Diode Half/Full-Wave Rectifiers With Smoothing Filters

Learning outcomes

- 1) Learn half wave rectifier circuit with smoothing filter
- 2) Learn full wave rectifier circuits w/wout smoothing filter

Experiment 1) HWR circuit with smoothing filter

A) Create a new Multisim project and construct the circuit shown

- B) Run the simulation as follows:
 - 1. Check XSC3 to check the input voltage is sinusoidal 15 Vmax
 - 2. Keeping switch S open, check output on capacitor C and measure its dc value
 - 3. Close switch S and rerun the simulation
 - 4. Measure the new output characteristics: Vomax, Vomin and calculate Vopp or Vrpp
 Vopp=Vrpp= Vomax Vomin
 - 5. Compare the measured Vrpp to the theoretical value of

$$Vrpp = \frac{Vm - 0.7}{R C F}$$

6. Measure Vo DC from the multimeter and compare it to the theoretical value of

$$Vo\ DC = (Vm - 0.7) - \frac{Vrpp}{2}$$

- 7. Change the C value to 470uF and redo step 4, 5, and 6
- 8. Why do you think there is big error in case of 470uF compared to 1000uF?

Experiment 2) FWR circuit

A) Create a new Multisim project and construct the circuit shown

- B) Run the simulation and observe the outputs on CRO
 - 1. Check XSC2 to check the input voltage
 - 2. Measure Vomax and compare it to Vinmax, why there is a difference between them
 - 3. Measure the DC output voltage (DC or average) on the multimeter
 - 4. Compare the measured DC value to the theoretical value of

$$V_{DC} = \frac{2(Vm)}{\pi}$$

Experiment 3) FWR circuit with smoothing filter

A) Create a new Multisim project and construct the circuit shown

- B) Run the simulation as follows:
 - 1. Check XSC3 to check the input voltage is sinusoidal 15 Vmax
 - 2. Keeping switch S open, check output on capacitor C and measure its dc value
 - 3. Close switch S and rerun the simulation
 - 4. Measure the new output characteristics: Vomax, Vomin, and calculate
 - i. Vopp=Vrpp= Vomax Vomin
 - ii. Vo DC = Vomax Vopp/2
 - 5. Compare the measured Vopp to the theoretical value of

$$Vrpp = \frac{Vm - 1.4}{2 R C F}$$

- 6. Change the C value to 470uF and redo step 4 and 5
- 7. Why do you think there is big error in step 4 compared to step 5?
- 8. Which DC value is larger, the one from HWR or FWR (assuming C = 1000 uF) and why?