Olimpiada Informática Joyofoviono

Olimpiada Nacional de Informática - Edición 2020

Soluciones Fase 2 Problema 1

Descripción:

Calcular los valores exactos de potencias muy grandes es difícil, pero es fácil calcular el resto de una potencia en la división para otro entero. Dados enteros positivos a, b y c, escribir un programa que muestre el resto de a^b en la división para c. El resto r debe ser un entero $0 \le r < c$.

Entrada:

En la primera línea, el número a. En la segunda línea, el número b. En la tercera línea, el número c.

Salida

El resto de a^b en la división para c.

Límites:

c < 1000.

Subtarea 1 [60 puntos]

 $a^b < 10^6$.

Subtarea 2 [40 puntos]

 $a < 10^6$.

 $b \le 2020$.

[Subtarea 1] Solución:

Ya que el órden de magnitud de a^b es bajo, es posible calcular el resto directamente hallando la potencia a^b y usando el operador de módulo %.

[Subtarea 2] Solución:

En este caso a^b es demasiado grande para caber en cualquier tipo entero del lenguaje. Por lo tanto es imposible calcularlo y guardarlo, así que necesitaríamos una forma indirecta de calcular su residuo en la división para c. Usando aritmética modular, sabemos que el resto de a^{i+1} en la división para c es el mismo que el resto del producto $(a^i \% c) \cdot a$, donde $a^i \% c$ es el resto de a^i en la división para c. De esta manera, podemos calcular el resto de cualquier potencia de a en la división para c iterativamente en el exponente hasta llegar a b.