

ENGINEERING & TECHNOLOGY EXAMINATIONS, DECEMBER - 2005

TECHNOLOGY OF MACHINING

SEMESTER - 5

Time: 3 Hours [Full Marks: 70

The questions are of equal value.

The figures in the margin indicate full marks.

Candidates are required to give their answers in their own words as far as practicable.

Note: i) Answer all the questions in Group-C which is compulsory

ii) Answer five full question taking any two from each of Groups-A and B.

What is turning ? Name the machine tool most widely used for turning. With a schematic diagram show how the job tool motion is provided. What is a copying lathe?

1 + 1 + 3 + 1

What is a forming tool? How is it used in turning? Explain with the aid of a sketch. 1+2

c) Evaluate the machining parameters for the case of cylindrical turning of 25 mm dia brass bar at a spindle speed of 900 r.p.m. Depth of cut = 3 mm, longitudinal feed = 20 cm/min, length of work piece = 50 cm, Stock to be removed = 6 mm and side cutting edge angle of the tool = 30°.

Find the area of uncut chip and machining time.

2 + 1 + 2

Draw the Marchant's circle diagram and show all forces in chip formation and also list all the forces.

in an orthogonal machining operation, the following parameters were used:

Width of cut, w ... 5 mm

Food, : 0,2 mm/rev

Cutting speed 200 m/min

Pale ringle 15"

The following were meanined,

mediaces of chip, c = 0.32 mm

-thing force components; F_{χ} = 2500N ; F_{χ} = 2000 N. Caclulate shear stress

ead normal stress on the arplane and friction angle. 2 + 2 + 1

What are the different areas and sources of heat generation in metal cutting?

were temperature measured in metal cutting zone?

2 + 2

· Plan revised Marchant's Circle diagram.

- 2

Turn over

Sketch a single point turning tool showing important tool geometry in \widetilde{ORS} . What is the effect of inclination angle on the chip flow 2(2) . 7

- b) Sketch an HSS form milling cutter to show important tool geometry. Why is rake angle made zero in finish cut?
- 4. al Explain "Crater Wear" and "Flank wear".
 - Will todo you understand by tool life?
 - With the main-factors which influence the tool life? (\mathfrak{f}_{s_0}) (\mathfrak{f}_{s_0})

The following data were recorded while turning a mild steel rod on a lathe:

Circung speed 30 in/min, feed rate = 0.25 mm/rev, depth of cut 2.0 mm, tool life 90 minutes. The following tool life equation is given for operation:

$$V = 12 \quad f^{0.7} \quad t^{0.3} = C$$

If the cutting speed is increased by 25%. What will be the effect on the tool

Group B

- 5.7 a) What are the main advantages of using jigs and fixtures in mass production ?=4
 - b) What are the main differences between a jig and fixture?
 - c) Explain the 3-2-1 principle of location in a jig or fixture with suitable sketch. 7
- 6. What is indexing head and what is its function?

What are the different types of indexing head?

- c) On a milling machine, a gear with 83 teeth are to be cut. Find the crank
- movement for each tooth. Sketch the set-up.

 7. . . a) What is Geneva Mechanism?
- b) What is the function of an idler Gear in a lattle?
 - e) Why is packlash eliminator used in Down milling operation. (194 W) 4
 - d) What the function of follower rest in a lathe?

 Lev Expert breakfulling in box.
 - e) Not e machine tools using forming and generation process to machine the

3

2

3

How is the productivity increased in capstan and turret lathes? An M.S. Pin as shown in the fig. is to be produced in mass scale from 5 mm dia.

bright rod. Select an automatic machine tool which will be suitable for this purpose and show the tool layout.

(All dimension are in mm)

Group - C

:15die the correct choice (Answer all) :

14 × 1

Chip formation in turning a steel bar, is basically a

- 3) Simple shearing process
- bì Tearing process

Plastic deformation process

Surface roughness of a machined surface is more effected by nose radius of the tool than the feed rate

- True
- False
- Small accurate components are made on
 - Centre lathe
 - Capstan lathe
 - Multispindle and amatic ranchines.
 - the setype and chatte select machines.

[Turn over

	•		6		•	CS/ME/SEM-5,	/ME-504/05 -	
iv)	If a mild steel bar of 100 mm diameter is turned at a cutting speed of 50 m/min, feed of 0.2 mm/rev and a depth of cut of 2 mm, the metal removal rate is							
	a)	20 mm ³ /min						
	1 20	20 cm ³ /min						
	c)	40 mm ³ /min						
	d)	$40 \text{ cm}^3/\text{min}$.					,	
v)	At high cutting speed, the effectiveness of coolant is lost because of						•	
	a)	High interface te	mperature					
	b)	High interface pr	ressure					
	\c)	Low contact time	;					
	d)	Low viscosity of	coolant.	•				
vi)	Criterion of tooi-life in HSS tool is						Y	
	13/5	Flank wear						
	b)	Crater wear						
	c)	c) Fixed volume of chip removal						
	d)	d) Increase in power consumption by 20%.						
vii)	The	The usual ratio of forward and return stroke in a shaper is						
	a)	2:3	∠ b)	1:2	•	•	<u>†</u>	
	c)	2:1	مراعرا	3:2.			٠	
viii)	In form turning circular form tool is set wih an offset with job centre to provide						rovide	
	a)	Rake angle			,	1	1	
	b)	Clearance angle					į.	
	· c)	Both rake and cles	arance angles				1 no	
	Ldr	None of these.						
fx)		iching operation zer other machining op		rate of pi	roduction w	ith higher a	ceuracy	
	191-67	True, s			j.	+1.6		
	15)-1	False			-			
()	In a g a)	gear hobbling operat Only the hob rotate						
	b)	Only the brank rota						
	,	Both hob and blank		intly.				

Both hole and blank rotate at a definite relation

2.

xi) In the production of a cylindrical surface, generative motion is derived from

Rotation of the workpiece while the tool is imparted straight line directrix motion

- b) Both the tool and workpiece are given rotational motion
- c) Both the tool and workpiece are given translatory motion
- xii) The bed of a lathe is made of
 - a) brass of 60-40 composition
 - b) high carbon steel, well heat treated

grey cast fron.

xiii) In a broaching mechine, the broach is given

a) Rotary motion

Translatory motion

c) Both rotary and translatory motions.

xiv) In centreless grinding, the workpriece being ground is made with

- a) Centres at both the ends by combined drill and counter sink accurately
- b) * [located between headstock and tailstock]

The workpiece does not have any centre, but placed between grinding wheel and regulating wheet on workrest.

(g)

| Turn over