## UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO



EXAMEN: Tarea 2 (parte I)

PROFESORA: Karina G. Buendía y José Dosal

MATERIA: Conjuntos y lógica

NOMBRE DEL ALUMNE:

**Ejercicio 1** Sea  $f: \mathcal{X} \to \mathcal{Y}$  una función. Demuestra que  $F: \mathcal{P}(\mathcal{X}) \to \mathcal{P}(\mathcal{Y})$  y  $G: \mathcal{P}(\mathcal{Y}) \to \mathcal{P}(\mathcal{X})$  definidas como: F(A) = f(A) y  $G(A) = f^{-1}(A)$ , son funciones.

**Solución 1** Sean (A, f(A)) y (B, f(B)) en F. Por demostrar que f(A) = f(B). Supongamos que  $f(A) \neq f(B)$ , entonces  $f(B) \setminus f(A) \neq \emptyset$ , es decir, existe  $y \in f(B) \setminus f(A)$ . Por lo anterior, existe  $x \in A$  tal que f(x) = y, es decir  $y \in f(A)$ . Por lo tanto f(A) = f(B)

**Ejercicio 2** Sean  $f: A \to C$  y  $g: A \to B$  funciones. Demostrar que existe una función  $h: B \to C$  tal que  $f = h \circ g$  si y solo si para cada  $x, y \in A$  g(x) = g(y) implica f(x) = f(y).

**Solución 2** ( $\Rightarrow$ ) Supongamos que existe una función  $h: B \to C$  tal que  $f = h \circ g$ . Por demostrar que para cualesquiera  $x, y \in A$ , si g(x) = g(y), entonces f(x) = f(y). Sean  $x, y \in A$  tales que g(x) = g(y),

$$f(x)=(h\circ g)(x)=h(g(x))=h(g(y))=(h\circ g)(y)=f(y)$$

Dado que g(x) = g(y) y h es función,

$$h(g(x)) = h(g(y))$$

Por lo tanto f(x) = f(y).

- ( $\Leftarrow$ ) Supongamos que para todo  $x,y \in A$  tenemos que  $g(x) = g(y) \implies f(x) = f(y)$  es cierta. Construyamos una función  $h: B \to C$  tal que  $f = h \circ g$ . Sea h definida para cualquier  $b \in B$ :
  - 1. Si  $b \in \text{Im}(g)$ , entonces existe al menos un  $a \in A$  tal que g(a) = b. Para el cual definimos h(b) = f(a). Si existiera otro elemento  $a' \in A$  tal que g(a') = b, entonces tendríamos g(a) = g(a'). Por hipótesis, esto implica que f(a) = f(a'). Por lo tanto, el valor h(b) es único.
  - 2. Si  $b \notin \text{Im}(g)$ , entonces no existe ningún  $a \in A$  tal que g(a) = b. Así,  $h(b) = c_0$ . Escogemos un elemento fijo  $c_0 \in C$ .

**Ejercicio 3** Sean  $A \neq \emptyset$  y  $B \neq \emptyset$  conjuntos. Para cualquier conjunto C y cualesquiera funciones  $f_1: C \to A$  y  $f_2: C \to B$  existe una única función  $f: C \to A \times B$  tal que  $f_1 = p_1 \circ f$  y  $f_2 = p_2 \circ f$ . (Las funciones  $f_1$  y  $f_2$  se denominan funciones coordenadas)

**Solución 3**  $\forall c \in C$  se tiene que  $f_1(c) \in A$  y  $f_2(c) \in B$ . Definimos a  $f(c) = (f_1(c), f_2(c))$ . Es claro que es función ya que la pareja  $(f_1(c), f_2(c))$  es única. Por demostrar que f cumple las dos propiedades.

1.  $\forall c \in C$  se tiene que

$$(p_1 \circ f)(c) = p_1(f(c)) = p_1(f_1(c), f_2(c)) = f_1(c)$$

Por lo tanto,  $p_1 \circ f = f_1$ .

## UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO



EXAMEN: Tarea 2 (parte I)

PROFESORA: Karina G. Buendía y José Dosal

MATERIA: Conjuntos y lógica

NOMBRE DEL ALUMNE:

2.  $\forall c \in C$  se tiene que

$$(p_2\circ f)(c)=p_2(f(c))=p_2(f_1(c),f_2(c))=f_2(c)$$

Por lo tanto,  $p_2 \circ f = f_2$ .

**Ejercicio 4** Demuestra que si  $I \neq \emptyset$  y algún  $A_{\alpha} = \emptyset$  si y solo si  $\prod_{\alpha \in I} A_{\alpha} = \emptyset$ .

**Ejercicio 5** Sea  $I \neq \emptyset$  un conjunto de índices. Considera dos familias indizadas  $\{A_{\alpha}\}_{\alpha \in I}$  y  $\{B_{\alpha}\}_{\alpha \in I}$ . Demuestra lo siguiente:

1. Si  $A_{\alpha}\subseteq B_{\alpha}$  para cada  $\alpha\in I,$  entonces

$$\prod_{\alpha\in I}A_\alpha\subseteq\prod_{\alpha\in I}B_\alpha$$

.

2. El recíproco de (a) se cumple si  $\prod_{\alpha \in I} A_\alpha \neq \emptyset$