MA-423: Matrix Computations

R. Alam

Norms of vectors and matrices

1. Let $x \in \mathbb{C}^n$. Show that

$$||x||_{\infty} \le ||x||_2 \le \sqrt{n} ||x||_{\infty} \text{ and } \frac{||x||_1}{\sqrt{n}} \le ||x||_2 \le ||x||_1.$$

2023

- 2. Let $\|\cdot\|$ be a norm on \mathbb{C}^n . Show that $\|\|x\| \|y\|\| \le \|x y\|$ for all $x, y \in \mathbb{C}^n$.
- 3. Plot the closed unit ball $S_p := \{x \in \mathbb{R}^2 : ||x||_p \le 1\}$ for $p = 1, 2, \infty$.
- 4. Let $\|\cdot\|$ be a norm on \mathbb{C}^n and $W \in \mathbb{C}^{n \times n}$ be nonsingular. Show that $\|x\|_W := \|Wx\|$ is a norm on \mathbb{C}^n .
- 5. Let $A \in \mathbb{C}^{m \times n}$. Show that $||A|| := \max_{\|x\|=1} ||Ax|| = \max_{\|x\| \le 1} ||Ax|| = \max_{x \ne 0} \frac{||Ax||}{\|x\|}$.
- 6. Show that $\|\operatorname{diag}(\lambda_1, \dots, \lambda_n)\|_p = \max_{1 \le i \le n} |\lambda_i|$ for $p = 1, 2, \infty$.
- 7. Let $A \in \mathbb{C}^{m \times n}$. Show that A^*A is positive semi-definite and hence there is a unitary matrix Q such that $A^*A = Q \operatorname{diag}(\lambda_1, \dots, \lambda_n) Q^*$ with $\lambda_j \geq 0, j = 1 : n$. Set $\lambda_{\max}(A^*A) := \max_j |\lambda_j|$. Show that $||A^*A||_2 = \lambda_{\max}(A^*A)$. Also show that $||Ax||_2^2 = x^*A^*Ax$ and deduce that $||A||_2 = \sqrt{\lambda_{\max}(A^*A)} = \sqrt{||A^*A||_2}$.
- 8. Let $A \in \mathbb{C}^{m \times n}$. Let $\sigma_1(A), \ldots, \sigma_n(A)$ denote the square roots of the n eigenvalues of A^*A . Show that $||A||_F = ||[\sigma_1(A), \ldots, \sigma_n(A)]^\top||_2$.
- 9. Let $A \in \mathbb{C}^{m \times n}$ and $B \in \mathbb{C}^{n \times p}$. Show that $||AB||_F \le ||A||_2 ||B||_F$ and $||AB||_F \le ||A||_F ||B||_2$.
- 10. Let $A \in \mathbb{C}^{m \times n}$. Define $||A||_{\max} := \max_{i,j} |e_i^\top A e_j|$. Show that $||\cdot||_{\max}$ is a matrix norm but it is not a submultiplicative norm. Show that $||A||_{\max} \le ||A||_p \le n||A||_{\max}$ when m = n, where $p = 1, 2, \infty$.

**********End*******