Formally Verified Cryptographic Proof Systems in Lean

Quang Dao Devon Tuma Gregor Mitscha-Baude October 15, 2024

Introduction

The goal of this project is to formalize Succinct Non-Interactive Arguments of Knowledge (SNARKs) in Lean. Our focus is on SNARKs based on Interactive Oracle Proofs (IOPs). We plan to build a general framework for IOP-based SNARKs that can state specifications of the protocols and prove their security properties in a clean and modular way.

Oracle Reductions

2.1 Definitions

Definition 1 (Interactive Protocol). An *n*-round interactive protocol between two parties P, V is a sequence of messages $c_0, m_0, \ldots, c_n, m_n$ where:

- c_i is a challenge sent by V to P in the i-th round.
- m_i is a message sent by P to V in the i-th round.

Each message m_i and challenge c_i may be of different types. We bundle them all together as a ProtocolSpec structure.

Definition 2 (Oracle Reduction). An *(interactive) oracle reduction* is an interactive protocol with a prover and a verifier.

Definition 3 (Completeness).

2.2 Composition

Commitment Schemes

- 3.1 Definitions
- 3.2 Composition

Proof Systems

- 4.1 The Sum-Check Protocol
- 4.2 The Spartan Protocol
- 4.3 The Ligero Polynomial Commitment Scheme

Supporting Results

5.1 Polynomials

Definition 4 (Multilinear Extension).

Theorem 5 (Multilinear Extension is Unique).

5.2 Coding Theory

Definition 6 (Code Distance).

Definition 7 (Distance from a Code).

Definition 8 (Generator Matrix).

Definition 9 (Parity Check Matrix).

Definition 10 (Interleaved Code).

Definition 11 (Reed-Solomon Code).

Definition 12 (Proximity Measure).

Definition 13 (Proximity Gap).

References