Задачи группы 1.

Летняя Физическая Школа, июль–август 2015.

1	Слева направо по гладкой горизонтальной плоскости скользит тяжелая горка массой M , на вершине которой покоится легкий груз массой m . Кинетическая энергия груза K_1 в 4 раза меньше его потенциальной энергии П. Груз съезжает с горки без трения. Найдите его кинетическую энергию, когда он окажется на плоскости.	
2	Автомобиль с полным приводом (двигатель вращает все четыре колеса) и массой $m=1400$ кг проходит поворот радиусом $R=500$ м с постоянной по модулю ско ростью. Максимальная мощность двигателя автомобиля не зависит от скорости и равна P_{max} . Сила сопротивления воздуха $F=-\alpha v$, где v — скорость автомобиля $\alpha=40$ H·c/м. Коэффициент трения между колесами и дорогой $\mu=0.52$. Определите максимальное значение модуля скорости v_{max} , с которой автомобиль може пройти поворот. Постройте график зависимости v_{max} от P_{max} .	
3	На горизонтальной плоскости с коэффициентом трения μ находятся два одинаковых малых диска с гладкой боковой поверхностью. Первый диск покоился, а второй налетел на него со скоростью v в момент удара. Считая столкновение дисков упругим, но не обязательно лобовым, найдите: а) на каком расстоянии окажутся диски к моменту их остановки, если первый диск остановился, пройдя расстояние x_1 ; б) наибольшее и наименьшее возможные конечные расстояния между дисками. (размерами дисков пренебречь).	
4	На очень длинной горизонтальной спице через равные промежутки насажены 5 одинаковых бусинок. В начальный момент всем бусинкам сообщатся некоторые скорости вдоль спицы. Какое максимальное число столкновений возможно в этой системе? Все столкновения абсолютно упруги.	
5	а) Какой период у спутника, который обращается по эллиптической орбите с большой полуосью a и малой полуосью b от планеты массой M ? Во сколько раз изменится период, если уменьшить малую полуось в 10 раз. (0.5 балла) б) Ракета запущена вертикально вверх с поверхности Земли с первой космической скоростью и возвращается на Землю недалеко от места старта. Сколько времени она находилась в полете? Радиус Земли $R = 6400$ км. (1 балл)	
6	Точечную частицу, имеющую массу m и заряд Q , помещают на расстоянии L от бесконечной проводящей плоскости и отпускают. За какое время частица долетит до плоскости? Сила тяжести отсутствует.	
7	Образование кометного семейства Юпитера описывается следующей схемой. Комета падает с большого удаления без начальной скорости на солнце и пролетает недалеко от Юпитера. После прекращения заметного влияния Юпитера комета вновь движется в поле Солнца, причем ее скорость оказывается направленной противоположно скорости Юпитера, а афелий располагается вблизи орбиты Юпитера, т.е. на расстоянии 5.2 а.е. от Солнца. На каком расстоянии будет располагаться перигелий орбиты такой кометы?	
8	Закреплённая непроводящая тонкостенная однородная сфера радиусом R и массой M равномерно заряжена по поверхности зарядом Q . Из неё вырезают маленький кусочек массой $M/10000$, сжимают его в крошечный комочек (не меняя заряд) и помещают в центр сферы. Комочек отпускают. Чему будет равна его скорость на большом удалении? В момент вылета из сферы?	

0	На расстоянии H от бесконечной проводящей плоскости находится точечный за-
10	ряд q_0 . Найти, на каком расстоянии от проекции заряда на плоскость в эту плос-
	кость войдёт силовая линия, вышедшая из заряда параллельно плоскости.
	Полный заряд параллелепипеда равномерно заряженного по всему объему равен
	Q_1 . В результате нанесения дополнительного поверхностного заряда Q_2 на все гра-
	ни этого параллелепипеда, кроме грани $ABCD$, поле в точке F оказывается равным
	нулю. Определите величину отношения Q_2/Q_1 . Длины ребер параллелепипеда ука-
	заны на рисунке.

В вакууме на расстоянии L=10 см друг от друга находятся протон p^+ и антипротон p^- . Обе эти частицы имеют одинаковые массы $m=1.27\cdot 10^{-27}$ кг и одинаковые по модулю заряды $e=1.602\cdot 10^{19}$ Кл. В первый момент частицы неподвижны. При сближении частиц на расстояние $l=10^{-13}$ м происходит их аннигиляция с рождением γ -квантов.

11

- 1. Какие скорости будут иметь частицы при таком сближении?
- 2. Через какое время произойдет аннигиляция частиц?

При расчетах гравитационные силы можно не учитывать.

12

В цилиндре под поршнем находится влажный воздух. В изотермическом процессе объем цилиндра уменьшается в $\alpha=4$ раза, при этом давление под поршнем увеличивается в $\gamma=3$ раза. Какая часть первоначальной массы пара сконденсировалась? В начальном состоянии парциальное давление сухого воздуха в $\beta=\frac{3}{2}$ раза больше парциального давления пара.

13

В архиве Кельвина рукопись с (p,V) диаграммой, на которой был изображён циклический процесс в виде прямоугольного треугольника **ACB**. Угол C был прямым, а в точке **K**, лежащей на середине стороны **AB**, теплоёмкость многоатомного газа **CH**₄ обращалась в ноль. Газ можно считать идеальным. От времени чернила выцвели, и на рисунке остались видны только координатные оси и точки **C** и **K**. С помощью циркуля и линейки без делений восстановите положение треугольника **ACB**. Известно, что в точке **A** объём был меньше, чем в **B**.

14	В архиве Кельвина нашли рукопись, на которой был изображён процесс $1 \rightarrow 2 \rightarrow 3$, совершённый над одним молем азота. От времени чернила выцвели, и стало невозможно разглядеть, где находятся оси давления и объёма. Однако из текста следовало, что состояния 1 и 3 лежат на одной изохоре, а также то, что в процессах $1 \rightarrow 2$ и $2 \rightarrow 3$ объём газа изменяется на ΔV . Кроме того, было сказано, что количество теплоты, подведённой в процессе $1 \rightarrow 2 \rightarrow 3$ к N_2 равно нулю. Определите, на каком расстоянии (в единицах объёма) от оси давлений находится изохора, проходящая через точки 1 и 3.	32
15	На лёгком стержне длиной l висит небольшой шарик массой m . К стержню прикреплена лёгкая пружина жёсткостью k на расстоянии $2l/3$ от точки подвеса. Другой конец пружины прикреплён к стене. Система может вращаться без трения вокруг горизонтальной оси. В положении равновесия стержень вертикален, пружина горизонтальна и не деформирована. Найдите период малых колебаний системы в плоскости чертежа.	000000000000000000000000000000000000000
16	Тонкая изогнутая трубка постоянного сечения S расположена в вертикальной плоскости. Трубка наполнена жидкостью плотностью ρ . Масса жидкости равна m . Найдите период колебаний жидкости в трубке.	
17	Вообразите, что вдоль диаметра Земли прорыт тоннель и в Через какое время камень окажется на противоположной стивление воздуха и вращение Земли не учитывать. Плотно стоянной по всему объёму, радиус Земли $R=6400$ км.	гороне Земли? Сопро-
18	а) Пусть есть некоторая схема, состоящая из резисторов и одной батарейки $\mathscr E$. В некоторый момент времени напряжение на батарейке стало равным $2\mathscr E$. Во сколько раз увеличились токи? (подсказка: рассмотрите уравнения Кирхгофа) (0.5 балла). б) Рассмотрим произвольную схему из резисторов, имеющую общее сопротивление R между клеммами A , B . Экспериментатор добавил последовательно к некоторым из резисторов батарейки с напряжение U , а также замкнул клеммы A , B такой же батарейкой. Через некоторое время экспериментатор изменил напряжение на батарейке, соединяющей клеммы A , B , на ΔU . На сколько изменился ток между клеммами A , B . Ответ обоснуйте. (1 балл). в) Собрана схема, изображенная на рисунке. ЭДС батареи $\mathscr E_1$ уменьшили на 1.5 вольта, после чего токи на различных участках цепи изменились. Как нужно изменить ЭДС батареи $\mathscr E_2$, чтобы: ток через батарею $\mathscr E_1$ стал прежним (1 балл); г) ток через батарею $\mathscr E_2$ стал прежним (1 балл).	R $3R$ E_1 R R E_2

В электрической цепи, схема которой изображена на рисунке, ЭДС батареек равны $3\mathscr E$ и $2\mathscr E$ соответственно, а сопротивления резисторов составляют $R_1=R,\ R_2=2R,\$ а $R_x=3R.$ На сколько процентов изменится сила тока, проходящего через амперметр, если сопротивление переменного резистора R_x увеличить на 5%.

