L4: ML evaluation

Prof. Xun Jiao

Before class

- Slides uploaded to BB
- HWs this week
 - Will be posted on Wed
 - ML evaluation: A ML model without a proper evaluation is useless
 - Due by next Wed
 - Detailed instruction will be on BB.

Review

- AI VS. ML VS. DL
 - What are two different types of ML?
 - What are two different types of supervised learning?

AI VS. Machine Learning

ARTIFICIAL INTELLIGENCE

Programs with the ability to learn and reason like humans

MACHINE LEARNING

Algorithms with the ability to learn without being explicitly programmed

DEEP LEARNING

Subset of machine learning in which artificial neural networks adapt and learn from vast amounts of data

- Artificial intelligence is a wide field, which aims at making machines intelligent. All has a set of tools through which it enables a machine to mimic human intelligence.
 - Natural language processing
 - Robotics
 - Machine Learning
 - Self-driving cars
 - https://en.wikipedia.org/wiki/Artificial intelligence#Re asoning, problem solving
- One of the tools AI have is machine learning, that gives the machines to learn without being told explicitly what to do.
- Machine learning again has various tools in its pocket, one
 of them being neural networks. *Neural networks* try to
 mimic the activity of a human brain. *Deep learning* is the
 use of more sophisticated neural networks, with more nonlinear layers, convolutional layers etcetera.

UNSUPERVISED

Two classes of ML: supervised VS. unsupervised

- Supervised learning:
 - Goal: perform task as good as humans
 - Experience: training data provided by human
 - Performance: accuracy/error on the task
- Unsupervised learning:
 - Goal: find some structure in data
 - No experience
 - No (explicit)
 performance metric

Supervised learning is again classified as: regression VS. classification

- Regression predictive modeling
 - Regression is the task of approximating a mapping function (f) from input variables (X) to a continuous output variable (y).
 - A continuous output variable is a real-value, such as an integer or floating point value. These are often quantities, such as amounts and sizes.
 - For example, a house may be predicted to sell for a specific dollar value, e.g., \$300k, \$350k, \$390k, etc.
 - Student grades.

Supervised learning is again classified as: regression VS. classification

- Regression predictive modeling
 - A regression problem requires the prediction of a quantity.
 - A prediction cannot be perfect
 - There are always errors
 - How to evaluate performance of ML?
 - Evaluation metric: deviation from golden results

Mean absolute error, mean relative error, MSE (mean squared error), RMSE (root mean squared error)

Mean absolute error (MAE)

• MAE = Average of All absolute errors

$$MAE = \frac{1}{n} \sum_{i=1}^{n} |y'_i - y_i|$$

No.	Model	Luxury?	Year	MPG	Horsepower	Price	Model 1	Model 2
1	Acura MDX	Yes	2017	20	290	\$50,000	46,000	45,000
2	Honda Accord	No	2017	25	190	\$25,000	27,000	26,000
3	Honda Civic	No	2012	23	160	\$10,000	9,900	12,000
4	Honda Civic	No	2016	24	170	\$18,000	19,000	19,000
5	Nissan Altima	No	2016	30	180	\$25,000	26,000	27,000
6	Acura MDX	Yes	2015	18	280	\$38,000	40,000	35,000
7	Lexus RX350	Yes	2015	21	270	\$40,000	43,000	36,000
8	Toyota Prius	No	2014	45	120	\$28,000	24,000	29,000
9	Toyota Prius	No	2013	40	120	\$24,000	23,000	27,000

Which model is better?
What is the best possible MAE?

Mean absolute percentage error (MAPE)

MAPE focuses more on the "relative" rather than "absolute"

$$MAPE = \frac{100\%}{n} \sum_{i=1}^{n} \frac{y'_{i} - y_{i}}{y_{i}}$$

Anything wrong with the equation?

No.	Model	Luxury?	Year	MPG	Horsepower	Price	Model 1	Model 2
1	Acura MDX	Yes	2017	20	290	\$50,000	46,000	45,000
2	Honda Accord	No	2017	25	190	\$25,000	27,000	26,000
3	Honda Civic	No	2012	23	160	\$10,000	9,900	12,000
4	Honda Civic	No	2016	24	170	\$18,000	19,000	19,000
5	Nissan Altima	No	2016	30	180	\$25,000	26,000	27,000
6	Acura MDX	Yes	2015	18	280	\$38,000	40,000	35,000
7	Lexus $RX350$	Yes	2015	21	270	\$40,000	43,000	36,000
8	Toyota Prius	No	2014	45	120	\$28,000	24,000	29,000
9	Toyota Prius	No	2013	40	120	\$24,000	23,000	27,000

Mean squared error

 measures the average of the squares of the errors—that is, the average squared difference between the estimated values and the actual value

 $ext{MSE} = rac{1}{n} \sum_{i=1}^n (Y_i - \hat{Y_i})^2.$

No.	Model	Luxury?	Year	MPG	Horsepower	Price	Model 1	Model 2
1	Acura MDX	Yes	2017	20	290	\$50,000	46,000	45,000
2	Honda Accord	No	2017	25	190	\$25,000	27,000	26,000
3	Honda Civic	No	2012	23	160	\$10,000	9,900	12,000
4	Honda Civic	No	2016	24	170	\$18,000	19,000	19,000
5	Nissan Altima	No	2016	30	180	\$25,000	26,000	27,000
6	Acura MDX	Yes	2015	18	280	\$38,000	40,000	35,000
7	Lexus RX350	Yes	2015	21	270	\$40,000	43,000	36,000
8	Toyota Prius	No	2014	45	120	\$28,000	24,000	29,000
9	Toyota Prius	No	2013	40	120	\$24,000	23,000	27,000

Root mean squared error

• Root of MSE:
$$RMSE = \sqrt{\frac{1}{n} \sum_{j=1}^{n} (y_j - \hat{y}_j)^2}$$

No.	Model	Luxury?	Year	MPG	Horsepower	Price	Model 1	Model 2
1	Acura MDX	Yes	2017	20	290	\$50,000	46,000	45,000
2	Honda Accord	No	2017	25	190	\$25,000	27,000	26,000
3	Honda Civic	No	2012	23	160	\$10,000	9,900	12,000
4	Honda Civic	No	2016	24	170	\$18,000	19,000	19,000
5	Nissan Altima	No	2016	30	180	\$25,000	26,000	27,000
6	Acura MDX	Yes	2015	18	280	\$38,000	40,000	35,000
7	Lexus RX350	Yes	2015	21	270	\$40,000	43,000	36,000
8	Toyota Prius	No	2014	45	120	\$28,000	24,000	29,000
9	Toyota Prius	No	2013	40	120	\$24,000	23,000	27,000

Which model is better?
What is the best possible MAPE?

Use python code to calculate metrics

Let us do some Python programming!

Python code to calculate error metrics

- true_price = [50000, 25000, 10000, 18000,25000, 38000, 40000, 28000,24000]
- model_1_price = [46000, 27000, 9900, 19000, 26000,40000, 43000, 24000, 23000]
- model_2_price = [45000, 26000, 12000, 19000, 27000, 35000, 36000, 29000, 27000]
- print("model 1 mae is:", MAE(true_price, model_1_price))
- print("model 2 mae is:", MAE(true_price, model_2_price))
- print("oracle model mae is:", MAE(true_price, oracle_price))

Classification

- Predict categorical class labels based on past observations
- Class labels are discrete unordered values
- Email spam classification example (binary)
- Handwritten digit classification example (multi-class)

Classification

- Classification predictive modeling is the task of approximating a mapping function (f) from input variables (X) to discrete output variables (y).
 - The output variables are often called labels or categories. The mapping function predicts the class or category for a given observation.
 - an email of text can be classified as belonging to one of two classes: "spam"and "not spam".
- A classification problem requires that examples be classified into one of two or more classes.
- A classification can have real-valued or discrete input variables.
 - For example, to predict if a fruit is an apple or orange, I will use color as the input variable.
 - To predict if an animal is a dog or cat, I will use weight as the input variable.
- A problem with two classes is often called a two-class or binary classification problem.
 - Dog OR cat?
- A problem with more than two classes is often called a multi-class classification problem.
 - Apple or orange or banana?
 - A problem where an example is assigned multiple classes is called a multi-label classification problem.

Classification evaluation

- Classification evaluation
 - A prediction cannot be perfect
 - There are always errors
 - How to evaluate performance of ML?
 - Evaluation metric: if the prediction is accurate?

Confusion Matrix

- A specific table layout that allows visualization of the performance of an algorithm
 - Each row of the matrix represents the instances in a predicted class
 - Each column represents the instances in an actual class

For example:

		Actual class		
		Cat	Dog	
Predicted	Cat	5	2	
Pred cla	Dog	3	3	

- How many animals in this dataset? #dogs? #cats?
- Now, we can calculate different metrics based on this confusion matrix