Сортировки с квазилинейной сложностью

Сложность задачи сортировки

Пусть есть $(a_1,...,a_n)$ из n элементов линейно упорядоченного множества. Нужно найти перестановку x множества (1,...,n) такую, чтобы

$$i < j \implies a_{x(i)} < a_{x(i)}, \forall 1 \le i < n, i < j \le n.$$

Считаем, что нам ничего не известно о структуре множества и в распоряжении есть только операции сравнения. Оценим минимальное количество операций сравнения, необходимых для решения задачи. Пусть Π_0 – множество всех перестановок, $|\Pi_0|=n!$. Изначально, все перестановки являются кандидатами на ответ. Сравним два элемента последовательности a_{i_1} и a_{j_1} . Множество Π_0 разобьется на два подмножества $\Pi_1^<=\{\pi\in\Pi_0:\pi(a_{i_1})<\pi(a_{j_1})\}$ и $\Pi_1^>=\{\pi\in\Pi_0:\pi(a_{i_1})>\pi(a_{j_1})\}$. Выберем подходящее подмножество, назовем его Π_1 . Мощность одного из подмножеств не меньше, чем n!/2, в худшем случае $|\Pi_1|\geq n1/2$. После k сравнений мощность множества Π_k может достигать $n!/2^k$. Так как искомая перестановка единственна, то получаем, что $k\geq\log_2 n!$. Используем формулу Стирлинга:

$$n! \simeq \sqrt{2\pi n} (\frac{n}{e})^n.$$

$$\log_2 n! = \log_2 \sqrt{2\pi n} (\frac{n}{e})^n = \log_2 \sqrt{2\pi n} + n(\log_2 n - \log_2 e) = n \log_2 n + O(n).$$

Отсюда, сложность задачи сортировки оценивается как $O(n \log n)$. Рассмотрим ряд алгоритмов сортировки с таким временем работы.

2 Быстрая сортировка

Сортировка Тони Хоара (быстра сортировка, Quick sort) — один из наиболее популярных алгоритмов. Алгоритм состоит из трех шагов. Сначала выбирается один элемент из массива (опорный элемент). Массив разбивается на две части: в первую часть входят элементы меньше опорного, во вторую часть — больше опорного. Сам опорный элемент может как попасть в одну из частей, так и просто оказаться между ними (зависит от конкретной реализации алгоритма, но при этом не влияет на результат работы алгоритма). Третьим шагом к обоим частям массива рекурсивно применяется данный алгоритм. Массив, который содержит менее двух элементов, является отсортированным, и применять к такому массиву сортировку не надо. Быстрая сортировка является неустойчивой.

2.1 Время работы

Докажем, что среднее время работы алгоритма равно $O(n \log n)$.

Пусть X – полное количество сравнений элементов массива с опорным, надо найти это количество. Переименуем элементы массива как $z_1...z_n$. Введем множество $Z_{ij}=\{z_i,z_{i+1},...,z_j\}$. Не теряя общности, предположим, что все элементы массива различны.

Кажадя пара элементов сравнивается не более одного раза, т.к. сравнения происходят только с опорным элементом, а после разбиения опорный элемент больше не участвует в сравнениях. Вычислим полное количество сравнений:

$$X = \sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{ij},$$

где $X_{ij}=1$, если произошло сравнение z_i с z_j , $X_{ij}=0$ иначе.

Применим опреацию матожидания и воспользуемся свойством линейности:

$$E[X] = E[\sum_{i=1}^{n-1} \sum_{j=i+1}^n X_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^n E[X_{ij}] = \sum_{i=1}^{n-1} \sum_{j=i+1}^n P\{z_i \text{ сравнивается с } z_j\}.$$

Вычислим вероятность того, что z_i сравнивается с z_j . Поскольку все элементы различны, то при выборе опорным элементом x впоследствии не будут сравниваться никакие z_i и z_j , для которых $z_i < x < z_j$. Если z_i – опорный элемент, то он будет сравниваться с каждым элементом Z_{ij} , кроме самого себя. Тогда элементы z_i и z_j сравниваются тогда и только тогда, когда первым в множестве Z_{ij} опорным элементом был выбран один из них.

 $P\{z_i$ сравнивается с $z_j\}=P\{$ первым опорным элементом был $z_i\}+$

$$P\{$$
первым опорным элементом был $z_j\} = rac{1}{j-i+1} + rac{1}{j-i+1} = rac{2}{j-i+1}$

$$E[X] = \sum_{i=1}^{n-1} \sum_{j=i+1}^n \frac{2}{j-i+1} = \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k+1} < \sum_{i=1}^{n-1} \sum_{k=1}^{n-i} \frac{2}{k} = \sum_{i=1}^{n-1} O(\log n) = O(n \log n).$$

Матожидание времени работы быстрой сортировки равно $O(n\log n)$. Однако, в худшем случае время работы сортировки – $O(n^2)$. Такое время достигается, если на каждом шаге рекурсии массив разбивается на части так, что одна часть содержит один элемент, другая – остальные. Например, если опорным элементом является первый элемент, то изначально отсортированный массив будет обрабатыватся $O(n^2)$ времени. Для любого фиксированного положения опорного элемента можно построить контрпример. Для борьбы с этой проблемой есть несколько вариантов. Во первых, на каждом шаге рекурсии можно выбирать случайное положение опорного элемента. Во вторых, можно взять несколько

равномерно расположенных элементов в массиве и посчитать их медиану. Так или иначе, эти способы позволяют избежать подбора контрпримера.

2.2 Реализация

В приведенной ниже реализации используется выбор случаного опорного элемента. Изначально функция вызывается: qsort(a, 0, len(a) - 1).

```
from random import randint
def qsort(a, left, right):
    if left >= right:
       return
   i, j = left, right
   x = a[randint(left, right)]
    while i <= j:
        while a[i] < x:
            i += 1
        while a[j] > x:
            j -= 1
        if i <= j:
            a[i], a[j] = a[j], a[i]
            i += 1
            j -= 1
    qsort(a, left, j)
    qsort(a, i, right)
```

Пусть из постановки задачи известно, что в массиве много повторяющихся элементов. Тогда можно изменить приведенную выше реализацию. Теперь будет происходить разбиение массива на три части: элементы меньше опороного, элементы равные опорному и элементы больше опорного. Асимптотика алгоритма остается прежней, но имеет меньшую константу во времени работы.

```
def qsort(a):
    if len(a) < 2:
        return a
    i, j = left, right
    m = a[randint(left, right)]
    x, y, z = [], [], []
    for e in a:
        if e < m:</pre>
```

from random import randint

```
x.append(m)
elif e == m:
    y.append(m)
else:
    z.append(m)
return qsort(x) + y + qsort(z)
```

В такой реализации необходимо O(n) дополнительной памяти в то время, как оригинальынй вариант не использует дополнительную память.

3 Сортировка слиянием

Сортировка слиянием представлена двумя шагами: разбиение массива пополам и независимая сортировка обоих частей, слияние двух отсортированных частей массива в один отсортированный массив. Разбиение делается до тех пор, пока части массива не станут содержать ровно один элемент. Слияние двух отсортированных массивов в один отсортированный массив происходит следующим образом:

- 1. Из обоих массивов берутся первые элементы.
- 2. Если элемент из первого массива меньше, чем из второго, то он удаляется из первого массива и добавляется в итоговый массив.
- 3. Иначе в итоговый массив добавляется элемент из второго массива, при этом удаляясь из второго массива.
- 4. Шаги 1-3 повторяются до тех пор, пока оба массива не пустые.
- Оставшиеся элементы в непустом массиве добавляются в итоговый массив.

На этапе слияния сортировка использует O(n) дополнительной памяти. Сортировка слиянием является устойчивой.

3.1 Время работы

Пусть T(n) – время работы сортировки для n элементов. Оценим T(n). Время работы операции слияния двух массивов длины n оценивается, как O(n). Тогда справедливо соотношение $T(n)=2T(n/2)+O(n)=4T(n/4)+2O(n)=\dots=nT(1)+\log nO(n)$. Отсюда время работы алгоритма $O(n\log n)$.

3.2 Реализация

Функция merge() представляет собой алгоритм слияния двух отсортированных массивов, merge_sort() – функция самого алгоритма сортировки.

```
def merge(a, b):
    i = j = 0
    n, m = len(a), len(b)
    c = []
    while i < n \text{ and } j < m:
        if a[i] < b[j]:</pre>
            c.append(a[i])
            i += 1
        else:
            c.append(b[j])
            j += 1
    c += a[i:] + b[j:]
    return c
def merge_sort(a):
    if len(a) == 1:
        return a
    m = len(a) // 2
    x = merge_sort(a[:m])
    y = merge_sort(a[m:])
    return merge(x, y)
```

Список литературы

Кормен, Томас и др. (2013). *Алгоритмы. Построение и анализ. Третье издание*. Издательский дом «Вильямс».