$12n_{0086} (K12n_{0086})$

Ideals for irreducible components² of X_{par}

$$\begin{split} I_1^u &= \langle 1.19780 \times 10^{241} u^{65} + 8.81073 \times 10^{241} u^{64} + \dots + 3.02569 \times 10^{240} b + 9.53394 \times 10^{243}, \\ &8.96655 \times 10^{240} u^{65} + 6.61765 \times 10^{241} u^{64} + \dots + 3.02569 \times 10^{240} a + 6.94724 \times 10^{243}, \\ &u^{66} + 8u^{65} + \dots - 7168u + 512 \rangle \\ I_2^u &= \langle u^5 - 2u^3 - u^2 + b + 2u + 1, \ u^5 + 2u^4 - u^3 - 3u^2 + a + 2, \ u^6 + u^5 - u^4 - 2u^3 + u + 1 \rangle \\ I_1^v &= \langle a, \ 1742v^8 - 24207v^7 - 17107v^6 + 21829v^5 + 12682v^4 - 26226v^3 - 24997v^2 + 683b - 5624v + 648, \\ &v^9 - 13v^8 - 22v^7 + 15v^5 - 5v^4 - 25v^3 - 20v^2 - 7v - 1 \rangle \end{split}$$

* 3 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 81 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle 1.20 \times 10^{241} u^{65} + 8.81 \times 10^{241} u^{64} + \cdots + 3.03 \times 10^{240} b + 9.53 \times 10^{243}, \ 8.97 \times 10^{240} u^{65} + 6.62 \times 10^{241} u^{64} + \cdots + 3.03 \times 10^{240} a + 6.95 \times 10^{243}, \ u^{66} + 8u^{65} + \cdots - 7168 u + 512 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2.96348u^{65} - 21.8716u^{64} + \dots + 37209.0u - 2296.09 \\ -3.95876u^{65} - 29.1198u^{64} + \dots + 48993.3u - 3151.00 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} -0.189192u^{65} - 1.42917u^{64} + \dots + 3725.71u - 278.930 \\ -3.64017u^{65} - 26.9641u^{64} + \dots + 48969.5u - 3124.72 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -3.82936u^{65} - 28.3933u^{64} + \dots + 52695.2u - 3403.65 \\ -3.64017u^{65} - 26.9641u^{64} + \dots + 48969.5u - 3124.72 \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} -0.597599u^{65} - 4.38854u^{64} + \dots + 7145.50u - 452.205 \\ -1.29177u^{65} - 9.48251u^{64} + \dots + 15607.1u - 1005.22 \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -0.694167u^{65} - 5.09397u^{64} + \dots + 8461.64u - 553.013 \\ -1.29177u^{65} - 9.48251u^{64} + \dots + 15607.1u - 1005.22 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} -0.694167u^{65} - 5.09397u^{64} + \dots + 8461.64u - 553.013 \\ -0.988463u^{65} - 7.25680u^{64} + \dots + 11959.0u - 770.026 \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -3.85958u^{65} - 28.4537u^{64} + \dots + 47856.5u - 2957.77 \\ -7.03239u^{65} - 51.8312u^{64} + \dots + 89324.7u - 5730.22 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -4.70834u^{65} - 34.8004u^{64} + \dots + 60886.6u - 3811.37 \\ -7.53902u^{65} - 55.6488u^{64} + \dots + 97468.3u - 6242.36 \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $12.0986u^{65} + 88.8600u^{64} + \cdots 142679.u + 8879.59$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1	$u^{66} + 21u^{65} + \dots + 31524u + 1$
c_2, c_4	$u^{66} - 11u^{65} + \dots + 184u - 1$
c_3, c_6	$u^{66} + 8u^{65} + \dots - 7168u + 512$
c_5, c_8	$u^{66} + 3u^{65} + \dots - 2u - 1$
c_7, c_{10}	$u^{66} - 2u^{65} + \dots + 192u + 64$
c_9, c_{12}	$u^{66} - 8u^{65} + \dots - 11u + 1$
c_{11}	$u^{66} + 28u^{65} + \dots - 143u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1	$y^{66} + 59y^{65} + \dots - 992297680y + 1$
c_2, c_4	$y^{66} - 21y^{65} + \dots - 31524y + 1$
c_{3}, c_{6}	$y^{66} - 60y^{65} + \dots - 76021760y + 262144$
c_5, c_8	$y^{66} + 15y^{65} + \dots - 20y + 1$
c_7,c_{10}	$y^{66} + 42y^{65} + \dots + 77824y + 4096$
c_9,c_{12}	$y^{66} - 28y^{65} + \dots + 143y + 1$
c_{11}	$y^{66} + 28y^{65} + \dots - 12229y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.896621 + 0.222919I		
a = -0.68390 + 2.68834I	-4.31795 + 0.78820I	0
b = -0.03058 - 1.93558I		
u = -0.896621 - 0.222919I		
a = -0.68390 - 2.68834I	-4.31795 - 0.78820I	0
b = -0.03058 + 1.93558I		
u = -0.161444 + 0.873142I		
a = 0.24159 - 2.29188I	-3.21013 + 1.26950I	0
b = 0.96672 - 2.19128I		
u = -0.161444 - 0.873142I		
a = 0.24159 + 2.29188I	-3.21013 - 1.26950I	0
b = 0.96672 + 2.19128I		
u = 0.734614 + 0.498569I		
a = -0.296201 + 0.045995I	1.31523 + 1.27199I	0
b = 0.216817 + 0.815085I		
u = 0.734614 - 0.498569I		
a = -0.296201 - 0.045995I	1.31523 - 1.27199I	0
b = 0.216817 - 0.815085I		
u = 0.015880 + 1.156380I		
a = -1.200970 + 0.600425I	-2.23471 + 2.98196I	0
b = -0.773578 + 1.087150I		
u = 0.015880 - 1.156380I		
a = -1.200970 - 0.600425I	-2.23471 - 2.98196I	0
b = -0.773578 - 1.087150I		
u = 0.043693 + 0.829853I		
a = 1.154180 + 0.810143I	2.07274 - 4.10478I	0
b = 0.493220 - 0.823559I		
u = 0.043693 - 0.829853I		
a = 1.154180 - 0.810143I	2.07274 + 4.10478I	0
b = 0.493220 + 0.823559I		

	Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
•	u = -1.010290 + 0.635704I		
	a = 0.0712092 - 0.0097906I	-1.20228 - 5.48361I	0
	b = 0.045899 - 0.458605I		
	u = -1.010290 - 0.635704I		
	a = 0.0712092 + 0.0097906I	-1.20228 + 5.48361I	0
	b = 0.045899 + 0.458605I		
	u = -0.178380 + 0.763029I		
	a = -1.123200 - 0.224763I	2.74552 + 1.51786I	0
	b = -0.584767 + 0.854259I		
	u = -0.178380 - 0.763029I		
	a = -1.123200 + 0.224763I	2.74552 - 1.51786I	0
	b = -0.584767 - 0.854259I		
	u = 0.710476 + 0.000507I		
	a = -0.047677 + 0.256353I	1.17931 - 1.63015I	0. + 3.30141I
	b = -0.191197 - 0.906715I		
	u = 0.710476 - 0.000507I		
	a = -0.047677 - 0.256353I	1.17931 + 1.63015I	0 3.30141I
	b = -0.191197 + 0.906715I		
	u = -0.438003 + 0.525280I	4 04055 . 0 500405	4 00000
	a = -1.44839 - 0.54246I	-1.91057 + 0.79816I	-4.00000 + 0.I
	b = -0.083240 - 0.461268I		
	u = -0.438003 - 0.525280I	1.01055 0.500161	4 00000 + 0 7
	a = -1.44839 + 0.54246I	-1.91057 - 0.79816I	-4.00000 + 0.I
	b = -0.083240 + 0.461268I $u = -0.681040 + 0.017244I$		
	a = -0.081040 + 0.017244I a = 0.147299 - 0.561967I	$\begin{bmatrix} -1.43375 - 2.91518I \end{bmatrix}$	0. + 4.85019I
	a = 0.147299 - 0.501907I $b = -0.847666 - 0.591726I$	-1.45575 - 2.915181	0. + 4.650191
	b = -0.847606 - 0.591726I $u = -0.681040 - 0.017244I$		
	a = -0.081040 - 0.017244I $a = 0.147299 + 0.561967I$	$\begin{bmatrix} -1.43375 + 2.91518I \end{bmatrix}$	0 4.85019I
	a = -0.147299 + 0.501907I $b = -0.847666 + 0.591726I$	1.40010 7 2.910101	0 4.000131
	$0 = -0.047000 \pm 0.0917201$		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape	
u = -0.006104 + 0.635645I			
a = 1.91287 - 1.80281I	-1.82059 - 0.01526I	-7.87182 + 0.48568I	
b = 0.052848 - 0.610826I			
u = -0.006104 - 0.635645I			
a = 1.91287 + 1.80281I	-1.82059 + 0.01526I	-7.87182 - 0.48568I	
b = 0.052848 + 0.610826I			
u = -0.619648 + 0.008490I			
a = -0.511507 - 0.814092I	-5.23148 - 1.44469I	-2.19147 + 1.36304I	
b = 1.051820 - 0.516985I			
u = -0.619648 - 0.008490I			
a = -0.511507 + 0.814092I	-5.23148 + 1.44469I	-2.19147 - 1.36304I	
b = 1.051820 + 0.516985I			
u = -0.598433 + 0.144408I			
a = -0.338653 + 0.326080I	-4.86194 - 7.45999I	-0.96246 + 11.41011I	
b = 0.823727 + 0.764068I			
u = -0.598433 - 0.144408I			
a = -0.338653 - 0.326080I	-4.86194 + 7.45999I	-0.96246 - 11.41011I	
b = 0.823727 - 0.764068I			
u = 0.557706 + 0.143081I			
a = 2.02290 + 5.39960I	0.81136 + 2.64313I	13.7570 - 9.2546I	
b = 0.061106 - 0.673706I			
u = 0.557706 - 0.143081I			
a = 2.02290 - 5.39960I	0.81136 - 2.64313I	13.7570 + 9.2546I	
b = 0.061106 + 0.673706I			
u = 1.47897 + 0.04915I			
a = 0.36193 - 1.79756I	2.17496 + 0.19887I	0	
b = -1.17938 + 2.79473I			
u = 1.47897 - 0.04915I			
a = 0.36193 + 1.79756I	2.17496 - 0.19887I	0	
b = -1.17938 - 2.79473I			

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.49869 + 0.12364I		
a = 0.028754 + 0.149012I	3.57906 + 2.47635I	0
b = -1.196520 - 0.662560I		
u = 1.49869 - 0.12364I		
a = 0.028754 - 0.149012I	3.57906 - 2.47635I	0
b = -1.196520 + 0.662560I		
u = -1.51285 + 0.03928I		
a = 0.346340 - 1.327240I	7.72304 - 2.79945I	0
b = -1.21560 + 1.60059I		
u = -1.51285 - 0.03928I		
a = 0.346340 + 1.327240I	7.72304 + 2.79945I	0
b = -1.21560 - 1.60059I		
u = -1.47811 + 0.34080I		
a = -0.1005600 - 0.0917447I	3.17239 - 3.89822I	0
b = -0.972026 + 0.012478I		
u = -1.47811 - 0.34080I		
a = -0.1005600 + 0.0917447I	3.17239 + 3.89822I	0
b = -0.972026 - 0.012478I		
u = -1.46366 + 0.47734I		
a = -0.26778 + 1.74931I	1.18870 - 6.56344I	0
b = -1.79456 - 2.53218I		
u = -1.46366 - 0.47734I		
a = -0.26778 - 1.74931I	1.18870 + 6.56344I	0
b = -1.79456 + 2.53218I		
u = 1.47312 + 0.46657I		
a = 0.767438 + 1.139500I	6.78475 + 9.23321I	0
b = -0.63144 - 1.94704I		
u = 1.47312 - 0.46657I		
a = 0.767438 - 1.139500I	6.78475 - 9.23321I	0
b = -0.63144 + 1.94704I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.45244 + 1.51129I		
a = 0.073063 + 0.503097I	2.19847 + 2.32521I	0
b = 0.72561 + 2.13556I		
u = 0.45244 - 1.51129I		
a = 0.073063 - 0.503097I	2.19847 - 2.32521I	0
b = 0.72561 - 2.13556I		
u = 1.60960 + 0.20036I		
a = -0.031037 + 0.149711I	4.03833 + 2.66127I	0
b = 1.349420 - 0.252092I		
u = 1.60960 - 0.20036I		
a = -0.031037 - 0.149711I	4.03833 - 2.66127I	0
b = 1.349420 + 0.252092I		
u = -1.62095 + 0.14520I		
a = -0.146836 - 1.371110I	9.29382 - 3.78649I	0
b = 1.32921 + 1.94937I		
u = -1.62095 - 0.14520I		
a = -0.146836 + 1.371110I	9.29382 + 3.78649I	0
b = 1.32921 - 1.94937I		
u = -1.52811 + 0.57582I		
a = 0.0964491 + 0.0666214I	2.66554 - 9.42263I	0
b = 0.958300 - 0.287281I		
u = -1.52811 - 0.57582I		
a = 0.0964491 - 0.0666214I	2.66554 + 9.42263I	0
b = 0.958300 + 0.287281I		
u = 1.61436 + 0.32070I		
a = -0.579677 - 1.239460I	8.98485 + 3.05406I	0
b = 0.64699 + 2.29322I		
u = 1.61436 - 0.32070I		
a = -0.579677 + 1.239460I	8.98485 - 3.05406I	0
b = 0.64699 - 2.29322I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -1.17931 + 1.15054I		
a = -0.565320 + 0.704718I	-1.42259 - 0.46359I	0
b = -1.72394 - 0.50610I		
u = -1.17931 - 1.15054I		
a = -0.565320 - 0.704718I	-1.42259 + 0.46359I	0
b = -1.72394 + 0.50610I		
u = -1.56100 + 0.72853I		
a = 0.337392 - 0.874324I	-1.87995 + 4.31692I	0
b = 1.67630 + 1.29876I		
u = -1.56100 - 0.72853I		
a = 0.337392 + 0.874324I	-1.87995 - 4.31692I	0
b = 1.67630 - 1.29876I		
u = 0.11530 + 1.78369I		
a = -0.289375 - 0.485587I	1.02644 + 7.74901I	0
b = -0.66341 - 2.67095I		
u = 0.11530 - 1.78369I		
a = -0.289375 + 0.485587I	1.02644 - 7.74901I	0
b = -0.66341 + 2.67095I		
u = -1.65910 + 0.67262I		
a = 0.481831 - 1.322710I	8.24876 - 10.14770I	0
b = 1.33635 + 2.65341I		
u = -1.65910 - 0.67262I		
a = 0.481831 + 1.322710I	8.24876 + 10.14770I	0
b = 1.33635 - 2.65341I		
u = -1.60879 + 0.80973I		
a = -0.657052 + 1.243910I	5.9981 - 16.5072I	0
b = -1.24884 - 2.74717I		
u = -1.60879 - 0.80973I		
a = -0.657052 - 1.243910I	5.9981 + 16.5072I	0
b = -1.24884 + 2.74717I		

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.104054		
a = -86.7705	-2.82917	365.350
b = 0.408951		
u = 1.89844 + 0.28442I		
a = 0.119565 + 1.273780I	9.83371 + 2.67210I	0
b = 0.64384 - 3.14134I		
u = 1.89844 - 0.28442I		
a = 0.119565 - 1.273780I	9.83371 - 2.67210I	0
b = 0.64384 + 3.14134I		
u = 0.0750607		
a = 9.20491	-1.20362	-8.91660
b = -0.556076		
u = 1.90900 + 0.52880I		
a = -0.341894 - 1.190340I	8.19227 + 8.99833I	0
b = -0.66785 + 3.28864I		
u = 1.90900 - 0.52880I		
a = -0.341894 + 1.190340I	8.19227 - 8.99833I	0
b = -0.66785 - 3.28864I		

$$\text{II. } I_2^u = \\ \langle u^5 - 2u^3 - u^2 + b + 2u + 1, \ u^5 + 2u^4 - u^3 - 3u^2 + a + 2, \ u^6 + u^5 - u^4 - 2u^3 + u + 1 \rangle$$

(i) Arc colorings

$$a_{3} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{5} - 2u^{4} + u^{3} + 3u^{2} - 2 \\ -u^{5} + 2u^{3} + u^{2} - 2u - 1 \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{2} - 1 \\ u^{2} \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -u^{5} - 2u^{4} + u^{3} + 3u^{2} - 2 \\ -u^{5} + 2u^{3} + u^{2} - 2u - 1 \end{pmatrix}$$

$$a_{12} = \begin{pmatrix} -u^{5} - 2u^{4} + u^{3} + 4u^{2} - 3 \\ -u^{5} + 2u^{3} + 2u^{2} - 2u - 1 \end{pmatrix}$$

- (ii) Obstruction class = 1
- (iii) Cusp Shapes = $3u^5 u^4 4u^3 3u^2 + 8u 8$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_8	$u^6 - 3u^5 + 5u^4 - 4u^3 + 2u^2 - u + 1$
c_2, c_6	$u^6 + u^5 - u^4 - 2u^3 + u + 1$
c_3, c_4	$u^6 - u^5 - u^4 + 2u^3 - u + 1$
<i>c</i> ₅	$u^6 + 3u^5 + 5u^4 + 4u^3 + 2u^2 + u + 1$
c_7, c_{10}	u^6
c_9,c_{11}	$(u-1)^6$
c_{12}	$(u+1)^6$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5, c_8	$y^6 + y^5 + 5y^4 + 6y^2 + 3y + 1$
c_2, c_3, c_4 c_6	$y^6 - 3y^5 + 5y^4 - 4y^3 + 2y^2 - y + 1$
c_7, c_{10}	y^6
c_9, c_{11}, c_{12}	$(y-1)^6$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_2^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 1.002190 + 0.295542I		
a = 0.344968 - 0.764807I	0.245672 + 0.924305I	-5.68949 - 0.25702I
b = -0.769407 + 0.497010I		
u = 1.002190 - 0.295542I		
a = 0.344968 + 0.764807I	0.245672 - 0.924305I	-5.68949 + 0.25702I
b = -0.769407 - 0.497010I		
u = -0.428243 + 0.664531I		
a = -1.68613 - 1.92635I	-3.53554 + 0.92430I	-12.60470 + 5.55069I
b = 0.66103 - 1.45708I		
u = -0.428243 - 0.664531I		
a = -1.68613 + 1.92635I	-3.53554 - 0.92430I	-12.60470 - 5.55069I
b = 0.66103 + 1.45708I		
u = -1.073950 + 0.558752I		
a = -0.158836 + 0.437639I	-1.64493 - 5.69302I	-11.7058 + 8.3306I
b = -0.391622 - 0.558752I		
u = -1.073950 - 0.558752I		
a = -0.158836 - 0.437639I	-1.64493 + 5.69302I	-11.7058 - 8.3306I
b = -0.391622 + 0.558752I		

III.
$$I_1^v = \langle a, 1742v^8 - 24207v^7 + \dots + 683b + 648, v^9 - 13v^8 + \dots - 7v - 1 \rangle$$

(i) Arc colorings

$$a_3 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_6 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_7 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -2.55051v^8 + 35.4422v^7 + \dots + 8.23426v - 0.948755 \end{pmatrix}$$

$$a_8 = \begin{pmatrix} 0.0146413v^8 - 2.49048v^7 + \dots + 26.1640v + 6.53587 \end{pmatrix}$$

$$a_9 = \begin{pmatrix} 0.0146413v^8 - 2.49048v^7 + \dots + 26.1640v + 7.53587 \\ 0.0146413v^8 - 2.49048v^7 + \dots + 26.1640v + 6.53587 \end{pmatrix}$$

$$a_5 = \begin{pmatrix} 1.01464v^8 - 15.4905v^7 + \dots + 6.16398v + 0.535871 \\ v^8 - 13v^7 - 22v^6 + 15v^4 - 5v^3 - 25v^2 - 20v - 7 \end{pmatrix}$$

$$a_2 = \begin{pmatrix} -1.01464v^8 + 15.4905v^7 + \dots + 5.16398v - 0.535871 \\ -v^8 + 13v^7 + 22v^6 - 15v^4 + 5v^3 + 25v^2 + 20v + 7 \end{pmatrix}$$

$$a_1 = \begin{pmatrix} -1.01464v^8 + 15.4905v^7 + \dots - 6.16398v - 0.535871 \\ -v^8 + 13v^7 + 22v^6 - 15v^4 + 5v^3 + 25v^2 + 20v + 7 \end{pmatrix}$$

$$a_4 = \begin{pmatrix} v \\ 0 \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} -2.55051v^8 + 35.4422v^7 + \dots + 8.23426v - 0.948755 \\ -3.04539v^8 + 45.0205v^7 + \dots - 17.1083v - 5.46120 \end{pmatrix}$$

$$\begin{pmatrix} 0.535871v^8 - 5.95168v^7 + \dots - 7.39824v + 1.41288 \\ -11.9649v^8 + 161.823v^7 + \dots + 128.794v + 26.4861 \end{pmatrix}$$

(ii) Obstruction class = 1

(iii) Cusp Shapes
$$= \frac{1777}{683}v^8 - \frac{26404}{683}v^7 + \frac{7013}{683}v^6 + \frac{29374}{683}v^5 - \frac{14769}{683}v^4 - \frac{23374}{683}v^3 - \frac{329}{683}v^2 + \frac{9111}{683}v - \frac{4901}{683}v^3 - \frac{14769}{683}v^3 -$$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_2	$(u-1)^9$
c_3, c_6	u^9
C4	$(u+1)^9$
<i>C</i> ₅	$u^9 + 3u^8 + 8u^7 + 13u^6 + 17u^5 + 17u^4 + 12u^3 + 6u^2 + u - 1$
	$u^9 + u^8 + 2u^7 + u^6 + 3u^5 + u^4 + 2u^3 + u - 1$
c ₈	$u^9 - 3u^8 + 8u^7 - 13u^6 + 17u^5 - 17u^4 + 12u^3 - 6u^2 + u + 1$
<i>c</i> ₉	$u^9 + u^8 - 2u^7 - 3u^6 + u^5 + 3u^4 + 2u^3 - u - 1$
c_{10}	$u^9 - u^8 + 2u^7 - u^6 + 3u^5 - u^4 + 2u^3 + u + 1$
c_{11}	$u^9 - 5u^8 + 12u^7 - 15u^6 + 9u^5 + u^4 - 4u^3 + 2u^2 + u - 1$
c_{12}	$u^9 - u^8 - 2u^7 + 3u^6 + u^5 - 3u^4 + 2u^3 - u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_2, c_4	$(y-1)^9$
c_3, c_6	y^9
c_5, c_8	$y^9 + 7y^8 + 20y^7 + 25y^6 + 5y^5 - 15y^4 + 22y^2 + 13y - 1$
c_7, c_{10}	$y^9 + 3y^8 + 8y^7 + 13y^6 + 17y^5 + 17y^4 + 12y^3 + 6y^2 + y - 1$
c_9, c_{12}	$y^9 - 5y^8 + 12y^7 - 15y^6 + 9y^5 + y^4 - 4y^3 + 2y^2 + y - 1$
c_{11}	$y^9 - y^8 + 12y^7 - 7y^6 + 37y^5 + y^4 - 10y^2 + 5y - 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^v	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
v = 0.920144 + 0.598375I		
a = 0	0.13850 - 2.09337I	-4.31028 + 3.82038I
b = 0.140343 + 0.966856I		
v = 0.920144 - 0.598375I		
a = 0	0.13850 + 2.09337I	-4.31028 - 3.82038I
b = 0.140343 - 0.966856I		
v = -0.590648 + 0.449402I		
a = 0	-2.26187 - 2.45442I	-6.95900 + 1.69416I
b = 0.628449 + 0.875112I		
v = -0.590648 - 0.449402I		
a = 0	-2.26187 + 2.45442I	-6.95900 - 1.69416I
b = 0.628449 - 0.875112I		
v = -0.719281 + 0.119276I		
a = 0	-6.01628 - 1.33617I	-13.56769 + 0.26615I
b = -0.796005 + 0.733148I		
v = -0.719281 - 0.119276I		
a = 0	-6.01628 + 1.33617I	-13.56769 - 0.26615I
b = -0.796005 - 0.733148I		
v = -0.365868 + 0.247975I		
a = 0	-5.24306 - 7.08493I	-11.54551 + 1.34000I
b = -0.728966 - 0.986295I		
v = -0.365868 - 0.247975I		
a = 0	-5.24306 + 7.08493I	-11.54551 - 1.34000I
b = -0.728966 + 0.986295I		
v = 14.5113		
a = 0	-2.84338	-223.240
b = 0.512358		

IV. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1	$ (u-1)^{9}(u^{6} - 3u^{5} + 5u^{4} - 4u^{3} + 2u^{2} - u + 1) $ $ \cdot (u^{66} + 21u^{65} + \dots + 31524u + 1) $
c_2	$((u-1)^9)(u^6+u^5+\cdots+u+1)(u^{66}-11u^{65}+\cdots+184u-1)$
<i>C</i> ₃	$u^{9}(u^{6} - u^{5} + \dots - u + 1)(u^{66} + 8u^{65} + \dots - 7168u + 512)$
c_4	$((u+1)^9)(u^6-u^5+\cdots-u+1)(u^{66}-11u^{65}+\cdots+184u-1)$
<i>C</i> ₅	$(u^{6} + 3u^{5} + 5u^{4} + 4u^{3} + 2u^{2} + u + 1)$ $\cdot (u^{9} + 3u^{8} + 8u^{7} + 13u^{6} + 17u^{5} + 17u^{4} + 12u^{3} + 6u^{2} + u - 1)$ $\cdot (u^{66} + 3u^{65} + \dots - 2u - 1)$
c_6	$u^{9}(u^{6} + u^{5} + \dots + u + 1)(u^{66} + 8u^{65} + \dots - 7168u + 512)$
c_7	$u^{6}(u^{9} + u^{8} + 2u^{7} + u^{6} + 3u^{5} + u^{4} + 2u^{3} + u - 1)$ $\cdot (u^{66} - 2u^{65} + \dots + 192u + 64)$
c_8	$(u^{6} - 3u^{5} + 5u^{4} - 4u^{3} + 2u^{2} - u + 1)$ $\cdot (u^{9} - 3u^{8} + 8u^{7} - 13u^{6} + 17u^{5} - 17u^{4} + 12u^{3} - 6u^{2} + u + 1)$ $\cdot (u^{66} + 3u^{65} + \dots - 2u - 1)$
c_9	$(u-1)^{6}(u^{9} + u^{8} - 2u^{7} - 3u^{6} + u^{5} + 3u^{4} + 2u^{3} - u - 1)$ $\cdot (u^{66} - 8u^{65} + \dots - 11u + 1)$
c_{10}	$u^{6}(u^{9} - u^{8} + 2u^{7} - u^{6} + 3u^{5} - u^{4} + 2u^{3} + u + 1)$ $\cdot (u^{66} - 2u^{65} + \dots + 192u + 64)$
c_{11}	$(u-1)^{6}(u^{9} - 5u^{8} + 12u^{7} - 15u^{6} + 9u^{5} + u^{4} - 4u^{3} + 2u^{2} + u - 1)$ $\cdot (u^{66} + 28u^{65} + \dots - 143u + 1)$
c_{12}	$(u+1)^{6}(u^{9}-u^{8}-2u^{7}_{20}+3u^{6}+u^{5}-3u^{4}+2u^{3}-u+1)$ $\cdot (u^{66}-8u^{65}+\cdots-11u+1)$

V. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1	$(y-1)^{9}(y^{6} + y^{5} + 5y^{4} + 6y^{2} + 3y + 1)$ $\cdot (y^{66} + 59y^{65} + \dots - 992297680y + 1)$
c_2, c_4	$(y-1)^{9}(y^{6}-3y^{5}+5y^{4}-4y^{3}+2y^{2}-y+1)$ $\cdot (y^{66}-21y^{65}+\cdots-31524y+1)$
c_3, c_6	$y^{9}(y^{6} - 3y^{5} + 5y^{4} - 4y^{3} + 2y^{2} - y + 1)$ $\cdot (y^{66} - 60y^{65} + \dots - 76021760y + 262144)$
c_5, c_8	$(y^{6} + y^{5} + 5y^{4} + 6y^{2} + 3y + 1)$ $\cdot (y^{9} + 7y^{8} + 20y^{7} + 25y^{6} + 5y^{5} - 15y^{4} + 22y^{2} + 13y - 1)$ $\cdot (y^{66} + 15y^{65} + \dots - 20y + 1)$
c_7, c_{10}	$y^{6}(y^{9} + 3y^{8} + 8y^{7} + 13y^{6} + 17y^{5} + 17y^{4} + 12y^{3} + 6y^{2} + y - 1)$ $\cdot (y^{66} + 42y^{65} + \dots + 77824y + 4096)$
c_9, c_{12}	$(y-1)^{6}(y^{9} - 5y^{8} + 12y^{7} - 15y^{6} + 9y^{5} + y^{4} - 4y^{3} + 2y^{2} + y - 1)$ $\cdot (y^{66} - 28y^{65} + \dots + 143y + 1)$
c_{11}	$(y-1)^{6}(y^{9}-y^{8}+12y^{7}-7y^{6}+37y^{5}+y^{4}-10y^{2}+5y-1)$ $\cdot (y^{66}+28y^{65}+\cdots -12229y+1)$