Vectors, trigonometry and math:

$$\vec{A} = A_x \hat{\imath} + A_y \hat{\jmath} + A_z \hat{k}$$
 ; $A = ||\vec{A}|| = |\vec{A}| = \sqrt{A_x^2 + A_y^2 + A_z^2}$

$$\vec{A} + \vec{B} = (A_x + B_x)\hat{\imath} + (A_y + B_y)\hat{\jmath} + (A_z + B_z)\hat{k}$$

$$\hat{A} = \frac{\vec{A}}{\|\vec{A}\|} \; ; \vec{A} \cdot \vec{B} = AB\cos\theta \; ; \vec{A} \cdot \vec{B} = A_x B_x + A_y B_y + A_z B_z \; ;$$

$$\vec{A} \times \vec{B} = AB \sin\theta \hat{n}$$
;

$$\vec{A} \times \vec{B} = \hat{\imath} (A_y B_z - A_z B_y) - \hat{\jmath} (A_x B_z - A_z B_x) + \hat{k} (A_x B_y - A_y B_x)$$

Derivative: $\frac{d(ct^n)}{dt} = c n t^{n-1}$; where c is a constant

Trigonometry: $\sin \alpha = \frac{a}{c}$; $\cos \alpha = \frac{b}{c}$; $\tan \alpha = \frac{a}{b}$

$$c^2 = a^2 + b^2$$

Quadratic equation $ax^2 + bx + c = 0$; $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

Prefixes and abbreviations for Powers of 10:

 $10^{-12} \ pico(p); \ 10^{-9} \ nano(n); \ 10^{-6} \ micro(\mu); \ 10^{-3} \ mili(m); \ 10^{-2} \ centi(c); \ 10^{3} \ kilo(k)$

b

International System of Units: Mass: kg; Length: m; Time: s

Chapter 2

Average velocity $v_{av-x}=rac{\Delta x}{\Delta t}=rac{x_2-x_1}{t_2-t_1}$; Instantaneous velocity $v_x=\lim_{\Delta t o 0}rac{\Delta x}{\Delta t}=rac{dx}{dt}$

Average acceleration $a_{av-}=\frac{\Delta v_{x}}{\Delta t}=\frac{v_{x2}-v_{x1}}{t_{2}-t_{1}}$; Instantaneous acceleration $a_{x}=\frac{dv_{x}}{dt}$

Equations of motion with constant acceleration:

$$v_x = v_{0x} + a_x t$$
; $x = x_0 + v_{0x} t + \frac{1}{2} a_x t^2$

$$v_x^2 = v_{0x}^2 + 2 a_x(x - x_0); x - x_0 = \frac{1}{2}(v_{0x} + v_x)t$$

Free falling bodies, $a = g = 9.8 \, \text{m}/_{\text{s}^2}$

$$v_x = v_{0x} + \int_0^t a_x dt$$
; $x = x_0 + \int_0^t v_x dt$

Chapter 3

Average velocity
$$\vec{v}_{av} = \frac{\Delta \vec{r}}{\Delta t} = \frac{\vec{r}_2 - \vec{r}_1}{t_2 - t_1}$$

Instantaneous velocity
$$\vec{v} = \lim_{\Delta t \to 0} \frac{\Delta \vec{r}}{\Delta t} = \frac{d\vec{r}}{dt}$$
; $v_x = \frac{dx}{dt}$; $v_y = \frac{dy}{dt}$; $v_z = \frac{dz}{dt}$

Average acceleration $\vec{a}_{av} = \frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v}_2 - \vec{v}_1}{t_2 - t_1}$

Instantaneous acceleration $\vec{a} = \lim_{\Delta t \to 0} \frac{\Delta \vec{v}}{\Delta t} = \frac{d\vec{v}}{dt}$; $a_x = \frac{dv_x}{dt}$; $a_y = \frac{dv_y}{dt}$; $a_z = \frac{dv_z}{dt}$

Projectile motion: $x = x_0 + (v_0 cos \alpha_0)t$; $y = y_0 + (v_0 sin \alpha_0)t - \frac{1}{2}gt^2$

$$v_x = v_0 cos \alpha_0$$
; $v_y = v_0 sin \alpha_0 - gt$

Circular motion: $a_{rad} = \frac{v^2}{R}$; $a_{rad} = \frac{4\pi^2 R}{T^2}$

Relative velocity: $\vec{v}_{P/A} = \vec{v}_{P/B} + \vec{v}_{B/A}$

Chapter 4

Force as a vector $\vec{R} = \sum \vec{F} = \vec{F}_1 + \vec{F}_2 + \vec{F}_3 + \cdots$

Newton's 2nd law $\sum \vec{F} = m\vec{a}$; $\sum F_x = ma_x$; $\sum F_y = ma_y$; $\sum F_z = ma_z$

Weight $\vec{w} = m\vec{g}$

Newton's 3rd law $\vec{F}_{A \ on \ B} = -\vec{F}_{B \ on \ A}$

Chapter 5

Kinetic Friction Force $f_k = \mu_k n$; Static Friction Force $f_s \leq (f_s)_{max} = \mu_s n$

Chapter 6

Work: $W = \vec{F} \cdot \vec{s} = Fscos\phi$

Kinetic Energy: $K = \frac{1}{2}mv^2$

Work-energy theorem: $W_{Total} = K_2 - K_1 = \Delta K$

Work done by a varying Force, straight line motion: $W = \int_{x_1}^{x_2} F_x dx$

Power: $P_{av} = \frac{\Delta W}{\Delta t}$; $P = \lim_{\Delta t \to 0} \frac{\Delta W}{\Delta t} = \frac{dW}{dt}$