5.7 陪集与拉格朗日定理

定义5-7.1 设<G,*>是群,A和B是G的非空子集(A,B $\in \mathscr{P}$ (G)),则记AB={a*b|a \in A,b \in B}为A和B的积;记A-1={a-1|a \in A}为A的逆。

例

设 群<I,+>, A={1}, B={0, 2}, 则 AB={1, 3}, A⁻¹={-1}。

陪集

定义5-7.2:设<H,*>是群<G,*>的子群,元素 $a \in G$, 则称 $\{a\}H = \{a*h \mid h \in H\}$ 为元素a所确 定的子群<H,*>的左陪集,

 $H{a}={h*a | h\in H}$ 称为元素a所确定的子群 <H,*>的右陪集。

简记为aH或Ha, a称为代表元素。

(注:重点讨论左陪集)

例1.求出 $<N_6,+_6>$ 关于子群 $<\{0,3\},+_6>$ 的所有左陪集和右陪集,其中 $N_6=\{0,1,2,3,4,5\}$ 。

+6	[0]	[1]	[2]	[3]	[4]	[5]
[0]	[0]	[1]	[2]	[3]	[4]	[5]
[1]	[1]	[2]	[3]	[4]	[5]	[0]
[2]	[2]	[3]	[4]	[5]	[0]	[1]
[3]	[3]	[4]	[5]	[0]	[1]	[2]
[4]	[4]	[5]	[0]	[1]	[2]	[3]
[5]	[5]	[0]	[1]	[2]	[3]	[4]

例1.求出 $<N_6,+_6>$ 关于子群 $<\{0,3\},+_6>$ 的所有左陪集和右陪集,其中 $N_6=\{0,1,2,3,4,5\}$ 。

解: 今H={0,3},则

左陪集:

右陪集:

 $0H = \{0,3\} = 3H = \cdots$

 $H0=\{0,3\}=H3=\cdots$

 $1H = \{1,4\} = 4H = \cdots$

 $H1=\{1,4\}=H4=\cdots$

 $2H = \{2,5\} = 5H = \cdots$

 $H2=\{2,5\}=H5=\cdots$

从中可以看出: {OH,1H,2H}是G的一个划分。

$\begin{array}{c|c} & y \\ & H \\ & (x_0, y_0) \\ & (x_0, y_0) H \\ & X \end{array}$

例2

代数系统<G,+>, 其中G=R*R,+定义为

 $<x_1,y_1>+<x_2,y_2>=<x_1+x_2,y_1+y_2>$, 显然<G,+>是一个群。 G的几何意义? 二维平面

- H={<x,y>|y=2x},容易验证<H,+>是<G,+>的一个子群。H的几何意义是?
- 一条经过(0,0)的直线y=2x
- 对于<x₀y₀>∈G, 左陪集<x₀,y₀>H
- ={<x+x₀,y+y₀>|y=2x}的几何意义?
- 一条经过(x_0,y_0)且平行于y=2x的直线

关于陪集

性质1: 设<H,*>是<G,*>的子群, \forall a,b∈G, 则 aH=bH 或 $aH\cap bH=\Phi$ 。

证: 设aH∩bH≠Φ,即∃f∈aH∩bH。对于任意的a*h∈aH,

∴ $\exists h_1, h_2 \in H$,使 $f = a * h_1 = b * h_2$,

 \therefore a=b*h₂*h₁-1 \in bH₀

 $\forall x \in aH$, $M∃h_3 \in H, x = a*h_3 = b*h_2*h_1^{-1*}h_3 \in bH$

∴ aH⊆bH,同理bH⊆aH。

∴aH=bH。

(注:所得结论对右陪集也平行成立)

对于任意的a*h \in aH, 有(将a=b*h₂*h₁⁻¹代入) a*h=b*h₂*h₁⁻¹*h=b*h₃ \in bH

#

性质2:设<H,*>是<G,*>的子群,则子群<H,*>的任意左陪集的大小(即基数)相等。

 $i: \forall a \in G, a h_1, a h_2 \in aH, h_1 \neq h_2,$

- $\therefore a*h_1\neq a*h_2$,
- $\therefore |aH| = |H|$
- :. H的任意陪集大小相同。

注:可以证明:

- 1) 设<H,*>是<G,*>的子群,∀a∈G,则aH非空。
- 2) 设<H,*>是<G,*>的子群, $G=U_{a\in G}aH$ 。

由左陪集性质可见: [aH] 是G的一个划分。

拉格朗日定理

- 定理5-7.1 设<H,*>是群<G,*>的子群,那么R={<a,b>|a∈G, b∈G, a-1*b∈H}是一个等价关系, 称为H的左陪集等价关系,。
- (a)对于a∈G,若记[a]_R={x|x∈G,且<a,x>∈R}则 [a]_R=aH。
- (b) 如果G是有限群, |G|=n, |H|=m,则 m|n 即: 一个有限群<G, *>的子群<H, *>的阶|H| 只可能是G的阶|G|的因子。

等价关系: 自反、对称且传递。

拉格朗日定理之一

- 定理5-7.1 设<H,*>是群<G,*>的子群,那么R={<a,b>|a∈G,b∈G,a-1*b∈H}是一个等价关系, 称为H的左陪集等价关系,。
- (1)a∈ G, a-1∈ G,有a-1*a=e∈ H, 所以<a,a>∈ R, 因此 R是自反的。
- (2)若<a,b>∈R,有 $a^{-1*}b$ ∈H, ($a^{-1*}b$)-1= $b^{-1*}a$,因为H是G的子群,所以($a^{-1*}b$)-1∈H,即 $b^{-1*}a$ ∈R,所以
<b,a>∈R,因此R是对称的。
- (3)若 $<a,b>,<b,c>\in R,则有<math>a^{-1*}b$ $\in H$ 和 $b^{-1*}c$ $\in H$,所以($a^{-1*}b$)*($b^{-1*}c$) $\in H$,而 ($a^{-1*}b$)*($b^{-1*}c$)= $a^{-1*}c$ $\in H$,所以 $<a,c>\in H$,因此R是传递的。

所以R是一个等价关系。

拉格朗日定理之一

- 定理5-7.1 设<H,*>是群<G,*>的子群,那么R={<a,b>|a∈G,b∈G,a-1*b∈H}是一个等价关系, 称为H的左陪集等价关系,。
- 对于a∈G, 若记[a]_R={x|x∈G,且<a,x>∈R}则
 [a]_R=aH。

$$x \in [a]_R$$
 $\Leftrightarrow \in R$
 $\Leftrightarrow a^{-1} * x \in H$
 $\Leftrightarrow x \in aH_0$

拉格朗日定理之二

要证明: [a]_R=aH, m n

- 证明 设R是G中的等价关系,将G分成不同等价类,由以上讨论知 $G = \bigcup [a_i]_R = \bigcup a_i H$
- 由于这k个左陪集是两两不相交的基数相同的集合,所以有 $|G|=|a_1H|+|a_2H|+...+|a_kH|$ (5.7.1)
- 可知|*a_iH*|=|*H*|(*i*=1,2,...,*k*), 将这些代入式 (5.7.1)得

n=|G|=k|H|=km其中k为不同左(右)陪集的数目。定理得证。

拉格朗日定理之二 (同上)

定理5-7.1:有限群<G,*>的任意子群<H,*>的阶数可以整除群G的阶数。

ĭ:∀a∈G⇒a∈aH,

∴ $G=U_{a\in G}aH$ ∘

由左陪集的性质知: H的左陪集集合是G的一个划分。 $Q \forall a,b \in G, |aH| = |bH| = |H|$ 。

:. |G|/|H|是G的划分的块数 (即划分的秩) 是个整数。

∴|H|可整除|G|。

推论

- 1. 质数阶的群没有非平凡子群(<{e},*>,<G,*> 称为
<G,*>的平凡子群)。
- 2.有限群 < G,*>中的任何元素a的阶可整除 | G | 。

证:若 $a \in G$ 的阶是r ($pa^r = e$),则{ $e,a,a^2,a^3,...,a^{r-1}$ }是G的子群。

3.质数阶的群,一定是循环群。

证:设<G,*>为质数阶群,

∀a∈G,a≠e, 由推论2知:

a的阶数可整除 | G |,但是 | G | 为质数,所以a的阶数等于群的阶数,

- ∴{a,a²,...,a^r}=G, (r为a的阶数)
- 二<G,*>是循环群。

例3.设 $K = \{e,a,b,c\}$,在K上定义二元运算*如下表所示:证明〈K,*〉是一个群,但不是循环群。

*	е	а	b	С
е	е	a	b	С
а	а	е	С	b
b	b	С	е	a
С	С	b	а	е

证:由运算表可知,运算*是封闭的和可结合的。幺元是e,每个元素的逆是自身,所以〈K,*〉是群。又因为a,b,c都是二阶元素,故〈K,*〉不是循环群。

称〈K, *〉为Klein四元群。

- 倒4.四阶群只有二个,一个是四阶循环群,另一个是Klein 四元群。
- 证:1) 设四阶群为< [e,a,b,c], *>。其中e是幺元。当四阶群含有一个四阶元素时,这个群就是循环群。
- 2) 当四阶群不含有四阶元素时,则由推论2可知,除幺元e外, a,b,c的阶数一定都是2。

假设a*b等于a,b或e,则b=e,a=e或a=b矛盾。所以a*b=c。

类似可证: b*a=c

$$b * c = c * b = a$$

因此,这是一个Klein四元群。

同态与同构 5.8

定义5-8.1

设<A,★>和<B,*>是两个 代数系统,f是从A到B的映射,∀a,b∈A,有 f(a₁★a₂)=f(a₁)*f(a₂)则称f是从<A,★>到 <B,*>的一个同态映射,称<A,★>同态于 <B,*>,记作<A,★>~ <B,*>。

把<f(A),*>称为<A,★>的一个同态象,其中 f(A)={x|x=f(a),a ∈ A}, 包含于B。

示意图

例1 <I, ×>是一个代数系统,

另一个代数系统<B, \odot >,其中B={正,负,零}, \odot 运算表如下,

作映射 $f: I \rightarrow B如下,$

$$f(n) = \begin{cases} \boxed{E} & n > 0 \\ \textcircled{f} & n < 0 \\ \boxed{\$} & n = 0 \end{cases}$$

0	正	负	零
正	正	负	零
负	负	正	零
零	零	零	零

显然,对于任意a, b属于I, 有 f(a×b)=f(a) ⊙f(b),所以<I,×>同态于<B, ⊙ >

同态像的性质

定理5-8.2 设f是代数系统<A,*>到代数系统<B,★>的同态,则

1)若<A,*>是半群,则<f(A), ★>也是半群。

证: $\forall a,b,c \in f(A),\exists x,y,z \in A, 有a = f(x),b = f(y),c = f(z),$

则 a \bigstar b=f(x) \bigstar f(y)=f(x*y) \in f(A),

 $\mathcal{A}a \bigstar (b \bigstar c) = f(x) \bigstar (f(y) \bigstar f(z))$

=f(x) + f(y*z)

=f(x*(y*z))

=f((x*y)*z)=f(x*y) + f(z)

 $=(f(x) \star f(y)) \star f(z) = (a \star b) \star c$

∴<f(A), ★ > 是半群。

封闭性

结合律

同态像的性质

2)若<A,*>是独异点,则<f(A), ★>也是独异点.

证: $\forall a \in f(A)$,则 $\exists x$,有a = f(x), $e \in A$, $f(e) \in f(A)$,

右幺元

$$\therefore a \bigstar f(e) = f(x) \bigstar f(e) = f(x*e) = f(x) = a$$

 $f(e) \bigstar a=f(e) \bigstar f(x)=f(e^*x)=f(x)=a$.

左幺元

- ∴f(e)是<f(A), ★ >的幺元, ∴ <f(A), ★ >是独异点。
- 3) 若 < A,* > 是一个群,则 < f(A), ★ > 也是一个群.

i: $\forall f(x) \in f(A)$,

右逆元

左逆元

$$f(x) + f(x^{-1}) = f(x^*x^{-1}) = f(e)$$
, $f(x^{-1}) + f(x) = f(x^{-1}x) = f(e)$,

∴ $f(x)^{-1} = f(x^{-1})$, 即 < f(A), ★ > 也是一个群。

同态像的性质

4)若<A,*>是阿贝尔群,则<f(A),★>也是阿贝尔群.

证: ∀a,b∈f(A)

∃x,y∈A,使得: a=f(x),b=f(y)

由<A,*>是阿贝尔群可知:

x*y = y*x

交换律

故 a ★ b=f(x) ★ f(y)=f(x*y)=f(y*x)=f(y) ★ f(x)=b ★ a 即 < f(A), ★ > 也是阿贝尔群。

总结:

- 1)同态像f (A) 将继承原象代数系统A的所有性质。

同构

定义5-8.2 设f是从代数系统<A,★>到</br><B,*>的同态,

如果f是满射,则称f为满同态;

如果f是入射,则称f为单一同态;

如果f是双射,则称f同构映射,此时代数系统 A与B是同构的、记作<A、 \star $><math>\le$ <B.*>。

例1.a)f是<N,+>到<N_k,+_k>的满同态,证: $f:N\to N_k(k>0)$, $f(x)=x \mod k$,设 $x_1=lk+h_1,x_2=mk+h_2$ $(h_1,h_2< k)$,则: $f(x_1+x_2)=(x_1+x_2)\mod k$ $=(h_1+h_2)\mod k$ $=h_1+_k = f(x_1)+_k f(x_2)$ 。: $f(x_1+x_2)=f(x_1)+_k f(x_2)$ 。 又:f是满射 :f是<N,+>到<N_k,+_k>的满同态。

- b) 设f: R→R定义为对任意 $x \in R$, $f(x) = 5^x$, 那么f是从<R,+>到<R,*>的单一同态。
- c) 设H={7n, n ∈ l}, 定义 $f: l \rightarrow H$ 为对于任意n ∈ l, 有 f(n)=7n, 那么f是从<l,+>到<H,+>的一个同构。

倒2.证<R+,·>同构于<R,+>。

则因为对数函数单调增,

::h是单射。

- :.h是满射。
- ::h是从R₊到R的双射。

ii)
$$h(a \cdot b) = lg(a \cdot b) = lga + lgb = h(a) + h(b)$$

定理5-8.1 代数系统之间的同构关系是等价关系。

所以 $f^{-1}: B \to A$ 也是双射。 $\forall y_1, y_2 \in B$,存在 $x_1, x_2 \in A$,使得 $f(x_1) = y_1, f(x_2) = y_2$ 。 故有: $f^{-1}(y_1 \Leftrightarrow y_2) = f^{-1}(f(x_1) \Leftrightarrow f(x_2))$

=
$$f^{-1}(f(x_1 * x_2))$$

= $x_1 * x_2$
= $f^{-1}(y_1) * f^{-1}(y_2)$ \circ

因此〈B, ☆〉≌〈A, *〉。

3) (传递性)设〈A, *> ⊆〈B, ☆〉, 〈B, ☆〉⊆〈C, △〉。 则存在双射f:A→B和g:B→C,故g⊙f也为双射。

$$\forall a,b \in A$$
有: $g_{\circ}f(a * b) = g(f(a) \Leftrightarrow f(b))$
= $g(f(a)) \triangle g(f(b))$
= $g_{\circ}f(a) \triangle g_{\circ}f(b)$

所以, $\langle A, * \rangle \cong \langle C, \triangle \rangle$ 。

同态核

定义5-8.3 设代数系统<A,*>,如果f是<A,*>到<A,*>的同态,则称f自同态;如果f是<A,*>到<A,*>的同构,则称f自同构。

定义5-8.4:设f是由群<G,*>列群<G',*>的同态,e'是G'的公元,称 $\ker(f)=\{x\mid x\in G\land f(x)=e'\}$ 为f的同态核。

把<f(A),*>称为<A,★>的一个同态象, 其中f(A)={ $x|x=f(a),a \in A$ }, 包含于B。 例: $f:<l,+>\rightarrow< N_5,+_5>,\forall x\in N,f(x)=x\bmod 5,$ 则f是同态吗?

 $\forall x,y \in I, f(x+y) = (x+y) \mod 5$ $= x \mod 5 + _{5}y \mod 5 = f(x) + _{5}f(y),$

:.f是从<I,+>到<N₅,+ $_5$ >的同态。

f的同态核?

 $ker(f) = \{x \mid x \in I \land f(x) = 0\} = \{...-10,-5,0,5,10,...\}$

定理5-8.3: f是群<G,*>到<G',*'>的同态,则<ker(f),*>必定是<G,*>的子群;若<K=ker(f),则a K=Ka。

证: 1)∀x,y∈ker(f),则f(x)=e',f(y)=e', ____ 幺元

f(x*y) = f(x)*'f(y) = e'*e' = e',

 $\therefore \mathbf{x}^{-1} \in \ker(\mathbf{f}) : < \ker(\mathbf{f}), *>$ 是群 < G, *> 的子群。

3) k = ker(f), \forall a \in G, 设 f(a) = a', \forall k₁ \in K

则 $f(a \cdot k_1 \cdot a^{-1}) = f(a) *'f(k_1) *'f(a^{-1}) = f(a) *'f(a^{-1}) = f(e) = e'$

即:∃k₂∈K,有a·k₁·a⁻¹=k₂ 两边乘a

∴a·k₁=k₂·a ∴aK=Ka 即左陪集等于右陪集。

注意:左陪集等于右陪集的子群称为不变子群(不作要求)。

同余关系

定义5-8.5: $<A,^*>$ 是一个代数系统,R是A上的等价关系,若 $\forall<a,b>,<c,d>\in$ R都有 $<a^*c$,b*d> \in R,称R是A上关于*的同余关系,R将A划分的等价类称为同余类。

例1 代数系统<A,*>, 其中A={a, b, c, d}, * 运算表如下, 定义在A上的等价关系 R={<a,a>,<a,b>,<b,a>,<b,b>,<c,c>,<c,d>,<

d,c>,<d,d>

试验正R是A上的同余关系, 并求R划分的同余类。

答: {a,b},{c,d}

*	a	b	C	d
a	a	a	d	С
b	b	а	С	d
С	С	d	а	b
d	d	d	b	a

- 例2: <1,+>, 在1上定义R:<x,y>∈R⇔|x|=|y|, 问R是<1、+>的同余关系否?
- 解:1) 旬 反性: $\forall x \in I, |x| = |x| : \langle x, x \rangle \in R$ 。
 - 2) 对称性: ∀x,y∈I, 若<x,y>∈R则 |x|=|y|∴<y,x>∈R。
 - 3)传递性: ∀x,y,z∈l, 若

 $\langle x,y\rangle\in R, \langle y,z\rangle\in R: |x|=|y|=|z|: \langle x,z\rangle\in R.$

::R是一等价关系。

- 举一个反例: 如<1,-1>∈R,<2,2>∈R但<1+2,-1+2>∉R,
 - ::R不是同余关系。

由此可见,等价关系未必都是同余关系。

等价类

证:1)构造在B上运算★

定义: $\forall [a],[b] \in B$,有 $[a]_R \neq [b]_R = [a*b]_R$ 先证明此定义是合理的,即它确实是一个运算。

若 $[a_1]_R = [a_2]_R, [b_1]_R = [b_2]_R$ 则 $< a_1, a_2 > \in R, < b_1, b_2 > \in R$ 。因为R是同余关系∴ $< a_1 * b_1, a_2 * b_2 > \in R$ 即 $[a_1 * b_1]_R = [a_2 * b_2]_R$ 。

- ∴★确实是一个运算。
 - 2)构造映射f: A→B , \forall a∈A,f(a)=[a]_R ,再证f是一个同态映射, \forall x,y∈A,f(x*y)=[x*y]_R=[x]_R ★[y]_R=f(x) ★ f(y),
 - ∴f是从A→B的同态, 又 \forall [a]_R∈B,∃a∈A有f(a)=[a]_R。
 - .. f是满同态 , 证毕 。

可见,任一同余关系诱导一种同态的存在。

定理5-8.5: 设f是代数系统<A,*>到<B, \star >的同态,定义A上的关系R:<a,b>∈R⇔f(a)=f(b),那么,R是A上的一个同余关系。

- 证:1)易证R是一个等价关系。
 - $2) < a,b > \in \mathbb{R}, < c,d > \in \mathbb{R},$
 - $\therefore f(a) = f(b), f(c) = f(d),$
 - 则 f(a*c) = f(a)*'f(c) = f(b)*'f(d) = f(b*d),
 - \therefore <a*c,b*d>∈R∘
 - ::R是A上的同余关系。

也即,任一同态映射可诱导一个同余关系

• 理解同态与同余之间的"诱导"

- 这是因为,其实(教科书220页)
 - 一 同态象,可以看作是抽掉次要元素的情况下,对该系统的粗糙描述。
 - 同余类, 也可以描述简要描述原系统的性态。

5.9 环与域

定义5-9.1 代数系统<R,+,·>, 若具有如下性质:

- 1) <R,+>是个阿贝尔群,
- 2) < R,·>是个半群,
- 3)乘法·对加法+可分配,即

 $\forall a,b,c \in \mathbb{R}$, $a \cdot (b+c)=a \cdot b+a \cdot c$, \bot (b+c)·a=b·a+c·a,

称<R,+,·>是一个环。

我们约定: a的加法逆元记为-a, a+(-b)可简写为a-b。

重要约定(参考)

环内有两个运算,每个运算都可能有单位元、逆元等特殊元素。 为方便起见,做如下约定:

- 设 $< A_1 + A_2 + A_3 + A_4 + A_4 + A_5 + A_5$
- 可见,环中的单位元和逆元是针对乘法运算的,而加法运算中的单位元和逆元则称为零元和负元。
- 元素的倍数和幂定义为: $na = \underbrace{a + a + \dots + a}_{n \uparrow a}$, $a^n = \underbrace{aa \dots a}_{n \uparrow a}$ 且满足(na)b = a(nb) = nab, $a^n a^m = a^{n+m}$, $(a^n)^m = a^{nm}$

例1.

$$2)$$
< N_k ,+ $_k$,× $_k$ >是个环。

证: ①<N,+,>是个阿贝尔群, 0是加法么元,

- ②<N_k,×_k>是个半群。
- - $= (a \times (b+c)) \mod k = (a \times b + a \times c) \mod k$
 - = $(a \times b) \mod k +_k (a \times c) \mod k = (a \times_k b) +_k (a \times_k c)$

关于环

定理5-9.1: 设<A, +,·>是个环,∀a,b,c∈A,

1) 环的加法公元必为环的乘法零元, 即 $\theta \cdot a = a \cdot \theta = \theta$ 。

证: $a \cdot \theta = a \cdot (\theta + \theta) = a \cdot \theta + a \cdot \theta$, 由消去律可得: $a \cdot \theta = \theta$ 。 类似可证 $\theta = \theta \cdot a$ 。

2) $(-a) \cdot b = a \cdot (-b) = -(a \cdot b)$

 $ialletter: (-a) \cdot b + a \cdot b = ((-a) + a) \cdot b = \theta \cdot a = \theta$

∴ (-a)·b=-(a·b)。 类似可证a·(-b)=-(a·b)。

3) (-a)·(-b)=a·b (教科书 pp.224)

证:(-a)·(-b)=-a·(-b)=a·b (利用2) 的结果)

4) $a \cdot (b-c) = a \cdot b - a \cdot c$

 $ia\cdot(b-c)=a\cdot(b+(-c))=a\cdot b+a\cdot(-c)=a\cdot b+(-(a\cdot c))=a\cdot b-a\cdot c$

5) (b-c)a=ba-ca (类似4) 的证明)

三种特殊的环

定义5-9.2: 设<R,+,·>是环,

若<R,·>是可交换的,称<R,+,·>为交换环。

若<R,·>含么元,称<R,+,·>为含么环。

注:无零因子: ∀a,b∈A, a≠θ,b≠θ, 则必有a·b≠θ 例如, <l,+,·>就是无零因子环。

※教科书中没有零因子的定义

关于无零因子环的判定

定理5-9.2 环<A,+,·>是无零因子环当且仅当乘 法消去律成立,也即对于 $c \neq \theta$ 且 $c \cdot a = c \cdot b$,必 有a = b。

证明:

- 若无零因子,设c≠θ且c·a=c·b,则
 c·(a-b) = θ,则a-b=θ,则a=b,即
 消去律成立;
- 2: 若消去律成立,即 $c \neq \theta$ 且 $c \cdot a = c \cdot b$,必有a = b,即 $c \neq \theta$ 且 $a \neq b$,必有 $c \cdot a \neq c \cdot b$,即 $c \neq \theta$ 且 $a \neq b$,必有 $c \cdot (a b) \neq \theta$,则无零因子

一个更特殊的环

定义5-9.3: 设<A,+,·>是环,如果满足:

- ① <A,+,·>既是交换环;
- ② <A,+,·>还是含么环;
- ③ <A,+,·>且是无零因子环;

则称<A,+,·>为整环。

- 例2. 1)<1,+,×>是整环。
 - 2)<N₄,+₄,×₄>不是整环。

域

定义5-9.4: 设代数系统<A,+,·>满足

- 1)<A,+>是阿贝尔群;
- 2)<A-{θ},·>是阿贝尔群;
- 3)运算·对+可分配,

则称<A,+,·>是城。

例

- 1) Q为有理数集合, <Q,+,×>是一个域。 R为实数集合, <R,+,×>是一个域。 C为复数集合, <C,+,×>是一个域。
- 2) 1为整数集, <1,+,×>不是城。

关于域

定理5-9.3: 城一定是整环。

证明: (判断消去律是否成立)

证明无零因子环

设<A,+,·>是任一域。

对于 $\forall a,b,c \in A$ 且 $a \neq \theta$,

如果有a·b=a·c, (1是乘法幺元)则

$$b=1 \cdot b=(a^{-1} \cdot a) \cdot b=a^{-1} \cdot (a \cdot b)=a^{-1} \cdot (a \cdot c)$$

$$= (a^{-1} \cdot a) \cdot c = 1 \cdot c = c$$

因此, <A,+,·>是一个整环。

定理5-9.4 有限整环必是城。

证: (判断是否有逆元) 整环有幺元,交换

设<A,+,·>是有限整环, \forall a,b,c∈A且c≠ θ (证明c逆存在).

若a≠b, 由无零因子推出的可约律,则a·c≠b·c,

因为A为有限集,由运算封闭性

 $∴ 设A-{\theta}={a_1,...,a_n}, 刚 A-{\theta}={ca_1,...,ca_n}=c(A-{\theta}).$

∴∀c∈A,∃d有c·d=e ∴c逆元存在为d。

.: <A-{θ},·>是阿贝尔群。

因为有限整环满足分配律, :. <A,+,·>是城。

• 无限整环未必是域。

例如, <1,+,×>是整环, 却不是城!可见, 城是一种特殊的整环。

环,整环,城的关系

环的同态

定理5-9.5: 环的同态象必定是一个环。

证:由群同态,半群同态知:是<f(A), \oplus >是阿贝尔群,<f(A), \odot >是半群,又因为 f(a) \odot (f(b) \oplus f(c))

$$=f(a)\odot(f(b+c))=f(a(b+c))$$

$$=f(a\cdot b+a\cdot c)=f(a\cdot b)\oplus f(a\cdot c)$$

$$=f(a)\odot f(b)\oplus f(a)\odot f(c)$$

所以 <f(A),⊕,⊙>是一个环。

对于城来说, 该结论不成立。

分配律