Politechnika Poznańska Wydział Elektryczny Instytut Automatyki i Inżynierii Informatycznej

Projekt Zespołowy

Inteligentny zamek

Autorzy:
Maciej Marciniak
nr indeksu: 121996

e mail:

maciej.r.marcniak@student.put.poznan.pl

Damian Filipowicz nr indeksu: 122002

e mail:

Damian. Filipowicz@student.put.poznan.pl

Spis treści

1	\mathbf{Akt}	orzy systemu	4
2	Opi	s składowych systemu	5
	2.1	Urządzenie sterujące	5
	2.2	Aplikacja mobilna	7
	2.3	Aplikacja serwerowa obsługującego bazę danych	9
3	Diag	gram przypadków użycia	10
4	Pro	jekt bazy danych	12
5	Wid	lok graficzny systemu	15
	5.1	Panel logowania użytkownika	15
	5.2	Panel rejestracji	15
	5.3	Panel listy zamków	15
	5.4	Panel boczny	16
	5.5	Panel zarządzania certyfikatami	16
	5.6	Panel listy aktualnych certyfikatów	16
	5.7	Panel certyfikatu	16
	5.8	Panel wnioskowania o certyfikat	16
	5.9	Panel tworzenia certyfikatu dla gościa	16
	5.10	Panel administratora	16
	5.11	Panel historii użycia zamków	16
	5.12	Panel generowania nowego certyfikatu (administrator)	16
	5.13	Panel dodawania typu dostępu	16
	5.14	Panel zarządzania certyfikatami (administrator)	16
	5.15	Panel listy oczekujących użytkowników	16
	5.16	Panel listy oczekujących certyfikatów	16
	5.17	Panel ustawień konta	16

Wstęp

Inteligentny zamek powinien być systemem, który ma na celu zastąpienie starego modelu zabezpieczeń różnego rodzaju drzwi i skrytek w którym używano tradycyjnych kluczy, czy szyfrów na klucze cyfrowe, którymi będzie można posługiwać się przy pomocy smartfonów z funkcją bluetooth. Celem tego rodzaju usprawnień będzie wyeliminowanie z życia codziennego sytuacji w których użytkownik musi posiadać pęki kluczy. Zamiast tego dzięki temu systemowi może wszystkie klucze przechowywać w jednym miejscu (smartfonie).

System składać się będzie z:

- urządzenia sterującego:
 - mikrokomputera Raspberry Pi 3,
 - serwomechanizmu / elektronicznego zamka,
- aplikacji mobilnej,
- aplikacji serwerowej obsługującej bazę danych.

System będzie spełniał wymagania dotyczące bezpieczeństwa poprzez zastosowanie szeregu funkcji kryptograficznych przy procesie uwierzytelniania jak i przy generowaniu kluczy takich jak np. funkcje skrótu, SSH, algorytmów szyfrowania asymetrycznego, systemu zarządzaniem kluczem publicznym (podpisu cyfrowego).

Używane klucze będą posiadały podpis cyfrowy, który jednoznacznie będzie definiował właściciela oraz stempel czasowy do określania ważności. Klucze będą mogły mieć w zależności od przeznaczenia różne okresy przedawnienia, np. właściciel mieszkający w danym domu posiadać będzie klucz o długim terminie ważności, a goście klucz jednorazowy, bądź kilku godzinny bez możliwości odnowienia. Wszelkie dane dostępowe będą generowane i dystrybuowane na serwerze systemu, z możliwością zdalnej prośby o utworzenie kluczy tylko przez uprawnione przez administratora osoby.

Ogólny schemat systemu znajduje się na Diagramie 1.

Diagram 1: Diagram wdrożeń

Aktorzy systemu

W systemie Inteligentnego zamka wyróżniamy następujących aktorów:

- RaspberryPi jest to mikrokomputer Raspberry Pi 3 sterujący zamkiem,
- serwomechanizm/elektrozamek jest to urządzenie służące do odblokowania/zablokowania zamka,
- urządzenie mobilne jest to urządzenie posiadające system operacyjny, z funkcją bluetooth oraz posiadające możliwość instalacji aplikacji,
- aplikacja serwerowa jest to program znajdujący się na serwerze z dostępem globalnym poprzez Internet,
- użytkownik jest to osoba fizyczna operująca urządzeniem mobilnym, chcąca uzyskać dostęp do zamka.

Użytkowników dodatkowo dzieli się na grupy ze względu na uprawnienia w systemie:

- **gość** posiada najniższe uprawniania, może jedynie posiadać klucze o krótkim okresie ważności, nie może generować nowych kluczy ani udostępniać ich,
- użytkownik zalogowany posiada uprawnienia gościa, dodatkowo przechowywać może klucze o stałym dostępie do zamka (np. dostęp przez cały dzień),
- administrator może wykonywać wszystkie czynności związane z uprawnieniami gościa i użytkownika zalogowanego, dodatkowo posiada dostęp do statystyk historii zamka, decyduje o rejestracji użytkowników zalogowanych.

Opis składowych systemu

2.1 Urządzenie sterujące

Zadaniem urządzenia sterującego, w którego skład wchodzić będą Raspberry Pi 3 oraz serwomechanizm/zamka elektronicznego jest weryfikacja klucza cyfrowego przesyłanego przez urządzenie mobilne oraz otwieranie zamka przy pozytywnym wyniku weryfikacji.

Oprogramowanie mikrokomputera obejmuje system Linux raspbian-jessie oraz szereg podprogramów napisanych w języku Python. Skrypty programów łączą się do serwera w celu pobrania informacji o poprawności i daty ważności certyfikatu dostępu. Jeśli dane będą poprawne to zostaje wysterowany serwomechanizm, który otwiera zamek, w przeciwnym przypadku użytkownik zostanie poinformowany o odmowie dostępu, a nieudana próba dostania się do systemu zarejestrowana zostanie w bazie danych wraz z danymi właściciela klucza. Funkcjonalność urządzenia sterującego przedstawiona została w Tabeli 2.1.

Tabela 2.1: Tabela wymagań funkcjonalnych urządzenia sterującego

Funkcja	Opis	Aktorzy
Parowanie	Parowanie bluetooth urządzenia	RaspberryPi,
urządzeń bluetooth	mobilnego z Raspberry Pi	Urządzenie mobilne
Nasłuchiwanie	Oczekuje na przychodzące połączenia	RaspberryPi
połączenia	bluetooth	
bluetooth		
Nawiązanie	Każda próba nawiązania połączenia	RaspberryPi,
połączenia	bluetooth zostanie zaakceptowana	Urządzenie mobilne
bluetooth		
Pobranie pliku z	Przesyłanie pliku z kluczem dostępowym	RaspberryPi,
kluczem cyfrowym	z urządzenia mobilnego do Raspberry Pi	Urządzenie mobilne,
przez bluetooth	poprzez bluetooth	Gość
Weryfikacja	Wysłanie zapytania w języku SQL do	RaspberryPi,
poprawności klucza	bazy danych	Aplikacja serwerowa
cyfrowego		
Otwarcie zamka	Otwarcie zamka poprzez wysłanie	RaspberryPi,
	sygnału PWM do serwomechanizmu lub	Serwomechanizm/
	zezwolenie zamka elektronicznego	elektrozamek

Zamknięcie zamka	Zamknięcie zamka poprzez wysłanie	RaspberryPi,
	sygnału PWM do serwomechanizmu lub	Serwomechanizm/
	zezwolenie zamka elektronicznego	elektrozamek
Rejestracja próby	Zapis każdej pozytywnej i negatywnej	RaspberryPi
dostępu	próby weryfikacji klucza cyfrowego w	
	tabeli bazy danych	
Deszyfracja	Deszyfracja pliku z certyfikatem	RaspberryPi
certyfikatu	dostępowym używając klucza publicznego	
użytkownika	użytkownika	
Pobranie	Umożliwia wczytanie specjalnego hasła	RaspberryPi,
awaryjnego klucza	512-bitowego do Raspberry Pi, który	Aplikacja mobilna,
dostępu	otwiera zamek bez konieczności dostępu	Administrator
	do Internetu	

Wymagania pozafunkcjonalne:

- jednocześnie może być weryfikowany tylko jeden użytkownik,
- zasięg połączenia bluetooth to maksymalnie 15m,
- niezbędny dostęp do Internetu do połączenia z aplikacją serwerową przy weryfikacji kluczy,
- narzut czasowy związany z weryfikacją poprawności klucza cyfrowego zależny od parametrów serwera i sieci,
- niezbędny ciągły dostęp do zasilania 5V o prądzie co najmniej 2.5A,
- ograniczenia prądowe dla serwomechanizmu lub zamka elektronicznego,
- narzut czasowy związany z uruchomieniem urządzenia maksymalnie 20 sekund.

2.2 Aplikacja mobilna

Aplikacja mobilna w języku Java na platformę Android ma na celu przechowywanie w pamięci smartfona klucze cyfrowe użytkownika oraz możliwość komunikacji z człowiek-zamek-serwer. Program posiadać powinien interfejs graficzny, dzięki któremu będzie można wybrać, który zamek chce się otworzyć w danej chwili. Klucz cyfrowy przesyłany będzie bezprzewodowo do komputera sterującego zamkiem za pomocą sieci bluetooth. Aplikacja powinna posiadać również funkcję generowania kluczy tymczasowych, które można udostępniać osobom postronnym z ustalonym okresem ważności (jednorazowy, godzinny, od poniedziałku do piątku w godzinach od 8 do 16 itp.). W tym celu zostaje wysłana prośba do serwera poprzez Internet o wygenerowanie klucza o określonych parametrach. Funkcjonalność aplikacja przedstawiona została w Tabeli 2.2.

Tabela 2.2: Tabela wymagań funkcjonalnych aplikacji mobilnej

Funkcja	Opis	Aktorzy
Parowanie	Parowanie bluetooth urządzenia	Urządzenie mobilne,
urządzeń bluetooth	mobilnego z Raspberry Pi	RaspberryPi
Nawiązywanie	Nawiązanie połączenia bluetooth z	Urządzenie mobilne,
połączenia	konkretnym zamkiem identyfikując go	RaspberryPi
bluetooth	jednoznacznie adresem MAC	
Przesłanie pliku	Przesłanie pliku zawierającego klucz	Urządzenie mobilne,
klucza cyfrowego	cyfrowy do urządzenia sterującego	RaspberryPi
	zamkiem. Komputer sterujący odsyła	
	wynik weryfikacji (pozytywny lub	
	negatywny)	
Utworzenie klucza	Utworzenie specjalnego klucza	Urządzenie mobilne,
cyfrowego dla gości	cyfrowego o ograniczonym dostępie	Aplikacja serwerowa,
	oraz krótkim terminie ważności do	Użytkownik zalogowany
	użytku dla gości. Każde żądanie	
	generowania klucza wymaga wpisania	
	klucza bezpieczeństwa	
Udostępnianie	Udostępnienie specjalnego klucza	Urządzenie mobilne,
klucza cyfrowego	cyfrowego o ograniczonym dostępie	Użytkownik zalogowany
dla gości	oraz krótkim terminie ważności poprzez	
	np. wiadomość MMS, bluetooth	
Wczytanie klucza	Umożliwia wczytanie do listy	Urządzenie mobilne,
cyfrowego z pliku	dostępnych zamków pliku klucza	Gość
	cyfrowego	
Pobranie z serwera	Umożliwia pobranie z serwera klucza	Urządzenie mobilne,
nowego klucza	cyfrowego i dodanie go do listy	Aplikacja serwerowa,
cyfrowego	dostępnych zamków	Użytkownik zalogowany
Prośba o	W celu przedłużenia ważności	Urządzenie mobilne,
przedłużenie	certyfikatu zostaje wysłana prośba	Aplikacja serwerowa,
ważności klucza	do administratora systemu	Użytkownik zalogowany
Listowanie	Wyświetlenie na ekranie telefonu listy	Urządzenie mobilne,
dostępnych kluczy	dostępnych kluczy do danych drzwi	Gość

Modyfikacja danych kluczy cyfrowych	Modyfikacja nazw użytkownika, zamków. Pozwala spersonalizować opis zamków	Urządzenie mobilne, Aplikacja serwerowa, Użytkownik zalogowany
Szyfrowanie pliku klucza cyfrowego	Szyfrowanie algorytmem RSA klucza cyfrowego z wykorzystaniem klucza prywatnego	Urządzenie mobilne
Przechowywanie kluczy cyfrowych	Przechowywanie kluczy cyfrowych (szyfrowanych) w pamięci telefonu	Urządzenie mobilne
Podgląd do historii akcji zamków	Umożliwia przeglądanie historii akcji zamka, tzn. daty otwarcia przez kogo, daty zamknięcia	Urządzenie mobilne, Aplikacja serwerowa, Administrator
Autoryzacja użytkownika do aplikacji	Logowanie użytkownika poprzez podanie hasła i loginu do odblokowania aplikacji	Urządzenie mobilne, Aplikacja serwerowa, Użytkownik zalogowany
Rejestracja użytkownika	Założenie nowego konta użytkownika w systemie	Urządzenie mobilne, Aplikacja serwerowa, Gość
Akceptacja przez administratora nowego użytkownika	Administrator systemu może zaakceptować i nadać uprawniania użytkownika	Urządzenie mobilne, Aplikacja serwerowa, Administrator
Zarządzanie ważnością certyfikatów dostępu	Dodawanie, usuwanie ważności certyfikatów dostępowych. Usunięcie praw użytkownika nie skutkuje unieważnieniem wygenerowanych przez niego certyfikatów	Urządzenie mobilne, Aplikacja serwerowa, Administrator
Przesłanie awaryjnego klucza dostępu	Umożliwia wczytanie specjalnego hasła 512-bitowego do Raspberry Pi, który otwiera zamek bez konieczności dostępu do Internetu	Urządzenie mobilne, RaspberryPi, Administrator
Tryb otwierania zamka	Komunikacja z Raspberry może odbywać się automatycznie lub na żądanie wyzwalane przyciskiem otwierania zamka z poziomu aplikacji	Urządzenie mobilne, RaspberryPi, Użytkownik zalogowany

Wymagania pozafunkcjonalne:

- narzut czasowy związany z procesem szyfrowania kluczy cyfrowych (zależny od parametrów urządzenia mobilnego),
- zabezpieczenie transmisji danych poprzez szyfrowanie przy pomocy asymetrycznych kluczy cyfrowych,
- wymagany dostęp do Internetu do zarządzania kluczami, czy logowania,
- przyznanie uprawnień aplikacji do modułu bluetooth, wysyłania wiadomości MMS, Internetu,
- język aplikacji Polski,
- wersja androida minimalna 4.4, docelowa 5.0.

2.3 Aplikacja serwerowa obsługującego bazę danych

Rolą serwera w tym systemie będzie przechowywanie danych dostępowych w bazie danych MySQL oraz generowanie nowych kluczy cyfrowych poprzez program w języku Python. Aplikacja serwerowa oparta powinna być o technologię Python oraz serwera http Nginx. Serwer postawiony powinien być na odrębnym urządzeniu od instalacji zamka, lecz dopuszcza się ze względów ekonomicznych również postawienie serwera na wybranym (jeśli w systemie znajduje się wiele zamków) urządzeniu Raspberry Pi. Funkcjonalność aplikacji serwerowej i bazy danych przedstawiona została w Tabeli 2.3.

Tabela 2.3: Tabela wymagań funkcjonalnych aplikacji serwerowej obsługującej bazę danych

Funkcja	Opis	Aktorzy
Utworzenie klucza	Utworzenie pseudolosowego 128-bitowego	Aplikacja
cyfrowego na	klucza cyfrowego	serwerowa,
żądanie		Użytkownik
		zalogowany
Kontrola	Weryfikacja uprawnień użytkownika do	Aplikacja serwerowa
uprawnień	wykonania danej czynności	
użytkownika		
Modyfikowanie	Pośredniczenie w modyfikacji danych	Aplikacja serwerowa
wpisów w bazie	zawartych w bazie danych	
danych		
Przekazywanie	Pośredniczenie w przekazywaniu danych	Aplikacja serwerowa
wpisów z bazy	pobieranych z bazy danych	
danych		
Rejestrowanie	Zapisywanie danych użytkownika	Aplikacja serwerowa
żądań dostępu	ubiegającego się o dostęp do serwera	
Pobranie historii	Pobranie statystyk związanych z historią	Aplikacja
dostępu zamka	dostępu do zamka	serwerowa,
		Administrator
Zablokowanie	Zablokowanie certyfikatu dostępowego,	Aplikacja
dostępu	np. w przypadku kradzieży telefonu	serwerowa,
użytkownika		Administrator

Wymagania niefunkcjonalne:

- ograniczenie pamięci dostępnej dla bazy danych (32Gb pamięć niezbędna dla systemu operacyjnego i oprogramowania),
- ograniczenie liczby obsługiwanych zamków zależna od wielkości dostępnej pamięci i liczby użytkowników,
- narzut czasowy związany z generowaniem nowych kluczy,
- ograniczenie liczby użytkowników wykonujących jednocześnie żądania do serwera 9 urządzeń,
- wymagany system operacyjny Linux dedykowany pod Raspberry,
- dostęp do Internetu do połączenia z zamkami i urządzeniami mobilnymi,
- zabezpieczenie bazy danych hasłem generowanym losowo.

Diagram przypadków użycia

Funkcjonalność systemu przedstawiono na Diagramie 3.1 przypadków użycia.

Diagram 3.1: Diagram przypadków użycia

Projekt bazy danych

Baza danych przechowywać będzie składać się z pięciu tabel:

- USERS przechowuje dane użytkowników oraz dane niezbędne przy weryfikacji logowania,
- LOCKS zawiera informacje na temat dostępnych w systemie zamków,
- ACCESS_TO_LOCKS archiwizuje próby użycia certyfikatów,
- TYPES_ACCESS przechowuje zdefiniowane typy uprawnień dostępowych do zamków,
- LOCKS_KEYS zawiera wszystkie klucze dostępowe użytkowników.

Wiersz tabeli USERS zawierać musi:

- \bullet $\mathbf{ID_USER}$ unikalny identyfikator (klucz główny) użytkownika składający się z 10 cyfr,
- LOGIN unikalna nazwa użytkownika niezbędna podczas logowania, zawierająca nie więcej niż 255 znaków,
- PASSWORD hasło zapisane w postaci skrótu, potrzebne do autoryzacji dostępu użytkownikowi,
- NAME imię użytkownika,
- SURNAME nazwisko użytkownika,
- IS_ADMIN pole boolowskie wskazujące czy dany użytkownik jest administratorem czy nie.

Zamek opisywany jest poprzez kolumny:

- ID_LOCK unikalny identyfikator (klucz główny) zamka składający się z 10 cyfr,
- NAME unikalna nazwa zamka,
- LOCALIZATION nieobowiązkowe pole opisujące fizyczne położenie zamka.

Typy uprawnień posiadać będę takie parametry jak:

- ID_TYPE unikalny identyfikator (klucz główny) typu dostępu składający się z 10 cyfr,
- NAME unikalna nazwa typu dostępu,
- DAYS binarny ciąg oznaczającym których dni dotyczy dostęp, najstarszy bit oznacza poniedziałek, zaś najmłodszy niedzielę, np. 1011000 oznacza dostęp w poniedziałek, środę i czwartek, w pozostałe dni nie,
- FROM_HOURS godzina od której obowiązuje dostęp,
- TO_HOURS godzina do której obowiązuje dostęp,
- DESCRIPTION nieobowiązkowy pole charakteryzujące typ dostępu.

Klucz dostępowy składa się z:

- ID_KEY unikalny identyfikator (klucz główny) klucza dostępowego składający się z 10 cyfr,
- ID_LOCK klucz obcy do tabeli tabeli przechowującej dostępne zamki,
- ID_USER klucz obcy do tabeli tabeli przechowującej dane użytkownika, jest to pole służące do określenia kto utworzył klucz dostępu,
- ACCESS_TYPE klucz obcy do tabeli tabeli przechowującej typy dostępu, jest to pole służące do określenia jakiego rodzaju dostęp ma klucz dostępowy,
- KEY unikalna wartość certyfikatu dostępu,
- FROM data od której obowiązuje klucz,
- TO data do której obowiązuje klucz,
- ISACTUAL data wygaśnięcia klucza, jeśli równa TO, oznacza to że klucz utracił ważność z powodu czasu, jeśli różna oznacza, to że zablokowano z innego powodu ważność,
- NAME imię osoby, której dotyczy certyfikat,
- SURNAME nazwisko osoby, której dotyczy certyfikat.

W tabeli archiwizującej akcje na zamku znajdują się takie dane jak:

- ID unikalny identyfikator (klucz główny) akcji wykonanej na certyfikacie składający się z 10 cyfr,
- ID_KEY klucz obcy do tabeli tabeli przechowującej klucze dostępowe, dzięki tej informacji możemy uzyskać dane o zamku który został otwierany jak również do kogo należał klucz,
- DATE dokładna data z godziną użycia klucza dostępowego,
- ACCESS binarna flaga informująca czy dostęp został przyznany czy odmówiony.

Diagramy bazy danych odpowiednio encji i relacji przedstawione zostały na Diagramie 4.1 i 4.2.

Diagram 4.1: Diagram encji bazy danych

Diagram 4.2: Diagram relacji bazy danych

Widok graficzny systemu

Jedynym elementem graficznym systemu Inteligentnego Zamka jest aplikacja znajdująca się na urządzeniach mobilnych. Poniżej opisano,krótko poszczególne widoki wykonane w środowisku Android Studio.

5.1 Panel logowania użytkownika

5.2 Panel rejestracji

5.3 Panel listy zamków

Widok listy dostępnych zamków przedstawia listę nazw zamków do jakich dany użytkownik ma dostęp. Ułatwieniem jest możliwość sortowania wyników i wyszukiwanie po nazwach. Kliknięcie w nazwę zamka powoduje otwarcie zamka. Ustawić można również zamek, który ma być otwierany automatycznie gdy jest się w pobliżu zamka. (Rysunek 5.1 i 5.2)

Diagram 5.2: Lista dostępnych zamków (poziomo)

Diagram 5.1: Lista dostępnych zamków (pionowo)

- 5.4 Panel boczny
- 5.5 Panel zarządzania certyfikatami
- 5.6 Panel listy aktualnych certyfikatów
- 5.7 Panel certyfikatu
- 5.8 Panel wnioskowania o certyfikat
- 5.9 Panel tworzenia certyfikatu dla gościa
- 5.10 Panel administratora
- 5.11 Panel historii użycia zamków
- 5.12 Panel generowania nowego certyfikatu (administrator)
- 5.13 Panel dodawania typu dostępu
- 5.14 Panel zarządzania certyfikatami (administrator)
- 5.15 Panel listy oczekujących użytkowników
- 5.16 Panel listy oczekujących certyfikatów
- 5.17 Panel ustawień konta