PCT/DE 95 / 00775

BUNDE EPUBLIK DEUT CHLAND

08/765244

REC'D 03 JUL 1995 WIPO PCT

Bescheinigung

Herr Dr. rer.nat. Peter S e i b e 1 und Frau

Andrea S e i b e 1 , beide in 97320 Albertshofen,
haben eine Patentanmeldung unter der Bezeichnung

"Chimäres Peptid-Nukleinsäure-Fragment, Verfahren zu seiner Herstellung und Verfahren zur zielgerichteten Nukleinsäureeinbringung in Zellorganellen und Zellen"

am 16. Juni 1994 beim Deutschen Patentamt eingereicht.

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

Die Anmeldung hat im Deutschen Patentamt vorläufig die Symbole C 12 N 15/63, C 12 N 15/79, C 12 N 15/11, C 12 N 15/10 und A 61 K 48/00 der Internationalen Patentklassifikation erhalten.

München, den 29. Juni 1995

Der Präsident des Deutschen Patentamts

Im Auftrag

Mackus

Akte e chen: <u>P 44 21 079.5</u>

Zusammenfassung

Um Erbgut zielgerichtet in Zellorganellen einzuführen, wird die entsprechende Nukleinsäure an ein zell-, kompartiment- oder membranspezifisches Peptid gebunden. Unter Ausnutzung der natürlichen Proteintransportwege wird die Nukleinsäure von dem Peptid zum Zielkompartiment dirigiert und durch die Membran (das Membransystem) transportiert. Das ermöglicht Verfahren durch beliebige Kombination von Nukleinsäuren kompartimentspezifischen Proteinsequenzen die zielgerichtete Einbringung Nukleinsäuren in Zellen und Zellorganellen und damit die Verwendung dieses Systems sowohl in der zielgerichteten Mutagenese als auch zur molekularen Therapie genetischer Erkrankungen.

Chimäres Peptid-Nukleinsäure-Fragment, Verfahren zu seiner Herstellung und Verfahren zur zielgerichteten Nukleinsäureeinbringung in Zellorganellen und Zellen

Diese Erfindung betrifft ein chimäres Peptid-Nukleinsäure-Fragment, ein Verfahren zu seiner Herstellung und ein Verfahren zur zielgerichteten Einbringung von Nukleinsäuren in Zellorganellen und Zellen.

Es ist bekannt, daß zelluläre Membransysteme weitestgehend impermeabel für Nukleinsäuren sind. Durch physikalische Prozesse (Transformation) und biologische Vorgänge (Infektion) können Zellmembranen aber sehr effizient überwunden werden. Der Transformation, also dem unmittelbaren Aufnehmen der nackten Nukleinsäure durch die 10 Zelle geht eine Behandlung der Zellen voraus. Unterschiedliche Methoden zur Erzeugung dieser 'kompetenten Zellen' stehen zur Verfügung. Die meisten Verfahren basieren auf den Beobachtungen von Mandel und Higa (M. Mandel et al. (1970), "Calcium-dependent bacteriophage DNA infection", J. Mol. Biol. 53: 159-162), die erstmals zeigen konnten, daß die Ausbeuten bei der Aufnahme von Lambda-DNA durch Bakterien in Gegenwart 15 von Calciumchlorid ganz wesentlich gesteigert werden. Diese Methode ist erstmals auch von Cohen et al. (S.N. Cohen et al. (1972), "Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA", Proc. Natl. Acad. Sci. U. S. A. 69: 2110-2114) für Plasmid-DNA erfolgreich eingesetzt und durch viele Modifikationen verbessert worden (M. Dagert et al. (1979), "Prolonged incubation in 20 calcium chloride improves the competence of Escherichia coli cells", Gene 6: 23-28). Eine andere Transformationsmethode beruht auf der Beobachtung, daß hochfrequente Wechselstromfelder Zellmembranen aufbrechen können (Elektroporation). Diese Technik läßt sich ausnutzen, um nackte DNA nicht nur in prokaryotische Zellen, sondern auch in eukaryotische Zellsysteme einzuschleusen (K. Shigekawa et al. (1988), "Electroporation of 25 eukaryotes and prokaryotes: a general approach to the introduction of macromolecules into cells", Biotechniques 6: 742-751). Zwei sehr sanfte Methoden zur DNA-Einbringung in eukaryotische Zellen wurden von Capecchi (M.R. Capecchi, (1980), "High efficiency transformation by direct microinjection of DNA into cultured mammalian cells", Cell 22:

479-488) und Klein et al. (T.M. Klein et al. (1987), "High velocity microprojectiles for delivering nucleic acids into living cells", Nature 327: 70-73) entwickelt: sie beruhen einmal auf der direkten Injektion der DNA in die einzelne Zelle (Mikroinjektion), sowie auf der Beschießung einer Zellpopulation mit Mikroprojektilen aus Wolfram, an deren 5 Oberfläche die betreffenden Nukleinsäure gebunden wurde ('Shotgun'). Parallel zur physikalischen Transformation von Zellen haben sich die biologischen Infektionsmethoden bewährt. Dazu zählen insbesondere die hocheffiziente virale Einbringung von Nukleinsäuren in Zellen (K.L. Berkner, (1988), "Development of adenovirus vectors for the expression of heterologous genes", Biotechniques 6: 616-629; L.K. Miller, (1989), 10 "Insect baculoviruses: powerful gene expression vectors", Bioessays 11: 91-95; B. Moss et al. (1990), "Product review. New mammalian expression vectors", Nature 348: 91-92) und die über Liposomen vermittelte Lipofektion (R.J. Mannino et al. (1988), "Liposome mediated gene transfer", Biotechniques 6: 682-690; P.L. Felgner et al. (1987), "Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure", Proc. Natl. 15 Acad. Sci. U. S. A. 84: 7413-7417). Alle bisher beschriebenen Methoden behandeln das Überwinden der prokaryotischen oder eukaryotischen Plasmamembran durch nackte oder verpackte Nukleinsäuren. Während mit dem Einschleusen der Nukleinsäure in die prokaryotische Zelle der Wirkort bereits erreicht ist, finden in der kompartimentierten eukaryotischen Zelle weitere biochemische Prozesse statt, die unter bestimmten 20 Bedingungen das Eindringen der Nukleinsäure in den Zellkern unterstützen (z. B. viraler Infektionsweg bei HIV). Analoge Infektionsprozesse, bei denen exogene Nukleinsäuren aktiv in andere Zellorganellen eingeschleust werden (z. B. in Mitochondrien), wurden bisher nicht beschrieben. Vestweber und Schatz konnten 1989 zeigen, daß künstliche Nukleoproteine in isolierte Hefemitochondrien aufgenommen werden können (D. 25 Vestweber et al. (1989), "DNA-protein conjugates can enter mitochondria via the protein import pathway", Nature 338: 170-172). Ein Verfahren zur Einbringung von Nukleinsäuren, z. B. in Form exprimierbarer DNA oder transkribierter Gene (RNA) in Zellorganellen ist nicht bekannt. Ein derartiges Verfahren ist aber Voraussetzung, um Veränderungen des mitochondrialen Genoms bei Patienten mit neuromuskulären und

neurodegenerativen Erkrankungen auf genetischer Ebene behandeln, oder eine zielgerichtete Mutagense in Zellorganellen durchführen zu können.

Die Aufgabe der vorliegenden Erfindung bestand deshalb darin, ein chimäres Peptid-Nukleisäure-Fragment zu konstruieren, das das gerichtete Einschleusen von Nukleinsäuren in Zellen und Kompartimente eukaryotischer Zellen erlaubt. Außerdem soll ein Verfahren bereitgestellt werden, wie das chimäre Peptid-Nukleinsäure-Fragment in Zellkompartimente oder Zellen gelangen kann. Das Verfahren soll zur Therapie von genetischen Erkrankungen (Veränderungen am mitochondrialen Genom) und zur zielgerichteten Mutagenese in eukaryotischen und prokaryotischen Zellen eingesetzt werden. Dazu werden folgende Anforderungen an die Erfindung gestellt:

- universelle Anwendbarkeit
- zell-, kompartiment- und membranspezifisches Einschleusungsverhalten
- hohe Effektivität
- geringe Immunogenität
- 15 Minimierung des Infektionsrisikos

Gelöst wird diese Aufgabe durch die Merkmale der Patentansprüche 25) und 29) oder 27) und 30). Vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen.

Grundlage für die Lösung dieser Problemstellung ist die Erkenntnis, daß große Biomoleküle (Proteine) natürlicherweise in Zellen bzw. in Zellkompartimente über einen 20 hochspezifischen Transportmechanismus gelangen. Am Beispiel der Proteintranslokation in Mitochondrien soll dieser Mechanismus erläutert werden. Um ein Protein innerhalb einer Zelle vom Entstehungsort gezielt zu einem anderen Kompartiment oder einer anderen Zellorganelle (z. B. den Wirkort) befördern zu können, wird das Protein in der Regel als Präprotein synthetisiert (R. Zimmermann et al. (1983), "Biosynthesis and assembly of nuclear-coded mitochondrial membrane proteins in Neurospora crassa", Methods Enzymol. 97: 275-286). Neben der maturierten Aminosäuresequenz verfügt das

Präprotein über eine sogenannte Signalsequenz. Diese Signalsequenz ist spezifisch für das Zielkompartiment und sorgt dafür, daß das Präprotein durch Oberflächenrezeptoren erkannt werden kann. Das natürliche Hindernis 'Membran' wird dann überwunden, indem das Präprotein durch einen aktiven (mehrere 'Transport-Proteine' sind an diesem Prozeß 5 beteiligt) oder passiven Prozeß (direkter Durchtritt ohne Beteiligung weiterer Proteine) durch die Membran transloziert wird (G. Schatz, (1993), "The protein import machinery of mitochondria", Protein Sci. 2: 141-146; B.S. Glick et al. (1992), "Protein sorting in mitochondria", Trends. Biochem. Sci. 17: 453-459). Am Wirkort wird dann die Signalsequenz in der Regel durch eine spezifische Peptidase abgetrennt, sofern sie nicht 10 selbst Bestandteil des maturierten Proteins ist. Das maturierte Protein kann nun seine enzymatische Aktivität entfalten. Dieser natürliche Mechanismus soll nun ausgenutzt werden, um Nukleinsäuren zielgerichtet durch Membranen zu schleusen. Dazu wird eine zell-, kompartiment- oder membranspezifische Signalsequenz an die gewünschte Nukleinsäure gekoppelt. Mit der Imitierung dieses natürlichen Transportprozesses durch 15 das chimäre Peptid-Nukleinsäure-Fragment können nun Nukleinsäuren gezielt Zellmembranen überwinden und innerhalb Zelle einer in ein gewünschtes Zielkompartiment dirigiert werden.

Für die Konstruktion des chimären Peptid-Nukleinsäure-Fragmentes werden drei Komponenten benötigt:

- ?0 Signalpeptid (zell-, kompartiment- oder membranspezifisch)
 - Kopplungsagenz
 - Nukleinsäure (Oligonukleotid)

Die Auswahl der Signalsequenz hängt davon ab, welche Membran bzw. welches Membransystem überwunden und welches Zielkompartiment der Zelle (Zellkern, Mitochondrion, Chloroplast) oder der Zellorganelle erreicht werden soll. Proteine, die zum Beispiel in eines der vier mitochondrialen Kompartimente (äußere Mitochondrienmembran, Intermembranraum, innere Mitochondrienmembran, Matrixraum)

eingeführt werden sollen, besitzen kompartimentspezifische Signalsequenzen. Für die Einbringung von Nukleinsäuren werden im allgemeinen Signalsequenzen ausgewählt, die ein zell-, kompartiment- oder membranspezifisches Erkennungssignal enthalten und dadurch die angehängte Nukleinsäure an ihren Wirkungsort dirigieren (hier: innere Seite der inneren Mitochondrienmembran oder Matrixraum). Zur Auswahl stehen Signalsequenzen, die Proteine in Gegenwart oder Abwesenheit eines Membranpotentials transportieren können. Für die Nukleinsäureeinbringung werden Signalsequenzen bevorzugt, die unabhängig von Membranpotentialen arbeiten, z.B. die Signalsequenz der Ornithintranscarbamylase (OTC) für den Transport in den Matrixraum der Mitochondrien 10 (A.L. Horwich et al. (1983), "Molecular cloning of the cDNA coding for rat ornithine transcarbamoylase", Proc. Natl. Acad. Sci. U. S. A. 80: 4258-4262; J.P. Kraus et al. (1985), "A cDNA clone for the precursor of rat mitochondrial ornithine transcarbamylase: comparison of rat and human leader sequences and conservation of catalytic sites", Nucleic. Acids. Res. 13: 943-952). Grundsätzlich ist für den Transport in das 15 Zielkompartiment die reine Signalsequenz ausreichend. Bevorzugt werden aber Signalsequenzen ausgewählt, die zusätzlich über eine zell- oder kompartimentspezifische Peptidasespaltstelle verfügen. Diese 'Spaltstelle' liegt im günstigsten Fall innerhalb der Signalsequenz, kann aber auch an diese durch zusätzliche Aminosäuren angefügt werden, um nach dem Erreichen des Zielkompartimentes das Abspalten der Signalsequenz 20 sicherzustellen (z.B. kann die Signalsequenz der menschlichen OTC um weitere zehn Aminosäuren der maturierten OTC verlängert werden). Damit wird gewährleistet, daß die Nukleinsäure im Zielkompartiment von dem Signalpeptid abgetrennt werden kann und sich damit die Wirkung der Nukleinsäure voll entfaltet. Hergestellt wird die ausgewählte Signalsequenz auf biologischem (Aufreinigung natürlicher Signalsequenzen oder 25 Klonierung und Expression der Signalsequenz in einem eukaryotischen oder prokaryotischen Expressionssystem), bevorzugt aber auf chemisch-synthetischem Weg.

Um eine lineare chemische Verknüpfung zwischen Nukleinsäure und Signalpeptid zu gewährleisten, erfolgt die Kopplung des Signalpeptids über ein Kopplungsagenz, das im allgemeinen über Aminosäuren, bevorzugt über Aminosäuren mit reaktiven Seitengruppen,

bevorzugt über ein einzelnes Cystein oder Lysin am Carboxy-terminalen Ende des Signalpeptides mit diesem verbunden ist. Als Kopplungsreagenz dient ein bifunktioneller Crosslinker, bevorzugt ein heterobifunktioneller Crosslinker, der bei Verwendung eines Cysteins als Kopplungsstelle am Signalpeptid neben einer thiolreaktiven Gruppe über eine zweite reaktive Gruppe, bevorzugt eine aminoreaktive Gruppierung verfügt (z. B. m-Maleimidobenzoyl-N-hydroxy-succinimidester, MBS und seine Derivate).

Auch die Nukleinsäure verfügt über eine Kopplungsstelle, die kompatibel zum ausgewählten Crosslinker sein muß. Bei der Verwendung von MBS muß das Oligonukleotid über eine Amino- oder Thiolfunktion verfügen. Die Kopplungsgruppe der 0 Nukleinsäure kann über die chemische Synthese des Oligonukleotids eingeführt werden und ist im allgemeinen am 5'-Ende, am 3'-Ende, bevorzugt aber direkt an einer modifizierten Base lokalisiert, z. B. als 5'-Aminolinker (TFA-Aminolinker Amidite^R, 1.6-(N-Trifluoroacetylamino)-hexyl-\(\beta\)-Cyanoethyl-N.N-Diisopropyl Phosphoramidite. Pharmacia) oder als 5'-Thiollinker (THIOL-C6 Phosphoramidit^R, MWG Biotech) an einer 15 freien 5'-Hydroxy/Phosphatgruppe, als 3'-Aminolinker (3'-Aminomodifier-C7-CPG-Synthesesäulen^R, MWG Biotech) an einer freien 3'-Hydroxy/Phosphatgruppe, bevorzugt aber als aminomodifiziertes Basenanalogon, bevorzugt aminomodifiziertes Deoxyuridin (Amino-Modifier-dT^R, 5'-Dimethoxy-trityl-5-[N-(trifluoroacetylaminohexyl)-3-acrylimido]-2'-desoxy uridin, 3'-[(2-cyanoethyl)-(N,N-diisopropyl)]-phosphoramidite, Glen 20 Research) innerhalb der Sequenz. Die zum verwendeten Crosslinker kompatible reaktive Gruppe ist dabei mindestens durch eine C2-Spacer Einheit, bevorzugt aber durch eine C6-Spacer Einheit vom 5'- oder 3'-Ende des Oligonukleotids oder der modifizierten Base distanziert. Die Nukleinsäure (Oligonukleotid) mit reaktiver Kopplungsgruppe umfaßt dabei mindestens zwei Nukleotide.

25 Um die Stabilität der Nukleinsäure (Oligonukleotid) gegenüber zellulären und extrazellulären Nukleasen zu erhöhen, können die chemisch synthetisierten Nukleinsäuren durch ein sulfurzierendes Reagenz (Beaucage-Reagenz^R, MWG-Biotech) geschützt werden. Bei der chemischen Synthese werden dabei die Phosphordiester-Bindungen der

Nukleinsäure in Phosphorthioat-Bindungen umgewandelt. Dieses Oligonukleotid läßt sich dann für die enzymatische Amplifizierung von Nukleinsäuren einsetzen, durch weitere Verknüpfungsreaktionen mit anderen Nukleinsäuren verlängern oder direkt verwenden. Um das chimäre Peptid-Nukleinsäure-Fragment direkt einzusetzen, sollte die Nukleinsäure (Oligonukleotid) über eine hybridisierungsfähige Sekundärstruktur verfügen, bevorzugt ohne interne Homologien, um eine lineare Einzelstrangstruktur ausbilden zu können. Damit wird sichergestellt, daß die Nukleinsäure (Oligonukleotid) des chimären Peptid-Nukleinsäure-Fragmentes ohne weitere Nukleinsäureankopplungen eine biochemische/therapeutische Wirkung entfalten kann.

- 0 Zur Kopplung mit der Signalsequenz werden aber bevorzugt Nukleinsäuren (Oligonukleotide) eingesetzt, die über zwei weitere Eigenschaften verfügen:
 - 1. Die Sequenz ist palindromisch, bevorzugt partiell palindromisch, mit einem glatten 5'-3'-Ende ('blunt end'), überhängendem 3'- Ende ('sticky end'), bevorzugt aber mit überhängendem, phosphorylierten 5'-Ende ('sticky end'). Dadurch kann sich eine stabile, monomere Sekundärstruktur ('hairpin-loop') ausbilden. Das überhängende 5'-Ende dient dazu, definierte Nukleinsäuren, Antisense-Oligonukleotide, bevorzugt aber transkribierbare und replizierbare Gene anzukoppeln.

15

Das Oligonukleotid trägt im Scheitelpunkt des 'loops' eine modifizierte Base, die eine zum Crosslinker reaktive Gruppierung trägt, bevorzugt ein aminomodifiziertes
 2'-Deoxythymidin. Die Aminofunktion dieser modifizierten Base ermöglicht dabei die Kopplungsreaktion zwischen MBS und Oligonukleotid.

Das chimäre Peptid-Nukleinsäure-Fragment eignet sich zum gezielten Einbringen von Nukleinsäuren in Zellen und Zellorganellen (z. B. Zellkern, Chloroplast), insbesondere zum Einbringen von Ribonukleinsäuren (mRNAs, 'Antisense'-Oligonukleotide) und 25 Desoxyribonukleinsäuren (vollständigen Gene, 'Antisense'-Oligonukleotide). Ganz

besonders eignet er sich zum Einschleusen von transkribierbaren und prozessierbaren Genen in Mitochondrien.

Dazu muß an die Nukleinsäure, enthaltend die reaktive Kopplungsstelle, oder an das chimäre Peptid-Nukleinsäure-Fragment ein transkribierbares Gen angekoppelt werden. 5 Bevorzugt geschieht dies durch die Amplifizierung eines Gens, bevorzugt eines klonierten Gens, das aus einem mitochondrialen Promotor, bevorzugt dem Promotor des leichten DNA Stranges (O_L, nt 490 - nt 369) und dem zu expremierenden Gen in einer prozessierbaren Form, bevorzugt einem mitochondrialen Gen, bevorzugt einer mitochondrialen transfer RNA, bevorzugt der mitochondrialen tRNA Leu(UUR) (nt 3204 - nt 3345), besteht (S. Anderson et al. (1981), "Sequence and organization of the human mitochondrial genome", Nature 290: 457-465). Nach der enzymatischen Amplifizierung des Gens kann die Kopplung an die Nukleinsäure, enthaltend die reaktive Kopplungsstelle, oder an das chimäre Peptid-Nukleinsäure-Fragment über eine 'blunt-end'-Ligation, bevorzugt aber eine 'sticky-end'-Ligation, angekoppelt werden. Um die Stabilität der 15 Nukleinsäure gegenüber zellulären und extrazellulären Nukleasen zu erhöhen, können die Phosphordiester-Bindungen der Nukleinsäure durch Phosphorthioat-Bindungen substituiert und damit geschützt werden, wenn bereits bei der enzymatischen Amplifizierung modifizierte Phosphorthioat-Nukleotide verwandt werden.

Gegenüber den in der Einleitung erwähnten Transformations- und Infektionsmethoden
20 bietet dieses Verfahren erstmals die Möglichkeit, Nukleinsäuren zielgerichtet in Zellen und
Zellorganellen einzuführen. Welches Zielkompartiment dabei erreicht werden soll
(Cytosol, Nukleus, Mitochondrium, Chloroplast, etc.) kann durch die Wahl der
Signalsequenz bestimmt werden. Neben dem kompartiment- und zellspezifischen
Einschleusungsverhalten zeichnet sich dieses Verfahren durch seine universelle
25 Anwendbarkeit aus. Sowohl prokaryotische als auch eukaryotische Zellen und Zellsysteme
können mit dem Translokationsvektor behandelt werden. Da bei der zielgerichteten
Einschleusung ein natürliches Transportsystem der Membranen benutzt wird, erübrigt sich
die Behandlung der Zellen oder Zellorganellen mit membranpermeabilisierenden Agenzien

(z.B. Calciumchlorid-Methode, s.o.). Anwendungsgebiete sind dabei z. B. die zielgerichtete Mutagenese und die Therapie genetischer Erkrankungen. In diesem Zusammenhang besticht das System durch eine höchstmögliche Effektivität der Translokation (Imitierung eines evolutionär optimierten Proteintransportwegs; abhängig 5 von der ausgewählten Signalsequenz können mehr als 1000 Moleküle in ein einzelnes Mitochondrium aufgenommen werden), sowie durch die Minimierung der Immunogenität (kurze Signalpeptide, keine vollständigen und damit stark antigenen Proteine). Durch eine Integration des Translokationsvektors in Liposomen kann die Immunogenität dabei noch weiter erniedrigt werden. Insbesondere für eine genetische Therapie ist ein derartiger vorteilhaft. In diesem Zusammenhang 10 Ansatz zeichnet sich Translokationsvektor-Verfahren gegenüber den viralen Infektionssystemen außerdem durch ein äußerst geringes Infektionsrisiko aus. Dadurch kann es ohne Sicherheitsrisiko angewandt werden.

Beispiel:

15 Um den Nachweis erbringen zu können, daß Nukleinsäuren durch das oben beschriebene Verfahren zielgerichtet durch Membranen transportiert werden können, wurde die Überwindung des mitochondrialen Doppelmembransystems DNA-Translokationsvektor studiert. Dazu wurde die mitochondriale Signalsequenz der Ornithintranscarbamylase (A.L. Horwich et al. (1983), "Molecular cloning of the cDNA 20 coding for rat ornithine transcarbamovlase", Proc. Natl. Acad. Sci. U. S. A. 80: 4258-4262) (Enzym des Harnstoffzyklus, natürlicherweise in der Matrix der Mitochondrien lokalisiert) chemisch hergestellt und gereinigt. Als reaktive Gruppe zur späteren Verbindung mit der DNA wurde die Originalsequenz um ein Cystein am C-Terminus erweitert (siehe Figur 1). Damit wurde gewährleistet, daß die Kopplung des heterobifunktionellen Crosslinkers 25 (MBS) nur an die Thiol-Gruppe des einzigen Cysteins erfolgen kann. Als Verknüpfungspartner wurde ein DNA-Oligonukleotid (39 Nukleotide) ausgewählt, das sich durch zwei besondere Merkmale auszeichnet:

- Die Sequenz ist partiell palindromisch mit einem überhängenden, phosphorylierten 5'-Ende (siehe Figur 1). Dadurch kann sich ein sogenannter 'hairpin-loop' ausbilden.
 Das überhängende 5'-Ende dient dazu, definierte Nukleinsäuren an dieses Oligonukleotid zu ligieren, die dann in die Mitochondrien importiert werden können.
- 2. Das Oligonukleotid trägt im Scheitelpunkt des 'Loops' eine modifizierte Base (siehe Figur 1). Es handelt sich dabei um ein aminomodifiziertes 2'-Deoxythymidin (siehe Figur 2). Die Aminofunktion der modifizierten Base ermöglicht dabei die Kopplungsreaktion zwischen MBS und Oligonukleotid.

Die Verknüpfung der drei Reaktionspartner (Oligonukleotid, MBS und Peptid) erfolgt in einzelnen Reaktionsschritten. Zuerst wird das Oligonukleotid (50 pmol) in einem Puffer (100 µl; 50 mM Kaliumphosphat, pH 7.6) zusammen mit MBS (10 nmol gelöst in DMSO) umgesetzt (Reaktionszeit: 60 min.; Reaktionstemperatur: 20°C). Nicht umgesetztes MBS wird über eine 'Nick-Spin-Column^{R'} (Sephadex G 50, Pharmacia), die mit 50 mM Kaliumphosphat (pH 6.0) equilibriert wurde, abgetrennt. Das Eluat enthält das gewünschte Reaktionsprodukt und wird in einem weiteren Reaktionsschritt mit dem Peptid (2.5 nmol) umgesetzt (Reaktionszeit: 60 min.; Reaktionstemperatur: 20°C). Abgestoppt wurde die Reaktion durch die Zugabe von Dithiothreitol (2 mM). Das Kopplungsprodukt (Chimäre, siehe Figur 3) wurde über eine präparative Gelelektrophorese von nicht umgesetzten Edukten abgetrennt und durch eine Elektroelution aus dem Gel isoliert (siehe Figur 4). An das überhängende 5'-Ende des Oligonukleotids lassen sich nun durch einfache Ligation unterschiedliche Nukleinsäuren ankoppeln.

Für das im Folgenden beschriebene Experiment wurde eine 283 bp lange doppelsträngige DNA (dsDNA) über eine enzymatische Reaktion (PCR) amplifiziert. Als Matrizen DNA diente dazu ein in pBluescript^R (Stratagene) kloniertes DNA-Fragment, das neben dem 25 menschlichen mitochondrialen Promotor des leichten Stranges (P_L, nt 902 - nt 369) das Gen für die mitochondriale transfer RNA Leucin (tRNA^{Leu(UUR)}, nt 3204 - nt 4126) enthielt (siehe Figur 5). Als Amplifizierungsprimer dienten zwei Oligonukleotide, wobei Primer 1

über ein nichtkomplementäres 5'-Ende verfügte (siehe Figur 5). Die Modifikation der dsDNA erfolgte durch die 3'-5'-Exonukleaseaktivität der T4-DNA-Polymerase (Inkubation in Gegenwart von 1 mM dGTP), die unter dem Fachmann bekannten Bedingungen überhängende 5'-Enden erzeugen kann (C. Aslanidis et al. (1990), 5 "Ligation-independent cloning of PCR products (LIC-PCR)", Nucleic. Acids. Res. 18: 6069-6074).

Zusammen mit dem bereits konjugierten Peptid-MBS-Oligonukleotid konnte die PCR-amplifizierte DNA unter Verwendung der T4-DNA-Ligase zusammengefügt werden. Um die Verknüpfungspartner nach der Einbringung in die Mitochondrien einfach detektieren zu können, wurde die freie 5'-OH Gruppe der ligierten DNA durch eine enzymatische Reaktion radioaktiv phosphoryliert (A. Novogrodsky et al. (1966), "The enzymatic phosphorylation of ribonucleic acid and deoxyribonucleic acid. I. Phosphorylation at 5'-hydroxyl termini", J. Biol. Chem. 241: 2923-2932; A. Novogrodsky et al. (1966), "The enzymatic phosphorylation of ribonucleic acid and deoxyribonucleic acid. II. Further properties of the 5'-hydroxyl polynucleotide kinase", J. Biol. Chem. 241: 2933-2943).

Für die Isolierung von Mitochondrien wurde eine frische Rattenleber zerkleinert, in 25 mM HEPES, 250 mM Saccharose, 2mM EDTA, 52 μM BSA suspendiert und in einem Glashomogenisator (50 ml) homogenisiert. Zellmembranen, Zelltrümmer und Zellkerne wurden bei 3000 g abzentrifugiert und der Überstand für eine weitere Zentrifugation vorbereitet. Dazu wurde der Überstand in gekühlte Zentrifugenbecher überführt und bei 8000 g zentrifugiert. Die isolierten Mitochondrien wurden in 200 ml desselben Puffers resuspendiert und erneut bei 8000 g zentrifugiert. Das saubere Mitochondrienpellet wurde in einem gleichen Volumen desselben Puffers resuspendiert und durch Zugabe von 25 mM Succinat, 25 mM Pyruvat und 15 mM Malat energetisiert. Der Proteingehalt der Suspension wurde über einen Bradford-Testkit^R (Pierce) bestimmt. 200 μg mitochondriales Protein (energetisierte Mitochondrien) wurden zusammen mit 10 pmol des Chimären bei 37°C für 60 min. inkubiert (0.6 M Sorbitol, 10 mM Kaliumphophat pH 7.4, 1 mM ATP, 2

mM MgCl₂, 1 % BSA). Die Mitochondrien wurden durch eine Zentrifugation bei 8000 g reisoliert, in 0.6 M Sorbitol, 10 mM Kaliumphophat pH 7.4, 2 mM MgCl,, 1 % BSA, 10 U/ml DNAse I resuspendiert und 30 min. bei 37°C inkubiert. Dieser Waschschritt wurde zweimal wiederholt, um unspezifisch anhaftende Moleküle zu entfernen. Zum Nachweis, 5 daß das Chimäre mit den Mitochondrien assoziiert ist, wurden die reisolierten Mitochondrien über eine Sucrosegradientendichtezentrifugation aufgereinigt. Zur Lokalisierung des Chimären und der Mitochondrien wurden die einzelnen Fraktionen des Gradienten analysiert. Als Marker der Mitochondrien wurde die Adenylat-Kinase, die Cytochrom-c Oxidase und die Malat-Dehydrogenase Aktivität bestimmt, während das 10 Chimäre über die Messung der ³²P-Strahlung identifiziert werden konnte (siehe Figur 6). Ein analoges Experiment zur Bestimmung des unspezifischen DNA-Einbaus wurde mit der gleichen DNA ausgeführt, die nicht mit dem Signalpeptid verbunden war (siehe Figur 6). Aus den Messungen wurde abgeleitet, daß 65 % des eingesetzten Chimären spezifisch mit den Mitochondrien segregierte, während der unspezifische DNA Einbau weniger als 5 15 % der eingesetzten DNA betrug. Um zu zeigen, daß das Chimäre nicht nur mit der Oberfläche der Mitochondrien (Membran, Import-Rezeptor) assoziiert ist, wurden die reisolierten Mitochondrien die drei Kompartimente äußere in Mitochondrienmembran/Intermembranraum, Mitochondrienmembran innere und fraktioniert. wurden die Matrixraum Dazu Mitochondrien mit Digitonin 20 (Endkonzentration: 1.2 % w/v Digitonin) inkubiert und die entstandenen Mitoplasten über eine Sucrosegradientendichtezentrifugation aufgetrennt, in Fraktionen gesammelt und die Aktivitäten von Markerenzymen (Adenylat-Kinase: Intermembranraum; Cytochrom c Oxidase: innere Mitochondrienmembran; Malat-Dehydrogenase: Matrixraum) nach Schnaitmann und Greenawalt (C. Schnaitman et al. (1968), "Enzymatic properties of the 25 inner and outer membranes of rat liver mitochondria", J. Cell Biol. 38: 158-175; C. Schnaitman et al. (1967), "The submitochondrial localization of monoamine oxidase. An enzymatic marker for the outer membrane of rat liver mitochondria", J. Cell Biol. 32: 719-735) bestimmt (siehe Figur 7). Ein analoges Experiment zur Bestimmung des unspezifischen DNA-Einbaus wurde mit der gleichen DNA ausgeführt, die nicht mit dem 30 Signalpeptid verbunden war (siehe Figur 7). Aus den Messungen wurde abgeleitet, daß

45% des Chimären mit den Mitoplasten assoziiert ist, während die unspezifisch anhaftende DNA mit weniger als 3 % abgeschätzt werden konnte. Die isolierten Mitoplasten (Verlust der äußeren Membran und des Intermembranraums) wurden durch Lubrol^R (0.16 mg/mg Protein; ICN) lysiert und durch eine Ultrazentrifugation bei 144000 g in die Kompartimente innere Mitochondrienmembran (Pellet) und Matrixraum (Überstand) getrennt. Die Zuordnung der Kompartimente erfolgte über die Messung der Aktivitäten der Cytochrom-c Oxidase (innere Mitochondrienmembran) und der Malat-Dehydrogenase (Matrixraum). Die Messung des Chimären erfolgte über die Detektierung der ³²P-Strahlung im Szintillationszähler und ergab zu 75 % eine Segregation mit der Matrix der Mitochondrien, während 25 % des Chimären mit der inneren Membran der Mitochondrien assoziiert blieb (unvollständige Translokation).

Patentansprüche

5

10

- 1) Chimäres Peptid-Nukleinsäure-Fragment umfaßend:
 - (a) Zell-, kompartiment- oder membranspezifisches Signalpeptid
 - (b) Kopplungsagenz
 - (c) Nukleinsäure (Oligonukleotid)
- Chimäres Peptid-Nukleinsäure-Fragment nach Anspruch 1, dadurch gekennzeichnet, daß die Nukleinsäure (Oligonukleotid) aus mindestens zwei Basen besteht.
- 3) Chimäres Peptid-Nukleinsäure-Fragment nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Nukleinsäure (Oligonukleotid) über eine hybridisierungsfähige Sekundärstruktur verfügt.
- 4) Chimäres Peptid-Nukleinsäure-Fragment nach einem der Ansprüche 1-3, dadurch gekennzeichnet, daß die Nukleinsäure (Oligonukleotid) über eine palindromische, bevorzugt partiell palindromische Sequenz verfügt.
- Chimäres Peptid-Nukleinsäure-Fragment nach Anspruch 4, dadurch gekennzeichnet,
 daß die Nukleinsäure (Oligonukleotid) eine ausgeprägte monomere
 Sekundärstruktur, bevorzugt einen 'hairpin-loop', ausbilden kann.
 - 6) Chimäres Peptid-Nukleinsäure-Fragment nach Anspruch 5, dadurch gekennzeichnet, daß die Nukleinsäure (Oligonukleotid) mit sich selbst hybridisieren und ein glattes 5'-3'-Ende ('blunt end'), bevorzugt aber ein überhängendes 3'- oder 5'-Ende ('sticky end') ausbilden kann.
 - 7) Chimäres Peptid-Nukleinsäure-Fragment nach einem der Ansprüche 1-6, dadurch gekennzeichnet, daß es sich bei der Nukleinsäure (Oligonukleotid) um eine Ribonukleinsäure, bevorzugt um eine Desoxyribonukleinsäure handelt.

- 8) Chimäres Peptid-Nukleinsäure-Fragment nach Anspruch 7, dadurch gekennzeichnet, daß die Nukleinsäure (Oligonukleotid) chemisch modifizierte 'Phosphorthioat' Bindungen besitzt.
- 9) Chimäres Peptid-Nukleinsäure-Fragment nach einem der Ansprüche 1-8, dadurch
 5 gekennzeichnet, daß die Nukleinsäure (Oligonukleotid) eine reaktive
 Kopplungsgruppe trägt.
 - 10) Chimäres Peptid-Nukleinsäure-Fragment nach Anspruch 9, dadurch gekennzeichnet, daß die reaktive Kopplungsgruppe eine Aminofunktion enthält, wenn das Kopplungsagenz eine aminoreaktive Gruppierung enthält.
- 10 11) Chimäres Peptid-Nukleinsäure-Fragment nach Anspruch 9, dadurch gekennzeichnet, daß die reaktive Kopplungsgruppe eine Thiolfunktion enthält, wenn das Kopplungsagenz eine thiolreaktive Gruppierung enthält.
- 12) Chimäres Peptid-Nukleinsäure-Fragment nach Anspruch 10 oder 11,
 dadurch gekennzeichnet, daß die Kopplungsgruppierung mindestens über einen
 C2-Spacer, bevorzugt aber einen C6-Spacer an die Nukleinsäure (Oligonukleotid)
 gebunden vorliegt.
 - 13) Chimäres Peptid-Nukleinsäure-Fragment nach Anspruch 12, dadurch gekennzeichnet, daß die Kopplungsgruppierung am 3'-Hydroxy/Phosphat-Terminus oder am 5'-Hydroxy/Phosphat-Terminus der Nukleinsäure (Oligonukleotid), bevorzugt aber an der Base lokalisiert ist.

14) Chimäres Peptid-Nukleinsäure-Fragment nach einem der Ansprüche 10-13, dadurch gekennzeichnet, daß an das 5'-Ende und/oder 3'-Ende definierte Nukleinsäuren, Antisense-Olignukleotide, messenger RNAs oder transkribierbare und/oder replizierbare Gene angekoppelt werden.

- 15) Chimäres Peptid-Nukleinsäure-Fragment nach Anspruch 14, dadurch gekennzeichnet, daß die anzukoppelnde Nukleinsäure chemisch modifizierte 'Phosphorthioat' Bindungen enthält.
- 16) Chimäres Peptid-Nukleinsäure-Fragment nach Anspruch 14 oder 15, dadurch
 5 gekennzeichnet, daß das anzukoppelnde Gen einen Promotor, bevorzugt einen mitochondrialen Promotor, enthält.
 - 17) Chimäres Peptid-Nukleinsäure-Fragment nach einem der Ansprüche 1-16, dadurch gekennzeichnet, daß das Signalpeptid über eine reaktive Aminosäure am Carboxy-terminalen Ende, bevorzugt ein Lysin oder Cystein verfügt, wenn das Kopplungsagenz eine amino- oder thiolreaktive Gruppierung enthält.

- 18) Chimäres Peptid-Nukleinsäure-Fragment nach einem der Ansprüche 1-17, dadurch gekennzeichnet, daß das Signalpeptid ein zell-, kompartiment- oder membranspezifisches Erkennungssignal trägt.
- 19) Chimäres Peptid-Nukleinsäure-Fragment nach einem der Ansprüche 1-18, dadurch
 gekennzeichnet, daß das Signalpeptid eine zell-, kompartiment- oder membranspezifische Peptidasespaltstelle besitzt.
 - 20) Chimäres Peptid-Nukleinsäure-Fragment nach einem der Ansprüche 1-19, dadurch gekennzeichnet, daß das Peptid aus dem kompartimentspezifisch spaltbaren Signalpeptid der menschlichen mitochondrialen Ornithintranscarbamylase, verlängert um ein künstliches Cystein am C-Terminus, besteht.
 - 21) Chimäres Peptid-Nukleinsäure-Fragment nach einem der Ansprüche 1-20, dadurch gekennzeichnet, daß das Kopplungsagenz ein bifunktioneller, bevorzugt ein heterobifunktioneller Crosslinker ist.

- 22) Chimäres Peptid-Nukleinsäure-Fragment nach einem der Ansprüche 1-21, dadurch gekennzeichnet, daß das Kopplungsagenz thiolreaktive und/oder aminoreaktive Gruppierungen enthält, wenn das Signalpeptid und die Nukleinsäure Thiol- und/oder Aminogruppen als Kopplungsstellen tragen.
- 5 23) Chimäres Peptid-Nukleinsäure-Fragment nach einem der Ansprüche 1-22, dadurch gekennzeichnet, daß das Kopplungsagenz m-Maleimido-benzoyl-N-hydroxy-succinimidester, oder ein Derivat desselben, ist.
 - 24) Chimäres Peptid-Nukleinsäure-Fragment nach einem der Ansprüche 1-23, dadurch gekennzeichnet, daß das Molekül unter Ausnutzung natürlicher
- Transportmechanismen Membranen mit und ohne Membranpotential überwinden kann.
 - 25) Verfahren zur Herstellung eines chimären Peptid-Nukleinsäure-Fragments nach einem der Ansprüche 1-24, gekennzeichnet durch die folgenden Schritte:

20

- (a) Umsetzung einer Nukleinsäure (Oligonukleotid), enthaltend eine funktionelle Kopplungsgruppe, mit einem Kopplungsagenz.
- (b) Umsetzung des Konstruktes aus (a) mit einem Peptid, enthaltend eine Signalsequenz.
- (c) Wahlweise Verlängerung des chimären Peptid-Nukleinsäure (Oligonukleotid)-Fragments aus (b) um weitere DNA- oder RNA-Fragmente ('Antisense'-Oligos, mRNAs, transkribierbare und/oder replizierbare Gene).
- Verfahren nach Anspruch 25, dadurch gekennzeichnet, daß es sich bei der DNA in Schritt (c) um ein PCR amplifiziertes DNA-Fragment, enthaltend den menschlichen mitochondrialen Promotor des leichten Stranges (P_L), sowie das Gen für die mitochondriale transfer RNA Leucin (tRNALeu^(UUR)), handelt.

- 27) Verfahren zur Herstellung eines chimären Peptid-Nukleinsäure-Fragments nach einem der Ansprüche 1-24, gekennzeichnet durch die folgenden Schritte:
 - (a) Wahlweise Verlängerung der Nukleinsäure (Oligonukleotid), enthaltend eine funktionelle Kopplungsgruppe, um weitere DNA- oder RNA-Fragmente ('Antisense'-Oligos, mRNAs, transkribierbare und/oder replizierbare Gene).
 - (b) Umsetzung der Nukleinsäure (Oligonukleotid) mit funktioneller Kopplungsgruppe oder der verlängerten Nukleinsäure (Oligonukleotid) aus (a) mit einem Kopplungsagenz.
- 10 (c) Umsetzung des Konstruktes aus (b) mit einem Peptid, enthaltend eine Signalsequenz.

15

20

- Verfahren nach Anspruch 27, dadurch gekennzeichnet, daß es sich bei der DNA in Schritt (a) um ein PCR amplifiziertes DNA-Fragment, enthaltend den menschlichen mitochondrialen Promotor des leichten Stranges (P₁), sowie das Gen für die mitochondriale transfer RNA Leucin (tRNALeu^(UUR)), handelt.
- 29) Verfahren zur zielgerichteten Nukleinsäureeinbringung in Zellorganellen und Zellen, nach einem der Ansprüche 1-24, gekennzeichnet durch die folgenden Schritte:
 - (a) Umsetzung einer Nukleinsäure (Oligonukleotid), enthaltend eine funktionelle Kopplungsgruppe, mit einem Kopplungsagenz.
 - (b) Umsetzung des Konstruktes aus (a) mit einem Peptid, enthaltend eine Signalsequenz.
 - (c) Wahlweise Verlängerung des chimären Peptid-Nukleinsäure (Oligonukleotid)-Fragments aus (b) um weitere DNA- oder RNA-Fragmente ('Antisense'-Oligos, mRNAs, transkribierbare und/oder replizierbare Gene).
 - (d) Umsetzung des Konstruktes aus (b) oder (c) mit Zellen oder vorbehandelten Zellkompartimenten.

30) Verfahren zur zielgerichteten Nukleinsäureeinbringung in Zellorganellen und Zellen, nach einem der Ansprüche 1-24, gekennzeichnet durch die folgenden Schritte:

5

- (a) Wahlweise Verlängerung der Nukleinsäure (Oligonukleotid), enthaltend eine funktionelle Kopplungsgruppe, um weitere DNA- oder RNA-Fragmente (Antisense-Oligos, mRNAs, transkribierbare und/oder replizierbare Gene).
- (b) Umsetzung der verlängerten Nukleinsäure (Oligonukleotid) aus (a), enthaltend eine funktionelle Kopplungsgruppe, mit einem Kopplungsagenz.
- (c) Umsetzung des Konstruktes aus (b) mit einem Peptid, enthaltend eine Signalsequenz.
- (d) Umsetzung des Konstruktes aus (c) mit Zellen oder vorbehandelten Zellkompartimenten.
- Verfahren nach Anspruch 29 oder 30, dadurch gekennzeichnet daß es sich bei den vorbehandelten Zellkompartimenten um energetisierte Mitochondrien handelt.
- 15 32) Verwendung des chimären DNA-Fragmentes nach einem der Ansprüche 1-24 zur zielgerichteten Einbringung von Nukleinsäuren in Zellen oder Zellkompartimente.

Die vorliegende Erfindung wird insbesondere durch die Figuren erläutert, welche zeigen:

Signalpeptid der Ornithintranscarbamylase der Ratte, sowie eine für die Fig. 1: geeignete Einschleusung DNA-Sequenz. Oben: Signalpeptid der Ornithintranscarbamylase der Ratte (32 Aminosäuren), verlängert um zehn N-terminale Aminosäuren des maturierten Proteins und ein zusätzliches Cystein als Kopplungsstelle. Dargestellt ist die Peptidsequenz im internationalen Einbuchstabencode; Mitte: eine für die Einschleusung geeignete, partiell palindromische DNA-Sequenz aus 39 Nukleotiden mit einem aminomodifizierten T an Nukleotidposition 22; Unten: ausgeprägte Sekundärstruktur des Oligonukleotids mit überhängendem 5'-Ende und einem modifizierten Nukleotid im Scheitelpunkt des 'Loops'.

5

10

- Fig. 2: Struktur des aminomodifizierten 2'-Deoxythymidin. R: Nukleinsäurereste.
- Fig. 3: Schematische Darstellung des chimären Peptid-Nukleinsäure-Fragmentes, bestehend aus aminomodifiziertem Oligonukleotid (39 Nukleotide) mit ausgeprägtem 'Hairpin-Loop', Crosslinker und Signalpeptid. CL: Crosslinker.
- Fig. 4: Elektrophoretische Auftrennung des Kopplungsproduktes aus aminomodifiziertem Oligonukleotid (39 Nukleotide), m-Maleimidobenzoyl-N-hydroxy-succinimidester (MBS) und Signalpeptid der Ornithintranscarbamylase der Ratte (42 Aminosäuren, verlängert um ein Cystein am C-Terminus).

15 Fig. 5b: Sequenz des klonierten tRNA^{Leu(UUR)}-Gens.

20

Fig. 6a/b: Darstellung der ³²P-Strahlung der DNA, sowie der Enzymaktivitäten für Adenylat-Kinase, Cytochrom c-Oxidase und Malat-Dehydrogenase (y-Achsen) in 11 Fraktionen (x-Achsen) einer Mitochondrien-Sucrosegradientendichtezentrifugation. Dargestellt ist der Anteil der jeweiligen Strahlung/Enzymaktivität, ausgedrückt als prozentualer Anteil der Gesamtstrahlung/Enzymaktivität, die auf den Gradienten aufgetragen wurde. ADK: Adenylat-Kinase; COX: Cytochrom c-Oxidase; MDH: Malat-Dehydrogenase.

Fig. 7a/b: Darstellung der ³²P-Strahlung der DNA, sowie der Enzymaktivitäten für Adenylat-Kinase, Cytochrom c-Oxidase und Malat-Dehydrogenase (y-Achsen) in 11 Fraktionen (x-Achsen) einer Mitoplasten-Sucrosegradientendichtezentrifugation. Dargestellt ist der Anteil der jeweiligen Strahlung/Enzymaktivität, ausgedrückt als prozentualer Anteil der Gesamtstrahlung/Enzymaktivität, die auf den Gradienten aufgetragen wurde. ADK: Adenylat-Kinase; COX: Cytochrom c-Oxidase; MDH: Malat-Dehydrogenase.

Figur 1

M-L-S-N-L-R-I-L-L-N-K-A-A-L-R-K-A-H-T-S-M-V-R-N-F-R-Y-G-K-P-V-Q-S-Q-V-Q-L-K-P-R-D-L-C

Amino-Terminus Carboxy-Terminus

Figur 2

Figur 3

Figur 4

Figur 5a

Dr. Peter Seibel: Chimares Peptid-Nukleinsäure-Fragment, Verfahren zu seiner Herstellung und Verfahren zur zielgerichteten Nukleinsäureeinbringung in Zellorganellen und Zellen

Figur 5b

				40 CTGGGGTTAG GACCCCAATC		
5				100 TCCCGTGGGG AGGGCACCCC		
10	130 TTGAGCTGCA AACTCGACGT			160 GTTCCTTTTG CAAGGAAAAC		
				220 GTAATCTTAC CATTAGAATG		
15				280 GTGAGCCCGT CACTCGGGCA		
				340 GGGGGTGTCT CCCCCACAGA		
20				400 TGGGTAGGAT ACCCATCCTA		
25	430 AGATTAGTAG TCTAATCATC	440 TATGGGAGTG ATACCCTCAC	450 GGAGGGGAAA CCTCCCCTTT	460 ATAATGTGTT TATTACACAA	470 AGTTGGGGGG TCAACCCCCC	480 TGACTGTTAA ACTGACAATT
÷				520 AATCTGGTTA TŢAGACCAAT		
30				580 TAAGATGGCA ATTCTACCGT		
						660 CATGGCCAAC GTACCGGTTG
35						720 TACCGAACGA ATGGCTTGCT
40						780 CTACGGGCTA GATGCCCGAT

			820 TTCACCAAAG AAGTGGTTTC	
5			880 ACCTTAGCTC TGGAATCGAG	
			940 GTCAACCTCA CAGTTGGAGT	
10			1000 ATCCTCTGAT TAGGAGACTA	
15			1060 GTAGCCCAAA CATCGGGTTT	
			1120 ATAAGTGGCT TATTCACCGA	
20			1180 CTGCCATCAT GACGGTAGTA	
			1240 ACCCCTTCG TGGGGGAAGC	
25			 1300 GCCGCAGGCC CGGCGTCCGG	
30	1330 GCCGAATACA CGGCTTATGT		1360 ACCCTCACCA TGGGAGTGGT	
			 1420 ACAACATATT TGTTGTATAA	
35		1460 TGTTCTTATG ACAAGAATAC		

Figur 6a

Dr. Peter Seibel: Chimäres Peptid-Nukleinsäure-Fragment, Verfahren zu seiner Herstellung und Verfahren zur zielgerichteten Nukleinsäureeinbringung in Zellorganellen und Zellen

Figur 6b

Figur 7a

Dr. Peter Seibel: Chimäres Peptid-Nukleinsäure-Fragment, Verfahren zu seiner Herstellung und Verfahren zur zielgerichteten Nukleinsäureeinbringung in Zellorganellen und Zellen

Figur 7b

Dr. Peter Seibel: Chimäres Peptid-Nukleinsäure-Fragment, Verfahren zu seiner Herstellung und Verfahren zur zielgerichteten Nukleinsäureeinbringung in Zellorganellen und Zellen