

The Power of Random Identifiers

Derk Norton
Engineering Manager
Crater Dog Technologies™

November 16, 2013

What are Random Identifiers?

- They are like normal identifiers
 - SS#: 123-45-6789
 - Driver's License: CA-12-345-6789
 - Credit Card: 0123-4567-8901-2345
 - Email: derk.norton@gmail.com
- But much better!
 - contain no sensitive information
 - can't be guessed
 - no risk of collisions with other identifiers

What Do They Look Like?

- They are really just character strings
 - base 32 encoded
 - 0..9, A..D, F..H, J..N, P..T, V..Z (missing E,I,O,U)
 - example: QM65JYZ0JD2245A43C8YWQV4D2V1Y8L6
- But underneath lies the magic
 - derived from very large cryptographically random numbers
 - a very nearly random distribution across all possible values
 - for example, 16 byte numbers give 2^128 possible values!

Just How Many Values is That?

- It's almost unimaginable
 - 340,282,366,920,938,463,463,374,607,431,768,211,456
 - $\sim 2^{128} \approx 3.4E38$
- More than the number of grains of sand in our galaxy
 - the number of grains of sand on earth ≈ 1.0E25
 - the number of stars in our galaxy ≈ 1.0E12
 - if we assume 1 sandy planet per star
 - 1.0E25 x 1.0E12 = 1.0E37 grains of sand in our galaxy
- Roughly the number of atoms in all humans on Earth
 - atoms in your body ≈ 1.0E28
 - the number of humans on Earth ≈ 1.0E10
 - 1.0E28 x 1.0E10 = 1.0E38 atoms in the human race

Chances Are...

- Extremely unlikely the same value will occur twice!
- Why? $P(duplicate) = 1 \frac{N!}{N^n(N-n)!} \approx 1 e^{-n^2/2N}$
 - let's say there a billion billion things you want to identify
 - n = 1.0E18 is your number of samples
 - N = 3.4E38 is the total number of possible values
 - P(duplicate) ≈ 0.0015 across all samples
- Anyone want to place a bet on a collision?

Choosing an Identifier Size

Scope	Number of Things	Number of Bytes	Number of Bits	Number of Characters	Total Size of Space
Desk	16	1	8	2	256
Room	256	2	16	4	65536
Building	65536	4	32	7	4.29E+009
City	4.29E+009	8	64	13	1.84E+019
Globe	1.84E+019	16	128	26	3.40E+038
Galaxy	3.40E+038	32	256	52	1.16E+077
Universe	1.16E+077	64	512	103	1.34E+154

- The total space size should be at least the square of the maximum number of things to be uniquely identified.
- This results in a probability of an identifier collision across all things of less than 39%.

What Does This All Mean?

- Unguessable Identifiers
 - if I can't generate a duplicate, neither can anyone else
 - no need to encrypt since they are already random
 - less chance of identify theft
- No Database Collisions... Ever
 - no need for centralized key generation
 - no need to check for duplicates
 - keys are self-hashing (very efficient!)
 - allows easy splitting and merging of databases