Homework 4_Solution

Total Mark - 100 (10+20+10+20+15+25)

1. Obtain the 1's and 2's complement of the following unsigned binary numbers: 10011100,10011101,10101000,10000000,10100010

Unsigned	10011100	10011101	10101000	10000000	10100010
1's	01100011	01100010	01010111	01111111	01011101
2's	01100100	01100011	01011000	10000000	01011110

- 2. Perform the following subtraction with the following unsigned binary numbers by taking the 2's complement of the subtrahend:
- (a) 11010 10001
- (b) 11110 1110
- (c) 11111110 11111110
- (d) 101001 101

Unsigned	10001	01110	1111110	000101
1s	01110	10001	0000001	111010
2s	01111	10010	0000010	111011

a)
$$11010$$
 b) 11110 c) 1111110 d) 101001 $+ 01111$ $+ 10010$ $+ 0000010$ $+ 111011$ 01001 0000000 0000000

- 3. Perform the arithmetic operation in binary using signed 2's complement representation for negative numbers.
- (a) (+36)+(-24)
- (b) (-35)-(-24)

$$+36 = 0100100$$
 $-24 = 1101000$
 $+(-24)$
 $+35 = 1011101$
 $= 12$
 $+36 = 0100100$
 $+(-24)$
 $+36 = 0100100$
 $+(-24)$
 $+36 = 0100100$
 $+(-24)$
 $+36 = 0100100$
 $+(-24)$
 $+36 = 0100100$
 $+(-24)$
 $+36 = 0100100$
 $+(-24)$
 $+36 = 0100100$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24)$
 $+(-24$

- 4. The following binary numbers have a sign in the leftmost position and if negative are in 2's complement form. Perform the indicated arithmetic and verify the answers.
- (a) 100111+111001
- (b) 001011+100110
- (c) 110001 010010
- (d) 101110 110111

Indicate whether overflow occurs for each computation.

Signed number	010010	110111
1s	101101	001000
2s	101110	110001

C) ` D)

5. Design a combinational circuit whose input is a 4-bit number and whose output is the 2's complement of the input number.

A	В	C	D	E	F	G	H
0	0	0	0	0	0	0	0
0	0	0	1	1	1	1	1
0	0	1	0	1	1	1	0
0	0	1	1	1	1	0	1
0	1	0	0	1	1	0	0
0	1	0	1	1	0	1	1
0	1	1	0	1	0	1	0
0	1	1	1	1	0	0	1
1	0	0	0	1	0	0	0
1	0	0	1	0	1	1	1
1	0	1	0	0	1	1	0
1	0	1	1	0	1	0	1
1	1	0	0	0	1	0	0
1	1	0	1	0	0	1	1
1	1	1	0	0	0	1	0
1	1	1	1	0	0	0	1

$$H = D,$$

$$G = C \oplus D,$$

$$F = B'C + B'D + BC'D',$$

$$E = A'B + AB'C'D' + A'C + A'D$$

6. The adder and subtractor circuit of figure 1 has the following values for input select S and data input A and B

Figure 1: Adder subtractor circuit

S	A	В
a) 0	0111	0111
b) 1	0100	0111
c) 1	1101	1010
d) 0	0111	1010
e) 1	0001	1000

Determine, in each case, the values of the outputs S3, S2. S1, S0 and C4

S	A	В	C4	S 3	S2	S 1	S0
a)0	0111	0111	0	1	1	1	0
b)1	0100	0111	0	1	1	0	1
c)1	1101	1010	1	0	0	1	1
d)0	0111	1010	1	0	0	0	1
e)1	0001	1000	0	1	1	0	1