2022-2023-2《交通管理与控制实验》 交通信号协调控制实验报告

班级:交通四班 姓名:刘欣豪 学号:2020112921

实验名称: 5.1 干道交通信号协调控制实验

实验目的:通过交叉口计算机仿真实验,进一步熟悉和了解仿真系统的原理、操作、应用,并通过本实验,加深对干线交叉口交通信号的协调控制(简称线控制,也称绿波系统)包括车道布置、信号配时、相位安置绿波带等课堂知识的进一步掌握。使学生通过线控制方案设计与仿真实验,了解路口渠化和交通管制对城市道路路口交通通行能力的影响,并掌握应用软件的操作程序以及设计特点。

实验内容:建立给定路段路口条件的仿真模型,基本参数有交叉口间 距街道及交叉口的布局交通路口各进口通行能力的影响,并确定最优 方案。主要的影响参数包括:通行能力、排队长度车辆平均消散时间、 停车延误等。

(1) 网络示意图(包括车道数据、流量数据,可以用 Syncro 截图)

1

图 1: 网络数据与流量数据

Options >	PHASING WINDOW	*	*	*	华	*	Λ.
Controller Type:		1-WBTL	2-EBWB	4-NBL	5-EBTL	6-EBWB	8-SBL
	Minimum Initial (s)	4.0	4.0	4.0	4.0	4.0	4.0
Semi Act-Uncoor ▼	Minimum Split (s)	8.0	20.0	20.0	8.0	20.0	20.0
Cycle Length: 70.0	Maximum Split (s)	15.0	35.0	20.0	9.0	30.0	31.0
Actuated Cycles	Yellow Time (s)	3.5	3.5	3.5	3.5	3.5	3.5
90th %: 70.0	All-Red Time (s)	0.5	0.5	0.5	0.5	0.5	0.5
70th %: 70.0	Lead/Lag	Lag	Lead	_	Lead	Lag	_
50th %: 70.0	Allow Lead/Lag Optimize?	Yes	Yes	_	Yes	Yes	_
30th %: 70.0 10th %: 69.1	Vehicle Extension (s)	3.0	3.0	3.0	3.0	3.0	3.0
1001 %. 65.1	Minimum Gap (s)	3.0	3.0	3.0	3.0	3.0	3.0
	Time Before Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0
Quick Reports:	Time To Reduce (s)	0.0	0.0	0.0	0.0	0.0	0.0
<u>G</u> reen Times	Recall Mode	None	None	Max	None	None	Max
Starts	Pedestrian Phase	No	Yes	Yes	No	Yes	Yes
Dataila	Walk Time (s)	_	5.0	5.0	_	5.0	5.0
<u>D</u> etails	Flash Dont Walk (s)	_	11.0	11.0	_	11.0	11.0
	Pedestrian Calls (#/hr)	_	0	0	_	0	0
	Dual Entry?	No	Yes	Yes	No	Yes	Yes
	Inhibit Max?	Yes	Yes	Yes	Yes	Yes	Yes
	90th %ile Green Time (s)	11 mx	31 mx	16 mr	5 mx	26 mx	27 mr
	70th %ile Green Time (s)	11 mx	31 mx	16 mr	5 mx	26 mx	27 mr
	50th %ile Green Time (s)	11 mx	31 mx	16 mr	5 mx	26 mx	27 mr
	30th %ile Green Time (s)	11 mx	31 mx	16 mr	5 mx	26 mx	27 mr
	10th %ile Green Time (s)	11 mx	30 gp	16 mr	5 mx	24 gp	28 hd

图 2: 相位方案

(2)Synchro的timing windows的截图(只需要任选一交叉口即可)

图 3: timing windows

(3)利用 Create report 生成 report preview,并截图。对 Synchro 仿真结果进行简要分析(如存在交通问题,提出改进建议)

	→	•	1	←	1	1
Lane Group	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1		7	↑	ሻ	7
Total Lost Time (s)	4.0	4.0	4.0	4.0	4.0	4.0
Satd. Flow (prot)	1820	0	1770	1863	1770	1583
Flt Permitted			0.173		0.950	
Satd. Flow (perm)	1820	0	322	1863	1770	1583
Satd. Flow (RTOR)	19					220
Volume (vph)	500	100	300	1000	300	250
Lane Group Flow (vph)	652	0	326	1087	326	272
Turn Type			pm+pt		ı	om+ov
Protected Phases	2		1	2 1	4	1
Permitted Phases			12			4
Total Split (s)	35.0	0.0	15.0	50.0	20.0	15.0
Act Effct Green (s)	30.8		41.8	45.8	16.0	31.0
Actuated g/C Ratio	0.44		0.60	0.66	0.23	0.44
v/c Ratio	0.80		0.77	0.89	0.80	0.33
Control Delay	25.8		23.7	16.1	42.9	4.4
Queue Delay	0.3		0.0	8.2	0.0	0.0
Total Delay	26.1		23.7	24.3	42.9	4.4
LOS	С		С	С	D	Α
Approach Delay	26.1			24.2	25.4	
Approach LOS	С			С	С	

Intersection Summary	
Cycle Length: 70	
Actuated Cycle Length: 69.8	
Control Type: Semi Act-Uncoord	
Maximum v/c Ratio: 0.89	
Intersection Signal Delay: 24.9	Intersection LOS: C
Intersection Capacity Utilization 75.9%	ICU Level of Service D
Analysis Period (min) 15	

图 4: 仿真结果

V/C<1, 道路并不拥挤, 经优化后, LOS 等级为 C, 处于稳定流状态, 比较合理。

(4) 简要说明本次实验取得的主要收获、体会

通过本次实验,进一步了解和熟悉仿真系统的原理、操作与应用, 并加深了对干线交叉口交通信号的协调控制(简称线控制,也称绿波 系统)包括车道布置、信号配时、相位安置,绿波带等课堂知识的掌 握;了解路口渠化和交通管制对城市道路路口交通通行能力的影响, 并掌握应用软件的操作程序以及设计特点。