Pesquisa Operacional (2018) 38(3): 555-578 © 2018 Brazilian Operations Research Society Printed version ISSN 0101-7438 / Online version ISSN 1678-5142 www.scielo.br/pope

doi: 10.1590/0101-7438.2018.038.03.0555

THE UNIT-LOGISTIC DISTRIBUTION: DIFFERENT METHODS OF ESTIMATION

André Felipe Berdusco Menezes^{1*}, Josmar Mazucheli¹ and Sanku Dey²

Received November 16, 2017 / Accepted October 12, 2018

ABSTRACT. This paper addresses the different methods of estimation of the unknown parameters of a two-parameter unit-logistic distribution from the frequentist point of view. We briefly describe different approaches, namely, maximum likelihood estimators, percentile based estimators, least squares estimators, maximum product of spacings estimators, methods of minimum distances: Cramér-von Mises, Anderson-Darling and four variants of Anderson-Darling. Monte Carlo simulations are performed to compare the performances of the proposed methods of estimation for both small and large samples. The performances of the estimators have been compared in terms of their relative bias, root mean squared error, average absolute difference between the theoretical and empirical estimate of the distribution functions and the maximum absolute difference between the theoretical and empirical distribution functions using simulated samples. Also, for each method of estimation, we consider the interval estimation using the Bootstrap confidence interval and calculate the coverage probability and the average width of the Bootstrap confidence intervals. Finally, two real data sets have been analyzed for illustrative purposes.

Keywords: Unit-Logistic distribution, Monte Carlo simulations, estimation methods, parametric Bootstrap.

1 INTRODUCTION

Tadikamalla & Johnson [30] introduced a new probability distribution with support on (0, 1) and named the distribution as L_B distribution by using transformations of logistic variables. They obtained the distribution as follows:

$$X = g^{-1} \left(\frac{Y - \gamma}{\delta} \right), \tag{1}$$

where Y is a standard Logistic distribution, $g(\cdot)$ is some suitable function and $\gamma \in \mathbb{R}$, $\delta > 0$ are parameters. The choice of $g(\cdot)$ determines the support of the distribution, hence from [30], by taking:

$$g(X) = \log\left(\frac{X}{1 - X}\right),\tag{2}$$

^{*}Corresponding author.

¹Departamento de Estatística, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brasil.

E-mails: andrefelipemaringa@gmail.com; jmazucheli@gmail.com

²Department of Statistics, St. Anthony's College, Shillong, Meghalaya, India. E-mail: sankud66@gmail.com

we can obtain the L_B distribution, hereafter we refer it as unit-Logistic distribution, with probability density function (PDF) given by:

$$f(x \mid \gamma, \delta) = \frac{\delta e^{\gamma} x^{\delta - 1} (1 - x)^{\delta - 1}}{\left[x^{\delta} e^{\gamma} + (1 - x)^{\delta} \right]^{2}}, \qquad 0 < x < 1.$$
 (3)

In spite of its versatility, this distribution did not receive much attention in the literature. Nevertheless, recently, the basic properties and a regression analysis was studied by [5]. The authors introduced an alternative parametrization, where one parameter is the median. Following this parametrization, they defined the PDF as:

$$f(x \mid \mu, \beta) = \frac{\beta \mu^{\beta} x^{\beta - 1} (1 - \mu)^{\beta} (1 - x)^{\beta - 1}}{\left[(1 - \mu)^{\beta} x^{\beta} + \mu^{\beta} (1 - x)^{\beta} \right]^{2}}, \qquad 0 < x < 1$$
 (4)

where $0 < \mu < 1$ is the median of X and $\beta > 0$ is the shape parameter. The corresponding cumulative distribution function and quantile function are written respectively as:

$$F(x \mid \mu, \beta) = \left[1 + \left(\frac{\mu (1 - x)}{x (1 - \mu)} \right)^{\beta} \right]^{-1}, \qquad 0 < x < 1$$
 (5)

and

$$Q(p \mid \mu, \beta) = \frac{\mu p^{1/\beta}}{(1 - \mu)(1 - p)^{1/\beta} + \mu p^{1/\beta}}, \qquad 0 (6)$$

Note that when we set $\mu=0.5$ and $\beta=1$ in (4), the PDF of the unit-logistic distribution simply becomes the PDF of the standard uniform distribution. As we can see in Figure 1 the unit-Logistic density is uni-modal (or uni-antimodal), increasing, decreasing, or constant, depending on the values of the parameters.

The objective of this paper is to introduce different methods of estimation for the unknown parameters that index the unit-Logistic distribution and to study the behavior of these estimators for different sample sizes and for different parameter values. In particular, we compare the maximum likelihood estimators, maximum product of spacings estimators, estimators based on percentiles, least-squares estimators, weighted least-squares estimators, Cramér-von Mises estimators and Anderson-Darling estimators and four of its variants. Since, it is difficult to compare theoretically the performances of the different estimators, we perform extensive simulations to compare the performances of the different estimation methods based on relative bias, root mean squared error, average absolute difference between the theoretical and empirical distribution functions, and maximum absolute difference between the theoretical and empirical distribution functions. Also, for each method of estimation, we consider the interval estimation using the Bootstrap confidence interval [12] and calculate the coverage probability and the average width of the confidence interval.

The uniqueness of this study comes from the fact that thus far, no attempt has been made to compare all these estimators for the two-parameter unit-logistic distribution. Comprehensive comparisons of estimation methods for other distributions have been performed in the literature: see [13]

Figure 1 – Behavior of the probability density function of unit-Logistic distribution for some values of μ and β .

for generalized Exponential distribution, [17] for generalized Rayleigh distributions, [31] for Weibull distribution, [22] for weighted Lindley distribution, [10] for Marshall-Olkin extended Lindley distribution, [7] for weighted Exponential distribution, [21] for Marshall-Olkin extended Exponential distribution, [9] for the Kumaraswamy distribution, [8] for the Exponentiated Chen distribution, [27] for the Poisson-exponential distribution, [24] for the Alpha logarithmic transformed Weibull distribution and [23] for the power inverse Lindley distribution.

The final motivation of the paper is to show how different frequentist estimators of this distribution perform for different sample sizes and different parameter values and to develop a guideline for choosing the best estimation method for the unit-logistic distribution, which we think would be of interest to applied statisticians.

The paper is organized as follows. In Section 2 we discuss the eleven estimation methods considered in this paper. The performance of the proposed estimation procedures is studied through a Monte Carlo simulation and is presented in Section 3. In section 4, the methodology developed in this manuscript and the usefulness of the unit-Logistic distribution is illustrated by using two real data examples. Some concluding remarks are presented in Section 5.

2 METHODS OF ESTIMATION

In this section, we describe seven methods and four variants of AD test for estimating the parameters, μ and β , associated to the unit-Logistic distribution. For all methods, it is assumed that $\mathbf{x} = (x_1, \dots, x_n)$ is a random sample of size n from the unit-Logistic distribution with PDF given by (4) and unknown parameters μ and β . Also, let $x_{(1)} < \dots < x_{(n)}$ be the corresponding order sample statistics.

2.1 Method of Maximum Likelihood

Undoubtedly the method of maximum likelihood is the most popular method in statistical inference, mainly because of its many appealing properties. For instance, the maximum likelihood estimates are asymptotically unbiased, efficient, consistent, invariant under parameter transformation and asymptotically normally distributed (see, e.g., [18,25,28]).

The log-likelihood function of unit-Logistic distribution based on the random sample $x = (x_1, \dots, x_n)$ can be written as:

$$\ell(\mu, \beta \mid \mathbf{x}) = n \log \beta + n \beta \log (1 - \mu) + n \beta \log \mu + (\beta - 1) \sum_{i=1}^{n} \log x_i + (\beta - 1) \sum_{i=1}^{n} \log (1 - x_i) - 2 \sum_{i=1}^{n} \log \left[(1 - \mu)^{\beta} x_i^{\beta} + \mu^{\beta} (1 - x_i)^{\beta} \right].$$
(7)

The maximum likelihood estimates $\widehat{\mu}_{MLE}$ and $\widehat{\beta}_{MLE}$, of the parameters μ and β , respectively, can be obtained by maximizing (7), or equivalently solving the following normal equations:

$$\frac{\partial \ell}{\partial \mu} = \frac{n (\beta - \mu \beta)}{\mu (1 - \mu)} - 2\beta \sum_{i=1}^{n} \frac{(1 - \mu)^{\beta - 1} x_{i}^{\beta} - \mu^{\beta - 1} (1 - x_{i})^{\beta}}{(1 - \mu)^{\beta} x_{i}^{\beta} + \mu^{\beta} (1 - x_{i})^{\beta}} = 0, \tag{8}$$

$$\frac{\partial \ell}{\partial \beta} = \frac{n}{\beta} + n \log(1 - \mu) + n \log \mu + \sum_{i=1}^{n} \log x_i + \sum_{i=1}^{n} \log(1 - x_i)$$
 (9)

$$-2\sum_{i=1}^{n} \frac{x_{i}^{\beta} \left[\log (1-\mu) + \log x_{i}\right] (1-\mu) \beta + 2 \mu^{\beta} (1-x_{i})^{\beta} \left[\log (1-x_{i}) + \log \mu\right]}{(1-\mu)^{\beta} x_{i}^{\beta} + \mu^{\beta} (1-x_{i})^{\beta}} = 0.$$

Confidence intervals can be obtained by using the large sample distribution of the MLEs, which is normally distributed with the covariance matrix given by the inverse of the Fisher information since regularity conditions are satisfied.

2.2 Method of Maximum Product of Spacings

The maximum product of spacings (MPS) method was introduced by [2, 3] as an alternative to MLE for estimating parameters of continuous univariate distributions. Ranneby [26] independently derived the same method as an approximation to the Kullback–Leibler measure of information.

The uniform spacings of a random sample from unit-Logistic distribution is defined as:

$$D_i(\mu, \beta) = F(x_{(i)} \mid \mu, \beta) - F(x_{(i-1)} \mid \mu, \beta), \qquad i = 1, ..., n,$$

 $F(x_{(0)} \mid \mu, \beta) = 0 \quad \text{and} \quad F(x_{(n+1)} \mid \mu, \beta) = 0.$

Clearly,
$$D_0(\mu, \beta) + D_1(\mu, \beta) + \ldots + D_{n+1}(\mu, \beta) = 1$$
.

From [2, 3], the MPSEs, $\widehat{\mu}_{MPS}$ and $\widehat{\beta}_{MPS}$, are the values of μ and β , which maximize the geometric mean of the spacings:

$$G(\mu, \beta \mid \mathbf{x}) = \left[\prod_{i=1}^{n+1} D_i(\mu, \beta)\right]^{\frac{1}{n+1}}$$
(10)

or, equivalently, by maximize its logarithm:

$$H(\mu, \beta \mid \mathbf{x}) = \frac{1}{n+1} \sum_{i=1}^{n+1} \log D_i.$$
 (11)

The estimators $\widehat{\mu}_{MPS}$ and $\widehat{\beta}_{MPS}$ of the parameters α and β can also be obtained by solving the nonlinear equations:

$$\frac{\partial}{\partial \mu} H(\mu, \beta) = \frac{1}{n+1} \sum_{i=1}^{n+1} \frac{1}{D_i(\mu, \beta)} \left[\Delta_1(x_{(i)} \mid \mu, \beta) - \Delta_1(x_{(i-1)} \mid \mu, \beta) \right] = 0,$$

$$\frac{\partial}{\partial \beta} H(\mu, \beta) = \frac{1}{n+1} \sum_{i=1}^{n+1} \frac{1}{D_i(\mu, \beta)} \left[\Delta_2(x_{(i)} \mid \mu, \beta) - \Delta_2(x_{(i-1)} \mid \mu, \beta) \right] = 0,$$

where

$$\Delta_{1}\left(x_{(i)} \mid \mu, \beta\right) = \frac{\mu^{\beta-1} \beta x_{(i)}^{-\beta} \left(\frac{\mu-1}{x_{(i)}-1}\right)^{\beta}}{(\mu-1) \left[x_{(i)} \mu^{-\beta} \left(\frac{\mu-1}{x_{(i)}-1}\right)^{\beta} + 1\right]^{2}}$$
(12)

and

$$\Delta_{2}(x_{i:n} \mid \mu, \beta) = \frac{\left[\log \mu + \log(1 - x_{(i)}) - \log x_{(i)} - \log(1 - \mu)\right] x_{(i)}^{-\beta} \mu^{\beta} \left(\frac{\mu - 1}{x_{(i)} - 1}\right)^{\beta}}{(\mu - 1) \left[x_{(i)} \mu^{-\beta} \left(\frac{\mu - 1}{x_{(i)} - 1}\right)^{\beta} + 1\right]^{2}}.$$
 (13)

It is noteworthy that the MPSE is as efficient as ML estimation and consistent under more general conditions than the ML estimators [3].

2.3 Method of Percentiles

If the data come from a distribution function which has a closed form, then we can estimate the unknown parameters by fitting straight line to the theoretical points obtained from the distribution function and the sample percentile points. This method was developed by [15,16] to estimate the parameters of the Weibull distribution.

Since the unit-Logistic distribution has an explicit cumulative distribution function, (5), it is feasible to use the same concept to derive estimators for μ and β . If p_i denotes some estimate of $F\left(x_{(i)} \mid \mu, \beta\right)$, then the percentiles estimators, $\widehat{\mu}_{PCE}$ and $\widehat{\beta}_{PCE}$, can be obtained by minimizing, with respect to μ and β , the nonlinear function:

$$P(\mu, \beta \mid \mathbf{x}) = \sum_{i=1}^{n} \left[x_{(i)} - \frac{\mu \, p_i^{1/\beta}}{(1-\mu) \, (1-p_i)^{1/\beta} + \mu \, p_i^{1/\beta}} \right]^2, \tag{14}$$

where $p_i = \frac{i}{n+1}$ is an unbiased estimator of $F(x_{(i)} | \mu, \beta)$. It is to be mentioned here that there are several possible choices for p_i , interested readers may refer to [20].

2.4 Methods of Least Squares

The least square methods were originally proposed by [29] to estimate the parameters of the Beta distributions. Suppose that $F(X_{(i)})$ denotes the distribution function of the order statistics from the random sample $\mathbf{x} = (x_1, \dots, x_n)$. An important result from the probability shows that $F(X_{(i)}) \sim \text{Beta}(i, n - i + 1)$. Therefore, we have:

$$E[F(X_{(i)})] = \frac{i}{n+1}$$
 and $V[F(X_{(i)})] = \frac{i(n-i+1)}{(n+1)^2(n+2)}$ (15)

for further details see [14]. Using the expectations and variances, we obtain two variants of the least squares methods.

2.4.1 Ordinary Least Squares

In case of unit-Logistic distribution, the ordinary least square estimates $\widehat{\mu}_{OLS}$ and $\widehat{\beta}_{OLS}$ of the parameters μ and β can be obtained by minimizing the function:

$$S(\mu, \beta \mid \mathbf{x}) = \sum_{i=1}^{n} \left[F(\mathbf{x}_{(i)} \mid \mu, \beta) - \frac{i}{n+1} \right]^{2}$$
 (16)

with respect to μ and β . Alternatively, these estimates can also be obtained by solving the following nonlinear equations:

$$\sum_{i=1}^{n} \left[F\left(x_{(i)} \mid \mu, \beta \right) - \frac{i}{n+1} \right] \Delta_1 \left(x_{(i)} \mid \mu, \beta \right) = 0,$$

$$\sum_{i=1}^{n} \left[F\left(x_{(i)} \mid \mu, \beta \right) - \frac{i}{n+1} \right] \Delta_2 \left(x_{(i)} \mid \mu, \beta \right) = 0$$

where $\Delta_1(\cdot \mid \mu, \beta)$ and $\Delta_2(\cdot \mid \mu, \beta)$ are given by Equations (12) and 13, respectively.

2.4.2 Weighted Least Squares

For the unit-Logistic distribution, the weighted least square estimates of μ and β , say $\widehat{\mu}_{WLS}$ and $\widehat{\beta}_{WLS}$, respectively are obtained by minimizing the function:

$$W(\mu, \beta \mid \mathbf{x}) = \sum_{i=1}^{n} \frac{(n+1)^{2} (n+2)}{i (n-i+1)} \left[F\left(x_{(i)} \mid \mu, \beta\right) - \frac{i}{n+1} \right]^{2}$$
 (17)

with respect to μ and β . Equivalently, these estimates are the solution of the following nonlinear equations:

$$\sum_{i=1}^{n} \frac{(n+1)^{2} (n+2)}{i (n-i+1)} \left[F\left(x_{(i)} \mid \mu, \beta\right) - \frac{i}{n+1} \right] \Delta_{1}\left(x_{(i)} \mid \mu, \beta\right) = 0,$$

$$\sum_{i=1}^{n} \frac{(n+1)^{2} (n+2)}{i (n-i+1)} \left[F\left(x_{(i)} \mid \mu, \beta\right) - \frac{i}{n+1} \right] \Delta_{2}\left(x_{(i)} \mid \mu, \beta\right) = 0$$

where $\Delta_1(\cdot \mid \mu, \beta)$ and $\Delta_2(\cdot \mid \mu, \beta)$ are defined in Equations (12) and 13, respectively.

2.5 Methods of Minimum Distances

Here, we will discuss some methods based on the test statistics of Cramér-von Mises, Anderson-Darling and four variants of the Anderson-Darling test, whose acronyms are ADR, AD2R, AD2L and AD2. Mainly, these methods determine the values of parameters that minimize the distance between the theoretical and empirical cumulative distribution functions (see for further details e.g., [6, 19]). The expressions for each method are presented in Table 1.

For illustrative purposes, we have presented only the expressions used for the estimation of the parameters for the Cramér–von- Mises and Anderson-Darling methods.

Acronyms	Expressions
CvM	$W_n^2 = \frac{1}{12n} + \sum_{i=1}^n \left(x_{(i)} - \frac{2i-1}{2n} \right)^2$
AD	$A_n^2 = -n - \frac{1}{n} \sum_{i=1}^{n} (2i - 1) \left[\log x_{(i)} + \log(1 - x_{(n+1-i)}) \right]$
ADR	$R_n^2 = \frac{n}{2} - 2\sum_{i=1}^n x_{(i)} - \frac{1}{n}\sum_{i=1}^n (2i-1)\log(1 - x_{(n+1-i)})$
AD2R	$r_n^2 = 2 \sum_{i=1}^{n} \log(1 - x_{(i)}) + \frac{1}{n} \sum_{i=1}^{n} \frac{2i - 1}{1 - x_{(n+1-i)}}$
AD2L	$l_n^2 = 2\sum_{i=1}^n \log x_{(i)} + \frac{1}{n}\sum_{i=1}^n \frac{2i-1}{x_{(i)}}$
AD2	$a_n^2 = 2\sum_{i=1}^n \left[\log x_{(i)} + \log(1 - x_{(i)}) \right] + \frac{1}{n} \sum_{i=1}^n \left(\frac{2i - 1}{x_{(i)}} + \frac{2i - 1}{1 - x_{(n+1-i)}} \right)$

Table 1 – Expressions for the methods based on the minimum distances.

2.5.1 Method of Cramér-von Mises

In regard to unit-Logistic distribution, the Cramér–von- Mises estimates $\widehat{\mu}_{CvM}$ and $\widehat{\beta}_{CvM}$ are obtained by minimizing with respect to μ and β the function:

$$C(\mu, \beta \mid \mathbf{x}) = \frac{1}{12n} + \sum_{i=1}^{n} \left(F\left(x_{(i)} \mid \mu, \beta\right) - \frac{2i-1}{2n} \right)^{2}.$$
 (18)

The estimates can also be obtained by solving the following nonlinear equations:

$$\sum_{i=1}^{n} \left(F\left(x_{(i)} \mid \mu, \beta\right) - \frac{2i-1}{2n} \right) \Delta_{1} \left(x_{(i)} \mid \mu, \beta\right) = 0,$$

$$\sum_{i=1}^{n} \left(F\left(x_{(i)} \mid \mu, \beta\right) - \frac{2i-1}{2n} \right) \Delta_{2} \left(x_{(i)} \mid \mu, \beta\right) = 0$$

where $\Delta_1(\cdot \mid \mu, \beta)$ and $\Delta_2(\cdot \mid \mu, \beta)$ are specified in Equations (12) and 13, respectively.

2.5.2 Method of Anderson-Darling

[1] developed a test, as an alternative to statistical tests for detecting sample distributions departure from normality. Using these test statistics, we can obtain the Anderson-Darling estimates, $\widehat{\mu}_{ADE}$ and $\widehat{\beta}_{ADE}$, by minimizing the function

$$A(\mu, \beta \mid \mathbf{x}) = -n - \frac{1}{n} \sum_{i=1}^{n} (2i - 1) \left\{ \log F\left(x_{(i)} \mid \mu, \beta\right) + \log \overline{F}\left(x_{(n+1-i)} \mid \mu, \beta\right) \right\}. \tag{19}$$

with respect to μ and β . Equivalently, these estimates are the solution of the following nonlinear equations:

$$\sum_{i=1}^{n} (2i-1) \left[\frac{\Delta_1 \left(x_{(i)} \mid \mu, \beta \right)}{F \left(x_{(i)} \mid \mu, \beta \right)} - \frac{\Delta_1 \left(x_{(n+1-i)} \mid \mu, \beta \right)}{\overline{F} \left(x_{(n+1-i)} \mid \mu, \beta \right)} \right] = 0,$$

$$\sum_{i=1}^{n} (2i-1) \left[\frac{\Delta_2 \left(x_{(i)} \mid \mu, \beta \right)}{F \left(x_{(i)} \mid \mu, \beta \right)} - \frac{\Delta_2 \left(x_{(n+1-i)} \mid \mu, \beta \right)}{\overline{F} \left(x_{(n+1-i)} \mid \mu, \beta \right)} \right] = 0$$

where Δ_1 (· | α , β) and Δ_2 (· | α , β) are given by (12) and (13), respectively.

3 SIMULATION RESULTS

In this section we conduct a Monte Carlo simulation study to compare the performance of the frequentist estimators discussed in the previous sections. The methods are compared for sample sizes $n = \{20, 50, 100, 200\}$. We generate M = 5.000 pseudo-random samples from unit-Logistic distribution using the inverse transform method with parameters $\mu = \{0.2, 0.4, 0.6, 0.8\}$ and $\beta = \{0.5, 1.5, 2.0\}$.

All simulations are done in Ox version 7.10, (see [11]), using the MaxBFGS subroutine for numerical optimizations. For each estimate, we calculate the relative bias, root mean-squared error (RMSE), the average absolute difference between the theoretical and empirical estimate of the distribution functions ($D_{\rm abs}$), and the maximum absolute difference between the theoretical and empirical distribution functions ($D_{\rm max}$). These measures are obtained using the following formulae:

$$\operatorname{Bias}\left(\widehat{\mathbf{\Theta}}\right) = \frac{1}{M} \sum_{i=1}^{M} \left(\frac{\widehat{\mathbf{\Theta}}_{i} - \mathbf{\Theta}}{\mathbf{\Theta}}\right), \tag{20}$$

RMSE
$$(\widehat{\Theta}) = \sqrt{\frac{1}{M} \sum_{i=1}^{M} (\widehat{\Theta}_i - \Theta)^2},$$
 (21)

$$D_{\text{abs}} = \frac{1}{M \times n} \sum_{i=1}^{M} \sum_{j=1}^{n} \left| F\left(y_{ij} \mid \mathbf{\Theta}\right) - F\left(y_{ij} \mid \widehat{\mathbf{\Theta}}\right) \right|, \tag{22}$$

$$D_{\max} = \frac{1}{M} \sum_{i=1}^{M} \max_{j} |F(y_{ij} | \boldsymbol{\Theta}) - F(y_{ij} | \widehat{\boldsymbol{\Theta}})|.$$
 (23)

where $\Theta = (\mu, \beta)$. Due to space constraint, we report the results only for $\mu = (0.2, 0.8)$ and $\beta = (0.5, 2)$. The results for other combinations are summarized by their ranks in Tables 6 and 11, however this can be obtained from the corresponding author on request.

In Tables 2–5 we report the empirical values of (20)–(23). A superscript indicates the rank of each of the estimators among all the estimators for that metric. For example, Table 2 presents

the bias of the MLE $(\widehat{\beta})$ in the first row as 0.070^9 for n=20. This indicates that the bias of $\widehat{\beta}$ obtained using the method of maximum likelihood ranks 9^{th} among all other estimators.

The following observations can be drawn from Tables 2-5.

- 1. All the estimators reveal the property of consistency, i.e., the RMSE decreases when the sample size increases.
- 2. The bias of $\widehat{\beta}$ decreases when *n* increases for all estimation methods.
- 3. The bias of $\widehat{\mu}$ decreases when *n* increases for all estimation methods.
- 4. The bias of $\widehat{\mu}$ generally decreases when β increases for any given β and n for all estimation methods.
- 5. The bias of $\widehat{\beta}$ generally decreases when μ increases for any given μ and n for all estimation methods.
- 6. \widehat{D}_{abs} is smaller than \widehat{D}_{max} for all estimation techniques. Again, these statistics become smaller when n increases

The overall ranks of the estimation methods are presented in Table 6. For the parameter combinations considered in our study, Anderson-Darling estimator (AD) turns out to the best (overall score of 159) in the overall ranking closely followed by the method of weighted least square (WLS) (overall score of 178).

In the previous tables, we have obtained the point estimates of each method of estimation. However, it is also important to know the behaviour of interval estimation for each method of estimations. Therefore, we computed the parametric Bootstrap confidence interval [12] and evaluate their coverage probability and average length of the simulated confidence intervals. The results are presented in Tables 7–10.

From the results reported in Tables 7–10, it is observed that as sample sizes increases, the coverage probability increases for both the parameters as well as for the estimation methods, while the average width of the confidence intervals decreases as the sample sizes increases for both the parameters and estimation methods.

The overall positions of the interval estimates are presented in Table 11. It is observed that WLS is the best method for interval estimation based on parametric Boostrap confidence intervals. The next best method is the AD, followed by MLE.

Thus, based on our study we may conclude that AD and WLS are the best methods for estimating the parameters of unit-Logistic distribution for both point and interval estimation. Therefore, we suggest to use AD and WLS methods of estimation for practical purposes.

Table 2 – Simulations results for $\mu = 0.2$ and $\beta = 0.5$.

8ias(β) 0.0254 -0.0385 0.071 ¹⁰ RMSE(β) 0.214 ² 0.216 ³ 0.361 ¹⁰ Bias(μ) 0.108 ³ 0.126 ⁹ 0.088 ¹ \widehat{D}_{abs} 0.042 ² 0.693 ¹⁰ 0.676 ⁸ \widehat{D}_{abs} 0.098 ⁸ 0.097 ² 0.098 ¹¹ n Qtd AD AD2 AD2L Bias(β) 0.046 ⁶ 0.059 ¹⁰ 0.076 ¹¹ RMSE(β) 0.124 ³ 0.143 ⁷ 0.201 ¹⁰ \widehat{D}_{abs} 0.062 ² 0.062 ⁶ 0.062 ¹⁰ \widehat{D}_{abs} 0.062 ² 0.062 ⁶ 0.062 ¹⁰ \widehat{D}_{abs} 0.062 ³ 0.153 ³ 0.153 ³ Iou Qtd AD AD2 AD2L Bias(β) 0.003 ³ 0.109 ⁸ 0.148 ¹⁰ \widehat{D}_{abs} 0.0076 0.0391 0.013 ³ RMSE(β) 0.003 ³ 0.109 ⁸ 0.148 ¹⁰ \widehat{D}_{abs} 0.0044 ⁴ 0.0446 0.0444 \widehat{D}_{abs} 0.00446 0.03210 0.067 ¹¹ \widehat{D}_{abs} 0.0077 0.0399 0.348 ¹¹ \widehat{D}_{abs} 0.0011 0.012 ³ 0.112 ³ \widehat{D}_{abs} 0.0011 0.03211 0.016 ⁸ RMSE(β) 0.0014 0.03211 0.016 ⁸ \widehat{D}_{abs} 0.0011 0.03211 0.016 ⁸ RMSE(β) 0.0011 0.03211 0.016 ⁸ \widehat{D}_{abs} 0.0012 0.0034 0.05411 \widehat{D}_{abs} 0.0012 0.03211 0.005411 \widehat{D}_{abs} 0.0013 0.0331 0.03311 0.005411 \widehat{D}_{abs} 0.0013 0.0331 0.03311 0.03311 \widehat{D}_{abs} 0.0012 0.03314 0.03111 \widehat{D}_{abs} 0.0312 0.0314 0.0328)	MLE	MFS	OLS	PCE	wLS
0.214^{2} 0.216^{3} 0.108^{3} 0.126^{9} 0.048^{2} 0.098^{10} 0.098^{8} 0.097^{2} 0.098^{8} 0.097^{2} 0.227^{3} 0.222^{7} 0.221^{3} 26^{3} 32^{5} AD AD2 0.007^{6} 0.046^{6} 0.059^{10} 0.062^{2} 0.062^{6} 0.062^{2} 0.062^{2} 0.062^{6} 0.053^{8} 0.062^{2} 0.062^{9} 0.062^{4} 0.032^{10} 0.277^{2} 0.309^{9} 0.044^{3} 0.044^{4} 0.044^{6} 0.111^{1} 0.112^{3} 16^{1} 47^{8} AD AD2 0.001^{1} 0.001^{2} 0.001^{3} 0.083^{8} 0.061^{3} 0.083^{8} 0.0198^{2} 0.0198^{2} 0.0198^{2} 0.0198^{2} 0.0198^{2} 0.0198^{2} 0.031^{4} 0.031^{4} 0.031^{4}	0 0.069 ⁷	0.052^{6}	0.077^{11}	0.070^{9}	-0.0708	-0.009^{3}	0.000^{1}	0.002^{2}
0.1083 0.1269 0.6422 0.69310 0.0988 0.0972 0.2227 0.2213 263 325 AD AD2 0.0076 0.04611 0.1243 0.1437 0.0466 0.05910 0.0522 0.0626 0.1522 0.1521 211 448 AD AD2 0.0033 0.1098 0.0277 0.3099 0.0443 0.0446 0.1111 0.1123 161 478 AD AD2 0.0011 0.03211 0.0011 0.03211 0.00125 0.01810 0.01982 0.2249 0.0312 0.0314	0.366^{11}	0.258^{7}	0.271^{8}	0.226^{5}	0.200^{1}	0.235^{6}	0.298^{9}	0.223^{4}
0.642^{2} 0.693^{10} 0.098^{8} 0.097^{2} 0.0227^{7} 0.221^{3} 26^{3} 32^{5} AD AD2 0.007^{6} 0.046^{61} 0.124^{3} 0.143^{7} 0.046^{6} 0.059^{10} 0.398^{2} 0.443^{9} 0.062^{2} 0.062^{6} 0.152^{2} 0.152^{1} AD AD2 0.003^{3} -0.039^{11} 0.087^{3} 0.109^{8} 0.0277^{2} 0.309^{9} 0.044^{3} 0.044^{6} 0.111^{1} 0.112^{3} 16^{1} AD AD2 AD AD2 0.001^{3} 0.083^{8} 0.061^{3} 0.083^{8} 0.019^{8} 0.019^{8} 0.019^{2} 0.031^{4} 0.019^{2} 0.031^{4}		0.129^{10}	0.109^{7}	0.107^{2}	0.108^{4}	0.109^{6}	0.1111^{8}	0.108^{5}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$8 0.722^{11}$	0.657^{7}	0.645^{6}	0.641^{1}	0.642^{3}	0.644^{4}	0.681^{9}	0.644^{5}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.097^3	0.098^{10}	0.098^{9}	0.098^{7}	0.097^{5}	0.096^{1}	0.097^{6}	0.097^{4}
26 ³ 32 ⁵ AD AD2 0.007 ⁶ -0.046 ¹¹ 0.124 ³ 0.143 ⁷ 0.046 ⁶ 0.059 ¹⁰ 0.398 ² 0.443 ⁹ 0.062 ² 0.062 ⁶ 0.152 ² 0.152 ¹ 21 ¹ 44 ⁸ AD AD2 0.003 ³ -0.039 ¹¹ 0.087 ³ 0.109 ⁸ 0.044 ³ 0.044 ⁶ 0.111 ¹ 0.112 ³ 16 ¹ 47 ⁸ AD AD2 0.044 ³ 0.044 ⁶ 0.111 ¹ 0.112 ³ 16 ¹ 47 ⁸ AD AD2 0.044 ³ 0.044 ⁶ 0.111 ³ 0.103 ⁸ 0.044 ³ 0.044 ⁶ 0.111 ³ 0.112 ³ 16 ¹ 47 ⁸ AD AD2 0.001 ¹ -0.032 ¹¹ 0.001 ³ 0.083 ⁸ 0.012 ⁵ 0.018 ¹⁰ 0.198 ² 0.224 ⁹ 0.031 ² 0.081 ¹	0.222^{8}	0.222^{10}	0.222^{5}	0.222^{9}	0.222^{6}	0.220^{1}	0.220^{2}	0.222^{4}
AD AD2 0.0076 -0.046 ¹¹ 0.124 ³ 0.143 ⁷ 0.046 ⁶ 0.059 ¹⁰ 0.398 ² 0.443 ⁹ 0.062 ² 0.062 ⁶ 0.152 ² 0.152 ¹ 21 ¹ 44 ⁸ AD AD2 0.003 ³ -0.039 ¹¹ 0.087 ³ 0.109 ⁸ 0.0277 ² 0.309 ⁹ 0.044 ³ 0.044 ⁶ 0.111 ¹ 0.112 ³ 16 ¹ 47 ⁸ AD AD2 0.011 ¹ 0.032 ¹¹ 0.001 ¹ -0.033 ¹¹ 0.061 ³ 0.083 ⁸ 0.012 ⁸ 0.018 ¹⁰ 0.198 ² 0.224 ⁹ 0.031 ² 0.081 ¹	51^{10}	50 ₉	468	336	274	21^{1}	357	242
0.007^6 -0.046^{11} 0.124^3 0.143^7 0.046^6 0.059^{10} 0.398^2 0.443^9 0.062^2 0.062^6 0.152^2 0.152^1 21^1 44^8 AD AD2 0.003^3 -0.039^{11} 0.087^3 0.109^8 0.024^4 0.032^{10} 0.277^2 0.309^9 0.044^3 0.044^6 0.111^1 0.112^3 AD AD2 AD AD2 0.011^3 0.0113^3 AD AD2 0.011^3 0.0113^3 AD AD2 0.011^3 0.081^8 0.012^5 0.018^{10} 0.012^5 0.018^{10} 0.012^6 0.024^9	, AD2R	ADR	CvM	MLE	MPS	OLS	PCE	MLS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.016^{7}	0.026^{9}	0.024^{8}	-0.044^{10}	-0.0075	-0.004^{4}	0.002^{3}
0.046^{6} 0.059^{10} 0.398^{2} 0.443^{9} 0.062^{2} 0.062^{6} 0.152^{2} 0.152^{1} 21^{1} 44^{8} AD AD2 0.003^{3} -0.039^{11} 0.026^{4} 0.032^{10} 0.277^{2} 0.309^{9} 0.044^{3} 0.044^{6} 0.111^{1} 0.112^{3} AD AD2 AD AD AD2 AD AD AD AD AD AD AD AD		0.142^{6}	0.145^{8}	0.124^{2}	0.122^{1}	0.137^{5}	0.187^{9}	0.127^{4}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.055^{9}	0.047^{8}	0.046^{4}	0.046^{5}	0.047^{7}	0.044^{1}	0.046^{2}
$\begin{array}{ccccc} 0.062^2 & 0.062^6 \\ 0.152^2 & 0.152^1 \\ 21^1 & 44^8 \\ & AD & AD2 \\ 0.003^3 & -0.039^{11} \\ 0.087^3 & 0.109^8 \\ 0.0274 & 0.032^{10} \\ 0.277^2 & 0.309^9 \\ 0.044^3 & 0.044^6 \\ 0.111^1 & 0.112^3 \\ 16^1 & 47^8 \\ & AD & AD2 \\ & AD & AD2 \\ 0.001^1 & -0.032^{11} \\ 0.061^3 & 0.083^8 \\ 0.012^5 & 0.018^{10} \\ 0.0198^2 & 0.224^9 \\ 0.031^2 & 0.081^1 \\ \end{array}$		0.405^{7}	0.400^{6}	0.398^{1}	0.398^{3}	0.400^{5}	0.432^{8}	0.399^{4}
$\begin{array}{ccccc} 0.152^2 & 0.152^1 \\ & 21^1 & 44^8 \\ & AD & AD2 \\ 0.003^3 & -0.039^{11} \\ 0.026^4 & 0.032^{10} \\ 0.277^2 & 0.309^9 \\ 0.044^3 & 0.044^6 \\ 0.111^1 & 0.112^3 \\ 16^1 & 47^8 \\ & AD & AD2 \\ & AD & AD2 \\ 0.001^1 & -0.032^{11} \\ 0.061^3 & 0.083^8 \\ 0.012^5 & 0.018^{10} \\ 0.012^5 & 0.024^9 \\ 0.031^2 & 0.031^4 \\ 0.081^2 & 0.081^1 \end{array}$		0.062^{3}	0.062^{7}	0.062^{4}	0.061^{1}	0.062^{9}	0.062^{8}	0.062^{5}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		0.152^{3}	0.152^{8}	0.152^{5}	0.152^{4}	0.152^{7}	0.153^{10}	0.152^{6}
AD AD2 0.003 ³ -0.039 ¹¹ 0.087 ³ 0.109 ⁸ 0.026 ⁴ 0.032 ¹⁰ 0.277 ² 0.309 ⁹ 0.044 ³ 0.044 ⁶ 0.111 ¹ 0.112 ³ 16 ¹ 47 ⁸ AD AD2 AD AD2 0.001 ¹ -0.032 ¹¹ 0.061 ³ 0.083 ⁸ 0.012 ⁵ 0.018 ¹⁰ 0.198 ² 0.224 ⁹ 0.031 ² 0.031 ⁴	4710	352	469	242	242	386	40^{7}	242
$\begin{array}{cccccccccccccccccccccccccccccccccccc$, AD2R	ADR	CvM	MLE	MPS	OLS	PCE	WLS
$\begin{array}{cccc} 0.087^3 & 0.1098 \\ 0.026^4 & 0.032^{10} \\ 0.277^2 & 0.3099 \\ 0.044^3 & 0.044^6 \\ 0.111^1 & 0.112^3 \\ 16^1 & 47^8 \\ & AD & AD2 \\ 0.001^1 & -0.032^{11} \\ 0.061^3 & 0.083^8 \\ 0.012^5 & 0.018^{10} \\ 0.0198^2 & 0.224^9 \\ 0.031^2 & 0.031^4 \\ 0.081^2 & 0.081^1 \end{array}$	9 -0.0126	0.008^{5}	0.012^{7}	0.012^{8}	-0.027^{10}	-0.004^{4}	-0.003^{2}	0.002^{1}
$\begin{array}{cccc} 0.026^4 & 0.032^{10} \\ 0.277^2 & 0.309^9 \\ 0.044^3 & 0.044^6 \\ 0.111^1 & 0.112^3 \\ \hline 16^1 & 47^8 \\ \hline AD & AD2 \\ 0.001^1 & -0.032^{11} \\ 0.061^3 & 0.083^8 \\ 0.012^5 & 0.018^{10} \\ 0.0198^2 & 0.224^9 \\ 0.031^2 & 0.031^4 \\ 0.081^2 & 0.081^1 \end{array}$	$0 - 0.152^{11}$	0.0986	0.099^{7}	0.086^{1}	0.086^{2}	0.096^{5}	0.132^{9}	0.088^{4}
$\begin{array}{cccc} 0.277^2 & 0.309^9 \\ 0.044^3 & 0.044^6 \\ 0.0111^1 & 0.112^3 \\ 16^1 & 47^8 \\ & AD & AD2 \\ 0.001^1 & -0.032^{11} \\ 0.061^3 & 0.083^8 \\ 0.012^5 & 0.018^{10} \\ 0.198^2 & 0.224^9 \\ 0.031^2 & 0.031^4 \\ 0.081^2 & 0.081^1 \end{array}$		0.030^{9}	0.026^{8}	0.026^{6}	0.026^{5}	0.026^{7}	0.025^{2}	0.025^{3}
$\begin{array}{cccc} 0.044^3 & 0.044^6 \\ 0.111^1 & 0.112^3 \\ 16^1 & 47^8 \\ AD & AD2 \\ 0.001^1 & -0.032^{11} \\ 0.061^3 & 0.083^8 \\ 0.012^5 & 0.018^{10} \\ 0.198^2 & 0.224^9 \\ 0.031^2 & 0.031^4 \\ 0.081^2 & 0.081^1 \end{array}$	0.327^{10}	0.281^{7}	0.279^{6}	0.277^{1}	0.277^{3}	0.279^{5}	0.302^{8}	0.277^{4}
$\begin{array}{cccc} 0.111^1 & 0.112^3 \\ \hline 16^1 & 47^8 \\ \hline AD & AD2 \\ 0.001^1 & -0.032^{11} \\ 0.061^3 & 0.083^8 \\ 0.012^5 & 0.018^{10} \\ 0.198^2 & 0.224^9 \\ 0.031^2 & 0.031^4 \\ 0.081^2 & 0.081^1 \end{array}$		0.044^{10}	0.044^{11}	0.044^{7}	0.043^{1}	0.044^{9}	0.044^{2}	0.0445
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7 0.112 ⁶	0.113^{10}	0.113^{11}	0.112^{5}	0.112^{2}	0.112^{9}	0.112^{4}	0.112^{8}
AD AD2 0.001 ¹ -0.032 ¹¹ 0.061 ³ 0.083 ⁸ 0.012 ⁵ 0.018 ¹⁰ 0.198 ² 0.224 ⁹ 0.031 ² 0.031 ⁴ 0.081 ²	427	478	20^{10}	282	23^{2}	366	274	25 ³
$\begin{array}{ccc} 0.001^1 & -0.032^{11} \\ 0.061^3 & 0.083^8 \\ 0.012^5 & 0.018^{10} \\ 0.198^2 & 0.224^9 \\ 0.031^2 & 0.031^4 \\ 0.081^2 & 0.081^1 \end{array}$		ADR	CvM	MLE	MPS	OLS	PCE	WLS
$0.061^{3} 0.083^{8} \\ 0.012^{5} 0.018^{10} \\ 0.198^{2} 0.224^{9} \\ 0.031^{2} 0.031^{4} \\ 0.081^{2} 0.081^{1}$	ľ	0.003^{3}	0.005^{6}	0.005^{7}	-0.017^{9}	-0.003^{4}	-0.003^{5}	0.001^{2}
$\begin{array}{ccc} 0.012^5 & 0.018^{10} \\ 0.198^2 & 0.224^9 \\ 0.031^2 & 0.031^4 \\ 0.081^2 & 0.081^1 \end{array}$	0.0113^{11}	0.068^{7}	0.067^{6}	0.059^{1}	0.060^{2}	0.066^{5}	0.092^{9}	0.061^{4}
$\begin{array}{cccc} 0.198^2 & 0.224^9 & 0.031^2 & 0.031^4 & 0.081^1 & 0.081^1 \end{array}$		0.014^{8}	0.012^{2}	0.012^{4}	0.012^{6}	0.012^{3}	0.010^{1}	0.012^{7}
$0.031^2 0.031^4 0.081^1 0.081^1 0.081^4 0.08$	_	0.199^{7}	0.198^{6}	0.198^{1}	0.198^{4}	0.198^{5}	0.214^{8}	0.198^{3}
$0.081^2 0.081^1$		0.031^{1}	0.031^{10}	0.031^{7}	0.031^{8}	0.031^{5}	0.031^{9}	0.031^{6}
)	0.082^{6}	0.082^{10}	0.082^{5}	0.082^{11}	0.082^{4}	0.082^{9}	0.082^{7}
Total 15^1 43^9 59^{11}	46^{10}	325	406	25^{2}	406	26^{3}	418	294
Overall Total 6^1 30^8 43^{11}	37^{10}	277	339	154	143	16^{5}	56^{6}	11^{2}

200 100 50 20 Overall Total $RMSE(\widehat{\mu})$ $RMSE(\widehat{\mu})$ $RMSE(\widehat{\mu})$ $RMSE(\hat{\mu})$ $RMSE(\beta)$ $RMSE(\beta)$ $RMSE(\beta)$ $RMSE(\beta)$ $Bias(\widehat{\mu})$ $Bias(\widehat{\mu})$ $Bias(\widehat{\mu})$ $Bias(\beta)$ \hat{D}_{\max} $Bias(\mu)$ D_{max} $Bias(\beta)$ \widehat{D}_{\max} $Bias(\beta)$ D_{\max} D_{abs} $\hat{D}_{
m abs}$ $Bias(\beta)$ \hat{D}_{abs} D_{abs} Total Total Total Iotal Qtd Qtd Qtd Qtd 0.062^{3} 0.044^{11} 0.069^{2} 0.003^9 0.089° 0.099° 0.127^{2} 0.160° 0.049^{2} 0.000 0.002^{4} 0.113^{11} 0.004^{8} 0.097° 0.011 0.216^{2} 0.005 0.153° 0.062^{8} 0.008- 0.222° 0.027 0.082° 39 354 AD 14 Ð 0.107^9 0.168^{10} -0.0330.002' 0.109^9 0.001^9 0.082^{9} 0.076^{9} 0.005^9 0.145' 0.097^{6} 0.218° 0.054^{9} 0.044^{2} 0.153° 0.062° -0.045^{1} 0.222^{8} 0.011^9 0.082° 0.040 -0.044 4710 AD2 AD2 AD2 AD2 0.011^{11} 0.115^{11} 0.113^{11} 0.151^{11} 0.064^{1} 0.011^{11} 0.044^{5} 0.085^{11} 0.153^{10} 0.062^{7} 0.008^{11} 0.210^{10} 0.333^{10} -0.0030.097 0.168^9 0.002^{2} 0.020^{10} -0.017° 0.2226 0.049 AD2L AD2L AD2L AD2L 5510 501 3910 39⁸ 0.044^{10} 0.061^{10} -0.007^{10} 0.1111^{10} 0.084^{10} 0.113^{10} -0.005^{10} 0.210^{11} 0.174^{1} 0.021^{11} 0.340^{11} 0.113^{10} 0.151^{10} 0.153^{7} 0.002^2 0.082^{9} -0.017-0.0140.0625 0.003^{2} AD2R 0.221^{4} 0.097^{3} 0.060 AD2R AD2R AD2R 5711 401 5611 4911 0.006^{10} 0.001^{8} 0.069' 0.001^{6} 0.099'0.100' 0.143° 0.158^{4} 0.070 0.009 0.152^{3} 0.062° 0.019° 0.221^{2} 0.013^{10} 0.082^{-3} 0.050' 0.005° 0.044^{1} 0.098^{8} 0.256° 0.056° ADR ADR ADR ADR 20^c 354 35 26-38 0.070^{10} 0.000^{4} 0.069° 0.000^{1} 0.097° 0.012^{-3} 0.153^{9} 0.063^{10} 0.099^{5} 0.001^{1} 0.146° 0.158^{3} 0.007^{3} 0.081^{1} 0.050^{-3} 0.007° 0.044 0.070 0.026 0.221^{3} 0.097^{2} 0.260^9 CvM CvMCvM CvM 408 325 303 185 22 0.082^{10} 0.032^{10} 0.050^{5} -0.000^{3} 0.060^{1} 0.070 0.001^{4} 0.087^{2} 0.014° 0.152^{1} 0.0620.0985 0.003^{4} 0.130° 0.028^{8} 0.2220.159 0.009^{4} 0.221° 0.007 0.044^{9} 0.097 0.067 MLE MLE 340 350 20 364 0.086^{1} 0.098^2 0.223^{11} 0.098^{11} 0.000^{2} 0.060 0.070^{-3} 0.001^{3} 0.153° 0.003^{5} 0.126^{1} 0.157^{1} 0.009 0.050^{4} -0.015° 0.044' 0.026^{11} 0.062^9 0.04110 0.202^{1} 0.071MPS MPS MPS MPS 409 324 30^{4} 354 0.154^{11} 0.222^{10} 0.083^{11} 0.032^{1} 0.063^{1} 0.000 0.0683 0.001^{2} 0.097° -0.002 0.141° -0.003 0.050^{6} 0.112^{2} 0.070 0.098^{4} 0.004^{7} 0.158^{2} 0.010^{6} 0.236 -0.004 -0.001 0.044^{5} 0.098^9 OLS OLS 35 OLS 191 OLS 36^{4} -0.001⁶ -0.001⁵ 0.076^{8} 0.107^{8} -0.002^3 0.151^9 0.081^{2} 0.071^{8} 0.152^{2} 0.100^{8} -0.039 0.159^{c} 0.001^{1} 0.050^{8} -0.014 0.044^{4} -0.024 0.062^{2} 0.220^{1} 0.097^{1} 0.234° -0.061 PCE PCE PCE PCE 324 39′ 333 153 0.002^{8} 0.158^{5} 0.049^{1} 0.001^{7} 0.062^{4} 0.113^{7} 0.044^{6} 0.069^{1} 0.090^{4} 0.004^{2} 0.153^{4} 0.098^{1} 0.004^{6} 0.130^{4} 0.222^9 0.098^{10} 0.011^{8} 0.082^{4} 0.031^{4} 0.003^{-3} 0.062^{4} 0.004^{4} 0.220^{4} 0.001^{1} WLS WLS WLS WLS 233 23^{2} 283 376 14

Table 3 – Simulations results for $\mu = 0.2$ and $\beta = 2.0$

Table 4 – Simulations results for $\mu = 0.8$ and $\beta = 0.5$.

Bins(β) 0.0234 -0.046 ⁴ 0.077 ³ 0.054 ⁴ -0.046 ⁴ 0.077 ³ 0.077 ³ -0.072 ³ -0.004 ⁴ -0.007 ³ 0.0034 -0.004 ⁴ -0.007 ³ 0.0034 -0.003	Õ	Otd	AD	AD2	AD2L	AD2R	ADR	CvM	MLE	MPS	OLS	PCE	WLS
0.132 ² 0.214 ³ 0.369 ¹¹ 0.368 ¹¹ 0.256 ⁷ 0.270 ⁸ 0.1077 0.0379 0.0328 0.0304 0.1029 ² 0.03640 0.04911 0.0364 0.0367 0.0369 0.0032 ⁸ 0.0304 0.1060 0.1180 0.1620 0.1623 0.1667 0.1667 0.1653 0.1089 0.0962 0.0378 0.0271 0.0973 0.0978 0.0975 0.0989 0.0997 0.0989 0.0997 0.0989 0.0997 0.0989 0.0997 0.0989 0.0997 0.0998 0.0997 0.0998 0.0997 0.0998 0.0997 0.0998 0.0997 0.0998 0.0999 0.0999 0.0999 0.0999 0.0999 0.0999 0.0091 0.0094 0.0011 0.0011 0.0012 0.0012 0.0114 0.0114 0.0118 0.0014 0.0189 0.0189 0.0189 0.0118 0.0118 0.0118 0.0011 0.0011 0.0114 0.0102 0.0118 0.0118 0.0118 0.0118	Sias	(θ)	0.028^{4}	-0.046^{5}	0.075^{10}	0.072^{8}	0.054^{6}	0.079^{11}	0.072^{7}	-0.072^{9}	-0.004^{2}	-0.007^{3}	0.003^{1}
0.0292 -0.03610 -0.04911 -0.0361 -0.0363 -0.0359 -0.0359 -0.0392 -0.0394 -0.0361 -0.04911 -0.0361 -0.0376 -0.0359 -0.0358 -0.0376 -0.0378	MS	$E(\widehat{eta})$	0.213^{2}	0.214^{3}	0.369^{11}	0.368^{10}	0.256^{7}	0.270^{8}	0.2285	0.197^{1}	0.240^{6}	0.302^{9}	0.228^{4}
0.1601 0.17810 0.18611 0.1748 0.1622 0.1623 0.1634 0.1667 0.1646 0.17810 0.09662 0.0978 0.0973 0.0973 0.0973 0.0994 0.09973 0.0991 0.0995 0.09691 0.0981 0.00891 0.2202 0.2223 0.22131 3.2231 3.2234 3.2231 3.2231 0.0981 0.00891 0.0116 0.0271 3.2231 0.2229 0.0209 0.0995 0.0996 0.0996 0.0997 0.0996 0.0997 0.0996 0.0997 0.0997 0.0996 0.0997 0.0094 0.0098 0.0044 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018 0.0018	3ias	$(\widehat{\mu})$	-0.029^{2}	-0.036^{10}	-0.049^{11}	-0.031^{6}	-0.026^{1}	-0.030^3	-0.031^{5}	-0.035^{9}	-0.032^{8}	-0.030^{4}	-0.032^{7}
0.0962 0.0978 0.0977 0.0981 0.0975 0.0976 0.0975 0.0964 0.0978 0.0976 0.0975 0.0978 0.0979 0.0975 0.0975 0.0975 0.0971 0.0210 0.2203 0.0210 0.0223 0.02273 0.0214 0.0273 0.0216 0.0223 0.02273 0.0216 0.0204 0.0042 0.0042 0.0042 0.0044 0.0044 0.0044 0.0044 0.0044 0.0014 0.0044 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0017 0.0024 0.002	MS	$\mathrm{E}(\widehat{\mu})$	0.160^{1}	0.178^{10}	0.186^{11}	0.174^{8}	0.162^{2}	0.162^{3}	0.163^{4}	0.166^{7}	0.165^{6}	0.174^{9}	0.163^{5}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\widehat{D}_{a}	sq1	0.096^{2}	0.097^{8}	0.097^{7}	0.097^{3}	0.098^{10}	0.097^{6}	0.097^{5}	0.096^{1}	0.098^{11}	0.098^{9}	0.097^{4}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\widehat{D}_{n}	лах	0.220^{2}	0.222^{8}	0.221^{5}	0.220^{1}	0.223^{10}	0.222^{7}	0.221^{6}	0.220^{3}	0.223^{11}	0.222^{9}	0.220^{4}
AD AD2 AD2 AD2 AD2 CVM MLE MRE MPS OCS COR94 OCD3 OCD3 OCD4 OCD3 OCD3 OCD4 OCD1 OCD3 OC	To	tal	131	449	55 ¹¹	362	362	387	324	30^{3}	449	438	252
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ō	td	AD	AD2	AD2L	AD2R	ADR	$_{ m CvM}$	MLE	MPS	OLS	PCE	MLS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bias	(θ)	0.011^{6}	-0.047^{11}	0.0115	0.004^{2}	0.021^{7}	0.030^{9}	0.029^{8}	-0.044^{10}	-0.004^{3}	0.001^{1}	0.006^{4}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SMS	$E(\widehat{eta})$	0.128^{2}	0.146^{7}	0.213^{11}	0.208^{10}	0.143^{6}	0.148^{8}	0.129^{3}	0.122^{1}	0.138^{5}	0.188^{9}	0.132^{4}
0.100^1 0.1119^1 0.1141^{10} 0.122^{11} 0.102^5 0.102^3 0.103^7 0.103^6 0.1118^3 0.062^3 0.062^2 0.062^2 0.062^3	Bias	$\mathfrak{s}(\widehat{\mu})$	-0.012^{2}	-0.015^{6}	-0.017^{10}	-0.024^{11}	-0.012^{1}	-0.012^{4}	-0.012^{3}	-0.015^{8}	-0.015^{7}	-0.016^{9}	-0.013^{5}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SMS	$E(\widehat{\mu})$	0.100^{1}	0.1111^9	0.114^{10}	0.122^{11}	0.102^{5}	0.101^{4}	0.100^{3}	0.103^{7}	0.103^{6}	0.1111^{8}	0.100^{2}
$\begin{array}{llllllllllllllllllllllllllllllllllll$	\widehat{D}_{a}	squ	0.062^{3}	0.062^{2}	0.062^{1}	0.062^{4}	0.062^{10}	0.062^{9}	0.062^{5}	0.062^{8}	0.063^{11}	0.062^{6}	0.062^{7}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	\widehat{D}_{n}	лах	0.153^{9}	0.152^{1}	0.152^{2}	0.153^{7}	0.153^{6}	0.153^{4}	0.152^{3}	0.153^{5}	0.154^{11}	0.153^{8}	0.153^{10}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	To	tal	23^{1}	362	397	4511	354	386	25^{2}	397	43^{10}	419	32^{3}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ō	td	AD	AD2	AD2L	AD2R	ADR	CvM	MLE	MPS	OLS	PCE	MLS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bias	$s(\widehat{eta})$	0.005^{4}	-0.041^{11}	-0.012^{7}	-0.011^{6}	0.008^{5}	0.014^{9}	0.013^{8}	-0.027^{10}	-0.002^{2}	0.001^{1}	0.004^{3}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RMS	$E(\widehat{eta})$	0.088^{3}	0.110^{8}	0.152^{11}	0.150^{10}	9660.0	0.099^{7}	0.085^{1}	0.086^{2}	0.095^{5}	0.132^{9}	0.089^{4}
0.072^5 0.078^8 0.084^{10} 0.088^{11} 0.071^3 0.072^6 0.070^1 0.071^2 0.071^2 0.071^2 0.079^9 0.044^7 0.044^4 0.044^6 0.044^1 0.044^5 0.044^3 0.044^2 0.044^2 0.044^3 0.044^2 0.044^1 0.112^6 0.112^4 0.112^1 0.112^1 0.112^1 0.112^2 0.112^2 0.112^3 0.044^{11} 28^3 45^7 46^8 54^{11} 18^1 48^9 28^3 29^5 21^2 48^9 AD ADZ ADZR ADR CVM MLE MPS OLIS 48^9 0.002 -0.033 II -0.016^8 0.016^8 0.004^7 0.007^7 0.006^9 -0.017^9 0.0013^9 0.049 I 0.056 VII 0.014^{11} 0.0141^{11} 0.0047^2 0.0045^2 0.0045^2 0.0065^1 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045 0.0045	Bias	$\mathfrak{s}(\widehat{\mu})$	-0.006^{3}	-0.008^{10}	-0.004^{1}	-0.016^{11}	-0.006^{2}	-0.0074	-0.0076	-0.0088	-0.007^{7}	-0.008 ⁹	-0.0075
$\begin{array}{llllllllllllllllllllllllllllllllllll$	SMS	$\mathrm{E}(\widehat{\mu})$	0.072^{5}	0.078^{8}	0.084^{10}	0.088^{11}	0.071^{3}	0.072^{7}	0.072^{6}	0.070^{1}	0.071^{2}	0.079^{9}	0.071^{4}
$\begin{array}{llllllllllllllllllllllllllllllllllll$	\widehat{D}_{3}	ıps	0.044^{7}	0.044^{4}	0.044^{9}	0.044^{6}	0.044^{1}	0.044^{10}	0.0445	0.044^{3}	0.044^{2}	0.044^{11}	0.044^{8}
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\widehat{D}_{ m n}$	nax	0.112^{6}	0.112^{4}	0.112^{8}	0.113^{10}	0.112^{1}	0.113^{11}	0.112^{2}	0.112^{5}	0.112^{3}	0.113^{9}	0.112^{7}
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	To	tal	28^{3}	457	468	54 ¹¹	181	489	283	295	21^{2}	489	31^{6}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ō	td	AD	AD2	AD2L	AD2R	ADR	CvM	MLE	MPS	OLS	PCE	WLS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Bias	(\widehat{eta})	0.002^{2}	-0.033^{11}	-0.019^{10}	-0.016^{8}	0.004^{5}	0.007^{7}	0.006^{6}	-0.017^{9}	-0.001^{1}	0.002^{3}	0.003^{4}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RMS	$E(\widehat{eta})$	0.061^{3}	0.083^{8}	0.114^{11}	0.113^{10}	0.068^{6}	0.068^{7}	0.059^{1}	0.060^{2}	0.068^{5}	0.094^{9}	0.062^{4}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Bias	$\mathfrak{s}(\widehat{\mu})$	-0.004^{4}	-0.005^{10}	0.003^{1}	-0.014^{11}	-0.004^{2}	-0.004^{7}	-0.004^{5}	-0.005^{9}	-0.004^{8}	-0.004^{3}	-0.0046
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RMS	$\mathrm{E}(\widehat{\mu})$	0.049^{1}	0.056^{9}	0.061^{10}	0.065^{11}	0.050^{4}	0.049^{3}	0.049^{2}	0.050^{7}	0.050^{5}	0.055^{8}	0.050^{6}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	\widehat{D}_{a}	ıps	0.031^{2}	0.031^{8}	0.031^{9}	0.031^{3}	0.031^{5}	0.031^{6}	0.031^{10}	0.031^{4}	0.031^{7}	0.032^{11}	0.031^{1}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	\widehat{D}_{n}	nax	0.081^{2}	0.082^{7}	0.082^{9}	0.082^{4}	0.082^{5}	0.082^{8}	0.082^{10}	0.082^{3}	0.082^{6}	0.082^{11}	0.081^{1}
6^1 32^8 36^{10} 36^{10} 13^2 29^7 14^4 20^5 25^6	To	tal	141	53 ¹¹	50^{10}	479	273	387	345	345	324	458	22^{2}
	veral	I Total	6^1	328	36^{10}	36^{10}	132	297	144	202	256	349	132

100 20 Overall Total $RMSE(\widehat{\mu})$ $RMSE(\widehat{\mu})$ $RMSE(\hat{\mu})$ $RMSE(\beta)$ $RMSE(\widehat{\mu})$ \widehat{D}_{\max} $Bias(\mu)$ $Bias(\beta)$ \widehat{D}_{\max} $RMSE(\beta)$ $Bias(\beta)$ \widehat{D}_{\max} $Bias(\mu)$ $RMSE(\beta)$ $RMSE(\beta)$ $Bias(\beta)$ $Bias(\mu)$ $Bias(\beta)$ $Bias(\mu)$ $\hat{D}_{
m abs}$ $\hat{D}_{
m abs}$ \widehat{D}_{\max} $D_{
m abs}$ $D_{\rm abs}$ Total Total Iotal Qtd Qtd Qtd Total Qtd 0.082^{10} -0.000 0.063^{2} -0.000° 0.089^{-3} 0.025^{2} 0.1290.031 0.012 0.002^{-1} 0.044 0.017 0.006 0.1520.062-0.001⁵ 0.012^{-3} 0.221 0.0978 0.039° -0.002 0.214° 0.02628 AD AD AD 18 10 0.042^{10} 0.044^{10} 0.111^9 0.063^{10} 0.027^9 0.082^9 0.019^9 -0.000-0.0381 0.149 -0.046^{1} 0.014^{9} -0.000° -0.031^{1} 0.154^{11} -0.001^{4} 0.220 0.097^{4} -0.002^{6} 0.216^{-3} -0.040 0.081^{4} 0.113^{8} 5211 3410 541 AD2 AD2 AD2 AD2 30 0.021^{10} 0.001^{10} 0.028^{10} 0.082^{1} 0.015^{10} 0.002^{10} 0.114^{11} 0.205^{10} 0.043^{11} 0.332^{10} 0.044^{8} -0.000^2 0.097^{7} 0.152^{11} 0.055^{6} 0.152^{4} 0.062° -0.005^{11} -0.015° 0.113'-0.011 0.003^{2} AD2L 0.2218 AD2L AD2I AD2L 611 36^{1} -0.003^{11} -0.003^{11} 0.112^{10} 0.028^{11} -0.002^{11} 0.337^{1} 0.021^{1} 0.149^{10} 0.205^{11} 0.016^{11} 0.044^{2} 0.041^9 0.065° 0.152° 0.062^{4} 0.002 0.000^{2} 0.015^{10} AD2R AD2R AD2R 0.011 AD2R 0.096 0.153^{10} 0.025^{7} 0.223^{10} 0.099^{10} -0.000 0.063^{11} 0.082^9 0.070 0.113^{10} 0.017^{6} -0.000 0.101° -0.001⁶ 0.146° 0.040° 0.252^{8} 0.012 0.006° 0.044^{9} 0.011^{-1} 0.020° 0.049^{-2} -0.001° 4610 ADR ADR ADR ADR 325 36° 36 -0.000° 0.062^{8} 0.024^{2} 0.097^3 -0.0039 0.074^{1} -0.001^9 0.150^9 0.263^9 0.081^{2} 0.012^{4} 0.070° 0.007° 0.044^{4} 0.017^{4} -0.000^{4} 0.102° 0.015° 0.152° 0.221^{6} 0.039^{2} 0.031° CvM CvM CvM C_{VM} 40 -0.000^{6} -0.000⁶ 0.025^5 -0.001^{8} 0.128^{2} 0.098^{9} 0.224^4 0.012 0.060^{1} 0.044° 0.017^{-2} 0.086^{1} 0.012 0.153° 0.062° 0.0250.2229 0.039° -0.002⁸ 0.081° 0.0060.069 20 350 <u>~</u> 0.012^2 -0.000^2 0.125^{1} -0.000 0.060^{2} 0.017^{2} 0.086^{2} 0.153'0.024 0.197^{1} 0.113° 0.062 -0.001^{3} -0.044 0.221° 0.097^{6} 0.039^{1} -0.002^4 -0.07110 -0.015 0.044° 0.026^{11} MPS MPS MPS MPS 290 32 285 132 0.012^{5} -0.000° 0.0685 0.017 -0.000° 0.097° 0.153^9 0.025^{6} -0.001^{7} 0.140° 0.221^{4} 0.040° -0.003 IU 0.236 0.081° -0.0020.044 -0.003 0.062^9 -0.006^{4} 0.097^{5} -0.008^{2} OLS OLS OLS OLS 40, 264 355 0.0009 0.077^{8} 0.018^8 0.001^{8} 0.108° 0.152^{6} 0.025^{8} 0.000^{1} 0.149^{8} 0.234° 0.012^{6} 0.044^{5} 0.062° 0.220^{2} 0.040^{8} -0.0000.081-0.014 0.113° -0.024-0.0390.096 -0.064225 439 PCE PCE PCE PCE 386 25 -0.001^{10} -0.001^9 0.099^{11} 0.045^{11} 0.017^3 0.152^{2} 0.025^4 0.224^{11} -0.000' 0.063^{4} 0.114^{11} 0.090^{4} 0.132^{4} -0.002⁵ 0.082' 0.031^{8} 0.012^{8} 0.003 0.062^{2} 0.040 0.2275 0.007 0.003-0.006 -WLS WLS WLS WLS 37⁸ 397 25^{2} 40/

Table 5 – Simulations results for $\mu = 0.8$ and $\beta = 2.0$

Table 6 – Overall performance of estimation methods.

WLS	11^{2}	91	141	174	11^{1}	153	13^{1}	20^{5}	12^{2}	13^{2}	195	247	178^{2}
PCE	56^{6}	193	153	288	13^{3}	11^{2}	288	134	26^{7}	349	298	225	2646
OLS	16^{5}	13^{2}	217	185	21^{6}	6^1	142	10^{1}	225	256	18^{4}	20^{4}	2044
MPS	143	20^{7}	217	10^{2}	20^{5}	298	16^{3}	12^{3}	16^{4}	20^{5}	27^{7}	13^{2}	2185
MLE	154	193	174	123	13^{3}	174	20^{6}	23^{6}	153	144	142	183	197^{3}
CvM	339	318	185	26^{7}	27^{7}	195	174	348	26^{7}	297	195	225	301^{8}
ADR	27^{7}	193	20^{6}	236	298	329	237	11^{2}	256	13^{2}	153	329	2697
AD2R	37^{10}	318	40^{11}	4111	39^{10}	329	3911	3810	40^{11}	36^{10}	3911	318	443^{10}
AD2L	43^{11}	40^{11}	3910	40^{10}	4111	42^{11}	35^{10}	3810	359	36^{10}	339	36^{11}	458^{11}
AD2	30^{8}	39^{10}	379	329	32^{9}	287	319	36^{9}	36^{10}	32^{8}	36^{10}	34^{10}	403^{9}
AD	6^1	193	141	91	12^{2}	236	185	257	81	6^1	91	10^{1}	159 ¹
Scenario	$t = 0.2, \beta = 0.5$	$t = 0.2, \beta = 1.5$	$t = 0.2, \beta = 2.0$	$t = 0.4, \beta = 0.5$	$t = 0.4, \beta = 1.5$	$(\mu = 0.4, \beta = 2.0)$	$\lambda = 0.6, \beta = 0.5$	$\mu = 0.6, \beta = 1.5$		$t = 0.8, \beta = 0.5$	$t = 0.8, \beta = 1.5$	$t = 0.8, \beta = 2.0$	Total

100

50

20

200

Overall Total

92

4211

223

123

164

 $AW(\beta)$ $AW(\beta)$ $CP(\widehat{\mu})$ $AW(\widehat{\mu})$ $AW(\beta)$ $AW(\beta)$ $AW(\widehat{\mu})$ $CP(\widehat{\mu})$ $AW(\widehat{\mu})$ $CP(\widehat{\mu})$ $AW(\widehat{\mu})$ $CP(\beta)$ $CP(\beta)$ $CP(\beta)$ Qd Iotal Qtd Iotal Qtd Total 0.945^{7} 0.945^9 0.957 0.173^{3} 0.948° 0.951° 0.249° 0.949^{2} 0.464° 0.421^{3} 0.949^{2} 0.217^3 0.306° 0.944 AD AD AD AD 121 15^2 0.847^{1} 0.962^{11} 0.829^{1} 0.252^9 0.194^{6} 0.963^{11} 0.354^{10} 0.259° 0.521^{11} 0.398^2 0.145° 0.952^{4} 0.962^{8} 0.864^{1} 0.909° AD2 AD2 3711 AD2 AD2 29 0.960^{10} 0.727^{10} 0.932^{10} 0.215^{11} 0.286^{11} 0.292^{10} 0.407^{11} 0.950^{2} 0.482^{6} 0.950 0.370^{11} 0.927° 0.935^{8} 0.949° AD2L AD2L AD2I 0.946AD2L 39^{10} 28⁸ 29 0.186^{10} 0.215^{10} 0.253^{10} 0.292^{11} 0.406^{10} 0.729^{11} 0.948^{5} 0.946° 0.517^9 0.923^{1} 0.910^{10} 0.956^9 0.930 0.348^{9} 0.946 AD2R AD2R 3910 AD2R AD2R 0.944^{-} 3511 3511 0.943^{10} 0.195^{7} 0.135 0.948^{-3} 0.220^{-3} 0.949^{2} 0.945° 0.309° 0.285 $0.939^{'}$ 0.155° 0.954^{4} 0.946° 0.468^{4} ADR 0.929ADR ADR ADR 288 253 195 0.945^{10} 0.195^{8} 0.154^{4} 0.135^{6} 0.953^{2} 0.217^{2} 0.947° 0.303^{2} 0.290^{8} 0.944^{8} 0.451^{2} 0.543^{8} 0.940° 0.938° 0.945° CvM 0.909 CvM CvM CvM26⁶ 0.169^{2} 0.946 0.9500.215 0.947° 0.940 0.300^{-1} 0.248^{2} 0.946° 0.445 0.4444° 0.941° 0.903^{11} 0.934° 183 12 154 0.896^{10} 0.855^{1} 0.956^{9} 0.948 0.9130.224 0.157^{1} 0.953'0.321'0.217 0.878^{10} 0.505^{8} 0.962^{9} MPS MPS MPS MPS 25 27 29 0.189° 0.951 0.948° 0.483 0.952° 0.947 0.2216 0.950° 0.2716 0.949 0.450^{6} 0.155^{c} 0.955° 0.312° 0.951° OLS OLS OLS OLS 143 185 185 0.520^{10} 0.589^9 0.949^{2} 0.238^{8} 0.259^9 0.950^{1} 0.183^9 0.955° 0.954^{8} 0.952^{4} 0.336° 0.368^9 0.947^{-3} 0.959^{4} 0.958° PCE PCE 298 PCE 235 29 24 0.944^{11} 0.947^4 0.175^4 0.948^{4} 0.154° 0.122^4 0.953^{2} 0.218^{4} 0.307^{4} 0.255^{4} 0.476° 0.951^{1} 0.9500.950 0.433^{4} 0.951WLS WLS WLS 13^{1} 13^{2}

Table 7 – Simulations results of interval estimation for $\mu = 0.2$ and $\beta = 0.5$.

Table 8 – Simulations results of interval estimation for $\mu = 0.2$ and $\beta = 2.0$.

$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	и	Qtd	AD	AD2	AD2L	AD2R	ADR	CvM	MLE	MPS	OLS	PCE	WLS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\mathrm{CP}(\widehat{eta})$	0.939^{5}	0.905^{8}	0.958^{4}	0.949^{1}	0.934^{6}	0.915^{7}	0.905^{9}	0.857^{11}	0.947^{2}	0.901^{10}	0.955^{3}
1.6714 1.575^2 2.49310 2.506^{11} 1.9688 2.0419 1.7436 1.337^1 0.1244 0.1441 0.1388 0.1399 0.121^2 0.1191 0.137^7 1.8^3 27^7 31^{10} 32^{11} 27^7 22^4 246 224 AD $AD2$	Ç.	$\mathrm{CP}(\widehat{\mu})$	0.940^{5}	0.961^{6}	0.935^{9}	0.921^{11}	0.933^{10}	0.940^{4}	0.935^{8}	0.960^{3}	0.948^{1}	0.962^{7}	0.947^{2}
0.1244 0.14841 0.1388 0.1399 0.1213 0.1191 0.1377 AD ADZ ADZR ADZR ADR CvM MLE MPS 0.9462 0.86511 0.9496 0.9453 0.9463 0.9387 0.9238 0.87610 0.9462 0.86511 0.9496 0.9482 0.9463 0.9483 0.95690 0.9467 0.96511 0.9482 0.9488 0.9459 0.9483 0.87610 0.9477 0.0909 0.09411 0.09110 0.0774 0.0761 0.0817 0.0773 0.0909 0.09411 0.09110 0.0784 0.0772 0.0761 0.0817 0.0473 0.0909 0.09411 0.09110 0.0784 0.0474 0.0817 0.9474 0.84411 0.9307 0.9269 0.9474 0.94410 0.9579 0.0543 0.0639 0.07011 0.06710 0.06555 0.0542 0.0541 0.0564 0.0543 0.0639 0.07011	07	$AW(\widehat{eta})$	1.671^{4}	1.575^{2}	2.493^{10}	2.506^{11}	1.968^{8}	2.041^{9}	1.743^{6}	1.337^{1}	1.773^{7}	1.627^{3}	1.705^{5}
183 277 31^{10} 32^{11} 277 224 246 224 AD AD2 AD2L AD2R ADR CVM MLE MPS 0.946^2 0.865^{11} 0.940^6 0.945^3 0.938^7 0.923^8 0.876^{10} 0.946^2 0.865^{11} 0.940^6 0.948^2 0.945^3 0.945^3 0.876^{10} 0.999^3 1.037^5 1.612^{10} 1.624^{11} 1.144^8 1.162^9 0.997^2 0.870^1 0.077^3 0.090^9 0.0941^1 0.091^1 0.078^4 0.076^1 0.078^4 0.076^1 0.078^4 0.076^1 0.078^4 0.976^1 0.987^1 0.947^4 0.844^{11} 0.930^7 0.926^9 0.947^4 0.944^4 0.944^{10} 0.957^3 0.054^3 0.065^3 0.070^{11} 0.065^3 0.076^3 0.076^3 0.095^3 0.054^3 0.948^3 0.945^3 0.945^3 0.945^3 0.948^3		$AW(\widehat{\mu})$	0.124^{4}	0.144^{11}	0.138^{8}	0.139^{9}	0.123^{3}	0.121^{2}	0.119^{1}	0.137^{7}	0.130^{6}	0.143^{10}	0.128^{5}
AD AD2L AD2R ADR CVM MLE MPS 0.946 ² 0.865 ¹¹ 0.940 ⁶ 0.945 ³ 0.938 ⁷ 0.923 ⁸ 0.876 ¹⁰ 0.945 ⁷ 0.965 ¹¹ 0.954 ⁶ 0.948 ² 0.945 ⁸ 0.945 ⁹ 0.948 ³ 0.876 ¹⁰ 0.999 ³ 1.037 ⁵ 1.612 ¹⁰ 1.624 ¹¹ 1.144 ⁸ 1.162 ⁹ 0.997 ² 0.870 ¹ 0.077 ³ 0.090 ⁹ 0.094 ¹¹ 0.091 ¹⁰ 0.078 ⁴ 0.076 ¹ 0.081 ⁷ 1.5 ³ 36 ¹¹ 33 ¹⁰ 28 23 ⁵ 276 14 ² 28 ⁸ AD AD AD2L AD2R ADR ADR MLE MPS 0.947 ⁴ 0.841 ¹¹ 0.925 ⁹ 0.949 ⁴ 0.944 ¹⁰ 0.953 ⁹ 0.897 ¹⁰ 0.954 ³ 0.775 ⁶ 1.167 ¹¹ 0.782 ³ 0.658 ² 0.658 ² 0.658 ² 0.054 ³ 0.775 ⁶ 1.167 ¹¹ 0.782 ³ 0.944 ³ 0.944 ³ 0.944 ³ 0.945 ³		Total	183	277	3110	32 ¹¹	277	22^{4}	246	224	16^{2}	30_{9}	151
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	и	Qtd	AD	AD2	AD2L	AD2R	ADR	CvM	MLE	MPS	OLS	PCE	WLS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\mathrm{CP}(\widehat{eta})$	0.946^{2}	0.865^{11}	0.940^{6}	0.945^{5}	0.946^{3}	0.938^{7}	0.923^{8}	0.876^{10}	0.946^{3}	6606.0	0.949^{1}
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9	$\mathrm{CP}(\widehat{\mu})$	0.945^{7}	0.965^{11}	0.954^{6}	0.948^{2}	0.945^{8}	0.945^{9}	0.948^{3}	0.956^{10}	0.953^{5}	0.953^{4}	0.951^{1}
0.077^3 0.090^9 0.094^{11} 0.091^{10} 0.078^4 0.077^2 0.076^1 0.081^7 15^3 36^{11} 33^{10} 28^8 23^5 27^6 14^2 28^8 AD $AD2$	20	$AW(\widehat{eta})$	0.9999^{3}	1.037^{5}	1.612^{10}	1.624^{11}	1.144^{8}	1.162^{9}	0.997^{2}	0.870^{1}	1.085^{7}	1.082^{6}	1.022^{4}
15^3 36^{11} 33^{10} 28^8 23^5 27^6 14^2 28^8 AD AD2 AD2L AD2R ADR CvM MLE MPS 0.947^4 0.947^4 0.947^4 0.947^4 0.937^6 0.997^{10} 0.997^{10} 0.945^8 0.965^{11} 0.955^9 0.949^1 0.948^4 0.944^{10} 0.952^3 0.054^3 0.775^6 1.167^{11} 0.781^7 0.782^8 0.678^2 0.627^1 0.054^3 0.063^9 0.070^{11} 0.067^{10} 0.055^5 0.054^2 0.054^1 0.056^7 AD AD2 AD2L AD2R ADR CvM MLE MPS AD AD2 AD2R AD2R AD4 0.948^3 0.945^6 0.918^9 0.944^7 0.961^{10} 0.947^4 0.950^1 0.944^8 0.945^6 0.945^6 0.938^1 0.950^1 0.938^3 0.044^9 0.061^{11}		$AW(\widehat{\mu})$	0.077^{3}	0.090^{9}	0.094^{11}	0.091^{10}	0.078^{4}	0.077^{2}	0.076^{1}	0.081^{7}	0.0796	0.084^{8}	0.0785
AD AD2L AD2R ADR CVM MLE MPS 0.9474 0.844 ¹¹ 0.930 ⁷ 0.926 ⁹ 0.947 ⁴ 0.937 ⁶ 0.897 ¹⁰ 0.945 ⁸ 0.965 ¹¹ 0.955 ⁹ 0.953 ⁶ 0.949 ¹ 0.948 ⁴ 0.944 ¹⁰ 0.952 ³ 0.693 ³ 0.775 ⁶ 1.162 ¹⁰ 1.167 ¹¹ 0.781 ⁷ 0.782 ⁸ 0.678 ² 0.627 ¹ 0.054 ³ 0.070 ¹¹ 0.067 ¹⁰ 0.055 ⁵ 0.054 ² 0.054 ¹ 0.057 ¹ AD AD AD2L AD2R ADR CVM MLE MPS 0.954 ⁵ 0.829 ¹¹ 0.927 ⁸ 0.948 ⁴ 0.948 ³ 0.945 ⁶ 0.918 ⁹ 0.944 ⁷ 0.961 ¹¹ 0.947 ⁴ 0.950 ¹ 0.944 ⁸ 0.942 ⁹ 0.938 ¹ 0.950 ¹ 0.038 ³ 0.044 ⁹ 0.051 ¹¹ 0.049 ¹⁰ 0.039 ⁴ 0.038 ⁴ 0.038 ¹ 0.039 ¹ 18 ² 39 ¹¹ 31 ⁰ 32 ⁰ 22 ⁰ 18 ⁴ 19 ⁵ <th></th> <td>Total</td> <td>153</td> <td>36^{11}</td> <td>33^{10}</td> <td>288</td> <td>235</td> <td>276</td> <td>142</td> <td>288</td> <td>214</td> <td>276</td> <td>11^{1}</td>		Total	153	36^{11}	33^{10}	288	235	276	142	288	214	276	11^{1}
0.9474 0.844 ¹ 1 0.930 ⁷ 0.926 ⁹ 0.947 ⁴ 0.937 ⁶ 0.937 ⁶ 0.897 ¹⁰ 0.9458 0.965 ¹ 1 0.955 ⁹ 0.953 ⁶ 0.949 ¹ 0.948 ⁴ 0.944 ¹⁰ 0.952 ³ 0.693 ³ 0.775 ⁶ 1.162 ¹⁰ 1.167 ¹¹ 0.781 ⁷ 0.782 ⁸ 0.678 ² 0.627 ¹ 0.054 ³ 0.063 ⁹ 0.070 ¹¹ 0.067 ¹⁰ 0.055 ⁵ 0.054 ² 0.057 ¹ 0.057 ¹ AD	и	Qtd	AD	AD2	AD2L	AD2R	ADR	CvM	MLE	MPS	OLS	PCE	WLS
0.9458 0.96511 0.9559 0.9536 0.9494 0.9484 0.94410 0.9523 0.6933 0.7756 1.16210 1.16711 0.7817 0.7828 0.6782 0.6571 0.0543 0.0639 0.07011 0.06710 0.0555 0.0542 0.0541 0.0567 185 3710 3710 369 173 152 196 217 AD AD2 AD2L AD2R ADR CvM MLE MPS 0.9545 0.82911 0.9278 0.91510 0.9484 0.9483 0.9456 0.9189 0.9447 0.96110 0.9474 0.9501 0.9448 0.9429 0.93811 0.9502 0.4853 0.6449 0.06111 0.6491 0.6395 0.6341 0.6391 0.9391 0.9392 182 3910 4011 379 226 184 195 237 1 133 3910 4011 379 226 184 195		$ ext{CP}(\widehat{eta})$	0.947^{4}	0.844^{11}	0.930^{7}	0.926^{9}	0.947^{4}	0.950^{1}	0.937^{6}	0.897^{10}	0.950^{1}	0.927^{8}	0.949^{3}
0.693^3 0.775^6 1.162^{10} 1.167^{11} 0.781^7 0.782^8 0.678^2 0.627^1 0.054^3 0.063^9 0.070^{11} 0.067^{10} 0.055^5 0.054^2 0.054^1 0.056^7 AD AD2 AD2L AD2R AD2R ADR CvM MLE MPS 0.954^5 0.829^{11} 0.927^8 0.915^{10} 0.948^4 0.948^3 0.945^6 0.918^9 0.944^7 0.961^{10} 0.947^4 0.950^1 0.944^8 0.942^6 0.938^{11} 0.950^2 0.9485^3 0.589^0 0.861^{11} 0.542^7 0.541^6 0.471^2 0.450^1 0.038^3 0.044^9 0.051^{11} 0.049^{10} 0.039^2 0.038^4 0.038^1 0.039^7 118^2 39^{11} 33^{10} 32^9 22^6 18^4 19^5 23^7	9	$\operatorname{CP}(\widehat{\mu})$	0.945^{8}	0.965^{11}	0.955^{9}	0.953^{6}	0.949^{1}	0.948^{4}	0.944^{10}	0.952^{3}	0.952^{5}	0.954^{7}	0.948^{2}
0.054^3 0.0639 0.070^{11} 0.067^{10} 0.055^5 0.054^2 0.054^1 0.056^7 AD AD2 AD2L AD2R AD2R ADR CvM MLE MPS 0.954^5 0.829^{11} 0.927^8 0.915^{10} 0.948^4 0.948^3 0.945^6 0.918^9 0.944^7 0.961^{10} 0.947^4 0.950^1 0.944^8 0.942^9 0.938^{11} 0.950^2 0.944^7 0.961^{11} 0.944^1 0.961^{11} 0.944^8 0.948^9 0.938^{11} 0.950^2 0.038^3 0.044^9 0.051^{11} 0.049^{10} 0.039^5 0.038^4 0.039^7 0.039^7 18^2 39^{11} 33^{10} 32^9 24^7 22^6 19^4 19^4 1 13^3 39^1 37^9 22^6 18^4 19^5 23^7	100	$AW(\widehat{eta})$	0.693^{3}	0.775^{6}	1.162^{10}	1.167^{11}	0.781^{7}	0.782^{8}	0.678^{2}	0.627^{1}	0.756^{5}	0.792^{9}	0.703^{4}
185 3710 3710 369 173 152 196 AD AD2 AD2L AD2R ADR CvM MLE 0.9545 0.82911 0.9278 0.91510 0.9484 0.9483 0.9456 0.9447 0.96110 0.9474 0.9501 0.9448 0.9429 0.93811 0.4853 0.5809 0.85910 0.86111 0.5427 0.5416 0.4712 0.0383 0.0449 0.05111 0.04910 0.0395 0.0384 0.0381 182 3911 3310 329 247 226 205 11 133 3910 4011 379 226 184 195		$AW(\widehat{\mu})$	0.054^{3}	0.063^{9}	0.070^{11}	0.067^{10}	0.055^{5}	0.054^{2}	0.054^{1}	0.056^{7}	0.055^{6}	0.058^{8}	0.054^{4}
AD AD2L AD2R AD2R ADR CvM MLE 0.954 ⁵ 0.829 ¹¹ 0.927 ⁸ 0.915 ¹⁰ 0.948 ⁴ 0.948 ³ 0.945 ⁶ 0.944 ⁷ 0.961 ¹⁰ 0.947 ⁴ 0.950 ¹ 0.944 ⁸ 0.942 ⁹ 0.938 ¹¹ 0.485 ³ 0.580 ⁹ 0.859 ¹⁰ 0.861 ¹¹ 0.542 ⁷ 0.541 ⁶ 0.471 ² 0.038 ³ 0.044 ⁹ 0.051 ¹¹ 0.049 ¹⁰ 0.039 ⁵ 0.038 ⁴ 0.038 ¹ 18 ² 39 ¹¹ 33 ¹⁰ 32 ⁹ 24 ⁷ 22 ⁶ 20 ⁵ 1 13 ³ 39 ¹⁰ 40 ¹¹ 37 ⁹ 22 ⁶ 18 ⁴ 19 ⁵		Total	185	3710	37^{10}	369	173	152	166	217	173	32^{8}	131
0.9545 0.82911 0.9278 0.91510 0.9484 0.9483 0.9456 0.9447 0.96110 0.9474 0.9501 0.9448 0.9429 0.93811 0.4853 0.5809 0.85910 0.86111 0.5427 0.5416 0.4712 0.0383 0.0449 0.05111 0.04910 0.0395 0.0384 0.0381 182 3911 3310 329 247 226 205 1 133 3910 4011 379 226 184 195	и	Qtd	AD	AD2	AD2L	AD2R	ADR	CvM	MLE	MPS	OLS	PCE	WLS
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$\mathrm{CP}(\widehat{eta})$	0.954^{5}	0.829^{11}	0.927^{8}	0.915^{10}	0.948^{4}	0.948^{3}	0.945^{6}	0.918^{9}	0.950^{1}	0.936^{7}	0.949^{2}
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	000	$\mathrm{CP}(\widehat{\mu})$	0.944^{7}	0.961^{10}	0.947^{4}	0.950^{1}	0.944^{8}	0.942^{9}	0.938^{11}	0.950^{2}	0.946^{6}	0.951^{3}	0.947 ⁵
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7007	$AW(\widehat{eta})$	0.485^{3}	0.580^{9}	0.859^{10}	0.861^{11}	0.542^{7}	0.5416	0.471^{2}	0.450^{1}	0.531^{5}	0.575^{8}	0.490^{4}
18^2 39^{11} 33^{10} 32^9 24^7 22^6 20^5 11 13^3 39^{10} 40^{11} 37^9 22^6 18^4 19^5		$AW(\widehat{\mu})$	0.038^{3}	0.044^{9}	0.051^{11}	0.049^{10}	0.039^{5}	0.038^{4}	0.038^{1}	0.039^{7}	0.039^{6}	0.040^{8}	0.038^{2}
$11 ext{ } 13^3 ext{ } 39^{10} ext{ } 40^{11} ext{ } 37^9 ext{ } 22^6 ext{ } 18^4 ext{ } 19^5$		Total	182	39 ¹¹	33^{10}	329	247	22^{6}	20^{5}	194	18^{2}	26^{8}	13^{1}
		Overall Total	133	39^{10}	40^{11}	379	22^{6}	184	195	237	11^{2}	318	41

200 100 20 50 Overall Total $AW(\widehat{\mu})$ $AW(\widehat{\beta})$ $AW(\widehat{\beta})$ $AW(\widehat{\mu})$ $AW(\beta)$ $AW(\widehat{\mu})$ $AW(\widehat{\beta})$ Total $CP(\widehat{\mu})$ $CP(\beta)$ $CP(\widehat{\mu})$ $CP(\beta)$ $CP(\widehat{\mu})$ $CP(\beta)$ $CP(\widehat{\mu})$ $CP(\beta)$ Total Total Total Qtd Qtd Qtd Qtd 0.948^2 0.953° 0.173 0.943^{5} 0.949^{2} 0.305^{4} 0.2500.945 0.465^{4} 0.423 0.944° 0.121° $0.217^{\frac{1}{2}}$ 0.946 0.946° 0.154° 143 AD 175 AD 172 AD 142 AD 102 0.956^{10} 0.354^{10} 0.828^{11} 0.958^{10} 0.145^{8} 0.193^{6} 0.961^{11} 0.841^{11} 0.258° 0.864^{11} 0.527^{1} 0.253^9 0.395^{2} 0.958° 0.907^{8} 0.178^{9} AD2 AD2 AD2 AD2 3810 36^{11} 3711 26 399 0.215^{10} 0.292^{10} 0.186^{10} 0.254^{10} 0.925^{10} 0.946^{9} 0.349^9 0.411^{11} 0.735^{11} 0.953° 0.9319 0.953° 0.944° 0.520^9 0.9420 AD2L 0.925° 31^{10} AD2L AD2L AD2L 36^{11} 394 379 32^{9} 0.371^{11} 0.731^{10} 0.215^{11} 0.958^{11} 0.292^{1} 0.408^{10} 0.921^{11} 0.914^{10} 0.215^{1} 0.285^{11} 0.490^{7} 0.954^{4} 0.949^{2} 0.946^{4} 0.936° 0.941AD2R AD2R AD2R AD2R 4311 3410 3210 4011 304 0.941^{1} 0.195' 0.927^9 0.135' 0.948° 0.947° 0.2175 0.944° 0.303^{3} 0.286'0.511 0.935 0.155° 0.951^{1} 0.946^4 0.455^{3} ADR ADR ADR ADR 220 26 256 195 0.941^{10} 0.217^2 0.291^{8} 0.135^{c} 0.949^{1} 0.947 0.196^{8} 0.945° 0.302^{2} 0.945^{5} 0.452^2 0.544^{8} 0.939^{6} 0.906^{9} 0.154^{4} 0.930^{8} CvM CvMCvMCvM25 25 278 250 154 0.901^{10} 0.117^{2} 0.946^{8} 0.949^{2} 0.215^{1} 0.169^{2} 0.944^{8} 0.942 0.300^{-1} 0.249^{2} 0.945^{6} 0.923 0.447 0.4443 0.936° 0.153MLE MLE MLE MLE 245 131 184 183 $\frac{3}{2}$ 0.895^{10} 0.87710 0.859^{1} 0.952^{4} 0.157 0.956° 0.962^{7} 0.1570.112 0.914^{9} 0.225 0.323 0.216^{1} 0.955^{8} 0.511^{8} 0.334^{1} MPS MPS MPS MPS 24^{6} 279 27⁸ 26 0.953 0.189^{3} 0.155° 0.133^{2} 0.954 0.221^{6} 0.949^{1} 0.953^{4} 0.313° 0.271^{6} 0.947^4 0.953^{2} 0.485° 0.452^{6} 0.944^{4} 0.953° OLS OLS OLS OLS 25° 16^{2} 183 193 164 0.525^{10} 0.948^{3} 0.238^{8} 0.260^9 0.945° 0.370^9 0.594^{9} 0.944^{-3} 0.167^{8} 0.183^9 0.948° 0.957^{6} 0.338^{8} 0.947^{-3} 0.951^{1} 0.952^{1} PCE PCE PCE PCE 23′ 288 234 0.947° 0.949^{2} 0.434^4 0.122^4 0.950^{1} 0.217^4 0.176^{4} 0.948^{3} 0.950^{1} 0.949^{1} 0.154^{2} 0.256^{4} 0.479° 0.946^{4} 0.307° 0.948^{2} WLS WLS WLS 13^{1} 13^{1} 141 121

Table 9 – Simulations results of interval estimation for $\mu = 0.8$ and $\beta = 0.5$

Table 10 – Simulations results of interval estimation for $\mu = 0.8$ and $\beta = 2.0$.

и	Qtd	AD	AD2	AD2L	AD2R	ADR	CvM	MLE	MPS	OLS	PCE	WLS
	$\mathrm{CP}(\widehat{eta})$	0.944^{5}	0.907^{8}	0.953^{3}	0.953^{2}	0.935^{6}	0.908^{7}	0.903^{9}	0.867^{11}	0.951^{1}	0.901^{10}	0.946^{4}
ç	$\operatorname{CP}(\widehat{\mu})$	0.944^{4}	0.963^{7}	0.931^{10}	0.919^{11}	0.932^{9}	0.942^{5}	0.940^{6}	0.964^{8}	0.950^{1}	0.955^{3}	0.946^{2}
07	$AW(\widehat{eta})$	1.670^4	1.584^{2}	2.505^{10}	2.513^{11}	1.958^{8}	2.047^{9}	1.746^{6}	1.339^{1}	1.767^{7}	1.622^{3}	1.7115
	$AW(\widehat{\mu})$	0.124^{4}	0.144^{11}	0.139^{9}	0.136^{7}	0.123^{3}	0.121^{2}	0.119^{1}	0.136^{8}	0.130^{6}	0.143^{10}	0.1275
	Total	173	28^{8}	32^{11}	31^{10}	56^{6}	235	224	28^{8}	151	56^{6}	16^{2}
и	Qtd	AD	AD2	AD2L	AD2R	ADR	CvM	MLE	MPS	OLS	PCE	WLS
	$ ext{CP}(\widehat{eta})$	0.943^{4}	0.858^{11}	0.946^{2}	0.942^{5}	0.939^{6}	0.928^{7}	0.927^{8}	0.873^{10}	0.947^{1}	0.912^{9}	0.944^{3}
9	$\mathrm{CP}(\widehat{\mu})$	0.945^{5}	0.960^{11}	0.951^{1}	0.949^{2}	0.943^{9}	0.945^{7}	0.941^{10}	0.957^{8}	0.946^{4}	0.955^{6}	0.948^{3}
20	$AW(\widehat{eta})$	1.002^{3}	1.036^{5}	1.625^{11}	1.623^{10}	1.145^{8}	1.167^{9}	0.995^{2}	0.866^{1}	1.082^{7}	1.082^{6}	1.023^{4}
	$\mathrm{AW}(\widehat{\mu})$	0.077^{3}	0.090^9	0.090^{10}	0.093^{11}	0.077^{4}	0.076^{2}	0.076^{1}	0.081^{7}	0.0796	0.084^{8}	0.0785
	Total	151	36^{11}	24 ⁵	289	278	256	214	26^{7}	183	29^{10}	151
и	Qtd	AD	AD2	AD2L	AD2R	ADR	CvM	MLE	MPS	OLS	PCE	WLS
	$ ext{CP}(\widehat{eta})$	0.946^{4}	0.851^{11}	0.932^{8}	0.933^{7}	0.946^{3}	0.933^{6}	0.942^{5}	0.895^{10}	0.951^{1}	0.925^{9}	0.948^{2}
001	$\operatorname{CP}(\widehat{\mu})$	0.951^{3}	0.955^{9}	0.956^{10}	0.953^{5}	0.948^{4}	0.949^{2}	0.946^{7}	0.959^{11}	0.945^{8}	0.953^{6}	0.950^{1}
100	$AW(\widehat{eta})$	0.694^{3}	0.7777^{6}	1.170^{11}	1.169^{10}	0.782^{7}	0.784^{8}	0.677^{2}	0.626^{1}	0.755^{5}	0.793^{9}	0.702^{4}
	$\mathrm{AW}(\widehat{\mu})$	0.054^{3}	0.063^{9}	0.066^{10}	0.069^{11}	0.055^{4}	0.054^{2}	0.054^{1}	0.056^{7}	0.055^{6}	0.058^{8}	0.055^{5}
	Total	13^{2}	35^{10}	3911	339	184	184	153	297	20^{6}	328	121
и	Qtd	AD	AD2	AD2L	AD2R	ADR	CvM	MLE	MPS	OLS	PCE	WLS
	$ ext{CP}(\widehat{eta})$	0.946^{4}	0.841^{11}	0.930^{8}	0.916^{9}	0.948^{2}	0.944^{5}	0.944^{6}	0.914^{10}	0.949^{1}	0.930^{7}	0.947^{3}
000	$\mathrm{CP}(\widehat{\mu})$	0.947^{7}	0.959^{11}	0.951^{1}	0.952^{4}	0.948^{5}	0.954^{8}	0.948^{3}	0.952^{6}	0.951^{2}	0.956^{10}	0.946^{9}
2007	$\mathrm{AW}(\widehat{eta})$	0.485^{3}	0.581^{9}	0.863^{10}	0.863^{11}	0.543^{7}	0.540^{6}	0.469^{2}	0.450^{1}	0.531^{5}	0.575^{8}	0.489^{4}
	$\mathrm{AW}(\widehat{\mu})$	0.038^{2}	0.0449	0.049^{10}	0.051^{11}	0.039^{5}	0.038^{4}	0.038^{1}	0.039^{7}	0.039^{6}	0.040^{8}	0.038^{3}
	Total	16^{3}	40^{11}	298	35^{10}	194	23^{6}	12^{1}	247	142	339	194
	Overall Total	92	40^{11}	329	38^{10}	22^{6}	215	12 ³	297	12^{3}	338	81

 $(\mu = 0.2,$ $=\mu$ $(\mu = 0.4)$ $(\mu = 0.2,$ $(\mu = 0.2,$ $(\mu = 0.8,$ $(\mu = 0.6,$ $(\mu = 0.4,$ t = 0.8II = 0.6,= 0.6, $\beta =$ $\beta = 0.5$ $\beta = 2.0$ $\beta = 1.5$ $\beta = 0.5$ $\beta = 2.0$ $\beta = 0.5$ 3 = 1.53 = 1.5 \parallel || \parallel = 2.0) Ð 39^{10} AD2 AD2L AD2R ADR

Table 11 - Overall performance of estimation methods with respect the interval estimation.

4 ILLUSTRATIVE EXAMPLES

In this section, the performance of the eleven estimation methods is compared through two real data applications.

The first data (data set I) is available in software R and corresponds to 48 observations of twelve core samples from petroleum reservoirs that were sampled by four cross-sections. The second data set (data set-II) can be found in [4] and represents the total milk production in the first birth of 107 cows from SINDI race.

The parameter estimates and their corresponding Bootstrap confidence intervals for all estimation methods considered are summarized in Tables 12 and 13. We also present the results of formal goodness-of-fit tests, the Kolmogorov-Smirnov (KS) test, in order to show that the unit-Logistic distribution can be used to model these two data sets.

From Table 12 we can see that all estimates provide a good fit to the data set. It is also observed that the AD2L and MPS estimators give the shortest confidence intervals for μ and β , respectively.

Table 12 – Parameter estimates, 95% confidence intervals based on parametric Bootstrap and K-S test: data set I.

Method	μ	LCL	UCL	β	LCL	UCL	KS (p-value)
MLE	0.2033	0.1847	0.2240	3.8276	3.0530	5.0733	0.0979 (0.7469)
MPS	0.2019	0.1792	0.2236	3.5707	2.6905	4.3026	0.0907 (0.8242)
PCE	0.2058	0.1808	0.2298	3.2550	2.3271	4.0154	0.1114 (0.5907)
OLS	0.2014	0.1792	0.2226	3.6391	2.7666	4.7659	0.0879 (0.8520)
WLS	0.2034	0.1814	0.2249	3.7032	2.8428	4.8165	0.0992 (0.7326)
CvM	0.2013	0.1793	0.2228	3.7596	3.0188	5.0458	0.0865 (0.8649)
AD	0.2034	0.1834	0.2257	3.7135	2.9679	4.7314	0.0990 (0.7351)
ADR	0.2018	0.1798	0.2262	3.4077	2.6352	4.6341	0.0991 (0.7335)
AD2R	0.2002	0.1736	0.2273	3.1894	2.0618	4.8186	0.1192 (0.5030)
AD2L	0.1958	0.1788	0.2163	4.9271	3.2415	7.3709	0.1379 (0.3205)
AD2	0.2103	0.1864	0.2363	3.6283	2.4818	4.5025	0.1374 (0.3249)

L(U)CL lower (upper) confidence limit.

The results in Table 13 indicate that the CvM estimates do not provide a good fit to this data set as per KS statistic is concerned. It is also observed that MLE has the lowest value of KS. It is also noteworthy, that MLE and ADR have the shortest confidence intervals for μ and β .

5 CONCLUDING REMARKS

In this paper, we have performed an extensive simulation study to compare eleven aforementioned methods of estimation. We have compared estimators with respect to bias, root mean-squared error, the average absolute difference between the theoretical and empirical estimate of

Method	μ	LCL	UCL	β	LCL	UCL	KS (p-value)
MLE	0.4729	0.4317	0.5148	1.9103	1.6565	2.2716	0.0571 (0.8767)
MPS	0.4723	0.4019	0.5355	1.8338	1.3818	2.2098	0.0618 (0.8081)
PCE	0.4686	0.4037	0.5298	1.9449	1.4745	2.3979	0.0580 (0.8642)
OLS	0.4789	0.4166	0.5341	2.0873	1.5868	2.7337	0.0695 (0.6788)
WLS	0.4762	0.4137	0.5331	2.0752	1.5931	2.6993	0.0682 (0.7026)
CvM	0.2013	0.1793	0.2228	3.7596	3.0188	5.0458	0.7350 (0.0000)
AD	0.4733	0.4304	0.5163	1.9681	1.6871	2.3073	0.0610 (0.8201)
ADR	0.4798	0.4441	0.5181	2.2317	1.8949	2.7488	0.0765 (0.5584)
AD2R	0.4876	0.4442	0.5254	2.4237	1.7670	3.1201	0.0848 (0.4254)
AD2L	0.4981	0.4313	0.5785	1.3952	0.9988	1.7848	0.1480 (0.0184)
AD2	0.4419	0.3867	0.4974	1.6351	1.2378	1.8874	0.1207 (0.0886)

Table 13 – Parameter estimates, 95% confidence intervals based on parametric Bootstrap and KS test: data set II.

L(U)CL lower (upper) confidence limit.

the distribution functions, and the maximum absolute difference between the theoretical and empirical distribution functions. We have also calculated the coverage probability and the average width of the Bootstrap confidence intervals. We have also compared estimators by two real data applications. The simulation results show that AD estimators is the best performing estimator in terms of biases and RMSE. The next best performing estimators is the WLS estimators, followed by MLE. The real data applications show that the AD2L and MPS estimators give the shortest confidence intervals for μ and β , respectively for the data set I and MLE and ADR have the shortest confidence intervals for the data set II. Hence, we can argue that the AD estimators, weighted least squares estimators, AD2L, MPS, ADR and ML estimators are among the best performing estimators for unit-logistic distribution.

REFERENCES

- [1] ANDERSON TW & DARLING DA. 1952. Asymptotic theory of certain "goodness-of-fit" criteria based on stochastic processes. *Ann. Math. Statist.*, **2**: 193–212.
- [2] CHENG RCH & AMIN NAK. 1979. Maximum product-of-spacings estimation with applications to the log-Normal distribution. Tech. rep., Department of Mathematics, University of Wales.
- [3] CHENG RCH & AMIN NAK. 1983. Estimating parameters in continuous univariate distributions with a shifted origin. *Journal of the Royal Statistical Society*. Series B (Methodological) 45(3): 394–403.
- [4] CORDEIRO GM & DOS SANTOS RB. 2012. The Beta power distribution. *Brazilian Journal of Probability and Statistics*, **26**(1): 88–112.
- [5] DA PAZ RF, BALAKRISHNAN N, BAZÁN JL. 2016. L-logistic distribution: Properties, inference and an application to study poverty and inequality in Brazil. Tech. Rep., Programa Interinstitucional de Pós Graduação em Estatística UFSCar USP, São Carlos, SP, Brazil.

- [6] D'AGOSTINO RB & STEPHENS MA. 1986. Goodness-of-Fit Techniques. Taylor & Francis.
- [7] DEY S, ALI S & PARK C. 2015. Weighted exponential distribution: properties and different methods of estimation. *Journal of Statistical Computation and Simulation*, 85(18): 3641–3661.
- [8] DEY S, KUMAR D, RAMOS PL & LOUZADA F. 2017a. Exponentiated Chen distribution: Properties and estimation. Communications in Statistics Simulation and Computation 46(10): 8118–8139.
- [9] DEY S, MAZUCHELI J & NADARAJAH S. 2017b. Kumaraswamy distribution: different methods of estimation. *Computational and Applied Mathematics*, (to appear).
- [10] DO ESPIRITO SANTO APJ & MAZUCHELI J. 2015. Comparison of estimation methods for the Marshall-Olkin extended Lindley distribution. *Journal of Statistical Computation and Simulation*, 85(17): 3437–3450.
- [11] DOORNIK JA. 2007. Object-Oriented Matrix Programming Using Ox, 3rd ed. London: Timberlake Consultants Press and Oxford.
- [12] EFRON B. 1982. The Jackknife, the Bootstrap and other resampling plans. Vol. 38. SIAM.
- [13] GUPTA RD & KUNDU D. 2001. Generalized Exponential distribution: Different method of estimations. *Journal of Statistical Computation and Simulation*, **69**(4): 315–337.
- [14] JOHNSON NL, KOTZ S & BALAKRISHNAN N. 1995. Continuous Univariate Distributions., 2nd Edition. Vol. 2. John Wiley & Sons Inc., New York.
- [15] KAO JHK. 1958. Computer methods for estimating Weibull parameters in reliability studies. IRE Transactions on Reliability and Quality Control PGRQC-13, 15–22.
- [16] KAO JHK. 1959. A graphical estimation of mixed Weibull parameters in life-testing of electron tubes. *Technometrics*, **1**(4): 389–407.
- [17] KUNDU D & RAQAB MZ. 2005. Generalized Rayleigh distribution: different methods of estimations. *Computational Statistics & Data Analysis*, **49**(1): 187–200.
- [18] LEHMANN EJ & CASELLA G. 1998. Theory of Point Estimation. Springer Verlag.
- [19] LUCEÑO A. 2006. Fitting the Generalized Pareto distribution to data using maximum goodness-of-fit estimators. *Comput. Stat. Data Anal.*, **51**(2): 904–917.
- [20] MANN NR, SCHAFER RE & SINGPURWALLA ND. 1974. Methods for Statistical Analysis of Reliability and Life Data. Wiley.
- [21] MAZUCHELI J, GHITANY ME & LOUZADA F. 2017. Comparisons of ten estimation methods for the parameters of Marshall-Olkin extended Exponential distribution. Communications in Statistics *Simulation and Computation*, **46**(7): 5627–5645.
- [22] MAZUCHELI J, LOUZADA F & GHITANY ME. 2013. Comparison of estimation methods for the parameters of the weighted Lindley distribution. *Applied Mathematics and Computation*, **220**: 463–471.
- [23] MENEZES AFB, MAZUCHELI J & BARCO KVP. 2018. The power inverse Lindley distribution: different methods of estimation. *Ciência e Natura*, **40**: 24–26.
- [24] NASSAR M, AFIFY AZ, DEY S & KUMAR D. 2018. A new extension of weibull distribution: Properties and different methods of estimation. *Journal of Computational and Applied Mathematics*, **336**: 439–457.

- [25] PAWITAN Y. 2001. In All Likelihood: Statistical Modelling and Inference Using Likelihood. Oxford University Press, Oxford.
- [26] RANNEBY B. 1984. The maximum spacing method. An estimation method related to the maximum likelihood method. *Scandinavian Journal of Statistics*, **11**(2): 93–112.
- [27] RODRIGUES GC, LOUZADA F & RAMOS PL. 2018. Poisson-exponential distribution: different methods of estimation. *Journal of Applied Statistics*, **45**(1): 128–144.
- [28] ROHDE CA. 2014. Introductory Statistical Inference with the Likelihood Function. Springer-Verlag, New York.
- [29] SWAIN JJ, VENKATRAMAN S & WILSON JR. 1988. Least-squares estimation of distribution functions in Johnson's translation system. *Journal of Statistical Computation and Simulation*, **29**(4): 271–297.
- [30] TADIKAMALLA PR & JOHNSON NL. 1982. Systems of frequency curves generated by transformations of Logistic variables. *Biometrika*, **69**(2): 461–465.
- [31] TEIMOURI M, HOSEINI SM & NADARAJAH S. 2013. Comparison of estimation methods for the Weibull distribution. *Statistics*, **47**(1): 93–109.