

MATHEMATICA, TENSOR NETWORKS, MERA AND ENTANGLEMENT

TOWARDS HOLOGRAPHY FROM THE FIELD THEORY SIDE

Wilke van der Schee

Mathematica School, PI, August 2015

OUTLINE

MERA, entanglement and AdS/MERA

- Tensor networks and contractions
- Entanglement on a slice of AdS?
- Goal: do MERA computations, and make AdS/MERA quantitative
 - →get simple MERA example + routines and do exercises

Frequently used Mathematica

- Making and using packages
- NDSolve and/or spectral methods
- Transforming functions/coordinate transformations

MULTISCALE ENTANGLEMENT RENORMALISATION ANSATZ (MERA)

MPS correlations/entanglement requires larger χ Choose different *ansatz* to incorporate RG flow:

Disentanglers and coarse grainers (ternary)

Extra advantage: scale invariance is very natural!

FUN FACT: TENSOR CONTRACTIONS NP COMPLETE

Algorithm depends crucially on `efficiently contractible'

Much harder for 2 dimensions (i.e. χ^{16} or χ^{23})

NCON FUNCTION

Idea: contract sequentially, contracting two tensors at a time:

EXAMPLE: CORRELATORS IN MERA

Choose operators at smart locations

Simplify ©

EXAMPLE: CORRELATORS IN MERA

Add reduced density matrix (green)

