Chapter 10: Function: Local study April 28, 2023

Contents

1	Continuity		
	1.1	First approach	
		1.1.1 Example	
	1.2	Definition	
	1.3	Intermediate value theorem	
		1.3.1 Examples	
2	Image of an interval by a continuous function 2		
	2.1	Remark	
	$\frac{2.1}{2.2}$	Proposition	
	2.3	Corollary	
3	Diff	Gerentiability 2	
J	3.1	Definition	
	3.1		
		3.1.1 Example	
	0.0	3.1.2 Remarks	
	3.2	Differentiability and continuity	
		3.2.1 Proposition	
		3.2.2 Proof	
4	Tay	lor Expansion	
	4.1	Taylor-Young Theorem	
		4.1.1 Remark	
	4.2	Definition of Taylor's expansion	
		4.2.1 Remarks	
	43	Usual function Taylor expansion at $0 < 3$	

Mathematics 1 Continuity

1 Continuity

1.1 First approach

Let f be a function from $I \subset R$ to R, we say that f is continuous over I if "the graph of f can be drown without taking off the pencil from the paper".

1.1.1 Example

1.2 Definition

1 f continuous at $a \in I$: we say f is continuous at a - a being a point of I - if and only if:

$$f(a) = \lim_{x \to a} f(x)$$

$$f(a) = \lim_{\substack{x \to a \\ x > a}} f(x) = \lim_{\substack{x \to a \\ x < a}} f(x)$$

② f continuous over I: we say f is continuous over $I \subset R$ if and only if $\forall a \in I, f$ is continuous at a.

1.3 Intermediate value theorem

Let f be a function continuous over $I \subset R$ and $(a,b) \in I^2$. if f(a)f(b) < 0 then there exists (at least one) c from [a,b[such that f(c) = 0.

1.3.1 Examples

must intersect the x-axis

Second example: $f(x) = x^2 - 2x + 1$ $f(x) = x^2 \cos(x) + x \sin(x) + 1 = 0$ does f have any solutions?

$$I = [0, \pi] \ f(a = 0) = 1 \ \text{and} \ f(b = \pi) = -\pi^2 + 1 < 0$$

1

1. $f: x \mapsto f(x)$ is constant over $I \subset \mathbb{R}$.

2.
$$f(a) \times f(b) < 0$$
.

IVT $\Rightarrow \exists c \in]0, \pi[, f(c) = 0.$

Mathematics 3 Differentiability

2 Image of an interval by a continuous function

Let $f: I \subset \mathbb{R} \to \mathbb{R}$ and $A \subset I$.
We call image of A by f and denote f(A): f(A) = A

We call image of A by f and denote $f(A): f(A) = \{f(x), x \in A\}.$

2.1 Remark

 $\forall y \in f(A), \exists x \in A, y = f(x).$ Example: $f: x \mapsto x^2$ and $A = [-3, 2] \to f(A) = [0, 9].$

2.2 Proposition

- The image of an interval by a continuous function is an interval.
- The image of a segment ([a, b]) by a continuous function is a segment. counter example: $f: x \mapsto \frac{1}{x}$ (continuous over \mathbb{R}_+^*) $f(]0,1] \subset \mathbb{R}_+^*$) = $[1,+\infty[$

2.3 Corollary

Let f be a continuous function over segment [a, b]. Then f([a, b]) = [m, M] where m and M are respectively the minimum and maximum of f over [a, b].

3 Differentiability

All function below are of type $f:I\to\mathbb{R}$ where I is an interval of \mathbb{R} containing at least two points.

3.1 Definition

we say that f is differentiable at a if the following quantity $\frac{f(x)-f(a)}{x-a}$ (the increasing rate of f at a) has a finite limit l at a.

If so, then f is differentiable at a and f'(a) = l is called the derivative number of f at a.

3.1.1 Example

$$f: x \mapsto \sqrt{x} \text{ if } a = 0 \text{ then: } \frac{f(x) - f(0)}{x - 0} = \frac{\sqrt{x} - \sqrt{0}}{x - 0} = \frac{\sqrt{x}}{x} = \frac{1}{\sqrt{x}} \to +\infty \text{ when } x \to 0$$

$$\forall a > 0, \frac{\sqrt{x} - \sqrt{a}}{x - a} = \frac{x - a}{(x - a)(\sqrt{x} + \sqrt{a})} = \frac{1}{\sqrt{x} + \sqrt{a}} \to \frac{1}{2\sqrt{a}} \text{ when } x \to a$$
So $f: x \mapsto \sqrt{x}$ is differentiable at a and $f'(a) = \frac{1}{2\sqrt{a}}$.

3.1.2 Remarks

- \bigcirc If f is differentiable at a, then the graph of f has a non-vertical tangent at a.
- ② If the variation rate tends to $+\infty$ or $-\infty$, then the graph of f admits a vertical tangent.

3.2 Differentiability and continuity

3.2.1 Proposition

If f is differentiable at a then f is continuous at a.

$$\begin{array}{c} \text{Differentiable} \Longrightarrow \text{Continuity} \\ & \Leftarrow \end{array}$$

ex: \sqrt{x} at 0 is continuous but not differentiable.

3.2.2 Proof

Differentiable
$$\implies \exists l \in \mathbb{R}, \lim_{x \to a} \left(\frac{f(x) - f(a)}{x - a} \right) = l \implies \lim_{x \to a} \left(f(x) - f(a) \right) = 0$$

$$\implies \lim_{x \to a} \left(f(x) \right) = \lim_{x \to a} \left(f(a) \right)$$

$$\implies f \text{ is continuous at } a$$

4 Taylor Expansion

4.1 Taylor-Young Theorem

Let $n \in \mathbb{N}$ and f be a function of class C^n over I (id est f is differentiable at least n times and $f^{(n)}$ is continuous over I). Let $a \in I$ and $x \in I$. Then:

$$f(x) = f(a) + (x - a)f'(a) + \frac{(x - a)^2}{2!}f''(a) + \dots + \frac{(x - a)^n}{n!}f^{(n)}(a) + o((x - a)^n)$$

4.1.1 Remark

- $n! = n \times (n-1) \times \cdots \times 2 \times 1$, ex: $5! = 5 \times 4 \times 3 \times 2 \times 1 = 120$
- $f^{(n)} \leftarrow n$ -th derivative of f ex: $f^{(3)} = f'''$.
- $o((x-a)^n) \leftarrow$ negligible quantity with respect to

$$(x-a)^n \implies \lim_{x\to a} \left(\frac{o((x-a)^n)}{(x-a)^n}\right) = 0$$

• Theorem mostly used with a = 0.

4.2 Definition of Taylor's expansion

Let $n \in \mathbb{N}$, we say that f admit a Taylor expansion of order n at a if there exists real numbers a_0, a_1, \ldots, a_n such that:

$$f(x) = a_0 + a_1(x - a) + a_2(x - a)^2 + \dots + a_n(x - a)^n + o((x - a)^n)$$

4.2.1 Remarks

We compute the coefficients a_0, a_1, \ldots, a_n using the Taylor-Young theorem for f.

for ex.
$$f: x \mapsto e^x \implies a_0 = f(0) = e^0 = 1$$

$$\implies a_1 = f'(0) = e^0 = 1$$

$$\implies a_2 = f''(2) = \frac{1}{2!}$$

$$e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n)$$

$$e^x = 1 + x + \underbrace{A(x)}_{o(x)} \qquad e^x = 1 + x + x^2 + \underbrace{B(x)}_{o(x)}$$

4.3 Usual function Taylor expansion at 0 < 3

- $e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \frac{x^n}{n!} + o(x^n)$
- $\cos(x) = 1 \frac{x^2}{2!} + \frac{x^4}{4!} + \dots + (-1)^n \frac{x^{2n}}{(2n)!} + o(x^{2n})$ even function
- $\sin(x) = x \frac{x^3}{3!} + \frac{x^5}{5!} + \dots + (-1)^n \frac{x^{2n+1}}{(2n+1)!} + o(x^{2n+1})$ odd function
- $\ln(1+x) = x \frac{x^2}{2} + \frac{x^3}{3} + \dots + (-1)^{n-1} \frac{x^n}{n} + o(x^n)$
- $(1+x)^{\alpha} = 1 + \alpha x + \frac{\alpha(\alpha-1)}{2!}x^2 + \dots + \frac{\alpha(\alpha-1)\dots(\alpha-n+1)}{n!}x^n + o(x^n)$
- $\frac{1}{1-x} = 1 + x + x^2 + \dots + x^n + o(x^n)$
- $\frac{1}{1+x} = 1 x + x^2 \dots + (-1)^n x^n + o(x^n)$