# COMP 6630: Project Proposal Group 6

Matthew Freestone\*
Will Humphlett
Matthew Shiplett

# Define the problem.

- Multilayer Perceptron with from-scratch backpropagation
- Sentiment Analysis
- Given a text input, determine sentiment in {-1:, negative, 1: positive}



#### How can MLP be applied to solve the problem?

- Highly non-linear decision plane
  - Combination of perceptron units allows this
- Backpropagation
- Stochastic Gradient Descent
  - Allows dealing with datasets too large to fit in memory



#### Users of the classifier

Data scientists: Label data quickly and accurately

Corporate Entities: Analysis on feedback or online discussions of company







#### Potential Challenges

Large input set, so very large first layer

Computationally Expensive

**GPU vs CPU** 

**Memory Limitations** 

How should text be represented?

Word count vectors

**N-Grams** 

TF-IDF

|   |           |       |           |           | uno,          |
|---|-----------|-------|-----------|-----------|---------------|
| 1 | ·Thic     | ielal | sentence  | uniarame  | is,           |
|   | .   11110 | IS  A | Senicince | unigrams. | a,            |
|   |           |       |           |           | sentence      |
|   |           |       |           |           | this is       |
| 0 | . Thia    | :     | aantanaa  |           | this is,      |
| 2 | :   I NIS | IS a  | sentence  | bigrams:  | is a,         |
|   |           |       | <u></u>   |           | a sentence    |
|   |           |       |           |           | >             |
| 0 | This      | :     |           |           | this is a.    |
| 3 | : I nis   | lis a | sentence  | trigrams: | is a sentence |

|            | the | cat | sat | on | hat | dog | ate | and |
|------------|-----|-----|-----|----|-----|-----|-----|-----|
| Document 1 | 2   | 1   | 1   | 1  | 1   | 0   | 0   | 0   |
| Document 2 | 3   | 1   | 0   | 0  | 1   | 1   | 1   | 1   |

#### Dataset

Kaggle "Highly Polar" Labeled Dataset:

https://www.kaggle.com/datasets/lakshmi25npathi/imdb-dataset-of-50k-mo

vie-reviews

| <u>A</u> review <u></u>                                                                              | ▲ sentiment =             |  |  |
|------------------------------------------------------------------------------------------------------|---------------------------|--|--|
| <b>49582</b><br>unique values                                                                        | <b>2</b><br>unique values |  |  |
| One of the other reviewers has mentioned that after watching just 1 Oz episode you'll be hooked. The | positive                  |  |  |

For neutral points, we can web scrape IMDB for reviews with 5 - 7 stars

### Implementation: Technologies, and Libraries

**Version Control: Github** 

Language: Python

Implementation Libraries: Numpy, Pandas

Benchmarking: sklearn, PyTorch











## Hyperparameters and Tuning

 $\max(w_1^T x + b_1, w_2^T x + b_2)$ 

#### **Hyperparameters**

Number of hidden layers and size

**Learning Rate** 

tanh(x)

ReLU  $\max(0, x)$ 

**Activation Function** 

# SGD Batch Size Activation Functions Sigmoid $\sigma(x) = \frac{1}{1+e^{-x}}$ Leaky ReLU $\max(0.1x, x)$ tanh Maxout



#### **Validation**

K-fold Cross Validation

**Grid Search** 

Random Search

### Demonstrating Usefulness

Perform sentiment analysis on a large body of unlabeled text

Avoid overfitting on movie-related topics



#### Rough Timeline

Project Proposal - Due : October 26th, 2022

Initial Commit of Repository - Expected : October 26th,2022

Proposal Feedback - Expected : After October 26th, 2022

Dataset acquisition and pre-processing - Expected November 7th, 2022

Initial implementation of MLP - Expected : November 9th,2022

Initial training run of MLP - Expected : November 10th,2022

Verification and recording of results - Expected : November 11th, 2022

Initialization of Benchmark implementation(s) - Expected November 11th, 2022

Verification and recording of benchmark results - Expected November 15th, 2022

Creation of Final report documentation - Expected November 16th, 2022

Finalization of Final report documentation - Expected November 18th, 2022

Rehearsals of Final report - Expected November 28th -December 1st, 2022

Project presentation - Expected December 1st, 202