Nicholas Wogan

Space Science Division

NASA Ames Research Center, Moffett Field, California Email: nicholaswogan@gmail.com or nicholas.f.wogan@nasa.gov

Website: https://nicholaswogan.github.io/ GitHub: https://github.com/Nicholaswogan Date generated: March 3, 2024

Education

2017 - 2023	Ph.D Graduate Student, Dual-title Earth and Space Science and Astrobiology, University of Washington, Seattle, WA.
2012 - 2016	B.S., Physics major, University of Oregon Honors College.

Professional Experience

2023 - present	${\bf Postdoc} \ {\bf in} \ {\bf the} \ {\bf NASA} \ {\bf Postdoctoral} \ {\bf Program}, \ {\bf NASA} \ {\bf Ames} \ {\bf Research} \ {\bf Center}, \ {\bf California}, \ {\bf CA}.$
2017 - 2023	Research Assistant, Planetary Science and Astrobiology, University of Washington, Seattle, WA. Advisor: David Catling.
2016 - 2017	Research Assistant, Geophysics, University of Oregon, Eugene, OR. Supervisor: Eugene Humphreys.
2014 - 2015	Undergraduate Research Assistant, Geophysics, University of Oregon, Eugene, OR. Supervisor: Dean Livelybrooks.
2014	Undergraduate Teaching Assistant, Introductory Physics, University of Oregon, Eugene, OR. Supervisor: Ben McMorran.

Awards and Honors

2023	The David A. Johnston Award for Research Excellence, Earth and Space Science Department, University of Washington.
2023	NASA Postdoctoral Program fellowship recipient
2023	Award for best graphic in presentation, Earth and Space Science Gala, University of Washington.
2017	Top Scholar Award, Earth and Space Science Department, University of Washington.
2016	Undergraduate Research Award, Physics department, University of Oregon.
2016	Undergraduate Honors Thesis: Passed with Distinction, University of Oregon Honors college.
2012	Presidential Scholarship Recipient, University of Oregon.

Teaching Experience

2019	Teaching Assistant: Intro. Astrobiology (ASTBIO 115; Winter), University of Washington.
2018	Teaching Assistant: Intro. Geology (ESS 101; Winter), University of Washington.
2014	Undergraduate Teaching Assistant: Intro. Physics (PHYS 251), University of Oregon.

Recent Outreach

- 2022 Astronomy on Tap presentation at Bickerson Brewhouse, Seattle, WA.
- 2022 "Rockin' Out" volunteer. Rockin' Out is a K-12 volunteer-based outreach program at the Department of Earth and Space Sciences at the University of Washington.
- 2021 2022 Mentoring Maanit Goel, a high school student in Seattle, WA.

Peer-Reviewed Publications

Submitted or under review

Nicholas Wogan, David Catling, and Kevin Zahnle (2024). Timing and likelihood of the origin of life derived from post-impact highly reducing atmospheres. Under review, Astrobiology.

Published

- Nicholas Wogan, Natasha Batalha, Kevin Zahnle, Joshua Krissansen-Totton, Shang-Min Tsai, and Renyu Hu (2024). JWST observations of K2-18b can be explained by a gasrich mini-Neptune with no habitable surface. *Astrophysical Journal Letters*. DOI:10.3847/2041-8213/ad2616.
- Zoe Todd, **Nicholas Wogan**, and David Catling (2024). Environmental influences on the formation of ferrocyanide and implications for prebiotic chemistry. *ACS Earth and Space Chemistry*. DOI:10.1021/acsearthspacechem.3c00213.
- Nicholas Wogan, David Catling, Kevin Zahnle, and Roxana Lupu (2023). Origin of life molecules in the atmosphere after big impacts on the early Earth. *Planetary Science Journal*. DOI:10.3847/PSJ/aced83.
- Zachary Cohen, Zoe Todd, **Nicholas Wogan**, Roy Black, Sarah Keller, and David Catling (2023). Plausible sources of membrane-forming fatty acids on the early Earth: a review of the literature and an estimation of amounts. *ACS Earth and Space Chemistry*. DOI: 10.1021/acsearthspacechem.2c00168.
- Nicholas Wogan, David Catling, Kevin Zahnle, and Mark Claire (2022). Rapid timescale for an oxic transition during the Great Oxidation Event and the instability of low atmospheric O₂. Proceedings of the National Academy of Sciences. DOI:10.1073/pnas. 2205618119.
- Maggie Thompson, Joshua Krissansen-Totton, **Nicholas Wogan**, Myriam Telus, and Jonathan Fortney (2022). The case and context for atmospheric methane as an exoplanet biosignature. *Proceedings of the National Academy of Sciences*. DOI:10.1073/pnas. 2117933119.
- Joshua Krissansen-Totton, Max Galloway, **Nicholas Wogan**, Jasmeet Dhaliwal, and Jonathan Fortney (2021). Waterworlds probably do not experience magmatic outgassing. The Astrophysical Journal. DOI:10.3847/1538-4357/abf560.
- Joshua Krissansen-Totton, Jonathan Fortney, Francis Nimmo, and **Nicholas Wogan**. Oxygen false positives on habitable zone planets around Sun-like stars. *AGU Advances*. DOI: 10.1029/2020AV000294.
- Nicholas Wogan, Joshua Krissansen-Totton and David Catling. Abundant atmospheric methane from volcanism on terrestrial planets is unlikely and strengthens the case for methane as a biosignature. *Astrophysical Journal*. DOI:10.3847/PSJ/abb99e.

- 2020 Kevin Zahnle, Roxana Lupu, David Catling, and Nicholas Wogan. Creation and evolution of impact-generated reduced atmospheres of early Earth. Planetary Science Journal. DOI: 10.3847/PSJ/ab7e2c.
- 2020 Nicholas Wogan and David Catling. When is chemical disequilibrium in Earth-like planetary atmospheres a biosignature versus an anti-biosignature? Disequilibria from dead to living worlds. Astrophysical Journal. DOI:10.3847/1538-4357/ab7b81.

2019

cisco, CA.

Selected Conference Presentations		
Invited		
2024	Nicholas Wogan . Assessing exoplanet habitability with JWST and the Habitable Worlds Observatory: from the sub-Neptune K2-18b to rocky Earth-like planets. Planetary lunch, University of California Santa Cruz.	
2024	Nicholas Wogan . The photochemistry of hydrogen-rich atmospheres: From the origin of life on Earth to biosignatures on the K2-18b exoplanet. Institute for Geophysics and Planetary Physics seminar, University of California Santa Cruz.	
2022	Nicholas Wogan, David Catling, Kevin Zahnle, and Mark Claire. Rapid timescale for an oxic transition during the Great Oxidation Event and the instability of low atmospheric \mathcal{O}_2 . NASA Goddard Exoplanets Seminar.	
2020	Nicholas Wogan and David Catling. Atmospheric synthesis of prebiotic molecules on the Hadean Earth. Prebiotic Chemistry and Early Earth Environments Consortium (PCE3), remote conference.	
Contributed		
2023	Nicholas Wogan , David Catling, Kevin Zahnle, and Roxana Lupu. Origin of life molecules in the atmosphere after big impacts on the early Earth. American Geophysical Union Fall Meeting, San Francisco, CA.	
2023	Nicholas Wogan , Shawn Domagal-Goldman, Chris Stark, Aki Roberge, Giada Arney, Tyler Robinson. Detecting exo-Earths with the Habitable Worlds Observatory. Habitable Worlds Observatory Conference, Baltimore, MD.	
2023	Nicholas Wogan , David Catling, Kevin Zahnle, and Mark Claire. Rapid timescale for an oxic transition during the Great Oxidation Event and the instability of low atmospheric O_2 . Green Bank Astrobiology Conference, Green Bank, WV.	
2022	Nicholas Wogan , David Catling and Kevin Zahnle. Atmospheric nitriles for the origin of life from the atmosphere after large asteroid impacts on the Hadean Earth. Latsis Conference, Zurich, Switzerland.	
2022	Nicholas Wogan , David Catling and Kevin Zahnle. Origin of life chemistry in the atmosphere after large impacts on the early Earth. Astrobiology Science Conference, Atlanta, GA.	
2021	Nicholas Wogan , David Catling and Kevin Zahnle. Molecules for the origin of life from impact-generated atmospheres on early Earth. Simons Foundation Collaboration on the Origin of Life Annual meeting, remote conference.	
2021	Nicholas Wogan , David Catling and Kevin Zahnle. Molecules for the origin of life from impact-generated atmospheres on early Earth. Goldschmidt, remote conference.	

Nicholas Wogan and David Catling. When is chemical disequilibrium in Earth-like plan-

etary atmospheres a biosignature versus an anti-biosignature? Investigating disequilibria from prebiotic to post-biotic worlds. American Geophysical Union Fall Meeting, San Fran-

Open Source Software

- photochem: https://github.com/Nicholaswogan/photochem. A one-dimensional photochemical-climate model.
- clima: https://github.com/Nicholaswogan/clima. A one-dimensional radiative transfer code and suite of climate models.
- numbalsoda: https://github.com/Nicholaswogan/numbalsoda. A high-performance ordinary differential equation solver for Python.
- NumbaMinpack: https://github.com/Nicholaswogan/NumbaMinpack. High-performance non-linear root solving for Python.
- fortran-yaml-c: https://github.com/Nicholaswogan/fortran-yaml-c. A YAML parser and emitter for Fortran.