PGP IN AI/ML Regression - Project - Part B

Submission Date: 2359hrs on07/07/2019
Total Marks: 24 marks

The objective of this part of the project is to develop a linear regression model for the given dataset using Gradient Descent methods. The regression model should be built using numpy, pandas, and sklearn.

Problem Description:

The problem statement is similar to the one in Part A of the assignment. Train the linear regression model using each of the following methods:

- 1) Stochastic Gradient Descent
- 2) Gradient Descent
- 3) Mini-batch Gradient Descent

Instructions:

These are some guidelines to help you get started with the code:

- 1. SGD can be implemented using linear_model.SGDRegressor(using fit() method)
- 2. Tune the following hyper-parameters for satisfactory results:
 - a) max_iter
 - b) eta0
 - c) tol
- 2) Every model will be evaluated using the following measures:
 - a) R² value
 - b) RMSE score
 - c) RSE Residual Squared Error
- 3) Use t-test to confirm that **Son's Height** significantly depends on **Father's Height**
- 4) Plot the obtained line against the scatter plot of the data points.

Note:

1. Gradient Descent and Mini-Batch Gradient Descent methods do not have an in-built API in **sci-kit learn** library.

To implement Mini-batch:

- a. Create batches of the training dataset
- b. Use **partial_fit** method of **SGDRegressor** class, to train the entire batch at once (batch size needs to be tuned to get satisfactory results)
- c. https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html

To implement Gradient Descent by

a. Set the batch size as the size of the training dataset.

2. t-Test Method

- a. Analysis needs to be done on paper (not code)
- Refer to Dependency of the dependent (target) variable on the independent (feature)
 variable video in MODULE 3
- c. T-Tables can be referred from http://tyigit.bilkent.edu.tr/metrics/t-table.pdf
- d. Please refer to the example below for looking up the t-table.
- e. **Hint:** As we have 1000+ data points, consider the last row (infinite degrees of freedom) to get the t-statistic value. (Assume two-tail probabilities for selecting the column)

Submission Details:

Your submission should consist of:

- 1. SGD [3+1 marks]
 - a. Code **sgd.py**
 - b. Visualization(Scatter Plot + Line) sgd_line.png
- 2. Mini-Batch [3+1 marks]
 - a. Code minibatch.py
 - b. Visualization(Scatter Plot + Line) minibatch_line.png
- 3. Gradient Descent [3+1 marks]
 - a. Code gradient_descent.py
 - b. Visualization(Scatter Plot + Line) gradient_descent_line.png
- 4. Answers to the following question in docx file: (question_answers_part_b.docx)
 - a. Values of intercept and coefficient obtained in Gradient Descent methods are slightly away from the values obtained from OLS method (implemented in Part-A). Which of the values are more reliable and why? [1 + 0.5 marks]
 - b. The t-test for the three models [3 marks]
- 5. A separate document with the following information about implemented models (model_output_part_b.docx) [(5 values for each model) x 0.5 x 3 models = 7.5 marks]
 - a. Coefficient obtained for SGD:
 - b. Intercept obtained for SGD:
 - c. RMSE, RSE and R² score for SGD:
 - d. Coefficient obtained for mini batch:
 - e. Intercept obtained for mini batch:
 - f. RMSE, RSE and R² score for mini batch:
 - g. Coefficient obtained for gradient descent:
 - h. Intercept obtained for gradient descent:
 - i. RMSE, RSE and R² score for gradient descent:

Make a folder with all these files and upload it in zip format with the name '<2018AIML_your_id>_regression_part_B.zip'.

Contacts:

- ✓ You should put up questions in discussion forum of the corresponding assignment folder only.
- ✓ Please put all your queries to the following TAs in Canvas but not to the instructor.
 - > f20160688@hyderabad.bits-pilani.ac.in
 - > f20160015@hyderabad.bits-pilani.ac.in
 - > f20160484@hyderabad.bits-pilani.ac.in
 - himanshuchawla437@gmail.com
 - mohitrathore15@gmail.com

Example for t-Test:

We generally use 0.05 probability as the limit to prove the correctness of a mathematical hypothesis. Consider the following example:

- 1. 10 data points
- 2. There can be outliers towards both the tails in the distribution i.e, two-tail Looking up in the t-table:
 - 1. We have 10 data points, so the number of degrees of freedom is 10. So, that particular row needs to be selected.
 - 2. Select the column corresponding to two-tail 0.05 i.e, 7th column from the left. So the t-statistic value is **2.228**
 - 3. $t_{calculated} = (w_0 0)/\sigma$, if $t_{calculated} > t_{statistic from table}$, then w0 obtained from the model is significant, i.e. the relationship between independent and dependent features is significant.