FÍSICA 2 – PRIMER PARCIAL – Z2052 – 23/08/2022

Apellido/s, Nombre/s: e-mail:

Legajo:

1	2	3	4	5	6	Calificación

Calificación: número de respuestas correctas + 1

- 1) Dentro de un calorímetro de equivalente en agua $\pi = 30$ g hay 70 g de agua y 5 g de hielo, en equilibrio con el calorímetro, a 0 °C. Se agregan 200 g de un aceite a 80 °C. La temperatura de equilibrio del sistema es de 35 °C. ($L_f = 80$ cal/g; $c_A = 1$ cal/g°C). Calcule el calor específico del aceite.
- 2) Un cilindro de 120 cm² de base y 75 cm de altura tiene conductividad térmica $\lambda = 4 \text{ W/m·K}$ y está térmicamente aislado en su superficie lateral. Una de sus bases está en contacto con una fuente térmica a 250 °C y la otra en contacto con una gran masa de hielo a 0 °C. Considere que el cilindro transfiere calor en régimen estacionario y calcule la masa de hielo que se derrite en 3 horas. El calor latente de fusión del hielo es $L_F = 334 \text{ kJ/kg}$.
- 3) La longitud de onda a la cual se registra la máxima emisión de energía de un cuerpo negro es $\lambda_M = 6,92$ µm. Calcule la potencia que irradia otro cuerpo de emisividad $\epsilon = 0,21$, a igual temperatura que el cuerpo negro y a través de una superficie de área S=0,87 m².

Constante de Stefan-Boltzmann: $\sigma = 5.67 \times 10^{-8} \ W/(m^2.K^4)$. Constante de la Ley del desplazamiento: $B = 2.898 \times 10^{-3} \ m.K$.

- 4) Cierto gas ideal ($c_P = 5R/2$) tiene una presión de 218 kPa y ocupa un volumen de 42 ℓ en el estado de equilibrio A. El mismo gas en el estado de equilibrio B tiene la mitad de la presión del estado A y el triple de volumen de dicho estado. Considere R = 8,314 J/(mol.K) y calcule:
 - a) la variación de la energía interna $U_B U_A$ entre los mencionados estados de equilibrio del gas,
 - b) la variación de entropía por mol de gas, entre los estados de equilibrio A y B ($\Delta S_{AB}/n$).
- 5) Un arco de circunferencia, de radio $R = 20 \, \mathrm{cm}$, abarca un ángulo de 120° (entre -60° y $+60^{\circ}$). A lo largo de su longitud tiene una densidad lineal de carga variable que, en función del ángulo central α , vale: $\lambda(\alpha) = \lambda_0 \cos \alpha$, donde $\lambda_0 = 30 \, \mathrm{nC/m}$.

Halle:

- a) el vector campo eléctrico en el centro O;
- b) el potencial eléctrico en el centro O, respecto del infinito.

Datos:
$$\int \cos^2 u \ du = \frac{u}{2} + \frac{sen(2u)}{4} + C$$
; $\int \cos u \ \sin u \ du = -\frac{\cos(2u)}{4} + c$; $\int \cos u \ du = senu + c$; $K_0 = \frac{1}{4\pi\varepsilon_0} \approx 9 \times 10^9 \frac{\text{V} \cdot \text{m}}{\text{C}}$

- 6) El circuito de la figura se encuentra en régimen estacionario. Las fuentes de tensión son ideales, la diferencia de potencial entre los puntos A y B es $V_A V_B = 18$ V y la corriente que circula por la rama central tiene una intensidad I = 250 mA y el sentido indicado. Calcule:
 - a) la fuerza electromotriz ε_2 .
 - b) el valor de la resistencia R_3 .

Datos: $R_1 = 20 \Omega$; $R_2 = 48 \Omega$; $\varepsilon_1 = 5 \text{ V}$; $\varepsilon_3 = 45 \text{ V}$

