1. What 3×3 matrix will have the same effect on homogeneous coordinates for \mathbb{R}^2 that the shear matrix A has?

$$A = \begin{bmatrix} 1 & 0 \\ 0.25 & 1 \end{bmatrix}$$

The matrix that will have the same effect on the homogeneous coordinates for \mathbb{R}^2 as the shear matrix A is

1	0	0	Ī
0.25	1	0	-
0	0	1	

2. Use matrix multiplication to find the image of the triangle with data matrix $D = \begin{bmatrix} -3 & -1 & -5 \\ 0 & 4 & 5 \end{bmatrix}$ under the transformation that reflects points through the y-axis. Sketch both the original triangle and its image.

The matrix after the transformation is $\begin{bmatrix} 3 & 1 & 5 \\ 0 & 4 & 5 \end{bmatrix}$

Sketch both the original triangle and its image. Which graph shows the original triangle and its image, where the original triangle is black and its image is gray?

A.

() B.

ℰC.

3. Find the 3×3 matrix that produces the described composite 2D transformation below, using homogeneous coordinates. Translate by (2,6), and then rotate 45° about the origin.

The 3×3 matrix is $\begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & -2\sqrt{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & 4\sqrt{2} \\ 0 & 0 & 1 \end{bmatrix}$

(Type an exact answer, using radicals as needed.)

4. Find the 3×3 matrix that produces the described composite 2D transformation below, using homogeneous coordinates.

Translate by (-5,3), and then scale the x-coordinate by 0.7 and the y-coordinate by 1.8.

The
$$3 \times 3$$
 matrix is
$$\begin{bmatrix} 0.7 & 0 & -3.5 \\ 0 & 1.8 & 5.4 \\ 0 & 0 & 1 \end{bmatrix}.$$

(Type an exact answer, using radicals as needed.)

5. Find the 3×3 matrix that produces the described composite 2D transformation below, using homogeneous coordinates.

Rotate points 45°, and then reflect through the x- axis.

The 3×3 matrix is
$$\begin{bmatrix} \frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\ -\frac{\sqrt{2}}{2} & -\frac{\sqrt{2}}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(Type an exact answer, using radicals as needed.)

6. Find the 3×3 matrix that produces the described composite 2D transformation below, using homogeneous coordinates.

Rotate points through 60° about the point (3,8).

The 3×3 matrix is
$$\begin{bmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} & \frac{3}{2} + 4\sqrt{3} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} & 4 - \frac{3\sqrt{3}}{2} \\ 0 & 0 & 1 \end{bmatrix}$$

(Type exact answers, using radicals as needed.)

YOU ANSWERED:
$$\frac{-11\sqrt{3}}{2} - 4$$
$$4\sqrt{3} - \frac{11}{2}$$

7. What vector in \mathbb{R}^3 has homogeneous coordinates $\left(\frac{1}{3}, -\frac{1}{6}, \frac{1}{18}, -\frac{1}{36}\right)$?

The corresponding point in \mathbb{R}^3 has coordinates $\begin{pmatrix} & -12 & , & 6 & , & -2 \end{pmatrix}$. (Simplify your answer.)

8. Give the 4×4 matrix that rotates the points in \mathbb{R}^3 about the x- axis through an angle of 330° .

The 4×4 matrix that rotates the points in \mathbb{R}^3 about the x- axis through an angle of 330° is

	•		•
1	0	0	0
0	$\frac{\sqrt{3}}{2}$	1/2	0
0	$-\frac{1}{2}$	$\frac{\sqrt{3}}{3}$	0
0	0	0	1
	0 0 0	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

. (Type exact answers in simplified form.)