Top-Down Parsing

- The parse tree is created top to bottom.
- Top-down parser
 - Recursive-Descent Parsing
 - Backtracking is needed (If a choice of a production rule does not work, we backtrack to try other alternatives.)
 - It is a general parsing technique, but not widely used.
 - Not efficient
 - Predictive Parsing
 - no backtracking
 - efficient
 - needs a special form of grammars (LL(1) grammars).
 - Recursive Predictive Parsing is a special form of Recursive Descent parsing without backtracking.
 - Non-Recursive (Table Driven) Predictive Parser is also known as LL(1) parser.

Recursive-Descent Parsing (uses Backtracking)

- Backtracking is needed.
- It tries to find the left-most derivation.

$$S \rightarrow aBc$$

$$B \rightarrow bc \mid b$$

input: abc

Predictive Parser

a grammar \rightarrow a grammar suitable for predictive eliminate left parsing (a LL(1) grammar) left recursion factor no %100 guarantee.

• When re-writing a non-terminal in a derivation step, a predictive parser can uniquely choose a production rule by just looking the current symbol in the input string.

$$A \rightarrow \alpha_1 \mid ... \mid \alpha_n \qquad \qquad \text{input: } ... \text{ a}$$
 current token

Predictive Parser (example)

```
stmt → if ..... |
while ..... |
begin ..... |
for .....
```

- When we are trying to write the non-terminal *stmt*, if the current token is if we have to choose first production rule.
- When we are trying to write the non-terminal *stmt*, we can uniquely choose the production rule by just looking the current token.
- We eliminate the left recursion in the grammar, and left factor it. But it may not be suitable for predictive parsing (not LL(1) grammar).

Recursive Predictive Parsing

• Each non-terminal corresponds to a procedure.

```
Ex: A → aBb (This is only the production rule for A)
proc A {

match the current token with a, and move to the next token;
call 'B';
match the current token with b, and move to the next token;
```

Recursive Predictive Parsing (cont.)

```
A \rightarrow aBb \mid bAB
proc A {
   case of the current token {
        'a': - match the current token with a, and move to the next token;
             - call 'B';
             - match the current token with b, and move to the next token;
        'b': - match the current token with b, and move to the next token;
             - call 'A';
             - call 'B';
```

Recursive Predictive Parsing (cont.)

• When to apply ε -productions.

$$A \rightarrow aA \mid bB \mid \epsilon$$

- If all other productions fail, we should apply an ε -production. For example, if the current token is not a or b, we may apply the ε -production.
- Most correct choice: We should apply an ε-production for a nonterminal A when the current token is in the follow set of A (which terminals can follow A in the sentential forms).

Recursive Predictive Parsing (Example)

```
A \rightarrow aBe \mid cBd \mid C
B \rightarrow bB \mid \varepsilon
C \rightarrow f
proc A {
    case of the current token {
        a: - match the current token with a,
              and move to the next token;
            - call B;
            - match the current token with e,
              and move to the next token:
       c: - match the current token with c,
              and move to the next token;
            - call B;
            - match the current token with d,
              and move to the next token;
        f: - call C
                   first set of C
```

```
proc C {
           match the current token with f,
           and move to the next token; }
proc B {
   case of the current token {
        b: - match the current token with b,
            and move to the next token;
           - call B
       e,d: do nothing
```

Non-Recursive Predictive Parsing -- LL(1) Parser

- Non-Recursive predictive parsing is a table-driven parser.
- It is a top-down parser.
- It is also known as LL(1) Parser.

LL(1) Parser

input buffer

our string to be parsed. We will assume that its end is marked with a special symbol \$.

output

 a production rule representing a step of the derivation sequence (left-most derivation) of the string in the input buffer.

stack

- contains the grammar symbols
- at the bottom of the stack, there is a special end marker symbol \$.
- initially the stack contains only the symbol \$ and the starting symbol \$.
 \$S ← initial stack
- when the stack is emptied (ie. only \$ left in the stack), the parsing is completed.

parsing table

- a two-dimensional array M[A,a]
- each row is a non-terminal symbol
- each column is a terminal symbol or the special symbol \$
- each entry holds a production rule.

LL(1) Parser – Parser Actions

- The symbol at the top of the stack (say X) and the current symbol in the input string (say a) determine the parser action.
- There are four possible parser actions.
- 1. If X and a are \Rightarrow parser halts (successful completion)
- 2. If X and a are the same terminal symbol (different from \$)
 - → parser pops X from the stack, and moves the next symbol in the input buffer.
- 3. If X is a non-terminal
 - → parser looks at the parsing table entry M[X,a]. If M[X,a] holds a production rule $X \rightarrow Y_1 Y_2 ... Y_k$, it pops X from the stack and pushes $Y_k, Y_{k-1}, ..., Y_1$ into the stack. The parser also outputs the production rule $X \rightarrow Y_1 Y_2 ... Y_k$ to represent a step of the derivation.
- 4. none of the above \rightarrow error
 - all empty entries in the parsing table are errors.
 - If X is a terminal symbol different from a, this is also an error case.

LL(1) Parser – Example1

 $S \rightarrow aBa$ $B \rightarrow bB \mid \epsilon$

	a	b	\$
S	$S \rightarrow aBa$		
В	$B \to \varepsilon$	$B \rightarrow bB$	

LL(1) Parsing Table

<u>stack</u>	<u>input</u>	<u>output</u>
\$ <mark>S</mark>	abba\$	$S \rightarrow aBa$
\$aB <mark>a</mark>	abba\$	
\$aB	bba\$	$B \rightarrow bB$
\$aB <mark>b</mark>	bba\$	
\$aB	ba\$	$B \rightarrow bB$
\$aB <mark>b</mark>	ba\$	
\$aB	a\$	$B \to \epsilon$
\$ <mark>a</mark>	a\$	
\$	\$	accept, successful completion

LL(1) Parser – Example1 (cont.)

Outputs: $S \to aBa$ $B \to bB$ $B \to bB$ $B \to \epsilon$

Derivation(left-most): S⇒aBa⇒abBa⇒abbBa⇒abba

LL(1) Parser – Example2

$$E \rightarrow TE'$$

 $E' \rightarrow +TE' \mid \epsilon$
 $T \rightarrow FT'$
 $T' \rightarrow *FT' \mid \epsilon$
 $F \rightarrow (E) \mid id$

	id	+	*	()	\$
E	$E \rightarrow TE'$			$E \rightarrow TE'$		
E'		$E' \rightarrow +TE'$			$E' \rightarrow \epsilon$	$E' \rightarrow \epsilon$
T	$T \rightarrow FT'$			$T \rightarrow FT'$		
T'		$T' \rightarrow \epsilon$	$T' \rightarrow *FT'$		$T' \rightarrow \epsilon$	$T' \rightarrow \epsilon$
F	$F \rightarrow id$			$F \rightarrow (E)$		

LL(1) Parser – Example2

<u>stack</u>	<u>input</u>	<u>output</u>
\$E	id+id\$	$E \rightarrow TE'$
\$E'T	id+id\$	$T \rightarrow FT'$
\$E' T' F	id+id\$	$F \rightarrow id$
\$ E' T'id	id+id\$	
\$ E' T '	+id\$	$T' \rightarrow \epsilon$
\$ E'	+id\$	$E' \rightarrow +TE'$
\$ E' T+	+id\$	
\$ E' T	id\$	$T \rightarrow FT'$
\$ E' T' F	id\$	$F \rightarrow id$
\$ E' T'id	id\$	
\$ E' T '	\$	$T' \rightarrow \epsilon$
\$ E'	\$	$E' \rightarrow \epsilon$
\$	\$	accept

Constructing LL(1) Parsing Tables

- Two functions are used in the construction of LL(1) parsing tables:
 - FIRST FOLLOW
- **FIRST**(α) is a set of the terminal symbols which occur as first symbols in strings derived from α where α is any string of grammar symbols.
- if α derives to ε , then ε is also in FIRST(α).
- **FOLLOW(A)** is the set of the terminals which occur immediately after (follow) the *non-terminal A* in the strings derived from the starting symbol.
 - a terminal a is in FOLLOW(A) if $S \stackrel{*}{\Rightarrow} \alpha A a \beta$
 - \$ is in FOLLOW(A) if $S \stackrel{*}{\Rightarrow} \alpha A$

Compute FIRST for Any String X

- If X is a terminal symbol \rightarrow FIRST(X)={X}
- If X is a non-terminal symbol and X → ε is a production rule
 ★ ε is in FIRST(X).
- If X is a non-terminal symbol and $X \rightarrow Y_1Y_2..Y_n$ is a production rule
 - if a terminal **a** in FIRST(Y_i) and ε is in all FIRST(Y_j) for j=1,...,i-1 then **a** is in FIRST(X).
 - \rightarrow if ε is in all FIRST(Y_j) for j=1,...,n then ε is in FIRST(X).
- If X is ϵ FIRST(X)= $\{\epsilon\}$
- If X is $Y_1Y_2...Y_n$
 - if a terminal **a** in FIRST(Y_i) and ε is in all FIRST(Y_j) for j=1,...,i-1 then **a** is in FIRST(X).
 - if ε is in all FIRST(Y_j) for j=1,...,n then ε is in FIRST(X).

FIRST Example

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

$$FIRST(F) = \{ (,id) \}$$

$$FIRST(T') = \{ *, \epsilon \}$$

$$FIRST(T) = \{ (,id) \}$$

$$FIRST(E') = \{ +, \epsilon \}$$

$$FIRST(E) = \{ (,id) \}$$

FIRST(TE') = { (,id}
FIRST(+TE') = {+}
FIRST(
$$\epsilon$$
) = { ϵ }
FIRST(FT') = { (,id}
FIRST(*FT') = {*}
FIRST(ϵ) = { ϵ }
FIRST(ϵ) = { ϵ }
FIRST((E)) = { (}
FIRST(id) = {id}

Compute FOLLOW (for non-terminals)

- If S is the start symbol \rightarrow \$ is in FOLLOW(S)
- if $A \rightarrow \alpha B\beta$ is a production rule
 - \rightarrow everything in FIRST(β) is FOLLOW(B) except ϵ
- If $(A \rightarrow \alpha B \text{ is a production rule})$ or $(A \rightarrow \alpha B \beta \text{ is a production rule and } \epsilon \text{ is in FIRST}(\beta))$
 - → everything in FOLLOW(A) is in FOLLOW(B).

We apply these rules until nothing more can be added to any follow set.

FOLLOW Example

$$E \rightarrow TE'$$

$$E' \rightarrow +TE' \mid \epsilon$$

$$T \rightarrow FT'$$

$$T' \rightarrow *FT' \mid \epsilon$$

$$F \rightarrow (E) \mid id$$

Constructing LL(1) Parsing Table -- Algorithm

- for each production rule $A \rightarrow \alpha$ of a grammar G
 - for each terminal a in FIRST(α)
 - \rightarrow add $A \rightarrow \alpha$ to M[A,a]
 - If ε in FIRST(α)
 - \rightarrow for each terminal a in FOLLOW(A) add A $\rightarrow \alpha$ to M[A,a]
 - If ε in FIRST(α) and \$ in FOLLOW(A)
 - \rightarrow add $A \rightarrow \alpha$ to M[A,\$]
- All other undefined entries of the parsing table are error entries.

Constructing LL(1) Parsing Table -- Example

 $E \rightarrow TE'$

 $FIRST(TE') = \{(id)\}$

 \rightarrow E \rightarrow TE' into M[E,(] and M[E,id]

 $E' \rightarrow +TE'$

 $FIRST(+TE')=\{+\}$

 \rightarrow E' \rightarrow +TE' into M[E',+]

 $E' \rightarrow \epsilon$

 $FIRST(\varepsilon) = \{\varepsilon\}$

→ none

but since ε in FIRST(ε)

and $FOLLOW(E')=\{\$,\}$

 \rightarrow E' \rightarrow ϵ into M[E',\$] and M[E',)]

 $T \rightarrow FT'$

 $FIRST(FT') = \{(id)\}$

 \rightarrow T \rightarrow FT' into M[T,(] and M[T,id]

 $T' \rightarrow *FT'$

FIRST(*FT')={*}

 \rightarrow T' \rightarrow *FT' into M[T',*]

 $T' \rightarrow \epsilon$

 $FIRST(\epsilon) = \{\epsilon\}$

→ none

but since ε in FIRST(ε)

and FOLLOW(T')= $\{\$,\}$ + $\}$ $\rightarrow \epsilon$ into M[T',\$], M[T',)] and M[T',+]

 $F \rightarrow (E)$

 $FIRST((E)) = \{(\}$

 \rightarrow F \rightarrow (E) into M[F,(]

 $F \rightarrow id$

FIRST(id)={id}

 \rightarrow F \rightarrow id into M[F,id]

LL(1) Grammars

• A grammar whose parsing table has no multiply-defined entries is said to be LL(1) grammar.

one input symbol used as a look-head symbol do determine parser action

LL(1) left most derivation input scanned from left to right

• The parsing table of a grammar may contain more than one production rule. In this case, we say that it is not a LL(1) grammar.

A Grammar which is not LL(1)

$$S \rightarrow i C t S E \mid a$$

 $E \rightarrow e S \mid \epsilon$
 $C \rightarrow b$

FIRST(iCtSE) =
$$\{i\}$$

FIRST(a) = $\{a\}$
FIRST(eS) = $\{e\}$
FIRST(ϵ) = $\{\epsilon\}$
FIRST(b) = $\{b\}$

a	b	e	i	t	\$
$S \rightarrow a$			$S \rightarrow iCtSE$		
		$E \rightarrow e S$			$E \rightarrow \epsilon$
	$C \rightarrow b /$	/ L → ε			
<u>S</u>	$\rightarrow a$	$C \rightarrow b$	$E \to e S$ $E \to \epsilon$	$E \to e S$ $f \to \epsilon$	$E \to e S$ $E \to \epsilon$

/two production rules for M[E,e]

Problem **→** ambiguity

A Grammar which is not LL(1) (cont.)

- What do we have to do it if the resulting parsing table contains multiply defined entries?
 - If we didn't eliminate left recursion, eliminate the left recursion in the grammar.
 - If the grammar is not left factored, we have to left factor the grammar.
 - If its (new grammar's) parsing table still contains multiply defined entries, that grammar is ambiguous or it is inherently not a LL(1) grammar.
- A left recursive grammar cannot be a LL(1) grammar.
 - $-A \rightarrow A\alpha \mid \beta$
 - \rightarrow any terminal that appears in FIRST(β) also appears FIRST($A\alpha$) because $A\alpha \Rightarrow \beta\alpha$.
 - \rightarrow If β is ϵ , any terminal that appears in FIRST(α) also appears in FIRST($A\alpha$) and FOLLOW(A).
- A grammar is not left factored, it cannot be a LL(1) grammar
 - $A \rightarrow \alpha \beta_1 \mid \alpha \beta_2$
 - \rightarrow any terminal that appears in FIRST($\alpha\beta_1$) also appears in FIRST($\alpha\beta_2$).
- An ambiguous grammar cannot be a LL(1) grammar.

Properties of LL(1) Grammars

- A grammar G is LL(1) if and only if the following conditions hold for two distinctive production rules $A \rightarrow \alpha$ and $A \rightarrow \beta$
 - 1. Both α and β cannot derive strings starting with same terminals.
 - 2. At most one of α and β can derive to ϵ .
 - 3. If β can derive to ϵ , then α cannot derive to any string starting with a terminal in FOLLOW(A).