REFERENCE: THEOREMS AND LEMMATA

Samantha Frohlich

Figure 1: Key Theorems

Type Safety:

- 1. (Preservation) If $\vdash e : \tau$ and $e \longmapsto e'$ then $\vdash e' : \tau$.
- 2. (Progress) If $\vdash e : \tau$ then either e val or $e \longmapsto e'$ for some e'.

<u>Termination</u>: For every $\vdash e : \tau$ there exists a v val such that $e \longmapsto^* v$.

Figure 2: Key Lemmata

Inversion: Suppose $\Gamma \vdash e : \tau$.

- 1. If $e = plus(e_1; e_2)$ then it must be that
 - $\tau = \text{Num}$
 - $\Gamma \vdash e_1 : \mathsf{Num}$
 - $\Gamma \vdash e_2 : \mathsf{Num}$
- 2. ..

Weakening: If $\Gamma \vdash e : \tau$ and x is fresh then $\Gamma, x : \sigma \vdash e : \tau$.

 $\underline{\overline{\text{Substitution}}}\text{: }\text{If }\Gamma\vdash e:\tau\text{ and }\Gamma,x:\tau\vdash u:\sigma\text{, then }\Gamma\vdash u[e/x]:\sigma\text{.}$

Canonical forms: Suppose e val.

- 1. If $\vdash e$: Num then $e = \mathsf{num}[n]$ for some $n \in \mathbb{N}$.
- 2. If $\vdash e$: Str then e = str[s] for some $s \in \Sigma^*$.