Mining

Week 8 Lab in R: K-Means Clustering

Dr. Liang (Leon) Chen

Instructions

- R script for K-Means Clustering is provided in the next slide, please follow it and complete the lab in R.
- You do not need to type notes (starting at #), but it's a good manner to have them in you script.
- In order to see codes and notes clearly, I show the script in RStudio.

The kmeans function will be used in this lab. For details, please visit this site.

Usage

The algorithm of Hartigan and Wong (1979) is used by default.

R Script for K-Means Clustering

Deliverables

- Deliverable R1: take a screenshot of the result after running the script in Line 19 with date and time and briefly interpret the result.
- Deliverable R2: take a screenshot of the result after running the script in Line 24 with date and time and briefly interpret the result.
- Deliverable R3: take a screenshot of the result after running the script in Line 28 with date and time
 and briefly interpret the result.
- Deliverable R4: Compare the clustering result for each observation in R (which is saved in CityRecords.csv) and that in RapidMiner (k=3 only). Compare the two clustering results and answer the question: Are the two clustering results in R and RM the same or not? Why? You may follow the instruction in the next slide and take a screenshot of your PivotTable with date and to support your answer. Attention: you cannot just simply compare the cluster name because R and RM may label each cluster differently. For example, New Orleans, LA is labeled as cluster_0 in RM, but Cluster 3 in R, but cluster_0 in RM might be the same with Cluster 3 in R.

Deliverable R4 Instruction

1. Open CityRecords.csv in Excel (change the column names as I did as below)

	Α	В	C	D	Е	F	G	Н
1	ID	R	Metropolitan_Area	Cost_Living	Jobs	Climate	Health_Care	Recreation
2	1	3	New Orleans, LA	54.68	74.78	75.92	91.5	100
3	2	3	Cleveland-Lorain-Elyria, OH	21.25	75.07	16.43	84.7	99.71

2. Select and copy the cluster column of ExampleSet in RapidMiner (Or you can use write CSV operator to export the clustering result). Attention: make sure the Row No. or ID column is at the ascending order; do not sort it by cluster)

3. Paste the cluster column to CityRecords.csv

	Α	В	C	D	E	F	G	Н	1
1	ID	R	Metropolitan_Area	Cost_Living	Jobs	Climate	Health_Care	Recreation	RapidMiner
2	1	3	New Orleans, LA	54.68	74.78	75.92	91.5	100	cluster_0
3	2	3	Cleveland-Lorain-Elyria, OH	21.25	75.07	16.43	84.7	99.71	cluster_0
4	3	3	Grand Rapids-Muskegon-Holland, MI	52.7	90.36	6.79	27.19	99.43	cluster_0
5	4	3	Long Island, NY	2.27	67.13	81.86	100	99.15	cluster_0
6	5	3	Milwaukee-Waukesha, WI	16.72	65.72	15.29	84.98	98.86	cluster_0
7	6	2	Norfolk-Virginia Reach-Newport News VA-NC	44.76	83	69.4	22.79	98 58	cluster 0

4. Insert a Pivottable

5. PivotTable: drag R to Rows and RapidMiner to Columns; count of ID ∑

6. Your PivotTable will be like the following. Make your conclusion based on this PivotTable

