What Is Claimed Is:

1	 A method of forming a memory cell with a single sided
2	buried strap, comprising the steps of:
3	providing a substrate having a trench;
4	forming a trench capacitor at a lower portion of the trench;
5	forming a collar insulating layer on a sidewall of an upper
6	portion of the trench;
7	forming a first conductive layer above the trench capacitor
8	and filling the trench;
9	removing part of the first conductive layer and part of the
10	collar insulating layer to form a remaining first
11	conductive layer and a remaining collar insulating
12	layer in an opening, wherein the opening has a first
13	sidewall and a second sidewall, and a top surface of
14	the remaining collar insulating layer is lower than
15	that of the remaining first conductive layer;
16	performing an angle implantation with fluorine-containing
17	ions on the first sidewall of the opening;
18	performing a thermal oxidation process to form a first
19	oxide layer on the first sidewall and a second oxide
20	layer on the second sidewall, wherein a thickness of
21	the first oxide layer is greater than that of the
22	second oxide layer;
23	removing the second oxide layer to expose the second
24	sidewall; and
25	forming a second conductive layer serving as a buried strap
26	at a bottom of the opening, wherein the second
27	conductive layer is insulated from the first sidewall
28	by the first oxide layer.

- 1 2. The method according to claim 1, further comprising
- 2 the steps of:
- 3 forming an insulating layer on the second conductive layer;
- 4 forming a gate insulating layer on the second sidewall;
- forming a gate in the opening; and
- forming a source region and a drain region in the substrate.
- 1 3. The method according to claim 1, wherein the formation
- 2 of the trench comprises the steps of:
- forming a patterned pad layer on the substrate; and
- 4 using the pad layer as a mask, removing part of the
- 5 substrate to form a trench in the substrate.
- 1 4. The method according to claim 1, wherein the substrate
- 2 is a silicon substrate.
- 1 5. The method according to claim 3, wherein the pad layer
- 2 comprises an oxide pad layer and a nitride layer.
- 1 6. The method according to claim 1, wherein the collar
- 2 insulating layer is a SiO₂ layer.
- 7. The method according to claim 1, wherein the first
- 2 conductive layer is a doped polysilicon layer.
- 1 8. The method according to claim 1, wherein the
- 2 fluorine-containing ions comprise F and/or BF2 ions.
- 9. The method according to claim 1, wherein an
- 2 implantation energy of the angle implantation is 15~30keV.
- 1 10. The method according to claim 9, wherein a dosage of
- 2 the angle implantation is 1E14~4.5E15 ions/cm².

- 1 11. The method according to claim 1, wherein an operating
- 2 temperature of the thermal oxidation process is 900~950°C.
- 1 12. The method according to claim 1, wherein the second
- 2 conductive layer is a doped polysilicon layer.
- 1 13. The method according to claim 2, wherein the gate
- 2 oxide layer is a SiO₂ layer formed by thermal oxidation.
- 1 14. The method according to claim 13, wherein an operating
- 2 temperature of the thermal oxidation process is 800~1000°C.
- 1 15. A method of forming a memory cell with a single sided
- 2 buried strap, comprising the steps of:
- 3 providing a substrate;
- 4 forming a patterned pad layer on the substrate;
- 5 using the pad layer as a mask, removing part of the
- substrate to form a trench therein;
- 7 forming a trench capacitor at a lower portion of the trench;
- 8 forming a collar insulating layer on a sidewall of an upper
- 9 portion of the trench;
- forming a first conductive layer above the trench capacitor
- and filling the trench;
- removing part of the first conductive layer to a determined
- depth, thus forming a remaining first conductive
- 14 layer;
- removing part of the collar insulating layer to form a
- remaining collar insulating layer in an opening,
- 17 wherein the opening has a first sidewall and a second
- sidewall, and a top surface of the remaining collar

- 19 insulating layer is lower than that of the remaining 20 first conductive layer; performing an angle implantation with fluorine-containing 21 22 ions on the first sidewall of the opening; 23 performing a thermal oxidation process to form a first 24 oxide layer on the first sidewall and a second oxide layer on the second sidewall, wherein a thickness of 25 the first oxide layer is greater than that of the 26 27 second oxide layer; 28 removing the second oxide layer to expose the second sidewall; and 29 forming a second conductive layer serving as a buried strap 30 at a bottom of the opening, wherein the second 31 conductive layer is insulated from the first sidewall 32 33 by the first oxide layer; forming an insulating layer on the second conductive layer; 34 forming a gate insulating layer on the second sidewall; 35 forming a third conductive layer serving as a gate in part 36 37 of the opening; 38 forming an insulating spacer on the sidewall of the 39 opening; forming a fourth conductive layer to fill the opening; 40 forming a fifth conductive layer on the fourth conductive 41 42 layer; and 43 forming a source region and a drain region in the substrate. 1 16. The method according to claim 15, wherein the 2 substrate is a silicon substrate.
 - 1 17. The method according to claim 15, wherein the
 - 2 fluorine-containing ions comprise F and/or BF2 ions.

- 1 18. The method according to claim 15, wherein an
- 2 implantation energy of the angle implantation is 15~30keV and
- 3 a dosage of the angle implantation is 1E14~4.5E15 ions/cm².
- 1 19. The method according to claim 15, wherein an operating
- 2 temperature of the thermal oxidation process is 900~950°C.
- 1 20. The method according to claim 15, wherein the gate
- 2 oxide layer is a SiO₂ layer formed by thermal oxidation.