Contents

1	Unique Factorization	3
1.1	Class Notes 17-01-12	3
1.2	Unique Factorization in $\mathbb Z$	5
1.3	Class Notes 17-01-12	6

Chapter 1

Unique Factorization

1.1 Class Notes 17-01-12

For us, ring means commutative ring with identity.

Definition 1.1.1 A ring is a set with two binary operations $(+,\cdot)$ satisfying

- 1. (R, +) is an abelian group, which means
 - ullet + is commutative and associative.
 - $\exists 0_R, a + 0_R = 0_R + a \text{ for all } a \in R.$
 - Given $a \in R$, $\exists a' \in R$ such that $a + a' = 0_R$.
- $2.\,\,\cdot$ is commutative and associative.

 $\exists \ 1_R \text{ such that } a \cdot 1_R = 1_R \cdot a = a \text{ for all } a \in R.$

- $3.\,\,\cdot$ is distributive over addition, which means
 - $a \cdot (b+c) = a \cdot b + a \cdot c$
 - $\bullet \ (a+b) \cdot c = a \cdot c + b \cdot c$

Exercise 1.1.1

1. Show that $a + b = a + c \Rightarrow b = c$. (Cancellation)

Proof.

$$a+b=a+c \Leftrightarrow a'+(a+b)=a'+(a+c)$$

$$\Leftrightarrow (a'+a)+b=(a'+a)+c$$

$$\Leftrightarrow 0_R+b=0_R+c$$

$$\Leftrightarrow b=c$$

2. Show a' is unique. We denote this a' by -a.

Proof. if the statement doesn't hold, then there exist a', a'' such that $a + a' = 0_R = a + a''$. We then apply cancellation and get a' = a''.

3. Show 0_R is unique.

Proof. Say there are two zero element 0_R and $0'_R$, then we have

$$0_R = 0_R + 0_R' = 0_R'$$

4. Show 1_R is unique.

Proof. Say there are two unit element 1_R and $1'_R$, then we have

$$1_R = 1_R \cdot 1_R' = 1_R'$$

5. Show $a \cdot 0_R = 0_R \cdot a = 0_R$

Proof. We know that $a \cdot 0_R + a = a \cdot (0_R + 1_R) = a \cdot 1_R = a = 0_R + a$, apply cancellation then we are done.

6. Show that $(-1_R) \cdot a = -a$.

Proof. Since
$$a \cdot 0_R = 0_R$$
, we have $a \cdot (1_R + (-1_R)) = 0_R$ or $a + (-1_R) \cdot a = 0_R$. Then $-a = (-1_R) \cdot a$, for a' is unique.

7. The zero ring is the ring with 1 element. Show R is zero ring $\Leftrightarrow 1_R = 0_R$.

Proof.

" \Rightarrow ": Trivial.

" \Leftarrow ": Since we have $a \cdot 1_R = 1_R \cdot a = a$ for all $a \in R$ and $1_R = 0_R$, we have $0_R = a \cdot 0_R = a$ for all $a \in R$.

8. Does cancellation hold for \cdot ?

Sol. No. Consider $a \cdot b = a \cdot c$ and $a \neq 0_R$, then $a \cdot (b - c) = 0_R$. So if R is an integral domain, then we can apply cancellation of non-zero element.

Definition 1.1.2 R is said to be an *integral domain* if

$$a \cdot b = 0 \iff a = 0 \text{ or } b = 0.$$

Definition 1.1.3 R is said to be a field if every non-zero element in R has a multiplication inverse.

Exercise 1.1.2

- 1. If R is an integral domain, then we can apply cancellation of non-zero element.
- 2. Show that every field is an integral domain.

Proof. If
$$a \cdot b = 0$$
 and $a \neq 0_R$, let a' be the multiplication inverse of a , then $b = 1_R \cdot b = a' \cdot a \cdot b = a' \cdot 0_R = 0$.

3. Check that a^{-1} is unique.

Proof. If a^{-1} and a' are both multiplication inverse of a, then $a \cdot a^{-1} = a \cdot a' = 1_R$. Apply cancellation of non-zero element, we have $a' = a^{-1}$.

Remark 1.1.1 Though every field is an integral domain, not every integral domain is a field. For example, \mathbb{Z} is an integral domain but not a field.

Ways to make new rings:

Let R be an integral domain, how to construct a new ring?

Let $K = \{(a,b), a,b \in R, b \neq 0\}$. We also define an equivalent relation $(a,b) \sim (c,d)$ if ad = bc.

- Check this is an equivalent class.
 - -(a,b) = (a,b)
 - if $(a,b) \sim (c,d)$ and $(c,d) \sim (e,f)$, then $(a,b) \sim (e,f)$
- We define

$$- (a,b) + (c,d) = (ad + bc.bd) - (a,b) \cdot (c,d) = (ac,bd)$$

Check these two operation pass to equivalent class.

• $0_K = [(0, 1_R)], 1_K = [(1_R, 1_R)]$

Definition 1.1.4 If R, S are two rings, a homomorphism $\phi: R \to S$ is a map such that

- 1. $\phi(1_R) = 1_S$.
- 2. $\phi(a+b) = \phi(a) + \phi(b)$.
- 3. $\phi(ab) = \phi(a)\phi(b)$.

An isomorphism is a homomorphism that is both injective and surjective.

 $\phi: R \to S, a \mapsto [(a, 1_R)]$ is an injective homomorphism. For example, we have $\mathbb{Z} \subset \mathbb{Q}$.

Remark 1.1.2 If R is a field, then the homomorphism is isomorphism, i.e., ϕ is also surjective. Because for any $[(a,b)] \in K$, we have $\phi(ab^{-1}) = [(ab^{-1},1)] = [(a,b)]$.

Ways to kill elements:

Definition 1.1.5 An ideal I in R is a non-empty subset such that

- 1. I is closed under addition.
- 2. I is closed under multiplication by arbitrary elt in R.

Note that $(I, +) \subset (R, +)$ is an abelian subgroup.

■ Example 1

- (0) is an ideal.
- R itself is an ideal.
- if $a \in R$, the $R \cdot a$ is an ideal, denoted by $(a)_R$.
- $n\mathbb{Z}$ is an ideal in \mathbb{Z} .

Quotient Ring: Let $I \subset R$ be an ideal. $R/I = \text{coset of } I \text{ in } R = \{a+I, a \in R\}$, we define

- 1. $(a+I) \oplus (b+I) = (a+b) + I$.
- 2. $(a+I) \odot (b+I) = ab + I$.

with zero elt (0+I) and identity elt (1+I).

1.2 Unique Factorization in \mathbb{Z}

It will be more convenient to work with \mathbb{Z} rather than restricting ourselves to the positive integers. The notion of divisibility carries over with no difficulty to \mathbb{Z} . If p is a positive prime, -p will also be a prime. We shall not consider 1 or -1 as primes even though they fit the definition. This is simply a useful convention. They are called the units of \mathbb{Z} .

There are a number of simple properties of division that we shall simply list.

- 1. $a|a, a \neq 0$.
- 2. If a|b and b|a, then $a = \pm b$.
- 3. If a|b and b|c, then a|c.
- 4. If a|b and a|c, then a|(b+c).

Lemma 1 Every nonzero integer can be written as a product of primes.

Theorem 1.2.1 For every nonzero integer n there is a prime factorization

$$n = (-1)^{\varepsilon(n)} \prod_{p} p^{a(p)},$$

with the exponents uniquely determined by n. In fact, we have $a(p) = \operatorname{ord}_{n} n$.

The proof if this theorem if is not as easy as it may seem. We shall postpone the proof until we

have established a few preliminary results.

Lemma 2 If $a, b \in \mathbb{Z}$ and $b \geq 0$, there exist $q, r \in \mathbb{Z}$ such that a = qb + r with $0 \leq r < b$.

Definition 1.2.1 If $a_1, a_2, \ldots, a_n \in \mathbb{Z}$, we define (a_1, a_2, \ldots, a_n) to be the set of all integers of the form $a_1x_1 + a_2x_2 + \cdots + a_nx_n$ with $x_1, x_2, \ldots, x_n \in \mathbb{Z}$.

Remark 1.2.1 Let $A = (a_1, a_2, ..., a_n)$. Notice that the sum and difference of two elements in A are again in A. Also, if $a \in A$ and $r \in \mathbb{Z}$, then $ra \in A$, i.e., A is an ideal in the ring \mathbb{Z}

Lemma 3 If $a, b \in \mathbb{Z}$, then there is a $d \in \mathbb{Z}$ such that (a, b) = (d)

Definition 1.2.2 Let $a, b \in \mathbb{Z}$. An integer d is called a greatest common divisor of a and b if d is a divisor of both a and b and if every other common divisor of a and b divides d.

Remark 1.2.2 The gcd of two numbers, if it exists, is determined up to sign.

Lemma 4 Let $a, b \in \mathbb{Z}$. If (a, b) = (d) then d is a greatest common divisor of a and b.

Definition 1.2.3 We say that two integers a and b are relatively prime if the only common divisors are ± 1 , the units.

It's fairly standard to use the notation (a, b) for the greatest common divisor of a and b. With this convention we can say that a and b are relatively prime if (a, b) = 1.

Proposition 1.2.2 Suppose that a|bc and that (a,b)=1. Then a|c.

Corollary 1.2.3 If p is a prime and p|bc, then either p|b or p|c.

Corollary 1.2.4 Suppose that p is a prime and that $a, b \in \mathbb{Z}$. Then $\operatorname{ord}_p ab = \operatorname{ord}_p a + \operatorname{ord}_p b$.

1.3 Class Notes 17-01-12

Definition 1.3.1 A non-zero element in \mathbb{R} is called a unit if $\exists v \in \mathbb{R}$ such that $uv = 1_{\mathbb{R}}$.

Definition 1.3.2 Two element $a, b \in \mathbb{R}$ are said to be associative if $\exists a \in \mathbb{R}$ such that a = bu, denoted by $a \sim b$.

Definition 1.3.3 A non-zero element π in \mathbb{R} is said to be irreducible if π is not a unit and if $a|\pi \Rightarrow a$ is a unit or a is associative of π .

Definition 1.3.4 A non-zero element in \mathbb{R} is said to be prime if π is not a unit and $\pi|ab \Rightarrow \pi|a$ or $\pi|b, \forall a, b \in \mathbb{R}$.

Proposition 1.3.1 If π is a prime, then π is irreducible.

Proof. Let π be a prime, suppose $a|\pi$, then $\pi = ab$ for some $b \in \mathbb{R}$. Thus $\pi|ab$ and by definition, $\pi|a$ or $\pi|b$.

- If $\pi|a$, then $a \sim \pi$.
- If $\pi|b$, then $a \sim 1$.

1.3 Class Notes 17-01-12

7

Remark 1.3.1 A irreducible is not necessary to be a prime.

Let $R = \mathbb{Z}[\sqrt{5}] = \{a + b\sqrt{-5} \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$. We have

$$6 = 2 \cdot 3 = (1 + \sqrt{-5}) \cdot (1 - \sqrt{-5}).$$

We write $\pi = (1 + \sqrt{-5})$ and claim that $2, 3, \pi, \overline{\pi}$ are irreducibles but none of them are associative of each other.

We define the norm function $N: R \to \mathbb{Z}$, where $N(\alpha) = \alpha \overline{\alpha}$, i.e., if $\alpha = a + bi$, then $N(\alpha) = a^2 + 5b^2$. We notice that

- If $\alpha > 0$, then $N(\alpha) > 0$.
- $N(\alpha\beta) = N(\alpha)N(\beta)$.

Check: 2 is irreducible:

Find unit:

 $N(uv) = N(1) = 1 = N(u)N(v) \Rightarrow N(u) = N(v) = 1$. But $a^2 + 5b^2 = 1 \Rightarrow a = \pm 1, b = 0$. Suppose $2 = \alpha\beta$, then $4 = N(2) = N(\alpha\beta) = N(\alpha)N(\beta)$.

1. If $N(\alpha) = 1, N(\beta) = 4$

Then α is a unit \Rightarrow 2 is irreducible.

2. If $N(\alpha) = 2, N(\beta) = 2$

Then $a^2 + 5b^2 = 2$ has no solution.

Definition 1.3.5 An UFD (Unique Factorization Domain) is an integral domain R in which every non-zero element (up to unit) factors uniquely into a product of irreducibles.

Proposition 1.3.2 Let R be a domain in which factorization (of irreducibles) exists. Then R is a $UFD \Leftrightarrow every \ irreducible \ in \ R$ is prime.

Proof.

" \Leftarrow ": Let a be an element of R and $a \neq 0$. If $a = \pi_1 \pi_2 \cdots \pi_n = \sigma_1 \sigma_2 \cdots \sigma_m$ are two factorizations. Since π_1 is prime, $\pi_1 | \sigma_i$ for some i. By rearranging, we may assume $\pi_1 | \sigma_1$, Thus $\pi_1 \sim \sigma_1$. Repeating this process, we can conclude that the two factorizations are the same.

******Not Complete*****

Remark 1.3.2 There are clearly rings such that no factorization exists. For example, consider the ring $\mathbb{Z}[2^{1/2}, 2^{1/4}, 2^{1/8}, \ldots] \subset \mathbb{R}$. It's the smallest subring of \mathbb{R} that contains $2^{1/2}, 2^{1/4}, \ldots$

Definition 1.3.6 A ring R is said to be noetherian if it satisfies any of the following equivalent conditions:

- 1. Any ascending chain of ideals in R terminates. Namely, $I_1 \subset I_2 \subset I_3 \subset \cdots \Rightarrow I_n = I_{n+1} = \cdots$ for some n.
- 2. Any ideal I in R is finite generated. Namely, $I = (a_1, \ldots, a_n)$ for some n.

Proof.

"1. \Rightarrow 2.": Let I be an ideal, if $I \neq 0$, pick $a_1 \in I$, $a_1 \neq 0$, clearly $(a_1) \subset I$. If $(a_1) = I$, we are done, If not, $\exists a_2 \in I \setminus (a_1) \Rightarrow (a_1, a_2) \subset I$, this chain terminates.

"1. $\Leftarrow 2$.": Suppose $I_1 \subset I_2 \subset \ldots$ be an ascending ideal. Let $I = \cup I_n$, we claim that I is an ideal. Let $a, b \in I$, then there exists n such that $a, b \in I_n$. Therefore $a + b \in I_n$, and $a + b \in I$. Let $a \in I$, then $a \in I_n$ for some n. Therefore $ra \in I_n \implies ra \in I$. Thus I is an ideal. But $I = (a_1, \ldots, a_m)$, so there exists n, such that $a_1, \ldots, a_m \in I_n$. Thus $I = I_n$ and $I_n = I_{n+1} = \cdots$.

Exercise 1.3.1 Suppose R is a Noetherian domain, show R admits factorizations.

Proof. If b is not irreducible, then b = ac or $(b) \subset (a)$

******Not Complete*****

Definition 1.3.7 A PID (Principle Ideal Domain) is a domain in which every ideal is generated by a single element.

Theorem 1.3.3 Every PID is a UFD.

Proof. Let R be a PID, then it's noetherian. So factorizations exist. So it suffices to show that every irreducible is a prime. Let π be a irreducible in R. Suppose $\pi \mid ab$ and a is not divided by π . We look at $I = (a, \pi)$, there exists $c \in R$, such that I = (c). Thus we have $c \mid \pi, c \mid a$. So $c \sim 1$ or $c \sim \pi$. Since c is not associative of π , c is associative of 1. But then

$$1 = ax + \pi y$$

for some $x, y \in R$. So $b = abx + \pi by$ or $\pi \mid b$.