Chương 4. Đồ thị con, đẳng cấu

4.1 Đồ thị con:

4.1.2 Định nghĩa : Cho G=(V, E) và G'=(V', E') là hai đồ thị cùng có hướng hoặc cùng không hướng. G' được nói là đồ thị con của G, ký hiệu $G' \leq G$, nếu

a)
$$V' \subseteq V$$
 và $E' \subseteq E$.

b)
$$\forall$$
 e' = (v', w') \in E'
=> v', w' \in V'.

4.1.3 Định nghĩa : Cho G'=(V', E') \leq G=(V, E). G' được nói là đồ thị khung của G, nếu V'=V.

- **4.1.4 Định nghĩa :** Cho $K_n = (V, E_n)$ là đồ thị , được gọi là đồ thị đầy đủ, có n đỉnh, không có cạnh song song, không có vòng, mỗi đỉnh kề với n-1 đỉnh còn lại của đồ thị.
- **4.1.5** Định nghĩa: Cho $K_n = (V, E_n)$ và G = (V, E) là đồ thị khung của K_n . Đặt $\overline{G} = (V, \overline{E})$ với $\overline{E} = E_n E$, thì \overline{G} được gọi là đồ thị bù của G.

4.1.5 Bài toán *Instant Insanity (ứng dụng đồ thị con)*:

- Cho 4 khối lập phương được đánh số 1, 2, 3, 4.
- Sáu mặt của mỗi khối được tô bằng 4 màu B, R, Y, W.
- ⇒ Có cách nào chồng 4 khối lên nhau thành 1 cột sao cho không có màu nào xuất hiện 2 lần ở mỗi mặt bên hay không?

4.1.5 Bài toán *Instant Insanity* (ứng dụng đồ thị con):

 \mathbf{R} R W \mathbf{Y} W В В В В \mathbf{w} Y \mathbf{w} Y Y R \mathbf{R}

Ví dụ:

Ví dụ:

W

W

Giải:

Bước 1: Vẽ đồ thị biểu diễn bốn khối. Với các đỉnh là các màu. Hai đỉnh v và w kề nhau với cạnh có nhãn là i nếu khối i có v và w đối nhau.

Bước 1:

Nghiệm:

Nghiệm:

Bước 2: Tìm hai đồ thị con G1 và G2 thỏa:

- Mỗi đỉnh có bậc là 2.
- Hai đồ thị không có cạnh chung (một cạnh dùng 2 lần).
- Mỗi khối thể hiện đúng 1 lần trong mỗi đồ thị con.

⇒G1 và G2 là nghiệm.

4.2 Đẳng cấu:

- **4.2.1 Định nghĩa :** Cho $G_1=(V_1, E_1)$ và $G_2=(V_2, E_2)$. G_1 và G_2 được nói là đẳng cấu , ký hiệu $G_1 \sim G_2$, nếu có
- song ánh f : $V_1 \rightarrow V_2$
- song ánh g : $E_1 \rightarrow E_2$

sao cho:

Nếu e =
$$(v, w) \in E_1$$
 thì g(e) = $(f(v), f(w)) \in E_2$. (1)

Cặp (f, g) được gọi là một đẳng cấu của G_1 lên G_2 .

4.2 Đẳng cấu:

- **4.2.2** Nhận xét: Cho $G_1=(V_1, E_1)$ và $G_2=(V_2, E_2)$ là đẳng cấu thì hai đồ thị
- Có cùng số đỉnh, tức là $|V_1| = |V_2|$,
- Có cùng số cạnh, tức là $|E_1| = |E_2|$,
- Có cùng số đỉnh với bậc cho sẵn,
- Số đỉnh kề với đỉnh v ∈ V1 và f(v) ∈ V2 là như
 nhau.

Ví dụ: Hai đồ thị sau là đẳng cấu.

Ví dụ: Hai đồ thị sau không đẳng cấu:

4.2.3 Định lý: Nếu $G_1 \sim G_2$ thì $G_2 \sim G_1$.

4.2.4 Định lý (Đẳng cấu và ma trận kề): Cho G_1 và G_2 là **đơn giản**, $G_1 \sim G_2$ khi và chỉ khi có một thứ tự của các đỉnh của **ma trận kề** của G_1 và G_2 sao cho 2 ma trận này là bằng nhau.

Chú ý: Khi hoán vị hai cột (dòng) của ma trận kề của G thì ma trận sau hoán vị vẫn là ma trận kề của G.

4.2.5 Định nghĩa đẳng cấu cho đồ thị G có hướng:

Cho $G_1=(V_1, E_1)$ và $G_2=(V_2, E_2)$ là hai đồ thị có hướng. $G_1 \sim G_2$ nếu :

- có song ánh f : $V_1 \rightarrow V_2$,
- có song ánh g : $E_1 \rightarrow E_2$,
- nếu e = $(v, w) \in E_1$ thì g(e) = $(f(v), f(w)) \in E_2$. (1)

Ví dụ:

Sau đây là một cách để kiểm tra 2 đồ thị đơn giản G₁ và G₂ không đẳng cấu. Tìm tính chất P mà với mọi đồ thị G₁, G₂

$$P \in G_1$$
, $v \grave{a} G_1 \sim G_2 \Longrightarrow P \in G_2$

Vậy với G1 và G2 đã cho nếu $P \not\in G_2$ thì G_1 và G_2 không đẳng cấu.

Tính chất P được gọi là một bất biến (invariant).

Ví dụ 1: Hai đồ thị G₁ và G₂ sau đây không đẳng cấu,
vì G₁ có 7 cạnh trong khi G₂ chỉ có 6 cạnh. Ta nói "có
7 cạnh " là một bất biến.

Ví dụ 2 : Cho k > 0, " **có một đỉnh có bậc k**" là một bất biến.

Giả sử G_1 và G_2 là đẳng cấu và f là song ánh $V_1 \rightarrow V_2$. Giả sử G_1 có đỉnh v có bậc k. Khi đó có k cạnh e_1 , ..., e_k kề v. Từ định nghĩa đẳng cấu ta có $g(e_1)$, ..., $g(e_k)$ kề f(v). Vì g là **đơn ánh** nên $d(f(v)) \ge k$.

Gọi e' là cạnh kề với f(v) trong V_2 . Vì g là **toàn ánh** nên có e trong G_1 sao cho g(e)=e'. Vì g(e) kề với f(v) trong G_2 , từ định nghĩa 2.3.1 ta có e kề với v trong G_1 . Vậy $e \in \{e_1, ..., e_k\}$. Suy ra d(f(v))=k.

Xét G_1 và G_2 cho sau đây, vì " có 1 đỉnh có bậc 3" là bất biến nên G_1 và G_2 không đẳng cấu. G_1 có a và f là bậc 3 trong khi G_2 không có đỉnh nào là bậc 3.

Ví dụ 3: "có một chu trình đơn giản có chiều dài k" là một bất biến (BT).

Xét G_1 và G_2 cho sau đây là không đắng cấu. "có một chu trình đơn giản có chiều dài 3". Vì G_1 có một chu trình chiều dài 3 nhưng G_2 chu trình có chiều dài ít nhất là 4.

Tài liệu tham khảo:

- 1. Discrete Mathematics, Richard Johnsonbaugh
- 2. Algorithms, Thomas h. Cormen
- 3. Toán Rời Rạc Nâng Cao, Trần Ngọc Danh, ĐHQG TP HCM
- 4. Lý Thuyết Đồ Thị, Đặng Trường Sơn, Lê văn Vinh, ĐHSP Kỹ Thuật TP HCM