Dropout: A Simple Way to Prevent Neural Network from Overfitting

JMLR 2014

Juneyoung Yoon EECS of GIST College

Paper Information

Paper: Dropout: A Simple Way to Prevent Neural Networks from Overfitting

Authors: Nitish Srivastava, et. al. 4

Journal: Journal of Machine Learning Research (JMLR 2014)

Total citation: 25,230

Main Problem

Overfitting

Previous Research

- Regularization
 - L1/L2 regularization
 - Adding noise to hidden layer
- Data augmentation
 - Affine Transform
 - Elastic Distortion

Model combination can improve the performance But

- 1. Each model should have different architectures or be trained in different data
- 2. Training each large network requires a lot of computation
- + Large network **require large amount of data**

Dropout is designed to address both these issues

- Prevents overfitting and provide way to combining different neural network
 - It randomly drops(removes) unit from the network
 - All the units survived dropout is called thinned network
 - A neural network that has n units, can collect 2^n possible thinned network

- Network shared weight can be combined into single network(test time)
 - Present retained with probability p is connected to units in next layer during training
 - Outgoing weight is multiplied by p at test time
 - It leads to lower generalization error compare to other regularization methods

Figure 2: Left: A unit at training time that is present with probability p and is connected to units in the next layer with weights w. Right: At test time, the unit is always present and the weights are multiplied by p. The output at test time is same as the expected output at training time.

Model

- Neural network with L hidden Layers. $l \in \{1, ..., L\}$
- $\mathbf{z}^{(l)}$: vector of inputs into layer l
- $y^{(l)}$: vector from layer l
- $W^{(l)}$: weights bias at layer l, $b^{(l)}$: bias at layer l
- *f* : any activation function

$$\begin{aligned} z_i^{(l+1)} &=& \mathbf{w}_i^{(l+1)} \mathbf{y}^l + b_i^{(l+1)}, \\ y_i^{(l+1)} &=& f(z_i^{(l+1)}), \end{aligned}$$

 $r^{(l)}$: vector of independent Bernoulli random variable $\widetilde{y}^{(l)}$: thinned outputs

$$r_j^{(l)} \sim \text{Bernoulli}(p),$$
 $\tilde{\mathbf{y}}^{(l)} = \mathbf{r}^{(l)} * \mathbf{y}^{(l)},$
 $z_i^{(l+1)} = \mathbf{w}_i^{(l+1)} \tilde{\mathbf{y}}^l + b_i^{(l+1)},$
 $y_i^{(l+1)} = f(z_i^{(l+1)}).$

Standard Neural Network

Dropout Neural Network

Model

- Training dropout neural nets
 - Regularization like momentum, annealed learning rates, L1/L2 weight decay, works well
 - Max-norm is especially useful for dropout neural nets
 - Max-norm: optimize weight w under constraint $||w||_2 \le c$ (c is a tunable hyperparameter)
 - Other regularization methods provides boost over just using dropout

- Experiment
 - On Image Data Sets
 - MNIST
 - Street View House Numbers(SVHN)
 - CIFAR-10, CIFAR-100
 - ImageNet
 - On Voice Data
 - TIMIT
 - On a Text Data Set
 - Reuters-RCV1

- Experiment
 - On Image Data Sets
 - MNIST

Method	Unit Type	Architecture	Error %
Standard Neural Net (Simard et al., 2003)	Logistic	2 layers, 800 units	1.60
SVM Gaussian kernel	NA	NA	1.40
Dropout NN	Logistic	3 layers, 1024 units	1.35
Dropout NN	ReLU	3 layers, 1024 units	1.25
Dropout NN + max-norm constraint	ReLU	3 layers, 1024 units	1.06
Dropout NN + max-norm constraint	ReLU	3 layers, 2048 units	1.04
Dropout NN + max-norm constraint	ReLU	2 layers, 4096 units	1.01
Dropout NN + max-norm constraint	ReLU	2 layers, 8192 units	0.95
Dropout NN + max-norm constraint (Goodfellow et al. 2013)	Maxout	2 layers, (5×240) units	0.94
DBN + finetuning (Hinton and Salakhutdinov. 2006)	Logistic	500-500-2000	1.18
DBM + finetuning (Salakhutdinov and Hinton, 2009)	Logistic	500-500-2000	0.96
DBN + dropout finetuning	Logistic	500-500-2000	0.92
DBM + dropout finetuning	Logistic	500-500-2000	0.79

Table 2: Comparison of different models on MNIST.

The MNIST data set consists of 28×28 pixel handwritten digit images. The task is to classify the images into 10 digit classes. Table 2 compares the performance of dropout with other techniques. The best performing neural networks for the permutation invariant

Figure 4: Test error for different architectures with and without dropout. The networks have 2 to 4 hidden layers each with 1024 to 2048 units.

- Experiment
 - On Image Data Sets
 - Street View House Numbers(SVHN)

Method	Error %
Binary Features (WDCH) (Netzer et al., 2011)	36.7
HOG (Netzer et al. 2011)	15.0
Stacked Sparse Autoencoders (Netzer et al., 2011)	10.3
KMeans (Netzer et al., 2011)	9.4
Multi-stage Conv Net with average pooling (Sermanet et al. 2012)	9.06
Multi-stage Conv Net + L2 pooling (Sermanet et al., 2012)	5.36
Multi-stage Conv Net + L4 pooling + padding (Sermanet et al. 2012)	4.90
Conv Net + max-pooling	3.95
Conv Net + max pooling + dropout in fully connected layers	3.02
Conv Net + stochastic pooling (Zeiler and Fergus. 2013)	2.80
Conv Net + max pooling + dropout in all layers	2.55
Conv Net + maxout (Goodfellow et al., 2013)	2.47
Human Performance	2.0

Table 3: Results on the Street View House Numbers data set.

- Experiment
 - On Image Data Sets
 - CIFAR-10, CIFAR-100

Method	CIFAR-10	CIFAR-100
Conv Net + max pooling (hand tuned)	15.60	43.48
Conv Net + stochastic pooling (Zeiler and Fergus. 2013)	15.13	42.51
Conv Net + max pooling (Snoek et al. 2012)	14.98	-
Conv Net + max pooling + dropout fully connected layers	14.32	41.26
Conv Net + max pooling + dropout in all layers	12.61	37.20
Conv Net + maxout (Goodfellow et al., 2013)	11.68	38.57

Table 4: Error rates on CIFAR-10 and CIFAR-100.

- Experiment
 - On Image Data Sets
 - ImageNet

Model	Top-1	Top-5
Sparse Coding (Lin et al., 2010)	47.1	28.2
SIFT + Fisher Vectors (Sanchez and Perronnin, 2011)	45.7	25.7
Conv Net + dropout (Krizhevsky et al., 2012)	37.5	17.0

Table 5: Results on the ILSVRC-2010 test set.

Model	Top-1 (val)	Top-5 (val)	Top-5 (test)
SVM on Fisher Vectors of Dense SIFT and Color Statistics	-	-	27.3
Avg of classifiers over FVs of SIFT, LBP, GIST and CSIFT	-		26.2
Conv Net + dropout (Krizhevsky et al. 2012)	40.7	18.2	-
Avg of 5 Conv Nets + dropout (Krizhevsky et al., 2012)	38.1	16.4	16.4

Table 6: Results on the ILSVRC-2012 validation/test set.

- Experiment
 - On Voice Data
 - TIMIT
 - Recordings from 680 speakers covering 8 major dialects of American English

Method	Phone Error Rate%
NN (6 layers) (Mohamed et al., 2010)	23.4
Dropout NN (6 layers)	21.8
DBN-pretrained NN (4 layers)	22.7
DBN-pretrained NN (6 layers) (Mohamed et al., 2010)	22.4
DBN-pretrained NN (8 layers) (Mohamed et al., 2010)	20.7
mcRBM-DBN-pretrained NN (5 layers) (Dahl et al. 2010)	20.5
DBN-pretrained NN (4 layers) + dropout	19.7
DBN-pretrained NN (8 layers) + dropout	19.7

Table 7: Phone error rate on the TIMIT core test set.

- Experiment
 - On a **Text Data Set**
 - Reuters-RCV1
 - Collection of 800,000 newswire article from Reuters
 - Not use dropout (error rate 31.05%)
 - Use dropout (error rate 29.62%)

• Comparison with Standard Regularizers

Method	Test Classification error $\%$
L2	1.62
L2 + L1 applied towards the end of training	1.60
L2 + KL-sparsity	1.55
Max-norm	1.35
Dropout + L2	1.25
Dropout + Max-norm	1.05

Table 9: Comparison of different regularization methods on MNIST.

- Effect on Features & Sparsity
 - Feature
 - Dropout prevents co-adaption by making the presence of other hidden units unreliable
 - By using dropout, the hidden units are detected well
 - It is probably the main reason why it has lower generalization error

Figure 7: Features learned on MNIST with one hidden layer autoencoders having 256 rectified linear units.

- Effect on Features & Sparsity
 - Sparsity
 - Using Dropout has fewer hidden units that have high activations
 - The mean activation is also smaller for the dropout net

Figure 8: Effect of dropout on sparsity. ReLUs were used for both models. Left: The histogram of mean activations shows that most units have a mean activation of about 2.0. The histogram of activations shows a huge mode away from zero. Clearly, a large fraction of units have high activation. Right: The histogram of mean activations shows that most units have a smaller mean mean activation of about 0.7. The histogram of activations shows a sharp peak at zero. Very few units have high activation.

- Effect of Dropout Rate
 - Dropout Rate(tunable hyperparameter p the probability of retaining a unit in the net)
 - 1. The number of units is held constant
 - 2. The number of hidden units changed so that the expected number of hidden units that will be retained after dropout is held constant()

(b) Keeping pn fixed.

- 1. n is fixed
 - It becomes flat when $0.4 \le p \le 0.8$
- 2. pn is fixed
 - values of p close to 0.6 perform best
 - use default value 0.5
 - have to increase units to do dropout and lower the effect of underfitting

- Effect of Data Size
 - The network was given data sets of size 100,500,1K,5K,10K and 50K chosen randomly from the MNIST
 - Extremely small data doesn't improve
 - As the size of data increase, dropout works well(more than 1K)
 - If data size gets large enough the effect of dropout gets smaller

- Dropout in Restricted Boltzmann machine(RBM)
 - One of graphical probabilistic model
 - Dropout sharpen the feature and hidden unit activation gets more sparse

Mean Activation

(a) Without dropout

(b) Dropout with p = 0.5.

Figure 13: Effect of dropout on sparsity. Left: The activation histogram shows that a large number of units have activations away from zero. Right: A large number of units have activations close to zero and very few units have high activation.

Mean Activation

Figure 12: Features learned on MNIST by 256 hidden unit RBMs. The features are ordered by L2 norm.

- Conclusion
 - Dropout improve the performance of neural nets in a wide variety
 - Dropout considerably improved the performance of standard neural nets
 - Dropout is an effective way to reduce Overfitting