EECS 376: Foundations of Computer Science

Euiwoong Lee

Coding Interview Question (The Linear Tiling Problem)

- * We have two dirt paths of integer lengths $x \ge y > 0$
- * We want to make them nice sidewalks by laying down cement blocks of the same integer length ℓ such that the blocks <u>tile</u> both paths
- * Goal: Find length ℓ that minimizes # of blocks

Step 1: Give naïve solution

- * Tip: Start with the easiest solution that works.
- * Naïve solution: Try various lengths ℓ .
 - * Q: In what order should we try ℓ ?
 - * Work our way down from y, y 1, ..., 2, 1
 - * Q: What does it mean to "try" a tile length?
 - * If ℓ divides x and y, then return ℓ .
- * Interviewer: "Why is this a bad solution?"

Step 2: Analyze runtime of the naïve solution

- * Q: Suppose x and y each have n digits. How large can y be?
 - * $10^n 1$
- * Q: What's the runtime of the naïve algorithm? Recall: "size" of an integer is O(# digits)
 - * Exponential in the size of the input! (Not efficient.)

Naïve(x, y): for $\ell = y$, y - 1, ..., 1: if ℓ divides x and y, return ℓ

Step 3: Think strategic

- * Tip: It's often fruitful to try to simplify the problem (ideally, into one that you know how to solve).
- * Strategy: Recursively solve the problem
- * Interviewer: "Could we work on lengths x y and y instead of x and y? Is that equivalent?"

How far can we reduce?

- * In general, we can reduce k times until x ky < y.
- * **Q:** How large can x ky be?
- * Q: How small can x ky be?
- * Q: What is x ky? Hint: Think division.
 - * $x \mod y =$ the remainder of x divided by y

 χ

ECI SIMECI

x-2y

Step 4: Code it up

- We have just discovered the Euclidean Algorithm
- * Euclid invented in ≈ 300 BC it to compute the greatest common divisor of two integers
- * Interviewer: "What is the runtime of Euclid?"
- * This is a tricky question! We need some tools...

Euclid(x, y): // for $x > y \ge 0$

if y = 0: return x

if y = 1: return 1

return **Euclid**(y, $x \mod y$)

Euclid, 300 BCE

Flipping game: Michigan vs Ohio State

 11×11 board covered with two-sided chips:

Two players: "row" player R and "column" player C

- If no such move is possible, the player loses the game.
- Question: will the game always end? (or can the game go on forever?)

Row 3)

Column 1)

R lost.

Flipping game: Michigan vs Ohio State

 11×11 board covered with two-sided chips:

- Two players: "row" player R and "column" player C
- **Rules:** R can flip a row/C can flip a column that has more R than

- If no such move is possible, the player loses the game.
- Question: will the game always end? (or can the game go on forever?)
- Observation: each row/column flip decreases the number of
- Conclusion: the game will always end after at most 121 steps.

Potential Function Arguments

- * A **potential function argument** exploits the following intuitive fact: If I start with a <u>finite</u> amount of water in a <u>leaky</u> bucket, then <u>eventually</u> the water stops leaking out
- * Given some "process" (e.g., execution of an algorithm) that we wish to show terminates, a potential function defines an <u>integer</u> quantity (amount of water) that <u>decreases</u> in each "time step" of the process (leaking) and <u>bounded below</u> (can't leak forever)
- Example: distance to destination, loop counter, number of
 Ohio state chips on the board, argument in call

Observation: If we can define a potential function for a process, then <u>it must eventually terminate</u>.

In search of a potential

- * Q: What decreases in a recursive call to Euclid?
 - * 1st arg $(x \neq y)$ and 2nd arg $(x \mod y < y)$

The Euclidean algorithm terminates

- * Two potential function choices:
 - * 1st arg and 2nd arg both work
- * For $i \ge 0$, let s_i be the 2nd arg of the i'th **Euclid** call.
- * Claim: $s_{i+1} < s_i$ unless the *i*'th call does not recurse.
- * By the same argument as the flipping game, **Euclid** terminates.
- * Claim: Euclid(x, y) terminates after $\leq y$ calls.
 - * No better than the naïve algorithm...?

A better potential

- * Claim: The <u>sum</u> of the arguments (x + y) is decreasing by at least 1/4 in each recursive call!
- * **Result:** The algorithm terminates after $O(\log(x + y))$ calls!

Euclid Analysis

```
Euclid(x, y): // for x > y \ge 0 if y = 0: return x if y = 1: return 1 return Euclid(y, x \mod y)
```

* Definitions:

- * x_i = value of first argument after i iterations
- * y_i = value of second argument after i iterations
- * $s_i = x_i + y_i$ = potential after i iterations

* Observations:

- * $x_i \ge \frac{1}{2} s_i$: since $x_i > y_i$ (by design), it contributes more than half the potential
- * $x_{i+1} = y_i$
- * $y_{i+1} = x_i \mod y_i$

$$i = 0$$
 13 8 $i = 1$ 8 5

Euclid Analysis

Euclid(x, y): // for $x > y \ge 0$ if y = 0: return xif y = 1: return 1return **Euclid**(y, $x \mod y$)

- * Observations: $x_{i+1} = y_i$ and $y_{i+1} = x_i \mod y_i$ and $x_i \ge \frac{1}{2} s_i$
- * Claim: $y_{i+1} \le \frac{1}{2} x_i$
 - * Case 1: $y_i \le \frac{1}{2}x_i$
 - * Then $x_i \mod y_i < y_i \le \frac{1}{2}x_i$.
 - * Case 2: $y_i > \frac{1}{2}x_i$
 - * Then $x_i \mod y_i = x_i y_i \le x_i \frac{1}{2}x_i = \frac{1}{2}x_i$.

Euclid Analysis

Euclid(x, y): // for $x > y \ge 0$ if y = 0: return x if y = 1: return 1 return **Euclid**(y, x mod y)

- * Observations: $x_{i+1} = y_i$ and $y_{i+1} = x_i \mod y_i$ and $x_i \ge \frac{1}{2} s_i$
- * Claim: $y_{i+1} \le \frac{1}{2} x_i$
- * Then: $s_{i+1} = x_{i+1} + y_{i+1} \le y_i + \frac{1}{2}x_i = s_i \frac{1}{2}x_i$
 - * Since $x_i \ge \frac{1}{2} s_i \Rightarrow \frac{1}{2} x_i \ge \frac{1}{4} s_i$, we're subtracting off at least 1/4 the value of s_i , so we have at most 3/4 left:

$$s_{i+1} \le s_i - \frac{1}{2}x_i \le \frac{3}{4}s_i$$

"Divide et impera" – Philip II

Algorithmic Strategy: Divide and Conquer

Divide and Conquer Algorithms

Main Idea:

- 1. Divide the problem into smaller subproblems
- 2. Solve each subproblem recursively
- Combine the solutions of the subproblems in a "meaningful" way

Runtime Analysis:

- * Tools to solve recurrence relations
- * The "Master Theorem"

MergeSort

```
Algorithm: MergeSort(A[1..n]: array of n integers)

if n = 1 return

m := \lfloor n/2 \rfloor

m :
```


Combining two sorted lists

- * The heart of the **MergeSort** procedure is how we **Merge** the two *sorted* sublists, L and R
- * Idea: repeatedly compare the front of L and R; pop off the smaller one and append it to the merged list

L R
3 6 2 4 5 2 3 4 5 6

MergeSort

```
Algorithm: MergeSort(A[1..n]: array of n integers)
```

```
if n = 1 return
m \coloneqq \lfloor n/2 \rfloor
MergeSort(A[1..m])
MergeSort(A[m+1..n])
return merge(A[1..m], A[m+1..n])
```

find mid point

sort first half recursively

sort second half recursively

combine two sorted lists

Runtime Analysis:

- * T(n) = runtime of MergeSort on inputs of size n.
- * Runtime of combining two **sorted** arrays of size n/2 is O(n).
- * Then: T(n) = 2T(n/2) + O(n)

Question: How do we compute T(n) explicitly?

The Master Theorem

Story: Divide-and-conquer algorithm breaks a problem of size n into:

- * *k* smaller problems
- * each one of size n/b
- * with cost of $O(n^d)$ to combine the results together

Formally: Consider the recurrence relation $T(n) = kT(n/b) + O(n^d)$, when k, b > 1. Then:

$$T(n) = \begin{cases} O(n^d) & \text{if } (k/b^d) < 1\\ O(n^d \log n) & \text{if } (k/b^d) = 1\\ O(n^{\log_b k}) & \text{if } (k/b^d) > 1 \end{cases}$$

Back to MergeSort

```
Algorithm: MergeSort(A[1..n] : array of n integers)

if n = 1 return

m \coloneqq \lfloor n/2 \rfloor find mid point

MergeSort(A[1..m]) sort first half recursively
```

MergeSort(A[m+1..n]) sort second half recursively

return merge(A[1..m], A[m+1..n]) combine two sorted lists

Runtime Analysis:

Naïve sorting algorithms take $O(n^2)$!

- * Fact: Two sorted arrays of size n can be combined in time O(n).
- * Therefore: T(n) = 2T(n/2) + O(n).
 - So k = 2, b = 2, d = 1.

 Therefore $k/b^d = 1$.

 o $T(n) = \begin{cases} 0(n^d) & \text{if } (k/b^d) < 1 \\ 0(n^d \log n) & \text{if } (k/b^d) = 1 \\ 0(n^{\log_b k}) & \text{if } (k/b^d) > 1 \end{cases}$
- * Conclusion: $T(n) = O(n \log n)$.

Integer Arithmetic

- * Many programming languages support "big" integers with a <u>non-constant</u> number of digits and basic arithmetic operations on them, e.g., +, -, *, /, \ll , etc
 - * Roughly, think of each integer as an <u>array</u> of digits
- * How does the running time of arithmetic operations scale with the input size (n = # digits)?
 - * Addition/Subtraction: O(n)
 - * Multiplication: $O(n \log n)$ [Harvey and Hoeven 2019]

Integer Addition

- * Given n-digit integers x and y
- * Goal: compute x + y and x y
- * Easy: add digits one at a time and keep a "carry" digit
- * Q: What's the runtime?
 - * 0(n)

	1	1	1		
		9	4	6	
+		9	8	5	
	1	9	3	1	

Integer Shift

- * Given n-digit integer x and "small" positive integer k
- * Goal: compute $x \ll k = x \cdot 10^k$ and $x \gg k = \lfloor x \cdot 10^{-k} \rfloor$
- * Easy: "shift" the array forward or backward by k positions
- * Q: What's the runtime?
 - * O(n+k)

$$3 \quad 7 \quad 6 \quad \ll \quad 2 \quad = \quad 3 \quad 7 \quad 6 \quad 0 \quad 0$$

$$3 \quad 7 \quad 6 \quad 0 \quad 0 \quad \gg \quad 2 \quad = \quad 3 \quad 7 \quad 6$$

Integer Multiplication

- * Given n-digit positive integers x and y
- * Goal: compute x * y
- * Easy: do "grade-school" method
- * **Q:** What's the runtime?
 - * $O(n^2)$ (yikes)

NaiveMult(x, y): r = 0for i = 1...n:

$$r += (x \cdot y[i]) \ll (i-1)$$

return r

		3	4
*		3	9
	3	0	6
1	0	2	
1	3	2	6

Shorthand for: $x + x + \cdots + x$ (y[i] times)

Divide and Conquer?

- * Input: N_1 and N_2 two n-digit numbers (assume n is a power of 2)
- * Split N_1 and N_2 into n/2 low-order & n/2 high-order digits:

*
$$N_1 = a \cdot 10^{n/2} + b$$
 $\leftarrow n/2 \text{ digits} \rightarrow n/2 \text{ di$

- * Compute $N_1 \times N_2 = a \times c \cdot 10^n + (a \times d + b \times c) \cdot 10^{n/2} + b \times d$
- * Question: Is this better than the naïve algorithm?
- * Answer: We'll see next time!

