Vorkurs Mathematik Blatt 11

Besprechung der Lösungen am 04.10.2023 in den Übungen

Aufgabe 1

Gegeben seien die beiden folgenden Abbildungen:

$$\begin{array}{ll} f\colon \{1,2,3,4\} \to \{1,2,3,4\}, & f(1):=4,\ f(2):=3,\ f(3):=4,\ f(4):=3;\\ g\colon \{1,2\} \to \{1,2,3,4\}, & g(1):=3,\ g(2):=4. \end{array}$$

- (a) Geben Sie den Definitionsbereich und den Zielbereich von f bzw. g sowie die Bilder $\operatorname{Bild}(f)$ und $\operatorname{Bild}(g)$ an.
- (b) Bestimmen Sie $f^{-1}(1)$, $f^{-1}(2)$, $f^{-1}(3)$, $f^{-1}(4)$ sowie $g^{-1}(1)$, $g^{-1}(2)$, $g^{-1}(3)$, $g^{-1}(4)$.
- (c) Es seien $A := \{1, 2\}$ und $B := \{3, 4\}$. Bestimmen Sie f(A), g(A), f(B), und, falls möglich, g(B). Bestimmen Sie weiter $f^{-1}(A)$, $g^{-1}(A)$, $f^{-1}(B)$ und $g^{-1}(B)$.

Aufgabe 2

Betrachten Sie die Abbildung $f: \mathbb{R} \to \mathbb{R}$, gegeben durch die Zuordung $f(x) = 2x^2 - 3x + 1$.

- (a) Bestimmen Sie das Urbild $f^{-1}(2)$ von $\{2\}$ unter f.
- (b) Für welche reelle Zahlen $\alpha \in \mathbb{R}$ besteht das Urbild $f^{-1}(\alpha)$ aus einem Element bzw. aus zwei Elementen? Wann gilt $f^{-1}(\alpha) = \emptyset$?

Aufgabe 3

Bestimmen Sie die Bilder der folgenden Funktionen:

- (i) $f_1: \{1,2\} \to \{1,2,3\}, f_1(1) := 3, f_1(2) := 1;$
- (ii) $f_2: \mathbb{R}_{>0} \to \mathbb{R}, x \mapsto 2x 3$;
- (iii) $f_3: \mathbb{R}_{>0} \to \mathbb{R}, x \mapsto \frac{1}{1+x};$
- (iv) $f_4: \mathbb{N} \times \mathbb{N} \to \mathbb{Z}, (x, y) \mapsto 2x 3y$.

Aufgabe 4

Gegeben sei die Funktion $f \colon \mathbb{R} \to \mathbb{R}, \ x \mapsto -3x^2 - 12x - 9.$

- (i) Bestimmen Sie $f^{-1}(0)$, $f^{-1}(6)$ und $f^{-1}(-9)$.
- (ii) Bestimmen Sie $f(\mathbb{R}_{\geq 0})$, wobei $\mathbb{R}_{\geq 0} := \{x \in \mathbb{R} \mid x \geq 0\}$.
- (iii) Bestimmen Sie $f^{-1}(\{x \in \mathbb{R} \mid x \ge -9\})$.
- (iv) Bestimmen Sie $f^{-1}\Big(f\big(\{x\in\mathbb{R}\mid 0\leq x\leq 1\}\big)\Big).$

Aufgabe 5 (Bonusaufgabe)

Finden Sie eine Abbildung $f \colon \mathbb{N} \to \mathbb{N} \times \mathbb{N}$ mit $f(\mathbb{N}) = \mathbb{N} \times \{0, 1\}$.