iscreta 2-18/2-19

TESTE MODELO (1) FUNÇÕES GERADORAS (17) crianges Geopos exs 3) adultos/grupos Pa + Por adulto pelo meuos máxico de (7) manipular p/ obter somatorio criancas Pa(z) = (20+25+26+28)3 = (24(20+2+22+23))3 = (24 × 24-1)3= $\left(\frac{1}{2^{4}} \times \frac{1-2^{4}}{1-2}\right)^{3} = \left(2^{4}-2^{8}\right)^{3} \lambda \left(\frac{1}{1-2}\right)^{3} = \left(2^{4}-2^{8}\right)^{3} \times \frac{1}{(1-2)^{3}}$ Somotorio Ginomic Newton $+\infty$ $(2^{4}-28)^{3}\times\sum_{k=1}^{\infty}(k+2)^{2k}$ Encoutrar 2 17 (zu-28)3 (3)(20)3(-28)0 - (3) 212 x (-28)° x (7) 25 4712 n=1 $(\frac{3}{4})(\frac{2}{4})^{2}x(-\frac{1}{4}) \longrightarrow -(\frac{3}{4})\frac{1}{2}x\frac{1}{2}x\frac{1}{2}$ L7216 (3) x(2) 213 - (3)(3) 213 $((\frac{3}{6}) \times (\frac{1}{2}) - (\frac{3}{1})(\frac{3}{2})) z^{17} =$ $=(1 \times 21 - 3 \times 3) = 12$

2) CONCEITOS ELEMENTARES SOBRE GRAFOS, GRAFOS CULERIANOS E ATRAVESSÁVEIS, GRAFOS PLANARES, RELACIONAMENTOS ESTÁVEIS, LABIRINTOS, ARVORES DE COBERTURA MÍNIMA E ORJENTAÇÃO DE GRAFOS

CONCEITOS ELEMENTARES SOBRE GRAFOS

(1) A soma dos gravs dos vértices de G é sempre par e é igual ao dobro do número de anestous.

② se n é o número de vértices de gran impar entat n é par.

Gropo 2 ex 1a)

Coura dos Grans é sempre par (1), Cogo a soma dos grans impares ten de ser par. Cours ne têm gran mepan e a sousa de impanes so é par se o n° de elementos da source for par => " ten de ser une no par Hou ceja, teu de ser multiplo de 4.

(ten de sen do tipo 2n > (in) = 2n

Grupo 2 en 16) 15 arustas népar 7 granz n é impar > gran 3 n=?

1 Soma dos grans é par = 2x 15= 30

$$2 \times \frac{n}{2} + 3 \times \frac{n}{2} = 300$$
 $n + 3n = 300$ $\frac{5}{2}n = 300$

GRAFOS EULERIANOS E ATRAVESSÁVETS

ATALHO Se não repete apestas i

GRAFO CONERO | Existe um caminho (V1,..., Vn) quais que seram os vértices une Vn do multigrafo/grafo;

CRAFO ATRAVESSAVEL Quando tem um atalho abersto que tem todas as arestas e todos os vértices:

GRAFO EULERIANO! Quando tem um atalho fechado que tem todas as arestas e todos os

TEOREMA 1 6 é entersiano se todos os vértias tem le conero de gran pari 26 é atravessavel sse existem exatamente dois vértices com grav

Conero

2 véntius de gravimpar: Ce H La grafo atravessaivei

Transformar en grafo enteriano: cadicionar austaj * anesta que liga Ce H

fazer atalhos fedrados (a únicio do novo atalho ten de

1 < 8, * , H, DE, B, F. 6, C> 3 (0, 10, 5, R) 4. KO, H, D, N> 5. 45, E, A, B, E, F, J, J>

3. Joutar: < H.D.C.B.F.G. H.L.P.O.L. K.O.N.M.I.E.A.B.E.F.J.I.N.J.K.

GRAFOS PLANARES

Podem desenhan-se no plano de modo a que as anestas se intereten apenas nos vértices:

NÃO PLANAR Tou como subgrafo K3,3 ou k5:

FÉRMULA EULER p véntices / q anestas/ n negioes => p-q+n=Z/

TEOREMA Se G é commo e plano entao q = 3p-6, e p > 3.

emprimo as regras do agreramo de memoria, 6 grafo exatamente duas vezes, uma em cada scutido.

Pode continuar-se fana roltan ao início

ÁRVORES DE COBERTURA MÍNIMA

ÁRVOCE Grafo comero sem ciclos;

ALGORITHE DE KRUSKAL

- Acrescentar as de menor valor;
- 2 Contar as que criam ciclos fechados i

TERUSKAL

custo 1 CUSTO 8 CUSTO 10

GRAFOS ORIENTADOS

TEOREMA DE ROBINS Um grafo é fortemente orientavel se esó se não tem pontes.

MK

1° atalho ZCTXPHDFRAZ CBX PH BDC 3° atalho ACR 4º atalho

3) ALGORITMO DE DIJKSTRA

Trajetória: < M, R, C, D, P, K>

Custo: 23

ARESTAS	CUSTOS		
MA	47 X		
MR	g V3		
MR MF	6/2		
FH	23		
FR	914		
FX	1415		
RC	111		
RO	20X		
CA	16/1		
CD	1445		
DP	19/10		
DK	18 18		
DH			
XH	18 X9		
×B	24		
AU	24		
HE	28		
HB	25		
PR	23V		
0:1	27		

FOLD- FULKERSON

DE FORD - FULKERSONIA

f: funo nulo eu R

existe trajetória 0 = < s, ..., t> na rude incremental de f 1 nais

FIM

f: = incremento de feu Q

TEOREMA DO FLUXO. MÁXIMO COME-MINIMO SEJam f un fluxo e «VE. Ve» um corte numa rede capacitada, se val(f) = cap(vs, Vt), então o fluxo é mánimo e o conte é mínimo. conte (no fim)

GRUPO 4

Q1= <5, R, t> 101 = 10 Qz = <s, R, B, t7 102=5 Q3 = < S, H, X, M, K, t> 403 = 9 94= <5,C,D,x,B, t> AQu= 7 05 = <5, C, H, x, R, B, t> AO5 = 4 Q6= (5, C, D, 17, R, B, t) 106-3

(S,C) + (S,H) + (S,R)= 14+9 +15=38

Possivel Conte : {(s, R), (H, x), (C, D)}

AUTOMATO FINITO DETERMINÍSTICO, AUTOMATO FINITO NÃO DETERMINÍSTICO, ESPECIFICAÇÃO DE GRAMATICAS, CONVERSAD DE AFND EM AFD, LEMA DA BUMBAGEM

ALGABETO Conjunto Pinito; 2

FALAVRA sequência de cómbolos do alfabeto; E and

LINGUAGEM Conjunto a palavras sobre o alfabeto: 5*

LINGUAGEM RECONHECIDA A linguagem reconhecida por un afd D é a conjunto de toda

LINGUAGEM REGULAR Uma linguagem L diz-se regular se existe um afd que a reconhece, isso é, existe un afet que accita todas as palarras de L e apenas essas.

recheral Não existe afd que acute todas as palavras cobre la, b) do tipo a"b", n 6 M1 e apenas essas, isto é, a linguagen sobre {a,b} das palavras do tipo

GRUPO 5 ex 1

AUTOMATOS FINITOS NÃO DETERMINÍSTICOS

AFNO

Autóniato p/linguagen que aceita a en antepanático

ESPECIFICAÇÃO DE GRAHÁTICAS

GRUPOS ex 2

CONVERSÃO DE AFND EM AFD

1 (x E) Eliminação dos movimentos E:

- 1 manter estado inicial e transições vão E
- 2 & 9 -... (2), eutato (9)
- 3. ligações E: q ... q' ax P, entaõ

To the second	0 0		1 - Est. ficus
2 Elivin	1		
	_ a	Ь	C
1903	[91, 93, 3	591,9211	[91,943
{91,93}	[91,9343	{91,924}	[94,94]
[94,923	8913	[91,9213	1913
[91,9u}	fa1,943	[91,9213	591,933
[913	6913	[91,923	1 8913

of pode thansformar se en automato #

LEHA DA BOMBAGEM

Grupo 5 en 3a)

Uma linguager regular é uma linguagem que actita todas as suas palaveas e apenas essas L = a k b k a k b k, k e in

Supando que Lé regular, verifica o Lema da Bombagem: Séa k e 111, o comprimento da bombagem e kta $s = a^kb^ka^kb^k$ $|s| = 4k, \text{ entao } s = 4\beta s, \text{ com: } 1.6 \neq \epsilon \text{ //2.1} \times \beta \text{ | } \leq k \text{ //3.} \times \beta^m s \in L, m \in \mathbb{N}$ entao, por 2, a só tem a's, Cogo β só tem a's, $\beta = a^{\beta}$; $\beta \approx 3$, $(\beta = 0)$, $k \in L$, $k \in \mathbb{N}$ a $k \in \mathbb{N}$ a