Übungsblatt 3

Thomas Graf EF / WF Informatik 2018-2019 Programmieren in Python I

3. September 2018

1 Jede dritte Zahl (\star)

Um den Umgang mit for-loops in Python nochmals zu üben, informiere Dich über die range()-Funktion auf:

https://www.w3schools.com/python/ref_func_range.asp.

Schreibe (mit Hilfe des neu Gelernten) einen for-loop, der jede dritte ganze Zahl, beginnend mit 8 bis 150 ausgibt. Die erste Zahl im Output sollte 8 sein, die letzte 149.

2 Lesen im Skript $(\star\star)$

Lies das Skript bis zum Ende des Abschnitts Funktionen in Python. Hast du dazu Fragen? Gibt es Unklarheiten?

Bemerkung:

Listen und jump-statements werden wir im Unterricht noch genauer miteinander anschauen.

3 079... (**)

Eine Person verrät uns lediglich die Vorwahl ihrer 10-stelligen Mobiltelefonnummer. Damit gibt es nur noch 10 Millionen Kombinationen, die es auszuprobieren gilt.

Schreibe ein Python-Programm, welches die 2000 kleinsten Nummern auflistet. Die erste Nummer sollte 0790000000 sein, die letzte 0790001999. Das Programm soll die Nummern als Strings ausgeben.

Tipp:

Die zfill()-Funktion könnte sehr nützlich sein:

https://python-reference.readthedocs.io/en/latest/docs/str/zfill.html.

Schaffst Du es auch, das Problem ohne die zfill()-Funktion zu lösen?

4 Vermutung bestätigen $(\star \star \star)$

Beim Untersuchen der Zahlenfolge $a_n = n^3 - n$, $n \ge 2$, haben wir zufälligerweise beobachtet, dass für alle von uns ausprobierten Werte von $n \ge 2$, die Zahlen $n^3 - n$, stets durch 3 teilbar zu sein scheinen.

Deshalb wagen wir folgende Behauptung aufzustellen:

3 ist ein Teiler von
$$n^3 - n$$
 für alle $n \in \mathbb{N}, n \ge 2$. (1)

Da wir noch sehr unsicher sind, ob unsere Behauptung 1 tatsächlich stimmt, schreiben wir ein Python-Programm, welches die Behauptung bis zu n = 1000 überprüfen soll.

a)
Schreibe solch ein Python-Programm und folgere daraus, dass Behauptung 1 möglicherweise tatsächlich stimmen könnte.

Der Test in Python hat unsere Vermutung bestärkt. Nun möchten wir versuchen, unsere Behauptung zu beweisen.

b)Beweise Behauptung 1 mittels vollständiger Induktion.

5 Schachbrett (*)

Wir möchten ein quadratisches Schachbrettmuster mit $n \times n$ Feldern erzeugen (für **gerades** $n \ge 2$).

Jedes der n^2 Felder soll dabei eine Grösse von genau $s \times s$ Zeichen haben $(s \ge 1)$. Die Zahl 1 repräsentiere die schwarzen Felder, die Zahl 0 die weissen Felder.

Zusätzlich möchten wir wählen können, ob das linke obere Feld schwarz oder weiss sein soll (upper_left = 'black' oder upper_left = 'white').

Folgende Beispiele zeigen die entsprechenden Schachbrettmuster für verschiedene Wahlen der drei Parameter n, s und upper_left:

```
\# Schachbrettmuster für n = 2, s = 3, upper_left = 'white'
000111
000111
000111
111000
111000
111000
\# Schachbrettmuster für n = 4, s = 1, upper_left = 'black'
1010
0101
1010
0101
# Schachbrettmuster f \ddot{u}r n = 6, s = 2, upper_left = 'black'
110011001100
110011001100
001100110011
001100110011
110011001100
110011001100
001100110011
001100110011
110011001100
110011001100
001100110011
001100110011
```

Allgemein soll das Muster immer genau $n \cdot s$ Zeichen breit und ebenso hoch sein.

```
Definiere eine Python-Funktion
```

```
def draw_chessboard(n, s, upper_left),
```

welche die drei oben beschriebenen Parameter akzeptiert und das entsprechende Schachbrettmuster im Terminal ausgibt.

Tipp:

Wir haben (unter anderem) die Funktion numpy.zeros¹ mit der Option dtype = int aus

 $^{^{1} \}qquad \texttt{https://docs.scipy.org/doc/numpy/reference/generated/numpy.zeros.html}$

dem ausgesprochen mächtigen Python-Paket NumPy verwendet.

Die Vorgehensweise steht Euch jedoch völlig frei. Sehr viele Wege führen zum Ziel.

Abgabe: bis spätestens Montag, 17. September 2018, um 08:00.