设A, B为n阶矩阵, 且A与B相似,则(

(A)
$$\lambda I - A = \lambda I - B$$
.

$$(B)$$
 $A 与 B$ 有相同的特征值和特征向量.

$$(C)$$
 $A 与 B$ 都与对角矩阵相似.

(C)
$$A 与 B$$
 都与对角矩阵相似. (D) 对任意常数 $t, tI - A 与 tI - B$ 相似.

[解析] 选项(A) 错误.

选项(B) 错误。相似矩阵的特征向量未必相同:

$$A = \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, B = \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}^{-1} A \begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix} = L = \begin{pmatrix} 0 & -2 \\ 1 & 3 \end{pmatrix}$$

$$\boldsymbol{\varepsilon}_1 = (1,0)^T$$
: $A\boldsymbol{\varepsilon}_1 = \boldsymbol{1}\boldsymbol{\varepsilon}_1, B\boldsymbol{\varepsilon}_1 = (0,1)^T \neq k\boldsymbol{\varepsilon}_1$

设A, B为n阶矩阵, 且A与B相似,则()

(A) $\lambda I - A = \lambda I - B$.

- (B) A 与 B 有相同的特征值和特征向量.
- (C) A 与 B 都与对角矩阵相似.
- (D) 对任意常数t,tI-A与tI-B相似.

选项(C) 错误.
$$\diamondsuit A = B = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
:

A与B相似,但是不能与对角阵相似: $|\lambda I - A| = |\lambda I - B| = \lambda^2$

$$\Rightarrow$$
特征值 0 的代数重数 $= 2$ \Rightarrow $A = B$ 不能对角化 $R(0I-A)=1$ \Rightarrow 特征值 0 的几何重数 $= 1$

设A, B为n阶矩阵, 且A与B相似,则()

(A) $\lambda I - A = \lambda I - B$.

- (B) A 与 B 有相同的特征值和特征向量.
- (C) A 与 B 都与对角矩阵相似.
- (D) 对任意常数t,tI-A与tI-B相似.

选项(D) 正确.

设
$$B = P^{-1}AP \Rightarrow$$

$$P^{-1}(tI-A)P = tP^{-1}IP - P^{-1}AP = tI - P^{-1}AP = tI - B$$

$$\Rightarrow tI - A 与 tI - B$$
 总是相似的.