Laboratorio – Triedro de Frenet

Michaelle Perez

Julio, 2021

Contents

1	Longitud de Arco y Re-parametrización.														1										
	1.1	Re-par	rame	trizac	iór	ı.																			1
		1.1.1	Eje	rcicio	1:																				1
	1.2	Re-par	rame	trizac	iór	1	es	ре	ct	О	lo	ng	git	u	d	d	е	ar	cc).					2
		1.2.1	Eje	rcicio	2																				2
2	Trie	edro de	e Fre	enet-	Se	rr	et																		2
		2.0.1	Eje	rcicio	3																				3
		2.0.2	Eje	rcicio	4																				3
		2.0.3	Eje	rcicio	5																				3
		2.0.4	Eje	rcicio	6																				3

1 Longitud de Arco y Re-parametrización.

1.1 Re-parametrización.

Dada una curva (función vectorial) $\gamma(t)$, una reparametrización es otra curva $\lambda(t)$ tal que existe un $u:I\to I'$ con u'(t)>0 y $\lambda(t)=\gamma(u(t))$. Esencialmente la reparametrización es una curva que recorre los mismos puntos; pero posiblemente con una rapidez distinta.

• Ver Ejemplo.

1.1.1 Ejercicio 1:

Construya una reparametrización de la recta:

$$L(t) = (t, 2t, 2t)$$

de forma que se recorra con una rápidez constante de 2.

1.2 Re-parametrización respecto longitud de arco.

Dada una curva es posible reparametrizarla de muchas formas, no todas tienen una interpretación "natural". Una de las que es natural y que nos permite dar una forma "canónica" de una curva, explícitamente para los puntos que recorre y en que orden, es re parametrizar usando la longitud de arco. Recordemos que:

$$s(t) = \int_0^t \|\mathbf{v}\| \ dt,$$

siempre que $\mathbf{v} \neq \mathbf{0}$. De forma que podemos buscar t = t(s) invirtiendo la relación anterior y haciendo:

$$\Gamma(s) = \gamma(t(s)).$$

• Ver Ejemplo.

1.2.1 Ejercicio 2

Considere la curva:

$$\gamma: [0, \infty) \to \mathbb{R}^3$$
 $\gamma(t) = (2t, \cos 2t, \sin 2t).$

Re parametrice respecto de la longitud de arco.

2 Triedro de Frenet-Serret

Las fórmulas básicas de Frenet-Serret son:

$$\frac{dT}{ds} = \kappa N \quad \frac{dN}{ds} = -\kappa T + \tau B \quad \frac{dB}{ds} = -\tau N$$

Cuando no tenemos parametrización respecto de la lóngitud de arco tenemos las siguientes definiciones:

- Tangente unitario: $T = \frac{1}{\|v\|}v$.
- Normal: $N = \frac{1}{|v|} \frac{dT}{dt}$.
- Curvatura: $\kappa = \frac{1}{|v|} \left\| \frac{dT}{dt} \right\|$.
- Bi-normal: $B = T \times N$.
- Torsión: $\tau = \frac{1}{\|v\|} \left\| \frac{dB}{dt} \right\|$.

2.0.1 Ejercicio 3

• Ver Ejemplo

Demuestre que para una curva $\gamma(t)$ con $\mathbf{v} \neq \mathbf{0}$ efectivamente:

$$\hat{\mathbf{N}} \cdot \frac{d\hat{\mathbf{N}}}{dt} = 0.$$

2.0.2 Ejercicio 4

• Ver Ejemplo.

Considere la curva:

$$\gamma(t) = (t, \cos t, \sin t)$$

Encuentre $\hat{\mathbf{T}}$, $\hat{\mathbf{N}}$, y $\hat{\mathbf{B}}$.

2.0.3 Ejercicio 5

Utilice un sistema computacional para dibujar:

$$\gamma(t) = (\cos t, \sin t, \sin t + \cos t).$$

- ullet Explique porque $\hat{\mathbf{B}}$ es constante.
- Utilice un sistema computacional para verificar lo anterior.
- Verifique que $\gamma(t)$ está sobre el plano z y x = 0.

2.0.4 Ejercicio 6

Considere una partícula que se mueve siguiendo una hélice:

$$\gamma(t) = (at, b\cos t, b\sin t),$$

donde a, b > 0 son constantes.

- Pruebe que la partícula se mueve con una rapidez constante.
- Encuentre las componente tangencial y normal de la aceleración de la partícula.