

EAD5917 – Modelagem e Métodos para Inferência e Predição aplicados à Administração

Adriana Backx Noronha Viana (<u>backx@usp.br</u>)
Cesar Alexandre de Souza (<u>calesou@usp.br</u>)

Área de MQI Depto de Administração FEA/USP

Aula 06 - Introdução à Modelagem em Equações Estruturais com estimação via Partial Least Squares (PLS) em R – Parte II

Lembrando...

- PLS é uma técnica para estimação dos parâmetros em modelos de equações estruturais a partir de um método iterativo que calcula o modelo em blocos (partial) utilizando correlações e regressões
- Em relação à técnica baseada em covariância (p.ex. LISREL) possui diferenças em relação aos pressupostos e objetivos
- Mas, em geral, apresenta resultados comparáveis ao CB-SEM em muitas circunstâncias (Henseler, Ringle e Sinkovics, 2009 p.297)

ESPECIFICAÇÃO DO MODELO

- [1] Definição conceitual: Explique o que é cada conceito com base em referencial teórico.
- [2] Definição operacional: Explique como os seus conceitos serão medidos. Quais os cuidados com a validade de conteúdo (pré-teste com especialistas), validade de face (pré-teste com potenciais respondentes, para avaliar a adequação semântica, e de formato). Se for escala traduzida, explique os cuidados tomados com a tradução e a adaptação para o público-alvo de modo a manter a validade de conteúdo. Este será o modelo de mensuração.
- [3] Hipóteses: Justifique suas hipóteses (relações entre os conceitos) com base no referencial teórico. Este será o modelo estrutural.
- [4] Inclua uma figura como modelo estrutural indicando as hipóteses nas setas.

Reflexivos ou formativos?

Com qual frequência esse fornecedor apresentou os comportamentos a seguir nos últimos 6 meses?

1 – nunca

2 - 1 a 2 vezes

3-3 a 5 vezes

4 - 6 a 10 vezes

5 - mais de 10 vezes

Situação: comportamento observado (real)

Tempo: passado

São os mesmos construtos?

Critério	Modelo formativo	Modelo reflexivo		
	Dos itens para o construto	Do construto para os itens		
Direção da causalidade	Indicadores são características do construto	Indicadores são manifestações do construto		
	Mudanças nos indicadores deveriam causar mudanças no construto	Mudanças nos indicadores não deveriam causar mudanças no construto.		
	Mudanças no construto não deveriam causar mudanças nos indicadores.	Mudanças no construto deveriam causar mudanças nos indicadores.		
Intercambialidade dos indicadores	Indicadores não precisam ser intercambiáveis.	Indicadores deveriam ser intercambiáveis		
	Indicadores precisam não ter o mesmo ou similar conteúdo (não compartilhar um tema comum)	Indicadores deveriam ter o mesmo ou simila conteúdo (compartilhar um tema comum).		
	Eliminando um indicador pode alterar o domínio conceitual do construto.	Eliminando um indicador não altera o domínio conceitual do construto.		
Coverigeão entre	Não é necessário que os indicadores tenha covariâncias entre si.	É esperado que os indicadores se correlacionem.		
Covariação entre os indicadores	A mudança em um indicador não, necessariamente, tem relação com a mudança nos demais indicadores.	A mudança em um indicador está associada a mudança em outros indicadores.		
Rede nomológica dos indicadores	Pode diferir.	Não deveria diferir.		
	Não é necessário que os indicadores tenham os mesmos antecedentes e conseqüências.	Indicadores devem ter os mesmos antecedentes e conseqüências.		

Fonte: JARVIS, C. B.; MACKENZIE, S. B.; PODSAKOFF, P. M. A critical review of construct indicators and measurement model misspecification in Marketing and Consumer Research. Journal of Consumer Research, v.30, n.2, p.199-218, Set. 2003.

Exemplo 1- PLS - Parte 2

- Indicadores Reflexivos: o algoritmo do PLS busca minimizar o erros no modelo de mensuração - Não afetado pela multicolinearidade dos indicadores
- Indicadores Formativos: o algoritmo do PLS busca minimizar o erro de predição das variáveis VLs – Afetado pela multicolinearidade dos indicadores

Exhibit 1.7 Sample	Size Rec	commen	dation a	in PLS-S	EM for a	Statistic	al Powe	r of 80%	,			
						Significa	nce Level					
	1%			5%			10%					
Maximum Number of		Minim	um R²			Minim	um R²			Minim	um R²	
Arrows Pointing at a Construct	0.10	0.25	0.50	0.75	0.10	0.25	0.50	0.75	0.10	0.25	0.50	0.75
2	158	75	47	38	110	52	33	26	88	41	26	21
3	176	84	53	42	124	59	38	30	100	48	30	25
4	191	91	58	46	137	65	42	33	111	53	34	27
5	205	98	62	50	147	70	45	36	120	58	37	30
6	217	103	66	53	157	75	48	39	128	62	40	32
7	228	109	69	56	166	80	51	41	136	66	42	35
8	238	114	73	59	174	84	54	44	143	69	45	37
9	247	119	76	62	181	88	57	46	150	73	47	39
10	256	123	79	64	189	91	59	48	156	76	49	41

Fonte: HAIR et Al., 2014

Exhibit 1.8 Data Considerations When Applying PLS-SEM

- As a rough guideline, the minimum sample size in a PLS-SEM analysis should be equal to the larger of the following (10 times rule): (1) 10 times the largest number of formative indicators used to measure one construct or (2) 10 times the largest number of structural paths directed at a particular construct in the structural model. Researchers should, however, follow more elaborate recommendations such as those provided by Cohen (1992) that also take statistical power and effect sizes into account. Alternatively, researchers should run individual power analyses, using programs such as G*Power.
- With larger data sets (N = 250+), CB-SEM and PLS-SEM results are very similar when an appropriate number of indicator variables (4+) are used to measure each of the constructs (consistency at large).
- PLS-SEM can handle extremely non-normal data (e.g., high levels of skewness).
- Most missing value treatment procedures (e.g., mean replacement, pairwise deletion, EM, and nearest neighbor) can be used for reasonable levels of missing data (less than 5% missing per indicator) with limited effect on the analysis results.
- PLS-SEM works with metric, quasi-metric, and categorical (i.e., dummy-coded) scaled data, albeit with certain limitations.

Fonte: HAIR et Al., 2014

Estimação do Modelo

Parâmetros e opções

```
plspm(data, path_matrix, blocks,
modes = NULL,
scaling = NULL,
scheme = "centroid",
scaled = TRUE,
tol = 1e-06, maxiter = 100,
plscomp = NULL,
boot.val = FALSE,
br = NULL, dataset = TRUE)
```

Path Weighting Scheme – relações entre VL são regressões (*preferido)

Factor Weighting Scheme – relações entre VL são correlações.

Centroid Weighting Scheme (relações entre VL considera apenas sinal das correlações "+/- 1"). Mais antigo só usado se os outros não convergirem. Não pode ser usado com constructos de segunda ordem

Avaliação do Modelo - Indicadores

Modelo de mensuração (para constructos medidos por indicadores <u>reflexivos</u>) Validade convergente

- Cargas fatoriais significantes (t > 1,96 p/ sig 5%) → modelo\$boot (executar com boot.val=TRUE)
- Cargas fatoriais ≥ 0.7 (em c.soc. eliminar se ≤ 0.4) \rightarrow modelo souter_model
- AVE > 0.5 \rightarrow modelo\$inner_summary

Validade discriminante

- Cargas fatoriais > cargas cruzadas
- $\sqrt{AVE} \ge r_{VL}$ (FORNELL E LARCKER)
- → modelo\$crossloadings
- \rightarrow cor(modelo\$scores) + colocar os valores da \sqrt{AVE} na diagonal da matriz

Confiabilidade

- Confiabilidade composta ≥ 0.7
- → modelo\$unidim (Dillon-Goldstein rho)

Modelo estrutural

- Coeficientes estruturais (tam. do efeito e significância) → modelo\$path_coefs / modelo\$inner_model / modelo\$boot
- Efeitos diretos, indiretos e totais (tam. e significância)

 modelo\$effects / modelo\$boot
- R²

→ modelo\$inner_summary

· Multicolinearidade

- → usar os escores padronizados na análise do VIF
- · Validade de critério, validade nomológica

Confiabiliade Composta e AVE — Cálculo

- Cargas Fatoriais $\lambda_i > 0.7$ e significantes (t < -2 ou t > 2)
- Confiabilidade composta do construto > 0,7

Apenas para indicadores reflexivos

$$Conf = \frac{\left(\Sigma \lambda_{i}\right)^{2}}{\left(\Sigma \lambda_{i}\right)^{2} + \Sigma \operatorname{var}\left(\varepsilon_{i}\right)}$$

$$\operatorname{var}(\varepsilon_i) = 1 - \lambda_i^2$$

• Variância Extraída pelo construto (AVE) > 50%

$$AVE = \frac{\sum \lambda_i^2}{\sum \lambda_i^2 + \sum \text{var}(\varepsilon_i)} = \frac{\sum \lambda_i^2}{p}$$

reposição), e, a partir dessas amostras são calculados os intervalos de confiança e significância dos parâmetros (significância de t com (n-1) graus de liberdade)

Para o valor de m, quanto mais melhor, há autores que recomendam 200, 1000, 5000 repetições (Hair et al. 2014) ou mais.

Suppose that the bootstrap distribution of a statistic from an SRS of

 $statistic \pm \textit{t*}SE_{boot}$

where $\mathrm{SE}_{\mathrm{boot}}$ is the bootstrap standard error for this statistic and ℓ^* is the critical value of the $\ell(n-1)$ distribution with area ℓ between $-\ell^*$ and ℓ^* .

Exemplo 1- PLS - Parte 2

	Capacidade	Des Org	Des RH	Importância
AC	0,748223	0,343751 0,446632		0,217260
DC	0,747831	0,320812	0,403371	0,174194
EOC	0,789568	0,330853	0,441503	0,135994
СВС	0,690386	0,300116	0,416384	0,219361
REC	0,783985	0,381322	0,451411	0,167639
DES_RH_1	0,432618	0,350485	0,738920	0,327445
DES_RH_2	0,432249	0,364621	0,722873	0,310950
DES_RH_3	0,435503	0,409855	0,759795	0,338242
DES_RH_4	0,287993	0,434725	0,549387	0,168615
DE_ORG_1	0,320614	0,737437	0,398361	0,308064
DE_ORG_2	0,346326	0,787343	0,460071	0,272640
DE_ORG_3	0,329283	0,702628	0,373841	0,248093
DE_ORG_4	0,006133	0,036211	-0,013795	-0,066073
AI	0,168477	0,287991	0,272705	0,705905
DI	0,070816	0,162779	0,161387	0,636766
EOI	0,232378	0,293844	0,305227	0,686907
СВІ	0,161079	0,290243	0,347247	0,753610
REI	0,191131	0,256101	0,336273	0,766917

Indicadores com cargas altas (>0,7) em suas VL e cargas baixas nas demais VL (cross-load). Validade discriminante (CHIN, 1998), para indicadores reflexivos

Cargas altas em suas VL indica **Validade** convergente

Avaliação do Modelo Construtos Formativos

- Validade de Face (pré-teste)
- Validade de Conteúdo (validação com especialistas)
- Significância dos pesos ("fator weigths")
- Multicolinearidade VIF = 1/(1-R²) < 5,0 (Hair et al 2014)
 → mas, valores > 1,0 já indicam alguma multicolinearidade (BIDO, 2016)
- Avaliação por comparação com construtos reflexivos (se houver) ou um item global
- Validade Nomológica (segue o comportamento previsto)
- OBS: Indicadores Formativos não são "descartáveis"!
- DIAMANTOPOULOS, Adamantios; WINKLHOFER, Heidi M. Index construction with formative indicators: an alternative to scale development. Journal of Marketing Research. v. 38, n.2, may 2001, p. 269-277.

AVALIAÇÃO DO MODELO: Indicadores FORMATIVOS

Exemplo 1- PLS -parte1

 $library(car) \\ vif(lm(A_C \sim A_I + EO_I + D_I + CB_I + RE_I, data=exemplo1_rh)) \\ vif(lm(A_I \sim A_C + EO_C + D_C + CB_C + RE_C, data=exemplo1_rh)) \\$

Avaliação do Modelo Estrutural

- Validade de critério e validade nomológica:
- Os coeficientes do modelo estrutural podem ser interpretados como coeficientes padronizados em uma regressão múltipla estimada por OLS.
- Os coeficientes que tem significância estatística e sinais de acordo com o esperado, provêm uma validação empírica parcial das relações entre as VLs previstas pela teoria

Fonte: Henseler, Ringle e Sinkovics (2009)

Criterion	Description				
R ² of endogenous latent variables	R ² values of 0.67, 0.33, or 0.19 for endogenous latent variables in the inner path model are described as substantial, moderate, or weak by Chin (1998, p. 323).				
Estimates for path coefficients	The estimated values for path relationships in the structural model should be evaluated in terms of sign, magnitude, and significance (the latter via bootstrapping).				
Effect size f^2	$f^2 = (R_{\rm included}^2 - R_{\rm excluded}^2)/(1 - R_{\rm included}^2)$; values of 0.02, 0.15, and 0.35 can be viewed as a gauge for whether a predictor latent variable has a weak, medium, or large effect at the structural level.				
Prediction relevance $(Q^2 \text{ and } q^2)$	The Q^2 is calculated based on the blindfolding procedure: $Q^2 = 1 - (\sum_D \mathrm{SSE}_D)/(\sum_D \mathrm{SSO}_D)$. D is the omission distance, SSE is the sum of squares of prediction errors, and SSO is the sum of squares of observations. Q^2 -values above zero give evidence that the observed values are well reconstructed and that the model has predictive relevance (Q^2 -values below zero indicate a lack of predictive relevance). In correspondence to f^2 , the relative impact of the structural model on the observed measures for latent dependent variables can be assessed: $q^2 = (Q_{\mathrm{included}}^2 - Q_{\mathrm{excluded}}^2)/(1 - Q_{\mathrm{included}}^2)$.				

O que relatar?

Quais decisões foram tomadas antes da coleta de dados?

- Validade de conteúdo + procedimento para a coleta de dados
- Viés de seleção...

Quais decisões foram tomadas durante as análises?

- Tratamento de *missing values*
- Justificar por que o PLS-PM foi escolhido (por que não usou o LISREL?)
- Variáveis retiradas por apresentarem carga baixa (exploratória)
- Modificações no modelo estrutural
- PLS algorithm: Weighting scheme
- Bootstrap: sign changes; samples

Conseguimos medir as VL?

- Validade convergente: cargas e AVE
- Validade discriminante
- Confiabilidade
- Common Method Bias (*)

• Avaliar o modelo estrutural

- Path coefficients
- − Bootstrap → significâncias
- Efeitos diretos, indiretos e totais
- R² e R² ajustado (calcular à mão)
- Validade de critério, validade nomológica

$$R_{Ajustado}^2 = R^2 - \frac{p \cdot (1 - R^2)}{n - p - 1}$$

