- 16. Let $X_1, ..., X_n \sim \text{IID normal}(\theta, \sigma^2)$, and let the prior distribution on θ be normal (μ, τ^2) .
 - (a) Find the joint PDF of \bar{X} and θ .
 - (b) Show that $m(\bar{x} \mid \sigma^2, \mu, \tau^2)$, the marginal distribution of \bar{X} , is normal with mean μ and variance $(\sigma^2/n) + \tau^2$.
 - (c) Show that the $\pi(\theta \mid \bar{x}, \mu, \tau^2)$, the posterior distribution of θ is normal with mean and variance

$$E[\theta \mid \bar{x}, \mu, \tau^2] = \left(\frac{\tau^2}{\tau^2 + \sigma^2}\right) \bar{x} + \left(\frac{\sigma^2}{\tau^2 + \sigma^2}\right) \mu$$
$$Var(\theta \mid \bar{x}, \mu, \tau^2) = \frac{\sigma^2 \tau^2}{\tau^2 + \sigma^2}$$

- (d) Let δ^{π} denote the Bayes estimator of θ for squared error loss. Find the risk function $R(\theta, \delta^{\pi})$ for the Bayes estimator of θ .
- (e) Let $X \sim \text{normal}(\theta, 1)$ for this n = 1. Consider two prior distributions $\pi_1(\theta) \sim \text{normal}(0, 1)$ and $\pi_2(\theta) \sim \text{normal}(0, 10)$. Write the risk functions for each of these two priors. Use R to compute and graph the risk functions on the same axes. Comment on how the prior affects the risk function of the Bayes estimator.