ENGR122 Assignment 2

Dimitrios Mitsotakis, SMS, Victoria University of Wellington

DUE: 1pm 3 August 2018

- 1. Express the following complex numbers in polar form:
 - (a) 3 i
 - (b) 2
 - (c) -i
 - (d) -5 + 12i
- 2. Find the modulus and argument of:
 - (a) $z_1 = -\sqrt{3} + i$
 - (b) $z_2 = 4 + 4i$
 - (c) $z_3 = z_1 z_2$
 - (d) $z_4 = z_1/z_2$

and express them in polar form.

- 3. Find the modulus and the argument of:
 - (a) $3e^{i\pi/4}$
 - (b) $2e^{-i\pi/6}$
- 4. Find the real and the imaginary parts of:
 - (a) $5e^{i\pi/3}$
 - (b) $11e^{i\pi}$
- 5. Express

$$z = 6(\cos 30^{\circ} + i \sin 30^{\circ})$$

in exponential form. Plot z on an Argand diagram and find its real and imaginary parts.

- 6. Express
 - (a) 7 + 5i and
 - (b) $\frac{1}{2} \frac{1}{3}i$

in exponential form

7. Use De Moivre's theorem to simplify the formula:

$$\frac{\cos 8\theta + i\sin 8\theta}{\cos 2\theta - i\sin 2\theta}$$

- 8. Solve the equations:
 - (a) $z^3 + 1 = 0$
 - (b) $z^4 = 1 + i$
 - (c) $z^4 + 25 = 0$
- 9. Find $\sqrt[3]{2+2i}$ and display your solutions on an Argand diagram.
- 10. Sketch the loci and the regions defined by:
 - (a) arg(z) = 0
 - (b) $\arg(z) = \pi/2$
 - (c) |2z| = |z 1|
 - (d) |z-1| < |z-2|

The marks are 8,8,8,8,10,10,10,12,10,16 for questions 1-10. Total is 100.