mediation_dream

(https://github.com/cocoanlab/cocoanCORE)

Motivation 1:

: When performing multilevel mediation analysis for whole brain, It takes a lot of time to get results because only one CPU core is working for the analysis

e.g., if you have 200,000 voxels, the analysis will be performed 200,000 times sequentially

It usually takes two weeks to finish this analysis

mediation_dream

(https://github.com/cocoanlab/cocoanCORE)

Motivation 2:

: If we want to test several models, it is also hugely influenced by the number of the models.

: Whenever the models are tested, same fMRI data should be loaded repeatedly

- mediation_dream (https://github.com/cocoanlab/cocoanCORE)
 - To overcome these issues (*WE WANT TO GET ANALYSIS RESUTLS FASTER*), this function was created
 - You can reduce a processing time from 2 weeks to 3 or 4 days
 - It is intended to performing parallel processing of whole-brain multilevel mediation analysis
 - CanlabCORE, cocoanCORE and mediationToolbox must be added to your path
 - Recommendations
 - It is for the multilevel whole—brain mediation analysis especially,
 - with bootstrap option
 - voxels > 1,000 and models > 2
 - A high-performance computer with several CPU cores and RAM storage is needed

- The algorithm of mediation_dream
 - If you want to perform seven simultaneous the whole-brain mediation analysis
 - 1. All voxels in brain are divided into **7 blocks**

- The algorithm of mediation_dream
 - If you want to perform seven simultaneous the whole-brain mediation analysis
 - 1. All voxels in brain are divided into 7 blocks
 - 2. Put all models you want to test in the function

	IV	DV			
Model 1	Self-regulation	Pain ratings			Repeated <i>k</i> times (<i>k</i> is the number of models)
Model 2	Subjective Level	Unpleasantness ratings]	
Model 3	Temperatures	Avoidance ratings	Data load		Model test k
Model 4	dmPFC's activity	Pain ratings			

The algorithm of mediation_dream

- If you want to perform seven simultaneous the whole-brain mediation analysis
 - 1. All voxels in brain are divided into **7 blocks**
 - 2. Put all models you want to test in the function
 - 3. Run each script on each CPU core in HPC

The algorithm of mediation_dream

- If you want to perform seven simultaneous the whole-brain mediation analysis
 - 1. All voxels in brain are divided into 7 blocks
 - 2. Put all models you want to test in the function
 - 3. Run each script on each CPU core in HPC
 - 4. Summarize the results

For each model, the results are summarized as path a, path b, and path A*b

- Be careful
 - This function uses a global variable
 - Making a brain mask for own study is important
 - Even if each brain was spatially normalized, some voxels can have zero values (especially, in the brainstem)
 - If this situation happens, it can generate an error regarding no variance

- STEP1: Make variable structure
- STEP2: Build models
- STEP3: Divide fMRI data and scripts for parallel processing (mediation_dream_wani.m)
- STEP4: Run each script in MATLAB with each CPU core (1CPU core = 1 script)
- STEP5: Summarize each result (mediation_dream_combined_wani.m)

Whole-brain activity during heat stimulation

X Cue Y Overall Rating

Covariate: stimulus intensity

Whole-brain mediation for the cue effects

Whole-brain activity during heat stimulation

X Stimulus overall Rating

Covariate: Cue level

Whole-brain mediation for the stimulus intensity

(Gim et al., in prep)

STEP1: Make variable structure

(see cocoanCORE/Statistics/mediation_dream/mediation_dream_suhwan_example_code_3.m)

The structure of 'med_vars'

```
med_vars =

struct with fields:

    M: {1x58 cell}
    X1: {1x58 cell}
    X2: {1x58 cell}
    Y: {1x58 cell}
    model_name: '/sas1/cocoanlab/data/SEMIC/analysis/imaging/first_level/model03a_
```

med_vars.X1 = stimulus intensity med_vars.X2 = cue level med_vars.Y = overall pain rating med_vars.M = the address of heat-stimulation induced brain activity (fMRI data_

The address of fMRI data should be included as cell type

```
med_vars.M{1}
ans =

66×1 cell array

{'/sas1/cocoanlab/data/SEMIC/analysis/imaging/first_level/model03a_SPM_SINGLE_TRIAL_PAIN/sub-semic001/beta_0001.nii'}
 {'/sas1/cocoanlab/data/SEMIC/analysis/imaging/first_level/model03a_SPM_SINGLE_TRIAL_PAIN/sub-semic001/beta_0002.nii'}
 {'/sas1/cocoanlab/data/SEMIC/analysis/imaging/first_level/model03a_SPM_SINGLE_TRIAL_PAIN/sub-semic001/beta_0003.nii'}
```


STEP2: Build models

You build model to test in models.name{k} and models.fns{k}

```
models.name{1} = 'model01_X:_Stim_Y:_angle_M:_brain_Cov:_cue';
models.name{2} = 'model02_X:_Cue_Y:_angle_M:_brain_Cov:_Stim';|

models.fns{1} = ['mediation(med_vars.X1, med_vars.Y, M,''cov'', med_vars.X2, ''boot'', ''bootsamples'', 10000)'];
models.fns{2} = ['mediation(med_vars.X2, med_vars.Y, M,''cov'', med_vars.X1, ''boot'', ''bootsamples'', 10000)'];

>> disp(models.fns{1})
mediation(med_vars.X1, med_vars.Y, M,'covs', med_vars.X2, 'boot', 'bootsamples', 10000)
>> disp(models.fns{2})
mediation(med_vars.X2, med_vars.Y, M,'covs', med_vars.X1, 'boot', 'bootsamples', 10000)
```

k = the number of model

The mediation function you want to perform

STEP3: Divide fMRI data and scripts for parallel processing (mediation_dream_wani.m)
 Run mediation_dream_wani.m (or _suhwan.m)

The number of job you want to divide

```
For specific
                           jobn = 26;
environment
                          wh_loc = 'HPC';
                          % it should change directory or filename
                          outputdir = fullfile('/sas1/cocoanlab/data','SEMIC','191203_2mm_whole_brain_onlySELF','outputs');
      med_vars.imgs
                          if ~exist(outputdir, 'dir'), mkdir(outputdir); end
                          med_vars.imgs = med_vars.M;
                          %models.name{1} = sprintf('Model01_STIM_phase_%02d_of_08_whole_brain',sec_i);
                          %models.name{2} = sprintf('Model02 CUE phase %02d of 08 whole brain', sec i);
                          for i = 1:length(models.fns)
                              models.savepaths{i} = [1,2,3,4,5]; % including all path
                          end
                          code_filename = fullfile(outputdir, sprintf('SEMIC_mediation_brain_%02d_of_32_run_suhwan.m',sec_i));
                          study_scriptdir = fullfile('/sas1/cocoanlab/data/SEMIC','scripts');
                          %% make mediation distributed scripts
                          mediation_dream_suhwan(med_vars, models, jobn, mask, code_filename, study_scriptdir,'wh_loc',wh_loc)
```

This function is for my specific environment
You can use _wani or modify it for your environment

STEP4: Run each script in MATLAB with each CPU core (1CPU core = 1 script)

These data (.mat) and scripts (.m) was generated

STEP4: Run each script in MATLAB with each CPU core (1CPU core = 1 script)

STEP5: Summarize each result (mediation_dream_combined_wani.m)

```
%modeldir = fullfile('/sas1/cocoanlab/data/SEMIC/','191023_2mm_whole_brain_onlySELF','outputss');
modeldir = fullfile('/sas1/cocoanlab/data/SEMIC/','191203_2mm_whole_brain_onlySELF','outputs');
sec_i = 32;
SETUP_dir = fullfile(modeldir,sprintf('mediation_SETUP_SEMIC_mediation_brain_%02d_of_32_run_suhwan.mat',sec_i));
mediation_dream_combine_results_suhwan(modeldir, SETUP_dir);

This function is for my specific environment
You can use _wani or modify it for your environment
```


STEP5: Summarize each results (mediation_dream_combined_wani.m)

```
%modeldir = fullfile('/sas1/cocoanlab/data/SEMIC/','191023 2mm whole brain onlySELF','outputss');
modeldir = fullfile('/sas1/cocoanlab/data/SEMIC/','191203_2mm_whole_brain_onlySELF','outputs');
sec i = 32;
SETUP_dir = fullfile(modeldir,sprintf('mediation_SETUP_SEMIC_mediation_brain_%02d_of_32_run_suhwan.mat',sec_i));
mediation_dream_combine_results_suhwan(modeldir, SETUP_dir);
                                                                  You can get combined results for each model
                   001
                                                                                   002
                       📄 firstlevel M-Ybetas.nii
                                                                                      in firstlevel M-Ybetas.nii
                        firstlevel X-Mbetas.nii
                                                                                      irstlevel X-Mbetas.nii
                        firstlevel X-M-Ybetas.nii
                                                                                      📄 firstlevel X-M-Ybetas.nii
                      📄 firstlevel_X-Y_directbetas.nii
                                                                                      firstlevel X-Y directbetas.nii
                        firstlevel X-Y totalbetas.nii
                                                                                      📄 firstlevel X-Y totalbetas.nii
                        M-Y effect.nii
                                                                                      M-Y effect.nii
                        M-Y pvals.nii
                                                                                      📄 M-Y pvals.nii
                                                                                                                                a Whole-brain mediation for the cue effects
                        M-Y ste.nii
                                                                                      📄 M-Y ste.nii
                       🗋 X-M effect.nii
                                                                                      📄 X-M effect.nii
                                                                                                                                             Whole-brain activity
                        X-M pvals.nii
                                                                                      📄 X-M_pvals.nii
                                                                                                                                             during heat stimulation
                                              Mediation effects
                        X-M ste.nii
                                                                                      📄 X-M ste.nii
                       X-M-Y effect.nii
                                                                                      📄 X-M-Y effect.nii
                        X-M-Y pvals.nii
                                                                                      📄 X-M-Y pvals.nii
                                                                                                                                                           Overall
                        X-M-Y ste.nii
                                                                                      📄 X-M-Y ste.nii
                        X-Y direct effect.nii
                                                                                      X-Y direct effect.nii
                                                                                                                                 Covariate: stimulus intensity
                        X-Y direct pvals.nii
                                                                                      X-Y direct pvals.nii
                        X-Y direct ste.nii
                                                                                      X-Y direct ste.nii
                       📄 X-Y total effect.nii
                                                                                      X-Y total effect.nii
                      X-Y total pvals.nii
                                                                                      📄 X-Y total pvals.nii
                      X-Y total ste.nii
                                                                                      📄 X-Y total ste.nii
```


Mediation_Dream: Summary of example

- STEP1: Make variable structure
- STEP2: Build models
- STEP3: Divide fMRI data and scripts for parallel processing (mediation_dream_wani.m)
- STEP4: Run each script in MATLAB with each CPU core (1CPU core = 1 script)
- STEP5: Summarize each results (mediation_dream_combined_wani.m)

