Question 1 [12+4+6=22 Marks]

Part A. Which of the following is/are stable sorting algorithm(s)? Provide a technical justification for your answer.

A sorting algorithm is stable if whenever there are two records \mathbf{R} and \mathbf{S} with the same key (value) and with \mathbf{R} appearing before \mathbf{S} in the original list, \mathbf{R} will appear before \mathbf{S} in the sorted list.

 $[3 \times 4 = 12 \text{ Marks}]$

	Algorithm Stable/ Unstable		Justification				
a)	Merge Sort	Stable	Suppose L[i]=20, R[j]=20,				
			if $L[i] \le R[j]$ then $A[k] = L[i]$,				
			Actual array gets value from left sub-array				
b)	Insertion Sort	Stable	Suppose A[i]=20, key=20,				
			if $A[i]$ >key then $A[i+1]=A[i]$				
			else A[i+1]=key				
c)	Quick Sort	Unstable	Elements are swapped considering Pivot instead of their				
			actual positions				
			Example: {4,3,4,1,2}				
d)	Counting Sort	Stable	Suppose A[4]=20, A[5]=20,				
			final loop starts with j=length.A to 1, so A[5] will be placed				
			to its position and later positions are decremented.				

Part B. Merge Sort does not perform in-place sorting. Explain with a short example (two-sub arrays with 2 and 3 elements respectively) how the extra memory is used and why the Space Complexity is O(n).

Note: A complete dry run is not required. (1 + 1 = 2 marks)

In last call of Merge operation two n/2 sized auxiliary arrays are used and previously created local arrays are no more in the memory.

Example:

Part C. Prove with an example consisting of a dry run on an array of five elements that the worst case time complexity of Quick Sort is $O(n^2)$. [6 Marks]

Assume Pivot is the right most element and a worst possible split of the array.

Question 2 [5+10=15 Marks]

Consider a 3-ary max-heap. Note that this is different from a binary max-heap. You are required to use the array-based implementation of the heap. *Start the array index from 1.*

Part A. Provide the formula for accessing the root element. Provide the formulae of accessing the three children of any i-th node. Also, provide the formula for accessing the parent node of any i-th node.

```
Root of the heap is stored at the array index 1
Children of a node i are stored at the array indices 3i-1 to 3i+1
Parent of a node i is stored at floor((i+1)/3)
```

Part B. Complete the MAX-HEAPIFY-3-ary procedure given below for the above-mentioned 3-ary max-heap and perform the time complexity analysis. (Note that you are required to modify the MAX-HEAPIFY procedure of binary max-heap)

```
MAX-HEAPIFY-3-ary(A, i, n)
BEGIN
I \leftarrow 3 \times i - 1
m \leftarrow 3 \times i
r \leftarrow 3 \times i + 1
largest = i
IF I \le n and A[I] > A[i] THEN
largest ← I
IF m \le n and A[m] > A[I] THEN
largest ← m
ELSE largest ← 1
IF r ≤ n and A[r] > A[largest] THEN
largest ←r
IF largest ≠ i THEN
exchange A[i] \leftrightarrow A[largest]
MAX-HEAPIFY-3-ary(A, largest, n)
ELSE
                  return
END
Best case = O(1); Worst case = Average case = O(\log n)
```

Question 3 [3+10+2=15 Marks]

The following information is based on a piece of text using a set of five different symbols. The frequencies of the symbols in the text are given below:

Symbol	Frequency				
В	24				
D	12				
Α	30				
E	10				
С	8				

Part A. What is the minimum number of bits required to store the text using a fixed-length coding scheme? Justify your answer. [3 Marks]

252 bits are required to store the text (total characters in the text = 84; min. bits required to store a character = 3)

Part B. What is the minimum number of bits required to store the text using a variable-length coding scheme? You are required to use the Huffman's algorithm learnt in the class. Justify your answer by showing all steps. [10 Marks]

Part C. Show the final Huffman's tree. [2 Marks]

Question 4 [6+8+6+8=28 Marks]

Part A. The suffix function $\sigma(x)$ specifies the length of the longest prefix of pattern **P** that is also a suffix of **x**. [6 Marks]

Show the result of the following suffix function $\sigma(x)$, for the following patterns [*Note:* Your result should be a number]

```
i. Pattern= "university" \sigma ("fastuni")= ____3__

ii. Pattern= "algo" \sigma ("designalgo")= __4__

iii. Pattern= "datastructure" \sigma ("datastructures")= _0___
```

Part B. Draw the state transition table and state transition diagram for the pattern **P=aabab** over the alphabet $\sum =\{a,b\}$ using the following Compute-Transition-function. Construct the string-matching automaton for the pattern and illustrate its operation on the text string T=aaababa [8 Marks]

<u>NOTE: Zero marks for only showing table and state transition diagram without showing dry run for every step for making transition table</u>

```
Partial Solution: 0 \rightarrow 1 \rightarrow 2 \rightarrow 2 \rightarrow 3 \rightarrow 4 \rightarrow 5 \rightarrow 1 \rightarrow 0 \rightarrow 1
Complete dry run
```

Part C. Compute the prefix function ∏ for the pattern P=bababaaaab [6 Marks]

P[i]	b	а	b	а	b	а	а	а	а	b
∏ [i]	0	0	1	2	3	4	0	0	0	1

Part D. Suppose that all characters in the pattern P are different. Show how to accelerate NAIVE-STRING-MATCHER to run in time O(n) on an n-character text T. [8 Marks]

```
Accelerated_naive_algo(T,P,n,m)

BEGIN

s \leftarrow 0

WHILE s \le n-m DO

FOR (j: 1 \text{ to m}) DO

IF P[j] \ne T[s+1] THEN

break

END IF

IF j = m THEN

PRNT "Pattern occurs at shift:", s-m

END IF

s \leftarrow s + 1

END FOR

END WHILE
```