

Instructors

Prof. Laura Waller waller@berkeley.edu
514 Cory

Prof. Vladimir Stojanovic vlada@berkeley.edu
513 Cory

 Other contributors to 16: Elad Alon, Anant Sahai, Gireeja Ranade, Ali Niknejad, Claire Tomlin, Michel Maharbiz, Miki Lustig, Vivek Subramanian, Thomas Courtade, Babak Ayazifar

TAs and GSIs

Head GSIs:

ee16a.staff@gmail.com

Email with:

- Questions not for Piazza
- All conflicts
- Any emergencies
- Administrative questions

Grace Zhang

• GSIs

And we have even more!

- An army of Academic Student Employees...
 - Former 16A students just like you ...
- The path to being on 16A staff
 - Do great in 16A
 - Become an Academic Student Employee
 - Grade homeworks, assist in labs, help out in OH, etc.

Important web sites

• EECS 16A

http://inst.eecs.berkeley.edu/~ee16a/sp18/

• Piazza

http://piazza.com/

Course policies

- Syllabus is on course website
 - You are responsible for reading and following all course policies listed
- Grading is absolute
 - We'll release the grading sheet so you can keep track of your progress
- No technology (usage) during lecture!

Should you take this course?

- Freshmen and Freshwomen are the target audience
 - Assume no prior background in linear algebra and physics
- If you are L&S CS student graduating this semester, there is a long list of temporary alternatives you can take to fulfill the requirement
- If you are an L&S CS (intended) student and have taken Math 54 (and understood it)
 - You should probably take 16B, not 16A
 - Sign up for EECS 47D to learn the circuits content from 16A (see piazza)
 - Contact Prof. Elad Alon if interested in this option

You are here to learn!

- Our staff wants to help you learn
 - In-lecture q&a, OH, Homework parties, Lab, Guerilla sessions
- Cheating directly detracts from learning
 - Any cheating will be immediately sent to the Office of Student Conduct
 - Report bad behavior
- Everyone here is smart
 - Students have different backgrounds
 - Professors make mistakes feedback helps
 - Helping others is good for both of you
 - If you are struggling, ask for help!

Topics

- Imaging/Tomography and Google PageRank (~5 wks)
 - Topics: Linear algebraic thinking and graphs
 - Lab: Single-pixel imager
- Touchscreens (5 wks)
 - Topics: Linear circuits and design
 - Lab: Home-made R and C touchscreens
- Locationing and Least-Squares (4 wks)
 - Topics: Linear-algebraic optimization
 - Lab: Acoustic localization "GPS"

Related courses

16AB	Modeling and Algorithms	170, 126, 188,	189, 120, 121, 123, 174, 144,	Specific Domains	
70				121, 122, 168 Comm+Net	176, 145B CompBio, Imaging
61B	General Software	162, 161, 169	160, 168, 149	191 Quantum	128, 106, 192 Control + Robotics
61A				184 Graphics	186 Databases
61C				164 Compilers	152 Computers
	General Hardware	105, 140, 151	130, 143, 145L	145MO Bio	147 MEMS
				117 Antennas	142 Comm ICs
16AB	Tatuwate			118 Optics	113, 137AB, 134 Power+SolarEnergy

How Did We Get From This...

To This?

Moore's Law

Microprocessor Transistor Counts 1971-2011 & Moore's Law

Gordon Moore

Intel Cofounder

B.S. Cal 1950!

What is a transistor?

Sense of Scale

Fly

7 mm

10

millimeter

100

Mite

300 um

Mark

1.66 m

10

meter

Source: Mark Bohr, IDF14

Completing the puzzle ...

- Ada Lovelace wrote the first computer program
- Turing invented the Turing machine how to build a computer to execute programs – what is actually computable?
- Claude Shannon info theory, + how to implement logic out of EM switches

Design of Information Devices and Systems

- Best when hardware and software work together
 - Best algorithms and best code written by understanding the sensing and compute mechanisms
 - Best devices designed understanding the physical limitations

16a Examples

Module 1: Imaging

Seeing inside bodies: the early days...

Rembrandt + modifications

Seeing inside bodies: sans surgery...

All of these benefitted from the math/hardware design techniques you will learn in this class!

Ultrasound

Tomography

'tomo' – slice 'graphy' – to write

Assume it is not desirable to slice open my brain. How does tomography 'see' inside?

Tomography

What is a projection?

Sum of values along a line.

Example: Tomography

What do pixel values represent?

e.g. density, absorption, etc.

Can we solve for the pixel values from projections?

Yes, with tomography.

Example: Tomography

At to Solve this:
$$x = q^{-1}b$$

$$a \rightarrow x_1 x_2 x_3 x_4 \rightarrow b = ax_1 + ax_2 + ax_3 + ax_4$$

4 @ = 3+4-0 so @ is not rew info!

Can I solve for 3? No! Not with single measurement

So these 4 measurements are not sufficient...

1 equation, 4 unknowns = (i)

What different measurement can I take to help?

4unknowns → need 4 measurements!

$$ax_{1} + ax_{2} = b_{1} \odot$$
 $ax_{3} + ax_{4} = b_{2} \odot$
 $ax_{1} + ax_{3} = b_{3} \odot$
 $ax_{2} + ax_{4} = b_{4} \odot$

Now consider changing illumination.

Not all a's are equal now.

[Can I solve it?] Yes if I know what the a's are.

e.g.
$$b_i = a_1 x_1 + a_2 x_2$$

becomes $\left(\frac{b_1}{a_1}\right) = x_1 + x_2 \left(\frac{a_2}{a_1}\right)$

Can I now solve for all x? If yes, why/how? If no, wny not?

No. 4 unknowns + 4 equations does not mean you can solve it! They need to be 'linearly independent' i.e. each provides new information! easif I can device one ear. from other 3, it's not new infol

All our measurements are *linear*

What does that mean?

Each variable (x) is multiplied by a scalar (a) to contribute to the measurement

Linear Algebra is what we need to solve it!

Imaging in general

Imaging System

(electronics, control, computing, algorithms, visualization...)

What is the absolute smallest number of components you need to make an imaging system?

Example: flat illumination, one photosensor scans through pixels

OR scan the illumination, use only one big pixel

Single-pixel camera

Single-pixel camera

Imaging Lab #1 Setup

Imaging Lab #1

Single-pixel camera

What if I can't light up just one pixel at a time?

Can we recover the frog?

How many measurements do I need?

How should I choose illumination patterns?

