41952 - Arquitetura de Computadores II

http://elearning.ua.pt

Pedro Miguel Cabral

Aula 01

Trabalho Prático Nº 01

Objectivos

- Conhecer o processo de criação de um programa escrito em assembly para correr na placa DETPIC32-IO: compilação, transferência e execução.
 - Utilizar os system calls disponibilizados na placa DETPIC32-IO.
- Rever os conceitos associados à manipulação de arrays de caracteres.

Introdução

Microcontrolador:

- Um dispositivo programável que integra um microprocessador, memória e portos de entrada e saída.
- Inclui outros dispositivos de suporte tais como *Timers*,
 Conversores A/D, interfaces de barramentos (RS232, I2C, SPI, etc.)
- Os pinos de conexão com exterior estão (normalmente) organizados em portos de I/O e são multiplexados, i. e., podem ser configurados para diferentes funções.

Introdução

- Sistema Embebido (Embedded System):
 - Sistema computacional especializado realiza uma tarefa específica ou o controlo de um determinado dispositivo
 - Tem requisitos próprios e executa apenas tarefas prédefinidas
 - Tem um custo muito inferior a um sistema computacional de uso geral. Os recursos disponíveis são, em geral mais limitados que num sistema computacional de uso geral (e.g. menos memória, ausência de dispositivos de interacção com o utilizador)
 - É, normalmente, implementado com base num microcontrolador

Introdução

- Em AC1 usámos o Assembly para programar o processador MIPS...
- ... No ambiente de simulação MARS

Agora, o ambiente de simulação tornou-se real...

Aula Prática Nº 01

Aula Prática Nº 01

 Utilizando um editor de texto (p. ex. o gvim), edite o programa Assembly, dando-lhe a extensão ".s".

```
gvim prog1.s
```

 Compile o programa introduzindo, na linha de comandos (numa janela de terminal do linux), o seguinte comando:

```
pcompile progl.s
```

O comando produz os seguintes ficheiros:

```
"progl.o", "progl.elf", "progl.map" e "progl.hex"
```

- Transfira o programa "progl.hex" para a memória FLASH do microcontrolador PIC32 da placa DETPIC32, realizando os seguintes passos:
 - ligue a placa à porta USB do PC
 - introduza o comando: ldpic32 prog1.hex
 - prima o botão de reset da placa DETPIC32-IO e aguarde que a transferência se processe
- Lance o programa monitor da porta série pterm
- Execute o programa premindo novamente o botão de reset.

Aula Prática Nº 01

707.70%

System Calls

Tabela IV: System Calls do DETPIC32				
Protótipo equivalent em C	\$v0	Parâmetros de entrada	Retorno	
char inkey(void)	1		\$v0	
char getChar(void)	2		\$v0	
void putChar(char ch)	3	\$a0 = character		
unsigned int readInt(unsigned int base)	4	a0 = base	\$v0	
int readInt10(void)	5		\$v0	
<pre>void printInt(unsigned int val, unsigned int base)</pre>	6	a0 = val, a1 = base		
void printInt10(int val)	7	\$a0		
void printStr(char *str)	8	a0 = str		
void readStr(char *buffer, unsigned int nc)	9	a0 = buffer, a1 = nc		
void exit(int code)	10	\$a0 = exit code		
unsigned int readCoreTimer(void)	11		\$v0	
void resetCoreTimer(void)	12			

printInt(), "base": 16 lsbits – [2.. 16] / 16 msbits – número de caracteres com que o resultado é apresentado (o valor por omissão é 0, i.e. sem formatação)

Mapa de memória do PIC32 (perspectiva do programador)

0xffffffff	Reservado		Bootloader + syscalls	
0xBFC02FFF	Boot Flash			
0xBFC00000	(12 kB)		stack	
	Reservado		livre	
0xBF8FFFFF	055			
0xBF800000	SFRs		.bss (variáveis estáticas inicializadas a zero)	
	Reservado		.data (variáveis estáticas inicializadas com valores	
0xA001FFFF	RAM		diferentes de zero)	
0xA0000000 (128 kB)				
UARUUUUUU			livre	
	Reservado		.rodata (constantes)	
0x9D07FFFF			data (valores de inicialização	
	Program Flash (512 kB)		das variáveis estáticas)	
		0x9D001400	_text (código)	
0x9D000000			Reservado para processamento	
0x00000000	Reservado		de excepções, interrupções e código de startup	