Correction concours 2007

Partie I

- 1. f nilpotent d'indice q, $f^q = 0$ et $f^{q-1} \neq 0$ soit $x \in E$ tq $f^{q-1}(x) \neq 0$ donc $(x, f(x), \dots, f^{q-1}(x))$ est libre (évident) ona $\dim(vect < (x, f(x), \dots, f^{q-1}(x)) >) = q \le n$
- a) d'après 1. pour $q = n = \dim E$ donc $(x, f(x), \dots, f^{n-1}(x))$ est une base de E2.
 - b) soit $i \in \mathbb{N}$ pour $j \geq i$ soit $x \in \ker(f^{j+1})$ donc $f^{j+1}(x) = f^{i+1}(f^{j-i}(x)) = 0$ or $f^{i+1} = f^i$ donc $f^i(f^{j-i}(x)) = f^j(x) = 0$ d'où $x \in \ker(f^j)$ par suite $\ker(f^{j+1}) \subseteq \ker(f^j)$ l'autre inclusion est évidente par suite $\ker(f^i) = \ker(f^j)$, pour tout entier naturel $j \geq i$.
 - c) soit i < n si $\ker(f^i) = \ker(f^{i+1})$ alors d'après b) pour tout entier naturel $j \ge i$ on a $\ker(f^i) = \lim_{n \to \infty} f(f^i)$ $\ker(f^j)$ par conséquent $\ker(f^i) = \ker(f^n) = E$ donc $f^i \equiv 0$ ce qui est impossible car i < n et n indice de nilpotence de f
 - d) on a $\{0\} \subset \ker(f) \subset \cdots \subset \ker(f^n) = E$ d'où $0 = \dim(\{0\}) < \dim(\ker(f)) < \cdots < \dim(\ker(f^n)) = n$ donc pour tout $k \in \{0, 1, \dots, n\}, \dim(\ker(f^k)) = k.$
- 3. (i) \Rightarrow (ii) soit f nilpotent d'indice q il existe $x \in E$ tq $f^{q-1}(x) \neq 0$ et $f^q(x) = f(f^{q-1}(x)) = 0$ donc $0 \in sp_{\mathbb{C}}(M)$ d'où $\{0\} \subseteq sp_{\mathbb{C}}(M)$ réciproquement soit $\lambda \in sp_{\mathbb{C}}(M)$ et $x \in \mathbb{C}^n \setminus \{0\}$ tq $Mx = \lambda x$ on a $M^q = 0$ donsc $\lambda^q x = 0$ ce qui donne $\lambda = 0$

$$(ii) \Rightarrow (iii) \ P_f(X) = \prod_{\lambda_i \in sp_{\mathbb{C}}(M)} (\lambda_i - X) = (-1)^n X^n.$$

 $(iii) \Rightarrow (i) \ \text{Cayley Hamilton}.$

- a) s'il existe i tq $\lambda_i = 0$ ou $i \neq j$ tq $\lambda_i = \lambda_j$ on a det = 0 supposons que pour tout $\lambda_i \neq 0$ et pour tout $i \neq j \ \lambda_i \neq \lambda_j$

$$\det = \prod_{i=1}^k \lambda_i P(\lambda_k) \text{ où } P \text{ est un polynome en } \lambda_k \text{ de degré } k-1 \text{ qui s'annule en } \lambda_1, \lambda_2, \dots, \lambda_k$$

d'où det
$$=\prod_{i=1}^k \lambda_i (\alpha \prod_{i=1}^k (\lambda_k - \lambda_j))$$
 où α est le coefficient de plus haut dégré de $P(\lambda_k)$ on a par

itération det =
$$\prod_{i=1}^k \lambda_i \prod_{1 \leq i < j \leq k} (\lambda_j - \lambda_i)$$

b)
$$tr(f) = 0$$
 implique $\sum_{i=1}^{k} \omega_i \lambda_i = 0$ $tr(f^2) = 0$ implique $\sum_{i=1}^{k} \omega_i \lambda_i^2 = 0$

$$tr(f^k) = 0$$
 implique $\sum_{i=1}^k \omega_i \lambda_i^k = 0$

d'où le système

c) si f est nilpotent on a tr(f)=0 si f est nilpotent alors si f^i est nilpotent par suite $tr(f^i)=0$ reciproquement supposons que pour tout $i\in\{1,2,\ldots,n\}$ $tr(f^i)=0$ d'après b) si $\lambda_1,\lambda_2,\ldots,\lambda_k$

les valeurs propres de
$$f$$
 on a
$$\begin{pmatrix} \lambda_1 & \lambda_2 & \dots & \lambda_k \\ \lambda_1^2 & \lambda_2^2 & \dots & \lambda_k^2 \\ \vdots & \vdots & \ddots & \vdots \\ \lambda_1^k & \lambda_2^k & \dots & \lambda_k^k \end{pmatrix} \begin{pmatrix} \omega_1 \\ \omega_2 \\ \vdots \\ \vdots \\ \omega_k \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ \vdots \\ 0 \end{pmatrix} \text{ d'après } 4)a) \text{ la}$$

Partie II

1. évident

- 2. a) par récurrence
 - b) soit $x \in \ker(v^k)$ donc $v^k(u(x)) = -\alpha k v^k(x) + u(v^k(x)) = 0$ d'où $u(x) \in \ker(v^k)$
 - c) pour tout k on a $tr[v, v^k] = 0$ donc $\forall k \in \mathbb{N}^*$ $tr(v^k) = 0$ par conséquent v est nilpotent
- 3. a) d'après I.1.d) dim $(\ker(v^k)) = k$. d'autre part $(x_1, \ldots, x_k) \subset \ker(v^k)$ est une sous famille de $(x_1, \ldots, x_n) = (x, v(x), \ldots, v^{n-1}(x))$ qui est une base d'après I.2.a) conclusion (x_1, \ldots, x_k) est une base de $\ker(v^k)$
 - b) on a $\ker(v) = vet(x_1)$. Or d'après II.2.b) $\ker(v)$ est stable par u d'où $u(x_1) = \lambda_1 x_1$.
 - c) Conséquence du faite que $\ker(v^k) = (x_1, \dots, x_k)$ est stable par u.
 - d) $v(u(x_{k+1})) = u(v(x_{k+1})) \alpha v(x_{k+1}) = u(v^{n-k}(x)) \alpha v^{n-k}(x) = u(x_k) \alpha x_k$
 - e) On a $u(x_{k+1}) = \lambda_{k+1} x_{k+1} + \alpha_k x_k + \dots \alpha_1 x_1$ $u(x_k) = \lambda_k x_k + \beta_{k-1} x_{k-1} + \dots \beta_1 x_1$ en égalisant dans II.3.d on aurra $\lambda_{k+1} = \lambda_k \alpha$ et par conséquent $\forall k \ \lambda_k = \lambda (k-1)\alpha$.
 - f) u admet n valeurs propres distincts deux à deux donc u est diagonalisable.
- 4. a) $u(e_k) = u(v^{n-k}(e_n)) = v^{n-k}(u(e_n)) + \alpha(n-k)v^{n-k}(e_n) = [\lambda_n + \alpha(n-k)]e_k = \lambda_k e_k$
 - b) $v(e_k) = v(v^{n-k}(e_n)) = v^{n-(k-1)}(e_n) = e_{k-1}$ on a $e_n \neq 0$ car e_n est un vecteur propre associée à λ_n . si $e_{n-1} = 0$ alors $v(e_n) = 0$ donc $e_n \in \ker(v) = vect(x_1)$ ce qui est contradictoire avec $\lambda_1 \neq \lambda_n$

donc $e_k \in \ker(v) = vect(x_1)$ ce qui est contradictoire avec $\lambda_1 \neq \lambda_k$

- c) On a $(e_1, e_2, \dots, e_n) = (v^{n-1}(e_n), v^{n-2}(e_n), \dots, v(e_n), e_n)$ comme $v^{n-1}(e_n) = e_1 \neq 0$ donc d'après I(2)a) (e_1, e_2, \dots, e_n) est une base de E
- d) $mat(u)_{(e_1,e_2,\ldots,e_n)} = diag(\lambda_1,\lambda_1-\alpha,\ldots,\lambda_1-(n-1)\alpha);$

$$mat(v)_{(e_1,e_2,\dots,e_n)} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{pmatrix}$$

- 5. Application
 - a) AB-BA=B $\alpha=1$ d'après II)2)C) v est nilpotent
 - b) $sp(u) = \{1, 0, -1\}$ et $\lambda_3 = -1$

c) soit
$$e_3 = \begin{pmatrix} 1 \\ 0 \\ -1 \end{pmatrix}$$
 $e_2 = v(e_3) = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ $e_1 = v(e_2) = \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$
$$mat(u)_{(e_1, e_2, e_3)} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & -1 \end{pmatrix} \text{ et } mat(v)_{(e_1, e_2, e_3)} = \begin{pmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix}$$

Partie III

- 1. évident
- 2. a) $<\Phi_A(X), Y> = <[A, X], Y> = tr((AX XA)^tY) = tr(X^t(^tAY Y^tA)) = < X, [^tA, Y]> = < X, \Phi_{^tA}(Y)>$ d'où le résultat.
 - b) On a $Im(\Phi_A) = (\ker(\Phi_A^*))^{\perp} = \ker(\Phi_{t_A}))^{\perp}$
- 3. Soit A une matrice nilpotente et $B \in \ker(\Phi_{t_A})$ donc ${}^tBA = A^tB$. A nilpotente et commute avec tB donc A^tB nilpotente et par suite $tr(A^tB) = 0$ ce qui donne < A, B >= 0 d'où $A \in \ker(\Phi_{t_A}))^{\perp} = Im(\Phi_A)$ réciproquement si $A \in Im(\Phi_A)$ il existe alors $B \in \mathcal{M}_n(\mathbb{R})$ tque AB - BA = A c.a.d [B, A] = -A d'où A est nilpotente d'après II.2.c
- 4. Si A est semblable à 2A alors $\forall n$ A^n est semblable à 2^nA^n et par suite $tr(A^n) = tr(2^nA^n)$ $\forall n$ ce qui donne $tr(A^n) = 0$ $\forall n \in \mathbb{N}^*$ d'où A est nilpotente.
- 5. a) Conséquence de III.3
 - b) On montre par récurrence que $\forall k\ AB^k = (B+I)^kA$ d'où $\forall Q \in \mathbb{R}[X]\ AQ(B) = Q(B+I)A$
 - c) $\forall d,\, AQ_d(B) = Q_d(B+I)A$ si en fait tendre d vers l'infini on aura le résultat
 - d) Il suffit de prendre $\lambda = \ln(2)$

Partie IV

- 1. a) Par récurrence
 - b) Conséquence immédiate de I.4.c
- 2. Par récurrence
- 3. a) Si k=1 on a AX=0 implique $[A,B]X=\lambda X$ implique que $\lambda\in sp_{\mathbb{C}}([A,B])=\{0\}$ d'où $\lambda=0$
 - b) Si k>1 on a $A^kBX-BA^kX=kABA^{k-1}X-kBA^kX$ d'où $AB(A^{k-1}X)=\frac{\lambda}{k}A^{k-1}X$
 - c) Soit λ une valeur propre complexe de AB. on a ou bien $\lambda=0$ ou bien il existe p>1 tque $\frac{\lambda}{p}$ est aussi une valeur propre complexe de AB de meme ou bien $\frac{\lambda}{p}=0$ et par suite $\lambda=0$ ou bien il existe q>1 tque $\frac{\lambda}{pq}$ est une valeur propre complexe de AB comme le spectre dans $\mathbb C$ de AB est fini on a toujours $\lambda=0$ et par suite AB est nilpotente.