Report: Bhashathon_ASR Output Correction

0. Team Name and Details of Team Members

Team name: Global Optima

No	Name Email		
1	Disha Timbadiya	dishatimbadiya055@gmail.com	
2	Om Soni	oms279400@gmail.com	
3	Vrund Dobariya	vrund3626@gmail.com	

1. Name of the Problem Statement and Languages Participated

Problem Statement: IV ASR Output Correction

Language: English, Hindi, Malayalam.

2. Dataset Description

For training (T5, Flan-T5, smolLM-v2):

1. **Dataset-1 Common Voice Dataset** (Delta 20,19,18, and 17 releases)

Source: Mozilla

License: CC BY 4.0 (Creative Commons Attribution 4.0)

Usage: This dataset can be used for commercial and non-commercial purposes with

proper attribution.

Citation: Mozilla, "Common Voice Dataset", https://commonvoice.mozilla.org

Modifications: None

2. The **datasets** provided with the problem statement.

Above mentioned datasets were **used to generate transcripts** for audio recordings with the help of given ASR models:

- 1. <u>OpenAI-whisper-tiny</u>
- 2. Facebook s2t small libre-speech ASR

Dataset links:

Generated with S2T-small [1935 samples]
Generated with whisper-tiny [1446 samples]

For evaluation:

Used dataset provided by the Hackathon team.

3. Preprocessing Details

- Sentences are converted to lowercase(for English) and trimmed to remove unnecessary spaces.
- Sentences with more than 2 unmatched words with their generated transcripts were omitted.
- Removed transcripts generated in other languages.

4. Model Architecture

Experiment 1: Fine-Tuning Transformer Model for ASR Correction

- 1. Using T5-small Transformer Model:
- Description: The pre-trained t5-small model is fine-tuned for ASR output correction.
 Input sentences are tokenized using the T5 tokenizer, and the tokenized input, including input_ids and attention_mask, is passed through the model's encoder-decoder transformer architecture. The model learns to correct ASR-generated errors by leveraging self-attention and cross-attention mechanisms. Training is performed using cross-entropy loss, and weights are optimized using the Adam optimizer. The final predictions are generated by the decoder, producing corrected text.
- Architecture Diagram:

Base Model Variant: T5-Small is a lightweight version of the Text-to-Text Transfer
Transformer (T5). It has 60 million parameters and follows a unified text-to-text
framework, making it adaptable to various NLP tasks, including ASR error correction,
summarization, and translation. The model was pre-trained on the Colossal Clean
Crawled Corpus (C4) and fine-tuned on multiple supervised datasets covering sentiment
analysis, paraphrasing, question answering, and more.

2. Using Flan-T5-base:

- **Description:** The pre-trained flan-t5-base model is fine-tuned for ASR output correction. The input text is tokenized using the T5 tokenizer and processed through the encoder-decoder architecture. The encoder extracts contextual representations, while the decoder generates corrected text. The model is trained with cross-entropy loss and optimized using Adam, refining its ability to correct ASR-generated errors.
- Architecture Diagram:

Base Model Variant: Flan-T5-Base is an enhanced variant of the T5 model, fine-tuned using instruction-based learning for better generalization across NLP tasks. It retains the text-to-text framework of the original T5 but is optimized for zero-shot and few-shot learning. Pretrained on diverse instruction-following datasets, Flan-T5-Base improves on standard T5 by incorporating additional reasoning, summarization, and comprehension tasks. It has ~250 million parameters, making it a balanced choice between performance and efficiency for ASR correction tasks.

Experiment 2: Fine Tuning Small Language Models for ASR Correction

- Description: Pre-trained checkpoint of <u>SmolLM2-360M</u> is fine-tuned for ASR output correction. Input sentences are tokenized, and the tokens, along with <u>input_ids</u> and <u>attention_mask</u>, are passed through the model's transformer architecture. This includes <u>self-attention layers</u> and <u>feed-forward networks</u>. The model is trained using <u>cross-entropy loss</u> and optimized with the <u>Adam optimizer</u> to adjust weights. Through fine-tuning, the model learns to correct ASR output and generate more accurate text. The final predictions are made via a <u>linear layer</u>, projecting the internal representation to the vocabulary space.
- Architecture Diagram:

 Base Model Variant: <u>SmolLM2-360M</u> - SmolLM2 is a family of compact language models, he 360M model was trained on 4 trillion tokens using a diverse dataset combination: FineWeb-Edu, DCLM

Experiment 3: Fine Tuning facebook/mbart-large-50 Model for ASR Correction

Description: The pre-trained mBART model is fine-tuned for ASR output correction. The
input text is tokenized using the mBART tokenizer and processed through the
encoder-decoder architecture. The encoder captures contextual representations, while
the decoder generates corrected text. The model is trained using cross-entropy loss and
optimized with Adam, enhancing its ability to correct ASR-generated errors across
multiple languages.

- Used for multiple languages: English, Hindi, Malayalam.
- Architecture Diagram:

MBartForConditionalGeneration

 Base Model Variant: mBART-50 is a multilingual sequence-to-sequence model with 610M parameters, pre-trained using the Multilingual Denoising Pretraining objective. It supports 50 languages and is primarily used for machine translation and text generation tasks.

5. Training Approach (If applicable)

Training setup:

Environment: Google Colab

Hardware: T4-GPUNumber of GPUs: 1

Hyper Parameters:

• Learning rates: 2e-5, 5e-5

- Optimizer: Adam optimizer
- Data Augmentation Techniques:
 - Lower casing
 - Removing leading and trailing whitespaces
- Loss function and evaluation metrics:
 - Loss function: Cross Entropy Loss
 - Evaluation metrics: WER (Word Error Rate), CER (Character Error Rate), SER (Sentence Error Rate).
- Transfer Learning
 - Base models experimented : t5-small, flan-t5-base, <u>SmolLM2-360M</u>, facebook/mbart-large-50
 - Taken pre-trained checkpoints of the above model and retrained them for 3 to 4 epochs for each model on a custom dataset for ASR correction.

6. Inference, Performance, and Error Analysis

Colab NoteBooks:

- 1. mBART fine-tuning for English
- 2. mBART fine-tuning for hindi
- 3. mBART fine-tuning for Malayalam
- 4. T5-Small fine-tuning For English Experiment
- 5. FlanT5- base fine tuning for English Experiment
- 6. Using LLM for English Experiment
- Report key evaluation metrics: WER, CER, SER.

Performance Metrics:

For English Language:

Metrics	Fine Tuned LLM Smollm-v2	Fine Tuned Transformer t5-small	Fine Tuned Transformer google/flan-t5-b ase	Fine Tuned facebook/mbart -large-50
WER	21%	14.94%	11.21%	5.80%
CER	15%	64.7%	55.7%	3.21%
SER	90%	70.84%	58.26%	36.02%

Based on the evaluation metrics, the Fine-Tuned **facebook/mbart-large-50 model is finalized** as it achieves the lowest WER (5.80%), CER (3.21%), and SER (36.02%) **for English**, making it the best for ASR error correction.

For Hindi Language:

Metrics	Fine Tuned facebook/mbart-large-50
WER	13.11%
CER	9.81%
SER	40.44%

For Malayalam Language:

Metrics	Fine Tuned facebook/mbart-large-50
WER	5.85%
CER	1.27%
SER	25.31%

• Common Failure cases:

- 1. Errors in proper names and technical terms

 Example: "MICROSO" instead of "MICROSOFT".
- 2. Struggling with long or complex sentences
- Missing punctuation Example: "wont" instead of "won't"

Post-Processing Steps:

- Convert text to lowercase for consistency.
- Remove unnecessary spaces.

7. Limitations of the Solution

- Might struggle with domain-specific contexts. for example, medical, technical, etc.
- When there is a drastic ambiguity in transcribed vs actual word, the model struggles to predict correctly.
- Larger parameter models like 1B, 1.5B, and 3B can perform better.

Challenges encountered during development:

- Computational cost for fine-tuning the LLM
- Colab has limits on GPU usage and RAM, leading to memory crashes and GPU limit exceed issues