Find out and remove outliers from Credit card data

Information about Credit Card Fraud Detection:

- The datasets contains transactions made by credit cards in September 2013 by european cardholders.
- This dataset presents transactions that occurred in two days, where we have 492 frauds out of 284,807 transactions.
- It contains only numerical input variables which are the result of a PCA transformation.
- Features V1, V2, ... V28 are the principal components obtained with PCA, the only features which have not been transformed with PCA are 'Time' and 'Amount'.

Features Information:

- (i). Amount: is the transaction Amount
- (ii). Time: contains the seconds elapsed between each transaction and the first transaction in the dataset.
- (iii).V1,V2,....V28: are the principal components obtained with PCA.
- (IV). Class: fraud =1,otherwise =0

Link: https://www.kaggle.com/mlg-ulb/creditcardfraud (https://www.kaggle.com/mlg-ulb/creditcardfraud)

In [24]:

```
# import the required library
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
6
```

In [2]:

```
1 # Load the Credit Card Fraud Detection dataset
2 # recap the the dataset
3
4 credit = pd.read_csv('creditcard.csv')
5 credit.head() # show the 5 datapoints of dataset
```

Out[2]:

	Time	V1	V2	V3	V4	V5	V6	V7	V8
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533

5 rows × 31 columns

In [3]:

```
# change column Class to Fraud
credit = credit.rename(columns= {'Class':'Fraud'})
credit.head()
```

Out[3]:

	Time	V1	V2	V3	V4	V5	V6	V7	V8
0	0.0	-1.359807	-0.072781	2.536347	1.378155	-0.338321	0.462388	0.239599	0.098698
1	0.0	1.191857	0.266151	0.166480	0.448154	0.060018	-0.082361	-0.078803	0.085102
2	1.0	-1.358354	-1.340163	1.773209	0.379780	-0.503198	1.800499	0.791461	0.247676
3	1.0	-0.966272	-0.185226	1.792993	-0.863291	-0.010309	1.247203	0.237609	0.377436
4	2.0	-1.158233	0.877737	1.548718	0.403034	-0.407193	0.095921	0.592941	-0.270533

5 rows × 31 columns

→

In [4]:

```
1 # split the features and lables
2 X = credit.iloc[:,:-1]
3 y = credit.iloc[:,-1]
4
```

In [5]:

```
1 # Dataset is very large, so we should standardize the data
2 # StandardScaler(): Standardize features by removing the mean and scaling to unit various
3
4 from sklearn.preprocessing import StandardScaler
5 scaler = StandardScaler()
6 X_scaled = scaler.fit_transform(X)
7
```

In [6]:

```
1 # IMPORT the PCA scikit-learn library
2 from sklearn.decomposition import PCA
3 pca = PCA() # pca() function
4 pca.fit(X_scaled)
```

Out[6]:

PCA(copy=True, iterated_power='auto', n_components=None, random_state=None, svd_solver='auto', tol=0.0, whiten=False)

Find out and remove outliers from Credit card data

In [7]:

```
1 from sklearn.neighbors import LocalOutlierFactor
2
3
```

In [8]:

```
1 %%time
2
3 lof = LocalOutlierFactor(n_jobs=-1) # n_jobs = -1 means that use all cores of cpu
4 lof.fit(X_scaled)
```

Wall time: 40min 26s

In [25]:

```
1 lof_score = -np.sort(lof.negative_outlier_factor_) # """" negative_outlier_factor_: To
2 
3 plt.figure(figsize=(12, 8))
4 plt.plot(np.linspace(0, 100, len(lof_score)), lof_score,color ='green')
5 plt.ylabel('Local outlier factor Score')
6 plt.xlabel('Percenatge of datapoint')
7 plt.xlim((0, 0.1))
8 
9 # Local Outlier Factor score of each datapoint sorted in descending order
10 # negative sign means that convert neagtive to positive
```

Out[25]:

(0, 0.1)

- LOF start at 0.02 % of datapoits and we are getting elbow shape at 0.02%
- choose contamination = 0.02%

```
Find out and remove outliers from Credit card data
In [13]:
  1 %%time
  3 lof.contamination = 0.02 / 100
  4 inliers = lof.fit_predict(X_scaled)
Wall time: 41min 43s
In [14]:
```

```
1 # count the total numbers of outliers
3 (inliers == -1).sum()
```

Out[14]:

57

In [15]:

```
1 y[inliers == -1].value_counts()
```

Out[15]:

57

Name: Fraud, dtype: int64

In [18]:

```
1 # here we have Removed the outliers
2 X_cleaned_scaled = X_scaled[inliers == 1]
3 y_cleaned = y[inliers == 1]
```

In [23]:

```
1 X_cleaned_scaled #x_ceaned_sclaed outliers
```

Out[23]:

```
array([[-1.99658302, -0.69424232, -0.04407492, ..., 0.33089162,
        -0.06378115, 0.24496426],
       [-1.99658302, 0.60849633, 0.16117592, ..., -0.02225568,
         0.04460752, -0.34247454],
       [-1.99656197, -0.69350046, -0.81157783, ..., -0.13713686,
       -0.18102083, 1.16068593],
       . . . ,
       [ 1.6419735, 0.98002374, -0.18243372, ..., 0.01103672,
       -0.0804672 , -0.0818393 ],
       [1.6419735, -0.12275539, 0.32125034, ..., 0.26960398,
        0.31668678, -0.31324853],
       [1.64205773, -0.27233093, -0.11489898, ..., -0.00598394,
         0.04134999, 0.51435531]])
```