Beskonačni redovi

1.1 BROJEVNI REDOVI

Beskonačni brojevni red (numerički red, red sa konstantnim članovima) predstavlja sumu svih članova nekog beskonačnog brojevnog niza $\{u_k\}$:

$$\sum_{k=0}^{\infty} u_k = u_0 + u_1 + \dots + u_k + \dots$$
 (1.1)

Zbirove

$$s_0 = u_0, \ s_1 = u_0 + u_1, \dots, s_n = \sum_{k=0}^n u_k$$
 (1.2)

nazivamo **parcijalni zbirovi.** Kažemo da je red **konvergentan**, ako **postoji granična vrednost**:

$$s = \lim_{n \to \infty} s_n = \sum_{k=0}^{\infty} u_k \tag{1.3}$$

koju zovemo zbir beskonačnog reda. U suprotnom, kažemo da je red divergentan.

Ostatak reda je razlika njegovog zbira i parcijalnog zbira s_n prvih (n+1) članova (1.2):

$$R_n = s - s_n = \sum_{k=n+1}^{\infty} u_k = u_{n+1} + u_{n+2} + \cdots$$
 (1.4)

i ako je red konvergentan, on očigledno **teži nuli** kada n neograničeno raste:

$$\lim_{n \to \infty} R_n = 0 \tag{1.4a}$$

Primeri:

Harmonijski red $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k} + \dots$ je divergentan, jer je njegova suma beskonačna.

Geometrijski red $1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^k} + \dots$ je konvergentan i njegova suma je jednaka 2 :

$$s_n = \frac{q^{n+1} - 1}{q - 1} = \frac{\left(\frac{1}{2}\right)^{n+1} - 1}{\frac{1}{2} - 1}, \quad \lim_{n \to \infty} s_n = \sum_{k=0}^{\infty} \frac{1}{2^k} = \frac{-1}{-1/2} = 2$$

Ako je red konvergentan očigledno je da **njegov opšti** član u_n mora da **teži nuli** kada $n \to \infty$ (vidi 1.4a), pa je to **neophodan uslov** da red bude konvergentan, ali **ne i dovoljan** (uoči napr. divergenciju harmonijskog reda). Iz jednačina (1.3)-(1.4) proizilazi da je **potreban i dovoljan uslov** konvergencije reda da njegov **ostatak** R_n **teži nuli** kad n neograničeno raste (1.4a) što znači da se za svaki proizvoljno mali pozitivan ε , može naći takav broj N da važi:

$$|R_n| = |s - s_n| < \varepsilon, \ n \ge N(\varepsilon)$$
 (1.4b)

Ako je red čiji su članovi apsolutne vrednosti članova nekog konvergentnog reda (1.1):

$$\sum_{k=0}^{\infty} |u_k| = |u_0| + |u_1| + \dots + |u_k| + \dots$$

takođe konvergentan, onda kažemo da je red (1.1) **apsolutno konvergentan**. Ako to nije slučaj onda kažemo da je red **uslovno konvergentan**. U Tab. 1.1. date su sume nekih konvergentnih brojevnih redova.

Neka svojstva apsolutno konvergentnih redova [Bronstein]

• Sabiranje i oduzimanje

Apsolutno konvergentni redovi se mogu sabirati i oduzimati član po član, a suma rezultujućeg reda jednaka je zbiru (razlici) suma redova koji se sabiraju (oduzimaju). Ovo važi i za uslovno konvergentne redove.

Množenje

Apsolutno konvergentni redovi se mogu međusobno množiti kao polinomi, a suma rezultujućeg reda jednaka je proizvodu suma.

Ako se množe dva konvergentna reda, a bar jedan on njih je i apsolutno konvergentan, tada je rezultujući red konvergentan, ali ne obavezno i apsolutno konvergentan.

Primer:

Red pod rednim brojem 5. u Tab. 1.1. predstavlja razliku 2. i 4. reda u istoj tabeli. Zaista:

$$\left(\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \cdots\right) - \left(\frac{1}{1\cdot 3} + \frac{1}{2\cdot 4} + \frac{1}{3\cdot 5} + \cdots\right) =$$

$$\frac{1}{1\cdot 2} - \frac{1}{1\cdot 3} + \frac{1}{2\cdot 3} - \frac{1}{2\cdot 4} + \frac{1}{3\cdot 4} - \frac{1}{3\cdot 5} + \cdots + \frac{1}{n(n+1)(n+2)} + \cdots =$$

$$\frac{1}{1\cdot 2\cdot 3} + \frac{1}{2\cdot 3\cdot 4} + \frac{1}{3\cdot 4\cdot 5} + \cdots + \frac{1}{n(n+1)(n+2)} + \cdots$$

Tako je njegova suma jednaka razlici suma 2. i 4. reda:

$$s = 1 - \frac{3}{4} = \frac{1}{4}$$

Tabela 1.1. - Sume nekih brojevnih redova

1.
$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = 1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots = \frac{\pi}{4}$$
2.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = \sum_{n=0}^{\infty} \frac{1}{(n+1)(n+2)} = \frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \dots = 1$$
3.
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)(2n+1)} = \frac{1}{1 \cdot 3} + \frac{1}{3 \cdot 5} + \frac{1}{5 \cdot 7} + \dots = \frac{1}{2}$$
4.
$$\sum_{n=2}^{\infty} \frac{1}{(n-1)(n+1)} = \sum_{n=1}^{\infty} \frac{1}{n(n+2)} = \frac{1}{1 \cdot 3} + \frac{1}{2 \cdot 4} + \frac{1}{3 \cdot 5} + \dots = \frac{3}{4}$$
5.
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)(n+2)} = \frac{1}{1 \cdot 2 \cdot 3} + \frac{1}{2 \cdot 3 \cdot 4} + \frac{1}{3 \cdot 4 \cdot 5} + \dots = \frac{1}{4}$$
6.
$$\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{2^2} + \frac{1}{3^2} + \frac{1}{4^2} + \dots = \frac{\pi^2}{6}$$
7.
$$\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n^2} = \sum_{n=0}^{\infty} \frac{(-1)^n}{(n+1)^2} = 1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots = \frac{\pi^2}{12}$$
8.
$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^2} = \sum_{n=0}^{\infty} \frac{1}{(2n+1)^2} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \frac{1}{7^2} + \dots = \frac{\pi^2}{8}$$
9.
$$\sum_{n=1}^{\infty} \frac{1}{n^4} = 1 + \frac{1}{2^4} + \frac{1}{3^2} + \frac{1}{4^4} + \dots = \frac{\pi^4}{90}$$

1.1.1 Kriterijumi konvergencije redova sa pozitivnim članovima

Podesetimo se dva kriterijuma za konvergenciju brojnih redova sa pozitivnim članovima $(u_n > 0)$:

• Dalamberov kriterijum količnika:

Neka je

$$\rho = \lim_{n \to \infty} \frac{u_{n+1}}{u_n}$$

Tada, ako je:

$$\rho \begin{cases} <1, \text{ red je konvergentan} \\ >1, \text{ red je divergentan} \\ =1, \text{ krit. ne daje odgovor} \end{cases} \tag{1.5a}$$

• Košijev koreni kriterijum:

Neka je

$$q = \lim_{n \to \infty} \sqrt[n]{u_n}$$

Tada, ako je:

$$q \begin{cases} <1, \text{ red je konvergentan} \\ >1, \text{ red je divergentan} \\ =1, \text{ krit. ne daje odgovor} \end{cases}$$
 (1.5b)

Primeri:

Za geometrijski red,
$$1+\frac{1}{2}+\frac{1}{4}+\cdots+\frac{1}{2^k}+\cdots$$

Dalamberov kriterium:

$$\rho = \lim_{n \to \infty} \left(\frac{\frac{1}{2^{n+1}}}{\frac{1}{2^n}} \right) = \lim_{n \to \infty} \left(\frac{2^n}{2^n \cdot 2} \right) = \frac{1}{2},$$

$$q = \lim_{n \to \infty} \left(\sqrt[n]{\frac{1}{2^n}} \right) = \frac{1}{2},$$

pa je red konvergentan

pa je red konvergentan

Za harmonijski red,
$$1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{k} + \dots$$

Dalamberov kriterium:

Košijev kriterijum:

$$\rho = \lim_{n \to \infty} \left(\frac{1}{\frac{n+1}{n}} \right) = \lim_{n \to \infty} \left(\frac{n}{n+1} \right) = 1, \qquad q = \lim_{n \to \infty} \left(\frac{1}{\sqrt[n]{n}} \right), \quad \ln q = \lim_{n \to \infty} \left(-\frac{1}{n} \ln n \right) = -\lim_{n \to \infty} \left(\frac{\ln n}{n} \right) = 0$$

$$\text{(Lopitalovo prav.)} = -\lim_{n \to \infty} \left(\frac{1}{\frac{n}{n}} \right) = 0, \quad q = 1$$

$$\text{pa nema odgovora}$$

Košijev integralni kriterijum

Posmatrajmo red sa pozitivnim članovima čiji je opšti član,

$$u_n = f(n)$$

i neka je funkcija f(x) definisana i neprekidna u intervalu $c < x < \infty$. Tada, ako je nesvojstveni integral (Dodatak C),

$$\int_{c}^{\infty} f(x) dx$$

konvergentan, posmatrani red je konvergentan, a ako je integral divergentan, divergentan je i posmatrani red.

Primeri:

1. Za harmonijski red imamo f(x) = 1/x i on je divergentan, jer,

$$\int_{1}^{\infty} \frac{dx}{x} = \ln x \Big|_{1}^{\infty} = \infty$$

2. Konvergencija reda

$$\sum_{n=1}^{\infty} \frac{1}{n^2}$$

se ne može utvrditi Dalamberovim ili Košijevim kriterijumom, pošto njihova primena daje jedinične vrednosti kriterijuma ρ i q (1.5a,b). Red je konvergentan, jer primena Košijevog kriterijuma daje:

5

$$\int_{1}^{\infty} \frac{dx}{x^2} = \left[-\frac{1}{x} \right]_{1}^{\infty} = 1$$

1.1.2 Alternativni redovi

To su redovi čiji članovi imaju naizmenično pozitivan i negativan predznak:

$$u_0 - u_1 + u_2 - \dots \pm u_k \mp \dots, \quad u_k > 0$$
 (1.6)

• Lajbnicov kriterijum za konvergenciju alternativnog reda je :

$$\lim_{k \to \infty} u_k = 0 \text{ i } u_0 > u_1 > u_2 > \dots > u_k > \dots$$
 (1.6a)

• Za ostatak R_n alternativnog reda važi da ima znak prvog odbačenog člana u_{n+1} i da je po apsolutnoj vrednosti manji od njega:

$$|R_n| = |s - s_n| < u_{n+1} \tag{1.7}$$

Primer:

Red
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots + (-1)^{k+1} + \frac{1}{k} + \dots$$

je, u skladu sa Lajbnicovim kriterijumom, konvergentan i za ostatak reda važi:

$$\left|R_n\right| < \frac{1}{n+1}$$

On nije apsolutno, već samo uslovno konvergentan, jer red apsolutnih vrednosti njegovih članova je harmonijski red, koji je divergentan.

1.2 FUNKCIJSKI REDOVI

Funkcijski red (red funkcija) je red čiji su članovi funkcije iste promenljive:

$$\sum_{k=0}^{\infty} u_k(x) = u_0(x) + u_1(x) + u_2(x) + \dots + u_k(x) + \dots$$
 (1.8)

Njegov parcijalni zbir $s_n(x)$ je suma prvih (n+1) članova reda:

$$s_n(x) = \sum_{k=0}^{n} u_k(x)$$
 (1.9)

Oblast konvergencije funkcijskog reda (1.8) je **skup** svih onih **vrednosti** x, koje pripadaju zajedničkoj oblasti definisanosti svih funkcija $u_k(x)$, za koje **konvergiraju dobijeni brojevni redovi**, tj. za koje ostatak reda $R_n(x)$ teži nuli kada n neograničeno raste (vidi jedn. 1.4b):

$$|R_n(x)| = |s(x) - s_n(x)| < \varepsilon, \ n > N(\varepsilon, x)$$
(1.10)

Jasno je da granični broj N u ovoj definiciji konvergencije niza $\{R_n(x)\}$ zavisi ne samo od malog broja ε , već i od zadate vrednosti x.

Najpoznatiji tipovi funkcijskih redova su:

- stepeni red, kod koga je član reda stepena funkcija (Pogl. 1.3) i
- trigonometrijski red, čiji su članovi sinusne ili kosinusne funkcije (Dodatak B)

Ravnomerna konvergencija

Razlikujemo sledeća dva slučaja konvergencije funkcijskog reda:

- Ravnomerna (uniformna) konvergencija funkcijskog reda, kada se može naći takav broj N koji obezbeđuje konvergenciju (1.10) za bilo koju vrednost x iz oblasti konvergencije, tj. kada on ne zavisi od x, već samo od ε . Dakle, sve funkcije $R_n(x)$, za n > N leže u pojasu širine 2ε oko krive s(x) u celoj oblasti konvergencije reda.
- **Neravnomerna** (neuniformna) **konvergencija**, kada se ne može naći jedinstven broj *N* takav da relacija (1.10) važi u celoj oblasti konvergencije reda. Tada postoji bar jedna vrednost *x* u oblasti konvergencije, za koju važi:

$$|R_n(x)| > \varepsilon$$

bez obzira koliko veliko N se izabere. Dakle, ma koliko N uzeli veliko, naći će se bar jedna vrednost x u kojoj će funkcija $R_n(x)$, n > N da "izađe" izvan pojasa širine 2ε oko krive s(x).

Primer:

Red $1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$ je konvergentan za sve vrednosti $-\infty < x < \infty$ i

njegov zbir je $s(x) = e^x$ (vidi Tab. 1.2.). On je ravnomerno konvergentan u svakoj konačnoj oblasti |x| < c. Naime, ostatak reda dat je Lagranžovom formulom (jedn. 1.24 za $x_0 = 0$):

$$R_n(x) = \frac{x^{n+1}}{(n+1)!} e^{\xi}, \quad |\xi| < x$$

i očigledno je da u slučaju konačne oblasti |x| < c važi:

$$\left|R_n(x)\right| < \frac{c^{n+1}}{(n+1)!}e^c$$

Pošto (n+1)! brže raste sa n od c^{n+1} , izraz na desnoj strani nejednakosti se može napraviti manjim od ε za dovoljno veliko n > N, pri čemu N ne zavisi od x. Međutim to ne važi u celoj oblasti konvergencije $-\infty < x < \infty$, jer koliko god uzeli veliki broj n, može se naći dovoljno veliko po apsolutnoj vrednosti x, da bude:

$$|R_n(x)| = \frac{|x^{n+1}|}{(n+1)!}e^{\xi} > \varepsilon, |\xi| < x$$

Vajerštrasov (Weierstrass) kriterijum ravnomerne konvergencije

Funkcijski red (1.8) konvergira ravnomerno (uniformno) u zadatoj oblasti, ako se može pronaći takav konvergentan red sa konstantnim članovima $\sum_{n=0}^{\infty} c_n$, da za sve vrednosti x u toj oblasti važi:

$$|u_n(x)| \le c_n \tag{1.11}$$

Za red $\sum_{n=0}^{\infty} c_n$ kažemo da je **majorantni red** za posmatrani funkcijski red.

Primeri:

Redovi $\sum_{n=1}^{\infty} \frac{\sin nx}{n^2}$ i $\sum_{n=0}^{\infty} \frac{\cos nx}{2^n}$ su ravnomerno konvergentni u celoj oblasti $-\infty < x < \infty$, jer su njihovi majorantni redovi : $\sum_{n=1}^{\infty} \frac{1}{n^2}$ i $\sum_{n=0}^{\infty} \frac{1}{2^n}$ konvergentni.

Svojstva ravnomerno konvergentnih redova

- **Neprekidnost.** Ako su funkcije $u_n(x)$, n = 0,1,... neprekidne u oblasti ravnomerne konvergencije reda (1.8), onda je i njihov zbir s(x) neprekidna funkcija u toj oblasti. Ako red ne konvergira ravnomerno u nekoj konačnoj oblasti, onda njegov zbir s(x) može imati prekide u toj oblasti.
- Integracija i diferenciranje. U oblasti [a,b] ravnomerne konvergencije, red se može integraliti član po član:

$$\int_{x_0}^{x} \sum_{n=0}^{\infty} u_n(t) dt = \sum_{n=0}^{\infty} \int_{x_0}^{x} u_n(t) dt, \quad x_0, x \in [a, b]$$
 (1.12a)

Isto tako, uniformno konvergentan red se može i diferencirati član po član,

$$\left(\sum_{n=0}^{\infty} u_n(x)\right)' = \sum_{n=0}^{\infty} u'_n(x), \quad x \in [a,b]$$
 (1.12b)

ako se tako dobija uniformno konvergentan red.

Sada vidimo značaj ravnomerne konvergencije: ona omogućuje diferenciranje i integraciju reda, član po član.

Redovi funkcija više nezavisno promenljivih

Definiciju funkcijskog reda nije teško proširiti na slučaj više nezavisno promenljivih, recimo:

$$\sum_{k=0}^{\infty} u_k(x, y) = u_0(x, y) + u_1(x, y) + u_2(x, y) + \dots + u_k(x, y) + \dots$$
 (1.13)

kao i navedena svojstva i kriterijum ravnomerne konvergencije.

PRIMER 1.1 Red

$$y(x,t) = 2\sum_{n=0}^{\infty} \frac{(-1)^n}{(n+0.5)\pi} \exp\left[-(n+0.5)^2 \pi^2 t\right] \cdot \cos(n+0.5)\pi x$$
 (1.14)

se dobija kao rešenje bezdimenzione diferencijalne jednačine nestacionarnog jednodimenzionog prenosa toplote kroz ravan sloj velike površine []:

$$\frac{\partial^2 y}{\partial x^2} = \frac{\partial y}{\partial t}, \quad t > 0, \quad 0 < x < 1$$
 (1.15)

x - bezdimenziona prostorna koordinata u pravcu prenosa toplote; x = 0: središna ravan sloja; x = 1: desna granična površina,

t - bezdimenziono vreme,

y - bezdimeziona temperatura (
$$0 \le y \le 1$$
), $y = \frac{T - T_0}{T_p - T_0}$

T – temperatura u sloju; T_0 – temperatura granične površine;

 T_p – početna uniformna temperatura sloja,

sa graničnim uslovima:

$$y(x,0) = 1, \ 0 \le x < 1$$
 (1.15a)

$$y'(0,t) = 0, t > 0$$
 (1.15b)

$$y(1,t) = 0, \ t > 0 \tag{1.15c}$$

- a) Primenjujući Vajerštrasov kriterijum, pokazati da je posmatrani red (1.14) ravnomerno konveregentan u oblasti: $x \ge 0$, $t \ge c > 0$, gde je c neki konačno mali broj.
- b) Pokazati da red zadovoljava datu diferencijalnu jednačinu i granične uslove (1.15-1.15c).

a) Pošto je,

$$\left| \frac{(-1)^n}{(n+0.5)\pi} \exp\left[-(n+0.5)^2 \pi^2 t \right] \cos(n+0.5) \pi x \right| \le \frac{1}{(n+0.5)\pi}, \ x \ge 0, \ t \ge 0,$$

jedan majorantni red za posmatrani funkcijski red je:

$$\frac{2}{\pi} \sum_{n=0}^{\infty} \frac{1}{n+0.5}$$

Jasno je da se on u pogledu konvergencije ponaša kao harmonijski red, jer,

$$\lim_{n \to \infty} \left(\sum_{n=0}^{\infty} \frac{1}{n+0.5} \right) = \lim_{n \to \infty} \left(\sum_{n=0}^{\infty} \frac{1}{n} \right) = \infty$$

pošto su n i (n + 0.5), ekvivalentne beskonačno velike veličine, $n + 0.5 \approx n$ (Dodatak A), kada n neograničeno raste. Tako, da bi smo dokazali uniformnu konvergenciju posmatranog reda, moramo pronaći drugi majorantan red, koji je konvergentan. Poćićemo od nejednakosti,

$$e^{-x} < \frac{1}{x}, \ x \ge 0$$
 (1.16)

koju ćemo dokazati dokazavši njoj ekvivalentnu nejednakost (dobijamo je logaritmovanjem):

$$ln x < x, \quad x \ge 0$$
(1.16a)

Da bi dokazali (1.16a) primenićemo Lajbnicov stav o ostatku alternativnog reda na Maklorenov red za funkciju ln(1+x) (Tab. 1.2):

$$\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}, -1 < x \le 1$$

Prema pomenutom stavu,

$$R_1 = s(x) - s_1(x) = \ln(1+x) - x < 0$$

pošto je,

$$-\frac{x^2}{2} < 0$$

Dakle, pokazali smo da je,

$$ln(1+x) < x, \ 0 \le x \le 1$$

Medjutim, imajući u vidu da funkcija ln(1+x) sporije raste od x, kada x raste u oblasti x > 0:

$$\ln(1+x)' \left(=\frac{1}{1+x}\right) < x' \ (=1), \ x > 0$$

izvedena nejednakost važi u celoj posmatranoj oblasti $x \ge 0$. Dalje, pošto je

$$\ln x \le \ln(1+x), x \ge 0$$

dokazali smo nejednakost (1.16a), a time i (1.16). Na osnovu (1.16), možemo da tvrdimo:

$$\left| \frac{(-1)^n}{(n+0.5)\pi} \exp\left[-(n+0.5)^2 \pi^2 t \right] \cos(n+0.5) \pi x \right| \le \frac{1}{(n+0.5)^3 \pi^3 t}, \quad x \ge 0, \quad t > 0$$

pa je traženi majorantni red posmatranog funkcionalnog reda u oblasti $x \ge 0$, $t \ge c > 0$:

$$\frac{2}{\pi^3 c} \sum_{n=0}^{\infty} \frac{1}{(n+0.5)^3}$$

Primenom Košijevog integralnog kriterijuma lako pokazujemo da je red,

$$\sum_{n=0}^{\infty} \frac{1}{(n+0.5)^3}$$

konvergentan, a kako je c konačno mali pozitivan broj, vrednost faktora $2/(\pi^3 c)$ je konačna, pa je i posmatrani majorantni red konvergentan. Tako smo dokazali ravnomernu konvergenciju datog funkcijskog reda.

b) Potrebno je naći parcijalne izvode funkcijskog reda (1.14) i zameniti ih u diferencijalnu jednačinu. Ako njegovu sumu označimo sa y(x,t), diferenciranje član po član, daje:

$$\frac{\partial y}{\partial t} = -2\sum_{n=0}^{\infty} (-1)^n (n+0.5) \exp\left[-(n+0.5)^2 \pi^2 t\right] \cos(n+0.5) \pi x$$

$$\frac{\partial y}{\partial x} = -2\sum_{n=0}^{\infty} (-1)^n \exp\left[-(n+0.5)^2 \pi^2 t\right] \sin(n+0.5) \pi x$$

$$\frac{\partial^2 y}{\partial x^2} = -2\sum_{n=0}^{\infty} (-1)^n (n+0.5) \exp\left[-(n+0.5)^2 \pi^2 t\right] \cos(n+0.5) \pi x$$

Nismo dokazali da su polazni red, kao i njegovi izvodi ravnomerno konvergentni u oblasti od interesa, $t \ge 0$, 0 < x < 1, tj. da je zadovoljen dovoljan uslov za diferenciranje redova, član po član. Dakle, pretpostavićemo da je ta operacija dozvoljena (posmatrani uslov je dovoljan ali ne i potreban). Smena dobijenih redova u dif. jednačinu pokazuje da je ona zadovoljena.

Preostaje da pokažemo da funkcija y(x,t) zadovoljava i date granične uslove. Za t=0, red (1.14) se svodi na trigonometrijski red:

$$y(x,0) = \frac{2}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^k}{k + 0.5} \cos(n + 0.5) \pi x$$
 (1.17)

koji je konvergentan u oblasti $0 \le x < 1$ i njegova suma je jednaka 1 (Dodatak B, Primer B.2):

$$y(x,0) = \frac{2}{\pi} \sum_{n=0}^{\infty} \frac{(-1)^k}{k+0.5} \cos(n+0.5) \pi x = 1, \ \ 0 \le x < 1$$

Treba primetiti da je suma posmatranog reda jednaka nuli za x = 1:

$$y(0,1) = 0$$
,

što znači da suma reda s(x) = y(x,0) nije neprekidna na intervalu [0,1], jer na desnoj granici tog intervala ima skok od jedinične na nultu vrednost. Iz prethodno navedenog stava o neprekidnosti sume ravnomerno konvergentnog reda, sledi da on **nije ravnomerno** konvergentan na zatvorenom intervalu [0,1].

Slika 1. uz Primer 1.1. - Delimične sume $s_n(x, n)$ reda (1.17) za n = 10, 50

Slika 2. uz Primer 1.1. - Delimična sume $s_n(x,n)$ reda (1.17) za n = 500

Zbog uočenog skoka funkcije, red (1.17) **nije ravnomerno konvergentan ni na poluotvorenom intervalu** [0,1). To pokazuju dati grafici delimičnih suma $s_n(x,n)$ za n=10,50,500, dobijeni u Mathcad-u. Vidimo da se pri povećavanju boja članova u delimičnoj sumi, uočljivi pik na njenom grafiku (značajno odstupanje od $s(x) = s_n(x,\infty) = 1$), pomera udesno ka granici x=1. Može se pokazati da je red (1.17) **ravnomerno konvergentan na svakom zatvorenom intervalu** [0,c], gde je 0 < c < 1.

Uočeno ponašanje posmatranog reda značajno **otežava izračunavanje bezdimenzionog temperaturnog profila** y(x,t) **u malim bezdimenzionim vremenima** t jer se tada red (1.14) ponaša slično redu (1.17) (veoma sporo konvergira svojoj sumi). Nasuprot tome, za dovoljno tačna izračunavanje temperatura **za veća bezdimenziona vremena**, dovoljno je izračunati delimičnu sumu reda (1.14) sa **samo nekoliko članova** (red brzo konvergira svojoj sumi).

Preostalo je da dokažemo da red (1.14) zadovoljava i granične uslove (1.15b,c):

$$y'(0,t) = -2\sum_{n=0}^{\infty} (-1)^n \exp\left[-(n+0.5)^2 \pi^2 t\right] \sin 0 = 0$$
$$y(1,t) = 2\sum_{n=0}^{\infty} \frac{(-1)^n}{(n+0.5)\pi} \exp\left[-(n+0.5)^2 \pi^2 t\right] \cos(n+0.5)\pi = 0$$

1.3 STEPENI REDOVI

Stepeni ili potencijalni redovi imaju oblik:

$$a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots = \sum_{n=0}^{\infty} a_n x^n$$
 (1.18a)

ili

$$a_0 + a_1(x - x_0) + a_2(x - x_0)^2 + \dots + a_n(x - x_0)^n + \dots = \sum_{n=0}^{\infty} a_n(x - x_0)^n$$
 (1.18b)

gde su koeficijenti a_n i vrednost x_0 konstante. Tačka x_0 se naziva **tačka razvoja** stepenog reda. Tačka razvoja za red (1.18a) je očigledno: $x_0 = 0$. **Delimična suma** stepenog reda je **polinom** n-tog stepena,

$$s_n(x) = \sum_{k=0}^{n} a_k (x - x_0)^k$$
 (1.19)

Očigledno je da stepeni red uvek konvergira za $x = x_0$, kada je njegova suma jednaka a_0 . Pored toga, red **apsolutno konvergira** u nekom **intervalu**,

$$\left| x - x_0 \right| < r \tag{1.20}$$

a **izvan** tog **intervala divergira**. Poluširina intervala konvergencije stepenog reda, r se naziva poluprečnik **konvergencije**. Na granicama intervala konvergencije $x = x_0 \pm r$ stepeni red može da konvergira ili divergira. Stepeni red je **ravnomerno konvergentan** u svakoj zatvorenoj podoblasti intervala apsolutne konvergencije (Abelova teorema):

$$\left| x - x_0 \right| \le r_0 < r \tag{1.20a}$$

Određivanje poluprečnika konvergencije

Iz Dalamberovog i Košijevog kriterijuma slede formule za određivanje poluprečnika konvergencije:

$$\lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| |x - x_0| < 1 \implies |x - x_0| < \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$

$$\lim_{n \to \infty} \sqrt[n]{|a_n| |x - x_0|^n} = \lim_{n \to \infty} \sqrt[n]{|a_n| |x - x_0|} < 1 \implies |x - x_0| < \lim_{n \to \infty} \frac{1}{\sqrt[n]{|a_n|}}$$

Dakle,

$$r = \begin{cases} \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| \\ \lim_{n \to \infty} \frac{1}{\sqrt{a_n}} \end{cases}$$
 ili (1.21)

Primer:

Za red
$$1+x+\frac{x^2}{2}+\cdots+\frac{x^n}{n}+\cdots$$

poluprečnik konvergencije je

$$r = \lim_{n \to \infty} \frac{a_n}{a_{n+1}} = \lim_{n \to \infty} \frac{1/n}{1/(n+1)} = \lim_{n \to \infty} \frac{n+1}{n} = 1$$

pa on konvergira u intervalu -1 < x < 1

Ispitaćemo njegovu konvergenciju na granicama intervala. Na levoj granici , x = -1 on postaje alternativni brojevni red,

$$\frac{1}{2} - \frac{1}{3} + \frac{1}{4} + \dots + (-1)^k \frac{1}{k} + \dots$$

koji konvergira uslovno. Na desnoj granici on postaje harmonijski red, pa divergira.

Prema Abelovoj teoremi red je ravnomerno konvergentan u svakom intervalu $[-r_0, r_0]$ gde je r_0 proizvoljan broj između 0 i 1.

Operacije sa stepenim redovima

Pretpostavimo da su dva stepena reda, $\sum_{n=0}^{\infty} a_n (x-x_0)^n$, $\sum_{n=0}^{\infty} b_n (x-x_0)^n$ konvergentna u intervalu $|x-x_0| < r$. Dakle, u tom intervalu su njihove sume neke funkcije :

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = f(x), \qquad \sum_{n=0}^{\infty} b_n (x - x_0)^n = g(x)$$

 Tada se oni, u tom intervalu, mogu sabirati (odizimati) i množiti analogno polinomima:

$$f(x) \pm g(x) = \sum_{n=0}^{\infty} (a_n \pm b_n)(x - x_0)^n$$
 (1.22a)

$$f(x) \cdot g(x) = \left[\sum_{n=0}^{\infty} a_n (x - x_0)^n \right] \left[\sum_{n=0}^{\infty} b_n (x - x_0)^n \right] = \sum_{n=0}^{\infty} c_n (x - x_0)^n$$

$$c_n = a_0 b_n + a_1 b_{n-1} + \dots + a_{n-1} b_1 + a_n b_0$$
(1.22b)

• U svakom zatvorenom podintervalu (1.20a) stepeni red se može diferencirati i integraliti, član po član:

$$\frac{df(x)}{dx} = \frac{d}{dx} \left(\sum_{n=0}^{\infty} a_n (x - x_0)^n \right) = \sum_{n=0}^{\infty} a_n \frac{d}{dx} \left[(x - x_0)^n \right], \quad x \in \left[x_0 - r_0, x_0 + r_0 \right]$$
(1.23a)

$$\int_{x_1}^{x_2} f(x) dx = \int_{x_1}^{x_2} \left(\sum_{n=0}^{\infty} a_n (x - x_0)^n \right) dx = \sum_{n=0}^{\infty} a_n \int_{x_1}^{x_2} (x - x_0)^n dx, \quad x_1, x_2 \in \left[x_0 - r_0, x_0 + r_0 \right]$$
 (1.23b)

a rezultati su **stepeni redovi istog poluprečnika konvergencije**, r.

1.3.1 Tajlorov red

Suma beskonačnog stepenog reda, u intervalu konvergencije, je neka funkcija f(x), ili drugim rečima on u intervalu konvergencije definiše neku funkciju f(x).

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n = a_0 + a_1 (x - x_0) + a_2 (x - x_0)^2 + \dots + a_n (x - x_0)^n + \dots$$
 (1.24)

Nameće se obrnut problem: mogu li se i kako pojedine **elementarne funkcije** (e^x , sin x, ln x,...) prikazati u obliku stepenog reda ili, drugim rečima, **razviti u stepeni red oko neke tačke** x_0 . Dakle, kako za neku elementarnu funkciju f(x) **odrediti koeficijente** a_n u razvoju (1.24). Očigledno je,

$$a_0 = f(x_0)$$

Ako sada diferenciramo obe strane jedn. (1.24),

$$f'(x) = a_1 + 2a_2(x - x_0) + 3a_3(x - x_0)^2 + \cdots + na_n(x - x_0)^{n-1} + \cdots$$

koeficijent a_1 dobijamo kao:

$$a_1 = f'(x_0)$$

Koeficijent a_2 ćemo dobiti iz 2. izvoda:

$$f''(x) = 2a_2 + 3 \cdot 2a_3(x - x_0) + \dots + n(n-1)a_n(x - x_0)^{n-2} + \dots$$
$$a_2 = \frac{f''(x_0)}{2} = \frac{f''(x_0)}{2!}$$

a sledeći iz 3. izvoda:

$$f'''(x) = 3 \cdot 2a_3 + 4 \cdot 3 \cdot 2a_4(x - x_0) + \dots + n(n-1)(n-2)a_n(x - x_0)^{n-3} + \dots$$
$$a_2 = \frac{f'''(x_0)}{3!}$$

Uopšte, koeficijent a_n dobijamo iz n – tog izvoda:

$$f^{(n)}(x) = n(n-1)(n-2)\cdots 2\cdot 1\cdot a_n + (n+1)n(n-1)\cdots 2\cdot 1\cdot a_{n+1}(x-x_0) + \cdots$$

$$a_n = \frac{f^{(n)}(x_0)}{n!}$$
(1.25)

Tako se neka **neprekidna funkcija** f(x), koja **ima sve** (neprekidne) **izvode** u tački $x = x_0$ može **razviti u red**,

$$f(x) = f(x_0) + \frac{f'(x_0)}{1!}(x - x_0) + \dots + \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n + \dots = \sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!}(x - x_0)^n$$
 (1.26)

oko tačke x_0 , **u intervalu** u kome je on **konvergentan**, tj. u kome ostatak reda $R_n(x)$ teži nuli kada $n \to \infty$. Red (1.26) je poznat u literaturi pod imenom **Tajlorov** (*Taylor*) **red**.U specijalnom slučaju razvoja oko tačke 0, red,

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^n$$
 (1.27)

se naziva **Maklorenov** (*Maclaurin*) **red**. U Tab.1.2. dati su razvoji najpoznatijih elementarnih funkcija u Maklorenov red.

Tajlorov ili Maklorenov red **brzo konvergiraju**, tj. ostatak reda brzo teži nuli, ako se **količnik dva uzastopna koeficijenta** reda, po apsolutnoj vrednosti, $|a_{n+1}/a_n|$ **brzo približava nuli**, kada n, odnosno broj članova delimičnog reda, neograničeno raste.

Tabela 1.2. – Maklorenovi redovi nekih funkcija

Funkcija	Razvoj u Maklorenov red	Interval konv.
$(1+x)^m$	$1 + mx + \frac{m(m-1)}{2!}x^2 + \dots = 1 + \sum_{n=1}^{\infty} \frac{m(m-1)\cdots(m-n+1)}{n!}x^n$	$\begin{cases} x \le 1 \text{ za } m > 0 \\ x < 1 \text{ za } m < 0 \end{cases}$
sin x	$x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}$	$ x < \infty$
$\cos x$	$1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$	$ x < \infty$
e^x	$1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots = \sum_{n=0}^{\infty} \frac{x^n}{n!}$	$ x < \infty$
ln(1+x)	$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}$	$-1 < x \le 1$
$ \ln \frac{1+x}{1-x} $	$2\left[x + \frac{x^3}{3} + \frac{x^5}{5} + \frac{x^7}{7} + \cdots\right] = 2\sum_{n=0}^{\infty} \frac{x^{2n+1}}{2n+1}$	x < 1
arctan x	$x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}$	$ x \le 1$
sinh x	$x + \frac{x^3}{3!} + \frac{x^5}{5!} + \frac{x^7}{7!} + \dots = \sum_{n=0}^{\infty} \frac{x^{2n+1}}{(2n+1)!}$	$ x < \infty$
$\cosh x$	$1 + \frac{x^2}{2!} + \frac{x^4}{4!} + \frac{x^6}{6!} + \dots = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}$	$ x < \infty$

Primer:

Maklorenov red eksponencijalne funkcije, e^x znatno brže konvergira od reda logaritamske funkcije, $\ln(1+x)$, jer kada broj članova delimičnog reda raste, količnik dva uzastopna koeficijenta za prvi red:

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{n!}{(n+1)!} = \frac{1}{n+1}$$

teži nuli, dok se za red logaritamske funkcije,

$$\left| \frac{a_{n+1}}{a_n} \right| = \frac{n}{n+1}$$

on povećava, težeći jedinici.

PRIMER 1.2 Izvesti Maklorenove redove za funkcije e^x i e^{-x} i intervale konvergencije.

Za funkciju e^x , formula (1.21) za koeficijent a_n uz x^n u razvoju daje :

$$a_n = \frac{f^{(n)}(0)}{n!} = \frac{e^0}{n!} = \frac{1}{n!}$$

pa je razvoj za e^x :

$$e^{x} = 1 + x + \frac{x^{2}}{2!} + \dots + \frac{x^{n}}{n!} + \dots = \sum_{n=0}^{\infty} \frac{x^{n}}{n!}$$

Poluprečnik konvergencije (1.17) izvedenog reda je:

$$r = \lim_{n \to \infty} \frac{a_n}{a_{n+1}} = \lim_{n \to \infty} (n+1) = \infty$$

pa je interval konvergencije: $|x| < \infty$. Prema Abelovoj teoremi, red je ravnomerno konvergentan u svakom konačnom intervalu $|x| \le r_0$.

Red za funkciju e^{-x} ćemo dobiti jednostavno smenjujući (-x) umesto x u razvoju e^{x} :

$$e^{-x} = 1 - x + \frac{x^2}{2!} - \frac{x^3}{3!} + \dots + (-1)^n \frac{x^n}{n!} + \dots = \sum_{n=0}^{\infty} (-1)^n \frac{x^n}{n!}$$

PRIMER 1.3 Izvesti Maklorenov red za funkciju arctg x, polazeći od razvoja za funkciju $(1+x)^m$, koji je poznat pod imenom binomni red. Odrediti interval konvergencije dobijenog reda.

Imajući u vidu da je:

$$arctg x = arctg x - arctg 0 = \int_{0}^{x} \frac{dt}{1 + t^{2}}$$

traženi razvoj ćemo dobiti integracijom član po član (jedn.1.19b) reda za podintegralnu funkciju. Taj red ćemo izvesti polazeći od binomnog reda (Tab.1.2):

$$(1+x)^m = 1 + mx + \frac{m(m-1)}{2!}x^2 + \dots + \frac{m(m-1)\cdots(m-n+1)}{n!}x^n + \dots$$

Za m = -1, za koeficijent u opštem članu imamo:

$$\frac{m(m-1)\cdots(m-n+1)}{n!} = \frac{-1\cdot(-2)\cdots(-n)}{n!} = \frac{(-1)^n n!}{n!} = (-1)^n$$

Dakle,

$$(1+x)^{-1} = 1 - x + x^2 - x^3 + \dots = \sum_{n=0}^{\infty} (-1)^n x^n$$

Preostalo je da umesto x smenimo x^2 :

$$(1+x^2)^{-1} = 1-x^2+x^4-x^6+\dots = \sum_{n=0}^{\infty} (-1)^n x^{2n}$$

Integracija daje:

$$\int_{0}^{x} \frac{dt}{1+t^{2}} = \int_{0}^{x} \left[\sum_{n=0}^{\infty} (-1)^{n} t^{2n} \right] dt = \sum_{n=0}^{\infty} (-1)^{n} \int_{0}^{x} t^{2n} dt = \sum_{n=0}^{\infty} (-1)^{n} \frac{x^{2n+1}}{2n+1}$$

pa je:

arctg
$$x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots \pm \dots$$

Za poluprečnik konvergencije dobijamo:

$$r = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right| = \lim_{n \to \infty} \frac{\frac{1}{2n+1}}{\frac{1}{2(n+1)+1}} = \lim_{n \to \infty} \frac{2n+3}{2n+1} = 1$$

Dobijeni red konvergira u intervalu |x| < 1 u kome je konvergentan polazni binomni red.

Ostatak Tajlorovog reda. Tajlorov i Maklorenov polinom

Za ostatak Tajlorovog reda važi Lagranžova (Lagrange) formula :

$$R_n(x) = \sum_{k=n+1}^{\infty} \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k = \frac{(x - x_0)^{n+1}}{(n+1)!} f^{(n+1)}(\xi)$$
 (1.28)

gde tačka ξ leži negde između tačaka x_0 i x. Tako razvoj (1.26) važi u onom intervalu vrednosti x u kome je:

$$\lim_{n\to\infty} R_n(x) = 0$$

i tada ostatak $R_n(x)$ predstavlja **grešku aproksimacije funkcije** f(x) **parcijalnom sumom** Tajlorovog reda (polinom n-tog stepena). Dakle,

$$f(x) \approx s_n(x) = \sum_{k=0}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k$$
 (1.29a)

$$f(x) - s_n(x) = R_n(x)$$
 (1.29b)

Parcijalna suma, $s_n(x)$ (1.29a), je u literaturi poznata pod nazivom **Tajlorov polinom**, odnosno, ako je tačka razvoja $x_0 = 0$, **Maklorenov polinom** Kaže se da Tajlorov

(Maklorenov) polinom n-tog stepena predstavlja **aproksimaciju** n – **tog reda funkcije** f(x) u okolini tačke x_0 . Tako naprimer, polinom,

$$x - \frac{x^3}{3!} + \frac{x^5}{5!}$$

je aproksimacija petoga reda sinusne funkcije za male vrednosti argumenta. Iz Lagranžovog oblika ostatka Tajlorovog reda (1.28) zaključujemo:

- Za dato *x*, greška aproksimacije opada po apsolutnoj vrednosti, sa povećanjem reda aproksimacije, *n* (brzo raste imenioc sa povećanjem *n*). To opadanje je utoliko brže ukoliko je brža konvergencija reda.
- Za odabrani red aproksimacije, greška aproksimacije raste po apsolutnoj vrednosti sa udaljavanjem tačke *x* od tačke razvoja *x*₀

PRIMER 1.4 a) Napisati 5 prvih članova Maklorenovog reda za funkciju $\sqrt{1+x}$

- b) Izvesti aproksimaciju : $\sqrt{1+x} \approx 1 + \frac{x}{2}$
- c) Da li ta aproksimacija daje veće ili manje vrednosti od tačnih vrednosti za $\sqrt{1+x}$. Proceniti gornju granicu apsolutne greške aproksimacije u intervalu |x| < 0.5
- a) Iz binomnog reda, za m = 1/2, za $\sqrt{1+x}$ dobijamo razvoj čijih su prvih 5 članova:

$$f(x) = \sqrt{1+x} = 1 + \frac{1}{2}x - \frac{1}{2}\frac{1}{4}x^2 + \frac{1}{2}\frac{1}{4}\frac{3}{6}x^3 - \frac{1}{2}\frac{1}{4}\frac{3}{6}\frac{5}{8}x^4 + \cdots$$

b) Data aproksimacija se dobija kao parcijalna suma, zadržavanjem samo prva dva člana (aproksimacije 1. reda):

$$s_1(x) = 1 + \frac{x}{2}$$

c) Odgovore na postavljena pitanja ćemo dobiti, u skladu sa (1.29a,b), analizom ostatka reda (1.28):

$$R_1(x) = \frac{(x-0)^2}{2!} f''(\xi)$$

$$f(x) = \sqrt{1+x}, \quad f'(x) = \frac{1}{2} (1+x)^{-1/2}, \quad f''(x) = -\frac{1}{4} (1+x)^{-3/2}$$

$$R_1(x) = -\frac{1}{8} \frac{x^2}{\sqrt{(1+\xi)^3}}, \ |x|, |\xi| < 0.5$$

Pošto je ostatak reda negativan, iz (1.29b) sledi

$$s_1(x) = 1 + \frac{x}{2} > f(x)$$

tj., data aproksimacija precenjuje vrednosti posmatrane funkcije. Traženu granicu greške ćemo dobiti usvajanjem nulte vrednosti za nepoznato ξ , pošto tada greška ima najveću vrednost za neko x, a usvajanjem gornje granice za x:

$$|R_1| < \frac{1}{8}0.5^2 = \frac{1}{32} \approx 0.032$$

S obzirom da je u pitanju alternativni red, za koga važi da ostatak ima znak prvog odbačenog člana i da je po apsolutnoj vrednosti manji od njega, mogli smo postavljeni problem rešiti brže i jednostavnije, na sledeći način. Znak prvog odbačenog člana : $-\frac{1}{2}\frac{1}{4}x^2$ je očigledno uvek negativan pa je $s_1(x) > f(x)$. Kao granicu apsolutne greške uzimamo apsolutnu vrednost prvog odbačenog člana, za graničnu vrednost |x| u posmatranom intervalu:

$$|R_1| < \frac{1}{2} \frac{1}{4} 0.5^2 = \frac{1}{32} \approx 0.032$$

PRIMER 1.5 Odrediti broj članova u Maklorenovom redu za $\cos x$, čija suma obezbeđuje da procena $\cos x$ dobijena pomoću delimične sume reda ima 3 sigurne decimale.

Iz postavljenog uslova sledi da je dozvoljena granica apsolutne greške aproksimacije jednaka 0.5×10^{-3} . Pošto je u pitanju alternativni red:

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!} = 1 - \frac{x^2}{2} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots$$

iskoristićemo osobinu da je greška aproksimacije (ostatak reda) po apsolutnoj vrednosti manja od prvog odbačenog člana. Treba imati u vidu da se vrednost x unosi u radijanima i da s obzirom na peridičnost funkcije, za najveću vrednost x, treba uzeti 2π . Međutim, sledećim relacijama, kosinusi tupih uglova se mogu svesti na na kosinus oštrog ugla:

$$\cos x = \begin{cases} -\cos(\pi - x), & \pi/2 \le x < \pi \\ -\cos(x - \pi), & \pi \le x < 3\pi/2 \\ \cos(2\pi - x), & 3\pi/2 \le x \le 2\pi \end{cases}$$

pa je najveća vrednost argumenta za koju će se računati delimična suma kosinusnog reda, $x = \pi/2$ čime se smanjuje greška aproksimacije. Tako će prema uslovu zadatka prvi odbačeni član u_n biti onaj za koga važi:

$$u_n = \frac{(\pi/2)^{2n}}{(2n)!} < 5 \times 10^{-4}$$

i odredićemo *n* probanjem uz $\pi = 3.412$:

n:	1	2	3	4	5
u_n :	1.234	0.254	0.021	9.19×10^{-4}	2.52×10^{-5}

Dakle, neophodno je uzeti prvih 5 članova kosinusnog reda, odnosno Maklorenov polinom 8 stepena (2n = 8) ili aproksimaciju 8 reda.

ZADACI

1.1 Temperaturni profil zida debljine L i termičke difuzivnosti a, koji je bio na temperaturi T_0 , i u jednom momentu (t=0) se temperatura leve površine zida (z=0) podigne na T_s , a temperatura desne (z=L) održava na T_0 , opisan je diferencijalnom jednačinom,

$$\frac{\partial T}{\partial t} = a \frac{\partial^2 T}{\partial z^2}, \quad t > 0, \quad 0 < z < L$$

sa graničnim uslovima:

$$T(0,t) = T_s, t > 0$$

$$T(L,t) = T_0, t > 0$$

$$T(z,0) = T_0, 0 < z \le L$$

Nakon smene promenljivih:

$$x = \frac{z}{L}$$
, $\tau = \frac{at}{L^2}$, $y = T - T_s - (T_0 - T_s)x$,

polazna jednačina se prevodi u bezdimenzioni oblik, kao i granični uslovi:

$$\frac{\partial y}{\partial \tau} = \frac{\partial^2 y}{\partial x^2}, \quad \tau > 0, \ 0 < x < 1$$

$$y(x,0) = (T_0 - T_s)(1-x), \ 0 < x \le 1$$

$$y(0,t) = 0, t > 0$$

$$y(1,t) = 0, \quad t > 0$$

a) Pokazati da je rešenje bezdimenzione jednačine red:

$$y(x, \tau) = 2(T_0 - T_s) \sum_{n=1}^{\infty} \frac{\sin n\pi x}{n\pi} \exp(-n^2 \pi^2 \tau)$$

- b) Diskutovati konvergenciju datog reda.
- c) Analizirati konvergenciju reda y(x,0) uz pomoć Mathcad-a.
- **1.2** Naći intervale apsolutne konvergencije za sledeće redove:

a)
$$\sum_{n=0}^{\infty} \frac{x^n}{2^n}$$
 b) $\sum_{n=0}^{\infty} \frac{(2n)!}{(n!)^2} x^n$ c) $\sum_{n=0}^{\infty} \frac{x^{n^2}}{2^n}$ d) $\sum_{n=1}^{\infty} \frac{n+1}{n \cdot 3^n} (x-2)^n$ e) $\sum_{n=1}^{\infty} \frac{(2x+1)^n}{n^2}$

1.3 Dokazati da je:

a)
$$\sin x < x$$
, $x > 0$

b)
$$1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots \pm \frac{1}{n} \mp \dots = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n} = \ln 2$$

c)
$$1 - \frac{1}{3} + \frac{1}{5} - \frac{1}{7} + \frac{1}{9} - \dots = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$$

- **1.4** Polazeći od Maklorenovog reda za cos x izvesti Maklorenov red za sin x.
- **1.5** Polazeći od Maklorenovog reda za eksponencijalnu funkciju, izvesti Maklorenove razvoje za funkcije sinus i kosinus hiperbolični (sinh *x* i cosh *x*), definisane kao:

$$sinh x = \frac{e^x - e^{-x}}{2}, \quad \cosh x = \frac{e^x + e^{-x}}{2}$$

- **1.6** Izvesti Maklorenov red za funkciju ln(1+x) polazeći od binomnog reda i odredi njegov interval konvergencije.
- **1.7** Izvesti Maklorenove redove za funkcije:

a)
$$e^{-x^2}$$
 b) $y = \begin{cases} \frac{e^x - 1}{x} \operatorname{za} x \neq 0 \\ 1 & \operatorname{za} x = 0 \end{cases}$ c) $y = \begin{cases} \frac{\sin x}{x} \operatorname{za} x \neq 0 \\ 1 & \operatorname{za} x = 0 \end{cases}$ d) $y = x \ln(1 + x)$

e)
$$y = \sqrt{1 + x^2}$$
 f) $y = \sqrt[3]{1 + x}$

koristeći razvoje date u Tab.1.2.

1.8 Izvesti Ojlerovu relaciju:

$$e^{i\varphi} = \cos \varphi + i \sin \varphi$$
, (*i* je imaginarna jedinica)

- **1.9** Izračunati približne vrednosti za (a) $\sqrt[3]{e}$ i (b) $\frac{1}{e}$, kao vrednosti Maklorenovog polinoma 2. stepena za eksponencijalnu funkciju i proceniti grešku.
- 1.10 Koristeći Maklorenove polinome izračunati:
 - a) Broj e na dve sigurne decimale, b) $\sin 5^{\circ}$ sa apsolutnom greškom manjom od 0.0001
- **1.11** Potrebno je približno izračunati ln 3
 - a) Da li se to može izvesti koristeći parcijalnu sumu Maklorenovog reda za funkciju ln(1+x)?
 - b) Izračunati traženu vrednost kao sumu prva tri člana reda funkcije $\ln \frac{1+x}{1-x}$
- **1.12** Izvršiti prethodnu transformaciju da bi se vrednosti $\sqrt[3]{30}$ i $\sqrt[3]{70}$ mogle izračunati sa željenom tačnošću pomoću delimične sume odabranog konvergentnog Maklorenovog reda.
- 1.13 Izvesti sledeće aproksimacije:

a)
$$\sqrt[n]{1+x} \approx 1 + \frac{x}{n} + \frac{1-n}{2n^2}x^2$$
, za $|x| << 1$

b)
$$\sqrt[n]{a^n + b} \approx a \left(1 + \frac{b}{na^n} + \frac{1 - n}{2n^2} \frac{b^2}{a^{2n}} \right)$$
, pri $a > 0$, $\left| \frac{b}{a^n} \right| << 1$

c)
$$\tan x \approx x + \frac{x^3}{3}$$
, za $|x| << 1$ (u radijanima)

1.14 Pokazati da se veličina toplotnog fluksa, Q kroz zid cilindrične cevi dužine L, unutrašnjeg polupečnika r_1 i spoljnjeg poluprečnika r_2 :

$$Q = \frac{2\pi L}{\ln \frac{r_2}{r_1}} \lambda |\Delta T| \quad (W)$$

λ – toplotna provodljivost materijala

 ΔT – razlika temperatura spoljnje i unutrašnje površine cevi

za cevi većih unutrašnjih poluprečnika i male debljine zida, može približno izračunati kao fluks kroz ravan zid debljine $r_2 - r_1$:

$$Q = \frac{2\pi r_1 L}{r_2 - r_1} \lambda |\Delta T| (W)$$

1.15 Potrebno je približno izračunati integral:

$$I = \int_{0}^{a} \cos x dx, \, a > 0$$

za male vrednosti a.

a) Izvesti sledeće procene I_1 i I_2 $(I_1 \approx I_2 \approx I)$ traženog integrala:

$$I_1 = a$$
, $I_2 = a \left(1 - \frac{a^2}{6} \right)$

i uporediti njihove tačnosti.

- b) Dati geometrijsku interpretaciju veličina I, I_1 i I_2 i njihovih odnosa.
- c) Izračunati u Mathcad-u, sa preciznošću od 5 decimala, vrednosti I, I_1 i I_2 za $a=0.02,\,0.1,\,0.3$ i uporediti ih