Example &- constraint method: Consider ophinization of rectangle, circumference vs. surface. $f_n(x,y) = C(x,y) = 2x + 2y \Rightarrow min \quad g$ $\ell_2(x,g) = S(x,g) = xg \rightarrow max, (x,g > 0)$ Lagrange Multiplier rule, selling constraint f (x,y) = SE (1) $f_1(x,y) = 2x + 2y > min s.t > y = 5\varepsilon$ $\frac{2L}{2x}(x_1y_1) = \lambda_0 \cdot 2 + \lambda_1 y_1 = 0$ (2) $\frac{2L}{2u}(x_1y) = \lambda_0 2 + \lambda_1 x = 0$ (3) $\lambda_0=1$: $2 + \lambda_1 y = 0 \Rightarrow y = -2/\lambda_1$; likewise $X = -2/\lambda_1$ with (1) we get $\frac{4}{2} = 5_{\varepsilon} \Rightarrow \lambda_1 = \sqrt{4/5_{\varepsilon}} = 2/\sqrt{5_{\varepsilon}}$ Now the efficient set is given by pavameserized X = = \(\(\times \, \q \) \(\(\bar{R}_0^{\frac{1}{2}} \) \(\times - \sigma_{\epsilon} \) \(\bar{S}_{\epsilon} \) \(To famulate Pareto Front, e.g. expren Sig in terms of Ci $C_{\xi} = 2 \times + 2 y = 2 \sqrt{s_{\xi}} + 2 \sqrt{s_{\xi}} = 4 \sqrt{s_{\xi}}, \times y \leq 0, C_{\xi}(0) = 0$ SE (CE) = (CE/4) 2, This is the Pareto front (CE>0)