| Name: | Student number: |  |
|-------|-----------------|--|
| -     |                 |  |

Chemistry 1A03 FINAL EXAM Dec 14, 2016

McMaster University VERSION 1

Instructors: L. Chen, L. Davis, D. Emslie, A. Hitchcock Duration: 150 minutes

This test contains 11 sheets of paper, printed on both sides, for a total of 22 numbered pages. There are **30** multiple-choice questions appearing on pages numbered 3 to 17. Pages 18-20 are blank pages for rough work. Page 21 includes some useful data and equations; there is a periodic table on page 22. You may tear off the last sheet to view the data/equations and the periodic table.

You must enter your name and student number on this question sheet, as well as on the answer sheet. Your invigilator will be checking your student card for identification.

You are responsible for ensuring that your copy of the question paper is complete. Bring any discrepancy to the attention of your invigilator.

All questions are worth 2 marks - the total marks available are 60. There is **no** penalty for incorrect answers.

BE SURE TO ENTER THE CORRECT VERSION OF YOUR TEST (shown near the top of page 1), IN THE SPACE PROVIDED ON THE ANSWER SHEET.

### ANSWER ALL QUESTIONS ON THE ANSWER SHEET, IN PENCIL.

Instructions for entering multiple-choice answers are given on page 2.

SELECT ONE AND ONLY ONE ANSWER FOR EACH QUESTION from the answers (A) through (E). No work written on the question sheets will be marked. The question sheets may be collected and reviewed in cases of suspected academic dishonesty.

Academic dishonesty may include, among other actions, communication of any kind (verbal, visual, *etc.*) between students, sharing of materials between students, copying or looking at other students' work. If you have a problem please ask the invigilator to deal with it for you. Do not make contact with other students directly. Try to keep your eyes on your own paper – looking around the room may be interpreted as an attempt to copy.

Only Casio FX 991 electronic calculators may be used. They must NOT be transferred between students. Use of any aids other than those provided, is not allowed.

| Name: | Student number: |
|-------|-----------------|
|       |                 |

### **OMR EXAMINATION – STUDENT INSTRUCTIONS**

NOTE: IT IS YOUR RESPONSIBILITY TO ENSURE THAT THE ANSWER SHEET IS PROPERLY COMPLETED: YOUR EXAMINIATION RESULT DEPENDS UPON PROPER ATTENTION TO THESE INSTRUCTIONS.

The scanner, which reads the sheets, senses the bubble shaded areas by their non-reflection of light. A heavy mark must be made, completely filling the circular bubble, with an HB pencil. Marks made with a pen will **NOT** be sensed. Erasures must be thorough or the scanner will still sense a mark. Do **NOT** use correction fluid on the sheets. Do **NOT** put any unnecessary marks or writing on the sheet.

- 1. On SIDE 1 (**red side**) of the form, in the top box, *in pen*, print your student number, name, course name, and the date in the spaces provided. Then you **MUST** write your signature, in the space marked SIGNATURE. **ONLY USE THE RED SIDE OF THE OMR FORM.**
- 2. In the second box, *with a pencil*, mark your **student number** in the space provided. If your student number does **NOT** begin with a 4, put "00" before your student number. Then fill in the corresponding bubble numbers underneath.
- 3. Do NOT put in a leading zero when bubbling in your **exam version number**.
- 4. Answers: mark only **ONE** choice from the alternatives (A,B,C,D,E) provided for each question. The question number is to the left of the bubbles. Make sure that the number of the question on the scan sheet is the same as the number on the test paper.
- 5. Pay particular attention to the marking directions on the form.
- 6. Begin answering the question using the first set of bubbles, marked "1".



| Name: | Student number: |
|-------|-----------------|
|       |                 |

- 1. What is the **pH** of a 0.451 M solution of HNO<sub>3</sub>?
  - A) 1.024
  - B) 0.346
  - C) 1.253
  - D) 0.428
  - E) 0.847

- 2. Which of the following molecules or ions can exist as more than one isomer?
  - i) SeF<sub>6</sub>
  - ii) SeF<sub>3</sub>Cl<sub>3</sub>
  - iii) SeF<sub>5</sub>Cl
  - iv) XeF<sub>2</sub>Cl<sub>2</sub>
  - v) PH<sub>2</sub>Cl<sub>2</sub><sup>+</sup>
  - A) iv and v
  - B) ii and iv
  - C) iii and iv
  - D) i and v
  - E) ii and iii

| Name:     | Student number: |
|-----------|-----------------|
| i tallie. | Stadent namet.  |

- 3. Which of the following statements regarding a 0.214 M aqueous solution of propionic acid (CH<sub>3</sub>CH<sub>2</sub>COOH,  $K_a = 1.34 \times 10^{-5}$ ) are **FALSE**?
  - i) The percent dissociation of propionic acid is greater than 0.800%.
  - ii) The conjugate base of propionic acid is CH<sub>3</sub>CH<sub>2</sub>COO<sup>-</sup>.
  - iii) The pH of this solution is between 2.76 and 2.78.
  - iv) The "small x" approximation cannot be used in this calculation.
  - v) Propionic acid is a weaker acid than acetic acid (CH<sub>3</sub>COOH,  $K_a$ = 1.76× 10<sup>-5</sup>).
  - A) iv, v
  - B) iii, iv
  - C) i, iv
  - D) ii, iv
  - E) i, iii

- 4. Which of the following relationships concerning relative acid strength are FALSE?
  - i) HI < HCl
  - ii) HClO<sub>3</sub> < HClO<sub>4</sub>
  - iii)  $H_2O \le NH_3$
  - iv) HF < HBr
  - v) CBr<sub>3</sub>COOH < CCl<sub>3</sub>COOH
  - A) iv, v
  - B) ii, iii
  - C) ii, iv
  - D) i, v
  - E) i, iii

| Name: Student number: | _ |
|-----------------------|---|
|-----------------------|---|

- 5. What is the minimum amount of energy, in **joules**, that must be **absorbed** to convert all of the atoms present in **1.0 mg** of gaseous Rb to Rb<sup>+</sup>? The first ionization energy of Rb is 403.0 kJ mol<sup>-1</sup>.
  - A) 2.9
  - B) 4.7
  - C) 0.21
  - D) 3.4
  - E) 4.0

- 6. Which one of the following statements concerning equilibrium is FALSE?
  - A) Removing a reactant or product can cause *K* to change.
  - B) When Q > K the reaction will shift towards reactants.
  - C) The activity of pure solids is 1.0.
  - D) If the equilibrium constant for a chemical reaction is  $K_f$  in the forward direction, then the equilibrium constant for the reverse reaction is  $K_f^{-1}$ .
  - E) In equilibrium constant expressions involving gases, the partial pressure of each gas is used instead of concentration.

| Student number: |
|-----------------|
|                 |
| _               |

- 7. For Experiment #3, The Determination an Equilibrium Constant, a student created a calibration curve relating the absorbance of FeSCN<sup>2+</sup> (aq) at 447 nm to the concentration of FeSCN<sup>2+</sup> (aq). The slope of this plot is 3808 M<sup>-1</sup>. When the student mixed 10.0 mL of 0.00150 M Fe<sup>3+</sup> (aq) with 5.00 mL of 0.00150 M SCN<sup>-</sup> (aq) an absorbance of 0.650 was observed. What is the **equilibrium constant** for the reaction?
  - A) 173
  - B) 948
  - C) 856
  - D) 312
  - E) 625

- 8. Which one of the following statements about BiF<sub>2</sub>Cl<sub>3</sub> is FALSE?
  - A) Three isomers are possible.
  - B) The molecule has a trigonal bipyramidal electron pair geometry.
  - C) All isomers of BiF<sub>2</sub>Cl<sub>3</sub> are polar.
  - D) Bismuth in BiF<sub>2</sub>Cl<sub>3</sub> does not obey the octet rule.
  - E) The Bi-F bonds are more polar than the Bi-Cl bonds.

| Name: | Student number: |
|-------|-----------------|
|       |                 |

- 9. NO<sub>2</sub>(g) reacts with liquid water to form liquid nitric acid and NO (g). A 670 mL volume of NO<sub>2</sub>(g) at 1.5 atm and 25.0 °C, reacts with 0.090 g of H<sub>2</sub>O (l). What is the **mole fraction of NO<sub>2</sub>** in the **final gas mixture**?
  - A) 0.39
  - B) 0.84
  - C) 0.17
  - D) 0.21
  - E) 0.53

- 10. Which of the following statements about Lewis structures are **FALSE**?
  - i) BF<sub>3</sub> is trigonal planar.
  - ii) XeF<sub>2</sub> has an octet of electrons at xenon.
  - iii) SO<sub>3</sub> is a non-polar molecule.
  - iv) NO<sub>3</sub><sup>-</sup> has 3 resonance structures.
  - v) BrF<sub>3</sub> is trigonal planar.
  - A) ii and iii
  - B) i and iii
  - C) iv and v
  - D) i and iv
  - E) ii and v

- 11. Which **one** of the following statements is **FALSE**?
  - The conjugate base of a weak acid is a strong base.
  - The conjugate base of a weak acid is a stronger base than the conjugate base of a strong acid.
  - C) A strong acid is completely dissociated in water.
  - D) The  $K_b$  for the conjugate base of a weak acid is equal to  $K_w/K_a$ .
  - E) A strong monoprotic acid produces a hydronium ion and a spectator ion.

- 12. Which one of the following is **NOT** an allowable set of quantum numbers for an electron in a ground state Mg atom?
  - A) n = 1 l = 0  $m_1 = 0$   $m_s = 1/2$

- B) n = 2 l = 1  $m_1 = -1$   $m_s = 1/2$ C) n = 3 l = 0  $m_1 = 0$   $m_s = 1/2$ D) n = 3 l = 1  $m_1 = +1$   $m_s = 1/2$
- E) n=2 l=1  $m_1=0$   $m_s=1/2$

- 13. Aluminum metal has a specific heat capacity of 0.900 J g<sup>-1</sup> °C<sup>-1</sup>. Calculate the amount of **heat** in **kJ** that is required to raise the temperature of 10.5 moles of Al from 30.5 °C to 225 °C.
  - A) 2.41
  - B) 65.1
  - C) 57.3
  - D) 1.70
  - E) 49.6

14. Carbon tetrachloride, CCl<sub>4</sub>, is an important commercial solvent. It can be prepared by the following reaction:

$$CS_2(1) + 3 Cl_2(g) \rightarrow CCl_4(1) + S_2Cl_2(1)$$

Use Hess's law and the appropriate data from the following list to determine the standard enthalpy of reaction ( $\Delta_r H^\circ$ ) in kJ mol<sup>-1</sup> for the above reaction.

|                                                      | $\Delta_{\rm r} {\rm H}^{\circ} ({\rm kJ mol}^{-1})$ |
|------------------------------------------------------|------------------------------------------------------|
| $CS_2(1) + 3 O_2(g) \rightarrow CO_2(g) + 2 SO_2(g)$ | -1077                                                |
| $2 S (s) + Cl2(g) \rightarrow S2Cl2(l)$              | -58.2                                                |
| $C(s) + 2 Cl_2(g) \rightarrow CCl_4(l)$              | -135.4                                               |
| $S(s) + O_2(g) \rightarrow SO_2(g)$                  | -296.8                                               |
| $SO_2(g) + Cl_2(g) \rightarrow SO_2Cl_2(l)$          | +97.3                                                |
| $C(s) + O_2(g) \rightarrow CO_2(g)$                  | -393.5                                               |
| $CCl_4(1) + O_2(g) \rightarrow COCl_2(g) + Cl_2O(g)$ | -5.2                                                 |

- A) -143
- B) -284
- C) -98.2
- D) -127
- E) -66.7

| Name: Student number: |  |
|-----------------------|--|
|-----------------------|--|

- 15. In Experiment # 4, The Measurement of a Change in Enthalpy, the reaction of 0.19 g of magnesium with excess HNO<sub>3</sub> (aq), caused 0.79 g of ice to melt. What is the **heat of reaction per mole of Mg** (in kJ mol<sup>-1</sup>) ? [ $\Delta H_{fus}$ (ice) = 333 J g<sup>-1</sup>]
  - A) +95
  - B) +34
  - C) -34
  - D) -62
  - E) +62

- 16. Which **one** of the following processes does NOT involve the transfer of energy via **work** when the reaction is carried out at constant pressure in a vessel open to the atmosphere?
  - A) Combustion of solid sucrose  $(C_{12}H_{22}O_{11})$  in oxygen gas to form carbon dioxide gas and liquid water.
  - B) Conversion of gaseous nitrogen dioxide to gaseous dinitrogen tetroxide.
  - C) Reaction of solid copper(II) sulfate and water vapor to form solid copper(II) sulfate pentahydrate.
  - D) Reaction of nitrogen monoxide gas and oxygen gas to form gaseous nitrogen dioxide.
  - E) Decomposition of solid calcium carbonate to solid calcium oxide and carbon dioxide gas.

| Name: Student number: |
|-----------------------|
|-----------------------|

- 17. A 100 g block of substance A is heated to 100 °C and dropped into Beaker A containing 100 mL of water at 25 °C. A 100 g block of substance B is also heated to 100 °C and dropped into beaker B containing 100 mL of water at 25 °C. The final temperature of substance A is greater than the final temperature of substance B. Which substance has the greater specific heat capacity? Assume there is no phase change of either substance A or substance B between 25 °C and 100 °C. Please note: there is no selection E for this question.
  - A) substance B.
  - B) substance A.
  - C) substance A and B have the same specific heat capacity.
  - D) there is not enough information to determine which substance has the greater specific heat capacity.

18. Find the **standard enthalpy of formation** ( $\Delta_f H^{\circ}$ ) of ethylene,  $C_2 H_4(g)$ , in **kJ mol**<sup>-1</sup> given the following data:

heat of combustion of 
$$C_2H_4(g) = -1411 \text{ kJ mol}^{-1}$$
  
 $\Delta_f H^{\circ}[CO_2(g)] = -393.5 \text{ kJ mol}^{-1}$   
 $\Delta_f H^{\circ}[H_2O(1)] = -285.8 \text{ kJ mol}^{-1}$ 

- A) 52.4
- B)  $2.77 \times 10^3$
- C)  $3.41 \times 10^3$
- D) 87.3
- E) 731

| Name: | Student number: |  |
|-------|-----------------|--|
|       | <br>            |  |

- 19. The  $K_a$  for benzoic acid in water is  $6.50 \times 10^{-5}$  at 298 K. What is  $\Delta G^{\circ}$  (in **kJ mol**<sup>-1</sup>) for dissociation of benzoic acid in aqueous solution?
  - A) -23.9
  - B) +52.4
  - C) -34.4
  - D) -52.4
  - E) +23.9

- 20. A chemical reaction is in a state such that Q > K. Under this condition,  $\Delta G$  for the forward reaction,  $\Delta G_{\text{forward}}$ , would have what sign, and in what direction would the reaction proceed?
  - A)  $\Delta G_{\text{forward}} = \text{positive}$ ; spontaneous in the forward direction
  - B)  $\Delta G_{\text{forward}} = \text{positive}$ ; spontaneous in the reverse direction
  - C)  $\Delta G_{\text{forward}} = \text{negative}$ ; spontaneous in the forward direction
  - D) insufficient information is provided to answer the question
  - E)  $\Delta G_{\text{forward}}$  = negative; spontaneous in the reverse direction

| Name: | Student number: |
|-------|-----------------|
|       |                 |

- 21. Which **one** of the following statements about enthalpy and entropy is **FALSE**?
  - A) The standard molar entropy of NCl<sub>3</sub> gas is greater than that of NH<sub>3</sub> gas.
  - B) For a spontaneous process,  $\Delta H$  can be positive or negative.
  - C) The standard molar entropy of liquid H<sub>3</sub>C-CH<sub>2</sub>-C(CH<sub>3</sub>)<sub>3</sub> is greater than the standard molar entropy of liquid H<sub>3</sub>C-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>2</sub>-CH<sub>3</sub>.
  - D) The sign of  $\Delta S_{\text{rxn}}$  is independent of the sign of  $\Delta H_{\text{rxn}}$ .
  - E) Dissolving NH<sub>4</sub>NO<sub>3</sub> in water results in an increase in the entropy of the system.

- 22. Which **one** of the following reactions will be <u>spontaneous</u> at **high temperature**, but <u>not spontaneous</u> at **low temperature**?
  - A)  $NH_3(g) \rightarrow NH_3(l)$
  - B)  $2 \operatorname{Li}(g) \rightarrow \operatorname{Li}_2(g)$
  - C) Pb (s) + 3  $N_2$  (g)  $\rightarrow$  Pb( $N_3$ )<sub>2</sub> (s)
  - D)  $NH_4NO_3(s) \rightarrow NH_4^+(aq) + NO_3^-(aq)$
  - E)  $2 \text{ NI}_3 (s) \rightarrow \text{N}_2 (g) + 3 \text{ I}_2 (s)$

23. Potassium chlorate, KClO<sub>3</sub>, decomposes via the reaction:

$$2 \text{ KClO}_3 (s) \rightarrow 2 \text{ KCl } (s) + 3 \text{ O}_2 (g)$$

Use the thermochemical information given below to calculate the **standard Gibbs free energy in kJ** for the decomposition of 2 moles of KClO<sub>3</sub> at 298 K.

| $\Delta F$  | $I_{\rm f}^{\circ} ({\rm kJ\ mol}^{-1})$ |
|-------------|------------------------------------------|
| $S^{\circ}$ | $(J \text{ mol}^{-1} \text{ K}^{-1})$    |

$$O_{2}(g)$$
0
205.0

- A) -236.7
- B) -57.9
- (C) +12.0
- D) -122.0
- E) +111.3

- 24. The melting point of uranium is 1132 °C and the enthalpy of fusion (i.e. melting) of uranium is 9.14 kJ mol<sup>-1</sup>. What is the **entropy of fusion** (in J mol<sup>-1</sup> K<sup>-1</sup>) of uranium?
  - A) -6.50
  - B) +14.3
  - C) -14.3
  - D) +154
  - E) +6.50

25. Given the following standard reduction potentials, E°<sub>red</sub>, which species has the greatest tendency to be oxidized?

$$\begin{array}{ll} S \ (s) + 2 \ H^{^{+}} + 2e^{^{-}} \rightarrow H_2 S \ (g) & E^{\circ}_{red} = +0.144 \ V \\ O_2 \ (g) + 4 \ H^{^{+}} + 4e^{^{-}} \rightarrow 2 \ H_2 O \ (l) & E^{\circ}_{red} = +1.229 \ V \\ Sn^{2^{+}} \ (aq) + 2e^{^{-}} & \rightarrow Sn \ (s) & E^{\circ}_{red} = -0.137 \ V \end{array}$$

$$E_{red}^{\circ} = +0.144 \text{ V}$$

$$O_2(g) + 4 H^+ + 4e^- \rightarrow 2 H_2O(1)$$

$$E_{red}^{\circ} = +1.229 \text{ V}$$

$$\operatorname{Sn}^{2+}(\operatorname{aq}) + 2e^{-} \longrightarrow \operatorname{Sn}(s)$$

$$E_{red}^{\circ} = -0.137 \text{ V}$$

- A)  $O_2(g)$
- B) S(s)
- C) Sn (s)
- D)  $H_2S(g)$
- E)  $\operatorname{Sn}^{2+}(\operatorname{ag})$

- 26. In aqueous acid solution, dichromate,  $\operatorname{Cr_2O_7}^{2-}(\operatorname{aq})$ , reacts with zinc metal to produce  $Cr^{3+}$  (aq) and  $Zn^{2+}$  (aq) ions. When the reaction is balanced so that the stoichiometric coefficients are the smallest possible integers, what is the stoichiometric coefficient for  $\mathbf{H}^{+}$ ?
  - A) 8
  - B) 14
  - C) 6
  - D) 12
  - E) 10

27. Given the following data, what species would act as the cathode electrode in the most **spontaneous reaction** that can be constructed from the following half-reactions?

$$Ag^{+}(aq) + e^{-} \rightarrow Ag(s) \qquad E^{\circ}_{red} = +0.800 \text{ V}$$

$$E_{red}^{\circ} = +0.800 \text{ V}$$

$$Cu^{+}(aq) + e^{-} \rightarrow Cu(s)$$
  $E^{\circ}_{red} = +0.520 \text{ V}$ 

$$E_{red}^{\circ} = +0.520 \text{ V}$$

$$Al^{3+}(aq) + 3e^{-} \rightarrow Al(s)$$

$$E_{red}^{\circ} = -1.662 \text{ V}$$

- A) Al
- B)  $Ag^{+}$
- C) Cu
- D)  $Al^{3+}$
- E) Ag

- 28. A student wishes to make an electrochemical cell with  $E_{cell} = 1.0645 \text{ V}$ , based on  $\mathbf{Zn}$  (s)  $\|\mathbf{Zn}^{2+}(\mathbf{aq})\| \|\mathbf{Cu}^{2+}(\mathbf{aq})\| \|\mathbf{Cu}\| \|\mathbf{Cu}\| \|\mathbf{Sn}\| \|\mathbf{Cu}\| \|\mathbf{Sn}\| \|\mathbf{Sn}\|$ ion solutions are initially of equal molarity, which solution needs to be decreased in concentration and by what factor to produce a cell with  $E_{cell} = 1.0645 \text{ V}$ ?
  - A)  $Zn^{2+}$  (aq), decreased by 20
  - B) Cu<sup>2+</sup> (aq), decreased by 5
  - $Zn^{2+}$  (aq), decreased by 5
  - D) It is not possible to create a cell with this voltage based on these metals.
  - E)  $Cu^{2+}$  (aq), decreased by 20

| Name:     | Student number: |
|-----------|-----------------|
| i tuille. | Student number. |

29. Given the following data, what is ΔG°<sub>cell</sub> (in kJ), per mole of reducing agent, for the most spontaneous cell that can be constructed from the following half-reactions? (1 Joule = 1 Coulomb × 1 Volt)

$$Ag^{+}(aq) + e^{-} \rightarrow Ag(s)$$
  $E^{\circ}_{red} = +0.800 \text{ V}$   
 $Zn^{2+}(aq) + 2e^{-} \rightarrow Zn(s)$   $E^{\circ}_{red} = -0.763 \text{ V}$   
 $Sn^{2+}(aq) + 2e^{-} \rightarrow Sn(s)$   $E^{\circ}_{red} = -0.137 \text{ V}$ 

- A) -217.9
- B) -467.3
- C) -663.0
- D) -158.2
- E) -301.6

- 30. Which one of the following statements regarding electrochemistry is FALSE?
  - A) A reducing agent provides electrons to the oxidizing agent.
  - B) The purpose of an inert electrode is to facilitate the transfer of electrons.
  - C) In an electrolysis experiment, a voltage is applied to make a non-spontaneous reaction occur.
  - D) In a concentration cell based on Cu<sup>2+</sup> ions, electrons move from higher to lower concentration solutions.
  - E) In a galvanic cell, electrons travel through the external circuit from the anode to the cathode.

| Student number: |
|-----------------|
|                 |
|                 |

| Name:                          | Student number: |
|--------------------------------|-----------------|
|                                |                 |
| Extra space for rough work (2) |                 |

| Name:                          | Student number: |
|--------------------------------|-----------------|
|                                |                 |
| Extra space for rough work (3) |                 |

# Some general data are provided on this page.

# A Periodic Table with atomic weights is provided on the next page.

STP = 273.15 K, 1 atm  

$$N_A = 6.022 \times 10^{23} \text{ mol}^{-1}$$

$$h = 6.6256 \times 10^{-34} \,\mathrm{Js}$$

density(
$$H_2O$$
,  $l$ ) = 1.00g/mL

Specific heat of water = 
$$4.184 \text{ J} / \text{g} \cdot ^{\circ}\text{C}$$

$$F = 96485 \text{ C/mol}$$
  
 $c = 2.9979 \times 10^8 \text{ m/s}$   
 $m_e = 9.109 \times 10^{-31} \text{ kg}$ 

$$\Delta H^{o}_{vap}[H_2O] = 44.0 \text{ kJ mol}^{-1}$$

$$R = 8.3145 \text{ J K}^{-1} \text{ mol}^{-1} = 0.08206 \text{ L atm K}^{-1} \text{ mol}^{-1} = 0.083145 \text{ L bar K}^{-1} \text{ mol}^{-1}$$

1 bar = 
$$100.00 \text{ kPa} = 750.06 \text{ mm Hg} = 0.98692 \text{ atm}$$

$$1 J = 1 kg m^2 s^{-2} = 1 kPa L = 1 Pa m^3$$

$$1 \text{ cm}^3 = 1 \text{ mL}$$

$$1 \text{ Hz} = 1 \text{ cycle/s}$$

$$0^{\circ}$$
C = 273.15 K

$$1 \text{ m} = 10^6 \,\mu\text{m} = 10^9 \,\text{nm} = 10^{10} \,\text{Å}$$

$$1 g = 10^3 mg$$

$$\lambda = h / mu = h / p$$

$$E_n = -R_H / n^2 = -2.179 \times 10^{-18} \text{ J} / n^2$$

$$KE = \frac{1}{2}mu^2$$

Nernst Equation:

$$E = E^{\circ} - \frac{RT}{zF} \ln Q = E^{\circ} - \frac{0.0257 \text{ V}}{z} \ln Q = E^{\circ} - \frac{0.0592 \text{ V}}{z} \log_{10} Q$$

Entropy change: 
$$\Delta S = \frac{q_{\text{rev}}}{T}$$

$$\Delta S = \frac{q_{\text{rev}}}{T}$$

Follow the lower-numbered guideline when two guidelines are in conflict. This leads to the correct prediction in most cases.

- 1. Salts of group 1 cations and the NH<sub>4</sub>+ cation are soluble. Except LiF and Li<sub>2</sub>CO<sub>3</sub> which are insoluble.
- 2. Nitrates, acetates, bicarbonates, and perchlorates are soluble.
- 3. Salts of silver, lead and mercury (I) are insoluble. Except AgF which is
- 4. Fluorides, chlorides, bromides, and iodides are soluble. Except Group 2 fluorides which are insoluble
- 5. Carbonates, phosphates, chromates, sulfides, oxides, and hydroxides are insoluble. Except Group 2 sulfides and hydroxides of Ca<sup>2+</sup>, Sr<sup>2+</sup>, and Ba<sup>2+</sup> which are soluble.).
- 6. Sulfates are soluble except for those of calcium, strontium, and barium.

| Name: | Student number: |
|-------|-----------------|
|       |                 |

|          |              |                    |         |                                         |                 |           |                                                  |             |               |                                                                                                                         |              |            |             |             |              |             | ₹      |  |
|----------|--------------|--------------------|---------|-----------------------------------------|-----------------|-----------|--------------------------------------------------|-------------|---------------|-------------------------------------------------------------------------------------------------------------------------|--------------|------------|-------------|-------------|--------------|-------------|--------|--|
|          |              |                    | 6       | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | PERIODIC TARI F |           |                                                  | T<br>H      | Щ<br>≂        |                                                                                                                         |              |            |             |             |              |             | 2 2    |  |
| I        | =            |                    |         | 1                                       | į               |           | ) i                                              |             |               | •                                                                                                                       |              | =          | 2           | >           | 5            | 5           | 운      |  |
| 6200.    | 8            |                    | O T     |                                         | 7               |           | П                                                | N<br>L      |               | נט                                                                                                                      |              | 13         | 14          | 15          | 16           | 17          | 4.0026 |  |
|          | 4            |                    |         | )                                       |                 | <br>      |                                                  |             | !             | )                                                                                                                       |              | ş          | 9           | . 2         | 8            | 6           | 10     |  |
| <u> </u> | Be           |                    |         |                                         |                 |           |                                                  |             |               |                                                                                                                         |              | Ω          | ပ           | z           | 0            | 止           | Se     |  |
| 3.941    | 9.0122       |                    |         |                                         |                 |           |                                                  |             |               |                                                                                                                         |              | 10.811     | 12.011      | 14.007      | 15.999       | 18.998      | 20.180 |  |
|          | 12           |                    |         |                                         |                 |           |                                                  |             |               |                                                                                                                         |              | 13         | 14          | 15          | 16           | 17          | 18     |  |
| Na       | Mg           |                    |         |                                         |                 | Transitio | Transition Metals .                              |             |               | 8                                                                                                                       |              | A          | S           | Δ.          | S            | ប           | Ar     |  |
| 2.990    | 24.305       | ဗ                  | 4       | 2                                       | 9               | 7         | 80                                               | o           | 9             | F                                                                                                                       | 12           | 26.982     | 28.086      | 30.974      | 32.066       | 35.453      | 39.948 |  |
|          | 20           | 21                 | .52     | 23                                      | 24              | 25        | 26                                               | 27          | 28            | 29                                                                                                                      | 30           | 31         | 32          | 33          | 84           | 1           | 36     |  |
| ¥        | Ca           | သွ                 | F       | >                                       | ပ်              | Z<br>Z    | Fe                                               | ပ္ပ         | Z             | చె                                                                                                                      | Zu           | Ga         | Ge          | As          | Se           | Bř          | Ż      |  |
| 9.098    | 40.078       | 44.956             | 47.88   | 50.942                                  | 51.996          | 54.938    | 55.847                                           | 58.933      | 58.69         | 63.546                                                                                                                  | 65.39        | 69.723     | 72.61       | 74.922      | 78.96        | 79.904      | 83.80  |  |
|          | 38           | 36                 | 40      | 41                                      | 42              | 43        | 44                                               | 45          | 46            | 47                                                                                                                      | 48           | 49         | 50          | 51          | 52           | 53          | 54     |  |
| 35       | Š            | >                  | Z       | g                                       | ğ               | <u>၁</u>  | Ru                                               | 絽           | Pd            | Ag                                                                                                                      | ၓ            | 2          | Sn          | Sb          | Te           | _           | Xe     |  |
| 5.468    | 87.62        | 88.906             | 91.224  | 92.906                                  | 95.94           | [86]      | 101.07                                           | 102.91      | 105.42        | 107.87                                                                                                                  | 112.41       | 114.82     | 118.71      | 121.75      | 127.60       | 126.90      | 131.29 |  |
|          | 56           | 22                 | 72      | 73                                      | 74              | 75        | 92                                               | 77          | 78            | 62                                                                                                                      | 80           | 81         | 82          | 83          | 84           | 85          | 98     |  |
| SS       | Ba           | *La                | Ĭ       | Ta                                      | >               | Re        | SO<br>Os                                         | _           | 굽             | Au                                                                                                                      | H            | F          | B           | 窗           | Po           | At          | 띪      |  |
| 32.91    | 137.33       | 138.91             | 178.49  | 180.95                                  | 183.85          | 186.21    | 190.2                                            | 192.22      | 195.08        | 196.97                                                                                                                  | 200.59       | 204.38     | 207.2       | 208.98      | [509]        | [210]       | [222]  |  |
|          | 88           | 68                 | 104     | 105                                     | 106             |           |                                                  |             |               |                                                                                                                         |              |            |             |             |              |             |        |  |
| 止        | Ra           | **Ac               | **AcUnd | 5                                       | np Unh          | Atomir    | c weights a                                      | re based or | n 12C = 12 a  | Atomic weights are based on $^{12}$ C = 12 and conform to the 1987 IUPAC report values rounded to 5 significant digits. | n to the 198 | 7 IUPAC re | sport value | s rounded t | o 5 signific | ant digits. |        |  |
| [223]    | 226.03       | 227.03             | [261]   | [262]                                   | [263]           | Q E N     | Numbers in [ ] indicate the most stable isotope. | icate the m | iost stable i | sotope.                                                                                                                 |              |            |             |             |              |             |        |  |
|          |              |                    |         |                                         |                 |           |                                                  |             |               |                                                                                                                         |              |            |             |             |              |             |        |  |
|          |              |                    | 28      | 29                                      | 8               | 61        | 82                                               | ន           | 8             | 99                                                                                                                      | 99           | 29         | 89          | 69          | . 02         | 71          |        |  |
| *        | Lanth        | * Lanthanides   Ce | S       | P                                       | PZ              | Pa        | Sm                                               | 品           | <b>B</b>      | <b>P</b>                                                                                                                | 2            | 운          | 山           | E           | Yb           | ב           |        |  |
|          |              |                    | 140.12  | 140.91                                  | 144.24          | [145]     | 150.36                                           | 151.97      | 157.25        | 158.93                                                                                                                  | 162.50       | 164.93     | 167.26      | 168.93      | 173.04       | 174.97      |        |  |
|          |              |                    |         |                                         |                 |           |                                                  |             |               |                                                                                                                         |              |            |             |             |              |             |        |  |
|          |              |                    | 06      | 9                                       | 85              | 83        | 94                                               | 95          | 96            | 26                                                                                                                      | 86           | 66         | 100         | 101         | 102          | 103         |        |  |
| *        | ** Actinides | nides              | 두       | Pa                                      | <b>&gt;</b>     | Š         | Pu                                               | Am          | E             | ᄶ                                                                                                                       | さ            | ШS         | E           | PΜ          | 2            | ב           |        |  |
| 8        |              | _                  | 232.04  | 231.04                                  | 238.03          | 237.05    | [244]                                            | [243]       | [247]         | [247]                                                                                                                   | [251]        | [252]      | [257]       | [258]       | [259]        | [262]       |        |  |

**END OF EXAM**