MTH320 - Abstract Algebra I

HW #2 (Solutions)

September 29th, 2020

Question 1:

Let $A = \{1, 2, 3\}$ and D be the power set of A, i.e., D is the set of all subsets A (note that $|D| = 2^3 = 8$). Define "·" on D to mean $a \cdot b = (a \ b) \cup (b \ a) \ \forall a, b \in D$. Then (D, \cdot) is an Abelian group. Since D is the set of all subsets of A, then:

$$D = \{\emptyset, \{1\}, \{2\}, \{3\}, \{1, 2\}, \{1, 3\}, \{2, 3\}, \{1, 2, 3\}\}$$

The Caley's Table:

$a \cdot b$	Ø	{1}	{2}	{3}	$\{1, 2\}$	$\{1, 3\}$	$\{2, 3\}$	$\{1, 2, 3\}$
Ø	Ø	{1}	{2}	{3}	$\{1, 2\}$	$\{1, 3\}$	$\{2, 3\}$	$\{1, 2, 3\}$
{1}	{1}	Ø	$\{1, 2\}$	$\{1, 3\}$	{2}	{3}	$\{1, 2, 3\}$	$\{2, 3\}$
$\{2\}$	{2}	$\{1, 2\}$	Ø	$\{2, 3\}$	{1}	$\{1, 2, 3\}$	{3}	$\{1, 3\}$
$\{3\}$	{3}	$\{1, 3\}$	$\{2, 3\}$	Ø	$\{1, 2, 3\}$	{1}	{2}	$\{1, 2\}$
$\{1,2\}$	$\{1, 2\}$	{2}	{1}	$\{1, 2, 3\}$	Ø	$\{2, 3\}$	$\{1, 3\}$	{3}
$\{1,3\}$	$\{1, 3\}$	{3}	$\{1, 2, 3\}$	{1}	$\{2, 3\}$	Ø	$\{1, 2\}$	{2}
$\{2,3\}$	$\{2, 3\}$	$\{1, 2, 3\}$	{3}	{2}	$\{1, 3\}$	$\{1, 2\}$	Ø	{1}
$\{1, 2, 3\}$	$\{1, 2, 3\}$	$\{2,3\}$	$\{1, 3\}$	$\{1, 2\}$	{3}	{2}	{1}	Ø

Table 1.

(i) What is $e \in D$?

Obviously e is the element where for some $a \in D$, $a \cdot e = a$. In other words, $(a - e) \cup (e - a) = a$. The only element with this property is \emptyset . For any a, $a \cdot \emptyset = a$. As an example:

$$\{1,2,3\}\cdot\varnothing=[\{1,2,3\}-\varnothing]\cup[\varnothing-\{1,2,3\}]=\{1,2,3\}$$

(ii) For each $a \in D$, find a^{-1}

Again, we will simply use the Caley's table to find the inverse of each of the 8 elements in D. We proceed as follows:

$$\{1\}^{-1} = \{1\} \quad \text{Since } \{1\} \cdot \{1\} = \varnothing, \text{ same argument for all }$$

$$\{2\}^{-1} = \{2\}$$

$$\{3\}^{-1} = \{3\}$$

$$\{1,2\}^{-1} = \{1,2\}$$

$$\{1,3\}^{-1} = \{1,3\}$$

$$\{2,3\}^{-1} = \{2,3\}$$

$$\{1,2,3\}^{-1} = \{1,2,3\}$$

$$\varnothing^{-1} = \varnothing$$

As a matter of fact, each element is its own inverse (Again visible from the Caley's table).

(iii) For each $a \in D$, find |a|

A sample calculation is provided below as to how we get the order of each element. The rest is self explanatory.

$$\{1\} \cdot \{1\} = \emptyset$$
$$\{1\}^2 = \emptyset$$
Therefore
$$|\{1\}| = 2$$

$$\begin{aligned} |\{2\}| &= 2 \\ |\{3\}| &= 2 \\ |\{1,2\}| &= 2 \\ |\{1,3\}| &= 2 \\ |\{2,3\}| &= 2 \\ |\{1,2,3\}| &= 2 \\ |\varnothing| &= 1 \quad \text{Since } \varnothing \text{ is the identity} \end{aligned}$$

(iv) The converse of the Lagrange theorem is correct when a group is finite and Abelian, i.e. if D is an Abelian group, |D| = n, and m|n, Then D has at least one subgroup with m elements. Now the above group is Abelian and |D| = 8. Give a subgroup, say H, of D with 4 elements. Verify that H is a subgroup by doing the Caley's table. Does D have an element of order 4?

(If m|n, then we must have a subgroup with m elements, but not necessarily an element of order m)

Let us take $H = \{\emptyset, \{1, 2\}, \{1, 3\}, \{2, 3\}\}$. This subset of D is clearly a subgroup of (D, \cdot) . The Caley's table is shown below:

$a \cdot b$	Ø	$\{1, 2\}$	$\{1, 3\}$	$\{2, 3\}$
Ø	Ø	$\{1, 2\}$	$\{1, 3\}$	$\{2, 3\}$
$\{1, 2\}$	$\{1, 2\}$	Ø	$\{2, 3\}$	$\{1, 3\}$
			Ø	
$\{2, 3\}$	$\{2, 3\}$	$\{1, 3\}$	$\{1, 2\}$	Ø

Table 2.

From the table we can see that H is indeed a group. In fact, H < D. It satisfies all the properties of a group (Identity $e = \varnothing$, each element has an inverse, it is closed and associative). Furthermore, H is an Abelian group since $\forall a,b \in H,b \cdot a = a \cdot b$.

Now we can see that |H|=4, and 4|8. However, it is evident that $\forall a \in H, |a|=2$, except for the case of $a=\varnothing$, in which case $|\varnothing|=1$. Therefore, we can conclude that if we have m|n, that does not necessarily imply that we can find a subgroup with m elements that also has elements of order m.

Question 2:

Let $D = \{2, 4, 6, 8, 10, 12\}$. From HW1, we know that D under multiplication modulo 14 is an Abelian group. Now $H = \{6, 8\}$ is a subgroup of D. Find all the left cosets of H. Since D is Abelian, H is a normal subgroup of D. Construct the Caley's table for the group (D/H, *).

From HW1, we know that e = 8. We will take the binary operator to be \cdot_{14} . All the left cosets of of H are as follows:

$$a \cdot H = \{a \cdot h \mid a \in D, h \in H\}$$
$$2 \cdot H = \{2 \cdot 6, 2 \cdot 8\} = \{12, 2\}$$
$$4 \cdot H = \{4 \cdot 6, 4 \cdot 8\} = \{10, 4\}$$
$$6 \cdot H = \{6 \cdot 6, 6 \cdot 8\} = \{8, 6\} = H$$
$$8 \cdot H = \{8 \cdot 6, 8 \cdot 8\} = \{6, 8\} = H$$
$$10 \cdot H = \{10 \cdot 6, 10 \cdot 8\} = \{4, 10\}$$
$$12 \cdot H = \{12 \cdot 6, 12 \cdot 8\} = \{2, 12\}$$

Note that the identity here is:

$$e = 6 \cdot H = 8 \cdot H = H$$

We have 3 distinct left cosets of H. These are $2 \cdot H = \{2, 12\}, 4 \cdot H = \{4, 10\}$ and $6 \cdot H = \{6, 8\}$. These are the elements of the set D/H.

$$D/H = \{2H, 4H, 6H\}$$

We define *, the binary operator on the set D/H as the following:

$$\forall x, y \in D/H, x * y = (a \cdot b) \cdot H$$

a, b are two left cosets of H.

Therefore, the Caley's table for (D/H,*) would be:

$$\begin{array}{c|cccc} x*y & 2H & 4H & 6H \\ 2H & 4H & 6H & 2H \\ 4H & 6H & 2H & 4H \\ 6H & 2H & 4H & 6H \end{array}$$

Table 3.

What is the identity of (D/H,*)? 6H, since $\forall x \in D/H, x*6H=x$. We can see from the Caley's Table that (D/H,*) is closed, associative, each element has an inverse and it is closed. Furthermore, we can see that this group is Abelian because $\forall x,y \in D/H, x*y=y*x$.

Question 3:

Let (D, \cdot) be a group, and H, K are distinct subgroups of D (i.e. $H \neq K$).

(i) Prove that $F = H \cap K$ is a subgroup of D [Hint: Let $a, b \in F$. By class result, you only need to show that $a^{-1} \cdot b \in F$ for every $a, b \in F$].

$$F = H \cap K$$

Firstly, since H < D, we know that $\{e\} \in H$ Similarly, since K < D, $\{e\} \in K$ Therefore $H \cap K$ contains AT LEAST the identity Or, in other words, $H \cap K \neq \emptyset$

> $\label{eq:Let} \text{Let}\, a,b \in F$ This means that $a,b \in H$ and $a,b \in K$

Since H and K are both subgroups, then $a^{-1} \cdot b \in H$ and $a^{-1} \cdot b \in K$ and since $a^{-1} \cdot b$ is in both H and K, by definition of the intersection, $a^{-1} \cdot b \in F$

Therefore $F = H \cap K$ is a subgroup of D

Since F is a subgroup of D, and $F \subseteq H$, $F \subseteq K$, then we can also directly say that F < H and F < K. Therefore F is also a subgroup of both H and K.

(ii) Assume that neither $K \subset H$ nor $H \subset K$. Prove that $H \cup K$ is never a subgroup of D.

We proceed by contradiction, i.e. we assume $F = H \cup K$ is a subgroup of D.

 $H \not\subset K \text{ and } K \not\subset H$ we choose $a \in H$ and $b \in K$, but $a \not\in K$ and $b \not\in H$

but since F is a subgroup, $a \cdot b \in F$

Meaning that $a \cdot b \in H$ or $a \cdot b \in K$ By definition of the union

 $a^{-1} \cdot a \cdot b \in H \rightarrow b \in H$ Contradiction OR

 $a \cdot b \cdot b^{-1} \in K \to a \in K$ Also a contradiction

In other words, if we assume the union to be a subgroup, then we would have that an element that cannot be in one of the subgroups H and K would be in them, which is a contradiction of the fact that $H \not\subset K$ and $K \not\subset H$.

Therefore, $H \cup K$ is never a subgroup of D.

(iii) Assume |H| = |K| = m, where m is a prime positive integer. Prove that $H \cap K = \{e\}$

The intersection between H and K must be a subgroup, by the result proven in 3(i). This means that $H \cap K < D$. We can also say that $H \cap K < H$ and $H \cap K < K$. Now,

Since
$$|H| = |K| = m$$

and $H \cap K < H$

Therefore, by Langrange's theorem: $|H\cap K|\,|m$ The cardinality of $H\cap K$ divides m, which is the cardinality of H

But we know that m is prime, meaning that: the only numbers that divide it are 1 and mSo:

$$|H \cap K| = m \text{ or } |H \cap K| = 1$$

However:

Since H is not the same as K and m is prime, $|H\cap K|\neq m$ So:

$$|H \cap K| = 1$$

Since $H \cap K$ is a group with one element, then the only element it can contain is e

Therefore
$$H \cap K = \{e\}$$

We have proven that the intersection of two subgroups (which is itself a subgroup) of D contains only the identity of D.

Question 4:

(a) **[CORRECTED]** Let (D, \cdot) be a group, H is a normal subgroup of D, and K is a subgroup of D. Prove that $H \cdot K = \{h \cdot k | h \in H, k \in K\}$ is a subgroup of D. Note that H is a subgroup of $H \cdot K$ and K is a subgroup of $H \cdot K$ since $H \cdot e = H$ and $e \cdot K = K$ [Hint: Let $a, b \in H \cdot K$, by a class result, you only need to show that $a^{-1} \cdot b \in H \cdot K$ for every $a, b \in H \cdot K$].

$$\begin{array}{ccc} \operatorname{Let} a, b \in H \cdot K \\ a = h_1 \cdot k_1, b = h_2 \cdot k_2 & h_1, h_2 \in H, k_1, k_2 \in K \\ a^{-1} \cdot b = (h_1 \cdot k_1)^{-1} \cdot (h_2 \cdot k_2) \\ k_1^{-1} \cdot h_1^{-1} \cdot h_2 \cdot k_2 & \\ h_1^{-1} \cdot h_2 \in H & \operatorname{Since} H \text{ is a subgroup} \\ \operatorname{Let} h_3 = h_1^{-1} \cdot h_2 \in H \\ \operatorname{Hence} a^{-1} \cdot b = k_1^{-1} \cdot h_3 \cdot k_2 & \end{array}$$

Since
$$H$$
 is normal, we have:
$$k_1^{-1} \cdot h_3 \cdot k_2 = h_4 \cdot k_1^{-1} \cdot k_2$$
 For some $h_4 \in H$

Let
$$k_3 = k_1^{-1} \cdot k_2$$

meaning that $k_3 \in K$

Therefore:
$$a^{-1} \cdot b = h_4 \cdot k_3 \in H \cdot K$$

Therefore, we have proven that for every $a, b \in H \cdot K$, $a^{-1} \cdot b \in H \cdot K$. This condition is enough to satisfy the condition for subgroups, and therefore $H \cdot K$ is a subgroup of D.

(b) [CORRECTED] Consider S_3 , the symmetric group of an equilateral triangle (As in HW1). Give a subgroup, say H of S_3 , that is not a normal subgroup of S_3 .

$$\left\{f_{1}: \left(\begin{array}{ccc} a & b & c \\ b & c & a \end{array}\right), f_{2}: \left(\begin{array}{ccc} a & b & c \\ c & a & b \end{array}\right), f_{3}=e: \left(\begin{array}{ccc} a & b & c \\ a & b & c \end{array}\right), f_{4}: \left(\begin{array}{ccc} a & b & c \\ a & c & b \end{array}\right), f_{5}: \left(\begin{array}{ccc} a & b & c \\ c & b & a \end{array}\right), f_{6}: \left(\begin{array}{ccc} a & b & c \\ b & a & c \end{array}\right)\right\}$$

This is the symmetric group of an equilateral triangle. Out of these 6 elements, we can form a subgroup, H that is NOT a normal subgroup of S_3 . This means that for some $a \in S_3$, $a \cdot H \neq H \cdot a$.

We need to note here that we mustn't fall into this trap: The condition for a normal subgroup is that we can find some $h, k \in H$ st $\forall a \in S_3, \ a \cdot h = k \cdot a$. k and h do not necessarily need to equal each other for the subgroup to be normal. With that in mind, let us take $H = \{e, f_4\}$:

$$H = \left\{e \colon \left(\begin{array}{ccc} a & b & c \\ a & b & c \end{array}\right), f_4 \colon \left(\begin{array}{ccc} a & b & c \\ a & c & b \end{array}\right)\right\}$$

The Caley's table for this subset is:

$$\begin{array}{c|cccc}
\circ & e & f_4 \\
e & e & f_4 \\
f_4 & f_4 & e
\end{array}$$

Table 4

Clearly, from this Caley's table, we can see that the subset is a subgroup of S_3 . Now, let us see if the subgroup is normal. Since being a normal subgroup means: $\forall a \in S_3, a \cdot H = H \cdot a$, the negation of the statement means that $\exists a \in D$ (at least one) where $a \cdot H \neq H \cdot a$.

Let us take some random element in S_3 , which will serve as our a. Take $a=f_1$. Then:

We check to see if
$$a\cdot h=k\cdot a$$
 $h,k\in H$
$$f_1\circ f_4=f_6 \qquad \text{From Caley's Table in } \mathbf{HW1}$$

$$f_4\circ f_1=f_5$$

$$f_4\circ f_1\neq f_1\circ f_4$$

Note that H only has two elements, making it easy to see the other possibilities. Hence:

$$f_4 \cdot H \neq H \cdot f_4$$

And this shows that H is NOT a normal subgroup of S_3 .