ESIEE E2 Le champ Électrostatique

Romain Gille

September 27, 2015

L'électrostatique est une grandeur constante, indépendante du temps.

1 Origine du champ électrostatique

Le point de départ est la loi de Coulomb : l'effet de la force \vec{F} exercée par une charge ponctuelle q, placée en un point P, sur une autre charge q' placée en un point M, soit :

$$\vec{F}_{q \to q'} = \frac{1}{4\pi\epsilon_0} \frac{qq'}{r^2} \vec{u}_{PM}$$

r = PM(distance)

$$\vec{u}_{PM} = \frac{\vec{P}M}{PM}$$

 $\epsilon_0 = \text{constante}$ diélectrique du vide = 8,85.10⁻¹² $F.m^{-1}$ (donné en examen)

Si qq'>0 , $\vec{F}_{q\to q'}$ va de P vers M.

Si qq' < 0, $\vec{F}_{q \to q'}$ va de M vers P.

Ceci est la description en terme de force-particules mais il existe aussi la description sous la forme champ-énergie.

$$\vec{F}_{q \to q'} = q' \frac{q}{4\pi\epsilon_0 r^2} \vec{u}_{PM} = q' \vec{E}(M)$$

Une charge fixe génère un champ électrostatique

$\mathbf{2}$ Distribution des charges

On observe rarement une charge ponctuelle mais des distributions de charges.

 $\vec{E}(M)$ est créé par une assemblée de charges, il est la somme (vectorielle) des champs individuels engendrés par chacune des charges : c'est le principe de superposition.

2.1Dans le cas d'une distribution discrètes de charges

Supposons n charges q, placés en P_i .

Chacune de ces charges forment un champ $\vec{E}_i(M) = \frac{1}{4\pi\epsilon_0} \frac{q_i}{r_i^2} \vec{u}_{P_i M}$.

Le champ total crée en M est alors $\sum_{i=1}^N \vec{E}_i(M) = \vec{E}(M)$

Pour une distribution continue 2.2

Si une charge Q occupe un volume Ω de dimensions macroscopiques, on découpe Ω en petits volumes dT_P centrés sur un point P.

On introduit alors la densité volumique de charges ρ qui comptabilise le nombre de charges par unité de volume.

Si dq_P est la charge dans dT_P , $\rho(P) = \frac{dq_P}{dT_P}$ en $C.m^{-3}$. Pour avoir la charge Q contenue dans Ω , on somme toutes les charges dq_P en faisant parcourir à P tout Ω :

$$Q = \iiint_{\Omega} dq_P = \iiint_{\Omega} \rho(P) dT_P \quad en \quad C$$

Pour trouver le champ $\vec{E}(M)$ créé par Q, on calcule le champ élémentaire

$$d\vec{E}_P(M) = \frac{1}{4\pi\epsilon_0} \frac{dq_P}{PM^2}$$

$$\vec{E}(M) = \iiint_{\Omega} d\vec{E}_P(M) = \iiint_{\Omega} (\frac{1}{4\pi\epsilon_0} \frac{\rho(P)dT_P}{PM^2} \vec{u}_{PM})$$

Cas particulier:

2.2.1

Si Ω a une dimension très inférieure devant les deux autres, on introduit à partir de la répartition volumique réelle des charges, une répartition surfacique fictive.

$$dq_P = \rho(P)dT_P = \rho(P) \ dl_P \ dS_P = \tau(P)dS_P$$

où $\tau(P)$ = densité surfacique de charges

$$Q = \iiint_{\Omega} dq_P = \iint_{\Sigma} \tau(P) dS_P$$

$$\vec{E}(M) = \iint_{\Sigma} d\vec{E}(M) = \iint_{\Sigma} (\frac{1}{4} \pi \epsilon_0 \frac{\tau(P)}{PM^2})$$

2.2.2

Si Ω a une s dimension très supérieure devant les deux autres (fil), on définit une densité linéique de charges par le nombre de charges par unité de longueur en $C.m^{-1}$.

$$dT_P = dl_P d\Sigma_P \to dq_P = \rho(P) dT_P = \rho(P) d\Sigma_P dl_P$$

$$\lambda(P) = \frac{dq_P}{dl_P}$$

$$Q = \int_{fil} \lambda(P) dl_P \to \vec{E}(M) = \int_{fil} \left(\frac{1}{4\pi\epsilon_0} \frac{\lambda(P)}{PM^2} dl_P \vec{u}_{PM}\right)$$

3 Propriétés de symétrie

Pour éviter des calculs inutiles, on va tirer partie des propriétés de \vec{E} par rapport à un plan de symétrie ou par rapport à un plan d'anti-symétrie de la distribution de charges.

3.1 La distribution de charges présente un plan de symétrie

Cf Schéma avec deux points P_1 et P_2 de charges q et symétriques par rapport à l'axe Oz.

On veut déterminer $\vec{E}(M) = \vec{E}_1(M) + \vec{E}_2(M)$ puis le comparer à $\vec{E}(M')$ où M' est le symétrique de M par rapport à Oz.

On décompose les champs en une somme de composantes perpendiculaires.

$$E_{1x}(M) = -E_{2x}(M') \quad E_{1x}(M') = -E_{2x}(M)$$

$$E_{1z}(M) = E_{2z}(M') \quad E_{1z}(M') = E_{2z}(M)$$

$$E_{x}(M) = E_{1x}(M) + E_{2x}(M) = -E_{2x}(M') - E_{1x}(M') = E_{x}(M')$$

$$E_{z}(M) = E_{1z}(M) + E_{2z}(M) = E_{2z}(M') + E_{1z}(M') = E_{z}(M')$$

Résultat général :

Pour un plan de symétrie de la distribution de charges :

- \bullet La composante de \vec{E} parallèle est conservée.
- La composante de \vec{E} perpendiculaire est changée en son opposée.

Cas particulier:

Si M = M', $\vec{E}(M \in Oz)$ est parallèle à Oz. Il reste seulement à calculer :

$$E_z(M) = 2E_{1z} = 2E_1 \cos \alpha$$
$$\cos \alpha = \frac{z}{P_1 M}$$

A retenir:

Si la ditribution de charges présente un plan de symétrie :

- \vec{E} est contenu dans ce plan.
- Si un point M appartient aux deux plans de symétrie, alors $\vec{E}(M)$ a pour direction la droite intersection de ces deux plans.

3.2 Par un plan d'antisymétrie

On procède de la même manière que par un plan de symétrie de la distribution de charges :

- la composante du champ parallèle au plan est changée en son opposée.
- la composante du champ perpendiculaire au plan est conservée.

3.3 Propriétés d'invariance

Si une distribution de charges n'est pas modifiée par une translation le long d'un axe ou une rotation quelconque autour d'un axe, on dit qu'il y a invariance par translation ou par rotation.

On peut alors éliminer des variables pour les composantes de \vec{E} .

Rappels:

Dans un repère cartésien, les composantes E_x, E_y, E_z dépendent à priori de x, y, z.

4 Le théorème de Gauss

Énoncé:

Le flux du champ électrostatique à travers une surface fermée Σ_f qui délimite Ω est égal à $\frac{1}{\epsilon_0}$ fois la charge contenue dans Ω :

$$\iint_{\Sigma_f} \vec{E}(M \in \Sigma_f) . \vec{dS} = \frac{Q_i nt}{\epsilon_0}$$

Cet outil sert à déterminer $\vec{E}(M)$ en tout point M de l'espace si on a pu déterminer la direction et la dépendance de $\vec{E}(M)$. On cherche une surface fermée Σ_f sur laquelle $\vec{E}(M)$ est colinéaire à \vec{dS} sur une partie au moins. Prenons pour Σ_f la surface qui délimite le cylindre Ω d'axe Oz et de rayon $\rho = OM$.

 Σ_f se décompose sur trois surfaces :

• La surface latérale de Ω , notée Σ_l , sur laquelle \vec{E} est uniforme car ρ est fixé.

Un élément de cette surface est orienté par

$$\vec{dS} = dS_{\rho}\vec{u}_{\rho}$$

$$\theta_{l} = \iint_{\Sigma_{l}} E(\rho)\vec{u}_{\rho} = \iint_{\Sigma_{l}} E(\rho)dS_{\rho} = E(\rho)\iint_{\Sigma_{l}} dS_{l}$$

$$dS_{l} = \rho d\phi dz \Rightarrow \iint_{\Sigma_{l}} dS\rho = \rho \int_{0}^{2x} d\phi \int_{\frac{-h}{2}}^{\frac{h}{2}} dz = 2\pi\rho h$$

$$\theta_{l} = 2\pi\rho h E(\rho)$$

• La surface de base supérieure est orientée par :

$$\vec{dS}_{sup} = dS\vec{u}_z$$

$$d\theta_{sup} = E(\rho)\vec{u}_\rho \cdot dS\vec{u}_z$$

• La surface de base inférieure est orientée par :

$$\vec{dS}_{inf} = -dS\vec{u}_z$$

$$d\theta_{inf} = -E(\rho)\vec{u}_\rho . dS\vec{u}_z$$

Final ement:

$$\theta = \theta_l = 2\pi \rho h E(\rho)$$

 Q_int est la charge localisée sur le fil entre $\frac{-h}{2}$ et $\frac{h}{2}$

$$Q_i n t = \int_{fil} dq = \int_{-\frac{h}{2}}^{\frac{h}{2}} \lambda_0 h$$

On applique avec le théorème de Gauss :

$$2\pi\rho hE(\rho)=\frac{\lambda_0 h}{\epsilon_0}$$

$$E(\rho) = \frac{\lambda_0}{2\pi\rho\epsilon_0}$$

$$\vec{E}(M) = \frac{\lambda}{2\pi\rho\epsilon_0} \vec{u}_{\rho}$$