SOLUCIONES EN UN CASO TÍPICO UNIDIMENSIONAL: EL POZO CUADRADO INFINITO

Sea una partícula de masa *m* constreñida a una sola dimensión en el espacio y dentro de un segmento finito en esa dimensión. Aplicamos también el constreñimiento de que el potencial es constante y nulo dentro de ese segmento y que fuera de sus límites el potencial es infinito:

$$V(x) = \infty$$

$$V(x) = 0$$

$$-a$$

$$V(x) = 0$$

$$+a$$

$$V(x) = \begin{cases} 0 \Rightarrow |x| < a \\ \infty \Rightarrow a < x < -a \end{cases}$$

Como el potencial es infinito fuera de los límites, la partícula no podrá existir en esa zona y $\psi(x) = 0$ cuando |x| > a y como la función de onda debe ser continua, también debe ocurrir que en los extremos:

$$\psi(\pm a) = 0$$

Probaremos que esta es una **condición de contorno** y que ella es la responsable de la aparición de valores propios discontinuos o **cuantizados**.

Tal y como se explicó anteriormente, el hamiltoniano, y sobre todo su componente de energía potencial siempre se adaptan al sistema que se calcula. En este caso el potencial es nulo en el espacio considerado, por lo que a la ecuación de Schrödinger solo le queda la componente cinética y en una sola dimensión:

$$-\frac{\hbar}{2m}\frac{d^2\psi(x)}{dx^2} = E\psi(x)$$

La función de onda que soluciona esta ecuación diferencial y que por lo tanto caracterizará al sistema en términos de la mecánica cuántica es:

$$\psi(x) = A\sin kx + B\cos kx$$

donde k es una constante de periodicidad para las funciones trigonométricas. Sólo nos queda averiguar los valores de los parámetros A y B.

En las fronteras del segmento o "caja" unidimensional se cumplen las condiciones de contorno anteriores, y por lo tanto, en esos puntos:

$$A\sin ka = 0$$
 $B\cos ka = 0$

Es preciso analizar estas relaciones para lograr una comprensión adecuada del comportamiento de la función de onda.

Caso 1 de satisfacción de las condiciones de contorno:

$$\begin{cases} A = 0 \\ \cos ka = 0 \end{cases} \Rightarrow k_n = \frac{n\pi}{2a}$$

Debe observarse que la característica de que la función trigonométrica *coseno* toma valores nulos solo para ciertos valores de los ángulos, *crea una periodicidad que conduce a valores discontinuos dados por* n = 1,3,5,...

En este caso la función propia quedaría:

$$\psi_n(x) = B \cos k_n x$$

que como debe de estar normalizada cumpliendo que:

$$\int_{-a}^{a} \psi_{n}^{*}(x) \psi_{n}(x) dx = 1$$

$$B\int_{-a}^{a}\cos^{2}\frac{n\pi}{2a}xdx = 1$$

$$B = a^{-\frac{1}{2}}$$

De esta forma se llega a la expresión de la función de onda que solo puede evaluarse con valores enteros impares de n = 1,3,5,...:

$$\psi_n(x) = \frac{1}{\sqrt{a}} \cos \frac{n\pi}{2a} x$$

Caso 2 de satisfacción de las condiciones de contorno:

$$\begin{cases}
B = 0 \\
\sin ka = 0
\end{cases} \Rightarrow k_n = \frac{n\pi}{2a}$$

donde, contrariamente al caso 1 con el *coseno*, los valores de n que hacen nulo al *seno* son pares, n = 2,4,6,...

La función de onda normalizada correspondiente, después de un proceso similar al del caso 1, es ahora para n = 2,4,6,...:

$$\psi_n(x) = \frac{1}{\sqrt{a}} \sin \frac{n\pi}{2a} x$$

Sustituyendo ambas en la ecuación de Schrödinger planteada al principio:

$$-\frac{\hbar}{2m}\frac{d^2\psi(x)}{dx^2} = E\psi(x) \Rightarrow -\frac{\hbar}{2m}\frac{d^2\cos\frac{n\pi}{2a}x}{dx^2} = E\cos\frac{n\pi}{2a}x$$
$$-\frac{\hbar}{2m}\frac{d^2\sin\frac{n\pi}{2a}x}{dx^2} = E\sin\frac{n\pi}{2a}x$$

se puede llegar a que la energía también depende de n y tiene la expresión:

$$E_n = \frac{\hbar^2}{8m} \left(\frac{\pi n}{a}\right)^2$$
 para todos los valores enteros de $n = 1, 2, 3, ...$

CASOS DE LA FUNCIÓN DE ONDA DEL POZO CUADRADO PERFECTO CON a=4

Debe notarse que el número de nodos (puntos en los que la función se hace nula) aumenta con el valor de n.

CASOS DEL CUADRADO DE LA FUNCIÓN DE ONDA (PROBABILIDAD) EN EL POZO CUADRADO PERFECTO CON a=4

Debe notarse que el cuadrado de la función de onda siempre es positivo.

En cuanto a las energías, el gráfico ilustra la relación de los niveles y la discontinuidad de los mismos:

Observar que:

- la menor energía no es cero y tiene un valor de

$$E_1 = \frac{\hbar^2 \pi^2}{8ma^2} = \frac{1.51(10^{-38})}{a^2} Jm^2$$

 la diferencia energética entre cada estado aumenta con el valor de n.