EEE363

Electrical Machines

Lecture # 7

Dr Atiqur Rahman

Resistance commutation

➤ This method of improving commutation involves replacing

low resistance Cu brush with high-resistance Carbon brush.

Additional advantage

- ✓ Self-lubricating to some degree.
- ✓ Should sparking occurs they damage commutator less

Disadvantage

- Due to high resistance they are not suitable for smaller machines.
- Commutator has be made somewhat larger.
- Need larger brush holder

EMF Commutation

- Involves inserting smaller poles (called Interpoles) in between the main poles.
- Their job is to start the current reversal process a bit earlier.
- Interpoles are also called Compoles.

Interpole Commutation

Parallel operation

- The Major Advantages of Many Units Operating in Parallel are:
 - ✓ Service continuity
 - ✓ Efficient working
 - ✓ Repair facility
 - ✓ Extension facility
 - ✓ Stand by unit capacity reduces

Parallel operation

- The +ve and -ve terminals (i.e. polarity) of generators must be connected to +ve and -ve of bus-bars (otherwise a serious short-circuit will occur).
- Induced <u>e.m.f</u>s of generators should be preferably same
- Armature is speeded up to the rated speed and then switch S2 is closed.
- Excitation of the G2 is changed until voltmeter **V** reads zero.
- Switch S1 is closed after that.
- Under this condition G2 is not taking any load (floating condition).
- Excitation of G2 is increased until it takes the proper share of load.

Load sharing

$$\frac{I_2}{I_1} = \frac{E_2 - V}{E_1 - V} \cdot \frac{R_1}{R_2}$$

Where E1, E2 are no-load voltages and R1, R2 are armature resistances

$$I_1 = \frac{E_1 - V}{R_1}$$
 $I_2 = \frac{E_2 - V}{R_2}$

Parallel operation

Two shunt generators operating in parallel deliver a total current of 250 A. One of the generators is rated 50 kW and the other 100 kW. The voltage rating of both machine is 500 V and have regulations of 6 per cent (smaller one) and 4 percent. Assuming linear characteristics, determine (a) the current delivered by each machine (b) terminal voltage.

50 kW generator

F.L. voltage drop = $500 \times 0.06 = 30 \text{ V}$; F.L. current = 50,000/500 = 100 ADrop per ampere = 30/100 = 3/10 V/A

100 kW generator

F.L. drop = $500 \times 0.04 = 20 \text{ V}$; F.L. current = 100,000/5000 = 200 ADrop per ampere = 20/200 = 1/10 V/A

If I_1 and I_2 are currents supplied by the two generators and V the terminal voltage, then

$$V = 500-(3I_1/10)$$
 —1st generator
= $500-(I_2/10)$ —2nd generator
 $3I_1/10 = I_2/10$ or $3I_1 = I_2$; Also $I_1 + I_2 = 250$

(a) Solving the above two equations, we get $I_1 = 62.5 \text{ A}$; $I_2 = 187.5 \text{ A}$

(b)
$$V = 500 - (3 \times 62.5/10) = 481.25 \text{ V}$$

Generator Characteristics

- I. No-load saturation characteristics (open circuit char.)
- II. Internal characteristics
- III. Enternal characteristics

OCC (open ckt char)

Critical resistance

OCC for different speeds

Since
$$E \propto N$$
 for any fixed excitation, hence $\frac{E_2}{E_1} = \frac{N_2}{N_1}$ or $E_2 = E_1 \times \frac{N_2}{N_1}$

Internal characteristics

E – I characteristics

External Characteristics

V – I characteristics

Breakdown region

Load resistance can be decreased up to a certain limit, after which the terminal voltage drastically decreases due to excessive armature reaction at very high armature current and increased I²R losses.

Beyond this limit any further decrease in load resistance results in decreasing load current.