Završni ispit 2013/14

- 1. Zadan je sustav $\ddot{x} + \dot{x} xe^{-x^2} = u_{FC}$
 - a. Naći ravnotežna stanja (2b)
 - b. Nacrtati izokline (2b)
 - c. Analiza osjetljivosti u faznoj ravnini (2b)
 - d. Analiza osjetljivosti u jednoj stacionarnoj točki metodom linearizacije (2b)
 - e. Projektirati linearni regulator koji osigurava stabilno vladanje sustava u stacionarnoj točki (0,0), uz pretpostavku da je moguće mjeriti samo iznos varijable x. (2b)
- 2. Zadan je sustav regulacije armaturne struje prikazan slikom 1.

$$K_R$$
=0.43, K_{TI} = 45, K_{au} =0.0612, K_i =1.57, T_R =0.02, T_{ti} = 0.005, T_{au} = 0.02, T_i = 0.005

- a) Odredite i nacrtajte polurelativni sustav osjetljivosti armaturne struje s obzirom na promjenu vremenske konstatne T_R (8b) Napomena: koristite Kokotovićevu metodu točaka osjetljivosti. Potrebno je izvesti odgovarajuću relativnu funkciju osjetljivosti modela.
- b) Simulacijom je utvrđeno da je odnos polurelativnih funkcija osjetljivosti o parametrima zatvorenog kruga u trenutku prvog maksimuma $\tilde{\eta}_{ia}(t_m, K_R) = 2.1 \cdot \tilde{\eta}_{ia}(t_m, K_{au})$. Odredite iznos pojačanja K_R kojim će se kompenzirati relativna promjena pojačanja armaturnog kruga K_{au} od +7%. (4b)
- 3. Za sustav upravljanja prikazan simulacijskom shemom 2 potrebno je projektirati neizraziti regulator koji pri vrijednosti 0 kompenzira nelinearnu ovisnost izokline $\dot{x}_2 = 0$ o izlaznoj varijabli x_1 . Pri projektiranju koristite po 5 trokutastih funkcija pripadnosti za svaku ulaznu varijablu regulatora i pretpostavite raspon vrijednosti varijabli stanja $x_1, x_2 \in [-5,5]$ (9b)
- 4. Odredite lijevi i desni rub te centar neizrazitog L-R broja a tako da zadovoljava nejednakosti

$$\langle -13, -10, -6 \rangle < \langle -2.2, -2, -1.9 \rangle \langle -5.5, -5, -4.2 \rangle + \langle -2.222, -2, -1.875 \rangle \tilde{a} < \langle -4, -1.5, -1 \rangle$$
 $\tilde{a} > 0$

Pri operacijama uzmite u obzir dodatno ograničenje

$$\tilde{a} < \tilde{b} \Leftrightarrow (c_a < L_b) & (R_a < c_b)$$
 (4b)

