GEST-H501 Logistics & Quality Engineering

Review Session

- **Forecasting**
- **Logistics Network Modelling**
- **Transportation & Distribution Logistics**

Qalinca-Labs, ULB yasin.tadayonrad@ulb.be

Forecasting

Forecasting - Quantitative Methods

- Moving Average
- Simple Exponential Smoothing
- Double Exponential Smoothing
- Triple Exponential Smoothing
- Forecast Error measurement (MAE, Bias and RMSE)

Moving Average

$$f_{t+1} = \frac{\sum_{i=t-n+1}^{t} d_i}{n}$$

 f_{t+1} = forecast for period t+1; n = number of periods used to calculate moving average; d_i = actual demand in period i

$$a_t = \alpha d_t + (1 - \alpha)(a_{t-1} + \phi b_{t-1})$$

$$b_t = \beta(a_t - a_{t-1}) + (1 - \beta)(\phi b_{t-1})$$

- f_{t+1} : Forecast for the following period performed in the current period,
- a_t : Level estimation,
- b_t : Trend estimation
- λ : Number of periods for which we are making the forecast

 ϕ : Dampening Factor

$$f_{t+1} = a_t + \phi b_t$$

$$f_{t+\lambda} = a_t + b_t \sum_{i=1}^{\lambda} \phi^i$$

Date	Demand	Forecast	Level (a)	Trend (b)
1	37	37	37	23
2	60			
3	85			
4	112			
5	132			
6	145			
7	179			
8	198			
9	212			
10	232			
11				
12				
13]			

Initialization

Alpha:	30%
Beta:	40%
Phi:	80%

$$a_t = \alpha d_t + (1 - \alpha)(a_{t-1} + \phi b_{t-1})$$

$$a_{t} = \alpha d_{t} + (1 - \alpha)(a_{t-1} + \phi b_{t-1})$$

$$b_{t} = \beta(a_{t} - a_{t-1}) + (1 - \beta)(\phi b_{t-1})$$

$$f_{t+1} = a_t + \phi b_t$$

Date	Demand	Forecast	Level (a)	Trend (b)
1	37	37	37	23
2	60			
3	85			
4	112			
5	132			
6	145			
7	179			
8	198			
9	212			
10	232			
11				
	1		1	

Alpha:	30%
Beta:	40%
Phi:	80%

Date	Demand	Forecast	Level (a)	Trend (b)
1	37	37	37	23
2	60			
3	85			
4	112			
5	132			
6	145			
7	179			
8	198			
9	212			
10	232			
11				

Alpha:	30%
Beta:	40%
Phi:	80%

Triple exponential smoothing

Pattern: (Level + Trend)*Seasonality

$$a_{t} = \alpha(\frac{d_{t}}{s_{t-p}}) + (1 - \alpha)(a_{t-1} + \phi b_{t-1})$$

$$b_{t} = \beta(a_{t} - a_{t-1}) + (1 - \beta)(\phi b_{t-1})$$

$$s_{t} = \gamma(\frac{d_{t}}{a_{t}}) + (1 - \gamma) s_{t-p}$$

$$f_{t} = (a_{t-1} + \phi b_{t-1}) s_{t-p}$$

$$f_{t+\lambda} = (a_{t} + b_{t} \sum_{i=1}^{\lambda} \phi^{i}) s_{t-n+\lambda}$$

Without damping factor:

 $f_{t+\lambda} = (a_t + \lambda b_t) s_{t-p+\lambda}$

Triple exponential smoothing

Date	Demand	Forecast	Level (a)	Trend (b)	Season (s)	
1	14	14	5,5	3,2	8,5	~
2	10		Î		·	
3	6					
4	2					
5	18				Į.	
6	8					
7	4				1	
8	1					
9	16					
10	9					
11	5] `
12	3					
13	18					
14	11					
15	4					
16	2					
17	17					
18	9					
19	5					_
20	1					
21						
22						
23						

Initialization

Alpha:	80%
Beta:	10%
Gamma:	40%

$$-a_{t} = \alpha(\frac{d_{t}}{s_{t-p}}) + (1 - \alpha)(a_{t-1} + \phi b_{t-1})$$

$$b_t = \beta(a_t - a_{t-1}) + (1 - \beta)(\phi b_{t-1})$$

$$s_t = \gamma \left(\frac{d_t}{a_t}\right) + (1 - \gamma) s_{t-p}$$

$$f_t = (a_{t-1} + \phi b_{t-1}) s_{t-p}$$

Forecast Error Measurement

Date	Demand	Forecast
1	37	
2	60	60
3	85	83
4	112	107
5	132	134
6	145	158
7	179	175
8	198	198
9	212	220
10	232	237
11		255

Absolute Error	Squared Error
\ \	
2	4
5	23
2	3
13	161
4	19
0	0
8	65
5	28
	5 2 13 4 0

Alpha:	30%	
Beta:	100%	

$$RMSE = \sqrt{\frac{1}{n} \sum_{1}^{n} (f_t - d_t)^2}$$

$$MAE = \frac{1}{n} \sum_{1}^{n} |f_t - d_t|$$

$$Bias = \frac{1}{n} \sum_{t=1}^{n} (f_t - d_t)$$

RMSE	
MAE	
Bias	

Logistics Network Modelling

Logistics Network Modelling - Mathematical Models

- Capacitated facility location Model
- Allocating Demand to Production Facilities
- The capacitated Plant Location Model
- The capacitated Plant Location Model with Single Sourcing

Capacitated Facility Location Model

Model Inputs (Parameters)

n = number of potential plant locations/capacity (each level of capacity will count as a separate location)

m = number of markets or demand points

 D_i = annual demand from market j

 K_i = potential capacity of plant i

 F_i = annualized fixed cost of keeping plant i open

 C_{ij} = cost of producing and shipping one unit from plant i to market j (cost includes production, inventory, transportation, and tariffs)

Model Outputs (Decision Variables)

 y_i = 1 if plant *i* is open, 0 otherwise x_{ij} = quantity shipped from plant *i* to market *j*

Objective Function and its Constraints

Demand Satisfied

$$\sum_{i=1}^{n} x_{ij} = D_j \quad \text{for} \quad j = 1, \dots, n$$

Variable

Cost

$$\sum_{i=1}^{n} x_{ij} \le K_i y_i \quad for \quad i = 1, ..., n$$

$$y_i \in \{0,1\}$$
 for $i = 1, ..., n, x_{ij} \ge 0$

Supply can not be more than capacity

Mixed Integer Programming

Allocating Demand to Production Facilities

Model Inputs (Parameters)

n = *number of factory locations*

m = number of markets or demand points

 D_i = annual demand from market j

 K_i = capacity of factory i

 C_{ii} = cost of producing and shipping one unit from factory i to market i (cost includes

production, inventory, and transportation)

all demand is satisfied

The goal is to allocate the demand from different markets to the various piants to minimize the total cost of facilities, transportation, and inventory. Define the decision variables:

Objective Function and its Constraints

$$\min \sum_{i=1}^{n} \sum_{j=1}^{m} c_{ij} x_{ij}$$

$$\sum_{i=1}^{n} x_{ij} = D_j \quad \text{for} \quad j = 1, \dots, m$$

Model Outputs (Decision Variables)

 X_{ij} = quantity shipped from plant i to market j

Production <= Capacity

$$\sum_{i=1}^{m} x_{ij} \le K_i \quad \text{for} \quad i = 1, \dots, n$$

The Capacitated Plant Location Model

- Merge the companies
- Solve using location-specific costs

Model Outputs (Decision Variables)

 y_i = 1 if factory i is open, 0 otherwise x_{ij} = quantity shipped from factory i to market j

Objective Function and its Constraints

$$\sum_{i=1}^{n} x_{ij} = D_{j} \text{ for } j = 1, \dots, m$$

$$\sum_{j=1}^{m} x_{ij} \le K_{i} y_{i} \text{ for } i = 1, \dots, n$$

$$y_{i} \in \{0, 1\} \text{ for } i = 1, \dots, n, x_{ij} \ge 0$$

The Capacitated Plant Location Model with Single Sourcing

- Market supply by only one Factory
- Modify decision variables

reducing complexity improving coordination

Model Outputs (Decision Variables)

 y_i = 1 if factory is located at site i, 0 otherwise

 x_{ij} = 1 if market j is supplied by factory i, 0 otherwise

Objective Function and its Constraints

$$\min \sum_{i=1}^n f_i y_i + \sum_{i=1}^n \sum_{j=1}^m D_j c_{ij} x_{ij}$$

$$\sum_{i=1}^n x_{ij} = 1 \quad \text{for} \quad j = 1, \dots, m$$

$$\sum_{j=1}^m D_j x_{ij} \le K_i y_i \quad \text{for} \quad i = 1, \dots, n$$

$$x_{ij}, y_i \in \{0, 1\}$$

Inputs - Costs, Capacities, Demands (for HighOptic)

		Demand City									
		Production and Transportation Cost per 1000 Units									
Supply City	Atlanta	Boston	Chicago	Denver	Omaha	Portland	Cost (\$)	city			
Baltimore	1675	400	685	1630	1160	2800	7650	18			
Cheyenne	1460	1940	970	100	495	1200	3500	24			
Salt Lake	1925	2400	1425	500	950	800	5000	27			
Memphis	380	1355	543	1045	665	2321	4100	22			
Wichita	922	1646	700	508	311	1797	2200	31			
Demand	10	8	14	6	7	11					

Supply cities	i	Demand cities	j
Baltimore	1	Atlanta	1
Cheyenne	2	Boston	2
Salt Lake	3	Chicago	3
Memphis	4	Denver	4
Wichita	5	Omaha	5
		Portland	6

Decision Variables

		Demand City	- Production	Allocation (10)	00 Units)		Plants
Supply City	Atlanta	Boston	Chicago	Denver	Omaha	Portland	(1=open)
Baltimore	0	0	0	0	0	0	
Cheyenne	0	0	0	6	7	0	1
Salt Lake	0	0	0	0	0	11	1
Memphis	0	0	0	0	0	0	
Wichita	0	0	0	0	0	0	

Constraints

Supply City	Excess Capacity					
Baltimore	18					
Cheyenne	11					
Salt Lake	16					
Memphis	22					
Wichita	31					
	Atlanta	Boston	Chicago	Denver	Omaha	Portland
Unmet Demand	10	8	14	0	0	0

Objective Function

Cost =	\$ 21.416

Optimal Demand Allocation for HighOptic

Using Data | Analysis | Solver, solve the demand allocation problem for HighOptic

$$Min Z = 100X_{24} + 495X_{25} + 1200X_{26} + 500X_{34} + 950X_{35} + 800X_{36}$$

S.t:

$$X_{24} + X_{25} + X_{26} \le 24$$

 $X_{34} + X_{35} + X_{36} \le 27$

$$X_{24} + X_{34} = 6$$

 $X_{25} + X_{35} = 7$
 $X_{26} + X_{36} = 11$

$$X_{ij} \ge 0; i \in \{1,2,3,4,5\}, j \in \{1,2,3,4,5,6\}$$

$$\begin{array}{l} \mathit{Min Z} \\ = 1675X_{11} + 400X_{12} + 685X_{13} + 380X_{41} + 1355X_{42} \\ + 543X_{43} + 922X_{51} + 1646X_{52} + 700X_{53} \end{array}$$

S.t:

$$X_{11} + X_{12} + X_{13} \le 18$$

 $X_{41} + X_{42} + X_{43} \le 22$
 $X_{51} + X_{52} + X_{53} \le 31$

$$X_{11} + X_{41} + X_{51} = 10$$

 $X_{12} + X_{42} + X_{52} = 8$
 $X_{13} + X_{43} + X_{53} = 14$

 $X_{ij} \ge 0; i \in \{1,2,3,4,5\}, j \in \{1,2,3,4,5,6\}$

Inputs - Costs, Capacities, Demands (for TelecomOne)

			Dema	nd City						
	Produ	Production and Transportation Cost per 1000 Units								
Supply City	Atlanta	Boston	Chicago	Denver	Omaha	Portland	Cost (\$)	city		
Baltimore	1.675	400	685	1.630	1.160	2.800	7.650	18		
Cheyenne	1.460	1.940	970	100	495	1.200	3.500	24		
Salt Lake	1.925	2.400	1.425	500	950	800	5.000	27		
Memphis	380	1.355	543	1.045	665	2.321	4.100	22		
Wichita	922	1.646	700	508	311	1.797	2.200	31		
Demand	10	8	14	6	7	11				

Decision Variables

	Dem	Demand City - Production Allocation (1000 Units)									
Supply City	Atlanta	Boston	Chicago	Denver	Omaha	Portland	(1=open)				
Baltimore	0	8	2	0	0	0	1				
Cheyenne	0	0	0	0	0	0	0				
Salt Lake	0	0	0	0	0	0	0				
Memphis	10	0	12	0	0	0	1				
Wichita	0	0	0	0	0	0	1				

Constraints

Supply City	Excess Capac	ity				
Baltimore	8					
Cheyenne	24					
Salt Lake	27					
Memphis	0					
Wichita	31					
	Atlanta	Boston	Chicago	Denver	Omaha	Portland
Unmet Demand	0	0	0	6	7	11

Objective Function

Cost = \$ 28.836

Optimal Demand Allocation for TelecomOne

Using Data | Analysis | Solver, solve the demand allocation problem for HighOptic

Min Z

$$= 1675X_{11} + 400X_{12} + 685X_{13} + 1630X_{14} + 1160X_{15} + 2800X_{16} + 1460X_{21} + 1940X_{22} + 970X_{23} + 100X_{24} + 495X_{25} + 1200X_{26} + 1925X_{31} + 2400X_{32} + 1425X_{33} + 500X_{34} + 950X_{35} + 800X_{36} + 380X_{41} + 1355X_{42} + 543X_{43} + 1045X_{44} + 665X_{45} + 2321X_{46} + 922X_{51} + 1646X_{52} + 700X_{53} + 508X_{54} + 311X_{55} + 1797X_{56}$$
 S.t:

$$\begin{split} X_{11} + X_{12} + X_{13} + X_{14} + X_{15} + X_{16} &\leq 18 \\ X_{21} + X_{22} + X_{23} + X_{24} + X_{25} + X_{26} &\leq 24 \\ X_{31} + X_{32} + X_{33} + X_{34} + X_{35} + X_{36} &\leq 27 \\ X_{41} + X_{42} + X_{43} + X_{44} + X_{45} + X_{46} &\leq 22 \\ X_{51} + X_{52} + X_{53} + X_{54} + X_{55} + X_{56} &\leq 31 \end{split}$$

$$X_{11} + X_{21} + X_{31} + X_{41} + X_{51} = 10$$

$$X_{12} + X_{22} + X_{32} + X_{42} + X_{52} = 8$$

$$X_{13} + X_{23} + X_{33} + X_{43} + X_{53} = 14$$

$$X_{14} + X_{24} + X_{34} + X_{44} + X_{54} = 6$$

$$X_{15} + X_{25} + X_{35} + X_{45} + X_{55} = 7$$

$$X_{16} + X_{26} + X_{36} + X_{46} + X_{56} = 11$$

 $X_{ij} \ge 0; i \in \{1,2,3,4,5\}, j \in \{1,2,3,4,5,6\}$

Inputs - Costs, Capacities, Demands (for TelecomOptic)

			Demar	nd City							
	Produc	Production and Transportation Cost per 1000 Units									
Supply City	Atlanta	Boston	Chicago	Denver	Omaha	Portland	Cost (\$)	city			
Baltimore	1.675	400	685	1.630	1.160	2.800	7.650	18			
Cheyenne	1.460	1.940	970	100	495	1.200	3.500	24			
Salt Lake	1.925	2.400	1.425	500	950	800	5.000	27			
Memphis	380	1.355	543	1.045	665	2.321	4.100	22			
Wichita	922	1.646	700	508	311	1.797	2.200	31			
Demand	10	8	14	6	7	11					

Decision Variables

	Dema	Demand City - Production Allocation (1000 Units)									
Supply City	Atlanta	Boston	Chicago	Denver	Omaha	Portland	(1=open)				
Baltimore	0	8	2	0	0	0	1				
Cheyenne	0	0	0	6	0	0	1				
Salt Lake	0	0	0	0	0	11	1				
Memphis	10	0	12	0	0	0	1				
Wichita	0	0	0	0	7	0	1				

Constraints

Supply City	Excess Capac	ity				
Baltimore	8		Total	Available	Capacity	122
Cheyenne	18					
Salt Lake	16					
Memphis	0					
Wichita	24					
	Atlanta	Boston	Chicago	Denver	Omaha	Portland
Unmet Demand	0	0	0	0	0	0

Objective Function

Cost = \$ 48.913

$$\begin{array}{l} \mathit{Min Z} \\ = 1675X_{11} + 400X_{12} + 685X_{13} + 1630X_{14} + 1160X_{15} + 2800X_{16} \\ + 1460X_{21} + 1940X_{22} + 970X_{23} + 100X_{24} + 495X_{25} + 1200X_{26} \\ + 1925X_{31} + 2400X_{32} + 1425X_{33} + 500X_{34} + 950X_{35} + 800X_{36} \\ + 380X_{41} + 1355X_{42} + 543X_{43} + 1045X_{44} + 665X_{45} + 2321X_{46} \\ + 922X_{51} + 1646X_{52} + 700X_{53} + 508X_{54} + 311X_{55} + 1797X_{56} \\ + 7650y_1 + 3500y_2 + 5000y_3 + 4100y_4 + 2200y_5 \\ \mathrm{S.t:} \end{array}$$

$$\begin{array}{l} X_{11} + X_{12} + X_{13} + X_{14} + X_{15} + X_{16} \leq 18y_1 \\ X_{21} + X_{22} + X_{23} + X_{24} + X_{25} + X_{26} \leq 24y_2 \\ X_{31} + X_{32} + X_{33} + X_{34} + X_{35} + X_{36} \leq 27y_3 \\ X_{41} + X_{42} + X_{43} + X_{44} + X_{45} + X_{46} \leq 22y_4 \\ X_{51} + X_{52} + X_{53} + X_{54} + X_{55} + X_{56} \leq 31y_5 \end{array}$$

$$X_{11} + X_{21} + X_{31} + X_{41} + X_{51} = 10$$

$$X_{12} + X_{22} + X_{32} + X_{42} + X_{52} = 8$$

$$X_{13} + X_{23} + X_{33} + X_{43} + X_{53} = 14$$

$$X_{14} + X_{24} + X_{34} + X_{44} + X_{54} = 6$$

$$X_{15} + X_{25} + X_{35} + X_{45} + X_{55} = 7$$

$$X_{16} + X_{26} + X_{36} + X_{46} + X_{56} = 11$$

 $X_{i,i} \ge 0, y_i \in \{0,1\}; i \in \{1,2,3,4,5\}, j \in \{1,2,3,4,5,6\}$

Inputs - Costs, Capacities, Demands (for TelecomOptic)

			Demar	nd City				
	Produc	ction and	Transport	ation Cost	per 1000	Units	Fixed	Capa-
Supply City	Atlanta	Boston	Chicago	Denver	Omaha	Portland	Cost (\$)	city
Baltimore	1.675	400	685	1.630	1.160	2.800	7.650	18
Cheyenne	1.460	1.940	970	100	495	1.200	3.500	24
Salt Lake	1.925	2.400	1.425	500	950	800	5.000	27
Memphis	380	1.355	543	1.045	665	2.321	4.100	22
Wichita	922	1.646	700	508	311	1.797	2.200	31
Demand	10	8	14	6	7	11		

Decision Variables

	Dema	Demand City - Production Allocation (1000 Units)					Plants
Supply City	Atlanta	Boston	Chicago	Denver	Omaha	Portland	(1=open)
Baltimore	0	8	2	0	0	0	1
Cheyenne	0	0	0	6	7	11	1
Salt Lake	0	0	0	0	0	0	0
Memphis	10	0	12	0	0	0	1
Wichita	0	0	0	0	0	0	0

Constraints

Supply City	Excess Capac	ity				
Baltimore	8					
Cheyenne	0					
Salt Lake	0					
Memphis	0					
Wichita	0					
-	Atlanta	Boston	Chicago	Denver	Omaha	Portland
	/ trailea	DOSTOIL	Officago	Deliver	Omana	1 Ordana
Unmet Demand	0	0	0	0	0	0

Objective Function

Cost = \$ 47.401

Min Z

$$= 1675X_{11} + 400X_{12} + 685X_{13} + 1630X_{14} + 1160X_{15} + 2800X_{16} + 1460X_{21} + 1940X_{22} + 970X_{23} + 100X_{24} + 495X_{25} + 1200X_{26} + 1925X_{31} + 2400X_{32} + 1425X_{33} + 500X_{34} + 950X_{35} + 800X_{36} + 380X_{41} + 1355X_{42} + 543X_{43} + 1045X_{44} + 665X_{45} + 2321X_{46} + 922X_{51} + 1646X_{52} + 700X_{53} + 508X_{54} + 311X_{55} + 1797X_{56} + 7650y_1 + 3500y_2 + 5000y_3 + 4100y_4 + 2200y_5$$

S.t:

$$\begin{array}{c} 10X_{11} + 8X_{12} + 14X_{13} + 6X_{14} + 7X_{15} + 11X_{16} \leq 18y_1 \\ 10X_{21} + 8X_{22} + 14X_{23} + 6X_{24} + 7X_{25} + 11X_{26} \leq 24y_2 \\ 10X_{31} + 8X_{32} + 14X_{33} + 6X_{34} + 7X_{35} + 11X_{36} \leq 27y_3 \\ 10X_{41} + 8X_{42} + 14X_{43} + 6X_{44} + 7X_{45} + 11X_{46} \leq 22y_4 \\ 10X_{51} + 8X_{52} + 14X_{53} + 6X_{54} + 7X_{55} + 11X_{56} \leq 31y_5 \\ \\ X_{11} + X_{21} + X_{31} + X_{41} + X_{51} = 1 \\ X_{12} + X_{22} + X_{32} + X_{42} + X_{52} = 1 \\ X_{13} + X_{23} + X_{33} + X_{43} + X_{53} = 1 \\ X_{14} + X_{24} + X_{34} + X_{44} + X_{54} = 1 \\ X_{15} + X_{25} + X_{35} + X_{45} + X_{55} = 1 \\ X_{16} + X_{26} + X_{36} + X_{46} + X_{56} = 1 \end{array}$$

 $X_{ij}, y_i \in \{0,1\}; i \in \{1,2,3,4,5\}, j \in \{1,2,3,4,5,6\}$

Inputs - Costs,	Capacities, Dema	ands (for TelecomOptic)
-----------------	------------------	-------------------------

	Demand City							
	Producti	on and T	ransportat	ion Cost p	oer 1000 l	Jnits -	Fixed	Capa-
Supply City	Atlanta	Boston	Chicago	Denver	Omaha	Portland	Cost (\$)	city
Baltimore	1.675	400	685	1.630	1.160	2.800	7.650	18
Cheyenne	1.460	1.940	970	100	495	1.200	3.500	24
Salt Lake	1.925	2.400	1.425	500	950	800	5.000	27
Memphis	380	1.355	543	1.045	665	2.321	4.100	22
Wichita	922	1.646	700	508	311	1.797	2.200	31
Demand	10	8	14	6	7	11		

Decision Variables

	Demand City Supplied (1 indicates Cities Supplied)						Plants
Supply City	Atlanta	Boston	Chicago	Denver	Omaha	Portland	(1=open)
Baltimore	0	0	0	0	0	0	0
Cheyenne	0	0	0	0	0	0	0
Salt Lake	0	0	0	1	0	1	1
Memphis	1	1	0	0	0	0	1
Wichita	0	0	1	0	1	0	1

Resulting Production Allocation

	Demand City - Production Allocation (1000 Units)						
Supply City	Atlanta	Boston	Chicago	Denver	Omaha	Portland	
Baltimore	0	0	0	0	0	0	
Cheyenne	0	0	0	0	0	0	
Salt Lake	0	0	0	6	0	11	
Memphis	10	8	0	0	0	0	
Wichita	0	0	14	0	7	0	

Constraints

Supply City	Excess Capac	city				
Baltimore	0					
Cheyenne	0					
Salt Lake	10					
Memphis	4					
Wichita	10					
	Atlanta	Boston	Chicago	Denver	Omaha	Portland
Demand	1	1	1	1	1	1

Objective Function

Transportation and Distribution Logistics

Transportation & Distribution Logistics

- Standard Transportation Problem
- Identifying a basic feasible solution (Construction methods)
 - North-west corner method
 - Min cost method
 - Penalty cost (Vogel's approximation)
- Optimal solution (Improving methods)
 - Stepping stone

Transportation & Distribution Logistics

- Minimum Spanning Tree Prime's Algorithm
- Shortest Path Problem Dijkstra's Algorithm
- Minimum Cost Flow Network Simplex Method
- Travelling Salesman Problem Nearest Neighbor

Standard Transportation Problem

$$\min 4x_{11} + 6x_{12} + 8x_{13} + 8x_{14} + 6x_{21} + 8x_{22} + 6x_{23} + 7x_{24} + 5x_{31} + 7x_{32} + 6x_{33} + 8x_{34}$$

Subject to:

$$x_{11} + x_{12} + x_{13} + x_{14} \le 40$$

$$x_{21} + x_{22} + x_{23} + x_{24} \le 60$$

$$x_{31} + x_{32} + x_{33} + x_{34} \le 50$$

$$x_{11} + x_{21} + x_{31} + x_{41} \ge 20$$

$$x_{12} + x_{22} + x_{32} + x_{42} \ge 30$$

$$x_{13} + x_{23} + x_{33} + x_{43} \ge 50$$

$$x_{14} + x_{24} + x_{34} + x_{44} \ge 50$$

$$x_{ij} \ge 0$$
; $i \in \{1,2,3\}, j \in \{1,2,3,4\}$

Standard Transportation Problem

$$\min \ 4x_{11} + 6x_{12} + 8x_{13} + 8x_{14} + 6x_{21} + 8x_{22} + 6x_{23} + 7x_{24} + 5x_{31} + 7x_{32}$$

$$+6x_{33}+8x_{34}$$

Subject to:

$$x_{11} + x_{12} + x_{13} + x_{14} \le 40$$

$$x_{21} + x_{22} + x_{23} + x_{24} \le 60$$

$$x_{31} + x_{32} + x_{33} + x_{34} \le 50$$

$$x_{11} + x_{21} + x_{31} + x_{41} \ge 20$$

$$x_{12} + x_{22} + x_{32} + x_{42} \ge 30$$

$$x_{13} + x_{23} + x_{33} + x_{43} \ge 50$$

$$x_{14} + x_{24} + x_{34} + x_{44} \ge 50$$

$$x_{ij} \ge 0$$
; $i \in \{1,2,3\}, j \in \{1,2,3,4\}$

4	6	8	8	40
6	8	6	7	60
5	7	6	8	50

4	6	8	8
6	8	6	7
5	7	6	8

40

60

50

20 30 50 50

4 20	6 20	8	8
6	8	6	7 59
5	⁷ /s	6 40	8

$$\begin{array}{l}
\overline{C}_{13} = +8 - 6 + 7 - 8 + 7 - 6 = 2 \\
\overline{C}_{14} = 8 - 8 + 7 - 6 = 1 \\
\overline{C}_{01} = +2 \\
\overline{C}_{21} = +2 \\
\overline{C}_{31} = 0
\end{array}$$

$$\begin{array}{l}
\overline{C}_{33} = -1 \longrightarrow P = 40 \longrightarrow 33 = 40
\end{array}$$

4 20	6 20	8	8
6	8 🗡	6 10	50
5 🛧	7 10	6 40	8

20 30 50 50

Minimum Spanning Tree - Prime's Algorithm

Shortest Path Problem - Dijkstra's Algorithm

min
$$15x_{12} + 20x_{13} + 10x_{24} + 15x_{34} + 25x_{25} + 20x_{36} + 20x_{45} + 30x_{47} + 15x_{46} + 10x_{57} + 20x_{67}$$
Subject to:
$$x_{12} + x_{13} = 1$$

$$-x_{12} + x_{24} + x_{25} = 0$$

$$-x_{13} + x_{34} + x_{36} = 0$$

$$-x_{24} - x_{34} + x_{45} + x_{46} + x_{47} = 0$$

$$-x_{25} - x_{45} + x_{57} = 0$$

$$-x_{36} - x_{46} + x_{67} = 0$$

$$-x_{67} - x_{47} - x_{57} = -1$$

$$x_{ii} = 0,1$$

Shortest Path Problem - Dijkstra's Algorithm

Shortest Path Problem - Dijkstra's Algorithm

min $8x_{12} + 6x_{13} + 5x_{24} + 6x_{34} + 7x_{25} + 3x_{35} + 4x_{45}$ Subject to:

$$x_{12} + x_{13} = 6$$

$$\rightarrow$$
 $-x_{12} + x_{24} + x_{25} = 0$

$$-x_{13} + x_{34} + x_{35} = 4$$

$$-x_{24} + x_{34} - x_{45} = -5$$

$$-x_{25} - x_{35} - x_{45} = -5$$
$$x_{ij} \ge 0$$

$$\frac{1}{C_{15}} = -6$$

$$\frac{1}{C_{34}} = -6$$

$$\frac{1}{C_{45}} = -6$$

Travelling Salesman Problem - Nearest Neighbor

	1	2	3	4	5
1		10	8	9	7
2	10		10	5	6
3	8	10		8	9
4	9	5	8		6
5	7	6	9	6	

Travelling Salesman Problem - Nearest Neighbor

	1	2	3	4	5
1		10	8	9	7
2	10		10	5	6
3	8	10		8	9
4	9	5	8		6
5	7	6	9	6	

