Examen de Teoría de Percepción - Recuperación Primer Parcial

ETSINF, Universitat Politècnica de València, Junio de 2018

Apellidos:				Nombre:	
_	□Jorg	e Civera 🗆 Ca	arlos Martínez	1	
			os, sin apuntes))	
B Dado un c	lasificador correspond	definido por $c(x) = \arg$ la a un clasificador de	g $\max_{c=1,,C} g_c(x)$. Indic mínimo error:	ca cuál de las sigu	tientes definiciones de $g_c(x)$ hace
B) $g_c(x)$	=P(x,c)	$= P(x) * P(c \mid x)$			
M y media modelo M el conjunto	ante la real ' que comb o de correo pondera i	imentación del usuario vina T y T' . Considera s TREC06 y T' , un co	se genera un nuevo conju la tarea de clasificación o njunto de correos propios	unto de entrenam de correos electró s que tú mismo h	con el cual se entrena un modelo iento T' que da lugar a un nuevo nicos en $spam$ y ham donde T es as etiquetado, ¿qué combinación ades a priori de cada clase en e
B) Suma C) Suma	r las proba r las proba	abilidades a priori calc abilidades a priori calc	am en T y T' , y normalizuladas a partir de T y la uladas a partir de T y la am en T y T' , y no norm	s calculadas a pai s calculadas a pai	rtir de T' , y no normalizar rtir de T' , y normalizar
empleando	la menor	memoria posible. Ter	niendo en cuenta que se	han definido 102	iere emplear información globa 24 niveles de gris, ¿qué tamaño upe menos que la representación
A) 500 p	íveles	Histograma	Directa	Histogra	ma Direct
B) 1000	píxeles píxeles	L*((log2(n+1))/8)<	n * up_rounding((log2(L)) / 8) -> 1024 * up_	rounding((log2(n+1)) / 8) < 2n
			banda 3500 Hz y se sab seguirse para garantizar		cir ruido de alta frecuencia en e iel de la señal?
B) Aplica C) Aplica	ar un filtro ar un filtro	para que pasen frecue	encias ≤3500 Hz y muest encias en el rango 3500± encias ≤3500 Hz y muest	f_M Hz, donde f_M	r es la frecuencia del ruido
		parece con una frecuen menor valor?	cia constante $k>0$ en to	dos los document	os de una colección, ¿qué función
A) La fu	nción Norn	mal $G(t) = \left(\sum_d x_{dt}^2\right)^{-\frac{1}{2}}$	1/2		
B) La fu	nción GfId	$f G(t) = \frac{\sum_{d} x_{dt}}{\sum_{d: x_{dt} > 0} 1}$			
			que, para este caso, sería: l	og(D/D) = 0.	
		n el mismo valor			

$$= \left(\begin{array}{ccccc} 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 1 & 1 & 1 & 1 \\ \end{array}\right)?$$

- C) 3
- D) 4
- D Dada la matriz de covarianzas de los datos originales $\Sigma_{\mathcal{X}} \in \mathbb{R}^{D \times D}$, la matriz de proyección PCA $W \in \mathbb{R}^{D \times k}$ donde \mathbf{w}_j es el j-ésimo vector de proyección (de mayor a menor valor propio asociado) y la matriz de covarianzas diagonalizada de los datos originales $\Delta \in \mathbb{R}^{D \times D}$, ¿cuál de las siguientes expresiones caracteriza el error de reconstrucción de los datos de \mathcal{X} al proyectarlos de \mathbb{R}^D a \mathbb{R}^k con W?

A)
$$\sum_{j=1}^{k} \mathbf{w}_{j}^{t} \Sigma_{\mathcal{X}} \mathbf{w}_{j} - \sum_{j=1}^{k} \Lambda_{jj}$$

B)
$$\sum_{j=1}^{k} \mathbf{w}_{j}^{t} \Lambda_{jj} \mathbf{w}_{j} - \sum_{j=1}^{D} \Lambda_{jj}$$

C)
$$\sum_{j=1}^{D} \mathbf{w}_{j}^{t} \Lambda_{jj} \mathbf{w}_{j} - \sum_{j=1}^{D} \Lambda_{jj}$$

D)
$$\sum_{j=1}^{D} \mathbf{w}_{j}^{t} \Sigma_{\mathcal{X}} \mathbf{w}_{j} - \sum_{j=1}^{k} \Lambda_{jj}$$

- A | Indica la característica de LDA que la distingue de PCA
 - A) Es una técnica de reducción de dimensionalidad supervisada.
 - B) Su resolución se basa en un problema de optimización.
 - C) Emplea las covarianzas de los datos.
 - D) Requiere el cálculo de vectores propios.

Examen de Teoría de Percepción - Recuperación Primer Parcial ETSINF, Universitat Politècnica de València, Junio de 2018

Apellidos:	Nombre:	
Profesor: □Jorge Civera □Carlos Martínez		
Problemas (4 puntos, 90 minutos, con apuntes)	

- 1. (1 punto) Calcula el espacio en memoria de las siguientes representaciones:
 - a) Representación global de una imagen en color RGB, con 256 niveles por cada color, de 45×45 píxeles, con representación directa. (0.2 puntos) Tamaño = $45 \times 45 = 45 \times 2 = 2025 -> R$, G y B -> $2025 \times 3 = 6075$ B.
 - b) Representación por características locales de una imagen de niveles de gris, con 256 niveles, de tamaño 45×45 con ventanas de 15×21 y desplazamiento unitario en ambas coordenadas, con representación por histograma. (0.3 puntos) $\mathbf{n} = (((\mathbf{Vy} \mathbf{C} + 1) / \mathbf{Dv}) * ((\mathbf{Vx} \mathbf{L} + 1) / \mathbf{Dh})) = (45 15 + 1) * (45 21 + 1) = 775 \mathbf{B}$.
 - c) Representación de una señal de audio de 5 minutos de alta fidelidad (muestreada a 44100Hz, muestras de 16 bits) en un sistema 2.1. (0.2 puntos) TAMAÑO (B) = 5 * 60 * 44100 * 2 * 3 = 79380000 B = 79.38 MB.
 - d) Representación de una señal de audio monocanal con ancho de banda 5KHz, muestreada con la frecuencia mínima para mantener todas sus frecuencias representativas, de duración 1 minuto y representada por 1 byte por muestra.
 (0.3 puntos) TAMAÑO (B) = 60 * 5000 * 2 (ya que nos dan el ancho de banda) * 1 * 1 = 0.6 MB.

Solución:

- a) 6075 bytes
- b) 396800 bytes S = 256 * 2 = 512 B. -> Tamaño final = n * s = 396800 B.
- c) 79380000 bytes TAMAÑO (B) = DURACIÓN (s) * FRECUENCIA (Hz) * TAMAÑO MUESTRA (B) * nº de canales
- d) 600000 bytes
- 2. (1 punto) Sea el siguiente conjunto de documentos de texto:

Doc	Texto
1	Pedro Sánchez se compromete a gobernar para los que no le votaron y para los que tampoco le votarán
2	Mariano Rajoy ya ha cambiado la dirección de la suscripción al Marca
3	Pedro Sánchez ha envejecido diez años desde que es presidente
4	Aparece a lápiz "P. Sánchez" en los papeles de Bárcenas
5	Las 25 frases más míticas de Mariano Rajoy durante su presidencia del Gobierno
6	Pedro Sánchez preguntará a las bases si debe dimitir por haberse ido a vivir a La Moncloa
7	Pedro Sánchez prometió su cargo sin Biblia y Dios sigue pensando que el presidente de España es Rajoy
8	Albert Rivera solo ve "españoles traidores" desde que hicieron a Pedro Sánchez presidente

Se pide:

- a) Calcular la representación bag-of-words para las palabras correspondientes a nombres propios: Pedro, Sánchez, Mariano, Rajoy, Marca, Bárcenas, Gobierno, Moncloa, Biblia, Dios, España, Albert, Rivera. (0.3 puntos)
- b) Calcular las funciones globales normal, GfIdf e Idf para los términos: para, los, la, que, a, en, de, más (0.5 puntos)
- c) A la vista de los resultados del apartado previo, ¿qué característica de Idf se confirma? (0.2 puntos)

Solución:

	t/d	1	2	3	4	5	6	7	8
	Pedro	1	0	1	0	0	1	1	1
	Sánchez	1	0	1	1	0	1	1	1
	Mariano	0	1	0	0	1	0	0	0
	Rajoy	0	1	0	0	1	0	1	0
	Marca	0	1	0	0	0	0	0	0
<i>i</i>)	Bárcenas	0	0	0	1	0	0	0	0
	Gobierno	0	0	0	0	1	0	0	0
	Moncloa	0	0	0	0	0	1	0	0
	Biblia	0	0	0	0	0	0	1	0
	Dios	0	0	0	0	0	0	1	0
	España	0	0	0	0	0	0	1	0
	Albert	0	0	0	0	0	0	0	1
	Rivera	0	0	0	0	0	0	0	1

	Término	Normal	GfIdf	Idf
<i>b</i>)	para	$\frac{1}{2}$	2	$\log 8$
	los	$\frac{1}{\sqrt{5}}$	$\frac{3}{2}$	$\frac{\log 8}{\log 4}$
	la	$\frac{1}{2}$	2	$\frac{\log 8}{\log 2}$
	que	$\frac{1}{\sqrt{7}}$	$\frac{5}{4}$	$\log 2$
	a	$\frac{1}{\sqrt{12}}$	$\frac{3}{2}$	$\log 2$
	en	1	1	$ \begin{array}{c} \log 8 \\ \log 2 \\ \log 8 \end{array} $
	de	$\frac{1}{2}$	1	$\log 2$
	más	1	1	$\log 8$

- c) Se confirma que Idf atenúa más los tokens que aparecen en más documentos; así, los tokens "que", "a" y "de", que aparecen en 4 documentos de los 8, presentan el menor valor de la colección.
- 3. (2 puntos) Se dispone de un conjunto de muestras en \mathbb{R}^3 clasificadas en cuatro clases:

Por otra parte se ha calculado LDA, obteniéndose los siguientes vectores de proyección ordenados por valor propio generalizado de mayor (w_1) a menor (w_3) :

$$\begin{array}{c|cccc} & W_{\rm LDA} \\ \hline w_1 & 0 & 0 & 1 \\ w_2 & 1 & 0 & 0 \\ w_3 & 0 & 1 & 0 \\ \hline \end{array}$$

Se pide:

- a) Calcula los vectores de proyección PCA del conjunto de muestras (1 punto).
- b) Calcula la proyección de las muestras mediante PCA a \mathbb{R}^2 (0.4 puntos).
- c) Calcula la proyección de las muestras mediante LDA a \mathbb{R}^2 (0.4 puntos).
- d) ¿Qué proyección (PCA o LDA) consideras más adecuada para minimizar el error de clasificación? (0.2 puntos)
- a) Para calcular los vectores de proyección PCA primero es necesario obtener la matriz de covarianzas de los datos. En este caso, como $\bar{\mathbf{x}} = (0\ 0\ 0)^t$, la matriz de covarianzas es:

$$\Sigma = \frac{1}{8} \begin{pmatrix} 4 & 4 & -2 & 2 & -2 & 2 & -4 & -4 \\ 4 & 4 & 2 & -2 & 2 & -2 & -4 & -4 \\ 1 & -1 & -1 & 1 & 1 & -1 & -1 & 1 \end{pmatrix} \cdot \begin{pmatrix} 4 & 4 & 1 \\ 4 & 4 & -1 \\ -2 & 2 & -1 \\ 2 & -2 & 1 \\ -2 & 2 & 1 \\ 2 & -2 & -1 \\ -4 & -4 & -1 \\ -4 & -4 & 1 \end{pmatrix} = \begin{pmatrix} 10 & 6 & 0 \\ 6 & 10 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Calculamos los valores propios de la matriz de covarianzas

$$\begin{vmatrix} 10 - \lambda & 6 & 0 \\ 6 & 10 - \lambda & 0 \\ 0 & 0 & 1 - \lambda \end{vmatrix} = 0 \quad \text{donde} \quad \lambda_1 = 16, \quad \lambda_2 = 4 \quad \text{y} \quad \lambda_3 = 1.$$

Los vectores propios asociados son

$$\lambda_1 = 16 \quad \to \quad w_1 = \left(\frac{\sqrt{2}}{2} \quad \frac{\sqrt{2}}{2} \quad 0\right)^t$$

$$\lambda_2 = 4 \quad \to \quad w_2 = \left(-\frac{\sqrt{2}}{2} \quad \frac{\sqrt{2}}{2} \quad 0\right)^t$$

$$\lambda_3 = 1 \quad \to \quad w_3 = (0 \quad 0 \quad 1)^t.$$

b) Proyectamos sobre los dos vectores propios de mayor valor propio asociado

n	1	2	3	4	5	6	7	8
x_1	$4\sqrt{2}$	$4\sqrt{2}$	0	0	0	0	$-4\sqrt{2}$	$-4\sqrt{2}$
x_2	0	0	$2\sqrt{2}$	$-2\sqrt{2}$	$-2\sqrt{2}$	$-2\sqrt{2}$	0	0
c	A	В	D	A	$^{\mathrm{C}}$	В	D	\mathbf{C}

c) Proyectamos sobre los dos vectores LDA

d) A diferencia de la proyección PCA que asigna al mismo punto datos de diferentes clases, la proyección LDA separa los datos de diferentes clases, y por tanto es más adecuada.