

RAJARATA UNIVERSITY OF SRI LANKA FACULTY OF APPLIED SCIENCES

B.Sc. (General) Degree
First Year – Semester II Examination – April / May 2015

MAA 1203 – Numerical Analysis I

Answer Four Questions with Questions No:1

Time allowed: Two hours

Calculators are allowed

The Newton's Forward formula $P_k = \sum_{i=0}^k {k \choose i} \Delta^i y_0$

Stirling's formula $P_{k} = y_{0} + \sum_{i=1}^{n} \left[\binom{k+i-1}{2i-1} \delta^{2i-1} \mu y_{0} + \frac{k}{2i} \binom{k+i-1}{2i-1} \delta^{2i} y_{0} \right]$

Bessel's formula $P_k = \sum_{i=0}^n \left[\binom{k+i-1}{2i} \mu \delta^{2i} y_{1/2} + \frac{1}{2i+1} (k-\frac{1}{2}) \binom{k+i-1}{2i} \delta^{2i+1} y_{1/2} \right]$

Newton's Backward formula

$$P_k = y_0 + k \ \nabla y_0 + \frac{k(k+1)}{2!} \nabla^2 y_0 + \dots + \frac{k-(k+n-1)}{n!} \nabla^n y_0$$
; where k=0,-1,...,-n

- 01 i Use the Newton Raphson method to find a root of the Equation $x^3 2x 5 = 0$ (Hint: $x_0=2$) 30 Marks
 - ii Find the real root of x^3 x^2 1= 0 up to three decimal places using **Bisection method**. **25 Marks**
 - iii Consider the special function for which $y_k = k(k-1)(k-2)$ and prove $\Delta y_k = 3k(k-1)$.
 - iv Convert; $a \ Y = (1001)_2 \ b \ Y = (0.1111.....)_2 \ c \ Z = (1....1)$ to base by 10. Where Z has k+1 digits.
 - Define the terms absolute and relative errors. If $y = \frac{0.31x + 2.73}{x + 0.35}$ where the coefficients rounded off. Find the absolute and relative error in when $x = 0.5 \mp 0.1$.
 - vi Consider the special function $y_k = k(k-1) \dots (k-(n-1)) = k^{(n)}$ 25 Marks

 Prove that $\Delta k^n = nk^{n-1}$ for all integers n.

Show that $\Delta^2 y_k = n(n-1)k^{(n-2)}$ and $k^{(4)} = -6k + 11k^2 - 6k^3 + k^4$

20 Marks

2. Apply Lagrange's formula to find the root of f(x)=0 when:

$$f(30) = -30$$
, $f(34) = -13$, $f(38) = 3$, $f(42)=18$

80 Marks

3. Values of $y = \sqrt{x}$ are listed in the following table, which are rounded off to 5 decimal places. Fin $\sqrt{1.12}$ by using Stirling's formula

х	1.00	1.05	1.10	1.15	1.20	1.25	1.30
У	1.00000	1.02470	1.04881	1.07238	1.09544	1.11803	1.14017

80 Marks

4. Using Bessel's formula find 3rd degree polynomial that approximates the following data:

$$f(0) = 2$$
, $f(1) = 3$, $f(2) = 8$, $f(3)=23$.

50 Marks

ii Find the general solution of $y_{k+2} - 2Ay_{k+1} + y_k = 0$ (A is a constant)

30 Marks

5. If **f(x)** is known at the following data points

x_i	f_i
0	1
1	7
2	23
3	55
4	109

then find f(0.5) and f(1.5) using Newton's forward difference formula.

80 Marks