Identifying CKY5369 <u>yeast cells with</u> downstream shifts in TSS initiation to determine if there is a mutation in SSL2

Cindy Lu, Christina Macko, Madalyn Marinelli, Hannah Schmidt

University of Pittsburgh Department of Biological Sciences

DNA Regulation and Diseases Foundations of Biology 2 Laboratory Course

Extreme downstream shifts in transcription initiation can be caused by a mutation in the XPB/SSL2 subunit of TFIIH

- By studying mutations in the Ssl2 subunit of TFIIH, its role in transcription start site selection can be understood and applied to XPB mutations
 - xeroderma pigmentosum and trichothiodystrophy are diseases of XPB mutation
- TFIIH is a transcription factor with helicase and translocase activity
 - XPB is a subunit, homolog is Ssl2 in yeast
- Model organism: Saccharomyces cerevisiae (yeast) cells
 - Easily reproduced, easily modified auxotroph, small in size & contain similar DNA to humans
- Yeast mutant candidates will be grown on various controlled experiments with differences in media type & temperature → then sequenced to find similarities in mutations
 - Mutants will be selected under conditions that no growth is expected
 - Results will reveal reporter gene activation & effects of transcription termination

Experimental flowchart

Mutant CKY5369 alleles were selected from colonies grown on SC-H-K media

IMD2Δ::HIS3 Lys2-128δ from LYS2 gene

CKY5369 grown on SC-H-K for 7 days, incubated at 30°C

- In high GTP conditions, wild type cells do not grow on media lacking HIS3, the reporter HIS3 is not expressed
 - IMD2 gene was replaced by the HIS3 gene to identify growth on media lacking histidine
- Modifying the IMD2 gene allows us to distinguish down stream shifts in TSS
 - Wild type IMD2 gene would not make LYS2 if there were a downstream shift
- Mutants will make both HIS3 and LYS2 to be able to grow on media lacking both Histidine and Lysine

6 Chosen Candidates showing a phenotype pattern of Ssl2 with mutations with downstream shifts in TSS to continue analysis

- Favorable phenotypes: lack of growth on plates with galactose as well as growth on plates with raffinose, and those lacking histidine & lysine \rightarrow no termination mutations
 - \circ His+ \rightarrow growth = strength of imd2 Δ ::HIS3 reporter activation with histidine nutrient inhibition
 - \circ Lys+ \rightarrow growth = strength of ys2-128 δ reporter activation with lysine nutrient inhibition
- Ruling out possible termination mutations in candidates
 - Gal- \rightarrow lack of growth = poor sugar source, strength of gal10 Δ 56 deletion preventing the GAL7 gene (--> no growth)
 - \circ Raff+ \rightarrow growth = weaker sugar source \rightarrow confirms Gal toxicity (GAL7 = no growth)
- Candidate selection was based on its general growth rate in these specific four media conditions favorable towards expected Ssl2 mutations, which should include the extreme downshift of transcription start sites.
 - All candidates followed similar growth patterns to the favorable ones listed above
 - o Chosen candidates: 3B, 3E, 2D, 2E, 1E, 2C, 3D & 4E

Results of Sequencing

- Despite passing initial mutant screening, no extreme downstream mutations were found in our target sequence of SSL2
 - DRD region has no Ssl2 mutations
- Coursewide sequencing results found that mutations were found to be concentrated in the NTE region
 - Full genome sequencing found that mutated genes were mostly involved in chromatin remodeling
- One insertion mutation was found at the 1434 base pair position, but it was not viable
 - Only one sequence contained the mutation, was only covered by one sequence
 - The base pair is the same as the onebefore it

HD1/Lobe 1

Coursewide sequence results mutation location in

HD2/Lobe 2

A35G E36N D37C Y41C

NTD/Clutch

SSL₂

Backup candidate full genome sequencing revealed mutations in genes involved in chromatin remodeling

Candidate 1E sequencing results show one insertion

Coursewide Data

Candidate	Gene	Missense mutation	Gene function
UG_aj (cand 2)	HTB1	A78P	histone H2B - core histone protein required for chromatin assembly and chromosome function
UG-j (cand 15)	SPN1	L249P	Protein involved in RNA polymerase II transcription; also required for histone modifications and splicing
UG_o (cand 12)	RSC30	G571D	Component of the RSC chromatin remodeling complex
	SPN1	V199G	Protein involved in RNA polymerase II transcription; also required for histone modifications and splicing
UG_an (cand 5)	RSC30	G571D	Component of the RSC chromatin remodeling complex
	HTB1	A78P	histone H2B - core histone protein required for chromatin assembly and chromosome function
UG_c (cand 2B-5_	RSC30	G571D	Component of the RSC chromatin remodeling complex
	SPT16	G949R	Chromatin remodeling protein

Conclusions & Future Directions

- Our lab group did not find any mutations
 - **Coursewide:** 5 mutations found/identified.
- Effective approach for an experiment
 - Located extreme TSS downshifters
 - Provided additional knowledge of the yeast genome, so over all the experiment was a success
 - <u>Not effective approach for located Ssl2 mutants</u>, rather locating other global defects in the overall genome.
- Mutation does not occur where it was hypothesized to.
 - **Chromatin remodeling** played a much larger role than the experimental team originally anticipated.
- Further experimentation that includes the whole SSL2 gene is needed to get more specific about this region by:
 - Applying how chromatin remodeling affects the mutations of the CKY5369 yeast strain
 - Finding and screening different phenotypes relating chromatin remodeling regions within the genome