

Professor Rafael Marcelino

Unidades de Medida

Grandeza de base	Unidade de base	
Nome	Nome	Símbolo
comprimento	metro	m
massa	quilograma	kg
tempo	segundo	S
corrente elétrica	ampere	Α
temperatura termodinâmica	kelvin	K
quantidade de substância	mol	mol
intensidade luminosa	candela	cd
		_

Outras unidades como o newton e tesla são derivadas das unidades da tabela acima.

https://glossarioinmetro.wordpress.com/2010/09/03/sistema-internacional-de-unidades-si/ acesso 05/2021

Dizemos que grandezas físicas são elemento sujeitos a um processo de medida com o objetivo de facilitar o estudo e a descrição de fenômenos físicos.

Classificam-se em:

Em geral nos laboratórios de ciências o processo de medida deve ser realizado por medidas repetidas e independentes.

O que isso quer dizer? Cada medida deve ser realizada:

- por um aparelho diferente.
- por um experimentador diferente.
- em um local diferente.
- · em um dia diferente.
- e tudo mais que você possa imaginar de diferente.

Erros Aleatórios (estatísticos):

Erros causados por variações incontroláveis e aleatórias nos instrumentos de medida, e de condições externais tais como temperatura, tensão da rede elétrica, umidade do ar, etc.

- Maior parte de natureza indeterminada.
- Dispersão simétrica.
- Podem ser detectados pela repetição da experiência.
- Minimizados (nunca anulados) por meio de análise estatística.
- Afetam a precisão dos dados.

Erros Aleatórios (estatísticos):

Erros causados por variações incontroláveis e aleatórias nos instrumentos de medida, e de condições externais tais como temperatura, tensão da rede elétrica, umidade do ar, etc.

- Maior parte de natureza indeterminada.
- Dispersão simétrica.
- Podem ser detectados pela repetição da experiência.
- Minimizados (nunca anulados) por meio de análise estatística.
- Afetam a precisão dos dados.

Erros Sistemáticos:

Erros causados por inabilidade do experimentador, equipamento não/mal calibrado, influências do meio ambiente, etc.

- Causa sempre determinada.
- Dispersão tendenciosa.
- Não se detectam pela repetição da experiência.
- Não é possível efetuar sua análise estatística.
- Podem ser eliminados (total ou parcialmente) introduzindo fatores corretivos.
- Afetam a exatidão dos dados.

Uma medida com baixo erro sistemático é dita exata.

Erros Sistemáticos:

Erros causados por inabilidade do experimentador, equipamento não/mal calibrado, influências do meio ambiente, etc.

- Causa sempre determinada.
- Dispersão tendenciosa.
- Não se detectam pela repetição da experiência.
- Não é possível efetuar sua análise estatística.
- Podem ser eliminados (total ou parcialmente) introduzindo fatores corretivos.
- Afetam a exatidão dos dados.

Erros Aleatórios (estatísticos):

Erros causados por variações incontroláveis e aleatórias nos instrumentos de medida, e de condições externais tais como temperatura, tensão da rede elétrica, umidade do ar, etc.

- Maior parte de natureza indeterminada.
- Dispersão simétrica.
- Podem ser detectados pela repetição da experiência.
- Minimizados (nunca anulados) por meio de análise estatística.
- Afetam a precisão dos dados.

Erros Sistemáticos:

Erros causados por inabilidade do experimentador, equipamento não/mal calibrado, influências do meio ambiente, etc.

- Causa sempre determinada.
- Dispersão tendenciosa.
- Não se detectam pela repetição da experiência.
- Não é possível efetuar sua análise estatística.
- Podem ser eliminados (total ou parcialmente) introduzindo fatores corretivos.
- Afetam a exatidão dos dados.

O que fazer?

R: Medir diversas vezes com o máximo de independência possível.

O resultado da medida será:

$$(\overline{M} \pm \sigma) \text{ mm}$$

$$\bar{M} = \frac{1}{n} \sum_{i}^{n} M_{i}.$$

$$\sigma = \left(\frac{1}{n(n-1)} \sum_{i=1}^{n} (M_i - \bar{M})^2\right)^{\frac{1}{2}}$$

 σ é conhecido com incerteza da medida, nele está embutido incertezas estatísticas e sistemáticas.

Segundo ABNT e INMETRO σ deve ser dado com no máximo 2 algarismos significativos.

Exemplo 1

1	
Medida	d ± 0,2 (m)
1	1,2
2	1,1
3	0,8
4	1,0
5	1,1
4	1,0

Escreva corretamente o valor da grandeza d

$$\bar{M} = \frac{1}{n} \sum_{i=1}^{n} M_i. \qquad \bar{d} = \frac{1}{5} \sum_{i=1}^{5} d_i.$$

$$\bar{d} = \frac{1}{5} (1.2 + 1.1 + 0.8 + 1.0 + 1.1) = \frac{5.2}{5} = 1.04 \text{ m}$$

$$\frac{1}{n(n-1)} \sum_{i=1}^{n} (M_i - \bar{M})^2 \bigg]^{1/2} \qquad \sigma = \left[\frac{1}{5(5-1)} \sum_{i=1}^{5} (P_i - \bar{d})^2 \right]^{1/2}$$

$$\sigma = \left[\frac{1}{n(n-1)} \sum_{i=1}^{n} (M_i - \bar{M})^2\right]^{1/2} \qquad \sigma = \left[\frac{1}{5(5-1)} \sum_{i=1}^{5} (P_i - \bar{d})^2\right]^{1/2}$$

$$\sigma = \left\{\frac{1}{20} \left[(1,2 - 1,04)^2 + (1,1 - 1,04)^2 + (0,8 - 1,04)^2 + (1,0 - 1,04)^2 + (1,1 - 1,04)^2 \right] \right\}^{1/2}$$

$$\sigma = \left\{ \frac{1}{20} \left[(0.16)^2 + (0.06)^2 + (0.04)^2 + (0.04)^2 + (0.04)^2 + (0.06)^2 \right] \right\}^{1/2}$$

Exemplo 1

$$\sigma = \left\{ \frac{1}{20} \left[(0.16)^2 + (0.06)^2 + (-0.24)^2 + (0.04)^2 + (0.06)^2 \right] \right\}^{1/2}$$
$$\sigma = \left\{ \frac{0.092}{20} \right\}^{1/2} = 0.0678$$

 σ deve ser escrito com um ou dois algarismo significativos e o valor principal deve ter o mesmo número de casas decimais que a incerteza

$$P = (1,04 \pm 0,07) \text{ m}$$
 $P = (1,040 \pm 0,068) \text{ m}$

Duas pessoas mediram a aceleração da gravidade em um local e obtiveram os seguintes dados (em m/s²):

Obs.1	Obs. 2	
9,75	8,37	
9,47	8,61	
10,22	8,10	
10,05	8,44	
9,87	8,68	
9,99	8,70	
10,08	_	

O que podemos dizer sobre a existência de erros estatísticos e sistemáticos nas medidas feitas?