Submitted herewith are the following documents:

- (1) Supplemental Reissue Declaration;
- (2) Assent of Assignee to Reissue;
- (3) Statement under 37 CFR 3.73(b); and
- (4) Declaration as to Inaccessibility of Original Letters Patent.

In light of the foregoing, it is submitted that this application is in condition for allowance, and a notice to that effect is respectfully solicited.

If any issues remain which may best be resolved through a telephone interview, the examiner is requested to telephone the undersigned at the local Washington, D.C. telephone number listed below.

Respectfully submitted,

Date: April 6, 2001

James E. Ledbetter Registration No. 28,732

JEL/att

ATTORNEY DOCKET NO. <u>JEL 28567RE-B</u>

STEVENS, DAVIS, MILLER & MOSHER, L.L.P.

1615 L Street, NW, Suite 850

P.O. Box 34387

Washington, DC 20043-4387

Telephone: (202) 408-5100

Facsimile: (202) 408-5200

RECEIVED

APR 0 9 2001
Technology Center 2600

EXHIBIT I

Not in compliance

OPTICAL RECORDING/REPRODUCING PARATUS FOR OPTICAL DISKS WITH VARIOUS DISK SUBSTRATE THICKNESSES

This is a reissue continuation application of reissue application no. 08/396/,981 which issued as RE 36,445 on December 14, which was a reissue of United States Patent 10 5,235,581 issued August following are related continuation reissue applications: application no <u>09/420,603</u> filed October 1999 19 appl ication 09/609,829 filed November 09/460,222 / filed application 09/460,223 filed no. 1999, December 13, and /application 09/460,221 filed December 1/3, 1999.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to an optical disc apparatus which can record, reproduce, or erase information signals onto/from both of an optical disc having a recording density similar to that of a conventional CD (compact disc) and an optical disc having a recording density higher than the above responding density.

2. Description of the Prior Art

In recent years, in addition to an optical disc apparatus only for reproduction such as a CD player or the like, an optical disc apparatus which can record and reproduce an information signal is actively being developed.

Ordinarily, the recording and reproduction of an information signal onto/from an optical disc are executed by converging a beam which is radiated from a semiconductor laser or the like onto a recording layer of the optical disc by a lens. The recording layer here denotes a pit layer in the case of a CD and is a layer in which a deformation, a change in optical constant, a formation of a magnetic domain, or the like is performed by a converged laser beam in the case of a recordable optical disc. To raise a recording density of the optical disc, it is necessary to reduce a spot diameter D of the converged beam. There is the following relation among the spot diameter D, a numerical aperture NA of the lens, and a wavelength λ of the laser beam.

$$D = \frac{\lambda}{NA} \tag{1}$$

The above equation (1) denotes that the beam spot diameter D decreases by using a lens of a large NA. That is, by increasing NA, the high density recording

can be executed.

When NA of the lens increases, however, an abertation of the converged beam due to an inclination error of the disc called a tilt increases. Particularly, a coma abertation increases. There is the following relationamong a wave front abertation W_r of the coma, a tilt angle a, and NA when using a thickness d and a refractive index n of the disc substrate.

$$F'_{\varepsilon} = \frac{n^2 - 1}{2n^3} \cdot d \cdot \alpha \cdot (NA)^3$$
 (2)

The above equation (2) denotes that in the case of using a lens of NA which is larger than that of the conventional lens, even if a tilt angle is identical, the coma aberration increases. It will be understood from the equation (2), however, that there is an effect to suppress the coma aberration by setting the thickness d of the disc substrate to be thin. In the optical disc for the night density recording, therefore, it is preferable that the thickness of the disk substrate is thinner than that of the conventional optical disc, so that an optical head using an objective lens corresponding to the thin disc substrate is needed.

On the other hand, even in the optical disc apparatus corresponding to the high density recording, it is preferable that the conventional optical disc of a-faick sub-