

Morphologie Mathématique Segmentation – Ligne de Partage des Eaux

Hugues Talbot (CVN, CentraleSupelec)
Mars 2019

CentraleSupéle

CS 2

Plan de la séance

- 1 Segmentation : exemples introductifs en imagerie médicale
- 2 Ligne de partage des eaux d'une image : difficultés
- 3 Ligne de partage des eaux d'un graphe pondéré
- 4 Segmentation avec marqueurs

Problème technique

Problème

- Segmentation des objets d'intérêt
 - Déterminer l'ensemble des points de l'image appartenant à chaque objet d'intérêt
 - Déterminer les contours de chaque objet d'intérêt

Une solution morphologique

■ La Ligne de Partage des Eaux (LPE)

■ Pour des raisons topographiques, la LPE a été étudiée depuis le 19ème siècle

Problème

■ Comment définir la LPE d'un image?

Problème

- Comment définir la LPE d'un image?
- Quel cadre mathématique?

Problème

- Comment définir la LPE d'un image?
- Quel cadre mathématique?
- Quelles propriétés?

Problème

- Comment définir la LPE d'un image?
- Quel cadre mathématique?
- Quelles propriétés?
- Quel(s) algorithme(s)?

Problème

En pratique : sur-segmentation

Solution 1

 Les méthodes de fusion de régions consistent à améliorer une solution initiale en fusionnant progressivement des paires de régions voisines

Solution 1

 Les méthodes de fusion de régions consistent à améliorer une solution initiale en fusionnant progressivement des paires de régions voisines

Exemple : IRM de rehaussement tardif

Solution 1

 Les méthodes de fusion de régions consistent à améliorer une solution initiale en fusionnant progressivement des paires de régions voisines

■ Exemple : IRM de rehaussement tardif

Solution 1

 Les méthodes de fusion de régions consistent à améliorer une solution initiale en fusionnant progressivement des paires de régions voisines

Exemple : IRM de rehaussement tardif

Solution 1

 Les méthodes de fusion de régions consistent à améliorer une solution initiale en fusionnant progressivement des paires de régions voisines

Exemple : IRM de rehaussement tardif

Sur-segmentation

Solution 2

■ LPE avec marqueurs

Sur-segmentation

Solution 2

- LPE avec marqueurs
- Méthodologie générale en trois étapes
 - Reconnaissance de marqueurs
 - Délimitions des contours (souvent fermeture par reconstruction + LPE)
 - 3 Lissage

Sur-segmentation

Solution 2

- LPE avec marqueurs
- Méthodologie générale en trois étapes
 - 1 Reconnaissance de marqueurs
 - Délimitions des contours (souvent fermeture par reconstruction + LPE)
 - 3 Lissage
- Information sémantique prise en compte aux étapes 1 et 3

Pouvons nous dessiner une LPE de cette image?

Image équipée de l'élément structurant Γ₄

Pouvons nous dessiner une LPE de cette image?

A	A	A	A	A
40	30	30	30	40
40	20	20	20	40
40	40	20	40	40
В	5	20	5	С

- Image équipée de l'élément structurant Γ₄
- Attribuer un label aux pixels en fonction des lettres des bassins d'attraction A,B and C

									_
A	A	A	A	A	A	A	A	A	F
40	30	30	30	40	A	A	A	A	A
40	20	20	20	40	40	\bigcirc	(20)	\bigcirc	4
40	40	20	40	40	В	В	(20)	С	(
В	5	20	5	С	В	В	\bigcirc 20	С	(

LPE topographique

A	A	A	A	A		A	A	A	A	A
40	30	30	30	40		A	A	A	A	A
40	20	20	20	40		С	С	С	С	C
40	40	20	40	40		В	В	С	С	C
В	5	20	5	С	'	В	В	С	С	С

Inondation depuis les minima

					_					
A	A	A	A	A		A	A	A	A	A
40	30	30	30	40		A	A	A	A	A
40	20	20	20	40		40	A	A	A	40
40	40	20	40	40		В	40	A	40	С
В	5	20	5	С		В	В	(20)	С	С

Inondation avec frontière

A	A	A	A	A	A
40	30	30	30	40	40
40	20	20	20	40	В
40	40	20	40	40	В
В	5	20	5	С	В

A	A	A	A	A
40	30	30	30	40
В	В	\bigcirc	С	С
В	В	\bigcirc	С	С
В	В	\bigcirc	С	С

LPE topologique

A	A	A	A	A
40	30	30	30	40
40	20	20	20	40
40	40	20	40	40
В	5	20	5	С

A	A	A	A	A
40	30	30	(30)	40
В	В	\bigcirc	С	С
В	В	2 0	С	С
В	В	\bigcirc	С	С

LPE topologique

Conclusion

lacksquare Pas facile de définir la LPE d'une image sur la grille \mathbb{Z}^2

LPE dans les graphes à arêtes pondérées

LPE dans les graphes à arêtes pondérées

- Soit $G = (E, \Gamma)$ un graphe
- Soit F une application de E dans \mathbb{R}

Image et graphes à arêtes pondérées

Pour les applications à l'analyse d'image

- E est l'ensemble des pixels
- Γ correspond à une relation d'adjacence sur E, (e.g., Γ₄ ou Γ₈ en
 2D)
- F est un "gradient" de l'image I : l'altitude d'une arête u, liant deux pixels x and y, représente la dissimilarité entre x et y
 - F(u) = |I(x) I(y)|.

Notions élémentaires

- Un *sous-graphe de G* est un graphe $X = (E', \Gamma')$ tel que $E' \subseteq E$ et $\overline{\Gamma'} \subset \overline{\Gamma}$
- Si X est un sous-graphe de G, on écrit $X \subseteq G$
- Soit S un ensemble d'arête
- Le sous graphe induit par S est le graphe (E_s, S) tel que $E_s = \bigcup \{u \mid u \in S\}$
- Le complémentaire de S dans $\overline{\Gamma}$ est l'ensemble $S^C = \overline{\Gamma} \setminus S$

Minima régionaux

Définition,

Un sous graphe X de G est un minimum de F (d'altitude k) si :

- X est connexe; et
- k est l'altitude de toutes les arêtes de X ; et
- toute arête adjacente à X est d'altitude strictement supérieure à k

On désigne par M(F) le graphe composé de tous les minima de F

Définition

Soient X et Y deux sous-graphes non-vides de G

Définition

Soient X et Y deux sous-graphes non-vides de G

Définition

Soient X et Y deux sous-graphes non-vides de G

Définition

Soient X et Y deux sous-graphes non-vides de G

Définition

Soient X et Y deux sous-graphes non-vides de G

Définition

Soient X et Y deux sous-graphes non-vides de G

Définition

Soient X et Y deux sous-graphes non-vides de G

Définition

Soient X et Y deux sous-graphes non-vides de G

Coupure

une *coupure* S pour X

Définition (Coupure)

Soit X un sous-graphe de G et $S \subseteq \overline{\Gamma}$ un ensemble d'arêtes

■ S est une coupure relative à X s'il existe une extension Y de X telle que S est la coupure induite par Y

Coupure par LPE

■ L'église de Sorbier (une intuition topographique)

Définition (principe de la goutte d'eau)

L'ensemble $S \subseteq \overline{\Gamma}$ est une coupure par LPE de F si S est une coupure relative à M(F) et si pour tout $u = \{x_0, y_0\} \in S$, il existe deux chemins (x_0, \ldots, x_n) et (y_0, \ldots, y_m) descendants dans S^C tels que :

- \blacksquare x_n et y_m sont des sommets de deux minima distincts de F; et
- 2 $F(u) \ge F(\{x_0, x_1\})$ si n > 0 et $F(u) \ge F(\{y_0, y_1\})$ si m > 0

Illustration à la segmentation d'images en niveaux de gris

coupure par LPE de F

représentation de F

coupure par LPE de $\gamma^{lpha}_{\lambda}(\mathit{F})$

Illustration à la segmentation d'images en niveaux de gris

version filtrée de F

coupure par LPE

LPE?

Problem

- Une LPE est-elle une segmentation optimale?
- Comment peut on calculer une coupure par LPE?

LPE?

Problem

- Une LPE est-elle une segmentation optimale?
- Comment peut on calculer une coupure par LPE?

Solution

■ Forêt de poids minimum

Forêt relative de poids minimum : une intuition en image

coupure

forêt couvrant les régions

Forêt relative

Définition

Soient X et Y deux sous-graphes non-vides de G

Y est une forêt relative à X si :

- 1 Y est une extension de X; et
- 2 tout cycle dans Y est aussi un cycle dans X

Forêt de poids minimum

■ Le *poids d'une forêt* Y est la somme des poids de ses arêtes *i.e.* $\sum_{u \in E(Y)} F(u)$.

Forêt de poids minimum

■ Le *poids d'une forêt* Y est la somme des poids de ses arêtes *i.e.* $\sum_{u \in E(Y)} F(u)$.

Définition

- Y est une forêt de poids minimum (FPmin) relative à X si
 - Y est une forêt couvrante relative à X, et
 - le poids de Y est inférieur ou égal au poids de toute autre forêt couvrante relative à X

■ Si Y est une FPmin relative à X, la coupure S induite par Y est une coupure relative à X;

- Si Y est une FPmin relative à X, la coupure S induite par Y est une coupure relative à X;
- Dans ce cas, S est appelée une coupure par $FPmin\ relative\ a\ X$.

Optimalité des LPE

Theorem

■ Un ensemble d'arêtes $S \subseteq \overline{\Gamma}$ est une coupure par FPmin relative à M(F) (les minima de F) si et seulement si S est une coupure par LPE de F

Arbre de poids minimum

■ Calculer une FPmin ⇔ calculer un APmin

Arbre de poids minimum

- Calculer une FPmin ⇔ calculer un APmin
- Il existe un algorithme compliqué quasi-linéaire pour

Arbre de poids minimum

- Calculer une FPmin ⇔ calculer un APmin
- Il existe un algorithme compliqué quasi-linéaire pour
- Il existe un algorithme linéaire très simple pour calculer des coupures par LPE

LPE : problème pratique #2

Problème

En pratique : sur-segmentation

Sur-segmentation

Solution 2

■ LPE avec marqueurs

Sur-segmentation

Solution 2

- LPE avec marqueurs
- Méthodologie générale en trois étapes
 - 1 Reconnaissance de marqueurs
 - Délimitation des contours (souvent fermeture par reconstruction + LPE)
 - 3 Lissage

Sur-segmentation

Solution 2

- LPE avec marqueurs
- Méthodologie générale en trois étapes
 - 1 Reconnaissance de marqueurs
 - Délimitation des contours (souvent fermeture par reconstruction + LPE)
 - 3 Lissage
- Information sémantique prise en compte aux étapes 1 et 3

- La segmentation avec marqueurs est très utilisée
 - Un utilisateur marque les objets à segmenter

- La segmentation avec marqueurs est très utilisée
 - Un utilisateur marque les objets à segmenter
- Les coupures par FPmin font parties de cette catégorie

- La segmentation avec marqueurs est très utilisée
 - Une procédure automatique marque les objets à segmenter
- Les coupures par FPmin font parties de cette catégorie

- La segmentation avec marqueurs est très utilisée
 - Une procédure automatique marque les objets à segmenter
- Les coupures par FPmin font parties de cette catégorie

Remarque

 La morphologie mathématique fournie un ensemble d'outils intéressants pour reconnaître automatiquement des marqueurs

■ Segmentation du myocarde dans des IRM ciné 3D+t

- Segmentation du myocarde dans des IRM ciné 3D+t
- Acquisition coupe par coupe

- Segmentation du myocarde dans des IRM ciné 3D+t
- Acquisition coupe par coupe
- D'abord, au cours du temps (recalée sur l'ECG)

im

- Segmentation du myocarde dans des IRM ciné 3D+t
- Acquisition coupe par coupe
- D'abord, au cours du temps (recalée sur l'ECG)
- Puis, dans l'espace

■ Segmentation de l'endocarde :

- Segmentation de l'endocarde :
- Seuil haut (reconnaissance)

- Segmentation de l'endocarde :
- Seuil haut (reconnaissance)
- Dilatation géodésique dans un seuil bas (délimitation)

■ Segmentation épicardique :

- Segmentation épicardique :
- Marqueurs internes et externes (reconnaissance) :
 - Dilatation révulsive
 - Dilatation homotopique

- Segmentation épicardique :
- Marqueurs internes et externes (reconnaissance) :
 - Dilatation révulsive
 - Dilatation homotopique
- Coupure par LPE dans l'espace à 4 dimensions

- Segmentation épicardique :
- Marqueurs internes et externes (reconnaissance) :
 - Dilatation révulsive
 - Dilatation homotopique
- Coupure par LPE dans l'espace à 4 dimensions
- Lissage (filtres alternés séquentiels)

LPE avec marqueurs dans des images de tenseurs de diffusion (DTI)

DTI

- DTI 3D équipée de l'adjacence directe (extension de Γ_4 à \mathbb{Z}^3)
- Arêtes pondérées par la distance log-euclidienne entre tenseurs

LPE avec marqueurs dans des images de tenseurs de diffusion (DTI)

- DTI 3D équipée de l'adjacence directe (extension de Γ_4 à \mathbb{Z}^3)
- Arêtes pondérées par la distance log-euclidienne entre tenseurs

LPE avec marqueurs dans des images de tenseurs de diffusion (DTI)

marqueurs

Coupure par FPmin

- DTI 3D équipée de l'adjacence directe (extension de Γ_4 à \mathbb{Z}^3)
- Arêtes pondérées par la distance log-euclidienne entre tenseurs
- Marqueurs obtenus automatiquement par un atlas statistique