2.6. Стандартизация архитектуры на уровне организации

Стандарт описания архитектуры предназначен для определения единых требований, правил и методик описания архитектуры организации, в том числе:

- 1. к порядку выполнения работ по описанию архитектуры;
- 2. к составу и структуре моделей архитектуры;
- 3. к содержанию и оформлению документов, используемых для описания архитектуры.

Стандарт должен включать в себя:

- 1. порядок выполнения работ по описанию архитектуры;
- 2. методику создания и структурирования единой базы знаний о деятельности организации;
- 3. методику (тактику) интервью ирования;
- 4. методику описания (моделирования) архитектуры;
- 5. комплект шаблонов и форм документов, используемых при подготовке и описании архитектуры

Далее в данном разделе рассматривается методика описания (моделирования) архитектуры, ориентированная на поддержку средой моделирования CasewiseCorporateModeler, которая позволяет обеспечить реализацию основных требований к описанию: системность, целостность и однородность описания, простоту, наглядность, открытость к изменениям, возможность автоматизированного анализа.

В основе методики лежит структурный подход, основными принципами которого являются:

- 1. выделение взаимосвязанных процессов верхнего уровня для описания совокупности предметных областей организации;
- 2. использование "нисходящего" многоуровневого детализирующего описания всех предметных областей;
- 3. использование на каждом из уровней детализации только существенных для данного уровня объектов;
- 4. ограничение количества функциональных объектов (не более 6-7) на каждом из уровней для обеспечения читабельности и понимаемости модели;
- 5. последовательное приближение к конечному результату.

Предложенный подход основывается на создании многоуровневой модели архитектуры, отражающей все аспекты деятельности организации с

разной степенью обобщения — от общего взгляда на архитектуру (контекстуальный уровень) к наиболее детальному описанию (физический уровень). При этом каждый из уровней модели включает в себя следующие взаимоувязанные компоненты, представленные с соответствующей степенью подробности:

- 1. функциональную компоненту (иерархию процессов, функций, операций);
- 2. организационно-штатную компоненту, отражающую иерархию подчинения организационных единиц (подразделений, должностей, сотрудников);
- 3. информационную компоненту, отражающую взаимосвязи (информационные и, в отдельных случаях, материальные) между функциональной и организационно-штатной компонентами, а также внутренние связи в функциональной компоненте;
- 4. ИТ-компоненту, фиксирующую уровень и степень автоматизации объектов функциональной компоненты.

Описание осуществляется на основе структурного подхода Casewise (Casewiseframework) – схемы архитектуры организации, описываемой в виде матрицы (см. рис.2.3), представляющей собой модифицированную схему Захмана, столбцы которой характеризуют разные аспекты моделирования архитектуры ("Процессы", "Организационная структура", "Данные" и "ИТ-инфраструктура"), а строки уровни абстракции моделирования. Аспекты, представленные в столбцах матрицы соответствуют вопросам: Как?, Кто?, Что?, Какими средствами? Создание описания архитектуры фактически является совокупностью процедур, состоящих из ответов на перечисленные вопросы по уровням абстракции моделирования.

	Архитектура предприятия			
	Процессы	Люди	Данные	IT -ин фраструктура [Средотва
	[Ka ir]	[KT0]	[4 10]	автомати зации]
С оде ржание: кон текстуальный	Конте кстнал диаграмма	о рганизационнал схема верхнего уровня	с писок сущностей предметной области	Перечень классов систем
0 рганизация: кон це пту альны й	Диаграммы уровня процессов	организационная схема со сферами деятельности	Диаграмма сущностей без атрибутов	перечень используемых систем
М одель системы : логический	Лопическая схема процессов	организационная схема уровня подразделений	Диаграмма сущностей с атрибутами	Перечень функций систем
М өдель системы: Физический	Детальная схема процессов	Ролевал организационнал структура	Матрица Сущность\Функци ональный обтект	Матрица Системы\Процессы

Рис. 2.3. Схема архитектуры

В строках матрицы, представляющих уровни абстракции моделирования, создаются группы моделей различных типов:

- 1. модели бизнес-среды организации (уровень бизнеса, внешняя среда);
- 2. модели концептуального уровня (уровень организации);
- 3. логические модели (уровень подразделений);
- 4. физические модели (уровень технологий).

Перечень используемых категорий диаграмм для каждой из областей описания представлен в таблице 2.4.

Таблица 2.4.				
Область описания	Назначение	Категории диаграмм		
•	Функциональные области деятельности Процессы функциональных областей Логические схемы процессов	Контекстная диаграмма Список функциональных областей, диаграмма уровня процессов Логическая схема процесса		

	Детальные схемы процессов	Детальная схема процесса
Организационная структура	Организационная структура по функциональным областям	Организационная схема верхнего уровня
	o oside i sim	Организационная схема со
	Ролевая организационная иерархия	сферами деятельности
	• •	Организационная схема
	Организационная структура подразделений	уровня подразделений
		Ролевая организационная
	Ролевая организационная структура	структура
Данные	Данные функциональных	Список сущностей
	областей	(подсхем) предметной области
	Данные процессов	T
	функциональных областей	Диаграмма взаимосвязей сущностей (без атрибутов)
	Логические данные процессовФизические	Диаграмма взаимосвязей
	данные процессов	сущностей (с атрибутами)
		Матрица взаимосвязей Сущность\
		Функциональный объект
ИТ– инфраструктура	Классификация систем	Перечень классов систем (ИАС, расчетные и т.п.)
	Классификация систем по	(III 10, pae ie iiibie ii iiii)
	целевому назначению	Перечень используемых
	Deavise angly average	систем
	Взаимосвязь систем подразделений	Перечень функций системы
	Матрица Процессы/Средства	Матрица
	автоматизации	Процессы/Системы

Стандарт определяет необходимый набор объектов, с помощью которых осуществляется моделирование:

- 1. шаблоны и категории диаграмм (отметим, что в качестве нотаций для описания процессов использовался диалект диаграмм потоков данных, а для описания данных диалект диаграмм "сущность-связь");
- 2. шаблоны и категории объектов;
- 3. типы связей и ассоциаций, необходимых для моделирования;

- 4. правила именования и нумерации объектов и схем;
- стили;
- 6. перечни атрибутов объектов для обеспечения полноты описания деятельности и возможности получения необходимых отчетов из CasewiseCorporateModeler.

Определение категорий диаграмм, используемых для построения архитектуры и перечисленных в таблице 2.4, представлено в соответствии с областями описаний по столбцам матрицы, приведенной на рис. 2.3, сверху вниз. Пример описания объектов диаграммы уровня процессов приведен в таблице 2.5.

	Таблица 2.5.
Наименование и представление	Описание
Внешняя сущность	 Назначение. Моделирует внешние по отношению к организации/подразделению объекты. При этом сущности, внешние по отношению ко всей организации, изображаются овалами красного цвета (см. пример слева сверху), сущности, внешние по отношению к подразделению, изображаются овалами розового цвета (см. пример слева снизу). Имя. Имя представляет собой существительное. Пример:
Функциональный объект\функция	склад, клиент, поставщик и т.д. Назначение. Моделирует функциональный объект любого уровня детализации (от сферы деятельности до функции нижнего уровня), допускает детализацию диаграммой следующего уровня, присутствие которой обозначается символом декомпозиции. Поле "Имя" содержит наименование процесса в виде глагола в неопределенной форме. Пример: "Проверить поступление денег".
Хранилище данных	Детализация. Осуществляется посредством декомпозиции данного процесса диаграммами уровня процессов более низкого уровня, логическими схемами процессов или детальными схемами процессов. Назначение. Моделирует накопитель данных Имя. Идентифицирует его содержимое. Должно быть существительным.

Поток данных	Назначение. Моделирует направленный поток данных Имя. Имя отражает содержание потока
Символ	Назначение. Показывает, что данный процесс
декомпозиции	детализируется диаграммой следующего уровня

Описание методики моделирования представлено в соответствии с уровнями абстракции моделирования и соответствуют строкам матрицы, приведенной на рис.2.3.

Методика описания модели контекстуального уровня

- 1. Для построения модели контекстуального уровня используются следующие категории диаграмм:
 - 1. контекстная диаграмма организации,
 - 2. организационная схема организации верхнего уровня
 - 3. список сущностей (подсхем) предметной области,
 - 4. перечень классов систем.
- 2. Последовательность построения модели включает следующие шаги:
 - 1. построение контекстной диаграммы организации, включающее следующие шаги:

 - идентификация деятельности организации в целом;
 определение списка внешних сущностей организации;
 определение потоков данных от каждой внешней сущности к функциональному объекту (организации);
 - построение соответствующей диаграммы, содержащей единственный функциональный объект, внешние сущности двух видов и потоки данных между ними.
 - 2. построение организационной схемы организации;
 - 3. выявление сущностей предметной области и построение соответствующей диаграммы;
 4. построение перечня классов систем, автоматизирующих
 - деятельность организации.
- 3. Основные правила моделирования:
 - 1. внешние сущности необходимо идентифицировать существительным (налоговая инспекция, отдел кадров и т.п.);
 - 2. контекстная диаграмма должна иметь топологию "звезды", в центре которой находится функциональный объект, а на лучах располагаются внешние сущности;

- 3. именование элементов организационной схемы должно соответствовать принятым названиям подразделений;
- 4. каждая из сущностей предметной области должна описывать единственный объект, идентификация сущности должна осуществляться существительным (заказ и книга, а не заказ на книгу);
- 5. класс автоматизированной системы определяется ее назначением (бухгалтерская, ERP, CRM, аналитическая и т.п.).

Методика описания модели концептуального уровня:

- 1. Для построения модели концептуального уровня используются следующие категории диаграмм:
 - 1. список функциональных областей,
 - 2. диаграмма уровня процессов,
 - 3. организационная схема со сферами деятельности,
 - 4. диаграмма взаимосвязей сущностей (без атрибутов),
 - 5. перечень используемых систем.
- 2. Каждая из перечисленных диаграмм детализирует соответствующие диаграммы концептуального уровня абстракции.
- 3. Функциональные области необходимо идентифицировать глагольной формой (учет кадров, деятельность отдела кадров, а не отдел кадров);
- 4. Диаграмма уровня процессов детализирует контекстную диаграмму организации, алгоритм ее построения следующий:
 - 1. На основе списка функциональных областей определить процессы, которые выполняет организация (в ряде случаев процесс может соответствовать функциональной области).
 - 2. Связать с потоками данных процессы с внешними сущностями контекстной диаграммы.
 - 3. В случае необходимости определить дополнительные внешние сущности и связать их с процессами при помощи потоков данных (критерием введения дополнительной внешней сущности на данном уровне детализации является ее "малое" использование единственным процессом или функцией, например сущность ВНЕШНИЙ КОНСУЛЬТАНТ).
 - 4. Определить базовые хранилища данных, которые использует организация. Критерием идентификации хранилища как базового является его использование более чем одним процессом.
 - 5. Определить потоки данных между процессами, а также между процессами и хранилищами данных.
 - 6. В случае, когда функциональная область включает несколько процессов, детализировать эту область диаграммой уровня процессов.

- 5. Перечень используемых систем детализирует перечень классов систем путем раскрытия каждого из классов перечнем конкретных систем организации.
- 6. Диаграмма взаимосвязей сущностей (без атрибутов) детализирует список сущностей предметной области, алгоритм ее построения следующий:
 - 1. Построить сущности для каждого элемента из списка сущностей предметной области.
 - 2. Рассмотреть каждую возможную пару сущностей и установить существование связи (ассоциации) между ними.
 - 3. Определить тип связи и построить связь между сущностями.
 - 4. Разрешить каждую связь типа МНОГИЕ-КО-МНОГИМ заменой ее на пару связей типа ОДИН-КО-МНОГИМ или ОДИН-К-ОДНОМУ.

Методика описания логической модели

- 1. Для построения логической модели используются следующие категории диаграмм:
 - 1. логическая схема процесса,
 - 2. организационная схема уровня подразделений,
 - 3. диаграмма взаимосвязей сущностей (с атрибутами),
 - 4. перечень функций системы.
- 2. Каждая из перечисленных диаграмм детализирует соответствующие диаграммы контекстуального уровня абстракции.
- 3. Логическая схема процесса детализирует диаграмму уровня процессов, алгоритм ее построения следующий:
 - 1. Для каждого из процессов диаграммы уровня процессов определить составляющие его функции.
 - 2. Связать потоками данных функции с внешними элементами из диаграммы уровня процессов: внешними сущностями, хранилищами данных и другими процессами, с которыми имеется потоковая связь детализируемого процесса.
 - 3. Определить хранилища данных процесса, критерием идентификации хранилища является его использование более чем одной функцией детализируемого процесса.
 - 4. Определить потоки данных между функциями, а также между функциями и хранилищами данных.
- 4. Перечень функций системы детализирует перечень используемых систем путем раскрытия каждой из систем перечнем конкретных ее функций.
- 5. Диаграмма взаимосвязей сущностей (с атрибутами) детализирует каждую из сущностей путем идентификации всех ее атрибутов:
 - 1. Определяется список атрибутов.

2. Выделяются ключевые атрибуты, однозначно идентифицирующие каждый из экземпляров сущности.

Методика описания физической модели

- 1. Для построения физической модели используются следующие категории диаграмм:
 - 1. детальная схема процесса,
 - 2. ролевая организационная структура,
 - 3. матрица взаимосвязей Сущность\ Функциональный объект,
 - 4. матрица Процессы/Системы.
- 2. Детальная схема процесса детализирует каждую из функций логической схемы процесса, правила ее построения следующие:
 - 1. Каждая функция должна быть инициирована событием и должна завершаться событием
 - 2. В каждую функцию не может входить более одной стрелки, "запускающей" выполнение функции, и выходить не более одной стрелки, описывающей завершение выполнения функции.
- 3. Матрица взаимосвязей Сущность\Функциональный объект связывает сущности с процессами/функциями, осуществляющими их обработку на уровне чтений, записей или обеих этих операций.
- 4. Матрица Процессы/Системы связывает процессы/функции с системами/функциями, их поддерживающими.