7 Sistema Métrico Decimal

INTRODUCCIÓN

El conocimiento del sistema de numeración decimal, la potenciación y las operaciones de multiplicación y división por la unidad seguida de ceros, nos introducirán en el estudio de las magnitudes y unidades de medida.

En esta unidad será necesario que los alumnos realicen mediciones y cálculos en el aula, en el laboratorio o en el exterior. El uso de los principales instrumentos de medida ha de ser reforzado por operaciones y comprobaciones aritméticas en el aula. Dibujar un metro cuadrado en el suelo, construir un metro cúbico, realizar con recortables el decímetro cúbico y utilizar medidas de capacidad y volumen son acciones que ayudan a comprender el concepto de medida.

Gradualmente, se puede conseguir la comprensión en las equivalencias de las unidades y su práctica real, sobre todo en el caso de litro/decímetro cúbico/kilogramo. La resolución de problemas sencillos contribuirá a la consecución de los objetivos de la unidad.

RESUMEN DE LA UNIDAD

- El Sistema Métrico Decimal es el sistema de medida universalmente aceptado, cuyas unidades están relacionadas mediante potencias de 10.
- El *metro (m)* es la unidad principal de longitud en el Sistema Métrico Decimal.
- El *kilogramo (kg)* es la unidad principal de masa en el Sistema Métrico Decimal.
- El *litro (l)* es la unidad principal de capacidad en el Sistema Métrico Decimal.
- Para *pasar de una unidad a otra* inmediatamente inferior o superior se multiplica o se divide por 10, respectivamente.
- Una medida en *forma compleja* se expresa en una sola unidad, y en *forma incompleja*, en más de una unidad.
- Para sumar o restar medidas, estas han de estar expresadas en la misma unidad.
- El *metro cuadrado (m²)* es la unidad principal de superficie, y es la superficie que tiene un cuadrado de 1 metro de lado.
- El metro cúbico (m³) es la unidad principal de volumen, y es el volumen que tiene un cubo de 1 metro de arista.

OBJETIVOS	CONTENIDOS	PROCEDIMIENTOS
Conocer las unidades de longitud, masa y capacidad. Realizar cambios de unidades.	 Unidades de longitud, masa y capacidad. Múltiplos y submúltiplos. Instrumentos de medida. 	 Identificación de magnitudes. Diferenciación de los múltiplos y submúltiplos de las unidades de longitud, masa y capacidad. Equivalencias. Resolución de problemas. Identificación y utilización de los instrumentos de medida.
2. Conocer las unidades de superficie y volumen. Realizar cambios de unidades.	 Unidades de superficie. Conocimiento de las unidades agrarias. Unidades de volumen. Múltiplos y submúltiplos. Áreas del cuadrado y el rectángulo. Volumen del cubo. 	 Identificación de magnitudes. Diferenciación de múltiplos y submúltiplos de las unidades de superficie y volumen. Resolución de problemas. Identificación y utilización de los instrumentos de medida.
3. Comprender la relación entre las unidades de volumen, capacidad y masa.	Equivalencias principales entre las unidades de volumen, capacidad y masa.	Conversión de unidades aplicando las equivalencias.Resolución de problemas.

OBJETIVO 1

CONOCER LAS UNIDADES. REALIZAR CAMBIOS DE UNIDADES

NOMBRE: _____ FECHA: _____

- Una magnitud es una cualidad, característica... de un objeto que podemos medir. Ejemplo: longitud, masa, capacidad, superficie, volumen, velocidad...
- Las magnitudes se expresan en unidades de medida:
 Ejemplo: metros, kilómetros, kilógramos, gramos, centilitros, metros cuadrados, metros cúbicos, kilómetros por hora...
- El Sistema Métrico Decimal es un sistema de medida **decimal** porque las unidades se relacionan entre sí mediante **potencias de 10**.
- Para **multiplicar** un número por **10**, **100**, **1.000**... se desplaza la coma a la derecha tantos lugares como ceros tenga la unidad: 1, 2, 3...

 $3,47 \cdot 100 = 347$

 $589 \cdot 1.000 = 589.000$

• Para dividir un número entre 10, 100, 1.000... se desplaza la coma a la izquierda tantos lugares como ceros tenga la unidad: 1, 2, 3...

25,87:100=0,2587

29:10=2,9

1 Une cada magnitud con su unidad correspondiente.

El agua de un embalse
La capacidad de una lata de refresco
La capacidad de una piscina
La velocidad de un ciclista
El peso de un saco de patatas
La longitud de un bolígrafo
El área de un campo de girasoles
La distancia entre dos pueblos
El peso de un camión
La altura de un rascacielos

36 kilómetros por hora
7.450 metros cuadrados
45 kilogramos
12.000 litros
4.500 kilogramos
350 metros
33 centilitros
15 centímetros
145 hectómetros cúbicos
25 kilómetros

2 Realiza las siguientes operaciones.

a) $34,56 \cdot 100 =$

d) $0.71 \cdot 1.000 =$

g) 139 · 10 =

b) $0.198 \cdot 100 =$

e) 3.528 · 10 =

h) $7 \cdot 10.000 =$

c) $18,2 \cdot 1.000 =$

f) $0.1 \cdot 10 =$

i) 84.002 · 100 =

3 Calcula.

a) 987:1.000 =

d) 0.37:10=

g) 23.600 : 100 =

b) 15,37 : 100 =

e) 0.9:10=

h) 253,6 : 1.000 =

c) 46:10=

f) 61.302 : 10.000 =

i) 47,05:100 =

UNIDADES DE LONGITUD

- El **metro** es la unidad principal de longitud. Abreviadamente se escribe **m**.
- Los múltiplos (unidades mayores) y submúltiplos (unidades menores) del metro son:

MÚLTIPLOS DEL METRO			UNIDAD PRINCIPAL	SUBMÚ	LTIPLOS DEL	METRO	
10.000 m	1.000 m	100 m	10 m	metro	0,1 m	0,01 m	0,001 m
miriámetro	kilómetro	hectómetro	decámetro		decímetro	centímetro	milímetro
mam	km	hm	dam	m	dm	cm	mm

- Cada unidad, en la vida real, se emplea para medir:
 - Grandes distancias como carreteras, vías férreas: mam, km, hm.
 - Distancias intermedias como calles, alturas: dam, m.
 - Pequeñas medidas como fotografías, mobiliario: dm, cm.
 - Medidas reducidas como alfileres, insectos: mm.
- Para transformar una unidad de longitud en otra se multiplica o se divide por 10.

- Asocia una unidad de longitud con cada ejemplo.
 - a) La altura de una casa.
- d) La distancia entre dos ciudades.
- g) Una ventana.

- b) La longitud de una hormiga.
- e) El tablero de tu pupitre.
- h) Un imperdible.

c) Tu altura.

- f) La anchura de una calle.
- i) Tu habitación.
- Ordena, de menor a mayor (<), las medidas. Toma como referencia el metro, pasando todas las medidas a esta unidad.

1.500 cm - 3,5 m - 94,7 dm - 0,15 km - 0,03 dam - 6.341 mm - 1,3 m - 2,04 km - 1.000 m

6 Completa la siguiente tabla.

km	hm	dam	m	dm	cm	mm
2,1						
				13.472		
			34			
	0,33					
		9,35				
					7.749	
						54

7 Expresa las siguientes alturas en hectómetros y kilómetros.

NOMBRE	ALTURA (en m)	ALTURA (en hm)	ALTURA (en km)
Everest	8.844		
Mont Blanc	4.810		
Mulhacén	3.482		
Teide	3.718		
Almanzor	2.592		
Aneto	3.404		

8 Expresa la longitud de estos ríos en hectómetros y metros.

NOMBRE	LONGITUD (en km)	LONGITUD (en hm)	LONGITUD (en m)
Tajo	1.120		
Ebro	927		
Duero	913		
Guadiana	743		
Guadalquivir	680		
Júcar	535		
Segura	341		
Miño	340		

9 Completa.

a)
$$5.5 \text{ km} = \dots \text{ m}$$

b)
$$34,5 \text{ mm} = \dots \text{ m}$$

d)
$$12 \text{ km} = \dots \text{ m}$$

f)
$$1,60 \text{ dm} = \dots \text{m}$$

UNIDADES DE MASA

- El kilogramo y el gramo son las unidades principales de masa. Abreviadamente se escriben kg y g.
- Los múltiplos (unidades mayores) y submúltiplos (unidades menores) del gramo son:

	MÚLTIPLOS DEL GRAMO			UNIDAD PRINCIPAL	SUBMÚ	ILTIPLOS DEL	GRAMO
10.000 g	1.000 g	100 g	10 g	gramo	0,1 g	0,01 g	0,001 g
miriagramo	kilogramo	hectogramo	decagramo	gramo	decigramo	centigramo	miligramo
mag	kg	hg	dag	ğ	dg	cg	mg

• Para medir grandes masas se utilizan:

Unidades	Unidades Símbolo		Equivalencia (en g)	
Tonelada métrica	t	1.000 kg	1.000.000 g	
Quintal métrico	q	100 kg	100.000 g	

Ejemplos: carga de un avión, envíos de alimentos, masa de un camión, etc.

• Para transformar una unidad de masa en otra se multiplica o se divide por 10.

0 Ordena, de mayor a menor (>), las siguientes medidas. Toma como referencia el gramo o el kilogramo y pasa todas las medidas a la unidad que elijas.

11 Completa la siguiente tabla.

t	q	kg	g	dg	cg	mg
0,5						
				31.872		
			65			
	0,31					
		9				
					1.749	
						59

12 Completa.

- a) $2.5 \text{ kg} = \dots \text{g}$
- c) 0,7 dag = g
- e) $587 \text{ cg} = \dots \text{g}$

- b) $5.345 \text{ mg} = \dots \text{kg}$
- d) $1.258 \text{ g} = \dots \text{kg}$
- f) $6,6 \, dg = \dots \, kg$

UNIDADES DE CAPACIDAD

- El **litro** es la unidad principal de capacidad. Abreviadamente se escribe \mathcal{\ell}.
- Los múltiplos (unidades mayores) y submúltiplos (unidades menores) del litro son:

MÚLTIPLOS DEL LITRO			UNIDAD PRINCIPAL	SUBMÚ	ILTIPLOS DE	L LITRO	
10.000 \(\epsilon \) mirialitro mal	1.000 l kilolitro kl	100 ℓ hectolitro hl	10 ℓ decalitro dal	litro ℓ	0,1 l decilitro dl	0,01 ℓ centilitro cl	0,001 & mililitro ml

• Para transformar una unidad de capacidad en otra se multiplica o se divide por 10.

Ordena, de menor a mayor (<), las siguientes medidas. Toma como referencia el litro y pasa todas las medidas a esta unidad.

250 cl - 1.500 ml - 2,5 ℓ - 0,005 kl - 0,7 dal - 19 dl - 7 hl - 30 ℓ - 450 cl

14 Completa la siguiente tabla.

kl	hl	dal	l	dl	cl	ml
1,5						
				50		
					400	
	3,5					
			6			
						5.600
		14				

15 Completa.

16 Calcula las siguientes cantidades, expresando el resultado en litros.

c)
$$3/4 \text{ de } 1.000 \text{ kl} =$$

- La capacidad de una piscina es de 75 kl. Actualmente contiene 300 hl. ¿Cuántos litros faltan para que se llene?
- Queremos llenar de vino un tonel, que tiene 5 dal de capacidad, con recipientes de 10 ℓ . ¿Cuántos recipientes de 10 ℓ necesitaremos?

OBJETIVO 2

UNIDADES DE SUPERFICIE Y VOLUMEN. REALIZAR CAMBIOS DE UNIDADES

NOMBRE:	CURSO:	
M M/IBBE:	CHR/O:	EEL HA:
1010D1\L	CUNSU	1 LUID

UNIDADES DE SUPERFICIE

- El **metro cuadrado** es la unidad principal de superficie. Se escribe **m**².
- Un metro cuadrado es la superficie de un cuadrado que tiene 1 metro de lado.
- Los múltiplos (*unidades mayores*) y submúltiplos (*unidades menores*) del m² son:

MÚLTIPLOS DEL METRO CUADRADO			UNIDAD PRINCIPAL	SUBMÚLTIPLOS DEL METRO CUADRADO			
1.000.000 m ² kilómetro cuadrado km ²	10.000 m ² hectómetro cuadrado hm ²	100 m ² decámetro cuadrado dam ²	metro cuadrado m²	0,01 m ² decímetro cuadrado dm ²	0,0001 m ² centímetro cuadrado cm ²	0,00001 m ² milímetro cuadrado mm ²	

• Para medir superficies de grandes objetos se utilizan:

• Para medir grandes superficies, como extensiones agrarias o terrestres, se emplean otras unidades:

Unidades	Símbolo	Equivalencia	Equivalencia (en m²)
Hectárea	ha	1 hm²	10.000 m ²
Área	а	1 dam²	100 m²
Centiárea	ca	1 m ²	1 m²

- 1 Si 1 m² es la superficie de un cuadrado de 1 m de lado, expresa.
 - a) 1 dm²
- b) 1 cm²
- c) 1 mm^2
- d) 1 dam²
- e) 1 hm²
- f) 1 km²
- 2 Indica qué unidad de medida utilizarías para expresar las siguientes superficies.
 - a) Una calculadora de bolsillo.

d) Un campo de fútbol.

b) La terraza de una casa.

e) Un botón.

c) Un campo de girasoles.

- f) El suelo del aula.
- 3 Ordena, de menor a mayor (<), las siguientes medidas. Toma como referencia el metro cuadrado y pasa todas las medidas a esta unidad.

25,4 km² - 610 m² - 34.000 dm² - 157.530 cm² - 2,4 hm² - 2 dam² - 234.971 mm²

4 Completa la siguiente tabla.

km²	ha	hm²	a	dam²	m²
	0,5				
			43		
0,25					
		30			
				625	
					2.500

5 Completa.

a)
$$850 \text{ dm}^2 = \dots \text{m}^2$$

c)
$$7 \text{ m}^2 = \dots \text{dm}^2$$

e)
$$785 \text{ cm}^2 = \dots \text{dm}^2$$

b)
$$3.295 \text{ mm}^2 = \dots \text{m}^2$$

d)
$$36,5 \text{ cm}^2 = \dots \text{ mm}^2$$

f)
$$6.9 \text{ dm}^2 = \dots \text{mm}^2$$

El área de un cuadrado es el producto de lados, $A = l \cdot l$. Calcula el área de estos cuadrados en cm² y dm². Fíjate en el ejemplo y dibuja las figuras.

a)
$$l = 5 \text{ cm}$$

b)
$$l = 3 \text{ cm}$$

c)
$$l=4$$
 cm

$$A = l \cdot l = 5 \text{ cm} \cdot 5 \text{ cm} = 25 \text{ cm}^2 = 25 \text{ cm}^2 : 100 = 0.25 \text{ dm}^2$$

El área de un rectángulo es el producto de base por altura, $A = b \cdot a$. Calcula el área de estos rectángulos en cm² y dm². Fíjate en el ejemplo y dibuja las figuras.

a)
$$b = 5 \text{ cm}$$
 $a = 3 \text{ cm}$

b)
$$b = 4 \text{ cm}$$
 $a = 2 \text{ cm}$

c)
$$b = 6 \text{ cm}$$
 $a = 4 \text{ cm}$

- $A = b \cdot a = 5 \text{ cm} \cdot 3 \text{ cm} = 15 \text{ cm}^2 = 15 \text{ cm}^2 : 100 = 0{,}15 \text{ dm}^2$
- 8 El suelo de una pista de gimnasia es un cuadrado cuyo lado mide 20 m. Determina su área.
- Un campo de fútbol tiene las siguientes medidas: de banda 100 m y de fondo 70 m. Halla el área total y expresa el resultado en m2 y a.

UNIDADES DE VOLUMEN

- El **metro cúbico** es la unidad principal de volumen. Se escribe **m**³.
- Un metro cúbico es el volumen de un cubo que tiene 1 metro de arista.
- Los múltiplos del m³ son cubos que tienen de arista múltiplos del metro:
 - − 1 decámetro cúbico, dam³, es un cubo que tiene de arista 1 dam.
 - − 1 hectómetro cúbico, hm³, es un cubo que tiene de arista 1 hm.
 - − 1 kilómetro cúbico, km³, es un cubo que tiene de arista 1 km.
- Los submúltiplos del m³ son cubos que tienen de arista submúltiplos del metro:
 - − 1 decímetro cúbico, dm³, es un cubo que tiene de arista 1 dm.
 - − 1 centímetro cúbico, cm³, es un cubo que tiene de arista 1 cm.
 - − 1 milímetro cúbico, mm³, es un cubo que tiene de arista 1 mm.

• Para transformar una unidad de volumen en otra se multiplica o se divide por 1.000.

- Principales equivalencias: 1 hm³ = 1.000 dam³ = 1.000.000 m³
 - $1 \text{ m}^3 = 1.000 \text{ dm}^3 = 1.000.000 \text{ cm}^3$
 - $1 \, dm^3 = 1.000 \, cm^3 = 1.000.000 \, mm^3$
- 10 Indica qué unidad de medida utilizarías para expresar los siguientes volúmenes.
 - a) Una piscina.
 - b) Un dado de parchís.
 - c) Un cartón de leche.

- d) Un embalse.
- e) Tu aula.
- f) El maletero de una furgoneta.
- Ordena, de mayor a menor (>), las siguientes medidas. Toma como referencia el metro cúbico y pasa todas las medidas a esta unidad.

0,4 km³ - 61 dam³ - 54.000 m³ - 3.157.530 cm³ - 3,4 hm³ - 2,01 hm³ - 23.234.971 mm³

- 12 Completa.
 - a) $950 \text{ dm}^3 = \dots \text{m}^3$
- c) $5 \text{ m}^3 = \dots \text{dm}^3$
- e) $385 \text{ cm}^3 = \dots \text{dm}^3$

- b) $3.295 \text{ mm}^3 = \dots \text{ cm}^3$
- d) $9,65 \text{ cm}^3 = \dots \text{ mm}^3$
- f) $0,369 \text{ dm}^3 = \dots \text{ mm}^3$

13 El volumen de un cuerpo es la cantidad de espacio que ocupa. Sabemos que 1 dm³ = 1.000 cm³, es decir, que en un cubo de 1 dm (10 cm) de arista caben 1.000 cubos de 1 cm de arista.

 $1 \text{ dm}^3 = 10 \cdot 10 \cdot 10 = 1.000 \text{ cm}^3$

El volumen de un cubo es igual a: largo · ancho · alto = $a \cdot a \cdot a = a^3$

Calcula el volumen de un cubo cuya arista mide 3 cm.

14 Si cada cubo mide 1 cm³, calcula el volumen de las figuras.

d)

e)

15 Existen figuras geométricas que tienen una forma parecida a la del cubo.

Por ejemplo, una piscina, tu aula, una caja de cerillas o un rascacielos. Calcular su volumen es muy sencillo: sus aristas no son iguales (a, b y c) y la fórmula es:

$$V = a \cdot b \cdot c$$

Estas figuras se llaman ortoedros, y son prismas geométricos cuyas caras son todas rectángulos.

Una caja de cerillas tiene las siguientes dimensiones: 5 cm, 4 cm y 2 cm. Halla su volumen.

$$V = 5 \cdot 3 \cdot 2 = 30 \text{ cm}^3$$

Calcula el volumen de una piscina de dimensiones: 10 m de largo, 8 m de ancho y 2 m de alto.

7

OBJETIVO 3

RELACIÓN ENTRE LAS UNIDADES DE VOLUMEN, CAPACIDAD Y MASA

NOMBRE: ______ FECHA: _____

- Si tomamos un recipiente de agua de $1\,\ell$ de capacidad y lo vertemos en $1\,\mathrm{dm^3}$ abierto, observamos que cabe exactamente.
 - 1 litro es el volumen de un cubo que tiene 1 dm de arista, es decir, la capacidad de 1 dm³.

Por tanto, $1 \ell = 1 \text{ dm}^3$.

- Si tomamos un recipiente de agua de 1 ml de capacidad y lo vertemos en 1 cm³ *abierto*, observamos que cabe exactamente.
 - 1 mililitro es el volumen de un cubo que tiene 1 cm de arista, es decir, la capacidad de 1 cm³.

Por tanto, $1 \text{ ml} = 1 \text{ cm}^3$.

■ Recuerda las unidades de capacidad y volumen, y establece la equivalencia entre m³, dm³, ℓ y kl.

1	$m^3 = \dots$	dm^3	ρ	1/1
- 1	$\Pi^{\bullet} = \dots \dots$	(IIIII) =	 1, =	 ΝI

2 Expresa en ℓ.

a)
$$4 \text{ m}^3 = \dots \ell$$

b)
$$2.000 \text{ mm}^3 = \dots \ell$$

c)
$$50 \text{ dm}^3 = \dots \ell$$

e)
$$3.000 \text{ cm}^3 = \dots \ell$$

f)
$$0.5 \text{ m}^3 = \dots \ell$$

3 Expresa en dm³.

a)
$$55 \ell = dm^3$$

d)
$$0.35 \text{ m}^3 = \dots \text{dm}^3$$

b)
$$35 dl = dm^3$$

e)
$$0.25 \text{ kl} = \dots \text{dm}^3$$

c)
$$10 \text{ dal} = \dots \text{dm}^3$$

f)
$$5.000 \text{ ml} = \dots \text{dm}^3$$

- Si tomamos un recipiente con agua destilada de 1 ℓ de capacidad (que ocupa 1 dm³) y lo pesamos en una balanza, esta se equilibraría exactamente con una pesa de 1 kg.
 - 1 kg es la masa que tiene 1 dm³ de agua destilada.

Por tanto, $1 \text{ kg} = 1 \ell$.

- Y si tomamos un recipiente con agua destilada de 1 ml de capacidad (que ocupa 1 cm³) y lo pesamos en una balanza, esta se equilibraría exactamente con una pesa de 1 g.
 - 1 g es la masa que tiene 1 cm³ de agua destilada.

Por tanto, $1 g = 1 cm^3$.

TABLA DE EQUIVALENCIAS

UNIDADES DE VOLUMEN	m ³			dm³			cm ³
UNIDADES DE CAPACIDAD	kl	hl	dal	l	dl	cl	ml
UNIDADES DE MASA	t	q	mag	kg	hg	dag	æ

$$1\,\ell=1\;\text{dm}^3=1\;\text{kg}$$

4 Expresa en kilogramos los siguientes volúmenes y capacidades de agua destilada.

a)
$$45 \ell = \text{kg}$$

c)
$$0.5 \text{ kl} = \dots \text{kg}$$

e)
$$3.000 \text{ cm}^3 = \dots \text{kg}$$

b)
$$20 \text{ dm}^3 = \dots \text{kg}$$

d)
$$3.5 \text{ kl} = \dots \text{kg}$$

f)
$$0.5 \text{ m}^3 = \dots \text{kg}$$

5 Expresa en gramos estos volúmenes y capacidades de agua destilada.

a)
$$55 \ell =g$$

c)
$$1 dal = \dots g$$

b)
$$35 \, dl = \dots g$$

d)
$$0.357 \text{ m}^3 = \dots \text{g}$$

f)
$$5.000 \text{ ml} = \dots \text{g}$$

- 6 Un embalse contiene 95 hm³ de agua. Calcula.
 - a) Su capacidad en m³.
 - b) Su capacidad en litros.
 - c) Si fuera agua destilada, ¿cuál sería su masa en toneladas y en kilogramos?

7

- Considera que el aula de tu clase tiene las siguientes dimensiones: largo 0,9 dam, ancho 6 m y altura 300 cm. Calcula.
 - a) El volumen de la clase expresado en m³.
 - b) La capacidad en litros si se llenara totalmente de agua.
 - c) El peso en kg y t del agua.
- 8 Ordena, de menor a mayor, las siguientes medidas.

9 Completa con las unidades adecuadas.

b)
$$3.7 \text{ km} = 0.37 \dots = 370 \dots$$

c)
$$5.28 \text{ m} = 52.8 \dots = 0.0528 \dots$$

d)
$$34,57 \text{ dam} = 3.457 \dots = 0,3457 \dots$$

10 Ordena, de menor a mayor, las siguientes medidas.

11 Ordena, de menor a mayor, las siguientes medidas.

- Las medidas de una pista de tenis son 24 m de largo y 8 m de ancho. ¿Cuántos centímetros cuadrados tiene la pista? ¿Y hectáreas?
- Una piscina tiene de medidas 50 m de largo, 20 m de ancho y 3 m de profundidad.
 - a) Si un nadador hace 10 largos de piscina, ¿recorre más o menos de 1 km?
 - b) ¿Cuál es el volumen de la piscina en dm³?
 - c) ¿Cuántos litros de agua son necesarios para llenar la piscina?
 - d) ¿Cuál es la masa en kilogramos del agua de la piscina?