CĂP GHÉP VÀ ĐỒ THỊ HAI PHẦN

NỘI DUNG

- Tập đỉnh tựa và cặp ghép
- ❖ Đồ thị hai phần
- ❖ Đồ thị riêng hai phần

TẬP ĐỈNH TỰA VÀ CẶP GHÉP

- Bài toán phân công nhiệm vụ
- Khái niệm tập đỉnh tựa
- Khái niệm cặp ghép

BÀI TOÁN PHÂN CÔNG NHIỆM VỤ

- Một cơ quan có:
 - \overline{n} nhân viên: $\overline{x_1}, \overline{x_2}, ..., \overline{x_n}$
 - m nhiệm vụ: $y_1, y_2, ..., y_m$.

Mỗi nhân viên có thể đảm nhiệm một hay nhiều nhiệm vụ và mỗi nhiệm vụ có một số nhân viên có thể đảm nhiệm được.

Yêu cầu: Phân công cho mỗi nhân viên đảm nhiệm một nhiệm vụ thích hợp với trình độ của người đó?

TẬP ĐỈNH TỰA

Dịnh nghĩa

Giả sử G = (V, E) là một đồ thì vô hướng.

Tập $C \subseteq V$ được gọi là *tập đỉnh tựa* nếu mỗi cạnh của G đều kề với ít nhất một đỉnh nào đó trong C.

TẬP ĐỈNH TỰA (tiếp)

Tập đỉnh tựa của một đồ thị luôn tồn tại.

Ví dụ: Tập tất cả các đỉnh.

Song ta thường quan tâm đến tập đỉnh tựa có ít đỉnh nhất.

CĂP GHÉP

* Định nghĩa

Giả sử G = (V, E) là một đồ thì vô hướng.

Tập $W \subseteq E$ được gọi là *cặp ghép* nếu trong W không có hai cạnh nào kề nhau.

CĂP GHÉP (tiếp)

- Cặp ghép của một đồ thị luôn tồn tại.
- Mỗi cạnh trong cặp ghép tạo nên sự ghép giữa một đỉnh với đỉnh kề của nó.
- Ta thường quan tâm đến các cặp ghép có nhiều cạnh nhất.

VÍ DỤ

Với đồ thị cho trên hình vẽ:

- Các tập đỉnh tựa: {1, 2, 6}, {2, 5, 6}, ...
- Các cặp ghép: $\{(1,2), (3,6)\}, \{(1,5), (2,4), (3,6)\}, \dots$

ĐỒ THỊ HAI PHẦN

- *Khái niệm đồ thị hai phần
- Thuật toán kiểm tra một đồ thị là đồ thị hai phần
- Một số tính chất của đồ thị hai phần

ĐÒ THỊ HAI PHẦN (tiếp)

* Định nghĩa

Đồ thị G = (V, F) được gọi là đồ thị hai phần nếu tập đỉnh V có thể tách thành hai tập ổn định trong không giao nhau.

$$\begin{split} V &= V_1 \cup V_2 \quad , \quad V_1 \cap V_2 = \varnothing \ , \\ F(V_1) &\subseteq V_2 \quad , \quad F(V_2) \subseteq V_1 \ . \end{split}$$

ĐÔ THỊ HAI PHẦN (tiếp)

Khi đó, mỗi cạnh có một đầu thuộc V_1 và đầu kia thuộc V_2 .

 V_1 và V_2 là các tập đỉnh tựa của đồ thị G.

Nếu đồ thị có ít nhất một cạnh, khái niệm đồ thị hai phần trùng với điều kiện sắc số bằng 2.

• Ký hiệu đồ thị hai phần là: $G = (V_1, V_2, F)$.

VÍ DỤ

Cho đồ thị vô hướng (hình bên trái):

Vẽ lại đồ thị (hình bên phải) ta nhận được:

- Đồ thị trên là đồ thị hai phần.
- Tập đỉnh tựa bé nhất là {1, 2, 7}.
- Cặp ghép lớn nhất là {(1,3), (2,5), (4,7)}.

KIỂM TRA MỘT ĐỒ THỊ LÀ ĐỒ THỊ HAI PHẦN

* Thuật toán

- 1) Chọn một đỉnh bất kỳ a trong đồ thị G.
- 2) Đặt $V_1 = \{a\}$.
- 3) Đặt V_2 là tập các đỉnh kể của các đỉnh trong V_1 .
- 4) Nếu $V_1 \cap V_2 \neq \emptyset$ thì kết luận đồ thị không phải là đồ thị hai phần, ngược lại thì quay lên bước 3)
- 5) Khi hết đỉnh để thêm vào, nếu $V_1 \cap V_2 = \emptyset$ thì kết luận đồ thị là đồ thị hai phần.

VÍ DỤ

*Xét đồ thị vô hướng được cho trên hình vẽ.

- Bắt đầu chọn: $V_1 = \{1\}$, $V_2 = \{2, 4\}$.
- Sau đó thêm vào $V_1 = \{1, 2, 3, 4, 5\}$, ta có:

$$V_1 \cap V_2 \neq \emptyset$$
.

Kết luận: đồ thị không phải là đồ thị hai phần.

* Nếu bỏ cạnh (2, 4) thì đồ thị trên trở thành đồ thị hai phần.