Plataformas de secuenciación

Primera generación

Sanger or chain-termination

Produce cadenas de 100 - 1000 pb

Problemas cuando hay más de una variante alélica en la misma posición

Usos actuales:

- Validación de variantes
- Brindar cobertura a regiones poco representadas por técnicas NGS

Sanger or chain-termination

Hagemann, I. S. (2015). Overview of Technical Aspects and Chemistries of Next-Generation Sequencing. In *Clinical Genomics* (pp. 3-19).

Segunda generación

Next Generation Sequencing High Throughput Sequencing

Sequencing by synthesis (Illumina)

Nucleótidos de terminación de cadena marcados fluorescentemente reversibles

Muestras: sangre, médula ósea, tejido fresco o tejido embebido en parafina fijado con formalina (FFPE)

Es importante una extracción de ADN con buena calidad para luego armar la librería

Sequencing by synthesis (Illumina)

Prepare genomic DNA sample

Randomly fragment genomic DNA and ligate adapters to both ends of the fragments.

Fragmentado:

- sonicación
- digestión enzimática con DNAsa I o fragmentasa

Etiquetado (adaptadores, etiquetas, códigos de barras y cebadores):

- Ligación
- PCR

Fragmentado + Etiquetado (Nextera Tagmentation):

 enzima transposasa para fragmentar e insertar secuencias simultáneamente

Library

Target sequencing:

- Exomas
- Paneles de genes de interés
- Genotipado

Método de captura

- Amplificación por PCR
- Hibridación con oligonucleótidos
- Selección de poliA (ARNm)

Target enrichment

Hybridize biotinylated probes to targeted regions.

Library - PCR limitations

- Solo amplifica regiones objetivo sin mutaciones
- Sesgo de PCR causado por diferente longitud de fragmentos, variaciones aleatorias en la cantidad de fragmentos o en la eficiencia por ciclo
- Productos espurios de PCR

Sequencing by synthesis (Illumina)

Paired-End Sequencing

Multiplex

Sequencing by synthesis (Illumina)

First chemistry cycle: determine first base

To initiate the first sequencing cycle, add all four labeled reversible terminators, primers, and DNA polymerase enzyme to the flow cell.

Image of first chemistry cycle

After laser excitation, capture the image of emitted fluorescence from each cluster on the flow cell. Record the identity of the first base for each cluster.

Before initiating the next chemistry cycle

The blocked 3' terminus and the fluorophore from each incorporated base are removed.

Sequencing by Oligonucleotide Ligation and Detection (SOLiD)

Voelkerding, K. V., Dames, S. A., & Durtschi, J. D. (2009). Next-generation sequencing: from basic research to diagnostics. *Clinical chemistry*, *55*(4), 641-658.

Sequencing by Oligonucleotide Ligation and Detection (SOLiD)

Pyrosequencing (ROCHE 454)

Cada nucleótido incorporado causa la liberación de un pirofosfato que se combina con fosfosulfato de adenosina para formar ATP en una reacción catalizada por ATP sulfurilasa.

En presencia de ATP, la luciferasa convierte luciferina en oxiluciferina y se emite luz, lo que da como resultado una señal.

Pyrosequencing

DNA library preparation

4.5 h

gDNA

sstDNA library

Pyrosequencing

Emulsion PCR

8 h

Anneal sstDNA to an excess of DNA capture beads

Emulsify beads and PCR reagents in water-in-oil microreactors

Clonal amplification occurs inside microreactors

Break microreactors and enrich for DNA-positive beads

sstDNA library

Bead-amplified sstDNA library

Pyrosequencing

Sequencing

7.5 h

- Well diameter: average of 44 μm
- 400,000 reads obtained in parallel
- A single cloned amplified sstDNA bead is deposited per well

Ion Torrent

Detecta cambios pequeños en el pH que ocurren como resultado de la liberación de H cuando los nucleótidos se incorporan en una secuencia de alargamiento

Se incorpora un tipo de desoxinucleótido (dA, dC, dG, dT) a la vez

La reacción de secuenciación es análoga a la pirosecuenciación, con la diferencia de que se detecta pH en lugar de luz.

Las lecturas son relativamente largas, y los tiempos de reacción son muy cortos.

Alta tasa de error

Ion Torrent

http://www.genomics.cn/en/navigation/show_navigation?nid=2640

NGS platforms/company/max	Read	No. reads	Time (h or	Cost	Raw	Platform	Chemistry
output per run	length per	per run	days)	per 10 ⁶	error	cost (USD	
	run (bp)			bases	rate (%)	approx.)	
First generation	- 12						
Sanger/Life Technologies/84 kb	800	1	2 h	2400	0.3	95,000	Dideoxy terminator
Second generation						40	
454 GS FLX+/Roche/0.7 Gb	700	1×10 ⁶	24/48 h	10	1	500,000	Pyrosequencing
GS Junior/Roche/70 Mb	500	1×10 ⁵	18 h	9		100,000	Pyrosequencing
HiSeq/Illumina/1500 Gb	2x150	5×109	27/240 h	0.1	0.8	750,000	Reversible terminators
MiSeq/Illumina/15 Gb	2x300	3×10 ⁸	27 h	0.13	0.8	125,000	Reversible terminators
SOLiD/Life Technologies/120 Gb	50	1×109	14 days	0.13	0.01	350,000	Ligation
Retrovolocity/BGI/3000 Gb	50	1×10 ⁹	14 days	0.01	0.01	12×10 ⁶	Nanoball/ligation

Tercera generación

Los métodos de tercera generación secuencian moléculas individuales, sin la

capacidad de detectar señales pequeñas, sin comprometer la precisión.

necesidad de un paso de enriquecimiento o amplificación.

La principal desventaja de los métodos de una sola molécula es que requieren la

Aplicaciones

Genómica

- Whole Genome Sequencing
- Whole Exome Sequencing
- De novo Sequencing
- Targeted Sequencing

RNAseq

Pasos para secuenciar ARN

- Aislar el ARN
- Convertir el ARN en cDNA con retrotranscripción
- Fragmentar el cDNA y construir la librería
- Secuenciar

Transcriptómica

Es posible secuenciar:

- ARN total
- ARNm
- Target
- Small and non-coding

Esta técnica permite cuantificar el nivel de expresión de cada ARN en el momento de la extracción.

Es importante tener una buena cobertura para evitar que sólo se secuencien ARN naturalmente abundantes como el ARNr.

T-cell receptor repertoire analysis

experimento

Decisiones a tomar de acuerdo al

Tipo de material genético

DNA

- Mayor estabilidad
- Una sola copia por célula -> mejor cuantificación

RNA

- Información sobre el nivel de expresión
- No hay errores relacionados con intrones o rearreglos

Sequencing methods

- Bulk sequencing of pooled immune cell populations
 - Más barato
- Single cell sequencing (identify pairs of alpha and beta chains)
 - 10X Chromium 3' -> microdroplet-based
 - Smart-seq2
 - selección manual de celulas con pipetas micro capilares
 - transcripción inversa de alta fidelidad

Single cell RNA-Seq

Sequencing depth

- Low coverage (MiSeq)
 - Los análisis orientados a la enfermedad buscan TCR altamente expresados y clonalmente expandidos
- High coverage (HiSeq)

Target sequence

- $\alpha\beta$ and $\gamma\delta$
- αβ
- β -> unique in each single cell
 - o CDR3 region

Library preparation

Rosati, E., Dowds, C. M., Liaskou, E., Henriksen, E. K. K., Karlsen, T. H., & Franke, A. (2017). Overview of methodologies for T-cell receptor repertoire analysis. BMC Biotechnology, 17(1), 61. https://doi.org/10.1186/s12896-017-0379-9

Barcoding

Unique Molecular Identifiers

Zilionis, Rapolas, et al. "Single-cell barcoding and sequencing using droplet microfluidics." nature protocols 12.1 (2017): 44.

Bioinformática

Base calling

Phred quality score

 $Q = -10 \log_{10} P$

Phred Quality Score	Probability of incorrect base call	Base call accuracy
10	1 in 10	90%
20	1 in 100	99%
30	1 in 1000	99.9%
40	1 in 10,000	99.99%
50	1 in 100,000	99.999%
60	1 in 1,000,000	99.9999%

FASTQ files

@K00114:390:HCGGLBBXX:1:1101:1722:2264 1:N:0

+

Codificación ASCII de valores Q

ASCII Table

Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char	Dec	Hex	0ct	Char
0	0	0		32	20	40	[space]	64	40	100	@	96	60	140	*
1	1	1		33	21	41	!	65	41	101	Ā	97	61	141	a
2	2	2		34	22	42		66	42	102	В	98	62	142	b
3	3	3		35	23	43	#	67	43	103	С	99	63	143	c
4	4	4		36	24	44	\$	68	44	104	D	100	64	144	d
5	5	5		37	25	45	%	69	45	105	E	101	65	145	e
6	6	6		38	26	46	&	70	46	106	F	102	66	146	f
7	7	7		39	27	47		71	47	107	G	103	67	147	g
8	8	10		40	28	50	(72	48	110	Н	104	68	150	h
9	9	11		41	29	51)	73	49	111	1	105	69	151	i
10	Α	12		42	2A	52	*	74	4A	112	J	106	6A	152	j
11	В	13		43	2B	53	+	75	4B	113	K	107	6B	153	k
12	С	14		44	2C	54	,	76	4C	114	L	108	6C	154	ı
13	D	15		45	2D	55	-	77	4D	115	М	109	6D	155	m
14	E	16		46	2E	56		78	4E	116	N	110	6E	156	n
15	F	17		47	2F	57	/	79	4F	117	0	111	6F	157	0
16	10	20		48	30	60	0	80	50	120	P	112	70	160	Р
17	11	21		49	31	61	1	81	51	121	Q	113	71	161	q
18	12	22		50	32	62	2	82	52	122	R	114	72	162	r
19	13	23		51	33	63	3	83	53	123	S	115	73	163	s
20	14	24		52	34	64	4	84	54	124	Т	116	74	164	t
21	15	25		53	35	65	5	85	55	125	U	117	75	165	u
22	16	26		54	36	66	6	86	56	126	V	118	76	166	٧
23	17	27		55	37	67	7	87	57	127	W	119	77	167	w
24	18	30		56	38	70	8	88	58	130	×	120	78	170	x
25	19	31		57	39	71	9	89	59	131	Y	121	79	171	У
26	1A	32		58	ЗА	72	:	90	5A	132	Z	122	7A	172	Z
27	1B	33		59	3B	73	;	91	5B	133	[123	7B	173	{
28	1C	34		60	3C	74	<	92	5C	134	1	124	7C	174	ļ
29	1D	35		61	3D	75	-	93	5D	135]	125	7D	175	}
30	1E	36		62	3E	76	>	94	5E	136	^	126	7E	176	~
31	1F	37		63	3F	77	?	95	5F	137	_	127	7F	177	

Ensamblado de novo

Si no existe un genoma de referencia es necesario ensamblar

Mapeo de lecturas al genoma de referencia

SAM / BAM file

K00114:390:HCGGLBBXX:1:2215:23663:9789 163 3000857 120M 3000959 223 TCTGTAGA CABFCE4CDCB>6GC>DG=EDCGDGF4?>=>B>BDE7FEHAFG?E<DHDDE?AA=DDHFFHG>ECDHGE@DGFAFCGHE:CECCC@FEFIGGCEEIFFHEDEHC?CBGEFIF DFGHE9D? BD:Z:QQIRTSSRRRHHHSNSRTPTNRRNMSROORHHHSNLNMNLNNNSQQQRRRSTSRRHHSRRNSRTRHSRRSTOUPOOSSOSSTSTSSSSSUSTSIIUPURTSTUQVTT LMUVQUTTXOTUO PG:Z:MarkDuplicates MD:Z:120 RG:7:1 $\verb|BI:Z:UIJOWXXXXXXOOOWUJWWXRSTVVVTVWWVTNNNUSRUTUSUWUVVVVWSVUUVVVOOWSWTWXXVNWTWWWWTWUUWWVWWXXXXXXXXXXXWPPXVWTWWXYXYXU$ NM: i:0 AS:i:120 XS:i:87 ROXZWYYUUUWWU K00114:390:HCGGLBBXX:1:2215:23663:9789 8.3 3000959 121M 3000857 -223GGTCTTGAA @?CA<9@AAGFIHGEFEFFIEFG@DCEGEFFGDHDBGFIF@C=IGFC@FBCGDCFEE>>DBGFECEHGFDEHGFCCDHGGFFECFD>>/EF0CCFEFDGFFEEF0GAC>C Q-DE4BEDD BD:Z:USRILVWPVUQWOVURVTSUOUSSSRISRROTSJSMSKROSSQRORRSRSSRSOMMORQRMMMMONNUMSROTORJRNUTURRRRTSRTTNUMONMMQSSSMTPPP PG:Z:MarkDuplicates PNNNTUQQUVURQQ MD:Z:121 RG:7:1 BI:Z:XWVOOYYUXYV [VXXTYXXYVXXXUWPXXWWXXOXTWPWWXWVWWWWUTWTWWSSWWVVSTSTXUUUYTWWWTWWOVTXWVWWXTTWWXXUYTXUUUWWWTSVUSU NM: i:0 AS:i:121 XS:1:66 WSTSXUYVXYVWUU

Cuestionario

- 1- ¿Qué información se obtiene a partir de la secuenciación de material genético?
- 2- ¿Cuáles son los beneficios de la secuenciación de nueva generación comparado con otras tecnologías?
- 3- Mencione las distintas plataformas de secuenciación vistas en clase, sus principales características y diferencias.
- 4- ¿Cuál es la utilidad de los adaptadores? ¿Qué otras secuencias se pueden agregar a los fragmentos a secuenciar?
- 5- ¿Por qué la amplificación por PCR puede generar errores? ¿Qué alternativas existen para omitir este problema?
- 6- Mencione ejemplos de uso actual en diagnóstico médico. Piense qué estudios del laboratorio clínico podrían realizarse con esta técnica y justifique.
- 7- Explicar los principios del RNAseq
- 8- ¿A qué causas puede deberse que un nucleótido no se corresponda con el genoma de referencia?
- 9- ¿Por qué es importante la longitud de los fragmentos secuenciados?
- 10- ¿En qué partes del proceso de secuenciación con la plataforma de Illumina se pueden cometer errores?
- 11- ¿Cuál es la utilidad de secuenciar células únicas? Enumere posibles aplicaciones.