Chapter 4: Time Value of Money

Fundamental Rule

- Over time, invested money grows.
- \$1 today is more valuable than \$1 in the future because you can invest \$1 and get \$2.
- We cannot directly compare dollar amounts across time.
- How can we compare instead?

Why study this?

- We use time value of money to:
 - Calculate prices of financial assets.
 - Plan retirement savings.
 - Plan college savings.
 - Make capital budgeting decisions.
- Generally useful when considering whether an investment is a good idea.

Two Types of Calculations

- N = # of compounding periods
- I/YR = interest per period
- PV = sum at beginning
- PMT = **0**
- FV = sum at end

- N = # of payment periods
- I/YR = interest per period
- PV = sum at beginning
- PMT = size of each payment
- FV = sum at end

Time Value of Money Hints

- Draw a time line!
- Learn your calculator:
 - Read the manual.
 - · Check payments per year (usually need one).
 - Negative signs on cash outflows.
 - Clear calculator memory after each problem.
 - Recall chart on the previous slide.

Future Value of a Lump Sum

- I deposit \$100 in a bank account that pays 10%. How much is it worth after one year? Easy—\$110.
- How to formulate using math?

Future Value of a Lump Sum

Drawing the time line:

Using the BA-II Plus:

Future Value: Multiple Periods

- What is \$100 worth after two years? \$121—not \$120!
- Why?

- Compounding: earning interest on your interest.
- After 30 years?
 - Without compounding:
 - With compounding:

The Basic Future Value Formula

- $\cdot FV = PV \times (1 + r)^{N}$
- FV = future value
- PV = present value
- r = interest rate
- N = number of compounding periods
- All other time value of money formulas are based extensions of this.

Compound Interest

 Choose between: (a) \$10,000 each day for one month, and (b) Starting with \$0.01, double it each day for one month.

Compound Interest

Investing \$1000 at 8%

Present Value of a Lump Sum

- Let's reverse the question: How much should I pay today to receive \$110 in one year if I expect a 10% return?
- Another way to say this: how much do I need to start with so that I will have \$110 in one year if I invest at 10%?
- Do the math:

Present Value of a Lump Sum

Drawing the time line:

Using the BA-II Plus:

The Basic Present Value Formula

- $\cdot FV = PV \times (1 + r)^{N}$
- FV = future value
- PV = present value
- r = interest rate
- N = number of compounding periods
- This is a rearrangement of the basic future value formula.

Example

- How long does it take to double your money if you invest at 8% interest?
- There are four variables in this formula. We know three, so we can find the fourth:

Example

What interest rate will double your money in 9 years?

Perpetuities & Annuities

Perpetuities

Make payments perpetually—forever.

 How to compute the present value of all the cash flows?

Example: Preferred Stock

Firms preferred stock promises a \$2 annual dividend
 —one a year, every year. Estimate its price if investors expect a 9% return.

• If the actual price of the stock is \$25.24, what is the implied required rate of return?

Annuities

Pays multiple payments, evenly spaced out.

 Compute the present value using the same strategy as before (discount each payment individually).

Annuity Example: Finding PMT

 A bank lends you \$200,000 to buy a home and charges 5% interest. You pay back the loan and interest in equal annual payments (this is called amortization). The mortgage term is 30 years. What is the size of the payment?

Annuity Example: Finding PMT

• Step 1: Make a time line.

Step 2: Plug in values.

Annuity Example: Finding FV

 How much will be in your bank account if you deposit \$100 at the end of every year for the next four years and your account earns 10% per year?

Math Tricks

- Suppose you the number of periods (N), the interest rate (r), and the present value (PV) of an annuity.
- How can you find its future value? Do you need to know the payments (PMT)?

Math Tricks

• Let's check the math:

Another Example

 How much do you need to put into your retirement account each year if you plan to retire in 30 years and you need \$2 million at the start of retirement, assuming you earn a 12% return?

Another Example

• Step 1: Make a time line.

Step 2: Plug in values.

Annuity Due

- "Due" means payments arrive at the beginning (t=0).
- Example: Assuming a 10% discount rate, how much would you pay for a five year annuity that begins making payments today?

Annuity Due

- The payments are a regular annuity at t = -1.
- Each cash flow is discounted one too many times. We can fix this by multiplying each by (1 + r).

Annuity Due

 Alternatively, use the math trick from before and "push" the PV forward one period.

• (Or use the BA-II Plus in "begin" mode).

Interest Rates

Types of Interest Rates

- Many rates are stated as Annual Interest Rates (APR).
 - Credit cards (e.g. 12% monthly compounding)
 - CD rates (e.g. 1% daily compounding)
 - Coupon rates (e.g. 10% semiannual compounding)
- Stated rates are "in name only" or **nominal** rates they cannot be used for present or future value calculations.

Translating Rates: Nominal to Periodic

- An APR of 12% with monthly compounding means you pay 12% / 12 = 1% per month for twelve months.
- We call 1% the periodic rate: it is the amount of interest earned per compounding period.
- In general, $r_{period} = r_{nominal} / N$.

Translating Rates: Periodic to Effective

 How much interest do we earn per year if we earn1% per month for 12 months (i.e. 1% periodic rate with monthly compounding)?

- We call this the effective (annual) rate: it is the amount of interest that we actually earn in a year.
- In general, $r_{effective} = (1 + r_{period})^{N} 1$.

Translating Rates: Effective to Nominal

- Now we complete the circle: from nominal to effective is $r_{effective} = (1 + r_{nominal}/N)^{N} 1$.
- To get from effective back to nominal, we just solve for the nominal rate above.

Interest Rates: Summary

- The effective rate is what you actually earn during the year (or whatever the duration in the nominal rate is usually we use APR).
- Without knowing the compounding period, nominal rates are meaningless; with the compounding period, we can calculate effective rates and do TVM work.
- The BAII-Plus will also convert rates for you (see examples to follow).

Interest Rates: Summary

Here is a nice way to keep track of all this:

Examples

Is effective rate higher or lower than the APR?

Compounding	N	Formula	Effective Rate
Annual			
Semiannual			
Monthly			
Daily			
Continuous			

Converting Rates: BA-II Plus

- There is a P/Y function on the BA-II Plus: don't use it.
- Calculate the effective rate using ICONV:
 - [2nd][ICONV]
 - 10 [ENTER]
 - [↓] (twice)
 - 2 [ENTER]
 - [1][CPT] 10.25 (safe to use this rate)

Example: Effective to Nominal

- What interest rate does an investment pay per month if the effective annual rate is 10% with monthly compounding?
- [2nd][ICONV], [↓] (once)
- 10 [ENTER], [↓] (once)
- [1] (twice)
- · [CPT] 9.76
- 9.76% is the annual rate—0.81% is the monthly rate.

Compounding Examples

Home Mortgage

- You need \$100,000 to buy a house. You're offered a loan at 7% APR for 30 years with monthly installments.
 You also have \$100,000 in a bank account that earns
 7.15% per year. Which payment option is cheaper?
- (Basic idea) The present value of the loan is \$100,000 by definition. What is the present value of the interest you would earn on your account?
- We need to know the discount rate implied by the loan to do this.

Home Mortgage (continued)

 Step 1) Compute the effective interest rate on the loan.

Step 2) Compute the present value of the account's interest.