Lema del Bombeo

Fundamentos de Ciencias de la Computación (620139)

Propiedades de los lenguajes regulares

Sea un AFD $M = (\Sigma, Q, s, F, \delta)$, donde Q contiene n estados. Si L(M) es infinito, podemos encontrar $w = a_1, a_2, \ldots, a_{n+1}$, que pertenezca a L(M). Si

$$q_1 = \delta(s, a_1)$$

$$q_2 = \delta(q_1, a_2)$$

y así sucesivamente, obtendríamos los n+1 estados, $q_1, q_2, \ldots, q_{n+1}$.

Como Q tiene n estados, los q_i no serán todos distintos. Para algunos índices j y k, con $1 \le j < k \le n+1$, se tendrá que $q_j = q_k$. Por lo tanto, habrá un ciclo para llegar al estado de aceptación. Como se muestra en la figura

 q_{n+1}

El lazo tiene longitud de al menos 1. Las cadenas $w=a_1,a_2,\ldots,a_j,(a_{j+1},\ldots,a_k)^m$ a_{k+1},\ldots,a_{n+1} estarán en L(M) para $m\geq 0$.

Lema del bombeo

Sea L un lenguaje regular infinito. Entonces hay una constante n de forma que, si w es una cadena de L cuya longitud es mayor o igual a n, se tiene que w = uvx, siendo $uv^ix \in L$ para todo $i \ge 0$, con $|v| \ge 1$ y $|ux| \le n$.

Este lema es utilizado para probar si un lenguaje es o no regular.

Ejemplo: sea

$$L = \{a^{i^2} | i \ge 1\}$$

Toda cadena de L debe tener una longitud que sea un cuadrado perfecto. Supongamos que cumple el lema del bombeo, entonces

$$a^{n^2} = uvx$$

Se cumple que $n^2 = |uvx| < |uv^2x| <= n^2 + n < (n+1)^2$

Es decir, $|uv^2x|$ se encuentra entre dos cuadrados perfectos consecutivos y por tanto no es un cuadrado perfecto. En consecuencia no pertenece al lenguaje L.

Otro ejemplo

Sea el lenguaje $L = \{a^m b^m \mid m \ge 0\}$. *L* es infinito.

Si se cumple el lema del bombeo se tiene que $a^nb^n = |uvx| \cos |v| \ge 1$ y $|ux| \le n$.

Dado que $|ux| \le n$, |v| < n, y por tanto consta solo de *aes*. Entonces $v = a^s$, para s > = 1.

Si $u = a^r$, $x = a^{n-(s+r)}b^n$.

Por lo tanto $|uv^2x| = a^r a^{2s} a^{n-(s+r)} b^n = a^{n+s} b^n$.

Dado que $s \ge 1$, la cadena no puede pertenecer a L.

Teorema 7

Sea M un autómata finito de k estados.

- 1. $L(M) \neq \emptyset$ si y solo si M acepta una cadena de longitud menor que k.
- 2. L(M) es infinito si y solo si M acepta una cadena de longitud n, donde $k \le n \le 2k$.

Demostración.

- 1. Si M acepta una cadena de longitud menor que k, entonces $L(M) \neq \emptyset$. Si $L(M) \neq \emptyset$, entonces existe $w \in L(M)$. Supongamos $|w| \geq k$. Por el lema del bombeo w = uvx, y $uv^ix \in L(M)$. En particular, $ux \in L(M)$. Si $|ux| \leq k$, quedaría probado, el proceso se puede repetir para esta cadena hasta llegar a una longitud $\leq k$.
- 2. Supongamos $w \in L(M)$ con $k \le |w| \le 2k$. Pero por el lema del bombeo w = uvx, y $uv^ix \in L(M)$, para todo i, con lo que L(M) es infinito. Ahora supongamos que L(M) es infinito. Habrá cadenas con longitud $\ge k$. Supongamos $|w| \ge 2k$. Pero por el lema del bombeo w = uvx, y $uv^ix \in L(M)$. Entonces $ux \in L(M)$. Si $|ux| \le 2k$, quedaría probado, si no se puede repetir el proceso hasta encontrar una cadena que se encuentre entre k y 2k-1.

Aplicación de las leyes de de Morgan

Supongamos que L y K son lenguajes sobre Σ . De las leyes de De Morgan

$$(\Sigma^* - L) \cup (\Sigma^* - K) = \Sigma^* - (L \cap K)$$

Por tanto

$$L \cap K = \Sigma^* - (\Sigma^* - (L \cap K))$$
$$= \Sigma^* - ((\Sigma^* - L) \cup (\Sigma^* - K))$$

Pero el complemento de un lenguaje es regular si el lenguaje es regular, por lo tanto la intersección de dos lenguajes será regular si ambos lenguajes son regulares. Este hecho puede utilizarse para demostrar si un lenguaje es regular o no.

Por ejemplo, sea $\Sigma=\{a,b\}$ y $L=\{ww^l\mid w\in\Sigma^*\}$. Probaremos que L no es regular. Sea $L_1=\{a^nb^{2k}a^n\mid n,k\geq 0\}$ no regular, y $L_2=\{a^kb^na^m\mid k,n,m\geq 0\}$ regular. Obsérvese que $L_2\cap L=L_1$. Si L fuera regular, lo sería L_1 . Por tanto L no puede ser regular.

Indistinguibilidad

Sea $M = (Q, \Sigma, \delta, q_0, F)$ un AFD. Definimos la relación de indistinguibilidad \sim en Q como:

$$\forall q, q' \in \mathbb{Q}, q \sim q' \Leftrightarrow \forall x, \in \Sigma^* (\delta(q, x) \in F \Leftrightarrow \delta(q', x))$$

La relación \sim es una relación de equivalencia que induce una partición en Q y vamos a definir un autómata a partir de M, obtenido mediante la agrupación de estados pertenecientes al mismo bloque de la partición.

Minimización

 q_6 se elimina porque no es accesible.

La partición inicial es

$$\pi_0 = \{\{q_0, q_1, q_2, q_3, q_5, q_7\}, \{q_4\}\}.$$

Llamamos

$$B_1 = \{q_0, q_1, q_2, q_3, q_5, q_7\} \text{ y } B_2 = \{q_4\}.$$

De tabla anterior se obtiene π_1 La partición es $\pi_1 = \{\{q_0, q_1, q_5\}, \{q_2, q_7\}, \{q_3\}, \{q_4\}\}.$ Llamamos $B_1 = \{q_0, q_1, q_5\}, B_2 = \{q_2, q_7\}, B_3 = \{q_3\} \text{ y } B_4 = \{q_4\}.$	q_1 q_5 q_2 q_7 q_3	$ \begin{vmatrix} a \\ B_2 \\ B_1 \\ B_1 \\ B_4 \\ B_1 \end{vmatrix} $	$ \begin{array}{c} B_3 \\ B_3 \\ B_4 \\ B_4 \\ B_1 \\ B_1 \end{array} $
De tabla anterior se obtiene π_2		B_2	
La partición es	-	$egin{array}{c} B_2 \\ B_2 \end{array}$	_
$\pi_2 = \{ \{q_0, q_1\}, \{q_5\}, \{q_2, q_7\}, \{q_3\}, \{q_4\} \}.$		B_5	─
Llamamos	q_7	B_5	B_4
$B_1 = \{q_0, q_1\}, B_2 = \{q_2, q_7\}, B_3 = \{q_3\} \text{ y } B_4 = \{q_4\} \text{ y } B_5 = \{q_5\}.$	q_3	B_4	B_5
Puede verse que π_3 es igual a π_2 . Por lo tanto el AFD ya está	q_4	B_1	B_4
minimizado.	q_5	B_5	\boldsymbol{B}_1

Diagrama de transiciones

	a	b
B_1	B_2	B_3
B_2	B_5	B_4
B_3	B_4	B_5
B_4	\boldsymbol{B}_1	B_4
B_5	B_5	B_1

Tarea

Minimizar

Aplicaciones de los autómatas finitos

Reconocedor de números enteros


```
1. i = 1
2. ok = verdadero
3. long = longitud(s)
4. si s[i] en num entonces
    i = i+1
    mientras i<long y ok
        si s[i] en num
        i = i + 1
        sino
        ok = falso
        fin si
        fin mientras
        sino
        ok = falso</pre>
```