OOP project - 2014/15

Learning dynamic Bayesian networks

March 30, 2015

Motivation

- Multivariate time series (MTS) arise in several interesting contexts and provide an opportunity for studying changes over time.
- Dynamic Bayesian networks (DBN) are a probabilistic graphical models for describing multivariate temporal processes.
- DBN are able to express two different relations:
 - 1 the intra-temporal relations, expressing the dependences between the variables at a particular time instant t, and
 - 2 the inter-temporal relations, specifying how the variables observed at times $0, \ldots, t$ affect the variables at t + 1.
- DBNs are defined upon Bayesian networks (BN). BN are used to model time-invariant processes, whereas DBN model time-variant ones.

Table of Contents

1 Bayesian networksDefinitionLearning Bayesian networks

2 Dynamic Bayesian networks Definition Learning dynamic Bayesian networks

Bayesian network

A Bayesian network (BN) is a triple $B = (\vec{X}, G, \Theta)$:

- ① $\vec{X} = (X_1, \dots, X_n)$ is a random vector.
- 2 $G = (\vec{X}, E)$ is a directed acyclic graph (DAG) whose edges in E specify conditional dependencies between the variables.
- 3 $\Theta = \{\theta_{ijk}\}_{ijk}$ is the family of **network parameters**, defining the conditional probabilities.

A BN defines a joint probability distribution over \vec{X} given by

$$P_B(X_1,...,X_n) = \prod_{i=1}^n P_B(X_i \mid \vec{pa}(X_i)),$$

where $\vec{pa}(X_i)$ is the set of parents of X_i in G.

Simple example regarding airline regulations

• Factorized joint probability distribution:

$$P(M, S, D, O, C) = P(M) P(S) P(D|M, S) P(O|D) P(C|D, S).$$

• Network has 12 parameters, while complete specification would require $2^5 - 1 = 31$ conditional probabilities (61% space savings).

Learning Bayesian networks

Given a dataset D comprising instances of \vec{X} , find the structure G and parameters Θ that best fits the data.

- Define a scoring criterion $\phi(B,D)$ to measure network fitness.
- Define a **search procedure** to generate networks whose score is evaluated.

This is called **score-based learning**.

Learning Bayesian networks

Score-based learning can be extremely efficient if the scoring criterion employed is decomposable:

- In that case it is named local score-based learning.
- The score of the network being considered can be updated locally as a result of local network changes of previously evaluated networks.

A decomposable scoring criterion can be expressed as a sum of local terms depending on a node and its parents:

$$\phi(B,D) = \sum_{i=1}^{n} \phi_i(\vec{pa}(X_i), D).$$

Learning Bayesian networks

Commonly used decomposable scores:

• Log-likelihood (LL) tends to favour complete network structures, which typically leads to over-fitting:

$$LL(B|D) = -\log P_B(D)$$

• Minimum description length (MDL) extends LL by including a term to penalize complex network structures:

$$MDL(B|D) = LL(B|D) - \frac{1}{2}\log(N)|B|,$$

where |B| is the number of parameters of network B.

Hardness results

- In general, learning unrestricted BN is NP-hard.
- The standard methodology for learning BN became **heuristic search**, based on scoring metrics optimization.
- The **Greedy Hill Climbing (GHC)** is a well known heuristic algorithm to learn BN.

- Suppose we have some network structure, which is a DAG. We can define
 its neighbourhood in DAG-space as all networks we can reach by
 applying one of the operators:
 - add an edge;
 - delete an edge;
 - reverse an edge.
- At each search step, we find the best neighbour and move to it.
- But, it must be the best neighbour in DAG-space!
- When removing an edge from a DAG the resulting network will always be a DAG, but when adding or flipping an edge from a DAG we need to guarantee that the resulting network is still a DAG.

GHC algorithm for learning BN

Input: initial structure \mathcal{N}_{init} , dataset D, a scoring function ϕ , stopping criteria \mathcal{C}

Output: final structure \mathcal{N}_{res}

- 1 $\mathcal{N}_{res} = \mathcal{N}_{init}$ and $\mathcal{N}' = \mathcal{N}_{res}$
- $oldsymbol{2}$ while $\mathcal C$ is not satisfied
- 3 $\mathcal{N}'' = \arg\max_{\mathcal{N} \in \text{neighbourhood}(\mathcal{N}')} \phi(\mathcal{N})$
- 4 if $\phi(\mathcal{N}'') > \phi(\mathcal{N}_{res})$ then $\mathcal{N}_{res} = \mathcal{N}''$
- 6 end while
- 7 return \mathcal{N}_{res}

GHC can get stuck in local optima. Two simple strategies can be effective to escape from these local optima:

- TABU list: do not revisit recently seen structures;
- Random restarts: apply some operators at random when at a local optimum.

GHC algorithm for learning BNs, with TABU list and random restarts

Input: initial structure \mathcal{N}_{init} , dataset D, a scoring function ϕ , stopping criteria \mathcal{C}

Output: final structure \mathcal{N}_{res}

- 1 $\mathcal{N}_{res} = \mathcal{N}_{init}$, $\mathcal{N}' = \mathcal{N}_{res}$ and TABU = $\{\mathcal{N}_{res}\}$
- $oldsymbol{2}$ while $\mathcal C$ is not satisfied
- 3 $\mathcal{N}'' = \arg\max_{\mathcal{N} \in \mathsf{neighbourhood}(\mathcal{N}')} \text{ and } \mathcal{N} \notin \mathsf{TABU} \phi(\mathcal{N})$
- 4 if $\phi(\mathcal{N}') > \phi(\mathcal{N}'')$ then $\mathcal{N}'' = \text{random}(\mathcal{N}')$
- **6** TABU = TABU $\cup \mathcal{N}'$
- $\mathcal{N}' = \mathcal{N}''$
- 8 end while
- 9 return \mathcal{N}_{res}

The stopping criterion C may vary, for instance:

- the score of the best network exceeds a threshold;
- a local maximum is attained;
- maximum number of random restarts.

Typically the number of parents a node can have is also upper bounded!

Table of Contents

1 Bayesian networksDefinitionLearning Bayesian networks

2 Dynamic Bayesian networks
Definition
Learning dynamic Bayesian networks

Dynamic Bayesian networks (DBN) extend BN to model temporal processes.

A DBN is composed by:

- a prior network B_0 , which specifies a joint probability distribution over $\vec{X}[0]$.
- a set of transition networks B_0^t over the variables $\vec{X}[0], \dots, \vec{X}[t]$, specifying the state transition probabilities, for $0 < t \le T$.

Usual simplifying assumptions:

- first-order Markov: $P(\vec{X}[t+1] \mid \vec{X}[0], ..., \vec{X}[t]) = P(\vec{X}[t+1] \mid \vec{X}[t]).$
- **stationary**: transition probabilities independent of t.

When the DBN is first-order Markov and stationary, also called **homogeneous**, the conditional probability $P(\vec{X}[t+1] \mid \vec{X}[t])$ is the same for all t.

Learning dynamic Bayesian networks

Typical data to learn DBN:

$$X_1[0], \quad ..., \quad X_n[0], \quad X_1[1], \quad ..., \quad X_n[1], \quad ..., \quad X_1[T], \quad ..., \quad X_n[T]$$
 $v_{11}[0], \quad ..., \quad v_{n1}[0], \quad v_{n1}[0], \quad v_{n1}[0], \quad ..., \quad v_{n1}[1], \quad ..., \quad v_{n1}[1], \quad ..., \quad v_{n1}[T], \quad ..., \quad v_{n1}[T]$
 $v_{1N}[0], \quad ..., \quad v_{nN}[0], \quad v_{1N}[0], \quad v_{1N}[1], \quad ..., \quad v_{nN}[1], \quad ..., \quad v_{nN}[T]$
 $t=0$
 $t=1$

However, all instances in the data need not to have the same size, and so the data might not be rectangular.

Learning dynamic Bayesian networks

Typical data to learn homogenous DBN:

All pairs	$X_1[t]$,	,	$X_n[t]$,	$X_1[t+1],$	· · · ,	$X_n[t+1]$
(t,t+1):	$v_{11}[0]$,	,	$v_{n1}[0]$,	$v_{11}[1]$,	,	$v_{n1}[1]$
(0,1)	$v_{1N}[0],$,	$v_{nN}[0]$,	$v_{1N}[1]$,	,	$v_{nN}[1]$
(1,2)	$v_{11}[1]$,,	,	$v_{n1}[1]$, \dots ,	$v_{11}[2]$, \dots ,	,	$v_{n1}[2]$
(-,-/	$v_{1N}[1]$,	,	$v_{nN}[1]$,	$v_{1N}[2]$,	,	$v_{nN}[2]$
,	,	,	,	,	,	
/T 1 T\	$v_{11}[T-1],$,	$v_{n1}[T-1]$,	$v_{11}[T]$,	,	$v_{n1}[T]$
(1-1,1)	$v_{1N}[T-1]$,	,	$v_{nN}[T-1]$,	$v_{1N}[T]$,	,	$v_{nN}[T]$

Again, data might not be rectangular!

Learning dynamic Bayesian networks

Learning an homogeneous DBN corresponds to learn two networks:

- the initial network B_0 :
 - learned from $\vec{X}[0]$ only;
 - learned with BN version of GHC.
- the transition network B_t^{t+1} :
 - learned from all pairs $(\vec{X}[t], \vec{X}[t+1])$ with $0 \le t < T$;
 - need to adapt BN version of GHC to consider the restriction that edges may appear from time-slice t to time-slice t+1 (inter-slice relations), or from time-slice t+1 to t+1 (intra-slice relations), only;
 - DAG restriction need only to be verified when considering intra-slice relations;
 - the local contribution of node $X_i[t+1]$ to the global score of B_t^{t+1} is given by the parents from the same time-slice t+1 as well as the parents from the previous time-slice t.

Inference with dynamic Bayesian networks

After learning a DBN, we typically want to know the value of some variable $X_i[t+1]$ given that we already know the values of $\vec{X}[t]$.

To this end we need to compute for every possible value x_{ik} of $X_i[t+1]$ the one that yields the highest probability given by:

$$P\left(X_{i}[t+1] = x_{ik} \mid \vec{X}[t] = (v_{1}, \dots, v_{n})\right) = \sum_{d_{1}=1}^{r_{1}} \dots \sum_{d_{i-1}=1}^{r_{i-1}} \sum_{d_{i+1}=1}^{r_{i+1}} \sum_{d_{n}=1}^{r_{n}} P\left(\vec{X}[t+1] = (d_{1}, \dots, d_{i-1}, x_{ik}, d_{i+1}, \dots, d_{n}) \mid \vec{X}[t] = (v_{1}, \dots, v_{n})\right)$$