Universal Types

Advanced Compiler Construction and Program Analysis

Lecture 12

The topics of this lecture are covered in detail in...

Benjamin C. Pierce.

Types and Programming Languages

MIT Press 2002

23	Unive	rsal Types 339
	23.1	Motivation 339
	23.2	Varieties of Polymorphism 340
	23.3	System F 341
	23.4	Examples 344
	23.5	Basic Properties 353
	23.6	Erasure, Typability, and Type Reconstruction 354
	23.7	Erasure and Evaluation Order 357
	23.8	Fragments of System F 358
	23.9	Parametricity 359
	23.10	Impredicativity 360
	23.11	Notes 361

Let-polymorphism

let twice = λf . λa . f(f(a)) in let a = twice (λx :Nat. succ (succ x)) 2 in let b = twice (λx :Bool. x) false in if b then a else 0

Let-polymorphism

let twice = λf . λa . f(f(a)) in let a = twice (λx :Nat. succ (succ x)) 2 in let b = twice (λx :Bool. x) false in if b then a else 0

Polymorphism

- 1. Parametric polymorphism
 - a. "Generics"
 - b. Impredicative polymorphism
- 2. Ad-hoc polymorphism
 - a. Overloading
 - b. Multi-method dispatch
 - c. Intensional polymorphism
 - d. Reflection
- 3. Subtype polymorphism

Simply Typed λ-calculus: syntax

```
terms
                                                    values
                  variable
X
                                 λx:T.t
                                                abstraction
λx:T.t
              abstraction
               application
t t
                                                   context
                                             empty context
                                 Γ, x:T
                                                   variable
                    types
             function type
```

System F: syntax

```
terms
                                                         values
                   variable
X
                                    λx:T.t
                                                    abstraction
λx:T.t
                abstraction
                                    λX.t
                                               type abstraction
                application
t t
           type abstraction
λX.t
                                                        context
t [T]
           type application
                                                 empty context
                                    \Gamma, x:T
                                                       variable
                      types
                                    \Gamma, X
                                                  type variable
              type variable
              function type
             universal type
\forall X.T
```

System F: syntax

 $\forall X.T$

t::= ...
$$terms$$

x variable

 $\lambda x:T.t$ abstraction

 $t t$ application

 $\lambda X.t$ type abstraction

 $t [T]$ type application

T::= $types$

X type variable

 $T \rightarrow T$ function type

universal type

$$(\lambda X.t_1) t_2 \longrightarrow [X \mapsto t_2]t_1$$

$$(\lambda X.t) [T] \longrightarrow [X \mapsto T]t$$

$$(\lambda X.t_1) t_2 \longrightarrow [X \mapsto t_2]t_1$$

$$(\lambda X.t) [T] \longrightarrow [X \mapsto T]t$$

let id = λX . $\lambda x:X$. x **in** id [Nat]

$$(\lambda X.t_1) t_2 \longrightarrow [X \mapsto t_2]t_1$$

$$(\lambda X.t) [T] \longrightarrow [X \mapsto T]t$$

let id =
$$\lambda X$$
. $\lambda x:X$. x in id [Nat] \rightarrow (λX . $\lambda x:X$. x) [Nat]

$$(\lambda x.t_1) t_2 \longrightarrow [x \mapsto t_2]t_1$$

$$(\lambda x.t) [T] \longrightarrow [x \mapsto T]t$$

let id =
$$\lambda X$$
. $\lambda x: X$. x in id [Nat]
 \longrightarrow (λX . $\lambda x: X$. x) [Nat]
 \longrightarrow [$X \mapsto \text{Nat}$] ($\lambda x: X$. x) = $\lambda x: \text{Nat}$. x

System F: universal types

$$\frac{\Gamma,X \vdash t : T}{\Gamma \vdash \lambda X.t : \forall X.T}$$

System F: universal types

$$\frac{\Gamma,X \vdash t : T}{\Gamma \vdash \lambda X.t : \forall X.T}$$

let id = λX . $\lambda x:X$. x

in

let
$$id = \lambda X$$
. $\lambda x:X$. x in let $a = id$ [Nat]

let id = λX . λx : X . x	in
<pre>let a = id [Nat]</pre>	in
let $b = id [Nat] 0$	in

```
let id = \lambda X. \lambda x: X. x in let a = id [Nat] in let b = id [Nat] 0 in let twice = \lambda X. \lambda f: X \rightarrow X. \lambda x: X. f(f(x)) in
```

```
let id = \lambda X. \lambda x: X. x in let a = id [Nat] in let b = id [Nat] 0 in let twice = \lambda X. \lambda f: X \rightarrow X. \lambda x: X. f(f(x)) in let c = twice [Nat] (\lambda n: Nat. succ(n) 0 in
```

```
let id = \lambda X. \lambda x:X. x
                                                                  in
let a = id [Nat]
                                                                  in
let b = id [Nat] 0
                                                                  in
let twice = \lambda X. \lambda f: X \rightarrow X. \lambda x: X. f(f x)
                                                                  in
let c = twice [Nat] (\lambdan:Nat. succ n) 0
                                                                  in
let selfApp = \lambda x:(\forall X.X\rightarrow X). x [\forall X.X\rightarrow X] x
in
```

```
let id = \lambda X. \lambda x:X. x
                                                                 in
let a = id [Nat]
                                                                 in
let b = id [Nat] 0
                                                                 in
let twice = \lambda X. \lambda f: X \rightarrow X. \lambda x: X. f(f x)
                                                                 in
let c = twice [Nat] (λn:Nat. succ n) 0
                                                                 in
let selfApp = \lambda x: (\forall X.X \rightarrow X). x [\forall X.X \rightarrow X] x
in
let fourTimes
   = \lambda X. double [X \rightarrow X] (double [X]) in
```

```
let id = \lambda X. \lambda x: X. X
                                                                  in
let a = id [Nat]
                                                                  in
let b = id [Nat] 0
                                                                  in
let twice = \lambda X. \lambda f: X \rightarrow X. \lambda x: X. f(f x)
                                                                  in
let c = twice [Nat] (\lambdan:Nat. succ n) 0
                                                                  in
let selfApp = \lambda x: (\forall X.X \rightarrow X). x [\forall X.X \rightarrow X] x
in
let fourTimes
   = \lambda X. double [X \rightarrow X] (double [X]) in
```

fourTimes [Nat] (λn:Nat. succ (succ n)) 0

System F: polymorphic lists

```
nil : \forall X. List[X]
cons : \forall X. X \to \text{List}[X] \to \text{List}[X]
isempty : \forall X. List[X] \to \text{Bool}
head : \forall X. List[X] \to X
tail : \forall X. List[X] \to \text{List}[X]
```

System F: polymorphic lists exercise

```
nil : \forall X. List[X]

cons : \forall X. X \to List[X] \to List[X]

isempty : \forall X. List[X] \to Bool

head : \forall X. List[X] \to X

tail : \forall X. List[X] \to List[X]
```

Exercise 12.1. Implement map for polymorphic lists:

map : $\forall X. \forall Y. (X \rightarrow Y) \rightarrow List[X] \rightarrow List[Y]$

System F: polymorphic lists exercise (2)

Exercise 12.2.

Implement these functions for polymorphic lists:

reverse : $\forall X$. List[X] \rightarrow List[X]

sort :
$$\forall X$$
. $(X \rightarrow X \rightarrow Bool) \rightarrow List[X] \rightarrow List[X]$

System F: properties

Theorem 12.3 [Preservation].

Let $\Gamma \vdash t : T$ and $t \longrightarrow t'$, then $\Gamma \vdash t' : T$.

Theorem 12.4 [Progress].

If t is a closed, well-typed term, then either t is a value, or else there is some t' such that $t \rightarrow t'$.

Theorem 12.5 [Normalization].

Well-typed System F terms are normalizing.

System F: type erasure and reconstruction

```
erase(x) = x

erase(\lambdax:T.t) = \lambdax.erase(t)

erase(t_1 t_2) = erase(t_1) erase(t_2)

erase(\lambdaX.t) = erase(t)

erase(t [T]) = erase(t)
```

System F: type erasure and reconstruction

```
erase(x) = x

erase(\lambdax:T.t) = \lambdax.erase(t)

erase(t_1 t_2) = erase(t_1) erase(t_2)

erase(\lambdaX.t) = erase(t)

erase(t [T]) = erase(t)
```

Theorem 12.6.

It is *undecidable* whether, given a closed term m of untyped lambda calculus, there is some well-typed term t in System F such that erase(t) = m.

System F: impredicativity

The kind of polymorphism in System F is called *impredicative*, since quantified type variables may range over all types, including the type being defined:

$$T = \forall X.X \rightarrow X$$

In some languages (e.g. ML), polymorphism is *predicative*, stratifying the types (using ranks or via let-polymorphism).

Hindley-Milner Type System: syntax

```
terms
                                        variable
X
\lambda x:T.t
                                    abstraction
                                    application
t t
                                     let-binding
let x=t in t
                                           types
                                  type variable
                                  function type
\mathsf{T} \to \mathsf{T}
                                 universal type
\forall X.T
```

Hindley-Milner Type System: specialization

Specialization Rule

$$\frac{\tau' = \{\alpha_i \mapsto \tau_i\} \tau \quad \beta_i \notin \text{free}(\forall \alpha_1 \dots \forall \alpha_n . \tau)}{\forall \alpha_1 \dots \forall \alpha_n . \tau \sqsubseteq \forall \beta_1 \dots \forall \beta_m . \tau'}$$

Hindley-Milner Type System: typing

$$\frac{\Gamma \vdash_D e_0 : \sigma \qquad \Gamma, \, x : \sigma \vdash_D e_1 : \tau}{\Gamma \vdash_D \mathbf{let} \, x = e_0 \, \mathbf{in} \, e_1 : \tau} \quad [\mathbf{Let}]$$

$$\frac{\Gamma \vdash_D e : \sigma' \quad \sigma' \sqsubseteq \sigma}{\Gamma \vdash_D e : \sigma} \qquad [\mathbf{Inst}]$$

$$\frac{\Gamma \vdash_D e : \sigma \quad \alpha \not\in \mathrm{free}(\Gamma)}{\Gamma \vdash_D e : \forall \, \alpha \, . \, \sigma} \quad [\mathbf{Gen}]$$

Summary

- System F
- Hindley-Milner Type System

See you next time!