



### Outline

- 1. Further Motivation (3 min)
- 2. Reminder: Extra Resources (2 min)
- 3. Refresher on ZKP's (Simulators and Extractors, 10 min)
- 4. Exercises (30 min)
- 5. Questions & Feedback



#### **Further Motivation**

- Building Block for Post-Quantum Crypto
- E-Cash
- Machine Learning
- Differential Privacy Auditing (see second half of course)



Organisationseinheit verbal

## Resources (Unfinished)

#### A Graduate Course in Applied Cryptography

Dan Boneh and Victor Shoup

Version 0.6, Jan. 2023

| ! - II\                                   | U Prov | ing properties in zero-knowledge                                                  | 823   |
|-------------------------------------------|--------|-----------------------------------------------------------------------------------|-------|
| ished)                                    | 20.1   | Languages and soundness                                                           | 823   |
|                                           | 20.2   | Proving properties on encrypted data                                              | 824   |
|                                           |        | 20.2.1 A generic protocol for non-linear relations                                | 829   |
|                                           | 20.3   | Non-interactive proof systems                                                     | . 831 |
|                                           |        | 20.3.1 Example: a voting protocol                                                 | . 831 |
| aliad Countaments                         |        | 20.3.2 Non-interactive proofs: basic syntax                                       | . 833 |
| plied Cryptography                        |        | 20.3.3 The Fiat-Shamir transform                                                  | 833   |
|                                           |        | 20.3.4 Non-interactive soundness                                                  | 834   |
|                                           |        | 20.3.5 Non-interactive zero knowledge                                             | 834   |
| 4 Cl                                      |        | 20.3.6 An example: applying the Fiat-Shamir transform to the Chaum-Pedersen       |       |
| tor Shoup                                 |        | protocol                                                                          | . 837 |
|                                           | 20.4   | Computational zero-knowledge and applications                                     | . 838 |
|                                           |        | 20.4.1 Example: range proofs                                                      | . 839 |
|                                           |        | 20.4.2 Special computational HVZK                                                 | . 840 |
|                                           |        | 20.4.3 An unconstrained generic protocol for non-linear relations                 | . 841 |
|                                           | 20.5   | Bulletproofs: compressed Sigma protocols                                          | 842   |
|                                           | 20.6   | Succinct non-interactive zero-knowledge proofs (SNARKs)                           | 842   |
| 2023                                      | 20.7   | A fun application: everything that can be proved, can be proved in zero knowledge |       |
| 0.020                                     | 20.8   | Notes                                                                             | 842   |
|                                           | 20.9   | Exercises                                                                         | . 843 |
| Basic number theory                       |        | 1096                                                                              |       |
| A.1 Cyclic groups                         |        |                                                                                   |       |
| A.2 Arithmetic modulo primes              |        |                                                                                   |       |
| A.2.1 Basic concepts                      |        |                                                                                   |       |
| A.2.2 Structure of $\mathbb{Z}_p^*$       |        |                                                                                   |       |
| A.2.3 Quadratic residues                  |        |                                                                                   |       |
| A.2.4 Computing in $\mathbb{Z}_p$         |        |                                                                                   |       |
| A.2.5 Summary: arithmetic modulo primes . |        |                                                                                   |       |
| A.3 Arithmetic modulo composites          |        |                                                                                   |       |
| Basic probability theory                  |        | 1101                                                                              |       |
| B.1 The birthday Paradox                  |        |                                                                                   |       |
| B.1.1 More collision bounds               |        |                                                                                   |       |
| B.1.2 A simple distinguisher              |        |                                                                                   |       |
|                                           |        |                                                                                   |       |



C Basic complexity theory

B Basic probability theory

A Basic number theory

1105

000

#### Resources

# INTRODUCTION TO MODERN CRYPTOGRAPHY

Second Edition

527

Jonathan Katz

| Appen | dix A                  | Mathematical Background                           | <b>537</b> |  |  |
|-------|------------------------|---------------------------------------------------|------------|--|--|
| A.1   | Identi                 | ties and Inequalities                             | 537        |  |  |
| A.2   | Asym                   | ptotic Notation                                   | 537        |  |  |
| A.3   |                        | Probability                                       | 538        |  |  |
| A.4   |                        | Birthday" Problem                                 | 542        |  |  |
| A.5   |                        |                                                   |            |  |  |
|       |                        |                                                   |            |  |  |
| Appen | dix B                  | Basic Algorithmic Number Theory                   | $\bf 547$  |  |  |
| B.1   | Intege                 | er Arithmetic                                     | 549        |  |  |
|       | B.1.1                  | Basic Operations                                  | 549        |  |  |
|       | B.1.2                  | The Euclidean and Extended Euclidean Algorithms . | 550        |  |  |
| B.2   | B.2 Modular Arithmetic |                                                   |            |  |  |
|       | B.2.1                  | Basic Operations                                  | 552        |  |  |
|       | B.2.2                  | Computing Modular Inverses                        | 552        |  |  |
|       | B.2.3                  | Modular Exponentiation                            | 553        |  |  |
|       | B.2.4                  | *Montgomery Multiplication                        | 556        |  |  |
|       | B.2.5                  | Choosing a Uniform Group Element                  | 557        |  |  |
| B.3   | *Find                  | ing a Generator of a Cyclic Group                 | 559        |  |  |
|       | B.3.1                  | Group-Theoretic Background                        | 559        |  |  |
|       | B.3.2                  | Efficient Algorithms                              | 561        |  |  |
| Refe  | rences                 | and Additional Reading                            | 562        |  |  |



#### ZKP – Simulator

- Computational knowledge: ability to compute something efficiently (e.g. knowing the answers of PETs homework let's you solve the problem sheet quickly)
- If the verifier could have faked the same conversation alone, they learned nothing from the real one
   no new ability for efficient computation was gained



#### ZKP - Simulator

Sim(G)

Guess  $\hat{c} \leftarrow \$ \{0,1\}$ If  $\hat{c} = 0$ , commit to a random permutation  $\Pi$  of GIf  $\hat{c} = 1$ , commit to a complete graph

Send the commitments to the verifier who returns cIf  $\hat{c} \neq c$ , abort and restart

Else, open the commitments as requested by the verifier

P(G, Ham-Cycle)V(G)pick a random permutation  $\Pi$ of the *n* vertices; For  $1 \le i \le j \le n$ , let  $B_{ii} = 1$ if  $(\Pi(i), \Pi(j)) \in E$  and  $B_{ij} = 0$ otherwise;  $Commit(B_{11}), \ldots, Commit(B_{nn})$  $Commit(\Pi)$  $c \leftarrow^{\$} \{0,1\}$ If c = 0, open all commitments Else, open all commitments  $B_{ij}$ where  $(\Pi(i), \Pi(j))$  is in the Hamiltonian cycle. Openings Verify commitments if c = 0, check that the committed graph is isomorphic to G Else, check that a cycle

Note that the simulator's first message Commit is computationally indistinguishable from the prover's first message, as the commitments are computationally hiding.

Output the view (G, Commit, c, Open)

The simulator's second message is statistically indistinguishable from the prover's second message: if c=0, the simulator does exactly what the prover does, and if c=1, the simulator opens all commitments of some arbitrary cycle, which is the image of the Hamiltonian cycle under *some* permutation  $\Pi$ .

Finally, we need to argue that the simulator is efficient. Because the commitments in the first message are computationally hiding, the verifier cannot guess  $\hat{b}$  with non-negligible advantage, and thus  $\Pr[\hat{b} \neq b] \leq 1/2 - \text{negl}(\lambda)$ .

was opened.

## Knowledge Soundness & Proofs of Knowledge – Extractor

- If a prover often succeeds in convincing the verifier then it must know a witness
- PoK (existance of extractor) <=> Knowledge Soundness



Why do the simulator and extractor have special abilities?



Organisationseinheit verbal 07.10.2025

## Why do the simulator and extractor have special abilities?

 If simulator was successful in polynomial time then simulator would be able to efficiently generate transcripts that are indistinguishable from real ones without any witness → impact on Soundess (a party with no witness could generate convincing transcripts)

• If extractor was successful in polynomial time then a malicious verifier could potentially extract the witness too → witness leakage from provers messages (impact on Zero-Knowledge)



## k-Special Soundness for 3 Round Protocols

- Given k accepting transcripts for the same instance x of L an extractor can compute a witness
- 2-Special soundness → Classic definition of sigma protocols



## Sigma Protocol

- 3 Round Protocol
- Perfect completness
- Special soundness
- SHVZK



Organisationseinheit verbal 07.10.2025

12

#### NIZK

- Under Random Oracle Model (but also more esoteric models like the Algebraic Group Model)
- Verifier doesn't need to interact with prover since it can locally draw challenge by querying the RO
- Zero-Knowledge: stems from RO programming to match the query of the Prover/Verifier
- NIZK-PoK Knowledge soundness stems from reprogramming the RO to get two different challenges
- Bonus Question: Suppose a Sigma protocol has soundness of 1/3 what can you say about the soundness of its respective NIZK (after Fiat-Shamir)?





Thank you :-)

Any Questions?