Лабораторная работа 4.7.2 Эффект Поккельса Выполнил Жданов Елисей Б01-205

1 Цель работы:

- 1) Исследовать интерференцию рассеянного света, прошедшего кристалл
- 2) Наблюдать изменение характера поляризации света при наложении на кристалл электрического поля

2 Оборудование:

- 1) Гелий-неоновый лазер
- 2) Поляризатор
- 3) Кристалл ниобата лития
- 4) Матовая пластинка
- 5) Экран
- 6) Источник высоковольтного переменного и постоянного напряжения
- 7) Фотодиод
- 8) Осциллограф
- 9) Линейка

3 Теоретическая справка

Эффектом Поккельса называется изменение показателя преломления света в кристалле под действием электрического поля, причём это изменение пропорционально напряжённости электрического поля. Вследствие эффекта Поккельса в кристалле либо появляется двойное лучепреломление, либо меняется его величина (если кристалл был двулучепреломляющим в отсутствие поля), либо, как в данной работе, одноосный кристалл становится двуосным.

Рис. 1. Схема для наблюдения интерференционной картины

В общем случае, когда луч света распространяется под углом θ к оптической оси z (рис. 1), существуют два собственных значения показателя преломления n_1 и n_2 : в обыкновенной волне (если световой вектор E перпендикулярен плоскости (k, e_z), где k - волновой вектор луча, e_z - орт по оси z) показатель $n_1 = n_o$, а в необыкновенной (когда световой вектор E лежит в плоскости (k, e_z)) показатель преломления n_2 зависит от угла θ : согласно формуле (7.9), можем записать

$$\frac{1}{n_2^2} = \frac{\cos^2\theta}{n_o^2} + \frac{\sin^2\theta}{n_e^2}.$$

Разность фаз между обыкновенной и необыкновенной волнами, приобретаемая при прохождении через кристалл длиной ℓ , равна

$$\Delta \varphi = \frac{2\pi}{\lambda} \cdot \ell \cdot (n_1 - n_2).$$

Для обыкновенного луча $n_1 = n_o$ и не зависит от угла θ между направлением луча и осью z. Для необыкновенного луча n_2 зависит от угла θ и определяется уравнением (1). Считая, что n_e и n_o отличаются незначительно, для малых углов ($\sin \theta \approx \theta$, $\cos \theta \approx 1 - \theta^2/2$) полу чаем

$$n_2\approx n_o-(n_o-n_e)\,\theta^2.$$

Таким образом,

$$\Delta \phi = \frac{2\pi}{\lambda} l(n_0 - n_e)\theta^2$$

Направлениями постоянной разности фаз служат конусы $\theta = const$, поэтому интерференционная картина представляет собой концентрические окружности. Интерференционные кольца перерезаны тёмным "мальтийским крестом который выделяет области, где интерференция отсутствует. В этих направлениях распространяется только одна поляризованная волна (обыкновенная или необыкновенная). При повороте выходного поляроида (анализатора) на 90° картина меняется с позитива на

негатив: везде, где были светлые места, появляются тёмные и наоборот.

Для случая, когда разрешённое направление анализатора перпендикулярно поляризации лазерного излучения (скрещенные поляризации), найдём радиус тёмного кольца с номером m. Для луча, идущего вдоль оси z(m=0), показатели преломления для двух волн совпадают, сдвиг фаз между ними равен нулю, поляризация излучения на въходе остаётся такой же, как на входе, и луч не проходит через анализатор. Картина не изменится при сдвиге фаз между обыкновенной и необыкновенной волной, кратном 2π . Поэтому для m-го тёмного кольца $\Delta \varphi = 2\pi m$ или $\Delta \varphi = \frac{2\pi}{\lambda} \ell \left(n_o - n_e \right) \theta^2 = 2\pi m$. Если L— расстояние от центра кристалла до экрана, то, учитывая закон преломления (закон Снеллиуса) на границе кристалла, при малых углах $\theta_{\rm внешн} = n_o \theta$ (рис. 1) получаем выражение для радиуса кольца:

$$r_m^2 = \frac{\lambda}{\ell} \frac{(n_o L)^2}{(n_o - n_e)} m.$$

Рис. 2. Эффект Поккельса — появление новых главных направлений при наложении электрического поля

Измеряя радиусы колец, можно найти разность $(n_o - n_e)$ - двулучепреломление кристалла.

Представим теперь, что мы поместили кристалл в постоянное электрическое поле $E_{\mathfrak{I}\mathfrak{I}}$, направленное вдоль оси x, перпендикулярной оптической оси кристалла z. Луч света распространяется вдоль оси z, при этом для любой поляризации в отсутствие внешнего поля показатель преломления равен n_o . Свойства симметрии кристалла и его электрооптический тензор таковы, что в результате линейного электрооптического эффекта (эффекта Поккельса) в плоскости (xy) возникают два главных направления ξ и η под углами 45° к осям x и y (рис. 2) с показателями преломления ($n_o - \Delta n$) и ($n_o + \Delta n$), то есть появляются «медленная» и «быстрая» оси, причём $\Delta n = A \cdot E_{\mathfrak{I}\mathfrak{I}}$ (A - некая константа, зависящая только от типа кристалла).

Пусть свет на входе в кристалл поляризован вертикально, а на выходе стоит анализатор, пропускающий горизонтальную поляризацию. Разложим исходный

световой вектор $E=E_0e^{i(\omega t-kz)}$ по осям ξ и $\eta:E_\xi=E_\eta=E_0/\sqrt{2}$. После прохождения кристалла между векторами E_ξ и E_η появится разность фаз:

$$\Delta \varphi = \frac{2\pi \ell}{\lambda} 2\Delta n = \frac{4\pi \ell}{\lambda} A E_{\text{эл}} = \frac{4\pi}{\lambda} \frac{\ell}{d} A U,$$

где $U=E_{\mathfrak{I}}d$ - напряжение на кристалле, d - размер кристалла в поперечном направлении. Результирующее поле после анализатора это сумма проекций E_{ξ} и E_{η} на направление x, т. е.

$$E_{\rm BMX} \, = \frac{E_0}{2} e^{i(\omega t - k\ell)} \left(e^{i\Delta \varphi/2} - e^{-i\Delta \varphi/2} \right) = E_0 e^{i(\omega t - k\ell)} \sin \left(\frac{\Delta \varphi}{2} \right).$$

Интенсивность света пропорциональна квадрату модуля вектора электрического поля в волне:

$$I_{\mathrm{BMX}} \sim EE^* = E_0^2 \sin^2\left(\frac{\Delta\varphi}{2}\right),$$

поэтому

$$I_{\mathrm{Bbix}} = I_0 \sin^2\left(\frac{\Delta\varphi}{2}\right) = I_0 \sin^2\left(\frac{\pi}{2}\frac{U}{U_{\lambda/2}}\right).$$

Здесь

$$U_{\lambda/2} = \frac{\lambda}{4A} \frac{d}{\ell}$$

- так называемое полуволновое напряжение - имеет тот смысл, что при $U=U_{\lambda/2}$ сдвиг фаз между двумя волнами, соответствующими двум собственным поляризациям, $\Delta \varphi = \pi$ (разность хода равна $\lambda/2$), и интенсивность света на выходе анализатора, как следует из (3), достигает максимума.

В работе предлагается показать, что при параллельных поляризациях лазера и анализатора

$$I_{\text{Bbix}} = I_0 \cos^2\left(\frac{\pi}{2}\frac{U}{U_{\lambda/2}}\right).$$

Напряжение $U_{\lambda/2}$ называют также управляющим напряжением. Оно уменьшается, как это видно из (4), с уменьшением длины волны света λ и с увеличением отношения λ/d кристалла (это справедливо для поперечного электрооптического эффекта, который используется в нашем опыте). Характерная величина полуволнового напряжения в ниобате лития для видимого света составляет несколько сотен вольт.

4 Экспериментальная установка

Свет гелий-неонового лазера, поляризованный в вертикальной плоскости, проходя сквозь матовую пластинку, рассеивается и падает на двоякопреломляющий кристалл

Рис. 3. Схема для изучения двойного лучепреломления в электрическом поле

под различными углами. Кристалл ниобата лития с размерами $3 \times 3 \times 26$ мм вырезан вдоль оптической оси z. На экране, расположенном за скрещенным поляроидом, видна интерференционная картина.

Для $\lambda = 0.63$ мкм (длина волны гелий-неонового лазера) в ниобате лития $n_0 = 2.29$.

Убрав рассеивающую пластинку и подавая на кристалл постоянное напряжение, можно величиной напряжения влиять на поляризацию луча, вышедшего из кристалла.

Заменив экран фотодиодом (рис. 3) и подав на кристалл переменное напряжение, можно исследовать поляризацию луча с помощью осциллографа.

5 Измерения, Обработка

- 1) Предварительно отъюстируем систему, хотя в процессе эксперимента это все равно придется неоднократно повторить. Убедимся в том, что лазерный луч поляризован вертикально, а у поляроида найдем вертикальное разрешённое направление.
- 2-3) Расположим интерференционную картину со сдвигом, чтобы наблюдать наибольшее количество колец.

Расстояние $L = 74.0 \pm 0.5$ см.

Длина волны излучения гелий-неонного лазера $\lambda = 0.63$ мкм.

Показатель преломления кристалла $n_0 = 2.29$

Длина кристалла l = 26 мм.

4) Данные приведены в таблице

Зависимость радиуса кольца от его номера

n	<i>r</i> , cm		
1	2.6		
2	3.6		
3	4.5		
4	5.1		
5	5.8		
6	6.3		
7	7.3		
8	7.7		
9	8.2		

Зависимость $r^2(n)$

Найдем угловые коэффициенты прямых для каждой установки по МНК.

$$a = \frac{\langle x_i y_i \rangle - \langle x \rangle \langle y_i \rangle}{\langle x_i^2 \rangle - \langle x_i \rangle^2}$$

$$b = < v_i > -a < N_i >$$

Также рассчитаем их погрешности

$$S_a^2 = \frac{\langle x_i^2 \rangle}{\langle x_i^2 \rangle - \langle x_i \rangle^2} \cdot \frac{\langle b_i - b \rangle^2}{n - 2}$$

Итоговая зависимость

$$r^2 = (-2.9 \pm 1.5) + (7.68 \pm 0.27) \cdot m$$

$$n_0 - n_e = 0.091 \pm 0.005$$

Это совпадает с табличным значением 0.09 в пределах погрешности.

5) Уберем матовую пластинку и отъюстируем систему.

Включим ЛБП в сеть и убедимся в работоспособности установки.

Удобнее всего проводить замеры при исходной параллельной поляризации, тогда полуволновому напряжению будет соответствовать минимум яркости.

Полученное значение

$$U_{\lambda/2} = 450 \text{ B}$$

- 6) При четвертьволновом напряжении $U_{\lambda/2}$ получается круговая поляризация, т.е. интенсивность не меняется при вращении поляроида.
- 7) Проведем наблюдения с помощью фотодиода и осциллографа, расположим фотодиод на расстоянии около 40-50 см от кристалла, чтобы минимизировать вклад рассеянного излучения лазера и максимизировать попадающее на элемент излучение центрального луча.
- 8-9) Занесу в таблицу результаты измерения напряжений по фигурам Лиссажу и визуально

	$U_{\lambda/2}$, B	U_{λ} , B	$U_{3\lambda/2}$, B
Лиссажу	420	840	1260
Визуал	450	_	_

Результаты сходятся в рамках возможных неточностей.

Рис. 1: Полуволновое

Рис. 2: Волновое

.

Рис. 3: Волновое инвертированное

6 Вывод

Были проведены замеры как двулучепреломления на основе интерференционной картины поляризованного света, прошедшего через кристалл, так и волновых напряжений, соответствующих своим фигурам Лиссажу. Результаты совпали с табличными, что свидетельствует о верной постановке эксперимента и грамотно заданных приближениях.

7 Ресурсы

Расчет по МНК: метод-наименьших-квадратов.рф