PCT

WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶: C12N 9/10, 15/82, A01H 5/06

(11) International Publication Number:

WO 97/20040

A1 |

(43) International Publication Date:

5 June 1997 (05.06.97)

(21) International Application Number:

PCT/SE96/01558

(22) International Filing Date:

28 November 1996 (28.11.96)

(30) Priority Data:

9504272-7 9601506-0 29 November 1995 (29.11.95) SE

19 April 1996 (19.04.96) SE

(71) Applicant (for all designated States except US): AMYLOGENE HB [SE/SE]; c/o Svalöf Weibull AB, S-268 81 Svalöv (SE).

(72) Inventors: and

- (75) Inventors/Applicants (for US only): EK, Bo [SE/SE]; Nyhagen, S-740 30 Björklinge (SE). KHOSNOODI, Jamshid [SE/SE]; Bandstolsvägen 3, 2 tr., S-756 48 Uppsala (SE). LARSSON, Clas-Tomas [SE/SE]; Flogstavägen 55 B II, S-752 73 Uppsala (SE). LARSSON, Håkan [SE/SE]; Hammarbygatan 58, S-753 24 Uppsala (SE). RASK, Lars [SE/SE]; Säves väg 14, S-752 63 Uppsala (SE).
- (74) Agent: AWAPATENT AB; P.O. Box 5117, S-200 71 Malmö (SE).

(81) Designated States: AL, AM, AT, AT (Utility model), AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, CZ (Utility model), DE, DE (Utility model), DK, DK (Utility model), EE, EE (Utility model), ES, FI, FI (Utility model), GB, GE, HU, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SK (Utility model), TJ, TM, TR, TT, UA, UG, US, UZ, VN, ARIPO patent (KE, LS, MW, SD, SZ, UG), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).

Published

With international search report.

(54) Title: STARCH BRANCHING ENZYME II OF POTATO

(57) Abstract

The present invention relates to an amino acid sequence of second starch branching enzyme (SBE II) of potato and a fragment thereof as well as to the corresponding isolated DNA sequences. Furthermore, the invention relates to vectors comprising such an isolated DNA sequence, to processes for production of transgenic potatoes, and to the use of said potatoes for the production of starch. The starch obtained will show a changed pattern of branching of amylopectin as well as a changed amylopectin ratio.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AM	Armenia	GB	United Kingdom	MW	Malswi
AT	Austria	GE	Georgia	MX	Mex:co
AU	Australia	GN	Guinea	NE	Nige:
BB	Barbados	GR	Greece	NL	Neth erlands
BE	Belgium	HTU	Hungary	NO	Norvay
BF	Burkina Faso	IE	lreland	NZ	New Zealand
BG	Bulgaria	IТ	Italy	PL	Poland
BJ	Benin	JР	Japan	PT	Portugal
BR	Brazil	KE	Кепув	RO	Romania
BY	Belarus	KG	Kyrgystan	RU	Russian Federation
CA	Canada	KP	Democratic People's Republic	SD	Sud: n
CF	Central African Republic		of Korea	SE	Swe ien
CG	Congo	KR	Republic of Korea	SG	Singapore
CH	Switzerland	KZ	Kazakhstan	SI	Slovenia
CI	Côte d'Ivoire	LJ	Liechtenstein	SK	Slovakia
CM	Cameroon	LK	Sri Lanka	SN	Sent gal
	China	LR	Liberia	SZ	Swaziland
CN	Czechosłovakia	LT	Lithuania	TD	Cha-i
CS CZ	***************************************	LU	Luxembourg	TG	Tog)
DE	Czech Republic	LV	Latvia	TJ	Taji cistan
DK.	Germany Denmark	MC	Monaco	TT	Trinidad and Tobago
		MD	Republic of Moldova	UA	Ukr tine
EE	Estonia	MG	Madagascar	UG	Uganda
ES	Spain	ML	Mali	US	United States of America
FI	Finland	MN	Mongolia	UZ	Uzhekistan
FR	France	MR	Mauritania	VN	Vie: Nam
GA	Gabon	MK	Manitanta		

1

STARCH BRANCHING ENZYME II OF POTATO

The present invention relates to a novel starch branching enzyme of potato. More specifically, the present invention relates to an amino acid sequence of a second starch branching enzyme (SBE II) of potato and a fragment thereof as well as their corresponding DNA sequences. Furthermore, the invention relates to vectors comprising such DNA sequences, to processes for production of transgenic potatoes, and to the use of said potatoes for the production of starch.

Starch is a complex mixture of different molecule forms differing in degree of polymerization and branching of the glucose chains. Starch consists of amylose and amylopectin, whereby the amylose consists of an essentially linear α -1,4-glucan and amylopectin consists of α -1,4-glucans connected to each other via α -1,6-linkages and, thus, forming a branched polyglucan. Thus, starch is not a uniform raw material.

Starch is synthesized via at least three enzymatic reactions in which ADP glucose phosphorylase (EC 2.7.7.27), starch synthase (EC 2.4.1.21) and starch branching enzyme (EC 2.4.1.18) are involved. Starch branching enzyme (SBE, also called Q-enzyme) is believed to have two different enzymatic activities. It catalyzes both the hydrolysis of α -1,4-glucosidic bonds and the formation of α -1,6-glucosidic bonds during synthesis of the branched component in starch, i.e. amylopectin.

Plant starch is a valuable source of renewable raw material used in, for example, the chemical industry (Visser and Jacobsen, 1993). However, the quality of the starch has to meet the demands of the processing industry wherein uniformity of structure is an important criterion. For industrial application there is a need of plants only containing amylose starch and plants only containing amylopectin starch, respectively.

30

2

Processes for altering the amylose/amylopectin ratio in starch have already been proposed. For example, in WO95/04826 there is described DNA sequences encoding debranching enzymes with the ability to reduce or increase the degree of branching of amylopectin in transgenic plants, e.g. potatoes.

In WO92/14827 plasmids are described having DNA sequences that after insertion into the genome of the plants cause changes in the carbohydrate concentration and the carbohydrate composition in regenerated plants. These changes can be obtained from a sequence of a pranching enzyme that is located on these plasmids. This branching enzyme is proposed to alter the amylose/amylopectin ratio in starch of the plants, especially in commercially used plants.

10

15

20

25

30

35

WO92/14827 describes the only hitherto known starch branching enzyme in potato and within the art it is not known whether other starch branching enzymes are involved in the synthesis of branched starch of potato.

In Mol Gen Genet (1991) 225:289-296, Visser et al., there is described inhibition of the expression of the gene for granule-bound starch synthase in potato by antisense constructs. Inhibition of the enzyme in potato tuber starch was up to 100% in which case amylose-free starch was provided.

However, the prior known methods for inhibiting amylopectin have not been that successful and, therefore, alternative methods for inhibiting amylopectin are still highly desirable (Müller-Röber and Ko β mann, 1994; Martin and Smith, 1995).

The object of the present invention is to enable altering the degree of amylopectin branching and the amylopectin/amylose ratio in potato starch.

According to the present invention this object is achieved by providing a novel isolated DNA sequence encoding a second starch branching enzyme, SHE II, and

3

fragments thereof, which after insertion into the genome of the plants cause changes in said branching degree and ratio in regenerated plants.

Within the scope of the present invention there is also included the amino acid sequence of SBE II and fragments thereof.

Also variants of the above DNA sequence resulting from the degeneracy of the genetic code are encompassed.

The novel DNA sequence encoding SBEII, comprising
3074 nucleotides, as well as the corresponding amino acid
sequence comprising 878 amino acids, are shown in SEQ ID
No. 1. One 1393 nucleotides long fragment of the above DNA
sequence, corresponding to nucleotides 1007 to 2399 of the
DNA sequence in SEQ ID No. 1, as well as the corresponding
amino acid sequence comprising 464 amino acids, are shown
in SEQ ID No. 2.

Furthermore, there are provided vectors comprising said isolated DNA-sequences and regulatory elements active in potato. The DNA sequences may be inserted in the sense or antisense (reversed) orientation in the vectors in relation to a promoter immediately upstream from the DNA sequence.

Also there is provided a process for the production of transgenic potatoes with a reduced degree of branching of amylopectin starch, comprising the following steps:

a) transfer and incorporation of a vector according to the invention into the genome of a potato cell, and
b) regeneration of intact, whole plants from the transformed cells.

Finally, the invention provides the use of said transgenic potatoes for the production of starch.

20

25

The invention will be described in more detail below in association with an experimental part and the accompanying drawings, in which

Fig. 1 shows SDS polyacrylamide electrophoresis of proteins extracted from starch of normal potato (lane A)

4

and transgenic potato (lane B). Excised protein bands are marked with arrows. Lane M: Molecular weight marker proteins (kDa).

Fig. 2 shows 4 peptide sequences derived from 5 digested proteins from potato tuber starch.

EXPERIMENTAL PART

10

15

20

25

30

35

Isolation of starch from potato tubers

Potato plants (Solanum tuberosum) were grown in the field. Peeled tubers from either cv. Early Puritan or from a transgenic potato line essentially lacking granule-bound starch synthase I (Svalöf Weibull AB, international application number PCT/SE91/00892), were homogenized at 4°C in a fruit juicer. To the "juice fraction", which contained a large fraction of the starch, was immediately added Tris-HCl, pH 7.5, to 50 mM, Na-dithionite to 30 mM and ethylenedinitrilotetraacetic acid (EDTA) to 10 mM. The starch granules were allowed to sediment for 30 min and washed 4x with 10 bed volumes of washing buffer (50 mM Tris-HCl, pH 7.5, 10 mM EDTA). The starch, which was left on the bench at +4°C for 30 min to sediment between every wash, was finally washed with 3 \times 3 bed volumes of acetone, air dried over night, and stored at -20°C. Extraction of proteins from tuber starch

Stored starch (20 g) was continuously mixed with 200 ml extraction buffer (50 mM Tris-HCl, pH 7.5, 2% (w/v) sodium dodecyl sulfate (SDS), 5 mM EDTA) by aspiration with a pipette at 85°C until the starch was gelatinized. The samples were then frozen at -70°C for 1 hour. After thawing at 50°C, the samples were centrifuged for 20 min at 12,000xg at 10°C. The supernatants were collected and re-centrifuged at 3,000xg for 15 min. The final supernatants were filtered through 0.45 μ filters and 2.25 volumes of ice-cold acetone were added. After 30 min incubation at 4°C, the protein precipitates were collected by centrifugation (3,000xg for 30 min at 4°C), and

dissolved in 50 mM Tris-HCl, pH 7.5. An aliquot of each preparation was analyzed by SDS poly-acrylamide gel electrophoresis according to Laemmli (1970) (Fig. 1). The proteins in the remaining portions of the preparations were concentrated by precipitation with trichloroacetic acid (10%) and the proteins were separated on an 8% SDS polyacrylamide gel Laemmli, (1970). The proteins in the gel were stained with Coomassie Brilliant Blue R-250 (0.2% in 20% methanol, 0.5% acetic acid, 79.5% H₂O).

10 In gel digestion and sequencing of peptides

The stained bands marked with arrows in Fig. 1 corresponding to an apparent molecular weight of about 100 kDa were excised and washed twice with 0.2M $\rm NH_4HCO_3$ in 50% acetonitrile under continuous stirring at 35°C for 20 min.

- After each washing, the liquid was removed and the gel pieces were allowed to dry by evaporation in a fume hood. The completely dried gel pieces were then separately placed on parafilm and 2 μ l of 0.2M NH₄CO₃, 0.02% Tween-20 were added. Modified trypsin (Promega, Madison,
- WI,USA) (0.25 μ g in 2 μ l) was sucked into the gel pieces whereafter 0.2M NH₄CO₃ was added in 5 μ l portions until they had resumed their original sizes. The gel slices were further divided into three pieces and transferred to an Eppendorf tube. 0.2M NH₄CO₃ (200 μ l) was added and the
- proteins contained in the gel pieces were digested over night at 37°C (Rosenfeld et al. 1992). After completed digestion, trifluoroacetic acid was added to 1% and the supernatants removed and saved. The gel pieces were further extracted twice with 60% acetonitrile, 0.1% tri-
- fluoroacetic acid (200 μ l) under continuous shaking at 37°C for 20 min. The two supernatants from these extractions were combined with the first supernatant. The gel pieces were finally washed with 60% acetonitrile, 0.1% trifluoroacetic acid, 0.02% Tween-20 (200 μ l). Also these
- 35 supernatants were combined with the other supernatants and the volume was reduced to 50 μl by evaporation. The

extracted peptides were separated on a SMART® chromatography system (Pharmacia, Uppsala, Sweden) equipped with a μ RPC C2/C18 SC2.1/10 column. Peptides were eluted with a gradient of 0 - 60% acetonitrile in water/0.1% trifluoroacetic acid over 60 min with a flow rate of 100 μ l/min. Peptides were sequenced either on an Applied Biosystems 470A gas phase sequenator with an on line PTH-amino acid analyzer (120A) or on a model 476A according to the instructions of the manufacturer (Applied Biosystems, Foster City, CA, USA).

Four of the peptides sequenced gave easily interpretable sequences (Fig. 2). A data base search revealed that these four peptides displayed similarity to starch branching enzymes and interestingly, the peptides were more related to starch branching enzyme II from other plant species than to starch branching enzyme I from potato.

Construction of oligonucleotides encoding peptides 1 and 2.

Degenerated oligonucleotides encoding peptide 1 and peptide 2 were synthesized as forward and reverse primers, respectively:

Oligonucleotide 1: 5'-gtaaaacgacggccagt-TTYGGNGTNTGGGARATHTT-3' (Residues 2 to 8 of peptide 1)

Oligonucleotide 2: 5'-aattaaccctcactaaaggg-CKRTCRAAYTCYTGIARNCC-3' (Residues 2 to 8 of peptide 2, reversed strand)

wherein

10

15

H is A, C or T, I is inosine; K is G or T; N is A, C, G or T; R is A or G; Y is C or T; bases in lower case were added as tag sequences.

7

Purification of mRNA from potato tuber, synthesis of cDNA and PCR amplification of a cDNA fragment corresponding to potato starch branching enzyme II.

Total RNA from mature potato tubers ($S.\ tuberosum\ cv.$ Amanda) was isolated as described (Logemann et al. 1987). First strand cDNA was synthesized using 2 μg of total RNA and 60 pmol of oligo- dT_{30} as downstream primer. The primer was annealed to the polyA of the mRNA at 60°C for 5 min. The extension of the cDNA was performed according to the technical manual of the manufacturer using the Riboclone® cDNA Synthesis System M-MLV (H-)(Promega).

10

cDNA encoding the novel starch branching enzyme II according to the invention was amplified in a Perkin-Elmer GeneAmp® 9600 PCR thermocycler (Perkin-Elmer Cetus

- Instruments, CT, USA) using the two degenerate primers designed from the peptides 1 and 2 (see above) under the following conditions: 1 mM dNTP, 1 μ M of each primer and an alicot of the cDNA described above in a total reaction volume of 20 μ l with 1x AmpliTaq® buffer and 0,8 U
- AmpliTaq® (Perkin-Elmer Cetus). The cycling conditions were: 96°C for 1', 80°C while the enzyme was added as a hotstart (approximately 15'), an unintended drop to 25°C, five cycles of 94°C for 20", 45°C for 1', ramp to 72°C for 1' and 72°C for 2', and 30 cycles of 94°C for 5", 45°C for 30", and 72°C for (2'+2" per cycle) and completed with 72°C
- 25 30", and 72°C for (2'+2" per cycle) and completed with 72°C for 10' prior to chilling to 4°C.

A sample of this reaction (0.1 µl) was reamplified using the cycling conditions: 96°C for 1', 80°C while the enzyme was added as a hotstart (approximately 5'), five cycles of 94°C for 20'', 45°C for 1', and 72°C for 2', and 25 cycles of 94°C for 5'', 45°C for 30'', and 72°C for (2' + 2'' per cycle) and completed with 72°C for 10' prior to chilling to 4°C. After completion of the PCR amplification, the reaction was loaded on a 1.5% Seakem[®] agarose gel (FMC Bioproducts, Rockland, ME, USA). After electrophoresis and staining with ethidium bromide a major

8

band with an apparent size of 1500 bp was exclsed and the fragment was eluted by shaking in water (200 μ l) for 1 h. This fragment was used as template in sequencing reactions after reamplification using primers corresponding to the tag sequences (in oligonucleotides 1 and 2), purification by agarose gel electrophoresis as above and extraction from the gel using the Qiaex® gel extraction kit according to the manufacturer's instructions (DIAGEN GmbH, Hilden, Germany). The sequencing reactions were done using the DyeDeoxy® Terminator Cycle Sequencing kits (Perkin-Elmer Cetus Instruments) using tag sequences and internal primers. The sequencing reaction were analyzed on an Applied Biosystems 373A DNA sequencer according to the manufacturer's protocols. The sequence was edited and comprised 1393 bp.

10

15

20

25

30

35

To complete the determination of the sequence of starch branching enzyme II, the 5' and 3' ends of the full length cDNA were amplified from the same total RNA as above using rapid amplification of cDNA ends, RACE, methodology with specific primers from the 1393 bp sequence. In the 3' end amplification, an oligo $T_{29}G$ primer was used against the poly A tail and in the 5' end, the 5'/3' RACE kit from Boehringer Mannheim (Cat. No. 1734792) was used. The fragments from these amplifications were sequenced in the same way as above using internal and end primers. The sequences from the two ends were aligned together with the 1393 base pairs to give a composite full length cDNA sequence. Primers were designed from this sequence to amplify the whole coding region in one part. Partial sequencing of the amplified coding cDNA confirmed the presence of a cDNA corresponding to the composite sequence. The full length cDNA is 3074 bp and the translated sequence comprises 878 amino acids. The mature protein comprises 830 amino acids.

Comparisons of the consensus sequence with the EMBL and GenBank databases showed 68% identity to ootato starch

9

branching enzyme I and about 80% identity to starch branching enzyme II from other plant species. The present inventors therefore denote the enzyme encoded by the new branching enzyme sequence potato starch branching enzyme II.

Transformation of potato plants

5

10

15

20

25

30

The isolated full length cDNA of potato starch branching enzyme II and other functionally active fragments in the range of 50-3 074 bp are cloned in reverse orientation behind promoters active in potato tubers. By the term "functionally active" is meant fragments that will affect the amylose/amylopectin ratio in potato starch. The DNA and amino acid sequence of SBE II according to the invention as well as one fragment of the DNA and corresponding amino acid sequence are shown in SEQ ID No. 1 and 2, respectively.

The promoters are selected from, for example, the patatin promoter, the promoter from the potato granule-bound starch synthase I gene or promoters isolated from potato starch branching enzymes I and II genes.

The constructs are cloned by techniques known in the art either in a binary Ti-plasmid vector suitable for transformation of potato mediated by Agrobacterium tumefaciens, or in a vector suitable for direct transformation using ballistic techniques or electroporation. It is realized that the sense (see below) and antisense constructs must contain all necessary regulatory elements.

Transgenic potato plants transcribe the inverse starch branching enzyme II construct specifically in tubers, leading to antisense inhibition of the enzyme. A reduction and changed pattern of the branching of amylopectin as well as a changed amylose/amylopectin ratio thereby occur in tuber starch.

The antisense construct for potato starch branching enzyme II is also used in combination with antisense

10

constructs for potato starch branching enzyme I, for potato granule-bound starch synthase II, for potato soluble starch synthases II and III, for potato starch disproportionating enzyme (D-enzyme) or for potato starch debranching enzyme to transform potato to change the degree of branching of amylopectin and the amylose/amylopectin ratio. This gives new and valuable raw material to the starch processing industry.

The full-length cDNA, sequence encoding the enzyme is,
in different constructs, cloned in sense orientation
behind one or more of the promoters mentioned above, and
the constructs are transferred into suitable transformation vectors as described above and used for the
transformation of potato. Regenerated transformed potato

plants will produce an excess of starch branching enzyme
II in the tubers leading to an increased degree and
changed pattern of branching of amylopectin or to
inhibition of transcription of endogenous starch branching
enzyme II transcription due to co-suppression, resulting
in a decreased branching of amylopectin.

10

References

Müller-Röber, B., Koβmann, J., (1994) Approaches to influence starch quantity and starch quality in transgenic plants. Plant Cell Environm. 17, 601-613.

Martin, C., Smith, A. (1995) Starch Biosynthesis. Plant Cell 7, 971-985.

- Laemmli, U.K. (1979) Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227, 680-685.
- Logemann, J., Schell, J. and Willmitzer, L. (1987) Improved method for the isolation of RNA from plant tissues. Anal. Biochem. 163, 16-20.
- Rosenfeld, J., Capdeville, J, Guillemot, J.C., Ferrara, P. (1992) In-gel digestion of proteins for internal sequence analysis after one- or two-dimensional gel electrophoresis. Anal. Biochem. 203, 173-179.
- Visser, R.G.F., Jacobsen, E. (1993) Towards modifying 25 plants for altered starch content and composition. TibTech 11, 63-68.

PCT/SE96/01558 WO 97/20040

SEO ID No. 1

Sequenced molecule: cDNA
Name: beII gene (branching enzyme II) from Solanum
tuberosum (potato)
Length of sequence: 3074 bp

CTCAG	CAA ATT	TT T CC A ATG	GACA ACCA GTG	CTCA AGGA TAT	G TT A TG	AGTT AATA CTC Leu	ACAC AAAA TCT	TNC GAT	CATC AGAT GTT	act TTG CGT	TATC TAAA TTT Phe	agat Aacc CCT	CT C CT A ACT	TATT AGGA GTT		60 120 180 230
TCA C													Arg			278
GCT A																326
TTG (374
GCA (Ala A																422
TCA :																470
TCC (518
CAG :			Thr													566
						GAT Asp 85										614
						TCT Ser					Thr					662
					Asp	AGG Arg										710
				Lys		TAT			Asp							758
			Lev			AGG Arg		Ser					Leu		GAG Glu	806

		Asp					Gly					Sez			TAT	854
Glu 175	Lys	Met	. Gly	Phe	180	Arg	Ser	Ala	Thr	Gly 185	Ile	Thr	Ту	Arq	GAG Glu 190	902
Trp	Ala	Pro	Gly	Ala 195	Gln	Ser	Ala	Ala	Leu 200	Ile	Gly	Asp	Phe	205		950
Trp	Asp	Ala	Asn 210	Ala	Asp	Ile	Met	Thr 215	Arg	Asn	Glu	Phe	Gly 220	Val	TGG Trp	998
Glu	Ile	Phe 225	Leu	Pro	Asn	Asn	Val 230	Asp	Gly	Ser	Pro	Ala 235	Ile	Pro	CAT His	1046
GGG Gly	TCC Ser 240	Arg	GTG Val	AAG Lys	ATA Ile	CGT Arg 245	ATG Met	Asp	ACT Thr	CCA Pro	TCA Ser 250	Gly	GTI Val	Lys	GAT Asp	1094
					ATC Ile 260											1142
CCA Pro	TAT	AAT Asn	GGA Gly	ATA Ile 275	TAT	TAT Tyr	GAT Asp	CCA Pro	CCC Pro 280	GAA Glu	GAG Glu	GAG Glu	AGG	TAT Tyr 285	ATC	1190
Phe	Gln	His	Pro 290	Arg	CCA Pro	Lys	Lys	Pro 295	Lys	Ser	Leu	Arg	Ile 300	Tyr	Glu	1238
Ser	His	Ile 305	Gly	Met	AGT Ser	Ser	Pro 310	Glu	Pro	Lys	Ile	Asn 315	Ser	Tyr	Val	1286
Asn	Phe 320	Arg	Asp	Glu	GTT Val	Leu 325	Pro	Arg	Ile	Lys	Lys 330	Leu	Gly	Tyr	Asn	1334
Ala 335	Val	Gln	Ile	Met	GCT Ala 340	Ile	Gln	Glu	His	Ser 345	Tyr	Tyr	Ala	Ser	Phe 350	1382
Gly	Tyr	His	Val	Thr 355	AAT Asn	Phe	Xaa	Ala	Pro 360	Ser	Ser	Arg	Phe	Gly 365	Thr	1430
Pro	Asp	Asp	Leu 370	Lys	TCT Ser	Leu	Ile	Азр 375	Lys	Ala	His	Glu	Leu 380	Gly	Ile	1478
GTT Val	GTT Val	CTC Leu 385	ATG Met	GAC Asp	ATT Ile	GTT Val	CAC His 390	AGC Ser	CAT His	GCA Ala	TCA Ser	AAT Asn 395	AAT Asn	ACT Thr	TTA Leu	1526
GAT Asp	GGA Gly 400	CTG Leu	AAC Asn	ATG Met	TIT Phe	GAC Asp 405	GGC Gly	ACA Thr	GAT Asp	AGT Ser	TGT Cys 410	TAC Tyr	TTT Phe	CAC His	TCT Ser	1574

GGA GCT CGT GGT TAT CAT TGG ATG TGG GAT TCC CGC CTC TTT AAC TAT Gly Ala Arg Gly Tyr His Trp Met Trp Asp Ser Arg Leu Phe Asn Tyr 415 420 425 430	1622
GGA AAC TGG GAG GTA CTT AGG TAT CTT CTC TCA AAT GCG AGA TGG TGG Gly Asn Trp Glu Val Leu Arg Tyr Leu Leu Ser Asn Ala Arg Trp Trp 435 440 445	1670
TTG GAT GAG TTC AAA TTT GAT GGA TTT AGA TTT GAT GGT GTG ACA TCA Leu Asp Glu Phe Lys Phe Asp Gly Phe Asp Gly Val Thr Ser 450 455 460	1718
ATG ATG TAT ACT CAC CAC GGA TTA TCG GTG GGA TTC ACT GGG AAC TAC Met Met Tyr Thr His His Gly Leu Ser Val Gly Phe Thr Gly Asn Tyr 465 470 475	1766
GAG GAA TAC TIT GGA CTC GCA ACT GAT GTG GAT GCT GTT GTG TAT CTG Glu Glu Tyr Phe Gly Leu Ala Thr Asp Val Asp Ala Val Val Tyr Leu 480 485 490	1814
ATG CTG GTC AAC GAT CTT ATT CAT GGG CTT TTC CCA GAT GCA ATT ACC Met Leu Val Asn Asp Leu Ile His Gly Leu Phe Pro Asp Ala Ile Thr 495 500 505 510	1862
ATT GGT GAA GAT GTT AGC GGA ATG CCG ACA TTT TNT ATT CCC GTT CAA Ile Gly Glu Asp Val Ser Gly Met Pro Thr Phe Xaa Ile Pro Val Gln 515 520 525	1910
GAT GGG GGT GTT GGC TTT GAC TAT CGG CTG CAT ATG GCA ATT GCT GAT Asp Gly Gly Val Gly Phe Asp Tyr Arg Leu His Met Ala Ile Ala Asp 530 540 AAA TGG ATT GAG TTG CTC AAG AAA CGG GAT GAG GAT TGG AGA GTG GGT	1958
Lys Trp Ile Glu Leu Leu Lys Lys Arg Asp Glu Asp Trp Arg Val Gly 545 550 555 GAT ATT GTT CAT ACA CTG ACA AAT AGA AGA TGG TCG GAA AAG TGT GTT	2006
Asp Ile Val His Thr Leu Thr Asn Arg Arg Trp Ser Glu Lys Cys Val 560 565 570 TCA TAC GCT GAA AGT CAT GAT CAA GCT CTA GTC GGT GAT AAA ACT ATA	2054
Ser Tyr Ala Glu Ser His Asp Gln Ala Leu Val Gly Asp Lys Thr Ile 575 580 585 590 GCA TTC TGG CTG ATG GAC AAG GAT ATG TAT GAT TTT ATG GCT CTG GAT	2102
Ala Phe Trp Leu Met Asp Lys Asp Met Tyr Asp Phe Met Ala Leu Asp 595 600 605 AGA CCN TCA ACA TCA TTA ATA GAT CGT GGG ATA GCA TTG CAC AAG ATG	
Arg Pro Ser Thr Ser Leu Ile Asp Arg Gly Ile Ala Leu His Lys Met 610 615 620	2198
****** ***** **** **** **** **** **** ****	2046
ATT AGG CTT GTA ACT ATG GGA TTA GGA GGA GAA GGG TAC CTA AAT TTC Ile Arg Leu Val Thr Met Gly Leu Gly Gly Glu Gly Tyr Leu Asn Phe 625 630 635	2246
Ile Arg Leu Val Thr Met Gly Leu Gly Gly Gly Gly Tyr Leu Asn Phe	2246 2294 2342

								T D								
WO 97/20040															PCT/	SE96/01558
TAT	GAT	AAA	TGC	AGA	CGG	AGA	TTT	GAC	CTG	GGA	GAT	GCA	GAA	TAT	TTA	2390
Tyr	Asp	Lys	Суз	Arg	Arg	Arg	Phe	Asp	Leu	Gly	Asp	Ala	Glu	Tyr	Leu	2070
				675					680		_			685		
AGA	TAC	CGT	GGG	TTG	CAA	GAA	TTT	GAC	CGG	GCT	ATG	CAG	TAT	CTT	GAA	2438
Arg	Tyr	Arg			Gln	Glu	Phe			Ala	Met	Gln		Leu	Glu	
			690					695					700			
GAT	AAA	TAT	GAG	للملمك	ATC	AСT	ፐርል	CAA	CAC	CAC	TTC	a ma	TO N			
Asp	Lys	Tyr	Glu	Phe	Met	Thr	Ser	Glu	His	Gin	Phe	TIA	Ser	A-C	Tare	2486
•	-	705					710				2116	715	SEL	Ary	Lys	
GAT	GAA	GGA	GAT	AGG	ATG	ATT	GTA	TTT	GAA	AAA	GGA	AAC	CTA	GTT	TTT	2534
Asp	Glu	Gly	Asp	Arg	Met	Ile	Val	Phe	Glu	Lys	Gly	Asn	Leu	Val	Phe	2004
	720					725					730					
GIC	TTT	AAT	TTT	CAC	TGG	ACA	AAA	AGC	TAT	TCA	GAC	TAT	CGC	ATA	GGC	2582
735	Pne	Asn	Pne	MI.S	740	inr	Lys	Ser	Tyr		Asp	Tyr	Arg	Ile	-	
733					740					745					750	
TGC	CTG	AAG	CCT	GGA	AAA	TAC	AAG	GTT	GCC	TTG	GAC	TCA	САТ	CAT	CCA	2630
Cys	Leu	Lys	Pro	Gly	Lys	Tyr	Lys	Val	Ala	Leu	Asp	Ser	Asp	Asp	Pro	2630
				755					760		•			765		
CIT	TTT	GGT	GGC	TTC	GGG	AGA	ATT	GAT	CAT	AAT	GCC	GAA	TAT	TTC	ACC	2678
Leu	Phe	GIY	770	Phe	GIA	Arg	Ile		His	Asn	Ala	Glu		Phe	Thr	
			,,,					775					780			
TTT	GAA	GGA	TGG	TAT	GAT	GAT	CCT	CCT	CCT	ጥሮል	ATT	እጥሮ	ст с	m s m	CO3	0701
Phe	Glu	Gly	Trp	Tyr	Asp	Asp	Arg	Pro	Ara	Ser	Ile	Met	Val	TALL TALL	λla	2721
		785	-	_	•	•	790					795	141	171	ALG.	
CT	AGT	AGA	ACA	GCA	GTG	GTC	TAT	GCA	CTA	GTA	GAC	AAA	GAA	GAA	GAA	2774
Pro	Ser	Arg	Thr	Ala	Val	Val	Tyr	Ala	Leu	Val	Asp	Lys	Glu	Glu	Glu	
	800					805					8 10					
GAA	GAA	GAA	GAA	מייב	CC.V	CTD A	CTA	C 3 3	~ 2 2	COD 3	~~~	~~~	~~~			
Glu	Glu	Glu	Glu	Val	Ala	Val	Val	CHA	GAA	Ual	Unl	GIA V-1	GAA	GAA	GAA	2822
815					820			-1	O1u	825	AGT	Val	GIU		830	
TGA	ACGA	A CT	TGTG	ATCG	CGT	TGAA	AGA	TTTG	AAGG	CT A	CATA	GAGC	T TC	TTGA	CGTA	2880

w-m-	~~x x	מו עימו	mco3	m~3 ^		maa-										
TCIG	TAMP TAMP	ли Т Мот	T GCW	יעעט. העעטי	T CT	TGGC	GGAA CCRC	TTT	CATG	TGA	CAAA	AGGT	TT G	CAAT	TCTTT	2940
TCGA	TGAA	TT T	ATGT	CGAA	TGC	LCCC VINO	ACC:	CC-m	ሊያ ገርያ	CAC	CLCC	ACAA	AC A'	TATG	TAAAA ITCTG	3000
TAAA	TIGI	CA T	crc			_ 000		GC1	ı CAG	CAG.	GIII	IGCT.	IA G	1 GAG	FICIG	3060
		_														3074

PCT/SE96/01558 WO 97/20040

SEO ID No. 2

Sequenced molecule: cDNA
Name: beII gene fragment (branching enzyme II) from
Solanum tuberosum (potato)
Length of sequence: 1393 bp

Le	G CC u Pr 1	A AA' o As	T AA n As	n Va	G GA 1 As 5	T GG p Gl	T TC y Se	T CC r Pr	o Al	A AT a Il	T CC e Pr	T CA	T GG s Gl	y Se	C AGA r Acg 5	49
GTG Val																97
GCT Ala																145
											TAT Tyr 60					193
											TAT Tyr					241
											TAC Tyr					289
GAT Asp	GAA Glu	GTT Val	CTT Leu 100	CCT Pro	CGC Arg	ATA Ile	AAA Lys	AAG Lys 105	CTT Leu	GGG	TAC Tyr	AAT Asn	GCG Ala 110	GTG Val	CAP. Glr	337
											AGT Ser					385
		Asn					Ser				GGA Gly 140					433
CTT Leu 145	Lys	TCT Ser	TTG Leu	Ile	GAT Asp 150	Lys	GCT Ala	CAT His	GAG Glu	Leu 155	GGA Gly	ATT Ile	GTT Val	GTT Val	CTC Len 160	481
					Ser					Asn	ACT Thr				Len	529
				Gly					Тух		CAC His			Ala	Arg	577
GGI Gly	TAT	CAT His	Tr	Met	TGG Trp	GAT Year	7 TCC Ser 200	Arç	CTC	TTI Phe	AAC Asn	TAT Tyr 205	Gly	AAC Asr	TG3	625
		l Le					Seı د					Trp			GA3	673

		TTT Phe									Thr				TAT Tyr 240	721
		CAC His													Tyr	769
TTT Phe	GGA Gly	CTC Leu	GCA Ala 260	ACT Thr	GAT Asp	GTG Val	GAT Asp	GCT Ala 265	GTT Val	GTG Val	TAT	CTG Leu	ATG Met 270	Leu	GTC Val	812
AAC Asn	GAT Asp	CTT Leu 275	ATT Ile	CAT His	GGG	CTT Leu	TTC Phe 280	CCA Pro	GAT Asp	GCA Ala	ATT	ACC Thr 285	ATT	Gly	GAA Glu	865
GAT Asp	GTT Val 290	AGC Ser	GGA Gly	ATG Met	CCG Pro	ACA Thr 295	TTT Phe	TNT Xaa	ATT	CCC Pro	GTT Val 300	CAA Gln	GAT Asp	GGG Gly	GGT Gly	913
		TTT Phe														961
		CTC Leu														1019
His	Thr	CTG Leu	Thr 340	Asn	Arg	Arg	Trp	Ser 345	Glu	Lys	Cys	Val	Ser 350	Tyr	Ala	1057
Glu	Ser	CAT His 355	Asp	Gln	Ala	Leu	Val 360	Gly	Asp	Lys	Thr	Ile 365	Ala	Phe	Trp	1105
	Met 370	Asp	Lys	Asp	Met	Tyr 375	Asp	Phe	Met	Ala	Leu 380	Asp	Arg	Pro	Ser	1153
385	Ser	Leu	Ile	Asp	Arg 390	Gly	Ile	Ala	Leu	His 395	Lys	Met	Ile	Arg	Leu 400	1201
GTA Val	Thr	Met	Gly	Leu 405	Gly	Gly	Glu	Gly	Tyr 410	Leu	Asn	Phe	Met	Gly 415	Asn	1249
GAA Glu	Phe	Gly	His 420	Pro	Glu	Trp	Ile	Asp 425	Phe	Pro	Arg	Ala	Glu 430	Gln	His	1297
CTC Leu	Ser	Asp 435	Gly	Ser	Val	Ile	Pro 440	Gly	Asn	Gln	Phe	Ser 445	Tyr	Asp	Lys	1345
TGC . Cys .	AGA Arg 450	CGG Arg	AGA Arg	TTT Phe	GAC Asp	CTG Leu 455	GGA Gly	GAT Asp	GCA Ala	GAA Glu	TAT Tyr 460	TTA Leu	AGA Arg	TAC Tyr	CGT Arg	1393

18

CLAIMS

- An amino acid sequence of starch branching enzyme
 II (SBE II) comprising the amino acid sequence as shown in SEO ID No. 1.
 - 2. Fragments of the amino acid sequence of starch branching enzyme II (SBEII).
- 3. A fragment according to claim 2, having the amino acid sequence as shown in SEQ ID No. 2.
 - 4. An isolated DNA sequence encoding starch branching enzyme II (SBE II) of potato comprising the nucleotide sequence as shown in SEQ ID No. 1 variants thereof resulting from the degeneracy of the genetic code.
- 5. Fragments of the isolated DNA sequence encoding starch branching enzyme II (SBEII) of potato.
 - 6. A fragment according to claim 5, comprising the nucleotide sequence as shown in SEQ ID No. 2.
- 7. A vector comprising the whole or a functionally active part of the isolated DNA sequence claimed in any one of claims 4-6 and regulatory elements active in potato.

25

30

- 8. A vector according to claim 7, wherein the DNA sequence is in the antisense (reversed) orientation in relation to a promoter immediately upstream from the DNA sequence.
- 9. A process for the production of transgenic potatoes with either an increased or a decreased degree of branching of amylopectin starch, c h a r a c t e r i z e d in that it comprises the following steps:
- a) transfer and incorporation of a vector according to claim 7 into the genome of a potato cell, and
- b) regeneration of intact, whole plants from the transformed cells.
- 35 10. A process for the production of transgenic potatoes with a reduced degree of branching of amylopectin

WO 97/20040

15

19

PCT/SE96/01558

starch, c h a r a c t e r i z e d in that it comprises the following steps:

- a) transfer and incorporation of a vector according to claim 8 into the genome of a potato cell, and
- b) regeneration of intact, whole plants from the transformed cells.
 - 11. A process according to claim 10, wherein the vector also comprises an antisense construct of starch branching enzyme I (SBE I).
- 10 12. A process according to claims 10 or 11, wherein the vector also comprises an antisense construct of potato granule bound starch synthase II.
 - 13. A process according to one or more of claims 10-12, wherein the vector also comprises an antisense construct of potato soluble starch synthases II and III.
 - 14. A process according to one or more of claims 10-13, wherein the vector also comprises an antisense construct of potato starch disproportionating enzyme (Denzyme).
- 20 15. A process according to one or more of claims 10-14, wherein the vector also comprises an antisense construct of potato starch debranching enzyme.
 - 16. A transgenic potato obtainable by the process according to any one of claims 9-15.
- 25 17. Use of transgenic potatoes according to claim 16 for the production of starch.

SUBSTITUTE SHEET

2/2

FIG. 2

Peptide 1. EFGVWEIFLPN

Peptide 2. HGLQEFDRA

Peptide 3. ENDGIAAKADE

Peptide 4. YEIDPEI/LTN

INTERNATIONAL SEARCH REPORT

International application No.

PCT/SE 96/01558

A. CLASSIFI	ICATION OF SUBJECT MATTER		
IPC6: C12	N 9/10, C12N 15/82, A01H 5/06 ternational Patent Classification (IPC) or to both na	ational classification and IPC	
B. FIELDS S	EARCHED		
Minimum docum	mentation scarched (classification system followed by	classification symbols)	
IPC6: C12	N		
Documentation	searched other than minimum documentation to the	extent that such documents are included in	the fields searched
SE,DK,FI,	NO classes as above		
Electronic data t	base consulted during the international search (name	of data base and, where practicable, search	terms used)
WPI, CA,	BIOSIS, EMBL/GENBANK/DDBJ		
	ENTS CONSIDERED TO BE RELEVANT		
Category* Ci	tation of document, with indication, where app	propriate, of the relevant passages	Relevant to claim No.
X W	O 9504826 A1 (INSTITUT FÜR GENE FORSCHUNG BERLIN GMBH), 16 F (16.02.95), see abstract and	ebruary 1995	1-17
x W	O 9214827 A1 (INSTITUT FÜR GENE FORSCHUNG BERLIN GMBH), 3 Se see page 5, line 1-7 and exa	pt 1992 (03.09.92),	1-17
A S	E 467160 B (AMYLOGENE HANDELSBO (01.06.92)	DLAG), 1 June 1992	1-17
			
Further d	ocuments are listed in the continuation of Box	C. X See patent family annex	
	gories of cited documents: estimate the general state of the art which is not considered	"T" later document published after the inte- date and not in conflict with the applic	ation but cited to understand
to be of part	ticular relevance nent but published on or after the international filing date	the principle or theory underlying the i	
"L" document wi	hich may throw doubts on priority claim(s) or which is blish the publication date of another citation or other	"X" document of particular relevance: the considered novel or cannot be considered step when the document is taken alone	red to involve an inventive
special reaso	on (as specified) eferring to an oral disclosure, use, exhibition or other	"Y" document of particular relevance: the considered to involve an inventive step	when the document is
"P" document put the priority of	ublished prior to the international filing date but later than date claimed	combined with one or more other such being obvious to a person skilled in the "&" document member of the same patent	e art
Date of the act	tual completion of the international search	Date of mailing of the international s	
		Õ 1 -03- 1997	-
27 Februar	ry 1997 iling address of the ISA/	Authorized officer	
Swedish Pate	-	Authorized officer	
Box 5055, S-1	102 42 STOCKHOLM	Yvonne Siösteen	
Facsimile No.	+ 46 8 666 02 86	Telephone No. + 46 8 782 25 00	

INTERNATIONAL SEARCH REPORT

Information on patent family members

International application No.
PCT/SE 96/01558

	ocument arch report	Publication date	Pater me	Publication date	
WO-A1-	9504826	16/02/95	AU-A- EP-A- CA-A- DE-A- HU-A- HU-D- IL-D-	7535294 0713531 2169174 4327165 73740 9600285 110583	28/02/95 29/05/96 16/02/95 16/02/95 30/09/96 00/00/00
WO-A1-	9214827	03/09/92	AU-B- AU-A- CA-A- DE-A- EP-A- HU-A-	663072 1226592 2104123 4104782 0571427 65740	28/09/95 15/09/92 14/08/92 20/08/92 01/12/93 28/07/94
SE-B-	467160	01/06/92	AU-A- EP-A- PL-B- SE-A- WO-A-	9109791 0563201 169859 9004095 9211375	22/07/92 06/10/93 30/09/96 01/06/92 09/07/92

Form PCT/ISA/210 (patent family annex) (July 1992)