

Distinguishing Adult and Youth Faces Using Convolutional Neural Networks

Marta Fuentes-Filp, 2024

Introduction & Potential Applications

- Objective: Develop a CNN model to distinguish between adult and youth faces.
- Tools Used: TensorFlow,Keras

•Law Enforcement

Social Media Platforms

Marketing and Retail

Data Acquisition

Wernher Krutein's Photovault.com

Explore over 500,000 Images in my personal collection

Enter search term

Search

Click Here for Advanced searching

Animals Cities Disasters Entertainment Food Government Health Industry Insects Military Nature People Sports Technology Universe Vehicles

Your comprehensive source for

Exquisite images

royalty free and rights managed

- √ Many images as low as \$3.
- ✓ Over 500,000 images and growing daily.
- ✓ Advanced Search using our exclusive "FindFave" technology.

The Data: 14,635 images

PLP: 5,423 youth images

POR: 9,212 adult images

Potentially Problematic Data

Data Preparation

Keras image_dataset_from_directory()

- Creating training and validation sets
- Addressing class imbalance
- Data Split:

80% Training Set: 11,707 images

20% Validation Set: 2,926 images

CNNs & Computer Vision

Convolutional Layer

Pooling Layers

Regularization

Loss Function Optimizer

Fine Tuning the Network

CNN 4: Input Layer + Multiple Hidden Layers with Dropout

Layer Type	Filters	Kernel Size	Activation	Input Shape	Additional Parameters
Conv2D	512	3	relu	(256, 256, 3)	
MaxPooling2D		2			padding='same'
Dropout					rate=0.5
Conv2D	256	3	relu		kernel_regularizer=regularizers.l2(0.03)
MaxPooling2D		2			padding='same'
Dropout					rate=0.5
Conv2D	256	3	relu		kernel_regularizer=regularizers.l2(0.03)
MaxPooling2D		2			padding='same'
Dropout					rate=0.5
Conv2D	256	3	relu		kernel_regularizer=regularizers.l2(0.03)
MaxPooling2D		2			padding='same'
Dropout					rate=0.5
Flatten					
Dense			sigmoid		Output: 1 neuron

Model Progression

CNN 1

architecture. Lacks complexity to capture intricate patterns.

CNN 2

layers Overfitting likely due to lack of regularization. Regularization (L2, dropout) added;

Regularization may need tuning.

High dropout reduced overfitting led to underfitting, causing lower accuracy

performance decreased,

Good initial performance with a simple

Improved accuracy due to additional hidden

CNN 3

CNN 4

CNN1: Loss Function & Accuracy Graphs

Challenges

- Computational Resources
- Understanding Layers
- Inconsistent Images
- Augmentation vs. weights

Future Work

- Visualizing the images that are being misclassified
- Experimenting with ResNet
- Improving the dataset
- Augmenting data
- Explore regularization techniques
- Weed through the images
- Bounding boxes
- Find more computational power

Conclusions

- This project successfully developed and evaluated four CNN models for distinguishing between the faces of adults and youth.
- While the models demonstrated promising initial results, further improvements and optimizations are essential for real-world applications.
- Understanding the reasons behind the models' poor performance provides several key benefits:

What Questions Do You Have?