ESERCITAZIONE di ripasso

Ex1

Un trasformatore trifase di potenza nominale $A_n = 100 \text{ kVA}$ e rapporto spire Ks = N1/N2 = 12.702 collegamento Yd, è alimentato alla tensione nominale V1n=11kV e assorbe una potenza P1=80 kW a cos $\phi_1 = 0.9$. La prova di corto circuito e la prova a vuoto hanno fornito i seguenti risultati:

Prova di corto circuito: $v_{cc\%} = 4.85\%$, $P_{cc} = 2150$ W

Prova a vuoto: $P_o = 585 \text{ W}$, $i_{0\%} = 7\%$

Si determinino:

1) Tensione del carico V₂ e la corrente I₂ del trasformatore e il cosφ2

[Si può procedere in due modi: o si risolve il trasformatore rimanendo nel "mondo trifase" o si risolve il monofase equivalente. In entrambi i casi è necessario trovare il rapporto di trasformazione che in questo caso è pari a $K=\sqrt{3*Ks}=22$. Si risolve ora l'esercizio per un trasformatore trifase equivalente a quello dato ma con collegamento Yy passando all'equivalente monofase. La potenza reattiva assorbita e' pari a $Q1=(P1/3)*tan\phi1=12.92$ kVar. Chiamando A la sezione che comprende il ramo derivato R0-Xo si ha che in questo caso, visto che la tensione e' quella nominale Pa=P1/3-Po/3=26.47 kW, e Qa=Q1-Qo/3=10.59 kVar, dove $Qo=Po/3*tan\phi0$, e per trovare $tan\phi0$ si calcola Io=(io%/100)*I1n=0.3676 A, $(con\ I1n=(An/3)/(V1n/\sqrt{3})=5.249$ A. La corrente nella sezione A è pari a $Ia=\sqrt{(Pa^2+Qa^2)})/(V1n/\sqrt{3})=4.489$ A, e la corrente riportata la secondario è pari a Ia''=Ia*K=98.766 A. Chiamando B la sezione che comprende il carico serie Rc-Xc, si ottiene $Rc=(Pcc/3)/(I2n^2)=0.054$ Ω dove I2n=I1n*K. La reattanza Xc si può calcolare nel seguente modo: $Zc=(Vcc/\sqrt{3})/I2n=0.121$ Ω , $Xc=\sqrt{(Zc^2-Rc^2)}=0.109$ Ω . Mella sezioneB si ha $Pb=Pa-Rc*Ia''^2=25.95$ kWe $Qb=Qa-Xc*Ia''^2=9.53$ kVar. La corrente sul carico vale I2=Ia'', la tensione $V2=\sqrt{(Pb^2+Qb^2)/(I2)}=279.87$ V e il fattore di potenza è dato da $cos\phia2=Pb/(V2*I2)=0.939.$].

Esercizio 2

Sia data la rete trifase di Figura. Si determini l'indicazione del Wattmetro.

$$R_1 = 10 \Omega$$

 $X_1 = 15 \Omega$
 $E1 = E2 = E3 = 220V$
 $E3$
 $E1$
 $E2$
 $E3$
 $E1$
 $E2$

{ Per calcolare l'indicazione del Wattmetro e' necessario calcolare la corrente misurata Iw e la tensione Vw. Per il calcolo della corrente Iw bisogna calcolare i due contributi II(che interessa la resistena R1 della prima fase) e Ir2 (che interessa la resistenza R2 della prima fase). Applicando Milmann si ottiene la tensione tra i due centri stella Voo=

 $(E1/(R1)+E2/(R1+jX1)+E3/(jX1))/(1/R1)+1/(R1+jX1)+1/(jX1))=73.977+j113.89 \ V. \ LA \ corrente \ I1 \ e \ data \ da \ I1=(E1-Vo)/(R1)=14.602-j11.39 \ A. \ La \ corrente \ Ir2=(E1)/(R2)=11 \ A, \ di \ conseguenza \ la \ corrente \ Iw \ e' \ pari \ a \ Iw=Ir2+I1=25.602-j11.39 \ A. \ La \ tensione \ Vw=E1-E2, \ di \ conseguenza \ Pw=Re(Vw*Iw)=6.279 \ kW \ \}$

Esercizio 3

Sia dato il circuito con ingressi stazionari riportato in figura. Si determino i coefficienti di auto e mutua induttanza e l'energia totale accumulata nel campo magnetico.

 $R = 10\Omega$ $V_1 = 10 \text{ V}$ $I_1 = 5 \text{ A}$ $\delta_1 = 3 \text{ mm}$ $N_1 = 100$ $N_2 = 300$ $A_{fe} = 150 \text{ cm}^2$

{Per prima cosa è necessario calcolare i parametri di auto e mutua induttanza. Si

disegna quindi la rete magnetica, poiché la permeabilità del ferro è ipotizzata infinita, nel circuito magnetico compariranno solo le riluttanza dei traferri. In particolare si ottiene quanto segue: $\theta = \delta'(\mu o^*Afe) = 1.592*10^5H^{-1}$, dove μ o è la permeabilità dell'aria (μ o = $4*\pi*10^{-7}$). Le auto induttanze si trovano come rapporto tra il numero di spire al quadrato e la riluttanza equivalente vista ai morsetti di una delle due f.m.m. quando il circuito sia reso passivo. Si ottiene quindi che θ eq1 = θ e $L1 = N1^2/\theta$ eq1 = 0.063 H. Per l'auto induttanza L2 si ha che θ eq2 = θ /2 e $L2 = N2^2/\theta$ eq2 = 1.13H. Per il calcolo della mutua induttanza si alimenta uno dei due avvolgimenti lasciando a vuoto il secondo e si calcola il rapporto tra il flusso concatenato con il secondo avvolgimento e la corrente che percorre il primo avvolgimento. Si ottiene quindi che θ eq21 = θ e $Lm = N1*N2/\theta$ e21q = 0.188 H. Per il calcolo dell'energia immagazzinata è necessario calcolare la corrente Ia e Ib che percorre i due avvolgimenti calcolata con il verso entrante nei morsetti corrispondenti, (quelloin alto nelle N2 spire, quello in alto nelle N1 spire). Conviene calcolare la tensione Vo ai capi della resistenza 2*R che e' pari a Vo= (-V1/R+11)/(1/R+1/(2*R)) = 26.67 V. La corrente Ia che percorre le N1 spire Ia =(V0+V1)/R=3.67 A e la corrente Ib è pari a I1b=V0/(2*R)1 3.3 A. Per il calcolo dell'energia si ottiene V1/2*L1*Ia² + V2*L2*Ib²+Lm*Ia*Ib=2.349 J

Esercizo 2

Dato il circuito in figura costituito da una spira (di vertici MNOP) di dimensioni di $r=2.5\ cm\ d=10\ cm$ immersa in un campo magnetico di induzione B diretto in senso ortogonale alla spira.

Si determini il valore della corrente circolante in $R=10\ \Omega$ nel seguente caso:

1. Spira che ruota a velocità angolare ω costante e pari a 10 rad/s. Campo B pari a 2 T costante

{Si puo' procedere in due modi: applicando la legge dell'induzione o la regola della mano destra. Nel primo caso è necessario trovare il flusso concatenato che risulta essere pari a ψ =Brd*cos(ωt), e quindi derivarlo rispetto al tempo trovando una $e=d\psi/dt=$ -Brd ω sin(ωt). Tale f.e.m. ha la seguente direzione: MNOP. Alternativamente si può utilizzare la regola della mano destra, si nota che solo i lati OP e MN tagliano le linee di campo durante la rotazione, di conseguenza solo questi saranno sede di fem. Il modulo della fem indotta in ciascuno dei due lati è pari a $e1=e2=B*sin(\omega t)d*(r/2)*\omega$ Il verso di e1 è da N a M e da P a O. Di conseguenza $e=e1+e2=Brd\omega$ sin(ωt), diretto secondo PONM. LA corrente nella resistenza R è pari a I=e/R.}