PCA and t-SNE

2022-04-01

```
# Load Libraries
library(tidyverse)
## Warning: package 'tidyverse' was built under R version 4.1.3
## -- Attaching packages -----
                                   ----- tidyverse 1.3.1 --
                   v purrr 0.3.4
## v ggplot2 3.3.5
## v tibble 3.1.6 v dplyr 1.0.8
## v tidyr 1.2.0 v stringr 1.4.0
## v readr 2.1.2
                    v forcats 0.5.1
## Warning: package 'ggplot2' was built under R version 4.1.3
## Warning: package 'dplyr' was built under R version 4.1.3
## -- Conflicts ----- tidyverse_conflicts() --
## x dplyr::filter() masks stats::filter()
## x dplyr::lag()
                masks stats::lag()
library(moments)
library(heatmaply)
## Warning: package 'heatmaply' was built under R version 4.1.3
## Loading required package: plotly
##
## Attaching package: 'plotly'
## The following object is masked from 'package:ggplot2':
##
##
      last_plot
## The following object is masked from 'package:stats':
##
##
      filter
## The following object is masked from 'package:graphics':
##
##
      layout
```

```
## Loading required package: viridis
## Warning: package 'viridis' was built under R version 4.1.3
## Loading required package: viridisLite
##
## ==========
## Welcome to heatmaply version 1.3.0
##
## Type citation('heatmaply') for how to cite the package.
## Type ?heatmaply for the main documentation.
## The github page is: https://github.com/talgalili/heatmaply/
## Please submit your suggestions and bug-reports at: https://github.com/talgalili/heatmaply/issues
## You may ask questions at stackoverflow, use the r and heatmaply tags:
    https://stackoverflow.com/questions/tagged/heatmaply
## ==========
library(dummies)
## dummies-1.5.6 provided by Decision Patterns
library(FactoMineR)
## Warning: package 'FactoMineR' was built under R version 4.1.3
library(factoextra)
## Warning: package 'factoextra' was built under R version 4.1.3
## Welcome! Want to learn more? See two factoextra-related books at https://goo.gl/ve3WBa
# Import the dataset
smarket <- read.csv("http://bit.ly/CarreFourDataset")</pre>
# Preview the first few rows
head(smarket)
                                                     Product.line Unit.price
##
      Invoice.ID Branch Customer.type Gender
## 1 750-67-8428
                   Α
                             Member Female
                                                Health and beauty
                                                                       74.69
## 2 226-31-3081
                     C
                              Normal Female Electronic accessories
                                                                       15.28
## 3 631-41-3108
                     Α
                              Normal Male
                                               Home and lifestyle
                                                                       46.33
## 4 123-19-1176
                     Α
                              Member Male
                                               Health and beauty
                                                                       58.22
## 5 373-73-7910
                              Normal Male
                                                Sports and travel
                                                                       86.31
                    Α
## 6 699-14-3026
                   C
                              Normal Male Electronic accessories
                                                                       85.39
    Quantity
                 Tax
                         Date Time
                                      Payment cogs gross.margin.percentage
## 1
         7 26.1415 1/5/2019 13:08
                                        Ewallet 522.83
                                                                     4.761905
## 2
          5 3.8200 3/8/2019 10:29
                                           Cash 76.40
                                                                      4.761905
          7 16.2155 3/3/2019 13:23 Credit card 324.31
## 3
                                                                      4.761905
```

```
Ewallet 465.76
## 4
          8 23.2880 1/27/2019 20:33
                                                                   4.761905
                                    Ewallet 604.17
## 5
           7 30.2085 2/8/2019 10:37
                                                                  4.761905
          7 29.8865 3/25/2019 18:30
                                     Ewallet 597.73
## 6
                                                                  4.761905
## gross.income Rating
                         Total
## 1
     26.1415
                   9.1 548.9715
## 2
         3.8200
                   9.6 80.2200
## 3
        16.2155
                 7.4 340.5255
## 4
                  8.4 489.0480
         23.2880
                 5.3 634.3785
## 5
         30.2085
## 6
         29.8865
                 4.1 627.6165
```

Preview the first few rows

tail(smarket)

```
Invoice.ID Branch Customer.type Gender
##
                                                     Product.line Unit.price
## 995 652-49-6720 C
                             Member Female Electronic accessories 60.95
## 996
       233-67-5758
                    С
                             Normal Male Health and beauty
                                                                     40.35
                    В
                             Normal Female
                                              Home and lifestyle
## 997
       303-96-2227
                                                                     97.38
## 998 727-02-1313
                     Α
                             Member Male Food and beverages
                                                                     31.84
## 999 347-56-2442
                     Α
                             Normal Male
                                             Home and lifestyle
                                                                     65.82
                             Member Female Fashion accessories
## 1000 849-09-3807
                      Α
                                                                     88.34
       Quantity
                  Tax
                           Date Time Payment cogs gross.margin.percentage
## 995
         1 3.0475 2/18/2019 11:40 Ewallet 60.95
                                                                 4.761905
## 996
            1 2.0175 1/29/2019 13:46 Ewallet 40.35
                                                                 4.761905
## 997
            10 48.6900 3/2/2019 17:16 Ewallet 973.80
                                                                 4.761905
            1 1.5920 2/9/2019 13:22 Cash 31.84
## 998
                                                                 4.761905
## 999
             1 3.2910 2/22/2019 15:33
                                        Cash 65.82
                                                                 4.761905
             7 30.9190 2/18/2019 13:28
                                        Cash 618.38
## 1000
                                                                 4.761905
       gross.income Rating
                             Total
## 995
       3.0475
                     5.9
                           63.9975
## 996
            2.0175
                     6.2
                          42.3675
## 997
           48.6900
                     4.4 1022.4900
## 998
                     7.7
                           33.4320
            1.5920
                     4.1
## 999
           3.2910
                           69.1110
## 1000
           30.9190
                     6.6 649.2990
```

Check number of records and variables dim(smarket)

[1] 1000 16

Check the datatypes of our dataset glimpse(smarket)

```
## $ Quantity
                             <int> 7, 5, 7, 8, 7, 7, 6, 10, 2, 3, 4, 4, 5, 10, 10~
## $ Tax
                             <dbl> 26.1415, 3.8200, 16.2155, 23.2880, 30.2085, 29~
## $ Date
                             <chr> "1/5/2019", "3/8/2019", "3/3/2019", "1/27/2019~
## $ Time
                             <chr> "13:08", "10:29", "13:23", "20:33", "10:37", "~
                             <chr> "Ewallet", "Cash", "Credit card", "Ewallet", "~
## $ Payment
## $ cogs
                             <dbl> 522.83, 76.40, 324.31, 465.76, 604.17, 597.73,~
## $ gross.margin.percentage <dbl> 4.761905, 4.761905, 4.761905, 4.761905, 4.761905
                             <dbl> 26.1415, 3.8200, 16.2155, 23.2880, 30.2085, 29~
## $ gross.income
## $ Rating
                             <dbl> 9.1, 9.6, 7.4, 8.4, 5.3, 4.1, 5.8, 8.0, 7.2, 5~
## $ Total
                             <dbl> 548.9715, 80.2200, 340.5255, 489.0480, 634.378~
```

Check the summary of our dataset

summary(smarket)

```
Customer.type
##
     Invoice.ID
                          Branch
                                                               Gender
##
   Length: 1000
                      Length: 1000
                                          Length: 1000
                                                             Length: 1000
##
   Class : character
                      Class : character
                                         Class : character
                                                             Class : character
   Mode :character
                      Mode :character
                                         Mode :character
                                                            Mode :character
##
##
##
##
  Product.line
                         Unit.price
                                          Quantity
                                                            Tax
  Length: 1000
                      Min. :10.08
                                            : 1.00
                                                              : 0.5085
                                      Min.
                                                       Min.
                      1st Qu.:32.88
  Class :character
                                      1st Qu.: 3.00
                                                       1st Qu.: 5.9249
  Mode :character
                      Median :55.23
                                      Median: 5.00
                                                       Median :12.0880
##
                                      Mean : 5.51
##
                      Mean
                              :55.67
                                                       Mean
                                                              :15.3794
##
                      3rd Qu.:77.94
                                      3rd Qu.: 8.00
                                                       3rd Qu.:22.4453
##
                      Max.
                             :99.96
                                      Max.
                                             :10.00
                                                       Max.
                                                              :49.6500
##
        Date
                           Time
                                            Payment
                                                                  cogs
##
   Length: 1000
                      Length: 1000
                                         Length: 1000
                                                                  : 10.17
                                                            Min.
   Class : character
                       Class : character
                                         Class : character
                                                             1st Qu.:118.50
   Mode :character
                      Mode :character
                                         Mode :character
                                                             Median :241.76
##
##
                                                             Mean :307.59
##
                                                             3rd Qu.:448.90
##
                                                             Max.
                                                                   :993.00
##
   gross.margin.percentage gross.income
                                                                   Total
                                                  Rating
## Min.
         :4.762
                            Min. : 0.5085
                                                   : 4.000
                                                              Min.
                                                                     : 10.68
                                             Min.
## 1st Qu.:4.762
                            1st Qu.: 5.9249
                                              1st Qu.: 5.500
                                                              1st Qu.: 124.42
## Median :4.762
                           Median :12.0880
                                             Median : 7.000
                                                              Median: 253.85
## Mean :4.762
                            Mean :15.3794
                                             Mean
                                                   : 6.973
                                                              Mean
                                                                     : 322.97
   3rd Qu.:4.762
                                              3rd Qu.: 8.500
                            3rd Qu.:22.4453
                                                               3rd Qu.: 471.35
          :4.762
                           Max. :49.6500
                                                    :10.000
##
   Max.
                                             Max.
                                                              Max.
                                                                      :1042.65
```

Check the column names

names(smarket)

```
##
    [1] "Invoice.ID"
                                   "Branch"
   [3] "Customer.type"
                                   "Gender"
##
  [5] "Product.line"
                                   "Unit.price"
## [7] "Quantity"
                                   "Tax"
## [9] "Date"
                                   "Time"
## [11] "Payment"
                                   "cogs"
## [13] "gross.margin.percentage" "gross.income"
## [15] "Rating"
                                   "Total"
```

Data Cleaning

```
# Let's check for missing values
colSums(is.na(smarket))
```

```
##
                 Invoice.ID
                                              Branch
                                                                Customer.type
##
                                        Product.line
##
                     Gender
                                                                   Unit.price
##
                   Quantity
##
                                                 Tax
                                                                          Date
##
                                                                             0
##
                       Time
                                             Payment
                                                                          cogs
##
## gross.margin.percentage
                                        gross.income
                                                                        Rating
##
                                                                             0
##
                      Total
##
                          0
```

We have no missing values.

```
# Check for duplicate values
sum(duplicated(smarket))
```

[1] 0

We have no duplicate values

```
# Checking for outliers in our numerical variables
boxplot(smarket[, c(6,7)])
```


Checking for outliers in our numerical variables
boxplot(smarket[, c(8,12)])

Checking for outliers in our numerical variables
boxplot(smarket[, c(13,14)])

Checking for outliers in our numerical variables
boxplot(smarket[, c(15,16)])

There is presence of outliers in Tax, Cogs, Gross income and Total Variables

```
# Convert the date column from character datatype to date datatype
smarket$Date <- as.Date(smarket$Date, "%m/%d/%Y")
# Confirm changes made
glimpse(smarket)</pre>
```

```
## Rows: 1,000
## Columns: 16
## $ Invoice.ID
                             <chr> "750-67-8428", "226-31-3081", "631-41-3108", "~
                             <chr> "A", "C", "A", "A", "A", "C", "A", "C", "A", "~
## $ Branch
## $ Customer.type
                             <chr> "Member", "Normal", "Normal", "Member", "Norma~
                             <chr> "Female", "Female", "Male", "Male", "Male", "M~
## $ Gender
                             <chr> "Health and beauty", "Electronic accessories",~
## $ Product.line
## $ Unit.price
                             <dbl> 74.69, 15.28, 46.33, 58.22, 86.31, 85.39, 68.8~
## $ Quantity
                             <int> 7, 5, 7, 8, 7, 7, 6, 10, 2, 3, 4, 4, 5, 10, 10~
## $ Tax
                             <dbl> 26.1415, 3.8200, 16.2155, 23.2880, 30.2085, 29~
## $ Date
                             <date> 2019-01-05, 2019-03-08, 2019-03-03, 2019-01-2~
                             <chr> "13:08", "10:29", "13:23", "20:33", "10:37", "~
## $ Time
                             <chr> "Ewallet", "Cash", "Credit card", "Ewallet", "~
## $ Payment
                             <dbl> 522.83, 76.40, 324.31, 465.76, 604.17, 597.73,~
## $ gross.margin.percentage <dbl> 4.761905, 4.761905, 4.761905, 4.761905, 4.761905
## $ gross.income
                             <dbl> 26.1415, 3.8200, 16.2155, 23.2880, 30.2085, 29~
## $ Rating
                             <dbl> 9.1, 9.6, 7.4, 8.4, 5.3, 4.1, 5.8, 8.0, 7.2, 5~
## $ Total
                             <dbl> 548.9715, 80.2200, 340.5255, 489.0480, 634.378~
```

```
# We will extract month from the date column
smarket$Month<- format(smarket$Date, "%m")
head(smarket)</pre>
```

Normal Female Electronic accessories

Member Female

Product.line Unit.price

Health and beauty

74.69

15.28

Invoice.ID Branch Customer.type Gender

Α

smarket\$Month[smarket\$Month == "03"] <- "March"</pre>

1 750-67-8428

2 226-31-3081

```
Α
## 3 631-41-3108
                              Normal
                                       Male
                                                Home and lifestyle
                                                                         46.33
## 4 123-19-1176
                    Α
                              Member
                                       Male
                                                 Health and beauty
                                                                         58.22
## 5 373-73-7910
                     Α
                              Normal
                                       Male
                                                  Sports and travel
                                                                         86.31
## 6 699-14-3026
                     С
                              Normal Male Electronic accessories
                                                                        85.39
    Quantity
                 Tax
                           Date Time
                                          Payment cogs gross.margin.percentage
## 1
           7 26.1415 2019-01-05 13:08
                                          Ewallet 522.83
                                                                        4.761905
## 2
           5 3.8200 2019-03-08 10:29
                                             Cash 76.40
                                                                        4.761905
## 3
          7 16.2155 2019-03-03 13:23 Credit card 324.31
                                                                        4.761905
## 4
           8 23.2880 2019-01-27 20:33
                                          Ewallet 465.76
                                                                        4.761905
## 5
           7 30.2085 2019-02-08 10:37
                                          Ewallet 604.17
                                                                        4.761905
## 6
           7 29.8865 2019-03-25 18:30
                                          Ewallet 597.73
                                                                        4.761905
    gross.income Rating
                           Total Month
## 1
        26.1415
                    9.1 548.9715
## 2
          3.8200
                    9.6 80.2200
                                     03
## 3
         16.2155
                  7.4 340.5255
## 4
         23.2880
                    8.4 489.0480
                                     01
## 5
         30.2085
                    5.3 634.3785
                                     02
## 6
         29.8865
                    4.1 627.6165
# Replace the numbers in months with the name of the month
smarket$Month[smarket$Month == "01"] <- "January"</pre>
smarket$Month[smarket$Month == "02"] <- "February"</pre>
```

Univariate Analysis

```
# Bar chart on revenue
gg.1 <- ggplot (data = smarket, aes(x= Branch)) +
  geom_bar(fill = "cornflowerblue")
gg.1 + ggtitle("Bar chart on Branch")</pre>
```

Bar chart on Branch

The number of branches in our data are not too different from each other

```
# Bar Chart on Customer Type
gg.2 <- ggplot (data = smarket, aes(x= Customer.type)) +
  geom_bar(fill = "cornflowerblue")
gg.2 + ggtitle("Bar chart on Customer Type")</pre>
```


There isn't a big difference in the number of member and normal customers

```
# Bar Chart on Gender
gg.3 <- ggplot (data = smarket, aes(x= Gender)) +
  geom_bar(fill = "cornflowerblue")
gg.3 + ggtitle("Bar chart on Gender")</pre>
```

Bar chart on Gender

There isn't a big difference in the number of male and female customers

```
# Bar Chart on Product Line
gg.4 <- ggplot (data = smarket, aes(x= Product.line)) +
  geom_bar(fill = "cornflowerblue") + theme(axis.text.x = element_text(
          angle = 90, vjust = .5, hjust = 1
     ))
gg.4 + ggtitle("Bar chart on Product Line")</pre>
```

Bar chart on Product Line

Fashion accessories is the most popular product followed closely by food and beverages

```
# Bar Chart on Payment
gg.5 <- ggplot (data = smarket, aes(x= Payment)) +
geom_bar(fill = "cornflowerblue")
gg.5 + ggtitle("Bar chart on Payment")</pre>
```

Bar chart on Payment

There is no big difference in the number of customers who paid via Ewallet and cash

```
# Bar Chart on Month
gg.6<- ggplot (data = smarket, aes(x= Month)) +
  geom_bar(fill = "cornflowerblue")
gg.6 + ggtitle("Bar chart on Month")</pre>
```

Bar chart on Month

January had the most transactions followed closely by March

```
# Frequency chart on Unit price
freq.1 <- table(smarket$Unit.price)</pre>
head(sort(freq.1, decreasing = T))
##
## 83.77
         15.5 15.8 18.08 19.15 20.01
                   2
                         2
       3
             2
# Frequency chart on Quantity
freq.2 <- table(smarket$Quantity)</pre>
head(sort(freq.2, decreasing = T))
##
##
             4 5 7
                         6
  10
         1
## 119 112 109 102 102 98
# Frequency chart on Tax
freq.3 <- table(smarket$Tax)</pre>
head(sort(freq.3, decreasing = T),n=15)
##
##
     4.154
             4.464
                     8.377
                            9.0045
                                    10.326 10.3635
                                                       12.57
                                                              13.188
                                                                                39.48
##
         2
                         2
                                  2
                                          2
                                                  2
```

```
0.5085 0.6045
                     0.627
                              0.639
                                      0.699
##
         1
                 1
                          1
# Frequency chart on cogs
freq.4 <- table(smarket$cogs)</pre>
head(sort(freq.4, decreasing = T), n=15)
##
##
    83.08 89.28 167.54 180.09 206.52 207.27 251.4 263.76 448.56 789.6 10.17
##
               2
                      2
                              2
                                     2
                                            2
                                                    2
                                                           2
                                                                  2
        2
                                                                          2
          12.54 12.78 13.98
    12.09
##
        1
               1
                      1
# Frequency chart on gross margin percentage
freq.5 <- table(smarket$gross.margin.percentage)</pre>
head(sort(freq.5, decreasing = T))
## 4.761904762
          1000
# Frequency chart on Rating
freq.5 <- table(smarket$Rating)</pre>
head(sort(freq.5, decreasing = T))
##
##
     6 6.6 4.2 9.5
                     5 5.1
    26 24 22 22 21 21
# Frequency chart on Gross Income
freq.5 <- table(smarket$gross.income)</pre>
head(sort(freq.5, decreasing = T), n=10)
##
     4.154
             4.464
                     8.377 9.0045 10.326 10.3635
                                                       12.57 13.188
                                                                       22.428
                                                                                39.48
##
##
         2
                 2
                          2
                                  2
                                          2
                                                   2
                                                           2
                                                                    2
                                                                            2
                                                                                    2
# Frequency chart on Total
freq.5 <- table(smarket$Total)</pre>
head(sort(freq.5, decreasing = T), n=15)
##
##
     87.234
              93.744 175.917 189.0945 216.846 217.6335
                                                             263.97
                                                                     276.948
##
                             2
                                                2
                                                                  2
                                                                            2
          2
                   2
                                      2
                                                         2
##
    470.988
              829.08
                      10.6785
                               12.6945
                                          13.167
                                                    13.419
                                                             14.679
##
          2
                   2
                             1
                                      1
                                                1
                                                         1
                                                                  1
# Identify the mean, median, min, max and quantile of our numerical variables
summary(smarket[,c(6:8,12:16)])
```

```
Quantity
##
     Unit.price
                                      Tax
                                                      cogs
         :10.08 Min. : 1.00 Min. : 0.5085 Min. : 10.17
## Min.
  1st Qu.:32.88 1st Qu.: 3.00
                                 1st Qu.: 5.9249 1st Qu.:118.50
## Median: 55.23 Median: 5.00 Median: 12.0880 Median: 241.76
                                                        :307.59
## Mean :55.67
                  Mean : 5.51 Mean : 15.3794 Mean
## 3rd Qu.:77.94
                  3rd Qu.: 8.00
                                 3rd Qu.:22.4453
                                                  3rd Qu.:448.90
        :99.96
                  Max. :10.00 Max. :49.6500 Max. :993.00
##
   gross.margin.percentage gross.income
                                              Rating
                                                              Total
## Min.
          :4.762
                         Min.
                                : 0.5085 Min. : 4.000 Min. : 10.68
## 1st Qu.:4.762
                         1st Qu.: 5.9249
                                          1st Qu.: 5.500 1st Qu.: 124.42
## Median :4.762
                         Median: 12.0880 Median: 7.000 Median: 253.85
                         Mean :15.3794
## Mean :4.762
                                          Mean : 6.973 Mean : 322.97
                                          3rd Qu.: 8.500 3rd Qu.: 471.35
## 3rd Qu.:4.762
                          3rd Qu.:22.4453
## Max. :4.762
                         Max. :49.6500 Max. :10.000 Max. :1042.65
# We'll also check the mode of our numerical variables
mode <- function(x) {</pre>
 u <- unique(x)
 tab <- tabulate(match(x, u))</pre>
 u[tab == max(tab)]
}
print("Mode of unit price is:")
## [1] "Mode of unit price is:"
mode(smarket$Unit.price)
## [1] 83.77
print("Mode of tax is:")
## [1] "Mode of tax is:"
mode(smarket$Tax)
## [1] 39.4800 9.0045 10.3260 12.5700 10.3635 13.1880 4.1540 8.3770 22.4280
## [10] 4.4640
print("Mode of COGS is:")
## [1] "Mode of COGS is:"
mode(smarket$cogs)
```

[1] 789.60 180.09 206.52 251.40 207.27 263.76 83.08 167.54 448.56 89.28

```
print("Mode of gross margin percentage is:")
## [1] "Mode of gross margin percentage is:"
mode(smarket$gross.margin.percentage)
## [1] 4.761905
print("Mode of Gross income:")
## [1] "Mode of Gross income:"
mode(smarket$gross.income)
## [1] 39.4800 9.0045 10.3260 12.5700 10.3635 13.1880 4.1540 8.3770 22.4280
## [10] 4.4640
print("Mode of Rating is:")
## [1] "Mode of Rating is:"
mode(smarket$Rating)
## [1] 6
print("Mode of Total is:")
## [1] "Mode of Total is:"
mode(smarket$Total)
## [1] 829.0800 189.0945 216.8460 263.9700 217.6335 276.9480 87.2340 175.9170
## [9] 470.9880 93.7440
# Check the variance of our numerical variables
print("Variance of unit price is:")
## [1] "Variance of unit price is:"
var(smarket$Unit.price)
## [1] 701.9653
```

```
print("Variance of tax is:")
## [1] "Variance of tax is:"
var(smarket$Tax)
## [1] 137.0966
print("Variance of COGS is:")
## [1] "Variance of COGS is:"
var(smarket$cogs)
## [1] 54838.64
print("Variance of gross margin percentage is:")
## [1] "Variance of gross margin percentage is:"
var(smarket$gross.margin.percentage)
## [1] 0
print("Variance of Gross income:")
## [1] "Variance of Gross income:"
var(smarket$gross.income)
## [1] 137.0966
print("Variance of Rating is:")
## [1] "Variance of Rating is:"
var(smarket$Rating)
## [1] 2.953518
print("Variance of Total is:")
## [1] "Variance of Total is:"
```

```
var(smarket$Total)
## [1] 60459.6
# Check the skewness of our variables
print("The skewness of our variables:")
## [1] "The skewness of our variables:"
sapply(smarket[,c(6:8,12:16)],skewness)
##
                Unit.price
                                           Quantity
                                                                         Tax
               0.007066827
                                                                 0.891230392
##
                                        0.012921628
##
                      cogs gross.margin.percentage
                                                                gross.income
##
               0.891230392
                                                                 0.891230392
##
                                              Total
                    Rating
##
               0.008996129
                                        0.891230392
# Check the kurtosis of our variables
print("The kurtosis of our variables:")
## [1] "The kurtosis of our variables:"
sapply(smarket[,c(6:8,12:16)],kurtosis)
##
                Unit.price
                                           Quantity
                                                                         Tax
##
                  1.781499
                                           1.784528
                                                                    2.912530
##
                      cogs gross.margin.percentage
                                                                gross.income
                                                                    2.912530
##
                  2.912530
                                                NaN
                                              Total
##
                    Rating
                                           2.912530
##
                  1.848169
Our numerical variables do not have heavy tails
# Plot histograms of our numeric variables
par(mfcol=c(2,2))
hist(smarket$Unit.price, col = "cornflowerblue", main = "Unit Price")
hist(smarket$Quantity, col = "cornflowerblue",
     main = "Quantity")
hist(smarket$Tax, col = "cornflowerblue", main="Tax")
```

hist(smarket\$cogs, col = "cornflowerblue",

main ="COGS")


```
# Plot histograms of our numeric variables
par(mfcol=c(2,2))
hist(smarket$gross.margin.percentage, col = "cornflowerblue", main = "Gross
    margin percentage")
hist(smarket$gross.income, col = "cornflowerblue",
    main = "Gross Income")
hist(smarket$Rating, col = "cornflowerblue", main="Rating")
hist(smarket$Total, col = "cornflowerblue",
    main = "Total")
```


Unit price quantity and Rating are symmetrical and the rest are moderately skewed.

Bivariate Analysis

gross.margin.percentage

```
# Assess the correlation of our numerical variables
cor(smarket[,c(6:8,12:16)])
## Warning in cor(smarket[, c(6:8, 12:16)]): the standard deviation is zero
##
                             Unit.price
                                            Quantity
                                                             Tax
                                                                       cogs
                                          0.01077756
## Unit.price
                             1.00000000
                                                      0.6339621
                                                                  0.6339621
## Quantity
                             0.010777564
                                          1.00000000
                                                      0.7055102
                                                                  0.7055102
## Tax
                             0.633962089
                                          0.70551019
                                                      1.0000000
                                                                  1.0000000
                                                      1.0000000
## cogs
                             0.633962089
                                          0.70551019
                                                                  1.0000000
## gross.margin.percentage
                                      NA
                                                  NA
                                                              NA
## gross.income
                             0.633962089
                                          0.70551019
                                                      1.0000000
                                                                  1.0000000
## Rating
                            -0.008777507 -0.01581490 -0.0364417 -0.0364417
## Total
                                         0.70551019
                                                                  1.0000000
                            0.633962089
                                                      1.0000000
##
                           gross.margin.percentage gross.income
                                                                        Rating
## Unit.price
                                                 NA
                                                       0.6339621 -0.008777507
## Quantity
                                                 NA
                                                       0.7055102 -0.015814905
## Tax
                                                 NA
                                                       1.0000000 -0.036441705
## cogs
                                                 NA
                                                       1.0000000 -0.036441705
```

1

NA

NA

```
## gross.income
                                                 NA
                                                        1.0000000 -0.036441705
## Rating
                                                       -0.0364417 1.000000000
                                                 NΑ
## Total
                                                 NA
                                                        1.0000000 -0.036441705
##
                                 Total
## Unit.price
                             0.6339621
## Quantity
                             0.7055102
## Tax
                             1.0000000
                             1.0000000
## cogs
## gross.margin.percentage
                                    NA
## gross.income
                             1.000000
## Rating
                            -0.0364417
## Total
                             1.000000
```

Check for correlation without the gross.margin.percentage cor(smarket[,c(6:8,12,14,15,16)])

```
##
                  Unit.price
                                Quantity
                                                 Tax
                                                           cogs gross.income
## Unit.price
                 1.000000000
                              0.01077756 0.6339621 0.6339621
                                                                   0.6339621
## Quantity
                 0.010777564
                              1.00000000
                                          0.7055102 0.7055102
                                                                   0.7055102
                                          1.0000000 1.0000000
## Tax
                 0.633962089
                              0.70551019
                                                                   1.0000000
## cogs
                 0.633962089
                              0.70551019
                                          1.0000000 1.0000000
                                                                   1.0000000
## gross.income 0.633962089 0.70551019 1.0000000 1.0000000
                                                                   1.0000000
## Rating
                -0.008777507 -0.01581490 -0.0364417 -0.0364417
                                                                  -0.0364417
## Total
                 0.633962089 \quad 0.70551019 \quad 1.0000000 \quad 1.0000000
                                                                   1.0000000
##
                      Rating
                                  Total
                -0.008777507
                              0.6339621
## Unit.price
## Quantity
                -0.015814905
                              0.7055102
## Tax
                -0.036441705
                              1.0000000
## cogs
                -0.036441705 1.0000000
## gross.income -0.036441705 1.0000000
## Rating
                 1.000000000 -0.0364417
## Total
                -0.036441705 1.0000000
```

There is a strong positive correlation between quantity and Tax ,cog, Gross income and total Which makes sense because Quantity is used in the calculation of these variables

There's a weak negative correlation between Rating and Tax ,cog, Gross income and total


```
# Plot a pairplot
pairs(smarket[,c(6:8,12,14:16)])
```


Bar Chart of Branch vs Total

The branch with the highest number of sales is ${\bf c}$

Bar chart of Payment vs Total

The Payment method with the highest number of sales is cash

Member customer type have the highest number of sales

Bar chart of Gender vs Total

Female customers have highest number of sales

```
# Bar chart of Product line vs Total
agg_5 <- aggregate(smarket$Total,list(smarket$Product.line),sum)</pre>
agg_5
##
                    Group.1
                                   х
## 1 Electronic accessories 54337.53
        Fashion accessories 54305.89
## 3
         Food and beverages 56144.84
## 4
          Health and beauty 49193.74
## 5
         Home and lifestyle 53861.91
          Sports and travel 55122.83
gg.agg <- ggplot (data = agg_5, aes(x=Group.1, y=x)) +
  geom_col(fill = "cornflowerblue") + theme(axis.text.x = element_text(
   angle = 90, vjust =.5, hjust = 1
  )) + labs(y="Total", x="Product line")+ggtitle("Bar chart of Product line vs Total")
gg.agg + ggtitle("Bar chart on Product Line")
```

Bar chart on Product Line

Food and beverages have the highest number of sales

Bar chart of Month vs Total

January is the month with the highest number of sales

Data Preprocessing

```
# We will start with converting our categorical data to numerical data type
# Convert our variables to factor datatype
final.market <- smarket
final.market$Branch<- as.factor(final.market$Branch)
final.market$Product.line <- as.factor(final.market$Product.line)
final.market$Month <- as.factor(final.market$Month)
final.market$Customer.type <- as.factor(final.market$Customer.type)
final.market$Gender <- as.factor(final.market$Gender)
final.market$Payment<- as.factor(final.market$Payment)</pre>
```

```
# Convert our variables from factor to numeric datatype
final.market$Branch<- as.numeric(final.market$Branch)
final.market$Product.line <- as.numeric(final.market$Product.line)
final.market$Month <- as.numeric(final.market$Month)
final.market$Customer.type <- as.numeric(final.market$Customer.type)
final.market$Gender <- as.numeric(final.market$Gender)
final.market$Payment<- as.numeric(final.market$Payment)</pre>
```

Confirm changes made head(final.market)

```
Invoice.ID Branch Customer.type Gender Product.line Unit.price Quantity
## 1 750-67-8428
                                   1
                      1
                                           1
                                    2
## 2 226-31-3081
                      3
                                           1
                                                        1
                                                                15.28
                                                                             5
## 3 631-41-3108
                                                        5
                                                                46.33
                                                                             7
                      1
                                    2
                                           2
## 4 123-19-1176
                                           2
                                                        4
                                                                58.22
                                                                             8
                                    1
                      1
## 5 373-73-7910
                                                                86.31
                                                                             7
                      1
## 6 699-14-3026
                                    2
                                           2
                                                                85.39
                                                                             7
                      3
                                                        1
         Tax
                   Date Time Payment
                                       cogs gross.margin.percentage gross.income
## 1 26.1415 2019-01-05 13:08
                                    3 522.83
                                                            4.761905
                                                                           26.1415
## 2 3.8200 2019-03-08 10:29
                                    1 76.40
                                                             4.761905
                                                                            3.8200
## 3 16.2155 2019-03-03 13:23
                                    2 324.31
                                                             4.761905
                                                                           16.2155
## 4 23.2880 2019-01-27 20:33
                                    3 465.76
                                                            4.761905
                                                                           23.2880
## 5 30.2085 2019-02-08 10:37
                                    3 604.17
                                                            4.761905
                                                                           30.2085
## 6 29.8865 2019-03-25 18:30
                                    3 597.73
                                                            4.761905
                                                                           29.8865
    Rating
               Total Month
        9.1 548.9715
## 1
## 2
        9.6 80.2200
## 3
       7.4 340.5255
                         3
       8.4 489.0480
## 5
       5.3 634.3785
                         1
## 6
        4.1 627.6165
# We will carry out our analysis without invoive variable because it's a
# unique variables, gross.margin.percentage varible only has one value hence
# O variance, instead of using the date and time variable we will use month
```

```
Branch Customer.type Gender Product.line Unit.price Quantity
##
                                                                         Tax Payment
## 1
                        1
                                             4
                                                     74.69
                                                                   7 26.1415
## 2
          3
                         2
                                              1
                                                     15.28
                                                                   5 3.8200
                                                                                    1
                                1
                                2
## 3
                         2
                                              5
                                                     46.33
                                                                   7 16.2155
                                                                                    2
## 4
                                2
                                              4
                                                     58.22
                                                                   8 23.2880
                                                                                    3
                         1
          1
## 5
                                                     86.31
                                                                   7 30.2085
                                2
                                                     85.39
                                                                   7 29.8865
## 6
          3
                         2
                                                                                    3
                                              1
       cogs gross.income Rating
                                    Total Month
```

```
## 1 522.83
                 26.1415
                            9.1 548.9715
## 2 76.40
                  3.8200
                            9.6 80.2200
## 3 324.31
                            7.4 340.5255
                 16.2155
                                             3
## 4 465.76
                 23.2880
                            8.4 489.0480
                                             2
## 5 604.17
                            5.3 634.3785
                 30.2085
                                             1
## 6 597.73
                 29.8865
                            4.1 627.6165
```

final \leftarrow final.market[,c(-1,-9,-10,-13)]

Performing PCA

View the new dataset

head(final)

```
# We will drop our target variable - Total
pc <- prcomp(final[,-12],</pre>
           center = TRUE,
          scale. = TRUE)
print(pc)
## Standard deviations (1, .., p=12):
  [1] 1.983660e+00 1.090093e+00 1.032622e+00 1.015016e+00 1.002936e+00
  [6] 9.781046e-01 9.692678e-01 9.587693e-01 9.352167e-01 2.903498e-01
## [11] 2.765730e-16 1.102259e-16
##
## Rotation (n x k) = (12 \times 12):
                       PC1
                                  PC2
                                              PC3
                                                         PC4
                                                                     PC5
                0.026774168 -0.456915788 0.068198717 -0.122355947
## Branch
                                                              0.342867825
## Customer.type -0.015653235 0.210938688 0.497527438 -0.527332781 -0.003188021
## Gender
               -0.033921782 0.432326114 0.451928013 0.255674367 0.165085840
## Product.line
               ## Unit.price
## Quantity
                0.364739308 \ -0.003631654 \ -0.247499214 \ -0.415892161 \ -0.249483694
               ## Tax
## Payment
               ## cogs
               ## gross.income 0.502219382 0.015581910 0.017448193 -0.005177041 -0.003152543
## Rating
               -0.021696121 -0.194800583 0.406076613 0.089763920 -0.696333778
## Month
               -0.007745303 0.503983357 -0.112331213 -0.315149727 0.296834072
##
                       PC6
                                  PC7
                                              PC8
                                                          PC9
                                                                    PC10
## Branch
                0.290516084 \ -0.704528997 \ -0.002625143 \ \ 0.269196241 \ \ 0.009823824
## Customer.type -0.244734649 -0.028949152 -0.579934108 0.180378169
                                                              0.006581350
               -0.007070214 -0.003314004 0.481188348 0.532413886 -0.003749010
## Gender
## Product.line -0.351060899 -0.428454215 -0.342893139 0.311798733 0.002578331
## Unit.price
               0.021188780 -0.034313634 -0.265371817 -0.316894873 0.581622373
               -0.024426212 0.049372101 0.259403179 0.283448533 0.647935537
## Quantity
## Tax
               -0.000627059 0.005272838 0.008167088 -0.001355379 -0.283598864
## Payment
               0.811348866 -0.117723572 -0.182603915 -0.048843359 0.001147339
               -0.000627059 0.005272838 0.008167088 -0.001355379 -0.283598864
## cogs
## gross.income -0.000627059 0.005272838 0.008167088 -0.001355379 -0.283598864
               -0.224047826 \ -0.373733521 \ \ 0.239599700 \ -0.237049387 \ -0.016459111
## Rating
## Month
               -0.151262748 -0.402470893 0.293064990 -0.524371124 0.013314096
##
                       PC11
                                   PC12
## Branch
               -1.363486e-18 -5.513776e-18
## Customer.type 8.586149e-17 1.510125e-16
## Gender
               -1.224434e-16 -1.004989e-16
## Product.line -4.724803e-17 -9.802207e-18
## Unit.price
               3.385859e-16 -3.728213e-16
## Quantity
               4.162725e-16 -2.963019e-16
## Tax
               -6.898069e-01 4.368444e-01
## Payment
               6.174747e-17 9.294328e-18
## cogs
               7.232218e-01 3.789681e-01
## gross.income -3.341492e-02 -8.158125e-01
## Rating
               -1.255332e-16 1.411814e-17
## Month
               -1.111792e-16 -5.816152e-18
```

```
# Contribution of variables of PC1
fviz_contrib(pc, choice = "var", axes = 1, Top = 10)
```


The larger the value of the contribution, the more the variable contributes to the component. cogs, Tax and gross income contribute the most to PC1

```
# Contribution of variables of PC2
fviz_contrib(pc, choice = "var",axes = 2, Top = 10)
```


Month contributes the most to PC2

```
# Contribution of variables to both PC1 and PC2
fviz_contrib(pc,choice = "var",axes = 1:2 , top = 10)
```


cogs, tax and income contribute the most to PC1 and PC2

```
# Summary of our PCA summary(pc)
```

```
## Importance of components:
                             PC1
                                     PC2
                                             PC3
                                                     PC4
                                                             PC5
                                                                      PC6
                                                                              PC7
##
## Standard deviation
                          1.9837 1.09009 1.03262 1.01502 1.00294 0.97810 0.96927
## Proportion of Variance 0.3279 0.09903 0.08886 0.08585 0.08382 0.07972 0.07829
## Cumulative Proportion 0.3279 0.42693 0.51579 0.60165 0.68547 0.76520 0.84349
##
                             PC8
                                     PC9
                                            PC10
                                                      PC11
                                                                 PC12
## Standard deviation
                          0.9588 0.93522 0.29035 2.766e-16 1.102e-16
## Proportion of Variance 0.0766 0.07289 0.00703 0.000e+00 0.000e+00
## Cumulative Proportion 0.9201 0.99297 1.00000 1.000e+00 1.000e+00
```

```
# Plot a scree plot
# It displays the total variance explained by each principal component
fviz_eig(pc, addlabels = T, ylim = c(0,50))
```


We might want to stop at the 8th principal component because 92.01% of the information contained in the data are retained by the first 8 principal components

```
# Plotting a PCA plot
library(ggbiplot)
## Loading required package: plyr
## You have loaded plyr after dplyr - this is likely to cause problems.
## If you need functions from both plyr and dplyr, please load plyr first, then dplyr:
## library(plyr); library(dplyr)
##
## Attaching package: 'plyr'
##
  The following objects are masked from 'package:plotly':
##
##
       arrange, mutate, rename, summarise
## The following objects are masked from 'package:dplyr':
##
##
       arrange, count, desc, failwith, id, mutate, rename, summarise,
##
       summarize
```

```
## The following object is masked from 'package:purrr':
##
##
       compact
## Loading required package: scales
##
## Attaching package: 'scales'
## The following object is masked from 'package:viridis':
##
##
       viridis_pal
## The following object is masked from 'package:purrr':
##
##
       discard
## The following object is masked from 'package:readr':
##
##
       col_factor
## Loading required package: grid
gg <- ggbiplot(pcobj = pc,</pre>
               choices = c(1,2),
               circle = TRUE,
               ellipse = TRUE,
               scale = 0
print(gg)
```


Another visualization for better visibility
fviz_pca_var(pc, col.var = "black")

Positively correlated variables are grouped together and negatively correlated variables are positioned on opposite sides of the plot.

t-SNE

```
# Load the t-SNE library
library(Rtsne)

## Warning: package 'Rtsne' was built under R version 4.1.3

# Run t-SNE algorithm
tsne_market <- Rtsne(final[,-12], perplexity=5,verbose=TRUE, max_iter = 1000)

## Performing PCA
## Read the 1000 x 12 data matrix successfully!
## OpenMP is working. 1 threads.
## Using no_dims = 2, perplexity = 5.000000, and theta = 0.500000
## Computing input similarities...
## Building tree...
## Done in 0.07 seconds (sparsity = 0.017276)!
## Learning embedding...
## Iteration 50: error is 83.786814 (50 iterations in 0.25 seconds)
## Iteration 100: error is 69.158822 (50 iterations in 0.16 seconds)</pre>
```

```
## Iteration 150: error is 64.568296 (50 iterations in 0.17 seconds)
## Iteration 200: error is 62.120352 (50 iterations in 0.17 seconds)
## Iteration 250: error is 60.534927 (50 iterations in 0.18 seconds)
## Iteration 300: error is 1.302719 (50 iterations in 0.23 seconds)
## Iteration 350: error is 0.828179 (50 iterations in 0.20 seconds)
## Iteration 400: error is 0.663733 (50 iterations in 0.20 seconds)
## Iteration 450: error is 0.592105 (50 iterations in 0.19 seconds)
## Iteration 500: error is 0.555627 (50 iterations in 0.55 seconds)
## Iteration 550: error is 0.534034 (50 iterations in 0.30 seconds)
## Iteration 600: error is 0.516290 (50 iterations in 0.18 seconds)
## Iteration 650: error is 0.500967 (50 iterations in 0.19 seconds)
## Iteration 700: error is 0.490888 (50 iterations in 0.18 seconds)
## Iteration 750: error is 0.481636 (50 iterations in 0.18 seconds)
## Iteration 800: error is 0.475822 (50 iterations in 0.18 seconds)
## Iteration 850: error is 0.470482 (50 iterations in 0.18 seconds)
## Iteration 900: error is 0.466741 (50 iterations in 0.17 seconds)
## Iteration 950: error is 0.463328 (50 iterations in 0.17 seconds)
## Iteration 1000: error is 0.459364 (50 iterations in 0.17 seconds)
## Fitting performed in 4.21 seconds.
```

```
# Generate the t_SNE plot
plot(tsne_market$Y, col = "blue", pch = 19, cex = 1.5)
```



```
# Generate the t_SNE plot with Customer type as our label
plot(tsne_market$Y, t='n',main = 'tsne')
text(tsne_market$Y,labels= final$Customer.type)
```

tsne

t-SNE is able to find patterns where PCA is unable to.