Massical AI: Single agent prob	lem		
Multi-agent AI: Rationality	→ Act with	Measons	
loss function minimize		Planere 1: cl	hooses The Law
Equilibrium		Player 2: cho	hooses The box coses The ball from that box
Example 2-player game	A -50 50	I 3	1
	numbers repres		of blaves 1

Notation: Players = {agent, opp} 1: state of the game, starting state so actions (s) = possible actions at s Succ (s,a) = successor of s When a action is taken is End (s) = Whether s is a terminal mode utility (s) = agent's utility at a terminal mode s player (s) = the current player at intermediate state 1. Chess P={W,B} fill The rust

Strategy of a player: a complete contingency plan of a player in a game.

Deterministic: $T_i(s) \in actions(s)$

function mapping The state to one of the actions

Randomized: $\Pi_i(s) \in \Delta$ actions(s)

AX = all possible prob. distributions over X.

utility (s), if is End(s) = TRUE $\left| \sum_{Ag} TT_{Ag}(s)[a] \mathcal{U}_{Ag}(Succ(s,a)), \text{ if player}(s) \\ a \in \text{actions}(s) \right|$ expected utility of agent at an intermediate $\frac{1}{\text{opp}} \left(\frac{s}{a} \right) \left(\frac{1}{\text{opp}} \left(\frac{s}{a} \right) \right) \left(\frac{1}{\text{opp}} \left(\frac{s}{a} \right) \right) = \text{opp}$ at autions (s)Halving game actions -> / -> helf The number (take floor) -) reduce The number by 1

Player(s)=agent

2 Tlag(s)[a2]

Ung(success)

Checkers $\sim 10^{20}$ modes Chess $\sim 10^{40}$ Go $\sim 10^{170}$