

Figure 1

ATATTCGCTGAGCTCAGGGAGTGAAGGGCCCACATTGAGACAGTGAGCCCCAAGAAGAGG	60
GATCCCTGCTCCAGCAGCTGCAGGTCAAGAAGAAGATCCAGGGAGGAAATGTC M C	120 2
CTGGAGACCCCTGTGCGGTTCTGCGCTTGGCTCTATCTGTCTATGTCAGAGCTG M R P I C R E F I N M Y I S V Y D	180
GCCTATCCAGAAAAGTCAGGATGACACCAAAACCCCATCAAGACCATGTCACCGAGAT P I O K V Q D D T K T L I K T I V T R I	240 42
CAATGACATTTCACACACGCGAGTCGGATCCGCCAAGCAGGGCTACTGGCTTGAGCTT H D I S H T O S V S A K O R V T G L D F	300 62
CATTCCTGGGTTACCCCTCTGAGTTGTCACAGATGACCGACTCTGGCAGTCA I P B H P I L S L S K M D Q T L A V Y	360 82
TCAACAGGCTCCACACGGCTGCCCTCCAAAATGTGTCAGATGACCATGACCTGG Q Q V L T S L P S Q N H V L Q I A N D L B	420 102
GAATCTCCGAGACCTCCATGCTGGCCCTTCCAAAGAGCTGCTCCCTGCCACAC N L R D L L H L L A F S K S C S L P Q T	480 122
CAGTGGCCTGAGAACGGCAGAGGCTGGATGGCTGGAAAGCCTCACTTACTCCAC S G L O K P E S L D G G V L E S L Y S T	540 142
AGAGGTGGCTGCTTGGAGCGGGCTCTGAGCACATCTTCAACAGTGG E. V V A L S R L Q G S L Q D I L Q Q L D	600 162
TGTTAGGCCCTGAATGCTGAAGTTCAAGGGCACCGAGCTCCAAAGAATCATGTA G V S P E C *	660 167
AAAGAACCTTGGCTTCCAGGGGCTTCAGGAGAAAGAGGCTATGTCACACATCCATCAT	720
TCATTTCTCCCTCTGAGACCAACCCATCCAAGGCATGACTCCACATGCTGACTC	780
AGTTATCCACACAACCTCATGAGCACAAAGGAGGGCCAGCTGAGAGGGACTCTAC	840
CTAGTTCTCAGCAAGTAGAGATAAGAGCCATCCATCCCTCCATGTCACACTGCTCC	900
GGGTACATGTTCTCCGGTGGTACAGCTTCCGCTGGCCAGGAGGGTAGGGTA 960	
TGGGTACAGCCTTGGCTGTCAGAGTCTTGGGAGCACCGTGAGGCTGCA 1020	
CACAGCTGAAACTCCAAAGCAGCACAGATGGAAGACTTATTATTCATGCTTC	1080
TATTTGGATGGATCTGAAGCAAGGATCAGTTTTCAAGGTTGGGCTAGCCAGGA 1140	
TGAGGAAGGCTCTGGGTGCTGCTTCAATCTATTGATGGTGCTGCCAGGAAACC	1200
TAATTTTGACTGACTGGAAGGAAGGTTGGATTTCAAAACAGAGTCTATGAGGTAG	1260
CGCTCAAGATTGACCTCTGGTACTGGTTTGTGTTCTATTGACTGACTCTATCCAAAC	1320
ACGTTGCGGGGATTCCGGGAGCATAGGCTAGGTTATTATCAAAGCAGATGAATT	1380
TGCAAGTGAATATGTCATGTCACCTGAGGGTAGAGGATGTTAGAGGGAGGT	1440
GAAGGATCGGAAGTCTCTGATTACATATGTCGGTAGGTTCTGAAAGGTTGA	1500
GGCATTTCTTACCTCTGGCCACATAGTGTGGCTTGTGAAAMGGACAAAGGAGTTGA	1560
CTCTTCCGGAACATTGGAGTCTACAGGCACCCCTGGAGGGCTAAAGCTACAGGCT	1620
TTTGTGGCATATTGCTGAGCTCAGGGAGTGAGGGCCCCACATTGAGACAGTGAGCCCC	1680
AAGAAAAGGCTCCCTGGTGAAGATCTCAAGGTTGTCAGGGTGATCTCACATGGTT	1740
TCTTAAGCAGGTAGACGGTTGCACTCCAAATATGTCAGGGCTCATCTGTTACATCAA	1800
AGTAGAACCTCTCTCCACCCATTGTCGGGAGTTTGTCAGGGAGATGAGAAAT	1860
CACTTAGCAGATGGTCTGAGCCCTGGGGAGCAGCACTGCTGAGGAAGTCCAGGGCCCCAG	1920
CCCAAGGCTGCCAGAATTGCCCTCTGGGCTGGAGGATGAAACAAGGGCTGGTTTCTC	1980
ATCACCCCCCTGACCCCTATGTCACCATCAAACCTGGGGCCAGATCAGTGAGAGGACACTTG	2040
ATGGAAAGCAATACACTTAAAGACTGAGCACAGTTCTGTCAGCTCTGTCAGGGCTG	2100
TGAGCTACAGAGGCTACCCACATACATATAAAAATCAGGCTCATGTCCTGTTAG	2160
ACCCACTCGGGGGGTGACTCCACACAGCAGCACCGCAGGGCTGGAAATCAGTGGT	2220
GTCTTCACAGGTGTGAAAGAACCTGAGCTGAGGGTAGCTGCCCCAGGGAAACCTGCT	2280
TGCAGTCTATTGCTATTACATACCCGATTTCAAGGGCACATTAGCATCCACTCTATGGT	2340
GCACACTCTGACAAATAGGACAGGATAGGGTTGACTATCCCTTATCCAAATGGTTG	2400
GGACTAGAAGAGTTTGGATTTAGACTTTCAGGATAGGTTATTCAGTATATAT	2460
AAAATGAGATATCTGGGGATGGGGCCAAAGTATAAACATGAAGTCATTTATATTCAT	2520
AAATACCGTATAGACACTGCTCAAGTGTAGTTTATACAGTCCTTAAATAACGGTGTAT	2580
GCATGAAAGAGCTTACAGGATGAAACCTGAGCTGAGGGTAGCTGCCCCAGGGAAACCTGCT	2640
GGGTTTGGAGCAGTTGGATCTGGGTTCTGTTAAGAGATGGTTAGCTTATACCTAA	2700
AACCATATAAGGCAACAGGCTGAGGACAGACTGGATCTCAGGGCTGAAGTGTGCCCT	2760
TCCAGCCAGGTCAACCTGTGAGGTGAGGGAGTCAAGGTTTGTGGTCTAAAGAGG	2820
AGTGGAGGAGTAGATTTGGAGGATCTGAGGGC	2882

Figure 2

---G--GTTG CAAGGCCAA GAAGCCCA-- -TCCTGGAA GGAAAATGCA	50
TTGGGGAACC CTGTG-CGGA TTCTTGTGGC TTTGCCCTA TCTTTCTAT	100
GTCCAAGCTG TGCCCATCCA AAAAGTCCAA GATGACACCA AAACCCTCAT	150
CAAGACAATT GTCACCAAGGA TCAATGACAT TTCACACACG CAGTCAGTCT	200
CCTCCAAACA GAAAGTCACC GGTTTGGACT TCATTCTGG GCTCCACCCC	250
ATCCTGACCT TATCCAAGAT GGACCAGACA CTGGCAGTCT ACCAACAGAT	300
CCTCACCAAGT ATGCCTTCCA GAAACGTGAT CCAAATATCC AACGACCTGG	350
AGAACCTCCG GGATCTTCTT CACGTGCTGG CCTTCTCTAA GAGCTGCCAC	400
TTGCCCTGGG CCAGTGGCCT GGAGACCTTG GACAGCCTGG GGGGTGTCCCT	450
GGAAGCTTCA GGCTACTCCA CAGAGGTGGT GGCCCTGAGC AGGCTGCAGG	500
GGTCTCTGCA GGACATGCTG TGGCAGCTGG ACCTCAGCCC TGGGTGCTGA	550
GGCCTTGAAG GTCACTCTTC CTGCAAGGAC T-ACGTTAAG GGAAGGAACT	600
CTGGTTTCCA GGTATCTCCA GGATTGAAGA GCATTGCATG GACACCCCTT	650
ATCCAGGACT CTGTCAATT CCCTGACTCC TCTAAGCCAC TCTTCCAAAG	700
G	701

Figure 3

Met His Trp Gly Thr Leu Cys Gly Phe Leu Trp Leu Trp Pro Tyr
Leu Phe Tyr Val Gln Ala Val Pro Ile Gln Lys Val Gln Asp Asp
Thr Lys Thr Leu Ile Lys Thr Ile Val Thr Arg Ile Asn Asp Ile
Ser His Thr Gln Ser Val Ser Ser Lys Gln Lys Val Thr Gly Leu
Asp Phe Ile Pro Gly Leu His Pro Ile Leu Thr Leu Ser Lys Met
Asp Gln Thr Leu Ala Val Tyr Gln Gln Ile Leu Thr Ser Met Pro
Ser Arg Asn Val Ile Gln Ile Ser Asn Asp Leu Glu Asn Leu Arg
Asp Leu Leu His Val Leu Ala Phe Ser Lys Ser Cys His Leu Pro
Trp Ala Ser Gly Leu Glu Thr Leu Asp Ser Leu Gly Gly Val Leu
Glu Ala Ser Gly Tyr Ser Thr Glu Val Val Ala Leu Ser Arg Leu
Gln Gly Ser Leu Gln Asp Met Leu Trp Gln Leu Asp Leu Ser Pro
Gly Cys End

Figure 4

Mouse	MCWRPLCRFL WLWSYLSYVQ AVPIQKVQDD TKTLIKTIVT RINDISHTQS	50
	* * * * *	
Human	MHWGTLCGFL WLWPYLFYVQ AVPIQKVQDD TKTLIKTIVT RINDISHTQS	
Mouse	VSAKQRVTGL DFIPGLHPIL SLSKMDQTLA VYQQVLTSLP SQNVLQIAND	100
	*	
Human	VSSKQKVVTGL DFIPGLHPIL TLSKMDQTLA VYQQILTSMP SRNVIQISND	
Mouse	LENLRDLLHL LAFSKSCSLP QTSGLQKPEs LDGVLEASLY STEVVALSRL	150
	* ** *** * *	
Human	LENLRDLLHV LAFSKSCHLP WASGLELDS LGGVLEASGY STEVVALSRL	
Mouse	QGSLQDILQQ LDVSPEC	167
	- * - *	
Human	QGSQLQDMILWQ LDLSPGC	

Figure 5

Met Cys Trp Arg Pro Leu Cys Arg Phe Leu Trp Leu Trp Ser Tyr
Leu Ser Tyr Val Gln Ala Val Pro Ile Gln Lys Val Gln Asp Asp
Thr Lys Thr Leu Ile Lys Thr Ile Val Thr Arg Ile Asn Asp Ile
Ser His Thr Ser Val Ser Ala Lys Gln Arg Val Thr Gly Leu Asp
Phe Ile Pro Gly Leu His Pro Ile Leu Ser Leu Ser Lys Met Asp
Gln Thr Leu Ala Val Tyr Gln Gln Val Leu Thr Ser Leu Pro Ser
Gln Asn Val Leu Gln Ile Ala Asn Asp Leu Glu Asn Leu Arg Asp
Leu Leu His Leu Leu Ala Phe Ser Lys Ser Cys Ser Leu Pro Gln
Thr Ser Gly Leu Gln Lys Pro Glu Ser Leu Asp Gly Val Leu Glu
Ala Ser Leu Tyr Ser Thr Glu Val Val Ala Leu Ser Arg Leu Gln
Gly Ser Leu Gln Asp Ile Leu Gln Gln Leu Asp Val Ser Pro Glu
Cys End

6022-1-087 CIP1 (she T of 52)

Figure 6

1 Mat His Trp Gly Thr Leu Cys Gly Phe Leu Trp Leu Trp Pro Tyr
16 Leu Phe Tyr Val Gln Ala Val Pro Ile Gln Lys Val Gln Asp Asp
31 Thr Lys Thr Leu Ile Lys Thr Ile Val Thr Arg Ile Asn Asp Ile
46 Ser His Thr Ser Val Ser Ser Lys Gln Lys Val Thr Gly Leu Asp
61 Phe Ile Pro Gly Leu His Pro Ile Leu Thr Leu Ser Lys Mat Asp
76 Gln Thr Leu Ala Val Tyr Gln Gln Ile Leu Thr Ser Met Pro Ser
91 Arg Asn Val Ile Gln Ile Ser Asn Asp Leu Glu Asn Leu Arg Asp
106 Leu Leu His Val Leu Ala Phe Ser Lys Ser Cys His Leu Pro Trp
121 Ala Ser Gly Leu Glu Thr Leu Asp Ser Leu Gly Gly Val Leu Glu
136 Ala Ser Gly Tyr Ser Thr Glu Val Val Ala Leu Ser Arg Leu Gln
151 Gly Ser Leu Gln Asp Met Leu Trp Gln Leu Asp Leu Ser Pro Gly
166 Cys End

Figure 7

600-1-087 CIP1 (S1) (B of 52)

Figure 8

600-1-087 CIP1 (sheet 9 of 52)

Figure 9

09635864 - 091000

Figure 10

+10 +20 → +30 +40

1 GTGCAAGAAG AAGAAGATCC CAGGGCAGGA AAATGTGCTG GAGACCCCTG

2 CACGTTCTTC TTCTTCTAGG GTCCCCGCCT TTTACACGAC CTCTGGGGAC

3 +10 +20 +30 +40

4 TGTCGGGTCC NGTGGNTTG GTCCTATCTG TCTTATGTNC AAGCAGTGCC

5 51 ?-----? ?-----? ?-----?

6 ACAGCCCAGG NCACCNAAC CAGGATAGAC AGAATAACANG TTCGTCAAGG

7 +10 +20 +30 +40

8 TATCCAGAAA GTCCAGGATG ACACCAAAG CCTCATCAAG ACCATTGTCA

9 101 ←----- ATAGGTCTT CAGGTCTAC TGTGGTTTC GGAGTAGTTC TGGTAACAGT

10 +10 +20 +30 +40

11 NCAGGATCAC TGANATTCA CACACG

12 151 ?-----? ?-----?

13 NGTCCTAGTG ACTNTAAAGT GTGTGC

Figure 11A

Figure 11B

Figure 12A

09635864 081000

Figure 12 B

Figure 13

2G7

ap2

Figure 14

Figure 15A

Figure 15B

BglII Digests

Figure 16.

Figure 17

09635865-084000

Figure 18A

Figure 18B

600-1-081 LTF1 (Sheet 23 of 52)

Figure 11A

000-1-081 LIP1 (Sheer & or ob)

Figure 19B

Figure 20A

10	20	30	40	50
GGTTGCAAGG CCCAAGAACG CCATCTGGG AAGGAAAATG CATTGGGAA				
60 HOB ² F 70 80 90 100				
CCCTGTGCGG ATTCTTGTCG CTTTGGCCCT ATCTTTCTA TGTCAGCT				
110 120 130 140 150				
GTGCCCATCC AAAAAGTCCA AGATGACACC AAAACCTCA TCAAGACAAT				
160 170 180 190 200				
TGTCACCAGG ATCAATGACA TTTCACACAC GATAAGGAGA GTATGCAGGG				
210 220 230 240 250				
ACAAAGTAGA ACTGCAGCCA GCCCAGGACT GGCTCCCTAGT GGCACGGAC				
260 270 280 290 300				
CCAGATAGTC CAAGAAACAT TTATTGAACG CCTCCTGAAT CCCAGGCACC				
310 320 330 340 350				
TACTGCAAGC TGAGAAGGAT TTTGGATAGC ACAGGGCTCC ACTCTTTCTG				
360 370 380 390 400				
GTTGTTTCTT NTGGCCCCCT CTGCCTGCTG AGATNCCAGG GGTTAGNGGT				
410 420 430 440 450				
TCTTAATTCC TAAA - GAP OF SEQUENCE (~1.4 KB) CT				
460 470 480 490 500				
GGTTCTTCA GGAAGAGGCC ATGTAAGAGA AAGGAATTGA CCTAGGGAAA				
510 520 530 540 550				
ATTGGCCTGG GAAGTGGAGG GAACGGATGG TGTGGGAAAA GCAGGAATCT				
560 570 580 590 600				
CGGAGACCA CTTAGAGGCT TGGCAGTCAC CTGGGTGCAG GANACAAGGG				
610 620 630 640 650				
CCTGAGCCAA AGTGGTGAGG GAGGGTGGAA GGAGACAGCC CAGAGAATGA				
660 670 680 690 700				
CCCTCCATGC CCACGGGAA GGAGAGGGC TCTGAGAGCG ATTCCCTCCC				
710 720 730 740 750				
CATGCTGAGC ACTTGTCTC CCTCTTCCTC CTNCATAGCA GTCAGTCTCC				
HOB ² F 760 770 780 790 800				
TCCAAACAGA AAGTCACCGG TTTGGACTTC ATTCTGGGC TCCACCCAT				
810 820 830 840 850				
CCTGACCTTA TCCAAGATGG ACCAGACACT GGCACTCTAC CAACAGATCC				
860 870 880 890 900				
TCACCAAGTAT GCCTCCAGA AACGTGATCC AAATATCCAA CGACCTGGAG				

910 920 930 940 950				
AACCTCCGGG ATCTCTTCA CGTGTGGCC TTCTCTAAGA GCTGCCACTT				
960 970 980 990 1000				
GCCCTGGGC AGTGGCTGG AGACCTTGGG CAGCCTGGGG GGTGTCTGG				
1010 1020 1030 1040 1050				
AAGCTTCAGG CTACTCCACA GAGGTGGTGG CCCTGAGCAG GCTGCAGGG				
1060 1070 1080 1090 1100				
TCTCTGCAGG ACATGCTGTG GCAGCTGGAC CTCAGCCCTG GGTGTGAGG				
1110 1120 1130 1140 1150				
CCTTGAAAGGT CACTCTTCCT GCAAGGACTA CGTTAAGGGA AGGAACCTCG				
1160 1170 1180 1190 1200				
GCTTCCAGGT ATCTCCAGGA TTGAAGAGCA TTGCATGGAC ACCCCCTTATC				
1210 HOB ² F 1220 1230 1240 1250				
CAGGACTCTG TCAATTCCCC TGACTCTCT AAGCCACTCT TCCAAAGG				

Figure 20B

MOUSE OB STRUCTURE

Digitized by srujanika@gmail.com

Figure 20c

HUMAN OB STRUCTURE

Figure 21A

09635864 - 081000

Figure 21 B

Figure 21 c

Figure 22A

Figure 22B.

Figure 23A-

Figure 23B

019635664 - 0631000

Figure 24 A

Figure 24B

Yeast M-ob

Zucker Lean

fa/fa

Figure 24C

600-1-081 LTR 1 (sheer ss or cc)
Type 2

Figure 24 D

096864-001000

Figure 25A

Figure 25B

ELISA STANDARD CURVE

Figure 26 B

0
99635865
+ 00000000Human ob

<u>Peptide</u>	<u>Mass(Da)</u>	
	<u>Expected</u>	<u>Observed</u>
22-167	16,024	16,024 ± 3
22-75	5936.9	5936.6 ± 1
76-89	1562.7	N.D.
90-167	8434.5	8435.6 ± 1
158-167	1131.9	N.D.

Figure 27

Figure 28 C

00000000000000000000000000000000

Figure 28 D

Figure 29

Wt

db/db

Figure 30

600-1987 CIP/ (sheet 49 of 52)

Figure 31 B

brown fat RNA/RT
brown fat RNA @ 4°C

ob

ucp

Figure 28B

Figure 31 A

0001031468563690

Figure 32

05635864 - 08.10.00

600- 281481 (none) 51 52

Figure 33

Figure 34

