Data Launching and Data Treatment:

```
import pandas as pd
dataset = pd.read_excel("general_data_Attrition.xlsx",sheet_name=0)
dataset.dropna()
Out[23]:
  Age Attrition ... YearsSinceLastPromotion YearsWithCurrManager
0
  51
        0 ...
                     0
                              0
  31
       1 ... 1
                             4
1
 32 0 ... 0
2
                             3
                 7
3
  38
        0 ...
                              5
4 32
        0 ...
                    0
                              4
   ... ...
               ... ...
4404 29
          0 ...
                1
                               5
4405 42 0 ...
                     0
                               2
4406 29 0 ...
                      0
                               2
4407 25 0 ...
                     1
                               2
                               8
4408 42
         0 ...
                      7
[4382 rows x 24 columns]
dataset.drop_duplicates()
Out[24]:
  Age Attrition ... YearsSinceLastPromotion YearsWithCurrManager
 51
        0 ...
0
                     0
                              0
       1 ...
                             4
1
 31
                   1
2
  32
        0 ...
                   0
                             3
3
  38
        0 ...
              7
                             5
```

4 32 0	0	4		
4405 42 0	0	2		
4406 29 0	0	2		
4407 25 0	1	2		
4408 42 0	7	8		
4409 40 0	3	9		
[4410 rows x 24 column	ns]			
n [4]: dataset_AYes = po	d.read_excel("g	general_data_Attrition.xlsx",sheet_name=	1)	
dataset_ANo = pd.read	_excel("genera	al_data_Attrition.xlsx",sheet_name=2)		
dataset_AYes.dropna()				
Out[17]:				
Age Attrition YearsS	inceLastPromo	otion YearsWithCurrManager		
0 31 1	1	4		
1 28 1	0	0		
2 47 1	9	9		
3 44 1	0	0		
4 26 1	0	2		
706 29 1	0	1		
707 33 1	0	4		
708 33 1	1	7		
709 32 1	1	2		
710 37 1	0	0		
[705 rows x 24 columns]				
dataset_AYes.drop_duplicates()				

Out[18]:

Age Attrition ... YearsSinceLastPromotion YearsWithCurrManager

0	31	1	1	4
1	28	1	0	0
2	47	1	9	9
3	44	1	0	0
4	26	1	0	2
706	5 29	1	0	1
707	7 33	1	0	4
708	3 33	1	1	7
709	32	1	1	2
710	37	1	0	0

[711 rows x 24 columns]

dataset_ANo.dropna()

0 51 0 ... 0

[3677 rows x 24 columns]

Out[19]:

 $\label{lem:AgeAttrition} \textbf{ ... YearsSinceLastPromotion YearsWithCurrManager}$

0

1	32	0	0	3
2	38	0	7	5
3	32	0	0	4
4	46	0	7	7
3693	3 29	0	1	5
3694	1 42	0	0	2
3695	5 29	0	0	2
3696	5 25	0	1	2
3697	7 42	0	7	8

dataset_ANo.drop_duplicates()

Out[20]:

Age Attrition ... YearsSinceLastPromotion YearsWithCurrManager

0	51	0	0	0
1	32	0	0	3
2	38	0	7	5
3	32	0	0	4
4	46	0	7	7
369	4 42	0	0	2
369	5 29	0	0	2
369	6 25	0	1	2
369	7 42	0	7	8
369	8 40	0	3	9

[3699 rows x 24 columns]

Non Parametric Test:

1. Mann-whitney:

Its is used to compare two independent samples

H0: There is no significant difference between Attrition yes's DistanceFromHome and Attrition No's DistanceFromHome.

H1: There is significant difference between Attrition yes's DistanceFromHome and Attrition No's DistanceFromHome.

from scipy.stats import mannwhitneyu stats,p = mannwhitneyu(dataset_AYes.DistanceFromHome,dataset_ANo.DistanceFromHome) print(stats,p) 1312110.0 0.4629185205822659

 $P < 0.05 \Rightarrow H1$ is Accepted.

2. Chi-square:

It is used to check the dependency between categorical variables.

HO: There is no significant difference between Attrition and Gender.

H1: There is significant difference between Attrition and Gender.

from scipy.stats import chi2_contingency chitable = pd.crosstab(dataset.Attrition,dataset.Gender) stats,p,dof,expected = chi2_contingency(chitable) print(stats,p) 1.349904410246582 0.24529482862926827

Since p > 0.05, Ho is accepted.

Parametric Test:

1. One sample t-test:

It is used to compare sample mean with population mean

H0: There is no significant difference between training time of employee and standard training time as 3.

H1: There is significant difference between training time of employee and standard training time as 3.

from scipy.stats import ttest_1samp
stats,p = ttest_1samp(dataset.TrainingTimesLastYear,3)
print(stats,p)

-10.338997107228291 8.987949368189617e-25

Since p < 0.05 => Ho is rejected.

2. Two sample Independent:

It is used to compare mean of two independent samples

H0: There is no significant difference between between Attrition yes's MonthlyIncome and Attrition No's MonthlyIncome.

H1: There is significant difference between Attrition yes's MonthlyIncome and Attrition No's MonthlyIncome.

from scipy.stats import ttest_ind
stats,p = ttest_ind(dataset_AYes.MonthlyIncome,dataset_ANo.MonthlyIncome)
print(stats,p)

-2.0708863763619316 0.03842748490605113

Since p < 0.05, Ho is rejected.