

FRACCIONES CONTINUAS

¿Cómo aproximar un número eficientemente?

1.	Introducción	5
2.	Ejemplos de desarrollo	6
	Ejemplo 1	6
	Ejemplo 2	6
	Ejemplo 3	6
3.	fcs puramente periódica	7
	Ejemplo 4	7
	Ejemplo 5	7
4.	FCS periódicas	8
	Ejemplo 6	8
	Ejemplo 7	8
5.	Otras FCS periódicas	9
	Ejemplo 8	9
	Ejemplo 9	9
	Ejemplo 10	10

Página web personal

Página de Abertura

Contenido

Página 1 de 44

Atrás

Pantalla grande/pequeña

Cerrar

Página web personal

Página de Abertura

Contenido

Página 2 de 44

Atrás

Pantalla grande/pequeña

Página web personal

Página de Abertura

Contenido

44 >>

Página 3 de 44

Atrás

Pantalla grande/pequeña

15.	Aplicaciones	37
	Ejemplo 21	38
	Ejemplo 22	38
	Ejemplo 23	39
	Ejemplo 24	39
16.	Ejercicios.	40
	Ejercicio 1	40
17.	Referencias.	40
		40
18.	Test de repaso	40

Página web personal

Página de Abertura

Contenido

44 >>

Página 4 de 44

Atrás

Pantalla grande/pequeña

1. Introducción

Dado un número real $x \in \mathbb{R}$, su desarrollo en **fracción continua simple, FCS** es una sucesión de números enteros, $[q_0, q_1, q_2, ...]$, donde $q_0 = \lfloor x \rfloor$ es la parte entera de $x_0 = x$, que es negativa cuando x lo es, y el resto de los $q_i = \lfloor x_i \rfloor$ con $x_i = \frac{1}{x_{i-1} - q_{i-1}}$, definidos por inducción, son enteros positivos salvo que x sea racional. Equivale a las sucesivas igualdades

$$x = q_0 + \frac{1}{x_1}, \ x_1 = q_1 + \frac{1}{x_2}, \dots, x_i = q_i + \frac{1}{x_{i-1}}, \dots$$

Se pueden resumir escribiendo una única igualdad con puntos suspensivos

$$x = q_0 + \frac{1}{q_1 + \frac{1}{q_2 + \dots}}$$

Si x no es entero, $q_0 < x < q_0 + 1 \iff 0 < x - q_0 < 1 \iff 1 < \frac{1}{x - q_0} = x_1$. Claramente, para todo i, se tiene que la siguiente expresión es una FCS

$$x_i = q_i + \frac{1}{q_{i+1} + \dots} = [q_i, q_{i+1}, q_{i+2}, \dots]$$

Pero la que sigue es FC finita pero no simple porque x_r casi nunca es entero.

$$x = [q_0, q_1, \dots, q_{r-1}, x_r] = q_0 + \frac{1}{q_1 + \frac{1}{q_2 + \frac{1}{\cdots + \frac{1}{x_r}}}}$$

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

Página 5 de 44

Atrás

Pantalla grande/pequeña

2. EJEMPLOS DE DESARROLLO

Ejemplo 1. Para $x = \sqrt{2}$, se tiene $\sqrt{2} = 1 + (\sqrt{2} - 1) = 1 + \frac{1}{1 + \sqrt{2}}$. Pero como

$$1 + \sqrt{2} = 2 + (\sqrt{2} - 1) = 2 + \frac{1}{1 + \sqrt{2}} \Rightarrow \sqrt{2} = 1 + \frac{1}{2 + \frac{1}{1 + \sqrt{2}}}$$

y se repite el último denominador, se tiene $\sqrt{2} = [1, 2, 2, ...]$

Ejemplo 2. Para $x = \sqrt{3}$, se tiene $\sqrt{3} = 1 + (\sqrt{3} - 1) = 1 + \frac{2}{1 + \sqrt{3}} = 1 + \frac{1}{(1 + \sqrt{3})/2}$ entonces

$$\frac{1+\sqrt{3}}{2} = \frac{2+(\sqrt{3}-1)}{2} = 1 + \frac{1}{1+\sqrt{3}} \Rightarrow \sqrt{3} = 1 + \frac{1}{1+\frac{1}{1+\sqrt{3}}}$$
$$1+\sqrt{3} = 2+(\sqrt{3}-1) = 2 + \frac{1}{(1+\sqrt{3})/2} \Rightarrow \sqrt{3} = 1 + \frac{1}{1+\frac{1}{2+\frac{1}{2+\frac{1}{2}}}}$$

y este denominador, $(1+\sqrt{3})/2$, se repite con el primero, entonces $\sqrt{3} = [1,\overline{1,2},\overline{1,2},...]$

Ejemplo 3. Para $x = \sqrt{5}$, se tiene $\sqrt{5} = 2 + (\sqrt{5} - 2) = 2 + \frac{1}{\sqrt{5} + 2}$ entonces

$$\sqrt{5} + 2 = 4 + (\sqrt{5} - 2) = 4 + \frac{1}{\sqrt{5} + 2} \Rightarrow \sqrt{5} = 2 + \frac{1}{4 + \frac{1}{\sqrt{5} + 2}}$$

y como este denominador, $\sqrt{5} + 2$ se repite, se tiene $\sqrt{5} = [2,4,4,...]$

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

Página 6 de 44

Atrás

Pantalla grande/pequeña

3. FCS PURAMENTE PERIÓDICA

Ejemplo 4. Para $x = \frac{a+\sqrt{a^2+4}}{2}$, se tiene

$$\frac{a+\sqrt{a^2+4}}{2} = \frac{2a+\sqrt{a^2+4}-a}{2} = a + \frac{\sqrt{a^2+4}-a}{2} = a + \frac{4}{2(\sqrt{a^2+4}+a)} = a + \frac{1}{\frac{\sqrt{a^2+4}+a}{2}} = a + \frac{1}{\frac{\sqrt{a^2+4}+a}} = a + \frac{1}{$$

y como se repite, $x = (a + \sqrt{a^2 + 4})/2$, se tiene

$$x = a + \frac{1}{a + \frac{1}{a + \frac{1}{a + \dots}}} = [a, a, a, \dots]$$

$$\vdots$$

Recíprocamente, si x = [a, a, a, ...] con a entero positivo, entonces

$$x = a + \frac{1}{x} = \frac{ax+1}{x} \Leftrightarrow x^2 - ax - 1 = 0 \Rightarrow x = \frac{a \pm \sqrt{a^2 + 4}}{2}$$

pero como 0 < a < x, se tiene necesariamente que $x = \frac{a + \sqrt{a^2 + 4}}{2}$

Ejemplo 5. $[1,1,1,...] = \frac{1+\sqrt{5}}{2} \approx 1.618 \ N\'{u}mero \ A\'{u}reo$

$$[2,2,2,\ldots] = \frac{2+\sqrt{8}}{2} = 1+\sqrt{2}$$
$$[3,3,3,\ldots] = \frac{3+\sqrt{13}}{2}$$

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

44 >>

→

Página 7 de 44

Atrás

Pantalla grande/pequeña

4. FCS PERIÓDICAS

Para $\sqrt{a^2+1}$, se tiene

$$\sqrt{a^2 + 1} = a + (\sqrt{a^2 + 1} - a) = a + \frac{1}{\sqrt{a^2 + 1} + a}$$

$$\sqrt{a^2 + 1} + a = 2a + (\sqrt{a^2 + 1} - a) = 2a + \frac{1}{\sqrt{a^2 + 1} + a}$$

$$\sqrt{a^2 + 1} + a = 2a + (\sqrt{a^2 + 1} - a) = 2a + \frac{1}{\sqrt{a^2 + 1} + a}$$

y como se repite, $\sqrt{a^2+1}+a$, se tiene $\sqrt{a^2+1}=[a,2a,2a,\ldots]$

Ejemplo 6. $\sqrt{5} = [2, 4, 4, ...], \quad \sqrt{10} = [3, 6, 6, ...], \quad \sqrt{17} = [4, 8, 8, ...], etc.$

Para $\sqrt{a^2+2}$, se tiene

$$\sqrt{a^2 + 2} = a + (\sqrt{a^2 + 2} - a) = a + \frac{2}{\sqrt{a^2 + 2} + a}$$

$$\frac{\sqrt{a^2 + 2} + a}{2} = \frac{2a + \sqrt{a^2 + 2} - a}{2} = a + \frac{1}{\sqrt{a^2 + 2} + a}$$

$$\sqrt{a^2 + 2} + a = 2a + (\sqrt{a^2 + 2} - a) = 2a + \frac{2}{\sqrt{a^2 + 2} + a}$$

y como se repite, $(\sqrt{a^2+2}+a)/2$, se tiene $\sqrt{a^2+2} = [a, a, 2a, a, 2a, ...]$

Ejemplo 7. $\sqrt{6} = [2, \overline{2, 4}, ...], \quad \sqrt{11} = [3, \overline{3, 6}, ...], \quad \sqrt{18} = [4, \overline{4, 8}, ...], etc.$

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

. .

I4 **>>**

→

Página 8 de 44

Atrás

Pantalla grande/pequeña

5. OTRAS FCS PERIÓDICAS

Para $\sqrt{a^2-1}$, se tiene

$$\sqrt{a^2-1}=a-1+(\sqrt{a^2-1}-(a-1))=a-1+\frac{2a-2}{\sqrt{a^2-1}+a-1}=a-1+\frac{1}{\frac{\sqrt{a^2-1}+a-1}{2(a-1)}}$$

$$\frac{\sqrt{a^2-1}+a-1}{2(a-1)} = \frac{2(a-1)+(\sqrt{a^2-1}-(a-1))}{2(a-1)} = 1 + \frac{1}{\sqrt{a^2-1}+a-1}$$

$$\sqrt{a^2-1}+a-1 = 2(a-1)+(\sqrt{a^2-1}-(a-1)) = 2(a-1) + \frac{2a-2}{\sqrt{a^2-1}+a-1}$$

y como se repite, $\frac{2a-2}{\sqrt{a^2-1}+a-1}$, se tiene $\sqrt{a^2-1} = [a-1, \overline{1, 2(a-1)}, \dots]$

Ejemplo 8. Dándole valores al parámetro a se obtienen

$$\sqrt{3} = [1, \overline{1, 2}, \dots], \sqrt{8} = [2, \overline{1, 4}, \dots], \sqrt{15} = [3, \overline{1, 6}, \dots], \sqrt{24} = [4, \overline{1, 8}, \dots], etc.$$

Ejemplo 9. Análogamente se demuestra

$$\sqrt{a^2-2} = [a-1, \overline{1, a-2, 1, 2(a-1)}, \dots]$$
. Y dando valores al parámetro $\sqrt{7} = [2, \overline{1, 1, 1, 4}, \dots], \sqrt{14} = [3, \overline{1, 2, 1, 6}, \dots], \sqrt{23} = [4, \overline{1, 3, 1, 8}, \dots],$ etc.

Como se observa, cuanto mas se acerca un número a una raíz cuadrada más simple es su FC. Sin embargo, se pueden obtener ejemplos de desarrollos de cualquier longitud. Para $d \le 1000$, el periodo más largo es de longitud 60.

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

∢ →→

→

Página 9 de 44

Atrás

Pantalla grande/pequeña

Ejemplo 10. Como $x = [1, 1, 1, ...] = \frac{1+\sqrt{5}}{2}$, la FCS y = [2, 1, 1, ...] también se puede evaluar

$$y = 2 + \frac{1}{x} = 2 + \frac{2}{1 + \sqrt{5}} = 2\left(1 + \frac{1 - \sqrt{5}}{-4}\right) = 2\left(\frac{3 + \sqrt{5}}{4}\right) = \frac{3 + \sqrt{5}}{2}$$

Ejemplo 11. La FCS x = [2,1,2,1,...] se puede evaluar por ser periódica ya que

$$x = 2 + \frac{1}{1 + \frac{1}{x}} = 2 + \frac{x}{x+1} = \frac{3x+2}{x+1} \Leftrightarrow x^2 - 2x - 2 = 0 \Rightarrow x = 1 \pm \sqrt{3}$$

y como claramente 2 < x, la FCS x es positiva y entonces $x = 1 + \sqrt{3}$.

Ejemplo 12. La FCS x = [1, 3, 1, 2, 1, 2, ...] se puede evaluar ya que se tiene $x = 1 + \frac{1}{3 + \frac{1}{y}} = 1 + \frac{y}{3y+1} = \frac{4y+1}{3y+1}$ con y = [1, 2, 1, 2, ...] y como 1 < y

$$y = 1 + \frac{1}{2 + \frac{1}{y}} = 1 + \frac{y}{2y + 1} = \frac{3y + 1}{2y + 1} \Leftrightarrow 2y^2 - 2y - 1 = 0 \Rightarrow y = \frac{1 + \sqrt{3}}{2}$$

Finalmente,
$$x = \frac{4y+1}{3y+1} = \frac{4\frac{1+\sqrt{3}}{2}+1}{3\frac{1+\sqrt{3}}{2}+1} = 3-\sqrt{3}$$

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

Página 10 de 44

Atrás

Pantalla grande/pequeña

6. Fracciones continuas de racionales e irracionales

Una fracción continua simple, $x = [q_0, q_1, q_2, ..., q_r] = q_0 + \frac{1}{q_1 + \frac{1}{q_2 + \frac{1}{d_2}}}$, es

finita si y sólo si $x = \frac{a}{b}$, $a, b \in \mathbb{Z}$, es un número racional. Se pueden tomar, b positivo y a, b primos entre si. En ese caso, los q_i son **cocientes parciales** que se obtienen al aplicar el AE para el cálculo del mcd(a, b) = 1.

Como
$$[q_{r-1}, q_r] = q_{r-1} + \frac{1}{q_r}$$
 y $q_r = q_r - 1 + 1$, se tiene que

$$\left[q_0, q_1, q_2, \dots, q_{r-1} + \frac{1}{q_r}\right] = \left[q_0, q_1, q_2, \dots, q_r\right] = \left[q_0, q_1, q_2, \dots, q_r - 1, 1\right]$$

Pero la representación es única si exigimos que los q_i sean enteros y $1 < q_i$.

Equivalentemente, una FCS es infinita si y sólo si representa un número irracional x. En este caso, tienen sentido los números racionales sucesivos de su descomposición que llamamos sus **convergentes**:

$$r_i = \frac{A_i}{B_i} = [q_0, q_1, q_2, \dots, q_i]$$
 Como por definición,
$$\begin{cases} [q_0] = q_0 \Longrightarrow r_0 = \frac{A_0}{B_0} = \frac{q_0}{1} \Longrightarrow A_0 = q_0, \ B_0 = 1 \\ [q_0, q_1] = q_0 + \frac{1}{q_1} = \frac{q_1q_0+1}{q_1} \Longrightarrow A_1 = q_1q_0+1, \ B_1 = q_1 \end{cases}$$
 Si definimos, $A_{-1} = 1, \ B_{-1} = 0$. Entonces,
$$\begin{cases} A_1 = q_1q_0 + 1 = q_1A_0 + A_{-1} \\ B_1 = q_1 = q_1B_0 + B_{-1} \end{cases}$$

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

44 >>

→

Página 11 de 44

Atrás

Pantalla grande/pequeña

Son el primer caso de las ecuaciones recursivas siguientes

$$A_i = q_i A_{i-1} + A_{i-2}, \quad A_{-1} = 1, A_0 = q_0$$

 $B_i = q_i B_{i-1} + B_{i-2}, \quad B_{-1} = 0, B_0 = 1$

que permiten demostrar para cualquier $x \in \mathbb{R}$ y cualquier natural $n \ge 1$

Teorema 1.
$$[q_0, q_1, q_2, ..., q_{n-1}, x] = \frac{xA_{n-1} + A_{n-2}}{xB_{n-1} + B_{n-2}}$$

Demostración: Para n = 1, se tiene $[q_0, x] = q_0 + \frac{1}{x} = \frac{xq_0+1}{x} = \frac{xA_0+A_{-1}}{xB_0+B_{-1}}$ Ahora por inducción, lo suponemos para n-1 y entonces

$$[q_0, q_1, q_2, \dots, q_n, x] = [q_0, q_1, q_2, \dots, q_{n-1}, q_n + \frac{1}{x}] = \frac{(q_n + \frac{1}{x})A_{n-1} + A_{n-2}}{(q_n + \frac{1}{x})B_{n-1} + B_{n-2}} = \frac{x(q_n A_{n-1} + A_{n-2}) + A_{n-1}}{x(q_n B_{n-1} + B_{n-2}) + B_{n-1}} = \frac{xA_n + A_{n-1}}{xB_n + B_{n-1}}$$

Por tanto, si tomamos $x = q_n \in \mathbb{Z}$, tenemos $r_n = \frac{A_n}{B_n} = [q_0, q_1, q_2, ..., q_n]$ y

Corolario 1. Los convergentes de un número real pueden calcularse por las ecuaciones en recurrencia anteriores.

Demostraremos que los convergentes de un $\alpha \in \mathbb{R}$ tienen por límite α y forman dos sucesiones encajadas con α en medio:

$$r_0 < r_2 < r_4 < \cdots < \alpha < \cdots < r_5 < r_3 < r_1$$

Lo que se llama una **cortadura de Dedekind** para un irracional α . En efecto

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

Página 12 de 44

Atrás

Pantalla grande/pequeña

Teorema 2. Los numeradores y denominadores, de los convergentes de una FCS, para todo i satisfacen

$$A_{i-1}B_i - A_iB_{i-1} = (-1)^i \Longleftrightarrow \frac{A_{i-1}}{B_{i-1}} - \frac{A_i}{B_i} = \frac{(-1)^i}{B_iB_{i-1}} \Longleftrightarrow r_i - r_{i-1} = \frac{(-1)^{i-1}}{B_iB_{i-1}}$$

Demostración: Por inducción, el primer caso es inmediato

$$A_{-1}B_0 - A_0B_{-1} = 1 - 0 = 1 = (-1)^0$$

y si suponemos $A_{i-1}B_i - A_iB_{i-1} = (-1)^i$, entonces

$$A_i B_{i+1} - A_{i+1} B_i = A_i (q_{i+1} B_i + B_{i-1}) - (q_{i+1} A_i + A_{i-1}) B_i =$$

$$= A_i B_{i-1} - A_{i-1} B_i = -(-1)^i = (-1)^{i+1}$$

Corolario 2. $(A_n, B_n) = 1$ son primos entre si y la fracción $\frac{A_n}{B_n}$ está reducida.

Corolario 3.
$$A_i B_{i-2} - A_{i-2} B_i = (-1)^i q_i \iff r_i - r_{i-2} = \frac{(-1)^i q_i}{B_i B_{i-2}}$$

Demostración:La equivalencia es consecuencia de que $B_i B_{i-2} \neq 0$ y

$$A_i B_{i-2} - A_{i-2} B_i = (q_i A_{i-1} + A_{i-2}) B_{i-2} - A_{i-2} (q_i B_{i-1} + B_{i-2}) =$$

$$= q_i (A_{i-1} B_{i-2} - A_{i-2} B_{i-1}) = q_i (-1)^{i-2} = q_i (-1)^i$$

Una FCS finita es un racional x/y, su última convergente es x/y y su penúltima convergente a/b satisface $bx - ay = (-1)^n$ donde n es el número de convergentes. Por tanto, el cálculo de convergentes proporciona un método para calcular soluciones a algunas ecuaciones diofánticas enteras.

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

44 >>

•

Página 13 de 44

Atrás

Pantalla grande/pequeña

7. CÁLCULO DE CONVERGENTES.

Observamos que los A_i B_i tienden a infinito rápidamente ya que satisfacen la misma ecuación en recurrencia con distintos parámetros iniciales.

$$A_i = q_i A_{i-1} + A_{i-2},$$
 $A_{-1} = 1, A_0 = q_0$
 $B_i = q_i B_{i-1} + B_{i-2},$ $B_{-1} = 0, B_0 = 1$

Las fórmulas recursivas anteriores dan lugar a cálculos repetitivos que se pueden tabular

Ejemplo 13. Para el número aúreo $\varphi = [1, 1, 1, ...] = \frac{1+\sqrt{5}}{2}$ los primeros 7 convergentes son

Ejemplo 14. Para el número $[2,2,2,...] = 1 + \sqrt{2}$ sus primeros convergentes son

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

44 66

→

Página 14 de 44

Atrás

Pantalla grande/pequeña

Ejemplo 15. Para el número $[3,3,3,...] = \frac{3+\sqrt{13}}{2}$ sus primeros convergentes son

Ejemplo 16. Para el número $\sqrt{3} = [1, \overline{1,2}, \overline{1,2}, \dots]$ sus primeros convergentes son

8. Una aplicación.

Calcular el inverso de 8 módulo 13 equivale a resolver 8x - 13y = 1. Como los convergentes del racional 13/8 son

el penúltimo convergente da $8*8-13*5=(-1)^{6+1}=-1$. Tomando módulo 13, se tiene

$$8^{-1} \equiv -8 \equiv 5 \pmod{13}$$

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

44 >>

•

Página 15 de 44

Atrás

Pantalla grande/pequeña

9. MAS PROPIEDADES

Dada una FC finita $[q_0, q_1, q_2, ..., q_{r-1}, q_r]$ y un número real cualquiera x. Como

$$[q_0, x] = q_0 + \frac{1}{x} = \frac{xq_0 + 1}{x} = \frac{xA_0 + A_{-1}}{xB_0 + B_{-1}}$$

Si suponemos por inducción

$$[q_0, q_1, q_2, \dots, q_{r-1}, x] = \frac{xA_{r-1} + A_{r-2}}{xB_{r-1} + B_{r-2}}$$

entonces

$$[q_0, q_1, q_2, \dots, q_r, x] = [q_0, q_1, q_2, \dots, q_r + \frac{1}{x}] = \frac{(q_r + 1/x)A_{r-1} + A_{r-2}}{(q_r + 1/x)B_{r-1} + B_{r-2}} = \frac{x(q_r A_{r-1} + A_{r-2}) + A_{r-1}}{x(q_r B_{r-1} + B_{r-2}) + B_{r-1}} = \frac{xA_r + A_{r-1}}{xB_r + B_{r-1}}$$

Por tanto,

Lema 1. La igualdad $[q_0, q_1, q_2, ..., q_r, x] = \frac{xA_r + A_{r-1}}{xB_r + B_{r-1}}$ es cierta para todo $r \in \mathbb{N}$ y todo $x \in \mathbb{R}$. En particular si $x = q_{r+1}$ es entero positivo, se tiene que una FCS finita coincide con su último convergente

$$[q_0, q_1, q_2, \dots, q_r, q_{r+1}] = \frac{q_{r+1}A_r + A_{r-1}}{q_{r+1}B_r + B_{r-1}} = \frac{A_{r+1}}{B_{r+1}}$$

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

→

Página 16 de 44

Atrás

Pantalla grande/pequeña

10. CÁLCULO DE FCS DE IRRACIONALES CUADRÁTICOS

Si $\alpha \in \mathbb{R}$ es irracional y $q_0 = \lfloor \alpha \rfloor$, $\alpha_0 = \alpha$, por inducción se obtiene la FCS

$$q_i = \lfloor \alpha_i \rfloor, \quad \alpha_i = \frac{1}{\alpha_{i-1} - q_{i-1}}$$

Si $\alpha = \frac{b+\sqrt{d}}{c}$, es irracional el método puede hacerse más eficiente. En particular, a, b, c son enteros con, 0 < b, no cuadrado perfecto. Multiplicando numerador y denominador por cualquier múltiplo entero de |c|, podemos hacer que $c|(d-b^2)$. Decimos que α está en **forma normal** cuando

$$\alpha_0 = \alpha = \frac{P_0 + \sqrt{d}}{Q_0}$$
, tal que $Q_0 | (d - P_0^2) \Rightarrow Q_{-1} = \frac{d - P_0^2}{Q_0} \Leftrightarrow Q_{-1}Q_0 = d - P_0^2$

Ahora, por inducción suponemos $\alpha_i = \frac{P_i + \sqrt{d}}{Q_i}$ tal que $Q_{i-1}Q_i = d - P_i^2$, y definimos $q_i = \lfloor \alpha_i \rfloor$, también definimos $P_{i+1} = q_i Q_i - P_i$ y

$$Q_i Q_{i+1} = d - P_{i+1}^2 \iff Q_{i+1} = \frac{d - P_{i+1}^2}{Q_i} = \frac{d - P_i^2}{Q_i} + 2q_i P_i - q_i^2 Q_i =$$

$$= Q_{i-1} - q_i (q_i Q_i - P_i) + q_i P_i = Q_{i-1} - q_i P_{i+1} + q_i P_i = Q_{i-1} + q_i (P_i - P_{i+1})$$

O sea,
$$Q_i Q_{i+1} = d - P_{i+1}^2 \iff Q_{i+1} = Q_{i-1} + q_i (P_i - P_{i+1}).$$

Ahora, definimos $\alpha_{i+1} = \frac{P_{i+1} + \sqrt{d}}{Q_{i+1}}$ y tenemos

$$\alpha_i = \frac{P_i + \sqrt{d}}{Q_i} = q_i + \frac{\sqrt{d} - (q_i Q_i - P_i)}{Q_i} = q_i + \frac{\sqrt{d} - P_{i+1}}{Q_i} = q_i + \frac{d - P_{i+1}^2}{Q_i (P_{i+1} + \sqrt{d})} = q_i + \frac{Q_i - Q_i}{Q_i (Q_i - Q_i)} = q_i + \frac{Q_i - Q_i}{Q_i (Q_i - Q_i)} = q_i + \frac{Q$$

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

Página 17 de 44

Atrás

Pantalla grande/pequeña

$$=q_i + \frac{Q_{i+1}}{(P_{i+1} + \sqrt{d})} = q_i + \frac{1}{\frac{P_{i+1} + \sqrt{d}}{Q_{i+1}}} = q_i + \frac{1}{\frac{P_{i+1} + \sqrt{d}}{Q_{i+1}}} \Rightarrow \alpha_i = q_i + \frac{1}{\alpha_{i+1}}$$

O sea, hemos demostrado que la FCS de $\alpha_0 = \alpha = \frac{P_0 + \sqrt{d}}{Q_0}$ es

$$\alpha = [q_0, q_1, q_2, ..., q_{i+1}, ...]$$

Además, el cálculo de las partes enteras, q_{i+1} , puede hacerse sin aritmética de punto flotante con la fórmula

$$q_{i+1} = \lfloor \alpha_{i+1} \rfloor = \left\lfloor \frac{P_{i+1} + \sqrt{d}}{Q_{i+1}} \right\rfloor = \left\lfloor \frac{P_{i+1} + \left\lfloor \sqrt{d} \right\rfloor}{Q_{i+1}} \right\rfloor = Quot(P_{i+1} + \left\lfloor \sqrt{d} \right\rfloor, Q_{i+1}) = m$$

ya que se tienen las desigualdades siguientes

$$\begin{split} P_{i+1} + \left\lfloor \sqrt{d} \right\rfloor &= mQ_{i+1} + r, \quad 0 \leq r < Q_{i+1} \Rightarrow r+1 \leq Q_{i+1} \Rightarrow \\ P_{i+1} + \sqrt{d} &= P_{i+1} + \left\lfloor \sqrt{d} \right\rfloor + \delta = mQ_{i+1} + r + \delta < mQ_{i+1} + r + 1 \leq mQ_{i+1} + Q_{i+1} \Rightarrow \\ mQ_{i+1} < P_{i+1} + \left\lfloor \sqrt{d} \right\rfloor < P_{i+1} + \sqrt{d} < mQ_{i+1} + Q_{i+1} \end{split}$$

Para el cálculo de $\lfloor \sqrt{d} \rfloor$ se puede usar un algoritmo sencillo que usa aritmética entera y la única división completa se hace al principio en el cálculo de $Q_{-1} = \frac{d-P_1^2}{Q_0}$ (aquí no se aplica la última fórmula recursiva).

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

(4)

•

Página 18 de 44

Atrás

Pantalla grande/pequeña

11. FCS DE UN IRRACIONAL CUADRÁTICO

Así, si $\alpha = \frac{P+\sqrt{d}}{Q}$ con $Q|(d-P^2)$, entonces, en el paso *i*-ésimo de la FCS de α se tiene $q_i = \lfloor \alpha_i \rfloor$

$$\alpha_i = \frac{P_i + \sqrt{d}}{Q_i} = q_i + \frac{\sqrt{d} - (q_i Q_i - P_i)}{Q_i} = q_i + \frac{\sqrt{d} - P_{i+1}}{Q_i}$$

y por la definición de q_i , $0 < \frac{\sqrt{d} - P_{i+1}}{Q_i} < 1 \Rightarrow P_{i+1} < \sqrt{d}$

Además, de la definición recursiva

$$P_{i+1} = q_i Q_i - P_i \Leftrightarrow Q_i = \frac{P_i + P_{i+1}}{q_i} < 2\sqrt{d}$$

Por tanto, el número total de fracciones $\frac{P_i + \sqrt{D}}{Q_i}$ que aparecen en el desarrollo en FCS de un irracional cuadrático está acotado por el producto de ambas

$$\lfloor \sqrt{d} \rfloor 2 \lfloor \sqrt{d} \rfloor < 2d$$

Esto significa que como máximo en 2d pasos encontraremos una fracción α_i que ya ha aparecido antes y por tanto la FCS de un irracional cuadrático es periódica con periodo como máximo 2d-1.

La longitud del periodo máximo nunca alcanza 2d-1, ya que para d>7 se puede demostrar que es menor que $0.72\log_2(d)\sqrt{d}$

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

44 >>

→

Página 19 de 44

Atrás

Pantalla grande/pequeña

12. APROXIMACIÓN DE IRRACIONALES

Dado un irracional $\alpha \in \mathbb{R}$, sabemos que sus convergentes $r_i = \frac{A_i}{B_i}$ son racionales que aproximan α . De hecho, r_i es la mejor de todas las aproximaciones racionales con denominador menor o igual que B_i como demuestra el sig.

Teorema 3. Si $\frac{a}{b} \in \mathbb{Q}$, con 0 < b y $\frac{A_i}{B_i}$ los convergentes de un irracional $\alpha \in \mathbb{R}$. Entonces, para todo $n \ge 1$ se tiene

i)
$$|b\alpha - a| < |B_n\alpha - A_n| \Longrightarrow B_{n+1} \le b$$

ii)
$$\left| \alpha - \frac{a}{b} \right| < \left| \alpha - \frac{A_n}{B_n} \right| \Longrightarrow B_n < b$$

Demostración: Primero demostramos que i) implica ii). En caso contrario, existirá un $\frac{a}{b} \in \mathbb{Q}$, con $0 < b \le B_n$ tal que multiplicando las desigualdades

$$\begin{vmatrix} \alpha - \frac{a}{b} \end{vmatrix} < \begin{vmatrix} \alpha - \frac{A_n}{B_n} \end{vmatrix} \implies |b\alpha - a| < |B_n\alpha - A_n| \Longrightarrow B_{n+1} \le b$$

$$b \le B_n$$

Absurdo, porque $b \le B_n < B_{n+1} \le b$. Luego i) implica ii).

Demostraremos i) por reducción al absurdo. Suponemos lo contrario. O sea

$$|b\alpha - a| < |B_n\alpha - A_n|, \quad B_{n+1} > b$$

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

44 >>>

→

Página 20 de 44

Atrás

Pantalla grande/pequeña

y consideramos el s.l. que tiene determinante $A_n B_{n+1} - A_{n+1} B_n = (-1)^n \neq 0$

$$\left. \begin{array}{l} xA_n + yA_{n+1} = a \\ xB_n + yB_{n+1} = b \end{array} \right\} \Longrightarrow \left. \begin{array}{l} x = (-1)^n (aB_{n+1} - bA_{n+1}) \in \mathbb{Z} \\ y = (-1)^n (bA_n - aB_n) \in \mathbb{Z} \end{array} \right\}$$

Además, $x, y \neq 0$ ya que en caso contrario

Si
$$x = 0 \Longrightarrow b = yB_{n+1} \Longrightarrow 0 < y \Longrightarrow b < B_{n+1}$$
 Absurdo

Si
$$y = 0 \Longrightarrow a = xA_n$$
, $b = xB_n \Longrightarrow$
 $|b\alpha - a| = |xB_n\alpha - xA_n| = |x||B_n\alpha - A_n| \ge |B_n\alpha - A_n|$ Absurdo

También x, y tienen signos opuestos ya que

Si
$$y < 0 \Longrightarrow xB_n = b - yB_{n+1} > 0 \Longrightarrow x > 0$$

Si $y > 0$ como $B_{n+1} > b \Longrightarrow yB_{n+1} > b \Longrightarrow xB_n < 0 \Longrightarrow x < 0$

Ahora, como convergentes sucesivas están una por debajo y otra por arriba de α las diferencias $B_n\alpha - A_n$ y $B_{n+1}\alpha - A_{n+1}$ tienen signos opuestos. Por tanto, $x(B_n\alpha - A_n)$ y $y(B_{n+1}\alpha - A_{n+1})$ tienen el mismo signo.

Finalmente, sustituyendo las ecuaciones del s.l. que definen a x, y

$$\alpha b - a = \alpha (xB_n + yB_{n+1}) - xA_n + yA_{n+1} = x(B_n\alpha - A_n) + y(B_{n+1}\alpha - A_{n+1})$$

Y tomando valor absoluto se obtiene una contradicción que demuestra todo:

$$|\alpha b - a| = |x(B_n \alpha - A_n)| + |y(B_{n+1} \alpha - A_{n+1})| > |x||B_n \alpha - A_n| \ge |B_n \alpha - A_n|$$

Después de este teorema técnico podemos dar una condición para que un racional a/b sea una convergente de un irracional $\alpha \in \mathbb{R}$.

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

Página 21 de 44

Atrás

Pantalla grande/pequeña

Primero vemos una desigualdad que satisfacen casi todos los convergentes de un irracional $\alpha \in \mathbb{R}$. Como los denominadores son enteros positivos que crecen estrictamente excepto posiblemente los 2 primeros. Entonces, para todo $n \ge 2$ se tiene que $2 \le B_{n+1}$ y por tanto

$$\left|\alpha - \frac{A_n}{B_n}\right| < \frac{1}{B_n B_{n+1}} < \frac{1}{2B_n}$$

El recíproco es el importante

Teorema 4. Caracterización de convergentes: Si $\alpha \in \mathbb{R}$ irracional, $\frac{A_i}{B_i}$ son sus convergentes y $\frac{a}{b} \in \mathbb{Q}$, con 0 < b. Entonces, se tiene

$$\left|\alpha - \frac{a}{b}\right| < \frac{1}{2b^2} \Longrightarrow \frac{a}{b} = \frac{A_n}{B_n} \text{ para algún } n \in \mathbb{N}$$

Demostración: Si $\frac{a'}{b'} = \frac{ca}{cb} = \frac{a}{b}$ con (a, b) = 1 y $1 \le c$. Entonces,

$$\left|\alpha - \frac{a}{b}\right| = \left|\alpha - \frac{a'}{b'}\right| < \frac{1}{2b'^2} < \frac{1}{2b^2}$$

y basta demostrar el teorema para $\frac{a}{b}$ con a y b primos entre si.

Como la sucesión B_n es estrictamente creciente a partir de n=2 y empieza en 1, existe el mínimo natural n tal que $B_n \le b < B_{n+1}$. Por el teorema anterior si $|b\alpha - a| < |B_n\alpha - A_n|$ entonces $B_{n+1} \le b$. Luego para este n,

$$|B_n \alpha - A_n| \le |b\alpha - a| < \frac{1}{2b} \Longrightarrow \left|\alpha - \frac{A_n}{B_n}\right| < \frac{1}{2bB_n}$$

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

Página 22 de 44

Atrás

Pantalla grande/pequeña

Razonamos ahora por reducción al absurdo. Si $\frac{a}{b} \neq \frac{A_n}{B_n} \iff bA_n - aB_n \neq 0$, entonces $1 \leq |bA_n - aB_n|$ y obtenemos una contradicción ya que

$$\frac{1}{bB_n} \le \frac{|bA_n - aB_n|}{bB_n} = \left| \frac{A_n}{B_n} - \frac{a}{b} \right| \le \left| \alpha - \frac{A_n}{B_n} \right| + \left| \alpha - \frac{a}{b} \right| < \frac{1}{2bB_n} + \frac{1}{2b^2}$$

$$\implies 1 < \frac{1}{2} + \frac{B_n}{2b} \Longleftrightarrow \frac{1}{2} < \frac{B_n}{2b} \Longleftrightarrow b < B_n \text{ Absurdo}$$

La única forma de salvar la contradicción es que $bA_n - aB_n = 0 \iff \frac{a}{b} = \frac{A_n}{B_n}$. O sea, $\frac{a}{b}$ coincide con la *n*-convergente tal que $B_n \le b < B_{n+1}$.

Ahora podemos demostrar para todo $\rho, \sigma \in \mathbb{R}^+$ reales positivos que

Teorema 5. Si $\sqrt{\rho}$ es irracional y $0 < \sigma < \sqrt{\rho}$. Toda solución positiva de la e.d. $x^2 - \rho y^2 = \sigma$ es una convergente de la FCS de $\sqrt{\rho}$.

Demostración: Si $0 < a, b \in \mathbb{Z}$ son soluciones de $x^2 - \rho y^2 = \sigma$. Entonces,

$$\frac{a}{b} - \sqrt{\rho} = \frac{a - b\sqrt{\rho}}{b} = \frac{a^2 - \rho b^2}{b\left(a + b\sqrt{\rho}\right)} = \frac{\sigma}{b\left(a + b\sqrt{\rho}\right)} < \frac{\sqrt{\rho}}{b\left(a + b\sqrt{\rho}\right)} = \frac{1}{b^2\left(\frac{a}{b\sqrt{\rho}} + 1\right)}$$

La primeras igualdades nos dicen que $0 < \frac{a}{b} - \sqrt{\rho}$ y por tanto también

$$\sqrt{\rho} < \frac{a}{b} \Longleftrightarrow 1 < \frac{a}{b\sqrt{\rho}} \Longrightarrow \frac{1}{b^2 \left(\frac{a}{b\sqrt{\rho}} + 1\right)} < \frac{1}{2b^2}$$

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

Página 23 de 44

Atrás

Pantalla grande/pequeña

Con las dos desigualdades obtenemos la hipótesis del teorema anterior

$$\left| \frac{a}{b} - \sqrt{\rho} \right| < \frac{1}{2b^2}$$

y por tanto a/b es una convergente de $\sqrt{\rho}$.

Particularizando a números enteros positivos, tenemos

Corolario 4. Si $0 < d, N \in \mathbb{Z}$, d no cuadrado perfecto y $N < \sqrt{d}$. Toda solución positiva de $x^2 - dy^2 = N$ es una convergente de la FCS de \sqrt{d} .

Si queremos resolver la misma e.d. con N < 0 y $|N| < \sqrt{d}$, hacemos

$$x^{2} - dy^{2} = N \iff y^{2} - \frac{1}{d}x^{2} = -\frac{N}{d}$$

y aplicamos el teorema anterior para $\sigma = -N/d$ y $\rho = 1/d$. Como 0 < d

$$0 < -N = |N| < \sqrt{d} \Longleftrightarrow 0 < -\frac{N}{d} < \frac{\sqrt{d}}{d} = \sqrt{\frac{1}{d}}$$

Por el teorema, sus soluciones positivas y, x son convergentes de $1/\sqrt{d}$. Pero si $\alpha = [q_0, q_1, \ldots]$ es la FCS de un α mayor que 1. Su inverso es menor que 1 y como $\frac{1}{\alpha} = 0 + \frac{1}{\alpha}$ su FCS empieza con cero y continua con la de α . O sea,

$$\frac{1}{\alpha} = [0, q_0, q_1, \dots]$$

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

14 >>

→

Página 24 de 44

Atrás

Pantalla grande/pequeña

Además, si denotamos A_n , B_n y A'_n , B'_n los convergentes de α y $\frac{1}{\alpha}$ tenemos

$$A_0 = q_0, \quad A_1 = q_0 q_1 + 1,$$
 ..., $A_n = q_{n-1} A_{n-1} + A_{n-2}$
 $B_0 = 1, \quad B_1 = q_1,$..., $B_n = q_{n-1} B_{n-1} + B_{n-2}$
 $A'_0 = 0, \quad A'_1 = 1,$ $A'_2 = q_1,$..., $A'_n = q_{n-1} A'_{n-1} + A'_{n-2}$
 $B'_0 = 1, \quad B'_1 = q_0,$ $B'_2 = q_0 q_1 + 1,$..., $B'_n = q_{n-1} B'_{n-1} + B'_{n-2}$

que $\frac{A_0}{B_0} = \frac{q_0}{1}$ y $\frac{A_1}{B_1} = \frac{q_0 q_1 + 1}{q_1}$ son los inversos de $\frac{A'_1}{B'_1} = \frac{1}{q_0}$ y que $\frac{A'_2}{B'_2} = \frac{q_1}{q_0 q_1 + 1}$. Como satisfacen las mismas ecuaciones en recurrencia con los q_i desplazados una unidad. Por inducción, esa relación es cierta para todo i. O sea,

Teorema 6. Si $1 < \alpha \in \mathbb{R}$, la n-ésima convergente de $1/\alpha$ es la inversa de n-1-ésima convergente de α .

Corolario 5. Si $d, N \in \mathbb{Z}$, 0 < d no cuadrado perfecto y N < 0 con $|N| < \sqrt{d}$. Toda solución positiva de $x^2 - dy^2 = N$ es una convergente de la FCS de \sqrt{d} .

Demostración: Por lo anterior, sus soluciones $0 < x, y \in \mathbb{Z}$ son soluciones de $y^2 - \frac{1}{d}x^2 = -\frac{N}{d}$ y estas $\frac{y}{x}$ son convergentes de $\frac{1}{\sqrt{d}}$ que a su vez son inversos de convergentes de \sqrt{d} . Luego $\frac{x}{y}$ es una convergente de \sqrt{d} como queríamos. \square

Ejemplo 17. La FCS
$$\sqrt{61} = [7, \overline{1,4,3,1,2,2,1,3,4,1,14}]$$
 con convergentes

$$\left\{7, 8, \frac{39}{5}, \frac{125}{16}, \frac{164}{21}, \frac{453}{58}, \frac{1070}{137}, \frac{1523}{195}, \frac{5639}{722}, \frac{24079}{3083}, \frac{29718}{3805}, \frac{440131}{56353}\right\}$$

da una solución a la e.d. ya que el tercero, $39^2 - 61 * 5^2 = -4$.

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

Página 25 de 44

Atrás

Pantalla grande/pequeña

13. ECUACIONES CUADRÁTICAS DIOFÁNTICAS

Hemos visto que las e.d. $x^2 - dy^2 = \pm N \operatorname{con} |N| < \sqrt{d}$ y $d \in \mathbb{Z}^+$ no cuadrado perfecto si tienen soluciones positivas se encuentran entre los convergentes de la FCS de \sqrt{d} . De mostraremos que siempre existen soluciones positivas y que sus soluciones enteras están generadas por la más pequeña positiva.

Las e.d. $x^2 - dy^2 = \pm 1$ son importantes ya que sus soluciones corresponden a unidades del anillo $\mathbb{Z}\left[\sqrt{d}\right]$. Sus soluciones son un caso particular de las anteriores porque $x^2 - dy^2 = \pm 1 \Longrightarrow (2x)^2 - d(2y)^2 = \pm 4$.

En el caso $d \equiv 1 \pmod{4}$, las e.d. $x^2 - dy^2 = \pm 4$ son importantes porque sus soluciones corresponden a unidades del anillo de enteros del c.c. $Q(\sqrt{d})$:

$$\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right] = \left\{\frac{a+b\sqrt{d}}{2} : a, b \in \mathbb{Z}, \ a \equiv b \pmod{2}\right\}$$

La norma de un e.a. de este anillo vale ± 1 cuando son soluciones de la e.d.

$$N\left(\frac{a+b\sqrt{d}}{2}\right) = \left(\frac{a+b\sqrt{d}}{2}\right)\left(\frac{a-b\sqrt{d}}{2}\right) = \frac{a^2-db^2}{4} = \pm 1 \Longleftrightarrow a^2 - db^2 = \pm 4$$

$$U\left(\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]\right) = \left\{\frac{a+b\sqrt{d}}{2}: a^2 - db^2 = \pm 4, \ a \equiv b \pmod{2}\right\}$$

Observamos que $\mathbb{Z}\left[\sqrt{d}\right] \subset \mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$ y que las unidades de $\mathbb{Z}[\sqrt{d}]$ son un caso particular de las unidades de $\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$, cuando a,b son ambos pares.

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

. .

↑

Página 26 de 44

Atrás

Pantalla grande/pequeña

Teorema 7. Si $0 < a, b \in \mathbb{Z}$ son las menores soluciones de $x^2 - dy^2 = \pm 4$, $con 0 < d \equiv 1 \pmod{4}$ no cuadrado perfecto. Entonces todas sus soluciones enteras $s, t \in \mathbb{Z}$ se obtienen de $\pm \left(\frac{a+b\sqrt{d}}{2}\right)^n = \frac{s+t\sqrt{d}}{2}$ con $n \in \mathbb{Z}$.

Demostración: Basta con que las soluciones positivas se obtengan como $\left(\frac{a+b\sqrt{d}}{2}\right)^n = \frac{s+t\sqrt{d}}{2}$ con $n \in \mathbb{N}$ ya que si $s^2 - dt^2 = \pm 4$ entonces también son soluciones $\pm s, \pm t \in \mathbb{Z}$. O sea, hay 4 soluciones que corresponden a los e.a.

$$\frac{s+t\sqrt{d}}{2}, \frac{-s-t\sqrt{d}}{2}, \frac{s-t\sqrt{d}}{2}, \frac{-s+t\sqrt{d}}{2}$$

que son opuestos dos a dos,. Los exponentes negativos se obtienen ya que

$$\left(\frac{s + t\sqrt{d}}{2}\right)^{-1} = \begin{cases} \frac{s - t\sqrt{d}}{2} & \text{Si } s^2 - dt^2 = 4\\ \frac{-s + t\sqrt{d}}{2} & \text{Si } s^2 - dt^2 = -4 \end{cases}$$

Ahora, si $0 < a, b \in \mathbb{Z}$ son las menores soluciones, $\alpha = \frac{a+b\sqrt{d}}{2}$ es un e.a. porque su polmin, $x^2 - ax + \frac{a^2 - db^2}{4} = x^2 - ax \pm 1 \in \mathbb{Z}[x]$, es entero. Y como tiene norma ± 1 , es una unidad del anillo $\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$. Luego cualquier potencia positiva suya también lo es y por tanto es de la forma. $\alpha^n = \frac{a_n + b_n\sqrt{d}}{2}$. Luego $0 < a_n, b_n \in \mathbb{Z}$ son soluciones de $x^2 - dy^2 = \pm 4$ y $a_n \equiv b_n$ (2).

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

→

Página 27 de 44

Atrás

Pantalla grande/pequeña

Recíprocamente, si $0 < s, t \in \mathbb{Z}$ son soluciones de la e.d. $x^2 - dy^2 = \pm 4$, $\beta = \frac{s+t\sqrt{d}}{2}$ igual que $\alpha = \frac{a+b\sqrt{d}}{2}$ es un número real mayor que 1^1 . Y como \mathbb{R} es arquimediano, existe un natural $m \in \mathbb{N}$ tal que

$$\alpha^m \le \beta < \alpha^{m+1} \Longrightarrow 1 \le \beta \alpha^{-m} < \alpha$$

ya que $0 < \alpha^{-1} \Leftrightarrow 0 < \alpha^{-m}$ son reales positivos porque $\alpha \alpha^{-1} = 1$.

Ahora, $\beta \alpha^{-m}$, como producto de unidades es una unidad del a.e. $\mathbb{Z}\left[\frac{1+\sqrt{d}}{2}\right]$. Por tanto de la forma $\beta \alpha^{-m} = \frac{a'+b'\sqrt{d}}{2}$ con $a'^2 - db'^2 = \pm 4$.

Basta comprobar que 0 < a', b' son enteros positivos para que la minimalidad de α implique que $\beta \alpha^{-m} = 1$ y $\beta = \alpha^m$ como queríamos demostrar. Pero

$$\left(\frac{a'+b'\sqrt{d}}{2}\right)^{-1} = \begin{cases} \frac{a'-b'\sqrt{d}}{2} & \text{Si } a'^2 - db'^2 = 4\\ \frac{-a'+b'\sqrt{d}}{2} & \text{Si } a'^2 - db'^2 = -4 \end{cases}$$

Si $1 < \beta \alpha^{-m}$ su inverso satisface $0 < \left(\frac{a' + b' \sqrt{d}}{2}\right)^{-1} < 1$ y tenemos

$$\begin{cases} 0 < a' = \frac{a' + b' \sqrt{d}}{2} + \frac{a' - b' \sqrt{d}}{2} & \text{Si } a'^2 - db'^2 = 4 \\ 0 < b' \sqrt{d} = \frac{a' + b' \sqrt{d}}{2} - \frac{a' - b' \sqrt{d}}{2} & \text{Si } a'^2 - db'^2 = 4 \\ 0 < b' \sqrt{d} = \frac{a' + b' \sqrt{d}}{2} + \frac{-a' + b' \sqrt{d}}{2} & \text{Si } a'^2 - db'^2 = -4 \\ 0 < a' = \frac{a' + b' \sqrt{d}}{2} - \frac{-a' + b' \sqrt{d}}{2} & \text{Si } a'^2 - db'^2 = -4 \end{cases}$$

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

Página 28 de 44

Atrás

Pantalla grande/pequeña

 $^{^{1}0 &}lt; d \equiv 1$ (4) y por tanto $d \ge 5$.

Veremos que siempre existe una menor solución con a y b positivos de la e.d. $x^2 - dy^2 = \pm 1$ y por tanto también existe una de $(2x)^2 - d(2y)^2 = \pm 4$ y su menor positiva. Por tanto, si $0 < d \equiv 1 \pmod{4}$ no cuadrado perfecto,

Corolario 6. El conjunto de soluciones de $x^2 - dy^2 = \pm 4$ tiene estructura de grupo abeliano isomorfo a $\mathbb{Z}_2 \oplus \mathbb{Z}$.

Como los únicos elementos de orden finito entre las soluciones corresponden a $\alpha = \frac{\pm 2 + 0\sqrt{d}}{2} = \pm 1$, el resto generan subgrupos isomorfos a \mathbb{Z} . Por tanto,

Corolario 7. El conjunto de las soluciones de $x^2 - dy^2 = \pm 1$ tiene estructura de grupo abeliano isomorfo a $\mathbb{Z}_2 \oplus \mathbb{Z}$.

Definición 1. Decimos solución positiva s.p. si $0 < a, b \in \mathbb{Z}$ y solución fundamental SF si $\alpha = \frac{a+b\sqrt{d}}{2}$ no es una potencia de otro i.c.

Como las soluciones van de 4 en 4, $\pm a$, $\pm b$. Hay 4 soluciones fundamentales de las cuales sólo una es positiva. Pero si se consideran los e.a. correspondientes hay dos positivos: $\alpha = \frac{a+b\sqrt{d}}{2}$ con 0 < a, b y su inverso α^{-1} .

Aunque las soluciones de $x^2 - dy^2 = \pm 1$ están contenidas entre las de $x^2 - dy^2 = \pm 4$, a veces coinciden. Por ejemplo,

Ejemplo 18. La FCS $\sqrt{17} = \begin{bmatrix} 4, \overline{8} \end{bmatrix}$ sólo tiene 1 convergente $\frac{4}{1}$ que corresponde al e.a. $\alpha = 4 + \sqrt{17}$ y SF a = 4, b = 1 de $x^2 - dy^2 = -1$ o bien a = 8, b = 4 que es la SF positiva de $x^2 - dy^2 = -4$.

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

44 >>

→

Página 29 de 44

Atrás

Pantalla grande/pequeña

14. CARACTERIZACIÓN DE FCS PERIÓDICAS

Recordamos que una FCS $\alpha = [q_0, q_1...]$ se dice **periódica** si existen $n, r \in \mathbb{N}$ tal que $q_r = q_{n+r}$. Si n, r son mínimos la FCS se escribe como

$$[q_0,...,q_{r-1},\overline{q_r,...,q_{n+r}}]$$
 o bien $[q_0,...,q_{r-1},\overline{a_0,...,a_{n-1}}]$

para indicar el periodo $a_0, ..., a_{n-1}$ que se repite indefinidamente.

Hemos visto en una sección anterior que la FCS de un irracional cuadrático es periódica con periodo como máximo 2d-1. También es cierto el recíproco.

Teorema 8. Una FCS es periódica si y sólo si es la de un i.c.

Demostración: Queda por demostrar la condición necesaria: Supongamos $\alpha = [q_0, ..., q_{r-1}, \overline{a_0, ..., a_{n-1}}]$ y $\theta = [\overline{a_0, ..., a_{n-1}}]$ su parte periódica. Como las dos FC son infinitas, ambos números reales α, θ no pueden ser racionales.

Por el lema 1, para todo $x \in \mathbb{R}$, se tiene $[q_0, q_1, q_2, ..., q_r, x] = \frac{xA_r + A_{r-1}}{xB_r + B_{r-1}}$. Así

$$\alpha = [q_0, ..., q_{r-1}, \theta] \Longrightarrow \alpha = \frac{\theta A_{r-1} + A_{r-2}}{\theta B_{r-1} + B_{r-2}}$$

$$\theta = [\overline{a_0, ..., a_{n-1}}] = [a_0, ..., a_{n-1}, \theta] \Longrightarrow \theta = \frac{\theta A'_{n-1} + A'_{n-2}}{\theta B'_{n-1} + B'_{n-2}}$$

Pero la 2^a igualdad equivale a una ecuación cuadrática con coeficientes enteros en θ igualdad a cero. Que nos dice que θ es un i.c. Si lo sustituimos en la 1^a igualdad, nos dice que α también es i.c. como queríamos.

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

...

→

Página 30 de 44

Atrás

Pantalla grande/pequeña

Definición 2. *Una FCS se dice puramente periódica si es de la forma* $[\overline{a_0,...,a_{n-1}}]$.

Ejemplo 19. $\alpha = \frac{1+\sqrt{3}}{2}$ está en forma normal, el algoritmo termina y la FCS

$$\begin{array}{cccc} Paso & 0 & 1 & 2 \\ P_i & 1 & 1 & 1 \\ Q_i & 2 & 1 & 2 \\ q_i & 1 & 2 & 1 \end{array} \} \Longrightarrow \alpha = \frac{1+\sqrt{3}}{2} = \alpha_2 \Longrightarrow \alpha = [\overline{1,2}]$$

es puramente periódica con periodo de longitud 2.

Teorema 9. Un i.c. α es puramente periódico si y sólamente si $1 < \alpha = \frac{a + \sqrt{b}}{c}$ y su conjugado $\overline{\alpha} = \frac{a - \sqrt{b}}{c}$ satisface $-1 < \overline{\alpha} < 0$.

Demostración: Primero suponemos que α es p.p. Por tanto,

$$\alpha = [a_0, \dots, a_{n-1}, \alpha] = \frac{\alpha A_{n-1} + A_{n-2}}{\alpha B_{n-1} + B_{n-2}} \Longrightarrow \alpha^2 B_{n-1} + \alpha (B_{n-2} - A_{n-1}) - A_{n-2} = 0$$

O sea, α es raíz de $F(x) = x^2 B_{n-1} + x(B_{n-2} - A_{n-1}) - A_{n-2} \in \mathbb{Z}[x]$, polinomio que tiene dos raíces una es α y la otra es su conjugado $\overline{\alpha}$.

Como α es p.p. todos los q_i son enteros positivos. Por tanto, $1 \le q_0 < \alpha$. Y la otra raíz está en (-1,0) ya que $f(0) = -A_{n-2} < 0$ y

$$\begin{split} f(-1) &= B_{n-1} - B_{n-2} + A_{n-1} - A_{n-2} = \\ &= B_{n-2} q_{n-1} + B_{n-3} + A_{n-2} q_{n-1} + A_{n-3} - B_{n-2} - A_{n-2} = \\ &= (B_{n-2} + A_{n-2})(q_{n-1} - 1) + B_{n-3} + A_{n-3} > B_{n-3} + A_{n-3} > 0 \end{split}$$

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

44 >>

→

Página 31 de 44

Atrás

Pantalla grande/pequeña

Recíprocamente, supongamos que $1 < \alpha$ y $-1 < \overline{\alpha} < 0$. Entonces

$$\alpha_i = q_i + \frac{1}{\alpha_{i+1}} \Longleftrightarrow \frac{1}{\overline{\alpha_{i+1}}} = \overline{\alpha_i} - q_i$$

Como $1 < \alpha \Longrightarrow 1 \le q_0$. Por tanto, $1 \le q_i$, para todo $i \ge 0$. Entonces,

Si
$$\overline{\alpha_i} < 0 \Longrightarrow \frac{1}{\overline{\alpha_{i+1}}} < -1 \Longleftrightarrow -1 < \overline{\alpha_{i+1}} < 0$$

Por hipótesis, $-1 < \overline{\alpha_0} < 0$. Entonces, por inducción, $-1 < \overline{\alpha_i} < 0$, $\forall i \ge 0$. Y multiplicando por -1 cambian esas desigualdades. O sea, tenemos

$$0 < -\overline{\alpha_i} = -\frac{1}{\alpha_{i+1}} - q_i < 1 \Longrightarrow q_i = \left[-\frac{1}{\alpha_{i+1}} \right]$$

Como α es i.c. su FCS es periódica y existen 0 < j < k tales que $\alpha_j = \alpha_k$. Conjugando tenemos $\overline{\alpha_j} = \overline{\alpha_k}$ y por tanto

$$q_{j-1} = \left[-\frac{1}{\alpha_j} \right] = \left[-\frac{1}{\alpha_k} \right] = q_{k-1} \Longrightarrow \alpha_{j-1} = q_{j-1} + \frac{1}{\alpha_j} = q_{k-1} + \frac{1}{\alpha_k} = \alpha_{k-1}$$

Por inducción finita hacia abajo, tenemos $\alpha_j = \alpha_k \Longrightarrow \alpha_0 = \alpha_{k-j}$. O sea, $\alpha = \alpha_0 = \left[\overline{q_0, \dots, q_{k-j-1}}\right]$ es p.p. como queríamos.

Corolario 8. Si
$$\alpha = [\overline{q_0, ..., q_{r-1}}]$$
 es p.p. Entonces, $-1/\overline{\alpha} = [\overline{q_{r-1}, ..., q_0}]$.

Demostración:
$$-1 < \overline{\alpha} \iff 1 < -1/\overline{\alpha}$$
 y también $1 < \alpha \iff -1 < -1/\alpha < 0$ $\alpha = \alpha_0 = q_0 + \frac{1}{\alpha_1}, \dots, \alpha_{r-1} = q_{r-1} + \frac{1}{\alpha_0} \implies \overline{\alpha_0} = q_0 + \frac{1}{\overline{\alpha_1}}, \dots, \overline{\alpha_{r-1}} = q_{r-1} + \frac{1}{\overline{\alpha_0}}$

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

Página 32 de 44

Atrás

Pantalla grande/pequeña

Y despejando de atrás adelante $-\frac{1}{\overline{\alpha_0}} = q_{r-1} - \overline{\alpha_{r-1}} ..., -\frac{1}{\overline{\alpha_1}} = q_0 - \alpha_0$ se obtienen los cocientes en el orden inverso como queremos.

Para \sqrt{d} , con 0 < d entero no cuadrado perfecto, siempre $-\sqrt{d} < -1$. Sin embargo, el i.c. asociado $\sqrt{d} + \left\lceil \sqrt{d} \right\rceil$ satisface $-1 < -\sqrt{d} + \left\lceil \sqrt{d} \right\rceil < 0$. O sea,

Corolario 9. \sqrt{d} nunca es p.p. pero si lo es $\sqrt{d} + \left[\sqrt{d}\right]$.

Por tanto, $\alpha = \sqrt{d} + \left[\sqrt{d}\right] = \left[\overline{q_0, \dots, q_{r-1}}\right]$ donde r es la longitud del periodo. Así, $\alpha = \left[q_0, \dots, q_{i-1}, \alpha_i\right]$ donde $\alpha_i = \left[\overline{q_i, \dots, q_{r-i}}\right]$ es p.p. para cada $i \in \mathbb{N}$. Además, $\alpha, \alpha_1, \dots, \alpha_{r-1}$ son todos diferentes entre si y $\alpha = \alpha_r = \alpha_{2r} = \cdots$

$$\alpha = \sqrt{d} + \left\lceil \sqrt{d} \right\rceil = \left\lceil \overline{q_0, \dots, q_{r-1}} \right\rceil = \left\lceil q_0, \dots, q_{i-1}, \overline{q_i, \dots, q_{r-i}} \right\rceil$$

Los i.c. $\alpha_i = \left[\overline{q_i, \dots, q_{r-i}}\right]$ son necesariamente de la forma $\frac{P_i + \sqrt{d}}{Q_i}$ y satisfacen

$$\frac{P_{jr} + \sqrt{d}}{Q_{jr}} = \alpha_{jr} = \alpha = \left[\sqrt{d}\right] + \sqrt{d} \Longleftrightarrow P_{jr} - Q_{jr}\left[\sqrt{d}\right] = (Q_{jr} - 1)\sqrt{d}$$

Como \sqrt{d} es irracional la igualdad debe ser cero. Pero sólo en estos casos, ya que si $Q_i = 1$ y $\alpha_i = P_i + \sqrt{d}$ como es p.p. su conjugado debe satisfacer

$$-1 < P_i - \sqrt{d} < 0 \Longleftrightarrow \sqrt{d} - 1 < P_i < \sqrt{d} \Longrightarrow P_i = \left\lceil \sqrt{d} \right\rceil \Longrightarrow \alpha_i = \alpha$$

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

Página 33 de 44

Atrás

Pantalla grande/pequeña

O sea, $Q_{jr} = 1$ para todo $j \in \mathbb{N}$ y $Q_i \neq 1$ para todo i = 1, ..., r - 1. Además, $Q_i \neq -1$ para todo $i \in \mathbb{N}$. Ya que si $P_i = -1$, el i.c. $\alpha_i = -P_i - \sqrt{d}$ como es p.p. debe ser mayor que 1 y su conjugado estar entre 0 y 1.

$$1 < -P_i - \sqrt{d} \Longrightarrow P_i < -1 - \sqrt{d}$$

$$-1 < -P_i + \sqrt{d} < 0 \Longrightarrow \sqrt{d} < P_i$$
 \rightarrow \sqrt{d} < P_i < -1 - \sqrt{d} Absurdo

Ahora, estamos en condiciones de caracterizar la FCS de \sqrt{d} comparándola con la de $\alpha = \sqrt{d} + [\sqrt{d}]$. Así, si $0 < d \in \mathbb{Z}$ no cuadrado perfecto,

Teorema 10. $\sqrt{d} = [a_0, \overline{a_1, a_2, ..., a_{r-1}, 2a_0}]$ y $a_1, a_2, ..., a_{r-1}$ es simétrico respecto de su centro. Y $Q_i = 1$ si y sólamente si $r \mid i$ y $Q_i \neq -1$ para todo i.

Demostración: Observamos que en la FCS de $\sqrt{d} + \lfloor \sqrt{d} \rfloor$ la primera parte entera es $q_0 = \lfloor \alpha \rfloor = \lfloor \sqrt{d} + \lfloor \sqrt{d} \rfloor \rfloor = 2 \lfloor \sqrt{d} \rfloor$ y entonces

$$\begin{split} &\sqrt{d} = -\left[\sqrt{d}\right] + \left(\sqrt{d} + \left[\sqrt{d}\right]\right) = -\left[\sqrt{d}\right] + \left[q_0, \overline{q_1, q_2, \dots, q_{r-1}, q_0}\right] = \\ &= -\left[\sqrt{d}\right] + \left[2\left[\sqrt{d}\right], \overline{q_1, q_2, \dots, q_{r-1}, q_0}\right] = \left[\left[\sqrt{d}\right], \overline{q_1, q_2, \dots, q_{r-1}, 2\left[\sqrt{d}\right]}\right] \end{split}$$

Por tanto, la FCS de \sqrt{d} coincide con la de $\sqrt{d} + \left[\sqrt{d}\right]$ a partir de la segunda iteración. Por el cor 8, como $\alpha_1 = \frac{1}{\sqrt{d} - \left[\sqrt{d}\right]} = \left[\overline{q_1, q_2, \dots, q_{r-1}, q_0}\right]$ es p.p.

$$-1/\overline{\alpha_1} = \left[\overline{q_0, q_{r-1}, \dots, q_2, q_1}\right] = \sqrt{d} + \left[\sqrt{d}\right] = \left[\overline{q_0, q_2, \dots, q_{r-1}}\right]$$

de donde se obtiene la simetría y todo está demostrado.

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

44 >>

→

Página 34 de 44

Atrás

Pantalla grande/pequeña

El que los denominadores de los $\alpha_i = \frac{P_1 + \sqrt{d}}{Q_i}$ nunca valen -1 y sólo valen 1 en los múltiplos de la longitud del periodo permite hallar las soluciones de

$$x^2 - dv^2 = \pm 1$$

En efecto, por el lema 1, $\sqrt{d} = [q_0, \dots, q_n, \alpha_{n+1}] = \frac{\alpha_{n+1}A_n + A_{n-1}}{\alpha_{n+1}B_n + B_{n-1}}$ y entonces

$$\begin{split} \sqrt{d} &= \frac{\alpha_{n+1}A_n + A_{n-1}}{\alpha_{n+1}B_n + B_{n-1}} = \frac{(P_{n+1} + \sqrt{d})A_n + Q_{n+1}A_{n-1}}{(P_{n+1} + \sqrt{d})B_n + Q_{n+1}B_{n-1}} = \frac{P_{n+1}A_n + Q_{n+1}A_{n-1} + \sqrt{d}A_n}{P_{n+1}B_n + Q_{n+1}B_{n-1} + \sqrt{d}B_n} \\ \Longrightarrow dB_n + (P_{n+1}B_n + Q_{n+1}B_{n-1})\sqrt{d} = P_{n+1}A_n + Q_{n+1}A_{n-1} + \sqrt{d}A_n \end{split}$$

como \sqrt{d} es irracional, deben ser iguales sus coeficientes. Por tanto,

$$\begin{vmatrix}
A_n = P_{n+1}B_n + Q_{n+1}B_{n-1} \\
dB_n = P_{n+1}A_n + Q_{n+1}A_{n-1}
\end{vmatrix} \Longrightarrow \begin{vmatrix}
A_n^2 = P_{n+1}A_nB_n + Q_{n+1}A_nB_{n-1} \\
dB_n^2 = P_{n+1}A_nB_n + Q_{n+1}A_{n-1}B_n
\end{vmatrix} \Longrightarrow
\Longrightarrow A_n^2 - dB_n^2 = (A_{n-1}B_n - A_nB_{n-1})Q_{n+1} = (-1)^{n-1}Q_{n+1}$$

O sea, si $0 < d \in \mathbb{Z}$, no es cuadrado perfecto, hemos demostrado que

Teorema 11. $A_{n-1}^2 - dB_{n-1}^2 = (-1)^n Q_n$ para todo entero $n \ge 0$.

Esta propiedad, da una forma de resolver la **ecuación de Pell**, $x^2 - dy^2 = \pm 1^2$.

Corolario 10. Las soluciones positivas de $x^2 - dy^2 = \pm 1$ son los convergentes A_{n-1}, B_{n-1} de \sqrt{d} con n un múltiplo de r la longitud del periodo.

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

→

Página 35 de 44

Atrás

Pantalla grande/pequeña

²Ya que sabemos que $Q_i = 1$ si y sólamente si r|i donde r es la longitud del periodo de la descomposición en FCS de \sqrt{d} y Q_i nunca vale -1.

Así, el algoritmo de FCS de \sqrt{d} termina cuando detectemos el primer $Q_r = 1$ después del inicial, equivalentemente la primera vez que $q_i = 2q_0$.

La convergente anterior A_{r-1} , B_{r-1} es la menor s.p. de la ecuación de Pell y $A_{r-1} + B_{r-1}\sqrt{d}$ es su SF . Además, por el cor 7, tenemos

Teorema 12. Si $A_{r-1}, B_{r-1} \in \mathbb{N}$ es la menor s.p. de $x^2 - dy^2 = \pm 1$, sus soluciones se obtienen de la igualdad $x_n + y_n \sqrt{d} = \pm (A_{r-1} + B_{r-1} \sqrt{d})^n$ con $n \in \mathbb{Z}$.

Por lo anterior, también es posible resolver la e.d. $x^2 - dy^2 = \pm 4$ que es una forma de calcular una unidad fundamental del a.e. del c.c. $\mathbb{Q}(\sqrt{d})$. En efecto:

Como la menor s.p. de $x^2 - dy^2 = \pm 1$ nos da una s.p. $(2x_1)^2 - d(2y_1)^2 = \pm 4$, tiene que existir la menor s.p. de $x^2 - dy^2 = \pm 4$. Y por el cor 4, tenemos que encontrarla entre los convergentes de \sqrt{d} anteriores o iguales a A_{r-1}, B_{r-1} .

Teorema 13. La menor s.p. de $x^2 - dy^2 = \pm 4$ es la primera convergente A_i , B_i de \sqrt{d} que corresponde a $\alpha_i = \frac{P_1 + \sqrt{d}}{Q_i}$ cuyo denominador sea $Q_i = 4$. Si no existe ese denominador, la menor s.p. es $2A_{r-1}$, $2B_{r-1}$.

Demostración: Basta aplicar $A_{i-1}^2 - dB_{i-1}^2 = (-1)^i Q_i$ para $0 \le n \le r - 1$. \square

Corolario 11. Si $d \equiv 1 \pmod{4}$, una unidad fundamental del a.e. de $\mathbb{Q}(\sqrt{d})$ es $\frac{a+b\sqrt{d}}{2}$ donde $0 < a, b \in \mathbb{Z}$ es la menor s.p. de $x^2 - dy^2 = \pm 4$.

Ejemplo 20. Para $\mathbb{Q}(\sqrt{17})$ una unidad fundamental es $\alpha = \frac{8+2\sqrt{17}}{2} = 4+\sqrt{17}$.

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

Página 36 de 44

Atrás

Pantalla grande/pequeña

15. APLICACIONES

 \sqrt{d} siempre está en forma normal porque $Q_0 = 1$, también $P_0 = 0$ y $q_0 = \left| \sqrt{d} \right|$ y se le puede aplicar el algoritmo de cálculo.

En general, si $\alpha = \frac{P_0 + \sqrt{d}}{Q_0}$ es un i.c. con $Q_0 | (d - P_0^2)$ el algoritmo de cálculo de su FCS sucesivamente calcula los $\alpha_i = \frac{P_1 + \sqrt{d}}{Q_i}$ así:

$$\begin{aligned} q_0 &= \lfloor \alpha \rfloor = Quot(P_0 + \left \lfloor \sqrt{d} \right \rfloor, Q_0), & P_1 &= q_0 Q_0 - P_0, & Q_1 &= \frac{d - P_0^2}{Q_0} \\ q_1 &= \lfloor \alpha_1 \rfloor = Quot(P_1 + \left \lfloor \sqrt{d} \right \rfloor, Q_1), & P_2 &= q_1 Q_1 - P_1, & Q_2 &= Q_0 + q_1 (P_1 - P_2) \\ &\vdots & \vdots & \vdots & \vdots \\ q_i &= \lfloor \alpha_i \rfloor = Quot(P_i + \left \lfloor \sqrt{d} \right \rfloor, Q_i), & P_{i+1} &= q_i Q_i - P_i, & Q_{i+1} &= Q_{i-2} + q_i (P_i - P_{i+1}) \end{aligned}$$

Y en cada iteración, se calculan también los convergentes con las e.r.

$$A_i = q_i A_{i-1} + A_{i-2}, \quad A_{-1} = 1, A_0 = q_0$$

 $B_i = q_i B_{i-1} + B_{i-2}, \quad B_{-1} = 0, B_0 = 1$

En cada iteración se comprueba si $Q_i = 4$, en cuyo caso se guarda el anterior i.c. $\frac{A_{i-1} + B_{i-1} \sqrt{d}}{2}$. El primero da la UF positiva del c.c. $\mathbb{Q}(\sqrt{d})$.

Si no se encuentra ningún 4, se termina el algoritmo con el primer $Q_r = 1$ y se devuelve $A_{r-1} + B_{r-1}\sqrt{d}$ que es la UF positiva en este caso.

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

Página 37 de 44

Atrás

Pantalla grande/pequeña

Ejemplo 21. La FCS $\sqrt{21} = \left[4, \overline{1, 1, 2, 1, 1, 8}\right]$ con periodo de longitud 6, cuyos e.a y convergentes que dan solución a $x^2 - dy^2 = \pm 4$ son

$$\left\{\frac{4+\sqrt{21}}{5},\frac{1+\sqrt{21}}{4},\frac{3+\sqrt{21}}{3},\frac{3+\sqrt{21}}{4},\frac{1+\sqrt{21}}{5},4+\sqrt{21}\right\} \left\{4,5,\frac{9}{2},\frac{23}{5},\frac{32}{7},\frac{55}{12}\right\}$$

En este caso, no hay solución a $x^2-21y^2=-4$ porque la iteración es par. La primera la da el 2^o convergente ya que $5^2-21*1^2=4$. Por tanto corresponde a la UF $\alpha=\frac{5+\sqrt{21}}{2}$ de $\mathbb{Q}(\sqrt{21})$ porque $21\equiv 1\pmod{4}$. Los siguientes son

$$\alpha^{2} = \left(\frac{5+\sqrt{21}}{2}\right)^{2} = \frac{23+5\sqrt{21}}{2} \implies 23^{2} - 21 * 5^{2} = 4$$

$$\alpha^{3} = \left(\frac{5+\sqrt{21}}{2}\right)^{3} = 55 + 12\sqrt{21} \implies 55^{2} - 21 * 12^{2} = 1$$

Ejemplo 22. La FCS $\sqrt{29} = [5, \overline{2, 1, 1, 2, 10}]$ con periodo de longitud 5, cuyos e.a y convergentes que dan solución a $x^2 - dy^2 = \pm 4$ son

$$\left\{\frac{5+\sqrt{29}}{4}, \frac{3+\sqrt{29}}{5}, \frac{2+\sqrt{29}}{5}, \frac{3+\sqrt{29}}{4}, 5+\sqrt{29}\right\} \\
\left\{5, \frac{11}{2}, \frac{16}{3}, \frac{27}{5}, \frac{70}{13}\right\}$$

Hay solución con -4 porque la iteración es impar. Es el 1º convergente, $5^2 - 29 * 1^2 = -4$. Corresponde a la UF $\alpha = \frac{5+\sqrt{29}}{2}$ porque $29 \equiv 1 \pmod{4}$.

$$\alpha^{2} = \left(\frac{5+\sqrt{29}}{2}\right)^{2} = \frac{27+5\sqrt{29}}{2} \implies 27^{2} - 29 * 5^{2} = 4$$

$$\alpha^{3} = \left(\frac{5+\sqrt{29}}{2}\right)^{3} = 70 + 13\sqrt{21} \implies 70^{2} - 29 * 13^{2} = -1$$

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

Página 38 de 44

Atrás

Pantalla grande/pequeña

Ejemplo 23. La FCS $\sqrt{61} = \left[7, \overline{1,4,3,1,2,2,1,3,4,1,14}\right]$ con periodo de longitud 11, cuyos e.a y convergentes que dan solución a $x^2 - dy^2 = \pm 4$ son

$$\left\{ \frac{7+\sqrt{61}}{12}, \frac{5+\sqrt{61}}{3}, \frac{7+\sqrt{61}}{4}, \frac{5+\sqrt{61}}{9}, \frac{4+\sqrt{61}}{5}, \frac{6+\sqrt{61}}{5}, \frac{4+\sqrt{61}}{9}, \frac{5+\sqrt{61}}{4}, \frac{7+\sqrt{61}}{3}, \frac{5+\sqrt{61}}{12}, 7+\sqrt{61} \right\} \\ \left\{ 7, 8, \frac{39}{5}, \frac{125}{16}, \frac{164}{21}, \frac{453}{58}, \frac{1070}{137}, \frac{1523}{195}, \frac{5639}{722}, \frac{24079}{3083}, \frac{29718}{3805} \right\}$$

La primera la da el 3° convergente, $39^2 - 61 * 5^2 = -4$. Corresponde a la UF $\alpha = \frac{39+5\sqrt{61}}{2}$. Hay solución con -4 porque la iteración es impar. Otras son

$$\alpha^{2} = \left(\frac{39+5\sqrt{61}}{2}\right)^{2} = \frac{1523+195\sqrt{61}}{2} \implies 1523^{2} - 61 * 195^{2} = 4$$

$$\alpha^{3} = \left(\frac{39+5\sqrt{61}}{2}\right)^{3} = 29718 + 3805\sqrt{61} \implies 4\left(29718^{2} - 61 * 3805^{2}\right) = -4$$

Ejemplo 24. La FCS $\sqrt{73} = [8, \overline{1, 1, 5, 5, 1, 1, 16}]$ con periodo de longitud 7, cuyos e.a y convergentes que dan solución a $x^2 - dy^2 = \pm 4$ son

$$\left\{ \frac{8+\sqrt{73}}{9}, \frac{1+\sqrt{73}}{8}, \frac{7+\sqrt{73}}{3}, \frac{8+\sqrt{73}}{3}, \frac{7+\sqrt{73}}{8}, \frac{1+\sqrt{73}}{9}, 8+\sqrt{73} \right\}$$

$$\left\{ 8, 9, \frac{17}{2}, \frac{94}{11}, \frac{487}{57}, \frac{581}{68}, \frac{1068}{125} \right\}$$

La primera la da el 7° convergente, $1068^2 - 73 * 125^2 = -1$. Hay solución con -4 porque la iteración es impar. Como no se ha encontrado ningún denominador $Q_i = 4$ antes del final del periodo. La UF es $\alpha = 1068 + 125\sqrt{73}$.

En este caso, las unidades de $\mathbb{Z}[\sqrt{73}]$ coinciden con las del a.e. $\mathbb{Z}[\frac{1+\sqrt{73}}{2}]$. O sea, las unidades de ambos anillos son

$$\pm (1068 + 125\sqrt{73})^n$$
, tal que $n \in \mathbb{Z}$

Enrique R. Aznar Dpto. de Álgebra

Página web personal

Página de Abertura

Contenido

Página 39 de 44

Atrás

Pantalla grande/pequeña

Ejercicio 1. Encuentra la longitud r del periodo de FCS de $\sqrt{13290059}$ y las unidades del anillo de enteros correspondiente.

17. REFERENCIAS.

- [1] David Bressoud, Stan Wagon: A Course in Computational Number Theory, John Wiley & Sons, Hoboken, NJ, USA, 2000.
- [2] William B. Jones and W. J. Thron, Continued Fractions, Analytical Theory and Applications, Addison-Wesley, London, 1980.
- [3] A. Ya. Khintchine, Continued Fractions, P. Noordhoff, Groningen, 1963.
- [4] Niven I., Zuckerman H.S., An introduction to the theory of numbers, John Wiley & Sons, NY, 1972.
- [5] Hans Riesel: *Prime Numbers and Computer Methods for Factorization*, Springer Science+Business Media, LLC 2012, (first edition Birkhäuser, 1994).
- [6] Samuel S. Wagstaff, Jr: *The joy of factoring*, AMS, Providence, Rhode island, 2013.

18. TEST DE REPASO.

Para comenzar el cuestionario pulsa el botón de inicio. Cuando termines pulsa el botón de finalizar.

Para marcar una respuesta coloca el ratón en la letra correspondiente y pulsa el botón de la izquierda (del ratón).

Enrique R. Aznar Dpto. de Álgebra

1. Si
$$\alpha = \sqrt{2} \in \mathbb{R}$$
, su FCS es.

(a)
$$\alpha = [1, 1, 1, 1, \dots]$$

(b)
$$\alpha = [2, 2, 2, 2, \dots]$$

(d)
$$\alpha = [1, 2, 2, ...]$$

2. Si
$$\alpha = \sqrt{3} \in \mathbb{R}$$
, su FCS es.

(a)
$$\alpha = [3, 3, 3, 3, \dots]$$

(b)
$$\alpha = [1, \overline{1, 3}, \overline{1, 3}, \dots]$$

(c)
$$\alpha = [\overline{1,3},\overline{1,3},...]$$

(d) No es puramente periódica.

3. Si
$$\alpha = \frac{a+\sqrt{a^2+4}}{2} \in \mathbb{R}$$
, su FCS es.

(a)
$$\alpha = [1, a, a, a, ...]$$

(b)
$$\alpha = [2, a, a, a, ...]$$

(c) No es periódica.

Página web personal

Página de Abertura

Contenido

44))

→

Página 41 de 44

Atrás

Pantalla grande/pequeña

(d)
$$\alpha = [a, a, a, ...]$$

- **4.** Si $\alpha = \frac{1+\sqrt{5}}{2} \in \mathbb{R}$, su FCS es.
 - (a) $\alpha = [1, \overline{1, 2}, \overline{1, 2}, ...]$
 - (b) $\alpha = [2, 2, 2, ...]$
 - (c) $\alpha = [5, 5, 5, \dots]$.
 - (d) $\alpha = [1, 1, 1, ...]$
- 5. ¿Cuál de las siguientes afirmaciones es verdadera?.

(a)
$$\sqrt{a^2-2} = [a-2, \overline{1, a-2, 1, 2(a-1)}, \dots]$$

(b)
$$\sqrt{a^2+2} = [a+1, a, 2a, a, 2a, ...]$$

(c)
$$\sqrt{a^2+1} = [a+1,2a,2a,...]$$

(d)
$$\sqrt{a^2-1} = [a-1, \overline{1,2(a-1)},...]$$

- **6.** Si $\alpha = \frac{P+\sqrt{d}}{Q}$ es un irracional cuadrático con $d \in \mathbb{N}$ libre de cuadrados. ¿Cuál de las siguientes afirmaciones es verdadera?.
 - (a) La FCS de α puede ser no periódica.
 - (b) La FCS de α es puramente periódica.
 - (c) La FCS de α es periódica con periodo como máximo d.
 - (d) La FCS de α es periódica con periodo como máximo 2d-1.

Página web personal

Página de Abertura

Contenido

44 >>>

→

Página 42 de 44

Atrás

Pantalla grande/pequeña

- 7. ¿Cuál de las siguientes afirmaciones es verdadera?.
 - (a) No existen FCS finitas.
 - (b) Una FCS finita puede ser irracional.
 - (c) Una FCS finita coincide con su penúltimo convergente.
 - (d) Una FCS finita coincide con su último convergente.
- **8.** Si $\alpha = \frac{P + \sqrt{d}}{Q}$ es un irracional cuadrático, con $d \in \mathbb{N}$ libre de cuadrados. ¿Cuál de las siguientes afirmaciones es verdadera?.
 - (a) La FCS de α nunca es puramente periódica
 - (b) La FCS de α siempre es puramente periódica
 - (c) La FCS de α es puramente periódica si y sólamente si $-1 < \alpha = \frac{a + \sqrt{b}}{c} < 0$ y su conjugado $\overline{\alpha} = \frac{a \sqrt{b}}{c}$ satisface $1 < \overline{\alpha}$.
 - (d) La FCS de α es puramente periódica si y sólamente si $1 < \alpha = \frac{a + \sqrt{b}}{c}$ y su conjugado $\overline{\alpha} = \frac{a \sqrt{b}}{c}$ satisface $-1 < \overline{\alpha} < 0$.
- **9.** Si $\alpha = \sqrt{d}$, con $d \in \mathbb{N}$ libre de cuadrados. ¿La FCS de α es?.
 - (a) $\alpha = [q_0, \overline{q_1, q_2, ..., q_{r-1}, q_r, q_0}]$ con el periodo simétrico.
 - (b) $\alpha = [q_0, \overline{q_1, q_2, ..., q_{r-1}, q_r, q_0}]$ donde cada $q_i < q_0$.
 - (c) $\alpha = [q_0, \overline{q_1, q_2, ..., q_{r-1}, q_r, 2q_0}]$ donde q_0 es el más pequeño.
 - (d) $\alpha = [q_0, \overline{q_1, q_2, ..., q_{r-1}, q_r, 2q_0}]$ donde cada $q_i < q_0$.

Página web personal

Página de Abertura

Contenido

Página 43 de 44

Atrás

Pantalla grande/pequeña

- (a) Cualquier solución se obtiene de la FCS de \sqrt{d} .
- (b) Cualquier solución con mcd(x, y) = 1 se obtiene de la FCS de \sqrt{d} .
- (c) Cualquier solución positiva de la ecuación se obtiene de los convergentes de la FCS de \sqrt{d} .
- (d) Cualquier solución positiva con mcd(x, y) = 1, son el numerador y denominador de una convergente de la FCS de \sqrt{d} .

