

Predicting Behavior From Neural Dynamics In C.elegans

Xinwei Yu

Princeton University, Department of Physics, Princeton, NJ

ABSTRACT

- **Caenorhabditis** elegans has a compact nervous system whose neural activity can be measured simultaneously with behavior in freely moving worms.
- **!** I predict the behavior of C.elegans from the neural acitivity:
- (1) The continuous variable velocity is predicted with regression method.
 (2) The discrete behavior states are predicted with classification method.
- **❖** First 10% of PC components can explain 80% of variance in neural data.
- ❖ I use Hidden Markov Model to learn the neural dynamics and find correlation between hidden states and behavior states.

BACKGROUND AND DATA

Simultaneously record whole-brain neural activity and behavior in freely moving worm

Caenorhabditis elegans, C.elegans in short, is a transparent nematode. C.elegans have a compact nervous system which contains only 302 neurons

Nguyen, Jeffrey P., et al., PNAS 113.8 (2016)

561 nm

PREDICT VELOCITY FROM NEURAL SIGNAL

BEHAVIOR PREDICTION FROM DIFFERENT MODELS

Lasso	Elastic Net	Random Forest	Gradient Boosting
$R^2(\text{Train}) \mid 0.60 \mid$	0.47	0.42	0.49
$R^2({\rm Test}) \; \; 0.33 \; $	0.27	0.34	0.28

(1) Predicting continuous variable velocity from neural signal

The R^2 of Predicting Velocity From Neural Signal(With Dynamics)

	Linear SVC	Kernel SVC	Logistic Regression	Random Forest
Accuracy(Train)	0.85	0.99	0.65	0.74
Accuracy(Test)	0.59	0.56	0.55	0.57

states from neural signal. Behavior states include: forward, backward, turn, pause.

(2) Predicting discrete behavior

: The Accuracy of Predicting Behavior State From Neural Signal(With Dynamics)

HIDDEN MARKOV MODEL FIND LATENT STATES

NEURAL DYNAMICS IN PC SPACE

Different hidden states are separated in PC space.

ACKNOWLEDGEMENTS

Xinwei thanks Prof. Barbara Engelhardt and teaching assitants Diana Cai, Jonathan Lu, Guillaume Martinet, Matthew Meyers, Archit Verma, Tianju Xue for organizing the course and helpful discussions.

REFERENCES

- 1. J. P. Nguyen, F. B. Shipley, A. N. Linder, G. S. Plummer, M. Liu, S. U. Setru, J. W. Shaevitz, and A. M. Leifer., "Whole-brain calcium imaging with cellular resolution in freely behaving caenorhabditis elegans," Proceedings of the National Academy of Sciences of the United States of America, no. 10.1073/pnas.1507110112, 2015
- 2. M. Scholz, A. N. Linder, F. Randi, A. K. Sharma, X. Yu, J. W. Shaevitz, and A. M. Leifer, "Predicting natural behavior from whole-brain neural dynamics.," bioRxiv, 2018