

电工电子教学实验中心

学生实验报告

课程名称:	电工学B实验
实验名称:	日光灯电路功率因数的提高
学生姓名:	
学 号:	
同组人:	实验日期:

成 绩:_____

批阅教师:_____

预习报告

一、实验原理

1、了解本次实验的内容和步骤,熟悉日光灯电路的组成及工作原理的内容。

日光灯电路中,由于镇流器具有很大的电感,故日光灯电路的功率因数_____,为提高电路的功率因数,通常在日光灯电路两端 电容器。

2、复习并联电路电压和电流的相量关系及提高功率因数的意义和方法。

在正弦交流电路中,一个无源二端网络(通常指负载). 如图 2—la 所示,其吸收的有功功率 P一般不等于视在功率 S,只有对纯电阻网络两者才能相等. 只要网络中存在电抗,电路中就存在磁场能量或电场能量与电源能量之间的交换过程. 有功功率与视在功率的关系为 $P=UI\cos \phi = S\cos \phi$ 式中, $\cos \varphi$ 称为______, φ 是______,即负载的阻抗角。 φ 越大, $\cos \varphi$ 越____。

图 1 无源二端口网络及提高功率因数的方法

问题 1: 提高功率因数的意义?

问题 2: 提高功率因数的方法?

问题 3: 提高功率因数时所需并联电容器的电容值如何计算?

由图 1-C 所示相量图得出,设将功率因数从 $\cos \varphi_1$ 提高到 $\cos \varphi$,则所需电容值:

$$C = \frac{P}{\omega U^2} (tg\varphi_1 - tg\varphi)$$

二、实验电路

图 2 为实验基本电路,为了测量电流方便,预留三个插孔,如图所示。

图 2 实验基本电路图

实验二 日光灯电路功率因数的提高

一、实验目的

- 1、熟悉掌握提高功率因数的方法,理解提高功率因数的实际意义。
- 2、掌握电压表、电流表、功率表、功率因数表的使用方法。
- 3、理解正弦交流电路中电压、电流的相量关系。

二、实验仪器设备

名称	型号或规格	数量	用途(请填写)
交流电流表	0—5A	1	
交流电压表	0—500V	1	
功率因数功率表		1	
实验台		1	
电容箱	0~4.7 μ F	1	
电流表插头		2	
带插头导线		若干	

三、实验内容

- 1.按照图 2 电路接线图连接好电路。启动电源,调节启辉器,使灯管点亮。
- 2.并联电容提高电路功率因数。

表 2—2

电容值	测量值				计算值	
C/ µ F	U/V	I/A	I_c/A	I_1/A	P/W	$\cos \varphi = \frac{P}{UI}$
1						
2.2						
4.7						
6.9						

四、实验结果分析

$$I_c I_1$$

- 1、讨论并联中总电流 I 与各部分电流 , 的关系与直流电路有何不同?
- 2、分析根据并联电容值的增大各电流,功率因数,有功功率是否变化?怎样变化?

五、实验结论

- 1、电流有效值的代数和等于零是否成立?电流相量的代数和等于零是否成立?
- 2、在电感性负载两端并联电容是否能使功率因数提高?为什么?所并的电容器是否越大越好?串联电容行不行?为什么?

原始数据

*实验注意事项

- 1、必须注意安全,严禁带电换接导线,送电时必须通知同组人。
- 2、正确联接日光灯电路,镇流器必须与灯管相串联,否则会烧坏灯管。
- 3、日光灯的启动电流较大,启动时要注意电流表及功率表电流线圈的量程,以防损坏仪表。

表 2—2

			7 -			
电容值	测量值				计算值	
C/ µ F	U/V	I/A	I_c/A	I_1/A	P/W	$\cos \varphi = \frac{P}{UI}$
1						
2.2						
4.7						
6.9						

实验结果分析

实验结论