

Learning Single-View 3D Reconstruction with Limited Pose Supervisions

Guandao Yang¹, Yin Cui^{1,2}, Serge Belongie^{1,2}, Bharath Hariharan¹

¹ Department of Computer Science, Cornell University ² Cornell Tech

Problem Setup

- Most current methods require camera pose and instance IDs.
- How to best combine large amount of cheap supervision with limited amount of pose annotation?
- How can we create a unified model for different types of supervision?"

Study through Three Training Paradigms:

- Semi-supervised Single Category Limited Instance IDs + Camera Pose + category ID, Unlabeled Images
- Semi-supervised Multi-category Limited Instance IDs + Camera Pose, Unlabeled Images
- Few-shot Transfer Learning

Pretrain: Semi-supervised Multi-category setting.

Novel category, Semi-supervised Single Category setting.

Architecture $\mathcal{L}_{recon} = \|P(G(E(\mathbf{x}_2)), \mathbf{p}_1) - \mathbf{x}_1\|_{1+2} + \|P(G(E(\mathbf{x}_1)), \mathbf{p}_2) - \mathbf{x}_2\|_{1+2}$ $\mathcal{L}_D = \mathbb{E}_{\mathbf{z}, \mathbf{p}}[\log(1 - D(P(G(\mathbf{z}), \mathbf{p})))] + \mathbb{E}_{\mathbf{x} \sim \mathcal{X}}[\log D(\mathbf{x})]$ $\mathcal{L}_{pinv} = ||E(\mathbf{x}_1) - E(\mathbf{x}_2)||_2 \quad \mathcal{L}_{vinv} = ||G(E(\mathbf{x}_1)) - G(E(\mathbf{x}_2))||_1$ $\mathcal{L}_G = -\mathbb{E}_{\mathbf{z}, \mathbf{p}}[\log D(P(G(\mathbf{z}), \mathbf{p}))]$

Single Category Semi-Supervised

Category	MVC[20]	McRecon [10]		PTN [27]	Ours (50% pose annotations)			
	IoU	AP	$\rm IoU_{0.4}$	$IoU_{0.5}$	IoU	AP	$\rm IoU_{0.4}$	$\mathrm{IoU}_{0.5}$
airplanes	0.55	0.59	0.37	-	0.57	0.75	0.56	0.57
benches	_	0.39	0.30	_	0.36	0.48	0.35	0.35
cars	0.75	0.82	0.56	-	0.78	0.92	0.77	0.77
chairs	0.42	0.48	0.35	0.49	0.44	0.60	0.43	0.42
sofas	-	0.56	0.38	-	0.54	0.69	0.53	0.52
tables	n_	0.46	0.35	-	0.44	0.63	0.43	0.42

• Using 50% pose with unlabeled data, we can achieve good performance.

27. Yan, X., Yang, J., Yumer, E., Guo, Y., Lee, H.: Perspective transformer nets: Learning single-view 3d object reconstruction without 3d supervision. In: NIPS (2016)

Are unlabeled images useful?

- Adding Unlabeled image improves performance.
- Performance improvement is larger when posed data is more limited
- Adding even 1% pose annotated data gives large improvement.

Multi-category Semi-Supervised

Pose Supervision

U - Using unlabeled images

M - Multi-categories training

FT - Fine-tuning M

- Performance in multi-category training is almost the same as of single-category training.
- Category confusion makes this setting harder; mutual information makes this setting easier.
- Category information is hard to leverage to improve the model.

0.3175

0.3104

0.3859

