2042

DRINKING WATER SURVEILLANCE PROGRAM

HAMILTON WATER SUPPLY SYSTEM

ANNUAL REPORT 1990

HAMILTON WATER SUPPLY SYSTEM

DRINKING WATER SURVEILLANCE PROGRAM

ANNUAL REPORT 1990

AUGUST 1992

Cette publication technique n'est disponible qu'en anglais.

Copyright: Queen's Printer for Ontario, 1992

This publication may be reproduced for non-commercial purposes with appropriate attribution.

PIBS 2042 Log 92-2302-262

EXECUTIVE SUMMARY

DRINKING WATER SURVEILLANCE PROGRAM

HAMILTON WATER SUPPLY SYSTEM 1990 ANNUAL REPORT

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to eventually include all municipal supplies in Ontario. In 1990, 76 systems were being monitored.

The Hamilton water supply system is a conventional treatment plant which treats water from Lake Ontario. The process consists of coagulation, flocculation, sedimentation, filtration, fluoridation and disinfection. This plant has a designed capacity of 909.0 x 1000 $\rm m^3/day$. The Hamilton water supply system serves a population of approximately 412,000.

Water at the plant and at three locations in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), and organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons, specific pesticides and volatiles). Samples were analyzed for specific pesticides and chlorophenols twice a year in the spring and fall.

Table A is a summary of all results by group.

One organic parameter, hexachlorobenzene, was reported above the World Health Organization guideline value in one sample. Since all other results (23 samples in the raw, treated and distributed water) were below the detection level, this one positive value is considered anomalous.

The Hamilton water treatment plant, for the sample year 1990, produced good quality water and this was maintained in the distribution system.

TABLE A DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WSS

SUMMARY TABLE BY SCAN

A POSITIVE VALUE DENOTES THAT THE RESULT IS GREATER THAN THE STATISTICAL LIMIT OF DETECTION AND IS QUANTIFIABLE

	A POSTIT	VE VALUE	DENOTES	HATTH	E RESUL	SI 1.	A POSITIVE VALUE DENOTES THAT THE RESULT IS GREATER THAN THE STATISTICAL LIMIT OF DETECTION AND IS QUANTIFIABLE A '.' INDICATES THAT NO SAMPLE WAS TAKEN	STATIS	TICAL LIMIT	OF DETECTI	ON AND	IS QUANTIFIAB	E E			
		SITE														
	SCAN	TESTS	RAW POSITIVE %POSITIVE	RAW KPOSITIN	VE TES	TS PC	TREATED TESTS POSITIVE %POSITIVE	E TESTS	S POSITIVE	SITE 1 POSITIVE %POSITIVE	TESTS	SITE 2 TESTS POSITIVE XPOSITIVE		TESTS	SITE 3 POSITIVE %POSITIVE	OSITIVE
	BACTERIOLOGICAL	85	51	-	88	•	0	0	9	0	2	0	0	м	0	0
	CHEMISTRY (FLD)	13	13	Ξ	001	52	54 %	5 96	57 45	78	12	12	100	28	28	100
	CHEMISTRY (LAB)	132	110	~	83 13	132	106 80	80 228	8 208	91	92	0.2	36	152	141	92
	METALS	144	53		36 1/	144	41 2	28 276	4117	75	92	07	43	184	8	97
	CHLOROAROMATICS	%	0		0	8	0	0 84	4	-	28	0	0	26	0	0
	CHLOROPHENOLS	12	0		0	12	0	0		٠	٠			•		٠
	РАН	102	0		0	102	0	1	17 0	0				17	0	0
	PESTICIDES & PCB	504	0		0 15	192	0	0 127	0 2	0	75	0	0	82	0	0
	PHENOL I CS	9	0		0	9	-	91	٠	٠	•					٠
	SPECIFIC PESTICIDES	58	0		0	58	0	0	0 9	0	2	0	0	7	0	0
	VOLATILES	174	0		0 17	174	24 1:	13 145	5 20	13	56	7	13	116	16	13
TOTAL		256	192		6	935	196	9%6	6 391		283	126		645	172	

DRINKING WATER SURVEILLANCE PROGRAM

HAMILTON WATER SUPPLY SYSTEM 1990 ANNUAL REPORT

INTRODUCTION

The Drinking Water Surveillance Program (DWSP) for Ontario is a monitoring program providing immediate, reliable, current information on drinking water quality. The DWSP officially began in April 1986 and is designed to eventually include all municipal supplies in Ontario. In 1990, 76 systems were being monitored.

Appendix A has a full description of the DWSP.

The DWSP was initiated for the Hamilton water treatment plant in the summer of 1986. Previous annual reports have been published for 1986, 1987, 1988 and 1989.

PLANT DESCRIPTION

The Hamilton water supply system is a conventional treatment plant which treats water from Lake Ontario. The process consists of coagulation, flocculation, sedimentation, filtration, fluoridation and disinfection. This plant has a designed capacity of 909.0 x 1000 $\rm m^3/day$. The Hamilton water supply system serves a population of approximately 412,000.

The sample day flows ranged from 130.9 x 1000 m^3/day to 434.1 x 1000 m^3/day .

General plant information is presented in Table 1 and a schematic of plant processes, chemical addition points and sampling locations in Figure 1.

SAMPLING AND ANALYSES

Sample lines in the plant were flushed prior to sampling to ensure that the water obtained was indicative of its origin and not residual water standing in the sample line.

At all distribution system locations two types of samples were obtained, a standing and a free flow. The standing sample consisted of water that had been in the household plumbing and service connection for a minimum of six hours. These samples were used to make an assessment of the change in the levels of inorganic compounds and metals, due to leaching from, or deposition on, the plumbing system. The only analyses carried out on the standing

samples therefore, were General Chemistry and Metals. The free flow sample represented fresh water from the distribution main, since the sample tap was flushed for five minutes prior to sampling.

Attempts were made to capture the same block of water at each sampling point by taking the retention time into consideration. Retention time was calculated by dividing the volume of water between two sampling points by sample day flow. For example, if it was determined that retention time within the plant was five hours, then there would be a five hour interval between the raw and treated sampling. Similarly, if it was estimated that it took approximately one day for the water to travel from the plant to the distribution system site, this site would be sampled one day after the treated water from the plant.

Stringent DWSP sampling protocols were followed to ensure that all samples were taken in a uniform manner (see Appendix B).

Plant operating personnel routinely analyze parameters for process control (Table 2).

Water at the plant and at one location in the distribution system was sampled for the presence of approximately 180 parameters. Parameters were divided into the following groups: bacteriological, inorganic and physical (laboratory chemistry, field chemistry and metals), and organic (chloroaromatics, chlorophenols, pesticides and PCB, phenolics, polyaromatic hydrocarbons, specific pesticides and volatiles). Samples were analyzed for specific pesticides and chlorophenols twice a year in the spring and fall. Laboratory analyses were conducted at the Ministry of the Environment facilities in Rexdale, Ontario.

RESULTS

Field measurements were recorded on the day of sampling and were entered onto the DWSP database as submitted by plant personnel.

Table 3 contains information on delay time between raw and treated water sampling, flow rate, and treatment chemical dosages.

Table 4 is a summary break-down of the number of water samples analyzed by parameter and by water type. The number of times that a positive or trace result was detected is also reported.

Positive denotes that the result is greater than the statistical limit of detection established by the Ministry of the Environment laboratory staff and is quantifiable. Trace (<T) denotes that the level measured is greater than the lowest value detectable by the method but lies so close to the detection limit that it cannot be confidently quantified.

Table 5 presents the results for parameters detected on at least one occasion.

Table 6 lists all parameters analyzed in the DWSP.

Associated guidelines and detection limits are also supplied on Tables 5 and 6. Parameters are listed alphabetically within each scan.

DISCUSSION

GENERAL

Water quality was judged by comparison with the Ontario Drinking Water Objectives publication (ODWOs). When an Ontario Drinking Water Objective (ODWO) was not available, guidelines/limits from other agencies were used. These guidelines were obtained from the Parameter Listing System database.

IN THIS REPORT, DISCUSSION IS LIMITED TO:

- THE TREATED AND DISTRIBUTED WATER;
- ONLY THOSE PARAMETERS WITH CONCENTRATIONS ABOVE GUIDELINE VALUES; AND
- POSITIVE ORGANIC PARAMETERS DETECTED.

BACTERIOLOGICAL

Guidelines for bacteriological sampling and testing of a supply are developed to maintain a proper supervision of its bacteriological quality. Routine monitoring programs usually require that multiple samples be collected in a given system. Full interpretation of bacteriological quality cannot be made on the basis of single samples.

Standard plate count was the only bacteriological analysis conducted on the treated and distributed water samples. No results were reported above the guideline.

INORGANIC & PHYSICAL

CHEMISTRY (FIELD)

It is desirable that the temperature of drinking water be less than 15°C. The palatability of water is enhanced by its coolness. A temperature below 15°C will tend to reduce the growth of nuisance organisms and hence minimize associated taste, colour, odour and corrosion problems. The temperature of the delivered water may increase in the distribution system due to the warming effect of the soil in late summer and fall and/or as a result of higher temperatures in the source water.

Field temperature exceeded the ODWO Maximum Desirable Concentration of 15°C in 4 of 18 treated and distributed water samples with a maximum reported value of 18.0°C.

CHEMISTRY (LAB)

The ODWOs indicate that a hardness level of between 80 and 100 mg/L as calcium carbonate for domestic waters provides an acceptable balance between corrosion and encrustation. Water supplies with a hardness greater than 200 mg/L are considered poor and would possess a tendency to form scale deposits and result in excessive soap consumption.

Hardness exceeded the ODWO Aesthetic or Recommended Operational Guideline of 80-100 mg/L in 18 of 18 treated and distributed water samples with a maximum reported value of 147.5 mg/L.

Total ammonium exceeded the European Economic Community Aesthetic Guideline Level of 0.05 mg/L in 17 of 18 treated and distributed water samples with a maximum reported value of 0.2 mg/L.

The Hamilton water treatment plant uses ammonia in the disinfection process and therefore, slightly elevated ammonia levels may be expected.

Turbidity in water is caused by the presence of suspended matter such as clay, silt, colloidal particles, plankton and other microscopic organisms. The most important potential health effect of turbidity is its interference with disinfection in the treatment plant and the maintenance of a chlorine residual. The ODWO Maximum Acceptable Concentration for turbidity is 1.0 Formazin Turbidity Units (FTU).

The lab turbidity exceeded the Maximum Acceptable Concentration in 1 treated water sample at 1.1 FTU but this was not confirmed by the corresponding field turbidity result which was considered more reliable.

METALS

At present, there is no evidence that aluminum is physiologically harmful and no health limit for drinking water has been specified. The measure of aluminum in treated water is important to indicate the efficiency of the treatment process. The ODWOs indicate that a useful guideline is to maintain a residual below 100 ug/L as aluminum in the water leaving the plant, to avoid problems in the distribution system.

Aluminum exceeded the ODWO Aesthetic or Recommended Operational Guideline of 100 ug/L in 7 of 18 treated and distributed water samples with a maximum reported value of 170.0 ug/L.

ORGANIC

CHLOROAROMATICS

Hexachlorobenzene, exceeded the World Health Organization Guideline Value of 10 ng/L in 1 distributed water sample with a reported value of 13.0 ng/L. All other sample results for hexachlorobenzene, which included 6 raw, 6 treated and 12 distributed, were below the detection level of 1 ng/L; therefore, this one positive value is considered anomalous.

Results of the other parameters in the chloroaromatic scan showed that none were detected above trace levels.

CHLOROPHENOLS

The results of the chlorophenol scan showed that none were detected.

POLYAROMATIC HYDROCARBONS (PAH)

The results of the PAH scan showed that none were detected in the treated and distributed water.

PESTICIDES & PCB

The results of the PCB scan showed that none were detected.

The results of the regular pesticide scan showed that none were detected above trace levels.

PHENOLICS

Phenolic compounds are present in the aquatic environment as a result of natural and/or industrial processes. The ODWOs recommend, as an operational guideline, that phenolic substances in drinking water not exceed 2.0 ug/L. This limit has been set primarily to prevent undesirable taste and odours, particularly in chlorinated water. No results exceeded the guideline.

SPECIFIC PESTICIDES

The results of the specific pesticides scan showed that none were detected.

VOLATILES

The detection of benzene, ethylbenzene, toluene and xylenes at low, trace levels may be a laboratory artifact derived from the analytical methodology.

Trihalomethanes (THMs) are produced during the water treatment process and will always occur in chlorinated waters. THMs are comprised of chloroform, chlorodibromomethane and dichlorobromomethane; bromoform occurs occasionally. Results are reported for the individual compounds as well as for total THMs. Only total THMs results are discussed.

Total THMs were found at positive levels in the 16 treated and distributed water samples analyzed with a maximum level of 31.1 ug/L. This was below the ODWO Maximum Acceptable Concentration of 350 ug/L.

CONCLUSIONS

The Hamilton water treatment plant, for the sample year 1990, produced good quality water and this was maintained in the distribution system.

One organic parameter, hexachlorobenzene, was reported above the World Health Organization guideline value in one sample. Since all other results (23 samples in the raw, treated and distributed water) were below the detection level, this one positive value is considered anomalous.

FIGURE 1

HAMILTON WTP

TABLE 1

DRINKING WATER SURVEILLANCE PROGRAM

PLANT GENERAL REPORT

WORKS #: 220003118
PLANT NAME: HAMILTON WATER SUPPLY SYSTEM

DISTRICT:

HAMILTON

REGION:

WEST CENTRAL

DISTRICT OFFICER: J.W. VOGT

UTM #:

PLANT SUPERINTENDENT: JIM HALLIDAY

HAMILTON WATER SUPPLY SYSTEM

ADDRESS:

700 WOODWARD AVE

HAMILTON, ONT. L8H 6P4

(Telephone)

(416-526-4484)

MUNICIPALITY:

HAMILTON MUNICIPALITY

AUTHORITY:

PLANT INFORMATION:

- (X 1000 M3)

PLANTN VOLUME: DESIGN CAPACITY: RATED CAPACITY: 909 (X 1000 M3/DAY) - (X 1000 M3/DAY)

MUNICIPALITY: POPULATION: ANCASTER 16,542 DUNDAS TOWN 20,081 HAMILTON 307,690 STONEY CREEK 41,690 25,541 WATERDOWN

TABLE 2 DRINKING WATER SURVEILLANCE PROGRAM IN-PLANT MONITORING

PARAMETER	LOCATION	FREQUENCY
FREE CHLORINE RESIDUAL	AFTER FILTERS RAW WATER IN LAB AFTER SETTLING TANKS TREATED WATER	CONTINUOUS CONTINUOUS CONTINUOUS EVERY 2 HOURS
TOTAL CHLORINE RESIDUAL	TREATED WATER	EVERY 2 HOURS
РН	AFTER FILTERS RAW WATER IN LAB RAW WATER TREATED WATER	EVERY 2 HOURS EVERY 2 HOURS CONTINUOUS CONTINUOUS
TEMPERATURE	RAW WATER TREATED WATER	CONTINUOUS EVERY 2 HOURS
TURBIDITY	AFTER DISINFECTION AFTER FILTERS RAW WATER IN LAB RAW WATER AFTER SETTLING TANKS TREATED WATER	CONTINUOUS CONTINUOUS CONTINUOUS EVERY 2 HOURS EVERY 2 HOURS CONTINUOUS

TABLE 3
DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WSS SAMPLE DAY CONDITIONS FOR 1990

			PRE CHLO	NT CHEMICAL DOSAGE (N DRINATION COAGULAT	ION COAGULATION	CHLORAMINATION	POST CHLORINATION	
DATE	DELAY * TIME(HRS)	FLOW	CHLORINE	ALUM LIQUID	POLY ALUMINUM CHLORIDE	AMMONIUM ANHYDROUS	CHLORINE HYDRO	OFLUOSILICIC ACID
MAR 27 MAY 29	3.24	203.545 434.143 153.880	2.00	8.00	1.60 1.20 1.30	.38 .31 1.85	.28 1.18 .20	.94 1.25
JUL 24 SEP 26 NOV 27	4.00	.000 178.727 130.909	2.10		1.23 1.2D 1.10	.22 .30 .30	.17	1.07 1.00 .99

^{*} THE DELAY TIME BETWEEN THE RAW AND TREATED WATER SAMPLING, SHOULD ESTIMATE THE RETENTION TIME.

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WSS
SUMMARY TABLE OF RESULTS (1990)

			RAW		TREA	TED		s	ITE 1		SI	TE 2	9	ITE 3	
SCAN PARAMETER	TOTAL	POSITIVE T	RACE	TOTAL PO	SITIVE TR	ACE	TOTAL P	OSITIVE	TRACE	TOTAL P	OSITIVE T	RACE	TOTAL PO	SITIVE T	RACE
BACTERIOLOGICAL															
BACTERIOLOGICAL															
FECAL COLIFORM MF STANDED PLATE CHT MF	6	5	0	6	ò		6	0	ò	2	ò	0	3	ò	ò
TOTAL COLIFORM MF	6	5	ò												
T COLIFORM BCKGRD MF	6	6	0		•	٠	•	•	٠	•		٠	•	•	•
*TOTAL GROUP BACTERIO	18	16	0	6	0	0	6	0	0	2	0	0	3	0	0
CHEMISTRY (FLD)															
FLD CHLORINE (COMB)				6	6	0	12	12	0	2	2	0	6	6	0
FLD CHLORINE FREE				1	0	0	12	0	0	•	:			6	ò
FLD CHLORINE (TOTAL) FLD PH	i	i		6 1	6 1	0	12 11	12 11	0	2	2	0	8	8	0
FLD TEMPERATURE	6	6	0	6	6	0	10	10	Ō	4	4	0	8	8	0
FLD TURBIDITY	6	6	0	5	5	0			•		•	•	•		•
*TOTAL SCAN CHEMISTRY	(FLD) 13	13	0	25	24	0	57	45	0	12	12	0	28	28	0
CHEMISTRY (LAB)															
ALKALINITY	6	6	0	6	6	0	12	12	0	4	4	0	8	8	0
CALCIUM	6	6	0	6	6 0	0	12	12	0	4	4	0	8	8	0
CYANIDE CHLORIDE	6	0 6	0	6	6	0	12	12	Ď	4	4	Ô	8	8	Ô
COLOUR	6	0	5	6	0	5	12	0	12	4	0	4	8	0	4
CONDUCTIVITY DISS ORG CARBON	6	6	0	6 6	6 6	0	12 12	12 12	0	4	4	0	8 8	8 8	0
FLUORIDE	6	6	0	6	6	0	12	12	0	4	4	0	8	8	0
HARDNESS	6	6	0	6	6	0	12	12	0	4	4	0	8 8	8	0
IONCAL LANGELIERS INDEX	6	6	0	6 6	6	0	12 12	12 12	0	4	4	0	8	8	Ö
MAGNES1UM	6	6	0	6	6	0	12	12	0	4	4	0	8	8	0
SODIUM	6	6 2	0	6	6	0	12 12	12 12	0	4	4	0	8 8	8 7	0
AMMONIUM TOTAL NITRITE	6	6	0	6 6	6 0	6	12	4	8	4	2	2	8	6	2
TOTAL NITRATES	6	6	0	6	6	0	12	12	0	4	4	0	8	8	0
NITROGEN TOT KJELD	6	6	0	6 6	6 6	0	12 12	12 12	0	4	4	0	8 8	8 8	0
PHOSPHORUS FIL REACT	6	1	4	6	1	5									
PHOSPHORUS TOTAL	6	5	1	6	3	3	42	12	ò	;	4	Ď	8	8	ò
SULPHATE TURBIDITY	6	6	0	6 6	6 6	0	12 12	12 12	0	4	4	D	8	8	Ö
*TOTAL SCAN CHEMISTRY	(LAB) 132	110	10	132	106	20	228	208	20	76	70	6	152	141	6

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WSS SUMMARY TABLE OF RESULTS (1990)

	SITE		DALL		TOTA	TED			E 1			175 2		SITE 3	
SCAN			RAW		TREA	IED		;	SITE 1		3	ITE 2		2115 2	
PARAMETER	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE TR	ACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE
METALS															
011100	,			,	•		42					^	8		
SILVER ALUHINUM	6		0	6	0 6	1	12 12	0 12	0	4	0	0	8	0	0
ARSENIC	6		6	6	2	4	12	3	9	4	0	4	8	6	2
BARIUM	6	6	0	6	6	0	12	12	0	4	4	0	8	8	0
BORON BERYLLIUM	6	6	0	6	6	0	12 12	12 0	0	4	4	0	8	8	. 1
CADMIUM	6	-	2	6	0	1	12	0	1	4	0	2	8	0	ó
COBALT	6	ő	5	6	ŏ	5	12	ō	8	4	0	2	8	0	8
CHROMIUM	6	0	6	6	0	6	12	0	12	4	0	4	8	0	8
COPPER IRON	6	0	6	6	0	6	12 12	6	6 12	4	4	0	8 8	8	0
MERCURY	6	0	0	6	ő	0	12		12	*					
MANGANESE	6	6	Ō	6	5	1	12	12	Ö	4	3	1	8	6	2
MOLYBDENUM	6		0	6	6	0	12	12	0	4	4	0	8	8	0 8
NICKEL LEAD	6	1	5	6	0	6	12 12	1 12	11	4	3	1	8	8	ő
ANTIMONY	6	Ś	1	6	1	5	12	11	1	4	4	Ö	8	8	ő
SELENIUM	6		0	6	0	2	12	0	7	4	0	2	8	0	6
STRONTIUM TITANIUM	6	6	0	6	6	0	12 12	12	0 11	4	4	0	8 8	8 2	0
THALLIUM	6		0	6	0	0	12	0	0	4	0	0	8	Ó	0
URANIUM	6	0	6	6	ō	6	12	ō	12	4	0	4	8	Ō	8
VANADIUM	6		5	6	1	5	12	1	11	4	1	3	8	0	8
ZINC	6	6	0	6	2	4	12	10	2	4	4	0	8	8	0
*TOTAL SCAN METALS															
	144	53	56	144	41	63	276	117	103	92	40	30	184	86	57
*TOTAL GROUP INORGANIO	289		66	301	171	83	561	370	123	180	122	36	364	255	63
•	207	170	30	301	171	83	301	3/0	123	100	122	30	304	2,7,	ω.

CHLOROAROMATICS															
HEXACHLOROBUTAD I ENE	6		0	6	0	0	6	0	0	2	0	0	4	0	0
123 TRICHLOROBENZENE 1234 T-CHLOROBENZENE	6		0	6	0	0	6	0	0	2	0	0	4	0	0
1235 T-CHLOROBENZENE	6	_	0	6	Ď	ő	6	0	Ö	2	ő	Ö	4	ő	ŏ
124 TRICHLOROBENZENE	6	0	0	6	0	0	6	0	0	2	0	0	4	0	0
1245 T-CHLOROBENZENE	6	0	0	6	0	0	6	0	0	2	0	0	4	0	0
135 TRICHLOROBENZENE HCB	6	0	0	6	0	0	6	0	0	2	0	0	4	0	0
HEXACHLOROETHANE	6	ő	1	6	Ô	1	6	ò	0	2	Ö	ō	4	Ö	ŏ
OCTACHLOROSTYRENE	6	0	0	6	0	0	6	0	0	2	0	0	4	0	0
PENTACHLOROBENZENE 236 TRICHLOROTOLUENE	6	0	0	6	0	0	6	0	0	2	0	0	4	0	0
245 TRICHLOROTOLUENE	6	0	0	6	0	0	6	0	0	2	0	0	4	0	0
26A TRICHLOROTOLUENE	6	ŏ	ō	6	Ö	Ö	6	ő	ŏ	2	ő	ŏ	4	Ö	0
*TOTAL SCAN CHLOROARON	ATTO														
TOTAL SCAN CHLOROARON	84 84	0	1	84	0	1	84	1	0	28	0	0	56	0	0
	-			-	·		, , , , , , , , , , , , , , , , , , ,	'	J		,	J		,	

CHLOROPHENOLS

TABLE 4 DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WSS SUMMARY TABLE OF RESULTS (1990)

	SITE		RAW		т:	REATED			SITE 1			SITE 2		SITE	3	
SCAN			NAW.			MEATER			3112 1					****		
PARAMETER	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRAC	CE
234 TRICHLOROPHENOL	2	0	0	2	0	0										
2345 T-CHLOROPHENOL	2		ů.	2		Ö										
2356 T-CHLOROPHENOL	2		Ö	2	ő	Ď				Ţ.						
245-TRICHLOROPHENOL	2		ő	2	ō	ō										
246-TRICHLOROPHENOL	2		ŏ	2		ō										
PENTACHLOROPHENOL	2		Ō	2		0										
*TOTAL SCAN CHLOROPHE	NOLS															
	12	0	0	12	0	0	0	C	0	0	0	0	0	C)	0
PAH																
PHENANTHRENE	6	. 0	0	6	0	0	1	C	0				1			0
ANTHRACENE	6		0	6	0	0	1	C	0				1	()	0
FLUORANTHENE	6		Ō	6	0	0	1	0	0				1			0
PYRENE	6		0	6		0	1	C					1			0
BENZO(A)ANTHRACENE	6		0	6	0	0	1	C					1	0		0
CHRYSENE	6	. 0	0	6	0	0	1	C	0				1	(0
DIMETH. BENZ(A)ANTHR	6		0	6	0	0	1	C					1	(0
BENZO(E) PYRENE	6	. 0	0	6	0	0	1	0					1	(0
BENZO(B) FLUORANTHEN	6	. 0	0	6	0	0	1						1	0		0
PERYLENE	6	. 0	0	6	0		1	(1	(0
BENZO(K) FLUORANTHEN	6	. 0	1	6			1	C					1	(0
BENZO(A) PYRENE	6		0	6			1	0					. 1	(0
BENZO(G,H,1) PERYLEN	6		0	6			1	0					1	0		0
DIBENZO(A, H) ANTHRAC	6		0	6	-		1	0					1	9		0
INDENO(1,2,3-C,D) PY	6		0	6			1						1	0		0
BENZO(B) CHRYSENE	6		0	6			1						1			0
CORONENE	6	0	0	6	0	0	1	C	0				1	C	J	0
*TOTAL SCAN PAH																
	102	0	1	102	0	0	17		0	0	0	0	17	' ()	0
***************************************												• • • • • •				
PESTICIDES & PCB																
ALDRIN	6	. 0	0	6	0	0	6			2			4			0
ALPHA BHC	6		5	6			6			2			4			4
BETA BHC	6		0	6	0		6			2			4			0
LINDANE	6		0	6			6			2			4			0
ALPHA CHLORDANE	6		0	6			6			2			4			0
GAMMA CHLORDANE	6		0	6		-	6			2			4			0
DIELDRIN	6		0	6			6			2			4			0
METHOXYCHLOR	6		0	6			6			2			4			0
ENDOSULFAN 1	6		0	6		-	6			2			4			0
ENDOSULFAN II	6		0	6			6			2		_	4			0
ENDRIN	6		0	6			6			2			4			0
ENDOSULFAN SULPHATE	6		0	6			6			2			4			0
HEPTACHLOR EPOXIDE	6		0	6	_		6			2			4			0
HEPTACHLOR	6		0	6			6			2			4			0
MIREX OXYCHLORDANE	6		0	6			6			2			4			0
OPDDT	6		0	6		_	6			2			7	Ċ		ō
PCB	6		0	6			6			2			4			Ö
DDD	6		Ö	6			6			2			4			0
PPDDE	6		0	6			6			2			4	Č		Ō
			J	Ü	0	J	·		·							

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WSS
SUMMARY TABLE OF RESULTS (1990)

	SITE														
SCAN			RAW		TR	REATED		S	ITE 1		SI	TE 2		SITE 3	•
PARAMETER	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL PO	SITIVE T	RACE	TOTAL	POSITIVE	TRACE
PPDDT	6	0	0	6	0	0	6	0	0	2	0	0	4	0	0
AMETRINE ATRAZINE	6	0	0	5 5	0	0	•	•	•	•	•	•	•	•	•
ATRATONE	6	0	0	5	0	0	:	:	:	:	:	:	:	:	:
CYANAZINE (BLADEX) DESETHYLATRAZINE	6 6	0	0	5 5	0	0		•		•			•		•
D-ETHYL SIMAZINE	6	0	0	5	Ō	0	:	:		:	:		:		:
PROMETONE PROPAZINE	6	0	0	5	0	0	•	•	•	•		•	•		•
PROMETRYNE	6	0	Ō	5	D	Ō	:	:	:	:		:	:		
METRIBUZIN (SENCOR) SIMAZINE	5 6	0	0	5	0	0		•	٠	•	•	•	•		•
ALACHLOR (LASSO)	6	Ō	Ö	5	0	ő	:	:	:	:	:	:	:		:
METOLACHLOR HEXACLCYCLOPENTADIEN	6	0	0	5	0	0	i	ò	ò				:	ò	ò
"CARCECTCEOPERTADTER	'	U	U	'	U	U	'	U	U	•	•	•		· ·	· ·
*TOTAL SCAN PESTICIDES	& PCE 204	0	6	192	0	9	127	0	6	42	0	3	85	0	4
	204	U	٥	172	U	,	121	U		42	Ü	,	ره	Ů	•
								·							
PHENOLICS															
PHENOL I CS	6	0	1	6	1	3									
*TOTAL SCAN PHENOLICS															
	6	0	1	6	1	3	0	0	0	0	0	0	0	0	0
SPECIFIC PESTICIDES															
TOXAPHENE	6	0	0	6	0	0	6	0	0	2	0	0	4	0	0
2,4,5-T 2,4-D	2	0	0	2	0	0			•	•		٠			•
2,4-DB	2	0	ŏ	2	ő	0	:		:	:	:		:		
2,4 D PROPIONIC ACID DICAMBA	2	0	0	2	0	0				•		٠		•	•
PICHLORAM	ō	Ö	0	0	0	0	:	:	:	:		:	:		
SILVEX DIAZINON	2	0	0	2	0	0						٠		•	
DICHLOROVOS	2	0	0	2	0	0	:	:		•	:	:	:	:	
CHLORPYRIFOS ETHION	2	0	0	2	0	0									
AZINPHOS-METHYL	0	0	0	2	0	0	:	:	:	:	:	:	:		
MALATHION	2	0	0	2	0	0									
MEVINPHOS METHYL PARATHION	2	- 0	0	2	0	0	:		•	•	:			:	
METHYLTRITHION	2	0	0	2	0	0									
PARATHION PHORATE	2	0	0	2	0	0	•		•	•	•	•			
RELDAN	2	0	0	2	0	D	:	:	:	:	:	:	:		
RONNEL AMINOCARB	2	0	0	2	0	0			•	•	•	•	•	•	•
BENONYL	Ö	0	0	0	0	0			:		:			:	
BUX CARBOFURAN	0	0	0	0	0	0				•					
CICP	2	Ō	0	2	0	0	:	•			:	:			
DIALLATE	2	0	0	2	0	0									

TABLE 4
DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WSS
SUMMARY TABLE OF RESULTS (1990)

	SITE														
	0.10		RAW		TR	EATED		s	ITE 1		s	ITE 2		SITE	3
SCAN															
PARAMETER	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE	TOTAL	POSITIVE	TRACE
EPTAM	2	0	0	2	0	0		•			•	•			•
IPC	2	0	0	2	0	0			•	•		•			
PROPOXUR	2	0	0	2	0	0		•	•	•	•	•	•	•	•
CARBARYL	2	0	0	2	0	0		•	•	•	•	•	•	•	
BUTYLATE	2	U	U		U	U	•	•	•	•	•	•	•		•
*TOTAL SCAN SPECIFIC	PESTIC	IDES													
TOTAL GOAL GILLITIE	58		0	58	0	0	6	0	0	2	0	0	4	0	0
VOLATILES															
DENZENE		_	0	,	0	1	5	0	3	1	0	0	4	0	0
BENZENE TOLUENE	6		0	6		1	5		4	i	0	Ď	4	0	1
ETHYLBENZENE	6		0	6		3			3	i	0	ő	7	0	i
P-XYLENE	6		0	6		0	9 5		ō	i	ő	ō	4	ŏ	ò
M-XYLENE	6	0	0	6		Ď	5		0	i	0	Ö	4	Ō	0
O-XYLENE	6	Ŏ	Ö	6	_	ŏ	5		ō	<u>i</u>	Ō	Ō	4	0	0
STYRENE	6	0	1	6		3	5		3	1	0	1	4	0	1
1,1 DICHLOROETHYLENE	6	0	0	6	0	0	5	0	0	1	0	0	4	0	0
METHYLENE CHLORIDE	6	0	0	6	0	0	5		0	- 1	0	0	4	0	0
T1,2DICHLOROETHYLENE	6	0	0	6		0	5		0	1	0	0	4	0	0
1,1 DICHLOROETHANE	6		0	6		0	5		0	1	0	0	4	0	0
CHLOROFORM	6		0	6		0	5		0	1	1	0	4	4	0
111, TRICHLOROETHANE	6		0	6		0	5		0	1	0	0	4	0	0
1,2 DICHLOROETHANE	6		0	6		0	5		0	1	0	0	4	0	0
CARBON TETRACHLORIDE	6		0	6	_	0	5		0	- 1	0	0	4	0	0
1,2 DICHLOROPROPANE TRICHLOROETHYLENE	6	-		6	_	0	5		0	1	0	0	7	0	ő
DICHLOROBROMOMETHANE	6	-	0	6	_	0	5		n n	i	1	ñ	7	4	ŏ
112 TRICHLOROETHANE	6	•	0	6		0	5		0	· i	ó	0	4	0	Ö
CHLOROD I BROMOMETHANE	6	-		6		ő	5		ő	i	1	ō	4	4	Ö
T-CHLOROETHYLENE	6			6		ō	5		0	1	0	0	4	0	0
BROMOFORM	6		0	6	0	6	5	0	5	1	0	1	4	0	4
1122 T-CHLOROETHANE	6	. 0	0	6	0	0	5	0	0	1	0	0	4	0	0
CHLOROBENZENE	6	0	0	6	0	0	5		0	1	0	0	4	0	0
1,4 DICHLOROBENZENE	6			6		0	5		0	1	0	0	4	0	
1,3 DICHLOROBENZENE	6		0	6		0	5		0	1	0	0	4	0	0
1,2 DICHLOROBENZENE	6			6		0	5		0	1	0	0	4	0	0
ETHLYENE DIBROMIDE	6	-		6		0	5		0	1	0	0	4	0	0
TOTL TRIHALOMETHANES	6	0	0	6	6	0	5	5	0	1	1	0	4	4	U
ATOTAL COAN VOLATILE															
*TOTAL SCAN VOLATILES	174	. 0	1	174	24	14	145	20	18	29	4	2	116	16	7
*TOTAL GROUP ORGANIC	174	U	,	174	24	14	143	20	10	27	7	_	, 10	10	•
TOTAL GROOP ORGANIC	640	0	10	628	25	27	379	21	24	101	4	5	278	16	11
	040		.0	020								-			

KEY TO TABLE 5 and 6

- ONTARIO DRINKING WATER OBJECTIVES (ODWO)
 - 1. Maximum Acceptable Concentration (MAC)
 - 1+. MAC for Total Trihalomethanes
 - Interim Maximum Acceptable Concentration (IMAC)
 Aesthetic Objective (AO)

 - 3*. AO for Total Xylenes
 4. Recommended Operational Guideline

HEALTH & WELFARE CANADA (H&W)

- 1. Maximum Acceptable Concentration (MAC)
 2. Proposed MAC
 3. Interim MAC
 4. Aesthetic Objective (AO)

WORLD HEALTH ORGANIZATION (WHO) С

- 1. Guideline Value (GV)
 2. Tentative GV
- 3. Aesthetic GV

US ENVIRONMENTAL PROTECTION AGENCY (EPA)

- 1. Maximum Contaminant Level (MCL)
- 2. Suggested No-Adverse Effect Level (SNAEL)
- 3. Lifetime Health Advisory
- 4. EPA Ambient Water Quality Criteria 4T. EPA Ambient Water Quality Criteria for Total PAH

EUROPEAN ECONOMIC COMMUNITY (EEC)

- Health Related Guideline Level
 Aesthetic Guideline Level
 Maximum Admissable Concentration (MADC)
- CALIFORNIA STATE DEPARTMENT OF HEALTH-GUIDELINE VALUE
- NEW YORK STATE AMBIENT WATER GUIDELINE
- NONE AVAILABLE

LABORATORY RESULTS, REMARK DESCRIPTIONS

1.	No Sample Taken
BDL	Below Minimum Measurement Amount
<1	Greater Than Detection Limit But Not Confident (SEE INTERPRETATION OF RESULTS ABOVE)
>	Results Are Greater Than The Upper Limit
<=>	Approximate Result
ICS	No Data: Contamination Suspected
! IL	No Data: Sample Incorrectly Labelled
IIS	No Data: Insufficient Sample
IIV	No Data: Inverted Septum
ILA	No Data: Laboratory Accident
!LD	No Data: Test Queued After Sample Discarded
INA	No Data: No Authorization To Perform Reanalysis
!NP	No Data: No Procedure
! NR	No Data: Sample Not Received
I OP	No Data: Obscured Plate
iou	No Data: Quality Control Unacceptable
!PE	No Data: Procedural Error - Sample Discarded
!PH	No Data: Sample pH Outside Valid Range
!RE	No Data: Received Empty
!RO	No Data: See Attached Report (no numeric results)
! SM	No Data: Sample Missing
ISS	No Data: Send Separate Sample Properly Preserved
int	No Data: Indeterminant Interference
!TX	No Data: Time Expired
A3C	Approximate, Total Count Exceeded 300 Colonies
APL	Additional Peak, Large, Not Priority Pollutant
APS	Additional Peak, Less Than, Not Priority Pollutant
CIC	Possible Contamination, Improper Cap
CRO	Calculated Result Only
PPS	Test Performed On Preserved Sample
RMP	P and M-Xylene Not Separated
RRV	Rerun Verification
RVU	Reported Value Unusual
SPS	Several Peaks, Small, Not Priority Pollutant

UCR	Unreliable: Could Not Confirm By Reanalysis
ucs	Unreliable: Contamination Suspected
UIN	Unreliable: Indeterminate Interference
ΧP	Positive After X Number Of Hours
т#	(TDA) Result Taken After # Hours

WATER TREATMENT PLANT

DISTRIBUTION SYSTEM

		RAW	TREATED	SITE 1		SITE 2		SITE 3
			STANDING	FREE FLOW	STANDING	FREE FLOW	STANDING	FREE FLOW
		ERIOLOGICAL						
FECAL COL	IFORM MF (CT/	100ML)	DET'N L	.IMIT = 0	GUIDELINE	= 0 (A1)		
JAN	17							
MAR	5	:						
MAY	BDL							
JUL	2							
SEP	2							
NOV	5		•	•	•	•	•	
STANDRD P	LATE CNT MF (COUNTS/ML)	DET'N L	.IMIT = 0	GUIDELINE	= 500/ML (A3)		
JAN		0 <=>		0 <=>		0 <=>		
MAR		1 <=>		0 <=>		1 <=>		
MAY		4 <=>		1 <=>				
JUL		2 <=>		1 <=>				0 <=>
SEP		0 <=>		7 <=>				0 <=>
NOV	•	2 <=>		3 <=>		•		0 <=>
TOTAL COL	IFORM MF (CT/	100ML)	DET'N L	.IMIT = 0	GUIDELINE	= 5/100ML(A1)		
JAN	2060							
MAR	26							
MAY	10 <=>							
JUL	8							
SEP	16							
NOV	124						•	
T COLIFOR	M BCKGRD MF (CT/100ML)	DET'N L	.IMIT = 0	GUIDELINE	= N/A		
JAN	4200							
MAR	104							
MAY	260							
JUL	8400							
SEP	1480							
NOV	800							

	1990
	WSS 1
	HAMILTON
	PROGRAM
TABLE 5	SURVEILLANCE
	WATER
	ORINKING WATER

			FREE FLOW		٠	1.100	. 500	.700	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				• :::		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		•	00.1	.200	.700	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠	• •	7 800	7.600	7.600	9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		10.000	17.000	18.000 10.000
	SYSTEM	SITE 3	STANDING				.300		, a d d d d d d d d d d d d d d d d d d				•		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			. OUE	.200		, e e e e e e e e e e e e e e e e e e e		- 0	7 400	7.400	7.200		٠	15.000	23.000	20.000 18.000
TON WSS 1990	DISTRIBUTION SYSTEM	E 2	FREE FLOW		006.			•					• •	• •	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	006.	1.100	•	• •	٠		7.200	7.600	•		-		7.000	8,000	•	• •
TABLE 5 ORINKING WATER SURVEILLANCE PROGRAM HAMILTON WSS 1990		SITE 2	STANDING	N/A					4/A			• •	• •	• •	4/A		•			٠	GUIDELINE = 6.5-8.5(A4)	7.000	7.600	•			15 (A3)	16.000	18.000		
T. RINKING WATER SURVEI	WATER TREATMENT PLANT	_	FREE FLOW	GUIDELINE = N/A	1.300	1.500	1.300	1.300	GUIDELINE = N/A	000	000.	000.	000	000	GUIDELINE = N/A	1.300	1.300	1.200	1.300	1.300	GUIDELINE =	٠	7.800	7.800	2.600	7.800	GUIDELINE = 15 (A3)	4.000	6.000	18.000	10.000
0	WATER	TREATED SITE	STANDING	OET'N LIMIT = 0	100	200.	.500	.100	DET'N LIMIT = 0	000	900.	000.	000	000.	DET'N LIMIT = 0	.100	2002	100	.500	001.	DET'N LIMIT = N/A	7.600	7.600	7.600	7.200	000.7	DET'N LIMIT = N/A	11.000	24.000	.000 00	20.000 15.000
				(FL0)	1.200	1.290	1.240	1.180	^					000.	^	1.200	1.180	1.150	1.240	1.180			•	• •	. 00	006.7		4.000	11.000	18.000	8.500
		re RAW	Ä,	CHENTRY (FLO)					FLD CHLORINE FREE (MG/L						FLD CHLORINE (TOTAL) (MG/L		•		٠		ISLESS)	•		• •	, 000	004.	FLO TEMPERATURE (DEG.C)	4.000	11.000	18.000	8.500
		SITE	TYPE	FLD CHLORIP	JAN	МАУ	SEP	NOV	FLD CHLORI	JAN	MAK		SEP	NOV	FLD CHLORIN	JAN	MAK	JUL	SEP	AON	FLO PH (OMNSLESS	JAN	HAK HAK	JO.	SEP	2	FLO TEMPERA	JAK	HAY	JUL SED	NOV

SITE RAW TREATED SITE 1 SITE 2 SITE 3 SITE				DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WSS 1990	ANCE PROGRAM HA	MILTON WSS 1990		
RAW TREATED SITE 1 SITE 2 SITE 3 SITE				WATER TREATMENT PLANT		DISTRIBUTION	N SYSTEM	
STRE STANDING STRE FLOW STRE FLOW STRE FLOW STRE FLOW STANDING FREE FLOW			1	1				
(FTU) DET'N LIMIT = N/A GUIDELINE = 1 (A1) FREE FLOW FREE FLOW FREE FLOW FREE FLOW 0.000 .160 .040		KAW	IKEATED	SITE 1		SITE 2	SITE	
(FTU) DET'N LIMIT = N/A GUIDELINE = 1 (A1) 1.000			STANDING	FREE FLOW	STANDING	FREE FLOW	STANDING	FREE FLOW
	(FTU	0	DET'N LIMIT = N,	/A GUIDELINE = 1	(A1)	9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		
	000.08	.160	٠	٠				
	1.000	070.	•	٠		•		
	1.700	.240	•					
	.900	.310						
	1,300	•				٠	٠	
	2.500	. 060		٠			•	

		FREE FLOW			95.100	98.500	92.100			•	39.300	43.600	41.400	43.100							•) ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	•		28.200	26.800	24.800	5 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			1,000 <₹	.500 <t< th=""><th>,</th></t<>	,
YSTEM	SITE 3	STANDING			96.500	97.900	007.76			•	39.900	43.200	41.600	43.200			•	•						•	28.000	26.500	24.900			·	1.000 <t< td=""><td>1.000 <t< td=""><td>3</td></t<></td></t<>	1.000 <t< td=""><td>3</td></t<>	3
DISTRIBUTION SYSTEM	2	FREE FLOW	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	97.700	006.0%	•	•		007 07	41.600					0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			•		•		. 2 2 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	26.900	29.000			• •		1.000 <t< th=""><th>12 000:</th><th></th><th></th><th>, 1</th></t<>	12 000:			, 1
	SITE 2	STANDING	30-500 (A4)	97.700	, ,		• •	00 (F2)	30.500	42.400		•		•	.2 (A1)				•	•	٠	50 (A3)	27.100	29.700		•		(A3)	1.000 4	200:1			
WATER TREATMENT PLANT		FREE FLOW	GUIDELINE = 30-500 (A4)	96.600	99.200	96.300	96.800 96.800	GUIDELINE = 100 (F2)	40.800	42.600	42.000	42.700	45.600	74.000	GUIDELINE = .			•			•	GUIDELINE = 250 (A3)	26.700	26.600	001.72	26.500	25.800	GUIDELINE = 5	1.500 <t< td=""><td>1.000 <t< td=""><td>1,000 <</td><td>1.000 <1 1.000 <1</td><td></td></t<></td></t<>	1.000 <t< td=""><td>1,000 <</td><td>1.000 <1 1.000 <1</td><td></td></t<>	1,000 <	1.000 <1 1.000 <1	
WATER	SITE 1	STANDING	DET'N LIMIT = 0.2	98,000	98.900	97.000	97.100 96.700	DET'N LIMIT = 0.2	39.600	42,200	42.100	41.700	44.200	45.400	DET'N LIMIT = 0.001			•	•		٠	DET'N LIMIT = 0.2	26.700	26.100	27.100	26.100	25.000	DET'N LIMIT = 0.5	1.500 <1	1,000 <1	1.000 <t< td=""><td>1,000 <t .500 <t< td=""><td></td></t<></t </td></t<>	1,000 <t .500 <t< td=""><td></td></t<></t 	
	TREATED			94.500	000.66	96.300	95.700 97.000	0	40.600	43.600	42.000	41.800	42.400	44.200	0	.007 <t< td=""><td>B0L</td><td>BDL</td><td>B0L</td><td>BOL</td><td>BOL</td><td>0</td><td>26.900</td><td>28.900</td><td>28 400</td><td>26.300</td><td>26.500</td><td>:</td><td>1.000 <t< td=""><td>.500 <1</td><td>.500 <t< td=""><td>.500 <t 80L</t </td><td></td></t<></td></t<></td></t<>	B0L	BDL	B0L	BOL	BOL	0	26.900	28.900	28 400	26.300	26.500	:	1.000 <t< td=""><td>.500 <1</td><td>.500 <t< td=""><td>.500 <t 80L</t </td><td></td></t<></td></t<>	.500 <1	.500 <t< td=""><td>.500 <t 80L</t </td><td></td></t<>	.500 <t 80L</t 	
	SITE RAW		CHEMISTRY (LAB)	102,800	103.700	101.300	102.000	MG/L)	40.800	43.000	41.600	41.400	43.400	44.300	MG/L)	80F	BDL	BDL	108	80F	BOL	(HG/L)	24.700	28.500	24.400	23.900	23.400	c nz	BDL 2.000 <t< td=""><td>2.000 <t< td=""><td>1.500 <t< td=""><td>1.500 <t 1.500 <t< td=""><td></td></t<></t </td></t<></td></t<></td></t<>	2.000 <t< td=""><td>1.500 <t< td=""><td>1.500 <t 1.500 <t< td=""><td></td></t<></t </td></t<></td></t<>	1.500 <t< td=""><td>1.500 <t 1.500 <t< td=""><td></td></t<></t </td></t<>	1.500 <t 1.500 <t< td=""><td></td></t<></t 	
		1	ALKALINITY (MG/L	JAN	MAY	בל ל	SEP NOV	CALCIUM (MG/L	JAN	MAR	MAY	JUL	SEP	NON	CYANIDE (MG/L	JAN	MAR	MAY	JUL	SEP	NOV	CHLORIDE (MG/L	JAN	MAR	Ē	SEP	NON	COLOUR (HZU	JAN	MAY	JUL	SEP	

WATER TREATMENT PLANT

DISTRIBUTION SYSTEM

					;											1											:
10	FREE FLOW			338	335			2.100	2.300	1.700				.740	1.140	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		٠	133.600	140.000	144.200			1 020	76.7	5,185	6.050
SITE 3	STANDING		6	338	335			2.100	1.900	1.700		٠	• 6	1.160	1.140	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	,		135.200	130 000	144.400			. 2/7	25. 7 25. 7	4,335	5.084
E 2	FREE FLOW		349				1.700				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	.520	1.240			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	135,000	140.000					2.256	5//2	•		• 1
SITE 2	STANDING	= 400 (F2)	341			= 5.0 (A3)	1.700	00/:-			= 2.4 (A1)	.540	1.260	• •		GUIDELINE = 80-100 (A4)	133 000	142.000				= N/A	4.155	1.644	•		6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	FREE FLOW	GUIDELINE = 400 (F2)	341	341	347	GUIDELINE = 5.0 (A3)	1.600	2.200	2.000	1.800	GUIOELINE = 2.4	.780	1.280	0.080	1.120	GUIDELINE	134 000	142.000	140.700	141.600	146.600	GUIDELINE = N/A	1.468	3.235	. p. 7.	2.810	7.526
TREATED SITE 1	STANDING	DET'N LIMIT = 1.	333	333	338	DET'N LIMIT = .100	1.700	2.200	2.100	1.800	DET'N LIMIT = 0.01	.260	1.160	1.280	1.160	DET'N LIMIT = 0.5	11, 000	141.000	141.200	137.900	142.200	DET'N LIMIT = N/A	3.588	3.861	2.428	5.462	4.415
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	340	343	342	* E B B B B B B B B B B B B B B B B B B	1.600	2.100	2.100	1.900	9 B B B B B B B B B B B B B B B B B B B	1.240	.980	1.080	1.300		134 000	145.000	141.000	138.600	147.500		.914	3.643	2.144	2.897	6.928
E RAW	щ	Y (UMNO/CM)	333	334	328 335	ARBON (MG/L)	1.800	2.000	2.000	1.900	4G/L)	.120	.160	.120	.120		127 000	144,000	140.400	138.500	147.100	NSLESS)	2.484	.453	525	3,119	5.521
SITE	TYPE	CONDUCTIVITY (UMHO/CM	JAN	JUL JUL	SEP NOV	DISS ORG CARBON (MG/I	JAN	MAY	JUL	SEP NOV	FLUORIDE (MG/L	JAN	MAR	MAY	SEP	HARDNESS (MG/L	IAN	MAR	MAY	70F	NOV	IONCAL (DMNSLESS)	JAN	MAR	MAY	SEP	NOV

WATER TREATMENT PLANT DISTRIBUTION SYSTEM

SITE	BAU	TRE	TREATED SITE 1	-	7	C11E 2	7 1113	
TYPE								
			STANDING	FREE FLOW	STANDING	FREE FLOW	STANDING	FREE FLOW
LANGELIERS INDEX (DMNSLESS)	MNSLESS)		DET'N LIMIT = N/A	GUIDELINE = N/A	: N/A			
JAN . 478		.309	707	.310	.491	.411		
		303	<u> </u>	702		961.	, 01	
		.369	.382	369			127	827
		.324	.348	.350			300	.267
		.287	.258	.233	•	•	.262	.227
MAGNESIUM (MG/L	^		DET'N LIMIT = 0.10	GUIDELINE = 30 (F2)	30 (F2)		1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	_	8.350	8.450	8.350	8.300	8,350	٠	
MAR 8.900		8.800	8.700	8.700	8.700	8.800	•	•
		8.750	8.800	8.700			8.700	8.600
		8.300	8.200	8.500			8.650	8.650
NOV 8.850		8.600	8.800	8.600			8.600	8.800
i								
SUDJUM (MG/L)			DEL'N LIMII = U.Z	GUIDELINE = 200 (A4)	: 200 (A4)			
		13.000	13.000	13.000	13.200	13.200	•	
MAR 14.800		14.000	12.400	12.600	13.400	13.800	•	•
		13.800	14.100	13.700			13.700	13.900
JUL 13.800		14.400	12,800	13.800			13.000	13.300
SEP 11.800		11.800	12.200	12.200			11.600	11.400
		13.600	12.400	13.700	•		12.400	12.500
AMMONIUM TOTAL (MG/I	ر ۲		DET'N LIMIT = 0.002	GUIDELINE = 0.05 (F2)	0.05 (F2)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
		.088	.168	.220	.148	160		
MAR .048		.176	.158	198	751.	150	•	• •
		.144	.198	.162			.196	. 25.
JUL .034		.216	.146	.188		•	190	.174
		.120	.128	.136			.082	BOL
		.174	.160	.174			.174	.138
NITRITE (MG/L)			DET'N LIMIT = 0.001	GUIDELINE =	1 (A1)	8 P P P P P P P P P P P P P P P P P P P		
JAN .008		T> 100.	.003 <1	7 100.	110.	.002 <t< th=""><th>٠</th><th></th></t<>	٠	
		> 200.	13 500.	1> 200.	/00.	. 500.	• ;	• !
		. 200. 1> 200.		. 200.			.004 <t< th=""><th>.00. 1> 100.</th></t<>	.00. 1> 100.
		7 200	4,00	1,000			900.	500.
		200.	500.	1 200.			897.	29.
		-					030.	2

WATER TREATMENT PLANT

DISTRIBUTION SYSTEM

SITE 3	FREE FLOW			.415	.355	.420				.350	.430	.330			. 00	8.240	8.130	8.050			٠		٠									5 5 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
SIT	STANDING	-	٠	.405	.370	.375	0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			.420	.450	75.			. 000	8.240	8,150	8.080			٠		•		2 2 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0					•		
SITE 2	FREE FLOW		.455	0.24.			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	022	.320	•	•			8.260	9.000			•			٠				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			•				
	STANDING	= 10 (A1)	.520				E = N/A	250	.340				GUIDELINE = 6.5-8.5(AL)	8.350	0.010				= N/A				•		Cay Of The Date of the Cay Of the	(21) 04. = 3				•		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
_	FREE FLOW	GUIDELINE = 10	7460	375.	.395	.500	GUIDELINE = N/A	002	.360	.390	.420	.300	NI 130110	8.160	8.020	8.200	8,180	8.050	GUIDELINE = N/A				•			מסומברוא				•		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TREATED SITE	STANDING	DET'N LIMIT = 0.005	.480	.395	.355	.445	DET*N LIMIT = 0.02	240	330	.470	.410	.330	DET'N IMIT = N/A	8.260	8.030	8.220	8.160	8.090	DET'N LIMIT = 0.0005						000 0 - 1177 - 11110	DEI 'N LIMII = 0.002		•		•		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
TRE			.455	.375	.400	.415 .475		020	077	.350	077	750		8.170	8.050	8.210	8.160	8.100	^	.002	.002 <t< th=""><th>. 001 <t< th=""><th>. 100.</th><th>. 00.</th><th></th><th></th><th>T> 900.</th><th>010.</th><th>20.5</th><th>1> 500</th><th>1> 500.</th><th></th></t<></th></t<>	. 001 <t< th=""><th>. 100.</th><th>. 00.</th><th></th><th></th><th>T> 900.</th><th>010.</th><th>20.5</th><th>1> 500</th><th>1> 500.</th><th></th></t<>	. 100.	. 00.			T> 900.	010.	20.5	1> 500	1> 500.	
RAW		ES (MG/L)	.455	.365	.355	.460	KJELD (MG/L)	020	.340	.310	.360	. 200		8.300	0.230	8.410	8.270	8,300	PHOSPHORUS FIL REACT (MG/L	.011	.000 <7	T> 000.	. 000.	.000 <1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		.030	.019	210.	.008 <t< th=""><th>710.</th><th></th></t<>	710.	
SITE	TYPE	TOTAL NITRATES (MG/L	JAN	MAY	JUL	SEP NOV	NITROGEN TOT KJELD (MG/L		MAR	MAY	JUL	SEP	PH COMNSIESS	JAN	MAK	ž j	SEP	NOV	PHOSPHORUS F	JAN	MAR	MAY	JOE 9	NOV	None later allegendend	THOSE HOUSE	JAN	MAR	TAR	SFP	NOV	1 1 1 1 1

WATER TREATMENT PLANT OISTRIBUTION SYSTEM

2									
SITE	RAW	_	TREATED	SITE 1		.IS	SITE 2	SITE 3	
TYPE			STANDING		FREE FLOW	STANDING	FREE FLOW	STANDING	FREE FLOW
SULPHATE (MG/L)	^		DET'N LIMIT = .200	.200	GUIDELINE = 500 (A3)	0 (A3)			
	7.840	30.440	29.680		30.500	29.650	29.660		٠
	0.580	29.870	28.080		29.170	28.090	29.180	• 67	38 540
	7.880	28.020	28.010		27.970			26.340	016.02
	7.420	27.500	26.710		27.860			018.97	084.02
	5.950	27.180	27.490		27.280			26.760	26.680
NOV 28	28.140	28.780	27.810		28.520			008.72	006.12
TURBIDITY (FTU	^		DET'N LIMIT = 0.05	0.05	GUIDELINE = 1	(A1)			
	2.000	1.100	.540		079.	.350	.750		
MAR	1.280	067.	.240		097.	.420	.830		. 6
	1.600	009.	.430		.650			069.	2002
	1.050	.420	.280		097.			025.	222
	1.100	.410	.230		.340			055.	2002
	000.9	.590	.250		.330			0*5.	000.

WATER TREATMENT PLANT

DISTRIBUTION SYSTEM

RAW		TREATED SITE	1	SITE 2	2	SITE 3	
		STANDING	FREE FLOW	STANDING	FREE FLOW	STANDING	FREE FLOW
METALS		DET*N LIMIT = 0.05	GUIDELINE = 50	: 50 (A1)	a 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 3 3 3 3 3 3 3 5 4 5 5 5 5 5 5 5 5 5 5
	108 108 108 108 108 000.	108 108 108 108 108 108	108 108 108 108 108	80 L 80 L	108		108 108 108
	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	DET'N LIMIT = 0.10	GUIDELINE = 100 (A4)	100 (A4)	8 8 8 9 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
	74.000 56.000 130.000 160.000 51.000 75.000	56.000 56.000 160.000 190.000 68.000	53.000 54.000 140.000 170.000 57.000 63.000	63.000	53.000	94,000 140,000 110,000 72,000	110.000 140.000 110.000 71.000
	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DET'N LIMIT = 0.10	GUIDELINE = 25	: 25 (A1)			
	.840 <t 1.000 <t .920 <t 1.200 1.100</t </t </t 	7 > 076. 1 - 086. 1 - 000.1 1 - 000.1 1 - 049.	70 77. 970 - 1.100 1.100 1.400 9.00 - 1.000 - 1.000	75 077.	.630 <t< td=""><td>1.100 1.300 1.200 1.880 <t< td=""><td>1.300 1.200 1.200 .950 <t< td=""></t<></td></t<></td></t<>	1.100 1.300 1.200 1.880 <t< td=""><td>1.300 1.200 1.200 .950 <t< td=""></t<></td></t<>	1.300 1.200 1.200 .950 <t< td=""></t<>
		DET'N LIMIT = 0.05	GUIDELINE =	SUIDELINE = 1000 (A2)		0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	6 6 7 9 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
	23.000 23.000 24.000 22.000 24.000	24,000 23,000 25,000 25,000 23,000	25.000 22.000 23.000 25.000 24.000	25.000	22.000	54,000 54,000 54,000	
		DET'N LIMIT = 2.00	GUIDELINE = 5000	5000 (A1)	6	5 6 6 6 6 6 6 6 6 6 6 6 6 7 7 8 8 8 8 8 9 8 9 9 9 9 9 9 9 9 9 9 9	9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9
	25.000 31.000 29.000 46.000 34.000	25.000 35.000 28.000 33.000 45.000	25.000 35.000 28.000 32.000 48.000	26.000	29.000	78.000 34.000 31.000 31.000	76.000
			9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			

		SITE 3	FREE FLOW	1
N SYSTEM		IS	STANDING	
DISTRIBUTION SYSTEM		SITE 2	STANDING FREE FLOW STANDING FREE FLOW STANDING FREE FLOW	
			STANDING	GUIDELINE = 6800 (D4)
WAIEK IKEAIMENI PLANI		_	FREE FLOW	GUIDELINE
MA		SILE	STANDING	DET'N LIMIT = 0.05
		IKEAIEU		DE
		NY N		^
	SITE	TYPE	0 0 0 0 0 0 0 0 0	RYLLIUM (UG/L

SITE	DAG		100.4100					
TYPE	NO.		3116		SILE 2	2	SITE 3	
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			STANDING	FREE FLOW	STANDING	FREE FLOW	STANDING	FREE FLOW
BERYLLIUM (UG/L	r)		DET'N LIMIT = 0.05	GUIDELINE = 6800 (04)	6800 (04)			b b c c c c c c c c c c c c c c c c c c
JAN	BDL	BDL	80L	108	108	B0L	٠	
MAR	B0L	BOL	108	108	B0L	BDL		
MAY	BOL	BDL	BOL	BDL		•	.060 <t< th=""><th>B0L</th></t<>	B0L
70,	HDI.	BOL	BOL	80L			BDL	BOL
N SEP	BDI.	108 108	80L 801	108 801		•	108 108 108 108 108 108 108 108 108 108	801
				300			BUL	BUL
CADMIUM (UG/L	^		DET'N LIMIT = 0.05	GUIDELINE = 5	S (A1)			
MAL	.110 <t< th=""><th>IUB</th><th></th><th>100</th><th>T. 000</th><th>17 070</th><th></th><th></th></t<>	IUB		100	T. 000	17 070		
MAR	BDL	.070 <t< th=""><th>200</th><th>3 E</th><th>. 080.</th><th>1× 000.</th><th></th><th></th></t<>	200	3 E	. 080.	1× 000.		
MAY	.070 <t< th=""><th>BDL</th><th></th><th>BDI</th><th>700</th><th>109</th><th>· ioa</th><th>·ida</th></t<>	BDL		BDI	700	109	· ioa	·ida
JUL	BDL	801		108	s 1	•	200	d 2
SEP	BDL	BDL	BDL	801	•		BDI	2 08
NOV	BDL	BDL		T> 090.			BOL	108
COBALT (UG/L	^		DET'N LIMIT = 0.02	GUIDELINE = N/A	N/A	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		
JAN	.220 <t< td=""><td>.120 <t< td=""><td>T> 041.</td><td>T> 011.</td><td>T> 011.</td><td>.100 <t< td=""><td></td><td>٠</td></t<></td></t<></td></t<>	.120 <t< td=""><td>T> 041.</td><td>T> 011.</td><td>T> 011.</td><td>.100 <t< td=""><td></td><td>٠</td></t<></td></t<>	T> 041.	T> 011.	T> 011.	.100 <t< td=""><td></td><td>٠</td></t<>		٠
MAR	.110 <t< th=""><th>.050 <t< th=""><th>BDL</th><th>BDL</th><th>BDL</th><th>BDL</th><th></th><th>٠</th></t<></th></t<>	.050 <t< th=""><th>BDL</th><th>BDL</th><th>BDL</th><th>BDL</th><th></th><th>٠</th></t<>	BDL	BDL	BDL	BDL		٠
MAY	BOL	BDL	BDL	BOL			.210 <t< th=""><th>.180 <t< th=""></t<></th></t<>	.180 <t< th=""></t<>
105	- 2007.	1> 0/1.	1> 061.	.240 <t< th=""><th>٠</th><th></th><th>.230 <7</th><th>.210 <t< th=""></t<></th></t<>	٠		.230 <7	.210 <t< th=""></t<>
SEP	.060 <t< th=""><th>. 070. T> 080.</th><th>1> 090°.</th><th>.090 <ī</th><th></th><th></th><th>.080 <⊺</th><th>T> 040.</th></t<>	. 070. T> 080.	1> 090°.	.090 <ī			.080 <⊺	T> 040.
AON	. 200 × I	1> 090.	. U8U.	T> 011.	•	•	.100 <⊺	.070 <t< th=""></t<>
CHROMIUM (UG/L	^		DET'N LIMIT = 0.50	GUIDELINE = 50 (A1)	50 (A1)			0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	1.400 <t< th=""><th>1.100 <t< th=""><th>T> 050.</th><th>1.300 <7</th><th>.800 <t< th=""><th>730 <1</th><th></th><th></th></t<></th></t<></th></t<>	1.100 <t< th=""><th>T> 050.</th><th>1.300 <7</th><th>.800 <t< th=""><th>730 <1</th><th></th><th></th></t<></th></t<>	T> 050.	1.300 <7	.800 <t< th=""><th>730 <1</th><th></th><th></th></t<>	730 <1		
	T> 069°	.910 <t< th=""><th>2.300 <t< th=""><th>2.300 <t< th=""><th>.580 <t< th=""><th>.510 <t< th=""><th></th><th></th></t<></th></t<></th></t<></th></t<></th></t<>	2.300 <t< th=""><th>2.300 <t< th=""><th>.580 <t< th=""><th>.510 <t< th=""><th></th><th></th></t<></th></t<></th></t<></th></t<>	2.300 <t< th=""><th>.580 <t< th=""><th>.510 <t< th=""><th></th><th></th></t<></th></t<></th></t<>	.580 <t< th=""><th>.510 <t< th=""><th></th><th></th></t<></th></t<>	.510 <t< th=""><th></th><th></th></t<>		
	.700 <t< th=""><th>T> 069.</th><th>T> 009.</th><th>.530 <1</th><th></th><th></th><th>3.600 <t< th=""><th>3,400 <t< th=""></t<></th></t<></th></t<>	T> 069.	T> 009.	.530 <1			3.600 <t< th=""><th>3,400 <t< th=""></t<></th></t<>	3,400 <t< th=""></t<>
חר נ	1.500 <t< th=""><th>740 <t< th=""><th>1,600 <t< th=""><th>1.100 <t< th=""><th></th><th></th><th>1,600 <t< th=""><th>1,500 <7</th></t<></th></t<></th></t<></th></t<></th></t<>	740 <t< th=""><th>1,600 <t< th=""><th>1.100 <t< th=""><th></th><th></th><th>1,600 <t< th=""><th>1,500 <7</th></t<></th></t<></th></t<></th></t<>	1,600 <t< th=""><th>1.100 <t< th=""><th></th><th></th><th>1,600 <t< th=""><th>1,500 <7</th></t<></th></t<></th></t<>	1.100 <t< th=""><th></th><th></th><th>1,600 <t< th=""><th>1,500 <7</th></t<></th></t<>			1,600 <t< th=""><th>1,500 <7</th></t<>	1,500 <7
	4.200 <t< th=""><th>4.800 <t< th=""><th>3.900 <t< th=""><th>4.900 <t< th=""><th>•</th><th></th><th>4.800 <t< th=""><th>4.600 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<></th></t<>	4.800 <t< th=""><th>3.900 <t< th=""><th>4.900 <t< th=""><th>•</th><th></th><th>4.800 <t< th=""><th>4.600 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	3.900 <t< th=""><th>4.900 <t< th=""><th>•</th><th></th><th>4.800 <t< th=""><th>4.600 <t< th=""></t<></th></t<></th></t<></th></t<>	4.900 <t< th=""><th>•</th><th></th><th>4.800 <t< th=""><th>4.600 <t< th=""></t<></th></t<></th></t<>	•		4.800 <t< th=""><th>4.600 <t< th=""></t<></th></t<>	4.600 <t< th=""></t<>
	2.200 <t< th=""><th>2.200 <t< th=""><th>.730 <ī</th><th>2.300 <t< th=""><th></th><th>٠</th><th>2,300 <t< th=""><th>2,400 <t< th=""></t<></th></t<></th></t<></th></t<></th></t<>	2.200 <t< th=""><th>.730 <ī</th><th>2.300 <t< th=""><th></th><th>٠</th><th>2,300 <t< th=""><th>2,400 <t< th=""></t<></th></t<></th></t<></th></t<>	.730 <ī	2.300 <t< th=""><th></th><th>٠</th><th>2,300 <t< th=""><th>2,400 <t< th=""></t<></th></t<></th></t<>		٠	2,300 <t< th=""><th>2,400 <t< th=""></t<></th></t<>	2,400 <t< th=""></t<>
COPPER (UG/L	^		DET'N LIMIT = 0.50	GUIDELINE = 1000 (A3)	1000 (A3)		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
	2.000 <t< th=""><th>1,300 <t< th=""><th>17.000</th><th>2.900 <t< th=""><th>97.000</th><th>24.000</th><th></th><th></th></t<></th></t<></th></t<>	1,300 <t< th=""><th>17.000</th><th>2.900 <t< th=""><th>97.000</th><th>24.000</th><th></th><th></th></t<></th></t<>	17.000	2.900 <t< th=""><th>97.000</th><th>24.000</th><th></th><th></th></t<>	97.000	24.000		
	1.800 <t< th=""><th>1,100 <t< th=""><th>22.000</th><th>2.700 <1</th><th>140.000</th><th>19.000</th><th>•</th><th>•</th></t<></th></t<>	1,100 <t< th=""><th>22.000</th><th>2.700 <1</th><th>140.000</th><th>19.000</th><th>•</th><th>•</th></t<>	22.000	2.700 <1	140.000	19.000	•	•
	1.600 <t< th=""><th>.970 <t< th=""><th>8,000</th><th>2.900 <t< th=""><th></th><th></th><th>000.049</th><th>20.000</th></t<></th></t<></th></t<>	.970 <t< th=""><th>8,000</th><th>2.900 <t< th=""><th></th><th></th><th>000.049</th><th>20.000</th></t<></th></t<>	8,000	2.900 <t< th=""><th></th><th></th><th>000.049</th><th>20.000</th></t<>			000.049	20.000
JOE	2.100 <1	1.000.1	12.000	2.200 <t< th=""><th></th><th></th><th>260.000</th><th>15.000</th></t<>			260.000	15.000
	1.500 <1	1.100 <1	17,000	3.700 4		•	180.000	14.000
		203-1		2.000			000.044	74.000

WATER TREATMENT PLANT

ANCE PROGRAM HAMILTON WSS 1990
DISTRIBUTION SYSTEM

SITE	OAG	301	TOEATED				i i	
TYPE			STANDING	FREE FLOW	STANDING	SILE 2 FREE FLOW	STANDING	
IRON (UG/L)	3 3 3 9 9 9 8 8 8 8 8 8 8 8 8		DET'N LIMIT = 6.00	GUIDELINE = 300 (A3)	0 (A3)			
JAN 280. MAR 17.0 MAY 18.0 JUL 12.0 SEP 6.0	280.000 17.000 <t 18.000 <t 12.000 <t 6.300 <t< th=""><th>28.000 <t 7.400 <t BDL BDL BDL BDL BDL</t </t </th><th>23.000 <1 21.000 <1 17.000 <1 9.500 <1 10.000 <1</th><th>45.000 <t 13.000="" 18.000="" 19.000="" 19.000<="" 24.000="" 27.000="" <t="" th=""><th>80L 80L</th><th>7,000 <t BBL</t </th><th></th><th></th></t></th></t<></t </t </t 	28.000 <t 7.400 <t BDL BDL BDL BDL BDL</t </t 	23.000 <1 21.000 <1 17.000 <1 9.500 <1 10.000 <1	45.000 <t 13.000="" 18.000="" 19.000="" 19.000<="" 24.000="" 27.000="" <t="" th=""><th>80L 80L</th><th>7,000 <t BBL</t </th><th></th><th></th></t>	80L 80L	7,000 <t BBL</t 		
ESE (L	•		DET'N LIMIT = 0.05	GUIDELINE = 50	. (A3)	• 1		
MAR 3.4 MAY 4. JUL 5.2 SEP 3.	18.000 3.400 4.500 5.200 3.100	1.200 1.200 1.800 7.420 <t< td=""><td>1.600 1.400 1.500 2.800 2.700 .890</td><td>2.000 1.300 1.800 2.700 2.300 2.100</td><td></td><td>.610 .430 <t< td=""><td> </td><td>.950 2.700 .980 .460 <t< td=""></t<></td></t<></td></t<>	1.600 1.400 1.500 2.800 2.700 .890	2.000 1.300 1.800 2.700 2.300 2.100		.610 .430 <t< td=""><td> </td><td>.950 2.700 .980 .460 <t< td=""></t<></td></t<>	 	.950 2.700 .980 .460 <t< td=""></t<>
MOLYBDENUM (UG/L	^	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	DET'N LIMIT = 0.05	GUIDELINE = N/A	(A	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0 0 2 1 1 1 1 1 1 0 0 0 0
MAR MAY JUL SEP NOV	.910 1.300 1.100 1.200 1.200	1.300 1.200 1.200 1.300 1.300	1.300 1.100 1.200 1.300 1.200	1.300 1.100 1.400 1.200 1.500	1.300	1,400	1,200 1,300 1,300 1,300	1,300 1,300 1,300 1,300
NICKEL (UG/L	^		DET'N LIMIT = 0.20	GUIDELINE = 350 (03)	50 (03)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
JAN 2.	2.100 .610 <t< td=""><td>1.800 <t .550="" <t<="" td=""><td>2.100 .550 <t< td=""><td>1.600 <t .350 <t< td=""><td>1.800 <t BDL</t </td><td>2.400 .480 <t< td=""><td></td><td></td></t<></td></t<></t </td></t<></td></t></td></t<>	1.800 <t .550="" <t<="" td=""><td>2.100 .550 <t< td=""><td>1.600 <t .350 <t< td=""><td>1.800 <t BDL</t </td><td>2.400 .480 <t< td=""><td></td><td></td></t<></td></t<></t </td></t<></td></t>	2.100 .550 <t< td=""><td>1.600 <t .350 <t< td=""><td>1.800 <t BDL</t </td><td>2.400 .480 <t< td=""><td></td><td></td></t<></td></t<></t </td></t<>	1.600 <t .350 <t< td=""><td>1.800 <t BDL</t </td><td>2.400 .480 <t< td=""><td></td><td></td></t<></td></t<></t 	1.800 <t BDL</t 	2.400 .480 <t< td=""><td></td><td></td></t<>		
	.940 <t 1.000 <t 1.200 <t< td=""><td>1.000 <t .530 <t 1.200 <t< td=""><td>. 520 <1 . 520 <1 . 930 <1</td><td>.730 <1 .670 <1 .50 <1</td><td></td><td></td><td>1.300 <1 .340 <1</td><td>1.300 <1</td></t<></t </t </td></t<></t </t 	1.000 <t .530 <t 1.200 <t< td=""><td>. 520 <1 . 520 <1 . 930 <1</td><td>.730 <1 .670 <1 .50 <1</td><td></td><td></td><td>1.300 <1 .340 <1</td><td>1.300 <1</td></t<></t </t 	. 520 <1 . 520 <1 . 930 <1	.730 <1 .670 <1 .50 <1			1.300 <1 .340 <1	1.300 <1
	600 <t< td=""><td>1.600 <t< td=""><td>1.400 <t< td=""><td>1.700 <t< td=""><td></td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>1.700 <t< td=""><td>1.500 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	1.600 <t< td=""><td>1.400 <t< td=""><td>1.700 <t< td=""><td></td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>1.700 <t< td=""><td>1.500 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	1.400 <t< td=""><td>1.700 <t< td=""><td></td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>1.700 <t< td=""><td>1.500 <t< td=""></t<></td></t<></td></t<></td></t<>	1.700 <t< td=""><td></td><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>1.700 <t< td=""><td>1.500 <t< td=""></t<></td></t<></td></t<>		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.700 <t< td=""><td>1.500 <t< td=""></t<></td></t<>	1.500 <t< td=""></t<>
LEAD (UG/L)			DET'N LIMIT = 0.05	GUIDELINE = 10.). (A1)			
	.670 .160 <t< td=""><td>.090 <t BDL</t </td><td>1.300</td><td>4.700</td><td>3.100</td><td>.410 <1</td><td>٠</td><td>٠</td></t<>	.090 <t BDL</t 	1.300	4.700	3.100	.410 <1	٠	٠
	200 <t< td=""><td>80F</td><td>1.600</td><td>1.400</td><td>•</td><td></td><td>1.800</td><td>1.100</td></t<>	80F	1.600	1.400	•		1.800	1.100
SEP	130 <1	. 070. 12 070	2.800	3.900	• •		2.100	1.300
		2000	000	007.1	* 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1.700	059.

DRINKING WATER SURVEILL AND

(06/L)	A C C THAIR A THAIR	BOT JUNE DEFOUE BOT JUNE DE STORES	TE 3 FREE FLOW	N SYSTEM SI STANOING	DISTRIBUTION WAS 1990 DISTRIBUTION WAS 1990 SITE 2 FREE FLOW	R TREATMENT PLANT SITE 2 FREE FLOM SIANDING FREE FLOM SIANDING	TE 1 FREE FLOA	MA SATED SIT STANDING DET'N LIMIT = 0.05	RAW TRE	SITE TYPE HONY (UG/L
			FREE FLOW	STANDING	FREE FLOW	STANDING	FREE FLOW	STANDING		
STANDING FREE FLOW STANDING FREE FLOW	STANDING FREE FLOW STANDING FREE FLOW	FREE FLOU	TE 3	SIS	SITE 2		- 4			TYPE
TYPE STANDING FREE FLOM STANDING FREE FLOM STANDING FREE FLOM	TYPE NAW INCATED SITE 3 TYPE STANDING FREE FLOW STANDING FREE FLOW	STRE 2 SITE 1 SITE 2 SITE 3 SITE 3 SITE 3 SITE 3			,		,		·	SITE
SITE RAW TREATED SITE 1 SITE 2 SITE 3 TYPE STANDING FREE FLOW STANDING FREE FLOW	SITE RAW TREATED SITE 1 SITE 2 SITE 3 TYPE STANDING FREE FLOW STANDING FREE FLOW	RAW TREATED SITE 1 SITE 2 SITE 3 SITE 3 SITE 3 SITE 3		ON SYSTEM	DISTRIBUTIO		TER TREATMENT PLANT	NA.		
SITE RAW TREATHENT PLANT DISTRIBUTION SYSTEM SITE 2 SITE 3 TYPE STANDING FREE FLOW STANDING FREE FLOW	SITE RAW TREATED SITE 1 SITE 2 SITE 3 TYPE STANDING FREE FLOW STANDING FREE FLOW	HATER TREATHENT PLANT DISTRIBUTION SYSTEM RAW TREATED SITE 1 STANDING FREE FIGU. STANDING S			STILLION WSS 1990	יייייייייייייייייייייייייייייייייייייי				
NATER TREATMENT PLANT SITE 2 TYPE STANDING FREE FLOW STANDING FREE FLOW	SITE RAM TREATE SITE 1 SITE 2 SITE 3 TYPE STANDING FREE FLOW STANDING FREE FLOW	STREATHENT PLANT DISTRIBUTION SYSTEM RAW TREATED SITE 1 SITE 2 SITE 3 STANDING FREE FIGU. STANDING STANDING			AMILION WSS 1990	EVELLLANCE PROGRAM N	DRINKING WATER SOF			

Mailtony (MoV. Mailtony (MoV. Mailtony (MoV. Mailtony (Mov. Mov. Mo	TYDE	RAW	TRE	TREATED SITE 1		SITE	E 2	SITE 3	
1,				STANDING	FREE FLOW	STANDING	FREE FLOW	STANDING	FREE FLOW
Color Colo				DET'N LIMIT = 0.05	GUIDELINE ≈	146 (04)	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1,200 1,50			.450 <t< td=""><td>.560</td><td>T> 094.</td><td>.580</td><td>.580</td><td></td><td>٠</td></t<>	.560	T> 094.	.580	.580		٠
1,500 1,50			.390 <t< td=""><td>.530</td><td>.520</td><td>.590</td><td>.610</td><td>٠</td><td></td></t<>	.530	.520	.590	.610	٠	
1,			300.	9.5	08/.	•		079.	040
1				570	0.12			UL/.	059
1 1 1 1 1 1 1 1 1 1				.560	.590		• •	570	.560
BDL	SELENIUM (UG/L)			DET'N LIMIT = 1.00	GUIDELINE =		3 3 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		
BOL 1.500 cf 1.5			E I	jca	Ğ	č	č		
BOL		•	1 500 ¢T	1 600 71	1 200	3 000 vt	1 200		•
BDL 1,100 <			BDI	1, 008:	1.200 102.1	7.000 <1	1.200 <1	1, 000 1	. 000
BDL			BOL	1.600 sT	1 400 cT	٠		13 003:1	3.000 5
FOLION F		_	1.100 <7	1,800 <1	2.000 <1	• (2 000 <1	1 700 <1
170 170			BOL	108	1.200 <t< td=""><td></td><td></td><td>1.400 <t< td=""><td>2.000 <1</td></t<></td></t<>			1.400 <t< td=""><td>2.000 <1</td></t<>	2.000 <1
90.000 190.000	STRONTIUM (UG/L)			DET'N LIMIT = 0.10	GUIDELINE =	N/A			
90.000 200.000 190.000		190	0.000	200.000	190.000	190,000	190.000		
90,000 200,000 190,000 200,000		200	000.00	190.000	200.000	000.081	180.000	180.000	180 000
99,000 200,000 200,000 200,000 2 200,000 2 200,000 2 200,000 2 200,000 2 200,000 2 200,000 2 200,000 2 200,000 2 200,000 2 200,000 2 200,000 2 200,000 2 200,000 2 200,000 2 20,000 2 2 20,000 2 2 2,000 2 2 2,500 2 2,500 2 2 2,500 2 2 2,500 2 2 2,500 2 2 2,500 2 2 2,500 2 2 2,500 2 2 2,500 2 2 2,500 2 2 2,500 2 2 2,500 2 2 2,500 2 2 2,500 2 2,500 2 2 2,500		200	0.000	190,000	190.000			190.000	190.000
6.100		200	0.000	200,000	200,000	•	•	190.000	190.000
6.100 4,300 <t 3.200="" 3.500="" 7.800="" 7.800<="" <t="" th=""><th>TITANIUM (UG/L)</th><th></th><th></th><th>0ET'N LIMIT = 0.50</th><th>GUIDELINE =</th><th>N/A</th><th></th><th></th><th></th></t>	TITANIUM (UG/L)			0ET'N LIMIT = 0.50	GUIDELINE =	N/A			
2.500 <t 3.100="" 3.400="" 4.200="" 7.800="" 7.8<="" <t="" td=""><td></td><td>7</td><td>.300 <t< td=""><td>3.500 <t< td=""><td>3.700 < T</td><td>3.200 <t< td=""><td>3.600 <7</td><td></td><td>•</td></t<></td></t<></td></t<></td></t>		7	.300 <t< td=""><td>3.500 <t< td=""><td>3.700 < T</td><td>3.200 <t< td=""><td>3.600 <7</td><td></td><td>•</td></t<></td></t<></td></t<>	3.500 <t< td=""><td>3.700 < T</td><td>3.200 <t< td=""><td>3.600 <7</td><td></td><td>•</td></t<></td></t<>	3.700 < T	3.200 <t< td=""><td>3.600 <7</td><td></td><td>•</td></t<>	3.600 <7		•
4.700 <1 5.000 <1 5.200		m	3.100 <t< td=""><td>3.700 <1</td><td>3.400 <t< td=""><td>4.700 <t< td=""><td>4.200 <t< td=""><td></td><td>•</td></t<></td></t<></td></t<></td></t<>	3.700 <1	3.400 <t< td=""><td>4.700 <t< td=""><td>4.200 <t< td=""><td></td><td>•</td></t<></td></t<></td></t<>	4.700 <t< td=""><td>4.200 <t< td=""><td></td><td>•</td></t<></td></t<>	4.200 <t< td=""><td></td><td>•</td></t<>		•
4,000 <1		v •	5.000 <t< td=""><td>5.200</td><td>7> 006.4</td><td></td><td></td><td>7.800</td><td>7.800</td></t<>	5.200	7> 006.4			7.800	7.800
3.000 <f 1.900="" 2.100="" 2.400="" 2.4<="" <f="" td=""><td></td><td>0.4</td><td>200 <1</td><td>2.000 <1</td><td>5.200 <1</td><td>•</td><td></td><td>3.200 <1</td><td>3.200 <1</td></f>		0.4	200 <1	2.000 <1	5.200 <1	•		3.200 <1	3.200 <1
) 380 <1 350 <1 330 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1		2	2.100 <t< td=""><td>1,900 <1</td><td>2.400 <1</td><td></td><td>•</td><td>3.800 <1</td><td>2.300 <1</td></t<>	1,900 <1	2.400 <1		•	3.800 <1	2.300 <1
330 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 350 <1 35	URANIUM (UG/L)			DET'N LIMIT = 0.05	GUIDELINE	= 100 (A1)			
330 cf 350 cf			1/ 072	17 022					
. 250 <1 .290 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300 <1 .300			350 V	1> 050.	12005	15 055.	. 350 <t< td=""><td>•</td><td></td></t<>	•	
			12002	1> 050.	15 025.	1> 067.	T> 092.	• !	
. 330 <1			12040	1> 085.	1> 015.			.300 <t< td=""><td>.370 <t< td=""></t<></td></t<>	.370 <t< td=""></t<>
5 006. 5			1> 0/2	1> 000.	1> 040			.330 <t< td=""><td>.360 <1</td></t<>	.360 <1
> 01c;			15 035	1> 000:	1> 0/2			.300 <t< td=""><td>.370 <t< td=""></t<></td></t<>	.370 <t< td=""></t<>
			. 000	1> 0%6.	1> 0*C*		•	1> 018.	.340 <t< td=""></t<>

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WSS 1990

WATER TREATMENT PLANT

DISTRIBUTION SYSTEM

STANDING FREE FLOW STANDING FREE-FLOW STANDING -670	SITE			1004	31.0		113	CITE 2	7 3118	
Section Sect	m			22	STANDING	_				
180 cT 180 cT 150 cT 150 cT 170 cT 1	1 2	ال)			DET'N LIMIT = 0.05	GUIDELINE =				
200 <1 .180 <1 .180 <1 .180 <1 .150 <1 .170 <1 .220 <1 .220 <1 .220 <1 .220 <1 .220 <1 .220 <1 .220 <1 .220 <1 .220 <1 .220 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1 .230 <1		079	•	029	.480 <₹	.520	.620	T> 067.		
. 230 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 250 <1 . 2		.200 <t< td=""><td>•</td><td>.180 <t< td=""><td>.180 <t< td=""><td>.150 <t< td=""><td>T> 071.</td><td>170 <1</td><td></td><td></td></t<></td></t<></td></t<></td></t<>	•	.180 <t< td=""><td>.180 <t< td=""><td>.150 <t< td=""><td>T> 071.</td><td>170 <1</td><td></td><td></td></t<></td></t<></td></t<>	.180 <t< td=""><td>.150 <t< td=""><td>T> 071.</td><td>170 <1</td><td></td><td></td></t<></td></t<>	.150 <t< td=""><td>T> 071.</td><td>170 <1</td><td></td><td></td></t<>	T> 071.	170 <1		
1.570 ct 2.40 ct 2.200 ct 2.270 ct 2.250 ct 2.200 ct 2.000 ct 2.700 2.700 2.700 2.700 2.700 2.700 2.700 2.700 2.700 2.700 2.700 2.700 2.200 2.700 2.700 2.700 2.700 2.700 2.700 2.700 2.200 2.700 2.700 2.700 2.700 2.700 2.700 2.700 2.200 2.700 2.200 2.7		.230 <t< td=""><td></td><td>.210 <t< td=""><td>.250 <t< td=""><td>. 190 <t< td=""><td></td><td></td><td>.220 <t< td=""><td>.250 <1</td></t<></td></t<></td></t<></td></t<></td></t<>		.210 <t< td=""><td>.250 <t< td=""><td>. 190 <t< td=""><td></td><td></td><td>.220 <t< td=""><td>.250 <1</td></t<></td></t<></td></t<></td></t<>	.250 <t< td=""><td>. 190 <t< td=""><td></td><td></td><td>.220 <t< td=""><td>.250 <1</td></t<></td></t<></td></t<>	. 190 <t< td=""><td></td><td></td><td>.220 <t< td=""><td>.250 <1</td></t<></td></t<>			.220 <t< td=""><td>.250 <1</td></t<>	.250 <1
33.000		270 <t< td=""><td>•</td><td>240 <t< td=""><td>.200 <t< td=""><td>.270 <t< td=""><td>٠</td><td>٠</td><td>.260 <t< td=""><td>.270 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	•	240 <t< td=""><td>.200 <t< td=""><td>.270 <t< td=""><td>٠</td><td>٠</td><td>.260 <t< td=""><td>.270 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	.200 <t< td=""><td>.270 <t< td=""><td>٠</td><td>٠</td><td>.260 <t< td=""><td>.270 <t< td=""></t<></td></t<></td></t<></td></t<>	.270 <t< td=""><td>٠</td><td>٠</td><td>.260 <t< td=""><td>.270 <t< td=""></t<></td></t<></td></t<>	٠	٠	.260 <t< td=""><td>.270 <t< td=""></t<></td></t<>	.270 <t< td=""></t<>
33.00 < 7		.260 <t< td=""><td>•</td><td>280 <t< td=""><td>.250 <⊤</td><td>.230 <t< td=""><td>٠</td><td></td><td>.300 <t< td=""><td>.300 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	•	280 <t< td=""><td>.250 <⊤</td><td>.230 <t< td=""><td>٠</td><td></td><td>.300 <t< td=""><td>.300 <t< td=""></t<></td></t<></td></t<></td></t<>	.250 <⊤	.230 <t< td=""><td>٠</td><td></td><td>.300 <t< td=""><td>.300 <t< td=""></t<></td></t<></td></t<>	٠		.300 <t< td=""><td>.300 <t< td=""></t<></td></t<>	.300 <t< td=""></t<>
) 0ET'N LIMIT = 0.2 GUIDELINE = 5000 (A3) 33.000 2.700 3.600 8.700 6.900 3.300 2.500 1.500 <t 1.600="" 1.700="" 1.800="" 12.000="" 13.000<="" 2.000="" 2.200="" 2.500="" 2.600="" 2.700="" 3.200="" 4.200="" 7.500="" <t="" td=""><td></td><td>.300 <t< td=""><td></td><td>.200 <t< td=""><td>.140 <t< td=""><td>. 160 <t< td=""><td></td><td>٠</td><td>.180 <t< td=""><td>.150 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t>		.300 <t< td=""><td></td><td>.200 <t< td=""><td>.140 <t< td=""><td>. 160 <t< td=""><td></td><td>٠</td><td>.180 <t< td=""><td>.150 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<></td></t<>		.200 <t< td=""><td>.140 <t< td=""><td>. 160 <t< td=""><td></td><td>٠</td><td>.180 <t< td=""><td>.150 <t< td=""></t<></td></t<></td></t<></td></t<></td></t<>	.140 <t< td=""><td>. 160 <t< td=""><td></td><td>٠</td><td>.180 <t< td=""><td>.150 <t< td=""></t<></td></t<></td></t<></td></t<>	. 160 <t< td=""><td></td><td>٠</td><td>.180 <t< td=""><td>.150 <t< td=""></t<></td></t<></td></t<>		٠	.180 <t< td=""><td>.150 <t< td=""></t<></td></t<>	.150 <t< td=""></t<>
2.700 3.500 8.700 6.900 3.300 1.600 <t 1.600="" 12.000="" 2.200="" 2.700="" 7.500="" 7<="" <t="" th=""><th>1</th><th>,</th><th></th><th></th><th>DET'N LIMIT = 0.2</th><th>GUIDELINE =</th><th></th><th>) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th><th>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</th></t>	1	,			DET'N LIMIT = 0.2	GUIDELINE =) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1.600 <t .="" 1.500="" 1.600="" 1.700="" 1.800="" 12.000="" 17.000="" 2.200="" 2.600="" 2.700="" 6.700="" 7.500="" 7.500<="" <t="" td=""><td></td><td>33.000</td><td>2</td><td>.700</td><td>3.600</td><td>8.700</td><td>006.9</td><td>3.300</td><td></td><td>•</td></t>		33.000	2	.700	3.600	8.700	006.9	3.300		•
1.500 <t 2.100="" 4.100="" 7.500="" 7.5<="" td=""><td></td><td>3,100</td><td>-</td><td>.600 <t< td=""><td>2.700</td><td>1.600 <t< td=""><td>12.000</td><td>2.200</td><td></td><td></td></t<></td></t<></td></t>		3,100	-	.600 <t< td=""><td>2.700</td><td>1.600 <t< td=""><td>12.000</td><td>2.200</td><td></td><td></td></t<></td></t<>	2.700	1.600 <t< td=""><td>12.000</td><td>2.200</td><td></td><td></td></t<>	12.000	2.200		
1.700 <t 1.800="" 13.000<="" 2.600="" 3.200="" 4.200="" 6.700="" 7="" <t="" td=""><td></td><td>2.500</td><td>-</td><td>.500 <t< td=""><td>4.100</td><td>2.100</td><td>٠</td><td></td><td>7.500</td><td>2.800</td></t<></td></t>		2.500	-	.500 <t< td=""><td>4.100</td><td>2.100</td><td>٠</td><td></td><td>7.500</td><td>2.800</td></t<>	4.100	2.100	٠		7.500	2.800
2.000 <t 3.200="" 3.500<="" 4.700="" 9.000="" td=""><td></td><td>2.700</td><td>-</td><td>. 700 <t< td=""><td>2.600</td><td>1.800 <t< td=""><td></td><td></td><td>6.700</td><td>2.900</td></t<></td></t<></td></t>		2.700	-	. 700 <t< td=""><td>2.600</td><td>1.800 <t< td=""><td></td><td></td><td>6.700</td><td>2.900</td></t<></td></t<>	2.600	1.800 <t< td=""><td></td><td></td><td>6.700</td><td>2.900</td></t<>			6.700	2.900
3.500 4.200 3.200		2.900	2	T> 000.	4.700	3.200			000.6	3.600
		4.200	3	500	4.200	3,200	٠	٠	13.000	7.600

066	DISTRIBITION SYSTEM	
TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WSS 1990		
TABLE 5 RINKING WATER SURVEILLANG	THE IO THINKS	WAIER IREALMENT FLANT
٥		WAIEK

			* * *											
			FREE FLOW			BOL	80F	BOL			• 6	108	BOL	108
		SITE 3	NG										• •	
	N SYSTEM		STANDING											
WSS 1990	DISTRIBUTION SYSTEM		FREE FLOW		80L 80L					BOL	BOL			
GRAM HAMILTON		SITE 2	NG				•		1 1 1 1 1 1 1	•				
ILE 5 TETLLANCE PROC			STANDING	(12) (1)					GUIDELINE = 1900 (D4)					
TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WSS 1990	WATER TREATMENT PLANT		FREE FLOW	GUIDELINE = 10	80f	80L	13.000	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	GUIDELINE	BDL	BOL	10 E	10 E	80 E
DRINI	WATER TR	SITE 1	Œ	1.000					1.000					
		۵	STANDING	DET'N LIMIT = 1.000	•		•		DET'N LIMIT = 1.000		•	•		
		TREATED			BDL	BOL	BDL	80L 80t		200	BDL	BDL	108	BDL 3.000 <t< td=""></t<>
		RAW		CHLOROAROMATICS					^					
		ш		CHLORC	108 100 100 100 100 100 100 100 100 100	BOL	100 100 100 100 100 100 100 100 100 100	80L 80L	THANE CNG/L	ē	BOL	108	BDL	BDL 1 000 <1
		SITE	TYPE	HCB (NG/L	JAN	MAR	JUL .	SEP	HEXACHLOROETHANE (NG/L		MAR	MAY	JUL	SEP

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM MAMILTON WSS 1990

WATER TREATMENT PLANT

DISTRIBUTION SYSTEM

RAW TR	STANDING FREE FLOW STANDING FREE FLOW STANDING FREE FLOW	PAH BENZO(K) FLUORANTHEN (NG/L)	BDL BDL	BDL BDL	BDL BDL	BDL BDL	BOL BOL	1.000 <t bdl<="" th=""></t>
TREATED SITE 1	STANDING	DET'N LIMIT = 1.				٠		,
E 1	FREE FLOW	GUIDELINE = N/Ą				BDL	•	
S	STANDING	= N/Ą		•	٠		٠	•
SITE 2	FREE FLOW	-	٠				٠	
SITI	STANDING				•		•	
SITE 3	FREE FLOW					BDL		

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM HAMILTON MSS 1990

WATER TREATMENT PLANT

			WAT	WATER TREATMENT PLANT		DISTRIBUTION SYSTEM	SYSTEM	
SITE	RAW		TREATED SITE 1	-	v	SITE 2	TIS	SITE 3
			STANDING	FREE FLOW	STANDING	FREE FLOW	STANDING	FREE FLOW
ALPHA BHC (NG/L	PESTICIDES & PCB	S & PCB	DET'N LIMIT = 1.000	GUIDELINE = 700 (G)	700 (G)			
JAN	2.000 <t< th=""><th>3.000 <t< th=""><th></th><th>BOL</th><th></th><th>2.000 <t< th=""><th>٠</th><th>٠</th></t<></th></t<></th></t<>	3.000 <t< th=""><th></th><th>BOL</th><th></th><th>2.000 <t< th=""><th>٠</th><th>٠</th></t<></th></t<>		BOL		2.000 <t< th=""><th>٠</th><th>٠</th></t<>	٠	٠
MAY	1.000 <t BDL</t 	1.000 <t 2.000 <t< td=""><td></td><td>1.000 <t< td=""><td></td><td>1.000 <t< td=""><td></td><td>1,000 6</td></t<></td></t<></td></t<></t 		1.000 <t< td=""><td></td><td>1.000 <t< td=""><td></td><td>1,000 6</td></t<></td></t<>		1.000 <t< td=""><td></td><td>1,000 6</td></t<>		1,000 6
JUL	1.000 <1	1.000 4		1.000 <				1.000 <1
NOV	1.000 <t< td=""><td>2.000 <t< td=""><td></td><td>1.000 <1</td><td>• •</td><td></td><td></td><td>1.000 <t 2.000 <t< td=""></t<></t </td></t<></td></t<>	2.000 <t< td=""><td></td><td>1.000 <1</td><td>• •</td><td></td><td></td><td>1.000 <t 2.000 <t< td=""></t<></t </td></t<>		1.000 <1	• •			1.000 <t 2.000 <t< td=""></t<></t
LINDANE (NG/L	^		DET'N LIMIT = 1.000	GUIDELINE = 4000 (A1)	4000 (A1)			
JAN	BOL	1.000 <t< td=""><td></td><td>108</td><td></td><td>1.000 <1</td><td>,</td><td></td></t<>		108		1.000 <1	,	
MAR	80F	B0L	:	BOL		108		
JUL	80L	801		90L				80F
SEP	BOL	BOL		108 108		• ,	•	TO BO
NOV	BOL	BOL		108				108 80F
ATRAZINE (NG/L	^		DET'N LIMIT = 50	GUIDELINE = 60000 (A2)	60000 (A2)			
	80F				٠			
MAY 10	00.000 <t< td=""><td>100.000 <t< td=""><td></td><td></td><td>•</td><td>•</td><td></td><td>•</td></t<></td></t<>	100.000 <t< td=""><td></td><td></td><td>•</td><td>•</td><td></td><td>•</td></t<>			•	•		•
	BDL		٠					ě (
	80L		٠					
	BDL							•

M HAMILTON WSS 1990	DISTRIBUTION SYSTEM	SITE 2 SITE 3	TYPE STANDING FREE FLOW STANDING FREE FLOW STANDING FREE FLOW							
TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WSS 1990	WATER TREATMENT PLANT	-	FREE FLOW STANDING	GUIDELINE = 2 (A4)						
	WATER	TREATED SITE 1	STANDING	DET'N LIMIT = .20	. 400 <t< td=""><td>. 108</td><td>. 600 <t< td=""><td>. 800 <t< td=""><td>1.200</td><td>BOI</td></t<></td></t<></td></t<>	. 108	. 600 <t< td=""><td>. 800 <t< td=""><td>1.200</td><td>BOI</td></t<></td></t<>	. 800 <t< td=""><td>1.200</td><td>BOI</td></t<>	1.200	BOI
		SITE	TYPE	PHENOLICS (UG/L)				JUL BOL		

		ISTRIBUTION SYSTEM
	1990	DISTRIBUT
2 Jave	DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WSS 1990	WATER TREATMENT PLANT

	m	FREE FLOW	1	Þ	B0.	108	108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			108 801	150 /1	108	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	٠		BDL	BDL	.050 <t< th=""><th></th><th></th><th>•</th><th>BOL</th><th>BOL</th><th>80L .050 <t< th=""><th>1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</th><th></th><th></th><th>12.400</th><th>15.200</th><th>12.000</th><th>7.800</th></t<></th></t<>			•	BOL	BOL	80L .050 <t< th=""><th>1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</th><th></th><th></th><th>12.400</th><th>15.200</th><th>12.000</th><th>7.800</th></t<>	1 1 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5			12.400	15.200	12.000	7.800
SYSTEM	SITE 3	STANDING	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8					0				•		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0						9				•		
DISTRIBUTION SYSTEM	SITE 2	FREE FLOW		801				0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	BOL	2		•		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	108	2				1	.050 <t< td=""><td>2</td><td></td><td></td><td></td><td>0 9 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>4</td><td>001.</td><td></td><td></td><td>•</td><td></td></t<>	2				0 9 0 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4	001.			•	
	.18	STANDING	= 5 (A1)				•	24 (A3)				•		= 2.4 (A3)						100 (01)						GUIDELINE = 350 (A1+)		•				
WATER TREATMENT PLANT	_	FREE FLOW	GUIDELINE = 5	10 050 <t< td=""><td>T> 050.</td><td>.050 <t< td=""><td>80F</td><td>GUIDELINE = 24</td><td>2</td><td>108</td><td>1500.</td><td>15 021</td><td>T> 050.</td><td>GUIDELINE = 2.4 (A3)</td><td>2</td><td>. 150 <t< td=""><td>. 100 <t< td=""><td><u></u></td><td>.100 <t< td=""><td>GUIDELINE = 100</td><td>2</td><td>.100 <t< td=""><td>.100 ×T</td><td>BOL</td><td>BOL .050 <t< td=""><td>GUIDELINE</td><td>Ξ</td><td>7.500</td><td>13.900</td><td>13.300</td><td>6.700</td><td>201.4</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	T> 050.	.050 <t< td=""><td>80F</td><td>GUIDELINE = 24</td><td>2</td><td>108</td><td>1500.</td><td>15 021</td><td>T> 050.</td><td>GUIDELINE = 2.4 (A3)</td><td>2</td><td>. 150 <t< td=""><td>. 100 <t< td=""><td><u></u></td><td>.100 <t< td=""><td>GUIDELINE = 100</td><td>2</td><td>.100 <t< td=""><td>.100 ×T</td><td>BOL</td><td>BOL .050 <t< td=""><td>GUIDELINE</td><td>Ξ</td><td>7.500</td><td>13.900</td><td>13.300</td><td>6.700</td><td>201.4</td></t<></td></t<></td></t<></td></t<></td></t<></td></t<>	80F	GUIDELINE = 24	2	108	1500.	15 021	T> 050.	GUIDELINE = 2.4 (A3)	2	. 150 <t< td=""><td>. 100 <t< td=""><td><u></u></td><td>.100 <t< td=""><td>GUIDELINE = 100</td><td>2</td><td>.100 <t< td=""><td>.100 ×T</td><td>BOL</td><td>BOL .050 <t< td=""><td>GUIDELINE</td><td>Ξ</td><td>7.500</td><td>13.900</td><td>13.300</td><td>6.700</td><td>201.4</td></t<></td></t<></td></t<></td></t<></td></t<>	. 100 <t< td=""><td><u></u></td><td>.100 <t< td=""><td>GUIDELINE = 100</td><td>2</td><td>.100 <t< td=""><td>.100 ×T</td><td>BOL</td><td>BOL .050 <t< td=""><td>GUIDELINE</td><td>Ξ</td><td>7.500</td><td>13.900</td><td>13.300</td><td>6.700</td><td>201.4</td></t<></td></t<></td></t<></td></t<>	<u></u>	.100 <t< td=""><td>GUIDELINE = 100</td><td>2</td><td>.100 <t< td=""><td>.100 ×T</td><td>BOL</td><td>BOL .050 <t< td=""><td>GUIDELINE</td><td>Ξ</td><td>7.500</td><td>13.900</td><td>13.300</td><td>6.700</td><td>201.4</td></t<></td></t<></td></t<>	GUIDELINE = 100	2	.100 <t< td=""><td>.100 ×T</td><td>BOL</td><td>BOL .050 <t< td=""><td>GUIDELINE</td><td>Ξ</td><td>7.500</td><td>13.900</td><td>13.300</td><td>6.700</td><td>201.4</td></t<></td></t<>	.100 ×T	BOL	BOL .050 <t< td=""><td>GUIDELINE</td><td>Ξ</td><td>7.500</td><td>13.900</td><td>13.300</td><td>6.700</td><td>201.4</td></t<>	GUIDELINE	Ξ	7.500	13.900	13.300	6.700	201.4
WATER	D SITE 1	STANDING	DET'N LIMIT = 0.05					DET'N LIMIT = 0.05			•	•		DET'N LIMIT = 0.05		•				DET'N LIMIT = 0.05	•					DET'N LIMIT = 0.10						
	TREATED			80L .100 <t< td=""><td>801</td><td>80F</td><td>BOL</td><td></td><td>B0L</td><td>801</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>.050 ×I</td><td>BOL</td><td>1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td><td>80L</td><td>.250 <t< td=""><td>80L</td><td>T> 021.</td><td>.050 <t< td=""><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>B0L</td><td>.≥00 <</td><td>80L</td><td>T> 062.</td><td>.050 <t< td=""><td></td><td>002 0</td><td>7.300</td><td>14.400</td><td>15.000</td><td>7.100</td><td>00.00</td></t<></td></t<></td></t<></td></t<>	801	80F	BOL		B0L	801	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.050 ×I	BOL	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	80L	.250 <t< td=""><td>80L</td><td>T> 021.</td><td>.050 <t< td=""><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>B0L</td><td>.≥00 <</td><td>80L</td><td>T> 062.</td><td>.050 <t< td=""><td></td><td>002 0</td><td>7.300</td><td>14.400</td><td>15.000</td><td>7.100</td><td>00.00</td></t<></td></t<></td></t<>	80L	T> 021.	.050 <t< td=""><td>0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0</td><td>B0L</td><td>.≥00 <</td><td>80L</td><td>T> 062.</td><td>.050 <t< td=""><td></td><td>002 0</td><td>7.300</td><td>14.400</td><td>15.000</td><td>7.100</td><td>00.00</td></t<></td></t<>	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	B0L	.≥00 <	80L	T> 062.	.050 <t< td=""><td></td><td>002 0</td><td>7.300</td><td>14.400</td><td>15.000</td><td>7.100</td><td>00.00</td></t<>		002 0	7.300	14.400	15.000	7.100	00.00
	SITE	n .	VOLATILES UG/L)	80L 80L	108	80L 801	B0L	UG/L >	BOL	BOL	108	i u	108	ENE (UG/L)	BOL	BOL	801	108	108	חפ/ר)	801	B0L	.050 <t< td=""><td>80F</td><td>80L</td><td>(\ne/r</td><td>ica</td><td>80</td><td>BOL</td><td>BOL</td><td>108</td><td>BOC</td></t<>	80F	80L	(\ne/r	ica	80	BOL	BOL	108	BOC
	S F	-	BENZENE (UG/L	JAN	MAY		NOV	TOLUENE (UG/L	JAN	MAR	¥ E	SFP	NOV	ETHYLBENZENE (UG/L	JAN	MAR.	MAY	JUL 9	NOV	STYRENE (UG/L	JAN	MAR	MAY	30.5	NOV	CHLOROFORM (UG/L	7	MAR	MAY	70,	SEP	2

TABLE 5 DRINKING WATER SURVEILLANCE PROGRAM HAMILTON WSS 1990

WATER TREATMENT PLANT

DISTRIBUTION SYSTEM

	FREE FLOW			•	8.250	9.300	8.000	7.100		٠	• ;	7.400	7.400	4.200	4.100	
SITE 3	STANDING			•		٠		٠								
SITE 2	FREE FLOW		7.200	2	•		•		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	4.300	21	,			-	
S	STANDING	GUIDELINE = 350 (A1+)						•	GUIDELINE = 350 (A1+)					٠	•	GUIDELINE = 350 (A1+)
_	FREE FLOW	GUIDE	2	9.700	8.250	9.300	6.350	7.850	GUIDE	O.I.	000.4	3.500	5.100	3.600	4.600	GUIDE
TREATED SITE 1	STANDING	DET'N LIMIT = 0.05						٠	DET'N LIMIT = 0,10							DET'N LIMIT = 0.20
TRE		(050.6	6.750	8.650	9.800	9.900	7.600		4.700	4.100	3.600	5.500	3.600	4.800	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
RAW		DICHLOROBROMOMETHANE (UG/L)	B0L	BOL	BOL	BOL	108	108	TETHANE (UG/L	BOL	BOL	B0L	B0L	B0L	108	ال)
SITE	1 A	OICHLOROBROMOMETHANE (UG/L	JAN	MAR	MAY	JUL	SEP	NOV	CHLORODIBROMOMETHANE (UG/L	JAN	MAR	MAY	JUL	SEP	NOV	BROMOFORM (UG/L

T> 000.	2	٠			٠		19.200	2					
					٠	(1)							
2	.600 <t< th=""><th>T> 004.</th><th>T> 000.</th><th>.400 <t< th=""><th>T> 009.</th><th>GUIDELINE = 350 (A1)</th><th>n:</th><th>18.800</th><th>25.950</th><th>28.300</th><th>17.050</th><th>22.150</th><th></th></t<></th></t<>	T> 004.	T> 000.	.400 <t< th=""><th>T> 009.</th><th>GUIDELINE = 350 (A1)</th><th>n:</th><th>18.800</th><th>25.950</th><th>28.300</th><th>17.050</th><th>22.150</th><th></th></t<>	T> 009.	GUIDELINE = 350 (A1)	n:	18.800	25.950	28.300	17.050	22.150	
	•		•	•		DET'N LIMIT = 0.50							
T> 009.	T> 009.	T> 004.	.800 <t< td=""><td>T> 004.</td><td>T> 000.</td><td></td><td>23.700</td><td>18.750</td><td>26.950</td><td>31.100</td><td>18.050</td><td>21.700</td><td>* * * * * * * * * * * * * * * * * * * *</td></t<>	T> 004.	T> 000.		23.700	18.750	26.950	31.100	18.050	21.700	* * * * * * * * * * * * * * * * * * * *
BOL	108	801	108	B0L	BOL	ALOMETHANES (UG/L	BOL	BOL	BOL	BOL	B0L	B0L	
JAN	MAR	MAY	JUL	SEP	NOV	TOTL TRIHAL	JAN	MAR	MAY	JUL	SEP	NOV	

.400 <1 .600 <1 .400 <1 .700 <1

25.450 29.500 24.650 19.650

TRACE LEVELS OF TOLUENE ARE LABORATORY ARTIFACTS DERIVED FROM THE ANALYTICAL METHODOLOGY.

TRACE LEVELS OF STYRENE ARE CONSIDERED TO BE LABORATORY ARTIFACTS RESULTING FROM THE LABORATORY SHIPPING CONTAINERS.

SCAN/PARAMETER	UNIT	DETECTION LIMIT	GUIDELINE	
BACTERIOLOGICAL				
FECAL COLIFORM MEMBRANE FILTRATION	CT/100ML	0		(A1)
STANDARD PLATE COUNT MEMBRANE FILT.	CT/ML	0	500/ML	(A3)
TOTAL COLIFORM BACKGROUND MF TOTAL COLIFORM MEMBRANE FILTRATION	CT/100ML CT/100ML	ő	N/A 5/100ML	/A15
TOTAL COLIFORM MEMBRANE FILTRATION	CITTOOME	Ů	37 TOOME	(///
CHEMISTRY (FLD)				
FIELD COMBINED CHLORINE RESIDUAL	MG/L	0	N/A	
FIELD TOTAL CHLORINE RESIDUAL	MG/L	0	N/A	
FIELD FREE CHLORINE RESIDUAL	MG/L	0	N/A 6.5-8.5	/471
FIELD PH FIELO TEMPERATURE	DMNSLESS DEG.C	N/A N/A	15.0	(A3)
FIELD TURBIDITY	FTU	N/A		(A1)
CHEMISTRY (LAB)				
AL MALTHEW	No (I	0.3	30-500	/AZ\
ALKALINITY AMMONIUM TOTAL	MG/L MG/L	0.2 0.002		(A3)
CALCIUM	MG/L	0.2	100	(F2)
CHLORIDE	MG/L	0.2	250	(A3)
COLOUR	TCU	0.5	5.0	(A3)
CONDUCTIVITY	UMHO/CM	1.0	400	(F2)
CYANIDE	MG/L	0.001		(A1)
DISSOLVED ORGANIC CARBON	MG/L	0.1	5.0	(A3)
FLUORIDE	MG/L	0.01	2.4 80-100	(A1) (A4)
HARDNESS LANGELIERS INDEX	MG/L DMNSLESS	N/A		(A4)
MAGNESIUM	MG/L	0.1	30.0	(F2)
NITRITE	MG/L	0.001		(A1)
NITROGEN TOTAL KJELDAHL	MG/L	0.02	N/A	
PH	DMNSLESS	N/A	6.5-8.5	(A4)
PHOSPHORUS FIL REACT	MG/L	0.000	5 N/A	
PHOSPHORUS TOTAL	MG/L	0.002		(F2)
SOD I UM SULPHATE	MG/L MG/L	0.2 0.2	200 500	(A4) (A3)
TOTAL NITRATES	MG/L	0.005		(A1)
TURBIDITY	FTU	0.05		(A1)
CHLOROAROMATICS				
123 TRICHLOROBENZENE	NG/L	5.0	N/A	
1234 TETRACHLOROBENZENE	NG/L	1.0	N/A	
1235 TETRACHLOROBENZENE	NG/L	1.0	N/A	
124 TRICHLOROBENZENE	NG/L	5.0	10000	(1)
1245-TETRACHLOROBENZENE	NG/L	1.0	38000	(D4)
135 TRICHLOROBENZENE	NG/L	5.0	N/A	
236 TRICHLOROTOLUENE	NG/L	5.0	N/A	
245 TRICHLOROTOLUENE 26A TRICHLOROTOLUENE	NG/L	5.0	N/A	
HEXACHLOROBENZENE	NG/L NG/L	5.0 1.0	N/A	(C1)
HEXACHLOROBUTAD I ENE	NG/L	1.0		(D4)
HEXACHLOROCYCLOPENTAD I ENE	NG/L	5.0	206000	
HEXACHLOROETHANE	NG/L	1.0	1900	
OCTACHLOROSTYRENE	NG/L	1.0	N/A	
PENTACHLOROBENZENE	NG/L	1.0	74000	(D4)
CHLOROPHENOLS				
234 TRICHLOROPHENOL	NG/L	100.0	N/A	
2345 TETRACHLOROPHENOL	NG/L	20.0	N/A	
2356 TETRACHLOROPHENOL	NG/L	10.0	N/A	

SCAN/PARAMETER	UNIT	DETECTION LIMIT	GUIDELINE
245 TRICHLOROPHENOL	NG/L	100.0	2600000 (D4)
246 TRICHLOROPHENOL	NG/L	20.0	5000 (A1)
PENTACHLOROPHENOL	NG/L	10.0	60000 (A1)
METALS			
ALUMINUM	UG/L	0.10	100 (A4)
ANT I MONY ARSENIC	UG/L UG/L	0.05 0.10	146 (D4) 25 (A1)
BARIUM	UG/L	0.05	1000 (A2)
BERYLLIUM BORON	UG/L UG/L	0.05 2.00	6800 (D4) 5000 (A1)
CADMIUM	UG/L	0.05	5 (A1)
CHROMIUM	UG/L	0.50	50 (A1) N/A
COPPER	UG/L UG/L	0.02 0.50	1000 (A3)
IRON	UG/L	6.00	300 (A3)
LEAD MANGANESE	UG/L UG/L	0.05 0.05	10 (A1) 50 (A3)
MERCURY	UG/L	0.02	1 (A1)
MOLYBDENUM NICKEL	UG/L UG/L	0.05 0.20	N/A 350 (D3)
SELENIUM	UG/L	1.00	10 (A1)
SILVER	UG/L	0.05	50 (A1)
STRONTIUM THALLIUM	UG/L UG/L	0.10 0.05	N/A 13 (D4)
TITANIUM	UG/L	0.50	N/A
URANIUM VANADIUM	UG/L UG/L	0.05 0.05	100 (A1) N/A
ZINC	UG/L	0.20	5000 (A3)
PAH			
ANTHRACENE	NG/L	1.0	N/A
BENZO(A) ANTHRACENE BENZO(A) PYRENE	NG/L NG/L	20.0 5.0	N/A 10.0 (A1)
BENZO(B) CHRYSENE	NG/L	2.0	N/A
BENZO(B) FLUORANTHENE BENZO(E) PYRENE	NG/L NG/L	10.0 50.0	N/A N/A
BENZO(G, N, I) PERYLENE	NG/L	20.0	N/A
BENZO(K) FLUORANTHENE	NG/L	1.0 50.0	N/A N/A
CHRYSENE	NG/L NG/L	10.0	N/A
DIBENZO(A,H) ANTHRACENE	NG/L	10.0	N/A
DIMETHYL BENZO(A) ANTHRACENE FLUORANTHENE	NG/L NG/L	5.0 20.0	N/A 42000.0 (D4)
INDENO(1,2,3-C,D) PYRENE	NG/L	20.0	N/A
PERYLENE PHENANTHRENE	NG/L NG/L	10.0 10.0	N/A N/A
PYRENE	NG/L	20.0	N/A
PESTICIDES & PCB			
ALACHLOR (LASSO)	NG/L	500.0	5000 (A2) 700 (A1)
ALDRIN ALPHA NEXACHLOROCYCLOHEXANE (BHC)	NG/L NG/L	1.0 ⁻ 1.0	700 (AT)
ALPHA CHLORDANE	NG/L	2.0	7000 (A1)
AMETRINE ATRATONE	NG/L NG/L	50.0 50.0	300000 (D3) N/A
ATRAZINE	NG/L	50.0	60000 (A2)
DES ETHYL ATRAZINE	NG/L	200.0 1.0	60000 (A2) 300 (G)
BETA HEXACHLOROCYCLOHEXANE (BHC) CYANAZINE (BLADEX)	NG/L NG/L	100.0	10000 (A2)
O,P-DDD	NG/L	5.0	10 (1)
DIELDRIN ENDOSULFAN 1 (THIODAN I)	NG/L NG/L	2.0 2.0	700 (A1) 74000 (D4)
ENDOSULFAN 2 (THIODAN II)	NG/L	5.0	74000 (D4)

SCAN/PARAMETER	UNIT	DETECTION LIMIT	GUIDELINE
ENDOSULFAN SULPHATE (THIODAN SULPHATE)	NG/L	5.0	N/A
ENDRIN	NG/L	5.0	1600 (D3)
GAMMA CHLORDANE	NG/L	2.0	7000 (A1)
HEPTACHLOR	NG/L	1.0	3000 (A1)
HEPTACHLOR EPOXIDE	NG/L	1.0	3000 (A1)
LINDANE (GAMMA BHC)	NG/L	1.0	4000 (A1)
METHOXYCHLOR	NG/L	5.0	900000 (A1) 50000 (A2)
METOLACHLOR	NG/L	500.0 100.0	80000 (A2)
METRIBUZIN (SENCOR)	NG/L NG/L	5.0	N/A
MIREX P,P-DDD	NG/L	5.0	N/A
O.P-DDT	NG/L	5.0	30000 (A1)
OXYCHLORDANE	NG/L	2.0	N/A
PCB	NG/L	20.0	3000 (A2)
PPDDE	NG/L	1.0	30000 (A1)
PPDDT	NG/L	5.0	30000 (A1)
PROMETONE	NG/L	50.0	52500 (D3) 1000 (A2)
PROMETRYNE	NG/L	50.0 50.0	700000 (D3)
PROPAZINE	NG/L NG/L	50.0	10000 (A2)
SIMAZINE D-ETHYL SIMAZINE	NG/L	200.0	10000 (A2)
TOXAPHENE	NG/L	500.0	5000 (A1)
PHENOLICS			
PHENOLICS (UNFILTERED REACTIVE)	UG/L	0.2	2 (A4)
SPECIFIC PESTICIDES			
2,4 D PROPIONIC ACID	NG/L	100.	N/A
2,4,5-TRICHLOROPHENOXY ACETIC ACID	NG/L	50.	280000 (A1)
2,4-DICHLOROBUTYRIC ACID (2,4-D)	NG/L	100.	100000 (A1)
24-DICHLORORPHENOXYBUTYRIC ACID (24-DB)		200.	18000 (B3)
BUTYLATE (SUTAN)	NG/L	2000.	245000 (D3) 90000 (A1)
CARBARYL (SEVIN)	NG/L NG/L	200. 2000.	90000 (A1)
CARBOFURAN CHLORPYRIFOS (DURSBAN)	NG/L	20.	N/A
CICP (CHLORPROPHAM)	NG/L	2000.	350000 (G)
DIALLATE	NG/L	2000.	N/A
DIAZINON	NG/L	20.	20000 (A1)
DICAMBA	NG/L	50.	120000 (A1)
DICHLOROVOS	NG/L	20.	N/A
EPTAM	NG/L	2000.	N/A
ETHION	NG/L	20. 2000.	35000 (G) N/A
IPC	NG/L NG/L	2000.	190000 (A1)
MALATHION METHYL PARATHION	NG/L NG/L	50.	7000 (B3)
METHYLTRITHION	NG/L	20.	N/A
MEVINPHOS	NG/L	20.	N/A
PARATHION	NG/L	20.	50000 (A1)
PHORATE (THIMET)	NG/L	20.	2000 (A2)
PROPOXUR (BAYGON)	NG/L	2000.	140000 (D3)
RELDAN	NG/L	20.	N/A
RONNEL SILVEX (2,4,5-TP)	NG/L NG/L	20. 20.	N/A 10000 (A1)
VOLATILES			
1,1 DICHLOROETHANE	UG/L	0.10	N/A
1,1 DICHLOROETHYLENE	UG/L	0.10	7 (D1)
1,2 DICHLOROBENZENE	UG/L	0.05	200 (A1)
1,2 DICHLOROETHANE	UG/L	0.05	5 (A1)

		DETECTION	
SCAN/PARAMETER	UNIT	LIMIT	GUIDELINE
1,2 DICHLOROPROPANE	UG/L	0.05	5 (D1)
1,3 DICHLOROBENZENE	UG/L	0.10	3750 (D3)
1,4 DICHLOROBENZENE	UG/L	0.10	5 (A1)
111, TRICHLOROETHANE	UG/L	0.02	200 (D1)
112 TRICHLOROETHANE	UG/L	0.05	0.6 (04)
1122 TETRACHLOROETHANE	UG/L	0.05	0.17(D4)
BENZENE	UG/L	0.05	5 (A1)
BROMOFORM	UG/L	0.20	350 (A1+)
CARBON TETRACHLORIDE	UG/L	0.20	5 (A1)
CHLOROBENZENE	UG/L	0.10	1510 (D3)
CHLOROD I BROMOMETHANE	UG/L	0.10	350 (A1+)
CHLOROFORM	UG/L	0.10	
DICHLOROBROMOMETHANE	UG/L	0.05	
ETHLYENE DIBROMIDE	UG/L	0.05	
ETHYLBENZENE	UG/L	0.05	
M-XYLENE	UG/L	0.10	
METHYLENE CHLORIDE	UG/L	0.50	
O-XYLENE	UG/L	0.05	
P-XYLENE	UG/L	0.10	
STYRENE	UG/L	0.05	
TETRACHLOROETHYLENE	UG/L	0.05	
TRANS 1,2 DICHLOROETHYLENE	UG/L	0.10	
TOLUENE	UG/L	0.05	
TOTAL TRIHALOMETHANES	UG/L	0.50	
TRICHLOROETHYLENE	UG/L	0.10	5D (A1)

DRINKING WATER SURVEILLANCE PROGRAM PROGRAM DESCRIPTION

The Drinking Water Surveillance Program (DWSP) for Ontario monitors drinking water quality at municipal water supply systems. The DWSP Database Management System provides a computerized drinking water quality information system for the supplies monitored. The objectives of the program are to provide:

- immediate, reliable, current information on drinking water quality;
- a flagging mechanism for guideline exceedance;
- a definition of contaminant levels and trends;
- a comprehensive background for remedial action;
- a framework for assessment of new contaminants; and
- an indication of treatment efficiency of plant processes.

PROGRAM

The DWSP officially began in April 1986 and is designed to eventually include all municipal water supplies in Ontario. In 1990, 76 systems were being monitored. Water supply locations have been prioritized for surveillance based primarily on criteria such as population density, probability of contamination and geographical location.

An ongoing assessment of future monitoring requirements at each location will be made. Monitoring will continue at the initial locations at an appropriate level and further locations will be phased into the program as resources permit.

A major goal of the program is to collect valid water quality data in context with plant operational characteristics at the time of sampling. As soon as sufficient data have been accumulated and analyzed, both the frequency of sampling and the range of parameters may be adjusted accordingly.

Assessments are carried out at all locations prior to initial sampling, in order to acquire complete plant process and distribution system details and to designate (and retrofit if necessary) all sampling systems and locations. This ensures that the sampled water is a reflection of the water itself.

Samples are taken of raw (ambient water) and treated water at the treatment plant and of consumer's tap water in the distribution system. In order to determine possible effects of distribution on water quality, both standing and free flow water in old and new sections of the distribution system are sampled. Sampling is carried out by operational personnel who have been trained in applicable procedures.

Comprehensive standardized procedures and field test kits are supplied to sampling personnel. This ensures that samples are taken and handled according to standard protocols and that field testing will supply reliable data. All field and laboratory analyses are carried out using "approved documented procedures". Most laboratory analyses are carried out by the Ministry of Environment (MOE), Laboratory Services Branch. Radionuclides are analyzed by the Ministry of Labour.

DATA REPORTING MECHANISM

When the analytical results are transferred from the MOE laboratory into the DWSP system, printouts of the completed analyses are sent to the MOE District Officer, the appropriate operational staff and are also retained by the DWSP unit.

PROGRAM INPUTS AND OUTPUTS

There are four major inputs and four major outputs in the program.

Program Input - Plant and Distribution System Description

The system description includes plant specific non-analytical information acquired through a questionnaire and an initial plant visit. During the initial assessment of the plant and distribution system, questionnaire content is verified and missing information added. It is intended that all data be kept current with scheduled annual updates.

The Plant and Distribution System Description consists of the following seven components:

1. PROCESS COMPONENT INVENTORY

All physical and chemical processes to which the water is subjected, from the intake pipe to the consumers' tap (where possible), are documented. These include: process type, general description of physical structures, material types, sizes, and retention time for each process within the plant. The processes may be as simple as transmission or as complex as carbon adsorption.

2. TREATMENT CHEMICALS

Chemicals used in the treatment processes, their function, application point, supplier and brand-name are recorded. Chemical dosages applied on the day of sampling are recorded in DWSP.

3. PROCESS CONTROL MEASUREMENTS

Documentation of in-plant monitoring of process parameters (eg. turbidity, chlorine residuals, pH, aluminum residuals) including methods used, monitoring locations and frequency is contained in this section. Except for the recorded Field Data, in-plant monitoring results are not retained in DWSP but are retained by the water treatment plant personnel.

4. DESIGN FLOW AND RETENTION TIME

Hydraulic capacity, designed and actual, is noted here. Retention time (the time that a block of water is retained in the plant) is also noted. Maximum, minimum and average flow, as well as a record of the flow rate on the day of sampling, are recorded in DWSP.

5. DISTRIBUTION SYSTEM DESCRIPTION

This area includes the storage and transmission characteristics of the distribution system after the water leaves the plant.

6. SAMPLING SYSTEM

Each plant is assessed for its adequacy in terms of the sampling of bacteriological, organic and inorganic parameters. Prime considerations in the assessment and design of the sampling system are:

- i/ the sample is an accurate representation of the actual water condition, eg. raw water has had no chemical treatment;
- ii/ the water being sampled is not being modified by the sampling system;
- iii/ the sample tap must be in a clean area of the plant, preferably a lab area; and
 - iv/ the sample lines must be organically inert (no plastic, ideally stainless steel).

It is imperative that the sampled water be a reflection not of the sampling system but of the water itself.

The sampling system documentation includes: origin of the water; date sampling was initiated; size, length and material type (intake,

discharge and tap); pump characteristics (model, type, capacity); and flow rate.

7. PERSONNEL

This section contains the names, addresses and phone numbers of current plant management and operational staff, distribution system management and operational staff, Medical Officer of Health and appropriate MOE personnel associated with the plant.

Program Input - Field Data

The second major input to DWSP is field data. Field data is collected at the plant and from the distribution system sites on the day of sampling. Field data consists of general operating conditions and the results of testing for field parameters. General operating conditions include chemicals used, dosages, flow and retention time on the day of sampling, as well as, monthly maximum, minimum and average flows. Field parameters include turbidity, chlorine residuals (free, combined and total), temperature and pH. These parameters are analyzed according to standardized DWSP protocols to allow for interplant comparison.

Program Input - Laboratory Analytical Data

The third major input to DWSP is Laboratory Analytical Data. Samples gathered from the raw, treated and distribution sampling sites are analyzed for the presence of approximately 180 parameters at a frequency of two to twelve times per year. Sixty-five percent of the parameters are organic. Parameters measured may have health or aesthetic implications when present in drinking water. Many of the parameters may be used in the treatment process or may be treatment by-products. Due to the nature of certain analytical instruments, parameters may be measured in a "scan" producing some results for parameters that are not on the DWSP priority list, but which may be of interest. The majority of parameters are measured on a routine basis. Those that are technically more difficult and/or costly to analyze, however, are done less frequently. These include Specific Pesticides and Chlorophenols.

Although the parameter list is extensive, additional parameters with the potential to cause health or aesthetic related problems may be added provided reliable analytical and sampling methods exist.

All laboratory generated data is derived from standardized, documented analytical protocols. The analytical method is an integral part of the data and as methods change, notation will be made and comparison data documented.

Program Input - Parameter Reference Information

The fourth major input to DWSP is Parameter Reference Information. This is a catalogue of information for each substance analyzed on DWSP. It includes parameter name and aliases, physical and chemical properties, basic toxicology, world-wide health limits, treatment methods and uses. The Parameter Reference Information is computerized and can be accessed through the Query function of the DWSP database. An example is shown in figure 1.

Program output - Query

All DWSP information is easily accessed through the Query function, therefore, anything from addresses of plant personnel to complete water quality information for a plant's water supply is instantly available. The DWSP computer system makes relatively complex inquiries manageable. A personal password allowing access into the DWSP query mode in all MOE offices is being developed by the DWSP group.

Program Output - Action Alerts

Drinking Water quality in Ontario is evaluated against provincial objectives as outlined in the Ontario Drinking Water Objectives publication. Should the reported level of a substance in treated water exceed the Ontario Drinking Water Objective, an "Action Alert" requiring resampling and confirmation is issued. This assures that operational staff, health authorities and the public are notified as soon as possible of the confirmation of an exceedance and remedial action taken. This report supplies a history of the occurrence of past exceedances at the plant plus a historical summary on the parameter of concern.

In the absence of Ontario Drinking Water Objectives, guidelines/limits from other agencies are used. The Parameter Listing System, published by MOE (ISBN 0-7729-4461-X), catalogues and keeps current guidelines for 650 parameters from agencies throughout the world. If these guidelines are exceeded, the results are flagged and evaluated by DWSP personnel. An "Action Alert" will be issued if warranted.

Program Output - Report Generation

Custom reports can be generated from DWSP to meet MOE Regional needs and to respond to public requests.

Program Output - Annual Reports

It is the practice of DWSP to produce an annual report containing analytical data along with companion plant information.

FIG.1

MOE - DRINKING WATER ASSESSMENT PROGRAM (DWSP)

PARAMETER REFERENCE INFORMATION

BENZENE	NE (B2001P)				VOLATILES		
CLASS:	HEALTH	METH	HOD: POCODO	UNIT: µg/L			
SOURCE	FROM	TO	METHOD	GUIDELINE	UNIT	NOTE	
CAL C	85/01			0.700	μg/L	AL	
CDWG C	87/01			5.000	μg/L	MAC	
EPA C	87/07			5.000	μg/L	MCL	
EPAA C	80/11			6.600	μg/L	AMBIENT **	
FERC C	84/05			1.000	μg/L	MCL	
WHO C	84/01			10.000	μq/L	GV	

DESCRIPTION: NAME: BENZENE

CAS#: 71-43-2

MOLECULAR FORMULAE: C6H6

DETECTION LIMIT: (FOR METHOD POCODO) 0.05 µg/L

SYNONYMS: BENZOL; BENZOLE; COAL NAPHTHA; CARBON OIL (27).

CYCLOHEXATRIENE (41).

CHARACTERISTICS: COLOURLESS TO LIGHT-YELLOW, MOBILE, NON-POLAR LIQUID, OF HIGHLY REFRACTIVE NATURE, AROMATIC ODOUR; VAPOURS BURN WITH SMOKING FLAME (30).

PROPERTIES: SOLUBILITY IN WATER: 1780-1800 mg/L AT 25C (41).

THRESHOLD ODOUR: 0.5 - 10 PPM IN WATERTHRESHOLD TASTE:

0.5 mg/L IN WATER (39).

ENVIRONMENTAL FATE: MAY BIOACCUMULATE IN LIVING ORGANISMS AND APPEARS TO ACCUMULATE IN ANIMAL TISSUES THAT EXHIBIT A HIGH LIPID CONTENT OR REPRESENT MAJOR METABOLIC SITES, SUCH AS LIVER OR BRAIN; SMALL QUANTITIES EVAPORATE FROM SOILS OR ARE DEGRADED RATHER QUICKLY (80).

SOURCES: COMMERCIAL: PETROLEUM REFINING; SOLVENT RECOVERY;
COAL TAR DISTILLATION (39); FOOD PROCESSING AND
TANNING INDUSTRIES; COMBUSTION OF CAR EXHAUST.
ENVIRONMENTAL: POSSIBLE SOURCE IS RUNOFF.

USES:

DETERGENTS; NYLON; INTERMEDIATE IN PRODUCTION OF OTHER COMPOUNDS, SUCH AS PESTICIDES; SOLVENT FOR EXTRACTION AND RECTIFICATION IN RUBBER INDUSTRY; DEGREASING AND CLEANSING AGENT; GASOLINE.

TOXICITY: RATING: 4 (VERY TOXIC).

ACUTE: IRRITATING TO MUCOUS MEMBRANES; SYMPTOMS INCLUDE RESTLESSNESS, CONVULSIONS, EXCITEMENT, DEPRESSION; DEATH MAY FOLLOW RESPIRATORY FAILURE. CHRONIC: MAY CAUSE ANAEMIA AND LEUKAEMIA (45); MUTAGENIC.

MODE OF ACTION: CHROMOABERRATION IN LYMPHOCYTE CULTURES.

CARCINOGENICITY: A KNOWN HUMAN CARCINOGEN.

REMOVAL: THE FOLLOWING PROCESSES HAVE BEEN SUCCESSFUL IN REMOVING BENZENE FROM WASTEWATER: GAC ADSORPTION, PRECIPITATION WITH ALUM AND SUBSEQUENT REMOVAL VIA SEDIMENTATION, COAGULATION AND FLOCCULATION, SOLVENT EXTRACTION, OXIDATION

ADDITIONAL PROPERTIES:

MOLECULAR WEIGHT: 78.12 MELTING POINT: 5.5°C (27). BOILING POINT: 80.1°C (27).

SPECIFIC GRAVITY: 0.8790 AT 20° C (27). VAPOUR PRESSURE: 100 MM AT 26.1° C (27).

HENRY'S LAW CONSTANT: 0.00555 ATM-M3/MOLE (41). LOG OCT./WATER PARTITION COEFFICIENT: 1.95 TO 2.13 (39).

CARBON ADSORPTION: K=1.0; 1/N=1.6; R=0.97; PH=5.3 (41) SEDIMENT/WATER PARTITION COEFFICIENT: NO DATA

NOTES: EPA PRIORITY POLLUTANT.

DWSP SAMPLING GUIDELINE

i) Raw and Treated at Plant

General Chemistry -500 mL plastic bottle (PET 500)
-rinse bottle and cap with sample

water three times
-fill to 2 cm from top

Bacteriological -220 mL plastic bottle with white

seal on cap

-do <u>not</u> rinse bottle, preservative

has been added

-avoid touching bottle neck or

inside of cap

-fill to top of red label as marked

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃) (Caution: HNO₃ is corrosive)

Volatiles (duplicates)

(OPOPUP)

-45 mL glass vial with septum

(teflon side must be in contact with

sample)

-do not rinse bottle

-fill bottle completely without

bubbles

Organics

(OWOC), (OWTRI), (OAPAHX)

-1 L amber glass bottle per scan

-do <u>not</u> rinse bottle

-fill to 2 cm from top

-when 'special pesticides' are requested three extra bottles

must be filled

Cyanide -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops sodium hydroxide (NaOH)

(Caution: NaOH is corrosive)

Mercury -250 mL glass bottle

-rinse bottle and cap three times

-fill to top of label

-add 20 drops each nitric acid (HNO₃)
and potassium dichromate (K₂Cr₂O₇)
(Caution: HNO₃&K₂Cr₂O₇ are corrosive)

Phenols -250 mL glass bottle

-do not rinse bottle, preservative

has been added

-fill to top of label

Radionuclides -4 L plastic jug

(as scheduled) -do not rinse, carrier added

-fill to 5 cm from top

Organic Characterization -1 L amber glass bottle; instructions

(GC/MS - once per year) as per organic

-250 mL glass bottle -do not rinse bottle

-fill completely without bubbles

Steps:

- Let sampling water tap run for an adequate time to clear the sample line.
- 2. Record time of day on submission sheet.
- 3. Record temperature on submission sheet.
- 4. Fill up all bottles as per instructions.
- Record chlorine residuals (free, combined and total for treated water only), turbidity and pH on submission sheet.

ii) Distribution Samples (standing water)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample

water three times
-fill to 2 cm from top

Metals -500 mL plastic bottle (PET 500)

-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid (HNO₃) (Caution: HNO₃ is corrosive)

Steps:

1. Record time of day on submission sheet.

2. Place bucket under tap and open cold water.

3. Fill to predetermined volume.

4. After mixing the water, record the temperature on the submission sheet.

5. Fill general chemistry and metals bottles.

Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

iii) Distribution Samples (free flow)

General Chemistry -500 mL plastic bottle (PET 500)

-rinse bottle and cap with sample

water three times
-fill to 2 cm from top

Bacteriological -250 mL plastic bottle with

white seal on cap

-do <u>not</u> rinse bottle, preservative

has been added

-avoid touching bottle neck or

inside of cap

-fill to top of red label as marked

Metals

-500 mL plastic bottle (PET 500)
-rinse bottle and cap three times

-fill to 2 cm from top

-add 10 drops nitric acid HNO₃ (Caution: HNO₃ is corrosive)

Volatiles (duplicate) (OPOPUP)

-45 mL glass vial with septum (teflon side must be in contact

with sample)

-do not rinse bottle, preservative

has been added

-fill bottle completely without

bubbles

Organics (OWOC) (OAPAHX) -1 L amber glass bottle per scan

-do not rinse bottle
-fill to 2 cm from top

Steps:

- 1. Record time of day on submission sheet.
- 2. Let cold water flow for five minutes.
- 3. Record temperature on submission sheet.
- 4. Fill all bottles as per instructions.
- Record chlorine residuals (free, combined and total), turbidity and pH on submission sheet.

