quiz 4

Probability

Axioms of probability:

- 0 <= P(a) <= 1
- P(NOT(a)) = 1 P(a)
- P(true) = 1
- P(false) = 0
- P(A OR B) = P(A) + P(B) P(A AND B)

Concepts of probability

And Probability

$$P(A, B) = P(A^B) = P(A) + P(B) - P(A^B)$$

Or Probability

$$P(A^{\mathsf{Y}}B) = P(A) + P(B) - P(A^{\mathsf{Y}}B)$$

Conditional Probability

$$P(A|B) = \frac{P(A,B)}{P(B)}$$

Product Rule

- aka Chain Rule
- P(a,b) = P(a|b)P(b) = P(b|a)P(a)

Using Product Rule

$$P(a,b,c) = P(a,b|c)P(c) = P(a|b,c)P(b,c)$$

$$P(a,b,c|d,e) = P(a|b,c,d,e)P(b,c|d,e)$$

Sum Rule

· aka Law of Total Probability

$$\begin{split} P(A) &= \sum_{B,C} P(A,B,C) \\ \text{e.g.} \\ P(b) &= \sum_{a} \sum_{c} \sum_{d} P(a,b,c,d) \\ P(a,d) &= \sum_{b} \sum_{c} P(a,b,c,d) \end{split}$$

- Given a set of probabilities P(CatchFish, Day, Lake)
- · Where:
 - CatchFish = {true, false}
 - Day = {mon, tues, wed, thurs, fri, sat, sun}
 - Lake = {buel lake, ralph lake, crystal lake}
 - Need to find P(CatchFish = True):
 - \circ $P(CatchFish = true) = \sum_{day} \sum_{lake} P(CatchFish = true, day, lake)$

Bayes' Rule

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Derivation of Bayes' Rule

• start from Product Rule:

$$P(a,b) = P(a|b)P(b) = \frac{P(b|a)P(a)}{P(b)} \cdot P(b) = P(b|a)P(a) = \frac{P(b,a)}{P(a)} \cdot P(a) = P(a,b)$$

$$P(a,b) = P(b|a)P(a) = \frac{P(a|b)P(b)}{P(a)} \cdot P(a) = P(a|b)P(b) = \frac{P(a,b)}{P(b)} \cdot P(b) = P(a,b)$$

Isolate Equality on Right Side:

$$P(a|b)P(b) = P(b|a)P(a) = \frac{P(a,b)}{P(a)} \cdot P(a) = P(a,b) = \frac{P(a,b)}{P(b)} \cdot P(b) = P(a|b) \cdot P(b)$$

• Divide through by P(b)

$$P(a|b) = P(b|a)P(a)/P(b) = \frac{P(a,b)}{P(a)} \cdot P(a)/P(b) = \frac{P(a,b)}{P(b)}$$

Conditional Independence

- X, Y independent given Z
- p(X = x, Y = y|Z = z) = p(X = x|Z = z)p(Y = y|Z = z) for all x,y,z
- $\bullet \ \ \mathbf{Equivalent} : p(X|Y,Z) = p(X|Z) or p(Y|X,Z) = p(Y|Z)$

Intuition: X has no additional info about Y beyond Z's

Bayesian Networks

Machine Learning

Important Concepts

- Learning: Improves performance of future tasks after observing the world
- Information Gain: Expected reduction in entropy from testing an attribute value
- Decision Boundary: Surface in a high-dimensional space that separates the classes
- Cross-validation: Randomly split the data into a training set and a test set
- Linear Classifier: Tests $w \cdot f > 0$, where w is a weight vector and f is a feature vector
- Factored Representation (Feature Vector): Fixed set, list, or vector of features/ attributes paired with a value
- Supervised Learning: Agent observes input-output pairs & learns to map input to output
- Test Set: Examples distinct from training set, used to estimate accuracy
- Naïve Bayes Classifier: Tests $P(C)\prod_i P(X_i|C)$ Where C is a class label and X_i are features
- Classification: Supervised learning with a discrete set of possible output values
- Decision Tree: Internal nodes test a value of an attribute, leaf nodes=class labels
- Regression: Supervised learning with numeric output values
- Training Set: Example input-output pairs, from which to discover a hypothesis
- Unsupervised Learning: Agent learns patterns in the input with no explicit feedback
- Overfitting: Choose an over-complex model based on irrelevant data patterns

Decision Tree

