O conceito matemático de espaço nulo.

Já vimos que em um problema linear a relação funcional entre os M parâmetros e as N observações geofísicas pode ser representada por um sistema de N equações por M incógnitas:

$$\overline{y}^{o} = \overline{\overline{A}} \overline{p}$$

Esta a equação nos diz que as observações geofísicas \overline{y}^o é uma combinação linear dos M vetores coluna da matriz de sensibilidade $\overline{\overline{A}}$ (vetores \overline{a}_1 , \overline{a}_2 ,..., \overline{a}_M) em que os coeficientes escalares desta combinação linear são os elementos do vetor de parâmetros:

$$\overline{\mathbf{y}}^{\,\mathbf{o}} \ = \ \overline{\mathbf{a}}_1 \, p_1 + \overline{\mathbf{a}}_2 \, p_2 + \dots + \overline{\mathbf{a}}_M \, p_M \; .$$

Associado a matriz $\overline{\overline{A}}$ de dimensão N x M há dois espaços vetoriais: $\underline{espaço\ linha^1}$ e $\underline{espaço\ coluna^2}$. Agora iremos recordar um terceiro espaço também associado a matriz $\overline{\overline{A}}$ chamado $\underline{espaço\ nulo}$ de $\overline{\overline{A}}$. O espaço nulo de $\overline{\overline{\overline{A}}}$ é o espaço solução do sistema homogêneo de equação $\overline{\overline{A}}$ $\overline{\overline{p}} = \overline{0}$, sendo portanto um subespaço de \overline{R}^M . A $\underline{dimensão\ do\ espaço\ nulo\ }$ de $\overline{\overline{A}}$ é o número de vetores que satisfazem a equação homogênea $\overline{\overline{A}}$ $\overline{\overline{p}} = \overline{0}$

Teorema de dimensão para matrizes:

Se $\overline{\overline{A}}$ é uma matriz N x M, ou seja, com M colunas então

 $M = posto de \overline{\overline{A}}^3 + Dimensão do espaço nulo de \overline{\overline{A}}$

Como denominamos o posto de $\overline{\overline{A}}$ de r, podemos escrever que

Dimensão do espaço nulo de $\overline{\overline{A}}$ = M - r

¹ Se $\overline{\overline{A}}$ é uma matriz de dimensão N x M o **espaço linha** de $\overline{\overline{A}}$ é o subespaço R^M gerado pelo conjunto das linhas de $\overline{\overline{\overline{A}}}$ (são os vetores linhas que são LI).

 $^{^2}$ O **espaço coluna** de $\overline{\overline{A}}$ é o subespaço R^N gerado pelo conjunto das colunas de $\overline{\overline{A}}$ (são os vetores colunas que são LI).

³ Posto de uma matriz $\overline{\overline{A}}$ (N x M) é a dimensão do espaço linha de $\overline{\overline{A}}$. Lembre-se que o espaço linha é igual ao espaço coluna de uma matriz)

Solução Nula ou Vetor Nulo($\overline{\mathbf{p}}^{Null}$):

É o conjunto de vetores-solução pertencentes ao espaço nulo. Em outras palavras, são os vetores-solução do sistema homogêneo de equações $\overline{\overline{A}}\,\overline{p}\,=\,\overline{0}$

Exemplo simples: Interpretação em duas dimensões usando equação de uma observação geofísica.

Vamos supor que um dado fenômeno seja explicado por um modelo linear

$$\overline{y}^{o} = \overline{\overline{A}} \overline{p},$$

em que $\overline{\mathbf{y}}^o$ é um vetor de dados contendo N observações, $\overline{\mathbf{p}}$ é um vetor de parâmetros M-dimensional e $\overline{\overline{\mathbf{A}}}$ é a matriz de sensibilidade N x M. Por simplicidade, consideraremos apenas uma única observação (N=1) y_1^o e dois parâmetros (M=2) e uma matriz $\overline{\overline{\mathbf{A}}} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix}$, então temos

$$\overline{\overline{\mathbf{A}}} \overline{\mathbf{p}} = \overline{\mathbf{y}}^{\mathbf{0}}$$

$$\left[\frac{1}{2} \quad \frac{1}{2} \right] \left[\begin{array}{c} p_1 \\ p_2 \end{array} \right] = y_1^{o}$$

Veja que a solução $\overline{\mathbf{p}}_{\mathbf{particular}}^*$ óbvia para este sistema é

$$\overline{\mathbf{p}}_{\mathsf{particular}}^{*} = \begin{bmatrix} y_{1}^{o} \\ y_{1}^{o} \end{bmatrix}$$

Veremos mais adiante que esta solução $\overline{p}_{particular}^*$ é chamada de solução de norma Euclidena mínima obtida via estimador de Mínimos Quadrados Subdeterminado.

Veja que neste exemplo M=2 e N=1 como o posto da matriz $\overline{\overline{A}} \le \min(M,N)$. Neste caso, então o posto é igual a N ($r(\overline{\overline{A}}) = 1$) e temos 2 parâmetros

desconhecidos a serem estimados. Pelo teorema de dimensão para matrizes temos que neste exemplo o espaço nulo de $\frac{=}{A}$ é um espaço R^1

<u>Visualização do Espaço Nulo</u>: Vimos que as soluções nulas são soluções não-triviais que satisfazem o sistema de equações homogênea $\overline{\overline{A}}\overline{p} = \overline{0}$, logo

$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix} = 0$$
$$\frac{1}{2} p_1 + \frac{1}{2} p_2 = 0$$

Figura 1

Agora vamos visualizar graficamente o espaço nulo deste problema (espaço R¹) no espaço dos parâmetros (espaço R²). Veja na Figura 1 que a curva de isovalores ZERO é a visualização do espaço nulo deste problema. Então todos os vetores-solução que caem nesta curva de isovalor zero, pertencem ao espaço nulo, sendo portanto a solução nula $\bar{\mathbf{p}}^{Null}$ do problema em questão. Note que qualquer ponto na curva de isovalores zero satisfaz a equação $\frac{1}{2}\,p_1 + \frac{1}{2}\,p_2 = 0$, por exemplo:

$$\overline{\mathbf{p}}_1^{Null} = \begin{bmatrix} -2 \\ 2 \end{bmatrix}, \ \overline{\mathbf{p}}_2^{Null} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}, \ \overline{\mathbf{p}}_3^{Null} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}, \ \overline{\mathbf{p}}_4^{Null} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}, \ \overline{\mathbf{p}}_5^{Null} = \begin{bmatrix} 2 \\ -2 \end{bmatrix}, \text{ etc...}$$

Portanto generalizando as soluções nulas $\overline{\mathbf{p}}^{\textit{Null}}$ deste problema em questão são do tipo

$$\overline{\mathbf{p_1^{null}}} = \alpha_i \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

em que α's são parâmetros arbitrários.

Soluções Nulas e a Não Unicidade:

Matematicamente, as soluções nulas são soluções não-triviais que satisfazem o sistema de equações homogênea $\overline{\overline{A}}\,\overline{p}=\overline{0}$, isto é

$$\overline{\overline{\mathbf{A}}} \overline{\mathbf{p}_1}^{Null} + \overline{\overline{\mathbf{A}}} \overline{\mathbf{p}_2}^{Null} + \dots + \overline{\overline{\mathbf{A}}} \overline{\mathbf{p}_{M-r}}^{Null} = \overline{\mathbf{0}}$$

A existência de soluções não-triviais que satisfazem o sistema de equações homogênea $\overline{\overline{A}} \overline{p} = \overline{0}$ caracteriza a não unicidade da solução. Portanto concluímos que a existência de soluções nulas implica a existência de infinitas possíveis soluções para o problema. Fisicamente, veja que as soluções nulas não produzem dados observados (anomalia geofísica) e a conseqüência é a não unicidade da solução estimada. Assim por exemplo, se um dado problema inverso $\overline{\overline{P}}$ particular é uma solução particular (por exemplo, solução de mínima norma euclideana) e se houver um único vetor solução-nula \overline{p}_1^{Null} , então se

somarmos
$$\overline{\overline{A}} \ \overline{\overline{p}}_{particular}^{\star} \ + \overline{\overline{\overline{A}}} \ \overline{\overline{p}}_{1}^{null}$$
 temos:

$$\overline{\overline{\overline{A}}} \ \overline{\overline{p}}_{\text{particular}}^* \ + \overline{\overline{\overline{A}}} \ \overline{\overline{p}}_{\text{1}}^{\text{null}} = \overline{\overline{y}}^o$$

portanto

$$\overline{\overline{A}} \left(\overline{p}_{particular}^* + \overline{p}_{1}^{null} \right) = \overline{y}^{o}$$

Veja que se temos M-r vetores soluções nulas (M-r é a dimensão do espaço nulo), então a equação acima poderia ser reescrita como:

$$\overline{\overline{\overline{A}}} \ \left(\overline{\overline{p}}_{\text{particular}}^{\text{**}} + \overline{\overline{p}}_{\text{1}}^{\text{null}} + \overline{\overline{p}}_{\text{2}}^{\text{null}} + ... + \overline{\overline{p}}_{\text{M-r}}^{\text{null}} \right) = \overline{y}^{o}$$

$$\overline{\overline{\overline{A}}} \left(\overline{p}_{\text{particular}}^{*} + \sum\nolimits_{i=1}^{\text{M-r}} \overline{p}_{i}^{\text{null}} \right) = \overline{y}^{o}$$

Generalizando, se um dado problema inverso temos M-r vetores soluções nulas, então a solução geral é escrita como:

$$\overline{p}_{geral} = \overline{p}_{particular}^* + \sum_{i=1}^{M-r} \overline{p}_{i}^{null}$$

em que $\overline{\mathbf{P}}_{\mathbf{geral}}$ é uma solução geral. Esta solução geral pode também ser escrita como

$$\overline{\mathbf{p}}_{geral} = \overline{\mathbf{p}}_{particular}^* + \sum_{i=1}^{M-r} \alpha_i \overline{\mathbf{p}}_{i}^{null}$$

Esta solução \overline{p}_{geral} é também uma solução para qualquer escolha de α , uma vez esta solução geral também explica os dados observados (tal como a solução particular)

$$\overline{\overline{\mathbf{A}}} \ \overline{\mathbf{p}}_{\text{geral}} = \overline{\mathbf{y}}^{\mathbf{o}}$$

A existência de M-r vetores soluções nulas implica a existência de infinitas soluções $\overline{\mathbf{p}}_{qeral}$ para o problema, basta escolher arbitrários valores para os α .

Visualização da não unicidade da solução:

Vamos retornar ao nosso exemplo simplificado que temos dois parâmetros e uma única observação relacionados pelo sistema de equações linear

$$\overline{\overline{A}}\overline{p} = \overline{y}^{o}$$

$$\left[\frac{1}{2} \quad \frac{1}{2}\right] \left[\begin{array}{c} p_1 \\ p_2 \end{array}\right] = y_1^o$$

Vimos que há um único vetor solução nula:

$$\overline{\mathbf{p_1}}^{\text{null}} = \alpha_i \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Vamos agora estimar a quase-solução $\hat{\overline{p}}$ tal que a distância euclideana $\|\overline{y}^0 - \overline{\overline{A}} \, \overline{p} \,\|_2^2$ seja mínima. Em outras palavras, vamos tentar estimar a solução de mínimos quadrados (MQ).

$$\begin{array}{ll}
\min_{\overline{\mathbf{p}}} & \left\| \overline{\mathbf{y}}^{\mathbf{o}} - \overline{\overline{\mathbf{A}}} \, \overline{\mathbf{p}} \, \right\|_{2}^{2} \\
\min_{\overline{\mathbf{p}}} & \left(\overline{\mathbf{y}}^{\mathbf{o}} - \overline{\overline{\mathbf{A}}} \, \overline{\mathbf{p}} \right)^{\mathsf{T}} \, \left(\overline{\mathbf{y}}^{\mathbf{o}} - \overline{\overline{\mathbf{A}}} \, \overline{\mathbf{p}} \right) = \min \, \{Q\}
\end{array}$$

Veja que a função a ser minimizada deste problema pode ser escrita como

$$\min_{\overline{\mathbf{p}}} \{Q\} = \min_{\overline{\mathbf{p}}} \left\{ \left[y_1^o - \frac{1}{2} (p_1 + p_2) \right]^2 \right\}$$

Vamos considerar que a única observação deste problema é $y_1^o = 2$. Então a função-objeto Q a ser minimizada é:

$$\frac{\min}{p} \{Q\} = \min_{p} \left\{ \left[2 - \frac{1}{2} (p_1 + p_2)\right]^2 \right\}$$

Agora vamos visualizar graficamente esta função-objeto Q no espaço de parâmetros (p_1 - p_2). A Figura 2 mostra que o mínimo desta função está representado pela curva de isovalores zero.

Figura 2

Veja que qualquer solução \hat{p} sobre esta curva explica os dados geofísicos, ou seja, explica a equação

$$\overline{\overline{\mathbf{A}}} \, \hat{\overline{\mathbf{p}}} = \overline{\mathbf{y}}^{\mathbf{0}}$$

$$\begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \hat{p}_1 \\ \hat{p}_2 \end{bmatrix} = 2$$

Como por exemplo

$$\hat{\overline{\boldsymbol{p}}} = \begin{bmatrix} 0 \\ 4 \end{bmatrix}, \hat{\overline{\boldsymbol{p}}} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}, \hat{\overline{\boldsymbol{p}}} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}, \hat{\overline{\boldsymbol{p}}} = \begin{bmatrix} 3 \\ 1 \end{bmatrix}, etc \dots$$

Então, qualquer par de parâmetros \hat{p}_1 e \hat{p}_2 que caem sobre esta curva de isovalor zero é uma possível solução particular que minimiza a função-objeto Q. A Figura 2 mostra claramente que há infinitas soluções para o nosso simplificado problema em questão. Portanto, não há unicidade da solução.

Neste problema em questão temos dois parâmetros a serem estimados (M=2) a partir de uma única observação (N=1). Temos um espaço nulo com dimensão um (M - r =1) cujo vetor solução nula é $\bar{p}_1^{\text{null}} = \alpha_i \begin{bmatrix} -1 \\ 1 \end{bmatrix}$. Já vimos que em um dado problema inverso a solução geral é dada por

$$\overline{\mathbf{p}}_{\text{geral}} = \overline{\mathbf{p}}_{\text{particular}}^{*} + \sum_{i=1}^{M-r} \alpha_{i} \overline{\mathbf{p}}_{i}^{\text{null}}$$

Veja que se escolhermos qualquer solução particular, ou seja, qualquer par de parâmetros que caem na isolinha zero, por exemplo, $\overline{\mathbf{p}}^*_{\text{particular}} = \begin{bmatrix} 0 \\ 4 \end{bmatrix}$ e se somarmos a esta solução particular uma solução nula, por exemplo $\overline{\mathbf{p}}_1^{\text{null}} = \alpha_i \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$ temos:

$$\overline{\mathbf{p}}_{\text{geral}} = \begin{bmatrix} 0 \\ 4 \end{bmatrix} + \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$$

Portanto, obtemos um vetor solução geral $\overline{\mathbf{p}}_{geral} = \begin{bmatrix} 1 \\ 3 \end{bmatrix}$ que também é uma possível solução deste problema porque está sobre a linha de isovalor zero

(mínimo da função-obeto Q) na Figura 2. Note que para qualquer escolha de α do vetor soluço nula ($\overline{\mathbf{p}}_1^{\text{null}} = \alpha_i \begin{bmatrix} -1 \\ 1 \end{bmatrix}$) teremos outras soluções $\overline{\mathbf{p}}_{\text{geral}}$ que também é uma solução para o problema de minimizar a função-objeto Q.

O processo de estabilização visto como um processo de procura de um lugar geométrico no espaço dos parâmetros próximo a um ponto muito bem definido

Apresentamos o problema inverso linear de estimar dois parâmetros a partir de uma única observação via estimador dos mínimos quadrados

$$\min_{\overline{\mathbf{p}}} \quad \{ Q \} = \min_{\overline{\mathbf{p}}} \quad \left\| \overline{\mathbf{y}}^{\mathbf{o}} - \overline{\mathbf{y}}^{c} \right\|_{2}^{2}$$

em que $\overline{\mathbf{y}}^c$ é um vetor N-dimensional dos dados ajustados ou calculados segundo o modelo interpretativo:

$$\overline{\mathbf{y}}^c = \overline{\overline{\mathbf{A}}} \overline{\mathbf{p}} = \begin{bmatrix} \frac{1}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} p_1 \\ p_2 \end{bmatrix}$$

Consideramos que a única observação deste problema é $y_1^o = 2$, o que levou a minimizarmos a seguinte função-objeto Q:

$$\min_{\overline{\mathbf{p}}} \quad \{ Q \} = \min_{\overline{\mathbf{p}}} \quad \left\{ \left[2 - \frac{1}{2} \quad (p_1 + p_2) \right]^2 \right\}$$

A Figura 2 ilustra esta função Q e mostra a existência de uma curva de mínimos (isolinha zero) , caracterizando portanto a existência de infinitas soluções \hat{p} (soluções de mínimos quadrados). Em outras palavras, caracterizando a não unicidade da solução estimada. A falta de unicidade da solução caracteriza um problema inverso como um problema mal-posto então perguntamos:

Como transformar este problema mal-posto em bem-posto?

Veja que se procurarmos uma estimativa dos parâmetros que além de minimizar a função Q esteja próximo de um "ponto" bem definido no espaço dos parâmetros, a solução estimada é única e o problema inverso transforma-se em um problema bem-posto.

Geometricamente, este conceito pode ser visualizado usando a função objeto Q a ser minimizada que apresentamos na Figura 2. A Figura 3 (reprodução da Figura 2) mostra que há infinitas soluções \hat{p} que minimizam a função Q (isolinha zero). Note, no entanto, que há apenas uma única solução que minimiza Q e está próxima ao vetor $\bar{p} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ (ponto \bar{p}_0 assinalado na Figura 3) e esta solução é $\hat{p} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$. Mais adiante mostraremos que esta solução é a estimativa via Mínimos Quadrados Subdeterminado (MQ SUB) e provaremos que apesar de garantir a unicidade da solução quando r=N o estimador MQ SUB não garante a estabilidade da solução.

Figura 3

Em resumo, introduzimos o conceito matemático do espaço nulo de um operador matricial e mostramos que a existência M-r vetores soluções nulas caracteriza um problema mal-posto, uma vez que não há unicidade da solução estimada. Podemos dizer então que a existência de soluções não triviais é a essência da não unicidade da solução. A falta de unicidade da solução estimada foi exemplificada graficamente num problema simplificado cujo espaço nulo da matriz é um espaço R¹. Neste exemplo (Figura 2) visualizamos a função-objeto Q (norma Euclideana mínima dos resíduos) no espaço dos parâmetros (p1-p2) e mostramos que a existência do espaço nulo implica na existência de infinitas possíveis soluções (não unicidade), uma vez que o mínimo desta função está

Valéria Cristina F. Barbosa Observatório Nacional

representado por curvas de isovalores abertas no espaço de parâmetros. O processo de transformar um problema sem unicidade da solução (mal-posto) em um problema com solução única (bem-posto) é visto como um processo a procura de uma solução que ao mesmo tempo explique os dados geofísicos observados e que esteja próximo de um ponto bem definido no espaço dos parâmetros.