

14

Partial Derivatives

OVERVIEW Many functions depend on more than one independent variable. For instance, the volume of a right circular cylinder is a function $V = \pi r^2 h$ of its radius and its height, so it is a function V(r, h) of two variables r and h. The speed of sound through seawater is primarily a function of salinity S and temperature T. The surface area of the human body is a function of its height h and weight w. The monthly payment on a home mortgage is a function of the principal borrowed P, the interest rate i, and the term t of the loan.

In this chapter we extend the basic ideas of single-variable differential calculus to functions of several variables. Their derivatives are more varied and interesting because of the different ways the variables can interact. The applications of these derivatives are also more varied than for single-variable calculus, and in the next chapter we will see that the same is true for integrals involving several variables.

14.1 Functions of Several Variables

Real-valued functions of several independent real variables are defined analogously to functions in the single-variable case. Points in the domain are ordered pairs (triples, quadruples, *n*-tuples) of real numbers, and values in the range are real numbers as we have worked with all along.

DEFINITIONS Suppose *D* is a set of *n*-tuples of real numbers (x_1, x_2, \dots, x_n) . A **real-valued function** f on D is a rule that assigns a unique (single) real number

$$w = f(x_1, x_2, \dots, x_n)$$

to each element in D. The set D is the function's **domain**. The set of w-values taken on by f is the function's **range**. The symbol w is the **dependent variable** of f, and f is said to be a function of the n **independent variables** x_1 to x_n . We also call the x_i 's the function's **input variables** and call w the function's **output variable**.

If f is a function of two independent variables, we usually call the independent variables x and y and the dependent variable z, and we picture the domain of f as a region in the xy-plane (Figure 14.1). If f is a function of three independent variables, we call the independent variables x, y, and z and the dependent variable w, and we picture the domain as a region in space.

In applications, we tend to use letters that remind us of what the variables stand for. To say that the volume of a right circular cylinder is a function of its radius and height, we might write V = f(r, h). To be more specific, we might replace the notation f(r, h) by the formula

FIGURE 14.1 An arrow diagram for the function z = f(x, y).

that calculates the value of V from the values of r and h, and write $V = \pi r^2 h$. In either case, r and h would be the independent variables and V the dependent variable of the function.

As usual, we evaluate functions defined by formulas by substituting the values of the independent variables in the formula and calculating the corresponding value of the dependent variable. For example, the value of $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ at the point (3, 0, 4) is

$$f(3, 0, 4) = \sqrt{(3)^2 + (0)^2 + (4)^2} = \sqrt{25} = 5.$$

Domains and Ranges

In defining a function of more than one variable, we follow the usual practice of excluding inputs that lead to complex numbers or division by zero. If $f(x, y) = \sqrt{y - x^2}$, y cannot be less than x^2 . If f(x, y) = 1/(xy), xy cannot be zero. The domain of a function is assumed to be the largest set for which the defining rule generates real numbers, unless the domain is otherwise specified explicitly. The range consists of the set of output values for the dependent variable.

EXAMPLE 1

(a) These are functions of two variables. Note the restrictions that may apply to their domains in order to obtain a real value for the dependent variable z.

Domain	Range
$y \ge x^2$	$[0,\infty)$
$xy \neq 0$	$(-\infty,0)\cup(0,\infty)$
Entire plane	[-1, 1]
	$y \ge x^2$ $xy \ne 0$

(b) These are functions of three variables with restrictions on some of their domains.

Function	Domain	Range
$w = \sqrt{x^2 + y^2 + z^2}$	Entire space	$[0,\infty)$
$w = \frac{1}{x^2 + y^2 + z^2}$	$(x, y, z) \neq (0, 0, 0)$	$(0,\infty)$
$w = xy \ln z$	Half-space $z > 0$	$(-\infty, \infty)$

Functions of Two Variables

Regions in the plane can have interior points and boundary points just like intervals on the real line. Closed intervals [a, b] include their boundary points, open intervals (a, b) don't include their boundary points, and intervals such as [a, b) are neither open nor closed.

(a) Interior point

(b) Boundary point

FIGURE 14.2 Interior points and boundary points of a plane region *R*. An interior point is necessarily a point of *R*. A boundary point of *R* need not belong to *R*.

DEFINITIONS A point (x_0, y_0) in a region (set) R in the xy-plane is an **interior point** of R if it is the center of a disk of positive radius that lies entirely in R (Figure 14.2). A point (x_0, y_0) is a **boundary point** of R if every disk centered at (x_0, y_0) contains points that lie outside of R as well as points that lie in R. (The boundary point itself need not belong to R.)

The interior points of a region, as a set, make up the **interior** of the region. The region's boundary points make up its **boundary**. A region is **open** if it consists entirely of interior points. A region is **closed** if it contains all its boundary points (Figure 14.3).

FIGURE 14.3 Interior points and boundary points of the unit disk in the plane.

As with a half-open interval of real numbers [a, b), some regions in the plane are neither open nor closed. If you start with the open disk in Figure 14.3 and add to it some, but not all, of its boundary points, the resulting set is neither open nor closed. The boundary points that *are* there keep the set from being open. The absence of the remaining boundary points keeps the set from being closed.

DEFINITIONS A region in the plane is **bounded** if it lies inside a disk of finite radius. A region is **unbounded** if it is not bounded.

Examples of *bounded* sets in the plane include line segments, triangles, interiors of triangles, rectangles, circles, and disks. Examples of *unbounded* sets in the plane include lines, coordinate axes, the graphs of functions defined on infinite intervals, quadrants, half-planes, and the plane itself.

EXAMPLE 2 Describe the domain of the function $f(x, y) = \sqrt{y - x^2}$.

Solution Since f is defined only where $y - x^2 \ge 0$, the domain is the closed, unbounded region shown in Figure 14.4. The parabola $y = x^2$ is the boundary of the domain. The points above the parabola make up the domain's interior.

Graphs, Level Curves, and Contours of Functions of Two Variables

There are two standard ways to picture the values of a function f(x, y). One is to draw and label curves in the domain on which f has a constant value. The other is to sketch the surface z = f(x, y) in space.

FIGURE 14.4 The domain of f(x, y) in Example 2 consists of the shaded region and its bounding parabola.

FIGURE 14.5 The graph and selected level curves of the function f(x, y) in Example 3.

The contour curve $f(x, y) = 100 - x^2 - y^2 = 75$ is the circle $x^2 + y^2 = 25$ in the plane z = 75.

The level curve $f(x, y) = 100 - x^2 - y^2 = 75$ is the circle $x^2 + y^2 = 25$ in the xy-plane.

FIGURE 14.6 A plane z = c parallel to the *xy*-plane intersecting a surface z = f(x, y) produces a contour curve.

DEFINITIONS The set of points in the plane where a function f(x, y) has a constant value f(x, y) = c is called a **level curve** of f. The set of all points (x, y, f(x, y)) in space, for (x, y) in the domain of f, is called the **graph** of f. The graph of f is also called the **surface** f is also called the **sur**

EXAMPLE 3 Graph $f(x, y) = 100 - x^2 - y^2$ and plot the level curves f(x, y) = 0, f(x, y) = 51, and f(x, y) = 75 in the domain of f in the plane.

Solution The domain of f is the entire xy-plane, and the range of f is the set of real numbers less than or equal to 100. The graph is the paraboloid $z = 100 - x^2 - y^2$, the positive portion of which is shown in Figure 14.5.

The level curve f(x, y) = 0 is the set of points in the xy-plane at which

$$f(x, y) = 100 - x^2 - y^2 = 0$$
, or $x^2 + y^2 = 100$,

which is the circle of radius 10 centered at the origin. Similarly, the level curves f(x, y) = 51 and f(x, y) = 75 (Figure 14.5) are the circles

$$f(x, y) = 100 - x^2 - y^2 = 51$$
, or $x^2 + y^2 = 49$
 $f(x, y) = 100 - x^2 - y^2 = 75$, or $x^2 + y^2 = 25$.

The level curve f(x, y) = 100 consists of the origin alone. (It is still a level curve.)

If $x^2 + y^2 > 100$, then the values of f(x, y) are negative. For example, the circle $x^2 + y^2 = 144$, which is the circle centered at the origin with radius 12, gives the constant value f(x, y) = -44 and is a level curve of f.

The curve in space in which the plane z = c cuts a surface z = f(x, y) is made up of the points that represent the function value f(x, y) = c. It is called the **contour curve** f(x, y) = c to distinguish it from the level curve f(x, y) = c in the domain of f. Figure 14.6 shows the contour curve f(x, y) = 75 on the surface f(x, y) = 75 on the function $f(x, y) = 100 - x^2 - y^2$. The contour curve lies directly above the circle f(x, y) = 75 on the function's domain.

Not everyone makes this distinction, however, and you may wish to call both kinds of curves by a single name and rely on context to convey which one you have in mind. On most maps, for example, the curves that represent constant elevation (height above sea level) are called contours, not level curves (Figure 14.7).

Functions of Three Variables

In the plane, the points where a function of two independent variables has a constant value f(x, y) = c make a curve in the function's domain. In space, the points where a function of three independent variables has a constant value f(x, y, z) = c make a surface in the function's domain.

DEFINITION The set of points (x, y, z) in space where a function of three independent variables has a constant value f(x, y, z) = c is called a **level surface** of f.

Since the graphs of functions of three variables consist of points (x, y, z, f(x, y, z)) lying in a four-dimensional space, we cannot sketch them effectively in our three-dimensional frame of reference. We can see how the function behaves, however, by looking at its three-dimensional level surfaces.

EXAMPLE 4 Describe the level surfaces of the function

$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}.$$

FIGURE 14.8 The level surfaces of $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ are concentric spheres (Example 4).

(a) Interior point

(b) Boundary point

FIGURE 14.9 Interior points and boundary points of a region in space. As with regions in the plane, a boundary point need not belong to the space region *R*.

FIGURE 14.7 Contours on Mt. Washington in New Hampshire. (Reprinted by permission of the Appalachian Mountain Club.)

Solution The value of f is the distance from the origin to the point (x, y, z). Each level surface $\sqrt{x^2 + y^2 + z^2} = c$, c > 0, is a sphere of radius c centered at the origin. Figure 14.8 shows a cutaway view of three of these spheres. The level surface $\sqrt{x^2 + y^2 + z^2} = 0$ consists of the origin alone.

We are not graphing the function here; we are looking at level surfaces in the function's domain. The level surfaces show how the function's values change as we move through its domain. If we remain on a sphere of radius c centered at the origin, the function maintains a constant value, namely c. If we move from a point on one sphere to a point on another, the function's value changes. It increases if we move away from the origin and decreases if we move toward the origin. The way the values change depends on the direction we take. The dependence of change on direction is important. We return to it in Section 14.5.

The definitions of interior, boundary, open, closed, bounded, and unbounded for regions in space are similar to those for regions in the plane. To accommodate the extra dimension, we use solid balls of positive radius instead of disks.

DEFINITIONS A point (x_0, y_0, z_0) in a region R in space is an **interior point** of R if it is the center of a solid ball that lies entirely in R (Figure 14.9a). A point (x_0, y_0, z_0) is a **boundary point** of R if every solid ball centered at (x_0, y_0, z_0) contains points that lie outside of R as well as points that lie inside R (Figure 14.9b). The **interior** of R is the set of interior points of R. The **boundary** of R is the set of boundary points of R.

A region is **open** if it consists entirely of interior points. A region is **closed** if it contains its entire boundary.

Examples of *open* sets in space include the interior of a sphere, the open half-space z > 0, the first octant (where x, y, and z are all positive), and space itself. Examples of *closed* sets in space include lines, planes, and the closed half-space $z \ge 0$. A solid sphere

with part of its boundary removed or a solid cube with a missing face, edge, or corner point is *neither open nor closed*.

Functions of more than three independent variables are also important. For example, the temperature on a surface in space may depend not only on the location of the point P(x, y, z) on the surface but also on the time t when it is visited, so we would write T = f(x, y, z, t).

Computer Graphing

Three-dimensional graphing software makes it possible to graph functions of two variables. We can often get information more quickly from a graph than from a formula, since the surfaces reveal increasing and decreasing behavior, and high points or low points.

EXAMPLE 5 The temperature w beneath the Earth's surface is a function of the depth x beneath the surface and the time t of the year. If we measure x in feet and t as the number of days elapsed from the expected date of the yearly highest surface temperature, we can model the variation in temperature with the function

$$w = \cos(1.7 \times 10^{-2}t - 0.2x)e^{-0.2x}.$$

(The temperature at 0 ft is scaled to vary from +1 to -1, so that the variation at x feet can be interpreted as a fraction of the variation at the surface.)

Figure 14.10 shows a graph of the function. At a depth of 15 ft, the variation (change in vertical amplitude in the figure) is about 5% of the surface variation. At 25 ft, there is almost no variation during the year.

The graph also shows that the temperature 15 ft below the surface is about half a year out of phase with the surface temperature. When the temperature is lowest on the surface (late January, say), it is at its highest 15 ft below. Fifteen feet below the ground, the seasons are reversed.

FIGURE 14.10 This graph shows the seasonal variation of the temperature below ground as a fraction of surface temperature (Example 5).

Figure 14.11 shows computer-generated graphs of a number of functions of two variables together with their level curves.

FIGURE 14.11 Computer-generated graphs and level curves of typical functions of two variables.

Domain, Range, and Level Curves

In Exercises 1–4, find the specific function values.

1.
$$f(x, y) = x^2 + xy^3$$

a.
$$f(0,0)$$

b.
$$f(-1, 1)$$

c.
$$f(2, 3)$$

d.
$$f(-3, -2)$$

2.
$$f(x, y) = \sin(xy)$$

a.
$$f(2, \frac{\pi}{6})$$

a.
$$f\left(2, \frac{\pi}{6}\right)$$
 b. $f\left(-3, \frac{\pi}{12}\right)$

c.
$$f\left(\pi, \frac{1}{4}\right)$$

c.
$$f(\pi, \frac{1}{4})$$
 d. $f(-\frac{\pi}{2}, -7)$

3.
$$f(x, y, z) = \frac{x - y}{y^2 + z^2}$$

a.
$$f(3, -1, 2)$$

b.
$$f\left(1, \frac{1}{2}, -\frac{1}{4}\right)$$

c.
$$f(0, -\frac{1}{3}, 0)$$

4.
$$f(x, y, z) = \sqrt{49 - x^2 - y^2 - z^2}$$

a.
$$f(0, 0, 0)$$

b.
$$f(2, -3, 6)$$

d.
$$f\left(\frac{4}{\sqrt{2}}, \frac{5}{\sqrt{2}}, \frac{6}{\sqrt{2}}\right)$$

In Exercises 5-12, find and sketch the domain for each function.

5.
$$f(x, y) = \sqrt{y - x - 2}$$

6.
$$f(x, y) = \ln(x^2 + y^2 - 4)$$

7.
$$f(x, y) = \frac{(x-1)(y+2)}{(y-x)(y-x^3)}$$

8.
$$f(x, y) = \frac{\sin(xy)}{x^2 + y^2 - 25}$$

9.
$$f(x, y) = \cos^{-1}(y - x^2)$$

10.
$$f(x, y) = \ln(xy + x - y - 1)$$

11.
$$f(x, y) = \sqrt{(x^2 - 4)(y^2 - 9)}$$

12.
$$f(x, y) = \frac{1}{\ln(4 - x^2 - y^2)}$$

In Exercises 13–16, find and sketch the level curves f(x, y) = c on the same set of coordinate axes for the given values of c. We refer to these level curves as a contour map.

13.
$$f(x, y) = x + y - 1$$
, $c = -3, -2, -1, 0, 1, 2, 3$

14.
$$f(x, y) = x^2 + y^2$$
, $c = 0, 1, 4, 9, 16, 25$

15.
$$f(x, y) = xy$$
, $c = -9, -4, -1, 0, 1, 4, 9$

16.
$$f(x, y) = \sqrt{25 - x^2 - y^2}$$
, $c = 0, 1, 2, 3, 4$

In Exercises 17–30, (a) find the function's domain, (b) find the function's range, (c) describe the function's level curves, (d) find the boundary of the function's domain, (e) determine if the domain is an open region, a closed region, or neither, and (f) decide if the domain is bounded or unbounded.

17.
$$f(x, y) = y - x$$

17.
$$f(x, y) = y - x$$
 18. $f(x, y) = \sqrt{y - x}$ **19.** $f(x, y) = 4x^2 + 9y^2$ **20.** $f(x, y) = x^2 - y^2$

19.
$$f(x, y) = 4x^2 + 9y^2$$

20.
$$f(x, y) = x^2 - y^2$$

21.
$$f(x, y) = xy$$

22.
$$f(x, y) = y/x^2$$

23.
$$f(x, y) = \frac{1}{\sqrt{16 - x^2 - y^2}}$$
 24. $f(x, y) = \sqrt{9 - x^2 - y^2}$

24.
$$f(x, y) = \sqrt{9 - x^2 - y^2}$$

787

25.
$$f(x, y) = \ln(x^2 + y^2)$$

26.
$$f(x, y) = e^{-(x^2+y^2)}$$

27.
$$f(x, y) = \sin^{-1}(y - x)$$

25.
$$f(x, y) = \ln(x^2 + y^2)$$
 26. $f(x, y) = e^{-(x^2 + y^2)}$ **27.** $f(x, y) = \sin^{-1}(y - x)$ **28.** $f(x, y) = \tan^{-1}\left(\frac{y}{x}\right)$

29.
$$f(x, y) = \ln(x^2 + y^2 - 1)$$

29.
$$f(x, y) = \ln(x^2 + y^2 - 1)$$
 30. $f(x, y) = \ln(9 - x^2 - y^2)$

Matching Surfaces with Level Curves

Exercises 31–36 show level curves for the functions graphed in (a)–(f) on the following page. Match each set of curves with the appropriate function.

32.

31.

33.

35.

Functions of Two Variables

Display the values of the functions in Exercises 37–48 in two ways: (a) by sketching the surface z = f(x, y) and (b) by drawing an assortment of level curves in the function's domain. Label each level curve with its function value.

37.
$$f(x, y) = y^2$$

38.
$$f(x, y) = \sqrt{x}$$

39.
$$f(x, y) = x^2 + y^2$$

37.
$$f(x, y) = y^2$$
 38. $f(x, y) = \sqrt{x}$ **39.** $f(x, y) = x^2 + y^2$ **40.** $f(x, y) = \sqrt{x^2 + y^2}$

41.
$$f(x, y) = x^2 - y$$

42.
$$f(x, y) = 4 - x^2 - y^2$$

43.
$$f(x, y) = 4x^2 + y^2$$

44.
$$f(x, y) = 6 - 2x - 3$$

45.
$$f(x, y) = 1 - |y|$$

41.
$$f(x, y) = x^2 - y$$

42. $f(x, y) = 4 - x^2 - y^2$
43. $f(x, y) = 4x^2 + y^2$
44. $f(x, y) = 6 - 2x - 3y$
45. $f(x, y) = 1 - |y|$
46. $f(x, y) = 1 - |x| - |y|$
47. $f(x, y) = \sqrt{x^2 + y^2 + 4}$
48. $f(x, y) = \sqrt{x^2 + y^2 - 4}$

47
$$f(r, y) = \sqrt{r^2 + y^2 + 4}$$

40.
$$f(x, y) = 1 - |x| - |y|$$

In Exercises 49-52, find an equation for and sketch the graph of the level curve of the function f(x, y) that passes through the given point.

49.
$$f(x, y) = 16 - x^2 - y^2$$
, $(2\sqrt{2}, \sqrt{2})$

50.
$$f(x, y) = \sqrt{x^2 - 1}$$
, (1, 0)

51.
$$f(x, y) = \sqrt{x + y^2 - 3}$$
, $(3, -1)$

52.
$$f(x, y) = \frac{2y - x}{x + y + 1}$$
, (-1, 1)

Sketching Level Surfaces

In Exercises 53–60, sketch a typical level surface for the function.

53.
$$f(x, y, z) = x^2 + y^2 + z^2$$

53.
$$f(x, y, z) = x^2 + y^2 + z^2$$
 54. $f(x, y, z) = \ln(x^2 + y^2 + z^2)$

55.
$$f(x, y, z) = x + z$$
 56. $f(x, y, z) = z$

56.
$$f(x, y, z) = z$$

57.
$$f(x, y, z) = x^2 + y^2$$

58.
$$f(x, y, z) = y^2 + z^2$$

59.
$$f(x, y, z) = z - x^2 - y^2$$

60.
$$f(x, y, z) = (x^2/25) + (y^2/16) + (z^2/9)$$

Finding Level Surfaces

In Exercises 61-64, find an equation for the level surface of the function through the given point.

61.
$$f(x, y, z) = \sqrt{x - y} - \ln z$$
, (3, -1, 1)

62.
$$f(x, y, z) = \ln(x^2 + y + z^2), (-1, 2, 1)$$

63.
$$g(x, y, z) = \sqrt{x^2 + y^2 + z^2}, (1, -1, \sqrt{2})$$

64.
$$g(x, y, z) = \frac{x - y + z}{2x + y - z}$$
, $(1, 0, -2)$

In Exercises 65-68, find and sketch the domain of f. Then find an equation for the level curve or surface of the function passing through the given point.

65.
$$f(x, y) = \sum_{n=0}^{\infty} \left(\frac{x}{y}\right)^n$$
, (1, 2)

66.
$$g(x, y, z) = \sum_{n=0}^{\infty} \frac{(x+y)^n}{n!z^n}$$
, $(\ln 4, \ln 9, 2)$

67.
$$f(x, y) = \int_{x}^{y} \frac{d\theta}{\sqrt{1 - \theta^2}},$$
 (0, 1)

68.
$$g(x, y, z) = \int_{x}^{y} \frac{dt}{1 + t^2} + \int_{0}^{z} \frac{d\theta}{\sqrt{4 - \theta^2}}, \quad (0, 1, \sqrt{3})$$

COMPUTER EXPLORATIONS

Use a CAS to perform the following steps for each of the functions in Exercises 69-72.

- a. Plot the surface over the given rectangle.
- **b.** Plot several level curves in the rectangle.
- **c.** Plot the level curve of f through the given point.

69.
$$f(x, y) = x \sin \frac{y}{2} + y \sin 2x$$
, $0 \le x \le 5\pi$, $0 \le y \le 5\pi$, $P(3\pi, 3\pi)$

70.
$$f(x, y) = (\sin x)(\cos y)e^{\sqrt{x^2+y^2}/8}, \quad 0 \le x \le 5\pi,$$

 $0 \le y \le 5\pi, \quad P(4\pi, 4\pi)$

71.
$$f(x, y) = \sin(x + 2\cos y), -2\pi \le x \le 2\pi, -2\pi \le y \le 2\pi, P(\pi, \pi)$$

72.
$$f(x, y) = e^{(x^{0.1} - y)} \sin(x^2 + y^2), \quad 0 \le x \le 2\pi, -2\pi \le y \le \pi, \quad P(\pi, -\pi)$$

Use a CAS to plot the implicitly defined level surfaces in Exercises

73.
$$4 \ln(x^2 + y^2 + z^2) = 1$$
 74. $x^2 + z^2 = 1$

74.
$$x^2 + z^2 = 1$$

75.
$$x + y^2 - 3z^2 = 1$$

76.
$$\sin\left(\frac{x}{2}\right) - (\cos y)\sqrt{x^2 + z^2} = 2$$

Parametrized Surfaces Just as you describe curves in the plane parametrically with a pair of equations x = f(t), y = g(t) defined on some parameter interval I, you can sometimes describe surfaces in space with a triple of equations x = f(u, v), y = g(u, v), z = h(u, v)defined on some parameter rectangle $a \le u \le b, c \le v \le d$. Many computer algebra systems permit you to plot such surfaces in parametric mode. (Parametrized surfaces are discussed in detail in Section 16.5.) Use a CAS to plot the surfaces in Exercises 77-80. Also plot several level curves in the xy-plane.

77.
$$x = u \cos v$$
, $y = u \sin v$, $z = u$, $0 \le u \le 2$, $0 \le v \le 2\pi$

78.
$$x = u \cos v$$
, $y = u \sin v$, $z = v$, $0 \le u \le 2$, $0 \le v \le 2\pi$

79.
$$x = (2 + \cos u) \cos v$$
, $y = (2 + \cos u) \sin v$, $z = \sin u$, $0 \le u \le 2\pi$, $0 \le v \le 2\pi$

80.
$$x = 2 \cos u \cos v$$
, $y = 2 \cos u \sin v$, $z = 2 \sin u$, $0 \le u \le 2\pi$, $0 \le v \le \pi$

14.2 Limits and Continuity in Higher Dimensions

This section treats limits and continuity for multivariable functions. These ideas are analogous to limits and continuity for single-variable functions, but including more independent variables leads to additional complexity and important differences requiring some new ideas.

Limits for Functions of Two Variables

If the values of f(x, y) lie arbitrarily close to a fixed real number L for all points (x, y) sufficiently close to a point (x_0, y_0) , we say that f approaches the limit L as (x, y) approaches (x_0, y_0) . This is similar to the informal definition for the limit of a function of a single variable. Notice, however, that if (x_0, y_0) lies in the interior of f's domain, (x, y) can approach (x_0, y_0) from any direction. For the limit to exist, the same limiting value must be obtained whatever direction of approach is taken. We illustrate this issue in several examples following the definition.

DEFINITION We say that a function f(x, y) approaches the **limit** L as (x, y) approaches (x_0, y_0) , and write

$$\lim_{(x, y) \to (x_0, y_0)} f(x, y) = L$$

if, for every number $\epsilon > 0$, there exists a corresponding number $\delta > 0$ such that for all (x, y) in the domain of f,

$$|f(x, y) - L| < \epsilon$$
 whenever $0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta$.

The definition of limit says that the distance between f(x, y) and L becomes arbitrarily small whenever the distance from (x, y) to (x_0, y_0) is made sufficiently small (but not 0). The definition applies to interior points (x_0, y_0) as well as boundary points of the domain of f, although a boundary point need not lie within the domain. The points (x, y) that approach (x_0, y_0) are always taken to be in the domain of f. See Figure 14.12.

FIGURE 14.12 In the limit definition, δ is the radius of a disk centered at (x_0, y_0) . For all points (x, y) within this disk, the function values f(x, y) lie inside the corresponding interval $(L - \epsilon, L + \epsilon)$.

As for functions of a single variable, it can be shown that

$$\lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)\to(x_0,y_0)}} x = x_0$$

$$\lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)\to(x_0,y_0)}} y = y_0$$

$$\lim_{\substack{(x,y)\to(x_0,y_0)\\(x,y)\to(x_0,y_0)}} k = k \qquad \text{(any number } k\text{)}.$$

For example, in the first limit statement above, f(x, y) = x and $L = x_0$. Using the definition of limit, suppose that $\epsilon > 0$ is chosen. If we let δ equal this ϵ , we see that

$$0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta = \epsilon$$

implies

$$\sqrt{(x - x_0)^2} < \epsilon \qquad (x - x_0)^2 \le (x - x_0)^2 + (y - y_0)^2
|x - x_0| < \epsilon \qquad \sqrt{a^2} = |a|
|f(x, y) - x_0| < \epsilon. \qquad x = f(x, y)$$

That is,

$$|f(x, y) - x_0| < \epsilon$$
 whenever $0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta$.

791

$$\lim_{(x, y) \to (x_0, y_0)} f(x, y) = \lim_{(x, y) \to (x_0, y_0)} x = x_0.$$

As with single-variable functions, the limit of the sum of two functions is the sum of their limits (when they both exist), with similar results for the limits of the differences, constant multiples, products, quotients, powers, and roots.

THEOREM 1—Properties of Limits of Functions of Two Variables The following rules hold if L, M, and k are real numbers and

$$\lim_{(x, y) \to (x_0, y_0)} f(x, y) = L \quad \text{and} \quad \lim_{(x, y) \to (x_0, y_0)} g(x, y) = M.$$

1. Sum Rule:
$$\lim_{(x, y) \to (x_0, y_0)} (f(x, y) + g(x, y)) = L + M$$

2. Difference Rule:
$$\lim_{(x,y)\to(x,y)} (f(x,y)-g(x,y)) = L-M$$

2. Difference Rule:
$$\lim_{(x,y)\to(x_0,y_0)} (f(x,y)-g(x,y)) = L-M$$
3. Constant Multiple Rule:
$$\lim_{(x,y)\to(x_0,y_0)} kf(x,y) = kL \quad \text{(any number } k)$$

4. Product Rule:
$$\lim_{(x,y)\to(x_0,y_0)} (f(x,y)\cdot g(x,y)) = L\cdot M$$

5. Quotient Rule:
$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y)}{g(x,y)} = \frac{L}{M}, \qquad M \neq 0$$

5. Quotient Rule:
$$\lim_{(x,y)\to(x_0,y_0)} \frac{f(x,y)}{g(x,y)} = \frac{L}{M}, \qquad M \neq 0$$
6. Power Rule:
$$\lim_{(x,y)\to(x_0,y_0)} [f(x,y)]^n = L^n, n \text{ a positive integer}$$

7. Root Rule:
$$\lim_{(x,y)\to(x_0,y_0)} \sqrt[n]{f(x,y)} = \sqrt[n]{L} = L^{1/n},$$

n a positive integer, and if n is even, we assume that L > 0.

While we won't prove Theorem 1 here, we give an informal discussion of why it's true. If (x, y) is sufficiently close to (x_0, y_0) , then f(x, y) is close to L and g(x, y) is close to M (from the informal interpretation of limits). It is then reasonable that f(x, y) + g(x, y) is close to L + M; f(x, y) - g(x, y) is close to L - M; kf(x, y) is close to kL; f(x, y)g(x, y)is close to LM; and f(x, y)/g(x, y) is close to L/M if $M \neq 0$.

When we apply Theorem 1 to polynomials and rational functions, we obtain the useful result that the limits of these functions as $(x, y) \rightarrow (x_0, y_0)$ can be calculated by evaluating the functions at (x_0, y_0) . The only requirement is that the rational functions be defined at (x_0, y_0) .

EXAMPLE 1 In this example, we can combine the three simple results following the limit definition with the results in Theorem 1 to calculate the limits. We simply substitute the x- and y-values of the point being approached into the functional expression to find the limiting value.

(a)
$$\lim_{(x,y)\to(0,1)} \frac{x-xy+3}{x^2y+5xy-y^3} = \frac{0-(0)(1)+3}{(0)^2(1)+5(0)(1)-(1)^3} = -3$$

(b)
$$\lim_{(x,y)\to(3,-4)} \sqrt{x^2+y^2} = \sqrt{(3)^2+(-4)^2} = \sqrt{25} = 5$$

EXAMPLE 2 Find
$$\lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}}$$
.

Solution Since the denominator $\sqrt{x} - \sqrt{y}$ approaches 0 as $(x, y) \rightarrow (0, 0)$, we cannot use the Quotient Rule from Theorem 1. If we multiply numerator and denominator by $\sqrt{x} + \sqrt{y}$, however, we produce an equivalent fraction whose limit we *can* find:

$$\lim_{(x,y)\to(0,0)} \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}} = \lim_{(x,y)\to(0,0)} \frac{(x^2 - xy)(\sqrt{x} + \sqrt{y})}{(\sqrt{x} - \sqrt{y})(\sqrt{x} + \sqrt{y})}$$
 Multiply by a form equal to 1.
$$= \lim_{(x,y)\to(0,0)} \frac{x(x - y)(\sqrt{x} + \sqrt{y})}{x - y}$$
 Algebra
$$= \lim_{(x,y)\to(0,0)} x(\sqrt{x} + \sqrt{y})$$
 Cancel the nonzero factor $(x - y)$.
$$= 0(\sqrt{0} + \sqrt{0}) = 0$$
 Known limit values

We can cancel the factor (x - y) because the path y = x (along which x - y = 0) is *not* in the domain of the function

$$f(x,y) = \frac{x^2 - xy}{\sqrt{x} - \sqrt{y}}.$$

FIGURE 14.13 The surface graph shows the limit of the function in Example 3 must be 0, if it exists.

EXAMPLE 3 Find $\lim_{(x, y) \to (0,0)} \frac{4xy^2}{x^2 + y^2}$ if it exists.

Solution We first observe that along the line x = 0, the function always has value 0 when $y \ne 0$. Likewise, along the line y = 0, the function has value 0 provided $x \ne 0$. So if the limit does exist as (x, y) approaches (0, 0), the value of the limit must be 0 (see Figure 14.13). To see if this is true, we apply the definition of limit.

Let $\epsilon > 0$ be given, but arbitrary. We want to find a $\delta > 0$ such that

$$\left| \frac{4xy^2}{x^2 + y^2} - 0 \right| < \epsilon$$
 whenever $0 < \sqrt{x^2 + y^2} < \delta$

or

$$\frac{4|x|y^2}{x^2+y^2} < \epsilon \quad \text{whenever} \quad 0 < \sqrt{x^2+y^2} < \delta.$$

Since $y^2 \le x^2 + y^2$ we have that

$$\frac{4|x|y^2}{x^2 + y^2} \le 4|x| = 4\sqrt{x^2} \le 4\sqrt{x^2 + y^2}. \qquad \frac{y^2}{x^2 + y^2} \le 1$$

So if we choose $\delta = \epsilon/4$ and let $0 < \sqrt{x^2 + y^2} < \delta$, we get

$$\left|\frac{4xy^2}{x^2+y^2}-0\right| \le 4\sqrt{x^2+y^2} < 4\delta = 4\left(\frac{\epsilon}{4}\right) = \epsilon.$$

It follows from the definition that

$$\lim_{(x, y) \to (0,0)} \frac{4xy^2}{x^2 + y^2} = 0.$$

EXAMPLE 4 If
$$f(x, y) = \frac{y}{x}$$
, does $\lim_{(x, y) \to (0, 0)} f(x, y)$ exist?

Solution The domain of f does not include the y-axis, so we do not consider any points (x, y) where x = 0 in the approach toward the origin (0, 0). Along the x-axis, the value of the function is f(x, 0) = 0 for all $x \neq 0$. So if the limit does exist as $(x, y) \rightarrow (0, 0)$, the value of the limit must be L=0. On the other hand, along the line y=x, the value of the function is f(x, x) = x/x = 1 for all $x \ne 0$. That is, the function f approaches the value 1 along the line y = x. This means that for every disk of radius δ centered at (0, 0), the disk will contain points (x, 0) on the x-axis where the value of the function is 0, and also points (x, x) along the line y = x where the value of the function is 1. So no matter how small we choose δ as the radius of the disk in Figure 14.12, there will be points within the disk for which the function values differ by 1. Therefore, the limit cannot exist because we can take ϵ to be any number less than 1 in the limit definition and deny that L=0 or 1, or any other real number. The limit does not exist because we have different limiting values along different paths approaching the point (0, 0).

Continuity

As with functions of a single variable, continuity is defined in terms of limits.

- **1.** f is defined at (x_0, y_0) ,
- $\lim_{\substack{(x, y) \to (x_0, y_0) \\ (x, y) \to (x_0, y_0)}} f(x, y) \text{ exists,}$

A function is **continuous** if it is continuous at every point of its domain.

FIGURE 14.14 (a) The graph of

$$f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0). \end{cases}$$

The function is continuous at every point except the origin. (b) The values of fare different constants along each line $y = mx, x \neq 0$ (Example 5).

As with the definition of limit, the definition of continuity applies at boundary points as well as interior points of the domain of f. The only requirement is that each point (x, y)near (x_0, y_0) be in the domain of f.

A consequence of Theorem 1 is that algebraic combinations of continuous functions are continuous at every point at which all the functions involved are defined. This means that sums, differences, constant multiples, products, quotients, and powers of continuous functions are continuous where defined. In particular, polynomials and rational functions of two variables are continuous at every point at which they are defined.

EXAMPLE 5 Show that

$$f(x, y) = \begin{cases} \frac{2xy}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

is continuous at every point except the origin (Figure 14.14).

Solution The function f is continuous at any point $(x, y) \neq (0, 0)$ because its values are then given by a rational function of x and y and the limiting value is obtained by substituting the values of x and y into the functional expression.

At (0, 0), the value of f is defined, but f, we claim, has no limit as $(x, y) \rightarrow (0, 0)$. The reason is that different paths of approach to the origin can lead to different results, as we now see.

For every value of m, the function f has a constant value on the "punctured" line $y = mx, x \neq 0$, because

$$f(x, y)\Big|_{y=mx} = \frac{2xy}{x^2 + y^2}\Big|_{y=mx} = \frac{2x(mx)}{x^2 + (mx)^2} = \frac{2mx^2}{x^2 + m^2x^2} = \frac{2m}{1 + m^2}.$$

Therefore, f has this number as its limit as (x, y) approaches (0, 0) along the line:

$$\lim_{\substack{(x, y) \to (0,0) \\ \text{slong } y = mx}} f(x, y) = \lim_{\substack{(x, y) \to (0,0)}} \left[f(x, y) \Big|_{y = mx} \right] = \frac{2m}{1 + m^2}.$$

This limit changes with each value of the slope m. There is therefore no single number we may call the limit of f as (x, y) approaches the origin. The limit fails to exist, and the function is not continuous.

Examples 4 and 5 illustrate an important point about limits of functions of two or more variables. For a limit to exist at a point, the limit must be the same along every approach path. This result is analogous to the single-variable case where both the left- and right-sided limits had to have the same value. For functions of two or more variables, if we ever find paths with different limits, we know the function has no limit at the point they approach.

Two-Path Test for Nonexistence of a Limit

If a function f(x, y) has different limits along two different paths in the domain of f as (x, y) approaches (x_0, y_0) , then $\lim_{(x, y) \to (x_0, y_0)} f(x, y)$ does not exist.

EXAMPLE 6 Show that the function

$$f(x, y) = \frac{2x^2y}{x^4 + y^2}$$

(Figure 14.15) has no limit as (x, y) approaches (0, 0).

Solution The limit cannot be found by direct substitution, which gives the indeterminate form 0/0. We examine the values of f along parabolic curves that end at (0, 0). Along the curve $y = kx^2$, $x \ne 0$, the function has the constant value

$$f(x,y)\bigg|_{y=ky^2} = \frac{2x^2y}{x^4 + y^2}\bigg|_{y=ky^2} = \frac{2x^2(kx^2)}{x^4 + (kx^2)^2} = \frac{2kx^4}{x^4 + k^2x^4} = \frac{2k}{1 + k^2}.$$

Therefore,

$$\lim_{\substack{(x,y)\to(0,0)\\\text{along }y=kx^2}} f(x,y) = \lim_{\substack{(x,y)\to(0,0)}} \left[f(x,y) \Big|_{y=kx^2} \right] = \frac{2k}{1+k^2}.$$

This limit varies with the path of approach. If (x, y) approaches (0, 0) along the parabola $y = x^2$, for instance, k = 1 and the limit is 1. If (x, y) approaches (0, 0) along the x-axis, k = 0 and the limit is 0. By the two-path test, f has no limit as (x, y) approaches (0, 0).

It can be shown that the function in Example 6 has limit 0 along every path y = mx (Exercise 53). We conclude that

Having the same limit along all straight lines approaching (x_0, y_0) does not imply a limit exists at (x_0, y_0) .

FIGURE 14.15 (a) The graph of $f(x, y) = 2x^2y/(x^4 + y^2)$. (b) Along each path $y = kx^2$ the value of f is constant, but varies with k (Example 6).

Whenever it is correctly defined, the composite of continuous functions is also continuous. The only requirement is that each function be continuous where it is applied. The proof, omitted here, is similar to that for functions of a single variable (Theorem 9 in Section 2.5).

Continuity of Composites

If f is continuous at (x_0, y_0) and g is a single-variable function continuous at $f(x_0, y_0)$, then the composite function $h = g \circ f$ defined by h(x, y) = g(f(x, y))is continuous at (x_0, y_0) .

For example, the composite functions

$$e^{x-y}$$
, $\cos \frac{xy}{x^2+1}$, $\ln (1+x^2y^2)$

are continuous at every point (x, y).

Functions of More Than Two Variables

The definitions of limit and continuity for functions of two variables and the conclusions about limits and continuity for sums, products, quotients, powers, and composites all extend to functions of three or more variables. Functions like

$$\ln(x + y + z) \qquad \text{and} \qquad \frac{y \sin z}{x - 1}$$

are continuous throughout their domains, and limits like

$$\lim_{P \to (1,0,-1)} \frac{e^{x+z}}{z^2 + \cos\sqrt{xy}} = \frac{e^{1-1}}{(-1)^2 + \cos 0} = \frac{1}{2},$$

where P denotes the point (x, y, z), may be found by direct substitution.

Extreme Values of Continuous Functions on Closed, Bounded Sets

The Extreme Value Theorem (Theorem 1, Section 4.1) states that a function of a single variable that is continuous throughout a closed, bounded interval [a, b] takes on an absolute maximum value and an absolute minimum value at least once in [a, b]. The same holds true of a function z = f(x, y) that is continuous on a closed, bounded set R in the plane (like a line segment, a disk, or a filled-in triangle). The function takes on an absolute maximum value at some point in R and an absolute minimum value at some point in R. The function may take on a maximum or minimum value more than once over R.

Similar results hold for functions of three or more variables. A continuous function w = f(x, y, z), for example, must take on absolute maximum and minimum values on any closed, bounded set (solid ball or cube, spherical shell, rectangular solid) on which it is defined. We will learn how to find these extreme values in Section 14.7.

Exercises 14.2

Limits with Two Variables

Find the limits in Exercises 1–12.

1.
$$\lim_{(x,y)\to(0,0)} \frac{3x^2-y^2+5}{x^2+y^2+2}$$

2.
$$\lim_{(x, y) \to (0,4)} \frac{x}{\sqrt{y}}$$

3.
$$\lim_{(x,y)\to(3,4)} \sqrt{x^2+y^2-1}$$

3.
$$\lim_{(x,y)\to(3,4)} \sqrt{x^2 + y^2 - 1}$$
 4. $\lim_{(x,y)\to(2,-3)} \left(\frac{1}{x} + \frac{1}{y}\right)^2$

5.
$$\lim_{(x,y)\to(0,\pi/4)} \sec x \tan y$$

5.
$$\lim_{(x,y)\to(0,\pi/4)} \sec x \tan y$$
 6. $\lim_{(x,y)\to(0,0)} \cos \frac{x^2+y^3}{x+y+1}$

7.
$$\lim_{(x, y) \to (0, \ln 2)} e^{x-y}$$

8.
$$\lim_{(x,y)\to(1,1)} \ln |1 + x^2 y^2|$$

9.
$$\lim_{(x, y) \to (0,0)} \frac{e^y \sin x}{x}$$

10.
$$\lim_{(x, y) \to (1/27, \pi^3)} \cos \sqrt[3]{xy}$$

11.
$$\lim_{(x, y) \to (1, \pi/6)} \frac{x \sin y}{x^2 + 1}$$

12.
$$\lim_{(x,y)\to(\pi/2,0)} \frac{\cos y + 1}{y - \sin x}$$

Limits of Quotients

Find the limits in Exercises 13–24 by rewriting the fractions first.

13.
$$\lim_{\substack{(x,y)\to(1,1)\\x\neq y}} \frac{x^2-2xy+y^2}{x-y}$$
 14. $\lim_{\substack{(x,y)\to(1,1)\\x\neq y}} \frac{x^2-y^2}{x-y}$

14.
$$\lim_{(x, y) \to (1, 1)} \frac{x^2 - y^2}{x - y}$$

15.
$$\lim_{\substack{(x,y)\to(1,1)\\x\neq 1}} \frac{xy-y-2x+2}{x-1}$$

16.
$$\lim_{\substack{(x,y)\to(2,-4)\\x\neq -4}} \frac{y+4}{x^2y-xy+4x^2-4x}$$

17.
$$\lim_{\substack{(x,y)\to(0,0)\\x\neq y}} \frac{x-y+2\sqrt{x}-2\sqrt{y}}{\sqrt{x}-\sqrt{y}}$$

18.
$$\lim_{\substack{(x,y)\to(2,2)\\x+y\neq 4}} \frac{x+y-4}{\sqrt{x+y}-2}$$

18.
$$\lim_{\substack{(x,y)\to(2,2)\\x+y\neq4}} \frac{x+y-4}{\sqrt{x+y}-2}$$
 19. $\lim_{\substack{(x,y)\to(2,0)\\2x-y\neq4}} \frac{\sqrt{2x-y}-2}{2x-y-4}$

20.
$$\lim_{\substack{(x,y)\to(4,3)\\x\neq y+1}} \frac{\sqrt{x}-\sqrt{y+1}}{x-y-1}$$

21.
$$\lim_{(x,y)\to(0,0)} \frac{\sin(x^2+y^2)}{x^2+y^2}$$
 22. $\lim_{(x,y)\to(0,0)} \frac{1-\cos(xy)}{xy}$

22.
$$\lim_{(x, y) \to (0,0)} \frac{1 - \cos(xy)}{xy}$$

23.
$$\lim_{(x,y)\to(1-1)} \frac{x^3+y^3}{x+y}$$
 24. $\lim_{(x,y)\to(2,2)} \frac{x-y}{x^4-y^4}$

24.
$$\lim_{(x,y)\to(2,2)} \frac{x-y}{x^4-y^4}$$

Limits with Three Variables

Find the limits in Exercises 25–30.

25.
$$\lim_{P \to (1,3,4)} \left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \right)$$
 26. $\lim_{P \to (1,-1,-1)} \frac{2xy + yz}{x^2 + z^2}$

26.
$$\lim_{P \to (1,-1,-1)} \frac{2xy + yz}{x^2 + z^2}$$

27.
$$\lim_{P \to (\pi,\pi,0)} (\sin^2 x + \cos^2 y + \sec^2 z)$$

28.
$$\lim_{P \to (-1/4, \pi/2, 2)} \tan^{-1} xyz$$
 29. $\lim_{P \to (\pi, 0, 3)} ze^{-2y} \cos 2x$

29.
$$\lim_{P \to (\pi,0,3)} ze^{-2y} \cos 2x$$

30.
$$\lim_{P \to (2, -3, 6)} \ln \sqrt{x^2 + y^2 + z^2}$$

Continuity for Two Variables

At what points (x, y) in the plane are the functions in Exercises 31–34 continuous?

31. a.
$$f(x, y) = \sin(x + y)$$

b.
$$f(x, y) = \ln(x^2 + y^2)$$

32. a.
$$f(x, y) = \frac{x + y}{x - y}$$
 b. $f(x, y) = \frac{y}{x^2 + 1}$

b.
$$f(x, y) = \frac{y}{x^2 + 1}$$

33. a.
$$g(x, y) = \sin \frac{1}{xy}$$
 b. $g(x, y) = \frac{x + y}{2 + \cos x}$

b.
$$g(x, y) = \frac{x + y}{2 + \cos x}$$

34. a.
$$g(x, y) = \frac{x^2 + y^2}{x^2 - 3x + 2}$$
 b. $g(x, y) = \frac{1}{x^2 - y}$

b.
$$g(x, y) = \frac{1}{x^2 - y}$$

Continuity for Three Variables

At what points (x, y, z) in space are the functions in Exercises 35–40

35. a.
$$f(x, y, z) = x^2 + y^2 - 2z^2$$

b.
$$f(x, y, z) = \sqrt{x^2 + y^2 - 1}$$

36. a.
$$f(x, y, z) = \ln xyz$$

b.
$$f(x, y, z) = e^{x+y} \cos z$$

37. a.
$$h(x, y, z) = xy \sin \frac{1}{z}$$
 b. $h(x, y, z) = \frac{1}{x^2 + z^2 - 1}$

b.
$$h(x, y, z) = \frac{1}{x^2 + z^2 - 1}$$

38. a.
$$h(x, y, z) = \frac{1}{|y| + |z|}$$
 b. $h(x, y, z) = \frac{1}{|xy| + |z|}$

b.
$$h(x, y, z) = \frac{1}{|xy| + |z|}$$

39. a.
$$h(x, y, z) = \ln(z - x^2 - y^2 - 1)$$

b.
$$h(x, y, z) = \frac{1}{z - \sqrt{x^2 + y^2}}$$

40. a.
$$h(x, y, z) = \sqrt{4 - x^2 - y^2 - z^2}$$

b.
$$h(x, y, z) = \frac{1}{4 - \sqrt{x^2 + y^2 + z^2 - 9}}$$

No Limit Exists at the Origin

By considering different paths of approach, show that the functions in Exercises 41–48 have no limit as $(x, y) \rightarrow (0, 0)$.

41.
$$f(x, y) = -\frac{x}{\sqrt{x^2 + y^2}}$$
 42. $f(x, y) = \frac{x^4}{x^4 + y^2}$

42.
$$f(x, y) = \frac{x^4}{x^4 + y^2}$$

43.
$$f(x, y) = \frac{x^4 - y^2}{x^4 + y^2}$$

44.
$$f(x, y) = \frac{xy}{|xy|}$$

45.
$$g(x, y) = \frac{x - y}{x + y}$$

46.
$$g(x, y) = \frac{x^2 - y}{x - y}$$

47.
$$h(x, y) = \frac{x^2 + y}{y}$$

48.
$$h(x, y) = \frac{x^2y}{x^4 + y^2}$$

Theory and Examples

In Exercises 49 and 50, show that the limits do not exist.

49.
$$\lim_{(x,y)\to(1,1)} \frac{xy^2-1}{y-1}$$

49.
$$\lim_{(x,y)\to(1,1)} \frac{xy^2-1}{y-1}$$
 50. $\lim_{(x,y)\to(1,-1)} \frac{xy+1}{x^2-y^2}$

51. Let
$$f(x, y) = \begin{cases} 1, & y \ge x^4 \\ 1, & y \le 0 \\ 0, & \text{otherwise.} \end{cases}$$

Find each of the following limits, or explain that the limit does

a.
$$\lim_{(x, y) \to (0,1)} f(x, y)$$

b.
$$\lim_{(x, y) \to (2,3)} f(x, y)$$

c.
$$\lim_{(x,y)\to(0,0)} f(x,y)$$

52. Let $f(x, y) = \begin{cases} x^2, & x \ge 0 \\ x^3, & x < 0 \end{cases}$.

Find the following limits.

a.
$$\lim_{(x, y) \to (3, -2)} f(x, y)$$

b.
$$\lim_{(x,y)\to(-2,1)} f(x,y)$$

c.
$$\lim_{(x, y) \to (0,0)} f(x, y)$$

- **53.** Show that the function in Example 6 has limit 0 along every straight line approaching (0, 0).
- **54.** If $f(x_0, y_0) = 3$, what can you say about

$$\lim_{(x, y)\to(x_0, y_0)} f(x, y)$$

if f is continuous at (x_0, y_0) ? If f is not continuous at (x_0, y_0) ? Give reasons for your answers.

The Sandwich Theorem for functions of two variables states that if $g(x, y) \le f(x, y) \le h(x, y)$ for all $(x, y) \ne (x_0, y_0)$ in a disk centered at (x_0, y_0) and if g and h have the same finite limit L as $(x, y) \rightarrow (x_0, y_0)$, then

$$\lim_{(x, y) \to (x_0, y_0)} f(x, y) = L.$$

Use this result to support your answers to the questions in Exercises 55–58.

55. Does knowing that

$$1 - \frac{x^2 y^2}{3} < \frac{\tan^{-1} xy}{xy} < 1$$

tell you anything about

$$\lim_{(x, y) \to (0,0)} \frac{\tan^{-1} xy}{xy}?$$

Give reasons for your answer.

56. Does knowing that

$$2|xy| - \frac{x^2y^2}{6} < 4 - 4\cos\sqrt{|xy|} < 2|xy|$$

tell you anything about

$$\lim_{(x, y) \to (0,0)} \frac{4 - 4\cos\sqrt{|xy|}}{|xy|}?$$

Give reasons for your answer.

57. Does knowing that $|\sin(1/x)| \le 1$ tell you anything about

$$\lim_{(x, y) \to (0,0)} y \sin \frac{1}{x}$$
?

Give reasons for your answer.

58. Does knowing that $|\cos(1/y)| \le 1$ tell you anything about

$$\lim_{(x, y) \to (0,0)} x \cos \frac{1}{y}?$$

Give reasons for your answer.

- **59.** (*Continuation of Example 5.*)
 - **a.** Reread Example 5. Then substitute $m = \tan \theta$ into the formula

$$f(x, y)\bigg|_{y=mx} = \frac{2m}{1+m^2}$$

and simplify the result to show how the value of f varies with the line's angle of inclination.

- **b.** Use the formula you obtained in part (a) to show that the limit of f as $(x, y) \rightarrow (0, 0)$ along the line y = mx varies from -1 to 1 depending on the angle of approach.
- **60.** Continuous extension Define f(0, 0) in a way that extends

$$f(x, y) = xy \frac{x^2 - y^2}{x^2 + y^2}$$

to be continuous at the origin.

Changing Variables to Polar Coordinates

If you cannot make any headway with $\lim_{(x,y)\to(0,0)} f(x,y)$ in rectangular coordinates, try changing to polar coordinates. Substitute $x = r\cos\theta$, $y = r\sin\theta$, and investigate the limit of the resulting expression as $r\to 0$. In other words, try to decide whether there exists a number L satisfying the following criterion:

Given $\epsilon > 0$, there exists a $\delta > 0$ such that for all r and θ ,

$$|r| < \delta \implies |f(r,\theta) - L| < \epsilon.$$
 (1)

If such an L exists, then

$$\lim_{(x,y)\to(0,0)} f(x,y) = \lim_{r\to 0} f(r\cos\theta, r\sin\theta) = L.$$

For instance.

$$\lim_{(x,y)\to(0,0)} \frac{x^3}{x^2 + y^2} = \lim_{r\to 0} \frac{r^3 \cos^3 \theta}{r^2} = \lim_{r\to 0} r \cos^3 \theta = 0.$$

To verify the last of these equalities, we need to show that Equation (1) is satisfied with $f(r, \theta) = r \cos^3 \theta$ and L = 0. That is, we need to show that given any $\epsilon > 0$, there exists a $\delta > 0$ such that for all r and θ ,

$$|r| < \delta \implies |r \cos^3 \theta - 0| < \epsilon$$
.

Since

$$|r\cos^3\theta| = |r||\cos^3\theta| \le |r| \cdot 1 = |r|,$$

the implication holds for all r and θ if we take $\delta = \epsilon$.

In contrast,

$$\frac{x^2}{r^2 + v^2} = \frac{r^2 \cos^2 \theta}{r^2} = \cos^2 \theta$$

takes on all values from 0 to 1 regardless of how small |r| is, so that $\lim_{(x, y) \to (0,0)} x^2/(x^2 + y^2)$ does not exist.

In each of these instances, the existence or nonexistence of the limit as $r \rightarrow 0$ is fairly clear. Shifting to polar coordinates does not always help, however, and may even tempt us to false conclusions. For example, the limit may exist along every straight line (or ray) $\theta = \text{constant}$ and yet fail to exist in the broader sense. Example 5 illustrates this point. In polar coordinates, $f(x, y) = (2x^2y)/(x^4 + y^2)$ becomes

$$f(r\cos\theta, r\sin\theta) = \frac{r\cos\theta\sin 2\theta}{r^2\cos^4\theta + \sin^2\theta}$$

for $r \neq 0$. If we hold θ constant and let $r \rightarrow 0$, the limit is 0. On the path $y = x^2$, however, we have $r \sin \theta = r^2 \cos^2 \theta$ and

$$f(r\cos\theta, r\sin\theta) = \frac{r\cos\theta\sin 2\theta}{r^2\cos^4\theta + (r\cos^2\theta)^2}$$
$$= \frac{2r\cos^2\theta\sin\theta}{2r^2\cos^4\theta} = \frac{r\sin\theta}{r^2\cos^2\theta} = 1.$$

In Exercises 61–66, find the limit of f as $(x, y) \rightarrow (0, 0)$ or show that the limit does not exist.

61.
$$f(x, y) = \frac{x^3 - xy^2}{x^2 + y^2}$$

62.
$$f(x, y) = \cos\left(\frac{x^3 - y^3}{x^2 + y^2}\right)$$

63.
$$f(x, y) = \frac{y^2}{x^2 + y^2}$$

63.
$$f(x, y) = \frac{y^2}{x^2 + y^2}$$
 64. $f(x, y) = \frac{2x}{x^2 + x + y^2}$

65.
$$f(x, y) = \tan^{-1} \left(\frac{|x| + |y|}{x^2 + y^2} \right)$$

66.
$$f(x, y) = \frac{x^2 - y^2}{x^2 + y^2}$$

In Exercises 67 and 68, define f(0, 0) in a way that extends f to be continuous at the origin.

67.
$$f(x, y) = \ln\left(\frac{3x^2 - x^2y^2 + 3y^2}{x^2 + y^2}\right)$$

68.
$$f(x, y) = \frac{3x^2y}{x^2 + y^2}$$

Using the Limit Definition

Each of Exercises 69–74 gives a function f(x, y) and a positive number ϵ . In each exercise, show that there exists a $\delta > 0$ such that for all (x, y),

$$\sqrt{x^2 + y^2} < \delta \implies |f(x, y) - f(0, 0)| < \epsilon.$$

69.
$$f(x, y) = x^2 + y^2$$
, $\epsilon = 0.01$

70.
$$f(x, y) = y/(x^2 + 1)$$
, $\epsilon = 0.05$

71.
$$f(x, y) = (x + y)/(x^2 + 1), \quad \epsilon = 0.01$$

72.
$$f(x, y) = (x + y)/(2 + \cos x), \quad \epsilon = 0.02$$

73.
$$f(x, y) = \frac{xy^2}{x^2 + y^2}$$
 and $f(0, 0) = 0$, $\epsilon = 0.04$

74.
$$f(x, y) = \frac{x^3 + y^4}{x^2 + y^2}$$
 and $f(0, 0) = 0$, $\epsilon = 0.02$

Each of Exercises 75–78 gives a function f(x, y, z) and a positive number ϵ . In each exercise, show that there exists a $\delta > 0$ such that for all (x, y, z),

$$\sqrt{x^2 + y^2 + z^2} < \delta \implies |f(x, y, z) - f(0, 0, 0)| < \epsilon.$$

75.
$$f(x, y, z) = x^2 + y^2 + z^2$$
, $\epsilon = 0.015$

76.
$$f(x, y, z) = xyz$$
, $\epsilon = 0.008$

77.
$$f(x, y, z) = \frac{x + y + z}{x^2 + y^2 + z^2 + 1}, \quad \epsilon = 0.015$$

78.
$$f(x, y, z) = \tan^2 x + \tan^2 y + \tan^2 z$$
, $\epsilon = 0.03$

79. Show that f(x, y, z) = x + y - z is continuous at every point $(x_0, y_0, z_0).$

80. Show that $f(x, y, z) = x^2 + y^2 + z^2$ is continuous at the origin.

14.3 Partial Derivatives

The calculus of several variables is similar to single-variable calculus applied to several variables one at a time. When we hold all but one of the independent variables of a function constant and differentiate with respect to that one variable, we get a "partial" derivative. This section shows how partial derivatives are defined and interpreted geometrically, and how to calculate them by applying the rules for differentiating functions of a single variable. The idea of differentiability for functions of several variables requires more than the existence of the partial derivatives because a point can be approached from so many different directions. However, we will see that differentiable functions of several variables behave in the same way as differentiable single-variable functions, so they are continuous and can be well approximated by linear functions.

Partial Derivatives of a Function of Two Variables

If (x_0, y_0) is a point in the domain of a function f(x, y), the vertical plane $y = y_0$ will cut the surface z = f(x, y) in the curve $z = f(x, y_0)$ (Figure 14.16). This curve is the graph of the function $z = f(x, y_0)$ in the plane $y = y_0$. The horizontal coordinate in this plane is x; the vertical coordinate is z. The y-value is held constant at y_0 , so y is not a variable.

We define the partial derivative of f with respect to x at the point (x_0, y_0) as the ordinary derivative of $f(x, y_0)$ with respect to x at the point $x = x_0$. To distinguish partial derivatives from ordinary derivatives we use the symbol ∂ rather than the d previously used. In the definition, h represents a real number, positive or negative.

Horizontal axis in the plane $y = y_0$

FIGURE 14.16 The intersection of the plane $y = y_0$ with the surface z = f(x, y), viewed from above the first quadrant of the *xy*-plane.

DEFINITION The partial derivative of f(x, y) with respect to x at the point (x_0, y_0) is

$$\left. \frac{\partial f}{\partial x} \right|_{(x_0, y_0)} = \lim_{h \to 0} \frac{f(x_0 + h, y_0) - f(x_0, y_0)}{h},$$

provided the limit exists.

An equivalent expression for the partial derivative is

$$\left. \frac{d}{dx} f(x, y_0) \right|_{x = x_0}.$$

The slope of the curve $z = f(x, y_0)$ at the point $P(x_0, y_0, f(x_0, y_0))$ in the plane $y = y_0$ is the value of the partial derivative of f with respect to x at (x_0, y_0) . (In Figure 14.16 this slope is negative.) The tangent line to the curve at P is the line in the plane $y = y_0$ that passes through P with this slope. The partial derivative $\partial f/\partial x$ at (x_0, y_0) gives the rate of change of f with respect to x when y is held fixed at the value y_0 .

We use several notations for the partial derivative:

$$\frac{\partial f}{\partial x}(x_0, y_0)$$
 or $f_x(x_0, y_0)$, $\frac{\partial z}{\partial x}\Big|_{(x_0, y_0)}$, and f_x , $\frac{\partial f}{\partial x}$, z_x , or $\frac{\partial z}{\partial x}$

The definition of the partial derivative of f(x, y) with respect to y at a point (x_0, y_0) is similar to the definition of the partial derivative of f with respect to x. We hold x fixed at the value x_0 and take the ordinary derivative of $f(x_0, y)$ with respect to y at y_0 .

DEFINITION The partial derivative of f(x, y) with respect to y at the point (x_0, y_0) is

$$\left. \frac{\partial f}{\partial y} \right|_{(x_0, y_0)} = \left. \frac{d}{dy} f(x_0, y) \right|_{y = y_0} = \lim_{h \to 0} \frac{f(x_0, y_0 + h) - f(x_0, y_0)}{h},$$

provided the limit exists.

FIGURE 14.17 The intersection of the plane $x = x_0$ with the surface z = f(x, y), viewed from above the first quadrant of the *xy*-plane.

The slope of the curve $z = f(x_0, y)$ at the point $P(x_0, y_0, f(x_0, y_0))$ in the vertical plane $x = x_0$ (Figure 14.17) is the partial derivative of f with respect to y at (x_0, y_0) . The tangent line to the curve at P is the line in the plane $x = x_0$ that passes through P with this slope. The partial derivative gives the rate of change of f with respect to f0 at f1 when f2 is held fixed at the value f3.

The partial derivative with respect to *y* is denoted the same way as the partial derivative with respect to *x*:

$$\frac{\partial f}{\partial y}(x_0, y_0), \qquad f_y(x_0, y_0), \qquad \frac{\partial f}{\partial y}, \qquad f_y.$$

Notice that we now have two tangent lines associated with the surface z = f(x, y) at the point $P(x_0, y_0, f(x_0, y_0))$ (Figure 14.18). Is the plane they determine tangent to the surface at P? We will see that it is for the *differentiable* functions defined at the end of this section, and we will learn how to find the tangent plane in Section 14.6. First we have to learn more about partial derivatives themselves.

FIGURE 14.18 Figures 14.16 and 14.17 combined. The tangent lines at the point $(x_0, y_0, f(x_0, y_0))$ determine a plane that, in this picture at least, appears to be tangent to the surface.

Calculations

The definitions of $\partial f/\partial x$ and $\partial f/\partial y$ give us two different ways of differentiating f at a point: with respect to x in the usual way while treating y as a constant and with respect to y in the usual way while treating x as a constant. As the following examples show, the values of these partial derivatives are usually different at a given point (x_0, y_0) .

EXAMPLE 1 Find the values of $\partial f/\partial x$ and $\partial f/\partial y$ at the point (4, -5) if

$$f(x, y) = x^2 + 3xy + y - 1.$$

Solution To find $\partial f/\partial x$, we treat y as a constant and differentiate with respect to x:

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x}(x^2 + 3xy + y - 1) = 2x + 3 \cdot 1 \cdot y + 0 - 0 = 2x + 3y.$$

The value of $\partial f/\partial x$ at (4, -5) is 2(4) + 3(-5) = -7.

801

To find $\partial f/\partial y$, we treat x as a constant and differentiate with respect to y:

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} (x^2 + 3xy + y - 1) = 0 + 3 \cdot x \cdot 1 + 1 - 0 = 3x + 1.$$

The value of $\partial f/\partial y$ at (4, -5) is 3(4) + 1 = 13.

EXAMPLE 2 Find $\partial f/\partial y$ as a function if $f(x, y) = y \sin xy$.

Solution We treat x as a constant and f as a product of y and $\sin xy$:

$$\frac{\partial f}{\partial y} = \frac{\partial}{\partial y} (y \sin xy) = y \frac{\partial}{\partial y} \sin xy + (\sin xy) \frac{\partial}{\partial y} (y)$$
$$= (y \cos xy) \frac{\partial}{\partial y} (xy) + \sin xy = xy \cos xy + \sin xy.$$

EXAMPLE 3 Find f_x and f_y as functions if

$$f(x, y) = \frac{2y}{y + \cos x}.$$

Solution We treat f as a quotient. With y held constant, we get

$$f_x = \frac{\partial}{\partial x} \left(\frac{2y}{y + \cos x} \right) = \frac{(y + \cos x) \frac{\partial}{\partial x} (2y) - 2y \frac{\partial}{\partial x} (y + \cos x)}{(y + \cos x)^2}$$
$$= \frac{(y + \cos x)(0) - 2y(-\sin x)}{(y + \cos x)^2} = \frac{2y \sin x}{(y + \cos x)^2}.$$

With x held constant, we get

$$f_{y} = \frac{\partial}{\partial y} \left(\frac{2y}{y + \cos x} \right) = \frac{(y + \cos x) \frac{\partial}{\partial y} (2y) - 2y \frac{\partial}{\partial y} (y + \cos x)}{(y + \cos x)^{2}}$$
$$= \frac{(y + \cos x)(2) - 2y(1)}{(y + \cos x)^{2}} = \frac{2\cos x}{(y + \cos x)^{2}}.$$

Implicit differentiation works for partial derivatives the way it works for ordinary derivatives, as the next example illustrates.

EXAMPLE 4 Find $\partial z/\partial x$ if the equation

$$yz - \ln z = x + y$$

defines z as a function of the two independent variables x and y and the partial derivative exists.

Solution We differentiate both sides of the equation with respect to x, holding y constant and treating z as a differentiable function of x:

$$\frac{\partial}{\partial x} (yz) - \frac{\partial}{\partial x} \ln z = \frac{\partial x}{\partial x} + \frac{\partial y}{\partial x}$$

$$y \frac{\partial z}{\partial x} - \frac{1}{z} \frac{\partial z}{\partial x} = 1 + 0$$

$$(y - \frac{1}{z}) \frac{\partial z}{\partial x} = 1$$

$$\frac{\partial z}{\partial x} = \frac{z}{yz - 1}.$$
With y constant,
$$\frac{\partial}{\partial x} (yz) = y \frac{\partial z}{\partial x}.$$

FIGURE 14.19 The tangent to the curve of intersection of the plane x = 1 and surface $z = x^2 + y^2$ at the point (1, 2, 5) (Example 5).

EXAMPLE 5 The plane x = 1 intersects the paraboloid $z = x^2 + y^2$ in a parabola. Find the slope of the tangent to the parabola at (1, 2, 5) (Figure 14.19).

Solution The slope is the value of the partial derivative $\partial z/\partial y$ at (1, 2):

$$\frac{\partial z}{\partial y}\bigg|_{(1,2)} = \frac{\partial}{\partial y} (x^2 + y^2)\bigg|_{(1,2)} = 2y\bigg|_{(1,2)} = 2(2) = 4.$$

As a check, we can treat the parabola as the graph of the single-variable function $z = (1)^2 + y^2 = 1 + y^2$ in the plane x = 1 and ask for the slope at y = 2. The slope, calculated now as an ordinary derivative, is

$$\frac{dz}{dy}\bigg|_{y=2} = \frac{d}{dy}(1+y^2)\bigg|_{y=2} = 2y\bigg|_{y=2} = 4.$$

Functions of More Than Two Variables

The definitions of the partial derivatives of functions of more than two independent variables are like the definitions for functions of two variables. They are ordinary derivatives with respect to one variable, taken while the other independent variables are held constant.

EXAMPLE 6 If x, y, and z are independent variables and

$$f(x, y, z) = x \sin(y + 3z),$$

then

$$\frac{\partial f}{\partial z} = \frac{\partial}{\partial z} \left[x \sin(y + 3z) \right] = x \frac{\partial}{\partial z} \sin(y + 3z)$$
$$= x \cos(y + 3z) \frac{\partial}{\partial z} (y + 3z) = 3x \cos(y + 3z).$$

EXAMPLE 7 If resistors of R_1 , R_2 , and R_3 ohms are connected in parallel to make an R-ohm resistor, the value of R can be found from the equation

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

(Figure 14.20). Find the value of $\partial R/\partial R_2$ when $R_1 = 30$, $R_2 = 45$, and $R_3 = 90$ ohms.

Solution To find $\partial R/\partial R_2$, we treat R_1 and R_3 as constants and, using implicit differentiation, differentiate both sides of the equation with respect to R_2 :

$$\begin{split} \frac{\partial}{\partial R_2} \left(\frac{1}{R} \right) &= \frac{\partial}{\partial R_2} \left(\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} \right) \\ - \frac{1}{R^2} \frac{\partial R}{\partial R_2} &= 0 - \frac{1}{{R_2}^2} + 0 \\ \frac{\partial R}{\partial R_2} &= \frac{R^2}{{R_2}^2} = \left(\frac{R}{R_2} \right)^2. \end{split}$$

When $R_1 = 30$, $R_2 = 45$, and $R_3 = 90$,

$$\frac{1}{R} = \frac{1}{30} + \frac{1}{45} + \frac{1}{90} = \frac{3+2+1}{90} = \frac{6}{90} = \frac{1}{15}$$

FIGURE 14.20 Resistors arranged this way are said to be connected in parallel (Example 7). Each resistor lets a portion of the current through. Their equivalent resistance *R* is calculated with the formula

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}.$$

so R = 15 and

$$\frac{\partial R}{\partial R_2} = \left(\frac{15}{45}\right)^2 = \left(\frac{1}{3}\right)^2 = \frac{1}{9}.$$

Thus at the given values, a small change in the resistance R_2 leads to a change in R about 1/9th as large.

Partial Derivatives and Continuity

A function f(x, y) can have partial derivatives with respect to both x and y at a point without the function being continuous there. This is different from functions of a single variable, where the existence of a derivative implies continuity. If the partial derivatives of f(x, y) exist and are continuous throughout a disk centered at (x_0, y_0) , however, then f is continuous at (x_0, y_0) , as we see at the end of this section.

EXAMPLE 8 Let

$$f(x, y) = \begin{cases} 0, & xy \neq 0 \\ 1, & xy = 0 \end{cases}$$

(Figure 14.21).

(b) Prove that f is not continuous at the origin.

(c) Show that both partial derivatives $\partial f/\partial x$ and $\partial f/\partial y$ exist at the origin.

$$\lim_{(x,y)\to(0,0)} f(x,y) \bigg|_{y=x} = \lim_{(x,y)\to(0,0)} 0 = 0.$$

(b) Since f(0, 0) = 1, the limit in part (a) proves that f is not continuous at (0, 0).

(c) To find $\partial f/\partial x$ at (0, 0), we hold y fixed at y = 0. Then f(x, y) = 1 for all x, and the graph of f is the line L_1 in Figure 14.21. The slope of this line at any x is $\partial f/\partial x = 0$. In particular, $\partial f/\partial x = 0$ at (0, 0). Similarly, $\partial f/\partial y$ is the slope of line L_2 at any y, so $\partial f/\partial y = 0$ at (0, 0).

 $\begin{bmatrix} 1, xy - 0 \\ \end{bmatrix} \begin{bmatrix} z \\ L_1 \end{bmatrix}$

FIGURE 14.21 The graph of

$$f(x, y) = \begin{cases} 0, & xy \neq 0 \\ 1, & xy = 0 \end{cases}$$

consists of the lines L_1 and L_2 and the four open quadrants of the *xy*-plane. The function has partial derivatives at the origin but is not continuous there (Example 8).

Example 8 notwithstanding, it is still true in higher dimensions that *differentiability* at a point implies continuity. What Example 8 suggests is that we need a stronger requirement for differentiability in higher dimensions than the mere existence of the partial derivatives. We define differentiability for functions of two variables (which is slightly more complicated than for single-variable functions) at the end of this section and then revisit the connection to continuity.

Second-Order Partial Derivatives

When we differentiate a function f(x, y) twice, we produce its second-order derivatives. These derivatives are usually denoted by

$$\frac{\partial^2 f}{\partial x^2}$$
 or f_{xx} , $\frac{\partial^2 f}{\partial y^2}$ or f_{yy} ,

$$\frac{\partial^2 f}{\partial x \partial y}$$
 or f_{yx} , and $\frac{\partial^2 f}{\partial y \partial x}$ or f_{xy} .

The defining equations are

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right), \qquad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right),$$

and so on. Notice the order in which the mixed partial derivatives are taken:

$$\frac{\partial^2 f}{\partial x \partial y}$$
 Differentiate first with respect to y, then with respect to x.

$$f_{yx} = (f_y)_x$$
 Means the same thing.

HISTORICAL BIOGRAPHY

Pierre-Simon Laplace (1749–1827)

EXAMPLE 9 If $f(x, y) = x \cos y + ye^x$, find the second-order derivatives

$$\frac{\partial^2 f}{\partial x^2}$$
, $\frac{\partial^2 f}{\partial y \partial x}$, $\frac{\partial^2 f}{\partial y^2}$, and $\frac{\partial^2 f}{\partial x \partial y}$.

Solution The first step is to calculate both first partial derivatives.

$$\frac{\partial f}{\partial x} = \frac{\partial}{\partial x} (x \cos y + ye^x) \qquad \qquad \frac{\partial f}{\partial y} = \frac{\partial}{\partial y} (x \cos y + ye^x)$$
$$= \cos y + ye^x \qquad \qquad = -x \sin y + e^x$$

Now we find both partial derivatives of each first partial:

$$\frac{\partial^2 f}{\partial y \partial x} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial x} \right) = -\sin y + e^x \qquad \frac{\partial^2 f}{\partial x \partial y} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial y} \right) = -\sin y + e^x$$

$$\frac{\partial^2 f}{\partial x^2} = \frac{\partial}{\partial x} \left(\frac{\partial f}{\partial x} \right) = ye^x. \qquad \frac{\partial^2 f}{\partial y^2} = \frac{\partial}{\partial y} \left(\frac{\partial f}{\partial y} \right) = -x \cos y.$$

The order in which partial derivatives are taken can sometimes lead to different results.

The Mixed Derivative Theorem

You may have noticed that the "mixed" second-order partial derivatives

$$\frac{\partial^2 f}{\partial y \partial x}$$
 and $\frac{\partial^2 f}{\partial x \partial y}$

in Example 9 are equal. This is not a coincidence. They must be equal whenever f, f_x, f_y, f_{xy} , and f_{yx} are continuous, as stated in the following theorem. However, the mixed derivatives can be different when the continuity conditions are not satisfied (see Exercise 72).

THEOREM 2—The Mixed Derivative Theorem If f(x, y) and its partial derivatives f_x , f_y , f_{xy} , and f_{yx} are defined throughout an open region containing a point (a, b) and are all continuous at (a, b), then

$$f_{xy}(a,b) = f_{yx}(a,b).$$

Theorem 2 is also known as Clairaut's Theorem, named after the French mathematician Alexis Clairaut, who discovered it. A proof is given in Appendix 9. Theorem 2 says that to calculate a mixed second-order derivative, we may differentiate in either order, provided the continuity conditions are satisfied. This ability to proceed in different order sometimes simplifies our calculations.

HISTORICAL BIOGRAPHY

Alexis Clairaut (1713–1765)

EXAMPLE 10 Find $\partial^2 w / \partial x \partial y$ if

$$w = xy + \frac{e^y}{y^2 + 1}.$$

Solution The symbol $\partial^2 w/\partial x \partial y$ tells us to differentiate first with respect to y and then with respect to x. However, if we interchange the order of differentiation and differentiate first with respect to x we get the answer more quickly. In two steps,

$$\frac{\partial w}{\partial x} = y$$
 and $\frac{\partial^2 w}{\partial y \partial x} = 1$.

If we differentiate first with respect to y, we obtain $\partial^2 w/\partial x \partial y = 1$ as well. We can differentiate in either order because the conditions of Theorem 2 hold for w at all points (x_0, y_0) .

Partial Derivatives of Still Higher Order

Although we will deal mostly with first- and second-order partial derivatives, because these appear the most frequently in applications, there is no theoretical limit to how many times we can differentiate a function as long as the derivatives involved exist. Thus, we get third- and fourth-order derivatives denoted by symbols like

$$\frac{\partial^3 f}{\partial x \partial y^2} = f_{yyx},$$

$$\frac{\partial^4 f}{\partial x^2 \partial y^2} = f_{yyxx},$$

and so on. As with second-order derivatives, the order of differentiation is immaterial as long as all the derivatives through the order in question are continuous.

EXAMPLE 11 Find
$$f_{yxyz}$$
 if $f(x, y, z) = 1 - 2xy^2z + x^2y$.

Solution We first differentiate with respect to the variable y, then x, then y again, and finally with respect to z:

$$f_y = -4xyz + x^2$$

$$f_{yx} = -4yz + 2x$$

$$f_{yxy} = -4z$$

$$f_{yxyz}=-4.$$

Differentiability

The concept of differentiability for functions of several variables is more complicated than for single-variable functions because a point in the domain can be approached along more than one path. In defining the partial derivatives for a function of two variables, we intersected the surface of the graph with vertical planes parallel to the xz- and yz-planes, creating a curve on each plane, called a trace. The partial derivatives were seen as the slopes of the two tangent lines to these trace curves at the point on the surface corresponding to the point (x_0, y_0) being approached in the domain. (See Figure 14.18.) For a differentiable function, it would seem reasonable to assume that if we were to rotate slightly one of these vertical planes, keeping it vertical but no longer parallel to its coordinate plane, then a smooth trace curve would appear on that plane that would have a tangent line at the point on the surface having a slope differing just slightly from what it was before (when the plane was parallel to its coordinate plane). However, the mere existence of the original partial derivative does not guarantee that result. For example, the surface might have a "fissure" in the direction of the new plane, so the trace curve is not even continuous at (x_0, y_0) , let alone having a tangent line at the corresponding point on the curve. Just as having a limit in the x- and y-coordinate directions does not imply the function itself has a limit at (x_0, y_0) , as we see in Figure 14.21, so is it the case that the existence of both partial derivatives is not enough by itself to ensure derivatives exist for trace curves in other vertical planes. For the existence of differentiability, a property is needed to ensure that no abrupt change occurs in the function resulting from small changes in the independent variables along any path approaching (x_0, y_0) , paths along which *both* variables x and y are allowed to change, rather than just one of them at a time. We saw a way of thinking about the change in a function in Section 3.9.

In our study of functions of a single variable, we found that if a function y = f(x) is differentiable at $x = x_0$, then the change Δy resulting in the change of x from x_0 to $x_0 + \Delta x$ is close to the change ΔL along the tangent line (or linear approximation L of the function f at x_0). That is, from Equation (1) in Section 3.9,

$$\Delta y = f'(x_0)\Delta x + \epsilon \Delta x$$

in which $\epsilon \to 0$ as $\Delta x \to 0$. The extension of this result is what we use to *define* differentiability for functions of two variables.

DEFINITION A function z = f(x, y) is **differentiable at** (x_0, y_0) if $f_x(x_0, y_0)$ and $f_y(x_0, y_0)$ exist and Δz satisfies an equation of the form

$$\Delta z = f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$$

in which each of ϵ_1 , $\epsilon_2 \rightarrow 0$ as both Δx , $\Delta y \rightarrow 0$. We call f differentiable if it is differentiable at every point in its domain, and say that its graph is a **smooth surface**.

The following theorem (proved in Appendix 9) and its accompanying corollary tell us that functions with *continuous* first partial derivatives at (x_0, y_0) are differentiable there, and they are closely approximated locally by a linear function. We study this approximation in Section 14.6.

THEOREM 3—The Increment Theorem for Functions of Two Variables Suppose that the first partial derivatives of f(x, y) are defined throughout an open region R containing the point (x_0, y_0) and that f_x and f_y are continuous at (x_0, y_0) . Then the change

$$\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$$

in the value of f that results from moving from (x_0, y_0) to another point $(x_0 + \Delta x, y_0 + \Delta y)$ in R satisfies an equation of the form

$$\Delta z = f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y$$

in which each of ϵ_1 , $\epsilon_2 \rightarrow 0$ as both Δx , $\Delta y \rightarrow 0$.

COROLLARY OF THEOREM 3 If the partial derivatives f_x and f_y of a function f(x, y) are continuous throughout an open region R, then f is differentiable at every point of R.

If z = f(x, y) is differentiable, then the definition of differentiability ensures that $\Delta z = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0)$ approaches 0 as Δx and Δy approach 0. This tells us that a function of two variables is continuous at every point where it is differentiable.

THEOREM 4—Differentiability Implies Continuity If a function f(x, y) is differentiable at (x_0, y_0) , then f is continuous at (x_0, y_0) .

807

Exercises 14.3

Calculating First-Order Partial Derivatives

In Exercises 1–22, find $\partial f/\partial x$ and $\partial f/\partial y$.

1.
$$f(x, y) = 2x^2 - 3y - 4$$

2.
$$f(x, y) = x^2 - xy + y^2$$

3.
$$f(x, y) = (x^2 - 1)(y + 2)$$

4.
$$f(x, y) = 5xy - 7x^2 - y^2 + 3x - 6y + 2$$

5.
$$f(x, y) = (xy - 1)^2$$

6.
$$f(x, y) = (2x - 3y)^3$$

7.
$$f(x, y) = \sqrt{x^2 + y^2}$$

5.
$$f(x, y) = (xy - 1)^2$$
 6. $f(x, y) = (2x - 3y)^3$ **7.** $f(x, y) = \sqrt{x^2 + y^2}$ **8.** $f(x, y) = (x^3 + (y/2))^{2/3}$

9.
$$f(x, y) = 1/(x + y)$$

10.
$$f(x, y) = x/(x^2 + y^2)$$

11.
$$f(x, y) = (x + y)/(xy - 1)$$
 12. $f(x, y) = \tan^{-1}(y/x)$

12
$$f(x, y) = \tan^{-1}(y/x)$$

13.
$$f(x, y) = e^{(x+y+1)}$$

14.
$$f(x, y) = e^{-x} \sin(x + y)$$

13.
$$f(x, y) = e^{x + y + y}$$

16.
$$f(x, y) = e^{xy} \ln y$$

15.
$$f(x, y) = \ln(x + y)$$

17.
$$f(x, y) = \sin^2(x - 3y)$$
 18. $f(x, y) = \cos^2(3x - y^2)$

19.
$$f(x, y) = x^y$$

20.
$$f(x, y) = \log_{y} x$$

21.
$$f(x, y) = \int_{-\infty}^{y} g(t) dt$$
 (g continuous for all t)

22.
$$f(x, y) = \sum_{n=0}^{\infty} (xy)^n \quad (|xy| < 1)$$

In Exercises 23–34, find f_x , f_y , and f_z .

23.
$$f(x, y, z) = 1 + xy^2 - 2z^2$$

24.
$$f(x, y, z) = xy + yz + xz$$

25.
$$f(x, y, z) = x - \sqrt{y^2 + z^2}$$

26.
$$f(x, y, z) = (x^2 + y^2 + z^2)^{-1/2}$$

27.
$$f(x, y, z) = \sin^{-1}(xyz)$$

28.
$$f(x, y, z) = \sec^{-1}(x + yz)$$

29.
$$f(x, y, z) = \ln(x + 2y + 3z)$$

30.
$$f(x, y, z) = yz \ln(xy)$$

31.
$$f(x, y, z) = e^{-(x^2+y^2+z^2)}$$

32.
$$f(x, y, z) = e^{-xyz}$$

33.
$$f(x, y, z) = \tanh(x + 2y + 3z)$$

34.
$$f(x, y, z) = \sinh(xy - z^2)$$

In Exercises 35-40, find the partial derivative of the function with respect to each variable.

35.
$$f(t, \alpha) = \cos(2\pi t - \alpha)$$

36.
$$g(u, v) = v^2 e^{(2u/v)}$$

37.
$$h(\rho, \phi, \theta) = \rho \sin \phi \cos \theta$$

38.
$$g(r, \theta, z) = r(1 - \cos \theta) - z$$

39. Work done by the heart (Section 3.9, Exercise 61)

$$W(P, V, \delta, v, g) = PV + \frac{V\delta v^2}{2g}$$

40. Wilson lot size formula (Section 4.5, Exercise 53)

$$A(c, h, k, m, q) = \frac{km}{q} + cm + \frac{hq}{2}$$

Calculating Second-Order Partial Derivatives

Find all the second-order partial derivatives of the functions in Exercises 41-50.

41.
$$f(x, y) = x + y + xy$$

42.
$$f(x, y) = \sin xy$$

43.
$$g(x, y) = x^2y + \cos y + y \sin x$$

44.
$$h(x, y) = xe^y + y + 1$$

45.
$$r(x, y) = \ln(x + y)$$

46.
$$s(x, y) = \tan^{-1}(y/x)$$

47.
$$w = x^2 \tan(xy)$$

48.
$$w = ve^{x^2-y}$$

49.
$$w = x \sin(x^2y)$$

50.
$$w = \frac{x - y}{x^2 + y}$$

Mixed Partial Derivatives

In Exercises 51–54, verify that $w_{xy} = w_{yx}$.

51.
$$w = \ln(2x + 3y)$$

52.
$$w = e^x + x \ln y + y \ln x$$

53.
$$w = xy^2 + x^2y^3 + x^3y^4$$

$$54. w = x \sin y + y \sin x + xy$$

55. Which order of differentiation will calculate f_{xy} faster: x first or y first? Try to answer without writing anything down.

$$\mathbf{a.} \ f(x,y) = x \sin y + e^y$$

b.
$$f(x, y) = 1/x$$

c.
$$f(x, y) = y + (x/y)$$

d.
$$f(x, y) = y + x^2y + 4y^3 - \ln(y^2 + 1)$$

e.
$$f(x, y) = x^2 + 5xy + \sin x + 7e^x$$

$$\mathbf{f.} \ f(x,y) = x \ln xy$$

56. The fifth-order partial derivative $\partial^5 f/\partial x^2 \partial y^3$ is zero for each of the following functions. To show this as quickly as possible, which variable would you differentiate with respect to first: x or y? Try to answer without writing anything down.

a.
$$f(x, y) = y^2 x^4 e^x + 2$$

b.
$$f(x, y) = y^2 + y(\sin x - x^4)$$

c.
$$f(x, y) = x^2 + 5xy + \sin x + 7e^x$$

d.
$$f(x, y) = xe^{y^2/2}$$

Using the Partial Derivative Definition

In Exercises 57–60, use the limit definition of partial derivative to compute the partial derivatives of the functions at the specified points.

57.
$$f(x, y) = 1 - x + y - 3x^2y$$
, $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at $(1, 2)$

58.
$$f(x, y) = 4 + 2x - 3y - xy^2$$
, $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at (-2, 1)

59.
$$f(x, y) = \sqrt{2x + 3y - 1}$$
, $\frac{\partial f}{\partial x}$ and $\frac{\partial f}{\partial y}$ at (-2, 3)

60.
$$f(x, y) = \begin{cases} \frac{\sin(x^3 + y^4)}{x^2 + y^2}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0), \end{cases}$$

$$\frac{\partial f}{\partial x}$$
 and $\frac{\partial f}{\partial y}$ at $(0,0)$

- **61.** Let f(x, y) = 2x + 3y 4. Find the slope of the line tangent to this surface at the point (2, -1) and lying in the **a.** plane x = 2 **b.** plane y = -1.
- **62.** Let $f(x, y) = x^2 + y^3$. Find the slope of the line tangent to this surface at the point (-1, 1) and lying in the **a.** plane x = -1 **b.** plane y = 1.
- **63. Three variables** Let w = f(x, y, z) be a function of three independent variables and write the formal definition of the partial derivative $\partial f/\partial z$ at (x_0, y_0, z_0) . Use this definition to find $\partial f/\partial z$ at (1, 2, 3) for $f(x, y, z) = x^2yz^2$.
- **64. Three variables** Let w = f(x, y, z) be a function of three independent variables and write the formal definition of the partial derivative $\partial f/\partial y$ at (x_0, y_0, z_0) . Use this definition to find $\partial f/\partial y$ at (-1, 0, 3) for $f(x, y, z) = -2xy^2 + yz^2$.

Differentiating Implicitly

65. Find the value of $\partial z/\partial x$ at the point (1, 1, 1) if the equation

$$xy + z^3x - 2yz = 0$$

defines z as a function of the two independent variables x and y and the partial derivative exists.

66. Find the value of $\partial x/\partial z$ at the point (1, -1, -3) if the equation

$$xz + y \ln x - x^2 + 4 = 0$$

defines x as a function of the two independent variables y and z and the partial derivative exists.

Exercises 67 and 68 are about the triangle shown here.

- **67.** Express *A* implicitly as a function of *a*, *b*, and *c* and calculate $\partial A/\partial a$ and $\partial A/\partial b$.
- **68.** Express a implicitly as a function of A, b, and B and calculate $\partial a/\partial A$ and $\partial a/\partial B$.
- **69.** Two dependent variables Express v_x in terms of u and y if the equations $x = v \ln u$ and $y = u \ln v$ define u and v as functions of the independent variables x and y, and if v_x exists. (*Hint:* Differentiate both equations with respect to x and solve for v_x by eliminating u_x .)

70. Two dependent variables Find $\partial x/\partial u$ and $\partial y/\partial u$ if the equations $u = x^2 - y^2$ and $v = x^2 - y$ define x and y as functions of the independent variables u and v, and the partial derivatives exist. (See the hint in Exercise 69.) Then let $s = x^2 + y^2$ and find $\partial s/\partial u$.

Theory and Examples

71. Let $f(x, y) = \begin{cases} y^3, & y \ge 0 \\ -y^2, & y < 0. \end{cases}$

Find f_x , f_y , f_{xy} , and f_{yx} , and state the domain for each partial derivative.

- 72. Let $f(x, y) = \begin{cases} xy \frac{x^2 y^2}{x^2 + y^2}, & \text{if } (x, y) \neq 0, \\ 0, & \text{if } (x, y) = 0. \end{cases}$
 - **a.** Show that $\frac{\partial f}{\partial y}(x, 0) = x$ for all x, and $\frac{\partial f}{\partial x}(0, y) = -y$ for all y.
 - **b.** Show that $\frac{\partial^2 f}{\partial y \partial x}(0,0) \neq \frac{\partial^2 f}{\partial x \partial y}(0,0)$.

The graph of f is shown on page 788.

The three-dimensional Laplace equation

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} + \frac{\partial^2 f}{\partial z^2} = 0$$

is satisfied by steady-state temperature distributions T = f(x, y, z) in space, by gravitational potentials, and by electrostatic potentials. The **two-dimensional Laplace equation**

$$\frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2} = 0,$$

obtained by dropping the $\partial^2 f/\partial z^2$ term from the previous equation, describes potentials and steady-state temperature distributions in a plane (see the accompanying figure). The plane (a) may be treated as a thin slice of the solid (b) perpendicular to the *z*-axis.

Show that each function in Exercises 73–80 satisfies a Laplace equation.

73.
$$f(x, y, z) = x^2 + y^2 - 2z^2$$

74.
$$f(x, y, z) = 2z^3 - 3(x^2 + y^2)z$$

75.
$$f(x, y) = e^{-2y} \cos 2x$$

76.
$$f(x, y) = \ln \sqrt{x^2 + y^2}$$

77.
$$f(x, y) = 3x + 2y - 4$$

78.
$$f(x, y) = \tan^{-1} \frac{x}{y}$$

79.
$$f(x, y, z) = (x^2 + y^2 + z^2)^{-1/2}$$

80.
$$f(x, y, z) = e^{3x+4y} \cos 5z$$

The Wave Equation If we stand on an ocean shore and take a snapshot of the waves, the picture shows a regular pattern of peaks and valleys in an instant of time. We see periodic vertical motion in space, with respect to distance. If we stand in the water, we can feel the rise and fall of the water as the waves go by. We see periodic vertical motion in time. In physics, this beautiful symmetry is expressed by the one-dimensional wave equation

$$\frac{\partial^2 w}{\partial t^2} = c^2 \frac{\partial^2 w}{\partial x^2},$$

where w is the wave height, x is the distance variable, t is the time variable, and c is the velocity with which the waves are propagated.

In our example, x is the distance across the ocean's surface, but in other applications, x might be the distance along a vibrating string, distance through air (sound waves), or distance through space (light waves). The number c varies with the medium and type of wave.

Show that the functions in Exercises 81–87 are all solutions of the wave equation.

81.
$$w = \sin(x + ct)$$

82.
$$w = \cos(2x + 2ct)$$

83.
$$w = \sin(x + ct) + \cos(2x + 2ct)$$

84.
$$w = \ln(2x + 2ct)$$

85.
$$w = \tan(2x - 2ct)$$

86.
$$w = 5\cos(3x + 3ct) + e^{x+ct}$$

87.
$$w = f(u)$$
, where f is a differentiable function of u, and $u = a(x + ct)$, where a is a constant

88. Does a function
$$f(x, y)$$
 with continuous first partial derivatives throughout an open region R have to be continuous on R ? Give reasons for your answer.

89. If a function
$$f(x, y)$$
 has continuous second partial derivatives throughout an open region R , must the first-order partial derivatives of f be continuous on R ? Give reasons for your answer.

$$\frac{\partial f}{\partial t} = \frac{\partial^2 f}{\partial x^2} \,.$$

Show that $u(x, t) = \sin(\alpha x) \cdot e^{-\beta t}$ satisfies the heat equation for constants α and β . What is the relationship between α and β for this function to be a solution?

91. Let
$$f(x, y) = \begin{cases} \frac{xy^2}{x^2 + y^4}, & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0). \end{cases}$$

Show that $f_x(0, 0)$ and $f_y(0, 0)$ exist, but f is not differentiable at (0, 0). (*Hint:* Use Theorem 4 and show that f is not continuous at (0, 0).)

92. Let
$$f(x, y) = \begin{cases} 0, & x^2 < y < 2x^2 \\ 1, & \text{otherwise.} \end{cases}$$

Show that $f_x(0, 0)$ and $f_y(0, 0)$ exist, but f is not differentiable at (0, 0).

14.4 The Chain Rule

The Chain Rule for functions of a single variable studied in Section 3.6 says that when w = f(x) is a differentiable function of x and x = g(t) is a differentiable function of t, w is a differentiable function of t and dw/dt can be calculated by the formula

$$\frac{dw}{dt} = \frac{dw}{dx} \frac{dx}{dt}$$

For this composite function w(t) = f(g(t)), we can think of t as the independent variable and x = g(t) as the "intermediate variable," because t determines the value of x which in turn gives the value of w from the function t. We display the Chain Rule in a "branch diagram" in the margin on the next page.

For functions of several variables the Chain Rule has more than one form, which depends on how many independent and intermediate variables are involved. However, once the variables are taken into account, the Chain Rule works in the same way we just discussed.

To find dw/dt, we read down the route from w to t, multiplying derivatives along the way.

Chain Rule

Each of $\frac{\partial f}{\partial x}$, $\frac{\partial w}{\partial x}$, f_x indicates the partial derivative of f with respect to x.

Functions of Two Variables

The Chain Rule formula for a differentiable function w = f(x, y) when x = x(t) and y = y(t) are both differentiable functions of t is given in the following theorem.

THEOREM 5—Chain Rule For Functions of One Independent Variable and Two Intermediate Variables If w = f(x, y) is differentiable and if x = x(t), y = y(t) are differentiable functions of t, then the composite w = f(x(t), y(t)) is a differentiable function of t and

$$\frac{dw}{dt} = f_x(x(t), y(t)) \cdot x'(t) + f_y(x(t), y(t)) \cdot y'(t),$$

or

$$\frac{dw}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}$$

Proof The proof consists of showing that if x and y are differentiable at $t = t_0$, then w is differentiable at t_0 and

$$\left(\frac{dw}{dt}\right)_{t_0} = \left(\frac{\partial w}{\partial x}\right)_{P_0} \left(\frac{dx}{dt}\right)_{t_0} + \left(\frac{\partial w}{\partial y}\right)_{P_0} \left(\frac{dy}{dt}\right)_{t_0},$$

where $P_0 = (x(t_0), y(t_0))$. The subscripts indicate where each of the derivatives is to be evaluated.

Let Δx , Δy , and Δw be the increments that result from changing t from t_0 to $t_0 + \Delta t$. Since f is differentiable (see the definition in Section 14.3),

$$\Delta w = \left(\frac{\partial w}{\partial x}\right)_{P_0} \Delta x + \left(\frac{\partial w}{\partial y}\right)_{P_0} \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y,$$

where ϵ_1 , $\epsilon_2 \rightarrow 0$ as Δx , $\Delta y \rightarrow 0$. To find dw/dt, we divide this equation through by Δt and let Δt approach zero. The division gives

$$\frac{\Delta w}{\Delta t} = \left(\frac{\partial w}{\partial x}\right)_{P_0} \frac{\Delta x}{\Delta t} + \left(\frac{\partial w}{\partial y}\right)_{P_0} \frac{\Delta y}{\Delta t} + \epsilon_1 \frac{\Delta x}{\Delta t} + \epsilon_2 \frac{\Delta y}{\Delta t}.$$

Letting Δt approach zero gives

$$\left(\frac{dw}{dt}\right)_{t_0} = \lim_{\Delta t \to 0} \frac{\Delta w}{\Delta t}
= \left(\frac{\partial w}{\partial x}\right)_{P_0} \left(\frac{dx}{dt}\right)_{t_0} + \left(\frac{\partial w}{\partial y}\right)_{P_0} \left(\frac{dy}{dt}\right)_{t_0} + 0 \cdot \left(\frac{dx}{dt}\right)_{t_0} + 0 \cdot \left(\frac{dy}{dt}\right)_{t_0}.$$

Often we write $\partial w/\partial x$ for the partial derivative $\partial f/\partial x$, so we can rewrite the Chain Rule in Theorem 5 in the form

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt}$$

811

To remember the Chain Rule, picture the diagram below. To find dw/dt, start at w and read down each route to t, multiplying derivatives along the way. Then add the products.

Chain Rule

However, the meaning of the dependent variable w is different on each side of the preceding equation. On the left-hand side, it refers to the composite function w = f(x(t), y(t)) as a function of the single variable t. On the right-hand side, it refers to the function w = f(x, y) as a function of the two variables x and y. Moreover, the single derivatives dw/dt, dx/dt, and dy/dt are being evaluated at a point t_0 , whereas the partial derivatives $\partial w/\partial x$ and $\partial w/\partial y$ are being evaluated at the point (x_0, y_0) , with $x_0 = x(t_0)$ and $y_0 = y(t_0)$. With that understanding, we will use both of these forms interchangeably throughout the text whenever no confusion will arise.

The **branch diagram** in the margin provides a convenient way to remember the Chain Rule. The "true" independent variable in the composite function is t, whereas x and y are *intermediate variables* (controlled by t) and w is the dependent variable.

A more precise notation for the Chain Rule shows where the various derivatives in Theorem 5 are evaluated:

$$\frac{dw}{dt}(t_0) = \frac{\partial f}{\partial x}(x_0, y_0) \cdot \frac{dx}{dt}(t_0) + \frac{\partial f}{\partial y}(x_0, y_0) \cdot \frac{dy}{dt}(t_0).$$

EXAMPLE 1 Use the Chain Rule to find the derivative of

$$w = xy$$

with respect to t along the path $x = \cos t$, $y = \sin t$. What is the derivative's value at $t = \pi/2$?

Solution We apply the Chain Rule to find dw/dt as follows:

$$\frac{dw}{dt} = \frac{\partial w}{\partial x} \frac{dx}{dt} + \frac{\partial w}{\partial y} \frac{dy}{dt}$$

$$= \frac{\partial(xy)}{\partial x} \cdot \frac{d}{dt} (\cos t) + \frac{\partial(xy)}{\partial y} \cdot \frac{d}{dt} (\sin t)$$

$$= (y)(-\sin t) + (x)(\cos t)$$

$$= (\sin t)(-\sin t) + (\cos t)(\cos t)$$

$$= -\sin^2 t + \cos^2 t$$

$$= \cos 2t.$$

In this example, we can check the result with a more direct calculation. As a function of t,

$$w = xy = \cos t \sin t = \frac{1}{2}\sin 2t,$$

so

$$\frac{dw}{dt} = \frac{d}{dt} \left(\frac{1}{2} \sin 2t \right) = \frac{1}{2} \cdot 2 \cos 2t = \cos 2t.$$

In either case, at the given value of t,

$$\left(\frac{dw}{dt}\right)_{t=\pi/2} = \cos\left(2\cdot\frac{\pi}{2}\right) = \cos\pi = -1.$$

Functions of Three Variables

You can probably predict the Chain Rule for functions of three intermediate variables, as it only involves adding the expected third term to the two-variable formula.

THEOREM 6—Chain Rule for Functions of One Independent Variable and Three Intermediate Variables If w = f(x, y, z) is differentiable and x, y, and z are differentiable functions of t, then w is a differentiable function of t and

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt}.$$

Here we have three routes from w to t instead of two, but finding dw/dt is still the same. Read down each route, multiplying derivatives along the way; then add.

Chain Rule

The proof is identical with the proof of Theorem 5 except that there are now three intermediate variables instead of two. The branch diagram we use for remembering the new equation is similar as well, with three routes from w to t.

EXAMPLE 2 Find dw/dt if

$$w = xy + z$$
, $x = \cos t$, $y = \sin t$, $z = t$

In this example the values of w(t) are changing along the path of a helix (Section 13.1) as t changes. What is the derivative's value at t = 0?

Solution Using the Chain Rule for three intermediate variables, we have

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt}$$

$$= (y)(-\sin t) + (x)(\cos t) + (1)(1)$$

$$= (\sin t)(-\sin t) + (\cos t)(\cos t) + 1$$

$$= -\sin^2 t + \cos^2 t + 1 = 1 + \cos 2t,$$
Substitute for the intermediate variables.

so

$$\left(\frac{dw}{dt}\right)_{t=0} = 1 + \cos\left(0\right) = 2.$$

For a physical interpretation of change along a curve, think of an object whose position is changing with time t. If w = T(x, y, z) is the temperature at each point (x, y, z) along a curve C with parametric equations x = x(t), y = y(t), and z = z(t), then the composite function w = T(x(t), y(t), z(t)) represents the temperature relative to t along the curve. The derivative dw/dt is then the instantaneous rate of change of temperature due to the motion along the curve, as calculated in Theorem 6.

Functions Defined on Surfaces

If we are interested in the temperature w = f(x, y, z) at points (x, y, z) on the earth's surface, we might prefer to think of x, y, and z as functions of the variables r and s that give the points' longitudes and latitudes. If x = g(r, s), y = h(r, s), and z = k(r, s), we could then express the temperature as a function of r and s with the composite function

$$w = f(g(r, s), h(r, s), k(r, s)).$$

Under the conditions stated below, w has partial derivatives with respect to both r and s that can be calculated in the following way.

THEOREM 7—Chain Rule for Two Independent Variables and Three Intermediate Variables Suppose that w = f(x, y, z), x = g(r, s), y = h(r, s), and z = k(r, s). If all four functions are differentiable, then w has partial derivatives with respect to r and s, given by the formulas

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial r}$$

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s}.$$

The first of these equations can be derived from the Chain Rule in Theorem 6 by holding s fixed and treating r as t. The second can be derived in the same way, holding r fixed and treating s as t. The branch diagrams for both equations are shown in Figure 14.22.

813

$$v = f(g(r, s), h(r, s), k(r, s)) \qquad \frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial x}{\partial s}$$
(a)

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s}$$
(c)

FIGURE 14.22 Composite function and branch diagrams for Theorem 7.

EXAMPLE 3 Express $\partial w/\partial r$ and $\partial w/\partial s$ in terms of r and s if

$$w = x + 2y + z^2$$
, $x = \frac{r}{s}$, $y = r^2 + \ln s$, $z = 2r$.

Solution Using the formulas in Theorem 7, we find

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial r}$$

$$= (1) \left(\frac{1}{s}\right) + (2)(2r) + (2z)(2)$$
Substitute for intermediate variable z.
$$= \frac{1}{s} + 4r + (4r)(2) = \frac{1}{s} + 12r$$

$$\frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s} + \frac{\partial w}{\partial z} \frac{\partial z}{\partial s}$$

$$= (1) \left(-\frac{r}{s^2}\right) + (2) \left(\frac{1}{s}\right) + (2z)(0) = \frac{2}{s} - \frac{r}{s^2}.$$

Chain Rule

w = f(x, y)дw ∂x ду ∂r ∂r $\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} +$

FIGURE 14.23 Branch diagram for the equation

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r}$$

If f is a function of two intermediate variables instead of three, each equation in Theorem 7 becomes correspondingly one term shorter.

If
$$w = f(x, y)$$
, $x = g(r, s)$, and $y = h(r, s)$, then
$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} \quad \text{and} \quad \frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s}.$$

Figure 14.23 shows the branch diagram for the first of these equations. The diagram for the second equation is similar; just replace r with s.

EXAMPLE 4 Express $\partial w/\partial r$ and $\partial w/\partial s$ in terms of r and s if

$$w = x^2 + y^2$$
, $x = r - s$, $y = r + s$.

Chain Rule

 $\frac{dw}{dx}$

w = f(x)

 $\frac{dw}{dx} \frac{\partial x}{\partial r}$

 $= \frac{dw}{dx} \frac{\partial x}{\partial s}$

FIGURE 14.24 Branch diagram for

differentiating f as a composite function

of r and s with one intermediate variable.

Solution The preceding discussion gives the following.

$$\frac{\partial w}{\partial r} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial r} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial r} \qquad \frac{\partial w}{\partial s} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial s}$$

$$= (2x)(1) + (2y)(1) \qquad = (2x)(-1) + (2y)(1) \qquad \text{for the intermediate}$$

$$= 2(r - s) + 2(r + s) \qquad = -2(r - s) + 2(r + s) \qquad \text{variables.}$$

$$= 4r \qquad = 4s$$

If f is a function of a single intermediate variable x, our equations are even simpler.

If
$$w = f(x)$$
 and $x = g(r, s)$, then
$$\frac{\partial w}{\partial r} = \frac{dw}{dx} \frac{\partial x}{\partial r} \quad \text{and} \quad \frac{\partial w}{\partial s} = \frac{dw}{dx} \frac{\partial x}{\partial s}.$$

In this case, we use the ordinary (single-variable) derivative, dw/dx. The branch diagram is shown in Figure 14.24.

Implicit Differentiation Revisited

The two-variable Chain Rule in Theorem 5 leads to a formula that takes some of the algebra out of implicit differentiation. Suppose that

- **1.** The function F(x, y) is differentiable and
- **2.** The equation F(x, y) = 0 defines y implicitly as a differentiable function of x, say y = h(x).

Since w = F(x, y) = 0, the derivative dw/dx must be zero. Computing the derivative from the Chain Rule (branch diagram in Figure 14.25), we find

$$0 = \frac{dw}{dx} = F_x \frac{dx}{dx} + F_y \frac{dy}{dx}$$
 Theorem 5 with $t = x$ and $f = F$

$$= F_x \cdot 1 + F_y \cdot \frac{dy}{dx}.$$

If $F_y = \partial w/\partial y \neq 0$, we can solve this equation for dy/dx to get

$$\frac{dy}{dx} = -\frac{F_x}{F_y}.$$

We state this result formally.

w = F(x, y) $\frac{\partial w}{\partial x} = F_x$ $F_y = \frac{\partial w}{\partial y}$ x = h(x) $\frac{dx}{dx} = 1$ $\frac{dy}{dx} = h'(x)$

$$\frac{dw}{dx} = F_x \cdot 1 + F_y \cdot \frac{dy}{dx}$$

FIGURE 14.25 Branch diagram for differentiating w = F(x, y) with respect to x. Setting dw/dx = 0 leads to a simple computational formula for implicit differentiation (Theorem 8).

THEOREM 8—A Formula for Implicit Differentiation Suppose that F(x, y) is differentiable and that the equation F(x, y) = 0 defines y as a differentiable function of x. Then at any point where $F_y \neq 0$,

$$\frac{dy}{dx} = -\frac{F_x}{F_y}. (1)$$

Solution Take $F(x, y) = y^2 - x^2 - \sin xy$. Then

$$\frac{dy}{dx} = -\frac{F_x}{F_y} = -\frac{-2x - y\cos xy}{2y - x\cos xy}$$
$$= \frac{2x + y\cos xy}{2y - x\cos xy}.$$

This calculation is significantly shorter than a single-variable calculation using implicit differentiation.

The result in Theorem 8 is easily extended to three variables. Suppose that the equation F(x, y, z) = 0 defines the variable z implicitly as a function z = f(x, y). Then for all (x, y) in the domain of f, we have F(x, y, f(x, y)) = 0. Assuming that F and f are differentiable functions, we can use the Chain Rule to differentiate the equation F(x, y, z) = 0 with respect to the independent variable x:

$$0 = \frac{\partial F}{\partial x} \frac{\partial x}{\partial x} + \frac{\partial F}{\partial y} \frac{\partial y}{\partial x} + \frac{\partial F}{\partial z} \frac{\partial z}{\partial x}$$

$$= F_x \cdot 1 + F_y \cdot 0 + F_z \cdot \frac{\partial z}{\partial x}, \qquad \text{y is constant when differentiating with respect to } x.$$

so

$$F_x + F_z \frac{\partial z}{\partial x} = 0.$$

A similar calculation for differentiating with respect to the independent variable y gives

$$F_{y} + F_{z} \frac{\partial z}{\partial y} = 0.$$

Whenever $F_z \neq 0$, we can solve these last two equations for the partial derivatives of z = f(x, y) to obtain

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z}$$
 and $\frac{\partial z}{\partial y} = -\frac{F_y}{F_z}$. (2)

An important result from advanced calculus, called the **Implicit Function Theorem**, states the conditions for which our results in Equations (2) are valid. If the partial derivatives F_x , F_y , and F_z are continuous throughout an open region R in space containing the point (x_0, y_0, z_0) , and if for some constant c, $F(x_0, y_0, z_0) = c$ and $F_z(x_0, y_0, z_0) \neq 0$, then the equation F(x, y, z) = c defines z implicitly as a differentiable function of x and y near (x_0, y_0, z_0) , and the partial derivatives of z are given by Equations (2).

EXAMPLE 6 Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ at (0, 0, 0) if $x^3 + z^2 + ye^{xz} + z \cos y = 0$.

Solution Let $F(x, y, z) = x^3 + z^2 + ye^{xz} + z \cos y$. Then

$$F_x = 3x^2 + zye^{xz}$$
, $F_y = e^{xz} - z\sin y$, and $F_z = 2z + xye^{xz} + \cos y$.

Since F(0, 0, 0) = 0, $F_z(0, 0, 0) = 1 \neq 0$, and all first partial derivatives are continuous, the Implicit Function Theorem says that F(x, y, z) = 0 defines z as a differentiable function of x and y near the point (0, 0, 0). From Equations (2),

$$\frac{\partial z}{\partial x} = -\frac{F_x}{F_z} = -\frac{3x^2 + zye^{xz}}{2z + xye^{xz} + \cos y} \quad \text{and} \quad \frac{\partial z}{\partial y} = -\frac{F_y}{F_z} = -\frac{e^{xz} - z\sin y}{2z + xye^{xz} + \cos y}.$$

At (0, 0, 0) we find

$$\frac{\partial z}{\partial x} = -\frac{0}{1} = 0$$
 and $\frac{\partial z}{\partial y} = -\frac{1}{1} = -1$.

Functions of Many Variables

We have seen several different forms of the Chain Rule in this section, but each one is just a special case of one general formula. When solving particular problems, it may help to draw the appropriate branch diagram by placing the dependent variable on top, the intermediate variables in the middle, and the selected independent variable at the bottom. To find the derivative of the dependent variable with respect to the selected independent variable, start at the dependent variable and read down each route of the branch diagram to the independent variable, calculating and multiplying the derivatives along each route. Then add the products found for the different routes.

In general, suppose that w = f(x, y, ..., v) is a differentiable function of the intermediate variables x, y, ..., v (a finite set) and the x, y, ..., v are differentiable functions of the independent variables p, q, ..., t (another finite set). Then w is a differentiable function of the variables p through t, and the partial derivatives of w with respect to these variables are given by equations of the form

$$\frac{\partial w}{\partial p} = \frac{\partial w}{\partial x} \frac{\partial x}{\partial p} + \frac{\partial w}{\partial y} \frac{\partial y}{\partial p} + \cdots + \frac{\partial w}{\partial v} \frac{\partial v}{\partial p}.$$

The other equations are obtained by replacing p by q, \ldots, t , one at a time.

One way to remember this equation is to think of the right-hand side as the dot product of two vectors with components

$$\left(\frac{\partial w}{\partial x}, \frac{\partial w}{\partial y}, \dots, \frac{\partial w}{\partial v}\right)$$
 and $\left(\frac{\partial x}{\partial p}, \frac{\partial y}{\partial p}, \dots, \frac{\partial v}{\partial p}\right)$.

Derivatives of w with respect to the intermediate variables

Derivatives of the intermediate variables with respect to the selected independent variable

Exercises 14.4

Chain Rule: One Independent Variable

In Exercises 1–6, (a) express dw/dt as a function of t, both by using the Chain Rule and by expressing w in terms of t and differentiating directly with respect to t. Then (b) evaluate dw/dt at the given value of t.

1.
$$w = x^2 + y^2$$
, $x = \cos t$, $y = \sin t$; $t = \pi$

2.
$$w = x^2 + y^2$$
, $x = \cos t + \sin t$, $y = \cos t - \sin t$; $t = 0$

3.
$$w = \frac{x}{z} + \frac{y}{z}$$
, $x = \cos^2 t$, $y = \sin^2 t$, $z = 1/t$; $t = 3$

4.
$$w = \ln(x^2 + y^2 + z^2)$$
, $x = \cos t$, $y = \sin t$, $z = 4\sqrt{t}$; $t = 3$

5.
$$w = 2ye^x - \ln z$$
, $x = \ln (t^2 + 1)$, $y = \tan^{-1} t$, $z = e^t$;

6.
$$w = z - \sin xy$$
, $x = t$, $y = \ln t$, $z = e^{t-1}$; $t = 1$

Chain Rule: Two and Three Independent Variables

In Exercises 7 and 8, (a) express $\partial z/\partial u$ and $\partial z/\partial v$ as functions of u and v both by using the Chain Rule and by expressing z directly in terms of u and v before differentiating. Then (b) evaluate $\partial z/\partial u$ and $\partial z/\partial v$ at the given point (u, v).

7.
$$z = 4e^x \ln y$$
, $x = \ln (u \cos v)$, $y = u \sin v$;
 $(u, v) = (2, \pi/4)$

8. $z = \tan^{-1}(x/y)$, $x = u \cos v$, $y = u \sin v$; $(u, v) = (1.3, \pi/6)$

In Exercises 9 and 10, (a) express $\partial w/\partial u$ and $\partial w/\partial v$ as functions of u and v both by using the Chain Rule and by expressing w directly in terms of u and v before differentiating. Then (b) evaluate $\partial w/\partial u$ and $\partial w/\partial v$ at the given point (u, v).

- **9.** w = xy + yz + xz, x = u + v, y = u v, z = uv; (u, v) = (1/2, 1)
- **10.** $w = \ln (x^2 + y^2 + z^2)$, $x = ue^v \sin u$, $y = ue^v \cos u$, $z = ue^v$; (u, v) = (-2, 0)

In Exercises 11 and 12, (a) express $\partial u/\partial x$, $\partial u/\partial y$, and $\partial u/\partial z$ as functions of x, y, and z both by using the Chain Rule and by expressing u directly in terms of x, y, and z before differentiating. Then (b) evaluate $\partial u/\partial x$, $\partial u/\partial y$, and $\partial u/\partial z$ at the given point (x, y, z).

- **11.** $u = \frac{p-q}{q-r}$, p = x + y + z, q = x y + z, r = x + y z; $(x, y, z) = (\sqrt{3}, 2, 1)$
- **12.** $u = e^{qr} \sin^{-1} p$, $p = \sin x$, $q = z^2 \ln y$, r = 1/z; $(x, y, z) = (\pi/4, 1/2, -1/2)$

Using a Branch Diagram

In Exercises 13–24, draw a branch diagram and write a Chain Rule formula for each derivative.

- 13. $\frac{dz}{dt}$ for z = f(x, y), x = g(t), y = h(t)
- **14.** $\frac{dz}{dt}$ for z = f(u, v, w), u = g(t), v = h(t), w = k(t)
- **15.** $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ for w = h(x, y, z), x = f(u, v), y = g(u, v), z = k(u, v)
- **16.** $\frac{\partial w}{\partial x}$ and $\frac{\partial w}{\partial y}$ for w = f(r, s, t), r = g(x, y), s = h(x, y), t = k(x, y)
- 17. $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ for w = g(x, y), x = h(u, v), y = k(u, v)
- **18.** $\frac{\partial w}{\partial x}$ and $\frac{\partial w}{\partial y}$ for w = g(u, v), u = h(x, y), v = k(x, y)
- **19.** $\frac{\partial z}{\partial t}$ and $\frac{\partial z}{\partial s}$ for z = f(x, y), x = g(t, s), y = h(t, s)
- **20.** $\frac{\partial y}{\partial r}$ for y = f(u), u = g(r, s)
- **21.** $\frac{\partial w}{\partial s}$ and $\frac{\partial w}{\partial t}$ for w = g(u), u = h(s, t)
- 22. $\frac{\partial w}{\partial p}$ for w = f(x, y, z, v), x = g(p, q), y = h(p, q), z = j(p, q), v = k(p, q)
- **23.** $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ for w = f(x, y), x = g(r), y = h(s)
- **24.** $\frac{\partial w}{\partial s}$ for w = g(x, y), x = h(r, s, t), y = k(r, s, t)

Implicit Differentiation

Assuming that the equations in Exercises 25–28 define y as a differentiable function of x, use Theorem 8 to find the value of dy/dx at the given point.

- **25.** $x^3 2y^2 + xy = 0$, (1, 1)
- **26.** $xy + y^2 3x 3 = 0$, (-1, 1)
- **27.** $x^2 + xy + y^2 7 = 0$, (1, 2)
- **28.** $xe^y + \sin xy + y \ln 2 = 0$, (0, ln 2)

Find the values of $\partial z/\partial x$ and $\partial z/\partial y$ at the points in Exercises 29–32.

- **29.** $z^3 xy + yz + y^3 2 = 0$, (1, 1, 1)
- **30.** $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} 1 = 0$, (2, 3, 6)
- **31.** $\sin(x + y) + \sin(y + z) + \sin(x + z) = 0$, (π, π, π)
- **32.** $xe^y + ye^z + 2 \ln x 2 3 \ln 2 = 0$, $(1, \ln 2, \ln 3)$

Finding Partial Derivatives at Specified Points

- **33.** Find $\partial w/\partial r$ when r = 1, s = -1 if $w = (x + y + z)^2$, x = r s, $y = \cos(r + s)$, $z = \sin(r + s)$.
- **34.** Find $\partial w/\partial v$ when u = -1, v = 2 if $w = xy + \ln z$, $x = v^2/u$, y = u + v, $z = \cos u$.
- **35.** Find $\partial w/\partial v$ when u = 0, v = 0 if $w = x^2 + (y/x), x = u 2v + 1, y = 2u + v 2.$
- **36.** Find $\partial z/\partial u$ when u=0, v=1 if $z=\sin xy+x\sin y,$ $x=u^2+v^2, y=uv.$
- **37.** Find $\partial z/\partial u$ and $\partial z/\partial v$ when $u = \ln 2$, v = 1 if $z = 5 \tan^{-1} x$ and $x = e^u + \ln v$.
- **38.** Find $\partial z/\partial u$ and $\partial z/\partial v$ when u=1, v=-2 if $z=\ln q$ and $q=\sqrt{v+3}\tan^{-1}u$.

Theory and Examples

- **39.** Assume that $w = f(s^3 + t^2)$ and $f'(x) = e^x$. Find $\frac{\partial w}{\partial t}$ and $\frac{\partial w}{\partial s}$.
- **40.** Assume that $w = f\left(ts^2, \frac{s}{t}\right)$, $\frac{\partial f}{\partial x}(x, y) = xy$, and $\frac{\partial f}{\partial y}(x, y) = \frac{x^2}{2}$. Find $\frac{\partial w}{\partial t}$ and $\frac{\partial w}{\partial s}$.
- **41.** Changing voltage in a circuit The voltage V in a circuit that satisfies the law V = IR is slowly dropping as the battery wears out. At the same time, the resistance R is increasing as the resistor heats up. Use the equation

$$\frac{dV}{dt} = \frac{\partial V}{\partial I}\frac{dI}{dt} + \frac{\partial V}{\partial R}\frac{dR}{dt}$$

to find how the current is changing at the instant when R = 600 ohms, I = 0.04 amp, dR/dt = 0.5 ohm/sec, and dV/dt = -0.01 volt/sec.

- **42. Changing dimensions in a box** The lengths a, b, and c of the edges of a rectangular box are changing with time. At the instant in question, a = 1 m, b = 2 m, c = 3 m, da/dt = db/dt = 1 m/sec, and dc/dt = -3 m/sec. At what rates are the box's volume V and surface area S changing at that instant? Are the box's interior diagonals increasing in length or decreasing?
- **43.** If f(u, v, w) is differentiable and u = x y, v = y z, and w = z x, show that

$$\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} = 0.$$

- **44. Polar coordinates** Suppose that we substitute polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$ in a differentiable function w = f(x, y).
 - a. Show that

$$\frac{\partial w}{\partial r} = f_x \cos \theta + f_y \sin \theta$$

and

$$\frac{1}{r}\frac{\partial w}{\partial \theta} = -f_x \sin \theta + f_y \cos \theta.$$

- **b.** Solve the equations in part (a) to express f_x and f_y in terms of $\partial w/\partial r$ and $\partial w/\partial \theta$.
- **c.** Show that

$$(f_x)^2 + (f_y)^2 = \left(\frac{\partial w}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial w}{\partial \theta}\right)^2.$$

- **45. Laplace equations** Show that if w = f(u, v) satisfies the Laplace equation $f_{uu} + f_{vv} = 0$ and if $u = (x^2 y^2)/2$ and v = xy, then w satisfies the Laplace equation $w_{xx} + w_{yy} = 0$.
- **46.** Laplace equations Let w = f(u) + g(v), where u = x + iy, v = x iy, and $i = \sqrt{-1}$. Show that w satisfies the Laplace equation $w_{xx} + w_{yy} = 0$ if all the necessary functions are differentiable.
- **47. Extreme values on a helix** Suppose that the partial derivatives of a function f(x, y, z) at points on the helix $x = \cos t$, $y = \sin t$, z = t are

$$f_x = \cos t$$
, $f_y = \sin t$, $f_z = t^2 + t - 2$.

At what points on the curve, if any, can f take on extreme values?

- **48.** A space curve Let $w = x^2 e^{2y} \cos 3z$. Find the value of dw/dt at the point $(1, \ln 2, 0)$ on the curve $x = \cos t$, $y = \ln (t + 2)$, z = t
- **49. Temperature on a circle** Let T = f(x, y) be the temperature at the point (x, y) on the circle $x = \cos t$, $y = \sin t$, $0 \le t \le 2\pi$ and suppose that

$$\frac{\partial T}{\partial x} = 8x - 4y, \qquad \frac{\partial T}{\partial y} = 8y - 4x.$$

- **a.** Find where the maximum and minimum temperatures on the circle occur by examining the derivatives dT/dt and d^2T/dt^2 .
- **b.** Suppose that $T = 4x^2 4xy + 4y^2$. Find the maximum and minimum values of T on the circle.
- **50. Temperature on an ellipse** Let T = g(x, y) be the temperature at the point (x, y) on the ellipse

$$x = 2\sqrt{2}\cos t$$
, $y = \sqrt{2}\sin t$, $0 \le t \le 2\pi$,

and suppose that

$$\frac{\partial T}{\partial x} = y, \qquad \frac{\partial T}{\partial y} = x.$$

- **a.** Locate the maximum and minimum temperatures on the ellipse by examining dT/dt and d^2T/dt^2 .
- **b.** Suppose that T = xy 2. Find the maximum and minimum values of T on the ellipse.

Differentiating Integrals Under mild continuity restrictions, it is true that if

$$F(x) = \int_a^b g(t, x) dt,$$

then $F'(x) = \int_a^b g_x(t, x) dt$. Using this fact and the Chain Rule, we can find the derivative of

$$F(x) = \int_{a}^{f(x)} g(t, x) dt$$

by letting

$$G(u,x) = \int_{a}^{u} g(t,x) dt,$$

where u = f(x). Find the derivatives of the functions in Exercises 51 and 52.

51.
$$F(x) = \int_0^{x^2} \sqrt{t^4 + x^3} dt$$
 52. $F(x) = \int_{x^2}^1 \sqrt{t^3 + x^2} dt$

14.5 Directional Derivatives and Gradient Vectors

If you look at the map (Figure 14.26) showing contours within Yosemite National Park in California, you will notice that the streams flow perpendicular to the contours. The streams are following paths of steepest descent so the waters reach lower elevations as quickly as possible. Therefore, the fastest instantaneous rate of change in a stream's elevation above sea level has a particular direction. In this section, you will see why this direction, called the "downhill" direction, is perpendicular to the contours.

Directional Derivatives in the Plane

We know from Section 14.4 that if f(x, y) is differentiable, then the rate at which f changes with respect to t along a differentiable curve x = g(t), y = h(t) is

$$\frac{df}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt}.$$

At any point $P_0(x_0, y_0) = P_0(g(t_0), h(t_0))$, this equation gives the rate of change of f with respect to increasing t and therefore depends, among other things, on the direction of

FIGURE 14.26 Contours within Yosemite National Park in California show streams, which follow paths of steepest descent, running perpendicular to the contours. (*Source:* Yosemite National Park Map from U.S. Geological Survey, http://www.usgs.gov)

FIGURE 14.27 The rate of change of f in the direction of \mathbf{u} at a point P_0 is the rate at which f changes along this line at P_0 .

motion along the curve. If the curve is a straight line and t is the arc length parameter along the line measured from P_0 in the direction of a given unit vector \mathbf{u} , then df/dt is the rate of change of f with respect to distance in its domain in the direction of \mathbf{u} . By varying \mathbf{u} , we find the rates at which f changes with respect to distance as we move through P_0 in different directions. We now define this idea more precisely.

Suppose that the function f(x, y) is defined throughout a region R in the xy-plane, that $P_0(x_0, y_0)$ is a point in R, and that $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j}$ is a unit vector. Then the equations

$$x = x_0 + su_1, \quad y = y_0 + su_2$$

parametrize the line through P_0 parallel to **u**. If the parameter s measures arc length from P_0 in the direction of **u**, we find the rate of change of f at P_0 in the direction of **u** by calculating df/ds at P_0 (Figure 14.27).

DEFINITION The derivative of f at $P_0(x_0, y_0)$ in the direction of the unit vector $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j}$ is the number

$$\left(\frac{df}{ds}\right)_{\mathbf{u}, P_0} = \lim_{s \to 0} \frac{f(x_0 + su_1, y_0 + su_2) - f(x_0, y_0)}{s},\tag{1}$$

provided the limit exists.

The **directional derivative** defined by Equation (1) is also denoted by

$$(D_{\mathbf{u}}f)_{P_0}$$
. "The derivative of f at P_0 in the direction of \mathbf{u} "

The partial derivatives $f_x(x_0, y_0)$ and $f_y(x_0, y_0)$ are the directional derivatives of f at P_0 in the **i** and **j** directions. This observation can be seen by comparing Equation (1) to the definitions of the two partial derivatives given in Section 14.3.

EXAMPLE 1 Using the definition, find the derivative of

$$f(x, y) = x^2 + xy$$

at $P_0(1, 2)$ in the direction of the unit vector $\mathbf{u} = (1/\sqrt{2})\mathbf{i} + (1/\sqrt{2})\mathbf{j}$.

Solution Applying the definition in Equation (1), we obtain

$$\left(\frac{df}{ds}\right)_{\mathbf{u}, P_0} = \lim_{s \to 0} \frac{f(x_0 + su_1, y_0 + su_2) - f(x_0, y_0)}{s} \qquad \text{Eq. (1)}$$

$$= \lim_{s \to 0} \frac{f\left(1 + s \cdot \frac{1}{\sqrt{2}}, 2 + s \cdot \frac{1}{\sqrt{2}}\right) - f(1, 2)}{s}$$

$$= \lim_{s \to 0} \frac{\left(1 + \frac{s}{\sqrt{2}}\right)^2 + \left(1 + \frac{s}{\sqrt{2}}\right)\left(2 + \frac{s}{\sqrt{2}}\right) - (1^2 + 1 \cdot 2)}{s}$$

$$= \lim_{s \to 0} \frac{\left(1 + \frac{2s}{\sqrt{2}} + \frac{s^2}{2}\right) + \left(2 + \frac{3s}{\sqrt{2}} + \frac{s^2}{2}\right) - 3}{s}$$

$$= \lim_{s \to 0} \frac{\frac{5s}{\sqrt{2}} + s^2}{s} = \lim_{s \to 0} \left(\frac{5}{\sqrt{2}} + s\right) = \frac{5}{\sqrt{2}}.$$

The rate of change of $f(x, y) = x^2 + xy$ at $P_0(1, 2)$ in the direction **u** is $5/\sqrt{2}$.

FIGURE 14.28 The slope of the trace curve C at P_0 is $\lim_{Q \to P}$ slope (PQ); this is the directional derivative

$$\left(\frac{df}{ds}\right)_{\mathbf{u}, P_0} = (D_{\mathbf{u}}f)_{P_0}.$$

Interpretation of the Directional Derivative

The equation z = f(x, y) represents a surface S in space. If $z_0 = f(x_0, y_0)$, then the point $P(x_0, y_0, z_0)$ lies on S. The vertical plane that passes through P and $P_0(x_0, y_0)$ parallel to \mathbf{u} intersects S in a curve C (Figure 14.28). The rate of change of f in the direction of \mathbf{u} is the slope of the tangent to C at P in the right-handed system formed by the vectors \mathbf{u} and \mathbf{k} .

When $\mathbf{u} = \mathbf{i}$, the directional derivative at P_0 is $\partial f/\partial x$ evaluated at (x_0, y_0) . When $\mathbf{u} = \mathbf{j}$, the directional derivative at P_0 is $\partial f/\partial y$ evaluated at (x_0, y_0) . The directional derivative generalizes the two partial derivatives. We can now ask for the rate of change of f in any direction \mathbf{u} , not just the directions \mathbf{i} and \mathbf{j} .

For a physical interpretation of the directional derivative, suppose that T = f(x, y) is the temperature at each point (x, y) over a region in the plane. Then $f(x_0, y_0)$ is the temperature at the point $P_0(x_0, y_0)$ and $(D_{\mathbf{u}}f)_{P_0}$ is the instantaneous rate of change of the temperature at P_0 stepping off in the direction \mathbf{u} .

Calculation and Gradients

We now develop an efficient formula to calculate the directional derivative for a differentiable function f. We begin with the line

$$x = x_0 + su_1, y = y_0 + su_2,$$
 (2)

$$\left(\frac{df}{ds}\right)_{\mathbf{u}, P_0} = \left(\frac{\partial f}{\partial x}\right)_{P_0} \frac{dx}{ds} + \left(\frac{\partial f}{\partial y}\right)_{P_0} \frac{dy}{ds} \qquad \text{Chain Rule for differentiable } f$$

$$= \left(\frac{\partial f}{\partial x}\right)_{P_0} u_1 + \left(\frac{\partial f}{\partial y}\right)_{P_0} u_2 \qquad \text{From Eqs. (2), } \frac{dx}{ds} = u_1$$

$$= \left[\left(\frac{\partial f}{\partial x}\right)_{P_0} \mathbf{i} + \left(\frac{\partial f}{\partial y}\right)_{P_0} \mathbf{j}\right] \cdot \left[u_1 \mathbf{i} + u_2 \mathbf{j}\right].$$
Gradient of f at P_0 Direction \mathbf{u}

Equation (3) says that the derivative of a differentiable function f in the direction of \mathbf{u} at P_0 is the dot product of \mathbf{u} with the special vector, which we now define.

DEFINITION The **gradient vector** (**gradient**) of f(x, y) at a point $P_0(x_0, y_0)$ is the vector

$$\nabla f = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j}$$

obtained by evaluating the partial derivatives of f at P_0 .

The notation ∇f is read "grad f" as well as "gradient of f" and "del f." The symbol ∇ by itself is read "del." Another notation for the gradient is grad f. Using the gradient notation, we restate Equation (3) as a theorem.

THEOREM 9—The Directional Derivative Is a Dot Product If f(x, y) is differentiable in an open region containing $P_0(x_0, y_0)$, then

$$\left(\frac{df}{ds}\right)_{\mathbf{u}, P_0} = (\nabla f)_{P_0} \cdot \mathbf{u},\tag{4}$$

the dot product of the gradient ∇f at P_0 and **u**. In brief, $D_{\bf u}f = \nabla f \cdot {\bf u}$.

EXAMPLE 2 Find the derivative of $f(x, y) = xe^y + \cos(xy)$ at the point (2, 0) in the direction of $\mathbf{v} = 3\mathbf{i} - 4\mathbf{j}$.

Solution Recall that the direction of a vector \mathbf{v} is the unit vector obtained by dividing \mathbf{v} by its length:

$$\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{\mathbf{v}}{5} = \frac{3}{5}\mathbf{i} - \frac{4}{5}\mathbf{j}.$$

The partial derivatives of f are everywhere continuous and at (2, 0) are given by

$$f_x(2, 0) = (e^y - y \sin(xy))_{(2,0)} = e^0 - 0 = 1$$

 $f_y(2, 0) = (xe^y - x \sin(xy))_{(2,0)} = 2e^0 - 2 \cdot 0 = 2.$

The gradient of f at (2, 0) is

$$\nabla f|_{(2,0)} = f_{y}(2,0)\mathbf{i} + f_{y}(2,0)\mathbf{j} = \mathbf{i} + 2\mathbf{j}$$

FIGURE 14.29 Picture ∇f as a vector in the domain of f. The figure shows a number of level curves of f. The rate at which f changes at (2, 0) in the direction \mathbf{u} is $\nabla f \cdot \mathbf{u} = -1$, which is the component of ∇f in the direction of unit vector \mathbf{u} (Example 2).

(Figure 14.29). The derivative of f at (2, 0) in the direction of \mathbf{v} is therefore

$$(D_{\mathbf{u}}f)_{(2,0)} = \nabla f|_{(2,0)} \cdot \mathbf{u} \qquad \text{Eq. (4) with the } (D_{\mathbf{u}}f)_{P_0} \text{ notation}$$
$$= (\mathbf{i} + 2\mathbf{j}) \cdot \left(\frac{3}{5}\mathbf{i} - \frac{4}{5}\mathbf{j}\right) = \frac{3}{5} - \frac{8}{5} = -1.$$

Evaluating the dot product in the brief version of Equation (4) gives

$$D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u} = |\nabla f||\mathbf{u}|\cos\theta = |\nabla f|\cos\theta,$$

where θ is the angle between the vectors **u** and ∇f , and reveals the following properties.

Properties of the Directional Derivative $D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u} = |\nabla f| \cos \theta$

1. The function f increases most rapidly when $\cos \theta = 1$ or when $\theta = 0$ and \mathbf{u} is the direction of ∇f . That is, at each point P in its domain, f increases most rapidly in the direction of the gradient vector ∇f at P. The derivative in this direction is

$$D_{\mathbf{u}}f = |\nabla f| \cos(0) = |\nabla f|.$$

- 2. Similarly, f decreases most rapidly in the direction of $-\nabla f$. The derivative in this direction is $D_{\mathbf{u}}f = |\nabla f|\cos{(\pi)} = -|\nabla f|$.
- **3.** Any direction **u** orthogonal to a gradient $\nabla f \neq 0$ is a direction of zero change in f because θ then equals $\pi/2$ and

$$D_{\mathbf{u}}f = |\nabla f|\cos(\pi/2) = |\nabla f| \cdot 0 = 0.$$

As we discuss later, these properties hold in three dimensions as well as two.

EXAMPLE 3 Find the directions in which $f(x, y) = (x^2/2) + (y^2/2)$

- (a) increases most rapidly at the point (1, 1), and
- **(b)** decreases most rapidly at (1, 1).
- (c) What are the directions of zero change in f at (1, 1)?

Solution

(a) The function increases most rapidly in the direction of ∇f at (1, 1). The gradient there is

$$(\nabla f)_{(1,1)} = (x\mathbf{i} + y\mathbf{j})_{(1,1)} = \mathbf{i} + \mathbf{j}.$$

Its direction is

$$\mathbf{u} = \frac{\mathbf{i} + \mathbf{j}}{|\mathbf{i} + \mathbf{j}|} = \frac{\mathbf{i} + \mathbf{j}}{\sqrt{(1)^2 + (1)^2}} = \frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j}.$$

(b) The function decreases most rapidly in the direction of $-\nabla f$ at (1, 1), which is

$$-\mathbf{u} = -\frac{1}{\sqrt{2}}\mathbf{i} - \frac{1}{\sqrt{2}}\mathbf{j}.$$

(c) The directions of zero change at (1, 1) are the directions orthogonal to ∇f :

$$\mathbf{n} = -\frac{1}{\sqrt{2}}\mathbf{i} + \frac{1}{\sqrt{2}}\mathbf{j}$$
 and $-\mathbf{n} = \frac{1}{\sqrt{2}}\mathbf{i} - \frac{1}{\sqrt{2}}\mathbf{j}$.

See Figure 14.30.

FIGURE 14.30 The direction in which f(x, y) increases most rapidly at (1, 1) is the direction of $\nabla f|_{(1,1)} = \mathbf{i} + \mathbf{j}$. It corresponds to the direction of steepest ascent on the surface at (1, 1, 1) (Example 3).

Gradients and Tangents to Level Curves

If a differentiable function f(x, y) has a constant value c along a smooth curve $\mathbf{r} = g(t)\mathbf{i} + h(t)\mathbf{j}$ (making the curve part of a level curve of f), then f(g(t), h(t)) = c. Differentiating both sides of this equation with respect to t leads to the equations

$$\frac{d}{dt}f(g(t), h(t)) = \frac{d}{dt}(c)$$

$$\frac{\partial f}{\partial x}\frac{dg}{dt} + \frac{\partial f}{\partial y}\frac{dh}{dt} = 0 \qquad \text{Chain Rule}$$

$$\left(\frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j}\right) \cdot \left(\frac{dg}{dt}\mathbf{i} + \frac{dh}{dt}\mathbf{j}\right) = 0.$$
(5)

The level curve $f(x, y) = f(x_0, y_0)$

Equation (5) says that ∇f is normal to the tangent vector $d\mathbf{r}/dt$, so it is normal to the curve.

FIGURE 14.31 The gradient of a differentiable function of two variables at a point is always normal to the function's level curve through that point.

At every point (x_0, y_0) in the domain of a differentiable function f(x, y), the gradient of f is normal to the level curve through (x_0, y_0) (Figure 14.31).

Equation (5) validates our observation that streams flow perpendicular to the contours in topographical maps (see Figure 14.26). Since the downflowing stream will reach its destination in the fastest way, it must flow in the direction of the negative gradient vectors from Property 2 for the directional derivative. Equation (5) tells us these directions are perpendicular to the level curves.

This observation also enables us to find equations for tangent lines to level curves. They are the lines normal to the gradients. The line through a point $P_0(x_0, y_0)$ normal to a vector $\mathbf{N} = A\mathbf{i} + B\mathbf{j}$ has the equation

$$A(x - x_0) + B(y - y_0) = 0$$

(Exercise 39). If **N** is the gradient $(\nabla f)_{(x_0, y_0)} = f_x(x_0, y_0)\mathbf{i} + f_y(x_0, y_0)\mathbf{j}$, the equation gives the following formula.

Tangent Line to a Level Curve

$$f_{x}(x_{0}, y_{0})(x - x_{0}) + f_{y}(x_{0}, y_{0})(y - y_{0}) = 0$$
 (6)

FIGURE 14.32 We can find the tangent to the ellipse $(x^2/4) + y^2 = 2$ by treating the ellipse as a level curve of the function $f(x, y) = (x^2/4) + y^2$ (Example 4).

EXAMPLE 4 Find an equation for the tangent to the ellipse

$$\frac{x^2}{4} + y^2 = 2$$

(Figure 14.32) at the point (-2, 1).

Solution The ellipse is a level curve of the function

$$f(x, y) = \frac{x^2}{4} + y^2.$$

The gradient of f at (-2, 1) is

$$\nabla f|_{(-2,1)} = \left(\frac{x}{2}\mathbf{i} + 2y\mathbf{j}\right)_{(-2,1)} = -\mathbf{i} + 2\mathbf{j}.$$

The tangent to the ellipse at (-2, 1) is the line

$$(-1)(x + 2) + (2)(y - 1) = 0$$
 Eq. (6)
 $x - 2y = -4$.

If we know the gradients of two functions f and g, we automatically know the gradients of their sum, difference, constant multiples, product, and quotient. You are asked to establish the following rules in Exercise 40. Notice that these rules have the same form as the corresponding rules for derivatives of single-variable functions.

Algebra Rules for Gradients

1. Sum Rule:
$$\nabla(f+g) = \nabla f + \nabla g$$

2. Difference Rule:
$$\nabla (f - g) = \nabla f - \nabla g$$

3. Constant Multiple Rule:
$$\nabla(kf) = k\nabla f$$
 (any number k)

4. Product Rule:
$$\nabla(fg) = f\nabla g + g\nabla f$$
 Scalar multipliers on left

5. Quotient Rule:
$$\nabla \left(\frac{f}{g}\right) = \frac{g\nabla f - f\nabla g}{g^2} \qquad \text{of gradie}$$

EXAMPLE 5 We illustrate two of the rules with

$$f(x, y) = x - y$$
 $g(x, y) = 3y$
 $\nabla f = \mathbf{i} - \mathbf{j}$ $\nabla g = 3\mathbf{j}$.

We have

1.
$$\nabla (f - g) = \nabla (x - 4y) = \mathbf{i} - 4\mathbf{j} = \nabla f - \nabla g$$
 Rule 2

2.
$$\nabla(fg) = \nabla(3xy - 3y^2) = 3y\mathbf{i} + (3x - 6y)\mathbf{j}$$

 $= 3y(\mathbf{i} - \mathbf{j}) + 3y\mathbf{j} + (3x - 6y)\mathbf{j}$ $g\nabla f$ plus terms ...
 $= 3y(\mathbf{i} - \mathbf{j}) + (3x - 3y)\mathbf{j}$ simplified.
 $= 3y(\mathbf{i} - \mathbf{j}) + (x - y)3\mathbf{j} = g\nabla f + f\nabla g$ Rule 4

Functions of Three Variables

For a differentiable function f(x, y, z) and a unit vector $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$ in space, we have

$$\nabla f = \frac{\partial f}{\partial x} \mathbf{i} + \frac{\partial f}{\partial y} \mathbf{j} + \frac{\partial f}{\partial z} \mathbf{k}$$

and

$$D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u} = \frac{\partial f}{\partial x} u_1 + \frac{\partial f}{\partial y} u_2 + \frac{\partial f}{\partial z} u_3.$$

The directional derivative can once again be written in the form

$$D_{\mathbf{u}}f = \nabla f \cdot \mathbf{u} = |\nabla f| |u| \cos \theta = |\nabla f| \cos \theta,$$

so the properties listed earlier for functions of two variables extend to three variables. At any given point, f increases most rapidly in the direction of ∇f and decreases most rapidly in the direction of $-\nabla f$. In any direction orthogonal to ∇f , the derivative is zero.

- (a) Find the derivative of $f(x, y, z) = x^3 xy^2 z$ at $P_0(1, 1, 0)$ in the direction of $\mathbf{v} = 2\mathbf{i} 3\mathbf{j} + 6\mathbf{k}$.
- (b) In what directions does f change most rapidly at P_0 , and what are the rates of change in these directions?

Solution

(a) The direction of v is obtained by dividing v by its length:

$$|\mathbf{v}| = \sqrt{(2)^2 + (-3)^2 + (6)^2} = \sqrt{49} = 7$$

 $\mathbf{u} = \frac{\mathbf{v}}{|\mathbf{v}|} = \frac{2}{7}\mathbf{i} - \frac{3}{7}\mathbf{j} + \frac{6}{7}\mathbf{k}.$

The partial derivatives of f at P_0 are

$$f_x = (3x^2 - y^2)_{(1,1,0)} = 2,$$
 $f_y = -2xy|_{(1,1,0)} = -2,$ $f_z = -1|_{(1,1,0)} = -1.$

The gradient of f at P_0 is

$$\nabla f|_{(1,1,0)} = 2\mathbf{i} - 2\mathbf{j} - \mathbf{k}.$$

The derivative of f at P_0 in the direction of \mathbf{v} is therefore

$$(D_{\mathbf{u}}f)_{(1,1,0)} = \nabla f|_{(1,1,0)} \cdot \mathbf{u} = (2\mathbf{i} - 2\mathbf{j} - \mathbf{k}) \cdot \left(\frac{2}{7}\mathbf{i} - \frac{3}{7}\mathbf{j} + \frac{6}{7}\mathbf{k}\right)$$
$$= \frac{4}{7} + \frac{6}{7} - \frac{6}{7} = \frac{4}{7}.$$

(b) The function increases most rapidly in the direction of $\nabla f = 2\mathbf{i} - 2\mathbf{j} - \mathbf{k}$ and decreases most rapidly in the direction of $-\nabla f$. The rates of change in the directions are, respectively,

$$|\nabla f| = \sqrt{(2)^2 + (-2)^2 + (-1)^2} = \sqrt{9} = 3$$
 and $-|\nabla f| = -3$.

The Chain Rule for Paths

If $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$ is a smooth path C, and $w = f(\mathbf{r}(t))$ is a scalar function evaluated along C, then according to the Chain Rule, Theorem 6 in Section 14.4,

$$\frac{dw}{dt} = \frac{\partial w}{\partial x}\frac{dx}{dt} + \frac{\partial w}{\partial y}\frac{dy}{dt} + \frac{\partial w}{\partial z}\frac{dz}{dt}$$

The partial derivatives on the right-hand side of the above equation are evaluated along the curve $\mathbf{r}(t)$, and the derivatives of the intermediate variables are evaluated at t. If we express this equation using vector notation, we have

The Derivative Along a Path

$$\frac{d}{dt}f(\mathbf{r}(t)) = \nabla f(\mathbf{r}(t)) \cdot \mathbf{r}'(t). \tag{7}$$

What Equation (7) says is that the derivative of the composite function $f(\mathbf{r}(t))$ is the "derivative" (gradient) of the outside function f "times" (dot product) the derivative of the inside function \mathbf{r} . This is analogous to the "Outside-Inside" Rule for derivatives of composite functions studied in Section 3.6. That is, the multivariable Chain Rule for paths has exactly *the same form* as the rule for single-variable differential calculus when appropriate interpretations are given to the meanings of the terms and operations involved.

Exercises

Calculating Gradients

In Exercises 1-6, find the gradient of the function at the given point. Then sketch the gradient together with the level curve that passes through the point.

1.
$$f(x, y) = y - x$$
, (2, 1)

1.
$$f(x, y) = y - x$$
, (2, 1) **2.** $f(x, y) = \ln(x^2 + y^2)$, (1, 1)

3.
$$g(x, y) = xy^2$$
, $(2, -1)$

3.
$$g(x, y) = xy^2$$
, $(2, -1)$ **4.** $g(x, y) = \frac{x^2}{2} - \frac{y^2}{2}$, $(\sqrt{2}, 1)$

5.
$$f(x, y) = \sqrt{2x + 3y}$$
, $(-1, 2)$

6.
$$f(x, y) = \tan^{-1} \frac{\sqrt{x}}{y}$$
, (4, -2)

In Exercises 7–10, find ∇f at the given point.

7.
$$f(x, y, z) = x^2 + y^2 - 2z^2 + z \ln x$$
, (1, 1, 1)

8.
$$f(x, y, z) = 2z^3 - 3(x^2 + y^2)z + \tan^{-1} xz$$
, (1, 1, 1)

9.
$$f(x, y, z) = (x^2 + y^2 + z^2)^{-1/2} + \ln(xyz), \quad (-1, 2, -2)$$

10.
$$f(x, y, z) = e^{x+y} \cos z + (y+1) \sin^{-1} x$$
, $(0, 0, \pi/6)$

Finding Directional Derivatives

In Exercises 11–18, find the derivative of the function at P_0 in the

11.
$$f(x, y) = 2xy - 3y^2$$
, $P_0(5, 5)$, $\mathbf{u} = 4\mathbf{i} + 3\mathbf{j}$

12.
$$f(x, y) = 2x^2 + y^2$$
, $P_0(-1, 1)$, $\mathbf{u} = 3\mathbf{i} - 4\mathbf{j}$

13.
$$g(x, y) = \frac{x - y}{xy + 2}$$
, $P_0(1, -1)$, $\mathbf{u} = 12\mathbf{i} + 5\mathbf{j}$

14.
$$h(x, y) = \tan^{-1}(y/x) + \sqrt{3}\sin^{-1}(xy/2), P_0(1, 1),$$

 $\mathbf{u} = 3\mathbf{i} - 2\mathbf{i}$

15.
$$f(x, y, z) = xy + yz + zx$$
, $P_0(1, -1, 2)$, $\mathbf{u} = 3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}$

16.
$$f(x, y, z) = x^2 + 2y^2 - 3z^2$$
, $P_0(1, 1, 1)$, $\mathbf{u} = \mathbf{i} + \mathbf{j} + \mathbf{k}$

17.
$$g(x, y, z) = 3e^x \cos yz$$
, $P_0(0, 0, 0)$, $\mathbf{u} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$

18.
$$h(x, y, z) = \cos xy + e^{yz} + \ln zx$$
, $P_0(1, 0, 1/2)$, $\mathbf{u} = \mathbf{i} + 2\mathbf{j} + 2\mathbf{k}$

In Exercises 19–24, find the directions in which the functions increase and decrease most rapidly at P_0 . Then find the derivatives of the functions in these directions.

19.
$$f(x, y) = x^2 + xy + y^2$$
, $P_0(-1, 1)$

20.
$$f(x, y) = x^2y + e^{xy} \sin y$$
, $P_0(1, 0)$

21.
$$f(x, y, z) = (x/y) - yz$$
, $P_0(4, 1, 1)$

22.
$$g(x, y, z) = xe^y + z^2$$
, $P_0(1, \ln 2, 1/2)$

23.
$$f(x, y, z) = \ln xy + \ln yz + \ln xz$$
, $P_0(1, 1, 1)$

24.
$$h(x, y, z) = \ln(x^2 + y^2 - 1) + y + 6z$$
, $P_0(1, 1, 0)$

Tangent Lines to Level Curves

In Exercises 25–28, sketch the curve f(x, y) = c together with ∇f and the tangent line at the given point. Then write an equation for the tangent line.

25.
$$x^2 + y^2 = 4$$
, $(\sqrt{2}, \sqrt{2})$

26.
$$x^2 - y = 1$$
, $(\sqrt{2}, 1)$

27.
$$xy = -4$$
, $(2, -2)$

28.
$$x^2 - xy + y^2 = 7$$
. (-1, 2)

Theory and Examples

- **29.** Let $f(x, y) = x^2 xy + y^2 y$. Find the directions **u** and the values of $D_{\mathbf{u}} f(1, -1)$ for which

 - **a.** $D_{\mathbf{u}} f(1,-1)$ is largest **b.** $D_{\mathbf{u}} f(1,-1)$ is smallest
 - **c.** $D_{\mathbf{n}} f(1,-1) = 0$
- **d.** $D_n f(1,-1) = 4$
- **e.** $D_{\mathbf{n}} f(1,-1) = -3$
- **30.** Let $f(x, y) = \frac{(x y)}{(x + y)}$. Find the directions **u** and the values of

$$D_{\mathbf{u}}f\left(-\frac{1}{2},\frac{3}{2}\right)$$
 for which

- **a.** $D_{\mathbf{u}} f\left(-\frac{1}{2}, \frac{3}{2}\right)$ is largest **b.** $D_{\mathbf{u}} f\left(-\frac{1}{2}, \frac{3}{2}\right)$ is smallest
- **c.** $D_{\mathbf{u}} f\left(-\frac{1}{2}, \frac{3}{2}\right) = 0$ **d.** $D_{\mathbf{u}} f\left(-\frac{1}{2}, \frac{3}{2}\right) = -2$
- **e.** $D_{\mathbf{u}} f\left(-\frac{1}{2}, \frac{3}{2}\right) = 1$
- 31. Zero directional derivative In what direction is the derivative of $f(x, y) = xy + y^2$ at P(3, 2) equal to zero?
- **32. Zero directional derivative** In what directions is the derivative of $f(x, y) = (x^2 - y^2)/(x^2 + y^2)$ at P(1, 1) equal to zero?
- **33.** Is there a direction **u** in which the rate of change of f(x, y) = $x^2 - 3xy + 4y^2$ at P(1, 2) equals 14? Give reasons for your answer.
- **34.** Changing temperature along a circle Is there a direction **u** in which the rate of change of the temperature function T(x, y, z) =2xy - yz (temperature in degrees Celsius, distance in feet) at P(1, -1, 1) is -3° C/ft? Give reasons for your answer.
- **35.** The derivative of f(x, y) at $P_0(1, 2)$ in the direction of $\mathbf{i} + \mathbf{j}$ is $2\sqrt{2}$ and in the direction of $-2\mathbf{j}$ is -3. What is the derivative of f in the direction of $-\mathbf{i} - 2\mathbf{j}$? Give reasons for your answer.
- **36.** The derivative of f(x, y, z) at a point P is greatest in the direction of $\mathbf{v} = \mathbf{i} + \mathbf{j} - \mathbf{k}$. In this direction, the value of the derivative is $2\sqrt{3}$.
 - **a.** What is ∇f at P? Give reasons for your answer.
 - **b.** What is the derivative of f at P in the direction of $\mathbf{i} + \mathbf{j}$?
- 37. Directional derivatives and scalar components How is the derivative of a differentiable function f(x, y, z) at a point P_0 in the direction of a unit vector u related to the scalar component of $(\nabla f)_{P_0}$ in the direction of **u**? Give reasons for your answer.
- 38. Directional derivatives and partial derivatives Assuming that the necessary derivatives of f(x, y, z) are defined, how are $D_{i}f$, $D_{i}f$, and $D_{k}f$ related to f_{x} , f_{y} , and f_{z} ? Give reasons for your answer.
- **39.** Lines in the xy-plane Show that $A(x x_0) + B(y y_0) = 0$ is an equation for the line in the xy-plane through the point (x_0, y_0) normal to the vector $\mathbf{N} = A\mathbf{i} + B\mathbf{j}$.
- **40.** The algebra rules for gradients Given a constant k and the

$$\nabla f = \frac{\partial f}{\partial x}\mathbf{i} + \frac{\partial f}{\partial y}\mathbf{j} + \frac{\partial f}{\partial z}\mathbf{k}, \qquad \nabla g = \frac{\partial g}{\partial x}\mathbf{i} + \frac{\partial g}{\partial y}\mathbf{j} + \frac{\partial g}{\partial z}\mathbf{k},$$

establish the algebra rules for gradients.

14.6 Tangent Planes and Differentials

In single-variable differential calculus we saw how the derivative defined the tangent line to the graph of a differentiable function at a point on the graph. The tangent line then provided for a linearization of the function at the point. In this section, we will see analogously how the gradient defines the *tangent plane* to the level surface of a function w = f(x, y, z) at a point on the surface. In the same way as before, the tangent plane then provides for a linearization of f at the point and defines the total differential of the function.

Tangent Planes and Normal Lines

If $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$ is a smooth curve on the level surface f(x, y, z) = c of a differentiable function f, we found in Equation (7) of the last section that

$$\frac{d}{dt} f(\mathbf{r}(t)) = \nabla f(\mathbf{r}(t)) \cdot \mathbf{r}'(t).$$

Since f is constant along the curve \mathbf{r} , the derivative on the left-hand side of the equation is 0, so the gradient ∇f is orthogonal to the curve's velocity vector \mathbf{r}' .

Now let us restrict our attention to the curves that pass through P_0 (Figure 14.33). All the velocity vectors at P_0 are orthogonal to ∇f at P_0 , so the curves' tangent lines all lie in the plane through P_0 normal to ∇f . We now define this plane.

The **normal line** of the surface at P_0 is the line through P_0 parallel to $\nabla f|_{P_0}$.

From Section 12.5, the tangent plane and normal line have the following equations:

FIGURE 14.33 The gradient ∇f is orthogonal to the velocity vector of every smooth curve in the surface through P_0 . The velocity vectors at P_0 therefore lie in a common plane, which we call the tangent plane at P_0 .

Tangent Plane to f(x, y, z) = c at $P_0(x_0, y_0, z_0)$

$$f_x(P_0)(x - x_0) + f_y(P_0)(y - y_0) + f_z(P_0)(z - z_0) = 0$$
 (1)

Normal Line to f(x, y, z) = c at $P_0(x_0, y_0, z_0)$

$$x = x_0 + f_x(P_0)t,$$
 $y = y_0 + f_y(P_0)t,$ $z = z_0 + f_z(P_0)t$ (2)

$$f(x, y, z) = x^2 + y^2 + z - 9 = 0$$
 A circular paraboloid

at the point $P_0(1, 2, 4)$.

Solution The surface is shown in Figure 14.34.

The tangent plane is the plane through P_0 perpendicular to the gradient of f at P_0 . The gradient is

$$\nabla f|_{P_0} = (2x\mathbf{i} + 2y\mathbf{j} + \mathbf{k})_{(1,2,4)} = 2\mathbf{i} + 4\mathbf{j} + \mathbf{k}.$$

The tangent plane is therefore the plane

$$2(x-1) + 4(y-2) + (z-4) = 0$$
, or $2x + 4y + z = 14$.

The line normal to the surface at P_0 is

$$x = 1 + 2t$$
, $y = 2 + 4t$, $z = 4 + t$.

FIGURE 14.34 The tangent plane and normal line to this level surface at P_0 (Example 1).

To find an equation for the plane tangent to a smooth surface z = f(x, y) at a point $P_0(x_0, y_0, z_0)$ where $z_0 = f(x_0, y_0)$, we first observe that the equation z = f(x, y) is equivalent to f(x, y) - z = 0. The surface z = f(x, y) is therefore the zero level surface of the function F(x, y, z) = f(x, y) - z. The partial derivatives of F are

$$F_x = \frac{\partial}{\partial x}(f(x, y) - z) = f_x - 0 = f_x$$

$$F_{y} = \frac{\partial}{\partial y} (f(x, y) - z) = f_{y} - 0 = f_{y}$$

$$F_z = \frac{\partial}{\partial z} (f(x, y) - z) = 0 - 1 = -1.$$

The formula

$$F_x(P_0)(x - x_0) + F_y(P_0)(y - y_0) + F_z(P_0)(z - z_0) = 0$$

for the plane tangent to the level surface at P_0 therefore reduces to

$$f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0) - (z - z_0) = 0.$$

Plane Tangent to a Surface z = f(x, y) at $(x_0, y_0, f(x_0, y_0))$

The plane tangent to the surface z = f(x, y) of a differentiable function f at the point $P_0(x_0, y_0, z_0) = (x_0, y_0, f(x_0, y_0))$ is

$$f_{y}(x_{0}, y_{0})(x - x_{0}) + f_{y}(x_{0}, y_{0})(y - y_{0}) - (z - z_{0}) = 0.$$
 (3)

EXAMPLE 2 Find the plane tangent to the surface $z = x \cos y - ye^x$ at (0, 0, 0).

Solution We calculate the partial derivatives of $f(x, y) = x \cos y - ye^x$ and use Equation (3):

$$f_x(0, 0) = (\cos y - ye^x)_{(0,0)} = 1 - 0 \cdot 1 = 1$$

 $f_y(0, 0) = (-x \sin y - e^x)_{(0,0)} = 0 - 1 = -1.$

The tangent plane is therefore

$$1 \cdot (x - 0) - 1 \cdot (y - 0) - (z - 0) = 0$$
, Eq. (3)

or

$$x - y - z = 0.$$

FIGURE 14.35 This cylinder and plane intersect in an ellipse E (Example 3).

EXAMPLE 3 The surfaces

$$f(x, y, z) = x^2 + y^2 - 2 = 0$$
 A cylinder

and

$$g(x, y, z) = x + z - 4 = 0$$
 A plane

meet in an ellipse E (Figure 14.35). Find parametric equations for the line tangent to E at the point $P_0(1, 1, 3)$.

$$\nabla f|_{(1,1,3)} = (2x\mathbf{i} + 2y\mathbf{j})_{(1,1,3)} = 2\mathbf{i} + 2\mathbf{j}$$

$$\nabla g|_{(1,1,3)} = (\mathbf{i} + \mathbf{k})_{(1,1,3)} = \mathbf{i} + \mathbf{k}$$

$$\mathbf{v} = (2\mathbf{i} + 2\mathbf{j}) \times (\mathbf{i} + \mathbf{k}) = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 2 & 0 \\ 1 & 0 & 1 \end{vmatrix} = 2\mathbf{i} - 2\mathbf{j} - 2\mathbf{k}.$$

The tangent line to the ellipse of intersection is

$$x = 1 + 2t$$
, $y = 1 - 2t$, $z = 3 - 2t$.

Estimating Change in a Specific Direction

The directional derivative plays the role of an ordinary derivative when we want to estimate how much the value of a function f changes if we move a small distance ds from a point P_0 to another point nearby. If f were a function of a single variable, we would have

$$df = f'(P_0) ds$$
. Ordinary derivative \times increment

For a function of two or more variables, we use the formula

$$df = (\nabla f|_{P_0} \cdot \mathbf{u}) ds$$
, Directional derivative \times increment

where **u** is the direction of the motion away from P_0 .

Estimating the Change in f in a Direction u

To estimate the change in the value of a differentiable function f when we move a small distance ds from a point P_0 in a particular direction \mathbf{u} , use the formula

$$df = (\nabla f|_{P_0} \cdot \mathbf{u}) \quad ds$$

Directional Distance derivative increment

EXAMPLE 4 Estimate how much the value of

$$f(x, y, z) = y \sin x + 2yz$$

will change if the point P(x, y, z) moves 0.1 unit from $P_0(0, 1, 0)$ straight toward $P_1(2, 2, -2)$.

Solution We first find the derivative of f at P_0 in the direction of the vector $\overrightarrow{P_0P_1} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k}$. The direction of this vector is

$$\mathbf{u} = \frac{\overrightarrow{P_0P_1}}{|\overrightarrow{P_0P_1}|} = \frac{\overrightarrow{P_0P_1}}{3} = \frac{2}{3}\mathbf{i} + \frac{1}{3}\mathbf{j} - \frac{2}{3}\mathbf{k}.$$

The gradient of f at P_0 is

$$\nabla f|_{(0,1,0)} = ((y\cos x)\mathbf{i} + (\sin x + 2z)\mathbf{j} + 2y\mathbf{k})_{(0,1,0)} = \mathbf{i} + 2\mathbf{k}.$$

Therefore,

$$\nabla f|_{P_0} \cdot \mathbf{u} = (\mathbf{i} + 2\mathbf{k}) \cdot \left(\frac{2}{3}\mathbf{i} + \frac{1}{3}\mathbf{j} - \frac{2}{3}\mathbf{k}\right) = \frac{2}{3} - \frac{4}{3} = -\frac{2}{3}.$$

FIGURE 14.36 As P(x, y, z) moves off the level surface at P_0 by 0.1 unit directly toward P_1 , the function f changes value by approximately -0.067 unit (Example 4).

FIGURE 14.37 If f is differentiable at (x_0, y_0) , then the value of f at any point (x, y) nearby is approximately $f(x_0, y_0) + f_x(x_0, y_0)\Delta x + f_y(x_0, y_0)\Delta y$.

The change df in f that results from moving ds = 0.1 unit away from P_0 in the direction of **u** is approximately

$$df = (\nabla f|_{P_0} \cdot \mathbf{u})(ds) = \left(-\frac{2}{3}\right)(0.1) \approx -0.067 \text{ unit.}$$

See Figure 14.36.

How to Linearize a Function of Two Variables

Functions of two variables can be complicated, and we sometimes need to approximate them with simpler ones that give the accuracy required for specific applications without being so difficult to work with. We do this in a way that is similar to the way we find linear replacements for functions of a single variable (Section 3.9).

Suppose the function we wish to approximate is z = f(x, y) near a point (x_0, y_0) at which we know the values of f, f_x , and f_y and at which f is differentiable. If we move from (x_0, y_0) to any nearby point (x, y) by increments $\Delta x = x - x_0$ and $\Delta y = y - y_0$ (see Figure 14.37), then the definition of differentiability from Section 14.3 gives the change

$$f(x, y) - f(x_0, y_0) = f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y + \epsilon_1 \Delta x + \epsilon_2 \Delta y,$$

where $\epsilon_1, \epsilon_2 \to 0$ as $\Delta x, \Delta y \to 0$. If the increments Δx and Δy are small, the products $\epsilon_1 \Delta x$ and $\epsilon_2 \Delta y$ will eventually be smaller still and we have the approximation

$$f(x, y) \approx \underbrace{f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)}_{L(x, y)}.$$

In other words, as long as Δx and Δy are small, f will have approximately the same value as the linear function L.

DEFINITIONS The **linearization** of a function f(x, y) at a point (x_0, y_0) where f is differentiable is the function

$$L(x, y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

The approximation

$$f(x, y) \approx L(x, y)$$

is the **standard linear approximation** of f at (x_0, y_0) .

From Equation (3), we find that the plane z = L(x, y) is tangent to the surface z = f(x, y) at the point (x_0, y_0) . Thus, the linearization of a function of two variables is a tangent-plane approximation in the same way that the linearization of a function of a single variable is a tangent-line approximation. (See Exercise 55.)

EXAMPLE 5 Find the linearization of

$$f(x, y) = x^2 - xy + \frac{1}{2}y^2 + 3$$

at the point (3, 2).

FIGURE 14.38 The tangent plane L(x, y) represents the linearization of f(x, y) in Example 5.

FIGURE 14.39 The rectangular region *R*: $|x - x_0| \le h$, $|y - y_0| \le k$ in the *xy*-plane.

Solution We first evaluate f, f_x , and f_y at the point $(x_0, y_0) = (3, 2)$:

$$f(3,2) = \left(x^2 - xy + \frac{1}{2}y^2 + 3\right)_{(3,2)} = 8$$

$$f_x(3,2) = \frac{\partial}{\partial x} \left(x^2 - xy + \frac{1}{2}y^2 + 3\right)_{(3,2)} = (2x - y)_{(3,2)} = 4$$

$$f_y(3,2) = \frac{\partial}{\partial y} \left(x^2 - xy + \frac{1}{2}y^2 + 3\right)_{(3,2)} = (-x + y)_{(3,2)} = -1,$$

giving

$$L(x, y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

= 8 + (4)(x - 3) + (-1)(y - 2) = 4x - y - 2.

The linearization of f at (3, 2) is L(x, y) = 4x - y - 2 (see Figure 14.38).

When approximating a differentiable function f(x, y) by its linearization L(x, y) at (x_0, y_0) , an important question is how accurate the approximation might be.

If we can find a common upper bound M for $|f_{xx}|$, $|f_{yy}|$, and $|f_{xy}|$ on a rectangle R centered at (x_0, y_0) (Figure 14.39), then we can bound the error E throughout R by using a simple formula (derived in Section 14.9). The **error** is defined by E(x, y) = f(x, y) - L(x, y).

The Error in the Standard Linear Approximation

If f has continuous first and second partial derivatives throughout an open set containing a rectangle R centered at (x_0, y_0) and if M is any upper bound for the values of $|f_{xx}|$, $|f_{yy}|$, and $|f_{xy}|$ on R, then the error E(x, y) incurred in replacing f(x, y) on R by its linearization

$$L(x, y) = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)$$

satisfies the inequality

$$|E(x, y)| \le \frac{1}{2}M(|x - x_0| + |y - y_0|)^2.$$

To make |E(x, y)| small for a given M, we just make $|x - x_0|$ and $|y - y_0|$ small.

Differentials

Recall from Section 3.9 that for a function of a single variable, y = f(x), we defined the change in f as x changes from a to $a + \Delta x$ by

$$\Delta f = f(a + \Delta x) - f(a)$$

and the differential of f as

$$df = f'(a)\Delta x$$
.

We now consider the differential of a function of two variables.

Suppose a differentiable function f(x, y) and its partial derivatives exist at a point (x_0, y_0) . If we move to a nearby point $(x_0 + \Delta x, y_0 + \Delta y)$, the change in f is

$$\Delta f = f(x_0 + \Delta x, y_0 + \Delta y) - f(x_0, y_0).$$

A straightforward calculation from the definition of L(x, y), using the notation $x - x_0 = \Delta x$ and $y - y_0 = \Delta y$, shows that the corresponding change in L is

$$\Delta L = L(x_0 + \Delta x, y_0 + \Delta y) - L(x_0, y_0)$$

= $f_x(x_0, y_0) \Delta x + f_y(x_0, y_0) \Delta y$.

The **differentials** dx and dy are independent variables, so they can be assigned any values. Often we take $dx = \Delta x = x - x_0$, and $dy = \Delta y = y - y_0$. We then have the following definition of the differential or *total* differential of f.

DEFINITION If we move from (x_0, y_0) to a point $(x_0 + dx, y_0 + dy)$ nearby, the resulting change

$$df = f_x(x_0, y_0) dx + f_y(x_0, y_0) dy$$

in the linearization of f is called the **total differential of** f.

EXAMPLE 6 Suppose that a cylindrical can is designed to have a radius of 1 in. and a height of 5 in., but that the radius and height are off by the amounts dr = +0.03 and dh = -0.1. Estimate the resulting absolute change in the volume of the can.

Solution To estimate the absolute change in $V = \pi r^2 h$, we use

$$\Delta V \approx dV = V_r(r_0, h_0) dr + V_h(r_0, h_0) dh.$$

With $V_r = 2\pi rh$ and $V_h = \pi r^2$, we get

$$dV = 2\pi r_0 h_0 dr + \pi r_0^2 dh = 2\pi (1)(5)(0.03) + \pi (1)^2 (-0.1)$$

= 0.3\pi - 0.1\pi = 0.2\pi \approx 0.63 in^3

EXAMPLE 7 Your company manufactures stainless steel right circular cylindrical molasses storage tanks that are 25 ft high with a radius of 5 ft. How sensitive are the tanks' volumes to small variations in height and radius?

Solution With $V = \pi r^2 h$, the total differential gives the approximation for the change in volume as

$$dV = V_r(5, 25) dr + V_h(5, 25) dh$$

= $(2\pi rh)_{(5,25)} dr + (\pi r^2)_{(5,25)} dh$
= $250\pi dr + 25\pi dh$.

Thus, a 1-unit change in r will change V by about 250π units. A 1-unit change in h will change V by about 25π units. The tank's volume is 10 times more sensitive to a small change in r than it is to a small change of equal size in h. As a quality control engineer concerned with being sure the tanks have the correct volume, you would want to pay special attention to their radii.

In contrast, if the values of r and h are reversed to make r=25 and h=5, then the total differential in V becomes

$$dV = (2\pi rh)_{(25,5)} dr + (\pi r^2)_{(25,5)} dh = 250\pi dr + 625\pi dh.$$

Now the volume is more sensitive to changes in h than to changes in r (Figure 14.40).

The general rule is that functions are most sensitive to small changes in the variables that generate the largest partial derivatives.

FIGURE 14.40 The volume of cylinder (a) is more sensitive to a small change in r than it is to an equally small change in h. The volume of cylinder (b) is more sensitive to small changes in h than it is to small changes in r (Example 7).

Analogous results hold for differentiable functions of more than two variables.

1. The linearization of f(x, y, z) at a point $P_0(x_0, y_0, z_0)$ is

$$L(x, y, z) = f(P_0) + f_x(P_0)(x - x_0) + f_y(P_0)(y - y_0) + f_z(P_0)(z - z_0).$$

2. Suppose that R is a closed rectangular solid centered at P_0 and lying in an open region on which the second partial derivatives of f are continuous. Suppose also that $|f_{xx}|, |f_{yy}|, |f_{zz}|, |f_{xy}|, |f_{xz}|, \text{ and } |f_{yz}| \text{ are all less than or equal to } M \text{ throughout } R.$ Then the **error** E(x, y, z) = f(x, y, z) - L(x, y, z) in the approximation of f by L is bounded throughout R by the inequality

$$|E| \le \frac{1}{2}M(|x - x_0| + |y - y_0| + |z - z_0|)^2$$

3. If the second partial derivatives of f are continuous and if x, y, and z change from x_0 , y_0 , and z_0 by small amounts dx, dy, and dz, the **total differential**

$$df = f_x(P_0) dx + f_y(P_0) dy + f_z(P_0) dz$$

gives a good approximation of the resulting change in f.

EXAMPLE 8 Find the linearization L(x, y, z) of

$$f(x, y, z) = x^2 - xy + 3\sin z$$

at the point $(x_0, y_0, z_0) = (2, 1, 0)$. Find an upper bound for the error incurred in replacing f by L on the rectangular region

R:
$$|x-2| \le 0.01$$
, $|y-1| \le 0.02$, $|z| \le 0.01$.

Solution Routine calculations give

$$f(2, 1, 0) = 2$$
, $f_x(2, 1, 0) = 3$, $f_y(2, 1, 0) = -2$, $f_z(2, 1, 0) = 3$.

Thus.

$$L(x, y, z) = 2 + 3(x - 2) + (-2)(y - 1) + 3(z - 0) = 3x - 2y + 3z - 2$$

Since

$$f_{xx} = 2$$
, $f_{yy} = 0$, $f_{zz} = -3 \sin z$, $f_{xy} = -1$, $f_{xz} = 0$, $f_{yz} = 0$,

and $|-3 \sin z| \le 3 \sin 0.01 \approx 0.03$, we may take M = 2 as a bound on the second partials. Hence, the error incurred by replacing f by L on R satisfies

$$|E| \le \frac{1}{2}(2)(0.01 + 0.02 + 0.01)^2 = 0.0016.$$

Exercises 14.6

Tangent Planes and Normal Lines to Surfaces

In Exercises 1–8, find equations for the

- (a) tangent plane and
- (b) normal line at the point P_0 on the given surface.

1.
$$x^2 + y^2 + z^2 = 3$$
, $P_0(1, 1, 1)$

2.
$$x^2 + y^2 - z^2 = 18$$
, $P_0(3, 5, -4)$

3.
$$2z - x^2 = 0$$
, $P_0(2, 0, 2)$

4.
$$x^2 + 2xy - y^2 + z^2 = 7$$
, $P_0(1, -1, 3)$

5.
$$\cos \pi x - x^2 y + e^{xz} + yz = 4$$
, $P_0(0, 1, 2)$

6.
$$x^2 - xy - y^2 - z = 0$$
, $P_0(1, 1, -1)$

7.
$$x + y + z = 1$$
, $P_0(0, 1, 0)$

8.
$$x^2 + y^2 - 2xy - x + 3y - z = -4$$
, $P_0(2, -3, 18)$

In Exercises 9-12, find an equation for the plane that is tangent to the given surface at the given point.

9.
$$z = \ln(x^2 + y^2)$$
, $(1, 0, 0)$ **10.** $z = e^{-(x^2 + y^2)}$, $(0, 0, 1)$

10.
$$z = e^{-(x^2+y^2)}$$
. (0, 0, 1)

11.
$$z = \sqrt{y - x}$$
, (1, 2, 1) **12.** $z = 4x^2 + y^2$, (1, 1, 5)

12.
$$z = 4x^2 + y^2$$
, (1, 1, 5)

Tangent Lines to Intersecting Surfaces

In Exercises 13–18, find parametric equations for the line tangent to the curve of intersection of the surfaces at the given point.

- **13.** Surfaces: $x + y^2 + 2z = 4$, x = 1Point: (1, 1, 1)
- **14.** Surfaces: xyz = 1, $x^2 + 2y^2 + 3z^2 = 6$
- Point: (1, 1, 1)
- **15.** Surfaces: $x^2 + 2y + 2z = 4$, y = 1
 - Point: (1, 1, 1/2)
- **16.** Surfaces: $x + y^2 + z = 2$, y = 1
 - Point: (1/2, 1, 1/2)
- 17. Surfaces: $x^3 + 3x^2y^2 + y^3 + 4xy z^2 = 0$, $x^2 + y^2 + z^2 = 11$
 - Point: (1, 1, 3)
- **18.** Surfaces: $x^2 + y^2 = 4$, $x^2 + y^2 z = 0$ Point: $(\sqrt{2}, \sqrt{2}, 4)$

Estimating Change

19. By about how much will

$$f(x, y, z) = \ln \sqrt{x^2 + y^2 + z^2}$$

change if the point P(x, y, z) moves from $P_0(3, 4, 12)$ a distance of ds = 0.1 unit in the direction of $3\mathbf{i} + 6\mathbf{j} - 2\mathbf{k}$?

20. By about how much will

$$f(x, y, z) = e^x \cos yz$$

change as the point P(x, y, z) moves from the origin a distance of ds = 0.1 unit in the direction of $2\mathbf{i} + 2\mathbf{j} - 2\mathbf{k}$?

21. By about how much will

$$g(x, y, z) = x + x \cos z - y \sin z + y$$

change if the point P(x, y, z) moves from $P_0(2, -1, 0)$ a distance of ds = 0.2 unit toward the point $P_1(0, 1, 2)$?

22. By about how much will

$$h(x, y, z) = \cos(\pi xy) + xz^2$$

change if the point P(x, y, z) moves from $P_0(-1, -1, -1)$ a distance of ds = 0.1 unit toward the origin?

- **23.** Temperature change along a circle Suppose that the Celsius temperature at the point (x, y) in the xy-plane is $T(x, y) = x \sin 2y$ and that distance in the xy-plane is measured in meters. A particle is moving *clockwise* around the circle of radius 1 m centered at the origin at the constant rate of 2 m/sec.
 - **a.** How fast is the temperature experienced by the particle changing in degrees Celsius per meter at the point $P(1/2, \sqrt{3}/2)$?
 - **b.** How fast is the temperature experienced by the particle changing in degrees Celsius per second at *P*?
- **24.** Changing temperature along a space curve The Celsius temperature in a region in space is given by $T(x, y, z) = 2x^2 xyz$. A particle is moving in this region and its position at time t is given by $x = 2t^2$, y = 3t, $z = -t^2$, where time is measured in seconds and distance in meters.

- **a.** How fast is the temperature experienced by the particle changing in degrees Celsius per meter when the particle is at the point P(8, 6, -4)?
- **b.** How fast is the temperature experienced by the particle changing in degrees Celsius per second at *P*?

Finding Linearizations

In Exercises 25–30, find the linearization L(x, y) of the function at each point.

- **25.** $f(x, y) = x^2 + y^2 + 1$ at **a.** (0, 0), **b.** (1, 1)
- **26.** $f(x, y) = (x + y + 2)^2$ at **a.** (0, 0), **b.** (1, 2)
- **27.** f(x, y) = 3x 4y + 5 at **a.** (0, 0), **b.** (1, 1)
- **28.** $f(x, y) = x^3 y^4$ at **a.** (1, 1), **b.** (0, 0)
- **29.** $f(x, y) = e^x \cos y$ at **a.** (0, 0), **b.** $(0, \pi/2)$
- **30.** $f(x, y) = e^{2y-x}$ at **a.** (0, 0), **b.** (1, 2)
- **31. Wind chill factor** Wind chill, a measure of the apparent temperature felt on exposed skin, is a function of air temperature and wind speed. The precise formula, updated by the National Weather Service in 2001 and based on modern heat transfer theory, a human face model, and skin tissue resistance, is

$$W = W(v, T) = 35.74 + 0.6215 T - 35.75 v^{0.16} + 0.4275 T \cdot v^{0.16}.$$

where T is air temperature in °F and v is wind speed in mph. A partial wind chill chart is given.

	<i>T</i> (°F)												
		30	25	20	15	10	5	0	-5	-10			
	5	25	19	13	7	1	-5	-11	-16	-22			
v (mph)	10	21	15	9	3	-4	-10	-16	-22	-28			
	15	19	13	6	0	-7	-13	-19	-26	-32			
	20	17	11	4	-2	-9	-15	-22	-29	-35			
	25	16	9	3	-4	-11	-17	-24	-31	-37			
	30	15	8	1	-5	-12	-19	-26	-33	-39			
	35	14	7	0	-7	-14	-21	-27	-34	-41			

- **a.** Use the table to find W(20, 25), W(30, -10), and W(15, 15).
- **b.** Use the formula to find W(10, -40), W(50, -40), and W(60, 30).
- **c.** Find the linearization L(v, T) of the function W(v, T) at the point (25, 5).
- **d.** Use L(v, T) in part (c) to estimate the following wind chill values.
 - i) *W*(24, 6)
- **ii**) *W*(27, 2)
- iii) W(5, -10) (Explain why this value is much different from the value found in the table.)
- **32.** Find the linearization L(v, T) of the function W(v, T) in Exercise 31 at the point (50, -20). Use it to estimate the following wind chill values.
 - **a.** W(49, -22)
 - **b.** W(53, -19)
 - **c.** W(60, -30)

Bounding the Error in Linear Approximations

In Exercises 33–38, find the linearization L(x, y) of the function f(x, y)at P_0 . Then find an upper bound for the magnitude |E| of the error in the approximation $f(x, y) \approx L(x, y)$ over the rectangle R.

- **33.** $f(x, y) = x^2 3xy + 5$ at $P_0(2, 1)$,
 - $R: |x-2| \le 0.1, |y-1| \le 0.1$
- **34.** $f(x, y) = (1/2)x^2 + xy + (1/4)y^2 + 3x 3y + 4$ at $P_0(2, 2)$,
 - R: $|x-2| \le 0.1$, $|y-2| \le 0.1$
- **35.** $f(x, y) = 1 + y + x \cos y$ at $P_0(0, 0)$,
 - $R: |x| \le 0.2, |y| \le 0.2$

(Use $|\cos y| \le 1$ and $|\sin y| \le 1$ in estimating E.)

- **36.** $f(x, y) = xy^2 + y \cos(x 1)$ at $P_0(1, 2)$,
 - R: $|x-1| \le 0.1$, $|y-2| \le 0.1$
- **37.** $f(x, y) = e^x \cos y$ at $P_0(0, 0)$,
 - $R: |x| \le 0.1, |y| \le 0.1$

(Use $e^x \le 1.11$ and $|\cos y| \le 1$ in estimating E.)

- **38.** $f(x, y) = \ln x + \ln y$ at $P_0(1, 1)$,
 - R: $|x-1| \le 0.2$, $|y-1| \le 0.2$

Linearizations for Three Variables

Find the linearizations L(x, y, z) of the functions in Exercises 39–44 at the given points.

- **39.** f(x, y, z) = xy + yz + xz at
 - **a.** (1, 1, 1)

- \mathbf{c} . (0, 0, 0)
- **40.** $f(x, y, z) = x^2 + y^2 + z^2$ at
 - **a.** (1, 1, 1)
- **b.** (0, 1, 0)

b. (1, 0, 0)

- \mathbf{c} . (1, 0, 0)
- **41.** $f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$ at
 - **a.** (1, 0, 0)
- **b.** (1, 1, 0)
- \mathbf{c} . (1, 2, 2)
- **42.** $f(x, y, z) = (\sin xy)/z$ at
 - **a.** $(\pi/2, 1, 1)$ **b.** (2, 0, 1)
- **43.** $f(x, y, z) = e^x + \cos(y + z)$ at
 - **a.** (0, 0, 0)
- **b.** $\left(0, \frac{\pi}{2}, 0\right)$ **c.** $\left(0, \frac{\pi}{4}, \frac{\pi}{4}\right)$
- **44.** $f(x, y, z) = \tan^{-1}(xyz)$ at
 - a. (1, 0, 0)
- **b.** (1, 1, 0)

In Exercises 45–48, find the linearization L(x, y, z) of the function f(x, y, z) at P_0 . Then find an upper bound for the magnitude of the error E in the approximation $f(x, y, z) \approx L(x, y, z)$ over the region R.

- **45.** f(x, y, z) = xz 3yz + 2 at $P_0(1, 1, 2)$,
 - R: $|x-1| \le 0.01$, $|y-1| \le 0.01$, $|z-2| \le 0.02$
- **46.** $f(x, y, z) = x^2 + xy + yz + (1/4)z^2$ at $P_0(1, 1, 2)$,
 - R: $|x-1| \le 0.01$, $|y-1| \le 0.01$, $|z-2| \le 0.08$
- **47.** f(x, y, z) = xy + 2yz 3xz at $P_0(1, 1, 0)$,
 - R: $|x-1| \le 0.01$, $|y-1| \le 0.01$, $|z| \le 0.01$
- **48.** $f(x, y, z) = \sqrt{2} \cos x \sin(y + z)$ at $P_0(0, 0, \pi/4)$,
 - R: $|x| \le 0.01$, $|y| \le 0.01$, $|z \pi/4| \le 0.01$

Estimating Error; Sensitivity to Change

49. Estimating maximum error Suppose that T is to be found from the formula $T = x (e^y + e^{-y})$, where x and y are found to be 2 and ln 2 with maximum possible errors of |dx| = 0.1 and |dy| = 0.02. Estimate the maximum possible error in the computed value of T.

50. Variation in electrical resistance The resistance R produced by wiring resistors of R_1 and R_2 ohms in parallel (see accompanying figure) can be calculated from the formula

$$\frac{1}{R} = \frac{1}{R_1} + \frac{1}{R_2}.$$

a. Show that

$$dR = \left(\frac{R}{R_1}\right)^2 dR_1 + \left(\frac{R}{R_2}\right)^2 dR_2.$$

b. You have designed a two-resistor circuit, like the one shown, to have resistances of $R_1 = 100$ ohms and $R_2 = 400$ ohms, but there is always some variation in manufacturing and the resistors received by your firm will probably not have these exact values. Will the value of R be more sensitive to variation in R_1 or to variation in R_2 ? Give reasons for your answer.

- **c.** In another circuit like the one shown, you plan to change R_1 from 20 to 20.1 ohms and R_2 from 25 to 24.9 ohms. By about what percentage will this change R?
- 51. You plan to calculate the area of a long, thin rectangle from measurements of its length and width. Which dimension should you measure more carefully? Give reasons for your answer.
- **52.** a. Around the point (1,0), is $f(x,y) = x^2(y+1)$ more sensitive to changes in x or to changes in y? Give reasons for your answer.
 - **b.** What ratio of dx to dy will make df equal zero at (1, 0)?
- 53. Value of a 2 \times 2 determinant If |a| is much greater than |b|, |c|, and |d|, to which of a, b, c, and d is the value of the determinant

$$f(a, b, c, d) = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

most sensitive? Give reasons for your answer.

54. The Wilson lot size formula The Wilson lot size formula in economics says that the most economical quantity Q of goods (radios, shoes, brooms, whatever) for a store to order is given by the formula $Q = \sqrt{2KM/h}$, where K is the cost of placing the order, M is the number of items sold per week, and h is the weekly holding cost for each item (cost of space, utilities, security, and so on). To which of the variables K, M, and h is Q most sensitive near the point $(K_0, M_0, h_0) = (2, 20, 0.05)$? Give reasons for your answer.

Theory and Examples

55. The linearization of f(x, y) is a tangent-plane approximation Show that the tangent plane at the point $P_0(x_0, y_0, f(x_0, y_0))$ on the surface z = f(x, y) defined by a differentiable function f is the

$$f_{x}(x_{0}, y_{0})(x - x_{0}) + f_{y}(x_{0}, y_{0})(y - y_{0}) - (z - f(x_{0}, y_{0})) = 0$$

or

$$z = f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0).$$

Thus, the tangent plane at P_0 is the graph of the linearization of f at P_0 (see accompanying figure).

56. Change along the involute of a circle Find the derivative of $f(x, y) = x^2 + y^2$ in the direction of the unit tangent vector of the curve

$$\mathbf{r}(t) = (\cos t + t \sin t)\mathbf{i} + (\sin t - t \cos t)\mathbf{j}, \qquad t > 0.$$

57. Tangent curves A smooth curve is *tangent* to the surface at a point of intersection if its velocity vector is orthogonal to ∇f there. Show that the curve

$$\mathbf{r}(t) = \sqrt{t}\mathbf{i} + \sqrt{t}\mathbf{j} + (2t - 1)\mathbf{k}$$

is tangent to the surface $x^2 + y^2 - z = 1$ when t = 1.

58. Normal curves A smooth curve is *normal* to a surface f(x, y, z) = c at a point of intersection if the curve's velocity vector is a nonzero scalar multiple of ∇f at the point.

Show that the curve

$$\mathbf{r}(t) = \sqrt{t}\mathbf{i} + \sqrt{t}\mathbf{j} - \frac{1}{4}(t+3)\mathbf{k}$$

is normal to the surface $x^2 + y^2 - z = 3$ when t = 1.

14.7 Extreme Values and Saddle Points

Continuous functions of two variables assume extreme values on closed, bounded domains (see Figures 14.41 and 14.42). We see in this section that we can narrow the search for these extreme values by examining the functions' first partial derivatives. A function of two variables can assume extreme values only at domain boundary points or at interior domain points where both first partial derivatives are zero or where one or both of the first partial derivatives fail to exist. However, the vanishing of derivatives at an interior point (a, b) does not always signal the presence of an extreme value. The surface that is the graph of the function might be shaped like a saddle right above (a, b) and cross its tangent plane there.

HISTORICAL BIOGRAPHY

Siméon-Denis Poisson (1781–1840)

FIGURE 14.41 The function

$$z = (\cos x)(\cos y)e^{-\sqrt{x^2+y^2}}$$

has a maximum value of 1 and a minimum value of about -0.067 on the square region $|x| \le 3\pi/2$, $|y| \le 3\pi/2$.

Derivative Tests for Local Extreme Values

To find the local extreme values of a function of a single variable, we look for points where the graph has a horizontal tangent line. At such points, we then look for local maxima, local minima, and points of inflection. For a function f(x, y) of two variables, we look for points where the surface z = f(x, y) has a horizontal tangent *plane*. At such points, we then look for local maxima, local minima, and saddle points. We begin by defining maxima and minima.

DEFINITIONS Let f(x, y) be defined on a region R containing the point (a, b). Then

- **1.** f(a, b) is a **local maximum** value of f if $f(a, b) \ge f(x, y)$ for all domain points (x, y) in an open disk centered at (a, b).
- **2.** f(a, b) is a **local minimum** value of f if $f(a, b) \le f(x, y)$ for all domain points (x, y) in an open disk centered at (a, b).

Local maxima correspond to mountain peaks on the surface z = f(x, y) and local minima correspond to valley bottoms (Figure 14.43). At such points the tangent planes, when they exist, are horizontal. Local extrema are also called **relative extrema**.

FIGURE 14.42 The "roof surface" $z = \frac{1}{2} (||x| - |y|| - |x| - |y|)$

has a maximum value of 0 and a minimum value of -a on the square region $|x| \le a$, $|y| \le a$.

FIGURE 14.44 If a local maximum of f occurs at x = a, y = b, then the first partial derivatives $f_x(a, b)$ and $f_y(a, b)$ are both zero.

As with functions of a single variable, the key to identifying the local extrema is the First Derivative Test, which we next state and prove.

FIGURE 14.43 A local maximum occurs at a mountain peak and a local minimum occurs at a valley low point.

THEOREM 10—First Derivative Test for Local Extreme Values If f(x, y) has a local maximum or minimum value at an interior point (a, b) of its domain and if the first partial derivatives exist there, then $f_x(a, b) = 0$ and $f_y(a, b) = 0$.

Proof If f has a local extremum at (a, b), then the function g(x) = f(x, b) has a local extremum at x = a (Figure 14.44). Therefore, g'(a) = 0 (Chapter 4, Theorem 2). Now $g'(a) = f_x(a, b)$, so $f_x(a, b) = 0$. A similar argument with the function h(y) = f(a, y) shows that $f_y(a, b) = 0$.

If we substitute the values $f_{x}(a, b) = 0$ and $f_{y}(a, b) = 0$ into the equation

$$f_x(a,b)(x-a) + f_y(a,b)(y-b) - (z-f(a,b)) = 0$$

for the tangent plane to the surface z = f(x, y) at (a, b), the equation reduces to

$$0 \cdot (x - a) + 0 \cdot (y - b) - z + f(a, b) = 0$$

or

$$z = f(a, b)$$
.

Thus, Theorem 10 says that the surface does indeed have a horizontal tangent plane at a local extremum, provided there is a tangent plane there.

DEFINITION An interior point of the domain of a function f(x, y) where both f_x and f_y are zero or where one or both of f_x and f_y do not exist is a **critical point** of f.

Theorem 10 says that the only points where a function f(x, y) can assume extreme values are critical points and boundary points. As with differentiable functions of a single variable, not every critical point gives rise to a local extremum. A differentiable function of a single variable might have a point of inflection. A differentiable function of two variables might have a *saddle point*, with the graph of f crossing the tangent plane defined there.

FIGURE 14.45 Saddle points at the origin.

FIGURE 14.46 The graph of the function $f(x, y) = x^2 + y^2 - 4y + 9$ is a paraboloid which has a local minimum value of 5 at the point (0, 2) (Example 1).

DEFINITION A differentiable function f(x, y) has a **saddle point** at a critical point (a, b) if in every open disk centered at (a, b) there are domain points (x, y) where f(x, y) > f(a, b) and domain points (x, y) where f(x, y) < f(a, b). The corresponding point (a, b, f(a, b)) on the surface z = f(x, y) is called a saddle point of the surface (Figure 14.45).

EXAMPLE 1 Find the local extreme values of $f(x, y) = x^2 + y^2 - 4y + 9$.

Solution The domain of f is the entire plane (so there are no boundary points) and the partial derivatives $f_x = 2x$ and $f_y = 2y - 4$ exist everywhere. Therefore, local extreme values can occur only where

$$f_x = 2x = 0$$
 and $f_y = 2y - 4 = 0$.

The only possibility is the point (0, 2), where the value of f is 5. Since $f(x, y) = x^2 + (y - 2)^2 + 5$ is never less than 5, we see that the critical point (0, 2) gives a local minimum (Figure 14.46).

EXAMPLE 2 Find the local extreme values (if any) of $f(x, y) = y^2 - x^2$.

Solution The domain of f is the entire plane (so there are no boundary points) and the partial derivatives $f_x = -2x$ and $f_y = 2y$ exist everywhere. Therefore, local extrema can occur only at the origin (0,0) where $f_x = 0$ and $f_y = 0$. Along the positive x-axis, however, f has the value $f(x,0) = -x^2 < 0$; along the positive y-axis, f has the value $f(0,y) = y^2 > 0$. Therefore, every open disk in the xy-plane centered at (0,0) contains points where the function is positive and points where it is negative. The function has a saddle point at the origin and no local extreme values (Figure 14.47a). Figure 14.47b displays the level curves (they are hyperbolas) of f, and shows the function decreasing and increasing in an alternating fashion among the four groupings of hyperbolas.

That $f_x = f_y = 0$ at an interior point (a, b) of R does not guarantee f has a local extreme value there. If f and its first and second partial derivatives are continuous on R, however, we may be able to learn more from the following theorem, proved in Section 14.9.

THEOREM 11—Second Derivative Test for Local Extreme Values Suppose that f(x, y) and its first and second partial derivatives are continuous throughout a disk centered at (a, b) and that $f_x(a, b) = f_y(a, b) = 0$. Then

- i) f has a local maximum at (a, b) if $f_{xx} < 0$ and $f_{xx}f_{yy} f_{xy}^2 > 0$ at (a, b).
- ii) f has a local minimum at (a, b) if $f_{xx} > 0$ and $f_{xx}f_{yy} f_{xy}^2 > 0$ at (a, b).
- iii) f has a saddle point at (a, b) if $f_{xx}f_{yy} f_{xy}^2 < 0$ at (a, b).
- iv) the test is inconclusive at (a, b) if $f_{xx}f_{yy} f_{xy}^2 = 0$ at (a, b). In this case, we must find some other way to determine the behavior of f at (a, b).

The expression $f_{xx}f_{yy} - f_{xy}^2$ is called the **discriminant** or **Hessian** of f. It is sometimes easier to remember it in determinant form,

$$f_{xx}f_{yy}-f_{xy}^2=\begin{vmatrix}f_{xx}&f_{xy}\\f_{xy}&f_{yy}\end{vmatrix}.$$

Theorem 11 says that if the discriminant is positive at the point (a, b), then the surface curves the same way in all directions: downward if $f_{xx} < 0$, giving rise to a local maximum, and

FIGURE 14.47 (a) The origin is a saddle point of the function $f(x, y) = y^2 - x^2$. There are no local extreme values (Example 2). (b) Level curves for the function f in Example 2.

FIGURE 14.48 The surface $z = 3y^2 - 2y^3 - 3x^2 + 6xy$ has a saddle point at the origin and a local maximum at the point (2, 2) (Example 4).

upward if $f_{xx} > 0$, giving a local minimum. On the other hand, if the discriminant is negative at (a, b), then the surface curves up in some directions and down in others, so we have a saddle point.

EXAMPLE 3 Find the local extreme values of the function

$$f(x, y) = xy - x^2 - y^2 - 2x - 2y + 4.$$

Solution The function is defined and differentiable for all x and y, and its domain has no boundary points. The function therefore has extreme values only at the points where f_x and f_y are simultaneously zero. This leads to

$$f_x = y - 2x - 2 = 0,$$
 $f_y = x - 2y - 2 = 0,$

or

$$x = y = -2$$
.

Therefore, the point (-2, -2) is the only point where f may take on an extreme value. To see if it does so, we calculate

$$f_{xx} = -2, \qquad f_{yy} = -2, \qquad f_{xy} = 1.$$

The discriminant of f at (a, b) = (-2, -2) is

$$f_{xx}f_{yy} - f_{xy}^2 = (-2)(-2) - (1)^2 = 4 - 1 = 3.$$

The combination

$$f_{xx} < 0$$
 and $f_{xx}f_{yy} - f_{xy}^2 > 0$

tells us that f has a local maximum at (-2, -2). The value of f at this point is f(-2, -2) = 8.

EXAMPLE 4 Find the local extreme values of $f(x, y) = 3y^2 - 2y^3 - 3x^2 + 6xy$.

Solution Since f is differentiable everywhere, it can assume extreme values only where

$$f_x = 6y - 6x = 0$$
 and $f_y = 6y - 6y^2 + 6x = 0$.

From the first of these equations we find x = y, and substitution for y into the second equation then gives

$$6x - 6x^2 + 6x = 0$$
 or $6x(2 - x) = 0$.

The two critical points are therefore (0, 0) and (2, 2).

To classify the critical points, we calculate the second derivatives:

$$f_{xx} = -6$$
, $f_{yy} = 6 - 12y$, $f_{xy} = 6$.

The discriminant is given by

$$f_{xx}f_{yy} - f_{xy}^2 = (-36 + 72y) - 36 = 72(y - 1).$$

At the critical point (0, 0) we see that the value of the discriminant is the negative number -72, so the function has a saddle point at the origin. At the critical point (2, 2) we see that the discriminant has the positive value 72. Combining this result with the negative value of the second partial $f_{xx} = -6$, Theorem 11 says that the critical point (2, 2) gives a local maximum value of f(2, 2) = 12 - 16 - 12 + 24 = 8. A graph of the surface is shown in Figure 14.48.

EXAMPLE 5 Find the critical points of the function $f(x, y) = 10xye^{-(x^2+y^2)}$ and use the Second Derivative Test to classify each point as one where a saddle, local minimum, or local maximum occurs.

Solution First we find the partial derivatives f_x and f_y and set them simultaneously to zero in seeking the critical points:

$$f_x = 10ye^{-(x^2+y^2)} - 20x^2ye^{-(x^2+y^2)} = 10y(1-2x^2)e^{-(x^2+y^2)} = 0 \Rightarrow y = 0 \text{ or } 1-2x^2 = 0,$$

$$f_y = 10xe^{-(x^2+y^2)} - 20xy^2e^{-(x^2+y^2)} = 10x(1-2y^2)e^{-(x^2+y^2)} = 0 \Rightarrow x = 0 \text{ or } 1-2y^2 = 0.$$

Since both partial derivatives are continuous everywhere, the only critical points are

$$(0,0), \left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right), \left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right), \text{ and } \left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right).$$

Next we calculate the second partial derivatives in order to evaluate the discriminant at each critical point:

$$f_{xx} = -20xy(1 - 2x^2)e^{-(x^2+y^2)} - 40xye^{-(x^2+y^2)} = -20xy(3 - 2x^2)e^{-(x^2+y^2)},$$

$$f_{xy} = f_{yx} = 10(1 - 2x^2)e^{-(x^2+y^2)} - 20y^2(1 - 2x^2)e^{-(x^2+y^2)} = 10(1 - 2x^2)(1 - 2y^2)e^{-(x^2+y^2)},$$

$$f_{yy} = -20xy(1 - 2y^2)e^{-(x^2+y^2)} - 40xye^{-(x^2+y^2)} = -20xy(3 - 2y^2)e^{-(x^2+y^2)}.$$

The following table summarizes the values needed by the Second Derivative Test.

Critical Point	f_{xx}	f_{xy}	f_{yy}	Discriminant D
(0, 0)	0	10	0	-100
$\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	$-\frac{20}{e}$	0	$-\frac{20}{e}$	$\frac{400}{e^2}$
$\left(-\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	$\frac{20}{e}$	0	$\frac{20}{e}$	$\frac{400}{e^2}$
$\left(\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$	$\frac{20}{e}$	0	$\frac{20}{e}$	$\frac{400}{e^2}$
$\left(-\frac{1}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$	$-\frac{20}{e}$	0	$-\frac{20}{e}$	$\frac{400}{e^2}$

FIGURE 14.49 A graph of the function in Example 5.

From the table we find that D<0 at the critical point (0,0), giving a saddle; D>0 and $f_{xx}<0$ at the critical points $\left(1/\sqrt{2},1/\sqrt{2}\right)$ and $\left(-1/\sqrt{2},-1/\sqrt{2}\right)$, giving local maximum values there; and D>0 and $f_{xx}>0$ at the critical points $\left(-1/\sqrt{2},1/\sqrt{2}\right)$ and $\left(1/\sqrt{2},-1/\sqrt{2}\right)$, each giving local minimum values. A graph of the surface is shown in Figure 14.49.

Absolute Maxima and Minima on Closed Bounded Regions

We organize the search for the absolute extrema of a continuous function f(x, y) on a closed and bounded region R into three steps.

- 1. List the interior points of R where f may have local maxima and minima and evaluate f at these points. These are the critical points of f.
- 2. List the boundary points of R where f has local maxima and minima and evaluate f at these points. We show how to do this in the next example.
- **3.** Look through the lists for the maximum and minimum values of f. These will be the absolute maximum and minimum values of f on R. Since absolute maxima and minima are also local maxima and minima, the absolute maximum and minimum values of f appear somewhere in the lists made in Steps 1 and 2.

$$f(x, y) = 2 + 2x + 4y - x^2 - y^2$$

on the triangular region in the first quadrant bounded by the lines x = 0, y = 0, and y = 9 - x.

Solution Since f is differentiable, the only places where f can assume these values are points inside the triangle (Figure 14.50a) where $f_x = f_y = 0$ and points on the boundary.

(a) Interior points. For these we have

$$f_{x} = 2 - 2x = 0,$$
 $f_{y} = 4 - 2y = 0,$

yielding the single point (x, y) = (1, 2). The value of f there is

$$f(1, 2) = 7.$$

(b) Boundary points. We take the triangle one side at a time:

i) On the segment OA, y = 0. The function

$$f(x, y) = f(x, 0) = 2 + 2x - x^2$$

may now be regarded as a function of x defined on the closed interval $0 \le x \le 9$. Its extreme values (we know from Chapter 4) may occur at the endpoints

$$x = 0$$
 where $f(0, 0) = 2$

$$x = 9$$
 where $f(9,0) = 2 + 18 - 81 = -61$

and at the interior points where f'(x, 0) = 2 - 2x = 0. The only interior point where f'(x, 0) = 0 is x = 1, where

$$f(x, 0) = f(1, 0) = 3.$$

ii) On the segment OB, x = 0 and

$$f(x, y) = f(0, y) = 2 + 4y - y^2$$
.

As in part i), we consider f(0, y) as a function of y defined on the closed interval [0, 9]. Its extreme values can occur at the endpoints or at interior points where f'(0, y) = 0. Since f'(0, y) = 4 - 2y, the only interior point where f'(0, y) = 0 occurs at (0, 2), with f(0, 2) = 6. So the candidates for this segment are

$$f(0,0) = 2$$
, $f(0,9) = -43$, $f(0,2) = 6$.

iii) We have already accounted for the values of f at the endpoints of AB, so we need only look at the interior points of the line segment AB. With y = 9 - x, we have

$$f(x, y) = 2 + 2x + 4(9 - x) - x^2 - (9 - x)^2 = -43 + 16x - 2x^2$$
.

Setting f'(x, 9 - x) = 16 - 4x = 0 gives

$$x = 4$$

At this value of x,

$$y = 9 - 4 = 5$$
 and $f(x, y) = f(4, 5) = -11$.

Summary We list all the function value candidates: 7, 2, -61, 3, -43, 6, -11. The maximum is 7, which f assumes at (1, 2). The minimum is -61, which f assumes at (9, 0). See Figure 14.50b.

Solving extreme value problems with algebraic constraints on the variables usually requires the method of Lagrange multipliers introduced in the next section. But sometimes we can solve such problems directly, as in the next example.

FIGURE 14.50 (a) This triangular region is the domain of the function in Example 6. (b) The graph of the function in Example 6. The blue points are the candidates for maxima or minima.

FIGURE 14.51 The box in Example 7.

EXAMPLE 7 A delivery company accepts only rectangular boxes the sum of whose length and girth (perimeter of a cross-section) does not exceed 108 in. Find the dimensions of an acceptable box of largest volume.

Solution Let x, y, and z represent the length, width, and height of the rectangular box, respectively. Then the girth is 2y + 2z. We want to maximize the volume V = xyz of the box (Figure 14.51) satisfying x + 2y + 2z = 108 (the largest box accepted by the delivery company). Thus, we can write the volume of the box as a function of two variables:

$$V(y, z) = (108 - 2y - 2z)yz$$

$$= 108yz - 2y^2z - 2yz^2.$$

$$V = xyz \text{ and } x = 108 - 2y - 2z$$

Setting the first partial derivatives equal to zero,

$$V_y(y, z) = 108z - 4yz - 2z^2 = (108 - 4y - 2z)z = 0$$

$$V_z(y, z) = 108y - 2y^2 - 4yz = (108 - 2y - 4z)y = 0,$$

gives the critical points (0, 0), (0, 54), (54, 0), and (18, 18). The volume is zero at (0, 0), (0, 54), and (54, 0), which are not maximum values. At the point (18, 18), we apply the Second Derivative Test (Theorem 11):

$$V_{yy} = -4z$$
, $V_{zz} = -4y$, $V_{yz} = 108 - 4y - 4z$.

Then

$$V_{yy}V_{zz} - V_{yz}^2 = 16yz - 16(27 - y - z)^2.$$

Thus.

$$V_{yy}(18, 18) = -4(18) < 0$$

and

$$\left[V_{vv}V_{zz} - V_{vz}^{2}\right]_{(18.18)} = 16(18)(18) - 16(-9)^{2} > 0$$

imply that (18, 18) gives a maximum volume. The dimensions of the package are x = 108 - 2(18) - 2(18) = 36 in., y = 18 in., and z = 18 in. The maximum volume is V = (36)(18)(18) = 11,664 in³, or 6.75 ft³.

Despite the power of Theorem 11, we urge you to remember its limitations. It does not apply to boundary points of a function's domain, where it is possible for a function to have extreme values along with nonzero derivatives. Also, it does not apply to points where either f_x or f_y fails to exist.

Summary of Max-Min Tests

The extreme values of f(x, y) can occur only at

- i) boundary points of the domain of f
- ii) **critical points** (interior points where $f_x = f_y = 0$ or points where f_x or f_y fails to exist).

If the first- and second-order partial derivatives of f are continuous throughout a disk centered at a point (a, b) and $f_x(a, b) = f_y(a, b) = 0$, the nature of f(a, b) can be tested with the **Second Derivative Test**:

i)
$$f_{xx} < 0$$
 and $f_{xx}f_{yy} - f_{xy}^2 > 0$ at $(a, b) \Rightarrow$ local maximum

ii)
$$f_{xx} > 0$$
 and $f_{xx}f_{yy} - f_{xy}^2 > 0$ at $(a, b) \Rightarrow$ local minimum

iii)
$$f_{xx}f_{yy} - f_{xy}^2 < 0$$
 at $(a, b) \Rightarrow$ saddle point

iv)
$$f_{xx}f_{yy} - f_{xy}^2 = 0$$
 at $(a, b) \implies$ test is inconclusive

Exercises 14.7

Finding Local Extrema

Find all the local maxima, local minima, and saddle points of the functions in Exercises 1-30.

1.
$$f(x, y) = x^2 + xy + y^2 + 3x - 3y + 4$$

2.
$$f(x, y) = 2xy - 5x^2 - 2y^2 + 4x + 4y - 4$$

3.
$$f(x, y) = x^2 + xy + 3x + 2y + 5$$

4.
$$f(x, y) = 5xy - 7x^2 + 3x - 6y + 2$$

5.
$$f(x, y) = 2xy - x^2 - 2y^2 + 3x + 4$$

6.
$$f(x, y) = x^2 - 4xy + y^2 + 6y + 2$$

7.
$$f(x, y) = 2x^2 + 3xy + 4y^2 - 5x + 2y$$

8.
$$f(x, y) = x^2 - 2xy + 2y^2 - 2x + 2y + 1$$

9.
$$f(x, y) = x^2 - y^2 - 2x + 4y + 6$$

10.
$$f(x, y) = x^2 + 2xy$$

11.
$$f(x, y) = \sqrt{56x^2 - 8y^2 - 16x - 31} + 1 - 8x$$

12.
$$f(x, y) = 1 - \sqrt[3]{x^2 + y^2}$$

13.
$$f(x, y) = x^3 - y^3 - 2xy + 6$$

14.
$$f(x, y) = x^3 + 3xy + y^3$$

15.
$$f(x, y) = 6x^2 - 2x^3 + 3y^2 + 6xy$$

16.
$$f(x, y) = x^3 + y^3 + 3x^2 - 3y^2 - 8$$

17.
$$f(x, y) = x^3 + 3xy^2 - 15x + y^3 - 15y$$

18.
$$f(x, y) = 2x^3 + 2y^3 - 9x^2 + 3y^2 - 12y$$

19.
$$f(x, y) = 4xy - x^4 - y^4$$

20.
$$f(x, y) = x^4 + y^4 + 4xy$$

21.
$$f(x, y) = \frac{1}{x^2 + y^2 - 1}$$
 22. $f(x, y) = \frac{1}{x} + xy + \frac{1}{y}$

23
$$f(x, y) = y \sin x$$

24.
$$f(x, y) = e^{2x} \cos y$$

23.
$$f(x, y) = y \sin x$$
 24. $f(x, y) = e^{2x} \cos y$ **25.** $f(x, y) = e^{x^2 + y^2 - 4x}$ **26.** $f(x, y) = e^y - ye^x$

26.
$$f(x, y) = e^y - ye$$

27.
$$f(x, y) = e^{-y}(x^2 + y^2)$$
 28. $f(x, y) = e^{x}(x^2 - y^2)$

28.
$$f(x, y) = e^{x}(x^{2} - y^{2})$$

29.
$$f(x, y) = 2 \ln x + \ln y - 4x - y$$

30.
$$f(x, y) = \ln(x + y) + x^2 - y$$

Finding Absolute Extrema

In Exercises 31–38, find the absolute maxima and minima of the functions on the given domains.

31.
$$f(x, y) = 2x^2 - 4x + y^2 - 4y + 1$$
 on the closed triangular plate bounded by the lines $x = 0$, $y = 2$, $y = 2x$ in the first quadrant

32.
$$D(x, y) = x^2 - xy + y^2 + 1$$
 on the closed triangular plate in the first quadrant bounded by the lines $x = 0$, $y = 4$, $y = x$

33.
$$f(x, y) = x^2 + y^2$$
 on the closed triangular plate bounded by the lines $x = 0$, $y = 0$, $y + 2x = 2$ in the first quadrant

34.
$$T(x, y) = x^2 + xy + y^2 - 6x$$
 on the rectangular plate $0 \le x \le 5, -3 \le y \le 3$

35.
$$T(x, y) = x^2 + xy + y^2 - 6x + 2$$
 on the rectangular plate $0 \le x \le 5, -3 \le y \le 0$

36.
$$f(x, y) = 48xy - 32x^3 - 24y^2$$
 on the rectangular plate $0 \le x \le 1, 0 \le y \le 1$

37.
$$f(x, y) = (4x - x^2) \cos y$$
 on the rectangular plate $1 \le x \le 3$, $-\pi/4 \le y \le \pi/4$ (see accompanying figure)

- **38.** f(x, y) = 4x 8xy + 2y + 1 on the triangular plate bounded by the lines x = 0, y = 0, x + y = 1 in the first quadrant
- **39.** Find two numbers a and b with $a \le b$ such that

$$\int_a^b (6-x-x^2)\,dx$$

has its largest value.

40. Find two numbers a and b with $a \le b$ such that

$$\int_{a}^{b} (24 - 2x - x^2)^{1/3} dx$$

has its largest value.

41. Temperatures A flat circular plate has the shape of the region $x^2 + y^2 \le 1$. The plate, including the boundary where $x^2 + y^2 = 1$, is heated so that the temperature at the point (x, y) is

$$T(x, y) = x^2 + 2y^2 - x.$$

Find the temperatures at the hottest and coldest points on the plate.

42. Find the critical point of

$$f(x, y) = xy + 2x - \ln x^2 y$$

in the open first quadrant (x > 0, y > 0) and show that f takes on a minimum there.

Theory and Examples

43. Find the maxima, minima, and saddle points of f(x, y), if any, given that

a.
$$f_x = 2x - 4y$$
 and $f_y = 2y - 4x$

b.
$$f_x = 2x - 2$$
 and $f_y = 2y - 4$

c.
$$f_x = 9x^2 - 9$$
 and $f_y = 2y + 4$

Describe your reasoning in each case.

44. The discriminant $f_{xx}f_{yy} - f_{xy}^2$ is zero at the origin for each of the following functions, so the Second Derivative Test fails there. Determine whether the function has a maximum, a minimum, or neither at the origin by imagining what the surface z = f(x, y)looks like. Describe your reasoning in each case.

a.
$$f(x, y) = x^2y^2$$

b.
$$f(x, y) = 1 - x^2y^2$$

c.
$$f(x, y) = xy^2$$

d.
$$f(x, y) = x^3y^2$$

e.
$$f(x, y) = x^3y^3$$

f.
$$f(x, y) = x^4 y^4$$

- **45.** Show that (0, 0) is a critical point of $f(x, y) = x^2 + kxy + y^2$ no matter what value the constant k has. (Hint: Consider two cases: k = 0 and $k \neq 0$.)
- **46.** For what values of the constant *k* does the Second Derivative Test guarantee that $f(x, y) = x^2 + kxy + y^2$ will have a saddle point at (0,0)? A local minimum at (0,0)? For what values of k is the Second Derivative Test inconclusive? Give reasons for your answers.
- **47.** If $f_{y}(a, b) = f_{y}(a, b) = 0$, must f have a local maximum or minimum value at (a, b)? Give reasons for your answer.
- **48.** Can you conclude anything about f(a, b) if f and its first and second partial derivatives are continuous throughout a disk centered at the critical point (a, b) and $f_{xx}(a, b)$ and $f_{yy}(a, b)$ differ in sign? Give reasons for your answer.
- **49.** Among all the points on the graph of $z = 10 x^2 y^2$ that lie above the plane x + 2y + 3z = 0, find the point farthest from
- **50.** Find the point on the graph of $z = x^2 + y^2 + 10$ nearest the plane x + 2y - z = 0.
- **51.** Find the point on the plane 3x + 2y + z = 6 that is nearest the
- **52.** Find the minimum distance from the point (2, -1, 1) to the plane x + y - z = 2.
- **53.** Find three numbers whose sum is 9 and whose sum of squares is a
- **54.** Find three positive numbers whose sum is 3 and whose product is a maximum.
- **55.** Find the maximum value of s = xy + yz + xz where x + y + z = 6.
- **56.** Find the minimum distance from the cone $z = \sqrt{x^2 + y^2}$ to the
- 57. Find the dimensions of the rectangular box of maximum volume that can be inscribed inside the sphere $x^2 + y^2 + z^2 = 4$.
- **58.** Among all closed rectangular boxes of volume 27 cm³, what is the smallest surface area?
- **59.** You are to construct an open rectangular box from 12 ft² of material. What dimensions will result in a box of maximum volume?
- **60.** Consider the function $f(x, y) = x^2 + y^2 + 2xy x y + 1$ over the square $0 \le x \le 1$ and $0 \le y \le 1$.
 - **a.** Show that f has an absolute minimum along the line segment 2x + 2y = 1 in this square. What is the absolute minimum value?
 - **b.** Find the absolute maximum value of f over the square.

Extreme Values on Parametrized Curves To find the extreme values of a function f(x, y) on a curve x = x(t), y = y(t), we treat f as a function of the single variable t and use the Chain Rule to find where df/dt is zero. As in any other single-variable case, the extreme values of f are then found among the values at the

- **a.** critical points (points where df/dt is zero or fails to exist), and
- **b.** endpoints of the parameter domain.

Find the absolute maximum and minimum values of the following functions on the given curves.

- **61.** Functions:
 - **a.** f(x, y) = x + y **b.** g(x, y) = xy **c.** $h(x, y) = 2x^2 + y^2$

Curves:

- i) The semicircle $x^2 + y^2 = 4$, $y \ge 0$
- ii) The quarter circle $x^2 + y^2 = 4$, $x \ge 0$, $y \ge 0$
- Use the parametric equations $x = 2 \cos t$, $y = 2 \sin t$.
- **62.** Functions:
 - **a.** f(x, y) = 2x + 3y
 - **b.** g(x, y) = xy
 - **c.** $h(x, y) = x^2 + 3y^2$

- i) The semiellipse $(x^2/9) + (y^2/4) = 1, y \ge 0$
- ii) The quarter ellipse $(x^2/9) + (y^2/4) = 1$, $x \ge 0$, $y \ge 0$

Use the parametric equations $x = 3 \cos t$, $y = 2 \sin t$.

63. Function: f(x, y) = xy

Curves:

- i) The line x = 2t, y = t + 1
- ii) The line segment x = 2t, y = t + 1, $-1 \le t \le 0$
- iii) The line segment x = 2t, y = t + 1, $0 \le t \le 1$
- **64.** Functions:
 - **a.** $f(x, y) = x^2 + y^2$
 - **b.** $g(x, y) = 1/(x^2 + y^2)$

Curves:

- i) The line x = t, y = 2 2t
- ii) The line segment x = t, y = 2 2t, $0 \le t \le 1$
- 65. Least squares and regression lines When we try to fit a line y = mx + b to a set of numerical data points (x_1, y_1) , $(x_2, y_2), \ldots, (x_n, y_n)$, we usually choose the line that minimizes the sum of the squares of the vertical distances from the points to the line. In theory, this means finding the values of m and b that minimize the value of the function

$$w = (mx_1 + b - y_1)^2 + \cdots + (mx_n + b - y_n)^2.$$
 (1)

(See the accompanying figure.) Show that the values of m and bthat do this are

$$m = \frac{\left(\sum x_k\right)\left(\sum y_k\right) - n\sum x_k y_k}{\left(\sum x_k\right)^2 - n\sum x_k^2},\tag{2}$$

$$b = \frac{1}{n} \left(\sum y_k - m \sum x_k \right), \tag{3}$$

with all sums running from k = 1 to k = n. Many scientific calculators have these formulas built in, enabling you to find m and b with only a few keystrokes after you have entered the data.

The line y = mx + b determined by these values of m and b is called the least squares line, regression line, or trend line for the data under study. Finding a least squares line lets you

- 1. summarize data with a simple expression,
- 2. predict values of y for other, experimentally untried values
- 3. handle data analytically.

We demonstrated these ideas with a variety of applications in Section 1.4.

In Exercises 66–68, use Equations (2) and (3) to find the least squares line for each set of data points. Then use the linear equation you obtain to predict the value of y that would correspond to x = 4.

COMPUTER EXPLORATIONS

In Exercises 69–74, you will explore functions to identify their local extrema. Use a CAS to perform the following steps:

- a. Plot the function over the given rectangle.
- **b.** Plot some level curves in the rectangle.

- **c.** Calculate the function's first partial derivatives and use the CAS equation solver to find the critical points. How do the critical points relate to the level curves plotted in part (b)? Which critical points, if any, appear to give a saddle point? Give reasons for your answer.
- **d.** Calculate the function's second partial derivatives and find the discriminant $f_{xx}f_{yy} f_{xy}^2$.
- **e.** Using the max-min tests, classify the critical points found in part (c). Are your findings consistent with your discussion in part (c)?

69.
$$f(x, y) = x^2 + y^3 - 3xy$$
, $-5 \le x \le 5$, $-5 \le y \le 5$

70.
$$f(x, y) = x^3 - 3xy^2 + y^2$$
, $-2 \le x \le 2$, $-2 \le y \le 2$

71.
$$f(x, y) = x^4 + y^2 - 8x^2 - 6y + 16$$
, $-3 \le x \le 3$, $-6 \le y \le 6$

72.
$$f(x, y) = 2x^4 + y^4 - 2x^2 - 2y^2 + 3$$
, $-3/2 \le x \le 3/2$, $-3/2 \le y \le 3/2$

73.
$$f(x, y) = 5x^6 + 18x^5 - 30x^4 + 30xy^2 - 120x^3$$
, $-4 \le x \le 3$, $-2 \le y \le 2$

74.
$$f(x, y) = \begin{cases} x^5 \ln(x^2 + y^2), & (x, y) \neq (0, 0) \\ 0, & (x, y) = (0, 0) \end{cases}$$

 $-2 \le x \le 2, -2 \le y \le 2$

14.8 Lagrange Multipliers

HISTORICAL BIOGRAPHY

Joseph Louis Lagrange (1736–1813)

Sometimes we need to find the extreme values of a function whose domain is constrained to lie within some particular subset of the plane—for example, a disk, a closed triangular region, or along a curve. We saw an instance of this situation in Example 6 of the previous section. Here we explore a powerful method for finding extreme values of constrained functions: the method of *Lagrange multipliers*.

Constrained Maxima and Minima

To gain some insight, we first consider a problem where a constrained minimum can be found by eliminating a variable.

EXAMPLE 1 Find the point p(x, y, z) on the plane 2x + y - z - 5 = 0 that is closest to the origin.

Solution The problem asks us to find the minimum value of the function

$$|\overrightarrow{OP}| = \sqrt{(x-0)^2 + (y-0)^2 + (z-0)^2}$$

= $\sqrt{x^2 + y^2 + z^2}$

subject to the constraint that

$$2x + y - z - 5 = 0.$$

Since $|\overrightarrow{OP}|$ has a minimum value wherever the function

$$f(x, y, z) = x^2 + y^2 + z^2$$

has a minimum value, we may solve the problem by finding the minimum value of f(x, y, z) subject to the constraint 2x + y - z - 5 = 0 (thus avoiding square roots). If we regard x and y as the independent variables in this equation and write z as

$$z = 2x + y - 5,$$

our problem reduces to one of finding the points (x, y) at which the function

$$h(x, y) = f(x, y, 2x + y - 5) = x^2 + y^2 + (2x + y - 5)^2$$

has its minimum value or values. Since the domain of h is the entire xy-plane, the First Derivative Test of Section 14.7 tells us that any minima that h might have must occur at points where

$$h_{y} = 2x + 2(2x + y - 5)(2) = 0,$$
 $h_{y} = 2y + 2(2x + y - 5) = 0.$

This leads to

$$10x + 4y = 20$$
, $4x + 4y = 10$,

and the solution

$$x = \frac{5}{3}, \qquad y = \frac{5}{6}.$$

We may apply a geometric argument together with the Second Derivative Test to show that these values minimize h. The z-coordinate of the corresponding point on the plane z = 2x + y - 5 is

$$z = 2\left(\frac{5}{3}\right) + \frac{5}{6} - 5 = -\frac{5}{6}.$$

Therefore, the point we seek is

Closest point:
$$P\left(\frac{5}{3}, \frac{5}{6}, -\frac{5}{6}\right)$$
.

The distance from *P* to the origin is $5/\sqrt{6} \approx 2.04$.

Attempts to solve a constrained maximum or minimum problem by substitution, as we might call the method of Example 1, do not always go smoothly. This is one of the reasons for learning the new method of this section.

EXAMPLE 2 Find the points on the hyperbolic cylinder $x^2 - z^2 - 1 = 0$ that are closest to the origin.

Solution 1 The cylinder is shown in Figure 14.52. We seek the points on the cylinder closest to the origin. These are the points whose coordinates minimize the value of the function

$$f(x, y, z) = x^2 + y^2 + z^2$$
 Square of the distance

subject to the constraint that $x^2 - z^2 - 1 = 0$. If we regard x and y as independent variables in the constraint equation, then

$$z^2 = x^2 - 1$$

and the values of $f(x, y, z) = x^2 + y^2 + z^2$ on the cylinder are given by the function

$$h(x, y) = x^2 + y^2 + (x^2 - 1) = 2x^2 + y^2 - 1.$$

To find the points on the cylinder whose coordinates minimize f, we look for the points in the xy-plane whose coordinates minimize h. The only extreme value of h occurs where

$$h_x = 4x = 0$$
 and $h_y = 2y = 0$,

that is, at the point (0, 0). But there are no points on the cylinder where both x and y are zero. What went wrong?

FIGURE 14.52 The hyperbolic cylinder $x^2 - z^2 - 1 = 0$ in Example 2.

The hyperbolic cylinder $x^2 - z^2 = 1$

FIGURE 14.53 The region in the *xy*-plane from which the first two coordinates of the points (x, y, z) on the hyperbolic cylinder $x^2 - z^2 = 1$ are selected excludes the band -1 < x < 1 in the *xy*-plane (Example 2).

We can avoid this problem if we treat y and z as independent variables (instead of x and y) and express x in terms of y and z as

$$x^2 = z^2 + 1$$
.

With this substitution, $f(x, y, z) = x^2 + y^2 + z^2$ becomes

$$k(y, z) = (z^2 + 1) + y^2 + z^2 = 1 + y^2 + 2z^2$$

and we look for the points where k takes on its smallest value. The domain of k in the yz-plane now matches the domain from which we select the y- and z-coordinates of the points (x, y, z) on the cylinder. Hence, the points that minimize k in the plane will have corresponding points on the cylinder. The smallest values of k occur where

$$k_{y} = 2y = 0$$
 and $k_{z} = 4z = 0$,

or where y = z = 0. This leads to

$$x^2 = z^2 + 1 = 1$$
, $x = \pm 1$.

The corresponding points on the cylinder are $(\pm 1, 0, 0)$. We can see from the inequality

$$k(y, z) = 1 + y^2 + 2z^2 \ge 1$$

that the points $(\pm 1, 0, 0)$ give a minimum value for k. We can also see that the minimum distance from the origin to a point on the cylinder is 1 unit.

Solution 2 Another way to find the points on the cylinder closest to the origin is to imagine a small sphere centered at the origin expanding like a soap bubble until it just touches the cylinder (Figure 14.54). At each point of contact, the cylinder and sphere have the same tangent plane and normal line. Therefore, if the sphere and cylinder are represented as the level surfaces obtained by setting

$$f(x, y, z) = x^2 + y^2 + z^2 - a^2$$
 and $g(x, y, z) = x^2 - z^2 - 1$

equal to 0, then the gradients ∇f and ∇g will be parallel where the surfaces touch. At any point of contact, we should therefore be able to find a scalar λ ("lambda") such that

$$\nabla f = \lambda \nabla g$$

or

$$2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k} = \lambda(2x\mathbf{i} - 2z\mathbf{k}).$$

Thus, the coordinates x, y, and z of any point of tangency will have to satisfy the three scalar equations

$$2x = 2\lambda x$$
, $2y = 0$, $2z = -2\lambda z$.

For what values of λ will a point (x, y, z) whose coordinates satisfy these scalar equations also lie on the surface $x^2 - z^2 - 1 = 0$? To answer this question, we use our knowledge that no point on the surface has a zero x-coordinate to conclude that $x \neq 0$. Hence, $2x = 2\lambda x$ only if

$$2 = 2\lambda$$
, or $\lambda = 1$.

FIGURE 14.54 A sphere expanding like a soap bubble centered at the origin until it just touches the hyperbolic cylinder $x^2 - z^2 - 1 = 0$ (Example 2).

For $\lambda = 1$, the equation $2z = -2\lambda z$ becomes 2z = -2z. If this equation is to be satisfied as well, z must be zero. Since y = 0 also (from the equation 2y = 0), we conclude that the points we seek all have coordinates of the form

What points on the surface $x^2 - z^2 = 1$ have coordinates of this form? The answer is the points (x, 0, 0) for which

$$x^2 - (0)^2 = 1$$
, $x^2 = 1$, or $x = \pm 1$

The points on the cylinder closest to the origin are the points ($\pm 1, 0, 0$).

The Method of Lagrange Multipliers

In Solution 2 of Example 2, we used the **method of Lagrange multipliers**. The method says that the local extreme values of a function f(x, y, z) whose variables are subject to a constraint g(x, y, z) = 0 are to be found on the surface g = 0 among the points where

$$\nabla f = \lambda \nabla g$$

for some scalar λ (called a **Lagrange multiplier**).

To explore the method further and see why it works, we first make the following observation, which we state as a theorem.

THEOREM 12—The Orthogonal Gradient Theorem Suppose that f(x, y, z) is differentiable in a region whose interior contains a smooth curve

C:
$$\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j} + z(t)\mathbf{k}$$
.

If P_0 is a point on C where f has a local maximum or minimum relative to its values on C, then ∇f is orthogonal to C at P_0 .

Proof We show that ∇f is orthogonal to the curve's tangent vector \mathbf{r}' at P_0 . The values of f on C are given by the composite f(x(t), y(t), z(t)), whose derivative with respect to t is

$$\frac{df}{dt} = \frac{\partial f}{\partial x}\frac{dx}{dt} + \frac{\partial f}{\partial y}\frac{dy}{dt} + \frac{\partial f}{\partial z}\frac{dz}{dt} = \nabla f \cdot \mathbf{r}'.$$

At any point P_0 where f has a local maximum or minimum relative to its values on the curve, df/dt = 0, so

$$\nabla f \cdot \mathbf{r}' = 0.$$

By dropping the z-terms in Theorem 12, we obtain a similar result for functions of two variables.

COROLLARY At the points on a smooth curve $\mathbf{r}(t) = x(t)\mathbf{i} + y(t)\mathbf{j}$ where a differentiable function f(x, y) takes on its local maxima and minima relative to its values on the curve, $\nabla f \cdot \mathbf{r}' = 0$.

Theorem 12 is the key to the method of Lagrange multipliers. Suppose that f(x, y, z) and g(x, y, z) are differentiable and that P_0 is a point on the surface g(x, y, z) = 0 where f has a local maximum or minimum value relative to its other values on the surface. We assume also that $\nabla g \neq \mathbf{0}$ at points on the surface g(x, y, z) = 0. Then f takes on a local maximum or minimum at P_0 relative to its values on every differentiable curve through P_0

on the surface g(x, y, z) = 0. Therefore, ∇f is orthogonal to the tangent vector of every such differentiable curve through P_0 . So is ∇g , moreover (because ∇g is orthogonal to the level surface g = 0, as we saw in Section 14.5). Therefore, at P_0 , ∇f is some scalar multiple λ of ∇g .

The Method of Lagrange Multipliers

Suppose that f(x, y, z) and g(x, y, z) are differentiable and $\nabla g \neq \mathbf{0}$ when g(x, y, z) = 0. To find the local maximum and minimum values of f subject to the constraint g(x, y, z) = 0 (if these exist), find the values of x, y, z, and λ that simultaneously satisfy the equations

$$\nabla f = \lambda \nabla g$$
 and $g(x, y, z) = 0.$ (1)

For functions of two independent variables, the condition is similar, but without the variable *z*.

Some care must be used in applying this method. An extreme value may not actually exist (Exercise 45).

(Exercise 45).

EXAMPLE 3 Find the greatest and smallest values that the function

$$f(x, y) = xy$$

takes on the ellipse (Figure 14.55)

$$\frac{x^2}{8} + \frac{y^2}{2} = 1.$$

Solution We want to find the extreme values of f(x, y) = xy subject to the constraint

$$g(x, y) = \frac{x^2}{8} + \frac{y^2}{2} - 1 = 0.$$

To do so, we first find the values of x, y, and λ for which

$$\nabla f = \lambda \nabla g$$
 and $g(x, y) = 0$.

The gradient equation in Equations (1) gives

$$y\mathbf{i} + x\mathbf{j} = \frac{\lambda}{4}x\mathbf{i} + \lambda y\mathbf{j},$$

from which we find

$$y = \frac{\lambda}{4}x$$
, $x = \lambda y$, and $y = \frac{\lambda}{4}(\lambda y) = \frac{\lambda^2}{4}y$,

so that y = 0 or $\lambda = \pm 2$. We now consider these two cases.

Case 1: If y = 0, then x = y = 0. But (0, 0) is not on the ellipse. Hence, $y \ne 0$.

Case 2: If $y \neq 0$, then $\lambda = \pm 2$ and $x = \pm 2y$. Substituting this in the equation g(x, y) = 0 gives

$$\frac{(\pm 2y)^2}{8} + \frac{y^2}{2} = 1$$
, $4y^2 + 4y^2 = 8$ and $y = \pm 1$.

The function f(x, y) = xy therefore takes on its extreme values on the ellipse at the four points $(\pm 2, 1)$, $(\pm 2, -1)$. The extreme values are xy = 2 and xy = -2.

FIGURE 14.55 Example 3 shows how to find the largest and smallest values of the product *xy* on this ellipse.

FIGURE 14.56 When subjected to the constraint $g(x, y) = x^2/8 + y^2/2 - 1 = 0$, the function f(x, y) = xy takes on extreme values at the four points $(\pm 2, \pm 1)$. These are the points on the ellipse when ∇f (red) is a scalar multiple of ∇g (blue) (Example 3).

The Geometry of the Solution The level curves of the function f(x, y) = xy are the hyperbolas xy = c (Figure 14.56). The farther the hyperbolas lie from the origin, the larger the absolute value of f. We want to find the extreme values of f(x, y), given that the point (x, y) also lies on the ellipse $x^2 + 4y^2 = 8$. Which hyperbolas intersecting the ellipse lie farthest from the origin? The hyperbolas that just graze the ellipse, the ones that are tangent to it, are farthest. At these points, any vector normal to the hyperbola is normal to the ellipse, so $\nabla f = y\mathbf{i} + x\mathbf{j}$ is a multiple $(\lambda = \pm 2)$ of $\nabla g = (x/4)\mathbf{i} + y\mathbf{j}$. At the point (2, 1), for example,

$$\nabla f = \mathbf{i} + 2\mathbf{j}, \quad \nabla g = \frac{1}{2}\mathbf{i} + \mathbf{j}, \quad \text{and} \quad \nabla f = 2\nabla g.$$

At the point (-2, 1),

$$\nabla f = \mathbf{i} - 2\mathbf{j}, \quad \nabla g = -\frac{1}{2}\mathbf{i} + \mathbf{j}, \quad \text{and} \quad \nabla f = -2\nabla g.$$

EXAMPLE 4 Find the maximum and minimum values of the function f(x, y) = 3x + 4y on the circle $x^2 + y^2 = 1$.

Solution We model this as a Lagrange multiplier problem with

$$f(x, y) = 3x + 4y,$$
 $g(x, y) = x^2 + y^2 - 1$

and look for the values of x, y, and λ that satisfy the equations

$$\nabla f = \lambda \nabla g : \quad 3\mathbf{i} + 4\mathbf{j} = 2x\lambda \mathbf{i} + 2y\lambda \mathbf{j}$$

$$g(x, y) = 0$$
: $x^2 + y^2 - 1 = 0$.

The gradient equation in Equations (1) implies that $\lambda \neq 0$ and gives

$$x = \frac{3}{2\lambda}, \qquad y = \frac{2}{\lambda}.$$

These equations tell us, among other things, that x and y have the same sign. With these values for x and y, the equation g(x, y) = 0 gives

$$\left(\frac{3}{2\lambda}\right)^2 + \left(\frac{2}{\lambda}\right)^2 - 1 = 0,$$

so

$$\frac{9}{4\lambda^2} + \frac{4}{\lambda^2} = 1$$
, $9 + 16 = 4\lambda^2$, $4\lambda^2 = 25$, and $\lambda = \pm \frac{5}{2}$.

Thus,

$$x = \frac{3}{2\lambda} = \pm \frac{3}{5}, \quad y = \frac{2}{\lambda} = \pm \frac{4}{5},$$

and f(x, y) = 3x + 4y has extreme values at $(x, y) = \pm (3/5, 4/5)$.

By calculating the value of 3x + 4y at the points $\pm (3/5, 4/5)$, we see that its maximum and minimum values on the circle $x^2 + y^2 = 1$ are

$$3\left(\frac{3}{5}\right) + 4\left(\frac{4}{5}\right) = \frac{25}{5} = 5$$
 and $3\left(-\frac{3}{5}\right) + 4\left(-\frac{4}{5}\right) = -\frac{25}{5} = -5$.

The Geometry of the Solution The level curves of f(x, y) = 3x + 4y are the lines 3x + 4y = c (Figure 14.57). The farther the lines lie from the origin, the larger the absolute value of f. We want to find the extreme values of f(x, y) given that the point (x, y) also lies on the circle $x^2 + y^2 = 1$. Which lines intersecting the circle lie farthest from the origin? The lines tangent to the circle are farthest. At the points of tangency, any vector normal to the line is normal to the circle, so the gradient $\nabla f = 3\mathbf{i} + 4\mathbf{j}$ is a multiple $(\lambda = \pm 5/2)$ of the gradient $\nabla g = 2x\mathbf{i} + 2y\mathbf{j}$. At the point (3/5, 4/5), for example,

$$\nabla f = 3\mathbf{i} + 4\mathbf{j}, \qquad \nabla g = \frac{6}{5}\mathbf{i} + \frac{8}{5}\mathbf{j}, \quad \text{and} \quad \nabla f = \frac{5}{2}\nabla g.$$

FIGURE 14.57 The function f(x, y) = 3x + 4y takes on its largest value on the unit circle $g(x, y) = x^2 + y^2 - 1 = 0$ at the point (3/5, 4/5) and its smallest value at the point (-3/5, -4/5) (Example 4). At each of these points, ∇f is a scalar multiple of ∇g . The figure shows the gradients at the first point but not the second.

FIGURE 14.58 The vectors ∇g_1 and ∇g_2 lie in a plane perpendicular to the curve C because ∇g_1 is normal to the surface $g_1 = 0$ and ∇g_2 is normal to the surface $g_2 = 0$.

Lagrange Multipliers with Two Constraints

Many problems require us to find the extreme values of a differentiable function f(x, y, z) whose variables are subject to two constraints. If the constraints are

$$g_1(x, y, z) = 0$$
 and $g_2(x, y, z) = 0$

and g_1 and g_2 are differentiable, with ∇g_1 not parallel to ∇g_2 , we find the constrained local maxima and minima of f by introducing two Lagrange multipliers λ and μ (mu, pronounced "mew"). That is, we locate the points P(x, y, z) where f takes on its constrained extreme values by finding the values of x, y, z, λ , and μ that simultaneously satisfy the three equations

$$\nabla f = \lambda \nabla g_1 + \mu \nabla g_2, \qquad g_1(x, y, z) = 0, \qquad g_2(x, y, z) = 0$$
 (2)

Equations (2) have a nice geometric interpretation. The surfaces $g_1=0$ and $g_2=0$ (usually) intersect in a smooth curve, say C (Figure 14.58). Along this curve we seek the points where f has local maximum and minimum values relative to its other values on the curve. These are the points where ∇f is normal to C, as we saw in Theorem 12. But ∇g_1 and ∇g_2 are also normal to C at these points because C lies in the surfaces $g_1=0$ and $g_2=0$. Therefore, ∇f lies in the plane determined by ∇g_1 and ∇g_2 , which means that $\nabla f = \lambda \nabla g_1 + \mu \nabla g_2$ for some λ and μ . Since the points we seek also lie in both surfaces, their coordinates must satisfy the equations $g_1(x,y,z)=0$ and $g_2(x,y,z)=0$, which are the remaining requirements in Equations (2).

EXAMPLE 5 The plane x + y + z = 1 cuts the cylinder $x^2 + y^2 = 1$ in an ellipse (Figure 14.59). Find the points on the ellipse that lie closest to and farthest from the origin.

Solution We find the extreme values of

$$f(x, y, z) = x^2 + y^2 + z^2$$

(the square of the distance from (x, y, z) to the origin) subject to the constraints

$$g_1(x, y, z) = x^2 + y^2 - 1 = 0$$
 (3)

$$g_2(x, y, z) = x + y + z - 1 = 0.$$
 (4)

The gradient equation in Equations (2) then gives

$$\nabla f = \lambda \nabla g_1 + \mu \nabla g_2$$

$$2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k} = \lambda(2x\mathbf{i} + 2y\mathbf{j}) + \mu(\mathbf{i} + \mathbf{j} + \mathbf{k})$$

$$2x\mathbf{i} + 2y\mathbf{j} + 2z\mathbf{k} = (2\lambda x + \mu)\mathbf{i} + (2\lambda y + \mu)\mathbf{j} + \mu\mathbf{k}$$

FIGURE 14.59 On the ellipse where the plane and cylinder meet, we find the points closest to and farthest from the origin (Example 5).

or

$$2x = 2\lambda x + \mu, \qquad 2y = 2\lambda y + \mu, \qquad 2z = \mu. \tag{5}$$

The scalar equations in Equations (5) yield

$$2x = 2\lambda x + 2z \Longrightarrow (1 - \lambda)x = z,$$

$$2y = 2\lambda y + 2z \Longrightarrow (1 - \lambda)y = z.$$
(6)

Equations (6) are satisfied simultaneously if either $\lambda = 1$ and z = 0 or $\lambda \neq 1$ and $x = y = z/(1 - \lambda)$.

If z = 0, then solving Equations (3) and (4) simultaneously to find the corresponding points on the ellipse gives the two points (1, 0, 0) and (0, 1, 0). This makes sense when you look at Figure 14.59.

If x = y, then Equations (3) and (4) give

$$x^{2} + x^{2} - 1 = 0$$
 $x + x + z - 1 = 0$
 $2x^{2} = 1$ $z = 1 - 2x$
 $x = \pm \frac{\sqrt{2}}{2}$ $z = 1 \mp \sqrt{2}$.

The corresponding points on the ellipse are

$$P_1 = \left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}, 1 - \sqrt{2}\right)$$
 and $P_2 = \left(-\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}, 1 + \sqrt{2}\right)$.

Here we need to be careful, however. Although P_1 and P_2 both give local maxima of f on the ellipse, P_2 is farther from the origin than P_1 .

The points on the ellipse closest to the origin are (1, 0, 0) and (0, 1, 0). The point on the ellipse farthest from the origin is P_2 . (See Figure 14.59.)

Exercises 14.8

Two Independent Variables with One Constraint

- **1. Extrema on an ellipse** Find the points on the ellipse $x^2 + 2y^2 = 1$ where f(x, y) = xy has its extreme values.
- **2. Extrema on a circle** Find the extreme values of f(x, y) = xy subject to the constraint $g(x, y) = x^2 + y^2 10 = 0$.
- **3. Maximum on a line** Find the maximum value of $f(x, y) = 49 x^2 y^2$ on the line x + 3y = 10.
- **4. Extrema on a line** Find the local extreme values of $f(x, y) = x^2y$ on the line x + y = 3.
- **5. Constrained minimum** Find the points on the curve $xy^2 = 54$ nearest the origin.
- **6. Constrained minimum** Find the points on the curve $x^2y = 2$ nearest the origin.
- 7. Use the method of Lagrange multipliers to find
 - **a. Minimum on a hyperbola** The minimum value of x + y, subject to the constraints xy = 16, x > 0, y > 0
 - **b. Maximum on a line** The maximum value of xy, subject to the constraint x + y = 16.

Comment on the geometry of each solution.

- **8. Extrema on a curve** Find the points on the curve $x^2 + xy + y^2 = 1$ in the *xy*-plane that are nearest to and farthest from the origin.
- 9. Minimum surface area with fixed volume Find the dimensions of the closed right circular cylindrical can of smallest surface area whose volume is 16π cm³.

- **10. Cylinder in a sphere** Find the radius and height of the open right circular cylinder of largest surface area that can be inscribed in a sphere of radius *a*. What *is* the largest surface area?
- 11. Rectangle of greatest area in an ellipse Use the method of Lagrange multipliers to find the dimensions of the rectangle of greatest area that can be inscribed in the ellipse $x^2/16 + y^2/9 = 1$ with sides parallel to the coordinate axes.
- 12. Rectangle of longest perimeter in an ellipse Find the dimensions of the rectangle of largest perimeter that can be inscribed in the ellipse $x^2/a^2 + y^2/b^2 = 1$ with sides parallel to the coordinate axes. What *is* the largest perimeter?
- **13. Extrema on a circle** Find the maximum and minimum values of $x^2 + y^2$ subject to the constraint $x^2 2x + y^2 4y = 0$.
- **14. Extrema on a circle** Find the maximum and minimum values of 3x y + 6 subject to the constraint $x^2 + y^2 = 4$.
- **15. Ant on a metal plate** The temperature at a point (x, y) on a metal plate is $T(x, y) = 4x^2 4xy + y^2$. An ant on the plate walks around the circle of radius 5 centered at the origin. What are the highest and lowest temperatures encountered by the ant?
- **16. Cheapest storage tank** Your firm has been asked to design a storage tank for liquid petroleum gas. The customer's specifications call for a cylindrical tank with hemispherical ends, and the tank is to hold 8000 m³ of gas. The customer also wants to use the smallest amount of material possible in building the tank. What radius and height do you recommend for the cylindrical portion of the tank?

Three Independent Variables with One Constraint

- 17. Minimum distance to a point Find the point on the plane x + 2y + 3z = 13 closest to the point (1, 1, 1).
- **18. Maximum distance to a point** Find the point on the sphere $x^2 + y^2 + z^2 = 4$ farthest from the point (1, -1, 1).
- **19. Minimum distance to the origin** Find the minimum distance from the surface $x^2 y^2 z^2 = 1$ to the origin.
- **20. Minimum distance to the origin** Find the point on the surface z = xy + 1 nearest the origin.
- **21. Minimum distance to the origin** Find the points on the surface $z^2 = xy + 4$ closest to the origin.
- **22. Minimum distance to the origin** Find the point(s) on the surface xyz = 1 closest to the origin.
- 23. Extrema on a sphere Find the maximum and minimum values of

$$f(x, y, z) = x - 2y + 5z$$

on the sphere $x^2 + y^2 + z^2 = 30$.

- **24. Extrema on a sphere** Find the points on the sphere $x^2 + y^2 + z^2 = 25$ where f(x, y, z) = x + 2y + 3z has its maximum and minimum values.
- **25. Minimizing a sum of squares** Find three real numbers whose sum is 9 and the sum of whose squares is as small as possible.
- **26.** Maximizing a product Find the largest product the positive numbers x, y, and z can have if $x + y + z^2 = 16$.
- **27. Rectangular box of largest volume in a sphere** Find the dimensions of the closed rectangular box with maximum volume that can be inscribed in the unit sphere.
- **28.** Box with vertex on a plane Find the volume of the largest closed rectangular box in the first octant having three faces in the coordinate planes and a vertex on the plane x/a + y/b + z/c = 1, where a > 0, b > 0, and c > 0.
- **29. Hottest point on a space probe** A space probe in the shape of the ellipsoid

$$4x^2 + y^2 + 4z^2 = 16$$

enters Earth's atmosphere and its surface begins to heat. After 1 hour, the temperature at the point (x, y, z) on the probe's surface is

$$T(x, y, z) = 8x^2 + 4yz - 16z + 600.$$

Find the hottest point on the probe's surface.

- **30.** Extreme temperatures on a sphere Suppose that the Celsius temperature at the point (x, y, z) on the sphere $x^2 + y^2 + z^2 = 1$ is $T = 400xyz^2$. Locate the highest and lowest temperatures on the sphere.
- **31. Cobb-Douglas production function** During the 1920s, Charles Cobb and Paul Douglas modeled total production output *P* (of a firm, industry, or entire economy) as a function of labor hours involved *x* and capital invested *y* (which includes the monetary worth of all buildings and equipment). The Cobb-Douglas production function is given by

$$P(x, y) = kx^{\alpha}y^{1-\alpha},$$

where k and α are constants representative of a particular firm or economy.

- **a.** Show that a doubling of both labor and capital results in a doubling of production *P*.
- **b.** Suppose a particular firm has the production function for k = 120 and $\alpha = 3/4$. Assume that each unit of labor costs \$250 and each unit of capital costs \$400, and that the total expenses for all costs cannot exceed \$100,000. Find the maximum production level for the firm.
- **32.** (Continuation of Exercise 31.) If the cost of a unit of labor is c_1 and the cost of a unit of capital is c_2 , and if the firm can spend only B dollars as its total budget, then production P is constrained by $c_1x + c_2y = B$. Show that the maximum production level subject to the constraint occurs at the point

$$x = \frac{\alpha B}{c_1}$$
 and $y = \frac{(1 - \alpha)B}{c_2}$.

33. Maximizing a utility function: an example from economics In economics, the usefulness or *utility* of amounts x and y of two capital goods G_1 and G_2 is sometimes measured by a function U(x, y). For example, G_1 and G_2 might be two chemicals a pharmaceutical company needs to have on hand and U(x, y) the gain from manufacturing a product whose synthesis requires different amounts of the chemicals depending on the process used. If G_1 costs a dollars per kilogram, G_2 costs b dollars per kilogram, and the total amount allocated for the purchase of G_1 and G_2 together is b dollars, then the company's managers want to maximize b dollars per kilogram, and the total amount allocated for the purchase of b and b together is b dollars, then the company's managers want to maximize b dollars per kilogram, and the total amount allocated for the purchase of b and b together is b dollars, then the company's managers want to maximize b dollars per kilogram and the total amount allocated for the purchase of b and b to given that b and b to give b to solve a typical Lagrange multiplier problem.

Suppose that

$$U(x, y) = xy + 2x$$

and that the equation ax + by = c simplifies to

$$2x + y = 30.$$

Find the maximum value of U and the corresponding values of x and y subject to this latter constraint.

34. Blood types Human blood types are classified by three gene forms *A*, *B*, and *O*. Blood types *AA*, *BB*, and *OO* are *homozygous*, and blood types *AB*, *AO*, and *BO* are *heterozygous*. If *p*, *q*, and *r* represent the proportions of the three gene forms to the population, respectively, then the *Hardy-Weinberg Law* asserts that the proportion *Q* of heterozygous persons in any specific population is modeled by

$$Q(p, q, r) = 2(pq + pr + qr),$$

subject to p + q + r = 1. Find the maximum value of Q.

35. Length of a beam In Section 4.5, Exercise 39, we posed a problem of finding the length L of the shortest beam that can reach over a wall of height h to a tall building located k units from the wall. Use Lagrange multipliers to show that

$$L = (h^{2/3} + k^{2/3})^{3/2}.$$

36. Locating a radio telescope You are in charge of erecting a radio telescope on a newly discovered planet. To minimize interference, you want to place it where the magnetic field of the planet is weakest. The planet is spherical, with a radius of 6 units. Based on a coordinate system whose origin is at the center of the planet, the strength of the magnetic field is given by $M(x, y, z) = 6x - y^2 + xz + 60$. Where should you locate the radio telescope?

Extreme Values Subject to Two Constraints

- **37.** Maximize the function $f(x, y, z) = x^2 + 2y z^2$ subject to the constraints 2x y = 0 and y + z = 0.
- **38.** Minimize the function $f(x, y, z) = x^2 + y^2 + z^2$ subject to the constraints x + 2y + 3z = 6 and x + 3y + 9z = 9.
- **39. Minimum distance to the origin** Find the point closest to the origin on the line of intersection of the planes y + 2z = 12 and x + y = 6.
- **40.** Maximum value on line of intersection Find the maximum value that $f(x, y, z) = x^2 + 2y z^2$ can have on the line of intersection of the planes 2x y = 0 and y + z = 0.
- **41. Extrema on a curve of intersection** Find the extreme values of $f(x, y, z) = x^2yz + 1$ on the intersection of the plane z = 1 with the sphere $x^2 + y^2 + z^2 = 10$.
- **42. a. Maximum on line of intersection** Find the maximum value of w = xyz on the line of intersection of the two planes x + y + z = 40 and x + y z = 0.
 - **b.** Give a geometric argument to support your claim that you have found a maximum, and not a minimum, value of w.
- **43. Extrema on a circle of intersection** Find the extreme values of the function $f(x, y, z) = xy + z^2$ on the circle in which the plane y x = 0 intersects the sphere $x^2 + y^2 + z^2 = 4$.
- **44. Minimum distance to the origin** Find the point closest to the origin on the curve of intersection of the plane 2y + 4z = 5 and the cone $z^2 = 4x^2 + 4y^2$.

Theory and Examples

- **45.** The condition $\nabla f = \lambda \nabla g$ is not sufficient Although $\nabla f = \lambda \nabla g$ is a necessary condition for the occurrence of an extreme value of f(x, y) subject to the conditions g(x, y) = 0 and $\nabla g \neq \mathbf{0}$, it does not in itself guarantee that one exists. As a case in point, try using the method of Lagrange multipliers to find a maximum value of f(x, y) = x + y subject to the constraint that xy = 16. The method will identify the two points (4, 4) and (-4, -4) as candidates for the location of extreme values. Yet the sum (x + y) has no maximum value on the hyperbola xy = 16. The farther you go from the origin on this hyperbola in the first quadrant, the larger the sum f(x, y) = x + y becomes.
- **46.** A least squares plane The plane z = Ax + By + C is to be "fitted" to the following points (x_k, y_k, z_k) :

$$(0,0,0), (0,1,1), (1,1,1), (1,0,-1).$$

Find the values of A, B, and C that minimize

$$\sum_{k=1}^{4} (Ax_k + By_k + C - z_k)^2,$$

the sum of the squares of the deviations.

- **47. a. Maximum on a sphere** Show that the maximum value of $a^2b^2c^2$ on a sphere of radius r centered at the origin of a Cartesian abc-coordinate system is $(r^2/3)^3$.
 - **b.** Geometric and arithmetic means Using part (a), show that for nonnegative numbers a, b, and c,

$$(abc)^{1/3} \le \frac{a+b+c}{3};$$

that is, the *geometric mean* of three nonnegative numbers is less than or equal to their *arithmetic mean*.

48. Sum of products Let a_1, a_2, \ldots, a_n be n positive numbers. Find the maximum of $\sum_{i=1}^{n} a_i x_i$ subject to the constraint $\sum_{i=1}^{n} x_i^2 = 1$.

COMPUTER EXPLORATIONS

In Exercises 49–54, use a CAS to perform the following steps implementing the method of Lagrange multipliers for finding constrained extrema:

- **a.** Form the function $h = f \lambda_1 g_1 \lambda_2 g_2$, where f is the function to optimize subject to the constraints $g_1 = 0$ and $g_2 = 0$.
- **b.** Determine all the first partial derivatives of h, including the partials with respect to λ_1 and λ_2 , and set them equal to 0.
- **c.** Solve the system of equations found in part (b) for all the unknowns, including λ_1 and λ_2 .
- **d.** Evaluate *f* at each of the solution points found in part (c) and select the extreme value subject to the constraints asked for in the exercise.
- **49.** Minimize f(x, y, z) = xy + yz subject to the constraints $x^2 + y^2 2 = 0$ and $x^2 + z^2 2 = 0$.
- **50.** Minimize f(x, y, z) = xyz subject to the constraints $x^2 + y^2 1 = 0$ and x z = 0.
- **51.** Maximize $f(x, y, z) = x^2 + y^2 + z^2$ subject to the constraints 2y + 4z 5 = 0 and $4x^2 + 4y^2 z^2 = 0$.
- **52.** Minimize $f(x, y, z) = x^2 + y^2 + z^2$ subject to the constraints $x^2 xy + y^2 z^2 1 = 0$ and $x^2 + y^2 1 = 0$.
- **53.** Minimize $f(x, y, z, w) = x^2 + y^2 + z^2 + w^2$ subject to the constraints 2x y + z w 1 = 0 and x + y z + w 1 = 0.
- **54.** Determine the distance from the line y = x + 1 to the parabola $y^2 = x$. (*Hint*: Let (x, y) be a point on the line and (w, z) a point on the parabola. You want to minimize $(x w)^2 + (y z)^2$.)

14.9 Taylor's Formula for Two Variables

In this section we use Taylor's formula to derive the Second Derivative Test for local extreme values (Section 14.7) and the error formula for linearizations of functions of two independent variables (Section 14.6). The use of Taylor's formula in these derivations leads to an extension of the formula that provides polynomial approximations of all orders for functions of two independent variables.

Derivation of the Second Derivative Test

Let f(x, y) have continuous partial derivatives in an open region R containing a point P(a, b) where $f_x = f_y = 0$ (Figure 14.60). Let h and k be increments small enough to put the

855

FIGURE 14.60 We begin the derivation of the Second Derivative Test at P(a, b) by parametrizing a typical line segment from P to a point S nearby.

Part of open region R

point S(a + h, b + k) and the line segment joining it to P inside R. We parametrize the

$$x = a + th, \qquad y = b + tk, \qquad 0 \le t \le 1.$$

$$F'(t) = f_x \frac{dx}{dt} + f_y \frac{dy}{dt} = hf_x + kf_y$$

Since f_x and f_y are differentiable (they have continuous partial derivatives), F' is a differentiable function of t and

$$F'' = \frac{\partial F'}{\partial x} \frac{dx}{dt} + \frac{\partial F'}{\partial y} \frac{dy}{dt} = \frac{\partial}{\partial x} (hf_x + kf_y) \cdot h + \frac{\partial}{\partial y} (hf_x + kf_y) \cdot k$$
$$= h^2 f_{xx} + 2hk f_{xy} + k^2 f_{yy}. \qquad f_{xy} = f_{yx}$$

Since F and F' are continuous on [0, 1] and F' is differentiable on (0, 1), we can apply Taylor's formula with n = 2 and a = 0 to obtain

$$F(1) = F(0) + F'(0)(1 - 0) + F''(c) \frac{(1 - 0)^2}{2}$$

$$= F(0) + F'(0) + \frac{1}{2}F''(c)$$
(1)

for some c between 0 and 1. Writing Equation (1) in terms of f gives

$$f(a+h,b+k) = f(a,b) + hf_x(a,b) + kf_y(a,b) + \frac{1}{2} \left(h^2 f_{xx} + 2hk f_{xy} + k^2 f_{yy} \right) \Big|_{(a+ch,b+ck)}.$$
 (2)

Since $f_x(a, b) = f_y(a, b) = 0$, this reduces to

$$f(a+h,b+k) - f(a,b) = \frac{1}{2} \left(h^2 f_{xx} + 2hk f_{xy} + k^2 f_{yy} \right) \Big|_{(a+ch,b+ck)}.$$
 (3)

The presence of an extremum of f at (a, b) is determined by the sign of f(a + h, b + k) - f(a, b). By Equation (3), this is the same as the sign of

$$Q(c) = (h^2 f_{xx} + 2hk f_{xy} + k^2 f_{yy})|_{(a+ch, b+ck)}.$$

Now, if $Q(0) \neq 0$, the sign of Q(c) will be the same as the sign of Q(0) for sufficiently small values of h and k. We can predict the sign of

$$Q(0) = h^2 f_{rr}(a, b) + 2hk f_{rv}(a, b) + k^2 f_{vv}(a, b)$$
 (4)

from the signs of f_{xx} and $f_{xx}f_{yy} - f_{xy}^2$ at (a, b). Multiply both sides of Equation (4) by f_{xx} and rearrange the right-hand side to get

$$f_{xx}Q(0) = (hf_{xx} + kf_{xy})^2 + (f_{xx}f_{yy} - f_{xy}^2)k^2.$$
 (5)

From Equation (5) we see that

- 1. If $f_{xx} < 0$ and $f_{xx}f_{yy} f_{xy}^2 > 0$ at (a, b), then Q(0) < 0 for all sufficiently small nonzero values of h and k, and f has a *local maximum* value at (a, b).
- **2.** If $f_{xx} > 0$ and $f_{xx}f_{yy} f_{xy}^2 > 0$ at (a, b), then Q(0) > 0 for all sufficiently small nonzero values of h and k, and f has a *local minimum* value at (a, b).

- **3.** If $f_{xx}f_{yy} f_{xy}^2 < 0$ at (a, b), there are combinations of arbitrarily small nonzero values of h and k for which Q(0) > 0, and other values for which Q(0) < 0. Arbitrarily close to the point $P_0(a, b, f(a, b))$ on the surface z = f(x, y) there are points above P_0 and points below P_0 , so f has a *saddle point* at (a, b).
- **4.** If $f_{xx}f_{yy} f_{xy}^2 = 0$, another test is needed. The possibility that Q(0) equals zero prevents us from drawing conclusions about the sign of Q(c).

The Error Formula for Linear Approximations

We want to show that the difference E(x, y) between the values of a function f(x, y) and its linearization L(x, y) at (x_0, y_0) satisfies the inequality

$$|E(x, y)| \le \frac{1}{2}M(|x - x_0| + |y - y_0|)^2.$$

The function f is assumed to have continuous second partial derivatives throughout an open set containing a closed rectangular region R centered at (x_0, y_0) . The number M is an upper bound for $|f_{xx}|$, $|f_{yy}|$, and $|f_{xy}|$ on R.

The inequality we want comes from Equation (2). We substitute x_0 and y_0 for a and b, and $x - x_0$ and $y - y_0$ for h and k, respectively, and rearrange the result as

$$f(x, y) = \underbrace{f(x_0, y_0) + f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0)}_{\text{linearization } L(x, y)} + \underbrace{\frac{1}{2} \left((x - x_0)^2 f_{xx} + 2(x - x_0)(y - y_0) f_{xy} + (y - y_0)^2 f_{yy} \right) \Big|_{(x_0 + c(x - x_0), y_0 + c(y - y_0))}}_{(x_0 + c(x - x_0), y_0 + c(y - y_0))}$$

This equation reveals that

$$|E| \le \frac{1}{2} \left(|x - x_0|^2 |f_{xx}| + 2|x - x_0| |y - y_0| |f_{xy}| + |y - y_0|^2 |f_{yy}| \right).$$

Hence, if M is an upper bound for the values of $|f_{xx}|$, $|f_{xy}|$, and $|f_{yy}|$ on R,

$$|E| \le \frac{1}{2} (|x - x_0|^2 M + 2|x - x_0||y - y_0|M + |y - y_0|^2 M)$$

= $\frac{1}{2} M(|x - x_0| + |y - y_0|)^2$.

Taylor's Formula for Functions of Two Variables

The formulas derived earlier for F' and F'' can be obtained by applying to f(x, y) the operators

$$\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right) \quad \text{and} \quad \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^2 = h^2\frac{\partial^2}{\partial x^2} + 2hk\frac{\partial^2}{\partial x\partial y} + k^2\frac{\partial^2}{\partial y^2}.$$

These are the first two instances of a more general formula,

$$F^{(n)}(t) = \frac{d^n}{dt^n} F(t) = \left(h \frac{\partial}{\partial x} + k \frac{\partial}{\partial y} \right)^n f(x, y), \tag{6}$$

which says that applying d^n/dt^n to F(t) gives the same result as applying the operator

$$\left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^n$$

to f(x, y) after expanding it by the Binomial Theorem.

If partial derivatives of f through order n+1 are continuous throughout a rectangular region centered at (a,b), we may extend the Taylor formula for F(t) to

$$F(t) = F(0) + F'(0)t + \frac{F''(0)}{2!}t^2 + \cdots + \frac{F^{(n)}(0)}{n!}t^{(n)} + \text{ remainder},$$

and take t = 1 to obtain

$$F(1) = F(0) + F'(0) + \frac{F''(0)}{2!} + \cdots + \frac{F^{(n)}(0)}{n!} + \text{ remainder.}$$

When we replace the first n derivatives on the right of this last series by their equivalent expressions from Equation (6) evaluated at t=0 and add the appropriate remainder term, we arrive at the following formula.

Taylor's Formula for f(x, y) at the Point (a, b)

Suppose f(x, y) and its partial derivatives through order n + 1 are continuous throughout an open rectangular region R centered at a point (a, b). Then, throughout R,

$$f(a + h, b + k) = f(a, b) + (hf_{x} + kf_{y})|_{(a, b)} + \frac{1}{2!} (h^{2}f_{xx} + 2hkf_{xy} + k^{2}f_{yy})|_{(a, b)}$$

$$+ \frac{1}{3!} (h^{3}f_{xxx} + 3h^{2}kf_{xxy} + 3hk^{2}f_{xyy} + k^{3}f_{yyy})|_{(a, b)} + \dots + \frac{1}{n!} \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^{n} f\Big|_{(a, b)}$$

$$+ \frac{1}{(n+1)!} \left(h\frac{\partial}{\partial x} + k\frac{\partial}{\partial y}\right)^{n+1} f\Big|_{(a+ch, b+ck)}.$$

$$(7)$$

The first n derivative terms are evaluated at (a, b). The last term is evaluated at some point (a + ch, b + ck) on the line segment joining (a, b) and (a + h, b + k).

If (a, b) = (0, 0) and we treat h and k as independent variables (denoting them now by x and y), then Equation (7) assumes the following form.

Taylor's Formula for f(x, y) at the Origin

$$f(x,y) = f(0,0) + xf_{x} + yf_{y} + \frac{1}{2!} (x^{2}f_{xx} + 2xyf_{xy} + y^{2}f_{yy})$$

$$+ \frac{1}{3!} (x^{3}f_{xxx} + 3x^{2}yf_{xxy} + 3xy^{2}f_{xyy} + y^{3}f_{yyy}) + \dots + \frac{1}{n!} \left(x^{n} \frac{\partial^{n} f}{\partial x^{n}} + nx^{n-1}y \frac{\partial^{n} f}{\partial x^{n-1}\partial y} + \dots + y^{n} \frac{\partial^{n} f}{\partial y^{n}} \right)$$

$$+ \frac{1}{(n+1)!} \left(x^{n+1} \frac{\partial^{n+1} f}{\partial x^{n+1}} + (n+1)x^{n}y \frac{\partial^{n+1} f}{\partial x^{n}\partial y} + \dots + y^{n+1} \frac{\partial^{n+1} f}{\partial y^{n+1}} \right) \Big|_{(cx, cy)}$$
(8)

The first n derivative terms are evaluated at (0, 0). The last term is evaluated at a point on the line segment joining the origin and (x, y).

Taylor's formula provides polynomial approximations of two-variable functions. The first n derivative terms give the polynomial; the last term gives the approximation error. The first three terms of Taylor's formula give the function's linearization. To improve on the linearization, we add higher-power terms.

EXAMPLE 1 Find a quadratic approximation to $f(x, y) = \sin x \sin y$ near the origin. How accurate is the approximation if $|x| \le 0.1$ and $|y| \le 0.1$?

Solution We take n = 2 in Equation (8):

$$f(x, y) = f(0, 0) + (xf_x + yf_y) + \frac{1}{2}(x^2f_{xx} + 2xyf_{xy} + y^2f_{yy}) + \frac{1}{6}(x^3f_{xxx} + 3x^2yf_{xxy} + 3xy^2f_{xyy} + y^3f_{yyy})_{(cx, cy)}.$$

Calculating the values of the partial derivatives,

$$f(0,0) = \sin x \sin y|_{(0,0)} = 0,$$
 $f_{xx}(0,0) = -\sin x \sin y|_{(0,0)} = 0,$

$$f_x(0,0) = \cos x \sin y |_{(0,0)} = 0, \qquad f_{xy}(0,0) = \cos x \cos y |_{(0,0)} = 1,$$

$$f_{y}(0,0) = \sin x \cos y \big|_{(0,0)} = 0, \qquad f_{yy}(0,0) = -\sin x \sin y \big|_{(0,0)} = 0,$$

we have the result

$$\sin x \sin y \approx 0 + 0 + 0 + \frac{1}{2} (x^2(0) + 2xy(1) + y^2(0)), \text{ or } \sin x \sin y \approx xy.$$

The error in the approximation is

$$E(x, y) = \frac{1}{6} \left(x^3 f_{xxx} + 3x^2 y f_{xxy} + 3xy^2 f_{xyy} + y^3 f_{yyy} \right) \Big|_{(cx, cy)}$$

The third derivatives never exceed 1 in absolute value because they are products of sines and cosines. Also, $|x| \le 0.1$ and $|y| \le 0.1$. Hence

$$|E(x,y)| \le \frac{1}{6}((0.1)^3 + 3(0.1)^3 + 3(0.1)^3 + (0.1)^3) = \frac{8}{6}(0.1)^3 \le 0.00134$$

(rounded up). The error will not exceed 0.00134 if $|x| \le 0.1$ and $|y| \le 0.1$.

Exercises

Finding Quadratic and Cubic Approximations

In Exercises 1–10, use Taylor's formula for f(x, y) at the origin to find quadratic and cubic approximations of f near the origin.

1.
$$f(x, y) = xe^{y}$$

2.
$$f(x, y) = e^x \cos y$$

3.
$$f(x, y) = y \sin x$$

4.
$$f(x, y) = \sin x \cos y$$

5.
$$f(x, y) = e^x \ln(1 + y)$$

6.
$$f(x, y) = \ln(2x + y + 1)$$

7.
$$f(x, y) = \sin(x^2 + y^2)$$
 8. $f(x, y) = \cos(x^2 + y^2)$

8.
$$f(x, y) = \cos(x^2 + y^2)$$

9.
$$f(x, y) = \frac{1}{1 - x - y}$$

9.
$$f(x, y) = \frac{1}{1 - x - y}$$
 10. $f(x, y) = \frac{1}{1 - x - y + xy}$

- 11. Use Taylor's formula to find a quadratic approximation of $f(x, y) = \cos x \cos y$ at the origin. Estimate the error in the approximation if $|x| \le 0.1$ and $|y| \le 0.1$.
- 12. Use Taylor's formula to find a quadratic approximation of $e^x \sin y$ at the origin. Estimate the error in the approximation if $|x| \le 0.1$ and $|y| \le 0.1$.

14.10 Partial Derivatives with Constrained Variables

In finding partial derivatives of functions like w = f(x, y), we have assumed x and y to be independent. In many applications, however, this is not the case. For example, the internal energy U of a gas may be expressed as a function U = f(P, V, T) of pressure P, volume V, and temperature T. If the individual molecules of the gas do not interact, however, P, V, and T obey (and are constrained by) the ideal gas law

$$PV = nRT$$
 (n and R constant).

and fail to be independent. In this section we learn how to find partial derivatives in situations like this, which occur in economics, engineering, and physics.

Decide Which Variables Are Dependent and Which Are Independent

If the variables in a function w = f(x, y, z) are constrained by a relation like the one imposed on x, y, and z by the equation $z = x^2 + y^2$, the geometric meanings and the numerical values of the partial derivatives of f will depend on which variables are chosen to be dependent and which are chosen to be independent. To see how this choice can affect the outcome, we consider the calculation of $\partial w/\partial x$ when $w = x^2 + y^2 + z^2$ and $z = x^2 + y^2$.

EXAMPLE 1 Find
$$\partial w/\partial x$$
 if $w = x^2 + y^2 + z^2$ and $z = x^2 + y^2$.

Solution We are given two equations in the four unknowns x, y, z, and w. Like many such systems, this one can be solved for two of the unknowns (the dependent variables) in terms of the others (the independent variables). In being asked for $\partial w/\partial x$, we are told that w is to be a dependent variable and x an independent variable. The possible choices for the other variables come down to

Dependent	Independent
w, z	<i>x</i> , <i>y</i>
w, y	x, z

In either case, we can express w explicitly in terms of the selected independent variables. We do this by using the second equation $z = x^2 + y^2$ to eliminate the remaining dependent variable in the first equation.

In the first case, the remaining dependent variable is z. We eliminate it from the first equation by replacing it by $x^2 + y^2$. The resulting expression for w is

$$w = x^{2} + y^{2} + z^{2} = x^{2} + y^{2} + (x^{2} + y^{2})^{2}$$
$$= x^{2} + y^{2} + x^{4} + 2x^{2}y^{2} + y^{4}$$

and

$$\frac{\partial w}{\partial x} = 2x + 4x^3 + 4xy^2. \tag{1}$$

This is the formula for $\partial w/\partial x$ when x and y are the independent variables.

In the second case, where the independent variables are x and z and the remaining dependent variable is y, we eliminate the dependent variable y in the expression for w by replacing y^2 in the second equation by $z - x^2$. This gives

$$w = x^2 + y^2 + z^2 = x^2 + (z - x^2) + z^2 = z + z^2$$

and

$$\frac{\partial w}{\partial x} = 0. {2}$$

This is the formula for $\partial w/\partial x$ when x and z are the independent variables.

The formulas for $\partial w/\partial x$ in Equations (1) and (2) are genuinely different. We cannot change either formula into the other by using the relation $z = x^2 + y^2$. There is not just one $\partial w/\partial x$, there are two, and we see that the original instruction to find $\partial w/\partial x$ was incomplete. Which $\partial w/\partial x$? we ask.

The geometric interpretations of Equations (1) and (2) help to explain why the equations differ. The function $w = x^2 + y^2 + z^2$ measures the square of the distance from the point (x, y, z) to the origin. The condition $z = x^2 + y^2$ says that the point (x, y, z) lies on the paraboloid of revolution shown in Figure 14.61. What does it mean to calculate $\partial w/\partial x$ at a point P(x, y, z) that can move only on this surface? What is the value of $\partial w/\partial x$ when the coordinates of P are, say, (1, 0, 1)?

FIGURE 14.61 If *P* is constrained to lie on the paraboloid $z = x^2 + y^2$, the value of the partial derivative of $w = x^2 + y^2 + z^2$ with respect to *x* at *P* depends on the direction of motion (Example 1). (1) As *x* changes, with y = 0, *P* moves up or down the surface on the parabola $z = x^2$ in the *xz*-plane with $\partial w/\partial x = 2x + 4x^3$. (2) As *x* changes, with z = 1, *P* moves on the circle $x^2 + y^2 = 1$, z = 1, and $\partial w/\partial x = 0$.

If we take x and y to be independent, then we find $\partial w/\partial x$ by holding y fixed (at y=0 in this case) and letting x vary. Hence, P moves along the parabola $z=x^2$ in the xz-plane. As P moves on this parabola, w, which is the square of the distance from P to the origin, changes. We calculate $\partial w/\partial x$ in this case (our first solution above) to be

$$\frac{\partial w}{\partial x} = 2x + 4x^3 + 4xy^2.$$

At the point P(1, 0, 1), the value of this derivative is

$$\frac{\partial w}{\partial x} = 2 + 4 + 0 = 6.$$

If we take x and z to be independent, then we find $\partial w/\partial x$ by holding z fixed while x varies. Since the z-coordinate of P is 1, varying x moves P along a circle in the plane z=1. As P moves along this circle, its distance from the origin remains constant, and w, being the square of this distance, does not change. That is,

$$\frac{\partial w}{\partial x} = 0,$$

as we found in our second solution.

How to Find $\partial w/\partial x$ When the Variables in w = f(x, y, z)Are Constrained by Another Equation

As we saw in Example 1, a typical routine for finding $\partial w/\partial x$ when the variables in the function w = f(x, y, z) are related by another equation has three steps. These steps apply to finding $\partial w/\partial y$ and $\partial w/\partial z$ as well.

- Decide which variables are to be dependent and which are to be independent. (In practice, the decision is based on the physical or theoretical context of our work. In the exercises at the end of this section, we say which variables are which.)
- 2. Eliminate the other dependent variable(s) in the expression for w.
- 3. Differentiate as usual.

If we cannot carry out Step 2 after deciding which variables are dependent, we differentiate the equations as they are and try to solve for $\partial w/\partial x$ afterward. The next example shows how this is done.

EXAMPLE 2 Find $\partial w/\partial x$ at the point (x, y, z) = (2, -1, 1) if

$$w = x^2 + y^2 + z^2$$
, $z^3 - xy + yz + y^3 = 1$,

and x and y are the independent variables.

Solution It is not convenient to eliminate z in the expression for w. We therefore differentiate both equations implicitly with respect to x, treating x and y as independent variables and w and z as dependent variables. This gives

$$\frac{\partial w}{\partial x} = 2x + 2z \frac{\partial z}{\partial x} \tag{3}$$

and

$$3z^2 \frac{\partial z}{\partial x} - y + y \frac{\partial z}{\partial x} + 0 = 0.$$
 (4)

861

$$\frac{\partial z}{\partial x} = \frac{y}{y + 3z^2}$$

and substitute into Equation (3) to get

$$\frac{\partial w}{\partial x} = 2x + \frac{2yz}{y + 3z^2}.$$

The value of this derivative at (x, y, z) = (2, -1, 1) is

$$\left(\frac{\partial w}{\partial x}\right)_{(2,-1,1)} = 2(2) + \frac{2(-1)(1)}{-1 + 3(1)^2} = 4 + \frac{-2}{2} = 3.$$

HISTORICAL BIOGRAPHY

Sonya Kovalevsky (1850–1891)

Notation

To show what variables are assumed to be independent in calculating a derivative, we can use the following notation:

$$\left(\frac{\partial w}{\partial x}\right)_y$$
 $\partial w/\partial x$ with x and y independent

$$\left(\frac{\partial f}{\partial y}\right)_{x,t}$$
 $\partial f/\partial y$ with y, x, and t independent

EXAMPLE 3 Find $(\partial w/\partial x)_{y,z}$ if $w = x^2 + y - z + \sin t$ and x + y = t.

Solution With x, y, z independent, we have

$$t = x + y$$
, $w = x^2 + y - z + \sin(x + y)$

$$\left(\frac{\partial w}{\partial x}\right)_{y,z} = 2x + 0 - 0 + \cos(x+y)\frac{\partial}{\partial x}(x+y)$$
$$= 2x + \cos(x+y).$$

Arrow Diagrams

In solving problems like the one in Example 3, it often helps to start with an arrow diagram that shows how the variables and functions are related. If

$$w = x^2 + y - z + \sin t \qquad \text{and} \qquad x + y = t$$

and we are asked to find $\partial w/\partial x$ when x, y, and z are independent, the appropriate diagram is one like this:

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow \begin{pmatrix} x \\ y \\ z \\ t \end{pmatrix} \rightarrow w \tag{5}$$

Independent Intermediate Dependent variables variables variable

To avoid confusion between the independent and intermediate variables with the same symbolic names in the diagram, it is helpful to rename the intermediate variables (so they are seen as functions of the independent variables). Thus, let u = x, v = y, and s = zdenote the renamed intermediate variables. With this notation, the arrow diagram becomes

$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} \rightarrow \begin{pmatrix} u \\ v \\ s \\ t \end{pmatrix} \rightarrow w \tag{6}$$

Independent Intermediate Dependent variables variables and variable relations

The diagram shows the independent variables on the left, the intermediate variables and their relation to the independent variables in the middle, and the dependent variable on the right. The function w now becomes

$$w = u^2 + v - s + \sin t,$$

where

$$u = x$$
, $v = y$, $s = z$, and $t = x + y$.

To find $\partial w/\partial x$, we apply the four-variable form of the Chain Rule to w, guided by the arrow diagram in Equation (6):

$$\frac{\partial w}{\partial x} = \frac{\partial w}{\partial u} \frac{\partial u}{\partial x} + \frac{\partial w}{\partial v} \frac{\partial v}{\partial x} + \frac{\partial w}{\partial s} \frac{\partial s}{\partial x} + \frac{\partial w}{\partial t} \frac{\partial t}{\partial x}$$

$$= (2u)(1) + (1)(0) + (-1)(0) + (\cos t)(1)$$

$$= 2u + \cos t$$

$$= 2x + \cos(x + y).$$
Substituting the original independent variables $u = x$ and $t = x + y$

Exercises 14.10

Finding Partial Derivatives with Constrained Variables

In Exercises 1–3, begin by drawing a diagram that shows the relations among the variables.

- 1. If $w = x^2 + y^2 + z^2$ and $z = x^2 + y^2$, find
- **a.** $\left(\frac{\partial w}{\partial y}\right)$ **b.** $\left(\frac{\partial w}{\partial z}\right)$ **c.** $\left(\frac{\partial w}{\partial z}\right)$.
- **2.** If $w = x^2 + y z + \sin t$ and x + y = t, find
 - **a.** $\left(\frac{\partial w}{\partial y}\right)_{x,z}$ **b.** $\left(\frac{\partial w}{\partial y}\right)_{z,t}$ **c.** $\left(\frac{\partial w}{\partial z}\right)_{x,y}$
- **d.** $\left(\frac{\partial w}{\partial z}\right)_{y,t}$ **e.** $\left(\frac{\partial w}{\partial t}\right)_{x,t}$ **f.** $\left(\frac{\partial w}{\partial t}\right)_{x,t}$
- 3. Let U = f(P, V, T) be the internal energy of a gas that obeys the ideal gas law PV = nRT (n and R constant). Find
 - **a.** $\left(\frac{\partial U}{\partial P}\right)_V$ **b.** $\left(\frac{\partial U}{\partial T}\right)_V$

- 4. Find
 - **a.** $\left(\frac{\partial w}{\partial x}\right)$ **b.** $\left(\frac{\partial w}{\partial z}\right)$

at the point $(x, y, z) = (0, 1, \pi)$ if

- $w = x^2 + v^2 + z^2$ and $y \sin z + z \sin x = 0$.
- 5. Find
 - **a.** $\left(\frac{\partial w}{\partial y}\right)_{y}$ **b.** $\left(\frac{\partial w}{\partial y}\right)$

at the point (w, x, y, z) = (4, 2, 1, -1) if

- $w = x^2y^2 + yz z^3$ and $x^2 + y^2 + z^2 = 6$.
- **6.** Find $(\partial u/\partial y)_x$ at the point $(u, v) = (\sqrt{2}, 1)$ if $x = u^2 + v^2$ and y = uv.

7. Suppose that $x^2 + y^2 = r^2$ and $x = r \cos \theta$, as in polar coordinates. Find

$$\left(\frac{\partial x}{\partial r}\right)_{\theta}$$
 and $\left(\frac{\partial r}{\partial x}\right)_{y}$.

8. Suppose that

$$w = x^2 - y^2 + 4z + t$$
 and $x + 2z + t = 25$.

Show that the equations

$$\frac{\partial w}{\partial x} = 2x - 1$$
 and $\frac{\partial w}{\partial x} = 2x - 2$

each give $\partial w/\partial x$, depending on which variables are chosen to be dependent and which variables are chosen to be independent. Identify the independent variables in each case.

Theory and Examples

9. Establish the fact, widely used in hydrodynamics, that if f(x, y, z) = 0, then

$$\left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x \left(\frac{\partial z}{\partial x}\right)_y = -1.$$

(*Hint:* Express all the derivatives in terms of the formal partial derivatives $\partial f/\partial x$, $\partial f/\partial y$, and $\partial f/\partial z$.)

10. If z = x + f(u), where u = xy, show that

$$x\frac{\partial z}{\partial x} - y\frac{\partial z}{\partial y} = x.$$

11. Suppose that the equation g(x, y, z) = 0 determines z as a differentiable function of the independent variables x and y and that $g_z \neq 0$. Show that

$$\left(\frac{\partial z}{\partial y}\right)_{x} = -\frac{\partial g/\partial y}{\partial g/\partial z}.$$

12. Suppose that f(x, y, z, w) = 0 and g(x, y, z, w) = 0 determine z and w as differentiable functions of the independent variables x and y, and suppose that

$$\frac{\partial f}{\partial z} \frac{\partial g}{\partial w} - \frac{\partial f}{\partial w} \frac{\partial g}{\partial z} \neq 0.$$

Show that

$$\left(\frac{\partial z}{\partial x}\right)_{y} = -\frac{\frac{\partial f}{\partial x}\frac{\partial g}{\partial w} - \frac{\partial f}{\partial w}\frac{\partial g}{\partial x}}{\frac{\partial f}{\partial x}\frac{\partial g}{\partial w} - \frac{\partial f}{\partial w}\frac{\partial g}{\partial z}}$$

and

$$\left(\frac{\partial w}{\partial y}\right)_x = -\frac{\frac{\partial f}{\partial z}\frac{\partial g}{\partial y} - \frac{\partial f}{\partial y}\frac{\partial g}{\partial z}}{\frac{\partial f}{\partial z}\frac{\partial g}{\partial w} - \frac{\partial f}{\partial w}\frac{\partial g}{\partial z}} - \frac{\partial f}{\partial z}\frac{\partial g}{\partial z}$$

Chapter 14 Questions to Guide Your Review

- **1.** What is a real-valued function of two independent variables? Three independent variables? Give examples.
- **2.** What does it mean for sets in the plane or in space to be open? Closed? Give examples. Give examples of sets that are neither open nor closed.
- **3.** How can you display the values of a function f(x, y) of two independent variables graphically? How do you do the same for a function f(x, y, z) of three independent variables?
- **4.** What does it mean for a function f(x, y) to have limit L as $(x, y) \rightarrow (x_0, y_0)$? What are the basic properties of limits of functions of two independent variables?
- **5.** When is a function of two (three) independent variables continuous at a point in its domain? Give examples of functions that are continuous at some points but not others.
- 6. What can be said about algebraic combinations and composites of continuous functions?
- 7. Explain the two-path test for nonexistence of limits.
- **8.** How are the partial derivatives $\partial f/\partial x$ and $\partial f/\partial y$ of a function f(x, y) defined? How are they interpreted and calculated?

- **9.** How does the relation between first partial derivatives and continuity of functions of two independent variables differ from the relation between first derivatives and continuity for real-valued functions of a single independent variable? Give an example.
- **10.** What is the Mixed Derivative Theorem for mixed second-order partial derivatives? How can it help in calculating partial derivatives of second and higher orders? Give examples.
- 11. What does it mean for a function f(x, y) to be differentiable? What does the Increment Theorem say about differentiability?
- **12.** How can you sometimes decide from examining f_x and f_y that a function f(x, y) is differentiable? What is the relation between the differentiability of f and the continuity of f at a point?
- 13. What is the general Chain Rule? What form does it take for functions of two independent variables? Three independent variables? Functions defined on surfaces? How do you diagram these different forms? Give examples. What pattern enables one to remember all the different forms?
- **14.** What is the derivative of a function f(x, y) at a point P_0 in the direction of a unit vector \mathbf{u} ? What rate does it describe? What geometric interpretation does it have? Give examples.

- **15.** What is the gradient vector of a differentiable function f(x, y)? How is it related to the function's directional derivatives? State the analogous results for functions of three independent variables.
- 16. How do you find the tangent line at a point on a level curve of a differentiable function f(x, y)? How do you find the tangent plane and normal line at a point on a level surface of a differentiable function f(x, y, z)? Give examples.
- 17. How can you use directional derivatives to estimate change?
- **18.** How do you linearize a function f(x, y) of two independent variables at a point (x_0, y_0) ? Why might you want to do this? How do you linearize a function of three independent variables?
- 19. What can you say about the accuracy of linear approximations of functions of two (three) independent variables?
- **20.** If (x, y) moves from (x_0, y_0) to a point $(x_0 + dx, y_0 + dy)$ nearby, how can you estimate the resulting change in the value of a differentiable function f(x, y)? Give an example.

- 21. How do you define local maxima, local minima, and saddle points for a differentiable function f(x, y)? Give examples.
- 22. What derivative tests are available for determining the local extreme values of a function f(x, y)? How do they enable you to narrow your search for these values? Give examples.
- **23.** How do you find the extrema of a continuous function f(x, y) on a closed bounded region of the xy-plane? Give an example.
- **24.** Describe the method of Lagrange multipliers and give examples.
- **25.** How does Taylor's formula for a function f(x, y) generate polynomial approximations and error estimates?
- **26.** If w = f(x, y, z), where the variables x, y, and z are constrained by an equation g(x, y, z) = 0, what is the meaning of the notation $(\partial w/\partial x)_y$? How can an arrow diagram help you calculate this partial derivative with constrained variables? Give examples.

Chapter 14 **Practice Exercises**

Domain, Range, and Level Curves

In Exercises 1–4, find the domain and range of the given function and identify its level curves. Sketch a typical level curve.

1.
$$f(x, y) = 9x^2 + y^2$$

2.
$$f(x, y) = e^{x+y}$$

3.
$$g(x, y) = 1/xy$$

4.
$$g(x, y) = \sqrt{x^2 - y}$$

In Exercises 5–8, find the domain and range of the given function and identify its level surfaces. Sketch a typical level surface.

5.
$$f(x, y, z) = x^2 + y^2 - z$$

5.
$$f(x, y, z) = x^2 + y^2 - z$$
 6. $g(x, y, z) = x^2 + 4y^2 + 9z^2$

7.
$$h(x, y, z) = \frac{1}{x^2 + y^2 + z}$$

7.
$$h(x, y, z) = \frac{1}{x^2 + y^2 + z^2}$$
 8. $k(x, y, z) = \frac{1}{x^2 + y^2 + z^2 + 1}$

Evaluating Limits

Find the limits in Exercises 9–14.

9.
$$\lim_{(x,y)\to(\pi,\ln 2)} e^y \cos x$$

9.
$$\lim_{(x,y)\to(\pi, \ln 2)} e^y \cos x$$
 10. $\lim_{(x,y)\to(0,0)} \frac{2+y}{x+\cos y}$

11.
$$\lim_{(x,y)\to(1,1)} \frac{x-y}{x^2-y^2}$$

11.
$$\lim_{(x,y)\to(1,1)} \frac{x-y}{x^2-y^2}$$
 12. $\lim_{(x,y)\to(1,1)} \frac{x^3y^3-1}{xy-1}$

13.
$$\lim_{P \to (1,-1,e)} \ln |x+y+z|$$

13.
$$\lim_{P \to (1,-1,e)} \ln |x+y+z|$$
 14. $\lim_{P \to (1,-1,-1)} \tan^{-1} (x+y+z)$

By considering different paths of approach, show that the limits in Exercises 15 and 16 do not exist.

15.
$$\lim_{(x,y)\to(0,0)} \frac{y}{x^2 - y}$$

16.
$$\lim_{\substack{(x,y)\to(0,0)\\xy\neq 0}} \frac{x^2+y^2}{xy}$$

- 17. Continuous extension Let $f(x, y) = (x^2 y^2)/(x^2 + y^2)$ for $(x, y) \neq (0, 0)$. Is it possible to define f(0, 0) in a way that makes f continuous at the origin? Why?
- 18. Continuous extension Let

$$f(x, y) = \begin{cases} \frac{\sin(x - y)}{|x| + |y|}, & |x| + |y| \neq 0\\ 0, & (x, y) = (0, 0). \end{cases}$$

Is f continuous at the origin? Why?

Partial Derivatives

In Exercises 19–24, find the partial derivative of the function with respect to each variable.

19.
$$g(r, \theta) = r \cos \theta + r \sin \theta$$

20.
$$f(x, y) = \frac{1}{2} \ln (x^2 + y^2) + \tan^{-1} \frac{y}{x}$$

21.
$$f(R_1, R_2, R_3) = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

22.
$$h(x, y, z) = \sin(2\pi x + y - 3z)$$

23.
$$P(n, R, T, V) = \frac{nRT}{V}$$
 (the ideal gas law)

24.
$$f(r, l, T, w) = \frac{1}{2rl} \sqrt{\frac{T}{\pi w}}$$

Second-Order Partials

Find the second-order partial derivatives of the functions in Exercises 25-28.

25.
$$g(x, y) = y + \frac{x}{y}$$

26.
$$g(x, y) = e^x + y \sin x$$

27.
$$f(x, y) = x + xy - 5x^3 + \ln(x^2 + 1)$$

28.
$$f(x, y) = y^2 - 3xy + \cos y + 7e^y$$

Chain Rule Calculations

- **29.** Find dw/dt at t=0 if $w=\sin(xy+\pi)$, $x=e^t$, and y=ln(t + 1).
- **30.** Find dw/dt at t=1 if $w=xe^y+y\sin z-\cos z$, $x=2\sqrt{t}$, $y = t - 1 + \ln t$, and $z = \pi t$.
- **31.** Find $\partial w/\partial r$ and $\partial w/\partial s$ when $r = \pi$ and s = 0 if $w = \pi$ $\sin(2x - y), x = r + \sin s, y = rs.$
- **32.** Find $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ when u = v = 0 if w = v = 0 $\ln \sqrt{1+x^2} - \tan^{-1} x$ and $x = 2e^u \cos v$.
- **33.** Find the value of the derivative of f(x, y, z) = xy + yz + xzwith respect to t on the curve $x = \cos t$, $y = \sin t$, $z = \cos 2t$ at t = 1.

34. Show that if w = f(s) is any differentiable function of s and if s = y + 5x, then

$$\frac{\partial w}{\partial x} - 5 \frac{\partial w}{\partial y} = 0.$$

Implicit Differentiation

Assuming that the equations in Exercises 35 and 36 define y as a differentiable function of x, find the value of dy/dx at point P.

35.
$$1 - x - y^2 - \sin xy = 0$$
, $P(0, 1)$

36.
$$2xy + e^{x+y} - 2 = 0$$
, $P(0, \ln 2)$

Directional Derivatives

In Exercises 37–40, find the directions in which f increases and decreases most rapidly at P_0 and find the derivative of f in each direction. Also, find the derivative of f at P_0 in the direction of the vector \mathbf{v} .

37.
$$f(x, y) = \cos x \cos y$$
, $P_0(\pi/4, \pi/4)$, $\mathbf{v} = 3\mathbf{i} + 4\mathbf{j}$

38.
$$f(x, y) = x^2 e^{-2y}$$
, $P_0(1, 0)$, $\mathbf{v} = \mathbf{i} + \mathbf{j}$

39.
$$f(x, y, z) = \ln(2x + 3y + 6z)$$
, $P_0(-1, -1, 1)$, $\mathbf{v} = 2\mathbf{i} + 3\mathbf{j} + 6\mathbf{k}$

40.
$$f(x, y, z) = x^2 + 3xy - z^2 + 2y + z + 4$$
, $P_0(0, 0, 0)$, $\mathbf{v} = \mathbf{i} + \mathbf{i} + \mathbf{k}$

41. Derivative in velocity direction Find the derivative of f(x, y, z) = xyz in the direction of the velocity vector of the helix

$$\mathbf{r}(t) = (\cos 3t)\mathbf{i} + (\sin 3t)\mathbf{j} + 3t\mathbf{k}$$

at $t = \pi/3$.

- **42. Maximum directional derivative** What is the largest value that the directional derivative of f(x, y, z) = xyz can have at the point (1, 1, 1)?
- **43.** Directional derivatives with given values At the point (1, 2), the function f(x, y) has a derivative of 2 in the direction toward (2, 2) and a derivative of -2 in the direction toward (1, 1).
 - **a.** Find $f_v(1, 2)$ and $f_v(1, 2)$.
 - **b.** Find the derivative of f at (1, 2) in the direction toward the point (4, 6).
- **44.** Which of the following statements are true if f(x, y) is differentiable at (x_0, y_0) ? Give reasons for your answers.
 - **a.** If **u** is a unit vector, the derivative of f at (x_0, y_0) in the direction of **u** is $(f_x(x_0, y_0)\mathbf{i} + f_y(x_0, y_0)\mathbf{j}) \cdot \mathbf{u}$.
 - **b.** The derivative of f at (x_0, y_0) in the direction of **u** is a vector.
 - **c.** The directional derivative of f at (x_0, y_0) has its greatest value in the direction of ∇f .
 - **d.** At (x_0, y_0) , vector ∇f is normal to the curve $f(x, y) = f(x_0, y_0)$.

Gradients, Tangent Planes, and Normal Lines

In Exercises 45 and 46, sketch the surface f(x, y, z) = c together with ∇f at the given points.

45.
$$x^2 + y + z^2 = 0$$
; $(0, -1, \pm 1)$, $(0, 0, 0)$

46.
$$y^2 + z^2 = 4$$
; $(2, \pm 2, 0)$, $(2, 0, \pm 2)$

In Exercises 47 and 48, find an equation for the plane tangent to the level surface f(x, y, z) = c at the point P_0 . Also, find parametric equations for the line that is normal to the surface at P_0 .

47.
$$x^2 - y - 5z = 0$$
, $P_0(2, -1, 1)$

48.
$$x^2 + y^2 + z = 4$$
, $P_0(1, 1, 2)$

In Exercises 49 and 50, find an equation for the plane tangent to the surface z = f(x, y) at the given point.

49.
$$z = \ln(x^2 + y^2)$$
, $(0, 1, 0)$

50.
$$z = 1/(x^2 + y^2)$$
, $(1, 1, 1/2)$

In Exercises 51 and 52, find equations for the lines that are tangent and normal to the level curve f(x, y) = c at the point P_0 . Then sketch the lines and level curve together with ∇f at P_0 .

51.
$$y - \sin x = 1$$
, $P_0(\pi, 1)$ **52.** $\frac{y^2}{2} - \frac{x^2}{2} = \frac{3}{2}$, $P_0(1, 2)$

Tangent Lines to Curves

In Exercises 53 and 54, find parametric equations for the line that is tangent to the curve of intersection of the surfaces at the given point.

53. Surfaces:
$$x^2 + 2y + 2z = 4$$
, $y = 1$

Point: (1, 1, 1/2)

54. Surfaces:
$$x + y^2 + z = 2$$
, $y = 1$

Point: (1/2, 1, 1/2)

Linearizations

In Exercises 55 and 56, find the linearization L(x, y) of the function f(x, y) at the point P_0 . Then find an upper bound for the magnitude of the error E in the approximation $f(x, y) \approx L(x, y)$ over the rectangle R.

55.
$$f(x, y) = \sin x \cos y$$
, $P_0(\pi/4, \pi/4)$

R:
$$\left| x - \frac{\pi}{4} \right| \le 0.1, \quad \left| y - \frac{\pi}{4} \right| \le 0.1$$

56.
$$f(x, y) = xy - 3y^2 + 2$$
, $P_0(1, 1)$

$$R: |x-1| \le 0.1, |y-1| \le 0.2$$

Find the linearizations of the functions in Exercises 57 and 58 at the given points.

57.
$$f(x, y, z) = xy + 2yz - 3xz$$
 at $(1, 0, 0)$ and $(1, 1, 0)$

58.
$$f(x, y, z) = \sqrt{2} \cos x \sin(y + z)$$
 at $(0, 0, \pi/4)$ and $(\pi/4, \pi/4, 0)$

Estimates and Sensitivity to Change

- **59. Measuring the volume of a pipeline** You plan to calculate the volume inside a stretch of pipeline that is about 36 in. in diameter and 1 mile long. With which measurement should you be more careful, the length or the diameter? Why?
- **60. Sensitivity to change** Is $f(x, y) = x^2 xy + y^2 3$ more sensitive to changes in x or to changes in y when it is near the point (1, 2)? How do you know?
- **61.** Change in an electrical circuit Suppose that the current I (amperes) in an electrical circuit is related to the voltage V (volts) and the resistance R (ohms) by the equation I = V/R. If the voltage drops from 24 to 23 volts and the resistance drops from 100 to 80 ohms, will I increase or decrease? By about how much? Is the change in I more sensitive to change in the voltage or to change in the resistance? How do you know?
- **62.** Maximum error in estimating the area of an ellipse If a = 10 cm and b = 16 cm to the nearest millimeter, what should you expect the maximum percentage error to be in the calculated area $A = \pi ab$ of the ellipse $x^2/a^2 + y^2/b^2 = 1$?
- **63. Error in estimating a product** Let y = uv and z = u + v, where u and v are positive independent variables.

- **a.** If u is measured with an error of 2% and v with an error of 3%, about what is the percentage error in the calculated value of y?
- **b.** Show that the percentage error in the calculated value of z is less than the percentage error in the value of y.
- **64. Cardiac index** To make different people comparable in studies of cardiac output, researchers divide the measured cardiac output by the body surface area to find the *cardiac index C*:

$$C = \frac{\text{cardiac output}}{\text{body surface area}}.$$

The body surface area B of a person with weight w and height h is approximated by the formula

$$B = 71.84w^{0.425}h^{0.725}$$

which gives B in square centimeters when w is measured in kilograms and h in centimeters. You are about to calculate the cardiac index of a person 180 cm tall, weighing 70 kg, with cardiac output of $7 \, \text{L/min}$. Which will have a greater effect on the calculation, a 1-kg error in measuring the weight or a 1-cm error in measuring the height?

Local Extrema

Test the functions in Exercises 65–70 for local maxima and minima and saddle points. Find each function's value at these points.

65.
$$f(x, y) = x^2 - xy + y^2 + 2x + 2y - 4$$

66.
$$f(x, y) = 5x^2 + 4xy - 2y^2 + 4x - 4y$$

67.
$$f(x, y) = 2x^3 + 3xy + 2y^3$$

68.
$$f(x, y) = x^3 + y^3 - 3xy + 15$$

69.
$$f(x, y) = x^3 + y^3 + 3x^2 - 3y^2$$

70.
$$f(x, y) = x^4 - 8x^2 + 3y^2 - 6y$$

Absolute Extrema

In Exercises 71–78, find the absolute maximum and minimum values of f on the region R.

71.
$$f(x, y) = x^2 + xy + y^2 - 3x + 3y$$

R: The triangular region cut from the first quadrant by the line x + y = 4

72.
$$f(x, y) = x^2 - y^2 - 2x + 4y + 1$$

R: The rectangular region in the first quadrant bounded by the coordinate axes and the lines x = 4 and y = 2

73.
$$f(x, y) = y^2 - xy - 3y + 2x$$

R: The square region enclosed by the lines $x = \pm 2$ and $y = \pm 2$

74.
$$f(x, y) = 2x + 2y - x^2 - y^2$$

R: The square region bounded by the coordinate axes and the lines x = 2, y = 2 in the first quadrant

75.
$$f(x, y) = x^2 - y^2 - 2x + 4y$$

R: The triangular region bounded below by the x-axis, above by the line y = x + 2, and on the right by the line x = 2

76.
$$f(x, y) = 4xy - x^4 - y^4 + 16$$

R: The triangular region bounded below by the line y = -2, above by the line y = x, and on the right by the line x = 2

77.
$$f(x, y) = x^3 + y^3 + 3x^2 - 3y^2$$

R: The square region enclosed by the lines $x = \pm 1$ and $y = \pm 1$

78. $f(x, y) = x^3 + 3xy + y^3 + 1$

R: The square region enclosed by the lines $x = \pm 1$ and $y = \pm 1$

Lagrange Multipliers

- **79. Extrema on a circle** Find the extreme values of $f(x, y) = x^3 + y^2$ on the circle $x^2 + y^2 = 1$.
- **80. Extrema on a circle** Find the extreme values of f(x, y) = xy on the circle $x^2 + y^2 = 1$.
- **81. Extrema in a disk** Find the extreme values of $f(x, y) = x^2 + 3y^2 + 2y$ on the unit disk $x^2 + y^2 \le 1$.
- **82. Extrema in a disk** Find the extreme values of $f(x, y) = x^2 + y^2 3x xy$ on the disk $x^2 + y^2 \le 9$.
- **83. Extrema on a sphere** Find the extreme values of f(x, y, z) = x y + z on the unit sphere $x^2 + y^2 + z^2 = 1$.
- **84. Minimum distance to origin** Find the points on the surface $x^2 zy = 4$ closest to the origin.
- **85. Minimizing cost of a box** A closed rectangular box is to have volume $V \text{ cm}^3$. The cost of the material used in the box is $a \text{ cents/cm}^2$ for top and bottom, $b \text{ cents/cm}^2$ for front and back, and $c \text{ cents/cm}^2$ for the remaining sides. What dimensions minimize the total cost of materials?
- **86.** Least volume Find the plane x/a + y/b + z/c = 1 that passes through the point (2, 1, 2) and cuts off the least volume from the first octant.
- **87. Extrema on curve of intersecting surfaces** Find the extreme values of f(x, y, z) = x(y + z) on the curve of intersection of the right circular cylinder $x^2 + y^2 = 1$ and the hyperbolic cylinder xz = 1.
- 88. Minimum distance to origin on curve of intersecting plane and cone Find the point closest to the origin on the curve of intersection of the plane x + y + z = 1 and the cone $z^2 = 2x^2 + 2y^2$.

Theory and Examples

- **89.** Let $w = f(r, \theta)$, $r = \sqrt{x^2 + y^2}$, and $\theta = \tan^{-1}(y/x)$. Find $\partial w/\partial x$ and $\partial w/\partial y$ and express your answers in terms of r and θ .
- **90.** Let z = f(u, v), u = ax + by, and v = ax by. Express z_x and z_y in terms of f_u , f_v , and the constants a and b.
- **91.** If a and b are constants, $w = u^3 + \tanh u + \cos u$, and u = ax + by, show that

$$a\frac{\partial w}{\partial y} = b\frac{\partial w}{\partial x}.$$

- **92.** Using the Chain Rule If $w = \ln(x^2 + y^2 + 2z)$, x = r + s, y = r s, and z = 2rs, find w_r and w_s by the Chain Rule. Then check your answer another way.
- **93. Angle between vectors** The equations $e^u \cos v x = 0$ and $e^u \sin v y = 0$ define u and v as differentiable functions of x and y. Show that the angle between the vectors

$$\frac{\partial u}{\partial x}\mathbf{i} + \frac{\partial u}{\partial y}\mathbf{j}$$
 and $\frac{\partial v}{\partial x}\mathbf{i} + \frac{\partial v}{\partial y}\mathbf{j}$

is constant.

94. Polar coordinates and second derivatives Introducing polar coordinates $x = r \cos \theta$ and $y = r \sin \theta$ changes f(x, y) to $g(r,\theta)$. Find the value of $\partial^2 g/\partial \theta^2$ at the point $(r,\theta)=(2,\pi/2)$, given that

$$\frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = \frac{\partial^2 f}{\partial x^2} = \frac{\partial^2 f}{\partial y^2} = 1$$

at that point.

95. Normal line parallel to a plane Find the points on the surface

 $(y + z)^2 + (z - x)^2 = 16$ where the normal line is parallel to the yz-plane.

96. Tangent plane parallel to xy-plane Find the points on the surface

$$xy + yz + zx - x - z^2 = 0$$

where the tangent plane is parallel to the xy-plane.

- 97. When gradient is parallel to position vector Suppose that $\nabla f(x, y, z)$ is always parallel to the position vector $x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$. Show that f(0, 0, a) = f(0, 0, -a) for any a.
- 98. One-sided directional derivative in all directions, but no gra**dient** The one-sided directional derivative of f at $P(x_0, y_0, z_0)$ in the direction $\mathbf{u} = u_1 \mathbf{i} + u_2 \mathbf{j} + u_3 \mathbf{k}$ is the number

$$\lim_{s\to 0^+} \frac{f(x_0+su_1,y_0+su_2,z_0+su_3)-f(x_0,y_0,z_0)}{s}.$$

Show that the one-sided directional derivative of

$$f(x, y, z) = \sqrt{x^2 + y^2 + z^2}$$

at the origin equals 1 in any direction but that f has no gradient vector at the origin.

- 99. Normal line through origin Show that the line normal to the surface xy + z = 2 at the point (1, 1, 1) passes through the origin.
- 100. Tangent plane and normal line
 - **a.** Sketch the surface $x^2 y^2 + z^2 = 4$.
 - **b.** Find a vector normal to the surface at (2, -3, 3). Add the vector to your sketch.
 - c. Find equations for the tangent plane and normal line at

Partial Derivatives with Constrained Variables

In Exercises 101 and 102, begin by drawing a diagram that shows the relations among the variables.

101. If $w = x^2 e^{yz}$ and $z = x^2 - y^2$ find

a.
$$\left(\frac{\partial w}{\partial y}\right)_z$$
 b. $\left(\frac{\partial w}{\partial z}\right)_x$ **c.** $\left(\frac{\partial w}{\partial z}\right)_y$

102. Let U = f(P, V, T) be the internal energy of a gas that obeys the ideal gas law PV = nRT (n and R constant). Find

a.
$$\left(\frac{\partial U}{\partial T}\right)$$

a.
$$\left(\frac{\partial U}{\partial T}\right)_{P}$$
 b. $\left(\frac{\partial U}{\partial V}\right)_{T}$

Additional and Advanced Exercises Chapter

Partial Derivatives

1. Function with saddle at the origin If you did Exercise 60 in Section 14.2, you know that the function

$$f(x,y) = \begin{cases} xy \frac{x^2 - y^2}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

(see the accompanying figure) is continuous at (0, 0). Find $f_{xy}(0, 0)$ and $f_{yx}(0, 0)$.

2. Finding a function from second partials Find a function w = f(x, y) whose first partial derivatives are $\partial w/\partial x = 1 +$ $e^x \cos y$ and $\partial w/\partial y = 2y - e^x \sin y$ and whose value at the point (ln 2, 0) is ln 2.

3. A proof of Leibniz's Rule Leibniz's Rule says that if f is continuous on [a, b] and if u(x) and v(x) are differentiable functions of x whose values lie in [a, b], then

$$\frac{d}{dx} \int_{u(x)}^{v(x)} f(t) dt = f(v(x)) \frac{dv}{dx} - f(u(x)) \frac{du}{dx}.$$

Prove the rule by setting

$$g(u, v) = \int_{u}^{v} f(t) dt, \qquad u = u(x), \qquad v = v(x)$$

and calculating dg/dx with the Chain Rule.

4. Finding a function with constrained second partials Suppose that f is a twice-differentiable function of r, that r = $\sqrt{x^2 + y^2 + z^2}$, and that

$$f_{xx} + f_{yy} + f_{zz} = 0.$$

Show that for some constants a and b,

$$f(r) = \frac{a}{r} + b.$$

5. Homogeneous functions A function f(x, y) is homogeneous of degree n (n a nonnegative integer) if $f(tx, ty) = t^n f(x, y)$ for all t, x, and y. For such a function (sufficiently differentiable), prove that

a.
$$x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y} = nf(x, y)$$

b.
$$x^2 \left(\frac{\partial^2 f}{\partial x^2} \right) + 2xy \left(\frac{\partial^2 f}{\partial x \partial y} \right) + y^2 \left(\frac{\partial^2 f}{\partial y^2} \right) = n(n-1)f.$$

6. Surface in polar coordinates Let

$$f(r,\theta) = \begin{cases} \frac{\sin 6r}{6r}, & r \neq 0\\ 1, & r = 0, \end{cases}$$

where r and θ are polar coordinates. Find

- **a.** $\lim_{r\to 0} f(r,\theta)$
- **b.** $f_r(0, 0)$ **c.** $f_{\theta}(r, \theta), r \neq 0.$

Gradients and Tangents

- 7. Properties of position vectors Let $\mathbf{r} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ and let
 - **a.** Show that $\nabla r = \mathbf{r}/r$.
 - **b.** Show that $\nabla(r^n) = nr^{n-2}\mathbf{r}$.
 - **c.** Find a function whose gradient equals **r**.
 - **d.** Show that $\mathbf{r} \cdot d\mathbf{r} = r dr$.
 - **e.** Show that $\nabla(\mathbf{A} \cdot \mathbf{r}) = \mathbf{A}$ for any constant vector \mathbf{A} .
- **8. Gradient orthogonal to tangent** Suppose that a differentiable function f(x, y) has the constant value c along the differentiable curve x = g(t), y = h(t); that is,

$$f(g(t), h(t)) = c$$

for all values of t. Differentiate both sides of this equation with respect to t to show that ∇f is orthogonal to the curve's tangent vector at every point on the curve.

9. Curve tangent to a surface Show that the curve

$$\mathbf{r}(t) = (\ln t)\mathbf{i} + (t \ln t)\mathbf{j} + t\mathbf{k}$$

is tangent to the surface

$$xz^2 - yz + \cos xy = 1$$

at (0, 0, 1).

10. Curve tangent to a surface Show that the curve

$$\mathbf{r}(t) = \left(\frac{t^3}{4} - 2\right)\mathbf{i} + \left(\frac{4}{t} - 3\right)\mathbf{j} + \cos(t - 2)\mathbf{k}$$

is tangent to the surface

$$x^3 + y^3 + z^3 - xyz = 0$$

at (0, -1, 1).

Extreme Values

11. Extrema on a surface Show that the only possible maxima and minima of z on the surface $z = x^3 + y^3 - 9xy + 27$ occur at (0, 0) and (3, 3). Show that neither a maximum nor a minimum

- occurs at (0, 0). Determine whether z has a maximum or a minimum at (3, 3).
- 12. Maximum in closed first quadrant Find the maximum value of $f(x, y) = 6xye^{-(2x+3y)}$ in the closed first quadrant (includes the nonnegative axes).
- 13. Minimum volume cut from first octant Find the minimum volume for a region bounded by the planes x = 0, y = 0, z = 0and a plane tangent to the ellipsoid

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$$

at a point in the first octant.

14. Minimum distance from a line to a parabola in xy-plane By minimizing the function $f(x, y, u, v) = (x - u)^2 + (y - v)^2$ subject to the constraints y = x + 1 and $u = v^2$, find the minimum distance in the xy-plane from the line y = x + 1 to the parabola $y^2 = x$.

Theory and Examples

- 15. Boundedness of first partials implies continuity Prove the following theorem: If f(x, y) is defined in an open region R of the xy-plane and if f_x and f_y are bounded on R, then f(x, y) is continuous on R. (The assumption of boundedness is essential.)
- **16.** Suppose that $\mathbf{r}(t) = g(t)\mathbf{i} + h(t)\mathbf{j} + k(t)\mathbf{k}$ is a smooth curve in the domain of a differentiable function f(x, y, z). Describe the relation between df/dt, ∇f , and $\mathbf{v} = d\mathbf{r}/dt$. What can be said about ∇f and v at interior points of the curve where f has extreme values relative to its other values on the curve? Give reasons for vour answer.
- 17. Finding functions from partial derivatives Suppose that f and g are functions of x and y such that

$$\frac{\partial f}{\partial y} = \frac{\partial g}{\partial x}$$
 and $\frac{\partial f}{\partial x} = \frac{\partial g}{\partial y}$,

and suppose that

$$\frac{\partial f}{\partial x} = 0$$
, $f(1, 2) = g(1, 2) = 5$, and $f(0, 0) = 4$.

Find f(x, y) and g(x, y).

- **18. Rate of change of the rate of change** We know that if f(x, y) is a function of two variables and if $\mathbf{u} = a\mathbf{i} + b\mathbf{j}$ is a unit vector, then $D_{\mathbf{n}}f(x, y) = f_{\mathbf{x}}(x, y)a + f_{\mathbf{y}}(x, y)b$ is the rate of change of f(x, y) at (x, y) in the direction of **u**. Give a similar formula for the rate of change of the rate of change of f(x, y) at (x, y) in the direction **u**.
- **19.** Path of a heat-seeking particle A heat-seeking particle has the property that at any point (x, y) in the plane it moves in the direction of maximum temperature increase. If the temperature at (x, y)is $T(x, y) = -e^{-2y} \cos x$, find an equation y = f(x) for the path of a heat-seeking particle at the point $(\pi/4, 0)$.
- **20.** Velocity after a ricochet A particle traveling in a straight line with constant velocity $\mathbf{i} + \mathbf{j} - 5\mathbf{k}$ passes through the point (0, 0, 1)30) and hits the surface $z = 2x^2 + 3y^2$. The particle ricochets off the surface, the angle of reflection being equal to the angle of incidence. Assuming no loss of speed, what is the velocity of the particle after the ricochet? Simplify your answer.

- **21. Directional derivatives tangent to a surface** Let *S* be the surface that is the graph of $f(x, y) = 10 x^2 y^2$. Suppose that the temperature in space at each point (x, y, z) is $T(x, y, z) = x^2y + y^2z + 4x + 14y + z$.
 - **a.** Among all the possible directions tangential to the surface S at the point (0, 0, 10), which direction will make the rate of change of temperature at (0, 0, 10) a maximum?
 - **b.** Which direction tangential to *S* at the point (1, 1, 8) will make the rate of change of temperature a maximum?
- **22. Drilling another borehole** On a flat surface of land, geologists drilled a borehole straight down and hit a mineral deposit at 1000 ft. They drilled a second borehole 100 ft to the north of the first and hit the mineral deposit at 950 ft. A third borehole 100 ft east of the first borehole struck the mineral deposit at 1025 ft. The geologists have reasons to believe that the mineral deposit is in the shape of a dome, and for the sake of economy, they would like to find where the deposit is closest to the surface. Assuming the surface to be the *xy*-plane, in what direction from the first

borehole would you suggest the geologists drill their fourth borehole?

869

The one-dimensional heat equation If w(x, t) represents the temperature at position x at time t in a uniform wire with perfectly insulated sides, then the partial derivatives w_{xx} and w_t satisfy a differential equation of the form

$$w_{xx} = \frac{1}{c^2} w_t.$$

This equation is called the *one-dimensional heat equation*. The value of the positive constant c^2 is determined by the material from which the wire is made.

- 23. Find all solutions of the one-dimensional heat equation of the form $w = e^{rt} \sin \pi x$, where r is a constant.
- **24.** Find all solutions of the one-dimensional heat equation that have the form $w = e^{rt} \sin kx$ and satisfy the conditions that w(0, t) = 0 and w(L, t) = 0. What happens to these solutions as $t \to \infty$?

Chapter 14 Technology Application Projects

Mathematica/Maple Modules:

Plotting Surfaces

Efficiently generate plots of surfaces, contours, and level curves.

Exploring the Mathematics Behind Skateboarding: Analysis of the Directional Derivative

The path of a skateboarder is introduced, first on a level plane, then on a ramp, and finally on a paraboloid. Compute, plot, and analyze the directional derivative in terms of the skateboarder.

Looking for Patterns and Applying the Method of Least Squares to Real Data

Fit a line to a set of numerical data points by choosing the line that minimizes the sum of the squares of the vertical distances from the points to the line.

Lagrange Goes Skateboarding: How High Does He Go?

Revisit and analyze the skateboarders' adventures for maximum and minimum heights from both a graphical and analytic perspective using Lagrange multipliers.