COMP1046 Tutorial 1: Matrices

Anthony Bellotti

Let
$$\mathbf{A} = \begin{pmatrix} 3 & 2 \\ -1 & 0 \\ 2 & 3 \end{pmatrix}$$
, $\mathbf{B} = \begin{pmatrix} 2 & 0 & -2 \\ 1 & 3 & 1 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} 2 & -1 & 0 & 2 \\ 4 & 0 & 1 & -1 \\ 1 & 0 & 2 & -2 \end{pmatrix}$.

1. Based on \mathbf{A} , what is $\mathbf{a_2}$ and $\mathbf{a^1}$?

Answer: This is the second row and first column of **A** respectively, given as vectors: (-1,0) and (3,-1,2).

2. Compute $2\mathbf{B} + \mathbf{A}^T$.

Answer:
$$\begin{pmatrix} 4 & 0 & -4 \\ 2 & 6 & 2 \end{pmatrix} + \begin{pmatrix} 3 & -1 & 2 \\ 2 & 0 & 3 \end{pmatrix} = \begin{pmatrix} 7 & -1 & -2 \\ 4 & 6 & 5 \end{pmatrix}$$
.

3. Suppose $\mathbf{A} + \mathbf{D} = \mathbf{0}$. Compute \mathbf{D} .

Answer:
$$\mathbf{D} = -\mathbf{A} = \begin{pmatrix} -3 & -2 \\ 1 & 0 \\ -2 & -3 \end{pmatrix}$$
.

4. Compute **AB**.

Answer:
$$\begin{pmatrix} 3 \times 2 + 2 \times 1 & 3 \times 0 + 2 \times 3 & 3 \times -2 + 2 \times 1 \\ -1 \times 2 + 0 \times 1 & -1 \times 0 + 0 \times 3 & -1 \times -2 + 0 \times 1 \\ 2 \times 2 + 3 \times 1 & 2 \times 0 + 3 \times 3 & 2 \times -2 + 3 \times 1 \end{pmatrix} = \begin{pmatrix} 8 & 6 & -4 \\ -2 & 0 & 2 \\ 7 & 9 & -1 \end{pmatrix}.$$

5. Compute **BA**.

Answer:
$$\begin{pmatrix} 2 \times 3 + 0 \times -1 + -2 \times 2 & 2 \times 2 + 0 \times 0 + -2 \times 3 \\ 1 \times 3 + 3 \times -1 + 1 \times 2 & 1 \times 2 + 3 \times 0 + 1 \times 3 \end{pmatrix} = \begin{pmatrix} 2 & -2 \\ 2 & 5 \end{pmatrix}$$
.

6. What is the submatrix of \mathbf{C} when the 1st row and 2nd and 3rd columns are cancelled?

1

Answer:
$$\begin{pmatrix} 4 & -1 \\ 1 & -2 \end{pmatrix}$$
.

7. What is the minor for this submatrix?

Answer: det
$$\begin{pmatrix} 4 & -1 \\ 1 & -2 \end{pmatrix}$$
 = $4 \times -2 - 1 \times -1 = -7$.

8. Compute the complement minor $M_{1,3}$ and cofactor $A_{1,3}$ of **AB**.

Answer: Cancel row 1 and column 3 of $\mathbf{AB} = \begin{pmatrix} 8 & 6 & -4 \\ -2 & 0 & 2 \\ 7 & 9 & -1 \end{pmatrix}$ and compute its determinant: $M_{1,3} = \det \begin{pmatrix} -2 & 0 \\ 7 & 9 \end{pmatrix} = -2 \times 9 - 7 \times 0 = -18$. $A_{1,3} = (-1)^{3-1} M_{1,3} = M_{1,3} = -18$.

9. Compute $det(\mathbf{B}\mathbf{A})$ and $(\mathbf{B}\mathbf{A})^{-1}$.

Answer: $\det(\mathbf{B}\mathbf{A}) = \det\begin{pmatrix} 2 & -2 \\ 2 & 5 \end{pmatrix} = 2 \times 5 - 2 \times -2 = 14.$ $(\mathbf{B}\mathbf{A})^{-1} = \frac{1}{\det(\mathbf{B}\mathbf{A})} \begin{pmatrix} 5 & 2 \\ -2 & 2 \end{pmatrix} = \begin{pmatrix} 5/14 & 1/7 \\ -1/7 & 1/7 \end{pmatrix}.$

10. Confirm that your answer is correct by taking the product of **BA** with its inverse.

Let $\mathbf{D} = \begin{pmatrix} 2 & -1 & 1 \\ -1 & 4 & 0 \\ -4 & 9 & -1 \end{pmatrix}$ and $\mathbf{E} = \begin{pmatrix} 1 & 3 & -1 \\ 2 & 6 & -2 \\ -3 & -9 & 3 \end{pmatrix}$.

11. Compute $\det(\mathbf{D})$.

Answer: Convenient to work on column 3 with I Laplace Theorem:-

 $\det(\mathbf{D}) = \sum_{i=1}^{3} a_{i,3} A_{i,3} = 1 \times \det\begin{pmatrix} -1 & 4 \\ -4 & 9 \end{pmatrix} - 0 + (-1)\det\begin{pmatrix} 2 & -1 \\ -1 & 4 \end{pmatrix} = 7 - 7 = 0$

12. Compute \mathbf{D}^{-1} , or explain if it cannot be computed.

Answer: Since $det(\mathbf{D}) = 0$, the inverse \mathbf{D}^{-1} cannot be computed.

13. Compute the ranks of C, D and E.

Answer: The largest square matrix for **C** is 3×3 . Consider the first three columns to form square matrix $\begin{pmatrix} 2 & -1 & 0 \\ 4 & 0 & 1 \\ 1 & 0 & 2 \end{pmatrix}$. Using I Laplace Theorem with column $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix}$ is $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 0 & 2 \end{pmatrix}$.

2, the determinant is non-zero, $-1 \times -1 \times (4 \times 2 - 1 \times 1) = 7$ hence the rank $\rho_{\mathbf{C}} = 3$.

The largest square matrix for **D** is 3×3 , i.e. itself. However from Q11, we know its determinant is zero, so $\rho_{\mathbf{D}} < 3$. Try order 2: top left 2×2

matrix, $\begin{pmatrix} 2 & -1 \\ -1 & 4 \end{pmatrix}$ has non-zero determinant, $2\times 4-(-1)\times (-1)=7$, hence $\rho_{\bf D}=2$.

For **E**, observe that all three rows are linearly dependent. Even picking any two rows are linearly dependent. Hence, $\rho = 1$ (see Theorem on slide 13 of Lecture 4).

14. Suppose that matrix \mathbf{X} has an inverse \mathbf{X}^{-1} . Prove that the inverse of \mathbf{X}^{T} is $(\mathbf{X}^{-1})^{\mathrm{T}}$

Hint: You should use a property of the matrix product from Lecture 2.

Answer:

$$(\mathbf{X}^{-1})^{\mathrm{T}}\mathbf{X}^{\mathrm{T}} = (\mathbf{X}\mathbf{X}^{-1})^{\mathrm{T}}$$
 using transpose of the product;
= $\mathbf{I}^{\mathrm{T}} = \mathbf{I}$ since the identity matrix is symmetrical.

Hence $(\mathbf{X}^{-1})^{\mathrm{T}}$ must be the inverse of \mathbf{X}^{T} since their product is the identity matrix.