ISO Geodetic Registry

Item class Transformation

Name ATRF2014 to GDA2020 [GA v1]

Item statusVALIDIdentifier790

Information source Title Australian Terrestrial Reference Frame

Author Geoscience Australia
Publisher Geoscience Australia

Revision date 2020

Other citation details Website. https://www.icsm.gov.au/australian-

terrestrial-reference-frame (accessed 2021-09-27)

Information source Title Australian Terrestrial Reference Frame (ATRF):

Technical Implementation Plan

Author Intergovernmental Committee on Surveying and

Mapping (ICSM)

Publisher Geoscience Australia

Revision date 2020-02-12
Edition Version 2.3
Edition date 2020-02-12

Other citation details https://www.icsm.gov.au/sites/default/

files/2020-02/ATRF%20Technical

%20Implementation%20Plan%20v2.3_1.pdf

(accessed 2021-09-27)

Data source ISO Geodetic Registry

Remarks Australian Plate Motion Model

Operation version GA v1

Scope Spatial referencing

Operation accuracy 0.03 m

Source CRS ATRF2014 - XYZ
Target CRS GDA2020 - XYZ

Operation method Time-Dependent Coordinate Frame Transformation (geocentric

Cartesian domain)

Extent

Description	Australia including Lord Howe Island, Macquarie Island, Ashmore and Cartier Islands, Christmas Island, Cocos (Keeling) Islands, Norfolk Island. All onshore and offshore.	
Geographic Bounding Box	West-bound longitude	93.41
	North-bound latitude	-8.47
	East-bound longitude	173.34
	South-bound latitude	-60.56

Operation parameter values

X-axis translation	0.0 millimetre	
Y-axis translation	0.0 millimetre	
Z-axis translation	0.0 millimetre	
X-axis rotation	0.0 milliarc-second	
Y-axis rotation	0.0 milliarc-second	
Z-axis rotation	0.0 milliarc-second	

Scale difference	0.0 parts per billion
Rate of change of X-axis translation	0.0 millimetre per year
Rate of change of Y-axis translation	0.0 millimetre per year
Rate of change of Z-axis translation	0.0 millimetre per year
Rate of change of X-axis rotation	1.50379 milliarc-second per year
Rate of change of Y-axis rotation	1.18346 milliarc-second per year
Rate of change of Z-axis rotation	1.20716 milliarc-second per year
Rate of change of scale difference	0.0 parts per billion per year
Time reference	2020.0 year

ISO Geodetic Registry

Item class OperationMethod

Name Time-Dependent Coordinate Frame

Transformation (geocentric Cartesian domain)

Item statusVALIDIdentifier94

Alias Time-Dependent 7-Parameter Transformation

Alias 14-Parameter Transformation

Alias Time-Dependent Coordinate Frame Transformation

Data source ISO Geodetic Registry

Remarks Note the analogy with the Time-dependent Position Vector

Transformation but beware of the differences! The Position Vector

Transformation convention is used by IAG.

Formula Geomatics Guidance Note No 7, part 2: Coordinate Conversions and

Transformations including Formulas

Operation parameters

X-axis translation

Y-axis translation

Z-axis translation

X-axis rotation

Y-axis rotation

Z-axis rotation

Scale difference

Rate of change of X-axis translation

Rate of change of Y-axis translation

Rate of change of Z-axis translation

Rate of change of X-axis rotation

Rate of change of Y-axis rotation

Rate of change of Z-axis rotation

Rate of change of scale difference

Time reference