

INF641. Introduction to the Verification of Neural Networks

Lecture 2. Abstraction-based verification II

Eric Goubault and Sylvie Putot

Remember last week: Reachability Analysis for Neural Networks

Need efficient and accurate abstraction and transformers for propagation in networks:

- Affine transformers
- Nonlinear activation functions
- ► Fixed-point computations/convergence for recurrent networks (skipped here)

1

Numerical abstract domains

We have seen:

► Intervals/Boxes/Hyperrectangles (synonymous)

Numerical abstract domains

We have seen:

- ► Intervals/Boxes/Hyperrectangles (synonymous)
- Zonotopes

Numerical abstract domains

We have seen:

- ► Intervals/Boxes/Hyperrectangles (synonymous)
- Zonotopes

Now let us see Convex Polyhedra.

Outline for today

- 1. Deterministic abstractions for neural network analysis
 - ► Boxes, Zonotopes, Polyhedra
 - A word on other abstractions (see also Lecture 3 for non-convex abstractions)
 - Finish Lab Session 1
- 2. Probabilistic verification
 - Sets of Probabilities: P-boxes and Dempster-Shafer structures
 - Arithmetic on P-boxes and Probabilistic Affine forms
 - Lab Session 2

Convex Polyhedra abstractions

The problem is similar to what we have already seen:

Example

Proving specifications such as

- ▶ Two inputs: $x_1 \in [-1, 1]$ and $x_2 \in [-1, 1]$, two outputs x_{11} and x_{12}
- ▶ Specification: $\forall x_1, x_2 \in [-1, 1]$, we always have $x_{11} \ge x_{12}$ (classification problem)

The Convex Polyhedra abstraction ([Cousot& Halbwachs 1979])

Abstraction by Polyhedra *P* for Program Analysis usually rely on a double description:

Constraint representation: an intersection of a finite number of closed half spaces of the form $a^Tx \le \beta$ and a finite number of subspaces of the form $d^Tx = \xi$, i.e.

$$P = \{x \in \mathbb{R}^n | Ax \le b \text{ and } Dx = e\}$$

Generator representation: a convex hull of a finite set of vertices v_i, a finite set of rays r_j and a finite set of lines z_k, i.e. x ∈ P iff:

$$x = \sum_{i=1}^{u} \lambda_i v_i + \sum_{j=1}^{v} \mu_i r_i + \sum_{i=1}^{w} \nu_i z_i$$

where $\lambda_i, \mu_i \geq 0$ and $\sum_{i=1}^u \lambda_i = 1$.

Chernikova's algorithm is used to convert between the above representations (but this has worst case exponential complexity!)

Example of the double description

In equations

- ▶ Left: $C = \{-x_1 \le -1, x_1 \le 4, -x_2 \le -2, x_2 \le 4\}$ or $G = \{V = \{(1, 2), (1, 4), (4, 2), (4, 4)\}, R = \emptyset, Z = \emptyset\}$
- ▶ Right: $C = \{-x_2 \le -2, x_2 \le 2x_1\}$ or $G = \{V = \{(1,2)\}, R = \{(1,2), (1,0)\}, Z = \emptyset\}$.

Abstract operators

Order-theoretic operations

- ▶ Join : $P \cup Q$ is the convex hull of P and Q (easy with the vertex representation)
- ▶ Meet: $P \cap Q$ is obtained using the constraint representation, by concatenating the constraints of P and Q
- Inclusion : $P \subseteq Q$ is implemented using LP (linear programming). For each constraint $\sum a_i x_i \le b$ in P, compute $\mu = max \sum a_i x_i$ subject to constraints of Q: if $\mu > b$ the inclusion does not hold

Arithmetic operations

- Linear assignments x = L: add a new variable x to P and the constraint x L = 0 (then use Chernikova for getting the vertex set representation)
- Non linear assignments : generally by linearization

7

The DeepPoly convex relaxation

Ref. An Abstract Domain for Certifying Neural Networks, G. SIngh, T. Gehr, M. Puschel, M. Vechev, in POPL 2019

- A restriction of Polyhedra to ensure scalability (bounds the number of constraints to 2*n* where *n* is the number of variables)
- Affine transforms are exact (and easy)
- Custom convex relaxations for activation functions
- Generally more accurate but more costly than Zonotopes

For each node (or variable) x_i :

- ▶ upper and lower bounds: $x_i \le u_i$ and $x_i \ge l_i$
- two polyhedral constraints $x_i \leq \sum_j u_{ij}x_j + u_{i0}$ and $x_i \geq \sum_j l_{ij}x_j + l_{i0}$ where the x_j only refer to "previous" variables in the network.

Abstract Transformers: ReLU activation

Convex transformer (triangle abstraction)

DeepPoly transformer 1

DeepPoly transformer 2

Upper constraint

$$y \le \lambda x + \mu$$
,

with $\lambda = \frac{u_X}{(u_X - l_X)}$ and $\mu = \frac{-l_X u_X}{(u_X - l_X)}$.

- ▶ Optimal (triangle) transformer contains two lower polyhedral constraints for *y*, which is not allowed by the restricted domain
- ► Choice between RELU transformers 1 or 2 depends on area (heuristic): both are smaller area-wise than the Zonotope transformer

Analysis by DeepPoly on the example: ReLU transformer

→ ŷ

DeenPoly transformer 1

Analysis by DeepPoly on the example: affine transformers

Precise bounds (useful for ReLU) by backsubstitution on the polyhedral constraints:

Check whether $\forall i_1, i_2 \in [-1, 1] \times [-1, 1], x_{11} \geq x_{12}$ (robustness of classification)?

 \triangleright bounds on x_{11} and x_{12} ?

Check whether $\forall i_1, i_2 \in [-1, 1] \times [-1, 1], x_{11} \geq x_{12}$ (robustness of classification)?

▶ bounds on x_{11} and x_{12} ? inconclusive: $x_{11} \ge 1 \land x_{12} \le 2 \implies x_{11} - x_{12} \ge -1$

- ▶ bounds on x_{11} and x_{12} ? inconclusive: $x_{11} \ge 1 \land x_{12} \le 2 \implies x_{11} x_{12} \ge -1$
- **b** backsubstitution on $x_{11} x_{12}$, possibly up to 1st layer:

- ▶ bounds on x_{11} and x_{12} ? inconclusive: $x_{11} \ge 1 \land x_{12} \le 2 \implies x_{11} x_{12} \ge -1$
- ▶ backsubstitution on $x_{11} x_{12}$, possibly up to 1st layer: $x_{11} x_{12} \ge x_9 + x_{10} + 1 x_{10} \ge l_9 + 1 = 1$. Proved

- ▶ bounds on x_{11} and x_{12} ? inconclusive: $x_{11} \ge 1 \land x_{12} \le 2 \implies x_{11} x_{12} \ge -1$
- **b** backsubstitution on $x_{11} x_{12}$, possibly up to 1st layer: $x_{11} x_{12} \ge x_9 + x_{10} + 1 x_{10} \ge l_9 + 1 = 1$. Proved
- ► What if inconclusive?

- ▶ bounds on x_{11} and x_{12} ? inconclusive: $x_{11} \ge 1 \land x_{12} \le 2 \implies x_{11} x_{12} \ge -1$
- **b** backsubstitution on $x_{11} x_{12}$, possibly up to 1st layer: $x_{11} x_{12} \ge x_9 + x_{10} + 1 x_{10} \ge l_9 + 1 = 1$. Proved
- ▶ What if inconclusive? Try prove the contrary: falsification

To go further: refining existing abstractions

- RefineZono: combined zonotope abstraction and MILP encoding: Boosting Robustness Certification of Neural Networks, ICLR 2019, G Singh, T Gehr, M Püschel, M Vechev
 - mixing abstraction and optimization (see next week for optimization based approaches)
- Star sets: Star-based reachability analysis of deep neural networks, Tran et al., FM 2019.
 - extension of Zonotopes, can be as expressive as Polyhedra
- ▶ k-Relu: how to abstract jointly multiple Relus Beyond the single neuron convex barrier for neural network certification, NeurIPS 2019, G Singh, R Ganvir, M Pschel, and M Vechev.

To go further: other abstractions

Non-convex abstractions

Polynomial Zonotopes Open- and Closed-Loop Neural Network Verification using Polynomial Zonotopes, N. Kochdumper, C. Schilling, M. Althoff, and S. Bak, 2022

- Max-plus (or Tropical) Polyhedra: Static analysis of ReLU neural networks with tropical polyhedra, E. Goubault, S. Palumby, S. Putot, L. Rustenholz and S. Sankaranarayanan, SAS 2021
 - does not rely on convexification of ReLU: ReLU is a tropical polyhedron (see next week)

Outline for today

- 1. Deterministic abstractions for neural network analysis
 - Boxes, Zonotopes, Polyhedra
 - A word on other abstractions (see also Lecture 3 for non-convex abstractions)
 - Finish Lab Session 1

2. Probabilistic verification

- Sets of Probabilities: P-boxes and Dempster-Shafer structures
- Arithmetic on P-boxes and Probabilistic Affine forms
- Lab Session 2

Reachability Analysis for Neural Network Verification

Robustness and input/output properties:

- ▶ Need to be proved for (possibly large) sets of network inputs
- Can be specified as preconditions/postconditions expressed in linear arithmetic

Qualitative verification: property proven true or unknown

Ouantitative Neural Network Verification

Motivation

- Provide additional information on property satisfaction compared to SAT/UNKNOWN Often need quantitative, probabilistic guarantees on safety, security, reliability, performance, resource usage, etc, for instance
 - transportation: probability of a failure in a time interval should be less than 0.00001
 - neural network robustness: requiring no adversarial examples may be too strict, want high probability that local perturbations result in same classification result
- Exploit knowledge of probabilistic information on inputs
 - can be probabilistic but imprecisely known, e.g.:
 - Gaussian variable $\mathcal{N}(\mu, \sigma^2)$ with uncertain mean $\mu \in [\mu, \overline{\mu}]$ and variance $\sigma^2 \in [\underline{\sigma^2}, \overline{\sigma^2}]$
 - Uniform variable $\mathcal{U}(a,b)$ with uncertain range (a and b uncertain)
 - lacktriangle example: noise due to sensor V+arepsilon with $V\in [a,b]$, arepsilon a random variable

Problem Statement: propagating imprecise probabilities

Problem (Probability bounds analysis)

Given a ReLU network f and a constrained probabilistic input set

$$\mathcal{X} = \{X \in \mathbb{R}^{h_0} \mid CX \leq d \land \underline{F}(x) \leq \mathbf{P}(X \leq x) \leq \overline{F}(x), \forall x\}$$

where \underline{F} and \overline{F} are two cumulative distribution functions, compute a constrained probabilistic output set \mathcal{Y} guaranteed to contain $\{f(X), X \in \mathcal{X}\}$.

For
$$X \in \mathbb{R}^n$$
, we note $\mathbf{P}(X \leq x) := \mathbf{P}(X_1 \leq x_1 \land X_2 \leq x_2 \ldots \land X_n \leq x_n)$

Problem (Quantitative property verification)

Given a ReLU network f, a constrained probabilistic input set $\mathcal X$ and a linear safety property $Hy \le w$, bound the probability of the network output vector y satisfying this property.

Toy illustrating example: 2-layers ReLU network

$$A_{1} = A_{2} = \begin{bmatrix} 1 & -1 \\ 1 & 1. \end{bmatrix}, b_{1} = b_{2} = \begin{bmatrix} 0.0 \\ 0.0 \end{bmatrix}.$$

$$x^{1} = \sigma(A_{1}x^{0} + b_{1}) = \sigma(x_{1}^{0} - x_{2}^{0}, x_{1}^{0} + x_{2}^{0})$$

$$x^{2} = A_{2}x^{1} + b_{2}$$

$$\begin{bmatrix} -2, 2 \\ 0.0 \end{bmatrix}$$

$$x^{0} = \begin{bmatrix} 1 & -1 \\ 0.0 \end{bmatrix}$$

$$x^{0} = \begin{bmatrix} -2, 2 \\ 0.0 \end{bmatrix}$$

Property:

- Qualitative: if $x^0 = \begin{bmatrix} x_1^0 & x_2^0 \end{bmatrix}^\top \in [-2, 2] \times [-1, 1]$, does output satisfy $x_1^2 \le -2 \land x_2^2 \ge 2$?
- **Ouantitative:**

 - ▶ $P(x_1^2 \le -2 \land x_2^2 \ge 2 \mid x_1^0 \in \mathcal{U}(-2,2) \land x_2^0 \in \mathcal{U}(-1,1))$? ▶ $P(x_1^2 \le -2 \land x_2^2 \ge 2 \mid x_1^0 \in \mathcal{N}(0, [0.5, 0.66]) \land x_2^0 \in \mathcal{N}([0,1], 0.33))$?

Outline

- ► Imprecise probabilities: P-boxes and Dempster-Shafer Interval Structures (DSI)
 - ► Representations of sets of probability distributions
 - Generalize both probabilistic and non deterministic (interval) computations
- ► ReLU neural network analysis by DSI
- ► Mitigating the wrapping effect of intervals using zonotopes
 - Probabilistic Zonotopes
 - Zonotopic Dempster-Shafer Structures (DSZ)
- ► Evaluation

Representation of imprecise probabilities: P-box

Definition (P-box for a real-valued random variable X)

Given two (lower and upper) CDF (Cumulative Distribution Functions) \underline{F} and \overline{F} from \mathbb{R} to \mathbb{R}^+ s.t. $\forall x \in \mathbb{R}, \underline{F}(x) \leq \overline{F}(x)$, the p-box $[\underline{F}, \overline{F}]$ represents the set of probability distributions for X s.t.

$$\forall x \in \mathbb{R}, \underline{F}(x) \leq \mathbf{P}(X \leq x) \leq \overline{F}(x).$$

- Ferson S, Kreinovich V, Ginzburg L, Myers D, Sentz K, Constructing probability boxes and Dempster-Shafer structures. Tech. Rep. SAND2002-4015, 2003
- Williamson and Downs, Probabilistic Arithmetic I: Numerical Methods for Calculating Convolutions and Dependency Bounds, Journal of Approximate Reasoning, 1990

P-box examples (Julia library ProbabilityBoundsAnalysis.jl)l

Sets of probability distributions on *X* (CDF form) such that $\forall x, F^-(x) \leq P(X \leq x) \leq F^+(x)$:

Generalize probabilistic and non deterministic (interval) information

Dempster-Shafer Interval structures (DSI)

A discrete version of P-boxes:

Focal elements $t \in T$ (sets of values, here Intervals) with probability $w : T \to \mathbb{R}^+$

$t \in T$	[-1,0.25]	[-0.5,0.5]	[0.25,1]	[0.5,1]	[0.5,2]	[1,2]
w(t)	0.1	0.2	0.3	0.1	0.1	0.2

▶ Represents the set of probability distributions *P* on *X* such that:

$$\begin{split} \forall x \in [-1, -0.5], \ P(X \le x) \le 0.1 \,, \\ \forall x \in [-0.5, 0.25], \ P(X \le x) \le 0.1 + 0.2 \,, \\ \forall x \in [0.25, 0.5], \ 0.1 \le P(X \le x) \le 0.1 + 0.2 + 0.3 \,, \\ \text{etc.} \end{split}$$

▶ They define Belief function *Bel* and Plausibility function *Pl* from $\wp(E)$ to \mathbb{R} :

$$Bel(S) = \sum_{t \in T, t \subseteq S} w(t) \le P(S) \le \sum_{t \in T, t \cap S \ne \emptyset} w(t) = Pl(S)$$

From P-boxes to Dempster-Shafer Interval structures

Given a P-box (F, \overline{F})

- ► Take lower and upper approximation by stair functions
- ► Deduce focal elements (intervals) and weights

From P-boxes to Dempster-Shafer Interval structures

Given a P-box $(\underline{F}, \overline{F})$

- ► Take lower and upper approximation by stair functions
- ▶ Deduce focal elements (intervals) and weights

Arithmetic on DSI structures

DSI structures can be propagated through arithmetic operations:

- 2 cases: independent inputs / unknown dependency
- relying on interval arithmetic / Frechet inequalities
- conservative approximations

Arithmetic on DS structures: $z = x \Box y$ ($\Box =+,-,\times,/$ etc.)

Independent variables x, y

- \triangleright x (resp. y) given by focal elements T^x (resp. T^y) and weights w^x (resp. w^y)
- $T^z = \{t^x \Box t^y \mid t^x \in T^x, t^y \in T^y\}$ and $w^z(t^x \Box t^y) = w^x(t^x)w^y(t^y)$ (and renormalize)

Example

- $T^x = \{[-1, 0], [0, 1]\}, w^x([-1, 0]) = w^x([0, 1]) = \frac{1}{2}$ (approximation of uniform distribution on [-1,1])
- $T^{y} = \{[-2,0],[0,2]\}, w^{y}([-2,0]) = w^{y}([0,2]) = \frac{1}{2}$

x; y	$[-2,0],\frac{1}{2}$	$[0,2],\frac{1}{2}$
$[-1,0],\frac{1}{2}$	$[-3,0],\frac{1}{4}$	$[-1,2],\frac{1}{4}$
$[0,1],\frac{1}{2}$	$[-2,1],\frac{1}{4}$	$[0,3],\frac{1}{4}$

Arithmetic on DSS for unknown dependencies (here $\square = +$)

- ▶ DS for x (similarly for y) given on $T^x = \{[a_i^x, b_i^x] \mid i = 1, ..., n\}$ by $w^x([a_i^x, b_i^x]) = w_i^x$
- ▶ Compute P-boxes for z = x + y by LP using Frechet inequalities

Compute the stair functions given by values at $a_k^x + a_l^y$, $b_k^x + b_l^y$:

$$\overline{F}_{z}(a_{k}^{x}+a_{l}^{y})=\min\left(\inf_{a_{l}^{x}+a_{j}^{y}=a_{k}^{x}+a_{l}^{y}}\sum_{i'\leq i}w_{i'}^{x}+\sum_{j'\leq j}w_{j'}^{y},1\right)$$

$$\underline{F}_{z}(b_{k}^{x} + b_{l}^{y}) = \max \left(\sup_{b_{i}^{x} + b_{j}^{y} = b_{k}^{x} + b_{l}^{y}} \sum_{i' \leq i} w_{i'}^{x} + \sum_{j' \leq j} w_{j'}^{y} - 1, 0 \right)$$

ReLU

Lemma (ReLU of a DSI)

Given X represented by the DSI $\{\langle \mathbf{x_i}, w_i \rangle, i \in [1, n]\}$, then the CDF of $Y = \sigma(X) = \max(0, X)$ is included in the DSI $\{\langle \mathbf{y_i}, w_i \rangle, i \in [1, n]\}$ with $y_i = [\max(0, \underline{x_i}), \max(0, \overline{x_i})]$.

ReLU neural network analysis by DSI

Input: d^0 a h_0 -dimensional vector of DSI

- 1: **for** k = 0 to L 1 **do**
- 2: **for** l = 1 to h_{k+1} **do**
- 3: $d_l^{k+1} \leftarrow \sigma(\sum_{j=1}^{h_k} a_{ij}^k d_j^k + b_l^k)$ \triangleright Affine transform and ReLU Dependency graph useful for choosing the right DSI operations (indep. or unknown dep.) in affine transforms
- 4: end for
- 5: end for
- 6: return $(d^L, cdf(Hd^L, w))$ \triangleright Vector of DSI for the output layer and probability bounds for property $Hz \le w$

Input
$$x^0 = \begin{bmatrix} x_1^0 & x_2^0 \end{bmatrix}^{\top} \in [-2, 2] \times [-1, 1]$$
 with Uniform law on inputs

Input
$$x^0 = \begin{bmatrix} x_1^0 & x_2^0 \end{bmatrix}^{\top} \in [-2, 2] \times [-1, 1]$$
 with Uniform law on inputs

Finer discretization refines the approximation but the ranges are unchanged

Input
$$x^0 = \begin{bmatrix} x_1^0 & x_2^0 \end{bmatrix}^{\top} \in [-2, 2] \times [-1, 1]$$
 with Normal law on inputs

Unknown dependency on inputs vs independent inputs

$$P(z_1 \le -2) \in [0, 0.05]$$

$$P(z_2 \ge 2) \in [0, 0.59]$$

$$P(z_1 \le -2) \in [0, 0.01]$$

 $P(z_2 \ge 2) \in [0, 0.2]$

Wrapping effect: example of the first affine layer

Initial domain:

$$-2 \le x_1 \le 2$$
$$-1 \le x_2 \le 1$$

Exact domain:

$$x_3 = x_1 - x_2$$

 $x_4 = x_1 + x_2$
 $x_1, x_2 \in [-1, 1]$

Using Intervals/Boxes:

$$-3 \le x_3 \le 3$$

 $-3 \le x_4 \le 3$

$$x_1, x_2 \in [-1, 1]$$

The optimal affine transformers for boxes are not exact. Zonotope transformers are!

Zonotopes and neural network reachability analysis

Definition (Zonotope)

An n-dimensional zonotope $\mathcal Z$ with center $c\in \mathbb R^n$ and a vector $\Gamma=\left[g_1\dots g_p\right]\in \mathbb R^{n,p}$ of p generators $g_j\in \mathbb R^n$ for $j=1,\dots,p$ is defined as $\mathcal Z=\langle c,\Gamma\rangle=\{c+\Gamma\varepsilon\mid \|\varepsilon\|_\infty\le 1\}.$

Zonotopes are closed under affine transformations: for $A \in \mathbb{R}^{m,n}$ and $b \in \mathbb{R}^m$ we define $A\mathcal{Z} + b = \langle Ac + b, A\Gamma \rangle$ as the m-dimensional resulting zonotope.

RELU transformer: conservative approximation

Two solutions for zonotopic probabilistic NN analysis

Main idea: encode as much deterministic dependencies as possible by affine forms, and avoid/delay Dempster-Shafer arithmetic whenever possible

Probabilistic zonotopes (or probabilistic affine forms)

- Zonotopic network analysis starting from the support of input distribution
- Probabilistic interpretation: noise symbols are DSI instead of intervals

Dempster-Shafer Zonotopic structures (DSZ)

- Dempster-Shafer structures with zonotopic focal elements
- A refinement of probabilistic zonotopes, which fully exploits the DSI input discretization in the NN analysis
- Restricted to independent inputs

NN analysis by DSZ (independent inputs)

7: $d_{\mathcal{Z}}^{L} = \{\langle \mathcal{Z}_{i_1...i_{h_0}}^{L}, w_{1,i_1}^{0} \dots w_{h_0,i_{h_0}}^{0} \rangle, (i_1,\dots,i_{h_0}) \in [1,n]^{h_0} \}$

Input: d^0 a h_0 -dimensional vector of DSI

8: $d^L \leftarrow \text{dsz-to-dsi}(d^L_{\mathcal{Z}})$

focal elements

```
1: d_{\mathcal{Z}}^0 = \left\{ \langle \mathcal{Z}_{i_1 \dots i_{h_0}}^0, w_{1,i_1}^0 \dots w_{h_0,i_{h_0}}^0 \rangle, (i_1, \dots, i_{h_0}) \in [1, n]^{h_0} \right\} \leftarrow \text{dsi-to-dsz}(d^0)

2: \text{for } k = 0 \text{ to } L - 1 \text{ do}

3: \text{for } (i_1, i_2, \dots, i_{h_0}) \in [1, n]^{h_0} \text{ do}

4: \mathcal{Z}_{i_1 \dots i_{h_0}}^{k+1} \leftarrow \sigma(A^k \mathcal{Z}_{i_1 \dots i_{h_0}}^k + b^k) \triangleright Independent zonotopic analyzes (can be done in parallel)

5: end for

6: end for
```

9: **return** $(d^L, cdf((Hd^L_{\mathcal{Z}}, w)))$ > Property bounds computed by direct evaluation of the CDF on the zonotopic

Comparing DSI, Prob. Zonotopes and DSZ: toy example

Table 1: Probability bounds for the toy example, independent inputs.

Law DSI (#FE) $P(x_1^2 \le -2)$	$P(x_2^2 \ge 2)$	time	Prob. Zono. $P(x_1^2 \le -2)$		time	$ DSZ \\ \mathbf{P}(x_1^2 \le -2) $	$P(x_2^2 \ge 2)$	time
	[0, 0.7] [0.05, 0.52]	0.022	[0, 0.3] [0, 0.26]	[0, 1] [0, 0.8] [0, 0.76] [0, 0.751]		[0, 0.25] [0, 0.03] [0, 0.0014] [0, 3.e ⁻⁶]	[0, 0.5] [0.2, 0.3] [0.25, 0.26] [0.25, 0.251]	$< e^{-3} < e^{-3} < 0.026$
N(10) [0, 0.017] $N(10^2)$ [0, 0.004] $N(10^3)$ [0, 0.004]	[0, 0.186]		[0, 0.07]	[0, 0.94]		$[0, 4.e^{-4}]$		0.026

► For independent inputs, DSZ always more precise.

ACAS Xu: collision avoidance systems for civil aircrafts (FAA)

- Bounded (vector) inputs in [lb,ub], components follow independent Gaussian distributions with $\mu = (ub + lb)/2$ and $\sigma = (ub m)/3$
- ▶ Properties: $P_2: y_1 > y_2 \land y_1 > y_3 \land y_1 > y_4 \land y_1 > y_5$ $P_3/P_4: y_1 < y_2 \land y_1 < y_3 \land y_1 < y_4 \land y_1 < y_5$
- Manual) Input discretization: [5, 80, 50, 6, 5] for P₂, [5, 20, 1, 6, 5] for P₃ and P₄

Prop	Net	DSZ	
		P	time
2	1-6	[0, 0.01999]	46.4
2	2-2	[0.00423 0.0809]	47.9
2	2-9	[0, 0.0774684]	51.0
2	3-1	[0.0165, 0.08787]	43.8
2	3-6	[0.0167, 0.1111]	52.4
2	3-7	[6e-05, 0.1361]	43.7
2	4-1	[1e-05, 0.05353]	40.9
2	4-7	[0.0129, 0.1056]	44.4
2	5-3	[0, 0.03939]	40.0
3	1-7	[1, 1]	0.25
4	1-9	[1, 1]	0.2