AGRUPAMENTO

MANOELA KOHLER

Prof.manoela@ica.ele.puc-rio.br

TÓPICOS

R

Análise exploratória

Pré-processamento

- Balanceamento
- Outliers
- Missing values
- Normalização
- Seleção de atributos (Filtros, Wrappers, PCA)

Associação:

- Apriori
- FP-Growth
- Eclat

Classificação:

- Regressão logística
- Support Vector Machine (SVM)
- Árvores de Decisão
- Random Forest
- Redes Neurais
- K nearest neighbors

Regressão

- Regressão linear simples
- Regressão linear múltipla
- Regressão não linear simples
- Regressão não linear múltipla

Agrupamento

- Particionamento (K-means, K-medoids)
- Hierárquico (DIANA, AGNES)
- Densidade (DBSCAN)

Séries Temporais

- Naive
- Média Móvel
- Amortecimento exponencial
- Auto-regressivo integrados de média móvel
- Auto regressivo n\u00e4o linear

Recapitulação

ETAPAS DE UM PROJETO DE DATA MINING

ESQUEMA BÁSICO DE UM PROJETO DE DM

ASSOCIAÇÃO

Apriori FP-Growth ECLAT

ESTUDO DE CASO

Transações de um Supermercado

Lista de transações (compras) em um mercado francês:

- Cada linha da base é uma transação;
- Cada transação tem de 1 a N itens;
- Existem 119 produtos diferentes no mercado;
- Base tem 7501 transações feitas no decorrer de 1 mês.

Aprendizado não supervisionado: Agrupamento

- K-means (Clusterização baseada em Particionamento)
- Clusterização Hierárquica
- Clusterização baseada em Densidade

AGRUPAMENTO (CLUSTERIZAÇÃO)

CLUSTERIZAÇÃO

Cluster: uma coleção de objetos

- Similares aos objetos do mesmo cluster
- Dissimilares aos objetos de outros clusters

Clusterização

Agrupamento de conjuntos de dados em clusters.

Clusterização é uma classificação não supervisionada: sem classes predefinidas.

A NOÇÃO DE UM CLUSTER PODE SER AMBÍGUA

APLICAÇÕES GERAIS DE CLUSTERIZAÇÃO

Marketing: identifica grupos distintos de clientes (útil para desenvolver programas de marketing) (CHIANG, 2003).

Uso da terra: identifica a possibilidade de alocação de uso da terra para fins agrários e/ou urbanos em uma base de dados de observação via satélite de todo o planeta Terra (LEVIA JR, 2000).

Seguro: Identifica grupos de clientes que fazem comunicação de sinistro com alta frequência (YEOH, 2001).

Planejamento (cidade): Identifica grupos de casas de acordo com o tipo, valor e localização geográfica.

O QUE É UMA BOA CLUSTERIZAÇÃO?

Uma boa clusterização sempre produz clusters com:

- Alta similaridade nas classes;
- Baixa similaridade entre as classes.

A qualidade dos resultados depende do(a):

- Medida de similaridade usada;
- Método e sua implementação.

ANTES DE SEGUIR EM FRENTE VAMOS LEMBRAR

CLASSIFICAÇÃO NÃO SUPERVISIONADA

Não conhecemos o padrão, nem o número total de grupos a serem encontrados durante a classificação.

Também conhecido como aprendizado não supervisionado ou análise de agrupamentos (clusters).

O conjunto de dados é particionado em grupos, baseados em características específicas, tais que os pontos dentro de um grupo (cluster) sejam mais similares do que os pontos de outros grupos.

SUPERVISIONADO

Aproximador: função mapeia entradas e saída.

NÃO SUPERVISIONADO

MÉTODOS DE CLUSTERIZAÇÃO

Particionamento: Constrói várias partições e as avalia usando algum critério.

Hierárquico: Cria uma decomposição hierárquica dos objetos usando algum critério.

Baseado em densidade: Fundamenta-se em funções de conectividade e de densidade.

MÉTODOS BASEADOS EM PARTICIONAMENTO

Dado um valor de k, encontrar k clusters que otimizem um critério de particionamento escolhido:

- Principais: algoritmos k-means e k-Medoids;
- K-means (MacQueen'67): Cada cluster é representado pelo centro (centroide) do cluster;
- K-medoids ou PAM (Partition Around Medoids) (Kaufman & Rousseeuw'87): Cada cluster é representado por um dos objetos no cluster.

K-MEANS

K-MEANS PASSO 1: ESCOLHER O NÚMERO DE CLUSTERS

PASSO 1: K = 2

PASSO 2: SELECIONAR ARBITRARIAMENTE K PONTOS COMO OS CENTROIDES INICIAIS (NÃO NECESSARIAMENTE DA BASE DE DADOS)

PASSO 2: SELECIONAR ARBITRARIAMENTE K PONTOS COMO OS CENTROIDES INICIAIS (NÃO NECESSARIAMENTE DA BASE DE DADOS)

PASSO 3: ASSOCIAR CADA OBJETO AO CLUSTER (CENTROIDE) MAIS PRÓXIMO (MAIOR SIMILARIDADE), FORMANDO K CLUSTERS

PASSO 3: ASSOCIAR CADA OBJETO AO CLUSTER (CENTROIDE) MAIS PRÓXIMO (MAIOR SIMILARIDADE), FORMANDO K CLUSTERS

PASSO 4: CALCULAR E REALOCAR O NOVO CENTROIDE DE CADA CLUSTER (MÉDIA PARA CADA ATRIBUTO, POR EXEMPLO)

PASSO 4: CALCULAR E REALOCAR O NOVO CENTROIDE DE CADA CLUSTER

PASSO 5: ASSOCIAR CADA OBJETO AO CLUSTER MAIS PRÓXIMO. VOLTAR AO PASSO 4 SE ALGUM OBJETO FOI MOVIDO DE CLUSTER. TERMINAR CASO CONTRÁRIO.

PASSO 5: ASSOCIAR CADA OBJETO AO CLUSTER MAIS PRÓXIMO. VOLTAR AO PASSO 4 SE ALGUM OBJETO FOI MOVIDO DE CLUSTER. TERMINAR CASO CONTRÁRIO.

PASSO 4: CALCULAR E REALOCAR O NOVO CENTROIDE DE CADA CLUSTER

PASSO 4: CALCULAR E REALOCAR O NOVO CENTROIDE DE CADA CLUSTER

PASSO 5: ASSOCIAR CADA OBJETO AO CLUSTER MAIS PRÓXIMO. VOLTAR AO PASSO 4 SE ALGUM OBJETO FOI MOVIDO DE CLUSTER. TERMINAR CASO CONTRÁRIO.

PASSO 5: ASSOCIAR CADA OBJETO AO CLUSTER MAIS PRÓXIMO. VOLTAR AO PASSO 4 SE ALGUM OBJETO FOI MOVIDO DE CLUSTER. TERMINAR CASO CONTRÁRIO.

PASSO 4: CALCULAR E REALOCAR O NOVO CENTROIDE DE CADA CLUSTER

PASSO 4: CALCULAR E REALOCAR O NOVO CENTRÓIDE DE CADA CLUSTER

PASSO 5: ASSOCIAR CADA OBJETO AO CLUSTER MAIS PRÓXIMO. VOLTAR AO PASSO 4 SE ALGUM OBJETO FOI MOVIDO DE CLUSTER. TERMINAR CASO CONTRÁRIO.

PASSO 5: ASSOCIAR CADA OBJETO AO CLUSTER MAIS PRÓXIMO. VOLTAR AO PASSO 4 SE ALGUM OBJETO FOI MOVIDO DE CLUSTER. TERMINAR CASO CONTRÁRIO.

PASSO 4: CALCULAR E REALOCAR O NOVO CENTROIDE DE CADA CLUSTER

PASSO 4: CALCULAR E REALOCAR O NOVO CENTROIDE DE CADA CLUSTER

PASSO 5: ASSOCIAR CADA OBJETO AO CLUSTER MAIS PRÓXIMO. VOLTAR AO PASSO 4 SE ALGUM OBJETO FOI MOVIDO DE CLUSTER. TERMINAR CASO CONTRÁRIO.

MODELO FINAL

COMO DETERMINAR O NÚMERO DE CLUSTERS?

COMO DETERMINAR O NÚMERO DE CLUSTERS?

COMO DETERMINAR O NÚMERO DE CLUSTERS?

MÉTRICA PARA AVALIAR O NÚMERO DE CLUSTERS

WCSS (Within Cluster Sum of Squares)

$$wcss = \sum_{Cluster \ j \ P_i \ no \ cluster \ j} dist(P_iC_j)^2$$

Pi: pontos da base de índice i

C: centroide

$$wcss = \sum_{P_i \text{ no cluster 1}} dist(P_iC_1)^2 + \sum_{P_i \text{ no cluster 2}} dist(P_iC_2)^2 + \sum_{P_i \text{ no cluster 3}} dist(P_iC_3)^2$$

Intuitivamente, o WCSS nesse caso vai ser muito grande, pois a distância de cada ponto até o centroide é muito grande.

Aqui, o WCSS vai ser menor, já que temos dois clusters e as distâncias entre eles e cada ponto será menor.

$$wcss = \sum_{P_i \text{ no cluster 1}} dist(P_i C_1)^2 + \sum_{P_i \text{ no cluster 2}} dist(P_i C_2)^2$$

Aqui, o WCSS será menor ainda

$$wcss = \sum_{P_i \text{ no cluster 1}} dist(P_i C_1)^2 + \sum_{P_i \text{ no cluster 2}} dist(P_i C_2)^2 + \sum_{P_i \text{ no cluster 3}} dist(P_i C_3)^2$$

O número de clusters pode chegar até ao valor do número de dados da sua base, mas obviamente, essa não é uma abordagem boa, já que cada ponto será de um cluster, e seu centroide será igual ao ponto.

Nesse caso, WCSS = 0.

ELBOW METHOD

K	WCSS
2	908.329
3	531.742
4	368.399
5	222.242
6	186.169
7	151.367
8	125.059
9	113.953
10	98.218

ELBOW METHOD

K	WCSS
2	908.329
3	531.742
4	368.399
5	222.242
6	186.169
7	151.367
8	125.059
9	113.953
10	98.218

Usualmente, o número de clusters é definido pela inclinação da reta. Quando a melhora no aumento de cluster já não é tão significativa quando comparada com a melhora imediatamente anterior.

VARIAÇÕES DO MÉTODO K-MEANS

Algumas versões do K-means diferem em:

- Seleção dos pontos iniciais.
- Cálculo da similaridade entre os pontos.
- Estratégias para calcular os centróides dos clusters.

Para atributos nominais: K-modes (Huang'98)

- Substitui as médias dos clusters por modas.
- Usa medidas de similaridade para atributos nominais.
- Usa um método baseado em frequências para atualizar as modas dos clusters.

CLUSTERIZAÇÃO HIERÁRQUICA

MÉTODOS HIERÁRQUICOS

- ➤ **MÉTODOS DIVISIVOS** → Todos Registros → Um "Grande Cluster".
 - Este "Grande Cluster" é dividido em dois ou mais "Clusters" menores até que cada Cluster tenha somente registros semelhantes.

- ➤ MÉTODOS AGLOMERATIVOS → Cada registro é um "Cluster"
 - A cada passo, combina-se Clusters com alguma característica comum até que se chegue a um "Grande Cluster".

MÉTODOS HIERÁRQUICOS

Aglomerativo (Bottom up)

Aglomerativo (Bottom up)

Aglomerativo (Bottom up)

Aglomerativo (Bottom up)

Aglomerativo (Bottom up)

HIERARCHICAL CLUSTERING

Aglomerativo (Bottom up)

Ponto de corte (com k clusters)

- Decompõe objetos em vários níveis de particionamento aninhados (árvore de clusters), conhecida como dendrograma.
- Uma clusterização dos objetos é obtida particionando-se o dendrograma em um nível desejado. Cada componente conectado forma um cluster.

- Decompõe objetos em vários níveis de particionamento aninhados (árvore de clusters), conhecida como dendrograma.
- Uma clusterização dos objetos é obtida particionando-se o dendrograma em um nível desejado. Cada componente conectado forma um cluster.

- Decompõe objetos em vários níveis de particionamento aninhados (árvore de clusters), conhecida como dendrograma.
- Uma clusterização dos objetos é obtida particionando-se o dendrograma em um nível desejado. Cada componente conectado forma um cluster.

- Decompõe objetos em vários níveis de particionamento aninhados (árvore de clusters), conhecida como dendrograma.
- Uma clusterização dos objetos é obtida particionando-se o dendrograma em um nível desejado. Cada componente conectado forma um cluster.

TESTE DE CONHECIMENTO

DIANA (DIVISIVE ANALYSIS)

Procedimento: o inverso de AGNES.

Eventualmente cada nó forma um cluster.

K-MEANS VS. HIERÁRQUICO

Modelo de	Prós	Contras
K-means	Simples de entender; Trabalha bem em bases pequenas e grandes; Rápido e eficiente.	É preciso passar como parâmetro o número de clusters.
Hierárquico	O número ótimo de clusters pode ser obtido pelo próprio modelo; Visualização prática através de um dendrograma.	Não é apropriado para bases muito grandes.

ESTUDO DE CASO

ESTUDO DE CASO

Clientes de um Shopping

- Ganho Anual
- Traço de Gastos

ANÁLISE DA CLUSTERIZAÇÃO

CLUSTERIZAÇÃO BASEADA EM DENSIDADE

DBSCAN - MÉTODO BASEADO EM DENSIDADE

- > DBSCAN é um algoritmo baseado em densidade.
 - Densidade = número de pontos dentro de um raio específico (*Eps*).
 - Um "border point" fica localizado na vizinhança de um "core point".
 - Um "core point" tem um número mínimo de pontos especificados pelo usuário (*MinPts*) dentro do raio (*Eps*).
 - Um "noise point" é qualquer ponto que não se classifica como "core point" nem como "border point".

DBSCAN — IDEIA GERAL

ldeia: Um cluster é definido como um conjunto máximo de pontos densamente conectados.

O ALGORITMO DBSCAN

- Arbitrariamente, seleciona um ponto p.
- Identifica todos os pontos densamente conectados a p com relação aos parâmetros Eps e MinPts.
- Se *p* é um "core point", um cluster é formado.
- Se p é um "border point" e não há pontos densamente conectados a p, DBSCAN visita o próximo ponto do conjunto de dados.
- Continua o processo até que todos os pontos do conjunto de dados tenham sido analisados.

DBSCAN: CORE, BORDER E NOISE POINTS

Tipos de pontos: core,

border enoise

Eps = 10, MinPts = 4

Pontos Originais

QUANDO DBSCAN FUNCIONA BEM?

- Na presença de ruídos (Noise)
- Na geração de clusters com diferentes formatos e tamanhos.

MUNTAZ & DURAISWAMY (2010)

