Analisis Hyperparameter

1. Jumlah Hidden Layers

Hidden Layers	Test Loss
1	40.26
2	18.11
3	14.26

Analisis:

- Penambahan jumlah hidden layers dari 1 ke 3 menunjukkan penurunan test loss secara signifikan. Ini menunjukkan bahwa model dengan lebih banyak lapisan mampu menangkap representasi data yang lebih kompleks.
- Namun, penurunan test loss antara 2 dan 3 hidden layers mulai berkurang. Ini menunjukkan potensi diminishing returns atau risiko overfitting jika jumlah hidden layers terlalu besar.

2. Jumlah Neuron

Neurons	Test Loss
4	630.04
8	13.34
16	12.23
32	11.40
64	10.53

Analisis:

- Test loss menurun drastis saat jumlah neuron meningkat dari 4 menjadi 8, menandakan bahwa 4 neuron tidak cukup untuk menangkap pola dalam data.
- Test loss terus membaik hingga 64 neuron, tetapi ada indikasi penurunan manfaat setelah jumlah neuron bertambah lebih dari 32.

3. Fungsi Aktivasi

Activation Function	Test Loss
Linear	14.72
Sigmoid	312.84
ReLU	17.30

Activation Function	Test Loss
Softmax	572.26
Tanh	304.17

Analisis:

- Fungsi linear memberikan hasil terbaik dibandingkan ReLU dan jauh lebih baik dibandingkan Sigmoid, Softmax, atau Tanh.
- Softmax dan Sigmoid menunjukkan test loss yang sangat tinggi karena kecenderungannya untuk saturasi, yang mengurangi kemampuan model untuk belajar secara efektif.
- ReLU adalah alternatif yang lebih baik dibandingkan Sigmoid atau Tanh, meskipun masih di bawah performa linear.

4. Jumlah Epochs

Epochs	Test Loss
1	666.10
10	340.19
25	56.47
50	15.72
100	11.59
250	11.64

Analisis:

- Penambahan jumlah epoch secara konsisten menurunkan test loss hingga 100 epoch, menunjukkan model membutuhkan waktu pelatihan yang cukup untuk konvergen.
- Setelah 100 epoch, test loss stabil, menunjukkan bahwa jumlah epoch yang lebih besar mungkin tidak memberikan manfaat tambahan yang signifikan.

5. Learning Rate

Learning Rate	Test Loss
10	98.94
1	99.19
0.1	9.82

Learning Rate	Test Loss
0.01	9.99
0.001	12.94
0.0001	602.19

Analisis:

- Learning rate sebesar 0.1 memberikan hasil terbaik dengan test loss terendah.
- Learning rate yang terlalu tinggi (10 dan 1) menyebabkan test loss tinggi karena pembaruan parameter yang terlalu besar, mengganggu proses konvergensi.
- Learning rate yang terlalu kecil (0.0001) membuat model sulit belajar, menghasilkan test loss tinggi.

6. Batch Size

Batch Size	Test Loss
16	14.06
32	13.80
64	48.44
128	340.24
256	591.61
512	628.13

Analisis:

- Batch size kecil (16, 32) memberikan hasil terbaik. Ini mungkin karena pembaruan parameter yang lebih sering dan lebih granular.
- Batch size yang lebih besar (>64) menyebabkan peningkatan test loss yang signifikan, kemungkinan karena generalisasi yang buruk akibat update parameter yang lebih jarang.

Kesimpulan dan Rekomendasi

• Konfigurasi optimal berdasarkan hasil eksperimen:

Hidden layers: 3

• **Neurons**: 64

• Activation function: Linear

• **Epochs**: 100

• Learning rate: 0.1

• Batch size: 32

• Kombinasi ini memberikan keseimbangan antara kapasitas model, stabilitas pelatihan, dan generalisasi pada data uji.