poisson_regression

November 17, 2020

Poisson Regression Models in R

1 1. Poisson Regression

1. Form of Poisson model for single predictor

$$\log(\mu) = \beta_0 + \beta_1 x_1$$

- 2. Link function is $log(\cdot)$
- 3. We use Poisson regression when we model count data % (e.g., $y_i \in \{0, 1, 2, ...\}$)
- Number of offspring an individual has
- Number bacterial colonies in Petri dish
- 4. As we saw with logistic regression, we *could* use a linear model instead (Don't do this). but our parameter estimates would be biased, and our model inaccurate

1.1 1.1 Poisson Distribution

1.2 1.2 Poisson Regression

- 1. As with linear and logistic regression, we can use Poisson regression to estimate effects of predictors on some outcome
- 2. We can also use fitted Poisson regression models to predict future values of some outcome variable given known values for the covariates
- 3. Frequently used for modeling rare events

1.2.1 1.2.1 Assumptions of Poisson Regression

- 1. Log-transformed outcomes are linearly related to predictors
- 2. Observations are independent
- 3. Distributional assumption: $y_i|x_i \sim \text{Poisson}(\lambda_i)$

1.2.2 1.2.2 Assumptions of Poisson Regression (cont.)

- Note that the assumption $y_i|x_i \sim \text{Poisson}(\lambda_i)$ has some important implications.
- The Poisson distribution has a single parameter, λ , which is both its mean and variance.
- It is frequently the case we will have data where the variance greatly exceeds the mean. When this happens, it is wise to consider similar alternatives to the Poisson model

1.2.3 Similar Alternatives to Poisson Models

1. Quasi-Poisson regression

1. 101766 2. 50

- 2. Zero-inflated Poisson regression
- 3. Negative Binomial regression

1.2.4 **1.2.4 Evaluation of Poisson Regression Models**

- As with logistic regression, there is no direct counterpart to the R^2 in linear regression
- Poisson regression models can be compared using AIC and BIC as we saw with linear and logistic regression

1.2.5 1.2.5 Interpreting Poisson Regression Parameters

 We can exponentiate Poisson regression parameter estimates, and then treat them multiplicative effects

2 2. Poisson Model for Number of Procedures

Suppose we want to model the number of procedure for diabetes patients admitted to the hospital. We use several Poisson models below.

1. 'encounter_id' 2. 'patient_nbr' 3. 'race' 4. 'gender' 5. 'age' 6. 'weight' 7. 'admission_type' 8. 'discharge_disposition' 9. 'admission_source' 10. 'time_in_hospital' 11. 'payer_code' 12. 'medical_specialty' 13. 'num_lab_procedures' 14. 'num_procedures' 15. 'num_medications' 16. 'number_outpatient' 17. 'number_emergency' 18. 'number_inpatient' 19. 'diag_1' 20. 'diag_2' 21. 'diag_3' 22. 'number_diagnoses' 23. 'max_glu_serum' 24. 'A1Cresult' 25. 'metformin' 26. 'repaglinide' 27. 'nateglinide' 28. 'chlorpropamide' 29. 'glimepiride' 30. 'acetohexamide' 31. 'glipizide' 32. 'glyburide' 33. 'tolbutamide' 34. 'pioglitazone' 35. 'rosiglitazone' 36. 'acarbose' 37. 'miglitol' 38. 'troglitazone' 39. 'tolazamide' 40. 'examide' 41. 'citoglipton' 42. 'insulin' 43. 'glyburide_metformin' 44. 'glipizide_metformin' 45. 'glimepiride_pioglitazone' 46. 'metformin_rosiglitazone' 47. 'metformin_pioglitazone' 48. 'change' 49. 'diabetesMed' 50. 'readmitted'

2.1 2.1 Checking Mean and Variance

• Recall the assumptions of Poisson models

2.2 2.2 Fitting Poisson Regression Model

• As with binomial logistic regression, we use glm() function

<int>

101765

```
In [4]: fm5 <- glm(num_procedures ~ number_diagnoses, dia_df, family = poisson(link = "log"))</pre>
In [6]: library(broom)
        tidy(fm5)
        glance(fm5)
                   term
                                       estimate
                                                    std.error
                                                                statistic
                                                                            p.value
                                       <dbl>
                                                    <dbl>
                                                                <dbl>
                                                                            <dbl>
                   <chr>
   A tibble: 2 Œ 5
                                                                -7.744526
                                                                            9.593902e-15
                   (Intercept)
                                       -0.08877153
                                                    0.01146249
                   number_diagnoses
                                       0.05073237
                                                    0.00146474
                                                                34.635746
                                                                            7.322312e-263
                                                                                    df.residual
                  null.deviance
                                 df.null
                                          logLik
                                                     AIC
                                                               BIC
                                                                          deviance
                                                                                                 nobs
```

<dbl>

364391.7

<dbl>

364410.8

<dbl>

218930.4

<int>

101764

<int>

101766

2.2.1 Plotting our Model's Variables

220167.2

A tibble: 1 Œ 8 <dbl>

<dbl>

-182193.9

2.3 2.3 Adding Predictor Variables

• Like linear and logistic regression, we can add arbitrary number of predictors

	term	est	timate	std.error		statist	ic	p.va	lue	
A tibble: 4 Œ 5	<chr></chr>		lbl>	<dbl></dbl>		<dbl></dbl>		<dbl></dbl>		
	(Intercept)		492862068	0.0117377906		-41.989339		0.000000e+00		
	number_diagnoses		005352674	0.0015156775		-3.531539		4.131496e-04		
	num_medications		043342655	0.0002880113		150.489398 0		0.000000e+00		
	time_in_hospital		011259141	0.0009644126		11.674610		1.718523e-31		
A tibble: 1 Œ 8	null.deviance	df.null	logLik	AIC	BIC		devia	nce	df.residual	nobs
	<dbl></dbl>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dl< td=""><td>ol></td><td><dbl></dbl></td><td></td><td><int></int></td><td><int></int></td></dl<>	ol>	<dbl></dbl>		<int></int>	<int></int>
	220167.2	101765	-169299.7	338607.3	338	645.4	19314	2	101762	101766

2.3.1 2.3.1 Plotting our Variables

 $^{&#}x27;geom_smooth()$ using method = 'gam' and formula 'y ~ s(x, bs = "cs")'