Week 2: Boolean algebra (cont.) 🗚

Boolean algebra has many of the same rules as normal high school level algebra, and indeed the symbols used (+ for OR, * for AND, etc) reflect this. Just like algebra, there are Rules you must follow.

Note that the Rules are similar to Set Theory rules.

In Set Theory, where

OR ⇔ ∪ (set union)

AND $\Leftrightarrow \cap$ (set intersection)

NOT ⇔ ' (set complement)

• 1 is the Universal Set and 0 (zero) is the Empty Set and also denoted sometimes as { }

Boolean algebra rules

Commutative law	A+B=B+A				
Associative law	A + (B+C) = A+B+C = (A+B)+C				
	A.(B.C) = A.B.C = (A.B).C				
Distributive law	A.(B+C) = A.B + A.C				
de Morgan's theorems	$\overline{A+B} = \overline{A}.\overline{B}$				
	$\overline{A.B} = \overline{A} + \overline{B}$				
Identities	$1 + any = 1, \qquad 0 + A = A$				
	$1 \cdot A = A, \qquad 0 \cdot any = 0$				
	$A \cdot A = A, \qquad A + A = A$				
	$A + \overline{A} = 1,$ $A \cdot \overline{A} = 0$				
	$A.B + \overline{A}.B = B$				
	A + B.C = (A + B).(A + C)				

De Morgan's theorem

- One way in which Boolean algebra is different to other forms is the following
- Most commonly used to change a term involving ORs into one involving ANDs, and vice versa
- It works due to the symmetry of the OR

and AND truth tables

$$\overline{A + B} = \overline{A}.\overline{B}$$

$$\overline{A.B} = \overline{A} + \overline{B}$$

- One is basically the upside-down inverse of the other
- You can get upside-down by complementing the operands A and B
- and then simply map AND to OR

Α	В	A	. B	A.B	A+I
0	0	1	1	0	0
0	1	1	0	0	1
1	0	0	1	0	1
1	1	0	0	1	1

de Morgan's Laws are also applied to Set Theory, where

OR ⇔ ∪ (set union)

AND $\Leftrightarrow \cap$ (set intersection)

NOT ⇔ ' (set complement)