最优化第一次作业

大数据 001

郅啸淇

学号: 2184114639

2022年5月5日

目录 2

目录

1	保凸运算	2
1		
	1.1 保凸运算 1	2
	1.2 保凸运算 2	3
	1.3 保凸运算 3	3
	1.4 保凸运算 4	3
2	无穷范数满足范数性质 	4
_		
	2.1 正定性	4
	2.2 齐次性	4
	2.3 三角不等式	4
3	向量范数为凸函数	4
4	log - sum - exp 函数为凸函数	5
5	严格凸函数极小值唯一	5
6	一阶必要性定理证明	5

1 保凸运算 3

1 保凸运算

1.1 保凸运算 1

假设
$$A, B$$
 为凸集,,且 $x_1, x_2 \in A \cap B$
因为 A 为凸集,所以 $\theta x_1 + (1 - \theta)x_2 \in A$
同理 $\theta x_1 + (1 - \theta)x_2 \in B$
所以 $\theta x_1 + (1 - \theta)x_2 \in A \cap B$
所以 $A \cap B$ 为凸集

1.2 保凸运算 2

$$\forall x_1, x_2 \in aC + b$$

$$\exists y_1, y_2 \in C$$
使得
$$\begin{cases} x_1 = ay_1 + b \\ x_2 = ay_2 + b \end{cases}$$
则 $\forall \theta \in [0, 1]$
有 $\theta x_1 + (1 - \theta)x_2 = \theta(ay_1 + b) + (1 - \theta)(ay_2 + b) = a[\theta y_1 + (1 - \theta)y_2] + b$
因为 $y_1, y_2 \in C$,故 $\theta y_1 + (1 - \theta)y_2 \in C$
故 $\theta x_1 + (1 - \theta)x_2 \in aC + b$
故 $aC + b$ 为凸集

1.3 保凸运算 3

设
$$g(x) = f(Ax + b)$$

 $domg = \{x | Ax + b \in domf\}$
设 $x, y \in domg, \theta \in [0, 1]$
有 $g(\theta x + (1 - \theta y)) = f(A(\theta x + (1 - \theta y)) + b) = f(A\theta x + Ay - A\theta y + b)$
 $= f(\theta(Ax + b) + (1 - \theta)f(Ay + b)) \le \theta f(Ax + b) + (1 - \theta)f(Ax + b)$
 $= \theta g(x) + (1 - \theta)g(y)$

故 g(x) 为凸函数

1.4 保凸运算 4

设
$$f(x) = g(Ax + b), dom f = \{x | Ax + b \in dom g\}$$

已知 $g(\theta x + (1 - \theta)y) \le \theta g(x) + (1 - \theta)g(y)$
有 $g(\theta x + (1 - \theta y)) = f(\theta(Ax + b) + (1 - \theta)(Ax + b))$
又 $\theta g(x) + (1 - \theta)g(y) = \theta f(Ax + b) + (1 - \theta)f(Ax + b)$
故 $f(\theta(Ax + b) + (1 - \theta)(Ax + b)) \le \theta f(Ax + b) + (1 - \theta)f(Ax + b)$
f(x) 为凸函数得证

2 无穷范数满足范数性质

2.1 正定性

$$\max |x_i| \ge 0$$

并且若 $\|x\|_{\infty} = 0$ 则 $\max |x_i| = 0$ 因此 $x = 0$

2.2 齐次性

$$||tx||_{\infty} = max|tx_i|$$
$$|t|max|x_i| = |t| ||x||_{\infty}$$

2.3 三角不等式

$$\begin{split} &\|x+y\|_{\infty}^2 - \|x\|_{\infty} + \|y\|_{\infty}^{-2} = \max|x+y|^2 - \max|x^2| - \max|y^2| - 2\max|x|\max|y| \\ &2\max xy - 2\max|x||y| \leq 0 \end{split}$$
 故 $\|x+y\|_{\infty} \leq \|x\|_{\infty} + \|y\|_{\infty}$

3 向量范数为凸函数

$4 \quad log - sum - exp$ 函数为凸函数

$$f(x) = log(\sum_{k=1}^{n} e^{x_k}) \nabla_2 f(x) = \frac{(\mathbf{1}^{\mathbf{T}}\mathbf{z})diag(\mathbf{z} - \mathbf{z}\mathbf{z}^{\mathbf{T}})}{\mathbf{1}^{\mathbf{T}}\mathbf{z}^2}$$
 $where \ \mathbf{z} = (e^{x_1}, e^{x_2}, e^{x_3}, e^{x_4}.....e^{x_{k-1}}, e^{x_k})$
根据柯西不等式 $(\mathbf{a}^{\mathbf{T}}\mathbf{a})(\mathbf{b}^{\mathbf{T}}\mathbf{b}) \geq (\mathbf{a}^{\mathbf{T}}\mathbf{b})^2$
 $\forall \mathbf{f}, \mathbf{v}^{\mathbf{T}} \nabla^2 f(x) \mathbf{v} = \frac{(\sum_{i=1}^{n} z_i)((\sum_{i=1}^{n} v_i^2 z_i) - (\sum_{i=1}^{n} v_i z_i))^2}{(\mathbf{1}^{\mathbf{T}}\mathbf{z})^2} \geq 0$
 $with \ a_i = v_i \sqrt{z_i}, b_i = \sqrt{z_i}$
满足凸函数的二阶条件,故 $f(x)$ 为凸函数

5 严格凸函数极小值唯一

利用反证法,假设 f(x) 为严格凸函数, x_1, x_2 为其两个极小值点 并且 $f(x_1) \leq f(x_2)$ 由严格凸定义有 $f(\theta x_1 + (1-\theta)x_2) < \theta f(x_1) + (1-\theta)f(x_2), \forall \theta \in [0,1]$ 由条件有 $\theta f(x_1) + (1-\theta)f(x_2) \leq \theta f(x_2) + (1-\theta)f(x_2)$ 即 $\theta f(x_1) + (1-\theta)f(x_2) \leq f(x_2)$ 即 $f(\theta x_1 + (1-\theta)x_2) < f(x_2)$ 与假设 x_2 为极小值点矛盾 故严格凸函数极小值唯一

6 一阶必要性定理证明

假设 x^* 为极小值点,但 $\nabla f(x^*) \neq 0$ 设 $q = -\|\nabla f(x^*)\|$ 则 $\exists p > 0$,使得 $f(x_* + pq) < f(x^*)$ 与 x^* 为极小值点矛盾,故 $\nabla f(x^*) = 0$