# 1. Transformadas de Laplace para Engenharia

Na modelagem matemática de sistemas dinâmicos, frequentemente utiliza-se equações diferenciais para descrever o comportamento do sistema. Uma parcela considerável dos problemas de engenharia são de sistemas lineares e invariantes no tempo (LTI) que podem ser representados através de equações diferenciais lineares com coeficientes constantes (invariantes no tempo). A transformada de Laplace é uma ferramenta matemática muito útil para resolver este tipo de equação e portanto conhecer o comportamento dinâmico de um sistema.

A vantagem do método é que equações diferenciais no domínio do tempo são convertidas em equações algébricas facilmente manipuláveis em outro domínio, o da frequência, como será visto posteriormente.

# 1.1. Definição da Transformada de Laplace

Seja um sinal físico que pode ser representado pela função no domínio do tempo denotada por f(t). A transformada de Laplace de f(t), doravante denotada por  $L\{f(t)\} = F(s)$  é definida por:

$$F(s) = \int_{-\infty}^{+\infty} f(t) \cdot e^{-st} \cdot dt$$

Entretanto para sistemas físicos, causais por natureza, é comum definir os sinais e sistemas dinâmicos considerando somente o tempo positivo ou t>0. Matematicamente isto resulta da multiplicação da função degrau unitário u(t) pela função f(t), ou seja, f(t) será nula para tempos t<0. A função degrau unitário é muito importante será estudada como exemplo de aplicação.

A integral de Laplace pode então ter seu limite de integração inferior alterado de -∞ para zero, quando recebe o nome de Transformada Unilateral de Laplace

Nas aplicações de Sistemas de Controle usualmente e também neste texto é utilizada a seguinte definição:

$$F(s) = \int_{0}^{+\infty} f(t) \cdot e^{-st} \cdot dt$$

Onde:  $s = \sigma + i\omega$  - variável complexa sendo  $\sigma$  é parte real e  $\omega$  a parte imaginária.

t – variável real que representa o tempo.

f(t) – função no domínio do tempo tal que f(t)=0 para t<0.

Analisando-se o expoente (-st), sabe-se que o mesmo deve ser adimensional para que tenha significado físico de onde conclui-se que a variável s deve ter mesma dimensão de frequência  $(T^{-1})$  recebendo o nome de frequência complexa.

A transformada de Laplace pode então ser entendida como uma mudança de domínio, onde uma função (no domínio do tempo) é transformada em outra no domínio da frequência.

O retorno do domínio da frequência para o domínio do tempo é obtida pela transformada inversa de Laplace denotada por  $L^{-1}\{F(s)\}=f(t)$  e definida por:

$$L^{-1}\left\{F(s)\right\} = f(t) = \frac{1}{2 \cdot \pi \cdot j} \int_{\sigma - i\infty}^{\sigma + j\infty} F(s) \cdot e^{st} \cdot ds$$

## 1.1.1. Algumas transformadas úteis

As transformadas abaixo são de algumas das funções excitação mais comumente empregadas em sistemas de controle e estão aqui relacionadas somente para definir estas funções e utilizá-las como exemplo de aplicação da definição de transformadas de Laplace.

## Função degrau

A função degrau é definida por  $f(t) = \begin{cases} 0 & para \ t < 0 \\ A & para \ t > 0 \end{cases}$ 



$$L(f(t)) = \int_{0}^{+\infty} A \cdot e^{-st} \cdot dt = A \cdot \left(-\frac{1}{s}\right) \cdot e^{-st} \Big|_{0}^{+\infty} = \frac{A}{s}$$

Um caso especial da função degrau é quando A=I, quando a função recebe o nome de degrau unitário u(t).

#### Função pulso

Seja a função 
$$f(t) = \begin{cases} 0 & para \ t < 0 \\ A/t_0 & para \ 0 < t < t_0 \\ 0 & para \ t > t_0 \end{cases}$$



Esta função pode ser entendida como um degrau positivo de altura  $A/t_0$  superposto de um degrau negativo atrasado de  $t_0$  segundos tal que a área abaixo da curva seja  $A t_0$ .

$$L(f(t)) = \frac{A}{t_0 s} (1 - e^{-st_0})$$

### Função impulso unitário ou delta de Dirac $\delta(t)$ .

A função impulso é um caso particular da função pulso quando  $t_0 \rightarrow 0$ .

$$f(t) = \lim_{t_0 \to 0} A/t_0$$
 e  $L(f(t)) = A$ 

No caso especial em que A=I a função é chamada é chamada de Delta de Dirac  $\delta(t)$  e portanto  $L(\delta(t))=1$ .

Raramente será necessário resolver a integral para obter a transformada de Laplace de um determinado sinal ou sua inversa, sendo mais indicada a consulta a tabelas de pares de transformadas de Laplace onde se encontra a representação do sinal no domínio do tempo e sua correspondente no domínio da frequência.

Entretanto as tabelas disponíveis não contemplam todos os sinais e suas combinações e desta forma é conveniente conhecer as propriedades básicas de transformadas de Laplace. Estas propriedades são úteis quando uma função não tabelada pode ser convertida em uma soma de outras funções, todas tabeladas.

#### 1.1.2. Propriedades das Transformadas de Laplace

As propriedades das Transformadas de Laplace são úteis para obter transformadas de funções não tabeladas mas que podem ser obtidas a partir de funções tabeladas.

#### Linearidade (Superposição e Homogeneidade)

Considere a e b constantes reais ou complexas e f(t) e g(t) funções no domínio do tempo, a propriedade da superposição estabelece que:

$$L(a \cdot f(t) + b \cdot g(t)) = a \cdot F(s) + b \cdot G(s)$$

#### Mudança de escala

Quando se pretende normalizar a resposta no domínio do tempo para unificar o comportamento de diversos sistemas físicos em um único modelo matemático é conveniente utilizar uma mudança de escala. Note que o fator de escala *a* deve ser positivo.

$$L\left(f\left(\frac{t}{a}\right)\right) = a \cdot F(a \cdot s)$$

#### Deslocamento no tempo

$$L(f(t-a)\cdot u(t-a))=e^{-as}\cdot F(s)$$

Quando este tipo de comportamento ocorre em sistemas físicos o tempo de atraso a é chamado de tempo morto ou atraso de transporte.

# Multiplicação por $e^{-at}$ (deslocamento em frequência)

A multiplicação da função no domínio do tempo por  $e^{-at}$  tem o efeito de substituir a variável s por (s+a) na função no domínio da frequência, onde a pode ser uma constante real ou complexa.

$$L(e^{-at}f(t)) = F(s+a)$$

#### Diferenciação no tempo

Diferenciar no domínio do tempo equivale a multiplicar por s no domínio da frequência.

$$L\left(\frac{df(t)}{dt}\right) = s \cdot F(s) - f(0^+)$$

Onde:  $f(0^+)$  é o valor da função no tempo t=0.

A forma geral para diferenciação no tempo pode ser obtida aplicando a propriedade sucessivamente:

$$L\left(\frac{d^{n}y(t)}{dt^{n}}\right) = s^{n} \cdot F(s) - s^{n-1} \cdot f(0) - s^{n-2} \cdot f(0) - \dots$$

Onde f(0), f(0), f(0) são os valores iniciais de f(t) e de suas derivadas até a ordem (n-1).

#### Integração no tempo

Integrar no domínio do tempo equivale a dividir por s no domínio da frequência.

$$L\left(\int f(t) \cdot dt\right) = \frac{F(s)}{s} + \frac{\int_{-\infty}^{-1} f(0)}{s}$$

Onde f(0) é o valor da integral em t=0.

### Convolução

A operação matemática chamada convolução definida pela integral:

$$f(t) * g(t) = \int_{0}^{t} f(\tau) \cdot g(t-\tau) \cdot d\tau = \int_{0}^{t} f(t-\tau) \cdot g(\tau) \cdot d\tau$$

Que tem como transformada de Laplace:

$$L(f(t) * g(t)) = F(s) \cdot G(s)$$

### Teorema do valor inicial

Relaciona o comportamento da função f(t) próximo a t=0 com o comportamento de  $s \cdot F(s)$ quando  $s \rightarrow \infty$ .

$$\lim_{t\to 0} f(t) = \lim_{s\to \infty} s \cdot F(s)$$

#### Teorema do valor final

Relaciona o comportamento da função f(t) quando  $t \rightarrow \infty$  com o comportamento de  $s \cdot F(s)$ quando  $s \rightarrow 0$ . O teorema é válido quando os limites existem, ou seja, quando a parte real dos pólos da função F(s) é negativa e permite-se um pólo simples na origem para F(s).

$$\lim_{t \to \infty} f(t) = \lim_{s \to 0} s \cdot F(s)$$

Este teorema é aplicado quando se deseja conhecer o comportamento do sistema em regime permanente (domínio do tempo) sem a necessidade de obter a transformada inversa.

#### Expansão em Frações Parciais

Em problemas de engenharia as transformadas de Laplace geralmente aparecem na forma:

$$F(s) = \frac{N(s)}{D(s)}$$

Onde N(s) é um polinômio de grau m e D(s) um polinômio de grau n e, para sistemas físicos,  $n \ge n$ m.

Considerando que as tabelas de transformadas de Laplace não comtemplam todas as funções nem sempre é possível obter diretamente a transformada inversa consultando uma tabela.

A expansão em frações parciais ajuda a resolver este problema separando a função F(s) em uma soma de funções mais simples que apresentam pares de transformada tabelados. Uma vantagem do método é que os efeitos de cada um dos pólos do polinômio característico podem ser avaliados independentemente. Por outro lado o polinômio característico deve ser fatorado antes de ser aplicado o método.

### 1.1.3. Frações parciais de funções com pólos simples

Seja a função F(s) que pode ser fatorada na forma abaixo e que os pólos  $-p_1, -p_2, \dots -p_n$  são todos distintos, podendo ser reais ou complexos conjugados.

$$F(s) = \frac{N(s)}{D(s)} = K \frac{(s + z_1) \cdot (s + z_2) \cdot \dots (s + z_m)}{(s + p_1) \cdot (s + p_2) \cdot \dots (s + p_n)} \qquad n > m$$

Utilizando o teorema de Heaviside a expressão acima pode ser expandida em:

$$F(s) = \frac{N(s)}{D(s)} = \frac{a_1}{(s+p_1)} + \frac{a_2}{(s+p_2)} + \dots + \frac{a_n}{(s+p_n)}$$

E os coeficientes  $a_k$  (k=1,2,....n) são os resíduos nos pólos - $p_1$ , - $p_2$ , .... - $p_n$  e são obtidos através de:

$$a_{k} = \left( (s + p_{k}) \cdot \frac{N(s)}{D(s)} \right) \Big|_{s = -p_{k}} = \left( (s + p_{k}) \cdot \frac{(s + z_{1}) \cdot (s + z_{2}) \cdot ... (s + z_{m}) \cdot}{(s + p_{1}) \cdot (s + p_{2}) \cdot ... (s + p_{n}) \cdot} \right) \Big|_{s = -p_{k}}$$

O teorema de Heaviside também é aplicado quando a função envolve pólos múltiplos, quando os coeficientes são obtidos de maneira diferente desta (ver FRANKLIN, 1994). Entretanto não é de aplicação simples e direta. Atualmente diversos pacotes de simulação computacional oferecem ferramentas para obter os coeficientes de expansão em frações parciais.

# Exercícios

1 - Aplicando as propriedades de Transformadas de Laplace e considerando que A,  $\alpha$ ,  $\beta$  e  $\theta$ são constantes, determine:

$$L\{A\cdot e^{-\alpha\cdot t}\}$$

$$L\{A \cdot sen(\omega \cdot t + \theta)\}$$

$$L\left\{A \cdot e^{-\alpha \cdot t}\cos(\omega \cdot t + \theta)\right\}$$

$$L^{-1}\left\{\frac{3}{3s+5}\right\}$$

$$L^{-1}\left\{\frac{3\cdot e^{-2s}}{3s+5}\right\}$$

$$L^{-1}\left\{\frac{10}{s\cdot(s^2+5s+10)}\right\}$$

$$L^{-1}\left\{\frac{10}{s^2+5s+10}\right\}$$

$$L^{-1}\left\{\frac{10}{s^2+8s+10}\right\}$$

$$L^{-1}\left\{\frac{10}{s\cdot(s^2+8s+10)}\right\}$$

2 - Determine o valor de f(t) quando  $t \to \infty$ :

$$F(s) = \frac{10}{s+10}$$

$$F(s) = \frac{25}{s \cdot (s+10)}$$

$$F(s) = \frac{10}{s - 10}$$

$$F(s) = \frac{-5}{s \cdot (s^2 + 2s + 10)} \qquad F(s) = \frac{10 \cdot s + 2}{s^2 - 8s + 10}$$

$$F(s) = \frac{10 \cdot s + 2}{s^2 - 8s + 10}$$

$$F(s) = \frac{30}{s \cdot (s^2 + 8s + 10)}$$

3 – Determine a convolução das funções abaixo, aplicando as propriedades de Transformadas de Laplace:

$$f_1(t) = 5 \cdot u(t)$$

$$f_2(t) = 2 \cdot e^{-10t} + 3 \cdot e^{-22t}$$

$$f_1(t) = 5 \cdot t$$

$$f_2(t) = 2 \cdot e^{-10t} + 3 \cdot e^{-22t}$$

$$f_1(t) = 5 \cdot \cos(2 \cdot t)$$

$$f_2(t) = 3 \cdot u(t)$$

$$f_1(t) = 5 \cdot u(t)$$

$$f_2(t) = 3 \cdot (1 - e^{-3 \cdot t})$$

4 - Obtenha a função no domínio do tempo utilizando expansão em frações parciais quando necessário. Determine ainda os valores iniciais e finais das funções.

$$F(s) = \frac{400}{(s+10) \cdot (s+20) \cdot (s+5)}$$

$$F(s) = \frac{45}{s \cdot (s^2 + 30s + 10) \cdot (s + 3)}$$

# 1.2. Resolução de Equações Diferenciais

O método de Transformadas de Laplace é particularmente útil para se obter a solução de equações diferenciais lineares com coeficientes constantes.

O método pode ser resumido em três passos e é amplamente aplicado na resolução de a equações diferenciais lineares de ordem n submetidas a n-1 condições iniciais.

Neste caso, somente a título de exemplo, será aqui aplicada a uma equação diferencial de segunda ordem definida genericamente pelo problema de valor inicial abaixo:

$$a \cdot \frac{d^2 y(t)}{dt^2} + b \cdot \frac{dy(t)}{dt} + c \cdot y(t) = f(t)$$

$$y(0) = y_0$$

$$y(0) = y_0$$

Onde: a, b e c são coeficientes constantes

y(0) e y(0) – condições iniciais da função resposta.

y(t) – função resposta a ser determinada.

f(t) – função excitação.

1º Passo – Aplicar a Transformada de Laplace e suas propriedades na equação diferencial, convertendo-a em uma equação algébrica no domínio da frequência.

$$L\left(a \cdot \frac{d^2 y(t)}{dt} + b \cdot \frac{d y(t)}{dt} + c \cdot y(t)\right) = L(f(t))$$

$$a\left(s^2 \cdot Y(s) - s \cdot y(0) - y(0)\right) + b\left(s \cdot Y(s) - y(0)\right) + c \cdot Y(s) = F(s)$$

**2º Passo** – Manipular a equação resultante de maneira a isolar a variável de interesse Y(s).

$$Y(s) = \frac{1}{a \cdot s^2 + b \cdot s + c} \cdot F(s) + \frac{(a \cdot s + b) \cdot y_0}{a \cdot s^2 + b \cdot s + c} + \frac{a \cdot y_0}{a \cdot s^2 + b \cdot s + c}$$

Note que a primeira parcela está relacionada com a transformada da função excitação F(s) e as outras parcelas estão relacionadas com as condições iniciais.

O polinômio, comum a todas as parcelas, que aparece no denominador é conhecido como equação ou polinômio característico do sistema e suas raízes são os chamados pólos do sistema e não dependem da função excitação F(s).

**3º Passo** – Aplicar a Transformada Inversa de Laplace e obter o resultado y(t).

$$L^{-1}(Y(s)) = y(t)$$

Note que a resposta completa, formada pelas respostas forçada e natural, são obtidas simultaneamente. Isto é uma vantagem quando comparada a outros métodos tradicionais de resolução.

A obtenção da transformada inversa muita vezes requer a realização de uma expansão em frações parciais para facilitar a utilização de funções tabeladas.

# **Exercícios**

1 - Resolver as equações diferenciais utilizando Transformadas de Laplace:

$$\dot{y} + 2 \cdot y = \delta(t) \qquad y(0) = 0$$

$$\dot{y} + 2 \cdot y = 3 \cdot u(t) \qquad y(0) = 5$$

$$\dot{y} + 2 \cdot y = (2 \cdot t + 3) \cdot u(t) \qquad y(0) = 5$$

$$\ddot{y} + 12\dot{y} + 5 \cdot y = 3 \cdot u(t) \qquad y(0) = 0 \qquad \dot{y}(0) = 2$$

$$\ddot{y} + 2\dot{y} + 5 \cdot y = 3 \cdot (1 - e^{-2 \cdot t}) \cdot u(t) \qquad y(0) = 0 \qquad \dot{y}(0) = 0$$

# Referências Bibliográficas

- D'AZZO, John J., HOUPIS, Constantine H. *Análise e Projeto de Sistemas de Controle Lineares*. 3ª Ed. Editora Guanabara.
- DORF, Richard C., BISHOP, Robert H. *Sistemas de Controle Modernos*. 8ª Ed. Editora LTC. Rio de Janeiro. 2001.
- FRANKLIN, Gene F., POWELL, J. David, EMAMI-NAEINI, Abbas *Feedback Control of Dynamic Systems*. 3<sup>rd</sup> Ed. Addison-Wesley. 1994.
- OGATA, Katsuhiko. *Modern Control Enginnering*. 3<sup>rd</sup> Ed. Prentice-Hall. 1997.