Algorithm for DFA minimization

Algorithm takes as input a DFA m= (Q, \(\xi, \si, \si, \si, \)
and marks pairs of states (unordered)

A pair \(\xi \chi, 93\) will be marked when the procedure

defects that p and q are not equivolent.

Algorithm for DFA minimization

Algorithm takes as input a DFA $m=(Q, \xi, S, S, F)$ and marks pairs of states (unordered)

A pair $\{p,q\}$ will be marked when the procedure defects that p and q are not equivalent.

Algorithm.

- 1. All pairs of states [P19] are initially unmarked.
- 2. if pef and g &F or vice versa, mark {p, g}.
- 3 Repeat until no change in marking
 - if FEP,93-unmorked such that

 SS(P,a), S19,a) is marked for some aff

 Hen mark EP,93.
- 5 P≈q iff {P,2} is not marked.

 $P \approx q$ iff $\forall x \in \mathcal{Z}^* \left(\hat{S}(P,x) \in F \text{ iff } \hat{S}(q,x) \in F \right)$

Algorithm.

- 1. All pairs of states [P19] are initially unmarked.
- 2. if pef and g &F or vice versa, mark {p,g}.
- 3 Repeat until no change in marking
 - 4 if FEP,93-unmarked such that

 {S(P,a), S(9,a)} is marked for some aff

Hen mark EP, 23.

5 P≈q iff {P, 2} is not marked.

Termination. There are atmost (1) pairs.

Step 4 mortes at least one paid in each iteration.

... Repeat step [line 3] can have atmost (1) iterations.

Algorithm.

1. All pairs of states [P,9] are initially unmarked.

2. if pef and g &F or vice versa, mark {p, 9}.

3 Repeat until no change in marking

4 if FEP,93-unmorked buchthat

ES(P,a), S(9,a) is marked for some aff

Hen mark EP,93.

5 P≈9 iff \$P,23 is not marked.

Example.

√ √ 4 {2,5} ²>{4,5}.

\(\sqrt{1} \)
 \(\sqrt{1} \)
 \(\sqrt{2} \)
 \(\sqr

Theorem. The paid $\{p_1g_3\}$ is marked by the Algorithm Iff $\exists x \in \mathcal{E}^*$, s.t $\hat{S}(p_1x) \in F$ and $\hat{S}(g_1x) \notin F$ or $\forall i \in \text{versa}$. That is, iff $p \neq g$.

Proof. By induction.

Theorem. The paid $\{P_1,g_3\}$ is marked by the Algorithm Iff $\exists x \in \mathcal{E}^*$, s.t $\hat{S}(P_1x) \in F$ and $\hat{S}(g_1x) \notin F$ or vice versa. That is, iff $P \not= g$.

Proof. By induction.

Isomorphism. Two DFAs

 $M = (Q_{m}, \Sigma, S_{m}, S_{m}, F_{m})$ and $N = (Q_{N}, \Sigma, S_{N}, S_{N}, F_{N})$ are isomorphic if there is a bijection $f: Q_{m} \to Q_{N}$ such that $1. f(S_{m}) = S_{N}.$

> 2. $F(Sm(P_1a)) = S_N(f(P)_1a) + PEQ_{m_1} \forall a \in \mathbb{Z}$ 3. $PEF_{m_1} iff f(P)EF_{N_1}$

Myhill - Nerode Theorem.

if Mand Nare any two DFAs with no maccessible states s.t L(M) = L(N), then M/\approx and N/\approx are isomorphic.

The output of the collapsing algorithm is the minimal DFA for the Set and it is unique up to isomorphism.