Parte 5 Modelli di probabilità per variabili casuali discrete

Vi sono **esperimenti casuali**, e le **variabili casuali** ad essi associate, che presentano *caratteristiche comuni* secondo uno **schema standard** di riferimento

Le v.c. che rientrano in uno schema noto definiscono una famiglia di v.c.

Per *differenziare* le v.c. (i membri) appartenenti alla **famiglia**, essa viene **parametrizzata** da *una* **costante** numerica denominata **parametro** (o da un *vettore* di **parametri**) dai *molteplici valori*

Il particolare **valore** *attribuito* al **parametro** (o ai **parametri**) individua una *specifica* v.c. all'interno della famiglia di v.c.

Famiglia parametrica di v.c.

X v.c. appartenente alla famiglia parametrica

 $X \sim f(x; \boldsymbol{\theta})$ x valore di X

La v.c. X ha distribuzione descritta da $f(x; \theta)$

 $\boldsymbol{\theta} = (\theta_1, \theta_2, \cdots, \theta_k)$ vettore di $k \geq 1$ parametri (parametro vettoriale) appartenente ad un insieme denominato **spazio parametrico** $\Theta \subseteq \mathbb{R}^k$

 $f(x; \theta)$ funzione di **probabilità** (se X v.c. discreta) o funzione di **densità** (se X v.c. continua) **parametrica**

Modello di probabilità parametrico

 $X \sim f(x; \boldsymbol{\theta})$ x valore di X $\boldsymbol{\theta} \in \Theta \subseteq \mathbb{R}^k$ $\boldsymbol{\theta} = (\theta_1, \theta_2, \dots, \theta_k)$ vettore di parametri

Modello di probabilità **uguale** nella *forma funzionale* per tutte le v.c. della famiglia parametrica

Le **singole** v.c. (membri della famiglia parametrica) e i loro **specifici** modelli di probabilità *si distinguono* esclusivamente per i **valori numerici** attribuiti ai parametri del vettore $oldsymbol{ heta}$

Insieme delle $f(x; \theta)$

Famiglia parametrica di modelli di probabilità

Famiglia parametrica di funzioni di probabilità (se X v.c. discreta) o di funzioni di **densità** (se X v.c. continua)

Se θ singolo parametro

 $X \sim f(x; \theta)$ x valore di X

 $\theta \in \Theta \subseteq \mathbb{R}$

Famiglia parametrica (monoparametrica) di v.c.

Per talune famiglie parametriche, i **parametri** assumono specifiche denominazioni (ad esempio $N, p, n, \mu, \sigma^2, g$)

Variabile casuale **Uniforme discreta**

Esperimento casuale *assimilabile* all'estrazione di una pallina da un'urna contenente *N* palline **identiche** (indistinguibili) e **numerate** da 1 a *N*, con la relativa osservazione del **numero** della pallina estratta

Variabile casuale discreta associata all'esperimento casuale

$$X =$$
 "**Numero** della pallina estratta"

$$x \in \{1,2,\cdots,N\}$$

$$\{1,2,\cdots,N\}$$
 supporto della v.c.

 $N \ge 1$ (numero intero) è il **parametro** che *caratterizza* tale v.c.

L'**insieme** delle v.c. *generato* da *tutti i possibili* valori di *N* (sono una *infinità numerabile*) è la **famiglia parametrica** di v.c.

Funzione/Modello di **probabilità** parametrica/o della v.c. X

$$f(x; N) = \frac{1}{N} \quad \begin{cases} x \in \{1, 2, \dots, N\} & N \in \{1, 2, \dots, \infty\} \subset \mathbb{R} \\ f(x; N) = 0 & \text{altrove} \end{cases} \quad \begin{cases} N \in \{1, 2, \dots, \infty\} \subset \mathbb{R} \\ X \sim Ud(N) \end{cases}$$

La v.c. X ha distribuzione di probabilità **Uniforme discreta** di parametro N

$$f(x; N) = \frac{1}{N}$$
 $x \in \{1, 2, \dots, N\}$ $N \in \{1, 2, \dots, \infty\}$

Proprietà soddisfatte dalla funzione di probabilità

$$f(x;N) = \frac{1}{N} > 0$$

$$\sum_{x} f(x; N) = \sum_{x} \frac{1}{N} = N \frac{1}{N} = 1$$

L'insieme delle f(x; N) generato dai valori di N è la famiglia parametrica di funzioni/modelli di **probabilità** di tipo **Uniforme discreto** di parametro N

Per alcuni valori del parametro N, si riconoscono v.c. Uniformi discrete

Esperimento casuale Lancio di un dado equilibrato"

Esempio 5

X = "Numero ottenuto (sulla faccia in alto)"

 $X \sim Ud(6)$

Esperimento casuale

Estrazione di un numero su una ruota nel gioco del Lotto

X = "Numero estratto"

 $X \sim Ud(90)$

Modello **Uniforme discreto** comune nei *giochi di sorte* (ma non solo)

Media e **varianza** di una v.c. $X \sim Ud(N)$

$$f(x; N) = \frac{1}{N}$$
 $x \in \{1, 2, \dots, N\}$ $N \in \{1, 2, \dots, \infty\}$

$$E(X) = \sum_{x} x \frac{1}{N} = \frac{1}{N} \sum_{x} x = \frac{1}{N} \times \frac{N \times (N+1)}{2} = \frac{N+1}{2}$$

$$V(X) = \frac{(N-1)(N+1)}{12} = \frac{N^2 - 1}{12}$$

Media e varianza **funzioni** del parametro *N*

Notazione rigorosa

E(X; N)

V(X;N)

Accade (in generale) per tutti i **momenti** e per ogni altro **valore di sintesi** di una v.c. *X*

Esempio 5	Lancio di un dado equilibrato				
$X =$ "Numero ottenuto (sulla faccia in alto)" $X \sim Ud(6)$					
f(x;6) = f(x	$(2) = \frac{1}{6}$	$x \in \{1, 2, \cdots, 6\}$	f(x) = 0 altrove		
$E(X) = \frac{7}{2} =$	3.5	$V(X) = \frac{5 \times 7}{12} = \frac{5}{6} 3.5 =$	= 2.917 < E(X)		

Distribuzione simmetrica

$$E(X) = Me$$
$$E(Z^3) = 0$$

Variabile casuale di Bernoulli (o Bernoulliana)

Jacob Bernoulli (1655 – 1705)

Esperimento casuale che consiste nella osservazione dell'esito dello stesso, tra i suoi **due soli** possibili esiti (eventi elementari) denominati convenzionalmente insuccesso e successo

Esperimento Bernoulliano (o dicotomico)

Insuccesso e **successo** numerizzati (codificati numericamente) nei rispettivi valori 0 e 1

Variabile casuale discreta associata all'esperimento casuale

X = "Esito numerico (0 o 1) osservato"

 $x \in \{0,1\}$

{0,1} **supporto** (binario) della v.c.

Sia p la **probabilità di successo**

$$f(1) = P(X = 1) = p$$
 $f(0) = 1 - p$

$$f(0) = 1 - p$$

 $0 \le p \le 1$ (numero reale) è il **parametro** che *caratterizza* tale v.c.

L'**insieme** delle v.c. *generato* da *tutti i possibili* valori di *p* (sono una infinità non numerabile) è la famiglia parametrica di v.c.

Funzione/Modello di **probabilità** parametrica/o della v.c. X

$$f(x;p) = p^{x}(1-p)^{1-x}$$
 $x \in \{0,1\}$ $p \in (0,1) \subset \mathbb{R}$
$$f(x;p) = 0 \quad \text{altrove} \quad \text{Spazio parametrico}$$

$$x \in \{0,1\}$$

$$p \in (0,1) \subset \mathbb{R}$$

$$X \sim B(p)$$

$$f(x;p)=0$$

La v.c. X ha distribuzione di probabilità **di Bernoulli** di parametro p

Proprietà soddisfatte dalla funzione di probabilità

$$f(x;p) = p^{x}(1-p)^{1-x}$$
 = $\frac{1-p}{-p}$

$$= 1 - p$$

$$= p$$
 > 0

$$> 0$$
 $\sum_{x} f(x; p) = (1-p) + p = 1$

L'insieme delle f(x; p) generato dai valori di p è la famiglia parametrica di funzioni/modelli di **probabilità** di tipo **Bernoulliano** di parametro p

v.c.
$$X$$
 definita anche per $p = 0$ e $p = 1$

$$p = 0$$

$$p = 1$$

$$X \equiv 0 \operatorname{con} f(0) = 1$$

X v.c. degenere
$$X \equiv 0 \text{ con } f(0) = 1$$
 X v.c. degenere $X \equiv 1 \text{ con } f(1) = 1$

Media e **varianza** di una v.c. $X \sim B(p)$

$$f(x;p) = p^{x}(1-p)^{1-x}$$
 $x \in \{0,1\}$ $p \in (0,1)$

$$E(X) = \sum_{x} x p^{x} (1 - p)^{1 - x} = 0 \times (1 - p) + 1 \times p = p$$

La media **coincide** con il parametro p che caratterizza tale v.c.

$$V(X) = \sum_{x} (x - p)^2 p^x (1 - p)^{1 - x} = (0 - p)^2 (1 - p) + (1 - p)^2 p =$$

$$= p^2 (1 - p) + p(1 - p)^2 = p(1 - p)(p + 1 - p) = p(1 - p)$$

$$p = 0$$
 $V(X) = 0$ $E(X) = 0$
 $V(X) = p(1-p) = (1-p)E(X)$ $0 $V(X) < E(X)$
 $p = 1$ $V(X) = 0$ $E(X) = 1$$

Andamento della varianza p(1-p) in funzione della media p

> curve (p*(1-p), 0, 1, n=1000, xname = "p", col="red", lwd=2)

Andamento simmetrico rispetto al valore p = 0.5

Valori di varianza uguali per valori di p l'uno l'opposto dell'altro

$$V(X) \le 0.25$$

$$V(X) \le 0.25$$
 $p = 0.5 \Longrightarrow V(X) = 0.25$

Massima *incertezza* tra i valori 0 e 1

La v.c. di Bernoulli ricorre frequentemente come v.c. di popolazione

Esempi di v.c. di popolazione con dicotomia strutturale

- Sesso (M/F) di un individuo scelto a caso da una popolazione finita
- Sopravvivenza (SI/NO) di un malato terminale entro un certo tempo
- Occupazione (SI/NO) di un individuo tra la forza lavoro di una data regione
- Propensione al voto (SI/NO) di un elettore per un dato partito
- Diagnosi di una malattia (SI/NO) per un paziente ambulatoriale
- Esito di un test diagnostico (POSITIVO/NEGATIVO)
- Superamento (SI/NO) di un esame universitario (concorso pubblico, ecc.)

Esempi di v.c. di popolazione (discrete o continue) opportunamente dicotomizzate

- Durata di una lampada (minore o uguale/maggiore di 20000 ore)
- Livello di colesterolo (minore o uguale/maggiore della soglia di riferimento)
- Precipitazione media mensile (minore o uguale/maggiore di 200 mm/cm²)
- Numero di auto in attesa al casello (minore o uguale/maggiore di 30 al minuto)

In questi casi (ripetendo *n* volte, in modo **indipendente**, l'esperimento Bernoulliano per ottenere un **campione casuale**) il parametro *p* del modello (**probabilità** o proporzione **di successo**) è oggetto di **inferenza statistica**

Altri impieghi della v.c. di Bernoulli

Giochi di sorte

- Esito (TESTA/CROCE) nel lancio di una moneta
- Numero (minore o uguale/maggiore di 4) nel lancio di un dado
- Esito (tripla testa/altra terna) nel lancio di tre monete
- Numero (doppio 6/altra coppia) nel lancio di due dadi
- Carta (asso/altra carta) nell'estrazione da un mazzo di carte
- Numero estratto (13/altro numero) sulla ruota di Napoli nel gioco del Lotto

Esperimenti Bernoulliani *assimilabili* all'estrazione di una pallina da un'urna contenente palline **colorate**, di cui *un certo numero* di un **dato colore** (es. bianco) e *le rimanenti* di un **altro colore** (es. nero)

In questi casi, il parametro *p* del modello è **noto** (valore *assegnato* in base alla concezione **classica** o **frequentista** di probabilità)

Assimilazione all'estrazione da un'urna anche nei casi di esperimenti Bernoulliani condotti per una **popolazione finita** (cfr esempi di pag. 13) Esempio 1 Campionamento casuale (n = 3) da una classe di 50 studenti

 $X_1 =$ "Sesso (0/1 per M/F) del **primo** studente estratto"

 $X_1 \sim B(p)$

 $X_2 =$ "Sesso (0/1 per M/F) del secondo studente estratto"

 $X_2 \sim B(p)$

 $X_3 =$ "Sesso (0/1 per M/F) del **terzo** studente estratto"

 $X_3 \sim B(p)$

p è la probabilità di **successo** (lo studente estratto è **femmina**)

Le v.c. X_1, X_2, X_3 sono indipendenti e identicamente distribuite (v.c. IID)

In virtù dell'estrazione con riposizione dalla classe dei 50 studenti

 X_1, X_2, X_3 denominazioni diverse (funzionali all'estrazione di riferimento) della v.c. di popolazione X

X v.c. di popolazione di tipo Bernoulliano

Popolazione Bernoulliana

$$f(x_i; p) = p^{x_i} (1 - p)^{1 - x_i}$$

$$x_i \in \{0,1\}$$

$$f(x_i, p) = 0$$
 altrove

$$i = 1,2,3$$

Logica inferenziale

Parametro *p valutato* sulla base del **campione osservato**

Ad esempio (1,0,1)

Logica probabilistica

Valore del parametro p assegnato usando la definizione **classica** di probabilità

Composizione numerica della classe

$$p = P(X = 1) = \frac{30}{50} = 0.6$$

$$n(0) = 20$$
 maschi

$$n(1) = 30$$
 femmine

$$1 - p = 0.4$$

$$X_1 \sim B(0.6)$$

$$X_2 \sim B(0.6)$$

$$X_3 \sim B(0.6)$$

$$f(x_i; 0.6) = f(x_i) = 0.6^{x_i} 0.4^{1-x_i}$$
 $x_i \in \{0,1\}$

$$x_i \in \{0,1\}$$

$$f(x_i) = 0$$
 altrove

$$i = 1,2,3$$

$$E(X_1) = E(X_2) = E(X_3) = p = 0.6$$

$$V(X_1) = V(X_2) = V(X_3) = p(1-p) = 0.6 \times 0.4 = 0.24 < 0.6$$

Distribuzioni di probabilità delle v.c. X_1 , X_2 e X_3

x_1	$f(x_1)$
0	0.4
1	0.6

x_2	$f(x_2)$
0	0.4
1	0.6

x_3	$f(x_3)$
0	0.4
1	0.6

Per una generica v.c. $X \sim B(p)$

p > 0.5	$E(Z^3) < 0$	Asimmetria negativa	
p = 0.5	$E(Z^3) = 0$	Simmetria	
p < 0.5	$E(Z^3) > 0$	Asimmetria positiva	

Esempio 8	Lancio di una moneta bilanciata (non truccata)				
$X =$ " Faccia ottenuta (0/1 per C/T) nel lancio della moneta" $X \sim B(0.5)$					
p = 0.5 è la probabilità di successo (esce testa)			Moneta bilanciata		
$f(x; 0.5) = f(x) = 0.5^{x} 0.5^{1-x}$ $x \in \{0,1\}$			f(x) = 0 altrove		
E(X) = p = 0	V(X) = p(1-p)	= 0.25 < 0.5	SD(X) = 0 . 5 = p = E(X)		

Se la moneta è **truccata**

 $p \neq 0.5 \neq 1 - p$

Variabile casuale **Binomiale**

Esperimento Bernoulliano **ripetuto** n volte nelle **medesime condizioni** (dunque le *n* esecuzioni ripetute sono tra di esse **indipendenti**)

Probabilità di successo p **uguale** negli n esperimenti Bernoulliani

Esperimento Binomiale

Esperimento casuale *composto* da *n* sottoprove **indipendenti** di tipo Bernoulliano (con la **medesima** probabilità di successo p)

A ciascuna sottoprova Bernoulliana è associata una v.c. di Bernoulli di parametro p

$$X_i \sim B(p)$$

$$x_i \in \{0,1\}$$

$$x_i \in \{0,1\}$$
 $i = 1,2,\dots,n$

v.c. IID di tipo B(p)

L'esperimento binomiale *genera* una sequenza di valori 0/1 (sequenza binomiale)

Variabile casuale discreta associata all'esperimento binomiale

$$X = X_1 + X_2 + \dots + X_n$$

 $X = X_1 + X_2 + \cdots + X_n$ "Numero di successi osservati nella sequenza binomiale"

La v.c. X "conta" i successi ottenuti nell'esperimento (nelle n sottoprove Bernoulliane)

$$x \in \{0, 1, \dots, n\}$$

 $\{0,1,\cdots,n\}$ supporto della v.c.

$$n \ge 1$$
 (numero intero) e $0 \le p \le 1$ (numero reale) sono i due **parametri** che *caratterizzano* tale v.c.

$$\boldsymbol{\theta} = (n, p)$$

$$\boldsymbol{\theta} = (n, p) \in \Theta = \{(n, p) : n \ge 1, 0 \le p \le 1\} \subset \mathbb{R}^2$$

Θ spazio parametrico

L'**insieme** delle v.c. *generato* da *tutti i possibili* valori di n e p (sono una infinità non numerabile) è la famiglia parametrica di v.c.

Funzione/Modello di **probabilità** parametrica/o della v.c. X

$$f(x; n, p) = P(X = x) = ?$$
 $x \in \{0, 1, \dots, n\}$ L'evento $(X = x)$ si verifica se

$$x \in \{0, 1, \dots, n\}$$

La sequenza binomiale contiene x successi ed n - x insuccessi (in tutti i modi possibili)

Sia (x_1, x_2, \dots, x_n) una specifica sequenza con x successi ed n-x insuccessi

Probabilità di tale *specifica* sequenza binomiale (è una probabilità congiunta)

$$f(x_1, x_2, \dots, x_n) = f(x_1) \times f(x_2) \times \dots \times f(x_n) = p^x (1 - p)^{n - x}$$

Probabilità **uguale** per tutte le sequenze che generano il *medesimo* valore x della v.c. X

Quante sono le sequenze binomiali nelle quali, *combinandosi* in ogni modo possibile, vi sono *x* successi (valori pari a 1) tra gli *n* valori?

Il loro numero è quello delle **combinazioni** di *n* elementi ad *x* ad *x* (gruppi *non ordinati*, o **sottoinsiemi**, di *x* elementi scelti tra gli *n*)

$$\frac{n!}{x!\,(n-x)!} = \binom{n}{x}$$

Si legge "coefficiente binomiale n su x (da n scegli x)"

Esempio	Quante sono le sequenze di 5 valori con 3 successi (valori unitari)?		$\binom{5}{3} = \frac{5!}{3! 2!} = \frac{5 \times 4}{2} = 10$		
n=5 $x=3$			$\left(3\right)^{-}\overline{3!2!}$		
(1,1,1,0,0)	(1,1,0,1,0)	(1,1,0,0,1)	(1,0,1,1,0)	(1,0,1,0,1)	
(1,0,0,1,1)	(0,1,1,1,0)	(0,1,1,0,1)	(0,1,0,1,1)	(0,0,1,1,1)	

Le $\binom{n}{x}$ sequenze con x successi sono tra di esse **incompatibili**

Il numero **totale** di sequenze è 2^n

Si tratta di **eventi elementari** in quanto **realizzazioni** della v.c. multipla (X_1, X_2, \cdots, X_n)

In definitiva, l'evento (X = x) coincide con l'evento

Unione delle $\binom{n}{x}$ sequenze binomiali con x successi ed n-x insuccessi, tra di esse incompatibili e con la medesima probabilità $p^x(1-p)^{n-x}$

$$P(X = x) =$$

Somma delle probabilità di tali $\binom{n}{x}$ sequenze binomiali equiprobabili

Funzione/Modello di **probabilità** parametrica/o della v.c. X

$$f(x; n, p) = \binom{n}{x} p^x (1-p)^{n-x}$$

$$x \in \{0,1,\cdots,n\}$$

$$f(x; n, p) = 0$$
 altrove

$$(n, p) \in \Theta = \{(n, p): n \ge 1, 0$$

O spazio parametrico

$$X \sim Bin(n, p)$$

La v.c. X ha distribuzione di probabilità **Binomiale** di parametri n e p

Caso speciale

$$n = 1$$

$$X \sim Bin(1, p)$$

$$X \sim B(p)$$

Proprietà soddisfatte dalla funzione di probabilità

$$f(x; n, p) = \binom{n}{x} p^x (1-p)^{n-x} > 0$$

$$\sum_{x} f(x; p) = \sum_{x} {n \choose x} p^{x} (1 - p)^{n - x} = (p + (1 - p))^{n} = 1$$

Formula del binomio di Newton

La v.c. Binomiale deve il suo nome al fatto che la sua funzione di probabilità è il termine generico nella formula del binomio applicata al binomio p + (1 - p)

L'insieme delle f(x; n, p) generato dai valori di $n \in p$ è la famiglia parametrica di funzioni/modelli di **probabilità** di tipo **Binomiale** di parametri n e p

v.c.
$$X$$
 definita anche per $p = 0$ e $p = 1$

$$p = 0$$

$$p=1$$

X v.c. degenere
$$X \equiv 0 \text{ con } f(0) = 1$$

X v.c. degenere
$$X \equiv n \operatorname{con} f(n) = 1$$

Media e **varianza** di una v.c. $X \sim Bin(n, p)$

$$X = X_1 + X_2 + \dots + X_n$$

$$E(X_i) = p$$

$$E(X_i) = p V(X_i) = p(1-p)$$

X somma di v.c. IID di tipo B(p)

$$i = 1, 2, \cdots, n$$

$$E(X) = E(X_1) + E(X_2) + \cdots + E(X_n) = np$$

In virtù della **identica distribuzione** delle v.c.

$$V(X) = V(X_1) + V(X_2) + \cdots + V(X_n) = np(1-p)$$

In virtù della **indipendenza** e della **identica distribuzione** delle v.c.

Media e varianza dipendono da *entrambi* i parametri n e p che caratterizzano tale v.c.

$$V(X) = np(1-p) = (1-p)E(X)$$

$$p = 0$$

$$p=0 \qquad V(X)=0 \quad E(X)=0$$

$$E(X)=0$$

$$0$$

$$V(X) \leq 0.25n$$

$$V(X) \le 0.25n$$
 $p = 0.5 \Rightarrow V(X) = 0.25n$ $p = 1$ $V(X) = 0$ $E(X) = n$

$$p = 1$$

$$V(X) = 0$$

$$E(X) = n$$

Altra variabile casuale discreta associata all'esperimento binomiale

$$\overline{X} = \frac{1}{n}(X_1 + X_2 + \dots + X_n) = \frac{X}{n}$$

$$\overline{X} = \frac{1}{n}(X_1 + X_2 + \dots + X_n) = \frac{X}{n}$$
 $X = X_1 + X_2 + \dots + X_n \sim Bin(n, p)$

"Frequenza relativa (proporzione) di successi nella sequenza binomiale"

La v.c. \overline{X} "conta" i successi ottenuti nell'esperimento binomiale e li *rapporta* al numero *n* di sottoprove Bernoulliane

$$\overline{x} = \frac{x}{n} \in \left\{ \frac{0}{n}, \frac{1}{n}, \dots, \frac{n}{n} \right\} = \left\{ 0, \frac{1}{n}, \dots, 1 \right\} \qquad \left\{ 0, \frac{1}{n}, \dots, 1 \right\}$$
 supporto della v.c.

$$\left\{0,\frac{1}{n},\cdots,1\right\}$$
 supporto della v.c.

Evento $(\overline{X} = \overline{x})$ equivalente all'evento (X = x) $P(\overline{X} = \overline{x}) = P(X = x)$

$$P(\overline{X} = \overline{x}) = P(X = x)$$

$$f\left(\overline{x} = \frac{x}{n}; n, p\right) = f(x; n, p) = \binom{n}{x} p^x (1 - p)^{n - x} \qquad x \in \{0, 1, \dots, n\}$$

$$x \in \{0,1,\cdots,n\}$$

$$\overline{X} \sim \frac{1}{n} Bin(n, p)$$

 $\overline{X} \sim \frac{1}{n} Bin(n, p)$ La v.c. \overline{X} ha distribuzione Bin(n, p) scalata del fattore $\frac{1}{n}$

$$E(\overline{X}) = \frac{1}{n}E(X) = \frac{1}{n}np = p \qquad V(\overline{X}) = \frac{1}{n^2}V(X) = \frac{1}{n^2}np(1-p) = \frac{p(1-p)}{n}$$

Impiego della v.c. Binomiale nella logica inferenziale

X v.c. di popolazione di tipo Bernoulliano

Popolazione Bernoulliana

Campionamento casuale di ampiezza n

 X_1, X_2, \cdots, X_n v.c. indipendenti e identicamente distribuite (v.c. IID)

$$Y = X_1 + X_2 + \dots + X_n$$
 $\overline{X} = \frac{Y}{n}$ $Y \sim Bin(n, p)$ $\overline{X} \sim \frac{1}{n}Bin(n, p)$

 $Y \in \overline{X}$ rispettivamente **numero**, e **proporzione**, **di successi** nel campione

Le v.c. $Y \in \overline{X}$ dipendono esclusivamente dal parametro p (parametro n **noto**)

Parametro p (probabilità di successo) oggetto di **inferenza**

Campionamento casuale di ampiezza n da popolazione finita

Esperimento binomiale *assimilabile* all'estrazione **con riposizione** di *n* palline da un'urna contenente palline **colorate**, di cui *un certo numero* di un **dato colore** (es. bianco) e *le rimanenti* di un **altro colore** (es. nero)

Altri impieghi della v.c. Binomiale

Giochi di sorte (cfr esempi di esperimenti Bernoulliani di pag. 13)

- Lanci **ripetuti** *n* volte di monete/dadi *non truccati*
- Estrazioni **ripetute** *n* volte da un mazzo di carte *non truccate*
- Altri giochi di sorte **ripetuti** *n* volte in *condizioni simili*

Esperimenti binomiali *assimilabili* all'estrazione **con riposizione** di *n* palline da un'urna contenente palline **colorate**, di cui *un certo numero* di un **dato colore** (es. bianco) e *le rimanenti* di un **altro colore** (es. nero)

In questi casi (oltre ad n) il parametro p del modello è **noto** (valore *assegnato* in base alla concezione **classica** o **frequentista** di probabilità)

Interesse per il **numero** (o la **proporzione**) **di successi** nella sequenza binomiale

Esempio 1

Campionamento casuale (n = 3) da una classe di 50 studenti

Popolazione Bernoulliana $X = \text{"Sesso"} \sim B(p)$ $X_1, X_2, X_3 \text{ v.c. IID } B(p)$

$$X = \text{"Sesso"} \sim B(p)$$

$$X_1, X_2, X_3$$
 v.c. IID $B(p)$

p è la probabilità (o proporzione) di **successo** (lo studente estratto è **femmina**)

$$f(x_i; p) = p^{x_i} (1 - p)^{1 - x_i}$$

$$x_i \in \{0,1\}$$

$$x_i \in \{0,1\}$$
 $f(x_i, p) = 0$ altrove $i = 1,2,3$

$$i = 1,2,3$$

Logica inferenziale

$$Y = X_1 + X_2 + X_3 \sim Bin(3, p)$$

$$\overline{X} = \frac{Y}{3} \sim \frac{1}{3} Bin(3, p)$$

$$y \in \{0,1,2,3\}$$

$$\overline{x} = \frac{y}{3} \in \left\{0, \frac{1}{3}, \frac{2}{3}, 3\right\}$$

Numero campionario di successi

Proporzione campionaria di successi

 $Y \in \overline{X}$ sono v.c. **campionarie** (somma campionaria e media campionaria)

Parametro p valutato sulla base del campione osservato

Ad esempio (1,0,1)

$$y = 2$$

$$\overline{x} = 2/3$$

Stima puntuale di *p*

Logica probabilistica

Valore del parametro p assegnato usando la definizione classica di probabilità

$$p = P(X=1) = 0.6$$

$$1 - p = 0.4$$

$$X_1, X_2, X_3$$
 v.c. IID $B(0.6)$

Possibile uso della definizione **frequentista** di probabilità

$$f(x_i; 0.6) = f(x_i) = 0.6^{x_i} 0.4^{1-x_i}$$

$$x_i \mid x_i$$

$$x_i \in \{0,1\}$$
 $f(x_i) = 0$ altrove

$$i = 1,2,3$$

$$E(X_i) = p = 0.6$$

$$V(X_i) = p(1-p) = 0.24$$

Numero campionario di successi

$$Y = X_1 + X_2 + X_3 \sim Bin(3, 0.6)$$

$$y \in \{0,1,2,3\}$$

$$f(y; 3, 0.6) = f(y) = {3 \choose y} 0.6^{y} 0.4^{3-y}$$

$$E(Y) = 1.8$$

$$V(Y) = 0.72$$

Proporzione campionaria di successi

$$\overline{X} = \frac{Y}{3} \sim \frac{1}{3} Bin(3, 0.6)$$

$$\overline{x} = \frac{y}{3} \in \left\{0, \frac{1}{3}, \frac{2}{3}, 3\right\}$$

$$f\left(\overline{x} = \frac{y}{3}\right) = f(y) = {3 \choose y} 0.6^{y} 0.4^{3-y}$$

$$E(\overline{X}) = 0.6$$

$$V(\overline{X}) = 0.08$$

Binomial Distribution: Binomial trials=3, Probability of success=0.6

Proporzione di successi

Evento $\{Y = 1\}$

Numero di femmine nel campione è 1

$$P(Y = 1) = f(1) = {3 \choose 1} 0.6^{1} 0.4^{3-1} = 0.288$$

Cfr Parte 2, pagg. 43 e 58

È anche la probabilità che la **proporzione** campionaria di femmine sia 1/3

Calcolo di probabilità esteso ad altri eventi di interesse

Per una generica v.c. $X \sim Bin(n, p)$

p > 0.5	$E(Z^3) < 0$	Asimmetria negativa
p = 0.5	$E(Z^3)=0$	Simmetria
<i>p</i> < 0.5	$E(Z^3) > 0$	Asimmetria positiva

Al crescere di *n* la distribuzione tende ad essere **simmetrica**


```
+ })
Probability Cum.probability
0 0.064 0.064
1 0.288 0.352
2 0.432 0.784
3 0.216 1.000
```


Logica frequentista

Distribuzione empirica della v.c. *Y*

Grafico ad aste dei valori di Y

Distribuzione empirica della v.c. Y

Sintesi numeriche

Confronto con le corrispondenti **probabilità** e **sintesi probabilistiche**

```
_____
Numerical summary:
                       skewness 0% 25% 50% 75% 100%
1.79937 0.8487431
                   1 -0.2333682
                                                3 100000
Frequency distribution for discrete variables:
Variable: obs
                Νi
                      Εi
  6395 0.064 6395 0.064
1 28877 0.289 35272 0.353
2 43124 0.431 78396 0.784
3 21604 0.216 100000 1.000
N= 100000
<
```



```
# Distribuzione empirica vs distribuzione di probabilità - Modelli discreti
# Generazione in Rcmdr di m campioni di ampiezza 1 da una popolazione discreta
# Ad esempio, 100000 campioni di ampiezza 1 da una popolazione Binom(3,0.6)
BinomialSamples <- as.data.frame(matrix(r(Binom(size=3, prob=0.6))(100000*1), ncol=1))
rownames(BinomialSamples) <- paste("sample", 1:100000, sep="")
colnames(BinomialSamples) <- "obs"</pre>
                           # inserire il nome del data frame
data <- BinomialSamples
attach(data)
v <- as.vector(table(obs))</pre>
y < -y/sum(y)
x <- sort(unique(obs))</pre>
plot(x, y, type="h", lwd=2.5, ylab="Frequenze relative + Probabilità", xlim=c(min(x), max(x)+0.11), ylim=c(0, max(y)))
points(x, y, pch = 16)
abline(h = 0, col = "gray")
shift=0.1
p \leftarrow dbinom(x,3,0.6)
                          # lanciare questo comando per calcolare le probabilità - Binomiale
lines( x+shift, p, type="h", lwd=2.5, col="red")
points(x+shift, p, pch = 16, col="red")
title(main="Confronto tra frequenze relative e probabilità", cex.main=1.5)
detach(data)
```

Confronto tra frequenze relative e probabilità

Esempio 9

Triplice lancio (n = 3) di una moneta **bilanciata** (o lancio di tre monete **bilanciate**)

v.c. X di riferimento

Faccia ottenuta (0/1 per C/T) in un lancio

 $X \sim B(0.5)$

 $X_i =$ "Faccia ottenuta (0/1 per C/T) nel lancio i - esimo

i = 1,2,3

 X_1, X_2, X_3 v.c. IID B(0.5)

Logica probabilistica (parametro *p* **noto**)

Numero di teste nei tre lanci

Proporzione di teste nei tre lanci

$$Y = X_1 + X_2 + X_3 \sim Bin(3, 0.5)$$

$$\overline{X} = \frac{Y}{3} \sim \frac{1}{3} Bin(3, 0.5)$$

$$y \in \{0,1,2,3\}$$

$$\overline{x} = \frac{y}{3} \in \left\{0, \frac{1}{3}, \frac{2}{3}, 3\right\}$$

$$f(y) = {3 \choose y} 0.5^y 0.5^{3-y}$$

$$f\left(\overline{x} = \frac{y}{3}\right) = f(y) = {3 \choose y} 0.5^{y} 0.5^{3-y}$$

$$E(Y) = 1.5$$

$$V(Y) = 0.75$$

$$E(\overline{X}) = 0.5$$

$$V(\overline{X}) = 0.08\overline{3}$$

Distribuzione simmetrica

$$Me = E(X) = 1.5$$

Se la moneta è **truccata** $p \neq 0.5 \neq 1 - p$

Eventi di interesse Numero di teste nei tre lanci

$$C = \{Y = 1\}$$

$$D = \{Y \le 1\}$$

$$C = \{Y = 1\}$$
 $D = \{Y \le 1\}$ $E = \{Y \ge 1\}$

Cfr Parte 2, pag. 37

Eventi equivalenti in termini di proporzione

Modelli di pr	asuali discrete		Quadro riassuntivo			
	Uniforme		Bernoulli		Binomiale	
Notazione	$X \sim Ud(N)$		$X \sim B(p)$		$X \sim Bin(n, p)$	
Funzione di probabilità	$\frac{1}{N}$		$p^x(1-p)^{1-x}$		$\binom{n}{x}p^x(1-p)^{n-x}$	
Supporto	$\{1,2,\cdots,N\}$		{0,1}		$\{0,1,\cdots,n\}$	
Parametri	N		p		n, p	
Spazio parametrico	{1,2, · · · , ∞}		[0	,1]		$\{p,p\}$ $p \in [0,1]$
Media e varianza	$\frac{N+1}{2}$	$\frac{N^2-1}{12}$	p	p(1-p)	np	np(1-p)
Impiego principale	Giochi di sorte		v.c. di popolazione		v.c. campionaria	