GABRIEL CECON CARLSEN

ENDEREÇAMENTO IPv4 CLASS-FULL: Atividade 1

GABRIEL CECON CARLSEN

ENDEREÇAMENTO IPv4 CLASS-FULL: Atividade 1

Trabalho referente a atividade 1 da disciplina de Redes de Computadores II do curso de Ciência da Computação da Faculdade de Ciências e Tecnologia de Presidente Prudente (UNESP).

Orientador: Prof. Ronaldo Toshiaki Oikawa.

Presidente Prudente – SP 2021

SUMÁRIO

1	IPv4	01
2	MÁSCARA DE REDE	02
3	GATEWAY	03
4	CLASS-FULL	04
5	BIBLIOGRAFIA	07

O QUE É IPv4

O protocolo de internet versão 4 (IPv4) surge na década de 80, e apresentou uma crescente nos anos 2000 com a revolução tecnológica, onde tudo e todos estão conectados a todo momento. No modelo OSI o protocolo funciona na camada de rede e sua principal função é de identificar os hosts baseados no deu endereço lógico com o objetivo de rotear dados (pacotes) entre eles (hosts) pela rede. Tal endereço lógico de um host é baseado em um sistema de 32-bit (2^32), ou seja, 4.3 bilhões de endereços únicos, que na época parecia ser o suficiente por um bom tempo.

O IPv4 consiste em cinco principais classes, A, B, C, D, E. As classes A, B e C apresentam diferentes comprimentos de bit para endereçar um host de uma rede. A classe D é reservada para o "multicasting", enquanto a classe E para uso futuro. Como já mencionado o IPv4 usa um endereçamento de 32 bits, um exemplo de IPv4 é "158.80.164.3', envolve quatro octetos de 8 bits cada resultando nos 32 bits de estrutura. Binariamente temos, 10011110.01010000.10100100.00000011, abaixo o formato do datagrama do protocolo de internet.

32 bits							
Versão	Comprimento do cabeçalho	Tipo de serviço	Comprimento do datagrama (bytes)				
Identificador de 16 bits		Flags	Deslocamento de fragmentação (13 bits)				
Tem	Tempo de vida Protocolo da camada superior		Soma de verificação do cabeçalho				
Endereço IP da origem							
Endereço IP do destino							
Opções (se houver)							
Dados							

Número da versão: Quatro bits que especificam a versão do protocolo IP do programa, ao examinar o nº da versão, o roteador pode determinar como interpretar o restante do datagrama;

Comprimento do cabeçalho: Quatro bits que determinam onde os dados de fato começam;

Tipo de serviço: Os bits do tipo de serviço para diferenciar o serviço fornecido pelo administrador do roteador;

Comprimento do datagrama: É o comprimento total do datagrama IP;

Identificador, flags, deslocamento de fragmentação: Funções auxiliares;

Tempo de vida: É o TTL (time-to-live) para que os datagramas não fiquem circulando na rede infinitamente:

Protocolo: Usado quando o datagrama chega ao destino final, indicando o protocolo da camada de transporte (TCP, UDP);

Soma de verificação de cabeçalho: Auxilio na detecção de erros de bits;

Endereço IP da origem e destino: Hosts de origem e destino;

Opções: Extensão do datagrama;

Dados: O campo mais importante, os dados que estão sendo transferidos de

host pra host.

O QUE É MÁSCARA DE REDE

A máscara de rede ou máscara de sub-rede, tem como finalidade mascarar uma parte do endereço IP. Sendo assim, todo endereço IP tem uma máscara correspondente, servindo para identificar qual parte do endereço é da rede e qual é do host. O objetivo é dividir a rede em menores sub-redes para aprimorar a performance, segurança e organização, realizando a divisão de um grande endereço IP em várias redes menores. Vamos imaginar uma empresa com muitos funcionários, de diferentes cargos e responsabilidades, usando a mesma rede, tais cargos apresentam acessos diferentes a dados e informações dos projetos dessa empresa. Controlar quem pode ou não acessar tais dados parece ser uma tarefa complicada, porém temos as sub-redes, que permitem separar a rede principal da empresa em redes menores, como uma árvore (estrutura de dados). O nó mais acima é a rede completa da empresa, e as ramificações as sub-redes, logo as diferentes máquinas (com IP's únicos) podem ser controladas pelo administrador da rede, aumento a segurança, controle e fluidez dos dados transmitidos.

O QUE É GATEWAY

O termo 'Gateway' em redes de computadores significa a ponte de ligação da conexão de um dispositivo com a internet. Age com o objetivo de obter as informações requeridas previamente pelo usuário (host), através do acesso nas páginas da internet ou aplicativos de celular.

O Gateway organiza o tráfego entre os IP's e a rede de internet, decodificando pacotes de dados e protegendo informações de ambos os lados (origem e destino). Imagine que a máquina de IP 199.000.123.0.1 deseja estabelecer conexão através de uma rede de internet com outra máquina de IP

132.133.666.0.2. Como os endereços são diferentes, não é possível um tenha acesso direto às informações do outro. Ai que entra o Gateway, ele codifica a informação fornecida por um dos IP's e envia um pacote para a rede, com isso, o outro IP pode encontrar tal pacote que será baixado e decodificado pelo Gateway do outro "lado", para então ser acessado por esse outro endereço. O Gateway se trata mais de um conceito do que de uma ferramenta em si, existem diferentes tipos de Gateway que realizam mais ou menos funções.

CLASSE FULL

Categoriza os endereços IP em cinco sub-classes principais: A, B, C, D e E. O A aloca os primeiros 8 bits para a rede e os bits restantes para o host, o B aloca os primeiros 16 bits para a rede e os bits restante para o host, o C aloca os primeiros 24 bits para a rede e os bits restantes paro o host, o D não apresenta ID de rede nem de host, sendo usado para 'multicasting', por fim o E também não possui ID de rede nem de host, reservando seus endereços para o "futuro".

Ao ler o primeiro octeto, podemos determinar a classe de um endereço ao qual ele pertencente:

Classes de endereços IP							
Classe de endereço	Primeiro intervalo do octeto (decimal)	Primeiros bits do octeto (os bits verdes não mudam)	Porções Rede (N) e Host (H) do endereço	Máscara de padrão (dec binária)			
A	1-127**	00000000-01111111	N.H.H.H	255.0.0.0			
В	128-191	10 000000- 10 111111	N.N.H.H	255.255.0.0			
С	192-223	110 00000- 110 11111	N.N.N.H	255.255.255.			
D	224-239	1110 0000 -1110 1111	NA (multicast)				
Е	240-255	11110000-11111111	NA (experimental)				

Como visto acima os IP's podem ser divididos em duas partes:

- ID de rede
- ID de host

Ao aprofundar nas classes a quantidade de bytes reservados para o ID de rede aumenta e para o ID de host diminui. Existem alguns problemas ao utilizar o método de endereçamento class-full, pois milhões de endereços classe A são desperdiçados, assim como na classe B. Já a classe C é tão pequena que para algumas organizações não é suportada, a classe D, usada para 'multicasting',

está disponível em apenas um bloco único e a E reservada. Após analisarem tais limitações, o endereçamento class-full foi substituído pelo CIDR (Roteamento Entre Domínios Sem Classes).

BIBLIOGRAFIA

BABATUNDE, Olabenjo; AL-DEBAGY, Omar. A comparative review of internet protocol version 4 (ipv4) and internet protocol version 6 (ipv6). **arXiv preprint arXiv:1407.2717**, 2014.

Kurose, James F. Computer networking: A top-down approach featuring the internet, 3/E. Pearson Education India, 2005.

BEZERRA, Romildo Martins; REDES DE COMPUTADORES, I. I. A Camada de Rede. 2008.

TANENBAUM, A. S. – Redes de Computadores – 4ª Ed., Editora Campus (Elsevier), 2003.

Notas de aula do professor Ronaldo Toshiaki Oikawa durante a disciplina de Redes de Computadores II – 2021 – UNESP.