Programación Científica

Simulación: Dispersión clásica de partículas

01 de junio de 2022

1 Simulación.

Determinar el ángulo de dispersión para valores del parámetro de impacto b escogidos aleatoriamente y proyectar la posición de las partículas en un plano perpendicular a su dirección inicial.

Potencial:

 $V(r) = \frac{\kappa}{r} e^{-r/a}$, κ y a son constantes.

Ecuación para r_m :

$$1 - \frac{b^2}{r_m^2} - \frac{\kappa e^{-r_m/a}}{r_m E} = 0$$

Ángulo de dispersión.

$$\theta = 2b \left[\int_b^\infty \frac{dr}{r^2 \sqrt{1 - \frac{b^2}{r^2}}} - \int_{r_m}^\infty \frac{dr}{r^2 \sqrt{1 - \frac{b^2}{r^2} - \frac{V(r)}{E}}} \right]$$

Condiciones.

• b = 0 - 100 a

• $E = 0.001, 0.01, 0.1, 1, 10 \kappa$

• Número partículas: 10⁵

Tareas.

- 1. Preparar gráficos que ilustren el efecto de la energía de las partículas en los patrones de dispersión.
- 2. Para las energías utilizadas, preparar gráficos de $\ln |\frac{dN}{d\Omega}|$ en función de θ
- 3. Para las energías utilizadas, preparar gráficos de $\ln |\frac{dN}{d\Omega}|$ en función de $\mathrm{sen}(\theta/2)$
- 4. Ajustar los datos obtenidos para $\ln \left| \frac{dN}{d\Omega} \right|$ a funciones de la forma:

$$y = a + b \ln(\operatorname{sen}(\theta/2))$$

1

2 Reporte.

El reporte debe incluir las secciones: Introducción, Metodología, Resultados y Conclusiones. Cada sección deber ser redactada utilizando párrafos gramáticamente correctos. El contenido de cada sección debe incluir al menos los aspectos indicados a continuación.

Estructura.

Encabezado:

- Carrera-Asignatura-Semestre.
- Título del reporte.
- Autor.
- Fecha.
- 1. Introducción
 - Contexto físico.
 - Propósito del reporte.
- 2. Metodología
 - Algoritmo y estructura del programa utilizado.
 - Condiciones de las simulaciones.
 - Procedimiento para el tratamiento de los datos.
- 3. Resultados
 - Descripción de los patrones de dispersión.

 - Ajuste de los datos con funciones de la forma $\ln \left| \frac{dN}{d\Omega} \right| = a + b \ln(\text{sen}(\theta/2))$. Incluir los errores de la estimación de los parámetros y el valor rms de los residuales.

4. Conclusiones

Cada conclusión incluida en el reporte debe relacionarse directamente con el propósito del reporte planteado en la Introducción, así como con los resultados presentados.

Fecha de entrega del reporte: 08 de junio de 2022

Marco V Bayas