Inversion Transduction Grammars

Wilker Aziz 5/4/16

Discussion

- IBM models do not constrain mismatch in word order
- Distortion step must consider

all the m! permutations

of m French words

All permutations: sensible or not?

If we do not impose structural constraints (but they do exist)

- the model will have to learn (rather *implicitly*)
 how to not violate them
- which ought to require more data

Practical consequences

Practical consequences

Estimation

 modelling outcomes that even though possible are not plausible (unlikely to be observed)

Practical consequences

Estimation

 modelling outcomes that even though possible are not plausible (unlikely to be observed)

Generation

NP-completeness!

All permutations

Let
$$\Sigma_n = \{a_1, ..., a_n\}$$

- $S \rightarrow A_{\Sigma_n}$
- $A_X \rightarrow a A_{X-\{a\}}$ for $\#X \ge 2$
- $A_{\{a\}} \rightarrow a$

Regular grammar (there is an equivalent FSA)

Complexity

Note that nonterminals are indexed by subsets of Σ_n

i.e. power set of Σ

- 2ⁿ nonterminals (states)
- $n \times 2^n$ productions (transitions)
- n! strings (paths)

Example: 3 elements

$$S \rightarrow A_{123}$$
 $A_{123} \rightarrow a_1 A_{23} | a_2 A_{13} | a_3 A_{23}$
 $A_{12} \rightarrow a_1 A_2 | a_2 A_1$
 $A_{13} \rightarrow a_1 A_3 | a_3 A_1$
 $A_{23} \rightarrow a_2 A_3 | a_3 A_2$
 $A_1 \rightarrow a_1$
 $A_2 \rightarrow a_2$
 $A_3 \rightarrow a_3$

"IBM constraint"

Distortion limit in generation but not in estimation

any reasons why that may be unsatisfactory?

	Inference	Generation
1	Exact	
2	Exact	Local search (and distortion limit)
≥3	Approximate	

Constraining permutations without a distortion limit

Inversion Transduction Grammars (ITGs)

- Binarizable permutations
 - two streams are simultaneously generated
 - context-free structure

Wu (1997)

English French

	English	French	
$S \rightarrow$	X	X	сору

	English	French	
$S \rightarrow$	X	X	сору
$X \rightarrow$	$X_1 X_2$	$X_1 X_2$	сору

	English	French	
$S \rightarrow$	X	X	сору
$X \rightarrow$	$X_1 X_2$	$X_1 X_2$	сору
		$X_2 X_1$	invert

	English	French	
$S \rightarrow$	X	X	сору
$X \rightarrow$	$X_1 X_2$	$X_1 X_2$	сору
		$X_2 X_1$	invert
$X \rightarrow$	е	f	transduce

	English	French	
$S \rightarrow$	X	X	сору
$X \rightarrow$	$X_1 X_2$	$X_1 X_2$	сору
		$X_2 X_1$	invert
$X \rightarrow$	е	f	transduce
$X \rightarrow$	е	3	delete

	English	French	
$S \rightarrow$	X	X	сору
$X \rightarrow$	$X_1 X_2$	$X_1 X_2$	сору
		$X_2 X_1$	invert
$X \rightarrow$	е	f	transduce
$X \rightarrow$	е	3	delete
$X \rightarrow$	3	f	insert

Joint probability model P(E, F, A)

Multinomial: one parameter per rule

- Multinomial: one parameter per rule
 - $\theta_{[]}$ one parameter for **monotone** copy

- Multinomial: one parameter per rule
 - $\theta_{[]}$ one parameter for **monotone** copy
 - $\theta_{<>}$ one parameter for copy in **inverted** order

- Multinomial: one parameter per rule
 - $\theta_{[]}$ one parameter for **monotone** copy
 - $\theta_{<>}$ one parameter for copy in **inverted** order
 - $\theta_{e/f}$ one parameter per word pair

- Multinomial: one parameter per rule
 - $\theta_{[]}$ one parameter for **monotone** copy
 - $\theta_{<>}$ one parameter for copy in **inverted** order
 - $\theta_{e/f}$ one parameter per word pair
 - $\theta_{e/\epsilon}$ one parameter per **English** word

- Multinomial: one parameter per rule
 - $\theta_{[]}$ one parameter for **monotone** copy
 - $\theta_{<>}$ one parameter for copy in **inverted** order
 - $\theta_{e/f}$ one parameter per word pair
 - $\theta_{e/\epsilon}$ one parameter per **English** word
 - $\theta_{\epsilon/f}$ one parameter per **French** word

MLE

We do not typically construct treebanks of ITG trees

potential counts instead of counts

$$\theta_{X \to \alpha} = \frac{\langle n(X \to \alpha) \rangle_{P(A|F,E)}}{\sum_{\alpha'} \langle n(X \to \alpha) \rangle_{P(A|F,E)}}$$

Expectations from parse forests

Inside-Outside [Baker, 1979; Lari and Young, 1990; Goodman, 1999]

Typically initialised with IBM1

Difficulties

- Complexity: O(I³m³)
- Too few reordering parameters
 - try and compare to IBM2

Bibliography

- Asveld, Peter R. J. 2006. Generating All Permutations by Context-free Grammars in Chomsky Normal Form. In *Theoretical Computer Science*. Elsevier Science Publishers Ltd.
- Asveld, Peter R. J. 2008. Generating All Permutations by Context-free Grammars in Greibach Normal Form. In *Theoretical Computer Science*. Elsevier Science Publishers Ltd.
- Wu, D. 1995. An Algorithm for Simultaneously Bracketing Parallel Texts by Aligning Words. In Proceedings of the 33rd Annual Meeting of the Association for Computational Linguistics. ACL.
- Wu, D. 1997. Stochastic Inversion Transduction Grammars and Bilingual Parsing of Parallel Corpora. In Computational Linguistics. MIT Press.
- James K. Baker. 1979. Trainable grammars for speech recognition. In Proceedings of the Spring Conference of the Acoustical Society of America.
- Karim Lari and Steve J. Young. 1990. The estimation of stochastic context-free grammars using the inside--outside algorithm. In Computer Speech and Language.
- Goodman, Joshua. 1999. Semiring parsing. In Computational Linguistics.