Xi'an Jiaotong-Liverpool University

西交利物浦大学

PAPER CODE	EXAMINER	DEPARTMENT	TEL
CSE102		Computer Science and Software	
		Engineering	

2nd SEMESTER 2017/18 EXAMINATIONS (FINAL)

BACHELOR DEGREE - Year 2

ALGORITHMIC FOUNDATIONS AND PROBLEM SOLVING

TIME ALLOWED: 2 Hours

INSTRUCTIONS TO CANDIDATES

READ THE FOLLOWING CAREFULLY:

- 1. The paper consists of Part A and Part B. Answer all questions in both parts.
- 2. Answer all questions in Part A using the Multiple Choice Answer Sheet. Please read the instructions on the Multiple Choice Answer Sheet carefully and use a HB pencil to mark the Multiple Choice Answer Sheet. If you change your mind, be sure to erase the mark you have made. You may then mark the alternative answer.
- 3. Answer all questions in Part B using the answer booklet.
- 4. Enter your name and student ID No. on BOTH the Multiple Choice Answer Sheet and the answer booklet.
- 5. At the end of the examination, be absolutely sure to hand in BOTH the answer booklet AND the Multiple Choice Answer Sheet.
- 6. All answers must be in English.

THIS PAPER MUST NOT BE REMOVED FROM THE EXAMINATION ROOM

Xi'an Jiaotong-Liverpool University

西交利物浦大学

PART B

Question 1 (20 marks)

1.	Bri	efly describe the idea of the divide-and-conquer technique.	3
2.	Giv a)	ven an array A of n numbers, $(n \ge 1)$ Design a divide-and-conquer algorithm for finding values of both the largest and smallest elements in A.	6
	b)	Set up a recurrence relation for the number of key comparisons made by your algorithm and justify it briefly.	5
	c)	For n=2 ^k , solve the recurrence relation set up in b).	4
	d)	What is the worst case time complexity of your algorithm (in big-O notation)?	2

END OF THE PAPER