	Name: SON	AM		
	- D			DATE / /
	University Roll.	: 2014892.		PAGE No.
	Tutorial 7		1.6	
01.	lireedy algo a	radigm:	freedy is an	algorithm
			0 00 000 000	00 1 1
	always choo	sign the next	piece that of	en othe
	always choo	und immediat	e benefits.	
	There are multi	ple application	of the greedy	technique sud
	os:		•	. 20
	J. CPU scheduli	hg		
	2. Minmun ah	arning Thee		
	2. Minimum of 3. Several Graf	in based algo's		
		•		-
			0 1	
02.	Activity	Job	Fractional	Huffman
	Selection	sequencing	Knappack	Encoding.
		41		
	(, , ,)	0	())	^ ^
Time	O(N logN)	0(n²)	o(nlogn)	O(nlogn)
Time Complexity		0	o(nlogn)	O(nlogn)
Complexity		0(n²)	V	0
Complexit		0	o(nlogn)	O(nlogn)
Complexity		0(n²)	V	0
Complexity Space Complexity	0(n)	0(n²)	V	0
Complexit	0(n)	o(n²)	0(n)	0
Complexity Space Complexity		o(n²)	0(n)	0
Complexity Space Complexity	0(n)	o(n²) o(n) chan fre	0(n)	0
Complexity Space Complexity	0(n)	o(n²)	V	0
Complexity Space Complexity	0(n)	o(n²) o(n) chan fre	quercy,	0
Complexity Space Complexity	0(n)	o(n²) O(n) Chan Free	gueray 45	0
Complexity Space Complexity	0(n)	o(n²) O(n) Chan Free	Quercy, 45 23 22	0
Complexity Space Complexity	0(n)	o(n²) O(n) Chan Free a b c d	9 (n) 9 (n) 9 (2) 22 22 20	0

Data Structure used for Huffman Encoding: Binamy Tree

So used for building Huffman Cooling and it habo

used for Huffman Encoding. Application a Huffman encoding. 1. Huffman code is used to convert fixed lengts codes into variable lengts codes dutich result in domler compression 2. Compressed codes may be jurisser compressed using JPEG and MPEG. to get the desired compression ratio W=15 15 7 6 18 3 Value 10 Might 2 v/w 5 1.6 3 1 6 4.5 3 · choose hi ghest tuei V/W ratio is soudichers edoue done · let aurent might = c.

	DATE / / PAGE No.
0	Knapsack Alap: To salve the hold
ram -	a meight is mulich has highest when retire
or with	a might is which has highest v/w ratio added to the Knapsack. until me can't add the next
Carried Land	as a subale and that boint al time will the
	as a whole and that point of time we take the
J	Knapsak. This is nothing but greedy apprach of taking the highest ratio enougtime.
J	
	Huffman Coding: Huffman coding & based on the
	and an area on the arigh the morable
·	renges code to input characters, length of the august
	codes are bound an obje me and city al come who is
	the advertigation of the day approach as
07	ore using a predefined stoudure everytime to solve the prob
A	Start time 1 2 0 6 9 10
M-	End time 3 5 7 0 8 11 12
4-	2.1 it thight at weight is 1.6
3415	0 1 2 3 4 5 6 7 8 9 10 M 2
Timellhe	0 1 2 3 4 5 6 7 8 9 10 M 12 WHATH I WHIKIM YHAM I
A	
xC	Included process - a ga, e
w-	Included process - a j d, e
	(in a max 3 max [vill] et a 1 - 1 - 1
	man no al proces = 3.
	18 81 8 0 21 E. 8 01 - XVOX
	01-12-8/01/
	1x:v3 -1.1 / / /

