3. Übungsblatt zum Ferienkurs Mathematik für Physiker 1

1. Dualräume

Aufgabe 1: Duale Abbildung

(a) Welches $f \in (\mathbb{R}^3)^*$ erfüllt

$$f\begin{pmatrix} 1\\0\\0 \end{pmatrix} = 2, \quad f\begin{pmatrix} 1\\1\\0 \end{pmatrix} = 5, \quad f\begin{pmatrix} 1\\1\\1 \end{pmatrix} = -2?$$

(b) Gibt es ein $f \in (\mathbb{R}^2)^*$, welches

$$f(\begin{pmatrix} 2 \\ 0 \end{pmatrix}) = 1, \quad f(\begin{pmatrix} 1 \\ 1 \end{pmatrix}) = 5, \quad f(\begin{pmatrix} 1 \\ 3 \end{pmatrix}) = 3$$

erfüllt?

Aufgabe 2: Dualraum

Sei $V := \mathbb{Q}[x]_{\leq 2} = \{f \in \mathbb{Q}[x] \mid deg(f) \leq 2\}$ der Vektorraum aller Polynome in rationalen Koeffizienten vom Grad ≤ 2 . Weiter sei $\mathcal{C} = \{c_1, c_2, c_3\} = \{1, x, x^2\}$ eine Basis von $\mathbb{Q}[x]_{\leq 2}$.

- (a) Bestimme den Dualraum V^* .
- (b) Sei nun $F \in V^*$ mit $F : \mathbb{Q}[x]_{\leq 2} \to \mathbb{Q}$ definiert über

$$a_0 + a_1 x + a_2 x^2 \mapsto 5 \cdot a_0 + 7 \cdot a_1 - a_2.$$

Bestimme die Darstellungsmatrix von F bezüglich der Basis $\mathcal{C} \subseteq \mathbb{Q}[x]_{\leq 2}$ und $\mathcal{D} = \{1\} \subseteq \mathbb{Q}$.

2. Darstellungsmatrizen

Aufgabe 3: Darstellungsmatrix 1

Sei $V:=\mathbb{R}[X]_{\leq 4}$ der Unterraum aller Polynome vom Grad ≤ 4 und $f:V\to K^2$ die Abbildung

$$P \mapsto (P(1), P'(0)).$$

Hierbei notiert $(\sum_{i=0}^n a_i X^i)' = \sum_{i=1}^n a_i X^{i-1}$ die erste Ableitung.

- (a) Geben Sie die Matrixdarstellung von f bezüglich der Basen $1, X, X^2, X^3, X^4$ von V und e_1, e_2 von K^2 an.
- (b) Bestimmen Sie den Rang und den Kern von f.

Aufgabe 4: Darstellungsmatrix 2

Sei V ein zwei-dimensionaler \mathbb{R} -Vektorraum und sei $\{a_1, a_2\}$ eine Basis von V. Betrachte folgende Vektoren in V

$$b_1 = a_1,$$

$$b_2 = -\frac{1}{2}a_1 + \frac{\sqrt{3}}{2}a_2,$$

$$b_3 = -\frac{1}{2}a_1 - \frac{\sqrt{3}}{2}a_2.$$

- (a) Zeige, dass $\{b_1, b_2\}$ eine Basis von V ist. Schreibe b_3 als Linearkombination von b_1 und b_2 .
- (b) Die linearen Abbildungen $f,g:V\to V$ seien definiert durch

$$f(b_1) = b_2,$$
 $f(b_2) = b_1;$
 $g(b_1) = b_2,$ $g(b_2) = b_3.$

Bestimme $f(b_3)$ und $g(b_3)$.

(c) Seien A und B die geordneten Basen $A = \{a_1, a_2\}$ und $B = \{b_1, b_2\}$. Berechne die Matrizen

$$M_A^A(f), \quad M_A^A(g), \quad M_A^A(f \circ g), \quad M_A^A(g \circ f), \\ M_B^B(f), \quad M_B^B(g), \quad M_B^B(f \circ g), \quad M_B^B(g \circ f).$$

Hinweis: Berechne die Darstellungsmatrizen von $f \circ g$ und $g \circ f$ mithilfe der entsprechenden Darstellungsmatrizen für f und g.

Aufgabe 5: Darstellungsmatrix 3

Sei

$$F: \mathbb{R}[t]_{\leq 2} \to \mathbb{R}[t]_{\leq 2}, p \mapsto 2p + p',$$

wobei p' die Ableitung von p bezeichnet. Weiter seien $B = \{1, t, t^2\}$ und $C = \{1, 1+t, 1+t+t^2\}$ gegeben.

- (a) Zeige, dass F linear ist und B, C Basen von $\mathbb{R}[t]_{\leq 2}$.
- (b) Finde die darstellenden Matrizen

$$M_B^C(F)$$
, $M_C^B(F)$, $M_B^C(Id)$.

(c) Rechne die Identität

$$M_B^C(F) = M_B^C(Id)M_C^B(F)M_B^C(Id)$$

nach und veranschauliche in einem Diagramm, warum diese für beliebige $F:V\to V$ gilt.

(d) Zusatzaufgabe: Warum heißen Basiswechselmatrizen Basiswechselmatrizen? Beschreibe die Wirkung der Basiswechselmatrizen T_B^C und T_C^B .

Aufgabe 6: Drehmatrizen

Sei $\theta \in \mathbb{R}$ und $f_{\theta} : \mathbb{R}^2 \to \mathbb{R}^2$ die lineare Abbildung, die durch Drehung um den Winkel θ gegeben ist. Weiter sei $\mathcal{E} = \{e_1, e_2\}$ die Standardbasis von \mathbb{R}^2 . Bestimme $M_{\mathcal{E}}^{\mathcal{E}}(f_{\theta})$ sowie Basen $A, B \subseteq \mathbb{R}^2$ mit $M_A^B(f_{\theta}) = Id_2$.

3. Determinanten

Aufgabe 7: Rechnen mit Determinanten

Ermittle die Determinanten der Matrizen

$$A = \begin{pmatrix} 1 & 1 & 0 & 2 \\ -2 & 2 & 0 & 1 \\ 38 & 7 & -3 & 3 \\ -1 & 2 & 0 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} -3 & 0 & 7^{44} & 0 \\ \frac{22}{23} & 5 & \sqrt{\pi} & 0 \\ 0 & 0 & 6 & 0 \\ -102 & 8^e & e^8 & 10 \end{pmatrix}, \quad C = A^T B^{-1}.$$

Quelle: Karpfinger Höhere Mathematik in Rezepten (S. 70, Aufgabe 12.9)

Aufgabe 8: Geometrische Interpretation Determinante

Zeige, dass für $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathbb{R}^{2 \times 2}$ die Determinante $\det(A)$ den Flächeninhalt des Parallelogramms mit den Ecken (0,0),(a,b),(c,d) und (a+c,b+d) berechnet.

Aufgabe 9: Determinante

Sei K ein Körper und $a, b, c, d \in K$. Zeige, dass für die Matrix A die Determinante $\det(A)$ ein Quadrat in K ist.

 $A = \begin{pmatrix} a & b & c & a \\ -b & a & -d & c \\ -c & d & a & -b \\ -d & -c & b & a \end{pmatrix}$

4. Diagonalisierbarkeit

Aufgabe 10: Diagonalisierbarkeit

Die folgenden Matrizen leben über \mathbb{Q} . Berechne ihre Eigenwerte und Eigenvektoren und entscheide, ob sie diagonalisierbar sind.

$$A = \begin{pmatrix} -2 & 1 & 2 \\ 6 & 2 & -3 \\ -2 & 2 & 3 \end{pmatrix}, \quad B = \begin{pmatrix} 2 & 0 & -3 \\ 0 & 2 & -3 \\ 0 & 0 & -1 \end{pmatrix}. \tag{1}$$

Aufgabe 11: Diagonalisierbarkeit 2

Für welche Werte von $a, b, c, d \in \mathbb{R}$ ist die folgende Matrix diagonalisierbar?

$$\begin{pmatrix}
0 & -b & d \\
1 & -a & c \\
0 & 0 & 0
\end{pmatrix}$$

Aufgabe 12: Nilpotente, unipotente & quasi-nilpotente Matrizen

Eine Matrix $A \in K^{n \times n}$ heißt *nilpotent*, falls ein $n \in \mathbb{N}$ existiert, sodass $A^n = 0$. Eine Matrix $A \in K^{n \times n}$ heißt *unipotent*, falls $A - I_n$ nilpotent ist und *quasi-nilpotent*, falls eine Potenz A^k für k > 0 unipotent ist.

(a) Zeige für eine unipotente Matrix A und eine quasi-unipotente Matrix B gilt: $EW(A) = \{1\}$ und $EW(B) \subseteq \{\lambda \in K | \lambda^k = 1\}$ für ein k > 0.

3

(b) Beweise, dass jede unipotente Matrix zu einer oberen Dreiecksmatrix ähnlich ist.