Warsaw University of Technology

Institute of Automation and Robotics

Homework 2

in the subject of Modelling and control of manipulator

Munir Fati Haji

student record book number 323834

submitted to

Prof. Tatjewski Piotr

Contents

т:	-4 - C C'		•••
	_	es	
		- homework 2 (no. 11)	
	Cubic traj	ectory equation	1
	LSPB traj	ectory equation	1
1	Model	of a single–link manipulator	2
2	Simplif	ried model neglecting the electrical time constant	2
	2.1 Co	mparison and difference plotting	2
	2.1.1	Comparisons plotting	2
	2.1.2	Difference plotting	3
3	PD control system model for cubic reference trajectory		3
	3.1 Bel	havior of system to step-change of the constant reference trajectory	5
4	PD con	trol system model for LSPB reference trajectory	7
5		ce of the constant load disturbance	
	5.1 For	cubic reference trajectories	9
	5.2 For	LSPB reference trajectories	10
6	Design	of PID control system	12
	6.1 Wi	thout disturbance	12
	6.1.1	Maximal control error	13
	6.1.2	Arm position	14
	6.1.3	Arm velocity	14
	6.2 Wi	th disturbance	15
	6.2.1	Maximal control error	15
	6.2.2	Arm position	15
	6.2.3	Arm velocity	16
	6.3 Bel	havior of the PID control system for the step change	16
	6.3.1	Without anti-windup	16
	6.3.2	With anti-windup	16
7	Feedba	ck-Feedforward Control for sinusoidal arm reference trajectory	19

7.1	With Feedforward	9
7.2	Without Feedforward	0
7.2	.1 Comparisons	0

List of figures

Figure 1 Accurate Model
Figure 2 Simplified Model
Figure 3 Accurate vs Simplified Model
Figure 4 Accurate vs Simplified Model(Difference)
Figure 5 PD Model3
Figure 6 PD Control error for PD model with cubic reference trajectory4
Figure 7 PD Arm position for PD model with cubic reference trajectory
Figure 8 PD Arm velocity for PD model with cubic reference trajectory
Figure 9 Modified P-D Model with step-change of constant reference trajectory 5
Figure 10 Modified P-D Model Position Error and Arm Position5
Figure 11 Modified P-D Model Position PD output and manipulator input6
Figure 12 Modified P-D Model Arm Velocity6
Figure 13 PD Control error for PD model with LSBP reference trajectory
Figure 14 Arm Position for PD model with LSBP reference trajectory
Figure 15 Arm Velocity for PD model with LSBP reference trajectory
Figure 16 PD Model with load disturbance of 2Nm
Figure 17 Control error for PD model with cubic reference trajectory with load disturbance 9
Figure 18 Arm position for PD model with cubic reference trajectory with load disturbance 9
Figure 19 Arm velocity for PD model with cubic reference trajectory with load disturbance 10
Figure 20 Control error for PD model with LSPB reference trajectory with load disturbance 10
Figure 21 Arm position for PD model with LSPB reference trajectory with load disturbance 11
Figure 22 Arm velocity for PD model with LSPB reference trajectory with load disturbance 11
Figure 23 PID Model
Figure 24 Control error for PID model with cubic reference trajectory without disturbance 13
Figure 25 Control error for PID model with LSPB reference trajectory without disturbance 13
Figure 26 Arm Position for PID model with cubic and LSPB reference trajectory without
disturbance
Figure 27 Arm Velocity for PID model with cubic and LSPB reference trajectory without
disturbance 14

Figure 28 Control error for PID model with cubic and LSPB reference trajectory with disturbance					
Figure 29 Arm Position for PID model with cubic and LSPB reference trajectory without					
disturbance					
Figure 30 Arm Velocity for PID model with cubic and LSPB reference trajectory with disturbance					
Figure 31 Modified PI-D without anti-windup model					
Figure 32 Modified PI-D with anti-windup model					
Figure 33 Control error for Modified PID model with step-change with and without anti-windup					
Figure 34 Arm position for Modified PID model with step-change with and without anti-windup					
Figure 35 Arm velocity for Modified PID model with step-change with and without anti-windup					
Figure 36 Integrator output for Modified PID model with step-change with and without anti-					
windup					
Figure 37 PID output and Manipulator input output for Modified PID model with step-change with					
and without anti-windup					
Figure 38 PID with feed forward model with sinusoidal reference trajectory					
Figure 39 PID without feed forward model with sinusoidal reference trajectory					
Figure 40 Control error with and without feed-forward					
Figure 41Arm Position with and without feed-forward					
Figure 42 Arm Velocity with and without feed-forward					

Given Data – homework 2 (no. 11)

```
= 5.5e-4 \text{ kg.m2};
Jm
Kь
          = 0.105 \text{ V/(rad/s)};
Km = 0.105 \text{ N.m/A};
L
         = 0.9 \text{ e}-3 \text{ H};
R
          =0.76 \Omega;
          = 4e-4 \text{ N.m/(rad/s)};
Bm
gear ratio r=156;
under saturation limits of the manipulator input signal: V_{min} = -35 \text{ V}, V_{max} = 35 \text{ V}.
\tau_{l}/r
          = 2 \text{ N.m}
          =\alpha /4 \text{ [rad/s]}
maximal control error between 0.01 and 0.005
          = 0.2 t_{\rm m}
trajectory from \theta_0 = 0 to \theta_f = 0.5
```

The trajectory equation used are shown as follows

Cubic trajectory equation

$$q(t) = \begin{cases} 1.5t^2 - t^3, & t \le 1\\ 0.5, & else \end{cases}$$

LSPB trajectory equation

$$q(t) = \begin{cases} 1.5625t^2, & t \le 0.2\\ 0.0625 + 0.625(t - 0.2), & 0.2 \le t \le 0.8\\ 0.5 - 1.5625(t - 0.6)^2, & 0.1 \le t \le 1\\ 0.5, & else \end{cases}$$

1 Model of a single-link manipulator

Figure 1 Accurate Model

2 Simplified model neglecting the electrical time constant

Figure 2 Simplified Model

2.1 Comparison and difference plotting

2.1.1 Comparisons plotting

Figure 3 Accurate vs Simplified Model

2.1.2 Difference plotting

Figure 4 Accurate vs Simplified Model(Difference)

3 PD control system model for cubic reference trajectory

Figure 5 PD Model

Tuning PID by the choice of ω

$$\omega = 40, \quad Kp = 8.0614, \quad Kd = 0.2504$$

$$\omega = 50, \quad Kp = 9.9524, \quad Kd = 0.2902$$

$$\omega = 60$$
, $Kp = 14.3314$, $Kd = 0.3698$

Figure 6 PD Control error for PD model with cubic reference trajectory

Figure 7 PD Arm position for PD model with cubic reference trajectory

Figure 8 PD Arm velocity for PD model with cubic reference trajectory

After comparing the $\omega=50$ is chosen because the required threshold value is reached. However further increasing ω increases proportional gain and derivative gain but further increasing ω will decrease the robustness of the control system

3.1 Behavior of system to step-change of the constant reference trajectory

Figure 9 Modified P-D Model with step-change of constant reference trajectory

3.1.1.1 Position Error and Arm position

Figure~10~Modified~P-D~Model~Position~Error~and~Arm~Position

3.1.1.2 PD output and Manipulator input

Figure 11 Modified P-D Model Position PD output and manipulator input

3.1.1.3 Arm velocity

Figure 12 Modified P-D Model Arm Velocity

4 PD control system model for LSPB reference trajectory

4.1.1.1 Position Error

Figure 13 PD Control error for PD model with LSBP reference trajectory

4.1.1.2 Arm position

Figure 14 Arm Position for PD model with LSBP reference trajectory

4.1.1.3 Arm velocity

Figure 15 Arm Velocity for PD model with LSBP reference trajectory

5 Influence of the constant load disturbance

Now the designed PD model is checked under the influence of constant load of 2Nm

Figure 16 PD Model with load disturbance of 2Nm

5.1 For cubic reference trajectories

Figure 17 Control error for PD model with cubic reference trajectory with load disturbance

Figure 18 Arm position for PD model with cubic reference trajectory with load disturbance

Figure 19 Arm velocity for PD model with cubic reference trajectory with load disturbance

After seeing the plots with the disturbance value. It is seen that now the error has passed the Maximal control error of 0.01. The system now also has the steady state error that is greater than the desired Maximal control error of 0.01. Thus the control should not be done. And ω should be Increased.

5.2 For LSPB reference trajectories

Figure 20 Control error for PD model with LSPB reference trajectory with load disturbance

Figure 21 Arm position for PD model with LSPB reference trajectory with load disturbance

Figure 22 Arm velocity for PD model with LSPB reference trajectory with load disturbance

After seeing the plots with the disturbance value. It is seen that now the error has passed the Maximal control error of 0.01. The system now also has the steady state error that is greater than the desired Maximal control error of 0.01. Thus the control should not be done.

6 Design of PID control system

Figure 23 PID Model

6.1 Without disturbance

Tuning PID by the choice of one triple pole $-\alpha$.

$\alpha = 17$,	Kp = 3.4515,	Kd = 0.0951,	Ki = 19.5584
$\alpha = 18$,	Kp = 3.8695,	Kd = 0.1071,	Ki = 23.2169
$\alpha = 19$,	Kp = 4.3114,	Kd=0.1190,	Ki = 27.3054
$\alpha = 20$,	Kp = 4.7771	Kd = 0.1310,	Ki = 31.8476

6.1.1 Maximal control error

6.1.1.1 For cubic trajectory

Figure 24 Control error for PID model with cubic reference trajectory without disturbance

6.1.1.2 For LSPB trajectory

Figure 25 Control error for PID model with LSPB reference trajectory without disturbance

From the error plots it can be seen that α =20 satisfies the maximal control error for both the LSPB and cubic trajectory cases. So α =20 will be used.

6.1.2 Arm position

Using α =20 the Arm Position for PID model with cubic and LSPB reference trajectory without disturbance is shown as follow

Figure 26 Arm Position for PID model with cubic and LSPB reference trajectory without disturbance

6.1.3 Arm velocity

Figure 27 Arm Velocity for PID model with cubic and LSPB reference trajectory without disturbance

6.2 With disturbance

6.2.1 Maximal control error

Figure 28 Control error for PID model with cubic and LSPB reference trajectory with disturbance

After seeing the error plots with the disturbance value. It is seen that now the error has passed the Maximal control error of 0.01. Since we don't have steady state disturbance here after control. Thus the control can be done.

6.2.2 Arm position

Figure 29 Arm Position for PID model with cubic and LSPB reference trajectory without disturbance

6.2.3 Arm velocity

Figure 30 Arm Velocity for PID model with cubic and LSPB reference trajectory with disturbance

6.3 Behavior of the PID control system for the step change

6.3.1 Without anti-windup

Figure 31 Modified PI-D without anti-windup model

6.3.2 With anti-windup

Figure 32 Modified PI-D with anti-windup model

6.3.2.1 Maximal control error

Figure 33 Control error for Modified PID model with step-change with and without anti-windup

6.3.2.2 Arm position

Figure 34 Arm position for Modified PID model with step-change with and without anti-windup

6.3.2.3 Arm velocity

Figure 35 Arm velocity for Modified PID model with step-change with and without anti-windup

6.3.2.4 Integrator output

Figure 36 Integrator output for Modified PID model with step-change with and without anti-windup

6.3.2.5 PID output and Manipulator input

Figure 37 PID output and Manipulator input output for Modified PID model with step-change with and without anti-windup

Thus it is seen that

7 Feedback-Feedforward Control for sinusoidal arm reference trajectory

7.1 With Feedforward

Figure 38 PID with feed forward model with sinusoidal reference trajectory

7.2 Without Feedforward

Figure 39 PID without feed forward model with sinusoidal reference trajectory

7.2.1 Comparisons

7.2.1.1 Maximal control error

Figure 40 Control error with and without feed-forward

7.2.1.2 Arm Position

Figure 41Arm Position with and without feed-forward

7.2.1.3 Arm Velocity

Figure 42 Arm Velocity with and without feed-forward

8 Conclusion

In this homework single link manipulator is designed. Beginning by modelling accurate and simplified model followed by modeling of PD and PID control system. During the design several cases are compared.