```
In [1]:
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
\textbf{from sklearn.linear\_model import} \ \texttt{LogisticRegression}
from sklearn.neighbors import KNeighborsClassifier
from sklearn.tree import DecisionTreeClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.model selection import train test split
from sklearn.model_selection import cross_val_score
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report
import warnings
warnings.filterwarnings('ignore')
```

In [2]:

mushroom=pd.read_csv('mushroom.csv')

In [3]:

mushroom
#observed that class is the output

Out[3]:

		type	cap_shape	cap_surface	cap_color	bruises	odor	gill_attachment	gill_spacing	gill_size	gill_color	 stalk_surface_belc
	0	р	х	s	n	t	р	f	С	n	k	
	1	е	х	s	у	t	а	f	С	b	k	
	2	е	b	s	w	t	1	f	С	b	n	
	3	р	х	у	w	t	р	f	С	n	n	
	4	е	х	s	g	f	n	f	w	b	k	
	8119	е	k	s	n	f	n	а	С	b	у	
	8120	е	х	s	n	f	n	а	С	b	у	
:	8121	е	f	s	n	f	n	а	С	b	n	
8	8122	р	k	у	n	f	у	f	С	n	b	
:	8123	е	х	s	n	f	n	а	С	b	у	

8124 rows × 23 columns

I j

In [4]:

mushroom.describe()

Out[4]:

	type	cap_shape	cap_surface	cap_color	bruises	odor	gill_attachment	gill_spacing	gill_size	gill_color	 stalk_surface_b
count	8124	8124	8124	8124	8124	8124	8124	8124	8124	8124	
unique	2	6	4	10	2	9	2	2	2	12	
top	е	х	у	n	f	n	f	С	b	b	
freq	4208	3656	3244	2284	4748	3528	7914	6812	5612	1728	

4 rows × 23 columns

4

```
Out[5]:
                               object
type
                               object
cap shape
cap surface
                               object
cap_color
                               object
bruises
                               object
odor
                               object
gill attachment
                               object
gill_spacing
                               object
gill size
                               object
gill_color
                               object
stalk_shape
                               object
stalk root
                               object
stalk_surface_above_ring
                               object
stalk surface below ring
                               object
stalk color above ring
                               object
stalk_color_below_ring
                               object
veil type
                               object
veil_color
                               object
ring_number
                               object
ring type
                               object
spore_print_color
                               object
population
                               object
habitat
                               object
dtype: object
In [6]:
#converting data in numerical data
from sklearn.preprocessing import LabelEncoder
le=LabelEncoder()
list1=['type','cap shape','cap surface','cap color','bruises','odor','gill attachment','gill spacin
g','gill_size','gill_color','stalk_shape','stalk_root','stalk_surface_above_ring','stalk_surface_be
low_ring','stalk_color_above_ring','stalk_color_below_ring','veil_type','veil_color','ring_number'
,'ring_type','spore_print_color','population','habitat']
for val in list1:
    mushroom[val] = le.fit transform(mushroom[val].astype(str))
In [7]:
mushroom
Out[7]:
      type cap_shape cap_surface cap_color bruises odor gill_attachment gill_spacing gill_size gill_color ... stalk_surface_belc
                             2
                                                                                           4 ...
                  5
                                             1
                                                                           0
   0
                                                   6
        0
                  5
                             2
                                             1
                                                                1
                                                                                           4 ...
   2
        0
                  0
                             2
                                      8
                                             1
                                                   3
                                                                           0
                                                                                   0
                                                                                           5 ...
                  5
                             3
                                      8
   3
        1
                                             1
                                                   6
                                                                1
                                                                           0
                                                                                   1
                                                                                           5 ...
        0
                  5
                             2
                                      3
                                                   5
                                                                                   n
                                             0
                                                                                           4 ...
                  ...
                             2
                                      4
                                                                0
                                                                                   0
8119
        0
                  3
                                             0
                                                   5
                                                                           0
                                                                                           11 ...
                  5
                             2
                                      4
                                             0
                                                   5
                                                                0
                                                                           0
                                                                                   0
                                                                                           11 ...
8120
        0
8121
        0
                  2
                             2
                                      4
                                             0
                                                                0
                                                                           0
                                                                                   0
                                                                                           5 ...
                                                                                           0 ...
8122
        1
                  3
                             3
                                      4
                                             0
                                                   8
                                                                1
                                                                           0
                                                                                   1
                                             0
                                                                                           11 ...
8124 rows × 23 columns
In [8]:
```

mushroom.dtypes

#identifing null values
sns.heatmap(mushroom.isnull())

Out[8]:

<matplotlib.axes._subplots.AxesSubplot at 0x20148e7b280>

In [9]:

```
mushroom.isnull().sum()
```

Out[9]:

```
0
type
cap_shape
                             0
cap_surface
                             0
cap_color
                             0
bruises
                             0
                             0
odor
{\tt gill\_attachment}
                             0
gill_spacing
                             0
gill_size
                             0
gill color
stalk_shape
                             0
                             0
stalk_root
stalk surface above ring
                             0
stalk_surface_below_ring
                             0
stalk color above ring
                             0
stalk_color_below_ring
                             0
veil_type
                             0
veil_color
                             0
ring_number
                             0
                             0
ring_type
spore_print_color
                             0
population
habitat
dtype: int64
```

In [10]:

```
mushroom.skew()
```

Out[10]:

type	0.071946
cap_shape	-0.247052
cap_surface	-0.590859
cap_color	0.706965
bruises	0.342750
odor	-0.080790
gill_attachment	-5.977076
gill_spacing	1.840088
gill size	0.825797

gill_color	0.061410
stalk_shape	-0.271345
stalk_root	0.947852
stalk_surface_above_ring	-1.098739
stalk_surface_below_ring	-0.757703
stalk_color_above_ring	-1.835434
stalk_color_below_ring	-1.791593
veil_type	0.000000
veil_color	-6.946944
ring_number	2.701657
ring_type	-0.290018
spore_print_color	0.548426
population	-1.413096
habitat	0.985548
dtype: float64	

In [11]:

mushroom.corr()

Out[11]:

	type	cap_shape	cap_surface	cap_color	bruises	odor	gill_attachment	gill_spacing	gill_size	gil
type	1.000000	0.052951	0.178446	-0.031384	0.501530	0.093552	0.129200	-0.348387	0.540024	0.
cap_shape	0.052951	1.000000	-0.050454	-0.048203	0.035374	0.021935	0.078865	0.013196	0.054050	0.1
cap_surface	0.178446	-0.050454	1.000000	-0.019402	0.070228	0.045233	-0.034180	-0.282306	0.208100	0.
cap_color	0.031384	-0.048203	-0.019402	1.000000	0.000764	0.387121	0.041436	0.144259	0.169464	0.0
bruises	0.501530	-0.035374	0.070228	-0.000764	1.000000	0.061825	0.137359	-0.299473	0.369596	0.
odor	0.093552	-0.021935	0.045233	-0.387121	0.061825	1.000000	-0.059590	0.063936	0.310495	0.
gill_attachment	0.129200	0.078865	-0.034180	0.041436	0.137359	0.059590	1.000000	0.071489	0.108984	0.
gill_spacing	0.348387	0.013196	-0.282306	0.144259	0.299473	0.063936	0.071489	1.000000	0.108333	0.
gill_size	0.540024	0.054050	0.208100	-0.169464	0.369596	0.310495	0.108984	-0.108333	1.000000	0.
gill_color	0.530566	-0.006039	-0.161017	0.084659	0.527120	0.129213	-0.128567	0.100193	0.516736	1.
stalk_shape	0.102019	0.063794	-0.014123	-0.456496	0.099364	0.459766	0.186485	0.080895	0.214576	0.
stalk_root	0.379361	0.030191	-0.126245	0.321274	0.244188	0.205215	0.144063	0.350548	0.344345	0.:
stalk_surface_above_ring	0.334593	-0.030417	0.089090	-0.060837	0.460824	0.118617	-0.088916	-0.212359	0.056310	0.3
stalk_surface_below_ring	0.298801	-0.032591	0.107965	-0.047710	0.458983	0.061820	-0.116177	-0.213775	0.010894	0.3
stalk_color_above_ring	0.154003	-0.031659	0.066050	0.002364	0.083538	0.174532	0.099299	0.274574	0.296548	0.0
stalk_color_below_ring	0.146730	-0.030390	0.068885	0.008057	0.092874	0.169407	0.097160	0.253505	0.278708	0.0
veil_type	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	
veil_color	0.145142	0.072560	-0.016603	0.036130	0.119770	0.057747	0.897518	0.073363	0.103809	0.
ring_number	0.214366	-0.106534	-0.026147	-0.005822	0.056788	0.111905	0.093236	0.243014	0.171362	0.0
ring_type	0.411771	-0.025457	-0.106407	0.162513	0.692973	0.281387	-0.146689	-0.195897	0.460872	0.0
spore_print_color	0.171961	-0.073416	0.230364	-0.293523	0.285008	0.469055	-0.029524	0.047323	0.622991	0.4
population	0.298686	0.063413	0.021555	-0.144770	0.088137	0.043623	0.165575	-0.529253	0.147682	0.

```
habitat 0.211/1/19 cap_altape cap_singsage capp_33926 bruises 0.045 gill_attactored gill_specific 
 23 rows x 23 columns
4
 In [12]:
 for col in mushroom.columns:
             if mushroom.skew().loc[col]>0.55:
                         mushroom[col]=np.log1p(mushroom[col])
 In [13]:
  #reduced skew
  mushroom.skew()
 Out[13]:
                                                                                0.071946
 tvpe
                                                                               -0.247052
 cap shape
                                                                               -0.590859
 cap surface
 cap_color
                                                                                -0.365280
 bruises
                                                                                  0.342750
                                                                              -0.080790
 odor
 gill attachment
                                                                               -5.977076
 gill_spacing
                                                                                1.840088
 {\tt gill\_size}
                                                                                 0.825797
 gill color
                                                                                 0.061410
                                                                               -0.271345
 stalk shape
stalk root
                                                                               0.129453
 stalk surface above ring -1.098739
 stalk_surface_below_ring -0.757703
 stalk_color_above_ring
                                                                               -1.835434
 stalk color below ring
                                                                               -1.791593
                                                                                0.000000
 veil type
 veil color
                                                                               -6.946944
                                                                                 1.481287
 ring_number
ring_type
                                                                               -0.290018
                                                                                0.548426
 spore print color
                                                                               -1.413096
 population
habitat
                                                                                0.342186
 dtype: float64
 In [14]:
 plt.figure(figsize=(10,6))
  sns.heatmap(mushroom.corr(),annot=True)
 Out[14]:
 <matplotlib.axes. subplots.AxesSubplot at 0x20148fd8460>
  1.0
                                                                                                                                                                      0 150 230 410 170 30 22
                                                                                                                                                                       .0730.10.0205.07030603.06
                                                                                                                                                                       0.0107.036.110.218.0219.16
                                                                                                                                                                                                                               - 0.8
                                                                                                                                                                      0025.030.140.260.10.04
0.120.063.650.29.0880.16
                                                                                                                                                                      ).058.110.280.410.040404
                                                                                                                                                                                                                               - 0.6
                                                                                                                                                                      0.9 0.120.150.030.140.07
                                                                                                                                                                      ).0739.23<mark>-0.20.04-20.54</mark>9.05
                                                                                                                                                                      0.1-0.150.46<mark>0.62</mark>0.150.19
0.090807.<mark>0.65</mark>0.40.034.2
                                                                                                                                                                         160.260.290.26.0840.29
190.280.340.680.240.04
                                                                                                                                                                                                                               - 02
                                                                                                                                                                        .090.110.390.10.080.1
                                                                                                                                                                      0.070701<del>5</del>.390.180.0470.09
                                                                                                                                                                                                                               - 0.0
                                                                                                                                                                       .0610.140.049.270.240.09
                                                                                                                                                                        066.1-D.034.250.24.08
                                                                                                                                                                                                                               - -0.2
                                veil type
                               veil color -0.150.0738.00.700.205.1-20.05 0.90.0730.10.098.160.1-30.0901.07070607.06
                 ring_number = 0.210.10.035.03.06.063.110.120.230.15.0730.260.280.10.015.110.11

ring_type = 0.40.028.110.140.620.280.150.20.40.630.290.340.390.380.04803

spore_print_color = 0.170.076.230.260.290.470.08.04.0620.420.240.680.10.130.270.25

population = 0.30.06380220.120.083.040.170.530.150.03390820.210.080.0470.240.24
                                                                                                                                                                      ).03<mark>.1.</mark>).0510.3-0.210.22
0.14.05<mark>.1.</mark>0.490.210.2
                                                                                                                                                                                                                                 -0.4
                                                                                                                                                                      .0036.3-<mark>0.49 1 </mark>0.130.19
0.120.210.210.13 1 0.2
                             population ·
                                                                                                                                                                                                                                 -0.6
                                   habitat -0.220.068.160.0470.16.0408.0706059.150.240.29.046.120.090.09.08
                                                                                                                                                                     0.086.220.250.190.24 1
```

Respondent to the second secon

```
gill_col
                                                 bruis
                                                                                                                  gill si:
                                                                                                                                                                                                                                                                      veil col
cap shar
               cap surfa
                                                                 8
                                                                                  gill_attachme
                                                                                                                                                   stalk shap
                                                                                                                                                                     stalk ro
                                                                                                                                                                                     stalk surface above rir
                                                                                                                                                                                                    stalk surface below rir
                                                                                                                                                                                                                    stalk_color_above_rir
                                                                                                                                                                                                                                     stalk_color_below_rir
                                                                                                                                                                                                                                                                                                                        print_col
                                gp
                                                                                                                                                                                                                                                                                                                         spore
```

In [15]:

```
mushroom=mushroom.drop(['veil_type'],axis=1)
```

In [16]:

```
plt.figure(figsize=(10,6))
sns.heatmap(mushroom.corr(),annot=True)
```

Out[16]:

<matplotlib.axes. subplots.AxesSubplot at 0x20149ea2790>

In [17]:

```
col=mushroom.columns.values
ncol=8
nrow=8
plt.figure(figsize=(ncol,5*ncol))
for i in range(1,len(col)):
    plt.subplot(nrow,ncol,i+1)
    sns.boxplot(mushroom[col[i]],color='pink',orient='v')
    plt.tight_layout()
```



```
In [18]:
```

```
#Removing outliers
from scipy.stats import zscore
z_score=abs(zscore(mushroom))
print(mushroom.shape)
mush=mushroom.loc[(z_score<3).all(axis=1)]
print(mush.shape)

(8124, 22)
(6472, 22)</pre>
```

In [19]:

```
mush
```

Out[19]:

type cap_shape cap_surface cap_color bruises odor gill_attachment gill_spacing gill_size gill_color ... stalk_surface_abc

```
type cap_shape cap_surface cap_color bruises odor 2 302585 1 0
                                                                                                   gill_color ... stalk_surface_abc
          0
                                      2.197225
                                                                                 0.000000 0.000000
                                                                                                           5 ...
          1
                     5
                                  3
                                      2.197225
                                                           6
                                                                           1
                                                                                 0.000000 0.693147
                                                                                                           5 ...
    3
                                                     1
          0
                     5
                                      1.386294
                                                     0
                                                           5
                                                                                 0.693147 0.000000
                                  2
                                                                           1
         ...
                                                                                                          ... ...
    ...
                     ...
                                                     ...
                                                           ...
                                                                          ...
 8113
                     3
                                      1.098612
                                                     0
                                                           8
                                                                           1
                                                                                 0.000000 0.693147
          1
                                  3
                                                                                                           0 ...
 8116
          1
                     3
                                  3
                                      1.609438
                                                     0
                                                           7
                                                                           1
                                                                                 0.000000 0.693147
                                                                                                           0 ...
                                      1.098612
 8117
          1
                     3
                                  2
                                                     0
                                                           8
                                                                           1
                                                                                 0.000000 0.693147
                                                                                                           0 ...
 8118
          1
                     3
                                  3
                                      1.609438
                                                     0
                                                           2
                                                                           1
                                                                                 0.000000 0.693147
                                                                                                           0 ...
                     3
                                                     0
                                                           8
                                                                                                           0 ...
 8122
                                  3
                                      1.609438
                                                                                 0.000000 0.693147
6472 rows × 22 columns
4
In [20]:
x=mush.iloc[:,1:-1]
In [21]:
Х
Out[21]:
       cap_shape cap_surface cap_color bruises odor gill_attachment gill_spacing gill_size gill_color stalk_shape stalk_root st
    0
               5
                                                     6
                                                                                                     4
                                1.609438
                                               1
                                                                     1
                                                                           0.000000 0.693147
                                                                                                                 0
                                                                                                                     1.386294
                            2
    1
                5
                            2
                                2.302585
                                                      0
                                                                     1
                                                                           0.000000 \quad 0.000000
                                                                                                     4
                                                                                                                 0
                                                                                                                      1.098612
    2
               0
                            2
                                2.197225
                                                      3
                                                                     1
                                                                           0.000000 0.000000
                                                                                                     5
                                                                                                                 0
                                                                                                                      1.098612
    3
                5
                            3
                                2.197225
                                               1
                                                      6
                                                                     1
                                                                           0.000000 0.693147
                                                                                                     5
                                                                                                                      1.386294
                                                                                                                      1.386294
                5
                            2
                                                                           0.693147 0.000000
                                                                                                     4
                                1.386294
                                               0
                                                      5
   ---
                            ...
                                               ...
                                                     ...
                                                                    ...
               3
                            3
                                1.098612
                                               0
                                                     8
                                                                     1
                                                                           0.000000 0.693147
                                                                                                     0
                                                                                                                     0.000000
 8113
 8116
               3
                            3
                                               0
                                                     7
                                                                           0.000000 0.693147
                                                                                                     0
                                                                                                                     0.000000
                                1.609438
                                                                     1
 8117
                3
                            2
                                1.098612
                                               0
                                                      8
                                                                           0.000000 0.693147
                                                                                                     0
                                                                                                                      0.000000
 8118
                                               0
                                                                           0.000000 0.693147
                                                                                                                     0.000000
                3
                            3
                                1.609438
                                                      2
                                                                     1
                                                                                                     0
                                                                                                                  1
 8122
                                1.609438
                                                      8
                                                                           0.000000 0.693147
                                                                                                                     0.000000
6472 rows × 20 columns
                                                                                                                               •
In [22]:
x.shape
Out[22]:
(6472, 20)
In [23]:
y=mush.iloc[:,0]
In [24]:
У
Out[24]:
0
          1
           0
```

```
3
       1
8113
      1
8116
8117
      1
8118
       1
8122
Name: type, Length: 6472, dtype: int32
In [25]:
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=.30,random_state=50)
In [26]:
rf=RandomForestClassifier()
rf.fit(x_train,y_train)
rf.score(x train, y train)
predrf=rf.predict(x_test)
print(accuracy_score(y_test,predrf))
print(confusion matrix(y test,predrf))
print(classification_report(y_test,predrf))
1.0
[[1027
       0]
 [ 0 915]]
                        recall f1-score support
             precision
                  1.00
                          1.00
                                                1027
          0
                                    1.00
          1
                  1.00
                           1.00
                                     1.00
                                                915
                                     1.00
                                                1942
   accuracy
  macro avg
                  1.00
                            1.00
                                      1.00
                                                1942
                                      1.00
                                                1942
weighted avg
                  1.00
                            1.00
In [27]:
dtc=DecisionTreeClassifier()
dtc.fit(x_train,y_train)
dtc.score(x_train,y_train)
preddtc=dtc.predict(x_test)
print(accuracy_score(y_test,preddtc))
print(confusion_matrix(y_test,preddtc))
print(classification_report(y_test,preddtc))
1.0
[[1027
       01
 [ 0 915]]
                         recall f1-score support
             precision
          0
                  1.00
                           1.00
                                     1.00
                                                1027
          1
                  1.00
                           1.00
                                     1.00
                                                915
                                      1.00
                                               1942
   accuracy
                  1.00
                          1.00
                                    1.00
                                              1942
  macro avg
                  1.00
                           1.00
                                     1.00
                                               1942
weighted avg
In [28]:
gnb=GaussianNB()
gnb.fit(x_train,y_train)
gnb.score(x_train,y_train)
predgnb=gnb.predict(x test)
print(accuracy_score(y_test,predgnb))
print(confusion_matrix(y_test,predgnb))
print(classification report(y test,predgnb))
0 051600000000000
```

U

```
0.8516992/9093/1/8
[[975 52]
 [236 679]]
                       recall f1-score support
             precision
                0.81 0.95 0.87 1027
0.93 0.74 0.83
          1
                                     0.85
                                              1942
   accuracy
                 0.87
                          0.85
                                    0.85
                                              1942
  macro avq
                                    0.85
                                              1942
weighted avg
                 0.86
                          0.85
In [29]:
knn=KNeighborsClassifier()
knn.fit(x_train,y_train)
knn.score(x_train,y_train)
predknn=knn.predict(x_test)
print(accuracy_score(y_test,predknn))
print(confusion matrix(y test,predknn))
print(classification_report(y_test,predknn))
0.9979402677651905
[[1025
[ 2 913]]
                        recall f1-score support
             precision
                        1.00
          0
                                   1.00
                 1.00
                                              1027
                  1.00
                           1.00
                                    1.00
                                              915
                                    1.00
                                             1942
   accuracy
                                            1942
                 1.00
                        1.00
                                   1.00
  macro avq
                                    1.00
                          1.00
                                              1942
weighted avg
                 1.00
In [30]:
svc=SVC(kernel='rbf')
svc.fit(x train,y train)
svc.score(x_train,y_train)
predsvc=svc.predict(x_test)
print(accuracy_score(y_test,predsvc))
print(confusion_matrix(y_test,predsvc))
print(classification_report(y_test,predsvc))
0.9891864057672503
[[1026 1]
 [ 20 895]]
             precision recall f1-score support
          0
                  0.98
                           1.00
                                     0.99
                                              1027
          1
                  1.00
                           0.98
                                     0.99
                                               915
                                    0.99
                                             1942
   accuracy
                                              1942
                                   0.99
  macro avg
                0.99
                         0.99
                 0.99
                          0.99
                                     0.99
                                              1942
weighted avg
In [31]:
rf=RandomForestClassifier()
rf.fit(x train,y train)
rf.score(x train, y train)
predrf=rf.predict(x test)
print(accuracy_score(y_test,predrf))
print(confusion_matrix(y_test,predrf))
print(classification report(y test,predrf))
1.0
```

[[1027 0] [0 915]]

```
precision recall il-score support
                       1.00
                                1.00
          0
                 1.00
                                             1027
          1
                 1.00
                          1.00
                                   1.00
                                             915
   accuracy
                                   1.00
                                            1942
                                 1.00
                      1.00
macro avg 1.00 weighted avg 1.00
                                            1942
                                   1.00
                                             1942
In [32]:
lr=LogisticRegression()
```

```
lr.fit(x_train,y_train)
lr.score(x train, y train)
predlr=lr.predict(x test)
print(accuracy_score(y_test,predlr))
print(confusion_matrix(y_test,predlr))
print(classification_report(y_test,predlr))
```

```
0.9577754891864058
[[988 39]
[ 43 872]]
            precision
                      recall f1-score support
               0.96 0.96 0.96
0.96 0.95 0.96
          0
                                            1027
                                            915
                                   0.96
                                            1942
   accuracy
                       0.96
                                 0.96
                 0.96
                                            1942
  macro avg
```

0.96

0.96

0.96

In [33]:

weighted avg

```
#LogisticRegression is best
import joblib
joblib.dump(lr,'salary.pkl')
```

1942

Out[33]:

['salary.pkl']