Содержание

1	Алгоритм ретрекинга		1
	1.1	Восстановление параметров морской поверхности	6
2	Mo,	делирование процесса измерения	8

1. Алгоритм ретрекинга

Рис. 1: Геометрия задачи вычисления отклика радиолокатора на плоскую поверхность с учетом отклонения антенны от надира.

Посчитаем теоретически отклик плоской морской поверхности P_{FS} на сигнал с радиолокатора. Предполагаем известными диаграмму направленности $G(\theta)$, мощность излученной энергии как функцию времени P(t) и длину волны излучения λ .

Рассматривая малую плоскую площадку m, мы можем составить уравнение, описывающее отраженную от неё мощность из следующих четырех множителей:

$$P_{FS_m} = \frac{P(t - \frac{2r_m}{c})G_m}{4\pi r_m^2} \cdot \sigma_m^o A_m \cdot \frac{1}{4\pi r_m^2} \cdot \frac{G_m \lambda^2}{4\pi} = \frac{P(t - \frac{2r_m}{c})G_m^2 \lambda^2 \sigma_m^o}{(4\pi)^3 r_m^4}, \quad (1)$$

где r_m – расстояние от радара до рассеивающей площадки , σ_m^o – удельная эффективная площадь рассеяния площадки, G_m – диаграмма направленности антенны в направлении на рассеивающую площадку, A_m – площадь площадки.

Первый множитель в уравнении (1) соответствует плотности мощности излучаемого сигнала. Второй множитель характеризует энергию падающего излучения, которая переизлучается в направлении приемника, то есть эффективную площадь рассеяния. Третий множитель характеризует рассеяние в пространстве переизлученной мощности из-за сферичности волны. Четвертый коэффициент это апертура антенны.

Для того, чтобы найти полную мощность переизлученного сигнала от интересующей нас поверхности, разобьем всю поверхность на элементарные площадки $\mathrm{d}A$ и проинтегрируем по ним

$$P_{FS}(t) = \frac{\lambda^2 \langle \sigma^o \rangle}{(4\pi)^3} \int \frac{P(t - \frac{2r}{c})G^2(r, \theta, \varphi)}{r^4} dA$$

Из геометрии задачи (см. рис. 1) задачи можно найти связь между азимутальным углом θ , полярными углами φ , $\tilde{\varphi}$ и отклонением антенны от положения надира

$$\cos \theta = \frac{\cos \xi + \frac{\rho}{h} \sin \xi \cos(\tilde{\varphi} - \varphi)}{\sqrt{1 + (\frac{\rho}{h})^2}} \tag{2}$$

Поскольку боковые лепестки по мощности гораздо меньше главного лепестка, то пренебрежем ими и положим диаграмму направленности равной следующей функции

$$G(\theta) = G_0 e^{-\frac{2}{\gamma}\sin^2\theta} \tag{3}$$

Подставим (2) в (3), учтем, что элемент поверхности можно записать как $\mathrm{d} A = \rho \mathrm{d} \rho \mathrm{d} \psi$ и тогда интеграл преобразуется к виду

с учетом
$$r = \sqrt{h^2 + \rho^2}$$

$$P_{FS}(t) = \frac{G_0^2 \lambda^2}{(4\pi)^3 h^4} \int_0^\infty \int_0^{2\pi} \frac{P\left(t - \frac{2h}{c}\sqrt{1 + \varepsilon^2}\right)}{(1 + \varepsilon^2)^2} \sigma^o(\psi)$$
$$\cdot \exp\left\{-\frac{4}{\gamma} \left[1 - \frac{\cos^2 \xi}{1 + \varepsilon^2}\right] + b + a\cos(\tilde{\varphi} - \varphi) - b\sin^2(\tilde{\varphi} - \varphi)\right\} d\varphi \rho d\rho,$$

где $\varepsilon = \frac{\rho}{h},\ a = \frac{4\varepsilon}{\gamma} \frac{\sin 2\xi}{(1+\varepsilon^2)},\ b = \frac{4\varepsilon^2}{\gamma} \frac{\sin^2 \xi}{(1+\varepsilon^2)},\$ в рамках наших задач, нас не будет интересовать абсолютное значение мощности, а то его вид её зависимости от времени.

Браун в своей работе [?] вычислил этот интеграл и показал, что он равен

$$\begin{split} P_{FS} &= \frac{G_0^2 \lambda^2 c}{4(4\pi)^2 L_p h^3} \cdot \frac{\sigma^o(\psi)}{(\frac{ct}{2h})^3} \cdot \exp\left\{-\frac{4}{\gamma} \left[\cos^2 \xi - \frac{\cos 2\xi}{(\frac{ct}{2h})^2}\right]\right\} \\ & \cdot (1+\varepsilon^2)^2 \sum_{n=0}^\infty \frac{(-1)^n \Gamma(n+\frac{1}{2})}{\sqrt{\pi} \Gamma(n+1)} \left[\left(\frac{ct}{2h}\right)^2 - 1 \tan \xi\right]^n \\ & \cdot I_n \left(\frac{4}{\gamma} \sqrt{\frac{c\tau}{n}} \sin 2\xi\right), \text{ при } t \geq 2h/c \end{split}$$

и $P_{FS}=0$ при t<2h/c

Это выражение можно упростить, переходя к новому времени $\tau=t-2h/c$, где 2h/c – время задержки между излучением и приемом сигнала. Учитывая, что в масштабах спутниковой альтиметрии $\frac{c\tau}{h}\ll 1$, получим

$$P_{FS}(\tau) = \frac{G_0^2 \lambda^2 c \sigma^o(\psi_0)}{4(4\pi)^2 L_p h^3} \exp\left\{-\frac{4}{\gamma} \sin^2 \xi - \frac{4c}{\gamma h} \tau \cos 2\xi\right\}$$
$$\cdot \sum_{n=0}^{\infty} \frac{(-1)^n \Gamma(n+\frac{1}{2})}{\sqrt{\pi} \Gamma(n+1)} \left[\sqrt{\frac{c\tau}{h}} \tan \xi\right]^n I_n\left(\frac{4}{\gamma} \sqrt{\frac{c\tau}{h}} \sin 2\xi\right) \text{ при } \tau \ge 0 \quad (4)$$

и $P_{FS} = 0$, при $\tau < 0$

Рассмотрим теперь отдельно сумму из уравнения (4). Если переобозначить $Y=\frac{4}{\gamma}\sqrt{\frac{c\tau}{h}}\sin 2\xi$, то сумма примет вид

$$I_0(Y) \cdot \left\{ 1 + \sum_{n=1}^{\infty} \frac{(-1)^n \Gamma(n + \frac{1}{2})}{\sqrt{\pi} \Gamma(n+1)} \cdot \frac{I_n(Y)}{I_0(Y)} \left[\frac{\gamma Y}{8 \cos^2 \xi} \right]^n \right\}$$

Поскольку $Y\ll 1$ и $\xi\ll 1$, то множитель $\left[\frac{\gamma Y}{8\cos^2\xi}\right]^n$ будет быстро сходиться к нулю. Следовательно сумму n слагаемых мы можем приближенно заменить лишь одним слагаемым при n=0.

$$P_{FS}(\tau) = \frac{G_0^2 \lambda^2 c \sigma^o(\psi_0)}{4(4\pi)^2 L_p h^3} \exp\left\{-\frac{4}{\gamma} \sin^2 \xi - \frac{4c}{\gamma h} \tau \cos 2\xi\right\}$$
$$\cdot I_0\left(\frac{4}{\gamma} \sqrt{\frac{c\tau}{h}} \sin 2\xi\right) \text{ при } \tau \ge 0 \quad (5)$$

Можно прибегнуть к ещё одному упрощению и разложить в ряд функцию Бесселя в уравнении (5):

$$I_0(\zeta) = \sum_{n=0}^{\infty} \left(\frac{\zeta^2}{4}\right)^n \cdot \left(\frac{1}{n!}\right)^2$$
, где $\zeta = \frac{4}{\gamma} \sqrt{\frac{c\tau}{h}} \sin 2\xi$

согласно статье [?] можно оставить только два первых члена разложения, которые, в свою очередь, совпадают с разложением экспоненты

$$I_0(\zeta) \approx 1 + \frac{\zeta^2}{4} = e^{\frac{\zeta^2}{4}}$$

Тогда функция P_{FS} примет вид

$$P_{FS}(\tau) = A \exp\left\{-\frac{4}{\gamma}\sin^2\xi\right\} \exp\left\{-\frac{4c}{\gamma h}\left(\cos 2\xi - \sin^2 2\xi\right)\tau\right\}$$
 (6)

Зная отклик плоской морской поверхности на сигнал с радиовысотомера мы можем перейти к вычислению отклика на взволнованную морскую поверхность. С точки зрения физики, различия будут в том, что теперь не вся поверхность может отражать сигнал в нужном направлении, а только зеркально ориентированные площадки на поверхности. С радиотехнической точки зрения, взволнованная морская поверхность является линейным фильтром с импульсной переходной характеристикой q(t). Тогда отклик взволнованной поверхности можно вычислить выполняя свертку

$$P_{RS}(t) = q(t) * P_{FS}(t) \tag{7}$$

Результирующая форму импульса будет сверткой функции отклика на плоскую поверхность P_{FS} и функции распределения зеркальных площадок q

$$P(\tau) = \int_{-\infty}^{\infty} q(\tau - \tilde{\tau}) P_{FS}(\tilde{\tau}) \, d\tilde{\tau}$$

Стоит заметить, что из-за малого значения параметра ξ и масштаба задачи $(c\tau)/h\ll 1$ функция P_{FS} изменяется гораздо медленне функции плотности зеркальных точек q, а значит можно записать приближенное равенство

$$P pprox egin{cases} P_{FS}(0) \int\limits_0^\infty q(au - ilde{ au}) \,\mathrm{d} ilde{ au} \,, & ext{при } au < 0 \ P_{FS}(au) \int\limits_0^\infty q(au - ilde{ au}) \,\mathrm{d} ilde{ au} \,, & ext{при } au < 0 \end{cases}$$

Поскольку корреляция между соседними площадками мала, а количество площадок велико, то согласно центральной предельной теореме мы можем положить распределение q гауссовым

$$q(\tau) = \frac{1}{\sqrt{2\pi \left(\frac{2\sigma_s^2}{c}\right)}} \exp\left\{-\frac{\tau^2}{2\pi \left(\frac{2\sigma_s^2}{c}\right)^2}\right\}$$
(8)

Напоследок, следует учесть, что наш приемник (радиолокатор) тоже является линейной системой с некоторой импульсной характеристикой $P_T(t)$. Поэтому необходимо к уравнению (7) добавить ещё одну свертку. В работе (??) показано, что отклик радиолокатора имеет гауссовую форму

$$P_T(\tau) \sim \exp\left\{-\frac{\tau^2}{2\sigma_p^2}\right\},$$
 (9)

где $\sigma_p = \frac{1}{\sqrt{2}\ln 2}T \approx 0.425T, \, T$ — временное разрешение антенны, по порядку величины обычно равное $T \sim 10$ нс.

Тогда, результирующий импульс будет равен

$$P(t) = P_{FS}(t) * q(t) * P_T(t)$$
(10)

В свертке (10), с учетом (6),(9) и (8), каждый множитель представляет собой экспоненту. Свертку от трех экспонент не трудно посчитать аналитически.

Получаем окончательную формулу для сигнала на приемнике радилокатора

$$P(t) = Ae^{-v}(1 + \text{erf}(u)),$$
 где (11)

$$A = A_0 \exp\left\{\frac{-4}{\gamma}\sin^2\xi\right\},\$$

$$u = \frac{t - \alpha\sigma_c^2}{\sqrt{2}\sigma_c},\$$

$$v = \alpha(t - \frac{\alpha}{2}\sigma_c^2),\$$

в которых

$$\alpha = \delta - \frac{\beta^2}{4} = \frac{4}{\gamma} \cdot \frac{c}{h} \left(\cos 2\xi - \frac{\sin^2 2\xi}{\gamma} \right),$$
$$\gamma = \frac{\ln 2}{2} \sin^2 \theta_{-3dB},$$
$$\sigma_c^2 = \sigma_p^2 + \frac{\sigma_s^2}{c^2},$$

 $\xi \ll 1$ — малое отклонение антенны от надира, θ_{-3dB} — ширина диаграммы направленности антенны на уровне $-3dB,\ h$ — высота радиолокатора над поверхностью земли, c — скорость света в вакууме, σ_s^2 — дисперсия высот взволнованной морской поверхности.

График функции (11) изображен на рис. 2.

1.1. Восстановление параметров морской поверхности.

Зная зависимость принятого сигнала от параметров взволнованной морской поверхности, мы можем восстанавливать их по форме импульса. Это можно сделать, аппроксимируя практический импульс теоретической формулой и извлекая из получившегося графика необхожимые коэффициенты.

Браун в своей работе вывел формулу, описывающего форму импульса в предположении гауссовой плотности вероятности зеркальных площадок на морской поверхности.

Однако решать подобную задачу для формулы (11) довольно сложно из-за сложной зависимости восстанавливаемых параметров и в их большом количестве. Это может приводить к большим вычислительным ошибкам даже при большом соотношении сигнал-шум.

Рис. 2: Качественная форма импульса с обозначением основных параметров.

Поэтому для решения задачи ретрекинга предлагается, использовать менее физичную, но более наглядную запись формулы (11)

$$P(t) = A \exp\left\{S_T(t - \frac{\tau}{2})\right\} \left(1 + \operatorname{erf}\frac{t - \tau}{\sigma_L}\right), \text{ где}$$
 (12)

 S_T — коэффициент наклона заднего фронта импульса, au — эпоха σ_L — ширина переднего фронта импульса,

Поиск наклона заднего фронта. Формула (15), хороша тем, что можно найти некоторые коэффициенты, не прибегая к сложным методам оптимизации. После прохождения пика импульса, функция ошибок становится медленно меняющейся функцией и можно записать равенство

$$P(t) = 2A \exp\left\{S_T\left(t - \frac{\tau}{2}\right)\right\}, \text{ при } t > t_{max},\tag{13}$$

где t_{max} – ордината пика импульса.

Логарифмируя (13)

$$\ln P(t) = \ln 2A + S_T(t - \frac{\tau}{2}) = S_T t + \text{const}$$

мы получаем линейную функцию времени. Значит, построив логарифм формы импульса при $t > t_{max}$ и найдя коэффициент наклона получившейся прямой мы можем найти наклон заднего фронта S_T . Подобная процедура проведена на рис.??

Поиск ширины переднего фронта. Как видно из рис.??, при $t < t_{max}$ функция ошибок erf $\left(\frac{t-\tau}{\sigma_L}\right)$ ведет себя быстрее экспоненты, а значит можно написать приближенное равенство

$$P(t) \approx A \left(1 + \operatorname{erf} \frac{t - \tau}{\sigma_L} \right)$$
 (14)

Аппроксимируя импульс при $t < t_{max}$ формулой (14) мы получим оценку коэффициентов $A, \ \tau, \ \sigma_L.$

Имея оценки параметров аппроксимации по различным участкам функции P(t) мы можем использовать формулу (15) для всего импульса

$$P(t) = A \exp\left\{S_T(t - \frac{\tau}{2})\right\} \left(1 + \operatorname{erf}\frac{t - \tau}{\sigma_L}\right). \tag{15}$$

с начальными условиями для параметров A, S_T, τ, σ_L , полученных на предыдущих этапах.

На рисунках ниже продемострированы результаты работы этого алгоритма на различных формах импульса (меняются углы отклонения антенны).

Восстановление параметров поверхности Не сложно найти связь коэффициентов в формуле (11) и (15):

$$S_T = -\alpha,$$

$$\sigma_L = \sqrt{2}\sigma_c,$$

$$\sigma_c^2 = \sigma_p^2 + \frac{\sigma_s^2}{c^2}.$$
(16)

Из соотношений (16) восстанавливается значение дисперсии высот (высоты значительного волнения). Из амплиитуды импульса мы можем узнать сечение обратного рассеяния, которое с помощью различных моделей позволяет оценить скорость приводного ветра.

2. Моделирование процесса измерения

При малых углах падения механизм обратного рассеяния является квазизеркальным и отражение происходит на участках волнового профиля, ориентированных перпендикулярно падающему излучению. Тогда в формировании

отраженного сигнала будут участвовать только площадки, ориентированные нормально к излучению. Поэтому для моделирования рассеяния нам необходимо знать не только высоту в точке, но и уравнение касательной к ней плоскости, для этого необходимо знать наклоны ζ_x и ζ_y в искомой точке 1 .

Зная координаты радиолокатора (x_{rad}, y_{rad}, H_0) , координаты точки на поверхности (x, y, ζ) , можем из геометрии (см. рис. 4)

$$\cos \theta = \frac{\zeta_x(x - x_{rad}) + \zeta_y(y - y_{rad}) - (\zeta - H_0)}{\sqrt{(x - x_{rad})^2 + (y - y_{rad})^2 + (\zeta - H_0)^2} \sqrt{\zeta_x^2 + \zeta_y^2 + 1}}$$
(17)

Вероятность того, что угол θ будет точно равен нулю и произойдет зеркальное отражение для случайной выбранной точки очень мала, поэтому имеет смысл рассматривать квазизеркальное отражение и вводить ограничение на максимально допустимый локальный угол отражения.

¹Под словосочетанием «отражающая точка» подразумевается физически бесконечно малая площадка, характерные размеры которой больше длины волны радиолокатора

Нахождение всех зеркальных точек на характерном пятне радиолокатора $> 1 \text{ км}^2$ представляет собой ресурсоемкую задачу. Но поскольку формирование импульса носит статистический характер, то мы может выбирать гораздо меньшую выборку зеркальных точек.

Процесс создания такой выборки продемонстрирован на рис. 5а-5с.

Для смоделированной поверхности рис. 5а для некоторой выборки точек вычисляются по формуле (17) локальные углы падения. Квазизеркальными позже считаются те, для которых угол меньше одного градуса $\theta < 1^{\circ}$. Выборку можно делать несколькими способами, например создать её выбирая случайные точки на координатной сетке или проходить координатную сетку с равномерным шагом. Выборка на рис. 5b и 5c получена вторым способом.

Рис. 4: Геометрия определения локального угла падения. Красной линией обозначена касательная плоскость к рассматриваемой отражающей точке (x,y,ζ)

Теперь, для вычисления поля вблизи приемной антенны радиолокатора нам необходимо просуммировать отраженное от квазизеркальных точек поле (см.рис. 5c).

Как было сказано с предыдущих разделах, амплитуда поля излученного

антенной спадает по гиперболическому закону. Тогда амплитуда поля вблизи точки отражения (x,y,ζ) будет определяться как (см. геометрию задачи на рис. 4)

$$E_{sur} \sim \frac{E_0}{R_1} e^{-ikR_1} \cdot G(x, y, \theta_0),$$

Следовательно, вблизи приемной антенны амплитуду можно записать как

$$E \sim \frac{E_{sur}}{R_1} e^{-ikR_1} \cdot G(x, y, \theta_0) = \frac{E_0}{R_1^2} e^{-2ikR_1} \cdot G^2(x, y, \theta_0), \tag{18}$$

Остается только проинтегрировать уравнение (18) по всем отражающим точкам

$$E \sim \sum_{i=1}^{M} \frac{E_0}{R_i^2} \exp\{-2ikR_i\} G^2(x, y, \theta_0)$$

где M – количество точек, x_i, y_i – координаты i – ой отражающей точки, R_i – расстояние от спутника до i – ой точки.

(a) Моделирование поверхности при скорости ветра $U=5\,\mathrm{m/c}$

(b) Локальный угол отражения от поверхности для радиолокатора находящегося на высоте $H=1000~{\rm km}$ в точке с координатой $(100,\,100)$

(c) Положение зеркальных точек поверхности 5а для радиолокатора находящегося над точкой (100,100)

Рис. 5