# CS372 FORMAL LANGUAGES & THE THEORY OF COMPUTATION

Dr.Nguyen Thi Thu Huong
Department of Computer Science

Phone: 38696121, Mobi: 0903253796

Email: huongnt@soict.hust.edu.vn,

huong.nguyenthithu@hust.edu.vn

# Unit 11 Post's Correspondence Problem

# Post's Correspondence Problem (PCP)

### AN INSTANCE OF THE PCP

A PCP instance over  $\Sigma$  is a finite collection P of dominos

$$P = \{ | \frac{t_1}{b_1} |, | \frac{t_2}{b_2} |, \dots, | \frac{t_k}{b_k} | \}$$

where for all i,  $1 \le i \le k$ ,  $t_i$ ,  $b_i \in \Sigma^+$ .

Given a PCP instance P, a match is a nonempty sequence

$$i_1, i_2, \ldots, i_e$$

of numbers from  $\{1, 2, ..., k\}$  (with repetition) such that  $t_{i_1}t_{i_2}\cdots t_{i_e}=b_{i_1}b_{i_2}\cdots b_{i_e}$ 

# A match of PCP

Alphabet:  $\Sigma = \{a, b, c\}$ 

| a  | С  | ba | а  | acb |
|----|----|----|----|-----|
| ас | ba | а  | ас | b   |

Concatenation of strings on top: a c ba a acb

Concatenation of strings at bottom: ac bà a ac b

# Post's Correspondence Problem (PCP)

# QUESTION:

Does a given PCP instance P have a match?

### LANGUAGE FORMULATION:

 $PCP = \{(P) \mid P \text{ is a PCP instance and it has a match}\}$ 

## THEOREM 11.2

PCP is undecidable.

Proof: By reduction using computation histories. If PCP is decidable then so is  $A_{TM}$ . That is, if PCP has a match, then M accepts w.

# A "yes" instance of PCP

Alphabet:  $\Sigma = \{0,1\}$ 

|   | T     | В       |
|---|-------|---------|
| i | $t_i$ | $b_{i}$ |
| 1 | 11    | 1       |
| 2 | 1     | 111     |
| 3 | 0111  | 10      |
| 4 | 10    | 0       |

This instance of PCP has a match of dominos 1, 3, 2, 2, 4:  $t_1t_3t_2t_2t_4 = b_1b_3b_2b_2b_4 = 11011111110$ 

# A "no" instance of PCP

Alphabet:  $\Sigma = \{0,1\}$ 

|   | T     | В       |
|---|-------|---------|
| i | $t_i$ | $b_{i}$ |
| 1 | 10    | 01      |
| 2 | 011   | 100     |
| 3 | 101   | 010     |

Why?

# PCP – THE STRUCTURE OF THE UNDECIDABILITY PROOF

The reduction works in two steps:

We reduce  $A_{TM}$  to Modified PCP (MPCP). We reduce MPCP to PCP.

MPCP AS A LANGUAGE PROBLEM

 $MPCP = \{(P) \mid P \text{ is a PCP instance and it has a match which starts with index 1} \}$ 

So the solution to MPCP starts with the domino  $\frac{t_1}{b_1}$ . We later remove this restriction in the second part of the proof.

We also assume that the decider for *M* never moves its head to the left of the input *w*.

# MAPPING REDUCIBILITY

### **DEFINITION**

Let A,  $B \subseteq \Sigma^*$ . We say that language A is mapping reducible to language B, written  $A <_m B$ , if and only if

- There is a computable function  $f: \Sigma^* \longrightarrow \Sigma^*$  such that
- For every  $w \in \Sigma^*$ ,  $w \in A$  if and only if  $f(w) \in B$ .

The function f is called a reduction of A to B.

# THEOREM 11.3

If  $A \leq_m B$  and B is decidable, then A is decidable.

### **PROOF**

Let *M* be a decider for *B* and *f* be a mapping from *A* to *B*.

Then N decides A. N = "On input w

- Compute f(w)
- Run M on input f(w) and output whatever M outputs."

If  $A <_m B$  and A is undecidable, then B is undecidable.

# SUMMARY OF MAPPING REDUCIBILITY RESULTS

### SUMMARY OF THEOREMS

### Assume that $A <_m B$ . Then

- If B is decidable then A is decidable.
- If A is undecidable then B is undecidable.
- If B is Turing-recognizable then A is Turing-recognizable.
- If A is not Turing-recognizable then B is not Turing-recognizable.

### **Useful observation:**

- Suppose you can show  $A_{TM} <_m \overline{B}$
- This means  $\overline{A_{TM}} <_m B$
- Since  $\overline{A_{TM}}$  is Turing-unrecognizable then B is Turing-unrecognizable.

# EXAMPLE OF USE

### THEOREM

 $EQ_{TM} = \{(M_1, M_2) \mid M_1 \text{ and } M_2 \text{ are TMs and } L(M_1) = L(M_2)\}$  is neither Turing recognizable nor co-Turing-recognizable.

### PROOF IDEA

### We show

- $\overline{A_{TM}} <_m EQ_{TM}$
- $\overline{A_{TM}} <_m \overline{EQ_{TM}}$
- These then imply the theorem.

# EXAMPLE OF USE

# PROOF FOR $A_{TM} <_m EQ_{TM}$

We show  $A_{TM} <_m EQ_{TM}$  (and hence  $A_{TM} <_m EQ_{TM}$ ) with the following g:

G = "On input (M, w) where M is a TM and w is a string:

- 1. Construct the following two machines  $M_1$  and  $M_2$   $M_1$  = "On any input:
  - 1. Accept"

 $M_2$  = "On any input:

- 1. Run M on w . If it accepts, accept."
- 2. Output  $(M_1, M_2)$ ."
  - $M_1$  accepts everything.
    - If M accepts w then  $M_2$  accepts everything. So  $M_1$  and  $M_2$  are equivalent.
    - If M does not accept w then  $M_2$  accepts nothing. So  $M_1$  and  $M_2$  are not equivalent.
  - So  $A_{TM} <_m EQ_{TM}$  (and hence  $A_{TM} <_m EQ_{TM}$ )

# Summary of Reducibility

We know that language A is undecidable. By reducing A to B we want to show that the language B is also undecidable.

- Assume that we have a decider  $M_B$  for B.
- Using  $M_B$  we construct a decider  $M_A$  for the language A:

```
M_A = "On input (I_A)
```

1. Algorithmically construct an input  $(I_B)$  for  $M_B$ , such that a) Either b) or

```
If (I_A) \in A then (I_B) \in B If (I_A) \notin A then (I_B) \notin B If (I_A) \notin A then (I_B) \notin B
```

- Run the decider M<sub>B</sub> on (I<sub>B</sub>) for M<sub>B</sub>
   Case a): M<sub>A</sub> accepts if M<sub>B</sub> accepts, and rejects if M<sub>B</sub> rejects Case
   b): M<sub>A</sub> rejects if M<sub>B</sub> accepts, and accepts if M<sub>B</sub> reject.
- We know  $M_A$  can not exist so  $M_B$  can not exist.
- B is undecidable.

# COMPUTABLE FUNCTIONS

### IDEA

Turing Machines can also compute function  $f: \Sigma^* \longrightarrow \Sigma^*$ .

### COMPUTABLE FUNCTION

A function  $f: \Sigma^* \longrightarrow \Sigma^*$  is a computable function if and only if there exists a TM  $M_f$ , which on any given input  $w \in \Sigma^*$ 

- always halts, and
- Ieaves just f(w) on its tape.

### Examples:

- Let  $f(w) \stackrel{\text{def}}{=} ww$  be a function. Then f is computable.
- Let  $f((n_1, n_2)) \stackrel{\text{def}}{=} (n)$  where n and n are integers and  $n = n *n_1$ . Then f is computable.

# Unit 12 Time Complexity

# Complexity Theory

Complexity Theory aims to make general conclusions of the resource requirements of decidable problems (languages).

We only consider decidable languages and deciders. Our computational model is a Turing Machine.

Time: the number of computation steps a TM machine makes to decide on an input of size *n*.

Space: the maximum number of tape cells a TM machine takes to decide on a input of size *n*.

# Motivation

How much time (or how many steps) does a single tape TM take to decide  $A = \{0^k \ 1^k \mid k \ge 0\}$ ?

# M = "On input w:

- Scan the tape and *reject* if w is not of the form 0\*1\*.
- Repeat if both 0s and 1s remain on the tape.
- Scan across the tape crossing off one 0 and one 1.
- If all 0's are crossed and some 1's left, or all 1's crossed and some 0's left, then *reject*; else *accept*.

# QUESTION

How many steps does *M* take on an input *w* of length *n*? ANSWER (WORST-CASE)

The number of steps M takes  $n^2$ .

# Some Notions

- The number of steps in measured as a function of n the size of the string representing the input.
- In worst-case analysis, we consider the longest running time of all inputs of length n.
- In average-case analysis, we consider the average of the running times of all inputs of length n.

### TIME COMPLEXITY

Let M be a deterministic TM that halts on all inputs. The time complexity of M is the function  $f: \mathbb{N} \to \mathbb{N}$ , where f(n) is the maximum number of steps that M uses on any input of length n. If f(n) is the running time of M we say

- M runs in time f(n)
- M is an f(n)-time TM.

# Asymptotic Analysis

- We seek to understand the running time when the input is "large".
- Hence we use an asymptotic notation or big-O notation to characterize the behaviour of f (n) when n is large.
- The exact value running time function is not terribly important. What is important is how f (n) grows as a function of n, for large n. Differences of a constant factor are not important.

# Asymptotic Upper Bound

### DEFINITION - ASYMPTOTIC UPPER BOUND

Let R<sup>+</sup> be the set of nonnegative real numbers. Let f and g be functions  $f, g : \mathbb{N} - \to \mathbb{R}^+$ . We say f(n) = O(g(n)), if there are positive integers c and  $n_0$ , such that for every  $n \ge n_0$ 

$$f(n) \leq c g(n)$$
.

g(n) is an asymptotic upper bound.



# Complexity Classes

```
DEFINITION – TIME COMPLEXITY CLASS TIME(t(n))
Let t: \mathbb{N} \longrightarrow \mathbb{R}^+ be a function.
TIME(t(n)) = \{L(M) \mid M \text{ is a decider running in time } O(t(n))\}
      TIME(t(n)) is the class (collection) of languages that are
      decidable by TMs, running in time O(t(n)).
      \mathsf{TIME}(n) \subset \mathsf{TIME}(n^2) \subset \mathsf{TIME}(n^3) \subset \ldots \subset \mathsf{TIME}(2^n) \subset \ldots
      Examples:
            \{0^k \ 1^k \ | \ k \ge 0\} \in \mathsf{TIME}(n^2)
            \{0^k \mid k \geq 0\} \in \mathsf{TIME}(n \log n)
            \{w \# w \mid w \in \{0, 1\}^*\} \in TIME(n^2)
```

# $\{0^k \ 1^k \mid k \ge 0\} \in \mathsf{TIME}(n \log n)$

# M = "On input w:

- 1. Scan the tape and reject if w is not of the form 0\*1\*.
- 2. Repeat as long as some 0s and some 1s remain on the tape.
  - Scan across the tape, checking whether the total number of 0s and 1s is even or odd. *Reject* if it is odd.
  - Scan across the tape, crossing off every other 0 starting with the first 0, and every other 1, starting with the first 1.
- 3. If no 0's and no 1's remain on the tape, accept. Otherwise, reject.

Steps 2 take O(n) time.

Step 2 is repeated at most  $1 + \log_2 n$  times. (why?)

Total time is  $O(n \log n)$ .

Hence,  $\{0^k \ 1^k \ | \ k \ge 0\} \in TIME(n \log n)$ .

However,  $\{0^k \ 1^k \mid k \ge 0\}$  is decidable on a 2-tape TM in time O(n) (How?)

### **DEFINITION**

P is the class of languages that are decidable in polynomial time on a deterministic single-tape TM.

$$\mathsf{P} = \bigcup_k \mathsf{TIME}(n^k).$$

The class P is important for two main reasons:

- P is robust: The class remains invariant for all models of computation that are polynomially equivalent to deterministic single-tape TMs.
- P (roughly) corresponds to the class of problems that are realistically solvable on a computer.

Even though the exponents can be large (though most useful algorithms have "low" exponents), the class P provides a reasonable definition of practical solvability.

# Example of Problems in P

### **THEOREM**

 $PATH = \{(G, s, t) \mid G \text{ is a directed graph with } n \text{ nodes that has a path from } s \text{ to } t\} \in P.$ 

### **PROOF**

M = "On input (G, s, t)

- Place a mark on s.
- Repeat 3 until no new nodes are marked
- Scan edges of G. If (a, b) is an edge and a is marked and b is unmarked, mark b.
- If t is marked, accept else reject."

- Steps 1 and 4 are executed once
  - Each takes at most O(n) time on a TM.
- Step 3 is executed at most n times
  - Each execution takes
     at most O(n²) steps
     (∞ number of edges)
- Total execution time is thus a polynomial in n.

# Example of Problems in P

**THEOREM** 

 $A_{CFG} \in P$ 

PROOF.

The CYK algorithm decides  $A_{CFG}$  in polynomial time.

- For some problems, even though there is a exponentially large search space of solutions (e.g., for the path problem), we can avoid a brute force solution and get a polynomialtime algorithm.
- For some problems, it is not possible to avoid a brute force solution and such problems have so far resisted a polynomial time solution.
- We may not yet know the principles that would lead to a polynomial time algorithm, or they may be "intrinsically difficult."
- How can we characterize such problems?

# The Hamiltonian Path Problem

### DEFINITION – HAMILTONIAN PATH

A Hamiltonian path in a directed graph G is a directed path that goes through each node exactly once.



# The Hamiltonian Path Problem

# HAMILTONIAN PATH PROBLEM

- $HAMPATH = \{(G, s, t) \mid G \text{ is a directed graph with a} \}$ Hamiltonian path from s to t.
- We can easily obtain an exponential time algorithm with a brute force approach.
  - Generate all possible paths between s and t and check if all nodes appear on a path!
- The HAMPATH problem has a property called polynomial verifiability.
  - If we can (magically) get a Hamiltonian path, we can verify that it is a Hamiltonian path, in polynomial time
- Verifying the existence of a Hamiltonian path is "easier" than determining its existence.

### THE CLASS NP

NP is the class of languages that have polynomial time verifiers.

- NP stands for nondeterministic polynomial time.
- Problems in NP are called NP-Problems.
- P ⊂ (⊆?) NP.

### THEOREM 12.2

A language is in NP, iff it is decided by some nondeterministic polynomial time Turing machine.

### PROOF IDEA

- We show polynomial time verifier ⇔polynomial time decider TM.
  - NTM simulates the verifier by guessing a certificate.
  - The verifier simulates the NTM

### PROOF: NTM GIVEN THE VERIFIER.

Let  $A \in \mathbb{NP}$ . Let V be a verifier that runs in time  $O(n^k)$ . N decides A in nondeterministic polynomial time.

- N = "On input w of length n
  - Nondeterministically select string c of length at most  $n^k$ .
  - $\mathbf{P}$  Run V on input (w, c).
  - If V accepts, accept; otherwise reject."

### **DEFINITION**

 $NTIME(t(n)) = \{L \mid L \text{ is a language decided by a } O(t(n)) \text{ time nondeterministic TM.} \}$ 

COROLLARY

 $NP = \bigcup_k NTIME(n^k)$ 

# The clique problem

# **DEFINITION - CLIQUE**

A clique in an undirected graph is a subgraph, wherein every two nodes are connected by an edge.

A *k* -clique is a clique that contains *k* nodes.



# The Clique Problem

THEOREM 12.3

 $CLIQUE = \{(G, k) \mid G \text{ is an undirected graph with a } k\text{-clique }\} \in NP.$ 

### **PROOF**

The clique is the certificate. V = "On input ((G, k), c):

- Test whether c is a set of k nodes in G.
- Test whether G has all edges connecting nodes in c.
- If both pass, accept; otherwise reject."
- All steps take polynomial time

### **ALTERNATIVE PROOF**

Use a NTM as a decider. N = "On input (G, k):

- Nondeterministically select a subset *c* of *k* nodes of *G*.
- Test whether G has all edges connecting nodes in c.
- If yes *accept*; otherwise *reject*."

- It turns out CLIQUE or SUBSET-SUM are NOT in NP.
- Verifying something is NOT present seems to be more difficult than verifying it IS present.
- The class coNP contains all problems that are complements of languages in NP.
- We do not know if  $coNP \neq NP$ .

# Unit 13 NP Completeness

# Summary of Complexity

- Time complexity: Big-O notation, asympotic complexity
- Simulation of multi-tape TMs with a single tape deterministic TM can be done with a polynomial slow-down.
- Simulation of nondeterministic TMs with a deterministic TM is exponentially slower.
- The Class P: The class of languages for which membership can be decided quickly.
- The Class NP: The class of languages for which membership can be *verified* quickly.



We do not yet know if P = NP, or not.

## NP Problems

The best method known for solving languages in NP deterministically uses exponential time, that is

$$NP \subseteq EXPTIME = UTIME(2^{n^k})$$

It is not known whether NP is contained in a smaller deterministic time complexity class.

## NP-complete Problems

- Cook and Levin in early 1970's showed that certain problems in NP were such that
  - If any of these problems had a deterministic polynomial-time algorithm, then
  - All problems in NP had deterministic polynomial-time algorithms.
- Such problems are called NP-complete problems.
- This is important for a number of reasons:
  - If one is attempting to show that P/=NP, s/he may focus on an NP-complete problem and try to show that it needs more than a polynomial amount of time.
  - If one is attempting to show that P=NP, s/he may focus on an NP-complete problem and try to come up with a polynomial time algorithm for it.
  - One may avoid wasting searching for a nonexistent polynomial time algorithm to solve a particular problem, if one can show it reduces to an NP-complete problem

# The Satisfiability Problem

DEFINITION - BOOLEAN VARIABLES

A boolean variable is a variable that can taken on values TRUE (1) and FALSE (0).

We have Boolean operations of AND  $(x \land y)$ , OR  $(x \lor y)$  and NOT  $(\neg x \text{ or } \overline{x})$  on boolean variables.

| AND              | OR             | NOT          |
|------------------|----------------|--------------|
| $0 \wedge 0 = 0$ | $0 \lor 0 = 0$ | <u>0</u> = 1 |
| $0 \wedge 1 = 0$ | $0 \lor 1 = 1$ | 1 = 0        |
| $1 \wedge 0 = 0$ | $1 \lor 0 = 1$ |              |
| $1 \land 1 = 1$  | $1 \lor 1 = 1$ |              |

# The Satisfiability Problem

#### DEFINITION - BOOLEAN FORMULA

A Boolean formula is an expression involving Boolean variables and operations.

For example:  $\varphi = (x \land y) \lor (x \land z) \lor (y \land z)$  is a Boolean formula.

#### DEFINITION - SATISFIABILITY

A Boolean formula is satisfiable if some assignment of 0s and 1s to the variables makes the formula evaluate to 1.

We say the assignment satisfies  $\varphi$ .

What possible assignments satisfy the formula above?

#### DEFINITION - THE SATISFIABILITY PROBLEM

The satisfiability problem checks if a Boolean formula is satisfiable.

 $SAT = \{(\varphi) \mid \varphi \text{ is a satisfiable Boolean formula}\}$ 

# Polynomial Time Reducibility

DEFINITION - POLYNOMIAL TIME COMPUTABLE FUNCTION

A function  $f: \Sigma^* \longrightarrow \Sigma^*$  is a polynomial time computable function if some polynomial time TM M exists that halts with f(w) on its tape, when started on any input w.

DEFINITION – POLYNOMIAL TIME REDUCIBILITY

Language A is polynomial time mapping reducible or polynomial time reducible, to language B, notated  $A \leq_P B$ , if a polynomial time computable function  $f: \Sigma^* - \to \Sigma^*$  exists, where for every w,

$$w \in A \Leftrightarrow f(w) \in B$$

The function *f* is called the polynomial time reduction of *A* to *B*.

To test whether  $w \in A$  we use the reduction f to map w to f(w) and test whether  $f(w) \in B$ .

# Polynomial Time Reducibility

THEOREM 7.31
If  $A \leq_P B$  and  $B \in P$ , then  $A \in P$ .

#### **PROOF**

- It takes polynomial time to reduce A to B.
- It takes polynomial time to decide B.

## Variations on the Satisfiability Problem

- A literal is a Boolean variable or its negated version (x or x).
- A clause is several literals connected with  $\vee$  (OR), e.g.,  $(x_1 \vee x_2 \vee x_4)$ .
- A Boolean formula is in conjuctive normal form (or is a cnf-formula) if it consists of several clauses connected with \(\lambda(AND)\), e.g.

$$(x_1 \vee \overline{x_2} \vee x_4 \vee x_5) \wedge (x_2 \vee \overline{x_3} \vee \overline{x_4}) \wedge (x_1 \vee x_2 \vee x_3 \vee \overline{x_5})$$

A cnf-formula is a 3cnf-formula if all clauses have 3 literals, e.g.

$$(x_1 \lor \overline{x_2} \lor x_4) \land (x_2 \lor \overline{x_3} \lor \overline{x_4}) \land (x_1 \lor x_3 \lor \overline{x_5})$$

- $3SAT = \{(\varphi) \mid \varphi \text{ is a satisfiable 3cnf-formula}\}.$ 
  - In a satisfiable cnf-formula, each clause must contain at least one literal that is assigned 1.

### An example reduction: Reducing 3SAT to CLIQUE

#### THEOREM 13.2

3SAT is polynomial time reducible to CLIQUE.

#### PROOF IDEA

Take any 3SAT formula and polynomial-time reduce it to a graph such that if the graph has a clique then the 3cnf-formula is satisfiable.

#### Some details:

- $\varphi$  is a formula with k clauses each with 3 literals.
- The k clauses in  $\varphi$  map to k groups of 3 nodes each called a triple.
- Each node in the triple corresponds to one of the literals in the corresponding clause.
- No edges between the nodes in a triple.
- No edges between "conflicting" nodes (e.g., x and  $\overline{x}$ )

### An Example Reduction: Reducing SAT to CLIQUE

 $\varphi = (x_1 \vee x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2} \vee x_2) \wedge (\overline{x_1} \vee x_2 \vee x_2)$ 



### An Example Reduction: Reducing SAT to CLIQUE

$$\varphi = (x_1 \vee x_1 \vee x_2) \wedge (\overline{x_1} \vee \overline{x_2} \vee x_2) \wedge (\overline{x_1} \vee x_2 \vee x_2)$$



- If  $\varphi$  has a satisfying assignment, then at least one literal in each clause needs to be 1.
- We select the corresponding nodes in the corresponding triples.
- These nodes should form a k-clique.
- If *G* has a *k* -clique, then selected nodes give a satisfying assignment to variables.

# NP - Completeness

#### DEFINITION - NP-COMPLETENESS

A language B is NP-complete if it satisfies two conditions:

- B is in NP, and
- Every A in NP is polynomial time reducible to B.

#### **THEOREM**

If *B* is NP-complete and  $B \in P$ , then P = NP. (Obvious)

#### THEOREM

If *B* is NP-complete and  $B \leq_P C$  for *C* in NP, then *C* is NP-complete.

#### **PROOF**

All  $A \leq_P B$  and  $B \leq_P C$  thus all  $A \leq_P C$ .

## The Cook – Levin Theorem

**THEOREM** 

SAT is NP-Complete.

#### PROOF IDEA

- Showing SAT is in NP is easy.
  - Nondeterministically guess the assignments to variables and accept if the assignments satisfy  $\varphi$
- We can encode the accepting computation history of a polynomial time NTM for every problem in NP as a SAT formula  $\varphi$ .
- Thus every language  $A \in NP$  is polynomial-time reducible to SAT.
  - N is a NTM that can decide A in time  $O(n^k)$
  - N accepts w if and only if  $\varphi$  is satisfiable.