

ALGORITHMEN UND DATENSTRUKTUREN

FIXPUNKTITERATION

Eric Kunze

eric.kunze@mailbox.tu-dresden.de

FIXPUNKTE

Gegeben sei eine Funktion $f: \mathbb{R} \to \mathbb{R}$.

Definition

Ein **Fixpunkt** von f ist ein Punkt $x^* \in \mathbb{R}$ mit

$$f(x^*) = x^* \tag{1}$$

Motivation: Lösen von Gleichungen/Gleichungssystemen

1

MOTIVATION

Wir wollen Gleichungen der Form

$$\widetilde{f}(x) = 0 \tag{2}$$

lösen. Jede solche Gleichung lässt sich leicht in Fixpunktform

$$f(x) = x \tag{3}$$

bringen. Betrachte zum Beispiel die Gleichung

$$\widetilde{f}(x) := -\frac{1}{2}x^2 + x \stackrel{!}{=} 0$$
 (4)

mit einer zugehöriger Fixpunktform

$$f(x) = -\frac{1}{2}x^2 + 2x = x . {(5)}$$

EIN EINFACHES ITERATIONSVERFAHREN

Wollen wir nun Fixpunkte x^* von f bestimmen, so ergibt sich folgenden Möglichkeit:

- ▶ wähle *geeigneten* Startpunkt $x_0 \in \mathbb{R}$ (in der Nähe der vermuteten Lösung)
- ▶ berechne

$$x_{i+1} := f(x_i)$$

Beobachtung

Unter bestimmten Voraussetzungen nähert sich die Folge der x_i 's dem Fixpunkt x^* an!

EIN BEISPIEL

Betrachten wir wieder die Funktion $f(x) = -\frac{1}{2}x^2 + 2x$ und wählen als Startwert $x_0 = 0.3$. Dann ergeben sich folgende Werte:

