Módulo 2. Entrada/salida

Teclado Matricial

Guadalupe Miñana Ropero

Teclado matricial: Disposición hardware

- Array bidimensional de pulsadores (SB1 –SB16)
- Cuando se pulsa una tecla se establece continuidad eléctrica entre fila (J7i, i=1,2,3,4) y columna (J7j, j=5,6,7,8)
- En el teclado nosotros suponemos el valor de las teclas como están en la figura

Teclado matricial: Conexión con la placa y el S3C44B0X

- A diferencia de los controladores de E/S al uso, está lógica no dispone de registros de control, estado y configuración
- El teclado está conectado con la placa mediante un conector J7 y desde este conector a varios Cl

ec

Teclado matricial: Conexión con la placa y el S3C44B0X

- Al controlador del teclado se accede por las dirección del banco 3 de memoria
 - Rango de direcciones: 0x06000000 0x07FFFFFF
 - Si en el bus de direcciones se pone una dirección del banco 3 la señal NGCS3 se pone a "0" y por lo tanto activa el módulo U10
- Genera una interrupción por la línea 1 del controlador de interrupciones (EINT1)
 - Recordad que las señales EINTO-EINT7 las maneja el puerto G del controlador
 GPIO

Teclado matricial: Estado inicial

- En el bus de direcciones no hay una dirección del banco 3 de memoria
 - Módulo U10 desactivado
 - Módulo keyboard (J7)
 - pin 1= fila3, pin 2= fila2, pin 3= fila1, pin 4= fila0
 - pin 5= Columna3, pin 6= Columna2, pin 7= Columna1 y pin 8= Columna0

Teclado matricial: Si se pulsa una tecla

En la situación anterior si se pulsa una tecla se produce una interrupción

Teclado matricial: Si se pulsa una tecla

- Si se pulsa una tecla se genera una interrupción por EINT1
- Una vez detectada la interrupción comienza a ejecutarse la RTI
 - Esta subrutina tiene que identificar la tecla pulsada
 - Para averiguar qué tecla ha sido pulsada usamos la técnica de Scanning :
 - 1. Poner a "0" una fila y a "1" el resto de filas
 - 2. Leer el valor que tienen las columnas. Hay alguna columna a "0"?
 - Sí. Tecla identificada → la correspondiente a la fila y la columna con valor "0"
 - No → volver al paso 1

ec

Técnica scanning

- Para poner un determinado valor en las filas del teclado hay que usar el módulo U10
 - Para activar el módulo U10 la dirección del bus tiene que pertenecer al rango del banco 3 de memoria (0x06000000 – 0x07FFFFFF)
 - Vamos a usar la primera dirección → 0x06000000
 - En los bits A4, A3, A2 y A1 (A0 vale 1 en este circuito) del bus de direcciones se pone el valor que queremos dar a las filas
 - Luego para poner:
 - Un cero en la fila 0: A4=1, A3=1, A2=1, A1= 0 \rightarrow 0x06000000 + 0xFD
 - Un cero en la fila 1: A4=1, A3=1, A2=0, A1= 1 → 0x060000000 + 0xFB
 - Un cero en la fila 2: A4=1, A3=0, A2=1, A1= 1 → 0x06000000 + 0xF7
 - Un cero en la fila 3: A4=0, A3=1, A2=1, A1=1→ 0x06000000 + 0xEF
- Para leer el valor que hay en las columnas hay que leer los bits del módulo U10 que están conectados el bus de datos (D0-D3)
 - Si D3=0, D2=1, D1=1 y D0= 1 (0x7) → Columna 0
 - Si D3=1, D2=0, D1=1 y D0= 1 (0xB) → Columna 1
 - Si D3=1, D2=1, D1=0 y D0= 1 (0xD) → Columna 2
 - Si D3=1, D2=1, D1=1 y D0= 0 (0xE) → Columna 3
 - Si D3=1, D2=1, D1=1 y D0= 1 (0xF) → No se ha pulsado ninguna tecla

Técnica scanning

Valores del bus de	Valores del bus de datos						
dirección 0x06000000 +	0x7	0xB	0xD	0xE	0xF		
0xFD	SB1	SB5	SB9	SB13	-		
0xFB	SB2	SB6	SB10	SB14	-		
0xF7	SB3	SB7	SB11	SB15	-		
0xEF	SB4	SB8	SB12	SB16	_		

Tecla identificada

ec

Técnica scanning: Detección de tecla (SB16)

- Poner a "0" la fila cero y a "1" el resto \Rightarrow 0x06000000 + 0xFD char temp = *(0x06000000 + 0xFD)
- Leer el valor que tienen las columnas y comparar con 0x7, 0xB, 0xD, 0xE

Técnica scanning: Detección de tecla (SB16)

- Poner a "0" la fila cero y a "1" el resto \rightarrow 0x06000000 + 0xFB
 - char temp = *(0x06000000 + 0xFB)
- Leer el valor que tienen las columnas y comparar con 0x7, 0xB, 0xD, 0xE

Técnica scanning: Detección de tecla (SB16)

- Poner a "0" la fila cero y a "1" el resto \rightarrow 0x06000000 + 0xF7 char temp = *(0x06000000 + 0xF7)
- Leer el valor que tienen las columnas y comparar con 0x7, 0xB, 0xD, 0xE

Técnica scanning: Detección de tecla (SB16)

- Poner a "0" la fila cero y a "1" el resto \rightarrow 0x06000000 + 0xEF char temp = *(0x06000000 + 0xEF)
- Leer el valor que tienen las columnas y comparar con 0x7, 0xB, 0xD, 0xE

Rebotes al pulsar una tecla

- ¿Cómo evitar los rebotes que se producen al pulsar una tecla?
 - Rebotes de presión
 - Al entrar en la RIT que trata el teclado hay que esperar un tiempo antes de efectuar la identificación de tecla
 - Rebotes de depresión
 - Antes de salir de la RTI que trata el teclado
 - Esperar hasta que se detecte que se ha liberado la tecla pulsada
 - Esperar un tiempo

void keyboard_ISR (void)

- Función para tratar la interrupción del teclado, sigue el siguiente esquema:
 - Esperar 20ms para eliminar los rebotes de presión
 - Escanear el teclado utilizando la función int kb scan (void)
 - Poner en el display la tecla
 - Cambiar la configuración del timer 0 para que la generación de interrupciones periódicas tenga un periodo distinto en función de la tecla pulsada:
 - Tecla 0: periodo de 2s, valor de cuenta 62500 y divisor 1/8
 - Tecla 1: periodo de 1s, valor de cuenta 31250 y divisor 1/8
 - Tecla 2: periodo de 0.5s, valor de cuenta 15625 y divisor 1/8
 - Tecla 3: periodo de 0.25s, valor de cuenta 15625 y divisor ¼
 - Resto de teclas: no cambiaremos la configuración del timer
 - Esperar a que se deje de presionar la tecla leyendo el bit 1 del registro de datos del puerto G
 - No se puede usar la función portG_read() porque sólo está implementada para los botones
 - Leer directamente el registro de datos del puerto G
 - Esperar 20ms para eliminar rebotes de depresión.
 - Borrar el flag de interrupción por la línea EINT1

Conexión del teclado

Pulsadores

- Existen 2 botones (pulsadores)
- Accesibles a través del puerto G

Puerto G

- Registro de datos: PDATG
- Registro de configuración: PUPG
 - Permite activar o no una resistencia de pull-up1 por cada pin
- Registro de control: PCONG
 - Permite configurar los pines para
 - Ser de entrada
 - Ser de salida
 - Activar una petición de interrupción por las líneas EINT* del controlador de interrupciones

poner 0 para activar la resistencia

--

Bit 14	Bit 13	12	Bit Bit 3 2

00 para configurar el pin como entrada 11 para activar interrupción EINT 6, 7 o 1 (línea 21) si se pulsa alguno de los botones (línea 24) si se pulsa alguna tecla

Registro	Dirección	R/W	Descripción	Valor por defecto
PCONG	0x01D20040	R/W	Configuración pines	0x0
PDATG	0x01D20044	R/W	Datos	Undef
PUPG	0x01D20048	R/W	Deshabilitar pull-up	0x0