LABORATÓRIO 1: Regressão Linear Simples

Fernando Bispo

Sumário

Questão 1 .																				1
Item a																				1
Item b																				2
Item c																				2
Item d																				3
Questão 2 .																				4
Item G																				6

Questão 1

Os dados disponibilizados pelo California Standardized Testing and Reporting (STAR) contêm informações sobre performance de exames, características da escola e informações demográficas dos alunos. Os dados são provenientes de 428 escolas de ensino fundamental de distritos da Califórnia em 1998 e 1999. Os escores dos testes são médias dos escores de leitura e matemática em testes de Stanford padronizados que foram administrados em estudantes da 5ª série. Para as análises a serem feitas serão consideradas apenas as variáveis MATH-SCR (média do escore de matemática) e STR (razão do número de estudantes por professores:(ESTUD/PROF)

Item a

Com base na Tabela 1 se constata que os dados aparentam ter uma distribuição simétrica, tendo em vista o valor da Mediana ser Próximo ao da Média

Tabela 1: Apresentação parcial do conjunto de dados.

observation_number	str	math_scr
1	17,88991	690,0
2	21,52466	661,9
3	18,69723	650,9
4	17,35714	643,5
5	18,67133	639,9
6	21,40625	605,4

Tabela 2: Medidas tendência central e dispersão.

	Min	Q1	Med	Média	Q3	Max	Desvio Padrão	CV
$math_scr$	605,4	639,35	652,45	653,34	665,90	709,5	18,75	0,03
str	14,0	18,58	19,72	19,64	20,87	25,8	1,89	0,10

Note:

Fonte: California Standardized Testing and Reporting (STAR)

Item b

Diagrama de dispersão entre MATH-SCR e STR

Visualmente falando, com base na Figura 1, não há uma relação aparente entre as variávereis, pois nenhuma tendência foi constatada.

Item c

Sendo muitas vezes necessário a implementação/criação de funções próprias personalizadas para o estudo de determinados fenômenos que não estão disponíveis em pacotes, se faz necessário o aprimoramento dessa habilidade, para tanto segue a construção de uma função responsável por calcular o Desvio Padrão dos dados inseridos

```
# Criação da função:
dp = function(x){
    n = length(x)
    m = sum(x)/n
    desvio = (x - m)^2
    var = sum(desvio)/(n-1)
    dp = sqrt(var)

    return(dp)
}

# Desvio Padrão da variável MATH-SCR:
dp(dados1$math_scr)

[1] 18.7542

# Desvio Padrão da variável STR:
dp(dados1$str)
```

Item d

```
# Criação da função:
corr_pearson = function(x, y){
    n = length(x)
    soma_x = sum(x)
    soma_x2 = sum(x^2)
    s_xx = soma_x2-(((soma_x)^2)/n)

soma_y = sum(y)
    soma_y2 = sum(y^2)
    s_yy = soma_y2-(((soma_y)^2)/n)

soma_xy = sum(x*y)
    s_xy = soma_xy-((soma_x*soma_y)/n)

r = s_xy/(sqrt(s_xx*s_yy))

return(r)
}

corr_pearson(dados1$math_scr, dados1$str)
```

pregnant	glucose	diastolic	triceps	insulin	bmi	diabetes	age	test
6	148	72	35	0	33,6	0,627	50	1
1	85	66	29	0	26,6	0,351	31	0
8	183	64	0	0	23,3	0,672	32	1
1	89	66	23	94	28,1	0,167	21	0
0	137	40	35	168	43,1	2,288	33	1
5	116	74	0	0	25,6	0,201	30	0

Tabela 3: Apresentação parcial do conjunto de dados.

[1] -0.1955534

```
# Desvio Padrão da variável MATH-SCR:
dp(dados1$math_scr)

[1] 18.7542

# Desvio Padrão da variável STR:
dp(dados1$str)
```

[1] 1.891812

Questão 2

Para a resolução da segunda parte da atividade foi disponibilizado um conjunto de dados originalmente do National Institute of Diabetes and Digestive and Kidney Diseases. (Instituto Nacional de Diabetes e Doenças Digestivas e Renais). O objetivo do conjunto de dados é prever diagnosticamente se um paciente tem ou não diabetes, com base em determinadas medidas de diagnóstico incluídas no conjunto de dados. Várias restrições foram impostas à seleção dessas instâncias em um banco de dados maior. Em particular, todos os pacientes aqui são mulheres com pelo menos 21 anos de idade, de ascendência indígena Pima.

A fim de conhecer o conjunto de dados, segue a Tabela 2 contendo as principais medidas resumo do conjunto de dados disponibilizado.

Levando em consideração o fato de haverem muitos dados faltantes constatou-se que esses dados foram substituídos por valores zero, o que influencia negativamente na interpretação dos resultados das principais medidas resumo calculadas, logo essas observações serão removidas e novos cálculos serão realizados a fim de se obter medidas mais fidedignas da realidade.

É importante ressaltar que a variável test é uma variável categórica, logo não faz sentido haver interpretações acerca das medidas resumo dessa variável, sendo expressa a Figura X para possibilitar uma melhor visualização do comportamento dessa variável.

Tabela 4: Medidas tendência central e dispersão.

	Min	Q1	Med	Média	Q3	Max	Desvio Padrão	CV
age	21,00	24,00	29,00	33,24	41,00	81,00	11,76	0,35
bmi	0,00	27,30	32,00	31,99	36,60	67,10	7,88	0,25
diabetes	0,08	0,24	0,37	0,47	0,63	2,42	0,33	0,70
diastolic	0,00	62,00	72,00	69,11	80,00	122,00	19,36	0,28
glucose	0,00	99,00	117,00	120,89	140,50	199,00	31,97	0,26
insulin	0,00	0,00	30,50	79,80	127,50	846,00	115,24	1,44
pregnant	0,00	1,00	3,00	3,85	6,00	17,00	3,37	0,88
test	0,00	0,00	0,00	0,35	1,00	1,00	0,48	1,37
triceps	0,00	0,00	23,00	20,54	32,00	99,00	15,95	0,78

Tabela 5: Medidas Resumo para o sexo feminino.

	Min	Q1	Med	Média	Q3	Max	Desvio Padrão	CV
age	21,00	24,00	29,00	33,24	41,00	81,00	11,76	0,35
bmi	18,20	27,50	32,30	32,46	36,60	67,10	6,92	0,21
diabetes	0,08	0,24	0,37	0,47	0,63	2,42	0,33	0,70
diastolic	24,00	64,00	72,00	72,41	80,00	122,00	12,38	0,17
glucose	44,00	99,00	117,00	121,69	141,00	199,00	30,54	0,25
insulin	14,00	76,00	125,00	155,55	190,00	846,00	118,78	0,76
pregnant	1,00	2,00	4,00	4,49	7,00	17,00	3,22	0,72
test	0,00	0,00	0,00	0,35	1,00	1,00	0,48	1,37
triceps	7,00	22,00	29,00	29,15	36,00	99,00	10,48	0,36

Item G

Construção de boxplots comparando a distribuição as variáveis por grupo de resultado do teste de diabetes: