## EE24BTECH11024 - Abhimanyu Koushik

## **Question:**

Find the area of region bounded by the line x = 2 and the parabola  $y^2 = 8x$  **Solution:** 

| Variable              | Description                    |
|-----------------------|--------------------------------|
| <b>x</b> <sub>1</sub> | First intersection point       |
| <b>X</b> <sub>2</sub> | Second intersection point      |
| h                     | Point on the given line        |
| m                     | Direction vector of given line |
| A                     | Area of the region             |

TABLE I: Variables Used

The equation of a parabola in Matrix form is

$$\mathbf{x}^{\mathsf{T}}\mathbf{V}\mathbf{x} + 2\mathbf{u}^{\mathsf{T}}\mathbf{x} + f = 0 \tag{1}$$

The equation of a line in vector form is

$$\mathbf{x} = \mathbf{h} + \kappa \mathbf{m} \tag{2}$$

1

For the given parabola  $y^2 = 8x$ , The values of  $\mathbf{V}, \mathbf{u}, f$  are

$$\mathbf{V} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \tag{3}$$

$$\mathbf{u} = \begin{pmatrix} -4\\0 \end{pmatrix} \tag{4}$$

$$f = 0 \tag{5}$$

For the given line x = 2, The values of **h**, **m** are

$$\mathbf{h} = \begin{pmatrix} 2 \\ 0 \end{pmatrix} \tag{6}$$

$$\mathbf{m} = \begin{pmatrix} 0 \\ 1 \end{pmatrix} \tag{7}$$

Substituing the line equation in parabola equation gies the values of  $\kappa$ 

$$(\mathbf{h} + \kappa \mathbf{m})^{\mathsf{T}} \mathbf{V} (\mathbf{h} + \kappa \mathbf{m}) + 2\mathbf{u}^{\mathsf{T}} (\mathbf{h} + \kappa \mathbf{m}) + f = 0$$
 (8)

$$\begin{pmatrix} 2 \\ 0 \end{pmatrix} + \kappa \begin{pmatrix} 0 \\ 1 \end{pmatrix} \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ 0 \end{pmatrix} + \kappa \begin{pmatrix} 0 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} -4 \\ 0 \end{pmatrix}^{\mathsf{T}} \begin{pmatrix} 2 \\ 0 \end{pmatrix} + \kappa \begin{pmatrix} 0 \\ 1 \end{pmatrix} + 0 = 0$$
(9)

$$(2 \quad \kappa) \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2 \\ \kappa \end{pmatrix} + 2 \begin{pmatrix} -4 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ \kappa \end{pmatrix} = 0$$
 (10)

$$(2 \quad \kappa) \begin{pmatrix} 0 \\ \kappa \end{pmatrix} + 2 (-8) = 0$$
 (11)

$$\kappa^2 - 16 = 0 \tag{12}$$

$$\kappa_1 = 4 \tag{13}$$

$$\kappa_2 = -4 \tag{14}$$

(15)

The intersection points are

$$\mathbf{x_1} = \mathbf{h} + \kappa_1 \mathbf{m} \tag{16}$$

$$\mathbf{x_1} = \begin{pmatrix} 2\\4 \end{pmatrix} \tag{17}$$

$$\mathbf{x_2} = \mathbf{h} + \kappa_2 \mathbf{m} \tag{18}$$

$$\mathbf{x}_2 = \begin{pmatrix} 2 \\ -4 \end{pmatrix} \tag{19}$$

The Area under the curve is given by

$$A = \left(\int_{-4}^{4} \frac{y^2}{8}\right) dy \tag{20}$$

$$A = \left(\frac{1}{8}\right) \left(\frac{4^3 - \left(-4^3\right)}{3}\right) \tag{21}$$

$$A = \left(\frac{1}{24}\right)(128) \tag{22}$$

$$A = \left(\frac{1}{24}\right)(128) \tag{23}$$

$$A = \frac{16}{3} \tag{24}$$

The area of region bounded by the line x = 2 and the parabola  $y^2 = 8x$  is  $\frac{16}{3}$ 



Fig. 1: The circle which satisfies the conditions