Predicting Home Credit Loan Default

Group 3 - Navy Seals Pritam Vanmore Gautam Ashok Sudheer Alluri Raman Kahlon

pvanmore@iu.edu gaashok@iu.edu naalluri@iu.edu rakahlon@iu.edu

Outline

- 1. Background
- 2. Data Description & EDA
- 3. Modeling Pipeline
- 4. Results
- 5. Conclusion & Next Steps

Background

Goal: Build a machine learning model which can accurately predict whether the customer defaults on a loan or not.

- This is a supervised classification problem because the target variable takes on one of two values (Default = 1, No default = 0)
- Baseline Model: Logistic Regression (basic and fine-tuned parameters)

Completed Activities:

- Examined relationships between main and secondary datasets and data types
- Identified algorithms, pipeline process, and evaluation metrics: accuracy scores, AUC, p-value, RMSE, and MAE.

Data Description & EDA

Size of each dataset :

dataset	application_train	:	[307,511,	124]
dataset	application_test	:	[48,744,	123]
dataset	bureau	:	[1,716,428,	17]
dataset	bureau_balance	:	[27,299,925,	3]
dataset	credit_card_balance	:	[3,840,312,	23]
dataset	<pre>installments_payments</pre>	:	[13,605,401,	8]
dataset	previous_application	:	[1,670,214,	37]
dataset	POS_CASH_balance	:	[10,001,358,	8]

Modeling Pipeline

- 1. Download data, perform data pre-processing tasks (joining primary and secondary datasets, transformation), and EDA
- 2. Perform feature engineering activities: imputing missing values, creating new features, and set-up data pipeline with highly correlated numerical and categorical features
- 3. Create model with data pipeline and baseline model to fit training dataset
- 4. Evaluate the model using accuracy score, AUC score, p-value, RMSE and MAE for train, validation and test datasets.
- 5. Perform Grid Search to tune the Logistic Regression model with regularization ('l1', 'l2'), tolerance (0.0001, 0.00001, 0.0000001), and C (10, 1, 0.1, 0.01) hyper parameters and 5-fold cross-validation.
- 6. Record parameters of best estimator and perform predictions on test data for Kaggle submission.

Results & Discussion

	exp_name	Train Acc	Valid Acc	Test Acc	Train AUC	Valid AUC	Test AUC	P Score	Train RMSE	Valid RMSE	Test RMSE	Train MAE	Valid MAE	Test MAE	Train Time	Test Time	Description
0	Baseline_57_features	0.9189	0.9194	0.9184	0.7538	0.7440	0.7478	0.000	0.262	0.262	0.263	0.137	0.138	0.137	21.7724	0.6446	Baseline LR 57
1	Logistic Regression	0.9188	0.9195	0.9186	0.7509	0.7433	0.7464	0.051	0.262	0.262	0.263	0.138	0.138	0.138	1.6323	0.5853	[["predictorC", 0.01], ["predictorpenalty"

- Both baseline and best hyperparameter model performed similarly across all evaluation metrics
- No statistical significance achieved between two experiment (p = 0.051)
- Possibly due to imbalanced distribution of target variables
- Avoided using MAPE due to undefined values caused by division by zero
- Kaggle score (0.74306) and submission:

Name	Submitted	Wait time	Execution time	Score
submission.csv	just now	1 seconds	1 seconds	0.74306
Complete				j

Conclusions & Next Steps

• Implemented baseline model with Linear Regression and fine tuned parameters

Project Challenges:

- Memory issues needed to increase to 7 CPU's and 11GB memory in Docker to run the model.
- Outlier Data needed to identify highly correlated features due to large amount of missing data and outliers.
- Technical issues on Git versioning
- Faced challenges in implementing pipeline as the results were not showing much difference.

Next Steps:

- Incorporate Log Loss (CXE) calculation into model evaluation
- Design and build additional features from bureau dataset
- Analyze other classification algorithms outlined in our Proposal (NB, SVM, Decision Tree, Random Forest)