34.2 4-manifold invariants from 5-brones Choosing 6d-spacetime to be M4x I gives: 50(6) = - SO(4) = × SO(3) = 54(2) , 34(2), R-symmetry group: |SO(5) R scalars 5 Weyl form. 4 We have following branching rules: SO(6) = -> SU(2)e x SU(2), x U(1)Z $4_+ \longrightarrow (2,1)^{+1} \oplus (1,2)^{-1}$ $4 \longrightarrow (2,1)^{-1} \oplus (1,2)^{+1}$ $6 \longrightarrow (2,2)^{\circ} \oplus (1,1)^{+2} \oplus (1,1)^{-2}$ $SO(5)_{R} \longrightarrow SU(2)_{R} \times U(1)_{t}$ $5 \longrightarrow 3^{\circ} \oplus 1^{t}$ $4 \longrightarrow 2^{t} \oplus 2^{-1}$

In order to topologically twist the theory, embed $M_4 \times \Sigma$ into

Decompose the R-sym. as

 $SO(5)_R \longrightarrow SO(3)_R \times SO(2)_q$

then the fermions of 6d (2,0) trf. as:

 $SO(6)_{E} \times SO(5)_{R} \longrightarrow SU(2)_{e} \times SU(2)_{r} \times SU(3)_{R} \times U(1)_{r} \times U(1)_{r}$ fermions (4, 4) $(2,1,2)^{(1,\pm 1)} \oplus (1,2,2)^{(-1,\pm 1)}$

Note when $M_4 = R \times M_3$ or $M_4 = SI \times M_3$, the votation symmetry on M_3 is a diagonal subgroup $SU(2)_M$ $CSU(2)_e \times SU(2)_r$

-> replace SU(2), with diagonal subgroup SU(2), c SU(2), x SU(2),

- new transformation rules:

 $SO(G)_{E} \times SO(5)_{R} \longrightarrow SU(2)_{e} \times SU(2)_{f} \times U(1)_{\xi} \times U(1)_{f}$ fermions: $(4, 4) \longrightarrow (1, 2)^{(1/2 1)} \oplus (1, 3)_{\oplus}^{(1, 1)^{(1/2 1)}}$

-, two preserved supercharges are chiral -, 2d N=(0,12) susy along 5 If My= Rx M3, then before the twist we have 50(6) = × 50(5) = - SU(2) × SU(2) = U(1) × U(1) $(4,4) \longrightarrow (2,2)^{(1,1)}$ Instead of twisting along My (or Mz) we can start with a partial top. twist - U(1) z is replaced with diag subgroup U(1) C U(1) x U(1) SO(G) = *SO(5) = SU(D) = SU(D), *SU(D) = *U(I) = *U(I) = *U(I) = *V(I) $(4, 4) \longrightarrow (2,1,2)^{(2,1)} \oplus (2,1,2)^{(0,-1)} \underbrace{(1,2,2)^{(0,1)}}_{\oplus}$ € (1,2,2)(-2,-1) ___ u(1) { - singlets transform as supercharges of 4d' N=2 th on My with R-sym SU(2) RxU(1),

Replacing SU(2), with the diagonal subgroup SU(2), C SU(2), x SU(2), we get SO(6) = x SO(5) = > SU(2), xSU(2), xU(1) xU(1) xU(1) (4,4) -> (2,2)(0,-1) \oplus $(1,3)^{(0,1)}$ \oplus $(1,1)^{(0,1)}$ \oplus $(1,3)^{(-2,-1)}$ @ (1,1)(-2,1-1) only one supercharge is singlet under symmetries of My and Z, denote by 2 Denoting generators of Ull) and Ull), by Pand Rt, respectively, we can read off 2=0, [R, 2]= Q, [P, 2]-0 When My = Rx M3 or My = S'x M3, we have two scalar supercharges; the second one arises from the decomposition 2002 = 3001 with respect to SU(2) m or, equivalently, from twist along I

VW partition function as a CS wave-function Tu(1) [M3] for plumbed M3 -> quiver CS-th Afternatively, can think of M4 with DM4 = M3 and intersection form on M4 given by Q. Consider quantization of abelian CS-th on T2 x R - There are | Coker Q = 1 H1 States on the torus and they correspond to basic Wilson lines i vertices inserted in the solid torus bounded by T2 One can also specify a wave-function of such states

—, let 1×> ∈ HT[M3] (T2) be

state with given holonomies and |h> E H+ [M] (T2) a state created by a Wilson line.

where $q=e^{2\pi i T}$ and (\cdot,\cdot) is bilinear form an Λ given by Q and extended to $\Lambda^* \subset Q \otimes_Z \Lambda$.

The element $v_1 \in \Lambda^*$ has to be chosen such that

 $\omega_{\lambda}(\lambda) = (\lambda, \lambda) \mod 2, \forall \lambda \in \Lambda$

Tixes [w] E 1*/21*

(requirement arises from quantization of abelian CS-th)

The overall factor $q^{-b_2/8}$ is chosen so that the wave function has nice properties under S- and T-transformations

In particular, the T-matrix is given by Tun' = Sun' e- mi[(h+v2/2,4+ w2/6)-b/4] and is an invariant of Mz. Up to an overall factor, (x) is equal to the partition function of abelian VW theory on My with a boundary condition labeled by h & H, (M3): Zvw [M4] (q,x) ~ > q80 2 (F12) F1 F (F/20) ~ 4(x) [F/27]E/1+4+W2/2

On the 4-manifold side, the fugacities x; are chemical potentials for the first Chern class of the gauge connection on My.

h labels choice of flat connection P on Ms

 $\rightarrow Z_{VW}[M_4](q_i \times) \in \mathcal{H}_{VW}(M_3)$ =) (T) =) ((T2) so that Zvw[M4](q;x) = <h/> = <h/> Zvw[M4](q;x) The wave-functions have the following q- expansions: $V_h(x) = 9^{-4(h)/2} + \cdots$ conformal dimensions of primaries of boundary CFT, chiral U(1) b2 W2W-th. $\Delta(h) = \max \left[(\lambda, \lambda)_Q + b_2/4 \right]$ $\lambda \in \Lambda + h + w_2/2$