МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Московский физико-технический институт (государственный университет)

КАФЕДРА ОБЩЕЙ ФИЗИКИ Вопрос по выбору, 2 семестр

Изучение равновесия диссоциации N_2O_4 в газовой фазе спектрофотометрическим методом

Студент
Лисов Роман
718 группа
Научный руководитель
Траньков Сергей Вячеславович

3 сентября 2018 г.

Цели работы

- проверить закон Бугера—Ламберта—Бэра о линейной связи оптической плотности и концентрации поглощающего агента
- проверить связь между температурой смеси и степенью диссоциании
- найти количественное значение энтальпии диссоциации и сравнить с табличными данными

Оборудование

Двухлучевой сканирующий спектрофотометр Shimadzu UV-1800; ячей-ка, наполненная N_2O_4 .

Введение

Положение химического равновесия может быть с высокой точностью рассчитано на основании термодинамических функций участников процесса. Такие расчеты являются основой решения множества важных практических задач. С другой стороны, термодинамические функции реакций чаще всего получают именно из данных по химическим равновесиям, хотя есть и другие экспериментальные источники, например, калориметрия, спектроскопия, теплоемкость и др. Специалистам разных областей химии, биологии, физики и техники необходимо свободно решать как прямые, так и обратные задачи химических равновесий. В настоящей работе предлагается познакомиться с этими методами на примере равновесия диссоциации

$$N_2O_4 \Leftrightarrow 2NO_2$$
 (1)

в газовой фазе.

Для измерения степени диссоциации в данной работе используется интенсивное поглощение молекулами NO_2 света в видимой области спектра. Измерения проводят при разных температурах, получая температурную зависимость константы равновесия (1), которую анализируют в рамках имеющейся теории.

Теоретические основы

Условие химического равновесия, как известно, записывается в форме равенства нулю изменения термодинамического потенциала системы в

ходе реакции, т. е.

$$\Delta G_{T,p} = 0. (2)$$

Согласно определению

$$dG_{T,p} = \sum \left(\frac{\partial G}{\partial n_i}\right)_{T,p} dn_i = \sum \mu_i dn_i, \tag{3}$$

где n_i — число молей i-го компонента системы 1, а μ_i — его химический потенциал, являющийся мерой влияния данного вещества на термодинамическое состояние системы. Уравнение (3) записано при условии постоянства концентраций всех компонентов системы, кроме i-го. Зависимость химического потенциала идеального газа от давления дается формулой

$$\mu_i = \mu_i^0 + RT \ln p_i, \tag{4}$$

в которой μ_i^0 – стандартный химический потенциал i-го компонента при давлении 1 атм. Если исключительно для простоты записи последующих уравнений представить равновесие (1) в форме

$$B \Leftrightarrow 2A,$$
 (5)

то на основании приведенных выше соотношений условие равновесия реакции (5) можно записать в виде

$$2\mu_A^0 + RT \ln p_A^2 - \mu_B^0 - RT \ln p_B = 0, \tag{6}$$

и после несложного преобразования получим выражение

$$-RT\ln(p_A^2/p_B) = 2\mu_A^0 - \mu_B^0, (7)$$

в котором комбинация давлений газов в равновесной системе, стоящая в скобках, соответствует константе равновесия

$$K_p = p_A^2/p_B. (8)$$

Подставляя (8) в (7), получим выражение

$$-RT\ln(K_p) = 2G_A^0 - G_B^0 = \Delta G^0, \tag{9}$$

являющееся условием химического равновесия. В нем скрыта размерность константы равновесия, которая связана с выбором стандартного состояния. Можно записать

$$\Delta G^0 = -RT \ln(K_p/K_p^0), \tag{10}$$

причем в стандартном состоянии K_p^0 в скобке равно единице в размерности этого состояния в соответствующей степени. Например, для газов в качестве стандартного состояния в большинстве случаев используют 1 атм, так что в рассматриваемом равновесии K_p и K_p^0 выражены в атм. Изменение термодинамического потенциала, в свою очередь, связано с изменениями энтальпии и энтропии в реакции соотношением:

$$\Delta G^0 = \Delta H^0 - T\Delta S^0. \tag{11}$$

Величина каждой из составляющих его функций зависит от температуры согласно приближенным уравнениям:

$$\Delta H_T^0 = \Delta H_{298}^0 + \Delta c_p \Delta T,\tag{12}$$

$$\Delta S_T^0 = \Delta S_{298}^0 + \Delta c_p \Delta \ln T, \tag{13}$$

в которых $\Delta_r c_p$ представляет собой разность теплоёмкостей продуктов и исходных веществ, а приращение T и lnT отсчитываются от стандартной температуры 298,15 К. Для относительно узких температурных интервалов этими зависимостями можно пренебречь, что приводит к окончательным соотношениям:

$$\Delta G_T^0 = \Delta H_{298}^0 - T\Delta S_{298}^0, \tag{14}$$

$$RT \ln K_p = -\Delta G_T^0 = -\Delta H_{298}^0 + T\Delta S_{298}^0, \tag{15}$$

которыми предлагается пользоваться в дальнейших расчетах.

В практически более удобной записи выражения (8) для константы равновесия реакции (1) в форме (5) используют степень диссоциации α . Предположим, что в замкнутую систему объемом V_0 введено n_0 молей газа В, так что суммарная концентрация обоих газов, выраженная в молях В и не зависящая от Т, составляет

$$C_0 = n_0/V_0,$$
 (16)

а их полное давление:

$$p_0 = RT \cdot C_0. \tag{17}$$

Такое давление имела бы система при температуре Т в условиях полной диссоциации. В иных условиях парциальные давления газов будут определяться уравнением материального баланса:

$$p_0 = 2p_B + p_A, (18)$$

поскольку каждая молекула В содержит две молекулы А. Если степень диссоциации определить как

$$\alpha = \frac{N_B}{N_0},\tag{19}$$

где N_0 – количество всех молекул N_2O_4 , а N_B – количество продиссоциировавших молекул N_2O_4 . Тогда с учётом формулы (17) получим для давлений газов:

$$p(N_2O_4) = (1 - \alpha) \cdot C_0RT, \tag{20}$$

$$p(NO_2) = 2\alpha \cdot C_0 RT. \tag{21}$$

Подставляя (20) и (21) в (8), получим выражение для константы равновесия диссоциации:

$$K_p = \frac{4\alpha^2}{1 - \alpha} \cdot C_0 RT. \tag{22}$$

Методика измерений

Исследование степени диссоциации газа проводится с помощью спектрофотометра Shimadzu UV-1800, который позволяет проводить измерения оптической плотности ячейки в целом диапазоне волн (от 400 до 500 нм в нашей работе)с заданным шагом (0,1 нм в нашей работе) и при разных температурах (от 30 °C до 80 °C в нашей работе). Обозначим такой набор исходных данных через $D_{ij} = D(\Lambda_i; T_j)$, где длины волн и температуры намеруются индексами і и ј соответственно. Предполагается, что выполняется закон Бугера—Ламберта—Бэра о том, что эта оптическая плотность представима в виде линейной комбинации двух составляющих, зависящих только от длины волны и только от температуры:

$$D_{ij} = D_o + 2\alpha_j C_o \cdot \varepsilon_i \cdot l, \tag{23}$$

где C_o - концентрация недиссоциированного N_2O_4 , α_j - степень диссоциации, D_o - оптическая плотность пустой ячейки, ε_i - коэффицент молярного поглощения (коэффицент экстинкции), показывающий, насколько сильно вещество поглощает свет на заданной длине волны. Известно, что коэффицент экстинкции не зависит от температуры, а концентрация NO_2 - от длины волны, на которой проводятся измерения.

Рис. 1: Схема установки

Рис. 2: Установка ячейки

Ход работы

- а) Подготовка установки
- б) Установка температуры
- в) Измерение оптической плотности ячейки

 $\Pi o d r o m o b \kappa a \ y c m a h o b \kappa u$ Очистим от загрязнений поверхность ячейки влажной тканью. Откалибруем фотоспектрометр.

Установка температуры Включив термостат, установим на нем начальную температуру (30 °C). Дождемся установления равновесного состояния в системе.

 $\it Измерение \ onmuческой \ n. nomhocmu$ ячейки Проведем измерение оптической плотности ячейки при помощи спектрофотометра в режиме

Spectrum. Повторим пункты б) и в), увеличивая температуру ячейки на 5 °C. Получим температурную зависимость оптической плотности газа в ячейке с максимальной температурой 80 °C.

Из уравнения (15) получим конечную расчётную формулу:

$$\ln K_p = \ln \frac{\alpha_j^2}{1 - \alpha_j} + \ln T + \ln(4C_0R) = \frac{-\Delta H}{RT} + \frac{\Delta S}{R},$$
 (24)

Где α_j – это степень диссоциации газа при конкретном значении температуры T_j .

Следовательно, функция $y_j = \ln \frac{\alpha_j^2}{1-\alpha_j} + \ln T_j$ должна линейно зависеть от обратной температуры $x_j = 1/T_j$. Попробуем исследовать эту зависимость, используя закон Бугера-Ламберта-Бэра(формула(23)):

$$Dij = D_o + 2\alpha_i C_o \cdot \varepsilon_i \cdot l, \tag{25}$$

$$D(ij) - D(i1) = 2(\alpha_i - \alpha_1)C_o \cdot \varepsilon_i \cdot l, \tag{26}$$

$$D(i_2) - D(1j) = 2(\alpha_2 - \alpha_j)C_o \cdot \varepsilon_i \cdot l. \tag{27}$$

Из уравнений (26), (27) выразим величину Δ , зависящую только от температуры:

$$\Delta_{ij} = \frac{D_{ij} - D_{i1}}{D_{i2} - D_{ij}} = \frac{\alpha_j - \alpha_1}{\alpha_2 - \alpha_j} = \Delta_j, \tag{28}$$

$$\alpha_j = \frac{\alpha_1 + \Delta_j \alpha_2}{1 + \Delta_j}. (29)$$

Мерой линейности служит коэффицент корреляции $R=\frac{cov(x;y)}{\sigma_x\sigma_y}$: чем ближе он по модулю к единице, тем больше проявляется линейная зависимость между x и y. Поскольку y является параметрической функцией от α_1 и α_2 , то коэффицент корреляции сам получается функцией от этих параметров. С помощью матпакета Excel можно подобрать такие значения α_1 и α_2 , чтобы максимизировать коэффициент корреляции. Для большей точности можно максимизировать сумму $\sum_i R_i^2(x,y)$ коэффицентов корреляции на всех длинах волн, для которых были проведены измерения (в нашей работе используется 751 значение длин волн в диапазоне от 425 до 500 нм с шагом 0,1 нм.

В результате будут получены степени диссоциации N_2O_4 при опорных температурах, угловой коэффициент зависимости $\ln K_c(1/T_j)$:

$$a = \frac{\langle xy \rangle - \langle x \rangle \langle y \rangle}{\langle x^2 \rangle - \langle x \rangle^2} = -\frac{\Delta H}{R}.$$
 (30)

Рис. 3: График значений энтальпий для различных длин волн

	SumR^2	0,9999997 750,9068								a1	a2		
				dH по предварительно усредненным точкам dH усредненный по многим точкам					0,531724	0,924394			
												Delta capital	
temperature	293,55	308.15	313.15	318.15	323.15	328.15	333.15	338.15	343.15	348.15	353.15	308.15	313.15
ength	233,33	500,15	515,15	510,15	525,15	520,15	555,15	550,15	545,15	540,15	333,13	0,1623	0,3880
400	2,384	2,625	2,865	3,113	3,351	3,538	3,66	3,925	4	4	4	0,1753	0,4238
400,1	2,394	2,635	2,879	3,129	3,361	3,557	3,705	3,93	4	4	4	0,1766	0,4326
400,2	2,404	2,646	2,894	3,145	3,371	3,565	3,741	3,938	4	4	4	0,1787	0,4430
400,3	2,414	2,657	2,908	3,161	3,384	3,581	3,783	3,956	4	4	4	0,1809	0,4524
400,4	2,42	2 664	2 917	3 171	3 397	3 582	3 802	3 962	4	4	4	0,1826	0,4589

Рис. 4: Вычисление значения степени диссоциации

Отсюда сразу получается значение энтальпии реакции диссоциации: $\Delta H_{exp} = 54,14~$ кДж/моль . Оно отличается от табличного на 3,13~ кДж/моль ($\Delta H_{tabl} = 57,27~$ кДж/моль, источник: http://www.chem.msu.ru).

Погрешности

Найдём теперь погрешность для полученного значения ΔH . С помощью метода наименьших квадратов (МНК) найдём значение $\sigma_{\Delta H}=2,12$ кДж/моль. Относительная погрешность составила примерно $\sigma_{rdm}=4\%$.

Так же оценим приборную погрешность. Для термостата из паспор-

та прибора погрешность равняется $\sigma_{app} = 0, 2\%$. У спектрофотометра Shimadzu UV-1800 погрешность установки длины волны не более 0, 1%. Посчитаем абсолютную погрешность как:

$$\sigma_{\Delta H} = \sqrt{\sigma_{app}^2 + \sigma_{rdm}^2}. (31)$$

Итого, абсолютная погрешность измерения составляет 4%.

Вывод

- Был подствержден закон Бугера-Ламберта-Бэра о связи оптической плотности и и концентрации поглощающего агента.
- Удалось найти неявную связь между температурой смеси и степенью диссоциации: $y_j(1/T_j) = \ln \frac{\alpha_j^2}{1-\alpha_j} + \ln T_j$.
- Удалось найти количественное значение энтальпии диссоциации ($\Delta H = 54, 14$), отличающееся от табличных данных в пределах 5, 8%

Использованная литература и источники

- Сивухин Д.В. Общий курс физики: Т.2. Термодинамика и молекулярная физика. 5-е изд., ФИЗМАТЛИТ, 2005. –544 с.
- http://www.chem.msu.ru