directrix is

(A) x = 0

PARABOLA

The parametric equation of the parabola is $x = t^2 + 1$, y = 2t + 1. The equation of

(B) x + 1 = 0

LEVEL-I

*1.

	(C) y = 0	(D) none of these
*2.	The tangents to the parabola $y^2 = 4x$ at the line (A) $x = 3$ (C) $y = 3$	the points $(1, 2)$ and $(4, 4)$ meets on $(B) x + y = 4$ (D) none of these
3.	Normal at point to the parabola $y^2 = 8x$, will meet the parabola again at a point (A) (12, -18) (C) (-18, 12)	where abscissa is equal to ordinate, (B) (-12, 18) (D) (18, -12)
4.	If the tangents to the parabola $y^2 = 4ax$ at the point (x_3, y_3) then (A) $y_3 = \sqrt{y_1y_2}$ (C) $\frac{2}{y_3} = \frac{1}{y_1} + \frac{1}{y_2}$	the points (x_1, y_1) and (x_2, y_2) meet at (B) $2y_3 = y_1 + y_2$ (D) none of these
5.	If tangents at A and B on the parabola your ordinates of A, C and B are (A) always in A.P. (C) always in H.P.	² = 4ax intersect at the point C, then (B) always in G.P. (D) none of these
6.	The point P on the parabola $y^2 = 4ax$ for $y^2 = (-a, 0)$, $Q = (0, a)$, is (A) (a, 2a) (C) (4a, 4a)	which PR - PQ is maximum, where R (B) (a, -2a) (D) (4a, -4a)
*7.	The point (1, 2) is one extremity of focal confidence of this focal chord is (A) 2 (C) 6	hord of parabola $y^2 = 4x$. The length (B) 4 (D) none of these
8.	If normals at two points of a parabola y^2 = product of ordinates is (A) $2a^2$ (C) $6a^2$	= 4ax intersect on the curve, then the $(B) 4 a^{2}$ $(D) 8a^{2}$
9.	If AFB is a focal chord of the parabola y^2 latus-rectum of the parabola is equal to (A) $\frac{80}{9}$ (C) 9	= 4ax and AF = 4, FB = 5, then the (B) $\frac{9}{80}$ (D) 80

10.	The length of the chord of the parabola α and having slope $\cot \alpha$ is				
	(A) $4 \cos \alpha$. $\csc^2 \alpha$ (C) $4 \sin \alpha$. $\sec^2 \alpha$	(B) 4 $\tan \alpha \sec \alpha$ (D) none of these			
11.	The straight line $y = mx + c$ touches the par				
	(A) $c = am - \frac{a}{m}$	(B) $c = m - \frac{a}{m}$			
	(C) $c = am + \frac{a}{m}$	(D) none of these			
*12.	The equation of the tangent to the parabola x-axis is	$y^2 = 16x$ inclined at an angle of 60^0 to			
	(A) $3x - \sqrt{3}y + 4 = 0$	(B) $3x + \sqrt{3}y + 4 = 0$			
	(C) $3x - y + 4 = 0$	(D) none of these			
*13.	For all parabolas $x^2 + 4x + 4y + 16 = 0$, the equations of the axis and the directrix are given by				
	(A) $x + 2 = 0$, $y - 2 = 0$ (C) $x + 2 = 0$, $y + 2 = 0$	(B) $x - 2 = 0$, $y + 2 = 0$ (D) none of these			
*4.4		• •			
*14.	If (4, 0) is the vertex and y-axis the directrix (A) (8, 0)	(B) (4, 0)			
	(C) (0, 8)	(D) (0, 4)			
15.	The slope of the normal at the point (at ² , 2at) of the parabola $y^2 = 4ax$ is				
	(A) $\frac{1}{t}$	(B) t			
	(C) -t	$(D) - \frac{1}{t}$			
*16.	If ASB is a focal chord of a parabola such t rectum of the parabola is	hat $AS = 2$ and $SB = 4$, then the latus			
	(A) $\frac{8}{3}$	(B) $\frac{16}{3}$			
	(C) $\frac{25}{3}$	(D) none of these			
	3	· ,			
17.	The normal to the parabola $y^2 = 8x$ at $(2, 4)$ (A) $(18, 12)$	meets the parabola again at (B) (18, -12)			
	(C) (-18, 12)	(D) none of these			
*18.	The value of k for which the line $x + y + 1 =$				
	(A) -4 (C) 2	(B) 4 (D) -2			
*20.	The equation of directrix of the parabola x^2 (A) $y = -1$	4x + 4y + 8 = 0 is (B) $y = 1$			

Downloaded from jeemain.guru

4

*30.	The graph represented by the equations x = (A) parabola (C) hyperbola	= sin ² t, y = 2 cost is (B) circle (D) none of these		
31.	If $y = -4$ is the directrix and $(-2, -1)$ the vertices	ertex of a parabola then its focus is at		
32.	The condition that the line $\frac{x}{a} + \frac{y}{b} = 1$ be	a normal to the parabola $y^2 = 4px$ is		
33.	If $k = \dots$, the line $y = 2x + k$	is normal to the parabola $y^2 = 4x$ at		
34.	The value of k for which the equation $x^2 + y^2 + 2kxy + 2x + 4y + 3 = 0$ represents a parabola are			
35.	The point of intersection of the tangents of where the parameter t has the value 1 and 2 (A) (3, 8) (C) (2, 3)			
36.	If the line $y = x + k$ is a normal to the paral (A) $2\sqrt{2}$ (C) -3	pola $y^2 = 4x$ then k can have the value (B) 4 (D) 3		
37.	The tangents from the origin to the parabol (A) $\pi/6$ (C) $\pi/3$	a $y^2 + 4 = 4x$ inclined of (B) $\pi/4$ (D) $\pi/2$		
38.	Normal at point to the parabola $y^2 = 4ax$ will meet the parabola again at a point (A) (6a, $-9a$) (C) ($-9a$, 6a)	where abscissa is equal to ordinate, (B) (-6a, 9a) (D) (9a, -6a)		
*39.	If the focus of the parabola is (-2, 1) and the then the vertex is (A) (0, 3) (C) (-1, 2)	ne directrix has the equation $x + y = 3$ (B) $(-1, 1/2)$ (D) $(2, -1)$		
40.	The locus of the point from which tangents (A) straight line (C) circle	to a parabola are at right angles is a (B) pair of straight lines (D) none		
41.	Given the two ends of the latus rectum, th can be drawn is (A) 1	e maximum number of parabolas that (B) 2		

	(C) 0	(D) infinite			
*42.	The Cartesian equation of the curve whose 3 and $y = t + 1$ is	parametric equations are $x = t^2 + 2t + 2t$			
	(A) $y = (x-1)^2 + 2(y-1) + 3$ (C) $x = y^2 + 2$	(B) $x = (y - 1)^2 + 2(y-1) +5$ (D) None of these			
*43.	3. If line $y = 2x + \frac{1}{4}$ is tangent to $y^2 = 4ax$, then a is equal to				
	(A) 1/2 (C) 2	(B) 1 (D) None of these			
44.	The shortest distance between the parabola $y^2 = 4x$ and the circle $x^2 + y^2 + 6x - 12y + 20 = 0$ is				
	(A) $4\sqrt{2}-5$	(B) 0			
	(C) $3\sqrt{2}+5$	(D) 1			
45.	$(x - 12y + 1)^2$ will represent a parabola				
	(A) k = 2 (C) k = 169	(B) k = 81 (D) k =1			
*46.	If I, m be the lengths of segments of any focal chord of a parabola $y^2 = 4ax$ then length of semi-latus rectum is				
	(A) $\frac{l+m}{2}$	(B) $\frac{lm}{l+m}$			
	(C) $\frac{2Im}{I+m}$	(D) $\sqrt{\text{Im}}$			
47.	The normal chord of a parabola $y^2 = 4ax a$ abscissa subtends a right angle at the	at a point whose ordinate is equal to			
	(A) focus	(B) vertex			
	(C) end of the latus rectum	(D) none of these			
48.	If a tangent to the parabola $y^2 = ax$ makes an angle of 45°with $x - axis$, its point of contact will be				
	(A) (a/2, a/4) (C) (a/4, a/2)	(B) (-a/2, a/4) (D) (-a/4, a/2)			
49.	The triangle formed by the tangents to a latus rectum and the double ordinate throug (A) equilateral (C) right angled isosceles				
50.	The equation $\lambda x^2 + 4xy + y^2 + \lambda x + 3y + 2 =$ (A) -4 (C) 0				

LEVEL-II

1.	From point P two tangents are drawn from slope of one tangent is three times the slope (A) straight line (C) parabola	
*2.	The chord AB of the parabola $y^2 = 4ax + 6$ A = $(at_1^2, 2at_1)$, B = $(at_2^2, 2at_2)$ and AC : A (A) $t_2 = 2t_1$ (C) $t_1 + 2t_2 = 0$	cuts the axis of the parabola at C. If $B = 1:3$, then (B) $t_2 + 2t_1 = 0$ (D) none of these
3.	If the normals drawn at the end poir parabola $y^2 = 4ax$ intersect at parabola, intersection of the tangent drawn at the (A) $x + a = 0$ (C) $y^2 - 4x + 6 = 0$	then the locus of the point of
4.	If the normals at the end points of a variab $2x = 0$ are perpendicular, then the tangents (A) $x + y = 3$ (C) $y+3=0$	
*5.	The number of focal chord(s) of length 4/7 (A) 1 (C) infinite	in the parabola $7y^2 = 8x$ is (B) zero (D) none of these.
6.	The equation of common tangent touching parabola $y^2 = 4x$ is (A) $\sqrt{2}$ y = 2x + 1 (C) $\sqrt{2}$ y = x + 2	g the circle $x^2 - 4x + y^2 = 0$ and the (B) $\sqrt{2}y = -(x + 2)$ (D) none of these
7.	Three normals to the parabola $y^2 = x$ are drawn (A) $c = \frac{1}{4}$ (C) $c > \frac{1}{2}$	awn through a point (c, 0) then $(B) c = \frac{1}{2}$ $(D) none of these$
8.	Tangents are drawn from (-2, 0) to $y^2 = 8x$ these tangents and the corresponding characteristics (A) $4\left(\sqrt{2}+1\right)$ (C) $8\sqrt{2}$	
9.	The coordinates of the point on the parabolic the straight line $y = 3x - 3$ are (A) (-2, -8) (C) (2, 20)	ola $y = x^2 + 7x + 2$, which is nearest to (B) (1, 10) (D) (-1, -4)

A line through the focus of parabola $y^2 = 4(x - 2)$ having slope 'm' meets the curve in distinct real points, then exhaustive set of values of 'm' is; 21.

(A)
$$m \in (-1, 1)$$

(B)
$$m \in (-2, 2)$$

(C)
$$m \in (-\infty, \infty)$$

If $(y + b) = m_1 (x + a)$ and $(y + b) = m_2 (x + a)$ be tangents of $y^2 = 4ax$ then; (A) $m_1 + m_2 = 0$ (B) $m_1 m_2 = 0$ 22.

(A)
$$m_1 + m_2 = 0$$

(B)
$$m_1 m_2 = 0$$

(C)
$$m_1 m_2 = -1$$

(D)
$$m_1 = -m_2 - \frac{2}{m_2}$$

A tangent to the parabola x^2 = 4ay is inclined at an angle $\frac{\pi}{6}$ with the x-axis, then *23. coordinates of point of contact is;

(A)
$$(3a, 2a\sqrt{3})$$

(B)
$$\left(\frac{a}{3}, \frac{2a}{\sqrt{3}}\right)$$

(C)
$$\left(\frac{a}{3}, -\frac{2a}{\sqrt{3}}\right)$$

(D)
$$\left(\frac{2a}{\sqrt{3}}, \frac{a}{3}\right)$$

The length of focal chord of the parabola $y^2 = 4ax$ at a distance b from the vertex 24.

(A)
$$2a^2 = bc$$

(B)
$$a^3 = b^2 c$$

$$(C)$$
 ac = b^2

(B)
$$a^3 = b^2c$$

(D) $b^2c = 4a^3$

LEVEL-III

1.	The circle drawn with variable chord $x + ay$ parabola $y^2 = 20x$ as diameter will always $(A) x + 5 = 0$ $(C) x + y + 5 = 0$			
2.	The set of points on the axis of the parafrom which 3 distinct normals can be drawn (h, k) lying on the axis of the parabola such (A) $h > 3$ (C) $k > 3/2$	n to the parabola, is the set of points		
3.	Radius of the circle passing through the ori at (1, 2) (A) $5/6$ (C) $5/\sqrt{2}$	gin and touching the parabola $y^2 = 4x$ (B) $5\sqrt{2}/6$ (D) none of these		
4.	If the parabola $y = f(x)$, having axis parall (1, 1) then; (A) $2f'(0) + f(0) = 1$ (C) $2f(0) - f'(0) = 1$	el to y-axis, touches the line $y = x$ at (B) $2f(0) + f'(0) = 1$ (D) $2f'(0) - f(0) = 1$		
*5.	The length of latus rectum of the parabola was directrix is the line y = a, is (A) $\left 4a\cos^2\theta\right $ (C) $\left 4a\cos2\theta\right $	whose focus is (a $\sin 2\theta$, a $\cos 2\theta$) and (B) $\left 4a\sin^2\theta\right $ (D) $\left 4a\sin 2\theta\right $		
6.	Chord AB of the parabola $y^2 = 4ax$ subtends a right angle at the origin. Point of intersection of tangents drawn to parabola at 'A' and 'B' lie on the line - (A) $x + 2a = 0$ (B) $y + 2a = 0$ (C) $x + 4a = 0$ (D) $y + 4a = 0$			
7.	A circle is drawn to pass through the extrem parabola $y^2=8x$. It is given that this circle a parabola. Radius of this circle is equal to (A) 2 (C) 8			
8.	The circle $x^2 + y^2 + 2gx + 2fy + c = 0$ cuts the $P_i(x_i, y_i)$, i = 1, 2, 3, 4; then (A) $\sum y_i = 0$ (C) $\sum y_i = -4(f+2a)$	ne parabola $x^2 = 4ay$ at points (B) $\sum x_i = 0$ (D) $\sum x_i = -2(g+2a)$		

11. Sides of an equilateral triangle ABC touch the parabola $y^2 = 4x$, then points A, B and C lie on

(A)
$$y^2 = 3(x+a)^2 + 4ax$$

(B)
$$y^2 = \frac{(x+a)^2}{3} + 4ax$$

(C)
$$x^2 = \frac{(y+a)^2}{3} + 4ay$$

(D)
$$x^2 = 3(y+a)^2 + 4ay$$

12. Length of the latus rectum of the parabola whose parametric equation is :

$$x = t^2 + t + 1$$
; $y = t^2 - t + 1$, where $t \in R$, is equal to

(D)
$$\sqrt{2}$$

13. A circle having its centre at (2, 3) is cut orthogonally by the parabola $y^2 = 4x$. The possible intersection point of these curves can be

(A) (1, 2) or (3,
$$2\sqrt{3}$$
)

(C) (9, 6) or (3,
$$2\sqrt{3}$$
)

14. The vertex of the parabola $(x+y-1)^2 = 2(x-y+2)$ is

(B)
$$\left(-\frac{13}{4}, \frac{17}{4}\right)$$

$$(C)\left(-\frac{1}{2},\,\frac{3}{2}\right)$$

(D)
$$\left(\frac{19}{8}, \frac{35}{8}\right)$$

15. The axis of the parabola $(x+y-1)^2 = 2(x-y+2)$ is

(A)
$$y = x + 2$$

$$(B) x - y = 1$$

$$(C) x + y = 2$$

(D)
$$x + y = 1$$

16. The line x + y = a touches the parabola $y = x - x^2$ and

$$f(x) = \sin^2 x + \sin^2 \left(x + \frac{\pi}{3}\right) + \cos x \cos \left(x + \frac{\pi}{3}\right), \ g\left(\frac{5}{4}\right) = 1, \ b = g(f(x)), \text{ then }$$

$$(A) a = b$$

(B)
$$a = 2b$$

(C)
$$a + b = 0$$

- (D) a + 2b = 0
- The co-ordinates of the point on the parabola $y^2 = 8x$, which is at minimum 17. distance from the circle $x^2 + (y+6)^2 = 1$ are
 - (A) (2, 4)

(C)(-2, -4)

- If three normals can be drawn to the parabola $y^2 = x$ from the point (C, 0), then 18. the two normals other than the axis of the parabola are perpendicular to each other if C =
 - (A) $\frac{3}{4}$

(C) $-\frac{3}{4}$

- (B) $\frac{4}{3}$ (D) $-\frac{4}{3}$
- If $f(x) = \frac{1}{1-x}$ and α , $\beta(\alpha > \beta)$ be the values of x, where f(f(x)) is not defined, 19.

then a ray of light parallel to the axis of the parabola $y^2 = 4x$ after reflection from the internal surface of the parabola will necessarily pass through the point

(A) (α, α)

 $(B)(\alpha,\beta)$

 $(C)(\beta,\beta)$

- (D) None
- If t_1 and t_2 be the ends of a focal chord of the parabola $\,y^2=4ax\,$, then the *20. equation $t_1x^2 + ax + t_2 = 0$ has
 - (A) imaginary roots,

- (B) both roots positive
- (C) one positive and one negative roots
- (D) both roots negative

Downloaded from jeemain.guru

12

ANSWERS

LEVE	L -I 1. 5.	A A	2. 6.	C A	3. 7.	D B	4. 8.	B D
	9. 13. 17. 22. 26. 30. 33. 37. 41. 45.	A C B A C A -12, (4, -4) B B D C	10. 14. 18. 23. 27. 31. 34. 38. 42. 46. 50.	A A B D B (-2, 2) ± 1 D C C B	11. 15. 20. 24. 28. 32. 35. 39. 43.	C C C A C $a^3b = 2pba^2 + C$ C A A	12. 16. 21. 25. 29. pb ³ 36. 40. 44.	A B C C B C A A C
LEVE	L -II							
	1. 5. 9.	C B A	2. 6. 10.	B D B	3. 7. 11.	B C $y^2 - 2ax + 8a^2$	4. 8. ² = 0	D B
	12. 13. 17. 21.	$c = \frac{3}{4}$ -2 A, B D	14. 18. 22.	C D C	15. 19. 23.	B C D	16. 20. 24.	D A D
LEVE	1. 5. 9. 13.	A B D B	2. 6. 10. 14. 18.	A, B, C, D C A C A	3. 7. 11. 15. 19.	C D A D B	4. 8. 12. 16. 20.	B B D A C