STOR566: Introduction to Deep Learning

Lecture 9: Recurrent Neural Networks

Yao Li UNC Chapel Hill

Sep 19, 2024

Materials are from Deep Learning (UCLA)

Representation for sentence/document

Bag of Words

- A classical way to represent NLP data
- \bullet Text \rightarrow Vector/Matrices
- Problem: text length not fixed

Bag of Words

- A classical way to represent NLP data
- Text → Vector/Matrices
- Problem: text length not fixed
- Bag of words:

Sentence \rightarrow *d*-dimensional vector \mathbf{x}

d = number of potential words (very large)

Bag of Words: Processing Steps

Step 1: Collect Data

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness,

Bag of Words: Processing Steps

Step 1: Collect Data

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness,

Step 2: Build the Vocabulary
 {it, was, the, best, of, times, worst, age, wisdom, foolishness}

Bag of Words: Processing Steps

• Step 1: Collect Data

It was the best of times, it was the worst of times, it was the age of wisdom, it was the age of foolishness,

Step 2: Build the Vocabulary

{it, was, the, best, of, times, worst, age, wisdom, foolishness}

Step 3: Create Document/Sentence Vectors

	it	was	the	best	of	times	worst	age	wisdom	foolishness
d_1	1	1	1	1	1	1	0	0	0	0
d_2	1	1	1	0	1	1	1	0	0	0
d_3	1	1	1	0	1	0	0	1	1	0
d_4	1	1	1	0	1	0	0	1	0	1

Bag of *n*-gram

• Bag of n-gram features (n = 2):

The International Conference on Machine Learning is the leading international academic conference in machine learning,

2
2
2
0
2
1
0

(international conference)	1
(machine learning)	2
(leading international)	1
(totoro tiger)	0
(tiger woods)	0
(international academic)	1
(academic conference)	1

TF-IDF

 Use the bag-of-word matrix or the normalized version (TF-IDF) for a dataset (denoted by D):

$$tfidf(doc, word, D) = tf(doc, word) \cdot idf(word, D)$$

• tf (doc, word): term frequency

(word count in the document)/(total number of terms in the document)

 idf (word, Dataset): inverse document frequency log((Number of documents)/(Number of documents with this word))

Data Matrix (document)

$$\begin{split} & tfidf(doc, word, D) = \mathit{tf}(doc, word) \cdot \mathit{idf}(word, D) \\ & TF = (word \ count \ in \ the \ doc)/(total \ number \ of \ terms \ in \ the \ doc) \\ & IDF = log((Number \ of \ docs)/(Number \ of \ docs \ with \ this \ word)) \end{split}$$

	angeles	los	new	post	times	york
d1	0	0	1	0	1	1
d2	0	0	1	1	0	1
d3	1	1	0	0	1	0

tf-idf

	angeles	los	new	post	times	york
d1	0	0	$\frac{1}{3} \times \log\left(\frac{3}{2}\right) = 0.135$	0	0.135	0.135
d2	0	0	0.135	$\frac{1}{3} \times \log(3) = 0.366$	0	0.135
d3	0.366	0.366	0	0	0.135	0

Bag of word + linear model

- Example: text classification (e.g., sentiment prediction, review score prediction)
- Linear model: $y \approx \text{sign}(\mathbf{w}^T \mathbf{x})$ (e.g., by linear SVM/logistic regression)
- w_i: the "contribution" of each word

 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8

Bag of word + Fully connected network

•
$$f(\mathbf{x}) = W_L \sigma(W_{L-1} \cdots \sigma(W_0 \mathbf{x}))$$

Bag of word + Fully connected network

•
$$f(\mathbf{x}) = W_L \sigma(W_{L-1} \cdots \sigma(W_0 \mathbf{x}))$$

- W_0 is also called the word embedding matrix
- w_i : d_1 dimensional representation of i-th word
- $W_0 \mathbf{x} = x_1 \mathbf{w}_1 + x_2 \mathbf{w}_2 + \dots + x_d \mathbf{w}_d$ is a linear combination of these vectors

Recurrent Neural Network

Time Series/Sequence Data

- Input: $\{x_1, x_2, \cdots, x_T\}$
 - Each x_t is the feature at time step t
 - Each x_t can be a d-dimensional vector
- Output: $\{y_1, y_2, \dots, y_T\}$
 - Each y_t is the output at step t
 - Multi-class output or Regression output:

$$y_t \in \{1, 2, \cdots, L\}$$
 or $y_t \in \mathbb{R}$

ullet Translation: $\mathbf{y}_t \in \mathbb{R}^d$

Example: Time Series Prediction

- Climate Data:
 - x_t : temperature at time t
 - y_t : temperature (or temperature change) at time t+1
- Stock Price: Predicting stock price

Example: Language Modeling

The cat is ?

Example: Language Modeling

The cat is ?

- x_t : one-hot encoding to represent the word at step t ([0, ..., 0, 1, 0, ..., 0])
- y_t : the next word

 $y_t \in \{1, \cdots, V\}$ V: Vocabulary size

Example: POS Tagging

- Part of Speech Tagging:
 Labeling words with their Part-Of-Speech (Noun, Verb, Adjective, ...)
- x_t : a vector to represent the word at step t
- y_t : label of word t

picture from https://medium.com/analytics-vidhya/pos-tagging-using-conditional-random-fields-92077e5eaa31

Recurrent Neural Network (RNN)

- x_t : t-th input
- s_t : hidden state at time t ("memory" of the network)

$$\mathbf{s}_t = f(U\mathbf{x}_t + W\mathbf{s}_{t-1})$$

W: transition matrix, U: word embedding matrix s_0 usually set to be 0, f: activation function

Output at time t:

$$ho_t = V s_t$$

Recurrent Neural Network (RNN)

- Training: Find U, W, V to minimize empirical loss:
- Loss of a sequence:

$$\sum_{t=1}^{I} \mathsf{loss}(V s_t, y_t)$$

 $(s_t \text{ is a function of } U, W, V)$

Recurrent Neural Network (RNN)

- Training: Find U, W, V to minimize empirical loss:
- Loss of a sequence:

$$\sum_{t=1}^{I} \mathsf{loss}(V\boldsymbol{s}_t, y_t)$$

 $(s_t \text{ is a function of } U, W, V)$

Loss on a batch:

Average loss over all sequences in a batch

Solved by SGD/Adam

RNN: Text Classification

- Not necessary to output at each step
- Text Classification:

$$\mathsf{sentence} \ \to \ \mathsf{category}$$

Output only at the final step

Model: add a fully connected network to the final embedding

Multi-layer RNN

(Figure from https://subscription.packtpub.com/book/big_data_and_business_intelligence)

Problems of Classical RNN

- Hard to capture long-term dependencies
- Hard to solve (vanishing gradient problem)
- Solution:
 - LSTM (Long Short Term Memory networks)
 - GRU (Gated Recurrent Unit)
 - • •

LSTM

• RNN:

• LSTM:

Neural Machine Translation (NMT)

- Out the translated sentence from an input sentence
- Training data: a set of input-output pairs (supervised setting)
- Encoder-decoder approach:
 - Encoder: Use (RNN/LSTM) to encode the input sentence input a latent vector
 - Decoder: Use (RNN/LSTM) to generate a sentence based on the latent vector

RNN: Neural Machine Translation

- Start input of the decoder?
- When to stop?

Problems

- Only the last hidden state is used in decoding.
- Do not work well on long sequences.
- Solution:
 - Attention Mechanism:

How about if we give a vector representation from every encoder step to the decoder model?

Attention in NMT

- Usually, each output word is only related to a subset of input words (e.g., for machine translation)
- Let u be the current decoder hidden state v_1, \ldots, v_n be the hidden sate for each input word
- Compute the weight of each state by

$$\boldsymbol{p} = \mathsf{Softmax}(\boldsymbol{u}^T \boldsymbol{v}_1, \dots, \boldsymbol{u}^T \boldsymbol{v}_n)$$

• Compute the context vector by $V \boldsymbol{p} = p_1 \boldsymbol{v}_1 + \cdots + p_n \boldsymbol{v}_n$

Attention in NMT

 $(Figure\ from\ https://towards datascience.com/neural-machine-translation-nmt-with-attention-mechanism)$

Conclusions

- Bag of words
- RNN
- Attention in NMT

Questions?