1. Homework 3

In mathematics, an equivalence relation is a binary relation that is reflexive, symmetric and transitive. For instance,

• Reflexiveness condition of relation R over set U

$$\forall_{x \in U} \ xRx \rightarrow \forall_{x \in U} : \ (x, x) \in \mathbf{R},$$

where **R** is subset of Cartesian product $U \times U$. We can denote **R** as well as $xRy: U \mapsto \mathbf{R}$

• Symmetry of relation R is given by

$$\forall_{x,y \in U} \ xRy \rightarrow yRx$$

It implies that

$$\forall_{x,y\in U} \{(x,y),(y,x)\}\subset \mathbf{R}$$

• Transitivity of relation R over given set U is given by

$$\forall_{x,y,z\in U} (xRy \wedge yRz) \rightarrow xRz$$

Let's define relations R_1 and R_2 in the set of all straight lines on a plane \mathbb{R} :

- Two lines a, b are in relation R_1 if they are parallel.
- Two lines a, b are in relation R_2 if they are perpendicular.

Case 2.1. Two lines a, b are in relation R_1 if they are parallel.

We examining if the relation R_1 is equivalence.

- Relation R_1 is reflexive, since $\forall_{x \in \mathbb{R}} (x \parallel x)$.
- Relation R_1 is symmetric, since $\forall_{x,y\in\mathbb{R}} (x \parallel y) \to (y \parallel x)$.
- Relation R_1 is transitive, since $\forall_{x,y,z\in\mathbb{R}} \ (x\parallel y) \land (y\parallel z) \rightarrow x\parallel z$.

Thus, relation R_1 is equivalence relation.

Case 2.2. Two lines a, b are in relation R_2 if they are perpendicular.

- Relation R_2 is not reflexive, since $\forall_{x \in \mathbb{R}} (x \perp x)$ is false.
- Relation R_2 is symmetric, since $\forall_{x,y\in\mathbb{R}} \ (x\perp y) \to (y\perp x)$.
- Relation R_2 is not transitive, since $\forall_{x,y,z\in\mathbb{R}} (x\perp y) \land (y\perp z) \rightarrow x \parallel z$.

Let be a set $U = \{0, 1, 2, 3, 4\}$. Define the following relations within U:

- $(x,y) \in R_1 \text{ if } 2x = y.$
- $(x,y) \in R_2 \text{ if } x y = 0.$

Case 3.1. $(x, y) \in R_1$ if 2x = y.

The following Matrix shows the relation R_1 over set U

xR_1y	0	1	2	3	4
0	1	0	0	0	0
1	0	0	1		0
2	0	0	0	0	1
3	0	0	0	0	0
4	0	0	0	0	0

• Relation R_1 is not reflexive since main diagonal is not totally consists of 1's.

- Relation R_1 is not symmetric, since Matrix is not symmetric with respect to main diagonal.
- Relation R_1 is not transitive, since $\forall_{x,y,z\in U} (xRy \land yRz) \not\to xRz$.

Thus, relation R_1 is not equivalence.

Case 3.2.
$$(x,y) \in R_2$$
 if $x - y = 0$.

The following Matrix shows the relation R_1 over set U

xR_2y	0	1	2	3	4
0	1	0	0	0	0
1	0	1	0	0	0
2	0	0	1	0	0
3	0	0	0	1	0
4	0	0	0	0	1

- Relation R_2 is reflexive since main diagonal is totally consists of 1's.
- \bullet Relation R_2 is symmetric since the matrix is symmetric over main diagonal.
- Relation R_2 is not transitive, since iff $x = y \to x y = 0$, thus $\forall_{x,y,z \in U} (xR_2y \land yR_2z) \not\to xR_2z$. Unless $U \neq \{const\}$.

Thus, relation R_2 is not equivalence.

Give an examples of equivalence relations in sets of:

- Computer Science Students, students with same average score is equivalence relation.
- Cars, cars with the same color is equivalence relation.
- Citizens of Europe, people with passport of EU with same age is equivalence relation.
- Natural Numbers, two parallel vectors (a, b) on the plane \mathbb{N} .

Describe all equivalence classes in the modulo 4 over the set of natural numbers.

$$[0] = \{0,4,8,12,...,\} = \{0+4k|k\in\mathbb{N}\}$$

$$[1] = \{1, 5, 9, 13, ..., \} = \{1 + 4k | k \in \mathbb{N}\}$$

$$[2] = \{2, 6, 10, 14, ..., \} = \{2 + 4k | k \in \mathbb{N}\}$$

$$[3] = \{3, 7, 11, 15, \dots, \} = \{3 + 4k | k \in \mathbb{N}\}\$$