SWCON253: Machine Learning

Lecture 08 Multiclass Classification

Jinwoo Choi Assistant Professor CSE, Kyung Hee University

Contents

- o. (Recap.) Training Single Neuron Models
- 1. Multiclass Classification
- 2. Softmax Classifier
- 3. Summary: Gradient of MSE & CE Losses

References

- <u>http://stat.wisc.edu/~sraschka/teaching</u>
- <u>https://en.wikipedia.org/wiki/Multiclass_classification</u>
- https://en.wikipedia.org/wiki/One-hot
- *기계 학습* by 오일석

(Recap) Training Single Neuron Models

Linear Regression:

- Logistic Regression:
 - sigmoid

- Perceptron:
 - threshold

1. Multi-Class Classification

- 1. Categorical Data
- 2. One-Hot Encoding
- 3. Multiclass Classification
- 4. One-vs-Rest (One-vs-All) Method
- 5. One-vs-One Method

Categorical Data

- ◆ Ordinal (서열) vs. Nominal (명목) Variables
 - Ordinal: 값의 순서를 정할 수 있음 (크기/거리 가능)
 - ★ e.g. price, height, weight, image pixel values, ...
 - Nominal: 값의 순서를 정할 수 없음 (크기/거리 불 가)
 - ★ e.g. object category, blood type, roll of a die

Numerical vs. Categorical Variables

- Numerical (quantitative) variables:
 - * it has some order (thus can be continuous $\frac{\hbar}{2}H$ on numbers)
- Categorical (qualitative) variables
 - ★ take on one of a limited number of possible values, assigning each individual observation to a particular nominal category on the basis of some qualitative property.
 - ★ For ease in statistical processing, categorical

생물이 가능하냐

Examples

- IRIS dataset
 - ★ in: length, width → numerical = סרק אווי
 - ★ out: species categorical (nominal)
- MNIST dataset
 - ★ in: pixel values → numerical
 - \star out: digits \rightarrow categorical (nominal)
- ImageNet dataset
 - ★ in: pixel values → numerical
 - ★ out: object categories → categorical (nominal)

One-Hot Encoding

- One-Hot Code (One-Hot Vector)
 - A group of bits among which the legal combinations of values are only those with a single high (1) bit and all the others low (0)
 - ★ A similar implementation in which all bits are '1' except one '0' is sometimes called "one-cold code".

 THING LIMIN |
 - One-hot Encoding is frequently used to deal with categorical data
 - ★ because many ML models need variables to be numeric

One-Hot Encoding in ML

● k번째 class의 target vector를 k번째 자리는 1, 나머지는 o이 되도록 설정

Index	Job	
1	Police	HEH
2	Doctor	LM
3	Student	
4	Teacher	
5	Driver	4

	One	hot	enco	ded	data	
]	1	0	0	0	0]
]	0	1	0	0	0]
[0	0	1	0	0]
]	0	0	0	1	0]
]	0	0	0	0	1]

Binary	Gray code	One-hot			
000	000	00000001			
001	001	00000010			
010	011	00000100			
011	010	00001000			
100	110	00010000			
101	111	00100000			
110	101	01000000			
111	100	10000000			

Multiclass Classification

- Multiclass (Multinomial) Classification
 - The problem of classifying instances into one of three or more classes.
 - ★ The output is categorical (e.g., Iris, MNIST, ImageNet)
- ageNet)

6 E 26841

(a) 'swing' 부류

(b) 'Great white shark' 부류

Multiclass Classification – One-vs-Rest Method

- One-versus-Rest (One-versus-All) Method
 - 이진 분류기 c개를 독립적으로 사용하여 class k와 나머지 c-1개 class를 분류 (1 : c-1)
 - Class k에 대한 이진 분류기를 h_k 라 하면, $h_k(\mathbf{x})$ 가 가장 큰 값을 갖는 k로 분류함

$$\hat{k} = \arg\max_{k} h_k(\mathbf{x})$$

- Remarks
 - 각 이진 분류기에 대해 훈련집합의 불균형을 일으킴 (class k 샘플수 ≪ 나머지 샘플수)

Multiclass Classification – One-vs-One Method

- ◆ One-versus-One Method C개국 2개를 그르는 경우이수
 - 이진 분류기 C(c, 2)개를 독립적으로 사용하여 class k와 class ∫을 분류 (1:1)

*
$$C(c,2) = \frac{c!}{(c-2)! \, 2!} = \frac{c(c-1)}{2} \text{ Big O-Notation } O(c^2)$$

- 가장 많은 이진 분류기가 선택(투표)한 class를 최종 결과로 결정
 - ★ Class k와 l을 비교하는 이진 분류기를 $h_{(k,l)}(\mathbf{x})$ 라 하자.
 - ★ $h_{(k,l)}(\mathbf{x})$ 가 class k(또는 l)를 출력하면, class k(또는 l)에 한 표를 추가.
 - ★ C(c, 2)개 이진 분류기에 대해 가장 많은 표를 획득한 class를 최종 결과로 결정 (최대 표의 개수: c-1)
 - ▶ 비유) 야구나 축구 리그에서 가장 승리를 많이 한 팀이 우승

Testing 料红 岩

Remarks

→ One vereus Pest의 别 部度

- 훈련집합의 불균형을 일으키지 않음: class k 샘플수 ≈ class / 샘플수
- 사용되는 이진 분류기의 개수가 c^2 에 비례: 높은 training/testing 복잡도

L>One Vorsus Rest 1 O(c)

2. Softmax Classifier

- 1. Softmax Motivation & Definition
- 2. One-Hot Encoding
- 3. Cross-Entropy Loss
- 4. Training Softmax Classifier with CE

Classifier 해보로 해결 학률을 밴딩하면 1

Softmax – Motivation

- What is the best way to convert $(-\infty, \infty)$ to probability for multiclass classification?
 - What we want in the output layer \star conditional probabilities p(y|x)
 - **Sigmoid** activations in the output layer ★ do not sum up to 1

- **Softmax** activations in the output layer
 - ★ do sum up to 1
 - ★ suits well to Cross-Entropy Loss

Figures (modified): https://www.youtube.com/watch?v=K7HTd Zgr3w

Softmax – Definition

https://en.wikipedia.org/wiki/Softmax_function

- ◆ Softmax Function → 학률보고 만들어짐
 - Takes as input a vector **z** of *K* real numbers,
 - and normalizes it into a probability distribution consisting of K probabilities

$$\sigma: \mathbb{R}^K \to (0,1)^K$$

$$\sigma(\mathbf{z})_i = rac{e^{z_i}}{\sum_{j=1}^K e^{z_j}}$$

$$\text{for } i=1,\dots,K \text{ and } \mathbf{z}=(z_1,\dots,z_K) \in \mathbb{R}^K$$

$$\widetilde{Z} = \begin{bmatrix} 4 \\ 2 \\ -2 \end{bmatrix}$$

$$\widetilde{C}(\widetilde{Z}) = \begin{bmatrix} e^4 \\ e^2 \end{bmatrix} / (e^4 + e^2 + \tilde{e}^2)$$

Cross-Entropy Loss

- Assume One-Hot Encoding
 - y's are either o or 1 みはにして
- **♦** Binary CE (for binary classification)

• Multinomial CE (for multiclass classification) = 3

$$\sum_{i=1}^{n} \sum_{k=1}^{K} -y_k^{[i]} \log \left(a_k^{[i]}\right)$$

$$\lim_{i \to \infty} \sum_{k=1}^{n} \sum_{k=1}^{N} -y_k^{[i]} \log \left(a_k^{[i]}\right)$$

Training Softmax Classifier with CE

Cross-Entropy Loss with One-Hot Encoded Targets

Training Softmax Classifier with CE (cont'd)

- Gradient of the Cross-Entropy Loss at the Output Layer
 - Cross-Entropy Loss

$$J(\mathbf{W}) = \frac{1}{N} \sum_{n=1}^{N} \sum_{i=1}^{K} -y_i^{(n)} \log a_i^{(n)}$$
$$= \frac{1}{N} \sum_{n=1}^{N} \sum_{i=1}^{K} -y_i^{(n)} \log \frac{\exp(\mathbf{w}_i^T \mathbf{x}^{(n)})}{\sum_{j=1}^{K} \exp(\mathbf{w}_j^T \mathbf{x}^{(n)})}$$

• It's Gradient $\frac{\partial J(\mathbf{W})}{\partial \mathbf{w}_k} = \frac{1}{N} \sum_{n=1}^{N} \left(a_k^{(n)} - y_k^{(n)} \right) \mathbf{x}^{(n)}$ $= \frac{1}{N} \sum_{n=1}^{N} \left(\log \frac{\exp(\mathbf{w}_k^T \mathbf{x}^{(n)})}{\sum_{k=1}^{N} \exp(\mathbf{w}_k^T \mathbf{x}^{(n)})} - y_k^{(n)} \right) \mathbf{x}^{(n)}$

$$\frac{\partial \log a_i}{\partial z_k} = \frac{\partial}{\partial z_k} \log \frac{\exp(z_i)}{\sum_{j=1}^K \exp(z_j)}$$

$$= \frac{\partial}{\partial z_k} \left(\log \exp(z_i) - \log \sum_{j=1}^K \exp(z_j) \right)$$

$$= 1\{i = k\} - \frac{\exp(z_k)}{\sum_{j=1}^K \exp(z_j)} = 1\{i = k\} - a_k$$

$$\therefore \sum_{i=1}^K -y_i \frac{\partial \log a_i}{\partial z_k} = \sum_{i=1}^K -y_i (1\{i = k\} - a_k)$$

$$= -\left(y_k - \left(\sum_{i=1}^K y_i \right) a_k \right) = a_k - y_k$$

3. Gradient of MSE & CE Losses

Gradient of MSE & CE Losses

- For a <u>linear</u> neuron (i.e., neuron without activation = Linear Regressor):
 - Gradient of MSE:

(output - label) · (input;) Linear Regress ion

- For a <u>non-linear</u> neuron (e.g., Logistic Regression or Perceptron)
 - Cradient of MSE: (output label) o'() (input)
 - Gradient of CE: (output - label) · (input_i)
- For a neural network (of non-linear neurons)
 - Gradient of MSE

$$(y_{K} - 0_{K}) Q_{K}^{K}() (\chi_{\bar{j}})$$

 \star For k^{th} output neuron:

$$(\text{output}_k - \text{label}_k) \cdot \sigma_k'() \cdot (\text{input}_j) = (\text{delta}_k) \cdot (\text{input}_j)$$

★ For jth <u>intermediate</u> neuron:

$$\left(\sum_{\forall k \in \{\text{next layer neurons}\}} \left(\text{delta}_{k}\right) \cdot \left(\text{weight}_{kj}\right)\right) \cdot \sigma_{j}'\left(\right) \left(\text{input}_{i}\right) = \left(\text{eta}_{j}\right) \cdot \left(\text{input}_{i}\right)$$

- Gradient of **CE** (with Softmax output)
 - \star For k^{th} Softmax output:

 $(output_k - label_k) \cdot (input_i)$

