

Surrogate Modelling of the Tritium Breeding Ratio

Petr Mánek Graham Van Goffrier

Centre for Doctoral Training in Data Intensive Science University College London

22nd June 2020

Tritium Breeding in ICF Reactors

Problem Description

Data Generation

Dimensionality Reduction

Conventional regression task – search for a cheap surrogate $\hat{f}(x)$ that minimizes dissimilarity with an expensive function f(x):

- Regression performance (capability to approximate)
 - Absolute: mean absolute error, σ of error
 - Relative: R², R²_{adj.}
- Computational complexity: wall training & prediction time / sample.
- 2 approaches for surrogate training:
 - **1** Decoupled trains models from previously sampled $\mathfrak{T} = \{(x, f(x))\}.$
 - Adaptive repeats sampling & model training, increases sampling density in low-performance regions.

Outline

Experiments 1 & 2: Hyperparameter Tuning

Experiment 3: Scaling Benchmark

Experiment 4: Model Comparison

The QASS Algorithm

Application on Toy Theory

Conclusion

