

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT
CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH
INFORMATION AS POSSIBLE

AD-A157 475

NRL Memorandum Report 5597

A Simulation of High Latitude F-Layer Instabilities in the Presence of Magnetosphere-Ionosphere Coupling

H. G. MITCHELL, JR.,* J. A. FEDDER, M. J. KESKINEN AND S. T. ZALESAK

*Geophysical and Plasma Dynamics Branch
Plasma Physics Division*

**Science Applications International Corporation
McLean, VA 22102*

July 8, 1985

This research was partially supported by the Defense Nuclear Agency under Subtask QIEQMXBB, work unit 00005, work unit title "Plasma Structure Evolution," and by the National Aeronautics and Space Administration and the Office of the Naval Research.

DTIC FILE COPY

DTIC
SELECTED
JUL 1 7 1985
S D G

NAVAL RESEARCH LABORATORY
Washington, D.C.

Approved for public release; distribution unlimited.

31

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED		1b. RESTRICTIVE MARKINGS	
2a. SECURITY CLASSIFICATION AUTHORITY		3. DISTRIBUTION / AVAILABILITY OF REPORT Approved for public release; distribution unlimited.	
2b. DECLASSIFICATION / DOWNGRADING SCHEDULE			
4. PERFORMING ORGANIZATION REPORT NUMBER(S) NRL Memorandum Report 5597		5. MONITORING ORGANIZATION REPORT NUMBER(S)	
6a. NAME OF PERFORMING ORGANIZATION Naval Research Laboratory	6b. OFFICE SYMBOL (If applicable) Code 4780	7a. NAME OF MONITORING ORGANIZATION	
6c. ADDRESS (City, State, and ZIP Code) Washington, DC 20375-5000		7b. ADDRESS (City, State, and ZIP Code)	
8a. NAME OF FUNDING / SPONSORING ORGANIZATION DNA, ONR and NASA	8b. OFFICE SYMBOL (If applicable)	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER	
8c. ADDRESS (City, State, and ZIP Code) Washington, DC 20305 Arlington, VA 22203 Washington, DC 20546		10. SOURCE OF FUNDING NUMBERS	
11. TITLE (Include Security Classification) A Simulation of High Latitude F-Layer Instabilities in the Presence of Magnetosphere-Ionosphere Coupling	PROGRAM ELEMENT NO. PROJECT NO. TASK NO. WORK UNIT ACCESSION NO. 61153N (See page ii) (See page ii) (See page ii)		
12. PERSONAL AUTHOR(S) Mitchell, H.G., Jr., * Fedder, J.A., Keskinen, M.J. and Zalesak, S.T.	13. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT Interim FROM _____ TO _____ 1985 July 8 30		
16. SUPPLEMENTARY NOTATION *Science Applications International Corporation, McLean, VA 22102 (Continues)			
17. COSATI CODES		18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number) Ionospheric structure, Magnetosphere-ionosphere coupling, High latitude ionosphere, Interchange instabilities, nu sub i <> omega	
19. ABSTRACT (Continue on reverse if necessary and identify by block number) A magnetic-field-line-integrated model of plasma interchange instabilities is developed for the high latitude ionosphere including magnetospheric coupling effects. We show that the primary magnetosphere-ionosphere coupling effect is to incorporate the inertia of the magnetospheric plasma in the analysis. As a specific example, we present the first simulation of the $E \times B$ instability in the inertial regime, i.e., $\nu_i \ll \omega$ where ν_i is the ion-neutral collision frequency and ω is the wave frequency. We find that the inertial $E \times B$ instability develops in a fundamentally different manner than in the collisional case ($\nu_i \gg \omega$). Our results show that striations produced in the inertial regime are spread and retarded by ion inertial effects, and result in more isotropic irregularities than those seen in the collisional case. <i>Keywords:</i> nu sub i <> omega			
20. DISTRIBUTION / AVAILABILITY OF ABSTRACT <input checked="" type="checkbox"/> UNCLASSIFIED/UNLIMITED <input type="checkbox"/> SAME AS RPT <input type="checkbox"/> DTIC USERS		21. ABSTRACT SECURITY CLASSIFICATION UNCLASSIFIED	
22a. NAME OF RESPONSIBLE INDIVIDUAL J. D. Huba		22b. TELEPHONE (Include Area Code) (202) 767-3630	22c. OFFICE SYMBOL Code 4780

10. SOURCE OF FUNDING NUMBERS

PROJECT NO.	WORK UNIT ACCESSION NO.
RR033-02-44 85-550	S 14534-0 DN480-935 DN580-072

16. SUPPLEMENTARY NOTATION (Continued)

This research was partially supported by the Defense Nuclear Agency under Subtask QIEQMXBB, work unit 00005, work unit title "Plasma Structure Evolution," and by the National Aeronautics and Space Administration and the Office of Naval Research.

Information For	
1. DIA&I	<input checked="" type="checkbox"/>
2. TAB	<input type="checkbox"/>
3. Declassified	<input type="checkbox"/>
4. Justification	<input type="checkbox"/>
By _____	
Distribution/	
Availability Codes	
Distr	Avail and/or Special
A1	

CONTENTS

I. INTRODUCTION	1
II. MODEL	2
III. RESULTS	5
IV. CONCLUDING REMARKS	6
ACKNOWLEDGMENTS	9
REFERENCES	10

A SIMULATION OF HIGH LATITUDE F-LAYER INSTABILITIES IN THE PRESENCE OF MAGNETOSPHERE-IONOSPHERE COUPLING

I. INTRODUCTION

Recent experimental ground-based, rocket, and satellite (HILAT, DYNAMICS EXPLORER, AUREOL-3) observations in the auroral zone and polar cap ionosphere have indicated the existence of both large [Weber et al., 1984; Basu et al., 1984; Bythrow et al., 1984; Cerisier et al., 1984; Vickrey et al., 1980] and small [Hanuise et al., 1981; Baker et al., 1983] scale density structures and irregularities. Different mechanisms, have been proposed to account for high latitude ionospheric irregularities, e.g., particle precipitation, plasma instabilities, and neutral fluid turbulence [Keskinen and Ossakow, 1983]. Considerable quantitative progress has been made in explaining ionospheric structure using plasma interchange instabilities, e.g., the Rayleigh-Taylor instability [Balsley et al., 1972; Ossakow, 1981] in equatorial spread F, and the $E \times B$ and current-convective instabilities in the high latitude ionosphere [Ossakow and Chaturvedi, 1979; Keskinen and Ossakow, 1983]. Recently, Weber et al. (1984) and Cerisier et al. (1984) have invoked the $E \times B$ instability to explain large scale density fluctuations in the high latitude ionosphere.

A shortcoming of most past research on the nonlinear theory of the $E \times B$ instability as it applies to ionospheric structure is that it has been restricted to the collisional (or non-inertial) regime, i.e., $v_i \gg \omega$ where v_i is the ion-neutral collision frequency and ω is the wave frequency. One exception is the recent work of Huba et al. (1985) who studied the nonlinear evolution of interchange instabilities in both the inertial and non-inertial regimes. However, their work was limited to short wavelength turbulence, i.e., $kL \gg 1$ where k is the wavenumber and L is the density gradient scale length, which is not applicable to large scale ionospheric structures.

In this letter, we present the first simulation of inertial high latitude ionospheric interchange instabilities (e.g., the $E \times B$ instability) with inclusion of magnetospheric coupling effects. The basic conclusions of this study are (1) magnetospheric coupling effects reduce the growth rate of the $E \times B$ instability, (2) striations produced by the inertial $E \times B$ instability develop in a different manner than in the non-

inertial ($v_i \gg \omega$) regime, (3) in configuration space, the striations in the inertial regime are more isotropic and spread out resulting in irregularities oriented perpendicular to those produced in the non-inertial case.

II. MODEL

The physical configuration and assumptions of our model are described as follows. We only consider structure in the plane transverse to the ambient magnetic field, i.e., the xy plane. The F-layer is initially characterized by a 6 to 1 density enhancement with a Gaussian profile of scale size 12 km in the x-direction and uniform in the y-direction, a uniform magnetic field in the z-direction ($B_z = 0.5$ G), and a background electric field in the y-direction ($E_y = .025$ V/m). The entire enhancement $\underline{E} \times \underline{B}$ drifts in the x-direction at a velocity $v_x = 0.5$ km/sec. A uniform horizontal magnetosphere is assumed above the F-layer linked by the vertical magnetic field lines. The back edge of the F-layer enhancement, relative to the drift, is unstable to the $\underline{E} \times \underline{B}$ instability, which drives ion Pedersen currents in the F-layer and ion polarization drift currents in the magnetosphere due to the perpendicular electric field mapping along the geomagnetic field. These currents close along the magnetic field via parallel electron currents. Assuming that all ion drifts associated with the perpendicular currents are negligible compared to the $\underline{E} \times \underline{B}$ drift and that $\underline{E}_\perp = -\nabla_\perp \phi$, the equations describing this system are

$$\frac{\partial n}{\partial t} + \nabla_\perp \cdot n v_{-i_\perp} = 0 \quad (1)$$

$$v_{-e_\perp} = v_{-i_\perp} = -\frac{c\nabla_\perp \phi}{B} \times z \quad (2)$$

$$j_{F_\perp} = -\left(\frac{cnev_i}{B\Omega_i}\right) \nabla_\perp \phi = -\sigma_p \nabla_\perp \phi \quad (3)$$

$$j_{M_\perp} = -\frac{1}{4\pi} \left(\frac{e^2}{V_A^2}\right) \left[\frac{\partial}{\partial t} + v_{i_\perp} \cdot \nabla_\perp\right] \nabla_\perp \phi \quad (4)$$

$$0 = \int_F dz (\nabla_\perp \cdot j_{F_\perp}) + \int_M dz (\nabla_\perp \cdot j_{M_\perp}) \quad (5)$$

where n is the ion (and electron) density, $v_{e(i)\perp}$ is the perpendicular electron (ion) velocity, $j_{F\perp}$ and $j_{M\perp}$ are the F-layer Pedersen and the magnetospheric polarization drift current densities, respectively, σ_p is the F-layer Pedersen conductivity, $V_A = B/(4\pi n m_i)^{1/2}$ is the Alfvén velocity, and ν_i and Ω_i are the ion-neutral collision frequency and ion gyrofrequency, respectively. Using (2)-(4) in (5) yields the potential equation,

$$0 = \nabla_\perp \cdot \left\{ \Sigma_p + C_M \left[\frac{\partial}{\partial t} - \left(\frac{c \nabla_\perp \phi}{B} \times z \right) \cdot \nabla_\perp \right] \right\} \nabla_\perp \phi \quad (6)$$

where the field-line integrated F-layer Pedersen conductivity is

$$\Sigma_p = \int_F dz \sigma_p, \quad (7)$$

and the field-line integrated magnetospheric inertial capacitance is

$$C_M = \frac{1}{4\pi} \int_M dz \left(c^2 / V_A^2 \right). \quad (8)$$

Since the magnetospheric layer is uniform and the ion flow given by (2) is incompressible, the magnetosphere remains uniform and the continuity equation for this layer may be neglected. The F-layer continuity equation for n may be written as a continuity equation for Σ_p ,

$$\frac{\partial}{\partial t} \Sigma_p + \nabla_\perp \cdot (\Sigma_p v_{i\perp}) = 0. \quad (9)$$

Therefore, the system is completely described by (2), (6) and (9) in the variables Σ_p and ϕ , with C_M a constant capacitance describing the magnitude of magnetosphere-ionosphere coupling.

The numerical methods used to simulate the model equations are described in Zalesak et al. [1982]. The continuity equation (9) is solved numerically using the multi-dimensional flux-corrected techniques of Zalesak [1979], while the potential equation (6) is solved with the incomplete Cholesky conjugate gradient algorithm of Hain [1980]. The simulations are performed on an 100×80 cell grid (x, y) with a cell size of $1.0 \text{ km} \times .25 \text{ km}$ which is drifting with the enhancement at the $E_y \times B$ velocity. Periodic boundary conditions are assumed in the y -direction, and the grid is initialized with a random 1% density fluctuation.

If Σ_p has scale length $L^{-1} = (1/\Sigma_p) \partial \Sigma_p / \partial x$, the non-inertial ($C_M = 0$) growth rate for a wave with wave vector k parallel to y is $\gamma_0 = cE_y/BL$ in the regime $kL \gg 1$. For the parameters of our simulation, the maximum (non-inertial) growth rate is $\gamma_0 \approx 0.05 \text{ sec}^{-1}$. The e-folding distance of E_{\perp} parallel to B for this wave is about $\lambda_{\parallel} \sim (\sigma_{\parallel}/\sigma_{\perp})^{1/2} k_{\perp}^{-1}$ [Völk and Haerendel, 1971], implying that a wave with $k_{\perp}^{-1} = 1 \text{ km}$ has an e-folding distance of 10^3 km parallel to the field and that E_{\perp} maps well up into the magnetosphere where the e-folding distance is much greater due to the rapid decrease in σ_p . The Alfvén speed is $V_A \sim 10^3 \text{ km/sec}$ so that electric fields of a wave with a growth time of 20 sec map upwards on the order of 10^4 km into the magnetosphere, and C_M has a value of roughly 10^{13} cm (or ~ 10 farad).

The effect of ion inertia on the $E \times B$ instability has previously been studied by Ossakow et al. [1978] in the linear regime. Although their results were for Pedersen and polarization drifts at the same altitude, the linear growth rates are effectively the same for our model equations. A non-zero inertia implies the existence of an inertial relaxation rate, $\gamma_i = \Sigma_p/C_M$. The growth rate in the presence of inertia for the short wavelength approximation has two regions of interest, the non-inertial regime

$$\gamma = \gamma_0 \quad \text{for} \quad 4\gamma_0 \ll \gamma_i \quad (10)$$

and the inertial regime

$$\gamma = (\gamma_0 \gamma_i)^{1/2} \quad \text{for} \quad 4\gamma_0 \gg \gamma_i. \quad (11)$$

Assuming a Σ_p for the F-layer of $8 \times 10^{10} \text{ cm/sec}$ ($\sim 0.1 \text{ mho}$), a typical value of γ_i for the simulation is $.008 \text{ sec}^{-1}$, which is in the inertial regime and which reduces the growth rate of the instability from $.05 \text{ sec}^{-1}$ to $.02 \text{ sec}^{-1}$. For our simulation, two cases were run: a non-inertial case for which $\gamma_i = 1.00 \text{ sec}^{-1}$, and an inertial case for which $\gamma_i = 0.01 \text{ sec}^{-1}$.

III. RESULTS

The results of the two simulations are shown in Figures 1 and 2. The four panels in each simulation show approximately equal times relative to the linear growth time of the instability. Figure 1 shows the results for the non-inertial $E \times B$ instability, while Figure 2 shows the results for the inertial case. It is clear that the results of the two cases are very different at later times.

The behavior of the plasma in Figure 1 is typical of that observed in previous $E \times B$ instability simulations [Keskinen and Ossakow, 1982]. In panel 2, at 10⁴ seconds, we see that early in the nonlinear stage a set of "fingers" has clearly formed. The high density fingers grow outward into the low density plasma while the low density fingers penetrate into the high density cloud. Subsequent nonlinear evolution involves the continued elongation of these fingers with very little apparent change in the size of the structures perpendicular to their long dimension as seen in panels 3 and 4. The original density enhancement has effectively been sliced into a group of sheets parallel to the initial density gradient.

The behavior of plasma and structure formation in Figure 2, the inertial case, is very different. During the time period between panel 1 and panel 2, before 300 seconds, the growth of the instability closely resembles that in Figure 1. There is nonlinear development of long narrow high and low density fingers which move in opposite directions. However, after 300 seconds, the behavior changes radically. In panels 3 and 4, we see that the fingers form mushroom-like heads and tend to thicken. No longer are there long thin interpenetrating fingers, rather they are fat interpenetrating blobs. Any narrow fingers which begin to form quickly go to a mushroom shape and then spread out. In a number of simulations we have noted a tendency for the structure in the y direction to undergo an inverse cascade to the longest mode which will fit in the system. This feature can clearly be seen in panel 4, where the structured state throughout most of the simulation region shows two blobs; one of high density, the other of low density.

The non-inertial simulation, shown in Figure 1, is characterized by striations with a large value of k_y , which grow in the x -direction without hindrance, completely destroying the initial orientation of the density

enhancement in the y -direction. The inertial simulation, shown in Figure 2, is characterized initially by striations with a large value of k_y , which are hindered in their growth in the x -direction. The plasma at the leading edge of the striation finger is swept to either side and around the striation forming the characteristic mushroom shape. Further evolution involves an inverse cascade in k_y to the minimum value allowed on the numerical grid while simultaneously, the typical value of k_x increases. Consequently, individual enhancements tend to an orientation similar to the original x -directed orientation. Furthermore, the individual enhancements appear to be stabilized to further $E \times B$ structuring owing to velocity shear along their apparently unstable faces (Perkins and Doles, 1975; Huba et al., 1983).

Interestingly, Rino et al. (1979), Livingston et al. (1982), and Ri and Vickrey (1982) have reported sheet-like structures in the night side auroral region which are aligned perpendicular to the large scale F region ionospheric density gradient. This alignment perpendicular to the density gradient is not easily explained by the traditional instability theory. However, the alignment is similar to the final alignment observed in the inertial simulations.

IV. CONCLUDING REMARKS

Several conclusions can be drawn from our simulations. First, instability-generated electric fields in the high-latitude F-layer may map well up into the magnetosphere, resulting in a much reduced linear growth rate due to the effectively increased ion inertia. Second, the nonlinear development of the instability is fundamentally different in the presence of this coupling; the striations produced are spread and retarded by ion-inertial effects resulting in more isotropic irregularities than in the non-inertial case. The inertial effects may even tend to stabilize the final nonlinear state by producing a velocity shear across normally unstable gradients. The simulation results demonstrate some interesting features which may have been observed in the high latitude nighttime ionosphere.

Fig. 1. A plot of density for four times for the case of $\gamma_i = 1.00 \text{ sec}^{-1}$ (the non-inertial case). The shaded region represents those areas whose density is greater than 2.5 times the background density. The simulation grid is periodic in the direction of E and is moving with the $E \times B$ velocity.

Fig. 2. A plot of density for four times for the case of $\gamma_i = 0.01 \text{ sec}^{-1}$ (the inertial case). The shaded region and the simulation grid are the same as in Fig. 1. The times shown in the two figures are roughly equal multiples of the linear growth time for the instability in the two cases.

Acknowledgments

We thank Dr. J.D. Huba for helpful discussions and a critical reading of the manuscript. This research was supported by the Defense Nuclear Agency, the National Aeronautics and Space Administration, and the Office of Naval Research.

References

Baker, K.B., R.A. Greenwald, and R.T. Tsunoda, Very high latitude F-region irregularities observed by HF-radar backscatter, Geophys. Res. Lett., 10, 904, 1983.

Balsley, B.B., G. Haerendel, and R.A. Greenwald, Equatorial spread F: recent observations and a new interpretation, J. Geophys. Res., 77, 5625, 1972.

Basu, S., S. Basu, E. MacKenzie, W.R. Coley, W.B. Hanson, and C.S. Lin, F region electron density irregularity spectra near auroral acceleration and shear regions, J. Geophys. Res., 89, 5554, 1984.

Bythrow, P.F., T.A. Potemra, W.B. Hanson, L.J. Zanetti, C.-I. Meng, R.E. Huffman, F.J. Rich, and D.A. Hardy, Earthward directed high-density Birkeland currents observed by HILAT, J. Geophys. Res., 89, 9114, 1984.

Cerisier, J.C., J.J. Berthelier, and C. Deghin, Unstable density gradients in the high latitude ionosphere, Radio Sci., 1985, in press.

Hain, K., A non-recursive incomplete Cholesky decomposition method for the solution of linear equations with a sparse matrix, NRL Memorandum Report 4264, Naval Research Laboratory, Washington, D.C. 1980. ADA087005

Manuise, C., J.P. Villain, and M. Crochet, Spectral studies of F region irregularities in the auroral zone, Geophys. Res. Lett., 8, 1083, 1981.

Huba, J.D., S.L. Ossakow, P. Satyanarayana, and P.N. Guzdar, Linear theory of the E \times B instability with an inhomogeneous electric field, J. Geophys. Res., 88, 425, 1983.

Huba, J.D., A.B. Hassam, I.B. Schwartz, and M.J. Keskinen, Ionospheric turbulence: Interchange instabilities and chaotic fluid behavior, Geophys. Res. Lett., 12, 65, 1985.

Keskinen, M.J. and S.L. Ossakow, Nonlinear evolution of plasma enhancements in the auroral ionosphere, I, Long wavelength irregularities, J. Geophys. Res., 87, 144, 1982.

Keskinen, M.J. and S.L. Ossakow, Theories of high-latitude ionospheric irregularities: a review, Radio Sci., 18, 1077, 1983.

Livingston, R.C., C.L. Rino, J. Owen, and R.T. Tsunoda, The anisotropy of high-latitude nighttime F region irregularities, J. Geophys. Res., 87, 10519, 1982.

Ossakow, S.L., Spread-F theories - a review, J. Atm. Terr. Phys., 43, 437, 1981.

Ossakow, S.L. and P.K. Chaturvedi, Current convective instability in the diffuse aurora, Geophys. Res. Lett., 6, 332, 1979.

Ossakow, S.L., P.K. Chaturvedi, and J.B. Workman, High-altitude limit of the gradient drift instability, J. Geophys. Res., 83, 2691, 1978.

Perkins, F.W. and J.H. Doles, III, Velocity shear and the $E \times B$ instability, J. Geophys. Res., 80, 211, 1975.

Rino, C.L., R.C. Livingston, and S.J. Matthews, Evidence for sheet-like auroral ionospheric irregularities, Geophys. Res. Lett., 5, 1038, 1978

Rino, C.L. and J.F. Vickrey, Recent results in auroral-zone scintillation studies, J. Atmos. Terr. Phys., 44 875, 1982.

Vickrey, J.F., C.L. Rino, and T.A. Potemra, Chatanika/Triad observations of unstable ionization enhancements in the auroral F-region, Geophys. Res. Lett., 7, 789, 1980.

Völk, H.J. and G. Haerendel, Striations in ionospheric ion clouds, I, J. Geophys. Res., 76, 4541, 1971.

Weber, E.J., J. Buchau, J.G. Moore, J.R. Sharber, R.C. Livingston, J.D. Winningham, and B.W. Reinisch, F layer ionization patches in the polar cap, J. Geophys. Res., 89, 1683, 1984.

Zalesak, S.T., Fully multidimensional flux-corrected transport algorithms for fluids, J. Comp. Phys., 31, 335, 1979.

Zalesak, S.T., S.L. Ossakow, and P.K. Chaturvedi, Nonlinear equatorial spread F: the effect of neutral winds and background Pedersen conductivity, J. Geophys. Res., 87, 151, 1982.

Distribution List

Director

Naval Research Laboratory
Washington, D.C. 20375
ATTN: Code 4700 (26 Copies)
Code 4701
Code 4780 (50 copies)
Code 4706 (P. Rodriguez)

University of Alaska
Geophysical Institute
Fairbanks, Alaska 99701
ATTN: Library
S. Akasofu
J. Kan
J. Roederer
L. Lee

University of Arizona
Dept. of Planetary Sciences
Tucson, Arizona 85721
ATTN: J.R. Jokipii

University of California, S.D.
LaJolla, California 92037
(Physics Dept.):
ATTN: J.A. Fejer
T. O'Neil
J. Winfrey
Library
J. Malmberg
(Dept. of Applied Sciences):
ATTN: H. Booker

University of California
Los Angeles, California 90024
(Physic Dept.):
ATTN: J.M. Dawson
B. Fried
J.G. Morales
W. Gekelman
R. Stenzel
Y. Lee
A. Wong
F. Chen
M. Ashour-Abdalla
Library
J.M. Cornwall

(Institute of Geophysics and
Planetary Physics):
ATTN: Library
C. Kennel
F. Coroniti

Columbia University
New York, New York 10027
ATTN: R. Taussig
R.A. Gross

University of California
Berkeley, California 94720
(Space Sciences Laboratory):
ATTN: Library

M. Hudson
(Physics Dept.):
ATTN: Library
A. Kaufman
C. McKee

(Electrical Engineering Dept.):
ATTN: C.K. Birdsall

University of California
Physics Department
Irvine, California 92664
ATTN: Library
G. Benford
N. Rostoker
C. Robertson
N. Rynn

California Institute of Technology
Pasadena, California 91109
ATTN: R. Gould
L. Davis, Jr.
P. Coleman

University of Chicago
Enrico Fermi Institute
Chicago, Illinois 60637
ATTN: E.N. Parker
I. Lerche
Library

Thayer School of Engineering
Dartmouth College
Hanover, NH 03755
ATTN: Bengt U.O. Sonnerup

PREVIOUS PAGE
IS BLANK

University of Colorado
Dept. of Astro-Geophysics
Boulder, Colorado 80302
ATTN: M. Goldman
Library

Cornell University
School of Applied and Engineering Physics
College of Engineering
Ithaca, New York 14853
ATTN: Library
R. Sudan
B. Kusse
H. Fleischmann
C. Wharton
F. Morse
R. Lovelace

Harvard University
Cambridge, Massachusetts 02138
ATTN: Harvard College Observatory
(Library)
G.S. Vaino
M. Rosenberg

Harvard University
Center for Astrophysics
60 Garden Street
Cambridge, Massachusetts 02138
ATTN: G.B. Field

University of Iowa
Iowa City, Iowa 52240
ATTN: C.K. Goertz
D. Gurnett
G. Knorr
D. Nicholson

University of Houston
Houston, Texas 77004
ATTN: Library

University of Maryland
Physics Dept.
College Park, Maryland 20742
ATTN: K. Papadopoulos
H. Rowland
C. Wu

University of Michigan
Ann Arbor, Michigan 48140
ATTN: E. Fontheim

University of Minnesota
School of Physics
Minneapolis, Minnesota 55455
ATTN: Library
J.R. Winckler
P. Kellogg

M.I.T.
Cambridge, Massachusetts 02139
ATTN: Library
(Physics Dept.):
ATTN: B. Coppi
V. George
G. Bekefi
T. Chang
T. Dupree
R. Davidson
(Elect. Engineering Dept.):
ATTN: R. Parker
A. Bers
L. Smullin
(R.L.E.):
ATTN: Library
(Space Science):
ATTN: Reading Room

Princeton University
Princeton, New Jersey 08540
Attn: Physics Library
Plasma Physics Lab. Library
C. Oberman
F. Perkins
T.K. Chu
H. Okuda
V. Aranasalan
H. Hendel
R. White
R. Kulsrud
H. Furth
S. Yoshikawa
P. Rutherford

Rice University
Houston, Texas 77001
Attn: Space Science Library
R. Wolf

University of Rochester
Rochester, New York 14627
ATTN: A. Simon

Stanford University
Institute for Plasma Research
Stanford, California 94305
ATTN: Library

Stevens Institute of Technology
Hoboken, New Jersey 07030
ATTN: B. Rosen
G. Schmidt
M. Seidl

University of Texas
Austin, Texas 78712
ATTN: W. Drummond
V. Wong
D. Ross
W. Horton
D. Choi
R. Richardson
G. Leifeste

College of William and Mary
Williamsburg, Virginia 23185
Attn: F. Crownfield

Lawrence Livermore Laboratory
University of California
Livermore, California 94551
ATTN: Library
B. Kruer
J. Thomson
J. Nucholls
J. DeGroot
L. Wood
J. Emmett
B. Lasinsky
B. Langdon
R. Briggs
D. Pearlstein

Los Alamos National Laboratory
P.O. Box 1663
Los Alamos, New Mexico 87545
ATTN: Library
D. Forslund
J. Kindel
B. Bezzerides
H. Dreicer
J. Ingraham
R. Boyer
C. Nielson
E. Lindman
L. Thode

N.O.A.A.
325 Broadway S.
Boulder, Colorado 80302
ATTN: J. Weinstock
Thomas Moore (SEL, R-43)
W. Bernstein
D. Williams

Sandia Laboratories
Albuquerque, New Mexico 87115
ATTN: A. Toepfer
G. Yeonas
D. VanDevender
J. Freeman
T. Wright

Bell Laboratories
Murray Hill, New Jersey 07974
ATTN: A. Hasegawa

Lockheed Research Laboratory
Palo Alto, California 94304
ATTN: M. Walt
J. Cladis
J. Siambis

Physics International Co.
2400 Merced Street
San Leandro, California 94577
ATTN: J. Benford
S. Putnam
S. Stalings
T. Young

Science Applications, Inc.
Lab. of Applied Plasma Studies
P.O. Box 2351
LaJolla, California 92037
ATTN: L. Linson
J. McBride

NASA/Goddard Space Flight Center
Greenbelt, Maryland 20771
ATTN: M. Goldstein
T. Northrop
T. Birmingham

NASA/Goddard Space Flight Center
Greenbelt, MD 20771
ATTN: A. Figuero Vinas
Code 692

TRW Space and Technology Group
Space Science Dept.
Building R-1, Room 1170
One Space Park
Redondo Beach, California 90278
ATTN: R. Fredericks
W.L. Taylor

National Science Foundation
Atmospheric Research Section (ST)
Washington, D.C. 20550
ATTN: D. Peacock

Goddard Space Flight Center
Code 961
Greenbelt, Maryland 20771
ATTN: Robert F. Benson

NASA Headquarters
Code EE-8
Washington, D.C. 20546
ATTN: Dr. E. Schmerling
Dr. J. Lynch
Dr. D. Butler

Klumppar, David
Center for Space Sciences
P.O. Box 688
University of Texas
Richardson, Texas 75080

Leung, Philip
Dept. of Physics
University of California
405 Hilgard Avenue
Los Angeles, California 90024

Lysak, Robert
School of Physics and Astronomy
University of Minnesota
Minneapolis, MN 55455

Schulz, Michael
Aerospace Corp.
A6/2451, P.O. Box 92957
Los Angeles, California 90009

Shawhan, Stanley
Dept. of Physics & Astronomy
University of Iowa
Iowa City, Iowa 52242

Tamerin, Michael
Space Science Lab.
University of California
Berkeley, California 94720

Vlahos, Loukas
Dept. of Physics
University of Maryland
College Park, Maryland 20742

Matthews, David
IPST
University of Maryland
College Park, Maryland 20742

Schunk, Robert W.
Utah State University
Dept. of Physics
Logan, Utah 84322

Director,
Department of Energy
ER20:GTN, High Energy &
Nuclear Physics
Washington, D.C. 20545
ATTN: Dr. Terry Godlove

Director,
Department of Energy
Office of Inertial Fusion
Washington, D.C. 20545
ATTN: Dr. Richard Schriever

Director
Defense Nuclear Agency
Washington, D.C. 20305
ATTN: Dr. Leon Wittwer
Dr. P. Crowley
Dr. Carl Fitz

DEPARTMENT OF DEFENSE

ASSISTANT SECRETARY OF DEFENSE
COMM, CMD, CONT 7 INTELL
WASHINGTON, D.C. 20301

DIRECTOR
COMMAND CONTROL TECHNICAL CENTER
PENTAGON RM BE 685
WASHINGTON, D.C. 20301
01CY ATTN C-650
01CY ATTN C-312 R. MASON

DIRECTOR
DEFENSE ADVANCED RSCH PROJ AGENCY
ARCHITECT BUILDING
1400 WILSON BLVD.
ARLINGTON, VA. 22209
01CY ATTN NUCLEAR
MONITORING RESEARCH
01CY ATTN STRATEGIC TECH OFFICE

DEFENSE COMMUNICATION ENGINEER CENTER
1860 WIEHLE AVENUE
RESTON, VA. 22090
01CY ATTN CODE R410
01CY ATTN CODE R812

DEFENSE TECHNICAL INFORMATION CENTER
CAMERON STATION
ALEXANDRIA, VA. 22314
02CY

DIRECTOR
DEFENSE NUCLEAR AGENCY
WASHINGTON, D.C. 20305
01CY ATTN STVL
04CY ATTN TITL
01CY ATTN DDST
03CY ATTN RAAE

COMMANDER
FIELD COMMAND
DEFENSE NUCLEAR AGENCY
KIRTLAND, AFB, NM 87115
01CY ATTN FCPR

DEFENSE NUCLEAR AGENCY
SAO/DNA
BUILDING 20676
KIRTLAND AFB, NM 87115
01CY D.C. THORNBURG

DIRECTOR
INTERSERVICE NUCLEAR WEAPONS SCHOOL
KIRTLAND AFB, NM 87115
01CY ATTN DOCUMENT CONTROL

JOINT CHIEFS OF STAFF
WASHINGTON, D.C. 20301
01CY ATTN J-3 WWMCCS EVALUATION
OFFICE

DIRECTOR
JOINT STRAT TGT PLANNING STAFF
OFFUTT AFB
OMAHA, NB 68113
01CY ATTN JSTPS/JLKS
01CY ATTN JPST G. GOETZ

CHIEF
LIVERMORE DIVISION FLD COMMAND DNA
DEPARTMENT OF DEFENSE
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
01CY ATTN FCPRL

COMMANDANT
NATO SCHOOL (SHAPE)
APO NEW YORK 09172
01CY ATTN U.S. DOCUMENTS OFFICER

UNDER SECY OF DEF FOR RSCH & ENGRG
DEPARTMENT OF DEFENSE
WASHINGTON, D.C. 20301
01CY ATTN STRATEGIC & SPACE
SYSTEMS (OS)

WWMCCS SYSTEM ENGINEERING ORG
WASHINGTON, D.C. 20305
01CY ATTN R. CRAWFORD

COMMANDER/DIRECTOR
ATMOSPHERIC SCIENCES LABORATORY
U.S. ARMY ELECTRONICS COMMAND
WHITE SANDS MISSILE RANGE, NM 88002
01CY ATTN DELAS-EO, F. NILES

DIRECTOR
BMD ADVANCED TECH CTR
HUNTSVILLE OFFICE
P.O. BOX 1500
HUNTSVILLE, AL 35807
01CY ATTN ATC-T MELVIN T. CAPPS
01CY ATTN ATC-O W. DAVIES
01CY ATTN ATC-R DON RUSS

PROGRAM MANAGER
BMD PROGRAM OFFICE
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
01CY ATTN DACS-BMT J. SHEA

CHIEF C-E- SERVICES DIVISION
U.S. ARMY COMMUNICATIONS CMD
PENTAGON RM 1B269
WASHINGTON, D.C. 20310
01CY ATTN C- E-SERVICES DIVISION

COMMANDER
FRADCOM TECHNICAL SUPPORT ACTIVITY
DEPARTMENT OF THE ARMY
FORT MONMOUTH, N.J. 07703
01CY ATTN DRSEL-NL-RD H. BENNET
01CY ATTN DRSEL-PL-ENV H. BOMKE
01CY ATTN J.E. QUIGLEY

COMMANDER
U.S. ARMY COMM-ELEC ENGRG INSTAL AGY
FT. HUACHUCA, AZ 85613
01CY ATTN CCC-EMEO GEORGE LANE

COMMANDER
U.S. ARMY FOREIGN SCIENCE & TECH CTR
220 7TH STREET, NE
CHARLOTTESVILLE, VA 22901
01CY ATTN DRXST-SD

COMMANDER
U.S. ARMY MATERIAL DEV & READINESS CMD
5001 EISENHOWER AVENUE
ALEXANDRIA, VA 22333
01CY ATTN DRCLDC J.A. BENDER

COMMANDER
U.S. ARMY NUCLEAR AND CHEMICAL AGENCY
7500 BACKLICK ROAD
BLDG 2073
SPRINGFIELD, VA 22150
01CY ATTN LIBRARY

DIRECTOR
U.S. ARMY BALLISTIC RESEARCH
LABORATORY
ABERDEEN PROVING GROUND, MD 21005
01CY ATTN TECH LIBRARY,
EDWARD BAICY

COMMANDER
U.S. ARMY SATCOM AGENCY
FT. MONMOUTH, NJ 07703
01CY ATTN DOCUMENT CONTROL

COMMANDER
U.S. ARMY MISSILE INTELLIGENCE AGENCY
REDSTONE ARSENAL, AL 35809
01CY ATTN JIM GAMBLE

DIRECTOR
U.S. ARMY TRADOC SYSTEMS ANALYSIS
ACTIVITY
WHITE SANDS MISSILE RANGE, NM 88002
01CY ATTN ATAA-SA
01CY ATTN TCC/F. PAYAN JR.
01CY ATTN ATTA-TAC LTC J. HESSE

COMMANDER
NAVAL ELECTRONIC SYSTEMS COMMAND
WASHINGTON, D.C. 20360
01CY ATTN NAVALEX 034 T. HUGHES
01CY ATTN PME 117
01CY ATTN PME 117-T
01CY ATTN CODE 5011

COMMANDING OFFICER
NAVAL INTELLIGENCE SUPPORT CTR
4301 SUITLAND ROAD, BLDG. 5
WASHINGTON, D.C. 20390
01CY ATTN MR. DUBBIN STIC 12
01CY ATTN NISC-50
01CY ATTN CODE 5404 J. GALET

COMMANDER
NAVAL OCCEAN SYSTEMS CENTER
SAN DIEGO, CA 92152
01CY ATTN J. FERGUSON

NAVAL RESEARCH LABORATORY
 WASHINGTON, D.C. 20375
 01CY ATTN CODE 4701 I. VITKOVITSKY
 01CY ATTN CODE 7500
 01CY ATTN CODE 7550
 01CY ATTN CODE 7580
 01CY ATTN CODE 7551
 01CY ATTN CODE 7555
 01CY ATTN CODE 4730 E. MCLEAN
 01CY ATTN CODE 4108
 01CY ATTN CODE 4730 B. RIPIN
 20CY ATTN CODE 2628

COMMANDER
 NAVAL SPACE SURVEILLANCE SYSTEM
 DAHLGREN, VA 22448
 01CY ATTN CAPT J.H. BURTON

OFFICER-IN-CHARGE
 NAVAL SURFACE WEAPONS CENTER
 WHITE OAK, SILVER SPRING, MD 20910
 01CY ATTN CODE F31

DIRECTOR
 STRATEGIC SYSTEMS PROJECT OFFICE
 DEPARTMENT OF THE NAVY
 WASHINGTON, D.C. 20376
 01CY ATTN NSP-2141
 01CY ATTN NSSP-2722 FRED WIMBERLY

COMMANDER
 NAVAL SURFACE WEAPONS CENTER
 DAHLGREN LABORATORY
 DAHLGREN, VA 22448
 01CY ATTN CODE DF-14 R. BUTLER

OFFICER OF NAVAL RESEARCH
 ARLINGTON, VA 22217
 01CY ATTN CODE 465
 01CY ATTN CODE 461
 01CY ATTN CODE 462
 01CY ATTN CODE 420
 01CY ATTN CODE 421

COMMANDER
 AEROSPACE DEFENSE COMMAND/DC
 DEPARTMENT OF THE AIR FORCE
 ENT AFB, CO 80912
 01CY ATTN DC MR. LONG

COMMANDER
 AEROSPACE DEFENSE COMMAND/XPD
 DEPARTMENT OF THE AIR FORCE
 ENT AFB, CO 80912
 01CY ATTN XPDQQ
 01CY ATTN XP

AIR FORCE GEOPHYSICS LABORATORY
 HANSCOM AFB, MA 01731
 01CY ATTN OPR HAROLD GARDNER
 01CY ATTN LKB
 KENNETH S.W. CHAMPION
 01CY ATTN OPR ALVA T. STAIR
 01CY ATTN PHD JURGEN BUCHAU
 01CY ATTN PHD JOHN P. MULLEN

AF WEAPONS LABORATORY
 KIRTLAND AFT, NM 87117
 01CY ATTN SUL
 01CY ATTN CA ARTHUR H. GUENTHER
 01CY ATTN NTYCE 1LT. G. KRAJEI

AFTAC
 PATRICK AFB, FL 32925
 01CY ATTN TN

AIR FORCE AVIONICS LABORATORY
 WRIGHT-PATTERSON AFB, OH 45433
 01CY ATTN AAD WADE HUNT
 01CY ATTN AAD ALLEN JOHNSON

DEPUTY CHIEF OF STAFF
 RESEARCH, DEVELOPMENT, & ACQ
 DEPARTMENT OF THE AIR FORCE
 WASHINGTON, D.C. 20330
 01CY ATTN AFRDQ

HEADQUARTERS
 ELECTRONIC SYSTEMS DIVISION
 DEPARTMENT OF THE AIR FORCE
 HANSCOM AFB, MA 01731
 01CY ATTN J. DEAS

HEADQUARTERS
 ELECTRONIC SYSTEMS DIVISION/YSEA
 DEPARTMENT OF THE AIR FORCE
 HANSCOM AFB, MA 01732
 01CY ATTN YSEA

HEADQUARTERS
 ELECTRONIC SYSTEMS DIVISION/DC
 DEPARTMENT OF THE AIR FORCE
 HANSCOM AFB, MA 01731
 01CY ATTN DCKC MAJ J.C. CLARK

COMMANDER
FOREIGN TECHNOLOGY DIVISION, AFSC
WRIGHT-PATTERSON AFB, OH 45433
01CY ATTN NICD LIBRARY
01CY ATTN ETDP B. BALLARD

EG&G, INC.
LOS ALAMOS DIVISION
P.O. BOX 809
LOS ALAMOS, NM 85544
01CY ATTN DOC CON FOR J. BREEDLOVE

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
GRIFFISS AFB, NY 13441
01CY ATTN DOC LIBRARY/TSLD
01CY ATTN OCSE V. COYNE

UNIVERSITY OF CALIFORNIA
LAWRENCE LIVERMORE LABORATORY
P.O. BOX 808
LIVERMORE, CA 94550
01CY ATTN DOC CON FOR TECH INFO
DEPT
01CY ATTN DOC CON FOR L-389 R. OTT
01CY ATTN DOC CON FOR L-31 R. HAGER

SAMSO/SZ
POST OFFICE BOX 92960
WORLDWAY POSTAL CENTER
LOS ANGELES, CA 90009
(SPACE DEFENSE SYSTEMS)
01CY ATTN SZJ

LOS ALAMOS NATIONAL LABORATORY
P.O. BOX 1663
LOS ALAMOS, NM 87545
01CY ATTN DOC CON FOR J. WOLCOTT
01CY ATTN DOC CON FOR R.F. TASCHEK
01CY ATTN DOC CON FOR E. JONES
01CY ATTN DOC CON FOR J. MALIK
01CY ATTN DOC CON FOR R. JEFFRIES
01CY ATTN DOC CON FOR J. ZINN
01CY ATTN DOC CON FOR P. KEATON
01CY ATTN DOC CON FOR D. WESTERVELT
01CY ATTN D. SAPPENFIELD

STRATEGIC AIR COMMAND/XPPS
OFFUTT AFB, NB 68113
01CY ATTN ADWATE MAJ BRUCE BAUER
01CY ATTN NRT
01CY ATTN DOK CHIEF SCIENTIST

SAMSO/SK
P.O. BOX 92960
WORLDWAY POSTAL CENTER
LOS ANGELES, CA 90009
01CY ATTN SKA (SPACE COMM SYSTEMS)
M. CLAVIN

SANDIA LABORATORIES
P.O. BOX 5800
ALBUQUERQUE, NM 87115
01CY ATTN DOC CON FOR W. BROWN
01CY ATTN DOC CON FOR A.
THORNBROUGH
01CY ATTN DOC CON FOR T. WRIGHT
01CY ATTN DOC CON FOR D. DAHLGREN
01CY ATTN DOC CON FOR 3141
01CY ATTN DOC CON FOR SPACE PROJECT
DIV

SAMSO/MN
NORTON AFB, CA 92409
(MINUTEMAN)
01CY ATTN MNML

COMMANDER
ROME AIR DEVELOPMENT CENTER, AFSC
HANSOM AFB, MA 01731
01CY ATTN EEP A. LORENTZEN

DEPARTMENT OF ENERGY
LIBRARY ROOM G-042
WASHINGTON, D.C. 20545
01CY ATTN DOC CON FOR A. LABOWITZ

SANDIA LABORATORIES
LIVERMORE LABORATORY
P.O. BOX 969
LIVERMORE, CA 94550
01CY ATTN DOC CON FOR B. MURPHEY
01CY ATTN DOC CON FOR T. COOK

DEPARTMENT OF ENERGY
ALBUQUERQUE OPERATIONS OFFICE
P.O. BOX 5400
ALBUQUERQUE, NM 87115
01CY ATTN DOC CON FOR D. SHERWOOD

OFFICE OF MILITARY APPLICATION
DEPARTMENT OF ENERGY
WASHINGTON, D.C. 20545
01CY ATTN DOC CON DR. YO SONG

OTHER GOVERNMENT

INSTITUTE FOR TELECOM SCIENCES
NATIONAL TELECOMMUNICATIONS & INFO
ADMIN
BOULDER, CO 80303
01CY ATTN A. JEAN (UNCLASS ONLY)
01CY ATTN W. UTLAUT
01CY ATTN D. CROMBIE
01CY ATTN L. BERRY

NATIONAL OCEANIC & ATMOSPHERIC ADMIN
ENVIRONMENTAL RESEARCH LABORATORIES
DEPARTMENT OF COMMERCE
BOULDER, CO 80302
01CY ATTN R. GRUBB
01CY ATTN AERONOMY LAB G. REID

DEPARTMENT OF DEFENSE CONTRACTORS

AEROSPACE CORPORATION
P.O. BOX 92957
LOS ANGELES, CA 90009
01CY ATTN I. GARFUNKEL
01CY ATTN T. SALMI
01CY ATTN V. JOSEPHSON
01CY ATTN S. BOWER
01CY ATTN D. OLSEN

ANALYTICAL SYSTEMS ENGINEERING CORP
5 OLD CONCORD ROAD
BURLINGTON, MA 01803
01CY ATTN RADIO SCIENCES

AUSTIN RESEARCH ASSOC., INC.
1901 UTLAND DRIVE
AUSTIN, TX 78758
01CY ATTN L. SLOAN
01CY ATTN R. THOMPSON

BERKELEY RESEARCH ASSOCIATES, INC.
P.O. BOX 983
BERKELEY, CA 94701
01CY ATTN J. WORKMAN
01CY ATTN C. PRETTIE
01CY ATTN S. BRECHT

BOEING COMPANY, THE
P.O. BOX 3707
SEATTLE, WA 98124
01CY ATTN G. KEISTER
01CY ATTN D. MURRAY
01CY ATTN G. HALL
01CY ATTN J. KENNEY

CHARLES STARK DRAPER LABORATORY, INC.
555 TECHNOLOGY SQUARE
CAMBRIDGE, MA 02139
01CY ATTN D.B. COX
01CY ATTN J.P. GILMORE

COMSAT LABORATORIES
LINTHICUM ROAD
CLARKSBURG, MD 20734
01CY ATTN G. HYDE

CORNELL UNIVERSITY
DEPARTMENT OF ELECTRICAL ENGINEERING
ITHACA, NY 14850
01CY ATTN D.T. FARLEY, JR.

ELECTROSPACE SYSTEMS, INC.
BOX 1259
RICHARDSON, TX 75080
01CY ATTN H. LOGSTON
01CY ATTN SECURITY (PAUL PHILLIPS)

EOS TECHNOLOGIES, INC
606 Wilshire Blvd.
Santa Monica, Calif 90401
01CY ATTN C.B. GABBARD
01CY ATTN R. LELEVIER

ESL, INC.
495 JAVA DRIVE
SUNNYVALE, CA 94086
01CY ATTN J. ROBERTS
01CY ATTN JAMES MARSHALL

GENERAL ELECTRIC COMPANY
SPACE DIVISION
VALLEY FORGE SPACE CENTER
GODDARD BLVD KING OF PRUSSIA
P.O. BOX 8555
PHILADELPHIA, PA 19101
01CY ATTN M.H. BORTNER
SPACE SCI LAB

GENERAL ELECTRIC COMPANY
P.O. BOX 1122
SYRACUSE, NY 13201
01CY ATTN F. REIBERT

GENERAL ELECTRIC TECH SERVICES
CO., INC.
HMES
COURT STREET
SYRACUSE, NY 13201
01CY ATTN G. MILLMAN

GEOPHYSICAL INSTITUTE
UNIVERSITY OF ALASKA
FAIRBANKS, AK 99701
(ALL CLASS ATTN: SECURITY OFFICER)
01CY ATTN T.N. DAVIS (UNCLASS ONLY)
01CY ATTN TECHNICAL LIBRARY
01CY ATTN NEAL BROWN (UNCLASS ONLY)

GTE SYLVANIA, INC.
ELECTRONICS SYSTEMS GRP-EASTERN DIV
77 A STREET
NEEDHAM, MA 02194
01CY ATTN DICK STEINHOF

HSS, INC.
2 ALFRED CIRCLE
BEDFORD, MA 01730
01CY ATTN DONALD HANSEN

ILLINOIS, UNIVERSITY OF
107 COBLE HALL
150 DAVENPORT HOUSE
CHAMPAIGN, IL 61820
(ALL CORRES ATTN DAN MCCLELLAND)
01CY ATTN K. YEH

INSTITUTE FOR DEFENSE ANALYSES
1801 NO. BEAUREGARD STREET
ALEXANDRIA, VA 22311
01CY ATTN J.M. AEIN
01CY ATTN ERNEST BAUER
01CY ATTN HANS WOLFARD
01CY ATTN JOEL BENGSTON

INTL TEL & TELEGRAPH CORPORATION
500 WASHINGTON AVENUE
NUTLEY, NJ 07110
01CY ATTN TECHNICAL LIBRARY

JAYCOR
11011 TORREYANA ROAD
P.O. BOX 85154
SAN DIEGO, CA 92138
01CY ATTN J.L. SPERLING

JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
JOHNS HOPKINS ROAD
LAUREL, MD 20810
01CY ATTN DOCUMENT LIBRARIAN
01CY ATTN THOMAS POTEMRA
01CY ATTN JOHN DASSOULAS

KAMAN SCIENCES CORP
P.O. BOX 7463
COLORADO SPRINGS, CO 80933
01CY ATTN T. MEAGHER

KAMAN TEMPO-CENTER FOR ADVANCED
STUDIES
816 STATE STREET (P.O. DRAWER QQ)
SANTA BARBARA, CA 93102
01CY ATTN DASIAC
01CY ATTN WARREN S. KNAPP
01CY ATTN WILLIAM MCNAMARA
01CY ATTN B. GAMBILL

LINKABIT CORP
10453 ROSELLE
SAN DIEGO, CA 92121
01CY ATTN IRWIN JACOBS

LOCKHEED MISSILES & SPACE CO., INC
P.O. BOX 504
SUNNYVALE, CA 94088
01CY ATTN DEPT 60-12
01CY ATTN D.R. CHURCHILL

LOCKHEED MISSILES & SPACE CO., INC.
3251 HANOVER STREET
PALO ALTO, CA 94304
01CY ATTN MARTIN WALT DEPT 52-12
01CY ATTN W.L. IMHOFF DEPT 52-12
01CY ATTN RICHARD G. JOHNSON
DEPT 52-12
01CY ATTN J.B. CLADIS DEPT 52-12

MARTIN MARIETTA CORP
ORLANDO DIVISION
P.O. BOX 5837
ORLANDO, FL 32805
01CY ATTN R. HEFFNER

M.I.T. LINCOLN LABORATORY
P.O. BOX 73
LEXINGTON, MA 02173
01CY ATTN DAVID M. TOWLE
01CY ATTN L. LOUGHLIN
01CY ATTN D. CLARK

MCDONNELL DOUGLAS CORPORATION
5301 BOLSA AVENUE

HUNTINGTON BEACH, CA 92647
01CY ATTN N. HARRIS
01CY ATTN J. MOULE
01CY ATTN GEORGE MROZ
01CY ATTN W. OLSON
01CY ATTN R.W. HALPRIN
01CY ATTN TECHNICAL
LIBRARY SERVICES

MISSION RESEARCH CORPORATION
735 STATE STREET
SANTA BARBARA, CA 93101
01CY ATTN P. FISCHER
01CY ATTN W.F. CREVIER
01CY ATTN STEVEN L. GUTSCHE
01CY ATTN R. BOGUSCH
01CY ATTN R. HENDRICK
01CY ATTN RALPH KILB
01CY ATTN DAVE SOWLE
01CY ATTN F. FAJEN
01CY ATTN M. SCHEIBE
01CY ATTN CONRAD L. LONGMIRE
01CY ATTN B. WHITE
01CY ATTN R. STAGAT

MISSION RESEARCH CORP.
1720 RANDOLPH ROAD, S.E.
ALBUQUERQUE, NEW MEXICO 87106
01CY R. STELLINGWERF
01CY M. ALME
01CY L. WRIGHT

MITRE CORPORATION, THE
P.O. BOX 208
BEDFORD, MA 01730
01CY ATTN JOHN MORGANSTERN
01CY ATTN G. HARDING
01CY ATTN C.E. CALLAHAN

MITRE CORP
WESTGATE RESEARCH PARK
1820 DOLLY MADISON BLVD
MCLEAN, VA 22101
01CY ATTN W. HALL
01CY ATTN W. FOSTER

PACIFIC-SIERRA RESEARCH CORP
12340 SANTA MONICA BLVD.
LOS ANGELES, CA 90025
01CY ATTN E.C. FIELD, JR.

PENNSYLVANIA STATE UNIVERSITY
IONOSPHERE RESEARCH LAB
318 ELECTRICAL ENGINEERING EAST
UNIVERSITY PARK, PA 16802
(NO CLASS TO THIS ADDRESS)
01CY ATTN IONOSPHERIC RESEARCH LAB

PHOTOMETRICS, INC.
4 ARROW DRIVE
WOBBURN, MA 01801
01CY ATTN IRVING L. KOFSKY

PHYSICAL DYNAMICS, INC.
P.O. BOX 3027
BELLEVUE, WA 98009
01CY ATTN E.J. FREMOUW

PHYSICAL DYNAMICS, INC.
P.O. BOX 10367
OAKLAND, CA 94610
ATTN A. THOMSON

R & D ASSOCIATES
P.O. BOX 9695
MARINA DEL REY, CA 90291
01CY ATTN FORREST GILMORE
01CY ATTN WILLIAM B. WRIGHT, JR.
01CY ATTN WILLIAM J. KARZAS
01CY ATTN H. ORY
01CY ATTN C. MACDONALD
01CY ATTN R. TURCO
01CY ATTN L. DeRAND
01CY ATTN W. TSAI

RAND CORPORATION, THE
1700 MAIN STREET
SANTA MONICA, CA 90406
01CY ATTN CULLEN CRAIN
01CY ATTN ED BEDROZIAN

RAYTHEON CO.
528 BOSTON POST ROAD
SUDSBURY, MA 01776
01CY ATTN BARBARA ADAMS

RIVERSIDE RESEARCH INSTITUTE
330 WEST 42nd STREET
NEW YORK, NY 10036
01CY ATTN VINCE TRAPANI

SCIENCE APPLICATIONS, INC.
1150 PROSPECT PLAZA
LA JOLLA, CA 92037
01CY ATTN LEWIS M. LINSON
01CY ATTN DANIEL A. HAMLIN
01CY ATTN E. FRIEMAN
01CY ATTN E.A. STRAKER
01CY ATTN CURTIS A. SMITH

SCIENCE APPLICATIONS, INC
1710 GOODRIDGE DR.
MCLEAN, VA 22102
01CY J. COCKAYNE
01CY E. HYMAN

SRI INTERNATIONAL
333 RAVENSWOOD AVENUE
MENLO PARK, CA 94025
01CY ATTN J. CASPER
01CY ATTN DONALD NEILSON
01CY ATTN AN BURNS
01CY ATTN SMITH
01CY ATTN TSUNODA
01CY ATTN DAVID A. JOHNSON
01CY ATTN WALTER G. CHESNUT
01CY ATTN CHARLES L. RINO
01CY ATTN WALTER JAYE
01CY ATTN J. VICKREY
01CY ATTN RAY L. LEADABRAND
01CY ATTN G. CARPENTER
01CY ATTN G. PRICE
01CY ATTN R. LIVINGSTON
01CY ATTN V. GONZALES
01CY ATTN D. McDANIEL

TECHNOLOGY INTERNATIONAL CORP
75 WIGGINS AVENUE
BEDFORD, MA 01730
01CY ATTN W. P. BOQUIST

TOYON RESEARCH CO.
P.O. Box 6890
SANTA BARBARA, CA 93111
01CY ATTN JOHN ISE, JR.
01CY ATTN JOEL GARBARINO

TRW DEFENSE & SPACE SYS GROUP
ONE SPACE PARK
REDONDO BEACH, CA 90278
01CY ATTN R. K. PLEBUCH
01CY ATTN S. ALTSCHULER
01CY ATTN D. DEE
01CY ATTN D. STOCKWELL
SNTF/1575

VISIDYNE
SOUTH BEDFORD STREET
BURLINGTON, MASS 01803
01CY ATTN W. REIDY
01CY ATTN J. CARPENTER
01CY ATTN C. HUMPHREY

UNIVERSITY OF PITTSBURGH
PITTSBURGH, PA 15213
01CY ATTN: N. ZABUSKY

DIRECTOR OF RESEARCH
U.S. NAVAL ACADEMY
ANNAPOLIS, MD 21402
02CY

IONOSPHERIC MODELING DISTRIBUTION LIST
(UNCLASSIFIED ONLY)

PLEASE DISTRIBUTE ONE COPY TO EACH OF THE FOLLOWING PEOPLE (UNLESS OTHERWISE NOTED)

NAVAL RESEARCH LABORATORY
WASHINGTON, D.C. 20375
Code 4100
Dr. H. GURSKY - CODE 4100
Dr. P. GOODMAN - CODE 4180

NASA
GODDARD SPACE FLIGHT CENTER
GREENBELT, MD 20771
DR. K. MAEDA
DR. S. CURTIS
DR. M. DUBIN

A.F. GEOPHYSICS LABORATORY
L.G. HANSCOM FIELD
BEDFORD, MA 01731
DR. T. ELKINS
DR. W. SWIDER
MRS. R. SAGALYN
DR. J.M. FORBES
DR. T.J. KENESHEA
DR. W. BURKE
DR. H. CARLSON
DR. J. JASPER
DR. F.J. RICH
DR. N. MAYNARD

COMMANDER
NAVAL AIR SYSTEMS COMMAND
DEPARTMENT OF THE NAVY
WASHINGTON, D.C. 20360
DR. T. CZUBA

BOSTON UNIVERSITY
DEPARTMENT OF ASTRONOMY
BOSTON, MA 02215
DR. J. AARONS

COMMANDER
NAVAL OCEAN SYSTEMS CENTER
SAN DIEGO, CA 92152
MR. R. ROSE - CODE 5321

CORNELL UNIVERSITY
ITHACA, NY 14850
DR. W.E. SWARTZ
DR. D. FARLEY
DR. M. KELLEY

NOAA
DIRECTOR OF SPACE AND
ENVIRONMENTAL LABORATORY
BOULDER, CO 80302
DR. A. GLENN JEAN
DR. G.W. ADAMS
DR. D.N. ANDERSON
DR. K. DAVIES
DR. R.F. DONNELLY

HARVARD UNIVERSITY
HARVARD SQUARE
CAMBRIDGE, MA 02138
DR. M.B. McELROY
DR. P. LINDZEN

OFFICE OF NAVAL RESEARCH
800 NORTH QUINCY STREET
ARLINGTON, VA 22217
DR. G. JOINER

INSTITUTE FOR DEFENSE ANALYSIS
400 APRM /NAVY DRIVE
ARLINGTON, VA 22202
DR. E. BAUER

PENNSYLVANIA STATE UNIVERSITY
UNIVERSITY PARK, PA 16802
DR. J.S. NISBET
DR. P.R. ROHRBAUGH
DR. L.A. CARPENTER
DR. M. LEE
DR. R. DIVANY
DR. P. BENNETT
DR. F. KLEVANS

MASSACHUSETTS INSTITUTE OF
TECHNOLOGY
PLASMA FUSION CENTER
LIBRARY, NW16-262
CAMBRIDGE, MA 02139

SCIENCE APPLICATIONS, INC.
1150 PROSPECT PLAZA
LA JOLLA, CA 92037
DR. D.A. HAMLIN
DR. E. FRIEMAN

STANFORD UNIVERSITY
STANFORD, CA 94305
DR. P.M. BANKS

U.S. ARMY ABERDEEN RESEARCH
AND DEVELOPMENT CENTER
BALLISTIC RESEARCH LABORATORY
ABERDEEN, MD
DR. J. HEIMERL

GEOPHYSICAL INSTITUTE
UNIVERSITY OF ALASKA
FAIRBANKS, AK 99701
DR. L.E. LEE

UNIVERSITY OF CALIFORNIA,
BERKELEY
BERKELEY, CA 94720
DR. M. HUDSON

UNIVERSITY OF CALIFORNIA
LOS ALAMOS SCIENTIFIC LABORATORY
J-10, MS-664
LOS ALAMOS, NM 87545
DR. M. PONGRATZ
DR. D. SIMONS
DR. G. BARASCH
DR. L. DUNCAN
DR. P. BERNHARDT
DR. S.P. GARY

UNIVERSITY OF MARYLAND
COLLEGE PARK, MD 20740
DR. K. PAPADOPOULOS
DR. E. OTT

JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
JOHNS HOPKINS ROAD
LAUREL, MD 20810
DR. R. GREENWALD
DR. C. MENG

UNIVERSITY OF PITTSBURGH
PITTSBURGH, PA 15213
DR. N. ZABUSKY
DR. M. BIONDI
DR. E. OVERMAN

UNIVERSITY OF TEXAS
AT DALLAS
CENTER FOR RESEARCH SCIENCES
P.O. BOX 688
RICHARDSON, TX 75080
DR. R. HEELIS
DR. W. HANSON
DR. J.P. McCLURE

UTAH STATE UNIVERSITY
4TH AND 8TH STREETS
LOGAN, UTAH 84322
DR. R. HARRIS
DR. K. BAKER
DR. R. SCHUNK
DR. J. ST.-MAURICE

PHYSICAL RESEARCH LABORATORY
PLASMA PHYSICS PROGRAMME
AHMEDABAD 380 009
INDIA
P.J. PATHAK, LIBRARIAN

LABORATORY FOR PLASMA AND
FUSION ENERGY STUDIES
UNIVERSITY OF MARYLAND
COLLEGE PARK, MD 20742
JHAN VARYAN HELLMAN,
REFERENCE LIBRARIAN

to replicate regolith samples that contain agglutinates, shock-damaged particles, and surface-correlated volatiles. How much expense and effort are justified in simulation remains to be determined.

Although some lunar samples will have to be sacrificed for utilization experiments, this sample loss must be minimized. Experience gained from the last sixteen years of lunar sample research will contribute considerably in this effort. For example, consortium studies have been exceptionally productive in bringing diverse disciplines together for studying complex lunar samples; in utilization experiments, a benefit of consortium studies would be the extended life of the sample collection. Sample life may be prolonged by sequential experimentation; for example, experiments on delicate features such as surface-correlated volatiles might precede melting of the same sample for experiments on metal and oxygen production. Innovative research programs must be developed, and will require close liaison between experimenters with different goals. Improved techniques are necessary to obtain critical information from samples much smaller than those normally used in terrestrial studies.

APPLICATIONS WORKSHOP

Communication and cooperation between researchers is vital. An Applications Workshop is being planned, probably to be convened in 1986, that will help to explore research opportunities, to develop an understanding of what can and should be simulated, and to open communications between research groups. Major goals of this workshop would be to (1) encourage experimenters to form consortia, (2) expose utilization experimenters to the available scientific data base on lunar samples, and (3) expose the present lunar sample research community to the data needs of utilization experimenters.

This workshop will probably include a general session on the data available for lunar rocks, minerals, soils, and volatile elements and will cover the prospects for producing useful simulants. Topical sessions will discuss fuel extraction (oxygen, hydrogen, aluminum, and calcium), metal extraction methods (chemical, electrical, thermal, and mechanical), and metal fabrication and the formation of structural materials (concrete, glasses, ceramics, and sintered products). A session on mining and bulk materials processing will encompass regional geology, strip and subsurface techniques, ore processing, and the estimation of probable ores. A session on lunar environmental control and protection will cover the topics of dust, waste, and atmosphere control. A special session must be reserved for fresh ideas about other innovative products and materials for the space environment.

3

RELATIONSHIP TO MISSIONS

Lunar sample studies support all NASA planetary missions in a general way by elucidating planetary processes such as volcanism, impact cratering, and planetary differentiation. Sample studies relate directly to the Lunar Geoscience Observer, and possibly to other planned missions as well.

LUNAR GEOSCIENCE OBSERVER (LGO)

The Lunar Geoscience Observer might follow the Mars Observer in the Planetary Observer series. Lunar research has provided well-defined scientific goals for this mission, i.e., to resolve the problems outlined here in the section entitled Outstanding Lunar Science Problems. Scientists familiar with lunar samples are actively involved in planning the mission. LAPST intends this involvement to continue into flight teams. Lunar sample results are and will continue to be the primary source of "ground truth" data that will ensure the fullest use of the geochemical and mineralogical global maps to be provided by the LGO mission. Because the upper lunar crust is extensively mixed by impacts, continued sample study will refine and extend the spectrum of lunar primary igneous rock types and is critical to our understanding of regional geochemical compositions, which will undoubtedly be interpreted as mixtures of pristine rock types. The discovery of pristine rock types could greatly alter our perception of the geologic and petrologic significance of geochemical variations that will be mapped by LGO. New laboratory work is needed on the spectral characteristics of a variety of lunar rock types in order to interpret the global maps of lunar spectral reflectance that LGO will obtain. Earth-based telescopic

PRECEDING PAGE BLANK NOT FILMED

27

PAGE 26 INTENTIONALLY BLANK

ORIGINAL PAGE IS
OF POOR QUALITY

spectra have shown us which lunar rock types are potentially relevant to the understanding of lunar spectral data. The larger the spectral data base on lunar samples that is available prior to the LGO mission, the better we will be able to comprehend the abundant and rapidly-returning spectral data from the spacecraft during mission operations. The result: a new understanding of and perspective toward the Moon's composition and evolution that will most likely feed back to more specific sample studies.

SAMPLE RETURN FROM THE MOON AND OTHER BODIES

Sample return missions to various large bodies in the solar system are highly desirable because some fundamental questions can only be answered by making measurements on samples. These bodies include Mars, the Moon, and Venus. However, the rationale for sample returns needs to be addressed. Below are some of the key points that demonstrate the advantages of sample return over *in situ* measurements.

Oblique view of the Aristarchus Plateau (PL) and environs. The fresh, Copernican-age crater Aristarchus (A) is about 42 km in diameter; remote-sensing data indicated the presence of clinopyroxene-bearing, high Th (~18 ppm) rocks —possibly KREEP-rich, plutonic evolved rocks such as granite or quartz monzodiorite. The Plateau itself displays varied geological units including the Imbrium Basin Alpes Formation (an ejecta facies), light plains (Pl) for which Th contents suggest KREEP lava flows, and extremely red, KREEP-rich pyroclastic dark mantle deposits. Schroter's Valley (S) is a complex, nested sinuous rille, with a morphology that implies a protracted volcanic eruption history. Mare basalts (M) on the horizon span an age from about 3.0 b.y. to possibly less than 2.0 b.y. A future sample return from this area of the Moon has the potential to collect a wide variety of rock types within a relatively limited geographic region.

Sample Return Rationale

Laboratory Equipment Will Always Have Better Resolution and Precision Than Flight Instruments. Over the past ten years, laboratory instruments have undergone major improvements in their ability to analyze increasingly smaller samples and to provide significantly greater resolution of physical and chemical differences and improved precision for isotopic analysis. Because of weight and power limitations, no proposed flight instrument can ever be as good as the best laboratory instrument in its ability to analyze small samples or to detect small differences. This ability is critical to understanding the samples, so laboratory instruments will always provide better data and better understanding of planetary samples. For many types of planetary samples this superior resolution and sensitivity is not only desirable but is absolutely vital to understanding the material. For instance, only by using instruments of very high resolution that can discriminate among individual mineral and glass phases is it possible to understand a planetary regolith. Very precise data are needed for reliable isotope age determinations and isotopic ratios. It is not likely that some kinds of analyses will ever be accomplished to the required precision by remote instruments. Such age and isotopic ratio determinations are critical to the understanding of the geological evolution of a planet and can be used to calibrate other time scales such as those based on crater densities.

Returned Samples Become Resources That Are Accessible in the Future for Rapidly Improving Analytical Technology. Over a period of years, analytical instruments undergo considerable improvements and entirely new instruments are developed. If planetary samples are brought back to terrestrial laboratories, improved or new instruments can be applied to them as they become available. The samples can then be periodically mined for new data. In contrast, flight instruments "freeze" the state of the technology some time before launch and cannot be improved. Only an entirely new mission can take advantage of improvements in instrument technology that may occur from year to year. The technology of mass spectrometry could not support Nd-Sr dating at the time of the Apollo missions, but several years later this technique provided key data on returned lunar samples. Third-generation ion probes and PIXIE analyses now allow trace element determinations on individual mineral and glass grains; such techniques were not available during the Apollo missions.

Unforeseen Key Discoveries Can Lead to New Experimental Design. A package of flight instruments must be chosen and designed well before the mission begins. The choice of the instrument mix and the design of each instrument is entirely dependent on the best guess of what the targeted samples may be like. If the samples are not entirely as expected, the instruments may not work at all, may give the wrong kind of data, or may miss the critical data. An example is an instrument package designed to sample fine particulate material that instead encountered coarse-grained material. If the chemistry of the samples is not as expected, the proper analyzing system may not be included in the package. Flight instruments inevitably lack flexibility and can only do what they are designed to do based on a model for the characteristics of the samples to be analyzed. If the sample characteristics were known perfectly before the flight, the analyses would not be necessary. Hence,

the supposed characteristics are likely to be wrong in some respects and, therefore, the package will not be entirely suitable. Sample return and laboratory instruments allow complete flexibility of instrument types and sample preparation, and even have the ability to handle totally unexpected situations.

There are No Weight/Power Considerations on Laboratory Instruments. Many laboratory techniques require massive or power-hungry devices. Examples include high-resolution mass spectrometers, ion probes, ferromagnetic and nuclear magnetic resonance devices, and synchrotron radiation. A recent example is the Brookhaven synchrotron XRF probe for lunar and meteorite samples. None of these techniques are easily adaptable to flight instruments because of the power and weight limitations.

The Variety and Complexity of Laboratory Instrumentation for Sample Studies are Unlimited. Laboratories contain a variety of very complex instruments. Literally hundreds of different types of instruments and techniques have been applied to lunar samples and have provided a complex variety of data types, all of which have contributed toward understanding the samples. In contrast, only a few different instruments will ever be practical for a flight package. Even if these instruments are equal to their laboratory equivalents, the limited number of instruments will limit the kinds of data that can be acquired. If we had been limited to only five or ten instruments in our analyses of lunar samples, it is doubtful that we would have made much progress in understanding these complex samples. In addition, sterilization requirements can limit the quality and complexity of flight instruments.

OTHER POSSIBILITIES

A central part of NASA's program is the construction of the Space Station. It is difficult to predict how the Space Station will affect lunar science, but we envision several possibilities. One is improved telescopic observations of the Moon from an observatory installed on or near the Space Station. The absence of atmosphere would allow observations of the Moon in a wider range of wavelengths than is possible from Earth's surface, thus providing more chemical and mineralogical information. Such an observatory would supplement the LGO.

Experiments in microgravity and high vacuum could have significance for understanding lunar rock evolution. Such experiments have not yet been designed, but we expect them to be proposed when material research laboratories are in place on the Space Station. The Space Station will be the best place to conduct many lunar-sample utilization studies, for many lunar materials will ultimately be used in orbit for space manufacturing and construction. Again, there is interaction progression between sample studies and sample utilization.

4

OUTLOOK FOR CURATORIAL OPERATIONS

It is vital that the curatorial operations continue to support the Planetary Materials and Geochemistry Program (PMGP), at least at the present level of activity. In 1981, the curatorial effort was significantly reduced and has since remained at a constant level of effort, with budget growth sufficient to cover inflationary costs only. The present activity is efficiently supplying the needs of the community and preserving the integrity of the samples.

The active approach of exposing more surfaces and samples for study by the planetary materials community should be continued. Cutting of breccias is stimulating significant research activities. Several research groups have also taken advantage of the chance to pick significant samples from the supplies of 1-4 mm soil fragments. However, detailed cataloging would permit more effective use of these valuable samples. Systematic thin-sectioning and descriptions of regolith breccias have focused the research of several groups on these samples. LAPST will continue to encourage the Curator to actively process the collection.

LAPST will evaluate the need to open specific lunar cores for investigation. The dissection of lunar cores was discontinued in 1981 with approximately one-third of the cores unexamined. Several lunar investigation teams have expressed interest in studying new cores. LAPST will evaluate both the significance of the potential science and the impact on curatorial operations.

LAPST will continue to review the status of the cataloging and documentation of the lunar sample collection. The present set of documentation is uneven in thoroughness and quality. Excellent, thorough reviews in the form of catalogs are available for the Apollo 15 and 16 collections. LAPST will systematically review

the other sample documentation (guidebooks, catalogs, core descriptions, etc.) and identify significant shortcomings. A prioritized plan will be proposed to direct such future curatorial efforts.

LAPST and the Curator will remain ready to take advantage of opportunities to develop new sources of extraterrestrial materials. For example, recently returned Solar Max spacecraft parts have provided samples of captured cosmic dust. The Long Duration Exposure Facility (LDEF) will soon be available as another source. In the new era of replaceable, repairable spacecraft, LAPST expects new opportunities and will encourage use of the curatorial facilities to recover cosmic dust samples.

A significant challenge to the Curator and LAPST is the increasing interest in studies of potential utilization of lunar samples and other extraterrestrial materials. The Planetary Materials Branch is the sole source of lunar materials, and the curatorial staff will identify samples that are suitable for use in such engineering and applied studies. The curatorial staff will be a source of information on suitable simulants for engineering and applied studies. Use of simulants can reduce the demand for lunar material and should be used to pre-test experiments in order to optimize return from studies of actual lunar materials. LAPST recognizes the significant costs of producing simulants but also recognizes the need to have studies done on realistic lunar simulants. Whether major stocks of simulated lunar material should be produced by the Curator is a question that cannot be answered until more is known about the nature, volume, and cost of responding to requests for such materials.