Теортест-1 (Вариант 55)

Тема – определенный интеграл

Задача 1

Пусть функция u=u(t) – первообразная для функции v=v(t) на [a,b]. Выберите все верные на [a,b] утверждения (C – произвольная постоянная):

- 1. v = du + C;
- 2. du = v;
- 3. dv = udt + C;
- 4. u = dv;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 2

Выберите все верные утверждения (множества A и B имеют площадь):

- 1. площадь $A \cup B$ равна сумме площадей A и B;
- 2. площадь одной точки равна нулю;
- 3. площадь A всегда неотрицательна;
- 4. площадь графика интегрируемой функции равна нулю;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 3

Выберите все верные утверждения для данной функции, заданной на отрезке [a,b]:

- 1. При измельчении разбиения нижняя сумма Дарбу увеличивается;
- 2. При измельчении разбиения нижняя сумма Дарбу уменьшается или не изменяется;
- 3. При измельчении разбиения нижняя сумма Дарбу увеличивается или не изменяется;
- 4. Нижняя сумма Дарбу является наименьшей из всех интегральных сумм для данного разбиения;

Задача 4

Выберите все функции, имеющие дробно-рациональные первообразные:

- 1. $\frac{x^2-x+1}{x^2+x}$;
- 2. $\frac{x^3-3(x-1)^2}{(x-1)^3}$;
- 3. $\frac{2x+1}{x^2+x+1}$;
- 4. $\frac{2x+1}{x^2(x+1)^2}$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 5

Пусть f интегрируема и $f \geq 0$ на [a,b]. Выберите все достаточные условия для того, чтобы $\int_a^b f(x) dx > 0$:

- 1. f непрерывна в точке a и f(a) = 1;
- 2. f > 0 на [a, b];
- 3. f возрастает (нестрого) на [a,b] и f(b)=1;
- 4. f непрерывна на [a,b] и f((a+b)/2) = 1;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 6

Пусть f(x) определена на отрезке [a,b]. Выберите все верные утверждения:

- 1. Если f имеет первообразную на [a,b], то она интегрируема на [a,b];
- 2. Если f непрерывна на [a,b], то она интегрируема на [a,b];
- 3. Если f интегрируема на [a,b], то она монотонна на [a,b];
- 4. Если f дифференцируема на [a,b], то она интегрируема на [a,b];

Задача 7

Функция $f \in R[0,10]$ и $-1 \le f(x) \le 10$ на [0,10]. Выберите отрезки, содержащие значение интеграла $\int_0^3 x^2 f(x) dx$:

- 1. [-9; 90];
- 2. [-3; 90];
- 3. [-2; 20];
- 4. [-9; 100];

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 8

Пусть f(x), x(t) – дифференцирумые функции. Выберите все верные утверждения (при соответствующей замене) :

- 1. $\int \frac{f(x)}{\ln x} dx = \int f(e^t) dt;$
- 2. $\int f(1/x)dx = -\int \frac{f(t)dt}{t^2}$;
- 3. $\int f(\sqrt{x})dx = 2 \int f(t)\sqrt{t}dt$;
- 4. $\int f(x)dx = \int f(\ln t)tdt$;

Пример ввода: 3, 1, 4 (введите "0", если верных утверждений нет)

Задача 9

Выберите все верные утверждения:

- 1. Гладкая кривая это кривая, все параметризации которой гладкие;
- 2. Длина замкнутой кривой равна нулю;
- 3. Длина спрямляемой кривой конечна;
- 4. Длина любого пути не меньше длины вписанной в его носитель ломаной;
- 5. Длины противоположных путей равны;

Задача 10

Пусть $f \in R[a,b], F(x) = \int_a^x f(t)dt$. Выберите все верные утверждения:

- 1. F имеет разрывы в точках разрыва функции f;
- $2. \ F$ дифференцируема на [a,b];
- 3. F первообразная для f на [a,b];
- 4. F непрерывна на [a, b];