Regresión, modelos y métodos: Prueba de evaluación continua 1

Aràntzazu Alonso Carrasco

2023-05-02

Ejercicio 1

Un grupo de científicos norteamericanos están interesados en encontrar un hábitat adecuado para reintroducir una especie rara de escarabajos tigre, llamada *cicindela dorsalis dorsalis*, los cuales viven en playas de arena de la costa del Atlántico Norte. Se muestrearon 12 playas y se midió la densidad de estos escarabajos tigre. Adicionalmente se midieron una serie de factores bióticos y abióticos tales como la exposición a las olas, tamaño de la partícula de arena, pendiente de la playa y densidad de los anfípodos depredadores.

Los datos se hallan en la hoja de cálculo cicindela.xlsx.

(a) Ajustar un modelo de regresión lineal múltiple que estime todos los coeficientes de regresión parciales referentes a todas las variables regresoras y el intercepto.

Dado que estamos interesados en ver cómo se relaciona la densidad de escarabajos tigre con el resto de factores ambientales que se tienen en consideración, el modelo de regresión lineal a considerar debe tener la densidad de escarabajos (BeetleDensity) como variable respuesta y el resto de factores ambientales como variables regresoras. La ecuación del modelo será:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{3i} + \beta_4 x_{4i} + \epsilon_i$$

siendo 1, 2, 3 y 4 los números que denominan las variables Wave exposure, Sandparticlesize, Beach steepness y AmphipodDensity, respectivamente.

Los coeficientes de regresión parciales se muestran a continuación (para ver el modelo completo, ver el apéndice):

```
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 14.9531059 17.2660810 0.8660394 0.41516279
## 'Wave exposure' 0.9123102 1.0934972 0.8343050 0.43165598
## Sandparticlesize 3.8970324 1.1689683 3.3337366 0.01252673
## 'Beach steepness' 0.6511095 0.4529741 1.4374098 0.19375861
## AmphipodDensity -1.5623525 0.6610160 -2.3635624 0.05007816
```

¿Es significativo el modelo obtenido? ¿Qué test estadístico se emplea para contestar a esta pregunta? Plantear la hipótesis nula y la alternativa del test.

El modelo obtenido es significativo (al 5%), ya que el p-valor= 6.7269394×10^{-5} . Para contestar a esta pregunta se usa un test F que se sitúa en la última fila del resumen del modelo que acabamos de ajustar. Concretamente, la hipótesis nula es

$$H_0: \beta_1 = \beta_2 = \beta_3 = \beta_4 = 0$$

mientras que la hipótesis alternativa es

$$H_1: \beta_i \neq 0$$
 para algún $i = 1, ..., 4$

Por tanto, dado que hemos rechazado la hipótesis nula, aceptamos que al menos uno de los coeficientes de regresión es distinto de cero.

¿Qué variables han salido significativas para un nivel de significación $\alpha = 0.10$?

Para un nivel de significación $\alpha = 0.10$, las variables que han salido significativas son Sandparticlesize, que presenta un p-valor de 0.013, y AmphipodDensity, con un p-valor de 0.05.

(b) Calcular los intervalos de confianza al 90 y 95 % para el parámetro que acompaña a la variable AmphipodDensity. Utilizando sólo estos intervalos, ¿qué podríamos haber deducido sobre el p-valor para la densidad de los anfípodos depredadores en el resumen del modelo de regresión? ¿Qué interpretación práctica tiene este parámetro β_4 ?

El intervalo de confianza al 90% es (-2.8146991, -0.3100058), mientras que el intervalo de confianza al 95% es (-3.1254068, 7.0191249 \times 10⁻⁴). Dado que el intervalo de confianza al 95% incluye el cero pero el del 90% no, podíamos haber deducido que el parámetro de AmphipodDensity es significativamente diferente de cero para una significación del 10% pero no para una significación del 5%. Y, de hecho, es exactamente la misma conclusión que extraemos de mirar el p-valor = 0.05.

El parámetro correspondiente al predictor AmphipodDensity es -1.5624. Esto quiere decir que por cada unidad de aumento de la densidad de los anfípodos depredadores, la densidad de los escarabajos tigre disminuirá en -1.5624 unidades.

(c) Estudiar la posible multicolinealidad del modelo con todas las regresoras calculando los VIFs.

Para estudiar la multicolinealidad en un modelo de regresión lineal múltiple se utiliza el factor de inflación de la varianza (VIF, variance inflation factor). Un VIF = 1 indica que no hay multicolinealidad entre la variable predictora y las demás variables predictoras del modelo. Cuanto mayor sea el VIF, mayor será la inflación de la varianza y, por tanto, mayor será el grado de multicolinealidad. En general, se acepta que un VIF ≥ 5 indica una multicolinealidad significativa.

Los valores de VIF del modelo son los que se muestran a continuación:

Como podemos ver, el VIF para la variable AmphipodDensity es 5.12. Por tanto, vemos que hay un problema de multicolinealidad con esta variable, hecho que puede afectar a la interpretación de los coeficientes de regresión y a la precisión de las predicciones .

(d) Considerar el modelo más reducido que no incluye las variables exposición a las olas y la pendiente de la playa y decidir si nos podemos quedar con este modelo reducido mediante un contraste de modelos con el test F para un $\alpha = 0.05$. Escribir en forma paramétrica las hipótesis H_0 y H_1 de este contraste. Comparar el ajuste de ambos modelos.

Consideramos el modelo siguiente:

$$y_i = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \epsilon_i$$

donde 1 y 2 representan Sandparticlesize y Amphipod Density, respectivamente. En este caso, el p-valor que obtenemos mediante un contraste de modelos con un test F es 0.35. Con este p-valor aceptamos la hipótesis nula de que los parámetros de las variables no incluídas en el modelo simple son cero. Por tanto, la simplificación es perfectamente justificable.

Apéndice

En este apéndice se muestra todo el código que se ha ido empleando en la resolución de los ejercicios.

Ejercicio 1

```
# Cargamos los paquetes necesarios
library("readxl")
library("faraway")
# Creamos un dataset a partir de los datos del fichero cicindela.xlsx
cici<-read_excel("cicindela.xlsx")</pre>
# Ajustamos la regresión lineal múltiple con la función lm()
cici.lm<-lm(BeetleDensity~.,data=cici)</pre>
# Guardamos el summary del modelo
sum.cici.lm<-summary(cici.lm)</pre>
sum.cici.lm
##
## Call:
## lm(formula = BeetleDensity ~ ., data = cici)
## Residuals:
##
      Min
               1Q Median
                               3Q
                                      Max
## -6.3004 -2.7038 0.0795 2.6017 5.3924
##
## Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
##
## (Intercept)
                     14.9531 17.2661 0.866 0.4152
## 'Wave exposure'
                      0.9123
                                1.0935
                                          0.834
                                                  0.4317
## Sandparticlesize
                      3.8970
                                1.1690
                                          3.334
                                                  0.0125 *
                     0.6511
## 'Beach steepness'
                                 0.4530 1.437
                                                  0.1938
## AmphipodDensity
                     -1.5624
                                 0.6610 - 2.364
                                                  0.0501 .
## ---
## Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
## Residual standard error: 4.513 on 7 degrees of freedom
## Multiple R-squared: 0.9578, Adjusted R-squared: 0.9337
## F-statistic: 39.71 on 4 and 7 DF, p-value: 6.727e-05
# Obtenemos el estadístico f
f<-summary(cici.lm)$fstatistic</pre>
# Imprimimos los coeficientes del modelo
sum.cici.lm$coefficients
                                             t value Pr(>|t|)
##
                      Estimate Std. Error
## (Intercept)
                    14.9531059 17.2660810 0.8660394 0.41516279
## 'Wave exposure'
                     0.9123102 1.0934972 0.8343050 0.43165598
## Sandparticlesize
                     3.8970324 1.1689683 3.3337366 0.01252673
## 'Beach steepness' 0.6511095 0.4529741 1.4374098 0.19375861
## AmphipodDensity -1.5623525 0.6610160 -2.3635624 0.05007816
```

```
\# Obtenemos el p-valor del modelo
pf(f[1],f[2],f[3],lower.tail=F)
          value
## 6.726939e-05
# Extraemos el p-valor de las variables significativas
round(sum.cici.lm$coefficients[3,4],3) # Sandparticlesize
## [1] 0.013
round(sum.cici.lm$coefficients[5,4],3) # AmphipodDensity
## [1] 0.05
# Calculamos los intervalos de confianza de AmphipodDensity
# al 90%
confint(cici.lm,level=0.9)[5,]
##
                    95 %
          5 %
## -2.8146991 -0.3100058
# al 95%
confint(cici.lm,level=0.95)[5,]
##
           2.5 %
                        97.5 %
## -3.1254068143 0.0007019125
# Extraemos el parámetro de AmphipodDensity
round(sum.cici.lm$coefficients[5],4)
## [1] -1.5624
# Calculamos los VIF
vif(cici.lm)
##
     'Wave exposure'
                      Sandparticlesize 'Beach steepness'
                                                            AmphipodDensity
            3.771652
##
                              3.398998
                                                 1.158425
                                                                   5.119632
# Generamos el modelo reducido
cici.lm.i<-lm(BeetleDensity~Sandparticlesize+AmphipodDensity,data=cici)</pre>
summary(cici.lm.i)
##
## Call:
## lm(formula = BeetleDensity ~ Sandparticlesize + AmphipodDensity,
       data = cici)
##
```

```
## Residuals:
## Min 1Q Median 3Q Max
## -6.933 -2.226 -0.512 3.315 5.787
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 35.5651 9.4259 3.773 0.00440 **
## Sandparticlesize 3.7103 1.1215 3.308 0.00911 **
## AmphipodDensity -2.1228 0.5167 -4.108 0.00264 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 4.621 on 9 degrees of freedom
## Multiple R-squared: 0.9431, Adjusted R-squared: 0.9305
## F-statistic: 74.58 on 2 and 9 DF, p-value: 2.501e-06
```