LAB 3 DEMO – Working with an SRAM, Reg File, ALU, I/O, and C Stuff Cont....

Team	Reviewer

Designing an ALU (70)

Design

ALU modeled first in behavioural Verilog then as dataflow model.

Comparison between two models using Netlist Viewer / RTL Viewer

Sixteen-bit data from SRAM sign extended to 32 bits for ALU

Arithmetic

- 1. Addition
 - Implemented as carry look-ahead to meet timing constraints
- 2. Subtraction 2's complement

Logical

- 1. AND
- 2. OR
- 3. XOR
- 4. SLT
- 5. SLL

Implemented as barrel shifter - Selectable shift 0..3 positions

Flags

Z, V, C, N

Working with the ALU, SRAM, and Register File (80)

Setup

- 1. Load test ALU instructions into SRAM.
- 2. Load test data into SRAM.

Run

Configure signal tap to trigger on command and display following transactions:

On command...

- 1. Transfer data block from SRAM to register file.
- 2. Read and interpret ALU instruction from SRAM.
- 3. Execute ALU instruction and set proper flags.
- 4. Store result into register file.

Timing and Execution

Operations completed in single clock cycle

Verified using signal tap

C Language Pointers (15)

$$A = 25$$
 $B = 16$
 $C = 7$
 $D = 4$
 $E = 9$
 $result = ((A - B)*(C+D))/E$

Implemented using pointers to all variables

Fully functional