Problem Set 1

AEM 7130

Homework 1: Due March 1 at 11:59PM.

For problems 1 and 2 write a Julia script. For problem 3 write a shell script. Make sure your code is well-commented and reproducible. Unless stated in the problem, you can (and may need to) use some Google searching to find how to efficiently code parts of your answers.

Problem 1: Integration and functional programming

A profit-maximizing firm faces a demand curve given by: P(q) = a - bq where $b \sim log N(\mu, \sigma)$ and has a cost function given by C(q) = cq.

- 1. Write a function called profit_max_q(a, c, mu, sigma, method, n) that returns the numerical optimal quantity given a set of inputs $(a, c, \mu, \sigma, method, n)$, where method is a string that takes on a value of "mc" or "quad" and determines whether you integrate using Monte Carlo or quadrature methods, and n is the number of Monte Carlo draws or quadrature nodes.
- 2. Choose a set of values (a, c, μ, σ) and use profit_max_q to solve the problem for both approaches to integration. Use the compecon package to implement the quadrature routine.
- 3. Make sure your code is type-stable by using the code introspection macros (e.g. @code_llvm, @code_warntype, @trace)

Problem 2: Monte Carlo Integration

Approximate π using Monte Carlo integration. You may only use rand() to generate random numbers. Here is how to think about approximating π : 1. Suppose U is a two dimensional random variable on the unit square $[0,1] \times [0,1]$. The probability that U is in a subset B of $(0,1) \times (0,1)$ is equal to the area of B. 2. If u_1, \ldots, u_n are iid draws from U, then as n grows (by an LLN type argument), the fraction that falls inside B is the probability of another iid draw coming from B. 3. The area of a circle is given by $\pi \times radius^2$.

Problem 3: Shell scripting

For this problem use the adult.data dataset, a commonly used one for machine learning purposes.

Write a shell script to do the following. Parts 2 and 3 may take a while to run so test it out on a smaller size.

1. Add #!/bin/sh to the first line of your script. This is called a **shebang** and lets the machine know the file is executable.