Graph Model for the untyped lambda calculus and for Verse

November 3, 2023

This document describes a denotational semantics for a based on a "graph" model.

1 Part one: untyped lambda calculus

The file simple/model.v contains a sketch of this semantics for the call-by-value untyped lambda calculus.

This semantics interprets lambda calculus terms as a graph: a set of inputoutput pairs, each pair written $w \mapsto v$, where w and v are elements of some domain W.

The graph semantics also includes a special term \circ as part of this set, to signal function values. See below.

1.1 Examples

Here are some examples.

• The graph of the identity function $\lambda x.x$ looks like this:

$$\{w \mapsto w \mid w \in \mathcal{W}\} \cup \{\circ\}$$

This graph maps all inputs w to w.

• If we have a nonterminating expression, like ω , i.e. $(\lambda x.x)(\lambda x.x)$, then its denotation is the emptyset. It is not a value and we cannot apply it to any arguments to get a results.

{}

• The denotation of a function that takes an argument and then diverges i.e. $\lambda x.\omega$ is the special term only.

{0}

The term o marks that this is a value, but there are still no mappings in the graph. This term lets us distinguish the denotation of a diverging expression from that of a value, even if we cannot use the value.

• The denotation of K, i.e. $\lambda x.\lambda y.x$ is

$$\{w_1 \mapsto \{w_2 \mapsto w_1 \mid w_2 \in \mathcal{W}\} \cup \{\circ\} \mid w_1 \in \mathcal{W}\} \cup \{\circ\}$$

but we will see below that this definition could also be

$$\{w_1 \mapsto (w_2 \mapsto w_1) \mid w_1, w_2 \in \mathcal{W}\} \cup \{\circ\}$$

because this set is extensionally equivalent. (SCW: need to define this equivalence).

1.2 Representing the domain

What is this domain W? Informally, we would like it to be the powerset of all mappings (plus the trivial term \circ):

$$\mathcal{W} = \mathscr{P}(\{w_1 \mapsto w_2 \mid w_1, w_2 \in \mathcal{W}\} \cup \circ)$$

But that is not a well founded definition.

And how do we represent this set in a proof assistant?

We can represent the powerset of some type by its characteristic function, i.e. a proposition that tells us whether the value is in the set.

```
Definition P (A : Type) := A -> Prop.
```

However, this definition does not give us an *inductive* or finite representation of values. For that we need to consider only finite sets of values. (We'll use the type constructor fset A to refer to a finite set containing elements of type A). This type can be inductively defined and injected into the non-inductive variant P A. Using this finite set type, we can build up our representation out of an inductive representation of a mapping (v_map) and trivial term (v_fun):

```
Inductive Value : Type :=
| v_map : fset Value -> Value -> Value
| v_fun : Value.
```

And then represent lambda calculus expressions to a potentially infinite set of these terms.

```
Definition W := P Value.
```

As an example, let's consider the identity function. The semantics of this function is:

Consider how this definition reacts with the semantic function for application:

```
Definition APPLY (D1 : P Value) (D2 : P Value) : P Value := fun w \Rightarrow exists V, (v_map V w \in D1) \wedge (mem V \subseteq D2) \wedge (valid_mem V). Or, equally expressed as an inductive: Inductive APPLY : P Value \rightarrow P Value \rightarrow (Value \rightarrow Prop) := | BETA : forall D1 D2 w V, (v_map V w) \in D1 \rightarrow (mem V \subseteq D2) \rightarrow valid_mem V \rightarrow APPLY D1 D2 w.
```

2 Part two: Extending the model to verse

The files in the verse/ subdirectory contain the semantics of a much richer language.

- Verse contains multiple types of values: not only functions, but also integers and finite lists of values.
- Because of the multiple types, there is the possibility that the meaning of a term might be a *run-time error*. For example, if we try to apply the number 3 to itself.
- Verse terms, if they don't produce an error, may also produce multiple results, using choice.