

AD-A107 772

NAVY PERSONNEL RESEARCH AND DEVELOPMENT CENTER SAN DIEGO ETC F/0 5/9
EVALUATION OF APTITUDE AND ACHIEVEMENT COMPOSITES FOR THE INITI-ETC(U)
SEP 81 R D HETTER, N M ABRAHAMS

UNCLASSIFIED

NPRDC-TR-81-21

NL

for I
40770

END
DATE FILMED
4-82
NPRDC

AU A 110 1162

SEARCHED
INDEXED
SERIALIZED
FILED

81 11 25 004

NPRDC TR 81-21

September 1981

**EVALUATION OF APTITUDE AND ACHIEVEMENT COMPOSITES FOR THE
INITIAL CLASSIFICATION OF MARINE CORPS OFFICERS**

Rebecca D. Hetter
Norman M. Abrahams

Reviewed by
Martin F. Wiskoff

Released by
James F. Kelly, Jr.
Commanding Officer

Navy Personnel Research and Development Center
San Diego, California 92152

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

(12) 40

REPORT DOCUMENTATION PAGE		READ INSTRUCTIONS BEFORE COMPLETING FORM	
1. REPORT NUMBER NPRDC-TR-81-21	2. GOVT ACCESSION NO. AD-A107772	3. RECIPIENT'S CATALOG NUMBER	
4. TITLE (and Subtitle) EVALUATION OF APTITUDE AND ACHIEVEMENT COMPOSITES FOR THE INITIAL CLASSIFICATION OF MARINE CORPS OFFICERS.		5. TYPE OF REPORT & PERIOD COVERED (9) Interim Rep. 2	
6. AUTHOR(s) Rebecca D. Hetter Norman M. Abrahams	7. CONTRACT OR GRANT NUMBER(s)		
8. PERFORMING ORGANIZATION NAME AND ADDRESS Navy Personnel Research and Development Center San Diego, California 92152		9. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS 62763N ZF63-521-080-101-04.11	
10. CONTROLLING OFFICE NAME AND ADDRESS Navy Personnel Research and Development Center San Diego, California 92152		11. REPORT DATE September 1981	
12. NUMBER OF PAGES 41		13. SECURITY CLASS. (of this report) UNCLASSIFIED	
14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office) (16) F63521		15a. DECLASSIFICATION/DOWNGRADING SCHEDULE	
16. DISTRIBUTION STATEMENT (of this Report) Approved for public release; distribution unlimited.			
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)			
18. SUPPLEMENTARY NOTES			
19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Officer Assignment Classification Optimal Assignment Prediction		General Classification Test Army Language Aptitude Test	
20. ABSTRACT (Continue on reverse side if necessary and identify by block number) As part of an ongoing project to develop a classification system for Marine Corps officers, aptitude, background, and performance data routinely collected by the Marine Corps were analyzed to determine their usefulness as predictors of performance in 12 follow-on specialty schools. Four schools had samples large enough for the development and cross-validation of multiple regression composites. Evaluation of manual and computer-assisted optimal assignment methods based on the composites indicated that the composites are effective in differentially predicting follow-on school performance. ↘			

FOREWORD

This is an interim report on research and development being conducted in support of Exploratory Development Task Area ZF63-521-080-101 (Marine Corps Personnel Resources Management) under the sponsorship of the Commandant, U.S. Marine Corps (MPI-20). The work was initiated in response to a request from the Officer Assignment Branch, Headquarters, Marine Corps, to develop an objective classification system for assigning officer students at The Basic School (TBS), Quantico, Virginia to their first Military Occupational Specialties.

The continuous assistance and coordination activities of Major B. T. Babin of the Manpower Management Research Section, HQMC, are gratefully acknowledged. Appreciation is also expressed to the personnel from the Testing and Evaluation Office at TBS for their cooperation in providing data used in this investigation.

JAMES F. KELLY, JR.
Commanding Officer

JAMES J. REGAN
Technical Director

SUMMARY

Problem

Current procedures for assigning unrestricted Marine Corps officer students at The Basic School (TBS) to the Military Occupational Specialties (MOSSs) open to them do not include objective measures of the officers' aptitude for and interest in those MOSSs. In addition, assignment decisions are reached through a complicated manual process that is unsystematic, partially subjective, and often inequitable. The Marine Corps has indicated a need for improving this system to satisfy increasing requirements for technical and professional competency in all MOSSs and to ensure better utilization of officer talent.

Purpose

The purposes of the overall project are (1) to develop empirically derived measures of an officer's background, aptitude, and interest in various MOSSs, (2) to design a classification system based on these measures, and (3) to formulate a method for implementing this system in officer classification.

The purpose of the work reported herein was to evaluate aptitude, background, and performance information routinely collected by the Marine Corps for its potential usefulness in predicting performance in follow-on specialty schools. If valid predictors are identified, an interim system can be developed that could be applied to some or all of the MOSSs.

Approach

The original sample consisted of Marine Corps officers who had graduated from TBS between 1972 and mid-1977, who had completed a follow-on school course in any of the 12 MOSSs open to them during this period, and for whom final school grades (FSGs) were available. Aptitude test scores, achievement measures, and civilian education major were considered as potential predictors of FSG, the criterion of follow-on school performance.

Multiple regression analyses were performed to determine the validities of various combinations of the predictor variables for predicting an officer's success in the four schools with sample sizes large enough for the development and cross-validation of multiple regression composites--Combat Engineer (CE), Basic Communication (BC), Ground Supply (GS), and Field Artillery (FA). To identify those predictor combinations that most accurately predict differences in success in the four schools--and thus would be the most useful for officer classification--composite scores computed from these combinations were used to make simulated assignments with a computer-based optimal-assignment procedure. Finally, a set of simplified composites, and instructions for their use, were developed to provide assignment personnel with a manual method for computing predicted scores that could be readily incorporated into current assignment procedures.

Results

Validities for all the composites were quite high and were maintained in cross-validation. The optimal assignment results indicated that the composite scores were effective in predicting differences in performance at the four follow-on schools. Increasing accuracy and greater differentiation were obtained as more information went into the development of the composites. Civilian education major did not significantly contribute to the prediction of performance.

Conclusions and Recommendations

1. Composites based on TBS course grades and aptitude test scores are strong predictors of differential performance at these schools.
2. Evaluation of manual and computer-assisted assignment methods based on the composites indicated that use of the composites can enhance and facilitate classification decisions, while requiring minor additions to present procedures. Therefore, it is recommended that use of the composites be incorporated into the current MOS assignment process.
3. For the remaining MOSSs, it is recommended that larger samples be collected and follow-on schools curricula analyzed for the purpose of grouping related MOSSs that alone do not yield enough subjects.

CONTENTS

	Page
INTRODUCTION	1
Problem and Background	1
Purpose	2
APPROACH	2
Subjects	2
Predictors	2
Civilian Education Major Categories (CEMC)	2
Aptitude Tests	6
TBS Course Grades	7
Criterion	8
Analyses	8
RESULTS AND DISCUSSION	8
Development of Multiple Regression Composites	11
Evaluation of the Composites for Differential Prediction	11
Development of Composites for Manual Use	14
Implementation	19
CONCLUSIONS	19
RECOMMENDATIONS	19
REFERENCES	21
APPENDIX A--CATEGORIES OF CIVILIAN EDUCATION MAJORS	A-0
APPENDIX B--FREQUENCIES OF TBS COURSES BY FOLLOW-ON SCHOOL . . .	B-0
DISTRIBUTION LIST	

LIST OF TABLES

	Page
1. Follow-on Schools Included in the Study	3
2. Civilian Education Major Categories of Sample Members by School	4
3. Mean Final School Grade By Civilian Education Major Category (CEMC)	5
4. Analysis of Variance of Follow-on School by Civilian Education Major Category (CEMC)	6
5. Experimental Predictor Sets	7
6. Mean FSGs and Standard Deviations by School and by Sex.	9
7. Pearson Correlations Between Predictors and FSG.	10
8. Pearson Correlation Coefficients Between Predictors and Criterion in the Developmental and Cross-Validation Samples	12
9. Beta Weights and Validities in Predicting Final School Grade	13
10. Predicted Standardized FSG Means and Standard Deviations of Optimal and Actual Assignments Using Composite Sets I to IV	14
11. Validities and Cross-Validities of Composites Derived from Predictor Set II	15
12. Intercorrelations of Integer-Weight Composites in the Cross-Validation Sample	17
13. Predicted Standardized FSG Means and Standard Deviations of Optimal Assignments Using Integer-Weight Composites	17
14. Officers Expected to Score Above the Median in Optimal Assignments with Integer-Weight Composites	18
15. Officers Expected to Score Above the Median in Optimal Assignments with Composites Sets I to IV	18

INTRODUCTION

Problem and Background

Each year, approximately 1800 unrestricted Marine Corps officers (2nd lieutenants) from all commissioning sources attend The Basic School (TBS), Quantico, VA where they receive a common curriculum of military training before being sent to specialty schools and job assignments. About 400 of these officers have aviation or law specialty guarantees before entering TBS; however, the remainder must be assigned to one of the 22 other Military Occupational Specialties (MOSs) open to them. Until recently, only 12 other MOSs were available to these officers. However, in an effort to fill undermanned, previously restricted specialties, 10 additional MOSs were made available. Assignment decisions are made by company commanders in conjunction with Headquarters, Marine Corps (HQMC) during the 7th or 8th week of the 21-week TBS course, and are based primarily on quotas for each MOS, individual preferences, TBS performance, and educational background. Assignments are made 7 or 8 times a year, and affect from 150 to 200 students.

In the past, students who performed best in TBS were most likely to obtain their MOS preference. Although this system provided considerable incentive for TBS performance, it had at least one undesirable effect. Individuals with the best TBS performance naturally selected the most popular MOSs, which led to a perceived inequity in the distribution of talent across MOSs.

To combat this trend, a "quality spread" procedure was introduced. With this procedure, each TBS class is divided into thirds according to class standing, and individuals in each third are proportionally distributed among the MOSs. Those in the upper portion of each third have the best chance of receiving their preferred MOS. Although this procedure tends to even out the distribution of quality, it introduces an additional burden to an already complex manual assignment system and has inherent weaknesses. For instance, it assumes that overall TBS performance, as determined less than one-third of the way through TBS, is an adequate measure of quality and that it is related to subsequent performance in a specialty. Also, it could cause student dissatisfaction, since a student who ranks at the top of the bottom third has a better chance of getting his preferred MOS than another student who ranks well above the first student but is at the bottom of the top third.

In addition to the disadvantages of the quality spread procedure, there are other problems in the present assignment system. First, regardless of interest and qualifications, informal social pressure on individuals, particularly those who do well in TBS, may cause some to select an MOS for which they are not best suited. Second, because of a lack of Marine Corps experience, students often have limited knowledge of MOS characteristics by the 7th or 8th week in TBS, when they must indicate MOS preferences. Finally, there is no systematic procedure to identify, prior to MOS assignment, those officers who do not meet the specialized requirements of some of the follow-on schools (e.g., good hand-eye coordination, in the Air Support and the Air Defense schools).

In response to these problems, a Marine Corps study group tasked to review the unrestricted officer concept recommended that the Marine Corps "evaluate alternative approaches toward enhancing the officer classification process through the development of a means of giving greater weights to civilian education, measured aptitudes, and

individual characteristics in MOS assignments.¹ Subsequently, the Marine Corps asked NAVPERSRANDCEN to develop an objective classification system for assigning TBS students to their first MOS. This report describes the initial phase of a research program designed to implement that recommendation.

Purpose

The purposes of the overall project are (1) to develop empirically derived measures of an officer's background, aptitude, and interest in different MOSs, (2) to design a classification system based on these measures, and (3) to formulate a method for its implementation in officer classification.

The purpose of this initial phase was to evaluate aptitude, background, and performance information routinely collected by the Marine Corps for its potential usefulness in predicting performance in follow-on specialty schools. If valid predictors are identified, an interim system can be developed that could be applied to some or all of the MOSs.

APPROACH

Subjects

The original sample consisted of Marine Corps officers whose personnel records indicated they had graduated from TBS between 1972 and mid-1977 and who had completed a follow-on school course in any of the original 12 MOSs. (The other ten were not included in this research because of insufficient historical data.) Subsequently, officers in Infantry were excluded because it had only recently acquired a follow-on school; and those in Data Systems, because of inadequate sample size. Table 1 shows the sample size and follow-on school for the 10 remaining MOSs.

Predictors

Civilian Education Major Categories (CEMC)

There are about 260 civilian education majors in the Marine Corps data base. They were grouped under six categories: (1) engineering and architecture, (2) business management, (3) physical sciences, (4) social sciences, (5) arts and humanities, and (6) trades and services (see Appendix A). The CEMCs of sample members are presented in Table 2.

To obtain samples large enough for statistical analysis, the officers in the engineering and architecture and physical sciences categories were combined into a technical category; and those in the social sciences and arts and humanities categories, into a nontechnical category. Final school grade (FSG) means and standard deviations for sample members in the technical, business and management, and nontechnical categories are provided in Table 3.

¹Deputy Chief of Staff for Manpower memorandum MMPA:RRR:rjt 5310 of 21 March 1977 to the Directors of the Personnel Management and Manpower Plans and Policy Divisions.

Table 1
Follow-on Schools Included in the Study

MOS	School	N	Duration (weeks)
7208	Air Support (AS)	55	9.5
1302	Combat Engineer (CE)	220	6
7204	Anti-Air Warfare (AAW)	32	6 or 8
2502	Basic Communication (BC)	172	11
3002	Ground Supply (GS)	267	9 or 12
0802	Field Artillery (FA)	423	10
3060	Aviation Supply (AS)	77	14 or 18
1802	Tank (T)	82	12
1803	Amphibious Vehicle (AV)	20	5 or 6
7210	Air Defense (AD)	70	10.5
		1418	

Table 2
Civilian Education Major Categories of Sample Members by School

Follow-on School	Eng. & Architecture	Business & Management	Physical Sciences	Social Sciences	Arts & Humanities	Trades & Services	No Major	Total
Air Support	3	2	9	17	9	2	13	55
Combat Engineer	30	19	23	72	16	2	58	220
Anti-Air Warfare	3	3	2	9	1	1	13	32
Basic Communication	11	10	21	67	17	0	46	172
Ground Supply	10	63	24	83	15	2	70	267
Field Artillery	30	53	38	161	35	2	104	423
Aviation Supply	1	26	5	22	9	0	14	77
Tank	3	9	10	35	5	0	20	82
Amphibious Vehicle	2	2	3	7	1	0	5	20
Air Defense	7	2	9	25	9	2	16	70
Total	100	189	144	498	117	11	359	1418

Table 3
Mean Final School Grade (Standardized Mean = 0, SD = 1)
By Civilian Education Major Category (CEMC)

Follow-on School	Civilian Education Major Category								
	Technical ^a			Business and Management			Nontechnical ^b		
	Mean	SD	N	Mean	SD	N	Mean	SD	N
Air Support	-.44	.98	12	-.95	1.03	2	.02	1.05	26
Combat Engineer	.06	.97	53	-.46	1.48	19	.06	1.00	88
Anti-Air Warfare	.54	.62	5	.42	.59	3	.01	1.12	10
Basic Communication	-.23	1.11	32	-.34	1.22	10	.05	1.00	84
Ground Supply	.43	.90	34	-.12	1.09	63	-.07	.96	98
Field Artillery	-.06	1.33	68	.08	.83	53	-.03	.96	196
Aviation Supply	.04	.73	6	.03	.93	26	.16	1.10	31
Tank	.39	.92	13	-.31	.92	9	-.15	1.04	40
Amphibious Vehicle	-.27	.80	5	-.87	1.56	2	.24	1.12	8
Air Defense	.27	.88	16	.94	.19	2	-.10	.93	34
Total			244			189			615

Note. This table does not include the 11 officers with "trades and services" majors and the 359 officers with no major who were included in the standardization but not in the analyses (see Table 2).

^aIncludes officers in the engineering and architecture and physical sciences categories.

^bIncludes officers in the social sciences and arts and humanities categories.

To determine if CEMCs are related to follow-on school performance, a two-way analysis of variance (the four large sample schools--CE, BC, GS, and FA by the three CEMCs) was performed with standardized FSG as the dependent variable.² Results are provided in Table 4, which shows that there was a mild interaction ($p = .046$) between the two factors. Thus, a strength of association index (ω^2) was computed (Hays, 1973). The very small value of this index (.009) indicates that the relationship between the two factors has no practical significance. Therefore, CEMC was eliminated from the predictor set.

Table 4
Analysis of Variance of Follow-on School by
Civilian Education Major Category (CEMC)

Source of Variation	SS	df	Mean Square	F	p	ω^2
Main effects	5.947	5	1.189	1.123	.346	
School	4.181	3	1.394	1.316	.268	
CEMC	4.118	2	2.059	1.945	.144	
2-way Interaction:						
School X CEMC	13.671	6	2.279	2.152	.046	.009
Explained	15.927	11	1.448	1.368	.183	
Residual	832.186	786	1.059			
Total	848.113	797	1.064			

Note. ω^2 = strength of association index. The formula used to compute ω^2 is given in Hays (1973, p. 513). Formula 12.34.7 was used.

Aptitude Tests

General Classification Test (GCT). The GCT is an aptitude battery comprised of four subtests: Reading and Vocabulary (GCT-RV), Arithmetic Reasoning (GCT-AR), Arithmetic Computation (GCT-AC), and Pattern Analysis (GCT-PA).³

²CEMC was considered separately because it is not free from bias. That is, an individual's college major may influence assignment to some MOSs to some degree, and its weight in assignment decisions may depend on the student's grade point average, which was not available for this study.

³A more comprehensive differential aptitude battery, the Air Force Officer Qualification Test (AFOQT), has been experimentally administered to TBS students since June 1978 and will be included as a predictor in later phases of this research. Another aptitude test, the Officer Aptitude Rating (OAR), was initially considered as a predictor but had to be excluded because scores were not available for most sample members.

Army Language Aptitude Test (ALAT). The ALAT is a 59-item test designed to measure linguistic aptitude.

TBS Course Grades

Since TBS course designators, content, schedule, and organization are often changed, grades for only those courses meeting the following criteria were considered as predictors: (1) the course content had to be essentially the same across all TBS classes included in the study, (2) the course had to be part of the curriculum as of December 1978, (3) the course either had to be scheduled early in the curriculum structure (i.e., prior to MOS assignment), or it could potentially be rescheduled if study results showed that it significantly improved prediction, and (4) it had to have a sample size large enough for stable analyses. The following six courses met these criteria: Basic Tactics, First Command Evaluation, Personnel Administration, Military Law, Crew-served Weapons, and Communication. The first two courses listed are "early" courses and the latter four, "anytime" courses. (A listing of all the courses/tests originally available, plus sample sizes, is provided in Appendix B.)

The final list of predictors included the GCT total score, the four GCT subtest scores, the ALAT score, and the grades obtained on the six TBS courses listed above. These predictors were used to form the four predictor sets shown in Table 5.

Table 5
Experimental Predictor Sets

Predictors	Set			
	I	II	III	IV
<u>Aptitude Test Score:</u>				
GCT Total	X			X
GCT RV Subtest		X		X
GCT AC Subtest		X		X
GCT AR Subtest		X		X
GCT PA Subtest		X		X
ALAT	X	X	X	X
<u>TBS Course Grade:^a</u>				
Basic Tactics	X	X	X	X
1st Command Evaluation	X	X	X	X
Personnel Administration			X	X
Military Law			X	X
Crew-served Weapons			X	X
Communication			X	X

^aThe first two courses listed are "early" courses, and the latter four, "anytime" courses.

Criterion

Follow-on school performance, as measured by FSG, was the single criterion.

Analyses

1. Multiple regression analyses were performed (1) to determine whether prediction of follow-on school performance could be improved by forming composites based on aptitude test scores and/or TBS grades, and (2) to assess differential prediction. For the four schools (MOSs) that had samples large enough ($N > 100$) to permit development and evaluation of such composites--CE, BC, GS, and FA--the total sample was divided into two subgroups using the last digit of each subject's social security number (SSN).⁴ Those with digits 0, 1, 3, 5, 7, or 9 (about 60%) were assigned to a developmental sample; and those with digits 2, 4, 6, or 8, to a cross-validation sample.

2. To provide a common performance scale for all follow-on schools, the criterion variable, FSG, was converted to standard Z scores (mean = 0, standard deviation = 1) within each school's developmental sample. Using these samples, the four predictor sets shown in Table 5 were entered into a step-wise multiple regression program to obtain the optimal weights for the prediction of the criterion.

3. Differential prediction with the resulting composites was evaluated in the cross-validation samples by making simulated computer-based assignments based on each set and then comparing predicted school performance under each of the four assignment solutions.

4. Finally, to simplify computations in the event that the selected composites were to be used manually, the exact weights were replaced by integer weights. The resulting composites were then evaluated and appropriate percentile conversion tables prepared.

RESULTS AND DISCUSSION

Mean FSG, standard deviations, and sample size by school and by sex are presented in Table 6. Since there are so few women in the sample (1.6%), no analyses by sex were performed.

Table 7, which presents correlation coefficients between the predictors and the criterion, shows that the majority of the coefficients are statistically significant at the .01 level.

⁴Consideration was given to grouping some of the smaller schools with similar subject matter (i.e., air support and air defense, tank and amphibious vehicle, ground supply and aviation supply). However, this possibility was dismissed because either the combined sample sizes were still too small or the courses differed in complexity or length.

Table 6
Mean FSGs and Standard Deviations
by School and by Sex

School	N	Total			Women			Men		
		Mean	SD	N	Mean	SD	N	Mean	SD	
Air Support	55	88.1	4.2	3	87.7	1.3	52	88.2	4.4	
Combat Engineer	220	91.0	4.7	2	92.9	1.8	218	91.0	4.8	
Anti-Air Warfare	32	91.1	5.5	-	--	--	32	91.1	5.5	
Basic Communication	172	88.3	5.7	2	89.9	1.8	170	88.3	5.7	
Ground Supply	267	88.1	5.5	6	89.7	4.4	261	88.0	5.6	
Field Artillery	423	89.8	5.1	-	--	--	423	89.8	5.1	
Aviation Supply	77	86.7	4.6	3	91.0	5.3	74	86.5	4.5	
Tank	82	93.4	3.4	-	--	--	82	93.4	3.4	
Amphibious Vehicle	20	90.5	3.7	-	--	--	20	90.6	3.7	
Air Defense	70	82.6	4.7	6	82.9	5.3	64	82.6	4.6	
Total	1418	89.1	5.5	22	88.1	5.2	1396	89.2	5.5	

Table 7
Pearson Correlations Between Predictors and FSG

Predictor	Follow-on Schools									Air Defense			Total
	Air Support	Combat Engineer	Anti-air Warfare	Basic Communic.	Ground Supply	Field Artillery	Aviation Supply	Tank	Amphibious Vehicle	Air Defense			
Aptitude Test Scores:^a													
GCT Total	N 50	206	28	128	386	71	19	64	1319				
	Mean 123.6	126.6	131.2	124.0	122.8	131.3	130.4	126.1	122.1	130.1	127.7		
	SD 10.9	13.5	13.8	12.2	11.9	11.7	11.4	12.2	12.2	15.5	10.2	12.6	
	r .41**	.53**	.42*	.52**	.51**	.36**	.25*	.37**	.46*	.48**	.48**	.41**	
GCT RV Subtest	N 129.4	130.2	135.5	130.6	128.1	134.5	133.0	131.9	123.4	135.1	131.6		
	Mean 128.8	13.0	12.5	13.0	12.8	12.2	10.7	11.2	11.2	17.6	10.8	12.8	
	SD 12.20	.36**	.27	.24**	.41**	.24**	.25*	.37**	.25*	.59**	.27*	.27**	
GCT AC Subtest	N 117.4	121.5	125.5	118.8	119.3	126.1	127.0	120.0	114.3	126.6	122.4		
	Mean 12.6	14.9	14.3	14.0	12.4	12.2	12.3	14.2	19.2	12.8	13.6		
	SD 12.27*	.48**	.49**	.49**	.42**	.29**	.05	.51**	.35	.44**	.34**	.32**	
GCT AR Subtest	N 117.5	119.6	126.4	117.9	117.5	125.6	125.3	118.5	115.2	124.4	121.2		
	Mean 11.6	15.2	15.8	14.8	14.1	12.8	12.9	14.7	17.3	10.9	14.3		
	SD 11.4	.39**	.49**	.40*	.31**	.48**	.32**	.26*	.38**	.33	.45**	.37**	
GCT PA Subtest	N 119.7	123.5	125.8	119.0	116.9	125.7	123.3	122.7	123.2	122.6	122.1		
	Mean 16.3	16.1	17.3	17.2	17.4	15.8	15.7	15.6	18.5	15.4	16.7		
	SD 16.3	.38**	.44**	.26	.43**	.33**	.29**	.17	.29**	.22	.25*	.33**	
ALAT	N 41	187	28	146	238	371	67	71	20	61	1228		
	Mean 20.0	20.5	23.2	23.1	23.0	25.0	24.4	18.2	21.9	22.2			
	SD 9.7	3.8	10.1	10.7	8.8	10.5	9.2	10.8	8.2	9.7	10.1		
	r .63**	.42**	.46**	.46**	.53**	.30**	.35**	.47**	.43*	.29*	.35**		
TBS Course Grade:^b													
Basic Tactics	N 90.4	123	14	101	205	210	54	26	17	36	347		
	Mean 9.2	8.8	9.2	7.5	7.6	8.1	9.4	90.8	87.3	89.4	89.6		
	SD .36**	.37**	.37**	.09	.98**	.54**	.41**	.41**	.50**	.50*	.59**	.42**	
1st Command Evaluation	N 39	173	22	121	229	361	67	73	20	53	1158		
	Mean 84.0	84.2	81.6	83.0	83.3	85.0	86.1	82.3	82.1	84.1			
	SD 6.4	6.2	8.7	5.5	5.0	6.3	5.8	6.0	4.0	5.7	6.0		
	r .35*	.26**	.26	.22**	.31**	.37**	.36**	.35**	.43*	.36**	.33**		
Personnel Administration	N 38	173	22	121	229	361	67	73	20	53	1157		
	Mean 87.4	86.7	88.9	88.3	87.0	89.1	90.7	88.0	86.0	90.5	88.2		
	SD 6.1	8.1	8.2	9.1	8.5	8.4	7.5	8.4	10.6	7.6	8.4		
	r .36**	.49**	.48*	.48*	.66**	.49**	.40**	.60**	.63**	.57**	.43**		
Military Law	N 39	173	22	121	229	361	67	73	20	53	1158		
	Mean 86.8	83.8	87.5	88.3	86.4	88.5	89.3	86.6	85.6	86.6	87.3		
	SD 9.2	10.1	6.8	8.4	8.7	8.8	7.0	8.6	10.1	11.2	9.0		
	r .53**	.42**	.50**	.48**	.49*	.45**	.49*	.67**	.35	.41**	.41**		
Crew-served Weapons	N 31	126	14	103	217	232	58	59	17	39	896		
	Mean 88.7	88.4	88.8	86.9	88.1	89.4	90.1	88.8	89.7	89.0	88.6		
	SD 7.8	7.5	7.9	8.7	7.8	6.4	7.3	5.1	7.0	6.4	7.7		
	r .63**	.49**	.68**	.67**	.39**	.66**	.37**	.58**	.63**	.49**	.46**		
Communication	N 31	127	14	103	217	232	58	59	17	39	897		
	Mean 92.6	91.4	91.9	91.6	90.1	92.5	92.3	89.9	92.4	91.2	91.4		
	SD 6.6	5.9	5.2	6.2	7.1	6.7	7.6	7.5	3.8	8.7	6.9		
	r .21	.17*	.27	.25**	.30**	.27**	.35**	.35**	.16	.49**	.26**		

^aThe N for the GCT subtests is the same as that for the GCT total.

^bThe first two courses listed are "early" courses; and the last four, "anytime" courses.

*p < .05.

**p < .01.

Development of Multiple Regression Composites

As indicated previously, the total samples for the four large schools were divided into developmental and evaluation samples. The sample sizes, predictor and criterion means, standard deviations, and correlations of all predictors with the criterion in these samples are shown in Table 8.

For each school's developmental sample, four multiple-regression composites were computed, one for each predictor set. Cross-validities for each composite were then computed in the corresponding evaluation samples. Results, which are presented in Table 9, show that validities for all the composites are quite high and are maintained on cross-validation. The validities for composite sets III and IV, which include grades for both "early" and "anytime" TBS courses, are slightly higher than those for sets I and II, which include grades for only the "early" courses. Hereinafter, composite sets III and IV will be referred to as the "anytime" sets; and set I and II, as the "early" sets. Within the "early" and "anytime" sets, validities are slightly higher for those composite sets that include GCT subtest scores (II and IV) than for those that include the GCT total score only (I and III). These results indicate that validities increase as more TBS and aptitude information goes into the composites and that these composites can be used to predict follow-on school performance.

Evaluation of the Composites for Differential Prediction

The four sets of composites listed in Table 9 were compared using a computer-based procedure⁵ for assigning all persons in a group to a set of jobs or schools such that quotas are filled and overall performance will be optimal. To use this procedure, each person must have expected performance (utility) scores for all the possible jobs. For the present study, the utilities were the officers' predicted school performance scores (\hat{Z}) in each of the four large schools. Four sets of scores were computed from Composites Sets I to IV, and an optimal assignment was made with each set.

Only officers in the four cross-validation samples who had complete predictor data were included. Quotas were then set to equal the number of officers in the resulting sample who had actually attended each school. Results are presented in Table 10, which shows that mean expected performance with the "anytime" sets is better than that with the "early" sets. Within the "early" pair, predicted performance with Set II, which includes GCT subtest scores, is better than that with Set I, which includes the GCT total score. Thus, as with validities, mean utilities increase as more information goes into the composites.

To compare the optimization strategy with current assignment procedures, mean utilities (predicted grades) for the officers who actually attended each school were computed, again using the four sets of composites. As seen in Table 10, the utilities obtained are always considerably lower than those obtained with the optimal assignment method.

Table 10 shows that Predictor Set IV is the best predictor of performance, followed by Set III. Both of these sets include the four "anytime" TBS courses. Therefore, if they

⁵The procedure is the Ford-Fulkerson algorithm (1956) for solving the Hitchcock-Koopmans transportation problem. The computer program was developed by Wolfe (1971).

Table 8
Pearson Correlation Coefficients Between Predictors and Criterion in the Developmental and Cross-Validation Samples

Variables	Follow-on School												Field Artillery												
	Combat Engineer						Basic Communication						Ground Supply						Follow-on School						
	Mean	SD	N	r	Mean	SD	N	r	Mean	SD	N	r	Mean	SD	N	r	Mean	SD	N	r	Mean	SD	N	r	
Developmental Sample																									
FSG (criterion)	91.1	4.8	133	-	88.4	5.6	110	-	88.2	5.3	146	-	89.8	5.4	260	-									
TBS Course Grade:																									
1st Command Evaluation	84.1	6.0	108	.24**	83.2	5.0	81	.21*	83.4	4.7	123	.43**	85.1	6.1	223	.36**									
Basic Tactics	88.2	9.4	74	.41**	91.7	7.7	67	.54**	88.7	8.5	109	.54**	91.0	7.1	130	.34**									
Personnel Administration	86.9	7.6	108	.44**	88.6	8.9	81	.61**	87.9	8.2	123	.49**	89.7	8.2	223	.45**									
Crew-Served Weapons	89.3	6.5	76	.48**	87.4	8.1	68	.66**	88.4	8.2	117	.39**	90.4	6.8	143	.44**									
Military Law	84.8	10.1	108	.39**	89.1	8.1	81	.43**	86.2	8.5	123	.49**	88.5	9.0	223	.44**									
Communications	90.8	5.5	76	.14	91.2	6.5	68	.21*	89.9	7.1	117	.16*	92.0	7.0	143	.28**									
Aptitude Test Score:																									
ALAT	20.3	8.4	116	.34**	22.6	10.8	90	.37**	19.0	8.7	129	.50**	25.9	11.0	229	.30**									
GCT Total	127.5	13.6	126	.52**	123.2	11.3	98	.54**	123.6	11.6	141	.45**	132.1	11.8	238	.33**									
GCT RV Subtest	130.0	13.2	126	.36**	130.2	13.5	98	.29**	128.1	12.4	141	.37**	135.0	12.6	238	.15**									
GCT AC Subtest	123.2	14.2	126	.44**	118.2	13.8	98	.45**	119.5	11.4	141	.34**	126.6	12.2	238	.27**									
GCT AR Subtest	121.0	16.0	126	.48**	116.9	14.0	98	.53**	118.5	13.6	141	.46**	126.5	12.6	238	.30**									
GCT PA Subtest	124.2	16.6	126	.44**	117.5	15.8	98	.37**	118.1	17.5	141	.32**	126.8	15.8	238	.28**									
Cross-Validation Sample																									
FSG (criterion)	90.8	4.7	87	-	88.1	5.8	62	-	87.8	5.8	121	-	89.8	4.7	163	-									
TBS Course Grade:																									
1st Command Evaluation	84.3	6.5	65	.30**	82.5	5.4	40	.25	83.3	5.5	106	.20*	84.9	6.7	138	.40**									
Basic Tactics	88.2	7.3	49	.30*	91.3	6.8	34	.68**	87.9	7.6	96	.54**	89.3	7.7	80	.53**									
Personnel Administration	86.4	9.0	65	.54**	87.8	9.6	40	.75**	86.0	8.8	106	.49**	88.1	8.5	138	.44**									
Crew-Served Weapons	86.9	8.6	50	.51**	85.8	9.8	35	.72**	87.7	7.4	100	.40**	87.9	8.6	89	.52**									
Military Law	86.7	10.2	65	.49**	86.6	8.9	40	.60**	86.6	9.1	106	.49**	88.6	8.4	138	.45**									
Communications	92.3	6.5	51	.23	92.4	5.5	35	.33*	90.4	7.2	100	.46**	93.3	6.2	89	.27**									
Aptitude Test Score:																									
ALAT	21.0	9.4	71	.54**	23.9	10.7	54	.38**	18.2	9.0	109	.55**	23.6	9.7	142	.31**									
GCT Total	125.1	13.2	80	.55**	125.5	13.5	60	.52**	121.8	12.3	117	.56**	129.9	11.6	148	.43**									
GCT RV Subtest	130.6	13.4	80	.31**	131.2	12.1	60	.17	128.2	13.4	117	.45**	133.7	11.7	148	.41**									
GCT AC Subtest	119.0	15.8	80	.56**	119.8	14.5	60	.42**	119.0	13.5	117	.51**	125.1	12.1	148	.35**									
GCT AR Subtest	117.5	13.7	80	.51**	119.4	16.1	60	.50**	116.2	14.6	117	.50**	124.1	13.0	148	.35**									
GCT PA Subtest	122.3	15.3	80	.45**	121.4	19.2	60	.52**	115.4	17.3	117	.34**	124.0	15.6	148	.30**									

*p < .05.
**p < .01.

Table 9
Beta Weights and Validities in Predicting Final
School Grade

Predictors	Set I			Set II			Set III			Set IV		
	School			School			School			School		
	CE	BC	GS	FA	CE	BC	GS	FA	CE	BC	GS	FA
Apitude Test Score:												
GCT Total	.413	.318	--	--	--	--	--	--	.357	--	--	--
GCT RV Subtest	--	--	--	--	--	--	--	--	--	--	--	--
GCT AR Subtest	--	--	--	--	.227	.243	--	--	--	--	.243	--
GCT AC Subtest	--	--	--	--	--	.214	--	--	--	--	.265	--
GCT PA Subtest	--	--	--	--	.263	--	--	--	--	--	.255	--
ALAT	--	.143	.360	.237	--	--	.360	.237	--	.360	--	.360
TBS Test Grade:												
Basic Tactics	.224	.396	.350	.225	.279	.458	.350	.225	.257	.350	--	.375
1st Command Evaluation	.098	--	.266	.297	--	--	.266	.297	--	.266	.236	--
Personnel Administration	--	--	--	--	--	--	--	--	.253	.271	.256	.336
Military Law	--	--	--	--	--	--	--	--	--	--	.276	--
Crew-served Weapons	--	--	--	--	--	--	--	--	.221	.462	--	.462
Communication	--	--	--	--	--	--	--	--	--	--	--	--
Validities												
R--Developmental Sample ^a	.575	.663	.697	.505	.583	.688	.697	.505	.634	.781	.697	.568
R ² --Developmental Sample	.331	.440	.486	.255	.340	.474	.486	.255	.402	.611	.486	.323
r--Cross-validation Sample ^b	.559	.763	.676	.584	.522	.763	.676	.584	.675	.859	.676	.639

^aR = multiple correlation.

^br = Pearson product-moment correlation.

Table 10
Predicted Standardized FSG Means and Standard Deviations
Of Optimal and Actual Assignments Using Composite Sets I to IV

Composite Set	Across Schools	Combat Engineer (CE)		Basic Communication (BC)		Ground Supply (GS)		Field Artillery (FA)	
		Mean	SD	Mean	SD	Mean	SD	Mean	SD
Optimal Assignments									
I	.15	-.17	.47	.43	.41	.76	.43	-.53	.39
II	.19	.01	.53	.37	.40	.77	.43	-.50	.39
III	.30	.30	.56	.51	.47	.61	.60	-.17	.55
IV	.34	.33	.54	.53	.57	.63	.60	-.10	.53
Quota ^a	240	44		32		91		73	
Actual Assignments									
I	-.10	-.15	.46	.00	.69	-.09	.65	-.14	.56
II	-.11	-.15	.45	-.03	.71	-.09	.65	-.14	.56
III	-.09	-.22	.67	-.08	.88	-.09	.65	-.01	.50
IV	-.08	-.15	.62	-.09	.84	-.09	.65	-.01	.50
Quota ^a	240	44		32		91		73	

^aOfficers with complete predictor data who actually attended the school.

are adopted, the TBS curricula would have to be changed so that the four courses are taught prior to MOS assignment. The next best predictors are those in Set II. Since Set II composites do not require curriculum changes and they do improve overall assignment in the four largest MOSs, they appear to be the most practical choice for the interim phase of the classification system.

Development of Composites for Manual Use

In the event that these scores were to be computed manually (or with a hand calculator), calculations can be greatly simplified by replacing the predictors' exact weights with appropriate integer weights and using specially developed tables to indicate predicted performance in each school. Therefore, using the predictors in Set II equations, alternative sets of integer-weights were explored, and Pearson correlations of all the new composites with FSG were computed separately in the developmental and in the cross-validation samples to assess integer-weight effect in the composites' validities. Only cases with complete predictor data were included in these analyses. As can be seen in Table 11, the use of the simpler weights (when compared with the corresponding exact

Table II

Validities and Cross-Validities of Composites
Derived from Predictor Set II

School	Predictor	Exact Weights					Integer-Weights	
		B-Coefficients	Composite 1	Composite 2	Composite 3	Composite 4	Composite 5	
Combat Engineer (CE)	Basic Tactics Grade	.125	1	2	2	1	0	
	GCT AR Subtest Score	.075	1	1	0	0	1	
	GCT PA Subtest Score	.041	1	1	1	1	1	
	Validation r (N = 67) Cross-validation r (N = 45)	.48 .51	0.46 0.51	0.48 0.50	0.43 0.42	0.40 0.42	0.40 0.42	0.40 0.42
Basic Communic. (BC)	Basic Tactics Grade	.331	2	1	1	1	3	2
	GCT AR Subtest Score	.123	1	1	1	1	1	0
	GCT AC Subtest Score	.091	0	0	1	1	1	1
	Validation r (N = 58) Cross-validation r (N = 32)	.70 .76	0.69 0.77	0.67 0.75	0.65 0.70	0.70 0.76	0.67 0.71	
Ground Supply (GS)	1st Command Evaluation Grade	.336	1	0	0	3		
	Basic Tactics Grade	.223	1	1	1	2		
	ALAT Score	.224	1	1	1	2		
	Validation r (N = 99) Cross-validation r (N = 91)	.70 .67	0.69 0.69	0.65 0.67	0.70 0.67			
Field Artillery (FA)	1st Command Evaluation Grade	.259	1	1	1	2		
	Basic Tactics Grade	.186	1	1	1	1		
	ALAT Score	.129	0	1	1	1		
	Validation r (N = 115) Cross-validation r (N = 73)	.47 .56	0.42 0.58	0.46 0.54	0.47 0.54			

Note: All Ns represent cases with complete predictor data only.

weights composite) results in very small changes in the composites' cross-validities. There were slight losses in 11 of the composites and increases in the remaining 5.⁶

Since all the validities are acceptable, the next step was to select, from the three to five integer-weight composites derived per school, those that would maximize differentiation among schools. This should be accomplished by selecting, for each school, the composite having the lowest intercorrelations with the other schools' composites. Thus, based on the intercorrelations presented in Table 12, the following composites were chosen: Composite 5 in CE school (CE5), Composites 3 and 5 in BC school (BC3 and BC5), Composite 2 in GS school (GS2), and Composite 1 in FA school (FA1). The equations for these composites are as follows:

- $CE5 = GCTAR + GCTPA$
- $BC3 = \text{Basic Tactics} + GCTAR + GCTAC$
- $BC5 = 2(\text{Basic Tactics}) + GCTAC$
- $GS2 = \text{Basic Tactics} + ALAT$
- $FA1 = 1\text{st Command Evaluation} + \text{Basic Tactics}$

Finally, simulated optimal assignments were made to evaluate differential prediction and to choose between the two options for the BC school--BC3 and BC5. For this analysis, the raw scores obtained with the equations above were transformed--using linear regressions--into predicted standardized final school grades (\hat{Z}). The resulting equations are as follows:

- $\hat{Z}_{CE5} = -5.012 + (.0207)CE5$
- $\hat{Z}_{BC3} = -8.925 + (.0274)BC3$
- $\hat{Z}_{BC5} = -11.670 + (.0389)BC5$
- $\hat{Z}_{GS2} = -6.189 + (.0564)GS2$
- $\hat{Z}_{FA1} = -7.990 + (.0460)FA1$

Next, two sets of composites were formed, Set IIa with \hat{Z}_{CE5} , \hat{Z}_{BC3} , \hat{Z}_{GS2} , and \hat{Z}_{FA1} , and Set IIb with \hat{Z}_{CE5} , \hat{Z}_{BC5} , \hat{Z}_{GS2} , and \hat{Z}_{FA1} . The sets were used separately to make optimal assignments and their utilities compared. Results are provided in Table 13, which shows that superior optimal assignments were obtained with Set IIa.

⁶Increases in cross validity when integer-weights are used instead of exact weights are not unusual (Dawes, 1979).

Table 12
Intercorrelations of Integer-Weight Composites
In the Cross-Validation Sample (N = 241)

	Integer-Weight Composites ^a										
	BC1	BC2	BC3 ^b	BC4	BC5 ^b	GS1	GS2 ^b	GS3	FA1 ^b	FA2	FA3
CE1	.82	.88	.83	.80	.67	.63	.63	.61	.50	.63	.58
CE2	.90	.91	.84	.87	.77	.71	.72	.68	.61	.71	.64
CE3	.81	.76	.66	.78	.74	.71	.72	.68	.68	.71	.64
CE4	.70	.69	.63	.67	.60	.61	.60	.59	.54	.61	.57
CE5 ^b	.67	.78	.77	.66	.51	.49	.48	.48	.32	.49	.47
BC1						.76	.80	.71	.71	.76	.67
BC2						.70	.72	.66	.59	.70	.62
BC3 ^b						.66	.68	.63	.50	.66	.59
BC4						.77	.81	.72	.69	.77	.68
BC5 ^b						.77	.81	.72	.71	.77	.68
GS1									.84	1.00	.97
GS2 ^b									.67	.93	.80
GS3									.87	.99	.99

^aCE1 refers to Composite 1 for school CE, CE2 to Composite 2 for school CE, etc.

^bIndicates composites selected for possible manual use.

Table 13
Predicted Standardized FSG Means and Standard Deviations of Optimal Assignments Using Integer-Weight Composites

Composite Set	Follow-on Schools									
	Across Schools Mean	CE		BC		GS		FA		
		Mean	SD	Mean	SD	Mean	SD	Mean	SD	
IIa	.39	.11	.50	.89	.49	.60	.56	.06	.44	
IIb	.37	.13	.53	.91	.43	.58	.56	.01	.43	
Quota ^a	241	45		32		91		73		

^aOfficers with complete predictor data who actually attended the school.

Finally, another analysis was conducted using, as a measure of talent utilization, the proportion of students above or below the median predicted FSG. In the current sample, 50 percent of the officers in each school will score, by definition, above the median predicted FSG computed with the corresponding composite. As shown in Table 14, using Set IIa, 73 percent of the officers would be expected to perform above the median when optimally assigned to the four schools, compared to 70 percent for Set IIb. (Results of a median analysis with the exact weights composites (Sets I to IV) appear in Table 15.)

Table 14
Officers Expected to Score Above the Median in Optimal Assignments with Integer-Weight Composites

School	Quota	Composite Set			
		Set IIa		Set IIb	
		N	%	N	%
CE	45	24	53	23	51
BC	32	31	97	28	88
GS	91	80	88	82	90
FA	73	41	56	36	49
Total	241	176	73	169	70

Table 15
Officers Expected to Score Above the Median in Optimal Assignments with Composites Sets I to IV

School	Quota	Composite Set							
		I		II		III		IV	
		N	%	N	%	N	%	N	%
CE	44	19	43	24	53	36	80	36	80
BC	32	27	84	26	81	23	72	27	84
GS	91	90	99	90	99	78	86	81	89
FA	73	5	7	7	10	30	41	34	47
Total	240	141	59	147	61	167	70	178	74

Based on predictor Set IIa, a work sheet (Figure 1) was then prepared. It provides step-by-step instructions for computing an officer's predicted scores in the four schools and a table for converting the raw scores into percentile ranks, allowing the user to compare the four values directly.

Implementation

Operationally, the composites can be used in three ways:

1. The predicted scores computed for each student would be used manually, on a case-by-case basis, as additional information when making the assignment decision.
2. All the members of the group would be assigned simultaneously with a computer-based procedure. The resulting assignments can be used directly or with minor changes since all the predicted scores are also available.
3. Officers with the highest scores in each MOS would be assigned first, manually, and the rest would be assigned with the computer. The rationale of this approach is to preselect officers who are singularly suited to certain schools and to optimize the overall utilization of the rest of the group.

CONCLUSIONS

Composites based on TBS grades and aptitude test scores are strong predictors of success at the four schools with samples large enough for stable analyses. As more TBS course information goes into composite development, validity increases and greater differentiation among follow-on schools is obtained.

Irrespective of TBS courses, composites developed from GCT subtests have higher validities and result in greater differentiation than do those based on GCT total. This suggests that the use of a more comprehensive differential aptitude battery may further increase the magnitude of differential prediction.

Although CEMC did not contribute to performance prediction, this result must be interpreted with caution. Since education major is already a factor in some assignment decisions and its use is influenced to an unknown extent by other variables (e.g., the officer's interests and his GPA), proper statistical analyses with this variable were not possible.

RECOMMENDATIONS

1. The Set II or IIa composites should be used to aid in assignments to the CE, BC, GS, and FA schools.
2. To obtain larger sample sizes, collection of performance data at all follow-on schools should continue. In the small MOSs, follow-on schools curricula should be analyzed with the purpose of grouping related MOSs that, alone, do not yield enough subjects for stable analyses.

PERCENTILE	COMPOSITE SCORE			
	CE	BC	GS	FA
99	315	405 & OVER	149 & OVER	200
98	315	378-404	145-148	200
97	315	372-397	142-144	200
96	315	388-391	140-141	200
95	315	384-387	139	200
94	315	381-383	137-138	200
93	317-315	379-380	136	200
92	309-311	376-378	135	200
91	304-308	374-375	133-134	200
90	303-305	372-373	132	200
89	300-302	370-371	-	199
88	298-299	368-369	131	199
87	294-297	366-367	130	198
86	294-295	365	129	197
85	291-293	363-364	128	196
84	290	362	127	195
83	288-289	360-361	-	194
82	284-287	359	126	-
81	284-285	358	125	193
80	282-283	354-357	-	192
79	281	355	124	191
78	279-280	354	-	-
77	277-278	352-353	123	190
76	276	351	122	189
75	274-275	350	-	188
74	273	349	121	-
73	271-272	348	-	187
72	270	347	120	186
71	268-269	346	-	-
70	267	345	119	185
69	266	344	-	-
68	264-265	343	118	184
67	263	342	-	183
66	262	341	117	-
65	260-261	340	-	182
64	259	339	116	-
63	258	338	-	181
62	257	337	115	-
61	255-256	336	-	180
60	254	335	114	179
59	253	334	-	-
58	252	333	-	178
57	250-251	332	113	-
56	249	331	-	177
55	248	330	112	-
54	247	329	-	176
53	246	328	111	-
52	244-245	327	110	174
51	243	327	-	-
50	242	326	-	-
49	241	325	-	173
48	239-240	324	109	-
47	238	323	-	172
46	237	322	108	-
45	236	321	-	171
44	235	320	107	-
43	233-234	319	-	170
42	232	318	106	169
41	231	317	-	-
40	230	316	-	168
39	228-229	315	105	-
38	227	314	-	167
37	226	314	104	-
36	225	313	-	166
35	223-224	312	103	165
34	222	311	-	-
33	221	310	102	164
32	219-220	309	-	-
31	218	308	101	163
30	216-217	306-307	-	162
29	215	305	100	-
28	214	304	-	161
27	212-213	303	99	-
26	211	302	-	160
25	209-210	301	98	159
24	208	300	97	158
23	206-207	299	-	-
22	204-205	297-298	96	157
21	203	296	-	156
20	201-202	295	95	155
19	199-200	293-294	94	-
18	197-198	292	-	154
17	195-196	291	93	153
16	193-194	289-290	92	152
15	191-192	288	91	151
14	189-190	286-287	-	150
13	187-188	284-285	90	149
12	185-186	282-283	89	148
11	182-184	280-281	88	147
10	180 & UNDER	278 & UNDER	87 & UNDER	146 & UNDER

WORK SHEET AND EXAMPLE

Name Example Date _____

Company _____ SSN _____

Computation of estimates of follow-on school grades for Combat Engineer (CE), Basic Communication (BC), Ground Supply (GS), and Field Artillery (FA).

I. From the student's records, obtain the following scores:

GCT Arithmetic Computation	GCTAC = 100 .
GCT Pattern Analysis	GCTPA = 120 .
GCT Arithmetic Reasoning	GCTAR = 93 .
Army Language Aptitude Test	ALAT = 43 .
Basic Tactics	= 89.3
1st Command Evaluation	= 85.2

II. For each of the four schools: (1) Compute the raw score using the formulas given below, (2) round to the nearest whole number, (3) locate and circle the rounded raw score under the table column for the school, and (4) read the corresponding percentile on the same line.

Percentile

Combat Engineer

$$\text{Raw score} = \text{GCTAR} + \text{GCTAC}$$

$$\text{Raw Score} = \boxed{120} + \boxed{93} = \boxed{213}$$

CE = **27th**

Basic Communication

$$\text{Raw score} = \text{Basic Tactics} + \text{GCTAR} + \text{GCTAC}$$

$$\text{Raw score} = \boxed{89.3} + \boxed{93} + \boxed{100} = \boxed{282.3}$$

$$\text{Rounded raw score} = \boxed{282}$$

BC = **12th**

Ground Supply

$$\text{Raw score} = \text{Basic Tactics} + \text{ALAT}$$

$$\text{Raw score} = \boxed{89.3} + \boxed{43} = \boxed{132.3}$$

$$\text{Rounded raw score} = \boxed{132}$$

GS = **90th**

Field Artillery

$$\text{Raw score} = \text{Basic Tactics} + \text{1st Command Evaluation}$$

$$\text{Raw score} = \boxed{89.3} + \boxed{85.2} = \boxed{174.5}$$

$$\text{Rounded raw score} = \boxed{175}$$

FA = **52nd**

Notes and recommendations

Interpretation

The raw scores were converted to percentile scores in order to better compare and interpret them. Since percentiles are measures of relative standing, this allows one to estimate not only in which school the officer's performance level will be highest, but also how his predicted scores compare to those of previous TBS graduates. The officer in this example will probably do his best in Ground Supply School, will perform adequately in Field Artillery, and should not be assigned to Basic Communication.

Figure 1. Work sheet for computing officer's predicted scores in CE, BC, GS, and FA schools.

REFERENCES

Dawes, R. M. The robust beauty of improper linear models in decision making. American Psychologist, 1979, 34, 571-582.

Ford, L. R., Jr., & Fulkerson, D. R. Solving the transportation problem. Management Science, 1956, 3, 24-32.

Hays, W. L. Statistics for the social sciences (2nd Ed.). New York: Holt, Rinehart, and Winston, Inc., 1973.

Wolfe, J. H. Ford-Fulkerson optimal assignment of persons to jobs with quotas. DPRDC Computer Program Library Identification FORDP, June 1971.

APPENDIX A
CATEGORIES OF CIVILIAN EDUCATION MAJORS

TABLE A-1
CATEGORIES OF CIVILIAN EDUCATION MAJORS

I. ENGINEERING AND ARCHITECTURE	
J0	GRADUATE LOGISTICS
L9	LOGISTICS MANAGEMENT
M2	DEFENSE SYSTEMS ANALYSIS (FORMERLY SYSTEMS ANALYSIS)
M2	SYSTEMS ANALYSIS (REDISGNATED DEFENSE SYSTEMS ANALYSIS)
98	TRANSPORTATION (ALL MEANS)
H1	TRAFFIC MANAGEMENT
R9	STRUCTURES
K2	BUILDING SCIENCE
00	HIGHWAY ENGINEER
E8	ENGINEERING, ADMINISTRATION
E5	ENGINEERING, MANAGEMENT
J5	MANAGEMENT & INDUSTRIAL ENGINEERING
R9	INDUSTRIAL DESIGN
E6	ORDNANCE SYSTEMS ENGINEERING
M4	COMPUTER ENGINEERING
K8	NUCLEAR ENGINEERING
41	ENGINEERING, METALLURGICAL
42	ENGINEERING, MINING
43	ENGINEERING, PETROLEUM
C6	ENGINEERING, PHYSICS
44	ENGINEERING, POWER & FUEL
45	ENGINEERING, RADIO
97	ENGINEERING, SAFETY
46	ENGINEERING, SANITARY
A6	ENGINEERING, TOOL
47	ENGINEERING, TRAFFIC
31	ENGINEERING, AERONAUTICAL
H2	ENGINEERING, AEROSPACE
A4	ENGINEERING, AGRICULTURAL
96	ENGINEERING, ARCHITECTURAL
P5	ENGINEERING, BIOMEDICAL
32	ENGINEERING, CHEMICAL
33	ENGINEERING, CIVIL
34	ENGINEERING, COMMUNICATION
P8	ENGINEERING, ELECTRIC POWER TECHNOLOGY
35	ENGINEERING, ELECTRICAL
08	ENGINEERING, ELECTRONIC
36	ENGINEERING, GEOLOGICAL
37	ENGINEERING, HYDRAULIC
38	ENGINEERING, INDUSTRIAL
39	ENGINEERING, MARINE
40	ENGINEERING, MECHANICAL
45	ENGINEERING
L7	CEMETRIC ENGINEER
I5	AERONAUTICS
C0	LANDSCAPE DESIGN
17	ARCHITECTURE

Table A-1 (Con't)

II. BUSINESS AND MANAGEMENT

S3 SALESMAN, GENERAL
K1 AIRLINE/AIRPORT MANAGEMENT
C2 REAL ESTATE
B5 INSURANCE
G4 OPERATIONS RESEARCH
D9 OPERATIONS ANALYSIS
A1 RESTAURANT MANAGEMENT
A0 HOTEL MANAGEMENT
P3 HOUSING ADMINISTRATION
B3 SECRETARIAL STUDIES
G0 AVIATION MANAGEMENT
J8 RESEARCH AND DEVELOPMENT (MANAGEMENT)
M7 SYSTEMS INVENTORY MANAGEMENT
20 BANKING & FINANCE
24 COMMERCE
22 BUSINESS ADMINISTRATION
N8 BUSINESS MANAGEMENT
D7 COMPTROLLERSHIP
G2 FINANCIAL MANAGEMENT
K5 FINANCE
D1 GENERAL MANAGEMENT
M6 GOVERNMENT FINANCIAL MANAGEMENT
B1 INDUSTRIAL RELATIONS
C4 LABOR MANAGEMENT
63 MARKETING
D6 PERSONNEL MANAGEMENT
73 PERSONNEL ADMINISTRATION
N6 ADMINISTRATION
13 ACCOUNTING
L4 INDUSTRIAL ADMINISTRATION
55 INDUSTRIAL MANAGEMENT
M8 TECHNOLOGY OF MANAGEMENT
Q5 DATA PROCESSING
E7 COMPUTER SCIENCE (NON-TECHNICAL) (MANAGEMENT DATA SYSTEMS)
E7 MANAGEMENT DATA SYSTEMS (COMPUTER SCIENCE NON-TECHNICAL)
N0 MANAGEMENT INFORMATION SYSTEM
N5 SYSTEMS MANAGEMENT
H3 GOVERNMENTAL ADMINISTRATION
B2 POLICE ADMINISTRATION
80 PUBLIC ADMINISTRATION

Table A-1 (Con't)

III. PHYSICAL SCIENCES

A4 EARTH SCIENCE
E0 OCEANOGRAPHY
A7 GLASS TECHNOLOGY
23 CHEMISTRY
77 PHYSICS
19 ASTRONOMY
50 GEOLOGY
K9 NUCLEAR PHYSICS
66 METEOROLOGY
C9 GEOPHYSICS
C1 PHYSICAL SCIENCE
P9 NATURAL RESOURCES
P7 AGRICULTURE ECONIMICS
D4 WILDLIFE MANAGEMENT
R8 HORTICULTURE
48 FORESTRY
K0 FISHERIES
Q8 FISH & GAME WARDEN
K3 DAIRY MANUFACTURING
96 ANIMAL HUSBANDRY
16 AGRICULTURE
G5 AGRONOMY
M1 ENTOMOLOGY
03 BACTERIOLOGY
21 BOTANY
04 BIOLOGY
N4 BIOLOGICAL SCIENCE
H5 GENETICS
P0 MICROBIOLOGY
09 PHYSIOLOGY
12 ZOOLOGY
M9 BIOCHEMISTRY
L0 PATHOLOGY
88 STATISTICS
M3 APPLIED MATHEMATICS
64 MATHEMATICS
M5 COMPUTER SCIENCE (TECHNICAL)
84 SCIENCE
D3 NATURAL SCIENCE
70 NATURAL HISTORY
P2 FOOD SERVICE
G6 FOOD TECHNOLOGY
53 HOME ECONOMICS
90 TEXTILES
68 MORTUARY SCIENCE
08 PHARMACY
05 DENTISTRY
07 MEDICINE
82 RADILOGICAL TECHNOLOGY
58 LABORATORY TECHNICIAN
92 CHIROPRACTOR
71 NURSING
72 OPTOMETRY
L1 PRE-MEDICINE
11 VETERINARY MEDICINE

Table A-1 (Con't)

A8 HEALTH
N9 ENVIRONMENTAL HEALTH
67 MILITARY SCIENCE
C6 NAVAL SCIENCE
E1 U.S. NAVAL ACADEMY
E2 U.S. MILITARY ACADEMY
N7 U.S. MERCHANT MARINE ACADEMY
E4 U.S. COAST GUARD ACADEMY
E3 U.S. AIR FORCE ACADEMY

Table A-1 (Con't)

IV. SOCIAL SCIENCES

N3 HUMAN RELATIONS
F5 PSYCHOLOGY, EDUCATION
10 PSYCHOLOGY
P6 BEHAVIORAL SCIENCE
L6 ARAB STUDIES
G1 ASIATIC STUDIES
D0 LATIN AMERICAN STUDIES
DS AMERICAN STUDIES
F9 RUSSIAN STUDIES
CS FOREIGN SERVICE
26 CRIMINOLOGY
86 SOCIOLOGY
97 SOCIAL SCIENCE
02 ARCHAEOLOGY
01 ANTHROPOLOGY
49 GEOGRAPHY
28 ECONOMICS
H4 EUROPEAN HISTORY
52 HISTORY
51 GOVERNMENT
H0 INTERNATIONAL AFFAIRS
56 INTERNATIONAL RELATIONS/AFFAIRS
78 POLITICAL SCIENCE
L5 AMERICAN CIVILIZATION
B0 SOCIAL STUDIES
A5 SOCIAL WELFARE
R2 INVESTIGATOR
F4 LAW ENFORCEMENT
A9 RECREATION
R3 INDUSTRIAL EDUCATION
F3 EDUCATION, TESTING & EVALUATION
A3 EDUCATION, SECONDARY
76 EDUCATION, PHYSICAL
F6 EDUCATION, PHILOSOPHY
F2 EDUCATION, GUIDANCE & COUNSELING
F7 EDUCATION, CURRICULUM & INSTRUCTION
J0 EDUCATION, ADMINISTRATION
29 EDUCATION
H8 CRIMINAL LAW
C3 PRE-LAW
06 LAW
H7 JURIDICAL SCIENCE
60 LIBRARY SCIENCE

Table A-1 (Con't)

V. ARTS AND HUMANITIES

74 PHILOSOPHY
91 THEOLOGY
87 SPEECH
L3 CLASSICS
94 ENGLISH
G7 ENGLISH LITERATURE
59 LANGUAGE
61 LITERATURE
18 ARTS, LIBERAL
P1 ARTS & SCIENCE
D2 HUMANITIES
G3 GENERAL STUDIES
F8 ARTS & LETTERS
F1 COMMUNICATION MANAGEMENT
E9 RADIO BROADCASTING
L2 TELEVISION BROADCASTING
G9 COMMUNICATIONS
K4 FILM-TV PRODUCTION
81 PUBLIC RELATIONS/JOURNALISM
14 ADVERTISING
57 JOURNALISM
L8 CINEMATOGRAPHY
27 DRAMATICS
A2 ART
93 COMMERCIAL ART
95 FINE ART
75 PHOTOGRAPHY
69 MUSIC

Table A-1 (Con't)

VI. TRADES AND SERVICES

R3 LIFE GUARD
R6 MAIL CARRIER
65 MECHANICAL DRAWING
44 CABINET MAKER
K0 AIRCRAFT DESIGN TECHNICIAN
54 INDUSTRIAL ARTS & CRAFTS
K6 INDUSTRIAL ARTS
S0 TRACTOR, TRAILER TRUCK DRIVER
T1 TRUCK DRIVER
H9 HEAVY EQUIPMENT OPERATOR
H1 HIGHWAY MAINTENANCE
R0 PRESSMAN
S1 PRINTER
79 PRINTING
T2 WAREHOUSEMAN
G8 PACKAGING
R7 MAINTENANCE
S8 STONE MASON
R5 LOGGER
S4 SAND BLASTER
S7 SOLDERER, ASSEMBLER
S5 SHEET METAL WORKER
S9 TOOL & DIE MAKING
R8 METAL WORKER
S6 SHIPFITTER
T3 WELDING, ARC
T1 WELDING, GAS
Q7 FIREMAN
30 ELECTRONICS
P8 ELECTRONICS TECHNOLOGY
Q6 ELECTRICAL MAINTENANCE
R4 LINEMAN, ELECTRICAL
C7 RADIO-TV SERVICE
Q1 APPLIANCE REPAIRMAN
T5 WIREMAN, CABLE
S2 REFRIGERATION MECHANIC
P9 OFFICE MACHINE REPAIRMAN
K7 INDUSTRIAL TECHNICIAN
62 MACHINE TECHNOLOGY
N1 AUTOMOTIVE TECHNOLOGY
N2 AVIATION MAINTENANCE TECHNOLOGY
Q3 BARTENDER
25 COSMETOLOGY
Q2 BARBER

99 USAFI GEO/DR ANY ACCREDITED CIVILIAN HIGH SCHOOL EQUIVALENCY
00 NO MAJOR SUBJECT INDICATED

APPENDIX B
FREQUENCIES OF TBS COURSES BY FOLLOW-ON SCHOOL

Frequencies of TBS Courses by Follow-on School

TBS Course/Test	Course ^a				Follow-on School				Air			
	Air Classification N	Air Support N	Combat Engineer N	Anti-Air Warfare N	Basic Ground Supply N	Field Artillery N	Aviation Supply N	Tank N	Amphibious Vehicle N	Vehicle N	Air Defense N	
Personnel Administration	A 18	173	22	121	229	361	67	73	25	53		
Military Law	A 39	173	22	121	229	361	67	73	26	53		
Rifle Qualification	D 39	172	22	121	229	365	67	73	25	52		
Pistol Qualification	D 39	172	22	121	229	360	67	73	25	53		
First Contemporary Evaluation	D 39	173	22	121	229	361	67	72	26	52		
Second Contemporary Evaluation	D 39	173	22	120	229	361	67	72	25	53		
First Command Evaluation	E 39	173	22	121	229	361	67	73	26	53		
Second Command Evaluation	E 39	173	22	121	229	361	67	73	26	53		
Practical Drill Test	D 46	159	21	118	208	353	60	67	18	52		
Crew-Served Weapons	A 4	126	14	123	217	232	58	59	17	39		
Water survival/survival swimming	S 8	36	7	12	4	104	7	12	1	11		
Single run obstacle course	D 8	41	7	13	7	113	8	13	1	12		
Double run obstacle course	D 42	154	21	115	216	306	62	66	19	46		
Second Physical Fitness Test	L 39	173	22	121	229	359	67	73	25	53		
First Physical Fitness Test:	D 8	45	8	18	12	129	9	14	3	17		
15-minute Presentation	D 27	134	17	57	141	286	43	49	19	38		
15-minute Presentation	D 8	22	4	36	52	53	15	13	1	14		
Student Briefings	S 2	16	1	28	35	22	9	11	2	3		
General Military Subjects	V 19	89	9	39	130	157	34	35	16	26		
General Military Subjects I	V 12	38	5	64	87	75	26	24	1	15		
General Military Subjects II	V 12	38	5	64	87	75	24	24	1	15		
Map & Aerial Photograph Reading	S 25	84	13	82	99	204	33	38	4	29		
Mapping and Land Navigation	V 19	89	9	39	130	157	36	35	16	24		
Land Navigation	V 26	84	13	81	99	204	33	38	4	29		
Basic Tactics	E 31	123	14	101	205	219	56	56	17	36		
Tactics/Weapons I	S 5	4	0	2	12	22	4	3	1	3		
Defensive Tactics	L 31	123	14	101	205	210	56	56	17	36		
Tactics II	L 3	4	0	2	12	22	4	3	1	3		
Offensive Tactics	L 31	123	14	101	205	210	56	56	17	36		
Tactics/Weapons III	L 6	4	0	2	12	22	4	3	0	3		
Advanced Platoon Tactics	L 31	123	14	101	205	210	56	56	17	36		
Individual Weapons	D 3	123	14	101	205	210	56	56	17	36		
Mortars	D 31	123	14	101	205	210	56	56	17	36		
Supporting Arms	S 13	39	6	56	104	58	26	26	12	16		
FDC Procedures and Supporting Arms	S 14	49	6	31	68	100	23	26	4	16		
81 mm FDC	S 4	15	2	26	33	52	11	16	1	8		
Communications	A 31	127	14	103	217	232	58	59	17	19		

^aCourses were classified as follows:

E : Conducted in current, continuous, prior to MOS assignment.

A : Conducted anytime, prior to or after MOS assignment.

L : Conducted late, after MOS assignment.

D : Discontinued.

S : Sample size too small.

V : Variable content.

DISTRIBUTION LIST

Chief of Naval Operations (OP-01), (OP-11), (OP-12) (2), (OP-115) (2), (OP-987H)
Chief of Naval Material (NMAT 00), (NMAT 0722), (NMAT 08L)
Chief of Naval Research (Code 200), (Code 440) (3), (Code 442), (Code 448)
Chief of Information (OI-213)
Chief of Naval Education and Training (N-5), (018)
Commander in Chief, United States Naval Forces, Europe (2)
Commanding General, Fleet Marine Force, Atlantic
Commanding General, Fleet Marine Force, Pacific
Commander Naval Military Personnel Command (NMPC-013C)
Commander Navy Recruiting Command
Commander Training Command, U.S. Atlantic Fleet
Commander Training Command, U.S. Pacific Fleet
Commanding Officer, Naval Education and Training Support Center, Pacific
Commanding Officer, The Basic School (S-3), Marine Corps Development and Education
Command (2)
Director, Career Information and Counseling School (Code 3W34)
Director, Education Center, Marine Corps Development and Education Command
Director, Naval Education and Training Program Development Center Detachment, Great
Lakes
Officer in Charge, Naval Occupational Development and Analysis Center
President, Naval War College (Code E114)
Superintendent, Naval Postgraduate School
Commander, Army Research Institute for the Behavioral and Social Sciences, Alexandria
(PERI-ASL)
Headquarters Commandant, Military Enlistment Processing Command, Fort Sheridan
Chief, Army Research Institute Field Unit--USAREUR (Library)
Chief, Army Research Institute Field Unit, Fort Harrison
Commander, Air Force Human Resources Laboratory, (Manpower and Personnel Division),
Brooks Air Force Base
Commander, Air Force Human Resources Laboratory, (Scientific and Technical Informa-
tion Office) Brooks Air Force Base
Commander, Air Force Human Resources Laboratory, (AFHRL/OT), Williams Air Force
Base
Commander, Air Force Human Resources Laboratory, (AFHRL/LR), Wright-Patterson Air
Force Base
Commandant Industrial College of the Armed Forces
Defense Technical Information Center (DDA) (12)

