

Lijie Wang

定义 倒置法 家族关系 k 元树

根树

王丽杰

Email: ljwang@uestc.edu.cn

电子科技大学 计算机学院

2016-

有向树和根树

定义

家族关.k 元树

定义

一个有向图,若略去所有有向边的方向所得到的无向图是一棵树,则这个有向图称为有向树。

定义

一棵非平凡的有向树,如果恰有一个结点的入度为 0,其余所有结点的入度均为 1,则称之为根树(root tree) 或外向树(outward tree)。入度为 0 的结点称为根(root); 出度为 0 的结点称为叶(leaf); 入度为 1,出度大于 0 的结点称为内点(interior point); 又将内点和根统称为分支点(branch point)。

定义

在根树中,从根到任一结点 v 的通路长度,称为该结点的<mark>层数</mark>;称层数相同的结点在同一层上; 所有结点的层数中最大的称为<mark>根树的高</mark>。

根树

根例 Lijie Wang 定义 倒置法 家族关系

习惯上我们使用倒置法来画根树,即把根画在最上方,叶画在下方,有向边的方向均指向下方,这样就可以省去全部箭头,不会发生误解。

树的家族关系

概例 Lijie Wang 定义 倒置法 家族关系

定义

在根树中,若从结点 v_i 到 v_j 可达,则称 v_i 是 v_j 的祖先, v_j 是 v_i 的后代;又若 $< v_i, v_j >$ 是根树中的有向边,则称 v_i 是 v_j 的父亲, v_j 是 v_i 的儿子;如果两个结点是同一个结点的儿子,则称这两个结点是兄弟。

例 v_1 v_2 v_3 v_4 v_5 v_6 v_7 v_8 v_9 v_{10} v_{11} v_{12}

- v₂ 是 v₅ 和 v₆ 的父亲, v₅ 和 v₆ 是 v₂ 的儿子;
- *v*₂, *v*₃ 和 *v*₄ 是兄弟; *v*₁₀, *v*₁₁, *v*₁₂ 也是兄弟;
- v₈ 的祖先有 v₃,v₁;
- v₇ 的后代有 v₁₀,v₁₁,v₁₂ 和 v₁₃.

有序和 k 元树

定义

如果在根树中规定了每一层上结点的次序,这样的根树称为有序树。

定义

在根树 T中,

- 若每个分支点至多有 k 个儿子,则称 T 为 k 元树;
- 若每个分支点都恰有 k 个儿子, 则称 T 为满 k 元树;
- 若 k 元树 T 是有序的,则称 T 为 k 元有序树;
- 若满 k 元树 T 是有序的,则称 T 为满 k 元有序树。
- 任一结点 v 及其所有后代导出的子图 T' 称为 T 的以 v 为根的子树。

有序和 k 元树

二元有序树

定义

二元有序树的每个结点 v至多有两个儿子,分别称为 v 的左儿子和右儿子。二元有序树的每个结点 v至多有两棵子树,分别称为 v 的左子树和右子树。

满k元树的性质

在文 倒置法 家族关系 **、元树**

定理

在满 k 元树中,若叶数为 t,分支点数为 i,则有 $(k-1) \times i = t-1$ 。

证明

由假设知,该树有 i+t 个结点。 由树的定义知,该树的边数为 i+t-1。 由握手定理知,所有结点的出度之和等于边数。 而根据满 k 元树的定义知,所有分支点的出度为 $k \times i$ 因此有 $k \times i = i+t-1$ 即 $(k-1) \times i = t-1$

满k元树的性质

_ijie Wang

倒置法 家族关系 k 元树

例

假设有一台计算机,它有一条加法指令,可计算 3 个数的和。如果要求 9 个数 $x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8, x_9$ 之和,问至少要执行几次加法指令?

解

本问题可转化为求一个含有 9 片树叶的满三元树的分支点个数。由前面的定理知,有 $(3-1) \times i = 9-1$,得 i=4。所以至少要执行 4 次加法指令。

Lijie Wang

定义 倒置法

家族关系 k 元树

THE END, THANKS!