MITSUBISHI IGBT MODULES

CM300HA-24H

HIGH POWER SWITCHING USE INSULATED TYPE

Outline Drawing and Circuit Diagram

Dimensions	Inches	Millimeters
Α	4.21	107.0
В	3.661±0.01	93.0±0.25
С	2.44	62.0
D	1.89±0.01	48.0±0.25
Е	1.42 Max.	36.0 Max.
F	1.34	34.0
G	1.18	30.0
Н	1.14	29.0
J	0.98 Max.	25.0 Max.
K	0.94	24.0
L	0.93	23.5

Dimensions	Inches	Millimeters
М	0.83	21.0
N	0.69	17.5
Р	0.63	16.0
Q	0.51	13.0
R	0.43	11.0
S	0.35	9.0
Т	0.28	7.0
U	0.12	3.0
V	0.26 Dia.	Dia. 6.5
W	M6 Metric	M6
X	M4 Metric	M4

Description:

Mitsubishi IGBT Modules are designed for use in switching applications. Each module consists of one IGBT in a single configuration with a reverse-connected super-fast recovery free-wheel diode. All components and interconnects are isolated from the heat sinking baseplate, offering simplified system assembly and thermal management.

Features:

- □ Low Drive Power
- □ Low V_{CE(sat)}
- ☐ Discrete Super-Fast Recovery Free-Wheel Diode
- ☐ High Frequency Operation
- ☐ Isolated Baseplate for Easy Heat Sinking

Applications:

- ☐ AC Motor Control
- ☐ Motion/Servo Control
- ☐ UPS
- ☐ Welding Power Supplies

Ordering Information:

Example: Select the complete part module number you desire from the table below -i.e. CM300HA-24H is a 1200V (V_{CES}), 300 Ampere Single IGBT Module.

Туре	Current Rating Amperes	V _{CES} Volts (x 50)			
СМ	300	24			

CM300HA-24H

HIGH POWER SWITCHING USE **INSULATED TYPE**

Absolute Maximum Ratings, T_i = 25 °C unless otherwise specified

°C °C Volts
Volts
Volts
Amperes
Amperes
Amperes
Amperes
Watts
N · m
N · m
N · m
Grams
Vrms

 $^{^{\}star}$ Pulse width and repetition rate should be such that the device junction temperature (T_j) does not exceed $T_{j(max)}$ rating. ** Represents characteristics of the anti-parallel, emitter-to-collector free-wheel diode (FWDi).

Static Electrical Characteristics, T_j = 25 $^{\circ}$ C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Collector-Cutoff Current	I _{CES}	$V_{CE} = V_{CES}$, $V_{GE} = 0V$	-	-	1.0	mA
Gate Leakage Current	I _{GES}	V _{GE} = V _{GES} , V _{CE} = 0V	-	-	0.5	μΑ
Gate-Emitter Threshold Voltage	V _{GE(th)}	I _C = 30mA, V _{CE} = 10V	4.5	6.0	7.5	Volts
Collector-Emitter Saturation Voltage	V _{CE(sat)}	I _C = 300A, V _{GE} = 15V	_	2.5	3.4**	Volts
		$I_C = 300A$, $V_{GE} = 15V$, $T_j = 150$ °C	_	2.25	_	Volts
Total Gate Charge	Q _G	V _{CC} = 600V, I _C = 300A, V _{GE} = 15V	_	1500	_	nC
Emitter-Collector Voltage	V _{EC}	I _E = 300A, V _{GE} = 0V	_	_	3.4	Volts

^{**} Pulse width and repetition rate should be such that device junction temperature rise is negligible.

Dynamic Electrical Characteristics, $T_i = 25$ °C unless otherwise specified

•		.)					
Characteristics		Symbol	Test Conditions	Min.	Тур.	Max.	Units
Input Capacitar	nce	C _{ies}		_	-	60	nF
Output Capacit	ance	C _{oes}	$V_{GE} = 0V$, $V_{CE} = 10V$	_	_	21	nF
Reverse Transfer Capacitance		C _{res}		_	_	12	nF
Resistive	Turn-on Delay Time	t _{d(on)}		-	_	250	ns
Load	Rise Time	t _r	$V_{CC} = 600V, I_{C} = 300A$	_	-	500	ns
Switching	Turn-off Delay Time	t _{d(off)}	$V_{GE1} = V_{GE2} = 15V, R_G = 1.0\Omega$	_	-	350	ns
Times	Fall Time	t _f		_	_	350	ns
Diode Reverse Recovery Time		t _{rr}	$I_E = 300A$, $di_E/dt = -600A/\mu s$	-	-	250	ns
Diode Reverse Recovery Charge		Q _{rr}	$I_E = 300A$, $di_E/dt = -600A/\mu s$	_	2.23	_	μС

Thermal and Mechanical Characteristics, T_i = 25 $^{\circ}$ C unless otherwise specified

Characteristics	Symbol	Test Conditions	Min.	Тур.	Max.	Units
Thermal Resistance, Junction to Case	R _{th(j-c)}	Per IGBT	-	_	0.06	°C/W
Thermal Resistance, Junction to Case	R _{th(j-c)}	Per FWDi	_	_	0.12	°C/W
Contact Thermal Resistance	R _{th(c-f)}	Per Module, Thermal Grease Applied	-	-	0.04	°C/W

CM300HA-24H

HIGH POWER SWITCHING USE INSULATED TYPE

CM300HA-24H

HIGH POWER SWITCHING USE INSULATED TYPE

