Chapter 2. Basic Properties of Linear Programming

Sec. 2.1 Introduction

Optimization:

Optimize z = f(x) the **objective** function

subject to h(x) = 0 the **equality** constraints

 $g(x) \le 0$ the **inequality** constraints

 $x \in S$ in R^n . the **set** constraint (may or may not be included in h and g)

MA420/520 Linear Programming:

(LP): f(x), h(x), g(x) all linear functions; straight boundary of S;

MA421/521 Nonlinear Programming:

(NLP): At least one of f(x), h(x), and g(x) is nonlinear; or curved boundary of S;

Chapter 5 (Poly-time)
Chapter 6 (CLP)

MA420/MA520
LP

MA421/MA521
NLP

Examples of nonlinear models:

 \Leftrightarrow the Cobb-Douglas production function that relates output (Y) to labor (L) and capital (K) can be written as $Y = aL^bK^r$.

 \Leftrightarrow free falling $h(t) = 0.5gt^2$.

- \Leftrightarrow exponential growth (compound interest) $p(t) = p_0 e^{at}$.
- stock price in time (no analytic formula).
- shapes of physical objects.

- the shortest and equal time curves (inverted cycloid).
- least squares fitting of data. (AI)
- probability density functions.

<> ...

•

Linear Programming (Linear Optimization)

Ex2

Linear ----- functions
$$f(x) = 2x + 3$$
,

20+4

$$2x + 3 = 1$$
,

inequalities:
$$2x + 3 \le 1$$
,

$$2x + 3 \le 1$$
,

Optimization --- minimization/maximization, both minimization&maximization (game)

say minimize above linear functions \rightarrow Answer:

(optimal f-value) $f^* = -\infty$

solve equation:

$$2x + 3 = 1$$

$$\rightarrow$$
 solution x=-1

solve inequality:

$$2x + 3 \le 1$$

$$\rightarrow$$
 solutions x \leq -1

→ Algebra

Not interesting in LP.

To make the LP more meaningful, we add (on top of f(x)):

more variables. min f(x,y) = 2x + 3y + 3.

(linear) constraints: min f(x,y) = 2x + 3y + 3 subject to (s.t.) $x \ge 0$ and $y \ge 0$.

$$\rightarrow$$
 f*=f(0,0)= 4, x*=y*=0.

Equivalence same x^* , $s^* = b - Ax^*$, $z^* = w^*$ ($w = \begin{bmatrix} c \end{bmatrix}^T \begin{bmatrix} x \end{bmatrix} = c^T x + o^T s = c^T x = z$)

$$\delta x^2$$
 min $z = C7x s.t. $\Delta x > b. x > 0.$

$$\Delta x = s = b.$$$

S>0 called surplus var.

Ex- (free var.) 3-4.

min $z = 2x_1 - 3x_2$ st $-3x_1 + x_2 = 5$, $x_2 > 0$ \iff std P?

Sol. (1). Appleament of free x_1 by two nonvegtive vars. $x_1 = u - v$, u > 0

Std LP. min 2=2(U-V)-3×2 st -3(U-V)+ x2=5, x270, U70, V70.

A'= b'= C'=

(2). Eliminate x_1 $x_2 = \frac{5-x_1}{3} = -\frac{5}{3} + \frac{1}{3}x_2$

UP: $2(-\frac{5}{3} + \frac{1}{3} \chi_2) - 3 \chi_2 + \frac{1}{3} \chi_2 - 3 \chi_2 - 3 \chi_2 + \frac{1}{3} \chi_2 - 3 \chi_2 -$

€) SHIP, min = 7 ×2 31+ ×270 C= -3, A=0, b=0.

Equivalence, some x_2^* , $x_1^* = -\frac{5}{3} + \frac{1}{3}x_1^*$, $z^* = w^* - \frac{10}{3}$