ĐẠI HỌC CÔNG NGHỆ THÔNG TIN KHOA HỆ THỐNG THÔNG TIN

CHƯƠNG 4 MÔ HÌNH HÓA TƯƠNG TÁC ĐỐI TƯỢNG

Nội dung

- 1. Xác định class
- 2. Biểu đồ trình tự
- 3. Biểu đồ cộng tác

Nhắc lại: Class

- Là một sự trừu tượng hóa
- Mô tả một nhóm các đối tượng có chung:
 - Properties (attributes)
 - Behavior (operations)
 - Relationships
 - Ngữ nghĩa (Semantics)

Nhắc lại: Use case Realization

Tìm các Class từ Use case Behavior

 Toàn bộ hành vi của một use case phải được phân bổ về cho các analysis class

Thế nào là một Analysis Class?

Analysis Classes

Thế nào là một Boundary Class?

- Làm trung gian giao tiếp với những gì nằm ngoài hệ thống
- Một số kiểu
 - Các User interface class
 - Các System interface class
 - Các Device interface class
- Một boundary class cho 1 cặp actor/use case

Phụ thuộc môi trường

Vai trò của Boundary Class

Mô hình hóa sự tương tác giữa system và môi trường của nó

Ví dụ: Tìm các Boundary Class

Một boundary class cho 1 cặp actor/use case

Boundary Class

- Các User Interface Class
 - Tập trung vào những thông tin gì được thể hiện cho người dùng
 - KHÔNG tập trung vào các chi tiết UI
- Các System và Device Interface Class
 - Tập trung vào những protocols nào phải định nghĩa
 - KHÔNG tập trung vào cách mà các protocol sẽ được cài đặt

Tập trung vào các nhiệm vụ, chứ không phải chi tiết!

Thế nào là một Entity Class?

Abstractions

Các trừu tượng hóa then chốt của system

Độc lập môi trường

Vai trò của Entity Class

Lưu trữ và quản trị các thông tin trong system

Ví dụ: Tìm các Entity Class

- Dùng use-case flow of events như input
- Các trừu tượng hóa then chốt của use case
- Hướng tiếp cận truyền thống (nouns filtering)
 - Gạch dưới các cụm danh từ trong flow of events
 - Loại bỏ các ứng viên dư thừa
 - Loại bỏ các ứng viên mơ hồ, không rõ ràng
 - Loại bỏ các actor (ngoài phạm vi)
 - Loại bỏ các kiến trúc cài đặt
 - Loại bỏ các attribute (để lại dùng sau)
 - Loại bỏ các operation

Ví dụ: Entity Class

Register for Courses (Create Schedule)

Student

CourseOffering

Schedule

Nhắc lại: Generalization

- Một class chia sẻ cấu trúc và/hoặc hành vi của một hay nhiều class
- Mối quan hệ "Là một dạng của"
- Trong phân tích, sử dụng ở mức độ đơn giản, sơ sài

Generalization

Generalization

Ví dụ: Generalization (Chia sẻ ngữ nghĩa)

Thế nào là một Control Class?

- Nhà điều phối các hành vi của Use-case
- Chỉ một control class cho một use case

Phụ thuộc use-case, độc lập môi trường

Vai trò của Control Class

Điều phối các hành vi của use-case

Ví dụ: Tìm các Control Class

Một control class cho một use case

Ví dụ: Analysis Classes

Use-Case Model

Design Model

<
koundary>>
RegisterForCoursesForm

<<control>>
RegistrationController

<
courseCatalogSystem

<<entity>>
Student

<<entity>>
Schedule

<<entity>> CourseOffering

Nội dung

- 1. Xác định class
- 2. Biểu đồ trình tự
 - Định nghĩa
 - Chức năng
 - Cấu trúc và các thành phần
- 3. Biểu đồ cộng tác

2. Biếu đồ trình tự Sequence Diagram

Định nghĩa:

- Lược đồ tuần tự thể hiện các hành vi động hướng thời gian
- Đặc biệt hữu dụng trong các hệ thống với các chức năng phụ thuộc vào thời gian hoặc yêu cầu trình tự thời gian là quan trọng.

- Chức năng
 - Mô hình hóa luồng xử lý
 - Minh họa các kịch bản đặc trưng
 - Mô tả sự tuần tự của các sự kiện, thể hiện khi nào đối tượng được tạo và hủy, mô tả các hành động đồng thời

- Một lược đồ tuần tự bao gồm có hai phương
 - Phương ngang: các đối tượng khác nhau trong chuỗi hành động tuần tự để thực hiện một chức năng nào đó.
 - Phương thẳng đứng : biểu diễn trục thời gian theo hướng từ trên xuống.

- Cấu trúc: Một lược đồ tuần tự bao gồm 4 thành tố chính
 - Object: các đối tượng khác nhau liên quan đến lược đồ
 - Lifeline: thể hiện sự tồn tại của đối tượng trên trục thời gian
 - Activation focus of control: thể hiện bằng hình chữ nhật nằm trên lifeline. Độ dài của focus of control cho biết thời gian mà đối tượng tồn tại.
 - Message: thể hiện sự liên lạc giữa các đối tượng

2.1 Object

2.2 Lifeline

 Được thể hiện bằng một đường nét đứt dọc từ một object, đại diện cho sự tồn tại của các object theo thời gian.

2.3 Activations – Focus of control

 Hiển thị như một hình chữ nhật nằm trên lifeline đại diện cho các giai đoạn.

2.4 Message

Mô tả bằng cú pháp như sau:

```
[guard] * [iteration] sequence number:
return variable := operation_name
(argument list)
```

Reflexive message

 Được hiến thị như một mũi tên liền nét từ lifeline hoặc focus of control vòng quay trở lại lifelines hoặc focus of control đó

Message – Creation and Destruction

- Việc tạo một đối tượng được thể hiện bằng mũi tên thông điệp chỉ đến đối tượng cần tạo.
- Việc hủy một đối tượng được ký hiệu bằng một mũi tên thông điệp chỉ đến dấu "X" nằm cuối lifeline của đối tượng

Repetition

- Được thế hiện bằng thông tin kèm theo bên trong hình chữ nhật.
- Được thể hiện ở góc trên hay góc bên dưới của hình chữ nhật cho biết số lần các thông tin liên lạc với nhau bên trong hình chữ nhật.

Repetition

Repetition

 Một biểu hiện Guard được sử dụng ở góc bên trên hay bên dưới của hình chữ nhật chỉ ra điều kiện được chấp nhận để chấm dứt sự lặp lại

38

Use Case Đăng ký học phần Basic flow: Create a Schedule

- 1. SV chọn chức năng "create schedule."
- Hệ thống yêu cầu danh sách các lớp được mở (course offerings) từ Course Catalog System.
- 3. Hệ thống hiện thị giao diện thời khóa biểu trống.
- 4. SV chọn 4 học phần chính và 2 học phần thay thế từ danh sách các học phần được mở. Khi việc lựa chọn hoàn tất, SV chọn "submit."
- 5. Hệ thống tạo một lịch học chứa những học phần sinh viên đã đăng ký.
- 6. Sinh viên kiểm tra và xác nhận lịch học, Submit Schedule được thực thi.

Analysis Classes

Ví dụ: Sequence Diagram

Ví dụ: Sequence Diagram

Ví dụ: Sequence Diagram (cont.)

Ví dụ: Use case Rút tiền

Xác định các danh từ

Use case: Rút tiền Actor: Khách hàng

Mô tả: Cho phép khách hàng rút tiền

Pre-conditions: User phải login

Post-conditions: Tài khoản của user bị trừ ứng với số tiền rút

Main flow:

1) Usecase bắt đầu khi KH chọn "Rút tiền"

- HT hiển thị tất cả tài khoản tương ứng với thẻ và yêu cầu KH chọn một tài khoản.
- 3) KH chọn một tài khoản.
- 4) HT yêu cầu nhập **số tiền muốn rút**
- 5) KH nhập số tiền muốn rút.

. . .

Alternative flows:

. . .

KH User Tài khoản Số tiền rút Thẻ

Sequence Diagram – Use case Rút tiền

Nội dung

- 1. Xác định class
- 2. Biểu đồ trình tự
- 3. Biểu đồ cộng tác
 - Định nghĩa
 - Chức năng
 - Cấu trúc và các thành phần

3. Biểu đồ cộng tác Collaboration Diagram

- Mục đích: biểu diễn mối quan hệ tương tác giữa
 - Các đối tượng
 - Đối tượng và tác nhân
 - Nhấn mạnh đến vai trò của các đối tượng trong tương tác
 - Biểu diễn các hoạt động như các luồng công việc hoặc tiến trình khác nhau trong hệ thống được xây dựng.

3. Collaboration Diagram

Đặc điểm:

- Đối tượng được đặt một cách tự do trong không gian
- Không có đường lifeline cho mỗi đối tượng
- Các message được đánh số theo thứ tự thời gian

3. Collaboration Diagram

- Các thành phần
 - Đối tượng (participants): hình chữ nhật,
 luôn xuất hiện tại vị trí xác định, tên đối
 tượng:tên lớp
 - Liên kết (links): đường nối 2 đối tượng có tương tác, không có chiều
 - Thông điệp (messages): mũi tên từ đối tượng gửi sang đối tượng nhận, đánh số theo thứ tự xuất hiện

3. Collaboration Diagram

Ví dụ: Collaboration Diagram

Ví dụ: Collaboration Diagram

 Thông điệp lồng nhau (nested messages): là thông điệp được gọi (invoke) bởi đối tượng theo yêu cầu của 1 thông điệp trước đó

 Thông điệp xảy ra đồng thời: ký hiệu bằng cách thêm ký tự (a,b,c,...) sau số chỉ thứ tự thực hiện

của nó.

 Gọi một thông điệp nhiều lần (vd: thông điệp được gọi bởi vòng for)

 Thông điệp chỉ được thực hiện khi thỏa 1 điều kiện cụ thể

Một lược đồ tương tác là chưa đủ

Collaboration Diagrams Vs Sequence Diagrams

- Collaboration Diagrams
 - Chỉ ra các mối quan hệ bổ sung cho các tương tác
 - Trực quan hóa tốt hơn các mẫu cộng tác
 - Trực quan hóa tốt hơn các hiệu ứng tác động lên một đối tượng cụ
 - Dễ sử dụng hơn trong các vấn đề cần giải quyết tập thể

- Sequence Diagrams
 - Chỉ ra rõ ràng chuỗi các thông điệp
 - Trực quan hóa tốt hơn toàn bộ luồng sự kiện
 - Tốt hơn cho các đặc tả real-time và cho các scenario phức tạp