

Aplicacions de la derivada a l'anàlisi de funcions

Àlex Arenas, Sergio Gómez

Universitat Rovira i Virgili, Tarragona

Aplicacions a l'anàlisi de funcions

- Creixement
 - Creixement, decreixement, extrems locals i globals, punts singulars
- Concavitat
 - □ Concavitat, convexitat, punts d'inflexió
- Representació gràfica de funcions

- Creixement i decreixement
 - Sigui $f: I \subseteq \mathbb{R} \to \mathbb{R}$ una funció real de variable real definida en un interval I
 - f és creixent en I si $\forall x_1, x_2 \in I, x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$
 - f és decreixent en I si $\forall x_1, x_2 \in I, x_1 < x_2 \Rightarrow f(x_1) \geq f(x_2)$
 - f és constant en I si $\forall x_1, x_2 \in I, x_1 < x_2 \Rightarrow f(x_1) = f(x_2)$
 - f és estrictament creixent en I si $\forall x_1, x_2 \in I, x_1 < x_2 \Rightarrow f(x_1) < f(x_2)$
 - f és estrictament decreixent en I si $\forall x_1, x_2 \in I, x_1 < x_2 \Rightarrow f(x_1) > f(x_2)$

- □ Creixement i decreixement
 - creixent = /
 - decreixent = >

- □ Extrems
 - Sigui $f: I \subseteq \mathbb{R} \to \mathbb{R}$ una funció real de variable real definida en un interval I
 - $x \in I$ és un màxim local si $\exists \delta > 0 : f(x)$ és màxim de f(J) per $J = (x - \delta, x + \delta)$
 - $x \in I$ és un mínim local si $\exists \delta > 0 : f(x)$ és mínim de f(J) per $J = (x - \delta, x + \delta)$
 - $x \in I$ és un extrem local o un extrem relatiu sii és un màxim o un mínim local
 - $x \in I$ és un màxim global si f(x) és un màxim de f(I)
 - $x \in I$ és un mínim global si f(x) és un mínim de f(I)
 - $x \in I$ és un extrem global si és un màxim o un mínim global

- □ Concavitat i convexitat
 - Sigui $f: I \subseteq \mathbb{R} \to \mathbb{R}$ una funció real de variable real definida en un interval I
 - f és convexa si $\forall x_1, x_2 \in I$, $\forall x \in (x_1, x_2)$ es compleix $f(x) < f(x_1) + \frac{f(x_2) f(x_1)}{x_2 x_1}$ $(x x_1)$
 - f és còncava si $\forall x_1, x_2 \in I$, $\forall x \in (x_1, x_2)$ es compleix $f(x) > f(x_1) + \frac{f(x_2) f(x_1)}{x_2 x_1}$ $(x x_1)$
 - Convexa = Còncava cap amunt = U
 - Còncava = Còncava cap avall = ∩

- □ Concavitat i convexitat
 - Sigui $f: I \subseteq \mathbb{R} \to \mathbb{R}$ una funció real de variable real definida en un interval I
 - f és convexa si $\forall x_1, x_2 \in I$, $\forall x \in (x_1, x_2)$ es compleix $\frac{f(x) f(x_1)}{x x_1} < \frac{f(x_2) f(x_1)}{x_2 x_1}$
 - f és còncava si $\forall x_1, x_2 \in I$, $\forall x \in (x_1, x_2)$ es compleix $\frac{f(x) f(x_1)}{x x_1} > \frac{f(x_2) f(x_1)}{x_2 x_1}$
 - Convexa = Còncava cap amunt = U
 - Còncava = Còncava cap avall = ∩

- □ Concavitat i convexitat
 - f convexa si f(x) per $x \in [x_1, x_2]$ està per sota de la corda que uneix els punts $(x_1, f(x_1))$ i $(x_2, f(x_2))$

- □ Concavitat i convexitat
 - f còncava si f(x) per $x \in [x_1, x_2]$ està per sobre de la corda que uneix els punts $(x_1, f(x_1))$ i $(x_2, f(x_2))$

- □ Punts d'inflexió
 - Sigui $f: I \subseteq \mathbb{R} \to \mathbb{R}$ una funció contínua en un interval obert I
 - $x \in I$ és un punt d'inflexió si $\exists \delta_1, \delta_2 > 0$ tals que es compleix una d'aquestes dues opcions:
 - \Box f és convexa a $(x \delta_1, x)$ i còncava a $(x, x + \delta_2)$
 - \Box f és còncava a $(x \delta_1, x)$ i convexa a $(x, x + \delta_2)$
 - En altres paraules, $x \in I$ és un punt d'inflexió si és un punt on canvia la concavitat de còncava a convexa, o viceversa

- □ Punts d'inflexió
 - Sigui $f: I \subseteq \mathbb{R} \to \mathbb{R}$ una funció contínua en un interval obert I
 - $x \in I$ és un punt d'inflexió si és un punt on canvia la concavitat de còncava a convexa o viceversa

- □ Punts crítics
 - Sigui $f: I \subseteq \mathbb{R} \to \mathbb{R}$ una funció derivable definida en un interval obert I = (a, b)
 - $x \in I$ és un punt crític o punt singular si f'(x) = 0, és dir, la recta tangent és horitzontal

- □ Creixement i decreixement
 - Sigui $f: I \subseteq \mathbb{R} \to \mathbb{R}$ derivable en un interval obert I = (a, b)
 - Aleshores:

```
\Box f'(x) \ge 0 \ \forall x \in I \iff f \text{ \'es creixent}
```

$$\Box f'(x) \le 0 \ \forall x \in I \iff f \text{ és decreixent}$$

$$\Box f'(x) = 0 \ \forall x \in I \iff f \text{ \'es constant}$$

$$\Box f'(x) > 0 \ \forall x \in I \implies f \text{ és estrictament creixent}$$

$$\Box f'(x) < 0 \ \forall x \in I \implies f \text{ \'es estrictament decreixent}$$

- Creixement i decreixement
 - Demostració necessitat (⇒)
 - □ Siguin $x_1, x_2 \in I, x_1 < x_2$ dos punts arbitraris de I
 - □ Pel teorema del valor mig de Lagrange $\exists \alpha \in I: f(x_2) - f(x_1) = f'(\alpha)(x_2 - x_1)$
 - □ Si $f'(\alpha) \ge 0$ queda $f(x_2) f(x_1) \ge 0$, i per tant és creixent
 - □ Si $f'(\alpha) \le 0$ queda $f(x_2) f(x_1) \le 0$, i per tant és decreixent
 - □ Si $f'(\alpha) = 0$ queda $f(x_2) f(x_1) = 0$, i per tant és constant
 - □ Si $f'(\alpha) > 0$ queda $f(x_2) f(x_1) > 0$, i per tant és estrictament creixent
 - □ Si $f'(\alpha)$ < 0 queda $f(x_2) f(x_1)$ < 0, i per tant és estrictament decreixent

- Creixement i decreixement
 - Demostració suficiència (⇐)
 - □ Sigui $x \in I$. Com I és obert, $\exists \delta > 0$: $(x, x + \delta) \subset I$
 - □ Pel teorema del valor mig

$$\exists \alpha \in (x, x + \delta): f(x + \delta) - f(x) = f'(\alpha)(x + \delta - x) = f'(\alpha) \delta$$

$$\Rightarrow f'(\alpha) = \frac{f(x + \delta) - f(x)}{\delta}$$

- □ Si f creixent, $f(x + \delta) f(x) \ge 0$, i per tant $f'(\alpha) \ge 0$
- □ Si f decreixent, $f(x + \delta) f(x) \le 0$, i per tant $f'(\alpha) \le 0$
- □ Si f constant, $f(x + \delta) f(x) = 0$, i per tant $f'(\alpha) = 0$
- □ Com $\alpha \in (x, x + \delta)$, α tendeix a x quan δ tendeix a 0, i per tant $f'(\alpha)$ tendeix a f'(x), mantenint el signe de la desigualtat
- Observació: una funció pot ser estrictament creixent i tenir f'(x) = 0 en algun punt, per exemple, $f(x) = x^3$ és estrictament creixent en \mathbb{R} però f'(0) = 0

- □ Extrems locals
 - Si c és un extrem local de $f: I \subseteq \mathbb{R} \to \mathbb{R}$ en un interval obert I = (a, b) i f és derivable en c aleshores c és un punt crític, és dir, f'(c) = 0
 - Demostració
 - □ Feta anteriorment (teorema dels extrems relatius)
 - Observació
 - □ El contrari no és cert, un punt crític pot no ser un extrem local, per exemple, $f(x) = x^3$ en el punt c = 0

- □ Extrems locals
 - Sigui $f: I \subseteq \mathbb{R} \to \mathbb{R}$ una funció contínua en un interval obert I = (a, b) i sigui $c \in I$
 - Si $\exists \delta > 0$ tal que
 - $\Box f'(x) > 0$ per tot $x \in (c \delta, c)$ i f'(x) < 0 per tot $x \in (c, c + \delta)$ aleshores c és un màxim local
 - \Box f'(x) < 0 per tot $x \in (c \delta, c)$ i f'(x) > 0 per tot $x \in (c, c + \delta)$ aleshores c és un mínim local
 - \Box f'(x) té el mateix signe per tot $x \in (c \delta, c) \cup (c, c + \delta)$ aleshores c no és un extrem local

- □ Extrems locals
 - Observació
 - \square No cal que f sigui derivable en c, només cal que sigui contínua en I i derivable en un entorn de c (excloent a c)

- □ Extrems locals
 - Demostració del cas en què és màxim local
 - □ Sigui $x \in (c \delta, c)$, volem veure que f(x) < f(c)
 - □ Suposem $f(x) \ge f(c)$
 - □ Com f diferenciable en (x, c), pel teorema del valor mig de Lagrange, $\exists \alpha \in (x, c)$: $f(c) f(x) = f'(\alpha)(c x)$
 - □ Com f'(x) > 0 per $x \in (c \delta, c)$, aleshores $f'(\alpha) > 0$, i per tant f(c) f(x) > 0, en contradicció amb la hipòtesi $f(x) \ge f(c)$, de manera que ha de ser f(x) < f(c)
 - □ Idem es demostra que si $x \in (c, c + \delta)$, aleshores f(x) < f(c)
 - □ La conclusió és que $\forall x \in (c \delta, c) \cup (c, c + \delta), f(x) < f(c),$ quedant així demostrat que c és un màxim local

- □ Extrems locals
 - Sigui $f: I \subseteq \mathbb{R} \to \mathbb{R}$ contínua en un interval obert I = (a, b) i derivable dues vegades en $c \in I$
 - Aleshores
 - $\Box f'(c) = 0$ i $f''(c) < 0 \implies c$ és un màxim local
 - $\Box f'(c) = 0 i f''(c) > 0 \implies c \text{ és un mínim local}$

- □ Extrems locals
 - Demostració
 - $\Box f''(c) > 0 \implies f'(x)$ estrictament creixent en un entorn de c, és dir, per tot $x \in (c \delta, c + \delta)$ per un cert $\delta > 0$
 - □ Siguin $x_1 \in (c \delta, c)$ i $x_2 \in (c, c + \delta)$
 - \square Aleshores, $f'(x_1) < f'(c) < f'(x_2)$
 - □ Com f'(c) = 0, queda $f'(x_1) < 0 < f'(x_2)$ per tots els punts x_1 i x_2 dels seus respectius intervals
 - □ Pel teorema anterior, c és un mínim local
 - □ Anàlogament, si f''(c) < 0 s'arriba a $f'(x_1) > 0 > f'(x_2)$, i per tant c és un màxim local

- □ Concavitat i convexitat
 - Sigui $f: I \subseteq \mathbb{R} \to \mathbb{R}$ una funció en l'interval obert I = (a, b) i derivable en $c \in I$
 - Aleshores
 - $\Box f$ convexa en $I \implies \forall x \in I \setminus \{c\}, \ f(c) + f'(c)(x c) < f(x)$
 - \Box f còncava en $I \implies \forall x \in I \setminus \{c\}, \ f(c) + f'(c)(x c) > f(x)$

- □ Concavitat i convexitat
 - Interpretació
 - \square Si f convexa, els punts f(x) estan per sobre de la recta tangent a f en el punt c
 - Si f còncava, els punts f(x) estan per sota de la recta tangent a
 f en el punt c

- □ Concavitat i convexitat
 - Demostració del cas amb f convexa
 - \square Selecciono punts c < x < b
 - □ Per definició de f convexa en I, es compleix $\frac{f(x) f(c)}{x c} < \frac{f(b) f(c)}{b c}$
 - □ En particular, per $h_1 < h_2$ amb $c < c + h_1 < c + h_2 < x$ queda $\frac{f(c+h_1) f(c)}{h_1} < \frac{f(c+h_2) f(c)}{h_2} < \frac{f(x) f(c)}{x c}$
 - □ Per tant, f'(c) és l'ínfim per h tendint a 0, i podem escriure $f'(c) < \frac{f(x) f(c)}{x c}$
 - □ Operant, queda el que es volia demostrar f(c) + f'(c)(x c) < f(x)
 - \square Si x < c es procedeix de forma equivalent

- □ Concavitat i convexitat
 - Sigui $f: I \subseteq \mathbb{R} \to \mathbb{R}$ una funció diferenciable en l'interval obert I = (a, b)
 - Aleshores
 - \Box f convexa en $I \iff f'$ és estrictament creixent en I
 - \Box f còncava en $I \Leftrightarrow f'$ és estrictament decreixent en I

- □ Concavitat i convexitat
 - Demostració necessitat (\Longrightarrow) pel cas f convexa
 - □ Siguin $x_1 < x_2$ dos punts arbitraris de l'interval
 - □ Pel teorema anterior, $f(x_1) + f'(x_1)(x_2 x_1) < f(x_2)$, és a dir $f'(x_1) < \frac{f(x_2) f(x_1)}{x_2 x_1}$
 - □ Equivalentment, $f(x_2) + f'(x_2)(x_1 x_2) < f(x_1)$, és dir $f'(x_2) > \frac{f(x_1) f(x_2)}{x_1 x_2}$

on la desigualtat a canviat de signe ja que $x_1 < x_2$

Per tant

$$f'(x_1) < \frac{f(x_2) - f(x_1)}{x_2 - x_1} < f'(x_2)$$

i queda així demostrat que f' és estrictament creixent

- □ Concavitat i convexitat
 - Demostració suficiència (⇐) pel cas f convexa
 - Requereix demostrar primer un lema
 - Lema
 - □ Sigui f derivable en un interval obert I i f' estrictament creixent. Siguin $x_1, x_2 \in I$ tals que $x_1 < x_2$ i $f(x_1) = f(x_2)$. Aleshores, $f(x) < f(x_1) = f(x_2)$ per tot $x \in (x_1, x_2)$
 - Demostració del lema
 - □ Suposem $f(x) \ge f(x_1) = f(x_2)$ per un cert $x \in (x_1, x_2)$
 - □ Pel teorema de Weierstrass, $\exists \alpha \in [x_1, x_2]$ que assoleix el valor màxim de f. Evidentment, ha de ser $f(\alpha) \ge f(x_1)$ i $f'(\alpha) = 0$
 - □ Pel teorema del valor mig de Lagrange, $\exists \beta \in (x_1, \alpha)$ tal que

$$f'(\beta) = \frac{f(\alpha) - f(x_1)}{\alpha - x_1} \ge 0 = f'(\alpha)$$

en contradicció amb que f' és estrictament creixent

- □ Concavitat i convexitat
 - Demostració suficiència (⇐) pel cas f convexa
 - □ Donats $x_1, x_2 \in I$ tals que $x_1 < x_2$, definim la funció

$$g(x) = f(x) - \frac{f(x_2) - f(x_1)}{x_2 - x_1} (x - x_1)$$

□ La funció g' és estrictament creixent gràcies a que f' ho és, i a més, $g(x_1) = g(x_2) = f(x_1)$, per tant el lema anterior ens assegura que $g(x) < g(x_1)$

$$g(x) = f(x) - \frac{f(x_2) - f(x_1)}{x_2 - x_1} (x - x_1) < g(x_1) = f(x_1)$$

Per tant

$$\frac{f(x) - f(x_1)}{x - x_1} < \frac{f(x_2) - f(x_1)}{x_2 - x_1}$$

quedant demostrat que f és convexa

- □ Concavitat i convexitat
 - Sigui $f: I \subseteq \mathbb{R} \to \mathbb{R}$ una funció doblement diferenciable en l'interval obert I = (a, b)
 - Aleshores
 - $\Box f''(x) > 0 \ \forall x \in I \implies f \text{ és convexa}$
 - $\Box f''(x) < 0 \ \forall x \in I \implies f \text{ és còncava}$
 - Demostració
 - □ Si $f''(x) > 0 \ \forall x \in I$ aleshores f' és estrictament creixent, i pel teorema anterior, f és convexa
 - □ Si $f''(x) < 0 \ \forall x \in I$ aleshores f' és estrictament decreixent, i pel teorema anterior, f és còncava

- □ Punts d'inflexió
 - Sigui $f: I \subseteq \mathbb{R} \to \mathbb{R}$ una funció doblement diferenciable en un punt $c \in I$ de l'interval obert I = (a, b)
 - Aleshores
 - \Box c punt d'inflexió \Longrightarrow f''(c) = 0
 - \Box c punt d'inflexió \Longrightarrow la recta tangent a f en c talla la corba
 - $\Box f''(c) = 0$ i f'' canvia de signe a $c \implies c$ és punt d'inflexió

- □ Punts d'inflexió
 - Sigui $f: I \subseteq \mathbb{R} \to \mathbb{R}$ una funció doblement diferenciable en un punt $c \in I$ de l'interval obert I = (a, b)
 - Aleshores
 - \Box c punt d'inflexió \Longrightarrow f''(c) = 0
 - \Box c punt d'inflexió \Longrightarrow la recta tangent a f en c talla la corba
 - $\Box f''(c) = 0$ i f'' canvia de signe a $c \implies c$ és punt d'inflexió
 - Observació
 - $\Box f''(c) = 0$ no implica directament que sigui punt d'inflexió, per exemple, $f(x) = x^4$ en el punt c = 0

- □ Punts d'inflexió
 - Demostracions
 - □ Si $f''(c) \neq 0$ aleshores, pels teoremes anteriors, f seria convexa o còncava en un entorn de c. Com c és punt d'inflexió, només pot ser f''(c) = 0
 - □ Si la recta tangent estiguis tota per sobre o tota per sota de la corba aleshores, pels teoremes anteriors, seria convexa o còncava respectivament. Com c és punt d'inflexió, només pot ser que la recta tangent a f talli la corba en c
 - □ Com canvia de signe, pels teoremes anteriors, és còncava a l'esquerra i convexa a la dreta, o viceversa; això és la definició de punt d'inflexió. f''(c) = 0 serveix per a indicar que f'' és contínua en c, i que pren l'únic valor possible

- Representació gràfica de funcions
 - Definicions
 - Asímptotes
 - \square Es diu que una funció f té una asímptota vertical a x=a si es compleix que

$$\lim_{x \to a^{-}} f(x) = \pm \infty$$
i/o
$$\lim_{x \to a^{\mp}} f(x) = \pm \infty$$

- Representació gràfica de funcions
 - □ Definicions
 - Asímptotes
 - \square Es diu que una funció f té una asímptota horitzontal a y=b si es compleix que

$$\lim_{x \to +\infty} f(x) = b$$
i/o
$$\lim_{x \to -\infty} f(x) = b$$

- □ Definicions
 - Asímptotes
 - \square Es diu que una funció f té una asímptota obliqua a y = mx + b si es compleix que

$$\lim_{x \to +\infty} (f(x) - (m x + b)) = 0 \quad \lor \quad \lim_{x \to -\infty} (f(x) - (m x + b)) = 0$$

- □ Definicions
 - Asímptotes
 - \square Es diu que una funció f té una asímptota obliqua a y = mx + b si es compleix que

$$\lim_{x \to +\infty} (f(x) - (m x + b)) = 0 \quad \lor \quad \lim_{x \to -\infty} (f(x) - (m x + b)) = 0$$

 \square Els valors de m i b es calculen

$$m = \lim_{x \to +\infty} \frac{f(x)}{x} \quad \land \quad b = \lim_{x \to +\infty} (f(x) - m x)$$

0

$$m = \lim_{x \to -\infty} \frac{f(x)}{x} \quad \land \quad b = \lim_{x \to -\infty} (f(x) - m x)$$

segons el cas

- Definicions
 - Simetria
 - □ Es diu que una funció $f: I \subseteq \mathbb{R} \to \mathbb{R}$ és parella si $f(-x) = f(x) \ \forall x \in I$
 - □ Es diu que una funció $f: I \subseteq \mathbb{R} \to \mathbb{R}$ és senar si $f(-x) = -f(x) \ \forall x \in I$

- Representació gràfica de funcions
 - □ Definicions
 - Simetria
 - □ Es diu que una funció $f: I \subseteq \mathbb{R} \to \mathbb{R}$ és parella si $f(-x) = f(x) \ \forall x \in I$
 - □ Es diu que una funció $f: I \subseteq \mathbb{R} \to \mathbb{R}$ és senar si $f(-x) = -f(x) \ \forall x \in I$
 - \square La simetria implica que l'interval ha de ser també simètric, és dir $I=\mathbb{R}$

o
$$I = (-a, a)$$

o
$$I = [-a, a]$$

- □ Definicions
 - Periodicitat
 - \square Es diu que una funció $f:I\subseteq\mathbb{R}\to\mathbb{R}$ és periòdica, de període T, si

$$f(x+T) = f(x) \ \forall x \in I$$

- □ Procediment
 - 1. Domini
 - 2. Simetria, periodicitat
 - 3. Punts de talls amb els eixos
 - 4. Asímptotes
 - 5. Continuïtat, discontinuïtat
 - Primera derivada
 - □ Creixement, decreixement, punts crítics
 - Segona derivada
 - □ Concavitat, convexitat, punts d'inflexió
 - 8. Integració de tota la informació per a fer l'esbós de la gràfica de la funció