UNIVERSITATEA DE STAT DIN MOLDOVA FACULTATEA DE MATEMATICĂ ȘI INFORMATICĂ SPECIALITATEA INFORMATICA

Pavlovschi Cătălin

RAPORT FINAL

Lucrare de laborator nr.5: "Rutare statică și protocoale de rutare dinamică"

REȚELE DE CALCULATOARE

Profesor		Capcelea Maria
	(semnătura)	-
Student		Pavlovschi Cătălin
	(semnătura)	

Cuprins

Lucrare delaborator 2	3
CONDIȚII ȘI SARCINI	3
REZOLVAREA PE PAȘI A SARCINILOR	6
BIBLIOGRAFIE	21

Lucrare delaborator 2

CONDIȚII ȘI SARCINI

Se consideră configurația de rețea din Figura 1.

Figura 1

- 1. Folosind adresa de retea
- a) 192.168.5+k.14+k/24,
- b) 172.16.4+k.254-k/20,
- c) 10.10.16+k.0/18.

elaborați o schemă de IPv4 adrese pentru subrețelele rețelei dacă se știe că în fiecare subrețea sunt nu mai mult de 14 host-uri. Se va utiliza configurația de rețea din Figura 1 pentru a forma trei sisteme autonome AS1, AS2 și AS3, astfel încât

- dispozitivelor din AS1 li se vor atribui IP adrese ce aparțin schemei elaborate la punctul a).
- dispozitivelor din AS2 li se vor atribui IP adrese ce apartin schemei elaborate la punctul b).
- dispozitivelor din AS3 li se vor atribui IP adrese ce apartin schemei elaborate la punctul c).

În Cisco Packet Tracer, efectuați următoarele:

2. Folosind rutarea statică, configurați tabelele de rutare ale routerelor R1, R2, R3, R4 și R5 din sistemul autonom AS1. Salvați configurația de rețea realizată în fișierul Nume_Prenume_Grupa_Retea5a.pkt

- 3. Folosind protocolul de rutare dinamică
- ✓ RIP (pentru k un număr din multimea {1,3,5,7,9,11,13,15,17,19,21,23,25}),
- ✓ EIGRP (pentru k un număr din multimea {2,4,6,8,10,12,14,16,18,20,22,24}),

configurați tabelele de rutare ale routerelor R1, R2, R3, R4 și R5 din sistemul autonom AS2. Salvați configurația de rețea realizată în fișierul **Nume_Prenume_Grupa_Retea5b.pkt**

- 4. Routerele sistemului autonom AS3 sunt divizate în două domenii, Area 0 și Area 1. Folosind protocolul de rutare dinamică OSPF cu două domenii, Area0 și Area 1 (a se vedea Figura 2), configurați tabelele de rutare ale routerelor R1, R2, R3, R4 și R5 din sistemul autonom AS3, astfel încât să fie asigurată conexiune între oricare două dispozitive ale rețelei inițiale. Salvați configurația de rețea realizată în fișierul Nume_Prenume_Grupa_Retea5c.pkt.
- 5. Se consideră rețeaua formată din trei sisteme autonome AS1, AS2 și AS3 (a se vedea Figura 3), care sunt conectate între ele prin routerul R0. Subrețelelor ce conectează routerul R0 cu AS1, AS2 și AS3 li se vor atribui corespunzător IP adresele 10.1.k.0/24, 10.1.k+1.0/24 și 10.1.k+2.0/24. În AS1 este configurată rutarea statică realizată la punctul 2. În AS2 este configurată rutarea dinamică realizată la punctul 4.
- 5.1. Realizați o redistribuire a rutelor între AS1, AS2 și AS3 fără a utiliza protocolul BGP. Salvați configurația de rețea realizată în fișierul **Nume_Prenume_Grupa_Retea4d.pkt**
- 5.2. Realizați o redistribuire a rutelor între AS1, AS2 și AS3, folosind protocolul de rutare dinamică BGP. Salvați configurația de rețea realizată în fișierul Nume_Prenume_Grupa_Retea4e.pkt

Figura 2

După realizarea fiecăruia din punctele 2,3,4 și 5, verificați conexiunea dintre dispozitive, folosind comanda ping. Folosind comanda tracert, generați trasee între două host-uri aleatoare din rețea.

Realizați o dare de seamă asupra lucrului efectuat, care să conțină răspunsuri explicite la fiecare punct formulat în cerințe.

Încărcați fișierul cu darea de seamă și fișierele .pkt în mapa Lucrarea de laborator N5 din pagina dedicată cursului de Rețele de Calculatoare a platformei educaționale moodle.usm.md.

Figura 3

1. Folosind adresa de rețea

- a) 192.168.5+k.14+k/24,
- b) 172.16.4+k.254-k/20,
- c) 10.10.16+k.0/18,

(k - numărul de ordine al studentului în registrul grupei)

elaborați o schemă de IPv4 adrese pentru subrețelele rețelei dacă se știe că în fiecare subrețea sunt nu mai mult de 14 host-uri. Se va utiliza configurația de rețea din Figura 1 pentru a forma trei sisteme autonome AS1, AS2 și AS3, astfel încât

- dispozitivelor din AS1 li se vor atribui IP adrese ce aparțin schemei elaborate la punctul a).
- dispozitivelor din AS2 li se vor atribui IP adrese ce aparțin schemei elaborate la punctul b).
- dispozitivelor din AS3 li se vor atribui IP adrese ce aparțin schemei elaborate la punctul c).

a) 192.168.16.25/24

SUBNET MASK: 255,255,255,240/28

Numarul	Adresa subretelei	Range-ul adreselor de host utilizabile	Adresa de broadcast
subretelei	ridi esa sani etelei	nunge ur uureseior ue nost utmeusne	in subretea
0	192.168.16.0	192.168.16.1 - 192.168.16.14	192.168.16.15
1	192.168.16.16	192.168.16.17 - 192.168.16.30	192.168.16.31
2	192.168.16.32	192.168.16.33 - 192.168.16.46	192.168.16.47
3	192.168.16.48	192.168.16.49 - 192.168.16.62	192.168.16.63

4	192.168.16.64	192.168.16.65 - 192.168.16.78	192.168.16.79
5	192.168.16.80	192.168.16.81 - 192.168.16.94	192.168.16.95
6	192.168.16.96	192.168.16.97 - 192.168.16.110	192.168.16.111
7	192.168.16.112	192.168.16.113 - 192.168.16.126	192.168.16.127
8	192.168.16.128	192.168.16.129 - 192.168.16.142	192.168.16.143
9	192.168.16.144	192.168.16.145 - 192.168.16.158	192.168.16.159
10	192.168.16.160	192.168.16.161 - 192.168.16.174	192.168.16.175
11	192.168.16.176	192.168.16.177 - 192.168.16.190	192.168.16.191
12	192.168.16.192	192.168.16.193 - 192.168.16.206	192.168.16.207
13	192.168.16.208	192.168.16.209 - 192.168.16.222	192.168.16.223
14	192.168.16.224	192.168.16.225 - 192.168.16.238	192.168.16.239
15	192.168.16.280	192.168.16.241 - 192.168.16.254	192.168.16.255

b) 172.16.15.243/20

SUBNET MASK: 255.255.255.240/28

Numarul	Adresa subretelei Range-ul adreselor de host utilizabile		Adresa de broadcast
subretelei	Auresa subreteler	Kange-ul auf eseiof de nost utilizablie	in subretea
0	172.16.0.0	172.16.0.1 - 172.16.0.14	172.16.0.15
1	172.16.0.16	172.16.0.17 - 172.16.0.30	172.16.0.31
2	172.16.0.32	172.16.0.33 - 172.16.0.46	172.16.0.47
3	172.16.0.48	172.16.0.49 - 172.16.0.62	172.16.0.63
4	172.16.0.64	172.16.0.65 - 172.16.0.78	172.16.0.79
5	172.16.0.80	172.16.0.81 - 172.16.0.94	172.16.0.95
6	172.16.0.96	172.16.0.97 - 172.16.0.110	172.16.0.111
7	172.16.0.112	172.16.0.113 - 172.16.0.126	172.16.0.127
8	172.16.0.128	172.16.0.129 - 172.16.0.142	172.16.0.143
9	172.16.0.144	172.16.0.145 - 172.16.0.158	172.16.0.159
10	172.16.0.160	172.16.0.161 - 172.16.0.174	172.16.0.175
11	172.16.0.176	172.16.0.177 - 172.16.0.190	172.16.0.191
12	172.16.0.192	172.16.0.193 - 172.16.0.206	172.16.0.207
13	172.16.0.208	172.16.0.209 - 172.16.0.222	172.16.0.223
14	172.16.0.224	172.16.0.225 - 172.16.0.238	172.16.0.239
15	172.16.0.240	172.16.0.241 - 172.16.0.254	172.16.0.255

SUBNET MASK: 255.255.255.240/28

Numarul	rul Adresa subretelei Range-ul adreselor de host utilizabile		Adresa de broadcast	
subretelei	Auresa subreteiei	FIRST	LAST	in subretea
0	10.10.0.0	10.10.0.1	10.10.0.14	10.10.0.15
1	10.10.0.16	10.10.0.15	10.10.0.30	10.10.0.31
2	10.10.0.32	10.10.0.33	10.10.0.46	10.10.0.47
3	10.10.0.48	10.10.0.49	10.10.0.62	10.10.0.63
4	10.10.0.64	10.10.0.65	10.10.0.78	10.10.0.79
5	10.10.0.80	10.10.0.81	10.10.0.94	10.10.0.95
6	10.10.0.96	10.10.0.97	10.10.0.110	10.10.0.111
7	10.10.0.112	10.10.0.113	10.10.0.126	10.10.0.127
8	10.10.0.128	10.10.0.129	10.10.0.142	10.10.0.143
9	10.10.0.144	10.10.0.145	10.10.0.158	10.10.0.159
10	10.10.0.160	10.10.0.161	10.10.0.174	10.10.0.175
11	10.10.0.176	10.10.0.177	10.10.0.190	10.10.0.191
12	10.10.0.192	10.10.0.193	10.10.0.206	10.10.0.207
13	10.10.0.208	10.10.0.209	10.10.0.222	10.10.0.223
14	10.10.0.224	10.10.0.225	10.10.0.238	10.10.0.239
15	10.10.0.240	10.10.0.241	10.10.0.254	10.10.0.255

^{*}Pentru vizualizarea configuratiilor AS1 AS2 AS3 de retea integrala, accesati documentul atasat in cadrul ZIP-ului: **subnet tables**

2. Folosind rutarea statică, configurați tabelele de rutare ale routerelor R1, R2, R3, R4 și R5 din sistemul autonom AS1. Salvați configurația de rețea realizată în fișierul Nume_Prenume_Grupa_Retea5a.pkt

Dispozitiv	Interfata	IP adresa	Masca de subretea	Adresa implicita a routerului
	Gig 0/6	192.168.16.65	255.255.255.240	
R1	Gig 0/7	192.168.16.49	255.255.255.240	N/A
KI	Gig 0/8	192.168.16.97	255.255.255.240	IVA
	Gig 0/9	192.168.16.113	255.255.255.240	
	Gig 0/6	192.168.16.129	255.255.255.240	
R2	Gig 0/7	192.168.16.126	255.255.255.240	N/A
142	Gig 0/8	192.168.16.33	255.255.255.240	11/11
	Gig 0/9	192.168.16.145	255.255.255.240	

	Gig 0/7	192.168.16.81	255.255.255.240	
R3	Gig 0/8	192.168.16.142	255.255.255.240	N/A
	Gig 0/9	192.168.16.110	255.255.255.240	
	Gig 0/8	192.168.16.146	255.255.255.240	
R4	Gig 0/9	192.168.16.1	255.255.255.240	N/A
	Gig 0/8	192.168.16.147	255.255.255.240	
R5	Gig 0/9	192.168.16.17	255.255.255.240	N/A
Server1	Fa0	192.168.16.3	255.255.255.240	192.168.16.1
Server2	Fa0	192.168.16.18	255.255.255.240	192.168.16.17
PC1	Fa0	192.168.16.2	255.255.255.240	192.168.16.1
PC2	Fa0	192.168.16.34	255.255.255.240	192.168.16.33
PC3	Fa0	192.168.16.35	255.255.255.240	192.168.16.33
PC4	Fa0	192.168.16.36	255.255.255.240	192.168.16.33
PC5	Fa0	192.168.16.50	255.255.255.240	192.168.16.49
PC6	Fa0	192.168.16.51	255.255.255.240	192.168.16.49
PC7	Fa0	192.168.16.52	255.255.255.240	192.168.16.49
PC8	Fa0	192.168.16.66	255.255.255.240	192.168.16.65
PC9	Fa0	192.168.16.67	255.255.255.240	192.168.16.65
PC10	Fa0	192.168.16.82	255.255.255.240	192.168.16.81
PC11	Fa0	192.168.16.83	255.255.255.240	192.168.16.81

*Configuratia PC-urilor si a serverelor este conform tabelului din punctul a).

 $^{^{\}wedge}$ Respectiv configurăm si conexiunile statice dintre toate celelalte routere, conform tabelului de adrese.

- 3. Folosind protocolul de rutare dinamică
- ✓ RIP (pentru k un număr din mulțimea {1,3,5,7,9,11,13,15,17,19,21,23,25}),
- ✓ EIGRP (pentru k un număr din mulțimea {2,4,6,8,10,12,14,16,18,20,22,24}),

configurați tabelele de rutare ale routerelor R1, R2, R3, R4 și R5 din sistemul autonom AS2. Salvați configurația de rețea realizată în fișierul $\mathbf{Nume_Prenume_Grupa_Retea5b.pkt}$ $\mathbf{k} = \mathbf{11} \Rightarrow \mathbf{RIP}$

Router 4

Router(config) #router rip Router(config-router) #version 2 Router(config-router) #network 172.16.0.0 Router(config-router) #no auto-summary Router(config-router) #exit Router(config) #do wr Building configuration...

^respectiv procedam si la alte routere

BEFORE/AFTER

Router 1	
Router(config) #do show ip route Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP D - EIGRP, EX - EIGRP external, O - OSPF, IR - OSPF inter area N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2 E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area * - candidate default, U - per-user static route, o - ODR P - periodic downloaded static route	
Gateway of last resort is not set 172.16.0.0/28 is subnetted, 9 subnets S 172.16.0.0 [1/0] via 172.16.0.126 S 172.16.0.32 [1/0] via 172.16.0.126 S 172.16.0.32 [1/0] via 172.16.0.126 C 172.16.0.32 [1/0] via 172.16.0.126 C 172.16.0.48 is directly connected, GigabitEthernet7/0 C 172.16.0.64 is directly connected, GigabitEthernet6/0 S 172.16.0.80 [1/0] via 172.16.0.110 C 172.16.0.96 is directly connected, GigabitEthernet8/0 C 172.16.0.112 is directly connected, GigabitEthernet9/0 R 172.16.0.128 [120/1] via 172.16.0.110, 00:00:15, GigabitEthernet8/0	172.16.0.0/28 is subnetted, 10 subnets 172.16.0.0 [1/0] via 172.16.0.126 172.16.0.16 [1/0] via 172.16.0.126 172.16.0.32 [1/0] via 172.16.0.126 172.16.0.23 [1/0] via 172.16.0.126 172.16.0.48 is directly connected, GigabitEthernet7/0 172.16.0.64 is directly connected, GigabitEthernet6/0 172.16.0.80 [1/0] via 172.16.0.110 172.16.0.96 is directly connected, GigabitEthernet8/0 172.16.0.112 is directly connected, GigabitEthernet8/0 172.16.0.128 [120/1] via 172.16.0.110, 00:00:12, GigabitEthernet8/0 [120/1] via 172.16.0.126, 00:00:18, GigabitEthernet9/0 172.16.0.144 [120/1] via 172.16.0.126, 00:00:18, GigabitEthernet9/0
Router 3	

```
172.16.0.0/28 is subnetted, 8 subnets
                                                                                                                           172.16.0.0/28 is subnetted, 10 subnets
           172.16.0.0 [1/0] via 172.16.0.129
                                                                                                                               172.16.0.0 [1/0] via 172.16.0.129
                                                                                                                               172.16.0.16 [1/0] via 172.16.0.129
           172.16.0.16 [1/0] via 172.16.0.129
172.16.0.32 [1/0] via 172.16.0.129
                                                                                                                               172.16.0.32 [1/0] via 172.16.0.129
172.16.0.48 [1/0] via 172.16.0.97
           172.16.0.48 [1/0] via 172.16.0.97
172.16.0.64 [1/0] via 172.16.0.97
                                                                                                                               172.16.0.64 [1/0] via 172.16.0.97
                                                                                                                               172.16.0.80 is directly connected, GigabitEthernet7/0
           172.16.0.80 is directly connected, GigabitEthernet7/0 172.16.0.96 is directly connected, GigabitEthernet9/0
                                                                                                                               172.16.0.96 is directly connected, GigabitEthernet9/0
172.16.0.112 [120/1] via 172.16.0.97, 00:00:08, GigabitEthernet9/0
[120/1] via 172.16.0.129, 00:00:27, GigabitEthernet8/0
           172.16.0.128 is directly connected, GigabitEthernet8/0
                                                                                                                               172.16.0.128 is directly connected,
                                                                                                                               172.16.0.144 [120/1] via 172.16.0.129, 00:00:27, GigabitEthernet8/0
Router 2
                                                                                                                           172.16.0.0/28 is subnetted, 10 subnets
172.16.0.0 [1/0] via 172.16.0.146
       172.16.0.0/28 is subnetted, 9 subnets
172.16.0.0 [1/0] via 172.16.0.146
                                                                                                                               172.16.0.16 [1/0] via 172.16.0.147
           172.16.0.16 [1/0] via 172.16.0.147
172.16.0.32 is directly connected, GigabitEthernet8/0
                                                                                                                               172.16.0.32 is directly connected, GigabitEthernet8/0
172.16.0.48 [1/0] via 172.16.0.113
172.16.0.64 [1/0] via 172.16.0.113
172.16.0.80 [1/0] via 172.16.0.142
           172.16.0.48 [1/0] via 172.16.0.113 172.16.0.64 [1/0] via 172.16.0.113
           172.16.0.80 [1/0] via 172.16.0.142
                                                                                                                               172.16.0.96 [120/1] via 172.16.0.142, 00:00:20, GigabitEthernet6/0 [120/1] via 172.16.0.113, 00:00:14, GigabitEthernet7/0
           172.16.0.112 is directly connected, GigabitEthernet7/0
           172.16.0.128 is directly connected. GigabitEthernet6/0
                                                                                                                               172.16.0.112 is directly connected, GigabitEthernet7/0
172.16.0.128 is directly connected, GigabitEthernet6/0
           172.16.0.144 is directly connected, GigabitEthernet9/0
                                                                                                                               172.16.0.144 is directly connected, GigabitEthernet9/0
Router 4
       172.16.0.0/28 is subnetted, 7 subnets
                                                                                                                           172.16.0.0/28 is subnetted, 10 subnets
           172.16.0.0 is directly connected, GigabitEthernet9/0
                                                                                                                               172.16.0.0 is directly connected, GigabitEthernet9/0 172.16.0.16 [1/0] via 172.16.0.147
           172.16.0.16 [1/0] via 172.16.0.147 172.16.0.32 [1/0] via 172.16.0.145
                                                                                                                               172.16.0.32 [1/0] via 172.16.0.145
           172.16.0.48 [1/0] via 172.16.0.145
                                                                                                                               172.16.0.48 [1/0] via 172.16.0.145
           172.16.0.64 [1/0] via 172.16.0.145
                                                                                                                               172.16.0.64 [1/0] via 172.16.0.145 172.16.0.80 [1/0] via 172.16.0.145
           172.16.0.80 [1/0] via 172.16.0.145
           172.16.0.144 is directly connected, GigabitEthernet8/0
                                                                                                                               172.16.0.96 [120/2] via 172.16.0.145. 00:00:00. GigabitEthernet8/0
                                                                                                                               172.16.0.112 [120/1] via 172.16.0.145, 00:00:00, GigabitEthernet8/0 172.16.0.128 [120/1] via 172.16.0.145, 00:00:00, GigabitEthernet8/0
                                                                                                                               172.16.0.144 is directly connected, GigabitEthernet8/0
Router 5
       172.16.0.0/28 is subnetted,
                                                                                                                           172.16.0.0/28 is subnetted, 10 subnets
172.16.0.0 [1/0] via 172.16.0.146
           172.16.0.0 [1/0] via 172.16.0.146
           172.16.0.16 is directly connected, GigabitEthernet9/0 172.16.0.32 [1/0] via 172.16.0.145
                                                                                                                               172.16.0.16 is directly connected, GigabitEthernet9/0
                                                                                                                               172.16.0.32 [1/0] via 172.16.0.145 172.16.0.48 [1/0] via 172.16.0.145
           172.16.0.48 [1/0] via 172.16.0.145
           172.16.0.64 [1/0] via 172.16.0.145
                                                                                                                               172.16.0.64 [1/0] via 172.16.0.145 172.16.0.80 [1/0] via 172.16.0.145
           172.16.0.80 [1/0] via 172.16.0.145
           172.16.0.144 is directly connected, GigabitEthernet8/0
                                                                                                                               172.16.0.96 [120/2] via 172.16.0.145, 00:00:11, GigabitEthernet8/0
                                                                                                                               172.16.0.112 [120/1] via 172.16.0.145, 00:00:11, GigabitEthernet8/0 172.16.0.128 [120/1] via 172.16.0.145, 00:00:11, GigabitEthernet8/0
                                                                                                                               172.16.0.144 is directly connected, GigabitEthernet8/0
```

Connection Testing:

4. Routerele sistemului autonom AS3 sunt divizate în două domenii, Area 0 și Area 1. Folosind protocolul de rutare dinamică OSPF cu două domenii, Area0 și Area 1 (a se vedea Figura 2), configurați tabelele de rutare ale routerelor R1, R2, R3, R4 și R5 din sistemul autonom AS3, astfel încât să fie

asigurată conexiune între oricare două dispozitive ale rețelei inițiale. Salvați configurația de rețea realizată în fișierul Nume_Prenume_Grupa_Retea5c.pkt.

^In momentul dat încă nu este configurat tot

<- respectiv configuram R1 si R3

<- respectiv configuram R4 & R5

Configurarea routerului 2 pentru Area 1

```
Router(config) #router ospf 1
Router(config-router) #network 10.10.0.64 0.0.0.15 area 1
Router(config-router) #network 10.10.0.80 0.0.0.15 area 1
Router(config-router) #network 10.10.0.84 0.0.0.15 area 1
Router(config-router) #network 10.10.0.84 0.0.0.15 area 1
Router(config-router) #network 10.10.0.84 0.0.0.15 area 1
Router(config-router) #network 10.10.0.48 0.0.0.15 area 1
Router(config-router) #network 10.10.0.128 0.0.0.15 area 1
Router(config-router) #network 10.10.0.128 0.0.0.15 area 1
Router(config-router) #network 10.10.0.128 0.0.0.15 area 1
Router(config-fig wr
Building configuration...
```

Configurarea routerului 2 pentru Area 0

Routerul 2 a fost configurat anterior pentru Area 0

Mărim prioritatea interfețelor acestuia după care vom reinițializa procesul de alegere a routerului DR, in urma căruia acesta va fi ales.

```
Router(config)#int gig 6/0
Router(config-if) #ip ospf priority 100
Router(config-if) #int gig 7/0
Router(config-if) #ip ospf priority 100
Router(config-if) #int gig 8/0
Router(config-if) #ip ospf priority 100 Router(config-if) #int gig 9/0
Router(config-if) #ip ospf priority 100
Router(config-if) #exit
Router(config) #do clear ip ospf process
Reset ALL OSPF processes? [no]: y
05:11:14: %OSPF-5-ADJCHG: Process 1. Nbr 10.10.0.146 on GigabitEthernet9/0 from FULL to DOWN. Neighbor Down: Adjacency forced to reset
05:11:14: %OSPF-5-ADJCHG: Process 1, Nbr 10.10.0.147 on GigabitEthernet9/0 from FULL to DOWN, Neighbor Down: Adjacency forced to reset
05:11:14: %OSPF-5-ADJCHG: Process 1, Nbr 10.10.0.146 on GigabitEthernet9/0 from FULL to DOWN, Neighbor Down: Interface down or detached
05:11:14: %OSPF-5-ADJCHG: Process 1, Nbr 10.10.0.147 on GigabitEthernet9/0 from FULL to DOWN, Neighbor Down: Interface down or detached
05:11:14: %OSPF-5-ADJCHG: Process 1, Nbr 10.10.0.142 on GigabitEthernet6/0 from FULL to DOWN, Neighbor Down: Adjacency forced to reset
05:11:14: %OSPF-5-ADJCHG: Process 1, Nbr 10:10:0.142 on GigabitEthernet6/0 from FULL to DOWN, Neighbor Down: Interface down or detached
05:11:14: %OSPF-5-ADJCHG: Process 1, Nbr 10.10.0.113 on GigabitEthernet7/0 from FULL to DOWN, Neighbor Down: Adjacency forced to reset
05:11:14: %OSPF-5-ADJCHG: Process 1, Nbr 10.10.0.113 on GigabitEthernet7/0 from FULL to DOWN, Neighbor Down: Interface down or detached
05:11:17: %OSPF-5-ADJCHG: Process 1, Nbr 10.10.0.147 on GigabitEthernet9/0 from LOADING to FULL, Loading Done
05:11:17: %OSPF-5-ADJCHG: Process 1, Nbr 10.10.0.146 on GigabitEthernet9/0 from LOADING to FULL, Loading Done
05:11:22: %OSPF-5-ADJCHG: Process 1, Nbr 10.10.0.113 on GigabitEthernet7/0 from LOADING to FULL, Loading Done
05:11:25: %OSPF-5-ADJCHG: Process 1, Nbr 10.10.0.142 on GigabitEthernet6/0 from LOADING to FULL, Loading Done
Router(config) #do show ip ospf neighbor
                                                      Address
10.10.0.147
10.10.0.146
Neighbor ID
                       State
FULL/BDR
                                         Dead Time
                                                                        Interface
10.10.0.147
                                         00:00:37
                                                                        GigabitEthernet9/0
                                                                        GigabitEthernet9/0
10.10.0.146
                        FULL/DROTHER
                                         00:00:32
10.10.0.142
                       FULL/BDR
                                         00:00:33
                                                      10.10.0.142
                                                                        GigabitEthernet6/0
10.10.0.113
                   1 FULL/BDR
                                         00:00:30
                                                      10.10.0.113
                                                                        GigabitEthernet7/0
Router(config)#
```

Connection Testing:

5. Se consideră rețeaua formată din trei sisteme autonome AS1, AS2 și AS3 (a se vedea Figura 3), care sunt conectate între ele prin routerul R0. Subrețelelor ce conectează routerul R0 cu AS1, AS2 și AS3 li se vor atribui corespunzător IP adresele 10.1.k.0/24, 10.1.k+1.0/24 și 10.1.k+2.0/24. În AS1 este configurată rutarea statică realizată la punctul 2. În AS2 este configurată rutarea dinamică realizată la punctul 3, iar în AS3 - rutarea dinamică realizată la punctul 4.

5.1. Realizați o redistribuire a rutelor între AS1, AS2 și AS3 fără a utiliza protocolul BGP. Salvați configurația de rețea realizată în fișierul **Nume_Prenume_Grupa_Retea4d.pkt**

Setam conexiunea dintre routerul AS2 si R0 sa fie inclusa in reteaua RIP, iar cea dintre AS3 si R0 setam protocolul OSPF. In R0 este configurat atat RiP cat si OSFP. Folosind comenzile de redistribuire a fiecarui protocol si metrica specifica, am completat toate routerele din ambele retele (Exemplu :AS2 si AS3 cu IP-urile necesare pentru a asigura conexiunea intre oricare 2 hosturi din ambele retele.

RIP-Retea Statica:

Stabilim rute statice intre AS1 si R0 cu toate adresele IP ce apartin AS2 in routele din AS1 si toate adresele din AS1 in R0. Redistribuirea in AS2 se face cu comanda de redistribuire a rutelor statice a protocolului RIP.

Redistribuirea OSPF-Retea Statica:

Setam rute statice cu toate adresele IP ce apartin AS3 in routele din. Redistribuirea in AS3 se face cu comanda de redistribuire a rutelor statice a protocolului OSPF.

5.2. Realizați o redistribuire a rutelor între AS1, AS2 și AS3, folosind protocolul de rutare dinamică BGP. Salvați configurația de rețea realizată în fișierul Nume_Prenume_Grupa_Retea4e.pkt

Stabilim in AS1 protocolul BGP cu toate adresele din reteaua curenta. Acesta va avea conexiune cu AS4(care defapt reprezinta R0). In R0 setam protocolul BGP cu AS4 care va avea cate o

conexiune(interfata) cu celelalte 3 router, astfel in urma schimbarii de date intre aceste 4 routere, fiecare din ele vor avea inscrise toate adresele IP din cele 3 retele (Exemplu: R0 si AS2.)

Folosind comenzile de redistribuire a protocolului RIP si OSPF, completam toate routele (Exemplu: AS2 si AS3) din AS2 si AS3 cu toate adresele IP obtinute de protocolul BGP.

BIBLIOGRAFIE

- How to calculate a subnet mask from hosts and subnets (techtarget.com)
- ➤ IP Calculator / IP Subnetting (jodies.de)
- Online IP Subnet Calculator (subnet-calculator.com)
- Subnet Masks Reference Table (www.cloudaccess.net)
- Host and Subnet Quantities Cisco
- ➤ Subnetting Cisco CCNA -Part 1 The Magic Number YouTube
- Microsoft Word Cheatsheet RL.docx (pub.ro)
- ► IP Subnet Calculator for IPv4 | Online Subnet Mask Calculator Site24x7
- routersecurity.org
- ▶ IP Routing: OSPF Configuration Guide Configuring OSPF [Cisco Cloud Services Router 1000V Series] Cisco
- Wildcard mask Wikipedia