LINEAR ALGEBRA

A Quick Guide

Huan Bui

Colby College Physics & Statistics Class of 2021

December 24, 2018

Preface

Greetings,

Contents

	Preface	1
1	Linear equations 1.1 Introduction to Linear Systems 1.2 Matrices, Vectors and Gauss-Jordan Elimination 1.3 On the Solutions of Linear Systems 1.4 Matrix Algebra	3 3 3 3
2	Linear transformation 2.1 Introduction to Linear Transformations and Their Inverses 2.1.1 Linear Transformations and Geometry 2.1.2 Matrix Products	4 4 4 4
3	Subspaces of \mathbb{R}^n and their dimensions3.1 Image and kernel of a Linear Transformation3.2 Subspaces of \mathbb{R}^m 3.3 Bases and Linear Independence3.4 The dimension of a Subspace of \mathbb{R}^m 3.5 Coordinates	5 5 5 5 5
4	Linear Spaces4.1 Introduction to Linear Spaces4.2 Linear Transformations and Isomorphism4.3 The matrix of a Linear Transformation	6 6 6
5	Determinant 5.1 Introduction to Determinants 5.2 Properties of the Determinant 5.3 Geometrical Interpretations of the Determinant	7 7 7 7
6 7	Eigenvalues and eigenvectors 6.1 Diagonalization	8 8 8 8 8 8

- 1 Linear equations
- 1.1 Introduction to Linear Systems
- 1.2 Matrices, Vectors and Gauss-Jordan Elimination
- 1.3 On the Solutions of Linear Systems
- 1.4 Matrix Algebra

2 Linear transformation

- 2.1 Introduction to Linear Transformations and Their Inverses
- 2.1.1 Linear Transformations and Geometry
- 2.1.2 Matrix Products
- 2.1.3 The Inverse of a Linear Transformation

- 3 Subspaces of \mathbb{R}^n and their dimensions
- 3.1 Image and kernel of a Linear Transformation
- 3.2 Subspaces of \mathbb{R}^m
- 3.3 Bases and Linear Independence
- 3.4 The dimension of a Subspace of \mathbb{R}^m
- 3.5 Coordinates

- 4 Linear Spaces
- 4.1 Introduction to Linear Spaces
- 4.2 Linear Transformations and Isomorphism
- 4.3 The matrix of a Linear Transformation

- 5 Determinant
- 5.1 Introduction to Determinants
- 5.2 Properties of the Determinant
- 5.3 Geometrical Interpretations of the Determinant

- 6 Eigenvalues and eigenvectors
- 6.1 Diagonalization
- 6.2 Finding the Eigenvalues of a Matrix
- 6.3 Finding the Eigenvectors of a Matrix
- 6.4 Complex Eigenvalues
- 6.5 Stability

7 Bits and Pieces