

Information Science and Technology College of Northeast Normal University

Franklin's 13 virtues and Puritan ethics

Temperance Silence Order Resolution Frugality Industry Sincerity Justice

(9) Moderation: Avoid extremes; forbear resenting injuries so much as you think they deserve.

中庸:为人处事不要极端偏激,对待他人的一时发泄,应加以宽容,不要斤斤计较、怀恨记仇。

"邓宁-克鲁格效应":如果你很蠢,你就发现不了自己的蠢,因为发现自己的蠢需要相当高的智力。

(10) Cleanliness: Tolerate no uncleanliness in body, cloths, or habitation.

清洁: 注重仪表, 身体、衣服和住所都应当力求清洁。

Compiling and Running of Program

Dr. Zheng Xiaojuan Professor

November. 2019

§ 5 Bottom-up Parsing

- 5.1 Overview of Bottom-up Parsing
- **5.2** Finite Automata for LR(0) Parsing
- 5.3 LR(0) Parsing
- 5.4 LR(1) Parsing
- **5.5** LALR(1) Parser Generator (YACC)

The process to construct LR(0) Automata

Information Science and Technology College of

可归约活前缀集合为{S, aAc, aABb, aBa, aAb, ab}

• Conclusion:

一个CFG的LR(0)自动机接受的是该CFG的所有可归约规范活前缀;

5.3 LR(0) Parsing

- LR(0) automata related concepts
- LR(0) grammar
- LR(0) Parsing Method
 - LR(0) Parsing Table
 - LR(0) Parsing Engine(驱动程序)
- LR(0) Parsing Process

LR(0) automata related concepts

- 移入项目: A →α●aβ, a∈V_T
- 归约项目: A →α●,
- 接受项目: S'→S•#, (S'→ S#是增广产生式)
- 待约项目: A →α•Bβ, B∈V_N
- 移入状态:包含移入项目的状态(项目集)
- 归约状态:包含归约项目的状态(项目集)
- 冲突状态:
 - reduce reduce conflict,不同的归约项目
 - Shift reduce conflict, 同时移入项目和归约项目

LR(0) grammar

- Given a CFG G
- LR_0 is LR(0) automata for G
- If there is <u>no conflict</u> in any states of LR₀, G is called LR(0) grammar;
 - 任意状态或者是移入状态, 或者是归约状态
 - 如果是归约状态, 一定存在一个唯一的归约项目, 该归约项目对应一个产生式p, 因此, 该归约状态 称为*p-归约状态*

LR(0) Parsing Method

Information Science and Technology College of Northeast Normal University

$$V_{T} = \{a, b, c\}$$
 $V_{N} = \{S, A, B\}$
 $S = S$
 P :
 $\{ (1) S \rightarrow aAc$
 $(2)A \rightarrow ABb$
 $(3)A \rightarrow Ba$
 $(4)B \rightarrow b$

LR(0) Grammar

Information Science and Technology College of Northeast Normal University

$$\begin{aligned} \mathbf{V_T} &= \{\mathbf{a}, \mathbf{b}, \mathbf{c}\} \\ \mathbf{V_N} &= \{\mathbf{S}, \mathbf{A}, \mathbf{B}\} \\ \mathbf{S} &= \mathbf{S} \\ \mathbf{P:} \\ \{ & \mathbf{S} \rightarrow \mathbf{a} \mathbf{A} \mathbf{c} \\ & \mathbf{A} \rightarrow \mathbf{A} \mathbf{B} \mathbf{b} \\ & \mathbf{A} \rightarrow \mathbf{B} \mathbf{a} \\ & \mathbf{B} \rightarrow \mathbf{\epsilon} \\ \} \end{aligned}$$

非LR(0) Grammar

Information Science and Technology College of Northeast Normal University

LR(0) Parsing Table

· action表

· goto表

LR(0) Parsing Table

· action表

终极符 状态	$\mathbf{a_1}$	•••	#
S_1 S_n	action(S_i ,a) = S_j , ξ action(S_i ,a) = R_p , ξ action(S_i ,#) = acce action(S_i ,a) = error	如果S¡是p-归约 pt,如果S¡是接	约状态

LR(0) Parsing Table

· goto表

50000			
非终极符 状态	$oxed{A_1}$		
S_1			
	goto (S _i , A) = S _j , 如果S _i 到S _j 有A输出边		
•••	goto (S _i , A) = error,如果S _i 没有A输出边		
S_n			

Information Science and Technology College of Northeast Normal University

$$V_{T} = \{a, b, c\}$$
 $V_{N} = \{S, A, B\}$
 $S = S$
 P :
 $\{ (1) S \rightarrow aAc$
 $(2)A \rightarrow ABb$
 $(3)A \rightarrow Ba$
 $(4)B \rightarrow b$

Example(Parsing Table)

分析表

ARS011-	STATE OF THE PERSON NAMED IN			
	a	b	c	#
0	S3			
1				accept
2				
3		S8		
4		S8	S5	
5	R1	R1	R1	R1
6	S7			
7	R3	R3	R3	R3
8	R4	R4	R4	R4
9		S10		
10	R2	R2	R2	R2
	0 1 2 3 4 5 6 7 8 9	a 0 S3 1 2 3 4 5 R1 6 S7 7 R3 8 R4 9	a b 0 S3 1 2 3 S8 4 S8 5 R1 R1 6 S7 7 R3 R3 8 R4 R4 9 S10	a b c 0 S3 1 2 3 S8 4 S8 S5 5 R1 R1 R1 6 S7 7 R3 R3 R3 8 R4 R4 R4 9 S10

	S	A	В
0	1		
1			
2			
3		4	6
4			9
5			
6			
7			
8			
9			
10		$(0) S' \rightarrow S$ $(1) S \rightarrow aAc$	
		$(2)A \rightarrow$	ABb

 $(3)A \rightarrow Ba$

 $(4)B \rightarrow b$

Information Science and Technology College of Northeast Normal University

LR(0) Parsing Engine

Notations

- S0: start state
- Stack:状态栈
- Stack(top):栈顶元素
- P:产生式
- | P |:产生式P右部符号个数;
- P_A :产生式P左部非终极符;
- Push(S):把状态S压入stack;
- Pop(n):从stack弹出n个栈顶元素;

计算思维的典型方法

- 知识与控制的分离
- ■自动化

LR(0) Parsing Engine

- 初始化: push(S0); a = readOne();
- L: Switch action(stack(top), a)
 - Case error: error();
 - Case accept: return true;
 - Case Si: push(Si), a=readOne(); goto L;
 - Case R_P: pop(|P|);
 push(goto(stack(top), P_A));
 goto L;

Information Science and Technology College of Northeast Normal University

LR(0) Parsing Process

P:
$(0) S' \rightarrow S$
$(1) S \rightarrow aAc$
$(2)A \rightarrow ABb$
$(3)A \rightarrow Ba$
$(4)B \rightarrow b$

a	b	a	c
---	---	---	---

状态栈	输入流	分析动作
0	abac#	S3
03	bac#	S8
038	ac#	R4,Goto(3, B)=6
036	ac#	S7
0367	c#	R3, Goto(3, A)=4
034	c#	S5
0345	#	R1, Goto(0, S)=1
01	#	Accept

Assignment

```
V_T = \{a, b, c, d\}

V_N = \{Z, A, B\}
S = Z
 \{Z \rightarrow ABd\}
  A \rightarrow a
   B \rightarrow d
   B \rightarrow c
   B \rightarrow bB
```

(1) 构造LR(0) 分析表

(2) 给出abcd#的分析过程

Information Science and Technology College of Northeast Normal University

§ 5 Bottom-up Parsing

- 5.1 Overview of Bottom-up Parsing
- **5.2** Finite Automata for LR(0) Parsing
- 5.3 LR(0) Parsing
- 5.4 LR(1) Parsing
- **5.5** LALR(1) Parser Generator (YACC)

$$V_T = {a, b, =}$$

$$\mathbf{V_N} = \{\mathbf{S}, \mathbf{L}, \mathbf{R}\}$$

$$S = S$$

P:

$$\{(1) S \rightarrow L = R\}$$

- $(2) S \rightarrow R$
- $(3) L \rightarrow aR$
- $(4) L \rightarrow b$
- $(5) R \to L$

Let's See Why?

 For the same non-terminal symbol, if it is in different position, its follow set might be different;

One Solution

- LR(1) Parsing
 - Basic idea:
 - 对于非终极符的每个不同出现求其*后继终极符,*称为<u>展望符</u>;
 - 对于一个非终极符的一个出现的所有后继终极符构成的集合称 为*展望符集*;
 - Steps
 - Construct LR(1) automata
 - **LR**(1) item
 - Generate LR(1) parsing table (action & goto)

5.4 LR(1) Parsing

- Limitations of LR(0) Parsing
- LR(1) Automata
- LR(1) Parsing Table
- LR(1) Grammar
- LR(1) Parsing Process

LR(1) Automata

• **LR**(1) item

- Two parts : $(A \rightarrow \alpha \bullet \beta, \{a, ...\})$
 - (1) LR(0) item: $A \rightarrow \alpha \bullet \beta$
 - ・ (2) 展望符集: {a, ...}

Example

- $S \rightarrow L \bullet = R$, $\{\#\}$
- $A \rightarrow \alpha \bullet$, $\{a, b\}$

- 展望符集的作用:

- 对于移入型项目,不起作用,但是需要保存;
- 对于归约型项目,表示只有当下一个输入符是其中一个展望符时,才可以进行归约动作;

LR(1) Automata

- LR(1) 项目集合 <u>关于符号X的投影</u>
 - IS is a set of LR(1) items;
 - X is a symbol;
 - IS_(X) represents the projection of IS with respect to X:

$$- IS_{(X)} = \{(S \rightarrow \alpha X \bullet \beta, ss) \mid (S \rightarrow \alpha \bullet X \beta, ss) \in IS, \\ X \in V_T \cup V_N \}$$

- IS = $\{(A \to A \bullet Bb, \{a,b\}), (B \to a \bullet, \#), (B \to b \bullet B, \{b\})\}$
- X = B
- $IS_{(B)} = \{(A \to AB \bullet b, \{a, b\}), (B \to bB \bullet, \{b\})\}\$

LR(1) Automata

- LR(1)项目集合的*闭包*
 - IS is a set of LR(1) items;
 - CLOSURE(IS)是一个LR(1)项目集合,按照下面的步骤计算:

```
[1] 初始, CLOSURE(IS) = IS;
```

[2] 对于CLOSURE(IS)没有处理的LR(1)项目,

```
如果其形式为 (B \rightarrow \beta \bullet A\pi, ss),
而且A的全部产生式是\{A \rightarrow \alpha 1, ..., A \rightarrow \alpha n\}
则增加如下LR(1)项目到CLOSURE(IS)
\{(A \rightarrow \bullet \alpha 1, ss'), ..., (A \rightarrow \bullet \alpha n, ss')\},
其中 ss' = first(\pi), 如果符号串π不导出空;
ss' = (first(\pi) - \{\epsilon\}) \cup ss. 如果符号串π导出空;
```

[3] 重复[2]直到 CLOSURE(IS)收敛;

LR(1)自动机

- · goto函数
 - IS is a set of LR(1) items;
 - X is a symbol;
 - goto(IS, X) = CLOSURE(IS (X))

$$V_{T} = \{a, b, =\}$$

$$V_{N} = \{S, L, R\}$$

$$S = S$$

$$P: \{(1) S \to L = R \\ (2) S \to R \\ (3) L \to aR \\ (4) L \to b \\ (5) R \to L$$

$$\}$$

如何计算展望符集?

- 投影得到的项目
 - 继承

$$S \rightarrow \alpha \bullet X\beta$$
, ss \longrightarrow $S \rightarrow \alpha X \bullet \beta$, ss

- 闭包新产生的项目
 - 扩展

$$ss' = first(\beta), 如果 β 不导出空;$$

$$ss' = (first(β)-{ε}) \cup ss,$$
 如果β导出空;

Process of Constructing LR(1) Automata

Information Science and Technology College of Northeast Normal University

- [1] 增广产生式 S' → S#
- $-[2]\sum = V_T \cup V_N \cup \{\#\}$
- $-[3]SO = CLOSURE(S' \rightarrow \bullet S)$
- $-[4]ISS = {S0}$
- [6] 重复[5] 直到ISS收敛;

Information Science and Technology College of Northeast Normal University

LR(1) Parsing Table

· action表

· goto表

LR(1) Parsing Table

· action表

终极符 状 态	$\mathbf{a_1}$	•••	#
S_1	(1) action (S_i , a) = S_j , (2) action (S_i , a) = R_p , ($A \rightarrow \alpha \bullet$, ss), 其中 $A \rightarrow \alpha$	如果S _i 中包含这 A→α是产生式P, J	这样LR (1) 项目, 且a∈ss;
S_n	(4) action (S _i , a) = er		

LR(1) Parsing Table

· goto表

非终极符 状态	$\mathbf{A_1}$	•••	$\mathbf{A_n}$
S_1	goto $(S_i, A) = S_i$ goto $(S_i, A) = S_i$		
S _n			

Information Science and Technology College of Northeast Normal University

 $(1) S \rightarrow L = R$

 $(2) S \rightarrow R$

 $(3) L \rightarrow aR$

 $(4) L \rightarrow b$

 $(5) R \rightarrow L$

LR(1) Parsing Table

t Normal Oniversit	Action table				Goto table		
	a	b	=	#	S	L	R
0	S12	S4			1	5	3
1				Accept			
2							
3				R2			
4			R4	R4			
5			S6	R5			
6	S9	S11				8	7
7				R1			

 $(1) S \rightarrow L = R$ $(2) S \rightarrow R$ $(3) L \rightarrow aR$

 $(4) L \rightarrow b$ $(5) R \rightarrow L$

LR(1) Parsing Table (cond.)

Normal University	Action table					Goto table		
	a	b	=	#	S	L	R	
8				R5				
9	S9	S11					10	
10				R3				
11				R4				
12	S12	S4				14	13	
13			R3	R3				
14			R4	R4				
15								

LR(1) Grammar

- Given a CFG G
- LR_1 is LR(1) automata for G
- A₁ is action table for G
- If there is only one action for one state and one terminal symbol in A_1 , then G is called LR(1) Grammar;
 - Shift
 - Reduce
 - Accept
 - Error

LR(1) Parsing Method

■ 计算思维的典型方法

- 知识与控制的分离
- ■自动化

LR(1) Parsing Engine

- 初始化: push(S0); a = readOne();
- L: Switch action(stack(top), a)
 - Case error: error();
 - Case <u>accept</u>: return true;
 - Case <u>Si</u>: push(Si), a=readOne(); goto L;
 - Case R_P: pop(|P|);
 push(goto(stack(top), P_A));
 goto L;

How to generate parse tree during LR parsing?

The Process of LR(1) Parsing

$\mathbf{V_T}$	=	{a,	b ,	=}	
$\overline{\mathbf{V_N}}$	=	{S,	L,	R }	

$$S = S$$

P: $\{(1) S \rightarrow L = R$ $(2) S \rightarrow R$ $(3) L \rightarrow aR$ $(4) L \rightarrow b$ $(5) R \rightarrow L$

状态栈	输入流	分析动作
0	b=b #	S4
04	= b #	R4, Goto(0,L)=5
05	= b #	S6
056	b #	S11
056(11)	#	R4, Goto(6, L)=8
0568	#	R5, Goto(6, R)=7
0567	#	R1,, Goto(0, S)=1
01	#	Accept

5.5 LALR(1) Parser Generator (YACC)

- Widely used for automatically generating parser for a programming language;
- It is difficult to solve conflicts if the grammar is not LALR(1) grammar;
- Please find out the general process of using YACC to generate a parser?

5.5 LALR(1) Parser Generator (YACC)

- YACC—Yet Another Compiler Compiler
 - Stephen C. Johnson. YACC: Yet Another Compiler-Compiler. *Unix Programmer's Manual* Vol 2b, 1979.
 - LALR(1)分析
 - GNU Bison: 基本兼容Yacc, 与flex一起使用
 - -Berkeley Yacc
- The Lex & Yacc Page
 - http://dinosaur.compilertools.net/

Information Science and Technology College of Northeast Normal University

Assignment(1)

$$V_T = \{0, 1\}$$

$$\mathbf{V_N} = \{\mathbf{S}\}$$

$$S = S$$

P:

$$\{(1) S \rightarrow 0S1$$

$$(2) S \rightarrow 1S0$$

$$(3) S \rightarrow 10$$

Please check whether this grammar is LR(1) Grammar? Please give the process of how you produce the result.

Information Science and Technology College of Northeast Normal University

Assignment(2)

(1)构造LR(1)自动机; (2)构造LR(1)分析表;

```
\begin{split} V_T &= \{\,\{,\,\},\,;,\,id,\,+,\,(,\,),\,=,\,[,\,]\,\,\} \\ V_N &= \{B,\,SL,\,S,\,V,\,E,\,T\} \\ S &= B \\ P: \\ &\{(1)B \to \{\,SL\,\} \quad (2)\,\,SL \to SL;\,S \quad (3)\,\,SL \to S \\ &(4)S \to B \quad (5)\,S \to V = E \quad (6)\,\,V \to id \\ &(7)V \to id[E] \quad (8)\,E \to E + T \quad (9)\,E \to T \\ &(10)\,T \to V \quad (11)\,T \to (E) \\ \end{split}
```


Answer to Assignments

Assignment(1)

Information Science and Technology College of Northeast Normal University

$$V_T = \{0, 1\}$$

$$\mathbf{V_N} = \{\mathbf{S}\}$$

$$S = S$$

P:

$$\{(1) S \rightarrow 0S1$$

$$(2) S \rightarrow 1S0$$

$$(3) S \rightarrow 10$$

)

Please check whether this grammar is LR(1) Grammar? Please give the process of how you produce the result.

Information Science and Technology College of Northeast Normal University

Assignment(2)

- (1) 构造LR(1) 自动机;
- (2) 构造LR(1) 分析表

```
\begin{split} V_T &= \{\,\{,\,\},\,;,\,id,\,+,\,(,\,),\,=,\,[,\,]\,\,\} \\ V_N &= \{B,\,SL,\,S,\,V,\,E,\,T\} \\ S &= B \\ P: \\ &\{(1)B \to \{\,SL\,\} \quad (2)\,\,SL \to SL;\,S \quad (3)\,\,SL \to S \\ &(4)S \to B \quad (5)\,\,S \to V = E \quad (6)\,\,V \to id \\ &(7)V \to id[E] \quad (8)\,\,E \to E + T \quad (9)\,\,E \to T \\ &(10)\,\,T \to V \quad (11)\,\,T \to (E) \\ \end{split}
```


$$S \rightarrow V \bullet = E \{ \}, ; \}$$

```
S \rightarrow V = \bullet E \quad \{\},;\}
E \rightarrow \bullet E + T \quad \{\},;,+\}
E \rightarrow \bullet T \quad \{\},;,+\}
T \rightarrow \bullet V \quad \{\},;,+\}
V \rightarrow \bullet id \quad \{\},;,+\}
V \rightarrow \bullet id \quad \{\},;,+\}
```