPEED EC (388.0	ED .O FPS)		- 1	
39																			-	

					eriginal f ef poor c	AGE IS UALITY				FPS)
										ET SPEED (388.0
			r	9 8 7 0 -	- 7 2 6 6 2 7 - 7	a n o o o o	0		8 28.76 42.40	FREE-JET
			1 163.7 3 164.1 9 164.7 7 164.2		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		163. 161. 159.	0 178	TAMB	FULL
		0. 160	6401	46-90	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- 4 @ @ R		80 Q	- 9 59 5400	- (S
X70201	DEGREES	16. 150	6 98 3 98 7 97	2 - 7 2 2 2 2 8 8 9	0 4 4 4 4 6 5 7 3 5 6 5 7 5 6 7 5 7 5 7 5 7 5 7 5 7 5 7 5	2 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9	86	<u> </u>	S S
1.		130, 140	1	i i	89.8 88 89.1 86 89.0 1 86 87.3 82 86.2 81 84.0 79	1	1 1	100.5 100.1 105.8 103.8		\$12E (1400.00
FJ-4ÓO-FMGDL	FROM INLET	120.	0040	- 8 - 8 2		00000	00	89 99 90 10 10	106.3 10 N299 ADH102	SOCA
- FJ.	JRED	110.	l	1	6 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	1 1		93.6	640	9032.2
	MEAS	100.	a a b o	4 4 4 0 6	8 8 1 . 0 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2 . 2	-0004	6.4	• 100 • 0.00		38
DENTIFICATI	ANGLES	9	72.2 73.3 75.5 76.6		80.08 82.08 82.08 82.0	1! .	!	4.00		1C RANGE 2400.0 FT)
_		8	71.3 73.4 80.3 75.1		80.2 80.2 80.2 80.3	1	• •	6.10 8.00	102.6 DIAM	ACGUSTIC R.
		.02	70.4 70.4 72.6	74.7 75.3 77.1 76.9	79.2	76.9 75.4 72.9 65.2 53.1	15.4	60 0.00 4.0		
		.09	1		78.6		38.1	60 CG CB CG CB CG	TEST DATE	73
		60.	1	72.72.76.76.76.76.76.76.76.76.76.76.76.76.76.	77.0	73. 73. 66. 45.	28.	87.6		TEST POINT 7020
		Ġ	669 74.	6.46.65	1.00.00 0.00.00 0.00.00	66. 38.	19.		8	
		FREG	888	125 160 250 250 315	800 800 1250 800 800 800 800 800 800 800 800 800 8	25000 25000 3150 4000	6300 1 25000 1 8000 25000 25000	31500 40000 50000 63000 648PL	PNLT	MODEL 7000
								P-88119 -MBT2Y	S SHITHING ZOAS	HONELMELL

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

								C	Dia	Na:															
								ō	F	NA POO	R	PA QU	G	: 15 17)	3									FPS)	
													.											SPEED 0.	
																						•		E-JET SEC (
				×																			30.20 19.73	FREE-JE M/SEC	
		7					46.6		40.2	40.0	49.9	6 6 5 5	17.7	16.7	45.9	4.4	- 6.2	0.2	0.	39.4	39.6	61.1	TAMB	0	
ARC		160.				.0	10 6][0.4		t		 		10	- -]_	. ~	- C	7	•	REL	MODEL	
40.0 FT. ARC . X71010						0 11	9 -	. ~ 0	301	· (מות	- r	6	3 K	9 -	10 ·	7 —	ol K	9	KO K	0	. 8 123	SB59 29.2970	ž Ž	
d ×	EES	. 150			i	3 112			1 .	4 115	1 .	- •	' I '	•	٠,	· ·		- 1			1	2 125		SQ	
DAY, SB J-ZER-FHODL	DEGREE	140				108	110	133	133	- 2	122	122	3	109	107	8	6	8 5	86	8 5	2	124,	I ALPHA PAMB	\$12E 23.99	
FJ-ZER	INLET,	130.				103.9	105.8	110.4	10.8	10.6	111.3	110.0	109.8	108.5	106.3 106.0	103.2	97.8	6 6	86.1	80.3	66.2	122.0			
ON ON	FROM 1	120.				99.1	01.2	03.3	27.5	0.70	08.	0.60 09.3	100	07.0	06.2	02.3	97.5	95.5	86.2	81.6	71.4	19.5	N294 ADH070	SO CM	
PERCENT R. H. SI ON - MODEL BACKGROUND	JRED F	10.				6.7	, ,	•	1, ,	02.0	1	•	η.	- •		- •		1			1	4.2 1	 	154.7	
	MEAS	00.				3.7	ი ⊿	a (0.0	9 6	9	6 ~	4		99.5 10	e 0) ~	0	0	~ K	~	1.7 11	TAPE N	ARC	
DEG. F. 70 PE	ANGLES	90. 1				. 1	oi o	90.	ю.	- 1-	7	9.00	(e)	• r	a 6	80 (83	N 6	0	.a 77	_	.6 11	AEI	£	
NTIFI	<	•		•		7 91	9 4	~ 6	1	1 60 6	1	9 9	-1	9 8 8	3 98 2 100		96			2 78		0 110	5	RAN O.O	
DA U UER		0				88		93	1	96	98	97. 96.	26	96.	66	97.	8	92.		77		110	-20-78 1 ANECH	ACOUSTIC 2 M (4	
a a		6				87.B		90.1	4 .	90.0	4 .	95.9	- 4		98.2		91.6	4 4		75.6		107.9	02-2 C41	AC0	
		. 60				67.3		000	4 .		4 .	0 0 0 0 0	- 4	97.9	97.6 96.7	93.7	89.2	4 .		71.8	١.	07.5	DATE	-	
		20.				9	87.7		4 .	0.00		94.6 96.6	، ا	ų 01.	97.4 95.0	0.4	r in i	n w		0 4	ID.	07.3 1	TEST DATE LOCATION	POINT 01	
		9				9.0	a 4	<u>ر</u>	4 8	9 00 0	۵.	- ო	80 0	9 00	ب ب ب	oi c) h	0	0	4 6	9	2.1	-	TEST P 710	1
		EREO	9 3 0	88	123 160	9 0 0	315 84			1250 91		50 S		6300 94				31500 77		50000 66		GASPL 105	· :	MODEL 1	541

-HONEYWELL PASE PRINTING SYSTEM - P1189-02

()

		S. C. C. S. C. C. C. C. C. C. C. C. C. C. C. C. C.	
	ORIGINA OF POO		
16.662			
07/19/79			
			YES SPEED
	45. 45. 4 45. 4 45. 4 45. 4 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		CORRECTION - 30.20 19.73 M/SEC (
S PRO	66.	7	
LEVELS 40.0 ET	000	108. 106. 105. 105. 102. 101. 101. 101. 101. 101. 101. 101	123.8 161.1 REFERACTION C TURBULANCE C O RELHUM MODEL O.
TESSURE LE	# - "7" DONO - 1	112.3 100.3 100.1	8 / 26 /
ODEL SOUND PRESSURE H. SID. DAY SH FJ-ZER-FMODL X7101	103.9 108 103.9 108 103.9 108 103.9 112. 110.3 113. 10.4 111. 10.6 112.4	100.3 100.3	2 de 48 08
	2 200.4 4 200.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	1 12 Mg
	94.9 99.1 100. 100. 100. 100. 100. 100. 10	100.2 100.2	ON ON ON ON ON ON ON ON ON ON ON ON ON O
SHT TRANSFORMED WE ZO PERCENT R. IDENTIFICATION -	2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2	103 102 102 101 101 101 101 101 101 101 101	∃ ∟ •
H- 0	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	82 93 93 93 93 93 93 93 93 93 93 93 93 93	TAPEE .
a	V. 4 4 V. 8 - 1 N. 8 M. 1 S. 8 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9 . 9	988. 986. 987. 987. 986. 986. 986. 986. 986.	2 AE
70.		0 8 8 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	BRAW O.O
	2.7.8.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9.9	988 947 947 947 947 947 947 947 947 947 947	રી∓ શૈ≈
	889.2 889.2 889.2 889.3 889.3 889.3 889.3 889.3 889.3 889.3 889.3 889.3 889.3 889.3 889.3 889.3 889.3 889.3 889.3	97. 99. 27. 89. 779. 27. 89. 779. 27. 89. 87. 88. 89. 89. 89. 89. 89. 89. 89. 89. 89	
542	886.0 887.0 87.0 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3 8.3	88. 88. 88. 63.6 63.6 63.6 63.6 63.6 1.000.	EST COCH
FREG		105.2 Maner / Inchination	TEST - POI
	- due 4 4 6 8	16000 20000 20000 25000 31500 40000 50000 63000 63000 63000	1000

()

•	
<u>.</u>	١
2	1
<u>ш</u>	여
RAPOLATED SOUND PRESSURE	ᅥ
SS	٣
2	٦
₽	40
춫	٦
Š	9
3	A
2	٦
EXTRAP	H
X	H. STD, DAY, SB 2400.0 F
AND .	H
¥	9
Ö	PERCENT
Ē	RC
SCALED.	PE
	20.
RANSFORMED	
Š	L
3	O
Z	ä
F	0
Ĭ	50
91	
ū	•

																											,						
														0)R F	IG P	IIV	A Of			AG JA		is Ty										
																																3.0	
	. =	10	۷.	- 0	9 (9	0.	ıo.	0.0	0	vi e	ەر ھ	.4	ω.	4 -	- ^	la c	~	-	7	- (o ei	2							₹			MB 30.20	
	160.	5 16	ر د	5.2 167.1	 n co	.8 167	167	.6 167	7 166		72.4 164.8	П	7 .	5.8 163.4		160	.2 159	0.	158	157.	20.00							1	94.6 178. 95.5	9 9		TAMB	
	150. 16	1		91.2 86		100	0		88.2 79	85.8 7.		9		76.1 65	72. 1 02 69 4 57	10	4	80	- 4									ŀ	100.5	1	6°	SB59 29.2970	
חבטעבבש	140.	6.08	^	92.0	йr	N	o.	0	٩		۲,		0	80°	n 4	4 0	9 00	60	37.0	14.0										104.2	FREQUENCY SHIFT	IALPHA	•
INFE	130.	89.1	90.1		4.0	89.9	89.9			88	86.7	85.		8 6				28	4	25.3	_								100.6	104.7	FREQUEN		
FROM	. 120.	3 83.8	84.	98	O. R.	88		68	99	88	1 86.6	85.			9	1	70.07		2	33.	9.0								7 104.	7 104.	640	N294 ADH070	
MEASURED	0. 110	3 77.	9 78	2 80	7 682	83	7 84	6 83		.4 83.9	7		6		6		5. A	2	4	.0 33	9								9001	6	. 7	TAPE NO	
ANGLES	90. 100	74.3 76	o.	76.7 78.	in c	-	2 10	<u>. –</u>	d	on e	76.90	9	o		4 (٥	70.07	9 0	4		.7								91.2 92	10	IER RATI	T. AERI	
	8	72.3 7	9	Ю	76.0 7	4 4		4	d	۲.	4 L			8		۹.		- 60	- 60		۲.		-						ه <i>د</i>	٦	DIAMETER	20-78 ANECH CH	•
	2	70.6		•	74.4	76.7	76.0		- 4	-	75.1		77.4	76.1	•	J.	9 7	•	49.0	32.4	0.9								87.8	95.7		02-2	
	60.	9	71.	7		78	7.5	75.6	75	75.			18		71	69	65.6	. F	43	24									96	93.	*	TEST DATE	
	0. 50.	9	4 69	.07	.5	- 1	4 K	7.47	B 73	5 74.	6 73		0 74.	.17	.2 68.	o gg	.9	.00	1 0	14									6 85.2	- 9		12.7	J.
	4	FREG 64	1			1	200 03	250 71			500 70	630 /0					2500 50	3150 46) (8000	0000	16000	20000	31500	40000	90000	00008	DASPL 81	PNL 85	. :		

MODEL 7100

ć		
ě	į	Ì
•	-	•
,		۱
:		,
•		
_	_	
•		
•		
•		
•		
•		

printing the period an included particular management of the printing and the period of the period o

	eric er f	NAL PAGE IS DOR QUALIT		6.60 6.00 FREE-JET SPEED 96 M/SEC (387.0 FPS)
DENTIF	0 82.5 84.0 81.3 83.3 83.8 85.6 87.2 89.7 86.0 89.6 104.0 107.5 106.9 140 0 82.5 84.0 83.6 85.2 88.1 86.4 90.6 97.7 105.0 108.4 108.6 103.2 142 4 83.1 84.4 84.7 87.8 88.4 89.6 97.7 105.0 108.2 108.6 103.2 142 5 84.3 85.8 85.6 85.5 89.5 90.4 94.1 100.9 106.5 108.8 106.0 95.7 142 0 84.6 86.8 87.4 88.2 91.3 92.0 95.7 102.4 107.0 107.6 103.3 93.7 142 0 84.6 86.8 87.2 88.8 92.0 93.1 56.3 104.0 107.6 103.3 93.7 142 0 84.5 88.0 97.2 88.8 93.0 93.1 56.3 104.0 107.1 106.2 99.4 91.3 142	3 87.1 68.1 68.4 80.0 83.3 84.0 87.8 104.3 107.2 107.2 107.3	94.6 94.7 96.8 97.9 96.0 99.1 103.5 104.0 101 91.7 92.8 94.8 96.9 96.1 96.0 100.9 101.8 98 91.7 92.8 94.8 96.9 96.1 96.0 100.9 101.8 98 91.5 92.1 94.0 94.7 94.2 97.1 99.3 100.3 97 96.1 96.8 96.8 96.8 94.7 96.4 96.9 93 94.7 96.4 96.9 93 96.1 96.7 96.8 96.8 96.5 96.7 94.7 90.7 90.7 90.7 90.7 90.7 90.7 90.7 90	TEST DATE 02-27-78 TAPE NO. N299 IALPHA SB59 TAMB 2 LOCATION C41 ANECH AERO, RDG. ADH966 PAMB 29.5730 KELHUM 4 EST POINT ACCUSTIC RANGE 7102 12.2 M (40.0 FT) ARC 164.7 SQ CM (23.99 SQ IN) - MODEL 117.

The state of the s

()

								0	RIC F	GII FIC			4 1	۹G JA	E LIT	S											FPS)	
					***								>												YES YES		397.0	
												•												•	CORRECTION -	28.60 46.00	FREE-JET 7.96 H/SEC (:
r. ARC		160. PWL	•				3 141.1	17	7.5	0 141	=	141	142	.2 142	99.7 142.9	143	N 1	5 145	. 6 144 . 6 144	3 143	6 143	82.1 142.5	2 139	114.6 156.9	REFRACTION C TURBULANCE C	TAMB 00 RELHUM	- MODEL 11	
SB 40.0 FT X71020	DEGREES	140. 150.	•	-		i	707	5 107		701	66	86	000	8		101	2 101	101	2 2 2	8 6 6	7 87	77.3 78.3	3 61	117.0, 115.6	387.00 46.00	ALPHA 8859 PAMB 29.5700	SIZE 23.99 SQ IN)	
R.H. STD. DAY, SB - FJ-400-FMODL X71	FROM INLET, C	120. 130.					7 201 0	103.6	7 103.9	4 105 1	8 105.3	7 105.2	2 106.2	.2 106.1	7 106.2	9 105.0	2 100.5	7 104.3	.6 103.7	2 95.3	9.08 0.	_	0 63.0	16.5 117.7	VELOCITY (FT/SEC) JET DIAMETER (IN)	N299 1/ ADH966	SO CM (
ENT R.	MEASURED	100. 110.				•	•	. 7 88.	۰.	0 0	9	ы.	52	.0 98.	r a	5 100.	. 6 100. . 7 99.	.08	4 10 9 09 9 09	96.0	3 89	78.4 76.8	0 64.	108.2 110.5 1	JET REE	TAPE NG. NA AERG. RDG. A	ARC 154.7	
DEG. F., 70 PERC IDENTIFICAT	ANGLES	90.					2 60.0	88.3	7 88.7	200	95.8	1.29	8 90	7 95.3	8 96.2 8 8 8	7 97.6	4 60 9 60 9 60 9 61	7 100.9	26.0	3 97.5	7 89.8	90.00	9 99 6	3 109.5	FREE	н сн	RANGE 40.0 FT)	
28 , 0		60. 70.					0 06.4	7 86.3	96.9	2000	7 90.0	800.8	1 92.0	0.66 8	9 93.8 94	4 94.1	2 95.1	0 100.9 1	9 97.5	.7 95.3	6 89.9	95.2	8 67.5	.9 108.0 109.	SCALE FACTOR CALC, 1.000	TE 02-27-78 ON C41 ANECH	ACOUSTIC 12.2 M (
		9					87.2	87.8	88	2 2 2	90.8	2.5	200	93.4	93.7 94	96.0	3 99.2 5 100.3	4 100.4 1	3 96.3 3 96.1	3 94.7	4 89.6	2 80.4 82	64.8	5 108.6 108	MODEL/FULL SIZE INPUT 1.000	TEST DATE LOCATION	EST POINT 7102	
		FRED 40	6 03 6 03	100	2.09 6.00	6	9 8	87.	8	8	8	8	28	83	6 6	20	2 8	8	9.70	6 6	68	9 6	66.	CASPL 108.	MODE		T.	545

À

The matrix of the color of th
60. 70. 60. 90. 100. 110. 120. 130. 140. 150. 1 68.5 67.6 66.9 70.4 69.6 70.5 77.5 63.4 94.9 83.6 7 69.5 64.4 71.6 70.6 70.5 71.5 77.5 63.4 94.9 83.6 7 70. 69.5 60.4 71.6 70.6 70.5 71.5 77.5 63.4 94.9 83.6 7 70. 71.5 72.0 71.3 72.4 74.0 74.1 74.2 72.1 72.1 72.1 72.1 72.1 72.1 72.1 72
ANGLES HEASURED FROM INLET, DE 60. 70. 60. 90. 100. 110. 120. 130. 1 68. 5 67. 6 69. 90. 100. 110. 120. 130. 1 68. 5 67. 6 69. 6 70. 6 70. 5 77. 5 63.4 6 69. 70. 6 70. 6 70. 5 77. 5 63.4 6 69. 5 70. 6 70. 5 77. 5 63.4 6 70. 5 77. 5 69. 6 70. 5 77. 5 69. 6 80. 6 70. 5 77. 5 69. 6 70. 5 77. 5 69. 6 70. 5 77. 5 69. 6 70. 5 77. 6 77. 1 64. 2 64. 6 70. 5 77. 1 64. 2 64. 6 67. 6 77. 1 77. 4 72. 7 73. 6 77. 1 64. 2 64. 6 67. 6 77. 1 67
60. 70. 60. 90. 100. 110. 68. 67. 6 68. 9 70. 4 69. 6 70. 5 70. 5 70. 5 70. 5 70. 6 70. 5
ANGLES 60. 70. 80. 90. 10 69.5 68.4 71.6 70.4 68 69.5 68.4 71.6 70.4 68 73.4 72.2 72.7 74.5 72.0 73.8 72.7 73.4 72.0 73.8 72.0 73.8 74.4 74.0 73.7 74.1 75.5 77.1 77.1 77.2 73.7 74.1 76.5 77.1 77.2 73.7 74.5 77.1 77.1 77.2 73.7 74.5 77.1 77.1 77.2 73.7 74.5 77.1 77.1 77.2 73.7 74.5 77.1 77.1 77.2 73.7 74.5 77.1 77.2 73.7 74.5 77.1 77.1 77.2 73.7 74.5 77.1 77.1 77.2 73.7 74.5 77.1 77.1 77.1 77.2 73.7 74.5 77.1 77.1 77.1 77.1 77.1 77.1 77.1 77
60. 70. 72. 40
666. 772. 773. 773. 773. 773. 773. 773. 773

6	V
•	D
9	9
	•
•	Þ
•	-
(1,	Ð
ı	٠,
٠	•
¢	Ð
٠	-
100.1	
1	Š
Ċ	3
	-

UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE 59.0 DEG. F. 70 PERCENT R.H. SID. DAY, SB. 40.0 FT. ARC

						PAGE	S Y				FPS)	
		:								30.20 19.73	FREE-JET SPEED 1. M/SEC (0.	11.
BACKGROUND ANGLES MEASURED FROM INLET, DEGREES	00. 110. 120. 130.		102.7 107.5 111. 104.2 111.3 114. 105.1 112.9 116.	95.4 97.5 98.1 101.3 108.5 114.3 118.2 118.6 116.0 1 97.5 98.6 103.5 102.6 109.8 113.4 117.8 118.7 115.9 1 100.3 101.2 101.8 103.8 109.4 112.8 118.4 118.8 114.7 1 109.0 109.0 101.8 104.8 114.7 1	97.3 99.4 100.8 104.5 110.4 112.6 117.3 116.0 111.5 196.7 99.5 102.0 104.9 110.3 1112.7 115.5 112.6 109.8 197.7 100.0 101.4 104.6 110.3 111.7 115.5 112.6 108.3	97.7 99.9 101.0 104.4 109.1 110.6 112.2 109.6 105.4 148 97.7 99.9 101.0 104.4 109.1 110.6 112.2 109.6 105.4 148 97.6 100.2 100.2 102.5 107.8 110.2 110.5 108.1 105.3 147 99.4 100.2 102.5 107.0 107.8 108.9 106.6 103.6 146 08.9 107.8 107	97.4 98.3 98.8 100.6 103.2 104.7 104.9 103.5 100.8 196.6 97.8 96.7 99.1 101.2 102.7 102.6 101.7 99.2 95.2 96.5 93.7 96.0 98.3 98.5 98.5 98.6 96.3 103.1 05.7 07.5 07.7 07.7 07.7 07.7 07.7 07.7	.8 68.0 87.0 87.7 91.1 92.6 92.5 89.8 89.1 1 8 66.5 82.3 82.8 86.2 87.1 87.4 84.3 94.7 1 3 79.3 78.0 75.9 81.9 81.3 81.9 80.0 78.4 1 70.5 71.8 60.9 77.4 74.3 75.7 74.7 73.8 1	.3 65.2 64.4 63.6 71.4 68.2 71.9 67.5 66.4 140 .2 111.7 112.6 115.3 120.7 124.0 127.9 127.9 125.0 163	2-20-78 TAPE NG. N294 IALPHA SB59 TAMB 11 ANECH CH AERG. RDG. ADHO71 PAMB 29.2970 RELHUM	ACCUSTIC RANGE 2 M (40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 0	
	FRED 40. 50. 60. 70	63 80 80	315 85.9 88.9 88.9 90. 400 87.7 90.0 90.5 89. 630 89.5 90.4 91.8 91.	93.9 93.0 24.0 94. 97.8 99.3 98.6 97. 94.4 98.2 98.5 99.	97.7 98.7 98.5 96.3 96.8 97.6 97.5 98.6 97.4	.3 96.2 96.4 .0 96.1 96.9	88.5 93.0 93.7 67.0 92.2 93.2 82.2 89.7 90.7	79.5 82.3 85. 74.5 77.2 80. 67.4 72.	.9 108.5 108.7 1	TEST DATE 02- LOCATION C41	MODEL TEST POINT AC 7100 7103 12.2	547

						ORIGIN OF PO	AL PA	GE IS JALITY						
														SPEED 0. FPS)
									•			CTION - YES	20 73	FREE-JET SE M/SEC (
g		4	PWL		8.			150.	147.6 146.5 146.0	444	4 4	125.0 163.2 Refraction correction Turbulance correction	TAMB 30.20 RELHUM 19.73	Ö
LEVELS 40.0 FT. ARC		S	150. 160.		113.5 113.1	6-26	7 115. 8 114.	. 6 108. . 8 106.	108.1 105.3 106.6 103.6 105.4 102.5	7 0 0 0 0 0 0 0 0 0	3 84. 7 73. 5 66.	27.9	SB59 29.2970	IN) - MODEL
PRESSURE AY. SB	017X .	LET, DEGREES	<u>.</u>		05.4 110.0		4		28.87	.5 99 - 95	3 81. 2 75.	0 127.9 0.	LAL PHA PAMB	\$17E (23.99 SQ
MODEL SAUND R. H. STD. D	-ZER-F	SED FROM IN ET	120.		9 100.1	.0 104.2 1 .0 105.1 1	6 109. 2 109.	. 9 110.4 . 6 110.3 . 4 109.3	6 107.8 1 0 105.6 1 6 103.2 1	.1 101.2 1 .0 98.3 .7 95.3	8 86.2 9 81.9 77.4 71.4	.3 120.7 1 0CLTY (FTZ DIAMETER	1. N294	154.7 SQ CM
TRANSFORMED ZO PERCENT	DENTIFICATION	AL ES MEASURED	100.		93.0	96.2		102.0	2 100.7 1 4 100.2 1 8 99.5 1	96.7 93.7 91.2 87.0	82.3 78.0 71.8 64.4	.7 112.6 115. EREE JET VELC FREE JET	TAPE NG AERO. RDG	FT) ARC 1
FLIGHT DEG F	LOE	A	6		80.0	9 9 9	97.5 100.3 100.3	1	97.6 1 97.8 98.2 97.4	98.00 93.70 93.10 93.10	86.8 78.3 70.1 64.3	2 111	20-78 ANECH CH	USTIC RANG
59 0			60. 70.		88.3 89.1	4	တက္တ	98.5 97.2 97.6 97.9 97.4 97.6 97.1 96.6	9 96 1 96 4 95 7 94	2 94. 7 92. 0 89.	5 82. 6 76. 8 69. 0 64	38.7 108. ZE SCALE CALC. 1	IEST DATE 02-20-78 Location cal anec	AC01
			40.		20	6 5 90 9	2 4 4 6 8 6 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3 98. 5 98. 0 97.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 889.	3 63.	.9 108.5 EL/EUL S NPUT 1.00	TEST LGC/	TEST POINT 7103
.8			FREG	2000 2000			1.	3150 3150 9 9 9				GASPL 106.		M0DEL 7100

()-

VELS	
ב	S
PRESSUR	0.0 FT
SOUND	B 240
OHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSUR: LEVELS	STD. DAY. S
CALED, AND	PERCENT R.H
ANSFORMED, S	DEG F. 70
FLIGHT TRANSFORMED	0 65
	•

															OR OF			JA Of					IS TY									FPS)	
												*																				FREE-JET SPEED M/SEC (0. 1	
			6	6 0 (0	D 100	10	6	ou o	u (6	6	10	5 0	2	2	ωá		_	9	5	~ «	· •							9			B 30.20	o E	
	:	PWL	167.6	168.8	170.5	٦	-			1	166.	166.0	164.	163.	162	161	160.	159.6	159	157.7	157.9							180.			TAMB		
		160.		87.0	68	98.0		85.4	79.7	77.2		72.2	4 .	65.6	61.00 0.00	4 .	38.7	•										96.2 95.9	a		1	- FULL	
Ξ		150.	92.1	93.2	9.4	94.4				• •	•	•			72.1 68.1	4 .	53.6	•	20.8									102.6	61		SB59 29.2970	Ž.	
X71031	DEGREES	140.	93.1	94.5	2 0	22	96.72	95.4	0.0	91.9	9.5	87.5			77.9			53.1	œ	5.0								105.2 107.6 107.6	Y SHIFT		I ALPHA PAMB	ZE . 00 SQ	
0D		<u>.</u>	4	92.6	u o	1				1			1		80.4 77				1	ė.								02.8 1	FREGUENCY		1	SIZE (1400.00	
FJ-ZER-FMGDL	FROM IN FT	20. 1	1.1 91	0 1	٠,	ı	6	4 F	ი c		4	ω α	4 01	9	ص ح	1 6	^	~	ď	4. 6. 4	•							440	FR	:	N294 ADH071	SQ CM	
- FJ-2	IRED FRO		6 95	4 85	0 1	٠ م	0	o o	7) K	9	ო	.1 87	9 00	-	.a 80 40 40	9 40	0		6	ر د	•							5 100 4 105	640	}	1	9032.2	,
ND	MFASHR		B 78	.1 79		84	92		- c	94	84	20 a	3 5	1	78	1		0	-	32								3 95 7 101 2 101			TAPE NO	9	
DENTIFICATED	M CHICK		76.	78	? 2	82	83.	83	N C	82.	81.	<u>e</u> 8	9 6	79	78.	72				37.								93	RATIO		TAPE AERO.	T) SL	
IDENT	Q V	8	75.3	77.1			٠.		80. 80. 80.	80.9	79.9	80.2	79.4		77.9	4 .		62.8	- 4	39.0	i							92.4 100.0	DI AMETER		₹ 5	띯노	
		80.	73.3		27.7		٠.		78.6	4 .		77.9		77.8			70.3		d	37.5	<u>:</u>							90.9	14	<u>.</u>	-20-78	ACCUSTIC RANGE	
		70.	71.1	73.1	74.0		٠.		78.1 78.1	4 .		76.6		74.9	73.6	1			d	32.9	•							9 20 00 00 00 00 00 00 00 00 00 00 00 00			02-20 C41 A		
		.09	71.3		йr	٠ ٥	0	0.		0		75.2	1.		71.3	ı	20	6	쉭	9.4								94.1			NATE	731	
		20.	7	n.	- u	9 0	ဖ	80	م	~	o	ю.	4	Φ.	.		. 6) —	10	5.3								600			TEST DATE	POINT	
		0.0	9 69	70					77 6.	80	60	.6 73	0	<u>်</u> က	5 68	۹,	i G	, cı	4 36	4.								980				TEST PO	
		64	0. 65		67.		ľ	7	74	1	7	200		0 64	61				0 25	0))	0	0 6))	. .	000	d	83	İ				
		FRE	50	63	900	2 6	160	200	250	400	200	630	1000	125	1600	2000	2 6	4000	200	6300	1000	12500	16000		31500	40000 50000 63000	80000	GASPL PNL PNL				MGDEL 7100	5

																			!S ITY							FP3)	· ·
												-														ET SPEED	
																									27.32		
RC				PWL			٠.	1 142.7		147	147	7 146.0	2 4 5 2 4 5	6 144.8	1455	44	.2 143.7	142	4	• 1	6	2 137.7	136. 136.	4 158.0	TAMB	MODEL 117	
40.0 FT. ARC	X71040 X01400		150. 160					109.7 109.	700	. o.	.55	5 5 5 5 5	5. 24	- 9:	6 6	.4 93	6 4 9 93	2.5	98	ء اد	90.	3 75	66.5 64. 67.7 55.	19.8 114.	\$859 20 5700 ·	(XI	
DAY, SB 40	FJ-400-FMGDL FJB400-FMGDL	, DEGREES	. 140.					1 106.0		- -	113.9	112.6	110.8 1	108.0	108.7 1	107.0	105.0 103.7	102.2	88.5	200	87.8		68.8 62.5	5 122.6 1	IALPHA		
STD.	23	FROM INCET,	120. 130					96.5 101.	99.2 107.3	-		D D			Ø 0	4		-	99.1 100.9	1		76.		120.	N299	SO CM (
7 F.	- MODEL BACKGROUND	ASURED	110.					6 6	•	96.1	97.7	98.3	100.3	101	101.7	101.5	100.1	7.80	97.1	80 C	86.5	75.0	3 68.2	5 112.0 1	PE NG.	154.	
G. F., 70 PERCEI	DENTIFICATION	ANGLES ME	90. 100					. 1 . 89. 8 80.		92.	6 93.	8 95.	96.	97.	97.	.4 98.	.7 98.	.7 96.	6	90	.0	. 5 80. 3 76.	70.	107.6 108.	TAPE	RANGE 40.0 FT) ARC	
59.0 DEG. F.	IDENTIF		.90					95.2	88 6	96.5	89.7	92.2	92.1	95.6	93.5 93.8	93.5	93.8 93.3	93.8 93.6	0.00	200	86.6	85.6 77.1	69.1 63.0	105.7	-27-78 1 ANECH CH	ACGUSTIC RAN	
89.0 D			60. 70.							6 67.	1 86.	4 30.	.68 90.		92.	.0 93.	92.	.4 92.	86	4 C	.2 86.	4 0 8 V	. 68 63.	3.8 103.9	02-2	ACO ACO	
			20					(1) a	•		9	N G	D. 4	. 0	9 10	0	ယ္က	ળ લ	0.	-	0	w o	63.8 66 57.1 60	102.6 103	TEST DATE	TEST POINT 7104	
	V		40.	go	63 80	Ö ib	1	8 6		18	97	96	8 6	3 6	8 8	80	80.	90.0	88	5 4	95	70.	0 58.1 0 58.3	102.2		0	
				FREG 50	w 60	100	2 5	2 2	48	63	8	125	160	520	400	200	630 800	1000	1600	2500	3150	5 000	6300	OASPE		MODEL 710	

j j

•

											OR OF		INA 00				E 1									FPS
																								CORRECTION - YES	27.32 46.20	FREE-JET SPEED 117.65 M/SEC (386.0
		ž			139.9	143.7	140,0	-	145.0			2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	2. K	145.3	14.6	144.2	144.3	143.2	-	142.9	141.0			REFRACTION COR TURBULANCE COR	TAMB 2 RELHUM 4	
940		50. 16c.			6.5 105.9	י דין	10.00 100.0	. —	*	0		06.1 104.4	05.1 104.7	3 19	10 C		00.9 103.4 99.2 101.9	33.7 98.5	1	77.4 81.5	ó	, K 65.		TURBL	5859 29.5700	IN) - MODEL
8 77	DEGREES	140. 1	•	-	103.4 10	108.6 11	110,311	112.3	111.0	110,01	108.6	109.0	108.3	- -	20.00	102.4	10%.@ 1 98.5	92.8	67.0	77.0	72.8		2.13.	386,00 46,00	I ALPHA	\$12E 23,99 \$0
F.H. 316. DAI, 30 - FJ-400-FHOOL X710	RED FROM INLET.	120. 130.			P5.0 98.7	.2	96.9 106.6	. 0	04.5 108.1	6 107	3 107	07.8 408.3	106	200	06.4 106.2 05.3 105.9	-	400.40	97,65 95,6	8	87.3 83.0 84.4 77.6	.0 72	•		ELOCITY (FT/SEC) ET DIAMETER (IN)	N299 ADH987	98 GH
	MEASURED FI	110,			7 68.6	88.9	90.2	94.0	95.6 1	97.7	98.6	N 00	100.9	3 501.5	101.2	100.0	99.2	2 96,1	2 66.3	3 81.5 3 76.1	7 70.1	0 50	-	ララ		154.7
OENTIFICATION	ANGLES M	90. 100.			67.1.87.		69.~			95.6 95.	5	8 6	8	8	68	7 98.	.2 97. A 98.	4.6	88	ט ט	0		\$1801 01801	FREE JET FREE	TAPE AEMO. R	RANGE 40.0 FT) ARC
		8			7 98 1	6 87.6	87.9 0.7	1 98.9	1 91.7	2 6 7 4	2 94.5	0 0	4,00	2 97.5	7 97.8	7 97.6	97.6	96.0	1 90.6	8 90.1 91.6	2 73.1	0.78 /	. 1	FACTOR 1,000	-27-78 1 AMECH CH	ACGUSTIC RANGE 2 H (, 40.0 F
ì		6 0. 70.	***		17.6 87.	6	7 87.	1 90.	92.	92.	3 84	94.6 94.	2,8	26	97.6 97.	96.	98.	, 20 c	7 80.	6 63.	76.		20.0	SCALE ALC.	82	AC 12.2
		8	•		•	69.2	. 4	91.1	27.5	o 4	95.6	.	97.2		87.4	N 10		010	89.3	0 64.7	73.6	63.7	اۃ	MODEL/FULL SIZE INPUT 1,000 C	TEST DATE LOCATION	TEST POINT 7104

1

AND THE PROPERTY OF THE PROPER

0
Ō
-
ö
Ξ
•
-
9
Ň
>
=
Ξ
ĸ
O

														OF OF	SIC	SIP PC	NA O	L R	P Q	A	GE AL	. IT	3 Y											FPS)	
			•																										#* .*					FREE-JET SPEED M/SEC (388.0	
			5	.7	oi .	o, r) -	. 9.	4	e -		N.	6.	77 -	- o	. 0	.8	œ.	ri.	-0	i no	.7	2						9			1	TD 27.32	FF 117.65	
\$			160.	.3 162	7 163	. 2 163 . 4 163	4 163	.3 162	75.4 162	. 1 162	6 163	.9 163	.5 162	7.7	181	1 162	6 161	3 160	1 161	100	160	158	106						67.3 175. 89.1				O RELHUM	FULL	
	X71041	EES	. 150.	87.	90	9 6	63	9	80.8		78	77	75.	N C	7	69	66.	67.		2	•							1	96.7	96	HIFT -9		8 29.5700	- (NI 08	
		ET, DEGREE	130. 140	.3 88.	.8	90.4	2 89.	.1 87.	87.1 86.	7 a	3	4 83.	9	7.0	78	7 74.	6 70.	.6	9.0	2 6	9								12.6 100.7	8 102	FREQUENCY SH		PAMB	SIZE (1400.00	The state of
	FJ-400-FMGDL	FROM INLET	120. 1	7	9	o o	i ci	-	86.6	87.3	87.0	86.3	85.8	4 6 4 6 5 7	82.1	79.9	78.1	73.8	20.0 8.0 8.0	Z	36.7	8						. (103.0 102	103.7	O FRE	0000	ADH987	.2 SQ CM	
	CATION -	MEASURED	00. 110.	9	9.	D 1	9 77	.7 79.	78.) ~	.6 81	7 81	9 6	67	4 77	4 76	8 73	65 	8 49	32	7							7 00 00	- 98	7.64	1	AERO, RDG.	9032	
	I DENTIFIC	ANGLES	90. 10	8	<u>ه</u> د	N -	\ N	4	77.1 77	5 4	. .	۲.	٠,	0	10	8	a	ю.		- 4	9	٠.							99.1 97.	a	ETER RATIO	 -		ANGE O FT) SL	
			. 90	69	72	7 60	74.	76.	3 76.0	76.	77.	77.	77.	77.	77	77.	76.	22		9	40.	4							9 0 9 0 9 0	6 99.8	DIAME	87-76	N N	ACGUSTIC RANGE 5 M (2400,0 FT)	
			60. 70	68	.5 69.	73	6 73.	.1 74.	9.9	74	100	5 77.	.2 76.	3 76	5 75	0 75.	5 73.			92	9 40.	13.						1 0	5.00	6.5 96.		6	2.2	731.5 I	
			.02	68.8	9 60	9 0 20 0 20 0 20 0	71.3	72.8	74.7	74.0	78.3	76.5	76.2	1 4	73.8	72.9	20.9	99	0 0	43.9	26.7								0 0 0 0 0 0 0	93.4		TEST	LOCATION	T POINT	
			6	67.		2 6	72	73	7 6	3 65	23	74	7 5	7.	7	70	67.	4 1	, d	36.	6300 16.		2500		31500	40000			9 9					DEL TEST 7100	

0.-.

40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 80. 60. 100. 110. 120. 130. 80. 60. 50. 70. 80. 90. 100. 110. 120. 130. 80. 4 82. 8 81. 8 82. 8 87. 8 80. 2 87. 8 87. 8 80. 2 87. 8 87. 8 80. 2 87. 8 87. 8 80. 2 87. 8 87. 8 80. 2 87. 8 87. 8 80. 2 87. 8 87. 8 80. 2 87. 8 87. 8 80. 2 87. 8 87.	CORRECTED FOR BACKGROUND NOISE DAY, SB 40.0 FT. ARC	-FMØDL	IT, DEGREES	. 140, 150, 160,				.4 101.5 105.7 105.1 136.	.8 104.2 107.1 105.3 140.6	0 104.9 106.0 102.7 140.7	.0 104.1 105.3 102.5 140.5	.4 103.7 104.2 101.3 140.5 .7 104.1 105.0 101.7 140.7	7 104.1 105.6 101.6 140.9	. 8 103.5 104.4 1 .7 102.9 104.8 1	.5 101.7 104.1 100.1 140.3	.1 99.9 102.3 99.3 139.1	.5 98.8 102.4 99.8 138.9 .7 98.0 101.6 99.4 138.5	0 96.6 100.7 98.6 9 94.1 98.4 96.6	7 89.2 93.4 91.7	.0 85.4 89.1 89.4	. 6 77.0 77.7 8 77.0 77.7	.5 64.1 66.3 65.7 .6 57.6 58.3 57.7	.9 115.1 117.2 114.7 1	ALPHA \$859 TAMB 23.00 PAMB 29.3650 RELHIM 43.00	FREE-JET SPEED	23.99 SQ IN) - MODEL 0. M/SEC (
0.00 0	ODEL SOUND PRESSURE F. 70 PERCENT R.H	NTIFICATION - MC	MEASURED	. 90. 100. 110.				85.6 87.5 89.1	87.2 88.6 90.2	89.4 90.3 92.9	90.4 91.6 94.0 1	91.3 92.4 95.1 1 92.4 95.1 1	92.3 93.7 96.3 1	5 91.6 93.3 96.4 1 4 92.1 93.7 96.6 1	2 92.6 94.0 97.2 1	92.7 83.7 86.9	6 92.5 93.2 96.4 1 8 91.7 92.5 95.4	5 92.2 92.0 94.9 8 90.4 90.6 92.7	2 89.4 88.9 91.7 1 88.2 85.6 88.4	20 7 70 6 90.4	76.4 73.4 74.9 68.7 68.1 67.8	59.9 62.1 60.5 53.7 54.6 54.2	104.0 104.9 107.7 1	TAPE NG.	RANGE	FT) ARC 154	
		-		. 50. 60. 70.				83.6 61.6 82.4 8	63.7 84.0 84.0	85.1 85.4 86.2	85.7 86.4 87.5	87.3 88.5 87.6 89.1 89.4 88.4	88.5 88.3 89.1	89.4 88.7 89.4 88.8 89.1 89.1	90.4 89.4 89.9	89.0 88.0 88.0	87.1 88.2 88.6 87.3 87.2 87.8	85.6 86.3 87.4 83.9 84.1 85.7	62.3 83.2 85.0 79.7 79.9 81.8	75.0 77.2 78.3	66.2 69.2 71.1 56.2 69.2 71.1	52.8 54.9 57.3 45.7 48.9 51.6	99.9 100.0 100.4 1	EST DATE 02-2	POINT ACOUST!	105	

	(Š	ì	į	
		ľ	ė)	
	٩	١	į	ľ	
				•	
		ì)	
	۹		۰	•	
	ĺ	į	į	Ì	
•		P	١		
	۹	٠	١		
	(į)	
	(Š	ł)	
	١	١	٠		
	(ì	į)	
	۹	ľ	2)	

FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC
ENTIFICATION - FJ-ZER-FMODL X71
ANGLES MEASURED FROM INLET, DEGREES
FRED 40. 50. 60. 70. 80. 100. 110. 120. 130. 140. 150. 160.
150 miles (150 miles 150 m
78.0 83.6 81.6 82.4 83.5 85.6 87.
79.4 82.7 83.2 83.5 85.1 86.9 87.8 90.0 95.7 99.0 102.6 106.8 105.5 139
81.5 84.3 85.3 84.3 86.7 88.3 89.4 91.3 27.5 101.6 104.5 106.4 104.1 140
81.8 85.1 85.4 85.5 85.8 85.8 80.4 81.6 94.0 100.4 103.0 104.1 105.3 102.5 140.5
86.7 87.3 88.5 87.6 88.7 91.3 92.4 95.1 101.5 103.4 103.7 104.2 101. 84.8 89.1 89.4 88.4 90.0 82.4 93.0 95.9 101.3 102.7 104.1 105.0 101.
06.7 88.5 88.3 89.1 89.9 92.3 93.7 96.3 101.7 102.7 104.1 105.6 101.6 140.9
86.4 89.4 88.7 89.4 89.5 91.6 93.3 86.4 102.1 102.8 103.5 104.4 100.7 140.6 86.5 88.8 89.1 89.1 90.4 92.1 93.7 96.6 101.5 102.7 102.9 104.8 100.3 140.5
87.1 90.4 89.4 89.9 90.2 92.6 94.0 97.2 102.3 101.5 101.7 104.1 100.1 140.3
86.8 87.9 87.9 89.1 89.9 92.0 93.7 96.9 100.6 100.1 99.9 102.3 99.3 139.1
85.5 87.1 88.2 88.6 89.6 92.5 93.2 96.4 100.3 98.5 98.8 102.4 99.8 138.9 84.9 87.3 87.2 87.8 89.8 91.7 92.5 95.4 99.3 97.7 98.0 101.6 99.4 138.5
82.5 85.6 86.3 87.4 89.5 92.2 92.0 94.9 97.9 97.0 96.6 100.7 98.6 138.1
79.8 83.9 84.1 85.7 87.8 90.4 90.6 82.7 95.6 94.9 94.1 98.4 96.6 136.8 78.1 82.3 83.2 85.0 87.2 89.4 88.9 91.7 93.9 94.1 92.5 96.5 95.0 136.8
6 88.4 90.7 90.7 89.2 93.4 91.7 1 4 83.4 88.2 86.0 85.4 89.1 89.4 1
68.7 71.2 74.7 76.9 77.6 78.7 78.6 80.4 83.8 84.5 82.6 83.9 83.5 1 82.9 82.5 1 75 1 75 1 76 1 78 1 78 1 78 1 78 1 78 1 78 1 78
56.0 58.8 61.5 64.7 66.7 68.1 67.8 73.8 71.8 70.8 72.4 72.3 1
50.4 52.8 54.9 57.3 58.4 59.9 52.1 50.5 58.6 54.5 54.1 56.3 44.4 45.7 48.9 51.6 51.6 53.7 54.5 54.2 61.3 57.6 57.6 58.3
OASPL 97.4 99.9 100.0 100.4 102.2 104.0 104.9 107.7 112.6 113.9 115.1 117.2 114.7 152.8
MODEL/FULL SIZE SCALE FACTOR FREE JET VELOCITY (FT/SEC) 0. REFRACTION CORRECTION - YES INPUT 1.000 CALC, 1.000 FREE JET DIAMETER (IN) 48.00 TURBULANCE CORRECTION - YES
TEST DATE 02-21-78 TAPE NG. N294 IALPHA SB59 TAMB 23.00 LGCATION C41 ANECH CH AERG, RDG. ADHO90 PAMB 29.3650 RELHUM 43.00
MODEL TEST POINT ACGUSTIC RANGE SIZE FREE-JET SPEED 7100 7105 12.2 M (40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 0. M/SEC (0. FPS)

										(OR OF	lig P	IN/	AL)R		PA(UA	312	i I	\$ Y				•							SPEED 0. FPS)
																												23.00		FREE-JET 8
ı					-	- *		9 158.6	· • • •	50	156	5 156.6	155	154	154	152	151	100.2	147.1	146.8					.6 170.1	-		TAME	NEEDING	FULL
								80.7 72.	1					١			- 1	vi.							20.4	4 86	. <u>(</u>	SB59	2000	IN) FL
200	X71051	DEGREES		41	. 0	Q I	. 0	9 1		<u>ن</u> و) N	9 (10	-	10 4	rN	6	on 0	•						2.0	14	SHIFT	ALPHA SB	- 1	S
				10 6		اه	. ~	81.8 81		~ a	4	Ю.	r @	۵	ω r	. 10	6	O 4	,						92.5	1	FREQUENCY	IAL		S12E (1400.00
0	~	FROM INLET				ŀ		82.0	1								- 1								92.2		FRE	N294	2000	SQ CM
Ĺ	2	MEASURED FI	· 0	æ 0	4	4.	4 0	4.77	a	<u>a</u> c	, ro	6 0 (8	9 09	4	oi o	10	6	Ø () :					*.	0	0	7.640	N S	.	9032.2
1		ł	o.	10 4	i (N	4	Иr	N (٠. ٥) (1	٠,	· _	٥	68.1 64.2	<u> </u>	•	٠. د	9 04	- 1					92.6		NT10	TAPE	NENU. N	<u>ي</u> م
,	DENTIF	ANGLES	8	69.3		•1		73.9	73.2					- 4			•	•		-					84.7	92.9	AMETER RAT			IC RANGE 2400.0 FT)
			.08	67.0		- 1		71.4	.l .	0.0		69.6		- • 1	66.4	60.5		4.4 4.4	•						95.0		DIAM	178	מבנים כם	COUSTIC R
			70.			-1		70.2	٠١ .					•	63 10 10 10 10		-1	•							80.6	86.7		2-20	5	< 10
			. 09	64.8 66.1	66.2	67.1		68.6		•		•	64.1	- 1	60.4	;	-1	9 9 9 9	,						79.5	84.6		TEST DATE	201145	T 731
			2 0.	63.	2	65	9 69	67.7	67.	68	63	64.	62.	59.	57.	46.	38.	S	•							84		TEST	֓֞֟֞֟֞֟֞֟֞֟֟֟֝֟֟֝֟֟֟֟ ֞	T POINT 7105
			Ģ	58.9		٠,		64.2		•				٠,				•			•				• "	77.8				10EL TEST 7100 7

0
60
0
10.
0
Ñ
`
7/79
_
`
20
0

										0	RI(F	GII P(NA DO	L R	P	A(E	19 T	5												D O FPS)	-
																													33,00 52,30	• •	FREE-JET SPEED .65 M/SEC (386.0	
			- PMC					6 131.6 5 132.0	132	133	- 23	3 6	133	133	300	132	6 131.7	2 6	5	131	300	9 6	129	129	1 126.1	7 124.9	N N	0 145.7	TAMB RELHUM	ì	DEL 117	
X71060 X01400		150. 160.				•		96.7 97.6		.6 90.	87.		6 83.	2 81.	2 62.	7 91.	.6 79.	9 6	.6 79	8 78.	9 77.	1 76.	. 8 74.	0		6	N.	06.2 102.	SB59 29.5900		IN) - MODEL	
FJ-400-FMGDL FJB400-FMGDL	r, DEGREES	140.						96.4	28.	-	999	6	2 97	96	9 9	6	3 92.5	- G	8	99	20 q	8 8	79	9 6	3 63.6	1 57.4	0	7 108.3 1	IALPHA	L	SIZE 23.99 SO	
1	FROM INLET	120. 130	•				ļ	<u>ہ</u> د		-	~ a	98	5 98	W I	ه م	0	a e	N O) 	. 92	υa		10	ن س	9 9	63.9 58	•	105.1 108	N299 ADH136		SQ CM (- - -
- MODEL BACKGROUND	EASURED	110.						· •	7 82	1 84.	- 850 9.00	7 88	1 89	5 90		, o	.0 91.4	D 4	2 90.	4 90.	2 68 2 68 2 7 68	4	9	1 77. 3 75.	.2 64.8	.6 57.7		3 102.1	E NG.		154.7	
FICATION	ANGLES M	90. 100						2 6	98	. 9 82	a c	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	1 86	.8 87	4 -		86.5 88.	98	. 8 68	ai.	99	.5	0	2 76	9	57.8 59	v.	98.2 99	TAF		RANGE O.O FT) ARC	
IDENTI		. 80.								90.	60 00	9 6	83.	84.	20 d	. 4	9.	0 0	84	84.	9 6	8 8	79.	4.	64.	1 56.6	9	1 96.5	27-78 ANECH CH		ACCUSTIC RA	
		60. 70						o	76.5 76.	-	<u>ه</u> د) IO	0	ھ	4 -	- 0	41	٠ .	-	6.	- «	۸.	a i	ı, ı	? –	54.3 57.	-	93.3 94.	92	ľ	12.2	
		20						2. Z		75.9	4.7.4 4.8	6.7	90.1	79.0	6 0 0 0 0	82.2	80.4	20.00 20.00 20.00	80.5	79.1	7 6	75.2	72.4	60.0	67.6	62.2	7 7	9 92.0	TEST DATE LOCATION		TEST POINT 7106	
		40	<u> </u>	88	00	88	İ	N 6	8	2	9	6	77.	9		80	79.	9 8	78.	77.	6.4	9	70	99	3 2	63000 51.6	4. 0	CASPL 90.			MODEL TES 7100	

							•		O ()	RIG F F		VAI OF	L	P\v	IGI AL	E \$\$,	SPEED 386.0 FPS)	
	T. ARC			160. PWL				G.	94.4 131.2	4	N C	, a	0	က <u>«</u>		8,7	90.9 133.4	, r	101		. 60 (2) 4		69.2 130.3	4.5 127.	104.9 146.6	REFRACTION CORRECTION - YES Turbulance Correction - YES	TAMB 33.00 00 RELHUM 52.30	FREE-JET 8 - MODEL 117,65 M/SEC (3	•
	DAY, SB	FJ-400-FMGDL X71060	FROM INLET, DEGREES	130. 140. 150.				9	92.8 95.6 97	94.7	95.9 96.9 93	96.5 96.4 90	96.2 95.3 88	96.7 94.1 69	95.8 93.5 95	95.6 93.1	95.4 91.5 69	94.3 90.7 89	92,9 90.1 89	93.5 89.1 69	83.0	85.6 82.3 81	72.6 70.1 70	65.2 64.6 64	4 51.5 49	107.8 106.9 105.1	386.00 48.00	36 PAMB 29.5900	SIZE CM (23.99 SQ IN)	
	NT R.H.	DENTIFICATION - FJ-400	ANGLES MEASURED FROM	90. 100. 110. 120.			•	.8 77.9 78.	1 78.8 79.2 85.	2 61.1 82.1 88.	.2 82.0 83.6 89.	8 84.8 85.0	.9 85.4 87.8 93.	8 87.0 88.6 93.	6 88.3 89.7 94.	99.2 90	0 90.2 91.7	.8 80.3 81.4 94.	.2 89.6 91.0 93.	4 87 7 89 9 91	.5 84.9 86.0 87.	0 81.5 80.6 85.	7 72.7 74.0	0 67.3 66.0 71.	2 54.2 52.	0.4 100.3 101.7 105.4	FREE JET VELOCITY (FT/SEC) FREE JET DIAMETER (IN)	TAPE NO. N299 AERG. RDG. ADH1	JE FT) ARC 164.7 SQ	
FL. I GHT	59.0 DEG. F.,			60. 70. 80. 9				8.5 78.6 78.4	8.4 78.6 79.1	0.6 79.3 82.0	9 80.4 90.5	0 83.7 83.3	3 84.0 85.2	85.8 86.3	6 85.8 87.0	.4 86.6 87.6 3 87.3 87.6	87.9 87.3 88.7 90	8 87.7 88.7	1 87.4 89.1	.0 87.8 88.1	6 85.1 86.5	9 81.7 84.2	.3 //.8 /8./ /	6 71.0 69.	4 55.3 54.0 5	99.1 98.5 99.9 100	ZE SCALE FACTOR CALC. 1.000	DATE 02-27-78	ACCUSTIC RANGE 12.2 M (40.0 FT)	
				40. 50.	63	80 100	125 160	79.4	79.4 79.	61.1 61.0	82.4 82.0	85.9 85.7	86.4 84.0	85.2 86.3	86.50 86.8	87.5 87.2	86.8 86.8	87.9 88.4	87.8 88.9	86.6 87.2	83.1 84.9	77.9 81.8	77.3 78.2	69.2 69.0	52.4 52.1	CASPL 99.0 99.1 9	MODEL/FULL SIZE INPUT 1.000	TEST DATE LOCATION	MODEL TEST POINT 7100 7106	57

	C)
	ū	ó
	ë	-
		٠
	C	2
	•	•
	ğ	þ
	۲	۰
	٠	•
	۲	•
	•	-
	٠	
٠	۴	;
	¢)

	•																					enderlikke is no promine de sin og store enderlikke enderlikke in og store enderlikke in og store enderlikke in og store enderlikke in og store enderlikke in og store enderlikke in og store enderlikke in og store enderlikke in og store enderlikke in og store enderlikke in og store enderlikke in og store enderlikke in og store enderlikke in og store enderlikke enderlikke enderlikke enderlikke enderlikke enderlikke enderlikke enderlik
									01	RIGI F P	NA OOI	, P R Q	AG UA	e 19 Lita							SPEED 386, 0 FPS)	
																				33.00 62 .30	FREE,JET 17,65 M/SEC (The second secon
		160. PWL	65.6 149.1 64.0 149.0	.6	00	63.6 1	61.3 1 58.7	57.5	67.4	0 to 10	48.8	29.7		146.7				75.4	O r	TAMB 900 RELHUM	- RULL 1	egu nifesu ja karen ja diseerud egi niinoo
X71061	DEGREES	140. 150.	74.5 72.8	. 8 68 68	. 3 66 . 0 65	9 64	4 62	0.0	80		4 55	9.0	9 8					85.9 79.9 85.9 79.9	SHIFT -	ALPHA SB59 PAMB 29.5900	SIZE (1400.00 SQ IN)	e ducine de de de de de de de de de de de de de
FJ-400-FMGDL	FROM INLET,	120, 130.	73	7 75	9 76 5 75	33	2 74	22	3 71	4 W C	4 66	200	6 31					91.3 90.9 91.3 90.9	FREQUENCY	N299 ADH136	2 SQ CM (140	and y
	ANGLES MEASURED	100. 110.		a	60	10 0	m a	မာ က	~ •	69.3 70.5 67.8 68.3	G K	•	-	9				80.6 61.6 88.6 89.2 88.6 09.2	RATIG 7.640	TAPE NG. AERO. RDG.	SL 9032.	
IDENTI	ANGL	90. 90.		. 7 65.	. 1 66. 9 67.	89 89 89 69	99 68	- 69 - 0	.8 70.	68.8 70.1 68.8 70.1	9 67.	- 70 C	6 46.	2 6				86.3 80.6 88.5 89.3 89.8 80.4	DIAMETER R	7-78 ANECH CH	ACGUSTIC RANGE 5 M (2400.0 FT)	
		60. 70.		. 7 61. . 8 64.	7 65. 8 65.	2 66. 9 66.	.3 66.	6 66	4 67.	66.1 66.5 66.7 66.5	5 64	90	42.					78.0 78.3 85.5 86.5 86.2 87.1		FEST DATE 02-27 LOCATION C41 A	ACOU 731.5 M	
		40. 60.	9 0	.661. 0 65.	. 1 63. . 1 63.	7 65	3 65.	99 -	9 65	61.7' 65.2 80 6 60 0	60	. 60 q	7 31.	л <u>4</u>				74.9 76.6 80.3 83.4 80.3 83.4		TEST LGC/	TEST POINT 7106	
		FRED							1	0000		3160	1		12500 16000 20000	 2460	80000	CASPL PNL PNLT			MODEL 7100	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

								OF	IG P	INA OO	1 R	PA QU	lGI AL		3								26.04 21.00	FREE-JET SPEED). M/SEC (0. FPS)
UNTRANȘFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NAISE 59.0 DEG. F., 70 PERCENT R.H. STD. DAY. SB 40.0 FT. ARC	IDENTIFICATION - MODEL FJ-ZER-FMODL X71070 BACKGROUND	ANGLES MEASURED FROM INLET, DEGREES	40. 50. 60. 70. 60. 90. 100. 110. 120. 130. 140. 150. 160.		152	79.3 85.3 82.8	.2 86.8 88.4 89.1 91.5 97.7 101.3 105.1 108.8 107.2 1 .5 86.9 89.2 90.4 92.0 98.5 104.5 107.7 109.9 108.0 1	83.3 85.8 86.8 86.4 89.7 89.8 91.4 92.6 99.6 105.6 108.5 110.7 108.	86.9 86.7 88.0 89.5 89.9 92.0 93.4 95.8 102.0 105.6 107.7 109.6 108.3 144.	86.4 90.2 90.5 90.5 90.5 91.8 93.7 95.1 97.5 103.1 104.6 105.9 107.1 106.0 142	87.7 89.7 90.2 90.0 90.6 92.7 94.6 97.7 103.4 104.6 103.3 1	87.3 89.1 89.9 90.9 91.7 93.6 95.4 97.9 103.0 104.5 102.6 105.1 103.3 141.	87.3 88.3 89.1 89.6 80.4 93.0 94.7 97.4 102.2 101.0 100.9 102.1 100.6 1	88.6 89.1 90.5 93.1 94.5 97.4 101.3 101.0 99.9 101.6 100.1 1 88.3 88.8 90.6 93.0 94.4 96.3 100.7 99.7 99.0 100.9 100.3 1	84.8 87.2 87.3 87.9 90.0 91.9 93.2 95.5 99.7 98.3 97.6 100.1 82.9 85.5 86.9 87.3 90.4 92.5 92.7 95.0 98.0 97.0 96.2 93.1	80.2 84.3 85.2 86.6 88.9 90.3 91.2 93.3 95.7 95.1 94.2 96.8 96.7 1	73.2 80.4 81.0 83.1 86.9 88.8 86.9 88.5 80.4 90.2 88.7 92.0 91.3 135.	.0 76.2 79.0 79.9 84.0 85.4 83.2 83.7 88.0 86.5 85.2 87 .3 73.0 76.0 78.7 79.2 80.3 79.9 80.7 84.0 84.3 83.2 83	68.0 70.9 72.9 77.5 78.4 75.0 75.5 78.7 78.5 77.3 77.5 79.2 133	54.3 55.4 58.2 60.9 61.3 62.2 64.0 61.8 69.4 64.0 64.1 66.9 66.5 130	51.5 55.0 54.0 55.9 56.4 55.6 61.6 56.9 59.4 58.7 59	OASPL 98.5 100.4 101.1 101.5 104.3 105.0 106.3 108.7 113.9 115.8 117.2 119.4 118.0 154.6	TEST DATE 02-20-78 TAPE NJ. N294 IALPHA SB59 TAMB LOCATION C41 ANECH CH. AERO, RDG. ADHQ69 PAMB 29.3030 RELHUM	MODEL TEST POINT ACGUSTIC RANGE SIZE SIZE 7100 7107 12.2 M (40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 0

1 DENTIFICATION ANGLES MEASULE FREQ 40. 50. 60. 70. 80. 90. 100. 11		
ANGLES MEAS 40. 50. 60. 70. 80. 90, 100.	ATION - FJ-ZER-FMGDL X71070	
40. 50. 60. 70. 80. 90. 100.	MEASURED FROM INLET, DEGREES	
	10. 110, 120. 130. 140, 150. 160, PWL	
90 100 100 100 100 100 100 100 1		
79.3 85.3 62.8 63.9 85.2 87.6 89.5 81 1 83 9 84 4 85 2 86 8 88 4 89 1	.6 90.6 95.3 99.	
82.7 85.0 85.5 85.5 86.9 89.2 90.4 83.3 85.8 86.8 86.4 89.7 89.8 91.4 83.9 86.7 87.7 87.7 98.8 91.2 92.1	.4 92.0 98.5 104.5 107.7 109.9 108.0 143. .4 92.6 99.6 105.6 108.5 110.7 108.4 144. .1 95.0 103.7 105.5 108.4 110.6 109.0 144.	
89.3 89.3 90.8 89.6 90.7 92.8 94.2 86.4 90.2 90.5 80.5 91.8 93.7 95.1 87.7 87.7 87.7 87.7 87.7 87.7 87.7 87	.2 96.4 103.1 105.2 105.8 107.5 109.5 108.3 144 .1 97.5 103.1 105.2 105.9 107.5 106.9 142 .1 97.5 103.1 104.6 105.9 107.1 106.0 142 .5 97.7 103.3 104.7 104.7 106.9 105.6 142	ORIGI OF P
87.3 89.1 89.9 90.9 91.7 93.6 95.4 87.5 89.3 89.6 90.6 91.2 93.5 95.4 87.3 88.3 89.1 89.6 90.4 93.0 94.7 86.6 87.9 88.6 89.1 90.5 93.1 94.5	7. 97.9 103.0 104.5 102.6 105.1 103.3 1 7. 98.3 103.5 102.5 102.4 104.3 102.1 1 7. 97.4 102.2 101.0 100.9 102.1 100.6 1 7. 97.4 101.3 101.0 99.9 101.6 100.1	NAL POOR Q
85.5 87.6 88.3 88.8 90.6 93.0 94.4 84.8 87.2 87.3 87.9 90.0 91.9 93.2 82.9 85.5 86.9 87.3 90.4 92.5 92.7 80.2 84.3 85.2 86.6 88.9 90.3 91.2	.4 96.3 100.7 99.7 99.0 100.9 100.3 139.2 95.5 99.7 98.3 97.6 100.1 99.6 138.7 95.0 96.2 99.1 98.5 137.2 93.3 95.7 95.1 94.2 96.8 96.7 136	IGE IS
.3 88.3 90.0 89.2 .1 86.9 88.8 86.9 .9 84.0 85.4 83.2 .7 79.2 80.3 79.9	.2 91.3 93.4 93.4 91.8 95.2 94.9 136.9 88.5 90.8 90.2 88.7 92.0 91.3 135.2 83.7 88.0 86.5 85.2 87.7 89.1 134.9 80.7 84.0 84.3 83.2 83.0 83.6 134	
66.3 68.0 70.9 72.9 77.5 78.4 75.0 59.6 61.8 64.3 67.0 69.5 70.5 70.0 54.3 55.4 56.2 60.9 61.3 62.2 64.0 47.8 48.5 51.5 55.0 54.0 55.9 56.4	.0 75.5 78.7 78.5 77.3 77.5 79.2 133 .0 68.6 73.8 72.3 70.9 72.5 72.6 131 .0 61.8 69.4 64.0 64.1 66.9 66.5 130 .4 55.6 61.6 56.9 59.4 58.7 59.4 130	
00.4 101.1 101.5 104.3 105.0 106.3 1	.3 108.7 113.9 115.8 117.2 119.4 118.0 154.6	ı ı
INPUT 1.000 CALC. 1.000 FREE JET TEST DATE D2-20-78 TAPE ND LOCATION C41 ANECH CH AERO, RD9	JET DIAMETER (IN) 48.00 TURBULANCE E NG. N294 IALPHA SB59 TAMB RDG. ADHO69 PAMB 29.3030 RELHUM	CORRECTION - YES 28.04
ACCUSTIC RANGE	SIZE 154.7 SQ CM (23.99 SQ IN) - MODEL Q	i .

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SGUND PRESSURE LEVELS 59.0 DEG. F. 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

40. 5	50. 60.	70.	00	ANGL ES. 90. 1	100.	10.	FROM INLET		DEGREES	150.	160.					
60 9 64 61 4 65	7 66. 5 67	67	68.8		72.3	9-	6 4	84.3	9	9	- 1	161.1 161.9				
000	400	69.	71.7	73.2		1001	10 1- 1-	dur	86.5 85.7		80.6 79.0	162.2 161.6				
	.6 71. 6 70. 6 70.			 .	NO 00 10	V V © 4	0040		~ ~ ~ ~	N O - 0	77.8 76.9 74.6	150.2 150.2 150.0				
0 – 6 6	. 5 69. 2 67. 6 66.	70. 69. 68.			3-r4	l	82.9 81.3 80.1 79.2	0 V 4 V]	77.8 74.9 73.7 72.3	70.9 68.4 66.9 66.0	158.8 157.5 157.2				
0 B 0 0	.8 65. .8 64. .0 62. .0 61.	67. 66. 65. 63.		71.9 72.4 69.9 69.5	0 6 9 4	8008	a 0 % u		06	8 04-	64.1 61.5 57.5 52.6	156.1 155.6 154.5	r.	OF PO	ORIGIN	
486-	.4 57. .7 53. .8 46. 2 35.	60. 56. 51.	65.6 61.3 53.5 46.8		តិសម្ភាព	607-	- 40-	8007	6 C 6 C		44.1 33.4 13.5	153.2 152.1 151.7 151.7		OR QU	IAL PA	
9	8	23.	29.		a –	4	4.	6	•			149.1 148.2 147.9		ALITY	CE IG	
						V 1										
75.2 78 78.5 83 78.5 83	.6 80.7 .1 85.6 .1 85.6	81.8 87.6 87.6	85.3 90.8 92.0	95.6 92.6 93.9	87.1 92.7 92.7	99.0 94.5 5	93.6 98.4 98.4	94.6 97.6 97.6	94.4 95.3	94.0 94.5	88.9 88.4 89.4	171.8				1.
			DIAMETER		RATIO	7.640	R.	FREGUENCY	Y SHIFT	9 F						
	TEST DATE		-20-78 1 ANECH CH		TAPE AERO. R	RDG. A	N294 ADH069	VI	I ALPHA PAMB	SB59 29.3030		TAMB RELHUM	2 8 .04 21.00			
TEST PO 7107	POINT 7.	ACGU:	ACCUSTIC RANGE .5 M (2400.0 FT)		SL	9032.2	SQ CM	\$12E (1400.00	ZE . 00 SQ	2	FULL		FREE-JET O. M/SEC (-JET SPEED EC (0.	D FPS)	

8
=
•
=
•
•
ö
0
-
i
4
9
2
2
/70
7/79
7/79
17/79
11/79
11
11
07/11//0

	•							e.			•										C										FPS)
)F		NA OO			AG UA	iE (Ll'	IS TY			-					29.30 44.40	F. F. F. F. T. T. T. T. T. T. T. T. T. T. T. T. T.	7.65 H/SEC (386.0 F
FOR BACKGROUND NOISE 40.0 FT. ARC	X71080 X01400		150. 160.	PWL					.1 134.	6 100.0 135.	ب ب م	.0 90.4 136	.8 88.9 136	.1 86.7 135 2 9F 6 13F	7 85.3 135	1 83.8 135	88.8 82.5 134.7 87.8 81.8 134.6	7 80.5 133	6 79.6 133	.7 79.2 132 .9 76.4 132	7 78.6 132	.5 76.9 131	6 75.4 130	1 74.2 129	.6 63.1 128	.3 57.0 125	53.8 50.6 125.4 45.5 43.0 125.5	109.2 105.3 147.9	\$359 TAMB 29.5700 RELHUM	•	IN) - MODEL II
LEVELS CORRECTED FOIL STD. DAY, SB 4	FJ-400-FMGDL ND FJB400-FMGDL	FROM INLET, DEGREES	120. 130. 140.						.4 92.4 98.5 1	9 95.4 99.6 1	4 99 6 102.7	.1 99.7 102.1	6 100.5 101.6	.5 100.1 100.0	2 99.4 98.6	5 100.0 96.7	0 98.9 95.6 97.3 94.9	.7 96.7 93.6	6 96.2 92.5	93.3 90.3	1 92.9 89.0	. 3 90.6 65.8 69.4 85.2	7 86.3 81.9	.8 81.6 78.4 2 70 4 75 2	.0 72.7 70.9	.4 65.1 63.9	64.7 57.4 56.9 57.1 50.7 51.4	08.8 110.5 111.0 1	N299 IALPHA ADH986 PAMB	21.25	SG CM (23.99 SG
SOUND PRESSURE 70 PERCENT R.H	©≜TION - MODEL BACKGROUND	ANGLES MEASURED FR	90. 100. 110. 1						4 82.5 84.1	2 82.6 85.1	6 63.9 65.6 85.1 87.1	6 86.0 89.0	.9 87.1 89.8	.1 87.8 91.2	9 89 6 92.8	5 88.9 92.9	8 89.8 92.8 8 89.7 93.6	6 89.0 93.0	6 89.7 93.0	4 88.8 91.4	7 87.6 90.7	6 85.0 87.7	1 81.7 84.6	. C 79.1 30.1 ·	70.2 71.4	.7 65.6 64.3	. 9 59.9 58.3 . 5 51.8 51.0	6 100,6 103.8 1	TAPE NG. NZ AERG. RDG. AC		FT) ARC 154.7
UNTRANSFORMED MODEL. 59.0 DEG. F.,	I DENTIFI @ \$TI dN		70. 80.						7 78.9	77.8 79.6	80.2	81.1 91.4	82.7 83.3	82.1 84.0	83.7 85.0	83.3 84.6	83.2 84.8 87 83.8 85.3 88	82.9 84.7	82.9 84.4	82.5 84.8 82.7 84.3	82.0 84.3	80.6	78.0 82.0	75.3 79.7 8	68.9 73.	63.5 65.4 6	57.7 57.2 52.7 50.9	95.0 97.8 99	02-27-78 C41 ANECH CH	ACCUSATION	12.2 M (40.0 FT)
UNTR			40. 50. 60.						.2 76.3	9 77.2 78.	77.7 76.2 79.1	1 79.8 61.	.4 79.4 81.	8 79.5 82.	1 80.9 82	5 81.0 82.	80,2 51,0 83,2 80,5 81,6 82,3	.1 80.5 82.	.3 80.2 82.	4 80.6 82.	6 80.5 61.	0 78.1 79.	0 76.2 77.	6 73.0 74.	.9 65.5 68.	.2 59.1 61.	53.7 53.2 55.3 47.2 46.5 49.5	92.2 92.9 94.6	TEST DATE	THE PART	
				FREG	8 8	90	00.2	900			200	1			ł		2500	1				12500		25000			63000 80000	GASPI			7100

(L

AMOLES HESIGNED FIRST NINE; DESCRIPTION TOTAL 1800 100, 110, 120, 130, 130, 130, 130, 130, 130, 130, 13) R			N LENCEN			}) E		•				
40. 80. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PHI. 81. 81. 8 82. 80. 80. 80. 4 80. 100. 110. 120. 130. 140. 150. 160. PHI. 81. 81. 8 82. 80. 80. 80. 4 80. 100. 110. 120. 130. 140. 150. 150. PHI. 81. 81. 8 82. 80. 80. 80. 80. 100. 110. 120. 130. 140. 150. 130. PHI. 81. 8 81. 8 82. 80. 80. 80. 100. 110. 120. 130. 182. 80. 100. 25. 7131. 80. 134.					. ** 	DENTIF	I CATIO	J.	-400-FM		X71060								
40. 60. 60. 70. 60. 90. 100. 110. 120. 130. 140. 160. 160. 160. 160. PM. 11.8 81.8 82.0 80.6 80.4 80.4 80.4 80.7 80.6 87.8 81.1 84.8 89.2 87.4 131.8 81.8 82.0 80.6 81.3 82.4 81.8 81.2 86.2 81.0 2 101.2 80.0 134.8 84.2 81.8 81.8 82.0 80.6 81.3 81.8 81.8 82.0 80.6 81.3 81.8 82.0 80.6 81.3 81.8 82.0 80.6 81.3 81.8 82.0 80.6 81.3 81.8 82.0 80.6 81.3 81.8 82.0 80.6 81.3 81.8 82.0 80.6 81.3 81.8 82.0 80.6 81.3 81.8 82.0 80.6 81.3 81.8 81.8 81.8 81.8 81.8 81.8 81.8						ANGLE	MEAS	JRED			GREES								
81. 8 1. 8 1. 8 2. 0 80. 6 90. 4 80. 4 80. 7 80. 6 87. 6 81. 1 84. 9 88. 2 87. 4 191. 8 81. 8 1. 8 1. 8 1. 8 1. 8 1. 8 1	0			02	9	8	100.	110.	<u>.</u>	,-		-		j	•				
81.6 81.6 82.0 80.6 80.4 80.4 80.7 80.6 87.6 81.1 84.9 80.2 87.4 131 8 81.1 81.8 81.2 81.2 81.2 81.2 81.0 81.1 82.4 80.5 81.2 82.4 1011 81.0 134.8 81.2 81.2 81.2 81.2 81.2 81.0 81.1 81.2 81.2 81.0 81.1 81.0 134.8 81.2 81.2 81.2 81.2 81.0 81.1 81.2 81.2 81.0 81.1 81.0 134.8 81.3 81.2 81.2 81.2 81.0 81.1 81.2 81.2 81.0 81.1 81.0 134.8 81.3 81.2 81.2 81.2 81.2 81.0 81.1 81.0 81.1 81.0 134.8 81.3 81.2 81.2 81.2 81.2 81.2 81.0 81.1 81.0 81.1 81.0 81.1 81.0 81.1 81.1	200													1 K					
81.8 81.8 82.0 80.6 80.4 80.4 80.4 80.7 80.6 87.6 81.1 84.9 88.2 87.4 131.8 80.0 131.8 80.4 81.1 81.8 81.0 81.0 81.0 81.0 81.0 81.0	85																		
81.6 81.9 82.0 60.6 90.4 90.4 90.7 90.6 87.6 81.1 84.9 80.2 87.4 131.8 86.6 81.3 82.4 81.2 82.4 81.5 81.1 84.9 81.5 81.1 184.8 81.6 81.3 82.4 81.2 82.4 81.5 81.1 81.3 81.4 81.8 81.6 81.3 82.4 81.5 81.2 82.4 81.5 81.5 81.5 81.5 81.5 81.5 81.5 81.5	125																		
81.8 81.9 82.0 60.6 81.0 82.4 61.0 81.0 80.6 81.1 84.8 81.1 85.4 1111.8 61.0 134.6 81.2 80.6 81.2 82.0 60.6 81.3 80.4 80.1 80.6 81.3 80.	160 200 200																		
81.8 81.8 81.8 80.6 81.3 82.4 81.2 82.4 81.2 82.4 10.1 81.2 80.1 194.8 80.1 1		. 8 . 91.	82.	٠.	0	7.0	_	0	9	_	ľ	0	4	1.8					
## 1			6		ი ი	40	٠. -	4 0	ю.	o, o		- ^	0,	4 4 6 6					
44.7 64.6 84.3 84.5 85.6 85.0 85.0 85.0 85.0 85.0 85.0 85.0 85.0		18	8		~	, ci	(9	10	9 (4)	•	100	- O	6.6					
97.8 66.6 66.8 66.8 66.8 66.0 67.7 66.9 68.1 95.9 96.0 96.4 95.3 94.2 94.3 94.7 94.8 96.8 96.8 96.8 96.8 96.8 96.8 96.8 96		. 7 84.	84.	-	m c	0	٥	ص ارد پ	- اِد	ار د	-	- 6) -	0 R					
87. 86.2 86.7 86.7 86.7 86.7 86.0 86.1 86.0 86.1 86.0 86.1 86.2 86.1 86.2 86.1 86.2 86.1 86.2 86.2 86.2 86.2 86.2 86.2 86.2 86.2		- 6	86.		, 0		ų a	• -	- 0	, 0		ე ლ	4 0	. 4 					
87.3 86.2 87.7 87.1 87.4 87.6 88.7 88.1 81.0 87.6 88.6 89.5 91.1 82.5 134.9 90.8 87.1 87.6 88.6 87.8 87.8 87.8 87.8 87.8 87.8		.5	87.		.	10	0	-	0	o.		0	20	4.7					
### 17.5 87.7	-1	.3	98	٠.	4	a r	- -	0	۰	وام	ı	-	9	0.0					
87.5 88.7 88.8 89.7 88.4 89.6 89.6 89.3 89.0 98.4 89.7 98.3 89.3 89.0 134.6 87.8 88.8 89.8 89.8 89.8 89.8 89.8 89.8		.00	. 6		ńω	. 4	· a	2 0	; 0	9		ų 0		. 4 0 0					
67.4 66.5 86.0 67.3 89.0 90.6 91.6 93.3 97.2 96.4 92.4 86.5 89.7 134.5	•	.5 87.	88		40	φ. c	9.0	0.0	4,	٥,		ص د	7.0	0. A					
99.1 89.8 89.8 89.8 89.7 89.5 90.6 91.5 94.1 91.4 87.9 89.1 134.4 PS 99.1 89.1 89.8 89.8 89.8 89.5 134.4 PS 99.1 89.1 89.8 89.8 89.8 89.6 134.4 PS 99.1 89.1 89.8 89.8 89.8 89.6 134.1 PS 90.8 89.7 89.8 90.6 134.1 PS 90.8 89.7 89.8 90.8 90.5 134.2 PS 90.8 89.7 89.8 90.7 89.9 90.3 90.1 89.7 98.2 91.8 134.2 PS 90.8 90.8 90.7 89.8 90.7 91.6 134.2 PS 90.8 90.8 90.8 90.8 90.8 90.8 90.8 90.7 91.6 134.2 PS 90.8 90.8 90.8 90.8 90.8 90.8 90.8 90.8	1	4 96.	88			စ်ဖ	0	0	a	4	1	0	7	λ. Ω					
Section Sect		N -	g g		ო დ	o 4	6 6	n e	ກຸຜ	<u> </u>		0 9 0	- 10	4 Q					
86.6 88.1 87.2 87.9 89.0 88.5 90.3 93.1 92.6 89.1 80.7 91.5 134.2 86.7 86.3 87.1 86.9 80.0 86.5 90.7 86.3 87.8 80.6 134.1 84.3 86.2 86.4 85.0 86.5 87.1 84.2 86.3 87.7 85.2 82.1 82.5 87.2 133.3 72.7 92.7 92.1 81.7 84.2 84.0 80.9 86.3 87.7 85.2 82.1 80.0 84.3 132.7 77.5 78.6 72.2 78.5 77.9 77.1 72.6 73.4 78.8 77.9 77.1 72.6 73.4 75.9 77.9 77.1 72.6 73.4 75.9 77.9 77.1 72.6 73.4 75.9 70.9 77.1 72.6 73.4 75.9 77.9 77.1 72.6 73.4 61.8 85.0 65.1 69.9 131.2 63.0 62.7 63.1 64.3 80.1 65.3 73.0 65.8 65.0 66.1 69.9 131.2 70.6 70.1 71.4 70.6 70.0 69.7 68.1 66.3 73.0 65.8 65.0 66.1 69.9 131.2 70.6 70.1 71.4 70.6 70.0 69.7 68.1 66.8 50.4 61.8 69.2 63.8 129.7 70.6 70.1 71.4 70.6 70.0 69.7 68.1 66.3 73.0 65.8 65.0 66.1 69.9 131.2 70.3 100.3 100.0 100.3 99.4 101.0 101.6 101.3 103.2 108.6 109.2 109.2 107.7 106.7 148.1 78.8 10.0 100.3 99.4 101.0 101.6 101.3 103.2 108.6 109.2 109.2 107.7 106.7 148.1 78.8 10.0 100.3 99.4 101.0 0.0 64.C 1.000	- 1	0	88.		0		4	-	a	6		9	4	7					
84.3 86.2 85.4 85.0 86.5 87.1 84.2 86.3 87.7 85.2 82.1 82.5 87.2 133.3 74.7 84.2 85.0 86.5 87.1 84.2 86.3 87.7 84.6 82.1 80.0 84.3 132.7 77.8 78.2 78.2 78.2 78.2 78.2 78.2 7		.8 88.	60 g		a . a	0.4	ю. 4	<u>ه</u> د	<u>-</u> °	9.	- 0	~ a	10 a	4 2 0 -					
78.7 82.7 62.1 81.7 64.2 84.0 80.9 80.9 64.7 84.6 82.1 80.0 84.3 132.7 77.5 78.8 77.9 77.9 77.9 77.9 77.9 77.9 77.9		. 3 85.				o	i oi		١.	. N	<u>. –</u>) IO	, ci	- e.					
77.5 78.8 79.2 78.5 77.8 77.1 72.6 73.4 81.1 78.8 74.5 76.2 80.3 131.3 77.5 77.9 77.5 77.9 77.9 77.9 77.9 77.9	000	.7 82.	62.		ci o	0	9	9	7	واو	-		0	2.7					
70.6 70.1 71.4 70.6 70.0 69.7 68.1 66.3 73.0 65.8 66.0 66.1 69.9 131.2 63.0 62.7 63.6 64.3 61.2 61.9 62.3 60.1 66.8 50.4 61.8 69.2 63.8 129.7 54.3 63.1 64.4 50.8 54.8 56.5 54.2 52.8 57.0 50.6 52.0 49.4 54.0 128.1 100.3 100.0 100.3 99.4 101.0 101.6 101.3 103.2 108.6 109.2 109.2 107.7 106.7 148.1 100.3 100.0 100.0 GALC. 1.000 FREE JET VELGCITY (FT/SEC) 386.00 REFRACTION CORRECTION - YES 1	000	n e	7 49.			- ب	. .	0 4	- a		<u>ب</u>	N O	5 F	e					
100.3 100.0 100.3 99.4 101.0 101.6 101.3 103.2 108.6 52.0 49.4 54.0 128.1 100.3 100.0 100.3 99.4 101.0 101.6 101.3 103.2 108.6 109.2 107.7 106.7 148.1 100.0 100.3 99.4 101.0 101.6 101.3 103.2 108.6 109.2 107.7 106.7 148.1 100.0 CASC 100.0 101.6 101.3 103.2 108.6 109.2 107.7 106.7 148.1 100.0 CASC 1.000	_	φ.	7.5	•	0.0	~	- 0	ო.	0.0	۰.	0.	- 0	9	٠. د د					
100.3 100.0 100.3 99.4 101.0 101.6 101.3 103.2 108.2 109.2 107.7 106.7 148.1 100.0 101.6 101.0		ص ا	94.		40	0	200	- 6	0	4 0	0	4	0	- 0					
10DEL/FULL SIZE SCALE FACTOR FREE JET VELGCITY (FT/SEC) 366.00 REFRACTION CORRECTION - YES INPUT 1.000 CALC. 1.000 FREE JET DIAMETER (IN) 48.00 TURBULANCE CORRECTION - YES TEST DATE 02.27-70 TAPE NO. N299 IALPHA \$859 TAMB 29.30 LOCATION CALANECIF CH AERO. RDG. ADH966 PAMB 20.5700 RELHUM 44.40 TEST POINT ACGLOTIC RANGE TEST POINT FREE-JET SPEED 7106 18.2 M (44.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 117.65 M/SEC (386.0	SPL 1	.3 100.	100.	4	0	9.10	6.	9	9	Ø	8	.7.	.7 1	8.1		- -			
TEST DATE UZ-27-78 TAPE NO. N299 IALPHA SB59 TAMB 29.30 LOCATION GAI ANECH AERO, RDG. ADH900 PAMB 20.5700 RELHUM 44.40 TEST POINT ACGUSTIC RANGE 7100 12.2 M (40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MGDEL 117.65 M/SEC (306.0	Æ	INPUT 1.	SIZE 000		CTOR 30	ild	JET V FREE J	ELOCIT	Y (FT/SI	l	86.00 48.00	REI	RACTI		RECTION RECTION	4			
TEST DATE U. AERO, RDG. ADH988 PAMB 29.5700 RELHUM 44.40 AERO, RDG. ADH988 PAMB 29.5700 RELHUM 44.40 AERO, RDG. AERO, RDG. AERO, RDG. AERO, RDG. AERO, REE-JET SPEED ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 117.65 M/SEC (396.0				1	l ag						- 1								
EL TEST POINT ACGESTIC RANGE 100 7108 12.2 H (40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 117.65 M/SEC (386.0		<u>.</u> _	ST USE	3.2			~	 2 g	98840	<u> </u>		5.5700 0.5700	REL		. 4 . 4 . 6				
	ODEL	EST					280		- 1	\$12	g	•	COPE	17	FREE-J		D FPS)		
33	}	}		•			<u> </u>	•		<u>.</u>	ļ			:					
	63																		

0
80
-
<u>.</u>
0
•
_
9
~
•
17/79
_
`
6
0

									0	RIQ F I	GIN PO	A OI	L !	PA QU	GI Al	: 1: :IT											D FPS)	
														3						•						6.30 4.40	FREE-JET SPEED.	
			160. PWL	3 152	5 163	6 152	. 0 152 . 3 152	63.9 152.6	5 152	6 132	525	.7 152		2 151	3 151	6 150	2 149.	148.8	147.4		•		76.5 165.4	76.1		TAMB 29	- FULL 117.6	
3	X71081	DEGREES	140. 150.	78.4	78.0 72.	76.9 70	75.3 67	73.2 66.2	71.7 65	70.5 63	67.7 60	66.2 59	5.4.0 3.4.0 3.0	62.1 67	56.9 54	46.9 39	39.1 26	0 . Y	,				86.1 81.2 87.2 80.4	87.2 80	NCY SHIFT -9	IALPHA SB59 PAMB 29.5700	SI ZE 400.00 SQ IN)	
	-J-400	D FROM INLET,	. 120. 130.	0 76.	75.6 78.	76.8 78.	2.2	0 77.9 77.8	78.6 75.	77.6 75.	2.5	74.9 71.	0.0	70.6 68.	68.4 65.	- 01	7 46.	25.4 10.		•			3 66.2 67.6 0 93 5 91 5	93.5 91.	640 FREGUENCY	N299 ADH988	.2 SQ CM (1	
	CATIC	ANGLES MEASURED	ó	.1 65.1	0.00	4 68.0	. 00 00. . 00 00. . 00 00.	.6 70.6 72.	6 71.0 72.	6 71.1 73.	9 71.7 73.	.0 70.6 71.	5 69 1 70	6 67.9 69.	.0 66.6 67.	6 58.0	4 52.2	7 27.3	4.6				.2 61.6 63.3 69.0 90.0	3 69 5	RATIO 7.	TAPE NG. AERG. RDG.	9E FT) SL 9032	
	IDE	<	0. 80.	.6 63.0	78.6	.1 67.1	.8 68.4	8.2 68.9 70	.7 68.6	1 10	.0.0	1 69.2 71	. a 56.5	9 67.3	67.1	0 61.5	22.0	29.2	.8				6.9 89.0 90	.4 90.4	DIAMETER	2-27-78 41 ANECH CH	ACCUSTIC RANGE 5 m (2400,0 F	
			0. 60.	63.7	2 65.1	68.5	.1 68.0	67.4 69.0 68 66.1 67.5 68	9 67.7	7 66 7	.3 66.7	.8 68.2	, , o o	.3 65.7	62.9	2 56.6	5.6 49.8	5.0 23.7					7.7 79.4 7	5.0 86.4 8		TEST DATE 02 LOCATION C4	POINT /	
			.	4 4	62.8	66.2	66.0	64.8 66.8	64.6	63.0	62.7	65.0	62.0	60.8	57.7 7.7	40.0	38.2	9.0					OASPL 76.4 7	81.6			MODEL TEST P 7100 710	

THEO SO SO SO SO SO SO SO SO SO					IDENTIFI	FICATION	I.	10DEL SACKGROUND	2	-ZER-FMGDI	,	X71090				: 			
40. 60, 60, 70, 60, 100, 110, 120, 130, 140, 150, 150, 160, 160, 160, 160, 160, 160, 160, 16						AMBLE	HEAS				BREES								
87.0 92.1 91.1 91.1 92.2 94.3 96.7 96.6 103.8 106.6 112.6 116.2 115.9 149.4 96.2 92.1 91.1 91.1 92.2 94.3 96.7 96.6 103.8 110.0 115.1 116.				70.	.08		.00				_	_	.09						
97.0 92.1 91.1 91.1 92.2 94.3 98.7 98.6 103.8 106.6 112.6 116.2 118.9 148.4 90.8 90.9 90.1 91.1 92.2 94.3 98.7 98.6 103.8 106.6 112.6 116.2 118.9 148.4 90.8 90.9 90.1 92.2 94.3 98.7 98.6 103.8	FREG													PE					
96.7.0 92.1 91.1 91.1 92.2 94.3 96.7 98.6 103.6 108.6 112.8 116.2 118.0 149.4 95.4 96.4 96.7 98.6 103.6 103.6 103.6 112.8 116.2 118.0 119.1 91.8 94.4 96.2 95.6 95.7 96.8 95.7 105.6 111.0 115.1 116.1 116.1 116.1 91.8 94.4 95.2 95.6 95.7 96.8 95.7 105.8 111.0 115.1 116.1 116.1 91.8 94.6 95.8 95.8 95.8 95.8 95.8 95.8 95.8 95.8	88																		
97.0 92.1 91.1 91.1 92.2 94.3 96.7 96.6 103 6 105.6 112.8 116.2 115.0 149.4 90.8 90.9 91.0 91.5 92.2 94.3 96.7 96.5 103.0 110.0 117.7 116.1 116.3 192.9 90.9 91.0 91.8 92.2 94.5 96.2 96.2 96.7 96.7 100.0 117.7 116.1 116.3 192.9 90.9 91.0 91.0 91.0 92.2 94.1 94.9 97.3 96.1 96.2 107.5 116.2 115.2 116.2 115.3 115.1 116.1 116.1 192.9 91.2 91.2 91.2 91.0 91.0 91.0 91.0 91.0 91.0 91.0 91.0	00																		1
90.2 92.1 91.1 91.1 92.2 94.3 98.7 98.6 103.6 103.6 112.6 116.2 115.9 140.4 90.4 90.9 90.9 91.5 92.8 94.5 98.5 98.7 013.6 91.10 115.1 116.1 116.0 151.1 91.1 91.1 92.2 91.6 91.1 91.1 91.1 91.1 91.1 91.1 91.1	3 6												1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						٠
97.0 92.1 91.1 91.1 92.2 94.3 96.7 86.6 103.6 102.6 112.6 116.2 115.9 148.4 90.2 92.4 92.7 92.2 93.6 95.7 96.2 96.3 105.0 113.0 115.0 113.1 16.0 151.1 90.2 92.4 92.7 92.2 93.6 95.7 96.2 96.3 105.0 113.0 115.0 113.1 16.0 151.1 92.2 93.6 94.3 94.9 97.0 98.4 100.6 103.6 107.5 115.0 112.2 119.0 113.2 92.2 93.6 94.3 94.9 97.0 98.4 100.6 103.6 102.1 10.1 16.5 112.2 113.0 113.0 152.5 99.7 101.0 100.5 96.8 98.9 101.0 102.3 102.4 103.5 113.0 115.0 112.2 113.5 113.5 113.0 1	160										. ·					•			
80.2 82.4 80.1 80.1 80.1 80.2 80.2 80.2 80.7 80.5 1013 1015 116.0 115.0 145.4 80.2 82.4 80.2 80.2 80.2 80.2 80.2 80.5 80.5 1015 116.0 115	200			- 4															
90.2 82.4 82.7 82.2 82.6 86.7 86.8 85.7 86.8 85.7 86.8 85.8 85.8 85.8 85.8 85.8 85.8 85.8	200 200 200 200 200 200 200 200 200 200	O 4	5		u a	ن د	٠ •		6 0	9 0	6 0 -		0.0						
91.2 94.6 94.9 94.1 94.9 97.0 98.4 100.6 103.5 111.6 111.2 111.6 115.0 155.7 194.0 95.4 94.9 94.9 94.9 94.9 94.9 94.9 94.9	8	2 6	8		9 0	4 N			- -	0		==	. u	• •					
98.4 96.2 96.7 94.9 97.3 98.1 98.2 100.6 101.7 111.5 120.1 112.0 8 117.9 134.9 99.4 99.7 19.9 19.0 6.8 10.4 7 111.9 117.3 121.4 121.1 118.0 195.7 99.9 101.0 100.5 98.1 98.8 1 98.8 101.0 10.6 101.7 111.9 111.2 115.6 115.6 115.7 111.2 115.6 99.6 100.9 101.3 100.3 101.3 100.4 100.7 111.3 116.0 121.3 121.0 117.2 155.6 99.6 100.9 101.3 100.3 101.3 100	200	2 93	94.	- 41	0		_		2	-	_	-	-	4.0					,
98.7 101.0 100.5 88.8 9 88.9 101.0 102.4 105.1 113.0 116.8 120.5 120.5 118.1 155.4 98.8 98.8 98.8 101.0 100.1 100.1 100.2 100.2 100.	089	60 2 40 0	2 8	•	ო -	_ 5	ი	4- F	- c	ທໍເ		 	.	4 x 00 t		-	0		
98.6 100.9 101.1 100.2 101.3 103.1 103.3 106.4 113.3 116.0 121.3 121.0 117.2 155.6 159.3 100.6 101.4 103.9 107.1 118.3 116.6 121.1 118.6 155.3 100.0 101.4 103.9 107.2 114.6 117.0 120.0 117.6 115.6 155.3 100.0 101.4 103.6 107.2 114.6 117.0 120.0 117.6 115.6 155.3 100.0 101.4 103.6 107.2 114.6 117.0 120.0 117.6 115.6 116.7 116.1 100.2 103.3 100.0 101.4 103.5 107.2 114.6 117.0 120.0 117.6 116.2 110.1 153.7 103.2 1	000	101	00		- 0		D 44			2 0		- 0	- -	4.4			OF OF		
89.5 98.5 98.6 99.1 100.7 102.3 103.9 107.1 114.2 116.5 115.1 118.5 115.	1250	9 100	.9 101		က		6	-	9	0	_	0	6	5.6			RIG F		
100.8 101.3 100.3 100.4 101.2 101.2 101.2 101.2 11.2 11.2 11.2	1600	8	8 5	- 7	, ,	e .	a i		2	φ	- •	9	9 '	6. 1 6. 1			in O		
102.8 104. 102.2 100.9 101.2 103.1 104.5 106.7 115.6 115.9 114.6 110.1 153.7 105.8 104.1 102.2 105.0 101.2 104.5 104.5 105.7 104.5 105.7 105.6 102.0 105.5 105.6 105.0 105.5 105.0 105.5 105.0 105.5 105.0 105.5 105.0 105.5 105.0 105.5 105.0 105.5	2500	9 0	9 6	100.6	3 4	• O	ם ת) (. 6	9 4	•		IAI OR		
103.2 104.5 104.0 102.5 101.6 102.9 104.3 108.0 114.2 116.8 116.6 115.2 113.2 6 102.3 104.6 104.2 104.1 103.0 103.6 104.3 108.0 114.1 115.8 115.6 105.8 132.8 6 100.3 103.4 103.7 103.6 104.2 103.5 104.5 105.5 107.9 113.4 115.3 114.6 110.2 106.3 152.3 6 100.3 103.4 103.7 103.6 104.2 105.5 105.3 107.9 113.4 115.3 114.6 110.2 105.3 152.3 6 103.8 103.7 103.6 104.9 105.5 105.3 104.7 111.0 112.5 1113.6 113.0 108.4 105.2 151.5 7 100.3 103.7 103.6 104.9 105.5 105.3 104.7 111.0 112.5 111.4 106.2 105.3 103.4 105.3 104.8 105.7 104.8 105.7 104.8 105.7 104.8 105.3 104.3 105.0 104.7 106.3 108.6 110.2 103.2 103.4 105.3 104.3 105.0 104.7 106.3 108.6 110.2 103.2 103.4 105.3 104.4 105.3 104.8 105.0 104.7 106.8 105.4 103.4 103.4 105.3 104.8 105.3 104.8 107.0 104.7 106.8 103.4 103.4 105.3 104.8 105.3 104.8 107.0 104.7 106.8 103.4 103.4 105.3 104.8 105.8 106.9 103.4 103.4 104.8 107.0 104.7 106.8 103.4 103.8 104.8 107.0 104.7 106.8 103.4 104.8 107.0 104.7 106.8 103.4 103.8 104.8 104.8 104.8 105.8 106.4 103.8 104.8 104.8 104.8 105.8 106.4 103.8 104.8 1	3150	6 104	102.		2	_	10	_	6 1	8		9	_	3.7			L (
10.2 10.2	4000	2010	5 104.		1 9	G) 4	(C) (2 1	O) 0		֡֓֞֜֜֜֓֓֓֓֓֓֓֜֓֜֓֓֓֓֓֓֓֓֓֓֡֓֜֜֓֓֡֓֜֜֓֓֡֓֜֓֡֓֡֓֡֓֜֜֡֓֡֓֜֡֡֡֡֓֜֜֜֡֡֡֡֓֜֡֡֡֡֡֓֜֡֡֡	ω e	6 0	-		PA PU		
98.9 103.6 103.7 103.6 104.9 105.5 107.7 111.9 113.8 113.0 108.4 105.2 151.5 5	9000	2 E	2 2		 O (V	- -	. w		 - 4	<u>ი</u> ო		- m	0 (7)	9 6			GI		
98.3 102.7 104.4 103.7 104.8 105.7 105.6 107.9 111.0 112.5 111.4 106.2 103.6 151.4 95.4 101.0 102.5 103.3 104.3 105.0 104.7 106.3 108.5 110.2 105.5 105.4 150.3 95.4 101.0 102.5 103.3 104.3 105.0 104.7 106.3 108.5 110.2 105.5 105.4 150.3 95.7 99.9 101.5 102.3 104.5 105.0 102.7 106.3 108.5 100.3 99.8 150.2 4 150.3 95.7 99.9 101.5 102.3 104.5 105.0 102.7 106.3 108.7 106.8 100.4 100.8 150.2 95.7 99.9 101.5 102.3 104.5 105.0 102.7 106.3 108.7 106.8 100.3 98.8 149.6 95.0 88.6 95.7 99.5 100.4 98.0 97.0 101.3 105.1 104.0 100.3 98.8 149.6 95.0 88.6 92.2 92.2 92.2 94.2 94.2 94.2 96.9 99.4 95.5 91.0 90.0 147.7 96.2 83.5 87.0 88.0 92.2 92.2 88.5 89.2 94.4 91.4 86.5 85.9 147.3 96.2 83.5 87.0 83.5 85.0 83.7 82.7 82.7 87.8 87.6 95.2 70.2 74.2 144.8 95.1 10.9 73.3 75.4 75.8 76.5 78.7 76.6 83.9 81.2 78.7 75.2 74.2 144.8 95.1 10.1 11.6 114.0 114.0 113.8 114.7 115.0 116.2 119.1 125.1 128.1 130.9 130.3 127.2 166.6 111.6 114.0 114.0 113.8 114.7 115.0 116.2 119.1 125.1 128.1 130.9 130.3 127.2 166.6 12.2 M.\$ ACCUSATIC RANGE TEST POINT ACCUSATIC RANGE TEST POINT ACCUSATIC RANGE TEST POINT ACCUSATIC RANGE TEST POINT ACCUSATIC RANGE TEST POINT ACCUSATIC RANGE TEST POINT ACCUSATIC RANGE TEST POINT ACCUSATIC RANGE TEST POINT ACCUSATIC RANGE TIO.9 12.2 M.\$ ACCUSATIC RANGE TEST POINT ACCUSATIC RANGE TIO.9 12.2 M.\$ ACCUSATIC RANGE TIO.9 12.2 M.\$ ACCUSATIC RANGE TIO.9 12.2 M.\$ ACCUSATIC RANGE TIO.9 12.2 M.\$ ACCUSATIC RANGE TIO.9 12.2 M.\$ ACCUSATIC RANGE TIO.9 12.2 M.\$ ACCUSATIC RANGE	8000	9 103	103.		a	10	8	_	9	8	-	4	2	1.5			E .IT		
89.7 901 01 02 102 3 104 5 105 0 102 7 105 0 103 1 105 1 102 1 102 3 102 3 103 3 8 8 143 6 8 8 143 6 143 6 143	10000	3 102	104.		. 8	.7	9	· ·	0	9	٠ -	2	9	4.6			S		
88.6 96.7 97.8 99.4 102.9 104.2 100.9 102.0 104.1 105.1 104.0 100.3 98.8 149.6 67.2 92.3 94.8 95.2 99.5 100.4 99.5 96.0 106.2 98.5 104.2 100.9 102.0 104.1 105.1 104.0 100.3 98.8 149.6 68.0 148.2 94.8 94.8 94.9 94.4 96.5 94.0 90.0 147.7 90.0 98.0 99.2 92.2 94.5 94.2 94.2 94.4 96.5 94.4 96.5 96.0 147.7 90.0 98.0 99.2 92.2 94.5 94.0 94.4 96.5 94.4 96.5 96.0 147.7 96.0 98.0 92.2 92.2 86.5 99.5 92.0 94.4 96.5 96.0 97.8 147.3 72.8 76.6 79.4 81.3 83.5 85.0 83.7 82.7 87.9 87.6 97.2 80.9 78.6 145.3 87.2 74.2 144.9 61.2 64.5 68.3 70.2 69.7 71.6 71.8 78.2 76.5 74.9 68.9 67.1 146.2 144.9 61.2 111.6 114.0 114.0 114.0 113.8 114.7 116.0 116.2 119.1 125.1 128.1 130.9 130.3 127.2 166.6 LCCATION C41 ANECH CH AERO. RDG. ASH087 PAPB 29.3650 RELHUM 46.00 LCCATION C41 ANECH CH AERO. RDG. ASH087 PAPB 29.3650 IN) - MODEL 0. M/SEC (0. 77109 112.2 M % 40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 0. M/SEC (0. 77109 12.2 M % 40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 0. M/SEC (0. 77109 12.2 M % 40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 0. M/SEC (0. 77109 12.2 M % 40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 0. M/SEC (0. 77109 12.2 M % 40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 0. M/SEC (0. 77109 12.2 M % 40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 0. M/SEC (0. 77109 12.2 M % 40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 0. M/SEC (0. 77109 12.2 M % 40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 0. M/SEC (0. 77109 12.2 M % 40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 0. M/SEC (0. 77109 12.2 M % 40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 0. M/SEC (0. 77109 12.2 M % 40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 0. M/SEC (0. 77109 12.2 M % 40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 0. M/SEC (0. 77109 12.2 M % 40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - M/SEC (0. 77109 12.2 M % 40.0 FT) ARC 1554.7 SQ CM (23.99 SQ IN) - M/SEC (0. 77109 12.2 M % 40.0 FT) ARC 1554.7 SQ CM (23.99 SQ IN) - M/SEC (0. 77109 12.2 M % 40.0 FT) ARC 1554.7 SQ CM (23.99 SQ IN) - M/SEC (0. 77104 M M/SEC (0. 7710	00021	4 V	ָ ס ס	•	ij K	- c	- K		0 0	Nh		0 5	4 a	, c					
87.2 82.3 94.6 95.2 99.5 100.4 98.0 97.0 101.3 100.4 99.5 96.7 96.0 146.2 85.0 88.6 92.2 99.5 100.4 98.0 97.0 101.3 100.4 99.5 96.7 96.0 146.2 85.0 88.6 92.2 94.2 94.2 94.2 99.0 99.4 95.5 91.0 90.0 147.7 80.0 88.6 92.2 92.2 88.5 93.6 93.7 92.0 99.4 95.5 91.0 90.0 147.7 80.2 70.8 79.4 81.3 83.5 85.0 83.7 82.7 87.9 87.6 95.2 80.9 79.6 145.3 87.2 70.9 73.3 75.4 75.8 76.5 76.5 78.7 87.9 81.2 76.5 74.9 68.9 67.1 146.2 87.2 70.9 73.3 75.4 75.6 77.6 77.6 77.6 77.8 78.2 76.5 74.9 68.9 67.1 146.2 87.2 70.9 73.3 75.4 75.8 76.5 78.7 76.5 74.9 68.9 67.1 146.2 87.2 70.9 73.3 75.4 75.8 76.5 77.6 77.6 77.8 78.2 76.5 74.9 68.9 67.1 146.2 87.2 70.9 73.3 75.4 75.8 76.5 77.6 77.8 78.2 76.5 74.9 68.9 67.1 146.2 87.2 70.9 73.3 75.4 75.6 77.6 77.6 77.8 78.2 76.5 74.9 68.9 67.1 146.2 87.2 70.9 73.0 70.2 69.7 77.6 77.6 77.8 78.4 78.0 74.8 29.3650 RELHUM 46.00 87.2 70.9 71.0 77.0 77.0 77.0 77.0 77.0 77.0 77.0	20000	98	6		9	9 (4	, G		·	_			9	9.0				•	
05.0 88.6 92.6 83.4 94.2 94.5 94.2 96.9 99.4 95.5 91.0 90.0 147.7 06.2 63.5 67.0 68.0 92.2 92.2 92.2 92.2 98.5 99.5 91.4 91.4 65.5 95.9 147.3 72.8 76.9 73.3 75.4 75.8 76.5 69.5 97.9 87.2 86.9 77.6 77.2 74.2 144.9 67.2 70.9 73.3 75.4 75.8 76.5 78.7 76.6 83.9 81.2 78.7 75.2 74.2 144.9 61.2 64.5 68.3 70.2 69.7 71.6 71.8 78.2 76.5 74.9 68.9 67.1 146.2 111.6 114.0 114.0 114.0 114.1 116.0 116.2 119.1 125.1 128.1 130.9 130.3 127.2 166.6 TEST DATE 02-21-78 TAPE NO. N294 IALPHA SB59 TAMB 23.00 TEST POINT ACCUSATIC RANGE TEST POINT ACCUSATIC RANGE TEST POINT ACCUSATIC RANGE TEST POINT ACCUSATIC RANGE TEST POINT ACCUSATIC RANGE SIZE SIZE O M. SEC. 0. M/SEC (0. M/S	25000	2	94.	6	5.	41	0	-	6	. T	ŀ	L .	0						
72.8 76.6 79.4 81.3 83.5 85.0 83.7 82.7 87.9 87.6 05.2 80.9 79.6 145.3 87.2 70.9 73.3 75.4 75.9 76.5 78.7 76.2 74.2 144.9 61.2 64.5 68.3 70.2 69.7 71.6 71.6 71.8 78.2 76.5 74.9 68.9 67.1 146.2 1111.6 114.0 114.0 113.8 114.7 116.0 116.2 119.1 125.1 128.1 130.9 130.3 127.2 166.6 174.8 114.0 114.0 113.8 114.7 116.0 116.2 119.1 125.1 128.1 130.9 130.3 127.2 166.6 174.8 17.8 17.8 17.8 17.8 17.8 17.8 17.8 17	31300	9 6	5 K	, a	n o	ە بە	N K		.	4.4		3 K	5 d	•					
67.2 70.9 73.3 75.4 75.8 76.5 78.7 76.6 83.9 81.2 79.7 75.2 74.2 144.8 61.2 64.5 68.3 70.2 69.7 71.6 71.6 71.8 78.2 76.5 74.8 68.8 67.1 146.2 111.6 114.0 114.0 113.8 114.7 115.0 116.2 119.1 125.1 128.1 130.9 130.3 127.2 166.6 TEST DATE 02-21-78 TAPE NO. N294 IALPHA SB59 TAMB 23.00 LGCATION C41 ANECH CH AERO. RD9. ASH087 PAMB 29.3650 RELHUM 46.00 TEST POINT ACCUSATIC RANGE S12.2 M 4 40.0 FT) ARC 154.7 SQ CH (23.99 SQ IN) - HODEL 0. M/SEC (0.	20000	2.8 76	6 79.		i io	. 0	۲.		9 09	, 0) (B)	9 0						
111.6 114.0 114.0 113.8 114.7 116.0 116.2 119.1 125.1 128.1 130.9 130.3 127.2 166.6 TEST DATE 02-21-78 TAPE NG. N294 IALPHA SB59 TAPE 23.00 LGCATION C41 ANECH CH AERG. RD6. ASH087 PAPE 29.3650 RELHUM 46.00 TEST POINT ACOUSTIC RANGE S126.7 SQ CM (23.99 SQ IN) - MODEL 0. M/SEC (0.	63000	7.2 70	9 73.		80 (RD (۲.		on c	011	۲.	લ લ	2.						
TEST DATE 02-21-78 TAPE NG. N294 IALPHA SB59 TAMB 23.00 LGCATION C41 ANECH CH AERG. RDG. ASHOB7 PAMB 29.3650 RELHUM 46.00 TEST POINT ACOUSTIC RANGE S12.2 M # 40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 0. M/SEC (0.	00000	N -	68		,	٥	٥		Ņ	ດ	3 9.	.	-	N.					
TEST DATE 02-21-78 TAPE NG. N294 IALPHA SB59 TAMB 23.00 LGCATION C41 ANECH CH AERG, RDG. ASH087 PAMB 29.3650 RELHUM 46.00 TEST POINT ACCUSTIC RANGE S1ZE SIZE FREE-JET SPEED 0 7109 12.2 M 3 40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 0. M/SEC (0.	ا.	1.6 114	114.	80	14.7	0	2	9.1		-	a	6	2	• 1					
TEST DATE 02-21-78 LGCATION C41 ANECH CH AERO, RDG. ASHOB7 PAMB 29.3650 RELHUM 46.00 TEST POINT ACCUSTIC RANGE 0 7109 12.2 H # 40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 0. M/SEC (0.					•														
TEST POINT ACOUSTIC RANGE 81ZE 81ZE . FREE-JET SPEED 0. M/SEC (0.		Ψ.	EST DATE	02-2			m a		294 34087	<u> </u>		359			23.00				
TEST POINT ACCUSTIC RANGE SIZE SIZE FREE-JET SPEED OF 7109 12.2 H \$ 40.0 FT) ARC 154.7 SQ CH (23.99 SQ IN) - MODEL O. M/SEC (0.					1			.			İ			1					
	MODEL	TEST		0	STIC RA		2 9			SIZI	9	3		Ç		ET SPEE			
565					2			· li									1		
	565															:			

					OI OI	RIC F	3IN PO	IAL OR	P/Q	4GE UAL	.IT)	3										EPS)
																				CORRECTION - YES CORRECTION - YES	23.00 46.00	FREE-JET SPEED O. M/SEC (0,
). 160. PWL		1 116.0 151.1	1 116.3 152.9 9 117.1 154.0	0	118.1	117.2 155	1,13.7 154	6 110.1 153.7	106.8 152		103.6 151.	100.8 150	3 98.8 149.6 7 96.0 148.2	90.0 147	6 145	67	.3 127.2 166.6	REFRACTION CC TURBULANCE CC	SB59 TAMB 29.3650 RELHUM	- MODEL
FMdDL X71090	ET, DEGREES	30. 140. 150		11.0 115.1 116.	.0 117.7 119.	.5 120.1 120.	120.5 120	.0 121.3 121 6 121 1 119	0 120.0 117	17.9 114	8 115.7 111	113.0 108	.5 111.4 108	106.8 103	.1 104.0 100. .4 99.5 96.	.4 96.5 91.	6 85.2 80.	.2 79.7 75. .5 74.9 68.	128.1 130.9 130.	SEC) 0. (IN) 48.00	I ALPHA SB5 PAMB 29.	SIZE (23.99 SQ IN)
- FJ-ZER-	SURED FROM INLET	110. 120. 1		96.7 105.9 11	00	4 110.	13.	4 113.	2 1 4	10	114	107.9 113.4 11 107.7 111.9 11	.8 111	. 3 106.5 1 . 8 107.0 1	- 6	2 96.9	7 87.9	.8 78.2	119.1 125.1 12	VELGCITY (FT/S Jet diameter (. NG. N294 RDG. ASHO67	154.7 SQ CM
IDENTIFICATION	ANGLES MEA	90. 100.		96.2 96.		98.1 99.	101.0 102.	103.1 103.	101.4 103.	103.1 104.	103.8 104.	105.5 105. 105.5 105.	106.7 105.	105.0 104.	104.2 100.	94.5 94.	85.0 83.	71.6 71.	7 116.0 116.2	FREE JET FREE	CH AERG.	RANGE 40,0 FT) ARC
		. 70. 80.		91.1	3 94,1 94.9	94.9 97.	98.8 98.	1 100.9 101.	99.4 100.	100.9	2 104.1 103.	0 103.9 104. 7 103.6 104.	4 103.7 104.	5 103.3 104. 5 102.3 104.	8 99.4 102. 8 95.2 99.	93.4 94.	81.3 83.	70.2 69.	.0 113.8 114.7	SCALE FACTOR CALC. 1.000	TE 02-21-78 3N C41 ANECH	ACGUSTIC 12.2 M (4
		40. 50. 60		90.9	0.2 92.4 92. 1.2 93.5 94.	3 94.6	7 101.0 1	00.99	6 101.1	04.1	3 104.6 104	3 103.4 1 9 103.8 1	3 102.7 104	7 99.9	9 N	98.6	9 76.6	2 70.9	6 114.0 114	MODEL/FULL SIZE INPUT 1.000 C	TEST DATE LOCATION	TEST POINT 7109
		FREG	0 8 8 0 0 0 0 0		500 90.	ı			•		-	_			20000 86 25000 87	1		1	OASPL 111	ON THE STATE OF TH		MODEL 7

40. 60. 90. 70. 90. 90. 10. 110. 120. 130. 140. 150. 180. 180. 170. 180. 180. 180. 170. 180. 180. 180. 170. 180. 180. 170. 180. 180. 170. 180. 180. 180. 170. 180. 180. 180. 170. 180. 180. 180. 180. 170. 180. 180. 180. 180. 170. 180. 180. 180. 180. 170. 180. 180. 180. 180. 180. 180. 180. 18	ORIGINAL PAGE IS OF POOR QUALITY	6
10. 60. 60. 70. 60. 80. 100. 110. 120. 130. 140. 150. 160. 160. 160. 160. 160. 160. 160. 16		1 1 1
D. 60. 60. 70. 60. 90. 100. 110. 120. 130. 140. 150. 160. FML A 72.2 73.5 73.6 73.6 75.5 73.6 77.6 78.0 81.0 61.2 91.0 81.0 85.2 86.2 86.7 80.5 172.6 A 72.2 73.5 73.6 73.6 75.5 73.6 75.6 77.8 78.0 81.0 61.2 91.0 85.8 85.8 85.7 80.5 172.6 B 72.2 73.5 75.1 75.2 76.3 78.5 76.3 82.4 80.2 80.2 86.2 86.7 80.5 172.6 B 72.2 73.5 75.7 76.4 78.2 80.2 80.2 80.2 80.2 86.2 86.7 80.5 172.6 B 72.2 76.3 76.3 76.3 76.3 76.3 82.4 80.2 80.2 86.2 86.2 86.2 86.7 80.5 172.6 B 72.2 76.3 76.3 76.3 76.3 82.4 80.2 80.2 86.2 86.2 86.2 86.2 86.2 86.7 80.5 172.6 B 72.2 76.3 76.3 76.3 76.3 82.4 80.2 80.2 80.2 86.2 86.2 86.2 86.7 80.5 172.6 B 80.5 80.2 80.2 80.2 80.2 80.3 81.0 82.4 86.2 86.2 86.2 86.2 86.2 86.2 86.2 86.2		.00 .00 FREE-JE M/SEC
10. 10. 10. 10. 10. 10. 10. 10. 10. 10.	77.1.72.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.3.	0 .
Dec. 60. 70. 60. 90. 100. 110. 120. 130. 140 ANGLES HEASURED FROM INLET, DEGR ANGLES HEASURED FROM INLET, DEGR ANGLES HEASURED FROM INLET, DEGR A 72. 2 73.5 73.6 76.9 79. 80. 100. 110. 120. 130. 140 A 72. 2 73.5 73.6 76.9 79. 80. 100. 110. 120. 130. 140 A 72. 2 73.5 73.6 76.9 79. 80. 2 80. 2 80. 2 80. 89. 90. 9 80. 2 80	160. 160.	15 T
DS. 60. 60. 70. 60. 90. 100. 110. 120. 130. 14 72.2 73.5 73.6 73.6 75. 90. 90. 100. 110. 120. 130. 14 72.2 73.5 73.6 73.8 75. 17.8 78. 8 81.0 88.3 94.8 95. 4 75. 2 82. 18 91.9 82.1 89.3 95. 8 97. 8 97. 9 98.1 80.2 82.1 89.3 95. 8 97. 9 98.1 80.2 81.2 82.1 89.3 95. 8 97. 9 98.2 18 91.2 82.1 89.2 95. 8 97. 9 98.2 18 91.2 82.1 89.2 95. 8 97. 9 98.2 18 91.2 82.1 89.2 95. 9 98.2 18 91.2 82.1 89.2 95. 9 98.2 18 91.2 82.1 89.2 95. 9 98.2 18 91.2 82.2 84.2 86.4 92.7 95. 9 98.2 99.2 9 98.2 18 91.2 82.2 84.2 86.4 98.2 95. 9 98.2 99.2 9 98.2 18 91.2 82.2 84.2 86.4 98.2 95. 9 99.2 9 99.2 9 99.1 91.2 82.3 84.2 86.4 98.2 95. 9 99.2 9 99.2 9 99.2 9 99.2 9 99.3 91.2 82.3 84.2 86.4 98.2 95. 9 99.2 9 99.3 91.2 82.3 84.2 86.4 98.2 95. 9 99.2 9 99.3 91.2 82.3 84.2 86.4 98.2 95. 9 99.2 9 99.3 91.2 82.9 83.2 84.2 86.4 98.2 95. 9 99.2 9 99.3 91.2 82.9 83.3 84.1 85.7 85.7 86.9 96.2 93.2 93.2 93.2 93.2 93.2 93.2 93.2 93	00 - 00 - 00 - 00 - 00 - 00 - 00 - 00	S S
10. 60. 60. 70. 60. 80. 100. 110. 120. 14. 72. 2 73. 5 73. 6 76. 80. 100. 110. 120. 120. 14. 72. 2 73. 5 73. 6 76. 8 77. 8 78. 8 81. 0 88. 3 81. 0 88. 3 82. 1 80.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	PAL PAI SIZE (1400.00
ANGLES HEASURED ANGLES	MOT 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	N294 ASH087 2 SQ CM
ANGI ANGI ANGI ANGI ANGI A 73.2 73.5 73.8 78.5 77.8 A 73.3 75.7 76.4 79.2 80.2 A 75.0 76.9 76.2 80.3 B 75.0 76.9 76.2 80.3 B 75.0 76.9 76.2 80.3 B 80.5 81.2 80.2 81.9 B 80.5 81.2 80.2 81.9 B 80.0 80.2 81.8 82.2 82.9 B 80.0 80.2 81.8 82.2 83.8 A 70.5 78.9 80.1 81.2 81.3 82.8 B 80.0 80.2 81.8 82.2 83.8 A 70.5 80.3 81.2 80.3 81.3 82.8 B 80.0 80.1 81.2 81.3 82.8 B 80.0 82.9 83.8 83.1 84.5 A 75.1 78.7 80.8 83.1 84.6 B 70.7 74.1 77.2 81.6 83.5 84.6 A 75.1 78.7 80.8 83.7 84.6 B 70.7 74.1 77.2 81.6 83.7 84.6 A 75.1 78.7 80.8 83.7 84.6 B 70.7 74.1 77.2 81.6 83.5 84.6 A 75.1 78.7 80.8 83.7 84.6 B 70.7 74.1 77.2 81.6 83.5 84.6 B 70.7 74.1 77.2 81.6 83.7 84.6 A 75.1 78.7 80.8 83.7 84.6 B 70.7 74.1 77.2 81.6 83.7 84.6 A 75.1 78.7 80.8 83.7 84.6 B 70.7 74.1 77.2 81.6 83.7 84.6 A 75.1 78.7 80.8 83.7 84.6 B 70.7 74.1 77.2 81.6 83.7 84.6 B 70.7 74.1 77.2 81.6 83.7 84.6 B 70.7 74.1 77.2 81.6 83.7 84.6 B 70.7 74.1 77.2 81.6 83.7 84.6 B 70.7 74.1 77.2 81.6 83.7 84.6 B 70.7 74.1 77.2 81.6 83.7 84.6 B 70.8 83.2 84.8 86.4 B 70.8 83.2 84.8 86.4 B 70.8 83.2 84.8 86.4 B 70.8 83.2 84.8 86.4 B 70.8 83.2 84.8 86.4 B 70.8 83.2 84.8 86.4 B 70.8 83.2 84.8 86.4 B 70.8 83.7 84.8 86.4 B 70.8 83.2 84.8 86.8 83.8 83.8 83.8 83.8 83.8 83.8 83	EASURED 10. 110. 110. 110. 110. 110. 110. 110.	NG. RDG.
1. 50. 60. 70. 60. 70. 60. 73.3 75.1 75.6 76.9 75.1 75.6 76.9 75.2 73.5 75.1 75.6 76.9 75.2 74.3 75.1 75.6 76.9 75.6 76.9 75.0 76.9 75.0 76.9 76.9 76.9 76.9 76.9 76.9 76.9 76.9	RATION 1 1 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2	S
72. 2 73. 5 73. 6 70. 70. 70. 70. 70. 70. 70. 70. 70. 70.	25. 25. 25. 25. 25. 25. 25. 25. 25. 25.	.78 JECH CH 3TIC RAN 2400.0
2. 50. 60. 60. 60. 60. 60. 60. 60. 60. 60. 6	707 709 709 709 709 709 709 709	02-2 C41 ACC
2 44 10 4 10 10 10 10 10 10 10 10 10 10 10 10 10	6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	ATIO
THE REPORT OF THE PROPERTY OF	- 4484L0408-00-044L0-0-0	70

									0 0	R	IGI	NA 00	L R	PO	AG UA	E !	S										e
										<i>)</i> T.																39.00	• 1
ARC ARC			P				5 149.0	149	2 149.6	4 4	148	.5 148.9	149	150	3 150.6	150	200	150	200	149	7 149.0	146	.5 145.8		103.4	TAMB]
FOR BACKGROUND 40.0 FT. ARC X71100.	l o	150. 160	•			113.5 112.	116.1 109.	114.7 106.		ن پ	76 7.	.7 96 7 97	76 6.	.2 98) 80 80 80 80	.1 97	96	.1 95	9. co.	16 0.	.8 86 4	.0.	0.070	- 6	162.0 117.	50 50 50 50 50 50 50 50 50 50 50 50 50 5	
S CORRECTED F: 1. DAY, SB FJ-300-FMODL FJB-400-FMODI	ET, DEGREE	130. 140.		•	•	.4 110]	6 116.	.9 116.	7. V.	9.14.	3.3 114.0	8 112	113	. 5 . 5 . 5 . 5 . 5 . 5	111 8.	0 108	2 107	ა. 100	86 6	4. 98 و	98	6 78		0.0 160.1	IALPHA	SIZE
STO	FROM	120. 1				98.0 1	00.00	-	105.1	107.1	108.6	110.0 113	110.9	111.21		111.2	10.4	108.4	107	102.9 1	6.00	80.00	85.3 81		121.8.120	N299	4
- 25 -	MEA	100, 110.				96	93.6 96.2	6 97	•		9 04	00.6 104.2	_	-	02.5 107.1 04.2 107.6	4 (06.1 107.7	-	04.3 106.2 02.3 103.7	4	<u>ه</u> م) -	79.7 78.4	i d	10.6	TAPE NO.	AERO. ROS.
MODEL SOUR EG. F., 70 DENTIFICAT	ANGLES	80. 90.				.8 90.2	89.6	6 93.0	.2 94.9	3 95.6	4 98.1	96.3 98.9 1	0.00.00	.8 100.2 1	. 7 101 .3 .2 103 8 1	.3 105.4	NO.	0 105.4	03.5 104.6 1	.4 101.8	95.3 95.3	95.6	77.2 78.1		2.0.0		RANGE
UNTRANSFORMED 59.0 DI		. 70.				88.0	88.7	89.8	80.9	× 0	9.4.	7 95.0	97.2	101.5	6 104.9 10	103.8	103.8	103.0 1		96.4		95.0	9 76.3	7 (13.4	02-2	AG AG
		50. 60				9.		0	6	3	. 00	92.7 94.	9	0	103.6 105. 102.6 103.	-(۔ اِه	9		10	oi a		71.5 73.		112.2	TEST DATE	2
		40.	FRED		125 160 200	83.	9 G	98	98		<u> </u>	9 6	8	104	103.6	5		8	16000 97.1 20000 91.7	30	60 4	76		9	0.		DEL TEST

						· .			OR OF	GI P	N/OC	AL PR	P/ Qi	AGI JAL	IS TY	3								FPS)	
											-											YES YES		SPEED 369.0	
																						CORRECTION -	88	FREE-JET 7 M/SEC (
		Piv		3.6	8.0	48.1	7.8	4.4	9.0	0.6	n oi	1.8	ળ વ ળ 4	41	53.1	. 4 . 6	3.1	0.00		7.7	5.0	2	TAMB 39.00 RELHUM 54.00	116.57	
- ARG		160.	-	2 14	109.3 148	00 6	4	106.0	מיכ	-		9	- w	107.2 15	4.	- ^-	4	 	78.9 15	-	121.1 165	REFRACTION TURBULANCE		- MODEL	
X71100	ES	150.		110.5		4.0	8	107.	900	107.		9	108.	107.	106.	500	8	900	9 6		122.7		A SB59 3 29.3300	SQ IN)	
3	T, DEGREES	30. 140.	-	2 10	0.0	.5 113.9	5 113.	22.	3	8 111.	2	9 113	2 1 2 2 1 2 2	0110	8	- 4 - 10 - 40 - 40	101	2 91.9	900	-	1.2 125.1	(C) 389.00 N) 48.00	I ALPHA PAMB	\$12E 23.99	
n. 310. UAT, FJ-300-FMODL	FROM INLET	120. 13		.3	= - - 9	03.1 110	1 8	42		4		7	- K	11.5.112	10.1	10	20	ာ က ·	92.6 88 87.2 83	4	122,5 125	VELOCITY (FT/SEC) Jet diameter (IN)	N299 ADH112	SO CM	
ž 0	MEASURED F	110.	. 1	91.0	o 10	. , ,-	0	a 4	0 4	103.5	103.0	106.9 1	107.7	107.5	107.4		101.4	92		73.	117.8		E NO.	154.7	
DENTIFICATION	ANGLES ME	0. 100.		2 91.			96.	.397.		2 100.	101	7 103.	4 105	200	4 107.	6 104.	.8 101.	5 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	9 -	1 74.	.0 116.5	FREE JET Free	TAPE AERO.	E FT) ARC	
UEG. T.,		9 0. 9 0		4	0 4	ю-	2 96	9.6	· [D 10	7	- 6		-00		0	98.0 98	o 0	10	118.3 118		78 ECH CH	FIC RANGE 40.0 FT)	
] 		79.		-	- ^	~ -	- ღ	¥	0 0		4 (01	- 6	40	10		6	0 0 0 0 0 0	<u>ო</u> ო	4	117.4 11	ALE FACTOR	02-27-78 C41 ANECH	ACGUSTIC 2.2 M (
		. 60		5	5 6		8	98		66	9 6	107	900	109	98	107	102.	98.7	8	73.	1 118.2	L SIZE SCALI	LOCATION	-	
		o. 60		1 92.	- 6	83	7	8 8 8	3 4	66	7 100.	7 109.	. 0 108 7 108	.3 108.	2 108	. 5 106	.5 103.	97.7 98.8 92.7 92.0	0. a	0 71	116.1 118.1	MODEL/FULL INPUT 1.0) J	TEST POINT 7110	

																											•									
)R)F	G P	IN	AI OF				Έ) FPS)	
																								. :											-JET SPEED EC (389.0	
																																		39.00 4.00	FREE-JET 18.57 M/SEC (9,000
		2	165.7	165.7	166.1	165.1	165.5	166.3	166.6	167.5	100 100 100 100 100 100 100 100 100 100	169.8	170.1	170.1	170.4	171.2	171.9	170.8	169.6	169.6	106.0	165.4								182.5				TAMB RELHUM		
		160.	82.0	•	0 0	-1 -			- 1	78.3			١.		80.09 20.09	-1 -			29.2	9.1										89.8	92.7	9 9			- FULL	1
1		150,	88.8	88.4	88.5	83.0	6.19	81.7	82.1	83.7	900	80.8	76.9		76.0			57.2	1	26.8										96.6	99.0		FT -9	SB59 29.3300	S I	
X71101	DEGREES	140.	92.0	92.1	92.5	7 08	90.5	80.9	88.9	90.0	9 G	87.8	96.0	84.4	83.1	78.3	75.1	68.3	58.2	42.7	n 7									8.10	105.8	00.0	SHI	ALPHA	S1 ZE 400.00 SQ	
. 1		130.	83.8	90.2	90. 90.0	20.7	0.0	. Ta	92.7	92.3 0	900	5.10	90.4	93.6	9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	85.2	6.	76.3	67.4	53.4	÷.	•								Ø	6	108.8	FREGUENCY	₹ .	S1 (1400	,
	FROM INLET	120.	85	œ.	ui r	0	, ci	9	20		4 4	9	a	۲.	4 (٥	ဖ	o,	4	. 7										D	0	0	F	N299 ADH112	SQ. CM	
	SURED FF	110.	0	۲.	~ 4			10	က	83.0	ο σ	4	6	φ.		-	o,	ဖ	-		o c	•								4	10		.640		9032.2	
CATION	MEA	.00.	0	•	4 1	LO	N	9	4	a c	, a	. 6	60	٠.	D K	,	e	_	0	a , (۰ ب	-								8.4 9		-	10 7	TAPE NO ERG. RDG		
IDENTIFICATI	ANGLES	90.	a	4		- 0	9	9	~	95	5 4	•	9	oi (ю	4	0	ن د	•	?								0	-	. a 106	R RATIO	¥	E FT) SL	
9	∢					- a	ල		I	000					2) 4 2) 4 3) 4	1				3 66	at c		-							9 97		20 0	DIAMETER	중 -	IC RANGE 2400.0 FT)	
		•				1	2		Í	9 9 8			[- 1	5 67.	4.0	V									- 1		Ξ	-27-78 1 ANECH	ACCUSTIC .5 M (240	
		2		•		٠í.			-1	6, 6									1											96.	106.2	106.		92	- 3	
		9	1 .		75.5	.l .			1	00 00			-	_	8 0 0 0	.i .			!	60.0		•										100.3		TEST DATE	73	
		8	1 .	•		al a			-1	79.0						r) .			1		•	•								9	93.	2		TEST LOC	PGINT 10	
		Q	a	10	n «	0	ی ر	o i	,	- 0 - 0 - 0	מופ	0	0	<u>ن</u>		14	•	ო	4	43 10 10 10 10	5									0		- 20			TEST 71	
		FREG			8 2				-1	8 C		:	G08					3150	ì		0000	10000	12500	16000	25000	31500	40000	90000	90000	CASPL		- J			MODEL 7100	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL.

80. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PM. ANGLES HEASURED FROM INLET, DEGREES 80. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PM. ANGLES HEASURED FROM INLET, DEGREES 81. 82. 83. 83. 84. 96. 7 97. 6 96. 7 106. 7 112. 0 116. 116. 2 117. 7 116. 9 180. 7 81. 92. 7 94. 96. 7 94. 96. 7 94. 100. 110. 120. 116. 116. 2 117. 7 116. 9 180. 7 81. 92. 7 94. 96. 7 94. 96. 7 94. 100. 1 100. 1 117. 1 116. 2 117. 7 116. 9 180. 7 81. 92. 93. 94. 96. 7 94. 96. 7 94. 100. 1 109. 1 117. 1 116. 1 117. 1 116. 1 11				•				OR OF	RIGII PC	VAI OF	L p	'AG	E LII	IS Y								FPS)	
### ANGLES HEASURED FROM INLET, DEGREES 50. 60. 70. 60. 90. 100. 110. 120. 130. 140. 150. 160. PM ANGLES HEASURED FROM INLET, DEGREES 91. 28. 28. 83. 84. 96. 79. 6 92. 100. 110. 120. 130. 140. 150. 160. PM 91. 7 94.2 95. 7 94.6 96. 7 97.6 92. 100. 110. 110. 110. 110. 110. 110. 11									•												28,40 21.60	SPEED 0.	
## ANGLES MEASURED FROM INLET, DEGREE 50. 60. 70. 60. 90. 100. 110. 120. 130. 140. 93.3 91.6 92.6 93.5 90. 90. 100. 110. 120. 130. 140. 94.2 93.3 94.9 96.7 97.6 99.7 100. 110. 120. 130. 140. 94.2 95.3 94.9 96.7 97.6 99.7 100. 110. 1120. 1120. 116.1 94.2 95.3 94.9 96.7 94.4 101.3 103.7 110.9 1112.0 116.2 94.0 95.1 94.9 92.7 94.9 96.7 97.6 99.7 100.0 110.7 112.0 116.2 95.2 95.3 94.9 96.7 96.4 100.0 10.7 112.0 112.0 112.0 112.0 95.2 97.7 98.0 96.2 96.3 100.7 112.0 112.0 112.0 112.0 97.2 97.7 98.0 96.2 96.3 100.7 110.9 1112.0 112.0 112.0 97.2 97.7 98.0 96.2 96.3 100.7 110.2 110.9 1112.0 112.0 97.2 103.5 103.2 104.9 100.7 103.2 104.8 103.7 110.9 112.0 112.0 102.2 103.5 103.2 104.9 104.4 104.8 106.7 103.9 115.5 119.2 119.8 123.7 103.9 105.9 104.9 105.9 105.9 104.9 105.9 105.9 104.9 105.9 105.9 104.9 105.9	011	160.			0	117.2	118.1	118.5	115.5	112.0	109.8	108.1	105.8	104.6	101.8	97.3	90.1 147.	79.4 145.	.2 146.	127.3 167	TAMB	- MODEL	
50, 60, 70, 80, 90, 100, 110, 120. 50, 60, 70, 80, 90, 100, 110, 120. 31, 31, 81, 81, 82, 83, 81, 81, 81, 81, 81, 81, 81, 81, 81, 81		, DEGREES				.0 116.1	6 120.5	3 122.4	.9 122.8 1 8 123.7 1	0 123.7	2 120.2	3 116.9	5 116.2	5 113.1	2 108.9	3 103.3	8 95.7 90.	.8 84.7 81.	.9 74.7 68.	2 132.4	1	S1ZE 23.99 SQ	
## ANGLES HEARING	DEL CKGROUND	ED FROM INL			0	.7 106.7 1	1 109.7	.0 112,7 1	.7 114.1 1	0 115.8	2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	9 114.8	. 2 114.3	3 111.1	1 108.7 1	2 103.8 1	2 96.8	88.7	.1 77.7	19.8 125.7	l	.7 SQ CM	•
50, 60, 70, 93.3 91.6 92.6 93.7 94.0 95.1 94.0 95.7 94.0 95.7 94.0 95.7 94.0 95.7 94.0 95.7 94.0 95.7 94.0 95.7 94.0 95.7 94.0 95.7 94.0 95.7 94.0 95.1 95.0 103.2	1	3LES	.			7 97.6	3 99.4	7 102.3 1	2 104.8 1	1 105.7	3 106.4 1	8 106.7 1	6 107.0 1 0 106.9 1	7 106.2 1	104.3	96	93.	. 5 83.	.4 71.	.9 117.6	TAPE AERO.	1.	
9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	IDENT	70				92.7	93.3 94.9	95.7 101. 98.0 98.	101.9 101.	103 0 101	104.9 104.	103.4 104.	103.7 104. 103.4 104.	103.2 104.	101.6 103.	98.4 102.	92.9 94.	87.5 91. 81.1 83.	70.3 70.	114.7 115.	02-20-78 C41 ANECH	ACCUSTIC 2 M (
		Q Y				9 7.19	9 93.7 94	96.2 95	103.3 103.	102.9 101.	105.8 105.	103.9 104	103.2 153.	102.2 103.	99.8 100.	95.0 96.	87.5 91.	82.5 85. 75.8 78.	63.5 66.	114.9 115.	TEST DATE	TEST POINT 7111	

				OI OI	riGINA POOI	L PAGI R QUA	e is Lity					FPS)
			Mgs .				•			YES		C SPEED
					- ¹					CORRECTION -	60	FREE-JET M/SEC (
			.	N 10 C 0	~- 00	0 0 0 7	∞ − ₩ €	N = 0 6	a (1 a ()	• 1	A 28	o.
	PWL		150.		156. 157. 156.	55.5	152	150. 149. 148.	145 145 146	CTION	RELHUM)EL
	160.		116.9		115.	109.	202	1-	73. 66.	REFR	086	- MODEL
01 S	150.		117.7	120.6 121.7 121.3	121.0 120.6 118.6	115.8	109.6 108.4 107.6	99.8 96.2 90.8	85.3 76.2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		SB59 29.2990	SQ IN)
X7111 DEGREES	140.		114.3	119.2 120.5 121.6	122.8 123.7 123.7	120.2 118.4 116.9	113.1	106.4 103.3 28.9	90.6 84.7 78.7 74.7	48.0	ALPHA PAMB	\$12E 23.99 (
	130.	:	12.0	15.8 17.6 18.0	18.0	20.5 19:2 18:3	15.5 13.7 0	06.3 02.3 08.1	1 1	(FT/SEC)	1	<u> </u>
-ZEF	120.		04.6	09.1	4400	10 10 4 4 10 10 10 10	12.5	06.5 03.8 01.3	92.2 98.1 77.7). (ETER	N294 ADH077	SO CM
RED	110.		1 9 6 1	0-70	4700	a – a «		8010	889.5 82.4 76.4 71.1	VELOCITY Jet Diam	NOS.	164.7
- 4	100.		2.2	4400	0.00	471/2		4	0000	REE	TAPE AERO. R	ARC
DENTIFICAT	90. 1		95.3	V 6 4 V	- 01 - 0	000	0 / 6	0 0 V K	n 0 0 4	- 11	\	1
Q.	. 0		00 0 0. 4 00 0	o 01 - 0	0 0 0 0	1,04 K	0 0 0 1	0 W - C	00-0	- >	CH CH	ACCUSTIC RANGE
	70.		91	00/0	9000	0-41	4000	0440	ים בים	FACTOR 1.000	02-20-78 C41 ANECH	ACCUST 2 M (
			9.0	0 - 0 1	ω 1 0 4 C	0	9-0	nonc	1.000 C	ZE SCALE CALC.	1	12.8
	8		6 v		6 2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		5555	1	•	81ZE 000	TEST DATE	T
	20		93.	1	9 103. 0 102.		20400		69 75 69 69 69 69 69 69 69 69 69 69 69 69 69	FE 7	#	IEST POINT 7111
	ą		88.0	4					ł I	OASPL 113.4		DEL TE

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F. 70 PERCENT R.H. STD. DAY, SB. 2400.0 FT. SL

		Comments of the Comments of th										R	IG P	in Oc	AIR		P A	NG /A	E Li	II.											7.40		FREE-JET SPEED			
IDENTIFICATION - FJ-ZER-FMODL X71111	. 90, 100, 110, 120, 130, 140, 150, 160,	6 88.6 95.6 97.4 96.6 90.2	80.4 81.4 82.6 89.9 97.4 98.7 97.7 90.7	81.5 83.2 85.2 91.7 97.7 99.8 97.2 91.0	96.6 89.3 174	87.0 86.5 89.0 94.9 98.2 101.4 96.0 87.3	85,7 87.2 89.0 96.1 98.2 101.2 93.7 85.9 174	2 99.0 98.7 91.4 82.6 3 99.0 96.9 90.0 80.7	86.9 87.4 89.4 94.9 97.4 94.7 87.5 78.2	86,4 87,2 88,8 93.9 96.0 92.7 86,8 75.9	86.0 87.2 88.8 93.1 94.7 91.5 83.5 RE.7 171	85.7 86.0 87.8 90.7 91.7 87.5 79.1 59.2	86,2 85,4 87.3 89.1 89.9 85.4 77.6 65.6 169	84.4 83.6 84.8 86.3 86.9 81.9 73.4 6Z	25. 1 20 1 20 1 20 1 20 2 20 2 20 2 20 2 2	77 2 74 8 73 0 75 7 73 5 65 8 55 4 39 7 165	69,3 68.0 67.2 67.4 65.6 56.3 40.5 20.0 1	61.3 57.6 57.1 56.6 53.3 41.5 21.8 164	.5 42.7 39.2 40.4 32.8 17.7	18,5 19,6 13,9 15,1 2.0	\ .20I							92,4 98.0 99.9 105,3 108.9 109.7 105.6 98	105.8 105.2 106.5 110.6 113. 106.3 105.2 106.5 111.2 113.	WETER RATIO 7 840 FREQUENC	TAPE NG. N294 TAMP SB59 TAMB 28	CH AERO, RDG, ADHO77 PAMB 29.2550 RELHUM	RANGE SIZE	10,0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 0.		
	40. 50. 60. 70. 80	FREG 50 70 1 73.5 75.1 74.8 76.	70.4 73.8 75.9 76.4 78.	71.8 75.9 76.7 77.2 83.	9 84 0 83 2 82.	77.6 82.6 84.0 84.5 86.	.5 82.0 81.7 82.2 83.	82, 8 84, 8 85, 0 83, 8 82.	79.8 83.7 84.5 85.4 85.	.1 81.6 83.2 83.3 84.	76.6 80.5 82.4 83.3 84.	72 7 78 9 81 3 82 4 84	70.8 77.3 79.9 81.9 84.	67.2 75.5 78.3 80.3 83.	54.5 73.1 76.7 79.3 82.	1 60.8 /2.3 /0.2 60.	45.7 54.3 61.6 65.9 68.	30.9 41.7 50.1 55.0 61.	5.7 20.8 30.6 37.9 43.	3.7 12.2 17.	10000 12500	16000	20000	31500	40000	50000	80000	1 93 1 94 3 94 8	94.4 98.6 100.3 102.		TEST DATE 02-20-78		POINT ACOUST	0 7111 731.5 M (573	

9
ø
_
_:
0
_
~
79
2
=
Ξ
6
'n

in Section

							•					Ol Ol	RK F	GI P	NA OO	L I		IGI	I II											FPS)	Wage, C		
								•																					44.80	FREE-JET SPEED .96 M/SEC (387.0 FI	•		ADECTED COMMENTS OF THE CONTROL OF T
FOR BACKGROUND NOISE 40.0 FT. ARC	X01400	•	160.	1					4 147	112.31.150	2 110.1 151	8 107.4 152 8 168 7 152	.4 103.5 152	0 102.9 153	103.3 153	3 103.0 154	9 102.1 153	.z 100.5 152 .7 100.2 152	06.6 99.3 151.7	3 97.0 151	. 8 . 85 . 65 . 65 . 65 . 65 . 65 . 65 .	.8 93.0 149	.0 91.5 148 .8 85.8 147	8 81.7 147	5 75. 1 145 5 69 3 144	4 61.4 145	25.7 120.3 165.4		29.5700 RELHUM	IN) - MODEL 117.			
S CORRECTED DAY, SB	ND FJB400-FMODL	OM INLET, D	20. 130. 140.				•	•	3 105.6 111.	2 112 5 115	5 114.6 118.0 1	7 115.0 118.8 1	0 115.8 119.7	.8 115.0 121.1	.9 116.1 120.8 1	7 118.7 119.4 1	5 117.8 117.4 1	.2 116.7 115.1 1	14.1 115.1 113.3 10.3 10.3 10.3 10.3 10.3 10.3 1	2 113.5 110.6 1	.7 111.3 208.4 1 .8 109.6 106.1 1	.2 106.8 102.8	. 7 101 . 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7 83.7 90.8	3 87.1 84.6	8 75.7 73.6	24.6 128.0 130.1 13		ADHS89 PAME	SG CM (23.99 SQ			CESTAGE.
SOUND PRESSURE 70 PERCENT R.H	CALLON	GLES MEASURED	90, 100, 110, 1						0 93.4 56.1 1		8 94 9 57.6	6 96.5 150.2	0.80.4 503.0	6 100.2 104.4 1	.5 101.4 255.3 1	0 102.9 106.8 1	1 104.5 127.6 1	. 5 104.8 108.0 1	.2 104.7 108.1 1 6 104 6 108 0 1	3 103.7 107.8 1	.4 102.7 105.5 1	.5 100.2 102.0 1	.7 97.55 98.3 1 .8 93.55 95.0	88.6	8 83.5 82.8 8 77 8 76 9	7 70.4 70.4	5.3 115.0 118.5 12	5	AERO. RDG. AC	9E FT) ARC 154.7		•	
UNTRANSFORMED MODEL 59.0 DEG. F.,			. 70. 80.		•				2 68.5 69.4	2.00	8 90.8 91.9	6 91.7 96.0	55 42 45 0 50 43 95 4	6 96.9 97.5	0 97.6 97.6 1	6 102.8 103.9 1	6 102.4 102.2 1	6 100, 8 101, 9 1	7 101.4 102	3 101.9 103.2 1	4 100.7 102.8 1 8 100.3 102.5 1	6 97.9 102.2 1	7 93.7 99.3 7 7 92.8 93.5	4 87.6 91.8	0 80.9 83.6	7 69.1 68.8	6 112.4 113.6 11	1000	DN C41 ANECH CH	ACCUSTIC RANGE			
No.			40. 50. 60						84.6 87.4	85.0 87.3 87.6 88.1	88.2 88.7	89.3 89.8	93.4 80.6	97.3 98.1	103.4 101.0 100	101.5 101.8 102	100.6 101.1	100.7 100.5 101	99.7 100.9 101	98.7 100.4 101	97.1 99.3 100 95.9 97.7 99	30.9 94.8	89.5 91.2	83.3 83.2	75.6 76.5	64.3 63.2	111.4 111.6 112	i i	LGCATION	TEST POINT			
			VIO.	200	6 6 6 6	Ŏ.	N S	302 -	250	31.5	200	930	1000	1250	1600	20 G 20 G 20 G 20 G	3150	4 00 to 00 00 00 00 00 00 00 00 00 00 00 00 00	6300	10000	1250	20000	25000	40000	20000	90000	OASPL			MODEL 7100			

Ö
8
_
_:
2
•
9
70
178
8//2
17/78
_
82/21/2
82/21/20

					•															ø					*	27				
												OF	IIGI P		AL R	P. Q	AG UA	E Ll'	IS YT										6	
					:														<i>f</i> .										ET SPEED (387.0 FPS)	
•																											39.00	5	FREE-JET 17.96 M/SEC (
RE LEVELS			163. PWL	2	0.0	7 14	0. 6. 4. 4.	62.0 146.2 62.0 146.8	14	10 10 12 12	2	0 4 4 4	0.0	i -	₹.	0 6	4	147.2	148.8					73.0 160.8 73.8	74.9		TAMB	İ	FULL 1	
SOUND PRESSURE SB 2400.0 FT.	X75061	DEGREES	40. 150.	.2 62.8		.9 58.4	5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3 57,8	4 58.0	.3 56.7	.0 51.9	. 8 53.6 .3 53.7	.7 51.8	8 43.2	.6 37.1	.1 31.8 .7 18.6	3 0 0							70.1	.0 71.7	SHIFT -9	ALPHA SB59	- 1	E 00 SQ IN) -	
EXTRAPOLATED S		INLET,	130.	68.6	70.7	70.7	70.5	6 70.1 65	69.0	68.0 67.9	67.1	65 65 6	63.0	56.0	51.0	4 4 0 0	26.1						. (6 84.3 79	84.3	FREQUENCY	-	_	SIZE 1 CM (1400.00	
AND T	ı Z	ASURED FROM		0	.		40	67.3 70.6 67.8 70.4		40	4 69	2 2 66 2 67	90	52	26	7 5 6 8	33	-						76.4 60.7 84.6 85.8	94.6	7.640	E NO. N299	<u>.</u>	9032.2 80	
MED, SCALED,	DENTIFICATIO	ANGLES MEAS	ė.	0.0	.09	.6 62.	. 7 63.	80 8	8 66.	.5 67. .3 66.	.7 67.		64.	8 61.		. 4 . 0	98 38	.a 23.					į	77.3 77.2 85.8 84.0	.	AMETER RATIO	TAPE		RANGE 10.0 FT) SL	
SO. O DEG. F., 70			o .	0 58	. O. O.	.7 63.	0 0 6 6 7 6	63.4 64.9 63.5 64.9	7 65.	. 4 65.	.99 66.			5	.5	N 0	5 48.	.6 33.						70.2 82.9 83.3 87.7	IO.	DIAME	02-27-78 C41 ANECH CH		ACGUSTIC RA 5 m (2400.	
FLIGHT			. 60	67.8	63.69	64.1	62.6 62.6	3 63.7 6	63.7	-0	63.4	62.3	61.4	59.8	28.6	53. 48.0	7 39.7	2 4.					(2 62.6	9 3.6		TEST DATE OF		731.	
				6 1	i di	4	9 6	60.4 62.	10	ด ด	21	n 0	⊳ K	o o	બં લ	, ,	0	4					1	77.8 80.	6. 81.		15	•	TEST POINT	
			FREG	20	8 8	8	160	200 200 200 200 200 200 200 200 200 200	315	2 6 0 0 0 0	630	960	1250	2000	2500	4000	2000	9000	10000	12500		 \perp	,	Par					MODEL 7500	-

			· · · · · · · · · · · · · · · · · · ·			•			•	000						GE ALI												The second secon
																	74								98 00	FREE-JET SPEED M/SEC (0. FPS)		
		ž					- 1	140.00 0.00	152.1	153.7	153.7	154.0 153.6	152.8	152.3	150.7	150.2 149.4	148.7	146.8	145.5	144.0	143.9	141.6	143.1	164.5	TAMB 27.8 RELHUM 25.0	0		
X76010		150. 160.					14.2 113.9	6.14 4.11	2	6 116	2 116	6 115	7 111	60109	901 6	e 4 105 104	9 104	101	99.6 96.4	3 8 8	46	1 72	0	128.6 125.2	SB59 29.2980 R	IN) - MODEL		
I-ZER-FMODL	ET, DEGREES	30. 140.	•				9 110.8	0 112 4	9 117.3	3 118.9	4 116.5	4.611 0	3 118.5	8 117.4	6 114.2	9 113.3 6 111.6	2 110.0	3 105.8	01.9 99.9	2 92.8	7 88.2	9 76.5	3.3 73.3	.3 128.8	I ALPHA PAMB	S1ZE (23.99 SQ		
40DEL FJ-3ACKGRØUND	ED FROM INLET	120. 1	•	•			102.1	104.2	106.3	110.2	111.6	4.61	112.6 1	112.0	111.3	110.4	109.5	105.3 1	100.4	93.6	98.6	80.3	75.3 7	8 122.8 126	N294 ADH080	154.7 SQ CM		and the state of t
ī	ANGLES MEASURED	100. 110					95.5	90.00 00.00	97.4	100	100.9	102.3	102.3	103.5	102.7	103.3	102.6	101.3	96.3 98.1	20.06	85.1	၁ ဗ	67.5	114.3 116	TAPE NO.	ARC		
TIF!	ANG	90.					5 93.	e 0	94.7 96.1	98	2.	<u>-</u> 6	-	<u>.</u>	7 101			0 100.	98.0 98.9	96	o -	4 7	9 9	112.0 113.3	20-78 ANECH CH	STIC RANGE (40.0 FT)		
		60. 70.					1 89	6 6 6 6	92	90	.86	9.7 98.7	.7 98.	66	98	99.5 99.0	66 99.	.1 97.	92.6 94.7	8 8	3 84.	. 4 71.	.4 66.	10.3 110.5	02-2	ACOUSTI 12.2 M (
		50.					3 91.3	4 89.7	5 92.3	7 93 4	99.1	98.2	7 99.7	1 98.9	6 99.2	8 98.7	9 97.3	8 95.4	91.6	9 84.1	79.1	66.7	60.1	.0 110.1 11	TEST DATE LOCATION	TEST POINT 7601		
		40 FRED	20	38	125	200		8 0 0	500 89.			1250 94.	86	86 8	97	5000 97. 6300 94.	8	8	986	31500 79	100	63	S.	GASPL 108.		MODEL TE 7600	673	

. 682					O! O!	RIGINA POO	L PAG R QUA	E IS LITY					FPS)
07/19/79 18											CORRECTION - YES		M/SEC (0.
FLIGHT TRANSFORMED MODEL SOUND PRESSURE LEVELS	ZO PERGENI R.H. SID. UAY, SB ENTIFICATION - FJ-ZER-FMODL X760	60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, PWL		.3 95.6 96.9 102.1 106.9 110.8 114.2 113.9 1	2 91.3 92.9 94.7 96.3 97.8 105.2 112.8 115.4 117. 8 92.6 94.7 96.1 97.4 99.1 106.3 113.9 117.3 118. 4 94.0 102.0 97.2 98.8 101.5 108.9 115.0 118.1 1118.	. 8 98.1 98.2 99.8 100.8 103.1 111.6 115.4 118.5 119.2 116.1 1.7 98.7 100.1 101.7 102.3 104.5 111.4 115.1 119.4 119.6 115.0 1.4 97.9 99.0 101.1 102.7 105.6 112.5 115.5	. 9 99.4 99.5 101.1 103.5 106.2 112.0 115.8 117.4 114.6 10.4 99.4 99.7 101.6 103.0 106.6 112.5 115.0 115.9 113.1 10.4 99.9 99.7 101.1 102.7 106.2 111.3 114.6 114.2 111.9 10.5 10.5 10.5 10.5 10.5 10.5 10.5 10.5	.5 99.7 100.2 102.1 103.3 105.7 110.4 112.6 111.6 108.4 104.6 1.6 99.5 100.8 102.0 102.5 104.4 109.5 111.2 110.0 107.9 104.0 1.3 98.4 100.5 102.4 102.5 104.0 104.5 105.5 105.6 108.6 108.6 106.5 105.6 108.6 108.6 108.6 108.8 107.7 109.6 108.8 107.7 109.8 107.7 107.7 109.8 107.7 107.7 109.8 107.7 107.7 109.8 107.7 107.7 109.8 107.7 107.7 109.8 107.7 107.	.6 96.7 98.9 100.1 99.1 101.2 103.6 105.5 103.4 102.3 98.7 1 .6 94.7 98.0 98.9 96.3 98.1 100.4 101.9 99.9 99.6 96.4 1 .9 91.3 95.6 96.0 94.3 93.6 97.9 97.2 96.0 95.6 94.4 1 .8 89 8 90 1 90 4 90 5 93 9 95.2 95.8 90.3 88.7 1	3 84.6 88.8 89.1 85.1 85.4 88.6 90.7 88.2 85.4 84.6 143.7 78.2 80.1 81.1 80.3 78.8 84.2 84.7 82.8 80.3 77.7 142.4 71.5 72.4 73.1 74.6 72.4 80.3 78.9 76.5 75.1 72.4 141.4 66.6 65.6 67.8 67.5 67.7 75.3 73.3 73.3 68.8 65.5 143.	10.3 110.5 112.0 113.3 114.3 116.8 122.8 126.3 128.8 128.6 125.2 164.5	DATE 02-20-78 TAPE NG. N294 IALPHA SB59 TAMB 27 ATION C41 ANECH CH AERO. RDG. ADHO80 PAMB 29.2980 RELHUM 25	12.2 M (40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MQDEL 0.
674		FREG 40. 50.	63 63 100 100	83	88.9 91. 89.5 92.	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	98.7.89 98.1 98 99.1 100 97.6 99	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	16000 87.8 94 20000 82.8 91 25000 81.8 87 21500 61.8 87	40000 75.6 50000 68.7 63000 63.4 80000 57.4	108.0 110.1 MODEL /FULL INPUT 1.0		7600 7601

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. SID. DAY, SB. 2400.0 FT. SL

()

(

			:																													
															. !																	
																												ļ				
)R)F			AL OR		PA()U/		E! YTI									1	
																				- .										FPS)		
															-															SPEED 0.		
																						-										
																												9	0	FREE~JET M/SEC (
																												27.6	25.00	o o		
			P. 168.5	69.7	9.0	<u> </u>	21.6	2.3	20.0	59.3	98.4	67.1	96.4		64.2		32.3	61.6 8.6		59.3						9.10		ZAMB	RELHUM			
		ė	O	ĸ	5	۰ ر 	-	6	Q) 4	4	10	٠ ر ا	20	4.	- 4	2.	8		ř	~;	1					000			REI	FULL		
		. 160	96	İ					7 81	١.	7 74				2 56	_	38	81 9								22.88	Ç)		29.2980	'		
=	5	150	603	94	8	9.00 4.00	95.	83	900.4	• •	•	787		•			•	6 6	4							103.5 2.25 5.5		885	29.	(NI OS		
X76011	DEGREES	140.	93,6	95.5	96.3))) ()	97.2	96.7	95.7	92.2	0.06	86.6	84.3	82.4	75.5	70.1	•	53.4 4 -	4 .							106.0 108.5 108.5	Y SHI	PHA	PAMB	1		
3DL	ل	30.	10	9			4	4.	N 6	a	د	in in	8	o c	2 7	8	<u>,</u>	on o	ي ا							000	FREQUENCY	3		\$12E 1400.00		ļ
R-FM	INLE	•	0 92	1					7 894 8 94	ı			l													6 109 6 109	FREG		00	8		
FJ-ZER-FMODL	FROM	120	86.	87.	80	2 %	9	92.	92.7	ŧ				8 83	80.	76.	72.	. 65 64 65 65	36.	<u></u>			•			102. 107.		N294	ADH080	2 50		
N	SURED FROM	110.	79.3	80.6	82.9	4 6 4 6 4 8	85.7	86.7	86.1	86.9	86.1	85.2	83.6	83.4	79.7	75.9	69.8	63.5 52.0	35.6	10.0						97.0 03.3 03.3	7.640	2	SDG.	9032		
	HEA	90.	78.3	9.4	80.7	82,2	0.4		83.6 84.5			83.0			78.3		•	4 4 6 4	٠. ١	2.7						00.00	<u>D</u>	M	, –			
IDENTIFICATI	ANGLES	-	8.7		ص ص د		1	60		8		9 G			6 7			- 0 5 6		6						9 0 6	RATIO		AERO	FT) SL		
1051	A	8	76			2 2	1		8 8			8 6		8 8				0 K	4	10						102	DIAMETER		품	1C RANGE 2400.0 F		
		8	74.8			80.0	81.7	•	90.08		80.2	80.0		80.2			72.9	5.4.4	39.3		-1					92.6 100.7 102.0	VIQ.	-78	I	3TIC 240		
		6	72.8		•	7.62	1 .	79.0			78.9			77.55 0.87	75.2	٠.	67.5		ι.	•						90.6 97.9 97.9		2-20-78	C41 A	ACOUSTIC.	-	
			O	9	oj I	- K	01	۲.	8 N	6	io (n a	œ	ი u	o	0	ص د	N 1	0	6						V 0 10				731.		
		9	72			0.0	l	,	787			77		25	7			2 2		O						9 000		T DA	LOCATION	E		
		90	70.7	•.	73.1	78.6	i	76.0	77.4	٠.		75.7		72.9	• 1	•	•	0 K								98.1 93.8		TEST	13	T PGINT 7601		
		6	62.1			76.7		75.0	75.9 74.8			/2.4 69.6		65.0			•	40.00 0.00								84.7 89.1				TEST 76		
		.1 +	FREG 50 6		90				250 / 315 /		500			1250]	88	38	88	88	8	888	· •				DEL. 7600	67	5
			FR				-	O) (N C	4	io (9 0	10	<u> </u>	20 -	22	31	4 K	6300	8000	12500	16000	25000	40000	63000	OASPL PNL PNL T				MODE! 76(

											OR OF	IGI P	OC	AL OR	P. Q	AG UA	E Ll	IS TY	, ,												FPS)	
																															SPEED 387.0	
JI SE					J.				0	. 0	9. 7	6.	0	6 / -	0	- e	9	<i>c</i> ı u	9 01	6	4 -	· Ø	40	o (1	٠,٠	0 0	CI.	8	8	M 43.70	FREE-JET 117.96 M/SEC (
BACKGROUND NOI SE	40.0 FT. ARC)20 100		160.	PW				110 6 144	109.5	3 146	7 147	.5 147	96.7 147.	5 148	96.1 148.	148	96.7 148	5 14	4 147	94.6 147.	4	8 145	83.8 144	143	(6)		115.9 160		I AFTE SOO RELHUM	- MODEL	
FOR	40	16DL X76020	DEGREES	140. 150.					07 2 111 0	09.4 111.6	11.9 113.1	6 111.	.109.	3.0 106.9	.3 105.		.0 105.	11.6 104.5	. 8 102 102	08.0 101.2	107.0 101.2 104.0 99.2	0 97.	9	»	87,1 81.9	70,0	_	124.4 120.9		PAMB 29.5600	SIZE 23.99 SQ IN)	
LS CORRECT	STD. DAY, SB	. FJ-400-FMGDL	INLET,	130.					R 100 G 10) 4) \	D (4	110.71	.2 111.7 11	3 112.0 11	112	.0 113.0 11	5 112	7 112.2 1	11.5	6 110.0 1	0 109 9	1 106.2	102.6	- o	۲.	76.2	0	.9 123.8 12	•	_	CM C	
SSURE LEVELS	RCENT R.H. ST	MODEL BACKGROUND	MEASURED FROM	110. 120					4 4 47	, 0	85	9 104	7 106	2 108	8 109	801 8. 81108	7 110	104.3 110.			102.4 106.	4 104	6 10	၁ တ	85.9 69.	واه	66.2 73.	114.9 120.		RDG. ADH996	154.7 50	
SGUND	, 70 PE	DENTIFICATION -	ANGLES MEA	90. 100.					0	9	86	6	6 95.	9 6	0 98	0 0	3 100.	66 2	- 0	2 100	00 6	98	96 9	o		8 24	5 66	0.7 111.2		AERG.	JE FT)	
JRMED MODEL	59.0 DEG. F.	IDENTIF		. 80.					9	87.2	6 67.35	94.0	90.8	92.1 93.7	83.8	D 4	95.7	95.4	3 97.3 1	98.3 1	98.3	88.3	e .	80.8 4.0.4	88.1	71.7	0	.2 108.5 110.	1	02-2/-/8 C41 ANECH CH	ACCUSTIC RANGE 2 m (40.0 F	
UNTRANSFO	10			60. 70					c		86.2 85.	10	ব (၁ ဖ	10		_	- 0) -	4	O	96.1 97.	٥,		82.9 84.	00	9	106.7 107.		LOCATION C41	12.	
				40. 50.					2	מו כ	99	.0	.3 87.	4 0	.1 89.	 	3 94.	.58 33.	4 0	4 94.	2 69	2	2		4.80	. s 66	0.6 59.7	.7 105.4		LGC	TEST POINT 7602	
					FREG 50	6 8 8	100	160	- L	315 83	004				1		. Į		0000	- 1			20000	31500	40000	00000	80000	CASPL 104			MODEL 7600	

									-																										
																																	(7	
													21 6	GIN	AL	. 1	PA	GE	15	3															
												ф	F	PO	φR	(วูป	ΑL	ΙΤ̈́	Y													FPS		
										•																							SPEED 367.0		
	1	÷.																																	
	İ														F																		FREE-JET 3 M/SEC (,
																																43.70	6		
			7	0 6 0 6	4	4	4 6	-	8		0.0	٥٥		66.1	-	4.0		- 9	N 4	6								N			9	₹	1117		
			_		_	-		_	-		- 1	- -	_	9 166 7 166	 		4 4	19	<u> </u>	19						1		0 178 8	60		1	RELHUM	4		
			160	90.4		!			1			-1			63.	•											(9 50	91.8	_		909	. FULL		
			150.	0.0	9	8		7.1	3.1	2.7	8	2) K	9 -	74.7	0.0		. 4 . 4	7.1										95.2		9	3859	29.56	ŝ		
X76021		DEGREES		9 7	. 0	0	9 G	0	0	O 10	~	2	٠ 4	- σ	0	N 1	۰.	0	4									က က	0	SHIFT		i	os o		
×		DEG	140	80 8		-			ł			-		. 40.	į											1		<u> </u>	5		IALP	PAMB	S1 ZE (1400.00		
Made		INCET	130.	1.48	89.4	90.2	90	80.8	9	8 08	91.0	82.3	87.3	85.4	91.4	77.0	63.3 63.3	49.3) N									106.9	8 90	FREQUENCY					
-400-FMGDL			20.	700			9.6		- 1			• 1	0	86.1		•	4 0 V 0	6.8	9 6					•				4 1	4	Œ	8	ADH996	SOCM		
7	<u>'</u>	D FROM							- 1			-		9 4	ŀ													. 3 100 . 4 106	1	.640	Ž	AD	32.2		
Z		SURED	100	73.	76.	78	8 6	98	82	8 82	8	4		83.	80	77.	9 2	35	38.							-		2 0	102	7.6	D Z	RDG	9032		
DENTIFICATI		S MEA	100.	71.7		1			-1			- 1		92.0		•						:						92.3 01.1	5	RATIO	TAPE	ш	35		
RITE		ANGLES		1 - 1		1			٠.١			-1		Ø 7		•				.								93.2	n			◀	ЭЕ FT)		
10						- 1			- 1					0 83								1							-	AMETER		동	RAN 0.0		
			8	1 -					- 41			••		82.	-					- 1				 - -				102.0 0.30	103.	5	-78	ANECH	ACGUSTIC .5 M (240		
			29.	- 7	8	3	10 K	7.5	6.9	76.57 8.58	. O.	0 0		80.8	0.8	8.6	2.5	58.6	13.	5								8 8 4 4	01.0		02-27	;	ACGL 5 M		
				ω α	, ~	0	O	r di	~	a 0	! —	ო -	- 01	0 0	10	9	0 10	က	4 1									и 4 _	2				731		
			8		•	١ ا								79						•								86	-		T DA	LOCATION	E		
			8			-1	_		-1	-		-1		77.3	-! -				-				-					98 .4			TES	2	17 PGINT 7602		
			.			-1			1			•		- 4		 	52.1	9.4										86.9 93.8					TEST 76		
			G	l		- 1			- 1			- 1		92	.			39		2 0	2	2 9	Q	0 9	2 2	2 2							0	Ţ.	
			ir Gr	100 G	, 00	10	<u> </u>	20.	25	91	20	8	100	1250	200	200	315	200	8300	10000	12500	5000	2500	31500	20000	63000		OASFL PNL	PNLT				MODEL 760	4.7	-
																										_L		****							1

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

			*				- 1				0	RIG	N	AL	, . P	AG	ΕI	\$											
	•										O)	P		OR	Q	UA	LIT	Y										JET SPEED	
		3		:			0	- 0	52.4	6	 		7		5.6	0 0	7	59.1	4 (21 10		0.0	-4		1.4	IMB 29.12	٠ ا	FREE-JET O. M/SEC (
X76030		. 160.					0 113.9 147	114.2		116.0 1	ι. 	115.2	113.9	109.6		104.9 1	. 63 . 63	102.20		96.8	0 88.81	.0 78.6 142	0 72.8	. 9 65. 9 142	.0 125.4 164.		29.2960 RELHUM	IN) - MODEL	
FJ-ZER-FMGDL X7	DEGREES	140. 150					111.3 115.			117.9 1	118.7	8 119.4 120.	119.9118	116.1 114	116.6 113	113.4 110	110.4 107	108.5 107	104.3 102	0.4 80.0 80.00	93.7 90	63.7 80	77.4 75	73.7 67	7 129.0 129	Į.	PAMB 29	\$12E 23.99 SQ 11	
	FROM INLET	120. 130					101.6 106.	103.7 10	105.0 112.	108.4 114.	109.7 114.	111.4 113.	112.3 114.	111.8 115.	112.2 114.	110.6 113.	108.7 110.	107.5 109.		99.00	93.3		80.2		122.4 125.	N294	ADH076	1.7 SQ CM (
ION - MODEL BACKGROUND	ES MEASURED	100. 110.					96.0 97.1	6 9	96.4 97.8	1 10	- 0	103.1 105.0	9	5 C	103.4 106.1	2	4.0	7.10	00	95.9 97.7	4.	8 7	4.3 7	67.2 67.1	114.4 116.7	TAPE NO.	AERO. RDG.	ARC 154	
IDENTIFICATION	ANGLES	80.					90.7 93.3	. 1 94.	92.9 95.0	1 97.	.69		3	2 100.	101	5 101	.6 102. .8 101.	7 101	98.4 100.0 98.5 99.5	7. 98.	.2 90.	88.2 88.2	2.3 72	66.0 67.2	11.8 113.1	-78	ANECH CH	STIC RANGE 40.0 FT)	
		60. 70.					9 30.4	7 90.7	91.2 91.0	9 93.7	2 96.0	.1 98.6 .5 100.0 1	4 97.9	.1 99.6 1	.8 100.1	.2 98.7	96.4 98.9 96.8 97.9	.9 97.	. 2 96.8 96.3	.2 94.1	0.	81.9 84.2 74 8 77 3	.8 71	99	10.1 110.4 1	02-20	24.	ACGUSTIC 12.2 M (
		. 50.					8 91 6 8	1 89.7	20.00	1 93.7	.2 94.5	. 8 . 99 . 8 . . 6 . 99 . 7	5 97.6	.2 100.7 .0 99.3	9 100.6	1 97.9	.3 97.1 .3 96.7	9 95.5	. 2 94.3 93.4	2 90.9	5 83.8	.0 79.2	8 66.4	.3 59.5	.2 110.0 1	TEST	LOCATION	TEST POINT 7603	
		40	200	£ 6 63	2 %	160	250	1	400 88.			1000 1250 95.	- 1		3150 98	96	6300 94		12500 89 16000 87			40000 75		80000 57	OASPL 108			MODEL TI 7600	

150. 160. PWL 150. 160. PWL 116.3 114.2 149.1 117.4 114.2 149.1 119.2 115.1 152.4 119.2 115.1 152.4 119.3 116.0 152.9 119.5 116.0 152.9 119.6 113.9 147.8 119.7 116.0 152.9 119.6 113.9 147.8 119.7 116.0 152.9 119.6 113.9 147.8 119.7 116.1 152.7 114.3 109.6 152.4 113.3 109.6 152.4 113.3 109.6 152.4 113.3 109.6 150.5 110.1 15.2 147.9 100.1 102.2 147.9 107.8 103.6 148.4 107.1 102.2 147.9 107.9 103.6 148.4 107.1 102.2 147.9 107.9 103.6 148.4 107.1 102.2 147.9 107.9 103.6 148.4 107.1 102.2 147.9 107.9 103.6 148.4 107.1 102.2 147.9 107.9 103.6 148.5 109.1 102.2 147.9 107.9 103.6 148.4 107.9 103.6 142.0 107.9 143.5 109.0 125.4 164.4 129.0 125.4 164.4 129.0 125.8 141.4 20.20 29.2960 RELHUM 20.20	SOUND PRESSURE LEVELS SITD. DAY, SB 40.0 F. ZER-FMODL. X76030 20. 130. 140. 150. 150. 150. 130. 140. 150. 140. 150. 140. 110.3 3.7 109.0 112.6 116.3 5.0 112.5 115.0 119.2 6.3 114.1 117.0 119.2 6.3 114.1 117.0 119.3 9.7 109.0 112.6 116.3 1.1 114.2 118.7 117.0 1.2 114.8 118.5 119.0 1.3 114.8 118.5 116.0 1.4 113.2 113.0 110.4 1.5 110.5 110.4 107.8 1.6 113.2 112.0 109.1 2.2 114.8 118.5 116.0 2.1 114.8 118.5 116.0 2.2 114.8 118.5 116.0 3.3 114.8 118.5 116.0 3.4 90.0 89.4 85.3 4.4 84.5 83.7 80.0 6.7 76.1 77.4 75.0 6.7 76.1 77.4 75.0 6.7 76.1 77.4 75.0 6.7 76.1 77.4 75.0 6.7 76.1 77.4 75.0 6.7 76.1 77.4 75.0 6.7 76.1 77.4 75.0 6.7 76.1 77.4 75.0 6.7 76.1 77.4 75.0 6.7 76.1 77.4 75.0 6.7 76.1 77.4 75.0 6.7 76.1 77.4 75.0 6.7 76.1 77.4 75.0 6.7 76.1 77.4 75.0 6.7 76.1 77.4 75.0 7.7 76.1 77.8 76.1 7.7 76.1 77.8 76.1 7.7 76.1 77.8 76.1 7.7 76.1 77.8 76.1 7.7 76.1 77.8 76.1 7.7 76.1 76.1 76.1 76.1 76.1 76.1 76.1 7	SFORMED MODEL SQUIND PRESSURE LEVELS ICATION - FJ-ZER-FMODL X76030 S. MEASURED FROM INLET, DEGREES 100. 110. 120. 130. 140. 150. 100. 110. 120. 130. 140. 150. 100. 110. 120. 130. 140. 150. 100. 110. 120. 130. 140. 150. 101. 102. 103. 114.1 117.0 119.2 102. 103. 1 114.1 117.0 119.2 103. 1 101.0 108.4 114.0 117.0 119.2 103. 1 105.0 111.4 113.8 119.7 119.7 03. 1 105.0 111.4 113.8 119.7 119.7 03. 1 105.0 111.4 113.8 119.7 110.7 03. 2 105.4 112.3 114.5 119.5 116.0 03. 2 105.4 112.3 114.5 119.5 116.0 03. 1 105.0 111.8 115.2 118.7 110.0 03. 1 106.2 110.6 113.5 113.4 110.4 00. 7 105.9 111.3 114.0 116.6 110.8 00. 7 105.9 111.3 114.0 114.6 110.8 00. 7 105.9 111.3 114.0 114.6 110.8 00. 7 105.9 111.3 114.0 114.6 110.8 00. 7 105.9 111.3 114.0 114.6 110.8 00. 7 104.8 108.7 105.5 108.5 107.1 00. 7 104.8 108.7 105.5 108.5 107.1 00. 7 104.8 108.7 105.7 129.0 129.0 01. 7 104.1 105.7 122.7 129.0 129.0 01. 7 104.1 105.7 122.7 129.0 129.0 01. 7 104.1 105.7 122.7 129.0 129.0 01. 7 104.1 105.7 122.7 129.0 129.0 01. 7 104.1 105.7 122.4 125.7 129.0 129.0 02. 3 124. 4 106.7 106.0 PAMB 29.28 03. 0 101.7 101.0 29.2 03. 0 101.7 101.0 29.2 03. 0 101.7 101.0 29.8 04.3 84.3 84.4 84.4 84.5 89.7 80.0 05. 0 129.0 0 129.0 05. 0 129.0 0 129.0 06. 0 120.0 0 129.0 07. 0 120.0 0 120.0 07. 0 120.0 0 120.0 07. 0 120.0 0 120.0 07. 0 120.0 0 120.0 07. 0 120.0 0 120.0	IGHT TRANSFORMED HODEL SQUIND PRESSURE LEVELS IGHT TRANSFORMED HODEL SQUIND PRESSURE LEVELS IDENTIFICATION - FJ-ZER-FMODL X76030 AMGLES MEASURED FROM INLET. DEGREES AMGLES MEASURED FROM INLET. DEATH INLET. DATE AMGLES MEASURED FAMILE SEASURED FAM
	SCUND PRESSURE STD. DAY, SB AND INLET. DEGREI DAY, SB AND INLET. DEGREI	SFORMED MODEL SOUND PRESSURE PERCENT R. H. SID. DAY, SB 1 CATION - FJ-ZER-FMODL. X76 S. MEASURED FROM INLET. DEGRE 100. 110. 120. 130. 140. 96.0 97.1 101.6 106.4 111.3 95.4 97.8 105.0 112.5 118.7 99.1 101.0 108.4 114.1 117.0 99.1 101.0 108.4 114.6 118.7 90.1 102.5 109.7 114.6 118.5 00.1 102.5 109.7 114.6 118.5 00.1 105.0 111.1 114.2 118.5 00.3 1 105.0 111.8 115.2 116.0 00.3 1 105.0 111.8 115.2 116.0 00.3 1 105.0 111.8 115.2 116.0 00.3 1 105.0 111.8 115.2 116.0 00.3 1 105.2 112.1 114.8 118.5 00.1 105.2 112.1 114.8 118.5 00.1 105.2 110.6 110.5 110.4 00.2 105.2 110.6 110.5 110.4 00.3 106.1 110.2 110.6 110.3 00.4 106.1 110.2 110.5 110.4 00.5 106.2 110.6 110.5 110.4 00.7 104.5 107.5 109.5 106.7 95.0 97.7 99.8 101.7 101.0 95.0 97.7 99.8 101.7 101.0 95.0 97.7 99.8 101.7 101.0 95.0 97.7 99.8 101.7 101.0 95.0 97.7 99.8 101.7 101.0 95.0 97.7 99.8 101.7 101.0 14.4 116.7 122.4 125.7 129.0 IAPE NG. N294 IAPHA IAPE NG. N294 IAPHA IAPER JET DIAMETER (IN) 48.	## FLIGHT TRANSFORMED MODEL SOUND PRESSURE 10 DEG

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT, SL

												OF	RIC		VA OF		P, Qi	A G	SE VLI	IS														a		FREE-JET SPEED M/SEC (0. FPS)
		160.	PWL 87.0 168.6	-	.5 170	88.9 171.2	0 171	85.2 171.5	.1 170	72 7 150 3	4		291 G	66.1 166.0 68.2 168.6	7 164	.1 164.	9	39.2 162.1	191		159.1							-	0 191 8 90	<u>:</u>	277		- 3	TAMB 29.12	עבר נוסבו	FULL 0.
X76031	DEGREES	140. 150.	93 9 93 4	95.2	95.2	4.4	95.5	93.7	<u>.</u>	88.4	83.6	88.7 82.5	86.8 80.5	72.0	· –	69.4	.2 62.9	54.6 0.6	21.8	.7									106 2 103 9	108.9	1	NCY SHIFT -9			rans cereson	SIZE (1400.00 SQ IN) -
FJ-ZER-FMODL	URED FROM INLET.	. 120. 130.	85 8 90 3	6 87.1	5 89.2	90.4	91.6	5 92.6	1 92.2 93.7	21.5	- C C C C C C C C C C C C C C C C C C C	8 89.3 90	5 88.5 89		88	80.4 80	76.1 75	5 72.2 69.0	52.8 49	36.7	=								. 601	107.3 108	ı	. 640 FREQUENCY		N294		2 30 CM
DENTIFICATION -	ANGLES MEASURE	90. 100. 110	1 78 3 79	4 79.4 80.	5 81.	82.0	0 84	7 84.7	9.69.6	2 84	83.1	9 83 7 85	6 83.4	 	6 26 9	0 76.2	.9 74.6	.3 70.3	1 53.6 52.	.0 38.9 35.	5.3								9	1.5 101.6 103.1	7 101 5	RATIO 7		-	AEKO. N	3E FT) SL 9032.
		70. 80.	77 8 77 8 67	.6 76.1	.2 81.0	n 1	2 83 2	.0 81.2	.6 80.1		80.6	3 79.7	3 79.6	77.2 /9.5 61	5 77.8	.8 77.7	.9 76.3	72.6	. 0	.1 39.2	13.4								60 9	4	7 101	DIAMETER		02-20-78	CAI ANECH CH	ACCUSTIC RANGE
		50. 80.	7 07 7 07	71.8 73.	73.4 74.	74.1	79.1 80.	76.8	79.6 79.	72.9 78.9	76.3 77.4	75.2 76.	74.1.76.	73.4 75.	70.0 73.0	68.5 72.	ص ا	64.	38.4 46.	17.1 27.									6	93.7	7 28 7 85 7			TEST DATE	1	TEST POINT 731
		64	FREG	67.	69	100 73.2	73		76.	4		7	69	67.	1600 62.2	59.			5000 20.	-	0000	10000	16000	20000	25000	40000	20000	63000	9	PNI 89.0	4					MODEL TES 7600

160	.]		2 145.2 2 146.3 146.3	RIGINA P POO	0 0 4 0		•			30.20 43.80	FREE-JET SPEED 96 M/SEC (387.0 FPS)
S			-40	47.1 47.4 47.4 46.5	0 0 4 0	_ 80	•			30.20 13.80	REE-JET M/SEC (
S			-40	4 4 7 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	0 0 4 0	- m a n				((()	0)
S	.]	1		0.000	0000	5 147 2 147 5 146 5 146	2333	64 143 140	6.2 139.7 6.3 139.9 5.7 159.9	TAMB RELHUM	MODEL 117.
DEGREE			.9 112.9 .9 113.1	10.0 10.0 10.0 10.0 10.0 10.0 10.0 10.0	. 9 103.3 7 104.1	1 104.0 3 103.7 8 102.1 8 100.2	.8 100.3 .4 \$8.8 .3 96.8 .8 94.2	.5 90.7 .0 86.5 .2 80.8 .5 75.7	6 60.4 8 120.8 1	HA SB59 MB 29.5600	· (N) OS
INLET,			000 500	2	11.2 11	0 20 20 4	108.2 1 106.0 1 104.6 1		73.9 67.9 122.6 1	I ALPHA 195 PAMB	SIZE 1 CM (23.99
			9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	96. 9 104. 0 96. 9 104. 0 99. 6 105	101.8 108 102.4 108 102.6 109 103.7 109	103.8 1 103.7 1 103.6 1	103,0 106 101.6 104 100.3 102 97.7 99	92.7 97 90.0 93 85.1 88 78.0 83	71,1 78 65,4 71 114.2 119	PE NG.	164.7 80
OLES 10			4 n a i	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	2 - 0 - 0 0 0 0 0 0	.0 89. .4 89. .7 100.	2 98.	7 8 8 8 7 7 8 8 8 9 7 8 9 8 9 9 9 9 9 9	72.7 73. 67.1 66. 109.9 110.	W. AE	RANGE 40.0 FT) ARC
				4 a a a	6 - 93 6 - 94 6 95	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	96. 96. 96.	2 94 0 89 4 87	2 8 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2 8 2	 /	ACGUSTIC
			. 3 . 83. . 8 . 83.	2 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5 91. 0 92. 0 94.	6 94. 9 94.	9 95. 2 94. 3 92.	7 8 8 9 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7 . 7	.3 68.9 .4 62.6 .7 106.0	TEST DATE LOCATION	
9			83.0 84.6	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	92.3 93.5	83.2 83.2 82.2 82.2	93.2 92.0 97.4	86.2 80.0 72.6	67.0 60.7 104.2		MODEL TEST POINT 7600 7604
	ANGLES MEASURED FROM INLET,	ANGLES MEASURED FROM INLET,	ANGLES MEASURED FROM INLET,	40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 81.0 83.7 83.8 85.1 86.0 88.4 90.1 92.8 97.5 102.6 83.0 84.8 86.4 86.1 87.2 89.9 90.5 93.2 100.2 108.0	40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 81.0 83.7 83.8 85.1 86.0 88.3 89.7 92.4 99.1 105.0 84.9 84.9 85.4 87.5 87.2 89.9 90.5 93.2 100.2 108.0 84.9 85.0 86.3 88.4 96.7 92.4 94.5 101.8 105.0 86.0 86.3 88.4 96.7 92.4 94.5 101.8 109.4 86.0 86.3 88.4 96.7 92.8 99.5 101.8 109.4 86.7 87.1 89.4 89.8 90.5 93.9 99.5 107.7 110.6 89.7 97.9 99.5 107.7 110.6	40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 81.0 83.7 83.8 85.1 86.0 88.4 90.1 92.8 97.5 102.6 83.0 84.9 85.4 85.0 85.8 85.2 89.7 92.4 99.1 105.0 84.9 85.4 87.2 89.6 90.7 92.4 94.5 101.8 105.0 84.9 85.0 85.9 80.5 93.2 100.2 108.0 84.9 85.0 85.9 80.5 93.2 100.2 108.0 86.1 87.2 89.6 90.7 92.4 94.5 101.8 109.4 86.0 66.3 88.3 88.4 96.7 92.8 93.5 96.9 104.1 110.2 88.1 87.1 89.4 89.9 90.5 93.9 94.8 98.4 105.7 111.0 89.2 80.5 91.9 94.7 95.9 99.5 107.3 110.6 83.5 90.6 92.1 91.9 93.2 95.6 97.2 100.4 107.5 110.5 91.1 89.5 91.9 94.7 95.9 99.5 107.5 110.5 91.3 91.9 94.0 94.6 96.8 99.4 102.6 103.7 109.6 111.5 93.3 93.3 93.5 95.6 95.5 95.5 95.5 95.5 95.5 103.7 109.6 111.5	40. 50. 60. 70. 80. 80. 100. 110. 120. 130. 130. 81.0 83.7 83.8 85.1 86.0 86.4 90.1 92.6 97.5 102.6 84.9 85.0 85.6 86.9 89.3 89.7 92.4 99.1 105.0 86.0 86.1 87.2 89.9 90.5 90.5 105.0 86.0 86.1 87.2 89.9 90.5 90.5 105.0 80.0 86.1 87.1 89.4 86.7 92.8 93.5 1010.2 109.0 86.1 87.1 89.4 96.7 92.8 93.5 96.9 104.1 110.2 86.1 87.1 89.4 96.7 92.8 93.5 96.9 104.1 110.2 86.1 87.1 89.4 96.7 92.8 93.5 96.9 104.1 110.2 89.1 87.1 89.5 91.9 94.7 95.9 99.5 107.3 110.6 83.5 91.9 94.7 95.9 99.5 107.3 110.6 92.3 91.9 92.4 92.9 100.2 4 102.6 109.0 111.9 93.5 93.6 93.6 93.4 102.6 109.0 111.9 93.5 93.6 93.7 100.4 102.6 109.7 110.3 93.2 93.6 95.7 95.9 99.7 100.4 103.6 103.7 109.4 92.9 93.7 100.3 103.7 109.4 100.5 93.8 93.6 93.7 100.3 103.7 109.4 109.4	ANGLES MEASURED FROM INLET, 40. 60. 70. 60. 90. 100. 110. 120. 130. 81.0 63.7 63.6 65.1 86.0 66.4 90.1 92.6 97.5 102.6 83.0 84.3 85.0 85.6 86.9 89.7 92.4 99.1 105.0 84.9 85.4 87.5 87.2 89.9 90.5 93.2 100.2 108.0 86.9 85.4 87.5 87.2 89.9 90.5 93.2 100.2 108.0 89.2 88.2 90.5 90.3 91.9 94.7 95.9 99.5 107.3 110.6 89.2 88.2 90.6 92.1 91.9 93.2 95.6 97.2 100.4 107.7 110.6 89.2 90.6 92.1 91.9 93.2 95.6 97.2 100.4 107.5 110.5 91.1 69.5 91.0 91.5 83.6 96.5 99.1 101.8 108.7 110.5 92.3 91.9 92.4 91.9 96.9 99.7 100.4 107.5 110.5 93.2 93.6 94.8 94.1 94.6 99.0 103.7 108.6 111.5 93.2 93.6 94.1 94.6 95.0 96.1 99.4 103.8 108.7 111.5 93.2 93.6 95.0 95.1 96.9 99.7 100.4 103.6 109.1 110.9 92.9 93.9 93.9 94.9 95.0 96.1 99.7 103.8 108.7 110.9 93.2 93.6 95.0 95.3 96.9 99.7 100.4 103.6 109.1 110.9 92.9 93.0 93.0 95.0 95.0 96.9 99.7 100.4 103.6 109.1 110.9 92.9 93.0 93.0 95.0 95.0 96.0 99.1 99.5 101.5 104.9 106.0	ANGLES MEASURED FROM INLET, 40. 60. 60. 70. 80. 90. 100. 110. 120. 130. 81.0 83.7 83.8 85.1 86.0 88.4 80.1 92.8 97.5 102.6 84.9 85.0 85.1 86.2 89.9 90.6 93.2 100.2 108.0 84.9 85.4 87.2 89.6 89.9 90.6 93.2 100.2 108.0 84.9 85.4 87.2 89.6 90.7 92.4 99.1 105.0 105.0 89.2 88.2 90.5 90.3 91.9 94.7 95.9 94.5 101.6 108.0 89.2 88.2 90.5 90.3 91.9 94.7 95.9 98.4 105.7 111.0 5 91.1 91.9 92.0 94.7 95.9 98.4 105.7 110.6 89.1 90.6 102.4 108.7 111.0 5 92.1 91.9 92.0 94.7 95.9 98.4 107.5 110.5 92.9 94.7 95.9 98.1 101.6 109.4 105.7 110.6 89.2 93.6 95.1 101.6 103.7 106.8 111.5 93.6 95.9 98.1 101.7 101.9 93.2 93.6 98.1 101.6 103.7 106.9 111.5 93.2 93.6 93.8 103.7 108.9 111.5 93.2 93.6 93.9 94.1 93.8 103.7 108.9 111.5 93.2 93.6 93.9 94.1 93.8 103.7 108.9 111.5 93.2 93.8 95.0 95.1 90.1 103.8	ANGLES MEASURED FROM INLET, ANGLES MEASURED FROM INLET, ANGLES MEASURED FROM INLET, ANGLES MEASURED FROM INLET, B6.0 690. 70. 80. 80. 100. 110. 120. 130. 83.0 84.3 85.0 85.1 86.0 884.4 90.1 92.8 97.5 102.6 84.9 86.4 86.4 86.1 87.2 89.8 90.5 93.2 100.2 108.0 84.9 86.4 86.4 86.1 87.2 89.8 90.5 93.2 100.2 108.0 84.9 86.4 86.4 86.1 87.2 89.8 90.5 93.2 100.2 108.0 84.9 86.4 86.4 86.1 87.2 89.6 99.7 92.4 94.5 110.6 85.0 86.9 86.4 86.9 89.9 90.5 93.2 100.2 108.0 85.1 89.2 89.2 90.5 93.1 99.4 99.5 101.8 103.4 85.2 90.6 92.1 91.9 93.6 99.6 99.6 102.4 103.7 110.6 85.3 91.9 92.4 91.9 93.0 96.1 99.4 102.6 109.0 111.9 92.3 91.9 92.4 91.9 93.0 96.1 99.4 102.6 109.0 111.9 93.2 93.6 93.7 95.4 95.9 99.7 100.3 102.4 108.7 1110.5 93.2 93.6 93.7 95.7 95.4 90.9 103.7 100.3 102.8 104.6 93.2 93.6 93.7 95.7 95.7 97.4 100.3 102.8 104.6 93.3 93.9 93.0 94.5 95.0 96.9 99.8 100.3 102.8 104.6 93.4 93.8 93.0 93.0 94.5 95.0 96.1 93.0 103.0 106.9 108.2 93.5 93.6 93.7 93.7 93.7 93.7 93.7 93.8 103.7 108.7 108.7 108.6 94.6 93.6 93.7 94.7 94.5 94.5 96.2 99.8 100.3 102.8 104.6 93.7 94.1 94.3 95.9 99.8 90.0 98.7 99.8 103.0 106.9 106.9 107.8 93.7 94.1 94.2 95.9 99.0 99.1 99.2 90.0 93.2 94.8 93.8 93.9 93.0 94.6 95.2 90.3 99.2 90.0 93.2 94.8 93.9 94.1 94.2 97.9 99.0 99.2 99.0 95.7 97.4 100.3 102.8 104.6 93.7 79.4 95.6 95.7 77.7 77.6 77.1 77.8 97.9 60.7 97.9 60.7 97.8 60.2 97.7 97.4 100.3 102.8 104.6 93.7 79.4 62.6 63.8 67.7 77.7 77.6 77.1 77.8 67.9 96.7 97.9 60.7 97.9 60.7 97.9 60.7 97.9 60.7 97.9 60.7 97.9 60.7 97.9 60.7 97.1 60.7 97.9 60.7 97.	40. 60. 60. 70. 80. 90. 100. 110. 120. 130. 130. 161. 65. 66. 70. 80. 90. 100. 110. 120. 130. 130. 151. 65. 66. 66. 70. 80. 90. 100. 110. 120. 130. 130. 151. 65. 66. 66. 66. 66. 1 86. 1 86. 1 82. 8 97.6 102. 6 84. 6 86. 4 86. 1 86. 2 89. 9 80. 1 92. 4 99. 1 105. 0 84. 1 86. 4 86. 1 87. 2 89. 9 80. 1 92. 4 94. 1 105. 0 84. 1 86. 4 86. 1 86. 7 92. 8 93. 2 100. 2 108. 0 84. 1 86. 4 86. 1 86. 7 92. 8 93. 5 101. 6 109. 4 105. 0 84. 1 86. 2 80. 5 90. 5 93. 2 100. 2 100. 2 111. 0 2 80. 1 89. 2 80. 5 90. 5 93. 9 94. 1 80. 7 111. 0 2 80. 1 89. 2 80.

								OR OF	IGII PC	NA OO	L R (PA(QU/	SE LI	is Ty									
																					ION - YES		FREE-JET SPEED 5 M/SEC (387.0 FPS
FT. ARC		10 mg mg mg mg mg mg mg mg mg mg mg mg mg	. 160. PWL		0 107.7 141.3	108.3 144	107.6 145	107.0 146	105.3 146	105.3 146	106.7 147 107.9 148	107.8 148	106.4 148	105.7 147	5 106.1 147	8 101.6 8 101.6 8 4 1	0 95.6 146 89.8 146	5 85.0 145 78 K 145	6 68.7	9 119.5 160.8	REFRACTION CORRECTION TURBULANCE CORRECTION	\$859 TAMB 30.20 29.5600 RELHUM 43.80	- MODEL 117.90
8	O-FMODL	INLET, DEGREES	. 130. 140. 150		100.7 104.4 108.	105.4 108.9		109.1 111.3	108.6 111.7	110.0 111.1	111.4 112.1	111.4 112.1	110.8 109.7	900	107.3 104.7	105,2 102,4 102, 99,7 96,8 96, 99,5 97,8 95,	95.2 93.5 91.	81.9 82.4 80.	67.1 67.6 63.	0 122.1 123.0 120.9	FT/SEC) 387.00 ER (IN) 48.00	I ALPHA PAMB	SIZE CM (23.99 SQ IN)
Ξ.	1	ANGLES MEASURED FROM	100, 110, 120		0 6 0	.4 69.7	92.6	96.3	5 98.4	6 100.0	. 7 100.9 .6 101.4	4 103.6	101.3 103.9	101.8 103.8	100.2 101.9	99.0 101.2 103.6 97.3 99.2 101.5 94.1 93.2 98.5	5 91.4	7 79.8	6.9	111.6 113.8 120.0	EE JET VELGCITY (FT/SEC) FREE JET DIAMETER (IN)	TAFE NO. N299 AERO. RDG. ADH995) ARC 154.7 SQ
59.0 DEG. F., 7	IDENT	ANG	70: 80. 90.		8 87	3 88.7 89.	900	9 99.2	.4 93.9 95. .8 95.4 96.	.5 96.0 97.	.3 95.3 97. .4 97.2 98.	99.6 100.	3 100.0 101	0.001.00	5 100.0 101	98.6 100.2 100.7 97.8 100.7 100.2 97.6 99.1 98.7	0 93.2 93.	5 84.1 83.	4 68.7 70.	110.2 111.3 112.2	ALE FACTOR FREE C. 1.000	02-27-78 C41 ANECH CH	ACGUSTIC RANGE 2.2 M (40.0 FT)
			40, 50, 60,		6 6 9 9	6 89.9 88.	4 to 0	1 54.7 94.	.5 93.3 94. 6 94.5 95.	9 96.8 97.	.5 95.8 96. .4 97.3 96.	6 100.3 100.	5 99.5 100.	3 100.0 101.	7 99.7 100.	97.7 98.7 96.6 95.1 97.8 97.8	1 93.2 94. 9 86 9 89	7 83.9 85.	6 66.2 68.	11.1 110.8 111.0 1	MODEL/FULL SIZE SCALE INPUT 1.000 CALC. 1	TEST DATE LOCATION	TEST POINT 12
			FREG	0 0 0 0 0 0 0 0 0	125 160 200 250 8	1		- 1		- 1		•								DASPL 11	W		MODEL 7600 8

9.

. . .

										T																					: · : i	:	
																															:		
				,)R	IG	IN	AL	. P	A	GE	19	3															()
								K	OF	P	g	OR	Ç	υ	AL	.1 1														The sylvense		FPS	-
					. :																										. !	SPEED 367.0 F	
																											•					نييا ا	
																															0.0	FREE-JET	
																															90.4	17.96	
		3	163.3	164.2	163.8	163.7	164.1	• 1	165.9		165.7	165.2	164.8	165.0	164.5	165.2	164.3	163.2	161.5	159.7		*					178.3				TAMB		
		160.	80.3	78.7	79.4	77.5	76.6	77.3	76.7	75.0	73.2	70.2	68.4	66.9	54.5		•										88.7	2 2				- דער	
_		150.	87.7		94.9	83.0	90.0	91.6	81.8 81.6	80.4	78.1	76.6	74.2	72.1	9.09	54.7	200	N									1.0	97.3	۵- ا		SB59 29.5600	Ē	
X76041	DEGREES	140.	10	b 4	4	۲.	88.7	,	, e	9	0	o 0		Ņ	. 0	~	-) K)									03.6	SHIFT	- 1	ALPHA	7 00 SQ	
<u>م</u>		30. 1	60	. ~	7	4 K) (I		, 0	~	ale	ກ ຫ	on.	ا.	7 (0	0	0	ဂဏ)									105.6 10	FREQUENCY		₹.	S12E	- 1
FJ-400-FMGDI	1 INLET	<u>.</u>		- -	_	on c	8	۰ای	4 0	. a		- 10	•	္ပါ	.	0	Q I	3 26	, _								9	40	FREG		90	동	
FJ-4	SURED FROM	. 120	_	- 6 9 6				-			- [1			١	0.00									8	108	04		N299 ADH995	2.2 SQ	
NO I		110	72.	7.9	77	78	9.5	2	9 6 9 6	8	83	9 Q	85	8	7.2	69	2	36	2								G	101.5	7.640		R NG.	9032	
DENTIFICATI	ANGLES MEA	100.	۱.	7.4	1		7.02	-1			-1	20.00					-1										_	100.3	RATIO		TAPE AERG. I	SL	
DENTI	ANGL	8	1 -		1		200				-1			٠			-1	43.5									92.4	102.0			ı.	1C RANGE 2400.0 FT)	
. -		90					77.5	-1			٠.			-1				43.3									4	02.7	DIAMETER		27-78 ANECH CF	TIC R/ 2400.	
		70.	4	o -	6	7.	76.6	-	3 01	ω.	aj.	- 0	က	٠,	- o	.	-	٥ م	. 0								6	99.0			02-27- C41 AN	ACCUSTIC 5 M (240	
		.09	61	٠.	. IO	O) (4	-		φ	8	3 4	6	ဖ	0 0	ď	9	N -	- 01								6	4 (1				731.	
				23			72	- 1			- 1	2 7 7 8 7 9 7 9 7 9 7 9 7 9 7 9 7 9 7 9 9 7 9	•	- 1			- 1										•	2 2			TEST DATE	POINT 104	
		8					2 4 2 6	-[- {			ı			-	9 4 9 4 9 4	Ą									3 96.			F-	78	
		9	68.		2	73.	Ŕ	12	6 19	76.	2	6.4	73	22		5	3		<u>.</u>								96.	88				F .	
		FRED	20	9 6	100	125	200	250	400	200	630	1000	1250	1620	2500	3150	4000	5000	0000	10000	12500	20000	25000	31500 40000	50000	80000	GASPL	PNF				MODEL 7600	,
	<u> </u>														-	_				لـ	_		_]						MIT	NIM	a 35 44 .	TEMAER	ОН

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATE SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, 38 2400.0 FT. SL

				11	5					0	Ric	310	VΔ			3E			:						3		
				, Se						Ol	FF	90	OR	Q	UA UA	3E VLIT	13	<u> </u>							D FPS)		
		•																							JET SPEED		
													-											30.29 18.50	FREE-JET		
		Puff						0 151.4 6 152.7	٦		2 154.0	٦,	5 50	151.9	149	3 149.1 9 146.3	٦,	4 146.1	- 7	143		6 142.5	2 164.4	TAMB	DEL 0		
X76050		150. 160				7:	.3 114.		1116.	.4 116.		7 112	.8 108.	.1 107.	9 105.	07.8 105.3 06.6 103.3	6 102.	. 4 101. . 4 99.	.3 97.	2. 88.	79.7 78.0	.7 66.	28.5 125.	SB59 29.2960	IN) - MODE		
	E3 .	140. 1					9 11		1	40	, W	٩٠	5 4	0.0	-	111.55 10 109.9 10	٩,	103.6 10	9.4	40		9 01	129.2 12	IALPHA S PAMB 2	S12E 23.99 SQ		
2	Z	0. 130.	•			2000	2 108	5 1 2 6 1 1 2	2 114	21.15	1 2 2	B 114	0.115	0.14	3 113	.2 112.4	3 109 201	. 4 105.1	7 101 0 97	3 95		بو ا	.3 126.1	4 073	5		-
	T C	116, 120				101	2 104	103	9		=	7:		112	=	05.6 169. 104.5 109.	9	100	99	66	78.1 84.		16.7 122	: NO. N294 RDG. ADHO7	154.7 SQ		
1	ANGLES MEAS	100.				9	92.6	96.4	98.8	4.00	103.1	103.0	103.4	103.4	103.2	103.2	101.4	98.5	95.6 93.0	7.69	90.0	67.2	114.3 1	TAPE AERG. R) ARC		
NTIFIC		6 0. 9 0.				6 60	94		1 97	1 98.	.3 102.	7:	2 101.	4,	.0 101.	.6 102. .0 101.	101	3.55 99.55 3.57 99.55	.99 98.	.2 90.	9.0	.0 66.	.9 113.3	# #	C RANGE 40.0 FT)		
106		20.						92.92	d	95.8 96	- e	98 2 99		100.3 100. 98 8 99	4		.	- ო	94.1 97 90.6 95	4.0	77.8 79	90	110.6 111	02-20-78 C41 ANECH	ACGUSTIC 2.2 M (4		
		. 60				9	8	3 92.2 82.8	8	1 95.2	98		9	•	88	9 98.3 4 97.3	28	92.2	91. 89.	87.	75.0	0.63.0	2 110.4 1	TEST DATE LGCATION	NT 12		
		40. 50				6	1 90.	.0 91.	1 93	7. d	9.00	5 97	3 99	.0 100.	1 97	.5 97. .8 97.	98	9.63	. 9 90. 2 87.	.5 83.	6 72.	.5 59.	.6 110.	瓦克	TEST POINT 7605		
		EREG	0 0 0 0 0	8 6	125 160	200		500 500 900 900			1250 95	1600 98	2500 100	3150 99				16000 88	20000 82 25000 82			80000 57	CASPL 108		MGDEL 1 7600	685	

						0	RIC F	PC	1A 1O	_	PA QL	(GI	e I Lit	3 Y													
																								CORRECTION - YES		30.29 18.50	FREE-JET SPEED
	160	PWL		147.	15 0 151 4	_	16.0 153.1 16.3 153.0	9	2 154		0	07.8 151.3	3 149	.3 149.	03.9 148.3 02.7 147.6	5 146	97.3 145.1	.3 144		6 14	73.8 141.4 66 6 142 E	125.2 164.4		TURBULANCE COR		RELHUM	
X76050	DEGREES				115.9 116.3	8 119	116.4 119.1	3 -	120.2 119.1	= = N 0	4	115.9 112.1	7 108	5 107.8 1	0 105.6	6 103	100.2 98.3	4.	9 0	.1 79.	76.6 74.2	2 128.5		48.00 T		AL PHA SB59 PAMB 29.2960	SIZE
	SURED FROM INLET, 110. 120. 130.			101.6	105.5 112.8	106.6 11	1 50	110.9 114.	111.1 114.	112.	112.0 115.	112.0	110.3 113.	109.5 112.4	- -	1	1 /	•	-	.1 84.	23.6 73.1	.3 126.1	TV (FT/SEC)		_	ADHO73	5
CATION -	NIGLES MEASURED 10. 100. 110.			96.2 97.1	96.4	97.4	100.4	101.5	- 60	102	103.4	103	103.2	503	4	100.5 102	95.6	93.0 92.	84.5	.0 78	67.2 67.1	.3	FE JET VE! OC! TV	FREE JET		AERO. RDG.	
IDEN	80. 90.			90.8	92.9 95.	94.4 96	96.1.98.	98.7	01.0	86	100.2	99.7 101.	100 0 101	99.6 102	6		. 66	95.3 95.7	.0 87.	.8 91.	72.3 72.7 66.0 66.9	.9 113.	FACTOR FREE		-70	ANECH CH	ACCIUSTIC RANGE
	60. 70.			89.6 90.1	91.2 91.	92.8 92.9	95.2.95.	.1 99.	100.2 100.3 98 1 98 2	7 98.	9 100.	-	4 98	ი. და	6 97.	95 9 97.1	.7 94.	89.0 90.6	.2 83.	77.	٠ م	0.4 1	IZE SCALE	CALC. 1	TEST DATE 09-90-78	2	
	40. 50.			86.0 90.8	4 91	90.0 92.3	7 94	.8 100	98.50 100.00	2 100		97.8 98.6	1 97	94.5 97.3	4 96	G 8	06	82.2 87.2 80.5 83.3	.8 79.	φ (57.5 59.0 57.5 59.0	08.6 110.2	MADEL /FULL S	PUT 1.0	TEST	707	TEST POINT

()

			GINAL PAGE POOR QUALI	IS TY			
							SPEED 0. FPS
						30.29 18.50	FREE-JET M/SEC (
	00007	171 0. 171 1. 170 1. 170 1. 169 1. 167 1. 167 1. 167 1. 167 1.	2 165 2 164 2 165 1 163 7 161 7 161	159.2 159.0 160.1	96.3 181.9 95.7	TAMB	FULL 0
151 S	150. 16 94.1 87 95.2 88 95.0 88 94.9 86	94.5 86 92.2 83 99.4 81 87.9 78 85.5 76 83.4 73 81.0 72	77.3 68 75.5 65 71.6 62 71.6 62 62.4 50 53.6 38 39.5 16		103.8 96 103.8 95 103.8 95	SB59 29.2960	80 IN) - F
IODL X76051 ET DEGREES		V 0 0 0 0 0 - 4	2 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	29.0	104.7 106.5 108.6 108.9	FREQUENCY SHIFT IALPHA S 3 PAMB 2	\$1 ZE (1400.00
IDENTIFICATION - FJ-ZER-FMODL	120. 86.3 87.4 89.0 91.0	92.1 92.2 92.2 91.4 99.1 89.0	87.4 85.3 82.5 79.6 71.4 63.9 53.1	9 36.4 1.1.	101.9 107.1	N294 ADHO7	12.2 SQ CM
IDENTIFICATION - I	00 BB 00.22	2 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	83 - 83 - 83 - 83 - 83 - 83 - 83 - 83 -	39.2 15.1 9.	94.9 96.9 101.4 103.0	TAPE NG. 1	SL 9032
IDENTIFI ANGLES	0 8 4 0 0 E	6 4 4 8 8 9 4 4 9 8 9 9 9 9 9 9 9 9 9 9 9	9 91. 2 2 2 91. 3 5 7 2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	3.4 1.0 8.4 1.0 8.4 1.0	92.5 94.0 00.5 101.7 01.8 102.8	CH	1C RANGE 2400.0 FT)
	70. 74.4 7 75.5 8 77.2 7	81.5 79.5 79.6 80.6 78.8 78.1	77.7 76.6 77.8 71.9 66.9 71.7 71.7 71.7	9.0 13	90.9	02-20-7 C41 ANE	ACGUSTIC 731.5 M (240
	50. 60. 70.7 72.1 72.0 73.6 72.9 75.0 74.1 76.0	3 78. 3 79. 3 79. 3 78. 3 78.	74.1 75.5 73.1 75.6 70.8 73.5 68.9 68.0 64.9 63.0 50.0 57.8	17.0 27.3	88.4 93.6 93.0 8.93.0	TEST DATE	
	40. 66.6 69.2 73.7	V00-0000		6300 1.7 6000 10000 12500 16000 250000 250000 31500	85.4 89.3 7		DEL TEST POINT 7600 7605

_	
0	
9	
m	
•	
_	
_	
_	
0	
•	
_	
_	
78	ı
œ	٠
_	
• -	
•	
•	
~	
•	
_	
•	
•	
-	
•	
•	
6	
$\boldsymbol{\Box}$	
_	

		ORIGINAL I	PAGE IS QUALITY	93.06	
UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB. 40.0 FT. ARC IDENTIFICATION - MODEL FJ-400-FMODL X76060 BACKGROUND FJB400-FMODL X01400 ANGLES MEASURED FROM INLET. DEGREES	40. 50. 60. 70. 80. 90. 100. 110. 120. 130.	4441 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	93.4 93.6 96.9 97.6 99.0 99.8 99.7 103.9 110.3 111.5 112.7 105.9 97.6 193.4 93.8 95.1 95.6 96.9 97.6 110.0 1 104.0 109.5 111.2 111.3 104.2 96.5 1 93.6 93.8 94.8 95.8 99.2 101.1 104.0 109.4 111.7 110.6 103.5 96.2 1 93.8 94.2 95.0 95.2 95.9 99.8 100.2 104.2 109.4 111.7 110.6 103.5 96.2 1 93.8 94.2 95.0 95.2 95.9 99.8 100.2 104.2 109.4 110.6 108.4 102.1 95.3 1 92.8 94.3 94.3 193.7 99.1 103.4 107.6 108.4 105.2 100.3 94.3 191.7 93.5 94.9 95.2 97.1 99.7 99.1 103.4 107.6 108.4 105.2 100.5 93.6 1 91.7 93.5 93.8 103.1 96.8 93.0 1 92.8 93.0 1 92.8 94.5 94.5 94.5 96.6 100.3 94.5 94.5 94.5 94.5 94.5 94.5 94.5 94.5	85.2 87.0 89.2 89.2 93.1 95.2 91.8 92.8 97.5 96.4 92.8 90.2 86.8 143 84.0 84.0 84.0 86.7 88.2 87.0 89.2 89.1 89.8 81.8 82.8 87.5 96.4 92.8 90.2 86.8 143 84.0 84.0 86.7 86.3 87.8 83.4 84.7 88.5 88.3 86.1 85.6 78.5 142 71.9 72.6 74.3 77.0 78.6 80.4 78.8 77.8 83.9 81.3 79.4 75.0 72.4 140 66.1 66.4 68.0 70.6 70.7 71.8 72.6 71.2 78.9 74.3 72.9 69.8 66.3 139 60.3 89.0 62.3 65.4 63.6 67.0 65.0 65.0 71.7 68.4 66.6 60.5 58.4 139 105.5 106.0 106.7 106.9 108.3 110.3 110.8 114.5 120.2 123.0 125.0 121.8 116.3 160	ACCUSTIC RANGE 12.2 M (40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MQDE

()

						ORIGI OF P(NAL P	AGE IS						
												ON - YES		FREE-JET SPEED 3 M/SEC (367.0 FPS)
ARG:		ž		4.14	44-	. 6 147.9 . 1 147.5 . 5 147.6	741	8444 744	147 147 146 146		10	N N	TAMB 33.08 Rel.Hum 43.70	FREE 117,96 M/S
147, 38 40.0 FT. A. 160L X76060	DEGREES	140. 150. 160	•	104.6 108.0 107.	3 111.5 108 9 113.1 108 9 113.1 107	109.6 107 109.2 107 107.1 106	6 108.3 107 2 109.7 108 2 108.3 107 3 107.2 106	1 105.8 105 8 104.1 104 3 104.3 105	1 103.1 105 1 102.2 104 9 96.1 101 9 94.8 99	80.8 90 85.8 90 81.5 84 73.5 78	1 122.2 120.	00	ALPHA SB59 PAMB 29.5700	812E 23.99 SQ IN) - MG
R.H. STD. DAY, S - FJ-400-FMODL	RED FROM INLET, C	10. 120. 130.	•	•	6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	6 108 5 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3 109.6 9 108.6 7 107.4	.2 105.7 1 .0 104.0 1 .7 100.8	.1 95.4 95 .5 91.2 88 .7 87.0 82 .0 80.8 77	.0 120.4 122.4	JCITY (FT/SEC) Diameter (IN)	N299 1	164.7 SQ CM (24
DENTIFICATION	ANGLES MEASUR	90. 100. 11		8	8 - 9 0 9 0 0 0 0 1 0 0	9 9 9	7 98.0 7 99.5 7 100.2	2 102.6 6 101.7 7 100.6	2 100.2 1 2 98.7 1 0 96.8 2 93.3	6 91.1 4 81.3 75.0	2.7 111.7 114	FREE JET VEL FREE JET	TAPE NO H AERO, RDO	AO.O FT) ARC 1
		. 70. 80.			7 88.3 89.7 89.2 91.	3 93.1 93.5 3 93.6 94.1 6 96.2 96.3	95.4 95. 96.8 98. 101.0 102.	100.2 99. 99.5 99. 99.7 100. 99.6 101.	99.4 100. 96.5 100. 98.0 100. 96.1 97.	89.3 89.3 77.7	110.7 111.7	<u>≮</u> ∪	02-27-78 C41 ANECH	ACOUSTIC R/ 12.2 M (40.
		40. 50. 60		e e	2 9 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	20 00 00 00 00 00	6 102.3 102.2 102.2	2 100.2 100.3 100.3 100.3	4 100.2 1 8 98.8 7 97.4 8 96.9	2 92.7 4 86.8 5 83.3 7 76.2	.1 111.8 11	IZE C	TEST DATE LGCATION	TEST POINT 7606
		FREG	50 63 00 00			1250				31500 40000 50000 63000		Ĕ		MGDEL 7600

* .																										-							
									OF OI	: (SI I	AA (O)	L R	P/Q	AG UA	E	ון רדו					*										ET SPEED (367.0 FPS)	
																															33.08 43.70	FREE-JET 7,96 M/SEC (
		7	16	9 165.9	165	1 60 0 80	165	165	166	166	165	165	ָר ב מ	165	164	164	163	163	162.8	159.3								9 178.7	-		TAMB	FULL 11	
		50. 160		89.4 80.	.3	. 3 7 9	2 77.	.0 78.	.8 78. 7 76.	0 74.	.0 72.	30.		.7	.2 62.	.3	2 - 4 2 - 4 2 - 4 3 - 4	4										96.7 89.	.2 92.	Gi I	SB59 29.5700	IN) - FU	
X76061	DEGREES	140.	~ -	92.2	0	- 4	0	8	O 10) -	4	0	, c	u	-	- 0	0 0	0	14. 10.									201.01	04.2	ICY SHIFT	ALPHA S	S12E 400.00 SQ	
۲.	INLET,	. 130.	97.	9.69.6	8	9 6	89.	90.	G (4	89.	. 88	87.	60 4	89	79	. 23	Z 19	47.	27.	3 0								7 100.7	105.	FREQUENCY	- 48 -	5 ¢	error.
	RED FROM	10. 120	4 81.	8	.3 87.	7 87.	4 89.	.5 88.	2 K	8	.0 89.	.7 88.	- A	93	5 81.	.6 77.	5 7 7	55.	39	.5								6 99.	6 106.	. 640	9. N299 3. ADH99	9032.2 SQ	
5 .	ES MEASURED	100.	~ =	74.7 76	ed.	40	ı oı	က	ı, c		7	6	N 4	r Ø	•	4 (D 4	_	ю	-								93.00	9	RATIO 7	TAPE NO	S. S.	
IDENTIFI	ANGLI	0	72	7 20 00	76.	74.	79	79.	œ 6	8	82.	85.	- c	9 6	80	78	6, 7	60.	43	17.								93.0	103.3	AMETER R	푱	C RANGE	
		70. 80	.12.	6 79	.5 75	0.0	3 77.	.2 77.	4 c	.8	9 80.	9 79	5 6	796.	.0 79.	.8 78	2 /4.	.9 60.	.8 42	, 2 , 5								9.5	.8 102.	10	2-27-78 41 ANECH	ACGUSTIC 5 M (24	
			80 R	73.6 72	0	ص <u>ح</u>	9	0	iù 4	. O	6	ص <u>ا</u>		ń æ	a	oj e	N C	0	10	n								90.3	9.2		DATE 02	731.	
		6	2,5	7.2	75.	73	76.	76.	8 8	79	77.	77.	12	78	74.	7	0 0	46.	28.									200.00	96.		TEST	TEST POINT 7606	
		EG 40.	89	80 71.2	74.	74	2	77.	90.	78	76.	9	9.7	72.	69	9	2 60	38.	17.	88	8	8 8	88	8	88	00	00	PL 67.8	93.				
		Œ.	£ €				ั	CV	<u>ო</u>	Ñ	Ó	6	2 5	7 6	20	100	6 4 C 4	20	63	000	125	160					008	OASPL		II X SA	360 2	MODEL 760	OM-

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

									Ol	PIG		VAI OF	1	PA QU	IGI AL	E (S	3									000	FREE-JET SPEED . M/SEC (. 0. FPS)		
				Ę			148 1	149.7	151.7	153.5	154.1	154.7	154.3	153.7	152.3	151.4	150.8	149.7	148.7 7.84	147.5	146.4 145.9	145.5	143.3	144.4	165.3	TAMB 23.00 RELHUM 45.00	0		
0.0 FT. ARC	X76070		150. 160.				18 0 114 4	.3 115.	=======================================	9 115	1 116	6 113	6 113	110	4 107	11.0 106.0 10.1 105.6	6 105	2 102	500	7 97	9.	6	. 73.	.	28.5 125.1	8859 29.3630 R	IN) - MODE		
DAY, SB 40	FJ-ZER-FMADL	T, DEGREES	140.				L	-	1.3 116.4	.0 118.6 1	.8 119.4 1	2 120.6 1	7 120.4 1	5 119.0 1	3 116.0 1	1 113.4 1	1 112.4	3 109.4 1	7 107.1	.8 101.5	.6 97.4 .6 94.7	1.080 0.1	4 78.6	.4 73.6	.8 129.4 1	IALPHA	SIZE (23.99 SQ	•	
NT R.H. STD. DA	MODEL FJ-Z BACKGROUND	D FROM INLET	. 120. 130				4 109 K 107	-	7 106.6 113 A 107.3 114	110.1	11.21	12.3	113.2 1	13.8	113.6	8 113.2 115 1 112.8 115	112.1	109.7	107.4	102.3	10 G	5 50.5 92	82.7	4	0 124.0 127	N294 ADH088	4.7 SQ CM		•
ERCE	,	ES MEASURED	100. 110					. 6	88	6	(N 6	7	۰. و	4 W	103.6 105.8	9	0 60		6 100	a -	86.7 87.	.2 74.	<u>ښ</u>	115.0 118.	TAPE NG. AERG. RDG.	ARC 154		
١.	IDENTIFICATION	ANGLES	.00				7 02	9	90.0	.0 97.	ن د .	. 7 100. . 8 102.	2 101.	100.	. 7 102.		9 103.	8 104	3 103.	. 6 101.	2 98.	90.2 90.7	2 74.	.9 69.	12.8 114.6	11-78 ANECH CH	FIC RANGE 40.0 FT)		
59.0 DEG. F.	-		70.				7 00	20.0	91.2	94.2	96.0	- C	97.8	98.4	200.7	3 99.5	2 102.4 1	100.9	4 100.01	5 96.3	8 92.9 5 91.4	2 85.4	8 72.4	67.7	5 111.7 11	02-2	ACGUSTIC 12.2 M (4		
			60. 60				-	- ~	91.4 92.	4	oj e		10		- 4	100.3 100.	1	0	0.0	- ^	n c	80.0	- -	۲.	110.9 111.	TEST DATE LOCATION	T PGINT 7607	•	
			40.	7860 63 63	0 0	802	M d	67.	400 88.7	8	2	6 6	98	6	3 8	4000 98.9	9	S	2 8	0 8 4	80 6	40000 76.5	900	22	GASPL 108.2		MODEL TEST 7600 7	691	

				£,																-															
			h	•		·						0	RIO F	BII	Α <i>γ</i> Ο C	L R	QI P	lGi JA	E I	37													S		T. Tarabay
																							•								ON - YES		FREE-JET SPEED M/SEC (0, FPS)		
				5	J A L						49.7	151.7	52.7	54.1	153,9	54.7	53.7	153.2	51.4	51.2	50.6	149.7	148.7	7.0.0 0.0	146.4	145.9	143.7	143.3	T (2	TION CORRECTION Ance correction	TAMB 23.00 RELHUM 45.00	Ö		
9	40.0 FT. ARC	0.20	60	150, 160.						7 710 0 200	16.3 115.2	115	118.4 115.3	;	.7 115	118.8 113.9	4	•	111.0 106.0	1 105	109.6 105.1	ים מי	105.2 101.4	۰,	6 94	90.7 89.0	28	75.1 73.0		1.63.1	NEFRACTION TURBULANCE	 SB59 29.3630 RI	SQ IN) - MODEL	•	
SOUND PRESSURE	DAY, SB	-FMGDL X76070	INLET, DEGREES	130. 140.						•	- -	113.3 116	114.9 118.0	8 19	6 119	117.2 120.6	117.5 119	118.2 117	= =	115.1 113	114.1 112.4	- n	109.2 107.1	- 6	99.6	97.6 94.7	96.6	4	5 6	127.0 128.4	(FT/SEC) 0. TER (IN) 48.00	I ALPHA	SIZE CM (23.99 :		
D MODEL	= R. H.	IIGN - FJ-ZER-FMØDL	MEASURED FROM INLET	110. 120.			***			7 10	3 28 0 104 9	7 106	4 99.8 107.3	103.5	104.3 112.	9 112 113	105.9 113	106.9 113	2 107.7 113.6 6 106.8 113.2	107.1 112	2 106.9 112.1	106.1	104.8 107.	6 100.4 102.3	95.7 99.		80.6		20.00	0.81	VELOCITY JET DIAME	F NO. N294 RDG. ADHO88	154.7 80		
FLIGHT TRANSFORME	Ľ.	IDENTIFICAT	ANGLES ME	90, 100						0	2 0	95.0 96.	96.5 97.	98.9 100.	100.0 101.	102.	100.9 102.	101.6 103.	102.1 104.	102.3 103.	103.8 104.	8 104.9 103.1	103.5 102.	101.5 98	98.6 95.	92.7	9 6	74.4 76.	70 - 70	0.4.0	FREE JET FREE	TAPE	RANGE 40.0 FT) ARC		
	59.0 DEG			0. 70. 80						•	90.4	0.991.2	.3 93.7	2 96.0	9 98.1	0.0	93.4	1 99.1	2 60 60 20 60 60 20 60 60	100.9 1	2 102.4 1	100.00	4 100.0 1		9.26.8	5 91.4		.8 72.4	2 6/./ 66		SCALE FACTOR CALC. 1.000	TE 02-21-78 ON C41 ANECH	ACGUSTIC 12.2 M (4		
				40. 50. 60						•	2 6	7 91.4	0.0	6 83.4	.2 98.8	.e 96.0	1 99.9	1.68 0.	100.4	0 101.4	.8 100.7	9.99.69	.6 97.0		7 88.5 91	2 85.0 89	5 73.1 7	.7 66.1	58.7 54	111 8.011 2.801	MODEL/FULL SIZE INPUT 1.000	TEST DATE	TEST POINT 7607	•	
2				Ş	T.KEG	83	8 5	200	90					-						1						1	50000 69	ŀ		OASPL 106	JOH 1		MODEL 1		

08/30/79 19.452

											60)RI F	GII PO	VA OF	L R	PA QU	GE	: I	S										a
															3.														SPEED 0. FPS
												•																23.00 45.00	FREE-JET M/SEC (
!				0 169.4		- -	- +-	4 172.0	,		-			3 166.2	_	1 164.1 9 163.6		161.4							1 162.7			TAMB 2	0.
	-		150. 160	.1 87 4 AB	· ^ 1	98 6	2 85	92.9 84.4	2 78	8 73	.2 72	70 70	200	8 57	30.	8 5	0	-							103.3 96.1		FT -9	SB59 29.3630	IN) - FULL
	JL X76071	r, Degrees	0. 140.	0 94.6 96.0	7.96.7	97.4 1 96 0	98.4	8 97.9	83.8	2 90.3	4 88.7	85.2	83.3	76.6	7.17	1 64.3 85.3	1 40.0	5 17.	·				•		106.7	109.3	SHI	SALPHA	SIZE 400.00 SQ
	J-ZER-FMODL	FROM INLET	o.	87.3 93. 88.1 94	90.9	1		93.5	i		ı			1											103.0 106.5		FREQUENCY	N294 ADH088	2 SQ CM (1
	ATION - FJ	MEASURED I	0. 110	.3 80.	7 83.	20 G	9 87.	60 60	5 87.	96.	.1 86.	3 6	93	1 0	.3 78.	5. 2. 5. 2.	0 55	37.	2						1.08.1	0 104.9	7.640	E NG.	9032.2
	IDENTIFICATION	ANGLES	ó	0 4	2 80	a a	9	83.4 84	~ 0	9 0	7	3 10	•	2 0	4	ol id	מ	٠. ٧	,						95.0 95	-	AMETER RATIO	AE	RANGE 10.0 FT) SL
			•	60 6	79.	70.0	4 81.	1.9 80.7	7 80.	700	.00	82.	98	90.	2 79.	74.	59.	40.							6.03.0	5 103.5	DI AM	-21-78 1 ANECH CH	ACGUSTIC RAN
			0	-	4	2	-	77.6 78.7	on u	4	-	א פ	<u>-</u> (9	Φ.	~ -	တ	41							9 6	66		TEST DATE 02- LOCATION C4	731.5
				2.07	7 73.	2 /3	.3 78.	1.4 75.7	.8 77.	7 78.	.3 78	9 //	75.	6 70.	.8 66.	5 6 5 6	3 39.	.6 18.				,			9.0	3 84.		TEST	TEST POINT 7607
			200	50 63 63 63				00 74 50 74	ŀ								00 27		8	2500 6000	88	88	50000	. 00	CASPL 84				MODEL TO 7600

_
160
ā
w
_
-
9
=
•
_
à
2
20
73
779
7/79
17/79
17/79
717/79
7/17/79
07/11//0

										or Of	liG F	IN	AL OR		AG UA	IE IE	IS TY											
																											0.6	SE-JET SPEED
O FT. ARC				Į				.6 143.9	. 5 144.9 8 8 8 8 8 8	.1 147.	2	. 2 148. 1 8 148. 1	6 1	2	2 148	6 147.9	6		.1 148.	.3 147.6	0 147	.0 146.1 5 146.0	. 0	.5 143.	.7 143.1	.6 161.2	TAMB 39.00	7
0	160L X01400	DEGREES	140. 150. 160					-	09.4 112.1 109	7 112.4 104	111.01	14.9 110.3 99 14.4 107.6 97	.3 107.0	.8 105.5 8 105.5		2 105.0	1.04.1	3 102.6	5 101.8		9 96 6	83.	62.9	.3 78.0	75.9 72.0 68 70.2 63.3 60	24.9 121.1 115	HA SB59	<u> </u>
	IGUND FJB400-FMGDL	FROM INLET, DE	120, 130.					2		0.0110.0	4	2 2	3 112	112.0 1	2 113.3	112.3	112.3	10.6	110.31		.9 103.6	99.2	4 91.6	9 85.0	75.9 72.6	119.4 123.9 13	9.5	
J, 70 PERCENT R.H.	- 1	ANGLES MEASURED	. 100. 110.					6	8 6	9	93.7	0.00	97.4	98.6	. –.	100.1	0	0.00	101.9 1	3 100.0 103.0	98.0 1	a c	86.8	92.1	6 75.9 74.2 8 67.7 69.0	9	TAPE NO.	
59.0 DEG. F., 7	DENITERO	Y	70. 80. 90.					.2 86.8 88.	9 87.2 89.	3 91.1 91.	1 100.3 92.	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	. 9 93. 9 96.	7 94.1 96.	4 95.0 96.	1 95.8 98.	4 97.2 99.	3 100.3 100. 5 102.3 102.	0 101.8 103.	5 100.5 102. 5 101.1 102.	6 100.5 101.	.9 97.2 98. o oi a oo	3 80.0 80.	.6 81.9 82.	.3 73.5 74. .9 66.7 68.	6 111.0 112.	-27-78	DUSTIC
			50. 60. 7					4.5 64.6	1. T	2 87.4	.1 88.8	2 G G G G G G G G G G G G G G G G G G G	0 92.8	7 91.4	92.7 94.2 93	1 97 4 95	6 100.4 99	3 99.7	1 89.3 1	.3 98.3 99 .7 97.6 7.	4 96.4	ω κ	.1 64.6	3.6 77.1	3.0 70.6 73 3.2 64.4 67	1 109.3 1	EST DATE 02	INT
			40.	FREG 50	63	100	160 200	82.3	83.8	60.0	86.3	86.6	89.3	. 100 . 100	53.	<u>د</u> ه	101.5	N -	97.1	0 0 0 0 0 0	88.9	87.7 86.0	. T.	74.1 7	63000 68.1 6 80000 62.1 6	GASPL 108.0 108.		MODEL TEST PO

							OI OF	RIG	INA OOI	- 1	PAG UA	E	3									FPS)
																				- YES - YES		JET SPEED CC (386.0
		-																		CORRECTION CORRECTION	39,00	FREE-JET
		Ę			141.0	144.6	146.2	47.4	47.6	46.0	0.00	0.0	900	20,7	50.0	49.2	47.9	44.3	162.5		TAMB	
		160.			06.9	0.8.0	05.7	07.2	06.7	07.2	007,00	07.6	06.4	07.2	7.50	96.5	87.3	70.3	120.1	REFRACTION TURBULANCE		MODEL
		150.			07.7	-	-	09.8	V. 10	-		,		- *	01.6	1		1		& F	\$859 29,3300	2
X76080	DEOREES	140. 1			.6.10	.3 11 E.	-4	6 4	0-	41	0 6	· - '	ن ها . 	- - •	2 4 2 8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	1	- <	0	124.2 121.6	386.00 48.00	1	99
)				2 104	. 1 105 . 6 111	8 112	===		-	6 112	· '		- 4 4	_	1		1		ł	I ALPHA PAPE	\$12E 23.99
FJ-300-FMGDL	INCET,	130			0 100			-				· ·	7 11.5	- •	- 4 4	Ί	7 85.5	1	9 123.5	F1/8E ER (1	0,	₹.
FJ-30	RED FROM	120			2	ŀ		104.8		1		Τ,	108.7	1		1	•	74	.6 119.9	VELOCITY (FT/SEC) JET DIAMETER (IN)	N299 ADH110	7 80
- NO		110,			89.4	90.2	9.23	96.8	900	101	103.3	2	292	20.5	101.	94.1	92.0	69	114.0	VELOC JET D	RDG.	2
DENTIFICATION	ES MEASU	100,			99.9		91.6				9.00	41 1	103.3	603.6	100,4		24.0		113,1	E JET FREE	TAPE AERO. I	ARC
DENTI	AMOLES	8				80.	91.8	95.00 0.00	96.8	87.2	100	05,0	000		4.6	93,6	95.8	71.8	114.6	FREE		RANGE 40.0 FT)
-		9				G (0	a N	6	· 4			. 6	- 60	-		0 K		ú	114.7 1	TOR	2 6 ECH CH	11C RA 40.
		70.			2.5	ر د -	4 0	6	V 4		res	5	03.3	9 04 0	6 60	00	00	1,4	113.5 11	E FACTOR 1.000	02-27-78 C41 ANECH	Acdustic
		•			0	0 0	0 0		0.4	E) -	«	,	000	900	000	-		7 7:		SCALE CALC. 1		12.
						6 B	W W	- 10	98 8	98	- 20 0		200	001	- 	0 0	90	1	8 114.2	\$12E	TEST DATE LOCATION	TW.
		8			90.	9 9 9	92.	23 83	2.9	96	385	03	100	199	000	00 8	12	67	113.8		1	TEST POINT 7608
		6			89.3	89.3 80.8	91.3	96.3	96.9	98.7		105.3	707	103.8	102.2	94.7	96.9	68.8	114.4	MODEL/FI INPUT		
		FRED	S & S	8 2 2	200	315	500 630	000	250	000		00		2300	20000	200	50000	000	OASPL			MODEL 7600

								0	RIG F	NA P	IAI OF		A QU	GE Al	7.7	8 Y																C (386.0 FPS)	· · · · · · · · · · · · · · · · · · ·
), SCALED, AND EXTRAPGLATED SQUND PRESSURE	.O DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT.	IDENTIFICATION - FJ-300-FMODL X76081	ANGLES MEASTRED FROM INLET, DEOREES	3, 110, 120, 130, 140, 160, 160,	A 71.1 70.6 71.6 72.2 72.2 73.3 76.7 67.6 69.5 67.5 79.4	73.0 73.1 84.6 75.2 74.6 76.4 83.2 89.6 91.3 87.3 78.8	0 76.0 75.0 74.8 76.3 76.4 78.2 85.5 90.5 91.4 85.6 78.6	2 76.8 76.0 77.8 78.6 78.4 79.6 87.1 90.0 91.6 83.1 78.5	78.1 77.5 77.9 79.3 79	6 76.9 77.0 78.8 79.6 80.7 82.3 88.8 90.7 89.4 82.8 78.3	7 78.5 77.5 79.2 81.0 81.3 83.5 88.7 90.7 88.2 81.4 76.4	.0 78.4 78.9 79.1 80.8 81.7 83.9 88.3 90.5 87.0 60.6 75.4 .6 80.5 79.3 80.8 82.4 82.6 84.4 88.2 89.7 86.0 79.2 74.4	7 83.3 82.5 84.1 83.8 82.3 83.9 88.0 88.5 85.1 76.1 72.4	.0 85.3 84.8 86.1 85.4 83.1 83.7 86.9 87.9 83.3 77.0 71.2 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7 81.9 82.9 83.8 84.7 83.0 82.8 84.9 85.2 79.6 74.4 68.0	.9 80.0 81.3 84.8 84.7 81.4 82.4 83.3 83.0 76.6 71.5 64.7	.8 79.9 80.6 83.7 83.3 79.1 79.6 81.5 78.2 71.6 65.8 57.5 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	. 4 . 74.0 . 76.6 . 78.0 . 76.8 . 70.9 . 75.7 . 76.	60.4 63.8 63.8 58.8 57.0 58.1 50.9 40.5 26.2 0.3	.6 40.1 44.6 45.6 45.6 48.7 38.2 42.1 30.4 17.2 10.3 17.8 18.6 19.8 19.4 13.2 15.2 0.7	162				《《《《《》 《《《》 《《》 《《》 《《》 《《》 《《》 《《》 《《》			90.5 92.3 92.6 94.5 94.5 94.4 99.0 101.7 101.1 95.6 69.2 180.1	3 102.6 103.1 106.2 106.1 102.9 103.3 107.0 107.8 104.6 98.2	DIAMETER RATIO 7.640 FREQUENCY SHIFT -9	TEST DATE 02-27-76 TAPE NG. N299 IALPHA 5859 TAMB 39.00	TEST POINT ACQUISTIC RANGE S032.2 SQ CM (1400.00 SQ IN) - FULL 117.65 M/SEC (
96				FREG 40.	2	96	72	5 4	200 74.1	26	76.	77	95	2 6	9,0	73.		2 2	5000 40.2	_	10000	12500	20000	21500	40000	50000 63000	00008	CASPL 89.2	96			MODEL TEST 7600	

N
•
ø
•
•
_
•
~
Ĺ
`
0
-
_
•
О.

UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB. 40.0 FT. ARC

40. 60. 60. 70. 80. 80. 100. 110. 120. 130. 140. 150. 160. PM. 20. 80. 60. 70. 80. 80. 100. 110. 120. 130. 140. 150. 160. PM. 20. 80. 60. 70. 80. 80. 100. 110. 120. 130. 140. 150. 160. PM. 20. 80. 80. 80. 80. 100. 110. 120. 130. 14.4 117.6 116.2 150. 150. 150. 150. 150. 150. 150. 150.						OI OF	IGINAI POOR	- PAQI QUAL	i ig i ty				SPEED 0. FPS)	
ANOLES HEASURED FROM INLET, DEGREES 3. 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 160, 180, 314, 317, 314, 317, 314, 317, 314, 317, 314, 317, 314, 317, 314, 317, 314, 317, 314, 317, 314, 317, 314, 317, 314, 317, 318, 318, 318, 318, 318, 318, 318, 318												27.86 27.00		
ANGLES HEASURED FROM INLET, DEGREES 3 90. 3 91.4 92.0 90. 100. 110. 120. 130. 140. 4 91.2 91.7 92.5 94.1 95.7 96. 99.0 105.9 110.4 112.8 9 97. 9 92.5 94.1 95.7 96. 99.5 107.0 114.3 117.2 9 97. 9 97.0 98.1 95.7 97.8 99.5 107.0 114.3 117.2 9 97. 9 97.0 98.1 95.7 97.8 99.5 107.0 114.3 117.2 9 97. 9 97.0 98.1 95.7 97.8 99.5 107.0 114.3 117.2 1 103.6 101.4 100.4 101.1 102.2 105.1 113.3 117.4 120.5 1 103.6 101.4 100.4 101.1 102.2 105.1 113.3 117.4 120.5 1 103.6 101.4 100.4 101.1 102.2 105.1 113.3 117.4 120.5 1 103.6 101.4 100.4 101.1 105.2 105.1 113.3 117.4 120.5 1 103.6 101.4 100.4 101.1 105.2 105.1 113.3 116.3 121.9 1 104.2 102.0 100.8 102.2 104.1 105.2 113.1 116.3 121.9 1 105.1 104.5 103.1 104.5 105.0 108.2 114.6 118.0 117.5 2 103.8 100.7 102.2 103.1 104.7 105.0 108.2 114.6 118.0 117.5 2 103.8 103.7 103.8 104.9 105.0 108.2 114.6 118.0 117.5 1 104.4 104.4 105.0 105.1 105.0 105.1 100.1 12.0 110.2 1 104.4 104.7 102.2 103.8 104.9 105.0 105.4 104.1 10.1 107.4 10.1 10.1 10.1 10.1 10.1 10.1 10.1 10		60.			2 150 .2 150 .0 152 .3 154	0.04 80.04 80.00 80 80.00 80 80.00 80 80 80 80 80 80 80 80 80 80 80 80 8	0 154 6 154 9 153	V 01 60 60	9800	3 146 3 145 3 144 3 143	65.6 144 26.1 166		1	
ANOLES HEASURED FROM INLET, 3 90, 3 91, 4 92, 0 94, 6 92, 0 100, 110, 120, 130, 3 90, 3 91, 4 92, 0 94, 6 92, 0 105, 9 110, 9 92, 7 92, 5 94, 1 95, 2 97, 6 99, 5 107, 0 114, 9 92, 7 92, 8 94, 1 95, 2 97, 6 99, 5 107, 0 114, 9 97, 0 97, 0 97, 0 98, 1 95, 9 100, 8 104, 2 111, 7 117, 5 11, 103, 6 101, 4 100, 4 104, 2 102, 2 110, 7 117, 5 11, 103, 6 101, 4 100, 4 104, 2 102, 2 113, 1 116, 3 9 170, 4 104, 1 100, 4 104, 4 104, 3 106, 7 113, 1 116, 3 9 100, 1 100, 4 104, 4 104, 2 102, 2 103, 1 116, 3 9 100, 1 104, 4 104, 4 104, 2 102, 2 103, 1 104, 4 104, 4 104, 2 102, 2 103, 1 104, 4 104, 4 104, 2 102, 2 103, 1 104, 4 104, 4 104, 4 104, 4 104, 4 104, 2 102, 2 103, 1 104, 4 104, 4 104, 2 102, 2 103, 1 104, 4 104, 4 104, 4 104, 5 103, 1 104, 4 104, 4 104, 5 103, 1 102, 2 114, 6 118, 0 12, 1 104, 4 104, 4 104, 5 103, 1 104, 4 104, 4 104, 5 103, 1 104, 4 104, 7 102, 2 104, 6 104, 7 102, 2 104, 6 104, 7 102, 2 104, 6 104, 7 102, 4 104, 7 102, 4 104, 7 102, 4 104, 7 102, 4 104, 7 102, 4 104, 7 102, 4 104, 7 102, 4 104, 4 104, 7 102, 4 104, 4 104, 7 102, 4 104,	EGREES				4 4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	5 120	8 115 2 114 5 113	8 110 2 109 8 107 2 106	2 104 2 103 2 100 6 9	25 85 12 13 15 15 15 15 15 15 15 15 15 15 15 15 15	73.1 68.1 30.8 129.5	1	SQ IN)	
ANGLES MEASURED A 90. 70. 80. 90. 100. 110. 3 90. 3 94. 92.0 94.6 95.0 9 92.7 92.5 94.1 95.7 96.8 99.5 9 92.7 92.5 94.1 96.2 97.6 99.5 9 92.7 92.5 94.1 96.2 97.6 99.5 9 92.0 97.0 98.1 99.9 100.8 104.2 1 103.6 101.4 100.4 101.1 102.5 100.0 7 101.2 102.0 100.8 102.2 104.1 106.7 1 104.2 102.0 100.8 102.2 104.1 106.7 1 104.2 102.1 100.4 101.1 105.0 106.2 9 100.1 100.4 104.0 105.0 104.3 106.7 1 104.2 102.2 103.6 104.9 106.0 106.2 9 100.1 100.4 102.7 103.1 104.0 106.7 1 104.4 104.4 105.0 105.1 105.0 106.7 9 103.2 103.2 103.1 104.5 106.1 106.7 9 103.2 103.2 103.1 104.5 106.1 106.7 9 90.0 101.2 102.7 103.1 106.7 106.7 9 90.0 101.2 102.7 103.6 104.8 106.7 9 90.0 101.2 102.7 103.6 103.0 9 92.0 99.0 101.2 102.7 103.6 104.8 106.7 9 94.1 85.9 99.4 90.6 86.7 87.2 9 94.1 85.9 99.4 90.6 86.7 87.2 9 94.1 85.9 99.4 90.6 86.7 87.2 9 113.8 113.7 114.5 115.6 116.2 118.5 10. 2 0. 3 0. 90.9 10.9 10.9 10.9 10.9 9 113.8 113.7 114.5 115.6 116.2 118.5	INLET,	.			9 110. 0 114. 1 116.	3 117.	.9 119. .3 118. .6 118. 6 116.	7 116. 2 115. 4 113.	4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	5 98 6 92 6 87	.8 76.1 .6 128.6	_	SQ CM (
ANGLES ANGLES	MEASURED	. 110.			6 99.5 1 6 99.5 1 0 102.5 1	3 106.2	.1 106.7 1 .0 107.4 1 .0 108.2 1	.1 108.3 1 .6 107.7 1 .8 \$\$6.9 1		.6 92.4 .7 87.2 .9 80.3 4 74.5	.2 118.5 1	E NG.	15 25	-
3 90. 3 91. 4 92. 3 90. 3 91. 2 91. 7 94. 3 94. 3 94. 3 95. 5 94. 3 95. 7 92. 5 94. 9 97. 0 97. 0 98. 1 103.6 101. 7 102. 2 103. 9 100.1 100.4 103. 1 103.6 101. 7 102. 2 103. 9 100.1 100.4 103. 1 103.6 101. 7 102. 2 103. 1 103.6 101. 7 102. 2 103. 1 104.2 102.0 103. 1 105.1 104.4 103. 1 105.1	ANGLES	. 80			1 95.7 1 96.2 7 97.8 3 98.7	.1 99.9 1 4 101.1 1 6 104.4 1 7 103.3 1	102.2 1 103.1 1 105.1 1	104.5 1 104.9 1 103.6 1	.2 102.2 1 .2 102.2 1 .6 100.7	.9 92.7 .4 90.6 .9 82.7 0 74.7	.6 69.3 .5 115.6 1	н сн АЕ	RANGE 0.0 FT)	
92.9 92.9 92.9 92.9 92.9 92.9 92.9 92.9		. 70.			92.5 92.5 94.3	97.0 101.4 1 102.2 1	102.0 104.6 104.4 103.2	102.3 101.7 101.3 100.7	99.7 1 99.0 1 96.6 1	91.4 85.9 79.0 72.9	113.7	02-2	Ni I	
			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6	4 0 0 0 9 9 9 9 5 4 9	. 9 97. 1 103. 7 101.	7 104. 1 105. 2 103	102.3 101. 101.0 101. 100.3 100. 98.9 99.	.5 98. 1 94. 9 92.	.7 89. .9 84. .3 77. .8 70.	61.2 64.	TEST DATI	T POINT 7609	

•						,				 - -									
								OF	RIGINA POOI	PAG QU/	SE S	S Y						FPS)	
•						•										CORRECTION - YES	27.86 27.00	FREE-JET SPEED O. M/SEC (O.	
UND PRESSURE LEVELS DAY, SB 40.0 FT. ARG		INLET, DEGREES	130. 140. 150. 160. PWL			108.4 112.6 116.2 115.6 149.4	114.3 117.2 118.9 116.0 1	116.5 119.9 119.5 116.7 154.	117.4 120.5 120.2 116.3 155. 116.3 121.9 119.8 115.2 155. 117.0 121.7 118.4 113.4 155.	118.6 119.2 114.6 109.6 1 118.0 117.5 113.9 108.9 1 116.9 116.5 111.7 107.7 1	115,4 113.2 109.5 106.2 151.	113.5 111.6 1	108.4 105.5 103.6 99.8 1 104.5 102.2 100.0 97.0 1 100.0 98.1 96.1 95.2 1	92.8 90.5 85.2 85.1 145 87.5 84.4 80.9 78.3 144 81.0 78.1 75.4 72.5 143 76.1 73.1 68.1 65.6 144	130.8 129.5 126.1 166.3	48.00 TURBULANCE	1 ALPHA SB59 TAMB 31 FAMB 29.2960 RELHUM	SIZE CM (23.99 SQ IN) - MODEL	
FLIGHT TRANSFORMED MODEL SOUND DEG. F. 70 PERCENT R.H. STD. DA	IDENTIFICATI	ANGLES MEASURED FROM	80, 90, 100, 110, 12©.			98.4	.1 96.2 97.6 99.5 107.	100.3 98.7 100.0 102.5 110.2 oc 1 00 0 100.1	.4 101.1 102.2 105.7 113. .6 104.4 104.3 106.2 113. .7 103.3 104.0 106.9 114.	100.8 102.2 104.1 108.7 114.8 103.7 103.1 105.0 107.4 114.3 105.0 105.2 114.6 103.5 105.1 105.3 107.5 113.6	.8 104.9 105.6 107.7 112.	102.7 103.6 104.8 106.9 111.4 102.3 105.0 104.1 106.7 110.0	.2 102.2 100.9 103.0 105. .6 100.7 98.6 99.9 102. .2 97.9 95.4 94.6 99.	9 92.7 91.6 92.9 90.4 90.6 96.7 97.2 90. 9 92.7 91.9 96.3 96.3 96.1 69.3 75.	5 115.6 116.2	FACIOR FREE JET DIAMETER (IN)	ANECH CH AERO, RDG. ADHO8	ACCUSTIC RANGE 2 M (40.0 FT) ARC 154.7 SQ	
698			40. 50. 60. 70.	63	100	67.0 92.3 90.3	89.9 92.9 92.7 92.	500 91.2 93.5 94.3 94.3 94.3 50.0 50.0 92.4 94.9 95.0 50.0 50.0 50.0 50.0 50.0 50.0 50	101.2 103.1 103.6 101. 97.9 101.7 101.7 102. 103.5 101.9 100.1 100.	2 105.7 104.2 102 .8 105.1 105.1 104 .1 105.1 104.4 104	100.2 102.3 101.8 102. 98.4 101.0 101.8 101.	.2 100. .1 98.	90.1 96.1 97.9 89. 85.4 93.1 94.2 96. 83.9 88.9 \$2.0 92.	4-01-0	112.7 113.2 113.8 113.	MODEL ZESILL SIZE SCALE E INPUT 1.000 CALC, 1.	TEST DATE 02-20-78 LOCATION C41 ANEC	MODES TESS POINT ACT	

().

															IAI OF				: IS										SPEED 0, FPS)
																									•			27.86 27.00	FREE-JET M/SEC (
	•	60.	7	•	69.4 172.9	Ή.	۸ د	9	9 1	'n	2.5 170.0	9	~ (ם ומ	6	ω (161.6	162.1						7.1 183.7 6.3	7.5		TAMB	FULL 0
X76091	EES	150. 1	g	9 6	96.4	ı	N 10		10	on o	.1 82.6 72	78.5	76.7	73.0	64.1	0 55.3 39	7	_							1 104.4 97 6 104.9 96	104 9	3 I	IA SB59 IB 29.2960	- (N1 0S
	INLET, DEGREES	130. 140	d	9.0	97.2 98.	98	90	97	m ~	9	06	.2 36	6	85.9 80.	4 72	ıü e		.5 17.					•		107.2 108.	~	r KEGUENCY &	IALPHA PAHB	SIZE CM (1400.00
N - FJ-ZER-FMODL	SURED FROM I	110. 120.	81.0 8Z.8	800	ES. 7 92.4	8) Q	9 9	8 8		9	68		æ «	78		10 10 10 10 10 10 10 10 10 10 10 10 10 1	37.1 38.9	2						98.7 104.3 105.0 109.5	و و ر	7.640	NG. N294 RDG. ADH081	9032.2 50.0
DENTIFICATION	ANGLES MEASI	0. 100.	3 79.5	90.4	9 82.7	0 84 0	9 60	6 85.4	3 85 0 0 85 7	85.7	86.3	.5 84.6	.8 83.8	.3 82,5	6 77.2	.5 72.7	4. 10. 10. 10. 10. 10. 10. 10. 10. 10. 10	.7 41.1	0. <u>></u>						3 96.7	3 103 Z	RAIIO	TAPE I	T) SL
106	V	9	78.0 78	77.6	79.9 91	82.2	82.7.08	62.1 83	8 8	84.0	83.3 84	82.4	82.0	9 6	79.2	74.5	e o	41.2	- 2						95.0 96 103.1 104	9	DIAMETER	02-20-78 C41 ANECH CH	ACCUSTIC RANGE.
		60. 70.	73 5 74 0	75.	n	2 82	9 6	3 82	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	83.	φι	7 80.	.8 79.	76.2 78.5	.5 74.	.4 68.	60.1 54.4 48.5 53.5	.3 35.	•						93.3 93.8 99.1 100.5	9		LOCATION C41	ACO 731.5 H
		1 0.	1 1 22 7	73.	10 o	2 82	9 6	4	5 83	20.00	5.5 79.6	.6 77.	8.9 75.3	.9 73.	.6 67.	.8		6.							9.4 92.2 3.8 97.5	0 98		TEST	TEST POINT 7609
		CU	50 BB		100 200 200 200	- [250 82			630 75	}	1250 68		1	3150 50			10000	16000	20000	31500	40000	63000	CASPL 89	1			MODEL 1 7600

0
•
ŏ
•
_
_
_
. •
\sim
•
_
•
9
•
,-
•
, -
_
•
_
•
-
_

-FMGDL X76100 -FMGDL X01300	150, 160,		4400	151.7 151.7 151.4	522.3 152.7 152.6 152.1		9.5 7.7 6.0	0 0 0 m 0 0	1 HB 38	
S E E	REE.		1	.6 117.0 110. 4 116.5 108. 9 115.6 105. 3 115.5 104.	.5 114.0 103. .3 112.8 103. .0 111.7 102. .8 110.0 101.	.2 105.8 99.6 1 .2 105.8 98.6 1 .8 105.1 97.5 1	.0 103.2 96.3 1 .9 101.0 94.5 1 .7 99.6 93.5 1 .7 97.5 91.7 1		.1 126.3 121.0 164.1 HA SB59 TAMB MB 29.3300 RELHUM	SO IN) - HOC
FJ-300	ISURED FROM INLET, DEGRI		.9 98.3 104.9 1 .5 99.9 106.7 1 .7 101.0 110.8 1	.2 104.9 112.7 1 .9 106.7 113.7 1 .3 108.2 113.8 1 .4 108.6 113.4 1	.6 109.0 114.0 1 2 109.9 115.9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.4 109.7 114.6 1 .4 110.2 115.1 1 .6 109.7 113.8 1 .6 110.2 112.3 1	.2 109.5 111.8 1 .0 107.1 109.7 1 .6 105.5 109.2 1 .8 103.2 105.1 1	95.6 100.5 100.7 98 93.5 97.3 98.7 96 88.2 91.9 93.4 91 81.7 67.4 87.5 85 75.2 82.3 80.4 79	117.4 121.0 126.1 129.1 E HG. N299 IALPHA RDG. ADH116 PAMB	84.7 SQ CM (2
	ANGLES MEA 70. 80. 90. 100.		.3 88.7 90.6 93. .5 90.0 91.9 93. .4 90.1 92.7 93.	97.8 95.1 96. 94.3 95.9 97. 95.4 97.7 99. 97.2 99.6 100.	.7 97.6 99.9 101. .3 98.2 99.5 100. .9 104.6 101.7 102. .5 104.8 106.2 103.	102.2 104.1 104. 101.9 103.1 105. 101.3 104.2 104. 101.6 103.2 103.	.5 101.1 103.5 103.7 103.7 101.0 101.6 101.0 100.5 102.0 100.7 89.9 100.5 97.	73.0 97.5 98.4 95.6 72.2 92.9 93.2 91.6 67.1 90.8 92.0 87.1 60.8 83.2 83.9 82.6 54.3 74.5 75.4 76.7 49.4 68.0 70.1 69.2	92.5 113.2 114.3 114.4 02-27-78 TAPE C41 ANECH CH AERG.	ACCUSTIC RANGE
	40, 60. 60.		85.9 86.6 87.6 87.6 87.6 87.9 88.9 88.9 88.9 88.9 88.9 88.9	23 80.1 82.1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	104.6 100.2 98.7 104.0 104.5 105.0 103.2 103.9 104.9	6 1001 9 1001 9 100 9	97.8 98.8 100.0 96.2 97.6 98.5 94.6 97.1 98.4 90.1 94.8 95.8	1 90.8 93.6 3 87.6 91.0 4 83.2 85.9 4 76.1 78.3 9 70.5 72.4 2 63.7 66.4	111.9 111.6 112.7 TEST DATE LOCATION	<u> </u>

(_)

						41		0						AU W														ED 1.0 FPS)
																										CORRECTION - YES CORRECTION - YES	38.00 54.00	 FREE-JET SPEED 90.83 M/SEC (298.0
		ā			144	147.8	0.00		Γ.					. 10 10 10 10 10 10 10 10 10 10 10 10 10 1	-		•	-		- •	_	- •		ļ -	164.7	REFRACTION CO TURBULANCE CO	TAMB	
		50. 160.			1.6 112.0	0 K	7.3 113.6	7.8 113.9	.7 113	7.4 111.9	.u.	5 110	o (9.5 106.5	10	N O	0	-	N) K		N	ú c	7 01	-	6.7 123.3	REFR/ TURBL	\$859 29.3300	IN) - MODEL
X76100	DEGREES	140.	•		107.5 11	112.4	116.4	117.5	.5		= =	6		114.5 109.	0	0 K7	^	-		9 (7)	9	60 (61.9 73	-	128.5 126	298.00 48.00	ALPHA SI	SI ZE (23.99 SQ
FJ-300-FMODL	I INLET,	0. 130.			2 103.3			- 2	-	2 5	4 -	115	7	15.4	114	3 113.0	111	111	207	102	4 98.3	•	30.0	4 .	.4 125.7	DOITY (FI/SEC)		₹
ı	URED FROM	119. 120			-	•	-		<u>.</u> ا	,- •		ļ-		05.7 110.5	٠ - ١		109	05.8 108.1		- +	1		76.2 84.	i	17.2 121.	/ELOCITY (JET DIAME)	NG. N299 IDG. ADH115	154.7 80
DENTIFICATION	ANOLES MEASURED	100.			92.3	0,0	4 6 6	83	86.9	20.00	100.8	100.3	101.6	103.0	105.9	100	105.1	103.5	702.7	97.0	93.6	900	78.6	71.2	115.1	FREE JET VI FREE J	TAPE AERG. R) ARC
IDENT	ANG	80.			.08		7	6 93	.1 96.	6 6 6 6	7.	6 100.	.3 102	.0.105.0	0 104		.1 106.	0 104.	502	6 10	.98	90	.5 78.	.0 73.	1.2 116.3		# C#	C RANGE 40.0 FT)
		70.			10	0 r	. 60	io.	0.0	39 K	, n	7	۰. م	86.0 105	2.	• •	9	ه د .	, «	·	6	<i>S</i> i	59.3 78	5	96.5 116	NE FACTOR	02-27-78 C41 ANECH	ACGUSTIC 2.2 M C 4
		99			8	8 8	6	95			0	103,	108	108.2	107.	100	105	105	5 5	6	96.	9 6	79.	71.	3 117.4	L SIZE SCALE . GOO CALC. 1	TEST DATE	± 2
		8			9	<u> </u>	3	2	95	30	9	106	000	7 108.4	107	106	505	2	200	3 99.0	3		6 77.7	1	.7 117.6	MODEL/FULL INPUT 1.0	TES	TEST POINT 7610

0
ŏ
=
•
_:
0
_
_
•
•
C
1
7/7
17/7
11717
7/1//

										00	RI	GIN PO	IAI OF	- H	OU.	GE	IS ITY								00	FREE-JET SPEED 3 M/SEC (298.0 FPS)	
FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SGUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB. 2400.0 FT. SL IDENTIFICATION - FJ-300-FMGDL X76101	ANGLES MEASURED FROM INLET, DEGREES	40. 50, 60. 70. 80. 90, 100. 110. 120. 130, 140. 150. 160.	71.7 72.7 73.3 52.3 73.8 74.9 74.8 75.7 82.0 90.6 92.8 92.5 86.1 167	73.7 74.0 76.1 56.0 81.5 77.4 77.8 78.3 86.4 92.2 95.7 93.7 86.4 169	74.5 75.3 76.7 57.5 78.0 78.2 78.7 80.9 88.2 92.5 95.6 93.6 85.7 169	74.5 78.7 80.4 60.8 80.9 81.8 81.0 83.1 88.5 92.3 96.6 91.3 83.0 169	80.6 80.8 81.6 61.3 81.2 82.2 82.3 84.1 89.2 93.9 96.1 89.6 81.9 169 89.3 85.5 83.8 65.6 80.9 81.7 81.6 84.3 89.3 93.9 95.5 88.1 80.7 170	86.0 87.5 38.2 68.5 87.4 83.7 82.9 84.6 89.8 93.4 94.1 86.0 78.6 69	85.8 87.4 88.5 67.7 88.1 88.2 84.3 85.5 89.0 92.5 92.1 83.7 75.8 169 84.5 86.1 87.3 66.0 85.5 86.1 85.5 85.7 89.6 92.9 90.3 81.3 74.3 169	83.5 84.4 85.9 64.9 85.2 85.2 86.1 86.8 89.5 91.9 89.1 80.6 72.8 169	82.4 83.5 84.8 64.8 84.7 86.6 85.5 87.2 90.1 80.4 87.6 78.6 71.0 169 81.0 82.9 84.5 65.0 85.3 86.0 85.1 87.6 89.5 89.8 85.9 77.7 69.7 168	8 82.2 83.6 54.6 84.8 86.3 84.7 87.1 87.1 87.6 83.5 75.0 66.7 168	74.4 78.2 80.3 62.4 83.7 84.4 81.9 83.0 83.5 82.9 77.5 69.4 59.5 167	70.6 76.2 79.0 59.6 82.6 82.4 78.6 79.6 81.2 78.8 73.2 64.7 55.6 167	54.2 61.3 67.1 50.3 71.2 70.9 67.9 67.4 68.0 65.3 57.2 41.5 24.0 166	41.8 49.7 57.5 39.8 64.1 64.8 58.6 56.9 57.5 52.0 41.7 22.8 166	10.0 19.6 20.6 19.9 13.7 15.2 3.4	70	16000 20000 25000	 <u>.</u>	1	GASPL 84.8 95.2 96.3 76.3 96.3 96.5 PNL 100.5 101.9 103.5 84.0 105.5 105.6	PNLT 101.7 101.9 104.2 84.0 106.7 106.9 104.2 104.8 107.8 109.2 108.7 102.2	DIAMETER RATIO 7.640 FREQUENCY SHIFT -9	TEST DATE 02-27-78 TAPE NG. N299 IALPHA SB59 TAMB 38.0	MODEL TEST POINT ACGUSTIC RANGE 7600 7610 731.5 M (2400.0 FT) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 90.83	

()

				ORIG OF P	INAL OOR (PAGE VALIT	S Y					(\$)		
												F SPEED (387.0 FPS		
											38.00 53.70	FREE-JET 96 M/SEC (
NC NOISE		PWL		2 4 4 5 6 4 7	150 149 149	7 150.2 8 150.6 7 151.0 7 150.8	05 04 04 04 04 04	84 1 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		3 143.1 2 143.6 8 162.9	TAMB 3 RELHUM 5	.117.	•	
A0.0 FT. ARC X76110 X01400	150. 160			112. 112. 111.	6 105. 8 103. 9 101. 7 100.	7 100. 7 100. 7 100.	4 - 6 4 9 9 9 9 9 9 9 9	3 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	98.20	72.1 69. 63.6 61. 24.0 118.	SB59 29.3300	IN) - MODEL		
FJ-400-FMODL FJ8400-FMODL	r, DEGREES			109 110 113	116.6 1 117.6 1 116.7 1	116.0	4.000	108.5 106.1 104.2 101.2	96.9 94.6 89.7 83.1	. 7 . 2	I ALPHA PAMB	SI ZE 23.99 SQ		
0 . r. r.	FROM INLET,	•	•	5 10 1 10 5 10	. 5 11 . 5 11 . 5 11	9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	411 4 11 4 11 4 11 3 11 3 11 3 11 3 11	. 6 109 . 3 108 . 0 104	97.3 97. 91.9 92. 86.6 86.	0 0 4 1	N299 ADH116	7 SQ CM (
RCENT R. - NODEL BACKG	EASURED			4 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	 	.1 103.2 .1 104.1 .3 105.8	5 105. 4 107. 5 106.	6 106. 8 104. 8 103.	6 87.	~	TAPE NG.	154.		
, 70 ICAT	ANGLES HE 90. 100.				@ 01 to 0	V 62 A 10	8 0 0 2	10 to 10 to	97.9 95. 92.9 91. 90.7 87.	40 0	T CH AER	RANGE 10.0 FT) ARC		
59.0 DEG. F.	70. 80.			0-40	6 101. 2 92. 5 93. 6 95.	.5 96. .3 97. .2 104. .5 103.	. 1 101. . 1 100. . 6 100. . 8 100.	.0 100; .5 99; .9 100; .0 99;	3.0 97.0 2.5 92.4 6.4 90.3 0.3 82.1	.0 74. .9 67. .6 112.	02-27-78 C41 ANECH C	ACCUSTIC F		
	.09			88 . G . G	90.1 93.0 95.3	99.0 104.0 103.4 101.8	100.2 1 100.2 1 100.4 99.5	99.2 97.7 97.4 95.3	93.6 93 90.8 92 85.4 86 78.3 80	71.3 65.2 111.7 1	TEST DATE 02 LOCATION C2	<u>a</u>		
	40. 50.			3 85. 7 86. 7 87.	5 - 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		4 98. 4 98.	3 97. 2 97. 1 96. 8 93.	88.6 90.3 86.8 86.5 82.2 82.4 74.6 75.3	. 1 69. . 9 62. . 7 111.	TES	TEST POINT 7611		
		78 60 63 60 60	ĺ							3000 0000 ASPL 1		MGDEL 7600	703	

	-	
٠		
Į		

				•				•	•			101 1	CID	IA		PA	GE) 					
					,						Ö		PO	OF	i	QU	AL		<i>(</i>									23 63 		SPEED 387.0 FPS)	
																										-1		CORRECTION - YES CORRECTION - YES	38.00 53.70	FREE-JET .96 M/SEC (
2	FT. ARC			1. 160, pu						8 110.6 145.9	.5 146		9 1	- 0	111.2	1 111.4 151.5	91	108.8	108.0	107.5	6 108.1 150.3	105.7		92.8 149	5 80.7 146.8		123.2 164.1	REFRACTION C TURBULANCE C	\$859 TAMB 29.3300 RELHUM) - MODEL 117	
PRESSURE LEVE	STD. DAY, SB 40.0 FT.	DL X76110	T, DEGREES	0. 140. 150		•	•		3	.4 110.1 112.	113,9 1	5 116 6 116	9 116.2 11	.4 116.3 111.	.8 115.9 111.	.7 116.1 112 .7 116.0 113	6 115.4 111	3 111.7 1	5 111.1 107	7 108.1	107	102.3 101	96.7	90.5	84.6 80.2	70.4	-	C) 387.00 N) 48.00	IALPHA SB58 PAMB 29.	\$12E 23.99 SQ IN)	, defend
MODEL	₩. H.	- FJ-400-FMODL	SURED FROM INLET	110. 120. 130						5 97.4 1	.4 100.0 109 .4 100 E 110	.5 104.2 111	.0 105.5 111	3 107.3 112	.6 108.7 113	102.7 108.9 114 103.4 110.5 114	110.2 114	110.7 114	111.0 112	108.5 110	108.0	105.6	98.4	93.5		74.1	5.4 121.0 125.1	VELÖCITY (FT/SEC) Jet diameter (IN)	5. N299 3. ADHI16	164.7 SQ CH (
T TRANSFORMED	., 70 PERCENT	DENTIFICATION	ANGLES MEASU	90. 100. 1					4 0 7	2.08 0.		0 94.4	.4 95. 1 97	.6 98.1	7 89.7	99.5 100.0 100 02.9 101.7 100	4 103.9	6 105.4	0.00.00	5 104.1	5 103.4	2 100.2	9 94.0	.7 89.5	79.0	.6 70.9	4.0	FREE JET VEI FREE JET	TAPE NO.	RANGE 40.0 FT) ARC ' 1	
	59.0 DEG. F.			70. 80.					* * 0*	90.5	2 K	4 103.9	.1 94.5 6 95 8	0.00 0.00	3 98.3	106.5	4 105.2 1 205.2 1 3 201.2	6 104.4	0.000	2 104.6	103.9	1 103.7	5.9 96.4	3.4 94.8	78.2	2.2 71.7	4 115.8	LE FACTOR . 1.000	02:27-78 C41 ANECH CH	ACGUSTIO	
				50. 80.					6	0 90.3	7.00	4 93.7	7 96.8	8 97.7	2 98.9	09.3 108.3 1	6 107.5	8 105.7 1	0 105 0 1	5 104.8	4 102.3	1 101.6	1 98.0	3 92.7	9 80.5	1 70.4	8 116.5	SIZE SCA 000 CALC	TEST DATE LOCATION	TEST POINT 12.	
4				FREG 40.	30	හ ව	100	125 160	0	90.3	- C C C C C C C C C C C C C C C C C C C	94.1	97.6	10.00	99.5	109.6	107.1	106.6 1	106.2	104.2	102.9	99.7	95.5	90.2 87.0	79.4		GASPL 117.5 1	MODEL/FULL INPUT 1.		MODEL TEST 7600 76	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

()

					OI OI	حاسيا	AGE IS			ED FPS)
										FREE-JET SPEED
		160. PM			92.1 170.0 90.4 168.7 77.6 169.2 75.6 166.7 73.6 166.4 71.7 168.2 70.6 167.7		164.5 162.6		93.3 101.6 95.6 96.7	TAH RELHG FULL
X76111	DEGREES	140. 150.	96		92.8 67.2 91.7 85.3 68.6 80.3 86.9 80.3 86.6 76.9 84.0 75.7 80.2 74.2	1			3.9 89.4 7.1 101.4 7.1 101.4 SHIFT -9	SIZE (1400.00 SQ IN) -
FJ-400-FMGDL	FROM INLET,	120	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	86.7 91 87.8 91 89.0 92 89.0 93	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	63.6 63 62.0 79 76.5 73 69.0 65 57.9 61	6.41		1 100.1 103.4 10 3 107.2 106.8 10 3 107.6 109.4 10	N298 ADH116 2 SQ CM
DENTIFICATION -	ANGLES MEASURED	100.	5 5 6 6 6 6 6	0 78.9 6 4 79.6 6 3 81.2 6 9 81.3 6	62.7 63 64.6 63 65.0 65 65.6 65 65.8 66 64.8 65	400000	20.1 13		2 96.1 96.1 3 103.3 104.3 3 103.8 104.3 3 RATIO 7.640	TAPE NG. AERG. RDG. 3E FT) SL 9032.
1901	***************************************	70. 60. 90.	71.8 72.7 74. 72.1 76.4 75. 73.8 85.8 76. 75.5 76.3 77.	.9 77.6 79 .1 78.6 80 .4 79.8 81 .7 81.3 80	86.9 88 84.8 88 84.8 88 84.0 85 84.1 85 84.1 85	6 83.4 9 76 8 2 76 8 0 64.1 6 45 8	9. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.		95.0 96.0 96.2 03.0 105.2 105.3 03.5 106.5 106.3 DIAMETER F	02-27-78 C41 ANECH CH ACGUSTIC RANGE .5 M (2400.0 F
			71.5 71.9 7 72.1 72.6 7 73.1 74.4 7 76.3 77.3 7	3 76.3 2 76.1 3 79.2 7 83.8	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	74.9 74.9 66.6 60.6 70.1	 5.		94.4 95.4 01.1 102.6 01.1 103.4	LOCATION C
		FAEG 40.		75. 76. 77.	96. 93. 91. 79. 79.	25. 26. 26. 26. 27. 27.		31500 40000 50000 63000 80000	OASPL 93.5 PNL 99.4 1	MODEL TEST PO 7600 761

														- FC												(
							 	0	RIC F I	áll PO	IAL OR	Q	UA	E IS LIT								·		FPS)). 	
																								r SPEED		
																						90.0		FREE-JET M/SEC (
				P4 L		٠.٧) N -	1.6	 	5.5		V 0	- a	4.6	6 6	00	0.0	0.4				MB 24	1	ö		
5			160.			- "	6.0		, œ	4			0 6	9 4	6 6	0.4	0.0	84.8 147 78.5 146	40	. 0		TAMB		MØDEL		
	X76120	-	150. 1			5.0	===	8	- 0	0	 	6-	000	- a	~ -	6 0	6 -	85.4 8 81.1 7	- (: -		SB59 29.3580		- N		
, . }	FMODIL	DEGREES	140.			113.0	4.7.7	119.6	119.7	120.9 1	120.2	119.4	116.1	4 0 - R	10.9	106.3	1.66	80 E	78.3		•	ALPHA	1	SIZE 23.99 SQ		
7	FJ-ZER-FMODI	INLET,	130.			109.1	7 5	116	116	116	116	118	117	116	===	109	5	94.6	92	128		_		5 5		i i
	KODEL SAICKORGUND	ID FROM	120.			-	7 107.2		2 5	113	= = 4 10	115	114	=======================================	108	106	5 8	2 91.7	83	23	Ì	N294 ADH09		14.7 SQ		
	,	MEASURED	00. 110			10 G	, n a	6	- a	8	и ю	oi oi	60 4	4 4	0 0	- 0	o -	0.00	- 0	9 9		TAPE NO.	1	154	· · · · · · · · · · · · · · · · · · ·	
	FICATION	ANGLES	90.			94.8 96 of 7 of	0 6	9	 • •		ი –	6.0	9 6	05.50	4 0	0.4	- 0	91.9 67	- ic	6.1		AER		RANGE 40.0 FT) ARC		
	IDENTIF		.00	r . i			^	9	4	8	N 0	10 10		4 6	-	46	a -	91.6	4 4	14.6 1	·	11-78 ANECH CH				
) 			70.				9 9 9 9 9 8		2.00 20.00			103.6 1		102.6				87.9				02-2 C41	 	ACGUSTI		
•			.09			<u>a</u> a	83	9.53	_	101	100.	<u>6</u> 6	102		101	9 9	93.	86.2	72.	113.		TEST DATE				
			. 50.			92.	20.00	9	~	101	. <u>4</u>	104	102.		101	G G	9 8	6 82.7	20.5	13.		TES		ST POINT 7612		
			4			87.6	i o -			-1				9 9				200						DEL TEST 7600 76		,

ANOLES MEASURED FROM INLET, DEGREES 40. 90. 100. 110. 120. 130. 140. 150. 160. PHL 92.0 94.8 96.5 98.9 103.8 103.8 109.1 113.0 116.5 116.1 148.7 95.6 98.0 101.1 100.2 113.0 116.5 116.1 148.7 95.6 98.0 101.1 100.2 113.2 113.9 116.8 184.1 95.7 96.6 98.0 101.1 100.2 113.2 113.9 116.8 184.1 95.0 97.3 98.7 100.2 113.0 116.4 113.2 113.9 116.8 184.1 97.9 99.8 100.1 100.4 113.0 116.4 113.0 116.8 184.1 97.6 99.9 101.1 100.2 113.2 113.0 116.8 184.1 97.9 99.8 100.1 100.4 113.2 116.9 120.9 117.1 118.2 115.5 116.1 113.0 116.8 184.1 101.1 101.1 101.1 101.1 101.2 184.9 99.4 100.1 104.2 107.3 113.5 116.0 120.3 117.7 134.6 115.5 116.5 115.5 110.2 114.9 11.1 110.2 114.9 11.2 110.2 114.9 11.1 110.2 11				ORIGINAL PA OF POOR QI	GE IS			FREE-JET SPEED M/SEC (0. FPS)
## ANGLES MEA ## ANGLES MAGE ##	- 6	. 130. 140. 150. 160.	109.1 113.0 116.5 116.1 149 111.2 114.9 117.6 116.5 151 114.0 117.4 110.0 116.3 152 116.4 113.2 119.9 116.6 154	117.3 120.1 121.1 118.2 155 116.6 119.7 120.9 117.6 155 116.0 120.9 121.0 116.4 155 116.9 121.4 119.6 115.8 155 117.8 120.2 117.2 112.2 154 118.7 119.4 115.3 110.6 154 117.9 119.2 114.1 109.4 154	116.0 114.9 111.3 106.3 152.116.0 114.1 110.1 105.6 152.114.4 112.5 109.9 104.4 151.113.4 110.9 108.2 102.8 151.111.1 108.6 106.1 101.6 150.0 106.0 106.0 106.3 103.9 99.8 150.106.0 106.9 90.1 96.6 95.2 149.	94.9 91.1 89.0 147.4 90.3 85.4 84.8 147.0 85.1 81.1 78.5 145.4 78.3 76.1 73.4 144.7 72.8 69.3 66.0 146.2 130.6 130.1 127.0 166.6	0. REFRACTION CORRE 48.00 TURBULANCE CORRE IALPHA SB59 TAMB 24. PAMB 29.3580 RELHUM 39.	SIZE CM (23.99 SQ IN) - MODEL 0.
2. 2 ACG	ON -	90, 100, 110, 1	92.0 94.6 96.5 96.9 1 94.1 95.7 96.6 99.0 94.1 96.0 97.3 99.7 95.3 97.6 100.3 103.4 1	97.6 99.9 101.1 104.5 101.8 105.1 103.8 105.1 101.2 103.3 104.2 107.3 100.0 102.5 103.3 105.2 108.1 104.5 104.6 105.3 108.8 103.6 104.6 105.3 108.8 103.6 104.6 105.3 108.8 103.6 104.6 105.3 108.8 103.6 104.6 105.3 108.8 103.6 104.6 105.3 108.8 103.6 104.6 105.3 108.8 103.6 104.6 105.3 108.8 103.6 104.6 105.3 108.8 103.6 104.6 105.3 108.8 103.6 104.6 105.3 108.8 103.6 105.8 103.8 103.6 105.8 103.8 103.6 105.8 103.8 103.6 105.8 103.8 10	103.4 105.3 106.4 109.4 103.4 105.6 105.0 105.8 108.4 108.6 103.5 105.0 105.8 108.1 102.8 104.2 103.6 106.7 102.4 103.9 102.1 105.0 101.9 98.9 102.1 105.0	94.1 94.2 93.1 91.6 91.9 87.9 83.7 85.2 83.4 75.4 77.1 77.1 69.8 73.5 70.0	FREE JET FREE TAPE CH AERG.	RANGE 0.0 FT) ARC 154.7

OASPL PNL PNLT

													80	ĦI F	QII P	N	AL)R	P. Qi	AG	ìE Ll'	IS TY											SPEED 298.0 FPS)		
PERSONAL SOCIETY OF STREET STR	ERCENT R. H. STD. DAY, SB 40.0 FT. ARC	IDENTIFICATION - MODEL FJ-300-FMODL X76130 BACKGROUND FJB300-FMODL X01300	URED FROM INLET, DEGREES	40. 60. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160.							63.8 67.6 67.1 66.4 66.5 90.6 93.2 90.6 96.1 104.6 109.0 113.7 11	67.6 87.7 89.1 88.5 90.1 91.9 93.6 95.7 100.5 110.5 114.7 116.6 113.0 1	86.0 86.3 90.0 90.1 91.9 93.3 94.7 96.8 102.0 112.1 115.5 117.2 111.3 150.	66.8 69.1 91.1 90.9 100.0 94.6 95.5 99.4 104.6 112.7 117.1 117.0 109.7 101.	93.7 92.0 94.0 93.8 94.6 96.7 98.4 101.3 107.7 132.8 116.9 114.9 105.0 150.	92.8 94.3 95.6 95.6 97.0 98.6 99.7 103.1 108.1 112.2 117.8 114.7 102.4 150.	100.3 96.2 96.0 95.7 97.1 99.2 100.8 104.0 109.0 113.0 117.5 113.0 102.	101.9 102.2 103.2 102.7 100.8 99.7 101.8 105.0 109.9 114.5 117.5 110.9 102.2 151.	100.2 101.2 103.0 102.5 102.6 103.0 102.1 105.8 110.5 114.1 116.5 110.2 101.2 151.	100.1 199.4 100.9 101.0 101.0 103.3 103.0 105.1 110.4 114.0 110.4 106.6 98.8 100.1 100.3 100.1 100.9 100.0 101.2 103.3 103.9 106.0 110.1 114.3 113.4 106.6 98.0 130.	99.0 99.6 101.4 100.8 101.1 103.2 103.9 106.8 110.2 113.5 112.6 105.1 88.0 149.	28.4 99.8 100.7 101.3 101.6 102.7 103.5 106.9 110.2 112.3 110.4 104.1 37.1 149.	96.2 98.6 99.0 100.0 101.0 102.1 102.3 105.2 107.9 109.2 107.4 101.5 94.2 148.	94.3 96.9 99.0 99.9 101.3 102.0 101.0 104.1 106.3 108.7 105.5 100.3 93.7 149.	89.1 91.1 93.4 94.3 98.6 96.7 95.8 96.8 101.2 100.8 98.5 93.7 90.4 147.	87.3 87.9 91.3 93.5 93.7 93.6 92.9 93.8 98.1 99.0 95.9 89.1 85.1 147.	83.0 83.0 86.4 87.9 91.8 91.0 87.9 89.0 92.7 93.5 91.0 83.5 60.6 146. 76.2 76.2 78.6 81.6 83.7 84.4 82.7 82.2 87.9 87.3 85.4 78.8 74.6 145.	70.9 70.0 72.9 75.1 75.6 76.0 76.8 75.5 83.1 80.7 78.5 72.4	00.2 04.0 0/.3 /0.6 00.0 /1.4 08.6 /1./ 08.0 /1.4 00.0 0.10 0.10 0.10 0.10 0.10 0.10 0	110.4 110.0 111.8 115.0 115.0 115.8 117.1 15.0 150.0 150.0 150.1	TEST DATE 02-27-78 TAPE NO. N299 IALPHA SB59 TAMB 38,00	TEST POINT ACQUISTIC RANGE SIZE SIZE SIZE TELS 12.2 M (40.0 FT) ARC 154.7 SQ CM (23.99 SQ IN) - MODEL 90.83 M/SEC (709	
					FRE	8 8	60	2 6	7 9	20	8 6	₹	20	e €	100	125	160	200	315	400 000 000	630	000	1200	1600	2500	3150	5000 5000 5000	6300		DASP		MODEL 7600	. 35	

		ORIO OF	SINAL POOR	PAGE QUALI	9			SPEED 298.0 FPS)
							CORRECTION - YES CORRECTION - YES 38.00	FREE-JET SF 90.63 M/SEC (29
FT. ARC	160. PUL	111.6 144.7 112.4 147.6 113.3 150.6 112.6 151.2	6 6 6 7 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		8 6 7 4 8 8 8 1	95.7 100.4 93.5 149.4 82.7 148.5 75.6 147.3 66.0 146.1	TURBULANCE C TURBULANCE C 59 TAMB	- MODEL 8
SB 40.0 X76130	DEGREES 140. 150.		116.6 11 117.2 11 116.8 11	117.0 112.9 116.2 112.4 115.4 110.9 113.6 109.2	6 108. 1 107. 1 102.	96.2 90.9 84.9 7.17.7 127.4	298.00 48.00 1ALPHA \$859 PAMB 29.3	S1 ZE 23.99 SQ IN)
R.H. STD. DAY, - FJ-300-FMGDL	SURED FROM INLET, 110. 120. 130.	99.5 103 100.7 110 103.6 111			111.2 114. 111.7 113. 111.0 113. 108.6 110. 107.1 107.	9.3.7.7.9.9.9.1.7.7.7.9.9.9.9.1.7.7.7.9.9.9.9	VELOCITY (FT/SEC) JET DIAMETER (IN) NO. N299 RDG. ADHII8	7 30 CM C
DENTIFICATION -	ANGLES MEASUREC 90. 100. 110.	0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	96.6 97.9 100.3	100.0 101.6 102.1	104.6 106 105.1 107 105.3 107 105.1 107 104.3 106 103.0 105	900.00 900.00 7.00.00 7.00.00 7.1.00	FREE JET CELOC FREE JET C TAPE NO.	1) ARC 164
DEG. F.,	90°.	6.00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	95.2 95.2 96.5 96.5 97.	98.1 99. 102.3 100. 104.6 104. 103.8 104.	103.7 105. 104.1 105. 105.1 105. 104.6 105. 105.0 105.	102.6 101. 95.3 96. 97.7 87. 78.2 79. 72.4 74.	7ACTOR 000 27-78 ANECH CH	ACCUSTIC RANGE
	60. 70.	00.00 00	95.0 95 95.7 96 97.1 98 99.3 97	98.9 100 104.3 104 106.1 105 106.4 104	104.7 104.7 105.5 104.8 102.4 102.4	100.0 99 96.3 97 98.1 96 79.3 79 70.9 74	1.000 CALC. 1. TEST DATE 02-2	<u>-</u>
	40. 50.	8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	4 0 0 0 9 9 9 9 7 4 8 9	- 20 40	2 2 2 2 2 3 3 3 5 5 5 5 5 5 5 5 5 5 5 5	893.6 894.9 893.6 894.9 86.2 865.5 78.4 77.7 69.7 66.5 115.2 115.0	MODEL/FULL INPUT 1.0 TES	MODEL: TEST POINT 7600 7613

March Flat Flat March Flat March
DENTIFICATION - FJ-300-FMOL X76131 ANGLES MEASURED FROM INLET, DEGREES BO. 60. 70. 60. 90. 110. 120. 130. 140. 160. FML 115. 12. 12. 12. 13. 12. 13. 14. 19. 19. 160. FML 12. 12. 13. 14. 19.
PAGES HEASURED FROM INLET, DEGREES ### PAGES HEASURED FROM INLET, DEGREES ### PAGES HEASURED FROM INLET, DEGREES ### PAGES HEASURED FROM INLET, DEGREES ### PAGES HEASURED FROM INLET, DEGREES ### PAGES 170. 770. 770. 770. 770. 970. 94.4 91.1 94.1 ### PAGES 170. 770. 770. 970. 970. 94.4 91.1 94.1 ### PAGES 170. 770. 770. 970. 96.6 96.6 970. 94.6 ### PAGES 170. 970. 770. 976. 96.9 970. 94.6 970. 96.6 ### PAGES 170. 970. 770. 770. 976. 96.6 970. 970. 970. 970. 970. 970. 970. 970.
BOOK NO. 10. 110. 120. 130. ## BOOK NO. 100. 110. 120. 130. ## BOOK NO. 100. 110. 120. 130. ## BOOK NO. 100. 110. 120. 130. ## BOOK NO. 100. 110. 120. 130. ## BOOK NO. 100. 110. 120. 130. ## BOOK NO. 100. 110. 120. 130. ## BOOK NO. 100. 110. 120. 130. ## BOOK NO. 100. 110. 120. 130. ## BOOK NO. 100. 110. 120. 130. ## BOOK NO. 100. 110. 120. 130. ## BOOK NO. 100. 110. 120. 130. ## BOOK NO. 100. 110. 120. 130. ## BOOK NO. 100. 110. 120. 130. ## BOOK NO. 100. 110. 120. 130. ## BOOK NO. 100. 110. 120. 130. ## BOOK NO. 100. 110. 120. 130. ## BOOK NO. 100. 110. 120. 130. ## BOOK NO. 100. 110. 120. 130. ## BOOK NO. 100. 130. 130. ## BOOK NO. 100. 130. 130. ## BOOK NO. 100. 130. 130. ## BOOK NO. 100. ## BOOK NO. 100. ## BOOK NO. 100. ## BOOK NO. 100.
ANGLES HEASURED F ANGLES HEASURED F ANGLES HEASURED F 71.1 71.6 72.3 73.2 74.2 74.8 75.7 72.6 74.1 75.2 77.2 74.8 75.7 72.6 74.1 75.8 93.7 76.9 76.0 77.0 72.1 76.7 76.9 77.0 77.9 76.0 77.0 72.2 76.3 77.4 77.7 76.9 76.0 77.0 72.2 76.3 77.4 77.7 77.0 76.0 76.0 80.8 72.2 76.3 77.4 77.7 76.0 76.0 80.8 81.2 72.2 76.3 77.4 77.7 79.0 79.6 81.2 72.2 76.3 77.4 77.7 79.0 79.6 81.2 72.2 76.3 77.4 77.7 79.0 76.9 81.2 81.0 85.5 86.9 81.4 81.2 84.0 81.0 85.5 86.9 81.4 81.8 86.4 81.0 85.5 86.9 81.4 81.8 86.4 81.0 83.7 84.8 84.1 84.4 82.2 83.5 81.0 83.7 84.9 84.1 84.4 82.2 83.5 77.6 79.6 82.9 84.1 84.4 82.2 83.5 77.6 79.6 82.9 84.1 84.4 82.2 83.5 77.6 79.6 82.9 84.1 84.4 82.2 83.5 81.0 83.7 82.9 84.1 84.4 82.2 83.5 77.6 79.6 82.9 84.1 84.4 82.2 83.5 77.6 79.6 82.9 84.1 84.4 82.2 83.5 77.6 79.6 82.9 84.1 84.4 82.2 83.5 81.0 83.7 84.9 85.4 85.6 85.0 86.9 92.3 94.1 94.9 95.4 95.8 94.9 96.6 1 92.3 94.1 94.9 95.4 95.8 94.9 96.6 1 92.3 94.1 94.9 95.4 95.8 94.9 96.6 1 POINT ACCUSTIC RANGE 13.3 73.1.5 M (240.0 FT) 8L 9032.2
71.1 71.6 72.3 73.2 73.2 74.1 75.2 74.1 75.2 74.1 75.2 74.1 75.2 74.1 75.2 74.1 75.2 75.2 74.2 76.9 77.0 77.4 77.7 75.2 77.6 77.4 77.7 75.2 77.6 79.5 80.2 75.2 77.6 79.5 80.2 79.5 80.2 79.6 79.5 80.2 79.6 79.5 80.2 79.6 81.2 83.9 84.1 84.0 84.1 84.0 85.5 80.4 84.2 81.0 85.5 82.0 85.5 84.8 84.2 81.0 85.5 82.0 85.5 84.8 84.2 81.0 83.7 84.2 82.0 85.5 82.0 82.9 84.0 77.6 79.6 82.6 84.1 75.6 79.6 82.6 84.1 75.6 79.6 82.6 84.1 75.6 79.6 82.0 82.9 84.0 77.6 79.6 82.6 84.0 77.6 79.6 82.0 82.9 84.0 77.6 79.6 82.0 82.9 84.0 77.6 79.6 82.9 84.0 77.6 79.6 82.9 84.0 77.6 79.6 82.9 84.0 77.6 79.6 82.9 84.0 77.6 79.6 82.9 84.0 77.6 79.6 82.9 84.0 77.6 79.6 82.9 84.0 77.6 79.6 82.9 84.0 77.6 79.6 82.9 84.0 77.6 79.6 82.9 84.0 77.6 79.6 82.9 84.0 77.6 79.6 82.9 84.0 77.6 79.6 82.9 84.0 77.6 79.9 82.9 82.9 82.9 82.9 82.9 82.9 82.9 8
71.1 71.6 72.7 71.6 72.7 74.2 74.2 74.2 74.4 77.6 72.2 77.6 77.6 77.6 77.6 77.6 77.6
71.1 71.1 71.1 71.1 71.1 71.1 71.1 71.1

					0	RIGI F P	00	L P R Q	AG UA	E IS LIT								FPS)
																		FREE-JET SPEED M/SEC (387.0
	7		a n	0.	0 0	\ \ -	⊘ 1 α		N 60	ຸກຸກ	6 6	~ 0	6-			8.	MB 38.00 UM 54.60	17.96
160.			112	108.6 149	105.9 149	101.3 149	99.2 149	99.7 150	26.3 149	97.5 149	96.3 1	94.0	90.9	81.6	69.1 14 61.8 14	118.6		ğ
. 27			09.3 113.0 11.1 114.8	40	ဖ အ	O 6	(C) (C)	0.6	V 4	6. 8 0.00	8 102	9 9	4 93	7. 63	3 64	8 123.		
INLET,			9 106.7 1	0 K	6 112		0 1 2	4 5	113.3	113.3	111.5	108.4	2 100.8	9.00	3 79.4 9 74.1	.9 124.9		5
SURED				55	103	107	108	109	-	- /244, 844	ļ– -		5	7.0	0 0	116.9 120	№ 200.	4
OLES 10			6 92.	4 10	6.0 8.0 8.0	88	. 2 100 8	7 101.	3 103 5 103	2 103. 7 104.	2 103 3 103	2 g	2 97.	5 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	7 77.	3.3 113.9	TAPI AERG.	GE FT) ARC
			98.1 88.5	89.3 82.4	100.5	60 00 60 00 60 00	95.6	101.0	101.0	100.3	101.3	100.8	6.00 6.00 6.00	93.1	75.6 68.0	112.2 11	27-78 ANECH CH	ACGUSTIC RANGE
			8 87 8 86	4 88	68 9	0 6 9 9	96.0 95	01.9 102	100 68	99	0.00	0.09	69.0	98	2.4 74. 6.5 69.	.1 110.	02- C41	, 0
			- 0 86 95	.3 86.	. 8 86.	4 0 0 0 0	3 101 0	7 100 4 7 99	9 6 6 6 6 7	6 98	6 98.	e 4	.6 9 0.	60 K	. 69 0 63	.1 109.8	TEST	TEST POINT 7614
	ANGLES MEASURED FROM INLET, DEGREES	ANGLES MEASURED FROM INLET, 40. 50, 60, 70. 80, 90, 100, 110, 120, 130,	ANGLES MEASURED FROM INLET, DEGREES 40. 50, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160.	40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 160. P 83.1 86.1 85.6 87.5 88.5 90.5 91.9 94.8 97.8 104.4 109.3 113.0 112.6 145	40. 50. 60, 70. 80, 90, 100, 110, 120, 130, 140, 150, 160. P 63.1 86.1 85.6 87.5 88.1 90.0 91.9 94.6 97.8 104.4 109.3 113.0 112.6 145 86.3 86.6 88.0 87.7 89.3 91.4 92.3 94.7 100.2 109.8 114.4 115.6 117.3 148 86.9 67.5 89.4 88.6 92.4 92.5 93.9 96.7 100.2 109.6 114.4 115.6 117.5 148	40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. P 83.1 86.1 85.6 87.5 88.1 90.0 91.9 94.6 97.8 104.4 109.3 113.0 112.6 145 84.0 85.8 86.8 86.9 88.5 90.6 92.0 94.4 98.9 106.7 111.1 114.8 112.5 147 86.3 86.6 88.0 87.7 89.3 91.4 92.3 94.7 100.2 109.8 114.4 115.6 111.3 148 86.3 86.6 88.0 87.7 89.3 91.4 92.9 96.5 101.5 111.1 116.0 112.5 147 86.9 87.5 89.4 88.8 92.4 92.5 93.9 96.5 101.5 111.1 116.0 115.7 108.6 149 87.8 86.3 90.6 89.9 100.5 94.3 95.2 98.7 103.6 112.2 116.6 114.5 105.9 149 90.1 88.5 91.1 91.7 92.8 94.9 95.2 98.7 103.6 112.2 116.6 114.5 105.9 149	40. 50. 60. 70. 80. 100. 110. 120. 130. 140. 150. 160. 83.1 86.1 85.6 87.5 88.1 80.5 91.9 84.6 87.8 104.4 109.3 113.0 112.6 143 86.3 86.6 88.0 87.7 89.3 91.4 92.3 94.7 100.2 109.6 114.4 115.6 111.5 147 86.3 86.6 88.6 89.8 80.5 91.4 92.3 94.7 100.2 109.8 114.4 115.6 111.5 147 86.3 86.6 88.9 100.5 94.4 98.9 105.5 111.1 116.0 115.7 108.6 149 80.1 88.6 91.1 91.7 92.8 94.3 95.7 103.6 112.2 116.6 114.5 105.9 149 90.1 88.6 91.1 91.7 92.8 94.3 95.9 105.9 112.5 116.9 110.6 101.3 149 92.0 93.6 94.4 95.2 97.1 98.7 102.2 112.3 115.9 110.6 101.3 149 92.0 93.6 94.4 95.2 97.1 04.7 107.2 112.3 115.9 110.6 101.3 149 92.0 93.6 94.7 102.4 107.2 112.3 115.9 110.6 101.3 149 92.0 93.6 94.4 95.2 97.1 02.7 107.2 112.2 115.8 109.7 99.1 149.8 105.8 10	40. 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 63, 63, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 160, 63, 186, 186, 186, 186, 186, 186, 186, 186	ANGLES MEASURED FROM INLET, DEGREES 40. 60, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 76, 83, 1 86, 1 86, 8 86, 9 86, 9 84, 8 97, 8 104, 4 109, 3 113, 0 112, 6 145, 84, 0 85, 9 86, 9 86, 9 86, 9 84, 9 87, 8 104, 4 109, 3 113, 0 112, 6 145, 86, 9 86, 9 86, 9 86, 9 86, 9 94, 4 86, 9 92, 4 92, 5 94, 4 96, 9 113, 1 114, 9 112, 6 114, 1 14, 9 112, 9 113, 1 114, 9 112, 9 113, 9 14, 9 90, 1 86, 9 90, 9 90, 9 90, 9 105, 9 112, 1 116, 0 116, 1 114, 9 112, 9 149, 9 90, 1 86, 9 90,	40. 60. 60. 70. 80. 90. 100. 110. 120. 130. 140. 160. 160. 160. 60. 70. 80. 90. 100. 110. 120. 130. 140. 160. 160. 160. 160. 160. 160. 160. 16	40. 60, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 160, 63, 64, 86, 86, 86, 86, 86, 86, 82, 84, 89, 87, 8104, 4109, 3113, 0112, 6148, 86, 86, 86, 86, 87, 86, 87, 87, 87, 87, 87, 87, 87, 87, 87, 87	40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. F83.1 86.1 86.8 87.8 86.1 90.0 91.9 94.8 97.8 104.4 109.3 113.0 112.6 148 84.0 85.8 86.6 86.9 86.5 97.6 92.0 94.4 96.9 106.7 111.1 114.8 112.6 148 86.3 86.6 86.9 86.5 97.6 92.3 94.7 100.2 106.7 111.1 114.8 112.6 148 86.3 86.6 86.9 86.5 97.6 92.3 94.7 100.2 106.7 111.1 114.8 112.6 143 86.3 86.6 89.9 100.5 91.4 96.9 106.7 111.1 114.8 112.6 143 86.9 87.6 89.3 90.7 100.2 100.5 111.1 116.0 115.7 106.6 149 87.8 86.3 99.9 105.9 112.7 116.6 143 87.8 97.8 97.8 97.8 97.8 97.8 97.8 97.8	40. 60. 60. 70. 80. 90. 100. 110. 120. 130. 140. 160. 160. 160. 60. 70. 80. 90. 100. 110. 120. 130. 140. 160. 160. 160. 160. 160. 60. 60. 70. 80. 90. 100. 110. 120. 130. 140. 112.6 148 84.0 85.6 86.6 86.6 86.5 95.6 95.0 94.4 95.8 104.4 109.3 113.0 112.6 148 86.3 66.6 86.0 87.7 89.3 91.4 92.3 94.7 100.2 109.0 114.4 119.6 111.3 148 86.3 86.5 96.8 90.0 95.2 94.7 100.2 109.0 114.4 119.6 111.3 148 87.6 96.3 90.1 95.2 97.1 99.5 105.0 112.2 116.6 114.5 105.6 143 90.1 90.1 96.2 93.6 93.8 95.2 97.1 96.7 99.3 107.2 112.2 116.6 114.5 103.9 149 92.0 93.6 93.6 93.8 95.2 97.1 99.7 107.2 112.2 115.6 114.5 103.7 91.1 49 92.0 93.6 93.8 95.2 97.1 99.7 100.2 102.0 112.8 115.3 103.0 99.2 149 92.0 93.6 93.8 95.2 97.1 99.7 100.2 113.7 103.6 114.8 107.7 99.7 100.0 103.0 103.9 14.8 113.7 106.4 99.7 100.0 100.7	40. 50. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. 160. 160. 160. 160. 160. 160. 16	40. 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 160, 160. 63. 66. 69. 60, 70, 80, 90, 100, 110, 120, 130, 140, 160, 160. 65. 69. 69. 69. 69. 69. 69. 69. 69. 69. 69	ANOLES MEASURED FROM INLET, DEGREES	40. 50. 60. 70. 80. 100. 110. 120. 130. 140. 150. 160. 160. 160. 160. 160. 160. 160. 16	40. 60. 60. 70. 80. 90. 100. 110. 120. 130. 140. 150. 160. PHL 83.1 86.1 86.6 87.5 88.1 80.0 81.9 84.8 87.8 104.4 109.3 113.0 112.6 145.9 84.0 87.8 104.4 109.3 113.0 112.6 145.9 85.1 86.2 86.4 86.5 10.5 10.5 10.5 111.1 14.8 112.6 147.3 86.3 86.5 86.6 86.5 86.5 86.5 86.5 86.5 86.5

						0			NA 00	R.		\G		S					•					6	
					-					,												YES YES		SPEED 387.0 FPS	
																						CORRECTION - V	38.00 54.60	FREE-JET 96 M/SEC (
ARC		1			מוּ	.8 149.0 149.0	9	_	ი -	4	 	2	 N -		- 01	01	22 AZ	-	- N	6 C	_	REFRACTION CONTINUE TURBULANCE CONTINUE	TAMB (MODEL 117.	
40.0 FT.	வை	150. 160		5	16.0	114.9 110	113.5	112.4	109.7	111.0	110.7	109.2	107.4	106.5	105.9	104.8	97.6	94.2		75.7	124.3 1		SBJ9 26.3300	SO IN - IK	
.3B X76	ET, DEGREE	130. 140.		02.5 106.4	41.	10.2 114.9	2 115	9 115	3 14	7 115	0.4	2 114	5 1 2	4.	8 107	2 105	2 - C	96 0	- 1C	80	7 126	SEC) 387.00 (IN) 48.00	I ALPHA PAMB	\$12E (23.99	
R.H. STD. DAY, - FJ-400-FMODL	ED FROM INLET	. 120.		3 95.5	100.00	9 102.0 1	1 106.2	4 106.5 1	5 108.0 1	6 108.9	4.011	110.7	2.111.2	0 110.9	108.8	9 107.8 1	4 106.5 1 7 102.7 1	5 99.6	200.7 6 90.7	3 85 7	6 121.5	JCITY (FT/SEC) DIAMETER (IN)	N299 ADH117	54.7 SQ CM	
., 70 PERCENT R	ANGLES MEASURED	100. 110		- 1	, m	93.2 94.	10	.4 99	100	99.4 102	100	3 105	100	6 107	4 105	5 104	. 8 102 . 5 98	6 94	85.0	6	0 116	E JET VELOCI	TAPE NO.	ARC 1	
DEG. F., 70 1 DENT I	ANGL	90.		9	, a.	4.2 92.8	7 95.	.96 .6.	6. 10 7. 00 7. 00	.2	200	104	3 106.	0.105	7 105	.7 105.	. 8 102.	2.0	8.0 87.4	.6 78.	.7 115.	OR FREE	сн сн	IC RANGE 40.0 FT)	
58.0		70.		8	o (V	90.8	94.4	95.1	96.2 27.2 8			105.4	. a	104.4	N O	9	102.6	96.7	1 88.6 88	ماد	114.8	SCALE FACTOR	i	ACCUSTIC 12.2 M (4	
		50. 60.		900	0.0	92.3 92.8 93.6 94.2	.7 97.	.7 96.	2.00	2 102.	9 000	0 106.	100	0 105	ا ا	.7 103.	. e	.6 98	90	0.0	9 116.	\$1 ZE	TEST DATE LOCATION	POINT	
		0		 000	0 0 0	93.0	87.9	97.3	00 00 00 00 00 00	112.2	100	106.0	106.6	105.2	103.0	102.01	98.1	96.6	0 00	90.4	117.5	MODEL/FULL INPET 1.		DEL TEST PO 7600 7614	

)R)F	IGI P	IN/	AL OR	P	A(SE AL	i is												SPEED 307,0 FPS)	, T. C. C. C. C. C. C. C. C. C. C. C. C. C.
																														54.60	FREE-JET .96 M/SEC (
		160.	2 16	.4 166 .1 167	7 167	.2 166 -166	80.3 167.0	6 168	5 168	. 1 168 . 0 168	8 168	1 169	. 2 168 168	9 168	169	.8 168 0 167	7 167	166.8	163.2							•	95.9			RELHUM	FULL 117	
X76141	DEGREES	140. 150.	1 91.2	20.00 20.00 20.00	5 89.3	98.1	91.6 64.8	92.0	04.1	82.0	78.8	177.3	76.1	71.8	66.2	5 56.7	25.6	9.								98.0	8 100.5 8 100.5	SKIFT -9	1	PAMB 29.3300	- (N1 08 00	
-400-FMODIL	INLET,	130.	.8 89.0	80.08 4.00.0	.0 90.8	90.4	92.4	2 C	1 92.0	92.0	9 69.9	1 69.1	3 87.0	0 83.4	6 2 6	. 7 7 6 6 7 6 6 7 6	3 51.8	0 31.6	~							102.8		FREQUENCY			SI ZE 2 CM (1400.00	, which is
10N - FJ	EASURED FROM	. 110. 120	3 80	0 69 6 89	79.5 87	. 8 87 . 7 88	82.6 89	84.2 90	85.1 90	69	86.6 89	86.2 89	. 5 87 1 86	83.4 85	80.2 82	75.0 77	0 59	40.4 43	14.8 16							86.3	0 104.7 106.5	7.640	5	RDG. ADH1	9032.2 80	
IDENTIFICAT	ANGLES ME	90. 100	.7 73.	9 9	.3 77.	7.0	8 81.	1 82.	5 83.		.3 85.	.7 85.	94	.7 82.	.2 80.	2 69	59.	4	20.		•					0	106.8 104.0	DIAMETER RATIO	TAP	CH AERO	1C RANGE 2400.0 FT) SL	
		70. 80.	L 6	. 6 . 6	.8 76.	4 77.	78.8 80.0	7 84.	2 85		.0 84.	.7 84.	6 8 64	.1 84.	4 83.		3 64.	47.	. 20.							94.2 95.	04.0 106.9	10 DI A	02-27-78	1 ANECH	ACGUST 5 H (
		50. GO.	.7 72,		.3 77.	. 3 . 6 . 6	8.5 79.8	95.	9.00	. 8 . 6 8 . 5 8 4	.4 83.	.6 83.	2 83.	.8 80.	.5 79.	. 4 . 69	.5 57.	0. 1	•							7.7	6 103.8			LOCATION	POINT 731	
		ġ	69.6	72.5	75.9	76.3	76	64.7	60.0	 	81.2	79.6	7.5	74.0	70.7	57.2	41.6	22.0			3 C	0	. .	0 0	0	93.4	20				TEST 0 76	
		FREO	9	38	0	<u> </u>	200	316	4.5	936	Õ	Ŏ.	160	2000	220	400	2000	630	10000	12500	20002	25000	40000	20000			PNLT				MODEL 7600	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

															RI(GIT	AV OC	L	PA QU	GE AL	19								•			
08/30/79 19.452																												IION - YES			FREE-JET SPEED M/SEC (0. FPS)	
	40.0 FT. ARC	00	Ø	150. 160.						16.3 117.0 151.4	116.5 153	17.	119.0 155	118.8 155	3 116.0	2 113.2 154	0 C	0 108.5 153.	108	6 106.2 151	6 103.1	NO.	98.2	6 90.7 147	6 80.5	6 10	130.8 127.7 166.7	REFRACTIO TURBULANC		\$859 TAMB 24.80 29.3550 RELHUM 39.00	IN) - MODEL 0.	
	R.H. STD. DAY, SB. 4	- FJ-ZER-FMODL. X76150	ED FROM INLET, DEGREES	110. 120. 130. 140.						106	.6 107.5 115.5 1	3 108.6 11 2 110 7 11	7 112.2 116.8 120.	5 113.0 115.9 120.	9 113.6 115.5 121. 5 114.7 116.2 120.	0 114.8 117.0	5 114.8 118.0 119. 5 115.3 116.3 119.	0 114.4 116.2 116.	114.3 116.1 1 9 113.3 115.3 1	4 113.0 113.2 113.	7 109.1 110.1 109.	2 107.4 108	8 104.0 105.0 103. 5 101.2 100.5 99 .	96.3 99.3	.8 88.0 88.5 85.	.0 83.6 82.8 80.1 .5 77.8 76.8 75.3	6 125.4 128.1 130.7	DCITY (FT/SEC) 0. DIAMETER (IN) 48.0		N294 IALPHA ADH095 PAMB	81ZE 54.7 SQ CM (23.99 SQ	
	59.0 DEG. F., 70 PERCENT	IDENTIFICATION	ANGLES MEASURED	70. 80. 90. 100. 1						0 94.1 96.2 98.9	7 94.1 96.2 97.	.3 95.4 97.5 96.7 1	2 97.8 99.9 101.3 1	6 98.9 101.5 102.7	1 100.9 103.0 104.4 1	0 100.5 101.9 103.8 1	9 101.7 102.8 105.2 1 9 102 5 103 6 105 2 1	8 103.1 103.9 105.3 1	.9 103.7 104.8 105. .9 103.4 105.7 106.	3 103.1 104.5 105.8 1	0 102.8 104.4 104.1 1	0 102.9 104.7 102.6 1	. 5 101.3 103.2 100.3 1 1 98.7 99.6 97.1	8 93.6 93.7 93.6	7 82.9 84.7 83.6	4 69.1 74.	ď	FACTOR FREE JET		2-21-78 TAPE NO.	ACCUSTIC RANGE 2 H (40.0 FT) ARC 1	
				40. 50, 60.						88.9 91.4 91.	90.4 92.7 93.5	91.55 93.6 94.6 92.6 94.9 95.2	97.4 96.2 96.	100.7 101.5 100.8	99.9 99.3 99.1 1	101.1 102.7 100.	102.1 103.1 102.1 1	100.7 102.3 102.5 1	100.0 101.9 101.9 1 98.0 101.6 102.2 1	97.9 101.3 101.4 1	93.3 98.9 99.6 1	91.8 97.3 99.1 1	85.6 90.7 93.0	83.9 87.7 91.0	71.7 75.0 77.7	66,7 69.8 71.	111.1 113.1 113.1 1	MODEL/FULL SIZE SCA INPUT 1.000 CALC		TEST DATE 02-2 LGCATION C41	7615 12	
716				FRED	Ď	6 6	Ŏ	25 55 50 50 50 50 50 50 50 50 50 50 50 50	8	316	4		Ŏ	Ŏ.	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	2000	200 200 200 200 200 200 200 200 200 200	4000	8000 9300	0000	1250	1600	20000	3150	5000	63000	GASPL				MGDEL 7600	

			-						***************************************				•	•					IAL				IS								
																OF	F	P	OR	QI	JΑ	Li	TY	F							2
																															D FPS)
																			; ;												SPEED 0.
																															JET EC (
٠																														80	FREE-JET M/SEC (
																											1			22.00	o.
		Z	70.6	71.9	4 6	2 -	173.6	 	1 2	71.6	70.7	6.69	69.3	•	67.8	6.7	92.0	64.9	64.8 63.1	62.7 64.2						<u>.</u> 2				TAMB	
		ö	.2.	01	٠, «	0	~	6	٥	n	۵. د		7	9	ω (- r	9 0	9.	==	Ami bez							0			REL	FULL
		160	L	8	3 6	ā	8	97	3 6	2	7.0	72	2	67	63	2 6	4	20	_			•					88	GI I		220	Į.
-		150.	84.8	96.4	96.	6/3	97.7	200 4.00 4.00	2 0	89.3	96.8	82.3		76.9	•	_ %		• •								105.7	106.8 106.8			SB59 29.3550	Î.
X76151	DEGREES	140.	5.9	4.4	·	10	6.0	4.0	2 2	Δ.	9,0	4	8.	2	- 0	ے م	· ·	5.5	42.9 18.9								N 100	SHIFT		₹ 2	E 00 80
	1		ල ල			i.			1			1			- 1				⊕ 10 44 –	ö						.6 107.	7 111	ENCY		I ALPHA PAMB	SIZE (1400.00
FMGD	INLET,	130	95.	50	9	3	94.9		98	8	88	22	88	88	93.	78.0	72.		93.	•						90		FREQUENCY			CM (1
FJ-ZER-FMODL	1	120.	88.3	88.3	4.0	93.7	94.1	0.0	0.70	94.7	93.5	- 8	e. 10	89.7	86.7	2 6 2 6 5 6		66.9	56.5 40.4	14.6				1 ·		104.9	0.0			N294 ADH095	SQ
Ē	SURED FROM	110.	0	a (٠, ٥	1			1		0 0	ł						ĺ	57.0 39.6								တ တ	.640			9032.2
NOIL	ASUR	(9									1			H												3 106.6 3 106.6	_		PE NO	8
DENTIFICATI	ES MEA	100	79	ó	N C	ۍ اد	88	10 1	عاد	9	93.9	• 1	85.6	4	• •				57.7 42.8								104.6	RATIO		TAPE AERO. R	15
ENTI	ANGLES	8				.i .					9.4				-1			اه	61.7 44.7							4	105.4		- 1		RANGE
01		Ö	7			1	4	40	1			1.	9		- 6		0		7 - 6							6 /		₹		동	1C RAN 2400.0
		8	1	77		98	83				80	1	82.		- [אָ אַ			60. 42.							2	103			21 - 78 ANECH	ACGUSTIC 5 M (240
		2			•	٠١٠			•		•				•	•			54.7 37.5							93.2	000			02-2 C41 /	
		6 0.	6	ø,	o	1 4	N	4 6	σ	ω	9 1	9	6	io.	N	m c	4	9	10	Oi				•		0	- -			DATE	731
			1			i			1			1			- 1				30 30	14							88				Ę
		20	١.					•	•1		•				-1				41.6								97.			TEST	TEST FOINT 7815
		9							•			-1 -			•	•			30.0							~	3.6	;			TEST
	.		1												1				5000 6300					31500 40000			PNLT				MODEL 7600

											RK F (- 1			PA) : T										8)		
			-																								298.0 FFS)		
																									00.	FREE - JET	.83 M/SEC (
O				Ź			146.9	149.7	150.6	150.6	150.0	150.3	500.4	0.151	150.4	150.5	149.9	149.7	149.2		147.0	ব ∤	4.0	163.6	TAMB 37		8		
40.0 FT. ARC	X76160 X01300		50. 160.				3.7 113.6 6.6 113.7	12	5.00	106	6 104.	7 101	. 0	.2 101.	98	ო -	.9 96.		8 S	5 90.	.6 80.	9	64.0 60.6	25.5 120.2	SB59	1	IN) - MODEL		
DAY, SB 40		DEGREES	140. 1				110.6 11 111 g 111	114.7 11	7	?=	115.7 11	116.0	116.1		114.7	113.2	110.5	106.5	104.7	98.3	0 0 0 0 0 0	رانه ا	o -	127.4 1	I ALPHA SI		23.99 SQ		
H. STD. DAY,	FJ-300-FMGDL	FROM INLET,	120. 130.				96.6 105.1 00.2 107.2	-	= = 	==	8.0 113.1	7 - 1 - 2	3 114.	0.2 115.3	-1 -	115.	2	21.0		6 101.	2 2	0	* N	21.3 126.0	N299		SQ CM (
- R	- MODEL BACKGROUND	SURED	110.				95.6	96.2	97.3	100.7	101.8	103.4	104.8	105.2	106.7	107.1	106.9	107.2	104.8	97.2	4 60	82.8	70.4	117.4 1	28	3	154.7		
., 70 PERCEN	DENTIFICATION	ANGLES MEA	90. 100					4.	. e e e	. 2	88	200	.0 101.	40	3 102.	. 6 104	2 104.	103.	03.4 101.6	.58 97.		. 2 83.	. 7 68	114.0 114.3	TAPE	AGE CONTRACTOR	10.0 FT) ARC		
.O DEG. F.	IDENTI		. 80				88 80.7 90.3	90.0	/ LB 7 7 R	94.0	94.9	96.0	96.2	98.3	101.0	7.00	101.3	102.1	1 102.2 1	98.2	9 QI	83.3	68.6	3 112.4 1	-27-78	OUSTIC			
59.0 DE			60. 70				8 8	4 88	0.0	4.	2 94.		.a.	. 2 Too.	4 101	7 100.	2 100.	001	98.9 100.	0.0	7 87.	4 81.	1 6 7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	11.0 111.	82	1	12.2		
			. 50.				φ α	88.4	80 S	9 0	85.5	- 0	8 98.0	0.00	1 98.6 1	99.1	99.3	9 60 60 60	8 97.0 8 94.2	80.5	80.7 7.0.1	75.7	93.9	5 109.8 1	TEST DATE	_	9		
			40	7.85 50 63	90	8 K G	8 8 3	87	8	5	8	2 8	8	86	8	3 8	8	0 0	9.8	98	8 6	12	8 8	GASPL 109.		MODE: TEST	0	718	1

					OR OF	IGINAL POOR	PAGE QUAL	is TY			YES YES		SPEED 298.0 FPS)
9		1		145.0	14.00 150 150 150 150 150 150 150 150 150 1	-				149.6 149.6 147.9 147.3	164.2 CTION CORRECTION =	37.00	FREE-JET EL 90.63 M/SEC (
, SB 40.0 FT. ARC X76160	DEGREES	. 140. 150. 160.		Ξ	.0 114.2 112 .4 116.3 113 .1 117.3 113	115.9 115.0	116.5 111.9 108 116.6 111.7 109 114.5 110.0 107	.6 106.5 0 107.4 0 105.7	105.0 104.4 105.0 102.3 103.1 101.0 100.7 96.4	0 95.5 91.0 93.0 7 89.7 86.4 87.9 4 84.9 81.1 82.7 8 82.0 74.1 75.8 0 72.2 64.3 66.0	126.6 125.7 298.00 48.00	1ALPHA SB59 PAMB 20.3300	23.99 89 IN) - MODEL
CENT R.H. STD. DAY, SB	MEASURED FROM INLET,	. 110, 120, 130,		8	3.6 99.7 108. 4.6 101.2 111. 6.0 103.7 111.	99.2 107.2 112. 100.3 108.1 111. 101.2 109.3 113.	103.4 109.5 114. 104.0 110.3 114. 105.0 110.0 114.	106.8 111.2 115. 107.6 111.9 114. 107.6 110.6 113.	106.5 108.6 111. 105.8 107.1 108. 102.8 105.4 105. 98.9 102.7 103.	95.3 98.2 99. 90.9 93.8 92. 83.9 90.1 87. 77.0 85.9 83.	2 117.2 121.6 125.6 T VELGCITY (FT/SEC) E JET DIAMETER (IN)		154.7 30 CH (
O DEG. F., 70 PERCENT IDENTIFICATION	ANOLES M	60. 80. 100.		89.9	91.6 92.3 92. 91.8 92.6 92. 93.0 94.0 94.	95.75 96.4 97.6 98.9 99.5 100.5 100.5 100.5	97.6 98.7 100. 99.8 100.3 101. 102.9 102.3 102.	104.3 104.6 105. 103.9 106.2 105. 104.8 106.1 106. 105.7 107.0 105.	105.0 106.1 104. 106.2 106.4 103. 105.4 105.7 101. 102.2 102.5 99.	97.3 97.3 95. 95.2 95.1 90. 87.3 87.2 85. 78.7 78.8 78.	115.4 116.1 115. ACTOR FREE JE 000	CH CH	COUSTIC RANGE M (40.0 FT) ARC
65		50. 60. 70.		1 90.6	.1 90.8 90. 6 91.3 90. 6 92.7 92.	، مید ام	7 100.2 102. 5 104.1 103.	1 105.2 104 9 103.7 104 1 104.7 104 0 104.4 104	2 102.4 1 2 103.1 1 7 99.1	2 98 2 92 4 96 2 73 75	1 114.7 115. SIZE SCALE	TEST DATE LOCATION	17 POINT ACO
		40.	6 6 0 0 0 0 0 0 0			800 94.4 1000 97.1 1250 98.4	26.25		5000	31500 93.2 40000 90.5 50000 85.3 63000 77.5 80000 68.5	OASPL 114.4 114. MODEL/FULL INPUT 1.		7600 76

0
9
0
0
=
Z
17/79
-
~
07/
_

091.00										PC) OR	2	AGE														37.00 54.90	FREE-JET SPEED 90.83 M/SEC (298.0 FPS)	g general control of the control of
DAI ATEN GAILLY DDESCRIBE I EVELS	I. STD. DAY, SB 2400.0 FT. SL	_	INLET, DEGREES	130. 140. 150. 160. Pur	90.9 92.7 92.4 86.0 167	91.0 84.3 83.2 80.8 91.6 94.3 92.6 84.9 1	91.8 93.4 92.6 84.0 168	91.9 93.1 98.8 79.7 167	92.2 92.6 66.3 78.2 1 93.1 92.7 86.5 76.7 1	92.7 92.4 96.6 76.0 168	93.1 89.3 81.8 74.	91.7 86.6 78.8 71.2	86.6 82.5 75.7 66.9 1	63.9 77.0 69.2 60.0	79.6 73.3 65.1 56.4 1	65.6 56.1 41.3 22.9 1	32 4 14 0	4						103.8 103.6 109.3 107.0	109.3 107.0 101.2	FREGUENCY SHIFT -9 '	I ALPHA SB59 TAMB 9 PAMB 29.3300 RELMUN	SIZE CM (1400.00 SQ IN) - FULL	
\$	59.0 DEG. F., 70 PERCENT R.H. STD	ı 2	ANOLES MEASURED FROM INLET,	6 0. 90. 100. 110. 120.	8 74.7 74.6 76.3 62	77.4 77.5 79.8 86	0 79 5 80 0 81 7 88	7 81.1 80.8 83.0 89	.0 82.2 61.8 83.3 89 .6 81.2 82.0 84.2 89	. 9 81.5 82.9 84.5 90 6 83.2 83.3 85.5 89	7 84.4 83.5 85.9 89.5 5.9 89.5 5.0 89.0 89.0 89.0 89.0 89.0 89.0 89.0 89	8 86.3 85.0 87.0 90	051.0 000.0 000.8 000.8 081.0 087.1 087.1 087.1 087.1	4 65.9 62.9 64.3 64	.0 84.6 80.6 80.6 81 5 80 1 76 9 75 1 77	. 6 72.0 69.9 68.3 68	.5 65.0 59.8 58.5 58 5 47.2 44 3 40 6 42	8 21.0 20.0 14.6						96.1 95.3 96.9 06.4 104.2 105.5	107.6 104.2 105.5 108.	DIAMETER RATIO 7.640	-78 TAPE NG. N299 NECH CH AERG. RDG. ADH11	RANGE 00.0 FT) SL 9032.2 SQ	
20	0.86			o	69.7 71.3 72.1 72.	71.9 72.6 74.9 75.	72.5 73.9 75.6 77.	76.1 75.5 77.9 79.	75.1 77.9 79.9 79. 76.4 76.3 78.6 78.	80.0 80.3 79.9 83.	79.7 81.6 83.3 84. 79.4 80.5 84.0 83.	79.7 80.9 82.2 83.	1250 76:0 60:0 63:0 63:0 1250 75:0 60:0 60:0 60:0 60:0 60:0 60:0 60:0 6	72.2 77.3 79.6 83.	70.6 76.1 79.5 60. 61.8 70.2 73.5 75	53.8 60.7 66.5 71.	41.4 49.5 57.1 60. 18.3 29.5 39.7 43.	10.1 16.	12500	20000	31500	50000	00008	1 93.2 94.4 4 102.2 104.0	97.5 99.4 102.9 104.5		TEST DATE 02-27- LOCATION C41 AN	MODEL TEST POINT ACCUSTIC 7600 7616 731.5 M (24	

				ORIGIN OF PO	AL PA DR QU	ge 13 ALITY					
										37.00 54.00 FREE-JET SPEED	. 36 A/3EC
40.0 FT. ARC X76170 X01400	160		12.9 146.2 12.7 147.3 10.7 149.2 07.8 149.3	O 4 W -	7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 -	8 0 0 4 0 0 1 4 0 1 4 9 0 4 1 6 0 4 1 6 0 4 1 6	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	90.8 147.6 85.5 147.6 81.2 146.9 75.5 145.0 69.2 144.0	.3 144.	TAMB	MODEL 117
38 40,0 FT. 1-FMODL X76170 1-FMODL X01400	ឡ		. 0 113. . 7 116. . 3 116.	2478	6 2 2 2 2 3 3 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	7 108. 0 106.	.3 102. 7 101. 7 89.	97.3 93.8 95.2 89.5 89.5 84.1 77.5 72.7	72.6 64.0	29.33	- (X) - (X)
STO. DAY, FJ-400	INLET,		.6 104.4 1 .1 106.7 1 .7 110.5 1	112.4	7 113.3	6 113.5 113.6 113.6 112.6	.5 112.3 1 110.1 0 109.3 4 105.8	01.6 101.3 98.7 89.3 93.2 83.5 88.2 87.3 83.3 80.7	.2 74.8	DH120	5
MODEL BACKG	MEASURED F		2 94.4 95.2	100.2 101.3 102.6	6 103.2 104.1 105.8	7 106.8 1 4 107.1	.0 105.7 1 .0 105.7 1 .1 104.8 1 .6 102.0 1	97.6 97.4 1 94.0 94.6 88.7 89.3 63.7 83.0 77.6 76.3	.0 70.6	PE NO.	ARC 184.7
EG. F., 70 PERCE	ANGLES		.0 90.0 .0 91.1 .5 91.6	0 0 0 0 0 0 0 0 0 0 0 0	1 96.7 8 98.9 1 6 101.0	.2 102.6 1 103.6 6 103.2	.1 104.6 9 103.0 7 103.4 8 102.9	3 98.0 2 92.3 3 94.7 7 75.8	.1 70.2	RANGE	0.0 FT)
59.0 DEG. F.	0,2		7 67.7 7 67.1 7 67.9 7 69.3	ω - α ω	8 95.1 8 100.3	2. 29. 29. 4. 100. 2. 100. 20 100. 50	.0 100.3 .4 100.2 .1 100.1 .7 97.6 1	2 93. 5 92. 2 97. 4 74.	6 110.8 1	,	E 2.251
	•		86.1 86 86.1 87 87.1 87 87.0 89	6 0 0 0	0.00.00.00	97.9 96.6 1 4.8 99.3	8 99.1 1 9 97.8 3 96.5 8 94.2	5 90.0 93 8 86.7 90 8 81.5 85 2 75.2 78 5 69.1 71	63.0	TEST DATE LOCATION	7617
		100 180 200	83. 86. 86.	2000	5 8 8 8	8888	9 9 57.	215000 88. 31500 86.5 40000 81. 50000 75. 63000 69.8	108.	HODEL TEST	721

MODEL 7600

40000 50000 CASPL

()

								(OR OF	IG P	00 	R	P Q	A(iE AL	19 T	š												
																												D FPS)	
																											000	FREE-JET SPEED 6 M/SEC (367.0	
-			1	65.8	1.00	66.3	65.7	0.99	67.5	169.1	68.7	68.6	168.6 168.7	69.0	69.3	200	68.0	167.9 166.7	64.9					101.4			TAMB 37 RELHUM 64	117.9	
SB 2400.0 FT. SL			160.		82.4	-1																		93.3	94.5			- FULL	
00.00 F	7	S	150.		89.7	.,			-1 -															97.6		FT -8	\$859 29.3300	(NI DS	-
SB 24	X761	DEGREE	140.		93.2	-1													•					9 6	.l .	ICY SHI	ALPHA PAMB	S12E 400.00 S	
DAY,	-400-FMGDL	INLET,	130.		90.0	-1	9.0																	103.0	109.4	FREQUENCY		S CM (140	
R.H. STD. DAY,	FJ-400	FROM	120.	1 .	85.2	.,	88.9		., .											,				100.6	108.6	0	N299 ADH120	2 80	
_	ı Z	MEASURED	110.	5 K	78.4	9		85.	83.	80.	90.	.96	9 9	94	83.	7 0	68.	. 4 . 4	10					96.4	-	7.64	E NG.	9032	-
O PERCEN	DENTIFICATI	ANGLES ME	100.	. K	76.0	7,	į	90	92.	833		93	9 9 9	94	83.	77.	7	6 6	20.					96.3	5	RATIO	TAP! AERG.	- S C	
O DEG. F., 70	I DENT	ANG	8	7, 1	76.5	7,	8	200	9	83.	8 80	. 96	86.	8	95.	0 (0	71.	68.	2					96.3	107.	AMETER	.	RANGE	
			8	73	1 82.3	76.	2 79.0	6, 5	9	8	8 8 8	82	9 8	8	96.	0 0	7	4 58	20					900	.i .	10	27-78 ANECH	ACGUSTIC RANGE 5 M (2400.0 FT	
82			. 20		4.4	76.		78	9	83.		84.	8 8 5 4	83	82.	72.	69		60					2.5	2		22	731.5 P	
			8		92.	77.	78.	9 9	9	833	6 6 6 4	94	60 60 40 60	82.	90.	2 6	69	. 56.	=					•	100		TEST DATE		
			2	78.	20.	92	. K	18	92.	8	9 6	7 82.	9 6	90	78	10	62	4 c	;					7 92.	8		22	TEST POINT 7817	-
			6	2,5	72	72	9.9	200	9	9.	9 6	90	6 8	77.	74.	, 8 , 8	56.	<u>4</u> %	•	C *	, .	31500	50000	CASPL 90.	97.			MODEL TES	

												0	OF OF	IG P	70	Al OF	. 1	A U	GF Al	E 1 L17	3													***
											- :																				ED FPS)		3	
																															T SPEED			
																													7 86	7.00	FREE-JET M/SEC (
								9	2	.	0 4	2	<u>ო</u>	~ ~			۰.		7	6 0	, ,	5 6 0	~ r		· ~	æ (1	4		2 E	o			
		3						149.	150.	152	154	155	155.		154	154	154	152	151	150	150	4 4	147	146	145	143.	144	166.	TAM	RELHUM	<u></u>			
180		160.			į			115.9		•	116.			113.5		109.1	108.1	105.3	104.7	103.5	102.9	200	2.2	88.8	84.1	78.1	65.3	125.6		. 2950	- MGDE			
X76180	g	150.						116.0	117.6	118.6	201			118.1			111.9			107.0			98.7			78.9		128.5	08.00	20.00	SO IN			
FMGDI.	DEGREE	140.						112.5		-	9 5	٠ ١	121.0	121.9	119.3	117.4	116.7	1120	112.2	110.8	208.9		100.7	4 .	88.8	83.4	4 .	130.5	AHG IA	PAMB	S12E 23.99 S			
FJ-ZER-FMGDI.	INLET,	130.						108.7	11.0	114.5	116.6	118.8	118.4	118.5	119.8	120.0	118.5	116.9	115.6	113.7	727	9.80	020	97.0	93.0	86.5	75.4	129.7		-	_		i cap	
_	FROM 1	120.						103.8		07.5	200	4 •		9.6	4 4			12.9			0 0 0	05.7	02.5	95.7	90.8	86.6	77.3	124.8	7000	ADH082	₩S. DS. Z			
MODEL BACKGROUND	SURED F	110.						1	98.7 1	99.8	- 6	04.7	05.4	06.5	07.5	07.9	08.4	08.0	08.7	07.9	7,			4 .		80.8		19.0 1		RDG.	154.7			
1	MEA	100.						97.0			N 6	6	œ.	04.9 C R	6	0	7	7-	رى د	0	٦٠	4 1	6	4 7 6 4 6		81.9	69.1	16.7 1	TAPE	AERG. R	ARC			
I DENT I FI CATION	ANGLES	.06						94.3	~	<u>-</u> (_	9	6.	4.6	4	П	- (05 7	4	9	7	7.	N T	9 6 6	4			6.1		<	J J E			
ENTIF		o.						~	6	60 (. "		4	е c	-	5	٠. د د	9 6	6	6	٩,	, 0	, eo (1	4	٠. (4	.5 11		H	C RANG			
								4 92	_		100	1		7 103.	1-		2 106	5 102	0	_	7:	5 102.	-	200) —	N C	9 68	8 115	a7-06-	ANECH	ACGUSTIC 2 M (4			
1 1		. 70						B 91			2 v 2 v 3 v		8 100.6		7 103.	106	4 106.	100	_	-		99.5		2 6			7 68.	1 114.	8	22	12.2			
		90						90	•	•	9 0 7 1	i .		102	ι,		•	103			- 1	200		8		76.1	1 :	115.	TAG	LOCATION				
		50.						92.3	80.8		8 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	96.4		102.9	١.			103.8	103.0		901	96.8		86.7		•	62.2	115.3	756	2 2	T POINT 7618			
		40.						86.8	•	•		• •	•	4.00	7.70		•.	102.7			4	200		83 7		•	60.2	114.7			TEST 76			 1
		FREG	20	8 9 9	100	125	500	250	315	004	000	900		1250	2000	2500	3150 1	5000		8000	0000	16000	20000	31500	40000	50000	80000	GASPL 1			MGDEL. 7600			•
											-	<u> </u>			<u>L</u>	i.	-						-4 (- 1				S SN	IINI	14 39 VA	1754	MEA	5H-

UNTRANSFORMED MODEL SOUND PRESSURE LEVELS CORRECTED FOR BACKGROUND NOISE 59.0 DEG F. 70 PERCENT R.H. STD. DAY, SB 40.0 FT. ARC

					0	RIGINA F POO	L PAG R QUA	e is Lity,						FPS)
											SAY - WOITORAGO	1	27.00 FREE-JET SPEED	
		. 160. PWL		0 115.9 149.3	116.3 152. 116.1 153. 116.7 154.	114.8 155 113.5 155 112.6 155	6 6 	103, 5 150 102, 9 150	99.3 148 97.2 147 95.0 146	94.1 78.1 72.7 65.3	125.6 166.4	TURBULANCE	. 2950 RELHUM) - MODEL
-MGDL X76180	I. DEGREES	0. 140. 150	•	5 116	117.4 118. 119.0 119. 119.5 119.	121.0 118. 121.9 118. 121.4 115.	.5 115.4 113. 5 116.7 111. 9 115.0 110.	.6 112.2 108.7 110.8 107.7 108.9 106.	6 104.0 102. 0 100.7 98. 0 96.6 94.	3 98.8 84. 5 83.4 78. 5 76.8 74. 4 72.4 66.	.7 130.5 128.5		PAMB 29.2	23.99 SQ IN)
- FJ-ZER-FMODL	IRED FROM INLET	10. 120. 130		16.1 103.8 106 18.7 106.2 111	8 107. 1 108. 0 110.	.4 113.1 11 .5 113.9 11 .4 114.0 11	114.3 114.8 113.9	9 112	3 105.7 108 4 102.5 105 9 100.2 100	9 90.8 93 8 86.6 86 8 82.4 80 3 77.3 75	9.0 124.8 129.7 LOCITY (FT/SEC)	۵	16. ADH082	154.7 SQ CM (
DENTIFICATION	ANGLES MEASU	90. 100. 1		94.3 97.0 9 95.7 96.6 9	.7 98.1 .3 99.2 1 .7 100.3 1	.3 102.9 1 .4 104.3 1 .3 104.5 1	.3 105.0 1 .1 105.7 1 .9 106.3 1	6 105.3 1 0 104.4 1	.2 98.8 1 .4 96.2	.4 86, .0 81, .7 76, .8 69	.1 11 FREE	4	AERO. RI	FT) ARC
		70. 80.		91.4 92.2 9 92.0 93.8 9	93.8 95.9 102.3 97.8	.6 100.4 1 .7 103.3 1 .6 102.0 1	.4 105.6 1 .2 106.2 1 .7 105.0 1	.0 103.8 1 .6 103.9 1 .7 103.8 1	.5 102.0 1 .1 100.8 1 .3 98.2 6 92.7	.1 90.4 .2 82.7 .6 74.2 .6 68.4	14.8 115.5 116 E FACTOR		<u> </u>	2 M (40.0
		50, 60,		92.3 90.8 9	.7 92.7 .3 94.3 .1 95.7 4 97.0		.1 106.9 1 .4 106.4 1 .9 104.7 1 8 103.8 1	.0 103.0 1 .3 102.0 1 .9 101.3 1 7 89 4 1	.8 98.9 .4 95.4 .7 92.7	2.2 84.6 4.8 76.8 8.8 71.2 2.2 65.7	15.3 115.1 114 ULL SIZE SCALE	9	LOCATION C	
		40. FREG 50	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	86.8 98.9	90.2 92.9 92.9	99.4 106.7	107.6 104.8 103.6	100.4 1 99.0 1 97.1 1	92.4 86.9 85.7 83.7	78.4 8 71.0 7 66.2 6 60.2 6	ÖASPL 114.7 115 MÖDELZEUL	τυς	TEST	91 9 2 72

													R	iGi P	N/ OC	IL XR	F	PA(GE AL	IS ITY	7				•							_ (
																						•									- 1	FREE-JET SPEED M/SEC (0, FPS)
		160.	PWL 88 9 170 9	~	89.2 172.1			9 173		0	9	72.3 170.1	90	.9 168		0	4	8.7 163.7	161.5	60°0	. !						96.5 183.8 95.6			TAMB 27.86 RELHUM 27.00		FULL 0. F
X76181	DEGREES	140. 150. 1	4	2 95.2	95.2	00 0 00 0 4 0	7 93.5	0.	.4 89.1 89.1	85.3	83.2	91.6	77.7	82.8 76.2 6	0.69	62.8	53.8	24.5 40.2	4								107.8 103.3 9 110.0 103.4 9	,	CY SHIFT -9	ALPHA S859 PAMB 29.2950		- (N1 0S
FJ-ZER-FMODL	D ERCH INLET	. 120. 130.	3 88 3 94 3	89.6 96.	4 91.7 96.7		94.3 97.	5 94.3 98.4	94.7	94.2 96.	93.0	2 91.7 94.3	89.3 90.	0 88.0 89.1	82.9 83	.8 78.		66. 4. 4	38.9 31.	13.3 0.							104.5 108.3 109.8 112.6		10 FREQUENCY	N294 I. ADH082		.2 SQ CM (14
DENTIFICATION -	ANGLES MEASURED	90. 100. 110	8 80.0 81	.4 81.1 82.	.7 82.2 84.	84 7 86 W	.2 86.0 87.	0 86.0 88.	35 CO CO CO CO CO CO CO CO CO CO CO CO CO	.0 86.5 88	5 86.7 87	5 86 3 88	.5 85.1 87	.8 84.0 86.	2 80.9 81.	1 77.5 78.	.0 73.4 72.	.7 66.7 65.	.9 41.1 37.	.9 17.3 12.							.7 97.2 99.1 .6 104.2 105.5 .7 104.2 105.5		K KAIIO 7.640	TAPE NG. AERO. RDG.		FT) SL 9032
30 1		70. 80. 9	74.0 75.8 77	5.6 77.9	96 6	9 8	.0 85.0	81.7 83.5 85	0 86.5	.4 87.0	.7 85.5	83.2 84.5 86 82.4 83.7 85	.8 83.7	83	8 i. 2	.9 79.8	.6	54.5 57.0 67 53 7 59 7 60	0 41.9	1.2 15.3 1							.9 96.0 96 .5 103.8 104 0 105.0 105			02-20-78 C41 ANECH CH	CHARG CITCHEOA	.5 H (2400.0 FT)
		50, 60.	72.5 73.5	0 75.1	74.8 76.4 7	6 83.5	.3 82.9	0 62.4	7 86.7	.5 85.8	.7 83.8	82.6	.0 80.2	77.3 79.3 8	0 Z6 1	.3 71.7	9 67.2		.8 29.1								93.6 94.5 94 98.9 100.6 101 99.9 101.1 102			TEST DATE C	12.0	731
		40	FREQ 58.4		100 71.0			200 84.2	9 2	5		800 75.2	73.	1250 70.9	8		25.3	4 6	গ	10000	12500	16000	25000	40000	20000	63000 80300	OASPL 91.5 PNL 95.7 PNI T 96.8				MADE:	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SGUND PRESSURE LEVELS 59.0 DEG. F. 70 PERCENT R.H. STD. DAY, SB. 2400.0 FT. SL

													C	ORIG OF	GN PC	IAL OR	P. Qi	√GE JAL	. IS YTI								
	10.160																								SPEED 294.0 FPS)	.:	
	07/11/70																							27. 86 43,20	FREE-JET SP 61 M/SEC (29		
*	ROCK NOTSE	1			160.	F			14.1 147.2		9 4	07.5 152.8 05.3 152.8	153	4.00	9 152	04	9 150	.3 149 .1 148	.3 148	.8 146 .1 145	7.4	10 -	120.6 164.6	TAMB	MODEL 88.		
		5 40.0 FT. ARC	HODL X76190 HODL X01300	ES	140. 150.		•		10.3 114.0 1	5.00	9 4	.6 116.8	113.6 1	2 112.4	5 109.9	3 106.2	0 104.3 7 103.1	1 102.2 0 100.2	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	8 92.4 5 88.0	4 82.8 5 77.2	2 71.4 7 62.9	129.7 126.1 12	1ALPHA 5859 PAMB 29.5400	SIZE 23.89 SQ (N) -	· ·	
	EVELS CORREC	1. STD. DAY, 38	FJ-300-FMGDI UND FJB300-FMGDI	INLET,	120. 130.		and the second of the second o		.1 106.		- 113	115.2	9 115.4	5 116.7	.3 116.3	NNI	. 5 113.7 . 8 112.5	112.0 109.3	.8 107.8 .9 104.2	.9 99.5	.3 92.5 .7 86.3	5 73.8	123.2 126.9 1	N299 IA ADH108	S 68		
		70 PERCENT N.H.	ON - MODEL BACKGROUND	Ę	100. 110.				2.7 95.9 1	96.0	97.3	101.0	3 104.2 1	104	2 106	5 106	.6 107.8 1 .0 107.3 1	.1 106.6 1 .4 104.5 1	.4 103.1 1 .2 100.3 1	.6 95.2 .0 91.7	.0 67.1 .0 60.5	.3 73.6 .4 67.6	14.9 117.5 1	TAPE NG. N AERG. RDG. A	ARC 154.7		
			I DENT I FICATION	ANGLES	.00				9 91.3	69.5 91.9 90.1 92.4	2 94.0	200 200 400 400	3 100.1	7 100.4	7 108.4 1	0.000	.5 104.4 1 .8 103.7 1	.0 104.2 1 .6 102.7 1	.5 102.2 1 .7 101.0	.5 98.4 .0 92.8	.0 90.7 .0 83.5	. 1 75.0 4 69.1	3.8 115.4 1	27-78 ANECH CH A	RANGE 10.0 FT)		
	TRANSFORME	59.0 DEG. F.			60. 70.				6 67.4	86.9 86.0	5 90.3	- 01 10 - 02 13 - 03 13 14 - 03 14	8 98.8	6 105.7	7 104.4 1	0 102.0	.3 101.3 1 .6 100.7 1	.3 100.4 1 .0 99.0 1	.0 98.8 1 .6 96.4	.1 93.2 .9 91.7	.8 86.0 .2 79.6	.1 73.2 .6 67.5	3.9 113.6 11	02-2 C41	ACGUSTIC 12.2 M (4		
					0. 60.				.3 87.3	6 97.9	2 88.5	- 0 5 0 9 0 4 0 4	3 97.6	7 106.9 1	3 102.9	9 100.7	.7 100.3 1 99.5 1	.3 99.2 1 .9 97.8	.9 96.5 .4 93.8	.5 90.1	.5 81.6 .1 74.9	69.0	.3 113.1 11	TEST DATE	TEST POINT 7619		
						FRED 60	9 0	100 125 160		315 85			-	~ ~									CASPL 113		MODEL T	727	

0
8
-
-
0
-
•
_
œ.
9
79
Ĺ
Ĺ
5
111
5
111
111
1111
7/17/7
1111

Line Committee to the second of the committee of the comm

											90				
					OF OF	GINAL POOR	PAGE QUAL	IS ITY							
10.160										*			Υ Ε Β Ε Β Β		SPEED 294,0 FPS)
97/11/10													ECTION -	1 1	FREE-JET
	. ARG		160. Pui						05.4 151.7 05.5 151.6 08.1 151.6		92.8 148.0 86.1 148.0 81.2 146.7 74.3 145.5	64.4 144.2 122.8 165.0	RACTION	TAMB 10 RELHUM	MODEL 69
SURE LEVELS	8 40.0 FT X76190	DEGREES	140, 150.		661. 4.60	5.2 114.7 5.4 116.4 6.9 116.8	0 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	6 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	نتق سم مصا	.8 103.2 .1 102.2 .6 99.9 .7 94.4	. 9 80.5 . 1 84.9 . 7 80.1 . 6 73.0	83.2 86.3	88	IALPHA SB59 PAMB 29.5400	23.89 SQ IN) -
L SOUND PRESSURE	H. STD. DAY, S FJ-300-FMdDL	l'	120, 130.	•	2	01.5 109.2 1 03.5 111.6 1 05.8 72.0 1	7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	113.7	5 110.1 5 107.2 5 103.9 101.8		71.8	(IN)	N299 ADH106	SO CM C
TRANSFORMED MODEL	œ '	RED	00. 110.		6	7 93 6 1 2 96 0 1 2 96 0 1 1 2 96 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 102 G	2 103 6	2 107.4 8 108.0 1 108.2	6 105.4 101.6 0 97.0	93.0 92.7 88.2 86.3 83.1 81.5 77.4 74.7	.5 68 .6 117	ET ET	TAPE NG. N Aerg. RDG. A	ARC 164.7
19 THO		ANGLES	90. 1			8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	4 96.7 1 98.1 4 100.6 5 101.3 1	3 104 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 105 6 1 2 106 6 1 6 107 2 1	2 105.7 1 5 105.2 1 7 104.0 6 101.4	6 93.8 0 93.7 0 86.6 7 78.0	3 117.2 1	FRE	.	RANGE 0.0 FT)
	59.0 DI		60. 70.			6 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2 95 6 2 95 0 2 98 0	2 107.9 2 107.5 105.4	3 105.2 7 105.0 7 104.8	.2 103.2 1 .3 103.8 1 .2 101.4 1 .2 98.2 1	.9 95.9 95. .6 91.0 94. .4 84.6 86.	.0 71.	ALE FAC		ACOUSTIC 12.2 M (4
			.			92.7.8 93.1.8	94.2 94.6 97.6	110.1 106 111.0 110 108.2 109 107.6 107	105.0	103,5 1 101.6 1 101.5 1 98.2	.8 93.8 94 .3 87.6 90 .6 84.0 86 .2 76.4 77	3 65 5 117	MODEL/FULL SIZE INPUT 1.000	TEST DATE LGCATION	TEST POINT 7619
728			FREG 40	0 8 8 8	4	8 8 8 8	2000	4-100	0000	100 200 200 200 200	31500 92. 40000 88. 50000 84. 63000 76.		AGDE IN		MODEL TE 7600

,	c	3	
1	è	3	
•	۰	_	
		:	
	•	2	
		_	
	į	D	
١	ľ	2	
	•	:	
	ŀ	•	
	۰		
į	r	:	
i	į)	

()

												000	RIC F	3i1 PC	IAI IO	L F	5 7 7 8	ge All'	is r												
																														FPS)	
																														SPEED 294,0	
																														<u> </u>	
																													27.06 43.20	FREE-JE 61 M/SEC	
			Ę	7.9	o a	0	0 0 1 1	9.0	6.0	9.0	0 0 0 4	2.5	98.5	7.8	7.7	9.6	5.7	64.3 63.1	8.						6 2.6				TAMB 2 RELHUM 4	99	
ļ. J			.09	6	0 4		~ .	.) —	0 4		66.3 16		- -	9.		16 16	18						6	101	:		REL	FULL	
		ŀ	150. 16	4		4	01 L	. 00	_	. 0	9 1		. α	.	u	10 h	0								N	6.00)	9	3859 29.5400	[N] - F	
1	X76191	DEGREES		6 92	9		į.		İ			İ	5 4	i			9 21	۲,								7 101		SHIFT	•	9	
j ,			. 140.	5 93	0 4	7	On v	9	~ c) (A)	0 @	١.	3 82.6	.	2 00	е к		6 N								3 108.7	,	-	IALPHA	\$12E	
	FJ-300-FMGDL	INLET		3 81.		1			8 9		8 93.	1		- 1			i	9.5	-							109.3		FREGUENCY	9	₹	
	FJ-30	FROM		84.3			!		- 1			ł		- 1			1	41.0								108.5		0	N299 ADH108	.2 50	
	NO NO	MEASURED	110.	6	Ċ	0	oi c	. 4	4 4		6.7		86.6	46	iai	0 0	0									104.6	:	7.640	RDG.	8032	
	DENTIFICATION		100.						-1		87.1 86.4			-11			.1	18.4								103.7	;	RATIO	TAPE AERG. I	જ	
	I DENT	ANGLES	8			1			-1					- 1			. 1.	20.2 20.2								106.2	7		Ŧ	ANGE . O FT)	
			8	6		7	ø -	ď	ကပြ		D 4	4.	84.3	က်င	i	ار م	6	18.8 18.8							6	105.4)	DIAMETER	27-78 ANECH CH	TIC RANGE 2400.0 F	
			0			• •			•					•				4 - 4 4 - 6								04.2	:		02-27- C41 AN	ACCUSTION 5 H (2	
			0			٠ì			•				82.7	-1											ď				DATE	731	
				10 e	9	0	N C	o o	a) '''	- O	0 0	80.0	ල අ	4	l~ IO	6	0							4				TEST (POINT 19	
				- 1	0	7	n c	4	6	9	ri -	ن د	77.9	o c	9	4 4	-	/ . /					•		. 0					TEST PO 7619	
			17%								8 8 830 830								8	16000	88	00	38	88			•			MODEL 7600	72

	c)
1	ì		Ì
1		•	•
		•	•
1	ŧ		•
•			•
(į)
į	ľ	٠	•
	١	١	•
ļ	Γ		•
•	۰		
ı	i		
1	Ċ		ì

						9	RIGIN F PC	IAL OR	QU	GE ALI	18 17								
																		SPEED 387.0 FPS)	
																		FREE-JET SP 3 M/SEC (38	
SE											•						28.58 43.50	17.96	
APC		9	PWI.			00		152	6 153 4 152 5 153	R) 4	7 150	.8 149. .7 148.	. 1 146. . 8 147.	5.1 146.2 5.1 145.7 9.0 145.2	9 142.	1.3 164.1	TAMB	MODEL 1	
FOR BACKGROUND	X76200 X01400		.000			115.8 111 115.9 109			108.8 101 108.9 101	04	o -		a 0	400.00 400.00 400.00 700.00 700.00 700.00	-1	124.5 119	SB59 29.5400	- (NI)
CORRECTED FO)	_					3 118.6	0.5	2 - 2 - 2 - 2 - 2	115.	112.	109. 106.	100	8 - 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	28	7 129.0	I ALPHA PAMB	SIZE 23.99 SQ	
LEVELS COR	FJ-40 ND FJB40	ž '	130		105.	2 2			1 2 6		113.	111	0 0	95.55 99.8 95.57 97.1 96.4 91.9	5.1 73	9 126.	N299 ADH107	SO CM (
SSURE	HODEL. SACKG	Δ			- I -	[- ,						95. – 10 92. 8 87. 6 8	73.7 8	117.4 122	NG.	154.7	
SOUND PRE	NO NO	OLES.			92.	93.	660	90.	6 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	106	104.	103	97.	0 0 0 - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	75.	8 114.6	TAPE AERG. (£	
MODEL	. =					0 0	000	ω r		0.0	9	6 4 6	2 -	97.4 98. 92.1 92. 80.1 90.	4 00	113.6 114.	78 CH CH	2 RANG 40.0	
UNTRANSFORMED MO					o -	G G	- 4 Ki	N G	, e, e	6 %	9.0	7.9	מכ		ကထ	113.4 11	02-27-78 C41 ANECH	ACGUSTIC 2.2 M (
UNTRA						0 0 0		103	96.5	102. 101.	100.	9 8	9 6		58	1 113.7	TEST DATE	TNT	
					ဖ က	o 01	ယ္ က တ	24.	- 6 6	D 0	o	970	יי מ	88.5 89. 86.6 86. 81.6 81.	6 6	113.2 113.	T.	TEST POINT 7620	
0			FREG 50	8 8 8 8 8	1	ļ		- •					- 1	00004 00000 00000 00000	1	GASPL 11		MODEL 7600	

										. (OR OF	IGI P	OC N/I	L R	QL	GE	: 15 .IT'	} (
																													FPS)
																						-				YES YES			1 SPEED (387.0
									-																	CORRECTION -		28.58 43.50	FREE-JE 117.96 M/SEC
. ARC			160.					10.4 143.9	11.3 146.7	11.0 149.9	2	-	.9 152	153	.0 163	08.7 152.6 08.1 151.8	r	9 150	07.7 150.5		.4 149	.7 148	77.9 145.7	68.1 144.0	123.6 165.1	REFRACTION C	- 1	TAMB O RELHUM	MODEL
0.04	X76200	ES	150.					110.5 1		1116.7 1		114.3		13.01	10.6	107.7	106.90	105.7	105.2	101.3	92.9	98.2	73.6	63	125.2	.00 T	- 1	29.5400	- (NI DS
8		T, DEGREES	0. 140.					106	6 114.0	6 115.7	118	0.0116.0		118		- -	3 111.8	3	7 105.0	. on c	200	ღ.	6 78.6	8 68.8	1 128.3	387		PAMP	S1 ZE 23.99
	FJ-400-F MO DL	FROM INLET,	120. 130						101.0 107 102.6 110	104.6 111	- 2	113	3 115	9-	130		133	100	108,0 110 106,1 107	105.4 104.	8	19 51	8 0	73,1 70	123.2 126.1	VELOCITY (FT/SEC) JET DIAMETER (IN)		N299 ADH107) WO DS 2
	- <u>20</u>	EASURED FROM	. 110.								1	_	10	0 C	6 105.7		3 108.6	7 107	105.	0 101.5	8		75.	1 68.0	6 117.1	1		₩ 200 300	154.7
- Fuern	•	ANGLES ME	001 .00					8		93	98	6 97.	9	00.00	103	106.	7 106	7 104.	103	9 6	83		77.		.1 115.	FREE JET FREE		TAPE AERO.	T) ARC
: }	I DE	₹	80. 90	•				6	90.7		0	4 4	7.1	ro «		106	. 3 106 6 105	5 106	. 4 105 104 104		-	6 93	_	6	9 117	FACTOR .		ANECH CH	STIC RANGE
)			. 70.					60	7 90.3	0 6	93.	2 95.7	100	103,	109	3 106.1	105	2	02.	5 102.1		92.		2	117.4	SCALE FAC	1		ACCUSTIC 12.2 M (4
			50. 60					.00	92.0 90.3 92.3 91.	6 93	.5 95.	• •	4 102.	1 114	09.1 110.	.9 107.	106.	.2 105.	.7 103.		.7 97.	6.7 91.	6.4 79.	6.2 70.	119.7 119,1	SIZE 000		LOCATION	DINT
			40.					1	. 4	OI ED	0	0.4	0	, G	60	00	90	7	7 C	99.9	2	0,4	78.9 7	4	120.8 11	MODEL/FULL INPUT 1.			TEST POINT 7620
			FREG	8 8	8 5	125	160	250	400	200 830	800	1000	1600	2000	3150	2000	9000 9000	0000	0009	20000	200	0000	63000	0000	OASPL				MO DEL 7600

											4	OF OF	SI (SIN PO	IA O	L	PQ	A(U	EAL	1	3 Y										FREE-JET SPEED 8 M/SEC (387,0 FPS)		e de la companya del companya de la companya del companya de la companya del la companya de la c
ANGLES MEASURED FROM INLET, DEGREES	90, 100, 110, 120, 130, 140, 150, 160,	39; 0 70 7 10 0 00 0 00 11 th of 0	.0 /6./ /4.8 66.0 80.6 86.0 81.4 64.8 100 4 75.0 75.5 85.5 61.5 63.6 61.7 83.6 157	0 76.7 78.4 87.9 92.6 95.6 91.3 84.4 168	.1 78.0 79.6 89.2 93.5 96.2 90.4 84.7 169	.5 79.4 80.9 90.0 92.6 97.2 89.9 84.4 169	0.10 00.00 03.00 80.00 80.00 80.00 00.00 00.00 1.00 1	.3 81.6 83.6 91.7 94.7 95.2 87.7 83.0 171	.2 84.1 84.8 92.9 94.6 93.6 86.6 82.2 172	6 86,2 86,0 92,2 93,9 92,0 84,1 78,9 171		0 86.3 88.1 91.3 90.3 86.6 78.3 72.8 169	7 85.0 86.7 90.3 89.0 84.6 77.0 71.0 168	86.6 84.4 86.1 88.1 86.8 82.4 75.6 70.0 168.4	.6 82.9 84.0 85.5 86.0 80.1 /3.8 56.4 156	.3 01.0 02.1 03.3 02.3 77.0 70.7 04.2 107. E 78 4 70.3 65.4 58.2 168	6 74.6 73.1 75.1 73.5 66.3 56.4 45.6 167	.3 67.9 67.0 67.5 65.0 56.2 43.1 27.3 166	.4 57.8 56.8 57.5 50.5 40.0 24.7 166	.1 42.4 38.6 41.9 30.1 16.3 [65.	. 6 18.6 12.6 13.9 0.7						95.8 96.8 102.5 104.5 105.6 99	07,1 103,6 104.3 109.2 110.1 108.3 101.3 95	AMETER RATIO 7.640 FREQUENCY SHIFT -9	TAPE NG. N299 IALPHA SB59 TAMB 28.56 H AERG. RDG. ADH107 PAMB 29.5400 RELHUM 43.50	9E FŢ) SL 9032.2 SQ CM (1400.00 SQ IN) - FULL 117.96		And the property of the proper
	40. 50. 60. 70. 80.	100000000000000000000000000000000000000	71.4 72.3 73.3 72.5 74.4	72.6 73.5 75.2 74.6 79.3	74.0 75.2 76.4 75.0 76.8	76.0 74.9 76.8 77.0 78.1	AA R AR B DO A B1 1 B1 0	91.9 90.6 88.8 84.7 85.8	92.7 93.7 93.9 91.3 90.3	85.9 87.3 89.8 90.2 88.8	85.4 85.8 87.4 88.3 85.8	82.4 83.6 85.3 85.3 85.2	80.3 82.9 84.6 84.4 85.4	1250 79.6 81.6 83.5 83.7 85.2	76.9 80.9 82.5 82.6 83.7	70 1 74 0 78 8 70 0 80 0	63.8 71.9 74.8 76.4 79.2	56.1 62.5 68.0 68.9 70.4	40.8 47.9 56.3 60.4 63.9	20.4 31.5 40.4 44.3 44.9	10.2 17.7 18.5	12500	00091	25000	00000	E 63000	CASPL 97.2 97.8 98.3 97.3 97.2	PNLT 103.3 105.1 106.2 105.1 107.3 1	ā	TEST DATE 02-27-78 LOCATION C41 ANECH CH	MODEL TEST POINT ACCUSTIC RAN 7600 7620 731.5 M (2400.0	OH.	

FLIGHT TRANSFORMED, SCALED, AND EXTRAPOLATED SOUND PRESSURE LEVELS 59.0 DEG. F., 70 PERCENT R.H. STD. DAY, SB 2400.0 FT. SL

X76201

IDENTIFICATION - FJ-400-FMODL

ORIGINAL PAGE IS OF POOR QUALITY

6.2 LASER VELOCIMETER TEST RESULTS

All the parameters employed in the LV test results tables are defined below:

Model Denotes the model number of the nozzle

Point Denotes the test point number

Deq Defined as the equivalent diameter based on the flow area, inches

 R_2^0 Outer flow radius, inches

v. Outer flow velocity, ft/sec

 v_i^{i} Inner flow velocity, ft/sec

v^m; Mixed flow velocity, ft/sec

$$v_{j}^{m} = \frac{v_{w}^{o} + v_{w}^{i}}{v_{w}^{o} + v_{w}^{i}}$$

V_{a/c} Free jet speed, ft/sec

Type Trav Could be radial traverse (North-South or East-West) or axial

Position Position in volts of linear voltage displacement transducer (LVDT), volts

Histo No. Histogram number

Wean velocity, ft/sec

u' Turbulent velocity, ft/sec

 $\frac{\overline{U}}{v_i}$ o Mean velocity normalized with outer velocity

Turbulent velocity normalized with mixed velocity V.m

 $\overline{\overline{U}}$ Mean velocity normalized with mixed velocity \overline{V} .m

Distance from

X Exit plane of outer nozzle

ORIGINAL PAGE IS OF POOR QUALITY

The laser velocimeter test results taken from LV histogram and traverses are presented in Sections 6.2.1 through 6.2.7 for Models 1, 1A, 2, 3, 5, 6, and 7, respectively. The type of traverse, position, and histogram number is given along with the mean and turbulent velocity data. The velocities are normalized with respect to the outer flow velocity (v_j^0) and the "mixed" velocity (v_j^M) . The laser velocimeter positions were shown in Figure 14.

6.2.1 Laser Velocimeter Data for Model 1

6.2.1.1 <u>Laser Velocimeter (LV) Point Histogram Measuremetrs</u> for Model 1

Table XVI contains a description of all the basic types of LV measurement, LV position, histogram identification number (Histo No.) and tabulated mean velocity and turbulent velocity information obtained from the existing point LV histogram measurements.

Following Table XVI are the LV mean velocity traces taken to locate where the point LV histogram measurements were to be taken as well as for general dynostic information.

 $R_r^0 = 0.853$ C-D outer nozzle $R_r^i = 0.953$ C-D inner nozzle $A^i/A^0 = 0.137$

Table	XVI.	LV	Log	Sheet	Mode1	1,.
-------	------	----	-----	-------	-------	-----

O

		90							1	[ab]	le }	WI.	I	V L	og	She	et	Mod	el	1.					. 3		,	•	•
(¥	13/		 -		-									1						· ~ T		- 11				 †		<u>a i</u>
1	*	20th 1/13/28	1/20		1	V	i	1	1	1	.043	1117	50/	711.	1046	1	A20'		.057	.053	\$50.	920.	250	1	.083	ı	inf3	103/	810-
		Å	7/2		•	1	ı	1	1	l	1.046	6407	1094	1,050	1.07	l	972	1	7.010	701	7.009	977	0607	١	207	1	99	.632	559
	FPS	5/13	6.		١		((1	1	oro.	2011	. 099	30%	.046	1	,014		450	e20.	036	100	340.	1	279	1	No.	670	110
	2283	0	72.		١	١	((ı	١	969	3/6	1.034	.992	926	(P16.	1	953	970	,954	1924	476	١	136	١	818	1598	909
	7		F.C.	Į,	١	- 1	- 1	1)	١	97.5	757	239	260	111	1	1.47	1	13/	000/	26.4	56v	118	١	190	. 1	189	20.8	711.4
	2.	14/2	12 %		1	١	l	1	5	ſ	2361	23.62	2498	2397	2333	ı	3122		2303	2344	2304	2232	2322	١	2369	١	2122	6443	6449
	504 5	FPS	HISTO No.		3/72	3174	3/75	3176	3177	3178	3179	3460	31.81	3182	3163	3184	3185	3186	3167	31.56	3169	3190	3191	3192	3193	3194		3616	3167 1449
***	1/2=246	1636	710N R.:		١	.303	586	BL:	306		90%.	Hho.	229	859	1/6'	١	853	(603	72.9	690	259.	7764	١	77	l	LhC	346	1450
(7.				0	687	2.69	3.30	4.16	١	415	3,88	3.58	3.94	127	١	392	1	3.69	3.35	3.17	2.99	3.60	١	3,34	1	3,43	2.50	207
		7.	RADIAL		Cu	E	_		>	١	3	,	E		>	.	W	1	E	\dashv			3	١	3	١	$\boldsymbol{\omega}$	*	W
	821	553	XSeg		i	ŀ	1	1	- [794					_	487	``	1118	-				>	869	:	7907		\dashv	
	3	4.59	1 POSITION X		1	Ţ	1	l	T	1.52				ما عميتر جران	,	2,52	"	3.51					7	450	-	5.50		\dashv	
	Des		AXIA	Ì	١	1	١	T		A	_				-	.00	′′	Ü		_			-	A	2	¥		\exists	7
			CST50	/3.38/	18:51																				-			$\overline{}$	7
		101	10 5 G	1167	725%	5.368	5.72	5960	0/7.9	i	3.725	3. Fal	15.0.9	454	6.235	١	3796	١	1007	5.775	5922	5.969	35%	1	3,970	1	3942	FAZ %	1155
	しょ	5 - -	POSITION WOLTS) AKIAL EN NS	REF # 3.108	١		١	1	Ţ	3,131						3.146	=	3.161	.					3176	-	3,191		_	>
	MODEL	Point		REFT	AKIAL	AXIAL	AXIAL	AXIAL	AXIAL							E-W		E-W :						E-W		E-W.			
(_	L		TYPE TRAV.		A	XX	X	A	Ê	14						7		4	•			j	1	7		Щ	l		

Table XVI.	LV Log	Sheet	Model :	1	(Continued).
------------	--------	-------	---------	---	--------------

	20							Tab	le :	XVI	•	LV]	Log	Sh	eet	Мо	ie1	1 ((Con	tin	ued).	•	JF	PU	УN	QU	7-11	
	when haha	1/2 m/2		Sho	190	.035	671	1	ı	EJE.	पु	450.	920'	19/0	660'	1.	200.	1990	600	.052	,073	1	038	8/1	200.	290.	1697	1250	<u> </u>
	4	0/2.		.999	1,020	1.010		١	ı	607	166	913	17.	,639	189	١	1.044	hh5	612		8107	1	749	904	-				
Sel	SOS	1/2/2		770.	1357	, 033	122	١	1	RO.	7.50'	150.	200.	510	160'	1	, out	.063	120.	940.	590	1	.036	7//	ago.	160.	.031		
2283	0	72		944	964	955	,839	١	l	766	836	. 863	.611	.594	372	l	986:	514	:343	45E	962	١	702	h.350"	186			750.199.	
4	4	, 'S'	,	701	138	R	294		-	189	126	123	63.4	36.1		l	291	727	J'57	8//	167	١	872	220	194		74.	130	
7.	Tale	12 %		1322	232	4000 2307	2027	j		2349	2266	30fb	1477	1436	1440	1	2383	1377	1408	2305	2373	١	1709	2063	2379	2265	677	12.2%	
207 0	EPS	HISTO No.		3/96	3199	4000	1004	4002	4003	4004	4005	400 B 2086	4007		4004	4010	101	-1	4013	4014	7007	4016	4017	4014		4000	407	1651 2204	•
1. 2416	1636	POSITION INS. PR.		,522	707	1997	717		l	326	387	338	245	398	905'		.443	797	400	363	460	ı	0	:43	356	237	220	1254	
12.				2,40	2.79	3.06	334	l	(765	1.78	1,55	7/17	1,37	2.32	1	2,033	767	.017	1.68	7.//	١	0	2.22	163	867	.353	7327	•
	7.	RH WALL		¥	-	-		Ì		E			_	3	;	1	3	_	7	U	2	1	W	B			>	3	· •
5.118	1.573	X Seg		1.062	7	-	_	1.445	7837	1				4		2 789	+				—	2,166	\dashv	-			- 	—	3
ار	14	L POSITION X MS YDES		5,50			-	2.70	10.01	\dashv		\dashv				14,44	7					157.75	7				_	=	
2	·	PLANE		F	1	\exists	>	F	9	-					7	X		1		4	X	17	7		-	1	7	-	.,
	. 1	VOLTS	13.381	13:381	4	\dashv	\dashv		-				_	\dashv		7	\dashv	_	1		1			1	1	1	1	1	
	101	102 FX	4.971	1695	2502	Serve	5.973	1	1	26.8%	5:595	5.437	5.30g	4560	4274	1	4361	11.67	7,67	5.475	5.605	1	7.63%	5636	2.461	2532	5265	4.526	
MODE L	Point	POSITION (VOLTS) A KIAL EW NS	3.108	3.191	1	1	7	3.22/	3.2.59						1	3.326	1		1	†	1	3.512		1		1	+	1/4	
Mos	60	TYPE TKAV.	REF			1		FW	Erw		1	1				EW ?						E-W						الهرب	

	G																						OF	PC	OR	QL	JALI	は
	81/81/1						[ab	le 2	KVI.	. 1	LV 1	Log	She	et	Mod	le1	1 (Con	tin	ued).					7	4 4 4 4 4 4	
5	"he //	2/2.		7//	١	\$	190,	270	290.	090.	150	es?	1	721	527.	1/3	230.	910.	,103	1	.123	7117	٤٢١;	17.7	HH	9//		
	7	7/2		188d	١	3776	719	127		Ĉ,	1.36"	122	1	728	.632	1837	623		189.	1	386	577	.667	,660	1251	376.		
FPS	Sala	1/2		10%	١	224,078	.al.	t		.ofs	902.086	141	1	./62	577	./07	027	400.	160.	1	911.	74.	9///	3	136	0//		
2263	0	1/2/2		827	١		.629		. 673	,834	105	184:	١	534	.597		228	. 3	_	t	165	.594	,630	467	164	328.		
	0	1,0°		257	١	188	761	164	641	205		312	١	363	398	1	181		235	ı	282	767	13%	1	328	72		_
FPS VM	14/2	Dag		1949	١	1773	1642	7027 1649	1627	2015		1991	1	1521	1443	r	1880	1747	1535	1	7116	1436	(523)		142	1 259	1.	
1 1	EPS	HISTO No.		4023	1074	2104 400	7104		2002	402	4030	4031	4032	4033	4034	4035	4636	4037	4038	4039	4040	4041	4042	,007 4043	4044	2,604		
1, 2716	7636	POSITION IDS. PRE		346	1		نـــــا			0 //			١	985'	472	250	1015	7254	.538	1	715	364	220.	100	.378			
	: : : ().			2.51	ı	20.	2, 473	1.37	ته).	705	1,223	10.2		2.46	2.17	1.15	.05	1,167	2.47	1	335	1.67	.34	,03	1.74	3,39		
	72	100 PX		3	1	3	_		\	¥	-	-	1	Z	_	→	3			(Ä			E				
2.11	573	Position ms XDeg		2,166	7.559		٠		·			>	0566						· -	13.92								
	77	JX		XX.	39.14	_		·				-	51.52						>	72.12								
Des	· .:	PLANE		1-)	¥							λ	7							K					1			
	J .	(MOLTS)	1381	13.381																								
1	10.1	10 C (1137	4218	١	4.965	4.229	4560	4.772	5,123	5,338	5.574		5.709	5.622	5.315	4.955	179%	4,230	1	3,967							
725	Point	POSITION WOLTS)	REF > 3106	3.5/2	3.699							-	3,886	_				•	->	4.197								
MODE L	6	TXPE TXAV.	REF		EW	_ /1							E-W							F-W								
المستوالية المستوالية		C K	1	J				•	•					•			,	' 1	i. J	'				• • 1				1

24/84					T	ab1	e X	VI.	L	V I	.og	Sh	eet	Мо	de1	. 1	(C	ont	inu	ıed) .		OF	PO	OR	QU	ALI	ΤΥ
ak !	1/2.	1	2 5	2	126	12.7	1	9				1		T		T					T		T		T		T	7
7	7/2		678	3 50			204					1				1							\dagger		+		+	1
Sold	2		91	4	1 .	711.	1 . '	1															1	1	†	1	+	1
0	2	1	100	.	1	125									T		7.1							\dagger		\dagger	+	
	FRC,	1	28.					•							T									ŀ			1	† ;
1/4/	12 %	1	1	7	227		1									1											T	
EPS	HISTO No.	4046	1404	-		4050	1504										1										T	
1634	17 0N	1	0	929'	129	791	£5%.									Ì												
ر نور	200 JA	1	0	3.10	E	.89	302									T		1										
	KN D.]	8	E	3	3	*																					
5.5	\$ 20 x 10 x 10 x 10 x 10 x 10 x 10 x 10 x				1																						-	
4	₹ 	26.78					>											1	1									
V.	<u> </u>	3	\exists	\exists	1	1												1		1								•
d	(Vacts) NS NS	_	1	\perp			4													1	1							
			167	2405	5.2ll	4.703	370%													Ť								***
5	# XIAL # XIAL	4.297	+	+	+			Ī					•			·				1								
9	T U	M-M		1			1		1	1									1	1	1							()
	30, NT 10/ R. 4.5/3 V. 1636 FOR VINE 0 FPS	POSITION (VOLTS) AXIAL POSITION RADAL POSITION HISTO U DING OFFIS HXIAL EN NS PLANE X MAS YDES LOC. RIMS, PLES NO. FPS FRS NY. ON.	DOSITION (VOLTS) AKINE POSITION RADAL POSITION HISTO TO 0' 0/1, 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1 0/1	DOSITION (VOLTS) AKIML POSITION RIDAL POSITION HISTO TO 0' THE OFFIS AKIML EW NS YDES LOC. RIMS, PRE NO. FPS FPS FPS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFFIS OFF	POSITION (WOLTS) AXIML POSITION KNDAL POSITION HISTO U " 0/1, 0/1, 0/1, 0/1, 0/1, 0/1, 0/1, 0/1,	POSITION (VOLTS) AXIAL POSITION AND LESS FOR VAL. O FPS AXIAL EN NS PLANE X MAS YDES LOC. K.MS, P.C. MO. FPS FPS AXIAL EN NS PLANE X MAS YDES LOC. K.MS, P.C. MO. FPS AXIAL EN NS PLANE X MAS YDES LOC. K.MS, P.C. MO. FPS AXIAL EN NS PLANE X MAS YDES LOC. K.MS, P.C. MO. FPS AXIAL EN NS PLANE X MAS YDES LOC. K.MS, P.C. MO. FPS AXIAL EN NS PLANE X MAS YDES LOC. K.MS, P.C. MO. MO. FPS AXIAL EN NS PLANE X MAS YDES LOC. K.MS, P.C. MO. MS. MS. MS. MS. MS. MS. MS. MS. MS. MS	POSITION (VOLTS) AXIAL POSITION RIDGE FOR VALE OF FOS TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US TO US	POSITION (VOLTS) AXIAL POSITION RIBAL POSITION HISTO U VALLE O PPS THON HISTO U VALLE O PPS THON HISTO U VALLE O PPS THON HISTO U VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALLE O VALL	POSITION (VOLTS) AXIML POSITION RADIAL POSITION HISTO U VOLTS FAS VIAL # WALL EW NS PLAUE X WIS YORS LOC. R.MS. PR. 10. FPS FAS W. 0/1. 0/1. 0/1. 0/1. 0/1. 0/1. 0/1. 0/1	POSITION (VOLTS) AXIAL POSITION KNDAL POSITION HISTO O VINC O CPS AXIAL EW NS PLANE X MS YBES LOC. RIME REL NO. FPS FISS No. 0/1; 0/1; 0/1; 0/1; 0/1; 0/1; 0/1; 0/1;	POSITION (VOLTS) AXIAL POSITION RIDGE POSITION HISTO O 1/2 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4 1/4	POSSITION (WOLTS) AKIML POSITION RIDIAL POSITION HISTO U VILL DING FOR VINC O FOR THE WORLD AKIML POSITION HISTO U VILL DING FOR FOR FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE WOLTS FOR THE W	POSTTION (VOLTS) AXIAL POSTTION RADIAL POSTTION HISTO O VINC O CFS AXIAL EN AS PLANE X MIS YORG LOC. R.M. 1/2, Mo. FPS FRS VINC O VIN. VIN. VIN. Mo. FPS FRS VINC O VIN. VIN. VIN. VIN. VIN. VIN. VIN. VIN.	POSSTION (VOLTS) AXIAL POSITION RIBING POSITION HISTO O COSTION HISTO O COSTION HISTO O COSTION HISTO O COSTION HISTO O COSTION HISTO O COSTION HISTO O COSTION HISTO O COSTION HISTO O COSTION HISTO O COSTION HISTO O COSTION HISTO O COSTION HISTO O COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTION OF COSTI	POSTITION (VOLTS) AKIAL POSTION RIDGE FOR VIAL O FPS AKIAL POSTION HISTORY HISTORY HISTORY HISTORY AKIAL POSTION HISTORY HISTORY AKIAL POSTION HISTORY AKIAL POSTION HISTORY AKIAL POSTION HISTORY AKIAL POSTION HISTORY AKIAL POSTION HISTORY AKIAL POSTION AKIAL POSTION AKIAL POSTION AKIAL POSTION AKIAL POSTION AKIAL POSTION AKIAL POSTION AKIAL POSTION AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER AKIAL MACHINER	POSITION (VOLTS) AKING RIDGE 1636 FOR VAL. AKING EW (VOLTS) AKING POSITION HISTO J. O. O. O. O. O. O. O. O. O. O. O. O. O.	POSITION (WOLTS) AXIAL POSITION RIDAL POSITION HISTO UNICO VINE POSITION HISTO UNICO VINE POSITION HISTO UNICO VINE WAS PARA LOC. A.M. P.E. No. FOS FPS VINE STANDARY HISTO UNICO VINE WAS PARA WAS PARA LOC. A.M. P.E. No. FOS FPS VINE STANDARY HISTO UNICO VINE PARA LOC. A.M. P.E. NO. 1707 200 STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL STANDARY LOCAL	POSITION (WATS) AXIAL POSITION RIDAL POSITION HISTO UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED UNITED	POSITION (WATS) AKINE POSITION HISTO UNITY OF FIRST VINE OF STRING HISTO UNITY OF STRING HISTO UNITY OF STRING HISTO UNITY OF STRING HISTO UNITY OF STRING HISTO UNITY OF STRING HISTO UNITY OF STRING HISTO UNITY OF STRING HISTO UNITY OF STRING HISTO UNITY OF STRING HISTO UNITY OF STRING HISTO UNITY OF STRING HISTO UNITY OF STRING HISTO UNITY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING HISTORY OF STRING H	POSITION (VOLTS) AKINIL POSITION RIBINIL POSITION (VOLTS) AKINIL POSITION RIBINIL POSITION RIBINIL POSITION RIBINIL POSITION RIBINIL POSITION RIBINIL POSITION RIBINIL POSITION RIBINIL POSITION RIBINIL POSITION RIBINIL POSITION RIBINIL POSITION RIBINIL POSITION RIBINIL POSITION RIBINIL POSITION RIBINIL POSITION RIBINIL POSITION RIBINIL POSITION RIBINIL POSITION RIBINIL POSITION RIBINIL POSITION RIBINIL POSITION RIBINIL POSITION RIBINIL POSITION RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINIL RIBINI	POSITION (WATE) AKINE POSITION RIBINE POSITION HISTO OF 100 W. W. W. W. W. W. W. W. W. W. W. W. W.	POSITION (WETS) AXINI. POSITION RINDAL FOSTION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION HISTO JUNE POSITION	POSTTON (VOLTS) AKIAL POSTTON KARAL POSTTON HISTO O 1735 HUARL EW MS PLAUE K WAI They LOST MY. MS. PES FPS WW. O.M. P. P. P. P. P. P. W. W. W. P. P. P. P. P. P. P. P. W. W. W. P. P. P. P. P. P. P. P. P. P. P. P. P.	POSSTION (VOLTS) AKIAL POSTION (RIBAL POSTION) HISTO OF FOR VAR. POSSTION (VOLTS) AKIAL POSTION (RIBAL POSTION) HISTO OF FOR FPS FPS FPS FPS FPS FPS FPS FPS FPS FPS	POSTTION (VOLTS) POSTTION (VOLTS) POSTTION (VOLTS) POSTTION HISTO POSTTION HISTO POSTTION HISTO POSTTION HISTO POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION POSTTION	132 1937 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194 194	POSTITION (1927) ANAL POSTION HISTORY ANAL EN AS DIAME KNOWN HISTORY ANAL EN AS DIAME KNOWN SOND LOC. KNOWN HISTORY ANAL EN AS DIAME KNOWN SOND LOC. KNOWN HISTORY ANAL EN AS DIAME KNOWN SOND LOC. KNOWN PERSON ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAME KNOWN SOND ANAL EN AS DIAMETRICAL EN AS DIAMETRICAL EN AS DIAMETRICAL EN AS DIAMETRICAL EN AS DIAMETRICAL EN AS DIAMETRICAL EN AS DIAMETRICAL EN AS DIAMETRICAL EN AS DIAMETRICAL EN AS DIAMETRICAL EN AS DIAMETRICAL EN A	POSTITION (WATER) AND AND POSTITION HISTORY AND AND POSTITION HISTORY AND AND POSTITION HISTORY AND AND POSTITION HISTORY AND AND POSTITION HISTORY AND AND POSTITION HISTORY AND AND POSTITION HISTORY AND AND POSTITION HISTORY AND AND POSTITION HISTORY AND AND POSTITION HISTORY AND AND POSTITION HISTORY AND AND POSTITION HISTORY AND AND POSTITION HISTORY AND AND POSTITION HISTORY AND AND POSTITION HISTORY AND AND POSTITION HISTORY AND AND AND POSTITION HISTORY AND AND AND AND AND AND AND AND AND AND

Table	XVI.	LV	Log	Sheet	Model	Ï	(Continued).

	301					I	abl	e X	VI.	L	V L	og	She	et :	Mod	el	1 (Con	tinu	ıed)	•	0	F	PO	OR	QU	ALIT	13 Y
A	1/23/26	1/2	ı	1965	220.	1	049	150		1	090.	290	540	1	180.	120.	120.	.084	711.	1								· .
	N.K	25	١	Pyr	Ind	1	170	306		1	299	.739	294	١	357		260		521	١								
Eps	Sold	1/2. 0/1. N/m	1	١	١	1	1	1	١	١	1,	١	(1	1	١	١	١	١	1								
75.97	0	2.	1	1	Γ	1			Į,	١		1		1	1	١	1	\		1								-
97		,0°	١	705	11.8	1	10.9	92.4		١	99		-	١	1,57	93.0	,			1				•			_	
FRS VM	1/1/2	りな	j	1382	1376	1	1506	5045 14SF		١	1307		330	1	1070	1171	1745		Shb :	1								
	1635 FPS VAL	HISTO No.	50'60		2042	5043	ALTERNATION AND ADDRESS.			3495		district to the last		5350	-					5056								
0	1635	7100	1	.258	yrs.	١	545			١	8%/	100	/7/	1	291.	<u> </u>		_	-				•					
	·	RINS PRE	1	6111	777	1	2,75	202	0	1	6.0	0.	56	1	26	.38	70.	40	18'	١								
	7.	10°C 7007	ĵ	3	Ħ	1	3	ш	Ø	}	E	3	3		3	2	E		>									
5.118	4.5.43	Position must Abes	, 463		-	2/2	_		~	7 34/	╄——		-	4.720					->-	7/11								
7	4	7 X	216	-	>	1.4%			_	7777			>	2444	-				-	36.62								
2		PLANE	9	1		>			>	X	-		_	1	 				>	Y				_		_		
4	1014	(VOLTS)	13264													L		L		>			,	ļ				1
	7	FX FX	7.034	4.490	523/	_	4026	57.69	183	1	500	4.062	4.65	1	4624	W C M	170 7	467	2503	$\overline{}$				_			_	
7 7	Point	POSITION (VOLTS)	KBF 3.108		-	3 12 0	1 —	-	>	3361	-	1	-	25 %	- -	-	-		-	3,664								
C MODEL	70,	TYPE TKAV.	Ker	+	T	F.111	+			F -1.1	_			Eril						E-W	1							

	163.60					Та	ole	Wir.	-		_				•		•		•		()F I	PO	OR	QU	ALII	T
***		_		 -		+	726	AV.	L •	LV	Log			t∙ Mo	ode:	1 1	(Co	nti	nue	d).							
	7,7	3/2		1	1	1	(1	./03	1	;	, ,	290.	1	1	1	250.	.038	640	870.	260	1	}	ı	101	070	12
Ś		9/2	1	1	1	1	(-	١	1,041	130%	100%	500	1201	1	1	i	984	3207	.696	069	4024	1	1	l	25	386	974
S d'1	1		1	1	ţ	l	(1	130	460.	101	250.	959	١	1	1	.053	.036	970.	0%	350.	1		1	2360	200	028
1522	400	72	1	,	l	١	1	1	:983	SB.	.983	486	364	- (١	J	929	.967	153	623	967		7		£36	930	920
		10°		1	1		1		236	226	375	122	145	1	1	62.1	129	86.8	1/2	110	111	1	1	42.1	23/	3	1737
Eps V.m		12 %	7				1	1	2366	4060 2396	23085	1387	2339)	1	406	2255	2346	1574	16:20	2347	丌	1	707	2xx		22.32
	3 1.12	HISTO No.	4052	2 4653	4054	4055	1.5056	4058	650%		750%	4062	4063	1,90%	7065		990%	2007	8904	4069	_	1707	707	4073	4024	7027	7076
0. 21/27	1633	AL POSITION RIES 1/2.	0	1.292	679	17.72	156	1	962.	_: _	260	.909	340	1	1	2.477	137	.230	679		654						0/3
	• • • • • • • • • • • • • • • • • • • •	18 Po	0	1.34	226	3.41	437	<u> </u> -	367	322	3.95	417	43.2		1	11.38	364	3.35	200	260	2.29	1 1				72	
	-	100. A	a	F	\perp	1	1		3	4-	+	1	_		•	<u>u</u>		-)	3	:		Π,	4	+	1	
5.17	573	POSITION SON	1	1				127	1		1	1	7	185	16.28				+	F	70	1000	7907	+	+	 	1
1	*	7 X			1	()	1 1	7:75		+	\pm	1	*	222	35/				L	-	- 8	-	777	丰	+	-	
S.Q	¥.	PLANE ?	1	1			2	4-	\pm	\pm	\pm	+	> <	0	- ار			F		-	/		+	丰	+	 -	†
	103	(VOLTE) NS 13.381	4.900 13,361		+			-		+	_	\pm	\pm							-		_	F	1	 	-	
	1	4 XIAL EW NS 3.108 4.915 13381	4.50	2:377	2.11.	7276	1	200		2009	6.70	15/3	2/3	1	02.0	MC.	291	ches.	111.7	4.019		1	6337	547	5.650	5755	٠.
13 5.0 m	70127						3.131	-	\vdash	+	+	>	2.41	3/1/2	7 -	$ar{\parallel}$				7	3176	3.191					
No	9	18.4V.	NKUHL	201.00	AXIA	and a	EN						E.S.	1	1-	1					E-W 3		-				
()	ţ	\$ 1.	\$ 4		, A	1	,¹	1	1		ı	1	1 ~	4 4	4	1					4	4					

ORIGINAL PAGE IS OF POOR QUALITY

F-W

Date 1/23/78 Table XVI. LV Log Sheet Model 1 (Continued). 11. 1/2 - 1/ 550 109 040 629 268 050% 670% 032 046 033 100 130. 00 290 504 400 42.6 745 250 727 651 194 2234 27/12 12/2/2 1993 957 2119 14/2 4631 りぎ V" 2427 Fist VM 4091 2337 2043 2093 1223 \$161 HISTO No. 4077 402 14096 4019 4066 404 4090 4093 1633 FM L90H 4092 4094 404 404 12 POSITION | 663 2454 533 1417 276 861 494 290 010 ZZ' 2.35 02, 92 245 19 2.27 633 132 9 50 3 N 700 W W Ľ 7.062 762 PLANE X MS YDES 1.445 1831 4.593 14.00 U W 0 13,361 POSITION (NOLTS) 7 4.915 3.361 Z W 302 352.2 5.619 4235 03.75 315% 35.25 5.314 4.92.5 4.3 B A KIBL KEF 3.108 3.191 Point 24 3.221 5.3

EN

イズムブ

950

36

246

2360

5000

2097

4089

101

1

63,2

インケ

4096

7.7.7

11.37

2,166

26,75

£326

3.512

E-W

5.628 5.447

	6	b	OF PU	OR C	ĮUMI	Tab	1e 3	τvτ	т	17 T		Ö1														
1	6/14/	2				-40		LVI	• 1	1. ۸۳	og	Sne	et	Mod	lel	1 ((Con	tin	ued	1).			1			
1		1.50	.033	038	3 1	057	156	113	104	10.69	000	460	1	900	220	063	afo	ğ	080	1	<u> </u>	ı	8	ofo	77	7
	N. A. A. A. A. A. A. A. A. A. A. A. A. A.		669	_ \	7	 	17	.9	6	. 								;	,	1	1	,	80.	0		Ě
v		12/2	10	8290	╅	1.775	52	.876	976	916	1251	807	1	240	729	.233	- 7	615	311	1	1	Ì	331	136	289	149
, d	503	1/2	:03	035		750	1100	20%	1080		.056	980	١	790	070	.060	970.	140	075	1	1	1	083	220.	7	056
1522	400	72	613	543		232	554	827	127	200	209	797	1	206	688	769	181.	.581.	294	1	-		.318	201.	.556	7
h	1	C, SA		2000	1	130	3.58	500	736	35	132	5/7	\dashv	156	77	145	184	340	183	23.5	+	3	7			7
7.	1/8/2	12 %		2/60	•	1776		2006		53 /	1	1649	+	1	1	-1	-1-		\dashv			72	1301	184		232
7.25	1 503	HISTO F		5003 L				Ł_		0 20 93			33	7/2/2	-		1826	4	7/3	700		100	127		2521	1463
2427						3006		5008		2910	1105	2015	5013	7105	5005	2016		2015	6105	5020	2021	2955	5023	205%	2027	2026
44	1633	POSITION INS. PRES		7,77	1	8000	-	_	.346	-150		107	l	0	177	767	.346	./20	745	107		2.70/	9.59			777
. Z	٠.,	.√`	00	2,06	1	30	25.5	77	777	7	163	1.00	1.	0	2.77	12/1			3	1.0%		_ -			2,00	
	70	Rei DiAL	124 3	3 =	1	31	V –	-	1	1:	3	2	e	_	1		<u> </u>	+	+	7	+	+	7 0	_	7 5	٠
178	23	Tion Socs	5.166	-	7.559		+			上	+	1	16730	\perp	-	-	+	+	+	9		-	+	}		1
121	4.593	POSITION INS XDeg	2.75		35.14 7.	\pm	-	_	_	+-	-			-		F	I	I	1	0,051,5	7	1	1] .
D. 68	•	AXIAL PLANE X	7		32	+			-	L	-	10	7 00 -				_		13	22.1					>	
<i>A</i>	×.	<u> </u>	2		¥ -	1							1				-	+	-	Z	-	-	-		-	
	m	(406TS) N S 133A/			+					-	_	-	-	\vdash								-			>	
	103	EW 4.915	4.507	11.28	4 50C	5.600	5,541	5.392	51.77	4.719	4352	1	4.93	4423	IhL'Ja	5.325	LHUS	6.2.00	8637	1	6637	6,236	4.9/1	34.53	4260	
7	۲) ۱ ، ۱ ، ۱ ، ۱ ، ۱ ، ۱ ، ۱ ، ۱ ، ۱ ، ۱ ،	# XIAL EN NS 3/08 4.9/5 13381	3572	7	74677						/	3.8FC	4	6	7	2	ک	9	P	167	81	ie	7	23	1/2	,
NOS E	\bar{c}	1	7	• -	┼─		\dashv												\	4.09					>	
\	J SOXL	1×47.	11	E-W								E-W								E-W						

Table XV	. LV Log	Sheet	Model	1	(Continued)

. <u>.</u>	3/28					•	[ab	le :	XVI	• .	LV :	Log	Sh	eet	Mod	de1	1	(Coı	nti	nue	d).	0	FF	00	R (AUŞ	LITY
Ata.	Dok 1/23/18	1/2.	075	1	0.0	10%	110.	811	820.		1		1)	T		<u>;</u>							T		Τ	Ti
	7	1/2 m	200	21	205		765	25.25	311	1	1	1	1	1	1			 			<u> </u>		-			+	+
FPS	300	1/2	620	1	50,		0/0		140	1	Π	1	1	1	1												\prod
1527	400	72	967	1	799	699	562	<i>364</i>	867"	1	1		1	1	١												
4		1,0	101	1	206	245	24.5	270	179	١	1	1		١	١												
7.	14/2	12 %	15%		1616	. ,	1365			1				}													
W/ 303 CSh C	SUS	H1570	5027	202	5029		1825	2805	5033	5034	5035	5036	5037	8038	5039												
243	1633	710.V	181		9	.440	.523	494	1,020	١	١	İ	١	١	١												
1,72	.	RH DIAL POSITION	833	1	0	2.07	240	777	4.68		3.957	3,53	١	3287	3347												
	د7.	Rri Du.	3		Ž	3	:	E	=	1	E	M	1	3	E												
21.15	4.573	12 POSITION X	JC5.81	15,26					>	162.		>	879	-	1												
	1	7 × ×	72,12	78.74					A	127		-	3,57		7												
200	~.	PLANE	M	R					>	A		>	v														
	n	(volts)	13381	-	-					_	1	1	13381	1	1												
	103	102 KAY 7.9.7	200%	1	4.923	4.309	4.194	5.595	6.320	,	6.102	3.759	J	3,929	5919												
1103 E L	Point	W. WKIAL EW NS	1 1	4.257						3/3/		7	3.161	1	>												
(_)	9	TYPE TXAV. Kees		F-W			1			E-W	5-12	2-8	EW	4-5	5-74												

		00												,										OF	P	OOR	Q	JAL	iTY	
		84/27/						1	[ab]	le }	WI.	I	LV I	Log	She	et	Mod	le1	1 (Con	tin	ued).						,	
1	F	Date	1/32		1	250	670'	.030	ó	!	١	١	200	•	640'	038	111	1	1	.057	.076	185	139	111	1	,055	127	160'	020	
		Ž	9/2		١	1056	190%	1045	1049	Į.	1		1033	1777	650%	12% 2.	.993	1	1	690	1033	199	378	967	1	,540	450	-	SHE.	
	Sold	26	1/2		1	120.	750.	800.	.057		1	1	120.			280'	601.	1	١	yso.	070.	.170	921.	601:	l	,057	.//3	150.	690	
	1346	9	12		1	.983	986	116	977		I	•	963	129	136	107	225	١)	643	276	-517.	352	901	1	.503	419	328.	1697	
	13	1	1,0°		1	735	39.7	40.7	82.5	1	١		103,	50.5	66.4	50.6			1	72.5	701	246	167	152	1	24.	169	131	99.3	•
	7.	14/2	12 %		1	1423	1430	5011	1419	{	١		1393	349		870	1338		1	930	7367	168		1304	ſ	328	606	12.53	8001	
	247 5/2	2013	H1570		50574	S058 A	50594	SOLOA	80614	50624	50634	5664	5065A	# 19ES		506.8	5206	5070	11.05	72 <i>es</i>	5023	5014	j	50%	5077	5020	5079	Salo	1805	
	143	828	805 1710N		1	098	018.	818	PR	0	.860	1	734	127	208	.547	177	.5FC	١	516	627	27/	869	660	١	0	229	71/1	.211	
/ / .	, Z	*3	6.1		1	368	3,72	.3.76	407	o	3,95	1	337	2.15		274	354	2,69	١	2.37	2.88	3.54	3.25	3,03	1	0	3.35	189	76.	
** ***			RNDINK LOC.		1	B	:	3	*	વ્ય	W	1	β	:	E			>	l	E			-	B	1	0	3	4	7	
	2,118	4.593	POSITION MS XDes		,294	_					>	3297	_				-	١	707	-		-		>	2.789	-		7		
			~		257	_					>	357					>	1	550					-	1444	+		-		
	7	·	PLANE Y		R	+					_	O					>	1	E					>	Ħ			7		
	1	10	POSITION (VOLTS)	13387	13.387																						-	4	>	
	İ	15	10 S	4.966)	6,150	1707	3838	3.744	4966	0517	1	3,956	4.110	5,940	5.288	8709	2.774	1	27.77	5530	6.039	C./62	4.057	}	4.962	5.50	5,533	5.257	
	Mos EL	70,07	POSTA	73./03	3.126			\dashv		1	1	3,156	-					1	3.186	-			-	=	3.321		$\overline{+}$	\dashv		
,	110	ò	TYPE TKAV.	1	E-W					AXIAL	AXIAL	E-W						AXIAL	F-E	İ		-			E-W 3				1	
Ų,			7 7		1	1	1	•	•	Li	X.I		į		ı	1 1	ı	7	1	- 1	ı	ı	- 1	1	1	I	i	- 1	ľ	

Table XVI. LV Log Sheet Model 1 (Continued).

																		_ ,										
	Bak	2/23		990.	.093	111	l	9//:	077	950.	840	441	80%.	1,	180.	101.	.093	.099	760.	T	.13/	101.	080.	. 093	1/4/1			1
		9/2		672	PV6	,447	-	40	2118	429.	.733	578	333	(286	364	£54.		308	1	638	726	159	P25	614			
5/7	2013	1/2		2005	9,80	90%	1	109	220	090	110.	75//	10%	1	140.	.094				T	122	250.		1290	13/			
3	0	2,		259	289	111	١	380	629.	125	~	557	310	1	772	357	426	386	287		244	676	606.	268	272			
13		C, FRS		P95	125	158	l	157	104	130	110	167	146	1	117	981	7	13%	122	l	176	138	807		150		1	†
Ž-	INC	12 %		906	1371	603	ſ	5.50	962	140	286	806	5/1/2	(3.65	517	617	555	2/1/	-	860	376	223	7111	828		+	-
7 FPS	202	HISTO No.		2082	5083 1141	HOS	5085	2005	ises	Bos		5050	1605	29.65	5093		5663	2096	5957	8368		5100	1015	7015	5/03	1	1	1
1442	996	11.00		757	366	640	١	.830	-015-	71/2	://3	502	930	1	1.017	529	0	555	7701	1	187	12.5	120 %	303	244		1	
12		1500 71		.90	897	254	1	3.81	200	183	15.	233	127	1	4667	2.43	0	2,55	4.00	1	3/3	1821	53	1.39	2,50	1	+	1
	.7.	RADIAL 10C.		3		7		3	1	7	W.		-	1	E	=	w	3	=	1	3		>	E	:	1	十	
111	23	POSITION SON		2769	-	-	2.559			_		_	-	13,920			_		 	5.166	\dashv	\dashv	\dashv		>		1	-
9	4.593	200 X		14.44	1	7	39.14	+			\dashv		>	12/21	1			-	7	26.25			-		<u></u>			-
S-Q	€. '1	AXIAL PLANE X		4	1	7	Y	\dashv	+		\dashv	7	7	N	1		+		\	7	+		+		>>\ >>\	\dagger	1	+
	•		13301	13367	+	+	+	+	-	-	1	\dashv			1	-	+	+	+	\dashv	1		1	\dashv	X			-
	1505	62 C			4.463	4.054		3,124	2662	4364	17175	27975	6246		6.367	5696	0367	Kros	2.503	1	4026	1361	1084	5.364	2125	-	1	1
, J	L			3.321			654		1	7	7	7	7	41.62	7	1	-	7	7	3.507	1	1	7	2	12	+	+	
11103 E L	Point		Reces	3		· +-	E-W 3	1	+	_	+		-	E-10 4	-	1		_	-		+	-	+	1		+	+	1
		TYPE TKAU.		1			ώ]		1	1		1	1	4	1	1		1		FW	1	-	1			1		
																			- N.									

Table	XVI.	LV	Log	Sheet	Mode1	1	(Continued).
			~~~			-	(00110111000)

		1/23/18				·		Tab	ole	XVI	•	LV	Log	Sh	eet	Мо	de1	1	(Co	nti	nue	d).	O,	•	<b>.</b>					
1		4/2	1/2.	7	l	1	240.	,027	460.	.03/	1	1	-	030	dho.	900.	2500	109	١	1	1700.	900.	190.	164	000	420.	1	130.	610	<b>2</b> .
		Date	9/2	7	1	١	1009	1.024	260%	407	1	(	l	1.25.	:9/5	1007	585.	.963	١	١	769.	.94ST	1005	819.	166	4007	ι	246	1512	• : :
	Sold	Sold	~ <u>```</u>	•	l	1	.076	200.		,029	ĺ	í	J	.028	io 17.	500,	.0 42	70%	١	1	.039	120.	.063	./53	1064	120.	١	076.	.039	<del>-</del>
	2	400	<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	•	١	J	.937	.955	.966	255		Ì	١	172	316	939	.549	368	1	١	.590	188.	937	576		.937	١	.863	14%	L.
	(3		, c	?	١	7:01	111	322	524		1	١	l	40.5	150	91.7	01.2	331	1	1	198	103	1.16	222	22.4	74.	l	110.	523	
	7.	1/11/2	12 %	,	١	388	1361	1388		1381		-	1	747	1334	1365	340	1305	1		PS7	0811	1562	237	1343	1361	1	1254	200	
	3 FPS	ZWZ	HISTO		5104	5/05	5/06	5107	5168	5109	5/10	2111	2/15	5//3	4175		5116	5117	5118	5115	5/20	1215	2112	,27,13	4015	2115	3715	5127	5121	
	1453	899	POS 1710N	<b>1</b>	1	2669	616	.P43	148	229	ı	١	1	,573	.651	.232	729	269		١	415.	156P	55%	277	127	299.	١	10%	400.	•
<b>.</b>	7.	• • •	N		1	12.35	4.22	357	3.89	3.58	3.89	0	1	2.63	2,99	3.36	2.65	3,53	2,63		2,36	2.61	301	3.57	3.11	3.04	1	1.84	7	, <del></del>
No.		72	RN 20.26		{	E	A	=	Ü		¥	3		E	-	<b>\</b>	B	,	E	1	R	-		>	3	2	.1	3	;	71 <b>a</b> s
	27.128	4.593	Position Nosity	7	762					-	1	١	869.					-	Ţ	1.067	_					X	2,814	$\neg$	-	
	7	7	7 X		152					>	1	1	3.51					٦	١	5.63						>	14.57		7	
	200		PLANE		A	-					j	١	Ü					>	1	4	. —		-				X			
		ان	COLTE		13.387	+															÷		1						7	
		1500	) 201	4.955		197	3681	3794	6.121	6.030	7717	4.255	1	5.745	7585	7965	4.099	3876	5.745	1	5.669	5.737	3,88	4.027	4.022	2,0%	1	4.403	176%	
	7.2	5	POSITION (VOLTS)		3126	1				-	1	1	3.156	$\dashv$				>	1	3,106		1	1				.323	_	7	
	Mod E. L	Point		7.7.2	EW		-				AXIAL	AXIAL	E-W			1			AxIAL	E-W		-	1				F-W 3.		$\dashv$	
(			TYDE TXAZ		7	ł	ı	1	i	1	A	A	Y	I	1	- 1	ı	1	A	74	1	ļ	-	1	1	- 1	M	ı		

Table	XVI.	LV	Log	Sheet	Model	1	(Continued).
-------	------	----	-----	-------	-------	---	--------------

<b></b>		1/28/20	•					1	abl	.е х	VI.	L	V L	og	She	et 1	Mod	eT .	1 (	Con	tin	ued	).					•	
	•	Dake //	2/	,	190.	. 073	501'	1	30%	280.	afo.	120.	.677	160	١	sfo.	, 073	.083	200.	250					T				
		\$	72	,	.720	937	.5,20	l	525	1257	277		734	, -	(	385.	659.	_	_										
	5/5	50.3	1/2		720.	890.	260		960.		.074		260.		j	.079			1201	1/50									
	1355	100	2/2		.671	46 g.	.485	(	625'	306.	720	1672	685	344		363	1519.	565			-								
	7		, o,		424	99.2	140		143	2//	POI	96.9	104			115	99.1	111	103	74.3									
	7.	12/2	12 %		975	. 7	704	1	366	1016	1046	٠ ا	266		1	725	893	173	630	482								-	
	3 Fres	202	H1570		5129	5130	5731	5/32	5,33	5134	5/38	5.36	5137	5738	5,39	5110	27.47	5.42	5143	5144				,					!
	145	868	1100	· · · · · · · · · · · · · · · · · · ·	.213	.392	,657	(	.599	320	237		11/4.	7	ţ	66%	9,677	462.	729	5///									
)	1, 1953	. l	KN DIAL POSITION LOC. KINS. 196;		86	037	2.99	į	2,75	1.47	1.09	11/4	1.89			3.21	177	777	3,35	5.12		-							•
		.,7,	RN 2046		F	+		. \$	E	-	7	3		<b>\</b>	1	3	:	E	-	7									
	5.116	4.543	POSITION POSITION	•	2.814	-	_	7,584						>	13,953		1	1	-	>									
	2)	4	~ ×		19.57	4	>	39.27						-	7225	1	1	$\dashv$		-									
	2.3	·	PLANE		H	-	¥	X						>	111	-			$\dashv$	7									
		9	(2770) (SN	13367	13357	-					7	— †					1	-	1	>									
		1506	501	4.955	5.248	5494	5.83	1	5.781	5.355	1/25	4.833	4387	3.611	١	3,993	25277	5.334	5.759	755.9									
	7	Point	POSITION (VOLTS)	KEF + 3,103	3.323	-	-	3,696	-	4	7	4	-		1617	4	1	1	-	>									
	Nioù E L	60		Ref			•	E-W	1	_	1		1		EW 4	1	1	1	1		}							$\dashv$	
	)		TXPE TXAV.		1	1	1	7	. 1	- [	1	- 1	- 1	- 1	4	1	1	1	1	•	1	1	1		1	1	l		

Table	XVI:	LV	Log	Sheet	Mode1	1	(Continued).
-------	------	----	-----	-------	-------	---	--------------

		2/29	· · ·		•		Та	ab 1e	/X :	T.	LV	Lo	g S	hee	et N	lod	≥1 :	1 (	Con	tin	ued)	OF	PO	UK	Ųυ	ALI	
<b>?</b>	•, 	Dute 1/23/78	2/2	1	047	11.7	ı	840.	0%6	1	647	1/10	(	1								T					İ
		À	7/2	١	900	228,	١	9/9		i	346		<del>                                     </del>	1								<del>                                     </del>	-				
-	Sels	30,3	%		١	{	1	١	(	1	{	1	١	(													<u> </u>
*	101	0	2/2.	,	1		١	1		١		1	1	l													
	1		C, FPS	,	52.3	1291	١	52.6		1	52.3	854	l	1													
	FPS Vm	12/2	15 %	1	994	907	١	650	597	1	859	147	1	1													
	- 1	LL,	HISTO No.	5057	5058	5059	5060	5061	5062	5063	8 <b>ळ</b>	5905	9705	5067													
	0	100		١	S. S. S.	41.9.	1	.209	702	١	311.	109		-								-					
			100. RINS 462	1	271	2.82	١	36.	.95	١	,54	,50		-													
•		72		1	Ē	. 13	١	$\omega$	H	١	E	W		-{													,
	5:178	4.573	K MS XDES	Eht.			1.463			2341	$\dashv$	>	4,720	2.111													
	ار	7	50% X	777		>	168		<b>&gt;</b>	77.7		-	24,44	34.62	•												•
	2	K.	PLANE	X	-		8	-	>	H	-	_	12	¥													• • •
		<b>B</b>	NS N3.384	13,384											-		-										
	1	113	10 N ( KW 4.854	١	5667	4,007	١	2057	2138	١	5.015	4.704	- 1	١													
	MODEL	Point	E POSITION (VOLTS)  V. AKIAL EN NS  KEE 3108 4.854 /3.384		+	-	3.224		7	1528	$\frac{1}{1}$	>	3477	3,664				•									
(		70,	TYOE TKAV.	E-W			E-W 3			E-W			E-W	EW													( ·

		34					ı	Tab	le	XVI		ΓΛ	Log	S Sh	eet	Mo	del	. 1	(Co	nti	nue	d) .	F	PO	OR	QU	ALI'	IY .	
).		\$400/	72.		Ti	1		1	Į	1	ı	043	670	1	770	220	1	300	1	1	790	20,	1	37.0	170	400	1	.037	305
		2,4	7/2	1		1	+	+	i	1	1	1.013	166	1	1107	(023	1	1034	1	ı	159	7707	١	.639	101	5107	1		5107
	Sold	503	1/2		1	1	Vis e	1	1		1	140	800.	1	120.	020	1	,023	1	1	.059	226	1	240'	220.	1700	١	03	.023
*	Ì	0	ارا بر	1,	1			1	1	1	1	.953-	940	1	.954	396	-	375	1	l	717	676	1	20%	1956	1957	1	<del></del>	957
	2051		, o, F.P.S	1		1	-	I	1	1	1	0.36	7.07	1	46.0	1.65	1	50.0	١	١	371	56.7	1	90.6	55.2	18.6	1	255	1,29,6
	7.	Lake	12 %	1		1		1	1	1	1	2076			2074	2099	1	2120		}	1335	2305	<u> </u>	1310			1	1902 5	1000 9
	FRE	302	HISTO No.	,	2021	3072		3075	3077	3078	3079	3060		3082	3083	3000	3065	30854	3086	3067	_	3059	3050		_		3094	9	30%
	2175	1348	110W		١	١		l	١	١	١	275	-	1	810	the.	1	901		1	1.592	2116	١	20	<u> </u>	-57	1	350	765
1	جر	7		,	1.23	3.52		2.79	0	1.39	1	405	3.77	`	3.72	369	`	414	1	1	2.74	3.30	*	2.87	3.25	3.19	;	3.66	3,51
41		7,	40 Dust.		F	"		E	3	E	<u> </u>	3	-	-	W			_	1		3	_	_	4			>	SE	\\ \
	700	4.593	POSITION   SON		1	(	REF	١	١	1	194	1					_	_	407	7	<del> </del>								7
	15	17			1	١	E-W	1	1	1	C							>	200	200	-		-		+	-			7
	200	. 4	PLANEX		1		VEVJ		1		0	-	$\perp$	_				-	00	1 0	<u> </u>		-	+		1	-	+-	, N
		1	COLTE	13380				122.80	_					1	32.6%	_		1225		+-		>	1		12,27	>		13,042	13269
		7//	SON (	7,167	6.262	1,00.9	h767	577	4 91 1/	77	227		3,704	3.77	100/	100	1	1	3	1	107 /7	2936		100	77/2	1200	27772	<u> </u>	
	7	5	POSITION (VOLTS)	Rer-3.107		1		1	1		6, 6	3/20	-	+	+	-	H	-	21100	2/1/2	7/60	+	+	-	$\frac{1}{1}$	$\perp$		$oldsymbol{\perp}$	
	1100 E	Point		REF	AXIBL	AXIAL		10:	NXINE.	NX INC	8×101	F-W	1	1	रू		T:	3		F-10	MA			7					
			TYPE TKAV.	-	AX	A		1 2	4	£1.	7	ı		1	1	1	•	•		i	1	•		i					• 1

•	<b>3</b>	J402/1						Tab	1e	XVI	 [.	LV	Log	g Sł	neet	: Mo	ode:	11	(Co	nti	nue	a (b.		RIGI F P	INA OOI	L P R Q	AG! UAI	e is Lity	
å		State 1	2/3.	JAC.		250.		١	1	890.	,039	6/0	035	.030	.083	250	1	١	035	033	0357	850	350	030	i	00/	036	220	
		<i>لە</i> جر	9/2	50.07	7016	1.009	7.200	1	1	999	1559	1117	199.	77.07	07.07	1034	i	i	0101	Sto	533	637	18	5/01	T	912	8/0%	797	
	SYA	567		.043		,053	840	1	1	.064	.036	810.	.033	720.	0,00	420.	1	1	033	,03/	,033	.036	250'	800	١	290	-	<b></b>	
	2051	0	26	948		.952	943	1	1	146	619.	.579		126	.962	216.	1	) manufe	362	547	.503	600	,	957	١	No	.960		
	Í	y	10°	24.4	$\vdash$	11.5.	201		1	9/	75.3	361		1	H.	5.7.2	(	1	22.7	4	224	285	69.6	979	1	205	73.9		
: 	7			12062	20 83	20.70	2050	1	1	2047	1365	1260	73567	2056	2093	21.20			2073	11.89	1607	1306	7021	1807	1	1870	20%	1356	
	2175 875	EP.	HISTO No.	3057	3098	3099	3700	3101	3/02	3/03	3109	3105	3/06	3/02	31 OF	3/09	3/10	3/11/	3112	3//3	3114	3115	3116	31.12	3119	3.20	3/2/	31.22	
	7	1348	Sirion E Res	. 225	28.5		18/15	1			1811	75.5	145	107	72.5	727	1	1	.440	246	250	320	1.66	1511	١	563	22%	787	1
	7.	, , , , , , , , , , , , , , , , , , ,	1AL POS 1.105.	3.79	3,61	3.5/	3.73	1	1	3.02	235	236	2.49	187	3:34	305	1	1	202	113	1.18	14.77	2,04	2.36	1	2.59	2.09	107	Nº su
			207	NE	1		F		1	3	*	4	$\exists$	1		<b>&gt;</b>	1		3	2	W.	-		<b>X</b>	17	4	7		•
	5.118	4.543	PLANE X MS YDES	829	1	+			7007	+	-	$\frac{1}{1}$	1	1	+	-	1,445	1.931	-					>	2,789	7	+	*	
	1	4	AXINE PA	3.5			<b>&gt;</b> \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	7.50	2,30	-	1	$\frac{1}{1}$	1	1	1	>	248	10.00	1			+			14.44	+	7		
	<u>ئ</u> ئ	V.		2	7			3 1	4		$\pm$	1	+	+	1		7	0	-	1				<b>X</b>	H	7	-	7	
	1	او	(Vaits) NS		13.647		13.300	+	$\pm$	$\pm$			+	+	1	1	1		$\frac{1}{2}$	$\pm$						+	-		
•		7	POSITION (VOLTE)  4 KIAL EW NS	<del>                                     </del>		3603	*		<del></del>	2003	4.219	5634	2,670	5.766	225	5.639		1	4316	4585	5,279	5,365	5,536	5632	1	5.700	5.552	5.2.11	
	1103 E L	70127	A KIAL	3,160	+	1	7 /2	2,00	777-	-		+	+	+	+	-	3.220	3258	+	+	+				3.325	+	Ŧ	-	
	010	9	TXPE TXAV. Kei				F. 41	Family	2							,	12 m	E-W		1	İ	1			K-12	†	†		
			トド	•		4 P				•		<b>*</b>				•	ı	ı		•	J.	1	1	1	7 <b>1</b>	ı	1 -		j

		gor				•	T	ab1	e X	VI.	L	V L	og	She	et :	Mod	el	1 (0	Con	tinı	ıed)		(	OF	PO	OR	QU	ALI	ſΥ
		Baladi stad	1/3.		.043	8,00	740.	[	PSO.	146	.067	190.	411	650.		5/1	////	.ols	./36	29%	1	45%	611.	5,80	260	327	811.	1	103
			1/2 m		462	384.	1024	١	,957	18/	159r		1,233			508	.703	727	206	125.	1	.433	.607	729	72%	605	.386	]	345
	Sels	Sol	1/2		lho.	240.	.044	١	afo.	137	.063	.057	.117	.094	1	067.	10%	oso.	129	./53	)	111	.//3	480.	280	777	////	1	160
	150	0	1/2.		.455	450	916	١	.897	hsh.	,55p	25.4	.710	. 236	١	ash:	663	9.89.	.760	1534	Ì	40%.	572	183	683	125	364	1	325
	7		o, FPS		87.2	99.3	95.K	١	173	299	138	577	225	204	1	305	227	175	229	333	1	254	245	183	131	225	241	1	717
	7.	/a/c	りる		38.8	756	10/2	١	1951	486	1214	1205	1545	1819		1044	1442	1491	1654	79/	}	ST	1547	1495	1486	157/	792	1	707
	2 1.75	36/37	HISTO No.		3123	3124	3/75	3126	3,27	3120	3129	3130	3/3/	3/32	3,33	3134	3/35	3136	3137	4616	2139	3140	3141	3/42	3.173	3144	31.45	3146	3147
	2/75	1348	110N		0	.034	.369:	1	414	259.	0	.030	197	.372	١	.612	.371	0	,353	0/7	1	727	,353	0	1.30	744	418.	١	. R6
	, 'Z'	•	12 POS 1710N		0	9/	1.69	١	05.7	320	0	19	90	127	1	2.81	1.70	0	79%	2.80	١	3,37	7911	0	143	2.04	3.74	1	3.98
		72	40 DIAL 40C.	1	É	E	B	J	in	1	B	B	E	ž		B	;	B	E	*	)	B	=	બ્ર	E	-		1	3
•	THE	4.593.	POSITION INSTANT		2.78%	$\exists$	-	5166							7,559					7	9,50							13.928	7.
	2	7	7 X		14.49		-	26.75						,	3914					>	2515							277	
	200		AXIN		H	1	-	7							¥						7	-					7	R	-
		J	(10LTS) NS	13.380	13380	-																						-	
		7//	10 C	4954	45%	2537	4.416		5,494	5.98.5	4.930	4883	5,185	4412	1	110 60	4413	7767	11.475	5.764	1	3.930	4437	4,922	5,053	5.536	97009		3,730
	7 %	Point	POSITION (VOLTS)		3,325	$\dashv$	<b>&gt;</b>	3.511							3.698		·		-	7	3.865	-					>	7.196	-
	Mos & L	60		Refi	1			EW							EW						FN	1					1	E-W	
			TYPE TRAV.		1	- 1	ı	1	1	ŀ	- 1		l	- 1	٦	ł		1	1		4	. 1	- [	ı	1	- 1	ı	7	

Table X	VI. LV	Log	Sheet	Model	1	(Continued).

		90/01						T	ab1	e X	VI.	L	V L	og :	She	et l	Mode	e1 :	1 (	Cont	tinı	ied)	O	FF	00	R(	)UA	ĻIT	Υ
1	•	24/04/1 445	1/23		201	7/15	. 1/3	102	1	994	.059	990.	360.	050	l	250.	670	720.	1	350	.024	25%						(	<b>j-</b>
			19 my		440	.507	.435	.33/	,	348	14.7	448	.407	315	١	1020	1022	9007	ĺ	1052	9/07	_							
	Selvi	3	<u>%</u>		101	205	10%	.096	}	880.	.094	.092	.093	SB	١	,033	527	20.	١	120.	,023	.024							
	2051	0	<i>≥</i> ,		115	JEF.	9//	.312	1	328	.343	423	384	. 297	١	962	316	1967	١	967	1959	.957							
	7		F/PS		_	229	232	209	1	165	hot	200	202	185	1	71.1	55.6	55,6	١	48.9		51.4							[ ;
	7.	Ink	12 %		903	1040	892	613	١	213	855	919	835	647	(	20%	2097	2104	١	2103	2084	1308		İ					
	2175 FPS VM	50 3	H1570		3/18	3189	3150	31.51	3152	3153	3,57	3155	3156	3,57	3/58	3/55	3160	3/6/	3/62	3/63	3,64	3165	•						
	217	1346	12 805 1710N HISTO NO.		1,767.	.009	71.	Be	1	.790	.305	.0/2	.392	200	1	PyS.	1917	116	ļ	999.		122							
, -	, 7.	 ا	14 POS		2.03	.60	1.85	4.04	}	363	477	0.	7.85	3.71	3.88	1	471	4.16	3.21	4.13	3.71	727							(- ₎
		7.	RN DAL 200.	-		W		>		3			E			<b>-</b>	WE	SE	F	SE	B	NE							
	21/16	4.593	Position mes		13.928	_		7	15,206					>	2.94							<b>\</b>					•		
	1	7	504 77 504 X		7777	1		7	78.74	1				>	15.5	_						-							
	S.	·	AXINL PLANE X		2	1		>	7	-				>	A							,							
			POSITION (VOLTS) 4 KIAL   EW   NS		13310	1								>	1	13381	13.570	12,913	1	12.837	13.360	14005							
	1		10 Z	4.924	2,316	4937	2510	6.136	1	3836	4.393	4,907	127.2	6.030	5807			>	6.038	-		1							
	1103 E C	Point	POSIT	8643109	4.1%	-	1	>	4.2%	+		1		$\lambda$	3,130	-		$\dashv$	-	4		-							
C	7102	ò	TYPE TKAV.	Pai					EW						2-5				4-5										

		25/20	•	•	. •	•	Tab	le :	KVI	. 1	LV I	Log	She	et	Mod	lel	1 (	Con	clu	ided	).	0	FF	900°	R	AUÇ	LIT	Y
( )		Drile 1/	1/2.		420	627	1	. 036	03/	.042	720	١	.063	.043	145	011	.052	090	ì	0%0.	7//	-136	311.	.11.7	1	690	380	
		Ž,	7/2		200	958	١	216.	986.	.973	616	١	,543	38	652	277	256	.957	Ţ	.826	176.	725	.239	407		122	2825	
	ray	563	1.5		200	920	١١	250.	.03/	.041		١	.ó62	-	140	901.	2550.		١	.078		133	7115	1114	1	199.	180.	
	2050	0	25.5	,	924	18	1	957	.26	953	930	١	.533	306	1		.937	1937	١	90g"	335	.209	729	.399	١	806.	.832	
	7	1	EPS .		300	5 55		73,3	4.4	P5.7	147		129	26.3	292	226	116	123	١	163	233	278	24/1	239	١	1/1/	163	
	7.	14/2	りま		022	1/ 0/		2003	2021	1994	1946	.)	1114	2020	1337	1582	1960	7	1	2671	700	1484	1151	934	(	1500	7527	
	22 503	Eles.	H1570	,		2/16	5146	_	$\overline{}$	1515	2775	_				5157		5,59	5160		5162	5/63	5164	5765	5,66	2.925	5168	
	2092	202	1710N		23	<u> </u>		602.	557	189.	669.		870'	368		198	392	385.		820.	786	.32	1351	177	1	277	344	
(	7.		200 74	1	2011	407	1	3.07	3,01	3,13	321	1	.73	1.69	2.6.0	18;	1.57	1.77	1	36.	3,6/	1.70	1.29	3.3/	-	1.27	1,58	
	en Life e	72	KN 20. 1		,	7 3	1	$\mathcal{S}$	Ē		->		M	3		<b>\</b>	$\omega$	1,1	}	12		<b>&gt;</b>	3	=	<b>\</b>	Ü	77	
{	12/	2773	POSITION MAS XDES		77-	<u> </u>	1.062	i i			-	27/9						<b>^</b>	2.559		-				5.166		>	
	6	2			7:26	<u> </u>	5,5				_`~	19:44							39.14					>	26.75		>	
	2000	·	PLANE X		<u>z</u>  -	-	Y				<b>-</b>	I						À	¥					<b>-&gt;</b>	<b>!</b> -7	_	<b>&gt;</b>	
		H611	FN WS		X _	1				•			_														<del>\</del>	
				548%		7777	1	3,974	5.197	5.835	5.657	1	1594	5.402	5605	5.167	4.423	4,365	1	5,002	5,928	507.7	4539	3.903	1	5.276	4422	
	7 3 2010	Point	POSIT	3,104	2.727	-	3.189	_				3,322						>	3,6 95					->-	3,500		-	
		60		١,	3	†•	EW					EW							60						Eu)			
			TYPE TRAV.		1	1.	1	1	<b>!</b>				l				<b>J</b>		9		. 1				-71	i	ŀ	

a

#### 6.2.1.2 Loser Velocimeter (LV) Mean Velocity Traces for Model 1

Test point number and plume location is identified by matching the identifying Histo No. on each graph with that given in Table XVI.

The velocity and physical position information is identified with handwritten scales on the ordinate and abscissa.

MODEL 1 TEST POINT 101 .









ORIGINAL PAGE IS OF POOR QUALITY



ORIGINAL PAGE IS OF POOR QUALITY Olive 4.9516 -- 9 -7 -3 -c -9 1/9 1 1 144 1 į \$ SET EN

ORIGINAL PAGE IS OF POOR QUALITY m, 1100 ×10. 483 E 4 4 4 4 1 4 2

ORIGINAL PAGE IS OF POOR QUALITY D. Histo 2

















MODEL 1
TEST POINT 101A











MODEL 1 TEST POINT 103







## ORIGINAL PAGE IS























# ORIGINAL PAGE IS



ORIGINAL PAGE IS OF POOR QUALITY











ORIGINAL PAGE IS OF POOR QUALITY



MODEL 1 TEST POINT 1505















ORIGINAL PAGE IS 14.900 HS003



MODEL 1 TEST POINT 1506















ORIGINAL PAGE IS OF POOR QUALITY



MODEL 1 TEST POINT 113A









ORIGINAL PAGE IS

MODEL 1 TEST POINT 116





























ORIGINAL PAGE IS OF ROOR QUALITY 9 4 2116 4.316 H3154 1.67





ORIGINAL PAGE IS OF POOR QUALITY

MODEL 1 TEST POINT 119A



ORIGINAL PAGE IS OF POOR QUALITY 5 Tag to fa





