Impact of Forecast Errors on Expansion Planning of Power Systems with a Renewables Target INFORMS Annual Meeting 2014

Salvador Pineda ¹ Juan M. Morales ² Trine K. Boomsma ¹

 $^1\mathrm{University}$ of Copenhagen, funded by FEMs project (www.futureelmarket.dk)

 $^2\mathsf{Technical}$ University of Denmark

November, 11, 2014

INFORMS14 November, 11, 2014 1 /

Wind power production

- Wind power production varies through time
- Wind power production is hard to predict in advance

INFORMS14 November, 11, 2014 2 /

We were wondering...

- How can we account for forecast errors within current generation and transmission capacity expansion models?
- What is the impact of these forecast errors on generation and transmission capacity expansion planning?
- What is the impact of the market design on generation and transmission capacity expansion planning?

Some assumptions

- Static expansion models (single target year)
- Focus on short-term system operation
- Unit commitment costs are internalized through balancing offers
- No inter-temporal constraints (stationary process)
- Energy-only market with marginal pricing
- Perfect competitive market (central planner approach)
- Inelastic demand
- DC representation of the network

Two markets floors

INFORMS14 November, 11, 2014 5 /

Coordination between the two market floors

Inefficient market

Day-ahead: min $\mathcal{C}^D(\Phi^D)$

Balancing: min $C^B(\Phi^D, \Phi^B)$

Efficient market

Day-ahead + balancing

$$\min \, \mathcal{C}^D(\Phi^D) + \textstyle \sum_r \pi_r \mathcal{C}^B(\Phi^D, \Phi^B)$$

- Cheapest day-ahead
- Expensive balancing
- High total cost
- Reserves after energy

- More expensive day-ahead
- Cheaper balancing
- Minimum total cost
- Simultaneous reserve and energy

We have compared three models

- G-T expansion problem without forecast errors
- G-T expansion problem with forecast errors under efficient market
- G-T expansion problem with forecast errors under inefficient market

November, 11, 2014

G-TEP without forecast errors

$$\begin{aligned} & \underset{\overline{p}, \Phi_{s}^{D}}{\text{Min}} & & \sum_{s} \tau_{s} \mathcal{C}^{D} \left(\Phi_{s}^{D} \right) + \mathcal{C}^{I} \left(\overline{p} \right) \\ & \text{s.t.} & & \psi \geqslant \psi_{\text{target}} \\ & & f \left(\overline{p} \right) \leqslant 0 \\ & & h^{D} \left(\Phi_{s}^{D}; l_{s} \right) = 0, \quad \forall s \\ & & g^{D} \left(\overline{p}, \Phi_{s}^{D}; \rho_{s} \right) \leqslant 0, \quad \forall s. \end{aligned}$$

- \overline{p} capacity of new lines and conventional/stochastic generation
- ψ demand covered by stochastic generation (%)
- Φ_s^D dispatch decisions
- ρ_s capacity factor of stochastic units

G-TEP with forecast errors under efficient market

$$\underset{\overline{p}, \Phi_s^D, \Phi_{sr}^B}{\text{Min}} \quad \sum_{s} \tau_s \left(\mathcal{C}^D \left(\Phi_s^D \right) + \sum_{r} \pi_{sr} \mathcal{C}^B \left(\Phi_{sr}^B \right) \right) + \mathcal{C}^I \left(\overline{p} \right) \\
\text{s.t.} \quad \psi \geqslant \psi_{\text{target}} \\
f \left(\overline{p} \right) \leqslant 0 \\
h^D \left(\Phi_s^D; l_s \right) = 0, \quad \forall s \\
g^D \left(\overline{p}, \Phi_s^D; \rho_s \right) \leqslant 0, \quad \forall s \\
h^B \left(\Phi_{sr}^B \right) = 0, \quad \forall s, \forall r \\
g^B \left(\overline{p}, \Phi_s^D, \Phi_{sr}^B; \rho_s, \Delta \rho_{sr} \right) \leqslant 0, \quad \forall s, \forall r.$$

 Φ^B_{sr} re-dispatch decisions

 $\Delta \rho_{sr}$ variation of capacity factor

INFORMS14 November, 11, 2014 9

G-TEP with forecast errors under inefficient market

$$\begin{split} & \underset{\overline{p}, \Phi_{s}^{D}, \Phi_{sr}^{B}}{\operatorname{Min}} & \sum_{s} \tau_{s} \left(\mathcal{C}^{D} \left(\Phi_{s}^{D} \right) + \sum_{r} \pi_{sr} \mathcal{C}^{B} \left(\Phi_{sr}^{B} \right) \right) + \mathcal{C}^{I} \left(\overline{p} \right) \\ & \text{s.t.} & \psi \geqslant \psi_{\text{target}} \\ & f \left(\overline{p} \right) \leqslant 0 \\ & h^{B} \left(\Phi_{sr}^{B} \right) = 0, \quad \forall s, \forall r \\ & g^{B} \left(\overline{p}, \Phi_{s}^{D}, \Phi_{sr}^{B}; \rho_{s}, \Delta \rho_{sr} \right) \leqslant 0, \quad \forall s, \forall r \\ & \Phi_{s}^{D} \in \arg \begin{cases} \underset{\Phi_{s}^{D}}{\operatorname{Min}} & \mathcal{C}^{D} \left(\Phi_{s}^{D} \right) \\ \text{s.t.} & h^{D} \left(\Phi_{s}^{D}; l_{s} \right) = 0 \\ & g^{D} \left(\overline{p}, \Phi_{s}^{D}; \rho_{s} \right) \leqslant 0 \end{cases} \forall s. \end{split}$$

Impose cost merit-order at the day-ahead

INFORMS14 November, 11, 2014 10 / 1

Data of illustrative example

- Inflexible and cheap generating unit (g_1)
- Inelastic load (l_1)
- Expansion projects:
 - 1 wind farm (\hat{w}_1)
 - 2 flexible but more expensive generating units (\hat{g}_1, \hat{g}_2)
 - 3 transmission lines $(\hat{f}_1, \hat{f}_2, \hat{f}_3)$

INFORMS14 November, 11, 2014 11 /

Data of illustrative example

- 20 day-ahead blocks
- 30 balancing scenarios

INFORMS14 November, 11, 2014

Results of illustrative example (renewable target 40%)

	No forecast errors	Efficient market	Inefficient market
Cap. \hat{w}_1	392	413	441
Cap. \hat{f}_1	392	369	377
Cap. \hat{g}_1/\hat{f}_2	0	0	195
Cap. \hat{g}_2/\hat{f}_3	0	202	0
Inv. cost	20.69	27.15	28.52

- Forecast errors involve higher stochastic power capacity
- Without forecast errors, no investments in flexible generation
- With forecast errors, some investment in flexible generation
- Forecast errors increased the investment costs
- Investment costs are reduced under efficient market

INFORMS14 November, 11, 2014 13 /

Data of case study

- 24-bus system (IEEE)
- 10 existing conventional units
- 3 flexible generating units
- Variable demand
- 4 projects of stochastic units
- 3 new flexible generating units
- 7 new transmission lines
- Renewable target of 20/30/40%

INFORMS14 November, 11, 2014 14 /

Expansion planning (renewable target 20%)

		No errors	Efficient	Inefficient
	n_6	-	-	50
Wind capacity	n_8	950	1000	900
	n_{13}	-	-	-
	n_{23}	400	350	450
	n_{18}	-	-	-
Flexible Generation	n_{21}	-	80	-
	n_{22}	-	-	160
	$n_6 n_{10}$	-	-	-
	n_8n_9	-	-	-
	$n_{11}n_{13}$	175	175	175
Line capacity	$n_{11}n_{14}$	-	-	175
	$n_{12}n_{21}$	-	350	-
	$n_{12}n_{23}$	-	-	-
	$n_{14}n_{16}$	-	-	175
Investment cost		162.6	165.1	172.8

INFORMS14

Impact of forecast errors

INFORMS14 November, 11, 2014 16 / 1

Effects of disregarding forecast errors

Market	Desired target	Cost increase	Achieved target
Efficient	20%	0.1%	19.2%
	30%	0.5%	26.5%
	40%	-0.3%	31.5%
Inefficient	20%	8.7%	19.3%
	30%	16.2%	28.7%
	40%	19.8%	36.1%

- Efficient market design
 - Similar total costs
 - Renewables penetration below the target
- Inefficient market design
 - Significant increase of total costs
 - Penetration levels closer to the desired target

INFORMS14 November, 11, 2014 17 /

Summary

- We have presented a set of generation and transmission expansion models that account for the forecast errors of stochastic production and two different market designs
- These models can be reformulated as single-level mixed-integer linear programming problems
- Considering production forecast errors impacts the generation and transmission expansion planning of a power system
- An efficient market design softens the negative effects of forecast errors and leads to cheaper expansion plans for a given target
- The consequences of an expansion plan determined under an error-free assumption highly depend on the market design

Future research

- Incorporate strategic behaviour of market players
- Modify the models to account for flexibility using unit commitment constraints (ramp rates, minimum times, etc)
- Model intermediate market designs between the paradigmatic efficient and inefficient
- Apply dedicated computational methods to improve tractability of the multi-year case

Thanks for the attention!

Questions?

Website: https://sites.google.com/site/slv2pm/