

Faculty of Engineering and Technology

Electrical and Computer Engineering Department COMMUNICATIONS LAB

INTOTAL CALLOTTS LAD

ENEE4113

Experiment #:1

Experiment title: Normal Amplitude Modulation and Demodulation

PreLab 1

Prepared by: Rahaf Naser 1201319

Instructor: Dr. Nofal Nofal

Teacher Assistant: Eng. Halema Hmedan

Date of submission: 4/3/2025

Section: 2

Table of Content

1. Normal Amplitude Modulation-Results in Time and Frequency domains	4
2. Carrier signal in time and frequency domain	5
3. modulated signal in time and frequency domain	6
4.Coherent demodulation	9
5 Envelope Detector demodulation	13

Table of Figures

Figure 1: Normal Amplitude Modulation-Simulink	4
Figure 2: Message signal-time domain	4
Figure 3: Message Signal-frequency domain	5
Figure 4: carrier signal-time domain	5
Figure 5: Carrier signal-frequency domain	6
Figure 6: Modulated Signal when μ = 0.5 time domain	6
Figure 7: Modulated Signal when μ = 0.5 frequency domain	7
Figure 8: Modulated Signal when μ = 1 $$ time domain	7
Figure 9: Modulated Signal when μ = 1 frequency domain	8
Figure 10: Modulated Signal when μ = 2 time domain	8
Figure 11: Modulated Signal when μ = 2 frequency domain	9
Figure 12: Simulink of coherent demodulation	9
Figure 13: Demodulated Signal and Message signal when μ = 0.5 time domain	10
Figure 14: Demodulated Signal and Message signal when μ = 0.5 frequency domain	10
Figure 15: Demodulated Signal and Message signal when μ = 1 time domain	11
Figure 16: Demodulated Signal and Message signal when μ = 1 frequency domain	11
Figure 17: Demodulated Signal and Message signal when μ = 2 time domain	12
Figure 18: Demodulated Signal and Message signal when μ = 2 frequency domain	12
Figure 19: Simulink of Envelope Detector demodulation	13
Figure 20: Demodulated Signal and Message signal when μ = 0.5-time domain	13
Figure 21: Demodulated Signal and Message signal when μ = 0.5-frequency domain	14
Figure 22: Demodulated Signal and Message signal when μ = 1 time domain	14
Figure 23: Demodulated Signal and Message signal when μ = 1 frequency domain	15
Figure 24: Demodulated Signal and Message signal when μ = 2 time domain	15
Figure 25: Demodulated Signal and Message signal when $\mu = 2$ frequency domain	16

1. Normal Amplitude Modulation-Results in Time and Frequency domains

Normal Amplitude Modulation-Simulink

Figure 1: Normal Amplitude Modulation-Simulink

Message Signal-Time Domain:

Figure 2: Message signal-time domain

Message Signal–Frequency Domain:

Figure 3: Message Signal-frequency domain

2. Carrier signal in time and frequency domain

Carrier Signal- Time Domain:

Figure 4: carrier signal-time domain

Carrier Signal- Frequency Domain:

Figure 5: Carrier signal-frequency domain

3. modulated signal in time and frequency domain

Modulated Signal when μ = 0.5 time domain:

Figure 6: Modulated Signal when μ = 0.5 time domain

Figure 7: Modulated Signal when μ = 0.5 frequency domain

when $\mu = 1$ time domain:

Figure 8: Modulated Signal when μ = 1 time domain

Figure 9: Modulated Signal when μ = 1 frequency domain

Modulated Signal when $\mu = 2$

time domain:

Figure 10: Modulated Signal when μ = 2 time domain

Figure 11: Modulated Signal when μ = 2 frequency domain

4.Coherent demodulation

Simulink:

Figure 12: Simulink of coherent demodulation

Demodulated Signal and Message signal when μ = 0.5 time domain:

Figure 13: Demodulated Signal and Message signal when μ = 0.5 time domain

Frequency Domain:

Figure 14: Demodulated Signal and Message signal when μ = 0.5 frequency domain

Demodulated Signal and Message signal when μ = 1 time domain:

Figure 15: Demodulated Signal and Message signal when μ = 1 time domain

Frequency Domain

Figure 16: Demodulated Signal and Message signal when μ = 1 frequency domain

Demodulated Signal and Message signal when $\mu = 2$ time domain:

Figure 17: Demodulated Signal and Message signal when μ = 2 time domain

Frequency Domain:

Figure 18: Demodulated Signal and Message signal when μ = 2 frequency domain

5. Envelope Detector demodulation

Simulink:

Figure 19: Simulink of Envelope Detector demodulation

Demodulated Signal and Message signal when μ = 0.5-time domain

Figure 20: Demodulated Signal and Message signal when μ = 0.5-time domain

Figure 21: Demodulated Signal and Message signal when μ = 0.5-frequency domain

Demodulated Signal and Message signal when $\mu = 1$ time domain:

Figure 22: Demodulated Signal and Message signal when μ = 1 time domain

Figure 23: Demodulated Signal and Message signal when μ = 1 frequency domain

Demodulated Signal and Message signal when μ = 2 time domain:

Figure 24: Demodulated Signal and Message signal when μ = 2 time domain

Figure 25: Demodulated Signal and Message signal when μ = 2 frequency domain

Here's a discussion of each result section:

1. Normal Amplitude Modulation - Results in Time and Frequency Domains

- o This section presents the AM process in both time and frequency domains.
- Includes a Simulink model used to generate and analyze the AM signal.
- The message signal is visualized in time and frequency domains to understand its spectral characteristics.

2. Carrier Signal in Time and Frequency Domain

- o Describes the carrier signal, which is a high-frequency sinusoidal wave.
- The time-domain representation shows a periodic waveform, while the frequency domain confirms its spectral content as a single peak at the carrier frequency.

3. Modulated Signal in Time and Frequency Domain

- O Displays modulated signals for different modulation indices (μ = 0.5, 1, and 2).
- The time-domain plots illustrate how modulation depth changes the amplitude of the carrier.
- The frequency-domain plots show sidebands at the sum and difference frequencies of the carrier and message signals.

4. Coherent Demodulation

- o Uses a synchronous demodulation method (Simulink-based implementation).
- Examines demodulated signals at different modulation indices to compare with the original message signal.
- o The frequency domain results confirm how effectively the message signal is recovered.

5. Envelope Detector Demodulation

- Uses an envelope detector to recover the message signal.
- The time and frequency domain results demonstrate the effectiveness of this simple demodulation method.
- $\circ~$ The results for different values of μ show how well the envelope detector works under varying modulation depths.