		-
	\int_{ce}^{c} $\sqrt{\zeta} = \sqrt{\zeta}$	
+(n)	$cre_{2}+T(n-1)$ $n > 1$	
coonsin cous	que n>1	-
Paso (1)	cte2 + T (N-1)	
P050 (2)	crez + [crez + T(N-z)] =	
	= zczez + T (n-z)	
Pa.50 (3)	crez + (crez +T(n-3)] =	
	3 cre z +T(7-3)	
Paso i (paso		
T(n) =	i.cte2 + T(n-i)	
2200 0200		
	-i <= 1 - n	
	1 >= h - 1	
reempla zo i		
(n-1).	crez + T (n-(n-1)) =	
= (n-1) c		
O (N)		
	Fscaneado con CamScanner	

Escaneado con CamScanner

suponiendo que Paso 1 2 + T(N-1) + arz 2 * / 2 * + (N-2) + ctez] Po € = 4 T (N-2) +3 xez P000 (3) 4 [2 * T (N-3) + xez +3xez = = 8 + (n-3) + 4 crez B 2+ + (n-4) + crez + 4 ctez Poso (4) 16 7 (n-4) + 15 crez 2^{i} . \top (n-i) + $(2^{i}-1)$. αe_{2} Caso base n-i/= 1 -i /= 1- M i >= n-1 reemplazo i . T (n-(n-1)) + (2n-1-1) crez

$$= \left(\frac{2^{n-1}}{2}\right), \quad \cot \left(\frac{1}{2}\right) + \left(\frac{2^{n-1}}{2}\right), \quad \cot \left(\frac{1}{2}\right), \quad \cot \left(\frac{1}{2}\right) + \left(\frac{2^{n-1}}{2}\right), \quad \cot \left(\frac{1}{2}\right), \quad \cot \left(\frac{$$