תרגיל בית 3 - פתרון תמציתי

שאלה 1

א. הטענה אינה נכונה. דוגמה נגדית:

כאשר נריץ BFS מ־s הצומת v אכן יהיה עלה (אין משמעות לסדר רשימת השכנויות) אבל אם נריץ v אז א v אז v אז v אז א עלה.

ב. הטענה נכונה. הוכחה:

ראשית נראה כי דרגת היציאה של v היא v היא v נניח בשלילה של־ v יש קשת יוצאת (v,u). לכן בהרצה עבור הרצת v שמתחילה ב־ v, יהיה צאצא של v (לפי תכונת המסלול הלבן). לכן בהרצה אינו עלה בסתירה לנתון. כלומר דרגת היציאה של v היא v

נסיק כי אין אף מסלול קצר ביותר היוצא מ־ s, ועובר ב־ u אבל ש־ u אינו הצומת האחרון בו v ,s מחרת בהכרח מסלול כזה היה עובר בקשת שיוצאת מ־ v). מכיוון שכל הצמתים נגישים מ־ v ,v מצא בעץ ה־ v (לכל סידור של רשימת השכנויות) ולכן הוא בהכרח עלה.

ג. הטענה נכונה. הוכחה:

יהי DFS עץ שנוצר מהרצת BFS כפי שמתואר בשאלה ו־ T_{DFS} עץ שנוצר מהרצת BFS כפי שמתואר בשאלה . נסמן ב־ u את הצומת הרחוק ביותר מ־ u ב־ u את הצומת הרחוק ביותר מ־ u ב־ u ביותר מ־ u ביותר (לפי נכונות u ביותר מ־ u

$$\delta_{T_{BFS}}(s, u) \le \delta_{T_{DFS}}(s, u)$$

v אבל לפי בחירת v מתקיים

$$\delta_{T_{DES}}(s, u) \le \delta_{T_{DES}}(s, v)$$

כלומר קיבלנו ש:

$$\delta_{T_{BFS}}(s, u) \le \delta_{T_{DFS}}(s, v)$$

אבל לפי הוא $\delta_{T_{DFS}}(s,v)$ הוא T_{DFS} והגובה של הגובה הוא $\delta_{T_{BFS}}(s,u)$ ולכן סיימנו.

שאלה 2

נוסיף לכל צומת בגרף שדה בשם $v \in V - \{s\}$ עבור כל צומת עבור פשם $v \in V - \{s\}$ עבור הצומת עבור הצומת $v \in V - \{s\}$ עם השדה להיות $v \in V - \{s\}$ עם השינוי הבא: $v \in V$ ועבור הצומת $v \in V$ ע"י צומת $v \in V$ ע"י צומת $v \in V$ ע"י צומת $v \in V$ בנוסף לכל שאר הפעולות הרגילות) בעם שמתגלה צומת לבן $v \in V$ צומת $v \in V$ בנוסף, כאשר עוברים על רשימת השכנויות של צומת $v \in V$ אם כן, נבצע את העדכון $v \in V$ נוסיף בדיקה עבור כל צומת $v \in V$ שאינו לבן האם $v \in V$ אם כן, נבצע את העדכון $v \in V$ נוסיף בדיקה עבור כל צומת $v \in V$ אחרת, לא נבצע כלום.

שאלה 3

- ג נסתכל על קשת u יהיה לפני u יהיה לפני על קשת .1 נסתכל על קשת .1 ברשימה בריך להראות כי עבור כל קשת v יכנס לסוף הרשימה ביחד עם לאחר שיהיה לו דרגה נכנסת v וזה יקרה (u,v) כלשהי. הצומת v יכנס לסוף הרשימה v ויוסר מהגרף ביחד עם כל הקשתות היוצאות שלו. רק לאחר שצומת v יכנס לסוף הרשימה v ויוסר מהגרף ביחד עם כל הקשתות היוצאות שלו.
- 2. נניח כי לכל צומת יש שדה בשם in_deg . הרעיון של הפתרון הוא לתחזק תור (לא חשוב אם זה in_deg עם כל הצמתים עם דרגה נכנסת נוכחית שווה ל in_deg עם כל הצמתים עם דרגה נכנסת נוכחית שווה ל in_deg . עם כל הצמתים עם דרגה נכנסת מוכחית של in_deg עם כל הצמתים אווה ל in_deg עם כל הצמתים עם כל הצמתים עם דרגה הנכנסת של צומת של in_deg בישר הדרגה הנכנסת הנוכחית של in_deg הרעיון של in_deg הרעים אווה של in_deg בישר הדרגה הנכנסת הנוכחית של in_deg הרעיון של in_deg הרעיון של in_deg בישר הדרגה הנכנסת הנוכחית של in_deg הרעיון של in_deg הרעיון של in_deg הרעיון של חדר הדרגה הנכנסת הנוכחית של in_deg הרעיון של in_deg הרעיון של חדר הדרגה הנכנסת הנוכחית של in_deg הרעיון של הפער הדרגה הנכנסת הנוכחים in_deg הרעיון של הרעיון של הפער הדרגה הנכנסת הנוכחים in_deg הרעיון של הרעיון
 - Q ותור ותור L
 - $v.in_deg$ בשדה בשדה v עדכן את הערך בשדה (ב) אומת של כל צומת ועבור כל צומת v
 - Q לתור $v.in_deg=0$ לתור עם ערך הצמתים לתור
 - (ד) כל עוד התור לא ריק בצע
 - הוצא צומת v מהתור.i
 - L הכנס את v לסוף הרשימה .ii
- שלו ב in_deg את ערך שדה השכנויות של v והקטן לכל צומת סמוך את ערך שדה ה in_deg שלו ב. iii
 - Q של צומת סמוך הפך להיות ו in_deg של ווער in_deg של. iv
 - L את החזר את (ה)

שאלה 4

- ונריץ $\overrightarrow{G}.V=G.V$ ונעדכן. |V| ונעדכן חדש מערך להיות מערך את להיות את להתחל את להיות מערך האים ב $\overrightarrow{G}.Adj$ את לאת לבנות את באים ב $DFS_Visit(G,u)$
 - $\overrightarrow{G}.Adj[u]$ ל (u,v) אם השכן u של u הוא לבן נוסיף את הקשת v
 - $\overrightarrow{G}.Adj[u]$ ל (u,v) אם השכן v של אפור וגם $u.\pi \neq v$ נוסיף את הקשת v
- - u עץ בהרצת הצומת ונחקרה לראשונה מצומת עץ בהרצת היי סשת עץ בהרצת (u,v) $\in E$ כיווו \Longrightarrow

נניח בשלילה שקיימת קשת מצאצא של v שנסמנו w (ייתכן וw=v) לאב קדמון של w שנסמנו $u\leadsto z$ (ייתכן כי w=v). אם כך נוכל להחליף את הקשת w=v בכל מסלול בגרף w=v. אחרת. וזו $z \mapsto v\leadsto w \Leftrightarrow z \Leftrightarrow w \mapsto v$ אחרת. וזו $z \mapsto w \Leftrightarrow v \Leftrightarrow v \mapsto v$ היא קשת שוברת.

ביווו ⇒

נתון כי לא קיימת קשת אחורית מצאצא של צומת v לאב קדמון של צומת u. נסמן את תת העץ המושרש בצומת u ב G_π ב G_π ב מכיוון שבגרף לא מכוון הסיווג של כל קשת הוא או קשת עץ או קשת אחורית נקבל שאין כלל קשת מצמתים ב u לצמתים שלא ב u ב u מכאן שהסרת הקשת u תגרום לכך שהגרף יהיה לא קשיר כי לא ניתן להגיע מצומת u לאף צומת ב u ולכן הקשת u היא קשת שוברת.

הערה: נשים לב, כי על פי סעיף 2 קשת שוברת היא בהכרח קשת עץ ולכן בסעיף זה קיבלנו הגדרה שקולה לקשת שוברת.

- ע"פ סעיף 3 אם יש בגרף המכוון \overrightarrow{G} תת עץ ללא קשת אחורית אז הגרף G שביר. נשים לב 4. שבמקרה כזה הגרף \overline{G} הוא לא קשיר היטב ולכן יש בו יותר מרכיב קשיר היטב אחד. אלגוריתם:
 - DFS(G) ארץ (א)
 - \overrightarrow{G} בנה את הגרף (ב
 - $\mathtt{SCC}(\overrightarrow{G})$ ארץ (ג)
 - "שביר", אחרת החזר G'' אם יש רכיב קשירות אחד החזר G'' אחרת החזר שביר".

O(V+E) אים היא בסיבוכיות ולכן סה"כ סיבוכיות ומן של סיבוכיות ומן של סיבוכיות היא בסיבוכיות ולעריתם היא

מבני נתונים ואלגוריתמים (094224) -- חורף תשפ"ד

שאלה 5

נשים $E'=\{(u,v):(u,v)\in E, f(u)< f(v)\}$ גרף מכוון כאשר: G'=(V,E') גריר מכלול ב־ G'=(V,E') הוא מסלול ב- G'=(V,E') ה

- O(V+E) G' את ullet
- O(V+E) BFS(G',s) נריץ
- O(V) $v.d_inc = v.d$ נקבע $v \in V$ •

AO(V+E) היא נכונות האלגוריתם מההסבר למעלה ומנכונות BFS ומנכונות מההסבר מההסבר נובעת