

Modalanalyse mit Hilfe der Finite-Elemente-Methode

Autor: Qian Sun

Betreuer: Rico Schmidt

Prüfer: Prof. Dr.-Ing. Alfons Ams

Modalanalyse mit Hilfe der Finite-Elemente-Methode

ÜBERBLICK

Einleitung

Theoretische Grundlagen

Modalanalyse
Finite-Elemente-Methode
Prinzip von Hamilton
Finite Elemente und Matrizen
Elemente

Ergebnisse

Längsschwingungen eines Stabs Biegeschwingungen eines Balkens Biegeschwingungen einer Platte

Zusammenfassung/Ausblick

Einleitung

Ziel dieser Arbeit:

⇒ numerische Modalanalyse mit Hilfe der Finite-Elemente-Methode

Theoretische Grundlagen:

⊠Modalanalyse

⊠Finite-Elemente-Methode

Simulationen:

⊠Stab ⊠Balken ⊠Platte

Software:

MATLAB[®] ⋈ANSYS[®]

MODALANALYSE

Übersicht

Die Modalanalyse stellt die Untersuchung der dynamischen Eigenschaften von Systemen im Frequenzbereich dar.

Die Eigenfrequenzen sind im konstruktiven Ingenieurbau sehr wichtig, da es unerlässlich ist, dass diese nicht mit den erwarteten Erregungsfrequenzen übereinstimmen (Resonanz). Falls es trotzdem zur Resonanz kommt, kann das Objekts strukturellen Schaden erleiden.

Die Analyse der Schwingungseigenschaften des strukturellen Systems dient zur Diagnose und Vorhersage von Vibrationsfehlern sowie der Optimierung der dynamischen Strukturmerkmale.

MODALANALYSE

Einteilung

Numerisch: beispielsweise durch die Finite-Elemente-Methode Experimentell: Anregung und Antwort über Sensoren messen

In dieser Arbeit

In dieser Arbeit wird die numerische Modalanalyse mit der Finite-Elemente-Methode betrachtet. Die FE Simulation wird mit MATLAB® beschrieben. Außerdem werden die FE-Software ANSYS® sowie analytische Lösungen nach [SP95] zum Vergleichen der Ergebnisse benutzt.

FINITE-ELEMENTE-METHODE

Begriff

Die Finite-Elemente-Methode diskretisiert das Grundgebiet in einen Gesamtbau endlicher Finite-Elemente. Die einfachen Gleichungen, die diese finiten Elemente modellieren, werden dann zu einem größeren Gleichungssystem zusammengefügt, das das gesamte Problem beschreibt.

Verfahren

- 1. Das Unterteilen (Diskretisieren) des ganzen Grundgebiets des Problems in eine Sammlung von einfachen Teilgebieten.
- Systematische Rekombination aller Elementgleichungen zu einem globalen Gleichungssystem für die endgültige Berechnung.

FINITE-ELEMENTE-METHODE

FE-Gleichungssystem

Lineares Gleichungssystem 2. Ordnung eines strukturmechanischen FE-Modells

$$\mathbf{M}\ddot{u}(t) + \mathbf{D}\dot{u}(t) + \mathbf{K}u(t) = P(t)$$

M - Massenmatrix

D - Dämpfungsmatrix

K - Steifigkeitsmatrix

P(t) - Vektor der externen Kräfte

u(t) - Vektor der Freiheitsgrade

PRINZIP VON HAMILTON

Begriff

Das Prinzip von HAMILTON besagt, dass die Dynamik eines physikalischen Systems mittels Variationsrechnung einer einzigen Funktion, der LAGRANGE-Funktion, bestimmt wird. Das Prinzip von HAMILTON ist auch ein wichtiges Variationsprinzip in der Elastodynamik.

Gleichung

$$\delta \int_{t_1}^{t_2} (E_{kin} - E_{pot}) \, dt + \int_{t_1}^{t_2} \delta W \, dt = 0$$

 E_{kin} - kinetische Energie E_{pot} - potenzielle Energie δW - virtuelle Arbeit aller angreifenden potentiallosen Kräfte

KOORDINATENSYSTEM

Zusammenhang

Jedes Element vom Grundgebiet hat ein eigenes lokales Koordinatensystem. Die lokalen Koordinaten eines Elements sind von -1 bis +1 definiert. Die globale Länge eines Elements ist l_e .

Transformation von der lokalen Variable ξ mit dem Intervall [-1,1] auf die globale Koordinate x mit dem Intervall $[0,l_e]$:

$$\begin{cases} \xi(x) = a_0 + a_1 x \\ \xi(x=0) \stackrel{!}{=} -1 \\ \xi(x=l_e) \stackrel{!}{=} 1 \end{cases} \Rightarrow \xi = -1 + \frac{2}{l_e} x \Rightarrow \frac{\partial \xi}{\partial x} = \frac{2}{l_e}$$

STABELEMENTE

Matrizen

Mit dem Prinzip von HAMILTON ergibt sich die Massenmatrix

$$\mathbf{M}_e = \int_0^{l_e} \rho A \vec{N}^T(x) \vec{N}(x) \mathrm{d}x \;,$$

und die Steifigkeitsmatrix eines Elements

$$\mathbf{K}_e = \int_0^{l_e} EA\vec{N}_{,x}^T(x)\vec{N}_{,x}(x)\mathrm{d}x \ .$$

STABELEMENTE

Ansatzfunktion für Element

Um den Vektor der Formfunktionen $\vec{N}(x)$ zu berechnen, werden zwei Ansätze für die Längsverschiebung $u(\xi)$ eines Elements eingeführt.

Zum einen ein linearer Ansatz mit

$$u(\xi) = a_0 + a_1 \xi$$
; $u(-1) \stackrel{!}{=} u_1$; $u(1) \stackrel{!}{=} u_2$

d.h. jedes Element hat zwei Knoten, jeder Knoten hat einen Freiheitsgrad.

Zum anderen ein quadratischer Ansatz mit

$$u(\xi)=a_0+a_1\xi+a_2\xi^2$$
; $u(-1)\stackrel{!}{=}u_1; u(0)\stackrel{!}{=}u_2; u(+1)\stackrel{!}{=}u_3$ d.h. jedes Element hat drei Knoten, jeder Knoten hat einen Freiheitsgrad.

BALKENELEMENTE

Matrizen

Mit dem Prinzip von HAMILTON ergibt sich die Massenmatrix

$$\mathbf{M}_e = \int_0^{l_e} \rho A \vec{N}^T(x) \vec{N}(x) \mathrm{d}x,$$

und die Steifigkeitsmatrix eines Elements

$$\mathbf{K}_e = \int_0^{t_e} EI\vec{N}_{,xx}^T(x)\vec{N}_{,xx}(x)\mathrm{d}x .$$

BALKENELEMENTE

Ansatzfunktion für Element

Um den Vektor der Formfunktionen $\vec{N}(x)$ zu berechnen, wird ein kubischer Ansatz für die Durchbiegung $w(\xi)$ eines Elements eingeführt.

Kubischer Ansatz

$$w(\xi) = a_0 + a_1 \xi + a_2 \xi^2 + a_3 \xi^3$$

mit den Forderungen

$$w(-1) \stackrel{!}{=} w_1 \; ; \; w_{,\xi}(-1) \stackrel{!}{=} \phi_1 \; ; \; w(+1) \stackrel{!}{=} w_2 \; ; \; w_{,\xi}(+1) \stackrel{!}{=} \phi_2$$

d.h. jedes Element hat zwei Knoten, jeder Knoten hat zwei Freiheitsgrade.

PLATTENELEMENTE

Matrizen

Mit dem Prinzip von HAMILTON ergibt sich die Massenmatrix

$$\mathbf{M}_e = \int_{A_e} \rho H \vec{N}^T(x, y) \vec{N}(x, y) \, \mathrm{d}A_e,$$

und die Steifigkeitsmatrix eines Elements

$$\mathbf{K}_{e} = \int_{A_{e}} \frac{EH^{3}}{12(1-\nu^{2})} \left[\vec{N}_{,xx}^{T}(x,y) \vec{N}_{,xx}(x,y) + \nu \left(\vec{N}_{,xx}^{T}(x,y) \vec{N}_{,yy}(x,y) + \vec{N}_{,yy}^{T}(x,y) \vec{N}_{,xx}(x,y) \right) + \vec{N}_{,yy}^{T}(x,y) \vec{N}_{,yy}(x,y) + 2(1-\nu) \vec{N}_{,xy}^{T}(x,y) \vec{N}_{,xy}(x,y) \right] dA_{e} .$$

PLATTENELEMENTE

Ansatzfunktion für Element

Um den Vektor der Formfunktionen $\vec{N}(x)$ zu berechnen, wird ein bikubischer Ansatz für die Durchbiegung $w(\xi,\eta)$ eines Elements eingeführt.

$$w(\xi,\eta) = a_0 + a_1 \xi + a_2 \eta + a_3 \xi^2 + a_4 \xi \eta + a_5 \eta^2 + a_6 \xi^3$$

+ $a_7 \xi^2 \eta + a_8 \xi \eta^2 + a_9 \eta^3 + a_{10} \xi^3 \eta + a_{11} \xi^2 \eta^2 + a_{12} \xi \eta^3$
+ $a_{13} \xi^3 \eta^2 + a_{14} \xi^2 \eta^3 + a_{15} \xi^3 \eta^3.$

Mit den Knotenvariablen

$$w; w_{,\xi}; w_{,\eta}; w_{,\xi\eta}$$

besitz jedes Element vier Knoten, jeder Knoten hat vier Freiheitsgrade.

LÄNGSSCHWINGUNGEN EINES STABS

Eigenfrequenzen

	Mode	1	,	3	,	5	6	7	Q	
Eigenfrequenz [Hz]		'		, ,	7	,	U	'		, , , , , , , , , , , , , , , , , , ,
Linearer Ansatz	9-Elemente	129,4690	392,3596	667,1834	961,8870	1283,2110	1632,6871	1996,5486	2327,9315	2537,4539
	15-Elemente	129,3639	389,5117	653,9326	925,5110	1207,1451	1501,6589	1811,5811	2138,6850	2483,1315
Quadratischer Ansatz	9-Elemente	129,3050	387,9544	647,0233	907,7234	1172,4705	1445,1451	1731,3816	2039,0736	2379,3269
	15-Elemente	129,3048	387,9197	646,5906	905,4860	1164,9579	1425,5942	1688,2579	1954,1176	2224,6784
Analytisches Ergebnis		129,3048	387,9145	646,5242	905,1339	1163,7436	1422,3533	1680,9630	1939,5728	2198,1825

BIEGESCHWINGUNG EINES BALKENS

Eigenfrequenzen

Eigenfrequenz [H:	Mode z]	1	2	3	4	5	6	7	8	9
Kubischer Ansatz –	9-Elemente	0,167103	1,047271	2,933378	5,754348	9,5349445	14,305110	20,113484	26,998875	34,636055
	15-Elemente	0,167103	1,047225	2,932393	5,747150	9,5036211	14,205800	19,862454	26,487922	34,103683
Analytisches Ergebnis		0,167102	1,047218	2,932244	5,746024	9,4985889	14,189250	19,818043	26,384969	33,890027

BIEGESCHWINGUNGEN EINES BALKENS

Eigenschwingformen

BIEGESCHWINGUNGEN EINER PLATTE

Eigenfrequenzen

Eigenfrequenz [Hz]	1	2	3	4	5	6	7	8	9
9 Elemente je Seite	2,162105	5,299083	13,259113	16,940469	19,284920	33,759497	38,167191	39,961917	44,225406
15 Elemente je Seite	2,161776	5,298090	13,256507	16,938819	19,280190	33,748742	38,150961	39,947782	44,201679
Ergebnis ANSYS®	2,161505	5,293666	13,254572	16,932654	19,265101	33,713487	38,157460	39,942079	44,185442

BIEGESCHWINGUNGEN EINER PLATTE

Eigenschwingformen

BIEGESCHWINGUNGEN EINER PLATTE

Eigenschwingformen

Zusammenfassung/Ausblick

Zusammenfassung

Theoretische Grundlagen der numerischen Modalanalyse:

⊠Finite-Elemente-Methode

Durchgeführte Simulationen für folgende Beispiele:

⊠eindimensionales Modell (Stab)

⊠eindimensionales Modell (Balken)

⊠zweidimensionales Modell (Platte)

Ausblick

Modalanalyse für:

□dreidimensionales Modell ⇒ nächster Schritt

LITERATUR

[Sch91] Hans-Rudolf Schwarz. Methode der finiten Elemente: eine Einführung unter besonderer Berücksichtigung der Rechenpraxis, volume 47. Teubner-Verlag, 1991.

[SP95] Wolfgang Stephan and Rudolf Postl. Schwingungen elastischer Kontinua. Springer, 1995.

[Wau14] Jörg Wauer.

Kontinuumsschwingungen.
Springer, 2014.

VIELEN DANK FÜR IHRE AUFMERK-SAMKEIT