Kernelized Probabilistic Matrix Factorization

Alexeychuk Nikita Belikova Kristina Gazdieva Milena Kuzin Mikhail Maksimov Ivan

Problem statement

Matrix completetion problem

- 1. Recommendation systems
- 2. Image restoration

Methodology - Dataset

Dataset: Epinion

Number of Users	2 000
Number of Items	3 000
Number of Rating	60 485
Number of Relations	32 548
User-Item matrix density	1.01%

- Get User-Item matrix (X_full)
- Drop randomly 25% of its elements (X_trun)
- 3. Run decomposition on X_trun, trying to impute missing values => X_trun_imputed
- 4. RMSE(X_trun; X_trun_imputed)

Methodology - PMF vs KPMF

PMF

- U is sampled in a "row-wise" manner
- independent latent v.
 for each row

KPMF

- U is sample in a "column-wise"
- latent vectors spanning all rows
- uses side information

KPMF: Maximize the log-posterior

$$\begin{split} &\log p(U, V | R, \sigma^2, K_U, K_V) \\ &= -\frac{1}{2\sigma^2} \sum_{n=1}^{N} \sum_{m=1}^{M} \delta_{n,m} (R_{n,m} - U_{n,:} V_{m,:}^T)^2 \\ &- \frac{1}{2} \sum_{d=1}^{D} U_{:,d}^T S_U U_{:,d} - \frac{1}{2} \sum_{d=1}^{D} V_{:,d}^T S_V V_{:,d} \\ &- A \log \sigma^2 - \frac{D}{2} (\log |K_U| + \log |K_V|) + C, \end{split}$$

Methodology - Graph Kernels

Define a similarity measure for users' taste

Diffusion kernel

$$K_D = \lim_{n \to \infty} \left(1 - \frac{\beta L}{n} \right)^n = e^{-\beta L},$$

Regularized laplacian

$$K_{RL} = (I + \gamma L)^{-1},$$

Results

Model with top parameters	RMSE
KPMF (D = 5; Kernel = 'Regularized Laplacian') (need more iteration!)	0.763
PMF (regularization_rate = 300)	0.431
SVD (n_comp = 550)	0.423