Homework: TF-IDF and beyond

楊立偉教授

wyang@ntu.edu.tw

© Copyright

常見的詞彙處理

- 取特徵詞 feature selection
 - 選取有效鑑別用的詞 (以利後續分析處理)
- 取關鍵詞 keyword extraction
 - 選取有代表意義的詞 (多半是為了人類閱讀)
- 切詞 tokenization
 - 將內容切割成多個單元 (以利後續分析處理)
- 斷詞 word segmentation
 - (多半依語意及文法) 將內容做 (正確且唯一的) 切詞

"Harry Potter" may be a good keyword but not a good feature for further processing (無鑑別力)

Ex. What is the tf-idf value of "Harry Potter" among the books?

hint: common terms

- →what does 'common' mean?
- →should eliminate or maintain?

- 當年Gerard Salton教授發展tf-idf方法時,面對的是類似圖書館語料:量大、具一般性、跨多主題,因此在大量詞彙的分布下,使用idf加權是很有用的,可以辨識、分離出特定的詞彙。
- 但是在小量、或是單一主題的語料時,idf加權仍可以做為語料中辨識各文件特徵之用。但若是要取出該語料的代表詞,例如七本哈利波特的代表詞,應該要包含哈利波特本身才對。針對不同情境,應做適當的調整。

4

Chinese Keyword Extraction

- Chinese keyword extraction is fundamental for many applications.
- There are two major approaches
 - Need word segmentation 需先斷詞
 - No word segmentation 不需先斷詞

N-gram approach

- No word segmentation 不需先斷詞
- The keywords are in the subset of n-grams
- How to select the proper n-grams for keywords?
 - tf-idf
 - chi-square (for variance)
 - mutual information
 - information gain, maximum entropy, and others

N-gram approach with tf-idf

- Enumerate n-grams, for example, 2 to 6
- Compute tf and idf
- Sort by tf-idf descendingly
- Post-processing
 - Remove non-words Ex. 去除純英數字或特殊字元
 - Merge sub-keywords Ex. 蔡英、英文、蔡英文,應該只保留英文及蔡英文

Demonstration

- 小語料集練習
 - 2016年1~11月「全部」財經新聞 90507篇
 - 其中與產業相關的「產業」新聞 5896篇
 - 其中內容有鴻海或郭台銘字樣的「鴻海」新聞 2081篇
- 預處理表格
 - 2 gram及3 gram (去除純英數字或含特殊符號者)
 - 依 tf 排序,保留出現50次以上者

	А	В	С	D	Е	F	G	Н
1	90507	doc						
2	1192367	gram						
3	編號	詞	TF	DF				
4	1	表示	100945	54184				
5	2	台灣	81884	27124				
6	3	今天	58701	38822				
7	4	公司	44799	18932				
8	5	市場	43295	18346				
9	6	總統	41582	14326				
10	7	美國	41515	16231				
11	8	政府	40217	19108				
12	9	今年	39867	21477				
13	10	大陸	38863	13641				
4	全部	3_2gram	全部_3gram	□ 產業_2gr	am 產業 __	_3gram 鴻	海_2gram	鴻海_3gram

編號	詞	TF	DF	TF-IDF	全部TF	全部DF	全部TF-IDF	TF期望值	DF期望值	TF卡方值(保 留正負號)	DF卡方值(保 留正負號)	MI(用DF)	Lift(用DF)
	1台灣	8276	2510	1.82	81884	27124	3.09	5334	1767	1622	312	-4.80	1.42
	2 市場	7829	2951	1.47	43295	18346	3.91	2820	1195	8894	2580	-4.56	2.47
	3公司	7770	2735	1.63	44799	18932	3.84	2918	1233	8065	1828	-4.61	2.22
	4 今年	6437	2822	1.54	39867	21477	3.50	2597	1399	5677	1447	-4.65	2.02
	5表示	6376	3527	1.07	100945	54184	1.34	6576	3530	-6	0	- 4.96	1.00
	6億元	5977	2005	2.24	31050	11605	4.90	2023	756	7730	2064	-4.53	2.65
	7銀行	5049	1154	3.33	21216	6674	6.03	1382	435	9729	1190	-4.53	2.65
	8 去年	4562	2084	2.10	26571	14724	4.28	1731	959	4630	1319	-4.62	2.17
	9 投資	4542	1598	2.64	27548	10981	4.98	1795	715	4206	1089	-4.61	2.23
1	0 董事	4472	1840	2.35	19173	9227	5.24	1249	601	8317	2554	-4.47	3.06

• 以Excel進行各項實驗

Beyond TF-IDF

- 1.依領域修正 Mutual Information (MI)
- 2.依分布做修正 chi square (χ²)
- 3.依分布做修正 lift

以下分別做介紹

1.依領域修正 using Mutual Information

- In addition to term weighting, need to consider the relevance between terms and the topic
- use Mutual Information
 tf-idf * MI

Mutual Information

$$MI = \log \frac{P(x, y)}{P(x)P(y)} = \log \frac{\frac{f(x, y)}{N}}{\frac{f(x)}{N} \frac{f(y)}{N}} = \log \frac{f(x, y)}{f(x)f(y)}$$

P: probability

N : size of the corpus

f(x): the occurrences of term x in the corpus

f(y): the occurrences of term x in the corpus

f(x,y): the co-occurrences of term x and y in the corpus

Mutual Information

- larger MI means the tendency of co-occurrences of term x and y 值越大其共現率越高
- using tf-idf * MI may extract topic-related keywords more precisely

Example

- 以政治類的前 n 個關鍵詞 $(w_1...w_n)$ 重新計算
- 假設
 - f(政治, w_i):同時出現 政治 與 w_i的篇數
 - f(政治):出現政治的篇數
 - f (w_i):出現 w_i的篇數

- x 該類別之事件
- y 該詞之事件
- x,y 該詞在該類別之事件

		f	(x,y)	f(x)		f(y)	$\overline{f(x)f(y)}$		
no	term	tf	df	N	tf-idf	df in all corpus	MI	tf-idf * MI	Rank
1	歐晉德	93	12	421	15.8	114	0.0003	0.0039	5
2	以色列	28	3	421	15.5	62	0.0001	0.0018	9
3	小白兔	26	3	421	15.2	16	0.0004	0.0068	3
4	能源	39	6	421	15.0	285	0.0001	0.0008	10
5	金門	53	9	421	14.8	150	0.0001	0.0021	8
6	不分區立委	27	4	421	14.6	15	0.0006	0.0093	1
7	假釋	15	1	421	14.5	6	0.0004	0.0057	4
8	募兵捐	34	6	421	14.4	29	0.0005	0.0071	2
9	李登輝	26	4	421	14.4	36	0.0003	0.0038	6
10	禁閉	26	4	421	14.4	60	0.0002	0.0023	7

f(x,y)

2.依分布做修正 using chi square

- 對照更大的語料統計資料(背景知識),判斷哪些是 突出的
- 解決IDF的問題;更貼近人工閱讀用的關鍵詞
- Use χ^2 (chi square)

IDF會受到極端稀有詞影響,例如 某單篇才有的用法,其IDF值大

$$\chi^2 = \frac{\sum (O - E)^2}{E}$$

- χ²常用在類別檢定。假設每一篇文章都當成是「一類」,若「馬英九」一詞總共出現1000次,出現在10篇中,每篇的期望次數是1000/10=100次。此時若有一篇出現「馬英九」 200次,代表這個詞對這篇有特別意義,其χ²為(200-100)²/100
- 如果以類來看,有政治類60篇,運動類40篇,共 100篇文章,「馬英九」總共出現1000次,期望 在政治類應該出現1000*60/100=600次,結果實際發現「馬英九」在政治類出現800次,代表這個詞對這類有特別意義,則χ²為(800-600)²/600

- 所以χ²可用來挑出與「類別」更相關的詞,其中 「類別」的單位可以是「篇」或是任何一種區分 用的「類」都可以
- 換句話說, χ²可用來去掉那些與「類別」不相關的, 例如說每一類都平均出現的詞
- χ^2 在概念上與IDF異曲同工 (挑出分布特別的),因為有平方項放大,所以更明顯,概念上更通用
- χ²有平方項,特別顯著或不顯著的都會被放大, 故應設法保留其正負號

3.依分布做修正 using lift

對照更大的語料統計資料(背景知識),判斷哪些 是突出的

合併詞處理

• n-gram可能切出多餘的子字串

原詞	DF	gram	DF	gram	DF
蔡英文	5573	蔡英	5576	英文	6283
希拉蕊	1219	希拉	1237	拉蕊	1219

- 除非有別種意義 (用法),不然子字串之出現必包
 - 含於完整字串中
 - 以DF判斷較TF佳 (why?)

假設各篇來源不同,TF易受高頻次的 單篇(單來源)所影響;相對的,DF代 表更多的來源是這樣使用。

- 若彼此gram的DF相等或在誤差內 (ex. 1%),則合併gram
 - 蔡英、希拉、拉蕊可合併; "英文"不可合併

Requirement (1) 個人作業

- 將Excel的各項指標完成
 - 一全部、產業、鴻海新聞的2gram及3gram (共6張表),進行觀察 (此項為練習,不需繳交)
- 挑出最具代表的keyword
 - 需為合併2gram及3gram的結果
 - 全部、產業、鴻海新聞各挑選20個keyword
 - 一說明你挑選的方法和原因,連同結果寫在1頁內的Word,進行繳交

名稱

hw1_table.xlsx 個人練習檔案,觀察結果,將心得寫在Word繳交

hw1_text.xlsx 分組作業語料集 (需繳交Excel、尾附影片的簡報檔)

Introduction to Information Retrieval

將預設公式向下填滿

使用篩選功能,依照TF遞減排序,觀察前幾名的詞

依照TF-IDF遞減排序,觀察前幾名的詞

依照DF卡方值(保留正負號)遞減排序,觀察前幾名的詞

依照MI(用DF)遞減排序,觀察前幾名的詞

依照Lift(用DF)遞減排序,觀察前幾名的詞

Requirement (2) 分組作業

- 實作六項主題
 - 銀行、信用卡、匯率、台積電、台灣、日本
- 列出每一主題的前100名keyword
 - 列舉2~6字詞
 - 去除純英數字或含特殊符號者
 - 合併可能多餘的子字串
 - 列出排名、keyword、tf、df、tf-idf、或其它你們用
 到的指標,依序貼在 Excel 的工作表,進行繳交

Deadline

- 公布2周後繳交個人及分組作業
 - 繳交期限及方式由助教通知
 - 分組作業除Excel外,需繳簡報檔(尾附影片連結),另 錄製八分鐘內的說明影片,解說成果及過程。影片中 若能以程式化處理並實際執行 (live demo) 者加分。
- 分組作業將開放彼此觀摩。

程式化處理技巧參考(1)

- 對每一主題
 - 篩選出包含主題關鍵字詞的文章
 - 對每篇文章
 - 使用雙層迴圈及移動指標切割2~6gram,排除純英數字或含特殊符號者
 - 累計每個gram的TF及DF
 - 為避免記憶體不足,可定期對所有gram進行排序,清除TF或 DF過低的gram
 - 對每個留下的gram
 - 篩除滿足合併條件 (被包含且次數相近) 之gram
 - 得到一候選之gram list

程式化處理技巧參考(2)

- 對全部每篇文章
 - 使用雙層迴圈及移動指標切割2~6gram,排除純英數字或含 特殊符號者
 - 累計每個gram在全部文章中的TF'及DF' (有在候選gram list中的才需要做)
- 對候選gram list依分數排序,印出前幾名之詞
 - 可以是TF-IDF、χ2、MI、Lift,或自行設計之指標

補充練習1(不需繳交)

- 另提供2019全年新聞語料,請練習
 - 取出前50個代表詞
 - 若範圍限縮至財經新聞,取出50個代表詞
 - 若範圍限縮至鴻海新聞,取出50個代表詞
- 說說看你覺得效果好嗎?怎麼樣做可以更好?

補充練習 2 (不需繳交)

- 嘗試使用中文斷詞結果取代n-gram
 - 正體中文可參考中研院CkipTagger或MONPA
 - 斷詞正確率* 參考如下

Tool	(WS) prec	(WS) rec	(WS) f1	(POS) acc
CkipTagger	97.49%	97.17%	<mark>97.33%</mark>	94.59%
CKIPWS(classic)	95.85%	95.96%	<mark>95.91%</mark>	90.62%
Jieba-zh_TW	90.51%	89.10%	<mark>89.80%</mark>	

- 其他加權排序方法不變, 一樣試著取出代表詞
- 你覺得斷詞取代n-gram做的效果好嗎?優缺點為何?