$\begin{array}{c} {\bf L3-INF6ACT} \\ {\bf Th\'{e}orie~des~langages~et~compilation} \\ {\bf dur\'{e}e~2h} \end{array}$

Les notes de cours et TD sont autorisées.

Chaque candidat doit, en début d'épreuve, porter son nom dans le coin de la copie réservé à cet usage; il le cachettera par collage après la signature de la feuille d'émargement. Sur chacune des copies intercalaires, il portera son numéro de place.

Rendre 2 copies séparées en notant bien le numéro de place :

- l'une qui traite l'exercice I (Automate fini) et l'exercice III (analyse LL)
- l'autre qui traite l'exercice II (Compilation)

Exercice I. Automate Fini

À rendre avec l'exercice III

Question 1. Quel est le langage reconnu par l'automate fini déterministe \mathcal{A} décrit par le graphe de transition ci-dessous ?

Question 2. On considère l'automate \mathcal{B} représenté par le graphe de transition suivant :

- 2.a) Pourquoi l'automate \mathcal{B} est non déterministe?
- **2.b**) Donner 3 mots de longueur 3 acceptés par \mathcal{B} et 2 mots de longueur 4 rejetés par \mathcal{B} .
- 2.c) Donner une expression régulière du langage reconnu par l'automate \mathcal{B} .

Question 3. Donner la table de transition de l'automate \mathcal{B} . Déterminiser cet automate.

Question 4. Donner une grammaire qui engendre le langage reconnu par l'automate \mathcal{B} .

Exercice II. Compilation

À rendre sur une copie séparée

On cherche à ajouter l'opérateur ternaire ?: au langage de la calculette. Pour cela on ajoute à la règle expression la syntaxe suivante :

La sémantique associée est la suivante : si la condition est vraie alors la valeur de l'expression e1 est utilisée; sinon, on utilise la valeur de l'expression e2

Soit le code suivant

et le résultat de son assemblage

JUMP O			
LABEL 1	Adr	Instruction	
PUSHL -3	+		
PUSHI 1	0	JUMP	30
INF	2	PUSHL	-3
JUMPF 3	4	PUSHI	1
PUSHI 1	6 I	INF	
JUMP 2	7	JUMPF	13
LABEL 3	9	PUSHI	1
PUSHL -3	11	JUMP	26
PUSHI 0	13	PUSHL	-3
PUSHL -3	15	PUSHI	0
PUSHI 1	17	PUSHL	-3
SUB	19	PUSHI	1
CALL 1	21	SUB	
POP	22	CALL	2
MUL	24	POP	
LABEL 2	25 I	MUL	
STOREL -4	26 I	STOREL	-4
RETURN	28	RETURN	
RETURN	29	RETURN	
LABEL O	30 l	PUSHI	0
PUSHI 0	32	PUSHI	2
PUSHI 2	34 l	CALL	2
CALL 1	36 l	POP	
POP	37 l	WRITE	
WRITE	38	POP	
POP	39 l	HALT	
HALT			

Question 5. Compléter la trace d'exécution suivante.

pc	I	l	fp	pile
0	 JUMP	30	0 [[] 0
30	PUSHI	0	0 [[] 0
32	PUSHI	2	0 [[0]1
34	CALL	2	0 [[02]2
2	PUSHL	-3	4 [[0 2 36 0] 4
4	PUSHI	1	4 [[0 2 36 0 2] 5
6	INF	1	4 [[0 2 36 0 2 1] 6
7	JUMPF	13		[0 2 36 0 0] 5
13	PUSHL	-3		[0 2 36 0] 4
15	PUSHI	0	4 [[0 2 36 0 2] 5
17	PUSHL	-3		[0 2 36 0 2 0] 6
19	PUSHI	1	4 [[0 2 36 0 2 0 2] 7
21	SUB		4 [[0 2 36 0 2 0 2 1] 8
22	CALL	2	4 [[0 2 36 0 2 0 1] 7
17 19 21 22 2 4 6 7 9 11 26 28	PUSHI PUSHI PUSHI PUSHI PUSHI PUSHI PUSHI PUSHI INF JUMPF PUSHI JUMP STOREL RETURN POP	 	9 [9 [9 [14 [14 [14 [14 [14 [14 [[0 2 36 0 2 0 1 24 4 1] 10 [0 2 36 0 2 0 1 24 4 1 0] 11 [0 2 36 0 2 0 1 24 4 1 0 1] 12 [0 2 36 0 2 0 1 24 4 1 0 1 1] 13 [0 2 36 0 2 0 1 24 4 1 0 0] 12 [0 2 36 0 2 0 1 24 4 1 0 0] 12 [0 2 36 0 2 0 1 24 4 1 0 0 24 9] 14 [0 2 36 0 2 0 1 24 4 1 0 0 24 9 0] 15 [0 2 36 0 2 0 1 24 4 1 0 0 24 9 0] 15 [0 2 36 0 2 0 1 24 4 1 0 0 24 9 0 1] 16 [0 2 36 0 2 0 1 24 4 1 0 0 24 9 1] 15 [0 2 36 0 2 0 1 24 4 1 0 0 24 9] 14 [0 2 36 0 2 0 1 24 4 1 0 0 24 9 1] 15 [0 2 36 0 2 0 1 24 4 1 0 0 24 9 1] 15 [0 2 36 0 2 0 1 24 4 1 0 0 24 9 1] 15 [0 2 36 0 2 0 1 24 4 1 0 0 24 9 1] 15 [0 2 36 0 2 0 1 24 4 1 0 0 24 9 1] 15
26 28 36 37	 MUL STOREL RETURN POP WRITE	-4 -4 -1	4 [4 [0 [[0 2 36 0 2 1] 6 [0 2 36 0 2] 5 [2 2 36 0] 4 [2 2] 2 [2] 1
	POP	1		[2] 1
39	HALT	1	0 [[]0

 ${\bf Question}$ 6. Donner le code MVaP généré par le programme suivant :

```
int x = 1
println(1 + ( x > 2 ? 4 : x))
```

Question 7. Compléter le code antlr pour obtenir la génération de code.

Question 8. Expliquer ce que fait le code MVaP donné en début d'exercice. Donner un programme produisant ce code.

Exercice III. Analyse LL

À rendre avec l'exercice I

On considère la grammaire G qui engendre l'ensemble des mots qui ont autant de a que de b. Elle est définie par l'axiome S, les variables $\{S,C,D\}$, les terminaux $\{a,b\}$ et les règles de production :

$$\left\{ \begin{array}{ll} \mathtt{S} & \rightarrow & \mathtt{aDbS} \mid \mathtt{bCaS} \mid \varepsilon \\ \mathtt{D} & \rightarrow & \mathtt{aDbD} \mid \varepsilon \\ \mathtt{C} & \rightarrow & \mathtt{bCaC} \mid \varepsilon \end{array} \right.$$

Question 9. Donner pour le mot bbaaab un arbre d'analyse et la dérivation gauche associée.

On dispose des tables Effacable, Premier et Suivant de la grammaire G :

Symbole	Effacable	Premier	Suivant
S	Oui	a,b	\$
D	Oui	a	Ъ
C	Oui	Ъ	a

Question 10. Indiquer comment est déterminé l'ensemble Premier(S) et l'ensemble Suivant (C).

Question 11. Construire la table d'analyse LL(1) de la grammaire G. Qu'est-ce qui permet d'affirmer que cette grammaire est LL(1) ?

Question 12.

- 12.a) Dérouler l'analyse LL(1) sur l'entrée bbaaab. À partir de cette analyse, comment retrouver la dérivation gauche associée à bbaaab?
- 12.b) Dérouler l'analyse LL(1) sur l'entrée aba.