Escuela técnica superior

FACULTAD DE INGENIERÍA INFORMÁTICA

Práctica 3

TURING MACHINE, RECURSIVE FUNCTIONS AND WHILE LANGUAGE

Ignacio Fernández Contreras $2^{\underline{0}}$ Informática D

Contents

1 Activities			
	1.1	Definir la solución TM del ejercicio 3.4 de la lista de problemas y comprobar su correcto	
		comportamiento	3
	1.2	Definir una función recursiva para la suma de tres valores	4
	1.3	Implementar un programa While que compute la suma de tres valores. Debes usar una	
		variable auxiliar que almacene el resultado de la suma	5

1 Activities

1.1 Definir la solución TM del ejercicio 3.4 de la lista de problemas y comprobar su correcto comportamiento

Prove that the function $add(x,y) = x+y, with x, y \in N$ is Turing-computable using the unary notation $\{|\}$. You have to create a TM with two arguments separated by a blank symbol that stars and ends behind the stings.

$\lceil 0$	*	l	$1 \rceil$
0			0
1	*		2
1		l	1
2	*	l	3
2		r	$2 \mid$
3	*	l	$4 \mid$
3		*	3
4	*	h	$4 \mid$
4		*	4

1.2 Definir una función recursiva para la suma de tres valores

$$\begin{array}{l} {\rm evalrec function ('addition', \, 5, \, 2)} \\ &< \pi_1^1 | \sigma(\pi_3^3 > (5, 2) \\ &< \pi_1^1 | \sigma(\pi_3^3 > (5, 1) \\ &< \pi_1^1 | \sigma(\pi_3^3 > (5, 0) \\ & \pi_1^1(5) = 5 \\ & \sigma(\pi_3^3)(5, 0, 5) \\ & \pi_3^3(5, 0, 5) = 5 \\ & \sigma(5) = 6 \\ & \sigma(\pi_3^3(5, 1, 6) \\ & \pi_3^3(5, 1, 6) = 6 \\ & \sigma(5) = 6 \\ & ans = 7 \end{array}$$

$$\begin{array}{l} {\rm evalrec function ('addition', \, 7,3)} \\ &< \pi_1^1 | \sigma(\pi_3^3 > (7,3) \\ &< \pi_1^1 | \sigma(\pi_3^3 > (7,2) \\ &< \pi_1^1 | \sigma(\pi_3^3 > (7,1) \\ &< \pi_1^1 | \sigma(\pi_3^3 > (7,0) \\ &\qquad \pi_1^1(7) = 7 \\ &\qquad \sigma(\pi_3^3)(7,0,7) \\ &\qquad \pi_3^3(7,0,7) = 7 \\ &\qquad \sigma(7) = 8 \\ &\qquad \sigma(\pi_3^3(7,1,8) \\ &\qquad \pi_3^3(7,1,8) = 8 \\ &\qquad \sigma(8) = 9 \\ &\qquad \sigma(\pi_3^3(7,2,9) \\ &\qquad \pi_3^3(7,2,9) = 9 \\ &\qquad \sigma(9) = 10 \\ &\qquad ans = 10 \end{array}$$

1.3 Implementar un programa While que compute la suma de tres valores. Debes usar una variable auxiliar que almacene el resultado de la suma

$$Q: (3, 3, s)$$
s:
while $X1 \stackrel{!}{!}= 0$ do
$$X1 := X1 - 1;$$

$$X2 := X2 + 1$$
od;
while $X2 \stackrel{!}{!}= 0$ do
$$X2 := X2 - 1;$$

$$X3 := X3 + 1$$
od;
$$X1 := X3$$