UC San Diego

DSC 102 Systems for Scalable Analytics

Arun Kumar

Topic 5: Model Building Systems

Chapter 8.1 and 8.3 of MLSys Book

The Lifecycle of ML-based Analytics

Data acquisition

Data preparation

Feature Engineering
Training & Inference
Model Selection

Serving Monitoring

Building Stage of ML Lifecycle

- Perform model selection, i.e., convert prepared ML-ready data to prediction function(s) and/or other analytics outputs
- What makes model building challenging/time-consuming?
 - Heterogeneity of data sources/formats/types
 - Configuration complexity of ML models
 - Large scale of data
 - Long training runtimes of some models
 - Pareto optimization on criteria for application
 - Evolution of data-generating process/application

Building Stage of ML Lifecycle

- Perform model selection, i.e., convert prepared ML-ready data to prediction function(s) and/or other analytics outputs
- Data scientist / ML engineer must steer 3 key activities that invoke ML training and inference as sub-routines:
 - 1. **Feature Engineering (FE):** How to represent signals appropriately for domain of prediction function?
 - 2. Algorithm/Architecture Selection (AS): What class of prediction functions (incl. ANN architecture) to use?
 - 3. **Hyper-parameter Tuning (HT):** How to improve accuracy/etc. by configuring ML "knobs" better?

Model Selection Process

- Model selection is usually an iterative exploratory process with human making decisions on FE, AS, and/or HT
- Increasingly, automation of some or all parts possible: AutoML

Model Selection Process

- Decisions on FE, AS, HT guided by many constraints/metrics: prediction accuracy, data/feature types, interpretability, tool availability, scalability, runtimes, fairness, legal issues, etc.
- Decisions are typically application-specific and dataset-specific; recall Pareto surfaces and tradeoffs

Feature Engineering

Feature Engineering

- Converting prepared data into a feature vector representation for ML training and inference
 - Aka feature extraction, representation extraction, etc.
- Umbrella term for many tasks dep. on type of ML model trained:
 - 1. Recoding and value conversions
 - 2. Joins and/or aggregates
 - 3. Feature interactions
 - 4. Feature selection
 - 5. Dimensionality reduction
 - 6. Temporal feature extraction
 - 7. Textual feature extraction and embeddings
 - 8. Learned feature extraction in deep learning

1. Recoding and value conversions

- Common on relational/tabular data
- Typically needs some global column stats + code to reconvert each tuple (example's feature values)

UserID	State	Date	Upvotes	Comment	Label
143	CA	4/3/19	1539	"This restaurant is overrated"	-
337	NY	11/7/19	5020	"Not too bad!"	+
98	WI	2/8/20	402	"Pretty rad"	+

Example:

Decision trees can use categorical features directly but GLMs support only numeric features; need **one-hot encoded** 0/1 vector

Scaling global stats: "SELECT DISTINCT State"?

Reconversion: Tuple-level function to look up domain hash table

1. Recoding and value conversions

- Common on relational/tabular data
- Typically needs some global column stats + code to reconvert each tuple (example's feature values)

UserID	State	Date	Upvotes	Comment	Label
143	CA	4/3/19	1539	"This restaurant is overrated"	-
337	NY	11/7/19	5020	"Not too bad!"	+
98	WI	2/8/20	402	"Pretty rad"	+

Example:

GLMs and ANNs need **whitening** of numeric features; dense: subtract mean and divide by stdev; sparse: divide by max-min

Scaling global stats: How to scale mean/stdev/max/min?

Reconversion: Tuple-level function to modify number using stats

1. Recoding and value conversions

- Common on relational/tabular data
- Typically needs some global column stats + code to reconvert each tuple (example's feature values)

UserID	State	Date	Upvotes	Comment	Label
143	CA	4/3/19	1539	"This restaurant is overrated"	-
337	NY	11/7/19	5020	"Not too bad!"	+
98	WI	2/8/20	402	"Pretty rad"	+

Example:

Some models like Bayesian Networks or Markov Logic Networks benefit from (or even need) **binning/discretization** of numerics

Scaling global stats: How to scale histogram computations?

Reconversion: Tuple-level function to convert number to bin ID

2. Joins and Aggregates

- Common on relational/tabular data
- Most real-world relational datasets are multi-table; require key-foreign key joins, aggregation-and-key-key-joins, etc.

UserID	Age	Name
304	40	
23	25	
143	33	

UserID	State	Date	Upvotes	Comment	Label
143	CA				-
337	NY				+
143	CA				+

Example:

Join tables on UserID; concatenate user's info. as extra features! What kind of join is this? How to scale this computation?

2. Joins and Aggregates

- Common on relational/tabular data
- Most real-world relational datasets are multi-table; require key-foreign key joins, aggregation-and-key-key-joins, etc.

UserID	State	Date	Upvotes	Comment	Label
143	CA				-
337	NY				+
143	CA				+

Example:

Join table with itself on UserID to count #reviews and avg #upvotes for each user in a new temp. table and join that to get more features!

What kind of computation is this? How to scale it?

3. Feature Interactions

- Sometimes used on relational/tabular data, especially for high-bias models like GLMs
- Pairwise is common; ternary is not unheard of

F1	F2	F3	Label
3	2		-
4	20		+
5	10		+

F1	F2	F3	F11	F12	F13	F22	F23	F33	Label
3	2		9	6		4			-
4	20		16	80		400			+
5	10		25	50		100			+

- No global stats, just a tuple-level function
- NB: Popularity of this has reduced due to kernel SVMs; but so-called "factorization machines" still ned this

4. Feature Selection

- Sometimes used on relational/tabular data
- Basic Idea: Instead of using whole feature set, use a subset

UserID	State	Date	Upvotes	Comment	Label

State	Upvotes	Comment	Label

Upvotes	Comment	Label

- Formulated as a discrete optimization problem
 - NP-Hard in #features in general
 - Many heuristics exist in ML/data mining; typically rely on some information theoretic criteria
 - Typically scaled as "outer loops" over training/inference
- Some ML users also prefer human-in-the-loop approach

5. Dimensionality Reduction

- Often used on relational/structured/tabular data
- Basic Idea: Transforms features to a different latent space
- Examples: PCA, SVD, LDA, Matrix factorization

UserID	State	Date	Upvotes	Comment	Label

F1	F2	F3	Label
0.3	4.2	-29.2	

Q: How is this different from "feature selection"?

- Feat. sel. *preserves* semantics of each feature but dim. red. typically does not—combines features in "nonsensical" ways
- Scaling this is non-trivial! Similar to scaling individual ML training algorithms (later)

6. Temporal Feature Extraction

- Many relational/tabular data have time/date
- Per-example reconversion to extract numerics/categoricals
- Sometimes global stats needed to calibrate time
- Complex temporal features studied in time series mining

UserID	State	Date	Upvotes	Comment	Label
143	CA	4/3/19	1539	"This restaurant is overrated"	-
337	NY	11/7/19	5020	"Not too bad!"	+
98	WI	2/8/20	402	"Pretty rad"	+

Example:

Most classifiers cannot use Date directly; extract month (categorical), year (categorical?), day? (categorical), etc.

Reconversion: Tuple-level function to extract numbers/categories

7. Textual Feature Extraction

- Many relational/tabular data have text columns; in NLP, whole example is often just text
- Most classifiers cannot process text/strings directly
- Extracting numerics from text studied in text mining

	Comment	Label
	"This restaurant is sucks"	-
	"Good good!"	+
• • •	"Pretty rad"	+
	•••	

 sucks	good	 Label
 1	0	 -
 0	2	 +
 0	0	 +

Example:

Bag-of-words features: count number of times each word in a given *vocabulary* arises; need to know vocabulary first

Scaling global stats: How to get vocabulary?

Reconversion: Tuple-level function to count words; look up index

7. Textual Feature Extraction

Knowledge Base-based: Domain-specific knowledge bases like entity dictionaries (e.g., celebrity or chemical names) help extract domain-specific features

Embedding-based:

- Numeric vector for a text token; popular in NLP
- Offline training of function from string to numeric vector in self-supervised way on large text corpus (e.g., Wikipedia); embedding dimensionality is a hyper-parameter
- Pre-trained word embeddings (Word2Vec and GloVe) and sentence embeddings (Doc2Vec) available off-the-shelf; to scale, just use a tuple-level conversion function

8. Learned Feature Extraction in DL

- A big win of DL is no manual feature eng. on unstructured data
 - ♦ NB: DL is not common on struct./tabular data!
- DL is very versatile: almost any data type as input and/or output:
 - Convolutional NNs (CNNs) over image tensors
 - Recurrent NNs (RNNs) and Transformers over text
 - Graph NNs (GNNs) over graph-structured data
- Neural architecture specifies how to extract and transform features internally with weights that are learned
- Software 2.0: Buzzword for such "learned feature extraction" programs vs old hand-crafted feature engineering

Hyper-Parameter Tuning

Hyper-Parameter Tuning

- Hyper-parameters: Knobs for an ML model or training algorithm to control bias-variance tradeoff in a dataset-specific manner to make learning effective
- Examples:
 - GLMs: L1 or L2 regularizer to constrain weights
 - All gradient methods: learning rate
 - Mini-batch SGD: batch size
- HT is an "outer loop" around training/inference
- Most common approach: grid search; pick set of values for each hyperparameter and take cartesian product
- Also common: random search to subsample from grid
- Complex AutoML heuristics exist too for HT, e.g., HyperOpt

Algorithm Selection

- Not much to say; ML user typically picks models/algorithms ab initio in "classical" ML (non-DL)
- Best practice: first train simple models (log. reg.) as baselines; then try complex models (XGBoost)
- Ensembles: Build diverse models and aggregate predictions

Architecture Selection in DL

- More critical in DL; neural arch. is inductive bias in classical ML parlance; controls feature learning and bias-variance tradeoff
- Some applications: Many off-the-shelf pre-trained DL models to do "transfer learning," e.g., <u>HuggingFace Models</u>
- Other applications: Swap pain of hand-crafted feature eng. for pain of neural arch. eng.!:)

24

Automated Model Selection / AutoML

Q: Can we automate the whole model selection process?

- It depends. HT and most of FE already automated mostly in practice; (neural) AS is often application-dictated
- AutoML tools/systems now aim to reduce data scientist's work; or even replace them?!;)

- Pros: Ease of use; lower human cost; easier to audit; improves ML accessibility
- Cons: Higher resource cost; less user control; may waste domain knowledge
- Pareto-optima; hybrids possible

But: The Data Sourcing stage is still very hard to automate!

Scalable ML Training and Inference

Major ML Model Families/Types

Generalized Linear Models (GLMs); from statistics

Bayesian Networks; inspired by causal reasoning

Decision Tree-based: CART, Random Forest, Gradient-Boosted Trees (GBT), etc.; inspired by symbolic logic

Support Vector Machines (SVMs); inspired by psychology

Artificial Neural Networks (ANNs): Multi-Layer Perceptrons (MLPs), Convolutional NNs (CNNs), Recurrent NNs (RNNs), Transformers, etc.; inspired by brain neuroscience

Unsupervised: Clustering (e.g., K-Means), Matrix Factorization, Latent Dirichlet Allocation (LDA), etc.

ML Models in Kaggle 2021 Survey

Scalable ML Training Systems

- Scaling ML training is involved and model type-dependent
- Orthogonal Dimensions of Categorization:
 - 1. **Scalability:** In-memory libraries vs Scalable ML system (works on larger-than-memory datasets)
 - 2. **Target Workloads:** General ML library vs Decision treeoriented vs Deep learning, etc.
 - 3. **Implementation Reuse:** Layered on top of scalable data system vs Custom from-scratch framework

Ad: Take CSE 234 in Fall'22 for more on scalable ML systems 29

Major Existing ML Systems

General ML libraries:

In-memory:

Disk-based files:

Layered on RDBMS/Spark:

Cloud-native:

Amazon SageMaker

"AutoML" platforms:

Decision tree-oriented:

Microsoft LightGBM **Deep learning-oriented:**

Scalable ML Inference

A trained/learned ML model is just a prediction function:

$$f:\mathcal{D}_X\to\mathcal{D}_Y$$

Q: Given large dataset of examples, how to scale inference?

- Assumption 1: An example fits entirely in DRAM
- Assumption 2: f fits entirely in DRAM
- If both hold, trivial access pattern: single filescan, apply per-tuple function f, write output. How to do this with MapReduce?
- If either fails, access pattern becomes more complex and dependent on breaking up internals of f to stage access to data for partial computations

The Lifecycle of ML-based Analytics

Ad: Take CSE 234 in Fall'22 for more on Source and Deploy stages

Data preparation

Monitoring

Week	Topic and Papers	Slides, Videos; Review Forms, Deadlines
0	Introduction, ML Lifecycle Overview, and Basics	Slides: PDF PPTX Video 1; Video 2; Video 3
	Readings: SIGMOD tutorial 1, SIGMOD tutorial 2, Berkeley report	
1-2	Topic 1: Classical ML Training at Scale	Slides: PDF PPTX Video 1; Video 2
	For review: Parameter Server	Review 1 Form; due 10/6
	For review: XGBoost	Review 2 Form; due 10/13
	More readings: MADlib, MLlib, Mahout, GraphLab, AWS Sagemaker	-
1	No class on 10/8	-
3	Topic 2: Deep Learning Systems	Slides: PDF PPTX Video 1; Video 2; Video 3
	For review: TensorFlow (Talk slides)	Review 3 Form; due 10/20
	More readings: Horovod, Distributed PyTorch, TVM	-
4-5	Topic 3: Feature Engineering and Model Selection Systems	Slides: PDF PPTX Video 1 Video 2
	For review: Cerebro	Review 4 Form; due 10/27
	More readings: MSMS, Hyperband, ASHA, Vizier, Columbus, Vista	-
5	Review Session 1 on 11/3 (tentative)	Slides: PDF
5	Exam 1 on 11/5	-
6	Topic 4: Data Sourcing and Organization for ML	Slides: PDF PPTX Video 1; Video 2; Video 3
	For review: TFDV	Review 5 Form; due 11/3
	More readings: Deequ, Snorkel, Ground, SortingHat, Hamlet	-
7	Guest Lecture by Matei Zaharia (Databricks and Stanford) on MLFlow on 11/17	Video; Slides PDF
7-9	Topic 5: ML Deployment	Slides: PDF PPTX Video 1; Video 2
	For review: Clipper	Review 6 Form; due 11/12
	More readings: TF Serving, Uber PyML, Hummingbird, Federated ML	-
8	Guest Lecture by Angela Jiang (Determined AI) on Determined DL Platform on 11/24	Video; Slides PDF
8	Thanksgiving Holiday on 11/26	-
9	Guest Lecture by Joshua Patterson (NVIDIA) on RAPIDS on 12/1	Video; Slides PDF
9-10	Topic 6: ML Platforms and Feature Stores	Slides: PDF PPTX Video1; Video 2
	For review: ML systems technical debt	Review 7 Form; due 11/17
	For review: TensorFlow Extended	Review 8 Form; due 12/3
	More readings: MLFlow, Michelangelo	-

Ad: CSE 234/291 from Fall'20 with lecture videos on Youtube

Week	Topic	Textbook Chapters, Additional References	Slides
1	Introduction; Recap of Relational Algebra and SQL	Ch 1, 4, 5.1-5.6	PPTX PDF
1-2	Data Storage; Buffer Management; File Organization	Ch 8, except 8.5.4, Ch 9, except 9.2	PPTX PDF
2	Talk by the TA on Project 1 on TBD	_	
3-4	Indexing (B+ Tree; Hash Index)	Ch 10, Ch 11, sections 11.1-11.2 only	PPTX PDF
4	Industry Guest Lecture on Tuesday, 4/20 by Andrew Lamb (Apache Arrow and InfluxDB)	_	Video
4-5	External Sorting	Ch 13	PPTX PDF
5	Talk by the TA on Project 2 on TBD	_	
5	Review discussion on TBD	-	
6	Midterm Exam on Tuesday, 5/4	-	_
6-7	Relational Operator Implementations; Query Processing	Ch 12, sections 12.1-12.3, Ch 14	PPTX PDF
7-8	Query Optimization	Ch 12, sections 12.4 - 12.6	PPTX PDF
9	ML for RDBMSs	TBD	PPTX PDF
9	Industry Guest Lecture on Thursday, 5/27 by Andy Pavlo (OtterTune and CMU)	_	Video
10	Parallel DBMSs and Dataflow Systems	Ch 22, till 22.5	PPTX PDF
10	Review session on Thursday, 6/3	-	
11	Final Exam on Tuesday, 6/8	-	_
N/A	Optional: Key-value stores, Graph DBMSs, ML systems	Not in syllabus	PPTX PDF
/.			

Ad: Take CSE 132C in Spring'22 or Fall'22 for more on RDBMSs, parallel data systems, and more advanced DBMS topics

Optional: Transaction Management

N/A

PPTX PDF

Not in syllabus

DSC 102 will get you thinking about the **fundamentals of scalable analytics systems**

- 1. "Systems": What resources does a computer have? How to store and efficiently compute over large data? What is cloud?
- 2. "Scalability": How to scale and parallelize dataintensive computations?
- 3. For "Analytics":
 - 3.1. Source: Data acquisition & preparation for ML
 - 3.2. Build: Model selection & deep learning systems
 - 3.3. **Deploying** ML models
- 4. Hands-on experience with scalable analytics tools

Week	Topic	Textbook Chapters, Additional References	Slides
1	Introduction and Administrivia	-	PDF PPTX
1-2	Basics of Machine Resources: Computer Organization	Ch. 1, 2.1-2.3, 2.12, 4.1, and 5.1-5.5 of CompOrg Book	PDF PPTX
	No class on Mon, Jan 17 (MLK Day holiday)		
3-4	Basics of Machine Resources: Operating Systems	Ch. 2, 4.1-4.2, 6, 7, 13, 14.1, 18.1, 21, 22, 26, 36, 37, 39, and 40.1-40.2 of Comet Book	PDF PPTX
5	Basics of Cloud Computing	-	PDF PPTX
5-6	Parallel and Scalable Data Processing: Parallelism Basics	Ch. 9.4, 12.2, 14.1.1, 14.6, 22.1-22.3, 22.4.1, 22.8 of Cow Book; Ch. 5, 6.1, 6.3, 6.4 of MLSys Book	PDF PPTX
6	Review for Midterm Exam on Tue, Feb 8, 2-3pm PT	-	-
6	Midterm Exam on Wed, Feb 9	-	-
7	Parallel and Scalable Data Processing: Scalable Data Access	Ch. 9.4, 12.2, 14.1.1, 14.6, 22.1-22.3, 22.4.1, 22.8 of Cow Book; Ch. 5, 6.1, 6.3, 6.4 of MLSys Book	PDF PPTX
	No class on Mon, Feb 21 (President's Day holiday)		
7-8	Parallel and Scalable Data Processing: Data Parallelism	Ch. 9.4, 12.2, 14.1.1, 14.6, 22.1-22.3, 22.4.1, 22.8 of Cow Book; Ch. 5, 6.1, 6.3, 6.4 of MLSys Book	PDF PPTX
8	Industry Guest Lecture on Wed, Feb 23 by Lavanya Shukla (Weights & Biases)	-	
9	Dataflow Systems	Ch. 2.2 of MLSys Book	PDF PPTX
10	ML Model Building Systems	Ch. 8-8.4 of MLSys Book	PDF PPTX
10	Industry Guest Lecture on Wed, Mar 9 by Sarah Catanzaro (Amplify Partners)	-	
10	Review for Final Exam on Fri, Mar 11, 4-5pm PT	-	-
11	Final Exam on <mark>Fri, Mar 18</mark>	-	-

Thank you for taking DSC 102.

Please make sure to submit your CAPE if you have not done so already.

All the best for final exams week!