九十二學年度台灣大學電資學院電機系電子學(一)期末考

- 1. Design the circuit in Fig. 1 so that the transistor operates in saturation with V_{SD} 1 volt from the edge of the triode region, with I_D=I mA and V_D=3 V, for each of the following devices (use a 10-μA current in the voltage divider):
- (a) An enhancement MOSFET with $|V_i| = 1 \text{ V}$ and $k_p \text{ W/L=0.5mA/V}^2$
- (b) A depletion MOSFET with $|V_t|=2$ V and k_p W/L=0.5mA/V²
- (c) A depletion MOSFET with $|V_t|=3$ V and k_p W/L=0.125mA/V²
- (d) A depletion MOSFET with $|V_t|=4 \text{ V}$ and $k_p \text{ W/L}=1.25 \text{mA/V}^2$
- (e) An enhancement MOSFET with $|V_i|=2$ V and k_p W/L=1.25mA/V²

2. The MOSFETs in the circuit of Fig. 2 are matched, with $k_n \left(\frac{W}{L}\right)_1 = k_p \left(\frac{W}{L}\right)_2 = 50 \mu A/V^2$ and $|V_t| = 2V$. The resistance R₂=10M Ω . For G and D open, what are the drain currents I_{D1} and I_{D2}? For $r_o = \infty$, what is the voltage gain of the amplifier from G to D? For finite r_o ($r_o = |V_A|/I_D$ $|V_A| = 180$ V), what is the voltage gain from G to D and the input resistance at G? If G is driven (through a large coupling capacitor) from a source v_i having a resistance of 1 M Ω , find the voltage gain v_d/v_i . For what range of output signals do Q₁ and Q₂ remain in the pinch-off region?

- 3. (a) If the common-emitter BJT circuit as shown in Fig. 3 is used as an amplifier, what is the limitation on choosing the value of Rc if the DC voltage at the input is 2.5V? (5%)
 - (b) Determine the value of Rc for maximum output swing and find out the small signal voltage gain (v_o/v_i) . (10%)
 - (c) If the same circuit is used as a logic inverter, what is the limitation on choosing the value of Rc? (5%)
 - (d) Determine the value of Rc in order to obtain a NMH of 2V in this inverter. (9%)

- 4. For the common-base amplifier (Fig. 4(a))

 (a) What is the function of Cc? (2%)
 - (b) In some cases, R_L is large so that r₀ can't be neglected. Find the input resistance R_{in} seen by the signal source in terms of r₀, r₀, and R_L. (6%)
 - (c) Discuss the effects of R_L on R_{in}. (2%)

Fig. 4(a)

(d) For the Thévenin equivalent circuit (small signal only) "seen" by R_L (Fig 4.(b)), Find G_{vo} and R_{out}. (8%)

Fig. 4(b)

- 5. (a) With $R_{B1} = \infty$, $V_{\infty}=3$ V, $\beta=60$, find Rc and R_{Bb}, so that $V_C \approx \frac{V_{CC}}{2}$, and Ic=3 mA. (4%)
- (b) If $\beta \to \infty$, what then are Ic and Vc? (3%)
- (c) To reduce the variations of dc current voltage, we may connect an R_{B2} between the base and emitter of Q. Explain the beneficial effects of R_{B2}. (4%)

Fig. 5

6. Consider the CMOS common-source amplifier shown in Fig. xx. for the case: $V_{DD} = 10V$, $V_{tn} = |V_{tp}| = 1V$, $\mu_n C_{ox} = 2 \mu_p C_{ox} = 20 \mu A/V^2$, $W = 100 \mu m$, $L = 10 \mu m$, and $|V_A| = 100V$ for both the n and p devices, and $I_{REF} = 100 \mu A$. Find the small signal voltage gain v_o/v_i (using small signal analysis). (12%)

Fig. 6

- 7. In the CMOS inverter shown in Fig. 7(a), $V_{DD} = 10V$, $V_{tn} = |V_{tp}| = 1V$, $\mu_n C_{ox} = 2$ $\mu_p C_{ox} = 20$ μ A/V², W = 100 μ m, L = 10 μ m, and $|V_A| = 100V$ for both the n and p devices.
- (a) The voltage transfer characteristic of the CMOS inverter is shown in Fig. 7(b). For point A, B, C, and D, give their v_I and v_O , respectively. (neglect the effect of $|V_A|$) (8%)
- (b) Find the small signal voltage gain v_o/v_i (using small signal analysis). (10%)

Fig. 7(a)

Fig. 7(b)