

Security Risk Assessment and Risk Treatment for Integrated Modular Communication

Hamid Asgari, Sarah Haines, Adrian Waller

Thales UK, Research & Technology

<u>Hamid.Asgari@uk.thalesgroup.com</u>

- GAMMA Project
- ATM Context and IMC
- Risk Assessment Methodology
- Risk Treatment
- Modelling Attacks and Solution Architecture
- IMC Prototype for Validation
- Concluding Remarks

GAMMA Project

EC FP7-Sec-Call 5 , Partialy Funded

Duration: 2013-2017

19 Partners from 8 Countries

10 Large Industries

EADS

3 Research Organisations and Universities

3 End-Users

User Group

ATM Security Solution

Develop ATM threat assessment and risk treatment models

Define an ATM Security solution architecture

Define an ATM Security Management Framework

ATM Security Solution Validation

Develop validation environment

GAMMA Prototypes

Design and develop security prototype components

GAMMA Objectives

THALES

- GAMMA make use of the methodologies developed by SESAR in WP16
 - SECRAM (Security Risk Assessment Methodology)
 - MSSC (Minimum Set of Security Controls)
 - An initial set of security controls to ensure a baseline for security measures across the SESAR solutions; Reduce risk level "medium" to "low"
 - GAMMA additional Security Controls
 - Counteract specific threats with risk level of "high".
- GAMMA used the same modelling tool (MEGA) as SESAR, allowing for GAMMA outputs to be reused in SESAR.
- GAMMA Operational and System security Architectures are described using the Enterprise Architecture views of the NATO Architecture Framework (NAF).

MEGA for NAF is repository-based tool for describing and documenting NAF architectural views, ensuring coherence within and between different views.

ATM Context and Integrated Modular Communication

Context - Air Traffic Management (ATM)

Context - The Networking

Context - Communication Means to/from a Commercial Aircraft

THALES

- switches and associated control equipment with a separate radio for each service.
- IMC is a cost effective approach to provide aircraft Communications, Navigation and Surveillance systems by integrating many individual radio systems into a processing platform, offering off-board communication and on-board network connectivity.

ARINC-664 defined 4 different traffic domains:

- ACD: Aircraft Control Domain -Supporting the safe operation of aircraft and providing env. functions for cabin operations.
- AISD: Airline Info. Service Domain -Airplane (maintenance, perf. data, etc.) Airline operational and Admin Support.
- > **PIESO**: Passenger Info. and Entertainment Service Domain
- PODD: Passenger Owned Devices Domain.

Robustness & System Integrity

 To offer the communication services as expected as well as achieving integrity of system and its components

Availability

To ensure accessibility of services and information

Data Confidentiality

To provide confidentiality for stored and communicated data

Data Integrity

To guarantee no improper modification of data

Access Control

To regulate and control data access and data flow

Compliance to Regulatory Framework

• To guarantee compliance to the relevant regulations.

Jamming of the channel

• To hamper or obstruct all communications in a spectrum band; disrupt the management channels used for distributing C&M messages.

Unauthorised Access through RF Interfaces

Unauthorised access through the RF interfaces (such as the VHF links) to the aircraft.

Access to Disrupt Services

• Unauthorised access between different segments on the aircraft. For example, access to cockpit services through cabin services.

Insertion of Malicious Software

• Malware, software bugs, or deliberate covert channels for unauthorised access.

Alteration of Messages

• To disrupt the IMC operation by altering messages exchanged across the ground-to-air network, the internal IMC network, and the cabin network.

Alteration, Destruction or Extraction of Configuration Data

• To prevent IMC performing its normal functions; with the extraction, attacker collects configuration data that can be used in subsequent attacks.

Alteration or Destruction of User Data

Improper manipulation of user data

Alteration or Destruction of Software

• To create malfunctioning of middleware, generic SW/HW, OS, and the waveform code that is needed to support a radio access technology or air interface.

Excessive Resource Consumption

To cause unavailability of services/information due to e.g. DoS attacks

Software/Hardware Failures

• Malfunctioning of middleware, generic SW/HW, etc. More emphasis should be put on critical components.

RISK Assessment

Primary Asset	Type	Description
Air Traffic Communication Service	Service	The service that allows the transfer of essential data between ATM systems and an IMC for safety-related purposes, requiring high integrity and rapid response; flight control information, alerting, collision avoidance, etc. The service is used by Safety Critical applications.
Aeronautical Control & Operational communications	Service	The data service for use by aircraft operators requiring high integrity for handling the operation and efficiency of flights, and support of passengers; The service is used by Cockpit applications.
Computing resources	Service	This refers to the IMC system's internal resources, configurations, and operations, e.g. processes, functions, and data-bases.
Control and Management data	Information	Any data that is exchanged concerning the operation and management of the IMC system or its connected networks; Exchanged with the Supervisor Control processes and the external GAMMA Security Management Platform.
Airline data	Information	Any data that is exchanged to or from airliner's domain i.e., the operational and airline administrative information to both Cockpit and Cabin applications.
User data	Information	Any data that is transferred to or from a Cabin application process. This is done by a passenger device, accessing the aircraft network (e.g., WiFi or telecom services).
		THALE

Supporting Asset	Description	Primary Asset
IMC system	IMC as a complete system in the ATM environment	Com. Service, Computing resources, Airline data, User data, C&M data
IMC's Routing Sub-system	Routes data traffic from on-board applications/processes to radio subsystem and vice versa.	Computing resources, Airline data, User data, C&M data
IMC's Radio Sub-system	Converting data into a link level format, passing data to one or more transceivers	Computing resources, Airline data, User data, C&M data
IMC's CMS	The entity performing the overall management of IMC functions and security	C&M data
IMC's Internal BUS	IMC internal packet bus as the data link between RoS, RaS, and CMS	Airline data, User data, C&M data
Satellite link	Satellite link to provide worldwide reliable communication channels	Com. Service, Airline data, User data, C&M data
HF/UHF/VHF links	Different radio Data links	Com. Service, Airline data, User data, C&M data,
Wireless access inks	Broadband wireless access systems for on-the-ground communication.	Airline data, User data, C&M data
Cellular link	Provides cellular connectivity such as 3G	User data

Category of Identified Risk Sources/Threats

IMC Threat	Description
T-IMC1	On-board application attack: An application on board the aircraft uses its data connection to the IMC to attack an ATM primary asset (e.g. flight/airline information managed by another application).
T-IMC2	Off-board application attack : An off-board application uses its data connection to the IMC to attack an ATM primary asset. This could be a ground segment application, or something external to the ATM system (e.g., Internet traffic destined for the cabin).
	Subverted software or hardware: Corrupted software or
T-IMC3	hardware in the IMC attacks an ATM primary asset (e.g., denying communication to ATC).
T-IMC4	Abuse of management interface : An administrator of the IMC (e.g. someone setting configuration parameters) abuses his/her privileges, or someone impersonates the administrator, and uses this to attack an ATM primary asset.
T-IMC5	Jamming of data links: A jamming device is used in proximity to ATM channels to perform this attack. These devices prevent IMC from communicating application data.

Company Anna 4	Doloto d to Duimour, Accet	Impact on PA #x			
Supporting Asset	Related to Primary Asset	С	I	А	
IMC CMS	Com. Service		5	5	

Threat	Im _l	pacte riteria	ed a	Impact	Likelihood	Risk level
	С	-1	Α			
IMC-3		X	X	5	3	High

Risk treatment example

SC-

Defense in

depth

	TI	hreat					pacto riteri		Impa	act	Likelihood	Risk level	Security Objectives
IMC-3		Ī				С	X	A	5		3	High	Low
Supporting Asset	Threat	Impact	Likelihood	Risk	S.O.	CIA	Option		MSSC id		Description	Strategy	Security Controls
	IMC-3									Config	uration Information	Combined SC-	

Accept, Reduce, SC implements actions: Deter, Avoid, Prevent, Detect, React. Avoid, Transfer

I+A Reduce MSSC_32 shall be appropriately

protected.

Security Controls	Description
MSSC_32_IMC_03	Integrity of IMC information shall be appropriately protected.

High Low

SESAR defined 56 MSSCs. GAMMA defined a large set of SCs based on the MSSCs.

5

IMC-3

IMC

MSSC_32_IMC_03

Modelling the Attacks &

Solution Architecture

System View - Systems Internal Interfaces - NSV1

System's view includes system functions, focuses on WHAT the system must do to produce the required operational behaviour, inter-function relationships, and the required inputs, outputs, states, and rules.

Security System Architecture of IMC – NSV1

- Authenticating users of the IMC.
- Controlling access to the resources via access control mechanisms.
- Using cryptographic protection to protect the confidentiality and integrity of assets.
- Monitor, control and program the relevant processes in the IMC.

Concluding Remarks

www.thalesgroup.com

OPEN

- There is a much growing need to interconnect devices, sensors, and the users that consume data/content.
- ATM systems themselves are growing and becoming more complex.
- We no longer face with isolated systems but increasingly interconnected, shared and dynamic.
- We have not been great at dealing with security in the networks, the ATM systems bring criticality, more complexity and dynamics.
- Our technical solutions must incorporate security functions as integral part of the system.
- ATM systems must be programmable/flexible to be secure and resilient against persistent and new/sophisticated attacks, to allow running different functions at different times.

Thanks for your attention

Hamid Asgari

Email: <u>Hamid.Asgari@uk.thalesgroup.com</u>

SecATM - 2nd Sept. 2016

