Моделирование механизмов поиска изображений по ассоциации с позиций теории активного восприятия

Выполнил студент:

Гай Н. В.

Научный руководитель:

д.т.н., профессор

Утробин В. А.

Цель и задачи работы

Целью выпускной квалификационной работы является разработка и исследование методов поиска изображений в графических базах данных по ассоциации на основе теории активного восприятия.

Для достижения поставленной цели необходимо решить следующие задачи:

- обзор и анализ известных трактовок понятия «ассоциативная память»;
- обзор и анализ современного состояния проблемы поиска изображений по содержимому, обзор признаковых описаний изображений;
- разработка информационных моделей поиска и сохранения изображений на основе ассоциативных механизмов;
- разработка и исследование алгоритмов сохранения и поиска изображений.

Научная новизна

- 1. Информационная модель базы данных цифровых изображений, основанная на теории активного восприятия, отличающаяся от известных использованием стратегии восприятия изображения от целого к частному при формировании признакового описания изображения, позволяющей повысить скорость поиска изображений в базе данных;
- 2. Алгоритмы сохранения и извлечения цифрового изображения из базы данных, разработанные для указанной модели.

Ассоциативно связанные изображения

Спектральные коэффициенты

Спектральные коэффициенты

Модель ассоциативной памяти

Размещение изображения в узлах *N*-арного дерева

Информационные модели

Информационная модель сохранения изображения

Информационная модель поиска изображения

Выбор множества узлов

Выбор области изображения для анализа на *i*-ом уровне

Типы описаний:

- 1. Операторы (30 элем.);
- 2. Полные группы (140 элем.);
- 3. Замкнутые группы (840 элем.);

Признаковое описание:

Имя	V ₁	V_2	V_3	_	_	V_6	V ₂	_
оператора	v ₁	v ₂	v ₃	V_4	V ₅	6	7	V_8
Масса (вес)	20	30	100	30	40	50	20	10
оператора	20	30	100	50	40	50	20	10
Имя	_	V		V	V	W	V	
оператора	V 9	V_{10}	V_{11}	V_{12}	V_{13}	V_{14}	V_{15}	•
Масса (вес)	30	60	30	20	10	30	40	
оператора	30	60	30	20	10	30	40	-

Правило выбора области: на *i*-ом уровне выбирается область, описание которой содержит элемент описания (оператор или группу) с максимальной массой (весом)

с учётом области на (*i*-1) уровне

Выбор узла на і-ом уровне

Бинарное дерево

Формирование бинарного описания выбранной области и определение расстояния до обобщающего эталона левой и правой ветви дереваа

Бинарное описание области на основе операторов: 1010100101110100101100110110101010

Обобщ. этал. правой ветви: 00000000000000001111111111111111

Бинарное описание области и обобщающие эталоны зависят от выбранного типа описания Не бинарное дерево

N = 840

N = 140

N = 30

Выбор элемента описания с максимальной массой

Масса (вес) оператора V_3 максимальна для данной области

Формирование бинарного описания

Бинарное описание на основе операторов – вектор из 30 элементов

Номер оператора	1	3	5	8	10	11	13	16	18	19	22	23	25	27	29
Имя опе- ратора	V ₁	V_2	V ₃	\overline{V}_4	\overline{V}_5	V_6	V ₇	\overline{V}_8	\overline{V}_9	V ₁₀	\overline{V}_{11}	V ₁₂	V ₁₃	V ₁₄	V ₁₅
Масса оператора	20	30	100	30	40	50	20	10	30	60	30	20	10	30	40

Правило формирования описания области на основе операторов:

$$Desc_{V}[i] = \begin{cases} 1, i-ый oператоресть в описании; \\ 0, если i-го oператоранет в описании \end{cases}$$

Бинарное описание на основе полных групп – вектор из 140 элементов

Номер полной группы	2	18	26	44	49	54	63	66	70	75	80	89	101	129
Масса полной группы	828	844	848	799	812	726	766	923	716	936	836	801	750	913

Правило формирования описания области на основе полных групп (выбирается 7 максимальных по массе полных групп):

$$Desc_{P_n}[i] = egin{cases} 1, ecnu & P_n[i]! = 0; \ 0, u have \end{cases}$$

Бинарное описание на основе замкнутых групп – вектор из 840 элементов

Номер замкнутой группы	27	44	95	144	237	300	371	430	474	506	605	640	720	837
Масса замкнутой группы	365	259	227	267	270	212	271	264	271	173	273	266	164	234

Правило формирования описания области на основе замкнутых групп (выбирается 7 максимальных по массе полных групп):

$$Desc_{P_s}[i] = \begin{cases} 1, ecnu & P_s[i]! = 0; \\ 0, uhaye \end{cases}$$

Бинарное описание:

101010010110100101100110101010

Бинарное описание:

Бинарное описание:

«Точный» поиск изображения

На этапе «точного» поиска выполняется вычитание описаний искомого изображения и изображений в базе данных (используются описания на i-ом уровне разрешения)

Производительность моделей 1

Время поиска в базе данных

Алгоритм / Параметры	Размер базы данных	Время поиска (в секундах)	Используемое описание, хранимое в базе данных	Метод организации поиска
1	2·10 ⁴	1,05	GIST, 512 бит	Поиск на основе <i>kd-</i> дерева
2	2·104	0,38	GIST, 512 бит	Линейный поиск
4	1,29·10 ⁷	0,75	GIST, 256 бит	Линейный поиск
6	2·10 ⁴	1,4·10 ⁻³	GIST, 256 бит	Линейный поиск
7	1·10 ⁷	0,1	ТАВ, Десятников И.	Линейный поиск
8	1·10 ⁷	0,5	ТАВ, Десятников И. (поиск по зашумл. изобр.)	Линейный поиск
9	1·10 ⁶	1,26	GIST, 512 бит	Линейный поиск
10	5·10 ⁵	0,02 (гр) + 0,03 (тч) = 0,05	Предлагаемая модель (4 ур. – 1920 бит, 6 ур. – 30720 бит)	Поиск на основе дерева

Производительность моделей 2

Время вычисления описания изображения (в секундах)

	DCT	МН	Radial	ВМВ	GIST
Время					
вычисления	9,7	3,6	1,3	0,6	0,035
описания					
Размер	64 бита	576 бит	320 бит	40 6.4-	Г12 би т
описания	оч оита	Э/ООИТ	320 ОИТ	49 бит	512 бит

Уровень /	4	6
Тип описания		
Операторы	0,58	0,93
Полные группы	0,60	1,27
Замкнутые	0,61	1,76
группы		

Типы искажений

Исходное изображение

Искажение нормальным шумом

Поворот

Понижение разрешения

Потеря части изображения

Масштабирование

Результаты тестирования предложенных моделей

			_	_	
Nº	Модель	Выбор области	Выбор	Тип	Средний %
142	МОДЕЛЬ	на <i>і-</i> ом уровне	узла	дерева	ошибки
1	Модель 1	с учётом области на (і-1) уровне,	оператор с	<i>N</i> -арное	25.97
1	тиодель т	оператор с максимальной массой	максимальной массой	л-арное	23.57
2	Модель 4	с учётом области на (і-1) уровне,	оператор с	<i>N</i> -арное	31.79
	тугодель 4	оператор V₀с максимальной массой	максимальной массой	л-арное	31./9
3	Модель 7	без учёта области на (і-1) уровне,	оператор с	<i>N</i> -арное	27.09
3	тиодель /	оператор с максимальной массой	максимальной массой	л-арное	27.03
		с учётом области на (<i>i-</i> 1) уровне,	минимальное расстояние		
4	Модель 10	оператор с максимальной массой	до обобщающего эталона	бинарное	46.79
		оператор с максимальной массой	(вектор 30 элементов)		
		с учётом области на (і-1) уровне,	минимальное расстояние		
5	5 Модель 12	замкнутая группа с максимальной	до обобщающего эталона	бинарное	75.94
		массой	(вектор 840 элементов)		
		o vuitana of poetu vo (i 1) vnopvo	минимальное расстояние		
6	Модель 13	с учётом области на (i-1) уровне, оператор V₀с максимальной массой	до обобщающего эталона	бинарное	52.48
		оператор иос максимальной массой	(вектор 30 элементов)		
		с учётом области на (<i>i-</i> 1) уровне,	минимальное расстояние		
7	Модель 15	с учетом области на (-1) уровне, оператор V₀с максимальной массой	до обобщающего эталона	бинарное	63.73
		оператор илс максимальной массой	(вектор 840 элементов)		
		без учёта области на (i-1) уровне,	минимальное расстояние		
8	Модель 16	оператор с максимальной массой	до обобщающего эталона	бинарное	49.97
		оператор с максимальной массой	(вектор 30 элементов)		
		без учёта области на (i-1) уровне,	минимальное расстояние		
9	Модель 17	оператор с максимальной массой	до обобщающего эталона	бинарное	58.03
		оператор с максимальной массои	(вектор 140 элементов)		
		без учёта области на (і-1) уровне,	минимальное расстояние		
10	Модель 18	замкнутая группа с максимальной	до обобщающего эталона		59.45
		массой	(вектор 840 элементов)		

Поиск искажённых изображений

Ошибка поиска при искажении изображения нормальным шумом

Уровень шума	20	10	0
Значение ошибки	0	0	1

Ошибка поиска при масштабировании изображения

Ошибка поиска при понижении разрешения изображения

Размер усредняемой области (в отсчётах)	10×10	30×30	50×50	70×70	90×90
(B ore retax)					
Значение ошибки	0	0	2	3	5

Коэффициент масштабирования по вертикали	0,3	0,6	0,9	1,1	1,5	1,9	0,3	0,6	0,9	1,1	1,5	1,9
Коэффициент масштабирования по горизонтали	0,3	0,6	0,9	1,1	1,5	1,9	1,1	1,5	1,9	0,3	0,6	0,9
Значение ошибки	3	2	1	1	0	0	2	2	1	2	1	0

Ошибка поиска при повороте изображения

Угол поворота (в градусах)	1	2	3	4	5	6	7	8	9
Значение ошибки	20	36	48	59	69	76	83	88	92

Ошибка поиска при перекрытии изображения

Размер пятна (в				
процентах от размера меньшей стороны	5	15	25	35
изображения)				
Значение ошибки	17	67	86	90

Поиск похожих изображений

Заключение

В результате выполнения выпускной квалификационной работы:

- выполнен обзор и анализ известных трактовок понятия «ассоциативная память»;
- выполнен обзор и анализ современного состояния проблемы поиска изображений по содержимому, обзор признаковых описаний изображений;
- разработана информационная модель поиска и сохранения изображений на основе ассоциативных механизмов;
- выполнена разработка и исследование алгоритмов сохранения и поиска изображений.

Спасибо за внимание!!!

Расстояние Евклида

$$d(p,q) = \sqrt{\sum_{k=1}^{n} (p_k - q_k)^2}$$

Теория активного восприятия 1

 $V_0, \overline{V}_1, V_2, V_3, \overline{V}_4, \overline{V}_5, V_6, V_7, V_8, \overline{V}_9, V_{10}, \overline{V}_{11}, \overline{V}_{12}, V_{13}, \overline{V}_{14}, V_{15}$

Операторы: {0, 1}

21

Массы операторов, групп

0.9

Философия, психология

Аристотель, Д. Локк, Д. Гартли - связь между элементами мыслительного процесса

Физиология

И. М. Сеченов, И. П. Павлов, К. В. Анохин условный рефлекс

Теоретическая информатика

Память с доступом по содержимому

