Identifier Namespaces in Mathematical Notation

Master Thesis by Alexey Grigorev

Advisers: Moritz Schubotz, Juan Soto Supervisor: Prof. Dr. Volker Markl

Outline

- 1. Motivation
- 2. Related Work
- 3. Namespace Discovery
- 4. Implementation and Evaluation
 - Java Language Processing: Proof of Concept
 - Parameter Selection
 - Experiment Results
 - Building Hierarchies
- 5. Conclustions

[[Namespace]]

In programming, namespaces are employed for the grouping symbols and identifiers around a particular functionality and to avoid name collisions between multiple identifiers that share the same name

No namespaces (C, old PHP)

```
Text
Figlet

Color Zend_Text_Figlet

Color Zend_Text_Figlet_Exception

Table

Color Zend_Text_Table

Color Zend_Text_Table

Color Zend_Text_Table_Color
```

\$foo = new Zend CodeGenerator Php Class();

With namespaces (C++, Java, C#, python)

- org.apache.flink.api.java
- org.apache.flink.api.java.aggregation
- a
 org.apache.flink.api.java.functions
 - ▶ ╬ FirstReducer.class
 - ▶ 協 FlatMapIterator.class
 - ▶ In FormattingMapper.class
 - ▶ In FunctionAnnotation.class
 - GroupReduceIterator.class

import o.a.f.api.java.ExecutionEnvironment; ExecutionEnvironment.getExecutionEnvironment()

Namespaces in Mathematics

- Can introduce namespaces to mathematical identifiers
 - import Physics/General/Relativity and Gravitation/{E, m, c}
- It can give:
 - Identifier disambiguation
 - Better user experience
 - Additional context

Namespaces in Mathematics

- Problem: How to organize identifiers into namespaces?
- Manual assignment would take a lot of time
- Our method: automatic namespace discovery from a collection of documents

import Physics/General/Relativity and Gravitation/{E, m, c}

Outline

Definition Extraction

How to get the definitions? Extract them!

[[Mass-energy equivalence]]

The equivalence of energy *E* and mass *m* is reliant on the speed of light *c* and is described by the famous equation:

ID	Definition	
E	energy	
m	mass	
С	speed of light	

Relativity

Namespace Discovery

Want to find groups of documents that use identifiers in the same way

Cluster analysis

λ: wavelength

v: speed

 $k=2x\lambda$ $Ax = \lambda x$ $a x^2 + b x$ m: mass

E: energy

c: speed of light

Vector Space Model

Identifier VSM

	-		a_2		a_3		a_4
	Definition		Definition		Definition		Definition
E	energy	m	mass	E	energy	m	integer
m	mass	С	speed of light			С	constant
С	speed of light						

Build identifier-document matrix

	d_1	d_2	d_3	d_4
-	1	0	1	0
m	1	1	0	1
c	1	1	0	1
energy	1	0	1	0
mass	1	1	0	0
speed of light	1	1	0	0
integer	0	0	0	1
constant	0	0	0	1

	d_1	d_2	d_3	d_4
$E_{\text{-energy}}$	1	0	1	0
$m_{ ext{-}} ext{mass}$	1	1	0	0
c _speed of light	1	1	0	0
$m_{ m integer}$	0	0	0	1
$c_{ m constant}$	0	0	0	1

No definitions

"Weak" association

"Strong" association

Document Clustering

Once represented documents as vectors, can

cluster them

Can use:

- K-Means [IR]
- DBSCAN [SNN]
- LSA [LSI]

Outline

Implementation

our main contribution

Data Cleaning

$egin{array}{ll} extstyle extsty$

X	\rightarrow	X
$ec{v}$	\rightarrow	v
\mathbf{V}	\rightarrow	v
\Re	\rightarrow	R
\mathbb{R}	\rightarrow	R
\mathcal{H}	\rightarrow	H
\hbar	\rightarrow	h

Discard false identifiers

Operators	Stop words		
cos	if	если	
sin	iff		
exp	when	когда	
max	then	тогда	
min	or	или	
trace	and	И	

Output

Definition

extraction

TfidfVectorizer(min_df=2)

Kmeans and MiniBatchKMeans

DBSCAN

randomized_svd and NMF

Physics

··· 🛺 General

├─ 🎧 Optics ☐ Mathematics ☐ Computer Science

Particles and Fields

··· 🜆 Nuclear Physics

Represent in VSM Cluster analysis Filter clusters Extract namespaces Organize to hierarchy All obtained clusters are "homogenious": witin-cluster similarity is maximal.

But not all are about the same domain. We keep only clusters with documents from the same category

"namespace-defining" clusters

Represent in VSM

Cluster analysis

Filter clusters

Extract namespaces

Organize to hierarchy

		Def	R
D 2	E	energy	0.99
$E=mc^2$	m	mass	0.99
	C	speed of light	0.90
	С	speed of light	1.00

	1		Def	R
$E_0 = M_0 c^2$		E_0	energy	0.90
		M_0	mass	0.99
		С	speed of light	0.90

E		Def	R
$M_0 = \frac{E_0}{2}$	E_0	energy	0.99
С	M_0	mass	0.95
	С	speed of light	0.90
	С	energy	0.80

Relativity

	Def	R
Ε	energy	0.99
m	mass	0.99
С	speed of light	3.70
e_0	energy	0.99
M_0	mass	1.94
E_0	energy	1.89
С	energy	0.80

The Free Encyclopedia

Represent in VSM

Cluster analysis

Filter clusters

Extract namespaces

Organize to hierarchy

		Def	R
E 2	E	energy	0.99
$E = mc^2$	m	mass	0.99
	С	speed of light	0.90
	С	speed of light	1.00

2		Def	R
$E_0 = M_0 c^2$	E_0	energy	0.90
	M_0	mass	0.99
	С	speed of light	0.90

П	1		Def	R
$M_0 = \frac{E_0}{c^2}$		E_0	energy	0.99
		M_0	mass	0.95
		С	speed of light	0.90
		С	energy	0.80

Relativity

	Def	R	
Ε	energy	0.46	
m	mass	0.46	
С	speed of light	0.87	
e_0	energy	0.46	
M_0	mass	0.60	
E_0	energy	0.57	
С	energy	0.20	

Fuzzy grouping

FuzzyWuzzy https://github.com/seatgeek/fuzzywuzzy

Where does hierarchy come from?

Physics General Particles and Fields Nuclear Physics Optics Mathematics

Computer Science

PACS

00—General

- 01. Communication, education, history, and philosophy
- 02. Mathematical methods in physics

03. Quantum mechanics, field theories, and special relativity

- 04. General relativity and gravitation
- ar dynamical systems 05. Statistical physics, thermodynamics, and no
- 06. Metrology, measurements, and laboratory produces

Represent in VSM

07. Instruments, apparatus physics and astronomy

10—The Physics of Elemen

- 11. General theory of fields
- 12. Specific theories and in
- 13. Specific reactions and p
- 14. Properties of specific p

20—Nuclear Physics

- 21. Nuclear structure
- 23. Radioactive decay and
- 24. Nuclear reactions: gene
- 25. Nuclear reactions: sped
- 26. Nuclear astrophysics

04. General relativity and gravitation (for astrophysical aspects, gravitation; for relativistic aspects of cosmology, see 98.80.Jk; for 03.30.+p)

04.20.-q Classical general relativity (see also 02.40.-k Geometry, diffe topology)

- 04.20.Cv Fundamental problems and general formalism
- 04.20.Dw Singularities and cosmic censorship
- 04.20.Ex Initial value problem, existence and uniqueness of solutions
- 04.20.Fy Canonical formalism, Lagrangians, and variational principles
- 04.20.Gz Spacetime topology, causal structure, spinor structure
- 04.20.Ha Asymptotic structure
- 04.20.Jb Exact solutions

04.25.-g Approximation methods; equations of motion

04.25.D- Numerical relativity

Cluster analysis

Filter clusters

Extract namespaces

Organize to hierarchy

Calculate cosine between them

Outline

Java Language Processing

How to evaluate the quality?

- Hard! IUse da
- Hard! No ground truth, unsupervised settings
 - Use data where ground truth is known: source code!

- > 🌐 org.apache.flink.api.java
- > 🌐 org.apache.flink.api.java.aggregation
- grg.apache.flink.api.java.functions
 - ▶ InstReducer.class
 - FlatMapIterator.class
 - FormattingMapper.class
 - FunctionAnnotation.class
 - GroupReduceIterator.class

```
package org.apache.flink.api.java.functions;
         "definition"
                         identifier
public class FirstReducer<T/>
implements ... {
  private final(int count;
  // ...
  @Override
  public void reduce(Iterable<T> values, Collector<T> out) {
   int emitCnt = 0;
    for ((T val ) values) {
      out.collect(val);
                                                           26
```

Java Language Processing

Apache Mahout

- 1560 Java Classes
- 46k variable declarations
- 150 packages

Outline

Experimental Setup

Represent in VSM

Cluster analysis

Filter clusters

Extract namespaces

Organize to hierarchy

Objective: want to find as many namespacedefining clusters as possible

Cluster is namespace-defining if it

- has at least purity p and
- contains at least n documents

Purity *p* vs size *n* tradeoff:

- Larger p only pure clusters, smaller p allow some slack
- Larger n only big well-connected clusters are taken into account

Our settings: p ≥ 80% and n ≥ 3

Parameter Tuning

Represent in VSM

Cluster analysis

Filter clusters

Extract namespaces

Organize to hierarchy

- Indentifier VSM: nodef, weak, strong
- Weighting: TF, TF-IDF, logTF-IDF

- DBSCAN
 - base similarity function, ε , MinPts
- K-Means
 - number of clusters K
- Latent Semantic Analysis
 - matrix decomposition: SVD or NMF
 - rank of reduced matrix k

Random cluster assigment

Algorithm:

- let k = 0
- · take 3 unseen documents at random
- assign them to cluster k
- increment k
- repeat until no documents left

Parameter Tuning

raiametei ruimi

	E	m	С	λ	σ	μ
Linear algebra	matrix	matrix	scalar	eigenvalue	related permutation	algebraic multiplicity
General relativity	energy	mass	speed of light	length	shear	reduced mass
Coding theory	encoding function	message	transmitted codeword		natural isomorphisms	
Optics		order fringe	speed of light in vacuum	wavelength	conductivity	permeability
Probability	expectation	sample size		affine parameter	variance	mean vector

Outline

Conclusions

- We are first to approach the problem of namespace discovery
- Conclusion: Automatic namespace discovery is possible
- Can use established methods like VSM and Document clustering
- Best result: 414 namespaces, 10 times better than random guessing
- Works for other languages, not only English

Future Work

Definition extraction

Namespace discovery

- Other datasets:
 - arXiv
 - StackExchange Q/A network: mathematics, crossvalidated, physics, ...
- ML methods for identifier extraction may give better results
- Other ways to embed definitions: 3-D tensors
- Expect advanced clustering algorithms to perform better
 - Split and Join operations in Scatter/Gather
 - Spectral Clustering
 - Cluster Ensembles
 - Topic Modeling: LDA

Questions?

References

- [MLP] Pagel, Robert, and Schubotz, Moritz.
 "Mathematical Language Processing Project.", 2014.
- [IR] Manning, Christopher et al. "Introduction to Information Retrieval", 2008.
- [SSN] Ertöz, Levent, et al. "Finding clusters of different sizes, shapes, and densities in noisy, high dimensional data.", 2003.
- [LSI] Deerwester, Scott, et al. "Indexing by Latent Semantic Analysis.", 1990.

Back-up slide: Clustering Algorithms

Back-up slide: LSA

- Natural lanuage data is "noisy"
 - Synonymy: "graph" vs "chart"
 - Polysemy: "trunk" (part of elephant vs part of car)
- Denoise with dimensionality reduction
 - SVD: $D = U\Sigma V^T$ $D \approx U_k \Sigma_k V_k^T$
 - NMF: $D = UV^T$ $D \approx U_k V_k^T$
- Not only denoises but also reveals the latent structure of data