COMS W3261 - Lecture 8, Part 2:

luring Machines.

Alan Turing: (1912-1954)

- Invented the Turing Machine.
- Invented the Turing Test.
- Built a Cort of) compter dring WWII. Used if

to crack the Enigma cipher.

// See: Wiki; Alan Turing: The Enigma (Hodges), The landston Game

Turing Machine: an automaton that can read and write on an infinite memory tape.

At every step of compadation:

- (1) read a symbol of the current tape square
- (2) enter a new internal state, write on the tape square, and move R or L.

Def. Cturing Machine. A Toring Machine is a 7-tuple (Q, Z, M, 8,
where Q is a finite set of states
Z is the input alphabet. (LETZIET).
determination S: Qx -> Qx x L, Rg is the transition function. (for now in some state write move left read some symbol some symbol or right. off current tape on current square square
Go, gacept, and gregest are start, accept, and reject states.
(1) Begin with an input string w= w, w, com € ∑ * written on the leftmost in squares of the tape.
(z) The "head" starts pointing at the leftmost square. Start
2)ME 13 GO,
(3) Completion proceeds according to the transition function. (4) we attempt to move left fun the leftmost tape square, we do not move.)
(If we attempt to move left from the leftmost tape square, we do not move.)
(4) Computation continues with we reach garcept l'égets
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
which point we immediately acceptingles. Note: this means we don't newson'ly stop. We might go into an infinite loop, and preventing this is (very) hard. Into an infinite loop, and preventing this is (very) hard. Note: This are often too combersome to write out formally.
Def. (Configuration.) A configuration consists of a current state
the tape contents, and the head location.
Often withen as ugv for a Tring Machine in state g, with the string u to the left of the head and the string v to
with the string is to the left of the head and the string is to

the right (head is on first symbol of v.) Example: 01101 8 1000 [0]1/10/1/2/00/0/L/W We'll also say that a configuration uageby yields ugiacy if S(gi,b) = (gi, C, L). ingi, go to gis, readle unite c, move L uagiby yields uacgiv if &(gi,b) =(gi,GR). (a,b ∈ [, u,v∈ [] * gigi ∈ Q). Def. (TM acceptance, formally.) A TM M accepts a string w i'f there exists a sequence of configurations C1, C2, "Ck such that Ci is the start configuration pow, Ci yields (i+2 for i=k, and Ck is an accept configuration. Decidability & Recognizability. Idea: Like other actorday TMs can accept or reject. However, they might loop forever. What does it mean to recognize a language?

Def. (Turing-recognizability.) The set of all strings a TM

M accepts is the language L(M) of M. A language
is Turing-recognizable if some TM recognizes it.

Def. (Turing-decidability.) A language L is (Turing)-decidable,
if some Turing machine decides it:
if accepts on all strings in L,

AND it rejects on all strings not in L.

(A TM that always accepts or rejects is called a decider)

- Note: Decidability implies Turing-recognizability.

Example. A TM that recognizes $A = {0^{2^n} | n \ge 0^3}$.

1. An implementation-level description.

Chigher-level than farmal 7-tuple or state diagram Describe how the head moves around and how it modifies the tope, but not individual states or foonsitions.

 $M_2 = "On input \omega$:

all lenglish

proser but should

be easily made prease.

- 1. Read input loft to right, cross off every other O.
- 2. (Base case.) If we just saw a single O, accept.
- 3. Otherwise, if the number of O's was odd, reject.
- 4. Otherwise, return the head to the left end of the tape and repeat from state 1."

Example. sixteen O's -> eight O's -> for O's -> two O's -> one O.

fourteen O's - seven O's - three O's. 2. A formal description of M2. (In contrast to implementation-M, = (Q, Z, M, S, g, gacept, grejed). Q = { 91,82 ... , 85, 80cept, 8rejed } > = {O} $\Gamma = \beta_{\perp}, O, X$ S is described by the following state diagram: read in Di write blanky write planky move R. X-> R 85 $X \longrightarrow R$ Encept. Creject Example. Input: 0000 tape/head tape/head 85,85,85 LX OX 85,85,85 LXXX

/ Thus is the only time well see a TM state diagram.

Next time: more TMs, decidability, enumerators, Cantar-again!

Readings: 2.3 (CEPL), 3.1 (TMs)

