1. Homomorphism, Isomorphism

- (1) Let $(a_1, \ldots, a_k), \sigma \in S_n$. Then show that $\sigma(a_1, \ldots, a_k)\sigma^{-1} = (\sigma(a_1), \ldots, \sigma(a_k))$.
- (2) Let $\phi: G \longrightarrow H$ be an isomorphism. Prove that $\phi^{-1}: H \longrightarrow G$ is an isomorphism.
- (3) Let $a \in G$ and $i_a : G \longrightarrow G$ be the map $i_a(g) = aga^{-1}$ for all $g \in G$. Show that i_a is an automorphism of G. Let B(G) denote the group of bijections of G. Define $\psi : G \longrightarrow B(G)$ by $\psi(a) = i_a$. Show that ψ is a group homomorphism and $\ker \phi = Z(G)$. Show that the image I(G) of G under ψ is a normal subgroup of Aut(G).
- (4) Show that the map $\phi: GL_n(\mathbb{R}) \longrightarrow GL_n(\mathbb{R})$ defined by $\phi(A) = (A^t)^{-1}$ is an automorphism.
- (5) Show that the map $\phi: G \longrightarrow G$ defined by $\phi(x) = x^{-1}$ is an automorphism if and only if G is abelian.
- (6) Show that upto isomorphism the only cyclic groups are $\mathbb{Z}/n\mathbb{Z}$ for $n=0,1,2,\ldots$
- (7) Determine the group of automorphism of \mathbb{Z} , S_3 and $\mathbb{Z}/n\mathbb{Z}$.
- (8) Give an example of a subgroup of index 3 which is not normal.
- (9) Show that the functions f(x) = 1/x and g(x) = (x-1)/x generate, under composition of functions, a group isomorphic to S_3 .
- (10) Let $\phi: G \longrightarrow G'$ be a surjective group homomorphism. Show that for any normal subgroup N of G, $\phi(N)$ is a normal subgroup of G'.
- (11) Prove that the subgroup of upper triangular matrices in $GL_3(\mathbb{F}_2)$ is isomorphic to the dihedral group of order 8.
- (12) Let G be an abelian group of odd order. Prove that the map $\phi: G \longrightarrow G$ defined by $\phi(g) = g^2$ for all $g \in G$ is an automorphism.
- (13) Show that $GL_2(\mathbb{R})$ is not a normal subgroup of $GL_2(\mathbb{C})$.
- (14) Give examples of three groups $G \triangleleft H \triangleleft K$ so that G is not normal in K.
- (15) Suppose H and K are subgroups of finite index in the group G with [G:H]=m and [G:K]=n. Prove that $l.c.m(m,n) \leq [G:H\cap K] \leq mn$. Deduce that if m and n are relatively prime then $[G:H\cap K]=[G:H][G:K]$.
- (16) Let K < H < G be subgroups of a finite group G. Show that [G : K] = [G : H][H : K].
- (17) Prove that if H and K are finite subgroups of G whose order are relatively prime then $H \cap K = 1$
- (18) Let H < G. Prove that the map $x \mapsto x^{-1}$ sends each left coset of H in G onto a right coset of H and gives a bijection between the set of left cosets and the set of right cosets of H in G.
- (19) For $n \in \mathbb{N}$, $\phi(n) := \{j \in \mathbb{N} | 1 \leq j \leq n \text{ and } (j,n) = 1\}$ is called the Euler's phi function. Use Lagrange's theorem in the multiplicative group $(\mathbb{Z}/p\mathbb{Z})^{\times}$ to prove Fermat's Little Theorem: if p is a prime then $a^p \equiv a \pmod{p}$ for all $a \in \mathbb{Z}$.
- (20) Let p be a prime and n be a positive integer. Find the order of \overline{p} in $(\mathbb{Z}/(p^n-1)\mathbb{Z})^{\times}$ and deduce that $n|\phi(p^n-1)$ (here ϕ is Euler's function).

(21) Use Lagrange's Theorem in the multiplicative group $(\mathbb{Z}/n\mathbb{Z})^{\times}$ to prove Euler's Theorem: $a^{\phi(n)} \equiv 1 \pmod{n}$ for every integer a relatively prime to n, where ϕ is Euler's phi function.