INC491 Homework 4

Stock Trend Prediction using Recurrent Neural Network (RNN)

Description Task 1:

- Use RNN model to predict the trend of a stock price on the next day.
- Use data of 10 previous days to predict the trend of the price on the 11th day. (Is it up/down/neutral to the close price of the 10th day?)
- Dataset: PTT
 - PTT dataset is a real stock price of "PTT" from year 2011 to 2019.
 - PTT dataset consists of 6 columns → Date and 5 features (OHLCV)
- To do lists:
 - OHLCV will be used as 5 features of the input and use 10 timesteps → input shape is [None, 10, 5].
 - Must normalize both the prices (OHLC) and the volume (V).
 - lacktriangle Must generate a label of 3 classes and drop the rows that has no label lacktriangle Up, Down, Neutral
 - Implement an LSTM model and train it.
 - Divide the data into 2 parts;
 - Year 2011-2016 for training set
 - Year 2017-2019 for testing set
 - Must use a sliding window to arrange the data in batch.
 - Apply a strategy "hold-one-day when the trend is up" to the test set (2017-2019).
 - Calculate the total gain using this strategy and compare it with the buy-and-hold strategy.
 - The buy-and-hold strategy buys stock on 1/4/2017 at 37.4 and sell the stock on 12/30/2019 at 44 Baht. Thus, it accrues a profit of 6.6 baht or 17.65% over 3 years.
 - What to submit
 - Diagram of network and parameter used.
 - Printed source code
 - Graph result
 - The profit when apply "hold-one-day when the trend is up" strategy.

<mark>โหลดข้อมูลและตรวจสอบข้อมูลเบื้องต้น</mark>

```
df = pd.read_csv('ptt.csv', parse_dates = ['Date'])
df
```

	Date	Open	High	Low	Close	Volume
0	2011-01-04	32.50	33.30	32.30	33.00	105964752
1	2011-01-05	33.00	33.20	32.80	33.20	60864168
2	2011-01-06	33.30	33.40	32.90	33.20	39651640
3	2011-01-07	33.10	33.10	32.20	32.20	55886640
4	2011-01-10	32.10	32.20	31.60	31.80	95325912
2194	2019-12-24	45.00	45.00	44.00	44.25	32913200
2195	2019-12-25	44.25	44.25	43.75	44.25	11687500
2196	2019-12-26	44.25	44.50	44.25	44.50	11117700
2197	2019-12-27	44.50	44.75	43.50	44.25	55385800
2198	2019-12-30	44.25	44.75	44.00	44.00	33688500

2199 rows × 6 columns

ข้อมูลที่ได้จาก df.info() จะเห็นได้ว่า column Date มีชนิดข้อมูลเป็น datetime แต่เนื่องจากข้อมูลสำหรับที่จะนำไปเทรน RNN/LSTM model โดยทั่วไปจะสนใจส่วนที่เป็น value (ไม่เอาข้อมูลเวลา) จึงต้องทำการ set คอลัมน์ Date เป็น index

```
df.set_index('Date', inplace=True)
```

	Open	High	Low	Close	Volume
Date					
2011-01-04	32.50	33.30	32.30	33.00	105964752
2011-01-05	33.00	33.20	32.80	33.20	60864168
2011-01-06	33.30	33.40	32.90	33.20	39651640
2011-01-07	33.10	33.10	32.20	32.20	55886640
2011-01-10	32.10	32.20	31.60	31.80	95325912
2019-12-24	45.00	45.00	44.00	44.25	32913200
2019-12-25	44.25	44.25	43.75	44.25	11687500
2019-12-26	44.25	44.50	44.25	44.50	11117700
2019-12-27	44.50	44.75	43.50	44.25	55385800
2019-12-30	44.25	44.75	44.00	44.00	33688500

2199 rows × 5 columns

จากการตรวจสอบข้อมูลก็จะพบว่าข้อมูลประกอบข้อมูลราคาหุ้นและข้อมูล volume ซึ่งมีทั้งหมด 5 columns คือ

- Open: ราคาของหุ้น ณ เวลาเริ่มเปิดทำการซื้อขาย (เวลาเปิดตลาด)
- High/Low: ราคาของหุ้นสูงสุด ต่ำสุด ที่ซื้อขายกันในวันนั้น
- Close: ราคาของหุ้น ณ เวลาปิดทำการซื้อขาย (เวลาปิดตลาด)
- Volume: ปริมาณหรือจำนวนหุ้นที่มีการซื้อขายในวันนั้น

df.describe()

	Open	High	Low	Close	Volume
count	2199.000000	2199.000000	2199.000000	2199.000000	2.199000e+03
mean	36.756276	37.081219	36.405093	36.730696	5.546045e+07
std	7.651295	7.706596	7.596040	7.645925	3.650298e+07
min	19.900000	20.200000	19.700000	19.800000	6.309250e+06
25%	31.800000	32.100000	31.600000	31.800000	3.302700e+07
50%	34.300000	34.600000	34.000000	34.200000	4.593573e+07
75%	41.200000	41.600000	41.000000	41.200000	6.538856e+07
max	58.600000	59.500000	57.600000	58.800000	3.327409e+08

ข้อมูลเบื้องต้น

- จำนวน sample ทั้งหมด = 2199 (2199 rows) และมี 5 features (OHLCV)
- ไม่มี missing value
- จากการตรวจสอบข้อมูลจำเป็นต้องมีการ Normalize ข้อมูลราคาและข้อมูล volumes ปรับช่วงของข้อมูลให้อยู่ในช่วง
 เดียวกันก่อนนำข้อมูลไปใช้ เพราะข้อมูลราคาและข้อมูล volume มีช่วงค่าที่แตกต่างกันมาก

Visualization

จากการ Visualization ข้อมูลราคาปิดเบื้องต้น จะพบว่าราคาปิดของ Training set มีค่าโดยประมาณไม่เกิน 40 แต่ Test set มีค่าเกิน 40 ดังนั้น หากหลังจากนี้โมเดลไม่สามารถทำนายราคาปิดของ Test set ในปี 2017 เป็นต้นไปได้อย่างแม่นยำ ส่วนตัวคิดว่าอาจเป็นเรื่องปกติ นี่อาจเป็นหนึ่งเหตุผลที่ทำให้ไม่สามารถทำนายได้อย่างแม่นยำ เพราะว่าโมเดลไม่เคยได้เรียนรู้ ลักษณะข้อมูลที่มีราคาปิดสูงกว่า 40 เลย จึงอาจลดความสามารถในการทำนายได้ อาจไม่สามารถทำนายการเปลี่ยนแปลงได้อย่าง แม่นยำถ้าหากราคาสูงกว่านี้ ส่งผลให้หลังจาก Train แล้ว ข้อมูลชุด Test ไม่ฟิตกับข้อมูลชุด Train

<mark>เตรียมข้อมูล</mark>

1. ทำการ Normalize โดยใช้ standard scale

```
from sklearn.preprocessing import StandardScaler
sc = StandardScaler()
features = ['Open', 'High', 'Low', 'Close', 'Volume']
data = df.loc[:,features].values
data_sc = sc.fit_transform(data)
data_scaler = pd.DataFrame(data_sc, columns=[f'sc_{c}' for c in features])
data_scaler # ข้อมูลที่ถูก Normalize แล้ว
        sc_Open sc_High sc_Low sc_Close sc_Volume
     0 -0.556408 -0.490759 -0.540548 -0.488044
     1 -0.491045 -0.503738 -0.474710 -0.461880 0.148069
     2 -0.451827 -0.477780 -0.461542 -0.461880 -0.433181
     3 -0.477972 -0.516716 -0.553716 -0.592698
                                            0.011678
     4 -0.608699 -0.633526 -0.632723 -0.645026 1.092364
  2194 1.077674 1.027767 1.000078 0.983663 -0.617823
   2195 0 979629 0 930425 0 967159 0 983663 -1 199434
   2196 0.979629 0.962872 1.032998 1.016368
                                            -1.215047
   2197 1.012310 0.995320 0.934239 0.983663 -0.002045
   2198 0.979629 0.995320 1.000078 0.950959 -0.596579
```

2199 rows × 5 columns

2. นำ Dataset ไปสร้างเป็น feature และ label ในรูปของ matrix X, y โดยนำค่า step ถัดไป ไปเป็นข้อมูล label (y)

เนื่องจากข้อมูลตอนนี้มี 2199 rows และ 5 columns สำหรับเป็น features นั่นคือ ยังไม่มี label (y) ในที่นี้เราจะนำ ข้อมูลที่มีไปสร้างเป็น y ซึ่งขึ้นอยู่กับว่าเราจะให้ model เรียนรู้ทีละกี่ step กรณีนี้ใช้ 10 steps (timesteps=10) นั่นคือการนำค่า ใน step ต่อไปมาเป็นค่า y ของลำดับปัจจุบัน นอกจากนี้ y ที่สร้างขึ้นจะเป็น label ที่ได้จากการเทียบราคาปิดจากเงื่อนไขโจทย์

ในที่นี้เราได้สร้างฟังกชัน convertToMatrix ขึ้นมาเพื่อให้ง่ายในการทำขั้นตอนต่อไป โดยที่ลักษณะของการทำงานของ ฟังก์ชัน convertToMatrix มีดังนี้

- วนลูปผ่านข้อมูล data โดยเริ่มต้นจาก index 0 ไปจนถึง (len(data) timesteps) ซึ่งหมายถึงจำนวน sequence ที่จะ ถูกสร้างขึ้น และสำหรับแต่ละ sequence จะทำการเลือก features ในช่วง 10 วันก่อนหน้า (ตาม timesteps) เพื่อเป็น input feature ในการทำนาย
- สร้าง label ของทิศทางของราคาในวันถัดไป (up, down, neutral) โดยเทียบราคาปิดของวันที่ 11 (วันถัดไป) กับวันที่
 10 (วันปัจจุบัน) แล้วแปลง label ให้อยู่ในรูปแบบ one-hot encoding โดยใช้ to_categorical จาก Keras
- สะสม sequence และ label ที่ได้เข้า list X และ y ตามลำดับ หลังจากนั้นก็ทำการแปลง X ให้อยู่ในรูปแบบของ
 NumPy array แล้วส่งคืน X และ y เป็นผลลัพธ์ของการแปลงข้อมูล

```
from keras.utils import to_categorical
def convertToMatrix(data, timesteps=10):
   num_classes = 3 # จำนวน classes (Up, Down, Neutral)
   X = []
   y = []
    # วนลูปเพื่อสร้าง sequences และ labels
    for i in range(len(data) - timesteps):
       # เลือก features ของ 10 วันก่อนหน้า
        selected_features = data[i:i + timesteps, :]
       X.append(selected_features)
        # สร้าง label เป็น array 3 ตัวที่เริ่มต้นทั้งหมดเป็น 0
        label = np.zeros(num_classes)
        # ราคาปิดของวันที่ 11 และ 10
       close_t_plus_1 = data[i + timesteps, -2]
        close_t = data[i + timesteps - 1, -2]
        # กำหนด label ตามเงื่อนไข Up, Down, หรือ Neutral
        if close_t_plus_1 > close_t + 0.01 * close_t:
            label = 2 \# Up
        elif close_t_plus_1 < close_t - 0.01 * close_t:
            label = 0 # Down
        else:
            label = 1 # Neutral
       y.append(label)
   # แปลง labels เป็นรูปแบบ one-hot encoding
   X = np.array(X)
   y = to_categorical(np.array(y), num_classes=num_classes)
    return X, y
```

- 3. แบ่งข้อมูลเป็น train, test set และใช้ฟังก์ชัน convertToMatrix ในการเปลี่ยนข้อมูลเป็น matrix
 - แบ่งข้อมูลเป็น train set และ test set

```
# ตรวจสอบขนาดข้อมูลทั้งหมด และนับจำนวนข้อมูลที่จะใช้สำหรับ train

print('Samples:', df.shape)
print('Train set:', df[:'2016'].shape) # ตั้งแต่เริ่มตันจนถึงปลายปี 2016

Samples: (2199, 5)
Train set: (1466, 5)

n_train = 1466 # จำนวน samples ที่จะนำไป train

data_sc.shape
(2199, 5)

# นำข้อมูลที่ผ่าน Normalize แล้ว ไปแบ่งเป็น train, test
train, test = data_sc[0:n_train], data_sc[n_train:]
print('Train set:', train.shape)
print('Test set:', test.shape)

Train set: (1466, 5)
Test set: (733, 5)
```

จากเดิมข้อมูลมีขนาดมิติข้อมูลคือ (2199, 5) นั่นคือ มีจำนวน sample ทั้งหมดคือ 2199 samples ในที่นี้เรา ต้องทำการแบ่งเป็นข้อมูลที่ผ่านการ Normalize แล้วมาเป็นข้อมูลสำหรับ train และ test โดยที่เราจะใช้ข้อมูลปี 2011-2016 สำหรับ training set และใช้ข้อมูลปี 2017-2019 สำหรับ testing set

เนื่องจาก dataset ptt ข้อมูลที่มีจะเป็นการเรียงตามวันที่อยู่แล้ว ขั้นตอนแรกจึงทำการตรวจสอบว่าตั้งแต่ ข้อมูลแรก (ปี 2011) ถึงข้อมูลปลายปี 2016 มีจำนวน sample เท่าไหร่ ก็จะพบว่าจำนวน sample ตั้งแต่ 2011-2016 มี 1466 samples ซึ่งเราจะนำไปใช้สำหรับ train และข้อมูลหลังจากนี้ที่เหลือ (733 samples) ก็จะใช้สำหรับ test

🕨 ใช้ฟังก์ชัน convertToMatrix ในการเปลี่ยนข้อมูลเป็น matrix (X, y)

```
timesteps = 10
# Training set (before conversion)
print('train/test set (before conversion):', train.shape, test.shape)
# เรียกใช้ฟังก์ชัน convertToMatrix เพื่อแปลงข้อมูลเป็น X, y
X_train, y_train = convertToMatrix(train, timesteps)
X_test, y_test = convertToMatrix(test, timesteps)
# Training set (after conversion)
print('train/test set (after conversion):', X train.shape, X test.shape)
train/test set (before conversion): (1466, 5) (733, 5)
train/test set (after conversion): (1456, 10, 5) (723, 10, 5)
# ขนาดและมิติข้อมูลเมื่อแบ่งเรียบร้อยแล้ว
print('X_train shape:', X_train.shape)
print('y_train shape:', y_train.shape)
print('X_test shape:', X_test.shape)
print('y_test shape:', y_test.shape)
X_train shape: (1456, 10, 5)
y_train shape: (1456, 3)
X_test shape: (723, 10, 5)
y_test shape: (723, 3)
```

ก่อนหน้านี้ที่แบ่งข้อมูลเป็น train และ test จะได้ขนาด sample train, test เป็น 1466 และ 733 ตามลำดับ แต่ หลังจากที่นำข้อมูล train, test ไปแปลงเป็นข้อมูล matrix จะมีชนาดเป็น 1456 และ 723 ตามลำดับ เนื่องจากมีการดึงค่าออกไป ใช้เป็นค่า y หลังจากนั้นเราได้ทำการแบ่งเป็น X train, y train, X test, y test ก็จะได้มิติข้อมูล ดังนี้

- Train (1466, 5) → X train (1456, 10, 5) และ y train (1456, 3)
- Test (733, 5) → X test (723, 10, 5) และ y test (723, 3)

<mark>สร้างและเทรนโมเดล</mark>

- ใช้ optimizer adam with learning rate = 0.03
- เทรนด้วยจำนวน epoch = 200
- validation data = X test, y test
- ไม่กำหนดอื่น ๆ เพิ่มเติม ; batch size, drop out เพราะจากการทดลอง ไม่กำหนดเพิ่มจากนี้ได้ผลลัพธ์ที่ดีกว่า

```
from tensorflow.keras import Sequential
from tensorflow.keras.layers import LSTM, Dense, Dropout
from keras.optimizers import Adam
model = tf.keras.models.Sequential([
   tf.keras.layers.LSTM(128, return_sequences=True),
   tf.keras.layers.LSTM(64, return_sequences=True),
   tf.keras.layers.LSTM(32, return_sequences=False),
   tf.keras.layers.Dense(10, activation='relu'),
   tf.keras.layers.Dense(3, activation=None),
   tf.keras.layers.Softmax()
])
optimizer = tf.keras.optimizers.Adam(learning rate=0.03)
loss = tf.keras.losses.CategoricalCrossentropy()
model.compile(loss=loss, optimizer=optimizer, metrics=['accuracy'])
tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir='log')
history = model.fit(X_train, y_train,
                  epochs=200,
                  validation_data=(X_test, y_test),
                  callbacks=[tensorboard_callback])
model.summary()
Model: "sequential"
 Layer (type)
                          Output Shape
                                                  Param #
______
 1stm (LSTM)
                           (None, 10, 128)
                                                  68608
 lstm_1 (LSTM)
                          (None, 10, 64)
                                                  49408
 1stm 2 (LSTM)
                           (None, 32)
                                                  12416
 dense (Dense)
                           (None, 10)
                                                  330
 dense_1 (Dense)
                           (None, 3)
                                                  33
 softmax (Softmax)
                           (None, 3)
_____
Total params: 130,795
Trainable params: 130,795
Non-trainable params: 0
```

Diagram of network:

- LSTM จำนวน 3 ชั้น ต่อด้วย fully connected 1 ชั้น หลังจากนั้นต่อด้วย Output layer (dense) ขนาด 3 Node

<mark>ประเมินโมเดล</mark>

```
# ประเมินโมเดล
loss_test, acc_test = model.evaluate(X_test, y_test, verbose=0)
loss_train, acc_train = model.evaluate(X_train, y_train, verbose=0)

print(f'Accuracy (train set): {acc_train:.3f}')
print(f'Accuracy (test set): {acc_test:.3f}')
print(f'Loss (train set): {loss_train:.3f}')
print(f'Loss (test set): {loss_test:.3f}')

Accuracy (train set): 0.537
Accuracy (test set): 0.420
Loss (train set): 0.700
Loss (test set): 1.736
```


เปรียบเทียบ Accuracy และ Loss ของ Training Set vs Test set

Accuracy และ Loss ของ Training Set

Accuracy และ Loss ของ Test Set

write a code to apply a strategy "hold-one-day when the trend is up" to the test set (2017-2019).

- Calculate the total gain using this strategy and compare it with the buy-and-hold strategy.

```
# วนลูปผ่านข้อมูลทดสอบ
profits hold one day = 0
for i in range(len(X_test)):
   # ทำนายทิศทาง
   prediction = model.predict(X_test[i:i+1, :, :])
   predicted_class = np.argmax(prediction)
   # ตรวจสอบทิศทางการทำนายและดำเนินการตามกลยุทธ์
   close_t_plus_1 = test[i + timesteps, -2] # ราคาปิดของวันที่ 11
   close_t = test[i + timesteps - 1, -2] # ราคาปิดของวันที่ 10
    if predicted_class == 2: # Up trend
       profit = close_t_plus_1 - close_t
       profits_hold_one_day += profit
# คำนวณกำไรของกลยุทธ์ "hold-one-day when the trend is up"
print(f'Total profits with "hold-one-day when the trend is up" strategy: {profits_hold_one_day:.3f} Baht')
# กำไรจากกลยุทธ์ buy-and-hold
buy_and_hold_buy_price = 37.4
buy_and_hold_sell_price = 44.0
buy_and_hold_quantity = 1 # ชื่อหุ้น 1 หน่วย
buy_and_hold_profit = (buy_and_hold_sell_price - buy_and_hold_buy_price) * buy_and_hold_quantity
# แสดงผลลัพธ์กำไรของกลยุทธ์ buy-and-hold
print(f'Profit with buy-and-hold strategy: {buy_and_hold_profit:.3f} Baht')
```

Code ข้างต้นเขียนไว้เพื่อทดสอบกำไรจากกลยุทธ์ "hold-one-day when the trend is up" และเปรียบเทียบกับกลยุทธ์ Buyand-Hold ตามที่ได้ระบุไว้ในโจทย์

โปรแกรมทำงานตามขั้นตอนต่อไปนี้:

- 1. การทำนายและคำนวณกำไรจากกลยุทธิ์ "Hold-One-Day When the Trend is Up":
 - ในลูป for ที่วนลูปผ่านข้อมูลทดสอบ (X_test) โมเดลถูกใช้ในการทำนายทิศทางของราคาหุ้นในแต่ละวัน ทิศทางการทำนายถูกดึงออกมาจาก output layer ของโมเดล (ผลลัพธ์ที่ได้เป็นคลาสที่มีความน่าจะเป็นสูง ที่สุด)
 - หากโมเดลทำนายว่าเป็น Uptrend (predicted_class == 2) ก็จะคำนวณกำไรที่มีจากการซื้อหุ้นในวันที่ 10
 และขายในวันที่ 11
 - กำไรทั้งหมดจะถูกสะสมและแสดงผลที่สิ้นสุดของการทำนาย
- 2. การคำนวณกำไรจากกลยุทธ์ Buy-and-Hold:
 - กำไรจากกลยุทธ์ Buy-and-Hold ถูกคำนวณโดยหาต้นทุนในการซื้อหุ้นในวันที่ 1/4/2017 และกำไรจากการ
 ขายหุ้นในวันที่ 12/30/2019
 - แสดงผลลัพธ์ของกำไรจาก Buy-and-Hold.

Result:

Total profit with "hold-one-day when the trend is up" strategy: 0.693 Baht Profit with buy-and-hold strategy: 6.600 Baht

สรุปผลจากโมเดล (แต่โมเดลยังไม่ได้ดีพอที่จะเชื่อถือ):

- กลยุทธ์ "Hold-One-Day When the Trend is Up" ทำการซื้อ-ขายหุ้นบ่อยกว่าเนื่องจากจะดำเนินการตามทิศทางของ โมเดลทุกวันที่โมเดลทำนายว่าราคาจะเพิ่มขึ้น (Uptrend) ไม่ว่าจะมีกำไรน้อย
- > กลยุทธ์ Buy-and-Hold ซื้อและถือหุ้นไว้จนถึงวันที่ 12/30/2019 โดยไม่มีการขายระหว่างทาง จึงสามารถรับกำไร มากกว่าจากการทำกำไรทุกวันเล็กน้อย
- การเปรียบเทียบระหว่างกลยุทธ์สองแบบนี้บ่งบอกว่า กลยุทธ์ "Hold-One-Day When the Trend is Up" ไม่ได้ให้กำไร มากนักเมื่อเทียบกับ Buy-and-Hold ที่สามารถกำไรมากกว่าได้ แต่นี่หมายถึงผลลัพธ์จากโมเดลนี้ ความจริงควรต้อง ปรับปรุงโมเดลและกลยุทธ์เพื่อให้ทำกำไรได้มากกว่านี้