Ridge and Lasso binary logistic regression in NLP using R

Eligijus Bujokas

Vilnius University

December 18, 2018

Content

- What is natural language processing
- NLP definitions
- Logistic regression in NLP tasks
- Quora example

Natural language processing

Natural language processing (NLP) is a sub field of computer science concerned with the interactions between computers and human (natural) languages, in particular how to program computers to process and analyze large amounts of natural language data.

- Classifying text
- Chat bots
- Word embedding

NLP definitions

Corpus

A text corpus is a collection of texts of written (or spoken) language presented in electronic form.

A document is the row of a matrix

A token is single term from the corpus

NLP definitions

Tokens

Eligijus is presenting now.

 $[\mathsf{Eligijus}], \, [\mathsf{is}], \, [\mathsf{presenting}], \, [\mathsf{now}]$

[Eligijus is], [presenting now]

NLP definitions

N - grams

An n-gram is a contiguous sequence of n items from a given sequence of text.

2 - gram (bigram):

[Eligijus is], [is presenting], [presenting now]

3 - gram:

[Eligijus is presenting], [is presenting now]

Corpus in a matrix

A document is about cars:

index	text	Υ
1	The new car	1
2	fantastic car	1
3	the weather is dreadful	0
4	the weather is great	0

The document term matrix would then look like:

fantastic	new	great	dreadful	car	weather	is	the
0	1	0	0	1	0	0	1
1	0	0	0	1	0	0	0
0	0	0	1	0	1	1	1
0	0	1	0	0	1	1	1

Logistic regression in NLP context

Let us say we have n documents and k unique tokens. Each document is assigned a binary label - $\{0, 1\}$.

Then the general model is:

$$log \frac{P(Y=1)}{P(Y=0)} = \sum_{i=0}^{k} \beta_i X_i (1)$$

We start indexing from zero because of the intercept.

We get the coefficients $\widehat{\beta}$ by maximizing:

$$\sum_{i=1}^{n} \left(y_i (\beta_0 + \beta^T x_i) - log(1 + e^{\beta_0 + \beta^T x_i})) \right)$$

in respect to β_0 and β

Result from the example

coefficient
0.4883108
0.4681151
0.3547782
0.2963947
-0.2962816
-0.3255586
-0.3255672
-0.4882456
-0.4882754

Lasso and Ridge logistic regression

Ridge (more uniform distribution of coefficient values):

$$\frac{1}{N} \sum_{i=1}^{n} \left(y_i (\beta_0 + \beta^T x_i) - log(1 + e^{\beta_0 + \beta^T x_i})) \right) - \alpha \sum_{j=1}^{k} \beta_j^2$$

Lasso (reduces number of features):

$$\frac{1}{N}\sum_{i=1}^{n}\left(y_{i}(\beta_{0}+\beta^{T}x_{i})-\log(1+e^{\beta_{0}+\beta^{T}x_{i}}))\right)-\alpha\sum_{i=1}^{k}|\beta_{j}|$$

Quora insincere question competition

Competition:

https://www.kaggle.com/c/quora-insincere-questions-classification

Data:

https://www.kaggle.com/c/quora-insincere-questions-classification/data

Y=1 if the question is not sincere

Y = 0 if the question is sincere

Example

Sincere questions:

- [1] "How did Quebec nationalists see their province as a nation in the 1960s?"
- [2] "Do you have an adopted dog, how would you encourage people to adopt and not shop?" [3] "Why does velocity affect time? Does velocity affect space geometry?"
- [4] "How did Otto von Guericke used the Magdeburg hemispheres?"

Insincere questions:

- [1] "Has the United States become the largest dictatorship in the world?"
- [2] "Which babies are more sweeter to their parents? Dark skin babies or light skin babies?"
- [3] "If blacks support school choice and mandatory sentencing for criminals why don't they vote Republican?"
- [4] "I am gay boy and I love my cousin (boy). He is sexy, but I dont know what to do. He is hot, and I want to see his di**. What should I do?"

Ridge regression results

```
dim(dtm)
## [1] 161620 10956
model <- glmnet(x = dtm, y = train$target,</pre>
                   family = 'binomial',
                   alpha = 0,
                   lambda = 0.01)
dim(coef table)
## [1] 10957
```

Ridge regression results (sincere sentiment)

features	coefficient
pains	-3.130936
immortality	-3.201486
aftermath	-3.205285
responded	-3.238110
ipcc	-3.495939
leap	-3.655830
trades	-3.758036
curved	-3.949973
independently	-3.971127
whey	-4.573653

Ridge regression results (insincere sentiment)

features	coefficient
mindless	5.106554
castration	4.872542
alabamians	4.802497
castrating	4.697437
tennesseans	4.630287
brandeis	4.511478
castrated	4.327585
nigerians	4.296180
satanism	4.244813
isaiah	4.151869

Lasso regression results

```
dim(coef_table)
```

```
## [1] 266 2
```

Lasso regression results (sincere sentiment)

features	coefficient
tips	-0.1948865
job	-0.2073240
computer	-0.2271329
арр	-0.2314394
online	-0.2642010
company	-0.3068929
study	-0.3218161
difference	-0.3855465
engineering	-0.5245851
(Intercept)	-0.8000179

Lasso regression results (insincere sentiment)

features	coefficient
liberals	1.931021
indians	1.856379
trump	1.818080
muslims	1.795633
americans	1.763183
castrated	1.608947
democrats	1.591572
women	1.552479
girls	1.519971
jews	1.385540
jews	1.38