M378K Introduction to Mathematical Statistics

Homework assignment #1

Please, provide your final answer only to the following problems.

Problem 1.1. (4 points) Evaluate the limit $\lim_{n\to\infty} \left(1-\frac{2}{n}\right)^n$.

Solution: e^{-2} .

Problem 1.2. (2 points) Evaluate the limit $\lim_{t\to\infty}e^{-t}$.

Solution: 0.

Problem 1.3. (4 points) Find the sum $\sum_{i=0}^{\infty} \frac{4^i}{i!}$.

Solution: This is the Maclaurin series for the function $f(x) = e^x$ at x = 4, so its sum evaluates to e^4 .

Problem 1.4. (5 points) A class has 7 female and 13 male students. It is also known that there are 15 blue-eyed and 5 brown-eyed students in that class. The probability that a student picked at random is a brown-eyed female is

- (a) $\frac{7}{80}$
- (b) $\frac{13}{80}$
- (c) $\frac{21}{80}$
- (d) $\frac{39}{80}$
- (e) Not enough information is given.

Solution: The correct answer is **(e)**.

We do not know how the eye color is distributed among male/female students, so we cannot compute the probability

$$\mathbb{P}[\{ \text{ brown-eyed } \} \cap \{ \text{ female } \}]$$

(*Note:* One thing we do know is that these two traits cannot be independent. If they were, 5/20 = 1/4 of the female students would be brown-eyed, but that cannot be the case as there are 7 female students, and 7 is not divisible by 4.)

Problem 1.5. (5 points) Let A and B be two events, and the only thing we know about them is that $\mathbb{P}[A] = \mathbb{P}[B] = \frac{2}{3}$. Then, it is **necessarily** true that

- (a) A = B
- (b) $A \subseteq B$ or $B \subseteq A$
- (c) A and B are independent
- (d) A and B^c are mutually exclusive
- (e) All of the above are possible, but not necessarily true.

Solution: The correct answer is **(e)**.

Problem 1.6. (5 points) Which of the following formulas hold for the exponential function:

- $(a) e^x + e^y = e^{x+y}$
- $(b) e^x e^y = e^x + e^y$
- (c) $e^{x+y} = e^x e^y$
- (d) $e^{x-y} = e^x e^y$
- (e) None of the above.

Solution: The correct answer is **(c)**.

Problem 1.7. (5 points) A coin is tossed, and, independently, a 6-sided die is rolled. Let

 $A = \{4 \text{ is obtained on the die}\}$ and

 $B = \{ \text{Heads is obtained on the coin and an even number is obtained on the die} \}.$

Then

- (a) A and B are mutually exclusive
- (b) A and B are independent
- (c) $A \subseteq B$
- (d) $A \cap B = B$
- (e) None of the above.

Solution: The correct answer is **(e)**.

Problem 1.8. (5 points) If n! is the factorial function $n! = n \times (n-1) \times \cdots \times 2 \times 1$, then $\log(\sqrt[n]{n!})$ equals ...

(a)
$$\sum_{i=1}^{n} \log(n/i)$$

(b)
$$\frac{1}{n} \sum_{i=1}^{n} \log(i)$$

(c)
$$\sqrt[n]{\prod_{i=1}^{n} \log(n)}$$

(d)
$$\frac{1}{n} \prod_{i=1}^{n} \log(i)$$

(e) None of the above.

Solution: The correct answer is **(b)**.

$$\log(\sqrt[n]{n!}) = \frac{1}{n}\log(n!) = \frac{1}{n}\sum_{i=1}^{n}\log(i)$$

Please, provide your **complete solutions** to the following problems. Final answers only, even if correct will earn zero points for those problems.

Problem 1.9. (5 points) Every possible combination of a letter in the English alphabet (i.e., chosen from the 26-element set $\{A, B, C, \ldots, X, Y, Z\}$) and a number from the set $\{1, 2, \ldots, 19, 20\}$ is written on a card. The cards are otherwise identical, and well shuffled in a deck. If a single card is drawn from that deck, what is the probability that the number on it is odd or that the letter is a vowel (i.e., in the set $\{A, E, I, O, U\}$)?

Solution: By the inclusion-exclusion formula, we have

$$\frac{5}{26} + \frac{1}{2} - \frac{5}{26 \cdot 2} = \frac{10 + 26 - 5}{52} = \frac{31}{52}.$$

Problem 1.10. (5 points) Four fair coins are tossed independently. What is the probability that at least one for them came up heads?

Solution: The answer is

$$1 - \mathbb{P}[\text{all the coins were } tails] = 1 - \left(\frac{1}{2}\right)^4 = \frac{15}{16}.$$

Problem 1.11. (5 points) How much is

$$\sum_{i=1}^{99} \log_{10}(\frac{i}{i+1})$$

when simplified completely?

Solution: The sum of logs is the log of the product, so the expression above equals $\log_{10}(\prod_{i=1}^{99}\frac{i}{i+1})$. The product inside is

$$\frac{1}{2} \times \frac{2}{3} \times \dots \times \frac{98}{99} \times \frac{99}{100} = \frac{1}{100},$$

and
$$\log_{10}(1/100) = -2$$
.