Exercises on Multiplication and Inverse Matrices

January 4, 2017

3.1

$$AB + AC = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 0 \end{bmatrix} + \begin{bmatrix} 10 & 12 \\ 20 & 24 \end{bmatrix} = \begin{bmatrix} 11 & 12 \\ 23 & 24 \end{bmatrix}$$
$$A(B + C) = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 5 & 6 \end{bmatrix} = \begin{bmatrix} 11 & 12 \\ 23 & 24 \end{bmatrix}$$

Therefore, AB + AC = A(B + C).

3.2

$$\begin{bmatrix} 1 & a & b & 1 & 0 & 0 \\ 0 & a & c & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & b - ac & 1 & -a & 0 \\ 0 & 1 & c & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & b - ac & 1 & -a & 0 \\ 0 & 1 & c & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & b - ac & 1 & -a & 0 \\ 0 & 1 & 0 & 0 & 1 & -c \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & b - ac & 1 & -a & 0 \\ 0 & 1 & 0 & 0 & 1 & -c \\ 0 & 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

Using Gauss-Jordan elimination method, we find that $U^{-1} = \begin{bmatrix} 1 & -a & ac - b \\ 0 & 1 & -c \\ 0 & 0 & 1 \end{bmatrix}$