

ÍNDICE

- 1. Objetivo
- 2. Conjunto de datos
- 3. Limpieza de los datos
- 4. EDA
- 5. AUTO ARIMA
- 6. Conclusión

OBJETIVO

Crear un modelo que permita predecir el número de eventos que pueden ser causa de tsunamis por año

CONJUNTO DATOS

Tsunami Causes and Waves

LIMPIEZA DE DATOS

67	SOURCE_ID	YEAR	MONTH	DAY	CAUSE	VALIDITY	REGION_CODE	COUNTRY	LOCATION
0	1	-2000	NaN	NaN	1.0	1.0	50.0	SYRIA	SYRIAN COASTS
1	3	-1610	NaN	NaN	6.0	4.0	50.0	GREECE	THERA ISLAND (SANTORINI)
2	4	-1365	NaN	NaN	1.0	1.0	50.0	SYRIA	SYRIAN COASTS
3	5	-1300	NaN	NaN	0.0	2.0	50.0	TURKEY	IONIAN COASTS, TROAD
4	6	-760	NaN	NaN	0.0	2.0	50.0	ISRAEL	ISRAEL AND LEBANON COASTS

2582 rows x 45 columns

2000 aC

1960 métodos localización computarizados

EDA

EDA

Desconocido

EDA

Tsunamis mediterraneo

AutoRegressive Integrated Moving Average

!pip install pmdarima

- Serie temporal
- 2. Selección mejores hiper parámetros (auto)
- 3. Ajuste del modelo
- 4. Diagnóstico del modelo
- 5. Predicción
- 6. Precisión

1. Serie temporal - estacionaria : Dickey-Fuller

2. Selección mejores hiper parámetros (auto)

from pmdarima.arima import auto_arima

Componente Autoregresivo (AR)	Componente de Diferenciación Integrada (I)	Componente de Media Móvil (MA):
"p", indica cuántos períodos anteriores se utilizan para predecir el valor actual	""d", indica cuántas veces se diferencia la serie temporal para hacerla estacionaria	"q", indica cuántos términos de error pasados se utilizan en la predicción actual
"p" es el orden del componente autoregresivo. (correlación)	"d" es el orden de diferenciación integrada.(estacionaridad)	"q" es el orden del componente de media móvil. (Descomposición de series temporales)

- 2. Selección mejores hiper parámetros (auto)
- 3. Ajuste del modelo

```
model = auto arima(train, start p=1, start q=1,
                     max p=5, max q=5,
                     trace=True,
                     error_action='ignore',
                     suppress warnings=True,
                      stepwise=True)
Performing stepwise search to minimize aic
ARIMA(1,0,1)(0,0,0)[0] intercept
                                    : AIC=257.820, Time=0.12 sec
ARIMA(0,0,0)(0,0,0)[0] intercept
                                    : AIC=257.484, Time=0.03 sec
ARIMA(1,0,0)(0,0,0)[0] intercept
                                    : AIC=255.963, Time=0.09 sec
ARIMA(0,0,1)(0,0,0)[0] intercept
                                   : AIC=255.972, Time=0.05 sec
ARIMA(0,0,0)(0,0,0)[0]
                                    : AIC=350.600, Time=0.02 sec
ARIMA(2,0,0)(0,0,0)[0] intercept
                                    : AIC=257.665, Time=0.11 sec
ARIMA(2,0,1)(0,0,0)[0] intercept
                                    : AIC=258.897, Time=0.42 sec
ARIMA(1,0,0)(0,0,0)[0]
                                    : AIC=274.796, Time=0.03 sec
Best model: ARIMA(1,0,0)(0,0,0)[0] intercept
Total fit time: 0.875 seconds
```

model.summary()

SARIMAX Results

Dep. Variable:	у	No. Observations:	46
Model:	SARIMAX(1, 0, 0)	Log Likelihood	-124.981
Date:	Sun, 18 Feb 2024	AIC	255.963
Time:	17:20:42	BIC	261.449
Sample:	0	HQIC	258.018
	- 46		
Covariance Type:	opg		

	coef	std err	z	P> z	[0.025	0.975]
intercept	7.2994	1.576	4.632	0.000	4.210	10.388
ar.L1	0.2695	0.144	1.873	0.061	-0.013	0.552
sigma2	13.3892	3.453	3.877	0.000	6.621	20.157

Ljung-Box (L1) (Q):	0.04	Jarque-Bera (JB):	2.35
Prob(Q):	0.85	Prob(JB):	0.31
Heteroskedasticity (H):	1.56	Skew:	0.51
Prob(H) (two-sided):	0.40	Kurtosis:	2.58

4. Diagnóstico del modelo

Estadísticas de Ajuste del Modelo

Coeficientes

Adecuación del modelo a los datos.

- Ljung-Box (L1) (Q) autocorrelación
- Jarque-Bera (JB) normalidad
- Heteroskedasticity (H) presencia de heterocedasticidad en los residuos.
- Skew y Kurtosis: asimetría y forma

5. Predicción

prediction, confint = model.predict(n_periods=len(test), return_conf_int=True)

6. Precisión

```
mse = mean_squared_error(test, prediction)
r2 = r2_score(test, prediction)

print("Error Cuadrático Medio (MSE):", mse)
print("Coeficiente de determinación (R^2):", r2)

Error Cuadrático Medio (MSE): 21.296681684902037
Coeficiente de determinación (R^2): -0.354559259110377
```

el modelo no es útil

CONCLUSIÓN

- Falta cantidad de datos: de 2582 filas a 46
- Serie temporal
- Más variables a tener en cuenta

