$\eta_c \to K_S^0 K\pi$ 分支比的测量

马旭宁1 王至勇2 喻纯旭1

1 南开大学

2 高能所

April 28, 2015

Motivation

- 为了测量辐射跃迁相关分支比,需要 $\eta_c \to K_S^0 K \pi$ 的精确分支比
- 之前对 $\eta_c \to K_S^0 K_{\pi}$ 分支比的测量精度不够高

导言

通过衰变道

$$\psi' \to \pi^0 h_c$$
$$h_c \to \gamma \eta_c$$
$$\eta_c \to K_S^0 K \pi$$

来测量

$$\eta_c \to K_S^0 K \pi$$
,

的分支比 基本思路

$$\mathit{Br}(\eta_{c}
ightarrow \mathit{K}_{S}^{0} \mathit{K}\pi) = rac{\mathit{N}_{\mathit{sig}}^{\mathit{exc}}}{\mathit{N}_{\mathit{sig}}^{\mathit{inc}}} imes rac{\epsilon^{\mathit{inc}}}{\epsilon^{\mathit{exc}}} imes rac{1}{\mathit{Br}(\mathit{K}_{S}^{0}
ightarrow \pi^{+}\pi^{-})}$$

结果

遍举过程结果:

M Gewel M Gewel		
选择条件	剩余事例数	效率 (%)
None	200K	100
$N_{GoodL} \le 20 \&\&N_{charge} = 0$	104709	52.35
$3 \leq N_{\gamma} \leq 100$	75919	37.96
$N(E_{\gamma_{F1}} \in (0.3, 0.7)) \ge 1$	64.02	24.30
$N_{\gamma\pi^0 list} \geq 1$	43773	21.89
$2 \leq N_{Good} \leq 4, N_{GoodL} \geq 4, N_{\gamma} \geq 3, N_{\pi^0} \geq 1$	38043	19.02
$\chi^2 \le 1000$	27927	13.96
$3.5 < \frac{M_{7}^{recoil}}{50} < 3.55 GeV$ $\chi_{4C}^{2} \le 55$	26721	13.36
$\chi^{2}_{4C} \leq 55$	23314	11.66
$0.4 < E_{\gamma_{E1}} < 0.6 \text{GeV}$	22617	11.30
$ m_{\pi^0\pi^0}^{recoil} - M_{J/\psi} < 0.03$	22553	11.28
$ m_{\gamma}^{recoil} - M_{\chi_{c0}} < 0.027$	21403	10.70
$ m_{\gamma}^{recoil} - M_{\chi_{c1}} < 0.028$	21263	10.63
$ m_{\gamma}^{recoil} - M_{\chi_{c2}} < 0.001$	21184	10.59
$ m_{\pi^{+}\pi^{-}}^{recoil} - M_{J/\psi} < 0.004$	21131	10.57

单举过程结果:

为了进一步提高精度,我们开始研究 *XYZ* 数据,目前选了四个能量点 4230, 4260, 4360, 4420. 我们研究的衰变道为:

$$e^+e^- o \pi^+\pi^-h_c$$
 $h_c o \gamma\eta_c$
 $\eta_c o K_S^0K\pi$

思路跟 ψ 分析一样。

遍举过程结果

单举过程结果

我们使用了 sideband 的方法来研

初步拟合

效率曲线和分辨曲线

总结

- 我们研究了 $\psi \prime \to \pi^0 h_c$ 的过程
- 我们研究了 $e^+e^- \rightarrow \pi^+\pi^-$ 的过程
 - 优化了选择条件
 - 得到了初步的同时拟合结果
- 当前我们正在做更严谨的拟合,并得到初步结果
 - 得到了效率曲线
 - 得到了分辨曲线
- 接下来,我们要结合两个分析,得到精度更高的分支比的测量结果