UNIVERSITE MOULAY ISMAIL ECOLE NATIONALE SUPERIEURE D'ARTS ET METIERS-MEKNES

Concours d'entrée en Première année de l'ENSAM de Meknès Filières : Sciences Expérimentales, et Techniques

Epreuve de Physique Durée : 2h 30

Meknès, le 26 Juillet 2012

- L'épreuve contient 6 pages

- Répondre dans la feuille : « Fiche des réponses » à rendre avec la feuille d'examen

- Toute application numérique manquant l'unité ne sera pas comptée

Physique I (Mécanique): Les parties I, II, et V sont indépendantes, les parties III et IV sont enchainées.

Partie I: Une motocyclette roule sur un tronçon circulaire (virage) d'une route de 750 m de rayon. Elle roule avec une vitesse de 100 km/h. A un moment donné, le motocycliste ralentit avec une accélération constante. On désigne par v, γ_i , γ_n et γ la vitesse instantanée, l'accélération tangentielle, l'accélération normale et le module de l'accélération, respectivement. Sachant qu'au bout de 8s, la vitesse de la motocyclette est réduite à 75 km/h, calculer au début de freinage:

- 1. L'accélération tangentielle et l'accélération normale γ_i et γ_n de la motocyclette
- 2. Le module γ de l'accélération et l'angle α que fait la composante tangentielle γ , avec le vecteur accélération $\vec{\gamma}$.
- 3. Tracer sur le schéma, en respectant le sens de mouvement (fig.1) les différentes accélérations γ_{I} , γ_{n} , $\vec{\gamma}$ et α .

Partie II: La motocyclette a parcouru sur une route droite, une distance d, en 4 phases telles que :

- Phase 1 ($0 \le t \le 6 s$): elle part avec une vitesse initiale nulle, mais avec une accélération constante $(\gamma=1\text{m/s}^2)$ durant un temps de 6s
- Phase 2 ($6s \le t \le t_2$): à partir de t_1 =6s, elle a une accélération également constante mais de valeur y=1,5m/s², durant un temps Δt_2 inconnu ; à la fin de cette deuxième phase, elle atteigne la vitesse v=12 m/s
- Phase 3 ($t_2 \le t \le t_3$): elle conserve cette vitesse (v=12m/s) pendant un temps Δt_3 inconnu
- Phase 4 (t₃ ≤ t ≤ 40 s): elle est en freinage, sa décélération est constante, et elle s'arrête complètement en 6s.

Le temps total de la circulation du trajet est de T=40s. Les origines de la position x(t) et le temps t sont prises égales à zéro.

- 4. Calculer la vitesse de la motocyclette en $t=t_1=6s$ et calculer les temps t_2 et t_3 .
- 5. Calculer sa position x(t) pour $t=t_1$, $t=t_2$ et $t=t_3$. Calculer ensuite la distance totale parcourue d.

Partie III: Dans cette partie, on considère que la motocyclette soit de masse m (y compris la masse du motocycliste), qui roule sur un plan horizontal ou incliné avec une vitesse v (parallèle au chemin de déplacement). La motocyclette se met en mouvement grâce à son moteur qui développe une force de traction F, On note par $g(m/s^2)$ l'accélération de la pesanteur. Lors de son mouvement, la motocyclette est soumise à deux forces qui s'opposent au mouvement:

- Force F_r (appelée résistance au roulement), donnée par la formule : $F_r = f_r mg$, où f_r est un coefficient supposé constant;
- Force F_a , résistance de l'air (appelée force aérodynamique), donnée par l'expression: $F_a = \frac{1}{2} \rho A C_d v^2$, où ρ , A et C_d sont des constantes. ρ : masse volumique de l'air, A: surface frontale de la motocyclette et C_d : coefficient constant. La vitesse v est exprimée en m/s et F_a (N).

Les directions de F_r et F_a sont parallèles à la direction du mouvement. Pour les applications numériques, on prendra: g=10 m/s², m=200 kg, ρ = 1.25 Kg/m³, A=0.6 m², Cd=0.75. f_r = 0.007.

6. Pour une accélération constante γ, sur plan horizontal, exprimer la force de traction F de la motocyclette que son moteur doit fournir en fonction de la vitesse v, l'accélération y et des données. Après A.N, donner F en fonction de v et y, uniquement.

7. Dans cette question, la motocyclette grimpe une pente, qui fait un angle α =5° par rapport à l'horizontale, avec la loi de vitesse, décrite dans la partie précédente (Partie II). Faire l'A.N. et donner la force F en fonction de v seulement, pour les phases 1 et 4. Pour quelle vitesse v, F sera nulle (phase 2).

Partie IV: Dans l'objectif de déterminer les relations entre les grandeurs relatives au moteur de la motocyclette à celles relatives à la roue, nous considérons le montage d'essai de la figure 2 : le moteur entraîne l'une des deux roues (cette roue est appelée par la suite roue motrice) à travers une courroie inextensible (assimilée à un brin) et sans glissement (dans ce montage, les axes de rotation sont supposés fixes). La roue motrice est assimilée à un plateau composé de deux cylindres homogènes coaxiaux en aluminium de rayons respectifs R et R₁, ayant même hauteur h, la masse volumique de l'aluminium est ρ_a= 2690 kg/m³. On donne:

- Le moment d'inertie du moteur : négligée
- Rayon de l'arbre moteur où passe la courroie : r =5,75 cm
- Grand rayon de la roue motrice, R=21cm, hauteur h (h=0.2 cm)
- Rayon au niveau de la roue (motrice), où passe la courroie, $R_1 = 11,5 \text{ cm}$
- 8. Exprimer le moment d'inertie de la roue motrice, I_n, en fonction de ρ_a , h, R et R₁. Calculer I, (kg.m²). Rappel : le moment d'inertie d'un cylindre de rayon R par rapport à son axe est donné par $1=mR^2/2$,

- angulaires $\dot{\omega}_m$ et $\dot{\omega}_R$. On pose par la suite : $G = \omega_R / \omega_m$. 10. Le couple Te développé par le moteur est transmis à la roue motrice à travers la courroie, on désigne sa valeur par T_{R_0} appliqué sur la roue. On admet la relation entre ces deux couples : $T_e = G.T_R$. Soit F_m la composante tangentielle qui matérialise l'action appliquée par le sol sur la roue motrice. Par application
- du principe de la dynamique à la roue, exprimer F_m en fonction de R, G, I_D , $\dot{\omega}_R$ et T_e . 11. Pour un copule $T_c=k\omega_m$ (k est une constante), et après A.N., exprimer F_m en fonction de ω_R , $\dot{\omega}_R$ et k.
- 12. Pour une force F_m nulle, donner l'équation différentielle du mouvement de la roue sous la forme $a\dot{\omega}_R + b\omega_R = 0$, où on précise les constantes a et b en fonction de k, R, G, et I_P . Après A.N., donner ω_R en fonction du temps t (on prendra k=20).

Partie V: On considère un système composé d'un petit cylindre assimilé à un point matériel de masse m=10 kg et d'un ressort de raideur k=500 N/m et de longueur initiale l_0 = 100 mm, sa longueur dans la position horizontale (1) est l=200 mm. La masse m glisse sans frottement le long d'une tige verticale, tel qu'il est illustré sur la figure 3. La masse est lâchée du repos à partir de la position (1), elle atteint la position (2), située à la distance h avec une vitesse v_2 (2). On choisit la position (1) comme référence pour l'énergie potentielle due à la pesanteur. On note E_p : énergie potentielle, E_c : énergie cinétique et E_m : énergie mécanique, relatives au système.

- 13. Calculer Ep1 et Em1 du système (masse-ressort) dans la position (1).
- 14. Exprimer E_{p2} , E_{c2} en fonction de m, g, l, l_0 , h, k et v_2 , du système dans la position (2).
- 15. Exprimer la vitesse v_2 de la masse lors de son passage vers le bas devant la position h, en fonction de m, g, h, l, lo et k. Calculer v2 pour h=150 mm.

Moteur

Fig.2

Roue

Physique II (Electricité):

Problème.

Sur la figure (Fig.1) est schématisé un circuit électrique comportant un générateur de tension continue de force électromotrice E = 10 V, un condensateur de capacité C, une bobine d'inductance L et de résistance négligeable, trois conducteurs ohmiques de résistances R₁, R₂ et R₃, et quatre interrupteurs K1, K2, K3 et K4.

On utilise une centrale d'acquisition qui permet de visualiser les tensions uc et ul et le courant il.

Toutes les expériences sont indépendantes, et les valeurs de R1, R2, R3 L et C peuvent changer d'une expérience à l'autre.

Expérience A.

Dans cette expérience, les interrupteurs K_1 et K_2 sont fermés, K_3 et K_4 sont ouverts.

- 1. Donner l'équation différentielle vérifiée par la tension u_c en fonction de E, R_1 et C.
- 2. La résistance R_1 = 20 Ω , et la constante du temps du circuit vaut 0,4 ms. Déduire la valeur de la capacité C.
- 3. Une fois le condensateur totalement chargé, quelle sera l'intensité du courant ic qui le parcourt?
- 4. Si l'on remplace R_1 par deux conducteurs ohmiques montés en parallèle de résistances $R=10~\Omega$ chacun. Quelle sera la valeur de la constante du temps du nouveau circuit ?

Expérience B.

Dans cette expérience, les interrupteurs K1 et K3 sont fermés, K2 et K4 sont ouverts.

Le courant i_L est reporté sur la figure (Fig.2).

- 5. Quelle est la valeur numérique de la constante du temps du dipôle RL?
- 6. En déterminant la valeur finale du courant lu donner la valeur de la résistance R2.
- 7. Déduire la valeur de l'inductance L.

Expérience C.

Dans cette expérience, les interrupteurs K_2 et K_4 sont fermés, K_1 et K_3 sont ouverts. A l'instant t=0, le condensateur, supposé de capacité $C = 50 \,\mu\text{F}$, est complètement chargé. L'évolution de la tension u_c et reportée sur la figure (Fig.3). La résistance $R_1 = 20 \Omega$.

- 8. Quelle est la valeur de la sensibilité verticale (l'échelle en V/div)?
- 9. En déterminant la constante du temps du circuit, déduire la valeur de la résistance R3.

Expérience D.

On court-circuite les conducteurs ohmiques R_1 et R_2 (on peut supposer $R_1 = R_2 = 0$) et on remplace la bobine par une autre d'inductance L' et de résistance r.

Le condensateur est complètement chargé, et est supposé de capacité C = 50 μF .

A l'instant t=0, les interrupteurs K_2 et K_3 sont fermés, K_1 et K_4 sont ouverts.

L'évolution de la tension uc et reportée sur la figure (Fig.4).

 En supposant que la pseudo-période est à peu prés égale à la période propre d'oscillation du circuit LC, calculer la valeur de l'inductance L'.

Fig.4

Exercice.

Répondre par Vrai ou Faux

1.	La constante de temps d'un dipôle RL est inversement proportionnelle à la valeur de la résistance.
2.	La constante du temps d'un circuit RL est égale à la durée nécessaire pour que le courant y circulant se stabilise.
3,	La période propre d'oscillation d'un circuit LC augmente lorsque la valeur de la capacité C augmente.
4.	On peut considérer que la résistance interne d'une bobine L n'a aucun effet sur la période d'oscillation d'un circuit LC.
5.	La capacité équivalente de deux condensateurs en série est toujours inférieure à la valeur de la capacité la plus faible.
6.	Dans un circuit LC parfait la tension aux bornes du condensateur tend vers zéro en régime permanent.
7.	L'intensité du courant dans un circuit RC en début de charge est non nulle même si le condensateur est initialement déchargé.
8.	La résistance équivalente de deux conducteurs ohmiques en série est toujours supérieure à la valeur de la résistance la plus grande.
9.	On ne peut pas utiliser un oscilloscope pour mesurer l'intensité du courant dans un circuit RC.
10.	L'impédance d'un condensateur en régime continu est très faible.
11.	La valeur efficace d'une tension sinusoïdale peut être négative.
12.	Quand la fréquence du courant diminue, l'impédance d'une bobine augmente.
13.	Si le courant traversant une bobine est constant, alors forcément la tension à ses bornes est nulle.
14.	La tension aux bornes d'un condensateur est en avance de phase par rapport au courant le traversant.
15.	La capacité équivalente de deux condensateurs en parallèle est toujours de valeur supérieure à la valeur de la capacité la plus grande.
16.	Quand la fréquence du courant diminue, l'impédance du condensateur augmente.
17.	En régime continue, un condensateur est équivalent à un court-circuit.
18.	Quand un condensateur est totalement chargé, le courant qui le traverse est nul.
19.	La tension aux bornes du condensateur, dans un circuit RC, est toujours apériodique.
20.	La tension aux bornes du condensateur, dans un circuit RLC en régime libre, est toujours pseudopériodique.

Cette feuille ne doit porter **aucun signe indicatif ni signature** Filières Sciences Expérimentales et Techniques

	FICHE DES F	REPONS	SES (Ph	ysiqu	ie I) :	Question	s 1 à 1	15	Note
1.	Accélération tangentie Accélération normale :			************	5	1		Sens du mouvement	
2.	Module de l'accélératio Angle $\alpha(\vec{\gamma}, \vec{\gamma}_i)$ (°) = L		1,33 °	m 15		Rayo	7 =	Fig.1	
3.	(Schéma, fig.1)			HANNING OF \$11.00 SHOW				And the state of t	
4. \	Vitesse (t=t1): $v_1 = 6$	m/S	t ₂ = .	10 s		t3 = &&	S		
5. P	ositions: $x(t=t_1)=1$	m	x(t=t ₂):	= 15	3 m	x(t=t ₃)=		d= 453m	
6 . F	Force de traction : $F=rac{1}{2}$	1 PA	CdV2.	- 6x	ng + r	mg			
A.N.	$F(v,\gamma) = 0.28 \vee^2 +$	2008	- 14	_			Marca - Joseph J.		
7. PI	hase 1: $F = 0.28 \text{ V}^2$	560,	2	Phase	4:F	= 0,28 V	² + 16	0,3	
ν =	23,92 m/s						***************************************		
8. M	oment d'inertie $I_r = 2$	1 PT	R²h(R2+ F	₹1)	A.N. <i>I</i> ,	= 6,4	14 × 10 -6 Kg·m²	
9. a	$\rho_R = \frac{V}{R_1} \omega_m$	Justificati	ion: V _R	= V _m =	=> R11	WR=VWm UR= VRW	à		
10 . I	Force: $F_m = \frac{I_R}{R_A} \dot{\omega}_R +$								
11.	Fm = IRWR + WRR	1			***************************************				
12. (Constante $a = I_R$	Consta	nte b =			$\omega_R(t) = 0$	e-8	E	
13. E	Inergies (1): $E_{pl} = Q_{1}$	e 2			$E_{m1} =$: 2,57	***************************************		
14. E	hergies (2): $E_{p2} = -\gamma$	ng.h							
E_{c2} =	$=\frac{1}{2}m V_{x}^{2}$								
15. V	itesse: $v_2 = \sqrt{2gh} +$	K (e-t.)	27			A.N. 1	12 = 21031 M/S	

Physique II Cette feuille est un document à rendre et ne doit porter aucun signe indicatif ou signature du candidat

		Chaque question est notée sur 2 points			
	Problème	Réponse	Note		
1,	L'équation différentielle vérifiée par la tension u_c en fonction de E, R_1 et C.	R1C due + Uc = E			
2.	La valeur de la capacité C.	$c = 2.40^{-5} F = 20 \mu F$			
3.	L'intensité du courant i _s qui parcourt le condensateur.	$i_c = O$			
4.	La valeur de la constante du temps du nouveau circuit.	τ = 100 ms			
5.	La valeur numérique de la constante du temps du dipôle RL.	T = 20 MS			
6.	La valeur de la résistance R ₂ .	$R_2 = 25 \mathcal{N}$			
7.	La valeur de l'inductance L.	L= 0,5 H			
8,	La sensibilité verticale (l'échelle en V/div)?	s= 2 V/div			
9.	La valeur de la résistance R₃.	$R_3 = 80 \Omega$			
10.	La valeur de l'inductance L'.	L' = 1,5mH			

Exercice (bonne réponse +1, mauvaise réponse -0.5)

Question	Réponse (Vrai/Faux)	Note
1.	Vrai	
2.	Four	
3.	Vy cu	
4.	Vrai	
5.	Vrai	

Question	Réponse (Vrai/Faux)	Note
6.	Follix	
7.	Vrai	
8.	Vrai	
9.	Vrai	
10.	Foux	

Question	Réponse (Vrai/Faux)	Note
11.	Faux	
12.	Faux	
13.	Faux	
14.	Faux	
15.	Faux	

Question	Réponse (Vrai/Faux)	Note
16.	Vrau	
17.	Vrai	
18.	Vrai	
19.	Vrai	
20.	Faux	

6/6

Note

/40