BÀI 2. CÔNG THỨC LƯỢNG GIÁC

- CHƯƠNG 1. HÀM SỐ LƯỢNG GIÁC VÀ PHƯƠNG TRÌNH LƯỢNG GIÁC
- | FanPage: Nguyễn Bảo Vương

PHẦN C. BÀI TẬP TRẮC NGHIỆM (PHÂN MÚC ĐỘ)

1. Câu hỏi dành cho đối tượng học sinh trung bình – khá

Câu 1. Trong các công thức sau, công thức nào đúng?

A.
$$\cos(a-b) = \cos a \cdot \sin b + \sin a \cdot \sin b$$
.

B.
$$\sin(a-b) = \sin a \cdot \cos b - \cos a \cdot \sin b$$
.

C.
$$\sin(a+b) = \sin a \cdot \cos b - \cos a \cdot \sin b$$
.

D.
$$\cos(a+b) = \cos a \cdot \cos b + \sin a \cdot \sin b$$
.

Chon D

Công thức cộng: $\sin(a-b) = \sin a \cdot \cos b - \cos a \cdot \sin b$

Câu 2. Trong các công thức sau, công thức nào đúng?

A.
$$\tan(a-b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$
.

B.
$$\tan(a-b) = \tan a - \tan b$$
.

C.
$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$
.

D.
$$\tan(a+b) = \tan a + \tan b$$
.

Lời giải.

Chon

Ta có
$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \tan b}$$

Câu 3. Biểu thức $\sin x \cos y - \cos x \sin y$ bằng

A.
$$\cos(x-y)$$
.

B.
$$\cos(x+y)$$
.

C.
$$\sin(x-y)$$
. **D.** $\sin(y-x)$.

D.
$$\sin(y-x)$$
.

Lời giải

Chon C

Áp dụng công thức cộng lượng giác ta có đáp án.

C.

Câu 4. Chọn khẳng định sai trong các khẳng định sau:

A.
$$cos(a+b) = cos a cos b + sin a sin b$$
.

B.
$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$
.

C.
$$\sin(a-b) = \sin a \cos b - \cos a \sin b$$
.

D.
$$\cos 2a = 1 - 2\sin^2 a$$
.

Lời giải

Chon A.

Ta có công thức đúng là: cos(a+b) = cos a cos b - sin a sin b.

Câu 5. Trong các khẳng định sau, khẳng định nào sai?

$$\mathbf{A.} \sin a - \sin b = 2\cos\frac{a+b}{2}\sin\frac{a-b}{2}.$$

B.
$$\cos(a-b) = \cos a \cos b - \sin a \sin b$$
.

C.
$$\sin(a-b) = \sin a \cos b - \cos a \sin b$$
.

D.
$$2\cos a\cos b = \cos(a-b) + \cos(a+b)$$
.

Lời giải

Chọn B

Câu A, D là công thức biến đổi đúng

Câu C là công thức cộng đúng

Câu B sai vì $\cos(a-b) = \cos a \cos b + \sin a \sin b$.

Biểu thức $\frac{\sin(a+b)}{\sin(a-b)}$ bằng biểu thức nào sau đây? (Giả sử biểu thức có nghĩa) Câu 6.

$$\mathbf{A.} \ \frac{\sin(a+b)}{\sin(a-b)} = \frac{\sin a + \sin b}{\sin a - \sin b}$$

B.
$$\frac{\sin(a+b)}{\sin(a-b)} = \frac{\sin a - \sin b}{\sin a + \sin b}$$

$$\mathbf{C.} \frac{\sin(a+b)}{\sin(a-b)} = \frac{\tan a + \tan b}{\tan a - \tan b}.$$

D.
$$\frac{\sin(a+b)}{\sin(a-b)} = \frac{\cot a + \cot b}{\cot a - \cot b}.$$

Lời giải.

Chon

Ta có: $\frac{\sin(a+b)}{\sin(a-b)} = \frac{\sin a \cos b + \cos a \sin b}{\sin a \cos b - \cos a \sin b}$ (Chia cả tử và mẫu cho $\cos a \cos b$)

$$= \frac{\tan a + \tan b}{\tan a - \tan b}$$

Rút gọn biểu thức: $\sin(a-17^\circ).\cos(a+13^\circ)-\sin(a+13^\circ).\cos(a-17^\circ)$, ta được: Câu 7.

A. $\sin 2a$.

B. $\cos 2a$.

 $C_{\bullet} - \frac{1}{2}$.

D. $\frac{1}{2}$.

Ta có: $\sin(a-17^\circ).\cos(a+13^\circ) - \sin(a+13^\circ).\cos(a-17^\circ) = \sin[(a-17^\circ)-(a+13^\circ)]$ $=\sin(-30^{\circ})=-\frac{1}{2}$.

Giá trị của biểu thức $\cos \frac{37\pi}{12}$ bằng Câu 8.

A.
$$\frac{\sqrt{6} + \sqrt{2}}{4}$$

B.
$$\frac{\sqrt{6}-\sqrt{2}}{4}$$
.

A.
$$\frac{\sqrt{6} + \sqrt{2}}{4}$$
. **B.** $\frac{\sqrt{6} - \sqrt{2}}{4}$. **C.** $-\frac{\sqrt{6} + \sqrt{2}}{4}$. **D.** $\frac{\sqrt{2} - \sqrt{6}}{4}$.

D.
$$\frac{\sqrt{2}-\sqrt{6}}{4}$$
.

Lời giải.

 $\cos\frac{37\pi}{12} = \cos\left(2\pi + \pi + \frac{\pi}{12}\right) = \cos\left(\pi + \frac{\pi}{12}\right) = -\cos\left(\frac{\pi}{12}\right) = -\cos\left(\frac{\pi}{2} - \frac{\pi}{4}\right)$ $=-\left(\cos\frac{\pi}{3}.\cos\frac{\pi}{4}+\sin\frac{\pi}{3}.\sin\frac{\pi}{4}\right)=-\frac{\sqrt{6}+\sqrt{2}}{4}.$

Câu 9. Đăng thức nào sau đây là đúng.

A. $\cos\left(\alpha + \frac{\pi}{2}\right) = \cos\alpha + \frac{1}{2}$.

B. $\cos\left(\alpha + \frac{\pi}{3}\right) = \frac{1}{2}\sin\alpha - \frac{\sqrt{3}}{2}\cos\alpha$.

C. $\cos\left(\alpha + \frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}\sin\alpha - \frac{1}{2}\cos\alpha$. D. $\cos\left(\alpha + \frac{\pi}{3}\right) = \frac{1}{2}\cos\alpha - \frac{\sqrt{3}}{2}\sin\alpha$.

Lời giải

Chon D

Ta có $\cos\left(\alpha + \frac{\pi}{3}\right) = \cos\alpha \cdot \cos\frac{\pi}{3} - \sin\alpha \cdot \sin\frac{\pi}{3} = \frac{1}{2}\cos\alpha - \frac{\sqrt{3}}{2}\sin\alpha$.

Câu 10. Cho tan
$$\alpha = 2$$
. Tính tan $\left(\alpha - \frac{\pi}{4}\right)$.

A.
$$-\frac{1}{3}$$
.

C.
$$\frac{2}{3}$$
.

D.
$$\frac{1}{3}$$
.

Lời giải

Chọn D

Ta có
$$\tan\left(\alpha - \frac{\pi}{4}\right) = \frac{\tan\alpha - \tan\frac{\pi}{4}}{1 + \tan\alpha \tan\frac{\pi}{4}} = \frac{2 - 1}{1 + 2} = \frac{1}{3}$$
.

Câu 11. Kết quả nào sau đây sai?

$$\mathbf{A.} \sin x + \cos x = \sqrt{2} \sin \left(x + \frac{\pi}{4} \right).$$

B.
$$\sin x - \cos x = -\sqrt{2} \cos \left(x + \frac{\pi}{4}\right)$$
.

C.
$$\sin 2x + \cos 2x = \sqrt{2} \sin \left(2x - \frac{\pi}{4}\right)$$
.

D.
$$\sin 2x + \cos 2x = \sqrt{2} \cos \left(2x - \frac{\pi}{4} \right)$$
.

Lời giải

Chon C

Ta có
$$\sin 2x + \cos 2x = \sqrt{2} \left(\frac{1}{\sqrt{2}} \sin 2x + \frac{1}{\sqrt{2}} \cos 2x \right)$$

$$= \sqrt{2} \left(\cos \frac{\pi}{4} \sin 2x + \sin \frac{\pi}{4} \cos 2x \right)$$

$$= \sqrt{2} \sin \left(2x + \frac{\pi}{4} \right) \neq \sqrt{2} \sin \left(2x - \frac{\pi}{4} \right)$$

Đẳng thức nào **không đúng** với mọi x? Câu 12.

A.
$$\cos^2 3x = \frac{1 + \cos 6x}{2}$$
. **B.** $\cos 2x = 1 - 2\sin^2 x$.

C.
$$\sin 2x = 2\sin x \cos x$$
. **D.** $\sin^2 2x = \frac{1 + \cos 4x}{2}$.

Lời giải

Chon D

Ta có
$$\sin^2 2x = \frac{1 - \cos 4x}{2}$$
.

Câu 13. Trong các công thức sau, công thức nào sai?

A.
$$\cot 2x = \frac{\cot^2 x - 1}{2 \cot x}$$
. **B.** $\tan 2x = \frac{2 \tan x}{1 + \tan^2 x}$

B.
$$\tan 2x = \frac{2 \tan x}{1 + \tan^2 x}$$
.

$$\mathbf{C.} \cos 3x = 4\cos^3 x - 3\cos x.$$

D.
$$\sin 3x = 3\sin x - 4\sin^3 x$$

Lời giải.

Chon В.

Công thức đúng là
$$\tan 2x = \frac{2 \tan x}{1 - \tan^2 x}$$
.

Câu 14. Trong các công thức sau, công thức nào sai?

$$\mathbf{A.} \cos 2a = \cos^2 a - \sin^2 a.$$

B.
$$\cos 2a = \cos^2 a + \sin^2 a$$
.

C.
$$\cos 2a = 2\cos^2 a - 1$$
. **D.** $\cos 2a = 1 - 2\sin^2 a$.

Lời giải.

Chọn B.

Ta có $\cos 2a = \cos^2 a - \sin^2 a = 2\cos^2 a - 1 = 1 - 2\sin^2 a$.

Câu 15. Mệnh đề nào sau đây đúng?

 $\mathbf{A.} \cos 2a = \cos^2 a - \sin^2 a \ .$

B. $\cos 2a = \cos^2 a + \sin^2 a$.

C. $\cos 2a = 2\cos^2 a + 1$. D. $\cos 2a = 2\sin^2 a - 1$.

Lời giải

Chọn A

Câu 16. Cho góc lượng giác a. Trong các khẳng định sau, khẳng định nào là khẳng định sai?

A. $\cos 2a = 1 - 2\sin^2 a$. **B.** $\cos 2a = \cos^2 a - \sin^2 a$.

C. $\cos 2a = 1 - 2\cos^2 a$. D. $\cos 2a = 2\cos^2 a - 1$.

Lòigiải

Chọn C

Ta có: $\cos 2a = \cos^2 a - \sin^2 a = 1 - 2\sin^2 a = 2\cos^2 a - 1$.

Câu 17. Khẳng định nào dưới đây SAI?

A. $2\sin^2 a = 1 - \cos 2a$.

B. $\cos 2a = 2\cos a - 1$.

C. $\sin 2a = 2\sin a \cos a$.

D. $\sin(a+b) = \sin a \cos b + \sin b \cdot \cos a$.

Lời giải

Chọn B

Có $\cos 2a = 2\cos^2 a - 1$ nên đáp án **B** sai.

Câu 18. Chọn đáo án đúng.

A. $\sin 2x = 2\sin x \cos x$. **B.** $\sin 2x = \sin x \cos x$. **C.** $\sin 2x = 2\cos x$. **D.** $\sin 2x = 2\sin x$.

Lời giải

Chọn A

Câu 19. Cho $\cos x = \frac{4}{5}$, $x \in \left(-\frac{\pi}{2}; 0\right)$. Giá trị của $\sin 2x$ là

A. $\frac{24}{25}$.

B. $-\frac{24}{25}$.

 $C_{\bullet} - \frac{1}{5}$.

D. $\frac{1}{5}$.

Lời giải

Chọn B

Ta có $\sin^2 x = 1 - \cos^2 x = 1 - \frac{16}{25} = \frac{9}{25} \Rightarrow \sin x = -\frac{3}{5} \text{ vì } x \in \left(-\frac{\pi}{2}; 0\right) \Rightarrow \sin x < 0.$

Vậy $\sin 2x = 2 \sin x \cdot \cos x = 2 \cdot \frac{4}{5} \cdot \left(-\frac{3}{5}\right) = -\frac{24}{25}$.

Câu 20. Nếu sinx + $\cos x = \frac{1}{2}$ thì sin2x bằng

A. $\frac{3}{4}$

B. $\frac{3}{8}$.

C. $\frac{\sqrt{2}}{2}$.

D. $\frac{-3}{4}$.

Lời giải

Chọn D

Ta có
$$\sin x + \cos x = \frac{1}{2} \Leftrightarrow \sin^2 x + 2\sin x \cos x + \cos^2 x = \frac{1}{4} \Leftrightarrow \sin 2x = \frac{-3}{4}$$

Biết rằng $\sin^6 x + \cos^6 x = a + b \sin^2 2x$, với a, b là các số thực. Tính T = 3a + 4b.

A.
$$T = -7$$
.

B.
$$T = 1$$

$$C$$
. $T=0$.

D.
$$T = 7$$
.

Lời giải

Chon C

Ta có
$$\sin^6 x + \cos^6 x = (\sin^2 x + \cos^2 x)^3 - 3\sin^2 x \cdot \cos^2 x (\sin^2 x + \cos^2 x)$$

= $1 - 3\sin^2 x \cdot \cos^2 x = 1 - \frac{3}{4}\sin^2 2x$.

Vậy
$$a = 1, b = -\frac{3}{4}$$
. Do đó $T = 3a + 4b = 0$.

Mênh đề nào sau đây sai? Câu 22.

A.
$$\cos a \cos b = \frac{1}{2} \Big[\cos (a-b) + \cos (a+b) \Big].$$
 B. $\sin a \cos b = \frac{1}{2} \Big[\sin (a-b) - \cos (a+b) \Big].$

B.
$$\sin a \cos b = \frac{1}{2} \left[\sin (a - b) - \cos (a + b) \right].$$

C.
$$\sin a \sin b = \frac{1}{2} \left[\cos (a-b) - \cos (a+b) \right]$$

C.
$$\sin a \sin b = \frac{1}{2} \left[\cos(a-b) - \cos(a+b) \right]$$
. D. $\sin a \cos b = \frac{1}{2} \left[\sin(a-b) + \sin(a+b) \right]$.

Lời giải

Chon B

Ta có
$$\sin a \cos b = \frac{1}{2} \left[\sin (a+b) + \sin (a-b) \right].$$

Trong các đẳng thức sau, đẳng thức nào sai? Câu 23.

A.
$$cos(a-b) = cos a. cos b + sin a. sin b$$
.

B.
$$\cos a \cdot \cos b = \frac{1}{2} [\cos(a+b) + \cos(a-b)].$$

C.
$$\sin(a-b) = \sin a \cdot \cos b - \sin b \cdot \cos a$$
.

D.
$$\cos a + \cos b = 2\cos(a+b).\cos(a-b)$$
.

Lời giải

Chon D

Ta có:
$$\cos a + \cos b = 2\cos \frac{a+b}{2} \cdot \cos \frac{a-b}{2}$$
.

Câu 24. Công thức nào sau đây là sai?

A.
$$\cos a + \cos b = 2\cos\frac{a+b}{2}.\cos\frac{a-b}{2}$$

A.
$$\cos a + \cos b = 2\cos\frac{a+b}{2}.\cos\frac{a-b}{2}$$
. **B.** $\cos a - \cos b = -2\sin\frac{a+b}{2}.\sin\frac{a-b}{2}$.

C.
$$\sin a + \sin b = 2\sin\frac{a+b}{2}$$
. $\cos\frac{a-b}{2}$.

D.
$$\sin a - \sin b = 2\sin\frac{a+b}{2}.\cos\frac{a-b}{2}$$
.

Lời giải

Chon D

Ta có
$$\sin a - \sin b = 2\cos \frac{a+b}{2} \cdot \sin \frac{a-b}{2}$$
.

Rút gọn biểu thức $A = \frac{\sin 3x + \cos 2x - \sin x}{\cos x + \sin 2x - \cos 3x} (\sin 2x \neq 0; 2\sin x + 1 \neq 0)$ ta được: Câu 25.

A.
$$A = \cot 6x$$
.

B.
$$A = \cot 3x$$
.

C.
$$A = \cot 2x$$
.

D.
$$A = \tan x + \tan 2x + \tan 3x$$
.

Lời giải

Chon C

$$A = \frac{\sin 3x + \cos 2x - \sin x}{\cos x + \sin 2x - \cos 3x} = \frac{2\cos 2x \sin x + \cos 2x}{2\sin 2x \sin x + \sin 2x} = \frac{\cos 2x(1 + 2\sin x)}{\sin 2x(1 + 2\sin x)} = \cot 2x.$$

Rút gọn biểu thức $P = \sin\left(a + \frac{\pi}{4}\right) \sin\left(a - \frac{\pi}{4}\right)$. Câu 26.

A.
$$-\frac{3}{2}\cos 2a$$
.

B.
$$\frac{1}{2}\cos 2a$$
.

C.
$$-\frac{2}{3}\cos 2a$$

C.
$$-\frac{2}{3}\cos 2a$$
. D. $-\frac{1}{2}\cos 2a$.

Lời giải

Chon D

Ta có:
$$\sin\left(a + \frac{\pi}{4}\right) \sin\left(a - \frac{\pi}{4}\right) = \frac{1}{2} \left[\cos\frac{\pi}{2} - \cos 2a\right] = -\frac{1}{2}\cos 2a$$
.

Biến đổi biểu thức $\sin \alpha - 1$ thành tích. Câu 27.

A.
$$\sin \alpha - 1 = 2 \sin \left(\alpha - \frac{\pi}{2} \right) \cos \left(\alpha + \frac{\pi}{2} \right)$$

A.
$$\sin \alpha - 1 = 2 \sin \left(\alpha - \frac{\pi}{2} \right) \cos \left(\alpha + \frac{\pi}{2} \right)$$
. **B.** $\sin \alpha - 1 = 2 \sin \left(\frac{\alpha}{2} - \frac{\pi}{4} \right) \cos \left(\frac{\alpha}{2} + \frac{\pi}{4} \right)$.

C.
$$\sin \alpha - 1 = 2 \sin \left(\alpha + \frac{\pi}{2} \right) \cos \left(\alpha - \frac{\pi}{2} \right)$$

C.
$$\sin \alpha - 1 = 2 \sin \left(\alpha + \frac{\pi}{2} \right) \cos \left(\alpha - \frac{\pi}{2} \right)$$
.

D. $\sin \alpha - 1 = 2 \sin \left(\frac{\alpha}{2} + \frac{\pi}{4} \right) \cos \left(\frac{\alpha}{2} - \frac{\pi}{4} \right)$.

Chon B

$$\sin \alpha - 1 = \sin \alpha - \sin \frac{\pi}{2} = 2\cos \frac{\alpha + \frac{\pi}{2}}{2}\sin \frac{\alpha - \frac{\pi}{2}}{2} = 2\cos \left(\frac{\alpha}{2} + \frac{\pi}{4}\right)\sin \left(\frac{\alpha}{2} - \frac{\pi}{4}\right).$$

Rút gọn biểu thức $P = \frac{\cos a + 2\cos 3a + \cos 5a}{\sin a + 2\sin 3a + \sin 5a}$ Câu 28.

A.
$$P = \tan a$$
. **B.** $P = \cot a$.

B.
$$P = \cot a$$

C.
$$P = \cot 3a$$
.

C.
$$P = \cot 3a$$
. **D.** $P = \tan 3a$.

Lời giải

Chon C

$$P = \frac{\cos a + 2\cos 3a + \cos 5a}{\sin a + 2\sin 3a + \sin 5a} = \frac{2\cos 3a\cos a + 2\cos 3a}{2\sin 3a\cos a + 2\sin 3a}$$
$$= \frac{2\cos 3a(\cos a + 1)}{2\sin 3a(\cos a + 1)} = \frac{\cos 3a}{\sin 3a} = \cot 3a.$$

Câu 29. Tính giá trị biểu thức $P = \sin 30^{\circ} \cdot \cos 60^{\circ} + \sin 60^{\circ} \cdot \cos 30^{\circ}$.

A.
$$P = 1$$
.

B.
$$P = 0$$
.

C.
$$P = \sqrt{3}$$
.

D.
$$P = -\sqrt{3}$$
.

Lời giải

Chon A

Ta có
$$P = \sin(30^{\circ} + 60^{\circ}) = \sin 90^{\circ} = 1$$
.

2. Câu hỏi dành cho đối tương học sinh khá-giỏi

Câu 30. Cho $\sin x = \frac{3}{5}$ với $\frac{\pi}{2} < x < \pi$ khi đó $\tan \left(x + \frac{\pi}{4} \right)$ bằng.

A.
$$\frac{2}{7}$$

B.
$$\frac{-1}{7}$$
.

C.
$$\frac{-2}{7}$$
.

D.
$$\frac{1}{7}$$
.

Lời giải

Chon D

Từ
$$\sin^2 x + \cos^2 x = 1 \Rightarrow \cos x = \pm \sqrt{1 - \sin^2 x} = \pm \sqrt{1 - \frac{9}{25}} = \pm \frac{4}{5}$$
.

Vì
$$\frac{\pi}{2} < x < \pi$$
 nên $\cos x = -\frac{4}{5}$ do đó $\tan x = \frac{\sin x}{\cos x} = -\frac{3}{4}$.

Ta có:
$$\tan\left(x + \frac{\pi}{4}\right) = \frac{\tan x + \tan\frac{\pi}{4}}{1 - \tan x \cdot \tan\frac{\pi}{4}} = \frac{-\frac{3}{4} + 1}{1 + \frac{3}{4}} = \frac{1}{7}.$$

- Cho $\sin \alpha = \frac{1}{\sqrt{3}}$ với $0 < \alpha < \frac{\pi}{2}$. Giá trị của $\cos \left(\alpha + \frac{\pi}{3}\right)$ bằng
 - **A.** $\frac{2-\sqrt{6}}{2\sqrt{6}}$.
- **B.** $\sqrt{6} 3$.
- C. $\frac{1}{\sqrt{6}} \frac{1}{2}$. D. $\sqrt{6} \frac{1}{2}$.

Lời giải

Chon A

Ta có:
$$\sin^2 \alpha + \cos^2 \alpha = 1 \Leftrightarrow \cos^2 \alpha = \frac{2}{3} \Leftrightarrow \cos \alpha = \frac{\sqrt{6}}{3}$$
 (vì $0 < \alpha < \frac{1}{2}$ nên $\cos \alpha > 0$).

Ta có:
$$\cos\left(\alpha + \frac{\pi}{3}\right) = \frac{1}{2}\cos\alpha - \frac{\sqrt{3}}{2}\sin\alpha = \frac{1}{2} \cdot \frac{\sqrt{6}}{3} - \frac{\sqrt{3}}{2} \cdot \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{6}} - \frac{1}{2} = \frac{2 - \sqrt{6}}{2\sqrt{6}}$$
.

- Cho hai góc α, β thỏa mãn $\sin \alpha = \frac{5}{13}, \left(\frac{\pi}{2} < \alpha < \pi\right)$ và $\cos \beta = \frac{3}{5}, \left(0 < \beta < \frac{\pi}{2}\right)$. Tính giá trị đúng của $\cos(\alpha - \beta)$.
 - **A.** $\frac{16}{65}$.
- **B.** $-\frac{18}{65}$.
- C. $\frac{18}{65}$.
- **D.** $-\frac{16}{65}$.

Lời giải

Chon D

$$\sin \alpha = \frac{5}{13}, \left(\frac{\pi}{2} < \alpha < \pi\right) \text{ nên } \cos \alpha = -\sqrt{1 - \left(\frac{5}{13}\right)^2} = -\frac{12}{13}.$$

$$\cos \beta = \frac{3}{5}, \left(0 < \beta < \frac{\pi}{2}\right) \text{ nên } \sin \beta = \sqrt{1 - \left(\frac{3}{5}\right)^2} = \frac{4}{5}.$$

$$\cos(\alpha - \beta) = \cos\alpha\cos\beta + \sin\alpha\sin\beta = -\frac{12}{13} \cdot \frac{3}{5} + \frac{5}{13} \cdot \frac{4}{5} = -\frac{16}{65}$$

- **Câu 33.** Cho $\sin \alpha = \frac{3}{5}, \alpha \in \left(\frac{\pi}{2}; \frac{3\pi}{2}\right)$. Tính giá trị $\cos \left(\alpha \frac{21\pi}{4}\right)$?
 - A. $\frac{\sqrt{2}}{10}$.
- B. $\frac{-7\sqrt{2}}{10}$. C. $\frac{-\sqrt{2}}{10}$.
- **D.** $\frac{7\sqrt{2}}{10}$.

Lời giải

Chon A

Ta có: $\cos^2 \alpha = 1 - \sin^2 \alpha = \frac{16}{25} \Leftrightarrow \cos \alpha = \pm \frac{4}{5}$. Do $\alpha \in \left(\frac{\pi}{2}; \frac{3\pi}{2}\right) \Rightarrow \cos \alpha < 0$ nên $\cos \alpha = \frac{-4}{5}$.

Vậy:
$$\cos\left(\alpha - \frac{21\pi}{4}\right) = \cos\alpha\cos\frac{21\pi}{4} + \sin\alpha\sin\frac{21\pi}{4} = \frac{-4}{5}\left(\frac{-\sqrt{2}}{2}\right) + \frac{3}{5}\left(\frac{-\sqrt{2}}{2}\right) = \frac{\sqrt{2}}{10}$$
.

Câu 34. Biểu thức $M = \cos(-53^\circ) \cdot \sin(-337^\circ) + \sin 307^\circ \cdot \sin 113^\circ$ có giá trị bằng:

A.
$$-\frac{1}{2}$$
.

B.
$$\frac{1}{2}$$
.

$$C. -\frac{\sqrt{3}}{2}.$$

D.
$$\frac{\sqrt{3}}{2}$$
.

Lời giải.

Chon

$$M = \cos(-53^{\circ}).\sin(-337^{\circ}) + \sin 307^{\circ}.\sin 113^{\circ}$$

$$= \cos(-53^{\circ}).\sin(23^{\circ} - 360^{\circ}) + \sin(-53^{\circ} + 360^{\circ}).\sin(90^{\circ} + 23^{\circ})$$

$$= \cos(-53^{\circ}).\sin 23^{\circ} + \sin(-53^{\circ}).\cos 23^{\circ} = \sin(23^{\circ} - 53^{\circ}) = -\sin 30^{\circ} = -\frac{1}{2}.$$

Câu 35. Rút gọn biểu thức: $\cos 54^{\circ} \cdot \cos 4^{\circ} - \cos 36^{\circ} \cdot \cos 86^{\circ}$, ta được:

$$\mathbf{C} \cdot \sin 50^{\circ}$$

D. sin 58°.

Lời giải.

Chọn D.

Ta có: $\cos 54^{\circ} \cdot \cos 4^{\circ} - \cos 36^{\circ} \cdot \cos 86^{\circ} = \cos 54^{\circ} \cdot \cos 4^{\circ} - \sin 54^{\circ} \cdot \sin 4^{\circ} = \cos 58^{\circ}$.

Câu 36. Cho hai góc nhọn a và b với $\tan a = \frac{1}{7}$ và $\tan b = \frac{3}{4}$. Tính a + b.

A.
$$\frac{\pi}{3}$$

$$\mathbf{B.}\ \frac{\pi}{4}$$

C.
$$\frac{\pi}{6}$$
.

B.
$$\frac{\pi}{4}$$
. **C.** $\frac{\pi}{6}$. **D.** $\frac{2\pi}{3}$.

Chon

$$\tan(a+b) = \frac{\tan a + \tan b}{1 - \tan a \cdot \tan b} = 1, \text{ suy ra } a+b = \frac{\pi}{4}$$

Câu 37. Cho x, y là các góc nhọn, $\cot x = \frac{3}{4}$, $\cot y = \frac{1}{7}$. Tổng x + y bằng:

A.
$$\frac{\pi}{4}$$
.

B.
$$\frac{3\pi}{4}$$
.

C.
$$\frac{\pi}{3}$$
.

D. π .

Lời giải.

Chon C.

Ta có:

$$\tan(x+y) = \frac{\tan x + \tan y}{1 - \tan x \cdot \tan y} = \frac{\frac{4}{3} + 7}{1 - \frac{4}{3} \cdot 7} = -1, \text{ suy ra } x + y = \frac{3\pi}{4}.$$

Câu 38. Biểu thức $A = \cos^2 x + \cos^2 \left(\frac{\pi}{3} + x\right) + \cos^2 \left(\frac{\pi}{3} - x\right)$ không phụ thuộc x và bằng:

A.
$$\frac{3}{4}$$
.

B.
$$\frac{4}{3}$$

C.
$$\frac{3}{2}$$

D.
$$\frac{2}{3}$$
.

Lời giải.

Điện thoại: 0946798489

Chọn

Ta có:

C.

 $A = \cos^2 x + \cos^2 \left(\frac{\pi}{3} + x\right) + \cos^2 \left(\frac{\pi}{3} - x\right)^2 = \cos^2 x + \left(\frac{\sqrt{3}}{2}\cos x - \frac{1}{2}\sin x\right)^2 + \left(\frac{\sqrt{3}}{2}\cos x + \frac{1}{2}\sin x\right)^2 + \left(\frac{\sqrt{3}}{2}\cos x - \frac{1}{2}\sin x\right)^2 + \left(\frac{\sqrt{3}}{2}\cos x\right)$

$$=\frac{3}{2}$$
.

Câu 39. Biết $\sin \beta = \frac{4}{5}$, $0 < \beta < \frac{\pi}{2}$ và $\alpha \neq k\pi$. Giá trị của biểu thức: $A = \frac{\sqrt{3}\sin(\alpha + \beta) - \frac{4\cos(\alpha + \beta)}{\sqrt{3}}}{\sin \alpha}$

không phu thuộc vào α và bằng

A.
$$\frac{\sqrt{5}}{3}$$
.

B.
$$\frac{5}{\sqrt{3}}$$
.

C.
$$\frac{\sqrt{3}}{5}$$
. D. $\frac{3}{\sqrt{5}}$.

D.
$$\frac{3}{\sqrt{5}}$$

Lời giải.

Chon B.

Ta có $\begin{cases} 0 < \beta < \frac{\pi}{2} \\ \sin \beta = \frac{4}{5} \end{cases} \Rightarrow \cos \beta = \frac{3}{5}, \text{ thay vào biểu thức } A = \frac{\sqrt{3} \sin(\alpha + \beta) - \frac{4\cos(\alpha + \beta)}{\sqrt{3}}}{\sin \alpha} = \frac{5}{\sqrt{3}}.$

Câu 40. Nếu $\tan \frac{\beta}{2} = 4 \tan \frac{\alpha}{2}$ thì $\tan \frac{\beta - \alpha}{2}$ bằng:

A.
$$\frac{3\sin\alpha}{5-3\cos\alpha}$$

$$\mathbf{B.} \; \frac{3\sin\alpha}{5 + 3\cos\alpha}$$

A.
$$\frac{3\sin\alpha}{5-3\cos\alpha}$$
. B. $\frac{3\sin\alpha}{5+3\cos\alpha}$. C. $\frac{3\cos\alpha}{5-3\cos\alpha}$. D. $\frac{3\cos\alpha}{5+3\cos\alpha}$.

$$\mathbf{D.} \ \frac{3\cos\alpha}{5+3\cos\alpha}$$

Chọn

Ta có:

 $\tan\frac{\beta-\alpha}{2} = \frac{\tan\frac{\beta}{2} - \tan\frac{\alpha}{2}}{1 + \tan\frac{\beta}{2} \cdot \tan\frac{\alpha}{2}} = \frac{3\tan\frac{\alpha}{2}}{1 + 4\tan^2\frac{\alpha}{2}} = \frac{3\sin\frac{\alpha}{2} \cdot \cos\frac{\alpha}{2}}{1 + 3\sin^2\frac{\alpha}{2}} = \frac{3\sin\alpha}{5 - 3\cos\alpha}.$

Câu 41. Cho $\cos a = \frac{3}{4}$; $\sin a > 0$; $\sin b = \frac{3}{5}$; $\cos b < 0$. Giá trị của $\cos (a + b)$. bằng:

A.
$$\frac{3}{5} \left(1 + \frac{\sqrt{7}}{4} \right)$$

B.
$$-\frac{3}{5}\left(1+\frac{\sqrt{7}}{4}\right)$$

C.
$$\frac{3}{5} \left(1 - \frac{\sqrt{7}}{4} \right)$$

A.
$$\frac{3}{5} \left(1 + \frac{\sqrt{7}}{4} \right)$$
. **B.** $-\frac{3}{5} \left(1 + \frac{\sqrt{7}}{4} \right)$. **C.** $\frac{3}{5} \left(1 - \frac{\sqrt{7}}{4} \right)$. **D.** $-\frac{3}{5} \left(1 - \frac{\sqrt{7}}{4} \right)$.

Lời giải.

Chon

Ta có:

$$\begin{cases} \cos a = \frac{3}{4} \Rightarrow \sin a = \sqrt{1 - \cos^2 a} = \frac{\sqrt{7}}{4}.\\ \sin a > 0 \end{cases}$$

$$\begin{cases} \sin b = \frac{3}{5} \Rightarrow \cos b = -\sqrt{1 - \sin^2 b} = -\frac{4}{5}.\\ \cos b < 0 \end{cases}$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b = \frac{3}{4} \cdot \left(-\frac{4}{5}\right) - \frac{\sqrt{7}}{4} \cdot \frac{3}{5} = -\frac{3}{5} \left(1 + \frac{\sqrt{7}}{4}\right).$$

Câu 42. Biết $\cos\left(a-\frac{b}{2}\right) = \frac{1}{2}$ và $\sin\left(a-\frac{b}{2}\right) > 0$; $\sin\left(\frac{a}{2}-b\right) = \frac{3}{5}$ và $\cos\left(\frac{a}{2}-b\right) > 0$. Giá trị $\cos\left(a+b\right)$

A.
$$\frac{24\sqrt{3}-7}{50}$$
. **B.** $\frac{7-24\sqrt{3}}{50}$. **C.** $\frac{22\sqrt{3}-7}{50}$. **D.** $\frac{7-22\sqrt{3}}{50}$.

B.
$$\frac{7-24\sqrt{3}}{50}$$

C.
$$\frac{22\sqrt{3}-7}{50}$$

D.
$$\frac{7-22\sqrt{3}}{50}$$

Lời giải.

Chon A.

Ta có:

$$\begin{cases} \cos\left(a - \frac{b}{2}\right) = \frac{1}{2} \\ \sin\left(a - \frac{b}{2}\right) > 0 \end{cases} \Rightarrow \sin\left(a - \frac{b}{2}\right) = \sqrt{1 - \cos^2\left(a - \frac{b}{2}\right)} = \frac{\sqrt{3}}{2}.$$

$$\begin{cases} \sin\left(\frac{a}{2} - b\right) = \frac{3}{5} \\ \cos\left(\frac{a}{2} - b\right) \end{cases} \Rightarrow \cos\left(\frac{a}{2} - b\right) = \sqrt{1 - \sin^2\left(\frac{a}{2} - b\right)} = \frac{4}{5}.$$

$$\cos\frac{a+b}{2} = \cos\left(a - \frac{b}{2}\right)\cos\left(\frac{a}{2} - b\right) + \sin\left(a - \frac{b}{2}\right)\sin\left(\frac{a}{2} - b\right) = \frac{1}{2} \cdot \frac{4}{5} + \frac{3}{5} \cdot \frac{\sqrt{3}}{2} = \frac{3\sqrt{3} + 4}{10}.$$

$$\cos(a+b) = 2\cos^2\frac{a+b}{2} - 1 = \frac{24\sqrt{3} - 7}{50}.$$

Câu 43. Rút gọn biểu thức: $\cos(120^{\circ} - x) + \cos(120^{\circ} + x) - \cos x$ ta được kết quả là

B.
$$-\cos x$$
.

$$\mathbf{C} \cdot -2\cos x$$
.

D.
$$\sin x - \cos x$$
.

Lời giải.

Chon

$$\cos(120^{\circ} - x) + \cos(120^{\circ} + x) - \cos x = -\frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x - \frac{1}{2}\cos x + \frac{\sqrt{3}}{2}\sin x - \cos x = -2\cos x$$

Câu 44. Cho $\sin a = \frac{3}{5}$; $\cos a < 0$; $\cos b = \frac{3}{4}$; $\sin b > 0$. Giá trị $\sin (a - b)$ bằng:

A.
$$-\frac{1}{5}\left(\sqrt{7} + \frac{9}{4}\right)$$
. **B.** $-\frac{1}{5}\left(\sqrt{7} - \frac{9}{4}\right)$. **C.** $\frac{1}{5}\left(\sqrt{7} + \frac{9}{4}\right)$. **D.** $\frac{1}{5}\left(\sqrt{7} - \frac{9}{4}\right)$.

B.
$$-\frac{1}{5}\left(\sqrt{7}-\frac{9}{4}\right)$$

C.
$$\frac{1}{5} \left(\sqrt{7} + \frac{9}{4} \right)$$
.

D.
$$\frac{1}{5} \left(\sqrt{7} - \frac{9}{4} \right)$$
.

Lời giải.

Chon

Ta có:

$$\begin{cases} \sin a = \frac{3}{5} \Rightarrow \cos a = -\sqrt{1 - \sin^2 a} = -\frac{4}{5}. \\ \cos a < 0 \end{cases}$$

$$\begin{cases}
\cos b = \frac{3}{4} \Rightarrow \sin b = \sqrt{1 - \cos^2 b} = \frac{\sqrt{7}}{4} \\
\sin b > 0
\end{cases}$$

$$\sin(a-b) = \sin a \cos b - \cos a \sin b = \frac{3}{5} \cdot \frac{3}{4} - \left(-\frac{4}{5}\right) \cdot \frac{\sqrt{7}}{4} = \frac{1}{5} \left(\sqrt{7} + \frac{9}{4}\right).$$

- **Câu 45.** Biết $\alpha + \beta + \gamma = \frac{\pi}{2}$ và cot α , cot β , cot γ theo thứ tự lập thành một cấp số cộng. Tích số $\cot \alpha . \cot \gamma$ bằng:
 - **A.** 2.

- **B.** −2.
- **C.** 3.

D. −3.

Lời giải.

Chon C.

Ta có:

$$\alpha + \beta + \gamma = \frac{\pi}{2}, \text{ suy ra } \cot \beta = \tan(\alpha + \gamma) = \frac{\tan \alpha + \tan \gamma}{1 - \tan \alpha \tan \gamma} = \frac{\cot \alpha + \cot \gamma}{\cot \alpha \cot \gamma - 1} = \frac{2 \cot \beta}{\cot \alpha \cot \gamma - 1}$$

$$\Rightarrow \cot \alpha \cot \gamma = 3.$$

- **Câu 46.** Cho $\sin 2\alpha = \frac{3}{4}$. Tính giá trị biểu thức $A = \tan \alpha + \cot \alpha$
 - **A.** $A = \frac{4}{2}$.
- **B.** $A = \frac{2}{3}$.
- C. $A = \frac{8}{3}$.
- **D.** $A = \frac{16}{2}$.

Chon C

$$A = \tan \alpha + \cot \alpha = \frac{\sin \alpha}{\cos \alpha} + \frac{\cos \alpha}{\sin \alpha} = \frac{\sin^2 \alpha + \cos^2 \alpha}{\sin \alpha \cos \alpha} = \frac{1}{\frac{1}{2} \sin 2\alpha} = \frac{1}{\frac{1}{2} \cdot \frac{3}{4}} = \frac{8}{3}.$$

- Cho a,b là hai góc nhọn. Biết $\cos a = \frac{1}{3}$, $\cos b = \frac{1}{4}$. Giá trị của biểu thức $\cos(a+b)\cos(a-b)$
- **A.** $-\frac{119}{144}$. **B.** $-\frac{115}{144}$. **C.** $-\frac{113}{144}$. **D.** $-\frac{117}{144}$.

Lời giải

Từ
$$\cos a = \frac{1}{3} \Rightarrow \cos 2a = 2\cos^2 a - 1 = -\frac{7}{9}$$

 $\cos b = \frac{1}{4} \Rightarrow \cos 2b = 2\cos^2 b - 1 = -\frac{7}{8}$

Ta có
$$\cos(a+b)\cos(a-b) = \frac{1}{2}(\cos 2a + \cos 2b) = \frac{1}{2}(-\frac{7}{9} - \frac{7}{8}) = -\frac{119}{144}$$
.

- **Câu 48.** Cho số thực α thỏa mãn $\sin \alpha = \frac{1}{4}$. Tính $(\sin 4\alpha + 2\sin 2\alpha)\cos \alpha$
 - A. $\frac{25}{128}$.
- **B.** $\frac{1}{16}$.
- C. $\frac{255}{128}$. D. $\frac{225}{128}$.

Lời giải

Ta có $(\sin 4\alpha + 2\sin 2\alpha)\cos \alpha = 2\sin 2\alpha(\cos 2\alpha + 1)\cos \alpha = 4\sin \alpha\cos \alpha(1 - 2\sin^2 \alpha + 1)\cos \alpha$ $= 4\sin\alpha \left(1 - \sin^2\alpha\right) \left(2 - 2\sin^2\alpha\right) = 8\left(1 - \sin^2\alpha\right)^2\sin\alpha = 8\left(1 - \frac{1}{16}\right)^2 \cdot \frac{1}{4} = \frac{225}{128}.$

Câu 49. Cho cot a = 15, giá trị sin 2a có thể nhận giá trị nào dưới đây:

A.
$$\frac{11}{113}$$
.

B.
$$\frac{13}{113}$$
.

C.
$$\frac{15}{113}$$
.

D.
$$\frac{17}{113}$$
.

Lời giải.

C. Chon

$$\cot a = 15 \Rightarrow \frac{1}{\sin^2 a} = 226 \Rightarrow \begin{cases} \sin^2 a = \frac{1}{226} \\ \cos^2 a = \frac{225}{226} \end{cases} \Rightarrow \sin 2a = \pm \frac{15}{113}.$$

Câu 50. Giá trị đúng của $\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}$ bằng:

A.
$$\frac{1}{2}$$

B.
$$-\frac{1}{2}$$
.

C.
$$\frac{1}{4}$$
.

D.
$$-\frac{1}{4}$$
.

Lời giải.

В. Chon

Ta có
$$\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7} = \frac{\sin \frac{\pi}{7} \left(\cos \frac{2\pi}{7} + \cos \frac{4\pi}{7} + \cos \frac{6\pi}{7}\right)}{\sin \frac{\pi}{7}}$$

$$=\frac{\sin\frac{3\pi}{7}+\sin\left(-\frac{\pi}{7}\right)+\sin\frac{5\pi}{7}+\sin\left(-\frac{3\pi}{7}\right)+\sin\pi+\sin\left(-\frac{5\pi}{7}\right)}{2\sin\frac{\pi}{7}}=\frac{\sin\left(-\frac{\pi}{7}\right)}{2\sin\frac{\pi}{7}}=-\frac{1}{2}.$$

Câu 51. Giá trị đúng của $\tan \frac{\pi}{24} + \tan \frac{7\pi}{24}$ bằng:

A.
$$2(\sqrt{6}-\sqrt{3})$$
. **B.** $2(\sqrt{6}+\sqrt{3})$.

B.
$$2(\sqrt{6}+\sqrt{3})$$
.

C.
$$2(\sqrt{3}-\sqrt{2})$$

C.
$$2(\sqrt{3}-\sqrt{2})$$
. **D.** $2(\sqrt{3}+\sqrt{2})$.

Chon

$$\tan\frac{\pi}{24} + \tan\frac{7\pi}{24} = \frac{\sin\frac{\pi}{3}}{\cos\frac{\pi}{24} \cdot \cos\frac{7\pi}{24}} = \frac{\sqrt{3}}{\cos\frac{\pi}{3} + \cos\frac{\pi}{4}} = 2\left(\sqrt{6} - \sqrt{3}\right).$$

Câu 52. Biểu thức $A = \frac{1}{2\sin 10^0} - 2\sin 70^0$ có giá trị đúng bằng:

A. 1.

D.
$$-2$$
.

Lời giải.

Chon

$$A = \frac{1}{2\sin 10^{0}} - 2\sin 70^{0} = \frac{1 - 4\sin 10^{0}.\sin 70^{0}}{2\sin 10^{0}} = \frac{2\sin 80^{0}}{2\sin 10^{0}} = \frac{2\sin 10^{0}}{2\sin 10^{0}} = 1.$$

Câu 53. Tích số cos 10°. cos 30°. cos 50°. cos 70° bằng:

A.
$$\frac{1}{16}$$
.

B.
$$\frac{1}{8}$$
.

C.
$$\frac{3}{16}$$
.

D.
$$\frac{1}{4}$$
.

Lời giải.

C. Chọn

$$\cos 10^{\circ}.\cos 30^{\circ}.\cos 50^{\circ}.\cos 70^{\circ} = \cos 10^{\circ}.\cos 30^{\circ}.\frac{1}{2}\left(\cos 120^{\circ} + \cos 20^{\circ}\right)$$
$$= \frac{\sqrt{3}}{4}\left(-\frac{\cos 10^{\circ}}{2} + \frac{\cos 30^{\circ} + \cos 10^{\circ}}{2}\right) = \frac{\sqrt{3}}{4}.\frac{1}{4} = \frac{\sqrt{3}}{16}.$$

Câu 54. Tích số $\cos \frac{\pi}{7} \cdot \cos \frac{4\pi}{7} \cdot \cos \frac{5\pi}{7}$ bằng:

A.
$$\frac{1}{8}$$

B.
$$-\frac{1}{8}$$
.

C.
$$\frac{1}{4}$$
.

D.
$$-\frac{1}{4}$$
.

Lời giải.

Chon

$$\cos\frac{\pi}{7} \cdot \cos\frac{4\pi}{7} \cdot \cos\frac{5\pi}{7} = \frac{\sin\frac{2\pi}{7} \cdot \cos\frac{4\pi}{7} \cdot \cos\frac{5\pi}{7}}{2\sin\frac{\pi}{7}} = -\frac{\sin\frac{2\pi}{7} \cdot \cos\frac{2\pi}{7} \cdot \cos\frac{4\pi}{7}}{2\sin\frac{\pi}{7}} = -\frac{\sin\frac{4\pi}{7} \cdot \cos\frac{4\pi}{7}}{4\sin\frac{\pi}{7}}$$
$$= -\frac{\sin\frac{8\pi}{7}}{8\sin\frac{\pi}{7}} = \frac{1}{8}.$$

Câu 55. Giá trị đúng của biểu thức $A = \frac{\tan 30^\circ + \tan 40^\circ + \tan 50^\circ + \tan 60^\circ}{\cos 20^\circ}$ bằng:

A.
$$\frac{2}{\sqrt{3}}$$
.

B.
$$\frac{4}{\sqrt{3}}$$

B.
$$\frac{4}{\sqrt{3}}$$
. **C.** $\frac{6}{\sqrt{3}}$.

D.
$$\frac{8}{\sqrt{3}}$$
.

Chon D.

$$A = \frac{\tan 30^{\circ} + \tan 40^{\circ} + \tan 50^{\circ} + \tan 60^{\circ}}{\cos 20^{\circ}} = \frac{\frac{\sin 70^{\circ}}{\cos 30^{\circ} \cdot \cos 40^{\circ}} + \frac{\sin 110^{\circ}}{\cos 50^{\circ} \cdot \cos 60^{\circ}}}{\cos 20^{\circ}}$$

$$= \frac{1}{\cos 30^{\circ} \cdot \cos 40^{\circ}} + \frac{1}{\cos 50^{\circ} \cdot \cos 60^{\circ}} = \frac{2}{\sqrt{3}\cos 40^{\circ}} + \frac{2}{\cos 50^{\circ}} = 2\left(\frac{\cos 50^{\circ} + \sqrt{3}\cos 40^{\circ}}{\sqrt{3}\cos 40^{\circ} \cdot \cos 50^{\circ}}\right)$$

$$= 2\left(\frac{\sin 40^{\circ} + \sqrt{3}\cos 40^{\circ}}{\sqrt{3}\cos 40^{\circ} \cdot \cos 50^{\circ}}\right) = 4\frac{\sin 100^{\circ}}{\frac{\sqrt{3}}{2}\left(\cos 10^{\circ} + \cos 90^{\circ}\right)} = \frac{8\cos 10^{\circ}}{\sqrt{3}\cos 10^{\circ}} = \frac{8}{\sqrt{3}}.$$

Câu 56. Cho hai góc nhọn a và b. Biết $\cos a = \frac{1}{3}$, $\cos b = \frac{1}{4}$. Giá trị $\cos(a+b).\cos(a-b)$ bằng:

A.
$$-\frac{113}{144}$$
.

B.
$$-\frac{115}{144}$$
.

C.
$$-\frac{117}{144}$$
. **D.** $-\frac{119}{144}$.

D.
$$-\frac{119}{144}$$
.

Lời giải.

Chon D.

Ta có:

$$\cos(a+b)\cdot\cos(a-b) = \frac{1}{2}(\cos 2a + \cos 2b) = \cos^2 a + \cos^2 b - 1 = \left(\frac{1}{3}\right)^2 + \left(\frac{1}{4}\right)^2 - 1 = -\frac{119}{144}.$$

Câu 57. Rút gọn biểu thức $A = \frac{\sin x + \sin 2x + \sin 3x}{\cos x + \cos 2x + \cos 3x}$

A.
$$A = \tan 6x$$
.

B.
$$A = \tan 3x$$
.

C. $A = \tan 2x$.

D. $A = \tan x + \tan 2x + \tan 3x$.

Lời giải.

C. Chon

Ta có:

$$A = \frac{\sin x + \sin 2x + \sin 3x}{\cos x + \cos 2x + \cos 3x} = \frac{2\sin 2x \cdot \cos x + \sin 2x}{2\cos 2x \cdot \cos x + \cos 2x} = \frac{\sin 2x (2\cos x + 1)}{\cos 2x (2\cos x + 1)} = \tan 2x.$$

Câu 58. Biến đổi biểu thức $\sin a + 1$ thành tích.

A.
$$\sin a + 1 = 2\sin\left(\frac{a}{2} + \frac{\pi}{4}\right)\cos\left(\frac{a}{2} - \frac{\pi}{4}\right)$$

A.
$$\sin a + 1 = 2\sin\left(\frac{a}{2} + \frac{\pi}{4}\right)\cos\left(\frac{a}{2} - \frac{\pi}{4}\right)$$
. **B.** $\sin a + 1 = 2\cos\left(\frac{a}{2} + \frac{\pi}{4}\right)\sin\left(\frac{a}{2} - \frac{\pi}{4}\right)$.

C.
$$\sin a + 1 = 2\sin\left(a + \frac{\pi}{2}\right)\cos\left(a - \frac{\pi}{2}\right)$$
. D. $\sin a + 1 = 2\cos\left(a + \frac{\pi}{2}\right)\sin\left(a - \frac{\pi}{2}\right)$.

D.
$$\sin a + 1 = 2\cos\left(a + \frac{\pi}{2}\right)\sin\left(a - \frac{\pi}{2}\right)$$
.

Chon D.

Ta có
$$\sin a + 1 = 2\sin\frac{a}{2}\cos\frac{a}{2} + \sin^2\frac{a}{2} + \cos^2\frac{a}{2} = \left(\sin\frac{a}{2} + \cos\frac{a}{2}\right)^2 = 2\sin^2\left(\frac{a}{2} + \frac{\pi}{4}\right)$$
$$= 2\sin\left(\frac{a}{2} + \frac{\pi}{4}\right)\cos\left(\frac{\pi}{4} - \frac{a}{2}\right) = 2\sin\left(\frac{a}{2} + \frac{\pi}{4}\right)\cos\left(\frac{a}{2} - \frac{\pi}{4}\right).$$

Cho góc α thỏa mãn $\frac{\pi}{2} < \alpha < \pi$ và $\sin \frac{\alpha}{2} = \frac{2}{\sqrt{5}}$. Tính giá trị của biểu thức $A = \tan \left(\frac{\alpha}{2} - \frac{\pi}{4}\right)$.

A.
$$A = \frac{1}{3}$$
.

B.
$$A = -\frac{1}{3}$$
.

$$C \cdot A = 3$$
.

D.
$$A = -3$$
.

Chon A

Vì góc α thỏa mãn $\frac{\pi}{2} < \alpha < \pi$ nên $\frac{\pi}{4} < \frac{\alpha}{2} < \frac{\pi}{2}$ suy ra $\cos \frac{\alpha}{2} > 0$.

Do
$$\sin \frac{\alpha}{2} = \frac{2}{\sqrt{5}}$$
 nên $\cos \frac{\alpha}{2} = \sqrt{1 - \sin^2 \frac{\alpha}{2}} = \frac{1}{\sqrt{5}}$.

Biểu thức
$$A = \tan\left(\frac{\alpha}{2} - \frac{\pi}{4}\right) = \frac{\tan\frac{\alpha}{2} - 1}{\tan\frac{\alpha}{2} + 1}$$
.

Do đó $\tan \frac{\alpha}{2} = 2$.

Vậy biểu thức $A = \frac{2-1}{2+1} = \frac{1}{3}$.

Cho $\cos x = \frac{1}{3} \left(-\frac{\pi}{2} < x < 0 \right)$. Giá trị của $\tan 2x$ là Câu 60.

A.
$$\frac{\sqrt{5}}{2}$$

A.
$$\frac{\sqrt{5}}{2}$$
. **B.** $\frac{4\sqrt{2}}{7}$.

C.
$$-\frac{\sqrt{5}}{2}$$

C.
$$-\frac{\sqrt{5}}{2}$$
. D. $-\frac{4\sqrt{2}}{7}$.

Lời giải

Chon B

$$\sin^2 x = 1 - \cos^2 x = 1 - \frac{1}{9} = \frac{8}{9} \implies \sin x = -\frac{2\sqrt{2}}{3} \text{ (vì } -\frac{\pi}{2} < x < 0\text{)}.$$

$$\Rightarrow \tan x = -2\sqrt{2} \implies \tan 2x = \frac{2 \tan x}{1 - \tan^2 x} = \frac{-4\sqrt{2}}{-7} = \frac{4\sqrt{2}}{7}.$$

Câu 61. Cho $\cos x = 0$. Tính $A = \sin^2\left(x - \frac{\pi}{6}\right) + \sin^2\left(x + \frac{\pi}{6}\right)$.

A.
$$\frac{3}{2}$$
.

C. 1.

D. $\frac{1}{4}$.

Lời giải

Chon A

Ta có $\cos 2x = 2\cos^2 x - 1 = -1$. Sử dụng công thức hạ bậc và công thức biến đổi tổng thành tích

$$A = \frac{1 - \cos\left(2x - \frac{\pi}{3}\right) + 1 - \cos\left(2x + \frac{\pi}{3}\right)}{2} = 1 - \cos 2x \cos\frac{\pi}{3} = 1 + \frac{1}{2} = \frac{3}{2}$$

Câu 62. Cho biết $\cos \alpha = -\frac{2}{3}$. Giá trị của biểu thức $P = \frac{\cot \alpha + 3 \tan \alpha}{2 \cot \alpha + \tan \alpha}$ bằng bao nhiêu?

A.
$$P = \frac{19}{13}$$
.

B.
$$P = \frac{25}{13}$$
.

B.
$$P = \frac{25}{13}$$
. **C.** $P = -\frac{25}{13}$. **D.** $P = -\frac{19}{13}$.

D.
$$P = -\frac{19}{13}$$
.

Lời giải

Ta có:
$$\cos \alpha = -\frac{2}{3} \Rightarrow \tan^2 \alpha = \frac{1}{\cos^2 \alpha} - 1 = \frac{1}{\left(\frac{-2}{3}\right)^2} - 1 = \frac{5}{4}$$

$$P = \frac{\cot \alpha + 3\tan \alpha}{2\cot \alpha + \tan \alpha} = \frac{\frac{1}{\tan \alpha} + 3\tan \alpha}{\frac{2}{\tan \alpha} + \tan \alpha} = \frac{\frac{1 + 3\tan^2 \alpha}{\tan \alpha}}{\frac{2 + \tan^2 \alpha}{\tan \alpha}} = \frac{1 + 3\tan^2 \alpha}{2 + \tan^2 \alpha} = \frac{1 + 3 \cdot \frac{5}{4}}{2 + \frac{5}{4}} = \frac{19}{13}$$

Cho $\sin \alpha .\cos(\alpha + \beta) = \sin \beta$ với $\alpha + \beta \neq \frac{\pi}{2} + k\pi$, $\alpha \neq \frac{\pi}{2} + l\pi$, $(k, l \in \mathbb{Z})$. Ta có Câu 63.

A.
$$\tan(\alpha + \beta) = 2 \cot \alpha$$
. **B.** $\tan(\alpha + \beta) = 2 \cot \beta$.

C.
$$\tan(\alpha + \beta) = 2 \tan \beta$$
. D. $\tan(\alpha + \beta) = 2 \tan \alpha$.

Lời giải

Chon D

Ta có
$$\sin \alpha . \cos(\alpha + \beta) = \sin \beta \Leftrightarrow \frac{1}{2} \left[\sin(2\alpha + \beta) - \sin \beta \right] = \sin \beta$$

$$\Leftrightarrow \sin[(\alpha+\beta)+\alpha] = 3\sin\beta \Leftrightarrow \sin(\alpha+\beta)\cos\alpha + \sin\alpha\cos(\alpha+\beta) = 3\sin\beta$$

$$\Leftrightarrow \frac{\sin(\alpha+\beta)}{\cos(\alpha+\beta)}\cos\alpha + \sin\alpha = \frac{3\sin\beta}{\cos(\alpha+\beta)} \text{ (vì } \cos(\alpha+\beta) \neq 0\text{)}$$

$$\Leftrightarrow \frac{\sin(\alpha+\beta)}{\cos(\alpha+\beta)} = \frac{3\sin\beta}{\cos\alpha\cos(\alpha+\beta)} - \frac{\sin\alpha}{\cos\alpha} \ (*) \ (vì \cos\alpha \neq 0)$$

$$\operatorname{M\grave{a}}\frac{\sin\beta}{\cos(\alpha+\beta)} = \sin\alpha \text{ (từ giả thiết), suy ra (*)} \Leftrightarrow \tan(\alpha+\beta) = \frac{3\sin\alpha}{\cos\alpha} - \frac{\sin\alpha}{\cos\alpha} = 2\tan\alpha$$

Vậy $\tan(\alpha + \beta) = 2 \tan \alpha$.

Biết rằng $\frac{1}{\cos^2 x - \sin^2 x} + \frac{2 \cdot \tan x}{1 - \tan^2 x} = \frac{\cos(ax)}{b - \sin(ax)} (a, b \in \mathbb{R})$. Tính giá trị của biểu thức Câu 64.

$$P = a + b$$

A.
$$P = 4$$
.

B.
$$P = 1$$
.

C.
$$P = 2$$
.

D.
$$P = 3$$
.

Lời giải

Chon D

Ta có:
$$\frac{1}{\cos^2 x - \sin^2 x} + \frac{2 \cdot \tan x}{1 - \tan^2 x} = \frac{1}{\cos 2x} + \frac{\frac{2 \sin x}{\cos x}}{1 - \frac{\sin^2 x}{\cos^2 x}}$$

$$= \frac{1}{\cos 2x} + \frac{2 \sin x \cdot \cos x}{\cos^2 x - \sin^2 x} = \frac{1}{\cos 2x} + \frac{\sin 2x}{\cos 2x} = \frac{1 + \sin 2x}{\cos 2x} = \frac{(1 + \sin 2x)\cos 2x}{\cos^2 2x} = \frac{(1 + \sin 2x)\cos 2x}{1 - \sin^2 2x}$$

$$= \frac{\cos 2x}{1 - \sin 2x} \cdot \text{Vậy } a = 2, b = 1. \text{ Suy ra } P = a + b = 3.$$

Cho $\cos 2\alpha = \frac{2}{3}$. Tính giá trị của biểu thức $P = \cos \alpha . \cos 3\alpha$. Câu 65.

A.
$$P = \frac{7}{18}$$
.

B.
$$P = \frac{7}{9}$$
. **C.** $P = \frac{5}{9}$. **D.** $\frac{5}{18}$.

C.
$$P = \frac{5}{9}$$
.

D.
$$\frac{5}{18}$$

Lời giải

Chon D

Ta có
$$P = \cos \alpha . \cos 3\alpha = \frac{1}{2} (\cos 2\alpha + \cos 4\alpha) = \frac{1}{2} (2\cos^2 2\alpha + \cos 2\alpha - 1) = \frac{1}{2} \left[2\left(\frac{2}{3}\right)^2 + \frac{2}{3} - 1 \right] = \frac{5}{18}.$$

Cho tan $x = 2\left(\pi < x < \frac{3\pi}{2}\right)$. Giá trị của $\sin\left(x + \frac{\pi}{3}\right)$ là Câu 66.

A.
$$\frac{2-\sqrt{3}}{2\sqrt{5}}$$

A.
$$\frac{2-\sqrt{3}}{2\sqrt{5}}$$
. **B.** $-\frac{2+\sqrt{3}}{2\sqrt{5}}$. **C.** $\frac{2+\sqrt{3}}{2\sqrt{5}}$. **D.** $\frac{-2+\sqrt{3}}{2\sqrt{5}}$.

C.
$$\frac{2+\sqrt{3}}{2\sqrt{5}}$$
.

D.
$$\frac{-2+\sqrt{3}}{2\sqrt{5}}$$

Lời giải

Chon B

$$\pi < x < \frac{3\pi}{2}$$
 suy ra $\sin x < 0$, $\cos x < 0$.

Ta có:
$$1 + \tan^2 x = \frac{1}{\cos^2 x} \Leftrightarrow \cos^2 x = \frac{1}{1 + \tan^2 x} \Leftrightarrow \cos^2 x = \frac{1}{5} \Leftrightarrow \cos x = \pm \frac{1}{\sqrt{5}}$$

Do $\cos x < 0$ nên nhận $\cos x = -\frac{1}{\sqrt{s}}$.

$$\tan x = \frac{\sin x}{\cos x} \Rightarrow \sin x = \tan x \cdot \cos x = -\frac{2}{\sqrt{5}}$$

$$\sin\left(x + \frac{\pi}{3}\right) = \sin x. \cos\frac{\pi}{3} + \cos x. \sin\frac{\pi}{3} = \left(-\frac{2}{\sqrt{5}}\right).\frac{1}{2} + \left(-\frac{1}{\sqrt{5}}\right).\frac{\sqrt{3}}{2} = -\frac{2 + \sqrt{3}}{2\sqrt{5}}$$

Câu 67. Tổng $A = \tan 9^{\circ} + \cot 9^{\circ} + \tan 15^{\circ} + \cot 15^{\circ} - \tan 27^{\circ} - \cot 27^{\circ}$ bằng:

A. 4.

B. −4.

C. 8.

D. −8.

Lời giải.

C. Chon

$$A = \tan 9^{\circ} + \cot 9^{\circ} + \tan 15^{\circ} + \cot 15^{\circ} - \tan 27^{\circ} - \cot 27^{\circ}$$

$$= \tan 9^{\circ} + \cot 9^{\circ} - \tan 27^{\circ} - \cot 27^{\circ} + \tan 15^{\circ} + \cot 15^{\circ}$$

$$= \tan 9^{\circ} + \tan 81^{\circ} - \tan 27^{\circ} - \tan 63^{\circ} + \tan 15^{\circ} + \cot 15^{\circ}.$$
Ta có
$$\tan 9^{\circ} - \tan 27^{\circ} + \tan 81^{\circ} - \tan 63^{\circ} = \frac{-\sin 18^{\circ}}{\cos 9^{\circ} \cdot \cos 27^{\circ}} + \frac{\sin 18^{\circ}}{\cos 81^{\circ} \cdot \cos 63^{\circ}}$$

$$= \sin 18^{\circ} \left(\frac{\cos 9^{\circ} \cdot \cos 27^{\circ} - \cos 81^{\circ} \cdot \cos 63^{\circ}}{\cos 81^{\circ} \cdot \cos 63^{\circ} \cdot \cos 27^{\circ}} \right) = \frac{\sin 18^{\circ} \left(\cos 9^{\circ} \cdot \cos 27^{\circ} - \sin 9^{\circ} \cdot \sin 27^{\circ} \right)}{\cos 81^{\circ} \cdot \cos 63^{\circ} \cdot \cos 9^{\circ} \cdot \cos 27^{\circ}}$$

$$= \frac{4\sin 18^{\circ} \cdot \cos 36^{\circ}}{(\cos 72^{\circ} + \cos 90^{\circ}) \left(\cos 36^{\circ} + \cos 90^{\circ} \right)} = \frac{4\sin 18^{\circ}}{\cos 72^{\circ}} = 4.$$

$$\sin^{2} 15^{\circ} + \cos^{2} 15^{\circ}$$

 $\tan 15^\circ + \cot 15^\circ = \frac{\sin^2 15^\circ + \cos^2 15^\circ}{\sin 15^\circ \cos 15^\circ} = \frac{2}{\sin 30^\circ} = 4$.

Vây A = 8.

- **Câu 68.** Cho hai góc nhọn a và b với $\sin a = \frac{1}{3}$, $\sin b = \frac{1}{2}$. Giá trị của $\sin 2(a+b)$ là:
- A. $\frac{2\sqrt{2}+7\sqrt{3}}{18}$. B. $\frac{3\sqrt{2}+7\sqrt{3}}{18}$. C. $\frac{4\sqrt{2}+7\sqrt{3}}{18}$. D. $\frac{5\sqrt{2}+7\sqrt{3}}{18}$.

Chon

Ta có
$$\begin{cases} 0 < a < \frac{\pi}{2} \\ \sin a = \frac{1}{3} \end{cases} \Rightarrow \cos a = \frac{2\sqrt{2}}{3}; \begin{cases} 0 < b < \frac{\pi}{2} \\ \sin b = \frac{1}{2} \end{cases} \Rightarrow \cos b = \frac{\sqrt{3}}{2}.$$

 $\sin 2(a+b) = 2\sin(a+b).\cos(a+b) = 2(\sin a.\cos b + \sin b.\cos a)(\cos a.\cos b + \sin a.\sin b)$ $=\frac{4\sqrt{2+7\sqrt{3}}}{10}$.

Câu 69. Biểu thức $A = \frac{2\cos^2 2\alpha + \sqrt{3}\sin 4\alpha - 1}{2\sin^2 2\alpha + \sqrt{3}\sin 4\alpha - 1}$ có kết quả rút gọn là:

A.
$$\frac{\cos(4\alpha + 30^\circ)}{\cos(4\alpha - 30^\circ)}$$

B.
$$\frac{\cos(4\alpha-30^\circ)}{\cos(4\alpha+30^\circ)}$$

C.
$$\frac{\sin(4\alpha+30^\circ)}{\sin(4\alpha-30^\circ)}$$
.

A.
$$\frac{\cos(4\alpha + 30^{\circ})}{\cos(4\alpha - 30^{\circ})}$$
. **B.** $\frac{\cos(4\alpha - 30^{\circ})}{\cos(4\alpha + 30^{\circ})}$. **C.** $\frac{\sin(4\alpha + 30^{\circ})}{\sin(4\alpha - 30^{\circ})}$. **D.** $\frac{\sin(4\alpha - 30^{\circ})}{\sin(4\alpha + 30^{\circ})}$.

Chon C.

Ta có:

$$A = \frac{2\cos^2 2\alpha + \sqrt{3}\sin 4\alpha - 1}{2\sin^2 2\alpha + \sqrt{3}\sin 4\alpha - 1} = \frac{\cos 4\alpha + \sqrt{3}\sin 4\alpha}{\sqrt{3}\sin 4\alpha - \cos 4\alpha} = \frac{\sin(4\alpha + 30^\circ)}{\sin(4\alpha - 30^\circ)}.$$

Câu 70. Kết quả nào sau đây SAI?

A.
$$\sin 33^{\circ} + \cos 60^{\circ} = \cos 3^{\circ}$$
.

B.
$$\frac{\sin 9^{\circ}}{\sin 48^{\circ}} = \frac{\sin 12^{\circ}}{\sin 81^{\circ}}$$
.

C.
$$\cos 20^{\circ} + 2\sin^2 55^{\circ} = 1 + \sqrt{2}\sin 65^{\circ}$$
.

D.
$$\frac{1}{\cos 290^{\circ}} + \frac{1}{\sqrt{3}\sin 250^{\circ}} = \frac{4}{\sqrt{3}}$$
.

Lời giải.

Chon

Ta có:
$$\frac{\sin 9^{\circ}}{\sin 48^{\circ}} = \frac{\sin 12^{\circ}}{\sin 81^{\circ}} \Leftrightarrow \sin 9^{\circ}.\sin 81^{\circ} - \sin 12^{\circ}.\sin 48^{\circ} = 0$$

$$\Leftrightarrow \frac{1}{2}(\cos 72^{\circ} - \cos 90^{\circ}) - \frac{1}{2}(\cos 36^{\circ} - \cos 60^{\circ}) = 0 \Leftrightarrow 2\cos 72^{\circ} - 2\cos 36^{\circ} + 1 = 0$$

$$\Leftrightarrow 4\cos^2 36^\circ - 2\cos 36^\circ - 1 = 0$$
 (đúng vì $\cos 36^\circ = \frac{1+\sqrt{5}}{4}$). Suy ra B đúng.

Tương tự, ta cũng chứng minh được các biểu thức ở C và D đúng. Biểu thức ở đáp án A sai.

Câu 71. Nếu $5 \sin \alpha = 3 \sin (\alpha + 2\beta)$ thì:

A.
$$\tan(\alpha + \beta) = 2 \tan \beta$$
. **B.** $\tan(\alpha + \beta) = 3 \tan \beta$.

C.
$$\tan(\alpha + \beta) = 4 \tan \beta$$
. D. $\tan(\alpha + \beta) = 5 \tan \beta$.

Lời giải.

Chon C.

Ta có:

$$5\sin\alpha = 3\sin(\alpha + 2\beta) \Leftrightarrow 5\sin[(\alpha + \beta) - \beta] = 3\sin[(\alpha + \beta) + \beta]$$

$$\Leftrightarrow 5\sin(\alpha+\beta)\cos\beta - 5\cos(\alpha+\beta)\sin\beta = 3\sin(\alpha+\beta)\cos\beta + 3\cos(\alpha+\beta)\sin\beta$$

$$\Leftrightarrow 2\sin(\alpha+\beta)\cos\beta = 8\cos(\alpha+\beta)\sin\beta \Leftrightarrow \frac{\sin(\alpha+\beta)}{\cos(\alpha+\beta)} = 4\frac{\sin\beta}{\cos\beta} \Leftrightarrow \tan(\alpha+\beta) = 4\tan\beta.$$

Câu 72. Cho biểu thức $A = \sin^2(a+b) - \sin^2 a - \sin^2 b$. Hãy chọn kết quả đúng:

A.
$$A = 2\cos a \cdot \sin b \cdot \sin (a+b)$$
.

B.
$$A = 2 \sin a \cdot \cos b \cdot \cos (a + b)$$
.

C.
$$A = 2\cos a \cdot \cos b \cdot \cos(a+b)$$
.

D.
$$A = 2\sin a \cdot \sin b \cdot \cos(a+b)$$
.

Lời giải.

Chon D.

Ta có:

$$A = \sin^{2}(a+b) - \sin^{2}a - \sin^{2}b = \sin^{2}(a+b) - \frac{1-\cos 2a}{2} - \frac{1-\cos 2b}{2}$$

$$= \sin^{2}(a+b) - 1 + \frac{1}{2}(\cos 2a + \cos 2b) = -\cos^{2}(a+b) + \cos(a+b)\cos(a-b)$$

$$= \cos(a+b) \left[\cos(a-b) - \cos(a+b)\right] = 2\sin a \sin b \cos(a+b).$$

Câu 73. Xác định hệ thức SAI trong các hệ thức sau:

A.
$$\cos 40^\circ + \tan \alpha . \sin 40^\circ = \frac{\cos (40^\circ - \alpha)}{\cos \alpha}.$$

B.
$$\sin 15^\circ + \tan 30^\circ . \cos 15^\circ = \frac{\sqrt{6}}{3}.$$

C.
$$\cos^2 x - 2\cos a \cdot \cos x \cdot \cos(a+x) + \cos^2(a+x) = \sin^2 a$$
.

D.
$$\sin^2 x + 2\sin(a - x) \cdot \sin x \cdot \cos a + \sin^2(a - x) = \cos^2 a$$
.

Lời giải.

Chọn D.

Ta có:

$$\cos 40^\circ + \tan \alpha . \sin 40^\circ = \cos 40^\circ + \frac{\sin \alpha}{\cos \alpha} . \sin 40^\circ = \frac{\cos 40^\circ \cos \alpha + \sin 40^\circ \sin \alpha}{\cos \alpha} = \frac{\cos \left(40^\circ - \alpha\right)}{\cos \alpha}. \quad \text{A dúng.}$$

$$\sin 15^{\circ} + \tan 30^{\circ} \cdot \cos 15^{\circ} = \frac{\sin 15^{\circ} \cdot \cos 30^{\circ} + \sin 30^{\circ} \cdot \cos 15^{\circ}}{\cos 30^{\circ}} = \frac{\sin 45^{\circ}}{\cos 30^{\circ}} = \frac{\sqrt{6}}{3}. \text{ B dúng.}$$

$$\cos^{2} x - 2\cos a \cdot \cos x \cdot \cos(a+x) + \cos^{2}(a+x) = \cos^{2} x + \cos(a+x) \left[-2\cos a \cos x + \cos(a+x) \right]$$

$$= \cos^{2} x - \cos(a+x)\cos(a-x)$$

$$= \cos^{2} x - \frac{1}{2}(\cos 2a + \cos 2x) = \cos^{2} x - \cos^{2} a - \cos^{2} x + 1 = \sin^{2} a. \text{ C dúng.}$$

$$\sin^{2} x + 2\sin(a-x)\cdot\sin x \cdot \cos a + \sin^{2}(a-x) = \sin^{2} x + \sin(a-x)(2\sin x \cos a + \sin(a-x))$$

$$= \sin^{2} x + \sin(a-x)\sin(a+x) = \sin^{2} x + \frac{1}{2}(\cos 2x - \cos 2a)$$

$$= \sin^{2} x - \cos^{2} a - \sin^{2} x + 1 = \sin^{2} a. \text{ D sai.}$$

Câu 74. Giá tri nhỏ nhất của $\sin^6 x + \cos^6 x$ là

A. 0.

B. $\frac{1}{2}$

C. $\frac{1}{4}$.

D. $\frac{1}{8}$.

Lời giải

Chon C

Ta có
$$\sin^6 x + \cos^6 x = \left(\sin^2 x + \cos^2 x\right)^3 - 3\sin^2 x \cos^2 x \left(\sin^2 x + \cos^2 x\right) = 1 - \frac{3}{4}\sin^2 2x \ge 1 - \frac{3}{4} = \frac{1}{4}$$
.
Dấu "=" xảy ra khi và chỉ khi $\sin^2 2x = 1 \Leftrightarrow \cos 2x = 0 \Leftrightarrow 2x = \frac{\pi}{2} + k\pi \Leftrightarrow x = \frac{\pi}{4} + k\frac{\pi}{2} \left(k \in \mathbb{Z}\right)$.

Câu 75. Giá trị lớn nhất của $M = \sin^4 x + \cos^4 x$ bằng:

A. 4.

B. 1

C. 2.

D. 3.

Lời giải

Chon B

Ta có
$$M = 1 - \frac{1}{2}\sin^2 2x$$

Vì $0 \le \sin^2 x \le 1$
 $\Leftrightarrow -\frac{1}{2} \le -\frac{1}{2}\sin^2 2x \le 0$

 $\Leftrightarrow \frac{1}{2} \le 1 - \frac{1}{2} \sin^2 2x \le 1$.

Nên giá trị lớn nhất là 1.

Câu 76. Cho $M = 3\sin x + 4\cos x$. Chon khẳng định đúng.

A. $-5 \le M \le 5$.

B. M > 5.

C. $M \ge 5$.

D. $M \le 5$.

Lời giải

Chon A

$$M = 5\left(\frac{3}{5}\sin x + \frac{4}{5}\cos x\right) = 5\sin(x+a)$$
 với $\cos a = \frac{3}{5}; \sin a = \frac{4}{5}$.

Ta có: $-1 \le \sin(x+a) \le 1$

$$\Leftrightarrow -5 \le 5 \sin(x+a) \le 5$$
.

Câu 77. Giá trị lớn nhất của $M = \sin^6 x - \cos^6 x$ bằng:

A. 2.

B. 3

C. 0.

D. 1.

Lời giải

Chon D

$$M = (\sin^2 x - \cos^2 x)(\sin^4 x + \sin^2 x \cos^2 x + \cos^4 x)$$

$$= -\cos 2x (1 - \sin^2 x \cos^2 x)$$

$$= -\cos 2x \left(1 - \frac{1}{4}\sin^2 2x\right)$$

$$= -\cos 2x \left(\frac{3}{4} + \frac{1}{4}\cos^2 2x\right) \le \frac{3}{4} + \frac{1}{4}\cos^2 2x \le \frac{3}{4} + \frac{1}{4} = 1 \quad (do \cos 2x \le 1).$$

Nên giá tri lớn nhất là 1.

Câu 78. Cho biểu thức $M = \frac{1 + \tan x^3}{\left(1 + \tan x\right)^3}$, $\left(x \neq -\frac{\pi}{4} + k\pi, x \neq \frac{\pi}{2} + k\pi, k \in \mathbb{Z}\right)$, mệnh đề nào trong các mệnh

đề sau đúng?

$$\mathbf{A.}\ M\leq 1.$$

B.
$$M \ge \frac{1}{4}$$
.

B.
$$M \ge \frac{1}{4}$$
. **C.** $\frac{1}{4} \le M \le 1$. **D.** $M < 1$.

Lời giải

Chon B

 $\text{D} \check{\mathbf{a}} \mathbf{t} = \tan x, \, t \in \mathbb{R} \setminus \{-1\}.$

Ta có:
$$M = \frac{1+t^3}{\left(1+t\right)^3} = \frac{t^2-t+1}{t^2+2t+1} \implies (M-1)t^2+(2M+1)t+M-1=0.$$
 (*).

Với M = 1 thì (*) có nghiệm t = 0.

Với $M \neq 1$ để (*) có nghiệm khác -1 thì.

$$\Delta \ge 0 \Leftrightarrow (2M+1)^2 - 4(M-1)^2 \ge 0 \Leftrightarrow 12M - 3 \ge 0 \Leftrightarrow M \ge \frac{1}{4}.$$

$$V\dot{a}(M-1)(-1)^2 + (2M+1)(-1) + (-1) - 1 \neq 0 \Leftrightarrow M \neq 4$$
.

Câu 79. Cho $M = 6\cos^2 x + 5\sin^2 x$. Khi đó giá trị lớn nhất của M là

D. 6.

Lời giải

Chon D

$$M = 6(1-\sin^2 x) + 5\sin^2 x = 6-\sin^2 x$$

Ta có: $0 \le \sin^2 x \le 1$, $\forall x \in R$

$$\Leftrightarrow 0 \ge -\sin^2 x \ge -1, \forall x \in R$$

$$\Leftrightarrow 6 \ge 6 - \sin^2 x \ge 5$$
, $\forall x \in R$.

Gía tri lớn nhất là 6.

Câu 80. Giá trị lớn nhất của biểu thức $M = 7\cos^2 x - 2\sin^2 x$ là

Lời giải

D. 16.

Chon C

$$M = 7(1-\sin^2 x) - 2\sin^2 x = 7 - 9\sin^2 x$$

Ta có: $0 \le \sin^2 x \le 1$

$$\Leftrightarrow 0 \ge -9\sin^2 x \ge -9, \forall x \in R$$

$$\Leftrightarrow 7 \ge 7 - 2\sin^2 x \ge -2$$
.

Gía tri lớn nhất là 7.

Câu 81. Cho A, B, C là các góc của tam giác ABC thì.

A.
$$\sin 2A + \sin 2B > 2\sin C$$
.

B.
$$\sin 2A + \sin 2B \le 2\sin C$$
.

C.
$$\sin 2A + \sin 2B \ge 2\sin C$$
.

D.
$$\sin 2A + \sin 2B = 2\sin C$$
.

Chọn B.

Ta có:
$$\sin 2A + \sin 2B = 2\sin(A+B).\cos(A-B) = 2\sin(\pi-C).\cos(A-B)$$

= $2\sin C.\cos(A-B) \le 2\sin C$. Dấu đẳng thức xảy ra khi $\cos(A-B) = 1 \Leftrightarrow A = B$.

- **Câu 82.** Một tam giác ABC có các góc A, B, C thỏa mãn $\sin \frac{A}{2} \cos^3 \frac{B}{2} \sin \frac{B}{2} \cos^3 \frac{A}{2} = 0$ thì tam giác đó có gì đặc biệt?
 - A. Tam giác đó vuông. B. Tam giác đó đều.
 - C. Tam giác đó cân. D. Không có gì đặc biệt.

Lời giải

Chon C

Ta có
$$\sin \frac{A}{2} \cos^3 \frac{B}{2} - \sin \frac{B}{2} \cos^3 \frac{A}{2} = 0 \Leftrightarrow \frac{\sin \frac{A}{2}}{\cos^2 \frac{A}{2}} = \frac{\sin \frac{B}{2}}{\cos^3 \frac{B}{2}}.$$

$$\Leftrightarrow \tan \frac{A}{2} \left(1 + \tan^2 \frac{A}{2} \right) = \tan \frac{B}{2} \left(1 + \tan^2 \frac{B}{2} \right) \Leftrightarrow \tan \frac{A}{2} = \tan \frac{B}{2} \Leftrightarrow \frac{A}{2} = \frac{B}{2} \Leftrightarrow A = B.$$

- **Câu 83.** Cho A, B, C là các góc của tam giác ABC (không là tam giác vuông) thì $\cot A.\cot B + \cot B.\cot C + \cot C.\cot A$ bằng:
 - **A.** $(\cot A. \cot B. \cot C)^2$. **B.** Một kết quả khác các kết quả đã nêu trên.
 - **C.** 1.

D. -1.

Lời giải

Chọn C

Ta có

 $\cot A \cdot \cot B + \cot B \cdot \cot C + \cot C \cdot \cot A$

$$= \frac{1}{\tan A \cdot \tan B} + \frac{1}{\tan B \cdot \tan C} + \frac{1}{\tan C \cdot \tan A} = \frac{\tan A + \tan B + \tan C}{\tan A \cdot \tan B \cdot \tan C}.$$

Mặt khác

 $\tan A + \tan B + \tan C = \tan (A+B)(1-\tan A.\tan B) + \tan C = \tan (\pi - C)(1-\tan A.\tan B) + \tan C$ $= -\tan (C)(1-\tan A.\tan B) + \tan C = \tan C.\tan A.\tan B.$

Nên $\cot A \cdot \cot B + \cot B \cdot \cot C + \cot C \cdot \cot A = 1$.

Câu 84. Cho A, B, C là ba là các góc nhọn và $\tan A = \frac{1}{2}$; $\tan B = \frac{1}{5}$, $\tan C = \frac{1}{8}$. Tổng A + B + C bằng

A.
$$\frac{\pi}{5}$$
.

$$\mathbf{B.} \; \frac{\pi}{4}$$

C.
$$\frac{\pi}{3}$$
.

D.
$$\frac{\pi}{6}$$
.

Lời giải

Chon B

Ta có
$$\tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \cdot \tan B} = \frac{\frac{1}{2} + \frac{1}{5}}{1 - \frac{1}{2} \cdot \frac{1}{5}} = \frac{7}{9}.$$

Suy ra
$$\tan(A+B+C) = \tan[(A+B)+C] = \frac{\tan(A+B)+\tan C}{1-\tan(A+B).\tan C} = \frac{\frac{7}{9}+\frac{1}{8}}{1-\frac{7}{9}.\frac{1}{8}} = 1$$

$$V_{ay}^{2} A+B+C = \frac{\pi}{4}.$$

Câu 85. Biết A, B, C là các góc của tam giác ABC, khi đó.

A.
$$\cot\left(\frac{A+B}{2}\right) = \cot\frac{C}{2}$$
. B. $\cos\left(\frac{A+B}{2}\right) = \cos\frac{C}{2}$.
C. $\cos\left(\frac{A+B}{2}\right) = -\cos\frac{C}{2}$.
D. $\tan\left(\frac{A+B}{2}\right) = \cot\frac{C}{2}$.

Lời giải

Chọn D

Vì A, B, C là các góc của tam giác ABC nên $A + B + C = 180^{\circ} \Rightarrow C = 180^{\circ} - (A + B)$.

$$\Rightarrow \frac{C}{2} = 90^{\circ} - \frac{A+B}{2}. \text{ Do d\'o } \frac{C}{2} \text{ và } \frac{A+B}{2} \text{ là 2 g\'oc phụ nhau.}$$

$$\Rightarrow \sin \frac{C}{2} = \cos \frac{A+B}{2}; \cos \frac{C}{2} = \sin \frac{A+B}{2}; \tan \frac{C}{2} = \cot \frac{A+B}{2}; \cot \frac{C}{2} = \tan \frac{A+B}{2}.$$

Câu 86. A, B, C, là ba góc của một tam giác. Hãy tìm hệ thức sai:

A.
$$\sin A = -\sin(2A + B + C)$$
.
B. $\sin A = -\cos\frac{3A + B + C}{2}$.
C. $\cos C = \sin\frac{A + B + 3C}{2}$.
D. $\sin C = \sin(A + B + 2C)$.
Lòi giải

Chọn D

$$\sin(A+B+2C) = \sin(180^{\circ}-C+2C) = \sin(180^{\circ}+C) = -\sin C$$

Câu 87. Cho A, B, C là các góc của tam giác ABC (không phải tam giác vuông) thì:

A.
$$\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C$$
. **B.** $\tan A + \tan B + \tan C = -\tan \frac{A}{2} \cdot \tan \frac{B}{2} \cdot \tan \frac{C}{2}$.

C. $\tan A + \tan B + \tan C = -\tan A \cdot \tan B \cdot \tan C$. **D.** $\tan A + \tan B + \tan C = \tan \frac{A}{2} \cdot \tan \frac{B}{2} \cdot \tan \frac{C}{2}$.

Lời giải

Chon A

Ta có:
$$\tan A + \tan B + \tan C = (\tan A + \tan B) + \tan C = \frac{\sin(A+B)}{\cos A \cdot \cos B} + \frac{\sin C}{\cos C}$$
.

$$= \sin C \cdot \left(\frac{-\cos(A+B) + \cos A \cdot \cos B}{\cos A \cdot \cos B \cdot \cos C}\right) = \frac{\sin A \cdot \sin B \cdot \sin C}{\cos A \cdot \cos B \cdot \cos C} = \tan A \cdot \tan B \cdot \tan C.$$

Câu 88. Biết A, B, C là các góc của tam giác ABC, khi đó.

A.
$$\sin\left(\frac{A+B}{2}\right) = \cos\frac{C}{2}$$
. **B.** $\sin\left(\frac{A+B}{2}\right) = -\cos\frac{C}{2}$.
C. $\sin\left(\frac{A+B}{2}\right) = \sin\frac{C}{2}$. **D.** $\sin\left(\frac{A+B}{2}\right) = -\sin\frac{C}{2}$.

Chon A

Vì A, B, C là các góc của tam giác ABC nên $A+B+C=180^{\circ} \Rightarrow C=180^{\circ}-(A+B)$.

$$\Rightarrow \frac{C}{2} = 90^{\circ} - \frac{A+B}{2}. \text{ Do } \text{ d\'o } \frac{C}{2} \text{ v\'a} \frac{A+B}{2} \text{ l\'a 2 g\'oc phụ nhau.}$$

$$\Rightarrow \sin \frac{C}{2} = \cos \frac{A+B}{2}; \cos \frac{C}{2} = \sin \frac{A+B}{2}; \tan \frac{C}{2} = \cot \frac{A+B}{2}; \cot \frac{C}{2} = \tan \frac{A+B}{2}.$$

Câu 89. Nếu a = 2b và $a + b + c = \pi$. Hãy chọn kết quả **đúng**.

A.
$$\sin b (\sin b + \sin c) = \sin 2a$$
.

B.
$$\sin b (\sin b + \sin c) = \sin^2 a$$
.

c.
$$\sin b (\sin b + \sin c) = \cos^2 a$$

$$\mathbf{p}. \sin b (\sin b + \sin c) = \cos 2a.$$

Lời giải

Chon B

$$a+b+c = \pi, a = 2b \Rightarrow b = \frac{a}{2}; c = \pi - \frac{3a}{2}$$

$$\sin b \left(\sin b + \sin c\right) = \sin^2 b + \sin b \cdot \sin c = \frac{1-\cos 2b}{2} + \frac{\cos(b-c) - \cos(b+c)}{2}$$

$$= \frac{1-\cos a - \cos(\pi - a) + \cos(2a - \pi)}{2} = \frac{1-\cos 2a}{2} = \sin^2 a.$$

Câu 90. Cho A, B, C là các góc của tam giác ABC thì:

A. $\sin 2A + \sin 2B + \sin 2C = 4\sin A \cdot \sin B \cdot \sin C$. **B.** $\sin 2A + \sin 2B + \sin 2C = 4\cos A \cdot \cos B \cdot \cos C$.

C.
$$\sin 2A + \sin 2B + \sin 2C = -4\cos A \cdot \cos B \cdot \cos C$$

D.

 $\sin 2A + \sin 2B + \sin 2C = 4 \sin A \cdot \sin B \cdot \sin C$.

Lời giải

Chon D

Ta có:
$$\sin 2A + \sin 2B + \sin 2C = (\sin 2A + \sin 2B) + \sin 2C$$

 $= 2\sin(A+B).\cos(A-B) + 2\sin C.\cos C = 2\sin C.\cos(A-B) + 2\sin C.\cos C$
 $= 2\sin C.(\cos(A-B) + \cos C) = 4\sin C.\cos(A-B-C).\cos(A-B+C)$
 $= 4\sin C.\cos\frac{A-B-C}{2}.\cos\frac{A-B+C}{2} = 4\sin C.\cos(\frac{\pi}{2} - A).\cos(\frac{\pi}{2} - B) = 4\sin C.\sin A.\sin B$.

Câu 91. A, B, C, là ba góc của một tam giác. Hãy chỉ hệ thức sai:

$$\mathbf{A.} \cot \left(\frac{4A+B+C}{2} \right) = -\tan \frac{3A}{2}.$$

B.
$$\cos\left(\frac{A-2B+C}{2}\right) = -\sin B$$
.

C.
$$\sin\left(\frac{A+B-3C}{2}\right) = \cos 2C$$
.

D.
$$\tan\left(\frac{A+B+6C}{2}\right) = -\cot\frac{5C}{2}$$
.

Lời giải

Chọn B

$$\cos\frac{A-2B+C}{2} = \cos\frac{180^{0}-B-2B}{2} = \cos\left(90^{0} - \frac{3B}{2}\right) = \sin\frac{3B}{2}.$$

Câu 92. Biết A, B, C là các góc của tam giác ABC khi đó.

A.
$$\cos C = \cos (A+B)$$
. **B.** $\tan C = \tan (A+B)$.

C.
$$\cot C = -\cot(A+B)$$
. D. $\sin C = -\sin(A+B)$.

Lời giải

Chon C

Vì A, B, C là các góc của tam giác ABC nên $A+B+C=180^{\circ} \Rightarrow C=180^{\circ}-(A+B)$.

Do đó (A+B) và C là 2 góc bù nhau.

 $\sin C = \sin (A+B); \cos C = -\cos (A+B).$

$$\tan C = -\tan(A+B); \cot C = \cot(A+B)$$

Câu 93. Cho A, B, C là các góc của tam giác ABC (không là tam giác vuông) thì $\cot A.\cot B + \cot B.\cot C + \cot C.\cot A$ bằng

A. Một kết quả khác các kết quả đã nêu trên.

C. -1.

D. $(\cot A. \cot B. \cot C)^2$.

Lời giải

B. Chon

Ta có : $\cot A \cdot \cot B + \cot B \cdot \cot C + \cot C \cdot \cot A$.

$$=\frac{1}{\tan A.\tan B}+\frac{1}{\tan B.\tan C}+\frac{1}{\tan C.\tan A}=\frac{\tan A+\tan B+\tan C}{\tan A.\tan B.\tan C}.$$

Mặt khác: $\tan A + \tan B + \tan C = \tan (A+B)(1-\tan A.\tan B) + \tan C$.

$$= \tan(\pi - C)(1 - \tan A \cdot \tan B) + \tan C.$$

$$= -\tan C (1 - \tan A \cdot \tan B) + \tan C = \tan C \tan A \cdot \tan B$$
.

Nên $\cot A \cdot \cot B + \cot B \cdot \cot C + \cot C \cdot \cot A = 1$.

Câu 94. Cho A, B, C là các góc của tam giác ABC (không phải tam giác vuông) thì:

$$\mathbf{A.} \cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \cot \frac{A}{2} \cdot \cot \frac{B}{2} \cdot \cot \frac{C}{2}. \quad \mathbf{B.} \cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = -\cot \frac{A}{2} \cdot \cot \frac{B}{2} \cdot \cot \frac{C}{2}.$$

C.
$$\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \cot A \cdot \cot B \cdot \cot C$$
. D. $\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = -\cot A \cdot \cot B \cdot \cot C$.

D.
$$\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = -\cot A \cdot \cot B \cdot \cot C$$

Chon A.

Ta có:
$$\cot \frac{A}{2} + \cot \frac{B}{2} + \cot \frac{C}{2} = \left(\cot \frac{A}{2} + \cot \frac{B}{2}\right) + \cot \frac{C}{2} = \frac{\sin\left(\frac{A}{2} + \frac{B}{2}\right)}{\sin \frac{A}{2} \cdot \sin \frac{B}{2}} + \frac{\cos \frac{C}{2}}{\sin \frac{C}{2}}.$$

$$=\cos\frac{C}{2} \cdot \frac{\sin\frac{C}{2} + \sin\frac{A}{2} \cdot \sin\frac{B}{2}}{\sin\frac{C}{2} \cdot \sin\frac{A}{2} \cdot \sin\frac{B}{2}} = \cos\frac{C}{2} \cdot \frac{\cos\left(\frac{A}{2} + \frac{B}{2}\right) + \sin\frac{A}{2} \cdot \sin\frac{B}{2}}{\sin\frac{C}{2} \cdot \sin\frac{A}{2} \cdot \sin\frac{B}{2}} = \frac{\cos\frac{C}{2} \cdot \cos\frac{B}{2} \cdot \cos\frac{A}{2}}{\sin\frac{C}{2} \cdot \sin\frac{A}{2} \cdot \sin\frac{B}{2}} = \cot\frac{A}{2} \cdot \cot\frac{B}{2} \cdot \cot\frac{C}{2}.$$

Câu 95. Cho A, B, C là ba góc của một tam giác. Hãy chọn hệ thức đúng trong các hệ thức sau.

A. $\cos^2 A + \cos^2 B + \cos^2 C = 1 + \cos A \cdot \cos B \cdot \cos C$.

B. $\cos^2 A + \cos^2 B + \cos^2 C = 1 - \cos A \cdot \cos B \cdot \cos C$.

C. $\cos^2 A + \cos^2 B + \cos^2 C = 1 + 2\cos A \cdot \cos B \cdot \cos C$.

D. $\cos^2 A + \cos^2 B + \cos^2 C = 1 - 2\cos A \cdot \cos B \cdot \cos C$.

Lời giải.

Chọn C.

Ta có:

$$\cos^{2} A + \cos^{2} B + \cos^{2} C = \frac{1 + \cos 2A}{2} + \frac{1 + \cos 2B}{2} + \cos^{2} C$$

$$= 1 + \cos(A + B)\cos(A - B) + \cos^{2} C = 1 - \cos C\cos(A - B) - \cos C\cos(A + B)$$

$$= 1 - \cos C \left[\cos(A - B) + \cos(A + B)\right] = 1 + 2\cos A\cos B\cos C.$$

- **Câu 96.** Hãy chỉ ra công thức sai, nếu A, B, C là ba góc của một tam giác.
 - A. $\cos \frac{B}{2} \cos \frac{C}{2} \sin \frac{B}{2} \sin \frac{C}{2} = \sin \frac{A}{2}$.
- **B.** $\cos B \cdot \cos C \sin B \cdot \sin C + \cos A = 0$.
- C. $\sin \frac{B}{2} \cos \frac{C}{2} + \sin \frac{C}{2} \cos \frac{C}{2} = \cos \frac{A}{2}$.
- D.

 $\cos^2 A + \cos^2 B + \cos^2 C - 2\cos A\cos B\cos C = 1.$

Lời giải

Chon C

$$\cos(A+B) = -\cos C \Rightarrow \cos A \cdot \cos B + \cos C = \sin A \cdot \sin B$$

$$\Rightarrow \cos^2 A \cdot \cos^2 B + 2\cos A \cdot \cos B \cdot \cos C + \cos^2 C = \sin^2 A \cdot \sin^2 B = (1-\cos^2 A)(1-\cos^2 B)$$

$$= 1 - \cos^2 A - \cos^2 B + \cos^2 A \cdot \cos^2 B$$

$$\Rightarrow \cos^2 A + \cos^2 B + \cos^2 C + 2\cos A \cdot \cos B \cdot \cos C = 1$$

- **Câu 97.** Cho tam giác ABC có $\sin A = \frac{\sin B + \sin C}{\cos B + \cos C}$. Khẳng định nào dưới đây đúng?
 - **A.** Tam giác ABC vuông tại A.
- **B.** Tam giác ABC cân tại A.
- C. Tam giác ABC đều. D. Tam giác ABC là tam giác tù.

Lời giải

Chon A

Ta có
$$\sin A = \frac{\sin B + \sin C}{\cos B + \cos C} \Leftrightarrow \sin A = \frac{2\sin\frac{B+C}{2}\cos\frac{B-C}{2}}{2\cos\frac{B+C}{2}\cos\frac{B-C}{2}} \Leftrightarrow \sin A = \frac{\cos\frac{A}{2}}{\sin\frac{A}{2}}$$

$$\Leftrightarrow 2\sin\frac{A}{2}\cos\frac{A}{2} = \frac{\cos\frac{A}{2}}{\sin\frac{A}{2}} \Leftrightarrow 2\sin^2\frac{A}{2} = 1 \ (\cos\frac{A}{2} \neq 0 \ \text{vi } 0^\circ < A < 180^\circ)$$

- $\Leftrightarrow \cos A = 0 \Rightarrow A = 90^{\circ}$ suy ra tam giác ABC vuông tại A.
- **Câu 98.** Cho bất đẳng thức $\cos 2A + \frac{1}{64\cos^4 A} (2\cos 2B + 4\sin B) + \frac{13}{4} \le 0$ với A, B, C là ba góc của tam giác ABC. Khẳng định đúng là:

A.
$$B + C = 120^{\circ}$$
.

B.
$$B + C = 130^{\circ}$$
.

C.
$$A + B = 120^{\circ}$$
.

D.
$$A + C = 140^{\circ}$$
.

Lời giải

Chọn A

Từ giả thiết suy ra:
$$2\cos^2 A + \frac{1}{64\cos^4 A} - (2 - 4\sin^2 B + 4\sin B) + \frac{13}{4} \le 0$$

$$\Leftrightarrow \cos^2 A + \cos^2 A + \frac{1}{64\cos^4 A} + 4\sin^2 B - 4\sin B + 1 \le \frac{3}{4}$$
 (*)

AD BDT Cauchy thì $\cos^2 A + \cos^2 A + \frac{1}{64\cos^4 A} \ge \frac{3}{4}$ (1)

Mặt khác $4\sin^2 B - 4\sin B + 1 = (2\sin B - 1)^2 \ge 0(2)$

Từ (*), (1) và (2) suy ra bắt thỏa mãn khi và chỉ khi dấu bằng ở (1) và (2) xảy ra

$$\Leftrightarrow \begin{cases} \cos^2 A = \frac{1}{64\cos^4 A} \\ \sin B = \frac{1}{2} \end{cases} \Leftrightarrow \begin{cases} \cos A = \frac{1}{2} \\ \sin B = \frac{1}{2} \end{cases} \Leftrightarrow \begin{cases} \widehat{A} = 60^{\circ} \\ \widehat{B} = 30^{\circ} \\ \widehat{C} = 90^{\circ} \end{cases}$$

Nên $\widehat{B} + \widehat{C} = 120^{\circ}$ Chọn A.

Câu 99. Cho A, B, C là các góc nhọn và $\tan A = \frac{1}{2}$, $\tan B = \frac{1}{5}$, $\tan C = \frac{1}{8}$. Tổng A + B + C bằng:

C. $\frac{\pi}{4}$.

Lời giải.

Chon C.

$$\tan(A+B+C) = \frac{\tan(A+B) + \tan C}{1 - \tan(A+B) \cdot \tan C} = \frac{\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B} + \tan C}{\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B} \cdot \tan C} = 1 \text{ suy ra } A + B + C = \frac{\pi}{4}.$$

Câu 100. Cho A, B, C là ba góc của một tam giác. Hãy chỉ ra hệ thức SAI.

A. $\sin \frac{A+B+3C}{2} = \cos C$.

A. $\sin \frac{A+B+3C}{2} = \cos C$. **B.** $\cos (A+B-C) = -\cos 2C$. **C.** $\tan \frac{A+B-2C}{2} = \cot \frac{3C}{2}$. **D.** $\cot \frac{A+B+2C}{2} = \tan \frac{C}{2}$.

Chon D.

Ta có:

$$A+B+C=\pi \Rightarrow \frac{A+B+3C}{2}=\frac{\pi}{2}+C \Rightarrow \sin\frac{A+B+3C}{2}=\sin\left(\frac{\pi}{2}+C\right)=\cos C$$
. A dúng.

$$A+B-C=\pi-2C \Rightarrow \cos(A+B-C)=\cos(\pi-2C)=-\cos 2C$$
. B đúng.

$$\frac{A+B-2C}{2} = \frac{\pi}{2} - \frac{3C}{2} \Rightarrow \tan\frac{A+B-2C}{2} = \tan\left(\frac{\pi}{2} - \frac{3C}{2}\right) = \cot\frac{3C}{2}.$$
 C dúng.

$$\frac{A+B+2C}{2} = \frac{\pi}{2} + \frac{C}{2} \Rightarrow \cot \frac{A+B+2C}{2} = \cot \left(\frac{\pi}{2} + \frac{C}{2}\right) = -\tan \frac{C}{2}. \text{ D sai.}$$

Câu 101. Cho A, B, C là ba góc của một tam giác. Hãy chỉ ra hệ thức **SAI.**

A.
$$\cos \frac{A+B}{2} = \sin \frac{C}{2}$$
. **B.** $\cos (A+B+2C) = -\cos C$.

C.
$$\sin(A+C) = -\sin B$$
. D. $\cos(A+B) = -\cos C$.

Lời giải.

Chon C.

$$\frac{A+B}{2} = \frac{\pi}{2} - \frac{C}{2} \Rightarrow \cos\frac{A+B}{2} = \cos\left(\frac{\pi}{2} - \frac{C}{2}\right) = \sin\frac{C}{2}.$$
 A dúng.

Diện thoại: 0946798489
$$A + B + 2C = \pi + C \Rightarrow \cos(A + B + 2C) = \cos(\pi + C) = -\cos C. \text{ B dùng.}$$

$$A+C=\pi-B \Rightarrow \sin(A+C)=\sin(\pi-B)=\sin B$$
. C sai.

$$A + B = \pi - C \Rightarrow \cos(A + B) = \cos(\pi - C) = -\cos C$$
. D đúng.

Câu 102. Cho A, B, C là ba góc của một tam giác không vuông. Hệ thức nào sau đây **SAI**?

A.
$$\cos \frac{B}{2} \cos \frac{C}{2} - \sin \frac{B}{2} \sin \frac{C}{2} = \sin \frac{A}{2}$$
.

B. $\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C$

C. $\cot A + \cot B + \cot C = \cot A \cdot \cot B \cdot \cot C$.

D.
$$\tan \frac{A}{2} \cdot \tan \frac{B}{2} + \tan \frac{B}{2} \cdot \tan \frac{C}{2} + \tan \frac{C}{2} \cdot \tan \frac{A}{2} = 1$$
.

Lời giải.

Chon

Ta có:

$$+\cos\frac{B}{2}\cos\frac{C}{2}-\sin\frac{B}{2}\sin\frac{C}{2}=\cos\left(\frac{B}{2}+\frac{C}{2}\right)=\cos\left(\frac{\pi}{2}-\frac{A}{2}\right)=\sin\frac{A}{2}$$
. A đúng.

+ $\tan A + \tan B + \tan C = \tan A \cdot \tan B \cdot \tan C \Leftrightarrow -\tan A (1 - \tan B \tan C) = \tan B + \tan C$

$$\Leftrightarrow \tan A = -\frac{\tan B + \tan C}{1 - \tan B \tan C} \Leftrightarrow \tan A = -\tan (B + C)$$
. B dúng.

+ $\cot A + \cot B + \cot C = \cot A \cdot \cot B \cdot \cot C \Leftrightarrow \cot A (\cot B \cot C - 1) = \cot B + \cot C$

$$\Leftrightarrow \frac{1}{\cot A} = \frac{\cot B \cot C - 1}{\cot B + \cot C} \Leftrightarrow \tan A = \cot (B + C)$$
. C sai.

$$+ \tan \frac{A}{2} \cdot \tan \frac{B}{2} + \tan \frac{B}{2} \cdot \tan \frac{C}{2} + \tan \frac{C}{2} \cdot \tan \frac{A}{2} = 1 \Leftrightarrow \tan \frac{A}{2} \cdot \left(\tan \frac{B}{2} + \tan \frac{C}{2} \right) = 1 - \tan \frac{B}{2} \cdot \tan \frac{C}{2} = 1$$

$$\Leftrightarrow \frac{1}{\tan\frac{A}{2}} = \frac{\tan\frac{B}{2} + \tan\frac{C}{2}}{1 - \tan\frac{B}{2} \cdot \tan\frac{C}{2}} \Leftrightarrow \cot\frac{A}{2} = \tan\left(\frac{B}{2} + \frac{C}{2}\right). \text{ D dúng.}$$

Theo dõi Fanpage: Nguyễn Bảo Vương * https://www.facebook.com/tracnghiemtoanthpt489/

Hoặc Facebook: Nguyễn Vương * https://www.facebook.com/phong.baovuong

Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIÊU TOÁN) # https://www.facebook.com/groups/703546230477890/

Ân sub kênh Youtube: Nguyễn Vương

https://www.voutube.com/channel/UCO4u2J5gIEI1iRUbT3nwJfA?view as=subscriber

Tải nhiều tài liệu hơn tại: https://www.nbv.edu.vn/