Zwei-Transporter-Problem

Einführung

In Bonn gibt es Produkte p im Lager mit Wert v_p , Gewicht w_p und Anzahl s_p .

Hardwarebenötigte	Anzahl Einheiten in Bonn	Gewicht (mit Verpackung und Zubehör), in g	Nutzwert je Hardware-Einheit (hoch=besser)
Notebook Büro 13"	205	2.451	40
Notebook Büro 14"	420	2.978	35
Notebook outdoor	450	3.625	80
Mobiltelefon Büro	60	717.000	30
Mobiltelefon Outdoor	157	988.000	60
Mobiltelefon Heavy Duty	220	1.220	65
Tablet Büro klein	620	1.405	40
Tablet Büro groß	250	1.455	40
Tablet outdoor klein	540	1.690	45
Tablet outdoor groß	370	1.980	68

Wir wollen den Wert maximieren, der mit 2 Transporters $t \in \{1,2\}$ mit begrenzten Ladekapazität C transportiert wird.

Für diese Art von Problemen ist die lineare Programmierung praktisch. Lassen Sie uns das Problem unter Gleichungen stellen.

Formulierung

 $x_{11},\dots,x_{P1},x_{12},\dots,x_{P2}$, entsprechen der transportierten Menge für das Produkt p mit dem Transporter t 1 oder 2.

Wir wollen die Funktion f maximieren.

$$f = \sum_p v_p imes (x_{p1} + x_{p2})$$

unter den Bedingungen

$$\forall p, \forall t, x_{pt} \geq 0$$

$$\forall p, x_{p1} + x_{p2} \leq s_p$$

$$\sum_{p} w_p imes x_{p1} \leq C - 72400$$

$$\sum_{p} w_p \times x_{p2} \leq C - 85700$$

Ergebnisse

Die optimale Ladeliste ist:

Transporter	Product	Anzahl
1	Mobiltelefon Büro	52
1	Mobiltelefon Heavy Duty	220
1	Tablet Büro klein	509
1	Tablet outdoor klein	4
2	Mobiltelefon Büro	8
2	Mobiltelefon Outdoor	157
2	Tablet Büro klein	86
2	Tablet outdoor groß	370

Der kumulierte Wert der transportierten Produkte ist 74660.

Führen Sie den Code aus

Um dieses Problem zu lösen, haben wir Python 3 und die folgenden Bibliotheken verwendet

```
$pip3 install pandas #data handling
$sudo apt-get install glpk-utils #linear programming solver
$pip3 install pulp #library for linear programming
$pip3 install odfpy #import ods files into pandas
```

Um das Notebook zu genießen, ist es am besten, es mit jupyter zu öffnen

```
$jupyter notebook two_transporters_problem.ipynb
```