

Matemática Discreta

Binômio de Newton

Professora: Lílian de Oliveira Carneiro

Universidade Federal do Ceará Campus de Crateús

Junho de 2020

Coeficientes Binomiais

2 Binômio de Newton

Número Binomial

• Sejam n>0 e k dois inteiros tais que $0 \le k \le n$. Chama-se **número binomial** de numerador n e classe k, o inteiro que se indica por $\binom{n}{k}$, e tal que

Número Binomial

• Sejam n > 0 e k dois inteiros tais que $0 \le k \le n$. Chama-se **número binomial** de numerador n e classe k, o inteiro que se indica por $\binom{n}{k}$, e tal que

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

Número Binomial

• Sejam n > 0 e k dois inteiros tais que $0 \le k \le n$. Chama-se **número binomial** de numerador n e classe k, o inteiro que se indica por $\binom{n}{k}$, e tal que

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

• Em particular, para k = 0 ou k = n, temos:

Número Binomial

• Sejam n > 0 e k dois inteiros tais que $0 \le k \le n$. Chama-se **número binomial** de numerador n e classe k, o inteiro que se indica por $\binom{n}{k}$, e tal que

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

• Em particular, para k = 0 ou k = n, temos:

$$\binom{n}{0} = \binom{n}{n} = 1$$

Número Binomial

• Sejam n > 0 e k dois inteiros tais que $0 \le k \le n$. Chama-se **número binomial** de numerador n e classe k, o inteiro que se indica por $\binom{n}{k}$, e tal que

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

• Em particular, para k = 0 ou k = n, temos:

$$\binom{n}{0} = \binom{n}{n} = 1$$

Número Binomial

• Sejam n > 0 e k dois inteiros tais que $0 \le k \le n$. Chama-se **número binomial** de numerador n e classe k, o inteiro que se indica por $\binom{n}{k}$, e tal que

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

• Em particular, para k = 0 ou k = n, temos:

$$\binom{n}{0} = \binom{n}{n} = 1$$

$$\binom{8}{3} = \frac{8!}{3!5!} = 56$$

Número Binomial

• Sejam n > 0 e k dois inteiros tais que $0 \le k \le n$. Chama-se **número binomial** de numerador n e classe k, o inteiro que se indica por $\binom{n}{k}$, e tal que

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

• Em particular, para k=0 ou k=n, temos:

$$\binom{n}{0} = \binom{n}{n} = 1$$

$$\binom{8}{3} = \frac{8!}{3!5!} = 56$$

$$\binom{7}{4} = \frac{7!}{4!3!} = 35$$

Número Binomial

• Sejam n > 0 e k dois inteiros tais que $0 \le k \le n$. Chama-se **número binomial** de numerador n e classe k, o inteiro que se indica por $\binom{n}{k}$, e tal que

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

• Em particular, para k=0 ou k=n, temos:

$$\binom{n}{0} = \binom{n}{n} = 1$$

$$\binom{8}{3} = \frac{8!}{3!5!} = 56$$

$$\binom{7}{4} = \frac{7!}{4!3!} = 35$$

Números Binomiais Complementares

• Números binomiais complementares são dois números binomiais que têm o mesmo numerador e cuja soma das suas classes respectivas é igual ao numerador comum

Números Binomiais Complementares

- Números binomiais complementares são dois números binomiais que têm o mesmo numerador e cuja soma das suas classes respectivas é igual ao numerador comum
- Exemplo. $\binom{20}{7}$ e $\binom{20}{13}$ são números binomiais complementares, pois têm o mesmo numerador 20 e 7+13=20

Números Binomiais Complementares

- Números binomiais complementares são dois números binomiais que têm o mesmo numerador e cuja soma das suas classes respectivas é igual ao numerador comum
- Exemplo. $\binom{20}{7}$ e $\binom{20}{13}$ são números binomiais complementares, pois têm o mesmo numerador 20 e 7+13=20
- Dois números binomiais complementares são iguais

Números Binomiais Complementares

- Números binomiais complementares são dois números binomiais que têm o mesmo numerador e cuja soma das suas classes respectivas é igual ao numerador comum
- Exemplo. $\binom{20}{7}$ e $\binom{20}{13}$ são números binomiais complementares, pois têm o mesmo numerador 20 e 7+13=20
- Dois números binomiais complementares são iguais
 - Exemplo,

Números Binomiais Complementares

- Números binomiais complementares são dois números binomiais que têm o mesmo numerador e cuja soma das suas classes respectivas é igual ao numerador comum
- Exemplo. $\binom{20}{7}$ e $\binom{20}{13}$ são números binomiais complementares, pois têm o mesmo numerador 20 e 7+13=20
- Dois números binomiais complementares são iguais
 - Exemplo,

$$\binom{20}{7} = \binom{20}{13}$$

Note que,

Números Binomiais Complementares

- Números binomiais complementares são dois números binomiais que têm o mesmo numerador e cuja soma das suas classes respectivas é igual ao numerador comum
- Exemplo. $\binom{20}{7}$ e $\binom{20}{13}$ são números binomiais complementares, pois têm o mesmo numerador 20 e 7+13=20
- Dois números binomiais complementares são iguais
 - Exemplo,

$$\binom{20}{7} = \binom{20}{13}$$

Note que,

$$\binom{20}{7} = \frac{20!}{7!(20-7)!} = \frac{20!}{7!13!}$$

Números Binomiais Complementares

- Números binomiais complementares são dois números binomiais que têm o mesmo numerador e cuja soma das suas classes respectivas é igual ao numerador comum
- Exemplo. $\binom{20}{7}$ e $\binom{20}{13}$ são números binomiais complementares, pois têm o mesmo numerador 20 e 7+13=20
- Dois números binomiais complementares são iguais
 - Exemplo,

$$\binom{20}{7} = \binom{20}{13}$$

Note que,

$$\binom{20}{7} = \frac{20!}{7!(20-7)!} = \frac{20!}{7!13!}$$

е

Números Binomiais Complementares

- Números binomiais complementares são dois números binomiais que têm o mesmo numerador e cuja soma das suas classes respectivas é igual ao numerador comum
- Exemplo. $\binom{20}{7}$ e $\binom{20}{13}$ são números binomiais complementares, pois têm o mesmo numerador 20 e 7+13=20
- Dois números binomiais complementares são iguais
 - Exemplo,

$$\binom{20}{7} = \binom{20}{13}$$

Note que,

$$\binom{20}{7} = \frac{20!}{7!(20-7)!} = \frac{20!}{7!13!}$$

е

$$\binom{20}{13} = \frac{20!}{13!(20-13)!} = \frac{20!}{13!7!}$$

Números Binomiais Consecutivos

 Números binomiais consecutivos são dois números binomiais que têm o mesmo numerador e cujas classes respectivas são inteiros consecutivos

Números Binomiais Consecutivos

- Números binomiais consecutivos são dois números binomiais que têm o mesmo numerador e cujas classes respectivas são inteiros consecutivos
- Exemplo. $\binom{18}{9}$ e $\binom{18}{10}$ são números binomiais consecutivos, pois têm o mesmo numerador 18 e suas classes respectivas são os inteiros consecutivos 9 e 10

Teorema Binomial

 O binômio de Newton fornece os coeficientes da expansão de potência das expressões binomiais

- O binômio de Newton fornece os coeficientes da expansão de potência das expressões binomiais
- Uma expressão **binomial** é simplesmente a soma de dois termos, tais como x+y

- O binômio de Newton fornece os coeficientes da expansão de potência das expressões binomiais
- Uma expressão **binomial** é simplesmente a soma de dois termos, tais como x+y
- Exemplo. A expansão $(x+a)^2$ pode ser encontrada usando a razão combinatória em vez de multiplicar os dois termos

- O binômio de Newton fornece os coeficientes da expansão de potência das expressões binomiais
- Uma expressão **binomial** é simplesmente a soma de dois termos, tais como x+y
- Exemplo. A expansão $(x+a)^2$ pode ser encontrada usando a razão combinatória em vez de multiplicar os dois termos
 - Quando $(x+a)^2=(x+a)(x+a)$ é expandido, de cada (x+a) selecionamos exatamente um termo, que poderá ser x ou a, multiplicando-os em seguida

- O binômio de Newton fornece os coeficientes da expansão de potência das expressões binomiais
- Uma expressão **binomial** é simplesmente a soma de dois termos, tais como x+y
- Exemplo. A expansão $(x+a)^2$ pode ser encontrada usando a razão combinatória em vez de multiplicar os dois termos
 - Quando $(x+a)^2=(x+a)(x+a)$ é expandido, de cada (x+a) selecionamos exatamente um termo, que poderá ser x ou a, multiplicando-os em seguida
 - Assim, termos da forma x^2, xa, ax e a^2 aparecem

- O binômio de Newton fornece os coeficientes da expansão de potência das expressões binomiais
- Uma expressão **binomial** é simplesmente a soma de dois termos, tais como x + y
- **Exemplo.** A expansão $(x+a)^2$ pode ser encontrada usando a razão combinatória em vez de multiplicar os dois termos
 - Quando $(x+a)^2=(x+a)(x+a)$ é expandido, de cada (x+a) selecionamos exatamente um termo, que poderá ser x ou a, multiplicando-os em seguida
 - Assim, termos da forma x^2, xa, ax e a^2 aparecem

- Exemplo. A expansão $(x+a)^2$ pode ser encontrada usando a razão combinatória em vez de multiplicar os dois termos
 - Quando $(x+a)^2 = (x+a)(x+a)$ é expandido, de cada (x+a) selecionamos exatamente um termo, que poderá ser x ou a, multiplicando-os em seguida
 - Assim, termos da forma x^2, xa, ax e a^2 aparecem

Teorema Binomial

- Exemplo. A expansão $(x+a)^2$ pode ser encontrada usando a razão combinatória em vez de multiplicar os dois termos
 - Quando $(x+a)^2 = (x+a)(x+a)$ é expandido, de cada (x+a) selecionamos exatamente um termo, que poderá ser x ou a, multiplicando-os em seguida
 - Assim, termos da forma x^2, xa, ax e a^2 aparecem

• Logo, $(x+a)^2 = x^2 + 2ax + a^2$

- Exemplo. A expansão $(x+a)^2$ pode ser encontrada usando a razão combinatória em vez de multiplicar os dois termos
 - Quando $(x+a)^2 = (x+a)(x+a)$ é expandido, de cada (x+a) selecionamos exatamente um termo, que poderá ser x ou a, multiplicando-os em seguida
 - Assim, termos da forma x^2, xa, ax e a^2 aparecem

- Logo, $(x+a)^2 = x^2 + 2ax + a^2$
- Será que podemos obter os termos da expansão de $(x+a)^n$ sem recorrer ao diagrama de árvore?

- Exemplo. A expansão $(x+a)^2$ pode ser encontrada usando a razão combinatória em vez de multiplicar os dois termos
 - Quando $(x+a)^2 = (x+a)(x+a)$ é expandido, de cada (x+a) selecionamos exatamente um termo, que poderá ser x ou a, multiplicando-os em seguida
 - Assim, termos da forma x^2, xa, ax e a^2 aparecem

- Logo, $(x+a)^2 = x^2 + 2ax + a^2$
- Será que podemos obter os termos da expansão de $(x+a)^n$ sem recorrer ao diagrama de árvore?
- A resposta é sim

Teorema Binomial

• Considere $(x + a)^3 = (x + a)(x + a)(x + a)$

- Considere $(x + a)^3 = (x + a)(x + a)(x + a)$
- Se escolhermos um termo de cada fator, obteremos três termos que devem ser multiplicados entre si

- Considere $(x + a)^3 = (x + a)(x + a)(x + a)$
- Se escolhermos um termo de cada fator, obteremos três termos que devem ser multiplicados entre si
 - Os tipos de produtos que podemos obter são: x^3, x^2a, xa^2, a^3

- Considere $(x + a)^3 = (x + a)(x + a)(x + a)$
- Se escolhermos um termo de cada fator, obteremos três termos que devem ser multiplicados entre si
 - Os tipos de produtos que podemos obter são: x^3, x^2a, xa^2, a^3
- Agora vejamos quantos aparecem de cada tipo:

- Considere $(x + a)^3 = (x + a)(x + a)(x + a)$
- Se escolhermos um termo de cada fator, obteremos três termos que devem ser multiplicados entre si
 - Os tipos de produtos que podemos obter são: x^3, x^2a, xa^2, a^3
- Agora vejamos quantos aparecem de cada tipo:
 - x³

- Considere $(x + a)^3 = (x + a)(x + a)(x + a)$
- Se escolhermos um termo de cada fator, obteremos três termos que devem ser multiplicados entre si
 - Os tipos de produtos que podemos obter são: x^3, x^2a, xa^2, a^3
- Agora vejamos quantos aparecem de cada tipo:
 - x^3
 - Só existe uma maneira de obter o produto $x^3 = x \cdot x \cdot x$.

- Considere $(x + a)^3 = (x + a)(x + a)(x + a)$
- Se escolhermos um termo de cada fator, obteremos três termos que devem ser multiplicados entre si
 - ullet Os tipos de produtos que podemos obter são: x^3, x^2a, xa^2, a^3
- Agora vejamos quantos aparecem de cada tipo:
 - \bullet x^3
 - Só existe uma maneira de obter o produto $x^3 = x \cdot x \cdot x$. Escolhendo o termo x de cada fator

- Considere $(x + a)^3 = (x + a)(x + a)(x + a)$
- Se escolhermos um termo de cada fator, obteremos três termos que devem ser multiplicados entre si
 - Os tipos de produtos que podemos obter são: x^3, x^2a, xa^2, a^3
- Agora vejamos quantos aparecem de cada tipo:
 - x^3
 - Só existe uma maneira de obter o produto $x^3 = x \cdot x \cdot x$. Escolhendo o termo x de cada fator
 - Logo, o coeficiente de x^3 no desenvolvimento do binômio é 1 ou $\binom{3}{0}$

- Considere $(x + a)^3 = (x + a)(x + a)(x + a)$
- Se escolhermos um termo de cada fator, obteremos três termos que devem ser multiplicados entre si
 - Os tipos de produtos que podemos obter são: x^3, x^2a, xa^2, a^3
- Agora vejamos quantos aparecem de cada tipo:
 - x^3
 - Só existe uma maneira de obter o produto $x^3 = x \cdot x \cdot x$. Escolhendo o termo x de cada fator
 - Logo, o coeficiente de x^3 no desenvolvimento do binômio é 1 ou $\binom{3}{0}$
 - \bullet x^2a

- Considere $(x + a)^3 = (x + a)(x + a)(x + a)$
- Se escolhermos um termo de cada fator, obteremos três termos que devem ser multiplicados entre si
 - Os tipos de produtos que podemos obter são: x^3, x^2a, xa^2, a^3
- Agora vejamos quantos aparecem de cada tipo:
 - x³
 - Só existe uma maneira de obter o produto $x^3 = x \cdot x \cdot x$. Escolhendo o termo x de cada fator
 - Logo, o coeficiente de x^3 no desenvolvimento do binômio é 1 ou $\binom{3}{0}$
 - \bullet x^2a
 - A quantidade de produtos do tipo x^2a é igual ao número de sequências de três letras onde uma é igual a a e duas são iguais a x, ou seja,

- Considere $(x + a)^3 = (x + a)(x + a)(x + a)$
- Se escolhermos um termo de cada fator, obteremos três termos que devem ser multiplicados entre si
 - Os tipos de produtos que podemos obter são: x^3, x^2a, xa^2, a^3
- Agora vejamos quantos aparecem de cada tipo:
 - \bullet x^3
 - Só existe uma maneira de obter o produto $x^3 = x \cdot x \cdot x$. Escolhendo o termo x de cada fator
 - Logo, o coeficiente de x^3 no desenvolvimento do binômio é 1 ou $\binom{\alpha}{0}$
 - \bullet x^2a
 - A quantidade de produtos do tipo x²a é igual ao número de sequências de três letras onde uma é igual a a e duas são iguais a x, ou seja,

$$P_3^{1,2} = \frac{3!}{1!2!} = \binom{3}{1}$$

Teorema Binomial

- Considere $(x + a)^3 = (x + a)(x + a)(x + a)$
- Se escolhermos um termo de cada fator, obteremos três termos que devem ser multiplicados entre si
 - Os tipos de produtos que podemos obter são: x^3, x^2a, xa^2, a^3
- Agora vejamos quantos aparecem de cada tipo:
 - x³
 - Só existe uma maneira de obter o produto $x^3 = x \cdot x \cdot x$. Escolhendo o termo x de cada fator
 - Logo, o coeficiente de x^3 no desenvolvimento do binômio é 1 ou $\binom{\alpha}{0}$
 - \bullet x^2a
 - A quantidade de produtos do tipo x^2a é igual ao número de sequências de três letras onde uma é igual a a e duas são iguais a x, ou seja,

$$P_3^{1,2} = \frac{3!}{1!2!} = \binom{3}{1}$$

- Agora vejamos quantos aparecem de cada tipo:
 - xa^2

- Agora vejamos quantos aparecem de cada tipo:
 - $\bullet xa^2$
 - A quantidade de produtos do tipo xa^2 é igual ao número de sequências de três letras onde duas são iguais a a e uma é igual a x, ou seja,

- Agora vejamos quantos aparecem de cada tipo:
 - \bullet xa^2
 - A quantidade de produtos do tipo xa^2 é igual ao número de sequências de três letras onde duas são iguais a a e uma é igual a x, ou seja,

$$P_3^{2,1} = \frac{3!}{2!1!} = \binom{3}{2}$$

Teorema Binomial

- Agora vejamos quantos aparecem de cada tipo:
 - $\bullet xa^2$
 - A quantidade de produtos do tipo xa^2 é igual ao número de sequências de três letras onde duas são iguais a a e uma é igual a x, ou seja,

$$P_3^{2,1} = \frac{3!}{2!1!} = \binom{3}{2}$$

Teorema Binomial

- Agora vejamos quantos aparecem de cada tipo:
 - \bullet xa^2
 - A quantidade de produtos do tipo xa^2 é igual ao número de sequências de três letras onde duas são iguais a a e uma é igual a x, ou seja,

$$P_3^{2,1} = \frac{3!}{2!1!} = \binom{3}{2}$$

Logo, o coeficiente de xa^2 é $\binom{3}{2}$

• a³

Teorema Binomial

- Agora vejamos quantos aparecem de cada tipo:
 - \bullet xa^2
 - A quantidade de produtos do tipo xa^2 é igual ao número de sequências de três letras onde duas são iguais a a e uma é igual a x, ou seja,

$$P_3^{2,1} = \frac{3!}{2!1!} = \binom{3}{2}$$

- a³
 - Só existe uma maneira de obter o produto $a^3 = a \cdot a \cdot a$.

Teorema Binomial

- Agora vejamos quantos aparecem de cada tipo:
 - \bullet xa^2
 - A quantidade de produtos do tipo xa^2 é igual ao número de sequências de três letras onde duas são iguais a a e uma é igual a x, ou seja,

$$P_3^{2,1} = \frac{3!}{2!1!} = \binom{3}{2}$$

- a³
- Só existe uma maneira de obter o produto $a^3 = a \cdot a \cdot a$. Escolhendo o termo a de cada fator

Teorema Binomial

- Agora vejamos quantos aparecem de cada tipo:
 - xa^2
 - A quantidade de produtos do tipo xa^2 é igual ao número de sequências de três letras onde duas são iguais a a e uma é igual a x, ou seja,

$$P_3^{2,1} = \frac{3!}{2!1!} = \binom{3}{2}$$

- a^3
- Só existe uma maneira de obter o produto $a^3 = a \cdot a \cdot a$. Escolhendo o termo a de cada fator
- Logo, o coeficiente de a^3 no desenvolvimento do binômio é 1 ou $\binom{3}{3}$

Teorema Binomial

- Agora vejamos quantos aparecem de cada tipo:
 - \bullet xa^2
 - A quantidade de produtos do tipo xa^2 é igual ao número de sequências de três letras onde duas são iguais a a e uma é igual a x, ou seja,

$$P_3^{2,1} = \frac{3!}{2!1!} = \binom{3}{2}$$

- a^3
- Só existe uma maneira de obter o produto $a^3 = a \cdot a \cdot a$. Escolhendo o termo a de cada fator
- Logo, o coeficiente de a^3 no desenvolvimento do binômio é 1 ou $\binom{3}{3}$
- Em resumo:

Teorema Binomial

- Agora vejamos quantos aparecem de cada tipo:
 - \bullet xa^2
 - A quantidade de produtos do tipo xa^2 é igual ao número de sequências de três letras onde duas são iguais a a e uma é igual a x, ou seja,

$$P_3^{2,1} = \frac{3!}{2!1!} = \binom{3}{2}$$

- \bullet a^3
- Só existe uma maneira de obter o produto $a^3 = a \cdot a \cdot a$. Escolhendo o termo a de cada fator
- Logo, o coeficiente de a³ no desenvolvimento do binômio é 1 ou (³₃)
- Em resumo:

$$(x+a)^3 = \binom{3}{0}x^3 + \binom{3}{1}x^2a + \binom{3}{2}xa^2 + \binom{3}{3}a^3$$

Binômio de Newton

 \bullet O desenvolvimento de $(x+a)^n$ para $n\in\mathbb{N}$ e $x,a\in\mathbb{R}$ é dado por

Binômio de Newton

 \bullet O desenvolvimento de $(x+a)^n$ para $n\in\mathbb{N}$ e $x,a\in\mathbb{R}$ é dado por

$$(x+a)^n = \binom{n}{0}x^n + \binom{n}{1}x^{n-1}a^1 + \binom{n}{2}x^{n-2}a^2 + \dots + \binom{n}{n}a^n$$

Binômio de Newton

 \bullet O desenvolvimento de $(x+a)^n$ para $n\in\mathbb{N}$ e $x,a\in\mathbb{R}$ é dado por

$$(x+a)^n = \binom{n}{0}x^n + \binom{n}{1}x^{n-1}a^1 + \binom{n}{2}x^{n-2}a^2 + \dots + \binom{n}{n}a^n$$

Ou

Binômio de Newton

 \bullet O desenvolvimento de $(x+a)^n$ para $n\in\mathbb{N}$ e $x,a\in\mathbb{R}$ é dado por

$$(x+a)^n = \binom{n}{0}x^n + \binom{n}{1}x^{n-1}a^1 + \binom{n}{2}x^{n-2}a^2 + \dots + \binom{n}{n}a^n$$

Ou

$$(x+a)^n = \sum_{j=0}^n \binom{n}{j} x^{n-j} a^j$$

Identidades Úteis

• Corolário 1. Seja n um inteiro não negativo. Então

$$\sum_{j=0}^{n} \binom{n}{j} = 2^n$$

• Corolário 2. Seja n um inteiro positivo. Então

$$\sum_{j=0}^{n} (-1)^j \binom{n}{j} = 0$$

• O Corolário 2 implica que

$$\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \dots = \binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots$$

• Corolário 3. Seja n um inteiro não negativo. Então

$$\sum_{j=0}^{n} 2^j \binom{n}{j} = 3^n$$

Identidade de Pascal ou Relação de Stifel

ullet Seja n e k números inteiros positivos com $n \geq k$. Então

Identidade de Pascal ou Relação de Stifel

• Seja n e k números inteiros positivos com $n \geq k$. Então

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

Identidade de Pascal ou Relação de Stifel

• Seja n e k números inteiros positivos com $n \ge k$. Então

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

• A Identidade de Pascal, junto com as condições iniciais

Identidade de Pascal ou Relação de Stifel

• Seja n e k números inteiros positivos com $n \ge k$. Então

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

A Identidade de Pascal, junto com as condições iniciais

$$\binom{n}{0} = \binom{n}{n} = 1$$

pode ser usada para definir recursivamente coeficientes binomiais

Identidade de Pascal ou Relação de Stifel

• Seja n e k números inteiros positivos com $n \ge k$. Então

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

A Identidade de Pascal, junto com as condições iniciais

$$\binom{n}{0} = \binom{n}{n} = 1$$

pode ser usada para definir recursivamente coeficientes binomiais

 Esta definição recursiva é útil ao computar coeficientes binomiais sem recorrer à formula

Identidade de Pascal ou Relação de Stifel

• Seja n e k números inteiros positivos com $n \ge k$. Então

$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

A Identidade de Pascal, junto com as condições iniciais

$$\binom{n}{0} = \binom{n}{n} = 1$$

pode ser usada para definir recursivamente coeficientes binomiais

- Esta definição recursiva é útil ao computar coeficientes binomiais sem recorrer à formula
- A Identidade de Pascal é base para um arranjo geométrico de coeficientes binomiais em forma de triângulo

Triângulo de Pascal

• O triângulo de Pascal é um triângulo infinito formado por números binomiais $\binom{n}{k}$, onde n representa o número da linha e k representa o número da coluna

- O triângulo de Pascal é um triângulo infinito formado por números binomiais $\binom{n}{k}$, onde n representa o número da linha e k representa o número da coluna
- Cada entrada no triângulo, com exceção das iguais a 1, que ocorrem na fronteira do triângulo, é obtida somando duas entradas na linha acima

- O triângulo de Pascal é um triângulo infinito formado por números binomiais $\binom{n}{k}$, onde n representa o número da linha e k representa o número da coluna
- Cada entrada no triângulo, com exceção das iguais a 1, que ocorrem na fronteira do triângulo, é obtida somando duas entradas na linha acima
 - A diretamente acima e a imediatamente à esquerda

- O triângulo de Pascal é um triângulo infinito formado por números binomiais $\binom{n}{k}$, onde n representa o número da linha e k representa o número da coluna
- Cada entrada no triângulo, com exceção das iguais a 1, que ocorrem na fronteira do triângulo, é obtida somando duas entradas na linha acima
 - A diretamente acima e a imediatamente à esquerda
 - Exemplo. Na linha 7, tem-se

- O triângulo de Pascal é um triângulo infinito formado por números binomiais $\binom{n}{k}$, onde n representa o número da linha e k representa o número da coluna
- Cada entrada no triângulo, com exceção das iguais a 1, que ocorrem na fronteira do triângulo, é obtida somando duas entradas na linha acima
 - A diretamente acima e a imediatamente à esquerda
 - Exemplo. Na linha 7, tem-se

$$\binom{7}{5} = 21 = 6 + 15 = \binom{6}{5} + \binom{6}{4}$$

Triângulo de Pascal

- O triângulo de Pascal é um triângulo infinito formado por números binomiais $\binom{n}{k}$, onde n representa o número da linha e k representa o número da coluna
- Cada entrada no triângulo, com exceção das iguais a 1, que ocorrem na fronteira do triângulo, é obtida somando duas entradas na linha acima
 - A diretamente acima e a imediatamente à esquerda
 - Exemplo. Na linha 7, tem-se

$$\binom{7}{5} = 21 = 6 + 15 = \binom{6}{5} + \binom{6}{4}$$

Seja t_{mn} o número na (m+1)-ésima linha e na (n+1)-ésima coluna

- O triângulo de Pascal é um triângulo infinito formado por números binomiais $\binom{n}{k}$, onde n representa o número da linha e k representa o número da coluna
- Cada entrada no triângulo, com exceção das iguais a 1, que ocorrem na fronteira do triângulo, é obtida somando duas entradas na linha acima
 - A diretamente acima e a imediatamente à esquerda
 - Exemplo. Na linha 7, tem-se

$$\binom{7}{5} = 21 = 6 + 15 = \binom{6}{5} + \binom{6}{4}$$

- ullet Seja t_{mn} o número na (m+1)-ésima linha e na (n+1)-ésima coluna
 - Os números no triângulo podem ser obtidos recursivamente da seguinte maneira

- O triângulo de Pascal é um triângulo infinito formado por números binomiais $\binom{n}{k}$, onde n representa o número da linha e k representa o número da coluna
- Cada entrada no triângulo, com exceção das iguais a 1, que ocorrem na fronteira do triângulo, é obtida somando duas entradas na linha acima
 - A diretamente acima e a imediatamente à esquerda
 - Exemplo. Na linha 7, tem-se

$$\binom{7}{5} = 21 = 6 + 15 = \binom{6}{5} + \binom{6}{4}$$

- ullet Seja t_{mn} o número na (m+1)-ésima linha e na (n+1)-ésima coluna
 - Os números no triângulo podem ser obtidos recursivamente da seguinte maneira

$$t_{mn} = t_{m-1,n} + t_{m-1,n-1}$$

Algumas Identidades Úteis

• Identidade de Vandermonde Considere m,n e r números inteiros não negativos com r não excedente a m ou n. Então

Algumas Identidades Úteis

• Identidade de Vandermonde Considere m,n e r números inteiros não negativos com r não excedente a m ou n. Então

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}$$

Algumas Identidades Úteis

• Identidade de Vandermonde Considere m,n e r números inteiros não negativos com r não excedente a m ou n. Então

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}$$

• Corolário 4. Se n é um número inteiro não negativo, então

Algumas Identidades Úteis

• Identidade de Vandermonde Considere m,n e r números inteiros não negativos com r não excedente a m ou n. Então

$$\binom{m+n}{r} = \sum_{k=0}^{r} \binom{m}{r-k} \binom{n}{k}$$

• Corolário 4. Se n é um número inteiro não negativo, então

$$\binom{2n}{n} = \sum_{k=0}^{n} \binom{n}{k}^2$$

Algumas Identidades Úteis

```
0 1 1 1 2 1 1 2 1 3 3 1 4 1 4 6 4 1 5 1 5 1 0 10 5 1 6 1 7 1 7 21 35 35 21 7 1 8 1 8 28 56 70 56 28 8 1
```

• A relação de simetria é facilmente notada no triângulo:

Algumas Identidades Úteis

```
0 1 1 1 2 1 1 3 3 1 4 1 4 6 4 1 5 1 5 1 1 0 10 5 1 6 1 7 1 2 1 35 35 21 7 1 8 1 8 28 56 70 56 28 8 1
```

• A relação de simetria é facilmente notada no triângulo:

$$\binom{n}{k} = \binom{n}{n-k}$$

Algumas Identidades Úteis

```
0 1 1 1 2 1 1 3 3 1 4 1 4 6 4 1 5 1 5 1 1 1 6 1 5 20 15 6 1 7 1 7 21 35 35 21 7 1 8 1 8 28 56 70 56 28 8 1
```

• A relação de simetria é facilmente notada no triângulo:

$$\binom{n}{k} = \binom{n}{n-k}$$

A identidade

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

Algumas Identidades Úteis

• A relação de simetria é facilmente notada no triângulo:

$$\binom{n}{k} = \binom{n}{n-k}$$

A identidade

$$\sum_{k=0}^{n} \binom{n}{k} = 2^n$$

pode ser descoberta somando os números na linha do Triângulo de Pascal

Matemática Discreta

Binômio de Newton

Professora: Lílian de Oliveira Carneiro

Universidade Federal do Ceará Campus de Crateús

Junho de 2020