(5) Int. CI.*:

® DE 43 35 979 A 1

DEUTSCHLAND

DEUTSCHES

PATENTAMT

Aktenzeichen:

P 43 35 979.5

Anmeldetag:

21, 10, 93

(d) Offenlegungstag:

27. 4.95

B 60 K 28/14 B 60 K 28/16 B 60 T 7/12 B 62 D 8/00 B 60 Q 9/00 // B80R 22/48

B 60 K 28/10

B 60 R 21/02

Anmelder:

TEMIC TELEFUNKEN microelectronic GmbH, 74072 Heilbronn, DE

2 Erfinder:

Spies, Martin, 85276 Pfaffenhofen, DE; Spies, Hana, 85278 Pfaffenhofen, DE

3 Für die Beurteilung der Patentfähigkeit In Betracht zu ziehende Druckschriften:

> 38 10 840 C1 38 08 420 C2 DE DE 49 38 244 A1 43 02 527 A1 DE 42 42 230 A1 DE DE 42 00 897 A1 41 40 327 A1) 41 40 327 A1 DE DE 41 30 010 A1 DE 41 12 579 A1 DE

DE 38 37 185 A1 35 45 543 A1 33 00 840 A1 DE DE 32 28 518 A1 DE 30 27 493 A1 DE US 51 65 497

DREYER, Wilhelm;

u.a.: ICAD - Intelligent ComputerAided Driving. in: Automobil-industrie 2, 1990, S.147-151;

PHILIPP, Walter:Ein Antikoliislonsradar. In:

Auto-mobil Revue, 1987, H.14;

(SMS) Sicherheitz-Management-System (SMS)

Sicherheits-Management-System für den Schutz von Fahrzeuginsassen, wie Rückhalteeinrichtungen, enthaltend ein Abstandsmeßsystem zu Objekten auf oder an der Straße, ein fahrzeuginternes Beschleunigungsmeßsystemen eine Bus-Verbindung zu anderen Fahrzeug-Meßsystemen sowie eine zentrale (Bord-) Rechnereinheit (CPU), wobei die Abstandsdaten und Beschleunigungsdaten sowie die Beschleunigungsdaten mit der Bechnerein triebszustendedeten aus dem Fahrzeug in der Rechnereinheit versrbeitet und verknüpft werden, um je nach Gefah-renssituation nacheinander Maßnahman wie Warnungen und/oder Eingriffe ins Breme- und Lenksystem so vorzuneitmen, daß Unfälle vermeidbar sind oder in ihrer Auswirkung gemildert werden.

Beschreibung

Die Erfindung betrifft ein Sicherheits-Management-System gemäß dem Oberbegriff des Patentanspruchs 1. Stand der Technik sind:

Airbag-Auslösegeräte, z. B. des Typs ZAE (Auszug aus Prospekt beiliegend), Abstandswarnsysteme DE 36 40 449 C1, DE 37 35 267 C1, DE 37 38 221 C1, Tempomat, z. B. der Firma VDO, ein Motor-Management-System für die möglichst gleichmäßige Einhaltung 10 einer vorgewählten Reisegeschwindigkeit, und SZ vom 22.12.90, Anti-Schlupf-Regelung (ASR), ein Anti-Blokkier-System (ABS), DE 37 32 348 C1. Nachteile der bisherigen Systeme:

- Einzelsysteme ohne Vernetzung, daher teuer, Informationsaustausch nur über langsamen Bus
- oder gar nicht möglich.
- vorhandene Informationen nicht nutzbar,
- bei Sicherheitssystemen Komfortinhalte nicht 20 genutzt
- bei Komfort- oder Unterstützungssystemen Sicherheitsinhalte nicht genutzt.
- keine relevanten Voraussagen für Sicherheitssysteme möglich.

Aufgabe der Erfindung ist es.

- die Sicherheit für Brems- und Ausweichmanöver zu verbessern,
- die Wirkung für Sicherheitssysteme (wie Airbag, ABS, ASR) zu erhöhen,
- eine Lernfähigkeit in Hinblick auf verkehrs- und gefährdungsrelevante Daten und Einstellungen zu schaffen.

Die Lösung dieser Aufgabe ist in Anspruch i enthal-

Die Erfindung wird anhand eines Ausführungsbeispieles näher beschrieben. Es zeigt

Fig. 1 cin Blockschaltbild und

Fig. 2 eine Fahrzeugansicht mit Mehrfach-Meßgerät. Das Sicherheits-Management-System enthält:

Ein Mehrfach-Meßsystem 101, das im einfachsten Fall die Entfernung zu anderen Fahrzeugen und die Differenzgeschwindigkeit ermittelt und im weiteren Ausbauzustand folgende Daten liefert:

- vor dem Fahrzeug fahrende Verkehrsteilnehmer 50 oder stehende Objekte
- Dynamik der Szenerie/Umwelt des Fahrzeugs
- statischer und dynamischer Zustand von Straße/
- Bremsbetätigung über Bremslichtauswertung, 55

Einen Beschleunigungsaufnehmerblock mit Beschleunigungsauswertung 102, im einfachsten Fall aus einem Kanal mit Airbag-Algorithmusauswertung bestehend, 60 im weiteren Ausbau Aufnahme und Auswertung folgen-

 Längs-, Quer-, Hochachsen-Beschleunigung
 Drehbeschleunigung: Längs-, Quer-, bei Überschlag, oder rückseitig am Fahrzeug.

Einen Mikroprozessor und Rechnerblock 103 mit Da-

tenspeicher und Algorithmen für Vorder- und Hinterachssteuerung (auch bei Schlupf), Steuerung der Rückhaltesystem-Zwangsbenutzung und Motorsteuerung sowie ABS-Eingriff.

Einen Block mit Eigendiagramm, Bewertung der Bus-Signale sowie eine gleitende Situationsbewertung 104. Eine Einheit 105 mit Schnittstellen und Endstufen zu

- ABS, Motor-Management 106
- Lenkwinkel Vorder- und Hinterachse 107
- Lenkung Vorder- und Hinterachse 108
- Gurtstrammer 109
- Front- und Seitenairbag 110
- Überrollbügel 111
- Warn- und Betriebswahl Ein/Aus 112.

Die Einheit hat eine eigene Stromversorgung und Energiereserve 113.

Im einfachsten Konfigurationszustand werden folgende Signale ausgewertet und über die Schnittstellen

zur Wirkung gebracht: Vor und bei Kollision mit Hindernissen und Fahrzeugen die Eigengeschwindigkeit, Differenzgeschwindigkeit, Beschleunigungsverlauf vor und während des Aufpralls. Diese Daten gehen dem Bordrechner (CPU) über Bus oder ähnliche Sammelleitungen 112 zu und diese entscheidet nacheinander über Warnung, Bremsbetätigung, Motorabregehung und Auslösung des Rückhaltesystems. Zur Stützung des Auxlösenigorithmus wird die vorausgegangene Szenerie mit untersucht und ausgewertet, z. B. die Reibwertbestimmung Straße/Fahrzeug der letzten Bremsvorgänge aus dem ABS oder die Abstandshaltung des Fahrers oder die Dichte des Verkehrs.

Bei unterschiedlicher Verkehrsdichte und Gruppendiziplin werden Funktionen wie Warnen und ggf. Eingriffe wie Zwangsabregelung des Motors sowie Zwangsbremstätigkeit selbstlernend vom Rechner aus den untersuchten Daten abgeleitet und das Fahrverhalten durch Algorithmusänderung dem Verkehrs- und Stra-

40 Benzustandsgeschehen angepaßt.

Bei Ausnützung aller Möglichkeiten des System über 101 auch die Lage des Eigenfahrzeuges zu anderen Verkehrsteilnehmern bzw. zu Hindernissen und Stra-Benbegrenzungen in Zusammenhang mit allen Beschleunigungen im Linear- und Drehber eich aus 102 sowie den Fahrzeugdaten aus der Schnittstelle 105 im Bus-System genutzt um folgendes nacheinander zu betäti-

- Warnung
- Motorabregelung
- Zwangsbremsung
- Zwangslenkung Vorder- und/oder Hinterachse
- Überrollbügel
- Gurtstrammer
- Airbags Emergency Call
- Identifikations-System und
- Speicherung der Daten.

Das Mehrfach-Meßgerät wird vorteilhafterweise als Gesamtsystem am Fahrzeug (am Rückspiegel) oder im Inneren im Dachbereich nahe der Frontscheibe angeordnet (siehe Fig. 2).

Patentansprüche

1. Sicherheits-Management-System für den Schutz

von Fahrzeuginsassen, wie Rückhalteeinrichtungen, enthaltend ein Abstandsmeßsystem zu Objekten auf oder an der Straße, ein fahrzeuginternes Beschleunigungsmeßsystem, eine Bus-Verbindung zu anderen Fahrzeug-Meßsystemen sowie eine zentrale (Bord-) Rechnereinheit (CPU), dadurch gekennzeichnet, daß die Abstandsdaten und Beschleunigungsdaten sowie die Betriebszustandsdaten aus dem Fahrzeug in der Rechnereinheit verarbeitet und verknüpft werden, um je nach Gefahrenssituation nacheinander Maßnahmen wie Warnungen und/oder Eingriffe ins Brems- und Lenksystem so vorzunehmen, daß Unfälle vermeidbar sind oder in ihrer Auswirkung gemildert werden.

2 Einrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das System mit den Eingängen der Abstands- und Sichtweitenmessung die Eingänge der Beschleunigungamessung so verknüpft, daß die Brems- und Auslösealgorithmen für die vorgesehenen Sicherheitsmaßnahmen dem Zeitablauf eines 20 Unfalls sofort angepaßt werden.

3. Einrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß das System die jeweiligen Algorithmen gieitend an das stattsnadende Verkehrsgeschehen bzw. Straßenzustandsgeschehen anpaßt. 2. Einrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß das Mehrfach-Meßgerät und/oder das System (Fig. 1) an Bord des Fahrzeuges insbesondere im Bereich des Rückspiegeis oder insbesondere im Dachbereich angeordnet 30 ist.

Hierzu 2 Seite(n) Zeichnungen

55

..

DE 43 35 979 A1 B 60 R 21/02 27. April 1995

ZEICHNUNGEN SEITE 2

Nummer: Int. Cl.⁸: Offenlegungstag: DE 43 35 979 A1 B 60 R 21/02 27. April 1996

Fig. 2

Patent DE 43 35 979 A 1

Reference number P 43 35 979.5 Application date 21. October 93 Patent disclosure 27. April 95

System for monitoring and controlling safety relevant components in a vehicle

71 - Applicant:

TEMIC TELEFUNKEN microelectronic GmbH, 74072 Heilbronn, DE

72 - Inventor:

Spies, Martin, 85276 Pfafffenhofen, DE Spies, Hans, 85276 Pfafffenhofen, DE

For assessment of patentability with respect to the following documents:

DE	38 10 840 C1	DE	39 38 651 A1
DE	38 08 420 C2	DE	36 37 165 A1
DE	43 38 244 A1	DE	35 45 543 A1
DE	43 02 527 A1	DE	33 00 840 A1
DE	42 42 230 A1	DE	32 28 516 A1
DE	42 00 897 A1	DE	30 27 483 A1
DE	41 40 327 A1	US	51 65 497
DE	41 40 327 A1		,
DE	41 30 010 A1	•	
DE	41 12 579 A1		

DREYER, Wilhelm;

In addition: ICAD - Intelligent Computer Aided Driving.

In: Automobil-Industrie 2, 1990, Pages 147-151;

PHILIP, Walter: An Anticollision Radar. In: Auto-mobil Revue, 1987, Issue 14;

Safety Management System (SMS)

Safety management systems for protecting the occupants of vehicles, such as restraining devices, containing a system for measuring distances from objects on or by the road, a vehicle-internal acceleration measurement system, a bus connection to other vehicle measurement system and a central (vehicle-mounted) computer unit (CPU), the distance data and acceleration data and the operating status data from the vehicle are being processed and logically connected in the computer unit in order to successively perform measures such as warnings and/or interventions into the braking and steering system, depending on the hazard situation, in such a way that accidents can be avoided or their effects can be reduced.

Data supplied from the esp@cenet database - I2

Description

The invention pertains to a safety management system according to the description in patent claim 1.

State of the technology is:

Airbag release devices, for example of type ZAE (extraction from a brochure enclosed), distance warning systems DE 36 40 449 C1, DE 37 35 267 C1, DE 37 38 221 C1, Tempomat, for example of CDO Company, an engine management system for the most possible even observance of pre-selected driving speed, and SZ from 22.12.90, anti-slip control (ASR), an anti-skid-system (ABS), DE 37 32 348 C1.

Disadvantages of the previous systems:

- individual systems without network, therefore expensive
- information exchange only over slow bus or not possible at all
- existing information not usable
- comfort content not used by the safety system
- safety content not used by the comfort or supporting systems
- no relevant assumptions possible for the safety systems.

Objective of the invention is

- to improve the safety of braking and evasive maneuvres
- to increase effectiveness of safety systems (as airbag, ABS, ASR)
- to manage ability to learn with respect to traffic and danger-relevant data and control

The solution for this objective is described in Claim 1.

The invention will be described in detail on an application example. It shows Figure 1, block circuit diagram

Figure 2, view of a vehicle with multiple measuring devices.

the safety management system contains:

Multiple measuring system 101, which in a simplest case determines the distance to another vehicle and the speed difference, and with additional expansion provides the following data:

- visual range or distance
- in front of vchicle driving travelers or fixed objects
- dynamics of setting / environment of the vehicle
- static and dynamic condition of street / vehicle
- braking action through brake light evaluation, cut off times.

An acceleration pick-up block with acceleration evaluation 102, in a simplest case consisting of one channel with airbag algorithm evaluation, in the additional layout recording and evaluation of the following data:

- longitudinal-, transverse- and vertical axis acceleration
- rotational acceleration: longitudinal-, transverse-, during roll-over, or rear of the vehicle.

A micro-processor and computer block 103 with data memory and algorithms for front and rear axle control (also by slip), control of restraint system – forced use and engine control as well as ABS engagement.

A block with specific chart, evaluation of bus signals as well as unstable situation evaluation 104.

An unit 105 with interface and output to

- ABS, engine management 106
- steering angle front and rear axle 107
- steering front and rear axle 108
- belt pre-load device 109
- front and side airbag 110
- roll bar 111
- warning and operation selection in/out 112.

The unit has a specific power supply and energy storage 113.

In the simplest configuration the following signals are analyzed and put into action through an interface:

Before and during collision with obstacles and vehicles the individual speed, speed difference, acceleration pattern before and during the impact. This data travel through bus or similar collecting circuit to the computer (CPU) and determines sequentially about the warning, brake activation, engine off-control and tripping the restraint system. For support of tripping algorithm the previous setting is scrutinized and evaluated, for example determination of road/vehicle friction of the last braking event from the ABS or the distance observation of the driver or the density of traffic.

In different traffic density and group disciplines the functions as warning and, if necessary, actions as forced off-control of the engine as well as forced brake action are self-learned from the computer derived from evaluated data, and the driving behavior matched through modification of algorithms to the traffic and road conditions.

By exploitation of all possibilities of the system are through 101 used also the position of the specific vehicle to other participant in the traffic or to the obstacles and road boundaries in connection with all accelerations in linear and rotational range from 102 as well as vehicle data from the interface 105 in order to activite in sequence the following:

- warning
- engine off-control
- forced braking
- forced steering of front and/or rear axles
- roll-bar
- belt pre-load device
- airbags
- emergency call
- identification system and
- storing of data.

The multiple measuring devices are in advantageous manner arranged as the whole system on the vehicle (at rear-view mirror) or inside in the roof area near the front windshield (see Figure 2).

Patent Claims

1. The safety management system for protecting the occupants of vehicles, such as restraining devices, containing a system for measuring distances from objects on or by the road, a vehicle-internal acceleration measurement system, a bus connection to other vehicle measurement system as well as a central (vehicle-mounted) computer unit (CPU), are characterized by that, that the distance data and acceleration data as well as the operating status data from the vehicle are being processed and logically connected in the computer unit in order to

508 017/185

9

ZEICHNUNGEN SETTE 2

Nummer: Int. CL^a: Offenlegungstag:

DE 43 35 979 A1 B 60 R 21/02 . 27. April 1895

Fig. 2