Video Quality Assessment

Learning Progress Report

James Hsu May 9th 2025

Learning Goals and Topics

- Explore how visual quality metrics quantify distortion and compression
- Understand DCT, SSIM, MS-SSIM, VMAF and their mathematical basis
- Analyze motion coherency and temporal NSS models for temporal consistency
- Simulate video sequences from static images and extract statistical features

PSNR & SSIM Fundamentals

- **PSNR**: Measures pixel-level error using peak signal-to-noise ratio $PSNR = 10 \cdot \log_{10}\left(rac{MAX^2}{MSE}
 ight)$
- SSIM: Structural Similarity Index considering luminance, contrast, structure $SSIM(x,y) = l(x,y) \cdot c(x,y) \cdot s(x,y)$
- My Question:
 - Compared additive vs multiplicative combinations for smoothness (e.g. Why use MSE in PSNR but use $l(x,y)=rac{2\mu_x\mu_y+C_1}{\mu_x^2+\mu_y^2+C_1}$ in SSIM?)
- My guess
 - If both images are scaled by the same factor (e.g., made uniformly brighter), it won't significantly affect their similarity
 - ullet Compared to simply using the absolute difference $|\mu_x \mu_y|$, using a ratio-based method is more tolerant of slight brightness differences

PSNR & SSIM Fundamentals (Continued)

Squared Difference: $(x - y)^2$

Product Ratio: $\frac{2xy}{x^2+y^2}$

MS-SSIM and Gaussian Blurring

- Multi-Scale SSIM: Extends SSIM across different spatial scales
- Downsampling is applied via Gaussian blur → image pyramid
- Only the last level uses luminance comparison; others use contrast and structure
- My Question
 - Why use Gaussian blur instead of other downscaling or noise methods?
- My Guess
 - A low-pass filter should be applied before each downsampling step
 - Otherwise, high-frequency signals can alias into lower frequencies, resulting in unnatural artifacts or texture distortions

MS-SSIM and Gaussian Blurring (Continued)

Original (256×256)

Direct Downscale (128×128)

Gaussian Blur + Downscale (128×128)

MS-SSIM and Gaussian Blurring (Continued)

Gabor Filter & V1 Visual Cortex Modeling

Gabor filter formula

$$g(x,y) = \exp\left(-rac{x'^2 + \gamma^2 y'^2}{2\sigma^2}
ight) \cdot \cos\left(2\pirac{x'}{\lambda} + \phi
ight)$$

- γ : ellipticity, simulates orientation bias in V1 neurons
- ϕ : even-symmetric vs odd-symmetric \rightarrow sensitive to stripes vs edges
- Applied Gabor filtering to images to analyze local orientation patterns

Gabor Filter & V1 Visual Cortex Modeling (Continued)

- First Row: Stripe Input (e.g., regular wall textures)
 - $\phi = 0$ (cosine, even symmetry): The stripes align with the filter's pattern \Rightarrow strong response, clear oscillation
 - $\phi = \pi/2$ (sine, odd symmetry): The stripes align with the filter's zero crossings \Rightarrow signal cancels out on both sides, resulting in a very weak response
- Second Row: Edge Input (brightness transition)
 - $\phi = 0$ (even symmetry): The edge falls in regions of opposite sign in the filter \Rightarrow moderate response due to partial cancellation
 - $\phi = \pi/2$ (odd symmetry): The edge aligns with the filter's zero crossing \Rightarrow positive/negative regions align with bright/dark areas \Rightarrow strongest response
- Third Row: Bright Region Input (uniform brightness area)
 - Both filters produce little to no response

Gabor Filter & V1 Visual Cortex Modeling (Continued)

Blind Image Integrity Notator using DCT Statistics (BLIINDS)

■ **DCT**: Discrete Cosine Transform is used to convert a signal from the spatial domain (e.g., an image) to the frequency domain

 $\cos\left[rac{\pi}{N}(x+0.5)u
ight]$: projects onto orthogonal cosine basis

■ **GGD**: Generalized Gaussian Distribution

$$f(x;lpha,eta) = rac{eta}{2lpha\Gamma(1/eta)} \cdot \exp\left(-\left(rac{|x|}{lpha}
ight)^eta
ight)$$

Parameter	Value Range	Distribution Shape	Interpretation (Applied to Images)
eta=2	Gaussian	Smooth in flat regions, weaker edges	Indicates natural texture with no strong compression or noise
eta < 1	Heavy-tailed	Sharper peaks, more noise or abrupt changes	Suggests presence of compression artifacts or strong edges
lpha	Any positive value	Controls overall spread	Can reflect image contrast or texture richness

Blind Image Integrity Notator using DCT Statistics (BLIINDS)

- My Question:
 - Why using GGD for the model, not GMM (Gaussian Mixture Model), GSM (Gaussian Scale Mixture)?

Thank You