FYS2140 - Kvantefysikk

Oskar Idland

Innhold

Ι	Hi	storis	k Utvikling	2
1	Bru	.ddet n	ned Klassisk Fysikk	3
	1.1	Hva er	· Kvantemekanikk?	3
		1.1.1	Energikvantisering	3
		1.1.2	Bølge-Partikkel-dualitet	3
		1.1.3	Egentilstand og superposisjon	3
		1.1.4	Heisenberg's uskarphetsrelasjon	4
		1.1.5	Paulis eksklusjonsprinsipp	4
	1.2	Enhete	er i Kvantefysikk	4
		1.2.1	Lengde	4
		1.2.2	Energi	4
		1.2.3	Masse	5
		1.2.4	Andre Konstanter	5
		1.2.5	Coulomb-potensialet	5
		1.2.6	Nyttige Tabeller	5
	1.3	Planck	x's Kvantiseringshypotese	7
		1.3.1	Utledning av Wiens Forskyvningslov	11
II	\mathbf{L}	ectur	e Notes	12
2	02 I	Foreles	nings Notater	13
	2.1	Definis	sjoner	13
		2.1.1		13
		2.1.2	Frekvensfordeling $M_{\nu}(T)$	13
		2.1.3	Radians $M(T)$	13
		2.1.4	Stående bølge	13
3	03 I	Foreles	ning Notater	14

Del I Historisk Utvikling

Kapittel 1

Bruddet med Klassisk Fysikk

1.1 Hva er Kvantemekanikk?

Kvantemekanikk forsøker å beskrive fysiske systemer på kvante nivå. Her står Schrödinger's likning sentralt.

1.1.1 Energikvantisering

Energi i Kvantemekanikken er ikke en kontinuerlig størrelse. Den har diskrée verdier. Dette kalles energikvantisering. Dette gjelder både fotoner og elektroner.

1.1.2 Bølge-Partikkel-dualitet

Vi vet ikke helt hva er partikkel er, men det vi vet er at de har egenskaper som minner om partikler og bølger. Dette kalles bølge-partikkel-dualiteten. Vi kan skyte ut fotoner i små energi pakker eller kvanter hvor de vil oppføre seg som partikler, men som en ser i dobbelspalteeksperimentet kan de likevel oppføre seg som bølger på samme tid. Da trenger vi Schrödinger's bølgeligning.

1.1.3 Egentilstand og superposisjon

En partikkel med kvantisert energien ϵ_n befinner seg i en tilstand som er beskrevet av bølgefunksjonen ψ_n . Dette kalles en energi-egentilstand. En partikkel kan være i flere energi-egentilstander samtidig. Dette kalles superposisjon. Vi kan tenke på Schrödinger's katt som en partikkel som er i en superposisjon av to energi-egentilstander, død og levende. Da får vi følgende:

$$\psi = c_{\text{død}} \cdot \psi_{\text{død}} + c_{\text{levende}} \cdot \psi_{\text{levende}}$$
 (1.1)

Hvis vi måler tilstanden til katten vil vi få én av de to tilstandene. Enten død eller levende. Da ender vi opp i det som kalles egentilstand fra bølgefunksjonen/superposisjon. Sannsynligheten for at katten er død er da $|c_{\rm død}|^2$ og Sannsynligheten for at katten er levende er $|c_{\rm levende}|^2$. Det eneste Kvantemekanikken kan fortelle oss er sannsynligheten for at katten er i en tilstand, ikke om den er i den tilstanden eller ikke, før vi måler det.

1.1.4 Heisenberg's uskarphetsrelasjon

I klassisk mekanikk er foreksempel posisjon \mathbf{x} og bevegelsesmengde \mathbf{p} uavhengig størrelser. I Kvantemekanikken impliserer via Heisenberg's uskarphetsrelasjon at en ikke kan observerer begge til en vilkårlig presisjon. Dette uttrykkes via følgende formel

$$\Delta \mathbf{p} \Delta \mathbf{x} \ge \frac{\hbar}{2} \tag{1.2}$$

hvor $\Delta \mathbf{x}$ er usikkerheten i posisjon og $\Delta \mathbf{p}$ er usikkerheten i bevegelsesmengde. Dette er bare en merkbart på atomært nivå, men gjelder teknisk sett alltid.

1.1.5 Paulis eksklusjonsprinsipp

To fermioner (f.eks elektroner, protoner, kvarker og nøytrinoer) akn ikke befinne seg i samme tilstand (dvs. samme energi samme sted). Dette ser vi i atomer hvor elektronene fyller opp skall slik at nye elektroner må fylle opp et nytt skall.

1.2 Enheter i Kvantefysikk

1.2.1 Lengde

For å unngå ekstremt små eller store tall bruker vi litt smarte enheter. Kvantefysikken operer på størrelser fra 10^{-8} til 10^{18} m. Nanometer (nm) er 10^{-9} m, femtometer (fm) er 10^{-15} m og ångstrøm (Å) er 10^{-10} m / 0.1nm.

1.2.2 Energi

For energi brukes til vanlig Joule, men energien i kvantemekanikken er så liten som 10^{-19} J. Da bruker vi eV (elektronvolt) som er $1.602 \cdot 10^{-19}$ C. Dette kommer fra at 1J er likt med 1C · 1V. Da er 1 eV den kinetiske energien et elektron får når den akselereres gjennom en potensialdifferensen på 1V.

1.2.3 Masse

Istedet for å bruke kg for å måle masse kan vi heller bruke MeV/c^2 . Dette kommer fra likningen $E=mc^2$. Ser vi på hvileenergien til med enheten eV får vi

$$E_0^{\text{elektron}} = m_e c^2 = 5.11 \cdot 10^5 \text{eV}$$
 (1.3)

Løser vi dette for massen m_e får vi

$$m_e = E_0^{\text{elektron}}/c^2 = 0.511 \text{ MeV}/c^2$$
 (1.4)

1.2.4 Andre Konstanter

Placks konstant

$$h = 6.626 \cdot 10^{-34} \text{ Js} = 4.135 \cdot 10^{-15} \text{ eVs}$$
 (1.5)

$$hbar = \frac{h}{2\pi} = 1.055 \cdot 10^{-34} \text{Js} = 6.582 \cdot 10^{-16} \text{eVs}$$
(1.6)

$$hc = 1240 \text{ eV nm}(\text{MeV fm}) \tag{1.7}$$

$$\hbar c = 197.3 \text{ eV nm}(\text{MeV fm}) \tag{1.8}$$

Noen ganger kan det lønne seg å gange en brøk med c oppe og nede for å få inn konstanten $\hbar c$. Utrykket under hadde medført veldig små størrelser (10^{-34} og 10^{-31}) og dermed ville det blitt vanskelig å regne med.

$$\frac{h}{m_e c} = \frac{hc}{m_e c^2} = \frac{1240 \text{eV nm}}{0.511 \cdot 10^6} \approx 0.002nm$$
 (1.9)

1.2.5 Coulomb-potensialet

$$V(r) = \frac{e^2}{4\pi\epsilon_0 r} = \frac{k_e e^2}{2}, \qquad k_e e^2 = 1.44 \text{eV nm}$$
 (1.10)

1.2.6 Nyttige Tabeller

Tabell 1.1: Standard metrisk notasjon for tierpotenser

Potens	prefiks	symbol	Potens	prefiks	symbol
10^{-1}	desi	d	10 ¹	deka	da
10^{-2}	centi	c	10^{2}	hekto	h
10^{-3}	milli	m	103	kilo	k
10^{-6}	mikro	μ	106	mega	M
10^{-9}	nano	n	109	giga	G
10^{-12}	pico	p	1012	tera	T
10^{-15}	femto	f	10^{15}	peta	P
10^{-18}	atto	a	10 ¹⁸	exa	E

Figur 1.1

Tabell 1.2: Nyttige konstanter				
Konstant	symbol	verdi		
Lyshastighet	c	$2.998 \times 10^8 \; \mathrm{m/s}$		
Permittivitet i vakuum	ϵ_0	$8.854 \times 10^{-12} \; \mathrm{F/m}$		
Elektronladning	e	$1.602 \times 10^{-19}~{\rm C}$		
Coulombs konstant	$k_e = 1/4\pi\epsilon_0$	$8.988 \times 10^9 \ \mathrm{Nm^2/C^2}$		
	$k_e e^2$	$1.440~\mathrm{eVnm}$		
Plancks konstant	h	$6.626 \times 10^{-34} \text{ Js} =$		
		$4.136 \times 10^{-15} \text{ eVs}$		
	$\hbar = h/2\pi$	$1.055 \times 10^{-34} \text{ Js} =$		
		$6.582 \times 10^{-16} \; \mathrm{eVs}$		
	hc	$1240~{ m eVnm}$		
	$\hbar c$	$197.3~\mathrm{eVnm}$		
Finstrukturkonstant	$\alpha = k_e e^2/\hbar c$	1/137.036		
Bohr-radius	$a_0 = \hbar^2/m_e k_e e^2$	0.05292 nm		
Hydrogena tomets grunntil stand	$-k_e e^2/2a_0$	$-13.61 \mathrm{eV}$		
Elektronets gyromagnetiske faktor	g_e	2.002		
Kjernemagneton	$\mu_N = e\hbar/2m_p$	$3.152\times 10^{-14}~{\rm MeV/T}$		
Gravitasjonskonstant	G_N	$6.674 \times 10^{-11} \; \mathrm{Nm^2/kg^2}$		
Boltzmanns konstant	k_B	$1.381 \times 10^{-23}~{\rm J/K}~=$		
		$8.617 \times 10^{-5} \; \mathrm{eV/K}$		

Figur 1.2

Partikkel	i kg	$i MeV/c^2$	$i \ u = 1.661 \times 10^{-27} \text{kg}$
elektron	$9.109 \times 10^{-31} \text{ kg}$	$0.511~{ m MeV}/{ m c}^2$	0.000549 u
proton	$1.672 \times 10^{-27} \text{ kg}$	$938.3~{ m MeV}/{ m c}^2$	1.007277 u
nøytron	$1.675 \times 10^{-27} \text{ kg}$	$939.6~{ m MeV}/{ m c}^2$	1.008665 u
hydrogen	$1.673 \times 10^{-27} \text{ kg}$	$938.8~{ m MeV}/{ m c}^{2}$	1.007825 u

Figur 1.3

Tabell 1.4: Nyttige forhold fo	or partikler.a			
Bølgeegenskaper for frie tilstander				
For $m \geq 0$, både relativistisk og ikke-relativistisk				
Energi	$E = h\nu = \hbar\omega$			
Bevegelsesmeng de og bølgetall ^b	$p = \hbar k = h/\lambda$	$k = 2\pi/\lambda$		
Vinkelfrekvens og frekvens	$\omega = 2\pi \nu$	$\nu = c/\lambda$		
Partikkelegenskaper for frie tilstander				
For $m = 0$, kun relativistisk				
Energi og hastighet ^b	E = pc	v = c		
For $m>0$, relativistisk Energi	$E = \frac{mc^2}{\sqrt{1 - v^2/c^2}}$ $p = \frac{1}{c}\sqrt{E^2 - (mc^2)^2}$			
Bevegelsesmeng $\mathrm{d}\mathrm{e}^b$	$p = \frac{1}{c}\sqrt{E^2 - (mc^2)^2}$			
For $m > 0$, ikke-relativistisk c				
Energi inkl. hvilænergi	$E = \frac{mv^2}{2} + mc^2$			
Bevegelsesmeng de^b	p = mv			
^a Merk de lignende symbolene for hastighet v og frekvens ν . ^b Merk at bevegelsesmengde $p= \mathbf{p} $, bølgetall $k= \mathbf{k} $, og hastighet $v= \mathbf{v} $ også har retning. ^c Tommelfingerregel: Bruk relativistisk når $v/c>1\%$.				

Figur 1.4

1.3 Planck's Kvantiseringshypotese

Kvantisering betyr i kvantefysikken at en fysisk størrelse bare antar diskrete verdier. Eksempler på dette er elektrisk ladning, hvor fri ladning er et heltallig N multiplum av antall frie elektroner. Energi kan også kvantifiseres og var definerende for bruddet med klassisk fysikk. Klassisk fysikk klarer ikke å forklare frekvensfordelingen til elektromagnetisk stråling fra et legeme ved en gitt temperatur. Dette kan være sola eller en vanlig stekeplate.

Definisjoner

- \bullet Termisk stråling: Elektromagnetisk stråling sendt ut av et materiale ved en temperatur T. Alle legemer emitterer og absorber denne strålingen
- Ved en gitt temperatur T er vi interessert i å finne fordelingen av emittert stråling som funksjon av den elektromagnetiske strålingen sin frekvens ν eller bølgelengde λ . Forholdet mellom frekvens ν og bølgelengde λ er gitt ved

$$\nu = \frac{c}{\lambda} \tag{1.11}$$

Frekvensfordeling

$$M_{\nu}(T) \tag{1.12}$$

Kalles spektralfordelingen eller fordelingsfunksjonen for frekvensspekteret beskriver mengden utstrålt energi fra en gjenstand ved temperatur T per areal per tid per frekvensenhet.

• Integrert over alle frekvenser

$$M(T) = \int_0^\infty M_\nu(T) \ d\nu \tag{1.13}$$

får vi totalt utstrålt energi per sekund per areal ved en gitt temperatur T. Enhetene bli følgende: $M(T) = J/m^2s = W/m^2$. Dette kalles radians.

Figur 1.5: Frekvensfordelingen fra Planck's kvantiseringspostulat. Merk den klassiske kurven som øker alt for mye ikke matcher observert frekvens

• Vår utfordring er å finne frem til en forklaring for den eksperimentell formen til $M_{\nu}(T)$

Den klassiske versjonen å se på dette var via et sort legeme som er tenkt til å ikke reflektere noe av strålingen den mottar, alt blir absorbert. Dette ble det eksperimentert og resultatet ser man i figur 1.5. Basert på måledata kom en fram til at radiansen til et sort legeme kan skrives som

$$M(T) = \sigma T^4 \tag{1.14}$$

hvor σ er en konstant. Dette kalles Stefan-Boltzmanns lov. Wiens forskyvningslov beskriver sammenhengen mellom temperaturer og bølgelengden λ_{max} .

$$\lambda_{\text{max}}T = 2.897 \cdot 10^{-3} \text{ mK} \tag{1.15}$$

Nå skal vi se hva som skjer når vi bruker resultatene fra klassisk fysikk.

$$M_{\nu}(T) = \frac{2\pi\nu^2}{c^2} \langle E \rangle \tag{1.16}$$

hvor $\langle E \rangle$ er gjennomsnitsenergien per svingemode til det elektromagnetiske feltet i hulrommet til det sorte legeme.

$$\langle E \rangle = k_B T \tag{1.17}$$

hvor k_B er Boltzmanns konstant. For å finne radiansen setter vi inn utrykket for $\langle E \rangle$ og integrerer.

$$M(T) = \int_0^\infty \frac{2\pi v^2}{c^2} k_B T \, d\nu \tag{1.18}$$

Dette er lett å se at energien går mot uendelig og matcher ikke med de eksperimentelle resultatene. En formel som matcher bedre kan ikke divergere. Feilen er at $\langle E \rangle$ er ikke stemmer. Hvis en ser på strålingen som et stort antall kvantiserte enheter med energi ϵ_n

$$\epsilon_n = nh\nu \tag{1.19}$$

der h er Planck's konstant og n er et heltall. Planck utledet et alternativt utrykk for $\langle E \rangle$.

$$\langle E \rangle = \frac{h\nu}{e^{h\nu/k_B T} - 1} \tag{1.20}$$

Som gir

$$M_{\nu}(T) = \frac{2\pi\nu^2}{c^2} \frac{h\nu}{e^{h\nu/k_B T} - 1}$$
 (1.21)

Som samsvarer med eksperiment. Viktig å få med seg er at $\langle E \rangle \to k_B T$ når $T \to \infty$ eller $\lambda \to \infty$ aka $\nu \to 0$ som er hvor klassisk mekanikk er gyldig. For å få litt mer elegante utrykk å unngå store eller små tall ganger vi inn h.

$$M_{\nu}(T) = \frac{2\pi}{h^2 c^2} \frac{(h\nu)^3}{e^{h\nu/k_B T} - 1}$$
 (1.22)

Vi setter in $x = h\nu$

$$M_x(T) = \frac{2\pi}{h^2 c^2} \frac{x^3}{e^{x/k_B T} - 1}$$
 (1.23)

Vi vet at hc = 1240 eV nm

$$M_x(T) = \frac{2\pi}{1240^2} \frac{x^3}{e^{x/k_B T} - 1}$$
 (1.24)

Hvor M_x har enheter eV / nm². For å utlede Stefan-Boltzmanns lov via Planck's utrykk bruker vi den originale formelen og setter in x vi fant tidligere.

$$M(T) = \int_0^\infty M_{\nu}(T) \, d\nu = \int_0^\infty \frac{2\pi\nu^2}{c^2} \frac{h\nu}{e^{h\nu/k_B T} - 1} \, d\nu$$
 (1.25)

$$M(T) = \frac{2\pi k_B^4}{c^2 h^3} T^4 \underbrace{\int_0^\infty \frac{x^3}{e^x - 1} \, \mathrm{d}x}_{\frac{\pi^4}{2}}$$
(1.26)

$$M(T) = \sigma T^4, \quad \sigma = \frac{2\pi^5 k_B^4}{15c^2 h^3} = 5.676 \cdot 10^{-8} \frac{W}{m^2 K^4}$$
 (1.27)

Den viktigste forskjellen var at Planck regnet ut den midlere verdien $\langle E \rangle$ med diskrete verdier for energi og ikke kontinuerlige verdier. Han hadde dataen foran seg og prøvde å finne en modell som passet.

Plank's Hypotese

Enhver fysisk størrelse som utviser enkle harmoniske svingninger har energier som tilfredsstille

$$E_n(\nu) = nh\nu, \qquad n = 1, 2, 3, \dots$$
 (1.28)

hvor ν er frekvensen til svingningene og h er en universell konstant.

Kvantefysikken gjelder alltid, men klassisk fysikk kan brukes når energiskalaen er stor nok ettersom det ikke er merkbart.

1.3.1 Utledning av Wiens Forskyvningslov

Del II Lecture Notes

Kapittel 2

02 Forelesnings Notater

2.1 Definisjoner

2.1.1 Sort legeme

Et sort legemet absorberer alt av stråling og vil ved lave temperaturer se helt sort ut. Ved høyere temperaturer vil den gløde.

2.1.2 Frekvensfordeling $M_{\nu}(T)$

Funksjonen som viser fordelingen av forskjellige temperaturer i et sort legeme.

2.1.3 Radians M(T)

Total mengde energi et sort legemet stråler ut.

$$M(T) = \int_0^\infty M_\nu(T) \, \mathrm{d}\nu \tag{2.1}$$

2.1.4 Stående bølge

En stående bølge er en bølge som ikke beveger seg.

$$\lim_{n\to\infty}$$

Kapittel 3 03 Forelesning Notater