Name: Solutions (Set-up +)
Answers

Homework Week # 9

Rotational Motion Due Thurs 10/24/19

Reading

C&J Physics: Tues - Ch. 9: 1-4 Thurs - Ch. 9: 4-7

OS Coll Phys: Tues - Ch. 9: 1-6 Thurs - Ch. 10

Problems

Problem 1. FOC 8.3

Problem 2. FOC 8.7

Problem 3. 8.2

Problem 4. 8.4

Problem 5. 8.6

Problem 6. 8.20

Problem 7. 8.21

Problem 8. 8.22

Problem 9. 8.34

Problem 10. 8.42

```
Prob. 1 FOC 8.3

Determine t for an arc of

s=24.0cm for a second hand of a

circular clock that has a radius of

r=6.00cm.
```

for a second hand
$$V = \frac{2\pi r}{T}$$
, $T = 60.05$

$$V = \frac{S}{t} = \frac{2\pi r}{T}$$

$$\frac{t}{s} = \frac{T}{2\pi r}$$

$$t = \frac{S}{2\pi r}$$

$$t = \frac{24.0 \, \text{cm}}{2\pi (6.00 \, \text{cm})} (60.0 \, \text{s}) = \frac{2.00}{17} (60.0) \, \text{s}$$

Prob. 2 FOC 8.7

$$V_0 = 0$$
, $W_0 = 0$ for court. X . Q
 $t_1 = 7.0s$, $W_1 = 16 \frac{red}{s}$. Find

 W_2 Q $t_2 = 14.0s$

Thinking: const. & & data given means a increases by 16 mad every 7.0s SO W2 = 32 med b/c 7.05 more have prissed @ 14.05. Math: $\alpha = \frac{\omega_2 - \omega_1}{t_1 - t_1} = \frac{16}{7.0} \frac{rad}{s^2} = 2.3 \frac{rad}{s^2}$ $\omega_2 = 4t_2$ $\omega_2 = 32 \frac{vad}{5^2}$ W=Wotat

Wo 20

$$\overline{\omega} = \frac{Q_{\xi} - Q_{o}}{\Delta t}$$

Use 4 times!

Note Of is labeled Om the table.

$$\overline{W}_3 = -0.6 \frac{rad}{5}$$

$$\overline{\omega}_{y} = +0.4 \frac{rad}{s}$$

Prob. 4 8.4

Our sun rotates about a circle of $r = 2.2 \times 10^{20} \text{m}$ at a constant $\omega = |a| \times 10^{-15} \text{ rad}$.

Calculate It for a fall revolution in units of Earth years

Note
$$V = \frac{2\pi r}{T}$$
 many $\omega = \frac{2\pi r}{T}$ for a full revolution.

$$T = \frac{2\pi}{\omega} = \frac{2\pi}{1.1} \times 10^{15} \text{ s}$$

Conversion : 1 yr = (365.25)(24)(3600) 5

$$T = \left(\frac{2\pi}{1.1} \times 10^{15}\right) \frac{1}{(365.25)(24)(3600)}$$

Prob. 5 8.6

Given mitral velocity and a constant acceleration, predict velocity after 2.05.

$$x = \frac{\omega - \omega_0}{t}$$
 $e > \omega = \omega_0 + xt$

Use u sets of ω_0 , u . $(c(w)^*)^*$
 $\omega_1 = 18 \frac{rad}{s}$ $\omega_1^{\omega_0}$
 $\omega_2 = 6 \frac{rad}{s}$ $\omega_1^{\omega_0}$
 $\omega_3 = -6 \frac{rad}{s}$ $\omega_1^{\omega_0}$
 $\omega_4 = -18 \frac{rad}{s}$ $\omega_1^{\omega_0}$

* Please think about what type of ratation* each can be describing.

Prob. 6 8.20

$$\omega_0 = +15 \text{ rad}$$
, $\Delta \theta = 0 = +5.1 \text{ rad}$, $\omega = 0$

Calculate \vec{x} , t

$$\overline{d} = \frac{\omega - \omega_0}{\Delta t} \quad \text{d} \quad \omega = can \quad \text{assume}$$

$$\overline{d} = \alpha \quad \text{since} \quad \Delta t = t \quad \text{is small.} \quad (\text{but} t)$$

$$\int_{\omega^2} d\omega = \frac{\sqrt{2} + 2\alpha}{\Delta t} \Delta t \quad \overline{d} = \frac{-\omega_0}{\Delta t}$$

$$t = \frac{-\omega_0}{\Delta t}$$

$$\overline{Z} = -22.1 \frac{rad}{s^2}$$

$$t = 0.68s$$

given wo and DO both positive, & should be negative and t=0.685 sounds brief.

Prob. 7 8.21

Calculate time (t) for a velocity

change of 3.00 to 5.00 rev/s though

a rotation of one-half revolution

$$t = \frac{20}{\omega, +\omega}$$

$$t = \frac{2\left(\frac{1}{2} \text{ rev}\right)}{8.00 \text{ rev}}$$

No unit of conversion necessary!

Prob. 8 8.22

$$\omega_0 = 420 \frac{\text{red}}{\text{s}} \Rightarrow \omega = 1420 \frac{\text{red}}{\text{s}} \text{ in } t = 5.00 \text{ s}$$

Calculate $\Delta \theta$ and α for this.

assume & const.

$$\omega^2 = \omega_0^2 + 2 \times \Delta \Theta$$

$$\Delta \Theta = \frac{\omega^2 - \omega_0^2}{2 \times 2}$$

Pol 9 8.34 For $\alpha = +12.0 \frac{\text{rad}}{52}$ find r@which 97=9.

$$r = \frac{q_7}{x}$$

 $q_{r} = r \propto$

$$\int_{\alpha} a_{\tau} = g \qquad \Gamma = \frac{g}{\alpha}$$

Prob. 10 8.42

move a wider, but connected circle

a const. V. Relate rotational quantities

to solve for a linear speed if there

is rolling w/o slipping.

 $V_1 = \Gamma_1 \omega$, $V_2 = \Gamma_2 \omega$ $\omega = \frac{V_1}{\Gamma_1}$

Vzzrw

lvz ble vollry ul. slippny

 $V_1 = 1.20 \, \text{m/s}$ $V_1 = 0.200 \, \text{m}$ $V_2 = 0.050 \, \text{m}$

 $\left[\sqrt{2} = 0.30 \frac{m}{5} \right]$