Introduction to Computer Graphics

GAMES101, Lingqi Yan, UC Santa Barbara

Lecture 6: Rasterization 2 (Antialiasing and Z-Buffering)

Announcements

Homework 1

- Already 49 submissions so far!
- In general, start early

Today's topics are not easy

- Having knowledge on Signal Processing is appreciated
- But no worries if you don't

Last Lectures

- Viewing
 - View + Projection + Viewport
- Rasterizing triangles
 - Point-in-triangle test
 - Aliasing

Today

- Antialiasing
 - Sampling theory
 - Antialiasing in practice
- Visibility / occlusion
 - Z-buffering

Recap: Testing in/out \triangle at pixels' centers

Pixels are uniformly-colored squares

Compare: The Continuous Triangle Function

What's Wrong With This Picture?

Jaggies!

Aliasing

Is this the best we can do?

Sampling is Ubiquitous in Computer Graphics

Rasterization = Sample 2D Positions

Photograph = Sample Image Sensor Plane

Video = Sample Time

Harold Edgerton Archive, MIT

Sampling Artifacts (Errors / Mistakes / Inaccuracies) in Computer Graphics

Jaggies (Staircase Pattern)

This is also an example of "aliasing" – a sampling error

Moiré Patterns in Imaging

Skip odd rows and columns

Wagon Wheel Illusion (False Motion)

Sampling Artifacts in Computer Graphics

Artifacts due to sampling - "Aliasing"

- Jaggies sampling in space
- Moire undersampling images
- Wagon wheel effect sampling in time
- [Many more] ...

Behind the Aliasing Artifacts

 Signals are changing too fast (high frequency), but sampled too slowly

Antialiasing Idea: Blurring (Pre-Filtering) Before Sampling

Rasterization: Point Sampling in Space

Note jaggies in rasterized triangle where pixel values are **pure red or white**

Rasterization: Antialiased Sampling

Note antialiased edges in rasterized triangle where pixel values take intermediate values

Point Sampling

Antialiasing

Point Sampling vs Antialiasing

Antialiasing vs Blurred Aliasing

(Sample then filter, WRONG!)

(Filter then sample)

But why?

- 1. Why undersampling introduces aliasing?
- 2. Why pre-filtering then sampling can do antialiasing?

Let's dig into fundamental reasons

And look at how to implement antialiased rasterization

Frequency Domain

Sines and Cosines

Frequencies $\cos 2\pi f x$

Fourier Transform

Represent a function as a weighted sum of sines and cosines

Joseph Fourier 1768 - 1830

$$f(x) = \frac{A}{2} + \frac{2A\cos(t\omega)}{\pi} - \frac{2A\cos(3t\omega)}{3\pi} + \frac{2A\cos(5t\omega)}{5\pi} - \frac{2A\cos(7t\omega)}{7\pi} + \cdots$$

Fourier Transform Decomposes A Signal Into Frequencies

$$f(x) \qquad F(\omega) = \int_{-\infty}^{\infty} f(x) e^{-2\pi i \omega x} dx \qquad F(\omega)$$
 spatial domain Inverse transform frequency domain
$$f(x) = \int_{-\infty}^{\infty} F(\omega) e^{2\pi i \omega x} d\omega$$

Recall $e^{ix} = \cos x + i \sin x$

Higher Frequencies Need Faster Sampling

Undersampling Creates Frequency Aliases

High-frequency signal is insufficiently sampled: samples erroneously appear to be from a low-frequency signal

Two frequencies that are indistinguishable at a given sampling rate are called "aliases"

Filtering = Getting rid of certain frequency contents

Visualizing Image Frequency Content

Filter Out Low Frequencies Only (Edges)

High-pass filter

Filter Out High Frequencies (Blur)

Low-pass filter

Filter Out Low and High Frequencies

Filter Out Low and High Frequencies

Filtering = Convolution (= Averaging)

Convolution

Point-wise local averaging in a "sliding window"

Convolution

$$1 \times (1/4) + 3 \times (1/2) + 5 \times (1/4) = 3$$

Convolution

$$3 \times (1/4) + 5 \times (1/2) + 3 \times (1/4) = 4$$

Convolution Theorem

Convolution in the spatial domain is equal to multiplication in the frequency domain, and vice versa

Option 1:

Filter by convolution in the spatial domain

Option 2:

- Transform to frequency domain (Fourier transform)
- Multiply by Fourier transform of convolution kernel
- Transform back to spatial domain (inverse Fourier)

Convolution Theorem

Box Filter

Example: 3x3 box filter

Box Function = "Low Pass" Filter

Wider Filter Kernel = Lower Frequencies

Sampling = Repeating Frequency Contents

Sampling = Repeating Frequency Contents

https://www.researchgate.net/figure/The-evolution-of-sampling-theorem-a-The-time-domain-of-the-band-limited-signal-and-b_fig5_301556095

Aliasing = Mixed Frequency Contents

Dense sampling:

Sparse sampling:

Antialiasing

How Can We Reduce Aliasing Error?

Option 1: Increase sampling rate

- Essentially increasing the distance between replicas in the Fourier domain
- Higher resolution displays, sensors, framebuffers...
- But: costly & may need very high resolution

Option 2: Antialiasing

- Making Fourier contents "narrower" before repeating
- i.e. Filtering out high frequencies before sampling

Antialiasing = Limiting, then repeating

Regular Sampling

Note jaggies in rasterized triangle where pixel values are pure red or white

Antialiased Sampling

Note antialiased edges in rasterized triangle where pixel values take intermediate values

A Practical Pre-Filter

A 1 pixel-width box filter (low pass, blurring)

Antialiasing By Averaging Values in Pixel Area

Solution:

- Convolve f(x,y) by a 1-pixel box-blur
 - Recall: convolving = filtering = averaging
- Then sample at every pixel's center

Antialiasing by Computing Average Pixel Value

In rasterizing one triangle, the average value inside a pixel area of f(x,y) = inside(triangle,x,y) is equal to the area of the pixel covered by the triangle.

Antialiasing By Supersampling (MSAA)

Supersampling

Approximate the effect of the 1-pixel box filter by sampling multiple locations within a pixel and averaging their values:

4x4 supersampling

Point Sampling: One Sample Per Pixel

Take NxN samples in each pixel.

2x2 supersampling

Average the NxN samples "inside" each pixel.

Averaging down

Average the NxN samples "inside" each pixel.

Averaging down

Average the NxN samples "inside" each pixel.

Supersampling: Result

This is the corresponding signal emitted by the display

Point Sampling

4x4 Supersampling

69

Antialiasing Today

No free lunch!

What's the cost of MSAA?

Milestones (personal idea)

- FXAA (Fast Approximate AA)
- TAA (Temporal AA)

Super resolution / super sampling

- From low resolution to high resolution
- Essentially still "not enough samples" problem
- DLSS (Deep Learning Super Sampling)

Thank you!