www.uaic.ro

FIŞA DISCIPLINEI

1. Date despre program

1.1 Instituţia de învăţământ superior	Universitatea "Alexandru Ioan Cuza" din Iaşi
1.2 Facultatea	Facultatea de Matematica
1.3 Departamentul	Matematica – Didactic
1.4 Domeniul de studii	Matematica
1.5 Ciclul de studii	Licenta
1.6 Programul de studii / Calificarea	Matematică - Informatică

2. Date despre disciplină

2.1 Denumirea disciplinei	Elemente de analiză complexă și aplicații			
2.2 Titularul activităţilor de curs	Conf. dr. Mihai Necula			
2.3 Titularul activităților de seminar	r Conf. dr. Mihai Necula			
2.4 An de studiu 2 2.5 Semestru	2 2.6 Tip de evaluare EvP 2.7 Regimul discipinei OB			

^{*} OB – Obligatoriu / OP – Opţional

3. Timpul total estimat (ore pe semestru și activități didactice)

3.1 Număr de ore pe săptămână	4	din care: 3.2	curs	2	3.3 seminar/laborator	2
3.4 Total ore din planul de învăţământ	56	din care: 3.5	curs	28	3.6 seminar/laborator	28
Distribuţia fondului de timp						Ore
Studiu după manual, suport de curs, bibliografie şi altele					20	
Documentare suplimentară în bibliotecă, pe platformele electronice de specialitate și pe teren						
Pregătire seminarii/laboratoare, teme, referate, portofolii şi eseuri					20	
Tutoriat						
Examinări					4	
Alte activităţi						

3.7 Total ore studiu individual	44
3.8 Total ore pe semestru	100
3.9 Număr de credite	4

4. Precondiţii (dacă este cazul)

4.1 De curriculum	Calcul diferențial pentru funcții de o variabilă reală, Geometrie analitică, Programare C#
4.2 De competențe	Utilizarea MS Visual Studio pentru elaborarea de aplicaţii C#

5. Condiţii (dacă este cazul)

5.1 De desfășurare a cursului	Amfiteatru, calculator, proiector
5.2 De desfăşurare a seminarului/ laboratorului	Sală de laborator de informatică

www.uaic.ro

6. Competențe specifice acumulate

Competențe profesionale	C1. Prelucrarea matematica a datelor, analiza si interpretarea unor fenomene si procese (1 credit) C2. Elaborarea si analiza unor algoritmi pentru rezolvarea problemelor (1 credit) C3. Programarea în limbaje de nivel înalt (1 credit)
Competențe transversale	CT1. Aplicarea regulilor de munca riguroasa si eficienta, manifestarea unor atitudini responsabile fata de domeniul stiintific si didactic, pentru valorificarea optima si creativa a propriului potential în situatii specifice, cu respectarea principiilor si a normelor de etica profesionala (1 credit) CT2. Utilizarea eficienta a surselor informationale si a resurselor de comunicare si formare profesionala asistata, atât în limba româna, cât si într-o limba de circulatie internationala (1 credit)

7. Obiectivele disciplinei (din grila competențelor specifice acumulate)

7.1 Obiectivul general	C1. Prelucrarea matematica a datelor, analiza si interpretarea unor fenomene si procese: înţelegerea noţiunilor riguroase de algebră, analiză matematică şi geometrie care intervin în studiul funcţiilor complexe; C2. Elaborarea si analiza unor algoritmi pentru rezolvarea problemelor: algoritmi pentru grafica 2D utilizând numere complexe; C3. Programarea în limbaje de nivel înalt: dezvoltarea de aplicaţii în C#.
7.2 Objectivele specifice	La finalizarea cu succes a acestei discipline, studenţii vor fi capabili să: stabilească dacă o funcţie este olomorfă utilizând condiţiile Cauchy-Riemann găsească discul sau coroana de convergenţă pentru serii Taylor şi Laurent complexe Calculeze cu ajutorul teoremei reziduurilor valoarea integralelor complexe sau a unor integrale reale explice şi să definească riguros noţiunile de fractali de tip Newton, mulţimi Julia, mulţimea lui Mandelbrot utilizeze mediul de dezvoltare Microsoft Visual Studio pentru realizarea de aplicaţii în mod vizual în C#;

8. Conţinut

8.1	Curs	Metode de predare	Observaţii (ore şi referinţe bibliografice)
1.	Structura algebrică şi topologică a mulţimii numerelor complexe: corpul numerelor complexe, modulul si argumentul unui număr complex.	Expunerea, exemplificarea, conversaţia, problematizarea;	2 ore
2.	Planul lui Gauss şi sfera lui Riemann. sistemul vecinătăţilor unui număr complex şi pentru punctul de la infinit, şiruri şi serii convergente	Expunerea, exemplificarea, conversaţia, problematizarea;	2 ore
3.	Funcții complexe: limite, continuitate, diferențiabilitate, derivabilitate, olomorfie, legătura dintre ele, condițiile Cauchy-Riemann	Expunerea, exemplificarea, conversaţia, problematizarea;	2 ore

UNIVERSITATEA "ALEXANDRU IOAN CUZA" din IAŞI

www.uaic.ro

4.	Funcţii elementare complexe: exponenţiala, determinările logaritmului și ale funcţiei putere, funcţiile trigonometrice	Expunerea, exemplificarea, conversaţia, problematizarea;	2 ore
5.	Integrala curbilinie în planul complex, teorema fundamentală a calculului integral	Expunerea, exemplificarea, conversaţia, problematizarea;	2 ore
6.	Integrale parametrice, formula integrală a lui Cauchy, aplicații	Expunerea, exemplificarea, conversaţia, problematizarea;	2 ore
7.	Serii de puteri, serii Taylor, serii Laurent, dezvoltările în serii a funcţiilor olomorfe pe discuri şi pe coroane circulare	Expunerea, exemplificarea, conversaţia, problematizarea;	2 ore
8.	Reziduuri: puncte singulare izolate, noţiunea de reziduu şi calculul reziduurilor, teorema reziduurilor şi aplicaţii.	Expunerea, exemplificarea, conversaţia, problematizarea;	2 ore
9.	Clase C# pentru grafică 2D utilizând numere complexe	Expunerea, exemplificarea, conversaţia, problematizarea;	2 ore
10.	Desene plane recursive: metoda motivelor iterate, metoda trasformărilor geometrice iterate.	Expunerea, exemplificarea, conversaţia, problematizarea;	2 ore
11.	Studiul recurențelor de ordinul întâi în planul complex. Puncte fixe, puncte periodice, bazine de atracție	Expunerea, exemplificarea, conversaţia, problematizarea;	2 ore
12.	Problema lui Cayley, fractali de tip Newton	Expunerea, exemplificarea, conversaţia, problematizarea;	2 ore
13.	Mulţimi Fatou şi Julia pentru funcţii polinomiale şi raţionale. Tehnici de reprezentare grafică	Expunerea, exemplificarea, conversaţia, problematizarea;	2 ore
14.	Analiza recurenţei pătratice în cazul real şi în cazul complex. Mulţimea lui Mandelbrot	Expunerea, exemplificarea, conversaţia, problematizarea;	2 ore

Bibliografie

Referințe principale:

- 1. P. Hamburg, N. Negoescu, P. Mocanu Analiza matematica (Functii complexe), Ed. Didactică şi Pedagogică. Bucureşti, 1982
- 2. E. Popa Introducere in teoria functiilor de o variabila compexa, Ed. Univ. "Al.I.Cuza" lasi, 2000
- 3. S. Nistor, I. Tofan Teoria functiilor complexe, Ed. Universității "Al. I. Cuza" Iași, 1997

Referințe suplimentare:

1. K. J. Falconer, The Geometry of Fractal Sets, Cambridge University Press, 1987

8.2	Seminar / Laborator	Metode de predare	Observaţii (ore şi referinţe bibliografice)
1.	Calcule cu numere complexe. Clase C# pentru lucrul cu numere complexe.	Conversaţia, învăţarea prin descoperire, exerciţiul	2 ore
2.	Siruri şi serii de numere complexe. Verificări prin calcul numeric.	Elaborarea, tastarea şi rularea programelor exemplificative	2 ore
3.	Funcţii olomorfe, condiţiile Cauchy- Riemann	Conversaţia, învăţarea prin descoperire, exerciţiul	2 ore

www.uaic.ro

4.	Funcţii elementare complexe: exponenţiala, determinările logaritmului şi ale funcţiei putere, funcţiile trigonometrice. Verificări numerice	Elaborarea, tastarea şi rularea programelor exemplificative	2 ore
5.	Integrala curbilinie în planul complex, teorema fundamentală a calculului integral	Conversaţia, învăţarea prin descoperire, exerciţiul	2 ore
6.	Integrale parametrice, formula integrală a lui Cauchy, aplicații	Conversaţia, învăţarea prin descoperire, exerciţiul	2 ore
7.	Serii de puteri, serii Taylor, serii Laurent, dezvoltările în serii a funcţiilor olomorfe pe discuri şi pe coroane circulare	Conversaţia, învăţarea prin descoperire, exerciţiul	2 ore
8.	Teorema reziduurilor şi aplicaţii.	Conversaţia, învăţarea prin descoperire, exerciţiul	2 ore
9.	Interpretarea geometrică a operaţiilor cu numere complexe. Transformări afine ale planului.	Elaborarea, tastarea şi rularea programelor exemplificative	2 ore
10.	Desene plane recursive: metoda motivelor iterate, metoda trasformărilor geometrice iterate.	Elaborarea, tastarea şi rularea programelor exemplificative	2 ore
11.	Studiul recurențelor de ordinul întâi în planul complex. Puncte fixe, puncte periodice, bazine de atracție	Elaborarea, tastarea și rularea programelor exemplificative	2 ore
12.	Problema lui Cayley, fractali de tip Newton	Elaborarea, tastarea şi rularea programelor exemplificative	2 ore
13.	Mulţimi Fatou şi Julia pentru funcţii polinomiale şi raţionale. Tehnici de reprezentare grafică	Elaborarea, tastarea şi rularea programelor exemplificative	2 ore
14.	Analiza recurenţei pătratice în cazul real şi în cazul complex. Mulţimea lui Mandelbrot	Elaborarea, tastarea şi rularea programelor exemplificative	2 ore

Bibliografie

- 1. E. Popa Introducere in teoria functiilor de o variabila compexa, Ed. Univ. "Al.I.Cuza" laşi, 2000
- 2. M. Bătineţu-Giurgiu Probleme de funcţii complexe, Ed. Acad. Române, 1998
- 3. W. Rudin Analiză reală și complexă, Editura Theta, București, 1999.
- 4. Tutorial online: http://msdn.microsoft.com/en-us/default.aspx

9. Coroborarea conţinutului disciplinei cu aşteptările reprezentanţilor comunităţii, asociaţiilor profesionale şi angajatorilor reprezentativi din domeniul aferent programului

Cursul, seminarul şi laboratorul vor furniza studenţilor informaţii şi competenţe calculul integral în planul complex, precum şi abilităţi de rezolvare a problemelor de geometrie plană utilizând numere complexe. De asemenea, studenţii vor folosi cunoştinţele lor de programare pentru verificarea numerică a diverselor limite, sume, integrale calculate în planul complex, precum şi pentru trasarea de desene plane folosind numere complexe.

10. Evaluare

PER LIBERTATEM AD VERITATEM

www.uaic.ro

Tip activitate	10.1 Criterii de evaluare	10.2 Metode de evaluare	10.3 Pondere în nota finală (%)
10.4 Curs	Cunoașterea și utilizarea corectă a noţiunilor și rezultatelor fundamentale, aplicarea corectă a rezultatelor teoretice	Testele vor cuprinde si aspecte teoretice pe lănga cele practice.	50%
10.5 Seminar/ Laborator	Identificarea metodelor pentru rezolvarea unor exerciţii şi probleme, dobândirea unor deprinderi de calcul. Utilizarea mediului de programare Microsoft Visual Studio în realizarea de aplicatii pentru grafica 2D	Realizarea şi prezentarea temelor de laborator	50%

10.6 Standard minim de performanţă: Studentul trebuie să cunoască şi să utilizeze noţiunile şi conceptele matematice de bază folosite în analiza complexă: operaţii aritmetice, limite, sume de serii, calculul reziduurilor pentru funcţiile complexe şi utilizarea lor în cadrul integralelor complexe, precum şi să poată realiza pixel cu pixel, printr-un program scris într-un limbaj de nivel înalt, un desen simplu în plan utilizând numere complexe.

Nota se va obține pe baza unor teste individuale date in timpul laboratoarelor

Data completării Titular de curs Titular de seminar 09.10.2019 Conf. dr. Mihai Necula Conf. dr. Mihai Necula

Data avizării în departament Director de departament Prof. Dr. Ioan Bucataru