Теорема 4. $K \subset \mathbb{R}^n$ — компакт $\iff K$ — замкнуто и ограничено.

▲ (⇒) Пусть K — компакт в \mathbb{R}^n . Фиксируем точку $x \in \mathbb{R}^n$. Поскольку $\bigcup_{k=1}^{\infty} B_k(x) = \mathbb{R}^n$, совокупность $\{B_k(x)\}_{k \in \mathbb{N}}$ является открытым покрытием K. Выделим из нее конечное покрытие $\{B_{k_i}(x)\}_{i=1}^m$. Тогда $K \subset \bigcup_{i=1}^m B_{k_i}(x) = B_N(x)$, где $N = \max_{1 \leqslant i \leqslant m} k_i$, и значит, K ограничено.

Покажем, что K замкнуто. Фиксируем точку $y \in \mathbb{R}^n \setminus K$ и для каждого $k \in \mathbb{N}$ рассмотрим $O_k = \{x \in \mathbb{R}^n : |x-y| > 1/k\}$. Так как $O_k = \mathbb{R}^n \setminus \overline{B}_{1/k}(y)$ и $K \subset \mathbb{R}^n \setminus \{y\} = \bigcup_{k=1}^\infty O_k$, то совокупность $\{O_k\}_{k \in \mathbb{N}}$ образует открытое покрытие K. Выделим из нее конечное покрытие $\{O_{k_j}\}_{j=1}^l$. Тогда $K \subset O_M$, где $M = \max_{1 \le j \le l} k_j$. Поэтому |x-y| > 1/M для всех $x \in K$ и, значит, $B_{1/M}(y) = \{z \in \mathbb{R}^n : |z-y| < 1/M\} \subset \mathbb{R}^n \setminus K$. Откуда заключаем, что множество $\mathbb{R}^n \setminus K$ открыто. (\Leftarrow) Так как K ограничено, то $\exists B_r(x) \supset K$ для некоторой точки $x = (x_1, \dots, x_n)$. Брус $\Pi = \prod_{k=1}^n [x_k - r, x_k + r] \supset B_r(x)$. Следовательно, K — замкнутое подмножество компакта Π . Значит, по лемме 5 K — компакт. \blacksquare

Теорема 5. Любое бесконечное подмножество компакта имеет хотя бы одну предельную точку, принадлежащую этому компакту.

▲ Пусть $A \subset K$ не имеет предельной точки в K. Тогда $\forall x \in K \exists \varepsilon_x > 0$: $B'_{\varepsilon_x}(x) \cap A = \varnothing$. Совокупность шаров $\{B_{\varepsilon_x}(x)\}_{x \in K}$ образует открытое покрытие K. Так как K компакт, из этого покрытия можно выделить конечное покрытие $\{B_{\varepsilon_{x_k}}(x_k)\}_{k=1}^m$. Тогда $A \subset K \subset \bigcup_{k=1}^m B_{\varepsilon_{x_k}}(x_k)$. Следовательно, $A \subset \{x_1, \ldots, x_m\}$, т.е. A конечно. \blacksquare

Теорема 6. Из любой последовательности точек компакта можно выбрать сходящуюся к точке компакта подпоследовательность.

- ▲ Пусть $\{x^{(k)}\}$ последовательность точек компакта $K, E = \{x^{(k)}: k \in \mathbb{N}\}$ множество значений $\{x^{(k)}\}$. Возможны 2 случая:
 - 1) Множество E конечно. Тогда $\exists a \in E \ \exists \{k_i\}$ строго возрастающая последовательность натуральных чисел, что $x^{(k_i)} = a$. Следовательно, $\{x^{(k_i)}\}$ подпоследовательность $\{x^{(k)}\}$ и $\lim_{i \to \infty} x^{(k_i)} = a$.
 - 2) Множество E бесконечно. Тогда по Т5 E имеет предельную точку $a \in K$. Найдем $k_1 \in \mathbb{N}$, что $x^{(k_1)} \in B_1(a)$. Если уже выбран номер k_m , что $x^{(k_m)} \in B_{\frac{1}{m}}(a)$, то определим номер k_{m+1} условием $k_{m+1} > k_m$ и $x^{(k_{m+1})} \in B_{\frac{1}{m+1}}(a)$. Так будет построена подпоследовательность $\{x^{(k_i)}\}$, сходящаяся к a. Действительно, $\forall \varepsilon > 0 \; \exists N > 1/\varepsilon \; \forall i \geqslant N$: $x^{(k_i)} \in B_{1/i}(a) \subset B_{\varepsilon}(a)$. ■

5

Cледствие (Теорема Больцано – Вейерштрасса). В \mathbb{R}^n из любой ограниченной последовательности можно выбрать сходящуюся последовательность.

▲ Действительно, члены ограниченной последовательности принадлежат некоторому замкнутому шару, который по критерию компактности является компактом.