

Trasmissione seriale o parallela 01101001 0 1 1 0 1 0 0 1 seriale parallela

RS-232

- Standard per interfaccia seriale a bassa velocità
- RS = "Reccommended Standard" dell' EIA (Electronic Industries Association)
- Recepito dal CCITT (ora ITU) come V.24 insieme a V.28 per i segnali elettrici

Modello di riferimento

 Collegamento di un terminale (DTE: Data Terminal Equipment) con un modem (DCE: Data Communication Equipment)

Transmitted data / received data

Trasmissione seriale asincrona

- S (start bit): inizio del byte
- P (parity bit): controllo di parità
- stop bit(s): linea in stato di idle (a riposo) per almeno 1, 1.5 o 2 bit time

Trasmissione seriale sincrona

 Non più intervalli casuali tra un byte e il successivo, ma trasmissione di gruppi di byte

Compiti del livello DataLink

- Impacchettamento (framing)
- Controllo dell'errore
- Controllo del flusso

Delimitazione della trama con conteggio dei byte

Delimitazione della trama con caratteri speciali

- Si utilizzano i codici ASCII:
 - DLE (Data Link Escape)
 - STX (Start of TeXt)
 - ETX (End of TeXt)
- DLE-STX = inizio, DLE-ETX = fine
- E se compaiono nei dati?
 - "byte stuffing" (riempimento di caratteri): i caratteri DLE nei dati vengono raddoppiati in trasmissione e ripristinati in ricezione

Delimitazione della trama con riempimento di bit ("bit stuffing")

- Adatta per ogni tipo di dato e con un numero arbitrario di bit per carattere
- Delimitarore ("flag byte"): 01111110
- Se il livello data link trova 11111 nei dati da trasmettere aggiunge un bit a 0
- Quando il ricevitore trova 5 bit a 1 seguiti da uno 0 rimuove il bit a 0

Controllo e correzione degli errori

- I codici di Hamming permettono la correzione
 - adatti se non è conveniente la ritrasmissione
- I codici polinomiali o codici a ridondanza ciclica (CRC) si limitano a rilevare gli errori
 - richiedono meno bit aggiuntivi ai bit di dato
- Problema 1: se il riscontro non arriva?
 - A ritrasmette il pacchetto
- Problema 2: se il riscontro non arriva perché andato perso, ma il pacchetto era arrivato correttamente?
 - A ritrasmette il pacchetto e B lo riceve una seconda volta
 - → duplicazione dei pacchetti

Protocolli "sliding window"

- Il trasmettitore mantiene una finestra di trasmissione
 - numeri d'ordine dei pacchetti che può spedire
 - permette di spedire frame prima di aver ricevuto i riscontri dei frame precedenti
 - i frame appartenenti alla finestra vengono memorizzati per eventuali ritrasmissioni

Delimitazione della trama con caratteri speciali

Delimitazione della trama con riempimento di bit ("bit stuffing")

dati da trasmettere 011011111111111111111111110010

dati trasmessi 011011111011111011111010010

bit stuffing

Un semplice protocollo stop-and-wait

- Il nodo A trasmette un pacchetto e si mette in attesa del riscontro da B
- Se il traffico è bidirezionale, il riscontro può viaggiare nell'intestazione di uno dei pacchetti in arrivo da B ad A (piggybacking)

Protocolli "sliding window"

 Ogni frame spedito è numerato, da 0 a 2ⁿ-1 (numero progressivo su n bit)

Se n=1 allora i frame sono numerati 0 e 1 I corrispondenti riscontri sono : ACKO, ACK1 Se n=3 allora i frame sono numerati da 0 a 7 Il protocollo Stop&Wait è un caso particolare dei meccanismi a finestra con WindowSize=1

Protocolli "sliding window"

- Il ricevitore mantiene una finestra di ricezione
 - numeri d'ordine dei pacchetti che può ricevere
 - consente di riconoscere e scartare frame duplicati a causa di riscontri andati perduti
 - permette di accettare frame non ordinati (a causa di frame persi o di ritrasmissioni)

