杂谈勾股定理

张三

2010年11月5日

摘要

这是一篇关于勾股定理的小短文。

目录

1	勾股定理在古代	2
2	勾股定理的现代形式	3
参	考文献	4

1 勾股定理在古代

西方称勾股定理为毕达哥拉斯定理,将勾股定理的发现归功于公元前 6 世纪的毕达哥拉斯学派 [1]。该学派得到一个法则,可以求出可以排成直角三角形三边的三元数组。毕达哥拉斯学派没有书面著作,该定理的严格表述和证明则见于欧几里德¹《几何原本》的命题 47:"直角三角形斜边上的正方形等于两只脚边上的两个正方形之和。"证明是用面积做的。

我国《周髀算经》载商高(约公元前 12 世纪) 答周公问:

勾广三, 股修四, 径隅五。

又载陈子(约公元前7-6世纪)答荣方问:

若求邪至日者,以日下为勾,日高为股,勾股各 自乘,并而开方除之,得邪至日。

都较古希腊更早。后者已经明确道出勾股定理的一般形式。图 1 是我国古代对勾股定理的一种证明 [2]。

¹欧几里德,约公元前 330-275 年

图 1: 宋赵爽在《周髀算经》注中作的弦图(仿制),该图给 出了勾股定理的极具对称美的证明。

2 勾股定理的现代形式

勾股定理可以用现代语言表述如下:

定理 1 (勾股定理) 直角三角形斜边的平方等于两腰的平方和。

可以用符号语言表述为:设直角三角形ABC,其中 $\angle C=90^{\circ}$.则有

$$AB^2 = BC^2 + AC^2. (1)$$

满足式 (1) 的整数称为勾股数。第 1 节所说毕 达哥拉斯学派得到的三元数组就是勾股数。下表列 出了一些较小的勾股数:

	直角边 c	直角边 b	直角边a
$(a^2 + b^2 = c$	5	4	3
	13	12	5

参考文献

- [1] 克莱因. 古今数学思想. 上海科学技术出版社, 2002.
- [2] 曲安京. 商高、赵爽与刘徽关于勾股定理的证明. 数学传播, 20(3), 1998.
- [3] 矢野健太郎. 几何的有名定理. 上海科学技术出版社, 1986.