

1. a. estimator:
$$\hat{p} = \frac{\sum x_i}{N}$$

estimate $= \frac{\sum x_i}{n} = \frac{2|q.8}{27} \approx 8|4$

b. estimator: $\hat{p} = \frac{\sum x_i}{n} = \frac{2|q.8}{27} \approx 8|4$

b. estimator: $\hat{p} = \frac{\sum x_i}{n} = \frac{2|q.8}{27} \approx 8|4$

estimate $= \frac{1}{12} (x_{\frac{1}{2}+1} - x_i) \hat{x}$
 $= \frac{1}{12} (x_{\frac{1}{2}+1} - x_i$

a. estimator:
$$\hat{p} = 1 - \frac{x}{N}$$

estimate =
$$+\frac{12}{80} = 0.81$$

$$p = p \cdot \left(\frac{N-x-1}{N-1} \right)$$

So 0 is an unbias estimator.

6.2

a.
$$\hat{p} = \frac{x}{N}$$

estimate = $\frac{2}{20} = 0.15$

b. $\hat{p} = \frac{x}{N}$

$$E(\hat{p}) = E(\frac{x}{n})$$

$$= \frac{1}{n}E(x)$$

for binomial random variable

$$E(x) = np$$

$$E(\hat{p}) = p$$
Therefore $\hat{p} = \frac{x}{n}$ is an unbiased extimator

c. Denote A as that none of next five tests done on desease - free individuals are positive.

$$\hat{p} = \frac{1}{20} = 2 I I$$

$$P(A) = (1 \cdot 0.15)^2 = 0.473$$

