160. Sea $x_1 = 8$ y denotemos $x_{n+1} = 2 + x_n/2$ para cada $n \in \mathbb{N}$. Demuestra que $\{x_n : n \in \mathbb{N}\}$ es una sucesión acotada monótona, y determina el valor de su límite.

Solución. Es una sucesión acotada, más concretamente, es fácil ver por inducción sobre n que $4 \le x_n \le 8$. En efecto, en el caso base esto es claro, y si suponemos cierta la afirmación para $n \in \mathbb{N}$, se puede ver que se sigue verificando para n+1:

$$4 \le x_{n+1} \le 8 \iff 4 \le 2 + \frac{x_n}{2} \le 8 \iff 2 \le \frac{x_n}{2} \le 6 \iff 4 \le x_n \le 12.$$

Es una sucesión monótona decreciente.

$$x_{n+1} \le x_n \iff 2 + \frac{x_n}{2} \le x_n \iff 2 \le x_n - \frac{x_n}{2} = \frac{x_n}{2} \iff 4 \le x_n$$

para todo $n \in \mathbb{N}$, y esto lo hemos comprobado antes. Sabemos así que la sucesión converge, y lo hace a su

Para calcular el valor del límite de la sucesión, al cual denotaremos $L \in \mathbb{R}$, basta tomar límites en la definición recursiva:

$$\lim_{n \to \infty} x_{n+1} = \lim_{n \to \infty} 2 + \frac{x_n}{2}$$

 $\lim_{n\to\infty}x_{n+1}=\lim_{n\to\infty}2+\frac{x_n}{2}$ de forma que, como las colas de una sucesión convergen al mismo número,

$$L = 2 + \frac{L}{2} \iff \frac{L}{2} = 2 \iff L = 4,$$

como queríamos concluir.

167. Sea $\{a_n:n\in\mathbb{N}\}$ una sucesión creciente, $\{b_n:n\in\mathbb{N}\}$ una sucesión decreciente, y supóngase que $a_n \leq b_n$ para todo $n \in \mathbb{N}$. Demuestra que $\lim_{n \to \infty} a_n \leq \lim_{n \to \infty} b_n$, de donde se deduce la propiedad de los intervalos encajados del teorema de convergencia monótona.

Solución. En primer lugar, $\{a_n\}$ es acotada superiormente (por b_1), pues $a_n \leq b_1$ y de la misma forma $\{b_n\}$ es acotada inferiormente.

Denotemos así $\alpha := \sup\{a_m\}$ y $\beta := \inf\{b_m\}$.

Entonces, $\underline{a}_n \leq \underline{\beta}$ (y $\underline{\alpha} \leq \underline{b}_n$) para todo $n \in \mathbb{N}$. Veamoslo: cualesquiera que sean $m, n, \underline{a}_m \leq \underline{b}_n$,

En efecto, • si
$$m \le n$$
, $a_m \le a_n \le b_n$. • si $n \le m$, $a_m \le b_m \le b_n$.

Así, $\forall n, a_n$ es cota inferior de $\{b_m\}_{m=1}^{\infty}$, y por tanto $a_n \leq \beta$.

De esta forma, $\underline{\alpha} \leq \underline{\beta}$, pues β es cota superior de $\{a_n\}_{n=1}^{\infty}$, con lo que $\sup\{a_m\} = \alpha \leq \beta$.

En virtud del teorema de la convergencia monótona, $\underline{\alpha} = \underline{\lim} \, a_n$ y que $\underline{\beta} = \underline{\lim} \, b_n$.

De esto se sigue la propiedad de intervalos encajados: Como $a_n \leq \alpha \leq \beta \leq b_n$ para todo $n \in \mathbb{N}$ y no hay otros $\alpha' \leq \alpha$ ni $\beta' \geq \beta$ satisfaciendo dicha propiedad, hemos probado que $\bigcap_{n=1}^{\infty} [a_n, b_n] = [\alpha, \beta]$.

168. Sea A un subconjunto infinito de $\mathbb R$ acotado superiormente. Demuestra que existe una sucesión $\{x_n:$ $n \in \mathbb{N} \subseteq A$ creciente con $\sup(A) = \lim_{n \to \infty} x_n$.

Solución. Si por ejemplo $A = [0, 1] \cup \{2\}$, necesariamente la sucesión ha de ser monótona creciente (constante = 2 eventualmente).

Si $\sup(A) \in A$, tomaremos la sucesión constante $\{x_n := \sup(A)\}$.

Supongamos entonces que no. Vamos a construir de hecho una sucesión estrictamente creciente.

Denotemos $S := \sup(A)$ por comodidad.

Sea $x_1 \in A$ cualquiera con $S - 1 < x_1 < S$ por la definición de supremo.

Denotemos $\varepsilon_2 := \min\{\frac{1}{2}|x_1 - S|, \frac{1}{2}\} > 0$ pues hemos elegido $x_1 \neq S$.

Dado que A es no vacío (de hecho, infinito) y acotado, existe $x_2 \in A$ verificando que $S - \varepsilon_2 < x_2 < S$, de donde se deducen dos cosas:

■
$$x_1 = S - |x_1 - S| < S - \frac{1}{2}|x_1 - S| \le S - \varepsilon_2 < x_2 < S \implies x_1 < x_2$$
■ $S - \frac{1}{2} < S - \varepsilon_2 < x_2 < S$

$$S - \frac{1}{2} < S - \varepsilon_2 < x_2 < S$$

Repetimos el proceso recursivamente, obteniendo una sucesión $x_1, x_2, ...$ creciente de números reales tales que $S - \frac{1}{n} \le x_n < S$, luego $|x_n - S| \le \frac{1}{n} \to 0$ y por ende es fácil concluir que $x_n \to S$ cuando $n \to \infty$ (prop. arquimediana).

169. Sea $\{x_n:n\in\mathbb{N}\}$ una sucesión de números reales acotada. Denotemos $s_n=\sup\{x_k:k\geq n\}$ y $t_n = \inf\{x_k : k \ge n\}$ para cada $n \in \mathbb{N}$. Demuestra que $\{s_n : n \in \mathbb{N}\}$ y $\{t_n : n \in \mathbb{N}\}$ son ambas sucesiones monótonas y convergentes. Demuestra asimismo que si $\lim_{n\to\infty} s_n = \lim_{n\to\infty} t_n$, entonces $\{x_n : n \in \mathbb{N}\}$ es una sucesión convergente.

Solución. En primer lugar, las sucesiones $\{s_n\}$ y $\{t_n\}$ están bien definidas ya que $\{x_n\}$ es acotada, y todos los números s_n y t_n están bien definidos.

Probemos que $\{s_n\}$ es monótona decreciente:

$$s_{n+1} = \sup\{x_k : k \ge n+1\} \le \sup_{\substack{\{x_k : k \ge n+1\} \cup \{x_n\}}} \underbrace{\{x_k : k \ge n\}}_{\substack{\{x_n : k \ge n+1\} \cup \{x_n\}}} = s_n$$

dado que si $B \subseteq A$ entonces $\sup(B) \le \sup(A)$ (está probado por ahí).

Lo mismo se hace para demostrar que $\{t_n\}$ es monótona creciente.

Como ambas sucesiones son monótonas y acotadas ($\{s_n\}$ está acotada superiormente por $\sup\{x_n\}$ y $\{t_n\}$ está acotada inferiormente por $\inf\{x_n\}$), deducimos que son convergentes.

Si lím $s_n =$ lím t_n , entonces $\{x_n\}$ es convergente por la Regla del Sandwich, pues $s_n \le x_n \le t_n$ para todo $n \in \mathbb{N}$.