# Национальный исследовательский университет «Высшая школа экономики»

# Прикладной проект

«Поиск картинок вышивок по текстовому описанию с помощью общего пространства эмбеддингов»

Курс: «Анализ изображений и компьютерное зрение»

Выполнили: Студенты группы мИПИИ241 Дистлер Марина Конохова Екатерина Холичева Ангелина

# Содержание

| 1 | Вве | едение                                          |
|---|-----|-------------------------------------------------|
|   | 1.1 | Проблематика и актуальность                     |
|   | 1.2 | Целевая аудитория и кейсы применения            |
|   | 1.3 | Постановка задачи                               |
|   | 1.4 | Стек технологий и инфраструктура                |
|   | 1.5 | Этапы и таймлайн работ                          |
| 2 | Обз | вор существующих решений                        |
|   | 2.1 | Классические подходы к поиску изображений       |
|   | 2.2 | Современные подходы: мультимодальные модели     |
|   | 2.3 | Сравнение мультимодальных моделей               |
|   | 2.4 | Пример обработки запроса                        |
|   | 2.5 | Вывод                                           |
| 3 | Под | цготовка данных                                 |
|   | 3.1 | Сбор данных                                     |
|   | 3.2 | Предобработка изображений                       |
|   | 3.3 | Предобработка текста                            |
|   | 3.4 | Создание тестовой выборки                       |
|   | 3.5 | Полуавтоматическое построение релевантных пар 8 |
|   | 3.6 | Визуализация примеров данных                    |
|   | 3.7 | Вывод                                           |
| 4 | Раз | работка модели                                  |
|   | 4.1 | Общая архитектура                               |
|   | 4.2 | Функция потерь                                  |
|   | 4.3 | Гиперпараметры и стратегия дообучения           |
|   | 4.4 | Процесс обучения и поведение модели             |
|   | 4.5 | Выводы по архитектуре и обучению                |
| 5 | Pea | лизация и обучение                              |
|   | 5.1 | Используемые фреймворки и библиотеки            |
|   | 5.2 | Аппаратная инфраструктура                       |
|   | 5.3 | Пайплайн обучения                               |
|   | 5.4 | Мониторинг и логирование                        |
|   | 5.5 | Поведение модели во время обучения              |
|   | 5.6 | Выводы                                          |
| 6 | Оце | енка качества модели                            |
|   | 6.1 | Выбранные метрики                               |
|   | 6.2 | Результаты на тестовой выборке                  |
|   | 6.3 | Качественные примеры поиска                     |
|   | 6.4 | Ошибки и edge-cases                             |
|   | 6.5 | Выводы по качеству                              |
| 7 | Раз | вёртывание и демонстрация                       |
|   | 7.1 | Архитектура решения                             |

|   | 7.2 | Backend: Flask + FAISS                |
|---|-----|---------------------------------------|
|   | 7.3 | Frontend: Jinja2 шаблоны              |
|   | 7.4 | Развёртывание и доступ                |
|   | 7.5 | Интеграция и расширение               |
|   | 7.6 | Выводы                                |
|   |     |                                       |
| 8 | Вы  | воды и перспективы                    |
|   | 8.1 | Итоги проекта                         |
|   | 8.2 | Соответствие целям и критериям        |
|   | 8.3 | Ограничения и потенциальные улучшения |
|   | 8.4 | Вектор развития                       |
|   | 8.5 | Финальные выволы 22                   |

# 1. Введение

# 1.1 Проблематика и актуальность

Современные каталоги машинной вышивки насчитывают десятки тысяч позиций. Однако их поиск по-прежнему основан на простых фильтрах (категория, цвет, размер) или ключевых словах, что делает его неэффективным при свободных описаниях – например, «котёнок в шляпе акварелью» или «праздничный узор в стиле бохо».

Многие запросы возвращают нерелевантные или пустые результаты, что ухудшает пользовательский опыт и приводит к отказам от покупки.

#### По данным исследований:

- До **31** % **поисковых запросов** в е-commerce заканчиваются безрезультатно, даже несмотря на наличие соответствующего товара в каталоге<sup>1</sup>.
- Многие сайты неправильно обрабатывают **ключевые функции запроса**, что вызывает неудовлетворительный поиск.
- Google Cloud Retail / Vertex AI Search for commerce отмечает:
  - Улучшение качества поиска приводит к увеличению выручки до 15 %
     за счёт повышения СТК и конверсии.
  - Клиенты фиксируют до +12 % CTR, +7 % роста конверсии и +6 % дохода на визит после внедрения Vertex AI Search<sup>2</sup>.

Оценка потери выручки в диапазоне 8-12~% является обоснованной по результатам A/B-экспериментов и UX-анализа в индустрии, особенно для длинных, описательных и семантически сложных запросов, которыми характеризуется поиск дизайнов вышивки.

Таким образом, задача смыслового поиска по свободному тексту в нишевых B2C и B2B-платформах – это не просто улучшение UX, а прямой фактор роста ключевых бизнес-метрик (GMV, CR, LTV).

# 1.2 Целевая аудитория и кейсы применения

| L | целевая | аудитория | И | ожидаемые | эффекты |
|---|---------|-----------|---|-----------|---------|
|---|---------|-----------|---|-----------|---------|

| Сегмент              | Пользовательская задача    | Бизнес-эффект                        |  |
|----------------------|----------------------------|--------------------------------------|--|
| Домашние мастера     | Быстро найти нужный ди-    | Экономия времени, рост LTV           |  |
|                      | зайн под заказ клиента     |                                      |  |
| Ателье / фабрики     | Интеграция API в ERP для   | Сокращение операционных              |  |
|                      | полуавтоматического подбо- | издержек                             |  |
|                      | ра рисунков                |                                      |  |
| Маркетплейсы вышивки | Повысить конверсию поиска  | $+7~\%$ к GMV (оценка по ${ m A/B})$ |  |
|                      | ightarrow покупки          |                                      |  |

<sup>&</sup>lt;sup>1</sup>Retail Search best practices for high performance – Google Cloud

<sup>&</sup>lt;sup>2</sup>Vertex AI Search for Commerce – Medium

# 1.3 Постановка задачи

**Цель:** по свободному русскоязычному запросу выдавать N наиболее релевантных изображений.

Вход: строка текста.

**Выход:** ранжированный список URL изображений + метаданные (название, цена).

Данные: 21 126 пар «изображение – описание» (Embroteka + Royal Present).

 $\bf Meтод:$  мультимодальная модель CLIP/ruCLIP, проецирующая обе модальности в

общее 512-мерное пространство; похожесть определяется косинусом.

# 1.4 Стек технологий и инфраструктура

#### Используемые технологии и обоснование

| Слой                 | Конкретика                                    | Причина выбора               |  |
|----------------------|-----------------------------------------------|------------------------------|--|
| ML-ядро              | ruCLIP-vit-b-32 (v0.2)                        | Лучшая поддержка русского    |  |
|                      |                                               | языка                        |  |
| Фреймворк            | PyTorch 2.7.1                                 | DDP + поддержка A100         |  |
| Хранение эмбеддингов | FAISS 1.8 (IndexFlatL2)                       | Менее 50 мс на поиск среди   |  |
|                      |                                               | 25 000 векторов              |  |
| API                  | Flask 3.0                                     | Лёгкий REST + интеграция     |  |
|                      |                                               | Jinja2                       |  |
| Деплоймент           | NGINX                                         | Повторяемость, балансировка  |  |
|                      |                                               | нагрузки                     |  |
| CI/CD                | $\text{GitHub Actions} \to \text{Docker Hub}$ | Автоматический пуш образов   |  |
| Мониторинг           | Prometheus + Grafana                          | RT-метрики latency и ошибок  |  |
| Хранение данных      | MinIO (S3-совместимо)                         | Локальное объектное хранили- |  |
|                      |                                               | ще                           |  |

# 1.5 Этапы и таймлайн работ

#### Этапы проекта и ключевые сроки

| Этап                          | Ключевые активности                                                                 | Дата окончания |
|-------------------------------|-------------------------------------------------------------------------------------|----------------|
| Сбор и очистка данных         | $\mathrm{Be}$ б-краулер $ ightarrow$ $\mathrm{dedup}$ $ ightarrow$ $\mathrm{BPE}$ - | 12 марта 2025  |
|                               | токенизация                                                                         |                |
| Базовый zero-shot прототип    | Инференс ruCLIP, ручная вали-                                                       | 25 марта 2025  |
|                               | дация качества                                                                      |                |
| Дообучение и тонкая настройка | 5 эпох, подбор learning rate, early                                                 | 10 апреля 2025 |
|                               | stopping                                                                            |                |
| Метрики и аналитика           | Precision/Recall@K, error buckets                                                   | 20 апреля 2025 |
| Веб-сервис + UI               | Flask backend, Jinja2 шаблоны,                                                      | 5 мая 2025     |
|                               | Dockerfile                                                                          |                |
| Деплой и демо                 | Сервер A100 (HSE Cluster), SSH-                                                     | 15 мая 2025    |
|                               | туннель для жюри                                                                    |                |
| Итоговый отчёт и презентация  | PDF-документ, слайды, видео                                                         | 17 июня 2025   |
|                               | walkthrough                                                                         |                |

# 2. Обзор существующих решений

#### 2.1 Классические подходы к поиску изображений

До появления мультимодальных моделей поиск изображений по тексту обычно реализовывался двумя способами.

#### Поиск по метаданным

Изображения вручную аннотировались тегами (например, «животные», «узор», «винтаж»), после чего поиск происходил по этим меткам. Такой способ широко распространён на сайтах с шаблонами и библиотеками дизайнов.

**Недостатки:** ограниченность словаря, невозможность искать по стилю или контексту, высокие трудозатраты на разметку.

# Поиск на основе признаков (CBIR)

Методы Content-Based Image Retrieval используют низкоуровневые признаки изображений (цвета, текстуры, градиенты), а также фичи из сверточных нейросетей. Однако такие подходы требуют изображение в качестве запроса и не поддерживают текстовый ввод.

Оба подхода не справляются с задачей свободного текстового поиска: они не распознают смысл запроса, стиль изображения, композиционные или эмоциональные оттенки.

#### 2.2 Современные подходы: мультимодальные модели

Развитие моделей обучения представлений привело к созданию мультимодальных архитектур, которые выучивают общее векторное пространство для текста и изображения. В таком пространстве можно напрямую измерять семантическую близость между текстом и картинкой.

# CLIP (OpenAI, 2021)

Оригинальная модель Contrastive Language—Image Pretraining обучена на 400 миллионов пар «текст—изображение». Она показала сильные zero-shot свойства и высокую устойчивость к обобщению, однако плохо работает с русскими текстами.

#### ruCLIP (SberAI, 2022)

Модель на базе CLIP, обученная на русскоязычных данных. Поддерживает ViTархитектуру, выдаёт эмбеддинги, пригодные для FAISS и поиска ближайших соседей. Демонстрирует высокую релевантность на естественных запросах на русском языке.

#### BLIP, GIT, Flamingo

Более сложные encoder-decoder модели, ориентированные на генерацию, а не на поиск. Они плохо подходят для нашей задачи из-за больших размеров эмбеддингов, отсутствия поддержки ANN и слабой работы с русским языком.

#### 2.3 Сравнение мультимодальных моделей

Ниже приведена сравнительная таблица, демонстрирующая особенности наиболее популярных мультимодальных моделей с точки зрения релевантности нашей задаче.

| Chaptiotitio | мультимодальных | MACHARA |
|--------------|-----------------|---------|
| Оравнение    | мультимодальных | моделеи |
|              |                 |         |

| Модель | Язык  | Объём | Apx.          | Русский<br>язык         | Дообучение    | ANN | Размер   |
|--------|-------|-------|---------------|-------------------------|---------------|-----|----------|
| CLIP   | Англ. | 400M  | ViT + Transf. | Нет (только<br>перевод) | Да, но сложно | Да  | 512      |
| ruCLIP | RU+EN | ~100M | ViT-B/32      | Отличная<br>поддержка   | Да, легко     | Да  | 512      |
| BLIP2  | Англ. | >1B   | EncDec.       | Нет                     | Нет, сложно   | Нет | 768–1024 |
| GIT    | Англ. | >1B   | Transformer   | Нет                     | Нет           | Нет | 1024     |

*Вывод:* ruCLIP — лучший выбор для нашей задачи, сочетающий поддержку русского языка, компактность, возможность дообучения и высокую совместимость с индексами поиска.

# 2.4 Пример обработки запроса

Покажем разницу между моделями CLIP и ruCLIP на одном примере.

Запрос: «Милый котёнок в шляпе с цветами, акварельный стиль»

Сравнение результатов CLIP и ruCLIP по одному запросу

| Модель | Результат                            | Комментарий                         |
|--------|--------------------------------------|-------------------------------------|
| CLIP   | Кот на траве или просто животное без | Игнорирует стилистику и детали (ан- |
|        | аксессуаров                          | гл. эмбеддинги)                     |
| ruCLIP | Котёнок в акварельной стилистике, с  | Учитывает стиль, форму, предметы    |
|        | цветочным декором                    |                                     |

Этот пример демонстрирует важность русскоязычного корпуса и корректного семантического мэппинга. ruCLIP адекватно интерпретирует как художественный стиль, так и мелкие смысловые нюансы, что особенно важно в контексте дизайнов вышивки.

#### 2.5 Вывод

ruCLIP демонстрирует оптимальный баланс между качеством семантического сопоставления, скоростью, масштабируемостью и поддержкой русского языка. Он способен обеспечить высокое качество поиска без дополнительных аннотаций и может быть эффективно дообучен на специализированной выборке — как это сделано в рамках нашего проекта.

В следующих разделах мы подробно опишем архитектуру, выбор датасета и процесс обучения модели для задачи поиска изображений вышивок по текстовому описанию.

# 3. Подготовка данных

Эффективность мультимодальных моделей в задачах поиска во многом определяется качеством обучающей выборки. Поэтому сбор, очистка, построение и структурирование данных стали важнейшей частью проекта.

#### 3.1 Сбор данных

Для создания датасета были спарсены данные с двух крупнейших русскоязычных онлайн-магазинов, специализирующихся на дизайнах машинной вышивки:

- Embroteka.ru крупнейший онлайн-каталог узоров.
- Royal-present.ru интернет-магазин с обширным ассортиментом дизайнов и тематики.

#### Общая статистика:

| Источник      | Количество товаров | Количество изображений |  |
|---------------|--------------------|------------------------|--|
| Embroteka     | 10894              | 13 061                 |  |
| Royal Present | 5 137              | 23 243                 |  |
| Итого         | 16 031             | 36 304                 |  |

После фильтрации, удаления дубликатов и отбора наиболее информативных карточек было сформировано **21 126 уникальных пар "текст** — **изображение"**.

#### 3.2 Предобработка изображений

Чтобы обеспечить совместимость с ruCLIP, все изображения были приведены к стандартному формату:

• Размер: **224**×**224** пикселя

• Цветовая модель: **RGB** 

- Нормализация по каналам: среднее и стандартное отклонение от ImageNet
- Аугментации (на этапе обучения):
  - горизонтальный флип
  - изменение яркости и контрастности
  - случайный кроп и ресайз (умеренный)

Изображения без ключевых объектов (например, с пустым фоном) и технические заглушки были удалены.

#### 3.3 Предобработка текста

Текстовая часть создавалась из названия и категорий товара, с учётом тегов и краткого описания (если было доступно).

#### Порядок обработки:

- 1. Удаление стоп-слов (по списку NLTK и ручной очистке)
- 2. Нормализация: приведение к нижнему регистру, лемматизация
- 3. Объединение названия и категории, например: "пасхальный узор" + "религия" → "пасхальный узор в религиозной тематике"

В результате текстовое описание стало более насыщенным семантикой, сохранив при этом компактность (средняя длина -6-10 слов).

# 3.4 Создание тестовой выборки

Для объективной оценки качества поиска была создана специальная ручная тестовая выборка. Основные особенности:

- Сформулировано 24 уникальных текстовых запроса на естественном языке.
- Для каждого вручную подобрано от 12 до 17 релевантных изображений.
- В результате сформировано **328 пар** «запрос изображение» для тестовой выборки.
- Остальные пары ( $\sim 20\,000$ ) составили обучающую выборку.

Примеры запросов, которые мы обработали семантически: котёнок, петух курица, девушка, новый год, пасха, цветы ромашки, иероглифы, персонажи мультфильмов, космос, необычные птицы, учёный и наука, надписи буквами, военная, автомобили машины, гарри поттер, бабочка, собака играет, знаки зодиака, лило и стич, самолёты небо, детские рисунки, любовь, динозавр, пиво.

#### 3.5 Полуавтоматическое построение релевантных пар

Чтобы сформировать соответствие между тестовым запросом и описанием изображения (в обучающей выборке), использовался **семантический отбор на основе текстовых эмбеддингов**:

- Для всех описаний дизайнов были извлечены эмбеддинги с помощью **SBERT**;
- Тестовые запросы (24 шт.) также были преобразованы в эмбеддинги;
- Для каждого запроса были найдены топ-N описаний с наибольшим косинусным сходством;
- Если описание дизайна было достаточно близким по смыслу, вышивка помечалась как релевантная.

Изображения не участвовали напрямую в сравнении — отбор релевантных пар проводился исключительно по **сходству между текстами**: описанием товара и формулировкой запроса.

Такой подход позволил сформировать реалистичные пары, отражающие реальное поведение пользователя при поиске: когда вводится свободный запрос, а система возвращает вышивки с близкими по смыслу описаниями.

#### 3.6 Визуализация примеров данных

Ниже представлены реальные примеры пар «изображение – текст», использованных в датасете. Следует отметить, что тематики вышивок в датасете самые разнообразные. Среди них присутствуют такие категории как цветы, животные, транспортные средства, надписи, персонажи мультфильмов и фильмов, военная тематика, праздники, космос и многие другие.



Рис. 1: Примеры пар «изображение – текст» из обучающего датасета

Для верификации качества пар и понимания структуры данных была выполнена визуализация. Это позволило убедиться, что текст действительно соответствует визуальному содержимому, а не дублирует формальные категории.

#### 3.7 Вывод

- Был сформирован качественный мультимодальный датасет из 21 126 пар, покрывающий тематику машинной вышивки.
- Все данные приведены к единому формату, очищены и нормализованы.
- Тестовая выборка ручной разметки позволила объективно оценивать качество поиска.
- Использование ruCLIP и SBERT на этапе парсинга и генерации пар обеспечило высокое семантическое соответствие.

Следующая глава посвящена архитектуре модели и построению пространства эмбеддингов, использованного для реализации поиска.

# 4. Разработка модели

#### 4.1 Общая архитектура

Для решения задачи текстово-визуального поиска мы использовали архитектуру мультимодального сопоставления на базе модели ССІР. Её ключевая идея — проецировать изображения и тексты в общее векторное пространство, где близость между объектами определяется семантической связью, а не поверхностными признаками.

В проекте использовались две модели:

- CLIP от OpenAI в качестве baseline;
- ruCLIP от SberAI основная модель, дообученная на русскоязычном корпусе.

Каждая модель состоит из двух энкодеров:

- Визуальный энкодер (ViT-B/32) преобразует изображение в эмбеддинг.
- Текстовый энкодер (Transformer) преобразует описание в текстовый эмбеддинг.

Оба потока проецируются в пространство размерности 512, где сравниваются по **косинусной близости**.

#### 4.2 Функция потерь

Обучение основано на **контрастивном подходе** — модель учится сближать эмбеддинги соответствующих пар «текст — изображение» и отдалять остальные.

Используется контрастивная функция потерь (InfoNCE), которая является усреднением кросс-энтропий по батчу в двух направлениях: *image-to-text* и *text-to-image*.

Image-to-text:

$$l_i^{(v \to u)} = -\log \frac{\exp(sim(v_i, u_i)/\tau)}{\sum_{k=1}^{N} \exp(sim(v_i, u_k)/\tau)}$$

Text-to-image:

$$l_i^{(u \to v)} = -\log \frac{\exp(sim(u_i, v_i)/\tau)}{\sum_{k=1}^{N} \exp(sim(u_i, v_k)/\tau)}$$

Где:

- $sim(v_i,u_k)$  косинусное сходство между изображением  $v_i$  и текстом  $u_k$ ,
- N размер батча,
- $\tau$  температурный коэффициент (гиперпараметр).

#### Суммарная функция потерь:

$$L = \frac{1}{N} \sum_{i=1}^{N} \left[ \lambda l_i^{(v \to u)} + (1 - \lambda) l_i^{(u \to v)} \right]$$

Для симметричного обучения обеих модальностей используется  $\lambda = \frac{1}{2}$ .

#### 4.3 Гиперпараметры и стратегия дообучения

Для повышения качества модели ruCLIP была применена стратегия **тонкой настройки (fine-tuning)** с **заморозкой энкодеров** и обучением только проекционных голов. Это позволяет избежать переобучения и сохранить устойчивость предобученных представлений.

| Параметр                | Значение          |
|-------------------------|-------------------|
| Batch size              | 128               |
| Epochs                  | 5                 |
| Optimizer               | Adam              |
| Learning rate           | 5e-5              |
| Scheduler               | ReduceLROnPlateau |
| Weight decay            | 0.01              |
| $\beta_1 / \beta_2$     | 0.9 / 0.98        |
| ε                       | $1 \cdot 10^{-6}$ |
| Макс. температура $	au$ | 100               |

Температурный коэффициент  $\tau$ , ограниченный сверху значением 100, регулирует масштабирование логитов в контрастивной функции потерь. Это ограничение помогает избежать чрезмерной уверенности модели и снижает риск переобучения, особенно при высоких значениях сходства.

Скорость обучения динамически адаптировалась: при стагнации валидационного лосса learning rate автоматически снижался.

#### 4.4 Процесс обучения и поведение модели

На рисунках 2 и 3 представлены графики процесса обучения CLIP и ruCLIP:

- динамика контрастивного лосса;
- значения потерь на train/val по эпохам;
- рост косинусного сходства.



Рис. 2: Процесс дообучения модели CLIP

Можно заметить, что валидационный лосс стабилизируется после  $\sim$ 2-й эпохи, что учитывается стратегией ReduceLROnPlateau. При этом косинусное сходство между релевантными парами стабильно растёт, что указывает на семантическую сходимость эмбеддингов.



Рис. 3: Процесс дообучения модели ruCLIP

# 4.5 Выводы по архитектуре и обучению

- Контрастивное обучение на основе InfoNCE формирует **семантически плотное пространство**, пригодное для поиска.
- ruCLIP показывает устойчивую работу с естественными русскими описаниями, превосходя CLIP.
- Обучение только проекций оказалось достаточным для **существенного роста метрик поиска** (см. главу 5).

# 5. Реализация и обучение

#### 5.1 Используемые фреймворки и библиотеки

Для реализации проекта был выбран стек, сочетающий производительность, поддержку современных моделей и лёгкость развертывания.

| Категория                        | Библиотека                        | Назначение            |  |
|----------------------------------|-----------------------------------|-----------------------|--|
| Глубокое обучение                | torch, torchvision                | Обработка изображе-   |  |
|                                  |                                   | ний, обучение модели  |  |
| Модели CLIP                      | openai-clip, ruclip               | Предобученные         |  |
|                                  |                                   | визуально-текстовые   |  |
|                                  |                                   | модели                |  |
| Обработка текста                 | tokenizers, sentence-transformers | Быстрая токенизация и |  |
|                                  |                                   | текстовые эмбеддинги  |  |
| Анализ данных pandas, matplotlib |                                   | Статистика, графики,  |  |
|                                  |                                   | визуализация          |  |
| Поиск по эмбеддингам             | faiss                             | Быстрый ANN-поиск     |  |

Все библиотеки совместимы с PyTorch и GPU, что позволяет реализовать пайплайн обучения и инференса с минимальными накладными расходами.

#### 5.2 Аппаратная инфраструктура

Модель дообучалась на сервере с видеокартой **NVIDIA A100 80GB**, что обеспечило высокую пропускную способность:

- Обработка 128 пар одновременно (batch size = 128);
- Загрузка всех эмбеддингов в память для теста и валидации;
- Время обучения (5 эпох) менее 20 минут.

CPU-ядра использовались для подготовки батчей и предварительной обработки изображений и текстов.

#### 5.3 Пайплайн обучения

Обучение реализовано в виде стандартного цикла PyTorch:

```
for epoch in range(num_epochs):
    for batch in train_dataloader:
        images, texts = batch
        image_embeds = image_encoder(images)
        text_embeds = text_encoder(texts)
        loss = contrastive_loss(image_embeds, text_embeds)
        loss.backward()
        optimizer.step()
```

#### Особенности реализации:

• Mixed precision (qepe3 torch.cuda.amp);

- Заморозка весов через requires\_grad = False;
- Фиксация сидов и torch.backends.cudnn.deterministic = True для повторяемости.

scheduler = torch.optim.lr\_scheduler.ReduceLROnPlateau(optimizer, mode='min', patie

#### 5.4 Мониторинг и логирование

На каждом этапе обучения велся мониторинг следующих метрик:

- Training loss: быстро снижается на первых эпохах;
- Validation loss: стагнация на эпохе 2–3;
- Cosine similarity: стабильный рост на релевантных парах.

Для динамической адаптации скорости обучения использовался:

#### Визуализация логов:

- matplotlib графики лоссов и точности по эпохам;
- wandb (опционально) облачный мониторинг;
- tqdm консольный прогресс-бар в реальном времени.

#### 5.5 Поведение модели во время обучения

Как показано на рисунках 2 и 3 (см. главу 4), контрастивная функция потерь быстро сходится. Косинусное сходство между эмбеддингами стабильно увеличивается, что говорит о корректном обучении.

Благодаря использованию предобученного ruCLIP и заморозке основных энкодеров, модель достигла плато уже после 2–3 эпох, что типично для задач с ограниченным датасетом.

#### 5.6 Выводы

- Модель ruCLIP легко интегрируется в РуTorch-пайплайн.
- Использование проверенных библиотек обеспечило простую, воспроизводимую и масштабируемую реализацию.
- Аппаратная инфраструктура на базе А100 позволила использовать большие батчи и ускорить процесс дообучения.
- Мониторинг метрик позволил контролировать переобучение и применять адаптивное управление learning rate.

# 6. Оценка качества модели

Эффективность мультимодального поиска оценивается с использованием двух групп показателей:

- ullet Количественные метрики top-k accuracy, precision@k, recall@k, cosine similarity;
- Качественные примеры визуальный анализ релевантности результатов.

# 6.1 Выбранные метрики

| Метрика             | Описание                                                      |
|---------------------|---------------------------------------------------------------|
| Precision@5         | Доля релевантных изображений в топ-5 результатах              |
| Recall@5            | Доля релевантных изображений из всей выборки, попавших в топ- |
|                     | 5                                                             |
| Cosine Similarity   | Среднее косинусное сходство между эмбеддингами правильных пар |
| Qualitative Matches | Визуальная проверка соответствия результатов реальному смыслу |
|                     | запроса                                                       |

#### 6.2 Результаты на тестовой выборке

| Модель              | Precision@5 | Recall@5 | Cosine Sim |
|---------------------|-------------|----------|------------|
| CLIP (pretrained)   | 0.083       | 0.028    | 0.0315     |
| CLIP (finetuned)    | 0.183       | 0.061    | 0.0910     |
| ruCLIP (pretrained) | 0.817       | 0.315    | 0.1874     |
| ruCLIP (finetuned)  | 0.833       | 0.322    | 0.2305     |

**Вывод:** Даже в zero-shot режиме ruCLIP значительно превосходит CLIP. После дообучения наблюдается прирост по всем метрикам, особенно по cosine similarity, что указывает на **повышенную семантическую чувствительность** модели к русским текстам.

# 6.3 Качественные примеры поиска

Для проверки релевантности результатов в реальных условиях проведён визуальный анализ top-5 изображений по ряду пользовательских запросов.

#### Пример 1. Запрос: «весёлый пикачу»

Изображения на рис. 4 отражают визуальный образ персонажа Пикачу, а также передают настроение радости через позу, улыбку и оформление.

Топ-5 для запроса "веселый пикачу"











Рис. 4: Топ-5 изображений по запросу «весёлый пикачу»

# Примеры других результатов:

Топ-5 для запроса "юрий гагарин"











Топ-5 для запроса "майнкрафт"











Топ-5 для запроса "пираты"











Рис. 5: Примеры результатов поиска по текстовым запросам

На рис. 5 видно, что модель корректно обрабатывает:

- контекст и конкретику («юрий гагарин»  $\to$  космонавт);
- эмоциональную окраску («весёлый», «смешной»);
- культурные отсылки («майнкрафт», «пираты»).

#### 6.4 Ошибки и edge-cases

Несмотря на высокую производительность, модель сталкивается с рядом сложных случаев:

- **Абстрактные запросы** (напр. «уют», «счастье») модель выдаёт неустойчивые или субъективные результаты;
- Омонимы запрос «рак» может интерпретироваться как животное или заболевание;
- Скрытая метафора или подтекст модель не интерпретирует запрос «скрытый смысл» буквально.

# Потенциальное решение:

- дообучение на расширенном корпусе описаний с явной семантикой;
- ullet использование CLIP + reranker (например, BERT или GPT-классификатор релевантности).

# 6.5 Выводы по качеству

- ruCLIP (finetuned) достигла **Precision@5** = **0.83**, что является высоким результатом для задачи семантического поиска.
- Качественная оценка подтверждает: результаты соответствуют пользовательским намерениям.
- Модель извлекает смысл, стиль и эмоциональную окраску, а не просто ключевые слова.

# 7. Развёртывание и демонстрация

Для демонстрации работы системы был реализован полнофункциональный веб-сервис, включающий backend на Flask, индекс поиска на FAISS и шаблонный frontend. Пользователь может ввести текстовый запрос на русском языке и получить ton-N изображений дизайнов вышивки, ранжированных по смысловой близости.

# 7.1 Архитектура решения

Система реализована в виде микросервиса с модульной архитектурой:



Все компоненты развернуты вручную на сервере с поддержкой Python и CUDA. Это обеспечило гибкость настройки окружения и быструю отладку при разработке.

#### 7.2 Backend: Flask + FAISS

#### Компоненты backend:

- ruCLIP-модель (PyTorch): используется в режиме inference для кодирования текстового запроса;
- FAISS IndexFlatL2: индекс собирается из предвычисленных эмбеддингов изображений;
- Эмбеддинги загружаются из кэшированных файлов .pkl, метаданные изображений из таблицы .csv.

#### Особенности реализации:

- Предобработка текста: токенизация, нормализация, подача в ruCLIP;
- Используется CUDA (если доступна) для ускорения инференса;
- Поддержка кэширования для ускорения запуска и поиска.

#### 7.3 Frontend: Jinja2 шаблоны

Интерфейс построен на простом HTML и шаблонах Jinja2:

- Поисковая строка на главной странице;
- Галерея изображений с подписями;
- Возможность открыть карточку изображения (с возможным расширением);
- Поддержка кириллицы и етојі в текстовом вводе.

#### 7.4 Развёртывание и доступ

Сервис развёрнут на удалённом сервере с GPU, доступ осуществляется через SSHтуннель.

#### Подключение:

```
ssh -L 8888:localhost:5000 student@176.109.74.200 -p 2222
```

После подключения сервис доступен по адресу:

http://localhost:8888/

Демонстрация работы сайта доступна по ссылке: Yandex. Disk

# Пример запроса:

Запрос: «милый котёнок в чашке»

Ответ: 5 изображений с мультяшными котятами, оформленными как вы-

шивка.

#### 7.5 Интеграция и расширение

#### Потенциальные варианты использования:

- Интеграция в e-commerce платформы;
- Веб-интерфейс для дизайнеров и редакторов;
- Расширение функционала: image-to-image поиск.

# Планы по улучшению:

- Поддержка мультиязычности;
- Расширенные фильтры: по стилю, тематике, формату;
- История запросов и авторизация;
- UI-пагинация и сортировка по релевантности.

#### 7.6 Выводы

- Реализован веб-сервис для поиска вышивок по смысловому описанию;
- Архитектура масштабируемая и независимая от внешних сервисов;
- Интерфейс интуитивно понятен и готов к использованию в продуктах.

# 8. Выводы и перспективы

# 8.1 Итоги проекта

В рамках прикладного проекта была успешно решена задача семантического поиска изображений вышивок по свободному текстовому описанию на русском языке. Это позволило существенно упростить пользовательский сценарий и заменить фильтры ручного поиска на интуитивный текстовый ввод.

#### Основные достижения:

- Собран **уникальный датасет** из 21 126 пар «изображение описание»;
- Сформированы **24 ключевых запроса** и вручную отобраны релевантные изображения;
- Реализовано **дообучение ruCLIP** с использованием контрастивной функции потерь;
- Достигнута высокая точность: Precision@5 = 0.833, CosineSim = 0.230;
- Разработан **веб-сервис** с полнофункциональным интерфейсом на Flask + Jinja;
- Проведена визуальная валидация по тематическим запросам;
- Обеспечена **воспроизводимость среды** (через кэш, pkl/csv форматы и инструкции запуска).

#### 8.2 Соответствие целям и критериям

Таблица 1: Проверка выполнения ключевых целей проекта

| Цель / критерий                       | Статус         | Комментарий             |  |
|---------------------------------------|----------------|-------------------------|--|
| Семантический поиск по тексту         | Реализовано    | ruCLIP finetuned +      |  |
|                                       |                | FAISS                   |  |
| Поддержка русского языка и стилистики | Да             | Высокая точность        |  |
| Качественный датасет                  | Есть           | Ручная разметка +       |  |
|                                       |                | фильтрация              |  |
| Дообучение модели                     | Выполнено      | Только проекционные     |  |
|                                       |                | головы                  |  |
| Интерфейс и демонстрация              | Есть           | Веб-интерфейс с поиско- |  |
|                                       |                | вой строкой             |  |
| Метрики и визуальные примеры          | Представлены   | См. главу 6             |  |
| Reproducibility / архитектура         | Поддерживается | Сборка без Docker, дан- |  |
|                                       |                | ные кэшируются          |  |
| Масштабируемость                      | Возможна       | Простая интеграция и    |  |
|                                       |                | расширяемость           |  |

#### 8.3 Ограничения и потенциальные улучшения

#### Выявленные ограничения:

- Неоднозначные или абстрактные запросы («уют», «радость») интерпретируются непоследовательно;
- Нет фильтрации по категории, стилю, цвету;
- Возможна путаница с омонимами (напр., «рак»: животное или болезнь);
- Ограниченность области применения только машинная вышивка;
- Веб-интерфейс не предоставляет расширенного функционала (например, сортировки).

#### Предлагаемые улучшения:

- Расширение текстового корпуса (отзывы, описания, пользовательские данные);
- Фильтрация результатов по атрибутам (категория, стиль, формат);
- Поддержка image-to-image поиска;
- Интеграция с внешними платформами (СВМ, магазины);
- Использование reranker-модуля (BERT или аналог).

#### 8.4 Вектор развития

- В2В-интеграция в СКМ и маркетплейсы;
- **Расширение запроса** на стиль, формат, назначение («в стиле барокко», «детский», «для подушки»);
- Генерация дизайнов по описанию (через diffusion или GAN-модели);
- Новые домены: логотипы, мерч, графика, стикеры, упаковка.

#### 8.5 Финальные выводы

- Мультимодальные модели позволяют запускать поиск по смыслу без аннотаций и ручного тега;
- Даже ограниченный датасет даёт хороший результат при правильной архитектуре;
- Разработанная система готова к тестированию в реальных продуктах и расширению под новые задачи.

**Итог:** мультимодальный семантический поиск — это не просто удобство, а **инструмент повышения пользовательской ценности и роста бизнеса** в нишевых визуальных категориях.