WHAT IS CLAIMED:

1	1. Appara	atus for	adjustably	positioning	surgical	instrumentation	relative	to	bone,
2	comprising:								
3		a. a	structural m	ember adapte	d to fasten	to bone;			
4		b. sı	urgical instru	umentation ad	apted to g	uide surgical dev	ices; and		
5		c. a	n alignment	module, com	prising:				
6		i.	a struc	ctural membe	r retention	component adap	ted to con	nect	to the
7		structura	l member;						
8		ii	. a surg	ical instrume	ntation ret	ention componen	t adapted	to co	onnect
9		to the sur	rgical instrur	mentation;					
10		ii	i. an int	ermediate co	mponent	adapted to conne	ect to the	stru	ıctural
11		member	retention co	omponent in	a fashion	that allows the	structura	al m	ember
12		retention	component	and the inte	rmediate	component to ro	tate relati	ve to	each
13		other at	out at lea	st one axis	, and ad	apted to conne	ct to the	e su	ırgical
14		instrume	ntation rete	ntion compo	nent in	a fashion that	allows th	e su	ırgical
15		instrume	ntation reter	ntion compon	ent and the	he intermediate	componen	t to	rotate
16		relative t	o each other	about at least	one axis;				
17		iv	v. an adj	ustment mec	hanism co	nnecting the inte	rmediate o	comp	onent
18		and the	structural 1	member reter	ntion com	ponent, the adj	ustment r	nech	anism
19		adapted	to control a	nd fix orienta	tion of th	e intermediate co	mponent	relat	ive to
20		the struct	tural membe	r retention co	mponent;	and			
21		v.	. an adj	ustment mec	hanism co	nnecting the inte	rmediate (comp	onent
22		and the s	surgical instr	umentation re	etention co	omponent, the ad	justment r	nech	anism
23		adapted	to control a	and fix orien	tation of	the intermediate	componer	nt ar	nd the
24		surgical i	nstrumentat	ion retention	componen	t.			

exposing bones in the vicinity of the knee joint;

A process for conducting knee surgery, comprising:

1

2

2.

a.

3	b.	fastening a rod to bone in the vicinity of the knee joint in a manner
4	intended at le	ast coarsely to align the rod to a desired axis relative to the bone;
5	c.	attaching a rod retention component of an alignment module to the rod,
6	the alignment	module comprising:
7		i. a rod retention component adapted to connect to the rod;
8		ii. a surgical instrumentation retention component adapted to connect
9	to sur	gical instrumentation;
10		iii. an intermediate component adapted to connect to the rod retention
11	compo	onent in a fashion that allows the rod retention component and intermediate
12	compo	onent to rotate relative to each other about at least one axis, and adapted to
13	conne	ct to the surgical instrumentation retention component in a fashion that
14	allows	s the surgical instrumentation retention component and the intermediate
15	compo	onent to rotate relative to each other about at least one axis;
16		iv. an adjustment mechanism connecting the intermediate component
17	and th	ne rod retention component, the adjustment mechanism adapted to control
18	and fi	x orientation of the intermediate component relative to the rod retention
19	compo	onent; and
20		v. an adjustment mechanism connecting the intermediate component
21	and th	e surgical instrumentation retention component, the adjustment mechanism
22	adapte	ed to control and fix orientation of the intermediate component and the
23	surgic	al instrumentation retention component;
24	d.	attaching instrumentation to the alignment module;
25	e.	adjusting at least one of the adjustment mechanisms in order to finely
26	align the instr	umentation relative to the bone;
27	f.	resecting bone using the instrumentation;
28	g.	attaching a surgical implant to the resected bone;
29	h.	reassembling the knee; and
30	i.	closing the exposed knee.

1	3.	A mill guide instrument for guiding a tissue cutting mill, the mill guide instrument		
2	comp	comprising:		
3		a guide body comprising a distal section adapted to fit into a bore in a bone and a		
4		template section having a guide surface; and a mill guide selectively mounted on the		
5		guide body and adapted to engage the tissue cutting mill, the mill guide comprising a		
6		stylus configured to selectively follow the guide surface of the template such that the mill		
7		guide orients the tissue cutting mill towards tissue to be removed from the bone to form a		
8		bone cavity.		
1	4.	A mill guide instrument for cutting a cavity in bone comprising:		
2		a guide body comprising a distal section dimensioned to fit into a bore in a bone		
3		and a template section having a guide surface;		
4		a mill guide being rotationally connected to the guide body, the mill guide		
5		comprising a stylus and a sleeve;		
5		a mill being slidably received within the sleeve, the mill having a proximal		
7		section, distal section and a shaft extending therebetween, the mill being oriented toward		
8		tissue to be removed when the stylus selectively follows the guide surface of the template		
9		section.		
1	5.	A method of using a mill guiding instrument for guiding a tissue cutting tool, the method		
2	comp	orising:		
3		inserting a guide body into a bore in a bone;		
4		attaching a template section with a guide surface to the guide body;		
5		attaching a mill guide with a stylus to the guide body;		
5		activating the mill with a cutting tip positioned to remove bone tissue; and		
7		following the guide surface of the template section with the stylus until the cavity		
3		is prepared to accept prosthesis.		
l	6.	A mill guiding instrument for cutting a cavity in bone, comprising:		

a support frame having a distal portion adapted to be received within the bone;

2

3		a mill guide connected to the support frame and having a stylus;
4		a mill adapted to cut tissue and adapted to rotate within the mill guide;
5		a template connected to the support frame and having a guide surface comprised
6		of a three-dimensional surface, tracing the template with the stylus causing the mill guide
7		to position the mill such that a desired cavity is cut into the bone.
1	7.	A cutting jig for preparing a bone to receive an implant comprising:
2		a shaft having a portion insertable in a medullary canal of the bone for coupling
3		the cutting jig to the bone;
4		a length adjustment member slidable on the shaft to vary the length adjustment
5		member location with respect to the shaft;
6		an arm extending laterally from the length adjustment member;
7		an extension extending from a lateral end of the arm; and
8		a cutting guide located on an end of the extension.
1	8.	An instrument for resecting the distal femur, comprising:
2		a plurality of cutting guide blocks, each of said plurality of cutting guide blocks
3		having an anterior cutting guide surface defining three points, a posterior cutting guide
4		surface defining three points, an anterior chamfer guide surface defining three points, a
5		posterior chamfer guide surface defining three points, and a distal cutting guide surface
6		defining three points;
7		a pair of positioning fixtures, for positioning one of said cutting guide blocks on
8		the distal femur;
9		an alignment assembly for positioning said pair of positioning fixtures;
10		a drill guide cooperating with said alignment assembly for drilling holes in the
11		distal femur for attaching said pair of positioning fixtures to the distal femur; and
12		a sizing boom attachable to said alignment assembly for selecting said one cutting
13		guide block from said plurality of cutting guides, said sizing boom including an
14		adjustable stylus for contacting the most prominent aspect of the anterior lateral cortex to
15		determine the appropriate size for said one cutting guide.

1	9.	A method of resecting a bone during arthroplasty using a resection guide, said method
2	comp	orising:
3		aligning the resection guide relative to the bone in three degrees of freedom, at
4		least one of said degrees of freedom being rotational;
5		locking the resection guide in position; and
5		resecting the bone using the resection guide, wherein said step of aligning
7		includes moving the resection guide through an infinitely adjustable range.
1	10.	A method according to claim 9, further comprising anchoring a pin to the bone, and
2	coupl	ing the resection guide to said pin via an alignment guide.
1	11.	A method according to claim 10, wherein said locking of the resection guide comprises
2	locki	ng said alignment guide in each of said three degrees of freedom.
l	12.	A method according to claim 9, wherein said locking of the resection guide includes
2	pinni	ng said resection guide to the bone.
1	13.	A method according to claim 9, wherein said resecting the bone using the resection guide
2	does	not require the removal from the bone of any part of the resection guide prior to resection.
l	14.	A method of resecting a bone during arthroplasty using a resection guide, said method
2	comp	rising:
3		aligning the resection guide relative to the bone in three degrees of freedom, at
4		least one of said degrees of freedom being rotational;
5		locking the resection guide in position; and
5		resecting the bone using the resection guide, wherein said method is adapted for
7		resecting both the femur and the tibia.
l	15.	A method according to claim 14, further comprising:
2		coupling an EM rod to the resection guide; and

2

3		using the EM rod to perform the aligning of the resection guide.
1	16.	A method of resecting a bone during arthroplasty using a resection guide, said method
2	comp	rising:
3		aligning the resection guide relative to the bone in three degrees of freedom, at
4		least one of said degrees of freedom being rotational;
5		locking the resection guide in position; and
6		resecting the bone using the resection guide, wherein no part of the resection
7		guide needs to be removed from the bone prior to resection.
1	17.	A method according to claim 16, further comprising:
2		coupling an EM rod to the resection guide; and
3		using the EM rod to perform the step of aligning the resection guide.
1	18.	A method of locating a resection guide for resecting a bone during arthroplasty, said
2	metho	od comprising:
3		aligning the resection guide relative to the bone in three degrees of freedom, at
4		least one of said degrees of freedom being rotational; and
5		locking the resection guide in position, wherein said aligning includes moving the
6		resection guide through an infinitely adjustable range.
1	19.	A method according to claim 18, further comprising:
2		coupling an EM rod to the resection guide; and
3		using the EM rod to perform the aligning of the resection guide.
1	20.	A method according to claim 18, wherein said resection guide does not need to be
2	remov	ved from any part of the bone prior to resection.
1	21.	A method according to claim 18, wherein said method is adapted for resecting both the

femur and the tibia.

2

1	22.	A method according to claim 18, wherein said resection guide does not need to be		
2	remov	removed from any part of the bone prior to resection and said method is adapted for resecting		
3	both t	both the femur and the tibia.		
1	23.	A method of locating a resection guide for resecting a bone during arthroplasty, said		
2	metho	od comprising:		
3		aligning the resection guide relative to the bone in three degrees of freedom, at		
4		least one of said degrees of freedom being rotational; and		
5		locking the resection guide in position, wherein said method is adapted for		
6		resecting both the femur and the tibia.		
1	24.	A method according to claim 23, further comprising:		
2		coupling an EM rod to the resection guide; and		
3		using the EM rod to perform the aligning of the resection guide.		
1	25.	A method of locating a resection guide for resecting a bone during arthroplasty, said		
2	metho	od comprising:		
3		aligning the resection guide relative to the bone in three degrees of freedom, at		
4		least one of said degrees of freedom being rotational; and		
5		locking the resection guide in position, wherein no part of the resection guide		
6		needs to be removed from the bone prior to resection.		
1	26.	A method according to claim 25, further comprising:		
2	20.	coupling an EM rod to the resection guide; and		
		• •		
3		using the EM rod to perform the aligning of the resection guide.		
1	27.	A method for aligning a resection guide relative to a patient's bone during arthroplasty,		
2	said n	nethod comprising:		
3		coupling an alignment guide to a patient's bone;		
4		coupling a resection guide to said alignment guide; and		

positioning said resection guide along a translational path and along a plurality of 5 6 rotational paths by manipulating said alignment guide. 1 28. A method according to claim 27, wherein said plurality of rotational paths comprise a 2 first rotational path and a second rotational path. 1 29. A method according to claim 28, wherein said first and second rotational paths are about 2 different axes. 1 A method according to claim 29, wherein said axes are transverse to each other. 30. A method according to claim 27, further including attaching an anchoring pin to a 1 31. 2 patient's bone and securing said alignment guide thereto. 1 32. A method according to claim 27, further including locking said alignment guide along 2 said translational path and about a first and second one of said plurality of rotational paths. A method for aligning a resection guide relative to a patient's bone during arthroplasty, 1 33. 2 said method comprising: 3 coupling an alignment guide to a patient's bone; 4 coupling a resection guide to said alignment guide; and aligning said resection guide relative to the bone in three degrees of freedom by 5 6 manipulation of the alignment guide, at least one of said degrees of freedom being 7 rotational. 1 34. Instrumentation for intramedullary alignment for femoral instruments in minimally 2 invasive unicompartmental knee replacement surgery, said instrumentation comprising: 3 an intramedullary rod for insertion in the intramedullary canal of a femur; 4 a resection block for fixation to the femur with the knee in flexion, said resection 5 block having a planar slot for receiving a cutting member to establish a planar surface

along a posterior aspect of a femoral condyle of the femur and a channel extending through said resection block in a medial-lateral direction parallel to said slot; and

a linking instrument comprising a vertical linking bar and a horizontal linking bar extending from said vertical linking bar at an angle, said horizontal linking bar being receivable in said channel to couple said linking instrument to said resection block to form a one-piece construct, said vertical linking bar being mountable to said intramedullary rod in a perpendicular orientation thereto couple said construct to said intremedullary rod.