Investigations on Primitive Roots and Quadratic Residues Pre-class, Week 9

In this pre-class, we will investigate two topics: primitive roots and quadratic residues.

Primitive roots modulo n are the elements whose orders are the maximum possible value. We know that any a relatively prime to n satisfies $a^{\phi(n)} \equiv 1 \pmod{n}$. For most a's, $\phi(n)$ is not the order, but for some select a's, it is. These a's are called the *primitive roots* modulo n.

select a 's, it is. These a 's are called the <i>primitive roots</i> modulo n .
1. What are all the primitive roots modulo 13? (Note: Use $(-a)^k \equiv (-1)^k a^k \pmod{n}$ to find the order of half of the numbers without much work.)
2. Pick one of your primitive roots from problem 1, call it g . Write all non-zero elements modulo 13 in terms of powers of g .
3. Take the same g as above. What is the order of g^2 modulo 13? What about g^3 ? Or more generally g^i ?
4. Take the same g as above. Can you find all other primitive roots modulo 13 in terms of g ? How many such primitive roots do you have?

We have tools to solve linear congruence equations, including systems, but we have yet to learn how to solve a quadratic congruence equation. One important step in working with a quadratic equation is finding a "square root" which will translate into finding for which $a, x^2 \equiv a \pmod{n}$ has a solution.
5 a. Find all a for which $x^2 \equiv a \pmod{11}$ has a solution. (Hint: It might be easier to think about this as finding the squares of all numbers modulo 11.)
b. We know that 2 is a primitive root modulo 11. We also know that any element modulo 11 can be expressed as 2^i . Express all the elements as 2^i and using your results for part a, come up with an easy test for which a 's are squares.
Let p be a prime. We call the relatively prime squares modulo p quadratic residues modulo p . In other words, a is a quadratic residue if $\gcd(a,p)=1$ and $x^2\equiv a\pmod p$ has a solution. If $x^2\equiv a\pmod p$ does not have a solution, then a is a quadratic nonresidue.
For example, modulo 17, 8 is a quadratic residue because $5^2 \equiv 8 \pmod{17}$ while 3 is a quadratic nonresidue since there is no x whose square is congruent to 3 modulo 17.
6 a. How many quadratic residues are there modulo 11? How many quadratic non-residues are there?
b. What about modulo 13?
c. Can you make a conjecture as to the number of quadratic residues and nonresidues for an odd prime?