$$A = \left\{ (-1)^n \cdot \left(1 - \frac{1}{n} \right) : n \in \mathbb{N} \right\}$$

$$50 n pr = 1 - \frac{1}{n} \xrightarrow{n \to \infty} 1$$

$$0.50 \quad 0.50 \quad$$

Propon go

• Inf
$$A = -1$$

Pruebo sup A, el otro er igual

quer
$$\frac{1}{n}$$
 > 0 $\forall n \in \mathbb{N}$

y ademár
$$\frac{1}{n} - \frac{1}{4} < 1$$

$$\frac{1}{n}$$
 < 2 $\forall n \in \mathbb{N}$

is 1 er cots sup.

ii) quq
$$S = \sup A = 1 \Leftrightarrow$$

 $\forall \varepsilon > 0$, $\exists \alpha \in A / 1 - \varepsilon < \alpha \leq 1$

Buson a entre 1-8 y 1

Pero los elementos de a tienen una forma particular

. Si
$$1-\varepsilon \leqslant 0$$
 \Rightarrow elijo $\alpha = \frac{1}{2} \in A$ con $n=2$

· 52 0 < 1 - E

$$\int_{0}^{\infty} -\frac{1}{2}$$

- He gustaria decir que $\mathcal{E} = \frac{1}{n}$, pero si $\mathcal{E} \notin \mathbb{Q} \Rightarrow \mathbb{A} \cap \mathbb{N} / \mathcal{E} = \frac{1}{n}$
- · Bus co un valor més dhico de $\frac{1}{n}$ / $\varepsilon > \frac{1}{n}$ para algun n

Por Arquimedes

driew dro zes ba

$$E > \frac{1}{2n_o} \iff \frac{1}{2E} < n_o$$

$$\Rightarrow \text{Dodo } E > 0, \text{ elijo exe } 2.n_o \text{ para decir que}$$

$$< \frac{\varepsilon}{1} > \frac{1}{2n_o} > 1 - \varepsilon$$

$$\downarrow \text{ pier}$$

$$1 \neq A$$

$$1 - \varepsilon \qquad 1 - \frac{1}{2n_o} \qquad 1$$

Obtove un
$$a \in A$$
 con $a: 1-\frac{1}{2n_0}$
 $\forall \varepsilon > 0$, $1-\varepsilon < 1-\frac{1}{2n_0} < 1$
 $1-\varepsilon < \alpha < 1$

i. I er supremo de A ,

$$z$$
) $\leq e_{z} + (x) = x^{z}$

$$A = \left\{ \underbrace{f(3+h) - f(3)}_{h} : h \in (-\infty, 0) \right\}$$

Como una deriva da pero con h e (-00,0)

• Cuando
$$h \rightarrow 0^{\dagger}$$
: est la derivada de x^2

$$f'(3) = 2.3 = 6$$

