

Analyse des variants post-VCF

Nadia Bessoltane - INRAE Vivien Deshaies - AP-HP

Workflow

Workflow: Post-VCF

Dépend de la question biologique

Rappel: VCF

INFO

VCF header

METADATA

GENOTYPE

```
##fileformat=VCFv4.2
##FILTER=<ID=LowQual, Description="Low quality">
##FORMAT=<ID=AD, Number=R, Type=Integer, Description="Allelic depths for the ref and alt alleles in the order listed">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Approximate read depth (reads with MQ=255 or with bad mates are filtere
##FORMAT=<ID=GO, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=PL, Number=G, Type=Integer, Description="Normalized, Phred-scaled likelihoods for genotypes as defined in the VC
##GATKCommandLine=<ID=HaplotypeCaller,CommandLine="HaplotypeCaller --min-base-guality-score 18 --emit-ref-confidence NONE
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency, for each ALT allele, in the same order as listed">
##INFO=<ID=AN, Number=1, Type=Integer, Description="Total number of alleles in called genotypes">
##INFO=<ID=BaseQRankSum, Number=1, Type=Float, Description="Z-score from Wilcoxon rank sum test of Alt Vs. Ref base qualities
##INFO=<ID=ReadPosRankSum, Number=1, Type=Float, Description="Z-score from Wilcoxon rank sum test of Alt vs. Ref read positio
##INFO=<ID=SOR, Number=1, Type=Float, Description="Symmetric Odds Ratio of 2x2 contingency table to detect strand bias">
##contig=<ID=6,length=119458736>
##source=HaplotypeCaller
                                                                                     SRR1262731
                                                                                                            SRR1262732
#CHROM
                   REF ALT
                               OUAL
                                       FILTER
                                                INFO
                                                                   FORMAT
                               67.64
                                                AC=1; AF=0.500; ...
                                                                   GT:AD:DP:GO:PL
                                                                                     0/1:3,2:5:75:75,0,105
                                                                                                            0/1:3,2:5:75:75,
                              58.60
                                                AC=1;AF=0.500;...
                                                                   GT:AD:DP:GO:PL
                                                                                     0/1:1,2:3:28:66,0,28
                                                                                                            0/1:1,2:3:28:66,
                                                                                                            0/1:7,2:9:63:63,
                        CA
                              55.60
                                                AC=1;AF=0.500;...
                                                                                     0/1:7,2:9:63:63,0,279
```

vcfR package

Manipulate and Visualize VCF Data

vcfR documentation: https://knausb.github.io/vcfR documentation/index.html

```
> # lire le fichier vcf
> my.vcf <- read.vcfR("pool.vcf")
> # l'objet vcf appartient à quelle class
> is(my.vcf)
[1] "vcfR"
> # la liste des slots (sections)
> slotNames(my.vcf)
[1] "meta" "fix" "gt"
>
```

objet de la classe vcfR

Trois sections:

- meta-information : entête du vcf
- Fixed information: information par variant mais commune à tous les échantillons (position, allèles, qualité...)
- Genotype information : information de génotypage par échantillon

objet de la classe vcfR

VCF header

@meta

```
##fileformat=VCFv4.2
##FILTER=<ID=LowQual, Description="Low quality">
##FORMAT=<ID=AD, Number=R, Type=Integer, Description="Allelic depths for the ref and alt alleles in the order listed">
##FORMAT=<ID=DP, Number=1, Type=Integer, Description="Approximate read depth (reads with MQ=255 or with bad mates are filtere
##FORMAT=<ID=GO, Number=1, Type=Integer, Description="Genotype Quality">
##FORMAT=<ID=GT, Number=1, Type=String, Description="Genotype">
##FORMAT=<ID=PL, Number=G, Type=Integer, Description="Normalized, Phred-scaled likelihoods for genotypes as defined in the VC
##GATKCommandLine=<ID=HaplotypeCaller,CommandLine="HaplotypeCaller --min-base-guality-score 18 --emit-ref-confidence NONE
##INFO=<ID=AF, Number=A, Type=Float, Description="Allele Frequency, for each ALT allele, in the same order as listed">
##INFO=<ID=AN, Number=1, Type=Integer, Description="Total number of alleles in called genotypes">
##INFO=<ID=BaseQRankSum, Number=1, Type=Float, Description="Z-score from Wilcoxon rank sum test of Alt Vs. Ref base qualities
##INFO=<ID=ReadPosRankSum, Number=1, Type=Float, Description="Z-score from Wilcoxon rank sum test of Alt vs. Ref read positio
##INFO=<ID=SOR, Number=1, Type=Float, Description="Symmetric Odds Ratio of 2x2 contingency table to detect strand bias">
##contig=<ID=6,length=119458736>
##source=HaplotypeCaller
                                                                                     SRR1262731
                                                                                                            SRR1262732
#CHROM
                   REF ALT
                               OUAL
                                       FILTER
                                                INFO
                                                                   FORMAT
                               67.64
                                                AC=1; AF=0.500; ...
                                                                   GT:AD:DP:GO:PL
                                                                                     0/1:3,2:5:75:75,0,105
                                                                                                            0/1:3,2:5:75:75,
                              58.60
                                                AC=1;AF=0.500;...
                                                                   GT:AD:DP:GO:PL
                                                                                     0/1:1,2:3:28:66,0,28
                                                                                                            0/1:1,2:3:28:66,
                        CA
                              55.60
                                                AC=1;AF=0.500;...
                                                                                     0/1:7,2:9:63:63,0,279
                                                                                                           0/1:7,2:9:63:63,
                         @fix
                                                                                          @gt
```

vcfR package

Manipulate and Visualize VCF Data

vcfR documentation: https://knausb.github.io/vcfR documentation/index.html

```
> # lire le fichier vcf
> my.vcf <- read.vcfR("pool.vcf")</pre>
> # l'objet vcf appartient à quelle class
> is(my.vcf)
[1] "vcfR"
> # la liste des slots (sections)
> slotNames(my.vcf)
[1] "meta" "fix" "qt"
> # convertir l'objet vcfR à une liste de
tibbles
> vcf.list <- vcfR2tidy(my.vcf)</pre>
> is(vcf.list)
[1] "list"
> names(vcf.list)
[1] "meta" "fix" "gt"
>
```

TP 1 : recherche de mutation dans un QTL

Jeux de données #1:

Chez le bovin, il existe un locus de caractères quantitatifs (QTL) lié à la production de lait, situé sur le chromosome 6, et plus exactement sur une région de 700 kb, composée de 7 gènes.

Les échantillons QTL+ sont caractérisés par une diminution de la production en lait et une augmentation des concentrations en protéine et lipide.

Quelle mutation est responsable de ce QTL?

Pour le TP nous disposons des résultats du variant calling de 3 échantillons (en Multi-VCF annoté).

Echantillons	Phénotype	Source
SRR1262731	QTL-	projet 1000 génomes bovins
SRR1205992	QTL+	
SRR1205973	QTL+	

Préparation des données

5- Changer le workspace sur l'interface RStudio.

Rappel: Filtre des variants

- De nombreux filtres peuvent être appliqués sur le VCF
 - → type de variants à garder (SNVs seulement, Indels...)
 - → région d'intérêt
 - → filtres sur la qualité (seuils arbitraires : profondeur, génotype (0/1, 1/1), ratio allélique...)

Rappel: Faux positifs vs Filtres qualité

Plus on est stringent plus on va éliminer les faux positifs mais avec le risque de perdre de vrais variants

Rappel: Filtre des variants

- De nombreux filtres peuvent être appliqués sur le VCF
 - → type de variants à garder (SNVs seulement, Indels...)
 - → région d'intérêt
 - → filtres sur la qualité (seuils arbitraires : profondeur, génotype (0/1, 1/1), ratio allélique...)
 - → GATK Bests Practices: recommendations selon des métriques spécifiques à GATK, différentes pour les SNVs des Indels
 - QD QualByDepth : Score QUAL / AD [profondeur allélique] (>2)
 - FS FisherStrand (<60):
 SOR StrandOddsRatio (<3):
 - MQ MappingQuality : Qualité de mapping moyenne sur l'ensemble du read (>40)
 - MQRankSum : Teste un biais de différence de qualité de mapping entre allèles (>-12,5)
 - ReadPosRankSum : Teste un biais de position des allèles le long du read (>-8.0)

Variant d'intérêt

- Quelle type de mutation est impliquée dans notre phénotype d'intérêt pour l'individu
 SRR1262731 ?
- Quel est son génotype ? Sur quel gène se situe-elle ?
- Qu'en est-il pour les autres individus ?

Zinder *et al.*, 2005

Variant d'intérêt

- Quelle type de mutation est impliquée dans notre phénotype d'intérêt pour l'individu SRR1262731 ?
- Quel est son génotype ? Sur quel gène se situe-elle ?
- Qu'en est-il pour les autres individus?

- \rightarrow Le variant est **hétérozygote ALT (0/1)** pour l'individu SRR1262731, il comporte une mutation de type SNP (A \rightarrow C) située sur le gène **ABCG2**, en position **38027010 du chromosome 6**.
- → Pour les deux autres individus, ils ne comportent pas cette mutation : il sont homozygote référence (GT: 0/0).

Zinder *et al.*, 2005

Rappel: du fastq au VCF

^{*} need specific index