	Sou H
Recall: We cotablished the Markov property:	
$\forall n \in \mathbb{N}, \forall (x_0, \dots, x_n) \in S^{n+1}$	
P(Xn+1 = 2n+1) X = 20, X = 21,, X	~~~~~~
= P(Xn+1 = 2n+1 (Xn=2n).	•
Ruk: Given this property, we can simulate a realization of a M-C iterativel Pseudo-algorithm;	2 Y :
· Set up the initial state oco	
for i from I to M randomly generale X; from	۱-3×
· Output : (x, x,, x,)	
-> See Jupyter Noteboot	
Def: A M-C is homogeneous if $f(x,y) \in S^2$, $P(X_{n+1}=x) \times X_n=y$. Same for all M .) is the
same for all M.	

· By indexing the states S = Ss,, ..., Si, g,

· We can equivalently represent a M-C and its train him matrix as a directed graph, where each mode represents a state, and S.t. we draw an arrow from x to y if Pxy > O, with weight Pxy. This graph is called a TRANSITION DIAGRAM

Examples (see Ross txtbook, examples 4.1-4.7)

ex 4.2: Communication system with 2 states

O and 1; s.t. the message of the

next step is Sunchanged is P (oxpxi)

(changed is 1-p

$$P(X_{n+1}=1|X_{n}=1)=P(X_{n+1}=0|X_{n}=0)=P$$

 $P(X_{n+1}=1|X_{n}=0)=P(X_{n+1}=0|X_{n}=1)=1-P$

$$\sum_{i} P(X_{n+i} = S_i | X_n = S_i) = P(X_n = S_i)$$

$$= \sum_{i} P(X_{i} = S_{i}) = \sum_{i} P(X_{i} = S_{i})$$

Ruk: When S is infinite, we generalize the concept of a finite wah x to a matrix with cufnitely many rows and columns

· Giren a transition matrix, one can simulate a realization of the process Algorithm: . set up the initial State Xo

o for i from to M

II. Chapman-Kolmogorov equation

Runk: For a M-C (Xn) ngo with a traunition matrix R, and if at time u, the distribution of Xn is $\mu = (\mu_1, \dots, \mu_N)$, then the distribution of Xn+1 is M. L.,

by definition of the matrix product:

$$P(X_{n+1}=S_j)=\sum_{k\in S}P(X_{n+1}=S_j, X_n=S_k)$$

$$= \underbrace{\xi}_{k \in S} \mu_{k} \cdot (\underbrace{P})_{kj}$$

$$= (\mu \cdot \underbrace{P})_{j}$$

From this remark, if the distribution of $X_1 = \mu \cdot P$, then the distribution of $X_2 = (\mu \cdot P) \cdot P = \mu \cdot P \cdot P = \mu \cdot P^2$ distrib. of X_1 and by recurrence, the distribution of X_1

· We will generalize this result in this section

Def: For $n \in \mathbb{N}$, we define the n-step transition probability $P_{ij} = P(X_n = j \mid X_o = i)$, which defines the n-step transition matrix $\binom{p(n)}{i} = \binom{n}{i}$

Ruk:
$$M = 0$$
: $P_{ij} = P(X_{k=j} | X_{k=i})$

$$= \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$
i.e. $P_{i0} = Ids$

One can show (e.g. by induction on M, and because we consider a homogeneous M-C) that

cau gest P(n+m):

Than: (C-K. equation): Pij = & Pik. Pk)

ue will prove this in the vert lecture but an important coursequence is

