Mathematik * Jahrgangsstufe 10 * Logarithmen

Für $a \in R^+$ und $b \in R^+$ definert man: $b^x = a \iff x = \log_b a$

Man bezeichnet log, a als "Logarithmus von a zur Basis b".

Der Logarithmus von a zur Basis b ist also die Zahl z, mit der man b potenzieren muss, um a zu erhalten.

Für den Logarithmus log₁₀ zur Basis 10 schreibt man kurz auch 1g oder 1og.

Aufgaben

- 1. Bestimmen Sie durch Überlegen die folgenden Logarithmen:
 - $\log_2 8$
- $\log_{2} 0.5$ b)
- c) $\log_2 \sqrt{2}$
- d) $\log_2 1$

- e) $\log_{0.5} 8$ f) $\log_{0.5} 0.5$ g) $\log_{0.5} \sqrt{2}$ h) $\log_{0.5} 0.25$ i) $\log_{\sqrt{2}} 8$ j) $\log_{\sqrt{2}} 0.5$ k) $\log_{\sqrt{2}} \sqrt{2}$ l) $\log_{\sqrt{2}} 0.25$

- m) $\log_8 2$ n) $\log_{16} 0.5$ p) $\log_{32} \sqrt{2}$
- q) $\log_{\sqrt{8}} \sqrt{8}$
- 2. Bestimmen Sie die Lösung der Gleichung durch Überlegen und schreiben Sie die Lösung auch als Logarithmus.

- a) $3^{x} = 27$ b) $3^{x} = \frac{1}{9}$ c) $3^{x} = 3\sqrt{3}$ d) $3^{x} = \frac{\sqrt{3}}{3}$ e) $10^{x} = 1000$ f) $10^{x} = 0{,}0001$ g) $10^{x} = 0{,}1 \cdot \sqrt{10}$ h) $10^{x} = \sqrt[3]{0{,}1}$

- 3. Bestimmen Sie den Wert des Logarithmus (mit Hilfe des Taschenrechners) auf Hundertstel genau.
 - - $\log_5 2$ b) $\log_2 5$
- c) $\log_7 14$
- d) $\log_3 8$
- a) $\log_5 2$ b) $\log_2 5$ c) $\log_7 14$ e) $\log_{0,1} 2$ f) $\log_{10} 5$ g) $\log_9 90$
- h) $\log_{0.8} 2$

- 4. Bestimmen Sie den Wert der Variablen a.
- a) $\log_{a} 8 = 3$

- b) $\log_{\sqrt{a}} 8 = 3$ c) $\log_{a^2} 64 = 3$ d) $\log_a 0.25 = 2$
- e) $\log_{\sqrt{a}} 0.125 = 3$ f) $\log_{a^2} 27 = 3$ g) $\log_{2a} 16 = 2$ h) $\log_{2a} 8 = 2$

- 5. Der Graph der Funktion $f: x \mapsto \log_2 x$ soll untersucht werden.
 - a) Welche Definitionsmenge hat die Funktion f?
 - b) Erstellen Sie eine Wertetabelle mit einfach zu ermittelnden Funktionswerten.
 - c) Skizzieren Sie den Funktionsgraphen. Welche typischen Eigenschaften hat der Graph dieser Logarithmusfunktion?
 - d) Zeichnen Sie zusätzlich den Graph der Exponentialfunktion $y = 2^x$ ein. Welcher Zusammenhang besteht zwischen den beiden Graphen zu $f(x) = \log_2 x$ und $y = 2^x$?

Mathematik * Jahrgangsstufe 10 * Logarithmen * Lösungen

1. a)
$$\log_2 8 = 3$$
, denn $2^3 = 8$

b)
$$\log_2 0.5 = -1$$
, denn $2^{-1} = \frac{1}{2} = 0.5$

c)
$$\log_2 \sqrt{2} = 0.5$$
, denn $2^{0.5} = \sqrt{2}$ d) $\log_2 1 = 0$, denn $2^0 = 1$

$$\log_2 1 = 0$$
, den $2^0 = 1$

e)
$$\log_{0.5} 8 = -3$$

f)
$$\log_{0.5} 0.5 =$$

e)
$$\log_{0.5} 8 = -3$$
 f) $\log_{0.5} 0.5 = 1$ g) $\log_{0.5} \sqrt{2} = -0.5$
h) $\log_{0.5} 0.25 = 2$ i) $\log_{\sqrt{2}} 8 = 6$ j) $\log_{\sqrt{2}} 0.5 = -2$

h)
$$\log_{0.5} 0.25 = 2$$

i)
$$\log = 8 = 6$$

j)
$$\log_{1/2} 0.5 = -2$$

$$k) \quad \log_{\sqrt{2}} \sqrt{2} = 1$$

k)
$$\log_{\sqrt{2}} \sqrt{2} = 1$$
 l) $\log_{\sqrt{2}} 0.25 = -4$ m) $\log_8 2 = \frac{1}{3}$

m)
$$\log_8 2 = \frac{1}{3}$$

n)
$$\log_{16} 0.5 = -0.25$$
 p) $\log_{32} \sqrt{2} = 0.1$ q) $\log_{\sqrt{5}} \sqrt{8} = 3$

p)
$$\log_{32} \sqrt{2} = 0.1$$

$$q) \quad \log_{\sqrt{2}} \sqrt{8} = 3$$

2. a)
$$3^x = 27 \iff x = \log_3 27 =$$

2. a)
$$3^{x} = 27 \iff x = \log_{3} 27 = 3$$
 b) $3^{x} = \frac{1}{9} \iff x = \log_{3} \frac{1}{9} = -2$

c)
$$3^x = 3\sqrt{3} \iff x = \log_3 3\sqrt{3} = 1,5$$

c)
$$3^{x} = 3\sqrt{3} \iff x = \log_{3} 3\sqrt{3} = 1,5$$
 d) $3^{x} = \frac{\sqrt{3}}{3} \iff x = \log_{3} \frac{\sqrt{3}}{3} = -0,5$

e)
$$10^x = 1000 \iff x = \lg 1000 = 3$$

$$10^{x} = 1000 \iff x = \lg 1000 = 3$$
 f) $10^{x} = 0,0001 \iff x = \lg 0,0001 = -4$

g)
$$10^x = 0.1 \cdot \sqrt{10} \iff x = \lg 0.1 \cdot \sqrt{10} = -0.5$$

h)
$$10^x = \sqrt[3]{0,1} \iff x = \lg \sqrt[3]{0,1} = -\frac{1}{3}$$

3. a)
$$\log_5 2 = 0,43... \text{ , denn } 5^{0,43} = 1,997... < 2 < 5^{0,44} = 2,030...$$

b)
$$\log_2 5 = 2,32...$$
, denn $2^{2,32} = 4,993... < 5 < 2^{2,33} = 5,028...$

c)
$$\log_7 14 = 1,35...$$

$$\log_7 14 = 1,35...$$
 d) $\log_3 8 = 1,89...$

e)
$$\log_{0.1} 2 = -0.30...$$

f)
$$\log_{10} 5 = 0.69..$$

$$\log_{10} 5 = 0,69...$$
 g) $\log_9 90 = 2,04...$

h)
$$\log_{0.8} 2 = -3.10$$

4. a)
$$\log_a 8 = 3 \iff a = 2$$
, denn $2^3 = 8$

b)
$$\log_{\sqrt{a}} 8 = 3 \iff a = 4, \text{ denn } (\sqrt{4})^3 = 2^3 = 8$$

c)
$$\log_{a^2} 64 = 3 \iff a = 2$$
, denn $(2^2)^3 = 2^6 = 64$

c)
$$\log_{a^2} 64 = 3 \iff a = 2$$
, denn $(2^2)^3 = 2^6 = 64$ d) $\log_a 0.25 = 2 \iff a = 0.5$, denn $0.5^2 = 0.25$

e)
$$\log_{\sqrt{a}} 0.125 = 3 \iff a = \frac{1}{4}, \text{ denn } \left(\sqrt{\frac{1}{4}}\right)^3 = \frac{1}{8}$$

e)
$$\log_{\sqrt{a}} 0.125 = 3 \iff a = \frac{1}{4}, \ denn \left(\sqrt{\frac{1}{4}}\right)^3 = \frac{1}{8}$$
 f) $\log_{a^2} 27 = 3 \iff a = \sqrt{3}, \ denn \left(\sqrt{3}^2\right)^3 = 3^3 = 27$

g)
$$\log_{2a} 16 = 2 \Leftrightarrow a = 2$$
, denn $(2 \cdot 2)^2 = 16$

h)
$$\log_{2a} 8 = 2 \iff a = \sqrt{2}$$
, denn $(2 \cdot \sqrt{2})^2 = 4 \cdot 2 = 8$

5. a) $f(x) = \log_2 x$ hat die Definitionsmenge $D = \mathbb{R}^+$

b)

c)

