AIM

Program to implement Naïve Bayes Algorithm using any standard dataset available in the public domain and find the accuracy of the algorithm.

Programming code:

Dataset used: Social_Network_Ads.csv

```
import pandas as pd
dataset = pd.read_csv("/content/Social_Network_Ads.csv")
print(dataset.describe())
print(dataset.head())

X = dataset.iloc[:, [1, 2, 3]].values
y = dataset.iloc[:, -1].values
from sklearn.preprocessing import LabelEncoder
le = LabelEncoder()
X[:,0] = le.fit_transform(X[:,0])
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_si
ze = 0.20, random_state = 0)
```

OUTPUT:

User ID			Age		EstimatedSalary		Purchased	
count	4.000	000e+02	400.	000000	400.	000000	400.00	0000
mean	1.569154e+07		37.655000		69742.500000		0.35	7500
std	7.165	832e+04	10.	482877	34096.	960282	0.47	9864
min	1.556	669e+07	18.	000000	15000.	000000	0.00	0000
25%	1.562	676e+07	29.	750000	43000.	000000	0.00	0000
50%	1.569	434e+07	37.	000000	70000.	000000	0.00	0000
75% 1.575036e+07		46.000000		88000.000000		1.00	0000	
max	1.581	524e+07	60.	000000	150000.	000000	1.00	0000
Us	er ID	Gender	Age	Estima	tedSalary	Purcha	sed	
0 156	24510	Male	19		19000		0	
1 158	10944	Male	35		20000		0	
2 156	68575	Female	26		43000		0	
3 156	03246	Female	27		57000		0	
4 158	804002	Male	19		76000		0	

Programming code:

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
X_train = sc.fit_transform(X_train)
X_test = sc.transform(X_test)

from sklearn.naive_bayes import GaussianNB
classifier = GaussianNB()
classifier.fit(X_train, y_train)
```

OUTPUT:

GaussianNB()

Programming code:

```
y_pred = classifier.predict(X_test)
y_pred
```

OUTPUT:

```
array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1])
```

Programming code:

```
y_pred = classifier.predict(X_test)
y_test
```

OUTPUT:

```
array([0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1])
```

Programming code:

```
from sklearn.metrics import confusion_matrix,accuracy_score
cm = confusion_matrix(y_test, y_pred)
ac = accuracy_score(y_test,y_pred)
print(cm)
print(ac)
```

OUTPUT:

```
[[56 2]
[ 4 18]]
0.925
```