6	(a)	Define electric field strength.
		[1]

(b) Two parallel metal plates in a vacuum are separated by a distance of 15mm, as shown in Fig. 6.1.

Fig. 6.1

A uniform electric field is produced between the plates by applying a potential difference between them.

A particle of mass 1.7×10^{-27} kg and charge $+1.6 \times 10^{-19}$ C is initially at rest at point A on one plate. The particle is moved by the electric field to point B on the other plate. The particle reaches point B with kinetic energy 2.4×10^{-16} J.

(i) Calculate the speed of the particle at point B.

speed =
$$m s^{-1}$$
 [2]

(ii) State the work done by the electric field to move the particle from A to B.

(iii) you	ır	answer in	(ii)	to	determine	the	force	on	the	particle	١.
•		, , , -			\/								

(iv) Determine the potential difference between the plates.

(v) On Fig. 6.2, sketch a graph to show the variation of the kinetic energy of the particle with the distance *x* from point A along the line AB.

Numerical values for the kinetic energy are not required.

Fig. 6.2

[1]

[Total: 10]