MATEMÁTICAS ANDRÉS CUBILLO

Teorema de la regla L'Hopital (Demostración)

Sean f y g funciones derivables en]a,b[tal que $g'(x) \neq 0, \forall x \in]a,b[$ y sea $c \in]a,b[$. Si $\lim_{x\to c} f(x) = 0$ y $\lim_{x\to c} g(x) = 0$ es decir si: $\lim_{x\to c} \frac{f(x)}{g(x)}$ tiene la forma $\frac{0}{0}$ entonces:

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

Note que la conclusión indica que si

$$\lim_{x \to c} \frac{f(x)}{g(x)} = L \quad \text{entonces} \quad \lim_{x \to c} \frac{f'(x)}{g'(x)} = L$$

Prueba

Como $\lim_{x\to c} \frac{f'(x)}{g'(x)} = L$ entonces dado $\epsilon > 0$, $\exists \delta > 0$ tal que

$$0 < |x - c| < \delta \implies \left| \frac{f'(x)}{g'(x)} - L \right| < \epsilon$$
$$0 < |x - c| < \delta \implies l - \epsilon < \frac{f'(x)}{g'(x)} < \epsilon + L$$

Ahora, sean m, n tales que c < m < n < b como $g'(x) \neq 0, \forall x \in]a, b[$ por el teorema de Rolle aplicado a]m, n[, entonces $g(m) \neq g(n)$.

Luego, por el teorema del valor medio de Cauchy, $\exists p \in]m, n[$ tal que

$$\frac{f'(p)}{g'(p)} = \frac{f(m) - f(n)}{g(m) - g(n)}$$

Si $p \in]c, c + \delta[$ entonces

$$L - \epsilon < \frac{f'(p)}{g'(p)} < L + \epsilon$$

$$\implies L - \epsilon < \frac{f(m) - f(n)}{g(m) - g(n)} < L + \epsilon, \quad m, n \in]c, c + \delta[$$

Tomando el límite cuando $n \to c$, se tiene que

$$L - \epsilon < \frac{f(m) - f(n)}{g(m) - g(n)} < L + \epsilon$$

$$\implies L - \epsilon < \frac{f(m)}{g(m)} < L + \epsilon$$

$$\implies \lim_{x \to c} \frac{f(x)}{g(x)} = L$$
(Hipótesis)

El teorema anterior aplica si la tendencia es $\pm \infty$ y si el límite tiene la forma $\frac{\infty}{\infty}$