(EXP) y → f (TEO)

i	X	у	f
1	x1	y1	f1
2	x2	y2	f2
3	х3	у3	f3

O MMQ busca decodificar uma função teórica, que descreva a realidade, com razoável precisão. O processo passa pela obtenção de dados experimentais (x, y) e pela escolha do grau do polinômio f(x) de ajuste e termina com a definição dos coeficientes (a, b, c, ...) que minimizam o erro.

Erro = 1/2[(EXP**1**-TEO**1** $)^2+(EXP$ **2**-TEO**2** $)^2+(EXP$ **3**-TEO**3** $)^2]$

Erro =
$$1/2$$
 $\sum_{i=1}^{n} (EXPi - TEOi)^2$

1. Obter os dados experimentais

i	Х	у	
1	1	6	
2	2	12	
3	3	20	

2. Escolha do polinômio

3. Definição do erro

Erro =
$$1/2$$
 $\sum_{i=1}^{n}$ (EXPi - TEOi)²

Erro = $1/2$ $\sum_{i=1}^{3}$ (yi - fi)²

Erro = $1/2$ $\sum_{i=1}^{3}$ (yi - [axi²+bxi+c])²

Para minimização do erro, seguem as derivadas parciais igualadas a zero.

4. Derivadas Parciais

$$\begin{cases} \frac{\partial_{Erro}}{\partial a} = \frac{1}{2} * 2 * \sum_{i=1}^{3} (y_i - ax_i^2 - bx_i - c) * (-x_i^2) = 0 \\ \frac{\partial_{Erro}}{\partial b} = \frac{1}{2} * 2 * \sum_{i=1}^{3} (y_i - ax_i^2 - bx_i - c) * (-x_i^1) = 0 \\ \frac{\partial_{Erro}}{\partial c} = \frac{1}{2} * 2 * \sum_{i=1}^{3} (y_i - ax_i^2 - bx_i - c) * (-x_i^0) = 0 \end{cases}$$

5. Sistema de Equações

$$\sum_{i=1}^{3} \left(-x_i^2 y_i + ax_i^4 + bx_i^3 + cx_i^2 \right) = 0$$

$$\sum_{i=1}^{3} \left(-x_i^1 y_i + ax_i^3 + bx_i^2 + cx_i^1 \right) = 0$$

$$\sum_{i=1}^{3} \left(-x_i^0 y_i + ax_i^2 + bx_i + cx_i^0 \right) = 0$$

6. Algebrizando

$$\sum_{i=1}^{3} (ax_i^4 + bx_i^3 + cx_i^2) = \sum_{i=1}^{3} x_i^2 y_i$$

$$\sum_{i=1}^{3} (ax_i^3 + bx_i^2 + cx_i^1) = \sum_{i=1}^{3} x_i^1 y_i$$

$$\sum_{i=1}^{3} (ax_i^2 + bx_i^1 + cx_i^0) = \sum_{i=1}^{3} x_i^0 y_i$$

7. Matricialmente

8. Somatórias

 \sum

x ^o	X ¹	y¹	χ²	X ³	χ ⁴	x²y	x¹y¹
1	1	6	1	1	1	6	6
1	2	12	4	8	16	48	24
1	3	20	9	27	81	180	60
3	6	38	14	36	98	234	90

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$

8. Testando a função teórica obtida

$$f(x) = 1x^{2}+3x+2$$

$$f(1) = 1 * 1^{2} + 3 * 1 + 2 = 06$$

$$f(2) = 1 * 2^{2} + 3 * 2 + 2 = 12$$

$$f(3) = 1 * 3^{2} + 3 * 3 + 2 = 20$$