Elektrosztatika 2

Elektromos fluxus, Gauss-tétel, Maxwell I. egyenlete

Ismétlés: Nyugvó pontforrás elektrosztatikus mezője

Elektrosztatika: időben állandó elektromos terek

Erőtér: forrás \longrightarrow mező \longrightarrow erőhatás

 $\mathbf{r}(x,y,z)$ pontba helyezett pontforrásra (q_0) ható Coulomb erő:

$$\mathbf{F}(\mathbf{r}) = \frac{1}{4\pi\varepsilon_0} \frac{q_0 \cdot q}{|\mathbf{r}^*|^2} \,\hat{\mathbf{r}}^* = \frac{1}{4\pi\varepsilon_0} \frac{q_0 \cdot q}{|\mathbf{r} - \mathbf{r}_f|^2} \cdot \frac{\mathbf{r} - \mathbf{r}_f}{|\mathbf{r} - \mathbf{r}_f|}$$

A próbatöltésre ható erőt elosztva a próbatöltés nagyságával megkapjuk a minden **r**(x,y,z) pontban érvényes elektromos erőteret (vektortér!):

$$\mathbf{E}(\mathbf{r}) = \frac{\mathbf{F}(\mathbf{r})}{q_0} = \frac{1}{4\pi\varepsilon_0} \frac{q}{|\mathbf{r} - \mathbf{r}_f|^2} \cdot \frac{\mathbf{r} - \mathbf{r}_f}{|\mathbf{r} - \mathbf{r}_f|}$$

Ismétlés: Nyugvó töltések elektrosztatikus mezője

Ismétlés: Erővonalak

Irány: A próbatöltésre ható erő iránya

Sűrűség: Arányos az elektromos tér nagyságával

- A (+) töltésnél kezdődnek és a (-) töltésnél érnek véget, vagy végtelennél is kezdődhetnek vagy végződhetnek.
- Nem keresztezik egymást és nem válnak szét
- A vezető anyagokba nem hatolnak be (vezető belsejében E=0)

Positive Charge Negative Charge

Electric Field Lines for Point Charges

(b) Between Two Equal and Like Charges

Elektromos fluxus

= Adott felületet metsző erővonalak száma

1. A felület merőleges az erővonalakra

mos fluxus $\Phi_{\rm F} = EA$.

2. A felület nem merőleges az erővonalakra

$\Phi_{\mathbf{E}} = \iint\limits_{S} \mathbf{E} \cdot d\mathbf{A}$

3. A felület görbült

25-3 ábra
Zárt felület, néhány ΔA felületvektorral, melyek merőlegesek a felszínre és kifelé mutatnak.

mos fluxus $\Phi_{\rm p} = EA$.

Fluxus zárt felületen, homogén **E** térben

Adott **E** térerősségű, *x* irányú, homogén elektromos tér. Mekkora fluxus az ábrán látható kocka teljes felületére?

Fluxus zárt felületen, homogén **E** térben

Adott **E** térerősségű, *x* irányú, homogén elektromos tér. Mekkora fluxus az ábrán látható kocka teljes felületére?

$$\Phi_{\mathbf{E}} = \iint_{S} \mathbf{E} \cdot d\mathbf{A} = 0$$

Fluxus zárt felületen, homogén **E** térben

$$\Phi_{\mathbf{E}} = \iint_{S} \mathbf{E} \cdot d\mathbf{A} = 0$$

Gauss törvény

= Töltések számlálása helyett elég ismerni az elektromos teret.

Szükséges fogalom: Térszög (szteradián)

b) A térszög definíciója: $\Omega \equiv A/r^2$ (szteradián egységekben), ahol A annak a felületnek a nagysága, amelyet az r sugarú gömb középpontjából Ω térszög alatt látunk. Egy térszögelemre: $\Delta\Omega \equiv \Delta A/r^2$ (szteradián egységekben). Az A felület bármilyen alakú lehet, de minden pontban merőleges kell hogy legyen a sugárra. Minthogy a gömb felülete $4r^2\pi$, a teljes gömbfelület $\Omega = 4r^2\pi/r^2 = 4\pi$ szteradián térszögnek felel meg. Az Ω térszög a középpontból kiinduló és a ΔA felülettel meghatározott kúp alakú tartománnyal szemléltethe-

$$\Omega = 1sr \to A = r^2$$

Teljes gömbfelület: $\,\Omega=4\pi\,$

Gauss törvény

= Töltések számlálása helyett elég ismerni az elektromos teret.

Ha egy zárt felület belsejében (bárhol) q töltés található, akkor a teljes felületre a $\oint \mathbf{E} \cdot d\mathbf{A}$ integrál értéke mindig q/ε_o .

25-8 ábra

Az ábra q töltést körülvevő önkényesen felvett felületet mutat. A ΔA felületelem nem merőleges a q-ból induló erővonalakra. A $\Delta A'$ -vel jelölt vetület, amelynek nagysága $\Delta A' = \Delta A \cos\theta$, merőleges az erővonalakra, és így meghatározza a $\Delta \Omega = (\Delta A \cos\theta)/r^2$ térszögelemet. A ΔA elemi felület a q töltés helyéről $\Delta \Omega$ térszög alatt látszik.

Gauss törvény

= Töltések számlálása helyett elég ismerni az elektromos teret.

25-9 ábra

Egy Gauss felület teljes Φ_E elektromos fluxusa csak a zárt felület belsejében lévő töltések előjeles összegétől függ. Ennélfogva az S_1 felület eredő fluxusa q_1/ε_0 , az S_2 felületé pedig $(q_2+q_3)/\varepsilon_0$. Az S3 felületen keresztül kifelé ugyanannyi erővonal megy át mint befelé (hiszen belül nincsen töltés) és így az S₃ felület fluxusa zérus.

$$\Phi_{\mathbf{E}} = \iint_{S} \mathbf{E} \cdot d\mathbf{A} = \frac{q}{\varepsilon_{0}}$$

Feladat:

$$\Phi_{\mathbf{E}} = \iint_{S} \mathbf{E} \cdot d\mathbf{A} = \frac{q}{\varepsilon_{0}}$$

Töltéssrűség

Eloszlás Sz	zimbólum	Egység	Elemi töltés	
Pontszerű töltés	s q	C	q	
Vonalmenti	λ	C/m	$dq = \lambda dx$,	ahol dx egy elemi vonalszakasz
Felületmenti	σ	C/m ²	$dq = \sigma dA$,	ahol dA egy elemi felület*
Térfogati	ρ	C/m ³	$dq = \rho dV$,	ahol dV egy elemi térfogat*

Töltéssrűség – végtelen töltött rúd elektromos tere

Pozitív töltések helyezkednek el egyenletesen egy végtelen hosszú egyenes mentén. A vonalmenti töltéssűrűség λ . Számítsuk ki az E térerősséget az egyenestől r távolságban.

Elektromosan töltött gömb tere

Gauss-Osztrogradszkij-tétel (Divergencia-tétel)

$$\iint\limits_{S} \mathbf{E} \, d\mathbf{A} = \iiint\limits_{V} \nabla \cdot \mathbf{E} \, dV$$

Maxwell I.

$$\operatorname{div} \mathbf{E} = \nabla \cdot \mathbf{E} = \frac{\rho}{\varepsilon_0}$$

Tökéletesen vezető anyagokban!

Jelentés:

- Az elektromos tér forrása az elektromos töltés.
- Egy adott r(x,y,z) pontban az elektromos tér divergenciája arányos a pontban lévő töltéssűrűséggel.

AND GOD SAID $\nabla \cdot \vec{E} = \frac{\rho_e}{\epsilon_0}$ $\nabla \cdot \vec{B} = 0$ $\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}$ $\nabla \times \vec{B} = \mu_0 \left(\vec{j} + \epsilon_0 \frac{\partial \vec{E}}{\partial t} \right)$ AND THERE WAS LIGHT

Gauss törvény és az elektromos vezetők

Elektrosztatikus egyensúly:

Az elektromos erőtér a vezetőkben a töltéseket szabadon mozgatja.

Elektromos erőtérbe helyezett vezetőben lévő töltések nagyon gyorsan elrendeződnek a vezető felületén (egyensúlyi állapot), úgy hogy a vezető belsejében a külső térrel ellentétes tér jön. A két tér kioltja egymást, így a vezető belsejében az elektromos tér 0.

25-21 ábra

Egy külső elektromos erőtérbe helyezett töltetlen fémhasáb felületén töltések jelennek meg: a vezető belsejében, a megosztással keletkező felületi töltések által létrehozott belső erőtér kioltja az eredeti erőtér hatását, így a hasábon belül zérus nagyságú térerősség alakul ki.