Lecture 9 – Logistic Regression (Part 2)

Instructor: Hamed Hasheminia

Agenda

- Unbalanced observations and Logistic Regression
- FP/FN/TP/TN/FPR/TPR/FNR
- The effect of changing Threshold
- ROC curves
- Area Under Curve
- How to compare classification algorithms

Quiz - How do we interpret this?

```
Coefficients:
                Estimate Std. Error z value Pr(>|z|)
(Intercept)
                                    -4.283 1.84e-05 ***
              -4.1295997
                         0.9641558
               0.0057607 0.0056326 1.023 0.30643
sbp
                          0.0262150 3.034 0.00242 **
tobacco
               0.0795256
                         0.0574115 3.219 0.00129 **
141
               0.1847793
                         0.2248691 4.177 2.96e-05 ***
famhistPresent 0.9391855
obesity
              -0.0345434
                          0.0291053
                                     -1.187 0.23529
alcohol
                          0.0044550
                                     0.136 0.89171
               0.0006065
               0.0425412
                          0.0101749
                                     4.181 2.90e-05 ***
age
```

Case-Control Sampling and Logistic Regression

- In South African data, there are 160 cases, 302 controls $\tilde{\pi} = 0.35$ are cases. Yet the prevalence of MI in this region is $\pi = 0.05$.
- With case-control samples, we can estimate the regression parameters β_j accurately (if our model is correct); the constant term β_0 is incorrect.
- We can correct the estimated intercept by a simple transformation

$$\hat{\beta}_0^* = \hat{\beta}_0 + \log \frac{\pi}{1 - \pi} - \log \frac{\tilde{\pi}}{1 - \tilde{\pi}}$$

Credit Data

		Predicted Default Status		
		No	Yes	Total
True Default	No	9644	23	9667
Status	Yes	252	81	333
	Total	9896	104	10000

- (23 + 252)/10000 errors a 2.75% misclassification rate! Is it good?
- Some caveats
 - This is training error, and we may be over-fitting. But this is not a big concern in this case since n = 10000 and we only used 4 parameters.
 - If we classify everything as No then we make only 3.33% error.
 - Of the true No's, we make 23/9667 = 0.2% errors; of the true Yes's, we make 252/333 = 75.7% errors!

TP/FP/FN/TN

		predicted class		
		0	1	
true class	0	True Positive (TP)	False Negative (FN)	
	1	False Positive (FP)	True Negative (TN)	

Error / Accuracy / False Positive Rate / True Positive Rate / Precision / Recall

- ERR = (FP + FN) / (FP + FN + TP + TN)
- ACC = (TP + TN)/(FP + FN + TP + TN) = 1 ERR
- False Positive Rate (FPR)
 - FPR = FP / (Total Negatives) = FP / (FP + TN)
- True Positive Rate (TPR) Also Called Recall
 - TPR = TP / (Total Positives) = TP / (TP + FN)
- False Negative Rate
 - FNR = FN / (Total Positives) = FN / (TP + FN) = 1 TPR
- Precision (PRE)
 - PRE = TP / (TP + FP)

Credit Data - continues

Predicted Default

		Jiu	\neg	
		No	Yes	Total
True Defaul	No	9644	2.	9667
	Yes	252	8.	333
	Total	9896	104	4 10000

(From those who did default 75.6% mistakenly predicted that they would not default)

(From Those who did not default, only 0.24% were mistakenly predicted to default.)

We produced this table by classifying to class Yes if

$$\widehat{\Pr}(\texttt{Default} = \texttt{Yes}|\texttt{Balance}, \texttt{Student}) \ge 0.5$$

Changing Threshold

We can change the two error rates by changing the threshold from 0.5 to some other value in [0, 1]:

 $\widehat{\Pr}(\texttt{Default} = \texttt{Yes} | \texttt{Balance}, \texttt{Student}) \ge threshold,$

and vary threshold.

Varying the Threshold (Spam/ Ham Example)

ROC Curve

Let's explore ROC

- http://www.navan.name/roc/
- After Instructor's instructions please team-up with with another student and explain ROC to each other.

Area Under Curve (AUC)

- One of the measures used to evaluate Classification Algorithms is Area Under Cure (AUC) of ROC.
- Usually the model which has the largest AUC is considered the best classification model.
- AUC is a number between (0.5 and 1). Why couldn't it be less than 0.5?

Which Classification Model is better?

Summary

- How to adjust Logistic Regression coefficients for unbalanced data
- FP/FN/TP/TN/FPR/TPR
- How changing Threshold can change FPR/TPR/FNR/TNR
- What ROC curves mean
- How to calculate Area Under Curve
- How to compare classification algorithms using AUC