Digitaltechnik

5. Elektronikgrundlagen

Prof. Dr. Eckhard Kruse

DHBW Mannheim

Konzepte und technische Umsetzung

Konzepte

Flipflops, Speicher, Zähler, Automaten ...

Binärarithmetik ¹⁰¹¹/₁₀₁₁/₁₁₀₁₁₁

Boolesche $1 \land 0 = 0$

Binärsystem 0 1

Technische Umsetzung

"Strom an/aus"

Relais als Binärschalter

Spannung (Strom) an/aus = 0 / 1

Relaisrechner

Elektronenröhre

Relais: arbeitet elektromechanisch → bewegte Teile, langsam

Elektronenröhre:

Die am Steuergitter angelegte Spannung steuert den Stromfluß zwischen Kathode und Anode.

Zuse Z22 (ca. 1955)

Transistor

Röhre: 'elektrischer Schalter', aber groß und heiß (hohe Leistungsaufnahme)

Transistor:

Die an der Basis angelegte Spannung steuert den Stromfluß zwischen Emitter und Kathode.

Steckkarte aus Zuse Z23 (Anfang 1960)

Halbleiter

Definition

Ein **Halbleiter** ist ein Festkörper, der bzgl. seiner elektrischen Leitfähigkeit Eigenschaften von Leitern und Nichtleitern besitzen kann.

Die Leitfähigkeit von Halbleitern kann gezielt beeinflusst werden, indem Fremdatome in die Halbleiterstruktur eingebracht werden (→ Dotieren).

In einem undotierten Halbleiter bilden die 4-wertigen-Halbleiteratome (z.B. Silizium Si, Germanium Ge) eine feste Kristallstruktur.

Dotierung

Durch **Dotierung** mit 3- oder 5-wertigen Fremdatomen wird die Gitterstruktur gestört.

- 5-wertig (z.B. Arsen): freie Elektronen → n-Dotierung
- 3-wertig (z.B. Gallium): Elektronenlöcher → p-Dotierung

Dotierung

Durch **Dotierung** mit 3- oder 5-wertigen Fremdatomen wird die Gitterstruktur gestört.

- 5-wertig (z.B. Arsen): freie Elektronen → n-Dotierung
- 3-wertig (z.B. Gallium): Elektronenlöcher → p-Dotierung

Bändermodell

Die Anzahl beweglicher Elektronen (oder anderer geladener Teilchen) bestimmt die Leitfähigkeit eines Materials. Das **Bändermodell** veranschaulicht das Verhältnis von gebundenen und beweglichen Elektronen.

Bei einem Halbleiter ist nur wenig Energie erforderlich, um Elektronen aus dem Valenzband ins Leitungsband zu bringen.

Fügt man p-leitendes Material und n-leitendes Material zusammen, so entsteht ein Grenzbereich zwischen den Materialien, der **pn-Übergang** genannt wird.

Was passiert in diesem Grenzbereich?

Digitaltechnik: 5. Elektronikgrundlagen

Definition

Fügt man p-leitendes Material und n-leitendes Material zusammen, so entsteht ein Grenzbereich zwischen den Materialien, der pn-Übergang genannt wird.

Digitaltechnik: 5. Elektronikgrundlagen

Fügt man p-leitendes Material und n-leitendes Material zusammen, so entsteht ein Grenzbereich zwischen den Materialien, der pn-Übergang genannt wird.

Digitaltechnik: 5. Elektronikgrundlagen

Durch die Ladungsträgerdiffusion entsteht die sogenannte **Raumladungszone**, in der ein starkes elektrisches Feld herrscht. In dieser Zone befinden sich **keine freien Elektronen**, so dass sie als **Sperrschicht** wirkt. Die Ladungsträgerdiffusion ist beendet, wenn das elektrische Feld mit der Wirkung der Wärmeschwingungen im Gleichgewicht ist.

Dotierung

Übung

5.1 Dotierung

Digitaltechnik: 5. Elektronikgrundlagen

Vertiefen Sie in Teamarbeit (2-3 Studierende) die Grundkonzepte der Dotierung. Beantworten/erläutern Sie sich dazu jeweils wechselseitig die folgenden Fragen:

- a) Was ist das Grundkonzept der Dotierung?
- b) Worin unterscheiden sich p- und n-Dotierung?
- c) Wie können "Elektronenlöcher" Strom leiten?
- d) Was passiert an der Grenzschicht von p- und n-Dotierung? Warum?
- e) Was ist die Raumladungszone? Was ist die Diffusionsspannung?
- f) Inwieweit spielt die Temperatur eine Rolle bei den beschriebenen Effekten?

Diode

Die Eigenschaften des pn-Übergangs werden in **Halbleiterdioden** genutzt. Die wesentliche Eigenschaft einer Diode ist, dass sie den Strom in nur einer Richtung durchlässt.

Die pn-Schichten befinden sich in einem Gehäuse und sind mit Anschlüssen versehen. Aufgrund des pn-Übergangs ist eine Halbleiterdiode gepolt, das Dreieck im Schaltzeichen stellt die p-Schicht, der Balken die n-Schicht dar.

Diode

Die Eigenschaften des pn-Übergangs werden in **Halbleiterdioden** genutzt. Die wesentliche Eigenschaft einer Diode ist, dass sie den Strom in nur einer Richtung durchlässt.

Was passiert in dem pn-Übergang, wenn eine Spannung angelegt wird?

Diode: Sperrrichtung

p-Schicht am Minuspol, n-Schicht am Pluspol → Diode in Sperrrichtung

Die Löcher der p-Schicht werden zusätzlich von Elektronen vom Minuspol gefüllt, freie Elektronen der n-Schicht wandern zum Pluspol ab. Die Sperrschicht (ohne freie Ladungsträger) vergrößert sich.

Digitaltechnik: 5. Elektronikgrundlagen

Diode: Durchlassrichtung

p-Schicht am Pluspol, n-Schicht am Minuspol → Diode in Durchlassrichtung

Die freien Elektronen der n-Schicht werden vom Minuspol abgestoßen, in der p-Schicht werden die Elektronen vom Pluspol angezogen und verlassen die Elektronenlöcher. Die Diffusionsspannung wird abgebaut, die Grenzschicht wird von freien Ladungsträgern überschwemmt.

Transistor

Transistoren bestehen aus drei benachbarten Halbleiterschichten, wobei die mittlere Schicht sehr dünn ist.

Man unterscheidet npn- und pnp-Transistoren.

Transistor gesperrt

Digitaltechnik: 5. Elektronikgrundlagen

Basis an den Minuspol: pn-Übergang sperrt wie in einer Diode. Zwischen Kollektor und Emitter kann kein Strom fließen.

Transistor durchgeschaltet

Basis an Plus: Die Grenzschichten werden von freien Elektronen überschwemmt wie bei einer Diode in Durchlassrichtung. Zwischen Kollektor und Emitter fließt Strom. Da die p-Schicht sehr dünn ist, fließt nur ein minimaler Anteil des Stroms über die Basis ab.

Digitaltechnik: 5. Elektronikgrundlagen

Diode und Transistor

Übung

5.2 Diode und Transistor

Digitaltechnik: 5. Elektronikgrundlagen

Diskutieren Sie in Teamarbeit (2-3 Studierende) die Funktionsweise von Diode und Transistor. Beantworten/erläutern Sie sich dazu jeweils wechselseitig die folgenden Fragen:

- a) Was passiert, wenn eine Diode in Sperrrichtung beschaltet ist?
- Was passiert, wenn eine Diode in Durchlassrichtung beschaltet ist?
- Was passiert, wenn ein Transistor sperrend geschaltet ist?
- Was passiert, wenn ein Transistor durchlassend geschaltet ist?
- Warum muss die mittlere Transistorschicht sehr dünn sein?
- Worin unterscheiden sich npn- und pnp-Transistor?

Transistorschaltung

Transistoren dienen zum Schalten von elektrischen Strömen/Spannungen. Abhängig von der Spannung an der Basis fließt durch die Kollektor-Emitter-Strecke ein Strom (geringer Transistorwiderstand) oder nicht (hoher Transistorwiderstand).

Wie kann man daraus AND / OR Verknüpfungen bauen?

Laststromkreis

AND-Schaltung mit Transistoren

Digitaltechnik: 5. Elektronikgrundlagen

Integrierte Schaltung

Transistor → immer kleiner, immer mehr

Eine integrierte Schaltung (integrated circuit, IC) ist eine auf einem einzelnen Halbleiter (Chip) untergebrachte elektronische Schaltung (= elektronische Bauelemente und Verdrahtung).

(Bildquelle: Wikipedia)

TTL und ECL

In **TTL**-Bausteinen (Transistor-Transistor-Logic) werden logische Schaltungen (Gatter) mit planaren npn-Transistoren realisiert (meist mit Multiemitter-Transistoren, d.h. mit mehreren Eingängen pro Transistor).

- überwiegend für einfache Standard-ICs
- Taktfrequenzen bis etwa 250 MHz
- hohe Leistungsaufnahme, Spannung: 5 V
- Verscheidene TTL-Varianten mit unterschiedlicher Geschwindigkeit und Verlustleistung

In **ECL**-Bausteinen (Emitter Coupled Logic) werden Transistoren über ihre Emitter miteinander verbunden und somit Differenzverstärkerschaltungen realisiert.

- sehr kurze Schaltzeiten (>1 Ghz)
- hohe Verlustleistung

MOSFET, CMOS

CMOS-Bausteine (Complementary Metal Oxide Semiconductor) basieren auf einer Kombination von p-Kanal- und n-Kanal-Feldeffekttransistoren.

- → Verlustleistung nur während des Schaltvorgangs
- hohe Integrationsdichte, sehr kurze Schaltzeiten
- verschiedene Betriebsspannungen (0,75 15 V)
- Fast alle Prozessoren und Speicherbausteine sind heute als CMOS realisiert.

MOSFET - Schaltsymbole (Quelle: Wikipedia)

Transistortechnologien

Übung

5.3 Transistortechnologien

Die vorgestellten Transistortechnologien unterschieden sich hinsichtlich verschiedener Merkmale wie Schaltzeit, Betriebsspannung, Spannungs-/Stromsteuerung, Verlustleistung und Integrationsdichte.

Diskutieren Sie in Teamarbeit (2-3 Studierende) / erläutern Sie sich gegenseitig:

- a) Was bedeuten diese Begriffe?
- b) Inwieweit hängen diese Merkmale voneinander ab?
- c) Wie wirken sich Merkmale auf die Entwicklung heutiger CPUs aus?

CMOS

Digitaltechnik: 5. Elektronikgrundlagen

Beispiel

Quelle: www.techpowerup.com