CLAIMS

What is claimed is:

>12 A2	
	2
	3

4

5

6

7

1

1

2

3

4

1

2

3

4

memory;

1. A method for performing a gather operation on a computer processor comprising:

computing addresses for one or more data elements of a matrix stored in

loading each of said data elements into separate storage locations; and depositing each of said data elements contiguously in a single storage location.

- 2. The method as in claim 1 wherein said storage locations are registers.
- 3. The method as in claim 1 wherein computing addresses comprises: extracting indices for each of said data elements into separate storage locations; and adding each of said indices to a base address.
- 4. The method as in claim 1 wherein depositing each of said data elements is accomplished via a DEPOSIT instruction executed by said computer processor.

5. The method as in claim 4 wherein said computer processor executes 6 multiple DEPOSIT instructions in a single clock cycle.

6. The method as in claim 1 further comprising: storing each of said data elements on a mass storage device.

1 2

TCW 14 42390.P6156

Coxt

1

2

1

2

1

2

1

1

2

3

1

2

3

4

5

6

7.	The method as in claim 2 wherein said registers are 64-bits wide and
said data el	ments are 16-bits in length.

8. A	nethod for performing a scatter operation on a computer processor
comprising:	

- calculating addresses in memory to which a plurality of data elements are to be scattered to form a matrix in memory;
- extracting each of said data elements from a storage location in which said elements are stored contiguously; and
- storing said data elements to said addresses in memory.
 - 9. The method as in claim 8 wherein said storage location is a register.
 - 10. The method as in claim 8 wherein computing addresses comprises: extracting indices for each of said data elements into separate storage locations; and
- adding each of said indices to a base address.
 - 11. The method as in claim 8 wherein extracting each of said data elements is accomplished via an EXTRACT instruction executed by said computer processor.
 - 12. The method as in claim 11 wherein said computer processor executes multiple EXTRACT instructions in a single clock cycle.
- 13. The method as in claim wherein said register is 64-bits wide and said data elements are 16-bits in length.

TCW

1

Ċ	ont A2

1

4.4		
14	A computer system	comprisings
~	11 COMPARCE DYSICIAL	COMPANIONS

- 2 a memory;
- a processor communicatively coupled to the memory; and
- a storage device communicatively coupled to the processor and having
- 5 stored therein a sequence of instructions which, when executed by the processor,
- 6 causes the processor to at least,
- 7 compute addresses/for one or more data elements of a matrix stored in
- 8 memory;
- 9 load each of said data elements into separate storage locations; and
- deposit each of said data elements contiguously in a single storage
- 11 location.
 - 15. The computer system as in claim 14 wherein said storage locations are
- 2 registers.
- 16. The computer system as in claim 14 wherein, responsive to one or
- 2 more instructions in said sequence, said processor computes addresses by:
- 3 extracting indices for each of said data elements into separate storage
- 4 locations and
- 5 adding each of said indices to a base address.
- data elements is accomplished via a DEPOSIT instruction executed by said
- 3 processor.

4

5

- 18. The computer system as in claim 17 wherein said processor executes
- multiple DEPOSIT instructions in a single clock cycle.
- 19. The computer system as in claim 14 wherein, responsive to one or 1
- more instructions in said sequence, said processor further: 2
- stores each of said data elements on said mass storage device. 3
- 20. The computer system as in chaim 15 wherein said registers are 64-bits 1
- wide and said data elements are 16-bits in length. 2

TCW 17 42390.P6156