МЕТОДЫ И АЛГОРИТМЫ ТЕОРИИ ГРАФОВ

Циклы в графах

- ✓ Циклы в неографах
- ✓ Циклы в орграфах
- ✓ Независимые циклы в графе
- ✓ Циклы Эйлера
- ✓ Циклы Гамильтона
- ✓ Алгоритмы поиска циклов Гамильтона в графе
- ✓ Алгоритмы решения задача коммивояжера

Циклы в графах

- Циклы в неографах
- ✓ Циклы в орграфах
- ✓ Независимые циклы в графе
- ✓ Циклы Эйлера
- ✓ Циклы Гамильтона
- ✓ Алгоритмы поиска циклов Гамильтона в графе
- ✓ Алгоритмы решения задача коммивояжера

Цикл – замкнутая цепь в неографе, т.е. цепь, в которую добавлено ребро, инцидентное вершинам начала и конца цепи. Длина цикла $\,l\,$ определяется количеством ребер в цикле, причем $\,l\geq 3$.

G(X,U)

Цикл – замкнутая цепь в неографе, т.е. цепь, в которую добавлено ребро, инцидентное вершинам начала и конца цепи. Длина цикла $\,l\,$ определяется количеством ребер в цикле, причем $\,l \geq 3$.

$$\mu_1 = (x_3, x_1, x_2, x_3, x_5, x_4)$$

Цикл – замкнутая цепь в неографе, т.е. цепь, в которую добавлено ребро, инцидентное вершинам начала и конца цепи. Длина цикла $\,l\,$ определяется количеством ребер в цикле, причем $\,l \geq 3$.

$$c_1 = (x_3, x_1, x_2, x_3, x_5, x_4, x_3), l_{c_1} = 6.$$

Простой цикл – замкнутая простая цепь в неографе, т.е. простая цепь, в которую добавлено ребро, инцидентное вершинам начала и конца цепи.

G(X,U)

Простой цикл – замкнутая простая цепь в неографе, т.е. простая цепь, в которую добавлено ребро, инцидентное вершинам начала и конца цепи.

$$\mu_2 = (x_3, x_2, x_1, x_5, x_4)$$

Простой цикл – замкнутая простая цепь в неографе, т.е. простая цепь, в которую добавлено ребро, инцидентное вершинам начала и конца цепи.

$$c_2 = (x_3, x_2, x_1, x_5, x_4, x_3), l_{c_2} = 5.$$

Циклы в графах

- ✓ Циклы в неографах
- Циклы в орграфах
- ✓ Независимые циклы в графе
- ✓ Циклы Эйлера
- ✓ Циклы Гамильтона
- ✓ Алгоритмы поиска циклов Гамильтона в графе
- ✓ Алгоритмы решения задача коммивояжера

Ориентированный цикл (= контур) — замкнутый путь в орграфе, т.е. путь, в который добавлена дуга, вершиной истока которой является вершина конца пути, а вершиной ее стока — начало пути.

$$\vec{G}(X,U)$$

Ориентированный цикл (= контур) — замкнутый путь в орграфе, т.е. путь, в который добавлена дуга, вершиной истока которой является вершина конца пути, а вершиной ее стока — начало пути.

$$\vec{\mu}_1 = (x_3, x_2, x_1, x_3, x_5, x_4)$$

Ориентированный цикл (= контур) — замкнутый путь в орграфе, т.е. путь, в который добавлена дуга, вершиной истока которой является вершина конца пути, а вершиной ее стока — начало пути.

$$\vec{c_1} = (x_3, x_2, x_1, x_3, x_5, x_4, x_3), \ l_{c_1} = 6.$$

Простой контур — замкнутый простой путь в орграфе, т.е. простой путь, в который добавлена дуга, вершиной истока которой является вершина конца пути, а вершиной ее стока — начало

этого пути.

$$\vec{G}(X,U)$$

Простой контур — замкнутый простой путь в орграфе, т.е. простой путь, в который добавлена дуга, вершиной истока которой является вершина конца пути, а вершиной ее стока — начало этого пути.

$$\vec{\mu}_2 = (x_3, x_2, x_1, x_5, x_4)$$

Простой контур — замкнутый простой путь в орграфе, т.е. простой путь, в который добавлена дуга, вершиной истока которой является вершина конца пути, а вершиной ее стока — начало этого пути.

$$\vec{c_2} = (x_3, x_2, x_1, x_5, x_4, x_3), \ l_{c_2} = 5.$$

Полуконтур — контур, построенный в орграфе без учета направления дуг.

$$\vec{G}(X,U)$$

Полуконтур – контур, построенный в орграфе без учета направления дуг.

$$c_3 = (x_1, x_2, x_3, x_1, x_5, x_4, x_1), l_{c_3} = 6.$$

Про

Простой полуконтур – простой контур, построенный в орграфе без учета направления дуг.

 $\vec{G}(X,U)$

Простой полуконтур – простой контур, построенный в орграфе без учета направления дуг.

$$c_4 = (x_1, x_2, x_3, x_4, x_5, x_1), l_{c_4} = 5.$$

Циклы в графах

- ✓ Циклы в неографах
- ✓ Циклы в орграфах
- Независимые циклы в графе
- ✓ Циклы Эйлера
- ✓ Циклы Гамильтона
- ✓ Алгоритмы поиска циклов Гамильтона в графе
- ✓ Алгоритмы решения задача коммивояжера

Nº	Простой цикл	Длина цикла
1	$c_1 = (x_1, x_2, x_3, x_1)$	3

Nº	Простой цикл	Длина цикла
1	$c_1 = (x_1, x_2, x_3, x_1)$	3
2	$c_2 = (x_2, x_3, x_4, x_2)$	3

Nº	Простой цикл	Длина цикла
1	$c_1 = (x_1, x_2, x_3, x_1)$	3
2	$c_2 = (x_2, x_3, x_4, x_2)$	3
3	$c_3 = (x_3, x_4, x_1, x_3)$	3

Nº	Простой цикл	Длина цикла
1 2 3 4	$c_1 = (x_1, x_2, x_3, x_1)$ $c_2 = (x_2, x_3, x_4, x_2)$ $c_3 = (x_3, x_4, x_1, x_3)$ $c_4 = (x_4, x_1, x_2, x_4)$	3 3 3 3

Nº	Простой цикл	Длина цикла
1	$c_1 = (x_1, x_2, x_3, x_1)$	3
2	$c_2 = (x_2, x_3, x_4, x_2)$	3
3	$c_3 = (x_3, x_4, x_1, x_3)$	3
4	$c_4 = (x_4, x_1, x_2, x_4)$	3
5	$c_5 = (x_1, x_2, x_3, x_4, x_1)$	4

Nº	Простой цикл	Длина цикла
1	$c_1 = (x_1, x_2, x_3, x_1)$	3
2	$c_2 = (x_2, x_3, x_4, x_2)$	3
3	$c_3 = (x_3, x_4, x_1, x_3)$	3
4	$c_4 = (x_4, x_1, x_2, x_4)$	3
5	$c_5 = (x_1, x_2, x_3, x_4, x_1)$	4
6	$c_6 = (x_1, x_2, x_4, x_3, x_1)$	4

$$C(G) = \{c_1, c_2, c_3, c_4, c_5, c_6, c_7\}$$

Nº	Простой цикл	Длина цикла
1	$c_1 = (x_1, x_2, x_3, x_1)$	3
2	$c_2 = (x_2, x_3, x_4, x_2)$	3
3	$c_3 = (x_3, x_4, x_1, x_3)$	3
4	$c_4 = (x_4, x_1, x_2, x_4)$	3
5	$c_5 = (x_1, x_2, x_3, x_4, x_1)$	4
6	$c_6 = (x_1, x_2, x_4, x_3, x_1)$	4
7	$c_7 = (x_1, x_4, x_2, x_3, x_1)$	4

$$C(G) = \{c_1, c_2, c_3, c_4, c_5, c_6, c_7\}$$

Nº	Простой цикл	Длина цикла
1	$c_1 = (x_1, x_2, x_3, x_1)$	3
2	$c_2 = (x_2, x_3, x_4, x_2)$	3
3	$c_3 = (x_3, x_4, x_1, x_3)$	3
4	$c_4 = (x_4, x_1, x_2, x_4)$	3
5	$c_5 = (x_1, x_2, x_3, x_4, x_1)$	4
6	$c_6 = (x_1, x_2, x_4, x_3, x_1)$	4
7	$c_7 = (x_1, x_4, x_2, x_3, x_1)$	4

$$C_{\mathrm{H}}(G) = \{c_1, c_2, c_3\}$$

$$C_{\mathrm{H}}(G) = \{c_1, c_2, c_3\}$$

$$C_{\mathrm{H}}(G) = \{c_1, c_2, c_3\}$$

$$C_{\mathrm{H}}(G) = \{c_6, c_7\}$$

Циклы в графах

- ✓ Циклы в неографах
- ✓ Циклы в орграфах
- Независимые циклы в графе
- Циклы Эйлера
- ✓ Циклы Гамильтона
- ✓ Алгоритмы поиска циклов Гамильтона в графе
- ✓ Алгоритмы решения задача коммивояжера

Цикл Эйлера – цикл (контур), проходящий **через все ребра (дуги)** связанного графа.

Граф, содержащий цикл Эйлера, называется графом Эйлера.

Граф Эйлера можно нарисовать, если «не отрывать карандаш от бумаги и не повторять линий» (теорема Эйлера, 1736 г).

Цикл Эйлера – цикл (контур), проходящий **через все ребра (дуги)** связанного графа.

Граф, содержащий цикл Эйлера, называется графом Эйлера.

Граф Эйлера можно нарисовать, если «не отрывать карандаш от бумаги и не повторять линий» (теорема Эйлера, 1736 г).

Цикл Эйлера – цикл (контур), проходящий **через все ребра (дуги)** связанного графа.

Граф, содержащий цикл Эйлера, называется графом Эйлера.

Граф Эйлера можно нарисовать, если «не отрывать карандаш от бумаги и не повторять линий» (теорема Эйлера, 1736 г).

Следствия теоремы для распознавания графов Эйлера:

- 1. Связный неограф G(X,U) является графом Эйлера, если $\forall x \in X : \rho(x)$ четное число.
- 2. Связный орграф G(X,U) является графом Эйлера, если $\forall x \in X:
 ho^+(x) =
 ho^-(x)$.

Задача о Кенигсбергских мостах сводится к задаче поиска цикла Эйлера в данном графе.

$$\rho(a) = \rho(c) = \rho(d) = 3$$

$$\rho(b) = 5$$

Т.к. данный граф не удовлетворяет условию следствия теоремы Эйлера, то и ответ в решении этой задачи отрицательный.

Если граф не является графом Эйлера, но для его построения достаточно добавить одно ребро (одну дугу), то такой граф называется **полуэйлеровым графом,** а цепь (путь), в который добавляется ребро (дуга), называются **цепью Эйлера.**

Следствия теоремы для распознавания полуэйлеровых графов:

- 3. В полуэйлеровом неографе степени всех вершин четные за исключением двух вершин (эти вершины и являются началом и концом цепи Эйлера в графе).
- 4. В полуэйлеровом орграфе полустепени исхода и полустепени захода различаются только у двух вершин x и y, причем $\rho^-(x)=\rho^+(x)+1$ и $\rho^+(y)=\rho^-(y)+1$ (вершина x является началом, а вершина y концом цепи Эйлера в графе).

- - 1. Проверка условия существования цикла Эйлера в заданном графе G(X,U) .
 - 2. Если условие выполняется, то решается задача поиска цикла Эйлера. Если условие не выполняется, то закончить решение задачи (данный граф G(X,U) не является графом Эйлера).

 $\forall x \in X : \rho(x)$ — чётное число

Почти нет графовых структур, являющихся графами Эйлера (теорема Рейда, 1962 г.)

- ✓ Циклы в неографах
- ✓ Циклы в орграфах
- ✓ Независимые циклы в графе
- Циклы Эйлера
- Циклы Гамильтона
- ✓ Алгоритмы поиска циклов Гамильтона в графе
- ✓ Алгоритмы решения задача коммивояжера

Nº	Цикл Гамильтона	Длина цикла
1	$c_1 = (x_1, x_2, x_3, x_4, x_1)$	4

 C_2

Nº	Цикл Гамильтона	Длина цикла
1 2	$c_1 = (x_1, x_2, x_3, x_4, x_1)$ $c_2 = (x_1, x_2, x_4, x_3, x_1)$	4 4

Nº	Цикл Гамильтона	Длина цикла
1	$c_1 = (x_1, x_2, x_3, x_4, x_1)$	4
2	$c_2 = (x_1, x_2, x_4, x_3, x_1)$	4
3	$c_3 = (x_1, x_4, x_2, x_3, x_1)$	4

Nº	Цикл Гамильтона	Длина цикла
1	$c_1 = (x_1, x_2, x_3, x_4, x_1)$	4
2	$c_2 = (x_1, x_2, x_4, x_3, x_1)$	4
3	$c_3 = (x_1, x_4, x_2, x_3, x_1)$	4

Если с связном графе $n \ge 3$ выполняется условие $\forall x \in X : \rho(x) \ge n/2$, то данный граф является Гамильтоновым графом (теорема Дирака, 1952 г.)

Если в графе отсутствуют циклы Гамильтона, но для его построения достаточно добавить одно ребро (одну дугу), то такой граф называется **полугамильтоновым графом**, а цепь (путь), в который добавляется ребро (дуга), называется **цепью Гамильтона**.

$$\mu_1 = (x_4, x_2, x_1, x_3)$$

Если в графе отсутствуют циклы Гамильтона, но для его построения достаточно добавить одно ребро (одну дугу), то такой граф называется **полугамильтоновым графом**, а цепь (путь), в который добавляется ребро (дуга), называется **цепью Гамильтона**.

$$c_1 = (x_4, x_2, x_1, x_3, x_4)$$

$$c_2 = (x_2, x_4, x_1, x_3, x_2)$$

Почти все связные графы являются графами Гамильтона (теорема Перепелицы, 1969г.)

- ✓ Циклы в неографах
- ✓ Циклы в орграфах
- ✓ Независимые циклы в графе
- ✓ Циклы Эйлера
- Циклы Гамильтона
- Алгоритмы поиска циклов Гамильтона в графе
- ✓ Алгоритмы решения задача коммивояжера

- ✓ Циклы в неографах
- ✓ Циклы в орграфах
- ✓ Независимые циклы в графе
- ✓ Циклы Эйлера
- ✓ Циклы Гамильтона
- Алгоритмы поиска циклов Гамильтона в графе
- Алгоритмы решения задача коммивояжера

Содержательная постановка задачи о коммивояжере

Торговец (коммивояжер) должен посетить все города по одному разу из заданного списка и вернуться обратно в тот город, с которого он начал посещение. При этом стоимость его поездки должна быть минимальной.

Формальная постановка задачи о коммивояжере

Дано: связный n,m-граф G(X,U) с установленными весами ребер $W=(w_1,...,w_m)$, в котором w_i- стоимость проезда между городами, моделируемыми в графе вершинами концов ребра u_i .

Пусть $C_{\rm H}-$ множество всех циклов Гамильтона в графе G(X,U).

<u>Найти</u>: $c^* \in C_{\mathrm{H}}$, для которого выполняется следующее условие: $\sum_{orall u_i \in c^*} w_i o \min$.

- ✓ Циклы в неографах
- ✓ Циклы в орграфах
- ✓ Независимые циклы в графе
- ✓ Циклы Эйлера
- ✓ Циклы Гамильтона
- ✓ Алгоритмы поиска циклов Гамильтона в графе
- Алгоритмы решения задача коммивояжера

МЕТОДЫ И АЛГОРИТМЫ ТЕОРИИ ГРАФОВ

- ✓ Циклы в неографах
- ✓ Циклы в орграфах
- ✓ Независимые циклы в графе
- ✓ Циклы Эйлера
- ✓ Циклы Гамильтона
- ✓ Алгоритмы поиска циклов Гамильтона в графе
- ✓ Алгоритмы решения задача коммивояжера Л.С. Лисицына

