Classification, Perceptron and Fisher's LDA

Xinrui Lyu

Nov 6 - 8, 2019

Classification – The setting

Goal: Assign a *d*-dimensional input vector \mathbf{x} to one of K classes $y_k, k = 1, \dots, K$

- divide the input space X into decision regions
- ▶ the decision boundaries (or surfaces) can be of any shape
- However, for mathematical simplicity, we would like to use decision boundaries of the form $\mathbf{w}^T \mathbf{x} = 0$

Classification – The setting

Generalized linear functions

In linear regression, the model for y was a linear function of input x and parameter w (weights). However, in classification, we need discrete numbers or probabilities as output. Idea: Apply some non-linear function f to $\mathbf{w}^T\mathbf{x}$: $y(\mathbf{x}) = f(\mathbf{w}^T\mathbf{x})$. Examples:

- ► take the sign: $y(\mathbf{x}) = \operatorname{sgn}(\mathbf{w}^T \mathbf{x})$
- ► sigmoidal functions like $y(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}^T \mathbf{x}}} = \sigma(\mathbf{w}^T \mathbf{x})$

Important note: Even though the function $y(\mathbf{x})$ is non-linear in parameter \mathbf{w} , the decision surface is still linear as it is based only on the dot product.

Classification approaches

- Discriminative:
 - **probabilistic**: model class posterior $\mathbb{P}[Y|X]$ and decide based on Bayes decision criteria (e.g. Logistic regression)
 - non-probabilistic: construct a discriminant function that directly assigns input x to a class k, without estimating underlying probability distributions (e.g. Perceptron, Fisher's LDA)
- ▶ **Generative probabilistic**: Model both class prior probabilities $\mathbb{P}[Y]$ and class-conditional probability densities $\mathbb{P}[\mathbf{X}|Y]$ to get the posterior

Linear Classifiers

Plain vanilla classifier: splitting a dataset into two classes (a *dichotomy*) using a *linear* separating hyperplane

$$f(\mathbf{x}) = w_0 + \sum_{d=1}^{D} w_d x_d = w_0 + \mathbf{w}^T \mathbf{x}$$
 (1)

- ▶ Labelled data point is pair $(\mathbf{x}_{(n)}, y_{(n)})$, with $y \in \{-1, +1\}$
- $\hat{y}_{(n)} = \operatorname{sgn}(f(\mathbf{x}_{(n)}))$ is classifier output

Extensions to k > 2 classes and non-linear decision surfaces often use this as the starting point.

Separating Hyperplane

Affine hyperplane geometry:

Homogeneous Coordinates

Two tricks to simplify notation:

1. Subsume w_0 : augment feature vector $\mathbf{x} \in \mathbb{R}^D$ into $\tilde{\mathbf{x}} := (\mathbf{x}, 1) \in \mathbb{R}^{D+1}$

$$w_0 + \sum_{d=1}^D w_d x_d = \tilde{\mathbf{w}}^T \tilde{\mathbf{x}}$$

with $\tilde{\mathbf{w}} = (\mathbf{w}, w_0)$.

2. Replace two sided test with one inequality: $\mathbf{x}_{(n)}$ correctly classified if

$$y_{(n)}f(\mathbf{x}_{(n)})>0.$$

Geometry of Homogeneous Coordinates

Augmented feature space:

- ▶ Data point $(x_1, x_2, 1)$ and weight vector $\tilde{\mathbf{w}}$ live in \mathbb{R}^3
- \blacktriangleright Shifting decision boundary in \mathbb{R}^2 means rotating $\tilde{\mathbf{w}}$ around origin

Points and (Hyper)-planes

End result:

- ▶ Data point (x_1, x_2) is described by $\mathbf{x} = (x_1, x_2, 1)$ in homogeneous coordinates.
- ▶ A plane $ax_1 + bx_2 + c$ is described by a vector $\mathbf{w} = (a, b, c)$.
- Point $(x_1, x_2, 1)$ is on plane a (a, b, c) when $\mathbf{x}^T \mathbf{w} = 0$. If not on plane, side depends on the sign of $\mathbf{x}^T \mathbf{w}$.
- Our goal is: given a number of points $\{x_i\}_{i=1}^n$ and a class corresponding to each point $\{y_i\}_{i=1}^n$ $(y_i \in \{-1,+1\})$, find a good separating plane.

Two solutions considered: Perceptrons, SVMs

How do we optimize such a classifier?

▶ We need a loss function, e.g. 0-1 loss or Perceptron loss

Perceptron algorithm minimizes the perceptron loss:

$$\hat{w} = \operatorname{argmin} \sum_{i=1}^{N} I_{P}(\mathbf{w}, y_{i}, \mathbf{x}_{i})$$
$$I_{P}(\mathbf{w}, y_{i}, \mathbf{x}_{i}) = \max(0, -y\mathbf{w}^{T}\mathbf{x})$$

- this loss function is convex, differentiable almost everywhere and the gradient is zero only when the classification is correct, so we can use gradient methods
- gradient:

$$\nabla_{w} I_{P}(\mathbf{w}, y_{i}, \mathbf{x}_{i}) = \begin{cases} 0 & y \mathbf{w}^{T} \mathbf{x} \geq 0 \\ -y_{i} \mathbf{x}_{i} & y \mathbf{w}^{T} \mathbf{x} < 0 \end{cases}$$

Perceptron algorithm uses gradient descent or stochastic gradient descent to minimize perceptron loss:

gradient descent: update until convergence:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla_{\mathbf{w}} \sum_{i=1}^{N} I_P(\mathbf{w}, y_i, \mathbf{x}_i)$$

▶ stochastic gradient descent: for i = 1, 2, ... pick random point \mathbf{x}_i , y_i from the dataset and update:

$$\mathbf{w}_{t+1} = \mathbf{w}_t - \eta \nabla_{\mathbf{w}} I_P(\mathbf{w}, y_i, \mathbf{x}_i)$$

 $ightharpoonup \eta$ is called learning rate

- Convergence of perceptron algorithm: if data is perfectly linearly separable, the perceptron will find an exact solution in a finite number of steps (otherwise will never converge)
- however, still a lot of steps, and even then, how good is the solution?..

Fisher's LDA

Fisher's LDA

Fisher's LDA maximizes the following objective:

$$J(\mathbf{w}) = \frac{\mathbf{w}^T S_B \mathbf{w}}{\mathbf{w}^T S_W \mathbf{w}},$$

where S_B is the "between classes scatter matrix", S_W is the "within classes scatter matrix".

$$S_B = \sum_{c} (\mu_c - \bar{\mathbf{x}})(\mu_c - \bar{\mathbf{x}})^T$$
$$S_W = \sum_{c} \sum_{i \in c} (\mathbf{x}_i - \mu_c)(\mathbf{x}_i - \mu_c)^T$$

Noted: $J(\mathbf{w})$ is invariant to the scaling of the vectors $\mathbf{w} \to \alpha \mathbf{w}$

Fisher's LDA

We can choose \mathbf{w} such that $\mathbf{w}^T S_W \mathbf{w} = 1$. Hence the optimization problem of the Fisher's LDA is transformed into a constrained optimization problem:

$$\min_{\mathbf{w}} \quad -\frac{1}{2}\mathbf{w}^{T}S_{B}\mathbf{w}$$
s.t.
$$\mathbf{w}^{T}S_{W}\mathbf{w} = 1$$

Lagrange Multipliers, why is it interesting?

Lagrange Multipliers are a way to solve constrained optimization problems.

Consider the problem of finding

$$(x_1^*, x_2^*) = \arg\max f(x_1, x_2)$$

subject to the constraint:

$$h(x_1, x_2) = 0$$
 or $g(x_1, x_2) \le 0$

or both

Constraint optimization with equality constraints

For now we focus on the easier case with 1 equality constraint.

Example

$$f(x_1, x_2) = x_1^2 + x_2^2$$

subject to

$$h(x_1,x_2)=x_1+x_2-2=0$$

Lagrange multipliers solution: Geometrical view

Considering the variable $\mathbf{x} \in \mathbb{R}^D$, then the constraint equation

$$h(\mathbf{x}) = 0$$

represents a (D-1)-dimensional surface in \mathbb{R}^D , denoted \mathcal{C} .

Observation 1

At any point on the constraint surface C, the gradient $\nabla h(\mathbf{x})$ is orthogonal to the surface.

Taking the Taylor expansion around x:

$$h(\mathbf{x} + \epsilon) \simeq h(\mathbf{x}) + \epsilon^T \nabla h(\mathbf{x})$$

Since both \mathbf{x} and $\mathbf{y} = \mathbf{x} + \epsilon$ are on the surface \mathcal{C} , then $h(\mathbf{x}) = h(\mathbf{x} + \epsilon) = 0$. Therefore,

$$\epsilon^T \nabla h(\mathbf{x}) \simeq 0$$

and, in the limit $\|\epsilon\| o 0$, also

$$\epsilon^T \nabla h(\mathbf{x}) \to 0$$

Now ϵ is parallel to \mathcal{C} therefore $\nabla h \perp \mathcal{C}$.

Observation 2

The optimum is \mathbf{x}^* on \mathcal{C} such that f is maximized. At \mathbf{x}^* it holds that

$$\nabla f(\mathbf{x}^*) \perp \mathcal{C}$$

Otherwise it would be possible to increase the value of f by moving a short distance along C.

Deriving the Lagrange equation

From Observation 1 + 2:

abla f is parallel (or anti-parallel) to abla h , $abla f(\mathbf{x}^*) \|
abla h(\mathbf{x}^*)$ and $abla \lambda \neq 0$ such that

$$\nabla f(\mathbf{x}^*) + \lambda \nabla h(\mathbf{x}^*) = 0.$$
 (2)

 λ is called the Lagrange Multiplier,

the Lagrangian Function is

$$L(\mathbf{x},\lambda) := f(\mathbf{x}) + \lambda h(\mathbf{x}).$$

Cool: Stationary points of L are optimum of f

Condition (2) of optimality of f is obtained by

$$\nabla_{\mathbf{x}} L = 0$$

while the constraint equation $h(\mathbf{x}) = 0$ is obtained from

$$\frac{\partial L}{\partial \lambda} = 0$$

Therefore to find the solution, do the following:

- 1. Write the Lagrangian $L(\mathbf{x}, \lambda)$ from $f(\mathbf{x})$ and $h(\mathbf{x})$
- 2. Solve the ordinary system of equations obtained from $\nabla L = 0$

Multiple equality constraints?

The same technique allows us to solve problems with more constraints by introducing more Lagrange multipliers.

Solve:

Example

$$\max x^{2} + y^{2} + z^{2}$$
s.t.
$$x + y - 2 = 0$$

$$x + z - 2 = 0$$

$$0 = \nabla_x L = 2x + p + q$$

$$0 = \nabla_y L = 2y + p$$

$$0 = \nabla_z L = 2z + q$$

$$0 = \nabla_p L = x + y - 2$$

$$0 = \nabla_q L = x + z - 2$$

Lagrangian:

$$L(x, y, z, p, q) = x^2 + y^2 + z^2 + p(x + y - 2) + q(x + z - 2)$$

Inequality Constraints

In the case of Inequality Constraints of the following type

$$g(\mathbf{x}) \geq 0$$
,

two kinds of solution are possible:

- ▶ inactive constraint, where $g(\mathbf{x}^*) > 0$;
- **active constraint**, where $g(\mathbf{x}^*) = 0$.

Inactive Constraint

In the case of an inactive constraint, that is when for \mathbf{x}^*

$$g(\mathbf{x}^*) > 0$$
,

the function g(x) plays no role and the only condition for optimality is

$$\nabla f(\mathbf{x}) = 0$$

This again corresponds to the stationary point of L but with $\lambda = 0$.

Active Constraint

In the case of an active constraint, when for \mathbf{x}^*

$$g(\mathbf{x}^*)=0,$$

the previous analysis holds and:

$$\nabla f(\mathbf{x}^*) + \lambda \nabla g(\mathbf{x}^*) = 0.$$

Now however, the sign of λ is crucial.

f will be at the **maximum** when the gradient is oriented away from the region g(x) > 0.

Therefore $abla f(\mathbf{x}^*) = -\lambda
abla g(\mathbf{x}^*)$ for $\lambda > 0$ (For maximization problems)

Inequality Constraints

For both cases of inequality constraints $\lambda g(x) = 0$.

Thus the solution to maximizing f subject to $g(x) \ge 0$ is obtained by optimizing L w.r.t x, λ under the following conditions (KKT):

$$g(x) \geq 0$$

$$\lambda \geq 0$$

$$\lambda g(x) = 0$$

Inequality Constraints

Unfortunately when we add inequality constraints the simple condition

$$\nabla L = 0$$

is neither necessary nor sufficient to guarantee a solution to the constrained optimization problem.