SBML Model Report

Model name: "Fuentes2005_ZymogenActivation"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 1 format. This model was created by the following two authors: Jacky L Snoep¹ and Harish Dharuri² at March fifth 2007 at 4:37 p. m. and last time modified at February thirteenth 2014 at 3:45 p. m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	1
species types	0	species	4
events	0	constraints	0
reactions	3	function definitions	0
global parameters	0	unit definitions	2
rules	0	initial assignments	0

Model Notes

. .

¹Stellenbosh University, jls@sun.ac.za

 $^{{}^2} California\ Institute\ of\ Technology,\ {\tt hdharuri@cds.caltech.edu}$

SBML level 2 code generated for the JWS Online project by Jacky Snoep using PySCeS Run this model online at http://jjj.biochem.sun.ac.za

To cite JWS Online please refer to: Olivier, B.G. and Snoep, J.L. (2004) Web-based modelling using JWS Online, Bioinformatics, 20:2143-2144

.

.

The model reproduces Fig 1A of the paper. The model was successfully tested on MathSBML. This model originates from BioModels Database: A Database of Annotated Published Mod-

els. It is copyright (c) 2005-2006 The BioModels Team.

For more information see the terms of use.

2 Unit Definitions

This is an overview of seven unit definitions of which five are predefined by SBML and not mentioned in the model.

2.1 Unit M_inv_sec_inv

Name M_inv_sec_inv

Definition $mol^{-1} \cdot l \cdot s^{-1}$

2.2 Unit sec_inv

Name sec_inv

Definition s^{-1}

2.3 Unit substance

Notes Mole is the predefined SBML unit for substance.

Definition mol

2.4 Unit volume

Notes Litre is the predefined SBML unit for volume.

Definition 1

2.5 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.6 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.7 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartment

This model contains one compartment.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial Dimensions	Size	Unit	Constant	Outside
compartment	compartment		3	1	litre		

3.1 Compartment compartment

This is a three dimensional compartment with a constant size of one litre.

Name compartment

4 Species

This model contains four species. Section 6 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
z	Zymogen	compartment	$\text{mol} \cdot l^{-1}$		
е	Enzyme	compartment	$\mathrm{mol}\cdot\mathrm{l}^{-1}$		
W	Peptide	compartment	$\text{mol} \cdot l^{-1}$		
ez	Enzyme-Substrate complex	compartment	$\text{mol} \cdot l^{-1}$	\Box	

5 Reactions

This model contains three reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 4: Overview of all reactions

No	Id	Name	Reaction Equation	SBO
1 2	v1 v2	Intramolecular autoactivation Intermolecular autoactivation-Complex for-	$z \rightleftharpoons w + e$ $z + e \rightleftharpoons ez$	
3	v3	mation Intermolecular autoactivation-Enzyme release	$ez \Longrightarrow w + 2e$	

5.1 Reaction v1

This is a reversible reaction of one reactant forming two products.

Name Intramolecular autoactivation

Reaction equation

$$z \rightleftharpoons w + e$$
 (1)

Reactant

Table 5: Properties of each reactant.

Id	Name	SBO
z	Zymogen	·

Products

Table 6: Properties of each product.

Id	Name	SBO
W	Peptide	
е	Enzyme	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_1 = \text{vol} \left(\text{compartment} \right) \cdot \text{k1} \cdot [\text{z}]$$
 (2)

Table 7: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k1			0.004	s^{-1}	\overline{Z}

5.2 Reaction v2

This is a reversible reaction of two reactants forming one product.

Name Intermolecular autoactivation-Complex formation

Reaction equation

$$z + e \rightleftharpoons ez$$
 (3)

Reactants

Table 8: Properties of each reactant.

Id	Name	SBO
z	Zymogen	
е	Enzyme	

Product

Table 9: Properties of each product.

Id	Name	SBO
ez	Enzyme-Substrate complex	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_2 = vol\left(compartment\right) \cdot \left(k21 \cdot [e] \cdot [z] - k22 \cdot [ez]\right) \tag{4}$$

Table 10: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k21			1000.000	$\text{mol}^{-1} \cdot \mathbf{l} \cdot \mathbf{s}^{-1}$	\overline{Z}
k22			$2.1\cdot 10^{-4}$	s^{-1}	$ \overline{\mathbf{Z}} $

5.3 Reaction v3

This is a reversible reaction of one reactant forming two products.

Name Intermolecular autoactivation-Enzyme release

Reaction equation

$$ez \Longrightarrow w + 2e$$
 (5)

Reactant

Table 11: Properties of each reactant.

Table 11. 11operties of each reactant.				
Id	Name	SBO		
ez	Enzyme-Substrate complex			

Products

Table 12: Properties of each product.

Id	Name	SBO
W	Peptide	
е	Enzyme	

Kinetic Law

Derived unit $s^{-1} \cdot mol$

$$v_3 = \text{vol} (\text{compartment}) \cdot \text{k3} \cdot [\text{ez}]$$
 (6)

Table 13: Properties of each parameter.

Id	Name	SBO	Value	Unit	Constant
k3			$5.4\cdot 10^{-4}$	s^{-1}	

6 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

6.1 Species z

Name Zymogen

Initial concentration $2.4 \cdot 10^{-5} \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v1, v2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{z} = -v_1 - v_2 \tag{7}$$

6.2 Species e

Name Enzyme

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in three reactions (as a reactant in v2 and as a product in v1, v3).

$$\frac{d}{dt}e = v_1 + 2v_3 - v_2 \tag{8}$$

6.3 Species w

Name Peptide

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a product in v1, v3).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathbf{w} = v_1 + v_3 \tag{9}$$

6.4 Species ez

Name Enzyme-Substrate complex

Initial concentration $0 \text{ mol} \cdot l^{-1}$

This species takes part in two reactions (as a reactant in v3 and as a product in v2).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{ez} = v_2 - v_3 \tag{10}$$

 $\mathfrak{BML2}^{a}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany