Question 2

Jin Barai

Description of population:

The data set is of Billboard Top 30 songs from 2010 to 2019. The variate we are interested is the beats per minute (tempo) of each song.

Comparing the attributes using a sample design

We will now find and compare the total and mean bpm using the sampling design - SRSWOR (Sampling Mechanism without Replacement). Then we will go on to understand the effect of changes such as sample size on these estimators.

```
spotify <- read.csv("./spotify.csv", header=TRUE)
popSpotify <- rownames(spotify)
srswor <- createSamplingMechanism(popSpotify)
set.seed(341)
sample_indx <- as.numeric((srswor(10)))
Spotify <- spotify[sample_indx, ]</pre>
```

• Total Bpm

```
totalBpm <- sum(spotify$bpm)
print(totalBpm)</pre>
```

[1] 35876

• Mean bpm

```
aveBpm <- mean(spotify$bpm)
print(aveBpm)</pre>
```

[1] 119.5867

- Marginal Inclusion probability π_u for SRSWOR is $\frac{n}{N}$ where n=30 for all u
- The joint inclusion probability $\pi_{u,v}$ when sampling without replacement is $\frac{n(n-1)}{N(N-1)}$ for any pair (u,v) and $u \neq v$
- (i) We will now find and display the **Horvitz-Thompson Estimates** on the left and **True Population Value** on the right of the following attributes:
- Total Bpm:

```
y_u <- Spotify$bpm
pi_u <- pi[sample_indx]
c(sum(y_u/pi_u), sum(spotify$bpm))</pre>
```

[1] 11890 35876

• Average Bpm:

```
y_u <- Spotify$bpm/N
pi_u <- pi[sample_indx]
c(sum(y_u/pi_u), sum(spotify$bpm/N))</pre>
```

[1] 39.63333 119.58667

- (ii) We will now find and display the **Estimate of the variance of the HT estimator** on the left and the **Estimate of the standard deviation of the HT estimator** also known as standard error on the right of the attributes:
 - Total Bpm:

```
y_u <- Spotify$bpm
v <- estVarHT(sam = sample_indx, y_u, pi, pij)
c(v, sqrt(v))</pre>
```

[1] 9163517.59 3027.13

• Average Bpm:

```
y_u <- Spotify$bpm/N
v <- estVarHT(sam = sample_indx, y_u, pi, pij)
c(v, sqrt(v))</pre>
```

[1] 101.81686 10.09043

Effect of change in some parameters such as Sample Size

We will now consider the sample sizes $n \in \{30, 60, 90, ..., 300\}$. For each of the sample size n, we will take 20,000 SRSWOR samples.

```
N <- dim(spotify)[1]
n <- seq(30,300,30)
bias <- rep(0,length(n))
variance <- rep(0,length(n))
mse <- rep(0,length(n))
for (i in 1:length(n)) {
   pi.vec <- rep(n[i]/N,N)
   pi.mat <- matrix((n[i]*(n[i]-1))/(N*(N-1)), nrow=N,ncol=N)
   avgBpmHT <- rep(0,20000)
   for (j in 1:20000){</pre>
```

```
srsSampIndex <- sample(N, n[i])
  y_u <- spotify$bpm[srsSampIndex]/N
  pi_u <- pi.vec[srsSampIndex]
  avgBpmHT[j] <- sum(y_u/pi_u)
}
bias[i]<-mean(avgBpmHT - aveBpm)
  variance[i] <- var(avgBpmHT)
  mse[i] <- mean((avgBpmHT - aveBpm)^2)
}
par(mfrow = c(1,3))
plot(n, bias, type="1", xlab="Sample Size (n)", ylab = "Sampling Bias", col="firebrick", lwd = 2)
abline(h=0, col="red", lty=2)
plot(n, variance, type="1", xlab="Sample Size (n)", ylab="Sampling Variance", col="green", lwd=2)
plot(n, mse, type="1", xlab="Sample Size(n)", ylab="Sampling MSE", col="navyblue", lwd=2)</pre>
```


Conclusion

- HT estimates become more accurate and precise as n increases
- We see that regardless of the sample size the estimated bias of the estimator fluctuates around 0. This is because the HT estimator is unbiased
- We can see that as the sample size increases, the estimated variance of the estimator decreases and approaches 0.
- We can as lo see that as sample size increases, the estimated MSE of the estimator decreases and approaches 0.