

#### Institiúid Teicneolaíochta, Trá Lí INSTITUTE OF TECHNOLOGY - TRALEE

### AUTUMN EXAMINATION, 2011 AY 2010/2011

### COMPUTER ARCHITECTURE CRN: 43829

Internal Examiner: Ms. M. O'Sullivan External Examiner: Dr. B. Feeney

**Duration of Exam: 2 HOURS** 

**Instructions to Candidates:** Answer ANY THREE questions.

Question One (33 Marks)

(i) Convert the decimal number 76 to its binary **and** hexadecimal equivalent.

(8 Marks)

(ii) Show the logic symbol **and** the truth table for:

(8 Marks)

(i) NOR gate

(ii) AND gate

(iii) Complete the truth table for the expression below:

(9 Marks)

$$Z = \overline{A}C + \overline{B}D$$

(iv) Draw the circuit for the expression below:

(8 Marks)

$$Z = A\overline{B} + \overline{B \oplus D}$$

Question Two (33 Marks)

(i) Write an expression for the circuit given below:



Figure 1 (10 Marks)

(ii) Simplify the following expression:

$$Z = X(X + \overline{XY}) + X(X.0 + 1) + \overline{Y}$$
(11 Marks)

(iii) Write an expression for Z below. Simplify the expression if possible and draw the circuit.

(12 *Marks*)

| A | В | С | Z |
|---|---|---|---|
| 0 | 0 | 0 | 1 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 0 |
| 1 | 1 | 1 | 0 |

Question Three (33 Marks)

(i) Show the truth table for the Half-Adder. Hence or otherwise, write the equation for the Half-Adder and show the logic circuits required to implement it.

(12 *Marks*)

(ii) Show how a Full-Adder is composed of two Half-Adders and some extra circuitry.

(10 Marks)

(iii) Write a short note on Random Access Memory (RAM), discussing Static-RAM and Dynamic-RAM and highlighting the differences between them. How does ROM differ from RAM?

(11 *Marks*)

Question Four (33 Marks)

(i) If a CPU clock operates at 2.3 GHz, what is the cycle length expressed in nanoseconds.

(12 *Marks*)

(ii) Draw a block diagram of a generic CPU, and write a short paragraph describing the function of each component.

(11 marks)

(iii) Write a note on Cache Memory.

(10 Marks)

# Rules of Boolean Algebra

| 1  | A + O = A               |
|----|-------------------------|
| 2  | A + 1 = 1               |
|    | A . O = O               |
|    | A . 1 = A               |
|    | A + A = A               |
|    | A + A = 1               |
|    | A . A = A               |
|    | A . A = O               |
|    |                         |
|    | $\overline{A} = A$      |
| 10 | A + AB = A              |
| 11 | A + AB = A + B          |
| 12 | (A + B)(A + C) = A + BC |

# Laws of Boolean Algebra

| Commutative  | A + B = B + A<br>AB = BA                   |
|--------------|--------------------------------------------|
| Associative  | A + (B + C) = (A + B) + C<br>A(BC) = (AB)C |
| Distributive | A(B + C) = AB + AC                         |