Task-Oriented Complex Ontology Alignment: Two Alignment Evaluation Sets

Elodie Thiéblin Ollivier Haemmerlé Nathalie Hernandez Cássia Trojahn 15th Extended Semantic Web Conference

IRIT & Université de Toulouse 2, Toulouse, France firstname.lastname@irit.fr

Context & Definitions

Retrieving all the accepted papers

```
o_1 o_1:myPaper1: o_1:AcceptedPaper
```

 o_2 (o_2 :myPaper2, o_2 :myAcceptance): o_2 :hasDecision

 o_2 :myAcceptance : o_2 :Acceptance

Retrieving all the accepted papers

- o_1 $o_1:myPaper1: o_1:AcceptedPaper$
- o₂ (o₂:myPaper2,o₂:myAcceptance) : o₂:hasDecision o₂:myAcceptance : o₂:Acceptance
 - Ontology merging
 - Query rewriting
 - Data translation

Retrieving all the accepted papers

- $o_1 o_1:myPaper1: o_1:AcceptedPaper$
- o₂ (o₂:myPaper2,o₂:myAcceptance) : o₂:hasDecision o₂:myAcceptance : o₂:Acceptance
 - Ontology merging
 - Query rewriting
 Ontology Alignments!
 - Data translation

Ontology Alignment [Euzenat and Shvaiko, 2013]

$$A_{o_1 \rightarrow o_2} = \{c_0, c_1, ..., c_n\}$$

Source ontology

Ontology Alignment [Euzenat and Shvaiko, 2013]

$$A_{o_1 \rightarrow o_2} = \{c_0, c_1, ..., c_n\}$$

Target ontology

Ontology Alignment [Euzenat and Shvaiko, 2013]

$$A_{o_1 \rightarrow o_2} = \{c_0, c_1, ..., c_n\}$$

Set of correspondences

Correspondence

$$c_i = \langle e_{o_1}, e_{o_2}, r \rangle$$

Correspondence

$$c_i = \langle e_{o_1}, e_{o_2}, r \rangle$$

Relation
$$(\equiv, \sqsubseteq, \supseteq)$$

Correspondence

$$c_i = \langle e_{o_1}, e_{o_2}, r \rangle$$

Members: Atomic entities or constructions

Simple vs complex

Simple correspondence

- e_{o_1} atomic entity
- e_o, atomic entity
- $o_1:Paper \equiv o_2:Paper$

Simple vs complex

Simple correspondence

- e_{o1} atomic entity
- e_{o_2} atomic entity
- $o_1:Paper \equiv o_2:Paper$

Complex correspondence

- at least one of e_{o_1} , e_{o_2} contains a constructor or a transformation
- constructor o₁:AcceptedPaper ≡ ∃o₂:hasDecision.o₂:Acceptance
- transformation function
 o2:authorFullName =
 o1:authorFirstName + " " +
 o1:authorLastName

Correspondence patterns

Correspondences can be categorised and decomposed into correspondence patterns [Scharffe, 2009].

Class By Attribute Type (CAT): $A \equiv \exists b. C$

 o_1 :AcceptedPaper $\equiv \exists o_2$:hasDecision. o_2 :Acceptance is a CAT

Artefact for analysing the correspondences

Can guide the matching process

Tasks

Ontology merging: Create a new ontology from o_1 and o_2 using $A_{o_1 \rightarrow o_2}$ and $A_{o_2 \rightarrow o_1}$

Query rewriting: Transformation of a query for o_1 into a query for o_2 using $A_{o_1 \rightarrow o_2}$

Tasks

Ontology merging: Create a new ontology from o_1 and o_2 using $A_{o_1 \rightarrow o_2}$ and $A_{o_2 \rightarrow o_1}$

Query rewriting: Transformation of a query for o_1 into a query for o_2 using $A_{o_1 \rightarrow o_2}$

Assumption: an alignment may be different for query rewriting or ontology merging

 o_2 :authorFullName = o_1 :authorFirstName + " " + o_1 :authorLastName

State of the art

Complex ontology matchers

Many complex matching approaches on different kinds of schemata ¹ Here, focus on ontology matching

	Pattern based	No pattern	
Ontology based	[Ritze et al., 2009,	[Jiang et al., 2016]	
	Ritze et al., 2010]		
Instance based	[Parundekar et al., 2010,	[Qin et al., 2007, Nunes et al., 2011]	
	Parundekar et al., 2012,		
	Walshe et al., 2016]		

¹http:

^{//}semantic-web-journal.net/content/survey-complex-ontology-matching

Evaluation of complex matchers so far

Approach	Dataset	Metrics	
[Ritze et al., 2009]		Precision	
[Ritze et al., 2010]	OAEI Conference ²	Precision	
[Jiang et al., 2016]		Precision, Recall	
[Parundekar et al., 2010]	DBpedia, Geonames,	None	
[Parundekar et al., 2012]	Geospecies, LinkedGeoData,	Precision, Recall	
[Farundekar et al., 2012]	GeneID, MGI	(subset)	
[Walshe et al., 2016]	DP-adia Vara	Precision, Recall	
[vvaisile et al., 2010]	DBpedia, Yago	(subset)	
[Nunes et al., 2011]	None	None	
[Qin et al., 2007]	LIMD, CMII	Precision, Recall	
[Qili et al., 2007]	UMD, CMU	(subset)	

²http://oaei.ontologymatching.org/

Where we are so far

- Complex ontology matching: a developing field
- No reference dataset
- No adapted evaluation metric

Methodology and dataset

Global methodology

Assumptions/choices

- Equivalence prefered over subsumption
- Simple correspondences prefered over complex ones

Global methodology

Assumptions/choices

- Equivalence prefered over subsumption
- Simple correspondences prefered over complex ones

Global methodology

- 1. Simple equivalence correspondences o_1 o_2
- 2. Creation of the complex correspondences given a task
- 3. Write the correspondences in a reusable format (e.g., EDOAL)

Methodology for an ontology merging alignment

Top-down approach for ontology merging

- 1. Create a new ontology importing o_1 and o_2
- 2. Insert the simple equivalence correspondences as axioms
- 3. Find for each entity of o_1 (then o_2) an equivalence or the closest super-entity not inferred
 - Top-down approach : allows inferrence

Simple equivalence : $o_1:Person \equiv o_2:Person$

Simple equivalence : $o_1:Person \equiv o_2:Person$

Inferred axiom: $o_1:Chair \sqsubseteq o_2:Person$

Simple equivalence : $o_1:Person \equiv o_2:Person$ Inferred axiom: $o_1:Chair \sqsubseteq o_2:Person$

ullet $o_1
ightarrow o_2$: No equivalence for o_1 :Chair + axiom inferred

Simple equivalence : $o_1:Person \equiv o_2:Person$ Inferred axiom: $o_1:Chair \sqsubseteq o_2:Person$

- $o_1 \rightarrow o_2$: No equivalence for o_1 : Chair + axiom inferred
- ullet $o_2
 ightarrow o_1$: New correspondences added
 - o₂:PCChair ⊆ o₁:Chair
 - o₂:OCChair ⊑ o₁:Chair

Methodology for a query rewriting alignment

- 1. Find for each entity of o_1 (then o_2) an equivalence or the closest sub-entity or construction
 - The expressiveness of the alignment may prevent a reasoning task from being decidable
 - Precision favoured over recall

Example of query rewriting methodology

Simple equivalence : $o_1:Person \equiv o_2:Person$

Example of query rewriting methodology

Simple equivalence : $o_1:Person \equiv o_2:Person$

• $o_1 \rightarrow o_2$: o_1 :Chair $\supseteq o_2$:PCChair $\sqcup o_2$:OCChair

Example of query rewriting methodology

Simple equivalence : $o_1:Person \equiv o_2:Person$

- $o_1 \rightarrow o_2$: o_1 :Chair $\supseteq o_2$:PCChair $\sqcup o_2$:OCChair
- ullet $o_2
 ightarrow o_1$: No new correspondences
 - o₂:PCChair has no subsumed entity/construction
 - o2:OCChair has no subsumed entity/construction

Alignment sets & Evaluation

Alignment sets

5 ontologies of the OntoFarm Conference dataset $2 \times (10 \text{ pairs } (20 \text{ oriented pairs}))$ cmt, conference, confOf, edas, ekaw

	Simple	Complex	TOTAL
Ontology merging	259	54	313
Query rewriting	240	191	431

Format: EDOAL, OWL (merging), FOL Available under CC-BY license

https://doi.org/10.6084/m9.figshare.4986368.v7

Analysis of the dataset by pattern

Manual evaluation of existing approaches on the dataset

Manual evaluation of the complex correspondences (precision, recall)

Only consider the \mathcal{SROIQ} correspondences for ontology merging

Consider all correspondences for query rewriting

Relation (\equiv , \sqsubseteq , \supseteq) not taken into account

Manual evaluation of existing approaches on the dataset

Discussion & Conclusion

Discussion

Manual creation of the alignments

Bias on the interpretation of the ontologies Consensus dataset currently in work

Limitations (and future works)

Ontologies are not populated

No task-oriented evaluation

Metrics for automatic evaluation: semantic precision and recall ?

Conclusion

- Need of complex alignments
- A complex alignment evaluation dataset
- Transformation into a benchmark with instances and evaluation metrics

https://doi.org/10.6084/m9.figshare.4986368.v7

Thank you! Questions?

Références I

Euzenat, J. and Shvaiko, P. (2013).

Ontology Matching.

Springer Berlin Heidelberg.

Jiang, S., Lowd, D., Kafle, S., and Dou, D. (2016).

Ontology matching with knowledge rules.

In Transactions on Large-Scale Data-and Knowledge-Centered Systems XXVIII. pages 75-95. Springer.

Nunes, B. P., Mera, A., Casanova, M. A., Breitman, K. K., and Leme, L. A. P. (2011).

Complex Matching of RDF Datatype Properties.

In 6th ISWC workshop on ontology matching.

Parundekar, R., Knoblock, C. A., and Ambite, J. L. (2010).

Linking and building ontologies of linked data.

In ISWC, pages 598-614. Springer.

Références II

Qin, H., Dou, D., and LePendu, P. (2007).

Discovering executable semantic mappings between ontologies.

In On the Move to Meaningful Internet Systems, pages 832–849. Springer.

Ritze, D., Meilicke, C., Šváb Zamazal, O., and Stuckenschmidt, H. (2009).

A pattern-based ontology matching approach for detecting complex correspondences.

In 4th ISWC workshop on ontology matching, pages 25-36.

Ritze, D., Völker, J., Meilicke, C., and Šváb Zamazal, O. (2010). Linguistic analysis for complex ontology matching. In 5th workshop on ontology matching, pages 1–12.

Références III

Scharffe, F. (2009).

Correspondence Patterns Representation.

PhD thesis, Faculty of Mathematics, Computer Science and University of Innsbruck.

Walshe, B., Brennan, R., and O'Sullivan, D. (2016).

Bayes-recce: A bayesian model for detecting restriction class correspondences in linked open data knowledge bases.

International Journal on Semantic Web and Information Systems (IJSWIS), 12(2):25–52.