Uppsala Universitet Matematiska Institutionen Erlandsson, Chapovalova, Fogelklou

LINJÄR ALGEBRA II **IT2, STS2** LINJÄR ALGEBRA MN1 2009-03-13

Tentamen består av 10 UPPGIFTER (max 3 poäng per uppgift), 2 PROBLEM (max 5 poäng per problem) samt en EXTRA UPPGIFT (max 2 poäng). Denna är en tillämpning som kan lösas med bifogad information oberoende av kurs. Till både uppgifterna och problemen fordras fullständiga lösningar.

18-24 poäng ger betyg 3, 25-31 poäng ger betyg 4 och 32-42 poäng ger betyg 5.

Skrivtid: 14-19 Tillåtna hjälpmedel: Skrivdon.

UPPGIFTER

- 1. $A = \begin{bmatrix} 0 & 0 & 0 \\ 2 & 1 & 1 \end{bmatrix}$. Bestäm en bas för nollrummet respektive kolonnrummet av A.
- 2. Låt $A=\begin{bmatrix}1&2\\1&a\end{bmatrix}$ och definiera $T:\mathbf{R}^2\to\mathbf{R}^2$ genom $T(\mathbf{x})=A\mathbf{x}$. Bestäm de värden på a för vilka värderummet av T innehåller vektorn $\begin{bmatrix}3\\3\end{bmatrix}$.
- 3. Låt $T: \mathbf{R}^2 \to \mathbf{R}^2$ vara den linjära avbildning som definieras av en moturs rotation omkring origo vinkeln $\pi/2 = 90^{\circ}$ följt av en spegling med avseende på x_1 -axeln. Bestäm standardmatrisen av T.
- 4. Finn en bas för mängden av alla vektorer i \mathbb{R}^3 som tillhör planet x=z.
- 5. $A = \begin{bmatrix} 1 & 1 \\ 0 & 2 \end{bmatrix}$. Motivera varför A är diagonaliserbar.
- 6. $A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 2 & 1 \\ 0 & 1 & 2 \end{bmatrix}$ har egenvärdet 1 av multipliciteten två samt egenvärdet 3.

Bestäm en bas av egenvektorer för egenrummet hörande till egenvärdet 1. Avgör slutligen om A är diagonaliserbar.

- 7. Låt $T: \mathbf{R}^3 \to \mathbf{R}^3$ vara den linjära avbildning som definieras som spegling med avseende på x_1x_2 -planet, dvs med avseende på planet $x_3 = 0$. Bestäm avbildningens egenvärden med multiplicitet.
- 8. Arean av ellipsen $x^2/a^2+y^2/b^2=1,\,a>0,\,b>0$ är enligt en känd formel πab . Bestäm arean av ellipsen $x^2+\frac{1}{2}xy+y^2=1.$

V.G.V!

9. \mathbf{P}_2 är rummet av polynom av grad högst två inklusive nollpolynomet. För p och q i \mathbf{P}_2 kan man t ex definiera den inre produkten

$$\langle p, q \rangle = \int_{-1}^{1} p(t)q(t) dt$$
 (1)

Låt W vara det delrum av \mathbf{P}_2 som genereras av de ortogonala polynomen $p_1(t) = t$ och $p_2 = t^2$, dvs låt $W = \operatorname{Span}\{t, t^2\}$. Bestäm den ortogonala projektionen av polynomet $p_0(t) = 1$ på W med avseende på den inre produkten (1).

10. \mathbf{P}_n , $n=0,1,2,\ldots$ är rummet av polynom av grad högst n inklusive nollpolynomet. $\mathcal{B}=\{1+2t+t^2, 1-2t+t^2\}$ är bas för ett delrum W av \mathbf{P}_2 . Bestäm koordinaterna av polynomet $p(t)=1+2at+t^2$ med avseende på basen \mathcal{B} för de värden på a för vilka $p(t) \in W$.

PROBLEM

- 1. $A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$ definierar en avbildning (transformation) $T : \mathbf{R}^n \to \mathbf{R}^m$ genom $T(\mathbf{x}) = A\mathbf{x}$. Bestäm n och m, rangen av matrisen A, en bas för kolonnrummet Col A samt en bas för nollrummet Nul A.
- 2. Grafen av ekvationen $x^2/a^2 y^2/b^2 z^2/c^2 = 1$ är en tvåmantlad hyperboloid vars symmetriplan är x = 0.

$$2xy + 2xz + 2yz = 1$$

definierar också en tvåmantlad hyperboloid. Bestäm ekvationen för dess symmetriplan i xyz-systemet samt avståndet mellan hyperboloidens båda delar. Den kvadratiska formens matris har egenvärdet -1 av multiplicitet två samt egenvärdet 2.

EXTRA UPPGIFT

Lös systemet av differentialekvationer $\left\{\begin{array}{lll} y_1'&=&2y_1&+&2y_2\\ y_2'&=&2y_1&-&y_2\\ \end{array}\right. \text{ med hjälp av följande}$ information.

y' = ay har lösningen $y = ce^{ax}$. Systemet $\mathbf{y}' = A\mathbf{y}$ löses genom att utföra substitutionerna $\mathbf{y} = P\mathbf{u}$ och $\mathbf{y}' = P\mathbf{u}'$ i det ursprungliga systemet $\mathbf{y}' = A\mathbf{y}$. Vi får då $P\mathbf{u}' = A(P\mathbf{u})$ dvs $\mathbf{u}' = (P^{-1}AP)\mathbf{u}$ eller $\mathbf{u}' = D\mathbf{u}$. Om matrisen P diagonaliserar A får vi ett diagonalt system $\mathbf{u}' = D\mathbf{u}$ som vi kan lösa. De sökta lösningarna fås slutligen som $\mathbf{y} = P\mathbf{u}$.

I vårt fall är
$$A = \begin{bmatrix} 2 & 2 \\ 2 & -1 \end{bmatrix}, \ P = \begin{bmatrix} 2 & -1 \\ 1 & 2 \end{bmatrix} \ D = P^{-1}AP = \begin{bmatrix} 3 & 0 \\ 0 & -2 \end{bmatrix}.$$