

ESCUELA SUPERIOR DE COMPUTO

1er. Departamental ♦ TEORÍA DE COMUNICACIONES Y SEÑALES

PROFESORA: JACQUELINE ARZATE GORDILLO	TIPO "B"
NOMBRE DEL ALUMNO:	GRUPO:

PROBLEMA 1. (valor 2.0 puntos). Encuentre la serie trigonométrica de Fourier de la siguiente señal f(t)

PROBLEMA 2. (valor 1.0 punto). A partir de la serie encontrada en el problema anterior, deduzca la serie exponencial de Fourier de f(t)

PROBLEMA 3. (valor 2.0 puntos). Encuentre la transformada de f(t)

¹Puede emplear propiedades o usar la definición, es libre el criterio (considere que si usa la definición puede demorar más tiempo para completarla)

PROBLEMA 4. (valor 2.0 puntos). Usando las propiedades de la transformada de Fourier, complete la pareja de transformadas siguiente:

$$\frac{t}{1-jt} + Sa(2t-1) \leftrightarrow ?$$

PROBLEMA 5. (valor 2.0 puntos). Usando la Propiedad de diferenciación de la transformada de Fourier, encuentre la transformada de g(t).

PROBLEMA 6. (valor 1.0 punto). Usando un graficador, grafique el espectro de frecuencias de la siguiente función (agregue la captura de pantalla de espectro de magnitud y espectro de fase al examen, y agregue sus respectivas funciones matemáticas):

$$te^{-t}u(t)\leftrightarrow\frac{1}{(1+j\omega)^2}$$

POBLEMA. Encuentre la Serie Trigonométrica de Founer de la siguiente señal flt)

SOLUCION:

$$f(t) = \begin{cases} 2 - 6 < t \le -4 \\ -\frac{1}{2}(t) - 4 < t \le 0 \end{cases} T = 14 \qquad Gn = \frac{7}{n^2 \pi^2} \left[\cos \frac{4\pi}{7} n \right]$$

$$\frac{1}{2}t \quad 6 < t \le 4 \qquad W_0 = \frac{2\pi}{14}$$

$$0 \quad 6 < t \le 6 \qquad W_0 = \frac{7}{7} \qquad G_0 = \frac{2}{7} \int_0^{\frac{7}{2}} f(t) dt$$

$$f(t+14) \quad 6 \quad box \quad caso$$

como
$$f(t)$$
 es par: $b_n=0$ 2

 $a_n = \frac{4}{7} \int_0^{\frac{7}{2}} f(t) \left(\cos n w_0 t \right) dt$

$$Q_n = \frac{4}{14} \int_0^{\frac{\pi}{4}} f(t) \cos \frac{n\pi}{4} t \, dt$$

$$a_n = \frac{2}{7} \int_{0}^{4} \frac{1}{2} t \left(\cos \frac{n \pi}{7} t dt + \frac{2}{7} \right) \int_{0}^{6} \frac{1}{7} t dt dt$$

$$Cln = \frac{1}{7} \int_0^4 t \cdot \cos \frac{n\pi}{7} t \, dt + \frac{4}{7} \int_0^6 \cos \frac{n\pi}{7} t \, dt$$

$$u = t \cdot dv = \cos \frac{n\pi}{7} t \, dt$$

$$du=dt$$
 $v=\frac{7}{n\pi}$ Sen $\frac{n\Pi}{7}t$

$$Q_{n} = \frac{1}{7} \left| \frac{7t}{n\pi} \operatorname{Sen} \frac{n\pi}{7} t \right|_{0}^{4} - \frac{7}{n\pi} \int_{0}^{4} \operatorname{Sen} \frac{n\pi}{7} t dt \right|_{0}^{4}$$

$$+ \left(\frac{4}{7}\right) \left(\frac{7}{n\pi}\right) \operatorname{Sen} \frac{n\pi}{7} t \left|_{0}^{4}\right|_{0}^{4}$$

$$Q_{n} = \frac{1}{7} \left| \frac{28}{n\pi} \operatorname{sen} \frac{4n\pi}{7} + \frac{49}{n^{2}\pi^{2}} \operatorname{cos} \frac{n\pi}{7} + \right|^{4}$$

$$+ \frac{4}{n\pi} \left[\operatorname{sen} \frac{6n\pi}{7} - \operatorname{sen} \frac{4\pi}{7} n \right]$$

$$\begin{array}{lll}
C_{n} = \frac{4}{n\pi} \frac{4\pi}{\sin^{2} \pi^{2}} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{2\pi^{2} \left[\cos \frac{4\pi}{7} - 1\right]}{\sin^{2} \pi^{2}} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2} \frac{4\pi}{7} \left[\cos \frac{4\pi}{7} - 1\right] & C_{n} = \frac{7}{2$$

$$an = \frac{7}{n^2 \pi^2} \left[\cos \frac{4\pi}{7} n - 1 \right] + \frac{4}{n \pi} \operatorname{Sen} \frac{6\pi}{7} n$$

$$\forall n \neq 0$$

$$Q_0 = \frac{2}{T} \int_0^{\frac{T}{2}} f(t) dt$$

$$a_0 = \frac{1}{7} \int_0^4 \frac{1}{2} t dt + \frac{1}{7} \int_A^6 2 dt$$

$$Q_0 = \left(\frac{1}{14}\right) \left(\frac{+2}{2}\right) \begin{vmatrix} 4 & + & 2 & + & | & 6 \\ 4 & & & 7 \end{vmatrix}$$

$$Q_0 = \frac{1}{28} \left[16 - 0 \right] + \frac{2}{7} \left[6 - 4 \right]$$

$$Q_0 = \frac{8}{14} + \frac{4 \cdot 2}{7 \cdot 2} = \frac{16}{14}$$

Finalmente:

$$f(t) = \frac{8}{7} + \sum_{n=1}^{\infty} \frac{7}{n^2 H^2} \left[\cos \frac{4\pi n}{7} - 1 \right] + \frac{4}{7} \underbrace{\sec \frac{4\pi}{7} \ln 1}_{n\pi} + \underbrace{\cos \frac{n\pi}{7} + 1}_{n\pi} \right]$$

PROBLEMA 2. Apartir del oblema anterior deduzca la S.E.F osi Cn= = (an-ibn) & do= Co

$$f(1) = \frac{1}{7} + \sum_{n=1}^{7} \left[\frac{7}{2n^2n^2} \left(\cos \frac{4\pi}{3} n - 1 \right) + \frac{2}{7} \operatorname{Sen} \left(\frac{6\pi}{7} n \right) \right]$$

Encuentre la transformada de F(+)

Considerando a f(t) una función compuesta por el producto de obras dos, tal que:

Asi:

$$f(t) = A sent \cdot C_{\pi}(t - \frac{\pi}{2})$$

Complete la signiente pareja de transformadas:
$$\frac{t}{1-jt}$$
 + Sa $(2t-1) \iff ?$

SOLUCION:

(I)
$$5i e^{-\alpha t}u(t) \iff \frac{1}{\alpha + i\omega}$$

$$5i a = 1$$

$$1 + jt \implies 2\pi e^{\omega}u(-\omega)$$

$$1 - jt \implies 2\pi e^{\omega}u(\omega)$$

$$-jt \implies 2\pi d \left[e^{-\omega}u(\omega)\right]$$

$$\frac{t}{1 - jt} \iff 2\pi j d \left[e^{-\omega}u(\omega)\right]$$

$$\frac{t}{1 - jt} \iff 2\pi j d \left[e^{-\omega}u(\omega)\right]$$

$$II) Si AGI(t) \longrightarrow Ad Sa \frac{\omega d}{2}$$

$$d Sa \frac{d}{2}t \longrightarrow \partial \Pi(al-\omega)$$

$$Sa \frac{d}{2}t \longrightarrow \frac{\partial \Pi}{d}(al\omega)$$

$$Si \frac{d}{2} = 1 \cdot d = 2$$

$$Sa t \longrightarrow \Pi(2(\omega))$$

$$Sa (t-1) \longrightarrow \Pi(2(\omega)) \stackrel{?}{e^{1}\omega}$$

$$Sa(2t-1) \longrightarrow \frac{1}{|2|}\Pi(2(\frac{\omega}{2}) \cdot e^{\frac{1}{2}\omega})$$

$$Sa(2t-1) \longrightarrow \frac{\pi}{2}(2(\frac{\omega}{2}) \cdot e^{\frac{1}{2}\omega})$$

PROBLEMA 5

Vsando la Propiedad de diferenciación de la transferm. encuentre GCW)

$$9''(t) = 12\delta'(t+6) - 2\delta(t+6) + 4\delta(t)$$

 $-2\delta(t-6) - 12\delta'(t-12)$

-12 J 481(+-12)

3i
$$\delta(t) \rightleftharpoons 1$$

$$\delta(t+6) \rightleftharpoons e^{i6\omega}$$

$$\delta'(t+6) \rightleftharpoons j\omega e^{i6\omega}$$

$$\delta(t-12) \rightleftharpoons e^{-i12\omega}$$

$$\delta'(t-12) \rightleftharpoons j\omega e^{-i12\omega}$$

$$g''(t) \iff 12. \int w e^{j\omega} - 2e^{j\omega} + 4$$

 $-2e^{-j\omega} - 12j\omega e^{-j12\omega}$

$$g''(t) \sim 12jw(e^{6\omega}-e^{-j12\omega}) + 4$$

-2($e^{6\omega}+e^{-j6\omega}$)

$$(j\omega)^2 G(\omega) = 12j\omega(e^{j\omega} - e^{-j12\omega})$$

+ $4(1-\cos(\omega))$

$$G(\omega) = -\frac{12i}{\omega} (e^{i6\omega} - e^{-i12\omega})$$

 $-\frac{4}{\omega^2} (1 - \cos 6\omega)$

$$G(\omega) = \frac{12}{\omega} \left(e^{-i12\omega} e^{i6\omega} \right) - 72 \int_0^2 3\omega$$

Problema 6

$$te^{t}u(t) \longrightarrow \frac{1}{(1+j\omega)^2}$$

Expresando F(w) en magnitud y fase

$$\frac{1}{(1+j\omega)^2} = \frac{1 \cdot e^{i\phi}}{[\sqrt{1+\omega^2} e^{i\tan^2\omega}]^2}$$

$$\frac{1}{(1+j\omega)^2} = \frac{e^{j\sigma}}{(1+\omega^2)} = \frac{e^{j\sigma}}{e^{j\sigma}}$$

$$\frac{1}{(1+j\omega)^2} = \frac{1}{1+j\omega^2} = \frac{-j2ton^2\omega}{1+j\omega^2}$$

$$|F(\omega)| = \frac{1}{1+\omega^2} \quad 2 \quad \Theta(\omega) = -2 \cdot \tan^2 \omega$$

ESPECTRO DE MAGNITUD

ESPECTRO DE FASE

