STATISTICS REVIEW

- Correlation
- Variance , Covariance and correlation

- Correlation
- Variance , Covariance and correlation

Statistically Correlated

- Strength of the correlation Coefficient of Correlation
- Direction of correlation Sign of the Coefficient

Pearson Correlation Coefficient

$$r = \frac{\sum (x - \overline{x}) * (y - \overline{y})}{(N - 1) * \sigma_{x} * \sigma_{y}}$$

Correlation Coefficient

	Height X	Weight Y	x – x	Y – Y	(x - x) * (y - y)
	160	130	-15.625	-40.625	634.7656
	170	150	-5.625	-20.625	116.0156
	165	145	-10.625	-25.625	272.2656
	180	190	4.375	19.375	84.76563
	175	175	-0.625	4.375	-2.73438
	190	210	14.375	39.375	566.0156
	185	180	9.375	9.375	87.89063
	180	185	4.375	14.375	62.89063
Mean	175.625	170.625			1821.875
Std Dev	10.155	25.651			

$$r = \frac{\sum (x - \overline{x}) * (y - \overline{y})}{(N - 1) * \sigma_{x} * \sigma_{y}}$$

$$\mathbf{r} = \frac{\frac{1821.875}{(8-1) * \frac{10.155}{10.155} * \frac{25.651}{2}}$$

$$r = 0.96$$

Correlation Coefficient

$$r = \frac{\sum (x - \overline{x}) * (y - \overline{y})}{(N - 1) * \sigma_{x} * \sigma_{y}}$$

$$\mathbf{r} = \frac{{}^{1821.875}}{{}^{(8-1)*} {}^{10.155*} {}^{25.651}}$$

$$r = 0.96$$

Variance & Standard deviation

variance measures how far each number in the set is from the mean, and thus every other number in the set.

sample Varience
$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{N-1}$$

Standard
$$\sigma = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{N-1}}$$
deviation

Variance, Covariance and correlation

How To Calculate Variance

Data	$(x:-\overline{x})$	$(x!-\overline{X})_{\mathcal{I}}$	
56899114	- * * * 5	7970775	$S^2 = \frac{\sum_{i=1}^{\infty} (x_i - \overline{x})^2}{n - 1}$

Variance & St. Deviation

X	X	X-X	$(X-\overline{X})^2$	$X = \frac{20m}{n}$
6	8	-2 -1	4	D ₂
7	8	-1	1	2
8	8	0	0	$\leq \sum (x-\bar{x})^2$
9	8	+1	1	5 =
7 8 9 10	8	+1 +2	4	1 1/ - 1

1	Α	В	С	D	E
1	Height	(Height - mean)			
2	150	330.7851563	Mean	168.188	
3	170	3.28515625	Variance	73.5273	
4	155	173.9101563	STD	8.57481	
5	165	10.16015625			
6	180	139.5351563		٠	
7	173	23.16015625			
8	168	0.03515625			
9	155	173.9101563			
10	167	1.41015625			
11	177	77.66015625			
12	173	23.16015625			
13	175	46.41015625			
14	174	33.78515625			
15	179	116.9101563			
16	166	4.78515625			
17	164	17.53515625			
18					
19					
20					

Covaniance

Covariance is a measure of the velation between two vandom variables: x and y and to what extent, they change together.

$$Cov(x,y) = \frac{\sum (x_1-\overline{x})(y_1-\overline{y})}{N-1}$$

Correlation

Estimates the depth of the relationship between variables.

Correlation,
$$P(x,y) = \frac{Cov(x,y)}{\sigma_x \sigma_y}$$

(4)

(c) negative covariance

Variance, Covariance and correlation

Average of the squared difference of the data from the Mean.

Variance,
$$S_x^2 = \frac{\sum (x - \overline{x})^2}{(N-1)}$$

Covariance,
$$S_{xy}^2 = \frac{\sum (x - \overline{x})^* (y - \overline{y})}{(N-1)}$$

Variance of X with respect to Y.

Pearson Correlation Coefficient
$$r = \frac{\sum (x - \overline{x}) * (y - \overline{y})}{(N-1) * \sigma_{x} * \sigma_{y}} = \frac{Covar (x, y)}{\sigma_{x} * \sigma_{y}}$$

Covariance

	Height X	Weight Y	x-x	Y-Y	$(x-\overline{x}) \cdot (y-\overline{y})$	Covariance, $S_{xy}^2 = \frac{\sum_{xy}^{2}}{\sum_{y}^{2}}$	$(x-\overline{x})*(y-\overline{y})$
	160	130	-15.625	-40.625	634.7656	остантанос, сху	(N - 1)
	170	150	-5.625	-20.625	116.0156		
	165	145	-10.625	-25.625	272.2656		
	180	190	4.375	19.375	84.76563		
	175	175	-0.625	4.375	-2.73438	Covar $(x, y) = -$	1821.875
	190	210	14.375	39.375	566.0156	covar (x, y)	(8-1)
	185	180	9.375	9.375	87.89063		
	180	185	4.375	14.375	62.89063		
Mean	175.625	170.625			1821.875	Covar(x, y) = 2	60.27
Std Dev	10.155	25.651					A

Positive

Variance Example

Spread in Data

Day	Temperature
1	20
2	21
3	(19)
4	20
5	(21)
6	19
7	20
Total	140
D _	

Day	Temperature
1	22
2	23
3	21
4	18
5	19
6	17
7	20
Total	140

Day	Temperature
1	12
2	11
3	13
4	20
5	24
6	29
7	31
Total	140

Mean = 20

Median = 20

Mean = 20

Median = 20

Mean = 20

Median = 20

Variance and Standard Deviation

Day	X	$X - \overline{X}$	$(X - \overline{X})^2$
1	20	0	0
2	21	1	1
3	19	-1	1
4	20	0	0
5	21	1	1
6	19	-1	1
0 7	20	0	0

Average =
$$4/7 = 0.57$$

Variance,
$$\sigma^2 = 0.57$$

$$\sigma = 0.7559$$

$$Mean = X = 20$$

Variance and Standard Deviation

Day	X	$X - \overline{X}$	$(X-\overline{X})^2$
1	12	-8	64
2	11	-9	81
3	13	-7	49
4	20	0	0
5	24	4	16
6	29	9	81
0 7	31	11	121

412

Average = 412/7 = 58.857

Variance, $\sigma^2 = 58.857$

$$\sigma = 7.67$$

$$Mean = X = 20$$

Variance and Standard Deviation

Day	Temperature
1	20
2	21
3	19
4	20
5	21
6	19
7	20

Day	Temperature
1	12
2	11
3	13
4	20
5	24
6	29
7	31

К

$$\sigma = 0.7559$$
Mean = $X = 20$

$$\mathbf{\sigma} = 7.67$$

$$Mean = X = 20$$

Read And Slice The Data Using Panda

