GC33 Antibody Treatment against Liver Cancer Status Report 3

Melanie F. Pradier, Fernando Perez-Cruz

University Carlos III in Madrid

September 18th, 2015

Outline

- Overview
- 3 Joint Analysis: In the last meeting...
- Two-step Analysis: first Placebo and then Drug

Internship Overview: Key Questions

- How well can we predict Survival?
- ② Which features have an impact on Survival? How? \rightarrow prognostic biomarkers (regardless of treatment).
- Which features make the drug work? How? → predictive. biomarkers.

Notation: y: $N \times 1$ Time to First PD in months (Survival)

 $X: N \times D$ matrix of heterogeneous features

Overview

How well can we predict Survival?

Supervised approaches

$$y = f(X) + \epsilon \tag{1}$$

- Prediction using 4 different methods:
 - Linear Regression
 - 2 Lasso (Penalized LR)
 - Gaussian Process
 - Random Forest
- Identified Prognostic Variables according to Random Forest, at the top: CD56T, DN-PRE, CTROUGHC3D1-DD, NKP46-MESF, C Reactive Protein.
- Problems: too few data for supervised learning. All variables roughly same relevance level.

Overview

Focus: Biomarker Discovery Which features have an impact on Survival? How?

Unsupervised approaches

$$f(y,X) \tag{2}$$

- We considered the following approaches:
 - Oimensionality Reduction: Principal Component Analysis
 - ② Dependency Metric: Map of Variables according to Mutual Information
 - Latent Feature Model
- Focus: Biomarker Discovery using the Indian Buffet Process.

Biomarker Discovery with the Indian Buffet Process

- Distribution over binary matrices $Z_{N\times K}$ where $K\to\infty$
- Finite N implies finite number of non-zero columns K_+ .

N patients D covariates K latent features

$$egin{array}{c} egin{array}{c} egin{array}$$

Outline

- 2 Methodology
- 3 Joint Analysis: In the last meeting...

Methodology

- Run IBP to identify interesting patient groups
- ② Define group of interest G^* and reference G^B
- O Do Bootstrapping (to deal with low N)
- Compute measure of Effect Size
- 6 Compute measure of Significance

Bootstrapping

- n_j : number of patients in group G_j
- for $I = 1 \cdots L$, do
 - Build new group G_{jl} by sampling n_j patients from G_j with replacement.
 - Compute statistic of interest.
- We then get a distribution of the statistic (more accurate + uncertainty measure).

Measure of Effect Size

• For continuous variable d:

$$\beta_d = \frac{1}{L} \sum_{l=1}^{L} \log_2 \left(\frac{\mu_d(\widetilde{G}_l^*)}{\mu_d(\widetilde{G}_l^B)} \right)$$
 (3)

For categorical variable r:

$$\beta_r = \frac{1}{L} \sum_{l=1}^{L} \left(\mu_d(\widetilde{G}_l^*) - \mu_d(\widetilde{G}_l^B) \right) \tag{4}$$

Measure of Significance

For continuous variables, compute:

Deviation compared to G* variance

$$\gamma^* = \frac{\left|\mu_d(G^*) - \mu_d(G^B)\right|}{\sigma_d(G^*)} \tag{5}$$

ullet Deviation compared to G^B variance

$$\gamma^B = \frac{|\mu_d(G^*) - \mu_d(G^B)|}{\sigma_d(G^B)} \tag{6}$$

• T-test: Standard statistical test to compare two groups of data.

Measure of Significance Categorical Variables

For categorical variables, compute:

- Distance to Binomial Mean
 - Fit a Binomial distribution to G^B
 - A variable r is considered significant if $\mu_r(G^*)$ is outside confidence interval
- Fisher Exact Test: Standard statistical test for contingency tables.

- Overview
- 2 Methodology
- 3 Joint Analysis: In the last meeting...
- 4 Two-step Analysis: first Placebo and then Drug

In the last meeting... 1/5

- Analysis of all patients (both Placebo and Drug)
- Placebo patients forced to signature: 1 0 0 0 0
- Identified group G^* of 25 patients with longer survival
- We defined 4 different reference groups G_i^B

```
survival: mean=3.22 median=1.52
                                   60 patients PLACEBO
1.2. pattern: 1 0
                                  43 patients DRUG
                                                           survival: mean=2.80 median=2.04
 1. pattern: 1 0 0
                                  103 patients survival: mean=3.04 median=1.64
                                  5 patients survival: mean=1.54 median=1.22
 2. pattern: 1 0 0
                                  15 patients
 3. pattern: 1 0 0
                                                  survival: mean=4.08 median=3.81
 4. pattern: 1 0 0 1
5. pattern: 1 0 1 0
                                 1 patients
                                                   survival: mean=4.07 median=4.07
                                  20 patients
                                                   survival: mean=2.98 median=1.29
 6. pattern: 1 0 1
7. pattern: 1 0 1
                               2 patients
8 patients
                                                   survival: mean=1.22 median=1.22
                                                   survival: mean=3.60 median=3.90
8. pattern: 1 0 1 1
9. pattern: 1 1 0 0
10. pattern: 1 1 0 1
                              2 patients
                              3 patients
10 pai
                                                   survival: mean=10.83 median=10.82
                                                   survival: mean=3.16 median=2.43
                                                   survival: mean=5.00 median=5.32
                               1 patients
11. pattern: 1 1 0
12. pattern: 1 1 1
                                                   survival: mean=0.99 median=0.99
                                  5 patients
                                                   survival: mean=3.54 median=1.48
13. pattern: 1 1 1
                                   2 patients
                                                   survival: mean=8.10 median=8.10
14. pattern: 1 1 1 1 0
                                   2 patients
                                                   survival: mean=6.36 median=6.36
15. pattern: 1 1 1 1
                                    1 patients
                                                   survival: mean=11.66 median=11.66
```

In the last meeting... 2/5

Measure of Effect Size for Continuous Variables

In the last meeting... 3/5

• Measure of Significance for Continuous Variables

In the last meeting... 4/5

Measure of Effect Size and Significance for Discrete Variables


```
QPC3_IHC_3+ = -0.3967
FCGRIIIA-158_CA = -0.3108
FCGRIIIA-158_CA = 0.3108
FCGRIIIA-158_CA = -0.2030
Description of Planned Arm_COHORT B (GPC-3 I+) = 0.1719
GPC3_IHC_1 = 0.1719
Race_MHITE = 0.1727
Macrovascual Invasion or Extrahepatic_NO = 0.0932
Description of Planned Arm_COHORT A (GPC-3 Z+) = -0.0780
GPC3_IHC_2 = -0.0780
Prior Sorafenib Treatment = 0.0254
FCGRIIIA-13_NA = -0.0022
Race_BLACK OR AFRICAN AMERICAN = 0.0152
```

In the last meeting... 5/5

- Possible key variables are the following:
 - Lower GPC3-MFMB-H-SCORE
 - Lower Alpha Fetoprotein
 - Lower SGPC3-GT114-GT165
 - Higher probability for FCGRIIIA-158, C/A (lower allele A/A)
 - Higher DN-PRE
 - Higher probability for GPC3-IHC- (lower GPC3-IHC-3+)
 - ...
- Some problems:
 - Unexpected direction for variables in blue
 - Prognostic + Predictive variables mixed

Which variables impact survival Vs which ones make the treatment work?

Outline

- Overview
- 2 Methodology
- 3 Joint Analysis: In the last meeting...
- 4 Two-step Analysis: first Placebo and then Drug

Run IBP on Placebo patients

```
nk = 60 20 9

ALL meanTPFD=3.22, medianTFPD=1.52

1. Pattern: 1 0 0 numPat=33, meanTPFD=3.17, medianTFPD=1.52

2. Pattern: 1 0 1 numPat= 7, meanTPFD=4.51, medianTFPD=3.22

3. Pattern: 1 1 0 numPat=18, meanTPFD=2.43, medianTFPD=1.46

4. Pattern: 1 1 1 numPat= 2, meanTPFD=6.55, medianTFPD=6.55
```

- Identify Interesting groups
 - G_{strong}^P : Placebo patients with longer survival naturally (patterns 2,4)
 - G_{normal}^{P} : Placebo patients having an average survival

```
• G_{B1}^{P}: pattern 1

• G_{B2}^{P}: pattern 3

• G_{B3}^{P}: pattern 1 & 3, complementary to G_{strong}^{P}
```

• Measure of Effect Size for Continuous Variables

Measure of Significance for continuous variables

Measure of Significance for continuous variables

Measure of Effect Size for discrete variables

Measure of Effect Size for discrete variables

Measure of Significance for continuous/discrete variables

Statistical measures of Effect Significance

```
T-TEST
            H&E % NECROTIC:4.6818e-17
              H&E % VIABLE:4.6818e-17
   CD3/CD16 H&E % NECROTIC:1.0417e-15
     CD3/CD16 H&E % VIABLE:1.0417e-15
           CD3 CELL DENSITY:7.8890e-04
         CD16 CELL DENSITY:4.6483e-03
      OR-GPC3-MFMB-H-SCORF:3.3821e-02
```

```
FISHER TEST
                  FCGRIIA-131-G/G:1.0825e-05
                            Sex-F:1.0401e-04
                  FCGRIIIA-158-NA:1.9980e-04
                   FCGRIIA-131-NA:1.9980e-04
                       Race-ASIAN: 2.1021e-04
                 FCGRIIIA-158-A/A:7.0105e-04
                 FCGRIIIA-158-C/A:2.9941e-02
```

Conclusions

- Two communities in Placebo
- Patients have longer survival if (high impact):
 - High CD3/CD16 H&E % NECROTIC
 - Low CD3/CD16 H&E % VIABLE
 - High H&E % NECROTIC
 - Low H&E % VIABLE
- Smaller Effect Size:
 - Lower probability for FCGRIIIA-131, G/G
 - Higher probability for FCGRIIIA-158, C/A (lower allele A/A)
 - Lower probability for Asian
 - Lower probability for Female

Second Drug

- Fix latent features for Placebo patients and run IBP with all patients.
- We only infer features of Drug patients

- One new feature created
- When 4th feature is active, generally longer survival

Second Drug Identification of Interesting Groups

• Identify Interesting groups: $G_{normal}^{Placebo}$, G_{normal}^{Drug-} , G_{normal}^{Drug-} , $G_{strong}^{Placebo}$, G_{strong}^{Drug-} , G_{strong}^{Drug-}

Patients Categorization: X P Mean Median (TFPD)			
	Placebo	Drug —	Drug +
Normal (total)	51P 2.91 1.47	78P 3.36 2.24	23P 3.90 3.84
100-	33P 3.17 1.48	46P 3.40 2.83	17P 3.83 3.81
110-	18P 2.43 1.46	32P 3.30 1.38	06P 4.10 3.93
Strong (total)	09P 4.96 3.96	14P 3.22 1.52	05P 5.59 5.08
101-	07P 4.51 3.22	10P 2.46 1.30	03P 2.10 1.25
111-	02P 6.55 6.55	04P 5.12 2.08	02P 10.83 10.82
Last Feature	-0	-0	-1

Second Drug Measure of Effect Size

• Measure of Effect Size for Continuous Variables

Second Drug

Measure of Significance for continuous variables

• Measure of Significance for continuous variables

OOOO Second Drug

Second Drug

Measure of Significance for continuous variables

• Measure of Significance for continuous variables

Second Drug Measure of Effect Size for discrete variables

Measure of Effect Size for discrete variables

Second Drug

Measure of Significance for discrete variables

Measure of Effect Significance for discrete variables

```
BINOMIAL TEST
                         FCGRIIIA-158-C/A = 0.2194, val=0.7419 and conf=[0.33 - 0.52]
                              GPC3-IHC-2+ = -0.1331, val=0.0000 and conf=[0.13 - 0.29]
 Macrovascual Invasion or Extrahepatic-NO = 0.1233, val=0.4321 and conf=[0.14 - 0.31]
                              GPC3-IHC-3+ = -0.0962, val=0.2562 and conf=[0.35 - 0.55]
   FISHER TEST
     Description of Planned Arm-COHORT A (GPC-3 2+):2.6517e-11
                                        GPC3-IHC-2+:2.6517e-11
                                   FCGRIIIA-158-A/A:4.7740e-09
     Description of Planned Arm-COHORT A (GPC-3 3+):3.2717e-06
                                        GPC3-IHC-3+:3.2717e-06
                                    FCGRIIIA-158-NA:7.4156e-06
                                     FCGRIIA-131-NA:7.4156e-06
                ECOG Performance Status at Baseline: 1.0688e-05
                                              Sex-F:2.7114e-05
                                   FCGRIIIA-158-C/C:1.2550e-04
                                    FCGRIIA-131-A/G:4.5416e-04
                                    FCGRIIA-131-G/G:8.3508e-04
                                         Race-ASIAN:8.6652e-04
                                         Race-WHITE:3.4180e-03
                                         Race-0THER:5.2991e-03
     Description of Planned Arm-COHORT B (GPC-3 1+):9.4299e-03
                                        GPC3-IHC-1+:9.4299e-03
                                    FCGRITA-131-A/A:2.2316e-02
```

Second Drug

- Possible predictive variables are the following:
 - Lower Alpha Fetoprotein
 - Lower OR-SGPC3-GT114-GT165
 - Higher NK
 - Higher CD56DIMCD16BRIGHT-NK
 - Higher probability for FCGRIIIA-158, C/A
 - Higher probability for GPC3-IHC- (lower GPC3-IHC-2+, GPC3-IHC-3+)

Conclusion

- From First Placebo Analysis, prognostic variables:
 - High CD3/CD16 H&E % NECROTIC
 - Low CD3/CD16 H&E % VIABLE
 - High H&E % NECROTIC
 - Low H&E % VIABLE
 - Lower probability for FCGRIIIA-131, G/G
 - ullet Higher probability for FCGRIIIA-158, C/A (lower allele A/A)
- From Second Drug Analysis, predictive variables:
 - Lower Alpha Fetoprotein
 - Lower OR-SGPC3-GT114-GT165
 - Higher NK
 - Higher CD56DIMCD16BRIGHT-NK
 - Higher probability for FCGRIIIA-158, C/A
 - Higher probability for GPC3-IHC- (lower GPC3-IHC-2+, GPC3-IHC-3+)