(a1). First order upwind: $S(k) = 1 - \lambda + \lambda \cdot \exp(ikhx)$ $\lambda = \frac{aht}{hx}$ So For |Sr(k)| we have Figure 2-al-1 when $\lambda \le 1$ (LFL) 2-01-2 When 1>1 For Vph Vph=iln_s(k) / (kht). Here we only discuss Uph when $1 \le 1$, 2-a1-3 We notice if $\lambda=1$. No dissipation and no dispersion

 $(02) \ S(k) = \frac{1 - 2i\lambda\sin\theta}{1 + 2i\lambda\sin\theta} = \frac{1 - 4\lambda^2\sin^2\theta}{1 + 4\lambda^2\sin^2\theta} = \frac{4\lambda\sin\theta}{1 + 4\lambda^2\sin^2\theta}$ (0=Khz) Here |S(k)|=1 so there is no dissipation. (Fig. 2-02-1) For $S(k)=e^{i\phi}$ So $\phi=i\ln\frac{1-2i\lambda Sin\theta}{1+2i\lambda Sin\theta}$ (kht) On the other hand; $S(K) = e^{i\phi} = Cos \phi + i Sin t\phi$ $SD \phi = arcsin (4) Sin khx$ $<math>SO V_{gh} = arcsin (4) Sin khx / 1 + 4) Sin^2 khx / 1 + 4) S$ If we set a=1 (we can always re-sale x of to get that), For small hx, when ht $\rightarrow 0 (\lambda \rightarrow 0) V_h \rightarrow 1$ Fig z=0z-z For small ht, when hx $\rightarrow 0$ $V_{ph} \rightarrow 1$ Fig z-0z-3 For small &, when hr >0, Vph > 1 Fig 2-02-4

2-a1 For First Order Upwind:

For dissipation, one can set a=1, since we can re-scale x and t to achieve that. That means V_{ph} is only related to h_t and h_x .

We first set h_t =0.01 to see what's going on if CFL is satisfied. As h_x goes to h_t , |s(k)| goes to 1. (Figure 2-a1-1). This is true since S(k)=exp(-ikh_x) when λ =1.

We first set h_t =0.01 to see what's going on if CFL is not satisfied. As h_x goes bigger, |s(k)| blows up. (Figure 2-a1-2). This will bring unstability. (L=30.)

For dispersion, if $\lambda \rightarrow 1$ or $\lambda \rightarrow 0$, $V_{ph} \rightarrow 1$. And $\lambda \rightarrow 1$ has a bigger effect in eliminating dispersion.

2-a2 For Crank-Nicholson:

For dissipation, |s(k)|=1. So there is no dissipation in C-N. (Figure 2-a2-1)

For dispersion, again one can set a=1, since we can re-scale x and t to achieve that. That means V_{ph} is only related to h_t and h_x .

We first set h_t =0.01 to see what's going on. As h_x goes to 0, V_{ph} goes to 1. (Figure 2-a2-2)

We than set h_x =0.01 to see what's going on. As h_t goes to 0, V_{ph} goes to 1. (Figure 2-a2-3)

Finally, we set λ =0.25(h_t = h_x) to see what's going on. As h_x goes to 0, V_{ph} goes to 1. (Figure 2-a2-4)

Our conclusion here is for C-N, the dispersion always exists. To control it, we can try to make both h_x and h_t smaller. However, for functions decomposed into Fourier series with distinct small K_m and large K_n (i.e $K_n \rightarrow \infty$), we cannot avoid dispersion.

2-b Observation of Dissipation and Dispersion

	Dissipation	Dispersion
1 st Upwind CFL λ=1	1.5 0.5 0.5 1.5 2.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0
	2Cos(5πx)	$0.5(\cos(15x)+\cos(x)+\cos(5x)+\cos(10x))$
	No dissipation	No Dispersion
1 st Upwind CFL λ=0.5	2 1.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0	15 10 05 05 0 05 1 1 1.15
	2Cos(5πx)	0.5(cos(5πx)+cos(0.5πx)-cos(πx)-cos(3πx));
	Dissipation: The max is smaller than 2	Dispersion: Small Wiggles Observed
	on the right.	
1 st Upwind	Unstable	Unstable
non-CFL λ=10	2 0 01 82 03 04 85 08 07 08 89 1	1 0 8 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	2Cos(5πx)	0.5(cos(15x)+cos(x)+cos(5x)+cos(10x))
Crank-Nich olson	2 1.5 0.5 0.5 0.5 1.5 20 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1	4 3.5 3.3 2.5 2 1.5 1 0.5 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
	2Cos(5πx)	0.5(cos(15x)+cos(x)+cos(5x)+cos(10x))
	No dissipation	Dispersion