Network flows (cont.)

Let D be some thrushold.

G(D) is the graph which doesn't have (deleted) edges with capacities less than \triangle . Keep the rest. (Keep edges with capacities $\geq \triangle$).

· Find s-t path in G(D)

· Augment the flow by bottle neck

· Construct residual graph and ensure edges have $cap. \gg \Delta$.

· Repeat until there's no s-t path

In each phase; running time:

log |C|. max $\frac{5}{2}$ # of iterations $\frac{5}{2}$. O(m+n) in each $\frac{5}{2}$ phase

where |C|: $\min \begin{cases} \leq C(s \rightarrow u) \\ s \rightarrow u \in E \end{cases}$ $\leq c(w \rightarrow t)$ $w \rightarrow t \in E$

Suppose we have L iterations. So the flow increments by atleast L. D.

If there's an edge with cop. 1.50, then once s flow is augmented, then we have 0.5 D. So in the next itel, uez don't consider 0.5 s in this ites. cog it is lesser than A.

> 0 (log | c|.m. 0 (m+n))

Previous algo: O(|c|.(m+n))

m. log | c | < | c | , then algo · 2 is letter. When

In prev. lec. example, algo. 2 is letter.

Now of 101 is 100, then also 1 is letter

Get max flow as fast as possible by picking up higher valued bottle-new
first.
mit: How do nee pick a △?.
Tuitible A = Largest power of 2 s.t it's smaller man (C).
$\Rightarrow \Delta : \max \left\{ \frac{2^{k}}{2^{k}} \right\} = 2^{k} < c \right\}.$
Also gives guarantee than \triangle is strictly less than $ C $.
Bounds on Δ are: $\frac{ c }{2} \leq \Delta \leq c $
- Construct the grouph G(A). New graph
Also.
1. Find a s → t path in G(D) if it exists.
1. Find a s→t path in G(∆) if it excists. NO YES - Update the flow. This is the only different only different only different
Pes Update the flow. This is the only different only different from $F \leftarrow F + b$ ottleneck $\left(F_{upubed} F + \Delta \right)$ from $F \leftarrow F + b$ Compute residual graph by nemoving edges of cap $< \Delta$.
Compute residual graph by removing edges of cap $< \Delta$.
Only edges on the path would be $O(m+n)$ changed, so me only need to check
O(m+n) changed . No me only need to check book keeping for those edges (if less than or greater to maintain for those edges (if less than or greater than Δ). Update the graph (residual) by including edges of cap. $\geq \Delta$.
$\frac{1}{2} \text{ flow 4 capacity w. s.t. original graph.} $
\mathcal{F} $\Delta = 1$ and there are no s-t paths, then extrem \mathcal{F} .
-> Need to bound the no. of iterations in each & phase.
Lemma: No. of augmentations in each \triangle -phase $\leq 2m$.

Claim: If F lee the flow at the end of D-phase, then the cap of the entoblained at the end of Δ -phase in $G_F(\Delta)$ is atmost $F+m.\Delta$.

u > U E E (Govi.) v'→u' E E (Gari.)

1. $C_e < f_e + \Delta$

of not, then ce ≥ fe+ D

=) There is a gresidual cap. of > A

2. Back edge.

 $f_e < \Delta$

The also would not have terminated as this would lead to s-t path v would be part of S itself.

Flow = $\leq f_e - \leq f_{e^1}$ $f_{\text{twd. edys}} = c':$ $S \rightarrow T$ Edges.

Contradiction that VET. (: v is reachable from S in GF(D) res.)

> \((c_e - \(\Delta \)) - \(\leftilde{c} \) \(\leftilde{c} \)

> $\leq c_e - \leq \Delta$ find. e,e' $\leq m.\Delta$ Cap. of cut.

food. Cap. of cut.

Sce < F+ ms

Coparity of

cut.

Henre, claim peroved.

 $F+m.\Delta > F' > F+ L.\Delta$ L < 2m. Any feasible flow is atmost capacity of any

· Bipartite Matching. (Edmind augmited). LR

Matching: Subset of edges s.t. UE only one edge in the set M. Perfect natching if every vertex has an incident edge in M.

To find: Moseinal matching for a given bipartite geaph. Min. western (Can apply network flow conupts). a matching.

- Add s,t and add edges from s to every vertese in L and from every vertex in R to E.
- Assign cap. of 1 to each edge

Obs. Mose flow gives maseimal matching.

- -> A moseinal matching can be a perfect matching when # fruitices = # of in R writices in L.
- -> Matching -> general graph -> Rolynomial time