TP558 - Tópicos avançados em Machine Learning: Particle Swarm Optimization (PSO)

Paulo Otavio Luczensky de Souza paulo.souza@mtel.inatel.br

Introdução

- Proposto pelos cientistas Eberhart e Kennedy (1995)
- Paradigma Evolucionista da IA (Algoritimos Genéticos, Vida Artificial)
- Inspiração: o comportamento social de animais (ex.: bandos de pássaros, cardume de peixes).
- Técnica de otimização estocástica que usa do conceito de vida artificial para realizar buscas em largos espaços.

Introdução

- Usado em problemas complexos de Otimização, como:
 - Engenharia e Indústria:
 - Otimização de trajetórias: rotas de robôs, drones ou veículos autônomos
 - Ciência de Dados e IA:
 - Treinamento de redes neurais: ajuste de pesos e hiperparâmetros

Fundamentação teórica

- Mas, por que os sociobiológicos utilizaram deste conceito de vida artificial?
 - Eles acreditavam que um grupo pode se beneficial de todos os membros. Por exemplo, se um pássaro voa e procura comida de forma aleatória, todos os pássaros do bando podem compartilhar as descobertas e ajudar o bando a obter a melhor caçada.
 - Assim, a melhor solução encontrada pelo bando é a melhor solução no espaço.
- O PSO é uma solução heurística, ou seja, busca uma solução boa o suficiente para um problema complexo, usando regras práticas ou aproximações, em vez de garantir a solução ótima exata.
- OBS: Geralmente, a solução encontrada pelo PSO é bastante próxima do ótimo global.

Fundamentação teórica

Princípios do comportamento social proposto por Millonas:

- 1. Proximidade: capacidade de realizar cálculos simples de espaço e tempo.
- 2. Qualidade: detectar mudanças de qualidade no ambiente e responder a elas.
- **3. Resposta Diversa**: não se limitar a um caminho estreito para buscar recursos.
- 4. Estabilidade: não mudar o comportamento a cada alteração do ambiente.
- 5. Adaptabilidade: mudar o comportamento quando a mudança for relevante.

Fundamentação teórica

Ano	Autor(es)	Modelo	Observações
1986/1987	Craig Reynolds	Boids(Bird-oid)	 Modelo de simulação comportamental (vida artificial). Objetivo: simulação realista de movimento coletivo.
1987	Heppner	Cornfield Model	 Modelo de busca/otimização. Introdução do "poleiro". Objetivo: atingir o alvo.
1998	Shi & Eberhart	PS0 com Inertial Weight	 Introduz o inertial weight(w), a fim de "equilibrar" a exploração.
2002	Clerc & Kennedy	Cornfield Vector	 Mantém a ideia do "poleiro". Focado em convergência estável e no controle da velocidade.

Fundamentação teórica - Cornfield Model

- Cornfield Model desenvolvido por Heppner em 1987.
 - Modelo de busca/otimização.
 - Introdução do "poleiro".
 - Objetivó: atingir o alvo.
- Lista de variáveis a serem utilizadas:
- x, y: posição atual da partícula (nos eixos).
- Vx, Vy: velocidade da partícula (nos eixos).
- pbestx, pbesty: melhor posição individual já encontrada pela partícula.
- **gbestx, gbesty**: melhor posição global encontrada pelo enxame.
- **a**: fator de ajuste para a influência de **pbest**.
- b: fator de ajuste para a influência de gbest.
- *rand*: número aleatório no intervalo [0,1], usado para fornecer estocasticidade.
- x0, y0: posição do objetivo.

Fundamentação teórica - Cornfield Model

- A posição do objetivo é (x0,y0).
- Cada indivíduo tem posição (x,y) e velocidade (Vx,Vy).
- A distância até o objetivo mede o desempenho: quanto mais longe, pior o desempenho.
- Cada indivíduo tem memória e guarda sua melhor posição encontrada (pbest).
- Um fator *a* ajusta a velocidade.
- Um número aleatório $rand \in [0,1]$ é usado para atualizar a velocidade.

Regras de atualização (exemplo para o eixo x):

- # Atualização de Vx
- if x > pbestx:
- vx = vx random.random() * a
- else:
- vx = vx + random.random() * a

Regras de atualização (exemplo para o eixo y):

- # Atualização de Vy
- if y > pbesty:
- vy = vy random.random() * a
- else:
- vy = vy + random.random() * a

Fundamentação teórica - Cornfield Model

- Os indivíduos são capazes de saber e memorizar a melhor localização do grupo (gbest).
- Um fator b ajusta a velocidade.

Regras de atualização (exemplo para o eixo x):

- # Atualização de Vx em relação ao gbestx
- if x > gbestx:
- vx = vx random.random() * b
- else:
- vx = vx + random.random() * b

Resultados de simulação mostraram que:

- Se a/b é **grande**, as partículas convergem rapidamente ao milharal.
- Se a/b é **pequeno**, as partículas se movem lentamente e de forma instável.

Modelo final de atualização para o eixo x:

- # Atualização de Vx
- vx = vx + 2 * random.random() * (pbestx x) + 2 * random.random() * (gbestx x)
- # Atualização de x
- \bullet x = x + vx

Arquitetura e funcionamento - Cornfield Model

Etapas do Fluxo (Cornfield Model – PSO)

Swarm Initialization

 Gerar partículas com posições (hiperparâmetros) e velocidades iniciais aleatórias.

Particle Fitness Evaluating

 Avaliar cada partícula usando uma função objetivo (ex.: acurácia do modelo).

Calculating the Individual Historical Optimal Position (pbest)

Guardar o melhor desempenho já alcançado por cada partícula individualmente.

Calculating the Swarm Historical Optimal Position (gbest)

Determinar o melhor desempenho global entre todas as partículas.

Updating Particle Velocity and Position

 Ajustar a velocidade e posição de cada partícula usando pbest, gbest e equações de atualização.

• Satisfying the Ending Condition?

 Verificar critério de parada (número de iterações, convergência, etc.).

End

Retornar os melhores hiperparâmetros encontrados (solução final).

Fundamentação teórica - PSO com Inertial Weight

- PSO com Inertial Weight desenvolvido por Shi e Eberhart em 1998.
 - Introduz o inertial weight(ω), a fim de "equilibrar" a exploração.
 - Controle da influência da velocidade anterior da partícula.
- Lista de variáveis a serem utilizadas:
- $x_{i,t}^d$: posição da partícula i na dimensão d no instante de tempo t.
- $v_{i,t+1}^d$: velocidade da partícula i na dimensão d no tempo t.
- $P_{i,t}^d$: melhor posição individual encontrada pela partícula i (pbest).
- $p_{g,t}^d$: melhor posição global do enxame (gbest).
- ω: fator de inércia (controla exploração).
- c1: coeficiente cognitivo (influência do pbest).
- **c2**: coeficiente social (influência do gbest).
- rand: número aleatório em [0,1], adiciona estocasticidade.

Fundamentação teórica - PSO com Inertial Weight

Regras de atualização:

- # Atualização da velocidade
- v[i][d] = (
- + c1 * rand() * (pbest[i][d] x[i][d]) + c2 * rand() * (gbest[d] x[i][d])
- # Atualização da posição
- x[i][d] = x[i][d] + v[i][d]

Pontos a serem destacados:

- Valores maiores de ω favorecem **exploração global**
- Valores menores de ω favorecem **exploração local**
- Estratégia: **redução linear de ω ao longo do tempo**
- Faixa sugerida: $\omega \in [0.9, 1.2]$
- Garantiu **melhora significativa no desempenho** do PSO

Arquitetura e funcionamento - PSO com Inertial Weight

Etapas com Inertial Weight

- Previous Velocity (vi,t)
 - Cada partícula já possui uma velocidade da iteração anterior.
- Inertial Component (ω * vi,t)
 - O peso inercial (ω) controla quanto da velocidade anterior será mantido.
 - ω alto → mais exploração (busca global).
 - ω baixo \rightarrow mais exploração local (refinamento).
- Cognitive e Social Factors
 - c1 * rand() * (pi xi) → tendência de seguir o melhor próprio histórico (pbest).
 - c2 * rand() * (pg xi) → tendência de seguir o melhor global (gbest).
- New Velocity (vi,t+1)
 - A nova velocidade é a soma do termo inercial + componente cognitivo + componente social.
 - A partícula atualiza sua posição usando essa nova velocidade.

Exemplo de Aplicação

- Utilizou-se o PSO para encontrar os melhores hiperparâmetros de um determinado modelo de ML.
- Comparou-se os seus resultados com 2 técnicas clássicas de hyperparameter tuning: GridSearchCV e RandomizedSearchCV.

Técnica	Tipo de Busca	Garantia de melhor combinação?	Custo Computacional	Espaço Contínuo	Interpretação
GridSearchCV	Exaustiva	Sim	Alto	Não	Alta
RandomizedSearchCV	Aleatória	Não	Médio	Parcial	Média
PS0	Heurística	Não	Médio-Baixo	Sim	Baixa

PSO

- 1. Initialize Particles cria partículas (candidatos de hiperparâmetros).
- 2. Evaluate Fitness avalia desempenho de cada partícula(ex: acurácia do modelo).
- 3. Update pbest & gbest guarda o melhor de cada partícula e o melhor global.
- 4. Update Velocity & Position partículas se movem em direção a soluções melhores.
- **5.** Train Estimator with Hyperparameters treina o modelo com os valores atuais.
- **6.** Check Ending Condition verifica se deve parar (número de iterações/convergência).
- **7. Train Final Estimator + Classification Report** treina com os melhores hiperparâmetros e gera relatório final.

GridSearch / RandomSearch

- 1. Create Estimator inicializa o modelo base.
- **2. Fit GridSearchCV / RandomizedSearchCV –** faz combinações ou amostragens de hiperparâmetros.
- **3. Best Params & Score** seleciona os melhores hiperparâmetros.
- 4. Train Estimator with Best Hyperparameters treina o modelo final
- **5. Generate Classification Report** gera relatório de desempenho.

Exemplo de Aplicação

Dataset Utilizado

Base de dados: Iris Dataset

Características:

o 150 amostras

4 atributos (sepal length, sepal width, petal length, petal width)

o 3 classes: Setosa, Versicolor, Virginica

Configurações de Treinamento e Avaliação

Configuração	Valor	Observações
Divisão dos dados	70% treino / 30% teste	Proporção recomendada
Random Seed	42	Garante a reprodutibilidade dos resultados
Métricas de avaliação	AccuracyPrecisionRecallF1-Score	Melhor análise do desemprenho do modelo
Balanceamento das classes	Balanceado: 50 por classe	Não foi preciso aplicar técnicas de balanceamento

Aplicação 1: KNN + PSO

1º) KNN (K-Nearest Neighbour)

Hiperparâmetro	Valores possíveis	Descrição
k	[1, 2, 3, 4, 5,, 15]	Número de vizinhos considerados.
distance_metric	["euclidean", "manhattan", "chebyshev", "minkowski", "l1", "l2"]	Métrica de distância
weighting_method	["uniform", "distance"]	Método de ponderação
algorithm	["brute", "kd_tree", "auto", "ball_tree"]	Algoritmo usado para busca dos vizinhos

2º) PSO

Hiperparâmetro	Valor	Descrição
c1	2.05	Coeficiente cognitivo (influência da melhor posição individual da partícula).
c2	2.05	Coeficiente social (influência da melhor posição global do enxame).
num_jobs	-1	Número de núcleos usados em paralelo (-1 = todos disponíveis).
w	0.72984	Peso inercial; controla o equilíbrio entre exploração global e exploração local.

Resultados da Otimização do KNN

Método	Melhor Score	Melhores Hiperâmetros	Acurácia	Precisão	Observações
PS0	1.00	 k = 7 metric = minkowski weights = uniform algorithm = auto 	1.00	1.00	Encontrou o melhor ajuste possível. PSO mostrou maior capacidade de exploração do espaço de busca.
GridSearch	0.96273	 k = 5 metric = chebyshev weights = uniform algorithm = brute 	1.00	1.00	Obteve boa performance, mas ficou preso a uma região específica do espaço de hiperparâmetros. Melhor score menor que o PSO.
RandomSearch	0.96273	 k = 11 metric = minkowski weights = uniform algorithm = kd_tree 	1.00	1.00	Similar ao GridSearch. Encontrou solução competitiva, mas sem explorar combinações mais variadas como o PSO.

- Melhor Score: média da acurácia obtida na validação cruzada durante a busca de hiperparâmetros.
- Acurácia: proporção de previsões corretas no conjunto de teste (taxa global de acertos).
- **Precisão**: proporção de exemplos corretamente classificados como positivos em relação a todos os previstos como positivos (mede a qualidade dos acertos, evitando falsos positivos).

Aplicação 2: Decision Tree + PSO

1º) Decision Tree

Hiperparâmetro	Valores Possíveis	Descrição
criterion	["gini", "entropy", "log_loss"]	Função usada para medir a qualidade da divisão de cada nó.
splitter	["best", "random"]	Estratégia usada para escolher a divisão em cada nó.
min_samples_split	[2, 5, 10]	Número mínimo de amostras necessárias para dividir um nó interno.
max_features	["sqrt", "log2"]	Número máximo de features consideradas ao procurar a melhor divisão em cada nó. Limitar este número ajuda a reduzir overfitting e aumentar a diversidade da árvore.

2º) PSO

Hiperparâmetro	Valor	Descrição
c1	2.05	Coeficiente cognitivo (influência da melhor posição individual da partícula).
c2	2.05	Coeficiente social (influência da melhor posição global do enxame).
num_jobs	-1	Número de núcleos usados em paralelo (-1 = todos disponíveis).
w	0.72984	Peso inercial; controla o equilíbrio entre exploração global e exploração local.

Resultados da Otimização do Decision Tree

Método	Melhor Score	Melhores Hiperparâmetros	Acurácia	Precisão	Observações
PS0	1.0	 splitter = best criterion = gini min_samples_split = 10 max_features=log2 	1.00	1.00	Encontrou configuração mais completa, incluindo hiperparâmetros não explorados pelo Grid/ Random
GridSearch	0.9333	 splitter = best criterion = gini min_samples_split = 10 max_features = sqrt 	0.97	0.97	Convergiu para uma solução estável, mas com score menor que PSO
RandomSearch	0.93333	 splitter = best criterion = gini min_samples_split = 10 max_features = sqrt 	0.97	0.97	Resultado idêntico ao GridSearch

- Melhor Score: média da acurácia obtida na validação cruzada durante a busca de hiperparâmetros. Acurácia: proporção de previsões corretas no conjunto de teste (taxa global de acertos). Precisão: proporção de exemplos corretamente classificados como positivos em relação a todos os previstos como positivos (mede a qualidade dos acertos, evitando falsos positivos).

Vantagens e Desvantagens: PSO vs Grid/Random Search

Ponto de Comparação	PS0	Grid / Random Search
Complexidade de implementação	Mais difícil de configurar(c1, c2, w, nº de partículas)	Fácil implementação(definir espaço de busca e nº de iterações)
Exploração do espaço	Inteligente e adaptativa	 Grid Search: exaustivo Randomized: aleatório OBS: Apesar de ser exaustivo, o Grid garante o melhor resultado. Já o Randomized, não possui garantia
Eficiência Computacional	Geralmente mais rápido em espaços grande e contínuos	 Grid Search: alto custo para muitas combinações Randomized: Mais leve
Determinismo	Estocástico, resultados podem variar entre as soluções	 Grid Search: Determinístico Randomized: Estocástico
Flexibilidade	Funciona tanto em problemas contínuos quanto discretos	Melhor com parâmetros discretos e limitados

Perguntas?

Referências

- [1] WANG, Dongshu; TAN, Dapei; LIU, Lei. *Particle swarm optimization algorithm: an overview*. *Soft Computing*, Springer-Verlag Berlin Heidelberg, 2017. DOI: 10.1007/s00500-016-2474-6. Disponível em: https://kpfu.ru/staff_files/F_1407356997/overview.pdf
- [2] TAM, Adrian. A gentle introduction to particle swarm optimization. Machine Learning Mastery, 12 out. 2021. Disponível em: https://machinelearningmastery.com/a-gentle-introduction-to-particle-swarm-optimization/
- [3] JIE, Zheng. *Put Simply: Particle Swarm Optimisation*. Medium, 24 abr. 2023. Disponível em: https://medium.com/@KrashKart/put-simply-particle-swarm-optimisation-b0e6064c575d
- [4] BAYRAKTAR, Mert. *PSO-Hyperparameter-Selection* [repositório de código]. GitHub, 2024. Disponível em: https://github.com/mert-byrktr/PSO-Hyperparameter-Selection

Obrigado!