

# High Quality Hypergraph Partitioning via Max-Flow-Min-Cut Computations

**Master Thesis** · February 16, 2018 **Tobias Heuer** 

Institute of Theoretical Informatics · Algorithmics Group



#### **Outline**



#### **Task**

Developing a **refinement** algorithm based on **Max-Flow-Min-Cut** computations for the *n*-level hypergraph partitioner **KaHyPar**.

#### **Outline**



#### **Task**

Developing a **refinement** algorithm based on **Max-Flow-Min-Cut** computations for the *n*-level hypergraph partitioner **KaHyPar**.

#### **Contributions**

- Outperforms 5 different systems on 73% of 3216 benchmark instances
- Improve quality of KaHyPar by 2.5%, while only incurring a slowdon by a factor of 2
- Comparable running time to hMetis and outperforms it on 84% of the instances

## Hypergraphs [from SEA'17]



- Generalization of graphs  $\Rightarrow$  hyperedges connect  $\geq$  2 nodes
- Graphs  $\Rightarrow$  dyadic (2-ary) relationships
- lacktriangle Hypergraphs  $\Rightarrow$  ( $\mathbf{d}$ -ary) relationships
- Hypergraph  $H = (V, E, c, \omega)$ 
  - Vertex set  $V = \{1, ..., n\}$
  - Edge set  $E \subseteq \mathcal{P}(V) \setminus \emptyset$
  - Node weights  $c: V \to \mathbb{R}_{\geq 1}$
  - Edge weights  $\omega: E \to \mathbb{R}_{>1}$



# Hypergraphs [from SEA'17]



- Generalization of graphs  $\Rightarrow$  hyperedges connect  $\geq$  2 nodes
- Graphs  $\Rightarrow$  dyadic (2-ary) relationships
- lacktriangle Hypergraphs  $\Rightarrow$  ( $\mathbf{d}$ -ary) relationships
- Hypergraph  $H = (V, E, c, \omega)$ 
  - Vertex set  $V = \{1, ..., n\}$
  - Edge set  $E \subseteq \mathcal{P}(V) \setminus \emptyset$
  - Node weights  $c: V \to \mathbb{R}_{\geq 1}$
  - Edge weights  $\omega: E \to \mathbb{R}_{>1}$

$$|P| = \sum_{e \in E} |e| = \sum_{v \in V} d(v)$$





[from SEA'17]

Partition hypergraph  $H = (V, E, c, \omega)$  into k non-empty disjoint blocks  $\Pi = \{V_1, \ldots, V_k\}$  such that:

lacksim blocks  $V_i$  are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$



Karlsruhe Institute of Technology

[from SEA'17]

Partition hypergraph  $H = (V, E, c, \omega)$  into k non-empty disjoint blocks  $\Pi = \{V_1, \ldots, V_k\}$  such that:

lacksim blocks  $V_i$  are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

**imbalance** parameter





[from SEA'17]

Partition hypergraph  $H = (V, E, c, \omega)$  into k non-empty disjoint blocks  $\Pi = \{V_1, \ldots, V_k\}$  such that:

• blocks  $V_i$  are roughly equal-sized:

**imbalance** parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

connectivity objective is minimized:





[from SEA'17]

Partition hypergraph  $H = (V, E, c, \omega)$  into k non-empty disjoint blocks  $\Pi = \{V_1, \ldots, V_k\}$  such that:

lacks blocks  $V_i$  are roughly equal-sized:

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

connectivity objective is minimized:

$$\sum_{e \in \text{cut}} (\lambda - 1) \, \omega(e)$$
connectivity:
# blocks connected by net  $e$ 





[from SEA'17]

Partition hypergraph  $H = (V, E, c, \omega)$  into k non-empty disjoint blocks  $\Pi = \{V_1, \ldots, V_k\}$  such that:

lacks blocks  $V_i$  are roughly equal-sized:

**imbalance** parameter

$$c(V_i) \leq (1 + \varepsilon) \left\lceil \frac{c(V)}{k} \right\rceil$$

connectivity objective is minimized:

$$\sum_{e \in \text{cut}} (\lambda - 1) \, \omega(e) = 6$$
connectivity:
# blocks connected by net e



#### **Applications**

[from SEA'17]



#### **VLSI Design**



**Application** Domain





floorplanning & placement

Hypergraph Model



minimize communication

Goal

#### **The Multilevel Framework**

[from SEA'17]











#### **FM Algorithm**



Move-based heuristic that greedily move vertices between blocks based on local informations of incident nets





Moving lacktriangle from  $V_4$  to  $V_3$  reduces cut by 1

#### **FM Algorithm**



Move-based heuristic that greedily move vertices between blocks based on local informations of incident nets





Moving lacktriangle from  $V_4$  to  $V_3$  reduces cut by 1 gain

#### **FM Algorithm**



Move-based heuristic that greedily move vertices between blocks based on local informations of incident nets



- Performs moves of vertices with maximum gain in each step
- All modern hypergraph partitioners implements variations of the FM algorithm

## FM Algorithm - Disadvantages



- Only incorparates local informations about the problem structure
  - Heavily depends on initial partition
  - In multilevel context: Depends on quality of coarsening



## FM Algorithm - Disadvantages



- Only incorparates local informations about the problem structure
  - Heavily depends on initial partition
  - In multilevel context: Depends on quality of coarsening



- Large hyperedges induce Zero-Gain moves
  - Quality mainly depends on random decisions made within the algorithm



## Flow-based Approaches





Given a graph G = (V, E, u) and two nodes  $s, t \in V$ 

- $u: E \to \mathbb{R}_+$  is the **capacity** function
- s and t are called source and sink



Given a graph G = (V, E, u) and two nodes  $s, t \in V$ 

- $u: E \to \mathbb{R}_+$  is the **capacity** function
- s and t are called source and sink

A valid **flow** is a function  $f: E \to \mathbb{R}_+$  with the constraints:

- $\forall (v, w) \in E : f(v, w) \leq u(v, w)$

The value of the flow is  $|f| = \sum_{(s,v) \in E} f(s,v)$ 





The **residual capacity**  $r_f: V \times V \to \mathbb{R}_+$  is defined as follows:

- $\forall (v, w) \in E : \text{If } f(v, w) > 0 \text{ and } u(w, v) = 0, \text{ then } r_f(w, v) = f(v, w)$





The **residual capacity**  $r_f: V \times V \to \mathbb{R}_+$  is defined as follows:

- $\forall (v, w) \in E : \text{If } f(v, w) > 0 \text{ and } u(w, v) = 0, \text{ then } r_f(w, v) = f(v, w)$

The **residual graph**  $G_f = (V, E_f, r_f)$  contains all edges  $(v, w) \in V \times V$  with  $r_f(v, w) > 0$ 







The **residual capacity**  $r_f: V \times V \to \mathbb{R}_+$  is defined as follows:

- $\forall (v, w) \in E : \text{If } f(v, w) > 0 \text{ and } u(w, v) = 0, \text{ then } r_f(w, v) = f(v, w)$

The **residual graph**  $G_f = (V, E_f, r_f)$  contains all edges  $(v, w) \in V \times V$  with  $r_f(v, w) > 0$ 

- An augmenting path is a path in  $G_t$  from s to t
- $\blacksquare$  f is a **maximum flow**, if there is no augmenting path from s to t in  $G_f$





## Minimum (s, t)-Bipartition



All nodes *reachable* from s are part of  $V_1$  and  $V_2 = V \setminus V_1$ 



Residual Graph  $G_f$  of a maximum flow f

## Minimum (s, t)-Bipartition



All nodes *reachable* from s are part of  $V_1$  and  $V_2 = V \setminus V_1$ 



Residual Graph  $G_f$  of a maximum flow f

#### **Our Flow-Based Refinement Framework**





Select two adjacent blocks for refinement



**Build Flow Problem** 



Solve Flow Problem



Find feasible minimum cut

#### **Our Flow-Based Refinement Framework**





Select two adjacent blocks for refinement



**Build Flow Problem** 



Solve Flow Problem



Find feasible minimum cut









**Build Quotient Graph** 





**Round 1** 

 $refine(V_1, V_2) = Improvement!$ 





**Round 1** 

 $refine(V_3, V_4) = No Improvement!$ 





**Round 1** 

 $refine(V_1, V_3) = No Improvement!$ 





**Round 1** 

 $refine(V_2, V_4) = No Improvement!$ 





**Round 1** Boundary did not change ⇒ Mark block as **inactive** 





Round 2

 $refine(V_1, V_2) = No Improvement!$ 





Round 2

 $refine(V_1, V_3) = No Improvement!$ 



### **Active Block Scheduling**



Round 2

 $refine(V_2, V_4) = No Improvement!$ 



Using 2-way refinement algorithm for active blocks of the quotient graph

## **Active Block Scheduling**



**Round 2** Boundary did not change ⇒ Mark block as **inactive** 



Using 2-way refinement algorithm for active blocks of the quotient graph

## **Active Block Scheduling**



**Round 2** All blocks are **inactive** ⇒ Algorithm terminates



Using 2-way refinement algorithm for active blocks of the quotient graph

#### **Our Flow-Based Refinement Framework**





Select two adjacent blocks for refinement



**Build Flow Problem** 



Solve Flow Problem



Find feasible minimum cut

#### **Our Flow-Based Refinement Framework**





Select two adjacent blocks for refinement



**Build Flow Problem** 



Solve Flow Problem



Find feasible minimum cut























Use  $\epsilon' = \alpha \epsilon$  instead of  $\epsilon$  $c(B_1) \leq (1 + \epsilon') \lceil \frac{c(V)}{2} \rceil - c(V_2)$  $c(B_2) \leq (1 + \epsilon') \lceil \frac{c(V)}{2} \rceil - c(V_1)$  $B_1$ Cut



Use  $\epsilon' = \alpha \epsilon$  instead of  $\epsilon$ 

If improvement,  $\alpha = \max(2\alpha, \alpha')$  where  $\alpha'$  is a predefined upper bound

Otherwise,  $\alpha = \min(\frac{\alpha}{2}, 1)$  $B_2$ Cut

#### **Our Flow-Based Refinement Framework**





Select two adjacent blocks for refinement



**Build Flow Problem** 



Solve Flow Problem



Find feasible minimum cut

#### **Our Flow-Based Refinement Framework**





Select two adjacent blocks for refinement



**Build Flow Problem** 



Solve Flow Problem



Find feasible minimum cut









Bipartite Graph  $G_*(H)$ 







Bipartite Graph  $G_*(H)$ 



Vertex Separator Problem





Bipartite Graph  $G_*(H)$ 



Vertex Separator Problem

#### **Vertex Separator Transformation**





Hypergraph H  $e_1 \bigcirc e_2 \bigcirc e_3$ 

Bipartite Graph  $G_*(H)$ 



Vertex Separator Problem

#### **Vertex Separator Transformation**







Hypergraph H

e<sub>1</sub> O e<sub>2</sub> O e<sub>3</sub>

Bipartite Graph  $G_*(H)$ 



Vertex Separator Problem

#### **Vertex Separator Transformation**







Hypergraph H

e<sub>1</sub> O e<sub>2</sub> O e<sub>3</sub>

Bipartite Graph  $G_*(H)$ 



Vertex Separator Problem

#### **Vertex Separator Transformation**





# **Hypergraph Flow Network - Graph Edges**





Lawler Network



# **Hypergraph Flow Network - Graph Edges**





# **Hypergraph Flow Network - Graph Edges**





#### Wong Network



























#### Our Network









Remove all vertices by adding a clique

#### Our Network



A hypernode *v* induces . . .

- ...2d(v) edges in the Lawler Network
- arrow ... d(v)(d(v) 1) edges in our network

If  $d(v) \leq 3$ , then  $d(v)(d(v) - 1) \leq 2d(v)$ 





Lawler Network





Lawler Network





Lawler Network



Corresponds to Multi-Source Multi-Sink problem with



# Minimum (s, t)-Bipartition





# Minimum (s, t)-Bipartition





# Minimum (s, t)-Bipartition









All nodes *reachable* from s are part of  $V_1$  and  $V_2 = V \setminus V_1$ 



For each hypernode  $v \in V_1$ , there exists at least one  $e \in I(v)$  with  $e'' \in V_1$ 



All nodes *reachable* from s are part of  $V_1$  and  $V_2 = V \setminus V_1$ 

















Lawler Network







Wong Network





Our Network







Hybrid Network













Modeling Approach in *KaFFPa* 

Not moveable after Max-Flow-Min-Cut computation  $B_1$  $B_2$ Cut







Modeling Approach in KaHyPar

Extend flow problem with all vertices contained in a border hyperedge









Modeling Approach in KaHyPar

**Moveable** after Max-Flow-Min-Cut computation, but . . .





Modeling Approach in KaHyPar

... flow problem has significantly more nodes and edges.













$$S = \{e' \mid e \in I(S_1)\}\$$
  
 $T = \{e'' \mid e \in I(S_2)\}\$ 



#### **Our Flow-Based Refinement Framework**





Select two adjacent blocks for refinement



**Build Flow Problem** 



Solve Flow Problem



Find feasible minimum cut

#### **Our Flow-Based Refinement Framework**





Select two adjacent blocks for refinement



**Build Flow Problem** 



Solve Flow Problem



Find feasible minimum cut



One maximum flow f has enough information to enumerate all minimum (s, t)-cuts



One maximum flow f has enough information to enumerate all minimum (s, t)-cuts



Picard-Queryanne DAC



Contract all strongly connected components in the residual graph



One maximum flow f has enough information to enumerate all minimum (s, t)-cuts



Find topological order



One maximum flow f has enough information to enumerate all minimum (s, t)-cuts

Flow Graph Picard-Queryanne DAC





One maximum flow f has enough information to enumerate all minimum (s, t)-cuts





One maximum flow f has enough information to enumerate all minimum (s, t)-cuts

Flow Graph

Picard-Queryanne DAC





One maximum flow f has enough information to enumerate all minimum (s, t)-cuts

Flow Graph

Picard-Queryanne DAC





One maximum flow f has enough information to enumerate all minimum (s, t)-cuts

Flow Graph Picard-Queryanne DAC

