TOWARDS LEARNING MONOCULAR 3D OBJECT LOCALIZATION FROM 2D LABELS USING THE PHYSICAL LAWS OF MOTION

MOTIVATION

- Sports broadcasting companies are greatly interested in obtaining 3D information about the ball's location [1].
- Commercial technologies (e.g. Hawk-Eye [2] and View 4D [3]) rely on triangulation techniques → Expensive hardware is needed.
- Alternative approach: Predict the ball's 3D position
 with neural networks → Expensive 3D ground truth is
 usually needed for training.
- → We train a neural network without relying on 3D ground truth annotations.

TASK

- We train a neural network for precise 3D object localization in single images from a single calibrated camera.
- No expensive 3D labels needed → utilize the physical laws of motion + easy-to-obtain 2D labels.
- Infer the latent third dimension, even though this information is never seen during training.
- Physical motion can even be described in intricate situations (e.g. bouncing).
- Evaluation on both synthetic and real-world datasets. The datasets are provided for public use.

(b) SD: images captured in different environments.

(c) RD: images captured from different camera locations.

References:

- [1]: Gabriel Van Zandycke et. al., *Deepsportradar-v1: Computer vision dataset for sports understanding with high quality annotations*, 5th International ACM Workshop on Multimedia Content Analysis in Sports, 2022
- [2]: Hawk-Eye Innovations, https://www.hawkeyeinnovations.com (Accessed: February 26th 2024)
- [3]: Vieww GmbH, https://vieww.com (Accessed: February 26th 2024)
- [4]: J.R. Dormand and P.J. Prince, *A family of embedded Runge-Kutta formulae*, Journal of Computational and Applied Mathematics, 1980

METHOD

- Two main modules:
 - 1. Position Estimation Network (PEN):
 - Neural network with learnable parameters.
 - Input: Single images; Output: Heatmap (*HM*) + depthmap (*DM*).
 - → Obtain world-coordinates (using the camera matrices).
 - 2. Physics Aware Forecasting Module (PAF):
 - Solves the differential equations of motion.
 - No learnable parameters.
 - → Obtain world-coordinates and velocity at time t_n.
- Apply PEN to images at time t_{n-1} , t_n and t_{n+1} :
 - → Obtain world-coordinates and velocity at time t_n.
- Loss:

$$ext{L} = \left\| ec{r}_{ ext{PEN}}^{ ext{(I)}}(t_{n+\Delta n}) - ec{r}_{ ext{PAF}}^{ ext{(I)}}(t_{n+\Delta n})
ight\|_{ ext{L1}} + rac{1}{\left| \mathcal{T}
ight|} \sum_{t_i \in \mathcal{T}} \left\| HM(t_i) - HM_{ ext{gt}}(t_i)
ight\|_{ ext{L2}}$$

POSITION ESTIMATION NETWORK (PEN)

- Obtain **image-coordinates** $(x^{(l)})$ and $y^{(l)}$ from heatmap and **camera-depth** $z^{(C)}$ from depthmap.
- Use intrinsic and extrinsic camera matrices to obtain world-coordinates:

$$egin{align*} egin{align*} egin{align*}$$

PHYSICS AWARE FORECASTING MODULE (PAF)

- The environment and relevant physics is described by the Hamiltonian *H*.
- Use a standard differential equation solver (e.g. [4]) to solve the differential equations of motion:

$$rac{\mathrm{d}}{\mathrm{dt}}ec{r}^{(\mathrm{W})} = rac{1}{m}rac{\mathrm{d}}{\mathrm{d}ec{v}}\mathcal{H}\;, \hspace{0.5cm} mrac{\mathrm{d}}{\mathrm{dt}}ec{v} = -rac{\mathrm{d}}{\mathrm{d}ec{r}^{(\mathrm{W})}}\mathcal{H}$$

 \rightarrow Predict the world-coordinates at time $t_{n+\Delta n}$.

EXPERIMENTS

• Generalization to unseen camera positions:

	$DtG \pm \Delta DtG \text{ (cm)} \downarrow$			
training set	camera 1	camera 7	camera 8	camera 9
SD-S	22 ± 19	_	-	-
SD-M	19 ± 10	27 ± 23	23 ± 9	21 ± 10
SD- L	11 ± 6	28 ± 25	15 ± 8	16 ± 7

Method works also for real-world data:

$DtG \pm \Delta DtG \text{ (cm)}$		
training set	camera 1	camera 2
RD	7 ± 4	6 ± 4

