Data Science Capstone Project- HealthCare

Problem Statement

NIDDK (National Institute of Diabetes and Digestive and Kidney Diseases) research creates knowledge about and treatments for the most chronic, costly, and consequential diseases. The dataset used in this project is originally from NIDDK. The objective is to predict whether or not a patient has diabetes, based on certain diagnostic measurements included in the dataset. Build a model to accurately predict whether the patients in the dataset have diabetes or not.

Dataset Description

The datasets consists of several medical predictor variables and one target variable (Outcome). Predictor variables includes the number of pregnancies the patient has had, their BMI, insulin level, age, and more.

Variables Description

Pregnancies -----> Number of times pregnant

Glucose -----> Plasma glucose concentration in an oral glucose tolerance test

BloodPressure -----> Diastolic blood pressure (mm Hg)

SkinThickness -----> Triceps skinfold thickness (mm)

Insulin -----> Two hour serum insulin

BMI -----> Body Mass Index

DiabetesPedigreeFunction -----> Diabetes pedigree function

Age -----> Age in years

Outcome -----> Class variable (either 0 or 1), 268 of 768 values are 1, and the others are 0

Project Task: Week 1

Data Exploration:

1. 1. Perform descriptive analysis. Understand the variables and their corresponding values. On the columns below, a value of zero does not make sense and thus indicates missing value:

- Glucose
- BloodPressure
- SkinThickness
- Insulin
- BMI

In [1]:

import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.model_selection import train_test_split
from sklearn.neighbors import KNeighborsClassifier
import warnings
warnings.filterwarnings('ignore')

In [2]:

df= pd.read_csv('health care diabetes.csv')

In [3]:

df.head()

Out[3]:

	Pregnanci es	Glucos e	BloodPressu re	SkinThickne ss	Insuli n	BM I	DiabetesPedigreeFuncti on	Ag e	Outcom e
0	6	148	72	35	0	33.6	0.627	50	1
1	1	85	66	29	0	26.6	0.351	31	0
2	8	183	64	0	0	23.3	0.672	32	1
3	1	89	66	23	94	28.1	0.167	21	0
4	0	137	40	35	168	43.1	2.288	33	1

In [4]:

df.tail()

Out[4]:

	Pregnanci es	Glucos e	BloodPressu re	SkinThickne ss	Insuli n	BM I	DiabetesPedigreeFunct ion	Ag e	Outco me
76 3	10	101	76	48	180	32. 9	0.171	63	0
76 4	2	122	70	27	0	36. 8	0.340	27	0
76 5	5	121	72	23	112	26. 2	0.245	30	0

	Pregnanci es	Glucos e	BloodPressu re	SkinThickne ss	Insuli n	BM I	DiabetesPedigreeFunct ion	Ag e	Outco me
76 6	1	126	60	0	0	30. 1	0.349	47	1
76 7	1	93	70	31	0	30. 4	0.315	23	0

In [5]:

df.describe()

Out[5]:

	Pregnan cies	Glucos e	BloodPres sure	SkinThick ness	Insulin	BMI	DiabetesPedigreeF unction	Age	Outco me
cou nt	768.000 000	768.000 000	768.00000 0	768.00000 0	768.000 000	768.000 000	768.000000	768.000 000	768.000 000
me an	3.84505 2	120.894 531	69.105469	20.536458	79.7994 79	31.9925 78	0.471876	33.2408 85	0.34895 8
std	3.36957 8	31.9726 18	19.355807	15.952218	115.244 002	7.88416 0	0.331329	11.7602 32	0.47695 1
mi n	0.00000	0.00000	0.000000	0.000000	0.00000	0.00000	0.078000	21.0000 00	0.00000
25 %	1.00000 0	99.0000 00	62.000000	0.000000	0.00000	27.3000 00	0.243750	24.0000 00	0.00000
50 %	3.00000 0	117.000 000	72.000000	23.000000	30.5000 00	32.0000 00	0.372500	29.0000 00	0.00000
75 %	6.00000 0	140.250 000	80.000000	32.000000	127.250 000	36.6000 00	0.626250	41.0000 00	1.00000
ma x	17.0000 00	199.000 000	122.00000 0	99.000000	846.000 000	67.1000 00	2.420000	81.0000 00	1.00000

In [6]:

df.info()

<class 'pandas.core.frame.DataFrame'>

RangeIndex: 768 entries, 0 to 767
Data columns (total 9 columns):

#	Column	Non-Null Count	Dtype
0	Pregnancies	768 non-null	int64
1	Glucose	768 non-null	int64
2	BloodPressure	768 non-null	int64
3	SkinThickness	768 non-null	int64
4	Insulin	768 non-null	int64
5	BMI	768 non-null	float64
6	DiabetesPedigreeFunction	768 non-null	float64
7	Age	768 non-null	int64
8	Outcome	768 non-null	int64

dtypes: float64(2), int64(7)

```
memory usage: 54.1 KB
                                                                 In [7]:
df.columns
                                                                 Out[7]:
Index(['Pregnancies', 'Glucose', 'BloodPressure', 'SkinThickness',
'Insulin',
       'BMI', 'DiabetesPedigreeFunction', 'Age', 'Outcome'],
      dtype='object')
                                                                 In [8]:
df.isnull().sum()
                                                                 Out[8]:
Pregnancies
                             0
                             0
Glucose
BloodPressure
                             0
SkinThickness
                             0
Insulin
                             0
BMI
DiabetesPedigreeFunction
                             0
Age
                             0
                             0
Outcome
dtype: int64
                                                                 In [9]:
df.nunique()
                                                                 Out[9]:
Pregnancies
                              17
                             136
Glucose
BloodPressure
                              47
SkinThickness
                              51
Insulin
                             186
BMI
                             248
DiabetesPedigreeFunction
                             517
                              52
                               2
Outcome
dtype: int64
                                                                In [10]:
df.shape
                                                                Out[10]:
(768, 9)
                                                                In [11]:
```

```
#Checking if there is any 0 value
df[df[['Glucose', 'BloodPressure', 'SkinThickness',
'Insulin','BMI']]==0].count()
Out[11]:
```

```
35
BloodPressure
SkinThickness
                            227
                            374
Insulin
                             11
DiabetesPedigreeFunction
                              0
                              0
Age
                              0
Outcome
dtype: int64
                                                               In [12]:
(df[df[['Glucose', 'BloodPressure', 'SkinThickness',
'Insulin','BMI']]==0].count()/len(df))*100
                                                               Out[12]:
Pregnancies
                             0.000000
Glucose
                             0.651042
                             4.557292
BloodPressure
SkinThickness
                            29.557292
Insulin
                            48.697917
BMI
                             1.432292
DiabetesPedigreeFunction
                             0.000000
                             0.000000
                             0.000000
Outcome
dtype: float64
                                                               In [13]:
#Replacing 0 with the median
for i in ['Glucose', 'BloodPressure', 'SkinThickness',
'Insulin', 'BMI']:
    print (i,'Old Median:', df[i].median())
    Median_Value=df[df[i]!=0][i].median()
    print ('New Median', Median_Value, '\n')
    df[i].replace(0,Median_Value,inplace=True)
Glucose Old Median: 117.0
New Median 117.0
BloodPressure Old Median: 72.0
New Median 72.0
SkinThickness Old Median: 23.0
New Median 29.0
Insulin Old Median: 30.5
New Median 125.0
BMI Old Median: 32.0
New Median 32.3
```

5

Glucose

```
df[df[['Glucose', 'BloodPressure', 'SkinThickness',
'Insulin','BMI']]==0].count()
                                                                 Out[14]:
Pregnancies
                             0
Glucose
                             0
BloodPressure
                             0
SkinThickness
                             0
Insulin
                             0
BMI
                             0
DiabetesPedigreeFunction
                             0
                             0
                             0
Outcome
dtype: int64
```

1. 1. Visually explore these variables using histograms. Treat the missing values accordingly.

```
In [15]:
```


1. 1. There are integer and float data type variables in this dataset. Create a count (frequency) plot describing the data types and the count of variables.

In [16]:

df.dtypes.value_counts().plot(kind='bar')

Out[16]:

<AxesSubplot:>

Project Task: Week 2

Data Exploration:

1. 1. Check the balance of the data by plotting the count of outcomes by their value. Describe your findings and plan future course of action.

In [17]:
df.Outcome.value_counts().plot(kind='bar')
Out[17]:
<AxesSubplot:>

The graphs shows that the number of patients who are diabetic is half of the patients who are non-diabetic.

1. 1. Create scatter charts between the pair of variables to understand the relationships. Describe your findings.

In [18]:

sns.pairplot(df)

Out[18]:

<seaborn.axisgrid.PairGrid at 0x7f50206e8210>

1. 1. Perform correlation analysis. Visually explore it using a heat map.

In [19]:

df.corr()

Out[19]:

	Pregna ncies	Gluc ose	BloodPre ssure	SkinThic kness	Insul in	BMI	DiabetesPedigree Function	Age	Outc ome
Pregnancies	1.00000	0.128 213	0.208615	0.081770	0.025 047	0.021 559	-0.033523	0.544 341	0.221 898
Glucose	0.12821	1.000 000	0.218937	0.192615	0.419 451	0.231 049	0.137327	0.266 909	0.492 782
BloodPressure	0.20861 5	0.218 937	1.000000	0.191892	0.045 363	0.281 257	-0.002378	0.324 915	0.165 723
SkinThickness	0.08177 0	0.192 615	0.191892	1.000000	0.155 610	0.543 205	0.102188	0.126 107	0.214 873
Insulin	0.02504 7	0.419 451	0.045363	0.155610	1.000	0.180 241	0.126503	0.097 101	0.203 790
BMI	0.02155 9	0.231 049	0.281257	0.543205	0.180 241	1.000 000	0.153438	0.025 597	0.312 038
DiabetesPedigree Function	0.03352	0.137 327	-0.002378	0.102188	0.126 503	0.153 438	1.000000	0.033 561	0.173 844
Age	0.54434 1	0.266 909	0.324915	0.126107	0.097 101	0.025 597	0.033561	1.000 000	0.238 356
Outcome	0.22189 8	0.492 782	0.165723	0.214873	0.203 790	0.312 038	0.173844	0.238 356	1.000 000

In [20]:

plt.figure(figsize = (10, 8))
sns.heatmap(df.corr(),annot = True)

Out[20]:

<AxesSubplot:>

Observations show that characteristics like pregnancy, glucose, skinthickness, BMI, and age are more closely associated with outcomes(Glucose as a feature is the most important in this dataset).

Project Task: Week 3

Data Modeling:

1. 1. Devise strategies for model building. It is important to decide the right validation framework. Express your thought process.

```
In [21]:
```

Out[22]:

	Pregnancies	Glucose	BloodPressure	SkinThickness	Insuli n	BMI	DiabetesPedigreeFunction	Age
0	6	148	72	35	125	33.6	0.627	50
1	1	85	66	29	125	26.6	0.351	31
2	8	183	64	29	125	23.3	0.672	32
3	1	89	66	23	94	28.1	0.167	21
4	0	137	40	35	168	43.1	2.288	33
•••			•••	•••				
763	10	101	76	48	180	32.9	0.171	63
764	2	122	70	27	125	36.8	0.340	27
765	5	121	72	23	112	26.2	0.245	30
766	1	126	60	29	125	30.1	0.349	47
767	1	93	70	31	125	30.4	0.315	23

 $768 \text{ rows} \times 8 \text{ columns}$

In [23]:

```
y = df['Outcome']
                     #target
                                                                  Out[23]:
0
       1
1
       0
2
       1
3
       0
4
       1
763
       0
764
       0
765
       0
766
       1
767
Name: Outcome, Length: 768, dtype: int64
```

In [24]:

```
x_train,x_test,y_train,y_test = train_test_split(x,y,test_size=
0.30, random_state=0)
                                                                      In [25]:
x_train.shape
                                                                      Out[25]:
(537, 8)
                                                                      In [26]:
x_test.shape
                                                                      Out[26]:
(231, 8)
                                                                      In [27]:
y_test
                                                                      Out[27]:
661
        1
122
        0
113
        0
14
529
        0
165
       1
188
        1
334
758
        0
34
Name: Outcome, Length: 231, dtype: int64
 1. 1. Apply an appropriate classification algorithm to build a model. Compare various models with
```

the results from KNN algorithm.

Logistic Regression

```
In [28]:
from sklearn.linear_model import LogisticRegression
                                                               In [29]:
logreg = LogisticRegression()
logreg.fit(x_train,y_train)
                                                               Out[29]:
LogisticRegression()
                                                               In [30]:
y_pred= logreg.predict(x_test)
y_pred
                                                               Out[30]:
```

```
array([1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1,
0,
      0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0,
1,
      1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
1,
      1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1,
      1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0,
1,
      0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0,
      0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0,
      1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,
      0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
0,
      0,
      0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0])
```

#Evaluating the performance of the model

```
from sklearn import metrics
confusion_matrix= metrics.confusion_matrix(y_test,y_pred)
confusion_matrix=
metrics.ConfusionMatrixDisplay(confusion_matrix=confusion_matrix,
display_labels =[False,True])
confusion_matrix.plot()
plt.show()
```


In [32]:

In [31]:

#Accuracy

from sklearn.metrics import accuracy_score

```
accuracy_score(y_test,y_pred)
                                                               Out[32]:
0.7619047619047619
                                                               In [33]:
#Precision
from sklearn.metrics import precision_score
precision_score(y_test,y_pred)
                                                               Out[33]:
0.6727272727272727
                                                               In [34]:
#Recall
from sklearn.metrics import recall_score
recall_score(y_test,y_pred)
                                                               Out[34]:
0.5
                                                               In [35]:
#f1_score
f1_score=metrics.f1_score(y_test,y_pred)
print(f1_score)
0.5736434108527131
Decision Tree
                                                               In [36]:
from sklearn.tree import DecisionTreeClassifier
dt=DecisionTreeClassifier()
dt.fit(x_train,y_train)
                                                               Out[36]:
DecisionTreeClassifier()
                                                               In [37]:
y_pred1=dt.predict(x_test)
y_pred1
                                                               Out[37]:
array([1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1,
Ο,
       0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 0,
1,
       0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1,
1,
       0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0,
       1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 0,
1,
```

In [38]:

from sklearn import metrics

confusion_matrix=metrics.confusion_matrix(y_test,y_pred1)
confusion_matrix=metrics.ConfusionMatrixDisplay(confusion_matrix=conf
usion_matrix, display_labels=[False,True])
confusion_matrix.plot()
plt.show()

In [39]:

#Accuracy

from sklearn.metrics import accuracy_score
accuracy_score(y_test,y_pred1)

Out[39]:

0.7662337662337663

In [40]:

#Precision

from sklearn.metrics import precision_score
precision_score(y_test,y_pred1)

Out[40]:

0.6219512195121951

```
In [41]:
#Recall
from sklearn.metrics import recall score
recall_score(y_test,y_pred1)
                                                           Out[41]:
0.6891891891891
                                                           In [42]:
#f1 score
f1_score=metrics.f1_score(y_test,y_pred1)
print(f1_score)
0.6538461538461539
Random Forest
                                                           In [43]:
from sklearn.ensemble import RandomForestClassifier
rfc=RandomForestClassifier()
rfc.fit(x_train,y_train)
                                                           Out[43]:
RandomForestClassifier()
                                                           In [44]:
y_pred2=rfc.predict(x_test)
y_pred2
array([1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
0,
      0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0,
1,
      0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1,
0,
      1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,
      1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0,
0,
      0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0,
0,
      0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0,
      1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0,
      0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1,
0,
```

0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1])

0,

```
In [45]:
```

```
from sklearn import metrics
confusion_matrix=metrics.confusion_matrix(y_test,y_pred2)
confusion_matrix=metrics.ConfusionMatrixDisplay(confusion_matrix=conf
usion_matrix, display_labels=[False,True])
confusion_matrix.plot()
plt.show()
                                       120
            138
                           19
  False
                                       100
Frue label
   True
            False
                          True
               Predicted label
                                                                  In [46]:
#Accuracy
from sklearn.metrics import accuracy_score
accuracy_score(y_test,y_pred2)
                                                                  Out[46]:
0.75757575757576
                                                                  In [47]:
#Precision
from sklearn.metrics import precision_score
precision_score(y_test,y_pred2)
                                                                  Out[47]:
0.6607142857142857
                                                                  In [48]:
#Recall
from sklearn.metrics import recall_score
recall_score(y_test,y_pred2)
                                                                  Out[48]:
0.5
                                                                  In [49]:
#f1 score
```

```
f1 score=metrics.f1 score(y test,y pred2)
print(f1 score)
0.5692307692307693
KNN
                                                 In [50]:
from sklearn.neighbors import KNeighborsClassifier
knn=KNeighborsClassifier(n_neighbors=4)
knn.fit(x_train,y_train)
                                                 Out[50]:
KNeighborsClassifier(n_neighbors=4)
                                                 In [51]:
pred=knn.predict(x test)
pred
                                                 Out[51]:
0,
     0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,
1,
     1,
     1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0,
0,
     1,
     0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
0,
     0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0,
0,
     1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0,
0,
     0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0,
1,
     0,
     0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0])
                                                 In [52]:
from sklearn import metrics
confusion_matrix= metrics.confusion_matrix(y_test,pred)
confusion_matrix=metrics.ConfusionMatrixDisplay(confusion_matrix=conf
usion_matrix,display_labels=[False,True])
confusion_matrix.plot()
                                                 Out[52]:
```

<sklearn.metrics._plot.confusion_matrix.ConfusionMatrixDisplay at
0x7f50197877d0>

In [53]:

```
#Accuracy
from sklearn.metrics import accuracy_score
accuracy_score(y_test,pred)
                                                               Out[53]:
0.7229437229437229
                                                               In [54]:
#Precision
from sklearn.metrics import precision_score
precision_score(y_test,pred)
                                                               Out[54]:
0.6086956521739131
                                                               In [55]:
#Recall
from sklearn.metrics import recall_score
recall_score(y_test,pred)
                                                               Out[55]:
0.3783783783783784
                                                               In [56]:
#f1_score
f1_score=metrics.f1_score(y_test,pred)
print(f1_score)
0.4666666666666667
```

Project Task: Week 4

Data Modeling:

1. 1. Create a classification report by analyzing sensitivity, specificity, AUC (ROC curve), etc. Please be descriptive to explain what values of these parameter you have used.

In [57]:

from sklearn.metrics import classification_report, roc_curve,
roc_auc_score

In [58]:

<pre>print(classification_report(y_test,y_pred)) #Logistic Regression</pre>									
precisio	n recall	f1-score	support						
(0.79	0.89	0.83	157					
-	L 0.6	7 0.50	0.57	74					
accuracy	<i>!</i>		0.76	231					
macro av	0.73	0.69	0.70	231					
weighted av	0.7	0.76	0.75	231					

In [59]:

cation_rep	port(y_test	,y_pred1))	#Decision Tree	
recall	f1-score	support		
0.85	0.80	0.82	157	
0.62	0.69	0.65	74	
		0.77	231	
0.73	0.75	0.74	231	
0.77	0.77	0.77	231	
	recall 0.85 0.62	recall f1-score 0.85	recall f1-score support 0.85	0.85 0.80 0.82 157 0.62 0.69 0.65 74 0.73 0.75 0.74 231

In [60]:

<pre>print(classification_report(y_test,y_pred2)) #Random Forest</pre>									
recall	f1-score	support							
0.79	0.88	0.83	157						
0.66	0.50	0.57	74						
		0.76	231						
0.72	0.69	0.70	231						
0.75	0.76	0.75	231						
	recall 0.79 0.66	recall f1-score 0.79	recall f1-score support 0.79	recall f1-score support 0.79					

In [61]:

```
print(classification_report(y_test,pred)) #KNN
precision recall f1-score support
```

0	0.75	0.89	0.81	157
1	0.61	0.38	0.47	74
accuracy			0.72	231
macro avg	0.68	0.63	0.64	231
weighted avg	0.71	0.72	0.70	231

Therefore Decision Tree is the best model for this prediction since it has an accuracy_score of 0.77. *For Logistic Regression*

In [62]:

```
#Using roc_curve() to get the threshold, TPR, and FPR.
fpr,tpr,thresholds =
roc_curve(y_test,logreg.predict_proba(x_test)[:,1])
print("True Positive Rate - {}, False Positive Rate - {}, Thresholds
- {}".format(tpr,fpr,thresholds))
#For AUC using roc_auc_score()
auc1= roc_auc_score(y_test, logreg.predict(x_test))
print('AUC: %.3f' % auc1)
#Ploting the ROC curve
plt.plot([0, 1], [0, 1], linestyle='--')
plt.plot(fpr, tpr, marker='.')
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
True Positive Rate - [0.
                                  0.01351351 0.04054054 0.04054054
0.05405405 0.05405405
0.12162162 0.12162162 0.14864865 0.14864865 0.18918919 0.18918919
 0.28378378 0.28378378 0.32432432 0.32432432 0.41891892 0.41891892
 0.43243243 0.43243243 0.45945946 0.45945946 0.47297297 0.47297297
 0.48648649 0.48648649 0.54054054 0.54054054 0.55405405 0.55405405
 0.58108108 0.58108108 0.59459459 0.59459459 0.62162162 0.62162162
 0.66216216 0.66216216 0.68918919 0.68918919 0.71621622 0.71621622
 0.74324324 0.74324324 0.75675676 0.75675676 0.78378378 0.78378378
 0.81081081 \ 0.81081081 \ 0.83783784 \ 0.83783784 \ 0.85135135 \ 0.85135135
 0.86486486 0.86486486 0.87837838 0.87837838 0.89189189 0.89189189
 0.90540541 \ 0.90540541 \ 0.91891892 \ 0.91891892 \ 0.94594595 \ 0.94594595
 0.95945946 0.95945946 0.97297297 0.97297297 0.98648649 0.98648649
                       ], False Positive Rate - [0.
           0.00636943 0.00636943 0.01273885
0.
 0.01273885 \ 0.01910828 \ 0.01910828 \ 0.02547771 \ 0.02547771 \ 0.03184713
 0.03184713 0.03821656 0.03821656 0.05095541 0.05095541 0.05732484
 0.05732484 \ 0.07006369 \ 0.07006369 \ 0.08280255 \ 0.08280255 \ 0.10828025
 0.10828025 0.11464968 0.11464968 0.12738854 0.12738854 0.13375796
 0.13375796 0.17197452 0.17197452 0.17834395 0.17834395 0.21019108
 0.21019108 0.21656051 0.21656051 0.22929936 0.22929936 0.23566879
 0.23566879 \ 0.24840764 \ 0.24840764 \ 0.27388535 \ 0.27388535 \ 0.30573248
 0.30573248 0.3566879 0.3566879 0.36942675 0.36942675 0.39490446
```

```
0.39490446 0.42675159 0.42675159 0.43949045 0.43949045 0.44585987
 0.44585987 \ 0.47133758 \ 0.47133758 \ 0.5477707 \ 0.5477707 \ 0.66878981
 0.66878981 0.68789809 0.68789809 0.7388535 0.7388535
                       ], Thresholds - [1.97976979 0.97976979
 0.82802548 1.
0.96952636 0.96465467 0.95130855 0.93167602
 0.87768516 0.86187685 0.84289126 0.8199858 0.79021783 0.77540975
0.71885523 0.71625433 0.70931434 0.70415687 0.62141043 0.62104285
 0.61431963 0.59687457 0.57879801 0.55061878 0.54587181 0.52884655
 0.5137863 \quad 0.51014758 \quad 0.49510963 \quad 0.4862986 \quad 0.47132712 \quad 0.46968411
 0.45664249 0.43096162 0.41991735 0.41954489 0.41102134 0.39868693
 0.39323817 0.39317068 0.39003323 0.38116884 0.37154483 0.36954273
 0.35394002 \ 0.34148568 \ 0.34102858 \ 0.3267451 \ 0.31304148 \ 0.29234675
 0.29182313 \ 0.26468055 \ 0.26365187 \ 0.25865693 \ 0.25526253 \ 0.25129361
 0.24875032\ 0.24288912\ 0.2417289\ 0.23000866\ 0.22963736\ 0.22266081
 0.2222047 0.21113181 0.20706676 0.17565968 0.16860768 0.13140044
 0.13034169 \ 0.12643356 \ 0.12560678 \ 0.11482271 \ 0.11389767 \ 0.0803826
0.07768083 0.038025831
```

AUC: 0.693

Text(0, 0.5, 'True Positive Rate')

For Decision Tree

In [63]:

Out[62]:

```
#Using roc_curve() to get the threshold, TPR, and FPR.
fpr,tpr,thresholds = roc_curve(y_test,dt.predict_proba(x_test)[:,1])
print("True Positive Rate - {}, False Positive Rate - {}, Thresholds
- {}".format(tpr,fpr,thresholds))

#For AUC using roc_auc_score()
auc2= roc_auc_score(y_test, dt.predict(x_test))
print('AUC: %.3f' % auc2)

#Ploting the ROC curve
```

Text(0, 0.5, 'True Positive Rate')

For Random Forest

In [64]:

```
#Using roc_curve() to get the threshold, TPR, and FPR.
fpr,tpr,thresholds = roc curve(y test,rfc.predict proba(x test)[:,1])
print("True Positive Rate - {}, False Positive Rate - {}, Thresholds
- {}".format(tpr,fpr,thresholds))
#For AUC using roc_auc_score()
auc3= roc_auc_score(y_test, rfc.predict(x_test))
print('AUC: %.3f' % auc3)
#Ploting the ROC curve
plt.plot([0, 1], [0, 1], linestyle='--')
plt.plot(fpr, tpr, marker='.')
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
                                  0.01351351 0.04054054 0.06756757
True Positive Rate - [0.
0.08108108 0.10810811
0.12162162 \ \ 0.14864865 \ \ 0.14864865 \ \ 0.17567568 \ \ 0.2027027 \ \ \ 0.22972973
0.24324324 \ 0.25675676 \ 0.28378378 \ 0.28378378 \ 0.2972973 \ 0.2972973
 0.33783784 0.35135135 0.35135135 0.36486486 0.36486486 0.39189189
 0.41891892 0.43243243 0.45945946 0.45945946 0.54054054 0.58108108
```

```
0.60810811 0.62162162 0.63513514 0.63513514 0.63513514 0.66216216
 0.67567568 0.72972973 0.75675676 0.75675676 0.75675676 0.75675676
0.78378378 0.81081081 0.82432432 0.82432432 0.83783784 0.86486486
 0.86486486 0.86486486 0.89189189 0.90540541 0.90540541 0.90540541
 0.90540541 0.91891892 0.94594595 0.97297297 0.97297297 0.97297297
 0.97297297 0.98648649 0.98648649 0.98648649 1.
1.
            1.
                       1.
                                  1.
                                             1.
                                                        1.
                                                                  ],
False Positive Rate - [0.
                                  0.
                                             0.
                                                        0.
                                                                   0.
0.
                       0.01273885 0.01910828 0.01910828 0.01910828
0.
            0.
 0.03184713 0.03821656 0.03821656 0.04458599 0.04458599 0.05732484
 0.05732484 0.06369427 0.07643312 0.08280255 0.08917197 0.08917197
 0.10191083 \ 0.10191083 \ 0.10191083 \ 0.12101911 \ 0.12101911 \ 0.12738854
 0.14012739 0.14649682 0.15923567 0.1656051 0.20382166 0.21019108
 0.21019108 0.22292994 0.22292994 0.22929936 0.24203822 0.24840764
 0.27388535 0.28025478 0.29936306 0.31847134 0.32484076 0.36305732
0.38216561 0.38853503 0.39490446 0.42675159 0.43949045 0.47133758
 0.49044586 0.50955414 0.53503185 0.55414013 0.58598726 0.59872611
0.63057325 0.66878981 0.69426752 0.70700637 0.74522293 0.78343949
Thresholds - [1.96 0.96 0.89 0.88 0.86 0.83 0.82 0.81 0.8 0.79 0.78
0.76 0.75 0.74
0.73\ 0.72\ 0.69\ 0.68\ 0.67\ 0.66\ 0.65\ 0.64\ 0.63\ 0.62\ 0.57\ 0.55\ 0.54
0.5 0.49 0.48 0.47 0.46 0.45 0.43 0.42 0.41 0.39 0.38 0.36 0.35
0.34
0.32 0.31 0.29 0.28 0.27 0.25 0.24 0.23 0.22 0.21 0.19 0.18 0.17
0.16
0.15 \ 0.14 \ 0.13 \ 0.12 \ 0.11 \ 0.1 \ 0.09 \ 0.08 \ 0.07 \ 0.06 \ 0.05 \ 0.04 \ 0.03
0.02
0.01 0. ]
AUC: 0.689
```

Out[64]:

Text(0, 0.5, 'True Positive Rate')


```
In [65]:
```

```
#Using roc_curve() to get the threshold, TPR, and FPR.
fpr,tpr,thresholds = roc_curve(y_test,knn.predict_proba(x_test)[:,1])
print("True Positive Rate - {}, False Positive Rate - {}, Thresholds
- {}".format(tpr,fpr,thresholds))
#For AUC using roc_auc_score()
auc= roc_auc_score(y_test, knn.predict(x_test))
print('AUC: %.3f' % auc)
#Ploting the ROC curve
plt.plot([0, 1], [0, 1], linestyle='--')
plt.plot(fpr, tpr, marker='.')
plt.xlabel("False Positive Rate")
plt.ylabel("True Positive Rate")
                                  0.12162162 0.37837838 0.58108108
True Positive Rate - [0.
0.85135135 1.
                ], False Positive Rate - [0.
0.11464968 0.28025478 0.55414013 1.
                                           ], Thresholds - [2. 1.
0.75 0.5 0.25 0. ]
AUC: 0.632
                                                                Out[65]:
Text(0, 0.5, 'True Positive Rate')
  1.0
  0.8
True Positive Rate
  0.6
  0.4
  0.2
  0.0
              0.2
      0.0
                     0.4
                             0.6
                                    0.8
                                            1.0
```

False Positive Rate

Create a dashboard

HealthCare

Correlation Analysis

