Test Your Understanding: function

Test yourself by filling in the blanks.

1	A function f from a set X to a set Y is a relation between elements of X (called inputs) and elements of Y (called outputs) such that input element of X is related to output element of Y .	
2	. Given a function f from a set X to a set Y , $f(x)$ is	
3	. Given a function f from a set X to a set Y , if $f(x) = y$, then y is called or or or	
4	. Given a function f from a set X to a set Y , the range of f (or the image of X under f) is	
5	. Given a function f from a set X to a set Y , if $f(x) = y$, then x is called or	
6	. Given a function f from a set X to a set Y , if $y \in Y$, then $f^{-1}(y) = \underline{\hspace{1cm}}$ and is called $\underline{\hspace{1cm}}$.	
7	. Given functions f and g from a set X to a set Y , $f = g$ if, and only if,	
8	. Given positive real numbers x and b with $b \neq 1$, $\log_b x = \underline{\hspace{1cm}}$.	
9	. If F is a function from a set X to a set Y , then F is one-to-one if, and only if,	
10	. If F is a function from a set X to a set Y , then F is not one-to-one if, and only if,	
11	. If F is a function from a set X to a set Y , then F is onto if, and only if,	
12. If F is a function from a set X to a set Y , then F is not onto if, and only if,		
	The following two statements are:	
	$\forall u,v \in U$, if $H(u) = H(v)$ then $u = v$.	
	$\forall u,v \in U$, if $u \neq v$ then $H(u) \neq H(v)$.	
	Given a function $F: X \to Y$ (where X is an infinite set or a large finite set), to prove that F is one-to-one, you suppose that and then you show that	
	Given a function $F: X \to Y$) (where X is an infinite set or a large finite set), to prove that F is onto, you suppose that and then you show that	
16.	Given a function $F: X \to Y$, to prove that F is not one-to-one, you	
17.	Given a function $F: X \to Y$, to prove that F is not onto, you	
18.	A one-to-one correspondence from a set X to a set Y is a that is	
19.	If F is a one-to-one correspondence from a set X to a set Y and y is in Y, then $F^{-1}(y)$ is	
	·	
20.	The pigeonhole principle states that	

21.	The generalized pigeonhole principle states that
22.	If X and Y are finite sets and f is a function from X to Y then f is one-to-one if, and only if,
	·
23.	If f is a function from X to Y and g is a function from Y to Z , then $g \circ f$ is a function from to, and $(g \circ f)(x)$ for all x in X .
24.	If f is a function from X to Y and i_X and i_Y are the identity functions from X to X and Y to Y , respectively, then $f \circ i_X = $ and $i_Y \circ f = $
25.	If f is a one-to-one correspondence from X to Y, then $f^{-1} \circ f = \underline{\hspace{1cm}}$ and $f \circ f^{-1} = \underline{\hspace{1cm}}$.
26.	If f is a one-to-one function from X to Y and g is a one-to-one function from Y to Z , you prove that $g \circ f$ is one-to-one by supposing that and then showing that
27.	If f is an onto function from X to Y and g is an onto function from Y to Z , you prove that $g \circ f$ is onto by supposing that and then showing that
28.	A set is finite if, and only if,
29.	To prove that a set A has the same cardinality as a set B you must
30.	Given a set A , the reflexive property of cardinality says that
31.	Given sets A and B , the symmetric property of cardinality says that
32.	Given sets A , B , and C , the transitive property of cardinality says that
33.	A set is called countably infinite if, and only if,
34.	A set is called countable if, and only if,
35. In each of the following, fill in the blank with the word countable or the word uncountable.	
	(a) The set of all integers is
	(b) The set of all rational numbers is
	(c) The set of all real numbers between 0 and 1 is
	(d) The set of all real numbers is
	(e) The set of all computer programs in a given computer language is
	(f) The set of all functions from the set of all positive integers, Z ⁺ , to {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is

Answers

- 1. each, one and only one
- 2. the unique output element y in Y that is related to x by f
- 3. the value of f at x; the image of x under f; the output of f for the input x
- 4. the set of all y in Y such that f(x) = y
- 5. an inverse image of y under f; a preimage of y
- 6. $\{x \in X \mid f(x) = y\}$; the inverse image of y
- 7. f(x) = g(x) for all $x \in X$
- 8. the exponent to which b must be raised to obtain x Or: $\log_b y = x \Leftrightarrow b^y = x$
- 9. for all x_1 and x_2 in X, if $F(x_1) = F(x_2)$ then $x_1 = x_2$
- 10. there exist elements x_1 and x_2 in X such that $F(x_1) = F(x_2)$ and $x_1 \neq x_2$
- 11. for all y in Y, there exists at least one element x in X such that f(x) = y
- 12. there exists an element y in Y such that for all elements x in X, $f(x) \neq y$
- logically equivalent ways of expression what it means for H to be a one-to-one function (The second way is the contrapositive of the first.)
- 14. x_1 and x_2 are any [particular but arbitrarily chosen] elements in X with the property that $F(x_1) = F(x_2)$; $x_1 = x_2$
- 15. y is any [particular but arbitrarily chosen] element in Y; there exists at least one element x in X such that F(x) = y
- 16. show that there are concrete elements x_1 and x_2 in X with the property that $F(x_1) = F(x_2)$ and $x_1 \neq x_2$
- 17. show that there is a concrete element y in Y with the property that $F(x) \neq y$ for any element x in X
- 18. function from X to Y; one-to-one and onto
- 19. the unique element x in X such that F(x) = y (in other words, $F^{-1}(y)$ is the unique preimage of y in X)
- 20. if n pigeons fly into m pigeonholes and n > m, then at least two pigeons fly into the same pigeonhole
 - Or: given any function from a finite set to a smaller finite set, there must be at least two elements in the function's domain that have the same image in the function's co-domain Or: a function from one finite set to a smaller finite set cannot be one-to-one
- 21. if n pigeons fly into m pigeonholes and, for some positive integer k, n > mk, the at least one pigeonhole contains k + 1 or more pigeons
 - Or: for any function f from a finite set X to a finite set Y and for any positive integer k, if $N(X) > k \cdot N(Y)$, then there is some $y \in Y$ such that y is the image of at least k+1 distinct elements of Y
- 22. f is onto

- 23. X; Z; g(f(x))
- 24. f; f
- 25. i_X ; i_Y
- 26. x_1 and x_2 are any [particular but arbitrarily chosen] elements in X with the property that $(g \circ f)(x_1) = (g \circ f)(x_2)$; $x_1 = x_2$
- 27. z is any [particular but arbitrarily chosen] element in Z; there exists at least one element x in X such that $(g \circ f)(x) = z$
- 28. it is the empty set or there is a one-to-one correspondence from $\{1, 2, ..., n\}$ to it, where n is a positive integer
- 29. show that there exists a function from A to B that is one-to-one and onto; Or: show that there exists a one-to-one correspondence from A to B
- 30. A has the same cardinality as A
- 31. if A has the same cardinality as B, then B has the same cardinality as A
- 32. if A has the same cardinality as B and B has the same cardinality as C, then A has the same cardinality as C
- 33. it has the same cardinality as the set of all positive integers
- 34. it is finite or countably infinite
- 35. countable; countable; uncountable; uncountable; uncountable