zkSNARKs from Polynomial Commitments

Pratyush Mishra Aleo, UC Berkeley

Recall IOPs

What's inside common IOPs?

A: Polynomials!

A: Polynomials!

Prover messages are (supposed to be) polynomial encodings

A: Polynomials!

Prover messages are (supposed to be) polynomial encodings

What if we just assume messages are polynomials?

That is, no LDTs!

Pro

Large proof size due to many queries

ies are points

Polynomial IOPs [GWC19, CHMMVW20, BFS20]

- Completeness: Whenever $(x, w) \in R$, there is a strategy for P that outputs only polynomials, and which causes ∇ to accept.
- Knowledge Soundness: Whenever V accepts against a P that outputs only polynomials, then P "knows" w such that $(x, w) \in R$.

A Selection of PIOP Constructions

Many PIOPs with many different properties:

- Linear degree of oracles
- Linear prover time
- Sublinear verification for repeated circuits
- ...

This has been achieved by leveraging a variety of underlying techniques:

- Univariate and multivariate sum checks
- Grand product checks
- Permutation checks and lookup tables
- •

Overall, PIOPs provide a strong foundation for constructing SNARKs with interesting properties and strong efficiency.

So, how to get SNARKs from PIOPs?

Compiling PIOPs to SNARKs via analogy

Can the IOP-to-SNARK compiler teach us how to construct a PIOP-to-SNARK compiler?

Polynomial Commitments

Polynomial Commitments

- Completeness: Whenever p(z) = v, **R** accepts.
- Extractability: Whenever \mathbf{R} accepts, \mathbf{S} 's commitment \mathbf{cm} "contains" a polynomial p of degree at most D.

Polynomial Commitments

For efficiency improvements, you need

Batch commitment
 Batch opening

A selection of constructions

In the last 10 years, several constructions with different

- Cryptographic assumptions
- Prover and verifier efficiency and proof sizes
- Homomorphism and batching properties

Looking ahead, this enables SNARKs with many different properties

	KZG10	PST13	IPA	Hyrax	Dory	BFS20
crypto	Pairings	Pairings	DLog + RO	DLog + RO	Pairing + RO	GUO + RO
# variables	1	m	1	m	1	1
setup type	Private	Private	Public	Public	Public	Public
commitment	<i>O</i> (1) G	O(1) G	O(1) G	$O(2^{m/2})$ G	O(1) G	<i>O</i> (1) G
proof size	<i>O</i> (1) G	O(m) G	$O(\log d)$ G	$O(2^{m/2})$ G	$O(\log d)$ G	$O(\log d)$ G
verifier time	<i>O</i> (1) G	O(m) G	O(d) G	$O(2^{m/2})$ G	$O(\log d)$ G	$O(\log d)$ G

Combining PIOPs and PC schemes

PIOPs + PC Schemes → SNARK

+ Fiat — Shamir to get non-interactivity

Argument size comparison

Asymptotic

Concrete

- D is max degree
- *t* is number of polys
- F is field of definition
- |Q| is number of queries

Why the big difference?

1. $|Q_{\text{IOP}}| \gg |Q_{\text{PIOP}}|$, as no LDT. Hence $|Q_{\text{IOP}}| \times |Q_{\text{PIOP}}| \times |Q_{\text{PIOP}}|$ |πρc| ≪ |Qiop| 2κ log(D)
 for many PC schemes due to algebraic structure and batching. Eg: for KZG, eval. proof requires only 1 G per unique point

Summary

SNARKs from PIOPs and PC schemes are efficient and have much smaller argument size than IOP-based SNARKs (but assume structured crypto)

Sublinear verification for (P)IOP-based SNARKs

Verifier Complexity of (P)IOP-based SNARKs

- IOP Verifier has to **at least** read (F, x)
- When size of $F \ll$ size of computation (eg machine computations), TIME(v) is sublinear.
- When size of F = size of computation (eg circuit computations), TIME(v) is linear!

Holographic (P)IOPs [CHMMVW20, COS20]

Introduce a new algorithm to preprocess the circuit

Holographic (P)IOPs + PC Schemes → Preprocessing SNARKs

Prover answers queries to circuit oracles too

verifier key $cvk = (vk, cm_C)$

1 + Fiat — Shamir to get non-interactivity

Verifier Complexity of Holographic (P)IOP-based SNARKs

$$T(SNARK.V) = T(CHECK) + T(HIOP.V)$$

Now sublinear!

Holography enables sublinear verification for arbitrary circuits computations!

Thanks!

Lots of exciting future directions:

- PIOPs:
 - reduce prover memory,
 - total poly degree,
 - cheaper holography
- PC schemes:
 - efficient constructions from new assumptions (eg: lattices)
 - better constructions from existing assumptions (eg: succinct verification from DL)
- Applications:
 - Eg: accumulation for PC schemes and IOPs → efficient recursive SNARKs