

Lista de Exercícios - Atividade Teórica

Instruções: Escolha um exercício de cada seção a seguir. A entrega das resoluções deve ser feita pelo Canvas da turma teórica em um único arquivo em pdf.

Conjuntos

- 1. Sejam $A = \{x \in \mathbb{Z} : 3 < x \le 7\}$ e $B = \{x \in \mathbb{Z} : x^2 \le 9\}$. Determine os seguintes conjuntos.
 - a) $A \cap B$
- c) $A \setminus B$ e) $\mathcal{P}(A)$
- b) $A \cup B$
- d) $A \times B$ f) $\mathcal{P}(B)$
- 2. Sejam $A = \{0, 1\}, B = \{1, 2, 3\}, C = \{2, 4, 5\}$. Determine
 - a) $A \times (B \cap C)$
 - b) $(A \times B) \cap (B \times C)$
 - c) $(B \setminus C) \times A$.
- 3. Sejam $A = \{0, 1, 2\}, B = \{0, 2, 4\}$. Determine:
 - a) $A \times B$
 - b) $C = \{(x, y) \in A \times B : x > y\}$
 - c) $D = \{(x, y) \in A \times B : x < y\}$
 - d) $E = \{(x, y) \in A \times B : x = y\}$

Operações Binárias

- 1. Verifique quais das seguintes operações são operações binárias sobre o conjunto A.
 - a) x * y = x + y, $A = \{0, 1, 2\}$.
 - b) x * y = x + y, $A = \mathbb{N}$.
 - c) $x * y = x \div y$, A =conjunto dos inteiros.
 - d) $x * y = x \div y$, A =conjunto dos inteiros positivos.
- 2. Verifique quais das seguintes operações binárias em $\mathbb R$ são comutativas.
 - a) $x * y = 3x + 2y^2$
 - b) $x * y = xy^2$
 - c) x * y = x y.
 - d) $x * y = (x y)^2$
 - e) $x * y = \sqrt{x \cdot y}$

Relações

- 1. Considere os conjuntos $A = \{0, 1, 2, 3, 4\}$ e $B = \{0, 1, 2, 3, 4, 5, 6, 7, 8\}$. Determine as relações abaixo e as classifique como: um para um, um para vários, vários para um, vários para vários.
 - a) $R: A \rightarrow B$ dada por $xRy \leftrightarrow x = y$
 - b) $R: B \to A$ dada por $xRy \leftrightarrow x^2 \le y$
 - c) $R: A \to B$ dada por $xRy \leftrightarrow x + y > 8$.
- 2. Considere as seguintes relações em um conjunto $A = \{1, 2, 3, 4\}$. Classifique-as como: reflexivas, simétricas, antissimétricas e transitivas.

$$R_1 = \{(1,1), (1,2), (2,3), (1,3), (1,4)\}$$

$$R_2 = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\}$$

$$R_3 = \{(1,3), (2,1)\}$$

$$R_4 = \emptyset$$

$$R_5 = A \times A$$
.

2. Dados $A = \{0, 1, 2\}$ e $B = \{2, 3, 4\}$, considere a relação $R \subset A \times B$ dada por

$$(x, y) \in R \leftrightarrow x + y \text{ \'e par}$$

- a) Obtenha a relação R^{-1} .
- b) R^{-1} é uma função?
- 3. Dados $A = \{-2, -1, 0, 1, 2\}$ e $B = \{0, 2, 4, 6\}$ e $R \subset A \times B$ dada por

$$xRy \leftrightarrow x + 1 = y$$
.

- a) Determine o domínio da relação R.
- b) Determine a imagem da relação *R*.
- c) Determine a relação inversa R^{-1} .

Funções

1. Considere a função $f: A \to B$ dada por $f(x) = x^2 + 1$ em que

$$A = \{-2, -1, 0\}, B = \{0, 1, 4, 6\}.$$

- a) A função *f* é injetora?
- b) A função *f* é sobrejetora?
- 2. Considere

$$A = \{x \in \mathbb{N} : x \le 5, B = \{x \in \mathbb{Z} : -1 \le x \le 7\}, C = \{0, 1\}$$

e sejam $R_1 \subset A \times B$ e $R_2 \subset B \times C$ as relações dadas por, respectivamente,

$$(x,y) \in R_1 \leftrightarrow y = x + 2$$

$$(x,y) \in R_2 \to \begin{cases} y = 0 \text{ se } x \le 4 \\ y = 0 \text{ se } x > 4 \end{cases}.$$

Obtenha a relação $R_2 \circ R_1$ e verifique se ela é transitiva.

- 3. Mostre que a função f(x) = 5x 2 é injetora em \mathbb{R} .
- 4. Mostre que a função $f(x) = x^2 + 1$ não é injetora em \mathbb{R} .
- 5. Sejam $A = \mathbb{N}$ e $B = \{0, 1, 2\}$. Mostre que a função $f : A \to B$ dada por f(x) = x + 1 é sobrejetora.

Álgebra booleana

- 1. Represente o número decimal 467 como um número binário.
- 2. Represente o número binário 1011001 como número decimal.
- 3. Determine os valores (tabela de valores) da função booleana $F(x, y, z) = xy + \overline{z}$.
- 4. Obtenha o circuito que represente a expressão booleana $x\overline{y} + \overline{x}yz$.
- 5. Um comitê de três indivíduos em uma organização avalia propostas da seguinte forma:
 - 1. Cada indivíduo vota "sim" ou "não" para cada proposta que surgir.
 - 2. Uma proposta é aprovada se receber pelo menos dois votos "sim".

Projete um circuito que determine se uma proposta é ou não aprovada.