Exercício de Programação 2: Métodos de Jacobi e de Gauss-Seidel

1) Soluções dos Sistemas

a)
$$\begin{bmatrix} 10 & 2 & -3 \\ 1 & 8 & -1 \\ 2 & -1 & -5 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 48 \\ 4 \\ -11 \end{bmatrix}$$

<Captura de tela da Janela de Comandos do Octave que mostra as impressões de tela do programa para este sistema>

b)
$$\begin{bmatrix} 10 & 2 & -3 & 5 \\ 1 & 8 & -1 & 2 \\ 2 & -1 & -5 & 1 \\ -1 & 2 & 3 & 20 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 48 \\ 4 \\ -11 \\ 150 \end{bmatrix}$$

<Captura de tela da Janela de Comandos do Octave que mostra as impressões de tela do programa para este sistema>

2) Comparação dos Números de Iterações Gastas e dos Vetores Resíduos Norma de Máxima Coluna do Vetor Resíduo, $|r|_{\infty}$

Sistema	Número de Iterações Gastas, k	Norma de
		Máxima Coluna
		do Vetor
		Resíduo, $ r _{\infty}$
	Jacobi	Gauss-Seidel
a		
b		