Basic Intro to CDO

owner formor Asset pool & Bonds, mortgage, etc 100 m Waterfall 100% 93m 3%

	AZE	PPt	sile	WSS PESPONS: ble	yield
ET	0	3%	3m	0-3m	107
MT	3%	7%	4m	3 - 7m	57
ST	77.	10070	93m	7+m	1%

In Good Times (yearly premium)

93 m x 17= = 0.93 m

MT:

4m x5% = 0.2 m

3m ×10% = 0.3 m

In Bad Times

DP2oss = 1 m $(3-1)m \times 10/s = 0.2 m$ MT(ST? / ntact, recieve same payment.

(3) PLOSS = 4 m ET is wiped out MT $(24-1)m \times 5\% = 0.15m$ ST: Same as before.

CDO Tranch Loss fr

$$L(t; d, n) = \max[\min(L, n) - d, o]$$

$$D(t; o, n) = \max[\min(L, n), o]$$

$$= \min(L, n)$$

$$= \min(L, n)$$

$$= \sum_{k=3}^{\infty} \sum_{n=3}^{\infty} \sum_{k=3}^{\infty} \sum_{n=3}^{\infty} \sum_{n=3}^{\infty}$$

(2) $U = \{007, (ST)\}$ L(t; d, (007)) = max[min(L, u) - d, 0] = max[L - d, 0] ST 937, 1

(3).
$$2 < d < h$$

 (1) $2 < d < h$
 $2 < d$

cii)
$$d < L < h$$

 $L(t) d(h) = max[L-d, o] = L-d$

$$L(t;d,n) = \max[n-d,o] = n-d.$$

Concept of Copula
for jont Dis
(5) Copula takes margins as input, transform it into Jos 12,5
3 Before Phyging margins, it represents a 6-dependence
Structor
Co-dependence) joint Dis?
magins
Notation Margin: E(x) E(y). Copula: C(u, u,)
Jout Dis: F(x, Y)

C(Ni, Nr) C(F(x), F(7)) F(X, y)

Before phygging margins, Copula is a joint Dis" f" for bunch of uniform R.U.S.

((h, hz)

u, 8 hz are uniform T(X) F(X) Does it mean F(x) /F(x) is uniform)

Show
$$F(x) \sim miform To, 1$$

$$Y = F(x) = Pr(X \le x)$$

$$Y \in To, 1$$

$$Y = F(x) = Pr(X \le x)$$

$$Y = Pr($$

Sklar Theorem

 $C(\Omega_1, \dots, \Omega_n) = P_r(\Omega_1 \in u_0, \dots \Omega_n \in u_n)$ $\Omega_i = F_i(x_i)$

= Pr $\left(F_{i}(x_{i}) \in u_{i}, \cdots, F_{n}(x_{n}) \in u_{n} \right)$

 $= Pr(X_1 \in F_1(n_1), \dots, X_n \in F_n(n_n))$

= $P_r(X_1 \leq X_1, \dots X_n \leq X_n)$

T $T_n(X_1, \dots, X_n)$

Example of Granssian Copula

Example of Ganssian Copul

$$U \quad U_i = F_i(x_i) = \underline{\Phi}(x_i)$$

$$C(u_i, \dots, u_n) = \underline{\Phi}_n(\underline{q}'(\underline{q}(x_i)), \dots, \underline{\Phi}'(\underline{\theta}(x_n))$$

$$= \underline{\Phi}_n(x_i, \dots, x_n)$$

(2) $W_{i} = F_{i}(Z_{i}) = I_{i} e^{-\lambda_{i}^{\prime}Z_{i}^{\prime}} = P_{r}(Z_{i} \leq Z_{i}) = P_{i}^{\prime}$ $C(W_{i}, W_{z}) = \Phi_{z}(\Phi^{\prime}(P_{i}), \Phi(P_{z})^{\prime})$

Distance to Defint =
$$Q^{\dagger}(P_i)$$

= Q_i
 $Q_i(Q_i, Q_i) = P_i(Z_i(Z_i, Z_i))$
= $\sum_{-\infty}^{\infty} \frac{1}{2\pi\sqrt{i-p_i}} \exp\left\{-\frac{\chi^2 - 2\delta y + \delta^2}{2(i-p)}\right\} dx dy$