DATA PREPARATION

Dr. Aric LaBarr
Institute for Advanced Analytics

Course Layout

Data **Preparation**

- Transactional Data
- Recency vs. Frequency
- Network Features

Anomaly Models

- Univariate Analysis
- Clustering
- Isolation Forests
- CADE

Fraud Supervised Models

- SMOTE
- Models
- Labeled vs.
 Unlabeled
 Bias
- Not Fraud Model
- Evaluation

Clusters of Not Goods

- Cluster Analysis
- Social Network Analysis

Implement

- Investigators
- Traffic Light Indicators
- Backtesting

FEATURE ENGINEERING

Transaction Data

Model Development Data

Transaction Data

Transaction Data Examples

- There are many different fields where transactional data plays an important role:
 - Credit card purchasing data
 - Medical claims data
 - Insurance claims data
 - Retail purchasing data
 - Etc.

Transaction Data Examples

- There are many different fields where transactional data plays an important role:
 - Credit card purchasing data
 - Medical claims data
 - Insurance claims data
 - Retail purchasing data
 - Etc.

THINK OF YOUR DATA SPECIFICALLY!

Transactions Data

- Advantages
 - Highly Detailed
 - Captures Individual Behavior
 - Strong Target Correlation Possible
- Challenges
 - Highly Detailed
 - Difficult to Obtain
 - Difficult to Process

Input Possibilities: Tabulations

Transaction Data

Input Possibilities: Distributions

Input Possibilities: Stratifications

Input Possibilities: Profiles

Input Possibilities: Time Series

Transaction Data

Process Transactions

- Here are the steps you need to take to process transactional data:
 - 1. Select your data.
 - 2. Sort your data.
 - 3. Augment your data.
 - 4. Process by ID.
 - 5. Finalize.

Grouping Transaction-Derived Inputs

- Examples
 - Mean of last five transactions
 - Standard deviation of transactions in last 14 days
 - Largest transaction per week
 - Slope of line fit to number of transactions per week (negative?)

RECENCY & FREQUENCY

Recency & Frequency

- Transactional data provides extensive information.
- Two of the most important things in fraud detection (as well as other fields) are recency and frequency of transaction.
- Recency time in between transactions
- Frequency how often transactions occur

Online Account Access Example

Time Since Account Opened

Recency

- Recency time in between transactions
- Easy features:
 - Time in between transactions
 - Time since last transaction

Online Account Access Example

Time Since Account Opened

Online Account Access Example

Time Since Account Opened

Frequency

- Frequency how often transactions occur
- Easy features:
 - How many transactions total
 - How many transactions per group
 - Ratio of frequency by group to days active

Online Account Access Example

Time Since Account Opened

Online Account Access Example

Time Since Account Opened

TRANSFORMING CATEGORIES

Categorical Data

Physical characteristics 10 **Education level** State 100 1000 Postal code Address 1000000 Social security number 10000000 Free-form text

Cardinality

Categorical Data

Cardinality Physical characteristics Number of 10 elements **Education level** in a set. State 100 1000 Postal code Address 1000000 Social security number 10000000 Free-form text

Strategies

None / Model Physical characteristics Based 10 Education level Recoding State 100 **Transformations** 1000 Postal code Address 1000000 Social security number Linking 100000000 **Text Mining** Free-form text infinite

Cardinality

Strategy

Dummy Coding

D_A	D_B	D _C	D_D
0	0	0	1
0	1	0	0
0	0	1	0
0	0	1	0
1	0	0	0
1	0	0	0
0	0	0	1
0	0	1	0
1	0	0	0
•	•	:	•

Thresholding

Level	N_i	
A	1562	_
В	970	
С	223	
D	111	
E	85	
F	50	
G	23	
Н	17	
I	12	
J	5	

Thresholding

Level	N_i
Α	1562
В	970
C	223
D	111
E	85
F	50
G	23
Н	17
- 1	12
J	5

Recombine to single new level, OTHER.

Target-Based Enumeration

Level	N_i	ΣY_i	\boldsymbol{p}_i
Α	1562	430	0.28
В	970	432	0.45
С	223	45	0.20
D	111	36	0.32
E	85	23	0.27
F	50	20	0.40
G	23	8	0.35
Н	17	5	0.29
ı	12	6	0.50
J	23 8 0.35 17 5 0.29	1.00	

Target-Based Enumeration

Level	N_i	ΣY_i	\boldsymbol{p}_i
J	5	5	1.00
I	12	6	0.50
В	970	432	0.45
F	50	20	0.40
G	23	8	0.35
D	111	36	0.32
Н	17	5	0.29
A	1562	430	0.28
E	85	23	0.27
С	223	45	0.20

Target-Based Enumeration

X	N _i	ΣY_i	p_i
1	5	5	1.00
2	12	6	0.50
3	970	432	0.45
4	50	20	0.40
5	23	8	0.35
6	111	36	0.32
7	17	5	0.29
8	1562	430	0.28
9	85	23	0.27
10	223	45	0.20

New Ordinal Input

Weight of Evidence

Level	N _i	ΣY_i	$p_i \log(p_i/1-p_i)$	<u>i</u>)
J	5	5	1.00	
- 1	12	6	0.50 0.00	
В	970	432	0.45 -0.10	
F	50	20	0.40 -0.18	
G	23	8	0.35 -0.27	
D	111	36	0.32 -0.32	
Н	17	5	0.29 -0.38	
A	1562	430	0.28 -0.42	
Е	85	23	0.27 -0.43	
С	223	45	0.20 -0.60	

Old Categorical Input

New Numeric Input

Level Clustering

Level	N _i	ΣY_i	$p_i \log(p_i/1-p_i)$
J	5	5	1.00 .
	12	6	0.50 0.00
В	970	432	0.45 -0.10
F	50	20	0.40 -0.18
G	23	8	0.35 -0.27
D	111	36	0.32 -0.32
Н	17	5	0.29 -0.38
A	1562	430	0.28 -0.42
Е	85	23	0.27 -0.43
С	223	45	0.20 -0.60

Level Clustering

	N _i	Level
1037 463 0.45 -0.09	1037	CL1
134 44 0.33 -0.31	134	CL2
1664 458 0.28 -0.42	1664	CL3
223 45 0.20 -0.60	223	CL4

New Numeric Input

Geocoding

ZIP Longitude Latitude 02713 -70.8017 41.45222 02840 -71.3114 41.49438 04848 -68.9096 44.30417 -74.0549 40.02756 08739 10927 -73.9604 41.19228 -73.9187 41.08947 10960 13640 -75.9098 44.33451 -76.9867 43.27016 14555 -75.2052 38.57527 19939 19944 -75.0509 38.46811 20004 -77.0275 38.89254

Transform zip code to location.

Derived Fields Specific to Insurance

 Approximate the distance from the claimant's address to the adjuster's location using only zip codes.

```
Zipcode ⇒ (Latitude,Longitude)
```

(Claimant Zipcode, Adjuster Zipcode) ⇒ Distance

Derived Fields from Text

- Text mining can provide an immense amount of data when limited data may seem to exist.
- Mining the text data may reveal patterns that can be adapted into input variables.

NETWORK FEATURES

Occupational View

- "Everything is a nail to a kid with a hammer."
- The view of the world around us is influenced by our experiences:
 - Economist: World is a supply/demand curve.
 - Chemist: World is a set of chemical equations.
 - Statistician: World is a collection of observations with dependent and independent variables.

Statisticians' Data Structure

Data structure is typically rectangular in nature.

Name	Age	Weight	Income	Years of College Education
Bill	54	190	\$48,000	4
Tina	26	135	\$95,000	4
Larry	39	215	\$101,000	9

Statisticians' Data Structure

Data structure is typically rectangular in nature.

Comparing Individuals	Name	Age	Weight	Income	Years of College Education
	Bill	54	190	\$48,000	4
	Tina	26	135	\$95,000	4
	Larry	39	215	\$101,000	9

Statisticians' Data Structure

• Data structure is typically rectangular in nature.

Comparing Variables

Name	Age	Weight	Income	Years of College Education
Bill	54	190	\$48,000	4
Tina	26	135	\$95,000	4
Larry	39	215	\$101,000	9
***	•••	•••	•••	•••

Society – Sociometrists

• J L Moreno founded a social science called **sociometry**, where **sociometrists** believe that society is made up of individuals **and** their social, economic, or cultural ties.

Society – Sociometrists

• J L Moreno founded a social science called **sociometry**, where **sociometrists** believe that society is made up of individuals **and** their social, economic, or cultural ties.

Society – Sociometrists

- J L Moreno founded a social science called **sociometry**, where **sociometrists** believe that society is made up of individuals **and** their social, economic, or cultural ties.
- The importance is not only on the individual's characteristics, but also on the patterns of an individual's interactions with other individuals.
- The interactions themselves are just as important as who the individual connects to.

- Sociometrists use graph networks (link graphs) to visualize social networks.
- These graph networks reveal a structure to the data that can not be seen by basic summary statistics.
- Each of the circles are referred to as nodes.

- Sociometrists use graph networks (link graphs) to visualize social networks.
- These sociograms reveal a structure to the data that can not be seen by basic summary statistics.
- Each of the circles are referred to as nodes.
- Each node could be connected by links.

- Sociometrists use graph networks (link graphs) to visualize social networks.
- These sociograms reveal a structure to the data that can not be seen by basic summary statistics.
- Each of the circles are referred to as nodes.
- Each node could be connected by links.
 - Links can be of different sizes to summarize strength of connection.

- Sociometrists use graph networks (link graphs) to visualize social networks.
- These sociograms reveal a structure to the data that can not be seen by basic summary statistics.
- Each of the circles are referred to as nodes.
- Each node could be connected by links.
 - Links can be of different sizes to summarize strength of connection.
 - Reciprocity can also be represented by links.

Graph Network Data Structure

Data structure is typically square in nature.

Who Reports Liking Whom?						
	Choice:					
Chooser:	Bill	Tina	Larry			
Bill	-	1	1	•••		
Tina	0	-	1			
Larry	0	0	_			
		• • •				

Graph Network Data Structure

Data structure doesn't have to be limited to binary.

How Does Someone Know Someone	
(0 = Don't Know, 1 = Work, 2 = Family)	

	Mark	Anthony	April	Tim
Mark	-	1	0	2
Anthony	1	-	2	0
April	1	2	-	1
Tim	2	0	1	-

Graph Network Data Structure

- Other differences:
 - No independence of observations
 - Samples are rarely desired try for population of a known network
 - Individuals don't only have to be linked through other individuals
 - Example schools in a school district

Modern Adaptations

- Several problems have been addressed by these methods:
 - Spread of disease
 - Marketing of products
 - Fraud detection
- There are also popular cultural themes that have arisen from these methods:
 - Facebook
 - "Six degrees of separation"
 - The Oracle of Bacon

Social Structure

- There are many different summarizes and important calculations obtained from sociograms.
- Here are a few we will focus on:
 - Subgroups
 - Centers and Closeness
 - Brokers and Bridges
 - Diffusion and Adoption

Subgroups

- Social networks typically contain dense pockets of individuals.
- These dense pockets are sometimes called subgroups.
- If a subgroup is completely separated from the rest of the network, then it is a cohesive subgroup.
- Homophily: "Birds of a feather flock together."
- This can help in the identification of individuals with similar characteristics.
 - Marketing campaigns
 - Fraud detection

Subgroups

Subgroups

Social Structure

- There are many different summarizes and important calculations obtained from sociograms.
- Here are a few we will focus on:
 - Subgroups
 - Centers and Closeness
 - Brokers and Bridges
 - Diffusion and Adoption

Name	Degree of Connection
Will	5
Sam	4
Jade	3
Tim	3
Tina	3
Larry	3
Mary	2
Kat	2
Bill	2
Pat	1

Degree Centrality

- Networks consist of N nodes and n links.
- The maximum degree of each node is N-1.
- Degree centrality "standardizes" the degree of a node.

$$C_D = \frac{degree}{N-1}$$

Degree Centrality

Name	Degree of Connection	Degree Centrality
Will	5	0.555
Sam	4	0.444
Jade	3	0.333
Tim	3	0.333
Tina	3	0.333
Larry	3	0.333
Mary	2	0.222
Kat	2	0.222
Bill	2	0.222
Pat	1	0.111

Average Degree of Graph

- Networks consist of N nodes and n links.
- The average degree of the graph, $\langle k \rangle$, is the following:

$$\langle k \rangle = \frac{2n}{N}$$

Average Degree of Graph

- Networks consist of N nodes and n links.
- The density of the graph is the proportion of the number of links actually in the graph compared to the maximum number of links possible in the graph.
- The density of the graph, Δ , is the following:

$$\Delta = \frac{2n}{N(N-1)}$$

This is also called the connection probability.

Degree of Separation

- The degree of connection is one way to measure the center of a network.
- The degree of separation is another way to measure center.
- The degree of connection only focuses on the links for a certain individual, while degree of separation focuses on the value of those links.

Closeness Centrality

- Closeness centrality is a measure of how well everyone in a network can connect to every other member of the network.
- It is calculated as follows:

$$C_C = \frac{N - 1}{\sum_{i=1}^{N-1} DOS_i}$$

Closeness Centrality

Name	Closeness Centrality
Will	0.64
Tina	0.56
Sam	0.50
Tim	0.47
Kat	0.45
Mary	0.45
Larry	0.43
Bill	0.41
Jade	0.39
Pat	0.31

	Bill	Larry	Tina	Pat	Will	Kat	Sam	Tim	Jade	Mary
Bill	0	1	1	0	0	0	0	0	0	0
Larry	1	0	1	1	0	0	0	0	0	0
Tina	1	1	0	0	1	0	0	0	0	0
Pat	0	1	0	0	0	0	0	0	0	0
Will	0	0	1	0	0	1	1	1	0	1
Kat	0	0	0	0	1	0	1	0	0	0
Sam	0	0	0	0	1	1	0	1	1	0
Tim	0	0	0	0	1	0	1	0	1	0
Jade	0	0	0	0	0	0	1	1	0	1
Mary	0	0	0	0	1	0	0	0	1	0

- A node is high in eigenvector centrality if it is connected to many other nodes who are themselves well connected.
- A node's centrality is dependent on the centrality of adjacent nodes.
- These nodes would be considered influential closely related to diffusion and adoption.

• Eigenvector centrality for each node is simply calculated as the proportional eigenvector values of the eigenvector with the largest eigenvalue.

$$Ax = \lambda x$$

• Eigenvector centrality for each node is simply calculated as the proportional eigenvector values of the eigenvector with the largest eigenvalue.

Find largest eigenvalue

• Eigenvector centrality for each node is simply calculated as the proportional eigenvector values of the eigenvector with the largest eigenvalue.

Find corresponding eigenvector

Name	Scaled Eigenvector Centrality
Will	1.00
Sam	0.94
Tim	0.80
Jade	0.69
Kat	0.59
Mary	0.52
Tina	0.43
Larry	0.21
Bill	0.19
Pat	0.06

Social Structure

- There are many different summarizes and important calculations obtained from sociograms.
- Here are a few we will focus on:
 - Subgroups
 - Centers and Closeness
 - Brokers and Bridges
 - Diffusion and Adoption

Different Links

- Not only are number of links important, but the kind of link is extremely important as well.
- Links with individuals who are linked themselves is not as strong as links with individuals who are not linked together.
- Links within a subgroup yield little new information compared to links with other subgroups.
- A bridge is a link whose removal increases the number of isolated nodes.

Bridge

Bridge

Brokers

- These bridges are important because they are a potential bottleneck of information.
- The individuals that are connected to these bridges are called brokers because they facilitate the information between the two sides of the bridge.
- By eliminating either the bridge or the broker, the spread of information across the network becomes limited.
- Important Applications:
 - Fraud detection
 - Disease contamination
 - Marketing campaigns

Brokers

Bridge Elimination

Bridge Elimination

Broker Elimination

Broker Elimination

Social Structure

- There are many different summarizes and important calculations obtained from sociograms.
- Here are a few we will focus on:
 - Subgroups
 - Centers and Closeness
 - Brokers and Bridges
 - Diffusion and Adoption

Diffusion and Adoption

- Diffusion and adoption add a sense of time to a sociogram.
- How long does it take for the entire network to adopt an idea based on initial location?

- Only looking at the counts of the links wouldn't be able to explain the information that is summarized in the graph.
- How is this important?
 - Disease prevention who would you rather get sick, Larry or Tim?
 - Marketing choices who would you rather sell your product to, Larry or Tim?

- Let's focus on the disease contamination example.
- Assume the disease moves from one individual to every one of the individual's contacts in one time period.
- This pattern persists in the next time period until all nodes in the network are contaminated.

Diffusion and Adoption

- Diffusion and adoption add a sense of time to a sociogram.
- How long does it take for the entire network to adopt an idea based on initial location?
- Three other concepts are heavily related to diffusion and adoption:
 - 1. Proximity
 - 2. Prestige
 - 3. Social Conformity

NEW YORK OFFICE

Proximity DC OFFICE Kat Bill Tina Will Sam Larry Tim Mary Pat Jade

Prestige & Social Conformity

- Prestige and Social Conformity are closely related.
- Individuals who epitomize social norms and values of a group that are perceived by others to be valuable have prestige.
- Social conformity allows people to validate their own sense of self-worth in a group.
 - Example: Will is the prototypical DC office type employee, so Jade wants to be like Will.

ACCOUNTING FOR TIME

OPTIONAL SELF STUDY

- Certain transactions are expected to occur at certain times.
- Anomalies might be detected outside of "normal" hours.
- Dealing with time averages and confidence intervals can be tricky.

What is the arithmetic average between 1 and 23?

What is the arithmetic average between 1 and 23? 12!

- What is the arithmetic average between 1 and 23? 12!
- What is the arithmetic average between 1:00AM and 11:00PM? NOON?

- What is the arithmetic average between 1 and 23? 12!
- What is the arithmetic average between 1:00AM and 11:00PM? NOON?
- What is the periodic average between 1:00AM and 11:00PM? MIDNIGHT!

Arithmetic Mean

```
## [1] "2020-02-03 02:50:31 EST" "2020-02-03 03:20:16 EST" ## [3] "2020-02-03 00:03:46 EST" "2020-02-02 22:41:09 EST" ## [5] "2020-02-03 02:55:24 EST" "2020-02-02 17:13:41 EST"
```

Arithmetic Mean

```
timestamp_hms <- strftime(timestamp, format = "%H:%M:%S")</pre>
ts <- as.numeric(hms(timestamp_hms))/3600</pre>
mean a <- mean(ts)</pre>
clock <- ggplot(data.frame(ts), aes(x = ts)) +</pre>
         geom_histogram(breaks = seq(0, 24), colour = "blue",
                         fill = "lightblue") +
         coord_polar() +
         scale_x_continuous("", limits = c(0, 24),
                              breaks = seq(0, 24))
clock + geom_vline(xintercept = mean_a,
                    linetype = 2, color = "red", size = 2)
```

Arithmetic Mean

Periodic Mean

```
ts <- circular(ts, units = "hours", template = "clock24")
head(ts)</pre>
```

```
## Circular Data:
## Type = angles
## Units = hours
## Template = clock24
## Modulo = asis
## Zero = 1.570796
## Rotation = clock
## [1] 2.84194444 3.33777778 0.06277778 22.68583333 2.923333
33 17.22805556
```

Periodic Mean

Periodic Mean

