Divide and Conquer (Dynamic Programming)

Divide and conquer design

• break the problem into several subproblem that are similar to but smaller than the original

Key Steps

- 1. **DIVIDE** the problem into subproblems
- 2. **CONQUER** recursively solve subproblems when problem is small enough, solve directly (The problem will be asymtoptically slow, but will run in constant time since it will be small)
- 3. **COMBINE** the solution to subproblems into a solution for the large problem

Exponentiation

Given a number a and a positive integer n, compute a^n

• Exponentiation is multiplying a to itself, n-times

SLOW POWER(a, n)

```
\begin{array}{l} \texttt{1} \ x \leftarrow a \\ \texttt{2} \ \mathsf{for} \ i \leftarrow 2 \ \mathsf{to} \ n \\ \texttt{3} \quad \  \  \mathsf{do} \ x \leftarrow a \times x \\ \texttt{4} \ \mathsf{return} \ x \end{array}
```

Runtimes? Assuming multiplication take O(1), bounded by $\Theta(n)$

Consider FAST POWER

$$a^n = a^{floor(\frac{n}{2})} \times a^{ceil(\frac{n}{2})}$$

FAST POWER(a,n)

The numbers are associated with CONQUER, DIVIDE, and COMBINE

```
1 if n=1 \leftarrow
```

2 then return a

3 else $4 \quad x \leftarrow \mathsf{FAST}\,\mathsf{POWER}\,(a,floor(\frac{n}{2})) \leftarrow \mathsf{DIVIDE}$ 5 \quad \text{if} a \text{ is even} \\
6 \quad \text{return} x \times x \\
7 \quad \text{else} a \text{ is odd} \\
8 \quad \text{return} x \times x \times a

Runtimes?

- 1. How many problem instances does it make?
 - $\circ \ O\log(n)$ each half the size of the previous one
- 2. What is the running time of each instance
 - $\circ O(1)$
- 3. Overall running time
 - $\circ O \log(n)$

Merge Sort

DIVIDE the n element array into 2 arrays each roughly $\frac{n}{2}$ elements long

CONQUER sort the smaller subsequences recursively

COMBINE merging the sorted subarrays

Recursion ends when subsequences have length of 1 because they are trivially sorted

Array starting at l to r

where
$$q = floor(rac{l+r}{2})$$

Merge Sort (A,p,r)

- 1. MERGE SORT (A, p, r)
- 2. if p < r
- 3. then $q \leftarrow floor(\frac{p+r}{2})$
- 4. MERGE SORT (A, p, q)
- 5. MERGE SORT (A,q+1,r)
- 6. MERGE (A, p, q, r)

Example:

Example:

$\mathsf{Merge}(A,p,q,r)$

- 1. $n_1 \leftarrow q p + 1$ (length of subarray A[p...q])
- 2. $n_2 \leftarrow r q$ (length of subarray A[q+1...r])
- 3. create $L[1...n_1+1]$ and $R[1...n_2+1]$
- 4. **for** $i \leftarrow 1$ to n_1 (copy the left hand subarray)

```
5. L[i] = A[p+i-1]
6. for j \leftarrow 1 to n_2 (copy the right hand subarray)
7. R[i] = A[q+j]
8. L[n_1+1] \leftarrow \infty (Left Sentinels)
9. R[n_2+1] \leftarrow \infty (Right Sentinels)
10. i \leftarrow 1 (Real merge start)
11. j \leftarrow 1
12. for k \leftarrow p to r
13. if L[i] \leq R[j]
14. A[k] \leftarrow L[i]
15. i \leftarrow i+1
16. else
17. A[k] \leftarrow R[i]
18. j \leftarrow j+1 (Real merge end)
```

Merge Sort Analysis

Loop invariant - property of a program loop that is true before (and after) each iteration

- At the start of each iteration of the for loop, the subarray A[p...k-1] contains the k-p smallest elements, in sorted order
- ullet L[i] and R[j] are the smallest elements in each subarray that have not been copied back to the main array

Initialization: the loop invariant is true initially

Prior of the loop, k=p so A[p...k-1] is empty

Maintenance: the loop invariant remains true after each iteration of the loop

A[p...k-1] already contain the k-p smallest elements (inductive step). We copy in the smallest of L[i] and R[j] and then increment k, thus maintaining the loop invariant.

Termination: the loop invariant is true and useful at the completion of the loop

At termination, k=r+1. By the invariant A[p...k-1], which is A[p...r] contains the k-p=r-p+1 elements of L and R in sorted order. Together, L and R contain $n_1+n_2+2=r-p+3$ elements. All but the two sentinels have been copied.

What is the running time of merge?

- Copying from A to L and R is O(n)
- Other setup is O(1)
- ullet For loop: each iteration is one comparison, one copy, and one increment O(1)

For loop runs n times

 \therefore total run time = $\Theta(n)$

But what is the running time of merge sort

$$O(n\log(n))$$

Analyzing Divide and Conquer Algorithms

We often express the running time of a recursive algorithm using a recurrence relation

Let T(n) be the running time of a problem size of n

- If the problem is small enough (i.e. $n \le c$ for some constant c), then the straight forward solution takes constant time, i.e. $T(n) = \Theta(1)$
- Suppose DIVIDE generates a subproblems, each of which are a fraction $\frac{n}{b}$ s.t. $a \geq 1$, b > 1
- Assume that DIVIDE takes $\mathcal{D}(n)$ time and COMBINE takes $\mathcal{C}(n)$

$$T(n) = egin{cases} \Theta(1), n \leq c \ aT(rac{n}{b}) + D(n) + C(n) \end{cases}$$

Analyzing Merge Sort

DIVIDE - simply compute q or $\Theta(1)$

CONQUER - we make 2 subproblems each of them are size $\frac{n}{2}$, a=2, b=2 COMBINE- merge takes $\Theta(n)$ (last time $\leftarrow C(n)$)

$$T(n) = egin{cases} \Theta(1), n = 1 \ 2T(rac{n}{2}) + \Theta(n) \end{pmatrix}$$

This leads to runtime of $\Theta(n \log(n))$

Master Method

Consider the generic form

$$T(n) = aT(rac{n}{b}) + f(n)$$

where $a \geq 1$ and b > 1 and f(n) is an asymptotically tight function

The master method is a cookbook approach to solving recurrence relations

The Master Theorem

Let $a \geq 1$ and b > 1 and f(n) is a function and let T(n) ve defined on the non-negative integers by the recurrence relation

$$T(n) = aT(\frac{n}{b}) + f(n)$$

where we interpret $\frac{n}{b}$ to the either $floor(\frac{n}{b})$ or $ceil(\frac{n}{b})$. T(n) can be bounded asymptotically by

1. If $f(n) = O(n^{\log_b a - \epsilon})$ for some constant $\epsilon > 0$, then

$$T(n) = \Theta(n^{\log_b a})$$

This mean that the recusion dominates where the work inside a subproblem is over shadowed by the total number of subproblems

2. If $f(n) = \Theta(n^{\log_b a})$, then

$$T(n) = \Theta(n^{\log_b a} \log n)$$

The recusion and subproblem are comparable, i.e. subproblem imes recusion

3. If $f(n)=\Omega(n^{\log_b a}-\epsilon)$ for some constant $\epsilon>0$ abd $f(\frac{n}{b})\leq cf(n)$ for some c<1 and n sufficiently large

$$T(n) = \Theta(f(n))$$

The cost of combining is heavier than all the work of the subproblem and recursion

Note: the ϵ factors are really n^{ϵ} , making sure that the functions are polynomially different from one another

Example: Master Method

For merge sort

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

Taking apart, a=2, b=2, and $f(n)=\Theta(n)$ Compare $n^{\log_b a}$ to f(n)

$$n^{\log_b a} = n^{\log_2 2} = n^1 = n$$

This is comparable to f(n) or $\Theta(n)$ or case 2

$$\therefore T(n) = \Theta(n^{\log_b a} \log n) = \Theta(n \log n)$$

Another Simple Example

$$T(n) = 9T(\frac{n}{3}) + (n)$$

Taking apart, a=9, b=3, and f(n)=n Compare $n^{\log_b a}$ to f(n)

$$n^{\log_b a} = n^{\log_3 9} = n^2$$

 n^2 (recusion) is polynomially faster than f(n) or n or case 1

$$T(n) = \Theta(n^{\log_b a}) = \Theta(n^2)$$

Trickier Example

$$T(n) = T(\frac{2n}{3}) + 1$$

Taking apart, a=1, $b=\frac{3}{2}$, and f(n)=1Compare $n^{\log_b a}$ to f(n)

$$n^{\log_b a} = n^{\log_{\frac{3}{2}} 1} = n^0 = 1$$

This is comparable to f(n) or 1 or case 2

$$\therefore T(n) = \Theta(n^{\log_b a} \log n) = \Theta(\log n)$$

Another Example

$$T(n) = 3T(\frac{n}{4}) + n\log n$$

Taking apart, a=3, b=4, and $f(n)=n\log n$

Compare $n^{\log_b a}$ to f(n)

$$n^{\log_b a} = n^{\log_4 3} \approx n^{0.8}$$

 $n\log n$ (combining) is polynomially faster than $n^{0.8}$) or case 3

$$T(n) = \Theta(f(n)) = \Theta(n \log n)$$

Last Example

$$T(n) = 2T(\frac{n}{2}) + n\log n$$

Taking apart, a=2, b=2, and $f(n)=n\log n$ Compare $n^{\log_b a}$ to f(n)

$$n^{\log_b a} = n^{\log_2 2} = n$$

Even to $n \log n$ is faster than n, it is not polynomially different

... Master Method does not apply

Another Master Method

Another way to write the master method solve any recurrence of the form

$$T(n) = aT(rac{n}{h}) + \Theta(n^l(\log n)^k)$$

for some constant c,

$$T(c) = \Theta(1)$$

The goal is to compare l and $\log_b a$

Intuition: $n^{\log_b a}$ is the number of times the termination condition T(c) is reached (cost of recursion)

1. if $l < \log_b a$ (recusion dominated)

$$T(n) = \Theta(n^{\log_b a})$$

2. if $l = \log_b a$

$$T(n) = \Theta(f(n)\log n) = \Theta(n^{\log_b a}(\log n)^{k+1})$$

Note: $(\log n)^k$ is part of f(n)

3. if $l > \log_b a$ (divide/combine dominates)

$$T(n) = \Theta(f(n)) = \Theta(n^l(\log n)^k)$$

Using the New Master Method

$$T(n) = 2T(\frac{n}{2}) + n\log n$$

Taking apart, $a=2,\,b=2,\,l=1,\,k=1$ Compare $\log_b a$ to l

$$\log_b a = \log_2 2 = 1$$

Since $l = \log_b a$ it case 2

$$T(n) = \Theta(f(n) \log n) = \Theta(n(\log n)^2)$$

Divide and Conquer running time

Multiplying two n-digit numbers

- 1. n one digit multiplications
- 2. n, n-digit additions

Running time? $\Theta(n^2)$

Consider this observation

$$(10^m a + b)(10^m c + d) = 10^{2m} ac + 10^m (bc + ad) + bd$$

This formula can be expressed **recurively**. Note if if a or c is a number with 2 or more digits, the same principle can be applied to ac, bc, ad, and bd.

MULTIPLY(x,y,n)

1. **if**
$$n = 1$$

2. return x,y

3. else

4. $m \leftarrow floor(\frac{n}{2})$

5. $a \leftarrow floor(\frac{\bar{x}}{10^m})$

6. $b \leftarrow x \mod 10^m$

7. $c \leftarrow floor(\frac{Y}{10^m})$

8. $d \leftarrow y \mod 10^m$

9. $e \leftarrow \text{MULTIPLY}(a, c, m)$ recursive call 1

10. $f \leftarrow \mathsf{MULTIPLY}(b,d,m)$ recursive call 2

11. $g \leftarrow \mathsf{MULTIPLY}(b, c, m)$ recursive call 3

12. $h \leftarrow \mathsf{MULTIPLY}(a,d,m)$ recursive call 4

13. **return** $10^{2m}e + 10^m(g+h) + f \Theta(n)$ (think bit shifts)

Runtime? First write down the recurrence relation in form $T(n) = aT(rac{n}{b}) + f(n)$

Breakdown

There are 4 subproblems, each subproblem is half the size of the parent problem, divide is O(1) and combine is O(n)

$$a = 4, b = 2$$

$$T(n) = 4T(\frac{n}{2}) + O(n)$$

Solving using other Master Methor

Written in the form $T(n) = aT(\frac{n}{b}) + \Theta(n^l(\log n)^k)$ becmoes

$$T(n) = 4T(\frac{n}{2}) + \Theta(n^1(\log n)^0)$$

where a = 4, b = 2, l = 1, k = 0

Compare $\log_b a$ to l

$$\log_b a = \log_2 4 = 2 > l = 1$$

Since $l < \log_b a$ it case 1

$$T(n) = \Theta(n^{\log_b a}) = \Theta(n^2)$$

This is no better than the default multiplication method

Looking at the problem again

$$10^{2m}ac + 10^m(bc + ad) + bd$$

we can observe that

$$(bc + ad) = ac + bd - (a - b)(c - d)$$

notice that ac and bd is already computed in the parent, and the runtime of (a-b)(c-d)is2O(n)\$ subtraction and a MULTIPLY operation

Using the knowledge we can construct a better algorithm

FAST MULTIPLY(x,y,n)

- 1. **if** n = 1
- 2. return x,y
- 3. else
- 4. $m \leftarrow floor(\frac{n}{2}) \Theta(1)$ (think bit shifts)
- 5. $a \leftarrow floor(\frac{x}{10^m})$
- 6. $b \leftarrow x \mod 10^m$
- 7. $c \leftarrow floor(\frac{Y}{10^m})$
- 8. $d \leftarrow y \mod 10^m$
- 9. $e \leftarrow \mathsf{FAST_MULTIPLY}(a, c, m)$ recursive call 1
- 10. $f \leftarrow \mathsf{FAST_MULTIPLY}(b,d,m)$ recursive call 2
- 11. $g \leftarrow \mathsf{FAST_MULTIPLY}(a-b,c-d,m)$ recursive call 3
- 12. **return** $10^{2m}e + 10^m(e+f-g) + f \Theta(n)$ (think bit shifts)

Runtime? Again write down the recurrence relation in form $T(n) = aT(rac{n}{b}) + f(n)$

Breakdown

There are now 3 subproblems, each subproblem is still half the size of the parent problem, divide is O(1) and combine is O(n)

$$a = 3, b = 2$$

$$T(n) = 3T(\frac{n}{2}) + O(n)$$

Solving using other Master Methor

Written in the form $T(n) = aT(\frac{n}{h}) + \Theta(n^l(\log n)^k)$ becmoes

$$T(n) = T(rac{n}{2}) + \Theta(n^1(\log n)^0)$$

where $a=3,\,b=2,\,l=1,\,k=0$ Compare $\log_b a$ to l

$$\log_b a = \log_2 3 \approx 1.585 > l = 1$$

Since $l < \log_b a$ it case 1

$$\therefore T(n) = \Theta(n^{\log_b a}) = \Theta(n^{1.585})$$

This is now slightly more optimal. It will make a big difference asymtoptically

Recursion Trees

Sometimes the master method is inconclusive (fails), consider,

$$T(n) = 2T(\frac{n}{2}) + \frac{n}{\log n}$$

where $a=2,\,b=2,\,l=1,$ but importantly k=-1

We can solve this directly and build better understanding of the **Master Method** by using **Recursion Trees**.

Recusion Tree - each node represents the cost of a single subproblem somewhere in the set of recurive invocations

- 1. Sum the nodes in each level to get the per level cost
- 2. Sum all the levels to get total cost

Example

A simple example of merge sort

$$T(n) = \left\{ egin{aligned} c, & n=2 \ 2T(rac{n}{2}) + n \end{aligned}
ight\}$$

This can be generalized into a generic tree:

We need to compute the runtime

Sum the levels

Recursion + Constant

$$\sum_{i=0}^{\log_n(b)-1} a^i f(\frac{n}{b^i}) + a^{\log_b n} c$$

Note that $a^{\log_b n} = n^{\log_b a}$ by taking the \log of both sides

$$T(n) = \sum_{i=0}^{\log_n(b)-1} a^i f(rac{n}{b^i}) + n^{\log_b a} c$$

Note that $f(\frac{n}{b^i})$ is the running time of a single subproblem at level i and the second term of the general recurrence relation, this term

$$T(n) = aT(rac{n}{b}) + \Theta(n^l(\log n)^k)$$

We can substitute f(n) with the general recurrence term

$$T(n) = \sum_{i=0}^{\log_n(b)-1} a^i \cdot \Theta((rac{n}{b^i})^l (\log rac{n}{b^i})^k) + n^{\log_b a} c$$

We will use this to solve the recurrence

Example

Use recurrence tree to solve:

$$T(n) = 2T(\frac{n}{2}) + \Theta(n)$$

where a=2, b=2, l=1, k=0

$$T(n) = \sum_{i=0}^{\log_n(b)-1} 2^i \cdot \Theta(rac{n}{2^i}) + n^{\log_2 2} c$$

Notice that $n^{\log_2 2} = n$, therefore $n^{\log_2 2} c = nc = \Theta(n)$

$$=\sum_{i=0}^{\log_n(b)-1} 2^i \cdot \Theta(rac{n}{2^i}) + \Theta(n)$$

Notice that $\Theta(rac{n}{2^i}) = c_1(rac{n}{2^i})$ for some constant c_1

$$=\sum_{i=0}^{\log_n(b)-1} 2^i \cdot c_1(rac{n}{2^i}) + \Theta(n)$$

$$=c_1\left[\sum_{i=0}^{\log_n(b)-1}2^{i}\cdot(rac{n}{2^i})
ight]+\Theta(n)$$

$$= c_1 n \cdot \Theta(\log n) + \Theta(n)$$

$$=\Theta(n\log n)+\Theta(n)=\Theta(n\log n)$$

Useful Equations

Arithmetic Series

$$\sum_{k=1}^n k = rac{1}{2}n(n+1)$$

Geomtric Series

$$\sum_{k=0}^{n} x^k = \frac{x^{n+1} - 1}{x - 1}$$

Infinite Geomtric Series

$$\sum_{k=0}^{\infty} x^k = \frac{1}{x-1}$$

Ugly finite geometric series can be replaced with a infinite geometric series set to < because O() is a upper bound