Lab 05

"Artificial Intelligence" Course

• Understand the basics of neural network implementation and optimization.

- Understand the basics of neural network implementation and optimization.
- Prepare and load the "Fashion MNIST" dataset in PyTorch.

- Understand the basics of neural network implementation and optimization.
- Prepare and load the "Fashion MNIST" dataset in PyTorch.
- Implement a Multilayer Perceptron (MLP).

- Understand the basics of neural network implementation and optimization.
- Prepare and load the "Fashion MNIST" dataset in PyTorch.
- Implement a Multilayer Perceptron (MLP).
- Train and test a neural network.

What do we want to predict?

Dataset:

by Zalando

Fashion Products

10 Categories

What do we want to predict?

Dataset:

by Zalando

Fashion Products

10 Categories

There are three possibilities to use the data to train the model:

There are three possibilities to use the data to train the model:

1. The entire dataset

There are three possibilities to use the data to train the model:

1. The entire dataset

There are three possibilities to use the data to train the model:

1. The entire dataset

Memory issues

There are three possibilities to use the data to train the model:

1. The entire dataset

Memory issues

There are three possibilities to use the data to train the model:

1. The entire dataset

Memory issues

There are three possibilities to use the data to train the model:

1. The entire dataset

Memory issues

There are three possibilities to use the data to train the model:

1. The entire dataset

Memory issues

There are three possibilities to use the data to train the model:

1. The entire dataset

Memory issues

There are three possibilities to use the data to train the model:

1. The entire dataset

Memory issues

2. Sample by sample

Convergence issues

There are three possibilities to use the data to train the model:

1. The entire dataset

Memory issues

2. Sample by sample

Convergence issues

There are three possibilities to use the data to train the model:

1. The entire dataset

Memory issues

2. Sample by sample

Convergence issues

There are three possibilities to use the data to train the model:

1. The entire dataset

Memory issues

2. Sample by sample

Convergence issues

There are three possibilities to use the data to train the model:

1. The entire dataset

Memory issues

2. Sample by sample

Convergence issues

There are three possibilities to use the data to train the model:

1. The entire dataset

Memory issues

2. Sample by sample

Convergence issues

There are three possibilities to use the data to train the model:

1. The entire dataset

Memory issues

2. Sample by sample

Convergence issues

The SGD "Recipe" for Training a Model

For each **epoch**:

For each mini-batch:

x, y = mini-batch

$$\hat{y} = f_{\theta}(x)$$

$$\mathcal{L} = -\frac{1}{n} \sum_{i=1}^{n} y_i \log \hat{y}_i$$

$$g = \frac{\partial \mathcal{L}}{\partial \theta}$$

$$\theta^{(new)} \leftarrow \theta - \alpha \cdot g$$

End

End

