1. The model is

$$y_i = x_i'\beta + e_i$$

$$E(x_ie_i) = 0.$$

The ridge regression estimator for β is

$$\hat{\beta} = (X'X + \lambda I_k)^{-1} (X'Y).$$

Suppose that $\lambda = cn$ with c fixed as $n \to \infty$. Find the probability limit of $\hat{\beta}$ as $n \to \infty$.

2. The model is

$$y_i = x_i'\beta + e_i$$

$$E(x_ie_i) = 0$$

$$\Omega = E(x_ix_i'e_i^2).$$

- (a) Find the method of moments estimators $(\hat{\beta}, \hat{\Omega})$ for (β, Ω) .
- (b) In this model, are $(\hat{\beta}, \hat{\Omega})$ efficient estimators of (β, Ω) ?
- (c) If so, in what sense are they efficient?
- 3. Suppose we have an estimate $\hat{\beta}$ of $\beta \in R$ such that $\sqrt{n} \left(\hat{\beta} \beta \right) \to^d N(0, V)$ as $n \to \infty$, we have a consistent estimator \hat{V} of V, and the parameter of interest is $\theta = \beta^2$.
 - (a) Find the asymptotic distribution of $\hat{\theta} = \hat{\beta}^2$.
 - (b) Use result (a) to form a confidence interval for θ .
 - (c) What are the consequences if $\beta = 0$?
- 4. The model is

$$y_i = x_i \beta + e_i$$

$$E(e_i \mid x_i) = 0$$

where $x_i \in R$. Consider the two estimators

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i y_i}{\sum_{i=1}^{n} x_i^2}$$

$$\tilde{\beta} = \frac{1}{n} \sum_{i=1}^{n} \frac{y_i}{x_i}.$$

- (a) Under the stated assumptions, are both estimators consistent for β ?
- (b) Are there conditions under which either estimator is efficient?