Mathematik für Informatiker I ohne die meisten Beweise und Beispiele

Andre Johnson

21. Februar 2018

Inhaltsverzeichnis

1	\mathbf{Ma}	Mathematische Grundlagen									
	1.1	Aussagen	5								
		1.1.1 Logische Verknüpfungen (Junktoren)	5								
	1.2	Mengen	7								
		1.2.1 Beschreibung von Mengen	7								
	1.3										
	1.4	Mengenoperationen	9								
2	Rel	Relationen & Funktionen									
	2.1	Grundbegriffe zu Relationen	13								
	2.2	Abbildungen und Funktionen	14								
	2.3	Äquivalenzrelationen	17								
	2.4	Ordnungsrelation	19								
3	Zahlenbereiche 21										
	3.1	Natürliche Zahlen: Definition	21								
		3.1.1 Notation: Produkt- und Summenschreibweise	21								
	3.2	Vollständige Induktion	22								
	3.3	Rekursive Abbildungen	23								
	3.4	Ganze, rationale und reelle Zahlen	24								
	3.5		25								

4	Folg	Folgen und Grenzwerte 2											
	4.1	I.1 Konvergenz											
	4.2	Monotone Folgen											
	4.3	Uneigentliche Konvergenz											
	4.4	Landau-Symbole											
5	Der Ring $\mathbb Z$ 33												
	5.1	Gruppen											
	5.2	Ringe und Körper											
	5.3	Division mit Rest											
	5.4	Euklidischer Algorithmus											
	5.5	Primfaktorzerlegung (PFZ)											
	5.6	Rechnen modulo n											
		5.6.1 Addition & Multiplikation modulo n 4											
		5.6.2 Einheiten und Inverse 4											
6	Gruppentheorie 5												
	6.1	Untergruppen											
	6.2	Gruppenordnungen & Satz von Lagrange											
	6.3	Zyklische Gruppen											
7	Lineare Algebra 5												
	7.1	Vektorräume											
	7.2	Unterräume											
	7.3	Erzeugendensysteme											
	7.4	Lineare Unabhängigkeit 6											
	7.5	Basis und Dimension											
8	Lineare Algebra II: Lineare Abbildungen												
	8.1	Grundlagen und Isomorphismen											
	8.2	Kern und Bild, Dimensionsformel 6											
	8.3	Matrizen											
\mathbf{A}	Bew	veise 78											
	A.1	zu Kapitel 8 Lineare Algebra II: Lineare Abbildungen											

Kapitel 1

Mathematische Grundlagen

1.1 Aussagen

1.1.1 Logische Verknüpfungen (Junktoren)

Definition 1.1

Seine im Folgenden A und B Aussagen

(i) Die Negation von A ist die Aussage "nicht A". Wir verwenden die Schreibweise

$$\neg A$$
 (1.1)

Wenn A wahr ist, dann ist $\neg A$ falsch. Wenn A falsch ist, dann ist $\neg A$ wahr.

(ii) Die Verbindung von A und B durch "und" heißt Konjunktion. Wir schreiben

$$A \wedge B$$
 (1.2)

 $A \wedge B$ ist wahr, wenn A und B wahr sind, sonst falsch.

(iii) Die Verkettung von A und B durch "oder" heißt Disjunktion wir schreiben

$$A \vee B \tag{1.3}$$

 $A \vee B$ ist falsch, wenn A und B beide falsch sind.

(iv) Die Verkettung von A und B zu "wenn A, dann B" heißt logische Folgerung oder Implikation. Wir schreiben

$$A \Rightarrow B$$
 (1.4)

A heißt Voraussetzung, B Behauptung der Implikation. Die Implikation ist wahr, wenn A falsch ist oder B wahr ist, andernfalls ist die falsch.

(v) Die Verkettung von A und B zu "genau dann A, wenn B" heißt $\ddot{A}quivalenz$. Wir schreiben

$$A \Leftrightarrow B$$
 (1.5)

Die Äquivalenz ist wahr, wenn A und B den selben Wahrheitswert haben.

Wahrheitstafel

A	B	$\neg A$	$\neg B$	$A \wedge B$	$A \vee B$	$A \Rightarrow b$	$A \Leftrightarrow B$
W	W	f	f	W	W	W	W
w	f	f	\mathbf{w}	f	W	f	f
\mathbf{f}	W	w	f	\mathbf{f}	W	W	f
\mathbf{f}	\mathbf{f}	w	W	\mathbf{f}	\mathbf{f}	f w w	W

Definition 1.2

Ein logischer Ausdruck, der für beliebige Wahrheitswerte der enthaltenen Aussagen immer wahr ist, heißt *Tautologie*.

Satz 1.3

A und B seien Aussagen.

Dann sind folgende Aussagen Tautologien:

a) De Mogan'sche Regeln:

$$\neg (A \lor B) \Leftrightarrow (\neg A \land \neg B) \tag{1.6}$$

$$\neg (A \land B) \Leftrightarrow (\neg A \lor \neg B) \tag{1.7}$$

1.2. MENGEN 7

$$(A \Rightarrow B) \Leftrightarrow (\neg B \Rightarrow \neg A) \tag{1.8}$$

1.2 Mengen

Schreibeweise:

 $x \in M$ steht für die Aussage "xist ein Element der MengeM "

Definition 1.4: Standardbezeichnungen

$$\mathbb{N} = \{1, 2, 3, 4, \ldots\} \text{ natürliche Zahlen}$$

$$\tag{1.9}$$

$$\mathbb{N}_0 = \{0, 1, 2, 3, \ldots\} \text{ natürliche Zahlen mit Null}$$
 (1.10)

$$\mathbb{Z} = \{..., -2, -1, 0, 1, 2, ...\} \ ganze \ Zahlen \eqno(1.11)$$

$$\mathbb{Q} = \left\{ \frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N} \right\} \text{ rationale Zahlen}$$
 (1.12)

$$\mathbb{R}$$
 reele Zahlen (1.13)

leere
$$Menge$$
 (1.14)

1.2.1 Beschreibung von Mengen

Beschreibung von Mengen

• Durch Aufzählen der Elemente Bsp.:

$$M = \{1, 2, 3\} \tag{1.15}$$

$$G = \{2, 4, 6, 8, \dots\} \tag{1.16}$$

• in beschreibender Form Bsp.:

$$G = \{x : x \in \mathbb{N} \text{ und } x \text{ ist gerade}\}$$
 (1.17)

$$= \{ x \in \mathbb{N} : x \text{ ist gerade} \} \tag{1.18}$$

Allgemeine Form:

$$M = \{x : A(x)\} A \text{ Aussage}$$
 (1.19)

• in abgekürzter beschreibender Form Bsp.:

$$G = \{2m : m \in \mathbb{N}\}\tag{1.20}$$

1.3 Existenz- und Allquantoren

Definition 1.5

Sei M eine nicht-leere Menge, und für jedes $x \in M$ sei A(x) eine Aussage.

(i) Die Aussage "Für Alle $x \in M$ gilt A(x)." bezeichnen wir mit

$$\forall \ x \in M : A(x) \ (\forall \ Allquantor) \tag{1.21}$$

(ii) Die Aussage "Es gibt ein $x \in M$, für das A(x) gilt" bezeichnen wir mit

$$\exists \ x \in M : A(x) \ (\exists \ \textit{Existenz quantor}) \tag{1.22}$$

(iii) Die Aussage "Es gibt genau ein $x \in M$, für das A(x) gilt" bezeichnen wir mit

$$\exists ! \ x \in M : A(x) \tag{1.23}$$

Lemma 1.6

Sei M eine nicht leere Menge und für jedes $x \in M$ sei A(x) eine Aussage. Dann gilt:

$$\neg \left(\forall \ x \in M : A(x) \right) \Leftrightarrow \left(\exists \ x \in M : A(x) \right) \tag{1.24}$$

1.4 Mengenoperationen

Definition 1.7

Seien X und Y Mengen

• X heißt Teilmenge von Y, falls gilt

$$\forall \ x \in X : x \in Y \tag{1.25}$$

Wir schreiben dann:

$$X \subseteq Y \tag{1.26}$$

(Inklusion von X in Y)

• Wenn X keine Teilmenge von Y ist, schreiben wir

$$X \not\subseteq Y$$
 (1.27)

• X heißt Teilmenge von Y und $X \neq Y$: Wir schreiben dann

$$X \subset Y \text{ oder } X \subseteq Y$$
 (1.28)

$$(\forall \ x \in X : x \in Y) \land (\exists \ y \in Y \notin X) \tag{1.29}$$

• Durchschnitt

$$X \cap Y := \{z : z \in X \land z \in Y\} \tag{1.30}$$

• Vereinigung

$$X \cup Y := \{z: z \in X \vee z \in Y\} \tag{1.31}$$

 $\bullet \quad Differenzmenge$

$$X \setminus Y := \{z : z \in X \wedge z \not\in Y\} \tag{1.32}$$

- Falls $Y \subseteq X$, dann heißt $X \setminus Y$ das Komplement von Y in X
- Wenn $X \cap Y = \emptyset$, dann heißen X und Y disjunkt

Satz 1.8

Sei M eine Menge und X, Y, Z Teilmengen von M. Dann gelten

a)

$$M \cap \emptyset = \emptyset \tag{1.33}$$

$$X \cup M = M \tag{1.34}$$

$$X \cup \emptyset = X \tag{1.35}$$

$$X \cap M = M \tag{1.36}$$

b) Idempotenz

$$X \cup X = X \tag{1.37}$$

$$X \cap X = X \tag{1.38}$$

c) Kommutativität

$$X \cap Y = Y \cap X \tag{1.39}$$

$$x \cup Y = Y \cup X \tag{1.40}$$

d) Assoziativität

$$(X \cup Y) \cap Z = X \cap (Y \cup Z) \tag{1.41}$$

$$(X \cap Y) \cup Z = X \cup (Y \cap Z) \tag{1.42}$$

e)

$$X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z) \tag{1.43}$$

$$X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z) \tag{1.44}$$

f)

$$M \setminus (X \cap Y) = (M \setminus X) \cup (M \setminus Y) \tag{1.45}$$

$$M \setminus (X \cup Y) = (M \setminus X) \cap (M \setminus Y) \tag{1.46}$$

Um zu beweisen, dass zwei Mengen A und Bgleich sind, zeigt man oft $A\subseteq B$ und $B\subseteq A$

Definition 1.9

Seien X, Y Mengen.

Das kartesische Produkt von X und Y ist

$$X \times Y = \{(x, y) : x \in X \land y \in Y\} \tag{1.47}$$

 $(x,y) \in X \times Y$ heißt geordnetes Paar.

Allgemein definiert man für Mengen $X_1, X_2, ..., X_n$

$$X_1 \times X_2 \times ... \times X_n := \{(x_1, x_2, ..., x_n) : x_i \in X_i \text{ für alle } i \in [1, n]\}$$
 (1.48)

 $(x_1,...,x_n) \in X_1 \times ... \times X_n$ heißt geordnetes n-Tupel

Kapitel 2

Relationen & Funktionen

2.1 Grundbegriffe zu Relationen

Definition 2.1

Seien A, B Mengen, $G \subseteq A \times B$

Dann bezeichnet man das Tripel (A, B, G) als zweistellige/binäre Relation zwischen A und B. G heißt Graph der Relation.

Wenn $(a, b) \in G$, dann sagen wir, dass a und b in Relation zueinander stehen, oder reliert sind. Wir schreiben dann

$$a \sim b$$
 (2.1)

Falls A = B, heißt (A, A, G) Relation auf A

Bemerkung: Manchmal wird \sim oder G als Relation bezeichnet.

Definition 2.2

Sei A eine Menge, (A, A, G) Relation auf A. Die Relation heißt

- reflexiv, falls $a \sim a$ für jedes $a \in A$
- symmetrisch, falls aus $a \sim b$ stets folgt, dass $b \sim a$

- antisymmetrisch, falls aus $a \sim b$ und $b \sim a$ stets folgt, dass, $a = b^1$
- transitiv, falls aus aus $a \sim b$ und $b \sim c$ stets folgt, dass, $a \sim c$

Definition 2.3

Sei (A, B, G) eine Relation. Setze

$$G^{-1} := \{ (b, a) \in B \times A : (a, b) \in G \}$$
 (2.2)

 (B,A,G^{-1}) heißt die zu (A,B,G) inverse Funktion. Falls $(b,a)\in G^{-1},$ schreiben wir

$$b \stackrel{-1}{\sim} a \tag{2.3}$$

2.2 Abbildungen und Funktionen

Definition 2.4

Seien X, Y Mengen

Eine Abbildung (Funktion von X nach Y) ist gegeben durch eine Vorschrift f, die jedem Element $x \in X$ genau ein Element $y \in Y$ zuordnet. Man schreibt

$$y = f(x) \tag{2.4}$$

Für die gesamte Abbildung schreibt man

$$f: X \to Y \tag{2.5}$$

Für $x \in X$ schreiben wir

$$x \mapsto f(x) \tag{2.6}$$

X heißt der Definitionsbereich von f

Y heißt der Ziel-/Wertebereich von f

Bemerkung: Die Zuordnung f definiert eine Relation (X, Y, G) durch

$$(x,y) \in G :\Leftrightarrow y = f(x)$$
 (2.7)

¹antisymetrisch $\Leftrightarrow \forall (a,b) \in A \times B : ((a,b) \in G \land (b,a) \in G \Rightarrow a = b)$

Abbildung 2.1: Komposition

Definition 2.5

Sei $f: X \to Y$ Abbildung

• Für $Z \subseteq X$ definieren wir

$$f(Z) := \{ y \in Y : \exists x \in Z : f(x) = y \}$$
 (2.8)

$$= \{ f(x) : x \in Z \} \tag{2.9}$$

f(Z) heißt das Bild von Z unter ff(X) heißt das Bild von f

- Für $M \subseteq Y$ definieren wir

$$f^{-1}(M) := \{ x \in X : f(x) \in M \}$$
 (2.10)

 f^{-1} heißt das $Urbild\ von\ M\ unter\ f$

Definition 2.6

Seien $f:X\to Y$ und $g:Y'\to Z$, wobei $Y\subseteq Y'$ Die Komposition/Verkettung/Hintereinanderausführung

$$g \circ f: X \to Z$$
 (2.11)

ist definiert durch

$$(g \circ f)(x) = g(f(x))$$
 für alle $x \in X$ (2.12)

Lemma 2.7

Die Komposition von Abbildungen ist assoziativ, d. h. wenn $f: X \to Y, g: Y' \to Z$ und $h: Z' \to W$ Abbildungen sind mit $Y \subseteq Y'$ und $Z \subseteq Z'$, dann gilt

$$h \circ (g \circ f) = (h \circ g) \circ f = h \circ g \circ f \tag{2.13}$$

Definition 2.8

Eine Abbildung $f: X \to Y$ heißt

• injektiv: falls für alle $a, b \in X$ gilt

$$a \neq b \Rightarrow f(a) \neq f(b)$$
 (2.14)

• surjektiv: falls

$$f(X) = Y \tag{2.15}$$

• bijektiv: wenn f surjektiv und injektiv ist

Lemma 2.9

Seien X, Y, Z Mengen, $f: X \to Y, g: Y \to Z$

- 1) Wenn f und g surjektiv sind, dann ist auch $g \circ f$ surjektiv.
- 2) Wenn f und g injektiv sind, dann ist auch $g \circ f$ injektiv.
- 3) Wenn f und g bijektiv sind, dann ist auch $g \circ f$ bijektiv.

Definition 2.10

Sei M eine Menge. Die Abbildung

$$id_X: X \to X$$
 (2.16)

$$id_X(x): x \mapsto x \text{ für alle } x \in X$$
 (2.17)

heißt identische Abbildung.

Satz 2.11

Sei $f: X \to Y$ eine Abbildung. Die folgenden Aussagen sind äquivalent:

$$(A) f \text{ ist bijektiv}$$
 (2.18)

(B) Es gibt eine Abbildung $g: Y \to X$, so dass $g = f = \mathrm{id}_X$ und $f = g = \mathrm{id}_Y$ (2.19)

Beweis: siehe??, S.??

2.3 Äquivalenzrelationen

Definition 2.12

Sei M eine nicht-leere Menge.

Eine Relation auf M heißt \ddot{A} quivalenz relation, wenn sie reflexiv², symmetrisch³ und transitiv⁴ ist. Für $x \in M$ nennt man

$$[x]_{\sim} := [x] := \{ y \in M : x \sim y \} \tag{2.20}$$

die $\ddot{A}quivalenzklasse$ von x.

Die Menge aller Äquivalenzklassen bezeichnet man mit M/\sim

Definition 2.13

Sei M eine nicht-leere Menge, I eine Indexmenge.

Eine Partition von M ist eine Menge

$$\{A_i: A_i \subseteq M, i \in I\} \tag{2.21}$$

von Teilmengen von M, so dass

(i)

$$A_i \neq \emptyset$$
 für alle $i \in I$ (2.22)

²reflexiv: $\forall a \in A : a \sim a$, d. h. $(a, a) \in G$

³symmetrisch: $\forall a \in A : \forall b \in A : a \sim b \Rightarrow b \sim a$

⁴transitiv: $\forall a \in A : \forall b \in A : \forall c \in A : (a \sim b \land b \sim c) \Rightarrow a \sim c$

(ii) für $i, j \in I$ mit $i \neq j$,

$$A_i \cap A_j = \emptyset \tag{2.23}$$

(iii) ⁵

$$\bigcup_{i \in I} A_i = M \tag{2.24}$$

Satz 2.14

Sei M eine nichtleere Menge

- a) Für jede Äquivalenzklasse auf M ist M/\sim eine Partition von M
- b) Ist $\{A_i \subseteq M : i \in I\}$ eine Partition von M, dann ist

$$x \sim y :\Leftrightarrow \text{ Es gibt ein } i \in I \text{ so dass } x, y \in A_i$$
 (2.25)

eine Äquivalenzrelation auf M. Es gilt

$$M/\sim = \{A_i : i \in I\} \tag{2.26}$$

Definition 2.15

Zwei Mengen X,Y heißen gleichmächtig, wenn es eine bijektive Abbildung $f:X\to Y$ gibt.

Eine Menge M heißt endlich, wenn sie gleichmächtig ist zu einer Menge der Form $\{1, 2, 3, ..., n\}$ für $n \in \mathbb{N}$. $n \in N$ heißt Mächtigkeit von M. Wir schreiben

$$|M| = n \tag{2.27}$$

Ist M nicht endlich, so schreibt man

$$|M| = \infty \tag{2.28}$$

⁵Vereinigung aller Mengen A_i mit $i \in I$

2.4 Ordnungsrelation

Definition 2.16

- a) Eine Halbordnung auf eine Menge M ist eine reflexive, antisymmetrische⁶ und transitive Relation auf M.
- b) Eine $totale/bin\"are\ Ordnung\ auf\ M$ ist eine Halbordnung auf M, so dass für alle $x,y\in M$ gilt $x\sim y$ oder $y\sim x$

Notation: Für Halbordnungen schreiben wir für $x \sim y$ gerne

$$x \preccurlyeq y \tag{2.29}$$

Bemerkung: Halbordnungen können durch *Hasse-Diagramme* dargestellt werden. Man verbindet a und b durch eine Kante, wenn $a \leq b$ und es kein drittes Element c $(c \neq a, c \neq b)$ gibt, so dass $a \leq c \leq b$. Im Hasse-Diagramm steht b über a. Bsp.: $\{1, 2, 3\}$ mit \leq Relation:

Definition 2.17

Sei A eine halbgeordnete Menge, $T \subseteq A$ Teilmenge.

- ① Ein Element $m \in T$ heißt minimal in T, wenn es kein $t \in T$ mit $t \neq m$ und $t \leq m$. (entsprechend "maximal")
- ② Wenn $m \in T$ und $m \leq t$ für alle $t \in T$, dann heißt m Minimum von T. (entsprechend "Maximum")
- ③ Wenn $s \in A$ und $s \leq t$ für alle $t \in T$, dann heißt s untere Schranke für T in A. (entsprechend "obere Schranke")

⁶antisymmetrisch: $\forall (a, b) \in M \times M : a \sim b \land b \sim a \Rightarrow a = b$

Beispiel Betrachte Menge $A = \{a, b, c, d, e, f, g\}$ mit Halbordnung gegeben durch Hasse-Diagramm. Betrachte Teilmenge $T = \{a, b, c\}$

Bemerkung Die "größte" untere Schranke e (d. h. e ist untere Schranke und für jede untere Schranke s gilt $s \leq e$) heißt Infimum von T in A. Die "kleinste" obere Schranke heißt Supremum.

Kapitel 3

Zahlenbereiche

3.1 Natürliche Zahlen: Definition

Definition 3.1: Peano-Axiome

- 1 ist eine natürliche Zahl.
- ② Jede natürliche Zahl hat genau einen von 1 verschiedenen Nachfolger n^+ , der eine natürliche Zahl ist (gemeint ist n+1).
- $\ensuremath{\mathfrak{J}}$ Verschiedene natürliche Zahlen haben verschiedene Nachfolger.
- 4 Ist $M\subseteq\mathbb{N}$ mit $1\in M$ und der Eigenschaft, dass für alle $n\in M$ auch $n^+\in M$ folgt, so gilt $M=\mathbb{N}$

3.1.1 Notation: Produkt- und Summenschreibweise

Seien $k, n \in \mathbb{N}$ und $a_j \in \mathbb{C}$ oder \mathbb{R} . Wir schreiben:

$$\sum_{j=k}^{n} a_j := \begin{cases} 0 \text{ falls } n < k \\ a_k \text{ falls } n = k \\ \sum_{j=k}^{n-1} \text{ falls } n > k \end{cases}$$
 (3.1)

$$\prod_{j=k}^{n} a_j := \begin{cases}
1 \text{ falls } n < k \\
a_k \text{ falls } n = k \\
\prod_{j=k}^{n-1} \text{ falls } n > k
\end{cases}$$
(3.2)

3.2 Vollständige Induktion

Idee Für $n \in \mathbb{N}$ sei A(n) eine Aussage über n. Ist die Aussage A(1) wahr ("Induktionsanfang") und folgt für jedes $n \in \mathbb{N}$ die Aussage A(n+1) ("Induktionsschritt"), dann ist A(n) wahr für alle $n \in \mathbb{N}$.

Beweisskizze Sei

$$M := \{ n \in \mathbb{N} : A(n) \text{ wahr} \}$$
(3.3)

Dann

$$1 \in M \text{ (Induktionsanfang)}$$
 (3.4)

Falls $n \in M$, dann gilt

$$(n+1) \in M \text{ (Induktionsschritt)}$$
 (3.5)

Nach Peano 4 $M = \mathbb{N}$

Lemma 3.2

Für alle $n\in\mathbb{N}$ gilt

$$1 + \dots + n := \sum_{j=1}^{n} j = \frac{n(n+1)}{2}$$
 (3.6)

Definition 3.3

Für $n \in \mathbb{N}_0$ und $a \in \mathbb{C}$ setzt man

$$a^n := \prod_{j=1}^n a \tag{3.7}$$

Insbesondere:
$$a^0 = 1$$
 (3.8)

Für $a \neq 0$ und $n \in \mathbb{Z}$ mit n < 0 setzt man

$$a^n := (a^{-1})^{-n}, a^{-1} = \frac{1}{a}$$
 (3.9)

Lemma 3.4

Sei $x \in \mathbb{R}, x \neq 1$. Dann gilt für alle $n \in \mathbb{N}_0$

$$1 + x + \dots + x^n = \sum_{j=0}^n x^j = \frac{1 - x^{n-1}}{1 - x}$$
 (3.10)

3.3 Rekursive Abbildungen

Beispiel:

$$\sum_{j=n}^{n} a_j := a_n, \sum_{j=n}^{N} := \sum_{j=n}^{N-1} a_j + a_N \text{ für } N > n$$
(3.11)

$$\prod_{j=n}^{n} a_j := a_n, \prod_{j=n}^{N} := \left(\prod_{j=n}^{N-1} a_j\right) \cdot a_N \text{ für } N > n$$
(3.12)

Definition 3.5

Für $n \in \mathbb{N}_0$ definieren wir

$$n! := \begin{cases} 1 \text{ falls } n = 0\\ (n-1)! \cdot n \text{ falls } n \ge 1 \end{cases}$$
(3.13)

D. h.: $n! = 1 \cdot 2 \cdot \cdots \cdot n$ für $n \ge 1$

Lemma 3.6

Für alle $n \in \mathbb{N}$ mit $n \geq 4$ gilt

$$n! > 2^n = \underbrace{2 \cdot 2 \cdot \dots \cdot 2}_{n \text{ Faktoren}}$$
 (3.14)

Beispiel: Die Fibonacci-Zahlen

$$F(n), n \in \mathbb{N}$$
 sind rekursiv definiert: (3.15)

$$F(1) := 1, F(2) := 1, F(n+1) := F(n) + F(n-1), n \ge 2$$
(3.16)

Also:
$$F(3) = F(2) + F(1) = 1 + 1 = 2$$
 (3.17)

$$F(4) = F(3) + F(2) = 3 (3.18)$$

$$F(5) = 5 (3.19)$$

Lemma 3.7

Für alle $n \in \mathbb{N}$ gilt $F(n) < 2^n$

3.4 Ganze, rationale und reelle Zahlen

Wir werden die ganzen Zahlen

$$\mathbb{Z} = \{\dots, -2, -1, 0, 1, 2, \dots\},\tag{3.20}$$

die rationalen Zahlen

$$\mathbb{Q} = \left\{ \frac{m}{n} : m \in \mathbb{Z}, n \in \mathbb{N} \right\}$$
 (3.21)

und die reellen Zahlen $\mathbb R$ nicht mathematisch sauber einführen, sondern "naiv" verwenden. Es gilt

$$\mathbb{N} \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \tag{3.22}$$

und wir verwenden die bekannte Totalordnung auf diese Mengen

Wichtig:
$$a \ge b \Leftrightarrow -b \ge -a$$
 (3.23)

Für rationale Zahlen ("Brüche") $\frac{a}{b}$ und $\frac{c}{d} \in \mathbb{Q}$ definiert man

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + cb}{bd} \tag{3.24}$$

Bsp.:
$$\frac{2}{3} + \frac{1}{4} = \frac{11}{12} = \frac{8+3}{12}$$
 (3.25)

und

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d} \tag{3.26}$$

$$Bsp.: \frac{2}{3} \cdot \frac{1}{4} = \frac{2}{12} = \frac{1}{6}$$
 (3.27)

Die reellen Zahlen kann man sich vorstellen, als die Menge aller Dezimaldarstellungen. Der Übergang von $\mathbb Q$ zu $\mathbb R$ "füllt" man die "Löcher" im Zahlenstrahl.

3.5 Komplexe Zahlen

Wir starten bei $\mathbb R$ und fügen das Element i dazu mit der Eigenschaft

$$i^2 = -1 (3.28)$$

i heißt auch imaginäre Zahl.

Definition 3.8

Wir definieren die Menge $\mathbb C$ der komplexen Zahlen

$$\mathbb{C} = \{ a + bi : a, b \in \mathbb{R} \} \tag{3.29}$$

wobei

$$a + bi = a' + b'i : \Leftrightarrow a = a' \land b = b' \tag{3.30}$$

Für eine komplexe Zahl z=a+bi mit $a,b\in\mathbb{R}$ nennt man

$$a = \text{Re}(z) \text{ den } Realteil \text{ und}$$
 (3.31)

$$b = \operatorname{Im}(z) \text{ den } Imagin \ddot{a}rteil \tag{3.32}$$

Bemerkung Re(z) und Im(z) sind reelle Zahlen.

Definition 3.8 (fortgesetzt)

Für komplexe Zahlen a+bi, c+di mit $a,b,c,d\in\mathbb{R}$ definiert man

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$
 und (3.33)

$$(a+bi) \cdot (c+di) = (ac-bd) + (ad+bc)i$$
 (3.34)

Addition von komplexen Zahlen entspricht der Addition von Vektoren.

Definition.3.9

Für $z = a + bi \in \mathbb{C}$ mit $a, b \in \mathbb{R}$ heißt

- $|z| := \sqrt{a^2 + b^2} \in \mathbb{R}$ der Betrag von z
- $\overline{z} := a bi \in \mathbb{C}$ die konjugent-komplexe Zahl

Lemma 3.10

Seien $z, w \in \mathbb{C}$. Dann gilt:

- (i) $\overline{\overline{z}} = z$
- (ii) $\overline{z+w} = \overline{z} + \overline{w}$
- (iii) $\overline{z \cdot w} = \overline{z} \cdot \overline{w}$
- (iv) $|z \cdot w| = |z| \cdot |w|$
- (v) $|\overline{z}| = |z|$

Kapitel 4

Folgen und Grenzwerte

Definition 4.1

Eine (reelle) Folge ist eine Abbildung $a: \mathbb{N} \to \mathbb{R}$. Wir schreiben $a_n = a(n)$. a_n heißen Glieder der Folge a.

Definition 4.2: Beschränktheit

Eine Folge $a: \mathbb{N} \to \mathbb{R}$ heißt beschränkt, falls es ein $L \in \mathbb{R}$ gibt, so dass $|a_n| \leq L$ für alle $n \in \mathbb{N}$. Das heißt

$$\exists L \in \mathbb{R} : \forall n \in \mathbb{N}. \, |a_n| \le L \tag{4.1}$$

4.1 Konvergenz

Definition 4.3

Sei $a: \mathbb{N} \to \mathbb{R}$ eine Folge, und $a_* \in \mathbb{R}$. Die Folge a konvergiert gegen a_* , falls gilt

$$\forall \varepsilon > 0 \ \exists N_0 \in \mathbb{N} \ \forall n \ge N_0 : |a_n - a_*| < \varepsilon \tag{4.2}$$

Wir schreiben dann $\lim_{n\to\infty} a_n = a_*$ oder $a_n \to a_*$.

 a_{\ast} heißt dann Grenzwert der Folge a

a heißt konvergent

Falls eine Folge nicht konvergent ist, heißt sie divergent

Bemerkung:

- Eine Folge, die gegen 0 konvergiert heißt Nullfolge
- Eine Folge a ist genau dann eine Nullfolge, wenn $|a|: \mathbb{N} \to \mathbb{R}, |a|_n := |a_n|$ eine Nullfolge ist
- Eine Folge $a: \mathbb{N} \to \mathbb{R}$ konvergiert gegen $a_* \in \mathbb{R}$ genau dann, wenn $(a a_*): \mathbb{N} \to \mathbb{R}, (a a_*)_n := a_n a_*$ eine Nullfolge ist
- Eine Menge der Form $(-\varepsilon + x, x + \varepsilon), \varepsilon > 0$ heißt (offene) Umgebung von x. Konvergiert eine Folge a gegen a_* , dann liegen in jeder Umgebung von a_* alle bis auf endlich viele Folgenglieder.

Satz 4.4

Sei $a: \mathbb{N} \to \mathbb{R}$ eine konvergente Folge. Dann ist der Grenzwert a_* eindeutig bestimmt.

Satz 4.5

Jede konvergente Folge ist beschränkt.

Satz 4.6

Seien $a, b : \mathbb{N} \to \mathbb{R}$ konvergente Folgen $\lim_{n \to \infty} a_n = a_*, \lim_{n \to \infty} b_n = b_*$. Dann gilt:

1.
$$\lim_{n \to \infty} (\alpha a_n + \beta b_n) = \alpha a_* + \beta b_*, \alpha, \beta \in \mathbb{R}$$

2.
$$\lim_{n \to \infty} (a_n \cdot b_n = a_* + b_*)$$

$$3. \lim_{n \to \infty} |a_n| = |a_*|$$

4.1. KONVERGENZ 29

Satz 4.7: Sandwich-Theorem

Seien $a, b, c : \mathbb{N} \to \mathbb{R}$ Folgen und $N_0 \in \mathbb{N}$ so dass

$$\lim_{n \to \infty} a_n = g = \lim_{n \to \infty} c_n \qquad \text{und} \qquad (4.3)$$

$$a_n \le b_n \le c_n \text{ für alle } n \in \mathbb{N}$$
 (4.4)

Dann konvergiert auch b und es gilt $\lim_{n\to\infty} b_n = g$

Bemerkung Wenn es ein $N_0 \in \mathbb{N}$ gibt, so dass eine Aussage für für alle $n \geq N_0$ gilt, dann sagt man, die Aussage gilt für fast alle $n \in \mathbb{N}$. (D. h. für alle $n \in \mathbb{N}$ bis auf endlich viele)

Korollar 4.8

Ist $a: \mathbb{N} \to \mathbb{R}$ beschränkt und $b: \mathbb{N} \to \mathbb{R}$ eine Nullfolge, so gilt $\lim_{n \to \infty} (a_n \cdot b_n) = 0$.

Lemma 4.9

Seien $a, b : \mathbb{N} \to \mathbb{R}$ konvergente Folgen mit $a_n \leq b_n$ für fast alle $n \in \mathbb{N}$. Dann gilt

$$\lim_{n \to \infty} a_n \le \lim_{n \to \infty} b_n \tag{4.5}$$

Definition 4.10

Sei $f: \mathbb{N} \to \mathbb{N}$ eine wachsende Funktion:

$$f(1) < f(2) < f(3) < \dots <$$
 (4.6)

Sei $a:\mathbb{N}\to\mathbb{R}$ eine reelle Folge: Dann heißt

$$a_f: \mathbb{N} \to \mathbb{R}, a_f(n) = a_{f(n)}$$
 (4.7)

Teilfolge von a.

Beispiel

$$f: \mathbb{N} \to \mathbb{N}, f(n) = 2n$$
 (4.8)

$$a_f: a_2, a_4, a_6, \dots$$
 (4.9)

Bemerkung Wenn a konvergiert, dann konvergieren auch alle Teilfolgen gegen den selben Grenzwert.

Eine Folge kann konvergente Teilfolgen haben, ohne selbst zu konvergieren. (Bsp.: $a : \mathbb{N} \to \mathbb{N}, a_n = (-1^n)$)

4.2 Monotone Folgen

Definition 4.11

Eine Folge $a: \mathbb{N} \to \mathbb{R}$ heißt

- monoton wachsend, falls $a_{n+1} \ge a_n$ für alle $n \in \mathbb{N}$
- monoton fallend, falls $a_{n+1} \leq a_n$ für alle $n \in \mathbb{N}$
- monoton, wenn die monoton wachsend oder monoton fallend ist.

Beispiel $a_n = \frac{1}{n}$ monoton fallend, $b_n = n$ monoton wachsend

Satz 4.12 Monotoniekriterien

Sei $a: \mathbb{N} \to \mathbb{R}$ eine monotone und beschränkte Folge. Dann konvergiert a, d. h. es gibt $a_* \in \mathbb{R}$ so dass $\lim_{n \to \infty} a_n = a_*$

4.3 Uneigentliche Konvergenz

Definition 4.13

Eine Folge $a: \mathbb{N} \to \mathbb{R}$ heißt (uneigentlich) konvergent gegen ∞ , wenn gilt

• $a_n > 0$ für fast alle $n \in \mathbb{N}$

• $\frac{1}{a_n} \to 0$

Schreibweise:

$$\lim_{n \to \infty} a_n = \infty \tag{4.10}$$

(uneigentlich) konvergent gegen $-\infty$, falls gilt

- $a_n < 0$ für fast alle $n \in \mathbb{N}$
- $\frac{1}{a_n} \to 0$

Schreibweise:

$$\lim_{n \to \infty} a_n = -\infty \tag{4.11}$$

Beispiel

- $a_n = n$: uneigentlich konvergent gegen ∞
- $b_n = -n$: uneigentlich konvergent gegen $-\infty$
- $c_n = (-1)^n \cdot n$: nicht uneigentlich konvergent

Satz 4.14

Sei $a: \mathbb{N} \to \mathbb{R}$ monoton und nicht beschränkt. Dann ist a uneigentlich konvergent.

4.4 Landau-Symbole

Definition 4.15

Sei $r: \mathbb{N} \to \mathbb{R}$ Referenzfolge

$$\mathcal{O}(r) := \{ a : \mathbb{N} \to \mathbb{R} : \exists c > 0 \text{ so dass } |a_n| \le c \cdot |r_n| \text{ für fast alle } n \in \mathbb{N} \}$$

$$o(r) := \{ a : \mathbb{N} \to \mathbb{R} : \text{Für jedes } c > 0 \text{ gilt } |a_n| \le c \cdot |r_n| \text{ für fast alle } n \in \mathbb{N} \}$$

$$(4.13)$$

$$\Theta(r) := \{ a : \mathbb{N} \to \mathbb{R} : a \in \mathcal{O}(r) \text{ und } r \in \mathcal{O}(a) \}$$

$$(4.14)$$

Lemma 4.16

$$a \in o(r) \implies a \in \mathcal{O}(r)$$
 (4.15)

Es gilt:

$$\cdots \subseteq \mathcal{O}\left(\frac{1}{n^2}\right) \subseteq \mathcal{O}\left(\frac{1}{n}\right) \subseteq \mathcal{O}(1) \subseteq \mathcal{O}(n) \subseteq \mathcal{O}\left(n^2\right) \subseteq \dots \tag{4.16}$$

Satz 4.17

Sei $r: \mathbb{N} \to \mathbb{R} \setminus \{0\}$. Dann gilt

a)

$$\mathcal{O}(r) = \left\{ a : \mathbb{N} \to \mathbb{R} : \underbrace{\left| \frac{a}{r} \right|}_{\text{Folge mit Gliedern } \frac{a_n}{r_n}} \text{ beschränkt} \right\}$$
(4.17)

b)

$$o(r) = \left\{ a : \mathbb{N} \to \mathbb{R} : \lim_{n \to \infty} \left| \frac{a_n}{r_n} \right| = 0 \right\}$$
 (4.18)

Satz 4.18 L'Hospital'sche Regel

Folgen $a: \mathbb{N} \to \mathbb{R}$ und $r: \mathbb{N} \to \mathbb{R}$ seinen gegeben durch differenzierbare Funktionen, d. h. $a_n = \tilde{a}, r_n = \tilde{r}$ mit diff.baren Funktionen \tilde{a}, \tilde{r} . Falls gilt

- $\lim_{n\to\infty} |r_n| = 0$
- $r'(n) \neq 0$ für fast alle $n \in \mathbb{N}$

• $\lim_{n \to \infty} \frac{a'(n)}{r'(n)}$ existiert eigentlich oder uneigentlich

Dann gilt

$$\lim_{n \to \infty} \frac{a'(n)}{r'(n)} = \lim_{n \to \infty} \frac{a(n)}{r(n)}$$
(4.19)

Kapitel 5

Der Ring \mathbb{Z}

5.1 Gruppen

Definition 5.1

Sei Meine Menge. Eine $\mathit{Verkn\"{u}pfung} \circ \mathrm{auf}$ M ist eine Abbildung

$$\circ: M \times M \to M \tag{5.1}$$

Die Verknüpfung heißt assoziativ, falls

$$(x\circ y)\circ z=x\circ (y\circ z) \text{ für alle } x,y,z\in M \tag{5.2}$$

Sie heißt kommutativ, falls

$$x \circ y = y \circ x \text{ für alle } x, y \in M$$
 (5.3)

Definition 5.2

- a) Eine Menge H mit einer assoziativen Verknüpfung \circ heißt $Halbgruppe~(H,\circ).$
- b) Eine Halbgruppe (H, \circ) heißt Monoid, wenn es ein $e \in M$ gibt mit

$$e \circ m = m \circ e = m \text{ für alle } m \in M$$
 (5.4)

Dann heißt e neutrales Element des Monoid.

c) Ein Monoid (G, \circ) heißt Gruppe, falls gilt: Zu jedem $x \in G$ gibt es ein $x' \in G$ so dass

$$x \circ x' = x' \circ x = e \tag{5.5}$$

Dann heißt x' "zu x inverses Element".

d) Eine Gruppe mit kommutativer Verknüpfung heißt kommutative oder abelsche Gruppe.

Beispiele

- "+" ist eine assoziative und kommutative Verknüpfung auf $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$.
- $(\mathbb{N}, +)$ ist kein Monoid, da $0 \notin \mathbb{N}$.
- $(\mathbb{Z}, +)$ ist abelsche Gruppe, 0 ist neutrales Element.
- "·" ist assoziative Verknüpfung auf $\mathbb{N}, \mathbb{Z}, \mathbb{Q}, \mathbb{R}$.
- (\mathbb{Q}, \times) ist Monoid aber keine Gruppe, da 0 kein inverses Element hat.
- $(\mathbb{Q}\setminus\{0\},\cdot)$ ist abelsche Gruppe.

Lemma 5.3

Ein Monoid hat genau ein neutrales Element.

Beweis Angenommen e und f sind neutrale Elemente. $e = e \circ f = f$

Lemma 5.4

Ist (G, \circ) eine Gruppe und $x \in G$. Dann gibt es genau ein inverses Element $y \in G$ zu x.

Beweis Seien $y, z \in G$ inverse Elemente zu x. Dann gilt $y = y \circ e = y \circ (x \circ z) = (y \circ x) \circ z = e \circ z = z$

Lemma 5.5

Sei (G, \circ) eine Gruppe, $x, y \in G$. Seien x' das inverse Element zu x, und y' das inverse Element zu y. Dann ist $(x \circ y)' := y' \circ x'$ das inverse Element zu $x \circ y$.

Beweis
$$(x \circ y) \circ (y' \circ x') = (x \circ (y \circ y')) \circ x' = (x \circ e) \circ x' = x \circ x' = e$$

5.2 Ringe und Körper

Definition 5.6

Sei R eine Menge mit zwei Verknüpfungen

- \oplus Addition
- \otimes Multiplikation

so dass gilt

- 1) (R, \oplus) ist abelsche Gruppe mit neutralem Element $0 \in R$
- 2) (R, \otimes) ist Halbgruppe:
- 3) Distributivität:

$$x \otimes (y \oplus z) = (x \otimes y) \oplus (x \otimes z) \text{ und}$$
 (5.6)

$$(y \oplus z) \otimes x = (y \otimes x) \oplus (z \otimes x) \text{ für alle } x, y, z \in R$$
 (5.7)

Dann ist (R, \oplus, \otimes) ein Ring.

- (R, \oplus, \otimes) heißt $Ring\ mit\ Eins$, falls (R, \otimes) ein Monoid ist, dessen neutrales Element $1 \in R$ ungleich dem neutralen Element 0 er Addition ist.
- Der Ring (R, \oplus, \otimes) heißt kommutativ, falls \otimes kommutativ ist.
- Ein kommutativer Ring mit Eins (R, \oplus, \otimes) heißt Körper, wenn jedes Element $x \neq 0$ ein multiplikatives Inverses hat.

Beispiele

- $(\mathbb{Z}, +, \cdot)$ kommutativer Ring mit Eins
- $(2\mathbb{Z}, +, \cdot)$ kommutativer Ring ohne Eins
- $(\mathbb{R}, +, \cdot)$ Körper
- $(\mathbb{Q}, +, \cdot)$ Körper

Lemma 5.7

Sei (R, \oplus, \otimes) ein Ring, 0 das neutrale Element bzgl. der Addition. Dann gilt

$$0 \otimes x = x \otimes 0 = 0 \text{ für alle } x \in R \tag{5.8}$$

5.3 Division mit Rest

Lemma 5.8

Sei $a \in \mathbb{Z}$ und $m \in \mathbb{N}$.

Dann gibt es eindeutig bestimmte Zahlen $q \in \mathbb{Z}$ und $r \in \{0, ..., m-1\}$ so dass $a = q \cdot m + r$.

Definition 5.9

Mit den Bezeichnungen von Lemma 5.8 heißt r der Rest von a bei Division mit m. Schreibweisen:

$$r = a \operatorname{mod} m \tag{5.9}$$

$$q = a \operatorname{div}_{\mathbf{a}/\mathbf{m}} m = \left\lfloor \frac{a}{m} \right\rfloor \tag{5.10}$$

Korollar 5.10

Für $a \in \mathbb{Z}$ und $n, m \in \mathbb{N}$ gilt

$$(a\operatorname{div} n)\operatorname{div} m = a\operatorname{div}(n \cdot m) \tag{5.11}$$

Definition 5.11

Seien $a, b \in \mathbb{Z}$.

- 1) a teilt b, wenn es ein $z \in \mathbb{Z}$ gibt mit $b = a \cdot z$. Schreibweise: $a \mid b$ b heißt Vielfaches von a
- 2) Eine Zahl d heißt größter gemeinsamer Teiler (ggT) von a und b, falls gilt
 - $d \mid a \text{ und } d \mid b$
 - falls $z \in \mathbb{Z}$ so dass $z \mid a$ und $z \mid b$, dann gilt $z \mid d$.

Schreibweise:

$$d = ggT(a, b) \tag{5.12}$$

Wir definieren:

$$ggT(0,0) := 0 (5.13)$$

3) Falls ggT(a, b) = 1, dann heißen a und b teilerfremd.

Beispiel ggT(27,12) = 3; ggT(5,20) = 5

5.4 Euklidischer Algorithmus

Ziel: Finde ggT(a, b)

Eingabe: $a, b \in \mathbb{N}$ mit $a \leq b$

Ausgabe: $d \in \mathbb{N}$

- 1) Finde $q \in \mathbb{N}$ und $r \in \{0, \dots, a-1\}$ mit $b = q \cdot a + r$
- 2) Falls r = 0, dann d := a und STOP
- 3) Falls $r \neq 0$ rufe Algorithmus rekursiv auf mit b := a und a := r

Beispiel

$$a = 7, b = 143 \tag{5.14}$$

$$\to 143 = 20 \cdot 7 + 3 \tag{5.15}$$

$$7 = 2 \cdot 3 + 1$$
 (5.16)
 $3 = 3 \cdot 1 + 0$ (5.17)

$$3 = 3 \cdot 1 + 0$$
 (5.17)

$$\rightarrow d = 1 = ggT(7, 143)$$
 (5.18)

Es gibt $x, y \in \mathbb{Z}$ so dass $d = x \cdot a + y \cdot b$

Satz 5.12

Seien $a, b \in \mathbb{N}$ mit a < b.

Dann terminiert der Euklidische Algorithmus.

Für die Ausgabezahl $d \in \mathbb{N}$ gilt:

- (1) d = ggT(a, b)
- (2) Es gibt $x, y \in \mathbb{Z}$ mit $d = x \cdot a + y \cdot b$

Korollar 5.13 Lemma von Bezout

Sind $a, b \in \mathbb{Z}$, dann gibt es $x, y \in \mathbb{Z}$ mit

$$ggT(a,b) = x \cdot a + y \cdot b \tag{5.19}$$

Korollar 5.14

Zwei ganze Zahlen $a, b \in \mathbb{Z}$ sind teilerfremd (d. h. ggT(a, b) = 1) genau dann, wenn es ganze Zahlen gibt mit

$$1 = x \cdot a + y \cdot b \tag{5.20}$$

Lemma 5.15

Seien $a, b \in \mathbb{Z}$ mit ggT(a, b) = 1. Dann gibt es $m \in \mathbb{Z}$ so dass

$$a \mid (m \cdot b - 1) \tag{5.21}$$

5.5 Primfaktorzerlegung (PFZ)

Lemma 5.16

Seien $a, b, c \in \mathbb{N}$. Falls ggT(a, c) = 1 und $a \mid (b \cdot c)$, dann $a \mid b$.

Definition 5.17

Eine natürliche Zahl $n \geq 2$ heißt Primzahl, wenn sie "nur von 1 und sich selbst geteilt wird". Präzise Def.:

$$\forall m \in \mathbb{N} : (m \mid n \implies m \in \{1, n\}) \tag{5.22}$$

Satz 5.18 Hauptsatz der Arithmetik

1) Jede natürliche Zahl $n \geq 2$ lässt sich als Produkt von Primzahlen schreiben:

$$n = p_1 \cdot p_2 \cdot \dots \cdot p_r; p_1, \dots, p_r \text{ Primzahlen}$$
 (5.23)

2) Die PFZ von n ist eindeutig im folgenden Sinne

$$n = p_1 \cdot p_2 \cdot p_3 \cdot \dots \cdot p_r; p_i \text{ prim}$$
 (5.24)

$$n = q_1 \cdot q_2 \cdot q_3 \cdot \dots \cdot q_s; p_j \text{ prim}$$
 (5.25)

Falls

$$p_1 \le p_2 \le p_3 \le \dots \le p_r \text{ und} \tag{5.26}$$

$$q_1 \le q_2 \le q_3 \le \dots \le q_s \tag{5.27}$$

dann

$$r = s \text{ und} (5.28)$$

$$p_i = q_j (5.29)$$

Satz 5.18a

Es gibt unendlich viele Primzahlen.

Beweis durch Widerspruch

Angenommen, es gibt nur endlich viele Primzahlen $p_1, p_2, \ldots, p_r; r \in \mathbb{N}$. Betrachte

$$n := p_1 \cdot p_2 \cdot \dots \cdot p_r + 1 \tag{5.30}$$

Nach Satz 5.18 (S. 41) hat n eine PFZ. Aber keine der Primzahlen p_1,\ldots,p_r teilt n. $4\square$

Bemerkung Aus der PFZ einer natürlichen Zahl n kann man alle natürlichen Teiler $(\neq 1)$ von n durch Produkte der Primfaktoren erhalten.

Beispiel

$$24 = 2 \cdot 2 \cdot 2 \cdot 3 = 2^3 \cdot 3 \tag{5.31}$$

Natürliche Teiler von 24: 1, 2, 3, 4, 6, 8, 12, 24

Definition 5.19

Falls $a, b \in \mathbb{Z} \setminus \{0\}$, dann ist das kleinste gemeinsame Vielfache (kgV) von a und b, die kleinste natürliche Zahl, die sowohl Vielfaches von a, als auch b ist. Wir schreiben:

$$kgV(a,b) := \min\{n \in \mathbb{N} : a \mid n \text{ und } b \mid n\}$$
 (5.32)

Falls a = 0 oder b = 0,

$$kgV(a,b) := 0 (5.33)$$

Beispiel
$$a=125, b=265;$$
 PFZ: $a=5\cdot 5\cdot 5=5^3, b=5\cdot 3$ ggT(125, 265) = 5; kgV(125, 265) = $5^3\cdot 53=6625=\frac{125\cdot 265}{\text{ggT}(125, 265)}$

Lemma 5.20

Seien $a, b \in \mathbb{N}$ mit $a, b \geq 2$ Die erweiterten PFZ seien

$$a = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \dots \cdot p_r^{\alpha_r}$$
 mit p_1, \dots, p_r prim und
$$b = p_1^{\beta_1} \cdot p_2^{\beta_2} \cdot \dots \cdot p_r^{\beta_r}$$
 $\alpha_i, \beta_i \in \mathbb{N}_0$ für $i = 1, \dots, r$ (5.34)

Dann gilt

②
$$kgV(a,b) = \prod_{i=1}^{r} p_i^{\max\{\alpha_i \beta_i\}}$$
 (5.36)

Bemerkung ggT und kgV kann man auch für mehr als zwei Zahlen definieren, aber

$$ggT(a, b, c) \cdot kgV(a, b, c) \neq a \cdot b \cdot c$$
 für manche $a, b, c \in \mathbb{N}$ (5.38)

5.6 Rechnen modulo n

5.6.1 Addition & Multiplikation modulo n

Definition 5.21

Für $n \in \mathbb{N}$ und $x, y \in \mathbb{Z}$ schreiben wir

$$x \equiv y \mod n \tag{5.39}$$

falls gilt

$$n \mid (x - y) \tag{5.40}$$

Wir sagen dann, dass x und y kongruent modulo n sind.

Vorsicht Nicht verwechseln mit $x = y \mod n \in \{0, \dots, n-1\}$

Bemerkung Sei $n \in \mathbb{N}$.

$$x \sim y : \Leftrightarrow x \equiv y \mod n \tag{5.41}$$

definiert eine Äquivalenzrelation auf \mathbb{Z} .

Beispiele: $6 \equiv 12 \mod 6, 6 \equiv 0 \mod 6, 15 \equiv 21 \mod 6$ Wir betrachten die Äquivalenzklassen

$$[x] = \{ y \in \mathbb{Z} : y \equiv x \mod n \} \tag{5.42}$$

$$= \{ y \in \mathbb{Z} : n \mid (y - x) \}$$
 (5.43)

$$\mathbb{Z}/_{\sim} = \{[0], [1], \dots [n-1]\}$$
 (5.44)

ist eine Partition von \mathbb{Z} (Satz 2.14, S. 18). Schreibweise: $\mathbb{Z}/_{\sim}=:\mathbb{Z}_n$

Definition 5.22

Für $[x], [y] \in \mathbb{Z}_n$ definieren wir

$$[x] + [y] := [x + y] \tag{5.45}$$

$$[x] \cdot [y] := [x \cdot y] \tag{5.46}$$

Satz 5.23

- 1. Die Verknüpfungen + und · in \mathbb{Z}_n sind wohldefiniert, d. h. unabhängig vom Repräsentanten.
- 2. $(\mathbb{Z}_n, +, \cdot)$ ist ein kommutativer Ring.

Beispiele
$$n=2,\mathbb{Z}_2=\{\underbrace{[0]}_{\text{gerade Zahlen ungerade Zahlen}},\underbrace{[1]}_{\text{followed Sahlen}}\}$$

$$n = 3, \mathbb{Z}_3 = \{[0], [1], [2]\}$$

+	[0]	[1]	[2]		[0]	[1]	[2]
[0]	[0]	[1]	[2]	[0]	[0]	[0]	[0]
[1]	[1]	[2]	[0]	[1]	[0]	[1]	[2]
[2]	[2]	[0]	[1]	[2]	[0]	[2]	[1]

$$n = 4, \mathbb{Z}_4 = \{[0], [1], [2], [3]\}$$

+	[0]	[1]	[2]	[3]		[0]	[1]	[2]	[3]
[0]	[0]	[1]	[2]	[3]	[0]	[0]	[0]	[0]	[0]
[1]	[1]	[2]	[3]	[0]	[1]	[0]	[1]	[2]	[3]
[2]	[2]	[3]	[0]	[1]	[2]	[0]	[2]	[0]	[2]
[3]	[3]	[0]	[1]	[2]	[3]	[0]	[3]	[2]	[1]

Beobachtung bei Multiplikation: In den Zeilen der Klassen, die teilerfremd zu n sind, kommen alle Äquivalenzklassen vor (z. B. die Zeilen [1] und [3] bei n = 4).

5.6.2 Einheiten und Inverse

Definition 5.24

Sei $(R, +, \cdot)$ ein Ring mit Eins. Ein Element heißt Einheit oder invertierbar, falls es $y \in R$ gibt, mit

$$x \cdot y = y \cdot x = \underbrace{1}_{\text{Eins-Element}}$$
 (5.47)

Schreibweise:

$$R^* := \{ x \in R : x \text{ ist Einheit} \} \tag{5.48}$$

Beispiel $\mathbb{Z}^* = \{-1, 1\}$ In einem Körper $(K, +, \cdot)$ gilt

$$K^* = K \setminus \{0\} \tag{5.49}$$

Lemma 5.25

Sei $(R, +, \cdot)$ Ring mit Eins. Dann ist (R^*, \cdot) eine Gruppe. D. h.

- $R^* \times R^* \to R^* \Leftrightarrow R^* \cdot R^* \in R^*$
- Assoziativität
- Eins-Element (neutrales Element bzgl. ·)
- inverses Element

Beispiel

- $\mathbb{Z}_2^* = \{[1]\}, \text{ denn } [1] \cdot [1] = [1 \cdot 1] = [1]$
- $\mathbb{Z}_3^* = \{[1], [2]\}, \text{ denn } [2] \cdot [2] = [4] = [1]$
- $\mathbb{Z}_4^* = \{[1], [3]\}, \text{ denn } [3] \cdot [3] = [9] = [1]$

Satz 5.26

Sei $n \in \mathbb{N}$. Dann gilt $\mathbb{Z}_n^* = \{[a] : \operatorname{ggT}(a, n) = 1\}$

Beispiel

- $\mathbb{Z}_7^* = \{[1], [2], [3], [4], [5], [6]\}$
- $\mathbb{Z}_{16}^* = \{[1], [3], [5], [7], [9], [11], [13], [15]\}$

Bemerkung Für p prim ist in \mathbb{Z}_p jedes Element außer [0] eine Einheit.

Satz 5.27

Für jede Primzahl p ist $(\mathbb{Z}_p, +, \cdot)$ ein Körper.

Lemma 5.28

Sei (G, \cdot) eine Gruppe. Seien $a, b \in G$. Dann hat die Gleichung $a \cdot x = b$ genau eine Lösung $x \in G$.

Beispiel Betrachte \mathbb{Z}_5 , a=[2], b=[3]. Suche Lösungen von $[2] \cdot \underbrace{x}_{\in \mathbb{Z}_5} = [3]$. Durch Ausprobieren ergibt sich, x=[4] ist eindeutige Lösung.

Korollar 5.29

Sei $n \geq 2, n \in \mathbb{N}$. Dann gilt für $[a] \in \mathbb{Z}_n^*$

$$\mathbb{Z}_n^* = \{ [a] \cdot [x] : [x] \in \mathbb{Z}_n^* \}$$
 (5.50)

Satz 5.30 Kleiner Satz von Fermat

Sei p Primzahl. Sei $a \in \mathbb{Z}$ mit ggT(a, p) = 1. Dann gilt

$$a^{p-1} \equiv 1 \mod p \tag{5.51}$$

Beispiel p = 5

$$2^{p-1} = 2^4 = 16 \equiv 1 \mod 5 \tag{5.52}$$

$$3^{p-1} = 3^4 = 81 \equiv 1 \mod 5 \tag{5.53}$$

$$4^{p-1} = 4^4 = 256 \equiv 1 \mod 5 \tag{5.54}$$

Definition 5.31

Die Funktion

$$\varphi: \mathbb{N} \to \mathbb{N} \tag{5.55}$$

$$\varphi(n) := |\{k \in \{1, \dots, n\} : ggT(k, n) = 1\}|$$
(5.56)

heißt Eulersche φ -Funktion.

Bemerkung $\varphi(n)$ gibt die Anzahl der Einheiten in \mathbb{Z}_n an. Für p Primzahl: $\varphi(p) = p - 1$

Beispiel
$$\varphi(1) = 1$$
 $\varphi(3) = 2$ $\varphi(5) = 4$ $\varphi(7) = 6$ $\varphi(2) = 1$ $\varphi(4) = 2$ $\varphi(6) = 2$ $\varphi(8) = 4$

Lemma 5.32

Sei $p \geq 2$ Primzahl, $k \in \mathbb{N}$. Dann gilt

$$\varphi\left(p^{k}\right) = p^{k-1} \cdot (p-1) \tag{5.57}$$

Beispiele
$$\varphi(2^3) = 2^2 \cdot (2-1) = 4 \cdot 1 = 4$$

 $\varphi(9) = \varphi(3^2) = 3^1 \cdot (3-1) = 3 \cdot 3 = 6$

Lemma 5.33

Seien $a, b \in \mathbb{N}$ mit $\operatorname{ggT}(a, b) = 1$. Dann gilt

$$\varphi(a \cdot b) = \varphi(a) \cdot \varphi(b) \tag{5.58}$$

Satz 5.34 Satz von Euler-Fermat

Seien $n \in \mathbb{N}$ und $a \in \mathbb{Z}$ mit ggT(a, n) = 1. Dann gilt

$$a^{\varphi(n)} \equiv 1 \mod n \tag{5.59}$$

Korollar 5.35

Seien p,q prim, $p \neq q, n = p \cdot q$. Dann gilt für alle a < n und $k \in \mathbb{N}$

$$a^{k \cdot \varphi(n) + 1} \equiv a \mod n \tag{5.60}$$

RSA-Verschlüsselung

Es gibt:

 $\begin{array}{ll} n \in \mathbb{N} & \text{ öffentliche Zahl (groß!)} \\ e \in \mathbb{N} & \text{ öffentlicher Schlüssel} \\ d \in \mathbb{Z} & \text{ privater Schlüssel} \\ m < n & \text{ Nachricht in Klartext} \\ c \in \mathbb{N} & \text{ verschlüsselte Nachricht} \end{array}$

Ablauf:

Empfänger B

- 1. B wählt große Primzahlen $p \neq q$ und setzt $n := p \cdot q$
- 2. B wählt e mit $ggT(e, \varphi(n)) = 1$
- 3. B berechnet d so dass $d \cdot e \equiv 1 \mod \varphi(n)$
- 4. B veröffentlicht n und e

Sender A

5. A verschlüsselt Nachricht m < n-1 durch $c := m^e \mod n$

Empfänger B

6. B entschlüsselt $m = c^d \mod n$

Kapitel 6

Gruppentheorie

6.1 Untergruppen

Definition 6.1

Sei (G, \otimes) eine Gruppe¹ mit neutralem Element e, und $H \subseteq G$. Dann heißt (H, \otimes) Untergruppe von G, falls gilt:

- $e \in H$
- $x, y \in H \to x \otimes y \in H$
- $x \in H \implies x^{-1} \in H$

- G Menge
- $\otimes: G \times G \to G$ assoziative Verknüpfung
- Es gibt $e \in G : e \otimes g = g \otimes e = g$ für alle $g \in G$
- Zu jedem $g \in G$ gibt es $g^{-1} \in G : g \otimes g^{-1} = g^{-1} \otimes g = e$

 $^{^{1}}$ (G, \otimes) heißt Gruppe, wenn:

Lemma 6.2

Eine Untergruppe ist selbst eine Gruppe.

Beispiele

- $(\mathbb{Z}, +)$ ist Untergruppe von $(\mathbb{R}, +)$
- $(2\mathbb{Z}, +)$ ist Untergruppe von $(\mathbb{Z}, +)$
- (Q\{0}, ·) und ({-1,1}, ·) sind Untergruppen von (R\{0}, ·)

Notation Sei (G, \otimes) eine Gruppe mit neutralem Element e. Seien $x \in G, n \in \mathbb{N}_0$.

$$Dann x^{n} := \begin{cases} e & \text{für } n = 0 \\ x \otimes x^{n-1} = x^{n-1} \otimes x \text{ für } n \in \mathbb{N} \end{cases}$$
 (6.1)

$$x^{-n} := \left(\underbrace{x^{-1}}_{\text{inv Elem zu x}}\right)^n \tag{6.2}$$

Bemerkung Für $q, r \in \mathbb{Z}$ gilt

$$x^{q+r} = x^q \otimes x^r = x^r \otimes x^q \tag{6.3}$$

Definition 6.3

Sei (G, \otimes) eine Gruppe, $H \subseteq G$. Dann heißt die kleinste Untergruppe (\tilde{H}, \otimes) von G, so dass $H \subseteq \tilde{H}$, die von H erzeugte Untergruppe.

Beispiele

- Betrachte Gruppe $(\mathbb{Z}, +)$ und $H = \{3\}$. Dann ist die von H erzeugte Untergruppe $(3\mathbb{Z}, +)$.
- Betrachte ($\mathbb{R}\setminus\{0\}$, ·), $H=\{2\}$. Dann ist die von H erzeugte Untergruppe ($2^{\mathbb{Z}}$, ·)
- $(\mathbb{Z}_5, +), H_1 = \{[1]\}, \text{ von } H_1 \text{ erzeugte Untergruppe } (\mathbb{Z}_5, +)$ $H_2 = \{[2]\} \text{ von } H_2 \text{ erzeugte Untergruppe } (\mathbb{Z}_5, +)$

Lemma 6.4

Sei (G, \otimes) Gruppe und $g \in G$. Dann ist $\langle g \rangle := \{g^z : z \in Z\}$ die von $\{g\}$ erzeugte Halbgruppe.

Lemma 6.5

Sei (G, \otimes) eine endliche Gruppe, d. h. $|G| < \infty$, mit neutralem Element e. Sei $g \in G$. Setze $k := |\langle g \rangle| \in \mathbb{N}$. Dann gilt

$$g^k = e \text{ und} (6.4)$$

$$\langle g \rangle = \{ g^0, g^1, g^2, \dots g^{k-1} \}$$
 (6.5)

Beispiel $(\mathbb{Z}_5,+), [2] \in \mathbb{Z}_5$. Dann

$$\langle [2] \rangle \stackrel{\text{Lemma 6.4, S. 53}}{=} \{ [2]^n : n \in \mathbb{Z} \}$$

$$(6.6)$$

Es gilt
$$[2]^0 = [0]$$
 $[2]^3 = [2+2+2] = [6] = [1]$ $\Longrightarrow \langle [2]^2 = [2+2] = [4]$ $\Longrightarrow \langle [2]^2 = [2+2] = [4]$

Also
$$k := |\langle [2] \rangle| = 5$$
,
 $[2]^5 = [2+2+2+2+2] = [10] = [0] = e$,
 $\langle [2] \rangle = \mathbb{Z}_5 = \{[2]^0, [2]^1, [2]^2, [2]^3, [2]^4\}$

6.2 Gruppenordnungen & Satz von Lagrange

Definition 6.6

Sei (G, \otimes) eine Gruppe.

- a) Die Ordnung von G ist
 - \bullet unendlich, falls G unendlich viele Elemente enthält.
 - die Kardinalität von G, falls G endlich viele Elemente enthält.

b) Die *Ordnung eines Elements* $g \in G$ ist die Ordnung der von $\{g\}$ erzeugten Untergruppe $\langle g \rangle$.

Schreibweise:

$$\operatorname{ord}(g) := |\langle g \rangle| \tag{6.7}$$

Beispiel Betrachte² (\mathbb{Z}_{5}^{*} ,·). Es gilt $\mathbb{Z}_{5}^{*} = \{[1], [2], [3], [4]\}$. Ordnung der Elemente: $\langle [1] \rangle = \{[1]\} \implies \operatorname{ord}([1]) = 1$ $\langle [2] \rangle = \{[2], [1], [4], [3]\} \implies \operatorname{ord}([2]) = 4$ $\langle [3] \rangle = \{[1], [3], [4], [2]\} \implies \operatorname{ord}([3]) = 4$ $\langle [4] \rangle = \{[1], [4]\} \implies \operatorname{ord}([4]) = 2$

Satz 6.7 Satz von Lagrange

Sei (G, \otimes) eine endliche Gruppe. Ist $(H, \otimes), H \subseteq G$ eine Untergruppe von G, so teilt die Ordnung von H die Ordnung von G.

Definition 6.8

Sei (G, \otimes) eine abelsche Gruppe, (H, \otimes) Untergruppe. Dann heißt

$$[G:H] := \frac{[G]}{[H]}$$
 (6.8)

 $\operatorname{der} \operatorname{Index} \operatorname{von} H \operatorname{in} G.$

Korollar 6.9

Sei (G, \otimes) eine endliche Gruppe mit neutralem Element e, und sei $g \in G$. Dann ist die Ordnung von g ein Teiler der Gruppenordnung |G| und es gilt

$$g^{[G]} = e (6.9)$$

 $^{^2}R^*:=\{x\in R: x \text{ ist Einheit}\}$ (Def. 5.24, S. 45) $x\in R$ heißt Einheit oder invertierbar, falls $\exists y\in R: x\otimes y=1 \ (1:=\text{Eins-Element})$

6.3 Zyklische Gruppen

Definition 6.10

Eine Gruppe (G, \otimes) heißt *zyklisch*, wenn es ein $g \in G$ gibt, so dass $G = \langle g \rangle$.

Beispiele

- $(\mathbb{Z}, +)$ ist zyklisch mit Erzeuger 1
- $(\{-1,+1\},\cdot)$ ist zyklisch mit Erzeuger -1
- $(\mathbb{Z}_{37}, +)$ ist zyklisch mit Erzeuger [1]

Lemma 6.11 Konsequenzen aus Lemma 6.5 (S. 53)

Sei (G,\otimes) eine Gruppe mit neutralem Element e,und sei $g\in G$ von endlicher Ordnung. Dann

a) Für $x, y \in \mathbb{Z}$ gilt:

$$g^x = g^y \iff \operatorname{ord}(g) \mid (x - y) \tag{6.10}$$

b)

$$\operatorname{ord}(g) = \min \left\{ n \in \mathbb{N} : g^n = e \right\} \tag{6.11}$$

c) Für $z \in \mathbb{Z}$ gilt:

$$g^z = e \iff \operatorname{ord}(g) \mid z \tag{6.12}$$

d) Für $k \in \mathbb{N}$ gilt:

$$\operatorname{ord}(g^{k}) = \frac{\operatorname{ord}(g)}{\operatorname{ggT}(k, \operatorname{ord}(g))}$$
(6.13)

Korollar 6.12

Sei (G,\otimes) zyklische Gruppe von Ordnung $n,\,G=\langle g\rangle$

$$G = \langle g^k \rangle \iff \operatorname{ggT}(k, \underbrace{\operatorname{ord}(g)}_{n}) = 1$$
 (6.14)

Insbesondere gibt es $\varphi(n)$ Erzeuger.

Kapitel 7

Lineare Algebra

7.1 Vektorräume

Definition 7.1

Sei $(K, +, \cdot)$ ein Körper¹.

Ein K-Vektorraum ist ein Tripel (V,\oplus,\otimes) , wobei V eine Menge ist,

$$\oplus: V \times V \to V, (v, w) \mapsto v \oplus w \tag{7.1}$$

$$\otimes: K \times V \to V, (s, v) \mapsto s \otimes v \tag{7.2}$$

$$f \ddot{u} r \ v, w \in V, s \in K \tag{7.3}$$

so dass gilt

1. (V, \oplus) ist kommutative Gruppe. Schreibweise: Neutrales Element ist $\mathbf{0} \in V$ ("Nullvektor") Inverses Element zu $v \in V$ ist $-v \in V$

- kommutativer Ring mit Eins, bei dem jedes Element $x \neq o$ ein multiplikatives Inverses hat.
- Nullelement $0 \in K$ als neutrales Element bzgl. +
- Einselement $1 \in K$ als neutrales Element bzgl. ·

¹Körper $(K, +, \cdot)$, d. h.

2.

Eins-Element in K

3.

$$(s \cdot t) \otimes v = s \otimes (t \otimes v) \text{ für alle } s, t \in K, v \in V$$
 (7.5)

4.

$$(s+t) \otimes v = (s \otimes v) \oplus (t \otimes v) \text{ für alle } s, t \in K, v \in V$$
 (7.6)

5.

$$s \otimes (v \oplus w) = (s \otimes v) \oplus (s \otimes w) \text{ für alle } s \in K, v, w \in V$$
 (7.7)

Elemente in V heißen Vektoren.

Beispiele

a) Für $n \in \mathbb{N}$ ist K^n ein Vektorraum (VR) mit

$$(x_1, \dots, x_n) \oplus (y_1, \dots, y_n) = (x_1 + y_1, \dots, x_n + y_n)$$
 (7.8)

$$s \otimes (x_1, \dots, x_n) = (s \cdot x_1, \dots, s \cdot x_n) \tag{7.9}$$

für
$$x_1, \dots, x_n, y_1, \dots, y_n \in K, s \in K$$
 (7.10)

Spezialfälle, $(K,+,\cdot)$ ist $K\text{-}\mathrm{VR}$

• $K = \mathbb{R}, V = \mathbb{R}^2$

- b) $(\mathbb{C}, +, \cdot)$ ist \mathbb{C} -VR, \mathbb{R} -VR, \mathbb{Q} -VR.
- c) Sei $M \neq \emptyset$ eine Menge, $(K, +, \cdot)$ ein Körper. Sei $V := \{f : M \to K\}$. Betrachte

$$(f \oplus g)(x) := f(x) + g(x) \tag{7.11}$$

$$(s \otimes f)(x) := s \cdot (f(x)) \tag{7.12}$$

$$f \ddot{u} f, g \in V, x \in M, s \in K \tag{7.13}$$

Dann ist (V, \oplus, \otimes) ein K-VR.

Lemma 7.2 Rechenregeln

Sei $(K, +, \cdot)$ ein Körper, (V, \oplus, \otimes) ein K-Vektorraum (VR). Dann gilt

a)

$$0 \cdot v = \mathbf{0} \text{ für alle } v \in V \tag{7.14}$$

b)

$$s \cdot \mathbf{0} = \mathbf{0} \text{ für alle } s \in K \tag{7.15}$$

c) Für alle $s \in K$ und $v \in V$ gilt

$$s \otimes v = \mathbf{0} \Longleftrightarrow s = \mathbf{0} \wedge v = \mathbf{0} \tag{7.16}$$

d) Für alle $s \in K$ und $v \in V$ gilt

$$(\underbrace{-s}) \otimes v = \underbrace{-(s \otimes v)}_{\text{inv. Elem.}}$$

$$\underbrace{\text{zu } s \text{ in } K}_{\text{(bzgl. +)}}$$

$$\underbrace{\text{bzgl. } \oplus \text{zu}}_{\text{(s \otimes v)}}$$

$$(7.17)$$

7.2 Unterräume

Definition 7.3

Sei $(K, +, \cdot)$ Körper, (V, \oplus, \otimes) ein K-VR. Dann heißt $U \subseteq V$ Unter(vektor)raum oder Teilraum von V, falls gilt

- 1. $U \neq \emptyset$
- $2. \ v, w \in U \implies v \oplus w \in U$
- $3. \ s \in K, v \in U \implies s \otimes v \in U$

Bemerkung Ist $U \subseteq V$ ein Untervektorraum (UVR) dann ist (U, \oplus, \otimes) ein K-VR.

Beispiele

- a) $V, \{0\}$ sind UVR.
- b) Sei $v \in V \setminus \{0\}$. Dann ist $\{v\}$ kein UVR, denn $0 \otimes v = \mathbf{0} \notin \{v\}$.
- c) Für $v \in V$ ist

$$\langle v \rangle := \{ s \otimes v : s \in K \} \tag{7.18}$$

ein UVR.

7.3 Erzeugendensysteme

Definition 7.4

a) Sei (V, \oplus, \otimes) ein K-VR, $v_1, \ldots, v_n \in V$. Dann heißt $V \in V$ Linearkombination von v_1, \ldots, v_n , falls es s_1, \ldots, s_n gibt mit

$$v = (s_1 \otimes v_1) \oplus (s_2 \otimes v_2) \oplus \ldots \oplus (s_n \otimes v_n)$$

$$(7.19)$$

b) Ist $M \subseteq V$ mit $M \neq \emptyset$, so definieren wir das *Erzeugnis* von M als

$$\langle M \rangle := \{ v \in V : v \text{ ist Linearkombination von endlich vielen Vektoren von } M \} \tag{7.20}$$

$$=: \operatorname{span}(M) \tag{7.21}$$

Wir definieren:

$$\langle \emptyset \rangle := \{ \mathbf{0} \} \tag{7.22}$$

Bemerkung Der K-VR $(K, +, \cdot)$ hat nur die Untervektorräume K und $\{\underbrace{0}_{0}\}$.

Lemma 7.5

Sei (V, \oplus, \otimes) ein K-VR, $M \subseteq V$ beliebige Teilmenge. Dann ist $\langle M \rangle$ ein UVR von V.

7.4 Lineare Unabhängigkeit

Definition 7.6

Sei (V, \oplus, \otimes) ein K-VR.

a) Vektoren v_1, \ldots, v_n heißen *linear unabhängig*, falls folgendes gilt:

$$(s_1 \otimes v_1) \oplus \ldots \oplus (s_n \otimes v_n) = \mathbf{0} \text{ mit } s_1, \ldots, s_n \in K \implies s_1 = \cdots = s_n = 0$$

$$(7.23)$$

Andernfalls heißen v_1, \ldots, v_n linear abhängig.

b) Eine Teilemenge $M\subseteq V, M\neq\emptyset$ heißt linear unabhängig, falls je endlich viele paarweise verschiedene Vektoren aus M linear unabhängig sind. Wir definieren \emptyset als linear unabhängig. Ist $M\subseteq V$ nicht linear unabhängig, so heißt M linear abhängig.

Bemerkung

- Jede Menge, die eine linear abhängige Teilmenge enthält ist linear abhängig.
- Jede Teilmenge einer linear unabhängigen Menge ist linear unabhängig.

Satz 7.7

Sei (V, \oplus, \otimes) ein K-VR, $M \subseteq V, M \neq \emptyset, M \neq \{\mathbf{0}\}$. Folgende Aussagen sind äquivalent:

- 1. M ist linear unabhängig.
- 2. Jeder Vektor $w \in \langle M \rangle$ kann **eindeutig** geschrieben werden als Linearkombination von Vektoren aus M, bis auf die Reihenfolge der Summanden, d. h.

$$f "u" v_1, \dots, v_n \in M, s_1, \dots, s_n, t_1, \dots, t_n \in K$$
 (7.24)

mit
$$w = (s_1 \otimes v_1) \oplus \ldots \oplus (s_n \otimes v_n) = (t_1 \otimes v_1) \oplus \ldots \oplus (t_n \otimes v_n)$$
 (7.25)

$$gilt s_1 = t_1, \dots, s_n = t_n \tag{7.26}$$

3. Für alle $v \in M$ gilt

$$v \notin \langle M \backslash \{v\} \rangle \tag{7.27}$$

4. Für alle $v \in M$ gilt

$$\langle M \backslash \{v\} \rangle \neq \langle M \rangle \tag{7.28}$$

7.5 Basis und Dimension

Definition 7.8

Sei (V, \oplus, \otimes) K-VR, $M \subseteq V$.

a) M heißt Erzeugendensystem von V, falls

$$\langle M \rangle = V \tag{7.29}$$

- b) M heißt Basis von V, falls V ein linear unabhängiges Erzeugendensystem ist.
- c) V heißt endlich erzeugt, falls V ein endliches Erzeugendensystem besitzt.

Beispiel \mathbb{R}^3 als \mathbb{R} -VR.

 $\{(1,0,0),(0,1,0),(0,0,1)\}$ ist Erzeugendensystem von \mathbb{R}^3 , denn für beliebiges $(x,y,z)\in\mathbb{R}^3$ gilt

$$(x, y, z) = (x \otimes (1, 0, 0)) \oplus (y \otimes (0, 1, 0)) \oplus (z \otimes (0, 0, 1))$$
(7.30)

sogar Basis, da linear unabhängig. Insbesondere ist \mathbb{R}^3 endlich erzeugt.

Bemerkung Jeder VR (K, \oplus, \otimes) hat ein Erzeugendensystem, z. B. V selbst.

Frage Hat jeder endlich erzeugte VR ein Basis?

Beispiel \mathbb{R}^3 als \mathbb{R} -VR.

$$\varepsilon = \{(1,0,0), (0,0,0), (0,1,0), (3,4,0), (0,0,1)\} \text{ ist Erzeugendensystem von } \mathbb{R}^3$$
 (7.31)

Bastele Basis $B \subseteq \varepsilon$ von \mathbb{R}^3 : Gehe Vektoren der Reihe nach durch:

$$\begin{array}{ll} (1,0,0) \in B, \, \mathrm{denn} & (1,0,0) \notin \langle \emptyset \rangle = \{\mathbf{0}\} = \{(0,0,0)\} \\ (0,0,0) \notin B, \, \mathrm{denn} & (0,0,0) \in \langle \{(1,0,0)\} \rangle \\ (0,1,0) \in B, \, \mathrm{denn} & (0,1,0) \notin \langle \{(1,0,0)\} \rangle \\ (3,4,0) \notin B, \, \mathrm{denn} & (3,4,0) \in \langle \{(1,0,0),(0,1,0)\} \rangle \\ (0,0,1) \in B, \, \mathrm{denn} & (0,0,1) \notin \langle \{(1,0,0),(0,1,0)\} \rangle \\ & \rightarrow B = \{(1,0,0),(0,1,0),(0,0,1)\} \\ \end{array}$$

Es gilt $B \subseteq \varepsilon$ und B Basis von \mathbb{R}^3 . Andere Basis $B' = \{(3,4,0), (1,0,0), (0,0,1)\}.$

Satz 7.9

Jeder endlich erzeugte VR besitzt eine Basis.

Beweis

$$\varepsilon = \{v_1, \dots, v_n\} \subseteq V$$
 Erzeugendensystem für V (7.32)

Bastele B wie folgt:

- 1. Falls $v_1 \notin \langle \emptyset \rangle = \{\mathbf{0}\}$, dann $v_1 \in B$. Falls $v_1 \in \langle \emptyset \rangle = \{\mathbf{0}\}$, dann $v_1 \notin B$.
- 2. Für $i=2,\ldots,n$: Falls $v_i\in \langle \{v_1,\ldots,v_i-1\}\cap B\rangle$, dann $v_i\notin B$, andernfalls $v_i\in B$.

Satz 7.10

Sei (V, \oplus, \otimes) ein endlich erzeugter VR. Dann haben je zwei Basen die gleiche Anzahl an Elementen.

Beweis siehe A.1, Seite 75

Definition 7.11

Sei (V, \oplus, \otimes) endlich erzeugter VR. Dann heißt V n-dimensional, $n \in \mathbb{N}_0$, falls es ein Basis mit n Elementen gibt. n heißt die Dimension von V.

Kapitel 8

Lineare Algebra II: Lineare Abbildungen

8.1 Grundlagen und Isomorphismen

Definition 8.1

a) Seinen V, W K-VR. Eine Abbildung

$$f: V \to W \tag{8.1}$$

heißt linear oder Homomorphismus, falls gilt

$$f(x \oplus y) = f(x) \oplus f(y) \tag{8.2}$$

$$f(s \otimes x) = s \otimes f(x) \tag{8.3}$$

für alle
$$x, y \in V, s \in K$$
 (8.4)

Wir setzen

$$L(V, W) := \{ f : V \to W : f \text{ ist linear} \}$$

$$(8.5)$$

b) Eine bijektive lineare Abbildung heißt Isomorphismus. Falls es einen Isomorphismus zwischen V und W gibt, so heißen V und W isomorph.

Notation (ker = kernel = Kern, Im = Image = Bild)

$$f "" f : V \to W linear$$
 (8.6)

$$\ker(f) = \operatorname{Kern}(f) = f^{-1}(\{\mathbf{0}_W\}) = \{v \in V : f(v) = \mathbf{0}_W\} \subseteq V$$
 (8.7)

$$Im(f) = \{ w \in W : \text{ es gibt ein } v \in V : f(v) = w \} \subseteq W$$
(8.8)

Lemma 8.2

Seien U, V, W K-VR.

Sind $f: U \to V$ und $g: V \to W$ linear, dann ist auch $g \circ f: U \to W$ linear.

Satz 8.3

Seien V, W K-VR, $\{b_1 \dots b_n\}$ Basis von $V, \{w_1, \dots, w_n\} \subseteq W$. Dann gibt es genau eine lineare Abbildung $f: V \to W$ mit $f(b:i) = w_i$ für alle $i \in \{1, \dots, n\}$

Satz 8.4

Seien U, V, W K-VR.

- Ist $f: U \to V$ ein Isomorphismus¹ (Iso), dann ist $f^{-1}: U \to V$ auch ein Iso.
- Sind $f: U \to V$ und $g: V \to W$ Iso, dann ist auch $g \circ f: U \to W$ ein Iso.
- Auf der Menge aller K-VR ist durch

$$U \cong V :\iff U \text{ und } V \text{ sind isomorph}$$
 (8.9)

eine Äquivalenzrelation gegeben.

Satz 8.5

Seien U, V K-VR mit $\dim U = \dim V \in \mathbb{N}_0$. Dann sind U und V isomorph.

 $^{^1 {\}rm Isomorphismus} = {\rm bijektive~lineare~Abbildung}$

8.2 Kern und Bild, Dimensionsformel

Definition 8.6

Seien U, V K-VR, $f: U \to V$ linear. Dann ist

$$\ker(f) = \operatorname{Kern}(f) = \{ u \in U : f(u) = \mathbf{0}_V \}$$
(8.10)

$$Im(f) = Bild(f) = f(U)$$
(8.11)

$$= \{ v \in V : \text{ es gibt ein } u \in U \text{ mit } f(u) = v \}$$
 (8.12)

$$= \{ f(u) : u \in U \} \tag{8.13}$$

Bemerkung $\ker(f)$ ist UVR von U. $\operatorname{Im}(f)$ ist UVR von V.

Satz 8.7

Seien U, V K-VR, $f: U \to V$ linear.

1. Es gilt:

$$f$$
 ist injektiv $\iff \ker(f) = \{\mathbf{0}_U\}$ (8.14)

2. Es gilt (nach Definition von Surjektivität):

$$f$$
 ist surjektiv \iff Im $(f) = V$ (8.15)

3. Falls $U = \langle \{u_1, \dots, u_n\} \rangle$ endlich erzeugt ist, dann ist

$$Im(f) = \langle \{ f(u_1), \dots, f(u_n) \} \rangle \tag{8.16}$$

Lemma 8.8

Sei V ein endlich erzeugter K-VR, $V \neq \{\mathbf{0}\}, B = \{b_1, \ldots, b_n\} \subseteq V$. Folgende Aussagen sind äquivalent:

1. B ist Basis von V.

- 2. B ist ein linear unabhängiges Erzeugendensystem für V.
- 3. B ist linear unabhängig und $|B| = \dim(V)$.
- 4. B ist linear unabhängig und $B \cup \{v\}$ ist linear abhängig für alle $v \in V \setminus B$.
- 5. B ist ein Erzeugendensystem für V, und $B \setminus \{b_i\}$ ist kein Erzeugendensystem für alle $b_i \in B$.
- 6. Jedes $v \in V$ ist eine eindeutige Darstellung der Form

$$v = (s_1 \otimes b_1) \oplus \ldots \oplus (s_n \otimes b_n) \text{ mit } s_1, \ldots s_n \in K$$
(8.17)

7. Ist $A = \{a_1 \dots, a_k\} \subseteq V$ linear unabhängig, dann $k \leq n$, und es gibt (n - k) Elemente in B so dass A und diese Elemente $b_{i_1}, \dots, b_{i_{n-k}}$ eine Basis von V bilden.

Satz 8.9

Seien U, V K-VR, $\dim(U) = n \in \mathbb{N}_0$. Sei $f: U \to V$ linear. Dann gilt

$$\dim(U) = \dim(\ker(f)) + \dim(\operatorname{Im}(f)) \tag{8.18}$$

Korollar 8.10

Seien U, V K-VR mit $\dim(U) = \dim(V) \in \mathbb{N}_0, f: U \to V$ linear. Dann gilt

$$f$$
 injektiv \iff f surjektiv \iff f bijektiv (8.19)

8.3 Matrizen

Idee

U, V K-VR, $f: U \to V$ linear, U endlich erzeugt. f ist eindeutig bestimmt durch die Bilder einer Basis von U. $B = \{b_1, \dots, b_n\}$ Basis von U

$$\begin{bmatrix} f(b_1) & \cdots & f(b_n) \end{bmatrix} \tag{8.20}$$

8.3. MATRIZEN 69

Notation

Von jetzt an schreiben wir Vektoren von K^n "vertikal", also

$$K^{n} = \left\{ \begin{pmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{n} \end{pmatrix} : x_{i} \in K, i = 1, \dots, n \right\}$$
 mit (8.21)

$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \oplus \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} x_1 + y_1 \\ \vdots \\ x_n + y_n \end{pmatrix}$$
 (8.22)

$$s \otimes \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} s \cdot x_1 \\ \vdots \\ s \cdot x_n \end{pmatrix}, \text{ für } x_1, \dots, x_n, y_1, \dots, y_n, s \in K$$
 (8.23)

Definition 8.11

Sei $(K,+,\cdot)$ ein Körper, $m,n\in\mathbb{N}.$ Eine $(m\times n)$ -Matrix mit Einträgen aus K ist ein rechteckiges Schema

$$\begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix}$$

$$(8.24)$$

aus m Zeilen und n Spalten mit Einträgen $a_{ij} \in K, 1 \le i \le m, 1 \le j \le n$. $i \in \{1, ..., m\}$ ist Zeilenindex, $j \in \{1, ..., n\}$ ist Spaltenindex. Schreibweise: (a_{ij}) oder (a_{ij}) $\underset{1 \le i \le m}{\underset{1 \le i \le m}{1 \le i \le m}}$

Die Menge aller $(m \times n)$ -Matrizen mit Einträgen aus K bezeichnen wir mit $K^{(m \times n)}$.

Bemerkung Wir identifizieren $K^n = K^{n \times 1}$

Definition 8.12

Seien U, V zwei K-VR, $B = \{b_1, \ldots, b_n\} \subseteq U$ Basis von $U, P = \{p_1, \ldots, p_m\} \subseteq V$ Basis von V. Sei $f: U \to V$ linear. Für $j = 1, \ldots, n$

$$f(b_j) = (a_{1j} \otimes p_1) \oplus \ldots \oplus (a_{mj} \otimes p_m)$$
(8.25)

mit
$$a_{ij} \in K$$
 für alle $i \in \{1, \dots, m\}, j \in \{1, \dots, n\}$ (8.26)

Dann heißt (a_{ij}) $1 \le i \le m$ die Darstellungsmatrix von f bezüglich der Basen B und P.

Bemerkung "In der Darstellungsmatrix stehen in den Spalten die Basen der Basisvektoren."

Beispiele Sei
$$f: \mathbb{R}^2 \to \mathbb{R}^3, f\left(\begin{pmatrix} x \\ y \end{pmatrix}\right) = \begin{pmatrix} x+y \\ -y \\ x-y \end{pmatrix}$$

• Betrachte Standardbasen $B = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \subset \mathbb{R}^2$,

$$P = \left\{ \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \begin{pmatrix} 0\\1\\0 \end{pmatrix}, \begin{pmatrix} 0\\0\\1 \end{pmatrix} \right\} \subset \mathbb{R}^3$$

Dann

$$f\left(\begin{pmatrix}1\\0\end{pmatrix}\right) = \begin{pmatrix}1\\0\\1\end{pmatrix} = 1 \otimes \begin{pmatrix}1\\0\\0\end{pmatrix} \oplus 0 \otimes \begin{pmatrix}0\\1\\0\end{pmatrix} \oplus 1 \otimes \begin{pmatrix}0\\0\\1\end{pmatrix}$$
(8.27)

$$f\left(\begin{pmatrix}0\\1\end{pmatrix}\right) = \begin{pmatrix}1\\-1\\-1\end{pmatrix} = 1 \otimes \begin{pmatrix}1\\0\\0\end{pmatrix} \oplus (-1) \otimes \begin{pmatrix}0\\1\\0\end{pmatrix} \oplus (-1) \otimes \begin{pmatrix}0\\0\\1\end{pmatrix} \tag{8.28}$$

$$\rightarrow \text{Darstellungsmatrix} \begin{bmatrix} 1 & 1 \\ 0 & -1 \\ 1 & -1 \end{bmatrix} \in \mathbb{R}^{3 \times 2}$$
 (8.29)

8.3. MATRIZEN 71

• Betrachte $B = \left\{ \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \begin{pmatrix} 1 \\ -1 \end{pmatrix} \right\} \subset \mathbb{R}^2, P = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix} \right\} \subset \mathbb{R}^3$ Es gilt

$$f\left(\begin{pmatrix}1\\1\end{pmatrix}\right) = \begin{pmatrix}2\\-1\\0\end{pmatrix} = 2 \otimes \begin{pmatrix}1\\0\\0\end{pmatrix} \oplus (-1) \otimes \begin{pmatrix}0\\1\\0\end{pmatrix} \oplus 0 \otimes \begin{pmatrix}0\\0\\1\end{pmatrix} \tag{8.30}$$

$$f\left(\begin{pmatrix}1\\-1\end{pmatrix}\right) = \begin{pmatrix}0\\1\\2\end{pmatrix} = 0 \otimes \begin{pmatrix}1\\0\\0\end{pmatrix} \oplus 1 \otimes \begin{pmatrix}0\\1\\0\end{pmatrix} \oplus 2 \otimes \begin{pmatrix}0\\0\\1\end{pmatrix} \tag{8.31}$$

$$\rightarrow \text{Darstellungsmatrix} \begin{bmatrix} 2 & 0 \\ -1 & 1 \\ 0 & 2 \end{bmatrix} \in \mathbb{R}^{3 \times 2}$$
 (8.32)

• Betrachte
$$B = \left\{ \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 0 \\ 1 \end{pmatrix} \right\} \subset \mathbb{R}^2, P = \left\{ \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\} \subset \mathbb{R}^3$$
Es gilt

$$f\left(\begin{pmatrix}1\\0\end{pmatrix}\right) = \begin{pmatrix}1\\0\\1\end{pmatrix} = 1 \otimes \begin{pmatrix}1\\0\\0\end{pmatrix} \oplus (-1) \otimes \begin{pmatrix}1\\1\\0\end{pmatrix} \oplus 1 \otimes \begin{pmatrix}1\\1\\1\end{pmatrix} \tag{8.33}$$

$$f\left(\begin{pmatrix}0\\1\end{pmatrix}\right) = \begin{pmatrix}1\\-1\\-1\end{pmatrix} = 2 \otimes \begin{pmatrix}1\\0\\0\end{pmatrix} \oplus 0 \otimes \begin{pmatrix}1\\1\\0\end{pmatrix} \oplus (-1) \otimes \begin{pmatrix}1\\1\\1\end{pmatrix} \tag{8.34}$$

$$\rightarrow \text{Darstellungsmatrix} \begin{bmatrix} 1 & 2 \\ -1 & 0 \\ 0 & -1 \end{bmatrix} \in \mathbb{R}^{3 \times 2}$$
 (8.35)

Beobachtung Sei $f: K^n \to K^m$ linear mit Darstellungsmatrix $A = (a_{ij})$ $1 \le i \le m$ $1 \le j \le n$

bzgl. Standardbasen. Dann gilt für $x = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in K^n$

$$f(x) = f\left(x_1 \otimes \begin{pmatrix} 1\\0\\\vdots\\0 \end{pmatrix} \oplus \ldots \oplus x_n \otimes \begin{pmatrix} 0\\\vdots\\0\\1 \end{pmatrix}\right)$$
(8.36)

$$\stackrel{f \text{ linear}}{=} x_1 \cdot f \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix} \oplus \ldots \oplus x_n \otimes f \begin{pmatrix} 0 \\ \vdots \\ 0 \\ 1 \end{pmatrix}$$
(8.37)

$$= x_1 \otimes \begin{pmatrix} a_{11} \\ \vdots \\ a_{m1} \end{pmatrix} \oplus \ldots \oplus x_n \otimes \begin{pmatrix} a_{1n} \\ \vdots \\ a_{mn} \end{pmatrix}$$
 (8.38)

Definition 8.13

Wir definieren für $(a_{ij})=A\in K^{m\times n}$ und $\begin{pmatrix} x_1\\ \vdots\\ x_n \end{pmatrix}=x\in K^n$

$$A \cdot x = \begin{bmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & \ddots & \vdots \\ a_{m1} & \cdots & a_{mn} \end{bmatrix} \cdot \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} a_{11} \cdot x_1 + \cdots + a_{1n} \cdot x_n \\ \vdots \\ a_{m1} \cdot x_1 + \cdots + a_{mn} \cdot x_n \end{bmatrix}$$
(8.39)

Satz 8.14

a) Sei $B \in K^{m \times n}.$ Dann ist die Abbildung $g: K^n \to K^m, g(x) := B \cdot x$ linear.

8.3. MATRIZEN 73

b) Sei $f:K^n\to K^m$ linear. Dann gibt es eine Matrix $A\in K^{m\times n}$ so dass $f(x)=A\cdot x$ für alle $x\in K^n$.

Definition 8.15

a) Für $A \in K^{m \times n}$, $B \in K^{l \times m}$ definieren wir $BA \in K^{k \times n}$ als

$$(B \cdot A)_{rs} = \sum_{i=1}^{m} b_{ri} \cdot a_{is}, r \in \{1, \dots, l\}, s \in \{1, \dots, n\}$$
(8.40)

"Zeile mal Spalte"

b) Für $A, A' \in K^{m \times n}$ definieren wir $A + A' \in K^{m \times n}$ als

$$(A+A')_{ij} = a_{ij} + a'_{ij} (8.41)$$

Bemerkung

Falls	A	Darstellungsmatrix zu	$f:K^n\to K^m$
	A'	Darstellungsmatrix zu	$f':K^n\to K^m$
	B	Darstellungsmatrix zu	$g:K^m \to K'$
dann	(A + A')	Darstellungsmatrix zu	$f + f' : K^n \to K^m$
	$B \times A$	Darstellungsmatrix zu	$g \circ f : K^n \to K'$

Anhang A

Beweise

A.1 zu Kapitel 8 Lineare Algebra II: Lineare Abbildungen

Beweis Satz 7.10

Satz 7.10 (7.5, Seite 64)

Sei (V, \oplus, \otimes) ein endlich erzeugter VR. Dann haben je zwei Basen die gleiche Anzahl an Elementen.

Idee des Beweises: "Basisaustausch".

Beispiel \mathbb{R}^2 als \mathbb{R} -VR, $B = \{(1,0),(0,1)\}$ Basis. Betrachte $A = \{(1,1),(5,3),(3,5)\}$. Beobachtung: $A \nsubseteq \langle \{(1,0)\} \rangle$ Wir haben z. B.

$$\underbrace{(1,1)}_{\in A} = (1,0) \oplus (0,1) \tag{A.1}$$

$$\Longrightarrow (0,1) = (1,1) \oplus [(-1) \otimes (0,1)] \tag{A.2}$$

$$\Longrightarrow \{(1,1),(0,1)\}$$
 ist Erzeugendensystem von \mathbb{R}^2 (A.3)

Nächster Schritt: Es gilt

$$(5,3) = (5 \otimes (1,1)) \oplus ((-2) \otimes (0,1)) \implies (0,1) \in \langle \{(5,3),(1,1)\} \rangle$$
 (A.4)

$$\Longrightarrow \{(5,3),(1,1)\}$$
 ist Erzeugendensystem von \mathbb{R}^2 (A.5)

$$\Longrightarrow (3,5) \in \langle \{(5,3),(1,1)\} \implies A \text{ ist linear abhängig}$$
 (A.6)

Beweis des Satzes: Wir zeigen: Falls $\{b_1, \ldots, b_n\}$, $n \in \mathbb{N}_0$ ein Erzeugendensystem von V ist und $A = \{a_1, \ldots, a_{n+1}\}$, |A| = n+1, dann ist A linear abhängig, also insbesondere keine Basis.

Vollständige Induktion nach n:

I. A.: n = 0

$$V = \langle \emptyset \rangle = \{ \mathbf{0} \} \implies A = \{ \mathbf{0} \}$$
 (einzige Teilmenge von V mit einem Element)
$$(A.7)$$

$$\implies A \text{ linear abhängig}$$

$$(A.8)$$

I. V.: Falls $\tilde{V} \subseteq V$ von k Vektoren aus V erzeugt wird mit $k \leq n \in \mathbb{N}_0$ beliebig, aber fest, dann ist je (k+1) Vektoren aus \tilde{V} linear abhängig.

I. S.: Sei
$$\tilde{V} = \langle \{b_1, \dots, b_{n+1}\} \rangle, A = \{a_1, \dots, a_{n+2}\}, |A| = n+2$$

Angenommen A ist linear unabhängig.

Zwei Möglichkeiten:

1.
$$\underbrace{A}_{2 \text{ Vektoren}} \subseteq \{\{b_2, \dots, b_{n+1}\}\} \implies \text{nach I. V. ist } A \text{ linear unabhängig. } 4$$

2. Es gibt ein $a \in A$, o. E. a_1 (umnummerieren möglich), so dass

$$a_1 \in \langle \{b_2, \dots, b_{n+1}\} \rangle \tag{A.9}$$

¹ohne Einschränkung

 \implies Jede Linearkombination $a_1=(s_1\otimes b_1)\oplus\ldots\oplus(s_{n+1}\otimes b_{n+1}), s_i\in K$ erfüllt $s_1\neq 0$

$$\implies b_1 = s_1^{-1} \cdot a_1 - s_1^{-1} \cdot [(s_2 \otimes b_2) \oplus \ldots \oplus (s_{n+1} \otimes b_{n+1})] \implies \{a_1, b_2, \ldots, b_{n+1}\}$$
(A.10)

Falls
$$\underbrace{\{a_2,\ldots,a_{n+1}\}}_{n+1 \text{ Vektoren}} \subseteq \underbrace{\langle\{g_1,b_3,\ldots b_{n+1}\}}_{\text{Vektoren}}$$
, dann sind $a_2,\ldots a_{n+2}$ linear abhän-

gig. 4

Ähnlich wie oben: o. E.

$$\{a_1, a_2, b_3, \dots, b_{n+1}\}$$
 Erzeugendensystem (A.11)

Rest: Übungsblatt