Stephen Posek 10/20/2018

Capstone Option 2: Biodiversity for the National Parks

Part 1:
Protected species
data from the parks

The Data: species_info.csv

- The columns of species_info.csv consisted of the following values:
 - 'category'
 - This column grouped each species by their categorical type
 - 'scientific_name'
 - This column contained the scientific names of each animal found in the parks
 - 'common_names'
 - This column contained the common names of each animal found in the parks
 - 'conservation_status'
 - This column grouped each animal by a conservation status

The Data: Category

- The 'category' column contained the following classifications:
 - Mammal
 - Bird
 - Reptile
 - Amphibian
 - Fish
 - Vascular Plan
 - Nonvascular Plant

The Data: Conservation Status

- The conservation statuses were categorized as follows:
 - 'Nan'
 - No conservation status listed on the animal
 - 'Species of Concern'
 - Declining or appear to be in need of conservation
 - 'Endangered'
 - Seriously at risk of extinction
 - 'Threatened'
 - Vulnerable to endangerment in the near future
 - 'In Recovery'
 - Formerly Endangered, but currently neither in danger of extinction throughout all or a significant portion of its range

The Totals

conservation_status	scientific_name
Endangered	15
In Recovery	4
No Intervention	5,363
Species of Concern	151
Threatened	10

Visualizing The Data

Key
Calculations:
Percent
Protected Per
Species

category	not_protected	protected	percent_protected
Amphibian	72	7	.088608
Bird	413	75	.153689
Fish	115	11	.087302
Mammal	146	30	.170455
Nonvascular Plant	328	5	.015015
Reptile	73	5	.064103
Vascular Plant	4216	46	.010793

Key
Calculations:
What does it
tell us?

- By looking at the data on the previous slide, we see that Mammals and Birds respectively hold the two highest percentages for species categorized as protected
- In order to determine if certain types of species are more likely to be protected than others, we created contingency tables consisting of mammals and another species, and compared them using a Chi-squared significance test

Is it
Significant:
Mammals vs
Birds

 We used the following contingency table to perform a Chi-squared test for Mammals & Birds

	protected	not protected
Mammal	30	146
Bird	75	413

 From the test, we were able to determine a pvalue of ~68% meaning the difference is not significant and is the result of chance Is it
Significant:
Mammals vs
Reptiles

 We used the following contingency table to perform a Chi-squared test for Mammals & Reptiles

	protected	not protected
Mammal	30	146
Reptiles	5	73

 From the test, we were able to determine a p-value of ~3.8% making the difference significant and validating the statement "Mammals are more likely to be protected than reptiles." Conservation Recommendation

- Based on the significance calculations we performed, we can make two recommendations regarding conservation efforts:
 - The conservation efforts for Mammals and Birds should be of equal priority
 - The conservation efforts for Mammals should be prioritized over that of the conservation efforts of Reptiles

Part 2:
Sheep Sightings &
Foot and Mouth
Disease Sample Size
Determination

The Data: Sheep Sightings

- Given a dataset by the National Parks Service titled 'observations.csv' we were asked to help analyze sheep sightings at several national parks over the past 7 days
 - With the provided observations dataset combined with the data from our 'species_info.csv,' we were able to determine the number of sheep sightings in each park over a 7 day period

park_name	observations
Bryce National Park	250
Great Smoky Mountains National Park	149
Yellowstone National Park	507
Yosemite National Park	282

Visualizing
The Data:
Sheep
Sightings

Foot and Mouth Reduction Effort

Background:

- The Yellowstone National Park Rangers have been running a program in an effort to reduce the rate of foot and mouth disease at the park and asked for our help in determining the necessary sample size
- They wanted to be able to detect reductions of at least 5 percentage points. With a given baseline of 15%, a level of significance equal to 90%, and our data from sheep sightings we were able to determine the following:
 - Minimum detectable effect = 33%
 - Sample size per variant = 890
 - Weeks of observation required for Yellowstone = 1.75
 - Weeks of observation required for Bryce= 3.56