

The 2025 ICPC Vietnam Southern Provincial Contest

Problem G

Electric Circuit

Time limit: 2 seconds Memory limit: 512 megabytes

You are given an electric circuit consisting of a sequence of infinity switches, aligned in a row and labeled from left to right starting from 0.

Each switch can be in one of two states: **ON** (**closed**) or **OFF** (**open**). All switches are initially OFF.

You are told the following rule of interaction between adjacent switches:

- If a switch transitions from OFF to ON, it has no effect on other switches.
- If a switch transitions from ON to OFF, it will cause the switch immediately to its right to toggle its current state (i.e., ON \rightarrow OFF or OFF \rightarrow ON).

You plan to perform m operations. The i-th operation toggles the state of switch a_i ($0 \le a_i \le n$):

- If it is ON, it becomes OFF (and may cause a chain reaction to the right, per the rule above).
- If it is OFF, it becomes ON.

Let the **cost** of an operation be defined as the **number of switches whose state was changed** (including both the directly toggled switch and any affected ones to the right via propagation).

However, each operation is **executed with a certain probability**:

- The *i*-th operation is executed with probability $p_i = \frac{u_i}{v_i}$.
- Otherwise, it is skipped with probability $1 p_i$.

You are required to compute the **expected total cost** of all m operations.

Let the expected value be $E = \frac{P}{Q}$, where P and Q are coprime integers. Output the value:

$$(P \cdot Q^{-1}) \bmod 998244353$$

where Q^{-1} denotes the modular inverse of Q modulo 998244353.

Input

The first line contains two integers $n, m \ (1 \le n, m \le 2 \cdot 10^5)$ - the upper bound of a_i and the number of operations.

The next m lines each contain three integers a_i, u_i, v_i ($0 \le a_i \le n, 0 \le u_i < 998244353, 1 \le v_i < 998244353, <math>u_i \le v_i$) - the position of the switch, and the probability of executing the i-th operation as a rational fraction $p_i = \frac{u_i}{v_i}$.

Note

The number of switches is infinite, n is just the upper bound of a_i in the input.

The 2025 ICPC Vietnam Southern Provincial Contest

Output

Print a single integer - the value of $P \cdot Q^{-1}$ mod 998244353, where $\frac{P}{Q}$ is the expected total cost of all operations.

Sample Input	Sample Output
3 3	499122178
0 1 2	
1 1 2	
2 1 2	
100 5	610769569
0 100 333	
0 333 666	
0 666 1234	
1 1234 1235	
2 1235 1236	