3.012 Fund of Mat Sci: Bonding – Lecture 4 (VRIOSITY KILLED THE (AT

Last Time

- Expectation values of the energy in an infinite well (particle-in-a-box)
- Absorption lines (linear conjugated molecules)
- Particles in 3-dim box (quantum dots, "Farbe" defects)

Homework for Fri 23

• Study: 14.1, 14.2, 14.3

• Read: 14.4

Metal Surfaces (I)

$$\left[-\frac{\hbar^2}{2m} \frac{d^2}{dx^2} + V(x) \right] \varphi(x) = E\varphi(x)$$

Figure by MIT OCW.

Metal Surfaces (II)

Figure by MIT OCW.

Scanning Tunnelling Microscopy

Figure by MIT OCW.

Figure by MIT OCW.

Wavepacket tunnelling through a nanotube

Images removed for copyright reasons. See http://www.mfa.kfki.hu/int/nano/online/kirchberg2001/index.html

Dirac Notation

• Eigenvalue equation:

$$\hat{A}|\psi_{i}\rangle = a_{i}|\psi_{i}\rangle \qquad \left(\Rightarrow \langle \psi_{i}|\psi_{j}\rangle = \delta_{ij}\right)$$

• Expectation values:

$$\left\langle \psi_{i} \middle| \hat{H} \psi_{i} \right\rangle = \left\langle \psi_{i} \middle| \hat{H} \middle| \psi_{i} \right\rangle = \int \psi_{i}^{*}(\vec{r}) \left[-\frac{\hbar^{2}}{2m} \nabla^{2} + V(\vec{r}) \right] \psi_{i}(\vec{r}) d\vec{r} = E_{i}$$

Operators and operator algebra

• Examples: derivative, multiplicative

Product of operators, and commutators

• $\hat{A}\hat{B}$

$$\bullet$$
 $\left[\hat{A},\hat{B}\right]$

$$\bullet \left[x, \frac{d}{dx} \right] = -1$$

Linear and Hermitian

•
$$\hat{A}[\alpha|\varphi\rangle + \beta|\psi\rangle] = \alpha \hat{A}|\varphi\rangle + \beta \hat{A}|\psi\rangle$$

Examples: (d/dx) and i(d/dx)

First postulate

• All information of an ensemble of identical physical systems is contained in the wavefunction $\Psi(x,y,z,t)$, which is complex, continuous, finite, and single-valued; square-integrable. (i.e. $\int \|\varphi\|^2 d\vec{r}$ is finite)

Second Postulate

 For every physical observable there is a corresponding Hermitian operator

Hermitian Operators

1. The eigenvalues of a Hermitian operator are real

2. Two eigenfunctions corresponding to different eigenvalues are orthogonal

- 3. The set of eigenfunctions of a Hermitian operator is complete
- 4. Commuting Hermitian operators have a set of common eigenfunctions

The set of eigenfunctions of a Hermitian operator is complete

Figure by MIT OCW.

Position and probability

Graph of the probability density for positions of a particle in a one-dimensional hard box removed for copyright reasons.

See Mortimer, R. G. *Physical Chemistry*. 2nd ed. San Diego, CA: Elsevier, 2000, p. 554, figure 15.2.

Graphs of the probability density for positions of a particle in a one-dimensional hard box according to classical mechanics removed for copyright reasons.

See Mortimer, R. G. *Physical Chemistry*. 2nd ed. San Diego, CA: Elsevier, 2000, p. 555, figure 15.3.

Commuting Hermitian operators have a set of common eigenfunctions

Fourth Postulate

• If a series of measurements is made of the dynamical variable A on an ensemble described by Ψ , the average ("expectation") value is $\langle A \rangle = \frac{\langle \Psi | \hat{A} | \Psi \rangle}{\langle \Psi | \Psi \rangle}$

Quantum double-slit

Source: Wikipedia

Quantum double-slit

Image of the double-slit experiment removed for copyright reasons.

See the simulation at http://www.kfunigraz.ac.at/imawww/vqm/movies.html:

"Samples from *Visual Quantum Mechanics*": "Double-slit Experiment."

Above: Thomas Young's sketch of two-slit diffraction of light. Narrow slits at A and B act as sources, and waves interfering in various phases are shown at C, D, E, and F.

Source: Wikipedia

Deterministic vs. stochastic

- Classical, macroscopic objects: we have well-defined values for all dynamical variables at every instant (position, momentum, kinetic energy...)
- Quantum objects: we have well-defined probabilities of measuring a certain value for a dynamical variable, when a large number of identical, independent, identically prepared physical systems are subject to a measurement.

Top Three List

- Albert Einstein: "Gott wurfelt nicht!" [God does not play dice!]
- Werner Heisenberg "I myself . . . only came to believe in the uncertainty relations after many pangs of conscience. . ."
- Erwin Schrödinger: "Had I known that we were not going to get rid of this damned quantum jumping, I never would have involved myself in this business!"