

# XMC4000 Application Kit

For XMC4000 Family

CPU\_45A-V3

CPU Board XMC4500 General Purpose

# **Board User's Manual**

Revision 1.0, 2014-01-10

# Microcontroller

Edition 2014-01-10
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2014 Infineon Technologies AG
All Rights Reserved.

#### **Legal Disclaimer**

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

#### Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

#### Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.



| Revision History                                              |                 |  |  |
|---------------------------------------------------------------|-----------------|--|--|
| Page or Item Subjects (major changes since previous revision) |                 |  |  |
| Revision V1.0,<br>2014-01-10                                  | Initial release |  |  |
|                                                               |                 |  |  |
|                                                               |                 |  |  |
|                                                               |                 |  |  |
|                                                               |                 |  |  |
|                                                               |                 |  |  |
|                                                               |                 |  |  |
|                                                               |                 |  |  |
|                                                               |                 |  |  |

#### Trademarks of Infineon Technologies AG

AURIX $^{\text{TM}}$ , C166 $^{\text{TM}}$ , Canpak $^{\text{TM}}$ , CIPOS $^{\text{TM}}$ , CIPURSE $^{\text{TM}}$ , EconoPack $^{\text{TM}}$ , CoolMos $^{\text{TM}}$ , CoolSet $^{\text{TM}}$ , CoolSet $^{\text{TM}}$ , CoolSet $^{\text{TM}}$ , CoolSet $^{\text{TM}}$ , Crossave $^{\text{TM}}$ , Dave $^{\text{TM}}$ , EasyPIM $^{\text{TM}}$ , EconoBridge $^{\text{TM}}$ , EconoDual $^{\text{TM}}$ , EconoPiM $^{\text{TM}}$ , EiceDriver $^{\text{TM}}$ , eupec $^{\text{TM}}$ , FCOs $^{\text{TM}}$ , Hitfet $^{\text{TM}}$ , HybridPack $^{\text{TM}}$ , ISOFACE $^{\text{TM}}$ , IsoPack $^{\text{TM}}$ , Mipaq $^{\text{TM}}$ , ModStack $^{\text{TM}}$ , my-d $^{\text{TM}}$ , NovalithIC $^{\text{TM}}$ , OptiMos $^{\text{TM}}$ , Origa $^{\text{TM}}$ , PrimePack $^{\text{TM}}$ , PrimeStack $^{\text{TM}}$ , Pro-Sil $^{\text{TM}}$ , Profet $^{\text{TM}}$ , Rasic $^{\text{TM}}$ , Reversave $^{\text{TM}}$ , Satric $^{\text{TM}}$ , Sieget $^{\text{TM}}$ , Sindrion $^{\text{TM}}$ , SipMos $^{\text{TM}}$ , SmartLewIs $^{\text{TM}}$ , Solid Flash $^{\text{TM}}$ , Tempfet $^{\text{TM}}$ , thinQ! $^{\text{TM}}$ , Trenchstop $^{\text{TM}}$ , TriCore $^{\text{TM}}$ .

#### Other Trademarks

Advance Design System™ (ADS) of Agilent Technologies, AMBA™, ARM™, MULTI-ICE™, KEIL™, PRIMECELL™, REALVIEW™, THUMB™, µVision™ of ARM Limited, UK. AUTOSAR™ is licensed by AUTOSAR development partnership. Bluetooth™ of Bluetooth SIG Inc. CAT-iq™ of DECT Forum. COLOSSUS™, FirstGPS™ of Trimble Navigation Ltd. EMV™ of EMVCo, LLC (Visa Holdings Inc.). EPCOS™ of Epcos AG. FLEXGO™ of Microsoft Corporation. FlexRay™ is licensed by FlexRay Consortium. HYPERTERMINAL™ of Hilgraeve Incorporated. IEC™ of Commission Electrotechnique Internationale. IrDA™ of Infrared Data Association Corporation. ISO™ of INTERNATIONAL ORGANIZATION FOR STANDARDIZATION. MATLAB™ of MathWorks, Inc. MAXIM™ of Maxim Integrated Products, Inc. MICROTEC™, NUCLEUS™ of Mentor Graphics Corporation. Mifare™ of NXP. MIPI™ of MIPI Alliance, Inc. MIPS™ of MIPS Technologies, Inc., USA. muRata™ of MURATA MANUFACTURING CO., MICROWAVE OFFICE™ (MWO) of Applied Wave Research Inc., OmniVision™ of OmniVision Technologies, Inc. Openwave™ Openwave Systems Inc. RED HAT™ Red Hat, Inc. RFMD™ RF Micro Devices, Inc. SIRIUS™ of Sirius Satellite Radio Inc. SOLARIS™ of Sun Microsystems, Inc. SPANSION™ of Spansion LLC Ltd. Symbian™ of Symbian Software Limited. TAIYO YUDEN™ of Taiyo Yuden Co. TEAKLITE™ of CEVA, Inc. TEKTRONIX™ of Tektronix Inc. TOKO™ of TOKO KABUSHIKI KAISHA TA. UNIX™ of X/Open Company Limited. VERILOG™, PALLADIUM™ of Cadence Design Systems, Inc. VLYNQ™ of Texas Instruments Incorporated. VXWORKS™, WIND RIVER™ of WIND RIVER SYSTEMS, INC. ZETEX™ of Diodes Zetex Limited.

Last Trademarks Update 2011-02-24



Table of Contents

## **Table of Contents**

| Introduc            | troduction                          |    |
|---------------------|-------------------------------------|----|
| 1                   | Overview                            | 7  |
| 1.1                 | Key Features                        |    |
| 1.2                 | Block Diagram                       |    |
| 2                   | Hardware Description                | Ç  |
| <del>-</del><br>2.1 | Power Supply                        |    |
| 2.2                 | Reset                               |    |
| 2.3                 | Clock Generation                    |    |
| 2.4                 | Boot Option                         |    |
| 2.5                 | Debug Interface                     |    |
| 2.5.1               | On-board USB Debugger               |    |
| 2.5.2               | Cortex Debug Connector (10-pin)     |    |
| 2.5.3               | Cortex Debug+ETM Connector (20-pin) |    |
| 2.6                 | Serial Flash Memory                 |    |
| 2.7                 | USB                                 |    |
| 2.8                 | RTC                                 |    |
| 2.9                 | User LEDs and User Buttons          |    |
| 2.10                | Potentiometer                       | 22 |
| 2.11                | Satellite Connectors                | 23 |
| 2.11.1              | COM Connector                       | 24 |
| 2.11.2              | HMI Connector                       |    |
| 2.11.3              | ACT Satellite Connector             | 26 |
| 3                   | Differences to Board Version V2     | 27 |
| 4                   | Production Data                     | 27 |
| 4.1                 | Schematics                          |    |
| 4.2                 | Component Placement and Geometry    |    |
| 4.3                 | Bill of Material (BOM)              |    |



List of Figures

## **List of Figures**

| Figure 1  | CPU_45A-V3 Board Block Diagram                             | 8  |
|-----------|------------------------------------------------------------|----|
| igure 2   | CPU Board XMC4500 General Purpose (CPU_45A-V3)             | 9  |
| igure 3   | Powering option through USB interface (5 V)                | 10 |
| igure 4   | CPU_45A-V3 Board Power                                     |    |
| igure 5   | Battery (VBAT Supply)                                      | 11 |
| igure 6   | Reset                                                      | 12 |
| igure 7   | Reset LED and Reset Switch                                 | 12 |
| igure 8   | Clock Generation                                           | 13 |
| igure 9   | Boot Options Switch                                        | 13 |
| igure 10  | On-Board USB Debugger                                      | 14 |
| igure 11  | Cortex Debug Connector (10-pin)                            | 15 |
| igure 12  | Cortex Debug Connector (10-pin) Layout                     | 15 |
| igure 13  | Cortex Debug+ETM Connector (20-pin)                        | 16 |
| igure 14  | Cortex Debug+ETM Connector (20-pin) Layout                 | 17 |
| Figure 15 | Quad SPI Flash Interface Circuit                           | 18 |
| igure 16  | Quad SPI Flash                                             |    |
| Figure 17 | USB Connector Schematic                                    |    |
| Figure 18 | USB power generation - Host/OTG mode                       | 19 |
| Figure 19 | Battery Holder for Coin Cell                               | 21 |
| igure 20  | RTC                                                        | 21 |
| Figure 21 | GPIO LED                                                   | 22 |
| igure 22  | Satellite Connectors                                       |    |
| igure 23  | Satellite Connector Type COM                               |    |
| igure 24  | Satellite Connector Type HMI                               | 25 |
| Figure 25 | Satellite Connector Type ACT                               |    |
| Figure 26 | Schematic of Satellite Connectors, USB-OTG                 | 28 |
| igure 27  | Schematic of XMC4500                                       |    |
| igure 28  | Schematic of Power Supply, Debug Connectors, Reset Circuit |    |
| igure 29  | Schematic of On-board Debugger                             |    |
| igure 30  | Component Placement and Geometry                           | 32 |



### List of Figures

## **List of Tables**

| Table 1  | Power status LED's                  | 10 |
|----------|-------------------------------------|----|
| Table 2  | Power Measurement                   | 11 |
| Table 3  | Boot Options Settings               | 13 |
| Table 4  | Cortex Debug Connector (10 Pin)     |    |
| Table 5  | Cortex Debug+ETM Connector (20 Pin) |    |
| Table 6  | Quad SPI Signals                    | 18 |
| Table 7  | USB micro AB connector Pinout       | 19 |
| Table 8  | GPIO LED                            | 22 |
| Table 9  | User Button                         |    |
| Table 10 | Potentiometer                       |    |
| Table 11 | Differences to older board versions |    |
| Table 12 | BOM of CPU_45A-V3 Board             | 33 |

Overview

#### Introduction

This document describes the features and hardware details of the CPU Board XMC4500 General Purpose (CPU\_45A-V3) designed to work with Infineon's XMC4500 Microcontroller. This board is part of Infineon's XMC4000 Application Kits.

#### 1 Overview

The CPU board CPU\_45A-V3 houses the XMC4500 Microcontroller and three satellite connectors (HMI, COM, ACT) for application expansion. The board along with satellite cards (e.g. HMI\_OLED-V1, COM\_ETH-V1, AUT\_ISO-V1, MOT\_GPDLV-V boards) demonstrates the capabilities of XMC4500. The main use case for this board is to demonstrate the generic features of XMC4500 device including tool chain. The focus is safe operation under evaluation conditions. The board is neither cost nor size optimized and does not serve as a reference design.

#### 1.1 Key Features

The CPU 45A-V3 board is equipped with the following features

- XMC4500 (ARM<sup>®</sup> Cortex™-M4-based) Microcontroller, 120 MHz CPU clock, 1 MByte on-chip Flash, 160 kByte RAM, LQFP-144,
- Connection to XMC4500 satellite cards via satellite connectors COM, HMI and ACT
- USB OTG Host/Device support via micro USB connector
- · Debug options
  - On-board Debugger via Debug USB connector
  - Cortex Debug connector 10-pin (0.05")
  - Cortex Debug+ETM connector 20-pin (0.05")
- Reset push button
- 32 MBit quad SPI flash memory
- Boot option switch
- PowerScale Connector: Ready for MCU power consumption analysis
- 5 LED's
  - 3 Power indicating LED's
  - 1 User LEDs (P3.9)
  - 1 RESET LED
  - 1 Debug LED
- User Button connected to P2.15
- Potentiometer, connected to analog input P14.1
- Power supply
  - Via Micro-USB connector in USB device mode
  - Via satellite connector pins (COM/ACT satellites cards can supply power to CPU board)
  - Via Debug USB connector
  - RTC backup battery



Overview

#### 1.2 Block Diagram

Figure 1 shows the functional block diagram of the CPU\_45A-V3 board. For more information about the power supply please refer to chapter 2.1.

The CPU board has got the following building blocks:

- 3 Satellite Connectors (COM, HMI ACT)
- On-board Debugger via Debug USB connector (Micro-USB)
- User LED connected to P3.9
- User Button connected to P2.15
- Quad SPI flash memory (EE) connected to USIC1 Channel1 with Chip-Select1
- 2 Cortex Debug Connectors
- Variable resistor (POTI) connected to GPIO P14.1
- USB On-The-Go Connector (Micro-USB)



Figure 1 CPU\_45A-V3 Board Block Diagram



## 2 Hardware Description

The following sections give a detailed description of the hardware and how it can be used.



Figure 2 CPU Board XMC4500 General Purpose (CPU\_45A-V3)



### 2.1 Power Supply

The CPU\_45A-V3 board can be powered via the USB plug (5 V); however, there is a current limit that can be drawn from the host PC through USB. If the CPU\_45A-V3 board is used to drive other satellite cards (e.g. AUT\_ISO-V1 or MOT\_GPDLV-V2) and the total current required exceeds 500 mA, then the board needs to be powered by either an external power supply connected to USB or by a satellite card, which supports external power supply like e.g. AUT\_ISO-V1, MOT\_GPDLV-V2, COM\_ETH-V1.

For powering the board through USB interface, connect the USB cable provided with the kit to the Micro-USB connector on board.



Figure 3 Powering option through USB interface (5 V)

To indicate the power status of CPU\_45A-V3 board three LED's are provided on board (See Figure 3). The LED will be "ON" when the corresponding rail is powered.

Table 1 Power status LED's

| LED Reference | Power Rail | Voltage | Note                        |
|---------------|------------|---------|-----------------------------|
| V401          | VDD5       | 5 V     | Must always be "ON"         |
| V402          | VDD5USB    | 5 V     | "ON" if powered by USB plug |
| V403          | VDD3.3     | 3.3 V   | Must always be "ON"         |

#### **Hardware Description**



Figure 4 CPU\_45A-V3 Board Power



Figure 5 Battery (VBAT Supply)

Hitex PowerScale probe is provided on the CPU\_45A-V3 board to measure the power consumption.

Table 2 Power Measurement

| Jumper | Function   | Description                                                                                                                                                                                                                                                 |
|--------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JP300  | PowerScale | A Hitex PowerScale probe can be connected for current sensing the VDD3.3 (CPU power source). Default: pos. 1-2 (closed)  Note: On the PCB there is a shorting trace between pin 1-2. This trace has to be cut first, before using PowerScale. Pin 3 is GND. |

The maximum current drawn by the CPU board without any satellite cards connected is about 150 mA.



#### 2.2 Reset

The reset pin (PORST#) of the XMC45000 is a bi-directional pin. An internal pull-up resistor will keep the PORST# pin high during normal operation. A low level at this pin will force a hardware reset. In case of an internal reset the PORST# pin will drive a low signal. An internal circuit of the XMC4500 ensures a save Power-on-Reset. XMC4500 does not require any additional external components to generate a reset signal during power-up. An on-board reset button (SW400, RESET) supports a hardware reset of the CPU during operation. The reset signal is also routed to all satellite connectors. The reset state is indicated by a red LED (V407). The LED will be "ON" during reset state and will be "OFF" during normal operation conditions.



Figure 6 Reset



Figure 7 Reset LED and Reset Switch

#### 2.3 Clock Generation

An external 12 MHz crystal provides the clock signal to the XMC4500 microcontroller. The drive strength of the oscillator is set to maximum by software, in order to ensure a safe start-up of the oscillator even under worst case conditions. A serial 510 Ohm resistor will attenuate the oscillations during operations.

For the RTC clock a separate external 32.768 kHz crystal is used on board.

#### **Hardware Description**



Figure 8 Clock Generation

#### 2.4 Boot Option

During power-on-reset the XMC4500 latches the dip switch SW300 settings via the TCK and the TMS pin. Based on the values latched different boot options are possible.

Table 3 Boot Options Settings

| BSL (TMS) | CAN/UART (TCK) | Boot Option                      |
|-----------|----------------|----------------------------------|
| OFF (1)   | UART (0)       | Normal Mode (Boot from flash)    |
| ON (0)    | UART (0)       | ASC BSL Enabled (Boot from UART) |
| OFF (1)   | CAN (1)        | BMI Customized Boot Enabled      |
| ON (0)    | CAN (1)        | CAN BSL Enabled (Boot from CAN)  |



Figure 9 Boot Options Switch



#### 2.5 Debug Interface

The CPU\_45A-V3 board supports JTAG debug via 3 different connectors.

- On-board Debugger
- Cortex Debug Connector (10-pin)
- Cortex Debug+ETM Connector (20-pin)

The Hexagon Application Boards are designed to use "Serial Wire Debug" as debug interface. JTAG is not supported by default because the GPIO P0.7 (TDI), where the required TDI function is mapped to, is used by various Actuator boards connected to the ACT satellite connector.

Note: It is strongly recommended not to use JTAG debug mode, especially if satellites boards are connected, which uses the GPIO 0.7. For the same reason also do not use the on-board debugger in JTAG mode.

If you want to use the JTAG debug mode through the cortex debug connectors (X400, X401) anyway, enable the JTAG interface of the XMC device by assembling the pull-up resistor R427 (4k7 Ohm) and the resistor R410 (0 - 33 Ohm).

#### 2.5.1 On-board USB Debugger

The on-board debugger supports

- Serial Wire Debug
- Serial Wire Viewer
- Full Duplex UART communication via a USB Virtual COM

The on-board debugger can be accessed through the Debug USB connector shown in Figure 10. The Debug LED V502 shows the status during debugging.



Figure 10 On-Board USB Debugger

When using an external debugger connected to the 10-pin/20-pin Cortex Debug Connector, the on-board debugger is switched off.

When using the USB virtual COM port function of the on-board debugger the UART interface to the COM satellite is disabled through the switches U301 and U303.

**Hardware Description** 

### 2.5.2 Cortex Debug Connector (10-pin)

The CPU\_45A-V3 board supports Serial Wire debug operation and Serial Wire viewer operation (via the SWO signal when Serial Wire debug mode is used) through the 10-pin Cortex Debug Connector.

When using an external debugger connected to the 10-pin Cortex Debug Connector, the on-board debugger is switched off.



Figure 11 Cortex Debug Connector (10-pin)

Table 4 Cortex Debug Connector (10 Pin)

| Pin No. | Signal Name  | Serial Wire Debug    | JTAG Debug         |
|---------|--------------|----------------------|--------------------|
| 1       | VCC          | +3.3 V               | +3.3 V             |
| 2       | SWDIO / TMS  | Serial Wire Data I/O | Test Mode Select   |
| 3       | GND          | Ground               | Ground             |
| 4       | SWDCLK / TCK | Serial Wire Clock    | Test Clock         |
| 5       | GND          | Ground               | Ground             |
| 6       | SWO/TDO      | Trace Data OUT       | Test Data OUT      |
| 7       | KEY          | KEY                  | KEY                |
| 8       | NC / TDI     | Not connected        | Test Data IN       |
| 9       | GNDDetect    | Ground Detect        | Ground Detect      |
| 10      | nRESET       | Reset (Active Low)   | Reset (Active Low) |



Figure 12 Cortex Debug Connector (10-pin) Layout

**Hardware Description** 

#### 2.5.3 Cortex Debug+ETM Connector (20-pin)

The CPU\_45A-V3 board supports Serial Wire debug operation, Serial Wire viewer operation (via SWO connection when Serial Wire debug mode is used) and Instruction Trace operation through the 20-pin Cortex Debug+ETM Connector.

JTAG operation additionally would require the TDI (P0.7) signal. By default the TDI signal is disconnected from the Cortex Debug Connectors by a not assembled resistor R410, because the pin P0.7 is used by the Actuator boards connected to the ACT satellite connector.



Figure 13 Cortex Debug+ETM Connector (20-pin)

Table 5 Cortex Debug+ETM Connector (20 Pin)

| Pin No. | Signal Name    | Serial Wire Debug    | JTAG Debug         |
|---------|----------------|----------------------|--------------------|
| 1       | VCC            | +3.3 V               | +3.3 V             |
| 2       | SWDIO / TMS    | Serial Wire Data I/O | Test Mode Select   |
| 3       | GND            | Ground               | Ground             |
| 4       | SWDCLK / TCK   | Serial Wire Clock    | Test Clock         |
| 5       | GND            | Ground               | Ground             |
| 6       | SWO / TDO      | Trace Data OUT       | Test Data OUT      |
| 7       | KEY            | KEY                  | KEY                |
| 8       | NC / TDI       | Not connected        | Test Data IN       |
| 9       | GNDDetect      | Ground Detect        | Ground Detect      |
| 10      | nRESET         | Reset (Active Low)   | Reset (Active Low) |
| 11      | GND/TgtPwr+Cap | Ground               | Ground             |
| 12      | TRACECLK       | Trace Clock          | Trace Clock        |
| 13      | GND/TgtPwr+Cap | Ground               | Ground             |
| 14      | TRACEDATA[0]   | Trace Data 0         | Trace Data 0       |
| 15      | GND            | Ground               | Ground             |

**Hardware Description** 

Table 5 Cortex Debug+ETM Connector (20 Pin)

| Pin No. | Signal Name  | Serial Wire Debug | JTAG Debug   |
|---------|--------------|-------------------|--------------|
| 16      | TRACEDATA[1] | Trace Data 1      | Trace Data 1 |
| 17      | GND          | Ground            | Ground       |
| 18      | TRACEDATA[2] | Trace Data 2      | Trace Data 2 |
| 19      | GND          | Ground            | Ground       |
| 20      | TRACEDATA[3] | Trace Data 3      | Trace Data 3 |



Figure 14 Cortex Debug+ETM Connector (20-pin) Layout



#### 2.6 Serial Flash Memory

The CPU\_45A-V3 board provides a 32 Mbit serial flash memory from Micron (type: N25Q03) interfaced to XMC4500 through a SPI interface. The SPI interface can be configured as single, dual or quad SPI.

Table 6 Quad SPI Signals

| Pin No. | Pin Description  | Signal Name | Signal Description                     |
|---------|------------------|-------------|----------------------------------------|
| P0.13   | U1C1_SCLKOUT     | CLK         | Clock                                  |
| P3.3    | U1C1_SELO1       | CS#         | Active Low Chip Select                 |
| P3.15   | U1C1_DOUT0       | DI (IO0)    | Data Input/Output of Flash (MTSR/MOSI) |
| P3.14   | U1C1_DX0B        | DO (IO1)    | Data Input/Output of Flash (MRST/MISO) |
| P0.14   | U1C1_HOUT3/DWIN3 | HOLD# (IO3) | Data Input/Output                      |
| P0.15   | U1C1_HOUT2/DWIN2 | WP# (IO2)   | Data Input/Output                      |



Figure 15 Quad SPI Flash Interface Circuit



Figure 16 Quad SPI Flash



#### 2.7 USB

The XMC4500 supports USB interface in host only mode, device only mode or as an OTG Dual Role Device (DRD). In USB device mode, power is expected through VBUS (pin 1) from an external host (e.g. PC). When the current is more than 500 mA power from an external source through satellite cards shall be used.

Note: Some PCs, notebooks or hubs have a weak USB supply which is not sufficient for proper supply. In this case use an external 5 Volt power supply or a powered USB hub.



Figure 17 USB Connector Schematic

Port P0.9 of XMC4500 is connected to the USB ID pin (pin 4). An OTG device will detect whether a USB 3.0 Micro-A or Micro-B plug is inserted by checking the ID pin. When the ID = FALSE, Micro-A connector is plugged and when ID = TRUE a Micro-B connector is plugged in. When ID is true the XMC4500 acts as USB host else as USB device.

Table 7 USB micro AB connector Pinout

| Pin No. | Pin Name | Pin Description |
|---------|----------|-----------------|
| 1       | VBUS     | 5 V             |
| 2       | D-       | Data Minus      |
| 3       | D+       | Data Plus       |
| 4       | ID       | Identification  |
| 5       | GND      | Ground          |



Figure 18 USB power generation - Host/OTG mode



#### **Hardware Description**

In the host only mode and OTG mode the CPU\_45A-V3 board is capable of supplying power to the connected device (e.g. USB mouse). The board has a power-switch which is controlled by the XMC4500. Port P3.2 (active high) is used for this purpose. In the Host/OTG mode a low active FAULT signal indicates to XMC4500 via HIB\_IO\_0 signal, if more than 500 mA current is drawn by the external device. HIB\_IO\_0 signal is used as general purpose input pin for this implementation.

Diode V400 will allow powering the board through USB in all USB modes via e.g. a PC.



#### 2.8 RTC

The XMC4400 CPU has two power domains, the Core Domain and Hibernate Domain. The Core Domain (VDDP pins) is connected to the VDD3.3 rail. An on-board LDO voltage regulator generates VDD3.3 (3.3 V) from VDD5 (5 V).

The Hibernate Domain is powered via the auxiliary supply pin VBAT, which is supplied by either a 3 V coin cell (size 1216, 1220, 1225) plugged into the battery holder (see Figure 19) or 3.3 V (VDD3.3) generated by the onboard voltage regulator.



Figure 19 Battery Holder for Coin Cell

The Real Time Clock (RTC) is located in the hibernate domain. The XMC4500 uses the HIB\_IO\_1 signal (active low) to shut down the external LDO voltage regulator which generates the VDD3.3 (Core Domain). Even if the Core Domain is not powered the Hibernate Domain will operate if VBAT is available. The RTC keeps running as long as the Hibernate Domain is powered via the auxiliary supply VBAT. The RTC is capable to wake-up the whole system from Hibernate mode by setting HIB\_IO\_1 to high.

With VDD3.3 power supply switched off and no coin cell supply the power in the capacitor connected to VBAT will provide power to the hibernate domain for about 10 seconds (depending on which features in the hibernate domain are enabled).



Figure 20 RTC



#### 2.9 User LEDs and User Buttons

The port pin P3.9 of XMC4500 is connected to a LED V300. More user LED's are available through I2C GPIO expander on most of the satellite cards.

#### Table 8 GPIO LED

| LED  | Connected to Port Pin |
|------|-----------------------|
| V300 | GPIO P3.9             |

The User Button is connected to port pin P2.15 of the XMC4500.

#### Table 9 User Button

| Button  | Connected to Port Pin |
|---------|-----------------------|
| BUTTON1 | P2.15                 |



Figure 21 GPIO LED

#### 2.10 Potentiometer

The CPU\_45A-V3 board provides a potentiometer POT1 for ease of use and testing of the on-chip analog to digital converter. The potentiometer is connected to the analog input G0\_CH1 (P14.1). The analog output of the potentiometer ranges from 0 V to 3.3 V.

Table 10 Potentiometer

| R300 | P14.1 / G0_CH1 (Group 0, Channel 1) |
|------|-------------------------------------|
|      |                                     |



Revision 1.0, 2014-01-10

#### 2.11 Satellite Connectors

The CPU\_45A-V3 board provies three satellite connectors for application extension by satellite cards:

- COM satellite connector (Communication)
- HMI satellite connector (Human Machine Interface)
- ACT satellite connector (Actuator)

Note: Satellite cards shall be connected to their matching satellite connectors only. (For e.g. COM satellite cards shall be connected to COM satellite connector only)



Figure 22 Satellite Connectors

**Hardware Description** 

#### 2.11.1 COM Connector

The COM satellite connector on the CPU\_45A-V3 board allows interface expansion through COM satellite cards (e.g. COM\_ETH-V1)

|            | XMC Pin      |     | NSS | P3.15        | P3.14      | P0.15      | P0.14      | nc   | P2.9       | P2.8       | P15.9        | P5.3       | P15.8          | VSS  | nc      | P1.9       | P1.8        | P3.13      | P2.5       | P3.0         | P5.8            | P0.6      | PORST     |      |     |      | nc      | nc     | nc     | nc     | nc     | nc     | nc     | nc     | nc     | nc     | nc     | nc     | nc     | nc     | nc     | nc     | VSS |
|------------|--------------|-----|-----|--------------|------------|------------|------------|------|------------|------------|--------------|------------|----------------|------|---------|------------|-------------|------------|------------|--------------|-----------------|-----------|-----------|------|-----|------|---------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-----|
| CPU_45A-V3 | XMC Function |     | GND | U1C1_DOUT0   | U1C1_DOUT1 | U1C1_DOUT2 | U1C1_DOUT3 | nc   | ETHO_TXD1  | ЕТНО_ТХD0  | ETHO_CRS_DVC | ETHO_RXERD | ETHO_CLK_RMIIC | GND  | nc      | CAN_N2_TXD | CAN_N2_RXDA | UOC1_DOUT0 | U0C1_DX0B  | UOC1_SCLKOUT | U1CO_SCLKOUT    | P0.6      | RESET#    |      |     |      | nc      | nc     | nc     | nc     | nc     | nc     | nc     | nc     | nc     | nc     | nc     | nc     | nc     | nc     | nc     | nc     | GND |
|            | Function     |     | GND | qSPI_D0      | qSPI_D1    | qSPI_D2    | qSPI_D3    | RSVD | ETH_RMII   | ETH_RMII   | ETH_RMII     | ETH_RMII   | ETH_RMII       | GND  | RSVD    | CAN_TXD    | CAN_RXD     | SPI_MTSR   | SPI_MRST   | SPI_SCLK     | I2C_SCL         | GPIO      | RESET     | VDD5 |     | VDDS | EBU_AD  | EBU_AD | EBU_AD | EBU_AD | EBU_AD | EBU_AD | EBU_AD | EBU_AD | EBU_AD | EBU_AD | EBU_AD | EBU_AD | EBU_AD | EBU_AD | EBU_AD | EBU_AD | GND |
| Satellite  | Pin          | Σ   | 2   | 4            | 6          | 8          | 10         | 12   | 14         | 16         | 18           | 20         | 22             | 24   | 26      | 28         | 30          | 32         | 34         | 36           | 38              | 40        | 42        | 44   | Σ   | 46   | 48      | 50     | 52     | 54     | 56     | 58     | 60     | 62     | 64     | 66     | 68     | 70     | 72     | 74     | 76     | 78     | 80  |
| Connector  | Pi           | COM | 1   | 3            | 5          | 7          | 9          | 11   | 13         | 15         | 17           | 19         | 21             | 23   | 25      | 27         | 29          | 31         | 33         | 35           | 37              | 39        | 41        | 43   | COM | 45   | 47      | 49     | 51     | 53     | 55     | 57     | 59     | 61     | 63     | 65     | 67     | 69     | 71     | 73     | 75     | 77     | 79  |
|            | Function     |     | GND | qSPI_SCLK    | qSPI_CS    | qSPI_CS    | RSVD       | RSVD | ETH_RMII   | ETH_RMII   | ETH_RMII     | ETH_RMII   | ETH_RMII       | RSVD | ASC_DIR | ASC_RXD    | ASC_TXD     | SPI_CSC0   | SPI_CSC1   | SPI_CSC2     | I2C_SDA         | COM_GPI01 | COM_GPIO0 | VDDS |     | VDDS | EBU_ADV | EBU_WR | EBU_RD | EBU_BC | EBU_BC | EBU_CS | EBU_CS | GND    | EBU_A  | GND |
| CPU_45A-V3 | XMC Function |     | GND | U1C1_SCLKOUT | U1C1_SELO0 | U1C1_SELO1 | nc         | nc   | ETH0_RXD1A | ETH0_RXD0A | ETH0_MDO     | ETH0_MDC   | ETHO_TX_EN     | nc   | P3.10   | UOCO_DX0B  | UOCO_DOUTO  | P5.5       | UOC1_SELOO | nc           | U1CO_DOUTO/DX0D | P14.13    | P3.7      |      |     |      | nc      | nc     | nc     | nc     | nc     | nc     | nc     | GND    | nc     | GND |
|            | XMC Pin      |     | VSS | P0.13        | P0.12      | P3.3       | nc         | nc   | P2.3       | P2.2       | P2.0         | P2.7       | P5.9           | nc   | P3.10   | P1.4 (3)   | P1.5 (3)    | P5.5       | P3.1       | nc           | P2.14           | P14.13    | P3.7      |      |     |      | nc      | nc     | nc     | nc     | nc     | DC     | пС     | VSS    | nc     | VSS |

Figure 23 Satellite Connector Type COM

(3) This pin is connected with the satellite connector via an analog switch

**Hardware Description** 

#### 2.11.2 HMI Connector

The HMI satellite connector on the CPU\_45A-V3 board allows interface expansion through HMI satellite cards.

| Function   |
|------------|
|            |
| GND        |
| MMC_CLK    |
| MMC_DATA1  |
| MMC_DATA3  |
| MMC_DATA5  |
| MMC_DATA7  |
| MMC_BUSPOW |
| MMC_nSDCD  |
|            |
| RSVD       |
| AudioRST   |
| I2S_WA     |
| 12S_MCLK   |
| 125_SYNCLK |
| SPI_CSH0   |
| SPI_CSH1   |
| SPI_CSH2   |
| I2C_SDA    |
| HMI_GPI01  |
| HMI_GPI00  |
| VDD5       |
|            |
|            |
| - 1        |
| DAC1/ADC1  |
| :          |
| ADC17      |
| ADC19      |
|            |
|            |
|            |
| TPx1       |
| TPx0       |
|            |
|            |
|            |
|            |
|            |
|            |

Figure 24 Satellite Connector Type HMI

**Hardware Description** 

#### 2.11.3 ACT Satellite Connector

The ACT satellite connector on the CPU\_45A-V3 board allows interface expansion through ACT satellite cards.

|          | _45A-V3             |           | onnector | Satellite |             | PU_45A-V3    |          |
|----------|---------------------|-----------|----------|-----------|-------------|--------------|----------|
| XMC      | XMC Function        | Function  |          | Pin       | Function    | XMC Function | XMC      |
|          |                     |           | Ā        | ACT       |             |              |          |
| NSS      | GND                 | GND       | 1        | 2         | GND         | GND          | VSS      |
| nc       | nc                  | PIF1IN0   | 3        | 4         | PIF01N1     | PIF0_IN0A    | P1.3     |
| nc       | วน                  | PIF11N1   | 5        | 6         | PIF01N2     | PIF0_IN1A    | P1.2     |
| nc       | nc                  | PIF11N2   | 7        | 8         | PIF01N3     | PIF0_IN2A    | P1.1     |
| P1.0     | DSD_PWMN            | PWMN      | 9        | 10        | DSDINO      | DSD_DIN0A    | P0.8 (2) |
| P5.1     | DSD_PWMP            | PWMP      | 11       | 12        | DSDIN1      | DSD_DIN1B    | P2.6     |
| P1.7     | DSD_MCLK2A          | DSDCLKO   | 13       | 14        | DSDIN2      | DSD_DIN2A    | P1.6     |
| P3.4     | DSD_MCLK3B          | DSDCLK1   | 15       | 16        | DSDIN3      | DSD_DIN3A    | P6.5 (3) |
| nc       | วน                  | RSVD      | 17       | 18        | RSVD        | วน           | nc       |
| P4.3     | CCU43_IN3A          | CC_IN3    | 19       | 20        | CC_IN0      | CCU43_IN0A   | P4.6     |
| P5.2     | CCU81_IN1B          | CC_IN4    | 21       | 22        | CC_IN1      | CCU43_IN1A   | P4.5     |
| P5.4     | CCU81_IN3B          | CC_IN5    | 23       | 24        | CC_IN2      | CCU43_IN2A   | P4.4     |
| P0.7 (1) | CCU80_IN0A          | TRAP_A    | 25       | 26        | ENA_A       | CCU43_IN2C   | P2.13    |
| P5.0     | CCU81_IN0A/1A/2A/3A | TRAP_B    | 27       | 28        | ENA_B       | CCU43_IN3C   | P2.12    |
| P4.7     | CCU43_INOC          | TRAP_X    | 29       | 30        | ENA_X       | CCU430UT1    | P6.4     |
| P3.11    | U0C1_SELO2          | SPI_CSA0  | 31       | 32        | SPI_MTSR    | U0C1_DOUT0   | P3.13    |
| P3.8     | U0C1_SELO3          | SPI_CSA1  | 33       | 34        | SPI_MRST    | UOC1_DX0B    | P2.5     |
| nc       | nc                  | SPI_CSA2  | 35       | 36        | SPI_SCLK    | U0C1_SCLKOUT | P3.0     |
| P2.14    | U1CO_DX0D/DOUT0     | I2C_SDA   | 37       | 38        | 12C_SCL     | U1CO_SCLKOUT | P5.8     |
| P15.4    | P15.4 Input         | ACT_GPI01 | 39       | 40        | GPIO        | P0.6         | 9.0d     |
| P4.2     | P4.2                | ACT_GPIO0 | 41       | 42        | RESET       | RESET#       | PORST    |
|          |                     | VDD5      | 43       | 44        | VDD5        |              |          |
|          |                     |           | Ă        | ACT       |             |              |          |
|          |                     | VDDS      | 45       | 46        | VDDS        |              |          |
| VAGND    | AGND                | AGND      | 47       | 48        | AREF        | VAREF        | VAREF    |
| P14.9    | VADC_G1CH1          | DAC1/ADC1 | 49       | 50        | DAC0/ADC0   | VADC_G1CH0   | P14.8    |
| P14.6    | VADC_G0CH6          | ADC3/ORC0 | 51       | 52        | ADC2/DACREF | VADC_G0CH4   | P14.4    |
| P14.7    | VADC_G0CH7          | ADC5/ORC2 | 53       | 54        | ADC4/ORC1   | VADC_G1CH6   | P14.14   |
| P14.0    | VADC_G0CH0          | ADC7      | 55       | 56        | ADC6/ORC3   | VADC_G1CH7   | P14.15   |
| P14.5    | VADC_G2CH1          | ADC9      | 57       | 58        | ADC8        | VADC_G0CH2   | P14.2    |
| P15.14   | VADC_G3CH6          | ADC11     | 59       | 60        | ADC10       | VADC_G2CH6   | P15.6    |
| P15.15   |                     | ADC13     | 61       | 62        | ADC12       | VADC_G2CH7   | P15.7    |
| P1.15    | CCU81_OUT00         | PWMB0_H   | 63       | 64        | PWMA0_H     | CCU80_OUT00  | P0.5     |
| P1.12    | CCU81_OUT01         | PWMB0_L   | 65       | 66        | PWMA0_L     | CCU80_0UT01  | P0.2     |
| P1.14    | CCU81_OUT10         | PWMB1_H   | 67       | 68        | PWMA1_H     | CCU80_OUT10  | P0.4     |
| P1.11    | CCU81_OUT11         | PWMB1_L   | 69       | 70        | PWMA1_L     | CCU80_OUT11  | P0.1     |
| P1.13    | CCU81_OUT20         | PWMB2_H   | 71       | 72        | PWMA2_H     | CCU80_OUT20  | P0.3     |
| P1.10    | CCU81_OUT21         | PWMB2_L   | 73       | 74        | PWMA2_L     | CCU80_0UT21  | P0.0     |
| P6.0 (3) | CCU81_OUT31         | PWMX2     | 75       | 76        | PWMX0       | CCU430UT2    | P6.3     |
| P6.1 (3) | CCU81_OUT30         | PWMX3     | 77       | 78        | PWMX1       | CCU430UT3    | P6.2     |
|          |                     |           |          |           |             |              |          |

Figure 25 Satellite Connector Type ACT

- (1) P0.7 can also be used for JTAG Debugging (TDI)
- (2) P0.8 is used as TRST in order to enable JTAG Debug
- (3) This pin is connected with the satellite connector via an analog switch

**Differences to Board Version V2** 

#### 3 Differences to Board Version V2

Table 11 Differences to older board versions

| Topic of Change  | Description                                                                                                                            |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------|
| Debugger         | An on-board debugger has been added. The debugger has an USB interface (X500). An external debugger can still be used via X400 / X401. |
| User Push Button | A user button as been added. The user button is connected to P2.15. In V2 versions P2.15 was connected to P2.14.                       |
| I2C Connection   | The SDA signal of the I2C is connected to P2.14 only. In V2 versions the SDA signal was connected to P2.14 and P2.15.                  |
| USB Shielding    | The USB shield has been connected to ground through a 1 MOhm resistor and a 100 nF capacitor                                           |

#### 4 Production Data

#### 4.1 Schematics

This chapter contains the schematics for the CPU board:

- Schematic of Satellite Connectors, USB-OTG
- Schematic of XMC4500
- Schematic of Power Supply, Debug Connectors, Reset Circuit
- Schematic of On-board Debugger

The board has been designed with Eagle. The PCB design data of this board can be downloaded from <a href="https://www.infineon.com/xmc-dev">www.infineon.com/xmc-dev</a>.





Figure 26 Schematic of Satellite Connectors, USB-OTG





Figure 27 Schematic of XMC4500





Figure 28 Schematic of Power Supply, Debug Connectors, Reset Circuit





Figure 29 Schematic of On-board Debugger



### 4.2 Component Placement and Geometry



Figure 30 Component Placement and Geometry



### 4.3 Bill of Material (BOM)

Table 12 BOM of CPU\_45A-V3 Board

| Pos.<br>No. | Qty | Value             | Device                                   | Reference Des.                                                 |
|-------------|-----|-------------------|------------------------------------------|----------------------------------------------------------------|
| 1           | 1   | 0R/0603           | Resistor                                 | R416                                                           |
| 2           | 2   | 1M/0402           | Resistor                                 | R200, R505                                                     |
| 3           | 2   | 1k5/0603          | Resistor                                 | R405, R406                                                     |
| 4           | 3   | 2k2/0603          | Resistor                                 | R306, R307, R420                                               |
| 5           | 3   | 4k7/0402          | Resistor                                 | R302, R304, R506                                               |
| 6           | 1   | 4u7F/0805         | Capacitor, ceramic 10% X7R               | C412, C506                                                     |
|             |     |                   |                                          | R204, R303, R309, R310, R400,                                  |
| 7           | 15  | 10k/0402          | Resistor                                 | R401, R408, R412, R414, R419,<br>R422, R428, R429, R503, R507  |
| 8           | 2   | 10nF/0402         | Capacitor                                | C406, C415                                                     |
| <u>-</u>    |     | 10117/0402        | Capacitoi                                | C308, C323, C324, C325, C326,                                  |
| 9           | 9   | 10uF/10V/0805     | Capacitor ceramic                        | C405, C407, C510                                               |
| 10          | 2   | 12MHZ/S/3.2X2.5   | Crystal, NX3225GD, NDK                   | Q302, Q500                                                     |
|             |     |                   |                                          | C312, C315, C316, C317, C500,                                  |
| 11          | 6   | 15pF/0402         | Capacitor, ceramic 10% NP0               | C501                                                           |
| 12          | 1   | 32.768kHz         | Crystal, NX3215SA, NDK                   | Q301                                                           |
|             |     |                   |                                          | R202, R203, R402, R403, R404,<br>R421, R423, R424, R425, R426, |
| 13          | 12  | 33R/0402          | Resistor                                 | R501, R502                                                     |
| 14          | 5   | 74LVC1G66DCK      | IC, Single Analog Switch                 | U301, U303, U304, U305, U306                                   |
|             |     |                   |                                          | C200, C201, C202, C205, C206,                                  |
|             |     |                   |                                          | C209, C210, C300, C301, C302,                                  |
|             |     |                   |                                          | C303, C304, C305, C306, C307, C309, C310, C311, C318, C319,    |
|             |     |                   |                                          | C320, C321, C322, C400, C401,                                  |
|             |     |                   |                                          | C413, C416, C502, C504, C505,                                  |
| 15          |     | 100nF/0402        | Capacitor                                | C507, C508, C509, C511, C512                                   |
| 16          | 2   | 100uF/T/10V/C     | Capacitor, bipolar                       | C411, C414                                                     |
| 17          | 1   | 219-02            | Dual DIP-Switch, 0.1" SMD                | SW300                                                          |
| 18          | 1   | 270k/0402         | Resistor                                 | R415                                                           |
| 19          | 2   | 510R/0603         | Resistor                                 | R313, R500                                                     |
| 20          | 3   | 680R/0603         | Resistor                                 | R301, R407, R504                                               |
| 21          | 3   | BAS3010A-03W      | Diode, SOD323, Infineon                  | V400, V408, V501                                               |
| 22          | 2   | BAT54-02V         | Diode, SC79, Infineon                    | V404, V405                                                     |
| 23          | 1   | BAV70             | Diode, SOT23-3, Infineon                 | V406                                                           |
| 24          | 1   | BC858C            | Transistor, SOT23-3, Infineon            | Q404                                                           |
| 25          | 1   | BK-885            | Battery Holder, 12mm Coin Cell           | X402                                                           |
| 26          | 4   | BLM18PG600        | Ferrite Bead, 0603, Murata               | L201, L300, L301, L500                                         |
| 27          | 2   | ESD8V0L2B-03L     | Diode, TSLP-3-1, Infineon                | V201, V500                                                     |
| 28          | 3   | FIDUCIAL          | FIDUCIAL                                 | ADJ_1, ADJ_2, ADJ_3                                            |
| 29          | 3   | HSEC8_MATING-CARD | Connector, 80-pin Edgecard, Samtec       |                                                                |
| 30          | 1   | IFX1763_PADNOP    | Voltage Regulator, 3.3V LDO,<br>Infineon | U401                                                           |
| 31          | 1   | LED-GE/D/0603     | LED, yellow                              | V300                                                           |
|             |     |                   |                                          |                                                                |



Table 12 BOM of CPU\_45A-V3 Board

|      | CIZ | DOM 01 01 0_43A-V3 | 200.0                                                                                   |                            |
|------|-----|--------------------|-----------------------------------------------------------------------------------------|----------------------------|
| Pos. | Qty | Value              | Device                                                                                  | Reference Des.             |
| No.  |     |                    |                                                                                         |                            |
| 32   | 4   | LED-GN/D/0603      | LED, green                                                                              | V401, V402, V403, V502     |
| 33   | 1   | LED-RT/D/0603      | LED, red                                                                                | V407                       |
| 34   | 1   | NC7WZ07P6X         | NC7WZ07_2P6X                                                                            | U501                       |
| 35   | 1   | POTI/10K/VERT      | Potentiometer, K09K1130A8G, ALPS                                                        | R300                       |
| 36   | 1   | S2*10/1.27SO       | Connector, FTSH-110-01-L-DVK-P, Samtec                                                  | X400                       |
| 37   | 1   | N25Q032A13ESE40    | IC, Serial SPI Flash, 32Mb                                                              | U302                       |
| 38   | 2   | TMPS2-SMD          | Switch, tactile                                                                         | SW400, SW401               |
| 39   | 1   | TPS2051BDBV        | IC, Power Switch                                                                        | U403                       |
| 40   | 1   | XE3K_DM2+CTX       | Connector, FTSH-105-01-LM-DVK, without pin 7, Samtec Connector, FLE-103-01-G-DV, Samtec | X401                       |
| 41   | 1   | XMC4200_QFN48      | IC, XMC4200, QFN48, Infineon                                                            | U500                       |
| 42   | 1   | XMC4500_LQFP144    | IC, XMC4500, LQFP144, Infineon                                                          | U300                       |
| 43   | 2   | ZX62-AB-5PA        | Connector, Micro-USB, Hirose                                                            | X203, X500                 |
| 44   | 1   | no ass.            | Pinheader, 4-pin, 0.1" TH                                                               | X501                       |
| 45   | 4   | no ass.            | Pinheader, 1-pin, 0.1" TH                                                               | TP404, TP405, TP406, TP407 |
| 46   | 1   | no ass./0R/0603    | Resistor                                                                                | R417                       |
| 47   | 1   | no ass./4k7/0402   | Resistor                                                                                | R427                       |
| 48   | 2   | no ass./10k/0402   | Resistor                                                                                | R411, R413                 |
| 49   | 1   | no ass./10nF/0402  | Resistor                                                                                | C503                       |
| 50   | 2   | no ass./33R/0402   | Resistor                                                                                | R410, R508                 |
| 51   | 1   | no ass.            | Pinheader, 3-pin, 0.1" TH, Hitex PowerScale                                             | JP300                      |
| 52   | 5   | 0R/0402            | Solder Jumper (0 Ohm)                                                                   | SJ3, SJ4, SJ5, SJ6, SJ7    |

www.infineon.com