

COPYCAT CNN Using Random Non-Labeled Data

Proiect de cercetare replicabilă

Cătălin-Alexandru Rîpanu 341C3 Alexandra-Ana-Maria Ion 341C1

CUPRINS

- 1 Ce este Copycat CNN?
- 2 Pașii de Realizare a Copiei
- **3** Exemplu Atac asupra Microsoft Emotion API
- (4) Replicarea Atacului și Rezultate
- **5** Concluzii

1. CE ESTE COPYCAT CNN?

CNN

Convolutional Neural Network

- Este o subcategorie a Deep Neural Networks (DNN)
- Atinge performanțe de vârf în diverse probleme (clasificarea și recunoașterea vizuală, detectarea obiectelor)
- Numeroase companii oferă soluții bazate pe aceste rețele neurale, având API-uri pentru accesul la modelele lor de învățare profundă

Copycat CNN

Copycat Convolutional Neural Network

- "Copie" a unui model CNN ţintă, ce nu conţine întreaga logică complexă din spatele modelului
- Realizat prin interogări (queries) cu imagini naturale aleatorii

2. PAȘII DE REALIZARE A COPIEI

1. Generarea setului de Date Fals

- Interogarea țintei folosind N (82783 în cazul demo-ului) imagini din PD sau NPD
- Extragerea etichetelor de pe aceste imagini trimise

2. Antrenarea Copycat CNN

- Se antrenează cu M (10 în cazul demo-ului) epoci folosind setul fals de date obținut cu ajutorul etichetelor
- NU este necesar ca atacatorul să cunoască arhitectura modelului țintă, acesta poate alege dintr-o suită de modele deja existente

3. ATAC ASUPRA MICROSOFT EMOTION API

Microsoft Emotion API

- API oferit de Microsoft Azure Cognitive Services
- Permite unui utilizator să trimită o imagine și să primească în răspuns locațiile fețelor și "emoțiile" recunoscute pentru fiecare față.
- Oferă 2 tipuri de tarifare:
 - o Gratis Max. 20 imagini/minut
 - Standard 1000 imagini (0.4\$ 1\$)

Realizarea atacului utilizând Copycat CNN

- Pentru **generarea setului de date fals**, au fost utilizate ~3.5 milioane de imagini
 - ~65k din PD (imagini oficiale oferite de furnizorul API-ului)
 - ~3.4 milioane din NPD (imagini naturale aleatorii)
- Modelul Copycat CNN a fost antrenat folosind Stochastic Gradient Descent (SGD) cu o politică de reducere a ratei de învățare

Copycat CNN a copiat cel puțin

97.3%

din perfomanța Microsoft Azure Emotion API

Networks	Macro Average (accuracy)	Performance over target network
Microsoft Azure Emotion API	35.1%	_
NPD-SL	34.1%	97.3%
PD-SL	35.4%	100.8%
NPD+PD-SL	34.8%	99.2%

4. REPLICAREA ATACULUI ȘI REZULTATE

- Am utilizat 2 rețele neurale convoluționale, realizate în Python:
 - oracol modelul CNN țintă
 - copycat modelul Copycat CNN
- Pentru antrenarea celor două modele au fost folosite:
 - oracol 50k imagini din setul de imagini CIFAR10
 - copycat ~80k imagini din NPD (un set de imagini de la Microsoft Coco)
- Mediul de antrenare si testare:
 - Sistemul de operare Windows, cu ajutorul nucleului Linux expus de WSL 2 pe o arhitectură x86_64, iar o placă grafică dedicată Nvidia 3050 RTX Ti a fost utilizată pe parcurs

Rezultate

oracol

copycat

Average: 82.97% (10000 images)

Micro Average: 0.829700 Macro Average: 0.830625 Average: 37.39% (10000 images)

Micro Average: 0.373900 Macro Average: 0.332408

5. CONCLUZII

Rezultate bune pe dataset-uri mari de antrenare

Modelul Copycat, conform lucrării citate și a rezultatelor obținute în copierea Microsoft Emotion API, are rezultate bune pe dataset-uri mari de antrenare.

Aceste rezultate pot fi datorate și utilizării imaginilor din PD în generarea setului de date false.

Acuratețe slabă pe dataset-uri mici de antrenare

Modelul Copycat, conform analizei noastre realizată pe dataset-uri considerabil mai mici, are rezultate nesatisfăcătoare.

Aceste rezultate pot fi datorate și faptului că pentru generarea setului de date false au fost utilizate numai imagini din NPD

REFERINȚE

- Copycat CNN: Stealing Knowledge by Persuading Confession with Random Non-Labeled Data (Correia-Silva et al., 2018)
- Repository referință pentru realizarea replicării
- Exemplu vizual Copycat CNN
- IBM Convolutational Neural Networks