

En esta página >

Sinopsis

Tema 3: Tipos Abstractos de Datos: Árboles, Grafos.

Árboles.

- Es un TAD que representa una colección de elementos llamados nodos.
- Uno de estos *nodos* es especial, nos referimos a él como la **raíz** del árbol.
- Entre los nodos hay una relación de paternidad la cual impone una estructura jerárquica sobre ellos.

Definición.

- El TAD Árbol se suele definir de manera recursiva:
 - 1. Un sólo nodo es por sí mismo un árbol. Este nodo es la raíz del árbol.
 - 2. Dado un nodo \(n\) y una serie de árboles \(A_1, A_2, ..., A_k\) con raíces \(n_1, n_2, ..., n_k\), podemos crear un nuevo árbol haciendo que \(n\) sea el padre de los nodos \(n_1, n_2, ..., n_k\). Decimos entonces que \(n\) es la raíz del nuevo árbol, \(A_1, ..., A_k\) son *subárboles* de la raíz y a los nodos \(n_1, n_2, ..., n_k\) son *hijos* del nodo \(n\).
- Un árbol vacío se representa por la letra griega \(\Lambda\).
- Los TADs Árbol se emplean p.e. en lugar de Listas cuando la cantidad de elementos almacenada es muy grande y el tiempo de acceso lineal es *costoso*.

Aspecto.

Se suelen representar de este modo

Figura 1: Esquema general de un árbol.

Figura 2: Ejemplo concreto de un árbol.

Conceptos.

- Si r es la raíz de un Arbol se dice que cada *subárbol* es un hijo de r y que r es el padre de la *ra*íz de cada uno de los *subárboles*.
- En un Arbol con (n) nodos hay (n-1) aristas.
- En principio cada nodo puede tener un número arbitrario de hijos, incluso \(0\).
- Los nodos sin hijos se llaman hojas.
- Los nodos con el mismo padre son hermanos.
- Un camino de un nodo \(n_1\) a otro \(n_k\) se define como la secuencia de nodos \(n_1, n_2, ..., n_k\) tal que \(n_i\) es el padre de \(n_{i+1}\), \(\forall i : 1 \le i < k\). Su longitud es el número de aristas que lo forman, \(k-1\).

- Para un nodo \(n_i\) su **profundidad** es la longitud del camino único desde la *raíz* a ese nodo. Luego la profundidad de la *raíz* es \(0\).
- La **altura** de \(n_i\) es el camino más largo desde \(n_i\) a una hoja. Luego la altura de cualquier hoja es \(0\), y la altura de un Árbol es la altura de su *raíz*.
- La profundidad de un Árbol es la profundidad de la hoja más profunda, es decir, su altura.
- Si \(n_1 \ne n_2\) se dice que \(n_1\) es un *antecesor propio* de \(n_2\), y que \(n_2\) es un *descendiente propio* de \(n_1\).
- Los Árboles cuyos nodos pueden tener n hijos se denominan *n-arios*. El caso particular en el cual ningún nodo tiene más de dos hijos se denomina Árbol binario .
- Si hay un camino de \(n_1\) a \(n_2\) se dice que \(n_2\) es **descendiente** de \(n_1\) y a su vez \(n_1\) es el **antecesor** de \(n_2\).

Orden de los nodos.

- Los hijos de un nodo pueden estar ordenados o no.
- Caso de estarlo, se suele hacer de izquierda a derecha.
- Si no se ordenan por ningún criterio el Árbol se llama no ordenado.
- La ordenación es útil en el caso de dos nodos cualesquiera entre los cuales no existe relación antecesor/descendiente. Entonces si a y b son hermanos y a está a la izquierda de b, entonces todos los descencientes de a están a la izquierda de b y de todos sus descendientes.

Recorrido ordenado de un Árbol.

- Tenemos varias formas de recorrer ordenadamente un Árbol.
- Pre-orden -orden previo- , In-orden -orden simétrico- y Post-orden -orden posterior-.
- Estos ordenamientos se definen recursivamente así:

3. Pero si ninguno de los anteriores es el caso...

Sea \mathbf{A} un Arbol con raíz \(n\) y subárboles \($(A_1, A_2,...,A_k\setminus)$ representado de este modo:

Figura 3: Representación de árbol con subárboles.

Entonces...

- 1. El **listado en orden previo** de los nodos de **A** está formado por la *raíz* de **A**, seguida de los nodos de \(A_1\) en orden previo, luego por los nodos de \(A_2\) en orden previo y así sucesivamente hasta los nodos de \(A_k\) en orden previo.
- 2. El **listado en orden simétrico** de los nodos de **A** está formado los nodos de \(A_1\) en orden simétrico, seguidos de \(n\), y detrás los nodos de \(A_2, ..., A_k\) con cada grupo de nodos en orden simétrico.
- 3. El **listado en orden posterior** de los nodos de **A** tiene los nodos de \(A_1\) en orden posterior, luego los de \(A_2\) en orden posterior y así sucesivamente hasta los de \(A_k\) en orden posterior y por último la raíz \(n\).

Árboles. Operaciones básicas.

- **Parent** (n): Devuelve el padre del nodo n. Si n es la raíz (no tiene padre) se devuelve \ (\Lambda\). En este caso podemos interpretar \(\Lambda\) como un *nodo nulo* que indica que se ha salido del árbol.
- **LeftMostChild** (n): Devuelve el hijo más a la izquierda del nodo n o \(\Lambda\) si n es una hoja (no tiene hijos).

- Label (n): Devuelve la etiqueta del nodo n.
- **Create** (v, \(A_1, A_2, ..., A_i\)): Crea y devuelve un nuevo nodo r que tiene etiqueta v y le asigna \(i\) hijos que son las raíces de los árboles \(A_1, A_2, ..., A_i\), en ese orden desde la izquierda. Si \(i = 0\) entonces r es la *raíz* y una *hoja*.
- **Root** () : Devuelve la *raíz* del árbol o \(\Lambda\) si el árbol es nulo.
- MakeNull (): Convierte el árbol en nulo.
- **Search** (x): Devuelve el nodo que contiene el dato x o *null* si el dato no está en el árbol.
- Insert (x): Inserta en el lugar que le corresponde un nodo con dato = x.
- Delete (x): Elimina el nodo con dato = x.
 Posibilidades:
 - 1. Si es un nodo *hoja*, se puede eliminar directamente.
 - 2. Si el nodo solo tiene un hijo, este hijo pasa a ser hijo de *su abuelo*.

Vamos a borrar el nodo 4:

Figura 4: Borrado del nodo 4.

Figura 5: Árbol con el nodo 4 borrado.

3. Si el nodo tiene dos hijos podemos sustituir el dato de este nodo por el dato más pequeño del subárbol derecho y eliminar ese nodo del subarbol derecho.

Vamos a borrar el nodo 2:

Figura 6: Borrado del nodo 2.

Figura 7: Árbol con el nodo 2 borrado.

Árboles. Implementación.

Mediante vectores.

- Necesitamos numerar los nodos del árbol: \(0, 1, 2, ..., n\).
- Creamos un vector \(L\) de enteros donde el índice \(i\) representa al nodo actual y su contenido \(j\) es el índice en el vector de su padre.
- El nodo que representa la raíz tiene asignado el valor \(0\).
- Según esto si \(L[i] = j\), entonces \(j\) es el padre del nodo \(i\) y \(L[i] = 0\) si el nodo \(i\)
 es hijo de la raíz.
- Esta representación complica la implementación de determinadas operaciones, por lo que emplearemos otra.

Mediante listas de hijos.

- Cada nodo mantiene una lista de sus nodos-hijo.
- Si el número máximo de hijos es fijo, podríamos incluso usar un *vector* de nodos.

Clases necesarias para la representación.

Necesitamos al menos dos clases de Alto Nivel:

1. Tree

```
En esta página > Sinopsis
```

Y la otra:

2. Node

```
class Node
public:
 Node
                      (Element i) { fItem = i; }
 ~Nodo
                      (void)
                                 {}
 Tree& sibling (int n)
                                 { return fSiblings[n]; }
 Tree& leftSibling (void)
                                 { return fSiblings[0]; }
 Tree& rightSibling (void) { return fSiblings[1]; }
                      (void)
                                 { return fItem; }
 Element& item
private:
 Element fItem;
 Tree fSiblings[2];
                   // Como máximo 2 hijos
};
```

Árboles binarios.

- Se trata de un tipo especial de árbol. Algunos de los ejemplos que hemos visto previamente usan este tipo de árboles.
- Un nodo tiene como máximo dos hijos.
- A estos hijos se les llama hijo izquierdo (LeftSibling) e hijo derecho (RightSibling).

Arpoies pinarios.

- Esto permite hacer inserciones automáticas en base a la etiqueta del nodo nuevo insertado.
- Por ejemplo, si insertamos en un arbol binario ordenado de enteros la secuencia de números (\((8, 5, 9, 4, 1, 6, 2\))) obtendríamos el árbol:

Árbol resultado de insertar por este orden: \(8, 5, 9, 4, 1, 6, 2\)

Figura 8: Insertamos 8, 5, 9, 4, 1, 6, 2.

Árboles de otros tipos.

- Los árboles n-arios o la particularización llamada <u>árbol binario</u> no son los únicos tipos de árboles.
- Es interesante que eches un vistazo a estos otros tipos de árboles y que veas por qué se caracterizan:
 - o Árboles AVL.
 - o Árbol biselado o desplegado.
 - Árboles B.

- Estas relaciones podemos plasmarlas mediante el uso de una estructura de datos conocida como **Grafo**.
- A grandes rasgos un *grafo* es un conjunto de vértices y uno de aristas que conectan esos vértices.
- Existen *grafos* de distinto tipo en función de las características en las que nos fijemos:
 - o Dirigidos y no dirigidos.
 - Etiquetados y no etiquetados (ponderados).
 - o Aleatorios (las aristas están asociadas a una probabilidad).
 - Cíclicos y acíclicos.
 - o etc...

Grafos. Definiciones.

- Un grafo \(G\) se define como un par \(G = (V, E)\), donde \(V\) es un conjunto de vértices y \(E\) es un conjunto de aristas.
- Cada *arista* (o *arco*) es, a su vez, un par \((v, w) : v,w \in V\). Si este par es **ordenado**, entonces el grafo es **dirigido** (*digrafo*).
- Un vértice \(w\) es adyacente a otro \(v\) \(\iff (v, w) \in E\).

Aclaración : \((p \iff q) \equiv (p \rightarrow q) \wedge (q \rightarrow p)\).

- En un grafo no dirigido la arista \(((w, v)\) es equivalente a la \(((v, w)\)) y por tanto \((w\)) es adyacente \((v\)) y \((v\)) es adyacente a \((w\)).
- En un grafo no dirigido se llama grado de un vértice al número de aristas que inciden en el.
 En un grafo dirigido hablamos de grado de entrada y grado de salida.
- Un camino en un grafo es una secuencia de vértices \(w_1, w_2, ..., w_n : (w_i, w_{i+1}) \in E, \forall\ 1 \le i < n\). Si \(w_1 = w_n\) se habla de camino cerrado.

un ciclo es un camino de longitud mínima igual a 1. Un grafo sin ciclos se considera acíclico.

- Se llama *grafo conexo o conectado* a uno no-dirigido que tiene un camino desde cualquier vértice a cualquier otro. Si el grafo fuera dirigido, entonces se le llama *fuertemente conexo*.
- Si un grafo dirigido no es fuertemente conexo pero el grafo subyacente no dirigido (sin direccion en las aristas) es conexo, entonces se le llama *débilmente conexo*.
- Se llama grafo completo a aquel que tiene una arista entre cualquier par de vértices.

Grafos. Operaciones básicas.

- **First** (v): Devuelve el índice del primer vértice adyacente a v . Si no hay ninguno, se devuelve un valor que represente un vértice nulo.
- Next (v, i): Devuelve el índice posterior a i de entre los vértices adyacentes a v . Si i es
 el último índice de los vertices adyacentes a v se devuelve un valor que represente un
 vértice nulo.
- Vertex (v, i): Devuelve el vértice cuyo índice i está entre los vértices adyacentes a v .

Grafos. Implementación.

Usaremos grafos dirigidos, los no dirigidos se pueden representar de manera similar.

Matriz de adyacencia.

- Una primera representación consiste en hacer uso de una matriz de adyacencia.
- Se trata de una matriz bidimensional, llamése \(a\), donde para cada arista \((u,v)\) del grafo
 hacemos \(a[u][v] = 1\), y si no existe dicha arista \(a[u][v] = 0\).
- Si la arista tiene un peso asociado \(p\) : \(a[u][v] = p\). En estos casos podemos usar un peso muy grande o muy pequeño (\(\\infty, -\infty\)) para indicar que una arista no existe.

Lista de adyacencia.

- Si el grafo no es denso (disperso) se usa una lista de adyacencia.
- Cada vértice mantiene una lista de todos los vértices adyacentes.
- De este modo, una operación muy habitual en *grafos* como es encontrar todos los vértices adyacentes a uno dado consiste en recorrer la lista de adyacencia del vértice en cuestión.

Ejemplo.

El siguiente grafo:

Figura 9: Grafo de partida.

Produce esta lista de adyacencia:

Figura 10: Lista de adyacencia obtenida.

Grafos. Tipos de problemas.

Conectividad: : Consiste en saber decir si un grafo es conexo o no. Se trata de un problema básico ya que la solución a algunos otros problemas dependen de esta respuesta.

Alcanzabilidad: : El problema de la alcanzabilidad está relacionado con la conexión. En él se nos dan un grafo \(G(V, E)\), un vértice origen \(s \in V\) y un vértice destino \(d \in V\) y tenemos que decir si existe un camino de \(s\) a \(d\) (\(s \rightsquigarrow d\)).

Recorrido: : Consiste en visitar sistemáticamente todos los nodos de un grafo.

Caminos más cortos: : Partiendo del caso anterior es posible llegar a \(d\) desde \(s\) por varios caminos. Es posible que nos interese el *camino más corto* (\(G\) no-dirigido), *de menor coste* (\(G\) ponderado), etc...

Hay variantes: : - de un origen (s) a un solo destino (d).

- de un origen \\(s\\) a todos los posibles destinos \\(d\\), uno a uno.
- \\(\forall (u, v) \mid u,v \in V\\) se nos pide encontrar el camino más corto de $\(u\)$ a $\(v\)$.

Árboles de expansión: : Consiste en encontrar un árbol de expansión en el grafo. Este se define como: dado un grafo conexo y no-dirigido (G = (V, E)), un árbol de expansión es un subconjunto acíclico $(T \subset E)$ que conecta todos los vértices de (G).

Si el grafo es ponderado este problema se transforma en

ordenación.

Grafos. Algoritmos.

Ordenación topologica.

Asigna un orden lineal a los vértices de un *GDA* de manera que si existe una arista de \(i\rightarrow j\), entonces \(i\) aparece antes que \(j\) en el ordenamiento lineal.

Algoritmo:

Camino más corto en grafo ponderado desde un sólo origen.

Algoritmo: 1

```
En esta página > Sinopsis

añadimos w a S;

foreach vertex v en V-S

D[v] = min(D[v], D[w] + C[w][v]); // C[w][v] == INFTY si no existe w-
}
}
```

Si aplicamos Dijkstra a este grafo:

Figura 11: Ejemplo de grado para Dijkstra.

Tabla 1: Resultado de aplicar el algoritmo de Dijkstra al grafo anterior.

Iteración	S	W	D[2]	D[3]	D[4]	D[5]
Inicial	{1}	-	10	\(\infty\)	30	100
1	{1,2}	2	10	60	30	100
2	{1,2,4}	4	10	50	30	90

Árbol de expansión mínima.

- Un árbol de expansión de un grafo no dirigido \(G = (V, E)\) es un árbol formado por todos los vértices de \(G\) y algunas de (pueden ser todas) las aristas de \(G\), de manera que no hay ciclos.
- Si cada arista \((u, v)\) \(\in E\) tiene asociado un peso (\(G\) es ponderado), al árbol de expansión cuyas aristas pesan lo mínimo, se le llama arbol de expansión mínima.

Árbol de expansión mínima. Prim.

Algoritmo: La entrada al agoritmo la constituyen el grafo \(G\) y la salida se devuelve en T que es un conjunto de aristas.

```
void Prim (Graph G, set<Edge>& T) {
    set<Vertex> U;
    Vertex u, v;

T = {};
    U = {1};
    while U != V {
        (u, v) arista con coste mínimo tal que u esta en U y v en V-U;
        T = T + {(u, v)};
        U = U + {v};
    }
}
```

• Y <u>aquí</u> encontrarás una explicación de su funcionamiento.

Aplicar Prim al siguiente grafo:

Figura 12: Ejemplo de grado para Prim.

Produce en este orden estas aristas: $T = \{ (1,3), (3,6), (6,4), (3,2), (2,5) \}$

Árbol de expansión mínima. Kruskal.

Algoritmo:

• Y <u>aquí</u> encontrarás una explicación de su funcionamiento.

Aplicar Kruskal al siguiente grafo:

Figura 13: Ejemplo de grado para Kruskal.

Produce en este orden estas aristas: $T = \{ (1,3), (4,6), (2,5), (3,6), (3,2) \}$

Recorrido. Búsqueda en profundidad.

- Vamos a ver el algoritmo de búsqueda en profundidad.
- Es una generalización del recorrido en orden previo de un árbol.

- Te puede resultar interesante este software: Graphviz.
- Con él puedes describir mediante un lenguaje formal grafos y otros tipos de información estructural.
- Echa un vistazo a la colección de ejemplos que hay en su página.
- Los grafos y árboles que aparecen en este tema están hechos con *Graphviz*. La herramienta empleada ha sido <u>dot</u>.

Aclaraciones.

- Este contenido no es la bibliografía completa de la asignatura, por lo tanto debes estudiar, aclarar y ampliar los conceptos que en ellas encuentres empleando los enlaces web y bibliografía recomendada que puedes consultar en la página web de la ficha de la asignatura y en la web propia de la asignatura.
- 1. El algoritmo de <u>Floyd-Warshall</u> resuelve de manera más directa el problema de los caminos más cortos entre todos los pares.

Página anterior

Tema 2: Tipos Abstractos de Datos: Listas, Pilas, Colas.

Siguiente página

Tema 4: El paradigma → orientado a objetos.