Give an example in \mathbb{R}^2 of linearly independent vectors that are not orthogonal. Also, give an example of orthogonal vectors that are not independent.

2

Find a vector x orthogonal to the row space of A, and a vector y orthogonal to the column space, and a vector z orthogonal to the nullspace:

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 3 \\ 3 & 6 & 4 \end{bmatrix}.$$

3

Construct a matrix with the required property or say why that is impossible.

- (a) Column space contains $\begin{bmatrix} 1\\2\\-3 \end{bmatrix}$ and $\begin{bmatrix} 2\\-3\\5 \end{bmatrix}$, nullspace contains $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$.
- (b) Row space contains $\begin{bmatrix} 1\\2\\-3 \end{bmatrix}$ and $\begin{bmatrix} 2\\-3\\5 \end{bmatrix}$, nullspace contains $\begin{bmatrix} 1\\1\\1 \end{bmatrix}$.
- (c) $Ax = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$ has a solution and $A^{T} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$.
- (d) Every row is orthogonal to every column (A is not the zero matrix).
- (e) The columns add up to a column of 0s, the rows add to a row of 1s.

4

Find $A^{T}A$ if the columns of A are unit vectors, all mutually perpendicular.

5

Project $a_1 = (1,0)$ onto $a_2 = (1,2)$. Then project the result back onto a_1 . Draw these projections and multiply the projection matrices P_1P_2 : Is this a projection?

6

Give an example of each of the following:

- (a) A matrix Q that has orthonormal columns but $QQ^T \neq I$.
- (b) Two orthogonal vectors that are not linearly independent.
- (c) An orthonormal basis for \mathbb{R}^3 , including the vector $q_1 = (1, 1, 1)/\sqrt{3}$.

7

If Q_1 and Q_2 are orthogonal matrices, show that their product Q_1Q_2 is also an orthogonal matrix. (Use $Q^TQ=I$.)

Gram-Schmidt: Find orthonormal vectors q_1 and q_2 in the plane spanned by a = (1, 3, 4, 5, 7) and b = (-6, 6, 8, 0, 8).

9

Find orthonormal vectors q_1, q_2, q_3 such that q_1, q_2 span the column space of

$$A = \begin{bmatrix} 1 & 1 \\ 2 & -1 \\ -2 & 4 \end{bmatrix}.$$

Which of the four fundamental subspaces contains q_3 ?

10

True or false (give an example in either case):

- (a) Q^{-1} is an orthogonal matrix when Q is an orthogonal matrix.
- (b) If Q (3 by 2) has orthonormal columns then ||Qx|| always equals ||x||.