Chapitre 18: L'espace vectoriel \mathbb{K}^n et ses sous-espaces vectoriels

Dans tout ce chapitre $\mathbb{K} = \mathbb{R}$ ou $\mathbb{K} = \mathbb{C}$.

I - L'espace vectoriel \mathbb{K}^n

- 1) Définition de l'espace vectoriel \mathbb{K}^n
- 2) Règles de calculs
- 3) Exemples

II - Sous-espaces vectoriels de \mathbb{K}^n

- 1) Définition et exemples
- 2) Combinaisons linéaires

III - Indépendance linéaire, base

- 1) Familles libres, familles liées
- 2) Base d'un sous-espace vectoriel

IV - Théorie de la dimension

- 1) Dimension d'un sous-espace vectoriel
- 2) Familles libres, familles génératrices et dimension
- 3) Dimension et inclusion
- 4) Rang d'une famille de vecteurs

Exemples de compétences attendues

- Savoir justifier qu'une partie de \mathbb{K}^n est un sous-espace vectoriel de \mathbb{K}^n . (en utilisant la définition, ou en mettant en évidence une famille génératrice)
- 2 Savoir déterminer un système d'équations cartésiennes décrivant un sous-ev de \mathbb{K}^n à partir d'une famille génératrice du sous-ev.
- 3 Savoir effectuer le procédé inverse : déterminer une famille génératrice d'un sous-ev de \mathbb{K}^n à partir d'un système d'équations cartésiennes décrivant celui-ci.
- 4 Savoir déterminer si une famille est libre ou liée.
- Pour n = 2, 3, 4, savoir montrer qu'une famille de vecteurs est une base de \mathbb{K}^n en déterminant dans le même temps l'expression des coordonnées d'un vecteur quelconque de \mathbb{K}^n dans cette base.
- \bullet Si E est un sous-ev de \mathbb{K}^n , savoir trouver une base de E en trouvant d'abord une famille génératrice de E puis en montrant qu'elle est libre.
- Si $m = \dim E$ est connu, savoir montrer qu'une famille de vecteurs \mathcal{F} de E est une base de E en vérifiant :
 - que \mathcal{F} est génératrice de E et $Card\mathcal{F} = m$, ou
 - que \mathcal{F} est libre et $Card\mathcal{F} = m$.
- § Savoir montrer l'égalité de deux sous-ev de \mathbb{K}^n : Si E et F sont deux sous-ev de \mathbb{K}^n tels que $E \subset F$ et dim $E = \dim F$, alors E = F.

Questions de cours possibles:

- Démontrer que, si \mathcal{F} est une famille de vecteurs de \mathbb{K}^n , alors $Vect\mathcal{F}$ est un sous-espace vectoriel et c'est le plus petit (au sens de l'inclusion) qui possède les vecteurs de \mathcal{F} .
- Soit $\mathcal{F} = (\overrightarrow{x_1}, \overrightarrow{x_2}, \dots, \overrightarrow{x_p})$ une famille de vecteurs de \mathbb{K}^n et \overrightarrow{x} un vecteur de \mathbb{K}^n . Si \mathcal{F} est libre et $\overrightarrow{x} \notin Vect\mathcal{F}$, montrer que la famille $(\overrightarrow{x_1}, \overrightarrow{x_2}, \dots, \overrightarrow{x_p}, \overrightarrow{x})$ est encore libre.
- \bullet Montrer que les bases d'un sous-espace vectoriel E sont les familles libres et génératrices de E.