Colle 19 - MPSI

Développements limités Espaces Vectoriels

I. Développements limités

Exercice 1

Soit $f:\mathbb{R} \to \mathbb{R}$ une fonction décroissante telle que

$$f(x) + f(x+1) \sim \frac{1}{x}$$
, quand $x \to +\infty$.

- 1. Étudier la limite de f en $+\infty$.
- 2. Donner un équivalent de f en $+\infty$.

Exercice 2

Former le développement limité à l'ordre 3 quand $x \to 0$ de $\arctan(e^x)$. Quelle a l'allure de cette fonction autour de ce point?

Exercice 3

Soit $f:]-1; 0[\cup]0; +\infty[\to \mathbb{R}$ définie par

$$f(x) = \frac{\ln(1+x) - x}{x^2}$$

Montrer que f peut être prolongée par continuité en 0 et que ce prolongement est alors dérivable en 0. Quelle est alors la position relative de la courbe de f par rapport à sa tangente en ce point?

Exercice 4

Montre que la fonction

$$f: x \mapsto \frac{x}{e^x - 1}$$

peut être prolongée en une fonction de classe \mathcal{C}^1 sur \mathbb{R}

II. Espaces Vectoriels

Exercice 5

Les parties suivantes sont-elles des sous-espaces vectoriels de \mathbb{R}^2 ?

- 1. $\{(x,y) \in \mathbb{R}^2 | x \le y \}$.
- $2. \ \big\{(x,y)\in \mathbb{R}^2|x=y\big\}.$
- 3. $\{(x,y) \in \mathbb{R}^2 | xy = 0 \}$.

Exercice 6

Les parties suivantes sont-elles ses sous-espaces vectoriels de $\mathbb{R}^{\mathbb{N}}$?

- 1. $\{(u_n) \in \mathbb{R}^{\mathbb{N}} | (u_n) \text{ born\'ee} \}$.
- 2. $\{(u_n) \in \mathbb{R}^{\mathbb{N}} | (u_n) \text{ monotone} \}.$
- 3. $\{(u_n) \in \mathbb{R}^{\mathbb{N}} | (u_n) \text{ convergente} \}$.
- 4. $\{(u_n) \in \mathbb{R}^{\mathbb{N}} | (u_n) \text{ arithmétique} \}$.

Exercice 7

Montrer que les parties de $\mathscr{F}([a;b],\mathbb{R})$ suivantes sont des sous-espaces vectoriels :

- 1. $F = \{ f \in \mathcal{C}^1([a;b], \mathbb{R}) | f'(a) = f'(b) \}.$
- 2. $G = \{ f \in \mathcal{C}^0([a;b], \mathbb{R}) | \int_a^b f(t)dt = 0 \}.$

Exercice 8

Soit $E = \mathscr{F}(\mathbb{R}, \mathbb{R})$, \mathscr{C} l'ensemble des fonctions de E croissantes et

$$\Delta = \{f - g | f, g \in \mathscr{C}\}.$$

Montrer que Δ est un sous-espace vectoriel de E.

Exercice 9

Les familles suivantes de vecteurs de \mathbb{R}^3 sont-elles libres?

Si ce n'est pas le cas, former une relation linéaire liant des vecteurs :

- 1. (x_1, x_2) avec $x_1 = (1, 0, 1)$ et $x_2 = (1, 2, 2)$.
- 2. (x_1, x_2, x_3) avec $x_1 = (1, 0, 0)$ et $x_2 = (1, 1, 0)$ et $x_3 = (1, 1, 1)$.
- 3. (x_1, x_2, x_3) avec $x_1 = (1, 2, 1)$ et $x_2 = (2, 1, -1)$ et $x_3 = (1, -1, -2)$.

Exercice 10

On pose $f_1, f_2, f_3, f_4: [0; 2\pi] \to \mathbb{R}$ les fonctions définies par

$$f_1(x) = \cos x$$
, $f_2(x) = x \cos x$, $f_3(x) = \sin x$, $f_4(x) = x \sin x$.

Montrer que la famille (f_1, f_2, f_3, f_4) est libre.

Exercice 11

Soient E un \mathbb{K} -espace vectoriel et $(u_1, u_2, ..., u_n, u_{n+1})$ une famille de vecteurs de E. Etablir :

- 1. Si $(u_1, u_2, ..., u_n)$ est libre et $u_{n+1} \notin \text{Vect}(u_1, u_2, ..., u_n)$ alors $(u_1, u_2, ..., u_n, u_{n+1})$ est libre.
- 2. Si $(u_1, u_2, ..., u_n, u_{n+1})$ est génératrice et $u_{n+1} \in \text{Vect}(u_1, u_2, ..., u_n)$ alors $(u_1, u_2, ..., u_n)$ est génératrice.

I. Développements limités

Correction de l'exercice 1

1. f est décroissante donc possède une limite l en $+\infty$.

Quand
$$x \to +\infty$$
, $f(x) \to l$ et $f(x+1) \to l$ donc $f(x) + f(x+1) \to 2l$ or $f(x) + f(x+1) \sim \frac{1}{x} \to 0$ donc $l = 0$.

2. Quand $x \to +\infty$, on a

$$f(x+1) + f(x) \le 2f(x) \le f(x) + f(x-1)$$

donc

$$2f(x) \sim \frac{1}{x}$$

puis

$$f(x) \sim \frac{1}{2x}$$
.

Correction de l'exercice 2

On procède par intégration du développement limité de la fonction dérivée :

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(\arctan(e^x)\right) = \frac{e^x}{1 + e^{2x}} = \frac{1}{2} \times \frac{1 + x + \frac{1}{2}x^2 + o(x^2)}{1 + x + x^2 + o(x^2)} = \frac{1}{2} - \frac{1}{4}x^2 + o(x^2).$$

En intégrant

$$\arctan(e^x) = \frac{\pi}{4} + \frac{1}{2}x - \frac{1}{12}x^3 + o(x^3).$$

La tangente au point d'abscisse 0 a pour équation $y = \frac{\pi}{4} + \frac{x}{2}$. Puisque le terme qui suit dans le développement limité change de signe, la courbe traverse cette tangente : il s'agit d'un point d'inflexion.

Correction de l'exercice 3

On a

$$f(x) = -\frac{1}{2} + \frac{1}{3}x - \frac{1}{4}x^2 + o(x^2)$$

Par suite f peut être prolongée par continuité en 0 en posant

$$f(0) = -\frac{1}{2}.$$

De plus ce prolongement est dérivable en 0 et

$$f'(0) = \frac{1}{3}.$$

L'équation de la tangente en 0 est

$$y = -\frac{1}{2} + \frac{1}{3}x$$

et la courbe est localement en dessous de celle-ci.

Correction de l'exercice 4

f est définie sur \mathbb{R}^* et se prolonge par continuité en 0 en posant f(0) = 1. f est de classe \mathcal{C}^1 sur \mathbb{R}^* et

$$f'(x) = \frac{e^x - 1 - xe^x}{(e^x - 1)^2} = \frac{-\frac{1}{2}x^2 + o(x^2)}{x^2 + o(x^2)} \xrightarrow{x \to 0} 0 - \frac{1}{2}.$$

Donc f est dérivable en 0 avec f'(0) = -1/2 et finalement f est de classe \mathcal{C}^1 sur \mathbb{R} .

II. Espaces Vectoriels

Correction de l'exercice 5

- 1. $\{(x,y) \in \mathbb{R}^2 | x \leq y\}$ pas stable par multiplication scalaire : (0,1) appartient mais pas -(0,1).
- 2. $\{(x,y) \in \mathbb{R}^2 | x = y \}$ oui.
- 3. $\{(x,y) \in \mathbb{R}^2 | xy = 0\}$ pas stable par addition : (1,0) + (0,1).

Correction de l'exercice 6

- 1. oui
- 2. non
- 3. oui
- 4. oui

Correction de l'exercice 7

1. $F \subset \mathcal{F}(5a; b]\mathbb{R})$ et $0 \in F$.

Soient $\lambda, \mu \in \mathbb{R}$ et $f, g \in F$. La fonction $\lambda f + \mu g$ est de classe \mathcal{C}^1 sur [a; b] et

$$(\lambda f + \lambda g)'(a) = \dots = (\lambda f + \lambda g)'(b)$$

donc $\lambda f + \mu g \in F$.

2. idem.

Correction de l'exercice 8

 $\Delta \subset E$. 0 - 0 = 0, avec $0 \in \mathscr{C}$ donc $0 \in \Delta$.

Soient $h, h' \in \Delta$. On peut écrire h = f - g et h' = f' - g' avec $f, g, f', g' \in \mathscr{C}$. On a alors h + h' = (f + f') - (g + g') avec $(f + f'), (g + g') \in \mathscr{C}$.

 $\forall \lambda \geq 0$, on a $\lambda h = \lambda f - \lambda g$ avec $\lambda f, \lambda g \in \mathscr{C}$.

 $\forall \lambda < 0$, on a $\lambda h = (-\lambda g) - (-\lambda f)$ avec $(-\lambda f), (-\lambda g) \in \mathscr{C}$.

Dans les deux cas $\lambda h \in \Delta$.

Correction de l'exercice 9

- 1. oui
- 2. oui
- 3. non $x_3 = x_2 x_1$.

Correction de l'exercice 10

Supposons

$$af_1 + bf_2 + cf_3 + df_4 = 0$$

On a

$$\forall x \in [0, 2\pi], \quad (a+bx)\cos x + (c+dx)\sin x = 0.$$

Pour x = 0 et $x = \pi$ on obtient le système :

$$\begin{cases} a = 0 \\ a + b\pi = 0 \end{cases}$$

d'où a=b=0. De même en prenant $x=\frac{\pi}{2}$ et $x=\frac{3\pi}{2}$ on obtient c=d=0.

Correction de l'exercice 11

- 1. Supposons $\lambda_1 u_1 + ... + \lambda_n u_n + \lambda_{n+1} u_{n+1} = 0_E$.
 - Si $\lambda_{n+1} \neq 0$ alors $u_{n+1} = \frac{1}{\lambda_{n+1}} (\lambda_1 u_1 + ... + \lambda_n u_n)$ ce qui est exclu.

Donc $\lambda_{n+1} = 0$ donc $\lambda_1 u_1 + ... + \lambda_n u_n = 0_E$ donc $\lambda_1 = \lambda_2 = ... = \lambda_n = 0$ car la famille $(u_1, ..., u_n)$ est libre.

2. Soit $x \in E$. On peut écrire $x = \lambda_1 u_1 + ... + \lambda_n u_n + \lambda_{n+1} u_{n+1}$ car $(u_1, ..., u_{n+1})$ génératrice.

On peut écrire $u_{n+1} = \frac{1}{\lambda_{n+1}}(\lambda_1 u_1 + ... + \lambda_n u_n)$ car $u_{n+1} \in \text{Vect}(u_1, ..., u_n)$, on a donc $x = \mu_1 u_1 + ... + \mu_n u_n$ avec $\mu_i = \lambda_i + \lambda_{n+1} \mu_i$. On a donc $x \in \text{Vect}(u_1, ..., u_n)$.

Finalement $(u_1, ..., u_n)$ est génératrice.