Pannon Egyetem Mérnöki Kar

SEGÉDLET

Műszaki hőtan elméleti kérdések

Műszaki hőtan Műszaki áramlástan és hőtan II. Műszaki áramlás- és hőtan

Tartalomjegyzék

\mathbf{A}	lapadatok	2
	A tárgy adatai	2
	A segédlet célja	2
	Ajánlott szakirodalom	2
1.	Hőtani alapfogalmak	3
2.	A tökéletes (ideális) gáz és állapotváltozásai	4
3.	Valóságos gázok és gőzök, halmazállapot-változás	5
4.	Hőkörfolyamatok	6
	4.21. feladat: Túlhevítést alkalmazó Rankine-Clausius-körfolyamat, a tápszivattyú hatásának figyelembe vételével	6
5 .	Nem visszafordítható folyamatok	9
6.	Hűtőgépek, hűtőkörfolyamatok	10
7 .	Hőterjedés	11
8.	A hőcserélők felépítése	12

Alapadatok

A tárgy adatai

Név: Műszaki hőtan Kód: VEMKGEB242H

Kreditérték: 2 (1 elmélet, 1 gyakorlat)

Követelmény típus: vizsga

Szervezeti egység: Gépészmérnöki Intézet

Előadás látogatása: kötelező Gyakorlat látogatása: kötelező

Számonkérés: a félév végén zárthelyi, írásbeli és szóbeli vizsga

A segédlet célja

A segédlet célja.

A segédlet kidolgozása még folyamatban van.

Ajánlott szakirodalom

- Dr. Pleva László, Zsíros László: Műszaki hőtan, Pannon Egyetemi Kiadó (ebből kimarad: 59-62; 66-69; 100-104; 114-209; 237-245; 280-309 oldalak)
- M. A. Mihajev: A hőátadás számításának gyakorlati alapjai, Tankönyvkiadó, Budapest, 1990.

Hőtani alapfogalmak

A tökéletes (ideális) gáz és állapotváltozásai

Valóságos gázok és gőzök, halmazállapot-változás

Hőkörfolyamatok

4.21.feladat: Túlhevítést alkalmazó Rankine-Clausius-körfolyamat, a tápszivattyú hatásának figyelembe vételével

Grőber Adél HRCJNO
Vegyészmérnök alapszak
2019/2020 II. (tavaszi) félév

Rajzolja le a túlhevítést alkalmazó Rankine–Clausius-körfolyamat kapcsolási vázlatát, a körfolyamatot T-s diagramban, figyelembe véve a tápszivattyú hatását! Jelölje be a munkát (w) és a kondenzátorban elvont hőt (q_K) ! Ha mindegyik nevezetes pontban ismertek az állapotjelzők, akkor hogyan számítható a bevitt hő (q_{BE}) , a munka (w), a kondenzátorban elvont hő (q_K) és a termikus hatásfok (η_T) ?

- hőerőművek vízgőz körfolyamatát írja le a Rankine-Clausius-körfolyamat
- a körfolyamat elvégzéséhet szükséges 4 folyamat:
 - állandó nyomású hőközlés a kazánban
 - adiabatikus kiterjedés/expanzió a hőerőgépben (turbina)
 - állandó nyomáson történő hőelvonás, illetve lecsapódás/kondenzáció a kondenzátorban
 - a víz adiabatikus visszaszivattyúzása a kazánba

w: hasznos munka q_{EL} : veszteség w_t : turbina munkája w_{sz} : szivattyú munkája

$$w = q_{BE} - q_{EL} \tag{4.1}$$

$$q_{BE} = w + q_{EL} \tag{4.2}$$

$$q_{BE} = q_{1-4} = q_4 - h_1(p = \text{áll.}) \tag{4.3}$$

$$q_{EL} = -q_{5-6} = h_5 - h_6 \tag{4.4}$$

$$w_t = h_4 - h_5(\delta \ w q_t = -dh) \tag{4.5}$$

$$w_{sz} = h_1 - h_6 \approx 0,01...0,03w_t \tag{4.6}$$

$$\eta_T = \frac{w_t - w_{sz}}{q_{BF}} \approx 35\%...45\% \tag{4.7}$$

4.1. ábra. Kapcsolási rajz

4.2. ábra. Rankine-Clausius-körfolyamat T-s diagramja, túlhevítést alkalmazva, a tápszivattyú hatásának figyelembe vételével

Nem visszafordítható folyamatok

Hűtőgépek, hűtőkörfolyamatok

Hőterjedés

A hőcserélők felépítése