

Inspire...Educate...Transform.

Supervised Models

Time series

Dr. Dakshinamurthy V KolluruPresident – INSOFE

October 23, 2016

Why Modeling

- In any business, there are some easy-tomeasure metrics
 - Age; Gender; Income; Education level; etc.

and a difficult-to-measure metric

- Amount of loan to give; Will she buy or not; How many days will he stay in the hospital; etc.
- <u>Supervised learning</u> is about computing the latter using the former

Saving ourselves from chasing R²

Too Simple a Model Underfit Too Complex a Model Overfit Right Model Reasonable fit

The Ultimate Test of Model Accuracy

- Holdout set: Split data into train, validation and test sets (in 70:20:10 or 60:20:20, etc. ratios), and ensure model performance is similar.
 - Training Set: For fitting a model
 - Validation Set: For selecting a model based on estimated prediction errors
 - Test Set: For assessing selected model's performance on "new" data
- k-fold cross-validation: Same as holdout but useful when the data size is small.

Bias-Variance Tradeoff and Underfitting vs Overfitting

Diagnosing Bias and Variance

Diagnosing Bias and Variance

Bias-Variance Tradeoff

Ways of detecting and minimizing Bias and Variance

Outliers and Influential Observations can cause statistical bias. Can be identified using various methods like Box plots, points outside ± 2 or ± 3 standard deviations/errors, residual plots, etc.

Bias cannot be corrected by increasing training sample size.

Variance or standard error can be minimized by increasing training sample size.

Bagging (bootstrap aggregating) techniques (taught later in the program) can be used to minimize errors.

FORECASTING

MSE

$$MSE = \frac{\sum_{i=1}^{n} (P_i - A_i)^2}{n}$$

MAE

MAPE

$$MAPE = \frac{\sum_{i=1}^{n} \frac{|P_i - A_i|}{A_i}}{n}$$

NMSE

$$NMSE = \frac{MSE \ of \ developed \ model}{MSE \ of \ naive \ model}$$

TIME SERIES

Why time series

- Causal independent variables are
 - -Unknown to us
 - -Not available
 - -Might not fit the data well
 - -Difficult to forecast

Typical time series

$$\check{y}_{t+1} = f(y_t, y_{t-1}, y_{t-2} \dots)$$

$$+f(x_1, x_2, x_3 ...)$$

IMPORTANT CONCEPTS

Autocorrelation (ACF) and PACF

• ACF: nth lag of ACF is the correlation between a day and n days before that

• PACF: The same with all internal correlations are removed

Components of time series

Trend

Seasonality/Cyclicality

Random component

Seasonality

randomness

ACF and PACF for trend, seasonality and randomness

• They vary significantly

• Let us R!

Stationary and Non-Stationary

• Stationary data has a constant mean

• If the data is stationary, forecasting is easier!

 Differencing to convert non-stationary to stationary

Removing trend from data

ACF and PACF of stationary and non-stationary

- Non-stationary series have an ACF that remains significant for half a dozen or more lags, rather than quickly declining to zero.
- You must difference such a series until it is stationary before you can identify the process.

A CRUDE WAY OF SOLVING TIME SERIES (CURVE FITTING)

Regression on time

• Use when trend is the most pronounced

 ACF decays exponentially and PACF has very few spikes

Regression analysis

Quadratic trend

Seasonal regression models

Quarter	Value of		
	X_{3t}	X_{4t}	X_{5_t}
1	1	0	0
2	0	1	0
3	0	0	1
4	0	0	0

M-1---

$$Y_t = \beta_0 + \beta_1 X_{1_t} + \beta_2 X_{2_t} + \beta_3 X_{3_t} + \beta_4 X_{4_t} + \beta_5 X_{5_t} + \varepsilon_t$$

where, $X1_t = t$ and $X2_t = t^2$.

Seasonal regression models

Another crude way of incorporating seasonality

• Take the trend prediction and actual prediction

• Depending on additive or multiplicative model compute the deviation and map it as seasonality effect for each prediction

Case

		Time variable	
		(this is created)	
Year	Quarter		Revenues
2008		1	10.2
		2	12.4
	Ш	3	14.8
	IV	4	15
		5	11.2
		6	14.3
	Ш	7	18.4
	IV	8	18


```
lm(formula = y \sim x)
Residuals:
   Min 1Q Median 3Q
                                 Max
-3.5595 -0.9384 0.4405 1.3265 1.9286
Coefficients:
           Estimate Std. Error t value Pr(>|t|)
(Intercept) 10.0393 1.5531 6.464 0.00065 ***
       0.9440 0.3076 3.069 0.02196 *
\mathbf{x}
Signif. codes: 0 \***' 0.001 \**' 0.01 \*' 0.05 \.' 0.1 \' 1
Residual standard error: 1.993 on 6 degrees of freedom
Multiple R-squared: 0.6109, Adjusted R-squared: 0.5461
F-statistic: 9.422 on 1 and 6 DF, p-value: 0.02196
```


Call:

Seasonality: Multiplicative

Time	Observed values	Predicted values	SI = TSI/T
	TSI (assuming no	(per the regression)	
	impact of	T	
	cyclicality)		
1	10.2	10.983	0.929
2	12.4	11.927	1.040
3	14.8	12.871	1.150
4	15	13.815	1.086
5	11.2	14.759	0.759
6	14.3	15.703	0.911
7	18.4	16.647	1.105
8	18	17.591	1.023

Quarterly seasonality

Time	Average seasonality factor
Q1	0.844
Q2	0.975
Q3	1.127
Q4	1.054

Computations

• Trend $Y_9 = 10.039 + 0.944(9) = 18.535$

• Corrected for seasonality and randomness: 18.535* 0.844 = 15.643

Issues with regressing on time

• It is too much of a curve fit For a statistician to sleep well!

• If there is no trend or if seasonality and fluctuations are more important than trend, then the coefficients behave wierdly

TIME SERIES: MORE ROBUST ANALYSES

rocesses processes

- We use different techniques for different processes
 - Random stationary
 - Seasonal
 - Trend

• First we need to identify them

Stationary model: Case 1

			<u> </u>			
Number of	SMA (k=1)	Error	SMA (K=2)	Error	SMA (K=3)	Error
products sold						
15						
20	15	5				
16	20	4	17.5	1.5		
13	16	3	18	5	17	4
18	13	5	14.5	3.5	16.333333	1.666667
14	18	4	15.5	1.5	15.666667	1.666667
15	14	1	16	1	15	0
17	15	2	14.5	2.5	15.666667	1.333333
20	17	3	16	4	15.333333	4.666667
20	20	0	18.5	1.5	17.333333	2.666667
18	20	2	20	2	19	1
20	18	2	19	1	19.333333	0.666667
10	20	10	19	9	19.333333	9.333333
17	10	7	15	2	16	1
17	17	0	13.5	3.5	15.666667	1.333333
18	17	1	17	1	14.666667	3.333333
18	18	0	17.5	0.5	17.333333	0.666667
14	18	4	18	4	17.666667	3.666667
14	14	0	16	2	16.666667	2.666667
14	14	0	14	0	15.333333	1.333333
19	14	5	14	5	14	5
12	19	7	16.5	4.5	15.666667	3.666667
13	12	1	15.5	2.5	15	2
14	13	1	12.5	1.5	14.666667	0.666667
		2.913043		2.681818		2.492063

Moving Averages

Only decision point is K

Weighted moving average

$$\hat{Y}_{t+1} = w_1 Y_t + w_2 Y_{t-1} + \cdots + w_k Y_{t-k+1}$$

• Typically we choose a time period of moving average and weights are chosen such that the error is minimized

WMA

Exponential smoothing

$$\hat{\mathbf{Y}}_{t+1} = \hat{\mathbf{Y}}_t + \alpha(\mathbf{Y}_t - \hat{\mathbf{Y}}_t)$$

Above equation indicates that the predicted value for time period t + 1 (y_{t+1}) is equal to the predicted value for the previous period (y_t) plus an adjustment for the error made in predicting the previous period's value $(\alpha(Y_t - y_t))$.

The parameter α can assume any value between 0 and 1 (0 $\leq \alpha \leq$ 1).

Exponential smoothing in other ways

$$\widehat{Y_{t+1}} = \widehat{Y_t} + \alpha (Y_t - \widehat{Y_t})$$

$$= \alpha Y_t + (1 - \alpha) \widehat{Y_t}$$

$$\widehat{Y_{t+1}} = Y_t - (1 - \alpha) (Y_t - \widehat{Y_t})$$

$$\hat{Y}_{t+1} = \alpha Y_t + \alpha (1 - \alpha) Y_{t-1} + \alpha (1 - \alpha)^2 Y_{t-2} + \dots + \alpha (1 - \alpha)^n Y_{t-n} + \dots$$

LET'S EXPLORE HOW ALPHA CHANGES

understanding exponential smoothing

- Forecast
 - -Interpolation between previous *forecast* and previous *observation*
 - -Previous *forecast* plus fraction of previous error
 - -Previous *observation* minus fraction 1-of previous error

The best place of Exponentially weighted (i.e. disconnented)

Exponential smoothing

- Y at t+1
- Y at t+2
- All future predictions are same! This is in accordance with stationary assumption

EMA

Box-Jenkins methodology

- Model identification and model selection.
- Parameter estimation.
- Model checking
- http://www.ncss.com/wpcontent/themes/ncss/pdf/Procedures/N CSS/The_Box-Jenkins_Method.pdf

Model selection

SHAPE	INDICATED MODEL		
Exponential, decaying to zero	Autoregressive model. Use the partial autocorrelation plot to identify the order of the autoregressive model.		
Alternating positive and negative, decaying to zero	Autoregressive model. Use the partial autocorrelation plot to help identify the order.		
One or more spikes, rest are essentially zero	Moving average model, order identified by where plot becomes zero.		
Decay, starting after a few lags	Mixed autoregressive and moving average model.		
All zero or close to zero	Data is essentially random.		
High values at fixed intervals	Include seasonal autoregressive term.		
No decay to zero	Series is not stationary.		

In practice

• There are techniques that automate model selection

ARIMA(p,d,q) model

- p is the number of autoregressive terms (a linear regression of the current value of the series against one or more prior values of the series)
- d is the number of non-seasonal differences, (d is the order of the differencing used to make the time series stationary)

• q is the number of lagged forecast errors in the prediction equation. q is the order of the moving average model (a linear regression of the current value of the series against the white noise or random shocks of one or more prior values of the series).

p,d,q

• (0,0,0): without growth

• ARIMA(0,1,0) = random walk with growth;

$$\hat{\mathbf{Y}}(\mathbf{t}) - \mathbf{Y}(\mathbf{t} - \mathbf{1}) = \mu$$

ARIMA(1,1,0)

• Differenced first-order autoregressive model

$$\hat{Y}(t) - Y(t-1) = \mu + \phi (Y(t-1) - Y(t-2))$$

which can be rearranged to

$$\hat{Y}(t) = \mu + Y(t-1) + \phi(Y(t-1) - Y(t-2))$$

ARIMA(0,1,1)

• Without constant = simple exponential smoothing

$$\widehat{Y}_t - Y_{t-1} = -\theta e_{t-1}$$

A 'mixed' model--ARIMA(1,1,1)

$$\hat{Y}(t) = \mu + Y(t-1) + \phi(Y(t-1) - Y(t-2)) - \theta e(t-1)$$

Time series Ensemblers

$$\hat{\mathbf{Y}}_t = b_0 + b_1 \mathbf{F}_{1_t} + b_2 \mathbf{F}_{2_t} + b_3 \mathbf{F}_{3_t}$$

ARIMAX

Causal + Time series analysis

HYDERABAD

Office and Classrooms

Plot 63/A, Floors 1&2, Road # 13, Film Nagar,

Jubilee Hills, Hyderabad - 500 033

+91-9701685511 (Individuals)

+91-9618483483 (Corporates)

Social Media

Web: http://www.insofe.edu.in

Facebook: https://www.facebook.com/insofe

Twitter: https://twitter.com/Insofeedu

YouTube: http://www.youtube.com/InsofeVideos

SlideShare: http://www.slideshare.net/INSOFE

LinkedIn: http://www.linkedin.com/company/international-school-of-engineering

This presentation may contain references to findings of various reports available in the public domain. INSOFE makes no representation as to their accuracy or that the organization subscribes to those findings.

BENGALURU

Office

Incubex, #728, Grace Platina, 4th Floor, CMH Road, Indira Nagar, 1st Stage, Bengaluru – 560038

+91-9502334561 (Individuals)

+91-9502799088 (Corporates)

Classroom

KnowledgeHut Solutions Pvt. Ltd., Reliable Plaza, Jakkasandra Main Road, Teacher's Colony, 14th Main Road, Sector – 5, HSR Layout, Bengaluru - 560102