第2节综合小题(★★★★)

内容提要

本节主要涉及偏压轴难度的立体几何综合多选题,小伙伴们根据自身的实际情况来选择性学习. 在此之前, 先学习空间角度的计算方法,作为铺垫,这一块(类型 I)难度不高.

- 1. 线线角的计算:核心是通过平移使其相交,到三角形中来算.
- 2. 线面角的计算: 有两种几何的方法.
- ①作垂线:如图 1,要求直线 PA 与平面 α 所成的角,只需过 P 作 α 的垂线,找到垂足 O,求 $\angle PAO$.
- ②算距离: 如图 2,若不方便过 P 作平面 α 的垂线,也可用等体积法或其它方法求出点 P 到平面 α 的距离 d,再按 $\sin\theta = \frac{d}{PA}$ 来求线面角.
- 3. 二面角的计算:核心是作平面角,若与棱垂直的射线好找,则直接作,否则如图 3,可先过 α 内的点 P 作 β 的垂线,找到垂足 A,再过 P 作 l 的垂线 PO,垂足为 O,则由三垂线定理知 $l \perp OA$,所以 $\angle POA$ 即为二面角 $\alpha l \beta$ 的平面角,这种找二面角的方法叫做三垂线法,其中 PO 和 OA 的作法可交换.

4. 综合多选题: 这类题往往难度大,几何法、向量法都是可考虑的方向,具体问题具体分析.

典型例题

类型 I: 空间角的计算综合小题

【例 1】在平行六面体 $ABCD - A_1B_1C_1D_1$ 中,底面 ABCD 是边长为 1 的正方形, $\angle A_1AD = \angle A_1AB = 60^\circ$, $AA_1 = 2$,则异面直线 AC 与 DC_1 所成角的余弦值为()

(A)
$$\frac{\sqrt{14}}{7}$$
 (B) $\frac{\sqrt{6}}{3}$ (C) $\frac{\sqrt{6}}{4}$ (D) $\frac{3\sqrt{14}}{14}$

答案: D

解析:求异面直线所成的角,可通过平移使其相交,到三角形内来分析.只需将 DC_1 移到点A处,

如图, $AB_1 // DC_1$,由题设可求得 $AC = \sqrt{2}$, $A_1D^2 = AA_1^2 + AD^2 - 2AA_1 \cdot AD \cdot \cos \angle A_1AD = 3$,

所以 $A_1D = \sqrt{3}$,故 $B_1C = \sqrt{3}$, $\angle A_1AB = 60^{\circ} \Rightarrow \angle AA_1B_1 = 120^{\circ}$,

所以 $AB_1^2 = AA_1^2 + A_1B_1^2 - 2AA_1 \cdot A_1B_1 \cdot \cos \angle AA_1B_1 = 7$,故 $AB_1 = \sqrt{7}$,

在 ΔAB_1C 中, 由余弦定理, $\cos \angle B_1AC = \frac{AB_1^2 + AC^2 - B_1C^2}{2AB_1 \cdot AC} = \frac{3\sqrt{14}}{14}$,

故异面直线 AC 与 DC_1 所成角的余弦值为 $\frac{3\sqrt{14}}{14}$.

【反思】在求异面直线所成的角的小题中,常通过平移使它们成为相交直线,到三角形内进行分析.

【例 2】长方体 $ABCD - A_1B_1C_1D_1$ 中,已知 B_1D 与平面 ABCD 和平面 AA_1B_1B 所成的角均为 30°,则(

- (A) AB = 2AD
- (B) $AC = B_1C$
- (C) B_1D 与平面 BB_1C_1C 所成的角为 45°
- (D) AB 与平面 AB₁C₁D 所成的角为30°

答案: C

解析:长方体中有较多的线面垂直,故先分析题干所给的线面角,找到长、宽、高的关系,

 $BB_1 \perp \text{平面 } ABCD \Rightarrow B_1D$ 与平面 ABCD 所成的角为 $\angle B_1DB$,

AD 上平面 $AA_1B_1B \Rightarrow B_1D$ 与平面 AA_1B_1B 所成的角为 $\angle AB_1D$,由题意, $\angle B_1DB = \angle AB_1D = 30^\circ$,

不妨设
$$AA_1 = 1$$
,则 $\tan \angle B_1DB = \frac{BB_1}{BD} = \frac{\sqrt{3}}{3} \Rightarrow BD = \sqrt{3}$,设 $AB = a$, $AD = b$,则 $a^2 + b^2 = 3$ ①,

$$\tan \angle AB_1D = \frac{AD}{AB_1} = \frac{\sqrt{3}}{3} \Rightarrow \frac{b}{\sqrt{a^2 + 1}} = \frac{\sqrt{3}}{3}$$
 ②,联立①②解得: $a = \sqrt{2}$, $b = 1$,

A 项,
$$\begin{cases} AB = \sqrt{2} \\ AD = 1 \end{cases} \Rightarrow AB = \sqrt{2}AD$$
, 故 A 项错误;

B 项,
$$AC = \sqrt{AB^2 + BC^2} = \sqrt{3}$$
, $B_1C = \sqrt{BB_1^2 + BC^2} = \sqrt{2}$,所以 $AC \neq B_1C$,故 B 项错误;

C 项, $DC \perp$ 平面 $BB_1C_1C \Rightarrow B_1D$ 与平面 BB_1C_1C 所成的角为 $\angle DB_1C$, $\tan \angle DB_1C = \frac{CD}{B_1C} = \frac{\sqrt{2}}{\sqrt{2}} = 1$,

所以 $\angle DB_1C=45^\circ$,故C项正确;

D项,作 $BG \perp AB_1$ 于G,因为 $AD \perp$ 面 ABB_1A_1 ,所以 $BG \perp AD$,从而 $BG \perp$ 平面 AB_1C_1D ,

故 $\angle BAG$ 是AB与平面 AB_1C_1D 所成的角, $\tan\angle BAG = \frac{BB_1}{AB} = \frac{\sqrt{2}}{2} \Rightarrow \angle BAG \neq 30^\circ$,故 D 项错误.

【反思】找线面角的核心是过直线上的点作面的垂线,找到垂足,也就找到了线面角.

【例 3】如图,已知 $\triangle ABC$ 和 $\triangle DBC$ 所在的平面互相垂直, AB=BC=BD , $\angle ABC=\angle DBC=120^\circ$,则二面角 A-BD-C 的正切值等于 .

答案: -2

解析:条件有面面垂直,可方便地作交线的垂线找到线面垂直,故用"三垂线法"作二面角的平面角,

如图,作 $AH \perp CB$ 的延长线于H,因为平面 $ABC \perp$ 平面DBC,所以 $AH \perp$ 平面DBC①,

作 $HI \perp BD$ 于点I 交CD 于点G,又由①可得 $BD \perp AH$,所以 $BD \perp$ 平面AHI,故 $BD \perp AI$,

所以 $\angle AIG$ 即为二面角A-BD-C的平面角,且 $\angle AIG=\pi-\angle AIH$,

故 $tan \angle AIG = tan(\pi - \angle AIH) = -tan \angle AIH$ ②,要算 $tan \angle AIH$,只需到 $Rt\Delta AHI$ 中计算 AH 和 HI,

由 $\angle ABC = \angle DBC = 120^{\circ}$ 知 $\angle ABH = \angle DBH = 60^{\circ}$,设 AB = BC = BD = 2,则 $AH = AB \cdot \sin \angle ABH = \sqrt{3}$,

$$BH = AB \cdot \cos \angle ABH = 1$$
, 在 $\Delta HBI +$, $HI = BH \cdot \sin \angle HBI = 1 \times \sin 60^{\circ} = \frac{\sqrt{3}}{2}$,

所以 $\tan \angle AIH = \frac{AH}{HI} = 2$,代入②得 $\tan \angle AIG = -2$,即二面角 A - BD - C 的正切值为 -2.

《一数•高考数学核心方法》

【反思】作二面角的平面角常用"三垂线法",只需过一个面内的点向另一个面作垂线,找到垂足,再过垂足作二面角棱的垂线,即可找到二面角的平面角.

类型 II: 综合多选题

【例 4】(多选)在正方体 $ABCD - A_1B_1C_1D_1$ 中,点 P 在线段 B_1C 上运动,则下列结论正确的有()

- (A) 直线 AC_1 上平面 A_1BD
- (B) 三棱锥 $P-A_1BD$ 的体积为定值
- (C) 异面直线 $AP 与 A_1D$ 所成角的取值范围是 $\left[\frac{\pi}{6}, \frac{\pi}{2}\right]$
- (D) 直线 C_1P 与平面 A_1C_1D 所成角的正弦值的最大值为 $\frac{\sqrt{6}}{3}$

答案: ABD

解析: A 项, 判断线面垂直, 可找线线垂直, 用三垂线定理法较方便,

如图 1, AC_1 在面 ABB_1A_1 内的射影为 AB_1 ,由三垂线定理, $A_1B \perp AB_1 \Rightarrow A_1B \perp AC_1$,

同理, $BD \perp AC_1$,所以 AC_1 上平面 A_1BD ,故A项正确;

B 项,如图 2,注意到 $B_1C//A_1D$,所以 $B_1C//$ 平面 A_1BD ,故点 P 到平面 A_1BD 的距离为定值,又 ΔA_1BD 的面积不变,所以三棱锥 $P-A_1BD$ 的体积为定值,故 B 项正确;

C项,注意到 $B_1C//A_1D$,所以只需分析AP与 B_1C 所成的角,可到 ΔAB_1C 中来看,

如图 2, ΔAB_1C 为正三角形,当 P 在 B_1C 上运动时,AP 与 B_1C 所成的角的最小值为 $\angle AB_1C = \frac{\pi}{3}$,

最大值为 $\frac{\pi}{2}$ ($AP \perp B_1C$ 时), 故 C 项错误;

D 项, P 是动点, 不易过 P 作面 A_1C_1D 的垂线, 建系处理也麻烦, 故考虑公式 $\sin\theta = \frac{d}{PC_1}$, 先求 d,

如图 3, $B_1C // A_1D \Rightarrow B_1C //$ 面 A_1C_1D ,所以运动过程中,点 P 到面 A_1C_1D 的距离 d 是定值,可按点 C 到面 A_1C_1D 的距离求 d,用等体积法,

$$V_{A_1-CC_1D} = V_{C-A_1C_1D} \Rightarrow \frac{1}{3} \times \frac{1}{2} \times 2 \times 2 \times 2 = \frac{1}{3} \times \frac{1}{2} \times 2\sqrt{2} \times 2\sqrt{2} \times \frac{\sqrt{3}}{2} \times d$$
, 解得: $d = \frac{2\sqrt{3}}{3}$,

当 $PC_1 \perp B_1 C$ 时, PC_1 最小,所以 $(PC_1)_{\min} = \sqrt{2}$,从而 $(\sin \theta)_{\max} = \frac{2\sqrt{3}}{\sqrt{2}} = \frac{\sqrt{6}}{3}$,故 D 项正确.

【例 5】(多选)如图,棱长为 2 的正方体 $ABCD - A_1B_1C_1D_1$ 中,E,F 分别为棱 A_1D_1 、 AA_1 的中点,G 为面对角线 B_1C 上一个动点,则()

- (A) 三棱锥 $A_1 EFG$ 的体积为定值
- (B) 线段 B_1C 上存在点 G,使平面 EFG // 平面 BDC_1
- (C) 设直线 FG 与平面 BCC_1B_1 所成角为 θ ,则 $\cos\theta$ 的最小值为 $\frac{1}{3}$
- (D) 三棱锥 A_1 EFG 的外接球半径的最大值为 $\frac{3\sqrt{2}}{2}$

答案: ACD

解析: A项, 因为 B_1C // 面 A_iEF , 所以点 G 到面 A_iEF 的距离不变,

又 $\Delta A_i EF$ 的面积也不变,所以三棱锥 $A_i - EFG$ 的体积为定值,故A项正确;

B 项,如图 1,注意到 $EF//BC_1$,所以面 EFG//面 $BDC_1 \Leftrightarrow EG//$ 面 BDC_1 ,

直接观察不易看出上述平行关系能否成立,可建系处理,如图建系,设 $\overrightarrow{B_1G} = \lambda \overrightarrow{B_1C}(0 \le \lambda \le 1)$,

曲图可知,D(0,0,0),E(1,0,2), $B_1(2,2,2)$,C(0,2,0),B(2,2,0), $C_1(0,2,2)$,

所以
$$\overrightarrow{DB} = (2,2,0)$$
, $\overrightarrow{DC_1} = (0,2,2)$, 设平面 BDC_1 的法向量为 $\mathbf{n} = (x,y,z)$,则
$$\begin{cases} \mathbf{n} \cdot \overrightarrow{DB} = 2x + 2y = 0 \\ \mathbf{n} \cdot \overrightarrow{DC_1} = 2y + 2z = 0 \end{cases}$$

令
$$x=1$$
,则 $\begin{cases} y=-1 \\ z=1 \end{cases}$,所以 $n=(1,-1,1)$ 是平面 BDC_1 的一个法向量,

$$\overrightarrow{EG} = \overrightarrow{EB_1} + \overrightarrow{B_1G} = \overrightarrow{EB_1} + \lambda \overrightarrow{B_1C} = (1,2,0) + \lambda(-2,0,-2) = (1-2\lambda,2,-2\lambda)$$
,

令
$$\overrightarrow{EG} \cdot \mathbf{n} = 1 - 2\lambda - 2 - 2\lambda = 0$$
得: $\lambda = -\frac{1}{4}$, 不满足 $0 \le \lambda \le 1$,

所以不存在点 G, 使平面 EFG// 平面 BDC_1 , 故 B 项错误;

 \mathbf{C} 项,可以用几何法作出线面角来分析,但平面 BCC_1B_1 的法向量能直接看出,故用向量法也好做,下面我们用向量法来求解. 由于 $\cos\theta = \sqrt{1-\sin^2\theta}$,所以当 $\sin\theta$ 最大时, $\cos\theta$ 最小,

因为
$$F(2,0,1)$$
,所以 $\overrightarrow{FG} = \overrightarrow{FB_1} + \overrightarrow{B_1G} = \overrightarrow{FB_1} + \lambda \overrightarrow{B_1C} = (0,2,1) + \lambda(-2,0,-2) = (-2\lambda,2,1-2\lambda)$,

如图 1,
$$\mathbf{m} = (0,1,0)$$
是面 BCC_1B_1 的一个法向量,故 $\sin \theta = \left|\cos \langle \overrightarrow{FG}, \mathbf{m} \rangle\right| = \frac{\left|\overrightarrow{FG} \cdot \mathbf{m}\right|}{\left|\overrightarrow{FG}\right| \cdot \left|\mathbf{m}\right|} = \frac{2}{\sqrt{8\lambda^2 - 4\lambda + 5}}$,

当
$$\lambda = \frac{1}{4}$$
时, $\sin \theta$ 取得最大值 $\frac{2\sqrt{2}}{3}$,所以 $(\cos \theta)_{\min} = \sqrt{1 - (\frac{2\sqrt{2}}{3})^2} = \frac{1}{3}$,故 C 项正确;

D 项,如图 2,观察发现三棱锥 A_1 – GEF 的外接球没有模型可套用,但 $\Delta A_1 EF$ 为直角三角形,其外心比较好找,故过外心作面 $A_1 EF$ 的垂线,则球心必在该垂线上,

如图 2,取 EF 中点 H,过 H 作面 A_1EF 的垂线,因为 $H(\frac{3}{2},0,\frac{3}{2})$,所以可设球心为 $O(\frac{3}{2},m,\frac{3}{2})$,

要求m, 需建立方程, 可根据OE = OG, 用空间两点距离公式来建立,

$$\overrightarrow{OG} = \overrightarrow{OB_1} + \overrightarrow{B_1G} = \overrightarrow{OB_1} + \lambda \overrightarrow{B_1C} = (\frac{1}{2}, 2 - m, \frac{1}{2}) + \lambda(-2, 0, -2) = (\frac{1}{2} - 2\lambda, 2 - m, \frac{1}{2} - 2\lambda),$$

曲
$$OE = OG$$
 可得 $\sqrt{\left(\frac{3}{2}-1\right)^2 + (m-0)^2 + \left(\frac{3}{2}-2\right)^2} = \sqrt{\left(\frac{1}{2}-2\lambda\right)^2 + (2-m)^2 + \left(\frac{1}{2}-2\lambda\right)^2}$,

整理得:
$$m = 2\lambda^2 - \lambda + 1$$
, 所以 $OE = \sqrt{m^2 + \frac{1}{2}} = \sqrt{(2\lambda^2 - \lambda + 1)^2 + \frac{1}{2}} = \sqrt{[2(\lambda - \frac{1}{4})^2 + \frac{7}{8}]^2 + \frac{1}{2}}$,

故当 $\lambda=1$ 时,OE 取得最大值 $\frac{3\sqrt{2}}{2}$,即所求外接球半径的最大值为 $\frac{3\sqrt{2}}{2}$,故 D 项正确.

【总结】立体几何综合题变化多且难度大,一般优先考虑几何法,如无思路再尝试建系,建系前应评估计 算量,以免计算过于复杂.立体几何综合题类型繁杂,本节练习题部分有更多类型供大家训练.

强化训练

类型 I: 空间角的计算

- 1. (2023 忻州模拟 ★★★)如图,在四棱锥 P ABCD 中,平面 PAD 上平面 ABCD,四边形 ABCD 是 矩形, $PA = \sqrt{2}AB$,E,F 分别是棱 BC,PD 的中点,则异面直线 EF 与 AB 所成角的余弦值是()
- (A) $\frac{\sqrt{3}}{3}$ (B) $\frac{\sqrt{6}}{3}$ (C) $\frac{\sqrt{3}}{6}$ (D) $\frac{\sqrt{6}}{6}$

- 2. $(2023 \cdot 全国乙卷 \cdot ★★★)已知 △ABC 为等腰直角三角形,AB 为斜边,△ABD 为等边三角形,若二面$ 角C - AB - D为150°,则直线 CD 与平面 ABC 所成角的正切值为()
- (A) $\frac{1}{2}$ (B) $\frac{\sqrt{2}}{2}$ (C) $\frac{\sqrt{3}}{2}$ (D) $\frac{2}{2}$
- 3. $(2022 \cdot 浙江期中 \cdot ★★★)如图,圆锥 AO 中,B,C 是圆 O 上的不同两点,若 ∠OAB = 30°,且二面$ 角 B-AO-C为 60° ,动点 P 在线段 AB 上,则 CP 与平面 AOB 所成角的正切值的最大值为 ()
- (A) 2 (B) $\sqrt{3}$ (C) $\sqrt{2}$ (D) 1

类型Ⅱ: 压轴综合多选题

- 4. (2022・湖南模拟・★★★)(多选)在正方体 $ABCD A_1B_1C_1D_1$ 中,N 为底面 ABCD 的中心,P 为线段 A_1D_1 上的动点(不含端点),M 为线段 AP 的中点,则()
 - (A) CM与PN是异面直线
 - (B) CM > PN
- (D) 过A, P, C 三点的正方体的截面一定是等腰梯形

- 5. (2022 山东模拟 ★★★)(多选) 在三棱锥 P-ABC 中, $AB \bot BC$, P 在底面 ABC 上的投影是 AC 中点 D , DP=DC=1 ,则下列结论中正确的是()
 - (A) PA = PB = PC
 - (B) $\angle PAB$ 的取值范围为 $(\frac{\pi}{4}, \frac{\pi}{2})$
- (C) 若三棱锥 P-ABC 的四个顶点都在球 O 的表面上,则球 O 的表面积为 2π
- (D) 若 AB = BC, E 是棱 PC 上的一个动点,则 DE + BE 的最小值是 $\frac{\sqrt{6} + \sqrt{2}}{2}$

6.(2023・长沙雅礼中学模拟・ $\star\star\star\star$)(多选)在如图所示的实验装置中,两个长方形框架 ABCD 与 ABEF 全等,且它们所在的平面互相垂直,AB=1, BC=BE=2,活动弹子 M,N 分别在长方形对角线 AC 和 BF 上移动,且 $CM=BN=a(0 < a < \sqrt{5})$,则下列说法正确的是(

- (A) $AB \perp MN$
- (B) MN 的长的最小值为 $\sqrt{2}$
- (C) 当 MN 的长最小时,平面 MNA 与平面 MNB 所成夹角的余弦值为 $\frac{1}{3}$

(D)
$$V_{M-ANB} = \frac{a^2(2\sqrt{5}-2)}{15}$$

- 7.(2023 •湖北统考 •★★★★)(多选)折纸是一种高雅的艺术活动,已知正方形纸片 ABCD 的边长为 2,现将 ΔACD 沿对角线 AC 旋转 180° ,记旋转过程中点 D 的位置为点 P (不含起始位置和与 B 重合的情形),AC,AP,BC 的中点分别为 O,E,F,则()
- (A) $AC \perp BP$
- (B) PB + PD 的最大值为 $4\sqrt{2}$
- (C) 旋转过程中,EF 与平面 BOP 所成角的正弦值的取值范围是($\frac{\sqrt{2}}{2}$,1)
- (D) $\triangle ACD$ 旋转形成的几何体的体积是 $\frac{2\sqrt{2}\pi}{3}$

- 8. $(2022 \cdot 第二次 T8 联考 \cdot \star \star \star \star)$ (多选)如图,在棱长为1的正方体 $ABCD A_1B_1C_1D_1$ 中,P 为棱 BB_1 的中点,Q 为正方形 BB_1C_1C 内一动点(含边界),则下列说法中正确的是()
- (A) 若 D_1Q // 平面 A_1PD ,则动点Q的轨迹是一条线段
- (B) 存在点 Q, 使得 D_1Q 上平面 A_1PD
- (C) 当且仅当点 Q 落在棱 CC_1 上某点处时,三棱锥 $Q-A_1PD$ 的体积最大
- (D) 若 $D_1Q = \frac{\sqrt{6}}{2}$,则点 Q 的轨迹长度为 $\frac{\sqrt{2}\pi}{4}$

- 9. $(2021 \cdot 新高考 I 卷 \cdot \star \star \star \star \star)$ (多选) 在正三棱柱 $ABC A_1B_1C_1$ 中, $AB = AA_1 = 1$,点 P 满足 $\overrightarrow{BP} = \lambda \overrightarrow{BC} + \mu \overrightarrow{BB_1}$,其中 $\lambda \in [0,1]$, $\mu \in [0,1]$,则 ()
 - (A) 当 $\lambda = 1$ 时, ΔAB_1P 的周长为定值
- (B) 当 $\mu=1$ 时,三棱锥 $P-A_1BC$ 的体积为定值
- (C) 当 $\lambda = \frac{1}{2}$ 时,有且仅有一个点P,使得 $A_1P \perp BP$
- (D) 当 $\mu = \frac{1}{2}$ 时,有且仅有一个点P,使得 A_1B 上平面 AB_1P

《一数•高考数学核心方法》