

मोतीलाल नेहरू राष्ट्रीय प्रौद्योगिकी संस्थान इलाहाबाद प्रयागराज—211004 भारत,

Motilal Nehru National Institute of TechnologyAllahabad Prayagraj-211004 [India]

Chemical Engineering Department Mid Semester (Even) Examination 2023-24

	Name: B.Tech.	(Even) Examination 2023-24				
		Semester: IV				
	Course Code: CHN14109	Course Names Branca Branca				
	Branch: Chemical Engineering	Course Name: Process Dynamics and Control				
	engineering	Student Reg. No.:				
	Duration: 90 Minutes					
lnot	ections: (Related to Questions)	Max. Marks: 25				
	Figures to the right indicate the full marks data wherever necessary.	3. 2.Answer the questions sequentially. 3	3. Assume :	suitable Mapped to		
Q 1	A process since t		Marks	CO numbe		
	A process given by		5	COI		
		$=\frac{2}{(5s+1)}$				
	for this processes at 30 min.	ng a slope of 2. Determine the output y				

Q 2 A chemical process is represented by a transfer function

5 CO1

$$Y(s) = \frac{s+5}{s^2 + 5s + 4)}$$

Find out the value of an output y at 15 min.

Q3 Dynamics of a chemical process is exhibited by the following transfer function:

5 CO1/CO2

$$G(s) = \frac{Y(s)}{U(s)} = \frac{30}{60s + 6}$$

- i. What is the steady state gain and time constant?
- ii. For a step change of magnitude 2, what is the value of the y(t) when time tends to infinity.

$$V\frac{dC}{dt} = q(C_i - C) - Vk_0 e^{\frac{-E}{RT}}C$$

Determine the concentration at 2 min and 5 min, considering the following data.

Data:

Initial concentration of A in feed (C_1) is 0.2 mol/cum.

Flow rate (q) is 20 cum/min.

. V is 10 cum (constant).

 K_o is 500 $min^{\text{-}1}$

E is 20.5 kJ/mol.

T is 325 K

R is universal gas constant (8.314 J/mol.K)

मोतीताल नेहरू नेशनल इंस्टिट्यूट ऑफ़ टेवनोलॉजी इलाहावाद प्रयागराज-२११००४ [इंडिया]

Motilal Nehru National Institute of Technology Allahabad Prayagraj-211004 [India]

End Semester Examination 2023-24

Programme Name: B.Tech.

Course Code: CH14109

Semester: IV

Course Name: Process Dynamics and Control

Branch: Chemical

Student Reg. No.:

1	^	\sim	_			
11	()	()	1 (1			1
\cup	~/		- 	1 ()	- 1	1 (
	0	O.	0/		h	1

Duration: 150 min

Max. Marks: 40

Instructions:

1. Answer the questions sequentially; 2. Use of non-programmable scientific calculator is permitted.

Marks

Part A

Consider a liquid storage system given below and determine transfer function between Q 1 6 outlet flowrate (h) and inlet flowrate (q_i) . Make suitable assumptions, as necessary.

(CO1)

A process output y shows a time delay of θ min for the change in inout x such that; Q_2

6

$$y(t) = 0$$
 for $t < 0$ and

(CO2)

 $y(t) = x(t-\theta)$ for $0 \le t$

Determine the transfer function G(s) for the above case.

Derive position and velocity forms of the PID controller. Also, state their 2 merits as

compared to conventional PID controller.

(CO4)

6

6

In the distillation process given below, composition of the bottom product is being controlled by manipulating the steam (flowrate) to the reboiler using PID controller [CC]. The sensor/transducer is direct acting, while the control valve is air-to-open type.

(CO4)

Explain if the controller is direct-acting of reverse-action with suitable justification.

Part B (Solve any TWO)

The dynamic response of the stirred tank bioreactor can be represented as

$$\frac{C'(s)}{C'_{P}(s)} = \frac{8}{4s+2} \tag{CO3}$$

8

8

Where, C' is the exit substrate concentration (mol/L) and C'_F is feed substrate concentration (mol/L)

(a) Derive an expression for c'(t) if $C'_{\pm}(t)$ is a rectangular pulse as

$$C'_{F}(t) = \begin{cases} 0 & t < 0 \\ 2 & 0 \le t < 2 \\ 0 & 2 \le t < \infty \end{cases}$$

- (b) What is the maximum value of c'(t)?
- (c) When does the maximum value occur?
- (d) What is the final value of c'(t)?

Q 6 Consider a feedback control system that has the open-loop transfer function.

$$G(s) = \frac{4 \, Kc \, (1 + 0.25s)e^{-2s}}{(s+4)(2s+1)} \tag{CO.4}$$

Find out using Bode plot if the feedback control system is stable for controller gain of 10. Vary frequency from 0 to 20 to generate Bode plot. [Given: $e^{-2s} = \cos(2w) - j \sin(2w)$].

A heat transfer process has the following transfer function between a temperature T and an inlet flow rate q where the time constants have units of minutes:

$$T'(s)/Q'(s) = 3(1-s)/s(2s+1)$$
 (CO 4)

If the flow rate varies sinusoidally with an amplitude of 2 L min and a period of 0.5 min, what is the amplitude of the temperature signal after the transients have died out?

All the Best