

Applications of & Introduction to Artificial Intelligence

Convolutional Neural Networks

Technische Hochschule Rosenheim Sommer 2020 Prof. Dr. J. Schmidt

Example: Typical MLP-Structure for Images

Recognition of Image Parts

- many patterns are smaller than the complete image
- for small regions: less parameters required

Similar Patterns

- similar patterns can be found in different image locations
- Idea: Train many small detectors that
 - move over the image
 - share parameters

Convolutional Layer

- hence: CNN Convolutional Neuronal Network
- consists of (linear) convolution filters
- the filter masks are learned during training
- first used with backpropagation in LeNet (1989-1998): LeCun, Bottou, Bengio, Haffner. Gradient-Based Learning Applied to Document Recognition. Proc. of the IEEE 86(11): 2278-2324, 1998.

Convolutional Layer

Convolutional Layer

Convolutional Layer

Convolution and activation are now repeated several times Idea: Combine low-level features, combine again etc.

Hyperparameter – Stride

the filter mask can be moved by more than one pixel (stride) this differs from the "normal" convolution operation

Example: 7x7 image with 3x3 filter

X	X	Х	Х	Х	
X	X	Х	Х	Х	
X	X	Х	Х	Х	
X	X	Х	Х	Х	
X	X	Х	Х	Х	

X	X	X	
Х	Х	X	
Х	Х	X	

Stride 1

Output: 5x5

Stride 2

Output: 3x3

Stride 3 asymmetric border – stride does not match

Hyperparameter – Stride

Stride S

Size of output:
$$\frac{N-F}{S} + 1$$

If result is integer: Stride and filter size match

Example N = 7, F = 3:

$$S = 1: \frac{7-3}{1} + 1 = 5$$

$$S = 2: \frac{7-3}{2} + 1 = 3$$

$$S = 3: \frac{7-3}{3} + 1 = 2,33$$

Hyperparameter – Pad

- Problem: Input size for a layer is getting smaller and smaller
- Solution: Padding of border
 - with zeros (Zero-Padding)
 - with copies of the border pixels

0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0

For filter size $F \times F$

 $\frac{F-1}{2}$ values are lost at the border

Examples:

F = 3: Padding with 1

F = 5: Padding with 2

F = 7: Padding with 3

Example

Number of parameters for this layer: each filter has $5 \cdot 5 \cdot 3 + 1 = 76$ parameters (+1 because of bias) 10 filters, total: $76 \cdot 10 = 760$ parameters

Example

Number of parameters for this layer: each filter has $5 \cdot 5 \cdot 10 + 1 = 251$ parameters (+1 because of bias) 16 filters, total: $251 \cdot 16 = 4016$ parameters

Hyperparameters – Convolution

- Number K and size F of filters
- Stride S
- Size of padding P
- typical values:
 - # K = power of 2, e.g. 32, 64, 128, 512

$$F = 3$$
, $S = 1$, $P = 1$

$$F = 5$$
, $S = 1$, $P = 2$

$$+ F = 5$$
, $S = 2$, $P =$ matching

$$F = 1, S = 1, P = 0$$

ransforms a layer of size $W \times H \times D$ into a layer of size $W' \times H' \times D'$:

$$W' = \frac{W - F + 2P}{S} + 1$$
, $H' = \frac{H - F + 2P}{S} + 1$, $D' = K$

Number of weights: $(F \cdot F \cdot D) \cdot K + K$

Pooling

- scaling does not change the object
- objective: smaller-sized layers

Bird

Pooling

each activation map is processed separately

Pooling

MAX-Pooling: Use the largest element within a windows of size $F \times F$ Average-Pooling: Use the mean value of all elements within a windows of size

Example: MAX-Pooling using 2x2 windows and stride S=2

2	1	2	4			
7	3	1	5	Pool	7	5
6	7	1	8		9	8
9	3	4	2			

Hyperparameters – Pooling

- Size F of windows
- > Stride S
- Typical values:

$$F = 2$$
, $S = 2$

$$F = 3, S = 2$$

ransforms a layer of size $W \times H \times D$ into a layer of size $W' \times H' \times D'$:

$$W' = \frac{W-F}{S} + 1$$
, $H' = \frac{H-F}{S} + 1$, $D' = D$

Number of weights: none

Fully Connected Layers / Flatten

- at the end: fully connected layers as before (MLP)
 - → Flattening

Typical Architecture

- n ca. 3, up to ca. 5
- m large
- $\rightarrow 0 \le k \le 2$
- General tendency:
 - use smaller filter sizes and deeper architecture
 - away from pooling/fully connected layers towards pure convolutional layers

Example: Alexnet

ImageNet Classification Challenge 2012

- 1000 classes
- 1.2 million training images
- 50,000 validation images
- 150,000 test images

Network:

- 650,000 neurons
- 60 million parameters
- used CNN with ReLU on GPU for the first time

Pre-Processing:

- Scale/Crop images to 256 x 256 (training uses random crops of size 224x224 from these)
- Subtract mean RGB image

Krizhevsky, Sutskever, Hinton: ImageNet Classification with Deep Convolutional Neural Networks. Commun. ACM 60(6):84-90, 2017.

Transfer-Learning

- Problem:
 Huge data sets required for training so many weights
- What if you do not have 1,000,000 images?
 - Get a CNN that was trained on similar data
 - use transfer-learning on that CNN
- Trained models available from, e.g., https://github.com/BVLC/caffe/wiki/Model-Zoo https://github.com/tensorflow/models
- Transfer-Learning is the rule, not the exception

Transfer-Learning

small data set:

instead of re-training the last layer of weights also: use CNN as feature extractor:

- remove output layer
- the output of the layer before produces features (here: 4096)
- use these features to train a classifier (e.g. SVM)

Advantage: overfitting is not an issue for small data sets

Transfer-Learning

large data set:

- the larger the data set, the more layers can be re-trained
- chose learning rate considerably smaller than that of the original network (e.g. 1/10)

Object Detection/-localization

- R-CNN Region Proposal CNN (Girschick 2014) https://arxiv.org/abs/1311.2524
- SSD Single Shot MultiBox Detector (Liu, 2016) https://arxiv.org/abs/1512.02325
- YOLO You Only Look Once (Redmon 2016) https://pjreddie.com/darknet/yolo/

Sources

- Goodfellow, Bengio, Courville: Deep Learning, MIT Press, 2017. http://www.deeplearningbook.org/
- Li, Johnson, Yeung: CS231n: Convolutional Neural Networks for Visual Recognition. Vorlesung Stanford University, 2018. http://cs231n.stanford.edu/
- Li: Deep Learning and Its Applications. Lecture University of Waterloo, 2017.
 - https://cs.uwaterloo.ca/~mli/cs898-2017.html
- Original research articles as stated on the slides