

Schletter, Inc.		25° Tilt w/o Seismic Design
HCV	Standard PVMax Racking System	
	Representative Calculations - ASCE 7-05	

1. INTRODUCTION

1.1 Project Description

The following sections will cover the determination of forces and structural design calculations for the Schletter, Inc. PVMax ground mount system.

1.2 Construction

Photovoltaic modules are attached to aluminum purlins using clamp fasteners. Purlins are clamped to inclined aluminum girders, which are then connected to aluminum struts. Each support structure is equally spaced.

PV modules are required to meet the following specifications:

	<u>Maximum</u>		<u>Minimum</u>
Height =	1700 mm	Height =	1550 mm
Width =	1050 mm	Width =	970 mm
Dead Load =	3.00 psf	Dead Load =	1.75 psf

Modules Per Row = 2 Module Tilt = 25°

Maximum Height Above Grade = 3 ft

1.3 Technical Codes

- ASCE 7-05 Chapter 6, Wind Loads
- ASCE 7-05 Chapter 7, Snow Loads
- ASCE 7-05 Chapter 2, Combination of Loads
- International Building Code, IBC, 2003, 2006, 2009
- Aluminum Design Manual, Eighth Edition, 2005

Typical loading conditions of the module dead loads, snow loads, and wind loads are shown on the left.

2. LOAD ACTIONS

2.1 Permanent Loads

$g_{MAX} =$	3.00 psf
$g_{MIN} =$	1.75 psf

Self-weight of the PV modules.

2.2 Snow Loads

Ground Snow Load, $P_g =$	30.00 psf	
Sloped Roof Snow Load, $P_s =$	18.56 psf	(ASCE 7-05, Eq. 7-2)
I _s =	1.00	
$C_s =$	0.82	
$C_e =$	0.90	

1.20

 $C_t =$

2.3 Wind Loads

Design Wind Speed, V =	85 mph	Exposure Category = C
Height <	15 ft	Importance Category = II

Peak Velocity Pressure, q_z = 11.34 psf Including the gust factor, G=0.85. (ASCE 7-05, Eq. 6-15)

Pressure Coefficients

Ct+ _{TOP}	=	1.100	
Cf+ BOTTOM	=	1.100 1.700 <i>(Pressure)</i>	Provided pressure coefficients are the result of wind tunnel testing done by Ruscheweyh Consult. Coefficients are
Cf- TOP, OUTER PURLIN	=	-2.500	located in test report # 1127/0611-1e. Negative forces are
Cf- TOP, INNER PURLIN	=	-1.900 (Suction)	applied away from the surface.
Cf- BOTTOM	=	-1.000	applied and, hell all candos.

2.4 Seismic Loads - N/A

S _S =	0.00	R = 1.25	ASCE 7, Section 12.8.1.3: A maximum S_s of 1.5
$S_{DS} =$	0.00	$C_S = 0$	may be used to calculate the base shear, C_s , of
$S_1 =$	0.00	$\rho = 1.3$	structures under five stories and with a period, T,
$S_{D1} =$	0.00	$\Omega = 1.25$	of 0.5 or less. Therefore, a S_{ds} of 1.0 was used to
T _a =	0.00	$C_{d} = 1.25$	calculate C _s .

2.5 Combination of Loads

ASCE 7 requires that all structures be checked by specified combinations of loads. Applicable load combinations are provided below.

Strength Design, LRFD

Component stresses are checked using the following LRFD load combinations:

1.2D + 1.6S + 0.8W 1.2D + 1.6W + 0.5S 0.9D + 1.6W ^M 1.54D + 1.3E + 0.2S ^R 0.56D + 1.3E ^R 1.54D + 1.25E + 0.2S ^O 0.56D + 1.25E O

Allowable Stress Design, ASD

Member deflection checks and foundation designs are done according to the following ASD load combinations:

1.0D + 1.0S 1.0D + 1.0W 1.0D + 0.75L + 0.75W + 0.75S 0.6D + 1.0W ^M (ASCE 7, Eq 2.4.1-1 through 2.4.1-8) & (ASCE 7, Section 12.4.3.2) 1.238D + 0.875E ^O 1.1785D + 0.65625E + 0.75S ^O 0.362D + 0.875E ^O

3. STRUCTURAL ANALYSIS

3.1 RISA Results

Appendix B.1 contains outputs from the structural analysis software package, RISA. These outputs are used to accurately determine resultant member and reaction forces from the loads seen throughout Section 2.

3.2 RISA Components

A member and node list has been provided below to correlate the RISA components with the design calculations in Section 4. Items of significance have been listed.

<u>Purlins</u>	Location	Diagonal Struts	Location	Front Reactions Location
M13	Тор	M3	Outer	N7 Outer
M14	Mid-Top	M7	Inner	N15 Inner
M15	Mid-Bottom	M11	Outer	N23 Outer
M16	Bottom			
<u>Girders</u>	Location	Rear Struts	Location	Rear Reactions Location
M1	Outer	M2	Outer	N8 Outer
M5	Inner	M6	Inner	N16 Inner
M9	Outer	M10	Outer	N24 Outer
Front Struts	Location			
M4	Outer			
M8	Inner			
M12	Outer			

^M Uses the minimum allowable module dead load.

^R Include redundancy factor of 1.3.

^o Includes overstrength factor of 1.25. Used to check seismic drift.

4. MEMBER DESIGN CALCULATIONS

4.1 Purlin Design

Aluminum purlins are used to transfer loads to the support structure. Purlins are designed as continous beams with cantilevers. These are considered beams with internal hinges that can be joined with splices at 25% of the support respective span. See Appendix A.1 for detailed member calculations. Section units are in (mm).

4.2 Girder Design

Loads from purlins are transferred using an inclined girder, which is connected to a set of aluminum struts. Loads on the girder result from the support reactions of the purlins. See Appendix A.2 for detailed member calculations. Section units are in (mm).

4.3 Front Strut Design

The front aluminum strut connects a portion of the girder to the foundation. Vertical girder forces are then transferred down through the strut into the foundation. The strut is attached with single M12 bolts at each end. See Appendix A.3 for detailed member calculations. Section units are in (mm).

4.4 Diagonal Strut Design

A diagonal aluminum strut braces the support structure. It connects at a front portion of the girder and transfers horizontal forces to the rear foundation connection. The strut is attached with single M12 bolts at each end. See Appendix A.4 for detailed member calculations. Section units are in (mm).

4.5 Rear Strut Design

An aluminum strut connects the rear portion of the girder to the rear foundation connection. Both vertical and horizontal forces are transferred from the girder. The strut is attached with single M12 bolts at each end. See Appendix A.5 for detailed member calculations. Section units are in (mm).

5. FOUNDATION DESIGN CALCULATIONS

5.1 Helical Pile Foundations

The following LRFD loads include a safety factor of 1.3, and are to be used in conjunction with a Schletter, Inc. Geotechnical Investigation Report. The forces below should fall within the guidelines provided in the Geotechnical Investigation Report. If a Geotechnical Investigation Report is not present, please proceed to Section 5.2 for a concrete foundation design.

<u>Maximum</u>	<u>Front</u>	Rear	
Tensile Load =	392.29	<u>4294.14</u>	k
Compressive Load =	3830.71	4287.92	k
Lateral Load =	<u>16.10</u>	2342.96	k
Moment (Weak Axis) =	0.03	0.01	k

5.2 Design of Ballast Foundations

Ballast foundations are used to secure the racking structure in place. The foundations are checked for potential overturning and sliding. Bearing pressures applied by the racking and ballast foundations are checked against the allowable bearing pressures provided by the IBC tables 1804.2 (2003, 2006) & 1806.2 (2009).

Concrete Properties Footing Reinforcement Weight of Concrete = 145 pcf Use fiber reinforcing with (1) #5 rebar. 2500 psi Compressive Strength = Yield Strength = 60000 psi Overturning Check $M_0 =$ 108531.3 in-lbs Resisting Force Required = 1644.41 lbs A minimum 132in long x 23in wide x S.F. = 1.67 18in tall ballast foundation is required Weight Required = 2740.69 lbs to resist overturning. Minimum Width = Weight Provided = 4585.63 lbs Sliding Force = 562.86 lbs Use a 132in long x 23in wide x 18in tall Friction = 0.4 Weight Required = 1407.16 lbs ballast foundation to resist sliding. Resisting Weight = 4585.63 lbs Friction is OK. Additional Weight Required = Cohesion Sliding Force = 562.86 lbs Cohesion = 130 psf Use a 132in long x 23in wide x 18in tall 21.08 ft² Area = ballast foundation. Cohesion is OK. Resisting = 2292.81 lbs Additional Weight Required = 0 lbs Shear Key Additional Force = 0 lbs Lateral Bearing Pressure = 200 psf/ft Required Depth = 0.00 ft Shear key is not required. 2500 psi f'c = Length = 8 in

	Ballast Width			
	23 in	<u>24 in</u>	<u>25 in</u>	26 in
$P_{tta} = (145 \text{ pcf})(11 \text{ ft})(1.5 \text{ ft})(1.92 \text{ ft}) =$	4586 lbs	4785 lbs	4984 lbs	5184 lbs

ASD LC	1.0D + 1.0S				1.0D + 1.0W			1.0D + 0.75L + 0.75W + 0.75S			0.6D + 1.0W					
Width	23 in	24 in	25 in	26 in	23 in	24 in	25 in	26 in	23 in	24 in	25 in	26 in	23 in	24 in	25 in	26 in
FA	1489 lbs	1489 lbs	1489 lbs	1489 lbs	1121 lbs	1121 lbs	1121 lbs	1121 lbs	1820 lbs	1820 lbs	1820 lbs	1820 lbs	-182 lbs	-182 lbs	-182 lbs	-182 lbs
FB	1481 lbs	1481 lbs	1481 lbs	1481 lbs	1569 lbs	1569 lbs	1569 lbs	1569 lbs	2151 lbs	2151 lbs	2151 lbs	2151 lbs	-2058 lbs	-2058 lbs	-2058 lbs	-2058 lbs
F_V	204 lbs	204 lbs	204 lbs	204 lbs	1031 lbs	1031 lbs	1031 lbs	1031 lbs	909 lbs	909 lbs	909 lbs	909 lbs	-1126 lbs	-1126 lbs	-1126 lbs	-1126 lbs
P _{total}	7556 lbs	7755 lbs	7955 lbs	8154 lbs	7275 lbs	7475 lbs	7674 lbs	7873 lbs	8556 lbs	8755 lbs	8955 lbs	9154 lbs	511 lbs	631 lbs	750 lbs	870 lbs
M	3949 lbs-ft	3949 lbs-ft	3949 lbs-ft	3949 lbs-ft	3196 lbs-ft	3196 lbs-ft	3196 lbs-ft	3196 lbs-ft	4994 lbs-ft	4994 lbs-ft	4994 lbs-ft	4994 lbs-ft	2390 lbs-ft	2390 lbs-ft	2390 lbs-ft	2390 lbs-ft
е	0.52 ft	0.51 ft	0.50 ft	0.48 ft	0.44 ft	0.43 ft	0.42 ft	0.41 ft	0.58 ft	0.57 ft	0.56 ft	0.55 ft	4.68 ft	3.79 ft	3.19 ft	2.75 ft
L/6	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft	1.83 ft							
f _{min}	256.2 psf	254.6 psf	253.1 psf	251.7 psf	262.4 psf	260.5 psf	258.8 psf	257.2 psf	276.6 psf	274.1 psf	271.9 psf	269.8 psf	0.0 psf	0.0 psf	0.0 psf	0.0 psf
f _{max}	460.6 psf	450.4 psf	441.1 psf	432.5 psf	427.8 psf	419.0 psf	410.9 psf	403.5 psf	535.0 psf	521.8 psf	509.6 psf	498.4 psf	215.8 psf	122.9 psf	103.7 psf	97.2 psf

Maximum Bearing Pressure = 535 psf Allowable Bearing Pressure = 1500 psf Use a 132in long x 23in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Bearing Pressure

Weak Side Design

Overturning Check

 $M_0 = 794.7 \text{ ft-lbs}$

Resisting Force Required = 829.24 lbs S.F. = 1.67

Weight Required = 1382.07 lbs Minimum Width = 23 in in Weight Provided = 4585.63 lbs A minimum 132in long x 23in wide x 18in tall ballast foundation is required to resist overturning.

Bearing Pressure

ASD LC	1	.238D + 0.875	SE .	1.1785D + 0.65625E + 0.75S			0.362D + 0.875E				
Width		23 in			23 in			23 in	23 in		
Support	Outer	Inner	Outer	Outer	Inner	Outer	Outer	Inner	Outer		
F _Y	259 lbs	680 lbs	259 lbs	852 lbs	2463 lbs	852 lbs	76 lbs	199 lbs	76 lbs		
F _V	2 lbs	0 lbs	2 lbs	6 lbs	0 lbs	6 lbs	0 lbs	0 lbs	0 lbs		
P _{total}	5936 lbs	4586 lbs	5936 lbs	6256 lbs	4586 lbs	6256 lbs	1736 lbs	4586 lbs	1736 lbs		
М	6 lbs-ft	0 lbs-ft	6 lbs-ft	21 lbs-ft	0 lbs-ft	21 lbs-ft	2 lbs-ft	0 lbs-ft	2 lbs-ft		
е	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft	0.00 ft		
L/6	0.32 ft	0.32 ft	0.32 ft	0.32 ft	0.32 ft	0.32 ft	0.32 ft	0.32 ft	0.32 ft		
f _{min}	280.6 psf	217.5 psf	280.6 psf	293.5 psf	217.5 psf	293.5 psf	82.1 psf	217.5 psf	82.1 psf		
f _{max}	282.5 psf	217.5 psf	282.5 psf	299.9 psf	217.5 psf	299.9 psf	82.6 psf	217.5 psf	82.6 psf		

Maximum Bearing Pressure = 300 psf Allowable Bearing Pressure = 1500 psf

Use a 132in long x 23in wide x 18in tall ballast foundation for an acceptable bearing pressure.

Foundation Requirements: 132in long x 23in wide x 18in tall ballast foundation and fiber reinforcing with (1) #5 rebar.

5.3 Foundation Anchors

Threaded rods are anchored to the ballast foundations using the Simpson AT-XP epoxy solution. LRFD load results are compared to the allowable strengths of the epoxy solution. Please see the supplementary calculations provided by the Simpson Anchor Designer software.

6.1 Anchorage of Modules to Purlins and Connection of Purlins to Girders

Modules are secured to the purlins with Schletter, Inc. Rapid2+ mounting clamps. Purlins are secured to the girders with the use of 80mm mounting clamps. The reliability of calculations is uncertain due to limited standards, therefore the strength of the clamp fasteners has been evaluated by load testing.

6.2 Strut Connections

The aluminum struts connect the aluminum girder ends to custom brackets with mounting holes. Single M12 bolts are used to attach each end of the strut to the girder and post. ASTM A193/A193M-86 equivalent stainless steel bolts are used.

Front Strut			<u>Re</u>	ar Strut	
Maximum Axial Load =	2.947 k		Maximum Axi	al Load =	3.082 k
M12 Bolt Capacity =	12.808 k		M12 Bolt C	apacity =	12.808 k
Strut Bearing Capacity =	7.421 k		Strut Bearing C	apacity =	7.421 k
Utilization =	<u>40%</u>		Ut	ilization =	<u>42%</u>
Diagonal Strut					
Maximum Axial Load =	1.565 k	 			

M12 Bolt Shear Capacity = 12.808 k Bo
Strut Bearing Capacity = 7.421 k (As
Utilization = 21%

Bolt and bearing capacities are accounting for double shear. (ASCE 8-02, Eq. 5.3.4-1)

Struts under compression are shown to demonstrate the load transfer from the girder. Single M12 bolts are located at each end of the strut and are subjected to double shear.

7. SEISMIC DESIGN

7.1 Seismic Drift - N/A

The racking structure has been analyzed under seismic loading. The allowable story drift of the structure must fall within the limits provided by (ASCE 7, Table 12.12-1).

 $\begin{array}{ccc} \text{Mean Height, } h_{\text{sx}} = & 46.89 \text{ in} \\ \text{Allowable Story Drift for All Other} \\ \text{Structures, } \Delta = \{ & 0.020 h_{\text{sx}} \\ 0.938 \text{ in} \\ \text{Max Drift, } \Delta_{\text{MAX}} = & 0.066 \text{ in} \end{array}$

The racking structure's reaction to seismic loads is shown to the right. The deflections have been magnified to provide a clear portrayal of potential story drift.

APPENDIX A

A.1 Design of Aluminum Purlins - Aluminum Design Manual, 2005 Edition

Purlin = **S1.5**

Strong Axis:

3.4.14

$$L_{b} = 129 \text{ in}$$

$$J = 0.432$$

$$356.874$$

$$S1 = \left(\frac{Bc - \frac{\theta_{y}}{\theta_{b}}Fcy}{1.6Dc}\right)^{2}$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_{c}}{1.6}\right)^{2}$$

$$S2 = 1701.56$$

$$\varphi F_L = \varphi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 27.2 \text{ ksi}$$

3.4.16

$$b/t = 32.195$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\phi F_L = \phi b [Bp-1.6Dp*b/t]$$

$$\phi F_L = 25.1 \text{ ksi}$$

3.4.16.1

$$Rb/t =$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.18

$$h/t = 37.0588$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40.985$$

$$Cc = 41.015$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = \phi b[Bbr-mDbr*h/t]$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 25.1 \text{ ksi}$$
 $k = 897074 \text{ mm}^4$
 2.155 in^4

$$y = 41.015 \text{ mm}$$

 $Sx = 1.335 \text{ in}^3$

$$Sx = 1.335 \text{ in}^3$$

$$M_{max}St = 2.788 \text{ k-ft}$$

Weak Axis:

3.4.14

L14
$$L_b = 129$$

$$J = 0.432$$

$$226.951$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b} Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_1 = 28.4$$

3.4.16

$$b/t = 37.0588$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$\phi F_L =$ 23.1 ksi

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 32.195$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 45.5$$

$$Cc = 45.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k=$$
 23.1 ksi

 $M_{max}Wk =$

1.152 k-ft

Compression

3.4.9

$$\begin{array}{lll} b/t = & 32.195 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 25.1 \text{ ksi} \\ \\ b/t = & 37.0588 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & (\phi ck2^*\sqrt{(BpE))}/(1.6b/t) \end{array}$$

3.4.10

Rb/t = 0.0

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$
S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi y Fcy$
 $\phi F_L = 33.25 \text{ ksi}$

$$\phi F_L = 21.94 \text{ ksi}$$

$$A = 1215.13 \text{ mm}^2$$

$$1.88 \text{ in}^2$$

$$P_{\text{max}} = 41.32 \text{ kips}$$

 $\phi F_L = 21.9 \text{ ksi}$

A.2 Design of Aluminum Girders - Aluminum Design Manual, 2005 Edition

Girder = BF0

Strong Axis: Weak Axis: 3.4.14 88.9 in 88.9 $L_b =$ J= 1.08 J= 1.08 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_1 = 29.4 \text{ ksi}$ $\phi F_1 = 29.2$

3.4.16.1 Us
Rb/t = 18.1
$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fc}{\theta_b}\right)$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\phi F_L = \phi b[Bt-Dt^* \sqrt{(Rb/t)}]$$

31.1 ksi

3.4.16.1

N/A for Weak Direction

3.4.18

 $\phi F_L =$

h/t = 7.4

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 35.2$$

$$m = 0.68$$

$$C_0 = 41.067$$

$$Cc = 43.717$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 73.8$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\begin{array}{lll} \phi F_L = & 43.2 \text{ ksi} \\ \\ \phi F_L St = & 29.4 \text{ ksi} \\ \\ Ix = & 984962 \text{ mm}^4 \\ & 2.366 \text{ in}^4 \\ \\ y = & 43.717 \text{ mm} \\ \\ Sx = & 1.375 \text{ in}^3 \\ \\ M_{max} St = & 3.363 \text{ k-ft} \end{array}$$

3.4.18

3.4.18

$$h/t = 16.2$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 40$$

$$Cc = 40$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L W k = & 33.3 \text{ ksi} \\ ly = & 923544 \text{ mm}^4 \\ & 2.219 \text{ in}^4 \\ x = & 40 \text{ mm} \\ Sy = & 1.409 \text{ in}^3 \\ M_{max} W k = & 3.904 \text{ k-ft} \end{array}$$

Compression

3.4.9

b/t =12.21 (See 3.4.16 above for formula) S2 = 32.70 (See 3.4.16 above for formula) $\phi F_L = \phi c[Bp-1.6Dp*b/t]$ $\phi F_L =$ 31.6 ksi b/t =7.4 S1 = 12.21 32.70 S2 = $\phi F_L = \phi y F c y$ $\phi F_L =$ 33.3 ksi

3.4.10

Rb/t = 18.1

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

S1 = 6.87
S2 = 131.3
 $\phi F_L = \phi c[Bt-Dt^*\sqrt{(Rb/t)}]$
 $\phi F_L = 31.09 \text{ ksi}$
 $\phi F_L = 31.09 \text{ ksi}$
A = 1215.13 mm²

1.88 in² 58.55 kips

 $P_{max} =$

A.3 Design of Aluminum Struts (Front) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 24.8 \text{ in}$$

$$J = 0.942$$

$$38.7028$$

$$\left(Bc - \frac{\theta_y}{a}Fcy\right)^2$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 31.4 \text{ ksi}$$

Weak Axis:

3.4.14

$$L_{b} = 24.8$$

$$J = 0.942$$

$$38.7028$$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$$

$$S1 = 0.51461$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_L = 31.4$$

3.4.16

$$b/t = 24.5$$

$$Bp - \frac{\theta_y}{2} Fcy$$

$$S1 = 1.0Dp$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 B p}{1.6 D p}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_1 = 28.2 \text{ ksi}$$

3.4.16.1

Rb/t =
$$\frac{\text{Not Used}}{0.0}$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$\phi F_L = 1.17 \phi y F c y$$

$$\phi F_L = 38.9 \text{ ksi}$$

3.4.16.1

N/A for Weak Direction

3.4.18

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L St = 28.2 \text{ ksi}$$
 $lx = 279836 \text{ mm}^4$

$$y = 27.5 \text{ mm}$$

 $Sx = 0.621 \text{ in}^3$

0.621 in³

$$M_{max}St = 1.460 \text{ k-ft}$$

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$\phi F_L = 1.3 \phi y F c y$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\phi F_L W k = 28.2 \text{ ksi}$$

$$ly = 279836 \text{ mm}^4$$

$$x = 27.5 \text{ mm}$$

$$Sy = 0.621 \text{ in}^3$$

SCHLETTER

Compression

3.4.7
$$\lambda = 0.57371$$

$$r = 0.81 \text{ in}$$

$$S1^* = \frac{Bc - Fcy}{1.6Dc^*}$$

$$S1^* = 0.33515$$

$$S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E}$$

$$S2^* = 1.23671$$

$$\varphi cc = 0.87952$$

$$\varphi F_L = \varphi cc(Bc-Dc^*\lambda)$$

$$\varphi F_L = 28.0279 \text{ ksi}$$

3.4.9

$$\begin{array}{lll} b/t = & 24.5 \\ S1 = & 12.21 \text{ (See 3.4.16 above for formula)} \\ S2 = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \\ b/t = & 24.5 \\ S1 = & 12.21 \\ S2 = & 32.70 \\ \phi F_L = & \phi c [Bp-1.6Dp^*b/t] \\ \phi F_L = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

Rb/t =

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$S2 = 131.3$$

$$\phi F_L = \phi y Fcy$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 28.03 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$1.03 \text{ in}^2$$

0.0

28.85 kips

A.4 Design of Aluminum Struts (Diagonal) - Aluminum Design Manual, 2005 Edition

$Strut = \underline{55x55}$

 $P_{max} =$

Strong Axis: Weak Axis: 3.4.14 3.4.14 $L_b =$ 86.60 in 86.6 0.942 0.942 J= J = 135.148 135.148 $S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)^2$ S1 = 0.51461S1 = 0.51461 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $S2 = \left(\frac{C_c}{1.6}\right)^2$ S2 = 1701.56 $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{(LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$ $\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$ $\phi F_L =$ 29.6 ksi $\phi F_1 =$ 29.6

SCHLETTER

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

3.4.16

b/t = 24.5

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b} Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1 Bp}{1.6Dp}$$

$$S2 = 46.7$$

$$\varphi F_L = \varphi b [Bp-1.6Dp*b/t]$$

$$\varphi F_L = 28.2 \text{ ksi}$$

Not Used 0.0 3.4.16.1

Rb/t = 0.0

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

 $S1 = 1.1$
 $S2 = C_t$
 $S2 = 141.0$
 $\phi F_L = 1.17 \phi y Fcy$
 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

N/A for Weak Direction

3.4.18

$$\begin{aligned} \text{h/t} &= & 24.5 \\ S1 &= & \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr} \\ \text{S1} &= & 36.9 \\ \text{m} &= & 0.65 \\ \text{C}_0 &= & 27.5 \\ \text{Cc} &= & 27.5 \\ \text{S2} &= & \frac{k_1Bbr}{mDbr} \\ \text{S2} &= & 77.3 \\ \text{\phiF}_L &= & 1.3\text{\phiyFcy} \\ \text{\phiF}_L &= & 43.2 \text{ ksi} \end{aligned}$$

3.4.18

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$lx = 279836 \text{ mm}^4$$

 0.672 in^4
 $y = 27.5 \text{ mm}$

$$y = 27.5 \text{ mm}$$

 $Sx = 0.621 \text{ in}^3$

28.2 ksi

$$M_{\text{max}}St = 0.021 \text{ m}^{-1}$$

$$\begin{array}{ccc} \phi F_L W k = & 28.2 \text{ ksi} \\ ly = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

 $\phi F_i St =$

$$\begin{array}{lll} \lambda = & 2.00335 \\ r = & 0.81 \text{ in} \\ & S1^* = \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ & S2^* = \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ & \phi cc = & 0.86047 \\ & \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ & \phi F_L = & 7.50396 \text{ ksi} \end{array}$$

3.4.9

$$b/t = 24.5$$

$$\phi F_L = \phi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

$$b/t = 24.5$$

$$S1 = 12.21$$

 $S2 = 32.70$

$$\varphi F_L = \varphi c[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.10

$$Rb/t = 0.0$$

$$S1 = \left(\frac{Bt - \frac{\theta_y}{\theta_b}Fcy}{Dt}\right)^2$$

$$S1 = 6.87$$

$$\phi F_L = \phi y F c y$$

$$\phi F_L = 33.25 \text{ ksi}$$

$$\phi F_L = 7.50 \text{ ksi}$$

$$A = 663.99 \text{ mm}^2$$

$$A = 663.99 \text{ mm}$$

 1.03 in^2

$$P_{\text{max}} = 7.72 \text{ kips}$$

A.5 Design of Aluminum Struts (Rear) - Aluminum Design Manual, 2005 Edition

Strut = 55x55

Strong Axis:

3.4.14

$$L_b = 63.42 \text{ in}$$
 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{1.6Dc}\right)$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b [Bc\text{-}1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2)})}]$$

$$\phi F_L = 30.2 \text{ ksi}$$

Weak Axis:

$$L_b = 63.42$$
 $J = 0.942$

$$S1 = \left(\frac{Bc - \frac{\theta_y}{\theta_b}Fcy}{16Dc}\right)^2$$

$$S1 = 0.51461$$

$$S2 = \left(\frac{C_c}{1.6}\right)^2$$

$$S2 = 1701.56$$

$$S2 = 1701.56$$

$$\phi F_L = \phi b[Bc-1.6Dc^*\sqrt{((LbSc)/(Cb^*\sqrt{(lyJ)/2}))}]$$

$$\phi F_{L} = 30.2$$

3.4.16

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{b_y}{\theta_b}Fcy}{1.6Dp}$$

$$S1 = 12.2$$

$$S2 = \frac{k_1Bp}{1.6Dp}$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

Rev. 11.05.2015

$$b/t = 24.5$$

$$S1 = \frac{Bp - \frac{\theta_y}{\theta_b}Fcy}{1.6Dp}$$

$$S2 = \frac{k_1 Bp}{1.6 Dp}$$

$$S2 = 1.6Dp$$

$$\phi F_L = \phi b[Bp-1.6Dp*b/t]$$

$$\phi F_L = 28.2 \text{ ksi}$$

3.4.16.1 Not Used

Rb/t = 0.0

$$\left(Bt - 1.17 \frac{\theta_y}{a} Fcy\right)^2$$

$$S1 = \left(\frac{Bt - 1.17 \frac{\theta_y}{\theta_b} Fcy}{1.6Dt}\right)^2$$

$$S1 = 1.1$$

$$S2 = C_t$$

$$S2 = 141.0$$

$$\varphi F_L = 1.17 \varphi y Fcy$$

 $\phi F_L = 38.9 \text{ ksi}$

3.4.16.1

3.4.18

N/A for Weak Direction

3.4.18

h/t = 24.5

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$M = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$h/t = 24.5$$

$$S1 = \frac{Bbr - \frac{\theta_y}{\theta_b} 1.3Fcy}{mDbr}$$

$$S1 = 36.9$$

$$m = 0.65$$

$$C_0 = 27.5$$

$$Cc = 27.5$$

$$S2 = \frac{k_1 Bbr}{mDbr}$$

$$S2 = 77.3$$

$$\phi F_L = 1.3\phi y Fcy$$

$$\phi F_L = 43.2 \text{ ksi}$$

$$\begin{array}{lll} \phi F_L S t = & 28.2 \text{ ksi} \\ Ix = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ y = & 27.5 \text{ mm} \\ Sx = & 0.621 \text{ in}^3 \\ M_{max} S t = & 1.460 \text{ k-ft} \end{array}$$

 $\phi F_L = 43.2 \text{ ksi}$

$$\begin{array}{cccc} \phi F_L W k = & 28.2 \text{ ksi} \\ Iy = & 279836 \text{ mm}^4 \\ & 0.672 \text{ in}^4 \\ x = & 27.5 \text{ mm} \\ Sy = & 0.621 \text{ in}^3 \\ M_{max} W k = & 1.460 \text{ k-ft} \end{array}$$

Compression

3.4.7

$$\begin{array}{lll} \lambda = & 1.46712 \\ r = & 0.81 \text{ in} \\ S1^* = & \frac{Bc - Fcy}{1.6Dc^*} \\ S1^* = & 0.33515 \\ S2^* = & \frac{Cc}{\pi} \sqrt{Fcy/E} \\ S2^* = & 1.23671 \\ \phi cc = & 0.7854 \\ \phi F_L = & (\phi cc Fcy)/(\lambda^2) \\ \phi F_L = & 12.7711 \text{ ksi} \end{array}$$

$$\begin{array}{lll} \textbf{9} \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \text{ (See 3.4.16 above for formula)} \\ \textbf{S2} = & 32.70 \text{ (See 3.4.16 above for formula)} \\ \textbf{\phiF}_{L} = & \boldsymbol{\phi} \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phiF}_{L} = & 28.2 \text{ ksi} \\ \\ \textbf{b/t} = & 24.5 \\ \textbf{S1} = & 12.21 \\ \textbf{S2} = & 32.70 \\ \textbf{\phiF}_{L} = & \boldsymbol{\phi} \textbf{c} [\textbf{Bp-1.6Dp*b/t}] \\ \textbf{\phiF}_{L} = & 28.2 \text{ ksi} \\ \end{array}$$

3.4.10

$$\begin{aligned} \text{Rb/t} &= & 0.0 \\ S1 &= \left(\frac{Bt - \frac{\theta_y}{\theta_b} Fcy}{Dt} \right)^2 \\ \text{S1} &= & 6.87 \\ \text{S2} &= & 131.3 \\ \text{ϕF}_L &= & \text{ϕF}_L \text{ψF}_L \text{ψF}$$

APPENDIX B

B.1

The following pages will contain the results from RISA. Please refer back to Section 2 for load information and Section 4-5 for member and foundation design.

: Schletter, Inc.

: HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:___

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distribut	.Area(Me	Surface(
1	Dead Load, Max	DĽ		-1	,			4	,	,
2	Dead Load, Min	DL		-1				4		
3	Snow Load	SL						4		
4	Wind Load - Pressure	WL						4		
5	Wind Load - Suction	WL						4		
6	Seismic - Lateral	EL								

Member Distributed Loads (BLC 1 : Dead Load, Max)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-8.366	-8.366	0	0
2	M14	Υ	-8.366	-8.366	0	0
3	M15	Υ	-8.366	-8.366	0	0
4	M16	Υ	-8.366	-8.366	0	0

Member Distributed Loads (BLC 2 : Dead Load, Min)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-4.45	-4.45	0	0
2	M14	Υ	-4.45	-4.45	0	0
3	M15	Υ	-4.45	-4.45	0	0
4	M16	Υ	-4.45	-4.45	0	0

Member Distributed Loads (BLC 3 : Snow Load)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	Υ	-46.9	-46.9	0	0
2	M14	Υ	-46.9	-46.9	0	0
3	M15	Υ	-46.9	-46.9	0	0
4	M16	Y	-46.9	-46 9	0	0

Member Distributed Loads (BLC 4: Wind Load - Pressure)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	-34.799	-34.799	0	0
2	M14	V	-34.799	-34.799	0	0
3	M15	V	-53.78	-53.78	0	0
4	M16	V	-53.78	-53.78	0	0

Member Distributed Loads (BLC 5: Wind Load - Suction)

	Member Label	Direction	Start Magnitude[lb/ft,F]	End Magnitude[lb/ft,F]	Start Location[ft,%]	End Location[ft,%]
1	M13	V	79.088	79.088	0	0
2	M14	V	60.107	60.107	0	0
3	M15	V	31.635	31.635	0	0
4	M16	V	31 635	31 635	0	0

Load Combinations

	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	. B	Fa	В	. Fa
1	LRFD 1.2D + 1.6S + 0.8W	Yes	Υ		1	1.2	3	1.6	4	.8														
2	LRFD 1.2D + 1.6W + 0.5S	Yes	Υ		1	1.2	3	.5	4	1.6														
3	LRFD 0.9D + 1.6W	Yes	Υ		2	.9					5	1.6												
4	LATERAL - LRFD 1.54D + 1.3E	Yes	Υ		1	1.54	3	.2			6	1.3												
5	LATERAL - LRFD 0.56D + 1.3E	Yes	Υ		1	.56					6	1.3												
6	LATERAL - LRFD 1.54D + 1.25				1	1.54	3	.2			6	1.25												
7	LATERAL - LRFD 0.56D + 1.25E	Yes	Υ		1	.56					6	1.25												

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Load Combinations (Continued)

_	Description	S	P	S	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	В	Fa	B	Fa
8																								
9	ASD 1.0D + 1.0S	Yes	Υ		1	1	3	1																
10	ASD 1.0D + 1.0W	Yes	Υ		1	1			4	1														
11	ASD 1.0D + 0.75L + 0.75W + 0	Yes	Υ		1	1	3	.75	4	.75														
12	ASD 0.6D + 1.0W	Yes	Υ		2	.6					5	1												
	LATERAL - ASD 1.238D + 0.875E				1	1.2					6	.875												
14	LATERAL - ASD 1.1785D + 0.65	Yes	Υ		1	1.1	3	.75			6	.656												
15	LATERAL - ASD 0.362D + 0.875E	Yes	Υ		1	.362					6	.875												

Envelope Joint Reactions

	Joint		X [lb]	LC	Y [lb]	LC	Z [lb]	LC	MX [k-ft]	LC	MY [k-ft]	LC	MZ [k-ft]	LC
1	N8	max	427.837	2	957.82	1	.843	1	.004	1	Ō	1	0	1
2		min	-570.488	3	-1003.047	3	.041	15	0	15	0	1	0	1
3	N7	max	.043	9	1108.152	1	527	15	001	15	0	1	0	1
4		min	086	2	-66.412	3	-12.383	1	025	1	0	1	0	1
5	N15	max	.031	9	2946.702	1	0	14	0	14	0	1	0	1
6		min	-1.119	2	-301.764	3	0	1	0	1	0	1	0	1
7	N16	max	1721.152	2	3298.398	1	0	1	0	1	0	1	0	1
8		min	-1802.279	3	-3303.184	3	0	3	0	3	0	1	0	1
9	N23	max	.043	9	1108.152	1	12.383	1	.025	1	0	1	0	1
10		min	086	2	-66.412	3	.527	15	.001	15	0	1	0	1
11	N24	max	427.837	2	957.82	1	041	15	0	15	0	1	0	1
12		min	-570.488	3	-1003.047	3	843	1	004	1	0	1	0	1
13	Totals:	max	2575.535	2	10377.044	1	0	14	·				·	
14		min	-2943.45	3	-5743.864	3	0	1						

Envelope Member Section Forces

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC		LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
1	M13	1	max	126.613	1	425.852	_1_	-7.83	15	0	3	.303	1	0	1
2			min	5.228	15	-490.773	3	-190.167	1	011	1	.012	15	0	3
3		2	max	126.613	1	298.545	1	-6.027	15	0	3	.102	1	.499	3
4			min	5.228	15	-345.428	3	-146.309	1	011	1	.004	15	433	1
5		3	max	126.613	1	171.237	1	-4.223	15	0	3	0	12	.825	3
6			min	5.228	15	-200.083	3	-102.45	1	011	1	047	1	713	1
7		4	max	126.613	1	43.93	1	-2.419	15	0	3	005	12	.977	3
8			min	5.228	15	-54.738	3	-58.592	1	011	1	143	1	842	1
9		5	max	126.613	1	90.606	3	616	15	0	3	008	12	.956	3
10			min	5.228	15	-83.378	1	-14.733	1	011	1	187	1	818	1
11		6	max	126.613	1	235.951	3	29.126	1	0	3	007	15	.761	3
12			min	5.228	15	-210.685	1	.797	12	011	1	178	1	643	1
13		7	max	126.613	1	381.296	3	72.984	1	0	3	005	15	.392	3
14			min	5.228	15	-337.993	1	2.6	12	011	1	117	1	315	1
15		8	max	126.613	1	526.641	3	116.843	1	0	3	0	10	.165	1
16			min	5.228	15	-465.3	1	4.404	12	011	1	004	1	15	3
17		9	max	126.613	1	671.986	3	160.702	1	0	3	.162	1	.797	1
18			min	5.228	15	-592.608	1	6.207	12	011	1	.005	12	866	3
19		10	max	126.613	1	817.331	3	204.56	1	.011	1	.38	1	1.581	1
20			min	5.228	15	-719.915	1	8.01	12	0	12	.013	12	-1.755	3
21		11	max	126.613	1	592.608	1	-6.207	12	.011	1	.162	1	.797	1
22			min	5.228	15	-671.986	3	-160.702	1	0	3	.005	12	866	3
23		12	max	126.613	1	465.3	1	-4.404	12	.011	1	0	10	.165	1
24			min	5.228	15	-526.641	3	-116.843	1	0	3	004	1	15	3
25		13	max	126.613	1	337.993	1	-2.6	12	.011	1	005	15	.392	3
26			min	5.228	15	-381.296	3	-72.984	1	0	3	117	1	315	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]						Torque[k-ft]					
27		14	max	126.613	1	210.685	_1_	797	12	.011	_1_	007	15	.761	3
28			min	5.228	15	-235.951	3	-29.126	1	0	3	178	1	643	1
29		15	max	126.613	1	83.378	_1_	14.733	1	.011	_1_	008	12	.956	3
30			min	5.228	15	-90.606	3	.616	15	0	3	187	1	818	1
31		16	max	126.613	1_	54.738	3_	58.592	1	.011	_1_	005	12	.977	3
32			min	5.228	15	-43.93	1	2.419	15	0	3	143	1	842	1
33		17	max	126.613	1	200.083	3	102.45	1	.011	1	0	12	.825	3
34			min	5.228	15	-171.237	1	4.223	15	0	3	047	1	713	1
35		18	max	126.613	1	345.428	3	146.309	1	.011	1	.102	1	.499	3
36			min	5.228	15	-298.545	1	6.027	15	0	3	.004	15	433	1
37		19	max	126.613	1	490.773	3	190.167	1	.011	1	.303	1	0	1
38			min	5.228	15	-425.852	1	7.83	15	0	3	.012	15	0	3
39	M14	1	max	56.263	1	446.327	1	-8.058	15	.005	3	.342	1	0	1
40			min	2.329	15	-376.799	3	-195.718	1	009	1	.014	15	0	3
41		2	max	56.263	1	319.019	1	-6.255	15	.005	3	.135	1	.385	3
42			min	2.329	15	-267.728	3	-151.859	1	009	1	.006	15	457	1
43		3	max	56.263	1	191.712	1	-4.451	15	.005	3	0	3	.64	3
44		J	min	2.329	15	-158.658	3	-108.001	1	009	1	02	1	762	1
45		4		56.263	1	64.404	<u> </u>	-2.647	15	.005	3	004	12	.764	3
		4	max	2.329	15		3		1	009	1	123	1		1
46		-	min			-49.588		-64.142			•			915	
47		5	max	56.263	1	59.482	3	844	15	.005	3	007	12	.758	3
48			min	2.329	15	-62.903	1_	-20.284	1	009	1_	174	1	<u>916</u>	1
49		6	max	56.263	1	168.552	3	23.575	1	.005	3	007	15	.622	3
50			min	2.329	15	-190.211	1_	.576	12	009	1	172	1	7 <u>65</u>	1
51		7	max	56.263	1	277.622	3	67.434	1	.005	3	005	15	.355	3
52			min	2.329	15	-317.518	1_	2.379	12	009	1_	117	1	462	1
53		8	max	56.263	1_	386.692	3	111.292	1	.005	3	0	10	0	9
54			min	2.329	15	-444.825	1_	4.183	12	009	1_	011	1	041	3
55		9	max	56.263	1	495.763	3	155.151	1	.005	3	.148	1	.601	1
56			min	2.329	15	-572.133	1_	5.986	12	009	1_	.004	12	568	3
57		10	max	56.263	1	604.833	3	199.01	1	.009	1	.36	1	1.36	1
58			min	2.329	15	-699.44	1	7.789	12	005	3	.013	12	-1.226	3
59		11	max	56.263	1	572.133	1_	-5.986	12	.009	1	.148	1	.601	1
60			min	2.329	15	-495.763	3	-155.151	1	005	3	.004	12	568	3
61		12	max	56.263	1	444.825	1	-4.183	12	.009	1	0	10	0	9
62			min	2.329	15	-386.692	3	-111.292	1	005	3	011	1	041	3
63		13	max	56.263	1	317.518	1	-2.379	12	.009	1	005	15	.355	3
64			min	2.329	15	-277.622	3	-67.434	1	005	3	117	1	462	1
65		14	max	56.263	1	190.211	1	576	12	.009	1	007	15	.622	3
66			min	2.329	15	-168.552	3	-23.575	1	005	3	172	1	765	1
67		15	max		1	62.903	1	20.284	1	.009	1	007	12	.758	3
68		<u>.</u>	min	2.329	15	-59.482	3	.844	15	005	3	174	1	916	1
69		16	max	56.263	1	49.588	3	64.142	1	.009	1	004	12	.764	3
70		'	min	2.329	15	-64.404	1	2.647	15	005	3	123	1	915	1
71		17	max	56.263	1	158.658	3	108.001	1	.009	1	0	3	.64	3
72		17	min	2.329	15	-191.712	1	4.451	15	005	3	02	1	762	1
73		18	max	56.263	1	267.728	3	151.859	1	.009	<u> </u>	.135	1	.385	3
74		10	min	2.329	15	-319.019	1	6.255	15	005	3	.006	15	457	1
75		10				376.799						.342			1
		19	max	56.263	1		3	195.718	1	.009	1		1	0	
76	NAE	4	min	2.329	15	-446.327	1	8.058	15	005	3	.014	15	0	3
77	<u>M15</u>	1	max	-2.457	15	507.512	1	-8.056	15	.009	1	.342	1	0	2
78			min	-59.379	1_	-193.283	3	-195.683	1_	005	3	.014	15	0	15
79		2	max	-2.457	15	362.067	1_	-6.253	15	.009	1_	.134	1	.198	3
80			min	-59.379	1	-138.626	3	-151.824	1_	005	3	.006	15	<u>519</u>	1
81		3	max	-2.457	15	216.622	_1_	-4.449	15	.009	1	0	3	.331	3
82			min	-59.379	1	-83.969	3	-107.966		005	3	021	1	<u>865</u>	1
83		4	max	-2.457	15	71.177	_1_	-2.645	15	.009	<u>1</u>	004	12	.399	3

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC				LC	Torque[k-ft]			LC		LC
84			min	-59.379	1_	-29.312	3	-64.107	1	005	3	123	1	-1.037	1
85		5	max	-2.457	15	25.345	3	842	15	.009	1	007	12	.401	3
86			min	-59.379	<u>1</u>	-74.267	1_	-20.249	1	005	3	174	1	-1.035	1
87		6	max	-2.457	15	80.002	3	23.61	1	.009	1	007	15	.338	3
88			min	-59.379	1_	-219.712	1	.607	12	005	3	172	1	859	1
89		7	max	-2.457	15	134.659	3	67.469	1	.009	1	005	15	.21	3
90			min	-59.379	1	-365.157	1	2.41	12	005	3	117	1	51	1
91		8	max	-2.457	15	189.316	3	111.327	1	.009	1	0	10	.023	2
92			min	-59.379	1	-510.602	1	4.214	12	005	3	011	1	0	15
93		9	max	-2.457	15	243.973	3	155.186	1	.009	1	.149	1	.71	1
94			min	-59.379	1	-656.047	1	6.017	12	005	3	.005	12	242	3
95		10	max	-2.457	15	298.63	3	199.044	1	.005	3	.36	1	1.58	1
96			min	-59.379	1	-801.492	1	7.821	12	009	1	.013	12	566	3
97		11	max	-2.457	15	656.047	1	-6.017	12	.005	3	.149	1	.71	1
98			min	-59.379	1	-243.973	3	-155.186	1	009	1	.005	12	242	3
99		12	max	-2.457	15	510.602	1	-4.214	12	.005	3	0	10	.023	2
100		12	min	-59.379	1	-189.316	3	-111.327	1	009	1	011	1	0	15
		13		-2.457	15	365.157	<u> </u>	-2.41	12	.005	3	005	15	.21	3
101		13	max				3	-67.469	1		1	117	1	51	1
		4.4	min	-59.379	1_	-134.659				009					
103		14	max	-2.457	<u>15</u>	219.712	1	607	12	.005	3	007	15	.338	3
104		4.5	min	-59.379	1_	-80.002	3	-23.61	1_	009	1	172	1	859	1
105		15	max	-2.457	<u>15</u>	74.267	1	20.249	1	.005	3	007	12	.401	3
106			min	-59.379	_1_	-25.345	3	.842	15	009	1	174	1_	-1.035	1
107		16	max	-2.457	15	29.312	3	64.107	1_	.005	3	004	12	.399	3
108			min	-59.379	1	-71.177	1_	2.645	15	009	1	123	1	-1.037	1
109		17	max	-2.457	<u> 15</u>	83.969	3	107.966	1	.005	3	0	3	.331	3
110			min	-59.379	1	-216.622	1	4.449	15	009	1	021	1	865	1
111		18	max	-2.457	15	138.626	3	151.824	1	.005	3	.134	1	.198	3
112			min	-59.379	1	-362.067	1	6.253	15	009	1	.006	15	519	1
113		19	max	-2.457	15	193.283	3	195.683	1	.005	3	.342	1	0	2
114			min	-59.379	1	-507.512	1	8.056	15	009	1	.014	15	0	15
115	M16	1	max	-5.586	15	487.149	1	-7.837	15	.01	1	.304	1	0	1
116			min	-135.037	1	-181.999	3	-190.384	1	007	3	.013	15	0	3
117		2	max	-5.586	15	341.704	1	-6.033	15	.01	1	.103	1	.185	3
118			min	-135.037	1	-127.342	3	-146.525	1	007	3	.004	15	495	1
119		3	max	-5.586	15	196.259	1	-4.23	15	.01	1	001	12	.304	3
120			min	-135.037	1	-72.685	3	-102.667	1	007	3	046	1	816	1
121		4	max	-5.586	15	50.814	1	-2.426	15	.01	1	005	12	.358	3
122				-135.037	1	-18.028	3	-58.808	1	007	3	142	1	964	1
123		5	max	-5.586	15	36.629	3	623	15	.01	1	008	12	.347	3
124				-135.037	1	-94.631	1	-14.949	1	007	3	187	1	938	1
125		6	max		15	91.286	3	28.909	1	.01	1	007	15	.271	3
126				-135.037	1	-240.075	1	.896	12	007	3	178	1	738	1
127		7	max		15	145.943	3	72.768	1	.01	1	005	15	.129	3
128				-135.037	1	-385.52	1	2.699	12	007	3	117	1	364	1
129		8			15	200.6	3	116.626	1	.01	1	0	10	.183	1
		0	max								_				_
130		0		-135.037	1_	-530.965	1	4.503	12	007	3	004	1	078	3
131		9	max		<u>15</u>	255.257	3	160.485	1	.01	1	.161	1	.904	1
132		40		-135.037	1_	-676.41	1	6.306	12	007	3	.005	12	35	3
133		10	max		<u>15</u>	309.914	3	204.344	1	.007	3	.379	1	1.799	1
134		4.4		-135.037	1_	-821.855	1_	8.109	12	01	1	.014	12	688	3
135		11	max		<u>15</u>	676.41	1	-6.306	12	.007	3	.161	1	.904	1
136				-135.037	_1_	-255.257	3	-160.485	1_	01	1	.005	12	35	3
137		12	max		15	530.965	1_	-4.503	12	.007	3	0	10	.183	1
138				-135.037	_1_	-200.6	3	-116.626	1_	01	1	004	1_	078	3
139		13	max		<u>15</u>	385.52	1_	-2.699	12	.007	3	005	15	.129	3
140			min	-135.037	1_	-145.943	3	-72.768	1	01	1	117	1	364	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
141		14	max	-5.586	15	240.075	1	896	12	.007	3	007	15	.271	3
142			min	-135.037	1	-91.286	3	-28.909	1	01	1	178	1	738	1
143		15	max	-5.586	15	94.631	1	14.949	1	.007	3	008	12	.347	3
144			min	-135.037	1	-36.629	3	.623	15	01	1	187	1	938	1
145		16	max	-5.586	15	18.028	3	58.808	1	.007	3	005	12	.358	3
146			min	-135.037	1	-50.814	1	2.426	15	01	1	142	1	964	1
147		17	max	-5.586	15	72.685	3	102.667	1	.007	3	001	12	.304	3
148			min	-135.037	1	-196.259	1	4.23	15	01	1	046	1	816	1
149		18	max	-5.586	15	127.342	3	146.525	1	.007	3	.103	1	.185	3
150		'0	min	-135.037	1	-341.704	1	6.033	15	01	1	.004	15	495	1
151		19	max	-5.586	15	181.999	3	190.384	1	.007	3	.304	1	0	1
152		13	min	-135.037	1	-487.149	1	7.837	15	01	1	.013	15	0	3
153	M2	1		951.686	1	1.92	4	.814	1	0	5	0	3	0	1
	IVIZ		max				15		15		1	0	1		1
154			min	-881.086	3	.452		.034		0				0	
155		2	max	952.115	1	1.863	4	.814	1	0	5	0	1_	0	15
156			min	-880.764	3	.439	15	.034	15	0	1_	0	15	0	4
157		3	max	952.543	1	1.806	4	.814	1	0	5	0	_1_	0	15
158			min	-880.443	3	.426	15	.034	15	0	1	0	15	001	4
159		4	max		1	1.75	4	.814	1	0	5	0	_1_	0	15
160			min	-880.122	3	.412	15	.034	15	0	1	0	15	002	4
161		5	max	953.4	1	1.693	4	.814	1	0	5	0	1_	0	15
162			min	-879.8	3	.399	15	.034	15	0	1	0	15	002	4
163		6	max	953.829	1	1.636	4	.814	1	0	5	.001	1	0	15
164			min	-879.479	3	.385	15	.034	15	0	1	0	15	003	4
165		7	max	954.257	1	1.579	4	.814	1	0	5	.001	1	0	15
166			min	-879.158	3	.372	15	.034	15	0	1	0	15	003	4
167		8	max	954.686	1	1.523	4	.814	1	0	5	.002	1	0	15
168		Ŭ	min	-878.836	3	.359	15	.034	15	0	1	0	15	003	4
169		9	max		1	1.466	4	.814	1	0	5	.002	1	0	15
170			min	-878.515	3	.345	15	.034	15	0	1	0	15	004	4
171		10	max		1	1.409	4	.814	1	0	5	.002	1	004	15
172		10		-878.193	_	.332	15	.034	15	0	1	0	15	004	4
		11	min		3			.814	1		_				
173		11	max	955.971	1	1.352	4			0	5	.002	1_	001	15
174		40	min	-877.872	3	.319	15	.034	15	0		0	15	005	4
175		12	max	956.4	1	1.295	4	.814	1	0	5	.003	1_	001	15
176		4.0	min	-877.551	3	.305	15	.034	15	0	1	0	<u>15</u>	005	4
177		13	max		1	1.239	4	.814	1	0	5	.003	_1_	001	15
178			min	-877.229	3	.292	15	.034	15	0	1	0	15	006	4
179		14	max		1	1.182	4	.814	1	0	5	.003	_1_	001	15
180			min	-876.908	3	.279	15	.034	15	0	1	0	15	006	4
181		15	max	957.685	1	1.125	4	.814	1	0	5	.003	_1_	001	15
182			min		3	.265	15	.034	15	0	1	0	15	006	4
183		16	max	958.114	1	1.068	4	.814	1	0	5	.004	1	002	15
184			min	-876.265	3	.252	15	.034	15	0	1	0	15	007	4
185		17		958.542	1	1.011	4	.814	1	0	5	.004	1	002	15
186			min		3	.239	15	.034	15	0	1	0	15	007	4
187		18	max		1	.955	4	.814	1	0	5	.004	1	002	15
188			min	-875.623	3	.225	15	.034	15	0	1	0	15	007	4
189		19		959.399	1	.898	4	.814	1	0	5	.004	1	002	15
190			min	-875.301	3	.209	12	.034	15	0	1	0	15	007	4
191	M3	1	max		2	7.881	4	.178	1	0	12		1	.007	4
192	IVIO		min	-498.632	3	1.853	15	.007	15	0	1	0	15	.007	15
193		2				7.114	4	.178	1		12	0	15 1	.002	4
			max		2					0	1				
194		0	min		3	1.673	15	.007	15	0		0	15	0	12
195		3	max		2	6.347	4	.178	1	0	12	0	1_	.002	2
196		4	min		3	1.493	15	.007	15	0	1	0	15	0	3
197		4	max	358.634	2	5.58	4	.178	_ 1	0	12	0	_1_	0	2

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
198			min	-499.015	3	1.312	15	.007	15	0	1	0	15	002	3
199		5	max	358.463	2	4.812	4	.178	1	0	12	0	1	0	15
200			min	-499.143	3	1.132	15	.007	15	0	1	0	15	003	4
201		6	max	358.293	2	4.045	4	.178	1	0	12	0	1	001	15
202			min	-499.27	3	.952	15	.007	15	0	1	0	15	005	4
203		7	max	358.122	2	3.278	4	.178	1	0	12	0	1	002	15
204			min	-499.398	3	.771	15	.007	15	0	1	0	15	007	4
205		8	max	357.952	2	2.511	4	.178	1	0	12	0	1	002	15
206			min	-499.526	3	.591	15	.007	15	0	1	0	15	008	4
207		9	max	357.782	2	1.744	4	.178	1	0	12	.001	1	002	15
208			min	-499.654	3	.41	15	.007	15	0	1	0	15	009	4
209		10	max	357.611	2	.976	4	.178	1	0	12	.001	1	002	15
210			min	-499.781	3	.23	15	.007	15	0	1	0	15	009	4
211		11	max	357.441	2	.277	2	.178	1	0	12	.001	1	002	15
212			min	-499.909	3	035	3	.007	15	0	1	0	15	01	4
213		12	max	357.271	2	131	15	.178	1	0	12	.001	1	002	15
214			min	-500.037	3	558	4	.007	15	0	1	0	15	01	4
215		13	max	357.1	2	311	15	.178	1	0	12	.001	1	002	15
216			min	-500.165	3	-1.325	4	.007	15	0	1	0	15	009	4
217		14	max	356.93	2	491	15	.178	1	0	12	.001	1	002	15
218			min	-500.292	3	-2.093	4	.007	15	0	1	0	15	008	4
219		15	max	356.76	2	672	15	.178	1	0	12	.001	1	002	15
220			min	-500.42	3	-2.86	4	.007	15	0	1	0	15	007	4
221		16	max	356.589	2	852	15	.178	1	0	12	.002	1	001	15
222			min	-500.548	3	-3.627	4	.007	15	0	1	0	15	006	4
223		17	max	356.419	2	-1.032	15	.178	1	0	12	.002	1	001	15
224			min	-500.676	3	-4.394	4	.007	15	0	1	0	15	004	4
225		18	max	356.249	2	-1.213	15	.178	1	0	12	.002	1	0	15
226			min	-500.803	3	-5.161	4	.007	15	0	1	0	15	002	4
227		19	max	356.078	2	-1.393	15	.178	1	0	12	.002	1	0	1
228			min	-500.931	3	-5.929	4	.007	15	0	1	0	15	0	1
229	M4	1	max	1105.086	1	0	1	527	15	0	1	.001	1	0	1
230			min	-68.711	3	0	1	-12.797	1	0	1	0	15	0	1
231		2	max	1105.256	1	0	1	527	15	0	1	0	12	0	1
232			min	-68.584	3	0	1	-12.797	1	0	1	0	1	0	1
233		3	max	1105.426	1	0	1	527	15	0	1	0	15	0	1
234			min	-68.456	3	0	1	-12.797	1	0	1	002	1	0	1
235		4	max	1105.597	1	0	1	527	15	0	1	0	15	0	1
236			min	-68.328	3	0	1	-12.797	1	0	1	003	1	0	1
237		5	max	1105.767	1	0	1	527	15	0	1	0	15	0	1
238			min	-68.2	3	0	1	-12.797	1	0	1	005	1	0	1
239		6	max	1105.937	1	0	1	527	15	0	1	0	15	0	1
240			min	-68.072	3	0	1	-12.797	1	0	1	006	1	0	1
241		7	max	1106.108	1	0	1	527	15	0	1	0	15	0	1
242			min	-67.945	3	0	1	-12.797	1	0	1	008	1	0	1
243		8	max	1106.278	1	0	1	527	15	0	1	0	15	0	1
244			min	-67.817	3	0	1	-12.797	1	0	1	009	1	0	1
245		9	max	1106.448	1	0	1	527	15	0	1	0	15	0	1
246				-67.689	3	0	1	-12.797	1	0	1	01	1	0	1
247		10		1106.619		0	1	527	15	0	1	0	15	0	1
248				-67.561	3	0	1	-12.797	1	0	1	012	1	0	1
249		11		1106.789	1	0	1	527	15	0	1	0	15	0	1
250			min		3	0	1	-12.797	1	0	1	013	1	0	1
251		12	max	1106.959	1	0	1	527	15	0	1	0	15	0	1
252			min	-67.306	3	0	1	-12.797	1	0	1	015	1	0	1
253		13		1107.13	1	0	1	527	15	0	1	0	15	0	1
254			min		3	0	1	-12.797	1	0	1	016	1	0	1

Model Name

Schletter, Inc. HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

055	Member	Sec	T	Axial[lb]								y-y Mome			
255		14	max		<u>1</u> 3	0	1	527	<u>15</u>	0	<u>1</u> 1	0	<u>15</u>	0	1
256 257		15	min	-67.05 1107.47	<u> </u>	0	1	-12.797 527	<u>1</u> 15	0	1	018 0	15	0	1
258		13	max min	-66.923	3	0	1	-12.797	1	0	1	019	1	0	1
259		16		1107.641	_ <u></u>	0	1	527	15	0	1	0	15	0	1
260		10	min	-66.795	3	0	1	-12.797	1	0	1	021	1	0	1
261		17		1107.811	1	0	1	527	15	0	1	0	15	0	1
262		- '	min	-66.667	3	0	1	-12.797	1	0	1	022	1	0	1
263		18		1107.981	1	0	1	527	15	0	1	0	15	0	1
264			min	-66.539	3	0	1	-12.797	1	0	1	024	1	0	1
265		19		1108.152	1	0	1	527	15	Ö	1	001	15	0	1
266			min	-66.412	3	0	1	-12.797	1	0	1	025	1	0	1
267	M6	1	max	3074.605	1	2.126	2	0	1	0	1	0	1	0	1
268				-2900.29	3	.292	12	0	1	0	1	0	1	0	1
269		2	max	3075.034	1	2.081	2	0	1	0	1	0	1	0	12
270			min	-2899.969	3	.27	12	0	1	0	1	0	1	0	2
271		3	max	3075.462	1	2.037	2	0	1	0	1	0	1	0	12
272			min	-2899.647	3	.247	12	0	1	0	1	0	1	001	2
273		4	max	3075.891	1	1.993	2	0	1	0	1	0	1	0	12
274			min	-2899.326	3	.225	12	0	1	0	1	0	1	002	2
275		5	max	3076.319	1	1.949	2	0	1	0	1	0	1	0	12
276			min	-2899.005	3	.203	12	0	1	0	1	0	1	002	2
277		6	max	3076.748	1	1.904	2	0	1	0	1	0	1	0	12
278			min	-2898.683	3	.181	12	0	1	0	1	0	1	003	2
279		7	max	3077.176	1	1.86	2	0	1	0	1	0	1	0	12
280			min	-2898.362	3	.159	12	0	1	0	1	0	1	003	2
281		8	max	3077.605	1	1.816	2	0	1	0	1	0	1	0	12
282			min	-2898.041	3	.137	12	0	1	0	1	0	1	004	2
283		9	max	3078.033	1	1.772	2	0	1	0	1	0	1	0	12
284			min	-2897.719	3	.115	12	0	1	0	1	0	1	005	2
285		10	max	3078.462	1_	1.727	2	0	1	0	1	0	1	0	12
286			min	-2897.398	3	.092	3	0	1	0	1	0	1	005	2
287		11	max	3078.89	1_	1.683	2	0	1_	0	_1_	0	1	0	12
288			min	-2897.077	3	.059	3	0	1	0	1	0	1	006	2
289		12	max	3079.319	1_	1.639	2	0	1_	0	1	0	1	0	12
290			min	-2896.755	3	.026	3	0	1	0	1	0	1	006	2
291		13	max	3079.747	_1_	1.595	2	0	_1_	0	_1_	0	1	0	12
292			min	-2896.434	3	007	3	0	1_	0	1_	0	1	006	2
293		14		3080.175	_1_	1.55	2	0	_1_	0	_1_	0	1	0	12
294			min	-2896.112	3	04	3	0	1_	0	1	0	1	007	2
295		15	max	3080.604	_1_	1.506	2	0	_1_	0	_1_	0	1	0	12
296			min	-2895.791	3	074	3	0	1	0	1	0	1	007	2
297		16		3081.032	_1_	1.462	2	0	_1_	0	1	0	1	0	12
298				-2895.47	3	107	3	0	1_	0	1	0	1	008	2
299		17		3081.461	1_	1.418	2	0	1_	0	1	0	1	0	12
300			min		3	14	3	0	1_	0	1	0	1	008	2
301		18		3081.889	_1_	1.373	2	0	_1_	0	1	0	1	0	12
302				-2894.827	3	173	3	0	_1_	0	1	0	1	009	2
303		19		3082.318	1_	1.329	2	0	1_	0	1	0	1	0	3
304				-2894.506	3_	206	3	0	_1_	0	1_	0	1	009	2
305	<u>M7</u>	1		1513.442	2	7.92	4	0	1_	0	1	0	1	.009	2
306			min		3_	1.859	15	0	1_	0	1	0	1	0	3
307		2		1513.271	2	7.153	4	0	_1_	0	1	0	1	.006	2
308				-1562.428	3	1.679	15	0	1_	0	1	0	1	001	3
309		3		1513.101	2	6.386	4	0	1_	0	1	0	1	.004	2
310			_	-1562.556	3	1.498	15	0	1_	0	1	0	1	003	3
311		4	max	1512.931	2	5.618	4	0	_1_	0	_1_	0	1	.002	2

Model Name

Schletter, Inc.

: HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	. LC
312			min	-1562.684	3	1.318	15	0	1	0	1	0	1	004	3
313		5	max		2	4.851	4	0	1	0	_1_	0	1	0	2
314			min	-1562.811	3	1.137	15	0	1	0	1	0	1	005	3
315		6	max	1512.59	2	4.084	4	0	1	0	_1_	0	1	001	15
316			min	-1562.939	3	.957	15	0	1	0	1	0	1	006	3
317		7	max		2	3.317	4	0	1	0	_1_	0	1	002	15
318			min	-1563.067	3	.777	15	0	1	0	1	0	1	006	4
319		8	max		2	2.55	4	0	1	0	1	0	1	002	15
320			min	-1563.195	3	.596	15	0	1	0	1	0	1	008	4
321		9		1512.079	2	1.795	2	0	1	0	1	0	1	002	15
322			min	-1563.322	3	.363	12	0	1	0	1	0	1	009	4
323		10		1511.909	2	1.197	2	0	1	0	1	0	1	002	15
324			min	-1563.45	3	.064	3	0	1	0	1	0	1	009	4
325		11		1511.738	2	.599	2	0	1	0	1	0	1	002	15
326			min	-1563.578	3_	384	3	0	1	0	1	0	1	009	4
327		12		1511.568	2	.001	2	0	1	0	1	0	1	002	15
328			min	-1563.706	3_	833	3	0	1	0	1	0	1	009	4
329		13		1511.398	2	305	15	0	1	0	1	0	1	002	15
330			min	-1563.833	3	-1.286	4	0	1	0	1	0	1	009	4
331		14		1511.227	2	486	15	0	1	0	1	0	1	002	15
332		4.5	min	-1563.961	3	-2.054	4	0	1	0	1	0	1	008	4
333		15		1511.057	2	666	15	0	1	0	1	0	1	002	15
334		10	min	-1564.089	3	-2.821	4	0	1	0	1	0	1	007	4
335		16		1510.886	2	846	15	0	1	0	1	0	1	001	15
336		47	min	-1564.217	3	-3.588	4	0	1	0	1	0	1	006	4
337		17		1510.716	2	-1.027	15	0	1	0	1	0	1	001	15
338		10	min	-1564.345	3	-4.355	4	0	1	0	1	0	1	004	4
339		18		1510.546	2	-1.207	15	0	1	0	1	0	1	0	15
340		10	min	-1564.472	3	-5.123	4	0	1	0	1	0	1	002	4
341		19		1510.375	2	-1.387	15	0	1	0	1	0	1	0	1
342	MO	4	min	-1564.6	3_	-5.89	4	0	_	0	1	0	1	0	1
343	<u>M8</u>	1		2943.636	1	0	1	0	1	0	1	0	1	0	1
344			min	-304.063	3_	0	_	0		0		0		0	1
345		2		2943.806	1	0	1	0	1	0	1	0	1	0	1
346 347		3	min	-303.936 2943.977	<u>3</u> 1	0	1	0	1	0	1	0	1	0	1
348		3			3	0	1	0	1	0	1	0	1	0	1
349		4	min	2944.147	<u> </u>	0	1	0	1	0	1	0	1	0	1
350		4	min	-303.68	3	0	1	0	1	0	1	0	1	0	1
351		5		2944.317	<u> </u>	0	1	0	1	0	1	0	1	0	1
352		5		-303.552	3	0	1	0	1	0	1	0	1	0	1
353		6		2944.488	<u> </u>	0	1	0	1	0	1	0	1	0	1
354				-303.424	3	0	1	0	1	0	1	0	1	0	1
355		7		2944.658	_ <u></u>	0	1	0	1	0	1	0	1	0	1
356			min		3	0	1	0	1	0	1	0	1	0	1
357		8		2944.828	1	0	1	0	1	0	1	0	1	0	1
358				-303.169	3	0	1	0	1	0	1	0	1	0	1
359		9		2944.999	1	0	1	0	1	0	1	0	1	0	1
360			min		3	0	1	0	1	0	1	0	1	0	1
361		10		2945.169	1	0	1	0	1	0	1	0	1	0	1
362		10	min		3	0	1	0	1	0	1	0	1	0	1
363		11		2945.339	1	0	1	0	1	0	1	0	1	0	1
364			min		3	0	1	0	1	0	1	0	1	0	1
365		12	max		1	0	1	0	1	0	1	0	1	0	1
366		12	min		3	0	1	0	1	0	1	0	1	0	1
367		13		2945.68	1	0	1	0	1	0	1	0	1	0	1
368			min		3	0	1	0	1	0	1	0	1	0	1
									_						

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
369		14	max	2945.851	_1_	0	1	0	1	0	1	0	1_	0	1
370			min	-302.402	3	0	1	0	1	0	1	0	1	0	1
371		15	max	2946.021	1	0	1	0	1	0	1	0	1	0	1
372			min	-302.275	3	0	1	0	1	0	1	0	1	0	1
373		16	max	2946.191	1	0	1	0	1	0	1	0	1	0	1
374			min	-302.147	3	0	1	0	1	0	1	0	1	0	1
375		17	max	2946.362	1	0	1	0	1	0	1	0	1	0	1
376			min	-302.019	3	0	1	0	1	0	1	0	1	0	1
377		18	max	2946.532	1	0	1	0	1	0	1	0	1	0	1
378			min	-301.891	3	0	1	0	1	0	1	0	1	0	1
379		19		2946.702	1	0	1	0	1	0	1	0	1	0	1
380			min	-301.764	3	0	1	0	1	0	1	0	1	0	1
381	M10	1	max		1	1.92	4	034	15	0	1	0	1	0	1
382			min	-881.086	3	.452	15	814	1	0	5	0	3	0	1
383		2	max	952.115	1	1.863	4	034	15	0	1	0	15	0	15
384			min	-880.764	3	.439	15	814	1	0	5	0	1	0	4
385		3	max		1	1.806	4	034	15	0	1	0	15	0	15
386			min	-880.443	3	.426	15	814	1	0	5	0	1	001	4
387		4	max		1	1.75	4	034	15	0	1	0	15	0	15
388			min	-880.122	3	.412	15	814	1	0	5	0	1	002	4
389		5	max	953.4	1	1.693	4	034	15	0	1	0	15	0	15
390			min	-879.8	3	.399	15	814	1	0	5	0	1	002	4
391		6	max		1	1.636	4	034	15	0	1	0	15	0	15
392			min	-879.479	3	.385	15	814	1	0	5	001	1	003	4
393		7	max	954.257	1	1.579	4	034	15	0	1	0	15	0	15
394			min	-879.158	3	.372	15	814	1	0	5	001	1	003	4
395		8	max		1	1.523	4	034	15	0	1	0	15	0	15
396			min	-878.836	3	.359	15	814	1	0	5	002	1	003	4
397		9	max		1	1.466	4	034	15	0	1	0	15	0	15
398			min	-878.515	3	.345	15	814	1	0	5	002	1	004	4
399		10	max		1	1.409	4	034	15	0	1	0	15	001	15
400		10	min	-878.193	3	.332	15	814	1	0	5	002	1	004	4
401		11	max		1	1.352	4	034	15	0	1	0	15	001	15
402			min	-877.872	3	.319	15	814	1	0	5	002	1	005	4
403		12	max	956.4	1	1.295	4	034	15	0	1	0	15	001	15
404		12	min	-877.551	3	.305	15	814	1	0	5	003	1	005	4
405		13	max		1	1.239	4	034	15	0	1	0	15	001	15
406		10	min	-877.229	3	.292	15	814	1	0	5	003	1	006	4
407		14	max		1	1.182	4	034	15	0	1	0	15	001	15
408		1 -	min		3	.279	15	814	1	0	5	003	1	006	4
409		15		957.685	1	1.125	4	034	15	0	1	0	15		15
410		10	min		3	.265	15	814	1	0	5	003	1	006	4
411		16	max		1	1.068	4	034	15	0	1	0	15	002	15
412		10		-876.265	3	.252	15	814	1	0	5	004	1	002	4
413		17		958.542	1	1.011	4	034	15	0	1	0	15	002	15
414		17	min		3	.239	15	814	1	0	5	004	1	007	4
415		18	max		1	.955	4	034	15	0	1	0	15	002	15
416		10	min		3	.225	15	814	1	0	5	004	1	007	4
417		19		959.399	1	.898	4	034	15	0	1	0	15	002	15
418		13	min	-875.301	3	.209	12	814	1	0	5	004	1	002	4
419	M11	1	max		2	7.881	4	007	15	0	1	0	15	.007	4
420	IVIII		min	-498.632	3	1.853	15	178	1	0	12		1	.007	15
421		2	max		2	7.114	4	007	15	0	1	0	15	.002	4
422			min		3	1.673	15	178	1	0	12		1	0	12
423		3	max		2	6.347	4	007	15	0	1	0	15	.002	2
424		J	min		3	1.493	15	178	1	0	12		1	0	3
425		4		358.634	2	5.58	4	007	15	0	1	0	15	0	2
723			πιαλ	000.004		J.J0		007	LIJ	U		U	IJ		

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	<u>LC</u>
426			min	-499.015	3	1.312	15	178	1	0	12	0	1	002	3
427		5	max	358.463	2	4.812	4	007	15	0	1	0	15	0	15
428			min	-499.143	3	1.132	15	178	1	0	12	0	1	003	4
429		6	max	358.293	2	4.045	4	007	15	0	1	0	15	001	15
430			min	-499.27	3	.952	15	178	1	0	12	0	1	005	4
431		7	max	358.122	2	3.278	4	007	15	0	1	0	15	002	15
432			min	-499.398	3	.771	15	178	1	0	12	0	1	007	4
433		8	max	357.952	2	2.511	4	007	15	0	1	0	15	002	15
434			min	-499.526	3	.591	15	178	1	0	12	0	1	008	4
435		9	max	357.782	2	1.744	4	007	15	0	1_	0	15	002	15
436			min	-499.654	3	.41	15	178	1	0	12	001	1	009	4
437		10	max	357.611	2	.976	4	007	15	0	1	0	15	002	15
438			min	-499.781	3	.23	15	178	1	0	12	001	1	009	4
439		11	max		2	.277	2	007	15	0	1	0	15	002	15
440			min	-499.909	3	035	3	178	1	0	12	001	1	01	4
441		12	max	357.271	2	131	15	007	15	0	1	0	15	002	15
442			min	-500.037	3	558	4	178	1	0	12	001	1	01	4
443		13	max	357.1	2	311	15	007	15	0	1	0	15	002	15
444			min	-500.165	3	-1.325	4	178	1	0	12	001	1	009	4
445		14	max	356.93	2	491	15	007	15	0	1_	0	15	002	15
446			min	-500.292	3	-2.093	4	178	1	0	12	001	1	008	4
447		15	max	356.76	2	672	15	007	15	0	1	0	15	002	15
448			min	-500.42	3	-2.86	4	178	1	0	12	001	1	007	4
449		16	max	356.589	2	852	15	007	15	0	1_	0	15	001	15
450			min	-500.548	3	-3.627	4	178	1	0	12	002	1	006	4
451		17	max	356.419	2	-1.032	15	007	15	0	1	0	15	001	15
452			min	-500.676	3	-4.394	4	178	1	0	12	002	1	004	4
453		18	max	356.249	2	-1.213	15	007	15	0	1	0	15	0	15
454			min	-500.803	3	-5.161	4	178	1	0	12	002	1	002	4
455		19	max	356.078	2	-1.393	15	007	15	0	1	0	15	0	1
456			min	-500.931	3	-5.929	4	178	1	0	12	002	1_	0	1
457	M12	1		1105.086	1	0	1	12.797	1_	0	1	0	15	0	1
458			min	-68.711	3	0	1	.527	15	0	1	001	1	0	1
459		2		1105.256	1_	0	1	12.797	1	0	1	0	1	0	1
460			min	-68.584	3_	0	1	.527	15	0	1	0	12	0	1
461		3	max		_1_	0	1	12.797	1	0	1	.002	1	0	1
462		-	min	-68.456	3	0	1	.527	15	0	1	0	15	0	1
463		4	max		1_	0	1	12.797	1	0	1	.003	1_	0	1
464		_	min	-68.328	3_	0	1	.527	15	0	1	0	15	0	1
465		5		1105.767	1_	0	1	12.797	1_	0	1	.005	1_	0	1
466			mın		3	0	1	.527	15	0	1	0	15		1
467		6		1105.937	1_	0	1	12.797	1	0	1	.006	1_	0	1
468		-	min	-68.072	3	0	1	.527	15	0	1	0	15	0	1
469		7		1106.108	1	0	1	12.797	1	0	1	.008	1	0	1
470			min		3	0	1	.527	15	0	1	0	15	0	1
471		8		1106.278	1_	0	1	12.797	1	0	1	.009	1_	0	1
472			min		3	0	1	.527	15	0	1	0	15	0	1
473		9		1106.448	1_	0	1	12.797	1	0	1	.01	1	0	1
474		40	min		3	0	1	.527	15	0	1	0	15	0	1
475		10		1106.619	1	0	1	12.797	1	0	1	.012	1	0	1
476		4.4		-67.561	3	0	1	.527	15	0	1	0	15	0	1
477		11		1106.789	1	0	1	12.797	1	0	1	.013	1_	0	1
478		40	min		3	0	1	.527	15	0	1	0	15	0	1
479		12		1106.959	1	0	1	12.797	1	0	1	.015	1_	0	1
480		40	min		3	0	1	.527	15	0	1	0	15	0	1
481		13		1107.13	1_	0	1	12.797	1	0	1	.016	1_	0	1
482			min	-67.178	3	0	1	.527	15	0	1	0	15	0	1

Model Name

Schletter, Inc. HCV

. : Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	v-v Mome	LC	z-z Mome	. LC
483		14	max	1107.3	1	0	1	12.797	1	0	1	.018	1	0	1
484			min	-67.05	3	0	1	.527	15	0	1	0	15	0	1
485		15	_	1107.47	1	0	1	12.797	1	0	1	.019	1	0	1
486			min	-66.923	3	0	1	.527	15	0	1	0	15	0	1
487		16		1107.641	1	0	1	12.797	1	0	1	.021	1	0	1
488		10	min	-66.795	3	0	1	.527	15	0	1	0	15	0	1
489		17		1107.811	1	0	1	12.797	1	0	1	.022	1	0	1
490		- 17	min	-66.667	3	0	1	.527	15	0	1	0	15	0	1
490		18		1107.981	<u> </u>	0	1	12.797	1	0	1	.024	1	0	1
		10					1				1		15		1
492		40	min	-66.539	3	0		.527	15	0	_	0		0	
493		19		1108.152	1	0	1	12.797	1_	0	1	.025	1	0	1
494	N 4 4	4	min	-66.412	3	0	1	.527	15	0	1_	.001	15	0	1
495	<u>M1</u>	1	max	190.172	1_	490.758	3	-5.228	15	0	1_	.303	1	0	3
496			min	7.83	15	-424.509	1_	-126.444	1	0	3	.012	15	011	1
497		2	max	190.778	1_	489.785	3	-5.228	15	0	1	.236	1	.213	1
498			min	8.013	15	-425.807	1	-126.444	1	0	3	.01	15	259	3
499		3	max	302.387	3_	470.202	_1_	-5.195	15	0	3	.169	1	.427	1_
500			min	-183.4	2	-344.657	3	-125.912	1	0	1	.007	15	507	3
501		4	max	302.841	3	468.904	1	-5.195	15	0	3	.103	1	.18	1
502			min	-182.795	2	-345.631	3	-125.912	1	0	1	.004	15	325	3
503		5	max	303.295	3	467.606	1	-5.195	15	0	3	.036	1	003	15
504			min	-182.19	2	-346.605	3	-125.912	1	0	1	.001	15	142	3
505		6	_	303.749	3	466.307	1	-5.195	15	0	3	001	15	.041	3
506				-181.584	2	-347.578	3	-125.912	1	0	1	03	1	314	1
507		7	max		3	465.009	1	-5.195	15	0	3	004	15	.225	3
508				-180.979	2	-348.552	3	-125.912	1	0	1	097	1	559	1
509		8		304.657	3	463.711	1	-5.195	15	0	3	007	15	.409	3
		0		-180.373	2	-349.526	3	-125.912	1	0	1	163	1	805	1
510		_					2			_					_
511		9	max	317.81	3_	31.427		-7.524	15	0	9	.095	1	.479	3
512		40		-100.638	2	.396		-182.205	1_	0	3	.004	15	917	1
513		10	max		3_	30.129	2	-7.524	15	0	9	0	15	.465	3
514				-100.032	2	.004	15	-182.205	1_	0	3	001	1_	926	1
515		11	max		3	28.831	2	-7.524	15	0	9	004	15	.451	3
516			min	-99.427	2	-1.58	4	-182.205	1	0	3	097	1	934	1
517		12	max	331.822	3_	219.223	3	-5.067	15	0	_1_	.161	1	.392	3
518			min	-61.76	10	-496.754	1	-122.912	1	0	3	.007	15	824	1
519		13	max	332.276	3	218.249	3	-5.067	15	0	1	.096	1	.277	3
520			min	-61.255	10	-498.052	1	-122.912	1	0	3	.004	15	562	1
521		14	max	332.73	3	217.275	3	-5.067	15	0	1	.031	1	.162	3
522			min	-60.751	10	-499.351	1	-122.912	1	0	3	.001	15	299	1
523		15	max	333.184	3	216.302	3	-5.067	15	0	1	001	15	.048	3
524				-60.246	10	-500.649	1	-122.912	1	0	3	034	1	035	1
525		16		333.638	3	215.328	3	-5.067	15	0	1	004	15	.234	2
526				-59.742	10	-501.947	1	-122.912	1	0	3	098	1	066	3
527		17		334.092	3	214.354	3	-5.067	15	0	1	007	15	.495	1
528		- 17	min	-59.237	10	-503.245	1	-122.912	1	0	3	163	1	179	3
529		18	max		15	489.712	1	-5.586	15	0	3	01	15	.248	1
530		10		-190.985	1	-181.069	3	-135.199		0	1	233	1	089	3
		10		-7.837		488.414				0	3		15		
531		19	max		15		1	-5.586	15			013		.007	3
532	NAC	4	min		1	-182.042	3	-135.199	1_	0	1_	304	1	01	1
533	<u>M5</u>	1	max	409.11	1_	1634.608	3	0	1	0	1	0	1	.022	1
534			min		12	-1431.686	1	0	1	0	1_	0	1	0	3
535		2	max		_1_	1633.634	3	0	1	0	1	0	1	.778	1
536			min	16.324	12	-1432.984	1_	0	1	0	1_	0	1	862	3
537		3	max	973.4	3_	1449.351	1	0	1	0	_1_	0	1	1.5	1
538			min	-678.11	2	-1119.405	3	0	1	0	1	0	1	-1.691	3
539		4	max	973.854	3	1448.053	1	0	1	0	1	0	1	.735	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC_
540			min	-677.505	2	-1120.378	3	0	1	0	1	0	1	-1.1	3
541		5	max	974.308	3	1446.755	1	0	1	0	1	0	1	.005	9
542			min	-676.899	2	-1121.352	3	0	1	0	1	0	1	509	3
543		6	max	974.762	3	1445.457	1	0	1	0	1	0	1	.083	3
544			min	-676.294	2	-1122.326	3	0	1	0	1	0	1	791	1
545		7	max	975.216	3	1444.158	1	0	1	0	1	0	1	.676	3
546			min	-675.689	2	-1123.299	3	0	1	0	1	0	1	-1.554	1
547		8	max	975.67	3	1442.86	1	0	1	0	1	0	1	1.269	3
548			min	-675.083	2	-1124.273	3	0	1	0	1	0	1	-2.316	1
549		9	max	999.417	3	103.797	2	0	1	0	1	0	1	1.464	3
550			min	-512.046	2	.393	15	0	1	0	1	0	1	-2.619	1
551		10	max	999.871	3	102.498	2	0	1	0	1	0	1	1.414	3
552			min	-511.44	2	.002	15	0	1	0	1	0	1	-2.649	1
553		11	max	1000.325	3	101.2	2	0	1	0	1	0	1	1.365	3
554			min	-510.835	2	-1.408	4	0	1	0	1	0	1	-2.677	1
555		12	max	1024.169	3	702.802	3	0	1	0	1	0	1	1.196	3
556			min	-347.804	2	-1555.001	1	0	1	0	1	0	1	-2.386	1
557		13		1024.623	3	701.828	3	0	1	0	1	0	1	.826	3
558			min	-347.199	2	-1556.299	1	0	1	0	1	0	1	-1.565	1
559		14	max	1025.078	3	700.855	3	0	1	0	1	0	1	.456	3
560			min	-346.594	2	-1557.597	1	0	1	0	1	0	1	743	1
561		15	max	1025.532	3	699.881	3	0	1	0	1	0	1	.13	2
562			min	-345.988	2	-1558.895	1	0	1	0	1	0	1	004	13
563		16	max	1025.986	3	698.907	3	0	1	0	1	0	1	.902	1
564			min	-345.383	2	-1560.194	1	0	1	0	1	0	1	283	3
565		17	max	1026.44	3	697.934	3	0	1	0	1	0	1	1.725	1
566			min	-344.778	2	-1561.492	1	0	1	0	1	0	1	651	3
567		18	max	-16.521	12	1652.642	1	0	1	0	1	0	1	.892	1
568			min	-409.3	1	-619.136	3	0	1	0	1	0	1	341	3
569		19	max	-16.218	12	1651.344	1	0	1	0	1	0	1	.02	1
570			min	-408.695	1_	-620.11	3	0	1	0	1	0	1	014	3
571	<u>M9</u>	1	max	190.172	_1_	490.758	3	126.444	1	0	3	012	15	0	3
572			min	7.83	15	-424.509	1	5.228	15	0	1	303	1	011	1
573		2	max	190.778	_1_	489.785	3	126.444	1	0	3	01	15	.213	1
574			min	8.013	15	-425.807	1	5.228	15	0	1	236	1	259	3
575		3	max	302.387	3_	470.202	1	125.912	1	0	1	007	15	.427	1
576			min	-183.4	2	-344.657	3	5.195	15	0	3	169	1	507	3
577		4	max	302.841	3	468.904	1	125.912	1	0	1	004	15	.18	1
578			min	-182.795	2	-345.631	3	5.195	15	0	3	103	1	325	3
579		5	max	303.295	3_	467.606	1	125.912	1	0	1_	001	15	003	15
580				-182.19					15		3	036	1		3
581		6		303.749	3	466.307	1	125.912	1	0	1	.03	1	.041	3
582				-181.584	2	-347.578	3	5.195	15	0	3	.001	15	314	1
583		7		304.203	3	465.009	1	125.912	1	0	1	.097	1	.225	3
584			min	-180.979	2	-348.552	3	5.195	15	0	3	.004	15	559	1
585		8			3_	463.711	1	125.912	1	0	1	.163	1	.409	3
586			min	-180.373	2	-349.526	3	5.195	15	0	3	.007	15	805	1
587		9	max		3	31.427	2	182.205	1	0	3	004	15	.479	3
588				-100.638	2	.396	15	7.524	15	0	9	095	1	917	1
589		10	max		3_	30.129	2	182.205	1	0	3	.001	1	.465	3
590					2	.004	15	7.524	15	0	9	0	15	926	1
591		11		318.718	3	28.831	2	182.205	1	0	3	.097	1	.451	3
592			min	-99.427	2	-1.58	4	7.524	15	0	9	.004	15	934	1
593		12		331.822	3_	219.223	3	122.912	1	0	3	007	15	.392	3
594			min	-61.76	10	-496.754	1	5.067	15	0	1	161	1_	824	1
595		13	max		3_	218.249	3	122.912	1	0	3	004	15	.277	3
596			min	-61.255	10	-498.052	1	5.067	15	0	1	096	1	562	1

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

Envelope Member Section Forces (Continued)

	Member	Sec		Axial[lb]	LC	y Shear[lb]	LC	z Shear[lb]	LC	Torque[k-ft]	LC	y-y Mome	LC	z-z Mome	LC
597		14	max	332.73	3	217.275	3	122.912	1	0	3	001	15	.162	3
598			min	-60.751	10	-499.351	1	5.067	15	0	1	031	1	299	1
599		15	max	333.184	3	216.302	3	122.912	1	0	3	.034	1	.048	3
600			min	-60.246	10	-500.649	1	5.067	15	0	1	.001	15	035	1
601		16	max	333.638	3	215.328	3	122.912	1	0	3	.098	1	.234	2
602			min	-59.742	10	-501.947	1	5.067	15	0	1	.004	15	066	3
603		17	max	334.092	3	214.354	3	122.912	1	0	3	.163	1	.495	1
604			min	-59.237	10	-503.245	1	5.067	15	0	1	.007	15	179	3
605		18	max	-8.02	15	489.712	1	135.199	1	0	1	.233	1	.248	1
606			min	-190.985	1	-181.069	3	5.586	15	0	3	.01	15	089	3
607		19	max	-7.837	15	488.414	1	135.199	1	0	1	.304	1	.007	3
608	_		min	-190.38	1	-182.042	3	5.586	15	0	3	.013	15	01	1

Envelope Member Section Deflections

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	LC
1	M13	1	max	.001	1	.091	1	.005	3 7.34e-3	1	NC	1_	NC	1
2			min	0	15	007	3	002	2 -6.964e-4	3	NC	1	NC	1
3		2	max	.001	1	.282	3	.054	1 8.507e-3	1	NC	5	NC	2
4			min	0	15	14	1	.002	15 -6.98e-4	3	892.599	3	4999.272	1
5		3	max	.001	1	.516	3	.13	1 9.673e-3	1	NC	5	NC	3
6			min	0	15	324	1	.005	15 -6.995e-4	3	493.132	3	2026.357	1
7		4	max	0	1	.659	3	.196	1 1.084e-2	1	NC	5	NC	3
8			min	0	15	428	1	.008	15 -7.01e-4	3	387.652	3	1334.386	1
9		5	max	0	1	.692	3	.23	1 1.201e-2	1	NC	5	NC	3
10			min	0	15	439	1	.01	15 -7.026e-4	3	369.157	3	1132.55	1
11		6	max	0	1	.619	3	.223	1 1.317e-2	1	NC	5	NC	3
12			min	0	15	358	1	.009	15 -7.041e-4	3	412.375	3	1168.842	1
13		7	max	0	1	.461	3	.176	1 1.434e-2	1	NC	5	NC	3
14			min	0	15	206	1	.007	15 -7.057e-4	3	551.413	3	1482.048	1
15		8	max	0	1	.26	3	.104	1 1.55e-2	1	NC	4	NC	3
16			min	0	15	02	1	.005	15 -7.072e-4	3	964.992	3	2536.04	1
17		9	max	0	1	.146	1	.032	1 1.667e-2	1	NC	4	NC	2
18			min	0	15	.005	15	003	10 -7.087e-4	3	3019.437	3	8754.341	1
19		10	max	0	1	.22	1	.017	3 1.784e-2	1	NC	3	NC	1
20			min	0	1	004	3	011	2 -7.103e-4	3	1995.814	1	NC	1
21		11	max	0	15	.146	1	.032	1 1.667e-2	1	NC	4	NC	2
22			min	0	1	.005	15	003	10 -7.087e-4	3	3019.437	3	8754.341	1
23		12	max	0	15	.26	3	.104	1 1.55e-2	1	NC	4	NC	3
24			min	0	1	02	1	.005	15 -7.072e-4	3	964.992	3	2536.04	1
25		13	max	0	15	.461	3	.176	1 1.434e-2	1	NC	5	NC	3
26			min	0	1	206	1	.007	15 -7.057e-4	3	551.413	3	1482.048	1
27		14	max	0	15	.619	3	.223	1 1.317e-2	1	NC	5	NC	3
28			min	0	1	358	1	.009	15 -7.041e-4	3	412.375	3	1168.842	1
29		15	max	0	15	.692	3	.23	1 1.201e-2	1	NC	5	NC	3
30			min	0	1	439	1	.01	15 -7.026e-4	3	369.157	3	1132.55	1
31		16	max	0	15	.659	3	.196	1 1.084e-2	1	NC	5	NC	3
32			min	0	1	428	1	.008	15 -7.01e-4	3	387.652	3	1334.386	1
33		17	max	0	15	.516	3	.13	1 9.673e-3	1	NC	5	NC	3
34			min	001	1	324	1	.005	15 -6.995e-4	3	493.132	3	2026.357	1
35		18	max	0	15	.282	3	.054	1 8.507e-3	1	NC	5	NC	2
36			min	001	1	14	1	.002	15 -6.98e-4	3	892.599	3	4999.272	1
37		19	max	0	15	.091	1	.005	3 7.34e-3	1	NC	1	NC	1
38			min	001	1	007	3	002	2 -6.964e-4	3	NC	1	NC	1
39	M14	1	max	0	1	.141	3	.005	3 4.616e-3	1	NC	1	NC	1
40			min	0	15	301	1	002	2 -2.556e-3	3	NC	1	NC	1

Model Name

Schletter, Inc.

HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

41	Member	Sec 2	max	x [in]	LC 1	y [in] .404	LC 3	z [in] .038	LC 1	x Rotate [r 5.568e-3	LC 1	(n) L/y Ratio	LC 5	(n) L/z Ratio	LC 2
42			min	0	15	644	1	.002	15	-3.133e-3	3	752.185	1	7235.989	
43		3	max	0	1	.625	3	.105	1	6.52e-3	<u> </u>	NC	15	NC	3
44		-	min	0	15	936	1	.004	15	-3.71e-3	3	405.86	1	2506.207	1
45		4	max	0	1	.775	3	.169	1	7.472e-3	1	NC	15	NC	3
46			min	0	15	-1.144	1	.007	15	-4.287e-3	3	305.858	1	1548.96	1
47		5	max	0	1	.84	3	.206	1	8.424e-3	1	9139.766	15	NC	3
48			min	0	15	-1.25	1	.009		-4.864e-3	3	271.806	1	1270.156	
49		6	max	0	1	.82	3	.204	1	9.376e-3	1	9145.846	15	NC	3
50			min	0	15	-1.253	1	.009		-5.441e-3	3	270.833	1	1282.572	1
51		7	max	0	1	.731	3	.164	1	1.033e-2	1	NC	15	NC	3
52		<u> </u>	min	0	15	-1.172	1	.007	15	-6.018e-3	3	296.253	1	1601.375	
53		8	max	0	1	.602	3	.098	1	1.128e-2	1	NC	15	NC	3
54			min	0	15	-1.039	1	.004	15	-6.595e-3	3	349.443	1	2705.858	
55		9	max	0	1	.48	3	.031	1	1.223e-2	1	NC	15	NC	2
56			min	0	15	907	1	003	10	-7.172e-3	3	425.405	1	9164.727	1
57		10	max	0	1	.423	3	.015	3	1.318e-2	1	NC	5	NC	1
58			min	0	1	845	1	01	2	-7.749e-3	3	474.15	1	NC	1
59		11	max	0	15	.48	3	.031	1	1.223e-2	1	NC	15	NC	2
60			min	0	1	907	1	003	10	-7.172e-3	3	425.405	1	9164.727	1
61		12	max	0	15	.602	3	.098	1	1.128e-2	1	NC	15	NC	3
62			min	0	1	-1.039	1	.004	15	-6.595e-3	3	349.443	1	2705.858	
63		13	max	0	15	.731	3	.164	1	1.033e-2	1	NC	15	NC	3
64			min	0	1	-1.172	1	.007	15	-6.018e-3	3	296.253	1	1601.375	1
65		14	max	0	15	.82	3	.204	1	9.376e-3	1	9145.846	15	NC	3
66			min	0	1	-1.253	1	.009	15	-5.441e-3	3	270.833	1	1282.572	1
67		15	max	0	15	.84	3	.206	1	8.424e-3	1	9139.766	15	NC	3
68			min	0	1	-1.25	1	.009	15	-4.864e-3	3	271.806	1	1270.156	1
69		16	max	0	15	.775	3	.169	1	7.472e-3	1	NC	15	NC	3
70			min	0	1	-1.144	1	.007	15	-4.287e-3	3	305.858	1	1548.96	1
71		17	max	0	15	.625	3	.105	1	6.52e-3	1_	NC	15	NC	3
72			min	0	1	936	1	.004	15	-3.71e-3	3	405.86	1	2506.207	1
73		18	max	0	15	.404	3	.038	1	5.568e-3	1_	NC	5	NC	2
74			min	0	1	644	1	.002	15	-3.133e-3	3	752.185	1_	7235.989	1
75		19	max	0	15	.141	3	.005	3	4.616e-3	_1_	NC	1_	NC	1
76			min	0	1	301	1	002	2	-2.556e-3	3	NC	1_	NC	1
77	<u>M15</u>	1	max	0	15	.144	3	.005	3	2.143e-3	3_	NC	_1_	NC	1
78			min	0	1	3	1	002	2	-4.729e-3	_1_	NC	1_	NC	1
79		2	max	0	15	.301	3	.038	1	2.632e-3	3	NC	_5_	NC	2
80			min	0	1	679	1	.002	15	-5.711e-3	1_	681.181	_1_	7203.126	
81		3	max		15	.435	3	.106	1	3.12e-3		NC	15		3
82			min	0	1	<u>-1</u>	1	.004	15		1_	368.386	1_	2499.637	1
83		4	max	0	15	.533	3	.169	1	3.608e-3	3	NC 070 740	15	NC	3
84		_	min	0	1	-1.226	1	.007		-7.675e-3	1_	278.719	1_	1545.867	1
85		5	max	0	15	.586	3	.206	1	4.097e-3	3	9151.848	<u>15</u>	NC 1267 007	3
86			min	0	1	-1.335	1	.009	15	-8.657e-3	1	249.219	1_	1267.907	1
87		6	max	0	15	.594	3	.204	1	4.585e-3	3	9160.374	<u>15</u>	NC	3
88		7	min	0	15	-1.329	3	.009		-9.639e-3	1	250.664 NC	1_	1280.274	
89		-	max			.565		.164	1	5.073e-3	3		<u>15</u>	NC 4507.053	3
90		0	min	0	15	<u>-1.228</u> .512	3	.007 .098		-1.062e-2	1	278.124 NC	1_	1597.953 NC	3
91		8	max	0	15	-1.07	1	.004	15	5.562e-3 -1.16e-2	<u>3</u> 1	335.105	<u>15</u> 1	2696.756	
93		9	min	0	15	.458	3	.004	1	6.05e-3	3	NC	15	NC	2
94		9	max	0	1	915	1	003	10		<u>3</u>	419.325	1	9067.808	
95		10	max	0	1	.433	3	.014	3	6.538e-3	3	NC	<u> </u>	NC	1
96		10	min	0	1	843	1	009	2	-1.357e-2	1	475.465	1	NC NC	1
97		11	max	0	1	.458	3	.031	1	6.05e-3	3	NC	15	NC	2
31		1 11	πιαλ	U		.+.00	J	.001		0.006-0	J	INC	IJ	INC	

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

98		Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC x Rotate			LC		
100	98			min	0	15	915	1	003			419.325	1	9067.808	
101			12	_											
102															
103			13			-		3					15		3
104				min	0	15		•					•		
106	103		14		0	_		3	.204				15		3
106				min	0	15	-1.329		.009	15 -9.639e	-3 1	250.664			
107			15	max	0			3					15		3
108	106			min	0	15	-1.335	1	.009	15 -8.657e	-3 1	249.219	1	1267.907	1
109	107		16	max	0	1	.533	3	.169	1 3.608e	3 3	NC	15	NC	3
110	108			min	0	15	-1.226	1	.007	15 -7.675e	-3 1	278.719	1	1545.867	1
110	109		17	max	0	1	.435	3	.106	1 3.12e-3	3 3	NC	15	NC	3
113	110			min	0	15	-1	1	.004			368.386	1	2499.637	1
113	111		18		0	1	.301	3	.038				5		2
113						15									
114			19					3					1		1
115						_							-		
116		M16	1												
117		14110													
118			2										•		
119															1
120			3												3
121				_											
122			1												-
123			4												
124			-			_									
125			5												
126						_									
127			0												
128			-												
129			/												
130															
131			8	_											
132															
133			9					_		1 9.549e	3 3				
134			4.0										_		
135			10												
136															
137 12 max 0 1 0 15 .105 1 8.826e-3 3 NC 3 NC 3 138 min 0 15 083 2 .005 15 -1.427e-2 1 1622.38 2 2512.816 1 139 13 max 0 1 .057 3 .177 1 8.104e-3 3 NC 5 NC 3 140 min 0 15 286 2 .007 15 -1.322e-2 1 712.481 2 1476.906 1 141 max 0 1 .125 3 .223 1 7.381e-3 3 NC 5 NC 3 142 min 0 15 45 2 .009 15 -1.216e-2 1 487.999 1 1167.57 1 143 min 0 15 535 2 .01 15			11		-										
138 min 0 15 083 2 .005 15 -1.427e-2 1 1622.38 2 2512.816 1 139 13 max 0 1 .057 3 .177 1 8.104e-3 3 NC 5 NC 3 140 min 0 15 286 2 .007 15 -1.322e-2 1 712.481 2 1476.906 1 141 max 0 1 .125 3 .223 1 7.381e-3 3 NC 5 NC 3 142 min 0 15 45 2 .009 15 -1.216e-2 1 487.999 1 1167.57 1 143 15 max 0 1 .163 3 .23 1 6.659e-3 3 NC 5 NC 3 144 min 0 15 535 2															
139 13 max 0 1 .057 3 .177 1 8.104e-3 3 NC 5 NC 3 140 min 0 15 286 2 .007 15 -1.322e-2 1 712.481 2 1476.906 1 141 14 max 0 1 .125 3 .223 1 7.381e-3 3 NC 5 NC 3 142 min 0 15 45 2 .009 15 -1.216e-2 1 487.999 1 1167.57 1 143 15 max 0 1 .163 3 .23 1 6.659e-3 3 NC 5 NC 3 144 min 0 15 535 2 .01 15 -1.111e-2 1 417.308 1 1133.037 1 145 16 max 0 1 <t< td=""><td></td><td></td><td>12</td><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>			12			-									
140 min 0 15 286 2 .007 15 -1.322e-2 1 712.481 2 1476.906 1 141 14 max 0 1 .125 3 .223 1 7.381e-3 3 NC 5 NC 3 142 min 0 15 45 2 .009 15 -1.216e-2 1 487.999 1 1167.57 1 143 15 max 0 1 .163 3 .23 1 6.659e-3 3 NC 5 NC 3 144 min 0 15 535 2 .01 15 -1.111e-2 1 417.308 1 1133.037 1 145 16 max 0 1 .163 3 .195 1 5.936e-3 3 NC 5 NC 3 146 min 0 15 518															
141 max 0 1 .125 3 .223 1 7.381e-3 3 NC 5 NC 3 142 min 0 15 45 2 .009 15 -1.216e-2 1 487.999 1 1167.57 1 143 15 max 0 1 .163 3 .23 1 6.659e-3 3 NC 5 NC 3 144 min 0 15 535 2 .01 15 -1.111e-2 1 417.308 1 1133.037 1 145 16 max 0 1 .163 3 .195 1 5.936e-3 3 NC 5 NC 3 146 min 0 15 518 2 .008 15 -1.005e-2 1 427.657 1 1336.804 1 147 17 max .001 1 .122			13			_									
142 min 0 15 45 2 .009 15 -1.216e-2 1 487.999 1 1167.57 1 143 15 max 0 1 .163 3 .23 1 6.659e-3 3 NC 5 NC 3 144 min 0 15 535 2 .01 15 -1.111e-2 1 417.308 1 1133.037 1 145 16 max 0 1 .163 3 .195 1 5.936e-3 3 NC 5 NC 3 146 min 0 15 518 2 .008 15 -1.005e-2 1 427.657 1 1336.804 1 147 17 max .001 1 .122 3 .129 1 5.214e-3 3 NC 5 NC 3 148 min 0 15 396															
143 15 max 0 1 .163 3 .23 1 6.659e-3 3 NC 5 NC 3 144 min 0 15 535 2 .01 15 -1.111e-2 1 417.308 1 1133.037 1 145 16 max 0 1 .163 3 .195 1 5.936e-3 3 NC 5 NC 3 146 min 0 15 518 2 .008 15 -1.005e-2 1 427.657 1 1336.804 1 147 17 max .001 1 .122 3 .129 1 5.214e-3 3 NC 5 NC 3 148 min 0 15 396 2 .005 15 -8.997e-3 1 536.557 1 2033.652 1 149 18 max .001 1			14										5		3
144 min 0 15 535 2 .01 15 -1.111e-2 1 417.308 1 1133.037 1 145 16 max 0 1 .163 3 .195 1 5.936e-3 3 NC 5 NC 3 146 min 0 15 518 2 .008 15 -1.005e-2 1 427.657 1 1336.804 1 147 17 max .001 1 .122 3 .129 1 5.214e-3 3 NC 5 NC 3 148 min 0 15 396 2 .005 15 -8.997e-3 1 536.557 1 2033.652 1 149 18 max .001 1 .048 3 .053 1 4.491e-3 3 NC 5 NC 2 150 min 0 15 186 <td></td> <td></td> <td></td> <td>min</td> <td></td> <td>15</td> <td>45</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>1</td> <td></td> <td></td>				min		15	45						1		
145 16 max 0 1 .163 3 .195 1 5.936e-3 3 NC 5 NC 3 146 min 0 15 518 2 .008 15 -1.005e-2 1 427.657 1 1336.804 1 147 17 max .001 1 .122 3 .129 1 5.214e-3 3 NC 5 NC 3 148 min 0 15 396 2 .005 15 -8.997e-3 1 536.557 1 2033.652 1 149 18 max .001 1 .048 3 .053 1 4.491e-3 3 NC 5 NC 2 150 min 0 15 186 2 .002 15 -7.943e-3 1 964.043 1 5034.366 1 151 19 max .001 1 <td></td> <td></td> <td>15</td> <td>max</td> <td>0</td> <td>1</td> <td>.163</td> <td>3</td> <td>.23</td> <td>1 6.659e-</td> <td>3 3</td> <td>NC</td> <td>5</td> <td></td> <td>3</td>			15	max	0	1	.163	3	.23	1 6.659e-	3 3	NC	5		3
146 min 0 15 518 2 .008 15 -1.005e-2 1 427.657 1 1336.804 1 147 17 max .001 1 .122 3 .129 1 5.214e-3 3 NC 5 NC 3 148 min 0 15 396 2 .005 15 -8.997e-3 1 536.557 1 2033.652 1 149 18 max .001 1 .048 3 .053 1 4.491e-3 3 NC 5 NC 2 150 min 0 15 186 2 .002 15 -7.943e-3 1 964.043 1 5034.366 1 151 19 max .001 1 .004 3 3.769e-3 3 NC 1 NC 1 152 min 0 15 047 3 0				min	0	15							1		1
146 min 0 15 518 2 .008 15 -1.005e-2 1 427.657 1 1336.804 1 147 17 max .001 1 .122 3 .129 1 5.214e-3 3 NC 5 NC 3 148 min 0 15 396 2 .005 15 -8.997e-3 1 536.557 1 2033.652 1 149 18 max .001 1 .048 3 .053 1 4.491e-3 3 NC 5 NC 2 150 min 0 15 186 2 .002 15 -7.943e-3 1 964.043 1 5034.366 1 151 19 max .001 1 .004 3 3.769e-3 3 NC 1 NC 1 152 min 0 15 047 3 0	145		16	max	0				.195	1 5.936e	3 3		5	NC	3
147 17 max .001 1 .122 3 .129 1 5.214e-3 3 NC 5 NC 3 148 min 0 15 396 2 .005 15 -8.997e-3 1 536.557 1 2033.652 1 149 18 max .001 1 .048 3 .053 1 4.491e-3 3 NC 5 NC 2 150 min 0 15 186 2 .002 15 -7.943e-3 1 964.043 1 5034.366 1 151 19 max .001 1 .09 1 .004 3 3.769e-3 3 NC 1 NC 1 152 min 0 15 047 3 002 2 -6.888e-3 1 NC 1 NC 1 153 M2 1 max .006 1 .004 2 .01 1 -1.124e-5 15 NC 1 NC 2	146				0	15		2	.008	15 -1.005e	-2 1	427.657	1	1336.804	1
148 min 0 15 396 2 .005 15 -8.997e-3 1 536.557 1 2033.652 1 149 18 max .001 1 .048 3 .053 1 4.491e-3 3 NC 5 NC 2 150 min 0 15 186 2 .002 15 -7.943e-3 1 964.043 1 5034.366 1 151 19 max .001 1 .09 1 .004 3 3.769e-3 3 NC 1 NC 1 152 min 0 15 047 3 002 2 -6.888e-3 1 NC 1 NC 1 153 M2 1 max .006 1 .004 2 .01 1 -1.124e-5 15 NC 1 NC 2			17		.001								5		
149 18 max .001 1 .048 3 .053 1 4.491e-3 3 NC 5 NC 2 150 min 0 15186 2 .002 15 -7.943e-3 1 964.043 1 5034.366 1 151 19 max .001 1 .09 1 .004 3 3.769e-3 3 NC 1 NC 1 NC 1 152 min 0 15047 3002 2 -6.888e-3 1 NC 1 NC 1 153 M2 1 max .006 1 .004 2 .01 1 -1.124e-5 15 NC 1 NC 2															
150 min 0 15 186 2 .002 15 -7.943e-3 1 964.043 1 5034.366 1 151 19 max .001 1 .09 1 .004 3 3.769e-3 3 NC 1 NC 1 152 min 0 15 047 3 002 2 -6.888e-3 1 NC 1 NC 1 153 M2 1 max .006 1 .004 2 .01 1 -1.124e-5 15 NC 1 NC 2			18										5		
151 19 max .001 1 .09 1 .004 3 3.769e-3 3 NC 1 NC 1 152 min 0 15 047 3 002 2 -6.888e-3 1 NC 1 NC 1 153 M2 1 max .006 1 .004 2 .01 1 -1.124e-5 15 NC 1 NC 2															_
152 min 0 15 047 3 002 2 -6.888e-3 1 NC 1 NC 1 153 M2 1 max .006 1 .004 2 .01 1 -1.124e-5 15 NC 1 NC 2			19												
153 M2 1 max .006 1 .004 2 .01 1 -1.124e-5 15 NC 1 NC 2						_									_
		M2	1										-		_

Model Name

Schletter, Inc.HCV

. : Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]			LC	(n) L/y Ratio	LC		
155		2	max	.005	1	.003	2	.009		-1.054e-5	<u>15</u>	NC	_1_	NC	2
156			min	005	3	007	3	0		-2.558e-4	1	NC	1	7009.492	1
157		3	max	.005	1	.003	2	.008	1 -	-9.844e-6	15	NC	1	NC	2
158			min	005	3	007	3	0	15 -	-2.388e-4	1	NC	1	7705.853	1
159		4	max	.005	1	.002	2	.007		-9.147e-6	15	NC	1	NC	2
160			min	004	3	007	3	0	15 -	-2.219e-4	1_	NC	1	8544.388	1
161		5	max	.004	1	.001	2	.007	1 -	-8.449e-6	15	NC	1	NC	2
162			min	004	3	007	3	0	15	-2.05e-4	1	NC	1	9565.893	1
163		6	max	.004	1	0	2	.006	1 -	-7.752e-6	15	NC	1	NC	1
164			min	004	3	007	3	0	15	-1.88e-4	1	NC	1	NC	1
165		7	max	.004	1	0	2	.005	1 -	-7.054e-6	15	NC	1	NC	1
166			min	004	3	006	3	0	15 -	-1.711e-4	1	NC	1	NC	1
167		8	max	.004	1	0	2	.004	1 -	-6.357e-6	15	NC	1	NC	1
168			min	003	3	006	3	0	15 -	-1.542e-4	1	NC	1	NC	1
169		9	max	.003	1	0	15	.004	1 -	-5.659e-6	15	NC	1	NC	1
170			min	003	3	006	3	0	15 -	-1.372e-4	1	NC	1	NC	1
171		10	max	.003	1	0	15	.003	1 -	-4.962e-6	15	NC	1	NC	1
172			min	003	3	005	3	0	15 -	-1.203e-4	1	NC	1	NC	1
173		11	max	.003	1	0	15	.002			15	NC	1	NC	1
174			min	002	3	005	3	0		-1.034e-4	1	NC	1	NC	1
175		12	max	.002	1	0	15	.002			15	NC	1	NC	1
176			min	002	3	005	3	0		-8.646e-5	1	NC	1	NC	1
177		13	max	.002	1	0	15	.001	1	-2.87e-6	15	NC	1	NC	1
178			min	002	3	004	3	0	15 -	-6.953e-5	1	NC	1	NC	1
179		14	max	.002	1	0	15	.001			15	NC	1	NC	1
180			min	001	3	004	3	0		-5.26e-5	1	NC	1	NC	1
181		15	max	.001	1	0	15	0			15	NC	1	NC	1
182			min	001	3	003	4	0		-3.567e-5	1	NC	1	NC	1
183		16	max	0	1	0	15	0		-7.776e-7	15	NC	1	NC	1
184			min	0	3	003	4	0		-1.874e-5	1	NC	1	NC	1
185		17	max	0	1	0	15	0			15	NC	1	NC	1
186			min	0	3	002	4	0		-1.813e-6	1	NC	1	NC	1
187		18	max	0	1	0	15	0		1.512e-5	1	NC	1	NC	1
188			min	0	3	001	4	0		5.545e-7	12	NC	1	NC	1
189		19	max	0	1	0	1	0		3.205e-5	1	NC	1	NC	1
190			min	0	1	0	1	0		1.315e-6	15	NC	1	NC	1
191	M3	1	max	0	1	0	1	0		-4.327e-7	15	NC	1	NC	1
192	1710		min	0	1	0	1	0		-1.054e-5	1	NC	1	NC	1
193		2	max	0	3	0	15	0		1.771e-5	1	NC	1	NC	1
194		-	min	0	2	002	4	0		7.303e-7	15	NC	1	NC	1
195		3	max	0	3	0	15	0		4.596e-5	1	NC	1	NC	1
196			min	0	2	004	4	0		1.893e-6	15	NC	1	NC	1
197		4	max	0	3	001	15	0		7.422e-5	1	NC	1	NC	1
198			min	0	2	006	4	0		3.056e-6	15	NC	1	NC	1
199		5	max	0	3	002	15	0		1.025e-4	1	NC	1	NC	1
200			min	0	2	007	4	0		4.219e-6	15	NC	1	NC	1
201		6	max	.001	3	002	15	.001		1.307e-4	1	NC	1	NC	1
202			min	0	2	009	4	0		5.382e-6	15	NC	1	NC	1
203		7	max	.001	3	003	15	.001	1	1.59e-4	1	NC	1	NC	1
204			min	001	2	011	4	0		6.545e-6		8602.873	4	NC	1
205		8	max	.002	3	003	15	.002		1.872e-4	1	NC	1	NC	1
206		0	min	001	2	003 012	4	0		7.708e-6		7723.893	4	NC	1
207		9	max	.002	3	012	15	.002		2.155e-4	1	NC	2	NC	1
208		3	min	001	2	003 013	4	<u></u> 0		8.872e-6	15	7204.213	4	NC NC	1
209		10		.002	3	013	15	.003		2.437e-4	1 <u>5</u>	NC	3	NC NC	1
210		10	max	002	2	003 013	4	<u>.003</u>		2.437e-4 1.003e-5	15	6953.307	4	NC NC	1
		11	min												
211		11	max	.002	3	003	15	.003	1	2.72e-4	<u>1</u>	NC	3	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]				(n) L/y Ratio			LC
212			min	002	2	014	4	0	15	1.12e-5	15	6934.212	4	NC	1
213		12	max	.003	3	003	15	.004	1	3.002e-4	1_	NC	3	NC	1
214			min	002	2	013	4	0	15	1.236e-5	15	7149.359	4	NC	1
215		13	max	.003	3	003	15	.004	1	3.285e-4	1	NC	1	NC	1
216			min	002	2	012	4	0	15	1.352e-5	15	7643.317	4	NC	1
217		14	max	.003	3	003	15	.005	1	3.567e-4	1	NC	1	NC	1
218			min	002	2	011	4	0	15	1.469e-5	15	8525.899	4	NC	1
219		15	max	.003	3	002	15	.006	1	3.85e-4	1	NC	1	NC	1
220			min	002	2	01	4	0	15	1.585e-5	15	NC	1	NC	1
221		16	max	.004	3	002	15	.006	1	4.132e-4	1	NC	1	NC	1
222			min	003	2	008	4	0	15	1.701e-5	15	NC	1	NC	1
223		17	max	.004	3	001	15	.007	1	4.415e-4	1	NC	1	NC	1
224			min	003	2	006	1	0	15	1.818e-5	15	NC	1	NC	1
225		18	max	.004	3	0	15	.008	1	4.697e-4	1	NC	1	NC	1
226			min	003	2	005	1	0	15	1.934e-5	15	NC	1	NC	1
227		19	max	.004	3	0	15	.009	1	4.98e-4	1	NC	1	NC	2
228			min	003	2	003	1	0	15	2.05e-5	15	NC	1	9751.488	1
229	M4	1	max	.003	1	.003	2	0	15	6.63e-5	1	NC	1	NC	3
230			min	0	3	004	3	009	1	2.74e-6	15	NC	1	2672.217	1
231		2	max	.002	1	.003	2	0	15	6.63e-5	1	NC	1	NC	3
232			min	0	3	004	3	009	1	2.74e-6	15	NC	1	2905.556	1
233		3	max	.002	1	.002	2	0	15	6.63e-5	1	NC	1	NC	3
234			min	0	3	004	3	008	1	2.74e-6	15	NC	1	3183.284	1
235		4	max	.002	1	.002	2	0	15	6.63e-5	1	NC	1	NC	3
236		·	min	0	3	004	3	007	1	2.74e-6	15	NC	1	3516.926	1
237		5	max	.002	1	.002	2	0	15	6.63e-5	1	NC	1	NC	3
238			min	0	3	003	3	006	1	2.74e-6	15	NC	1	3922.15	1
239		6	max	.002	1	.002	2	0	15	6.63e-5	1	NC	1	NC	2
240			min	0	3	003	3	006	1	2.74e-6	15	NC	1	4420.681	1
241		7	max	.002	1	.002	2	0	15	6.63e-5	1	NC	1	NC	2
242		'	min	0	3	003	3	005	1	2.74e-6	15	NC	1	5043.359	1
243		8	max	.002	1	.002	2	0	15	6.63e-5	1	NC	1	NC	2
244			min	0	3	003	3	004	1	2.74e-6	15	NC	1	5835.16	1
245		9	max	.001	1	.002	2	<u>.004</u>	15	6.63e-5	1	NC	1	NC	2
246		J	min	0	3	002	3	004	1	2.74e-6	15	NC	1	6863.795	1
247		10	max	.001	1	.002	2	<u>.004</u>	15	6.63e-5	1	NC	1	NC	2
248		10	min	0	3	002	3	003	1	2.74e-6	15	NC	1	8235.107	1
249		11	max	.001	1	.002	2	<u>.005</u>	15	6.63e-5	1	NC	1	NC	1
250			min	0	3	002	3	002	1	2.74e-6	15	NC	1	NC	1
251		12	max	.001	1	.002	2	002 0	15	6.63e-5	1	NC NC	1	NC NC	1
252		14	min	0	3	002	3	002	1	2.74e-6	15	NC NC	1	NC NC	1
253		13	max	0	1	<u>002</u> 0	2	<u>002</u> 0	15	6.63e-5	1	NC	1	NC	1
254		13	min	0	3	001	3	001	1	2.74e-6	15	NC NC	1	NC NC	1
255		14	max	0	1	<u>001</u> 0	2	<u>001</u> 0	15	6.63e-5	1	NC NC	1	NC NC	1
256		14	min	0	3	001	3	001	1	2.74e-6	15	NC NC	1	NC NC	1
257		15	max	0	1	<u>001</u> 0	2	<u>001</u> 0	15	6.63e-5	1	NC NC	1	NC	1
258		10	min	0	3	0	3	0	1	2.74e-6	15	NC NC	1	NC NC	1
259		16		0	1	0	2	0	15	6.63e-5	1	NC NC	1	NC NC	1
260		10	max min	0	3	0	3	0	1	2.74e-6	15	NC NC	1	NC NC	1
		17							•				1		
261		17	max	0	3	0	3	0	15	6.63e-5 2.74e-6	1_	NC NC	1	NC NC	1
262		10	min	0		0	_	0	1 1 5		<u>15</u>	NC NC	_	NC NC	1
263		18	max	0	1	0	2	0	15	6.63e-5	1_1_	NC NC	1	NC NC	1
264		40	min	0	3	0	3	0	1	2.74e-6	<u>15</u>	NC NC	1_	NC NC	1
265		19	max	0	1	0	1	0	1	6.63e-5	1	NC NC	1	NC NC	1
266	MO	-	min	0	1	0	1	0	1	2.74e-6	15	NC NC	1_	NC NC	1
267	M6	1	max	.019	1	.017	2	0	1	0	1	NC cost coo	3	NC NC	1
268			min	017	3	024	3	0	1	0	1	3657.298	2	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio	LC	(n) L/z Ratio	o LC
269		2	max	.018	1	.016	2	0	1	0	1	NC	3	NC	1
270			min	017	3	023	3	0	1	0	1	4033.877	2	NC	1
271		3	max	.017	1	.014	2	0	1	0	_1_		3	NC	1
272			min	016	3	022	3	0	1	0	1_	4492.679	2	NC	1
273		4	max	.015	1	.012	2	0	1	0	_1_	NC	1_	NC	1
274			min	015	3	02	3	0	1	0	1	5058.608	2	NC	1
275		5	max	.014	1	.011	2	0	1	0	_1_	NC	1_	NC	1
276			min	014	3	019	3	0	1	0	1_	5767.121	2	NC	1
277		6	max	.013	1	.009	2	0	1	0	_1_	NC	1_	NC	1
278		_	min	013	3	<u>018</u>	3	0	1	0	_1_	6670.11	2	NC	1
279		7	max	.012	1	.008	2	0	1	0	1	NC	1	NC	1
280			min	012	3	016	3	0	1	0	1	7846.069	2	NC	1
281		8	max	011	1	.007	2	0	1	0		NC	1	NC	1
282			min	<u>011</u>	3	015	3	0	1	0	1_	9418.527	2	NC	1
283		9	max	.01	1	.005	2	0	1	0	1	NC NC	<u>1</u> 1	NC NC	1
284		40	min	01	3	014	3	0	1	0	1	NC NC	-	NC NC	1
285		10	max	.009	1	.004	2	0	1	0	1	NC NC	1	NC NC	1
286		4.4	min	009	3	013	3	0	1	0	1_1	NC NC	1	NC NC	1
287		11	max	.008	3	.003	2	0	1	0	1_1	NC NC	1	NC NC	1
288 289		12	min	008 .007	1	011 .002	2	<u> </u>	1	0	1	NC NC	1	NC NC	1
290		12	max	007	3	01	3	0	1	0	1	NC	1	NC NC	1
291		13	max	.006	1	.001	2	0	1	0	1	NC NC	†	NC	1
292		13	min	006	3	008	3	0	1	0	1	NC NC	1	NC	1
293		14	max	.005	1	<u>000</u>	2	0	1	0	1	NC NC	1	NC	1
294		17	min	005	3	007	3	0	1	0	1	NC	1	NC	1
295		15	max	.004	1	0	2	0	1	0	1	NC	1	NC	1
296		10	min	004	3	006	3	0	1	0	1	NC	1	NC	1
297		16	max	.003	1	<u>.000</u>	2	0	1	0	1	NC	1	NC	1
298			min	003	3	004	3	0	1	0	1	NC	1	NC	1
299		17	max	.002	1	0	2	0	1	0	1	NC	1	NC	1
300			min	002	3	003	3	0	1	0	1	NC	1	NC	1
301		18	max	.001	1	0	2	0	1	0	1	NC	1	NC	1
302			min	0	3	001	3	0	1	0	1	NC	1	NC	1
303		19	max	0	1	0	1	0	1	0	1	NC	1	NC	1
304			min	0	1	0	1	0	1	0	1	NC	1	NC	1
305	M7	1	max	0	1	0	1	0	1	0	1	NC	1	NC	1
306			min	0	1	0	1	0	1	0	1	NC	1	NC	1
307		2	max	0	3	0	15	0	1	0	1	NC	1	NC	1
308			min	0	2	002	3	0	1	0	1	NC	1	NC	1
309		3	max	.002	3	0	15	0	1	0	_1_	NC	1_	NC	1
310			min	001	2	004	3	0	1	0	1	NC	1_	NC	1
311		4	max	.002	3	001	15	00	1	0	_1_	NC	1_	NC	1
312			min	002	2	006	3	0	1	0	1	NC	1	NC	1
313		5	max	.003	3	002	15	0	1	0	1	NC	1	NC	1
314			min	003	2	008	3	0	1	0	1_	NC	1_	NC	1
315		6	max	.004	3	002	15	0	1	0		NC	1	NC	1
316		_	min	004	2	009	3	0	1	0	_1_	NC NC	1_	NC	1
317		7	max	.005	3	003	15	0	1	0	1	NC	1_	NC	1
318			min	004	2	011	4	0	1	0	1_	8822.976	4	NC NC	1
319		8	max	.005	3	003	15	0	1	0	1	NC 7000 075	1_	NC NC	1
320			min	005	2	012	4	0	1	0	1_	7906.975	4_	NC NC	1
321		9	max	.006	3	003	15	0	1	0	1	NC 7202 744	1	NC NC	1
322		40	min	006	2	013	4	0	1	0	1_		4	NC NC	1
323		10	max	.007	3	003	15	0	1	0	1	NC 7000 210	1_1	NC NC	1
324		4.4	min	007	2	014	4	0		0	1_		4	NC NC	1
325		11	max	.008	3	003	15	0	1	0	_1_	NC	1_	NC	1

Model Name

Schletter, Inc.HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio			
326			min	007	2	014	4	0	1	0	1	7071.131	4	NC	1
327		12	max	.008	3	003	15	0	1	0	_1_	NC	<u>1</u>	NC	1
328			min	008	2	013	4	0	1	0	1	7283.938	4	NC	1
329		13	max	.009	3	003	15	0	1	0	1	NC	1	NC	1
330			min	009	2	013	4	0	1	0	1	7781.289	4	NC	1
331		14	max	.01	3	003	15	0	1	0	1	NC	1	NC	1
332			min	01	2	012	4	0	1	0	1	8674.332	4	NC	1
333		15	max	.011	3	002	15	0	1	0	1	NC	1	NC	1
334			min	01	2	01	4	0	1	0	1	NC	1	NC	1
335		16	max	.011	3	002	15	0	1	0	1	NC	1	NC	1
336			min	011	2	009	1	0	1	0	1	NC	1	NC	1
337		17	max	.012	3	001	15	0	1	0	1	NC	1	NC	1
338			min	012	2	008	1	0	1	0	1	NC	1	NC	1
339		18	max	.013	3	0	15	0	1	0	1	NC	1	NC	1
340			min	012	2	007	1	0	1	0	1	NC	1	NC	1
341		19	max	.014	3	0	15	0	1	0	1	NC	1	NC	1
342		10	min	013	2	005	1	0	1	0	1	NC	1	NC	1
343	M8	1	max	.007	1	.012	2	0	1	0	1	NC	1	NC	1
344	IVIO		min	0	3	014	3	0	1	0	1	NC	1	NC	1
345		2	max	.007	1	.011	2	0	1	0	1	NC	1	NC	1
346			min	0	3	013	3	0	1	0	1	NC	1	NC	1
347		3	max	.006	1	.011	2	0	1	0	1	NC	1	NC	1
		3	min	0	3	012	3	0	1	0	1	NC	1	NC	1
348		1							1		•	NC NC	_		1
349		4	max	.006	1	.01	2	0	1	0	1		1	NC NC	1
350		-	min	0	3	012	3	0		0		NC NC		NC NC	-
351		5	max	.005	1	.009	2	0	1	0	1	NC	1	NC NC	1
352			min	0	3	011	3	0	1	0	1_	NC NC	1_	NC NC	1
353		6	max	.005	1	.009	2	0	1	0	1	NC	1_	NC NC	1
354		_	min	0	3	01	3	0	1	0	1_	NC	1_	NC	1
355		7	max	.005	1	.008	2	0	1	0	_1_	NC	1_	NC	1
356			min	0	3	009	3	0	1	0	1	NC	1_	NC	1
357		8	max	.004	1	.007	2	0	1	0	1	NC	1_	NC	1
358			min	0	3	009	3	0	1	0	1_	NC	1_	NC	1
359		9	max	.004	1	.007	2	0	1	0	_1_	NC	_1_	NC	1
360			min	0	3	008	3	0	1	0	1	NC	1_	NC	1
361		10	max	.004	1	.006	2	0	1	0	_1_	NC	_1_	NC	1
362			min	0	3	007	3	0	1	0	1	NC	1_	NC	1
363		11	max	.003	1	.005	2	0	1	0	1_	NC	_1_	NC	1
364			min	0	3	006	3	0	1	0	1	NC	1	NC	1
365		12	max	.003	1	.005	2	0	1	0	1	NC	1	NC	1
366			min	0	3	005	3	0	1	0	1	NC	1	NC	1
367		13	max	.002	1	.004	2	0	1	0	1	NC	1	NC	1
368			min	0	3	005	3	0	1	0	1	NC	1	NC	1
369		14	max	.002	1	.003	2	0	1	0	1	NC	1	NC	1
370			min	0	3	004	3	0	1	0	1	NC	1	NC	1
371		15	max	.002	1	.003	2	0	1	0	1	NC	1	NC	1
372			min	0	3	003	3	0	1	0	1	NC	1	NC	1
373		16	max	.001	1	.002	2	0	1	0	1	NC	1	NC	1
374		10	min	0	3	002	3	0	1	0	1	NC	1	NC	1
375		17	max	0	1	.002	2	0	1	0	1	NC	1	NC	1
376		11	min	0	3	002	3	0	1	0	1	NC	1	NC	1
377		18	max	0	1	<u>002</u> 0	2	0	1	0	1	NC	1	NC	1
		10	min	0	3	0	3	0	1	0	1	NC NC	1	NC NC	1
378		10									•		•		
379		19	max	0	1	0	1	0	1	0	1	NC NC	1_	NC NC	1
380	N440	4	min	0		0	1	0	1	0 7070 4	1_	NC NC	1_	NC NC	1
381	M10	1	max	.006	1	.004	2	0	15	2.727e-4	1_	NC NC	1_	NC C405 444	2
382			min	005	3	008	3	01	1	1.124e-5	15	NC	<u>1</u>	6425.441	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]		x Rotate [r	LC		LC		
383		2	max	.005	1	.003	2	0	15	2.558e-4	_1_	NC	_1_	NC	2
384			min	005	3	007	3	009	1	1.054e-5	15	NC	1_	7009.492	1
385		3	max	.005	1	.003	2	0	15	2.388e-4	_1_	NC	_1_	NC	2
386			min	005	3	007	3	008	1	9.844e-6	15	NC	1	7705.853	
387		4	max	.005	1	.002	2	0	15	2.219e-4	1_	NC	_1_	NC	2
388			min	004	3	007	3	007	1	9.147e-6	15	NC	1_	8544.388	1
389		5	max	.004	1	.001	2	0	15	2.05e-4	_1_	NC	_1_	NC	2
390			min	004	3	007	3	007	1	8.449e-6	15	NC	1_	9565.893	
391		6	max	.004	1	0	2	0	15	1.88e-4	1_	NC	1_	NC	1
392			min	004	3	007	3	006	1	7.752e-6	15	NC	1_	NC	1
393		7	max	.004	1	0	2	0	15	1.711e-4	<u>1</u>	NC	_1_	NC	1_
394			min	004	3	006	3	005	1	7.054e-6	15	NC	1_	NC	1
395		8	max	.004	1	0	2	0	15	1.542e-4	<u>1</u>	NC	_1_	NC	1_
396			min	003	3	006	3	004	1	6.357e-6	15	NC	1	NC	1
397		9	max	.003	1	0	15	0	15	1.372e-4	1	NC	1_	NC	1
398			min	003	3	006	3	004	1	5.659e-6	15	NC	1	NC	1
399		10	max	.003	1	0	15	0	15	1.203e-4	1	NC	1	NC	1
400			min	003	3	005	3	003	1	4.962e-6	15	NC	1	NC	1
401		11	max	.003	1	0	15	0	15	1.034e-4	1_	NC	1	NC	1
402			min	002	3	005	3	002	1	4.265e-6	15	NC	1	NC	1
403		12	max	.002	1	0	15	0	15	8.646e-5	1	NC	1	NC	1
404			min	002	3	005	3	002	1	3.567e-6	15	NC	1	NC	1
405		13	max	.002	1	0	15	0	15	6.953e-5	1	NC	1	NC	1
406			min	002	3	004	3	001	1	2.87e-6	15	NC	1	NC	1
407		14	max	.002	1	0	15	0	15	5.26e-5	1	NC	1	NC	1
408			min	001	3	004	3	001	1	2.172e-6	15	NC	1	NC	1
409		15	max	.001	1	0	15	0	15	3.567e-5	1	NC	1	NC	1
410			min	001	3	003	4	0	1	1.475e-6	15	NC	1	NC	1
411		16	max	0	1	0	15	0	15	1.874e-5	1	NC	1	NC	1
412			min	0	3	003	4	0	1	7.776e-7	15	NC	1	NC	1
413		17	max	0	1	0	15	0	15	1.813e-6	1	NC	1	NC	1
414			min	0	3	002	4	0	1	8.013e-8	15	NC	1	NC	1
415		18	max	0	1	0	15	0	15	-5.545e-7	12	NC	1	NC	1
416			min	0	3	001	4	0	1	-1.512e-5	1	NC	1	NC	1
417		19	max	0	1	0	1	0	1	-1.315e-6	15	NC	1	NC	1
418			min	0	1	0	1	0	1	-3.205e-5	1	NC	1	NC	1
419	M11	1	max	0	1	0	1	0	1	1.054e-5	1	NC	1	NC	1
420			min	0	1	0	1	0	1	4.327e-7	15	NC	1	NC	1
421		2	max	0	3	0	15	0	15	-7.303e-7	15	NC	1	NC	1
422			min	0	2	002	4	0	1	-1.771e-5	1	NC	1	NC	1
423		3	max	0	3	0	15	0	_	-1.893e-6	_	NC	1	NC	1
424		Ĭ	min	0	2	004	4	0	1	-4.596e-5	1	NC	1	NC	1
425		4	max	0	3	001	15	0	15		15	NC	1	NC	1
426			min	0	2	006	4	0	1	-7.422e-5	1	NC	1	NC	1
427		5	max	0	3	002	15	0				NC	1	NC	1
428		Ĭ	min	0	2	007	4	0	1	-1.025e-4	1	NC	1	NC	1
429		6	max	.001	3	002	15	0	15	-5.382e-6	•	NC	1	NC	1
430			min	0	2	009	4	001	1	-1.307e-4	1	NC	1	NC	1
431		7	max	.001	3	003	15	0		-6.545e-6		NC	1	NC	1
432			min	001	2	011	4	001	1	-1.59e-4	1	8602.873	4	NC	1
433		8	max	.002	3	003	15	<u>001</u> 0		-7.708e-6	•	NC	1	NC	1
434			min	001	2	012	4	002	1	-1.872e-4	1	7723.893	4	NC	1
435		9	max	.002	3	003	15	<u>002</u> 0	15		15	NC	2	NC	1
436		٦	min	001	2	003 013	4	002	1	-0.072e-0	1	7204.213	4	NC NC	1
436		10		.002	3	013 003	15	<u>002</u> 0			•	NC	3	NC NC	1
437		10	max	002	2		4	003	15	-1.003e-5 -2.437e-4		6953.307	<u>3</u>	NC NC	1
		11	min			013	_				1_				
439		11	max	.002	3	003	15	0	15	-1.12e-5	<u>15</u>	NC	3	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC		LC	(n) L/y Ratio	LC		LC
440			min	002	2	014	4	003	1	-2.72e-4	1	6934.212	4	NC	1
441		12	max	.003	3	003	15	0	15	-1.236e-5	<u> 15</u>	NC	3	NC	1
442			min	002	2	013	4	004	1	-3.002e-4	1	7149.359	4	NC	1
443		13	max	.003	3	003	15	0	15		15	NC	1_	NC	1
444			min	002	2	012	4	004	1	-3.285e-4	1	7643.317	4	NC	1
445		14	max	.003	3	003	15	0	15	-1.469e-5	15	NC	1	NC	1
446			min	002	2	011	4	005	1	-3.567e-4	1	8525.899	4	NC	1
447		15	max	.003	3	002	15	0	15	-1.585e-5	15	NC	1_	NC	1
448			min	002	2	01	4	006	1	-3.85e-4	1	NC	1	NC	1
449		16	max	.004	3	002	15	0	15	-1.701e-5	<u>15</u>	NC	1_	NC	1
450			min	003	2	008	4	006	1	-4.132e-4	1	NC	1	NC	1
451		17	max	.004	3	001	15	0	15	-1.818e-5	15	NC	1_	NC	1
452			min	003	2	006	1	007	1	-4.415e-4	1	NC	1	NC	1
453		18	max	.004	3	0	15	0	15	-1.934e-5	15	NC	1	NC	1
454			min	003	2	005	1	008	1	-4.697e-4	1	NC	1	NC	1
455		19	max	.004	3	0	15	0	15	-2.05e-5	15	NC	1	NC	2
456			min	003	2	003	1	009	1	-4.98e-4	1	NC	1	9751.488	1
457	M12	1	max	.003	1	.003	2	.009	1	-2.74e-6	15	NC	1	NC	3
458			min	0	3	004	3	0	15	-6.63e-5	1	NC	1	2672.217	1
459		2	max	.002	1	.003	2	.009	1	-2.74e-6	15	NC	1	NC	3
460			min	0	3	004	3	0	15	-6.63e-5	1	NC	1	2905.556	1
461		3	max	.002	1	.002	2	.008	1	-2.74e-6	15	NC	1	NC	3
462			min	0	3	004	3	0	15	-6.63e-5	1	NC	1	3183.284	1
463		4	max	.002	1	.002	2	.007	1	-2.74e-6	15	NC	1	NC	3
464			min	0	3	004	3	0	15	-6.63e-5	1	NC	1	3516.926	1
465		5	max	.002	1	.002	2	.006	1	-2.74e-6	15	NC	1	NC	3
466			min	0	3	003	3	0	15	-6.63e-5	1	NC	1	3922.15	1
467		6	max	.002	1	.002	2	.006	1	-2.74e-6	15	NC	1	NC	2
468			min	0	3	003	3	0	15	-6.63e-5	1	NC	1	4420.681	1
469		7	max	.002	1	.002	2	.005	1	-2.74e-6	15	NC	1	NC	2
470			min	0	3	003	3	0	15	-6.63e-5	1	NC	1	5043.359	1
471		8	max	.002	1	.002	2	.004	1	-2.74e-6	15	NC	1	NC	2
472			min	0	3	003	3	0	15	-6.63e-5	1	NC	1	5835.16	1
473		9	max	.001	1	.002	2	.004	1	-2.74e-6	15	NC	1	NC	2
474			min	0	3	002	3	0	15	-6.63e-5	1	NC	1	6863.795	1
475		10	max	.001	1	.002	2	.003	1	-2.74e-6	15	NC	1	NC	2
476		10	min	0	3	002	3	0	15	-6.63e-5	1	NC	1	8235.107	1
477		11	max	.001	1	.002	2	.002	1	-2.74e-6	15	NC	1	NC	1
478			min	0	3	002	3	0	15	-6.63e-5	1	NC	1	NC	1
479		12	max	.001	1	.002	2	.002	1	-0.03e-3 -2.74e-6	15	NC NC	1	NC NC	1
480		14	min	0	3	002	3	<u>.002</u>	15		1	NC NC	1	NC	1
481		13	max	0	1	<u>002</u> 0	2	.001	1	-0.03e-3 -2.74e-6	15	NC NC	1	NC	1
482		13	min	0	3	001	3	0	15	-2.74e-6 -6.63e-5	1	NC NC	1	NC NC	1
483		14		0	1	<u>001</u> 0	2	.001	1	-6.63e-5 -2.74e-6	15	NC NC	1	NC NC	1
484		14	max min	0	3	001	3	0	15	-2.74e-6 -6.63e-5	15	NC NC	1	NC NC	1
484		15		0	1		2	0	1		15	NC NC	1	NC NC	1
		10	max min	0	3	<u>0</u> 	3	0		-2.74e-6 -6.63e-5	10	NC NC	1	NC NC	1
486 487		16		_	1		2		15		15	NC NC	1	NC NC	
		16	max	0	3	0		0	1	-2.74e-6	<u>15</u>	NC NC	1		1
488		17	min	0		0	3	0	15	-6.63e-5	1_		•	NC NC	
489		17	max	0	1	0	2	0	1	-2.74e-6	<u>15</u>	NC NC	1	NC NC	1
490		40	min	0	3	0	3	0	15	-6.63e-5	4.5	NC NC	1_	NC NC	1
491		18	max	0	1	0	2	0	1	-2.74e-6	<u>15</u>	NC	1_	NC NC	1
492		40	min	0	3	0	3	0	15	-6.63e-5	1_	NC NC	1_	NC NC	1
493		19	max	0	1	0	1	0	1	-2.74e-6	15	NC	1_	NC	1
494	8.4.4		min	0	1	0	1	0	1	-6.63e-5	1_	NC NC	1_	NC NC	1
495	<u>M1</u>	1	max	.005	3	.091	1	.001	1	1.678e-2	1	NC	1_	NC	1
496			min	002	2	007	3	0	15	-2.091e-2	3	NC	1_	NC	1

Model Name

Schletter, Inc. HCV

Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/v Ratio	LC	(n) L/z Ratio	LC
497		2	max	.005	3	.044	1	0	15	8.139e-3	1	NC	3	NC	1
498			min	002	2	002	3	007	1	-1.035e-2	3	2443.27	1	NC	1
499		3	max	.005	3	.008	3	0	15	1.056e-5	10	NC	5	NC	1
500			min	002	2	007	2	01	1	-2.05e-4	1	1168.032	1	NC	1
501		4	max	.005	3	.027	3	0	15	4.391e-3	1	NC	5	NC	1
502			min	002	2	065	1	009	1	-3.593e-3	3	728.998	1	NC	1
503		5	max	.005	3	.053	3	0	15	8.987e-3	1_		<u> 15</u>	NC	1
504			min	002	2	128	1	006	1	-7.084e-3	3	521.137	1	NC	1
505		6	max	.005	3	.082	3	0	15	1.358e-2	1_		<u> 15</u>	NC	1_
506			min	002	2	189	1	003	1	-1.057e-2	3	407.462	1	NC	1
507		7	max	.005	3	.11	3	0	1	1.818e-2	1		<u>15</u>	NC	1
508			min	002	2	244	1	0	12	-1.406e-2	3	340.766	1	NC	1
509		8	max	.005	3	.134	3	.001	1	2.278e-2	_1_		<u>15</u>	NC	1
510			min	002	2	287	1	0	15	-1.755e-2	3	301.489	1_	NC	1
511		9	max	.005	3	.149	3	0	15	2.509e-2	_1_		<u>15</u>	NC	1_
512			min	002	2	315	1	0	1	-1.749e-2	3	281.106	1_	NC	1
513		10	max	.005	3	.155	3	0	1	2.59e-2	1_		<u>15</u>	NC	1
514			min	002	2	324	1	0	12	-1.507e-2	3	275.001	1_	NC	1
515		11	max	.005	3	.151_	3	0	1	2.671e-2	1		<u>15</u>	NC	1
516			min	002	2	315	1	0	15	-1.265e-2	3	281.443	1_	NC	1
517		12	max	.005	3	.138	3	0	15	2.523e-2	1		<u>15</u>	NC	1
518		40	min	002	2	287	1	001	1_	-1.037e-2	3	302.547	1_	NC NC	1
519		13	max	.004	3	.118	3	0	15	2.031e-2	1		<u>15</u>	NC	1
520			min	002	2	242	1	0	1	-8.301e-3	3	343.401	1_	NC	1
521		14	max	.004	3	.091	3	.002	1	1.539e-2	1		<u>15</u>	NC NC	1
522		4.5	min	002	2	186	1	0	15	-6.229e-3	3	413.162	<u>1</u>	NC NC	1
523		15	max	.004	3	.062	3	.006	1	1.047e-2	1		<u>15</u>	NC NC	1
524		4.0	min	002	2	124	1	0	15	-4.156e-3	3	532.959	1_	NC NC	1
525		16	max	.004	3	.032	3	.009	1	5.548e-3	1	NC 754.054	<u>5</u>	NC NC	1
526 527		17	min	002	3	061	3	.009	1 <u>5</u>	-2.084e-3	3	754.054 NC	5	NC NC	1
528		17	max	.004 002	2	.003 004	2	.009	15	6.266e-4 -1.18e-5	<u>1</u> 3	1225.053	<u>ວ</u> 1	NC NC	1
529		18	max	.002	3	004 .046	1	.006	1	9.856e-3	<u> </u>	NC	4	NC NC	1
530		10	min	002	2	023	3	.000	15	-3.386e-3	3	2588.635	1	NC	1
531		19	max	.004	3	.02 <u>5</u> .09	1	0	15	1.942e-2	1	NC	1	NC	1
532		13	min	002	2	047	3	001	1	-6.888e-3	3	NC	1	NC	1
533	M5	1	max	.002	3	.22	1	0	1	0.0000 0	1	NC	;	NC	1
534	IVIO		min	011	2	004	3	0	1	0	1	NC	1	NC	1
535		2	max	.017	3	.106	1	0	1	0	1	NC	5	NC	1
536		_	min	011	2	.002	3	0	1	0	1	998.08	1	NC	1
537		3	max	.017	3	.025	3	0	1	0	1		15	NC	1
538			min	011	2	024	1	0	1	0	1	467.115	1	NC	1
539		4	max	.017	3	.08	3	0	1	0	1		15	NC	1
540			min	011	2	182	1	0	1	0	1	283.87	1	NC	1
541		5	max	.016	3	.157	3	0	1	0	1		15	NC	1
542			min	011	2	354	1	0	1	0	1	198.663	1	NC	1
543		6	max	.016	3	.244	3	0	1	0	1		15	NC	1
544			min	01	2	526	1	0	1	0	1	152.915	1	NC	1
545		7	max	.016	3	.329	3	0	1	0	1		15	NC	1
546			min	01	2	682	1	0	1	0	1	126.473	1	NC	1
547		8	max	.015	3	.401	3	0	1	0	1	3616.86	15	NC	1
548			min	01	2	807	1	0	1	0	1	111.09	1	NC	1
549		9	max	.015	3	.447	3	0	1	0	_1_		15	NC	1
550			min	01	2	886	1	0	1	0	1	103.202	1	NC	1
551		10	max	.015	3	.464	3	0	1	0	1_		<u>15</u>	NC	1
552			min	01	2	912	1	0	1	0	1_		1_	NC	1
553		11	max	.014	3	.453	3	0	1	0	<u>1</u>	3361.244	<u> 15</u>	NC	_1_

Model Name

: Schletter, Inc. : HCV

: Standard PVMax Racking System

Oct 26, 2015

Checked By:____

	Member	Sec		x [in]	LC	y [in]	LC	z [in]	LC	x Rotate [r	LC	(n) L/y Ratio I	LC		o LC
554			min	009	2	885	1	0	1	0	1		1	NC	1
555		12	max	.014	3	.414	3	0	1	0	1		15	NC	1
556			min	009	2	804	1	0	1	0	1	111.538	1	NC	1
557		13	max	.014	3	.351	3	0	1	0	1	4115.715	15	NC	1
558			min	009	2	675	1	0	1	0	1	127.638	1	NC	1
559		14	max	.013	3	.272	3	0	1	0	1	4973.01	15	NC	1
560			min	009	2	515	1	0	1	0	1	155.532	1	NC	1
561		15	max	.013	3	.183	3	0	1	0	1	6456.787	15	NC	1
562			min	009	2	34	1	0	1	0	1		1	NC	1
563		16	max	.013	3	.093	3	0	1	0	1		15	NC	1
564			min	009	2	167	1	0	1	0	1		1	NC	1
565		17	max	.012	3	.008	3	0	1	0	1		15	NC	1
566			min	009	2	013	2	0	1	0	1		1	NC	1
567		18	max	.012	3	.111	1	0	1	0	1		5	NC	1
568		1.0	min	009	2	064	3	0	1	0	1	1079.798	1	NC	1
569		19	max	.012	3	.217	1	0	1	0	1	NC	1	NC	1
570		15	min	009	2	13	3	0	1	0	1		1	NC	1
571	M9	1	max	.005	3	.091	1	0	15	2.091e-2	3		1	NC	1
572	IVIƏ		min	002	2	007	3	001	1	-1.678e-2	1	NC NC	1	NC	1
573		2		.005	3	.044	1	.007	1	1.035e-2	3		3	NC	1
574			max	002	2	002	3	.007	15	-8.139e-3	1		1	NC	1
		3	min		_								_	NC NC	•
575		3	max	.005	3	.008	3	.01	1	2.05e-4	1		5		1
576		-	min	002	2	007	2	0	15	-1.056e-5	10		1	NC NC	1
577		4	max	.005	3	.027	3	.009	1	3.593e-3	3_		5	NC	1
578		_	min	002	2	065	1	0	15	-4.391e-3	1_	728.998	1_	NC NC	1
579		5	max	.005	3	.053	3	.006	1_	7.084e-3	3		15	NC NC	1
580			min	002	2	128	1	0	15	-8.987e-3	1_		1_	NC	1
581		6	max	.005	3	.082	3	.003	1	1.057e-2	3		15	NC	1
582			min	002	2	189	1	0	15	-1.358e-2	1_		1	NC	1
583		7	max	.005	3	.11	3	0	12	1.406e-2	3		15	NC	1
584			min	002	2	244	1	0	1	-1.818e-2	_1_	0 :0:: 00	1	NC	1
585		8	max	.005	3	.134	3	0	15	1.755e-2	3_		15	NC	1
586			min	002	2	287	1	001	1	-2.278e-2	1_		1	NC	1
587		9	max	.005	3	.149	3	0	1	1.749e-2	3		15	NC	1
588			min	002	2	315	1	0	15	-2.509e-2	1_		1	NC	1
589		10	max	.005	3	.155	3	0	12	1.507e-2	3	8024.715	15	NC	1
590			min	002	2	324	1	0	1	-2.59e-2	1		1	NC	1
591		11	max	.005	3	.151	3	0	15	1.265e-2	3	8200.192	15	NC	1
592			min	002	2	315	1	0	1	-2.671e-2	1	281.443	1	NC	1
593		12	max	.005	3	.138	3	.001	1	1.037e-2	3		15	NC	1
594			min	002	2	287	1	0	15	-2.523e-2	1	302.547	1	NC	1
595		13	max	.004	3	.118	3	0	1	8.301e-3	3	9884.903	15	NC	1
596			min	002	2	242	1	0	15	-2.031e-2	1	343.401	1	NC	1
597		14	max	.004	3	.091	3	0	15	6.229e-3	3	NC ·	15	NC	1
598			min	002	2	186	1	002	1	-1.539e-2	1		1	NC	1
599		15	max	.004	3	.062	3	0	15	4.156e-3	3		15	NC	1
600			min	002	2	124	1	006	1	-1.047e-2	1		1	NC	1
601		16	max	.004	3	.032	3	0	15	2.084e-3	3		5	NC	1
602			min	002	2	061	1	009	1	-5.548e-3		754.054	1	NC	1
603		17	max	.004	3	.003	3	0	15	1.18e-5	3		5	NC	1
604			min	002	2	004	2	009	1	-6.266e-4	1		1	NC	1
605		18	max	.004	3	.046	1	0	15	3.386e-3	3		4	NC	1
606		10	min	002	2	023	3	006	1	-9.856e-3			1	NC	1
607		19	max	.004	3	.023	1	.001	1	6.888e-3	3		1	NC	1
608		13		002	2	047	3	0				NC NC	1	NC NC	1
000			min	002		047	3	U	15	-1.942e-2		INC	1	INC	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment: Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: Anchor ductility: Yes
hmin (inch): 8.50
cac (inch): 9.67
Cmin (inch): 1.75
Smin (inch): 3.00

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Anchors subjected to sustained tension: No Apply entire shear load at front row: No Anchors only resisting wind and/or seismic loads: No

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}{:}~1.0$

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 4.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	2/5
Project:	Standard PVMax - Worst Case, 14	-42 Inch	Width
Address:			
Phone:			
E-mail:			

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 14-	42 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x, V _{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)	
1	1723.0	23.0	593.0	593.4	
Sum	1723 0	23.0	593.0	593 4	

Maximum concrete compression strain (%): 0.00 Maximum concrete compression stress (psi): 0 Resultant tension force (lb): 1723

Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'Ny (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'vx (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'vy (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N _{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'_c (psi)	h _{ef} (in)	N_b (lb)			
17.0	1.00	2500	5.247	10215			
$\phi N_{cb} = \phi (A_N$	$_{lc}$ / A_{Nco}) $\Psi_{ed,N}$ $\Psi_{c,N}$	$_{N}\Psi_{cp,N}N_{b}$ (Sec.	D.4.1 & Eq. D-4)			
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ed,N}$	$arPsi_{c,N}$	$\Psi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cb} (lb)
220.36	247 75	0.967	1.00	1 000	10215	0.65	5710

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

$ au_{k,cr}$ (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)			
1035	1.00	1.00	1035			
$N_{a0} = \tau_{k,cr} \pi d_a$	h _{ef} (Eq. D-16f)					
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N_{a0} (lb)			
1035	0.50	6.000	9755			
$\phi N_a = \phi (A_{Na})$	/ A _{Na0}) Ψ _{ed,Na} Ψ _{p,i}	NaNa0 (Sec. D.4	1.1 & Eq. D-16a)			
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{ extsf{p}, extsf{Na}}$	N _{a0} (lb)	ϕ	ϕN_a (lb)
109.66	109.66	1.000	1.000	9755	0.55	5365

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in y-direction:

$V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq.	. D-24)
--	---------

le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cby} = \phi (A_1)$	$_{ m Vc}$ / $A_{ m Vco}$) $\Psi_{ m ed,V}$ $\Psi_{ m c}$	$_{V}\Psi_{h,V}V_{by}$ (Sec.	D.4.1 & Eq. D-2	1)			
Avc (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cby} (lb)
192.89	220.50	0.925	1.000	1.000	6947	0.70	3934

Shear perpendicular to edge in x-direction:

V _{bv} = '	7(1,/	$d_{a})^{0.2}$	Vd-22	f'cCa1 1.5	(Fa	D-24)
v bx -	/ Vie/	uai	VUaz V	I cLai	ıLu.	D-241

l _e (in)	d _a (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)		
4.00	0.50	1.00	2500	7.87	8282		
$\phi V_{cbx} = \phi (A_1)$	vc / A vco) Ψed, v Ψc,	$_{V}\Psi_{h,V}V_{bx}$ (Sec.	D.4.1 & Eq. D-2	1)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cbx} (lb)
165.27	278.72	0.878	1.000	1.000	8282	0.70	3018

Shear parallel to edge in x-direction:

 $V_{by} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}}^{1.5}$ (Eq. D-24)

I _e (in)	d _a (in)	λ	f'c (psi)	<i>c</i> _{a1} (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	7.00	6947		
$\phi V_{cbx} = \phi (2)$	(Avc/Avco) $\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{\sf ed,V}$	$\varPsi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
192.89	220.50	1.000	1.000	1.000	6947	0.70	8508

Shear parallel to edge in y-direction:

 $V_{bx} = 7(I_e/d_a)^{0.2} \sqrt{d_a \lambda} \sqrt{f'_c c_{a1}^{1.5}}$ (Eq. D-24)

	u)	(-4)						
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{bx} (lb)			
4.00	0.50	1.00	2500	7.87	8282			
$\phi V_{cby} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\Psi_{c,V}\Psi_{h,V}V_{bx}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)				
Avc (in ²)	Avco (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	ϕ	ϕV_{cby} (lb)	
165.27	278.72	1.000	1.000	1.000	8282	0.70	6875	

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

 $\phi V_{cp} = \phi \min |k_{cp} N_a; k_{cp} N_{cb}| = \phi \min |k_{cp} (A_{Na}/A_{Na0}) \mathcal{Y}_{ed,Na} \mathcal{Y}_{p,Na} N_{a0}; k_{cp} (A_{Nc}/A_{Nco}) \mathcal{Y}_{ed,N} \mathcal{Y}_{c,N} \mathcal{Y}_{c,N} \mathcal{Y}_{cp,NNb}| \text{ (Eq. D-30a)}$

Kcp	A _{Na} (In²)	A _{Na0} (In²)	$arPsi_{\sf ed,Na}$	$arPsi_{ m extsf{p},Na}$	Na0 (ID)	Na (ID)			
2.0	109.66	109.66	1.000	1.000	9755	9755			
4 (:-2)	A (:2)	177	177	177	A / /II- \	A / /II- \	,		
A_{Nc} (in ²)	A_{Nco} (in ²)	$arPsi_{ed,N}$	$arPsi_{c,N}$	$arPsi_{cp,N}$	N_b (lb)	N_{cb} (lb)	ϕ	ϕV_{cp} (lb)	
220.36	247.75	0.967	1.000	1.000	10215	8785	0.70	12298	

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 14-	-42 Inch	Width
Address:			
Phone:			
E-mail:			

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	1723	6071	0.28	Pass
Concrete breakout	1723	5710	0.30	Pass
Adhesive	1723	5365	0.32	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	593	3156	0.19	Pass (Governs)
T Concrete breakout y+	593	3934	0.15	Pass
T Concrete breakout x+	23	3018	0.01	Pass
Concrete breakout y+	23	8508	0.00	Pass
Concrete breakout x+	593	6875	0.09	Pass
Concrete breakout, combined	-	-	0.15	Pass
Pryout	593	12298	0.05	Pass
Interaction check Nu	a/φNn Vua/φVn	Combined Rat	o Permissible	Status
Sec. D.7.1 0.3	32 0.00	32.1 %	1.0	Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	1/5
Project:	Standard PVMax - Worst Case, 21-	-30 Inch	Width
Address:			
Phone:			
E-mail:			

1.Project information

Customer company: Customer contact name: Customer e-mail: Comment:

Project description: Location: Fastening description:

2. Input Data & Anchor Parameters

General

Design method:ACI 318-05 Units: Imperial units

Anchor Information:

Anchor type: Bonded anchor

Material: A193 Grade B8/B8M (304/316SS)

Diameter (inch): 0.500

Effective Embedment depth, hef (inch): 6.000

Code report: IAPMO UES ER-263

Anchor category: -Anchor ductility: Yes hmin (inch): 8.50 cac (inch): 9.67 C_{min} (inch): 1.75 Smin (inch): 3.00

Base Material

Concrete: Normal-weight

Concrete thickness, h (inch): 18.00

State: Cracked

Compressive strength, f'c (psi): 2500

 $\Psi_{c,V}$: 1.0

Reinforcement condition: B tension, B shear Supplemental reinforcement: Not applicable Reinforcement provided at corners: No

Do not evaluate concrete breakout in tension: No Do not evaluate concrete breakout in shear: No

Hole condition: Dry concrete

Inspection: Periodic

Temperature range, Short/Long: 110/75°F Ignore 6do requirement: Not applicable

Build-up grout pad: No

Load and Geometry

Load factor source: ACI 318 Section 9.2

Load combination: not set Seismic design: No

Apply entire shear load at front row: No

Base Plate

Length x Width x Thickness (inch): 4.00 x 7.00 x 0.28

Company:	Schletter, Inc.	Date:	11/17/2015				
Engineer:	HCV	Page:	2/5				
Project:	Standard PVMax - Worst Case, 21	Standard PVMax - Worst Case, 21-30 Inch Width					
Address:							
Phone:							
E-mail:							

<Figure 2>

Recommended Anchor

Anchor Name: AT-XP® - AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS)

Code Report: IAPMO UES ER-263

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	3/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

3. Resulting Anchor Forces

Anchor	Tension load, N _{ua} (lb)	Shear load x , V_{uax} (lb)	Shear load y, V _{uay} (lb)	Shear load combined, $\sqrt{(V_{uax})^2+(V_{uay})^2}$ (lb)
1	2344.5	1654.5	0.0	1654.5
2	2344.5	1654.5	0.0	1654.5
Sum	4689.0	3309.0	0.0	3309.0

Maximum concrete compression strain (‰): 0.00 Maximum concrete compression stress (psi): 0

Resultant tension force (lb): 4689 Resultant compression force (lb): 0

Eccentricity of resultant tension forces in x-axis, e'_{Nx} (inch): 0.00 Eccentricity of resultant tension forces in y-axis, e'_{Ny} (inch): 0.00 Eccentricity of resultant shear forces in x-axis, e'_{Vx} (inch): 0.00 Eccentricity of resultant shear forces in y-axis, e'_{Vy} (inch): 0.00

<Figure 3>

4. Steel Strength of Anchor in Tension(Sec. D.5.1)

N_{sa} (lb)	ϕ	ϕN_{sa} (lb)
8095	0.75	6071

5. Concrete Breakout Strength of Anchor in Tension (Sec. D.5.2)

 $N_b = k_c \lambda \sqrt{f'_c h_{ef}^{1.5}}$ (Eq. D-7)

Kc	λ	f'c (psi)	h _{ef} (in)	N_b (lb)				
17.0	1.00	2500	6.000	12492				
$\phi N_{cbg} = \phi (A_N$	ıc / ΑΝco) Ψec,N Ψea	,N $\Psi_{c,N}\Psi_{cp,N}N_b$ (Sec. D.4.1 & Eq	. D-5)				
A_{Nc} (in ²)	A_{Nco} (in ²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$arPsi_{ extsf{c}, extsf{N}}$	$arPsi_{cp,N}$	N_b (lb)	ϕ	ϕN_{cbg} (lb)
378.00	324 00	1 000	0.972	1.00	1 000	12492	0.65	9208

6. Adhesive Strength of Anchor in Tension (AC308 Sec. 3.3)

 $\tau_{k,cr} = \tau_{k,cr} f_{short-term} K_{sat}$

,								
τ _{k,cr} (psi)	f _{short-term}	K_{sat}	$ au_{k,cr}$ (psi)					
1035	1.00	1.00	1035					
$N_{a0} = \tau_{k,cr} \pi d_a$	hef (Eq. D-16f)							
$\tau_{k,cr}$ (psi)	d _a (in)	h _{ef} (in)	N _{a0} (lb)					
1035	0.50	6.000	9755					
$\phi N_{ag} = \phi (A_{Na})$	$_{a}$ / A_{Na0}) $\Psi_{ed,Na}$ Ψ_{g}	$_{ extstyle extstyle NA} arPhi_{ extstyle ec,Na} arPhi_{ extstyle p,Na} extstyle N$	l _{a0} (Sec. D.4.1 &	Eq. D-16b)				
A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{ec,Na}$	$\mathscr{\Psi}_{ extsf{ extsf{p}}, extsf{Na}}$	$N_{a0}(lb)$	ϕ	ϕN_{ag} (lb)
158.66	109.66	1.000	1.043	1.000	1.000	9755	0.55	8093

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	4/5
Project:	Standard PVMax - Worst Case, 21	-30 Inch	Width
Address:			
Phone:			
E-mail:			

8. Steel Strength of Anchor in Shear (Sec. D.6.1)

V_{sa} (lb)	$\phi_{ extit{grout}}$	ϕ	$\phi_{ extit{grout}} \phi V_{ ext{sa}}$ (lb)	
4855	1.0	0.65	3156	

9. Concrete Breakout Strength of Anchor in Shear (Sec. D.6.2)

Shear perpendicular to edge in x-direction:

378.00	648.00	1 000	0 836	1 000	1 000	15503		φν cbgx (ID)
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ec.V}$	$arPsi_{\sf ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{bx} (lb)	φ	ϕV_{cbqx} (lb)
$\phi V_{cbgx} = \phi (A$	$(V_{c}/A_{V_{co}})\Psi_{ec,V}\Psi_{ec}$	$_{ed,V} arPsi_{c,V} arPsi_{h,V} V_{bx}$	(Sec. D.4.1 & Ed	ą. D-22)				
4.00	0.50	1.00	2500	12.00	15593			
le (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V _{bx} (lb)			
$V_{bx} = 7(I_e/d_e)$	$(a)^{0.2} \sqrt{d_a} \lambda \sqrt{f'_c} c_{a1}^{1.5}$	⁵ (Eq. D-24)						

Shear parallel to edge in x-direction:

$V_{by} = 7(I_e/d$	$_{a})^{0.2}\sqrt{d_{a}}\lambda\sqrt{f'_{c}c_{a1}}^{1.9}$	⁵ (Eq. D-24)					
I _e (in)	da (in)	λ	f'c (psi)	Ca1 (in)	V_{by} (lb)		
4.00	0.50	1.00	2500	8.16	8744		
$\phi V_{cbx} = \phi (2)($	$(A_{Vc}/A_{Vco})\Psi_{ed,V}$	$\mathcal{V}_{c,V} \mathcal{\Psi}_{h,V} V_{by}$ (Se	c. D.4.1, D.6.2.1	(c) & Eq. D-21)			
A_{Vc} (in ²)	A_{Vco} (in ²)	$\Psi_{ed,V}$	$\Psi_{c,V}$	$\Psi_{h,V}$	V_{by} (lb)	ϕ	ϕV_{cbx} (lb)
299.64	299.64	1.000	1.000	1.000	8744	0.70	12241

10. Concrete Pryout Strength of Anchor in Shear (Sec. D.6.3)

$\phi V_{cpg} = \phi \text{mi}$	n <i>kcpNag</i> ; <i>kcpN</i>	$ c_{bg} = \phi \min k_{cp} $	(ANa/ANa0)Ψe	$_{d,Na} arPsi_{g,Na} arPsi_{ec,Na} arP$	Ψ _{p,Na} Na0 ; Kcp(A	Nc / ANco) $\Psi_{\text{ec},N} \Psi$	$\mathscr{C}_{ed,N}\mathscr{V}_{cp,N}\mathscr{N}_{b}$	(Eq. D-30b)
Kcp	A_{Na} (in ²)	A_{Na0} (in ²)	$\Psi_{\sf ed,Na}$	$arPsi_{g,Na}$	$\Psi_{\sf ec,Na}$	$arPsi_{p,Na}$	N_{a0} (lb)	Na (lb)
2.0	158.66	109.66	1.000	1.043	1.000	1.000	9755	14715
A _{Nc} (in ²)	Anco (in²)	$\Psi_{ec,N}$	$\Psi_{ed,N}$	$\Psi_{c,N}$	$\Psi_{cp,N}$	N _b (lb)	Ncb (lb)	ϕ
378.00	324.00	1.000	0.972	1.000	1.000	12492	14166	0.70

φV_{cpg} (lb) 19833

11. Results

Interaction of Tensile and Shear Forces (Sec. D.7)

Tension	Factored Load, Nua (lb)	Design Strength, øNn (lb)	Ratio	Status
Steel	2345	6071	0.39	Pass
Concrete breakout	4689	9208	0.51	Pass
Adhesive	4689	8093	0.58	Pass (Governs)
Shear	Factored Load, V _{ua} (lb)	Design Strength, øVn (lb)	Ratio	Status
Steel	1655	3156	0.52	Pass
T Concrete breakout x+	3309	5323	0.62	Pass (Governs)
Concrete breakout y-	1655	12241	0.14	Pass (Governs)
Pryout	3309	19833	0.17	Pass
Interaction check Nua/	φNn Vua/φVn	Combined Rat	o Permissible	Status

Company:	Schletter, Inc.	Date:	11/17/2015
Engineer:	HCV	Page:	5/5
Project:	Standard PVMax - Worst Case, 21-30 Inch Width		
Address:			
Phone:			
E-mail:			

Sec. D.7.3 0.58 0.62 120.1 % 1.2 Pass

AT-XP w/ 1/2"Ø A193 Gr. B8/B8M (304/316SS) with hef = 6.000 inch meets the selected design criteria.

12. Warnings

- This temperature range is currently outside the scope of ACI 318-11 and ACI 355.4, and is provided for historical purposes.
- Designer must exercise own judgement to determine if this design is suitable.
- Refer to manufacturer's product literature for hole cleaning and installation instructions.