

Some Issues Related to Integrating Active Flow Control with Flight Control

David Williams, Illinois Institute Technology

Tim Colonius, California Institute Technology

Gilead Tadmor, Northeastern University

Clancy Rowley, Princeton University

Minnowbrook VI

August 2009

Supported by AFOSR-MURI

Motivation

- Time varying control of C_L is necessary for integrating AFC and Flight Control
 - Gust load alleviation
 - Energy extraction maneuvers
- Lift response to actuation is usually only in the positive direction, so how can C_L be decreased?
- Quasi-steady models of aerodynamic & actuator response quickly become inaccurate ($k>0.1$) in unsteady flow.
- Lift response to actuation has significant time delays that must be accounted for in the controller. How does this affect controller bandwidth?

Unsteady flow wind tunnel experiments

- Unsteady wind tunnel used to obtain
 - Models of lift and actuator dynamics
 - Demonstrate gust suppression experiment

[Click to play animation](#)

filename: 04fixed_alpha_shutter_view.AVI

Open-loop LEV control – steady state conditions

Continuous pulsed-blowing actuation concentrates vorticity at leading edge.

$$F^+ = f_c/U = 1.1$$

$$C_\mu = .0074$$

366

Steady lift enhancement with open-loop control

Gust suppression: quasi-static approach

- Internal micro valves have no proportional control (on/off)
- Need to vary lift (+ other forces/moments) via actuation
- Duty-cycle approach
 - Pulsation frequency: 50 Hz (0.02 s)
 - Actuation period: 0.3 seconds was chosen
- Feed forward compensator

$$U = 5.25 + 0.25 \cos(\omega t) \text{ m/s}$$

$$L' = \frac{\rho S}{2} [C'_L(U_o^2 + 2U_oU' + U'^2) + C_{Lo}(2U_oU' + U'^2)]$$

Zero lift fluct.

$$C'_L = \frac{-2C_{Lo}U'}{U_o + 2U'}$$

$Re=68,000$

**Limit: 0.2 Hz
(not fast enough)**

Use ‘dynamic models’ to obtain faster response

- Principal limitation is the phase lag (time delay) associated with change of lift force relative to
 - Actuator input
 - Unsteady freestream
- Amplitude/phase empirically determined from measured lift response as a function of freestream/actuation modulation frequencies

$$\tau^+ = t_d/t_{\text{conv}} = 5.8 \pm 0.5$$

$$k = \pi f c / U$$

Feed forward control increases time response 5X

369

Further increase in bandwidth by considering actuator transient- pushing for 5 Hz

370

Note: wiggles are
sting vibrations

$$w(k) = C \sum_j K(j) u(k-j)$$

u = input signal

K = kernel (single-pulse response)

C = calibration

w = output signal

Lift response curves similar to results of Woo, et al.
(2008) for 2D airfoil with pulse-combustion actuators

Lift response to 3, 5, & 10 pulses

- Actuator input at fixed pressure
- Pulse duration .017s on/0.017s off
- Convective time c/U 0.04s

Quasi-linear behavior of lift response to actuation

No forcing C_L

↔

INPUT = sequence of 0.017s pulses, 50% dtc used to create square wave pattern as input signal

OUTPUT = convolution between kernel and input

Shift in mean C_L

↔

Black-box model agrees with pulse-response

- System Identification of a ‘black-box’ model (6th order state space) of the separated flow
 - **Impulse response** of black-box model matches single pulse response in experiment
 - **Phase variation** with frequency matches experimental measurements

Summary

- Time varying control of C_L is necessary for integrating AFC and Flight Control
 - Biasing allows for +/- changes in lift
- Time delays associated with actuation are long (~5.8 c/U) and must be included in controllers
- Convolution of input signal with single pulse kernel gives reasonable prediction of lift response

