Analyse I Étudiez en ligne sur https://quizlet.com/_edd0ei

1. sin(a+b)	sin(a)cos(b) + sin(b)cos(a)
2. sin(a-b)	sin(a)cos(b) - sin(b)cos(a)
3. cos(a+b)	cos(a)cos(b) - sin(a)sin(b)
4. cos(a-b)	cos(a)cos(b) + sin(a)sin(b)
5. cos(a) + cos(b)	2cos((a+b)/2)cos((a-b)/2)
6. sin(a) + sin(b)	2sin((a+b)/2)cos((a-b)/2)
7. DL de 1/(1-x) pour x dans]-1, 1[$\frac{1}{1-x} = \sum_{k=0}^{\infty} x^k = 1 + x + x^2 + x^3 + x^4 + \dots \text{ pour tout } x \in]-1,1[.$
8. DL de e^x	$e^x = \sum_{k=0}^\infty \frac{x^k}{k!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \frac{x^4}{4!} + \dots \text{ pour tout } x \in \mathbb{R}.$
9. DL de ln(x) pour x dans]0, 2]	$\ln(x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} (x-1)^k \text{ pour tout } x \in]0,2].$
10. DL de sin(x)	$\sin(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)!} x^{2k+1} = x - \frac{x^k}{3!} + \frac{x^k}{5!} - \frac{x^2}{7!} + \dots \text{ pour tout } x \in \mathbb{R}.$
11. DL de cos(x)	$\cos(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k)!} x^{2k} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \text{ pour tout } x \in \mathbb{R}.$
12. DL de arctan(x)	$\arctan(x) = \sum_{k=0}^{\infty} \frac{(-1)^k}{(2k+1)} x^{2k+1} = x - \frac{x^3}{3} + \frac{x^5}{5} - \frac{x^7}{7} + \dots \text{ pour tout } x \in [-1,1].$
13. DL de sinh(x)	$\sinh(x) = \sum_{k=0}^{\infty} \frac{1}{(2k+1)!} x^{2k+1} = x + \frac{x^3}{3!} + \frac{x^5}{3!} + \frac{x^7}{7!} + \dots \text{ pour tout } x \in \mathbb{R}.$
14. DL de ln(x+1) pour x dans]-1, 1]	$\ln(1+x) = \sum_{k=1}^{\infty} \frac{(-1)^{k+1}}{k} x^k = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots \text{ pour tout } x \in]-1,1].$
15. DL de cosh(x)	$\cosh(x)=\sum_{i=0}^{\infty}\frac{1}{(2k)!}x^{2k}=1+\frac{x^2}{2l}+\frac{x^4}{4!}+\frac{x^6}{6!}+\ldots \text{ pour tout } x\in\mathbb{R}.$
16. dérivée de arctan	· 1
	$x^{2} + 1$

17. dérivée de arcsin

	$\frac{1}{\sqrt{1-x^2}}$
18. dérivée de arccos	$-\frac{1}{\sqrt{1-x^2}}$
19. dérivée de arcsinh	$\frac{1}{\sqrt{x^2+1}}$
20. dérivée de arccosh	$\frac{1}{\sqrt{x-1} \sqrt{x+1}}$
21. primitive de a^x	$\frac{1}{\ln a}a^x + C$
22. primitive de x^r	$\frac{1}{r+1}x^{r+1} + C$
23. dérivée de tan	$\frac{1}{\cos^2(x)}$
24. dérivée de -cot	$\frac{1}{\sin^2(x)}$

′	Étudiez en	liane sui	r https://quizlet.com	/ edd0ei
		9	111100.77 4412101100111	

$$(x-y)(x^2 + xy + y^2)$$

26.
$$x^3 + y^3$$

$$(x+y)(x^2 - xy + y^3)$$

27.
$$(x + y)^n$$

$$\sum_{k=0}^{n} \binom{n}{k} x^k y^{n-k}$$

$$arctan(b/a) (+ Asi a < 0)$$

$$\frac{e^{i\phi}+e^{-i\phi}}{2}$$

$$\frac{e^{i\phi}-e^{-i\phi}}{2i}$$

forall epsilon > 0, there is an n_0 in N s.t., forall n in N > n_0, |a_n - I| < epsilon

$$|x+y| \ll |x| + |y|$$

forall epsilon > 0, there is an n_0 in N s.t., forall n, m in N > n_0, |a_n - a_m| < epsilon

- * décroissance absolue
- * série alternée (-1)^n * a_n
- * limite de a_n -> 0

38. critère de condensation 39. f continue en x_0 ssi limite en x_0 existe et est égale à f(x_0), donc f doit bien être définie en ce point 40. dérivabilité => continuité <= 41. théorème des accroissements finis f dérivable sur [a, b] => il existe c tel que (f(b)-f(a))/(b - a) = f(c) 42. si n = 2k et f(c) = f'(c) = = f^(n-1)(c) = 0 et alors si f^(n)(c) > 0 => minimum local, sinon max local 43. si n = 2k+1, n > 1, et f(c) = f'(c) = = f^(n-1)(c) alors c est un point d'inflexion de f 44. rayon de convergence 45. théorème de la moyenne 46. théorème de bolzano weistrass dans toute sous-suite bornée il existe une sous-suite bornée il existe une sous-suite convergente 47. la série 1/(n^p) est convergente ssi 48. la série (c^n)(n!)/(n^n) est convergente absol- pour tout c < e 49. la série (n^p)(q^n) où p > 0 est convergente 50. la série (n^p)/n! converge absolument pour tout p dans R	37. période de la somme ou du produit de deux fonctions périodiques	PPCM(période f, période g)
$\begin{array}{ll} & & & & & & & & & & \\ 40. & & & & & & & & \\ 40. & & & & & & & \\ 41. & & & & & & \\ 41. & & & & & & \\ 41. & & & & & \\ 42. & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ $	38. critère de condensation	[-1]
41. théorème des accroissements finis f dérivable sur]a, b[, continue sur [a, b] => il existe c tel que $(f(b)-f(a))/(b-a) = f'(c)$ 42. si n = 2k et $f(c) = f'(c) = = f^{(n-1)}(c) = 0$ et alors si $f^{(n)}(c) > 0 =>$ minimum local, sinon max local 43. si n = 2k+1, n > 1, et $f(c) = f'(c) = = f^{(n-1)}(c)$ alors c est un point d'inflexion de $f^{(n)}(c)$ diff de $f^{(n)}(c)$ diff de $f^{(n)}(c)$ alors c est un point d'inflexion de $f^{(n)}(c)$ diff de $f^{(n)}(c)$ diff de $f^{(n)}(c)$ alors c est un point d'inflexion de $f^{(n)}(c)$ diff de $f^{(n)}(c)$ diff de $f^{(n)}(c)$ alors c est un point d'inflexion de $f^{(n)}(c)$ de $f^{(n)}(c)$ alors c est un point d'inflexion de $f^{(n)}(c)$ de $f^{(n)}(c)$ de $f^{(n)}(c)$ alors c est un point d'inflexion de $f^{(n)}(c)$ de $f^{(n)}(c)$ alors c est un point d'inflexion de $f^{(n)}(c)$ de $f^{(n)}(c)$ de $f^{(n)}(c)$ alors c est un point d'inflexion de $f^{(n)}(c)$ de $f^{(n)}(c)$ de $f^{(n)}(c)$ alors c est un point d'inflexion de $f^{(n)}(c)$ de $f^{(n)}(c)$ alors c est un point d'inflexion de $f^{(n)}(c)$ de $f^{(n)}(c)$ alors c est un point d'inflexion de $f^{(n)}(c)$ diff de $f^{(n)}(c)$	39. f continue en x_0 ssi	
42. $si \ n = 2k \ et \ f(c) = f'(c) = \dots = f^{n-1}(c) = 0 \ et \ f^{n}(n)(c) \ diff \ de \ 0$ alors $si \ f^{n}(n)(c) > 0 = minimum \ local, sinon max \ local43. si \ n = 2k+1, \ n > 1, \ et \ f(c) = f'(c) = \dots = f^{n-1}(c) \ alors \ c \ est \ un \ point \ d'inflexion \ de \ f44. rayon de convergence= 1/l, \ l = \lim a_{n+1} / a_{n} 45. théorème de la moyenne\min_{r} f^{*}(b - a) <= l_{r} f^{n}(c) - a46. théorème de bolzano weistrassdans toute sous-suite bornée il existe une sous-suite convergente47. la série 1/(n^{n}) est convergente absol- pour tout p > 148. la série (c^{n})(n!)/(n^{n}) est convergente absol- pour tout p > 149. la série (n^{p})(q^{n}) où p > 0 est convergente q < 1$	40. dérivabilité =>	continuité <=
f^(n)(c) diff de 0 mum local, sinon max local 43. si n = 2k+1, n > 1, et f(c) = f'(c) = = f^(n-1)(c) alors c est un point d'inflexion de f 44. rayon de convergence = 1/I, I = lim a_{n-1} / a_n 45. théorème de la moyenne min_f * (b - a) <= I_f entre a et b <= max_f * (b - a) 46. théorème de bolzano weistrass dans toute sous-suite bornée il existe une sous-suite convergente 47. la série 1/(n^p) est convergente ssi pour tout p > 1 48. la série (c^n)(n!)/(n^n) est convergente absol- pour tout c < e ument ssi 49. la série (n^p)(q^n) où p > 0 est convergente q < 1	41. théorème des accroissements finis	ue sur [a, b] => il existe c tel
= 0 et f^(n)(c) diff de 0 ion de f 44. rayon de convergence = 1/I, I = lim a_{n+1} / a_n 45. théorème de la moyenne min_f * (b - a) <= I_f entre a et b <= max_f * (b - a) 46. théorème de bolzano weistrass dans toute sous-suite bornée il existe une sous-suite convergente 47. la série 1/(n^p) est convergente ssi pour tout p > 1 48. la série (c^n)(n!)/(n^n) est convergente absolpour tout c < e ument ssi 49. la série (n^p)(q^n) où p > 0 est convergente q < 1		` , ` ,
45. théorème de la moyenne min_f * (b - a) <= l_f entre a et b <= max_f * (b - a) 46. théorème de bolzano weistrass dans toute sous-suite bornée il existe une sous-suite convergente 47. la série 1/(n^p) est convergente ssi pour tout p > 1 48. la série (c^n)(n!)/(n^n) est convergente absol- pour tout c < e ument ssi 49. la série (n^p)(q^n) où p > 0 est convergente q < 1		•
46. théorème de bolzano weistrass dans toute sous-suite bornée il existe une sous-suite convergente 47. la série 1/(n^p) est convergente ssi pour tout p > 1 48. la série (c^n)(n!)/(n^n) est convergente absol- pour tout c < e ument ssi 49. la série (n^p)(q^n) où p > 0 est convergente q < 1 ssi	44. rayon de convergence	= 1/I, I = lim a_{n+1} / a_n
bornée il existe une sous-suite convergente 47. la série 1/(n^p) est convergente ssi 48. la série (c^n)(n!)/(n^n) est convergente absol- pour tout c < e ument ssi 49. la série (n^p)(q^n) où p > 0 est convergente q < 1	45. théorème de la moyenne	•
 48. la série (c^n)(n!)/(n^n) est convergente absol- pour tout c < e ument ssi 49. la série (n^p)(q^n) où p > 0 est convergente q < 1 ssi 	46. théorème de bolzano weistrass	bornée il existe une
ument ssi 49. la série (n^p)(q^n) où p > 0 est convergente q < 1 ssi	47. la série 1/(n^p) est convergente ssi	pour tout p > 1
ssi		pour tout c < e
50. la série (n^p)/n! converge absolument pour tout p dans R		q < 1
	50. la série (n^p)/n! converge absolument	pour tout p dans R

51. la série (n!)^2/n!	diverge
52. la série (x^n)/n!	converge pour tout x dans R
53. si une série converge alors lim a_n -> 0 =	0
54. a_n converge vers I ssi lim_sup(a_n) = lim_inf(a_n) =	l
55. (z)(conjugué de z)	(module de z)^2
56. lim_infty (n^p)/(p^n) =	0
57. méthode pour calculer une limite	* BH * développement limités * limites connues (pattern matching)
58. pour tout $r > 0$, $\lim_{x \to 0} x^r * \ln(x) =$	0
59. pour tout $r \ge 0$, $\lim x' \cdot 0 \ln(x) * x^r =$	0
60. critère de d'Alembert> convergence absolue/pas absolue ?	convergence absolue
61. critère de leibniz> convergence absolue/pas absolue ?	convergence pas forcé- ment absolue
62. comment trouver la valeur de convergence d'une série ?	une méthode est d'essay- er d'écrire les premiers ter- mes (utiles pour les suites téléscopiques par exem- ple)
63. meilleur changement de variable pour intégrer du cos^2 ou du sin^2	$cos^2(a) = 1/2 * (1 + cos(2a))$ $sin^2(a) = 1/2 * (1 - cos(2a))$

Étudiez en ligne sur https://quizlet.com/_edd0ei	vérifier avec la définition ex-
	ponentielle du cos
64. vérifier si f est dérivable en x_0	 * vérifier si f est continue en x_0 * vérifier que les dérivées à gauche et à droite sont les mêmes et existent
65. pour résoudre l'intégrale de e^u du	on trouve e^u !! pas be- soin de se soucier de la dérivée interne puisqu'on intègre par rapport à u et pas x
66. intégrale d'une fonction impaire entre -a et a	0
67. intégrale d'une fonction paire entre -a et a	2x intégrale de la fonction entre 0 et a
68. étudier la dérivée d'une fonction définie par une série entière	objectif : retrouver la forme explicite de la fonction puis dériver cette forme ex- plicite
69. formule explicite suite arith- méticogéométrique	$\begin{cases} a_0 \text{ est donn\'e,} \\ a_{n+1} = qa_n + c \text{ pour } n \in \mathbb{N}^* \end{cases}$ nent conclure: $\begin{cases} q = 1 \implies \forall n \in \mathbb{N} \ a_n = a_0 + nc \\ q \neq 1 \implies \forall n \in \mathbb{N}^* \ a_n = q^n \left(a_0 - \frac{c}{1-q}\right) + \frac{c}{1-q} \end{cases}$
70. quand on calcule une limite avec du log	on utilise les propriétés pour enlever les puis- sances ou séparer les ter- mes
71. pour une limite difficile avec une racine	on passe à l'exponentielle du logarithme et on fait passer la racine devant avec la propriété du log
72.	1/R

 $\lim_{\sim} \sup(|a_n|^{1/n}) = ...$ quand n tend vers l'infini