Anàlisi de dades òmiques (M0-157). PAC1.

Marc Anton

2025-03-25

Introducció

Aquest arxiu conté les sol·lucions als problemes plantejats en la PAC1 Anàlisi de dades òmiques (M0-157). El projecte total del treball es pot consultar al: meu repositori github

A continuació, procedeixo a resoldre la PAC. Abans que res, carreguem les dades al nostre entorn de treball. Treballarem amb l'#exemple de mostra. Carreguem els dos fitxers:

```
DataInfo_S013 <- read.csv("DataInfo_S013.csv", sep = ",")
DataValues_S013 <- read.csv("DataValues_S013.csv", sep = ",")</pre>
```

Com que ja sabem que aquests fitxers solen portar molts camps, mirem primer l'estructura dels dos.

```
dim(DataInfo_S013)
```

```
## [1] 695 4
dim(DataValues_S013)
```

```
## [1] 39 696
```

Aqui ja veiem que en l'arxiu Values tenim 696 columnes, el que correspon a un index únic de cada cas d'estudi més les 695 variables que es tenen de cada un d'ells. Per veure que hi ha, mirem les 20 primeres files d'Info i podem fer-nos una idea

head(DataInfo_S013,20)

##		X	VarName	varTpe	Description
##	1	SUBJECTS	SUBJECTS	integer	dataDesc
##	2	SURGERY	SURGERY	${\tt character}$	dataDesc
##	3	AGE	AGE	integer	dataDesc
##	4	GENDER	GENDER	${\tt character}$	dataDesc
##	5	Group	Group	integer	dataDesc
##	6	MEDDM_TO	MEDDM_TO	integer	dataDesc
##	7	MEDCOL_TO	MEDCOL_TO	integer	dataDesc
##	8	MEDINF_TO	MEDINF_TO	integer	dataDesc
##	9	MEDHTA_TO	MEDHTA_TO	integer	dataDesc
##	10	GLU_TO	GLU_TO	integer	dataDesc
##	11	INS_TO	INS_TO	numeric	dataDesc
##	12	HOMA_TO	HOMA_TO	numeric	dataDesc
##	13	HBA1C_TO	HBA1C_TO	numeric	dataDesc
##	14	${\tt HBA1C.mmol.mol_T0}$	${\tt HBA1C.mmol.mol_T0}$	numeric	dataDesc
##	15	PESO_TO	PESO_TO	integer	dataDesc
##	16	bmi_T0	bmi_T0	numeric	dataDesc
##	17	CC_TO	CC_TO	numeric	dataDesc
##	18	CINT_TO	CINT_TO	integer	dataDesc

## 19	CAD_TO	CAD_TO	integer	dataDesc
## 20	TAD TO	TAD TO	integer	dataDesc

Aqui ja veiem que hi ha 9 primers camps que semblen ser els que tenen la informació sobre el pacient mostra. Mirem que contenen aquests camps a values:

```
# En mirem 10 en realitat, per comprovar que la primera columna és un index head(DataValues_S013[,1:10])
```

##		X.1	SUBJECTS	SURGERY	AGE	GENDER	${\tt Group}$	MEDDM_TO	${\tt MEDCOL_TO}$	MEDINF_TO	MEDHTA_TO
##	1	1	1	by pass	27	F	1	0	0	0	1
##	2	2	2	by pass	19	F	2	0	0	0	0
##	3	3	3	by pass	42	F	1	0	0	0	0
##	4	4	4	by pass	37	F	2	0	0	0	0
##	5	5	5	tubular	42	F	1	0	0	0	0
##	6	6	6	by pass	24	F	2	0	0	0	0

Com suposavem, aquestes columnes corresponen a: 1. Un codi de pacient (que està repetit a les dues primeres columnes) 2. La cirugia a la que va ser sotmés el pacient 3. L'edat i el gènere 4. Un grup de tractament 5. 4 tractaments que venen amb 0 i 1

Per veure que la resta són metabolits, mirem 5 columnes més

head(DataValues_S013[,11:15],10)

##		GLU_TO	INS_TO	HOMA_TO	HBA1C_TO	<pre>HBA1C.mmol.mol_TO</pre>
##	1	85	11.40	2.40	NA	NA
##	2	78	12.10	2.32	NA	NA
##	3	75	8.41	1.56	5.4	35.51
##	4	71	12.80	2.25	5.1	32.23
##	5	82	6.01	1.22	5.6	37.69
##	6	71	9.88	1.73	5.1	32.23
##	7	80	9.20	1.82	5.6	37.69
##	8	90	3.40	0.76	5.5	36.60
##	9	92	5.43	1.23	5.7	38.78
##	10	84	6.98	1.45	5.5	36.60

Obviament ja ho veiem i també podem veure que hi ha més d'un valor que no es té (NA)