Dados el enunciado de un problema de Programación Lineal y las tablas inicial y final de su resolución por el método Simplex, se pide:

- a- Obtener el rango de variación del coeficiente C₂ sin que cambie la estructura de la solución óptima. Detallar los cálculos realizados.
- b- Graficar la variación de X2, Y2 y del funcional al variar la disponibilidad del recurso materia prima entre 9 y 20 kilogramos. Indicar el valor de las pendientes diciendo en qué parte de la tabla se encuentran.
- c- ¿A qué valor total resulta conveniente vender a una empresa interesada, disponibilidades del recurso materia prima en una cantidad de 4 kilos por semana? Detallar claramente y justificar los cálculos.
- d- Graficar la curva de oferta del producto B para C₂ entre cero e infinito

Enunciado

Se trata de una empresa que desea establecer el plan de producción para sus tres productos A, B y C sujeto a las restricciones de producción total mínima (4 un. por semana), disponibilidad de mano de obra (24 hh. por semana) y disponibilidad de materia prima (10 kg. por semana). Los coeficientes son pesos de utilidad unitaria.

				or bonnan			CONTROL OF THE REAL PROPERTY.			
			2	8	6				-M	_
C_{K}	X_{K}	\mathbf{B}_{K}	A_1	A ₂	A_3	A_4	A_5	A_6	μ]
-M	μ	4	1	1	1	-1	0	0	1	T-1-1-
	X_5	24	1	4	2	0	1	0	0	Tabla Inicial
	X_6	10	1	2	4	0	0	1	0	
2	z = -4N	Л	-M-2	-M-8	-M-6	M	0	0	0	1
										4
			2	8	6					4
C _K	X _K	B _K	2 A ₁	8 A ₂	6 A ₃	A ₄	A ₅	A_6]	•
C _K	X _K	B _K	1	_	1	A ₄	A ₅	A ₆		T-N-
_			A ₁	_	A ₃					Tabla Óptima
_	X_2	5	A ₁	A ₂	A ₃	0	0	1/2		Tabla Óptima

a- Obtener el rango de variación del coeficiente C₂ sin que cambie la estructura de la solución óptima. Detallar los cálculos realizados.

Es un problema de máximo -> Zj-Cj >= 0.

$$C2 * \frac{1}{2} - 2 >= 0 -> C2 >= 4$$

 $C2*2 - 6 >= 0 -> C2 >= 3$
 $C2*\frac{1}{2} >= 0 -> C2 >= 0$

C2 >= 4

b- Graficar la variación de X2, Y2 y del funcional al variar la disponibilidad del recurso materia prima entre 9 y 20 kilogramos. Indicar el valor de las pendientes diciendo en qué parte de la tabla se encuentran.

Debo obtener la tabla optima del dual para ver la variación de recursos.

X1 = 0	Y4 = 2
X2 = 5	Y5 = 0
X3 = 0	Y6 = 10
X4 = 1	Y1 = 0
X5 = 4	Y2 = 0
X6 = 0	Y3 = 4

			-4	24	10			
Ck	Xk	Bk	A1	A2	A3	A4	A5	A6
10	Y3	4	-1/2	2	1	0	-1/2	0
	Y4	2	1/2	1	0	1	-1/2	0
	Y6	10	-1	6	0	0	-2	1
	Z =40		-1	-4	0	0	-5	0

¿Dentro de que valores de disponibilidad de MP sigue siendo optimo?

			-4	24	В3			
Ck	Xk	Bk	A1	A2	A3	A4	A5	A6
В3	Y3	4	-1/2	2	1	0	-1/2	0
	Y4	2	1/2	1	0	1	-1/2	0
	Y6	10	-1	6	0	0	-2	1
	Z = 4* B3		-1/2*	2*B3-	0	0	-1/2*b3	0
			B3 + 4	24				

Me piden entre $9 \le b3 \le 20$ y esta tabla solo me contempla entre $9 \le b3 \le 12$.

Entonces, reemplazo b3 = 12 para ver que sucede con la tabla.

			-4	24	12				
Ck	Xk	Bk	A1	A2	A3	A4	A5	A6	Tita
12	Y3	4	-1/2	2	1	0	-1/2	0	2
	Y4	2	1/2	1	0	1	-1/2	0	2
	Y6	10	-1	6	0	0	-2	1	5/3
	Z = 48		-2	0	0	0	-6	0	

Se obtiene una solución óptima alternativa, por ende, debe entrar Y2 y salir Y6.

			-4	24	12			
Ck	Xk	Bk	A1	A2	A3	A4	A5	A6
12	Y3	2/3	-1/6	0	1	0	1/6	-1/3
	Y4	1/3	2/3	0	0	1	-1/6	-1/6
24	Y2	5/3	-1/6	1	0	0	-1/3	1/6
	Z = 48		-2	0	0	0	-6	0

Entonces ahora veo en que rangos puede variar b3 para que esta tabla siga siendo optima.

Ahora con esta tabla si puedo ver que pasa si 9 <= b3 <= 20.

$$Y2 = 5/3$$
 $X2 = -1/6 * b3 -8$
 $Z = 2/3 * b3 + 40$

Variación de Y2 vs b3

Variación de Z vs b3

d)

Para calcular la curva de oferta para X2 que corresponde al producto B haciendo variar C2, lo que hago primero es calcular el rango de variaciones para C2 (hecho en el punto a):

- Reemplazar los límites del borde del rango en la tabla óptima.
- · Calcular nuevamente el rango para esa nueva tabla
- · Repetir estos 2 pasos

Para la primer tabla óptima calculamos en el punto a que el rango de variaciones es C2 ≥ 4. Y que por lo cual en este rango la cantidad siempre se mantendrá constante en 5 Por ende entonces reemplazo C2 por 4 en la tabla óptima y veo que sucede

			2	4	6			
Ck	Xk	Bk	A1	A2	A3	A4	A5	A6
4]	X2	5	1/2	1	2	0	0	1/2
	X4	1	-1/2	0	1	1	0	1/2
	X5	4	-1	0	-6	0	1	-2
Z	= 5 * 4 = 2	20	(4 / 2) -2 = 0*	0	2*4 - 6 = 2	0	0	(4/2)=

Como se ve, tiene soluciones alternativas ya que tiene una variable que su zj - cj es nulo y no se encuentra en la base, esa variable es X1 entonces para ver hago que la misma entre a la base y lo hará por X2 ya que es la única que puede salir porque los demas dan titas inválidos.

- 2F1 → F1
- F2+(½)F1 → F2
- F3+F1 → F3

			2	4	6			
Ck	Xk	Bk	A1	A2	A 3	A4	A5	A6
2	X1	10	1	2	4	0	0	1
	X4	6	0	1	3	1	0	1
	X5	14	0	2	-2	0	1	-1
	Z = 20		0	0*	2	0	0	2

Reemplazando el 4 por C2, se obtiene que

	Y		2	C2	6			
Ck	χk	Bk	A1	A2	A3	A4	A5	A6
2	X1	10	1	2	4	0	0	1
	X4	6	0	1	3	1	0	1
	X5	14	0	2	-2	0	1	-1
	Z = 20		0	4-C2	2	0	0	2

Está tabla es válida para el siguiente rango y además en este rango X2 = 0 4 - C2 \geq 0 \rightarrow C2 \leq 4

Entonces la gráfica de X) según varía C2 es:

• X2 = 5 para C2 ≥ 4

• X2 = 0 para 0 ≤ C2 < 4

