Colle 3 : Réduction (1) exercices groupe C MPI(*) Faidherbe

BURGHGRAEVE Marc

5 Octobre 2024

Exercice 11:

a) Existe-t-il une base de $L(\mathbb{R}^n)$ constituée d'endomorphismes diagonalisables ?

Réponse : Oui. Considérons les $(E_{i,i})_{i \in [\![1,n]\!]}$. Ces derniers étant diagonales sont donc diagonalisables. Cependant les autres matrices de la base canoniques sont nilpotentes non nulles et ne sont donc pas diagonalisables. Considérons dès lors, pour tout $i \neq j$ la matrice

$$B_{i,j} = \begin{pmatrix} 1 & 0 & \dots & 0 & 0 \\ 0 & 2 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & n-1 & 0 \\ 0 & 0 & \dots & 0 & n \end{pmatrix} + \text{un 1 en position } (i,j).$$

Le polynôme caractéristique de cette matrice est $\chi_{b_{i,j}}(X) = (X-1)\dots(X-n)$ qui est scindé simple : $B_{i,j}$ est donc diagonalisable.

On a donc une famille à $n + n(n-1) = n^2$ éléments.

On finit par montrer que cette famille est génératrice car les $E_{i,j}aveci \neq j$ s'expriment comme $B_{i,j} - \sum_{k=1}^n k E_{k,k}$ et les $E_{i,i}$ font partis de la famille, qui est donc génératrice, et puisqu'à n^2 éléments, une base.

b) Existe-t-il une base de $L(\mathbb{R}^n)$ constituée d'endomorphismes non diagonalisables ?

Réponse : Encore oui. Cette fois-ci les $E_{i,j}, i \neq j$ peuvent faire partie de la base. Pour les n vecteurs restants, on pose, pour $i \in [2, n-1]$:

$$C_i = \begin{pmatrix} 0 & 0 & \dots & 0 & 1 \\ 0 & 0 & \dots & 0 & 0 \\ \vdots & \vdots & 1 & \vdots & \vdots \\ 0 & 0 & \dots & 0 & 0 \\ 0 & 0 & \dots & 0 & 0 \end{pmatrix}$$
 où le 1 est en position i, i

On construit C_1 et C_n de la même façon mais le 1 en haut à droite doit être déplacé : le but est d'avoir une matrice de rang 2 :

La dimension du sous-espace propre E_0 qui est aussi le noyau de la matrice est n-2 et la multiplicité de 0 dans le polynôme caractéristique est n-1, donc Les C_i ne sont pas diagonalisable. On vérifie de même qu'on a bien une base.

Exercice 12 (X MP):

Soit $u \in L(\mathbb{R}^n)$ tel que $\exists q \in \mathbb{N}^*/u^q = \text{Id.}$ Montrer que

$$\dim(\operatorname{Ker}(u-\operatorname{Id})) = \frac{1}{q} \sum_{k=1}^{q} \operatorname{Tr}(u^{k}).$$

Réponse : On va plutôt voir le problème d'un œil matriciel : Soit donc $a \in M_n(\mathbb{R}) \subset M_n(\mathbb{C})$ et tq $\exists q \in \mathbb{N}^*, A^q = Id$. Dès lors, $P(X) = X^q - 1$ est annulateur de A. Dans $\mathbb{C}[X]$, P est scindé simple, A est diagonalisable :

$$\exists P \in GL_n(\mathbb{C}), \exists \Delta = \begin{pmatrix} \lambda_1 & 0 & \dots & 0 & 0 \\ 0 & \lambda_2 & \dots & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & \dots & 0 & \lambda_{n-1} \\ 0 & 0 & \dots & 0 & \lambda_n \end{pmatrix} \text{ tel que } A = P\Delta P^{-1}. \text{ Alors}$$

 $Sp(A) \subset \mathbb{U}_q$.

$$\alpha = \frac{1}{q} \sum_{k=1}^q tr(A^k) = \frac{1}{q} \sum_{k=1}^q tr(\Delta^k) = \frac{1}{q} \sum_{k=1}^q \sum_{i=0}^n \lambda_i^k = \frac{1}{q} \sum_{i=1}^n \sum_{k=0}^q \lambda_i^k = \frac{1}{q} \sum_{i=1}^n (q \delta_{\lambda_i, 1}) \text{ car } \sum_{k=0}^q \lambda_i^k = 0$$

si
$$\lambda_i \neq 1(\lambda_i^q = 1)$$
 d'où $\alpha = \sum_{i=1}^n \delta_{\lambda_i,1} = m_1 = dim(E_1(A)) = dim(Ker(A - I_n))$

Exercice 13 (X MP 2013):

Soit u un endomorphisme d'un K-espace vectoriel de dimension $n \geq 2$. On note (P) la propriété suivante : u admet n valeurs propres distinctes deux à deux. Pour tout $k \in [1, n]$, on note Q_k : u admet $\binom{n}{k}$ sous-espaces stables de dimension k.

a) Montrer que $(P) \iff (Q_1)$.

Réponse : Si P admet n sous espaces stables de dimension 1, alors il existe x_1, \ldots, x_n tels que $Vect(x_1), \ldots, Vect(x_n)$ soient stables. D'où l'existence de n valeurs-propres distinctes si $(v = \lambda_i x_i \in Vect(x_i), u(v) = \nu_i x_i = \frac{\nu_i}{\lambda_i} v)$ La réciproque est immédiate.

b) Montrer que $\forall k \in [1, n], (P) \Rightarrow (Q_k)$.

Réponse : D'après l'hypothèse, u est diagonalisable (à prouver ?) donc u est semblable à une matrice Δ diagonale avec les valeurs propres sur la diagonale. Un sous-espace stable de dimension k est entièrement déterminé par : sa base constituée de k vecteurs propres, que l'on peut donc choisir parmi les n vecteurs propres de la base de la matrice associés aux valeurs propres. Alors $Vect(x_{i1},...,x_{ik})$ est un sous-espace stable de dimension k.

c) Montrer que $(P) \iff (Q_{n-1})$.

Réponse : Supposons donc que n admette n sous-espaces stables de dimension n-1. Soit H_i un de ces sous-espaces. Soit v_i tq $E=H_i\oplus v_i$ (qui existe car en dim finie). Or si $u(v_i)\in H_i$ Alors une base de H_i est une base de l'image donc on a un seul hyperplan d'où l'absurdité ainsi $u(v_i)\in Vect(v_i)$: on a donc n vecteurs qui générent n sous-espaces stables de dimension 1, on peut conclure d'après la question 1.

Exercice 14 (ENS MP 2023):

Soit $A \in \mathcal{M}_n(\mathbb{C})$, $P = \chi_A$, $P_i = (X - \lambda_i)^{\alpha_i}$ où $\operatorname{Sp}(A) = \{\lambda_i\}$ et α_i la multiplicité de λ_i .

Soient les $F_i = \ker P_i(A)$.

1. Montrer que $\mathbb{C}^n = \bigoplus F_i$.

Réponse : D'après le théorème de Cayley-Hamilton, $\chi_A(u) = 0 \implies \ker(\chi_A(u)) = \mathbb{C}^n$. D'après le théorème de décomposition des noyaux on a bien le résultat voulu.

2. Montrer que P_i est le polynôme caractéristique de A restreint à F_i .

Réponse : Dans les conditions de la question précédente, $P_f(X) = (X - \lambda)^{\alpha} Q$, où Q est un polynôme dont λ n'est pas racine et donc Q et $(X - \lambda)^{\alpha}$ sont premiers entre eux. Le théorème de Cayley-Hamilton affirme que $P_f(f) = 0$ et le théorème de décomposition des noyaux affirme que

$$E = N_{\lambda} \oplus \ker Q(f)$$
.

Les deux sous-espaces N_{λ} et $\ker Q(f)$ sont invariants par f, nous pouvons donc considérer les restrictions f_{λ} et g de f à N_{λ} et $\ker Q(f)$ respectivement. $(X-\lambda)^{\alpha}$ est un polynôme annulateur de f_{λ} et donc f_{λ} n'a qu'une seule valeur propre λ et est triangonalisable ; son polynôme caractéristique est $(X-\lambda)^{\beta}$ où β est la dimension de N_{λ} . De même Q est un polynôme annulateur de g et donc λ n'est pas une valeur propre de g, $(X-\lambda)$ ne divise donc pas le polynôme caractéristique P_g de g et P_g et $(X-\lambda)^{\alpha}$ sont premiers entre eux.

Les polynômes caractéristiques de f, f_{λ} et g sont liés par la relation

$$P_f = P_{f_{\lambda}} P_g$$

(car si nous choisissons une base B_{λ} de N_{λ} et une base B' de $\ker Q(f)$, alors leur réunion $B = B_{\lambda} \cup B'$ est une base de E dans laquelle la matrice de f est

$$[f]_B = \begin{pmatrix} [f_\lambda]_{B_\lambda} & 0\\ 0 & [g]_{B'} \end{pmatrix}.$$

) De cette égalité nous déduisons

$$(X - \lambda)^{\alpha} Q = (X - \lambda)^{\beta} P_{\alpha}$$

et comme Q et P_q sont premiers à $(X - \lambda)$,

$$\alpha = \beta$$
.

3. Montrer que A=D+N avec D matrice diagonalisable et N nilpotente, telles que DN=ND.

Réponse:

• Soit χ_f le polynôme caractéristique de f qui, par hypothèse, est scindé sur \mathbb{K} . Notons λ_i une valeur propre de f, et m_i sa multiplicité en tant que racine du polynôme caractéristique :

$$\chi_f(X) = \pm \prod_{i=1}^r (X - \lambda_i)^{m_i}.$$

• Soient $N_{\lambda_1},\dots,N_{\lambda_r},$ les sous-espaces caractéristiques de f. Pour $1\leq i\leq r,$ on a

$$N_{\lambda_i} = \ker(f - \lambda_i \mathrm{id}_E)^{m_i}$$
 et $E = N_{\lambda_1} \oplus \cdots \oplus N_{\lambda_r}$.

• Nous allons définir l'endomorphisme d sur chaque N_{λ_i} de la manière suivante : pour tout $x \in N_{\lambda_i}$, on pose

$$d(x) = \lambda_i x$$
.

L'espace vectoriel E étant somme directe des N_{λ_i} , d est défini sur E tout entier. En effet, si $x \in E$ est décomposé en $x = x_1 + \cdots + x_r$, avec $x_i \in N_{\lambda_i}$ (pour $1 \le i \le r$), alors

$$d(x) = d(x_1 + \dots + x_r) = d(x_1) + \dots + d(x_r) = \lambda_1 x_1 + \dots + \lambda_r x_r.$$

• Pour $1 \le i \le r$, on a $d_i = d|_{N_{\lambda_i}} = \lambda_i \operatorname{id}_{N_{\lambda_i}}$.

On pose enfin

$$n(x) = f(x) - d(x).$$

Il nous reste à vérifier que n et d conviennent.

- 1. Par construction, d est diagonalisable. En effet, fixons une base pour chaque sous-espace N_{λ_i} . Pour chaque vecteur x de cette base, $d(x) = \lambda_i x$. Comme E est somme directe des N_{λ_i} , alors, dans la base de E formée de l'union des bases des N_{λ_i} (pour $1 \le i \le r$), la matrice de d est diagonale.
- 2. On a défini n = f d. N_{λ_i} est stable par n (car c'est vrai pour f et d). On pose $n_i = n|_{N_{\lambda_i}} = f|_{N_{\lambda_i}} \lambda_i \mathrm{id}_{N_{\lambda_i}}$. Alors, par définition, $N_{\lambda_i} = \ker(n_i^{m_i})$, et donc $n_i^{m_i} = 0$. Ainsi, en posant $m = \max(m_i)$ (pour $1 \le i \le r$), puisque n^m s'annule sur chaque N_{λ_i} , alors $n^m = 0$, ce qui prouve que n est nilpotent.
- 3. On va vérifier que $d \circ n = n \circ d$. Si $x \in E$, il se décompose en $x = x_1 + \cdots + x_r$, avec $x_i \in N_{\lambda_i}$ pour $1 \le i \le r$. Sur chaque N_{λ_i} , $d|_{N_{\lambda_i}} = \lambda_i \mathrm{id}_{N_{\lambda_i}}$, donc d commute avec tout endomorphisme. En particulier, $d \circ n(x_i) = n \circ d(x_i)$ puisque N_{λ_i} est stable par n. On a donc

$$d\circ n(x) = d\circ n(x_1 + \dots + x_r) = d\circ n(x_1) + \dots + d\circ n(x_r) = n\circ d(x_1) + \dots + n\circ d(x_r) = n\circ d(x).$$

Ainsi, d et n commutent.

4. Soit $\varphi_A: M \mapsto AM - MA$. Exprimer la décomposition N+D de φ_A en fonction de celle de A.

Réponse : Si A = n + d, $alors\Phi_A(M) = (n + d)M - M(n + d) = (nM - Mn) + (dM - Md) = \Phi_n + \Phi_d$. Pour montrer la nilpotence : appliquer le binôme de Newton pour k = 2 fois l'indice de nilpotence de n?