Elyasheev Leibtag Weizmann institute of science

Tutorial

WEEK 10

1. Open subset which is non affine

First -A union of affine varieties is a variety.

Lemma 1.0.1. Let $X := \mathbb{C}^2 \setminus \{0\}$ is an algebraic variety which is not affine.

Proof. First observe that X is a variety since $X = Z(x)^c \cup Z(y)^c$. (Denote $D(x) = Z(x)^c = \{(x,y) : x \neq 0\}$)

A regular function on X is one such that restricted to each affine part is regular. Recall that $\mathcal{O}_{\mathbb{C}^2}(D(x)) = \mathbb{C}[x,y](1/x)$ and $\mathcal{O}_{\mathbb{C}^2}(D(y)) = \mathbb{C}[x,y](1/y)$.

Let $f \in \mathcal{O}_{\mathbb{C}^2}(X)$ then $f|_{D(x)} = \frac{p(x,y)}{x^n}$ and $f|_{D(y)} = \frac{q(x,y)}{y^m}$ (where we assume $x \nmid p(x,y)$, $y \nmid q(x,y)$ or is zero polynomial).

We get that on the open set $U = D(x) \cap D(y) = \{\{(x,y) : x,y \neq 0\}\}$ $x^n q(x,y) = y^m p(x,y)$, since U is Zariski dense in \mathbb{C}^2 we get this identity on the whole plane. Therefore q(x,y) = p(x,y) = 0 or n = m = 0, if p(x,y) = q(x,y) = 0 then f = 0 on all X, if not then $f = p(x,y) \in \mathbb{C}[x,y]$. We got that $\mathcal{O}(X) \cong \mathcal{O}(\mathbb{C}^2)$. So assuming X is affine and looking at the inclusion map $i: X \to \mathbb{C}^2$ we get that i^* is isomorphism thus i should be as well.

2. Krull dimension

Definition 2.0.1. Let X be a variety,

$$\dim(X) = \max_{k} \{\exists \text{closed irreducable } Z_i \subset X, \ 0 \subseteq Z_1 \subseteq Z_2 \subseteq \ldots \subseteq Z_k \subset X\}$$

This is equivalent to the transcendence degree definition, we can show that $\dim(\mathbb{C}^n) = n$ and that the dimension is preserved for finite maps.

Lemma 2.0.1. Let $\nu: X \to Y$ be a finite (surjective) map, then $\dim(X) = \dim(Y)$

Proof. We showed tat finite maps are closed and since irreducible sets map to irreducible sets we get that $\dim(X) \leq \dim(Y)$.

On the contrary we prove by induction on $\dim(Y)$, take the chain $0 \subseteq W_1 \subseteq W_2 \subseteq \subseteq W_p \subset Y$, decompose $\nu^{-1}(W_p) = K_1 \cup \cup K_n$ so

2 WEEK 10

 $W_p = \nu(K_1) \cup ... \cup \nu(K_n)$ by irreducibility of W_p we get that $W_p = \nu(K_{i_p})$ set $Z_p \coloneqq K_{i_p}$

3. Princaple Ideal Theorem

Theorem 3.0.1 (Princaple Ideal theorem). Let X be irreducable and $g \in \mathcal{O}(X)$ then each component of Z(g) has dimension $\dim(x) - 1$

This theorem is very useful but we will not prove it in this tutorial. Mainly what we seen in class can be stated

Lemma 3.0.1. Let $g = c \prod_i g_i^{n_i}$ where g_i are irreducible polynomials in $\mathbb{C}[x_1, ..., x_n]$, let X := Z(g) then:

- (1) The irreducible components of X are $Z(g_i)$.
- (2) $\mathcal{O}(X) = \mathbb{C}[x_1, ..., x_n]/(\prod_i g_i).$
- (3) Each component of X has dimension n-1
- (4) Any closed $Y \subset \mathbb{C}^n$ with the property that any irreducible component is co-dimension 1 is a hyper-surface.
- *Proof.* (1) $Z(g) = Z(g_1) \cup Z(g_1) \cup \cup Z(g_d)$ so enough to show that $Z(g_i)$ is irreducable and this follows from irreduciblity of the polynomial g_i .

(If $Z(g_i) = X_1 \cup X_2$ choose $f_j|_{X_j} = 0$ get that $f_1 f_2 = 0$ on X thus $g_i \mid f_1 f_2$ by irreduciblity w.l.o.g $g_i \mid f_1$ thus $X_1 = X$)

(2) Just need to show $\langle \prod_i g_i \rangle$ is a radical ideal. First clearly $\prod_i g_i$ belong to the radical \sqrt{g} . In the other direction if $f \in \sqrt{\langle g \rangle}$ then $f^m = gh = c \prod_i g_i^{n_i}$, now assume $f = \prod_j f_j^{k_j}$ irreducible decomposition, then we get

$$\prod_{i} f_{j}^{mk_{j}} = c \prod_{i} g_{i}^{n_{i}}$$

By UFD we get that each g_i is some f_j (times constant) so $\prod_i g_i \mid f$ hence $f \in \subset \prod_i g_i > .$

- (3) Shown in class.
- (4) Let X be irreducible with dimension n-1 we show it is a hypersurface.

Since $X \neq \mathbb{C}^n$ there is a polynomial f s.t. $X \subset Z(f)$, by (a) assume that f is irreducible, we claim that X = Z(f) this is since $\dim(X) = n-1$ and if $X \subsetneq Z(f)$ then the Krull dimension would be lower.

Corollary 3.0.1. If $g \in \mathbb{C}[x_1, ..., x_n]$ with $\dim(Z(g)) < n-1$ then g is constant.

4. Dimension of intersection

Theorem 4.0.1. Let $X, Y \subset \mathbb{C}^n$ irreducible closed, then **each** component of $X \cap Y$ has dimension $\dim() \geq \dim(X) + \dim(Y) - n$

WEEK 10 3

Proof. Observe $X \cap Y \cong \Delta(X \cap Y) = X \times Y \cap \Delta(\mathbb{C}^n)$ thus is given by n equations in $X \times Y$

Corollary 4.0.1. If $\dim(X) + \dim(Y) > n$ then $X \cap Y \neq \emptyset$

We will show this is also true for irreducible projective variety.

Definition 4.0.1. Let $Z \subset \mathbb{P}^n$ define the cone over Z to be $C(Z) := \overline{\pi^{-1}(Z)} = \pi^{-1}(Z) \cup \{0\}$

Lemma 4.0.1. $\dim(C(Z)) = \dim(Z) + 1$

Proof. Define the map $\phi_i \colon Z \cap U_i \times \mathbb{C}^* \to C(Z) \cap \pi^{-1}(U_i)$,

$$((x_0, ...1_i, ..., x_n), \lambda) \mapsto \lambda(x_0, ...1_i, ..., x_n)$$

This is an isomorphism, and since these open sets cover the variety we get that $\dim(Z \times C^*) = \dim(Z) + 1 = \dim(C(Z))$