Analytic Geometry

March 31, 2023

1 Norms

Definition - Norm

A *Norm* on a vector space V is a function

$$\|\cdot\|: V \to \mathbb{R} \tag{1}$$

$$x \mapsto \|x\|$$
 (2)

which assigns each vector \boldsymbol{x} its length $\|\boldsymbol{x}\| \in \mathbb{R}$, such that for all $\lambda \in \mathbb{R}$ and $\boldsymbol{x}, \boldsymbol{y} \in V$ the following hold:

- Absolutely homogeneous: $\|\lambda x\| = |\lambda| \|x\|$
- Triangle inequality: $\|x + y\| \le \|x\| + \|y\|$
- Positive definite: $\|\mathbf{x}\| \geqslant 0$ and $\|\mathbf{x}\| = 0 \Longleftrightarrow \mathbf{x} = \mathbf{0}$

Example - Manhattan Norm

The Manhattan norm on \mathbb{R}^n is defined for $\boldsymbol{x} \in \mathbb{R}^n$ as

$$\|\mathbf{x}\|_1 := \sum_{i=1}^n |x_i| \tag{3}$$

where $|\cdot|$ is the absolute value. The Manhattan norm is also called the ℓ_1 norm.

Example - Euclidean Norm

The Euclidean norm of $\boldsymbol{x} \in \mathbb{R}^n$ is defined as

$$\|x\|_2 := \sqrt{\sum_{i=1}^n x_i^2} = \sqrt{x^T x}$$
 (4)

and computes the Euclidean distance of \boldsymbol{x} from the origin. The Euclidean norm is also called the ℓ_2 norm.