Mohammad Hashemi | 97243073

Instructor's Name: Dr. Dara Rahmati

April 28, 2021

HW05 Report

Microprocessor and Assembly Language Course - Spring 2021

1. Which of the followings are illegal?

a) MOV R2, #0x50000

Illegal. We cannot load values larger than 0xFF (255) into registers R0 to R12 using MOV instruction.

b) MOV R1, 255

Illegal. If 255 is assumed to be represented in decimal format, the correct form of this instruction is: MOV R1, #255

c) MOV 123, 0x50

Illegal. We cannot put an immediate value into a constant:

d) MOV R2, #0x50

Correct.

e) MOV R17, #25

Illegal. We do not have R17 in ARM.

f) MOV R1, #0x00

Correct.

g) MOV R23, #0xF5

Illegal. We do not have R23 in ARM.

2. Find the C flag value after each of the following codes.

a) LDR R0, =0xFFFFF54

LDR R5, =0xFFFFFC4

ADDS R2, R5, R0

Carry flag will be set to 1.

The result of this addition operation is R2 = 0xFFFFFF18 and a carry is propagated from the second least bit to MSB.

b) MOV R3, #0

LDR R6, =0xFFFFFFF

ADDS R3, R3, R6

Carry flag will be set to 0.

3. Write a program to calculate the GCD of two given numbers.

AREA	RESET, CODE, READONLY
I I ENTRY	, 1 1
 start	1
I MOV	R1, #12 ; R1 = 12
I I MOV	R2, #8 ; R2 = 8
I GCD	1
I CMP	R1, R2
SUBGT	R1, R1, R2 ; R1 = R1 - R2
SUBLT	R2, $R2$, $R1$; $R2 = R2 - R1$
BNE	GCD
1	1
MOV	R0, R1 ; R0 = GCD(R1, R2)

And the result of the code above is : GCD(12, 8) = 4

4. Write a program to compute factorial(reversed(n)).

```
AREA
                RESET, CODE, READONLY
         ENTRY
start
               VOM
         VOM
               R1, #0
               R2, #32
                           ; since we have 32-bit register
         VOM
REVERESE_LOOP
         LSRS
               R0, #1
              R1, R1, #1 ; add if carry flag is set
         ADDCS
               R1, #1
         LSL
               R2, R2, #1
         SUB
         CMP
               R2, #1
               REVERESE_LOOP
         BNE
         ADD
               R1, R1, #1
         VOM
               R0, R1
                            ; R0 = Reverse(n)
                            MOV
               R10, #1
FACTORIAL
               R0, #1
         CMP
         BEQ
               DONE
         MUL
                   R10, R0, R10
         SUB
                   R0, R0, #1
                   FACTORIAL
         В
DONE
```

For an example, we initialize R0 to 0xE000000 which is equal to 7 as decimal and the reverse of this number is put in R1. And the factorial of 7 is 5040 which is set into the R10.

5. Write a program to count the number of "101" occurrence in a binary number.

```
RESET, CODE, READONLY
            ENTRY
I start
            LDR
                   R10, =97243073 ; input = 0000 0101 1100 1011 1100 1111 1100 0001
             VOM
                   R0, #0
                                     ; counter
             VOM
                   R1, #7
                                    ; 7 = 111 in binary
            MOV
                   R2, #5
                                    ; 5 = 101 in binary
                   R3, #29
                                     ; 29 = 32 - 3
             VOM
I LOOP
             AND
                   R4, R10, R1
                                    ; fetch the three least bits in R10
                   R4, R2
             CMP
             ADDEQ RO, #1
             LSL
                   R1, #1
                                    ; next 3 bits in the input number
                   R2, #1
            LSL
                                   ; shift the pattern 1 to the left
                                    ; loop counter
             SUB
                   R3, R3, #1
             CMP
                   R3, #0
                                     ; end loop
             BGT
                    LOOP
```

Number of 101 occurrence in 0000 0101 1100 1011 1100 1111 1100 0001 is 2 and the result is set into the R0 after the execution of the code above.

6. Write a program to toggle the i'th to j'th bits.

```
AREA
                           RESET, CODE, READONLY
                  ENTRY
start
                         RO, #0xFFFFFFFF
                  VOM
                         R1, R0
                  MOV
                  MOV
                         R2, #3
                                                      ; R2 = i
                         R3, #8
                                                      ; R3 = j
                  MOV
                         R4, #171
                  VOM
                                                       ; input = 0000 0000 1010 1011
                         R5, #31
                  MOV
                  LSL
                         R0, R2
                                                       ; R0 = R0 << i
                  SUB
                         R3, R5, R3
                         R1, R3
                                                      ; R0 = R0 >> j
                  LSR
                  AND
                         R1, R1, R0
                                                      ; R1 = 0000 0001 1111 1000
                  EOR
                         R4, R4, R1
                                                       ; R4 = result = 0000 0001 0101 0011
```

The result of this program are shown in the comments in the source code above.