МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ Федеральное государственное автономное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ АЭРОКОСМИЧЕСКОГО ПРИБОРОСТРОЕНИЯ»

КАФЕДРА № 24

Ассистент		<u> </u>
должность, уч. степень, звание	подпись, дата	инициалы, фамилия
ОТЧЕТ О	ЛАБОРАТОРНОЙ РАІ	БОТЕ №1
«Исследование напряженн	ю-деформированного і	и критического состояниї
кровеносного сос	уда с бляшкой ранней о	стадии развития»
по дисциплине: ИНФО	ОРМАЦИОННЫЕ ОСНОЕ	ВЫ БИОМЕХАНИКИ

Задание: Определить давление в гибком баллоне, необходимое для дилатации кровеносного сосуда с бляшкой ранней стадии развития (рис. 1) в зависимости от ее длины.

После дилатации внутренний радиус R сегмента сосуда в зоне расположения бляшки должен находиться в пределах 1,05…1,1 внутреннего радиуса сосуда $R_{\rm BC}$. Длина бляшки $l_6=2\dots 5$ мм. Длина выделенного в модели сегмента сосуда $l_{\rm c}=5$ l_6 .

Рисунок 1 - Схема содержательной модели баллонной дилатации кровеносного сосуда с бляшкой ранней стадии развития

Вариант № 6:

- 1. Кровеносный сосуд: Наружная сонная артерия правая
- 2. Внешний D: 5,73 мм
- 3. Толщина стенки h: 1,5 мм
- 4. Модуль нормальной упругости Е: 1,31 МПа
- 5. Отношение радиуса бляшки $R_{\rm 6}$ к радиусу сосуда $R_{\rm BC}$: 0,7
- 6. Отношение модуля нормальной упругости бляшки $E_{\rm 6}$ к модулю нормальной упругости $E_{\rm BC}$: 0,8

Модель кровеносного сосуда:

Длина бляшки $l_6 = 2$ мм, длина сосуда $l_c = 25$ мм (рис.2)

Рисунок 2 – Модель кровеносного сосуда.

Исследование:

Нужен результат перемещения стенок сосуда в пределах минимум 1,433 - 1,365 = 0,08 мм.

Максимум будет равен 1,5 - 1,365 = 0,135.

Рисунок 3 – Результат исследования. Длина бляшки 2 мм.

Рисунок 4 – Результат исследования. Длина бляшки 3 мм.

Рисунок 5 – Результат исследования. Длина бляшки 4 мм.

Рисунок 6 – Результат исследования. Длина бляшки 5 м

Результаты исследования и графики зависимостей:

Таблица 1

				Результат
				перемещения
Длина сосуда, мм	Длина бляшки, мм	Давление, МПа	Напряжение, МПа	стенок сосуда
				после
				исследования, мм
25	2	0,15	0,129	0,133
25	3	0,13	0,13	0,134
25	4	0,12	0,13	0,134
25	5	0,115	0,127	0,132

График 1 – Зависимость длины бляшки от давления

График 2 – Зависимость длины бляшки от напряжения

График 3 – Зависимость длины бляшки от перемещения

Вывод: давление, необходимое для дилатации кровеносного сосуда с бляшкой ранней стадии развития, зависит от длины этой бляшки. Чем длиннее расположенная в сосуде бляшка, тем меньше требуется давления для баллона, который, при раздувании, будет удалять сужение.