

Test Report And Application for Grant of Equipment Authorization

TEST REPORT PERTAINING TO:

Equipment Under Test	Model Number(s)
ProScope MOBILE	A1

CONFIGURATION

IEEE 802.11b with an internal antenna Continuously Transmitting

MEASUREMENTS PERFORMED IN ACCORDANCE WITH THE FOLLOWING STANDARD (S)

Regulatory Standard(s)

47 CFR Part 15, Subpart C Section 15.247

Test Method:

ANSI C63.4: 2003 American National Standard for Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz

Certificate Number: 1111.01

PREPARED FOR:

Scalar Scopes 1F. Shinjuku San-Ei Bldg 1-22-2, Nishi-Shinjuku Shinjuku-ku, Tokyo 160-0023 JAPAN

Contact(s): Mr. Mitch Axsom

PREPARED BY:

Aegis Labs, Inc. 8 Rancho Circle Lake Forest, CA 92630

Agent(s): Mr. Rick Candelas

Mr. Johnny Candelas

Test Report #: SSCOP-100330F

Test Report Revision: A2

	DEDORT DODY	APPENDICES		TOTAL PAGES
	REPORT BODY	A	A B	
PAGES	11	24	1	36

The contents of this report shall not be reproduced except in full, without the written approval of Aegis Labs, Inc.
The Scalar Scopes logo is used for identification purposes only and is a registered trademark of Scalar Scopes

Revision Number: A2

TABLE OF CONTENTS

SECTION	TITLE	PAGE
	COVER SHEET	01
	TABLE OF CONTENTS	02
1.0	REGULATORY COMPLIANCE GUIDELINES	03
1.1	Guidelines For Testing To Emissions Standards	03
2.0	SUMMARY OF REGULATORY LIMITS	04
3.0	ADMINISTRATIVE DATA AND TEST DESCRIPTION	05
4.0	DESCRIPTION OF EUT CONFIGURATION	06
4.1	EUT Description	06
4.2	EUT Configuration	07
4.3	List of EUT Sub-Assemblies and Host Equipment.	07
4.4	I/O Cabling Diagram and Description	08
4.5	EMC Test Hardware and Software Measurement Equipment.	09
5.0	CONDITIONS DURING EMISSIONS MEASUREMENTS	10
5.1	General	10
5.2	Conducted Emissions Test Setup	10
5.3	Radiated Emissions Test Setup.	11

APPENDICES				
A	Test Data			
В	Modifications And Recommendations			

1.0 REGULATORY COMPLIANCE GUIDELINES

Aegis Labs, Inc. operates as both a Nevada and California Corporation with no organizational or financial relationship with any company, institution, or private individual. Testing and engineering functions provided by Aegis Labs were furnished by RF technicians and engineers with accredited qualifications and training credentials to carry out their duties.

The object of this report was to publish verifiable test results of an EUT subjected to the tests outlined in the standard listed on the cover page of this report.

1.1 Guidelines For Testing To Emissions Standards

This standard for EMC emission requirements apply to electrical equipment for Information Technology Equipment (ITE). Compliance to these standards and in combination with the other standards listed in this test report can be used to demonstrate presumption of compliance with the protection requirements of the appropriate agency standard.

The purpose of this standard is to specify minimum requirements for emissions regarding electromagnetic compatibility (EMC) and protect the radio frequency spectrum 9 kHz. – 400 GHz. from unwanted interference generated from electrical/digital systems that intentionally or unintentionally generated RF energy. The emissions standards, normative documents and/or publications were used to conduct all tests performed on the equipment herein referred to as "Equipment Under Test".

Revision Number: A2

2.0 SUMMARY OF TEST RESULTS

802.11b Mode (2400-2483.5 MHz)

EMISSIONS STANDARD						
FCC Part 15 Section	Description	Results	Comments			
15.247(a)(2)	The minimum 6dB bandwidth shall be at least 500 kHz.	PASSED	2412 MHz = 9.92 MHz 2437 MHz = 10.00 MHz 2462 MHz = 10.25 MHz			
15.247(b)(3)	The maximum conducted output power is the highest total transmit power occurring in any mode	PASSED	2412 MHz = 8.40 dBm = 6.92 mW 2437 MHz = 8.14 dBm = 6.52 mW 2462 MHz = 8.72 dBm = 7.45 mW			
15.247(b)(5)	The intentional radiator shall be operated in a manner that ensures that the public is not exposed to radio frequency energy levels in excess of the FCC guidelines per Section 1.1307(b)(1).	PASSED	Refer to MPE Calculations			
15.247(d)	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.	PASSED	See Data Sheets (Appendix A)			
15.247(d)	Radiated emissions, which fall in the restricted bands, as defined in Sec. 15.205(a), must also comply with the radiated emission limits specified in Sec. 15.209(a). All others must be < -20dBc.	PASSED	See Data Sheets (Appendix A)			
15.247(e)	The peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.	PASSED	2412 MHz = -47.00 dB 2437 MHz = -48.83 dB 2462 MHz = -49.00 dB			
15.207	AC Conducted Emissions	PASSED	N/A (Note 1)			
15.209	Radiated Emissions (30-1000 MHz)	PASSED	See Data Sheets (Appendix A)			

Note1: AC Conducted Emissions not tested because EUT is battery powered.

ANALYSIS AND CONCLUSIONS

Based upon the measurement results we find that this equipment is within the limits of the global standards listed on the cover page of this test report. All results are based on a test of one sample. If any significant changes are made to the unit, the changes shall be evaluated and a retest may be required.

Approval Signatories

Report Completed By:

Johnny Candelas 6/16/2010

Senior Test Engineer Aegis Labs, Inc. **Report Approved By:**

Rick Candelas

Quality Assurance Aegis Labs, Inc.

6/16/2010

Page 4 of 11 Report Number: SSCOP-100330F

Revision Number: A2

3.0 ADMINISTRATIVE DATA AND TEST DESCRIPTION

DEVICE TESTED:	ITE Type: ProScope MOBILE Model Number(s): A1 Serial Number: 000023 FCC ID: YIJ70D57E
DATE EUT RECEIVED: TEST DATE(S):	April 8 th , 2010 April 21 st – 30 th , 2010
ORIGIN OF TEST SAMPLE(S):	Production
EQUIPMENT CLASS:	EUT tested as CLASS B device
RESPONSIBLE PARTY:	Scalar Scopes 1F. Shinjuku San-Ei Bldg 1-22-2, Nishi-Shinjuku Shinjuku-ku, Tokyo 160-0023 JAPAN
CLIENT CONTACT:	Mr. Mitch Axsom
MANUFACTURER:	Scalar Scopes
TEST LOCATION:	Aegis Labs, Inc. 32231 Trabuco Creek Road Trabuco Canyon, CA 92678 Open Area Test Site #2
ACCREDITATION CERTIFICATE(s):	A2LA Certificate Number: 1111.01, Valid through February 28, 2012
PURPOSE OF TEST:	To demonstrate compliance with the standards as described in Sections 1.0 & 2.0 of this report.
UNCERTAINTY BUDGET:	Proficiency Testing and Uncertainty Calculations for all tests indicated in this report have been conducted in accordance with ISO 17025: 2005 requirements Section 5.4.6, and 5.9. Uncertainty Budgets and Proficiency Test results available upon request.
STATEMENT OF CALIBRATION:	All accredited equipment calibrations were performed by Liberty Labs, Inc. and World Cal. with typical calibration uncertainty estimates derived from ISO Guide to the determination of uncertainties with a Coverage Factor of k=2 for 95% level of confidence.

4.0 DESCRIPTION OF EUT CONFIGURATION

4.1 EUT Description

Equipment Under Test (EUT)				
Trade Name:	ProScope MOBILE			
Model Number:	A1			
Frequency Range:	802.11b = 2412 - 2462MHz			
Type of Transmission:	Direct Sequence Spread Spectrum			
Transfer Rate:	1/5.5/11 Mbps for 802.11b mode			
Number of Channels:	802.11b mode (2400-2483.5 MHz) = 11			
Modulation Type:	DSSS - direct sequence spread spectrum			
Antenna Type:	TDK Antennas: Multilayer Chip			
Antenna Gain (See Note 2):	2dBi @ 2.4 GHz			
Transmit Output Power:	Please see Appendix A (Data Sheets) for actual output power.			
Power Supply:	Battery Powered (3 AA)			
Number of External Test Ports Exercised:	None			

The ProScope MOBILE is an embedded IEEE 802.11b wireless network adapter that operates in the 2.4 GHz spectrum. ProScope is a microscope magnifying an image of an object with a convertible lens and sends it to PC etc through wireless LAN (IEEE 802.11b) to observe and record.

NOTE 1: For a more detailed description, please refer to the manufacture's specifications or User's Manual.

NOTE 2: The EUT was tested with a TDK Antennas. (Refer to the antenna information exhibits).

4.2 EUT Configuration

The EUT (MN: ProScope MOBILE) was tested as a standalone device. It was connected to a host laptop via the laptops USB port. The laptop was used to set the EUT to continuously transmit. Data for the TDK Antenna can be found in Appendix A (Data Sheets)

The low, middle, and high channels were tested in 802.11b mode. The EUT was placed in continuous transmit mode using a command prompt and software provided by the manufacturer.

4.3 List of EUT, Sub-Assemblies and Host Equipment

Equipment Under Test						
Manufacturer	Manufacturer Equipment Name Model or Part Number Serial Number					
Scalar Scopes ProScope MOBILE A1 000023						

EUT Sub Assemblies				
Manufacturer Equipment Name Model or Part Number Serial Number				
TDK	Multilayer Chip Antenna	ANT8030-2R4-01A	N/A	

HOST EQUIPMENT LIST						
Manufacturer Equipment Name Model or Part Number Serial Number						
Acer	Host Laptop	KAVAO	LUS92069093330BCE1601			
Delta Electronics, Inc	Power Supply	ADP-30JH B	202W97H0RMT			

NOTE: All the power cords of the above support equipment are standard and non-shielded.

4.4 I/O Cabling Diagram and Description

Signal Line Cable Description							
Cable	Length	Construction	Source Connector	Destination Connector	Bundled Length	Ferrite Attached	Note
1	2m	Round, Braid & Foil Shielded	Host Laptop: USB Port	EUT: Proprietary Port	N/A	N/A	N/A
2	1.5m	Round, Braid & Foil Shielded	Host Laptop: Power Port	Power Supply: Hardwired	N/A	N/A	N/A

EMC Test Hardware and Software Measurement Equipment 4.5

TEST EQUIPMENT LIST - Emissions							
Equipment Name	Manufacturer	Model Number	Serial Number	Calibration Due Date	Maintenance Calibration Cycle		
Spectrum Analyzer	Agilent	8564EC	4046A00387	07/24/2010	1 Year		
Antenna – Horn	ETS	3117	00057423	12/23/2010	2 Year		
Preamp	Aegis Labs, Inc.	AEGIS-OATS1-1- 18	001	6/26/2010	1 Year		
30 Foot Coax	Semflex	S130SFBS10360	0619	10/12/2010	1 Year		
EMI Receiver - RF Section	Hewlett Packard	8546A	3325A00137	12/21/2011	2 Year		
EMI Receiver - RF Filter Section	Hewlett Packard	85460A	3330A00138	12/21/2011	2 Year		
10 dB Attenuator	Pasternack	PE7014-10	N/A	11/04/2010	1 Year		
LISN (EUT)	Fisher Custom Communications	FCC-LISN-50-25-2	9931	06/03/2010	1 Year		
LISN (Access)	EMCO	3825/2	9108-1848	06/03/2010	1 Year		
Spectrum Analyzer	Hewlett Packard	8568B	2634A03093	10/06/2010	2 Year		
Spectrum Analyzer Display Section	Hewlett Packard	8568B	1833A00389	10/06/2010	2 Year		
RF Preselector	Hewlett Packard	85685B	2620A00281	10/06/2010	2 Year		
Quasi-Peak Adapter	Hewlett Packard	85650A	2043A00176	10/06/2010	2 Year		
Antenna - Biconical	EMCO	3110	9108-1421	06/05/2010	1 Year		
Antenna - Log Periodic	EMCO	3148	4947	06/12/2010	1 Year		
Power Meter	Anritsu	ML2487A	6K00001785	05/29/2010	1 Year		
Wide Bandwidth Sensor	Anritsu	MA2491A	31193	05/29/2010	1 Year		
12dB Attenuator	Narda	4779-12	203	06/09/2010	1 Year		
Temperature/Humidity Monitor	Dickson	TH550	7255185	12/15/2010	1 Year		

NCR – No Calibration Required.

Page 9 of 11 Report Number: SSCOP-100330F Revision Number: A2

5.0 CONDITIONS DURING EMISSIONS MEASUREMENTS

5.1 General

All measurements were made according to the procedures defined in or referred to by the standard listed on the cover page of this report. The measurements were made in the operating mode producing the largest emissions consistent with normal operation and connected to the minimum configuration of auxiliary devices.

5.2 Conducted Emissions Test Setup

The following was the test configuration.

EUT signal cables that hung closer than 40 cm to the horizontal metal ground plane were folded back and forth forming a bundle 30 cm to 40 cm long. The power cord of the EUT was also bundled in the center and plugged into one of the artificial mains network (AMN). All peripheral equipment was powered from a second AMN via a multiple outlet strip placed at a distance on 10cm from each other. The AMN and ISN were positioned 80cm from the EUT. Signal cables that were not connected to an AE were terminated using the correct termination. If applicable, the current probe was placed at 0.1 m from the ISN.

Peak, quasi-peak and/or average detectors were used for testing performed between 150 kHz and 30 MHz. A swept frequency scan was performed for both Line 1 and Line 2. The six highest readings were compared against the limit and recorded in the data sheet along with a snapshot image of the sweep scan. The graphical scans in Appendix A only reflect peak readings while the tabulated data sheets reflect peak, average, and/or quasi-peak measurements.

Climatic Conditions:

The EUT was tested within its intended operating and climatic conditions.

Page 10 of 11 Report Number: SSCOP-100330F Revision Number: A2

5.3 Radiated Emissions Test Setup

The Open Area Test Site (OATS) was used for radiated emission testing. The receiving (Rx) antenna(s) was placed 10m from the nearest side of the EUT facing the Rx antenna. The EUT (if floor-standing) was placed directly on the flush-mounted 360 degree rotating turntable. The EUT (if table-top) was placed directly on an 80cm high non-metallic table, and the table was placed on the rotating turntable. During the initial EMI scan, all the suspect frequencies, i.e.; harmonics, broadband signals were checked with the Rx broadband antennas in both vertical and horizontal polarities. The biconical Rx, log periodic Rx, and horn Rx antennas were used from 30MHz – 299.99MHz at 10m, 300MHz – 1000MHz at 10m, and 1GHz – 24GHz at 3 m respectively.

Upon completion of all harmonic and broadband measurements, the balance of any remaining frequencies was checked between 30MHz – 24GHz. Any signals appearing within 20 dB of the classification limit was measured. Each signal was maximized by first rotating the turntable at least 360 degrees and recording the azimuth in the data sheet. Lastly, the Rx antenna was raised and/or lowered to maximize the signal elevation. If the measured signal was obtained using the peak detector and that signal appeared within 3 dB of the regulatory limit line, then the same signal was re-measured using the quasi-peak detector on the EMI receiver. Both meter readings if necessary were recorded on the data sheet.

Climatic Conditions:

The EUT was tested within its intended operating and climatic conditions.

APPENDIX A

TEST DATA

RADIATED EMISSIONS TEST RESULTS

CLIENT:	Scalar Scopes	DATE:	04/30/2010
EUT:	ProScope MOBILE	PROJECT NUMBER:	SSCOP-100330
MODEL NUMBER:	A1	TEST ENGINEER:	JC
SERIAL NUMBER:	000023	SITE #:	2
CONFIGURATION:	Tested connected to the host laptop's USB port	TEMPERATURE: HUMIDITY:	19 deg. C 51%
	1 1 1	TIME:	9:00 AM

Description:	Radiated RF Emissions (30 MHz – 1000 MHz)
Results:	PASSED Horizontal and Vertical Antenna Polarizations Class B Limits
Note:	Radiated Emissions Measurements were performed on the EUT connected to the host
	laptop with the power supply set at the following voltage and frequency.
	• 120VAC / 60 Hz.

Radiated Emissions Sample Calculations

Corrected Meter Reading = Meter Reading + F +C - D

Where, F = Antenna Factor

C = Cable Factor

G = Amplifier Gain

D = Distance Factor (if applicable)

Therefore, the equation for determining the Corrected Meter Reading Limit (CML) is:

CML = Specification Limit - F - C + D

Radiated Emissions Test Results (Continued)

Continuously Transmitting @ 120VAC/60Hz (SSCOP-100330-04)

			Horizo	ntal Ope	en F	ield Maximiz	ed Data			
Freq. (MHz)	Meter Reading (dBuV)	Antenna Height (cm)	Azimuth (degrees)	Quasi pk or AVG (dBuV)		Effective Gain Cable + Amp (dB)	Antenna Factor (dB)	Corrected Reading (dBuV/m)	Limits (dBuV/m)	Diff (dB) +=FAIL
45.31	48.90	400	180			-34.76	10.72	24.86	30.00	-5.14
61.62	47.80	400	0			-34.99	9.68	22.50	30.00	-7.50
126.02	41.90	400	270	42.00	Q	-34.21	11.40	19.20	30.00	-10.80
135.10	50.30	400	270	40.90	Q	-34.26	11.75	18.40	30.00	-11.60
174.28	50.40	400	90	44.40	Q	-33.79	13.69	24.29	30.00	-5.71
225.00	43.80	400	270	36.20	Q	-32.99	16.10	19.31	30.00	-10.69
337.52	44.20	400	180			-32.43	15.35	27.12	37.00	-9.88
386.60	44.90	400	90			-32.51	15.33	27.72	37.00	-9.28
432.02	40.30	400	90			-32.40	16.80	24.70	37.00	-12.30
526.44	52.90	400	270	37.80	Q	-31.17	18.74	25.37	37.00	-11.63

	Vertical Open Field Maximized Data													
Freq. (MHz)	Meter Reading (dBuV)	Antenna Height (cm)	Azimuth (degrees)	Quasi pk or AVG (dBuV)		Effective Gain Cable + Amp (dB)	Antenna Factor (dB)	Corrected Reading (dBuV/m)	Limits (dBuV/m)	Diff (dB) +=FAIL				
45.31	57.60	100	0	49.20	Q	-34.76	10.63	25.08	30.00	-4.92				
61.62	55.10	100	270	50.60	Q	-34.99	9.69	25.30	30.00	-4.70				
126.02	49.40	100	180	44.70	Q	-34.21	10.88	21.37	30.00	-8.63				
135.10	50.10	100	0	40.10	Q	-34.26	11.26	17.10	30.00	-12.90				
174.28	54.90	100	180	44.54	Q	-33.79	14.21	24.96	30.00	-5.04				
225.00	45.10	100	0	37.40	Q	-32.99	17.40	21.81	30.00	-8.19				
337.52	43.50	100	0			-32.43	15.70	26.77	37.00	-10.23				
386.60	50.60	100	270	36.50	Q	-32.51	15.86	19.85	37.00	-17.15				
432.02	48.60	100	0			-32.40	16.51	32.71	37.00	-4.29				
526.44	50.90	100	180	43.50	Q	-31.17	19.65	31.99	37.00	-5.01				

RADIATED EMISSIONS TEST RESULTS

CLIENT:	Scalar Scopes	DATE:	04/29/2010
EUT:	ProScope MOBILE	PROJECT NUMBER:	SSCOP-100330
MODEL NUMBER:	A1	TEST ENGINEER:	JC
SERIAL NUMBER:	000023	SITE #:	2
CONFIGURATION:	Tested connected to the host laptop's USB port in 802.11b (2400-2483.5 MHz) mode	TEMPERATURE: HUMIDITY: TIME:	16° C 43% RH 9:30 AM

Description:	Radiated RF Emissions (1 GHz – 18 GHz)
Results:	PASSED Horizontal and Vertical Antenna Polarizations Class B Limits
Note:	Radiated Emissions Measurements were performed on the EUT connected to the host
	laptop with the power supply set at the following voltage and frequency.
	• 120VAC / 60 Hz.

	Unwanted Spurious Emissions Limits												
Frequency (MHz)	Field Strength (uV/m)	Field Strength (dBuV/m) (Emissions in the restricted bands)	Field Strength (dBm/MHz) (Emissions outside the restricted bands)										
Above 960	500	54.00 (Average) 74.00 (Peak)	< -20 dBc										

Radiated Emissions Sample Calculations

Corrected Meter Reading = Meter Reading + F +C - D

Where, F = Antenna Factor

C = Cable Factor

G = Amplifier Gain

D = Distance Factor (if applicable)

Therefore, the equation for determining the Corrected Meter Reading Limit (CML) is:

CML = Specification Limit - F - C + D

Radiated Emissions Test Results (Continued)

Fundamental Measurements in 802.11b mode (2400-2483.5 MHz) Channels 1, 6, & 11 Continuous TX with TDK Antenna Aegis Labs, Inc. File #: SSCOP-100330-01

	RADIATED EMISSIONS - Horizontal Antenna Polarization														
Freq.	Meter	Antenna	Azimuth	Quasi pk or		Cable	Ant.	Corrected	Limits	Diff(dB)	Comments				
(MHz)	Reading	Height	(degrees)	AVG (dBuV)		Factor	Factor	Reading	(dBuV/m)	+=FAIL					
	(dBuV)	(cm)					(dB)	(dBuV/m)							
2412.00	65.33	100	180			2.85	32.18	100.36			Ch. 1				
2412.00				56.83	A	2.85	32.18	91.86							
2437.00	65.00	100	180			2.89	32.21	100.10			Ch. 6				
2437.00				56.50	A	2.89	32.21	91.60							
2462.00	65.50	100	225			2.94	32.25	100.68			Ch. 11				
2462.00				57.17	Α	2.94	32.25	92.35							

	RADIATED EMISSIONS - Vertical Antenna Polarization														
Freq.	Meter	Antenna	Azimuth	Quasi pk	Quasi pk or		Ant.	Corrected	Limits	Diff(dB)	Comments				
(MHz)	Reading	Height	(degrees)	AVG (dBı	AVG (dBuV)		Factor	Reading	(dBuV/m)	+=FAIL					
	(dBuV)	(cm)				(dB)	(dB)	(dBuV/m)							
2412.00	55.83	100	45			2.85	31.89	90.57			Ch. 1				
2412.00				52.00	A	2.85	31.89	86.74							
2437.00	62.00	100	45			2.89	31.92	96.82			Ch. 6				
2437.00				53.17	A	2.89	31.92	87.99							
2462.00	60.67	100	45			2.94	31.95	95.56			Ch. 11				
2462.00				52.83	A	2.94	31.95	87.72							

NOTE: Fundamental signals measured to calculate the band edge field strengths using the "Marker Delta Method".

Radiated Emissions Test Results (Continued)

Band Edge Field Strength Measurements in 802.11b mode (2400-2483.5 MHz) Channels 1 & 11 Continuous TX with TDK Antenna

Aegis Labs, Inc. File #: SSCOP-100330-01

	RADIATED EMISSIONS - Horizontal Antenna Polarization														
Freq.	Meter	Antenna	Azimuth	Quasi pk or		Cable	Ant.	Corrected	Limits	Diff(dB)	Comments				
(MHz)	Reading	Height	(degrees)	AVG (dBuV)		Factor	Factor	Reading	(dBuV/m)	+=FAIL					
	(dBuV)	(cm)		(,		(dB)	(dB)	(dBuV/m)							
2390.00								67.69	74.00	-6.31	Ch. 1				
2390.00					A			53.03	54.00	-0.97					
2400.00	34.50	100	180			2.83	32.16	69.49	80.36	-10.87					
2483.50								66.85	74.00	-7.15	Ch. 11				
2483.50					A			53.02	54.00	-0.98					

	RADIATED EMISSIONS - Vertical Antenna Polarization													
Freq.	Meter	Antenna	Azimuth	Quasi pk or	Cable	Ant.	Corrected	Limits	Diff(dB)	Comments				
(MHz)	Reading	Height	(degrees)	AVG(dBuV)	Factor	Factor	Reading	(dBuV/m)	+=FAIL					
	(dBuV)	(cm)			(dB)	(dB)	(dBuV/m)							
2390.00							57.90	74.00	-16.10	Ch. 1				
2390.00				A			47.91	54.00	-6.09					
2400.00	31.50	100	45		2.83	31.88	66.21	70.57	-4.36					
2483.50							61.73	74.00	-12.27	Ch. 11				
2483.50				A			48.39	54.00	-5.61					

NOTE: The "Band Edge Field Strength" was calculated using the "Fundamental" and "Conducted Band Edge" measurements per the "Marker-Delta Method" with the following formula:

 $BE = Fm - \Delta m$

Where

BE = Band Edge Field Strength

Fm = Measured Fundamental (Peak or Average)

 Δm = Measured Conducted Band Edge Delta (Peak or Average)

Band-Edge Plots (Continued)

Band-Edge Plots (Continued)

Radiated Emissions Test Results (Continued)

Spurious Emissions Measurements in 802.11b mode (2400-2483.5 MHz) Channels 1, 6, & 11 Continuous TX with TDK Antenna

Aegis Labs, Inc. File #: SSCOP-100330-01

	RADIATED EMISSIONS - Horizontal Antenna Polarization														
Freq.	Meter	Antenna	Azimuth	Quasi pk	or	Preamp	Cable	Ant.	Corrected	Limits	Diff(dB)	Channel			
(MHz)	Reading	Height	(degrees)	AVG (dBt	$\iota V)$	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL	Tested			
	(dBuV)	(cm)			()		(dB)	(dB)	(dBuV)						
3216.00	53.83	100	315			47.60	2.91	32.74	41.89	74.00	-32.11	Ch. 1			
4824.00	56.83	100	315			47.51	3.59	34.14	47.04	74.00	-26.96				
4824.00		100	315	50.71	A	47.51	3.59	34.14	40.92	54.00	-13.08				
4873.98	56.83	100	225			47.50	3.64	34.13	47.09	74.00	-26.91	Ch. 6			
4873.98		100	225	51.61	A	47.50	3.64	34.13	41.87	54.00	-12.13				
4923.99	54.83	100	45			47.49	3.67	34.12	45.13	74.00	-28.87	Ch. 11			
4923.99		100	45	45.63	A	47.49	3.67	34.12	35.93	54.00	-18.07				

		RA	DIATED	EMISS	SIO	NS - V	ertical	Anten	na Polariz	zation		
Freq.	Meter	Antenna	Azimuth	Quasi pk	or	Preamp	Cable	Ant.	Corrected	Limits	Diff(dB)	Channel
(MHz)	Reading	Height	(degrees)	AVG (dBı	$\iota V)$	Factor	Factor	Factor	Reading	(dBuV)	+=FAIL	Tested
	(dBuV)	(cm)				(dB)	(dB)	(dB)	(dBuV)			
4824.00	57.00	100	270			47.51	3.59	34.30	47.38	74.00	-26.62	Ch. 1
4824.00		100	270	52.42	A	47.51	3.59	34.30	42.80	54.00	-11.20	
6432.00	52.33	100	0			46.99	4.20	35.47	45.02	74.00	-28.98	
4873.98	58.50	100	45			47.50	3.64	34.30	48.94	74.00	-25.06	Ch. 6
4873.98		100	45	53.44	A	47.50	3.64	34.30	43.88	54.00	-10.12	
6498.64	52.50	100	90			46.93	4.22	35.50	45.29	74.00	-28.71	
4923.92	55.00	100	270			47.49	3.67	34.30	45.49	74.00	-28.51	Ch. 11
4923.92		100	270	48.09	A	47.49	3.67	34.30	38.58	54.00	-15.42	
6565.16	51.50	100	90			46.83	4.25	35.51	44.43	74.00	-29.57	

MAXIMUM OUTPUT POWER

CLIENT:	Scalar Scopes	DATE:	04/30/2010
EUT:	ProScope MOBILE	PROJECT NUMBER:	SSCOP-100330
MODEL NUMBER:	A1	TEST ENGINEER:	JC
SERIAL NUMBER:	000023	SITE #:	2
	Tested connected to the host laptop's USB port	TEMPERATURE:	22 deg. C
CONFIGURATION:		HUMIDITY:	54% RH
		TIME:	8:00 AM

Description:	The maximum conducted output power is the highest total transmit power occurring in any mode
Results:	Passed (See Data Sheet)
Note:	Conducted Emissions Measurements were performed on the EUT connected to the host laptop with the power supply set at the following voltage and frequency. • 120VAC / 60 Hz.

Maximum Conducted Output Power (Continued)

Mode	Channel	Frequency (MHz)	Data Rate (Mbps)	Output Power* (dBm)	Output Power* (mW)
802.11b	1	2412	1	8.40	6.92
802.11b	6	2437	1	8.14	6.52
802.11b	11	2462	1	8.72	7.45

*NOTE: The output power is measured radiated, using spectrum analyzer.

6dB EMISSIONS BANDWIDTH

CLIENT:	Scalar Scopes	DATE:	04/29/10
EUT:	WiFi Scope	PROJECT NUMBER:	SSCOP-100330
MODEL NUMBER:	PreScope Mobile	TEST ENGINEER:	JC
SERIAL NUMBER:	000023	SITE #:	2
	Tested connected to a host laptop via its USB port	TEMPERATURE:	21 deg. C
CONFIGURATION:		HUMIDITY:	30% RH
		TIME:	2:30 PM

Description:	The minimum 6dB bandwidth shall be at least 500 kHz.
Results:	See Data Sheet
Note:	Emissions Measurements were performed on the EUT connected to the host laptop with
	the power supply set at the following voltage and frequency.
	• 120VAC / 60 Hz.

6dB Emissions Bandwidth (Continued)

6dB Emissions Bandwidth (Continued)

PEAK POWER SPECTRAL DENSITY

CLIENT:	Scalar Scopes	DATE:	04/29/10
EUT:	WiFi Scope	PROJECT NUMBER:	SSCOP-100330
MODEL NUMBER:	PreScope Mobile	TEST ENGINEER:	JC
SERIAL NUMBER:	000023	SITE #:	2
	Tested connected to a host laptop via its USB port	TEMPERATURE:	21 deg. C
CONFIGURATION:		HUMIDITY:	30% RH
		TIME:	2:30 PM

Description:	The peak power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission.
Results:	See Data Sheet
Note:	Emissions Measurements were performed on the EUT connected to the host laptop with the power supply set at the following voltage and frequency. • 120VAC / 60 Hz.

Peak Power Spectral Density Limits		
Frequency (MHz)	Limit (dBm)	
2412-2462	8	

Peak Power Spectral Density (Continued)

Peak Power Spectral Density (Continued)

CONDUCTED OUT OF BAND EMISSIONS

CLIENT:	Scalar Scopes	DATE:	04/29/10
EUT:	WiFi Scope	PROJECT NUMBER:	SSCOP-100330
MODEL NUMBER:	PreScope Mobile	TEST ENGINEER:	JC
SERIAL NUMBER:	000023	SITE #:	2
	Tested connected to a host laptop via its USB port	TEMPERATURE:	21 deg. C
CONFIGURATION:		HUMIDITY:	30% RH
		TIME:	2:30 PM

Description:	In any 100 kHz bandwidth outside the frequency band in which the spread spectrum intentional radiator is operating, the radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power.
Results:	See Data Sheet
Note:	Emissions Measurements were performed on the EUT connected to the host laptop with the power supply set at the following voltage and frequency. • 120VAC / 60 Hz.

APPENDIX B

MODIFICATIONS AND RECOMMENDATIONS

1.0	NONE