1 Conjuntos - microrevisão

- Seja $A = \{1, 2, \{1, 2\}, \{3\}\}$. Indique se é verdadeiro ou falso:
 - (a) $1 \in A$

(b) $3 \in A$

(c) $\{1\} \in A$

- (d) $\{1,2\} \in A$
- (e) $\{1, 2\} \subseteq A$
- (f) $\{1,3\} \subseteq A$

• Um desafio:

Num escritório trabalham 20 pessoas: homens e mulheres, portugueses e estrangeiros.

O número de homens é igual ao número de estrangeiros e também é igual ao número de mulheres portuguesas.

Sabendo que 7 homens são estrangeiros, quantas mulheres trabalham no escritório?

2 E Ou Não – os conectivos lógicos

- "E" (∧) é como em Português: "bom E barato"
- "OU" (V) na lógica é inclusivo: "bom OU barato" inclúi o caso "bom E barato"
- "NÃO" (¯) cuidado com a dupla negação: "NÃO vi NADA" ≠ "vi TUDO"!
- A negação de E é OU e vice-versa: NÃO "bom E barato" é "mau OU caro"

$$\overline{P \wedge Q} \longleftrightarrow \overline{P} \, \overline{\wedge} \, \overline{Q} \longleftrightarrow \overline{P} \, \vee \, \overline{Q} \quad e \quad \overline{P \vee Q} \longleftrightarrow \overline{P} \, \overline{\vee} \, \overline{Q} \longleftrightarrow \overline{P} \, \wedge \, \overline{Q}$$

3 Quantificadores – universal e existencial

- 1. Todos os alunos tiram boas notas
 - Para todo o $x \in \{\text{estudantes}\}, x \text{ tira boas notas}... \forall x \in E, P(x)$
 - "Para todo" é parecido com "E": $\forall x \in \{1,2,3\}, x < 5 \leftrightarrow 1 < 5 \land 2 < 5 \land 3 < 5$
 - A negação de 1. é: Alguns alunos tiram más notas

$$\forall x \in E, P(x) \longleftrightarrow \forall x \in E, P(x) \longleftrightarrow \exists x \in E : \overline{P(x)}$$

- 2. Alguns alunos tiram boas notas
 - Existe $x \in \{\text{estudantes}\}\ \text{tal que }x\ \text{tira boas notas}..... \exists x \in E: P(x)$
 - "Existe" é parecido com "OU": $\exists x \in \{4,5,6\} : x < 5 \leftrightarrow 4 < 5 \lor 5 < 5 \lor 6 < 5$
 - A negação de 2. é: Todos os alunos tiram más notas

$$\exists x \in E : P(x) \longleftrightarrow \exists x \in E : P(x) \longleftrightarrow \forall x \in E, P(x)$$

4 Implicação

- Umas cartas especiais têm uma letra numa face e um número na outra
- Deviam ter um número par atrás de cada vogal
- Vou ver quatro cartas:

A B 1 2

• Que carta(s) tenho de virar para verificar se o maço tem defeitos? A e 1

Vogal ⇒ Par

equivalente a: Ímpar (não Par) ⇒ Consoante (não Vogal)

mas também (!) a: Consoante (não Vogal) ou Par

5 In/Equações – uma pequena divagação

1. Equações:

(a)
$$3-2x=7$$
 (b) $x^2-x-6=0$ (c) $x-x^2=0$ (d) $x^2=4$ (e) $x(x-1)=6$

2. Inequações:

(f)
$$3-2x > 7$$
 (g) $x^2-x-6 \le 0$ (h) $x-x^2 > 0$ (i) $x^2 \ge 4$ (j) $x(x-1) < 6$

3. Inequações++:

(k)
$$x(1-x)(x-2) \ge 0$$
 (l) $\frac{x(1-x)}{x-2} \ge 0$ (m) $\frac{1}{x} < 1$

6 Teoremas, demonstrações, contraexemplos

Se
$$x > 1$$
 então $x^2 > x$

• Nos teoremas há, explicita ou implicitamente, um quantificador universal:

$$\forall x \in \mathbb{R}, x > 1 \Rightarrow x^2 > x$$

• As técnicas de demonstração baseiam-se nas equivalências de:

*
$$H \Rightarrow T$$
 "direta": $x > 1 \Rightarrow \cdots \Rightarrow x^2 > x$

*
$$\overline{T} \Rightarrow \overline{H}$$
 "contrapositiva": $x^2 \le x \Rightarrow \cdots \Rightarrow x \le 1$

* $\overline{H} \vee T$ "redução ao absurdo": a negação tem consequências impossíveis

$$\overline{\overline{H} \vee T} \longleftrightarrow H \wedge \overline{T} \longleftrightarrow x > 1 \wedge x^2 \le x \Rightarrow \text{algo "absurdo"}$$

• Um *contraexemplo* prova que a recíproca $\forall x \in \mathbb{R}, x^2 > x \Rightarrow x > 1$ é falsa

$$\overline{\forall x \in E, T \Rightarrow H} \longleftrightarrow \overline{\forall x \in E, \overline{T} \lor H} \longleftrightarrow \exists x \in E : T \land \overline{H} \longleftrightarrow \exists x \in \mathbb{R} : x^2 > x \land x \leq 1$$

Lógica: exercícios (ou desafios?)

1. Escreve em maneira formal e demonstra o seguinte teorema:

$$n$$
 é ímpar se e só se $n^2 = 8k + 1$ por algum $k \in \mathbb{N}_0$

[Sugestão: prova '⇒' e '⇐' separadamente, com técnicas diferentes]

- 2. Demonstra que a recíproca do teorema de Pitágoras é verdadeira
- 3. Determina o valor lógico das seguintes proposições:
 - (a) $\exists y \in \mathbb{R} : \forall x \in \mathbb{R}, y \leq |x|$,
 - (b) $\forall x \in \mathbb{R}, \exists y \in \mathbb{R} : y \le |x|,$
 - (c) $\forall y \in \mathbb{R}, \exists x \in \mathbb{R} : y \leq |x|,$
 - (d) $\exists x \in \mathbb{R} : \forall y \in \mathbb{R}, y \leq |x|$.

[basta indicar um exemplo para o quantificador existencial da proposição, caso seja verdadeira, ou da sua negação, caso seja falsa]

8 Teorema de Lagrange e monotonia

 $I \subseteq D_f$ é um intervalo de monotonia de f se

- f é contínua em I e
- f' existe e não se anula no interior de I (ou seja, $I \setminus \{\text{extremos}\}\)$

Num intervalo de monotonia, o sinal de f' determina a monotonia de f: f' positiva/negativa $\Rightarrow f$ estritamente crescente/decrescente

Demonstração: (vamos supor f' positiva no interior de I)

- (T. de Lagrange) $\forall a, b \in I$, com b > a, existe $c \in]a, b[: f'(c) = \frac{f(b) f(a)}{b a}$
- *c* pertence an interior de *I*, logo $f'(c) > 0 \Rightarrow \frac{f(b) f(a)}{b a} > 0 \Rightarrow f(b) f(a) > 0 \Rightarrow f(b) > f(a)$

Limites notáveis, regra de Cauchy e outros truques

1.
$$\lim_{x \to 1} \frac{\ln x}{x^2 - 1}$$

$$2. \lim_{x \to +\infty} \frac{\ln(1+e^x)}{x}$$

3.
$$\lim_{x \to 1} \frac{x^4 - 2x^3 + 2x - 1}{x^3 - 3x + 2}$$
 4. $\lim_{x \to \frac{\pi}{2}} \frac{\operatorname{tg} x}{x^2}$

4.
$$\lim_{x \to \frac{\pi}{2}} \frac{\log x}{x^2}$$

5.
$$\lim_{x \to 0} \frac{x \sin x}{1 - \cos x} = \lim_{x \to 0} \frac{x^2}{1 - \cos x} = \lim_{x \to 0} \frac{x \operatorname{tg} x}{1 - \cos x}$$

6.
$$\lim_{x\to 0} (1+x)^{\frac{1}{x}}$$

7.
$$\lim_{x \to 0} (\cos^2 x)^{\frac{1}{\sin^2 x}}$$

9. $\lim_{x \to 0^+} x^{\frac{1}{x}}$

8.
$$\lim_{x \to 0^+} x^x$$

9.
$$\lim_{x \to 0^+} x^{\frac{1}{5}}$$

$$10. \lim_{x \to \frac{\pi}{2}^-} (\operatorname{tg} x)^{\cos x}$$

$$11. \lim_{x \to +\infty} x^{\frac{1}{x}}$$

10 Exercícios: domínios e contradomínios

Determina domínio e contradomínio da função f definida por:

1.
$$f(x) = x^4 - 4x^3 + 4x^2 - 1$$

2.
$$f(x) = 2\cos(x) - \sin(2x)$$

3.
$$f(x) = \frac{\sqrt{x^2 + 1}}{x}$$

4.
$$f(x) = \frac{\sqrt{1+x}}{1-\sqrt{x}}$$

5.
$$f(x) = \frac{x^2 + 1}{x}$$

6.
$$f(x) = \frac{1}{x^2 - 1}$$

7.
$$f(x) = \ln(1 + e^x)$$

$$8. \ f(x) = x \ln x$$

9.
$$f(x) = xe^{-x}$$

10.
$$f(x) = xe^{\frac{1}{x}}$$

"CD: reunião dos CDs das restrições de f aos intervalos de monotonia"