Functional analysis

Mostly operator theory for now

Sudip Sinha

February 25, 2020

CONTENTS

Part 1 Convergence	1
1.1 Strong, weak and weak* convergence	2
Part 2 Operator theory	4
2.1 Elementary ideas	5
2.1.1 Intuition	5
2.1.2 Projection operators	6
2.2 Optimization	7
2.2.1 Duality in optimization is the same as duality in functional analysis	7
Bibliography	8

Part 1

Convergence

1.1 Strong, weak and weak* convergence

Disclaimer: This section is shamelessly copied from Christopher Heil's notes.

Definition 1.1 Let X be a normed vector space, and $x_n, x \in X$. We define the following convergences as $n \to \infty$.

$$(strong) x_n \to x \Longleftrightarrow ||x_n - x|| \to 0$$

$$(weak) x_n \overset{w}{\to} x \Longleftrightarrow \forall \phi \in X^*, (x_n - x, \phi) \to 0$$

Definition 1.2 Let X be a normed vector space, and $\phi_n, \phi \in X^*$. We define the following convergences as $n \to \infty$.

$$\begin{array}{lll} (strong) & \phi_n \to \phi & \iff & \|\phi_n - \phi\| \to 0 \\ \\ (weak) & \phi_n \stackrel{w}{\to} \phi & \iff & \forall \xi \in X^{**}, \quad (\phi_n - \phi, \xi) \to 0 \\ \\ (weak^*) & \phi_n \stackrel{w^*}{\to} \phi & \iff & \forall x \in X, \quad (x, \phi_n - \phi) \to 0 \end{array}$$

Remark 1.3 *Weak* convergence is simply* pointwise convergence *for the functionals* ϕ_n .

Proposition 1.4 (strong \Rightarrow weak* for convergence) Suppose ϕ_n , $\phi \in X^*$.

Then
$$\phi_n \to \phi \Longrightarrow \phi_n \stackrel{w}{\to} \phi \Longrightarrow \phi_n \stackrel{w^*}{\to} \phi$$
.

The second implication reverses if X is reflexive.

Proof. strong
$$\Longrightarrow$$
 weak: $(x_n - x, \phi) \le ||x_n - x|| ||\phi|| \to 0.$ weak \Longrightarrow weak*: $(x, \phi_n - \phi) = (\phi_n - \phi, x^{**}) \to 0.$

The claim about the reverse implication is now obvious.

Counterexample for converse of the first implication: Suppose $X = \ell^2(\mathbb{N})$. Then $e_n \stackrel{w}{\to} 0$, but $||e_n - 0|| = 1 \to 0$.

Proposition 1.5 In Hilbert spaces, weak convergence plus convergence of norms $(||x_n|| \rightarrow ||x||)$ is equivalent to strong convergence.

Proof.
$$||x_n - x||^2 = \langle x_n - x, x_n - x \rangle = \langle x_n - x, x_n \rangle - \langle x_n - x, x \rangle \to 0.$$

Proposition 1.6 *Let H and K be Hilbert spaces, and let T* \in B(H, K) *be a compact operator.*

Show that
$$x_n \stackrel{w}{\to} x \Longrightarrow Tx_n \to Tx$$
.

Thus, a compact operator maps weakly convergent sequences to strongly convergent sequences.

Proof. Disclaimer: Stolen from MSx1142451.

 $Tx_n \stackrel{w}{\to} Tx$ by continuity. Thus if any subsequence has a strong limit, it certainly is Tx. But compactness guarantees every subsequence has a subsequence that converges to something: that something is Tx by uniqueness, and so by our above equivalence with convergence, we have $Tx_n \to Tx$.

Part 2

OPERATOR THEORY

2.1 Elementary ideas

A great source is Trace class operators and Hilbert-Schmidt operators by Jordan Bell.

2.1.1 Intuition

On a separable Hilbert space, we have

- $ightharpoonup T \in \mathcal{B}^{\infty} \Longleftrightarrow \lambda \in \ell^{\infty} \text{ (bounded)}$ Example $I: \ell^2 \to \ell^2: e_n \mapsto e_n$.
- $ightharpoonup T \in \mathcal{B}_0 \Longleftrightarrow \lambda \in c_0 \text{ (compact)}$ Example $T: \ell^2 \to \ell^2: e_n \mapsto \frac{1}{\sqrt{n}} e_n$.
- $ightharpoonup T \in \mathbb{B}^2 \Longleftrightarrow \lambda \in \ell^2 \text{ (Hilbert-Schmidt)}$ Example $T: \ell^2 \to \ell^2: e_n \mapsto \frac{1}{n}e_n$.
- $ightharpoonup T \in \mathcal{B}^1 \Longleftrightarrow \lambda \in \ell^1 \text{ (trace-class)}$ Example $T: \ell^2 \to \ell^2: e_n \mapsto \frac{1}{n^2}e_n$.
- $\begin{array}{c} \vdash T \in \mathcal{B}_{00} \Longleftrightarrow \lambda \in c_{00} \text{ (degenerate or finite rank)} \\ \text{Example } T: \ell^2 \to \ell^2: e_n \mapsto \alpha_n e_n \mathbb{1}_{[N]}(n) \text{ for } \alpha_n \in \mathbb{C} \text{ and } N \in \mathbb{N}. \end{array}$

Since the dual of c_0 is ℓ^1 and the dual of ℓ^1 is ℓ^{∞} , we have $\mathcal{B}_0^* = \mathcal{B}^1$ and $(\mathcal{B}^1)^* = \mathcal{B}^{\infty}$. Similarly, $(\mathcal{B}^2)^* = \mathcal{B}^2$.

Theorem 1.2 (Operator inclusions) $\mathcal{B}_{00} \subset \mathcal{B}^1 \subset \mathcal{B}^2 \subset \mathcal{B}_0 \subset \mathcal{B}^{\infty}$

Proof.

- $\triangleright \mathcal{B}_{00} \subset \mathcal{B}^{1}$ $\triangleright \mathcal{B}^{1} \subset \mathcal{B}^{2}$ $\triangleright \mathcal{B}^{2} \subset \mathcal{B}_{0}$ Trivial

- ((<BMC2009>), Proposition 4.6) If *T* is unbounded, we can find a sequence of unit vectors (e_n) such that $||Te_n|| \nearrow \infty$. So Te_n cannot have a convergent subsequence, for if $Te_n \to x$, then $||Te_n|| \to ||x||$.

Proposition 1.3 For $T \in \mathcal{B}^{\infty}$, $||T||_{\infty} = \sup\{|\langle Tx, y \rangle|\} : ||x|| = 1$, ||y|| = 1.

Proof.

(
$$\leq$$
) Since $||Tx|| = \frac{||Tx||^2}{||Tx||} = \frac{\langle Tx, Tx \rangle}{||Tx||} = \langle Tx, \frac{Tx}{||Tx||} \rangle$, we have $||T||_{\infty} = \sup \{||Tx|| : ||x|| = 1\} \le \sup \{|\langle Tx, y \rangle| : ||x|| = 1, ||y|| = 1\}$.

(
$$\geq$$
) Since $\langle Tx, y \rangle \leq \|Tx\| \|y\| \leq \|T\|_{\infty} \|x\| \|y\|$, we have
$$\sup \{ |\langle Tx, y \rangle| : \|x\| = 1, \|y\| = 1 \} \leq \|T\|_{\infty}.$$

2.1.2 Projection operators

Proposition 1.4 $||P||_{\infty} \leq 1$.

Proof. Since
$$||Px||^2 = \langle Px, Px \rangle = \langle P^*Px, x \rangle = \langle PPx, x \rangle = \langle Px, x \rangle \leq ||Px|| \, ||x||$$
, we have $||P||_{\infty} \leq 1$.

Proposition 1.5 A projection operator is compact iff its image is finite dimensional.

Proof.

- (\Longrightarrow) Let $P: H \to H$ be a projection operator, so that $P^2 = P$, or P(P I) = 0.
- (\Leftarrow) Since the image is finite dimensional, fix an orthonormal basis $e_1, ..., e_n$ of im T.

2.2 Optimization

2.2.1 Duality in optimization is the same as duality in functional analysis

For an various intuitions of duality in optimization, see MSx223235.

Let X and Y be Banach spaces, and X^* and Y^* be their (algebraic?) duals. Consider the two problems, with ϕ_0 , y_0 fixed. Here (\cdot, \cdot) denotes the canonical duality pairing.

See the following diagram for more details.

$$x \longmapsto \begin{array}{c} x \longmapsto T \\ x \in X & \xrightarrow{T} & y_0 \\ \downarrow & \downarrow \\ \phi_0, T^* \psi \in X^* & \xrightarrow{T^*} & y_0^* \\ & & \uparrow \\ T^* \psi & \xrightarrow{T^*} & \psi \end{array} \Rightarrow \psi$$

BIBLIOGRAPHY