METLBOND® 1515-3 FILM ADHESIVE

TECHNICAL DATA SHEET

DESCRIPTION

Metlbond[®] 1515-3 and Metlbond 1515-3 MHT are 350°F (177°C) curing modified epoxy supported film adhesives. Metlbond 1515-3 can also be cured at 250°F (121°C). Its maximum continuous service temperature range is 275°F to 320°F (135°C to 160°C).

Metlbond 1515-3 is available in medium- and high-tack (HT) versions which give the same mechanical and physical properties.

Metlbond 1515-3 is commonly used for BMS 5-154 metal-to-metal and composite bonding and BMS 8-341 cosmetic surfacing.

FEATURES & BENEFITS

- Industry standard for composite bonding and surfacing applications
- Designed for co-curing, secondary bonding, co-bonding of composite materials
- Provides excellent surfacing characteristics
- Good resistance to pre-cure humidity
- Available in a variety of weights and carriers
- Bonds metal-to-metal, metal-to-core and composites
- Co-cures with most 350°F (177°C) curing prepregs
- Shelf life of 12 months at 0°F (-18°C) or 1 month at 40°F (4°C)
- Shop life of 15 days at 75°F (24°C)

SUGGESTED APPLICATIONS

- Metal-to-metal bonding
- Composite bonding
- Cosmetic surfacing

CHARACTERISTICS

Table 1 | Metlbond 1515-3 Product Description

Nominal Weight, lb/ft ² (g/m ²)	0.030 - 0.100 (146 - 486)
Supporting Carrier	Mat or nylon knit carrier
Roll Length, yds (m)	60 (55)
Roll Width, in (cm)*	36 – 48 (91 – 122)

^{*} May be slit to your requirements

> FM® 1515-3 FILM ADHESIVE

TECHNICAL DATA SHEET

Table 2 | Physical Characteristics

Color	Blue
Room Temp. Tack	Medium
Shop Life	15 days at 75°F (24°C)
Volatiles	Less than 1%
Tg Dry	338°F (170°C) G' knee by dynamic mechanical analysis
Service Temp. Range	-65 to 320°F (-55 to 160°C)
Cure Temp. Range	250 to 350°F (121 to 177°C)

PROPERTIES

Table 3 | Mechanical Properties: Metlbond 1515-3M HT, BMS 5-154, pre-exposed Film 10 days at 90°F (32°C) and 50% R.H.

Property	Test Temperature	Grade 03 0.0325 lb/ft ² (160 g/m²)	Grade 05 0.05 lb/ft ² (225 g/m ²)	Grade 08 0.08 lb/ft ² (398 g/m ²)
Double Lap	65°F (-54°C)	4007 (27.6)	4111 (28.3)	3789 (26.1)
Shear	75°F (24°C)	4093 (28.2)	4512 (31.1)	4246 (29.3)
psi (MPa)	160°F (71°C)	4195 (28.9)	4161 (28.7)	3972 (27.4)
Sandwich Beam Shear psi (MPa)	270°F (132°C) -65°F (-54°C) 75°F (24°C) 160°F (71°C)	2064 (14.2) 695 (4.8) 596 (4.1) 634 (4.4)	2336 (16.1) 688 (4.7) 667 (4.6) 596 (4.1)	2522 (17.4) 676 (4.7) 613 (4.2) 608 (4.2)
Honeycomb	-65°F (-54°C)	950 (6.6)	887 (6.1)	877 (6.0)
Flatwise Tensile	75°F (24°C)	838 (5.8)	883 (6.1)	904 (6.2)
psi (MPa)	160°F (71°C)	848 (5.8)	907 (6.2)	873 (6.0)

Table 4 | Mechanical Properties: Metlbond 1515-3M HT, BMS 5-154

Property	Exposure Prior to Testing	Test Temperature °F (°C)	Grade 03	Grade 05	Grade 08
Double Lap Shear	1000 hours at 160°F (71°C) and 100% R.H.	75°F (24°C)	4435 (30.6)	4823 (33.3)	4433 (30.6)
psi (MPa)	14 days at 160°F (71°C) and 100% R.H.	160°F (71°C)	4237 (29.2)	4272 (29.5)	4369 (30.1)
Honeycomb Flatwise Tensile psi (MPa)	14 days at 160°F (71°C) and 100% R.H.	160°F (71°C)	551 (3.8)	677 (4.7)	588 (4.1)

> FM® 1515-3 FILM ADHESIVE

TECHNICAL DATA SHEET

Table 5 | Mechanical Properties: Metlbond 1515-3 0.05 lb/ft² (242 g/m²), BMS 8-245B

Property	Substrate	Test Temperature	Result
		-65°F (-54°C)	4600 (32)
Motal to Motal Lan Shoar	2024 T3 aluminum, no primer	75°F (24°C)	4700 (32)
Metal-to-Metal Lap Shear		250°F (121°C)	3800 (26)
psi (MPa)	Tested at 270°F (132°C)	300°F (149°C)	3000 (21)
		350°F (177°C)	1800 (12)
		-65°F (-54°C)	5900 (41)
Metal-to-Metal Double		75°F (24°C)	5900 (41)
Lap Shear	2024 T3 aluminum, no primer	250°F (121°C)	4700 (32)
psi (MPa)		300°F (149°C)	3500 (24)
		350°F (177°C)	2500 (17)
		-65°F (-54°C)	4900 (34)
Composite-to-Composite		75°F (24°C)	5400 (37)
Double Lap Shear	Carbon epoxy composite per BMS 8-212	250°F (121°C)	2600 (18)
psi (MPa)	BINIO 0-212	300°F (149°C)	1900 (13)
		350°F (177°C)	630 (4.3)
		-65°F (-54°C)	6 (1.0)
Metal-to-Metal Bell Peel	0.063 in/0.025 in	75°F (24°C)	16 (2.8)
lb/in (KN/m)	(1.60 mm/0.635 mm) 2024 T3 aluminum, no primer	250°F (121°C)	14 (2.4)
		300°F (149°C)	8 (1.4)
		350°F (177°C)	4 (0.7)

Table 6 | Mechanical Properties: Metlbond 1515-3 0.05 lb/ft² (242 g/m²), BMS 8-245B, continued

Property	Specimen	Test Temperature	Result
		-65°F (-54°C)	7.8 (34.7)
Metal-to-Honeycomb		75°F (24°C)	8.2 (36.5)
Sandwich Peel	See note A	250°F (121°C)	6.3 (28.0)
ipiw (Nm/m)		300°F (149°C)	4.3 (19.1)
		350°F (177°C)	3.5 (15.6)
Composite-to-		-65°F (-54°C)	980 (6.7)
Honeycomb Flatwise Tensile	See note B	75°F (24°C)	1000 (6.9)
psi (MPa)		160°F (71°C)	980 (6.7)
		-65°F (-54°C)	1300 (9.0)
Metal-to-Honeycomb		75°F (24°C)	1100 (7.6)
Flatwise Tensile	See note C	250°F (121°C)	670 (4.6)
psi (MPa)		300°F (149°C)	430 (3.0)
		350°F (177°C)	230 (1.6)

⁽A) 0.02 in (0.508 mm) 2024 T3 aluminum skins, no primer on 5052 1/4 in (6.35 mm) cell, 7.9 lb/ft³ density, 0.5 in (12.7mm) thick core

⁽C) 0.02 in (0.508 mm) 2024 T3 aluminum skins, no primer on 5052 1/4 in (6.35 mm) cell, 7.9 lb/ft3 density, 0.5 in (12.7 mm) thick core

⁽B) Carbon epoxy composite per BMS 8-212 co-cured on HRP 3/16 in (4.75 mm) cell, 8.0 lb/ft³ density, 0.5 in (12.7 mm) thick core

TECHNICAL DATA SHEET

APPLICATION PROCEDURES

Recommended Cure Cycle

Recommended standard autoclave cure cycle for Metlbond 1515-3 is:

- 1. Apply full vacuum [26 in Hg (88 kPa)] and 45 psi (310 kPa) autoclave pressure
- 2. Vent vacuum to atmosphere at 20 psi (139 kPa)
- 3. Heat from room temperature to $350^{\circ}F$ ($177^{\circ}C$) at $1 5^{\circ}F/min$ ($0.5 3^{\circ}C/min$)
- 4. Hold at $350 \pm 10^{\circ}$ F (177 $\pm 5.5^{\circ}$ C) for 120 minutes
- 5. Cool under pressure to < 140°F (<60°C)

For recommendations on other cure cycles and processes contact your Cytec Engineered Materials representative.

Surface Preparation

Cured Composite Substrates

Most high performance composites employ a removable peel ply of nylon or Dacron® fabric. Good bonding can be achieved with no surface preparation. Remove the peel ply and bond immediately.

For surfaces without peel ply prepare as follows:

- 1. Lightly sand the surface to be bonded using 240 280 grit sandpaper
- 2. Clean the composite using a clean, lint-free cotton cloth and MEK or acetone
- 3. Dry thoroughly at room temperature

Aluminum Skins

A clean, dry, grease-free surface is required for bonding. All standard cleaning techniques may be used with Metlbond 1515-3 including those involving solvent degreasing, alkaline cleaning, surface abrading, chemical deoxidizing, alodining, anodizing and/or priming. General guidance can be found in ASTM D 2651.

Best results for aluminum are obtained by a five step procedure:

- 1. Solvent degreasing
- 2. Alkaline cleaning
- 3. Chemical deoxidizing (etching)
- 4. Phosphoric acid anodizing*
 5. Priming with BR[®] 6747-1, BR 6725-1 or BR 127 primer.

Aluminum Core

No cleaning is necessary unless the core has been contaminated by foreign matter. If contaminated, solvent clean or vapor degrease with MEK, acetone or trichloroethylene.

Other Substrates

Information concerning the surface treatment of substrates other than aluminum is given in MIL-A-9067.

^{*} Boeing patent 4,085,012, April 1978. It is now being used by a large number of aircraft manufacturers due to the improved surface bond durability it provides

4

FM® 1515-3 FILM ADHESIVE

TECHNICAL DATA SHEET

Primer

The use of a primer is not a prerequisite for obtaining a structural bond. However, assemblies are commonly primed to improve production flow. Use BR 6747-1, BR 6725-1 or BR 127 primer. Consult the primer's datasheet for details.

Storage of Primed Surface

Primed details may be stored for extended periods, but must be protected from contamination by wrapping in non-waxed Kraft paper.

Prefitting of Details

Faying surfaces should have good contact over the entire surface area to be bonded and should be free from burrs, waves and other imperfections. Where feasible, details should be prefitted prior to assembly bonding.

Layup procedure

- 1. When Metlbond 1515-3 is removed from refrigerated storage, it must be allowed to reach room temperature before the roll is unpackaged.
- 2. Remove either of the interliners and place the adhesive against the surface to be bonded. Care should be taken to prevent air entrapment between the film adhesive and substrates, especially in large area bonds.
- 3. If additional tack is desired, the adhesive may be heated to as high as 140°F (60°C) without altering the adhesive properties. Before heat tacking be sure the film is in the proper position; removal will be difficult.
- 4. Remove the other interliner and complete the assembly.

PRODUCT HANDLING AND SAFETY

Cytec Engineered Materials recommends wearing clean, impervious gloves when working with adhesives to reduce skin contact and to avoid contamination of the product.

Materials Safety Data Sheets (MSDS) and product labels are available upon request and can be obtained from any Cytec Engineered Materials Office.

DISPOSAL OF SCRAP MATERIAL

Disposal of scrap material should be in accordance with local, state, and federal regulations.

5

FM® 1515-3 FILM ADHESIVE

TECHNICAL DATA SHEET

CONTACT INFORMATION

GLOBAL HEADQUARTERS

Tempe, Arizona tel 480.730.2000 fax 480.730.2088

NORTH AMERICA

Olean, New York tel 716.372.9650	Springfield, Massachusetts tel 1.800.253.4078	Havre de Grace, Maryland tel 410.939.1910
fax 716.372.1594	fax 716.372.1594	fax 410.939.8100
Winona, Minnesota tel 507.454.3611 fax 507.452.8195	Anaheim, California tel 714.630.9400 fax 714.666.4345	Orange, California tel 714.639.2050 fax 714.532.4096
Greenville, Texas tel 903.457.8500 fax 903.457.8598	Cytec Carbon Fibers LLC Piedmont, South Carolina tel 864.277.5720 fax 864.299.9373	D Aircraft Products, Inc. Anaheim, California tel 714.632.8444 fax 714.632.7164

EUROPE AND ASIA

Wrexham, United Kingdom	Östringen, Germany	Shanghai, China
tel +44.1978.665200	tel +49.7253.934111	tel +86.21.5746.8018
fax +44.1978.665222	fax +49.7253.934102	fax +86.21.5746.8038

DISCLAIMER: The data and information provided in this document have been obtained from carefully controlled samples and are considered to be representative of the product described. Cytec Engineered Materials (CEM) does not express or imply any guarantee or warranty of any kind including, but not limited to, the accuracy, the completeness or the relevance of the data and information set out herein. Because the properties of this product can be significantly affected by the fabrication and testing techniques employed, and since CEM does not control the conditions under which its products are tested and used, CEM cannot guarantee that the properties provided will be obtained with other processes and equipment. No guarantee or warranty is provided that the product is adapted for a specific use or purpose and CEM declines any liability with respect to the use made by any third party of the data and information contained herein. CEM has the right to change any data or information when deemed appropriate.

All trademarks are the property of their respective owners.

