Algorítmica: práctica 1 Análisis de la eficiencia de algoritmos

Sofía Almeida Bruno Antonio Coín Castro María Victoria Granados Pozo Miguel Lentisco Ballesteros José María Martín Luque

23 de marzo de 2017

Objetivo

Estudiar la eficiencia teórica, empírica e híbrida de 8 algoritmos. También, realizar comparaciones entre sus tiempos de ejecución, así como la influencia de otros factores, como S.O. utilizado o prestaciones del PC.

- Burbuja, Inserción y Selección
- Mergesort, Quicksort y Heapsort
- Floyd
- Hanoi

Burbuja

Revisa cada elemento de la lista con el siguiente, intercambiándose de posición si no están en el orden correcto.

Es $O(n^2)$.

Inserción

Consideramos el elemento N-ésimo de la lista y lo ordenamos respecto de los elementos desde el primero hasta el N-1-ésimo.

Es $O(n^2)$.

Selección

Consiste en encontrar el menor de todos los elementos de la lista e intercambiarlo con el de la primera posición. Luego con el segundo, y así sucesivamente hasta ordenarlo todo.

Es $O(n^2)$.

Mergesort

Se basa en la técnica de divide y vencerás.

- Se divide la lista a ordenar en dos sublistas de la mitad de tamaño.
- Se ordena cada sublista de forma recursiva.
- Si el tamaño de una sublista es 0 o 1 entonces ya está ordenada.
- Se unen todas las sublistas en una sola.

Es O(nlogn).

Eficiencia empírica mergesort-linux-00

Tamaño del vector (elementos)

Quicksort

Se basa en la técnica de divide y vencerás.

- Elegimos un elemento de la lista, el pivote.
- Se ordena la lista, dejando los elementos mayores a la derecha del pivote y los menores a la izquierda.
- Realizamos el proceso recursivamente en las dos sublistas que nos quedan (derecha e izquierda) hasta que tengan 0 o 1 elemento.

Es O(nlogn).

Tiempo de ejecución (s)

Tamaño del vector (elementos)

Heapsort

Es un método de ordenación por selección.

- El heαp es un árbol binario de altura mínima, en el que los nodos del nivel más bajo están lo más a la izquierda posible.
- Los hijos de cada nodo son siempre menores que el padre.
- No es necesario recorrer el árbol de forma desordenada para encontrar los elementos máximos.

Es O(nlogn).

Tamaño del vector (elementos)

Floyd

Algoritmo de análisis sobre grafos para encontrar el camino mínimo en grafos ponderados.

 El algoritmo compara todos los posibles caminos a través del grafo entre cada par de vértices.

Es $O(n^3)$.

Hanoi

Las torres de Hanoi son un puzzle matemático.

- Tenemos 3 pilas: origen, auxiliar y destino.
- Origen está ordenada por tamaño creciente de discos.
- Se mueve un disco de la pila origen a la de destino si hay un único disco en la pila origen.
- Si no, se mueven todos los discos a la auxiliar, excepto el más grande.
- Por último, movemos el disco mayor al destino, y los n – 1 restantes encima del mayor.

Es $O(2^n)$.

Datos de la eficiencia empírica

Hemos recopilado los datos de la eficiencia empírica de la ejecución de los distintos algoritmos en varias tablas comparativas. Los datos han sido obtenidos ejecutandose en la misma máquina con Linux y sin optimización.

Hemos creado tablas para los distintos órdenes de eficiencia de los algoritmos y hemos puesto juntos aquellos que tienen el mismo.

Finalmente, para cada tabla comparativa hemos creado una gráfica.

Inserción 4,41 · 10 ⁻³ 1,73 · 10 ⁻² 3,95 · 10 ⁻² 6,77 · 10 ⁻² 0,1 0,15 0,2 0,27 0,34 0,42 0,51 0,6 0,71 0,83 0,94 1,07 1,23 1,37 1,53 1,7 1,87 2,04 2,42 2,64	Selección 5,4 · 10 ⁻³ 2,17 · 10 ⁻² 4,84 · 10 ⁻² 8,52 · 10 ⁻² 0,13 0,19 0,26 0,34 0,43 0,52 0,63 0,76 0,89 1,03 1,18 1,34 1,52 1,71 1,9 2,1 2,33 2,54 2,79 3,03 3,3	Algoritmos que son $O(n^2)$
Burbuja 8,02 · 10 ⁻³ 3,5 · 10 ⁻² 8,93 · 10 ⁻² 0,16 0,26 0,39 0,55 0,73 0,93 1,18 1,44 1,71 2,02 2,35 2,72 3,1 3,53 3,95 4,4 4,89 5,39 5,94 6,52 7,11 7,69	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	$4,41\cdot10^{-3}\\ 1,73\cdot10^{-2}\\ 3,95\cdot10^{-2}\\ 6,77\cdot10^{-2}\\ 0,1\\ 0,15\\ 0,2\\ 0,27\\ 0,34\\ 0,42\\ 0,51\\ 0,6\\ 0,71\\ 0,83\\ 0,94\\ 1,07\\ 1,23\\ 1,37\\ 1,53\\ 1,7\\ 1,87\\ 2,04\\ 2,24\\ 2,42$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Algoritmos de ordenación $O(n^2)$

Tamaño del vector (elementos)

Elementos 5,000 10,000 15,000 20,000 25,000 30,000 40,000 45,000 50,000 60,000 65,000 70,000 75,000 80,000 80,000 80,000 80,000 1.10 ⁵ 1,1.10 ⁵	Mergesort 8,02 · 10 ⁻⁴ 1,72 · 10 ⁻³ 2,5 · 10 ⁻³ 3,68 · 10 ⁻³ 5,15 · 10 ⁻³ 6,53 · 10 ⁻³ 7,83 · 10 ⁻³ 1,08 · 10 ⁻² 1,01 · 10 ⁻² 1,15 · 10 ⁻² 1,27 · 10 ⁻² 1,43 · 10 ⁻² 1,56 · 10 ⁻² 1,7 · 10 ⁻² 1,98 · 10 ⁻² 2,18 · 10 ⁻² 2,18 · 10 ⁻² 2,19 · 10 ⁻² 2,22 · 10 ⁻² 2,22 · 10 ⁻² 2,22 · 10 ⁻² 2,27 · 1	Quicksort 5,34 · 10 ⁻⁴ 1,12 · 10 ⁻³ 1,79 · 10 ⁻³ 2,36 · 10 ⁻³ 3,76 · 10 ⁻³ 4,63 · 10 ⁻³ 5,13 · 10 ⁻³ 6,55 · 10 ⁻³ 7,24 · 10 ⁻³ 8,58 · 10 ⁻³ 9,52 · 10 ⁻³ 1 · 10 ⁻² 1,16 · 10 ⁻² 1,25 · 10 ⁻² 1,4 · 10 ⁻² 1,4 · 10 ⁻² 1,4 · 10 ⁻² 1,5 · 10 ⁻	Heapsor 7,01 · 10 · 1,5 · 10 · 2,38 · 10 · 3,51 · 10 · 6,07 · 10 · 7,48 · 10 · 8,4 · 10 · 9,15 · 10 · 1,24 · 10 · 1,35 · 10 · 1,43 · 10 · 1,53 · 10 · 1,53 · 10 · 1,77 · 10 · 1,91 · 10 ·
80,000 85,000	$1,7 \cdot 10^{-2} \\ 1,84 \cdot 10^{-2}$	$1,08 \cdot 10^{-2} \\ 1,16 \cdot 10^{-2}$	1,53 · 10 1,69 · 10
95,000 1 · 10 ⁵	$2,18 \cdot 10^{-2} \\ 2,36 \cdot 10^{-2}$	$1,31 \cdot 10^{-2} \\ 1,4 \cdot 10^{-2}$	1,91 · 10 1,99 · 10
$1,1 \cdot 10^5$ $1,15 \cdot 10^5$	$\begin{array}{c} 2,2 \cdot 10^{-2} \\ 2,27 \cdot 10^{-2} \end{array}$	$1,54 \cdot 10^{-2} \\ 1,61 \cdot 10^{-2}$	2,26 · 10 2,3 · 10
$1,2 \cdot 10^5$ $1,25 \cdot 10^5$ $1,3 \cdot 10^5$	$2,42 \cdot 10^{-2}$ $2,54 \cdot 10^{-2}$ $2,68 \cdot 10^{-2}$	$1.7 \cdot 10^{-2}$ $1.77 \cdot 10^{-2}$ $1.84 \cdot 10^{-2}$	2,42 · 10 2,53 · 10 2,68 · 10 2,81 · 10
$1,35 \cdot 10^{5} \\ 1,4 \cdot 10^{5} \\ 1,45 \cdot 10^{5}$	$2,82 \cdot 10^{-2} 2,99 \cdot 10^{-2} 3,11 \cdot 10^{-2}$	$1,92 \cdot 10^{-2}$ $1,98 \cdot 10^{-2}$ $2,07 \cdot 10^{-2}$	2,9 · 10 ⁻ 3,16 · 10 ⁻

Algoritmos que son O(nlogn)

Elementos	Tiempo en segundos	
50	$7,41 \cdot 10^{-4}$	
100	$6,13 \cdot 10^{-3}$	
150	$2,05 \cdot 10^{-2}$	
200	$4,5 \cdot 10^{-2}$	
250	$8,92 \cdot 10^{-2}$	
300	0,15	
350	0,24	
400	0,35	
450	0,5	
500	0,68	
550	0,91	
600	1,17	
650	1,49	
700	1,9	Floyd
750	2,34	Floyu
800	2,88	
850	3,44	
900	4,07	
950	4,79	
1,000	5,57	
1,050	6,43	
1,100	7,44	
1,150	8,51	
1,200	9,63	
1,250	10,87	
1,300	12,27	
1,350	13,73	
1,400	15,51	
1,450	16,79	

Elementos	Tiempo en segundos	
5	$1\cdot 10^{-6}$	
6	$1\cdot 10^{-6}$	
7	$1\cdot 10^{-6}$	
8	$2\cdot 10^{-6}$	
9	$4 \cdot 10^{-6}$	
10	$7 \cdot 10^{-6}$	
11	$1,3 \cdot 10^{-5}$	
12	$2,7 \cdot 10^{-5}$	
13	$5,1\cdot 10^{-5}$	
14	$1\cdot 10^{-4}$	
15	$2\cdot 10^{-4}$	
16	$4,37 \cdot 10^{-4}$	
17	$8,23 \cdot 10^{-4}$	Hanoi
18	$1,58 \cdot 10^{-3}$	
19	$3,17 \cdot 10^{-3}$	
20	$6,45 \cdot 10^{-3}$	
21	$1,41\cdot 10^{-2}$	
22	$2,58 \cdot 10^{-2}$	
23	$5,24 \cdot 10^{-2}$	
24	0,1	
25	0,21	
26	0,41	
27	0,81	
28	1,62	
29	3,26	
30	6,51	

Comparativa de los algoritmos de ordenación

Recopilando los datos de todos los algoritmos de ordenación hemos realizado una tabla comparativa en la que se muestra qué algoritmo es el más eficiente.

Tiempo de ejecución (s)

Comparativa según optimización y sistema operativo

Hemos elegido un representante de cada orden de eficiencia, y hemos realizado una comparativa para analizar cómo varían los tiempos de ejecución según el sistema operativo y el nivel de optimización.

Representante de $O(n^2)$

Representante de $O(n^2)$

Comparación inserción en Linux con distinta optimización

Tamaño del vector (elementos)

Representante de $O(n \log n)$

Representante de $O(n \log n)$

Comparación quicksort en Linux con distinta optimización

Tamaño del vector (elementos)

Representante de $O(n^3)$

Representante de $O(n^3)$

Comparación floyd en Linux con distinta optimización

Tamaño del vector (elementos)

Representante de $O(2^n)$

Representante de $O(2^n)$

Comparación floyd en Linux con distinta optimización

Eficiencia híbrida

A continuación se recogen los gráficos que muestran tanto la eficiencia empírica como la función ajustada o eficiencia híbrida de cada algoritmo.

También se muestran, para cada algoritmo, las constantes ocultas en la expresión de la eficiencia teórica.

Burbuja

Tamaño del vector (elementos)

Inserción

Tamaño del vector (elementos)

Selección

Tamaño del vector (elementos)

Mergesort

Heapsort

Quicksort

Floyd

Tiempo de ejecución (s)

Tamaño del vector (elementos)

Hanoi

Tamaño del vector (elementos)