# 实验四 传统软件工程的软件测试

姓名: 高树林

班级: 2020185

学号: 202018526

实验学时: 2(必修)

## 一、目的与任务

目的:

- 1、了解软件开发测试的工具。理解软件测试策略和方法,其中包括:
  - 1) 白盒测试
  - 2) 黑盒测试
  - 3) 静态测试
  - 4) 动态测试
- 2、掌握测试技术

任务:可采用不同的软件测试方法,分析问题,设计测试用例,完成对综合问题的软件测试过程。

#### 二、实验内容

### 1.软件开发测试工具学习

通过网络搜索,体会软件开发测试工具的应用,重点了解下面几种工具的概况:

- 1) visual studio
- 2) Dev-C++
- 3) VScode
- 2.软件测试
- (1) 白盒测试任务:

已知有一段代码

int a, b, c;

if (a < 1 and b > 0)

c = 5;

else if (b < -3)

c = 4;

else

c = 3;

请画出这段代码的程序流程图,并分别采用判定覆盖、条件覆盖、判定条件覆盖、条件组合覆盖和路径覆盖的方法设计测试用例。

#### (2) 黑盒测试任务(三角形问题):

程序接受 3 个整数 a,b,c 作为输入,用作三角形的 3 条边,程序输出由这三条边确定的三角形类型: 等边三角形、等腰三角形、非等边三角形、非三角形。请用分别用等价类划分法和边界值划分法 设计测试此程序的测试用例(等价类划分法先画出该问题等价类表并编号,再设计测试用例;边 界值划分法需先分析输入、输出域边界值再设计测试用例)。

# (3) 测试实例

请依据下图的详细设计流程图,设计测试用例找到程序中的所有缺陷。下图是程序员编写的程序,需要测试用例能被执行。



Int A,B;

Double X;

if (A>2 || B=2)

## X=X/A;

If (A=3 && X>1)

X=X+1;

## 三、实验结果:

- 1.软件工具分析
- 2 软件总体设计
- (1) 白盒测试任务



图 1 白盒测试的程序流程图

## 判定覆盖(设计足够多的测试用例,使程序中的每个判定都至少获得"真值"和"假值")

假设: (a<1)&& (b>0)为真记为 T1,为假记为 F1; b<-3 为真记为 T2,为假记为 F2 根据判定覆盖的定义,应使两个判定都至少获得"真值"和"假值"。即(a<1)&& (b>0) 和 b<-3 都至少获得"真值"和"假值"。

| 序号 | 状态   | 条件            | a | b  | c |
|----|------|---------------|---|----|---|
| 1  | F1T2 | (a>=1),(b<-3) | 1 | -4 | 4 |
| 2  | T1F2 | (a<1),(b>0)   | 0 | 1  | 5 |

### 条件覆盖(每一个判定中每个逻辑条件的可能的值至少被满足一次)

假设: (a<1) 为真记为 T1,为假记为 F1; (b>0) 为真记为 T2,为假记为 F2; (b<-3)为 真记为 T3,为假记为 F3。

| 序号 | 状态     | 条件                  | a | b | С |
|----|--------|---------------------|---|---|---|
| 1  | T1T2F3 | (a<1),(b>0),(b>=-3) | 0 | 2 | 5 |

| 2 F1F2T3 | (a>=1),(b<-3),(b<0) | 1 | -4 | 4 |
|----------|---------------------|---|----|---|
|----------|---------------------|---|----|---|

## 判定条件覆盖(判定中每个条件所有可能至少出现一次,判定本身的判定结果业至少出现一次)

假设: (a<1) 为真记为 T1,为假记为 F1; (b>0) 为真记为 T2,为假记为 F2; (b<-3)为 真记为 T3,为假记为 F3。

| 序号 | 状态     | 条件                  | a | ь  | c |
|----|--------|---------------------|---|----|---|
| 1  | T1T2F3 | (a<1),(b>0),(b>=-3) | 0 | 2  | 5 |
| 2  | F1F2T3 | (a>=1),(b<-3),(b<0) | 1 | -4 | 4 |

### 条件组合覆盖(每个判定中条件的各种可能组合都至少出现一次)

假设: (a<1) 为真记为 T1,为假记为 F1; (b>0) 为真记为 T2,为假记为 F2; (b<-3)为 真记为 T3,为假记为 F3。

| 序号 | 状态     | 条件                    | a | b   | c |
|----|--------|-----------------------|---|-----|---|
| 1  | T1T2F3 | (a<1),(b>0),(b>=-3)   | 0 | 2   | 5 |
| 2  | T1F2T3 | (a<1),(b<0),(b<-3)    | 0 | -4  | 3 |
| 3  | F1T2T3 | (a>=1),(b>0),(b<-3)   | 2 | 不存在 | 无 |
| 4  | T1F2F3 | (a<1),(b>=0),(b>=-3)  | 0 | -2  | 3 |
| 5  | F1T2F3 | (a>=1),(b>0),(b>=-3)  | 2 | 2   | 3 |
| 6  | F1F2T3 | (a>=1),(b<-3),(b<0)   | 2 | -4  | 4 |
| 7  | F1F2F3 | (a>=1),(b>=0),(b>=-3) | 2 | -2  | 3 |
| 8  | T1T2T3 | (a<1), (b>=0),(b>=-3) | 0 | 不存在 | 无 |

## 路径覆盖(每个路径都可能被执行)

假设: (a<1) 为真记为 T1,为假记为 F1; (b>0) 为真记为 T2,为假记为 F2; (b<-3)为 真记为 T3,为假记为 F3。

| 序号 | 状态     | 条件                  | a | b  | c |
|----|--------|---------------------|---|----|---|
| 1  | T1T2F3 | (a<1),(b>0),(b>=-3) | 0 | 2  | 5 |
| 2  | F1F2T3 | (a>=1),(b<-3),(b<0) | 1 | -4 | 4 |

# (2) 黑盒测试任务

1. 划分有效等价类和无效等价类

| +4            |                        |                                         |
|---------------|------------------------|-----------------------------------------|
| 输入            | 有效等价类                  | 无效等价类                                   |
| 条<br>件        |                        | 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - 7 - |
| 件<br><b>是</b> | a>0 (1)                | a<=0 (7)                                |
| 否             | b>0 (2)                | b<=0 (8)                                |
| 能             | c>0 (3)                | c<=0 (9)                                |
|               | a+b>0 (4)              | a+b<=c (10)                             |
| 构             | b+c>a (5)              | b+c<=a (11)                             |
| 成             |                        |                                         |
| 三             |                        |                                         |
| 角             |                        |                                         |
| 形             |                        |                                         |
| 的             | c+a>b (6)              | $c+a \le b \qquad (12)$                 |
| 三             |                        |                                         |
| 条             |                        |                                         |
| 边             |                        |                                         |
| 是             | a=b (13)               | a!=b && b!=c && c!=a (16)               |
| 否             | b=c (14)               |                                         |
| 等             |                        |                                         |
| 腰             |                        |                                         |
| 三             | c=a (15)               |                                         |
| 角             |                        |                                         |
| 形             |                        |                                         |
| 是             | a=b && b=c && c=a (17) | a!=b (18)                               |
| 否             |                        | b!=c (19)                               |
| 等             |                        |                                         |
| 边             |                        |                                         |
| 三             |                        | c!=a (20)                               |
| 角             |                        |                                         |
| 形             |                        |                                         |
|               |                        |                                         |

2. 为有效等价类设计测试用例

| 测试用例 (a ,b ,c) | 预期输出  | 覆盖范围                                  |
|----------------|-------|---------------------------------------|
| 3、4、5          | 一般三角形 | (1), (2), (3), (4),<br>(5), (6)       |
| 3、3、4          |       | (1), (2), (3), (4),<br>(5), (6), (13) |
| 3、4、4          | 等腰三角形 | (1), (2), (3), (4),<br>(5), (6), (14) |
| 3、4、3          |       | (1), (2), (3), (4),<br>(5), (6), (15) |
| 3, 3, 3        | 等边三角形 | (1), (2), (3), (4),<br>(5), (6), (17) |

### 3. 为无效等价类设计测试用例

| 测试用例 (a ,b ,c) | 预期输出        | 覆盖范围 |
|----------------|-------------|------|
| 0, 1, 2        |             | (7)  |
| 1, 0, 2        |             | (8)  |
| 1, 2, 0        | 不构成三角形      | (9)  |
| 1, 2, 3        | 113/40-717/ | (10) |
| 3, 2, 1        |             | (11) |
| 2, 3, 1        |             | (12) |
| 3, 4, 5        | 非等腰三角形      | (16) |
| 3, 4, 4        |             | (18) |
| 3, 4, 3        | 非等边三角形      | (19) |
| 3, 3, 4        |             | (20) |

# 用边界值测试方法设计测试用例

## 1. 分析各变量取值

边界值分析的基本思想是使用输入变量的最小值、略高于最小值、正常值、略 低于最大值和最大值设计测试用例。因此 a, b, c 的边界取值是: 1, 2, 100,199, 200

## 2. 测试用例数

有 n 个变量的程序,其边界值分析会产生 4n+1 个测试用例。这里有 3 个变 量,因此会产生 13 个测试用例。

# 3. 设计测试用例

用边界值分析法设计测试用例就是使一个变量取边界值(分别取最小值、略高于最小值、正常值、略低于最大值和最大值),其余变量取正常值,然后对每个变量重复进行。本例用边界值分析法设计的测试用例如下

| 测试用例 |     | 输入数据 |     |       |
|------|-----|------|-----|-------|
|      | a   | b    | c   | 1     |
| 1    | 100 | 100  | 1   | 等腰三角形 |
| 2    | 100 | 100  | 2   | 等腰三角形 |
| 3    | 100 | 100  | 100 | 等边三角形 |
| 4    | 100 | 100  | 199 | 等腰三角形 |
| 5    | 100 | 100  | 200 | 非三角形  |
| 6    | 100 | 1    | 100 | 等腰三角形 |
| 7    | 100 | 2    | 100 | 等腰三角形 |
| 8    | 100 | 199  | 100 | 等腰三角形 |
| 9    | 100 | 200  | 100 | 非三角形  |
| 10   | 1   | 100  | 100 | 等腰三角形 |
| 11   | 2   | 100  | 100 | 等腰三角形 |
| 12   | 199 | 100  | 100 | 等腰三角形 |
| 13   | 200 | 100  | 100 | 非三角形  |

#### (3) 测试实例

假设将 A>1 为真时记为 T1,则当 A<=1 时记为 F1;将 B=0 真记为 T2, $B\neq0$  为假记为 F2;将 A=2 为真记为 T3, $A\neq2$  记为 F3;将 X>1 为真记为 T4,X<=1 为 F4。则上述 8 中情况排列共会出现 16 种结果,列出表格如下所示:

| 序号 | 标志       | A  | В | X | 程序框图结果 | 程序结果 | 是否正确 |
|----|----------|----|---|---|--------|------|------|
| 1  | T1T2T3T4 | 2  | 0 | 2 | 2      | 2    | 正确   |
| 2  | T1T2T3F4 | 2  | 0 | 1 | 1.5    | 1.0  | 错误   |
| 3  | T1T2F3T4 | 3  | 0 | 2 | 2/3    | 2/3  | 正确   |
| 4  | T1F2T3T4 | 2  | 1 | 2 | 3      | 2    | 错误   |
| 5  | F1T2T3T4 | 无  | 0 | 2 | \      | \    | \    |
| 6  | F1F2T3T4 | 无  | 1 | 2 | \      | \    | \    |
| 7  | F1T2F3T4 | -1 | 0 | 2 | 3      | 2    | 错误   |
| 8  | F1T2T3F4 | 无  | 0 | 1 | \      | \    | \    |
| 9  | T1F2F3T4 | 3  | 1 | 2 | 3      | 2/3  | 错误   |
| 10 | T1F2T3F4 | 2  | 1 | 1 | 2      | 1    | 错误   |
| 11 | T1T2F3F4 | 3  | 0 | 1 | 1/3    | 1/3  | 正确   |
| 12 | F1F2F3T4 | 1  | 1 | 2 | 3      | 2    | 错误   |
| 13 | F1F2T3F4 | 无  | 1 | 1 | \      | \    | \    |
| 14 | F1T2F3F4 | 1  | 0 | 1 | 1      | 1    | 正确   |
| 15 | T1F2F3F4 | 3  | 1 | 1 | 1      | 1/3  | 错误   |
| 16 | F1F2F3F4 | 1  | 1 | 1 | 1      | 1    | 正确   |

上述结果是利用代码自动运行实现的,代码如下:

```
1. A, B = map(int, input().split(" "))
2. X = float(input())
3. def chengxu(A, B, X):
       if A > 2 or B == 2:
4.
5.
          X = X / A
       if A == 3 and X > 1:
6.
7.
          X = X + 1
8.
     return X
9. def tu(A, B, X):
10. if A > 1 and B == 0:
11.
          X = X / A
12.
       if A == 2 or X > 1:
13.
          X += 1
14. return X
15. print("图结果: ", tu(A, B, X), end=" ")
16. print("代码结果: ", chengxu(A, B, X))
```

根据以上结果分析,该程序的正确率仅为 31.25%,准确率显著不足,无法满足大多数样例的要求, 因此无法通过测试。该结果表明该程序在处理样例时存在严重的不合格问题,需要进一步改进和优化, 以提高准确性并满足实际需求。