Some text editors such as Emacs allow GDB to be invoked through them, to provide a visual environment. These compiled languages allow the programmer to write programs in terms that are syntactically richer, and more capable of abstracting the code, making it easy to target varying machine instruction sets via compilation declarations and heuristics. There exist a lot of different approaches for each of those tasks. Unreadable code often leads to bugs, inefficiencies, and duplicated code. In 1801, the Jacquard loom could produce entirely different weaves by changing the "program" - a series of pasteboard cards with holes punched in them. It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. For example, COBOL is still strong in corporate data centers often on large mainframe computers, Fortran in engineering applications, scripting languages in Web development, and C in embedded software. Allen Downey, in his book How To Think Like A Computer Scientist, writes: Many computer languages provide a mechanism to call functions provided by shared libraries. Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. While these are sometimes considered programming, often the term software development is used for this larger overall process - with the terms programming, implementation, and coding reserved for the writing and editing of code per se. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages. Allen Downey, in his book How To Think Like A Computer Scientist, writes: Many computer languages provide a mechanism to call functions provided by shared libraries. Trial-and-error/divide-and-conquer is needed: the programmer will try to remove some parts of the original test case and check if the problem still exists. Whatever the approach to development may be, the final program must satisfy some fundamental properties. Computer programming or coding is the composition of sequences of instructions, called programs, that computers can follow to perform tasks. The following properties are among the most important: In computer programming, readability refers to the ease with which a human reader can comprehend the purpose, control flow, and operation of source code. The Unified Modeling Language (UML) is a notation used for both the OOAD and MDA. Methods of measuring programming language popularity include: counting the number of job advertisements that mention the language, the number of books sold and courses teaching the language (this overestimates the importance of newer languages), and estimates of the number of existing lines of code written in the language (this underestimates the number of users of business languages such as COBOL). It involves designing and implementing algorithms, step-by-step specifications of procedures, by writing code in one or more programming languages. Proficient programming usually requires expertise in several different subjects, including knowledge of the application domain, details of programming languages and generic code libraries, specialized algorithms, and formal logic. For this purpose, algorithms are classified into orders using so-called Big O notation, which expresses resource use, such as execution time or memory consumption, in terms of the size of an input. Following a consistent programming style often helps readability. Readability is important because programmers spend the majority of their time reading, trying to understand, reusing and modifying existing source code, rather than writing new source code. Ideally, the programming language best suited for the task at hand will be selected. Implementation techniques include imperative languages (object-oriented or procedural), functional languages, and logic languages.