REPUBLIQUE TUNISIENNE MINISTERE DE L'EDUCATION	Epreuve: MATHEMATIQUES
♦♦♦	Durée : 4 H
SESSION DE JUIN 2014	Coefficient: 4
Section : Mathématiques	Session principale

Le sujet comporte 4 pages. La page annexe 4/4 est à rendre avec la copie.

Exercice 1 (4 points)

L'espace est muni d'un repère orthonormé direct (A, į, į, k).

Soit ABCDEFGH le cube tel que

$$\overrightarrow{AB} = 6\overrightarrow{i}$$
, $\overrightarrow{AD} = 6\overrightarrow{j}$ et $\overrightarrow{AE} = 6\overrightarrow{k}$.

On désigne par P le plan (ACH) et par Q le plan (EGB).

- 1) a) Déterminer les composantes du vecteur $\overrightarrow{AC} \wedge \overrightarrow{AH}$.
 - b) En déduire une équation du plan P.
 - c) Montrer que les plans P et Q sont parallèles et donner une équation du plan Q.
- 2) Soit S la sphère d'équation $x^2 + y^2 + z^2 2x + 2y 2z = 0$
 - a) Déterminer le rayon de S et les coordonnées de son centre I.
 - b) Soit J le projeté orthogonal de A sur le plan Q. Montrer que [AJ] est un diamètre de S.
 - c) Montrer que la sphère S est tangente à chacun des deux plans P et Q.
- 3) Soit t la translation de vecteur $\vec{U} = 2\vec{i} + 4\vec{j} + 2\vec{k}$.
 - a) Soit A' et J' les images respectives de A et J par t. Déterminer les coordonnées de A' et J'.
 - b) Déterminer S' l'image de la sphère S par t.
 - c) Montrer que S' est tangente aux deux plans P et Q et déterminer leurs points de contact.

Exercice 2 (5 points)

Le plan est orienté dans le sens direct.

Dans la figure ci-contre, ABCD est un losange

de centre O tel que $\widehat{(OA,OB)} = \frac{\pi}{2} [2\pi]$ et AC = 3 BD.

- 1) Soit f la similitude directe qui envoie A en B et C en D.
 - a) Déterminer le rapport et l'angle de f.
 - b) Montrer que O est le centre de f.
- a) Soit D' l'image de D par f. Montrer que D' est l'orthocentre du triangle ABD et que OA = 90D'.
 - b) Soit B' l'image de B par f. Montrer que BB'DD' est un losange.
- 3) Soit g = f o S (AC).
 - a) Déterminer la nature de g.
 - b) Déterminer les images des points O, A, B, C et D par g.
 - c) Déterminer l'axe Δ de g.
 - d) La droite Δ coupe les droites (AB), (BD'), (DB') et (CD) respectivement en M, N, P et Q. Montrer que MQ = 3 NP.

Exercice 3 (4 points)

- 1) Soit a un entier tel que $a \equiv 1 \pmod{10}$.
 - a) Montrer que $a^9 + a^8 + ... + a + 1 \equiv 0 \text{ (mod 10)}$.
 - b) En déduire que $a^{10} \equiv 1 \pmod{10^2}$.

(On pourra utiliser l'égalité $a^{10} - 1 = (a - 1)(a^9 + a^8 + ... + a + 1)$).

- 2) Soit b un entier.
 - a) Déterminer les restes possibles de b⁴ dans la division euclidienne par 10.
 - b) En déduire que $b^4 \equiv 1 \pmod{10}$ si et seulement si b est premier avec 10.
- 3) Soit b un entier premier avec 10.
 - a) Montrer que $b^{40} \equiv 1 \pmod{10^2}$.
 - b) Déterminer les deux derniers chiffres de 6742.

Exercice 4 (7points)

Soit f la fonction définie sur $\left] -\frac{\pi}{4}, \frac{\pi}{2} \right[$ par $f(x) = \ln (1 + \tan x)$ et soit (C) sa courbe représentative dans un repère orthonormé $(0, \vec{i}, \vec{j})$.

- 1) a) Montrer que $\lim_{x \to \left(-\frac{\pi}{4}\right)^+} f(x) = -\infty$ et $\lim_{x \to \left(\frac{\pi}{2}\right)^-} f(x) = +\infty$.
 - b) Calculer f'(x) pour x appartenant à $\left[-\frac{\pi}{4}, \frac{\pi}{2}\right]$.
 - c) Dresser le tableau de variation de f.
- 2) a) Vérifier que les points O, A $\left(\frac{\pi}{4}, \ln 2\right)$ et I $\left(\frac{\pi}{8}, \frac{\ln 2}{2}\right)$ sont des points de (C). (On donne $\tan\left(\frac{\pi}{8}\right) = \sqrt{2} 1$).
 - b) Montrer que $f\left(\frac{\pi}{4} x\right) = \ln 2 f(x)$ pour tout $x \in \left] -\frac{\pi}{4}, \frac{\pi}{2}\right[$. (On rappelle que $\tan\left(\frac{\pi}{4} - x\right) = \frac{1 - \tan x}{1 + \tan x}$)
 - c) Justifier alors que le point I est un centre de symétrie de la courbe (C). Dans l'annexe ci-jointe, on a placé les points I et A dans le repère $(O, \overline{i}, \overline{j})$.
- 3) Tracer la courbe (C) dans le repère (O, \bar{i}, \bar{j}) en précisant sa tangente au point O.
- On désigne par S_1 la partie du plan limitée par la courbe (C), la droite (OA) et les droites d'équations x=0 et $x=\frac{\pi}{8}$ et on désigne par S_2 la partie du plan limitée par la courbe (C), la droite (OA) et les droites d'équations $x=\frac{\pi}{8}$ et $x=\frac{\pi}{4}$.
 - a) Justifier que les surfaces S_1 et S_2 ont la même aire.
 - b) Calculer alors $\int_0^{\frac{\pi}{4}} \ln (1 + \tan x) dx$.
- 5) a) Montrer que la fonction f réalise une bijection de l'intervalle $\left]-\frac{\pi}{4},\frac{\pi}{2}\right[$ sur un intervalle J que l'on précisera. On note f⁻¹ la réciproque de f.
 - b) Justifier que f^{-1} est dérivable sur J et donner l'expression de $(f^{-1})'(x)$ pour x appartenant à J.
 - c) Donner la valeur de $\int_0^{\ln 2} \frac{e^x}{1 + (e^x 1)^2} dx$.

Epreuve : Mathématiques (Section mathématiques)

Annexe (à rendre avec la copie)

