

Reduce the circuit into a single voltage source and associated resistance.

Using Therenin's theorem, I determine the Lowest resistence which the voltmeter must have so that the measurement error shall not exceed 1%.

Jov & N & RL

10V & N & RL 2+1 = R77 JX76. The network (N) contains linear, passive, bilateral elements-Vota = IRth + IRL If $R_L = 1.5 \text{ sz}$ then I = 2A. Vets = 2 Rm + 2 x 1.5 If $R_1 = 4s2$ Then I = 1A. Vm = 2Rm 73..(i) Determine Reformaximum power tramfer. Re = 152 fer power | V_{Th} = R_{th} + 9...(ii).

Ru = 152 fer power | V_{th} = 51 & R_{th} = 152.

$$700$$
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700
 700

$$\frac{2}{3} = \frac{10}{2} + I_1 + 20$$

$$\frac{1}{2} = \frac{10}{2} + 2I_2 = 2 - - - (5)$$

 $N = 2I_1 + 2(I_1 + 2V)$ $I_2 = -3V$

From (i) A(ii) 10 =
$$\frac{4}{9}$$
 VoH ≈ 0.44 volt

 $\times \times$ = 1.5 s. Find out V Req = 1+ 2.5x4.6 2.5x4.6 $1 = I \times \frac{4.6}{2.5 + 4.6} \rightarrow 1 = \frac{1}{2.5 + 4.6} \times \frac{4.6}{2.5 + 4.6} = \frac{1}{2.5 + 4.6} \times \frac{4.6}{2.5} = \frac{1}{2$

$$V_{x} = I_{x} - I_{3} \times 4 = -1.21 \text{ Voltage Source}.$$

$$V_{x} = I_{x} - I_{3} \times 4 = -1.21 \text{ Voltage}$$

$$V_{x} = I_{x} - I_{3} \times 4 = -1.21 \text{ Voltage}$$

$$V_{x} = I_{x} - I_{3} \times 4 = -1.21 \text{ Voltage}$$

$$I_{1} = \Delta I = 2 \cdot 36 \text{ Amp}$$

$$I_{1} = \Delta I = 2 \cdot 36 \text{ Amp}$$

$$I_{1} = \Delta I = 2 \cdot 36 \text{ Amp}$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_{1} = A = 10 - 10 - 1 = 3432$$

$$I_$$

 $I_2 = \frac{A_2}{A} = 1.2767 \text{ Amp}.$ $\Delta = \begin{bmatrix} 11 \\ 10 \end{bmatrix} -10 -1 \\ -20 = 4 \end{bmatrix} = 1452.$ $I_3 = \frac{A_3}{A} = 0.964 \text{ Amp}.$