Дисциплина

Теория вероятностей

Лекция 1-2

Вероятностное пространство

- 1. Случайные события. σ -алгебра событий.
- 2. Понятие вероятностной меры случайного события.
- 3. Понятие вероятностного пространства.
- 4. Свойства вероятностей.
- 5. Условная вероятность.

Литература

- 1. Теория вероятностей: Учеб. для вузов./ Под ред. В.С. Зарубина, А.П. Крищенко. М.: Изд-во МГТУ им. Н.Э. Баумана, 2004.
- 2. Гмурман В.Е. Теория вероятностей и математическая статистика. М.: Изд-во «Юрайт», 2020. https://urait.ru/bcode/449646
- 3. Горлач Б.А. Теория вероятностей и математическая статистика. СПб.: Изд-во «Лань», 2013. http://e.lanbook.com/book/4864

1. Случайные события. Сигма-алгебра событий

Случайный эксперимент:

- непредсказуемость результата с абсолютной точностью,
- воспроизводимость (массовость),
- устойчивость относительных частот.

Эксперимент: бросание монеты; результат: выпадение Г.

	Число бросаний <i>n</i> *	Число выпадений Г m^*	Относительная частота Г
Ж. Бюффон	4040	2049	$\frac{2049}{4040} \approx 0,507$
К. Пирсон	24000	12012	$\frac{12012}{24000} \approx 0,5005$
В.И. Романовский	80640	39699	$\frac{39699}{80640} \approx 0,4923$

Относительная частота выпадения Г

$$\frac{m^*}{n^*} \approx 0.5$$

Устойчивость относительных частот позволяет, не имея возможности предсказать результат отдельного эксперимента, достаточно точно прогнозировать свойства событий, связанных с данным экспериментом.

Теория вероятностей – раздел математики, в котором изучают математические модели случайных экспериментов.

Андрей Николаевич Колмогоров 1903 – 1987

Каждый результат случайного эксперимента называется элементарным исходом (элементарным событием).

Обозначение: ω

Определение 2

Множество всех взаимоисключающих исходов случайного эксперимента называется пространством элементарных событий (ПЭС).

Обозначение: Ω

Множество исходов образует ПЭС, если:

- в результате эксперимента один из исходов обязательно происходит
- появление одного из исходов исключает появление всех остальных
- в данном эксперименте каждый исход неделим

Случайным событием называется произвольное подмножество ПЭС.

Обозначение: *А, В, С,...*

Элементарные исходы, которые являются элементами рассматриваемого случайного события, называются исходами, благоприятствующими данному событию.

Достоверное событие представляет собой совокупность всех элементарных исходов.

Обозначение: Ω

Невозможным событием называется пустое множество элементарных исходов.

Обозначение: Ø

Событие A содержится в событии B, если все элементарные события A являются элементарными событиями B.

Обозначение: А⊂В

Объединением (суммой) двух событий A и B называется событие

$$A+B=\{\omega:\omega\in A$$
 или $\omega\in B\}$

Событие

$$A_1 + A_2 + \dots + A_n + \dots = \sum_{n=1}^{\infty} A_n$$

состоит из элементарных исходов, принадлежащих хотя бы одному из событий A_n , где $n \in \mathbb{N}$.

Пересечением (произведением) двух событий A и B называется событие

$$A \cdot B = \{ \omega : \omega \in A \text{ if } \omega \in B \}$$

Событие

$$A_1 \cdot A_2 \cdot \dots \cdot A_n \cdot \dots = \prod_{n=1}^{\infty} A_n$$

состоит из элементарных исходов, принадлежащих всем событиям A_n , где $n \in \mathbb{N}$.

Разностью двух событий A и B называется событие

$$A-B = \{ \omega : \omega \in A \text{ if } \omega \notin B \}$$

Определение 7

Дополнением (противоположным событием) события A называется событие

$$\overline{A} = \{ \omega : \omega \in \Omega \text{ in } \omega \notin A \}$$

CP

Основные свойства операций над событиями

- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.

События A и B называются несовместными, если нет элементарных исходов, которые принадлежат как A, так и B, т.е.

$$A \cdot B = \emptyset$$

События $A_1, A_2, ..., A_n$ называются попарно несовместными, если любые два из них несовместны, т.е.

$$A_i \cdot A_k = \emptyset$$
, где $i \neq k$.

Определение 10

События $A_1, A_2, ..., A_n$ называются несовместными в совокупности, если

$$A_1 \cdot A_2 \cdot \dots \cdot A_n = \emptyset$$

События $A_1, A_2, ..., A_n$ образуют полную группу, если их сумма образует достоверное событие, т.е.

$$A_1 + A_2 + \ldots + A_n = \Omega$$

Обозначение:

 \varSigma – булеан множества \varOmega .

$$\Omega$$
 – конечно и $|\Omega|$ = $n \Rightarrow |\Sigma|$ = 2^n

Пусть
$$A,B \in \Sigma$$

Свойства операций на Ω

- $A+B \in \Sigma$
- $A \cdot B \in \Sigma$
- $A \in \Sigma$

Вывод:
$$<\!\! \Sigma, +, \cdot, -\!\!\!\! > -$$
 алгебра

Определение 3 допустимо, если Ω – конечное или счетное множество.

Если Ω – *несчетно*, то событиями называют только те подмножества из Ω , которые принадлежат некоторому классу B.

Непустая система подмножеств \boldsymbol{B} некоторого множества J, удовлетворяющая условиям:

$$1.A \in \mathbf{B} \implies \overline{A} \in \mathbf{B}$$

$$\mathbf{2.}\ A_1, A_2, \dots, A_n \dots \in \mathbf{B} \Rightarrow A_1 \cup A_2 \cup \dots \cup A_n \cup \dots \in \mathbf{B}$$

3.
$$A_1, A_2, \dots, A_n \dots \in \mathbf{B} \Rightarrow A_1 \cap A_2 \cap \dots \cap A_n \cap \dots \in \mathbf{B}$$

называется сигма-алгеброй (σ -алгеброй).

Замечание:

поскольку
$$J = A \cup \overline{A}$$
 и $\varnothing = \overline{J}$, то $J \in B$ и $\varnothing \in B$

Рассмотрим ПЭС Ω .

Событиями называются элементы некоторой σ -алгебры $\emph{\textbf{B}}$, заданной на Ω .

 σ -алгебра B называется σ -алгеброй событий.

Любая σ -алгебра событий включает достоверное событие Ω и невозможное событие \emptyset .

Например, множество Σ – σ -алгебра событий.

Пример

Эксперимент: бросание точки на числовую прямую $\mathbf{R} = (-\infty, +\infty)$. ПЭС $\Omega = \mathbf{R}$.

Подмножества Ω : [a,b], (a,b], [a,b), (a,b). Полагают, что σ -алгебра \boldsymbol{B} содержит все эти интервалы.

Случайное событие A = [a, b] – попадание точки на отрезок [a, b].

2. Понятие вероятностной меры случайного события

Вероятность есть численная мера степени объективной возможности появления случайного события.

Обозначение: P или p

Такое определение вероятности в современной математике вводится на основании аксиом.

Классическое определение вероятности (классическая схема)

Пусть ПЭС $\Omega = \{\omega_1, \omega_2, ..., \omega_n\}$ – конечно.

Определение 13

Случайные события называются равновозможными, если ни одно из них не является объективно более возможным, чем другие.

- Вероятностью $p_i(\omega_i)$ каждого элементарного исхода ω_i считают число $\frac{1}{n}$,
- вероятность события A, состоящего из m элементарных исходов ПЭС, определяют так:

$$P(A) = \frac{m}{n} \tag{1}$$

- классическое определение вероятности

где $n=|\Omega|$ – общее число исходов случайного эксперимента,

m=|A| — число исходов, благоприятствующих событию A

Урновые схемы

Пусть есть ящик, в котором N занумерованных шаров: 1,2,..., N Эксперимент: выбор k шаров.

Возникает четыре схемы выбора:

1. выбор без возвращения с учетом порядка, тогда общее число исходов $n={\rm A}_N^k$ (число размещений из N по k);

- 2. выбор без возвращения и без учета порядка, тогда общее число исходов $n=\operatorname{C}_N^k$ (число сочетаний из N по k);
- 3. выбор с возвращением и с учетом порядка, тогда общее число исходов $n=\overline{A}_N^{\ k}$ (число размещений с повторениями из N по k);
- 4. выбор с возвращением и без учета порядка, тогда общее число исходов $n=\overline{\mathbb{C}}_N^{\ k}$ (число сочетаний с повторениями из N по k).

Свойства вероятности

1.
$$\forall A \in \Sigma \ P(A) \ge 0$$

2.
$$P(\Omega)=1$$

3.
$$A,B \in \Sigma$$
 u $A \cdot B = \emptyset \Rightarrow P(A+B) = P(A)+P(B)$

Геометрическое определение вероятности (геометрическая схема)

Пусть ПЭС Ω – бесконечное множество элементарных исходов, $\Omega \subseteq I\!\!R^n$:

- при n=1 в R рассматриваем подмножества, которые имеют длину;
- при n=2 в \mathbb{R}^2 подмножества, которые имеют площадь;
- при n=3 в \mathbb{R}^3 (\mathbb{R}^n) подмножества, которые имеют объем (обобщенный объем).

© I.Krivtsova ITMO University

Под *мерой множества* $A \subset \Omega$ понимают его длину, площадь,..., обобщенный объем.

Обозначение: $\lambda(A)$

Пусть:

- ПЭС Ω имеет конечную меру, т.е. $\lambda(\Omega)<+\infty$
- вероятность попадания случайно брошенной точки в любое подмножество
 Ω не зависит от его расположения и формы.

Говорят, что *случайное событие* A *наступило*, если случайно выбранная точка принадлежит подмножеству $A \subset \Omega$.

Определение 14

Геометрической вероятностью события A называется число P(A), равное отношению меры множества A к мере множества Ω , т.е.

$$P(A) = \frac{\lambda(A)}{\lambda(\Omega)} \tag{2}$$

Свойства вероятности

- 1. $\forall A \in \mathbf{B} \ P(A) \ge 0$
- 2. $P(\Omega)=1$
- 3. $A,B \in \mathbf{B}$ u $A \cdot B = \varnothing \Rightarrow P(A+B) = P(A) + P(B)$

Замечание:

в \mathbb{R}^n существуют подмножества, не имеющие меры. Поэтому в качестве событий A рассматривают только $A \in \mathbb{B}$.

3. Понятие вероятностного пространства

Аксиоматическое определение вероятности (А.Н. Колмогорова)

Рассмотрим определение вероятности события ∀ ПЭС, основанное на свойствах вероятностей из всех предыдущих определений.

Пусть

 Ω – ПЭС, $\emph{\textbf{B}}-\sigma$ -алгебра событий на Ω , $\emph{\textbf{A}} \subset \emph{\textbf{B}}$.

Определение 15

Функция $P(\cdot)$: $\mathbf{B} \to \mathbf{R}$ называется вероятностью (вероятностной мерой), если она удовлетворяет следующим аксиомам:

аксиома 1: $P(A) \ge 0$

аксиома 2: $P(\Omega) = 1$

аксиома 3: для любых попарно несовместных событий $A_1, A_2, ..., A_n$... справедливо

$$P(A_1 + A_2 + ... + A_n + ...) = P(A_1) + P(A_2) + ... + P(A_n) + ...$$

Значение P(A) называют вероятностью события A.

© I.Krivtsova ITMO University

Замечание:

 Ω – конечное или счетное множество.

$$orall \omega_i o$$
 число $P(\omega_i) = p_i \ge 0$ так, что

$$\sum_{\alpha} p_i = p_1 + p_2 + \dots + p_n + \dots = 1.$$

$$\omega_i \in \Omega$$

Тогда $\forall A \subset \Omega$ вероятность P(A) равна

$$P(A) = \sum_{\omega_i \in A} p_i$$

Определение 16

Тройка $(\Omega, \textbf{\textit{B}}, P)$, где

 Ω -ПЭС,

 ${\it B}-\sigma$ -алгебра событий,

P — вероятностная мера, заданная на ${\it B}$, называется вероятностным пространством.

 (Ω, Σ, P) – простейшее вероятностное пространство.

4. Свойства вероятностей

Теорема 1

1.
$$P(\emptyset) = 0$$

2.
$$\forall A \in \mathbf{B}$$
 $0 \le P(A) \le 1$

3.
$$P(\overline{A}) = 1 - P(A)$$

4.
$$A \subset B \implies P(A) \leq P(B)$$

Теорема 2 (сложения вероятностей для 2 событий)

Вероятность суммы двух случайных событий A и B равна сумме их вероятностей без вероятности их произведения, т.е.

$$P(A+B) = P(A) + P(B) - P(A \cdot B)$$
 (3)

$$P(A+B) = \frac{k+l-m}{n} = \frac{k}{n} + \frac{l}{n} - \frac{m}{n} =$$

$$= P(A) + P(B) - P(A \cdot B)$$

Следствие 1

События
$$A$$
 и B несовместны \Rightarrow

$$P(A+B) = P(A) + P(B)$$

CP

Следствие 2

$$C \subset D \implies P(D - C) = ?$$

CP

Сформулируйте Теорему 2 для трех событий:

$$P(A+B+C) = ?$$

*

Теорема 3 (сложения вероятностей для n событий)

Вероятность суммы любого конечного числа событий равна

$$P(A_1 + A_2 + \dots + A_n) = P(A_1) + P(A_2) + \dots + P(A_n) - P(A_1 \cdot A_2) - P(A_1 \cdot A_3) - \dots - P(A_{n-1} \cdot A_n) + P(A_1 \cdot A_2 \cdot A_3) + \dots + (-1)^{n+1} P(A_1 \cdot A_2 \cdot \dots \cdot A_n)$$

Замечание:

Если события A_i , где i=1,2,...,n образуют полную группу несовместных событий, то вероятность их суммы равна 1:

$$P(\sum_{i=1}^{n} A_i) = 1$$

5. Условная вероятность

Пусть дано (Ω , B, P). В результате эксперимента осуществилось событие B.

Если при этом изменилась вероятность некоторого другого события A, то говорят, что событие A зависит от события B.

Пусть $P(B)\neq 0$.

Определение 17

Вероятность события A при условии, что произошло событие B, называется условной вероятностью события A.

Обозначение: P(A/B)

Пусть все исходы эксперимента равновозможны.

Тогда по классической схеме вычисления вероятностей:

$$P(A/B) = \frac{m}{l} = \frac{m \cdot n}{l \cdot n} = \frac{m}{n} : \frac{l}{n} = \frac{P(A \cdot B)}{P(B)}$$

Пусть $P(B)\neq 0$ и $P(A)\neq 0$.

Теорема 4 (умножения вероятностей)

Вероятность произведения двух случайных событий A и B равна произведению вероятности одного из них на условную вероятность другого, вычисленную при условии, что первое имело место быть, т.е.

$$P(A \cdot B) = P(B) \cdot P(A/B) \tag{4}$$

или
$$P(A \cdot B) = P(A) \cdot P(B/A)$$

Определение 18

Событие A называется независимым от события B, если осуществление события B не изменяет вероятности появления события A.

Следствие

Вероятность произведения двух независимых событий равна произведению их вероятностей:

$$P(A \cdot B) = P(A) \cdot P(B)$$
.

Лемма (о взаимной независимости событий)

Если событие A не зависит от события B, то и событие B не зависит от события A:

$$P(B/A) = \frac{P(A \cdot B)}{P(A)} = \frac{P(A/B)P(B)}{P(A)} =$$

$$= \frac{P(A) \cdot P(B)}{P(A)} = P(B)$$

Определение 19

События A и B называются независимыми, если $P(A \cdot B) = P(A) \cdot P(B)$.

Определение 20

События $A_1, A_2, ..., A_n$ называются попарно независимыми, если

$$P(A_i \cdot A_j) = P(A_i) \cdot P(A_j)$$

$$\forall i, j$$
 где $1 \le i < j \le n$.

Определение 21

События $A_1, A_2, ..., A_n$ называются независимыми в совокупности, если для любого $1 \le k \le n$ и для любого набора индексов $1 \le i_1 < i_2 < ... < i_k \le n$ выполняется равенство:

$$P(A_{i_1} \cdot A_{i_2} \cdot ... \cdot A_{i_k}) = P(A_{i_1}) \cdot P(A_{i_2}) \cdot ... \cdot P(A_{i_k}).$$

Замечание:

из попарной независимости событий *не следует* их независимость в совокупности.

Пусть события A_1, A_2, \dots, A_n независимы в совокупности,

A — осуществление хотя бы одного из этих событий.

Обозначения:

$$p_i \!\!=\!\! P(A_i)$$
 — вероятность A_i , $q_i \!\!=\!\! 1 \!\!-\! p_i$ — вероятность \overline{A}_i (неосуществления A_i)

Теорема 5

Вероятность появления хотя бы одного из независимых событий A_1, A_2, \ldots, A_n вычисляется по формуле:

$$P(A) = 1 - q_1 \cdot q_2 \cdot \dots \cdot q_n$$
 (5)

Следствие:

если все A_i равновероятны с вероятностью p,

TO

$$P(A) = 1 - q^n$$

где n — число экспериментов.

6. Формула полной вероятности. Формула Байеса

Пусть события $H_1, H_2, ..., H_n$:

- 1. образуют полную группу,
- 2. попарно несовместны.

Событие A может осуществиться лишь вместе с одним из событий H_i , где $i=1\div n$.

События, удовлетворяющие условиям 1, 2, называются гипотезами.

Пусть известны вероятности гипотез $P(H_1), P(H_2), ..., P(H_n)$, причем $P(H_i) \neq 0, i = 1 \div n$.

Пусть событие A, может осуществиться лишь вместе с одним из событий H_i , $i=1\div n$.

Пусть известны $P(A/H_1), P(A/H_2), \dots, P(A/H_n)$ – условные вероятности события A при условии осуществления каждой из гипотез.

Теорема 6

Вероятность события A вычисляется по формуле:

$$P(A) = P(H_1) \cdot P(A/H_1) + P(H_2) \cdot P(A/H_2) + \dots + P(H_n) \cdot P(A/H_n).$$

$$P(A) = \sum_{i=1}^{n} P(H_i) \cdot P(A/H_i).$$
 (6)

– формула полной вероятности.

 $P(H_i)$ – априорная вероятность гипотезы H_i .

Теорема 7 (гипотез)

Для любого $i=1\div n$ условную вероятность события H_i при условии, что событие A произошло, вычисляют по формуле:

$$P(H_i/A) = \frac{P(H_i) \cdot P(A/H_i)}{\sum_{i=1}^{n} P(H_i) \cdot P(A/H_i)}$$
(7)

формула Байеса.

 $P(H_i/A)$ – апостериорная вероятность гипотезы H_i .

© I.Krivtsova ITMO University

7. Схема Бернулли

Несколько экспериментов называются независимыми, если любые события, возникающие в разных экспериментах, независимы в совокупности.

Схемой Бернулли (повторными независимыми испытаниями, биномиальной схемой) называют последовательность экспериментов, удовлетворяющих следующим условиям:

- эксперименты независимы;
- в каждом эксперименте возможны только два исхода появилось или не появилось случайное событие A (ycnex);
- вероятность A в каждом эксперименте одна и та же и равна $p \in [0, 1]$.

Задача:

найти вероятность события — в n экспериментах событие A появится ровно m раз.

Обозначим:

q – вероятность непоявления A (неудачи) в каждом эксперименте, тогда

$$q=1-p$$
.

Имеем:

n экспериментов $0 \le m \le n$ раз появляется событие A $\omega = \{\underbrace{A,A,...,A,...,A}_{n-m}, \underbrace{A,...,A}_{n-m}\}$ — один из

благоприятствующих исходов, причем:

- все исходы равновероятны
- события, соответствующие этим исходам, несовместны
- число таких исходов равно \mathcal{C}_n^m

Вывод: см. Теорему

Теорема 8

Вероятность того, что в n экспериментах по схеме Бернулли событие A появится ровно m раз, вычисляется по формуле:

$$P_n(m) = C_n^m p^m q^{n-m}$$
(8)

где
$$C_n^m = \frac{n!}{m!(n-m)!}$$
, $m=0 \div n$ — число сочетаний из n по m .

(8) – формула Бернулли (биномиальная формула).

Замечание:

$$P_n(0) + P_n(1) + \ldots + P_n(m) =$$

$$= \sum_{m=0}^{n} C_n^m p^m q^{n-m} = (p+q)^n = 1, \text{ r.e.}$$

сумма вероятностей всех исходов равна 1:

$$\sum_{\omega \in \Omega} P() = 1$$

Вывод: получаем вероятностное пространство (Ω , Σ , $P_n(m)$)