Docket No.

219995US0TTCRD

IN THE UNITED STATES PATENT AND TRADEMARK OFFICE

IN RE APPLICATION OF: Tatsuoki KOHNO, et al.

GAU:

SERIAL NO: New Application

EXAMINER:

FILED:

Herewith

FOR:

NONAQUEOUS LIQUID ELECTROLYTE AND NONAQUEOUS LIQUID ELECTROLYTE

SECONDARY BATTERY

REQUEST FOR PRIORITY

ASSISTANT COMMISSIONER FOR PATENTS WASHINGTON, D.C. 20231

WASHINGTON, D.C. 20231					
SIR:					
☐ Full benefit of the filing date of U.S. of 35 U.S.C. §120.	S. Application Serial Number	, filed	, is claim	ned pursuant to the provisions	
☐ Full benefit of the filing date of U.S. the provisions of 35 U.S.C. §119(e)		al Number	, filed	, is claimed pursuant to	
□ Applicants claim any right to priori provisions of 35 U.S.C. §119, as no		ations to whic	they may b	e entitled pursuant to the	
In the matter of the above-identified app	plication for patent, notice is he	reby given th	at the applica	ints claim as priority:	
COUNTRY Japan Japan	<u>APPLICATION NUMBER</u> 2001-094051 2001-297422		MONTH/DAY/YEAR March 28, 2001 September 27, 2001		
Certified copies of the corresponding C	onvention Application(s)				
are submitted herewith					
☐ will be submitted prior to paym	ent of the Final Fee				
were filed in prior application S	Serial No. filed				
were submitted to the Internation Receipt of the certified copies be acknowledged as evidenced by	y the International Bureau in a	n Number timely manne	er under PCT	Rule 17.1(a) has been	
☐ (A) Application Serial No.(s) w	ere filed in prior application Se	erial No.	filed	; and	
☐ (B) Application Serial No.(s)					
are submitted herewith					
□ will be submitted prior to	payment of the Final Fee				
	Respectfully Submitted,				
		BLON, SPIV			
		6hm	MCru	~^	

Tel. (703) 413-3000 Fax. (703) 413-2220 (OSMMN 10/98) C. Irvin McClelland Registration Number 21,124

24,618

Norman F. Oblon Registration No.

日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office

出願年月日

Date of Application:

2001年 3月28日

出願番号

Application Number:

特願2001-094051

出 願 人 Applicant(s):

株式会社東芝

2001年10月26日

特許庁長官 Commissioner, Japan Patent Office

特2001-094051

【書類名】

特許願

【整理番号】

13B0120291

【提出日】

平成13年 3月28日

【あて先】

特許庁長官殿

【国際特許分類】

H01M 10/34

【発明の名称】

非水電解液および非水電解液二次電池

【請求項の数】

【発明者】

【住所又は居所】

神奈川県川崎市幸区小向東芝町1番地 株式会社東芝

研究開発センター内

【氏名】

河野 龍興

【発明者】

【住所又は居所】

神奈川県川崎市幸区小向東芝町1番地 株式会社東芝

研究開発センター内

【氏名】

高見 則雄

【特許出願人】

【識別番号】

000003078

【氏名又は名称】 株式会社 東芝

【代理人】

【識別番号】

100081732

【弁理士】

【氏名又は名称】

大胡 典夫

【選任した代理人】

【識別番号】 100075683

【弁理士】

【氏名又は名称】 竹花 喜久男

【選任した代理人】

【識別番号】 100084515

【弁理士】

特2001-094051

【氏名又は名称】 宇治 弘

【手数料の表示】

【予納台帳番号】 009427

【納付金額】

21,000円

【提出物件の目録】

【物件名】

明細書 1

【物件名】

図面 . 1

【物件名】

要約書 1

【包括委任状番号】 0001435

【プルーフの要否】

要

【書類名】 明細書

【発明の名称】 非水電解液および非水電解液二次電池

【特許請求の範囲】

【請求項1】

γーブチルラクトンを含有する非水溶媒と、

前記非水溶媒中に添加されたイオン伝導性の電解質と、

前記非水溶媒中に添加されたポリエチレンオキサイドを含有する高分子材料とを具備し、前記高分子材料の含有量がO. Olwt%~10wt%であることを特徴とする非水電解液。

【請求項2】

前記高分子材料の平均分子量は、 $1 \times 10^4 \sim 1 \times 10^8$ の範囲内にあることを特徴とする請求項1記載の非水電解液。

【請求項3】

非水溶媒中にリチウムイオン伝導性の電解質を添加した非水電解液において、

0.01 w t %~10 w t %の添加で、20℃における前記非水電解液の粘度を、7 c p 以上、30000 c p 以下にする高分子材料を前記非水溶媒に添加したことを特徴とする非水電解液。

【請求項4】

活物質を含有する正極と、リチウムイオンを吸蔵・放出する材料を含有する負極と、前記正極および負極との間に挟まれる電解液とを具備する非水電解液二次電池において、

前記電解液は、 γ ーブチルラクトンを含有する非水溶媒と、前記非水溶媒中に添加されたリチウムイオン伝導性の電解質と、前記非水溶媒中に添加されたポリエチレンオキサイドからなる高分子材料とを有し、前記高分子材料の含有率が 0 . 0 1 w t %~1 0 w t %であることを特徴とする非水電解液二次電池。

【請求項5】

活物質を含有する正極と、リチウムイオンを吸蔵・放出する材料を含有する負極と、前記正極および負極との間に挟まれる非水電解液とを具備する非水電解液 二次電池において、0.01 w t %~10 w t %の添加で、20℃における前記 非水電解液の粘度を、7 c p以上、3 0 0 0 0 c p以下にする高分子材料を前記 非水溶媒に添加したことを特徴とする非水電解液二次電池。

【請求項6】

前記非水電解液は、多孔質材料からなるセパレータの細孔中に保持されて前記 正極および負極との間に挟まれることを特徴とする請求項4あるいは5に記載の 非水電解液二次電池。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、非水電解液および非水電解液二次電池。

[0002]

【従来の技術】

現在携帯電話などの携帯機器向けの非水電解液二次電池として、リチウムイオン二次電池が商品化されている。この電池は、正極、負極、および電解液を含有したセパレータとを有しており、正極にリチウムコバルト酸化物(LiCoO2)、負極に黒鉛質材料や炭素質材料、非水電解液にリチウム塩を溶解した有機溶媒、セパレータに多孔質膜が用いられている。

非水電解液は非水溶媒中に電解質を溶解したものであり、通常、プロピレンカーボネート、エチレンカーボネート、γーブチロラクトンからなる混合液などの 低粘度、低沸点材料が使用される。

[0004]

一方、非水電解液二次電池は、密閉系の容器などに収納した状態で携帯機器などに搭載される。その際に、非水電解液が密閉系の容器から漏出してしまうという問題が生じる。

[0005]

このような問題に対し、イオン伝導性の材料として非水電解液を使用せずに、 電解質を含有するゲル状電解質の提案がなされている。(例えば特開2000-315523号公報)。 [0006]

しかしながら、ゲル状体中には多量の高分子材料が含有されているため、この 母材である樹脂によって電解質の移動が妨げられ、非水電解液単体の場合に比べ てイオン伝導性が著しく低下してしまう。また液体に比べて電極との接触性も低 下するため、界面抵抗が大きくなり、非水電解液二次電池の放電特性を低下させ てしまうという問題があった。

[0007]

【発明が解決しようとする課題】

上述したように、液漏れなどを防止するために非水電解液を含有したゲル状体 を使用した非水電解液二次電池は、十分な放電特性を得ることができなかった。

[0008]

本発明は、このような問題に鑑みて為されたものであり、放電特性が高く、かつ液漏れを抑制した非水電解液二次電池を提供することを目的とする。

[0009]

【課題を解決するための手段】

本発明の非水電解液は、 γ ーブチルラクトンを含有する非水溶媒と、前記非水溶媒中に添加されたイオン伝導性の電解質と、前記非水溶媒中に添加されたポリエチレンオキサイドを含有する高分子材料とを具備し、前記高分子化合物の含有量が 0.01 w t % ~ 10 w t % であることを特徴とする。

[0010]

前記高分子材料の平均分子量は、 $1 \times 10^4 \sim 1 \times 10^8$ の範囲内であることが 好ましい。

[0011]

本発明の非水電解液は、非水溶媒中にリチウムイオン伝導性の電解質を添加した非水電解液において、0.01wt%~10wt%の添加で、20℃における前記非水電解液の粘度を、7cp以上、30000cp以下にする高分子材料を前記非水溶媒に添加したことを特徴とする。

[0012]

本発明の非水電解液二次電池は、活物質を含有する正極と、リチウムイオンを

吸蔵・放出する材料を含有する負極と、前記正極および負極との間に挟まれる電解液とを具備する非水電解液二次電池において、前記電解液は、γーブチルラクトンを含有する非水溶媒と、前記溶媒中に添加されたリチウムイオン伝導性の電解質と、前記非水溶媒中に添加されたポリエチレンオキサイドからなる高分子材料とを有し、前記高分子材料の含有率が0.01wt%~10wt%であることを特徴とする。

[0013]

本発明の非水電解液二次電池は、活物質を含有する正極と、リチウムイオンを吸蔵・放出する材料を含有する負極と、前記正極および負極との間に挟まれる非水電解液とを具備する非水電解液二次電池において、0.01wt%~10wt%の添加で、20℃における前記非水電解液の粘度を、7cp以上、30000cp以下にする高分子材料を前記非水溶媒に添加したことを特徴とする非水電解二次電池。

[0014]

前記非水電解液は、多孔質材料からなるセパレータの細孔中に保持されて前記 正極および負極との間に挟むことができる。

[0015]

【発明の実施の形態】

本発明者らは、イオン伝導性の材料として、ゲル状体を使用せずに、高粘度の非水電解液を使用することで、電池からの媒体の漏出を防ぐことができると考え、鋭意研究を進めた結果、非水溶媒としてγーブチロラクトンを使用した非水電解液に、数wt%のポリエチレンオキサイドを添加することで非水電解液の粘性を極めて大きくすることが可能になることを確認した。すなわち、非水溶媒に応じて適宜選択された高分子材料を非水電解液中に添加することで、微量の高分子化合物の添加で非水電解液の粘性を上げることが可能になり、その結果、樹脂による非水電解液中での電解質の移動の抑制を低減し、非水電解液二次電池の電池特性を向上させつつ、非水電解液の電池からの漏出を防止することが可能になることを確認して本発明に至った。

[0016]

以下、本発明の非水電解液二次電池をより詳細に説明する。

[0017]

図1は本発明の非水電解液二次電池の一例を示す薄型リチウムイオン二次電池 の断面図であり、図2は図1中のAの部分を拡大した拡大断面図である。

[0018]

図1に示すように、例えばフィルムからなる外装材1と、この外装材によって 包囲された電極群2とを有している。電極群2は、正極、セパレータおよび負極 からなる積層物が偏平形状に捲回された構造をしている。

[0019]

図2に示すように、扁平形状に捲回された電極群2は、セパレータ3、正極1 2、セパレータ3、負極13、セパレータ3、正極12、セパレータ3、および 負極13が、図面下側から順番に積層されたものからなる。

[0020]

また、負極13は、負極層6、負極集電体7および負極層6をこの順番で積層 した3層構造をしており、正極12は、正極層4、正極集電体5および正極層4 をこの順番で積層した3層構造をしている。ただし、最外層の負極12は図面下 側から負極層6よび負極集電体7との2層構造であり、最外層側では負極集電体 7は接着層8を介して外装材1に接着されている。また、外装材1内には非水電 解液が注入されて、セパレータ中に保持されている。

[00.21]

帯状の正極リード10は、一端が前記電極群2の前記正極集電体5に接続され、かつ他端が前記外装材1から延出されている。一方、帯状の負極リード11は、一端が前記電極群2の前記負極集電体7に接続され、かつ他端が前記外装材1から延出されているこのような電極群を外装材に収納した後、非水電解液を注入し、封口等を行うことにより薄型の非水電解液二次電池を製造することができる

[0022]

以下、このような非水電解液二次電池の各構成をより詳細に説明する。

[0023]

(1)正極

正極は、正極用の集電体と、この集電体の片面もしくは両面に形成された正極 層とを有している。

[0.024]

集電体としては、多孔質構造の導電性基板か、あるいは無孔の導電性基板を用いることができる。これら導電性基板は、例えば、アルミニウム、ステンレス、またはニッケルから形成することができる。

[0025]

正極層は正極活物質を含有しており、通常はさらに導電剤および結着樹脂とを 含有した混合材料で形成される。

[0026]

正極活物質としては、種々の酸化物、例えば二酸化マンガン、リチウムマンガン複合酸化物、リチウム含有ニッケル酸化物、リチウム含有コバルト酸化物、リチウム含有ニッケルコバルト酸化物、リチウム含有鉄酸化物、リチウムを含むバナジウム酸化物や、二硫化チタン、二硫化モリブデンなどのカルコゲン化合物などを挙げることができる。中でも、リチウム含有コバルト酸化物(例えば、Li CoO_2)、リチウム含有ニッケルコバルト酸化物(例えば、Li $Ni_{0.8}Co_0$ O_2)、リチウムマンガン複合酸化物(例えば、 O_1 O_2)を用いると、高電圧が得られるために好ましい。

[0027]

導電剤としては、例えばアセチレンブラック、カーボンブラック、黒鉛等を挙 げることができる。

[0028]

結着剤は、活物質を集電体に保持させ、かつ活物質同士をつなぐ機能を有する。前記結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレンープロピレンージエン共重合体(EPDM)、スチレンーブタジエンゴム(SBR)等を用いることができる。

[0029]

前記正極活物質、導電剤および結着剤の配合割合は、正極活物質80~95重

量%、導電剤3~20重量%、結着剤2~7重量%の範囲にすることが好ましい

[0030]

(2) 負極

負極は、負極用の集電体と、この集電体の片面もしくは両面に形成された負極層とを有している。

[0031]

負極用の集電体は、多孔質構造の導電性基板か、あるいは無孔の導電性基板を 用いることができる。これら導電性基板は、例えば、銅、ステンレス、またはニッケルから形成することができる。

[0032]

負極層は、リチウムイオンを吸蔵・放出可能な材料を含有しており、通常はさらに導電剤および結着樹脂とを含有した混合材料で形成される。

[0033]

リチウムイオンを吸蔵・放出可能な材料としては、黒鉛、コークス、炭素繊維、球状炭素などの黒鉛質材料もしくは炭素質材料、熱硬化性樹脂、等方性ピッチ、メソフェーズピッチ、メソフェーズピッチ系炭素繊維、メソフェーズ小球体など(特に、メソフェーズピッチ系炭素繊維が容量や充放電サイクル特性が高くなり好ましい)に500~3000℃で熱処理を施すことにより得られる黒鉛質材料または炭素質材料等を挙げることができる。中でも、前記熱処理の温度を2000℃以上にすることにより得られ、(002)面の面間隔d002が0.340nm以下である黒鉛結晶を有する黒鉛質材料を用いるのが好ましい。このような黒鉛質材料を炭素質物として含む負極を備えた非水電解液二次電池は、電池容量および大電流放電特性を大幅に向上することができる。前記面間隔d002は、0.336nm以下であることが更に好ましい。

[0034]

リチウムイオンを吸蔵・放出する材料としては、他にも、アルミニウム、マグネシウム、スズ、珪素等の金属か、金属酸化物か、金属硫化物か、もしくは金属 窒化物から選ばれる金属化合物や、リチウム合金を含むものであってもよい。

特2001-094051

[0035]

金属酸化物としては、例えば、スズ酸化物、ケイ素酸化物、リチウムチタン酸化物、ニオブ酸化物、タングステン酸化物等を挙げることができる。

[0036]

金属硫化物としては、例えば、スズ硫化物、チタン硫化物等を挙げることができる。

[0037]

金属窒化物としては、例えば、リチウムコバルト窒化物、リチウム鉄窒化物、 リチウムマンガン窒化物等を挙げることができる。

[0038]

リチウム合金としては、例えば、リチウムアルミニウム合金、リチウムスズ合金、リチウム鉛合金、リチウムケイ素合金等を挙げることができる。

[0039]

結着剤としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVdF)、エチレンープロピレンージエン共重合体(EPDM)、スチレンープタジエンゴム(SBR)、カルボキシメチルセルロース(CMC)等を用いることができる。

[0040]

炭素質物及び結着剤の配合割合は、炭素質物90~98重量%、結着剤2~2 0重量%の範囲であることが好ましい。

[0041]

(3) セパレータ

セパレータは、正極と負極との短絡を防ぐためのものであり絶縁性材料で形成 される。また、セパレータ中には非水電解液が保持され、電極間でのリチウムイ オンの移動ができるよう細孔が設けられた多孔質シートが使用される。

[0042]

多孔質シートとしては、例えば、多孔質フィルム、もしくは不織布を用いることができる。前記多孔質シートは、例えば、ポリオレフィン及びセルロースから 選ばれる少なくとも1種類の材料からなることが好ましい。前記ポリオレフィン としては、例えば、ポリエチレン、ポリプロピレンを挙げることができる。中で も、ポリエチレンか、あるいはポリプロピレン、または両者からなる多孔質フィ ルムは、二次電池の安全性を向上できるため、好ましい。

[0043]

多孔質シートの厚さは、 30μ m以下にすることが好ましい。厚さが 30μ m を越えると、正負極間の距離が大きくなって内部抵抗が大きくなる恐れがある。また、厚さの下限値は、 5μ mにすることが好ましい。厚さを 5μ m未満にすると、セパレータの強度が著しく低下して内部ショートが生じやすくなる恐れがある。厚さの上限値は、 25μ mにすることがより好ましく、また、下限値は 10μ mにすることがより好ましい。

[0044]

多孔質シートは、気孔率が30~60%の範囲の多孔質材料を使用することが望ましい。気孔率が30%未満の場合多孔質シート中に保持される電解液の量が少なくなりイオン伝導性が低下する。気孔率が60%を超えると機械的な強度が不十分となる。

[0045]

なお、イオン伝導材料としてゲル状体を使用する場合には、ゲル状体を多孔材料の気孔中に形成することは困難なため、ゲル状体を直接電極間に挟まなければならないが、イオン伝導材料として非水電解液を使用した場合には機械的な強度の高い多孔質材料の気孔中に保持させることができる。そのため電極間の短絡などを防止することが可能になる。

[0046]

(4) 非水電解液

非水電解液は、非水溶媒と、非水電解液に溶解された電解質および高分子材料 とを有している。

[0047]

4-1) 電解質

非水電解液に含まれる電解質としては、例えば過塩素酸リチウム(LiC1O4)、六フッ化リン酸リチウム($LiPF_6$)、ホウフッ化リチウム($LiBF_4$

)、六フッ化砒素リチウム($LiAsF_6$)、トリフルオロメタスルホン酸リチウム($LiCF_3SO_3$)、ビストリフルオロメチルスルホニルイミドリチウム [$(LiN(CF_3SO_2)_2]$ などのリチウム塩(電解質)が挙げられる。中でも $LiPF_6$ かあるいは $LiBF_4$ を用いるのが好ましい。

[0048]

電解質の非水溶媒に対する溶解量は、0.5~2.0モル/リットルとすることが望ましい。

[0049]

4-2) 非水溶媒

非水溶媒は、使用される高分子材料に応じて適宜選択され、選択された高分子 材料を微量添加することでその粘性が向上する。例えば、高分子材料としてポリ エチレンオキサイドを使用する場合の非水溶媒について説明する。

非水溶媒は、 γ ーブチロラクトン (BL) を含有する有機溶媒が使用される。 B L単独の非水溶媒を使用することもできるが、 BLを主体とする混合非水溶媒を 使用することが好ましく、具体的には BLが 50 v o 1% ~ 95 v o 1% 含有さ れる混合非水溶媒を使用することが好ましい。

[0050]

非水溶媒中のBLの比率が50 v o 1%よりも少ないと高温時にガスが発生しやすくなる恐れがある。BLの比率が5 v o 1%を超えると負極とBLとの反応が生じるため、充放電サイクル特性が低下する。例えば、負極に炭素質物を使用した場合、炭素質物とBLとが反応して非水電解液の還元分解が生じ、負極の表面に充放電反応を阻害する被膜が形成される。その結果、負極において電流集中が生じやすくなるため、負極表面にリチウム金属が析出し、あるいは負極界面のインピーダンスが高くなり、負極の充放電効率が低下して、充放電サイクル特性の低下を招く。

[0051]

非水溶媒中のBLのより好ましい比率は、60体積%以上、95体積%以下である。この範囲にすることによって、高温貯蔵時のガス発生を抑制する効果をより高くすることができると共に、-20℃付近の低温環境下での放電容量をより

向上することができる。更に好ましい範囲は65体積%以上、90体積%以下である。

[0052]

BLと混合される非水溶媒としては、環状カーボネートが負極の充放電効率を 高める点で望ましい。さらに鎖状カーボネート、鎖状エーテル、環状エーテル等 の低粘度溶媒を20体積%以下含んでもよい。

[0053]

環状カーボネートとしては、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ビニレンカーボネート(VC)、トリフロロプロピレンカーボネート(TFPC)等が望ましい。特に、BLと混合される溶媒としてECを用いると、充放電サイクル特性と大電流放電特性を大幅に向上することができる。また、BLと混合する他の溶媒としては、PC、VC、TFPC、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)及び芳香族化合物からなる群より選ばれる少なくとも一種からなる第3溶媒とECとの混合溶媒であると、充放電サイクル特性を高める点で望ましい。

[0054]

より具体的な混合非水溶媒の組成例としては、BLとEC、BLとPC、BLとECとDEC、BLとECとMEC、BLとECとMECとVC、BLとECとVC、BLとECとPCとVCである。

[0055]

BLとECとの混合非水溶媒を使用する場合、ECの体積比率は5 v o 1%~4 0 v o 1%とすることが好ましい。ECの比率を5体積%未満にすると、負極表面を保護膜で緻密に覆うことが困難になる恐れがあるため、負極とBLとの反応が生じ、充放電サイクル特性を十分に改善することが困難になる可能性がある。一方、ECの比率が4 0体積%を超えると、非水電解液の粘度が高くなってイオン伝導度が低下する恐れがあるため、充放電サイクル特性、大電流放電特性及び低温放電特性を十分に改善することが困難になる可能性がある。ECの比率の更に好ましい範囲は、10~35体積%である。

[0056]

また、混合非水溶媒の成分としてDEC、MEC、PC及びVCから選ばれる少なくとも1種類を使用した場合は、負極の表面に緻密な保護膜を形成し、負極の界面インピーダンスを低下させる作用をなす。この溶媒の添加量は、特に限定されるものではなく、この作用が生じるような量に設定される。但し、混合非水溶媒中でのこれらの成分の比率が10体積%を超えると、高温環境下で非水電解液が酸化分解するのを十分に抑制することが困難になるか、あるいは非水電解液の粘度が高くなってイオン導電率が低下する恐れがある。このため、混合非水溶媒中でのこれらの成分の体積比率は、10体積%以下とすることが望ましい。更に好ましい体積比率は、2体積%以下である。また、体積比率の下限値は、0.001体積%にすることが好ましく、更に好ましい下限値は0.05体積%である。

[0057]

前述した混合非水溶媒の組成の中で 特に、50体積%より多く、95体積%以下のBLに、EC及びVCを添加した混合非水溶媒が好ましい。この非水溶媒を含む非水電解液と、リチウムイオンを吸蔵放出する炭素質物を含む負極とを備えた非水電解液二次電池は、負極の界面のインピーダンスを大幅に低下させることができると共に、負極に金属リチウムが析出するのを抑制することができるため、負極の充放電効率を向上することができる。その結果、優れた大電流放電特性と、長寿命を実現しつつ、高温貯蔵時のガス発生を抑制して外装材の変形を抑えることができる。このように負極特性が改善されるのは、以下に説明するような作用によるものと推測される。前記二次電池においては、前記負極の表面にECによる保護皮膜が形成されるに加えて、VCによる薄くて、緻密な被膜が形成される。その結果、BLと負極との反応が更に抑えられるため、インピーダンスの低下及び金属リチウムの析出防止が達成されるものと考えられる。

[0058]

また、非水溶媒としては、前述した組成を有するものの代わりに、50体積%より多く、95体積%以下のBLに、EC及び芳香族化合物を添加した混合非水溶媒を用いても良い。前記芳香族化合物としては、例えば、ベンゼン、トルエン、キシレン、ビフェニル及びテルフェニルから選ばれる少なくとも1種類を挙げ

ることができる。ECは、負極(例えば、リチウムイオンを吸蔵放出する炭素質物を含むもの)の表面に付着して保護膜を形成し、負極とBLとの反応を抑制することができる。このとき、ECの体積比率は、前述したのと同様な理由により5~40体積%とすることが好ましい。また、ECの比率の更に好ましい範囲は、10~35体積%である。一方、前記芳香族化合物のベンゼン環は、負極(例えば、リチウムイオンを吸蔵放出する炭素質物を含むもの)の表面に吸着しやすいため、負極とBLとの反応を抑制することができる。従って、50体積%より多く、95体積%以下のBL、EC及び芳香族化合物を含む非水溶媒を含有する非水電解液は、負極とBLとの反応を十分に抑えることができるため、二次電池の充放電サイクル特性を向上することができる。

[0059]

混合非水溶媒の成分としてDEC、MEC、PC、TFPCまたはVCが含有されると、負極とBLとの反応を更に抑制することができるため、充放電サイクル特性をさらに向上することができる。中でも、VCが好ましい。芳香族化合物、DEC、MEC、PC、TFPC及びVCから選ばれる少なくとも1種類からなる第3溶媒の添加量は、特に限定されるものではなく、この作用が生じるような量に設定される。但し、非水溶媒における前記第3溶媒の比率が10体積%を超えると、高温環境下で非水電解液が酸化分解するのを十分に抑制することが困難になるか、あるいは非水電解液の粘度が高くなってイオン導電率が低下する恐れがある。このため、非水溶媒における前記第3溶媒の体積比率は、10体積%以下とすることが望ましい。更に好ましい体積比率は、2体積%以下である。また、体積比率の下限値は、0.001体積%にすることが好ましく、更に好ましい下限値は0.05体積%である。

[0060]

4-3) 高分子材料

高分子材料は、非水溶媒中に溶解して、得られる非水電解液の粘度を向上させる。この高分子材料は、非水電解液を保持した状態で高いリチウムイオン伝導性を維持できる、ポリアクリロニトリル(PAN)、ポリアクリレート(PMMA)、ポリフッ化ビニリデン(PVdF)、ポリ塩化ビニル(PVC)、またはポ

リエチレンオキサイド(PEO)等を使用することができるが、前述したように 溶解させる非水溶媒の種類によって溶解量に対する粘度の向上度合いは異なり、 非水溶媒としてBLを含有する有機溶媒を使用した場合には、PEOを使用する ことが好ましい。

[0061]

PEOは、BL中にわずかな量溶解しただけで、得られる非水電解液の粘度を著しく高めることが可能なため、高分子材料による電解液中における電解質の移動を損なわずに済むだけでなく、非水電解液中に均一に存在するため、イオン伝導度をより向上することが可能である。

[0062]

PEOは、BLを含有する前述したような非水電解液に対して0.01wt%以上、10wt%以下で存在することが好ましい。PEOの量を0.01wt%未満にすると、非水電解液が外装材から漏出する可能性が高くなる。一方、PEOの量が10wt%を越えると、二次電池のリチウムイオン伝導度が著しく低下し、放電容量、大電流放電特性及び充放電サイクル特性を改善することが困難になる。

[0063]

非水電解液の量は、電池単位容量100mAh当たり0.2~0.6gにすることが好ましい。これは次のような理由によるものである。非水電解量を0.2g/100mAh未満にすると、正極と負極のイオン伝導度を十分に保つことができなくなる恐れがある。一方、非水電解液量が0.6g/100mAhを越えると、電解質量が多量になってフィルム製外装材による封止が困難になる恐れがある。非水電解液量のより好ましい範囲は、0.4~0.55g/100mAhである。

[0064]

高分子材料の平均分子量は、 $1 \times 10^4 \sim 1 \times 10^8$ の範囲内にあることが好ましい。この範囲から外れると、少量の高分子材料の添加で非水電解液の粘性を高めることができなくなる恐れがある。

[0065]

このようにして、高分子化材料を添加することで、得られる電解液の粘度を7cp以上、30000cp以下とする。電解液の粘度が7cpよりも低いと外装材から電解液の液漏れが生じる恐れがあり、30000cpよりも高いとセパレータ中に電解液を含浸させることが困難になる。

[0066]

(5) 外装材

外装材は、金属層と、金属層の両面をコーティングした樹脂層とを有し、樹脂層を含む厚さが 0.5 mm以下のシート製の外装材が用いられる。この外装材は、軽量であるために電池重量当たりのエネルギー密度を高くすることができるものの、可撓性を有するために電極群または非水電解液から発生するガスにより変形しやすい。

[0067]

樹脂層は金属層の保護層として機能し、例えば、ポリエチレン、ポリプロピレン等から形成することができる。金属層は水分を遮断する役割をなす。金属層は、例えば、アルミニウム、ステンレス、鉄、銅、ニッケル等を挙げることができる。中でも、軽量で、水分を遮断する機能が高いアルミニウムが好ましい。金属層は、1種類の金属から形成しても良いが、2種類以上の金属層を一体化させたものから形成しても良い。金属層の両面に形成された樹脂層のうち、電池の外側に設けられた樹脂層は金属層の損傷を防止する役割をなす。この外側の樹脂層は、1種類の樹脂層、もしくは2種類以上の樹脂層から形成される。一方、電池内側に設けられた樹脂層は、金属層が非水電解液により腐食されるのを防止する役割を担う。この内側の樹脂層は、1種類の樹脂層、もしくは2種類以上の樹脂層から形成される。

[0068]

外装材の厚さが0.5mmを超えると、電池の重量当たりの容量が低下する。 外装材の厚さは0.3mm以下にすることが好ましく、更に好ましくは0.25 mm以下で、最も好ましくは0.15mm以下である。また、厚さが0.05m mより薄いと、変形や破損し易くなる。このため、厚さの下限値は0.05mm にすることが好ましい。更に好ましい下限値は0.08mmで、最も好ましい範 囲は0.1mmである。

[0069]

外装材の厚さは、以下に説明する方法で測定される。すなわち、外装材の封止部を除く領域において、互いに1 c m以上離れて存在する3点を任意に選択し、各点の厚さを測定し、平均値を算出し、この値を外装材の厚さとする。なお、前記外装材の表面に異物(例えば、樹脂)が付着している場合、この異物を除去してから厚さの測定を行う。

[0070]

このようなリチウムイオン二次電池を組み立てた後、30℃~80℃の温度条件下で、0.05 C以上、0.5 C以下の充電レートで初充電を施す。この条件での充電は1サイクルのみでも良いし、2サイクル以上行ってもよい。また、初充電前に30℃以上80℃以下の温度条件下に1時間~100時間程度保管してもよい。ここで、1 C充電レートとは公称容量(Ah)を1時間で充電するために必要な電流値である。

[0071]

初充電の温度を前記範囲に規定するのは次のような理由によるものである。初充電温度が30℃未満であると、非水電解液の粘度が高いままであるために非水電解液を正極、負極及びセパレータに均一に含浸させることが困難になり、内部インピーダンスが増加し、また活物質の利用率が低下する。一方、初充電温度が80℃を超えると、正極及び負極に含まれる結着剤が劣化する。

[0072]

初充電の充電レートを 0.05~0.5 Cの範囲にすることによって、充電による正極と負極の膨張を適度に遅くすることができるため、正極及び負極に非水電解液を均一に浸透させることができる。

[実施例]

(実施例1)

<正極の作製>

まず、リチウムコバルト酸化物($LixCoO_2$; 但し、 $Xは0 \le X \le 1$ である)粉末92重量%をアセチレンブラック3重量%、グラファイト3重量%及び

エチレンプロピレンジエンモノマ粉末 2 重量%とトルエンを加えて共に混合し、 10 cm^2 当たり 10 個の割合で直径 0.5 mmの孔が存在する多孔質アルミニウム箔(厚さが 15μ m)からなる集電体の両面に塗布した後、プレスすることにより電極密度が 3.2 g/cm^3 で、正極層が集電体の両面に担持された構造の正極を作製した。

[0073]

<負極の作製>

炭素質材料として3100℃で熱処理したメソフェーズピッチ系炭素繊維(繊維径が8 μ m、平均繊維長が18 μ m、平均面間隔(d002)が0.3360 nm)の粉末を95重量%と、結着剤としてポリフッ化ビニリデン(PVdF)5重量%とを混合し、これを銅箔(厚さが15 μ m)からなる集電体に塗布し、乾燥し、プレスすることにより電極密度が1.7g/cm 3 で、負極層が集電体に担持された構造の負極を作製した。

[0074]

<セパレータ>

厚さが $20\mu m$ 、120 C、1.5 時間での熱収縮が20 %で、多孔度が55 %のポリエチレン製多孔質フィルムからなるセパレータを用意した。

[0075]

<非水電解液の調製>

エチレンカーボネート(EC)と γ ーブチロラクトン(BL)の混合溶媒(混合体積比率25:75)に四フッ化ホウ酸リチウム(LiBF4)を1.5モル/1溶解して非水電解液を調製した。その後非水電解液に対し1重量%である分子量500万のポリエチレンオキサイドを前記電解液に攪拌しながら添加し、非水電解液を調製した。

[0076]

<電極群の作製>

前記正極の集電体に帯状の正極リードを溶接し、前記負極の集電体に帯状の負極リードを溶接した後、前記正極及び前記負極をその間に前記セパレータを介して渦巻き状に捲回した後、偏平状に成形し、電極群を作製した。

[0077]

アルミニウム箔の両面をポリプロピレンで覆った厚さ90μmのラミネートフィルムを袋状に成形し、これに前記電極群を前述した図3に示す積層面が袋の開口部から見えるように収納した。

[0078]

前記ラミネートフィルム内の電極群に前記非水電解液を電池容量1Ah当たりの量が4.5gとなるように注入し、前述した図1、2に示す構造を有し、厚さが3mm、幅が40mm、高さが70mmの薄型非水電解液二次電池を組み立てた。

[0079]

この非水電解液二次電池に対し、初充電工程として以下の処置を施した。まず、45℃の高温環境下に2h放置した後、その環境下で0.2C(120mA)で4.2Vまで定電流・定電圧充電を15時間行った。その後0.2Cで3.0Vまで放電し、さらに2サイクル目も1サイクル目と同様な条件で充電を行い、非水電解液二次電池を製造した。

[0080]

得られた非水溶媒二次電池の充放電サイクル特性を調べるために、45℃で1 Cレートでの4.2 V定電流・定電圧の3時間充電と1 Cレートの2.7 V放電 のサイクルを繰り返し300サイクル後の容量維持率を測定した。実施例1の電 池の電池特性を表1に示す。

[0081]

(実施例2~実施例7)

電解液に添加する高分子の添加量、分子量、粘度を表1に示す如く変えた以外 は実施例1と同様にして薄型非水電解液二次電池を得て電池評価を行った。各実 施例の電池の電池特性を表1に示す。

[0082]

(比較例1)

非水電解液にBLとECとの混合溶媒(体積比率 75:25)に 1.5 モル/ 1 の LiBF $_4$ を溶解したもののみを用いる以外、実施例 1 と同様な薄型非水電

解液二次電池を得て電池評価を行った。比較例1の電池の電池特性を表1に示す

【表1】

	分子量	添加量(wt%)	粘度(cP)	容量維持率(%)
実施例1	5 × 1 0 ⁶	1	1100	85
実施例 2	5 × 1 0 ⁶	5	20000	90
実施例3	1 × 1 0 ⁷	0.01	5000	88
実施例 4	1 × 1 0 ⁴	10	100	80
実施例 5	8×10 ⁵	6	500	84
実施例6	1 × 1 0 ⁶	0.1	700	85
実施例7	5 × 1 0 ⁵	2	200	82
比較例1	-	_	6. 6	15

表1から明らかなように、高分子を添加して電解液を高粘度にした非水溶媒を含有する非水電解液を備えた実施例1~7の二次電池は、45℃における300サイクル後の容量維持率を著しく向上できることがわかる。

[0083]

また、これら実施例1~17においてセル当たり300kgの荷重を印加して みたが、得られた非水電解液二次電池から非水電解液の漏出は確認されなかった

[0084]

【発明の効果】

本発明によれば、液漏れを抑制し、かつ、放電特性の高い非水電解液二時電池を提供することができる。

【図面の簡単な説明】

【図1】 発明に係わる第1の非水電解液二次電池の一例を示す断面図。

【図2】 図1のA部を示す拡大断面図。

【符号の説明】

- 1 …外装材
- 2…電極群

特2001-094051

- 3…セパレータ
- 4 …正極層
- 5 …正極集電体
- 6…負極層
- 7…負極集電体
- 8 …接着層
- 12…正極
- 13…負極

【書類名】 図面

【図1】

【図2】

【書類名】 要約書

【要約】

【課題】 放電特性が高く、液漏れを抑制した非水電解液二次電池を提供することを目的とする。

【解決手段】 γ ーブチルラクトンを含有する非水溶媒と、前記溶媒中に添加されたイオン伝導性の電解質とを有する非水電解液にポリエチレンオキサイド $0.01 \text{ wt } \% \sim 1.0 \text{ wt } \%$ を添加して粘性を持たせた非水電解液を非水電解液二次電池に使用する。

【選択図】 図1

出願人履歷情報

識別番号

[000003078]

1. 変更年月日 1990年 8月22日

[変更理由] 新規登録

住 所 神奈川県川崎市幸区堀川町72番地

氏 名 株式会社東芝

2. 変更年月日 2001年 7月 2日

[変更理由] 住所変更

住 所 東京都港区芝浦一丁目1番1号

氏 名 株式会社東芝