优化理论与算法

第七章 迭代算法

郭加熠|助理教授

目录

迭代方法

收敛速率

如何寻找函数的最小值

- ▶ 精确方法: 适用于简单问题
- ▶ 数值方法: 适用于大多数大规模复杂工程问题。通过计算机实现 优化算法

我们通常对优化函数知之甚少,只能计算少量点处的函数值和梯度, 且每次计算成本较高。

迭代方法

在计算数学中,迭代方法是通过初始值生成一系列**逐步改进的近似解**的数学过程,其中第 (k+1) 次近似解由第 k 次解导出。

Algorithm 1 Iterative method

```
1: initial point x^0
```

2: for
$$k = 0, 1, 2, \dots$$
 do

3: update
$$x^{k+1} = \Phi(x^k)$$

4: if termination criteria is met then

5: stop

6: end if

7: end for

三个关键要素:

- 1. 初始点 x⁰
- 更新策略 Φ(·)
- 3. 终止准则

示例:不动点迭代

求解二次方程:

$$x^2 - x - 1 = 0$$

等价于寻找满足 $x = 1 + \frac{1}{x}$ 的解, 定义迭代格式:

$$x^{k+1} = \Phi(x^k) = 1 + \frac{1}{x^k}$$

当 $x^{k+1} \approx x^k$ 时停止。取 $x^0 = 2$,迭代过程如下:

$$x^{1} = 1 + \frac{1}{2} = 1.5$$
 $x^{2} = 1 + \frac{1}{1.5} = 1.666$
 $x^{3} = 1 + \frac{1}{1.666} = 1.6$ $x^{4} = 1 + \frac{1}{1.6} = 1.625$
 $x^{5} = 1 + \frac{1}{1.625} = 1.615$ $x^{6} = 1 + \frac{1}{1.615} = 1.619$

序列 $\{x^k\}$ 收敛至解 $x^* = 1.618$ 。

示例:不动点迭代

求解方程实根:

$$\cos x - 3x + 1 = 0$$

等价于寻找满足 $x = \frac{1}{3}(\cos x + 1)$ 的解, 定义迭代格式:

$$x^{k+1} = \Phi(x^k) = \frac{1}{3}(\cos x^k + 1)$$

当 $x^{k+1} \approx x^k$ 时停止。取 $x^0 = 0$,迭代过程如下:

$$x^{1} = \frac{1}{3}(\cos 0 + 1) = 0.6667 \quad x^{2} = \frac{1}{3}(\cos 0.6667 + 1) = 0.5953$$

$$x^{3} = \frac{1}{3}(\cos 0.5953 + 1) = 0.6093 \quad x^{4} = \frac{1}{3}(\cos 0.6093 + 1) = 0.6067$$

$$x^{5} = \frac{1}{3}(\cos 0.6067 + 1) = 0.6072 \quad x^{6} = \frac{1}{3}(\cos 0.6072 + 1) = 0.6071$$

求得解 $x^* \approx 0.607$ 。

示例: 单纯形法

考虑标准线性规划问题:

$$\min \quad c^T x$$

s.t. $Ax = b, x \ge 0$

单纯形法每次迭代的单纯形表:

0	$c_N^T - c_B^T A_B^{-1} A_N$	$-c_B^T A_B^{-1} b$
1	$A_B^{-1}A_N$	$A_B^{-1}b$

- ▶ *x*⁰: 对应初始基的基本可行解
- ▶ $\Phi(\cdot)$: 转轴运算(从基本可行解 x^k 移动到相邻基本可行解 x^{k+1})
- ▶ 终止条件: $c_N^T c_B^T A_B^{-1} N \ge 0$

示例: 幂方法

求对称矩阵 $A \in \mathbb{R}^{n \times n}$ 的最大特征值,转化为优化问题:

$$\max_{\mathbf{x} \in \mathbb{R}^n} \mathbf{x}^T A \mathbf{x} \quad \text{s.t. } \|\mathbf{x}\|_2 = 1$$

幂方法 (Power Method) 迭代格式:

$$x^{k+1} = \frac{Ax^k}{\|Ax^k\|_2}$$

- ▶ x⁰: 随机生成
- $\Phi(x) = \frac{Ax}{\|Ax\|_2}$
- ▶ 终止条件: $x^{k+1} \approx x^k$

示例: 黄金分割法 (零阶方法)

最小化一维凸函数 $f(x), x \in [a, b]$

- 0) 初始化: 设 $x_l = a$, $x_r = b$
- 1) 选取两点:

$$x'_{l} = x_{l} + r(x_{r} - x_{l})$$

$$x'_{r} = x_{l} + (1 - r)(x_{r} - x_{l})$$

$$r = 0.382$$

- 2) 比较 $f(x'_t)$ 和 $f(x'_r)$:
 - ▶ 若 $f(x'_t) < f(x'_t)$, 更新 $x_t = x'_t$
 - ▶ 若 $f(x'_l) \ge f(x'_r)$,更新 $x_l = x'_l$

重复步骤 1) 直至 x', 与 x', 足够接近

为何选择 r = 0.382?

示例:下降方法

考虑无约束优化问题:

$$\min_{x\in\mathbb{R}^n} f(x)$$

下降方法迭代格式:

$$x^{k+1} = x^k + t_k p_k, \quad k = 0, 1, 2, \dots$$

- ▶ t_k > 0: 自定义步长
- ▶ p_k : 基于 f(x) 计算的下降方向
- ▶ 通过合理选择 tk 和 pk 保证

$$f(x^{k+1}) < f(x^k)$$

目录

迭代方法

收敛速率

终止准则

一阶条件 $\|\nabla f(x)\| = 0$ 不实用

实用终止准则:

- ▶ 梯度足够小: $\|\nabla f(x^k)\| \le \epsilon$
- ▶ 目标函数变化量: $|f(x^{k+1}) f(x^k)| \le \epsilon$ 或

$$\frac{|f(x^{k+1}) - f(x^k)|}{|f(x^k)|} \le \epsilon$$

▶ 迭代点变化量: $||x^{k+1} - x^k|| \le \epsilon$ 或

$$\frac{\|x^{k+1} - x^k\|}{\|x^k\|} \le \epsilon$$

▶ 为避免除以极小值,分母可替换为 $\max\{1, |f(x^k)|\}$ 和 $\max\{1, |x^k|\}$

误差度量与收敛性

▶ 问题误差度量:

$$ightharpoonup e_k = ||x^k - x^*||$$

$$ightharpoonup e_k = \left\| \nabla f(x^k) \right\|$$

▶ 收敛性

$$\lim_{k\to\infty} x^k = x^* \not \exists \lim_{k\to\infty} f(x^k) = f(x^*)$$

▶ 迭代复杂度 (全局):

$$e_k \leq \textit{O}\left(\frac{1}{\textit{k}}\right) \left(\textit{O}\left(\frac{1}{\textit{k}^2}\right), \textit{O}\left(\frac{1}{\sqrt{\textit{k}}}\right), \textit{O}\left(\frac{1}{2^{\textit{k}}}\right), \textit{O}\left(\frac{1}{2^{2^{\textit{k}}}}\right)\right)$$

收敛速率 (局部)

设序列 $\{x^k\}$ 收敛于 x^* 。

Q-收敛定义: $\lim_{k\to\infty} \frac{e_{k+1}}{e_k} = \mu$

- ► 若 $\mu = 1$, 称为次线性收敛
- ▶ 若 $\mu \in (0,1)$, 称为**线性收敛**
- ► 若 $\mu = 0$, 称为超线性收敛
- ▶ 为区分超线性收敛速率,检验

$$\lim_{k\to\infty}\frac{e_{k+1}}{(e_k)^q}=\mu>0$$

当 q=2 时,称为二次收敛

▶ 若对任意 k 有 $|e_k| \le \epsilon_k$ 且 $\{\epsilon_k\}$ Q-收敛于 0,则称 $\{x^k\}$ 为 R-收敛

收敛速率示例

▶ 次线性收敛: ½

▶ 次线性收敛: ½

▶ 线性收敛: 0.97k

▶ 超线性收敛: 0.8^{1.01}^k

▶ R-收敛: $0.5^{\lceil k/2 \rceil}$

► 二次收敛: 2^{2^k}

次线性 vs 线性收敛

▶ 次线性收敛速度较慢

例如误差按 O(1/k) 或 $O(1/k^2)$ 衰减(k 为迭代次数)。要达到精度 ϵ ,分别需要 $O(1/\epsilon)$ 和 $O(\sqrt{1/\epsilon})$ 次迭代

- ▶ 线性收敛渐近**更快**, 达到精度 ϵ 需要 $O(\log(1/\epsilon))$ 次迭代
- ▶ 二次收敛在实践中通常只需常数次迭代