MATH 307 Final Exam

June 29, 2022

- No calculators, cellphones, laptops or notes
- Time allowed: 150 minutes
- 70 total marks
- Write your name and student number in the space below
- Notation:
 - $\circ A^T$ is the transpose of A
 - o N(A) is the nullspace of A and R(A) is the range of A
 - o U^{\perp} is the orthogonal complement of a subspace U
 - \circ I is the identity matrix
 - o $\operatorname{proj}_U(\boldsymbol{x})$ is the projection of \boldsymbol{x} onto U

Name:

SOLUTION

Student Number:

Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Q10	Total
12	8	8	6	6	6	5	6	6	7	70

- 1. Determine if the statement is **True** or **False**. No justification required.
 - (a) (2 marks) If U_1 and U_2 are orthogonal subspaces of \mathbb{R}^n , then the orthogonal complements U_1^{\perp} and U_2^{\perp} are orthogonal. In other words, if $U_1^{\perp} \perp U_2^{\perp}$ then $U_1^{\perp} \perp U_2^{\perp}$.

False
$$\exists V_1, U_2 \subset \mathbb{R}^3 \quad dim(U_1) = dim(U_2) = 1$$

$$\Rightarrow \quad dim(U_1^{\perp}) = dim(U_2^{\perp}) = 2$$

(b) (2 marks) If A is any 4×4 matrix with characteristic polynomial

$$c_A(x) = (x^2 + 2x - 2)(x^2 - 2x - 2)$$

then A is diagonalizable.

$$x^{2}+2x-2 \Rightarrow -2\pm\sqrt{4-4(-2)} = -1\pm\sqrt{3}$$

$$x^{2}-2x-2 \Rightarrow 2\pm\sqrt{4-4(-2)} = 1\pm\sqrt{3}$$

$$= 1\pm\sqrt{3}$$
True
$$= 1\pm\sqrt{3}$$

$$= 1\pm\sqrt{3}$$

$$= 1\pm\sqrt{3}$$

(c) (2 marks) Let $\lambda_1, \lambda_2 \in \mathbb{R}$ such that $\lambda_1 \neq \lambda_2$, and let $v_1, v_2 \in \mathbb{R}^2$ be nonzero vectors such that $\langle v_1, v_2 \rangle = 0$. There is a unique 2×2 symmetric matrix A such that $Av_1 = \lambda_1$ and $Av_2 = \lambda_2$.

True
$$A = \begin{bmatrix} \frac{1}{||Y_1||}Y_1 & \frac{1}{||Y_2||}Y_2 \end{bmatrix} \begin{bmatrix} \lambda_1 \\ \lambda_2 \end{bmatrix} \begin{bmatrix} \frac{1}{||Y_1||}Y_1 & \frac{1}{||Y_2||}Y_2 \end{bmatrix}^T$$

(d) (2 marks) The matrix

$$P = \frac{1}{\sqrt{14}} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 6 \\ 3 & 6 & 9 \end{bmatrix}$$

is the projection matrix onto a subspace U such that $\dim(U) = 2$.

False
$$P(P)=U$$
 and $rnh(P)=1$

$$=D din(U)=1.$$

(e) (2 marks) Let A be a $m \times n$ matrix such that rank(A) = n and let $A = Q_1 R_1$ be the thin QR decomposition. Then $Q_1^T Q_1 = I$.

(f) (2 marks) Let $x_1, x_2 \in \mathbb{R}^N$ and let $y_1 = \text{DFT}(x_1)$ and $y_2 = \text{DFT}(x_2)$. If $\langle x_1, x_2 \rangle = 0$ then $\langle y_1, y_2 \rangle = 0$.

True
$$\langle \underline{y}_1, \underline{y}_2 \rangle = \langle F_N \underline{x}_1, F_N \underline{x}_2 \rangle$$

= $\langle \underline{x}_1, \overline{F}^T F_N \underline{x}_2 \rangle$
= $N \langle \underline{x}_1, \underline{x}_2 \rangle = 0$.

2. Consider the matrix

$$A = \left[\begin{array}{rrrr} 1 & 4 & -1 & 0 \\ -1 & -5 & 1 & 3 \\ 2 & 8 & 0 & -2 \\ 1 & 3 & -2 & 4 \end{array} \right]$$

- (a) (4 marks) Find the LU decomposition of A.
- (b) (4 marks) Find a basis of $R(A)^{\perp}$.

(a)
$$A \xrightarrow{F_1 + R_2} \begin{bmatrix} 1 & 4 & -1 & 6 \\ 0 & -1 & 0 & 3 \\ -2R_1 + R_3 & 0 & 0 & 2 & -2 \\ -P_1 + R_4 & 0 & -1 & -1 & 4 \end{bmatrix} \xrightarrow{R_2 + R_4} \begin{bmatrix} 1 & 4 & +1 & 0 \\ 0 & -1 & 0 & 3 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & -1 & 1 \end{bmatrix}$$

$$\frac{1}{2} Rst Ry \begin{bmatrix} 1 & +4 & -1 & 0 \\ 0 & -1 & 0 & 3 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix} = U \quad L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -1 & 1 & 0 & 0 \\ 2 & 0 & 1 & 0 \\ 1 & 1 & -\frac{1}{2} & 1 \end{bmatrix}$$

$$u = \begin{bmatrix} 1 & 4 & -1 & 0 \\ 0 & -1 & 0 & 3 \\ 0 & 0 & 2 & -2 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

(b)
$$R(A) = Span \left\{ \begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ -1/2 \end{bmatrix} \right\}$$

$$\begin{bmatrix} 1 & -1 & 2 & 1 & | & 0 \\ 0 & 1 & 0 & 1 & | & 0 \\ 0 & 0 & 1 & -1/2 & | & 0 \end{bmatrix} \Rightarrow x_1 = -t - 2\frac{1}{2}t + (-t) = -3t$$

$$\Rightarrow$$
 $R(A)^{\perp} = span \left\{ \begin{bmatrix} -3 \\ -1 \\ 1 \end{bmatrix} \right\}$

3. Let $A = Q_1 R_1$ be the thin QR decomposition of A, and let $b \in \mathbb{R}^4$ where

$$Q_1 = \frac{1}{2} \begin{bmatrix} 1 & -1 \\ 1 & 1 \\ 1 & 1 \\ 1 & -1 \end{bmatrix} \qquad R_1 = \begin{bmatrix} 2 & 1 \\ 0 & 5 \end{bmatrix} \qquad b = \begin{bmatrix} 1 \\ 2 \\ 0 \\ 2 \end{bmatrix}$$

- (a) (4 marks) Find the projection of **b** onto $R(A)^{\perp}$.
- (b) (4 marks) Find the least squares approximation $Ax \cong b$.

(a)
$$\operatorname{proj}_{R(A)}(b) = b - Q_{1}Q_{1}b = \begin{bmatrix} 1\\2\\0\\2 \end{bmatrix} - Q_{1}\begin{bmatrix} 5/2\\-1/2 \end{bmatrix}$$

$$= \begin{bmatrix} 1\\2\\0\\2 \end{bmatrix} - \frac{1}{4}\begin{bmatrix} 6\\4\\6 \end{bmatrix} = \begin{bmatrix} -1/2\\1\\-1\\1/2 \end{bmatrix}$$

(b)
$$A \times \cong b$$
 \Rightarrow $R_1 \times = Q_1^T b = \frac{1}{2} \begin{bmatrix} 5 \\ -1 \end{bmatrix}$

$$\Rightarrow \begin{bmatrix} 2 & 1 & | 5/2 \\ 0 & 5 & | -1/2 \end{bmatrix}$$

$$\Rightarrow \times = \begin{bmatrix} (5/2 + 1/10)/2 \\ -1/10 \end{bmatrix}$$

$$\times = \begin{bmatrix} 13/10 \\ -1/10 \end{bmatrix}$$

4. (6 marks) Find the orthogonal diagonalization $A = PDP^{T}$ of the matrix

$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

The characteristic polynomial of A is $c_A(x) = x^3 - 5x^2 + 4x$.

5. Let a and b be nonzero numbers and consider the matrix

$$A = \left[\begin{array}{cc} a & b \\ -b & a \end{array} \right]$$

- (a) (4 marks) Compute ||A||.
- (b) (2 marks) Compute cond(A).

(a)
$$ATA = \begin{bmatrix} a & -b \\ b & a \end{bmatrix} \begin{bmatrix} a & b \\ -b & a \end{bmatrix} = \begin{bmatrix} a^2 + b^2 & 0 \\ 0 & a^2 + b^2 \end{bmatrix}$$

$$\Rightarrow \nabla_1 = \nabla_2 = \sqrt{a^2 + b^2}$$

$$\Rightarrow |||A|| = \sqrt{a^2 + b^2}$$
(b) $||A|| = \sqrt{a^2 + b^2}$

6. (6 marks) Find the shortest distance from \boldsymbol{x} to $U = \text{span}\{\boldsymbol{u}_1, \boldsymbol{u}_2, \boldsymbol{u}_3\}$ where

$$oldsymbol{u}_1 = egin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} \qquad oldsymbol{u}_2 = egin{bmatrix} 1 \\ 0 \\ 1 \\ 2 \end{bmatrix} \qquad oldsymbol{u}_3 = egin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \qquad oldsymbol{x} = egin{bmatrix} -1 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

Find a basis of ut:

$$\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & 6 & 1 & 2 \\
0 & 1 & 0 & 1
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 1 & 1 & 1 \\
0 & -1 & 0 & 1 \\
0 & 1 & 0 & 1
\end{bmatrix}
\rightarrow
\begin{bmatrix}
1 & 1 & 1 & 1 \\
0 & -1 & 0 & 1 \\
0 & 0 & 0 & 2
\end{bmatrix}$$

$$\Rightarrow$$
 $u^{+} = span \left\{ \begin{bmatrix} -1 \\ 0 \\ 0 \end{bmatrix} \right\}$

$$\frac{\langle \underline{x},\underline{y}\rangle}{\langle \underline{y},\underline{y}\rangle} = \begin{bmatrix} -1/2 \\ 0 \\ 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1/2 \\ 0 \\ +1/2 \\ 0 \end{bmatrix}$$

Shortest distance is $\|projul(x)\| = \sqrt{(-\frac{1}{2})^2 + b^2}$

$$=\frac{1}{\sqrt{2}}$$

7. (5 marks) Let A be a 4×4 matrix with singular value decomposition $A = P \Sigma Q^T$ where

$$P = \begin{bmatrix} \boldsymbol{p}_1 & \boldsymbol{p}_2 & \boldsymbol{p}_3 & \boldsymbol{p}_4 \end{bmatrix} \qquad \qquad \Sigma = \begin{bmatrix} 5 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \qquad \qquad Q = \begin{bmatrix} \boldsymbol{q}_1 & \boldsymbol{q}_2 & \boldsymbol{q}_3 & \boldsymbol{q}_4 \end{bmatrix}$$

Let $x = q_1 + q_2 + q_3 + q_4$. Compute ||Ax||.

$$AX = P\Sigma G^{T}X = P\Sigma \begin{bmatrix} 1 \\ 1 \end{bmatrix} = P\begin{bmatrix} 5 \\ 2 \\ 0 \end{bmatrix}$$

$$= 5P_{1} + 2P_{2} + P_{3}$$

$$= N \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \sqrt{30}$$

8. (6 marks) Let $x \in \mathbb{R}^{16}$ such that y = DFT(x) where y[0] = 8, y[4] = y[12] = 4, and all other entries of y are zero. Sketch the stemplot of x.

$$\Rightarrow$$
 $x = A_0 f_0 + A_1 \cos(2\pi k_1 t + \phi_1)$

$$A_0N = 8$$
 $A_1N = 4$ $e^{i\phi_1} = 1$

$$A_0 = \frac{1}{2}$$
 $A_1 = \frac{1}{2}$ $A_1 = \frac{1}{2}$ $A_1 = \frac{1}{2}$

$$\Rightarrow X = \frac{1}{2} + \frac{1}{2} \cos(2\pi(4) + \frac{1}{2})$$

9. (6 marks) Match the signal with its discrete Fourier transform.

Signal
$$3 = DFT _ D$$

10. (7 marks) Find the weight vectors w_1 and w_2 for the dataset displayed below

