【简答题】

【应用题】11.10

对于所示图,给出从顶点 4 出发,使用 Dijkstra 最短路径算法产生的最短路径。

注意要有过程

答:

迭代	S	u	Dist[1]	Dist[2]	Dist[3]	Dist[5]	Dist[6]
初始	{4}		20	5	∞	11	10
1	{4 , 2}	2	15	5	8	11	10
2	{4 , 2 , 3}	3	15	5	8	11	10
3	{4 , 2 , 3 , 6}	6	13	5	8	11	10
4	{4,2,3,6,	5	13	5	8	11	10
	5}						
5	{4,2,3,6,	1	13	5	8	11	10
	5 , 1}						

由上表最后一行可得到顶点4到各顶点的最短路径。

【应用题】11.17

对于所示图,给出从顶点 3 出发使用 Prim 的 MST 算法时各个边的访问顺序, 并给出最终的 MST。

答:从顶点3出发使用 Prim 算法构造 MST 的过程(V 表示整个图的顶点集合; U 表示生成树的顶点集合)

迭代	U	V-U	Edge
1	{3}	{1,2,4,5,6}	(3,2,3)
2	{3 , 2}	{1,4,5,6}	(2,4,5)
3	{3 , 2 , 4}	{1,5,6}	(2,1,10)
4	{3 , 2 , 4 , 1}	{5, 6}	(1,6,2)
5	{3,2,4,1,6}	{5}	(6,5,3)
6	{3,2,4,1,6,5}	-	-

最终的 MST,图中标号代表选边的顺序。

【应用题】11.18

对于所示图,给出使用 Kruskal 的 MST 算法时各个边的访问顺序,每当把一条 边添加到 MST 中时,显示等价类数组中的结果。

答:使用 Kruskal 求 MST 过程如下

迭代	U	V-U	Edge
初始	-	{1,2,3,4,5,6}	(1,6,2)
1	{1,6}	{2,3,4,5}	(2,3,3)
2	{1,2,3,6}	{4 , 5}	(5,6,3)

3	{1,2,3,5,6}	{4}	(1,2,10)
4	{1,2,3,5,6}	{4}	(4,6,10)
5	{1,2,3,4,5,6}	-	