#### **CSE 593**

### Quantitative User Evaluation Methods

Farnaz Jahanbakhsh



## Logistics

Assignment 2 is being graded

 Assignment 3 (Group) due tomorrow (Oct 30<sup>th</sup>) at 5PM.

Midterm grades and solutions are posted.

• Reminder: You will present your final poster in Tishman Hall on Dec 5<sup>th</sup> from 3 to 4:30PM.

### Goals

Define quantitative evaluation methods

Learn how to conduct a quantitative user study

### Goals

Define quantitative evaluation methods

Learn how to conduct a quantitative user study

But first, midterm exam review!

#### **User-Centered System Design Process**



The difference between qualitative and quantitative evaluation

Qualitative (interpretative, descriptive) *vs.*Quantitative (measuring, statistical analysis)

## Often for comparing designs

"Our design is better than the status-quo" (along some dimension)

Objective metrics: speed, accuracy, user engagement, user retention, quality of output, etc.

Composite metrics: user engagement

```
fav: 0.5
retweet: 1.0
reply: 13.5
good_profile_click: 12.0
video_playback50: 0.005
reply_engaged_by_author: 75.0
good_click: 11.0
good_click_v2: 10.0
negative_feedback_v2: -74.0
report: -369.0
```

# Often for comparing designs

"Our design is better than the status-quo" (along some dimension)

Subjective metrics: satisfaction, task load, perceived control, etc.



## Often for comparing designs

"Our design is not worse than the status-quo" (along some dimension)



Downrank anti-democratic posts

Measure user dwell time on new feed, compare with the statusquo

Show dwell time is not harmed

and the new feed reduces partisan animosity

### Quantitative evaluation of design

Often takes form of a randomized controlled trial

Sometimes performed in highly controlled environments (e.g., lab)

Sometimes via controlled field studies (e.g., A/B testing)

### Controlled experiment vs field study

- Controlled environments isolate the effect of design differences
  - Any differences between conditions are likely due to the designs
- Controlled studies have low ecological validity
  - Study setup may not reflect real-world user contexts

### Controlled experiment vs field study



Metric: which feed users like more

In a controlled experiment, the pool of tweets given to the algorithms might be set (pre-selected by researchers)

Low ecological validity: posts fed to curation algorithms are highly personalized

### Controlled field studies

- A/B testing
  - Assigning different users to different conditions in the wild
  - Assigning the same user to different conditions sequentially over time to observe changes in behavior/outcome
- Assigning different, yet comparable groups, to different conditions: the case of New Zealand
  - Useful for testing social designs

### Quantitative evaluation of design

 Useful for testing a hypothesis (e.g., user performance with one design is better than performance with another design)

### Quantitative evaluation of design

Pick one user goal, a sub-goal, or a task

- Standard transcription task empirical study
  - For example, a 30 minute typing session (number of phrases depends on typing speed)



## Revisiting ecological validity

- Standardizing (pre-selecting) the phrases that the users should type
- Constrained task, with potentially low ecological validity depending on phrase sampling procedure
- Dubious generalizability to out of distribution phrases
  - e.g., slang or transliteration:
     Tafa3ol Al-Insan w Al-7asoob ra2e3 gedan
  - Or to post adaptation to the keyboard

#### Please answer this question in Canvas

Researchers are testing two versions of a virtual assistant: one that offers brief responses and another that provides detailed explanations. Participants are invited to a lab, where they interact with both versions. They are instructed to ask a pre-defined set of questions, such as "What time is it in Tokyo?" and "How do I connect my phone to Wi-Fi?". The order of the versions is randomized to prevent learning effects. Researchers measure response time through system logs and user satisfaction via post-interaction surveys.

Which of the following aspects of this experiment may reduce its **ecological validity**?

| The participants ask only pre-selected questions, which may not reflect the full                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------|
| variety of inquiries users typically make in their daily interactions.                                                                              |
| The experiment takes place in a controlled lab environment, which doesn't account for interruptions or distractions that occur in real-world usage. |
|                                                                                                                                                     |
| Participants interact with both versions of the assistant in a back-to-back setup,                                                                  |
| which may not reflect how users engage with virtual assistants at different times                                                                   |
| t <u>hr</u> oughout the day.                                                                                                                        |
| Participants know they are being observed, which may change how they interact with                                                                  |
| the virtual assistant compared to unmonitored, everyday use.                                                                                        |

### Quantitative evaluation of design

Pick one user goal, a sub-goal, or a task

Design study method

## Study method design

Pick independent variables – i.e., variables you control. e.g., keyboard

- Keyboard: one variable, 2 values/levels
- One variable gives us 2 experimental conditions:
  - Baseline/control
  - Intervention/treatment
- Experimental conditions: Combinations of independent variables

## Study method design

Pick independent variables – i.e., variables you control.

- 2 independent variables:
  - Keyboard: new or baseline
  - Task complexity: simple or complex
- 4 conditions:

| >              |         | keyboard |     |  |
|----------------|---------|----------|-----|--|
| lexit          |         | Baseline | New |  |
| dmc            | Simple  |          |     |  |
| ask complexity | complex |          |     |  |
| Ď.             |         |          |     |  |

Full factorial design

## Partial factorial design

Goal: Redesigning the share functionality to reduce misinformation

How: by asking users to reflect on content accuracy



| To the best of your knowledge, is the claim accurate or inaccurate? |          |  |  |
|---------------------------------------------------------------------|----------|--|--|
| Inaccurate                                                          | Accurate |  |  |

| Would you consider sharing the article on social media (for example on Facebook or Twitter)? |
|----------------------------------------------------------------------------------------------|
| ○ Yes                                                                                        |
| ○ No                                                                                         |
| ○ Maybe                                                                                      |

## Partial factorial design

- Independent variables:
  - User is (not) asked about accuracy
  - User is (not) asked about their reasoning



### Partial factorial design



#### Conditions:

- 1. is asked about accuracy, is asked about reasoning
- 2. is asked about accuracy, is not asked about reasoning
- 3. is not asked about accuracy, is not asked about reasoning
- 4 is not asked about accuracy, is asked about reasoning????

## Study method design

Pick independent variables – i.e., conditions (e.g., baseline, intervention)

Decide on type of study (e.g., between subjects, within subjects, mixed design)

### Study setup

#### Between subjects





#### Within subjects





Mixed design



## Study method design

Pick independent variables – i.e., conditions (e.g., baseline, intervention)

Decide on type of study (e.g., between subjects, within subjects, mixed design)

Pick dependent variables (e.g., performance)

## Study method design

Pick independent variables – i.e., conditions (e.g., baseline, intervention)

Decide on type of study (e.g., between subjects, within subjects, mixed design)

Pick dependent variables (e.g., performance)

Pick a statistical test

Questions, comments, and/or concerns?

Farnaz Jahanbakhsh farnaz@umich.edu https://people.csail.mit.edu/farnazj

