12. Lineární kombinace

Úloha 1. Vyjádřete vektor \mathbf{z} jako lineární kombinaci vektorů $\mathbf{u},~\mathbf{v},$ případně $\mathbf{w},$ jestliže

- (a) $\mathbf{z} = (2; 10), \mathbf{u} = (1; 3), \mathbf{v} = (-2; 2),$
- (b) $\mathbf{z} = (2; 10; 0), \mathbf{u} = (1; 3; 0), \mathbf{v} = (-2; 2; 0), \mathbf{w} = (0; 0; 1),$
- (c) $\mathbf{z} = (2; -2; -10), \mathbf{u} = (2; 1; -1), \mathbf{v} = (2; 3; 2), \mathbf{w} = (4; 5; -2),$
- (d) $\mathbf{z} = (1; 0), \mathbf{u} = (\frac{\sqrt{2}}{2}; \frac{\sqrt{2}}{2}), \mathbf{v} = (\frac{\sqrt{2}}{2}; -\frac{\sqrt{2}}{2}),$

Úloha 2. Nalezněte všechna reálná čísla x taková, že vektor $\mathbf{z} = (1; 5; x)$ je lineární kombinací vektorů $\mathbf{u} = (1; -1; 2)$ a $\mathbf{v} = (1; 2; -1)$.

Úloha 3. Mějme trojúhelník ABC a označme $\mathbf{u}=C-B,\,\mathbf{v}=C-A.$ Zapište jako lineární kombinaci vektorů \mathbf{u} a \mathbf{v} vektor

- (a) $\mathbf{w}_1 = B A$,
- (b) $\mathbf{w}_2 = S_{BC} A$,
- (c) $\mathbf{w}_3 = T A$, kde T je těžiště $\triangle ABC$. (Nápověda: Těžiště se nachází ve dvou třetinách těžnice.)

Úloha 4. Mějme krychli ABCDEFGH. Zapište vektory $\mathbf{x}_1=G-H$, $\mathbf{x}_2=G-A$, $\mathbf{x}_3=B-S_{AH}$ jako lineární kombinaci vektorů

- (a) $\mathbf{e}_1 = A D$, $\mathbf{e}_2 = C D$, $\mathbf{e}_3 = H D$,
- (b) i = B A, j = C A, k = H A.
- \star Úloha 5. Nalezněte všechny vektory \mathbf{w} , které budou lineárními kombinacemi vektorů $\mathbf{u}=(2;1;1)$ a $\mathbf{v}=(1;2;1)$, budou kolmé na vektor (1;1;1) a jejich velikost bude rovna 2.

Úloha 6. Osel je figurka, která umí táhnout cca jako jezdec, ale jen "na jednu stranu":

- (a) Jak musíme s oslem táhnout, abychom ho posunuli přesně o 10 polí "západně"?
- (b) Je možné s oslem doskákat z jednoho rohu šachovnice 8×8 do protějšího?
- \star (c) Zkuste popsat pole, na která se osel (ne)
může dostat.

1.

- (a) $z = 3u + \frac{1}{2}v$
- (b) $z = 3u + \frac{1}{2}v (+ 0w)$
- (c) $\mathbf{z} = 2\mathbf{u} 3\mathbf{v} + \mathbf{w}$
- (d) $\mathbf{z} = \frac{\sqrt{2}}{2}\mathbf{u} + \frac{\sqrt{2}}{2}\mathbf{v}$
- **2.** x = -4

3.

- (a) $\mathbf{w}_1 = -\mathbf{u} + \mathbf{v}$
- (b) $\mathbf{w}_2 = -\frac{1}{2}\mathbf{u} + \mathbf{v}$
- (c) $\mathbf{w}_3 = -\frac{1}{3}\mathbf{u} + \frac{2}{3}\mathbf{v}$

4.

- (a) $\mathbf{x}_1 = \mathbf{e}_2$, $\mathbf{x}_2 = -\mathbf{e}_1 + \mathbf{e}_2 + \mathbf{e}_3$, $\mathbf{x}_3 = \frac{1}{2}\mathbf{e}_1 + \mathbf{e}_2 \mathbf{e}_3$
- (b) $\mathbf{x}_1 = \mathbf{i}, \ \mathbf{x}_2 = \mathbf{i} + \mathbf{k}, \ \mathbf{x}_3 = \mathbf{i} \frac{1}{2}\mathbf{k}$
- **5.** $\mathbf{w}_1 = (\sqrt{2}; -\sqrt{2}; 0) = \sqrt{2}\mathbf{u} \sqrt{2}\mathbf{v}, \ \mathbf{w}_2 = (-\sqrt{2}; \sqrt{2}; 0) = -\sqrt{2}\mathbf{u} + \sqrt{2}\mathbf{v}.$

6.

- (a) 4 tahy "doleva dolů" a 2 tahy "doleva nahoru"
- (b) ne