宇宙開発研究同好会活動記録

2020/3/25

実験責任者:髙橋俊暉

作業者: 菅原徳人

本報告書では、10cm×10cm の基板上にスクエアローアンテナを作成し、スクエアローアンテナの幅を変化させた時の特性の記録および、利得測定を行いました。

実験で使用した道具は以下の通りです。

- nanoVNA
- 紙フェノール基板
- 同軸ケーブル
- 標準ダイポール①,②
- SSG
- SDR
- 基板加工機

実験は以下の手順で行いました。

- 1. 紙フェノール基板を 10cm×10cm に切り出しました。
- 2. 基板加工機を用いて切り出した基板上にスクエアローアンテナを削り出しました。この時、スクエアローアンテナの幅を 2mm~5mm に変化させて作成しました。
- 3. 作成したスクエアローアンテナの特性を計測し、利得測定を行いました。

利得測定は以下の条件で行いました。

- アンテナの間隔を 20cm、50cm の 2 パターンで記録した。
- SSG 側に標準ダイポール、SDR 側に計測するアンテナを取り付けた。
- SSG の出力は-100dBm から 0dBm まで変化させた。
- SDR の TunerGain は 0 dBに設定した。

図1に本実験で作成したスクエアローアンテナの寸法を示します。

図 1 スクエアローアンテナ寸法

図2に本実験のスクエアローアンテナの構成を示す。

図 2 本実験のスクエアローアンテナ構成

表1に各種スクエアローアンテナの特性を示します。

表 1 各種スクエアローアンテナの特性

	インピーダンス[Ω]	キャパシタンス[pF]	インダクタンス[nH]
スクエアローアンテナ①	32.6	2.47	
スクエアローアンテナ②	31.5	2.58	
スクエアローアンテナ③	50.8	1.90	
スクエアローアンテナ④	63.5	1.70	

表 1 より、スクエアローアンテナの幅を広げるとインピーダンスが上がることが分かりました。 表 2、表 3 にアンテナ間距離が 20cm および、50cm の時の各種スクエアローアンテナの利得を示します。

表 2 アンテナ間 20cm 時の利得

SDR出力[dBm]	-100	-90	-80	-70	-60	-50	-40	-30	-20	-10	0	10
スクエアローアンテナ①	-144.2	-143.9	-143.6	-140.1	-133.0	-124.4	-116.2	-106.2	-96.7	-86.8	-77.0	-68.4
スクエアローアンテナ②	-146.6	-144.3	-145.6	-140.2	-134.4	-125.5	-116.4	-107.3	-99.3	-88.0	-78.0	-68.4
スクエアローアンテナ③	-145.3	-144.7	-144.2	-143.6	-140.2	-131.6	-124.5	-114.6	-103.8	-93.7	-84.2	-74.2
スクエアローアンテナ④	-144.3	-144.9	-142.7	-139.8	-131.9	-122.9	-113.4	-104.3	-98.9	-86.4	-76.4	-65.4

表 3 アンテナ間 50cm 時の利得

SDR出力[dBm]	-100	-90	-80	-70	-60	-50	-40	-30	-20	-10	0	10
スクエアローアンテナ①	-145.8	-145.9	-143.7	-141.8	-136.7	-127.2	-117.4	-107.8	-97.1	-87.3	-77.1	-67.8
スクエアローアンテナ②	-143.6	-143.1	-143.2	-143.0	-136.6	-127.6	-118.2	-109.0	-101.3	-91.5	-80.9	-70.4
スクエアローアンテナ③	-144.0	-143.2	-142.8	-142.8	140.5	-132.0	-123.4	-115.1	-105.2	-95.2	-85.4	-73.7
スクエアローアンテナ④	-144.7	-142.8	-143.6	-142.6	-136.4	-128.7	-116.9	-107.3	-97.8	-87.8	-77.7	-67.9

表 2,3 の色のついたセルは SSG の出力を変化させた時に、SDR の電波強度が 10dB ($\pm 1dB$) ずつ変化した値を示しています。アンテナ間距離が 20cm の時は SSG の出力が- $10dBm\sim0dBm$ の値を用い、アンテナ間距離が 50cm の時は SSG の出力が- $20dBm\sim0dBm$ の値を用いました。

表 2,3 より、スクエアローアンテナの幅を 1 mm変化させるだけで 2 dB 以上利得が変化することが分かりました。