

Programação Orientada a Objetos I

Profa. Angela Abreu Rosa de Sá, Dra.

Contato: angelaabreu@gmail.com

Material Didático

Sumário

Unidade 1 Fundamentos da orientação a objetos	7
Seção 1.1 - Histórico e introdução à orientação a objetos	- 9
Seção 1.2 - Conceitos básicos de orientação a objetos	22
Seção 1.3 - Construtores e sobrecarga	- 37
Unidade 2 Estruturas de programação orientadas a objetos	59
Seção 2.1 - Estruturas de decisão e controle em Java	- 61
Seção 2.2 - Estruturas de repetição em Java	
Seção 2.3 - Reutilização de classes em Java	- 93
Unidade 3 Exceções, classes abstratas e interfaces	111
Seção 3.1 - Definição e tratamento de exceções	113
Seção 3.2 - Definição e uso de classes abstratas	126
Seção 3.3 - Definição e uso de interfaces	141
Unidade 4 Aplicações orientadas a objetos	155
Officações offentadas a objetos	155
Seção 4.1 - Arrays em Java	157
Seção 4.2 - Strings em Java	173
Seção 4.3 - Coleções e arquivos	188

Conceitos Fundamentais

- Uma classe é um molde para objetos.
- Um objeto é uma instância de uma classe.
- Uma classe é uma *abstração* das características *relevantes* de um grupo de coisas do mundo real.

Lembrar....

Classes: estruturas que <u>contém os dados que devem ser representados e as operações</u> <u>que devem ser efetuadas com esses dados para determinado modelo.</u>

Objetos: é como chamamos a **materialização da classe**, que assim poderá ser usada para representar dados e executar operações.

Obs.: podemos ter vários objetos de uma única classe.

Atributos: são as propriedades (ou dados) da classe. ("variáveis")

Métodos: os métodos expressam as funcionalidades da classe ("funções")

Conceitos Fundamentais

- Classe / Objeto
- Construtor
- Atributos
- Métodos
- Sobrecarga

- Encapsulamento
- Herança/Generalização/Especialização
- Polimorfismo

Construtores

Construtores são **métodos especiais** que são chamados automaticamente quando instâncias são criadas por meio do *new* – o que causa a execução automática do construtor

Eles garantem que o código contido neles **será executado antes de qualquer outro código em outros métodos**, já que uma instância de uma classe (objeto)

```
public class Calculadora {

    //atributos
    int numero1;
    int numero2;

    int numero2 = teclado.nextInt();

    System.out.println("\n Digite o segundo numero: ");
    numero2 = teclado.nextInt();

    Calculadora objetoCalculadora = new Calculadora(numero1, numero2);

    Calculadora objetoCalculadora = new Calculadora(numero1, numero2);

    numero1 = n1;
    numero2 = n2;
}
```

Sobrecarga (overload)

Permite a um método dentro da mesma classe ter várias implementações as quais são diferenciadas com base na quantidade e tipo de parâmetros

Sobrecarga - Construtor

```
public class Calculadora {
    int num1;
    int num2;
    Calculadora()
        num1 = 0;
        num2 = 0;
    Calculadora (int n1, int n2)
        num1 = n1;
        num2 = n2;
    Calculadora (int n)
        num1 = n;
        num2 = n;
```

Sobrecarga - Construtor

```
public class Calculadora {
    int num1;
    int num2;
    Calculadora()
        num1 = 0;
        num2 = 0;
    Calculadora (int n1, int n2)
        num1 = n1;
        num2 = n2;
    Calculadora (int n)
        num1 = n;
        num2 = n;
```

Sobrecarga - Construtor

```
public class Principal01 {
    public static void main(String[] args) {
        Calculadora obj1 = new Calculadora();
        Calculadora obj2 = new Calculadora(2,4);
        Calculadora obj3 = new Calculadora(5);
```

Sobrecarga - Métodos

```
public class Calculadora {
    int num1;
    int num2;
    Calculadora()
    Calculadora(int n1,int n2)
    Calculadora (int n)
    public int Somar()
        return num1 + num2;
    public int Somar(int n1, int n2)
        num1 = n1:
        num2 = n2;
        return num1 + num2;
```

Sobrecarga - Métodos

```
public class Principal01 {
   public static void main(String[] args) {
        Calculadora obj1 = new Calculadora();
        Calculadora obj2 = new Calculadora(2,4);
        Calculadora obj3 = new Calculadora(5);
        int somatorio = obj2.Somar();
        int somatorio2 = obj2.Somar(3, 4);
```

- Objetos devem "esconder" a sua complexidade.
 - Legibilidade
 - Clareza
 - Reuso

Deixar **PÚBLICO** somente o que é necessário para enviar mensagens para o objeto.

VISIBILIDADE da classe

Public

Private

Modificadores de Acesso

Quem pode "ver" e acessar o conteúdo de cada atributo e método? Somente a classe ou o programa principal?

Tipos de Visibilidade

■ Público Public

Os Atributos e Métodos que PÚBLICOS, são visíveis para o **programa** que está utilizando a classe

■ Privado Private

Os Atributos e Métodos que PRIVATE, são visíveis para apenas **DENTRO da classe**

Ocultação de detalhes internos

Tornar a classe uma CÁPSULA, isto é, uma Caixa Preta

Deixar visível somente o **NECESSÁRIO** para a manipulação da classe.

```
3
       //Atributos COM ENCAPSULAMENTO
 4
       private String nomeDoAluno; //nome do aluno
       private int numeroDeMatricula; //número de matrícula
       private int códigoDoCurso; //código do curso (1 .. 4)
 6
 7
       private double percentualDeCobranca; //percentual em relação ao preço cheio, de 0 a 100%
 9
       //construtor
       RegistroAcademico(String n, int m, int c, double p) {
10⊝
11
               nomeDoAluno = n:
12
               numeroDeMatricula = m;
13
               códigoDoCurso = c;
14
               percentualDeCobranca = p;
15
16
       //Metodo
17⊝
       public double calculaMensalidade() {
           double mensalidade = 0:
18
19
           //determinação do valor cheio da mensalidade, dependendo do curso.
20
21
           if (códigoDoCurso == 1)// Redes
22
               mensalidade = 450.00;
23
           if (códigoDoCurso == 2) // Ciência da Computação
               mensalidade = 500.00:
24
25
           if (códigoDoCurso == 3) // Engenharia da Computação
               mensalidade = 550.00;
26
27
           if (códigoDoCurso == 4) //Sistemas de Informacao
               mensalidade = 380.00;
28
29
30
           //calcula o desconto. Se o percentual for zero, a mensalidade também o será.
31
           if (percentualDeCobranca == 1)
32
               mensalidade = 450.00;
33
           else mensalidade = mensalidade * 100.0 / percentualDeCobranca;
34
           return mensalidade:
35
36
37
```

1 public class RegistroAcademico {

```
public class Calculadora {
    public int num1;
    public int num2;
                                                     public class Principal01 {
    Calculadora()
                                                         public static void main(String[] args) {
        num1 = 0;
        num2 = 0;
                                                             Calculadora obj1 = new Calculadora();
                                                            obj1.num1 = 2;
                                                            obj1.num2 = 4;
    Calculadora(int n1,int n2)
                                                            int somatorio = obj1.Somar();
    Calculadora (int n)
    public int Somar()
        return num1 + num2;
    public int Somar(int n1, int n2)
        num1 = n1;
        num2 = n2;
        return num1 + num2;
```

```
oublic class Calculadora {
   private int num1;
   private int num2;
   Calculadora()
       num1 = 0;
       num2 = 0;
   Calculadora(int n1,int n2)
   Calculadora (int n)
   public int Somar()
       return num1 + num2:
   public int Somar(int n1, int n2)
       num1 = n1:
       num2 = n2;
       return num1 + num2;
```

```
public class Principal01 {
     public static void main(String[] args) {
           Calculadora obj1 = new Calculadora();
         obj1.num1 = 2;
         obj1.num2 = 4;
         int somatorio = obj1.Somar();
oblems × @ Javadoc & Declaration
rs, 1 warning, 0 others
ription
                                              Resource
 Errors (2 items)
 The field Calculadora.num1 is not visible
                                              Principal01.java
 The field Calculadora.num2 is not visible
                                              Principal01.java
Warnings (1 item)
 Build path specifies execution environment JavaSE- Ex01
```

Atributos não VISÍVEIS para outras classes. Não podem ser acessados diretamente!

```
oublic class Calculadora {
   private int num1;
   private int num2;
   Calculadora()
       num1 = 0;
       num2 = 0;
   Calculadora(int n1,int n2)
   Calculadora (int n) ...
   public int Somar()
       return num1 + num2:
   public int Somar(int n1, int n2)
       num1 = n1;
       num2 = n2;
       return num1 + num2;
```

```
public class Principal01 {
   public static void main(String[] args) {
        Calculadora obj1 = new Calculadora(2,4);
       int somatorio = obj1.Somar();
       //outra opçao
       Calculadora obj2 = new Calculadora();
       int somatorio2 = obj2.Somar(2, 4);
    ι
```

Atributos PRIVATE só serão acessados e alterados do métodos PUBLIC

```
public class Calculadora {
    private int num1;
    private int num2;
    Calculadora (int n1, int n2)
        num1 = n1;
        num2 = n2;
    private int Somar()
        return num1 + num2;
    public double Media()
        int soma = Somar();
        double media = soma/2;
        return soma;
```

Osatributos são PRIVADOS...
Osatributos são PRIVADOS...
Ese Precisar alterar o conteúdo de les depois da
Ese Precisar ado objeto?

```
private int num1;
private int num2;
Calculadora (int n1, int n2)
    num1 = n1;
    num2 = n2;
private int Somar()
    return num1 + num2;
public double Media()
    int soma = Somar();
    double media = soma/2;
    return soma;
public void AlterarNumeros(int n1, int n2)
    num1 = n1;
    num2 = n2;
    return;
public int RetornaNumerol()
   return num1;
public int RetornaNumero2()
   return num2;
```

public class Calculadora {

Métodos **PÚBLICOS** do tipo "GET e SET" para acessar e retornar o conteúdo de atributos que são **PRIVATE**.

eclipse IDE for Java Developers

Orientação a Objetos

Diretório que irá armazenar o seu projeto.

Para cada novo programa, CRIEM uma nova pasta para armazenar o projeto.

8

Welcome to the Eclipse IDE for Java Developers

Review IDE configuration settings

Review the IDE's most fiercely contested preferences

Overview

Get an overview of the features

Create a Hello World application

A guided walkthrough to create the famous Hello World in Eclipse

Tutorials

Go through tutorials

Create a new Java project

Create a new Java Eclipse project

Samples

Try out the samples

Checkout projects from Git

Checkout Eclipse projects hosted in a Git repository

What's New

Find out what is new

Import existing projects

Import existing Eclipse projects from the filesystem or archive

Launch the Eclipse Marketplace

Enhance your IDE with additional plugins and install your Marketplace favorites


```
private String nome;
private float notal;
private float nota2;
private float nota3;
private float media;
public Aluno(String n, float n1, float n2, float n3)
   nome = n;
    nota1 = n1;
    nota2 = n2;
    nota3 = n3;
    media = 0;
                                                    Priblic String Return none;
private float Somar()
    float soma = nota1+nota2+nota3;
    return soma;
private float CalculaMedia()
  media = Somar()/3;
   return media;
public String ResultadoFinal()
    String resultado = "";
    float media = CalculaMedia();
    if ( media >= 6)
        resultado = "Aprovado";
    else if ((media >= 4) && (media < 6))
               resultado = "Recuperação";
          else resultado = "Reprovado";
    return resultado;
```

public class Aluno {


```
public class Principal01 {
   public static void main(String[] args) {
       Scanner scan = new Scanner(System.in);
       String nome;
       int nota1, nota2, nota3;
       System.out.println("******* Dados do Aluno ******* ");
       System.out.print("Digite o nome do aluno: ");
       nome = scan.next();
       System.out.print("Digite a nota 1: ");
       notal = scan.nextInt();
       System.out.print("Digite a nota 2: ");
       nota2 = scan.nextInt();
       System.out.print("Digite a nota 3: ");
       nota3 = scan.nextInt();
       Aluno objetoAluno; //declaração do objeto
       objetoAluno = new Aluno(nome, nota1, nota2, nota3);
       System.out.println("******** Boletim final ******* ");
       System.out.println("Aluno " + objetoAluno.RetornaNome() + " está " + objetoAluno.ResultadoFinal());
                                                           <terminated > Principal01 [Java Application] C:\Program Files\
                                                           ****** Dados do Aluno ******
                                                           Digite o nome do aluno: XXXX
                                                           Digite a nota 1: 8
                                                           Digite a nota 2: 8
                                                           Digite a nota 3: 8
                                                           ******* Boletim final ******
                                                           Aluno XXXX est Aprovado
```

import java.util.Scanner;

```
public static void main(String[] args) {
                                                                                ******** Dados do Aluno ******
                                                                                Digite o nome do aluno: AA
                                                                                Digite a nota 1: 10
                                                                                Digite a nota 2: 10
    Scanner scan = new Scanner(System.in);
                                                                                Digite a nota 3: 10
    Aluno []vetorObjetosAluno; //VETOR DE OBJETOS ALUNO
                                                                                ********* Dados do Aluno *******
                                                                                Digite o nome do aluno: BBBB
                                                                                Digite a nota 1: 2
    System.out.print("Digite a quantidade de alunos: ");
                                                                                Digite a nota 2: 2
    int qtdeAlunos = scan.nextInt();
                                                                                Digite a nota 3: 2
                                                                                ********* Boletim final ******
                                                                                Aluno AA est[ Aprovado
    vetorObjetosAluno = new Aluno[qtdeAlunos]; //CRIAR O VETOR DE OBJETOS
                                                                                Aluno BBBB est□ Reprovado
    String nome;
    int nota1, nota2, nota3;
    for (int i = 0; i < qtdeAlunos; i++)</pre>
       System.out.println("******** Dados do Aluno ******** ");
       System.out.print("Digite o nome do aluno: ");
       nome = scan.next();
       System.out.print("Digite a nota 1: ");
       notal = scan.nextInt();
       System.out.print("Digite a nota 2: ");
       nota2 = scan.nextInt();
       System.out.print("Digite a nota 3: ");
       nota3 = scan.nextInt();
       //INSTANCIAR O OBJETO PARA CADA POSIÇÃO DO VETOR
       vetorObjetosAluno[i] = new Aluno(nome, notal, nota2, nota3);
    System.out.println("******** Boletim final ******** ");
    for (int i = 0; i < qtdeAlunos; i++)</pre>
         System.out.println("Aluno " + vetorObjetosAluno[i].RetornaNome() + " está " + vetorObjetosAluno[i].ResultadoFinal());
```

public class Principal01 {

sterrimated - i inicipato i pava rippiicationi etti rogiani i nes pai

Digite a guantidade de alunos: 2

```
public class Jogador {
    private String nome;
    private int idade;
    private float altura;
    public Jogador (String n, int i, float alt)
        nome = n;
        idade = i;
        altura = alt;
    public String RetornaNome()
       return nome;
    public float RetornaAltura()
       return altura;
    public float RetornaIdade()
       return idade;
```

```
private Jogador []VetorJogadores;
private int totaljogadores ;
public TimeVolei()
    VetorJogadores = new Jogador[6];
    totaljogadores = 0;
public void InsereJogador(String n, int i, float d)
    if(totaljogadores < 6)</pre>
      VetorJogadores[totaljogadores] = new Jogador(n,i,d);
      totaljogadores++;
    return;
public String NomeJogadorMenorAltura()
    float MenorAltura = 9999999;
    String NomeJogador = "";
    for (int i = 0; i < totaljogadores; i++)</pre>
        if(VetorJogadores[i].RetornaAltura() < MenorAltura)</pre>
        { MenorAltura = VetorJogadores[i].RetornaAltura();
           NomeJogador = VetorJogadores[i].RetornaNome();
    return NomeJogador;
```

```
public class Principal01 {
    public static void main(String[] args) []

    //Declarar e Instanciar o objeto
    TimeVolei objetoTime = new TimeVolei();

    //Inserir os jogadores
    objetoTime.InsereJogador("Anderson", 34, (float) 1.98);
    objetoTime.InsereJogador("Flavio", 28, (float) 2.08);
    objetoTime.InsereJogador("Robson", 20, (float)1.99);
    objetoTime.InsereJogador("Roberto", 31, (float) 1.91);
    objetoTime.InsereJogador("Andre", 36, (float)1.97);
    objetoTime.InsereJogador("Leandro", 33, (float) 2.03);

    System.out.println("O jogador com a menor altura eh " + objetoTime.NomeJogadorMenorAltura());
}
```

<terminated> PrincipalO1 [Java Application] C:\Program Files\Java\jdk
O jogador com a menor altura eh Roberto

...

Exercícios 😜

```
public class Principal01 {
   public static void main(String[] args) {
       Scanner scan = new Scanner(System.in);
       Aluno []vetorObjetosAluno; //VETOR DE OBJETOS ALUNO
       System.out.print("Digite a quantidade de alunos: ");
       int gtdeAlunos = scan.nextInt();
       vetorObjetosAluno = new Aluno[qtdeAlunos]; //CRIAR O VETOR DE OBJETOS
       String nome;
       int nota1, nota2, nota3;
       for (int i = 0; i < qtdeAlunos; i++)</pre>
            System.out.println("******* Dados do Aluno ******* ");
           System.out.print("Digite o nome do aluno: ");
           nome = scan.next();
           System.out.print("Digite a nota 1: ");
           nota1 = scan.nextInt();
           System.out.print("Digite a nota 2: ");
           nota2 = scan.nextInt();
           System.out.print("Digite a nota 3: ");
           nota3 = scan.nextInt();
           //INSTANCIAR O OBJETO PARA CADA POSIÇÃO DO VETOR
           vetorObjetosAluno[i] = new Aluno(nome, nota1, nota2, nota3);
       System.out.println("******** Boletim final ******* ");
       for (int i = 0; i < qtdeAlunos; i++)</pre>
            System. out.println("Aluno " + vetorObjetosAluno[i].RetornaNome() + " está " + vetorObjetosAluno[i].ResultadoFinal());
```

```
<terminated> Principalu i [Java Application] C:\Program Files\Jav
Digite a quantidade de alunos: 2
******** Dados do Aluno *******
Digite o nome do aluno: AA
Digite a nota 1: 10
Digite a nota 2: 10
Digite a nota 3: 10
********* Dados do Aluno *******
Digite o nome do aluno: BBBB
Digite a nota 1: 2
Digite a nota 2: 2
Digite a nota 3: 2
******* Boletim final ******
Aluno AA est Aprovado
Aluno BBBB est□ Reprovado
```

```
public class Principal01 {
    public static void main(String[] args) []

    //Declarar e Instanciar o objeto
    TimeVolei objetoTime = new TimeVolei();

    //Inserir os jogadores
    objetoTime.InsereJogador("Anderson", 34, (float) 1.98);
    objetoTime.InsereJogador("Flavio", 28, (float) 2.08);
    objetoTime.InsereJogador("Robson", 20, (float) 1.99);
    objetoTime.InsereJogador("Roberto", 31, (float) 1.91);
    objetoTime.InsereJogador("Andre", 36, (float) 1.97);
    objetoTime.InsereJogador("Leandro", 33, (float) 2.03);

System.out.println("O jogador com a menor altura eh " + objetoTime.NomeJogadorMenorAltura());
    *terminated> PrincipalO1 [Java Application] C:\Program Files\Java\jdk
    O jogador com a menor altura eh Roberto
```

Solicitar que o usuário digite os dados dos jogadores;

Inserir novos métodos na Classe TimeVolei:

- Saber o nome do jogador mais alto;
- Saber a maior altura do jogador que têm idade acima de um determinado valor (INFORMADO PELO USUÁRIO);
- Saber a quantidade de jogadores que têm uma determinada idade (INFORMADO PELO USUÁRIO);
- Saber a quantidade de jogadores que possui a altura maior do que um determinado valor (INFORMADO PELO USUÁRIO);

SOBRECARGA

- Saber a média de idade de todos os jogadores;
- Saber a média de idade dos jogadores que têm acima de uma determinada altura (INFORMADA PELO USUÁRIO);

Construa a classe Livros em Java, que obedeça à descrição abaixo:

- Crie os métodos get e set para cada um dos atributos.
- Crie ainda o método *verificarProgresso* que deverá calcular a porcentagem de leitura do livro até o momento. Para isso, deverá usar os valores dos atributos *qtdPaginas* e *paginasLidas*, através da formula: **porcentagem** = **paginasLidas** * **100** / **qtdPaginas**.
 O valor da porcentagem deverá ser mostrado na tela conforme a mensagem "Você já leu X por cento do livro", onde o valor de X é o valor calculado pela fórmula apresentada anteriormente.

Crie um programa principal que instancie um objeto da Classe Livro. Em seguida, mostre os dados do livro cadastrado e o progresso de leitura. Altere o título e a quantidade de páginas lidas. Apresente novamente os dados do livro e o progresso de leitura.

Implemente um Programa Orientado a Objetos, para armazenar as notas finais dos alunos de uma disciplina. No programa principal, o usuário deverá :

- Informar a quantidade de alunos que serão cadastrados
- Inserir as notas dos alunos (uma por uma).
- Saber a média de todas as notas inseridas;
- Saber a média das notas que estão acima de um determinado valor.
- Saber quantos alunos foram reprovador (nota final < 4)
- Construtor
- Informar a quantidade de alunos que serão cadastrados (parâmetro do construtor)
- Alocar memória para o vetor que irá armazenar as notas dos alunos;
- Inicializar os atributos necessários;
- •Métodos (públicos):
- InsereNotas(double Nota);
- Media();
- Media (double valor);

- Atributos
- TODOS os atributos deverão ser private.

Implemente uma classe Empregado, com atributos nome, cpf, e salario – todos devem ser encapsulados. Escrever um programa principal que:

- Instancie um vetor de 5 objetos da classe empregado. Obs.: o usuário deverá digitar as informações;
- Apresente na tela um relatório de todos os empregados cadastrados.

Muito Obrigada!

Profa. Angela Abreu Rosa de Sá, Dra.

Contato: angelaabreu@gmail.com