PH3102 Quantum Mechanics Assignment 2

Instructor: Dr. Siddhartha Lal Autumn Semester, 2024

Start Date: August 13, 2024 Submission Deadline: August 20, 2024 . Submit your answers to the Tutor at the start of the tutorial.

Q1. Concept of a operator. [5 marks]

Consider \hat{O} to be an operator defined by

$$\hat{O} = |\phi\rangle \langle \psi|,$$

where $|\phi\rangle$ and $|\psi\rangle$ are two vectors of the state space.

- (a) Give the condition for \hat{O} to be Hermitian.
- (b) Calculate \hat{O}^2 . State the condition for which \hat{O} can be a valid projection operator?
- (c) Show that \hat{O} can always be written in the form of $\hat{O} = \lambda P_1 P_2$, where λ is a constant to be determined and P_1 and P_2 are projection operators corresponding to the vectors $|\phi\rangle$ and $|\psi\rangle$ respectively.

Q2. Characteristics of real wavefunction. [5 marks]

Consider a real-valued wavefunction $\psi(x)$.

- (a) For this $\psi(x)$, show that the expectation value of momentum given by $\langle \hat{p} \rangle$ is zero.
- (b) Now show that if $\psi(x)$ has a mean momentum given by $\langle \hat{p} \rangle$, $e^{\frac{ip_0x}{\hbar}}\psi(x)$ has mean momentum $\langle \hat{p} \rangle + p_0$. Use the Dirac "bra-ket" notation to carry out the computations.

Q3. Coherent States. [5 marks]

For the simple harmonic oscillator with the time independent wavefunctions $\psi_n(x)$ satisfying

$$H\psi_n(x) = \hbar\omega(n + \frac{1}{2})\psi_n(x) ,$$

consider the superposition at time t=0

$$\psi(x,t=0) = \sum_{n=0}^{\infty} c_n \psi_n(x) . \tag{1}$$

(a) How should the coefficients be chosen so that $\psi(x,0)$ is an eigenstate of the lowering operator \hat{a} with eigenvalue α (a given complex number), i.e.,

$$\hat{a}\psi(x,0) = \alpha\psi(x,0) ?$$

(b) Using the expression for \hat{a} , find the explicit form of the wavefunction at $\psi(x,0)$. Ensure that $\psi(x,0)$ is correctly normalised.

Note that eigenstates of \hat{a} are referred to as "coherent states".