Analysis: Infinity Area

The idea is to use brute force. You can simulate the multiplication and division operations and stop when ${\bf R}$ reaches zero. As it is integer division, it is guaranteed that after a finite number of steps, ${\bf R}$ will eventually become zero. At first it might look like that it will exceed the TL, but the $2 \times {\bf A} \le {\bf B}$ condition ensures that the value of ${\bf R}$ will be halved each time a division by ${\bf B}$ occurs. The area of a circle with radius ${\bf R}$ is $\pi {\bf R}^2$ which can be calculated in O(1). So, if the value of ${\bf R}$ is halved with each division, it leads to a final time complexity of $O(\log({\bf R}))$.

A pseudocode would look something like this:

```
ans = R*R
while R > 0:
    R *= A
    ans += R*R
    R /= B
    ans += R*R
return ans*pi
```