Analysis of Algorithms Dynamic Programming

Andres Mendez-Vazquez

February 14, 2018

1 / 125

Outline

- Dynamic Programming
 - Bellman Equation
 - Elements of Dynamic Programming
 - Rod Cutting
- 2 Elements of Dynamic Programming
 - Optimal Substructure
 - Overlapping Subproblems
 - Reconstruction of Subproblems
 - Common Subproblems
- 3 Examples
 - Longest Increasing Subsequence
 - Matrix Multiplication
 - Longest Common Subsequence

		_					
4		H٠	VC	r	ci	c	65
	' '	_	\sim	-1	C.	9	C

Votes			
Votes			
Votes			
Notes			

History

Dynamic Programming

The dynamic programming was developed in 1940's by Richard Bellman at RAND Corporation to solve problems by taking the best decisions one after another.

You can think as

- Sending a recursive function to do different jobs.
- ② Then, at the top of the recursion decide which job is the best one.

Actually the name comes from two notions

- **Dynamic** was chosen by Bellman to capture the temporal part of the problem.
- **Programming** referred to finding the optimal program in military logistic.

cinvestav

Notes

2 / 105

Bellman Equation

Definition

$$V(x_0) = \max_{a_0} [F(x_0) + \beta V(x_1)]$$

s.t.
$$a_0 \in \Gamma(x_0), x_1 = T(x_0, a_0)$$

- ullet Where $\Gamma(x_0)$ is a set of actions depend on the current state.
- $T(x_0, a_0)$ is a transition function.
- $F(x_0)$ payoff.

Notes

Looks Terrifying!!! However It is quite simple!!! Elements of Dynamic Programming Define the Optimal Structure

Notes		

Notes

Define the Recursion	
Recursively define the value of an optimal solution.	
Compute the Solution	
Compute the value of an optimal solution, typically bottom-up.	
IMPORTANT!!!	
We use an extra memory to stop the recursion!!!	
	dryest
	8 / 13

Characterize the structure of an optimal solution.

Elements of Dynamic Programming

Finally Rebuild the Optimal Solution

Construct an optimal solution from computed information.

9 / 125

Rod cutting

Problem

Given a rod of length n inches and a table of prices p_i for i=1,2,...,n, determine the maximum revenue r_n obtainable by cutting up the rod and selling the pieces.

Rod Cutting table

length i	1	2	3	4	5	6	7	8	9	10
price p_i	1	5	8	9	10	17	17	20	24	30

1
cinvestav

Notes	
Notes	

Characterize the structure of an optimal solution

Example

For example for a rod of size 10, we could cut the rod in 3 parts, 10=4+3+3.

Thus

Then, we can assume that an optimal solution cuts the rod in k pieces, $1 \le k \le n$ i.e. k-1 cuts.

Then

What?

12 / 125

Thus

The length of each piece can be numbered as

 i_j with $1 \le j \le k$

The total size of the rod is then

$$n = i_1 + i_2 + \dots + i_k$$

Thus, the max revenue

$$r_n = p_{i_1} + p_{i_2} + \dots + p_{i_k}$$

Notes		

Notes			

How can you obtain the recursion?	
,	
What about taking a decision each time?	
In how to cut the rod!	
For example	
10	
5 5	
	a s
	cinyestay
	15 / 125

Votes			
Notes			

One more cut

10
5 5 5
2 3 4 1

Yes
Recursion

16 / 125

Thus, What can we do next?

We need to take decisions

One cut at each step.

For example

- $n = i_1 + i_{n-1} \Longrightarrow r_n = r_1 + r_{n-1}$
- $n = i_2 + i_{n-2} \Longrightarrow r_n = r_2 + r_{n-2}$
- 4 . .

In general

$$n = i_j + i_{n-j} \Longrightarrow r = r_j + r_{n-1} \text{ for } j = 1, 2, ..., n-1$$

-- /--

Notes			

Notes			

Thus, we take a final decision!!!

Thus

Which One?

The Largest One

$$r_n = \max\{p_n, r_1 + r_{n-1}, r_2 + r_{n-2}, ..., r_{n-1} + r_1\}$$

18 / 125

Some stuff about the optimal solution

Did you notice the following?

Once you get an optimal solution!!! The Most Revenue!!!

The sub-solutions are optimal

Why?

Use contradiction

- 1 Imagine that a sub-solution has a better solution...
- ② Then, you can substitute it in the original sub-solution.
- 3 Thus, you get something better than the original one.

Votes			
Votes			

Formally: Cut and Paste

Given

$$n = i_1 + i_2 + \dots + i_k$$

Imagine, we split the problem in two parts

$$A_1 = \{i_1, i_2, ..., i_l\} \text{ and } A_2 = \{i_{l+1}, i_2, ..., i_k\}$$

Properties

Now imagine that exist a $A_{1}^{'}=\left\{ i_{1}^{'},i_{2}^{'},...,i_{l}\right\}$ such that:

$$r_{n}^{'} = p_{i_{1}^{'}} + p_{i_{2}^{'}} + \ldots + p_{i_{l^{'}}} > r_{n} = p_{i_{1}} + p_{i_{2}} + \ldots + p_{i_{l}}$$

20 / 125

Then

Then, we have a set of cuts

 $A_1^{'} \cup A_2$ with better revenue than the original cut-set!!!

Clearly

Contradiction!!!

Notes			
Notes			
Votes			
Notes			
Notes			
Votes			
Votes			
Votes			
Notes			

Rewrite the equation to simplify recursion

Did you notice that?

We can add a dummy variable $r_0=0$

In addition, we have that

$$r_i = p_i \text{ for } i = 1, 2, ..., n$$

We can then apply this...

- $2 r_1 + r_{n-1} = p_1 + r_{n-1}$
- **4** ...

22 / 125

Then

We have that

$$r_n = \max_{1 \le i \le n} \left(p_i + r_{n-i} \right)$$

So we need to convert this into something more programmable

You can define $\operatorname{Cut-Rod}(p,n-i)$ where

- ullet p is an array with the table values.
- \bullet n-i is the size of the rod when going into the recursion.

tes		

Finally

Code

 $\mathsf{Cut} ext{-}\mathsf{Rod}(p,n)$

- **1** if n == 0
- 2 return 0
- $q = -\infty$
- $q = \max\left\{q, p\left[i\right] + \mathsf{Cut}\text{-}\mathsf{Rod}\left(p, n-i\right)\right\}$
- $\mathbf{0}$ return q

24 / 125

How the recursion tree for this code looks like?

Notes			

Notes			

Recursion

We have finally

$$T(n) = \begin{cases} 1 & \text{if } n = 0\\ 1 + \sum_{j=0}^{n-1} T(j) & \text{if } n > 0 \end{cases}$$
 (1)

- 1 for calling into the root of the tree.
- \bullet T(j) counts the number of call (Recursive included)

How many possible decisions are being considered when cutting?

Decision	cut at 1	cut at 2	• • • •	cut at n-1
Which One?	0 or 1	0 or 1		0 or 1

26 / 125

What the tree is telling us?

The number of possible paths is equal to the number of leaves

 \bullet We have 2^{n-1} paths, which is equal to the number of leaves

Then

• The recursion consider explicitly all possible decisions

It is possible to prove by induction that

$$T\left(n\right) = 2^{n} \tag{2}$$

27 / 12!

Notes			
Notes			
Votes			
Notes			
Notes			
Notes			
Votes			
Notes			
Votes			
Notes			

How we solve this?

We need something better

Dynamic programming approach!!!

How?

- This is done by computing each sub-problem only once and storing its solution in some way.
- This is known as time-memory trade-off, and the savings may be dramatic.

How and Why

• Dynamic programming solution runs in polynomial time when the number of distinct subproblems involved is polynomial in the input size and they can be solved in polynomial time.

First Approach: Top-down with Memoization

Basics in this approach

- We write the procedure recursively in a natural manner.
- 2 However, we save the result of each subproblem (Usually in an array or hash table)

Then

Each time the procedure tries to solve a subproblem it first checks to see whether it has previously solved this subproblem.

We can say the following

- We say that the recursive procedure has been Memoized.
- it "remembers" what results it has computed previously.

Notes			

We require an Auxiliary Function to Accomplish this

Code

Memoized-Cut-Rod(p, n)

- $\bullet \ \, \text{Let} \,\, r \, [0..n] \,\, \text{be a new array}$
- $r[i] = -\infty$
- lacktriangledown return Memoized-Cut-Rod-Aux(p,n,r)

30 / 125

${\sf Memoized\text{-}Cut\text{-}Rod\text{-}Aux}(p,n,r)$

Code

 ${\sf Memoized\text{-}Cut\text{-}Rod\text{-}Aux}(p,n,r)$

- $oldsymbol{2}$ return r[n]
- **3** if n == 0
- q = 0
- for i = 1 to n
- $q = \max \left\{ q, p\left[i\right] + \mathsf{Memoized\text{-}Cut\text{-}Rod\text{-}Aux}\left(p, n-i, r\right) \right\}$
- **3** r[n] = q
- $oldsymbol{0}$ return q

18	2	Š
2	4	į
	عو	
cin	veste	1

Votes			

Votes			

The Recursion Tree of Memoized-Cut-Rod Tree for n = 5

т	П.		_
- 1	n	ш	C
		ıu	3

We have that

- It solves each subproblem just once.
- $\bullet \$ It solves subproblems for sizes i=0,1,...,n

Thus

ullet To solve a problem of size i the for loop in line 6 of Memoized-Cut-Rod-Aux iterates i times.

united guestingers

Notes			
lotes			

Notes			

Complexity

Add the works

We have then

$$1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$$
 (3)

Then, we have

 $\Theta(n^2)$.

Notes		

What about the Bottom-Up approach?

Simpler Solution

How?

The natural order of solving

A problem of size i is smaller than a subproblem of size j, if i < j.

It is simpler to solve problems in this orden

j = 0, 1, 2, ..., n in order of increasing size.

36 / 125

${\sf Bottom\text{-}Up\text{-}Cut\text{-}Rod}(p,n)$

Code

 $\mathsf{Bottom\text{-}Up\text{-}Cut\text{-}Rod}(p,n)$

- Let r[0..n] be a new array
- r[0] = 0
- $q = -\infty$
- for i = 1 to j
- $q = \max\{q, p[i] + r[j-i]\}$
- $\qquad \qquad r\left[j\right] =q$
- \circ return r[n]

-5	2.
G C	N
ciny	estev

Notes			
lotes			
iotes			

Reconstructing the Solution
How, we can do that?
Any Ideas?
We need to
Store each choice of the solution some way
So
We can reconstruct the solution path
City editory .

Notes			
Notes			

Final Code

Code

Extended-Bottom-Up-Cut-Rod(p, n)

- Let r[0..n] and s[0..n] be new arrays
- **2** r[0] = 0
- $q = -\infty$
- **6** if q < p[i] + r[j-i]
- q = p[i] + r[j-i]
- s[j] = i
 - r[j] = q
- $oldsymbol{0}$ return r and s

40 / 125

Printing Code

Code

 $\mathsf{Print} ext{-}\mathsf{Cut} ext{-}\mathsf{Rod} ext{-}\mathsf{Solution}(p,n)$

- $\textcircled{1} \ (r,s) = \texttt{Extended-Bottom-Up-Cut-Rod}(p,n)$
- $\mathbf{2}$ while n>0
- \circ print s[n]

Notes		

Notes			

Example

From the previous problem

length i	1	2	3	4	5	6	7	8	9	10
price p_i	1	5	8	9	10	17	17	20	24	30

Thus

i	0	1	2	3	4	5	6	7	8	9	10
r[i]	0	1	5	8	10	13	17	18	22	25	30
s[i]	0	1	2	3	2	2	6	1	2	3	10

42 / 125

Optimal Substructure

In dynamic programming

A first step toward the solution is characterizing the problem and finding the optimal substructure.

.53.
(F)
cinvestav

lotos				
lotes				
Votes				
Jotes				
lotes				
Jotes				
Votes				
Jotes				
Votes				
Jotes				
Votes				
Jotes				
Votes				
Jotes				

We have the following steps

First

The problem consists in making choices.

Second

Given each problem, you are given a choice that leads to a solution.

Third

Each solution allows us to determine which subproblems need to be solved, and how to best characterize the resulting space of subproblems.

45 / 125

We have the following steps

Fourth

Use cut-and-paste to prove by contradiction that the optimal subproblem structure exists.

ক্ষেত্ৰ
Contract of the second
cinvestav

Votes		

Now using the following problems

Unweighted shortest path

Find a path from u to v consisting of the fewest edges.

Unweighted longest simple path

Find a simple path from u to v consisting of the most edges.

47 / 125

We can explain subtleties about the Optimal Substructure

Unweighted shortest path

It has an optimal substructure

Why?

First, given an optimal shortest path t between p and q.

Notes			
Motes			
Notes			
Notes			
Votes			
Notes			
Notes			
Notes			
Votes			
Notes			

How do we prove this?

First

Assume an intermediate point z such that there are two paths t_1 and t_2 , $t=t_1\cup t_2$

By contradiction

Thus, by contradiction, assume that there is a shorter path between z and q, t_2^1 . Then, $|t_1 \cup t_2^1| < t \bot$ Quod Erat Demonstrandum (QED).

49 / 125

However

Some problems do not have the optimal substructure

The longest unweighted path

Example

Notes		

Notes			

Examples

First: Possible path between q and t

$$q \longrightarrow r \longrightarrow t$$

But

 $q \longrightarrow r$ is not the longest simple path from q and r nor the path $r \longrightarrow t$

Example of largest simple path for $q \longrightarrow r$

$$q \longrightarrow s \longrightarrow t \longrightarrow r$$

51 / 125

What the problem shows

We have that

- It not only does the problem lack optimal substructure.
 - ► We cannot necessarily assemble a "legal" solution to the problem from solutions to subproblems.

It is more

- No efficient dynamic programming algorithm for this problem has ever been found.
 - ▶ In fact, this problem is NP-complete.

Notes				
Notes				
Notes				
Notes				
Votes				
Notes				

Then, How can we use the DAG?

Get the Space Problem

- Use the elements of the space.
- Build a Graph using all the decisions that can be made.
- If you have a DAG!!! You have a optimal substructure!!!

What is the difference?

In the Unweighted Shortest Path the problems are independent

We mean that the solution to one sub-problem does not affect the solution of another subproblem.

In the Unweighted Longest Path

Remember vertices q and r in the second case!!!

Question

Then, Why the USP are independent?

lotes			
Votes			
lotes			
Votes			
Jotes			
lotes			
Votes			
Jotes			
Jotes			

Overlapping Subproblems

Why

This happens because the recursive solution revisits the same subproblem multiple times.

This is the main advantage of dynamic programming

It takes advantage of this by solving and storing the solution.

Properties

A dynamic-programming solution runs in polynomial time when the number of distinct subproblems involved is polynomial in the input size and they can be solved in polynomial time.

56 / 125

Overlapping Subproblems

We have two ways of solving the problem

- Top-down with Memoization.
- Bottom-up.

(Fg)
cinvestav

lotes			
Votes			
Notes			

Reconstruction of Subproblems

To reconstruct

We use a table to store the choices such that we can reconstruct those of the sub-problem.

59 / 125

Common Subproblems

Something Notable

Finding the right subproblem takes creativity and experimentation.

However

There are a few standard choices that arise repeatedly in dynamic programming.

	6	2	
a	~	×	3
b	'n	'n	5
-	_	-	
54	10.0	- Constant	

N			
Notes			
Notes			

Number of Subproblems is Linear

We have the following input

The input is $x_1, x_2, ..., x_n$.

Subproblems

 $x_1, x_2, ..., x_i$

Example

 x_1 x_2 x_3 x_4 x_5 x_6 x_7 x_8 x_9 x_{10}

Therefore

The number of subproblems is therefore linear.

62 / 125

Number of Subproblems is O(nm)

Input

The input is $x_1, x_2, ..., x_n$ and $y_1, y_2, ..., y_m$.

Subproblems

 $x_1, x_2, ..., x_i$ and $y_1, y_2, ..., y_j$.

Example

Therefore

The number of subproblems is O(mn).

ostav

Notes		

Notes	5			

Votes			
Votes			

Notes			

Question
How Many Subproblems do you have?
Any Idea?
STREET,

Notes			

Definition

Input

A sequence $a_1, a_2, ..., a_n$

A subsequence

It is any subset of these numbers taken in order $a_{i_1}, a_{i_2}, ..., a_{i_k}$ where $1 \le i_1 < i_2 < \cdots < i_k \le n$.

Thus

An increasing subsequence is one in which the numbers are getting strictly larger.

69 / 125

Definition

Output

The task is to find the increasing subsequence of greatest length.

Example

5 2 8 6 3 6 9 7

	5	2	_
ß	7	9	a
7	4	Į,	ζ
-	7	-	
95	dest (p.		

Votes		
lotes		

The Graph of increasing subsequences

To better understand the solution space, we can create the graph of all permissible transitions

- ullet First, establish a node i for each element a_i , and add directed edges (i,j) whenever possible.
- i.e. Whenever i < j and $a_i < a_j$.

Notice the following

We have

The graph is a DAG

Thus

- There is a one-to-one correspondence between increasing subsequences and paths in this DAG.
- Thus, find the longest path in the DAG.

cinvestav

Notes Notes

Formulation

Something Notable

If we choose a number a_i to be in the longest increasing subsequence

We ask if the there is an edge to another

Is $(i,j) \in E$?

Thus, we need to choose all of them!!!

This can be done with a for loop

73 / 125

Thus

We start at a certain j

Then, we look at the previous i with $1 \le i \le j-1$

Here is the recursion for $\forall A[i] < A[j]$

$$L\left[j\right] = \begin{cases} 1 & \text{if there is no edge } (i,j) \in E \\ 1 + \max\left\{L\left[i_1\right], L\left[i_2\right], ..., L\left[i_h\right]\right\} & \text{For } (i_k, j) \in E, 1 \le k \le h \end{cases} \tag{4}$$

Votes			
Notes			

When is there an edge between i_k and j? 1 2 · · · (j-2) (j-1) (j)

75 / 125

Clearly, this needs to be implemented in a machine

We have then that

A is an array that contains numbers indexed from 1 to n

Then, we have that

Instead of using $(i_k, j) \in E$ we use $A[i_k] < A[j]$

Instead of max

We use a loop and something like q < temp for it

Votes		

Recursive Function

The final recursive code

Recursive-Longest-Subsequence(A, n)

- q = 1
- \bigcirc // Assume n as part of your solution

- **5** t = Recursive-Longest-Subsequence(A, i)
- $\qquad \qquad \text{if } A[i] < A\left[n\right] \text{ and } q < 1 + t$
- q = 1 + t
- $oldsymbol{0}$ return q

77 / 125

What about the Complexity?

Recursion Tree - Can somebody Guess the Complexity?

Notes		

Notes			

How we save in recursive calls

First

Let L[1..n] an array to store the values the longest subsequence

79 / 125

Bottom-Up Solution

Code

 ${\sf Bottom\text{-}Up\text{-}Longest\text{-}Subsequence}(A,n)$

- $\bullet \ \, \mathsf{Let} \,\, L\left[1..n\right]$

- $L\left[i\right] = 1$

- $\label{eq:local_equation} \ensuremath{\mathbf{O}} \quad \text{if } A[i] < A[j] \text{ and } \\ L\left[j\right] < L\left[i\right] + 1$
- $L\left[j\right] = L\left[i\right] + 1$

- $\mathbf{0} \qquad max = L\left[i\right]$
- \bigcirc return max

Step 1

 An array to store the values the longest subsequence.

Step 2

• A measure about the longest subsequence.

Step 3

• Initialize everything to 1 (Itself).

Step 4

We know that the

Notes			
Votes			
10105			

What about backtracking the Solution

We can do the following

You can have an array S[1..n] initialized to the sequence 1, 2, ..., n

Thus, each time

A[i] < A[j] and L[j] < L[i] + 1 is true, we set S[j] = i.

Then

After returning the L and S we can get the index of the \max to backtrack the answer.

81 / 125

Definition of The Problem

Input

A sequence of Matrices $\langle A_1, A_2, ..., A_n \rangle$

Output

We want a fully parenthesized product, where the final result is a single matrix or the product of two fully parenthesized matrix products.

Why

Take in consideration the following algorithm

Votes				
Votes				
Notes				
Votes				
Votes				
Votes				
Notes				
Notes				
Notes				

Why? Look at this pseudocode

MATRIX-MULTIPLY(A,B)

- \bullet if $A.columns \neq B.rows$
- error "incompatible dimensions"
- \bullet else let C be a new $A.rows \times B.columns$ matrix
- for i = 1 to A.rows
- for for j = 1 to B.columns
- $c_{ij} = 0$
- for k = 1 to A.columns
- $c_{ij} = c_{ij} + a_{ik} \cdot b_{kj}$
- $oldsymbol{0}$ return C

Then

If A is $N \times M$ and B is a $M \times P$ then the cost is $N \cdot M \cdot P$.

84 / 125

Example of Matrix Multiplications

Given the following matrices

- A, B, C with 10×100 , 100×5 and 5×50
- \bullet Cost in scalar operations of (AB) is $10 \cdot 100 \cdot 5 = 5000$
- \bullet Cost in scalar operations of (BC) is $100 \cdot 5 \cdot 50 = 25000$

Then

Cost in scalar operations of (AB)C is $5000+10\cdot 5\cdot 50=7500$ Cost in scalar operations of A(BC) is $25000+10\cdot 100\cdot 50=75000$

Votes			
Notes			
Votes			
Notes			
Notes			
Votes			
Notes			

Matrix-Chain Multiplication

Problem

Given a chain $\langle A_1,A_2,...,A_n\rangle$ of n matrices, where A_i has dimension $p_{i-1}\times p_i$. We want to fully parenthesize the product $A_1A_2...A_n$ to minimize the number of scalar multiplications

86 / 125

Solving by brute force

Count all the possible parenthesizations

$$P(n) = \begin{cases} 1 & \text{if } n = 1\\ \sum\limits_{k=1}^{n-1} P(k)P(n-k) & \text{if } n \ge 2 \end{cases}$$

Which is the sequence of Catalan Numbers which grows

$$\Omega\left(\frac{4^n}{n^{\frac{3}{2}}}\right)$$

cinvestav

Notes				
Notes				

Did you notice the following?

If we have the following sequence $A_{k-1}(A_kA_{k+1})$

We have that A_{k-1} has dimension $p_{k-2} \times p_{k-1}$, A_k has dimension $p_{k-1} \times p_k$ and A_{k+1} has dimension $p_k \times p_{k+1}$.

The final matrix has dimensions

It has dimension $p_{k-2} \times p_{k+1}$.

Properties

With cost of multiplication:

- For the first parenthesis $p_{k-1}p_kp_{k+1}$ with final dimension $p_{k-1} \times p_{k+1}$.
- ② For A_{k-1} against what is inside parenthesis $p_{k-2}p_{k-1}p_{k+1}$ with final dimensions $p_{k-2} \times p_{k+1}$.
- \bullet Total cost is then $p_{k-2}p_{k-1}p_{k+1}+p_{k-1}p_kp_{k+1}$

88 / 125

In addition

Look at the following multiplication

$$(A_i \cdots A_k) (A_{k+1} \cdots A_j)$$

We have the following

- $(A_i \cdots A_k)$ is a matrix with dimensions $p_{i-1} \times p_k$
- 2 $(A_{k+1}\cdots A_j)$ is a matrix with dimensions $p_k imes p_j$

The total cost of this multiplication is

 $m\left[i,k\right]+m\left[k+1,j\right]+p_{i-1}p_{k}p_{j}$ (In addition, you want to minimize the cost)

Votes			
Notes			
Votes			
Notes			

Then use the Cut-and-Paste to probe optimal substructure

Given i < j

Suppose the optimal paranthesization of

$$A_i, A_{i+1}, ..., A_j$$

USE CONTRADICTION!

90 / 125

Now, the Recursion can be wrote!!!

Given that m[i,j] is the minimum number of scalar multiplications

$$m[i,j] = \left\{ \begin{array}{ll} 0 & \text{if } i == j \\ \min_{i \leq k < j} \{m[i,k] + m[k+1,j] + p_{i-1}p_kp_j\} & \text{if } i < j \end{array} \right.$$

B
cinvestav

Notes			
Votes			
Votes			
Notes			

The Recursive Solution

Recursive Algorithm

- Recursive-Matrix-Chain(p, i, j)
- \bigcirc if i == j
- o return 0
- $m[i,j] = \infty$

- $\hbox{ Recursive-Matrix-Chain}(p,k+1,j) + \dots$
- $p_{i-1}p_kp_j$
- $\mathbf{0} \qquad \qquad m\left[i,j\right] = q$
- lacktriangledown return m[i,j]

92 / 125

Again!!! Overlapping substructure

Notes			

Notes		

This is a nightmare

We have the following recursion

$$T(1) \ge 1,$$

$$T(n) \ge 1 + \sum_{k=1}^{n-1} [T(n-k) + T(k) + 1] \text{ for } n > 1.$$

94 / 125

First

Did you notice?

 $T\left(i\right)$ appears once as $T\left(k\right)$ and once as $T\left(n-k\right)$ for i=1,2,...,n-1.

We have then

$$T(n) \ge 1 + 2 \sum_{i=1}^{n-1} [T(i)] + n - 1.$$

Votes		
votes		

N	ites		
_			
_			
_			
_			
_			
_			

Then

We decide to guess $T\left(n ight) =\Omega \left(2^{n} ight)$

- \bullet We shall guess the following $T\left(n\right)\geq2^{n-1}$ for all $n\geq1$
- First for n=1 $T\left(1\right)\geq1=2^{0}$

96 / 125

Then

Now, for $n \ge 2$

$$T(n) \ge 2 \sum_{i=1}^{n-1} [T(i)] + n$$

$$= 2 \sum_{i=1}^{n-1} 2^{i-1} + n$$

$$= 2 \sum_{i=0}^{n-2} 2^{i} + n$$

$$= 2 \left(\frac{2^{n-1} - 1}{2 - 1}\right) + n$$

$$= 2 \left(2^{n-1} - 1\right) + n$$

$$= 2^{n} - 2 + n$$

$$\ge 2^{n}$$

$$\ge 2^{n-1}$$

Notes			

Notes			

Thus Notes We want to avoid to calculate the same value many times Use bottom up approach and store values at each step. We get two arrays or tables Notes The first one, mIt is used to hold the information about the cost of multiplying the matrices The second one, sIt is used to hold the place where the parenthesis is selected to minimize the cost

How do we simulate the recursion Bottom-Up?

We do the following...

We use the following strategy:

• Solve the chain of matrices with small size (The smallest is 2 matrices... after all 1 matrix has cost 0)

Thus, we need

A loop from 2 to n for solving small sequences to larger ones.

In addition

An inner loop from 1 to n-l+1 (We do not want to get out of the sequence of matrices) for solving the smaller problems for the outer loop

100 / 125

Then...

A value

j that is holding the ending index of the subsequence being taken in consideration.

Then a third loop

To go from i to j-1 to take the necessary decisions

Votes			
Notes			

Bottom-Up Algorithm

MATRIX-CHAIN-ORDER(p)

```
\mathbf{0} n = p.length-1
```

2 let
$$m[1..n, 1..n]$$
 and $s[1..n-1, 2..n]$ be new tables

$$\bigcirc$$
 for $i=1$ to n

$$m\left[i,i\right] = 0$$

6 for
$$i = 1$$
 to $n - l + 1$

$$j = i + l - 1$$

$$m[i,j] = \infty$$

$$q = m[i, k] + m[k+1, j] + p_{i-1}p_kp_j$$

if
$$q < m[i,j]$$

$$m\left[i,j
ight]=q$$

$$s[i,j] = k$$

lacktriangledown return m and s

102 / 12

Example

Example

matrix	A_1	A_2	A_3	A_4	A_5	A_6
dimensions	35×30	30×15	15×5	5×10	10×20	20×25

Notes		

Notes			

Complexity

By looking at the algorithm we have

$$\begin{aligned} l &\leftarrow n-1 \\ i &\leftarrow n-l-1 \\ j &\leftarrow i+l-1 \end{aligned}$$

Then

 $O(n^3)$

104 / 125

Reconstruct the Output

$\mathsf{PRINT} ext{-}\mathsf{OPTIMAL} ext{-}\mathsf{PARENS}(s,i,j)$

- \bullet print " A_i "
- else print "("
- **9** PRINT-OPTIMAL-PARENS(s, i, s[i, j])
- \bullet PRINT-OPTIMAL-PARENS(s, s[i, j] + 1, j)
- **o** print ")"

Final solution for the example

 $((A_1(A_2A_3))((A_4A_5)A_6)$

Notes			
ivotes			
Votes			

W	h	y	?

Because given these strands

- ullet $S_1 = \mathsf{ACCGGTCGAGTGCGCGGAAGCCGGCCGAA}$
- ullet $S_1 = \mathsf{GTCGTTCGGAATGCCGTTGCTCTGTAAA}$

We want

To determine how "similar" the two strands are, as some measure of how closely related the two organisms are.

(Page)
THE STATE OF THE S
cinvestav

Notes			
Notes			
Votes			
Votes			
Notes			
Notes			
Votes			
Votes			
Notes			
Votes			
Votes			
Votes			
Notes			
Notes			

Ways of Measuring Similarity

For example

We can say that two DNA strands are similar if one is a substring of the other.

However

This does not happen in the previous example...

A better measure

Imagine that you are given another strand S_3 in which the bases on it appears in S_1 and S_2 (Common Basis)

109 / 125

The Longer Strand

The Longer S_3

The more similar the organism, represented by S_1 and S_2 , are.

Thus

We need to find S_3 the Longest Common Subsequence

lotes			
Votes			
Votes			
lotes			
Jotes			
Votes			
Votes			
Jotes			

Longest Common Subsequence

Definition

Given a sequence $X=\langle x_1,x_2,...,x_m\rangle$, a sequence $Z=\langle z_1,z_2,...,z_k\rangle$ is a subsequence of X if there exist a strictly increasing sequence $\langle i_1,i_2,...,i_k\rangle$ of indices of X such that $x_i=z_i$.

Therefore

Given two sequences X and Y, we say that Z is a common subsequence of X and Y, if Z is a subsequence of both X and Y.

Notes

Notes

111 / 125

Characterizing the LCS

Theorem 15.1 (Optimal substructure of an LCS)

Let $X = \langle x_1, x_2, ..., x_m \rangle$ and $Y = \langle y_1, y_2, ..., y_n \rangle$ be sequences, and let $Z = \langle z_1, z_2, ..., z_k \rangle$ be any LCS of X and Y.

- ① If $x_m=y_n$, then $z_k=x_m=y_n$ and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1} .
- ② If $x_m \neq y_n$, then $z_k \neq x_m$ implies that Z is an LCS of X_{m-1} and Y.
- **3** If $x_m \neq y_n$, then $z_k \neq y_n$ implies that Z is an LCS of X and Y_{n-1} .

Overlapping Property

To find an LCS for X and Y, we may need to find

- $\bullet \ \operatorname{LCS} \ \operatorname{of} \ X_{n-1} \ \operatorname{and} \ Y_{n-1}$
- LCS of X and Y_{n-1}
- LCS of Y and X_{m-1}

113 / 125

Thus

For the first case

Recursion(i, j) = Recursion(i - 1, j - 1) + 1

Second case

Recursion(i, j) = Recursion(i, j - 1)

However, you have the too

Recursion(i, j) = Recursion(i - 1, j)

Notes			

Notes			

Then, we can collapse second and third case

In the following way

 $Recursion(i, j) = \max \{Recursion(i - 1, j), Recursion(i, j - 1)\}$

115 / 125

The Final Recurrence

Let c[i,j] the length of the common subsequence of X_i,Y_j

$$c[i,j] = \left\{ \begin{array}{ll} 0 & \text{if } i = 0 \text{ or } j = 0 \\ c[i-1,j-1] + 1 & \text{if } i,j > 0 \text{ and } x_i = y_j \\ \max(c[i,j-1],c[i-1,j]) & \text{if } i,j > \text{ and } x_i \neq y_j \end{array} \right.$$

(Fg)
cinyestay

Notes Notes

Thus, we can do the following

It is possible

To develop an exponential algorithm.

However

• Let us to develop an algorithm that takes $O\left(mn\right)$

First, we need to take in account

- $X = \langle x_1, x_2, x_3, ..., x_m \rangle$
- $Y = \langle y_1, y_2, y_3, ..., y_n \rangle$

117 / 125

We do the following

Use extra memory

- You can store the result of c[i,j] values in a table c[0..m.0..n]
 - ▶ In order to use it, the entries are computed in row-major order.

Row-Major Order

The procedure fills in the first row of \boldsymbol{c} from left to right, then the second row, and so on.

Why?

Clearly, we are using the bottom-up approach, so we get the results for the smallest problem first!!!

Notes				
Notes				

We also have a table to store the decisions

Ok, What type of symbols are in that table?

	y_i	а	V	С	r	е
x_i	0	0	0	0	0	0
а	0	_				
b	0					
С	0			_		
d	0					
е	0					_

119 / 125

Thus, for the different cases

$\int x_m = y_n$

- Simply use the symbol " < ".
- After all we are consuming the same symbol

$c[i-1,j] \ge c[i,j-1]$

- Simply use the symbol " \ \tau".
- \bullet After all you are moving up in the rows

c[i-1,j] < c[i,j-1]

- Simply use the symbol " \leftarrow ".
- After all you are moving left in the columns

Notes			
Votes			

How, we fill c[0..m.0..n]

Something Notable

We need to increase the columns and the rows.

Thus

- for i=1 to m
- $\bullet \qquad \text{ for } j=1 \text{ to } n$

In addition, c[0..m, 0] and c[0, 0..n]

If one of your subproblems is empty:

• We know that the common elements are 0.

121 / 125

Final Algorithm - Complexity O(mn)

$\mathsf{LCS} ext{-}\mathsf{Length}(X,Y)$

- $\mathbf{0}$ m = X.length
- 2 n = Y.length
- \bullet let b[1..m, 1..n] and c[0..m, 0..n] be new tables

$$c\left[i,0\right] = 0$$

- - $c\left[0,j\right] = 0$

- if $x_i == y_j$ c[i,j] = c[i-1,j-1] + 1
- $b[i,j] = " \nwarrow "$
- elseif $c[i-1,j] \ge c[i,j-1]$ c[i,j] = c[i-1,j]
- $b[i,j] = "\uparrow"$
 - else c[i,j] = c[i,j-1]
- $b[i,j] = " \leftarrow "$
- lacktriangledown return c and b

cinvestav

Notes			
Notes			

123 / 125

Constructing the LCS

$\boxed{\mathsf{PRINT-LCS}(b,X,i,j)}$

- **1** if i == 0 or j == 0
- 2 return
- PRINT-LCS(b, X, i 1, j 1)
- print x_i
- elseif $b[i,j] == "\uparrow"$
- PRINT-LCS(b, X, i-1, j)
- \bullet else PRINT-LCS(b, X, i, j 1)

Complexity

O(m+n)

cinyesta

Notes

Notes

Exercises Notes From Cormen's book solve • 15.3-3 • 15.3-5 • 15.2-3 • 15.2-4 • 15.2-5 • 15.4-2 • 15.4-4 • 15.4-5 Notes