Ch 3.4

To choose models we must consider, Wount

- How well they make predictions

- Lines going through duta

- Their Simplicity

- Small oscillations
- The reasonability of the predictions
- -High R2 values

<u>Ch 4.1</u>

A dynamical system is simply a system that changes over time.

A dynamical system measured in discrete units is a discrete dynamical system. —D A sequence of numbers "Fasy to model, hard to Jolue"

Definition 4.1.1: A discrete dynamical system is a sequence of numbers {anln=0,1,....} defined by a relation of the form

 $a_n + l = f(a_n)$

an -D State of the system A discrete dynamical system is determined by previous States

where f is some real-valued function

Definition 4.1.2: A linear discrete dynamical System is a sequence of numbers {anln=0,1,....} defined by a relation of the form

> ann = ban (2)

where bzo is a constant.

Theorem 4.1.1: The solution of a linear dynamical System and = ban for bzo is

 $a_n b^0 a_0 = a_0$ (3)

Where as is the intial State.

Ch 4.4

In a forest containing foxes and rabbits, foxes east robbits for food.

Assumptions

- 1. The only source of food for the foxes are rabbits, the only predator of the rabbits are foxes.
- 2. Without robbits present, the fox population would die out.
- 3. Without Fores present, the rabbit population would grow.
- 4. Presence of publics increases rate out which fox population grows.
- 6. Presence of forces decrease rate out which radout population grows.

Assumptions 2 & 3 Assumptions 4 \$ 5

4.: OFn = (-a+3Rn)Fn : Fn+1=Fn(1-a) + FnRn5 2. : AFn = -aFn : Booouse this system has two objects in it,

5. : BRn= (B-SFn)Rn : RATI = Rn(1+B)-FnRnS 3. : ARn= BRn rabbits and foxes, it is considered a a>0,06861,520,020 two-cimensional discrete dynamical system.

These types of models are couled Lokta-Volterra models. Since the Final equation for the population increase has a First term in it, the model is considered to be nonlinear.

Epidemic Models

Consider the following assumptions:

- 1. No one enters or leaves the community and no one in the community has contact with anyone outside the community.
- 2. Each person is either Susceptible, S (able to get the flu); infected, I (currently has the flu and able to spread it); or removed, R (already had the flu and is not able to get it again). Initially every person is either Susceptible or infected.
- 3. A susceptible person can get the flu only by contact with an infected person.
- 4. Once a person gets the Flu, he or she cannot get it again.
- 5. The owerage duration of the Fin is 2 weeks, during which time an infected person can spread the disease to a susceptible person.

Removal Roste: $\triangle R_n = \delta I_n$ -D $R_{n+1} = R_n + \delta I_n$ $\delta I_n -D$ Infected people removed

Infected Rate: DIn = asnIn - dIn - D Inti = In + asnIn - dIn

of -D Transmission Coefficient (likelihood of a Susceptible and infected person interacting)

of SaIn - D Interactions between Susceptible and infected people. "Newly infected"

Susceptible: DSn = -aSnIn -D Snel = Sn - asnIn

$$S_{n+1} = S_n - \alpha S_n I_n$$
 $y = \frac{1}{avg. duration of infectious period}$
 $I_{n+1} = I_n + \alpha S_n I_n - \delta I_n$

$$R_{nt1} = R_n + 8I_n$$
 $Q =$ # new cases in week

(initall # of cases) (fopulation - initial # of cases)

Ex: # (ωκ -) λ λ= 5

All Equations:

$$\frac{\alpha = \lambda}{I_0(P_0 - I_0)} = \frac{5}{3(1000 - 3)} = \frac{5}{3(997)} = 0.00167$$

Population -D Po

initial cases D Io

Ch 6.1

Deterministic systems are systems where the behavior is known once $\longrightarrow A = \int_a^b f(x) dx$ its parameters are known.

A probabilistic system is one in which the behavior is determined, in part, by random events.

one very popular type of probabilistic model is a Simulation model.

- A Simulation model is a model that uses random numbers.
 - usually used to imitate some type of real-world behavior.

- 1. The System is for too complex to model analytically. This means the System has too many variables too model analytically. This System would have to be Simplified resulting in a very low-fidelity model.
- 2. It may be difficult, costly, or dangerous to collect data for creating an empirical model. Some systems may be too Nisky to try to model.
- 3. The System may not exist yet. You may be modeling Something that has never been constructed yet.
- 4. System may contain random events that we do not want to oversimplify. Some variables may be drastically over simplified messing up the model.

Monte Carlo Games

The Simulations consist of three basic Steps:

- 1.) Construct a model that uses random numbers
- 2.) Evaluate, or "run", the model many times (Possibly hundreds or thousands) using different random numbers each time.
- 3.) Statistically analyze the results

Benefits

- · Test "what if" scenarios
- · Do thousands of tests
- · No required data gathering