Module IV : Morphisms, Ring and Field (MATH \$2201)

The most general algebraic structure with two binary operations that we study here is called a ring.

1 Rings and Fields

A ring $(R, +, \cdot)$ is a nonempty set R together with two binary operations '+' and '.' respectively called addition and multiplication such that the following conditions hold:

- (i) (R, +) is a commutative group.
- (ii) (R, \cdot) is a semigroup (i.e. multiplication is associative), and
- (iii) $a \cdot (b+c) = a \cdot b + a \cdot c$, and $(a+b) \cdot c = a \cdot c + b \cdot c$, i.e. distributive properties hold in R.

Moreover, R is said to be *commutative* if the multiplication is commutative. R is called a *ring with unity* if it has an element e in R said to be a multiplicative identity in R with $a \cdot e = a = e \cdot a$ for all $a \in R$.

Examples:

- 1. $(\mathbb{Z}, +, \cdot)$, $(\mathbb{Q}, +, \cdot)$, $(\mathbb{R}, +, \cdot)$, $(\mathbb{C}, +, \cdot)$ are commutative rings with unity, where '+' and $'\cdot'$ denotes usual addition and usual multiplication.
- 2. Let $n \in \mathbb{N}$. Then $(n\mathbb{Z}, +, \cdot)$ is a commutative ring without unity where '+' and $'\cdot'$ denotes usual addition and usual multiplication..
- 3. Let $n \in \mathbb{N}$. Then $(M_n(\mathbb{R}), +, \cdot)$ is the ring of all $n \times n$ real matrices. It is a non-commutative ring with unity I_n being the unity in the ring. Here '+' and $'\cdot'$ denotes matrix addition and matrix multiplication.
- 4. For a fixed positive integer n, \mathbb{Z}_n is the class of residues of integers modulo n. $\mathbb{Z}_n = \{[0], [1], [2], ..., [n-1]\}$. Then $(\mathbb{Z}_n, +_n, \cdot_n)$ is a commutative ring with unity [1]. On \mathbb{Z}_n we define addition and multiplication by $[a] +_n [b] = [a+b]$ and

 $[a] \cdot_n [b] = [ab]$. Any [a] or, $\bar{a} \in \mathbb{Z}$ implies $\bar{a} = \{b \in \mathbb{Z} : b \equiv a(\text{mod}n)\} = \{b \in \mathbb{Z} : n \mid (a-b)\}$.

- 5. $\mathbb{Z}[i] = \{a + ib : a, b \in \mathbb{Z}\}$ forms a commutative ring with unity called the ring of Gaussian integers.
- 6. Let us consider the set H of 2×2 complex matrices given by $H=\left\{\begin{pmatrix} a+ib & c+id \\ -c+id & a-ib \end{pmatrix}: a,b,c,d\in\mathbb{R}\right\}$ forms a ring of real quaternions with unity $I=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ with respect to matrix addition and matrix multiplication.
- 7. The set of all polynomials over \mathbb{R} is denoted by $\mathbb{R}[x]$. If $f(x) = a_0 + a_1x + a_2x^2 + ... + a_nx^n$ and $g(x) = b_0 + b_1x + b_2x^2 + ... + b_mx^m$ be in $\mathbb{R}[x]$. Then f(x) + g(x) and $f(x) \cdot g(x)$ are in $\mathbb{R}[x]$ under which it forms a commutative ring with unity. Moreover, the ring polynomials over \mathbb{Z} is denoted by $\mathbb{Z}[x]$ and the ring of polynomials over \mathbb{Q} is denoted by $\mathbb{Q}[x]$.
- 8. Let (R, +) be a commutative group. On R we define multiplication by $a \cdot b = 0$ for all $a, b \in R$. Then $(R, +, \cdot)$ forms a ring called a zero ring.
- 9. Let X be a non-empty set and P(X) be its power set. In P(X) we define '+' and $'\cdot'$ by $A+B=A\bigtriangleup B=(A\diagdown B)\cup(B\diagdown A)$ and $A\cdot B=A\cap B$. Then $(P(X),+,\cdot)$ is a ring. (Verify!)

Definition: Let R be a ring with unity 1. An element $a \in R$ is called an idempotent element if $a^2 = a$.

Definition: Let R be a ring with unity 1. Then R is called a Boolean ring if every element of R is idempotent, i.e., $a^2 = a$ for all $a \in R$. e.g. $(\mathbb{Z}_2, +_2, \cdot_2)$.

Follow the Theorem 18.8 in the next page:

for |n| summands. Finally, we define

$$0 \cdot a = 0$$

for $0 \in \mathbb{Z}$ on the left side of the equations and $0 \in R$ on the right side. Actually, the equation 0a = 0 holds also for $0 \in R$ on both sides. The following theorem proves this and various other elementary but important facts. Note the strong use of the distributive laws in the proof of this theorem. Axiom \mathcal{R}_1 for a ring concerns only addition, and axiom \mathcal{R}_2 concerns only multiplication. This shows that in order to prove anything that gives a relationship between these two operations, we are going to have to use axiom \mathcal{R}_3 . For example, the first thing that we will show in Theorem 18.8 is that 0a = 0 for any element a in a ring R. Now this relation involves both addition and multiplication. The multiplication 0a stares us in the face, and 0 is an *additive* concept. Thus we will have to come up with an argument that uses a distributive law to prove this.

18.8 Theorem If R is a ring with additive identity 0, then for any $a, b \in R$ we have

1.
$$0a = a0 = 0$$
,

2.
$$a(-b) = (-a)b = -(ab)$$
,

3.
$$(-a)(-b) = ab$$
.

Proof For Property 1, note that by axioms \mathcal{R}_1 and \mathcal{R}_2 ,

$$a0 + a0 = a(0 + 0) = a0 = 0 + a0.$$

Then by the cancellation law for the additive group $\langle R, + \rangle$, we have a0 = 0. Likewise,

$$0a + 0a = (0 + 0)a = 0a = 0 + 0a$$

implies that 0a = 0. This proves Property 1.

In order to understand the proof of Property 2, we must remember that, by *definition*, -(ab) is the element that when added to ab gives 0. Thus to show that a(-b) = -(ab), we must show precisely that a(-b) + ab = 0. By the left distributive law,

$$a(-b) + ab = a(-b + b) = a0 = 0$$
,

since a0 = 0 by Property 1. Likewise.

$$(-a)b + ab = (-a + a)b = 0b = 0.$$

For Property 3, note that

$$(-a)(-b) = -(a(-b))$$

by Property 2. Again by Property 2,

$$-(a(-b)) = -(-(ab)),$$

and -(-(ab)) is the element that when added to -(ab) gives 0. This is ab by definition of -(ab) and by the uniqueness of an inverse in a group. Thus, (-a)(-b) = ab.

It is important that you *understand* the preceding proof. The theorem allows us to use our usual rules for signs.

Divisors of Zero: In a ring R, a non-zero element a is said to be a left divisor of zero if there exists a non-zero element b in R such that $a \cdot b = 0$ and a is said to be a right divisor of zero if there exists a non-zero element c in R such that $c \cdot a = 0$.

Examples:

1. In the ring $(\mathbb{Z}_6, +, \cdot)$, $\bar{2}, \bar{3}, \bar{4}$ are divisors of zero.

2. In the ring
$$M_2(\mathbb{R})$$
, $\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \cdot \begin{pmatrix} 2 & 6 \\ -1 & -3 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Here $\begin{pmatrix} 2 & 6 \\ -1 & -3 \end{pmatrix} \cdot \begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix} \neq \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}$. Hence $\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ is a left divisor and $\begin{pmatrix} 2 & 6 \\ -1 & -3 \end{pmatrix}$ is a right divisor of zero.

Cancellation Law: The cancellation laws hold in a ring R if $a \cdot b = a \cdot c$ with $a \neq 0$ implies b = c and $b \cdot a = c \cdot a$ with $a \neq 0$ implies b = c.

In \mathbb{Z}_6 , $[2] \cdot [3] = [4] \cdot [3]$ but $[2] \neq [4]$. Hence cancellation law does not hold.

Theorem: The cancellation laws hold in a ring R if and only if R has no divisors of zero.

Proof: Let R be a ring in which cancellation laws hold and suppose $a \cdot b = 0$ for some $a, b \in R$. If $a \neq 0$, then $a \cdot b = a \cdot 0$ implies b = 0 by cancellation laws. Similarly, $b \neq 0$ implies a = 0. So there can be no divisors of zero.

Conversely, suppose R has no divisors of zero and let $a \cdot b = a \cdot c$ with $a \neq 0$. Then $a \cdot b - a \cdot c = a \cdot (b - c) = 0$. Since $a \neq 0$, b - c = 0, so b = c. Hence cancellation law holds. A similar argument can be shown to prove that $b \cdot a = c \cdot a$ with $a \neq 0$ implies b = c.

Units: In a ring R with unity $1 \neq 0$, a multiplicative inverse or, unit is an element $b \in R$ such that $a \cdot b = b \cdot a = 1$.

Example:

- 1. In $(\mathbb{Z}, +, \cdot)$, 1 and -1 are the only units.
- 2. In $(\mathbb{Q}, +, \cdot)$, every non-zero element is a unit.
- 3. In $(\mathbb{Z}_6, +_6, \cdot_6)$, $\bar{1}, \bar{5}$ are the units.

4. In $(\mathbb{Z}_5, +_5, \cdot_5)$, every non-zero element is a unit.

Note: If a is a unit in a ring R with unity 1, then a is not a divisor of zero. Since if a is a unit then $a \cdot b = b \cdot a = 1$. Let c be a non-zero element such that $a \cdot c = 0$. Then $b \cdot (a \cdot c) = b \cdot 0 = 0$, which implies $(b \cdot a) \cdot c = 1 \cdot c = c = 0$. Thus, a contradiction arrives.

Theorem: In the ring $(\mathbb{Z}_n, +_n, \cdot_n)$ a non-zero element \bar{m} is a unit if and only if gcd(m, n) = 1.

Proof: The ring $(\mathbb{Z}_n, +_n, \cdot_n)$ is a commutative ring with unity $\bar{1}$. Let \bar{m} be a unit in the ring. Then there exists a non-zero element \bar{u} in the ring such that $\bar{m} \cdot \bar{u} = \bar{1}$. $\bar{m} \cdot \bar{u} = \bar{1}$ implies, $mu \equiv 1 \pmod{n}$. So mu - 1 = nv for some integer v, or, mu - nv = 1. This proves that $\gcd(m, n) = 1$.

Conversely, let \bar{m} be an element in the ring such that $\gcd(m,n)=1$. Then for some integers u and v, um+vn=1. So, $um\equiv 1 \pmod n$. Clearly, $u\neq 0$. Let u>n, then applying division algorithm $u\equiv r \pmod n$, 0< r< n. $u\equiv r \pmod n \Rightarrow um\equiv r \pmod n \Rightarrow rm\equiv 1 \pmod n \geqslant 1 \pmod n \pmod n \geqslant 1 \pmod n \pmod n \pmod n \lceil 1 \pmod n \pmod n \lceil 1 \pmod n \pmod n \lceil 1 \pmod n$

Note: In n is prime then every non-zero element in the ring $(\mathbb{Z}_n, +_n, \cdot_n)$ is a unit.

Characteristic of a Ring: The least positive integer n (if exists) such that $na = 0 \ \forall a \in R$ is called characteristic of a ring R. If no such integer exists then Char R = 0.

Examples: Char $\mathbb{Z} = 0$, Char $\mathbb{Z}_n = n$.

Integral Domain: A commutative ring with unity which contains no divisor of zero.

Examples:

- 1. $(\mathbb{Z}, +, \cdot), (\mathbb{Q}, +, \cdot), (\mathbb{R}, +, \cdot), (\mathbb{C}, +, \cdot).$
- 2. Let $n \in \mathbb{N}$. Then $(n\mathbb{Z}, +, \cdot)$ is a commutative ring without unity not containing divisor of zero, but not an integral domain.
- 3. Let $n \in \mathbb{N}$. Then $(M_n(\mathbb{R}), +, \cdot)$ is the ring of all $n \times n$ real matrices. It is a non-commutative ring with unity and hence not an integral domain.
- 4. $(\mathbb{Z}_5, +_5, \cdot_5)$ is a commutative ring with unity [1] containing no divisor of zero. Hence it is an integral domain.

5. $(\mathbb{Z}_6, +_6, \cdot_6)$ is a commutative ring with unity [1] containing divisor of zero. Hence it is not an integral domain.

Theorem: The ring $(\mathbb{Z}_n, +_n, \cdot_n)$ is an integral domain if and only if n is prime.

Proof: Let $(\mathbb{Z}_n, +_n, \cdot_n)$ be an integral domain and n be a composite number. Then n = pq where p, q are positive integers and 1 , <math>1 < q < n. Then $\bar{p}, \bar{q} \in \mathbb{Z}_n$ and $\bar{p} \cdot \bar{q} = \bar{n} = \bar{0}$. This implies that $(\mathbb{Z}_n, +_n, \cdot_n)$ contains divisor of zero which is a contradiction. Hence our hypothesis was wrong and n is prime.

Conversely, let n be a prime and the ring $(\mathbb{Z}_n, +_n, \cdot_n)$ be a commutative ring with unity $\bar{1}$. Let \bar{m} be a non-zero element in the ring (\mathbb{Z}_n) . Then 0 < m < n. Since n is prime, $\gcd(m,n)=1$. Then for some integers u and v, um+vn=1. So, $um\equiv 1\pmod{n}$. Clearly, $u\neq 0$. Let u>n, then applying division algorithm $u\equiv r\pmod{n}$, 0 < r < n. $u\equiv r\pmod{n} \Rightarrow um\equiv rm\pmod{n} \Rightarrow rm\equiv 1\pmod{n} \Rightarrow \bar{r}\cdot\bar{m}=\bar{1}$. Hence \bar{m} is a unit and thus not a divisor of zero. Therefore it is an integral domain.

Theorem: The characteristic of an integral domain is either zero or prime.

Proof: Let the characteristic of an integral domain D be m. Let m be a composite number $(m \neq 1 \text{ since } D \text{ is a non-trivial ring})$. Then m = pq where p, q are integers and 1 , <math>1 < q < m. Let I be the unity in D. Since CharD = m, m is the least positive integer for which mI = 0. But $mI = pI \cdot qI$. Since D has no divisor of zero, either pI = 0 or, qI = 0. In either case we have a contradiction since CharD = m. Therefore, m is prime. If there exists no such positive integer then CharD = 0.

Skew-field (**Division ring:**) A non-trivial ring with unity where every non-zero element is a unit is a skew-field.

Field: A commutative skew-field is a field.

Properties of a Field:

- 1. A field is an integral domain. Since presence of unit means divisor of zero cannot exist. Hence the property follows.
- 2. A finite integral domain is a field. Consider the commutative ring with unity $(\mathbb{Z}, +, \cdot)$ where '+' and $'\cdot'$ denotes usual addition and usual multiplication and the commutative ring with unity $(\mathbb{Z}_5, +_5, \cdot_5)$. Both are Integral domains.

Since only units in \mathbb{Z} are 1 and -1, whereas every non-zero element is a unit in \mathbb{Z}_5 . Hence \mathbb{Z}_5 is a field.

Subring: Let $(R, +, \cdot)$ be a ring and S be a non-empty subset of R. Then S is a subring of R if and only if

(i)
$$a, b \in S \Rightarrow a - b \in S$$

(ii)
$$a, b \in S \Rightarrow a \cdot b \in S$$

Subfield: Let $(F, +, \cdot)$ be a field and S be a non-empty subset of F. Then S is a subfield of F if and only if

(i)
$$a, b \in S \Rightarrow a - b \in S$$

(ii)
$$a \in S, b(\neq 0) \in S \Rightarrow a \cdot b^{-1} \in S$$

Practice Problems:(some are already done in class)

- 1. Show that the ring of matrices $\left\{ \begin{pmatrix} 2a & 0 \\ 0 & 2b \end{pmatrix} : a, b \in \mathbb{Z} \right\}$ contains divisors of zero and does not contain the unity.
- 2. Examine if the ring of matrices $\left\{ \begin{pmatrix} a & b \\ 2b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$ contains divisors of zero.
- 3. Find the units in the ring of integral quaternions.
- 4. Prove that the ring $\mathbb{Z}[i] = \{a + bi : a, b \in \mathbb{Z}\}$, the ring of Gaussian integers is an integral domain.
- 5. Prove that the ring $\mathbb{Z}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Z}\}$, the ring of Gaussian integers is an integral domain.
- 6. Find the units in the ring \mathbb{Z}_{10} . Prove that the units in the ring form a cyclic group under multiplication.
- 7. Show that \mathbb{Z}_2 is an integral domain whereas the matrix ring $M_2(\mathbb{Z}_2)$ has divisors of zero.
- 8. Let R be a commutative ring with unity of characteristic 3. Compute and simplify $(a+b)^9$ for $a,b \in R$.

- 9. Let R be a commutative ring with unity of characteristic 4. Compute and simplify $(a+b)^4$ for $a,b \in R$.
- 10. Show that the matrix $\begin{pmatrix} 1 & 2 \\ 2 & 4 \end{pmatrix}$ is a divisor of zero in $M_2(\mathbb{Z})$.
- 11. Prove that the ring of matrices $\left\{\begin{pmatrix} a & b \\ 2b & a \end{pmatrix} : a, b \in \mathbb{Q} \right\}$ is a field.
- 12. Examine if the ring of matrices $\left\{\begin{pmatrix} a & b \\ 2b & a \end{pmatrix} : a, b \in \mathbb{R} \right\}$ is a field.
- 13. Prove that the set of matrices $\left\{ \begin{pmatrix} a & b \\ 3b & a \end{pmatrix} : a, b \in \mathbb{Q} \right\}$ forms a field under matrix addition and matrix multiplication.
- 14. Let R be a ring. The centre of R is the subset Z(R) defined by $Z(R) = \{x \in R : xr = rx \ \forall r \in R\}$. Then prove that Z(R) is a subring of R.
- 15. Prove that $\mathbb{Q}[\sqrt{2}] = \{a + b\sqrt{2} : a, b \in \mathbb{Q}\}$ is a subfield of the field R.

2 Morphisms of Groups

Let (G, \circ) and (G', \star) be two groups. We establish the maps that relate the two groups. Such a map gives us information about one of the groups from known structural properties of the other. If we have an isomorphism between G and G' then one is just a structural copy of the other.

Homomorphism: A mapping $\phi: G \longrightarrow G'$ is said to be a homomorphism if

$$\phi(a \circ b) = \phi(a) \star \phi(b)$$
 for all $a, b \in G$.

Monomorphism: A one-to-one (injective) homomorphism.

Epimorphism: An onto (surjective) homomorphism.

Isomorphism: A homomorphism which is both one-to-one and onto (bijective).

Automorphism: An isomorphism from group G to itself.

Worked Examples:

- 1. For any groups G and G' there is always at least one homomorphism called **trivial** homomorphism defined by $\phi(a) = e_{G'}$ for all $a \in G$, $e_{G'}$ being the identity element of G'. [We have for all $a, b \in G$, $\phi(a \circ b) = e_{G'} = e_{G'} \star e_{G'} = \phi(a) \star \phi(b)$.]
- 2. Let $G = (\mathbb{Z}, +)$, $G' = (2\mathbb{Z}, +)$ and a mapping $\phi : G \longrightarrow G'$ be defined by $\phi(a) = 2a$, $a \in G$. Then for all $a, b \in G$, $\phi(a) = 2a$ and $\phi(b) = 2b$, $\phi(a + b) = 2(a + b) = 2a + 2b = \phi(a) + \phi(b)$. Hence ϕ is a homomorphism. Also ϕ is injective and surjective. Since $x_1 \neq x_2 \Rightarrow 2x_1 \neq 2x_2 \Rightarrow \phi(x_1) \neq \phi(x_2)$. Hence ϕ is injective. Again, let $\phi(x) = y$. Then 2x = y, i.e., $x = \frac{y}{2}$. Since y is a multiple of 2 hence $x \in \mathbb{Z}$. Thus every image y has a pre-image $\frac{y}{2}$ in the domain of ϕ . So ϕ is surjective. Hence ϕ is an isomorphism.
- 3. Let $G = (\mathbb{Z}, +)$ and $\phi : G \longrightarrow G$ be defined by $\phi(a) = a + 1$, $a \in G$. Then ϕ is not a homomorphism. (Verify!)
- 4. Let $G = (\mathbb{Z}, +)$, $G' = (\mathbb{Z}_n, +_n)$ and a mapping $\phi : G \longrightarrow G'$ be defined by $\phi(a) = \overline{a}, a \in G$. Then $\phi(a+b) = \overline{a+b} = \overline{a} +_n \overline{b} = \phi(a) +_n \phi(b)$. Hence ϕ is a homomorphism.

Properties of Homomorphism: Let (G, \circ) and (G', \star) be two groups and a mapping $\phi: G \longrightarrow G'$ is a homomorphism. Then

1.
$$\phi(e_G) = e_{G'}$$

2.
$$\phi(a^{-1}) = {\{\phi(a)\}}^{-1}$$
 for all $a \in G$

- 3. if $a \in G$ then $\phi(a^n) = {\phi(a)}^n, n$ being an integer.
- 4. if $a \in G$ and O(a) is finite then $O(\phi(a))$ is a divisor of o(a).
- 5. $\phi(G)$ is a subgroup of G'.
- 6. if G is commutative then $\phi(G)$ is commutative.
- 7. if G is cyclic then $\phi(G)$ is cyclic.

Kernel of ϕ : Let (G, \circ) and (G', \star) be two groups and a mapping $\phi : G \longrightarrow G'$ is a homomorphism. Then the kernel of ϕ (denoted by $\ker \phi$) is a subset of G defined by $\ker \phi = \{a \in G : \phi(a) = e_{G'}\}.$

Theorem: $ker \phi$ is a normal subgroup of G.

Proof: $\ker \phi$ is a non-empty set since $\phi(e_G) = e_{G'}$, i.e., $e_G \in \ker \phi$. Let $a, b \in \ker \phi$. Then $\phi(a \circ b^{-1}) = \phi(a) \star \{\phi(b)\}^{-1} = e_{G'} \star e_{G'}^{-1} = e_{G'}$. This implies $a \circ b^{-1} \in \ker \phi$. Thus, $\ker \phi$ is a subgroup of G.

Let $g \in G$, $h \in \ker \phi$. Then $\phi(g \circ h \circ g^{-1}) = \phi(g) \star \phi(h) \star \{\phi(g)\}^{-1} = \phi(g) \star \{\phi(g)\}^{-1} = \phi(g) \circ g^{-1} = \phi(g) \circ g^{$

Theorem: Let (G, \circ) and (G', \star) be two groups and a mapping $\phi : G \longrightarrow G'$ is an epimorphism. Then ϕ is an isomorphism if and only if $\ker \phi = \{e_G\}$.

Theorem: Let (G, \circ) and (G', \star) be two groups and a mapping $\phi: G \longrightarrow G'$ is an isomorphism. Then

- (i) G' is commutative if and only if G is commutative.
- (ii) G' is cyclic if and only if G is cyclic.
- (iii) ϕ^{-1} is also an isomorphism.

First Isomorphism Theorem: Let f be a homomorphism of a group G onto an another group G_1 . Then $G/\ker f \cong f(G)$.

Practice Problems:

1. Let
$$G = S_3$$
, $G' = (\{1, -1\}, \cdot)$ and let $\phi : G \longrightarrow G'$ be defined by

$$\phi(\alpha) = 1$$
 if α is an even permutation in S_3
= -1 if α is an odd permutation in S_3

Examine if ϕ is a homomorphism. (done in class)

- 2. Show that $(\mathbb{Z}, +)$ and $(\mathbb{Q}, +)$ are not isomorphic. (done in class)
- 3. Let $G = (\mathbb{Z}_5, +)$ and $\phi : G \longrightarrow G$ be defined by $\phi(\bar{x}) = 3\bar{x}$. Show that ϕ is an isomorphism.

- 4. Show that $8\mathbb{Z}/72\mathbb{Z} \cong \mathbb{Z}_9$.
- 5. Prove that \mathbb{Z}_8 is not a homomorphic image of \mathbb{Z}_{15} .