FIRST TERM EXAMINATION

THIRD SEMESTER [B.TECH.], SEPTEMBER 2014
FOUNDATION OF COMPUTER SCIENCE (ETCS-203) Maximum Marks : 30

Time :	1½ hours ote: Question No. 1 is compulsory. Attempt any two more Questions from the rest.
Ne	ote: Question No. 1 is compulsory. Attempt any two more
Quest	tion 1
(a)	Show that the proposition - (p // q) and the statement "If John is a poet, then he is
(b)	Determine the contra positive of the poor."
(c)	Show that $n[p[p(\phi)]] = 4$.
(e)	Explain pigeonhole principle. Let $A = \{1, 2, 3, 4, 5\}$. Determine the truth value of the following statements: (ii) $(\exists x \in A)(x + 3 = 10)$ (iii) $(\forall x \in A)(x + 3 < 10)$
	(i) $(\exists x \in A) (x + 3 = 10)$ (ii) $(\forall x \in A) (x + 3 + 2 = 1)$
Quest	tion 2
(a)	Given that
	C1: $P \rightarrow S$
	$C2: S \to U$
	СЗ: Р
	C4: U 1. The C4 is a logical consequence of C1. C2 and C3. (5 \times 2)
	Show that C4 is a logical consequence of C1, C2 and C5.
(b)	Use mathematical induction to prove that
	$1+2+3+4+n=n$ (n + 1)/2 for any integer $n \ge 1$.
Quest	tion 3
(a)	Test the validity of the following argument. (5×2)
	If two sides of a triangle are equal, then the opposite angles are equal.
	Two sides of a triangle are not equal.
	Therefore, the opposite angles are not equal.
(b)	Use the method of proof by contradiction to show that 3 is irrational.
	ion 4
(a)	Give examples of relations R on A = $\{1, 2, 3\}$ having the stated property. $(4 + 6)$ (i) R is both symmetric and anti-symmetric.
	(ii) R is neither symmetric nor anti-symmetric.
(b)	Let R be an equivalence relation on set A, then prove that R^{-1} is also an equivalence relation on set A.

SECOND TERM EXAMINATION

THIRD SEMESTER [B.TECH.], NOVEMBER 2014 FOUNDATION OF COMPUTER SCIENCE (ETCS-203)

rine	17 Hours Waximum Warks	. 30
Note: C	Question No. 1 is compulsory. Attempt any two more Questions from the rest.	
	tion 1	
	Suppose that a connected planar simple graph has 20 vertices, each of de 3. Into how many regions does a representation of this planar graph	gree ! × 5)
(b)	Define normal subgroup and give an example.	,
	Define lattice and give an example.	
(d)		hs is
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
(e)	Define chromatic number of graph. Find the chromatic number of the graph.	given
Questi	ion 2	
(a) F	Prove Euler's Formula.	 5 + 4)
(b) i	Let $A = \{1, 2\}$ and $B = \{a, b\}$. Find all functions $f: A \rightarrow B$ and for each function, determine whether it is one to one, onto, both or neither.	such
	on 3	
(a) A	Answer these questions for the poset ({3, 5, 9, 15, 24, 45},).	
	(i) Find the maximal elements. (ii) Find the minimal elements. (iii) Is there a greatest element?	5 × 2)
	Consider the group G = {1, 2, 3, 4, 5, 6} under multiplication modulo 7. (i) Find the multiplication table of G.	
	(ii) Find 2^{-1} , 3^{-1} .	
-	(iii) Find the orders and subgroups generated by 2.	
	(iv) Is G cyclic ?	
	•	
Questio	on 4	
(a) Sc	olve the recurrence relation	
	$a_n = 2a_{n-1}, a_0 = 1$	
(b) L	Let R be an equivalence relation on set A, then prove that R^{-1} is also	o an

Second Term Examination

Subject: Foundations of Computer Science 3rd Sem [B.Tech], Nov. 2015 Max. Marks: 30 Paper Code: ETCS 203 Note: Attempt any 3 questions. Ques No. 1 is Compulsory. Each Question carries 10 marks. Q1. a) Prove by mathematical Induction: for all $n \ge 1$, $n^3 + 2n$ is a multiple of 3. b) Identify homogenous and non homogenous recurrence relation: $a_{n}-\sqrt{a_{n-1}}+(a_{n-1})^{2}=0$ $a_n = \sin a_{n-1} + \cos a_{n-2} + \sin a_{n-3} + \cos a_{n-4} + \dots + e^n$ iii. iv. $a_n=a_{n-1}+a_{n-2}+a_{n-3}+.....a_0$ c) What is Generating Function? Explain with example. d) What is difference between cut set and cut edge? Explain with example. (2x5 marks) e) What is an Abelian group? a) Find solution of non homogenous recurrence relation a_n - $4a_{n-1}$ + $4a_{n-2}$ = 2^n Q2. b) Solve the recurrence relation a_{n} - $2a_{n-1}+a_{n-2}=2^{n}$ by generating functions with initial (6+4 marks) 1+4m12m conditions $a_0 = 2$ and $a_1 = 1$. a) Define planar graph. Give the proof of Euler's formula for connected planar graph. Q3. b) What is a bipartite graph? Determine whether following are bipartite with reason. C a d (iv) c) What are isomorphic and homomorphic graphs. What is connected graph, regular graph and complete graph? Give examples. (4+3+3 marks) Q4. a) Let Q be a set of positive rational numbers which can be expressed in form 2^a3^b , where a and b are integers. Prove that (Q, .) is a group where . is a multiplication operator.

b) What is order of an element in a group? What is a cyclic group? If in a group G, $x^5=e$, $xyx^{-1}=y^{\frac{1}{4}}$ for x,y \in G, show that o(y)=31. (5+ 5 marks)

 $|S| = \frac{1}{2} + \frac{1}{2}$

First Term Examination

3 rd Sem [B.Tech], Sept. 2015 Paper Code: ETCS 203	Max. Marks: 30
	No. 1 is Compulsory. Each Question carries 10 marks.
Q1.	A 2) 1263 69,53
c) Frove that sum of two odd inte	
	and 9000can be formed using digits 2,4,7,9, if each digit
may be repeated. e) Give matrix representation of r	eiation K on set A ={a,b,c,a} and $b=\{1,2,3\}$
$R=\{(a,1),(a,3),(b,2),(b,3),(c,1),(d,2),(b,3),(c,1),(d,2),(b,3),(c,1),(d,2),(d,3),(b,2),(b,3),(c,1),(d,2),(d,3),(d,2),(d,3),(d,3),(d,2),(d,3),($	(2x5 marks)
Q2. PANOVIERANO	Suppraside
a) What is PCNF and PDNF. Derive	PDNF for $(\sim pV\sim q)\rightarrow (p\leftrightarrow \sim q)$ without constructing truth
O V.	nay) v (v Pnay) that s is a valid conclusion from premises (a, n x)
P, ≥ q, p > r, e(¬^r), (5Vp)	1) (2) P>q 1P> X = (3x2 marks)
~ (91) 34	57 (9 nx) U-17-9 4 6
Q3. a) Prove that 3 V3 is irrational by ir b)	TP-A Agundus TP Verge
i. What is pigeonhole prin	ciple? Give its proof.
ii. How many permutation	s can be made with letters of word CONSTITUTION when
Nex 71 ~ consonants and vowels	occur alternately? 2.5 x2 marks
$\frac{7}{3121}$ $\frac{1}{2121}$	9116
Q4.	2 3
a) Give the hasse diagram of D ₁₂ i	$D_n=\{x:x\mid n \text{ such that } x\in N\}.$ Upperbound and Greatest LowerBound with example.
	Turn 1'- tugara 9, b are add
MIT () her of &	Two 1'-tugury a, b ord add your of odd in Jegur 15 (7.5+2.5)
by office K	X -i.e a=2/71, b=2/19/
dym = 0+	1C+1+2/1)
	2 x + 2 + 7 , 2,
	[1 1 + 1+1) . driver 15 8 VE

20/1/16

Plz write your Roll No. immediately	Roll No
First-Term Examination	
B.Tech- 3 rd sem	September 2016
Paper code: ETCS 203 Subject	:Foundation of computer science
Time :1 hour 30 min Note : Q no 1 is compulsory and attempt any two more question for	Max Marks:30 rom the remaining questions
Q. no1	(2*5=10)
(a) What is pigeonhole principle? Explain in brief.	
(b) Write the condition of the function to be surjective?	
(c) Compute truth table of $(P \leftrightarrow Q) \lor (\sim Q \leftrightarrow X)$	
(d) Represent the statement using predicate and quantifier and neg	rate it
For all the real number x if $x > 5$ then $x^2 > 25$	
(e) Define lattices ?	
Q no 2	
(a) Show that ~PN(~QAY) V(QAY) V(PAY	·) = ~ (5)
(b) Prove the statement " if x is an integer and x^2 is even then x is a	
Q no 3	(5)
 (a) In how many ways can a team of 11 cricketers be chosen from 11 batsmen to give a majority of batsmen if atleast 4 bowler one wicket keeper? (b) Let A={a,b,c,d} and R be the relation on set A that has the material construct the diagraph of R and find the indegree and outdegree of all the vertices. 	s are to be included and there is (5) rix representation given as (5)
Q. no 4	
(a) Check the validity of the argument if the	(5*2=10)
(a) Check the validity of the argument. If the races are fixed or to tourist trade will decrease, if the tourist trade decreases, then the force is never happy. therefore the races are not fixed.	he casinos are cooked, then the police will be happy. The police
(b) What is the necessary condition for the relation to become pos	et ? explain with example.

(0)-	7
CQ-	201
CO2-	9

Please write your Roll No. immediately

Roll No.....

First-Term Examination

B.Tech - 3rd sem

September 2017

Paper code: ETCS 203

Subject: Foundation of Computer Science

Time: 1 hour 30 min

Max Marks:30

Note: Q no 1 is compulsory and attempt any two more question from the remaining questions

Hote: Q no 1 is compaisory and attempt any two more question from the remaining questions	
Q. no1 (2*5=:	10)
(0) (a) What is Principle of Inclusion and Exclusion ? Explain in brief. ってんいら) = ベイタナイ	118) - M(A) NB
(0) (a) What is Principle of Inclusion and Exclusion? Explain in brief. $\gamma(A \lor B) = \gamma(A) + \gamma($	in A news to repose
Co2(d) Represent the statement/using predicate and quantifier and negate it For all the real number x if x > 5 then $x^2 > 25$ Variable $x^2 > 25$ Co3(e) Define lattices? A plant in the statement $x^2 > 25$ Co3(e) Define lattices? A plant in the buth $x^2 > 25$ Co3(e) Define lattices?	Mein) → gens ng & G. L.B.15
(b 2 (a) Show that $((p\rightarrow q) \land (q\rightarrow r))\rightarrow (p\rightarrow r)$ is tautology By Rules of Preposition.	(5)
(b) Prove that "if x,y ∈ Z (set of integer)such that xy is odd then both x and y are odd, by provir contrapositive	ng its
contrapositive .	(5) .
(iii) Diagraph of R (iii) Find Adjacency matrix of R (iv) Indergree and outdegree of each node (v) Find its Hasse diagram Q. no 4 Co. 2 (a) Prove the validity of the argument "if I get the job and work hard, then I will get promoted. If promoted, then I will be happy. I will not be happy. Therefore, either I will not get the job or not work hard".	ere is (5) (5) (5) (7) (8) (8) (9) (9) (1) (1) (1) (2) (3) (3) (5)
(b) Out of the 200 Students, 50 of them take the course in mathematics, 140 of them take course economics & 24 of them take both the course. Since both courses have sche examinations for the following day, only those students who are not taken any of these course be able to go to see movie. How many students will be able to go to see movie. **TOM: I SET THE STATE STATES STATE	adula
month whom he will be all be a	