EPITA / InfoS3		Novembre 2018
NOM : I	Prénom :	Groupe :

Contrôle Electronique

Les calculatrices et les documents ne sont pas autorisés. Le barème est donné à titre indicatif.

Réponses exclusivement sur le sujet. Si vous manquez de place, vous pouvez utiliser le verso des pages.

<u>Exer</u>	<u>cice 1.</u> Questions de cours (QCM sans po	ints négatifs — 5 points)	
Q1.	Le dopage permet d'augmenter la conductivité a- VRAI	é du semi-conducteur b- FAUX	
Q2.	On désigne les 2 types de dopage par les lettres P et N. A quoi correspondent-elles ? a- Aux types d'ions injectés dans le semi-conducteur		
	b- Ce sont les initiales des électroniciens qui ont découvert les semi-conducteurs		
	c- Aux charges des porteurs de charges en excès		
	d- A rien du tout		
Q3.	On utilise l'élément semi-conducteur de silicium avec 4 électrons dans la bande de valence. Si on le dope avec du phosphore, élément ayant 5 électrons dans sa bande de valence, quel est le type de dopage :		
	a- Dopage P	c- Dopage NP	
	b- Dopage N	d- Aucun dopage	
Q4.	Un matériau semi-conducteur ayant un dopage de type N présente :		
	a- un défaut d'électrons dans sa structure cristaline		
	b- un surnombre d'électrons dans sa structur	e cristaline	
Q5.	Quel modèle permet la représentation la moir	ns précise de la diode :	
	a- Le modèle idéal	c- Le modèle réel	
	b- Le modèle à seuil	d- Les trois modèles sont équivalents	

Q6.Laquelle de ces caractéristiques correspond à la caractéristique courant/tension du modèle à seuil de la diode :

- Q7. Lorsqu'une diode est bloquée, elle se comporte comme :
 - a- une résistance nulle

c- un générateur de tension idéal

b- un interrupteur ouvert

- d- une bobine
- Q8. La résistance dynamique d'une diode :
 - a- s'exprime en Siemens.
 - b- permet de considérer que la diode est équivalente à cette résistance lorsqu'elle est passante.
 - c- est en général très faible.
 - d- est en général très élevée.
- **Q9.** Soit le circuit ci-contre, dans lequel on considère la diode *D* idéale :

Que vaut la tension aux bornes de D si E=10V, $R=100\Omega$.

a- 0*V*

c- 1 kV

b- 10 V

d- 0,1 V

Soit le circuit ci-contre :

- Q10. Quel type de porte logique réalise ce montage?
 - a- ET
- c- NON ET
- b- OU
- d- NON OU

Exercice 2. Révisions SUP (4 points)

Soit le circuit suivant, dans lequel E_1 , E_3 , I_1 , I_2 et les R_l sont connus. Les générateurs sont indépendants. En utilisant la méthode de votre choix, déterminer la tension U.

Exercice 3. Diodes (5 points)

Soit le schéma suivant : On modélisera la diode en utilisant son modèle à seuil avec $V_0=0.7V$. Pour les questions suivantes, vous utiliserez un raisonnement par l'absurde.

1. Si $R_1 = 10k\Omega$, $R_2 = 10\Omega$ et E = 10V, montrer que la diode est bloquée. Quelle est alors l'intensité du courant qui traverse R_2 ?

	Quelle est alors l'intensité du courant qui traverse R_2 ?
<u> </u>	
]	

2. Si $R_1=50\Omega$, $R_2=100\Omega$ et E=10V, montrer que la diode est passante. Déterminer alors l'intensité du courant qui la traverse.

Exercice 4. Caractéristique de transfert (6 points) Soit le circuit suivant : On souhaite tracer la caractéristique U = f(V). On utilisera le modèle à seuil pour modéliser la diode; et on appellera $V_{\mathcal{O}}$ sa tension de seuil. 1. Donner l'expression de U si la diode est passante. 2. Donner l'expression de U si la diode est bloquée. 3. Pour quelles valeurs de V la diode est-elle bloquée?

4. Tracer U = f(V).

5. On considère maintenant que le générateur de tension V est un générateur de tension sinusoïdale $v(t)=V.\sqrt{2}.\sin(\omega t)$. On donne $V.\sqrt{2}=30~V$, E=15~V et $V_0=0.6~V$. Tracer la courbe u(t).

