Poststratification

Week 5 (4.4)

Stat 260, St. Clair

Idea: Population

You have a population with **known** stratum fractions:

$$rac{N_1}{N},rac{N_2}{N},\ldots,rac{N_H}{N}$$

Idea: Sample Design

You **don't** have the stratification variable in the sampling frame.

You take a **SRS** of size n and observed

ullet response y_i

stratification variable

e.g. Census =) age damo. in North field are

Idea: Poststratification

After the SRS, divide the SRS into strata and calibrate estimates of $t_y, \bar{y}_{\mathcal{U}}$ based on known population stratum characteristics

- divide responses by stratum
- get domain estimates for each stratum
- combine domain estimates like you would in a stratified sample

Benefits

- Nonresponse: if related to stratum, poststratification can reduce nonresponse bias IF
 - \circ within stratum: non-respondents \approx respondents

e.g. strata = age groups

Non-response:

yi= presidential Non-response i older => higher response rate older => higher response rate gourger => lower " "

• If n is large, can increase precision over SRS if stratification would have been beneficial

Poststratification estimation: mean

- Parameter $ar{y}_{\mathcal{U}}$
- Estimator

$${ar y}_{post} = \sum_{h=1}^{H} rac{N_h}{N} {ar y}_h$$

$$SE(\bar{y}_{post}) \approx \sqrt{\sum_{h=1}^{H} \left(\frac{N_h}{N}\right)^2 \left(1 - \frac{n}{N}\right) \left(\frac{n}{n-1}\right) \left(\frac{n_h-1}{n_h}\right) \frac{s_h^2}{n_h}}$$
 indepose strata est.
$$\left(1 - \frac{n}{N}\right) \sum_{h=1}^{H} \frac{N_h}{N} \frac{s_h^2}{n}$$
 SE(Y.h.)
$$\left(1 - \frac{n}{N}\right) \sum_{h=1}^{H} \frac{N_h}{N} \frac{s_h^2}{n}$$
 for domain estimate on the nh are
$$\frac{n}{n-1} \left(\frac{n_h-1}{n_h}\right) \approx 1$$

$$\frac{n_h}{n_h} \approx n \left(\frac{N_h}{N}\right)$$

Ju domain est of main strature.

The domain strature.

In wear.

Poststratification estimation: proportion

- ullet Parameter p
- Estimator

$$\hat{p}_{post} = \sum_{h=1}^{H} rac{N_h}{N} \hat{p}_h$$

ullet SE: same as mean but with $s_h^2=rac{n_h}{n_h-1}\hat{p}_h(1-\hat{p}_h)$

Poststratification estimation: total

- Parameter $t=Nar{y}_{\mathcal{U}}$
- Estimator

$$\hat{t}_{\,post} = oldsymbol{N}ar{y}_{post} = \sum_{h=1}^{H} N_h ar{y}_h$$

• SE:

$$SE(\hat{t}_{\ post}) = NSE(ar{y}_{post})$$

Example

The population of N=1,500 students. We have a SRS of 200 students and obtained 135 responses to the question *How many hours per week do you devote to study outside of regular class time?*

		1		
	Female	Male	all	SRS
n_h	104	31	135	n=135
${ar y}_h$	12.38	8.03	11.38	q=11.38
s_h	6.68	5.50	6.68	5 = 6.68
				0 4.70

SRS estimate/SE of mean study hours per week?

$$SRS$$
 $y = 11.38 hows$

$$St = \int (1 - \frac{135}{1500}) \frac{6.68^2}{135} = ...55$$

Example

				NF	900
	Female	Male	all		1 500
N_h	900	600	1500	Nm	600
n_h	104	31	135	NS	- (300)
${ar y}_h$	12.38	8.03	11.38		
s_h	6.68	5.50	6.68		

Poststratified estimate/SE of mean study hours per week?

Example

Ī		Female	Male	all
	N_h	900	600	1500
	n_h	104	31	135
	${ar y}_h$	12.38	8.03	11.38
	s_h	6.68	5.50	6.68
\bar{y}	ī =	11.38 S	$ZE(ar{y})$	= 0.55
ost	$_{t}=% \frac{1}{2}\left(-\frac{1}{2}\left(-\frac{1}\left(-\frac{1}{2}\left(-\frac{1}\left$	10.64) S	$SE({ar y}_{po})$	$_{st})=0$

Why is the poststratified estimator of mean study hours lower than the SRS?

-> Rosponse related to Strat & F had higher study hours

Forevrep. + ? Tyses > Those ... F higher points.