TP4: Algèbre linéaire

Aide mémoire

On suppose donc que la librairie est chargée par with(linalg). Soit L une liste de vecteurs à coefficients rationnels.

matadd	Combinaison linéaire	$>$ matadd(u,v, α, β);
vectdim	Nombre de composantes	>vectdim(u);
scalarmul	Produit par un scalaire	$>$ scalarmul(u, α);
multiply	Produit d'une matrice par un vecteur	>multiply(A,u);
basis	Une base de l'e.v. engendré par L	>basis(L);
colspace	Une famille génératrice des vect. colonnes	<pre>>colspace (A,r);</pre>
rowspace	Une famille génératrice des vect. lignes	>rowspace (A,r);
intbasis	Une base de l'intersection	$>$ intbasis(E_1, \cdots, E_n);
sumbasis	Une base de la somme	$>$ sumbasis(E_1, \cdots, E_n);
kernel	Base du noyau d'une matrice	>kernel(A);
genmatrix	Donne la matrice d'un système	$>genmatrix({a_{11}x+a_{12}y=b_1, a_{21}x+a_{22}y=b_2},[x,y])$
genmatrix	Génère aussi la matrice augmentée	>genmatrix(Le système,[x,y],Le vecteur
		second_membre)
geneqns	Retourne le système d'équations	>geneqns(A,x)
rowdim	Nombre de lignes d'une matrice	>rowdim(A);
coldim	Nombre de colonnes d'une matrice	<pre>>coldim(A);</pre>
vector	Vecteur défini à partir d'une fonction f	<pre>>v:=vector(n,f);</pre>
Vector	Pour un vecteur en colonne	<pre>>v:=Vector(n,f);</pre>

Exercice 1

Ecrire et évaluer (en fonction des scalaires) les combinaisons linéaires suivantes (>matadd) :

1. (a) $\alpha u + \beta u$, où u et v sont les vecteurs

$$u = (4, 5, -3), v = (7, -2, 3).$$

(b) $\alpha A + \beta A$, avec

$$A = \begin{pmatrix} 1 & 2 & -3 \\ 5 & 0 & 2 \\ 1 & -1 & 1 \end{pmatrix} , B = \begin{pmatrix} 4 & -6 & 9 \\ 0 & -7 & 10 \\ 5 & 8 & 11 \end{pmatrix}.$$

2. Soient les vecteurs $e_1 = (3, 1, -4)$, $e_2 = (-2, 5, 3)$, $e_3 = (4, 7, -5)$ et u = (-1, 11, 2). Le vecteur u est-il une combinaison linéaire de e_1 , e_2 et e_3 ? Si oui, donner une relation entre u et ces vecteurs.

Exercice 2

- 1. Montrer que les vecteurs $u_1 = (1, 1, 0), u_2 = (1, 0, 1)$ et $u_3 = (3, 2, -5)$ sont linéairement indépendants.
- 2. Soient les vecteurs $v_1 = (1 + \theta, 1, 1, 1)$, $v_2 = (1, 1 + \theta, 1, 1)$, $v_3 = (1, 1, 1 + \theta, 1)$ et $v_4 = (1, 1, 1, 1 + \theta)$ où θ est un réel donné.
 - (a) Calculer le déterminant $det(v_1, v_2, v_3, v_4)$ (>det).
 - (b) En déduire les valeurs de θ pour lesquelles les vecteurs v_1, v_2, v_3 et v_4 sont liés.

Exercice 3

- 1. A l'aide des commandes >basis et >nops, déterminer une base et la dimension du s.e.v. engendré par la famille $\mathfrak{F} = \{u_1(1,0,0), u_2(1,1,0), u_3(1,0,1), u_4(0,0,2)\}$.
- 2. Montrer que le s.e.v. engendré par $\mathfrak{B} = \{v_1(1,1), v_2(1,-1)\}$ est égal à \mathbb{R}^2 .
- 3. Soit $\{e_1, e_2, e_3\}$, la base canonique de \mathbb{R}^3 . Montrer que $\{e_1 e_2, e_2 e_3, e_3 + e_1\}$ est aussi une base de \mathbb{R}^3 .

Exercice 4

Soit la famille $\mathfrak{H} = \{w_1(1,2,-1,3), w_2(2,3,-3,2), w_3(0,1,1,4), w_4(1,0,-3,-5)\}\$ de vecteurs de \mathbb{R}^4

- 1. Donner une base et la dimension du s.e.v. engendré par la famille 5?. Quel est son rang?
- 2. Quel est le rang de la matrice dont les vecteurs lignes sont w_1, w_2, w_3 et w_4 ?
- 3. Donner une base et la dimension du s.e.v. engendré par les vecteurs colonnes de cette matrice.

Exercice 5

Soit F_1 le s.e.v. engendré par les 6 premiers vecteurs colonnes de la matrice $C = (c_{ij})_{1 \le i,j \le 15}$ avec

$$\begin{cases} c_{i,i} = 1 - \left(\frac{1}{2}\right)^{15-i} & \text{si} & i < 15\\ c_{i,i} = 1 & \text{si} & i = 15\\ c_{i,j} = \left(\frac{1}{2}\right)^{15-j} & \text{si} & i = j+1\\ c_{i,j} = 0 & \text{sinon} \end{cases}$$

et F_2 le s.e.v. engendré par les 4 dernier vecteurs de C.

- 1. Ecrire une procédure retournant la matrice C.
- 2. Donner une base et la dimension des s.e.v. $F_1 + F_2$ et $F_1 \cap F_2$ (>sumbasis, >intbasis).

Exercice 6

On appelle noyau d'une matrice $A \in \mathcal{M}_{n,p}(\mathbb{R})$, le s.e.v. de \mathbb{R}^p défini par

$$Ker A = \{ u \in \mathbb{R}^p / A \cdot u = 0_{\mathbb{R}^n} \}.$$

1. Donner une base et la dimension des noyaux des matrices (utiliser la commande >kernel)

$$A = \begin{pmatrix} -1 & 1 & 1 \\ 1 & 0 & 1 \\ -1 & 2 & 3 \end{pmatrix}, B = \begin{pmatrix} 1 & 2 & -3 \\ 3 & 6 & 9 \\ -1 & -2 & 3 \end{pmatrix}, C = \begin{pmatrix} 2 & 1 \end{pmatrix}, D = \begin{pmatrix} 1 & 2 \\ 5 & 0 \end{pmatrix}.$$

2. A l'aide de la commande >genmatrix, donner une base et la dimension de :

(a)
$$E_1 = \{(x,y) \in \mathbb{R}^2/x + 2y = 0\}$$
; $E_2 = \{(x,y) \in \mathbb{R}^2/x + y = 0\}$
 $F_1 = \{(x,y,z) \in \mathbb{R}^3/2x + 3y - z = 0\}$; $F_2 = \{(x,y,z) \in \mathbb{R}^3/x + y - z = 0, 3x - y + z = 0\}$.

(b)
$$G_1 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 / x_1 + x_2 + x_3 + x_4 = 0\}$$
; $G_2 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 / x_1 + x_2 = 0, x_3 + x_4 = 0\}$.

Exercice 7

Soit A une matrice carrée A d'ordre n. L'expression $P_A(\lambda) = det(A - \lambda I_n)$ qui est un polynôme de degré n en λ , est appelé polynôme caractéristique de A. On appelle valeur propre de A, toute racine de $P_A(.)$, c'est à dire tout λ vérifiant $det(A - \lambda I_n) = 0$. Et on appelle vecteur propre associé à la valeur propre λ , tout vecteur non nul v, vérifiant $A \cdot v = \lambda v$. On note par $E_{\lambda} = \{v \in E / A \cdot v = \lambda v\}$, le s.e.v. propre associé à la valeur propre λ .

- 1. Donner les polynômes caractéristiques des matrices (>charpoly) $A = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$ et $B = \begin{pmatrix} 1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3 \end{pmatrix}$.
- 2. Calculer leurs valeurs propres ainsi que les sous espaces propres associés (>eigenvals et >eigenvects).
- 3. Dans chaque cas, vérifier que :
 - (a) Le produit des valeurs propres est égal au déterminant de la matrice (>det).
 - (b) La somme des valeurs propres est égal à la somme des éléments de la diagonale principale de la matrice (appelée trace de la matrice : >trace).

Exercice 8

Soit le système

$$(S) \begin{cases} x +2y +z = 1\\ 2x +3y -z = -3\\ -x +4y +4z = 3 \end{cases}$$

- 1. Utilisez la commande >solve pour résoudre le système (S). Ensuite, à l'aide de >subs, donner la solution sous forme de vecteur.
- 2. Résoudre (S) en se servant des commandes >genmatrix, >submatrix et >linsolve.
- 3. Utilisez \geq gausselim et \geq backsub pour résoudre le système (S).

Exercice 9:

Implémentation de la méthode de Gauss

Le but dans cet exercice est d'implementer la méthode de Gauss pour résoudre un système de Cramer, et d'étudier le problème de résolution numérique.

1. Algorithme du pivot de Gauss

Dans cette partie, on cherche à résoudre par la méthode de Gauss le système $A \cdot X = b$ (écrit sous forme matricielle) où A est une matrice d'ordre n inversible et $Y \in \mathcal{M}_{n,1}(\mathbb{R})$.

(a) Ecrire une procédure

qui en entrée prend une matrice A inversible d'ordre n de la forme

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \dots & \dots & a_{1,n} \\ 0 & a_{2,2} & a_{2,3} & \dots & \dots & a_{2,n} \\ \vdots & \ddots & \ddots & & & \vdots \\ 0 & \dots & 0 & a_{k,k} & \dots & a_{k,n} \\ \vdots & & \vdots & \vdots & & \vdots \\ 0 & \dots & 0 & a_{n,k} & \dots & a_{n,n} \end{pmatrix}$$

et un entier $k \in \{1, ..., n\}$ et retourne i, plus petit entier de $\{k, ..., n\}$ tel que $a_{i,k} \neq 0$.

(b) Ecrire une procédure

qui en entrée prend une matrice A inversible d'ordre n de la forme

$$\begin{pmatrix} a_{1,1} & a_{1,2} & \dots & \dots & a_{1,n} \\ 0 & a_{2,2} & a_{2,3} & \dots & \dots & a_{2,n} \\ \vdots & \ddots & \ddots & & \vdots \\ 0 & \dots & 0 & a_{k,k} & \dots & a_{k,n} \\ \vdots & & \vdots & & \vdots \\ 0 & \dots & 0 & a_{n,k} & \dots & a_{n,n} \end{pmatrix}$$

une matrice $Y \in \mathcal{M}_{n,1}(\mathbb{R})$ et un entier $k \in \{1,...,n\}$ et retourne la liste [B,Z] où $B \cdot X = Z$ est le système équivalent au système $A \cdot X = Y$ obtenu après une étape de du pivot de Gauss.

(c) Ecrire une procédure

qui en entrée prend une matrice A d'ordre n inversible et triangulaire supérieure et une matrice une matrice $Y \in \mathcal{M}_{n,1}(\mathbb{R})$ et qui retourne l'unique solution X de l'équation $A \cdot X = Y$.

(d) Ecrire une procédure

qui en entrée prend une matrice A inversible d'ordre n et une matrice $Y \in \mathcal{M}_{n,1}(\mathbb{R})$ et qui retourne l'unique solution X de l'équation $A \cdot X = Y$.

2. Résolution numérique

(a) Méthode du pivot partiel

i. En utilisant gausssolvega, résoudre le système linéaire

$$\begin{cases} 1.0 \cdot 10^{-20} \cdot x + 1.0 \cdot y = 1.0 \\ 1.0 \cdot x + 1.0 \cdot y = 2.0 \end{cases}$$

puis le système linéaire équivalent

$$\begin{cases} 1.0 \cdot x + 1.0 \cdot y = 2.0 \\ 1.0 \cdot 10^{-20} \cdot x + 1.0 \cdot y = 1.0 \end{cases}$$

Que remarquez-vous? Quelle est la bonne solution?

ii. Pour éviter ce genre de problème, on modifie l'algorithme de recherche d'un pivot de la manière suivante : au lieu de se contenter de chercher un pivot non nul dans la colonne k, on cherche le pivot de cette colonne ayant la plus grande valeur absolue. Ecrir les procédures

```
pivotcherchepp:=proc(A::matrix,k::integer)
gausssolvepp:=proc(A::matrix,Y::matrix)
```

mettant en oeuvre cet algorithme.

(b) Conditionnement d'un système linéaire

i. En utilisant gausssolvega, résoudre le systèmes linéaire :

$$\begin{cases}
10x + 7y + 8z + 7t &= 32 \\
7x + 5y + 6z + 5t &= 23 \\
8x + 6y + 10z + 9t &= 33 \\
7x + 5y + 9z + 10t &= 31
\end{cases}$$

puis le système linéaire perturbé, où les seconds membres ont été très légèrement modifiés :

$$\begin{cases} 10x + 7y + 8z + 7t &= 32 + \frac{1}{10} \\ 7x + 5y + 6z + 5t &= 23 - \frac{1}{10} \\ 8x + 6y + 10z + 9t &= 33 + \frac{1}{10} \\ 7x + 5y + 9z + 10t &= 31 - \frac{1}{10} \end{cases}$$

Que remarquez vous?

ii. Définir la matrice de Hilbert A de taille (10,10) donnée par :

$$\forall i, j \in \{1, ..., 10\}$$
 $a_{i,j} = \frac{1}{i+j}$

et la matrice $Y \in \mathcal{M}_{n,1}(\mathbb{R})$:

$$\forall i \in \{1, ..., 10\} \quad y_i = 1$$

puis résoudre le système $A \cdot X = Y$ en utilisant successivement :

Répétez les deux derniers calculs en augmentant la variable Digits.