**(I)** 

- Claim 4. [A] <u>The</u> compound according to claim 3, wherein the constraint comprises a covalent grouping of atoms.
- Claim 5. [A] <u>The</u> compound according to claim 3, wherein the constraint and the linker may be the same or <u>are</u> different.
- Claim 6. [A] <u>The</u> compound according to claim 2, wherein said compound is a tricyclic dimeric compound of [general] formula (II):



- Claim 7. [A] <u>The</u> compound according to claim 6, wherein each of the constraint, linker 1 and linker 2 may be the same or <u>are</u> different.
- Claim 8. [A] The compound according to [any one of] claim[s] 3 [to 7], wherein each of the constraint, linker, linker 1 or linker 2 has between [at] 0 to 20 carbon atoms, and 0 to 10 heteroatoms, wherein said heteroatoms are selected from the group consisting of N, O, S and P.
- Claim 9. [A] The compound according to claim 8, wherein each of the constraint, linker, linker 1 or linker 2, is either saturated, unsaturated [and/]or an aromatic ring[s].
- Claim 10. [A] The according to claim 8 [or claim 9], wherein each of the constraint, linker, linker 1 or linker 2, comprises single [and/]or double bonds.
- Claim 11. [A] <u>The</u> compound according to [according to any one of] claim[s] 8 [to 10], wherein each of the constraint, linker, linker 1 or linker 2, comprises one or more chemical groups selected from the group consisting of amide, ester, disulphide, thioether, ether, phosphate and amine.
- Claim 12. [A] <u>The</u> compound according to [any one of] claim[s] 3 [to 10], wherein the constraint is obtained by [either]:
  - (i) cyclising [the] <u>an</u> N-terminal amine with [the] <u>a</u> C-terminal carboxyl acid function, either directly via an amide bond between [the] <u>an</u> N-terminal nitrogen and <u>a</u> C-terminal carbonyl, or indirectly via a spacer group; or

- (ii) cyclising via [the] formation of a covalent bond between [the] side chains of two residues, either directly or via a spacer group as described in (i) above; or
- (iii) <u>forming</u> a disulphide bond between two cysteine residues, either directly or via a spacer group as described in (i) above; or
- (iv) <u>forming</u> a thioether bond between a cysteine residue and an ω-halogenated amino acid residue, either directly or via a spacer group as described in (i) above; or
- (v) cyclising via the formation of an amide bond between a side chain and either [the] a C-terminal carboxyl or an N-terminal amine, either directly or via a spacer group as described in (i) above.
- Claim 13. [A] The compound according to [any one of] claim[s] 3 [to 10], wherein each of the linker, linker 1 or linker 2 is obtained by either:
  - (i) cyclising via the formation of a covalent bond between the side chains of two residues, either directly or via a spacer group; or
  - (ii) <u>forming</u> a disulphide bond between two cysteine residues, either directly or via a spacer group as described in (i) above; or
  - (iii) forming a thioether bond between a cysteine residue and an ω-halogenated amino acid residue, either directly or via a spacer group as described in (i) above; or
  - (iv) cyclising via the formation of an amide bond between a side chain and either [the] a C-terminal carboxyl or an N-terminal amine, either directly or via spacer group as described in (i) above.
- Claim 14. [A] <u>The</u> compound according to claim 12 [or claim 13], wherein said formation of a covalent bond between [the] side chains of two residues is via the formation of an amide bond a lysine residue and either an aspartic acid <u>residue</u> or glutamic acid residue.
- Claim 15. [A] The compound according to claim 12 [or claim 13], herein the side chain in (ii) is either a lysine or an aspartate residue.

25100790.1 3

- Claim 16. [A] <u>The</u> compound according to claim 12, wherein the cyclising of the N-terminal amine with the C-terminal carboxyl acid is via condensation with an ω-amino carboxylic acid.
- Claim 17. [A] <u>The</u> compound according to [any one of] claim[s] 12 [to 16], wherein the residues contributing to the side chains are either derived from the monomeric loop 2 sequence [itself], or incorporated into or added on to the monomeric loop 2 sequence.
- Claim 18. [A] <u>The</u> compound according to claim 2, wherein said compound is a monomeric, monocyclic compound of [general] formula (III):



(III)

- Claim 19. [A] <u>The</u> compound according to claim 17, wherein said constraint is obtained by cyclising the N-terminal amine with the C-terminal carboxyl acid function, either directly via an amide bond between the N-terminal nitrogen and C-terminal carbonyl, or indirectly via a spacer group.
- Claim 20. [A] <u>The</u> compound according to claim 19, wherein the spacer group [consists of] <u>comprises at least one</u> [or more] additional amino acid residue[s].
- Claim 21. [A] The compound according to claim 20, wherein [the] or one least [or more] additional amino acid residue[s] includes comprises an  $\alpha$ -[a]  $\omega$ -amino carboxylic acid residue[s].
- Claim 22. [A] <u>The</u> compound according to claim 20, wherein the residues contributing <u>to</u> the side chains are derived from the monomeric loop 4 sequence [itself], or incorporated into or added on to the monomeric loop 4 sequence.
- Claim 23. [A]The compound according to [any one of claim[s] 1 [to 22], wherein one or more amino acids is replaced by its corresponding D-amino acid.
- Claim 24. [A] <u>The</u> compound according to [any one of] claim[s] 1 [to 23], wherein one or more peptide bonds is replaced by a structure more resistant to metabolic degradation.

25100790.1 4

- Claim 25. [A] <u>The</u> compound according to [any one of] claim[s] 1 [to 23], wherein individual amino acids in said compound are replaced by analogous structures [as described herein].
- Claim 26. [A] <u>The</u> compound according to claim 25, wherein said analogous structures are selected from the group consisting of *gem*-diaminoalkyl groups, alkylmalonyl groups (with or without modified termini), alkyl, acyl and amine groups.
- Claim 27. [A] <u>The</u> compound according to claim 1, wherein said compound is a formula (IV) or formula (V):



Claim 28. [A] <u>The</u> compound according to claim 1 wherein said compound is of formula (VI):

Claim 29. [A] <u>The</u> compound according to claim 1, wherein said compound is of formula (VII):

Claim 30. [A] <u>The</u> compound according to claim 1, wherein said compound is of formula (VIII):

25100790.1

- Claim 31. A composition[,] comprising [a] the compound according to [any one] claim[s] 1 [to 30], together with a pharmaceutically-acceptable carrier, or a carrier or diluent which does not adversely affect the growth of cells in culture.
- Claim 32. [A] <u>The</u> composition according to claim 30, wherein said composition is formulated for oral, intravenous, subcutaneous, intramuscular, intrathecal, intraventricular or topical administration.
- Claim 33. [A] The composition according to claim 31 [or claim 32], wherein the carrier is selected from the group consisting of dextrose, mannitol, sucrose and lactose.
- Claim 34. [A] The composition according to claim 33, further comprising one or more buffer [and/]or bulking agents.
- Claim 35. [A] <u>The</u> composition according to claim 34, wherein the buffer is selected from the group consisting of acetate, citrate and phosphate.
- Claim 36. [A] <u>The</u> composition according to claim 33, wherein the bulking agent is selected from the group consisting of serum albumin and human serum albumin.
- Claim 37. [A] <u>The</u> composition according to claim 31, used as a culture medium additive for promotion of growth of neuronal cells *in vitro*.
- Claim 38. [A] The composition according to claim[37], 31 wherein the carrier or diluent is water, a saline solution, or a buffer solution.
- Claim 39. [A] The composition according to claim 37 [or claim 38], wherein the concentration of compound is in the range 1-500µM.
- Claim 40. [A] [culture medium] <u>composition</u> according to claim 39, wherein the concentration of compound is in the range 1-100µM.
- Claim 41. A method of treating a condition characterized by neuronal deficit or neuronal death, comprising [the step of] administering an effective amount of [a] the compound according to [any one of] claim[s] 1 [to 30], or a composition according to any one of claims 31 [to 37], to a subject in need of such treatment.
- Claim 42. [A] The method according to claim 41, wherein the condition being treated is selected from the group consisting of neurodegenerative disease[s], a neurodegenerative condition[s] caused by insult, and peripheral sensory neuropathi[es]y.

25100790.1

Claim 43. [A] The method according to claim 42, wherein the neurodegenerative disease[s] are selected from the group consisting of motor neurone disease (amyotrophic lateral sclerosis), progressive spinal muscular atrophy, infantile muscular atrophy, Charcot-Marie-Tooth disease, Parkinson's Disease, Parkinson-Plus syndrome, Gaumanian Parkinsonian dementia complex, progressive bulbar atrophy and Alzheimer's disease.

Claim 44. [A] <u>The</u> method according to claim 42, wherein the insult arises from ischaemia, hypoxia, neural injury, surgery, and exposure to a neurotoxins [such as N-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine)].

Claim 45. [A] The method according to claim 42, wherein the peripheral sensory neuropathies result from exposure to a drug[s (such as cis-platin)], a toxin[s], diabetes and mononeuropathy multiplex.

Claim 46. [A] The method according to claim 41, wherein the route of administration is selected from the group consisiting of oral, intravenous, subcutaneous, intramuscular, intrathecal, intraventricular and topical administration.

## **REMARKS**

Entry of the amendment is requested.

Respectfully submitted,

FULBRIGHT & JAWORSKI, L.L.P.

Norman D. Hanson, Esq. Registration No. 30,946

666 Fifth Avenue

New York, New York 10103-3198

Telephone: 212-318-3168 Telecopier: 212-318-3400