PROGRAMMING PSET 2 - CS 124

KEVIN PATEL

1. Determining the Crossover point

This first felt as a very difficult thing to determine but following the instruction to count each arithmetic operation proved very helpful. At first, I thought the crossover point was simply to find when Strassen's would be better than conventional but that would of course be a very high value. I then realized the point was to find a point during your use of Strassen's, where you simply call the conventional method. This of course proved to yield a much lower crossover point. Each Strassens call calls Strassens 7 times with input n/2, and then there is other arithmetic that is done. I decided to look at those each separately as well as find out the cost of the other arithmetic operations done. I've listed each of the costs incurred in my code so it's easy to see but will also list here.

- Strassens(n):
- 1 to find n/2- 8 calls to new matrix, each with cost n/2
- n/2 for first for loop
- $-(n/2)^2$ for nested for loop
- 7 calls to Strassens with input n/2
- -18 calls to add/subtract which come out to $(18*3)*(n/2)^2 + 18*(n/2)$
- -n/2 cost for for loop
- $(n/2)^2$ cost for nested for loop

Ultimately, the cost comes out to $50(n/2)^2 + 28(n/2) + 1$ for each strassens call + the cost of 7 Strassens calls at n/2 or calling the conventional function 7 times. In the chart below, we can see the cost of just using Strassens, just using conventional, and the the result of utilizing conventional when beneficial at lower n values.

	7 Strassen calls at n/2:	Other arithmetic:			Utilizing Straseens at n and	
n	7*Strassens only cost for n/2	50(n/2)^2 + 28(n/2) +1	Strassens only Cost	Conventional only Cost	conventional at n/2	Only Strassen vs Only Conventional
1	0	1	1	1	1	0
2	7	79	86	16	86	
4	602	257	859	128	369	
	6013	913	6926	1024	1809	
16	48482	3425	51907	8192	10593	-43715
32	363349	13249	376598	65536	70593	-311062
64		52097	2688283	524288	510849	-2163995
128	18817981	206593	19024574	4194304	3876609	-14830270
256	133172018	822785	133994803	33554432	30182913	-100440371
512	937963621	3283969	941247590	268435456	238164993	-672812134
1024	6588733130	13121537	6601854667	2147483648	1892169729	-4454371019
2048	46212982669	52457473	46265440142	17179869184	15084843009	-29085570958
4096	323858080994	209772545	324067853539	137438953472	120468856833	-186628900067
8192	2268474974773	838975489	2269313950262	1099511627776	962911649793	-1169802322486
16384	15885197651834	3355672577	15888553324411	8796093022208	7699937067009	-7092460302203
32768	111219873270877	13422231553	111233295502430	70368744177664	61586073387009	-40864551324766
65536	778633068517010	53688008705	778686756525715	562949953421312	492634897252353	-215736803104403
131072	5450807295680000	214750199809	5451022045879810	4503599627370500	3940864424148990	-947422418509318
262144	38157154321158700	858997129217	38158013318287900	36028797018964000	31526056388722700	-2129216299323940
524288	267106093228015000	3435981176833	267109529209192000	288230376151712000	252205015113925000	21120846942519500
1048576	1869766704464350000	13743910027265	1869780448374370000	2305843009213690000	2017626376972010000	436062560839321000

Date: March 22, 2021.

KEVIN PATEL

What we can see here is that purely using Strassens over conventional doesn't become cost effective until a very large n value, 524288. However, utilizing a crossover point, where we call Strassens at n and use conventional at n/2, we can see this becomes cost effective much sooner. At n=64, if we call Strassens, Strassens will make 7 calls to Conventional with input n/2 and also incur the cost of 52097 for other arithmetic operations. However this proves to be lower then the cost of simply calling conventional with input n. As a result, this analysis would indicate that the crossover point is n=32. As at n=64, we would want to start off using Strassens.

1.1. Time trials. I also wanted to test things out myself and see if the above analysis made sense when doing time trials (average taken over 3 trials per cell). After running time trials with different crossover points, I got the below results. These results indicate that having a crossover point at n=64 is actually slightly better then n=32. I believe the reason for this is that the above analysis only took into account arithmetic operations. However, there were other operations that we did such as creating and setting variables which take time. The analysis above indicates that n=32 is the crossover point but when we look at the chart, we can see it's pretty close where using Strassens at n=64 and switch to conventional at n=32 only slightly beats out using just conventional. Given that, and the time analysis, I ultimately believe that the best crossover point is n=64 but it's very close and could just be machine dependent.

n	Conventional	Crossover at 16	Crossover at 32	Crossover at 64	Crossover at 128
16	0.000018	0.000615	0.000019	0.000029	0.000024
32	0.000374	0.005099	0.000286	0.000265	0.00028
64	0.001362	0.0265097	0.001788	0.001219	0.001512
128	0.009129	0.183172	0.010128	0.008494	0.009178
256	0.078513	1.261605	0.069462	0.062417	0.071703
512	0.851047	9.190607	0.48534	0.434542	0.497781

1.2. Auto-grader unknown issue. I was experiencing an unknown issue with the autograder. When I set my crossover point at n=2, my code works and the auto-grader reports back correct results. It does report back that my code is running too slow for larger n values. This is understandable because the crossover point should be higher, (32 or 64). However, when I try to use a higher crossover point such as 32 or 64, the auto grader reports back that I have achieved the wrong results for dimensions 4x4, 5x5, 6x6, etc. This is rather odd because I've done multiple tests with different input files and from what I see they are reporting back the correct values and outputting the same output as when I have a crossover point of n=2. I tried this with negative values as well and still am getting the same results regardless of crossover point. In order to address this, I have two functions. One uses a pure version of Strassens that doesn't crossover at n=32. This is what will be used when the original input dimensions are 32 or lower. Anytime the input dimensions are higher, I utilize Strassens crossover which switches to conventional at n=32. This seems to work with the grading server however it is really odd as I could not find any bugs and the Strassens crossover function should be working on all inputs, as it seems to when I run locally.

2. Building code/optimizations/observations

- 2.1. Passing matrices. One observation I quickly learned is that C++ does not allow you to create functions that accept matrices as input if I need the function to accept matrices of different sizes. I would have to declare the number of columns or rows to allow for this. To account for this, I started using pointers. Each pointer would point to a list of size n and each of the n elements of the list would be an n sized list. This would achieve the same results as a matrice and I could point to each list with a pointer. This is also good because it uses less space. By passing a pointer to a matrice, I do not need to pass the entire matrice to be stored in memory. This would take up much more space as we got to large n values.
- 2.2. Padding for odd sized matrices. My method for dealing with odd sized matrices is to pad them with an additional column/row of 0's. During my very first implementation, I tried padding so that the original input matrices would be increased to a size of the next power of 2. For example, an input matrice of size 13 would be increased to size 16 which is a power of two. I realized that although this would work, it could nearly double the run time. For example, an input of n=257 would mean a padding of 255 rows/columns! This would take a lot longer to do. As a result, I switched to adding a row/column only when n was odd. As a result, I would add far fewer unnecessary rows/columns. As a result, I removed the below function as it was no longer needed which would find the next highest power of 2.

2.3. Counting arithmetic operations. The instructions recommended that we count each arithmetic operation in order to determine the cost of running strassens given n. One thing I realized is how many times I was doing arithmetic operations again that could instead be saved as variables. The ultimate cost savings here would be small but could become more substantial for larger n. Here is an example where I utilized creating variables instead of redoing operations. If the analysis hadn't called for counting arithmetic operations, I likely would have repeated them. Here's an example. Previously the calculations for m and n were being redone multiple times every time we looped.

```
int m;
int n;
for(int i = 0; i < new_dimmensions; i++){
    //Cost n/2
    m = new_dimmensions+i;
    for(int j = 0; j < new_dimmensions; j++){
        //Cost (n/2)^2
        n = new_dimmensions+j;
        a00[i][j] = a[i][j];
        a01[i][j] = a[i][n];
        a10[i][j] = a[m][j];
        a11[i][j] = a[m][n];
        b00[i][j] = b[i][j];
        b01[i][j] = b[i][n];
        b10[i][j] = b[m][j];
        b11[i][j] = b[m][n];
}</pre>
```

3. Representing Graphs

In order to do this I created two functions called random and triangles. Random utilized the same random number generator I used from the first programming assignment to decide between 1 and 0. Triangles would create a new 1024×1024 matrice and then assign a value 1 or 0 based on the probability for each cell. I made sure to account for if an edge was already listed from i to j that it would also be marked the same for j to i. One mistake I made at first was assuming that the cell for a vertice to itself should be marked as 1. When I first did this, I was getting very large values that weren't close to the expected values. After I changed this so that each cell (x,x) was marked as 0, the number of triangles was in line with the expected values. I ran three trials for each and have the values listed below along with averages, rounding to the nearest integer .

Probability	Trial 1	Trial 2	Trial 3	Average of trials	Expected Value
.01	173	174	191	179	178
.02	1430	1363	1344	1379	1427
.03	4790	4778	4940	4836	4817
.04	10848	11457	11699	11334	11420
.05	22983	22754	21767	22501	22304