Mixture Models

EES 5891-03
Bayesian Statistical Methods
Jonathan Gilligan

Class #17: Thursday, October 27 2022

Poisson Models

Poisson Models

- Binomial model:
 - Number of events out of \(N\) trials, with probability \(p\) of an event in any trial.
 - Maximum number of events is \(N\).
- Poisson model:
 - Limit of many trials with small \(p\).
 - No upper limit, but the average is finite.
 - If a random event has a constant probability of happening in an interval of time
 - Exponential distribution describes time between events
 - Poisson distribution describes # events per interval
- Examples
 - Radioactive decay
 - Storms hitting a location
 - Eruptions in an active volcano (e.g., Etna, Mauna Loa)
 - Bicycle commuter traffic
 - Customers visiting a business
 - Incidence of cancer

Poisson Distribution

- Poisson distribution \[P(k | \lambda) = \frac{\lambda^k e^{-\lambda}}{k!}\]
 - $\(\) = \)$
 - \(\text{standard deviation}(k) = \sqrt{\lambda}\)

Overdispersed Data

- Poisson has one parameter \(\lambda\), so mean and standard deviation are not independent.
 - mean = \(\lambda\)
 - standard deviation = \(\sqrt{\lambda}\) = \(\sqrt{\text{mean}}\)
- What happens if standard deviation > \(\sqrt{\text{mean}}\)?
- Gamma Poisson model (also known as Negative binomial model) \[\text{Gamma Poisson}(k | r, p) = \int_0^\infty \text{Poisson}(k | \lambda) \text{Gamma}\left(\lambda \middle | r, \frac{1 p} {p}\right) d\lambda\]
 - This is a combination of Poisson distributions for many values of \(\lambda\)
 - Example:
 - Cancer:
 - Poisson describes cancer incidence if everyone has the same risk
 - Gamma Poisson describes cancer incidence for a heterogeneous population where different people have different risks.

Examples of Gamma-Poisson/Negative Binomial models

- Hurricanes:
 - Poisson describes # hurricanes per year if all years are the same
 - Gamma Poisson accounts for climatic variation, such as El Niño, that affects hurricane frequency.
- Bicycle commuters crossing Brooklyn Bridge each day
 - Poisson describes # commuters per day if all commuters have the same probability of cycling each day
 - Gamma Poisson: Commuters are heterogeneous: different people have different probability of cycling.
 - Weather affects rates too.
 - Gamma Poisson accounts for this with random variation in \(\lambda\)
 - You could also explicitly model effect of weather on \(\lambda\\).
- Volcanic eruptions: Chih-Hsiang Ho. 1990. Bayesian analysis of volcanic eruptions. *J. Volcan. Geotherm. Res.* 43:91–98.
 - Poisson assumes equal likelihood of eruption each year
 - Gamma-Poisson accounts for unpredictable variation in activity over time

Mixture Models

Mixture Models

- Simple models assume a homogeneous population
 - Each individual, or each slice of time, is the same as all others
- Mixture models account for heterogeneous populations
 - The probability distribution for the whole population is a *mixture* of different distributions for the members of the population
- Common mixtures:
 - Overdispersed models (continuous or discrete)
 - Gamma Poisson/Negative Binomial (mixture of Poisson distributions with different \(\lambda\))
 - Beta Binomial (mixture of Binomial distributions with different \(p\))
 - Student-t (mixture of Normal distributions with different \(\\sigma\))
 - Zero-inflated models (continuous or discrete)
 - Mixture of individuals for whom effect is strictly zero with others for whom there is a distribution of effects

Mixture Models for Categorical Data

- Binomial describes 2 possible outcomes
- Multinomial (categorical) describes *k* possible outcomes
- Ordered categorical describes *k* outcomes that have a sequence or ranking order.
 - Mixtures of many binary logistic models
 - Use of cumulative link functions

Overdispersed Counts

Beta-Binomial Models

• Dig deeper into the graduate school admissions data

kable(d)

dept	applicant.gender	admit	reject	applications	gid
А	male	512	313	825	1
А	female	89	19	108	2
В	male	353	207	560	1
В	female	17	8	25	2
С	male	120	205	325	1
С	female	202	391	593	2
D	male	138	279	417	1
D	female	131	244	375	2
Е	male	53	138	191	1
Е	female	94	299	393	2
F	male	22	351	373	1
F	female	24	317	341	2

Model that Ignores Department

```
dat_list <- select(d, admit, applications, gid)</pre>
```

```
mdl_gs <- ulam(
   alist(
   admit ~ dbinom(applications, p),
   logit(p) <- a[gid],
   a[gid] ~ dnorm(0, 1.5)
), data = dat_list, chains = 4, cores = 4)</pre>
```

Posterior Validation Check

- The data are overdispersed, compared to the model
 - Binomial distribution: mean = \(Np\), standard deviation = \(\sqrt{Np(1-p)}\)

Model:

```
predicted_draws(mdl_gs, newdata = dat_list) %>%
   group_by(gid) %>%
   summarize(mean = mean(.prediction / applications),
        sd = sd(.prediction / applications)) %>%
   kable(digits = 2)
```

gid	mean	sd
1	0.45	0.03
2	0.30	0.05

• Data:

gid	mean	sd
1	0.38	0.22
2	0.42	0.28

• Standard deviation in the data is 5–7 times greater than the model predicts.

Beta Binomial Model

- Our model uses a binomial likelihood \[A_i ~ \text{Binomial}(N_i, p_{\text{gender}_i}),\] where \ (A\) is the # of admissions, \(N\) is the # of applications, and \(p\) is the probability of getting admitted.
- On Tuesday we developed an alternative model in which \(p\) varied from department to department.
- But if we don't know who applied to which department, we can account for this variation by assuming that \(p\) varies randomly from one student to the next.
 - \(p\) must lie in the range [0,1], so we assume that the probabilities \(p\) are described by a beta distribution.
- Beta Binomial Distribution: \[\text{BetaBinomial}(N, \bar p, \theta) \]
 - \(\bar p\) is the average probability
 - \(\theta\) is the dispersion (amount of variation in \(p\)).

Beta Distributions

• We saw this in chapter 2, as the posteriors for the fraction of water covering the Earth.

Beta Binomial Model

- New model: \[\begin{align} A &\sim \text{BetaBinomial}(N, \bar p, \theta) \\ \text{logit}(\bar p) &= \alpha_{\text{gender}} \\ \alpha_{\text{gender}} &\sim \text{Normal} (0,1.5) \\ \theta &= \phi + 2 \\ \phi &\sim \text{Exponential}(1) \end{align} \]

```
dat_list <- select(d, A = admit, N = applications, gid)

mdl_gs_bb <- ulam(
    alist(
        A ~ dbetabinom(N, pbar, theta),
        logit(pbar) <- a[gid],
        a[gid] ~ dnorm(0, 1.5),
        transpars> theta <<- phi + 2.0,
        phi ~ dexp(1)
    ), data =dat_list, chains = 4, cores = 4 )</pre>
```

```
post <- extract.samples(mdl_gs_bb)
post$da <- post$a[,1] - post$a[,2]
precis_show(precis(mdl_gs_bb, depth = 2, digits = 2))</pre>
```

```
## mean sd 5.5% 94.5% n_eff Rhat4
## a[1] -0.46 0.39 -1.08 0.15 1462 1
## a[2] -0.33 0.41 -0.99 0.34 1740 1
## phi 1.03 0.78 0.11 2.49 1718 1
## theta 3.03 0.78 2.11 4.49 1718 1
```

Posterior Checks

• Warning: Be very cautious using WAIC or PSIS with mixture models. It is not straightforward to interpret what the information criteria mean.

Zero-Inflated Models

Zero-Inflated Models

- This is like an extreme version of overdispersion.
 - Some individuals have zero probability of producing an event, and others have some probability distribution.
- Example: Monks and Manuscripts
 - Monks in the monastery have a probability \(p\) to spend the day drinking instead of working on manuscripts. When they do work on manuscripts, there is a Poisson distribution of manuscripts completed in a day, with mean \(\lambda\).

• The histogram of manuscripts completed per day looks just like a Poisson distribution, but with an extra bit added to zero.

Writing the Model in R

Generate data

```
prob_drink <- 0.2 # 20% of days
rate_work <- 1  # average 1 manuscript per day
N <- 365

set.seed(736)
drink <- rbinom( N , 1 , prob_drink )
y <- (1-drink)*rpois( N , rate_work )</pre>
```

Make the model

```
mdl_zinf <- ulam(
    alist(
        y ~ dzipois(p, lambda),
        logit(p) <- ap,
        log(lambda) <- al,
        ap ~ dnorm(-1.5, 1),
        al ~ dnorm(1, 0.5)
    ), data=list(y = y), chains = 4, cores = 4)</pre>
```

Analyze the results

```
precis_show(precis( mdl_zinf, digits = 2))

## mean sd 5.5% 94.5% n_eff Rhat4
## ap -1.44 0.35 -2.05 -0.97 628 1.01
## al 0.08 0.08 -0.05 0.20 686 1.01

post <- extract.samples(mdl_zinf)
mean(inv_logit( post$ap)) %>% round(2) # probability of drinking

## [1] 0.2

# rate of finishing manuscripts when not drinking
mean(exp( post$al)) %>% round(2)

## [1] 1.09
```

Ordered Categorical Models

Categorical Models

- Multinomial data
 - Predict what subject high-school students will major in when they go to college
 - For simplicity, assume no double-majors
 - For \(N\) students, and \(K\) possible subjects to major in, \[\text{Pr}(y_1, y_2, \ldots, y_K | N, p_1, p_2, \ldots, p_K) = \frac{N!}{\prod_i y_i!} \: \prod_{i = 1}^{K} p_i^{y_i}\]
 - Constraint: \[\sum_{i = 1}^K p_i = 1\]
 - Softmax (multinomial logit) link function ensures the probabilities add up to 1.

Ordered Categorical Outcome Variables

- Analyze survey data with Likert responses (scale of 1–5, 1–7, etc.) Predict Likert response, based on demographic data
 - "How much do you approve of Joe Biden?"
 - 1. Strongly disapprove
 - 2. Somewhat disapprove
 - 3. Neither approve nor disapprove
 - 4. Somewhat approve
 - 5. Strongly approve
 - Warning: It is not legitimate to just assume that Likert scores are like a *metric* variable with a numerical value.
 - Is the difference between 1 and 2 the same as between 3 and 4?
 - Instead analyze outcome variable as categorical, but with the constraint that it's ordered (1 comes before 2, which comes before 3, ...).

Modeling Ordered Categorical Outcomes

• Ordered logit function: \(K\) logit functions \(f_1, f_2, \ldots, f_K\), where each one is centered on a *cutpoint* \(C_1, C_2, \ldots, C_K\).

Boxcar Problem

A boxcar is rolling down some train tracks out of control. Five people are in the way Dennis can pull a lever and send the boxcar down a different track, which will save the five people but kill one other person.

- Three important psychological principles:
 - 1. Action principle: Harm caused by action is worse than harm caused by failing to act.
 - 2. **Intention principle:** Harm intended as the means to a goal is worse than harm as an unindended side-effect
 - 3. **Contact principle:** Using physical contact to cause harm is worse than causing equivalent harm without physical contact.
- Experiment: Ask people the question with different prompts that introduce one or more of these principles.
 - Response is a number 1–7 indicating how morally permissible it is to throw the switch.

Model to predict people's answers

Set up the data

```
data(Trolley)
d <- Trolley
dat <- list(
   R = d$response,
   A = d$action,
   I = d$intention,
   C = d$contact )</pre>
```

The model

```
mdl_boxcar <- ulam(
    alist(
        R ~ dordlogit(phi, cutpoints),
        phi <- bA * A + bC * C + BI * I,
        BI <- bI + bIA * A + bIC * C,
        c(bA,bI,bC,bIA,bIC) ~ dnorm(0, 0.5),
        ordered[6]: cutpoints ~ dnorm(0, 1.5)
), data=dat, chains=4, cores=4)</pre>
```

- Note c(bA,bI,bC,...) instead of one line for each parameter.
- ordered[6]: cutpoints ~ dnorm(0, 1.5) tells ulam that there are 6 cutpoints (if there are \(\k\\)) levels to the outcome variable, then there must be \(\k-1\\)) cutpoints between them), and that they are ordered so \ (\text{cutpoints}_1 < \text{cutpoints}_2 < \cdots < \text{cutpoints}_k\)

Analysis results

```
plot(precis(mdl_boxcar), xlim = c(-1.4, 0))
```


Making sense of a complicated model

