⑥ blog course discrete 《离散数学》术语、符号、概念速查

《离散数学》术语、符号、概念速查

2024年12月27日 3193字 15分钟

《离散数学》课程中符号繁多、术语晦涩,这里整理了一些常用的符号、概念定律,做个人复习使用,仅供参考,欢迎补充。

"解释"仅作为辅助记忆的个人理解,并非严格的数学定义,具体请参考ppt和教材。

复习时请一定要回归定义。

目录

- 集合
 - 基本
 - 二元关系
 - 函数
 - 基数
- 图论
 - 图的基本概念
 - 欧拉图与哈密顿图
 - 村
 - 支配集、覆盖集、独立集和匹配
 - 顶点着色
 - 边着色

1. 集合

1.1. 基本

符号/概念	含义	解释
A	集合	
$\operatorname{card}(A), A $	集合的基数	集合中元素的个数
P(A)	幂集	所有子集构成的集合
$A\cap B$	交	
$A \cup B$	并	
$A \oplus B$	对称差	
$\sim A, ar{A}$	补集	
$\bigcap A$	广义交	A子集的交集
$\bigcup A$	广义并	A子集的并集

1.2. 二元关系

1.2.1. 基础

符号	含义	解释
$\langle x,y angle$	有序对/序偶	
R	关系	$\{\langle x,y\rangle\mid x\in A,y\in B\}$
$A \times B$	笛卡尔积	$\{\langle x,y angle\}$
$A_1 \times A_2 \times \ldots \times A_n$	笛卡尔积	$\{\langle x_1, x_2,, x_n \rangle\}$
ϕ	空关系	
$A \times B$	全域关系	
I_A	恒等关系	$\{\langle x,x\rangle\mid x\in A\}$
${\rm Dom}\ R$	定义域	$\{x\}$
Ran R	值域	$\{y\}$
$\operatorname{Fld} R$	域	$\mathrm{Dom} R \cup \mathrm{Ran}\ R$
R^{-1}	逆	$\{\langle y,x angle\}$

符号	含义	解释
$R \circ S$	复合	$\{\langle x,y\rangle\}\circ\{\langle y,z\rangle\}=\{\langle x,z\rangle\}$
R^n	复合	R和自己复合n次
$R \mid A$	R在A上的限制	R中以 A 为定义域的关系
R[A]	A在 R 下的像	$\operatorname{Ran}(R \mid A)$; 定义域 A 对应的值域
$I_A\subseteq R$	自反性	包含恒等关系
$R \cup I_A = \varnothing$	反自反性	不包含 $\langle x,x angle$
$R = R^{-1}$	对称性	
$R\cap R^{-1}\subseteq I_A$	反对称性	有 $\langle x,y \rangle$ 则无 $\langle y,x angle$
$R = R^{-1}$	对称性	
$R\cap R^{-1}\subseteq I_A$	反对称性	有 $\langle x,y \rangle$ 则无 $\langle y,x \rangle$ (并非不对称)
$R \circ R \subseteq R$	传递性	

不自反≠反自反

不对称≠反对称

1.2.2. 偏序关系、等价关系、闭包

符号/概念	含义	解释
偏序关系		
$R_1 \preceq R_2$	偏序关系; $< x, y > \in \preceq$	即 x 和 y 可以比大小
y覆盖x		即 x 和 y 之间没有中间值
B是A上的链	$B\subseteq A$ 且任意 $x,y\in B$ 均可比	
B是A上的反链	$B\subseteq A$ 且任意 $x,y\in B$ 均不可比	
极小元、极大元、最小元、 最大元		字面意思

符号/概念	含义	解释
等价关系		
等价关系	R是A上的等价关系,R是自反、对 称、传递的	和三角形等价类比
$[x]_R, [x], \bar{x}$	x关于R的等价类	和 x 等价的元素的集合
$A \mid R$	A关于R的商集	A中所有R等价类的并集
划分		把A不重不漏地分割成若干子集,得到的集合
闭包		
r(R)	R的自反闭包	包含R的最小自反关系, $R \cup R^0$
s(R)	R的对称闭包	包含R的最小对称关系, $R \cup R^-1$
t(R)	R的传递闭包	包含R的最小传递关系, $R \cup R^1 \cup R^2 \cup$

1.3. 函数

符号/概念	含义	解释
F	函数	F为单射的二元关系
xFy	y为 F 在 x 的值	
像 A_1 在 F 下的像	A_1 对应的值域	
完全原像 B_1 在 F 下的完全原像	B_1 对应的定义均	菜
满射	$\mathrm{ran}(f) = B$ 任意 $y \in B$ 都有 a	$x \in A$ 使得 $y = F(x)$
单射	任意 $y \in B$ 都有	唯一 $x \in A$ 使得 $y = F(x)$
双射	既满射又单射 一一对应	
常函数、恒等函数 (严格)单调递增(递减)函数		

符号/概念	含义	解释
复合 $F \circ G$	G(F(x))(注意顺序)	
反函数 F^{-1}		

1.4. 基数

符号/概念	含义	解释
Approx B	等势	存在 A 到 B 的双射函数 A 和 B 能——对应
$A \preceq \cdot B$	优势	存在A到B的单射函数
$A \prec \cdot B$	真优势	优势且不等势
a^+	后继	$a \cup \{a\}$ a 的下一个数
7	有穷	与某个自然数等价
$\operatorname{card}(A) \ A $	基数	和 A 等势的自然数
\aleph_0	N的基数	
×	R的基数	
ī	可数	$\operatorname{card}(A) \leq \aleph_0$

2. 图论

2.1. 图的基本概念

2.1.1. 基本概念

符号/概念	含义	解释
基本概念		
A&B	无序积	$\{\{a,b\}\mid a\in A\wedge b\in B\}$

符号/概念	含义	解释
V, $V(G)$	yertex 顶点 集	
E, E(G)	^{Edge} 集	
v_i , e_i	顶点、边	
$n_{I}m$	顶点数、边数	
G	Graph 图	
D	pigraph 有问图	
$d_{G(v)}$	度	v的邻边次数和(自环算2)
$d_D^+(v)$	出度	v的邻接出边次数
$d_D^-(v)$	入度	v的邻接入边次数
$\delta(G)$	图的最小度	
$\Delta(G)$	图的最大度	
悬挂点		度为1的顶点
$N_{G(v)}$; $N_{D(v)}$	v的邻域	
$\overline{N_G}(v)$; $\overline{N_D}(v)$	v的闭邻域	$N(v) \cup \{v\}$
$I_{G(v)}$	v的关联集	与v相连的边集合
$\Gamma_D^+(v)$	v的后继元素	和自然数的后继一样用的加号
$\Gamma_D^-(v)$	v的先驱元素	
关联		自环关联次数为2,其他为1
重数		v到 w 边的个数
零图		无边的图
简单图		无自环、无平行边的图
多重图		边有重数的图
子图		图的一部分
生成子图		包含母图所有点的子图

符号/概念	含义	解释
$G[V_1]$	V_1 的导出子图	V_1 及 V_1 之间边构成的的子图
$G[E_1]$	E_1 的导出子图	E_1 及 E_1 关联顶点构成的的子图
图化		给出顶点的度数,构造图
$G_1\cong G_2$	同构	形状一样
无向完全图		任意两顶点间都有边
有向完全图		任意两顶点间有来有回
竞赛图		任意两顶点间有且仅有一条边
通路与回路		
Γ	通路	连接始点和终点的路径 是顶点和边的交替序列
回路		闭合通路
简单路径、简单回路		路径中边不重
初级路径、初级回路		路径中点、边不重 (初级比简单更低级)
复杂路径、复杂回路		路径中边重复 (点可重)
长度		通路中边的数目
短程线		最短通路
d(u,v)	u到 v 距离	短程线长度
连通		
$u \sim v$	u与 v 连通	无向图中 u,v 之间有通路 点和自己连通
连通分支		连通关系的等价类
p(G)	连通分支数	
点割集		删去后破坏连通性的点集

符号/概念	含义	解释
边割集		删去后破坏连通性的边集
极小点割集、边割集		刚好能破坏连通性 极小≠最小
割点		删去后破坏连通性的点
割边;桥		删去后破坏连通性的边
$\kappa(G)$	点连通度	最小点割集大小
$\lambda(G)$	边连通度	最小边割集大小
$v_i o v_j$	v_i 可达 v_j	有向图中 u 到 v 存在通路
$v_i \leftrightarrow v_j$	v_i, v_j 相互可达	有向图中 u,v 间存在通路
(弱)连通图		有向图的基图是连通图
单向连通图		有向图任意两点间有通路 (双向也算单向连通)
强连通图		有向图任意两点相互可达
$< V_1, V_2, E>$	二部图	G 的每条边两个端点分属于 V_1,V_2
V_1, V_2	互补顶点子集	
$K_{r,s}$	完全二部图	V_1 与 V_2 所有点相邻 $零图是二部图$

对所有概念:

1.

简单:边不重初级:点不重

• 复杂:边重

2.

• +:指出

• -:指入

3.

• 闭:包含自己

• 开:不包含自己

• 真:不和自己相等

2.1.2. 图的矩阵表示

符号/概念	含义	解释
M(G)	G的关联矩阵	$m_{ij} = v_i$ 与 e_j 关联次数
M(D)	D的关联矩阵	始点为1,终点为-1,不关联为0
A(D)	D的邻接矩阵	$m_{ij}=v_i$ 到 v_j 边数
P(D)	D的可达矩阵	$m_{ij} = v_i$ 可达 v_j

& Tip

矩阵	关系
关联	$v \rightarrow e$
邻接	v o v
可达	v o v

2.1.3. 图的运算

符号/概念	含义	解释
$G_1 \cup G_2$	G_1,G_2 的并图	都是先对边做集合运算,再把关联点加进去
G_1-G_2	G_1,G_2 的差图	
$G_1\cap G_2$	G_1,G_2 的交图	
$G_1 \oplus G_2$	G_1,G_2 的环合	

2.2. 欧拉图与哈密顿图

符号/概念	含义	解释
欧拉通路		经过所有边恰一次的通路
欧拉回路		经过所有边恰一次的回路
哈密顿图		具有哈密顿回路的图
半哈密顿图		具有哈密顿通路但无哈密顿回路的图
哈密顿通路		经过所有顶点恰一次的通路
哈密顿回路		经过所有顶点恰一次的回路
带权图	边有权值的	<u>图</u>

平凡图是欧拉图和哈密顿图

2.3. 树

2.3.1. 树的形心和中心

符号/概念	含义	解释
T	Tree 树	连通无回路的无向图
树叶		1度的顶点
分支点		非树叶的顶点
e(v)	树的顶点的离心率	其他点到 v 的最大距离
r(G)	树的半径	最小离心率
树的直径		最大离心率
树的中心点		离心率等于半径的顶点
树的中心		中心点的集合
顶点的分支		把这个顶点拿掉,剩下的连通分支

符号/概念	含义	解释
顶点的度数		分支的数目 (和图的度数一样)
顶点的权		分支中边的最大数目
顶点的形心点		权最小的顶点,同时也是度数最大的点
顶点的形心		形心点的集合

2.3.2. 生成树

符号/概念	含义	解释
生成树		T 是 G 的生成子图且是树
弦		不在生成树上的边
余树		弦组成集合的导出子图 (余树非树)
$G\setminus e$	收缩	把e的端点重合后形成的图
au(G)	生成树棵数	
基本回路		生成树加入一个弦后产生的回路
基本回路系统		所有弦对应基本回路的集合
$\xi(G)$	圏秩	$ \xi(G) $, $m-n+1$
基本割集		由一个树枝和许多弦构成的割集
基本割集系统		所有树枝对应基本割集的集合
$\eta(G)$	割集秩	$ \eta(G) $, $n-1$
根树		
根树		一个顶点入度为0,其余为1的有向树 和数据结构里的一样
树根、内点、树叶		
分支点		树根和内点
层数		树根到 v 的通路长度
树高		树的最大层数

符号/概念	含义	解释
r叉正则树		每个分支点恰好有r条边的树
r叉完全正则树		树叶层数相同的 r 叉正则树
最优二叉树		边权和最小的二叉树

层数从0开始,树根的层数为0

2.3.3. 平面图

符号/概念	含义	解释
平面嵌入		
面		
R_0	内部面	
R_1	外部面	
$\deg(R_i)$	面的次数	
Φ	面数	
极大平面图		再加边就不能平面嵌入
同胚		消去、增加二度点后同构
块图		没有割点的连通图
G的块		G的"极小的"子块图
基础简单图		去掉自环和平行边形成的图
对偶图		面→点,点→面
自对偶图		对偶图和自己同构

2.4. 支配集、覆盖集、独立集和匹配

符号	含义		解释
支配集			剩下点均与支配集中的点相连
点覆盖集			能覆盖所有边的点集
点独立集			不相邻的点的集
边覆盖集			能覆盖所有点的边集
M	匹配;边独立集		不相邻的边的集
γ_0	支配数		
$lpha_0$	点覆盖数		
β_0	点独立数		
$lpha_1$	边覆盖数		
eta_1	匹配数		
饱和点			M中有边与之关联
非饱和点			M中没有边与之关联
完美匹配			M与所有点关联
交错路径			在 M 与 $G-M$ 中交替取点形成的路径
可增广交铂	昔路径		起、重点_都是_非饱和点的交错路径
完备匹配			二部图中有一个点集都是M的饱和点
符号		含义	解释
支配集			剩下点均与支配集中的点相连
点覆盖集			能覆盖所有边的点集
点独立集			不相邻的点的集
边覆盖集			能覆盖所有点的边集
匹配;边狐	虫立集	M	不相邻的边的集
支配数		γ_0	
点覆盖数		$lpha_0$	

符号	含义	解释
点独立数	eta_0	
边覆盖数	$lpha_1$	
匹配数	eta_1	
饱和点		M中有边与之关联
非饱和点		M中没有边与之关联
完美匹配		M与所有点关联
交错路径		在 M 与 $G-M$ 中交替取点形成的路径
可增广交错路径		起、重点_都是_非饱和点的交错路径
完备匹配		二部图中有一个点集都是 M 的饱和点

V*、E*可能有多重含义,具体看上下文,可能指支配集、独立集等。

2.5. 顶点着色

符号/概念	含义	解释
地图		
国家		
两国家相邻		有公共边(点不算)
面着色		
k-面可着色		
$\chi^*(G)$	面色数	
<i>k</i> 色图		
$\Delta_2(G)$	次大度	有更大度邻居的点里度数最大的(并非次大)

点着色≅面着色

2.6. 边着色

符号/概念	含义	解释
正常边着色		邻边不同色
$\chi^*(G)$	边色数	
因子		至少含G一条边的生成子图
因子分解		把G分解边不重因子之并
k因子		G的 k 度正则因子