5 G Control Chain Details

59 MAC-PHY intuface

- MAC layer panes data payload and downlink control information (DCI) to PHY layer
- O DCI MCS index, number of visiona blocks, taction of visiona blocks
- O PHY layor first enisdes DCI at a particular rate
- @ PHY layor later maps it using 4-RAM

- © Slot allocated for PDSCH is determined by me Ko _ Ko → Slot offset relative to the Slot when DCI was obtained.
- © Example allocation with stant symbol 5=3, L=4.

 Consecutive symbols, and Slot offset. Ko=1.

- O Downlink slot offsets from 0 to 3;

 Oplink, slot offsets from 0 to 7 can be used.
- o pot all combinations of stant and length fit within one next, that, for example, stanting at OFDM symbol 12 and trainment during 5. OFDM symbols obviously result in crossing the slot boundary and represent an invalid combination.

Row index	dmrs-TypeA- Position	PDSCH mapping type	K ₀	S	L
1	2	Type A	0	2	12
	3	Type A	0	3	11
2	2	Type A	0	2	10
	3	Type A	0	3	9
3	2	Type A	0	2	9
	3	Type A	0	3	8
4	2	Type A	0	2	7
	3	Type A	0	3	6
5	2	Type A	0	2	5
	3	Type A	0	3	4
6	2	Type B	0	9	4
(A)	3	Type B	0	10	4
7	2	Type B	0	4	4
	3	Type B	0	6	4
8	2,3	Type B	0	5	7
9	2,3	Type B	0	5	2
10	2,3	Type B	0	9	2
11	2,3	Type B	0	12	2
12	2,3	Type A	0	1	13
13	2,3	Type A	0	1	6
14	2,3	Type A	0	2	4
15	2,3	Type B	0	4	7
16	2,3	Type B	0	8	4

Table 5.1.2.1.1-2 of 38.214 There are 3 more tables. OB9 informs the even, in the Uplink when to

O DCI is used to need we was in the uplink also.
(Intermelly colled Uplink needwarm grant)

(Stot m)

S: Start Symbol

L: NO: of

consecutive

pyrcholo

Time domain risonne allo cation table for Upunte

Row index	PUSCH mapping type	K ₂	S	L
1	Type A	j	0	14
2	Type A	j	0	12
3	Type A	j	0	10
4	Type B	j	2	10
5	Type B	j	4	10
6	Type B	j	4	8
7	Type B	j	4	6
8	Type A	<i>j</i> +1	0	14
9	Type A	<i>j</i> +1	0	12
10	Type A	<i>j</i> +1	0	10
11	Type A	j+2	0	14
12	Type A	j+2	0	12
13	Type A	j+2	0	10
14	Type B	j	8	6
15	Type A	j+3	0	14
16	Type A	j+3	0	10

Table 6.1.2.1.1-2 0+ 38.214

Downlink resource allocation in Frequency domains

- O A UE determines the frequency domain versures.

 On which it transmits or receives data by

 examining the record black allocations.
- 3. Base station can signal the allocated viscources to a UE using resource allocation type 0 or type 1
- O Type O is a bitmap-based allocation scheme

- * Indicates set of resource blocks groups that UT is supposed to veceive in the downlink
- * Size of the bitmap 1,8 Equal to the number of resource block group
- O Type I combines starting position and length of resource allocation values into, single value.

Indication	n Value
position	Lengtin
	Indication position

PREO	PRBI	PRB2	PRB3	PRE4	PRB5	PRB6	PRE)	 PRBIS	PRB19	PR820	PRB21	PRB22	PR623	PRB 24
			1.								1			
200			K			فا	mgth	The second			1		4	

Contents of DCI
ODCI is und for both downlink and Ophink Meleduling
no Multiple DCI formets
O Multiple DCI formets Example: DCI Formet 1_0 -> Used for downlink Dcieduling
@ Longto of this format is around 35 bits
- Modulation and Coding Scheme (5 bits)
- New data Indicator (1 bit)
_ Redundancy version (2 bits)
_ Time -domain résource assignment (+)
- Frequency domain visource assignment
- VRB - to - PRB mopping (1 bit)
_ continuous / interlamed
- I dentifier for DCI format (1 bit)
_ downline anignment / uplink grant
when the const for the month and spile desired
- PDSCH-to-HARR feedback timing indicator (3 bits)
(indicates HARR ACK/NAK timing relative to
the PDSCH transmission) ACK/NACH on POCCH
Dc1 (Stot m) PDSCU
- Few other fields.

Comparison at two different DCI. types for Downlink

Field		Format 1-0	Format 1-1	
Format identifier				
Resource information	CFI			
nesource intermediati	BWP indicator			
	Frequency domain allocation			
	Time-domain allocation	•		
	VRB-to-PRB mapping	•		
	PRB bundling size indicator			
	Reserved resources		•	
	Zero-power CSI-RS trigger			
Transport-block related	MCS	•	•	
Transport block rolling	NDI	•	•	
	RV			
	MCS, 2nd TB		•	
	NDI, 2nd TB			
	RV, 2nd TB		•	
Hybrid-ARQ related	Process number	•	•	
riyona za ra romano	DAI	•	•	
	PDSCH-to-HARQ feedback	•	•	
	timing			
	CBGTI			
	CBGFI			
Multi-antenna related	Antenna ports			
	TCI		•	
	SRS request		•	
	DM-RS sequence initialization			
PUCCH-related	PUCCH power control	•		
information	PUCCH resource indicator			

Companison of two different DCI types for Upwink

Field	Format 0-0	Format 0-1	
Identifier		•	•
Resource information	CFI		
	UL/SUL		
	BWP indicator		
	Frequency domain allocation		•
	Time-domain allocation		
	Frequency hopping		•
Transport-block-related	MCS		
	NDI		
	RV		
Hybrid-ARQ-related	Process number		
	DAI		
	CBGTI		
Multi-antenna-related	DM-RS sequence initialization		
	Antenna ports		
	SRI		
	Precoding information		
	PTRS-DMRS association		
	SRS request		
	CSI request		
Power control	PUSCH power control		
	Beta offset		

