Departamento de Estadística y Matemáticas Facultad de Ciencias Económicas Estadística II Parcial I

Nombre:	Cédula:

1. (1.5 punto) Sea X_1, X_2, \ldots, X_n una muestra aleatoria iid de una distribución de Weibull con parámetros α desconocido y parámetro β conocido, función de probabilidad dada por

$$f(x) = \frac{\beta}{\alpha} \left(\frac{x}{\alpha}\right)^{\beta-1} e^{-\left(\frac{x}{\alpha}\right)^{\beta}} \text{ para } x \ge 0; \alpha > 0; \beta > 0$$

Demuestre cuál es el valor del primer momento asociado a la población, y con éste, encuentre el estimador por el método de los momentos para el parámetro desconocido α .

2. (1.5 punto) Sea X_1, X_2, \ldots, X_n una muestra aleatoria iid de una distribución de Weibull con parámetros α desconocido y parámetro β conocido, función de probabilidad dada por

$$f(x) = \frac{\beta}{\alpha} \left(\frac{x}{\alpha}\right)^{\beta - 1} e^{-\left(\frac{x}{\alpha}\right)^{\beta}} \text{ para } x \ge 0; \alpha > 0; \beta > 0$$

Encuentre el estimador por el método de máxima verosimilitud para el parámetro desconocido α , y demuestre si este estimador maximiza efectivamente la función de verosimilitud.

3. (1 punto) Sea X_1, X_2, \ldots, X_n una muestra aleatoria iid de una distribución de Maxwell, con parámetro α desconocido, función de distribución dada por

$$f(x) = \sqrt{\frac{2}{\pi}} \frac{x^2 e^{-\frac{-x^2}{2\alpha^2}}}{\alpha^3} \quad \text{para } 0 \le x \le \infty; \alpha > 0$$

esperanza matemática y varianza dadas por

$$\mathbb{E}(X) = 2\alpha \sqrt{\frac{2}{\pi}}$$
$$Var(X) = \frac{\alpha^2 (3\pi - 8)}{\pi}$$

Pruebe si el estimador

$$\hat{\alpha} = \bar{X} - \frac{\bar{X}}{2} \sqrt{\frac{\pi}{2}}$$

Es un estimador consistente para el parámetro α .

4. (1 punto) Sea X_1, X_2, \ldots, X_n una muestra aleatoria iid de una distribución de probabilidad, con media $\mathbb{E}(X) = \frac{\alpha}{\beta}$ y varianza $Var(X) = \alpha^2 \beta$. Demuestre cuál de los dos estimadores planteados a continuación es más eficiente para el parámetro α , tal que

$$\hat{\mu}_1 = \frac{1}{13} \left(2x_{34} + 4x_8 + 3x_{84} + x_{44} \right)$$

$$\hat{\mu}_2 = \frac{1}{5} \left(4x_{71} + 3x_{38} + x_{71} - 2x_{38} \right)$$