2

Roll: 001610501020.

1000 A company knows that the demand of one of its most important products 1,2,3,4 over the next 4 months. The company must plan the production of 10 units. If any production appears in a period, there is a setup cost of \$ 5700, In addition there is a production cost of \$ 5700k for each produced unit. If a unit is put in the inventory there is an inventory cost of \$71650k per unit. 5 units at most can be produced in a month and at most 4 units can be put in the inventory. How should the company plan their production to satisfy the demand and minimize production & inventory costs. There are no units in inventory at the beginning of month 1. Solve using up after for mulation.

Anuran Chahraborty
Scanned with CamScanner

 $f_m(x) = \min_{p} \left[c(p) + I_c(x+p-d_m) + f_{m+1}(x+p-D_m) \right]$ $f_m(x) = \min_{p} \left[c(p) + I_c(x+p-d_m) + f_{m+1}(x+p-D_m) \right]$ $p \leq 5, \quad x \leq 4, \quad x+p-d_m \leq 4.$ $x_{1}p_{1}, d_m > 0.$

Arman chakraborty

Scanned with CamScanner

Rell: 0016 10501020

Month 4	d_4	= 4,	1	. !	-4	Fa
	þ=0	b=1	b=2	5=3	28500	28500
ス=0			-	24450	7	24450
2=1				7495	Ç u	20400.
7=2			20400			16350.
7=3		16350		37.0	}	1023
7=4	1660					

month 4 is last
$$24p = d4 = 4$$
.

 $c(4) = 5 \neq 00 + 60 = 5 \neq 00 \times 4 = 28500$.

 $f(4) = 1c(p) + 1c(0+p-4) + 0$
 $f(4) = 28500$
 $f(4) = 28500$
 $f(4) = 20400$
 $f(4) = 20400$
 $f(4) = 2000$
 $f(4) = 2000$

Rou: 00/6/0501020

		100000				
month 4		xtp=	= 4	· La	st month.	
P=0	p=1	p=2	p=3	P=4	f4	
x=0				2850		
2=1			22800		22800	
~=2		17100			(7100)	
7=3	1140				11450	
x=4	<u>0</u>)			1 -1	0 4	
	Α.			7		

$$f_4(0) = c(4) = 28500$$

 $f_4(1) = c(3) = 22800$
 $f_4(2) = c(2) = 17100$
 $f_4(3) = c(3) = 11400$
 $f_4(4) = c(0) = 0$

(0) a- minimum

$$c(5) = 6 \times 5700$$

= 34200

mouth 3

	b=0	2=1	p=2	p=3	p=4	\$p=5	
72=0			1 4	51300	52950	546,00	51300
2=1			45600	47250	48900	50550	45600,
X=2		39900	41550	都里的	0 44850	1	1-4-
0	-0-0	25850	3750	0/3915	0/35100		28500.
7=3	28500	3180	334	50/3510	0.	-11	24450,
224	Jan	1	K				-Vel -

 $a > d_3 = 3$ $a + p - d \leq 4$, for next stage a + p > d.

Amuran chakraborty

f3(0)= min { h(0,p)} h(n,p) = c(p)+Je(a+p-d) + Je(D) f4(x+p-d) $h(0,3) = c(3) + 0 + f_4(6)$ = 22800+0+28500 = 51300. h(0,4) = c(4)+ Ic + f4(1) 2 52950. h(0,5) = c(5) + 2x Ic + f4(2) = 54600 n(112) = c(2) + 0 × I + f4(0) = 17100 + 0 + 28500 = 45600. h(1,3) = c(3) + Ic + fu(1) = 47250 h(114) = c(4) + 2Ic +fu(2) = 48900. h(115) = c(5) + 3Ic + f4(3) = 60550h(21) = c(1) + 0 Ic + f4(0) = 399 00. h(2,2) = c(2) + Ic+fu(1) = 41550, $h(2/3) = C(3) + 2I_C + f_4(2) = B180043200$ h(24) = c(4) + 3 Te + f(3) = 44850 h(2,5) = c(5) + 4Ie + f4(4) = 40800. h(310) = c(0) + OIc+f4(0) = 28500. 'n (311). = c(1) + Ic + fy(1) = 35850. $h(3/2) = c(2) + 2I_c + fu(2) = 37.500$ $h(3/3) = c(3) + 3 I_c + f_u(3) = 385039150$ h(314) = c(4) + 4Ic+ f4(4)= 35-100 h(410) = ((0) + @ Ic + fy(1) = 24450. h(411) = c(1) + 2Ic+ fy(2) = 31800 h(4,2) = c(2) + 3 Ic + fu(3) = 33450 Anwan Chakraborty

ROU: 001610501020

W(4,3) = & C(4) + 4Ic + f4(4)= 35100.

month 2

7=0	2760	ρ=2 68400. 64350 56250 50550	P=3 70050 66000 56250 53850	P=4 71700 61950 59550	p=5 67650 65250	52 67650. 61950. 51300 47250. 43200
1	4485	1 100				

$$d_2 = 2$$
 $a+p 7/2$ $a+p-2 \le 4$

$$h(0,2) = c(2) + 0. I_{c} + f_{3}(0) = 68400.$$
 $h(0,3) = c(3) + I_{c} + f_{3}(1) = 70050$
 $h(0,4) = c(4) + 2I_{c} + f_{3}(2) = 71700$
 $h(0,5) = c(5) + 3I_{c} + f_{3}(3) = 67650.$
 $h(1,1) = c(1) + 0. I_{c} + f_{3}(0) = 62700.$
 $h(1,2) = c(2) + I_{c} + f_{3}(1) = 64350$
 $h(1,3) = c(3) + 2I_{c} + f_{3}(2) = 66000$
 $h(1,3) = c(4) + 3I_{c} + f_{3}(2) = 66000$
 $h(1,3) = c(5) + 4I_{c} + f_{3}(4) = 65250$
 $h(2,0) = c(5) + 0. I_{c} + f_{3}(0) = 51300$
 $h(2,0) = c(1) + 0. I_{c} + f_{3}(1) = 58650$
 $h(2,2) = c(2) + 2I_{c} + f_{3}(2) = 60300$
 $h(2,2) = c(3) + 3I_{c} + f_{3}(2) = 60300$
 $h(2,3) = c(3) + 3I_{c} + f_{3}(3) = 56250$

Anwan Chakraborty
Scanned with CamScanner

$$h(2,4) = c(4) + 4 \times I_{c} + f_{3}(4)$$
 Roll: 001610501020
 $= 59550$
 $h(3,0) = e(0) + I_{c} + f_{3}(1) = 6947250$
 $h(311) = c(1) + 2I_{c} + f_{3}(2) = 54600$
 $h(3,2) = c(2) + 3I_{c} + f_{3}(3) = 50550$
 $h(3,3) = c(3) + 4I_{c} + f_{3}(4) = 53850$
 $h(4,0) = c(6) + 2I_{c} + f_{3}(2) = 43200$
 $h(4,0) = c(6) + 2I_{c} + f_{3}(3) = 44850$
 $h(4,1) = c(1) + 3I_{c} + f_{3}(4) = 48150$
 $h(4,12) = c(2) + 4I_{c} + f_{3}(4) = 48150$

Anwan Chakrabosty

De the town