OBLICZENIA NAUKOWE

Lista nr 3¹

- **zad. 1** Niech $[a_0, b_0], [a_1, b_1], \ldots$ będzie ciągiem przedziałów skonstruowanych za pomocą metody bisekcji zastosowanej do wyznaczenia zera funkcji ciągłej w przedziale $[a_0, b_0]$ oraz niech $c_n = (a_n + b_n)/2$, $\lim_{n\to\infty} c_n = r$ i $e_n = r c_n$.
 - (a) Czy relacja $|e_0| \ge |e_1| \ge \cdots$ jest prawdziwa?
 - (b) Pokaż, że $[a_n, b_n] \supseteq [a_{n+1}, b_{n+1}]$ dla wszystkich $n \ge 0$.

zad. 2

- (a) (Forsythe i Inni 1977) Obliczyć środek c_n przedziału $[a_n, b_n]$ (w metodzie bisekcji) w systemie zmiennopozycyjnym dziesiętnym z trzycyfrową mantysą z **obcięciem** $(z = \pm m_z 10^c, m_z \in [0.1, 1))$ za pomocą wzoru $c_n = (a_n + b_n)/2$ dla $a_n = 0.982$ i $b_n = 0.987$.
- (b) Podprzedział w metodzie bisekcji, w którym funkcja zmienia znak można wyznaczyć sprawdzając warunek $f(a_n)f(c_n) < 0$ (nie jest to zalecane). Rozważmy w arytmetykę single zgodną ze standardem IEEE 754. Sprawdzić w tej arytmetyce warunek $f(a_n)f(c_n) < 0$ dla $f(a_n) = -10^{-23}$, $f(c_n) = 10^{-23}$ oraz dla $f(a_n) = -10^{19}$, $f(c_n) = 10^{20}$. Sprawdzić również w jezyku Julia.
- zad. 3 Rozważmy metodę bisekcji z przedziałem początkowym [1.5, 3.5].
 - (a) Jaka jest szerokość przedziału w n-tym kroku metody?
 - (b) Jaka jest możliwa maksymalna odległość między pierwiastkiem r a środkiem tego przedziału w n-tym kroku?
- zad. 4 Rozważmy metodę bisekcji zaimplementowaną w arytmetyce single (IEEE 754) i z przedziałem początkowym [128, 129].
 - (a) Czy można obliczyć pierwiastek z błędem bezwzględnym $< 10^{-6}$?
 - (b) Czy można obliczyć pierwiastek z błędem względnym $< 10^{-6}$?
- **zad. 5** Czy istnieje przykład dla którego lewe końce przedziałów konstruowanych przez metodę bisekcji są rosnące $a_0 < a_1 < a_2 < \cdots$?
- zad. 6 Aby obliczyć odwrotność liczby $R \neq 0$ bez wykonywania dzieleń można zastosować metodę Newtona do rozwiązania równania $x^{-1} R = 0$. Napisać krótki algorytm wynikający z bezpośredniego zastosowania metody Newtona do funkcji $x^{-1} R$. Nie stosować ani dzieleń ani potęgowań. Dla R > 0 zaproponować wybór przybliżenia początkowego. Jaki jest rząd zastosowanej metody?
- zad. 7 (Stożek 1994) Jaki jest wykładnik zbieżności metody Newtona zastosowanej do rozwiazania następujących równań:

$$x^2 = 0, \ x^3 = 0, \ x + x^3 = 0$$
?

 $^{^{1}}$ Część zadań pochodzi z książki D. Kincaid, W. Cheney, $Analiza\ numeryczna,$ WNT, 2005.

zad. 8 (Stożek 1994) Do których z pierwiastków $0, \pm 1$ jest zbieżna metoda Newtona zastosowana do równania $x^3 - x = 0$? Czy to zależy od wyboru przybliżenia początkowego? Czy przybliżenie początkowe $x_0 = \pm 1/\sqrt{5}$ jest odpowiednie?

zad. 9

- (a) Jaki będzie wykładnik zbieżności metody Newtona zastosowanej do wyznaczenia zer funkcji $f(x) = x^p, p \in \mathbb{N}, p \ge 2$?
- (b) Jaki będzie wykładnik zbieżności metody Newtona zastosowanej do wyznaczenia 2-krotnego zera r funkcji f (tzn. f(r)=0, f'(r)=0).

 Wsk. Funkcję f mającą 2-krotne zero r można przedstawić $f(x)=(x-r)^2g(x)$, $g(r)\neq 0$.
- **zad. 10** Czy $g(x) = \frac{1}{2}x$ jest odwzorowaniem zwężającym na przedziale [-1,1]? Czy ma punkt stały tym przedziale?
- **zad. 11** Za pomocą odpowiedniego rysunku sprawdzić, czy równanie $10 2x + \sin x = 0$ ma rozwiązanie i zaproponować jakieś przybliżenie początkowe tego rozwiązania. Czy do wyznaczenia rozwiązania równania można zastosować następującą metodę iteracyjna:

$$x_{n+1} := 5 + \frac{1}{2}\sin x_n, \ x_0 - dane?$$

Wsk. Czy odwzorowanie $\Phi(x) = 5 + \frac{1}{2}\sin x$ jest zwężające? Czy punkt stały odwzorowania Φ jest rozwiązaniem powyższego równania?

zad. 12 (Stożek 1994) Zbadać zbieżność metody iteracyjnej $x_{n+1} := \Phi(x_n)$, gdzie

$$\Phi(x) = \begin{cases} 2x & \text{dla } |x| \le 1, \\ 0 & \text{dla } |x| > 1. \end{cases}$$

- zad. 13 (Stożek 1994) Chcemy rozwiązać równanie $x + \ln x = 0$. Rozważamy następujące metody:
 - (a) $x_{n+1} := -\ln x_n$,
 - (b) $x_{n+1} := e^{-x_n}, x_0 > 0,$
 - (c) $x_{n+1} := \frac{x_n + e^{-x_n}}{2}$.

Którą z tych metod należy użyć?

zad. 14 Niech a > 0 i niech

$$x_{n+1} := \frac{1}{2}(x_n + \frac{a}{x_n}).$$

Jest to ciąg kolejnych przybliżeń wyznaczonych metodą Newtona zastosowaną do równania $x^2-a=0$. Niech $x_0>0$. Sprawdzić, że $x_{n+1}>\sqrt{a}$. Pokazać, że $x_n-x_{n+1}>0$ dla n>0. Czy ciąg $\{x_n\}$ jest zbieżny do \sqrt{a} .