CSC 411: Lecture 10: Neural Networks I

Richard Zemel, Raquel Urtasun and Sanja Fidler

University of Toronto

Motivating Examples

Inspiration: The Brain

- Many machine learning methods inspired by biology, e.g., the (human) brain
- Our brain has $\sim 10^{11}$ neurons, each of which communicates (is connected) to $\sim 10^4$ other neurons

Figure : The basic computational unit of the brain: Neuron

Mathematical Model of a Neuron

- Neural networks define functions of the inputs (hidden features), computed by neurons
- Artificial neurons are called units

Figure: A mathematical model of the neuron in a neural network

[Pic credit: http://cs231n.github.io/neural-networks-1/]

Activation Functions

Most commonly used activation functions:

- Sigmoid: $\sigma(z) = \frac{1}{1 + \exp(-z)}$
- Tanh: $\tanh(z) = \frac{\exp(z) \exp(-z)}{\exp(z) + \exp(-z)}$
- ReLU (Rectified Linear Unit): ReLU(z) = max(0, z)

Neural Network Architecture (Multi-Layer Perceptron)

• Network with one layer of four hidden units:

Figure: Two different visualizations of a 2-layer neural network. In this example: 3 input units, 4 hidden units and 2 output units

• Each unit computes its value based on linear combination of values of units that point into it, and an activation function

Representational Power

 Neural network with at least one hidden layer is a universal approximator (can represent any function).

Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko, paper

 The capacity of the network increases with more hidden units and more hidden layers

Representational Power

 Neural network with at least one hidden layer is a universal approximator (can represent any function).

Proof in: Approximation by Superpositions of Sigmoidal Function, Cybenko, paper

- The capacity of the network increases with more hidden units and more hidden layers
- Why go deeper? Read e.g.,: Do Deep Nets Really Need to be Deep? Jimmy Ba, Rich Caruana, Paper: paper]

[http://cs231n.github.io/neural-networks-1/]

Neural Networks

- We only need to know two algorithms
 - ► Forward pass: performs inference
 - Backward pass: performs learning

Output of the network can be written as:

$$h_j(\mathbf{x}) = f(v_{j0} + \sum_{i=1}^D x_i v_{ji})$$

Output of the network can be written as:

$$h_j(\mathbf{x}) = f(v_{j0} + \sum_{i=1}^{D} x_i v_{ji})$$

$$o_k(\mathbf{x}) = g(w_{k0} + \sum_{j=1}^{J} h_j(\mathbf{x}) w_{kj})$$

(j indexing hidden units, k indexing the output units, D number of inputs)

Output of the network can be written as:

$$h_j(\mathbf{x}) = f(v_{j0} + \sum_{i=1}^{D} x_i v_{ji})$$

$$o_k(\mathbf{x}) = g(w_{k0} + \sum_{i=1}^{J} h_j(\mathbf{x}) w_{kj})$$

(j indexing hidden units, k indexing the output units, D number of inputs)

• Activation functions f, g: sigmoid/logistic, tanh, or rectified linear (ReLU)

$$\sigma(z) = \frac{1}{1 + \exp(-z)}, \quad \tanh(z) = \frac{\exp(z) - \exp(-z)}{\exp(z) + \exp(-z)}, \quad \text{ReLU}(z) = \max(0, z)$$

Training Neural Networks

• Find weights:

$$\mathbf{w}^* = \underset{\mathbf{w}}{\mathsf{argmin}} \sum_{n=1}^N \mathsf{loss}(\mathbf{o}^{(n)}, \mathbf{t}^{(n)})$$

where $\mathbf{o} = f(\mathbf{x}; \mathbf{w})$ is the output of a neural network

Training Neural Networks

• Find weights:

$$\mathbf{w}^* = \underset{\mathbf{w}}{\mathsf{argmin}} \sum_{n=1}^{N} \mathsf{loss}(\mathbf{o}^{(n)}, \mathbf{t}^{(n)})$$

where $\mathbf{o} = f(\mathbf{x}; \mathbf{w})$ is the output of a neural network

- Define a loss function, eg:
 - Squared loss: $\sum_{k} \frac{1}{2} (o_k^{(n)} t_k^{(n)})^2$
 - Cross-entropy loss: $-\sum_k t_k^{(n)} \log o_k^{(n)}$

Training Neural Networks

• Find weights:

$$\mathbf{w}^* = \underset{\mathbf{w}}{\operatorname{argmin}} \sum_{n=1}^{N} \operatorname{loss}(\mathbf{o}^{(n)}, \mathbf{t}^{(n)})$$

where $\mathbf{o} = f(\mathbf{x}; \mathbf{w})$ is the output of a neural network

- Define a loss function, eg:
 - Squared loss: $\sum_{k} \frac{1}{2} (o_k^{(n)} t_k^{(n)})^2$
 - Cross-entropy loss: $-\sum_k t_k^{(n)} \log o_k^{(n)}$
- Gradient descent:

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta \frac{\partial E}{\partial \mathbf{w}^t}$$

where η is the learning rate (and E is error/loss)

$$\ell(\mathbf{w}) = w_0^2 + w_1^2$$

Tangent Line

Tangent Plane

Tangent Plane at a Maximum

Mixture of three Gaussians

Training Neural Networks: Back-propagation

 Back-propagation: an efficient method for computing gradients needed to perform gradient-based optimization of the weights in a multi-layer network

Training neural nets:

Loop until convergence:

- ▶ for each example n
 - 1. Given input $\mathbf{x}^{(n)}$, propagate activity forward $(\mathbf{x}^{(n)} \to \mathbf{h}^{(n)} \to o^{(n)})$ (forward pass)
 - 2. Propagate gradients backward (backward pass)
 - 3. Update each weight (via gradient descent)
- Given any error function E, activation functions g() and f(), just need to derive gradients

Computing Gradients: Single Layer Network

• Let's take a single layer network and draw it a bit differently

Output of unit k

Output layer activation function

Net input to output unit k

Weight from input i to k

Input unit i

Gradient Descent for Single Layer Network

 Assuming the error function is mean-squared error (MSE), on a single training example n, we have

$$\frac{\partial E}{\partial o_k^{(n)}} = o_k^{(n)} - t_k^{(n)} := \delta_k^{\circ}$$

Using logistic activation functions:

Output layer
$$g(z_k^{(n)}) = g(z_k^{(n)}) = (1 + \exp(-z_k^{(n)}))^{-1}$$

$$\frac{\partial o_k^{(n)}}{\partial z_k^{(n)}} = o_k^{(n)} (1 - o_k^{(n)})$$
Input layer x_i

• The error gradient is then:

$$\frac{\partial E}{\partial w_{ki}} = \sum_{n=1}^{N} \frac{\partial E}{\partial o_{k}^{(n)}} \frac{\partial o_{k}^{(n)}}{\partial z_{k}^{(n)}} \frac{\partial z_{k}^{(n)}}{\partial w_{ki}} = \sum_{n=1}^{N} (o_{k}^{(n)} - t_{k}^{(n)}) o_{k}^{(n)} (1 - o_{k}^{(n)}) x_{i}^{(n)}$$

• The gradient descent update rule is given by:

$$w_{ki} \leftarrow w_{ki} - \eta \frac{\partial E}{\partial w_{ki}} = w_{ki} - \eta \sum_{n=1}^{N} (o_k^{(n)} - t_k^{(n)}) o_k^{(n)} (1 - o_k^{(n)}) x_i^{(n)}$$

Multi-layer Neural Network

Gradient Descent for Multi-layer Network

 The output weight gradients for a multi-layer network are the same as for a single layer network

$$\frac{\partial E}{\partial w_{kj}} = \sum_{n=1}^{N} \frac{\partial E}{\partial o_{k}^{(n)}} \frac{\partial o_{k}^{(n)}}{\partial z_{k}^{(n)}} \frac{\partial z_{k}^{(n)}}{\partial w_{kj}} = \sum_{n=1}^{N} \delta_{k}^{z,(n)} h_{j}^{(n)}$$

where δ_k is the error w.r.t. the net input for unit k

• Hidden weight gradients are then computed via back-prop:

$$\frac{\partial E}{\partial h_j^{(n)}} = \sum_k \frac{\partial E}{\partial o_k^{(n)}} \frac{\partial o_k^{(n)}}{\partial z_k^{(n)}} \frac{\partial z_k^{(n)}}{\partial h_j^{(n)}} = \sum_k \delta_k^{z,(n)} w_{kj} := \delta_j^{h,(n)}$$

$$\frac{\partial E}{\partial v_{ji}} = \sum_{n=1}^N \frac{\partial E}{\partial h_j^{(n)}} \frac{\partial h_j^{(n)}}{\partial u_j^{(n)}} \frac{\partial u_j^{(n)}}{\partial v_{ji}} = \sum_{n=1}^N \delta_j^{h,(n)} f'(u_j^{(n)}) \frac{\partial u_j^{(n)}}{\partial v_{ji}} = \sum_{n=1}^N \delta_j^{u,(n)} x_i^{(n)}$$

Neural Networks

- Deep learning uses composite of simple functions (e.g., ReLU, sigmoid, tanh, max) to create complex non-linear functions
- Note: a composite of linear functions is linear!
- Example: 2 hidden layer NNet (now matrix and vector form!) with ReLU as nonlinearity

- x is the input
- **y** is the output (what we want to predict)
- ▶ **h**ⁱ is the *i*-th hidden layer
- \triangleright W_i are the parameters of the *i*-th layer

Evaluating the Function

- Assume we have learn the weights and we want to do inference
- Forward Propagation: compute the output given the input

Do it in a compositional way,

$$\mathbf{h}^1 = \max(0, W_1^T \mathbf{x} + b^1)$$

Evaluating the Function

- Assume we have learn the weights and we want to do inference
- Forward Propagation: compute the output given the input

Do it in a compositional way

$$\mathbf{h}^1 = \max(0, W_1^T \mathbf{x} + b_1)$$

$$\mathbf{h}^2 = \max(0, W_2^T \mathbf{h}^1 + b_2)$$

Evaluating the Function

- Assume we have learn the weights and we want to do inference
- Forward Propagation: compute the output given the input

Do it in a compositional way

$$\mathbf{h}^{1} = \max(0, W_{1}^{T}\mathbf{x} + b_{1})$$

 $\mathbf{h}^{2} = \max(0, W_{2}^{T}\mathbf{h}^{1} + b_{2})$
 $\mathbf{y} = W_{3}^{T}\mathbf{h}^{2} + b_{3}$

Learning

- We want to estimate the parameters, biases and hyper-parameters (e.g., number of layers, number of units) such that we do good predictions
- Collect a training set of input-output pairs $\{\mathbf{x}^{(n)}, \mathbf{t}^{(n)}\}$
- ullet For classification: Encode the output with 1-K encoding ${f t}=[0,..,1,..,0]$
- Define a loss per training example and minimize the empirical risk

$$\mathcal{L}(\mathbf{w}) = \frac{1}{N} \sum_{n} \ell(\mathbf{w}, \mathbf{x}^{(n)}, \mathbf{t}^{(n)})$$

with N number of examples and \mathbf{w} contains all parameters

Loss Function: Classification

$$\mathcal{L}(\mathbf{w}) = \frac{1}{N} \sum_{n} \ell(\mathbf{w}, \mathbf{x}^{(n)}, \mathbf{t}^{(n)})$$

Probability of class k given input (softmax):

$$p(c_k = 1|\mathbf{x}) = \frac{\exp(y_k)}{\sum_{j=1}^{C} \exp(y_j)}$$

Cross entropy is the most used loss function for classification

$$\ell(\mathbf{w}, \mathbf{x}^{(n)}, \mathbf{t}^{(n)}) = -\sum_{k} t_{k}^{(n)} \log p(c_{k}|\mathbf{x})$$

Use gradient descent to train the network

$$\min_{\mathbf{w}} \frac{1}{N} \sum_{n} \ell(\mathbf{w}, \mathbf{x}^{(n)}, \mathbf{t}^{(n)})$$

Backpropagation

Efficient computation of the gradients by applying the chain rule

$$p(c_k = 1|\mathbf{x}) = \frac{\exp(y_k)}{\sum_{j=1}^{C} \exp(y_j)}$$

$$\ell(\mathbf{x}^{(n)}, \mathbf{t}^{(n)}, \mathbf{w}) = -\sum_{k} t_k^{(n)} \log p(c_k|\mathbf{x})$$

Compute the derivative of loss w.r.t. the output

$$\frac{\partial \ell}{\partial y} = p(c|\mathbf{x}) - t$$

• Note that the forward pass is necessary to compute $\frac{\partial \ell}{\partial y}$

Backpropagation

Efficient computation of the gradients by applying the chain rule

We have computed the derivative of loss w.r.t the output

$$\frac{\partial \ell}{\partial y} = p(c|\mathbf{x}) - t$$

• Given $\frac{\partial \ell}{\partial y}$ if we can compute the Jacobian of each module

$$\frac{\partial \ell}{\partial W_3} = \frac{\partial \ell}{\partial y} \frac{\partial y}{\partial W_3} = (p(c|\mathbf{x}) - t)(\mathbf{h}^2)^T$$

$$\frac{\partial \ell}{\partial \mathbf{h}^2} = \frac{\partial \ell}{\partial y} \frac{\partial y}{\partial \mathbf{h}^2} = (W_3)^T (p(c|\mathbf{x}) - t)$$

• Need to compute gradient w.r.t. inputs and parameters in each layer

Backpropagation

Efficient computation of the gradients by applying the chain rule

• Given $\frac{\partial \ell}{\partial \mathbf{h}^2}$ if we can compute the Jacobian of each module

$$\frac{\partial \ell}{\partial W_2} = \frac{\partial \ell}{\partial \mathbf{h}^2} \frac{\partial \mathbf{h}^2}{\partial W_2}$$
$$\frac{\partial \ell}{\partial \mathbf{h}^1} = \frac{\partial \ell}{\partial \mathbf{h}^2} \frac{\partial \mathbf{h}^2}{\partial \mathbf{h}^1}$$