05. Ecuaciones diferenciales fundamentales de la teoría de la elasticidad

(5.3 - 5.13)

Michael Heredia Pérez mherediap@unal.edu.co

Universidad Nacional de Colombia sede Manizales
Departamento de Ingeniería Civil
Mecánica de Sólidos

2022b

Advertencia

Estas diapositivas son solo una herramienta didáctica para guiar la clase, por si solas no deben tomarse como material de estudio y el estudiante debe dirigirse a la literatura recomendada [Álvarez, 2022].

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
 - 5.4.3. Nota sobre la nomenclatura
- 3 5.5. Equilibrio estático
- 4 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5.7. Cálculo de los desplaxamientos a partir de las deformaciones
- 6 5.8. Función de tensión de Airy
- 7 5.9. Ecuaciones diferenciales parciales de Cauchy-Navier
- 8 5.10. Unicidad de la solución
- 9 5.11. Principio de superposición
- 5.12. Principio de Saint-Venant
- 1 5.13. Resumen
- Referencias

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
 - 5.4.3. Nota sobre la nomenclatura
- 3 5.5. Equilibrio estático
- ① 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5 5.7. Cálculo de los desplaxamientos a partir de las deformaciones
- 6 5.8. Función de tensión de Airy
- 7 5.9. Ecuaciones diferenciales parciales de Cauchy-Navier
- 8 5.10. Unicidad de la solución
- 9 5.11. Principio de superposición
- 0 5.12. Principio de Saint-Venant
- **1** 5.13. Resumer
- Referencias

5.3. Condiciones de frontera

Condición de frontera esencial

(de desplazamiento o cinemática) se especifican los desplazamientos.

Condición de frontera natural

(de fuerza o esfuerzo) describe los esfuerzos en el contorno dle sólido.

5.3. Condiciones de frontera

Figura: (5.3) La especificación de las condiciones de frontera incluyedescribir los desplazamientos y los esfuerzos en la frontera del sólido.

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
 - 5.4.3. Nota sobre la nomenclatura
- 3 5.5. Equilibrio estático
- 4 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5 5.7. Cálculo de los desplaxamientos a partir de las deformaciones
- 6 5.8. Función de tensión de Airy
- 7 5.9. Ecuaciones diferenciales parciales de Cauchy-Navier
- 8 5.10. Unicidad de la solución
- 9 5.11. Principio de superposición
- 0 5.12. Principio de Saint-Venant
- 1 5.13. Resumer
- Referencias

5.4. Condiciones de equilibrio en la frontera

- ¿Qué pasa en la frontera del sólido?
- ¿De qué forma las fuerzas superficiales se conviertes en esfuerzos en el interior del sólido?

5.4. Condiciones de equilibrio en la frontera

- ¿Qué pasa en la frontera del sólido?
- ¿De qué forma las fuerzas superficiales se conviertes en esfuerzos en el interior del sólido?

5.4. Condiciones de equilibrio en la frontera

- ¿Qué pasa en la frontera del sólido?
- ¿De qué forma las fuerzas superficiales se conviertes en esfuerzos en el interior del sólido?

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
 - 5.4.3. Nota sobre la nomenclatura
- 3 5.5. Equilibrio estático
- 4 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5 5.7. Cálculo de los desplaxamientos a partir de las deformaciones
- 6 5.8. Función de tensión de Airy
- 5.9. Ecuaciones diferenciales parciales de Cauchy-Navier
- 8 5.10. Unicidad de la solución
- 9 5.11. Principio de superposición
- 5.12. Principio de Saint-Venant
- 1 5.13. Resumen
- Referencias

5.4.1. Análisis en dos dimensiones

Figura: (5.4) Condiciones de frontera en el punto (x(s),y(s)) para el caso bidimensional. Observe que el contorno del sólido Ω se describe por una curva paramétrica parametrizada con respecto a la longitud de arco que inicia en el punto s=0, se traza en el sentido contrario a las manecillas del reloj a medida que s varía en el intervalo [0,p), siendo p el perímetro de $\delta\Omega$.

5.4.1. Análisis en dos dimensiones

Ecuaciones de equilibrio externo bidimensionales

$$\underbrace{\begin{pmatrix} \bar{X}(s) \\ \bar{Y}(s) \end{pmatrix}}_{\pmb{f}(s)} = \underbrace{\begin{pmatrix} \sigma_x(s) & \tau_{xy}(s) \\ \tau_{xy}(s) & \sigma_y(s) \end{pmatrix}}_{\underline{\pmb{\sigma}}(s)} \underbrace{\begin{pmatrix} \alpha(s) \\ \beta(s) \end{pmatrix}}_{\hat{\pmb{n}}(s)}$$

5.4.1. Análisis en dos dimensiones

Figura: Componentes del vector $\hat{\boldsymbol{n}} \coloneqq \hat{\boldsymbol{n}}(s)$. La curva gruesa representa la frontera del sólido y el vector normal a ella está ubicado en el punto (x(s), y(s)).

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
 - 5.4.3. Nota sobre la nomenclatura
- 3 5.5. Equilibrio estático
- 4 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5 5.7. Cálculo de los desplaxamientos a partir de las deformaciones
- 6 5.8. Función de tensión de Airy
- 5.9. Ecuaciones diferenciales parciales de Cauchy-Navier
- 8 5.10. Unicidad de la solución
- 9 5.11. Principio de superposición
- 5.12. Principio de Saint-Venant
- 1 5.13. Resumen
- Referencias

5.4.2. Análisis en tres dimensiones

Para $\mathbf{x} \coloneqq (x, y, z),$

Ecuaciones de equilibrio externo tridimensionales

$$\underbrace{\begin{pmatrix} \bar{X}(\boldsymbol{x}) \\ \bar{Y}(\boldsymbol{x}) \\ \bar{Z}(\boldsymbol{x}) \end{pmatrix}}_{\boldsymbol{f}(x,y,z)} = \underbrace{\begin{pmatrix} \sigma_x(\boldsymbol{x}) & \tau_{xy}(\boldsymbol{x}) & \tau_{xz}(\boldsymbol{x}) \\ \tau_{xy}(\boldsymbol{x}) & \sigma_y(\boldsymbol{x}) & \tau_{yz}(\boldsymbol{x}) \\ \tau_{xz}(\boldsymbol{x}) & \tau_{yz}(\boldsymbol{x}) & \sigma_z(\boldsymbol{x}) \end{pmatrix}}_{\boldsymbol{f}(\boldsymbol{x})} \underbrace{\begin{pmatrix} \alpha(\boldsymbol{x}) \\ \beta(\boldsymbol{x}) \\ \gamma(\boldsymbol{x}) \end{pmatrix}}_{\boldsymbol{\hat{n}}(\boldsymbol{x})}$$

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
 - 5.4.3. Nota sobre la nomenclatura
- 3 5.5. Equilibrio estático
- 4 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5.7. Cálculo de los desplaxamientos a partir de las deformaciones
- 6 5.8. Función de tensión de Airy
- 5.9. Ecuaciones diferenciales parciales de Cauchy-Navier
- 8 5.10. Unicidad de la solución
- 9 5.11. Principio de superposición
- 5.12. Principio de Saint-Venant
- 1 5.13. Resumen
- Referencias

5.4.3. Nota sobre la nome<u>nclatura</u>

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
 - 5.4.3. Nota sobre la nomenclatura
- 3 5.5. Equilibrio estático
- 4 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5 5.7. Cálculo de los desplaxamientos a partir de las deformaciones
- 6 5.8. Función de tensión de Airy
- 7 5.9. Ecuaciones diferenciales parciales de Cauchy-Navier
- 8 5.10. Unicidad de la solución
- 9 5.11. Principio de superposición
- 0 5.12. Principio de Saint-Venant
- 1 5.13. Resumer
- 12 Referencias

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
 - 5.4.3. Nota sobre la nomenclatura
- 3 5.5. Equilibrio estático
- 4 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5 5.7. Cálculo de los desplaxamientos a partir de las deformaciones
- 6 5.8. Función de tensión de Airy
- 5.9. Ecuaciones diferenciales parciales de Cauchy-Navier
- 8 5.10. Unicidad de la solución
- 9 5.11. Principio de superposición
- 0 5.12. Principio de Saint-Venant
- 1 5.13. Resumer
- Referencias

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
 - 5.4.3. Nota sobre la nomenclatura
- 3 5.5. Equilibrio estático
- 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5 5.7. Cálculo de los desplaxamientos a partir de las deformaciones
 - 6 5.8. Función de tensión de Airy
- 7 5.9. Ecuaciones diferenciales parciales de Cauchy-Navier
- 8 5.10. Unicidad de la solución
- 9 5.11. Principio de superposición
- 0 5.12. Principio de Saint-Venant
- 1 5.13. Resumer
- Referencias

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
 - 5.4.3. Nota sobre la nomenclatura
- 3 5.5. Equilibrio estático
- 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5 5.7. Cálculo de los desplaxamientos a partir de las deformaciones
- 6 5.8. Función de tensión de Airy
- 7 5.9. Ecuaciones diferenciales parciales de Cauchy-Navier
- 8 5.10. Unicidad de la solución
- 9 5.11. Principio de superposición
- 0 5.12. Principio de Saint-Venant
- **11** 5.13. Resumer
- 12 Referencias

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
 - 5.4.3. Nota sobre la nomenclatura
- 3 5.5. Equilibrio estático
- ① 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5 5.7. Cálculo de los desplaxamientos a partir de las deformaciones
- 6 5.8. Función de tensión de Airy
- 7 5.9. Ecuaciones diferenciales parciales de Cauchy-Navier
- 8 5.10. Unicidad de la solución
- 9 5.11. Principio de superposición
- 0 5.12. Principio de Saint-Venant
- 1 5.13. Resumer
- Referencias

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
 - 5.4.3. Nota sobre la nomenclatura
- 3 5.5. Equilibrio estático
- 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5 5.7. Cálculo de los desplaxamientos a partir de las deformaciones
- 6 5.8. Función de tensión de Airy
- 7 5.9. Ecuaciones diferenciales parciales de Cauchy-Navier
- 8 5.10. Unicidad de la solución
- 9 5.11. Principio de superposición
- 0 5.12. Principio de Saint-Venant
- 1 5.13. Resumer
- Referencias

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
 - 5.4.3. Nota sobre la nomenclatura
- 3 5.5. Equilibrio estático
- ① 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5 5.7. Cálculo de los desplaxamientos a partir de las deformaciones
- 6 5.8. Función de tensión de Airy
- 7 5.9. Ecuaciones diferenciales parciales de Cauchy-Navier
- 8 5.10. Unicidad de la solución
- 9 5.11. Principio de superposición
- 0 5.12. Principio de Saint-Venant
- 1 5.13. Resumer
- Referencias

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
 - 5.4.3. Nota sobre la nomenclatura
- 3 5.5. Equilibrio estático
- ① 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5 5.7. Cálculo de los desplaxamientos a partir de las deformaciones
- 6 5.8. Función de tensión de Airy
- 7 5.9. Ecuaciones diferenciales parciales de Cauchy-Navier
- 8 5.10. Unicidad de la solución
- 9 5.11. Principio de superposición
- 10 5.12. Principio de Saint-Venant
- 1 5.13. Resumer
- 12 Referencias

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
 - 5.4.3. Nota sobre la nomenclatura
- 3 5.5. Equilibrio estático
- 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5 5.7. Cálculo de los desplaxamientos a partir de las deformaciones
- 6 5.8. Función de tensión de Airy
- 5.9. Ecuaciones diferenciales parciales de Cauchy-Navier
- 8 5.10. Unicidad de la solución
- 9 5.11. Principio de superposición
- 0 5.12. Principio de Saint-Venant
- 1 5.13. Resumen
- Referencias

- 1 5.3. Condiciones de frontera
- 2 5.4. Condiciones de equilibrio en la frontera
 - 5.4.1. Análisis en dos dimensiones
 - 5.4.2. Análisis en tres dimensiones
 - 5.4.3. Nota sobre la nomenclatura
- 3 5.5. Equilibrio estático
- ① 5.6. Un enfoque alternativo para deducir las ecuaciones diferenciales parciales de equilibrio
- 5 5.7. Cálculo de los desplaxamientos a partir de las deformaciones
- 6 5.8. Función de tensión de Airy
- 7 5.9. Ecuaciones diferenciales parciales de Cauchy-Navier
- 8 5.10. Unicidad de la solución
- 9 5.11. Principio de superposición
- 0 5.12. Principio de Saint-Venant
- 1 5.13. Resumer
- Referencias

Referencias I

Álvarez, D. A. (2022).

Teoría de la elasticidad.

Universidad Nacional de Colombia.