Applications

1/2: Notion d'application

6

1	Vocabulaire.1.1 Définitions1.2 Fonctions indicatrices1.3 Restriction, prolongement	3
2	Composition.	4
3	Bijections (premier contact).	5
Ex	kercices	6

Dans ce cours, les lettres E, F, G et H désigneront des ensembles.

1 Vocabulaire.

1.1 Définitions.

Définition 1.

Une application f de E dans F est un procédé qui à tout élément x de E associe un unique élément dans F, que l'on note f(x). Cet objet est aussi appelé fonction, et décrit à l'aide de la notation

$$f: \left\{ \begin{array}{ccc} E & \to & F \\ x & \mapsto & f(x) \end{array} \right.$$

L'ensemble E est alors appelé ensemble de départ F ensemble d'arrivée.

Soient $x \in E$ et $y \in F$ tels que

$$y = f(x)$$
;

On dit que y est l'image de x par f et que x est \underline{un} antécédent de y par f.

Figure : deux patates et des flèches (important!)

Une application sert à faire un lien entre deux ensembles (éventuellement égaux). On a beaucoup manipulé au lycée les fonctions de la variable réelle, telles que la fonction logarithme népérien :

$$\ln : \left\{ \begin{array}{ccc} \mathbb{R}_+^* & \to & \mathbb{R} \\ x & \mapsto & \ln(x) \end{array} \right.$$

Mais les applications ne seront pas définies seulement entre des ensembles de nombres : elles vont nous permettre de donner une existence mathématique à certaines opérations. Prenons l'exemple du passage au complémentaire dans un ensemble E donné : il peut être vu comme une application :

$$\psi: \left\{ \begin{array}{ccc} \mathcal{P}(E) & \to & \mathcal{P}(E) \\ A & \mapsto & \overline{A} \end{array} \right. .$$

Définition 2 (Des applications simples à définir).

On appelle application **identité** sur E et on note id_E l'application

$$id_E: \left\{ \begin{array}{ccc} E & \to & E \\ x & \mapsto & x \end{array} \right.$$

Soit $a \in F$; on appelle application constante égale à a la fonction

$$: \left\{ \begin{array}{ccc} E & \to & F \\ x & \mapsto & a \end{array} \right.$$

Notation.

L'ensemble des applications de E dans F est noté F^E ou bien $\mathcal{F}(E,F)$.

Proposition 3 (Égalité de deux fonctions).

Deux applications sont égales si et seulement si elles sont égales en tout point :

$$\forall (f,g) \in (\mathcal{F}(E,F))^2 \qquad f = g \iff \forall x \in E \quad f(x) = g(x).$$

Définissons l'ensemble des images par une application : cela nous permettra de bien comprendre la différence avec l'ensemble d'arrivée.

Définition 4.

Soit $f \in \mathcal{F}(E,F)$ une application. On appelle **image** de f (ou plus précisément ensemble des images par f) et on note $\mathrm{Im}(f)$ ou encore f(E) l'ensemble

$$Im(f) = \{ f(x) \mid x \in E \}.$$

On peut écrire aussi

$$\operatorname{Im}(f) = \left\{ y \in F \mid \exists x \in E \quad y = f(x) \right\}.$$

Considérons l'application

$$\exp: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R} \\ x & \mapsto & \exp(x) \end{array} \right. .$$

Nous savons que son (ensemble des) images est $\operatorname{Im}(f) = \mathbb{R}_+^*$. Il est différent de l'ensemble \mathbb{R} , qui a été déclaré comme ensemble d'arrivée. On peut d'ailleurs changer l'ensemble d'arrivée sans vraiment changer la fonction et écrire

$$\exp: \left\{ \begin{array}{ccc} \mathbb{R} & \to & \mathbb{R}_+^* \\ x & \mapsto & \exp(x) \end{array} \right.$$

2

1.2 Fonctions indicatrices.

Définition 5.

Soit A une partie de E. La fonction indicatrice de A est l'application notée $\mathbf{1}_A$, définie par

$$\mathbf{1}_A: \left\{ \begin{array}{ccc} E & \to & \{0,1\} \\ x & \mapsto & \mathbf{1}_A(x) := \left\{ \begin{array}{ccc} 1 & \text{si } x \in A, \\ 0 & \text{si } x \notin A. \end{array} \right. \right.$$

Par exemple, $\mathbb Q$ étant une partie de $\mathbb R$, on considère $\mathbf 1_{\mathbb Q}$, fonction indicatrice de $\mathbb Q$, définie sur $\mathbb R$.

$$\mathbf{1}_{\mathbb{Q}}\left(\frac{2}{3}\right) = 1$$
 et $\mathbf{1}_{\mathbb{Q}}\left(\sqrt{2}\right) = 0$.

Proposition 6 (Une partie est caractérisée par sa fonction indicatrice).

$$\forall (A,B) \in (\mathcal{P}(E))^2 \quad A = B \iff \mathbf{1}_A = \mathbf{1}_B.$$

Proposition 7.

Soit E un ensemble et $A, B \in \mathcal{P}(E)$. Les égalités qui suivent sont des égalités entre applications.

Si A et B sont disjoints $(A \cap B = \emptyset)$ alors $\mathbf{1}_{A \cup B} = \mathbf{1}_A + \mathbf{1}_B$.

Plus généralement,

$$\mathbf{1}_{A \setminus B} = \mathbf{1}_A - \mathbf{1}_{A \cap B}, \qquad \mathbf{1}_{A \cap B} = \mathbf{1}_A \cdot \mathbf{1}_B \qquad \mathbf{1}_{A \cup B} = \mathbf{1}_A + \mathbf{1}_B - \mathbf{1}_{A \cap B}.$$

1.3 Restriction, prolongement.

Définition 8.

Soit $f \in \mathcal{F}(E, F)$ et $A \in \mathcal{P}(E)$. On appelle **restriction** de f à A, et on note $f_{|A}$ l'application

$$f_{|A}: \left\{ \begin{array}{ccc} A & \to & F \\ x & \mapsto & f(x) \end{array} \right.$$

Définition 9.

Soit A une partie de E et $g \in \mathcal{F}(A, F)$.

On appelle **prolongement** de g sur E toute application $f \in \mathcal{F}(E, F)$ telle que $f_{|A} = g$.

Exemple 10.

Soit g la fonction constante égale à 1 sur \mathbb{R}^* . Définir deux prolongements différents de g sur \mathbb{R} .

3

2 Composition.

Définition 11.

Soient E, F, G trois ensembles. Soient deux applications

$$f: E \to F$$
 et $g: F \to G$.

La **composée** de f par g, notée $g \circ f$ est l'application

$$g \circ f : \left\{ \begin{array}{ccc} E & \to & G \\ x & \mapsto & g \circ f(x) := g(f(x)) \end{array} \right.$$

Aussi important que la définition : le dessin avec les trois patates.

Exemple 12.

Soient

$$f: x \mapsto \ln(x-3), \qquad g: x \mapsto \sqrt{x^2-4}, \qquad h: x \mapsto \sqrt{\ln(x)}.$$

Écrire chacune comme la composée de deux fonctions "simples" (en précisant bien sûr chaque fois les ensembles de départ et d'arrivée).

Exemple 13 (Pour des fonctions de la variable réelle, à valeurs réelles).

La composée de deux fonctions décroissantes est croissante.

Proposition 14 (L'identité est neutre pour la composition).

Pour tout application $f \in \mathcal{F}(E, F)$, on a

$$id_F \circ f = f$$
 et $f \circ id_E = f$.

Proposition 15 (Associativité de la composition).

Si $f: E \to F$, $g: F \to G$, $h: G \to H$, alors,

$$(h \circ q) \circ f = h \circ (q \circ f)$$
.

Définition 16 (extension).

Soient E, F, E' et F' quatre ensembles. Soient deux applications

$$f: E \to F$$
 et $g: E' \to F'$,

telles que $\underline{\mathrm{Im}(f)} \subset \underline{E'}$. On appelle alors composée $g \circ f$ l'application $g \circ f = \left(g_{|\mathrm{Im}(f)}\right) \circ f$.

3 Bijections (premier contact).

Définition 17.

On dit qu'une application $f: E \to F$ est une **bijection** de E vers F si tout élément de F possède un unique antécédent dans E par f, ce qui s'écrit

$$\forall y \in F \quad \exists! x \in E \quad y = f(x).$$

Définition 18.

Soit $f: E \to F$ une bijection. Tout élément $y \in F$ possède un unique antécédent dans E par f; notons-le $f^{-1}(y)$. Ceci définit la fonction **réciproque** de f.

$$f^{-1}: \left\{ \begin{array}{ccc} F & \to & E \\ y & \mapsto & f^{-1}(y) \end{array} \right..$$

Exemple. exp: $\mathbb{R} \to \mathbb{R}_+^*$ est une bijection et $\ln : \mathbb{R}_+^* \to \mathbb{R}$ est sa réciproque.

Proposition 19 (découle de la définition de f^{-1}).

Soit $f: E \to F$ une bijection et $f^{-1}: F \to E$ sa réciproque. On a

$$\forall x \in E \quad f^{-1}(f(x)) = x \quad \text{et} \quad \forall y \in F \quad f(f^{-1}(y)) = y.$$

Ceci se récrit

$$f^{-1} \circ f = \mathrm{id}_E$$
, et $f \circ f^{-1} = \mathrm{id}_F$.

Dans le second cours sur les applications, le concept de bijectivité sera décomposé en deux sous-concepts : l'injectivité et la surjectivité.

Complément : Famille d'éléments d'un ensemble.

Définition 20.

Soient E et I deux ensembles (le second étant celui des indices).

Une famille d'éléments de E indexée par I est une fonction $a: I \to E$.

Pour $i \in I$, on note $a_i = a(i)$. La famille a est alors notée $a = (a_i)_{i \in I}$.

L'ensemble des familles d'éléments de E indexées par I sera notée E^I .

L'idée : a_i est un élément de E « étiqueté » à l'aide d'une étiquette i prise dans l'ensemble des indices I.

Définition 21.

On appelle suite d'éléments de E une famille d'éléments de E indexée par $\mathbb{N}.$

L'ensemble des suites à termes dans E est donc $E^{\mathbb{N}}$. Une suite $u \in E^{\mathbb{N}}$ est donc notée $u = (u_n)_{n \in \mathbb{N}}$.

Proposition 22 (admis).

Soit $f: E \to E$ et $a \in E$. Alors il existe une unique suite $(u_n)_{n \in \mathbb{N}} \in E^{\mathbb{N}}$ telle que

$$\begin{cases} u_0 = a \\ \forall n \in \mathbb{N} : u_{n+1} = f(u_n). \end{cases}$$

Exercices

 $oxed{6.1}$ $oxed{[} oldsymbol{\&} oxed{A}$ l'aide de notions croisées dans les cours précédents, donner des exemples d'applications involutives, c'est- $oxed{a}$ -dire des applications du type

$$f: E \to E \quad | \quad f \circ f = \mathrm{id}_E.$$

 $\boxed{\mathbf{6.2}}$ $[\phi \phi \diamondsuit]$ À l'aide de notions croisées dans les cours précédents, donner des exemples d'applications idempotentes, c'est-à-dire des applications du type

$$f: E \to E \quad | \quad f \circ f = f.$$

où E est un ensemble que vous préciserez.

6.3 $[\blacklozenge \blacklozenge \diamondsuit]$ Exhibez deux applications $f: \mathbb{N} \to \mathbb{N}$ et $g: \mathbb{N} \to \mathbb{N}$ telles que

$$g \circ f = \mathrm{Id}_{\mathbb{N}}$$
 et $f \circ g \neq \mathrm{Id}_{\mathbb{N}}$.

6.4 $[\blacklozenge \blacklozenge \diamondsuit]$ On veut démontrer qu'il n'existe aucune fonction $f: \mathbb{N} \to \mathbb{N}$ telle que

$$\forall n \in \mathbb{N} \quad f(f(n)) = n + 1.$$

On va raisonner par l'absurde. On suppose donc qu'il existe une telle fonction f.

- 1. Démontrer que pour tout entier $n \in \mathbb{N}$, on a f(n+1) f(n) = 1. Indication: on pourra considérer $f \circ f \circ f$.
- 2. Démontrer alors que pour tout entier naturel n, on a f(n) = n + f(0).
- 3. Conclure.

6.5 [♦♦♦] Associativité de la différence symétrique.

Soit E un ensemble. Pour X et Y deux parties de E, on note $X\Delta Y=(X\cup Y)\setminus (X\cap Y)$. Soient A,B,C trois parties de E. Développer $1_{(A\Delta B)\Delta C}$. En déduire que $(A\Delta B)\Delta C=A\Delta (B\Delta C)$.