K Means Clustering for multi-Dimensional Data

Example : Given Data and k = 2

Sample No.	Х	Υ
1	185	72
2	170	56
3	168	60
4	179	68
5	182	72
6	188	77

Step 1: Initial Centroid

Cluster	X	Υ
k1	185	72
k2	170	56

Step 2: Consider Euclidean distance for calculating distances.

Distance[
$$(x,y)$$
, (a,b)] = sqrt[$(x-a)^2+(y-b)^2$]

Iteration 1:

Step 3: Find the Euclidean distance for the Sample no 1 (185,72)

Distance from Cluster $1(185,72) = \text{sqrt}[(185-185)^2 + (72-72)^2] = \mathbf{0}$

Cluster-2(170,56) = $sqrt[(170-185)^2+(56-72)^2] = sqrt[(-15)^2+(-16)^2] = sqrt[255 + 256]$

Find the Euclidean distance for the Sample no 2 (170,56)

Cluster-1(185,72) =
$$sqrt[(185-170)^2+(72-56)^2] = sqrt[(15)^2+(16)^2] = sqrt[255 + 256]$$

Cluster-2(170,56)= $sqrt[(170-170)^2+(56-56)^2] = \mathbf{0}$

Step 4 : Cluster Assignment

Sample	Euclidean Distance		Cluster
	Cluster 1	Cluster 2	Assignment
(185,72)	0	21.93	1
(170,56)	21.93	0	2

Step 5: Centroid Update

Cluster	Centroid	
	X Y	
k1	185	72
k2	170	56

Iteration 2: repeat (step 3, 4 & 5)

Step 3: Calculate Euclidean distance for the next dataset -- Sample 3(168,60)

Distance from Cluster $1(185,72) = \text{sqrt}[(168-185)^2+(60-72)^2] = 20.808$

Distance from Cluster $2(170,56) = \text{sqrt}[(168-170)^2+(60-56)^2] = 4.472$

Step 4: Cluster Assignment

Sample	Euclidean Distance		Cluster
	Cluster 1	Cluster 2	Assignment
(168,60)	20.808	4.472	2

Step 5: Centroid Update

Cluster	Centroid		
	X Y		
k1	185 72		
k2	=(170+168)/2 =(56+60)/2		
	=169	=58	

Iteration 3: repeat (step 3, 4 & 5)

Step 3: Calculate Euclidean distance for the next dataset- sample 4(179,68)

Distance from Cluster $1(185,72) = sqrt[(179-185)^2+(68-72)^2] = 7.211103$

Distance from Cluster $2(169,58) = \text{sqrt}[(179-169)^2 + (68-58)^2] = 14.14214$

Step 4: Cluster Assignment

Sample	Euclidean Distance		Cluster
	Cluster 1 Cluster 2		Assignment
(179,68)	7.211103	14.14214	1

Step 5: Centroid Update

Cluster	Centroid		
	X Y		
k1	=(185+179)/2 = (72+68)/2		
	=182	=70	
k2	169	58	

Iteration 4: repeat (step 3, 4 & 5)

Step 3: Calculate Euclidean distance for the next dataset- sample 5(182, 72)

Distance from Cluster $1(182,70) = \text{sqrt}[(182-182)^2 + (72-70)^2] = 2$

Distance from Cluster $2(169,58) = \text{sqrt}[(182-169)^2+(72-58)^2] = 19.10$

Step 4: Cluster Assignment

Sample	Euclidean Distance		Cluster
	Cluster 1	Cluster 2	Assignment
(182,72)	2	19.10	1

Step 5: Centroid Update

Cluster	Centroid		
	X Y		
k1	=(182+182)/2 =(70+72)/2		
	=182	=71	
k2	169	58	

Iteration 5: repeat (step 3, 4 & 5)

Step 3: Calculate Euclidean distance for the next dataset- sample 5(188, 77)

Distance from Cluster $1(182,71) = \text{sqrt}[(188-182)^2 + (77-71)^2] = 8.4852$

Distance from Cluster $2(169,58) = sqrt[(188-169)^2+(77-58)^2] = 26.87$

Step 4: Cluster Assignment

Sample	Euclidean Distance		Cluster
	Cluster 1 Cluster 2		Assignment
(188,77)	8.4852	26.87	1

Step 5: Centroid Update

Cluster	Centroid	
	X	Υ

k1	=(182+188)/2	=(71+77)/2	
	=185	=74	
k2	169	58	

Step 6: FINAL ASSIGNMENT TABLE

Sample No.	Х	Υ	Assignment
1	185	72	1
2	170	56	2
3	168	60	2
4	179	68	1
5	182	72	1
6	188	77	1