AMENDMENTS TO THE CLAIMS

1 - 33. (Canceled)

eomprising consisting essentially of rod-shaped crystals of a metal or metal oxide, which form an open framework architecture, thereby forming a sponge-like material,
wherein the method which comprises:
preparing an aqueous viscous solution of a water-soluble metal salt and dextran;
allowing said aqueous viscous solution to self-solidify to form a solid; and
baking said solid to form a metal or metal oxide porous material consisting essentially of
rod-shaped crystals of a metal or metal oxide, which form an open framework architecture,
thereby forming a sponge-like material.

34. (Currently Amended) A method for preparing a metal or metal oxide porous material

35. (Currently Amended) A method for preparing a metal or metal oxide porous material comprising consisting essentially of rod-shaped crystals of a metal or metal oxide, which form an open framework architecture, thereby forming a sponge-like material,

wherein the method which comprises:

preparing an aqueous viscous solution of at least two kinds of water-soluble metal salts each having different metal elements, and dextran;

allowing said aqueous viscous solution to self-solidify to form a solid; and baking said solid to form a metal or metal oxide porous material consisting essentially of rod-shaped crystals of a metal or metal oxide, which form an open framework architecture, thereby forming a sponge-like material.

36. (Canceled)

37. (**Previously Presented**) The method according to claim 34, wherein the baking process is carried out at a temperature of not less than 500°C.

Walsh et al. Serial No. 10/539,348 Attorney Docket No. 2005_0985A April 23, 2010

38. (Previously Presented) The method according to claim 37, wherein the baking process is

carried out at a temperature in a range from not less than 500°C up to 900°C.

39. (Canceled)

40. (Previously Presented) The method according to claim 34, wherein dextran in the aqueous

viscous solution has a concentration in the range of 10 to 80% by weight and the water-soluble

metal salt has a concentration in the range of 10 to 90% by weight.

41. (Previously Presented) The method according to claim 40, wherein the water-soluble-

metal salt has a concentration in the range of 15 to 60% by weight.

42. (Previously Presented) The method according to claim 34, wherein dextran in the aqueous

viscous solution has a molecular weight in the range of 10,000 to 500,000.

43 - 46. (Canceled)

47. (Previously Presented) The method according to claim 34, wherein the metal or metal

oxide porous material is a soft or hard sponge-like material.

48. (Previously Presented) The method according to claim 34, wherein the cross-sectional

width of the rod-shaped crystal, taken in a direction perpendicular to the length, is from 1 µm to

50 μm.

49. (Previously Presented) The method according to claim 34, wherein the metal element of

the water-soluble metal salt is selected from the group consisting of noble metals and transition

metals.

50. (Previously Presented) The method according to claim 49, wherein the noble metal is

silver or gold.

3

Walsh et al. Serial No. 10/539,348 Attorney Docket No. 2005_0985A April 23, 2010

- **51.** (New) The method according to claim 34, wherein the solidifying process occurs at about 25°C.
- **52.** (New) The method according to claim 35, wherein the solidifying process occurs at about 25°C.