FIZIKA

KÖZÉPSZINTŰ ÍRÁSBELI VIZSGA

2019. május 20. 8:00

Időtartam: 120 perc

Pótlapok száma			
Tisztázati			
Piszkozati			

EMBERI ERŐFORRÁSOK MINISZTÉRIUMA

Fizika
középszint

Név: osztály:.....

Fontos tudnivalók

Olvassa el figyelmesen a feladatok előtti utasításokat, és gondosan ossza be idejét!

A feladatokat tetszőleges sorrendben oldhatja meg.

Használható segédeszközök: zsebszámológép, függvénytáblázatok.

Ha valamelyik feladat megoldásához nem elég a rendelkezésre álló hely, a megoldást a feladatlap üres oldalain, illetve pótlapokon folytathatja a feladat számának feltüntetésével.

Itt jelölje be, hogy a második rész 3/A és 3/B feladatai közül melyiket választotta (azaz melyiknek az értékelését kéri):

3/

Fizika középsz	nt	Név:	osztály:
		ELSŐ RÉSZ	
a betűj		aszlehetőségek közül pontosan egy jó. égyzetbe! (Ha szükségesnek tartja, kis	
	ılábbi esetek közül m testen?	nikor végez több munkát 1 másodp	oerc alatt a nehézségi erő
A F	Akkor, amikor a tes irányban.	et egy asztallapon nyugalomban van. et 20 m/s sebességgel mozog egyenlet et 2 m/s sebességgel mozog egyenlete	
			2 pont
2. A	old felszínén rengeteg	g kráter látható. Hogyan alakulhatt	tak ki ezek a kráterek?
A H	Mai, aktív vulkánok Meteoritok becsapó Vízmozgások erózio	dásának nyomán.	
			2 pont
	cukrászdában egy en a ezt a "balesetet"?	nber fogzománca megrepedt. Az alá	bbiak közül melyik okoz-

A)	Tú1	sok	hide	a faas	laltot	evett
\boldsymbol{H}	l I UI	SUK	muc	e raev	Tanoi	CVCII

- Túl sok nideg fagylaltot e Túl sok forró kávét ivott. B)
- A hideg fagylalt után rögtön forró kávét ivott. **C**)

Egy egyenes vonalon közlekedő biciklis utánfutó kis zászlója a rugalmas árbócon a menetirányra merőlegesen rezeg, amíg a biciklis meg nem érkezik. Egy idő után a zászlórúd rezgése teljesen lecsillapodik. Mit állíthatunk az árbóc legfelső pontja által a rezgés megszűntéig megtett útról és elmozdulásáról?

(tiierisch.de)

- Az árbóc teteje által megtett út egyenlő az utánfutó által megtett úttal, és elmozdulásuk is egyenlő.
- Az árbóc teteje által megtett út különbözik az utánfutó által megtett úttól, B) de elmozdulásuk egyenlő.
- Az árbóc teteje által megtett út egyenlő az utánfutó által megtett úttal, de **C**) elmozdulásuk különböző.

2 pont

5. Az ábra szerinti úszó sűrűségmérő az alkohol vizes oldatának sűrűségét méri. Hogyan alakul a sűrűségmérő folyadékból kilógó részének hossza, ha az alkohol vizes oldatához vizet öntünk, miközben a folyadék hőmérséklete nem változik? (A víz sűrűsége nagyobb az alkohol sűrűségénél.)

- A) A kilógó rész hossza nő.
- A kilógó rész hossza nem változik. B)
- C) A kilógó rész hossza csökken.

6. A mellékelt ábrán látható kapcsolásban milyen értéket mutat az I_4 és az I_5 árammérő műszer? (A kapcsolásban szereplő izzók eltérők lehetnek.)

- **A)** $I_4 = 0.5 \text{ A}, I_5 = 1 \text{ A}.$
- **B)** $I_4 = 0.5 \text{ A}, I_5 = 0.5 \text{ A}.$
- C) $I_4 = 1 \text{ A}, I_5 = 0.5 \text{ A}.$
- **D)** $I_4 = 1 \text{ A}, I_5 = 1 \text{ A}.$

2 pont

- 7. Egy-egy dugattyúval ellátott tartályban azonos tömegű hélium- és neongázt melegítünk azonos, állandó nyomáson. Melyik gáz térfogatváltozása lesz a nagyobb, ha 20 °C-ról 40 °C-ra melegítjük a gázokat?
 - A) A héliumé, mert a folyamat során a sűrűsége mindig kisebb, mint a neoné.
 - B) A neoné, mert nagyobb a móltömege és a térfogata.
 - C) Egyenlő, mert mindkettő egyatomos ideális gáz.

8. Egy egyenlő szárú derékszögű háromszög keresztmetszetű optikai eszközben az ábrán látható módon verődött vissza a fénysugár. Mi lehet az eszköz?

- A) Csak egy üvegprizma lehet.
- **B)** Csak egy doboz lehet két nyílással, s a nyílások felé néző ferde síktükörrel.
- C) Mindkét fenti eszköz lehet.

Fizi köz	ka épszint	Név:	OS	sztály:
9.		nszformátor és generátor közül melyik az, amelyik átalakítja a comos energiává?	mozgási	energiát
	A) B) C)	Csak a transzformátor. Csak generátor. A generátor és a transzformátor is.		
			2 pont	
10.	hullái a fén	fotoeffektus megfigyelésére végrehajtott kísérletben egy mhoszúságú fénnyel világítunk meg, és ennek hatására nem lépi nből. Megfigyelhetünk-e kilépő elektronokat, ha ugyanezt mhosszúságú fénnyel világítjuk meg?	nek ki ele	ektronok
	A) B) C)	Igen, ekkor biztosan lépnek ki elektronok a fémből. Nem, ekkor biztosan nem lépnek ki elektronok a fémből. Elképzelhető, de a megadott adatok alapján nem lehet eldönteni.		
			2 pont	
11.	idő al kerek fogya	enzinmotoros gépkocsi egyaránt 100 km-t tett meg állandó sel latt, vízszintes talajon. A kocsik azonos tömegűek és légellená teik gördülési ellenállása is egyforma. Az első gépkocsi az út sor sztott el, a második pedig 8 litert. Mit állíthatunk biztosan a két ödéséről ezen út alatt?	íllásuk, v án 6 litei	valamint benzint
	A) B) C)	Az első kocsi motorjának nagyobb volt a teljesítménye. Az első kocsi motorjának nagyobb volt a hatásfoka. A megadott adatok alapján nem dönthető el.		
			2 pont	
12.	Meg l	lehet-e zavarni egy iránytűt egy darab lágyvassal, ha közel tessz	zük hozz	á?
	A)	Nem, a lágyvasnak nincsen saját mágneses tere, tehát nem is zava az iránytűt.	arja meg	
	B)	Igen, hiszen az iránytű egy piciny mágnes, ami vonzza a lágyvasa közel kerül hozzá.	ıt, ha	
	C)	Igen, mert a lágyvas mágneses tere mindig éppen ellentétes a Földmágneses terével, és így a környezetében kioltja azt.	d	
			2 pont	

13. Az alábbi grafikonok közül melyik ábrázol biztosan gyorsuló mozgást?

- **A)** Az 1-es.
- **B)** A 2-es.
- **C)** A 3-as.

2 pont	

- 14. A laboratóriumban egy darab tiszta plutónium-239 fémet vizsgálnak. A fém hőmérséklete magasabb a környezeténél. Mi ennek az oka?
 - A) A fémben lejátszódó radioaktív bomlások melegítik a mintát.
 - B) A fémben lejátszódó magfúzió melegíti a mintát.
 - C) A fémben lejátszódó elektrongerjesztés melegíti a mintát.

2 pont	

- 15. A Hold fázisa éppen telihold. A Föld melyik féltekéjén fordulhat elő teljes napfogyatkozás ilyenkor?
 - A) Az északi féltekén.
 - B) A déli féltekén.
 - C) Mindkét féltekén előfordulhat.
 - **D)** Egyik féltekén sem fordulhat elő.

16. Gyenge vízsugár folyik a csapból. Azt tapasztaljuk, hogy ha egy negatívan töltött ebonitrudat közelítünk a vízsugár felé, az vonzza a vízsugarat. Mi történik, ha pozitívan töltött üvegrudat közelítünk?

(https://www.didaktik.physik.uni-muenchen.de)

- A) A pozitívan töltött rúd ugyanúgy vonzza a vízsugarat.
- B) A pozitívan töltött rúd taszítja a vízsugarat.
- C) A pozitívan töltött rúd nem téríti el a vízsugarat.

2 pont	

17. Melyik ábra mutatja helyesen az egyszerű nagyító működését?

A)

B)

- A) Az A) ábra.
- B) AB) ábra.
- C) Mindkettő.

18. Melyik állítás igaz a kis kitéréssel indított fonálingára?

- A) A periódusideje független a nehézségi gyorsulástól.
- B) A periódusideje független a fonál hosszától.
- C) A periódusideje független a fonálon függő test tömegétől.

19. Egy kerekes kúttal vizet húzunk fel a kútból. A kereket egyenletesen forgatjuk, eközben a teli vödör víz egyenletesen emelkedik. Az ábrán a kerék fogantyúját és a rá kifejtett erők irányát három különböző állásban ábrázoltuk. Melyik állásban a legnagyobb az általunk kifejtett erő? (A kereket teljesen szimmetrikusnak, a fogantyút súlytalannak tekinthetjük.)

- A) Amikor a fogantyút éppen felfelé mozgatjuk (1-es).
- B) Amikor a fogantyút éppen vízszintesen mozgatjuk (2-es).
- C) Amikor a fogantyút éppen lefelé mozgatjuk (3-as).
- D) Egyforma erőt kell kifejteni mindhárom esetben.

2 pont	

20. Egy ²⁴⁴Pu atommag alfa-bomlással bomlik. Milyen leányelem keletkezik? Az ábra a periódusos rendszer egy részét mutatja.

57	58	59	60	61	62	63	64	65	66
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy
89	90	91	92	93	94	95	96	97	98
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf

- **A)** 240 Np.
- **B**) 240 U.
- C) ²⁴⁴Cm.
- **D**) ²⁴²Cm.

2 pont	

1912 írásbeli vizsga 9 / 20 2019. május 20.

Fizika	
középszin	1

Név:	 osztály:

MÁSODIK RÉSZ

Oldja meg a következő feladatokat! Megállapításait – a feladattól függően – szövegesen, rajzzal vagy számítással indokolja is! Ügyeljen arra is, hogy a használt jelölések egyértelműek legyenek!

- 1. Az arany egy rendkívül könnyen hajlítható, deformálható fém. Egy 1 grammos darabból akár 2 km hosszú drótot is ki lehet alakítani.
 - a) Milyen maximális ellenállású drótot lehet 1 g aranyból készíteni?
 - b) Mekkora lesz ennek a drótnak az ellenállása, ha négy egyenlő részre vágjuk, és a részeket egymás mellé téve összesodorjuk?

Az arany sűrűsége $\rho = 19.3 \text{ g/cm}^3$, az arany fajlagos ellenállása $\rho_f = 22.14 \cdot 10^{-9} \Omega \cdot \text{m}$.

a)	b)	Összesen
9 pont	6 pont	15 pont

2. Napkémény

A napkémény egy újfajta, kísérleti hőerőmű. Létesítésekor nagy földterületet kör alakban, átlátszó tetővel fednek be, amely a közepe felé enyhén emelkedik, ez az úgynevezett kollektor. Középen egy magas torony található, ez a napkémény. Napsütés hatására a tető alatt a levegő (mint az üvegházban) felmelegszik, és a kéményen át felszáll. Eközben az áramló levegő turbinát hajt meg. A turbinához generátor csatlakozik, mely a mozgási energiát villamos energiává alakítja. Ha azt szeretnék, hogy a légáram éjjel se álljon le, a tető alatt a talajra vízzel teli, fekete csöveket fektetnek, melyek nappal felmelegszenek, éjjel pedig leadják az elnyelt hőt.

A napkémény prototípusát három éven át tesztelték Manzanaresben, Spanyolországban. A kollektorának átmérője 240 méter, felülete 46 000 m², a kémény magassága 195 méter volt. Átlagos teljesítményének értéke 50 kW volt. Ha a turbina és a generátor üzemelt, a kéményben a légáram sebessége 8 m/s, ha a turbina állt, akkor 15 m/s volt. Egy nagy teljesítményű, gáztüzelésű vagy nukleáris erőmű kiváltására alkalmas napkéményhez 7000 m kollektorátmérőre és 1 km magas toronyra volna szükség, olyan területen, ahol a napsugárzás egész évben erős.

(wikipédia, ill. http://www.sbp.de/en/project/solar-chimney-pilot-plant-manzanares/)

- a) Miért az ábrán nyilakkal jelzett irányba mozog a kollektor teteje alatt, illetve a kéményben a levegő, ha süt a nap?
- b) Miért más az áramló levegő sebessége a kéményben bekapcsolt, illetve kikapcsolt turbina és generátor esetén?
- c) A turbinák éjszakai működtetésére, a hőtárolásra miért érdemes vízzel teli csöveket használni? Miért festik a csöveket feketére?
- d) Határozza meg, hogy hány 1200 wattos vízforraló kancsót lehetett volna a manzaresi napkémény segítségével egyszerre üzemeltetni, amikor az átlagos teljesítménnyel működött!

1912 írásbeli vizsga 12 / 20 2019. május 20.

a)	b)	c)	d)	Összesen
4 pont	4 pont	4 pont	3 pont	15 pont

A 3/A és a 3/B feladatok közül csak az egyiket kell megoldania. A címlap belső oldalán jelölje be, hogy melyik feladatot választotta!

3/A Az árapály jelenséget a Hold, illetve a Nap gravitációs hatása okozza. Az égitestek hatására az óceánok vízfelülete kidudorodik a Nap és a Hold felé eső oldalon, és a rendszer összehangolt mozgásának hatására az azzal ellentétes oldalon is, az egyszerűsített ábrának megfelelően. A dagálypúp alatt a Föld a nyíl irányának megfelelően elfordul forgási periódusával összhangban.

https://docplayer.hu/2377118-A-hold-plachy-emese-mta-csfk-csi.html

A Hold és a Nap árapálykeltő hatása erősíti egymást, amikor ezen égitestek egy egyenesbe esnek a Földdel, és gyengítik, ha a Földhöz képest egymásra merőleges irányban helyezkednek el. Erősítéskor nagyobb dagályhullám (szökőárapály) jön létre, gyengítéskor kisebb dagályhullám (vakárapály) söpör végig az óceánok felületén.

- a) Mi az oka a Hold fázisainak? Milyen holdfázisok esetén van szökőárapály és mikor van vakárapály?
- b) Hányszor van dagály egy napon egy adott földrajzi helyen?
- c) Körülbelül milyen gyakran van szökőárapály? Körülbelül mennyi idő telik el a szökőárapály és a vakárapály ideje között? Válaszát indokolja!
- d) Milyen árapály van napfogyatkozáskor? Milyen árapály van holdfogyatkozáskor?

1912 írásbeli vizsga 14 / 20 2019. május 20.

a)	b)	c)	d)	Összesen
8 pont	2 pont	6 pont	4 pont	20 pont

3/B Az alábbi grafikonok egy gumiabroncsgyártó cég honlapján szerepeltek. Az első azt ábrázolja, hogy mekkora egy gépkocsi fékútja különböző körülmények között és különböző gumiabroncsok használatával, egy adott sebességről fékezve. A második grafikon pedig hóban fékezés esetén mutatja a fékút hosszabbodását félig kopott és nagyon elkopott profilú gumiabroncsok esetén. Gumiabroncsok esetén "profilnak" nevezik az abroncs futófelületén lévő barázdákat, mintázatot.

Fékút száraz úton teljes megállásig 100 km/h sebességről, t > 15 °C:

Fékút nedves úton teljes megállásig 100 km/h sebességről, t > 15 °C:

Fékút havas úton teljes megállásig 40 km/h sebességről:

Fékút havas úton 50 km/h sebességről, különböző profilmélységek esetén (kopott gumiabroncsok esetén a fékút a 8 mm-es profilhoz viszonyítva értendő):

1912 írásbeli vizsga 16 / 20 2019. május 20.

Fizika	Név: osztály:
középszint	•

A grafikonok segítségével válaszoljon az alábbi kérdésekre!

- a) Körülbelül mennyivel hosszabb egy gépkocsi fékútja 100 km/h sebességről fékezve, nyári gumi használata esetén, nyáron, nedves úton, mint ugyanilyen feltételekkel, de száraz úton?
 - Körülbelül mennyivel hosszabb egy gépkocsi fékútja 100 km/h-ról fékezve nyáron, száraz úton, ha téli gumit használ nyári helyett?
 - Mennyivel hosszabb a fékút télen, havas úton 40 km/h-ról fékezve, ha téli gumi helyett nyárit használ az autós?
- b) Mennyi munkát végez a súrlódási erő egy 1200 kg tömegű gépkocsin, mialatt az 40 km/h sebességről fékezve megáll?
- c) Mekkora a súrlódási erő a kerekek és az út között téli gumival havas úton, illetve nyári gumival havas úton?
- d) Hányszor nagyobb a fékezőerő havas úton egy 8 mm-es profilmélységgel rendelkező új téli gumi esetén, mint egy még éppen használható 1,6 mm-es profilmélységű gumi esetén?

a)	b)	c)	d)	Összesen
6 pont	6 pont	4 pont	4 pont	20 pont

Fizika	Név:	osztály:
közénszint	Nev:	osztary

Fizik	a
közér	szint

Név:	 osztály	J•
LACV.	 OSZIAI	y

Figyelem! Az értékelő tanár tölti ki!

	pontszám	
	maximális	elért
I. Feleletválasztós kérdéssor	40	
II. Összetett feladatok	50	
Az írásbeli vizsgarész pontszáma	90	

dátum	javító tanár

	pontszáma egész számra kerekítve	
	elért	programba beirt
I. Feleletválasztós kérdéssor		
II. Összetett feladatok		

dátum	dátum
javító tanár	jegyző