Proof-Based Exercises for MATH 5440

April 14, 2023

Figure 1: Causal graph for exercises.

Exercise 1 Examples of do-calculus

Consider the causal structure outlined in Figure 1, with the same interpretation as last week. This exercise defines counterfactuals of interest and establishes identifiability equations. Consider the following counterfactuals:

(a) What if I had submitted a larger order?

$$\mathbb{E}\left[Y|\operatorname{do}(S)\right]$$

(b) What if I had chosen algorithm A?

$$\mathbb{E}\left[\left.Y\right|\operatorname{do}(A)\right]$$

(c) What if I had traded algorithm A faster?

$$\mathbb{E}\left[Y|\operatorname{do}(A),\operatorname{do}(\bar{S})\right]$$

1. Identify each counterfactual succinctly.

Figure 2: Causal graph \mathcal{D} .

Exercise 2 Causal structure for dark pools

This exercise presents a causal structure for trading in dark pools. Consider the causal structure \mathcal{D} from Figure 2. The nodes have the following interpretation.

- (a) $Q, \alpha, \Delta P$ are like the prediction bias causal graph.
- (b) An unobserved external flow M exhibits crowding with the trading process Q.
- (c) D captures trades between M and Q that cross, making these trades observable.

This graph differs from the synchronization trading graph in two ways: first, the external flow M interacting with Q over the dark pool is unobserved. Second, there is no leakage: Q does not trigger M. The only source of confounding is crowding, represented by node α .

- 1. Show that Q and M are independent conditional on α .
- 2. Show that Q and M are dependent conditional on α, D . Explain the reason for this dependence.
- 3. Identify $\mathbb{E}\left[\Delta P | \operatorname{do}(Q), D\right]$, the impact of Q conditional on observing a cross. How does it differ from the unconditional impact $\mathbb{E}\left[\Delta P | \operatorname{do}(Q)\right]$? Comment.