1. Initiod uction

What is segmentation?

- Three major ways to do.
- Thresholding
- * Edge-based segmentation
- * Region-based segmentation

Thresholding

Finding histogram of gray level intensity.

- * Basic Global Thresholding
- Orsu's Method
- Multiple Threshold
- * Variable Thresholding

Edge-based segmentation

Using mask to detect edge in image by convolution.

- * Basic Edge Detection
- The Marr-Hildreth edge detector(LoG)
- Walness heds

Region-based segmentation

Finding region, but not finding edge.

Region Growing

Thresholding Basic Global Thresholding

- Select an initial To
- Segment image use:

$$g(x,y) = \begin{cases} 1 & \text{if } f(x,y) \ge T \\ 0 & \text{if } f(x,y) \le T \end{cases}$$

Compute the average intensity m, and for the pixels in and

$$T = \frac{1}{2}(m_1 + m_2)$$

 m_1

- Compute a new threshold:
- Until the difference between values of T is smaller than a predefined parameter.

Otsu's Method

- $lue{}$ {0,1,2,...,L-1}, L means gray level intensity
- $MN = n_0 + n_1 + n_2 + ... + n_{L-1}$

M^{*}N is the total number of pixel.

n denote the number of pixels with intensity

ï

and, k]: $C_2 [k+1, L-1]$

- we select a threshold T(k) = k, 0 < k and use it to
 - classify C_i intensity in the range
- $P_{1}(k) = \sum_{i=0}^{k} p_{i}, \quad P_{2}(k) = \sum_{i=k+1}^{k-1} p_{i} = 1 P_{1}(k)$
- $P_1 m_1 + P_2 m_2 = m_G P_1 + P_2 = 1$
- $\sigma_G^2 = \sum_{i=0}^{\infty} (i m_G)^2 p_i$ is global variance.

$$\sigma_{\rm B}^2(k) = P_1 P_2 (m_1 - m_2)^2 = \frac{(m_0 P_1(k) - m(k))^2}{P_1(k)(1 - P_1(k))}$$

$$\eta = \frac{\sigma_{\rm B}(k)}{\sigma_{\rm G}^2} \quad 0 \le \eta(k^*) \le 1$$

$$\sigma_{\rm B}^{\rm H}(k^{\rm S}) = \max_{o \le k \le L-1} \sigma_{\rm B}^{\rm H}(k^{\rm S})$$
 separability between class.

$$g(x,y) = \begin{cases} 1 & \text{if } f(x,y) \ge k^* \\ 0 & \text{if } f(x,y) \le k^* \end{cases}$$

For x = 0,1,2,...,M-1 and y = 0,1,2...,N-1.

Smoothing Edge obal Thre detection

What situation is Large object we Small object we more suitable for the are interested. are interested method

Multiple Threshold

- As Otsu's method, it takes more area and k*
- $\sigma_{\rm B}^2 = P_1 (m_1 m_G)^2 + P_2 (m_2 m_G)^2 + P_3 (m_3 m_G)^2$
- $P_1m_1+P_2m_2+P_3m_3=m_G$
- $P_1+P_2+P_3=1$
- $\sigma_{\mathrm{B}}^{2}(k_{1}^{*}, k_{2}^{*}) = \max_{o < k_{1} < k_{2} < L-1} \sigma_{\mathrm{B}}^{2}(k_{1}, k_{2})$

$$\eta(k_1^*, k_2^*) = \frac{\sigma_{\mathrm{B}}^2(k_1^*, k_2^*)}{\sigma_{\mathrm{G}}^2}$$

 Disadvantage: it becomes too complicate when number of ar ea more than three.

Variable Thresholding

Image partitioning

It works when the objects of interest and the backgro und occupy regions of reasonably comparable size. If not, it will fail.

Watersheds

Algorithm:

$$T[\tilde{n}] = \{(s,t) \mid g(s,t) < n\}$$

$$, g(s,t) \text{ is intensity.}$$

$$C[n] = \bigcup_{i=1}^{K} C[n] \cap C[n] \cap C[n]$$

is minimum point beneath n.

Markers

- External markers:
- Points along the watershed line along highest points.

- (1) That is surrounded higher points
- (2) Points in region form a connected component
- (3) All points in connected component have the same intensity.

Region-based segmentation Region Growing

A basic region-growing algorithm based on 8-connectivity may be stated as follows.

- Find all connected components in S(x, y) and erode each connected component to one pixel; label all such pixels found as 1. All other pixels in S are labeled 0.
- **2.** Form an image f_Q such that, at a pair of coordinates (x, y), let $f_Q(x, y) = 1$ if the input image satisfies the given predicate, Q, at those coordinates; otherwise, let $f_Q(x, y) = 0$.
- 3. Let g be an image formed by appending to each seed point in S all the 1-valued points in f_O that are 8-connected to that seed point.
- Label each connected component in g with a different region label (e.g., 1, 2, 3, ...). This is the segmented image obtained by region growing.

Region-based segmentation Region Growing

- Algorithm:
- Choose a random pixels
- Use 8-connected and threshold to determine

