date: wednesday, april 10, 2024

Exam Review

Format: Part A: 20 points
9 short answer questions
Part B: 30 points
8 proof questions, choose 6
Bonus: 2 points

1. Give examples of: (a) a domain that is not a PID $\mathbb{R}[x,y]$

(c) field extension that is not algebraic $\mathbb{Q}(\pi)$

(b) a p-group that is not cyclic $\mathbb{Z}_2 \times \mathbb{Z}_2$

(d) a simple group \mathbb{Z}_p p prime, A_n for $n \ge 5$

(e) irreducible polynomial $\chi^2 + 1 \in \mathbb{R}[\chi]$, $\chi + 1 \in \mathbb{R}[\chi]$

(f) prime ideal that is not maximal $\{0\}$ in \mathbb{Z} as $\mathbb{Z}_{\{0\}}$ is a domain but not a field. $\mathbb{R}[x,y]$ where $\mathbb{P}=\langle x \rangle$ is prime but not maximal

(9) a field that is not algebraically closed $\mathbb{R}, \mathbb{Q}, \mathbb{Z}_3$

(h) Euclidean domain \mathbb{R} , $\mathbb{Z}[i]$, \mathbb{Z}

(i) non-commutative ring M2(R)

(i) non-solvable group The Monster, A_s

2. Find all finite abelian groups of order
$$42 = 2 \times 3 \times 7$$
. Only one: $\mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z}_7$
3. Show all groups with $|G| = 42$ are not simple. G must have number of Sylow 7-subgroups = $1 \pmod{7}$ so only one => normal => not simple

4. Give an example of a non-abelian group of order 42 . \mathbb{D}_{24}
5. Give an example and non-example of a class equation for a group of order 2024 . For an abelian group: $2024 = |\mathbb{Z}(G)| = 2024$

For a nonabelian group. $2024 = |\mathbb{Z}(G)| = 2024$
6. Find two different factorizations of $x^2 + x + 8$ in $\mathbb{Z}_n[x]$. $x + 2$
 $x - 1 / x^2 + x + 8$
 $-(x - x)$
 $2x + 8$
 $-(x - x)$
 $2x + 8$
 $-(x - x)$
 $2x + 8$
 $-(x + 9)(x + 2)$
 $= (x + 9)(x + 9)(x + 2)$
 $= (x + 9)(x + 9)(x + 9)$
 $= (x + 9)(x$

Office Hours: Friday, April 19th

 $= \alpha_1 + b_1 \sqrt{2} + 2\sqrt{2} \alpha_2 + b_2 \cdot 2 \cdot 2$