

(11)Publication number:

2000-169765

(43) Date of publication of application: 20.06.2000

(51)Int.CI.

CO9D 5/32 B32B 7/02 B32B 9/00 CO3C 17/28 CO3C 17/32 CO9K 3/00

(21)Application number: 10-351212

(71)Applicant: SUMITOMO METAL MINING CO LTD

(22)Date of filing:

10.12.1998

(72)Inventor: TAKEDA HIROMITSU

YABUKI KAYO

ADACHI KENJI

(54) COATING SOLUTION FOR SUNLIGHT-SHIELDING FILM AND SUNLIGHT- SHIELDING FILM OBTAINED THEREFROM

(57)Abstract:

PROBLEM TO BE SOLVED: To provide a coating solution, that can form, by a simple coating method, a film high in transimittance of light in a visible light region and low in reflectance, low in transmittance of light in a near infrared region, and able to be so controlled that the surface resistance value of the film is $106\Omega/(\text{square})$ or over, and also provide a sunlight-shielding film obtained by use of the coating solution.

SOLUTION: The coating solution for sunlight-shielding film comprises fine particle of a hexaboride and fine particles of indium tin oxide(ITO) or fine particles of antimony tin oxide(ATO) at a ratio by weight ranging (0.1:99.9) to (90:10). The hexaboride is represented by XB6 (wherein X=Y, La, Ce, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Sr or Ca). The sunlight-shielding film if obtained by applying the coating solution on one or both sides of a resin film.

LEGAL STATUS

[Date of request for examination]

12.01.2005

[Date of sending the examiner's decision of rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or application converted registration]

[Date of final disposal for application]

[Patent number]

[Date of registration]

BEST AVAILABLE COPY

[Number of appeal against examines decision of rejection]
[Date of requesting appeal against examiner's decision of rejection]
[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19)日本国特許庁 (JP)

(12) 公開特許公報(A)

(11)特許出願公開番号 特開2000-169765 (P2000-169765A)

(43)公開日 平成12年6月20日(2000.6.20)

(51) Int.Cl.'		識別記号		ΡI					テーマコード(参考)	
C09D	5/32			CO	9 D	5/32			4F100	
B32B	7/02	103		В3	2 B	7/02		103	4G059	
	9/00					9/00		Α	4 J 0 3 8	
COSC	17/28			CO	3 C	17/28		Α		
	17/32					17/32		Α		
			審查請求	未請求	能簡	-	OL	(全 10 頁)	最終質に続く	
(21)出願番号		特顧平10-351212	,	(71)	(71)出願人 000183303 住友金属鉱山株式会社					
(22)出顧日		平成10年12月10日(1998.1					バベニー 横5丁目11番	:3号		
		•	•	(72)	発明者				•	
								中国分3-18	- 5 住友金属	
								中央研究所内		
-				(72)	発明	皆 矢吹	佳世			
							市川市	中国分3-18	- 5 住友金属	
								中央研究所内		
				(72)	発明:					
		•				千葉県	市川市	中国分3-18	- 5 住友金属	
						鉱山株	式会社	中央研究所内	1	
			1						最終頁に続く	

(54) 【発明の名称】 日射遮蔽膜用塗布液及びこれを用いた日射遮蔽膜

(57)【要約】

【課題】 可視光領域の光の透過率が高くて反射率は低く、近赤外領域の光の透過率は低く、膜の表面抵抗値を10°Ω/□以上に制御可能な膜が簡便な塗布法で成膜できる塗布液と、これを用いた日射遮蔽膜とを提供する。

【解決手段】 6ホウ化物微粒子と、ITO微粒子またはATO微粒子とを、重量比で(0.1:99.9)~(90:10)の範囲で含有する日射遮蔽膜用塗布液。但し、6ホウ化物とは、XB。(X=Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、または、Ca)で表される。また、樹脂フィルムの片面若しくは両面に、上記塗布液を塗布した日射遮蔽膜。

【特許請求の範囲】

【請求項1】 6ホウ化物微粒子と、錫添加酸化インジウム(ITO)微粒子とを、重量比で(0.1:99.9)~(90:10)の範囲で含有する日射遮蔽膜用塗布液。但し、6ホウ化物とは、XB。(X=Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、または、Ca)で表されるもののうちの1種以上をいう。

【請求項2】 6ホウ化物微粒子と、アンチモン添加酸化錫(ATO)微粒子とを、重量比で(0.1:99.9)~(90:10)の範囲で含有する日射遮蔽膜用塗布液。但し、6ホウ化物とは、XB。(X=Y、La、Ce、Pr、Nd、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Sr、または、Ca)で表されるもののうちの1種以上をいう。

【請求項3】 更に、SiO₂、TiO₂、ZrO₂、Al₂O₃、MgOの群から選ばれる微粒子の1種以上を含有する請求項1または請求項2に記載の日射遮蔽膜用塗布液。

【請求項4】 バインダーに、紫外線硬化樹脂、電子線硬化樹脂、常温硬化樹脂、熱可塑性樹脂の群から選ばれる1種以上を含む請求項1~請求項3のいずれかに記載の日射遮蔽膜用塗布液。

【請求項5】 樹脂フィルムの片面若しくは両面に、請求項1~請求項4のいずれかの塗布液を塗布した日射遮蔽膜。

【請求項6】 樹脂フィルムが、ポリカーボネート系樹脂、ポリ(メタ)アクリル酸エステル系樹脂、飽和ポリエステル樹脂、環状オレフィン系樹脂のいずれかの樹脂からなる請求項5に記載の日射遮蔽膜。

【請求項7】 請求項5または請求項6に記載の膜の一方の面に更に、接着剤と離型フィルムとを積層した日射 遮蔽膜。

【請求項8】 請求項5、請求項6、請求項7のいずれかに記載の日射遮蔽膜を施した基材の最外層の片面若しくは両面にハードコート層を形成した日射遮蔽膜。

【請求項9】 ハードコート層が請求項4に記載の塗布 液によって形成された日射遮蔽膜。

【請求項10】 表面抵抗値が10°Ω/□以上である 請求項5~請求項9のいずれかに記載の日射遮蔽膜。 【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、車両、ビル、事務所、一般住宅などの窓、ショーウインドー、照明用ランプなど、日射遮蔽を必要とするガラス、透明樹脂などの基材に塗布して日射遮蔽膜を形成するための塗布液、及びこれにより得られた日射遮蔽膜に関する。

[0002]

【従来の技術】従来、太陽光などからの熱成分を除去・ 減少させる日射遮蔽膜として、樹脂フィルムやガラス表 50

面に可視・赤外域の波長を反射する金属酸化物や金属薄膜を形成することが行なわれていた。ここでは、代表的な無機系材料として、 FeO_x 、 CoO_x 、 CrO_x 、 TiO_x 等の金属酸化物や、Ag、Au、アルミニウムなどのような自由電子を多量にもつ金属材料が選択されていた。

【0003】樹脂フィルムでは、有機系の近赤外遮蔽剤を樹脂バインダー中に添加した物がよく使用された。代表的な近赤外線吸収剤には、フタロシアニン系や金属錯体系が知られている。

[0004]

【発明が解決しようとする課題】しかし上記従来の無機 材料では、特に太陽光線で熱効果に大きく寄与する近赤 外線以外に、可視光領域の光も同時に反射もしくは吸収 する性質があり、鏡のようなギラギラした外観を与えて 美観を損ねてしまったり、可視光透過率が低下してしま う欠点があった。

【0005】住宅、ビル、乗り物などに用いる透明基材にこれら無機材料を利用する場合は可視光領域の高い透過率が必要とされるため、膜厚を非常に薄くするという操作が必要となる。従って、スプレー焼き付け法、CV D法、スパッタ法、真空蒸着法などの物理成膜法を用いて10nmレベルという極めて薄い膜を成膜しなければならなかった。このため、大がかりな装置や真空設備を必要として成膜コストが高く、生産性、大面積化に問題があった。

【0006】更に、これら無機材料では膜の導電性が高くなるものが多く、携帯電話やTV受信、車内にアンテナを搭載したカーナビゲーションシステムの電波等を反射して受信不能になったり、周辺地域に電波障害を引き起こすなどの欠点があった。

【0007】一方、上記従来の有機系の近赤外線遮蔽剤では、無機系の材料に比べて熱や湿度による劣化が著しく、耐候性に致命的な欠点があった。また、可視光透過率を高くしようとすると日射遮蔽特性が低下し、逆に日射遮蔽特性を高くすると可視光透過率が低下してしまった。

【0008】アンチモン含有酸化錫(ATO)や錫含有酸化インジウム(ITO)は、可視光領域の光の吸収、反射率が比較的少なく、人の目に対して透明性の高い日射遮蔽材料として知られているが、単位質量あたりの日射遮蔽力は低く、日蔽効果を出現させるためには大量の材料が必要であるので、これを用いた膜は非常に高価であった。

【0009】また、ATOの日射遮蔽特性は、自由電子 濃度が低いため近赤外光の遮蔽力が弱く、特性が十分で ない。物理成膜法でとれらの膜を形成しても膜の導電性 が上がり、電波を反射妨害してしまう欠点があった。

【0010】そこで本発明は、上記従来材料の欠点を解決し、可視光領域の光の透過率が高くて反射率は低く、

近赤外領域の光の透過率は低く、ATOやITOと6ホ ウ化物を併せて使用することで、それぞれの単独使用よ りも日射遮蔽特性を向上させ、ATOやITOの使用量 を減少して材料コストを低減し、しかも膜の表面抵抗値 を100℃/□以上に制御可能な膜が物理成膜法を用い ずに簡便な塗布法で成膜できるための塗布液と、これを 用いた日射遮蔽膜とを提供することを目的とする。

[0011]

【課題を解決するための手段】上記目的を達成するため に、本発明者らは自由電子を多量に保有する6ホウ化物 に着目し、これを超微粒子化し、ATOやITOと併せ て分散させた膜を作製することにより、可視光領域に透 過率の極大をもつと共に、可視光領域に近い近赤外域に 強い吸収および反射を発現して透過率の極小をもつよう になるという現象を見出し、本発明を完成するに至っ

【0012】すなわち、本発明の日射遮蔽膜用塗布液 は、6ホウ化物微粒子と、錫添加酸化インジウム(IT 子とを、重量比で(0.1:99.9)~(90:1 0)の範囲で含有することを特徴とする。

【0013】但し、6ホウ化物とは、XB。(X=Y、 La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, D y、Ho、Er、Tm、Yb、Lu、Sr、または、C a) で表されるもののうちの1種以上をいう。

【0014】また、本発明の他の日射遮蔽膜用塗布液 は、上記いずれかの構成で更に、SiOz、TiOz、Z rO,、Al,O,、MgOの群から選ばれる微粒子の1 種以上を含有することを特徴とする。

【0015】また、本発明の他の日射遮蔽膜用塗布液 は、上記いずれかの構成で更に、バインダーに、紫外線 硬化樹脂、電子線硬化樹脂、常温硬化樹脂、熱可塑性樹 脂の群から選ばれる1種以上を含むことを特徴とする。

【0016】また、本発明の日射遮蔽膜は、樹脂フィル ムの片面若しくは両面に、上記いずれかの構成の塗布液 を塗布したことを特徴とする。

【0017】また、本発明の他の日射遮蔽膜は、上記構 成で更に、樹脂フィルムが、ポリカーボネート系樹脂、 ポリ(メタ)アクリル酸エステル系樹脂、飽和ポリエス テル樹脂、環状オレフィン系樹脂のいずれかの樹脂から 40 なることを特徴とする。

【0018】また、本発明の他の日射遮蔽膜は、上記構 成の膜の一方の面に更に、接着剤と離型フィルムとを積 層したことを特徴とする。

【0019】上記膜の他方の面に更に、ハードコート層 を施してもよい。このハードコート層には、バインダー に、紫外線硬化樹脂、電子線硬化樹脂、常温硬化樹脂、 熱可塑性樹脂の群から選ばれる1種以上を含めた前記構 成の塗布液を用いてもよい。

抗値を10°Ω/□以上に制御することができる。

【発明の実施の形態】本発明に使用される6ホウ化物に は、YB₆、LaB₆、CeB₆、PrB₆、NdB₆、S mB, EuB, GdB, TbB, DyB, Ho B. ErB. TmB. YbB. LuB. SrB. および、CaB。が挙げられる。

【0022】これら6ホウ化物の微粒子は、暗い青紫色 や、緑色などの粉末であるが、可視光波長に比べて粒径 10 が十分小さい微粒子を薄膜中に分散すると可視光透過性 が生じる。しかし赤外光は遮蔽する。これは、これら材 料が自由電子を多く保有し、4 f-5 d間のバンド間遷 移や、電子-電子、電子-フォノン相互作用による吸収 が近赤外領域に存在するためと考えられる。

【0023】実験によれば、これら6ホウ化物微粒子の 分散膜は、透過率が波長400~700nmの間に極大 値をもち、且つ波長700~1800mmの間に極小値 をもつ。可視光波長が380~780 nmであり、視感 度が550nm付近をピークとする釣鐘型であることを 20 考慮すると、このような膜では可視光を有効に透過し、 それ以外の日射を有効に吸収・反射する。

【0024】本発明で使用されるITO微粒子およびA T〇微粒子は、可視光領域で光の吸収、反射がほとんど 無く、1000nm以上の領域でプラズモン共鳴に由来 する反射・吸収が大きい。これらの透過プロファイル は、近赤外領域で長波長側に向かうに従い右下がりとな

【0025】一方、6ホウ化物の透過ブルファイルは1 000nm付近にボトムをもち、それより長波長側では 30 徐々に右上がりを示す。このため、6ホウ化物とITO やATOとを併わせて使用することで、可視光透過率は 減少させずに、近赤外領域の太陽光線を遮蔽することが 可能となり、それぞれ単独で使用するよりも日射遮蔽特 性が向上する。

【0026】6ホウ化物の単位重量あたりの日射遮蔽能 力は非常に高く、ITOやATOと比較して、10分の 1以下の使用量でその効果を発揮する。更に、ITOや ATOと併用することで、一定の可視光透過率を保ちな がら日射遮蔽特性のみを向上させることができ、コスト も削減できる。また、全微粒子の使用量を大幅に削減で きるので、膜の摩耗強度や耐候性を向上させることがで

【0027】6ホウ化物は使用量を増すと可視光領域に 吸収があるために、その添加量を制御することで可視光 領域の吸収を自由に制御でき、明るさ調整や、ブライバ シー保護等への応用もできる。

【0028】6ホウ化物微粒子の粒径は200nm以下 がよく、好ましくは100nm以下がよい。粒子径が2 00 nmよりも大きくなると分散液中の微粒子同士の凝 【0020】上記本発明の日射遮蔽膜によれば、表面抵 50 集が強くなって微粒子の沈降原因となり、また、200 nmよりも大きい微粒子もしくは凝集した粗大粒子は、 塗膜後の膜の光散乱源となって、膜が曇ってしまうから である。

【0029】ITO微粒子やATO微粒子、SiO₁、TiO₁、ZrO₁、Al₁O₃、MgOの微粒子もまた上記同様の理由で200nm以下がよく、好ましくは100nm以下がよい。SiO₁、TiO₂、ZrO₁、Al₁O₃、MgO等の微粒子は湿式法により作製された200nm以下のコロイドゾルが使用できる。

【0030】 微粒子の分散方法は、微粒子が均一に溶液 10 中に分散するのであればいかなる方法でもよく、例えば、ビーズミル、ボールミル、サンドミル、超音波分散などの方法がある。

【0031】バインダーには、紫外線硬化樹脂、電子線硬化樹脂、常温硬化樹脂、熱可塑性樹脂等の有機バインダーや、これに珪素、ジルコニウム、チタン、アルミニウム等の無機酸化物を変成させた有機無機ハイブリッドバインダーが使用でき、バインダーを微粒子分散液と混合して、または微粒子と直接混合して塗布液とすればよい

【0032】基材には、ガラス、透明樹脂などの板、フィルムなどが用いられる。透明樹脂フィルム基材の代表には、ポリエチレンテレフタレート(PET)フィルムが挙げられるが、用途に適した樹脂フィルムを選択すればよい。樹脂フィルム基材は一般的に、透過性があり散乱の少ない、無色透明の樹脂が適しており、例えば、ポリカーボネート系、ポリ(メタ)アクリル酸エステル系、環状オレフィン系、飽和ポリエステル系の樹脂や、ポリスチレン、ポリ塩化ビニル、ポリ酢酸ビニル等が挙げられる。

【0033】樹脂フィルム基材の表面は、樹脂バインダーとの結着性向上を目的とした表面処理を施すとよい。 例えば、コロナ処理、ブラズマ処理、火炎処理、ブライマー層コート処理等である。

【0034】樹脂フィルムの意匠性を重視する場合は、 あらかじめ着色された基材、もしくは型どりされた基材 を使用することもできる。また、塗布液中に着色顔料や 染料を添加してもよい。

【0035】樹脂フィルム基材の膜をガラス等に貼り付けるため、接着面に接着剤層と離型フィルム層とを積層してもよい。自動車のバックウィンドウのように局面に貼り付け易いように、ドライヤーの加熱で簡単に軟化するフィルムを使用してもよい。

【0036】接着剤中に紫外線遮蔽剤を添加すれば、フィルムや、塗膜の紫外線劣化を防止できる。紫外線吸収剤には、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤や、CeO₂、TiO₂、ZnO等が挙げられる。

【0037】パインダーに紫外線硬化樹脂を用いる場合 には、エポキシアクリレート、ウレタンアクリレート、 ポリエステルアクリレート、ポリエーテルアクリレート 等の光重合性オリゴマーと、単官能アクリレート、多官 能アクリレート等の光重合性モノマーの混合物を主成分 とし、これにベンゾイン系、アセトフェノン系、チオキ サンソン系、パーオキシド系等の光開始剤や、アミン 系、キノン系等の光開始助剤を添加したものを用いると とができる。さらに、熱重合禁止剤や、接着付与剤、チ クソ付与剤、可塑剤、比反応性ポリマーや、着色剤を添 加してもよい。紫外線硬化樹脂に、SiO,、TiO,、 ZrO₁、Al₂O₃、MgOの微粒子を添加することで 更に膜強度を向上させることもできる。また、紫外線硬 化樹脂の主成分に、SiO₂、TiO₂、ZrO₂、Al₂ O,、Mg O等の無機物を化学的に結合させることでも 同様の効果が得られる。耐摩耗性等の特性に優れた紫外 線硬化樹脂を使用することで、樹脂フィルムや樹脂基材 に日射遮蔽特性とハードコート機能を同時に付与すると

【0038】また、バインダーに常温硬化樹脂を使用すれば、既存の住宅、ビル、乗り物等の窓にコーティングして、そのまま硬化させることができる。

【0039】微粒子の分散媒は特に限定されず、塗布条件や塗布環境、塗布液中の合成樹脂バインダーなどに合わせて選択できる。例えば、水、アルコール、エーテル、エステル、ケトンなどの有機溶媒が使用できる。微粒子を直接バインダーに分散させれば、環境にやさしい無溶剤の塗布液となる。

【0040】塗布液には必要に応じて酸やアルカリを添加してpHを調整してもよい。また、塗布液中の微粒子の分散安定性を一層向上させるため、各種の界面活性剤、カップリング剤などを添加してもよい。それぞれの添加量は、微粒子総量に対して50重量%以下が好ましい。

【0041】膜の導電性は微粒子同士の接触によって発現する。膜の表面抵抗値を10°Ω/□以上とするには、微粒子を塗膜中に孤立させて接触を無くせばよい。これはバインダーの添加量で制御可能である。また、各種カップリング剤や分散剤を微粒子表面に作用させ、微粒子同士の接触を無くすことでも膜の表面抵抗を制御できる。

【0042】本発明の日射遮蔽膜は、基材上に微粒子が 高密度に堆積して形成される。バインダーは塗布硬化 後、微粒子を基材へ結着させ、膜の硬度を向上させる。 さらにハードコート層を形成すれば、膜の基材への結着 力や、膜の硬度及び耐候性を一層向上させることができ

【0043】 膜の硬度や、摩耗強度を向上させるために、SiO2、TiO2、ZrO2、Al2O3、MgOの 微粒子を塗布液に添加してもよい。これらの微粒子は基本的に透明であり、添加したことで可視光透過率を低下 50 させることはない。

【0044】塗布液の塗布方法は特に限定されるものではなく、ディッピング法、フローコート法、スプレー法、バーコート法、スピンコート法、グラビヤコート法、ロールコート法、スクリーン印刷法ブレードコート法など、処理液を平坦且つ薄く均一に塗布できる方法であれば如何なる方法でもよい。

【0045】樹脂バインダーを使用する場合は、それぞれの硬化方法に従って硬化させればよい。紫外線硬化樹脂であればそれぞれの光開始剤の共鳴液長や、目的の硬化速度に併せて紫外線ランプを選択すればよい。代表的なランプとしては、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、バルスキセノンランプ、無電極放電ランプ等が挙げられる。光開始剤を使用しない電子線硬化タイプの樹脂バインダーの場合は、走査型、エレクトロンカーテン型等の電子線照射装置を使用して硬化させればよい。加熱硬化型樹脂バインダーの場合は、目的の温度で加熱すればよく、また常温硬化樹脂の場合は、塗布後そのまま放置しておけばよい。

【0046】本発明の膜は、物理成膜法により形成され 20 に示す。 た酸化物薄膜のように結晶が緻密に膜内を埋め鏡面状表 面をもつのに比べ、可視光領域での反射が少なく、ギラ 成になる ギラした外観を呈することがない。可視光領域の反射を さらに抑制したい場合は、膜の上に、SiOz、MgF 方法で成のような低屈折率の膜を成膜することにより、容易に視 性を表1 感反射率を低下させることができる。

【0047】本発明では、6ホウ化物その他の無機材料を用いるので、膜の耐候性は有機材料に比べて優れ、太陽光線の当たる場所で使用しても、色や諸機能の劣化はほとんど生じない。

[0048]

【実施例】以下、本発明を実施例と比較例によって更に 詳細に示す。

【0049】実施例1・・・ LaB。微粒子(平均粒径90nm)20g、イソブチルアルコール(IBA)73g、および微粒子分散用カップリング剤(東芝シリコーン社製シリコーンカップリング剤)7gを混合し、直径2mmのジルコニアボールを用いて200時間ボールミル混合し、LaB。微粒子の分散液を作製した(A液)。

【0050】バインダーとして、信越化学社製紫外線硬化樹脂(固形分80%)を用意した(B液)。

【0051】また、ITO微粒子(平均粒径70nm)30g、イソプチルアルコール(IBA)56g、および微粒子分散用カップリング剤(アデカ社製シリコーンカップリング剤)14gを混合し、直径1mmのジルコニアボールを用いて180時間ボールミル混合し、ITO微粒子の分散液を作製した(C液)。

【0052】A液、B液、C液を表1の組成になるよう 1と同様の方法で成膜を行いて、エタノールで希釈して十分混合し塗布液とした。C 50 膜の光学特性を表1に示す。

の塗布液をパーコーターを用いてPETフィルム(帝人製EPE-50 (厚さ50μm))の易接着面に成膜した。このときのパーコータはNo.16を使用した。これを130℃の乾燥機に入れて約2分加熱し、溶媒が蒸発したところで、高圧水銀ランプで1分間紫外線を照射し硬化させ、目的とする膜を得た。

【0053】形成された膜の透過率は、日立製作所製の分光光度計を用いて200~1800nmの透過率を測定し、JIS R3106に従って日射透過率、可視光透過率を算出した。また、膜の表面抵抗を三菱油化株式会社製の表面抵抗計を用いて測定した。とれらの結果を表1に示す。

【0054】表1には実施例1~23、比較例1~3で 得られた膜の特性についても併せて示す。またとの膜の 透過プロファイルを図1に示す。

【0055】実施例2~5 ・・・ A液、B液、C液を表1の組成になるようにエタノールで希釈して十分混合し塗布液とした。これを、実施例1と同様の方法で成膜を行い目的とする膜を得た。この膜の光学特性を表1に示す。

【0056】比較例1 ・・・ B液、C液を表1の組成になるようにジアセトンアルコール (DAA) で希釈して十分混合し塗布液とした。これを実施例1と同様の方法で成膜を行い目的とする膜を得た。この膜の光学特性を表1に示す。

【0057】実施例1~実施例5、比較例1の組成と光学特性の変化を図2に示す。この図より、LaB。をごく微量添加していくことで、従来のITOの特性に比べて可視光透過率を下げずに、さらに日射透過率を減少させることが可能となり、また、このときITO量を大幅に削減できることが分かる。

【0058】例えば、比較例1と実施例2とを比較すると、LaB。を膜中の全微粒子の1.37wt%(≒ 0.12/(0.12+8.66)×100%)添加したことで、可視光透過率は78%に維持したまま、日射透過率を3ポイント以上下げ、更にITO濃度を約半分に減らした(8.66wt%/17.0wt%≒0.5)ことが分かる。これより、LaB。の微量添加で日射遮蔽特性の向上と、更に、コスト削減とが同時に行な40えることが明らかである。

【0059】比較例2 ・・・ ATO微粒子(平均粒径50nm)30g、イソブチルアルコール(IBA)55g、および微粒子分散用カップリング剤(アデカ社製シリコーンカップリング剤)15gを混合し、直径1mmのジルコニアボールを用いて150時間ボールミル混合し、ATO微粒子の分散液を作製した(D液)。【0060】B液、D液を表1の組成になるようにDAAで希釈して十分混合し塗布液とした。これを、実施例1と同様の方法で成膜を行い目的とする膜を得た。この

【0061】実施例6~9 ・・・ A液、B液、D液 を表1の組成になるようにイソブチルアルコールで希釈 して十分混合し塗布液とした。これを、比較例1と同様の方法で成膜を行い目的とする膜を得た。この膜の光学特性を表1に示す。また、実施例8の透過プロファイルを図1に示す。

【0062】比較例2、実施例6〜実施例9の組成と光学特性の変化を図3に示す。この図より、LaB。をどく微量添加していくことで、従来のATOの特性に比べて可視光透過率を下げずに、さらに日射透過率を減少させることが可能となり、また、このときATO量を大幅に削減できることが分かる。

【0063】例えば、比較例2と実施例8とを比較すると、LaB₆を膜中の全像粒子の10.5 w t% (≒

0.37/(0.37+3.16)×100%)添加したことで、可視光透過率は78%に維持したまま、日射透過率を2ポイント程度下げ、更にATO濃度を約3分の1に減らした(3.16 w t %/9.5 w t % = 0.33ことが分かる。

【0064】比較例3 ・・・ A液、B液、D液を表 201の組成になるようにDAAで希釈して十分混合し塗布液とした。これを、実施例1と同様の方法で成膜を行い目的とする膜を得た。この膜の光学特性を表1に示す。【0065】実施例10・・・ バインダーとして常温硬化性樹脂(JSR社製ハイブリッド系常温硬化樹脂/硬化触媒)を用意した(E液)。

【0066】A液、E液、D液を表1の組成になるよう にDAAで希釈して十分混合し塗布液とした。実施例1 と同様の方法で、成膜を行い、室温で約1日放置し硬化 させ目的とする膜を得た。との膜の光学特性を表1に示 30 す。

【0067】実施例11~15 ・・・ A液、B液、D液を表1の組成になるようにDAAで希釈して十分混合し塗布液とした。これを、実施例1と同様の方法で成膜を行い目的とする膜を得た。この膜の光学特性を表1に示す。実施例13の透過ブロファイルを図1に示す。【0068】比較例3、実施例10~実施例15の組成と光学特性の変化を図4に示す。この図より、LaB。をごく微量添加していくことで従来のATOの特性に比べて、可視光透過率を下げずに、さらに日射透過率を減 40少させることが可能となり、また、このときATO量を大幅に削減できることが分かる。

【0069】例えば、比較例3と実施例13とを比較すると、比較例3のATOのみで可視光透過率60%とするには、23wt%のATOが必要であるが、LaB。を膜中の全微粒子の7.7%添加した実施例13では、塗布液中のATOが8.28%と比較例3の23.0%の半分以下であり、更に同じ可視光透過率60%であるが、日射透過率を7ポイント以上低下させている。これより、LaB。の添加で日射連蔽特性の向上とコスト削

減とが同時に行なえることが明らかである。

【0070】実施例16 ・・・ A液、B液、C液を表1の組成になるようにDAAで希釈して十分混合し塗布液とした。Cれを、実施例1と同様の方法で成膜を行い目的とする膜を得た。Cの膜の光学特性を表1に示す。

【0071】実施例16より、どく微量のLaB。と少量のITOとを混合することで、可視光透過率を60%という比較的低い透過率で、効率よく日射を遮蔽していることが分かる。ITOは高価なため、それだけで可視光透過率60%にすることは非常にコストがかかるが、比較例1と比較しても分かるとおり、ITOの濃度が低いにも関わらず、LaB。の添加により良好な日射遮蔽特性が得られている。また、簡単に可視光透過率を変化させ、即ち明るさを変化させ、ブライバシー保護等の応用も可能であることが分かる。

【0072】実施例17・・・ CeB。微粒子(平均粒径85nm)20g、イソブチルアルコール(IBA)73g、および微粒子分散用カップリング剤(東芝シリコーン社製シリコーンカップリング剤)7gを混合し、直径2mmのジルコニアボールを用いて200時間ボールミル混合し、CeB。微粒子の分散液を作製した(F液)。

【0073】B液、C液、F液を表1の組成になるようにDAAで希釈して十分混合し塗布液とした。これを、 実施例1と同様の方法で成膜を行い目的とする膜を得た。この膜の光学特性を表1に示す。

【0074】実施例18 ・・・ PrB。微粒子(平均粒径85nm)20g、イソプチルアルコール(IBA)73g、および微粒子分散用カップリング剤(東芝シリコーン社製シリコーンカップリング剤)7gを混合し、直径2mmのジルコニアボールを用いて200時間ボールミル混合し、PrB。微粒子の分散液を作製した(G液)。

【0075】B液、C液、G液を表1の組成になるようにDAAで希釈して十分混合し塗布液とした。これを、実施例1と同様の方法で成膜を行い目的とする膜を得た。この膜の光学特性を表1に示す。

【0076】実施例19 ・・・ NdB。微粒子(平均粒径85nm)20g、イソブチルアルコール(IBA)73g、および微粒子分散用カップリング剤(東芝シリコーン社製シリコーンカップリング剤)7gを混合し、直径2mmのジルコニアボールを用いて200時間ボールミル混合し、NdB。微粒子の分散液を作製した(H液)。

【0077】B液、D液、H液を表1の組成になるよう にDAAで希釈して十分混合し塗布液とした。これを、 実施例1と同様の方法で成膜を行い目的とする膜を得 た。この膜の光学特性を表1に示す。

0 【0078】実施例20 ··· GdB。微粒子(平

均粒径85nm)20g、イソプロピルアルコール(IPA)73g、および微粒子分散用カップリング剤(東芝シリコーン社製シリコーンカップリング剤)7gを混合し、直径2mmのシルコニアボールを用いて200時間ボールミル混合し、GaB。微粒子の分散液を作製した(I液)。

【0079】B液、D液、I液を表1の組成になるようにDAAで希釈して十分混合し塗布液とした。これを、実施例1と同様の方法で成膜を行い目的とする膜を得た。この膜の光学特性を表1に示す。

【0080】実施例21 ・・・ YB。微粒子(平均粒径85nm)20g、イソプロビルアルコール(IPA)73g、および微粒子分散用カップリング剤(東芝シリコーン社製シリコーンカップリング剤)7gを混合し、直径2mmのジルコニアボールを用いて200時間ボールミル混合し、YB。微粒子の分散液を作製した(J液)。

【0081】B液、C液、J液を表1の組成になるようにDAAで希釈して十分混合し塗布液とした。これを、実施例1と同様の方法で成膜を行い目的とする膜を得た。この膜の光学特性を表1に示す。

[0082]実施例22 ··· SmB。微粒子(平 均粒径85nm)20g、イソプロピルアルコール(I* *PA)73g、および微粒子分散用カップリング剤(東芝シリコーン社製シリコーンカップリング剤)7gを混合し、直径2mmのシルコニアボールを用いて200時間ボールミル混合し、SmB。微粒子の分散液を作製した(K液)。

【0083】 B液、D液、K液を表1の組成になるようにDAAで希釈して十分混合し塗布液とした。これを、実施例1と同様の方法で成膜を行い目的とする膜を得た。この膜の光学特性を表1に示す。

0 【0084】実施例23 ・・・ EuB。微粒子(平 均粒径85nm)20g、ジアセトンアルコール(DAA)73g、および微粒子分散用カップリング剤(東芝 シリコーン社製シリコーンカップリング剤)7gを混合 し、直径2mmのジルコニアボールを用いて200時間 ボールミル混合し、EuB。微粒子の分散液を作製した (L液)。

【0085】B液、D液、L液を表1の組成になるよう にDAAで希釈して十分混合し塗布液とした。これを、 実施例1と同様の方法で成膜を行い目的とする膜を得 20 た。この膜の光学特性を表1に示す。

[0086]

【表1】

	・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	布言	ま の 組 成 (wt%)				膜の光学特性		意気的特性
	6 ホウ化	彻	ITO ATO		パインダー		可視光	医捷日	表面抵抗值
	種類	濃度	漢度	漢 度	種類	濃度	塞過艦	選 率	
						<u> </u>	(%)	(%)	
実施例 1	LaB.	0.09	14.5	0	紫外銀硬化	20	78	66.6	>1×10 ⁶
実施例 2	LaB.	0.12	8.66	0	紫外線硬化	20	78	54.2	>1×10 ⁸
実施例 3	LaB.	0.18	7.68	0	紫外線硬化	20	78	54.7	>1×10 ⁸
実施例 4	LaB,	0.21	6.18	0	業外級硬化	20	78	57.5	>1×10°
実施例 5	LaB.	0.33	2.75	0	紫外線硬化	20	78	59.3	>1×10 ⁵
比較例 1	LaB.	0	17.0	٥	紫外線硬化	20	78	57.8	>1×10 ⁶
比較例 2	LaB.	0	0	9.5	紫外線硬化	20	78	63.1	>1×10 ⁶
夹施例 6	LaB	D.D 9	0	8.06	紫外線硬化	20	78	62.5	>1×10 ⁶
実施例 7	LaB.	0.27	0	4.15	紫外線硬化	20	78	61.3	>1 × 10 ⁶
実施例8	LaB.	0.37	0	3.16	索外幕硬化	20	78	61.0	>1 × 10 ⁶
実施例9	LaB.	0.38	0	2.38	紫外線硬化	20	78	62.0	>1×10°
比較例3	LaB.	0	0	23.0	業外級硬化	30	60	40.2	>1×10 ⁶
実施例 10	LaB,	0.22	0	19.7	常温硬化	25	-60	37.0	>1×10 ⁶
突施例 11	LaB,	0.29	0	15.7	某外級硬化	30	60	85.0	>1×10 ^e
突旋例 12	LaB.	0.52	0	15.5	紫外級硬化	30	60	32.5	>1 × 10°
突施例 13	LaB.	0,69	0	8.28	紫外藝硬化	30	60	32.7	>1×10 ^d
実施例 14	LaB,	0.77	0	6.66	紫外線硬化	30	60	33.0	>1×10°
突施例 15	LaB.	0.84	0	5.24	紫外線硬化	30	60	83.0	>1×10 ⁶
実施例 16	LaB	0.82	6.94	0	紫外線硬化	30	60	31.0	>1×10 ⁵
突施例 17	CeB,	0.19	7.70	0	紫外線硬化	20	77	53.8	>1×10 ⁶
英施例 18	PrB.	0.20	7.50	0	禁外線硬化	20	77	54.1	>1×10 ⁵
実施例 19	NdB.	0.51	0	14.5	常外與傻化	33	59	33.0	>1 × 10°
実施例 20	GdB.	0.60	0	12.3	紫外線硬化	34	60	34.5	>1×10 ⁸
実施例 21	YB,	0.17	7.0	C	紫外線硬化	20	78	54.0	>1×10 ⁵
実施例 22	SmB.	0.80	0	6.51	常外線硬化	33	60	34.1	>1×10 ⁵
実施例 23	EuB,	0.82	0	6.50	常外線硬化	33	60	34.3	>1×10 ⁸

[0087]

【発明の効果】以上示したように、本発明によれば、上 記従来材料の欠点を解決し、可視光領域の光の透過率が 高くて反射率は低く、近赤外領域の光の透過率は低く、 明るさを損なわずに日射の熱エネルギーを効率よく遮蔽でき、ATOやITOと6ホウ化物を併せて使用するととで、それぞれの単独使用よりも日射遮蔽特性を向上さ ひと ATOやITOの使用量を減少して材料コストを低

減し、しかも膜の表面抵抗値を10°Q/□以上に制御可能な膜が物理成膜法を用いずに簡便な塗布法で成膜できるための塗布液と、これを用いた日射遮蔽膜とが提供できた。

【0088】この膜を、例えばピル等の窓ガラスに使用することで、夏場の冷房負荷を低減する効果があり、省エネルギーにも役立ち、環境的にも有用性が高い。

【図面の簡単な説明】

【図1】図1は、本発明の実施例1、実施例8、実施例13の膜の透過プロファイルである。

【図2】図2は、LaB。微粒子とITO微粒子を用いた塗布液において、全微粒子中のLaB。微粒子の重量割合に対する、可視光透過率78%時の日射透過率

* (%) と、塗布液中の I T O 濃度 (%) を示すグラフである。

【図3】図3は、LaB。微粒子とATO微粒子を用いた塗布液において、全微粒子中のLaB。微粒子の重量割合に対する、可視光透過率78%時の日射透過率

(%) と、塗布液中のATO濃度(%)を示すグラフである。

【図4】図4は、LaB。微粒子とATO微粒子を用いた塗布液において、全微粒子中のLaB。微粒子の重量 10 割合に対する、可視光透過率60%時の日射透過率 (%)と、塗布液中のATO濃度(%)を示すグラフである。

【図1】

【図3】

[図4]

フロントページの続き

(51)Int.Cl.' C09K 3/00 識別記号

FΙ

C09K 3/00 テーマコート' (参考)

U

PC08

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

☐ BLACK BORDERS
☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
PADED TEXT OR DRAWING
BLURRED OR ILLEGIBLE TEXT OR DRAWING
☐ SKEWED/SLANTED IMAGES
☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS
☐ GRAY SCALE DOCUMENTS
☐ LINES OR MARKS ON ORIGINAL DOCUMENT
☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
Потикр.

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.