Oppgaver for kapittel 0

0.1.1

Gitt punktene A=(m,n) og B=(s,t), og vektorene $\vec{a}=[m,n]$ og $\vec{b}=[s,t]$. Vis at midtpunktet til linjestykket AB er gitt ved uttrykket

$$(0,0) + \frac{1}{2}(\vec{u} + \vec{v})$$

0.1.2

Gitt $\vec{v} = [ca, cb]$. Vis at

$$|\vec{v}| = c\sqrt{a^2 + b^2}$$

0.1.3

- a) Gitt en vektor \vec{v} . Vis at lengden til vektoren $\frac{\vec{v}}{|\vec{v}|}$ er lik 1.
- b) Bestem uttrykket for vektoren som er parallell med vektoren [3, 4], og som har lengde 10.

0.1.4

Bestem lengden til hver av vektorene.

$$\vec{a} = [3, 4]\vec{b} = [-1, 7]\vec{c} = [-8, 6]\vec{d} = [4, -3]$$

0.1.5

Undersøk om noen av vektorene fra oppgave 0.1.4 står vinkelrett på hverandre.

0.1.6

Undersøk om noen av vektorene fra oppgave 0.1.4 er parallelle.

1

0.1.7 (R1V22D1)

For vektorene \vec{a} og \vec{b} er $|\vec{a}|=2, \vec{b}=3$ og $\vec{a} \cdot \vec{b}=-3$.

Vi lar
$$\vec{u} = \vec{a} + \vec{b}$$
 og $\vec{v} = \vec{a} - 6\vec{b}$.

a) Bestem lengden til \vec{u} og \vec{v} .

b) Bestem vinkelen mellom \vec{u} og \vec{v} .

0.1.8

Gitt
$$\vec{u}=[a,b]$$
 og $\vec{v}=[c,d]$ Vis at hvis $\angle(\vec{u},\vec{v})=0^\circ,$ gir $(\ref{eq:condition})$ at $ad-bc=0$

0.1.9 (R1V23D1)

Gitt tre punkt A = (1,3), B = (4,0) og C = (9,4).

a) Bruk vektorregning til å avgjøre om $\angle CBA$ er mindre enn, lik eller større enn 90°.

Et punkt P ligger på linjen som går gjennom B og C.

a) Bruk vektorregning til å bestemme koordinatene til punktet P slik at $AB \perp AP$.

0.1.10 (R1H23D1)

I trekanten $\triangle ABC$ er A = (-3, -1), B = (2, -2) og C = (5, 2).

- a) Avgjør ved hjelp av vektorregning hvilken side i trekanten som er kortest.
- b) Avgjer ved hjelp av vektorrekning om noen av vinklane i trekanten er 90°.