Math 244 - Problem Set 2

due Monday, February 3, 2025, at 11:59pm

Section 1.5

5. Prove the associativity of composing relations: if R, S, T are relations such that $(R \circ S) \circ T$ is well-defined, then $R \circ (S \circ T)$ is also well-defined and equals $(R \circ S) \circ T$.

Section 1.6

- 3. Prove that a relation R is transitive if and only if $R \circ R \subseteq R$.
- 6. Describe all relations on a set X that are equivalences and orderings at the same time.

Section 2.1

- 4. Let $(X, \leq), (Y, \preceq)$ be ordered sets. We say that they are *isomorphic* (meaning that they "look the same" from the point of view of ordering) if there exists a bijection $f: X \to Y$ such that for every $x, y \in X$, we have $x \leq y$ if and only if $f(x) \leq f(y)$. Note from Prof. Hall: In the book this problem has four parts, but you are only being asked to do parts (a) and (b).
 - (a) Draw Hasse diagrams for all non-isomorphic 3-element posets.
 - (b) Prove that any two *n*-element linearly ordered sets are isomorphic. The textbook has a hint to this problem in the back.

Section 2.2

- 2. (a) Consider the set $\{1, 2, ... n\}$ ordered by the divisibility relation | (see Example 2.1.2). What is the maximum possible number of elements of a set $X \subseteq \{1, 2, ... n\}$ that is ordered linearly by the relation | (such a set X is called a *chain*)?
 - (b) Solve the same question for the set $2^{\{1,2,\dots n\}}$ ordered by the relation \subseteq (see Example 2.1.3).
- 3. (optional bonus problem) Let $le(X, \preceq)$ denote the number of linear extensions of a partially ordered set (X, \preceq) . Prove:
 - (a) $le(X, \preceq) = 1$ if and only if (X, \preceq) is a linear ordering;
 - (b) $le(X, \preceq) \leq n!$, where n = |X| (you may want to read Chapter 3 first).