Activating hidden metrological usefulness

Géza Tóth^{1,2,3,4}, Tamás Vértesi⁵, Paweł Horodecki^{6,7}, Ryszard Horodecki⁸

¹Theoretical Physics, University of the Basque Country (UPV/EHU), Bilbao, Spain
 ²Donostia International Physics Center (DIPC), San Sebastián, Spain
 ³IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
 ⁴Wigner Research Centre for Physics, Budapest, Hungary
 ⁵Institute for Nuclear Research, Hungarian Academy of Sciences, Debrecen, Hungary
 ⁶International Centre for Theory of Quantum Technologies, University of Gdansk, Poland
 ⁷Faculty of Applied Physics and Mathematics, National Quantum Information Centre, Gdansk University of Technology, Gdansk, Poland

⁸Institute of Theoretical Physics and Astrophysics, National Quantum Information Centre, Faculty of Mathematics, Physics and Informatics, University of Gdansk, Poland

SAMOP, Gemany, 23 September 2021 (online).

Photos

Tamás Vértesi

Paweł Horodecki

Ryszard Horodecki

- Motivation
 - What are entangled states useful for?
- Metrological gain and the optimal local Hamiltonian
 - Metrological usefulness of a quantum state.
 - Activation of metrological usefulness
 - Optimal local Hamiltonian
 - Bipartite pure entangled states

What are entangled states useful for?

- Entanglement is needed for beating the shot-noise limit in quantum metrology.
- However, not all entangled states are more useful than separable states.

- Intriguing questions:
 - Can a quantum state become useful metrologically, if an ancilla or a second copy is added?
 - How to find the local Hamiltonian, for which a quantum state is the most useful compared to separable states?

- Motivation
 - What are entangled states useful for?
- Metrological gain and the optimal local Hamiltonian
 - Metrological usefulness of a quantum state.
 - Activation of metrological usefulness
 - Optimal local Hamiltonian
 - Bipartite pure entangled states

The quantum Fisher information

• Cramér-Rao bound on the precision of parameter estimation

$$(\Delta heta)^2 \geq rac{1}{m F_Q[arrho,A]}, \qquad arrho egin{pmatrix} arrho \ igg| U(heta) = \exp(-iA heta) \end{pmatrix}$$

where where m is the number of independent repetitions and $F_Q[\varrho, A]$ is the quantum Fisher information.

• The quantum Fisher information is

$$F_Q[\varrho,A] = 2\sum_{k,l} \frac{(\lambda_k - \lambda_l)^2}{\lambda_k + \lambda_l} |\langle k|A|I\rangle|^2,$$

where $\varrho = \sum_{k} \lambda_{k} |k\rangle \langle k|$.

Metrological usefulness

Metrological gain for a given Hamiltonian

$$g_{\mathcal{H}}(\varrho) = rac{\mathcal{F}_{Q}[\varrho,\mathcal{H}]}{\mathcal{F}_{Q}^{(\mathrm{sep})}(\mathcal{H})},$$

where $\mathcal{F}_Q^{(\mathrm{sep})}(\mathcal{H})$ is the maximum of the QFI for separable states.

Metrological gain optimized over all local Hamiltonians

$$g(\varrho) = \max_{\mathrm{local}\mathcal{H}} g_{\mathcal{H}}(\varrho) = \max_{\mathrm{local}\mathcal{H}} rac{\mathcal{F}_Q[\varrho,\mathcal{H}]}{\mathcal{F}_Q^{(\mathrm{sep})}(\mathcal{H})}.$$

- A state ϱ is useful if $g(\varrho) > 1$.
- The metrological gain is convex in the state.
 [G. Toth, T. Vertesi, P. Hordecki, R. Horodecki, PRL 2020.]
- We would like to detmine g.

Maximally entangled state

- Difficult to obtain $g(\varrho)$ and the optimal local Hamiltonian for any ϱ .
- ullet As a first step, we consider the $d \times d$ maximally entangled state

$$|\Psi^{(\text{me})}\rangle = \frac{1}{\sqrt{d}} \sum_{k=1}^{d} |k\rangle |k\rangle.$$

The optimal Hamiltonian is

$$\mathcal{H}^{(\mathrm{me})} = D \otimes \mathbb{1} + \mathbb{1} \otimes D,$$

where

$$D = diag(+1, -1, +1, -1, ...).$$

Maximally entangled state II

The 3×3 noisy quantum state

$$\varrho_{AB}^{(\rho)} = (1-\rho)|\Psi^{(\mathrm{me})}\rangle\langle\Psi^{(\mathrm{me})}| + \rho\mathbb{1}/d^2,$$

is useful if

$$p < \frac{25 - \sqrt{177}}{32} \approx 0.3655,$$

while for larger p's it is not useful.

Note that it is entangled if

$$p < \frac{2}{3}$$
.

- Motivation
 - What are entangled states useful for?
- Metrological gain and the optimal local Hamiltonian
 - Metrological usefulness of a quantum state.
 - Activation of metrological usefulness
 - Optimal local Hamiltonian
 - Bipartite pure entangled states

Activation by an ancilla qubit

If a pure ancilla qubit is added

$$\varrho^{(\mathrm{anc})} = |0\rangle\langle 0|_{a} \otimes \varrho_{AB}^{(p)}.$$

then the state is useful if

$$p < 0.3752$$
.

(For a single copy, the limit was p < 0.3655.)

• The Hamiltonian is

$$\mathcal{H}^{(\mathrm{anc})} = 1.2 C_{aA} \otimes \mathbb{1}_B + \mathbb{1}_{aA} \otimes D_B,$$

where

$$C_{aA} = rac{9}{20} \left(2\sigma_{x} + \sigma_{z}
ight)_{a} \otimes |0\rangle\langle 0|_{a} + \mathbb{1}_{a} \otimes (|2\rangle\langle 2|_{a} - |1\rangle\langle 1|_{a}).$$

Activation by a second copy

If a second copy is added

$$\varrho^{(\mathrm{tc})} = \varrho_{AB}^{(p)} \otimes \varrho_{A'B'}^{(p)}.$$

 $A \mid B$

B'

then the state is useful if

$$p < 0.4164$$
.

(For a single copy, the limit was p < 0.3655.)

The Hamiltonian is

$$\mathcal{H}^{(tc)} = \textit{D}_{\textit{A}} \otimes \textit{D}_{\textit{A'}} \otimes \mathbb{1}_{\textit{BB'}} + \mathbb{1}_{\textit{AA'}} \otimes \textit{D}_{\textit{B}} \otimes \textit{D}_{\textit{B'}}.$$

- Motivation
 - What are entangled states useful for?
- Metrological gain and the optimal local Hamiltonian
 - Metrological usefulness of a quantum state.
 - Activation of metrological usefulness
 - Optimal local Hamiltonian
 - Bipartite pure entangled states

Method for finding the optimal local Hamiltonian

- Direct maximization of $\mathcal{F}_Q[\varrho,\mathcal{H}]$ over \mathcal{H} is difficult: it is convex in \mathcal{H} .
- Let us consider the error propagation formula

$$(\Delta \theta)^2_M = \frac{(\Delta M)^2}{\langle i[M, \mathcal{H}] \rangle^2},$$

which provides a bound on the quantum Fisher information

$$\mathcal{F}_Q[\varrho,\mathcal{H}] \geq 1/(\Delta\theta)^2_M$$

[M. Hotta and M. Ozawa, Phys. Rev. A 2004; B. M. Escher, arXiv:1212.2533; F. Fröwis, R. Schmied, and N. Gisin, Phys. Rev. A 2015. For a summary, see, e.g., the Supplemental Material of Tóth, Vértesi, Horodecki, Horodecki, PRL 2020.]

Method for finding the optimal Hamiltonian II

The maximum over local Hamiltonians can be obtained as

$$\max_{local~\mathcal{H}} \mathcal{F}_Q[\varrho,\mathcal{H}] = \max_{local~\mathcal{H}} \max_{M} \frac{\langle \emph{i}[\emph{M},\mathcal{H}] \rangle_{\varrho}^2}{(\Delta \emph{M})^2}.$$

Similar idea for optimizing over the state, rather than over \mathcal{H} :

[K. Macieszczak, arXiv:1312.1356; K. Macieszczak, M. Fraas, and R. Demkowicz-Dobrzański, New J. Phys. 16, 113002 (2014); Tóth and Vértesi, Phys. Rev. Lett. (2018).]

See-saw algorithm

The precision cannot get worse with the iteration!

Note that $\mathcal{H}_1, \mathcal{H}_2$ fulfill

$$c_n \mathbb{1} \pm \mathcal{H}_n \geq 0.$$

Numerical results

ullet We remember that the 3 imes 3 isotropic state is useful if

$$p < \frac{25 - \sqrt{177}}{32} \approx 0.3655.$$

Then, we have the following results for activation.

	Analytic example	Numerics
Ancilla	0.3752	0.3941
Second copy	0.4164	0.4170

- Motivation
 - What are entangled states useful for?
- Metrological gain and the optimal local Hamiltonian
 - Metrological usefulness of a quantum state.
 - Activation of metrological usefulness
 - Optimal local Hamiltonian
 - Bipartite pure entangled states

Single copy of pure states

All entangled bipartite pure states are metrologically useful.

- Proof.—For the two-qubit case, see
 P. Hyllus, O. Gühne, and A. Smerzi, Phys. Rev. A 82, 012337 (2010).
- General case, pure state with a Schmidt decomposition

$$|\Psi\rangle = \sum_{k=1}^{3} \sigma_{k} |k\rangle_{a} |k\rangle_{B},$$

where s is the Schmidt number, and the real positive σ_k Schmidt coefficients are in a descending order.

We define

$$\mathcal{H}_A = \sum_{n-1,3,5,\ldots \tilde{s}-1} |+\rangle \langle +|_{A,n,n+1} - |-\rangle \langle -|_{A,n,n+1},$$

where \tilde{s} is the largest even number for which $\tilde{s} \leq s$, and

$$|\pm\rangle_{A,n,n+1} = (|n\rangle_a \pm |n+1\rangle_a)/\sqrt{2}.$$

Single copy of pure states II

• We define \mathcal{H}_B in a similar manner.

We also define the collective Hamiltonian

$$\mathcal{H}_{AB} = \mathcal{H}_{A} \otimes \mathbb{1} + \mathbb{1} \otimes \mathcal{H}_{B}.$$

Then, we have $\langle \mathcal{H}_{AB} \rangle_{\Psi} = 0$.

Direct calculation yields

$$\mathcal{F}_Q[|\Psi\rangle,\mathcal{H}_{AB}] = 4(\Delta\mathcal{H}_{AB})^2_{\ \Psi} = 8\sum_{n=1,3,5,\dots,\tilde{s}-1}(\sigma_n + \sigma_{n+1})^2,$$

which is larger than the separable bound, $\mathcal{F}_Q^{(\text{sep})}=8$, whenever the Schmidt rank is larger than 1.

Infinite number of copies

In the infinite copy limit, all bipartite pure entangled states are maximally useful.

[Supplemental Material of Tóth, Vértesi, Horodecki, Horodecki, PRL 2020.]

Summary

- Some entangled quantum states that are not useful metrologically, can still be made useful, if an ancilla or an additional copy is added.
- We have shown a general method to get the optimal local Hamiltonian for a quantum state.
- All bipartite pure entangled states are useful metrologically. If infinite number of copies are given, they are maximally useful.

See:

Géza Tóth, Tamás Vértesi, Paweł Horodecki, Ryszard Horodecki,
Activating hidden metrological usefulness,
Phys. Rev. Lett. 125, 020402 (2020). (open access)

THANK YOU FOR YOUR ATTENTION!

