Pascal's Triangle

The triangle is usually set out like an isosceles triangle but I have set it out slightly differently:

	Col 0	Col 1	Col 2	Col 3	Col 4	Col 5	Col 6	Col 7	Col 8	Col 9
Row 0	1									
Row 1	1	1								
Row 2	1	2	1							
Row 3	1	3	3	1						
Row 4	1	4	6	4	1					
Row 5	1	5	10	10	5	1				
Row 6	1	6	15	20	15	6	1			
Row 7	1	7	21	35	35	21	7	1		
Row 8	1	8	28	56	70	56	28	8	1	
Row 9	1	9	36	84	126	126	84	36	9	1

- 1) The numbers in the triangle are selection numbers. (see chapter: Arrangements and Selections) For example, the number in row 9 and column 3 is (9C3)
- 2) We can generate each row of the triangle from the row above. To generate row 10:

$$(10C0)=1$$

 $(10C1)=(9C0)+(9C1)=1+9=10$
 $(10C2)=(9C1)+(9C2)=9+36=45$
 $(10C3)=(9C2)+(9C3)=36+84=120$ etc

3) Look at the numbers in row 7 of Pascal's triangle: 1,7,21,35,35,21,7,1

A typical number in this row is
$$(7C3) = \frac{7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{(3 \times 2 \times 1)(4 \times 3 \times 2 \times 1)}$$

After lots of cancelling, we are left with a positive integer. The 7 on the top of the fraction can't be cancelled out by numbers on the bottom of the fraction because 7 is prime. So (7C3) must be a multiple of 7

In general:

If p is prime then all the numbers in line p of Pascal's triangle will be a multiple of p (apart from the 1 at each end)

4) Binomial theorem for multiplying out brackets

$$(1+x)^{1}=1+x$$

$$(1+x)^{2}=1+2x+x^{2}$$

$$(1+x)^{3}=1+3x+3x^{2}+x^{3}$$

$$(1+x)^{4}=1+4x+6x^{2}+4x^{3}+x^{4}$$

In general: if n is a positive integer

$$(1+x)^n = (nC0) + (nC1)x + (nC2)x^2 + (nC3)x^3 + ... + (nCn)x^n$$

sub in
$$x=1$$
 $(nC0)+(nC1)+(nC2)+...+(nCn)=2^n$
sub in $x=-1$ $(nC0)-(nC1)+(nC2)-(nC3)+...=0$
sub in $x=2$ $(nC0)+2(nC1)+2^2(nC2)+...+2^n(nCn)=3^n$

etc

By adding or subtracting the first two results we get:

$$(nC0)+(nC2)+(nC4)+...=2^{n-1}$$

 $(nC1)+(nC3)+(nC5)+...=2^{n-1}$

EXERCISE

Write down row 10 of Pascal's triangle.

SOLUTION