Operações Básicas

"Jogo de Sinais"

Adição e Subtração

- ≡ Sinais iguais, na soma dos termos conserva-se o sinal;
- # Sinais contrários, na diferença dos conserva-se o sinal do maior absoluto.

Exemplo 1.

- a) -2-3=-5; b) 3+7=10;
- c) 8 12 = -4; d) -3 + 9 = 6.

Multiplicação e Divisão

- ≡ Sinais iguais, resultado positivo;
- # Sinais diferentes, resultado negativo.

Exemplo 2.

- a) 2 * 3 = 6
- e) 18:6=3
- b) -3*(-4) = 12 f) -44:(-4) = 11
- c) -5*3 = -15 g) -10:5 = -2
- d) 6*(-4) = -24. h) 24:(-6) = -4.

Operações com Números Decimais

Adição e Subtração

Dispõe-se os termos de modo que fique vírgula embaixo de vírgula, em seguida opera-se usualmente.

Exemplo 3. Adicione 7,29 a 14,532.

Solução:

∴ A soma é 21,822.

Exemplo 4. Subtraia 4,18 de 203,7.

Solução:

$$\begin{array}{r}
203,70 \\
-4,18 \\
\hline
199,52
\end{array}$$

∴ A diferença é 199,52.

Multiplicação

Faz-se a multiplicação sem considerar a(s) vírgula(s), a priori. A quantidade de casas decimais do produto é iqual a quantidade de casas decimais de ambos os termos.

Exemplo 5. Determine o produto de 2,7 com 8,519.

Solução: Faz-se a multiplicação sem as vírgulas

Como há um total de 4 casas decimais nos termos da multiplicação, o produto é 23,0013.

Exemplo 6. Calcule 31, 5 * 2, 48.

Solução: Faz-se a multiplicação sem as vírgulas

Como há um total de 3 casas decimais nos termos da multiplicação, o produto é 78,120.

Divisão

Uma maneira de dividir números decimais é multiplicar os termos por um múltiplo de 10 de modo que a vírgula "desapareça" de ambos, depois executa-se a divisão usualmente.

Exemplo 7. Determine o quociente entre 3,64 e 0,4.

Solução: Primeiramente "eliminam-se" as vírgulas como segue

$$3,64 * 100 = 364$$
 Agor $0,4 * 100 = 40.$

Agora faz-se a divisão como de costume:

∴ O quociente entre 3,64 e 0,4 é igual a 9,1.

Exemplo 8. Calcule $1, 2 \div 3$.

Solução: "Elimina-se" a vírgula

Operações Básicas

$$\begin{array}{c|cccc}
 & 120 & 30 \\
 \hline
 & -0- & 0,4
\end{array}$$

$$\therefore 1,2:3=0,4.$$

Potenciação

Porque a potenciação vem da multiplicação é fácil ver que o número de casas decimais da potência é iqual ao produto do expoente com o número de casas decimais da base.

Exemplo 9.

- a) $(0,2)^5 = 0.00032$;
- c) $(0,005)^2 = 0,000025$:
- c) $(0,04)^3 = 0,000064$; d) $(1,1)^2 = 1,21$.

Radiciação

O número de casas decimais da raíz quadrada é iqual a metade do número de casas decimais do radicando.

Exemplo 10.

- a) $\sqrt{0.0016} = 0.04$;
- b) $\sqrt{1,44} = 1,2$:
- c) $\sqrt{0,000036} = 0,006$;
- d) $\sqrt{0.0196} = 0.14$.

Operações com Frações

Adição e Subtração

I) Frações com denominadores iguais: Faz-se a operação com os numeradores e conserva-se o denominador.

Exemplo 11.

- a) $\frac{2}{2} + \frac{5}{2} = \frac{2+5}{2} = \frac{7}{2}$;
- b) $-\frac{5}{2} + \frac{1}{2} = \frac{-5+1}{2} = \frac{-4}{2} = -2;$
- c) $\frac{4}{7} \frac{1}{7} = \frac{4-1}{7} = \frac{3}{7}$;
- d) $-\frac{5}{2} \frac{4}{2} = \frac{-5 4}{2} = -\frac{9}{2}$
- II) Frações com denominadores diferentes: Uma forma de operar é:

$$\frac{a}{b} + \frac{c}{d} = \frac{a * d + b * c}{b * d}$$

Exemplo 12.

a)
$$\frac{2}{3} + \frac{4}{5} = \frac{10+12}{15} = \frac{22}{15}$$
;

b)
$$-\frac{3}{7} + \frac{1}{4} = \frac{-12+7}{28} = \frac{-5}{28}$$
;

c)
$$\frac{6}{5} - \frac{2}{3} = \frac{18 - 10}{15} = \frac{8}{15}$$
;

d)
$$-\frac{5}{2} - \frac{8}{7} = \frac{-35 - 16}{14} = \frac{-51}{14}$$

Multiplicação

O produto entre duas frações é uma fração cujo numerador é iqual ao produto dos numeradores e o denominador é igual ao produto dos denominadores.

Exemplo 13.

a)
$$\frac{4}{7} * \frac{2}{9} = \frac{8}{63};$$
 b) $\frac{6}{11} * \left(-\frac{2}{3}\right) = -\frac{12}{33} = -\frac{4}{11};$

c)
$$-\frac{3}{7} * \frac{1}{2} = -\frac{3}{14};$$
 d) $-\frac{2}{5} * \left(-\frac{8}{7}\right) = \frac{16}{35}$

Divisão

Numa divisão entre frações, conserva-se a primeira e multiplica-se pela fração inversa da segunda.

Exemplo 14.

a)
$$\frac{4}{3}: \frac{1}{9} = \frac{4}{3} * \frac{9}{1} = \frac{36}{3} = 12;$$

b)
$$-\frac{10}{7}:\left(-\frac{5}{2}\right)=-\frac{10}{7}*\left(-\frac{2}{5}\right)=\frac{20}{35}=\frac{4}{7};$$

c)
$$-\frac{6}{13}: \frac{1}{2} = -\frac{6}{13} * \frac{2}{1} = -\frac{12}{13};$$

d)
$$-\frac{7}{9}:\left(-\frac{5}{8}\right)=-\frac{7}{9}*\left(-\frac{8}{5}\right)=\frac{56}{45}$$

Potenciação

Para efetuar a potenciação de uma fração, faz-se:

$$\left(\frac{a}{b}\right)^n = \frac{a^n}{b^n}.$$

Exemplo 15.

a)
$$\left(\frac{5}{6}\right)^2 = \frac{25}{36};$$
 b) $\left(-\frac{2}{3}\right)^3 = -\frac{8}{27};$

c)
$$\left(-\frac{1}{4}\right)^4 = \frac{1}{256};$$
 d) $\left(\frac{14}{7}\right)^2 = \frac{196}{49}$

Radiciação

Para efetuar a radiciação de uma fração, faz-se:

$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}.$$

Exemplo 16.

a)
$$\sqrt{\frac{121}{9}} = \frac{11}{3}$$
; b) $\sqrt{\frac{16}{81}} = \frac{4}{9}$;

c)
$$\sqrt{\frac{289}{900}} = \frac{17}{30}$$
; d) $\sqrt{\frac{64}{169}} = \frac{8}{13}$