Real Analysis

August Bergquist

February 16, 2023

Lemma 1. Let k > 1. Then the sequence $n \mapsto k^n$ has the property that for all real M > 0, there exists some natural number N such that if n > N, then $k^n > M$.

Proof. Recall the inequality from my last homework assignment (which I had proven in my last assignment), which states that if h > 0, then $(1 + h)^n > 1 + nh$. So for any given M > 0, we have by the archimedian principle some $N > \frac{M-1}{h}$, with $N \in \mathbb{N}$. Now suppose n > N. Then $n > \frac{M-1}{h}$, whence $k^n > 1 + nh > M$. This concludes the proof.

Lemma 2. Let $0 \le k < 1$ for $k \in \mathbb{R}$. Then the sequence $\sigma(n) = k^n$ converges to 0.

Proof. Now let $\epsilon > 0$. Notice that $\frac{1}{k} > 1$, so by the last proposition there exists a natural number N with the property that if n > N, then $\frac{1}{k^n} > \frac{1}{\epsilon}$. So for any n > N, we have $|k^n - 0|k^n < \epsilon$. This proves the limit. \square

For the next two theorems, let $U \subset \mathbb{R}$ be an open set, and let $f: U \to \mathbb{R}$ be differentiable on all of U, and let $p \in U$ such that f' is continuous at p.

Theorem 1. If |f'(p)| < 1, then p is an attractor.

Proof. Since f' is continuous at p, and since the absolute value function is continuous everywhere, it follows that the composition |f'| is continuous at p. Moreover, since |f'(p)| < 1, there exists some |f'(p)| < k < 1, and $0 \ge |f'(p)|$ by definition of the absolute value. Since $\frac{k-|f'(p)|}{2}$ is positive, by continuity there exists some $\delta > 0$ such that if $x \in U$ such that $|x - p| < \delta$, then $||f'(x)| - |f'(p)||| < \frac{k-|f'(p)x|}{2}$. By openess of U, there exists an $\epsilon > 0$ such

that if $|x-p| < \epsilon$, then $x \in U$. Set $\eta = \min\{\epsilon, \delta\}$, and construct the interval $I = (p - \eta, p + \eta)$.

First, note that for any $x \in I$, $|x - p| < \eta \le \delta$, whence we have by construction of δ that

$$|f'(x)| < |f'(p)| - \frac{k - |f'(p)|}{2} = \frac{|f'(p)|}{2} + \frac{k}{2} < \frac{k}{2} + \frac{k}{2} = k.$$

From a previous result which we presented in class, it follows that f is Lipschitze with constant k. In other words, $|f(x) - f(p)| = |f(x) - p| \le k|x - p|$.

I will use this to show that $|f^n(x) - p| \le k^n |x - p|$ for all n, and that $f^n(x) \in I$ for all n. Let the previous observation serve as the base case. Moreover, note that since k < 1, $|f(x) - p| \le k |x - p| < |x - p| < \eta \le \delta$, so $|f(x) - p| \in I$.

Now suppose that for $n \in \mathbb{N}$, $|f^n(x) - p| \le k^n |x - p|$, and that $f^n(x) \in I$. Then by Lipschitzeness, we have

$$|f(f^n(x)) - f(p)| = |f^{n+1}(x) - p| \le k|f^n(x) - p| \le k(k^n|x - p|) = k^{n+1}|x - p|.$$

It follows then that $|f^n(x) - p| \le k^n |x - p|$ for all $n \in \mathbb{N}$.

If x = p, it immediately follows that $f^n(x)$ converges to p, for p is a fixed point. Assume then that $x \neq p$, from which it follows that |x - p| > 0.

Now let $\epsilon > 0$. Then $\epsilon/|x-p| > 0$. By Lemma2, there must exist some natural number N such that for n > N, $k^n < \epsilon/|x-p|$. For such an n > N, we also have $0 \le |f^n(x) - p| < k^n|x-p|$, whence

$$||f^n(x) - p| - 0| < k^n|x - p| < (\epsilon/|x - p|)|x - p| = \epsilon|.$$

By definition of a limit, the sequence $|f^n(x) - p|$ converges to zero, so by a previous result which we presented in class (relating distance and convergence), it follows that $f^n(x) \to p$ as $n \to \infty$.

Our element x was arbitrary in I, so we have shown that there exists an open ball I about p such the iterated sequence of f based at $x \in I$ converge to p. This is the definition of an attractor.

A quick remark should be made about the definition of a repellor. I think a repellor should be defined as

Definition. Given a functino $\phi: X \to X$ in a metric space, a fixed point $q \in X$ is a repellor if and only if there exists an open ball $B_{\epsilon}(q)$ such that for any point $x \in B_{\epsilon}(q)$, there exists a natrual number n such that $\phi^{n}(x) \notin B_{\epsilon}(q)$.

If this is what a repellor is, then I can prove the following theorem.

Theorem 2. If |f'(p)| > 1, then p is a repellor.

Proof. By basic properties of the reals, there is some $K \in \mathbb{R}$ such that |f'(p)| > k > 1.

By the same argument for continuity, |f'| is continuous at p. Since $\frac{|f'(p)|-k}{2}>0$, by continuity of |f'| there must exist some $\delta>0$ such that if $x\in U$ such that $|x-p|<\delta$, then $||f'(x)|-|f'(p)||<\frac{k-|f'(p)|}{2}$. By openness of U, there exists some $\epsilon>0$ such that $x\in U$ whenever $|x-p|<\epsilon$. Let $\eta=\min\{\epsilon,\delta\}$, and construct the interval $I=(p-\eta,p+\eta)$.

Let $x \in I$. Then $|x - p| < \eta \le \delta$, hence by construction of δ we have $||f'(x)| - |f'(p)|| < \frac{|f'(p)| - k}{2}$. Hence,

$$k = \frac{k}{2} + \frac{k}{2} < \frac{k}{2} + \frac{|f'(p)|}{2} = |f'(p)| - \frac{|f'(p)| - k}{2} < |f'(x)|.$$

So k < |f'(x)| for any $x \in I$.

Suppose now that there existed some $x \neq p$ in I such that $|f(x) - f(p)| \leq k|x-p|$. Then by the mean value theorem, there exists some $c \in I$ such that $\frac{f(x)-f(p)}{x-p} = f'(c)$. Hence

$$|f'(c)| = \frac{|f(x) - f(p)|}{|x - p|} \le k.$$

But $c \in I$, so this is a contradiction.

From this we obtain the inequality *

$$|f(x) - f(p)| = |f(x) - p| > k|x - p|,$$

for all $x \in I$.

Using this inequality, we aim to obtain a new inequality

$$|f^n(x) - p| > k^n|x - p|,$$

under the condition that $f^m(x) \in I$ for m < n.

The base case has already been established. Now suppose that $|f^n(x) - p| > k^n |x - p|$ with $n \in \mathbb{N}$ such that for m < n, $f^m(x) \in I$. For n + 1, there are two possibilities. Either $f^n(x)$ is not in I or it is. If it isn't, the claim is satisfied. So suppose $f^n(x) \in I$. In this case, we have by the inequality * and

the induction hypothesis that $|f(f^n(x)) - f(p)| > k|f^n(x) - p| > k^{n+1}|x - p|$. This establishes the claim. (Note we can't just assume that this inequality always holds; it only holds so long as we've "been in I the whole time.")

Now we suppose by way of contradiction that $f^n(x) \in I$ for all $n \in \mathbb{N}$.

Now chose any $x \in I$ distinct from p. We aim to construct a natural number N such that $f^N(x) \notin I$.

Suppose by way of contradiction that $f^n(x) \in I$ for all natural numbers n. By Lemma and the fact that k > 1, it follows that there exists a natural number N such that $k^N > \frac{\eta}{|x-p|}$. Since by assumption $f^n(x) \in I$ for all n < N (indeed, for all $n \in \mathbb{N}$),

$$|f^N(x) - p| > k^n |x - p| > |x - p| \frac{\eta}{|x - p|} = \eta,$$

hence $f^N(x) \not\in I$, which is a contradiction.

So then, it follows that there exists an N such that $f^N(x) \notin I$, (since supposing otherwise gave us a contradiction). But $x \in I$ was arbitrary, and so regardless of base point, we'll eventually leave (though we may come back to) I (which is an open interval about p). From this it follows that p is a repellor.

This can be used to determine when a fixed point is a repeollor or an attractor.

Proposition 1. For the family of functions $\mathbb{R} \to \mathbb{R}$ defined $f_k : x \mapsto kx(1-x) = kx - kx^2$, the fixed points $x_k = \frac{k-1}{k}$ are attractors if 1 < k < 3 and rellors when 3 < k.

Proof. First, note that f_k is infinitely differentiable, so it's derivative is continuous. Upon taking the derivative, we find $f'_k(x) = k - 2kx$. Evaluating at x_k , we get $f_k(x_k) = k - 2k\frac{k-1}{k} = k - 2k + 2 = 2 - k$. The condition that $|f'(x_k)| = |2 - k| < 1$ is equivalent to the condition that $k \in (2 - 1, 2 + 1) = (1, 3)$, so x_k is an attractor when k is in this range. Moreover, for k > 3, we have 2 - k < 2 - 3 = -1, from which it follows that $|f'(x_k)| > 1$ for k > 3, hence f_k is a repellor when this is the case.