## Wprowadzenie

#### 0.1. Czym jest metaheurystyka

Wyjaśnienie czym jest metaheurystyka wymaga najpierw opisanie czym jest sama heurystyka. Heurystyka jest szczególnym rodzajem algorytmu, który nie gwarantuje otrzymania optymalnych rozwiązań. Wydawałoby się to wadą, jednak wiele problemów nie wymaga podania optymalnego rozwiązania. Heurystyka wykorzystuje fakt, że w określonych przypadkach jesteśmy gotowi tolerować pewną niepewność. Grupą problemów, w których czesto wykorzystywane są heurystyki są zadania optymalizacji. Na przykład, wybierając najkrótszą drogę do sklepu, nie liczymy dokładnie ile czasu nam zajmie każda możliwość. Wystarczy nam jedynie oszacowanie i to zapewnia nam nasz mózg niby automatycznie, jednak często po drodze wykonując skomplikowane obliczenia. Bierzemy pod uwagę wiele czynników, nie tylko długość drogi, ale także ruch samochodów, stan nawierzchni czy subiektywne wrażenia. Nasz wybór może nie być idealny, ale takie podejście, właśnie heurystyczne, ma wiele zalet. Gdybyśmy dokładnie obliczali wszystkie możliwości, tracilibyśmy na to wiele energii, która dopiero w ostatnim okresie historycznym jest szeroko dostępna. Co więcej, możliwości obliczeniowe naszych mózgów są ograniczone, więc rozwiązywanie tego prostego przecież problemu zajęłoby nam wiele czasu.

Mimo, że komputery mają znacznie większe możliwości przetwarzania danych niż człowiek, niektórych problemów nie da się po prostu przeanalizować w całości. W niektórych przypadkach przestrzeń rozwiązań jest tak duża, że sprawdzenie wszystkich możliwości rozwiązań może zająć zbyt dużo czasu. Takie podejście, zwane siłowym, (lepiej znane jest określenie z języka angielskiego "brute force") jest proste w implementacji i wydaje się być naturalne dla komputerów.

Pierwsze naukowe próby heurystycznego rozwiązywania problemów niektórzy naukowcy [13] przypisują George'owi Polya. W 1945 Wydana została jego książka "How to solve It" [8] w której opisane były heurystyczne metody radzenia sobie z matematycznymi problemami. Polya twierdził, że problemy mogą być rozwiązywane przez ograniczony zbiór strategii, z których większość upraszcza problem. Mimo, że książka była skoncentrowana na matematycznych problemach, wiele propozycji sprawdzało się w rozwoju algorytmów optymalizacji.

W pracy z 1958 roku Herbert Simmon i Allen Newell [12], późniejsi laureaci nagrody Turinga za badania nad sztuczną inteligencją problemy, do których należy wykorzystać podejście heurystyczne nazwali "źle skonstruowanymi", lub "źle zdefiniowanymi". Źle zdefiniowane problemy to takie, które w przeciwieństwie do dobrze skonstruowane nie mogą być wyraźnie opisane (za pomocą konkretnych liczbowych zmiennych), ich cele nie mogą być jednoznacznie zdefiniowane przez funkcję celu i do tego nie można ich rozwiązać znanymi algorytmami.

W tym okresie pojawiły się pierwsze heurystyki rozwiązujące takie problemy, bazujące między innymi na podejściu zachłannym. Opierały się na iteratywnym wyborze najlepszej decyzji w każdym kroku działania algorytmu. Przykładami takich algorytmów jest algorytm Dijkstry do znajdowania najkrótszej ścieżki, lub algorytm Prima do znajdowania minimalnego drzewa rozpinającego [2].

W 1970 roku Lofi Zadeh, sławny z zaproponowania matematyki rozmytej, porównywał działanie ludzkiego mózgu do działania komputerów [1]. Mówił, że ludzki mózg operuje na niekonkretnych danych właśnie "rozmytych pojęciach" i potrafi wykorzystać tolerancję niepewności danych jak i rozwiązania problemu. Wtedy jednak nie potrafił tego dokonać żaden komputer. Mówił jednak, że mimo że budowa komputerów nie jest przystosowana do przetwarzania niepewnych, rozmytych danych, to jest możliwe takie zaprogramowanie go, aby takie działanie były możliwe. Wspomniał również o różnicy między tradycyjnymi obliczeniami – twardymi, które operują na konkretnych , precyzyjnych danych i obliczeniami miękkimi, które w trakcie obliczeń powinny, kiedykolwiek to możliwe, wykorzystywać tolerancję na niepewność [10].

tu może jakis obrazek przezentujący podział soft computingu

Główne metody obliczeń miękkich rozwijały się w pewnym stopniu niezależnie od siebie. Pierwsza była wspomniana już teoria zbiorów rozmytych Lofi Zadeha. Kolejnym filarem są sieci neuronowe, które jednak były opóźniane przez małe możliwości obliczeniowe ówczesnych komputerów i dopiero ostatnio ta dziedzina nabrała prawdziwego rozpędu. Trzecim elementem są w końcu metaheurystyki.

Na poczatku metaheurystyki były reprezentowane jedynie przez metody ewolucyjne. Pierwszą, która zyskała uznanie była strategia ewolucyjna zaprezentowana przez Ingo Rachenberga i Hansa-Paula Schwafela [9]. Później L.J.Fogel opracował programowanie ewolucyjne [4], jednak oba podejścia były dość daleko od dzisiejszych rozwiązań. J. Holland bazując na poprzednich pracach opracował algorytmy genetyczne [16]. Wprowadził pojęcie populacji i krzyżowania osobników. Algorytm genetyczny będzie opisany w kolejnych rozdziałach. W tym okresie pojaiwło się też samo pojęcie metaheurystyka. Heurystyka oznacza znajdowanie lub odkrywanie przez metody prób i błędów [16]. Dzisiaj funkcjonuje wiele definicji metaheurystyk, nie jest to pojęcie łatwe w zdefiniowaniu. Na podstawie tego, czym jest w rzeczywistości metaheurystyka powstają całe prace naukowe. Jedna z nowszych definicji została stworzona przez Freda Glovera, twórcy oryginalnej definicji oraz Kennetha Sorensena:

"Metaheurystyka to generyczny model algorytmiczny wysokiego poziomu który udostępnia zestaw wskazówek lub strategii do rozwoju heurystycznych algorytmów optymalizacji. Pojęcie jest również używane aby nawiązać do konkretnej implementacji heurystycznego algorytmu optymalizacji konkretnego problemu na podstawie wskazówek wyrażonych w danym modelu."

Algorytm genetyczny Znacznie zwiększył zainteresowanie naukowców metaheurystykami,

i w latach osiemdziesiątych i dziewięćdziesiątych powstało wiele nowych algorytmów, takich jak Tabu Search, czy Ant Colony Optimization.

#### 0.2. Więcej o algorytmie genetycznym

Algorytm genetyczny został opisany przez Johna Hollanda w książce "Adaptation in Natural and Artificial Systems". Jego ogólny schemat jest przedstawiony na rysunku 0.1. Ewolucja naturalna jest głównym sposobem rozwiązywania problemów przez naturę. Analogicznie działa algorytm genetyczny, oraz inne bazujące na niej metaheurystyki. Podstawowe założenie jest proste - Osobniki w naturze, wraz z kolejnymi generacjami przystosowują się do środowiska w którym żyją. Przełożenie tego na algorytm może być intuicyjne.

Figure 0.1. Ogólny schemat algorytmu genetycznego



Działanie rozpoczyna się od wylosowanie populacji o pewnym rozmiarze. Populacja składa się z osobników, reprezentowanych przez zestaw cech, zwanych fenotypem. Sposób kodowanie fenotypu w pamięci nazywa się natomiast genotypem. Każdy osobnik jest oceniany, poprzez specjalną funkcję przystosowania. Następnie losowane są osobniki, które będa krzyżowały się miedzy sobą. Tak jak w naturze, większą szansę na wybór mają osobniki lepiej przystosowane, czyli takie o lepszej ocenie. Para osobników krzyżuje się, wymieniając cechami, niektóre cechy podlegają mutacji, zmieniając się losowo na inne. Proces powtarza się, póki nie zapełni się populacja nowych osobników. Każda kolejna populacja jest trochę lepsza, jednak losowa mutacja sprawia, że rozwiązanie nie utyka w lokalnym minimum.

Osobnik może na przykład reprezentować jedno rozwiązanie problemu kolorowania grafu. Jest to często analizowany problem NP-trudny, mający także praktyczne zastosowanie. Polega na przydzieleniu wierzchołkom grafu jak najmniejszej liczby kolorów tak, aby żaden wierzchołek nie był połączony z żadnym innym o takim samym kolorze. Osobnik w tym przypadku jest reprezentowany przez wektor, którego każdy element jest reprezentuje

pokolorowanie innego wierzchołka, a funkcja oceny zlicza liczbę użytych kolorów.

Inną metaheurystyka opierającą się na analogii do ewolucji naturalnej jest programowanie genetyczne. Główną różnicą pomiędzy algorytmem ewolucyjnym jest reprezentacja osobnika. W tym przypadku osobnik jest reprezentowany przez drzewo, na którym przeprowadzane są takie sam operacje, jak w klasycznym algorytmie ewolucyjnym. Ze

względu na to, że osobnik nie ma określonej wielkości, reprezentacja ta jest bardziej elastyczne. Ten zysk jest jednak równoważony przez wzrost skomplikowania.

#### 0.3. Inwestycje giełdowe

Giełda papierów wartościowych umożliwia handel akcjami spółek, określającymi prawo do części zysków i aktywów spółki [6]. Celem sprzedaży akcji jest pozyskanie kapitału, a inwestorzy w zamian mogą zarabiać poprzez dywidendy lub odsprzedaż akcji po wyższej cenie. Na giełdzie pracują maklerzy giełdowi, analitycy czy bankierzy inwestycyjni. Praca ich wszystkich jest związana z oceną i czasem też handlem papierami wartościowymi. Ze względu na ogromną liczbę czynników wpływających na cenę akcji, dokładne przewidzenie ruchów cen jest niemożliwe, jednak stosuje się do tego metody, które będą opisane w następnych rozdziałach.

Historię rynków finansowych można rozpocząć w siedemnastowiecznej Holandii. W tamtych czasach zamorski handel był okraszony bardzo dużym ryzykiem, przyćmiewanym jednak przez potencjalne zyski. Aby zminimalizować ryzyko, właściciele statków mieli zwyczaj szukania inwestorów, którzy mogliby wyłożyć pieniądze na wyprawę - wyposażenie statku i załogi. W zamian otrzymywali pewien procent zysków. W siedemnastym wieku zaczęły powstawać Kompanie wschodnioindyjskie, zajmujące się handlem z daleką Azją. Pierwsza była Holenderska Kompania Wschodnioindyjska, która po raz pierwszy w historii zaoferowała kupno swoich akcji. W ten sposób sprzedawany był udział nie tylko w jednej, a we wszystkich wyprawach prowadzonych przez Kompanię. Kompanie nie dość, że proponowały znacznie większą skale przedsięwzięcia niż pojedyncze wyprawy, to dodatkowo otrzymały monopol od państwa, oferując ogromne zyski dla inwestorów.

Początkowo akcjami handlowano w kawiarniach, jednak po krótkim czasie powstały pierwsze giełdy papierów wartościowych i swoje akcje zaczęły sprzedawać Kampanie innych krajów. Korzystając ze swoich doświadczeń z giełdy holenderskiej, Joseph de la Vega opublikował w1688 roku pierwszą książkę na temat giełdy "Confusion of Confusions' [3]'. Książka nie traktowała jedynie o giełdzie, a autor zamieścił w niej wiele filozoficznych przemyśleń, biblijnych, mitologicznych i historycznych aluzji. Czytelnik jest jednak zaznajamiany z historią i instrumentami giełdowymi i niektóre z zasad inwestycji przedstawionych w książce stanowi bazę dla dzisiejszych rozwiązań.

Sposób wyboru akcji, których kupno będzie najbardziej opłacalne, nie jest prostym zadaniem. Podjęcie tej decyzji zawsze jest obarczone ryzykiem, ponieważ dokładne przewidzenie cen nie jest możliwe. Liczba czynników, które na nią wpływają jest bardzo duża, nie sposób nawet przewidziec ich wszystkich. Dodatkowo wiele informacji trudno ocenić. Policzalne aspekty spółki, takie jak przychody, są łatwe do znalezienia. Jednak jak je ocenić w kontekście kadry zarządzającej spółką lub jej reputacji? Kombinacja trudnych w ocenie czynników czyni wybór akcji subiektywnym a nawet intuicyjnym procesem [14].

Istnieją oczywiście pewne techniki, którymi kierują się inwestorzy, a mianowicie analiza fundamentalna i analiza techniczna. Analiza fundamentalna opiera się na badaniu kondycji ekonomicznej spółki. W ocenie brane jest wiele czynników, takich jak przychody, potencjalne zyski. Analizowane jest też otoczenie spółki, jak i sektor w

którym działa. Analiza fundamentalna wymaga jednak sporo wiedzy żeby wprowadzić ją w życie, szczególnie w porównaniu z analizą techniczną.

Można powiedzieć że analiza techniczna jest przeciwieństwem analizy fundamentalnej. Podczas gdy ta druga ocenia spółki na podstawie ekonomicznych danych, które obiektywnie mogą wpływać na przyszłe ceny akcji, ta pierwsza ogranicza się do analizy przeszłych cen i wolumenu akcji. ZA ojca analizy technicznej uważa się Johna J. Murphiego. W swojej książce "Technical Analysis of the Futures Markets", rozszerzonej następnie w "Technical Analysis of the Financial Markets" [7] opisał jej działanie i wykorzystywane narzędzia. Głównym założeniem jest stwierdzenie, że wszystkie ważne informacje szybko są odzwierciedlane w cenie akcji. Analiza techniczna opiera się na następujących podstawach:

- 1. Ceny odzwierciedlają istotne informacje. Innymi słowy, rynek jest wydajny.
- 2. Ceny poruszają się w trendach.
- 3. Historia się powtarza.

W praktyce wykorzystywane są różne wskaźniki. Stworzone aby pomóc w identyfikacji stanów rynku i generowania odpowiednich sygnałów - kiedy jest najlepszy czas na inwestycje. Przykładem takiego wskaźnika jest średnia krocząca, czyli średnia z pewnej liczby ostatnich cen danego aktywa. W tradycyjnej analizie technicznej wykorzystywana do wygładzenia wykresu cen, często wykorzystywana w parach z różnym okresem, generując sygnały kupna lub sprzedaży podczas ich przecięcia.

Przez wiele lat giełdy papierów wartościowych były fizycznymi miejscami gdzie kupcy i sprzedawcy spotykali się i negocjowali [15]. Spokojne transakcje, oko w oko w kawiarniach wyewoluowały w metodę "open outcry". Uczestnicy giełdy zbierali się na specjalnych arenach i krzykiem oraz specjalnymi gestami oznaczającymi parametry transakcji porozumiewali się z kontrahentami. Postępująca komputeryzacja praktycznie wyeliminowała tę formę handlu. W dzisiejszych czasach praktycznie wszystkie transakcje wykonuje się elektronicznie. Wykorzystanie komputerów dało zupełnie nowe możliwości wyboru inwestycji.

Nie dość, że wszystkie transakcje są wykonywane przy użyciu komputerów, to jeszcze znaczna ich liczba jest wykonywana jedynie przez komputery. Za pomocą handlu algorytmicznego, wykonywana jest większość transakcji w Stanach Zjednoczonych [11]. Szczególnym elementem handu algorytmicznego jest handel wysokich częstotliwości. Opiera się na wykonywaniu bardzo szybkich i krótkich transakcji, w związku z czym jest zdominowany przez duże banki inwestycyjne i fundusze hedgingowe. Tylko one moga pozwolić sobie na utrzymanie potrzebnej infrastruktury. Do wyboru transakcji wykorzystywane są skomplikowane algorytmy trzymane w tajemnicy. Opierają się one między innymi na zjawisku arbitrażu. Polega on na zakupie aktywa, które na jednym z rynków jest niedocenione, celem sprzedaży go na innych rynkach. Instytucje korzystający z tej metody nie konkurują jednak ze zwykłymi użytkownikami. Zwykli inwestorzy, jeśli decyduja się na handel automatyczny, wykorzystują zwykle różne wskaźniki analizy technicznej, wybrane własnoręcznie lub przez algorytmy sztucznej inteligencji. Wybór analizy technicznej przy automatycznym układaniu strategii jest podyktowany głównie faktem, że wszystkie potrzebne informacje są dostępne od ręki, a jedynym problemem jest ich przetworzenie.

Automatyczne systemy inwestycyjne mają wiele zalet ponad ręcznym inwestowaniem:

1. Eliminacja emocji - podczas inwestycji ludzie często kierują się emocjami. Ryzykują w końcu własne pieniądze. Zaprogramowana strategia może im pomóc podjąć decyzję, przełamać wachanie. Z drugiej strony ograniczają też inwestora, który jest skory do inwestycji przy pierwszej zauważonej okazji.

- 2. Możliwość backtestingu backtesting to testowanie strategii na danych historycznych. Można w ten sposób oszacować skuteczność algorytmu, albo dobrać jego lepsze parametry.
- 3. Osiąganie trwałej skuteczności Niemożliwe jest skonstruowanie strategii, która będzie za każdym razem dochodowa. Teoretycznie jednak automatyczny system inwestycyjny osiągnie stały procent korzystnych inwestycji, umożliwiając dokładniejsze zarządzanie budżetem.
- 4. Poprawiony czas wejścia w transakcję komputer może zareagować w tym samym momencie, jak na rynku pojawi się konkretna sytuacja, co jest niemożliwe dla człowieka

Do wad należy podatność na mechaniczne usterki i często konieczność posiadanie umiejętności programowania w którym z języków używanych w platformach inwestycyjnych. Co prawda istnieją programy, które umożliwiają ułożenie strategii metodą złap i przeciągnij, jednak w ten sposób działa tylko dla najprostszych strategii.

Innym segmentem rynków finansowych jest rynek walutowy, czyli Forex (Foreign Exchange). Umożliwia on handel walutami i jest największym i najbardziej płynnym rynkiem na świecie [5]. Handlowane są na nim wszystkie waluty świata i dzienny obrót może przekraczać bilion dolarów. Nie dość, że możliwe jest na nim korzystanie z analizy technicznej, to posiada wiele zalet, szczególnie dla handlu automatycznego. Po pierwsze, ze względu na to, że jest to największy rynek na świecie, jest on bardzo płynny, wiec możemy praktycznie w każdym momencie kupić lub sprzedać nasze aktywa po aktualnej cenie. Po drugie, jest on otwarty przez prawie cały tydzień. Zamykany jest jedynie na weekend i święta. Ogranicza to ryzyko dużych zmian cen pomiędzy zamknięciem i otwarciem handlu. Dodatkowo program inwestycyjny może działać przez większą cześć roku - giełdy papierów wartościowych. Dla porównania giełda nowojorska jest otwarta tylko sześc i pół godziny dziennie, od 9.30 do 16.00. Po trzecie, ceny transakcji są bardzo niskie, a stanowiły one duży problem w niektórych pracach w których opisane były systemy pracujące na standardowych rynkach. Kolejnym atutem, nie wykorzystywanym jednak w tej pracy jest dostęp do dużej dźwigni, dzięki czemu można osiągnąć duże zyski przy małym wkładzie własnym.

### Chapter 1

# Sztuczna inteligencja w inwestycjach giełdowych

Bibliography 9

# Bibliography

- [1] Fuzzy Languages and their Relation to Human and Machine Intelligence, Man and Computer., 1970.
- [2] Cormen T. H., Stein C., Rivest R. L., Leiserson C. E. *Introduction to Algorithms*. McGraw-Hill Higher Education, 2nd edition, 2001.
- [3] de la Vega J. Confusion des confusiones. 1688.
- [4] Fogel G. B., Fogel D., Fogel L. Evolutionary programming. *Scholarpedia*, 6(4):1818, 2011. revision #90772.
- [5] Investopedia. Forex fx. 2017.
- [6] Investopedia. Stock market. 2017.
- [7] Murphy J. Technical Analysis of the Financial Markets. 1999.
- [8] Polya G. How to Solve It. 1945.
- [9] Rechenberg I. Evolution Strategy: Nature's Way of Optimization, pages 106–126. Springer Berlin Heidelberg, Berlin, Heidelberg, 1989.
- [10] Seising R., Tabacchi M. E. A very brief history of soft computing: Fuzzy sets, artificial neural networks and evolutionary computation. In 2013 Joint IFSA World Congress and NAFIPS Annual Meeting (IFSA/NAFIPS), pages 739–744, June 2013.
- [11] Seth S. The world of high frequency algorithmic trading. 2015.
- [12] Simon H. A., Newell A. Heuristic problem solving: The next advance in operations research. *Operations research*, 6(1):1–10, 1958.
- [13] Sorensen K., Sevaux M., Glover F. A history of metaheuristics. 2017.
- [14] Staff I. Guide to stock-picking strategies. 2017.
- [15] Stephen D. Simpson C. The death of the trading floor. 2011.
- [16] Yang X. Metaheuristic Optimization. Scholarpedia, 6(8):11472, 2011. revision #91488.