

Kurs:Mathematik für Anwender/Teil I/33/Klausur

Aufgabe 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 \sum

Punkte 3332224140 4 4 6 0 0 4 4 3 5 54

 \equiv Inhaltsverzeichnis \vee

Aufgabe * (3 Punkte)

Definiere die folgenden (kursiv gedruckten) Begriffe.

- 1. Eine *Teilmenge* $m{T}$ einer Menge $m{M}$.
- 2. Die Gaußklammer einer reellen Zahl \boldsymbol{x} .

- 3. Eine streng fallende Funktion $f: \mathbb{R} \to \mathbb{R}$.
- 4. Das Taylor-Polynom vom Grad $m{n}$ zu einer $m{n}$ -mal differenzierbaren Funktion

$$f:\mathbb{R}\longrightarrow\mathbb{R}$$

in einem Punkt $a \in \mathbb{R}$.

- 5. Äquivalente (inhomogene) lineare Gleichungssysteme zur gleichen Variablenmenge über einem Körper K.
- 6. Die Determinante einer $n \times n$ -Matrix M.

Aufgabe * (3 Punkte)

Formuliere die folgenden Sätze.

- 1. Der Satz über die Existenz der Primfaktorzerlegung.
- 2. Der Satz über die Ableitung von Potenzfunktionen $x\mapsto x^{lpha}$.
- 3. Der Determinantenmultiplikationssatz.

Aufgabe (3 Punkte)

Nehmen Sie Stellung zur folgenden Aussage: "Das Prinzip "Beweis durch Widerspruch" ist offenbar absurd. Wenn man alles annehmen darf, so kann man immer einen Widerspruch erzielen und somit alles beweisen".

Aufgabe * (2 Punkte)

Berechne

 $0,00000029 \cdot 0,00000000037.$

Das Ergebnis soll in einer entsprechenden Form angegeben werden.

Aufgabe * (2 Punkte)

Zeige

$$\sum_{k=1}^n \frac{1}{k(k+1)} = \frac{n}{n+1}$$

Aufgabe * (2 Punkte)

Berechne

$$(x+\mathrm{i}y)^n$$
.

Aufgabe * (4 Punkte)

Formuliere und beweise die Lösungsformel für eine quadratische Gleichung

$$ax^2 + bx + c = 0$$

mit $a,b,c\in\mathbb{R}$, a
eq 0.

Aufgabe * (1 Punkt)

Bestimme den Exponenten, die Potenz und die Basis im Ausdruck

$$\left(\frac{3}{2}\right)^{\pi}$$
.

Aufgabe * (4 Punkte)

Beweise das Quotientenkriterium für Reihen.

Aufgabe (0 Punkte)

Aufgabe * (4 Punkte)

Es sei

$$f(x) = ax^2 + bx + c, a \neq 0,$$

ein Polynom vom Grad **2**. Zeige, dass der Durchschnitt des Graphen der Funktion mit jeder Tangenten an den Graphen aus genau einem Punkt besteht.

Aufgabe * (4 Punkte)

Beweise die Kettenregel für differenzierbare Funktionen.

Aufgabe * (6 Punkte)

Für ein Mathematikbuch soll der Graph der Exponentialfunktion über dem Intervall [-5,3] maßstabsgetreu in cm gezeichnet werden, wobei der Fehler maximal 0,001 cm sein darf. Es steht nur ein Zeichenprogramm zur Verfügung, das lediglich Polynom zeichnen kann. Welches Polynom kann man nehmen?

Aufgabe (0 Punkte)

Aufgabe (0 Punkte)

Aufgabe * (4 Punkte)

Löse das inhomogene Gleichungssystem

$$5x +2y +z -7w = 3$$

$$6x +y +2z = 1$$

$$x + y - z = 0$$

$$3x + 5y - 7z + 14w = 1.$$

Aufgabe * (4 Punkte)

Bestimme die 2×2 -Matrizen über $\mathbb R$ der Form

$$M = \left(egin{matrix} a & b \ 0 & d \end{matrix}
ight)$$

mit

$$M^2 + 3M - 4E_2 = 0.$$

Aufgabe * (3 Punkte)

Bestimme, ob die beiden Matrizen

$$M = egin{pmatrix} 0 & 1 & 0 & 0 \ 0 & 0 & 0 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \end{pmatrix} \ ext{und} \ \ N = egin{pmatrix} 0 & 0 & 0 & 0 \ 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 0 & 0 & 0 & 0 \end{pmatrix}$$

zueinander ähnlich sind.

Aufgabe * (5 Punkte)

Bestimme die Eigenwerte und die Eigenräume der durch die Matrix

$$M = egin{pmatrix} 4 & 0 & 3 \ 0 & -1 & 0 \ 2 & 0 & 3 \end{pmatrix}$$

gegebenen linearen Abbildung

$$arphi\colon \mathbb{R}^3 \longrightarrow \mathbb{R}^3,\, v \longmapsto Mv.$$

Zuletzt bearbeitet vor einem Monat von Bocardodarapti

Wikiversity

Der Inhalt ist verfügbar unter CC BY-SA 3.0 ☑, sofern nicht anders angegeben.

Datenschutz • Klassische Ansicht