

Indian Institute of Science, Bangalore Department of Computational and Data Sciences (CDS)

DS284: Numerical Linear Algebra

Assignment 2 [Posted Sept 2, 2024]

Bhikshapathi kaniki

SR No: 06-18-01-10-51-24-1-24489

Problem - 1

How many numbers can this toy system describe?

Ans: - This toy system can describe 24 distinct values.

f= 3bits and e= a bits

no of combinations = 23 = 8 values

with exponent = 3 combination

So, total distincts values = 8x3: 24

Problem-2

Create a table with 3 columns. First column should contain normalized binary scientific notation of the form1.fq2 ^ 2 pexponent'1qof all the above numbers.

Indus	Normalized bingry Scientific notation	Binary representation	Integer Representation
0	(1.000)2 × 20-1	0.1000	0.5
r I	(1.001)2 × 20-1	0.1001	0.5625
2	(1.010) = x 20-1	0. (010	0.625
3	(1.011) = x 20-1	0. (0 11	0.6875
ч	(1.100)2 × 20-1	0.1100	0.42
5	(1.101) _ x 20-1	0- (101	0-8125
6	(1.110) 2 x 20-1	0.1110	0.875
7	(1·111) 2 x 2°-1	0.1111	0.9375
8	(1.000)2 × 2'-1	1.000	1.0
9	(1.001)2 × 21-1	1. 001	1. 125
10	(1.010) L x 21-1	1. 010	1.25
11	(1.011) = x a 1-1	1.011	1.375
12	(1.100)2 × 2'-1	1.100	l· 5
13	(1.101) = x 21-1	1. 101	1.625
14	(1.110) = x 2 1-1	1. 110	1. 75
12	(1·111) 2 x 2 1-1	(111	1.875
11	(1.000)2 × 22-1	10.00	2 . O
१३	(1.001)2 × 22-1	10.01	a . 25
18	(1.010) = x 2 ²⁻¹	10 - 10	გ. ⊆
19	(1.011) = x 22-1	(0 (a ·75
20	((·100)2 × 2 ²⁻¹	11.00	3-D
21	(1.101) = x 2 ²⁻¹	11.01	3.25
22	(1.110) × 2 ⁴⁻¹	11010	3.5
23	(1.111) 2 x 22-1	(1 .) (3.75

Problem-3

From the table above, what is the minimum real number and maximum real number you can represent using our toy floating point number system

- · Maximum no is 3.75
- . Minimum no is 0.5

Problem - 4

What can you say about absolute gaps between the numbers? Are they constant or do they change with the magnitude of the number you are representing?

- -> The absolute gaps between the no with change with the magnitude of number being represented
 - From the number (2=20), the absolute difference is constant 2=0.0625.
- From the number (20-21), the absolute difference is $a^{-3} = 0.125$.
- From 2'-22, the difference is $a^{-2} = 0.25$.

Problem-5

What can you say about machine epsilon for our toy floating point system?

Soli Pick ner, there exists n'ef such that $(n-n')/2 \in \text{machine}$ That

There is a system, the machine epsilon is a-y=0.06as or 1

I due to avaliable of less than of bits,

we assign the number to the nearest round off value

with som small error we assign to near value.

I (1+ E) E is small number

$$|\mathcal{E}| \subseteq \mathcal{E} \text{ mach} \qquad \text{Emach is machine epsilor}$$

$$\Rightarrow 2^{-1} \text{ to } 2^{0} = \underbrace{0.0625}_{1.005} = 0.6825 = 1_{16} \Rightarrow \text{To get precision}$$

$$\Rightarrow 2^{0} \text{ to } 2^{1} = \underbrace{0.125}_{2} = 0.685 = 1_{16} \qquad |\mathcal{E}| \subseteq \mathcal{E} \text{ machine}$$