Module 2.2: McCulloch Pitts Neuron

- McCulloch (neuroscientist) and Pitts (logician) proposed a highly simplified computational model of the neuron (1943)
- \bullet g aggregates the inputs

- McCulloch (neuroscientist) and Pitts (logician) proposed a highly simplified computational model of the neuron (1943)
- \bullet g aggregates the inputs and the function f takes a decision based on this aggregation

- McCulloch (neuroscientist) and Pitts (logician) proposed a highly simplified computational model of the neuron (1943)
- \bullet g aggregates the inputs and the function f takes a decision based on this aggregation

- McCulloch (neuroscientist) and Pitts (logician) proposed a highly simplified computational model of the neuron (1943)
- ullet g aggregates the inputs and the function f takes a decision based on this aggregation
- The inputs can be excitatory or inhibitory

- McCulloch (neuroscientist) and Pitts (logician) proposed a highly simplified computational model of the neuron (1943)
- g aggregates the inputs and the function f takes a decision based on this aggregation
- The inputs can be excitatory or inhibitory
- y = 0 if any x_i is inhibitory, else

- McCulloch (neuroscientist) and Pitts (logician) proposed a highly simplified computational model of the neuron (1943)
- g aggregates the inputs and the function f takes a decision based on this aggregation
- The inputs can be excitatory or inhibitory
- y = 0 if any x_i is inhibitory, else

$$g(x_1, x_2, ..., x_n) = g(\mathbf{x}) = \sum_{i=1}^{n} x_i$$

- McCulloch (neuroscientist) and Pitts (logician) proposed a highly simplified computational model of the neuron (1943)
- ullet g aggregates the inputs and the function f takes a decision based on this aggregation
- The inputs can be excitatory or inhibitory
- y = 0 if any x_i is inhibitory, else

$$g(x_1, x_2, ..., x_n) = g(\mathbf{x}) = \sum_{i=1}^n x_i$$
$$y = f(g(\mathbf{x})) = 1 \quad if \quad g(\mathbf{x}) \ge \theta$$

- McCulloch (neuroscientist) and Pitts (logician) proposed a highly simplified computational model of the neuron (1943)
- g aggregates the inputs and the function f takes a decision based on this aggregation
- The inputs can be excitatory or inhibitory
- y = 0 if any x_i is inhibitory, else

$$g(x_1, x_2, ..., x_n) = g(\mathbf{x}) = \sum_{i=1}^n x_i$$
$$y = f(g(\mathbf{x})) = 1 \quad if \quad g(\mathbf{x}) \ge \theta$$
$$= 0 \quad if \quad g(\mathbf{x}) < \theta$$

- McCulloch (neuroscientist) and Pitts (logician) proposed a highly simplified computational model of the neuron (1943)
- g aggregates the inputs and the function f takes a decision based on this aggregation
- The inputs can be excitatory or inhibitory
- y = 0 if any x_i is inhibitory, else

$$g(x_1, x_2, ..., x_n) = g(\mathbf{x}) = \sum_{i=1}^n x_i$$
$$y = f(g(\mathbf{x})) = 1 \quad if \quad g(\mathbf{x}) \ge \theta$$
$$= 0 \quad if \quad g(\mathbf{x}) < \theta$$

• θ is called the thresholding parameter

- McCulloch (neuroscientist) and Pitts (logician) proposed a highly simplified computational model of the neuron (1943)
- g aggregates the inputs and the function f takes a decision based on this aggregation
- The inputs can be excitatory or inhibitory
- y = 0 if any x_i is inhibitory, else

$$g(x_1, x_2, ..., x_n) = g(\mathbf{x}) = \sum_{i=1}^n x_i$$
$$y = f(g(\mathbf{x})) = 1 \quad if \quad g(\mathbf{x}) \ge \theta$$
$$= 0 \quad if \quad g(\mathbf{x}) < \theta$$

- θ is called the thresholding parameter
- This is called Thresholding Logic

Let us implement some boolean functions using this McCulloch Pitts (MP) neuron \dots

$$y \in \{0,1\}$$

$$\uparrow$$

$$x_1 \qquad x_2 \qquad x_3$$

A McCulloch Pitts unit

AND function

A McCulloch Pitts unit

AND function

A McCulloch Pitts unit

AND function

OR function

A McCulloch Pitts unit

AND function

OR function

AND function

OR function

^{*}circle at the end indicates inhibitory input: if any inhibitory input is 1 the output will be 0

AND function

OR function

^{*}circle at the end indicates inhibitory input: if any inhibitory input is 1 the output will be 0

 x_1 AND $!x_2^*$

AND function

 $y \in \{0, 1\}$ x_1

 x_2 OR function

 x_3

NOR function

^{*}circle at the end indicates inhibitory input: if any inhibitory input is 1 the output will be 0

$$y \in \{0, 1\}$$

$$\downarrow$$

$$x_1$$

$$x_2$$

 x_1 AND $!x_2^*$

 $y \in \{0, 1\}$ x_1 x_2 x_3

AND function

OR function

$$y \in \{0, 1\}$$

NOR function

^{*}circle at the end indicates inhibitory input: if any inhibitory input is 1 the output will be 0

$$y \in \{0, 1\}$$

$$x_1$$

$$x_2$$

 x_1 AND $!x_2^*$

 $y \in \{0, 1\}$ \downarrow $x_1 \quad x_2 \quad x_3$

AND function

NOR function

OR function

NOT function

99 _{4/9}

^{*}circle at the end indicates inhibitory input: if any inhibitory input is 1 the output will be 0

$$y \in \{0, 1\}$$

$$\downarrow$$

$$x_1$$

$$x_2$$

 x_1 AND $!x_2^*$

AND function

NOR function

OR function

NOT function

^{*}circle at the end indicates inhibitory input: if any inhibitory input is 1 the output will be 0

• Can any boolean function be represented using a McCulloch Pitts unit?

- Can any boolean function be represented using a McCulloch Pitts unit?
- Before answering this question let us first see the geometric interpretation of a MP unit ...

$$y \in \{0,1\}$$

$$\uparrow$$

$$x_1$$

$$x_2$$

OR function
$$x_1 + x_2 = \sum_{i=1}^{2} x_i \ge 1$$

$$y \in \{0,1\}$$

$$\uparrow$$

$$x_1$$

$$x_2$$

OR function $x_1 + x_2 = \sum_{i=1}^{2} x_i \ge 1$

$$y \in \{0,1\}$$

$$\uparrow$$

$$x_1$$

$$x_2$$

OR function $x_1 + x_2 = \sum_{i=1}^{2} x_i \ge 1$

OR function $x_1 + x_2 = \sum_{i=1}^{2} x_i \ge 1$

• A single MP neuron splits the input points (4 points for 2 binary inputs) into two halves

OR function $x_1 + x_2 = \sum_{i=1}^{2} x_i \ge 1$

- A single MP neuron splits the input points (4 points for 2 binary inputs) into two halves
- Points lying on or above the line $\sum_{i=1}^{n} x_i \theta = 0$ and points lying below this line

OR function $x_1 + x_2 = \sum_{i=1}^{2} x_i \ge 1$

- A single MP neuron splits the input points (4 points for 2 binary inputs) into two halves
- Points lying on or above the line $\sum_{i=1}^{n} x_i \theta = 0$ and points lying below this line
- In other words, all inputs which produce an output 0 will be on one side $(\sum_{i=1}^{n} x_i < \theta)$ of the line and all inputs which produce an output 1 will lie on the other side $(\sum_{i=1}^{n} x_i \ge \theta)$ of this line

OR function $x_1 + x_2 = \sum_{i=1}^{2} x_i \ge 1$

- A single MP neuron splits the input points (4 points for 2 binary inputs) into two halves
- Points lying on or above the line $\sum_{i=1}^{n} x_i \theta = 0$ and points lying below this line
- In other words, all inputs which produce an output 0 will be on one side $(\sum_{i=1}^{n} x_i < \theta)$ of the line and all inputs which produce an output 1 will lie on the other side $(\sum_{i=1}^{n} x_i \ge \theta)$ of this line
- Let us convince ourselves about this with a few more examples (if it is not already clear from the math)

AND function
$$x_1 + x_2 = \sum_{i=1}^{2} x_i \ge 2$$

$$x_1 + x_2 = \sum_{i=1}^{2} x_i \ge 2$$

$$x_1 + x_2 = \sum_{i=1}^{2} x_i \ge 2$$

$$x_1 + x_2 = \sum_{i=1}^{2} x_i \ge 2$$

Tautology (always ON)

$$x_1 + x_2 = \sum_{i=1}^{2} x_i \ge 2$$

Tautology (always ON)

AND function $x_1 + x_2 = \sum_{i=1}^{2} x_i \ge 2$

Tautology (always ON)

Tautology (always ON)

• What if we have more than 2 inputs?

• What if we have more than 2 inputs?

- What if we have more than 2 inputs?
- Well, instead of a line we will have a plane

- What if we have more than 2 inputs?
- Well, instead of a line we will have a plane
- For the OR function, we want a plane such that the point (0,0,0) lies on one side and the remaining 7 points lie on the other side of the plane

- What if we have more than 2 inputs?
- Well, instead of a line we will have a plane
- For the OR function, we want a plane such that the point (0,0,0) lies on one side and the remaining 7 points lie on the other side of the plane

The story so far ...

• A single McCulloch Pitts Neuron can be used to represent boolean functions which are linearly separable

The story so far ...

- A single McCulloch Pitts Neuron can be used to represent boolean functions which are linearly separable
- Linear separability (for boolean functions): There exists a line (plane) such that all inputs which produce a 1 lie on one side of the line (plane) and all inputs which produce a 0 lie on other side of the line (plane)