Figure 1

Publication	PECVD Reaction	'Delta-n' Control Method	Post-dep. Thermal Treatment T° (°C)		
Valette S.,1987	Unknown	P doping	Not specified 400°C 1000°C		
Valette S.,1988	Unknown	P doping			
Grand G., 1990	Unknown	P doping			
Liu K., 1995	Unknown	Content in Si, P	Not specified		
Ojha S., 1998	Unknown	Ge, B, or P doping	Not specified		
Canning J., 1998	Unknown	Ge doping	Not specified		
Bulla D., 1998	TEOS	TEOS	Not specified 400°C		
Johnson C., 1998	SiH ₄ + O,	Si ion Implantation			
Boswell R. W., 1997	$SiH_4 + O_2$	SiH ₄ /O ₂ flow ratio	1000°C		
Bazylenko M. V., 1995	$SiH_4 + O_2 + CF_4$	(SiH ₄ +O ₂)/CF ₄ flow ratio	Not specified		
Bazylenko M. V., 1996	$SiH_4 + O_2 + CF_4$	(SiH ₄ +O ₂)/CF ₄ flow ratio	1000°C		
Durandet A., 1996	$SiH_4 + O_2 + CF_4$	SiH ₄ /O ₂ /CF ₄ flow ratio	100°C		
Kapser K., 1991	$SiH_4 + N_2O$	SiH ₄ /N ₂ O flow ratio	1060°C		
Lai Q., 1992	$SiH_4 + N_2O$	SiH ₄ /N ₂ O flow ratio	1100°C		
Lai Q.,1993	$SiH_4 + N_2O$	SiH ₄ /N ₂ O flow ratio	1100°C		
Pereyra I., 1997 Alayo M., 1998	SiH ₄ + N ₂ O	SiH ₄ /N ₂ O flow ratio	400°C		
Alayo M., 1998	$SiH_4 + N_2O$	SiH ₄ /N ₂ O flow ratio	1000°C		
Kenyon T., 1997	$SiH_4 + N_2O + Ar$	SiH ₄ /N ₂ O/Ar flow ratio	1000°C		
	$SiH_4 + N_2O + NH_3$	SiH ₄ /N ₂ O/NH, flow ratio	Not specified		
Bruno F., 1991	$SiH_4 + N_2O + NH_3$	SiH ₄ /N ₂ O/NH ₃ flow ratio	1100°C		
Yokohama S., 1995	$SiH_4 + N_2O + NH_3$	SiH ₄ /N ₂ O/NH ₃ flow ratio	Not specified		
Agnihotri O. P., 1997	$SiH_4 + N_2O + NH_3$	SiH ₄ /N ₂ O/NH ₃ flow ratio	700-900°C		
1 Octinalii N., 1999	$SiH_4 + N_2O + NH_3$	Unknown	1100°C		
Offrein B., 1999	$SiH_4 + N_2O + NH_3$	Unknown	1150°C		
Hoffmann M., 1995	$SiH_4 + N_2O + NH_3 + Ar$	SiH ₄ /N ₂ O/NH ₃ /Ar flow ratio	Not specified		
Hoffmann M., 1997	$SiH_4 + N_2O + NH_3 + Ar$	SiH ₄ /N ₂ O/NH ₃ /Ar flow ratio	Not specified		
10 1., 1993	$SiH_4 + N_2O + NH_3 + N_2$	$N_2O/(N_2O + NH_3)$ flow ratio	1050°C		
Poenar D., 1997	$SiH_4 + N_2O + NH_3 + N_2$	SiH ₄ /N ₂ O/NH ₃ /N ₂ flow ratio	850°C		
Ridder R., 1998	$SiH_4 + N_2O + NH_3 + N_2$	SiH ₄ /N ₂ O/NH ₃ /Ar flow ratio	1100°C		
Worhoff K., 1999	$SiH_4 + N_2O + NH_3 + N_2$	SiH ₄ /N ₂ O/NH ₃ /N ₂ flow ratio	1150°C		
Bulat E.S., 1993	$SiH_4 + N_2O + N_2 + O_2 + He + CF_4$	SiH ₄ /(N ₂ O/N ₂)/O ₂ /CF ₄ flow ratio	425°C		
This Patent Application	$SiH_4 + N_2O + PH_3 + N_2$	Patented Pending Method	650°C		

44
ij.
Salar Salar
and the same
A Section 1
. 10, 10
03
45.44
8
8 14
8 14
8
nite deck aft nite
the first of the
nite deck aft nite

			н-он	H-OIS	H-NiS	Si:N-H	H-iS	Si=O	N=N	Si-O-Si	Si-O-Si	NO-is	HO-IS	SI-0-IS	is-o-is
	ج :- او 1)	Min	3550	3470	3380	3300	2210	1800	1530	1080	1000	910	860	740	410
	FTIR 1st mode (cm-1)	Ave	3650	3510	3420	3380	2260	1875	1555	1180	1080	950	885	810	460
	T (0)	Max	3750	3550	3460	3460	2310	1950	1580	1280	1160	990	910	880	510
	1st mode (µm)	Min	2.817	2.882	2.959	3.030	4.525	5.556	6.536	9.259	10.000	10.989	11.628	13.514	24.390
		Ave	2.740	2.849	2.924	2.959	4.425	5.333	6.431	8.475	9.259	10.526	11.299	12.346	21.739
		Max	2.667	2.817	2.890	2.890	4.329	5.128	6.329	7.813	8.621	10.101	10.989	11.364	19.608
	1 e -	Min	1.408	1.441	1.479	1.515	2.262	2.778	3.268	4.630	5.000	5.495	5.814	6.757	12.195
	2nd mode (µm)	Ave	1.370	1.425	1.462	1.479	2.212	2.667	3.215	4.237	4.630	5.263	5.650	6.173	10.870
	в)	Max	1.333	1.408	1.445	1.445	2.165	2.564	3.165	3.906	4.310	5.051	5.495	5.682	9.804
	3rd mode (µm)	Min	0.939	0.961	0.986	1.010	1.508	1.852	2.179	3.086	3.333	3.663	3.876	4.505	8.130
		Ave	0.913	0.950	0.975	0.986	1.475	1.778	2.144	2.825	3.086	3.509	3.766	4.115	7.246
		Max	0.889	0.939	0.963	0.963	1.443	1.709	2.110	2.604	2.874	3.367	3.663	3.788	6.536
	4th mode (µm)	Min	0.704	0.720	0.740	0.758	1.131	1.389	1.634	2.315	2.500	2.747	2.907	3.378	6.098
		Ave	0.685	0.712	0.731	0.740	1.106	1.333	1.608	2.119	2.315	2.632	2.825	3.086	5.435
	ш)	Max	0.667	0.704	0.723	0.723	1.082	1.282	1.582	1.953	2.155	2.525	2.747	2.841	4.902
	5th mode (µm)	Min	0.563	0.576	0.592	0.606	0.905	1.111	1.307	1.852	2.000	2.198	2.326	2.703	4.878
		Ave	0.548	0.570	0.585	0.592	0.885	1.067	1.286	1.695	1.852	2.105	2.260	2.469	4.348
	<u> </u>	Max	0.533	0.563	0.578	0.578	0.866	1.026	1.266	1.563	1.724	2.020	2.198	2.273	3.922
	_ e _ U	Min	0.469	0.480	0.493	0.505	0.754	0.926	1.089	1.543	1.667	1.832	1.938	2.252	4.065
	6th mode (µm)	Ave	0.457	0.475	0.487	0.493	0.737	0.889	1.072	1.412	1.543	1.754	1.883	2.058	3.623
	E~	Max	0.444	0.469	0.482	0.482	0.722	0.855	1.055	1.302	1.437	1.684	1.832	1.894	3.268
	ر و ع) (د	Min	0.402	0.412	0.423	0.433	0.646	0.794	0.934	1.323	1.429	1.570	1.661	1.931	3.484
	7th mode (µm)	Ave	0.391	0.407	0.418	0.423	0.632	0.762	0.919	1.211	1.323	1.504	1.614	1.764	3.106
		Max	0.381	0.402	0.413	0.413	0.618	0.733	0.904	1.116	1.232	1.443	1.570	1.623	2.801
	8th mode (µm)	Min	0.352	0.360	0.370	0.379	0.566	0.694	0.817	1.157	1.250	1.374	1.453	1.689	3.049
		Ave	0.342	0.356	0.365	0.370	0.553	0.667	0.804	1.059	1.157	1.316	1.412	1.543	2.717
		Max	0.333	0.352	0.361	0.361	0.541	0.641	0.791	0.977	1.078	1.263	1.374	1.420	2.451

Figure 3a

Figure 3b

Figure 3c

Figure 4a

Figure 4b

Figure 4c

Figure 6a

Figure 6b

Figure 6c

Figure 6d

Figure 7a

Figure 7b

Figure 8a

Figure 8b

Figure 8c

Figure 8d

Figure 9a

Figure 9b

Figure 9d

Figure 10

Figure 11

Figure 12

Tensile stress Core

(Core wants to contract)

Desired vertical deep-etched profile

Compressive stress Buffer (Clad)

(Buffer (Clad) wants to expand)

Tensile stress Core (Core wants to contract)

Desired vertical deep-etched profile

Compressive stress Buffer (Clad)

(Buffer (Clad) wants to expand)

Tensile stress Core

(Core wants to contract)

Desired vertical deep-etched profile

Compressive stress Buffer (Clad)

(Buffer (Clad) wants to expand)

Figure 13

The relative position between an isolated 5.0µm wide deep-etched waveguide and its neighboring 1150µm wide deep-etched grating at two different magnifications.

The side-wall of the 5.0µm wide deepetched waveguide facing the neighboring grating has a slope of about 90°.

The side-wall of the 1150µm wide deepetched grating facing the neighboring deep-etched waveguide has a much smaller slope of about 84°.

Figure 14

Figure 15

Figure 16

Figure 17

Figure 18b

Silicon wafer

Figure 18f

Figure 18g

Figure 18i

Figure 18j

Figure 181

Figure 19

Figure 20

Figure 21

Figure 22

The field of the state of the s

Figure 23

