Satellite measurements of tropospheric trace gases in the CHARMEX project

Andreas Hilboll

IUP / University of Bremen

hilboll@iup.physik.uni-bremen.de

22 October 2009

How and what do we measure?

NO₂ over megacities

Future studies

Summary

How and what do we measure?

The DOAS method

Differential **O**ptical **A**bsorption **S**pectroscopy – based on *Lambert Beer*.

$$In\underbrace{\frac{I_0(\lambda)}{I(\lambda)}}_{\text{spectra}} = \underbrace{\int_{S} \sum_{i} \rho_i(s) \sigma_i'(\lambda, s) ds}_{\text{absorption term}} + \underbrace{\sum_{k} a_k \lambda^k}_{\text{polynomial}} + \underbrace{r(\lambda)}_{\text{residual}}$$

$$- \text{trace gases}_{- \text{ring effect}} - \text{broad-band effects}$$

- $\sigma'_i + \sigma^b_i = \sigma_i$: differential + broad-band = total absorption
- Main inputs: I, I₀, the actual and background spectra from the instrument σ'_i , the reference absorption cross sections, measured in lab
- ▶ Main result: $SC_i = \int_S \rho_i(s) ds$, the slant column for each trace gas i

Deriving the tropospheric vertical column

- Measured quantity: total slant column
- Subtract influence of stratosphere (relevant for NO₂)
- Account for radiative transfer in the troposphere:

$$VCD_{trop} = SCD_{trop}/AMF$$
 (AMF = Air Mass Factor)

Quantity of interest: tropospheric vertical column

=

Deriving the tropospheric vertical column

- Measured quantity: total slant column
- Subtract influence of stratosphere (relevant for NO₂)
- Account for radiative transfer in the troposphere:

$$VCD_{trop} = SCD_{trop}/AMF$$
 (AMF = Air Mass Factor)

Quantity of interest: tropospheric vertical column

Radiative transfer in lower atmosphere depends on:

- Viewing geometry
- Vertical profiles of absorbers (derived from models)
- Ground reflectivity (measured from satellite)
- Surface height (measured from satellite)
- Aerosol load (derived from emission data)

Satellite orbits / global coverage

- Sun-synchronous orbits ⇒ constant equator crossing time
- Important due to diurnal cycle in photochemistry
- North to south on day-side (except for OMI)

Instrument	Equator crossing	Global coverage	Repeat cycle	Ground pixel [km ²]
GOME	10:30	3 days	35 days	40x320
SCIAMACHY	10:00	6 days	35 days	30x60
OMI	13:45	1 day	16 days	up to 13x24
GOME-2	09:30	1.5 days	29 days	40x80

Animations from http://www.esa.int/esa-mmg/mmg.pl?mission=MetOp&type=A

Trace gases measured by UV/vis satellites

(c) Andreas Richter

(c) Mihalis Vrekoussis

Instrument GOME SCIAMACHY OMI

GOME-2

Mission duration 1995/06-2003/06 2002/08-2013 2004/10-2007/01-2015

(c) Sebastian Mieruch

NO₂ over Megacities

Tropospheric NO₂ in the Mediterranean

SCIAMACHY trop. NO₂ columns 2003-2008

Trends in trop. NO₂ over Mediterranean megacities

Data from SCIAMACHY:

annual (.) and monthly (.) means and linear fit to annual means (-)

Differing seasonal trends for the same city

In some cities, trends have different signature depending on the season

Difference Western vs. Eastern Mediterranean

Eastern and western Meditteranean show different patterns

Seasonal differences in NO2 over Istanbul

Depending on season, Istanbul's NO2 plume can be seen

- north (winter)
- south (summer)

of the Bosphorus.

Study correlation between wind directions and NO₂ plume location

Future Studies

Extension of time series

GOME data available since August 1995 — so why don't I show trends for the 1995-2009 time period?

- Coarser pixel size leads to lower values over hot spots
- Derivation of consistent trends difficult

Solution: Deconvolution of GOME measurements

 Superimpose finer structure of SCIAMACHY measurements upon coarser GOME pixels (See Konovalov et al., 2006)

High-resolution study of Istanbul

CHARMEX aim Trends due to changes in local emissions

Emissions inventory with 2km resolution makes model run (CHIMERE?) with very fine gridsize possible

- High-resolution AMF leads to high quality / high resolution satellite data product
- Study the influence of the city on its surroundings and vice/versa
- Problem: Currently no annual emission data

Summary

Future studies

Summary

How and what do we measure?

Summary

- ► High-quality global time-series (2003-2009) available for NO₂, SO₂, HCHO, CHOCHO & H₂O
 ► Time pariso for NO₂ will be extended to sover COME pariso (starting)
- ► Time-series for NO₂ will be extended to cover GOME period (starting 1996)
- Most western megacities show decreasing NO₂ values
- Most non-european megacities show increasing NO₂ values
- Eastern and western Mediterranean cities show different patterns in annual NO₂ values
- Location of a megacity's NO₂ plume can vary drastically with season

Summary

Acknowledgements

- ▶ DOAS group at IUP / Uni-HB (http://doas-bremen.de)
 - Andreas Richter
 - Mihalis Vrekoussis
- ► ESSReS Graduate School (http://earth-system-science.org)
- ► European FP7-project CityZen (http://wiki.met.no/cityzen/)

Summary

Acknowledgements

- ▶ DOAS group at IUP / Uni-HB (http://doas-bremen.de)
 - Andreas Richter
 - Mihalis Vrekoussis
- ► ESSReS Graduate School (http://earth-system-science.org)
- ► European FP7-project CityZen (http://wiki.met.no/cityzen/)

Merci beaucoup pour votre attention

