

CHEAT SHEET

Regularizers

When you look at regularizers, it helps to change the formulation of the optimization problem to obtain a better geometric intuition:

$$\min_{\mathbf{w},b} \sum_{i=1}^{n} \ell(h_{\mathbf{w}}(\mathbf{x}_i)) + \lambda r(\mathbf{w}) \iff \min_{\mathbf{w},b} \sum_{i=1}^{n} \ell(h_{\mathbf{w}}(\mathbf{x}_i))$$
subject to: $r(w) \leq B$

Regularizers		Details
$\it l_2$ -Regularization	$r(w) = w^{\top} w = w _2^2$	 ADVANTAGE: Strictly Convex ADVANTAGE: Differentiable DISADVANTAGE: Uses weights on all features, i.e. relies on all features to some degree (ideally we would like to avoid this) - these are known as Dense Solutions.
l_1 -Regularization	$r(w) = w _1$	Convex (but not strictly)DISADVANTAGE: Not differentiable at 0Effect: Sparse
l_p -Norm	$ w _p = \left(d\sum_{i=1}^n v_i^p\right)^{1/p}$	• Often $0• DISADVANTAGE: Non-convex• ADVANTAGE: Very sparse solutions• Initialization dependent• VERY sparse solutions (compared to I1 norm) if 0 .$

Computing and Information Science