Elements of a Bézier curve :

For Bézier curves, the notion of knot is trivial :

$$u_0 = 0$$
 $u_1 = 1$

- Principle of De Casteljau's algorithm
 - Construction of the centroids P_i^1 of the control points P_i^0 : $P_i^1 = (1-u)P_i^0 + uP_{i+1}^0$
 - We continue with P_i^2
 - As far as possible, until only one control points remains, P_0^d That control point is P(u).

Initialization of P_i^0 For j from 1 to dFor i from 0 to d-j $P_i^j = (1-u)P_i^{j-1} + uP_{i+1}^{j-1}$ EndFor EndFor P_0^d is the point we want.

- Degree elevation
 - Forrest's equations [1972]

$$Q_0 = P_0$$

$$Q_i = \frac{i}{d+1} P_{i-1} + \left(1 - \frac{i}{d+1}\right) P_i \text{ for } i = 1, \dots, d$$

$$Q_{d+1} = P_d$$

- Principle of De Casteljau's algorithm
 - Construction of the centroids P_i^1 of the control points P_i^0 : $P_i^1 = (1-u)P_i^0 + uP_{i+1}^0$
 - We continue with P_i^2
 - As far as possible, until only one control points remains, P_0^d That control point is P(u).

Curve cut

- Curve cut: I₁
 - 1 Compute the intersection point I_1 at $u=u_1$ with help of De Casteljau's algorithm this gives the points P_i^j
- 2 Among these points, consider the points P_0^j : they are vertices of the characteristic polygon of the curve's restriction at the interval P_0 - I_1 , and the new parametrization is $u^* = u/u_1$

• Curve cut: I₁

- Curve cut: I₀
 - 3 Calculate the intersection I_0 on the new curve at $u^*=u^*_0$ gives the points P^{*j}_i
 - 4 Consider the points P_i^{*d-i} vertices of the characteristic polygon of the curve's restriction to the interval I_0 - I_1 : new parametrization is $u' = (u^* u_0^*)/(1 u_0^*)$

• Curve cut: I₀

