2 pratybos. Euklido erdvė

Paulius Drungilas ir Jonas Jankauskas

Turinys

Euklido erdvė.	1
Ortogonalizacijos procesas.	2
Ortogonalusis papildinys.	3
Kaip rasti vektoriaus projekciją ir statmenį?	4
Uždaviniai	6

Euklido erdvė. Tarkim (V, +) – tiesinė erdvė virš realiųjų skaičių kūno \mathbb{R} . Atvaizdis $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$, tenkinantis savybes

- 1) $< v_1 + v_2, u > = < v_1, u > + < v_2, u >$ visiems $v_1, v_2, u \in V$;
- 2) $\langle v, u \rangle = \langle u, v \rangle$ visiems $v, u \in V$;
- 3) $\langle a \cdot v, u \rangle = a \cdot \langle v, u \rangle$ visiems $v, u \in V, a \in \mathbb{R}$;
- 4) $\langle v, v \rangle \geqslant 0$ visiems $v \in V$;
- 5) $\langle v, v \rangle = 0$ tada ir tik tada kai $v = \vec{0}$,

vadinamas **skaliarine sandauga**. Tiesinė erdvė su skaliarine sandauga vadinama **Euklido erdve**.

1. **pavyzdys.** Tarkim, $v, u \in \mathbb{R}^n$, $v = (\alpha_1, \alpha_2, \dots, \alpha_n)$, $u = (\beta_1, \beta_2, \dots, \beta_n)$. Tada atvaizdis

$$\langle v, u \rangle = \alpha_1 \cdot \beta_1 + \alpha_2 \cdot \beta_2 + \dots + \alpha_n \cdot \beta_n$$

yra skaliarinė sandauga erdvėje \mathbb{R}^n .

2. pavyzdys. Visų tolydžių intervale [0, 1] funkcijų $f : [0, 1] \to \mathbb{R}$ aibė C([0, 1]) yra tiesinė erdvė virš \mathbb{R} . Tarkim, $f(x), g(x) \in C([0, 1])$. Atvaizdis

$$\langle f(x), g(x) \rangle = \int_0^1 f(x) \cdot g(x) dx$$

yra skaliarinė sandauga šioje erdvėje.

Tarkim V – Euklido erdvė su skaliarine sandauga $\langle \cdot, \cdot \rangle$ ir $v, u \in V$. Skaičius $||v|| := \sqrt{\langle v, v \rangle}$ vadinamas vektoriaus v ilgiu. Vektoriai vadinami **statmenais** jei $\langle v, u \rangle = 0$. Vektorių sistema v_1, v_2, \ldots, v_n vadinama ortogonalia jei bet kurie du šios sistemos vektoriai yra statmeni, t. y. $\langle v_i, v_j \rangle = 0$ kai $i \neq j$. Vektorių sistema v_1, v_2, \ldots, v_n vadinama ortonormuota, jei ji yra ortogonali ir kiekvieno vektoriaus ilgis yra 1.

Ortogonalizacijos procesas. Tarkim, Euklido erdvės vektorių sistema v_1, v_2, \ldots, v_n yra tiesiškai nepriklausoma. Tada galima sukonstruoti ortogonalią vektorių sistemą u_1, u_2, \ldots, u_n , kurios kiekvienas vektorius būtų išreikštas vektoriais v_1, v_2, \ldots, v_n (šis ortogonalių vektorių u_1, u_2, \ldots, u_n radimo procesas vadinamas vektorių v_1, v_2, \ldots, v_n ortogonalizacijos procesu):

$$u_{1} := v_{1},$$

$$u_{2} := v_{2} + \lambda_{1} \cdot u_{1}, \quad \text{kur } \lambda_{1} = -\frac{\langle v_{2}, u_{1} \rangle}{\langle u_{1}, u_{1} \rangle},$$

$$u_{3} =: v_{3} + \lambda_{1} \cdot u_{1} + \lambda_{2} \cdot u_{2}, \quad \text{kur } \lambda_{1} = -\frac{\langle v_{3}, u_{1} \rangle}{\langle u_{1}, u_{1} \rangle}, \quad \lambda_{2} = -\frac{\langle v_{3}, u_{2} \rangle}{\langle u_{2}, u_{2} \rangle},$$

$$\dots \dots \dots$$

$$u_{n} := v_{n} + \lambda_{1} \cdot u_{1} + \lambda_{2} \cdot u_{2} + \dots + \lambda_{n-1} \cdot u_{n-1}, \quad \text{kur } \lambda_{1} = -\frac{\langle v_{n}, u_{1} \rangle}{\langle u_{1}, u_{1} \rangle},$$

$$\lambda_{2} = -\frac{\langle v_{n}, u_{2} \rangle}{\langle u_{2}, u_{2} \rangle}, \quad \dots, \quad \lambda_{n-1} = -\frac{\langle v_{n}, u_{n-1} \rangle}{\langle u_{n-1}, u_{n-1} \rangle}.$$

3. **pavyzdys.** Ortogonalizuosime vektorių sistemą $v_1 = (1, 2, 1), v_2 = (-3, -4, -1), v_3 = (-4, -7, 0).$

Sprendimas. Parenkame $u_1 = v_1 = (1, 2, 1)$.

Tada $u_2 = v_2 + \lambda_1 \cdot u_1$, kur $\lambda_1 = -\langle v_2, u_1 \rangle / \langle u_1, u_1 \rangle = 2$. Suskaičiavę, gauname $u_2 = (-1, 0, 1)$.

Dabar skaičiuojame $u_3 = v_3 + \lambda_1 \cdot u_1 + \lambda_2 \cdot u_2$, kur $\lambda_1 = - \langle v_3, u_1 \rangle / \langle u_1, u_1 \rangle = 3$ ir $\lambda_2 = - \langle v_3, u_2 \rangle / \langle u_2, u_2 \rangle = -2$. Suskaičiavę, gauname $u_3 = (1, -1, 1)$. Taigi, gavome ortogonalizuotą vektorių sistemą $u_1 = (1, 2, 1), u_2 = (-1, 0, 1), u_3 = (1, -1, 1)$.

4. **pastaba.** Norint gauti ortonormuotą vektorių sistemą, reikia atlikti ortogonalizacijos procesą ir kiekvieną gautą vektorių (u_1, u_2, u_3) padalinti iš jo ilgio, t. y., jei ortogonalizacijos rezultatas yra vektoriai u_1, u_2, u_3 , tai ortonormuota vektorių sistema bus

$$\frac{u_1}{\|u_1\|}, \quad \frac{u_2}{\|u_2\|}, \quad \frac{u_3}{\|u_3\|},$$

kur $\|u\|=\sqrt{< u,u>}$ – vektoriaus uilgis. Pavyzdžiui, jei u=(2,2,1),tai $\|u\|=\sqrt{< u,u>}=\sqrt{2\cdot 2+2\cdot 2+1\cdot 1}=3$ ir

$$\frac{u}{\|u\|} = \frac{u}{3} = (\frac{2}{3}, \frac{2}{3}, \frac{1}{3}).$$

5. pavyzdys. Papildysime vektorių sistemą

$$v_1 = \frac{1}{3}(1, -2, 2), \quad v_2 = \frac{1}{3}(-2, 1, 2)$$

iki erdvės \mathbb{R}^3 ortonormuotosios bazės.

Sprendimas. Pastebime, kad vektoriai v_1 ir v_2 yra statmeni (skaliarinė sandauga lygi 0) ir vienetinio ilgio. Erdvės \mathbb{R}^3 bazė turi tris tiesiškai nepriklausomus vektorius, todėl lieka rasti trečią vektorių $v_3 = (x, y, z)$, kuris būtų statmenas vektoriams v_1 ir v_2 t. y. išspręsti lygčių sistemą

$$\begin{cases} x - 2y + 2z = 0 \\ -2x + y + 2z = 0 \end{cases}.$$

Kintamuosius x ir y išreiškiame kintamuoju z:

$$\begin{cases} x = 2z \\ y = 2z \end{cases}.$$

Parinkę z=1, gauname vektorių $v_3=(2,2,1)$. Dabar, vektorių sistema v_1, v_2, v_3 yra ortogonali, bet nėra ortonormuota, nes vektoriaus v_3 nėra vienetinio ilgio. Taigi, vietoj vektoriaus v_3 parenkame vektorių

$$\frac{v_3}{\|v_3\|} = \frac{v_3}{3} = (\frac{2}{3}, \frac{2}{3}, \frac{1}{3}).$$

Ortogonalusis papildinys. Tarkim V – Euklido erdvė su skaliarine sandauga $<\cdot\,,\cdot>$ ir $W\subset V$ – poerdvis. Tada aibė

$$W^{\perp} := \{ u \in V \, | \, u \bot v \text{ kiekvienam } v \in W \}$$

vadinama poerdvio W ortogonaliuoju papildiniu. Nesunku patikrinti, kad

$$V = W \oplus W^{\perp},$$

todėl galima skaičiuoti vektoriaus $v \in V$ projekciją į poerdvį W, poerdvio W^{\perp} atžvilgiu (tiesiog vadinama projekcija į poerdvį W), ir projekciją į poerdvį W^{\perp} , poerdvio W atžvilgiu (vadinama statmeniu į poerdvį W).

Kaip rasti ortogonalųjį papildinį? Tarkim V-n-matė Euklido erdvė su skaliarine sandauga $\langle \cdot, \cdot \rangle$ ir $W=\langle v_1, v_2, \dots, v_r \rangle$ – poerdvis, kur

vektoriai v_1, v_2, \ldots, v_r yra tiesiškai nepriklausomi. Tada vektorių sistemą v_1, v_2, \ldots, v_r papildome iki erdvės V bazės $v_1, v_2, \ldots, v_r, v_{r+1}, \ldots, v_n$ ir šią bazę ortogonalizuojame. Gauname ortogonalią bazę

$$u_1, u_2, \ldots, u_r, u_{r+1}, \ldots, u_n$$
.

Tada

$$W^{\perp} = \langle u_{r+1}, u_{r+2}, \dots, u_n \rangle$$
.

Tokiu būdu sukonstruoto ortogonaliojo papildinio W^{\perp} bazė $u_{r+1}, u_{r+2}, \ldots, u_n$ yra ortogonali.

Kaip rasti vektoriaus projekciją ir statmenį? Tarkim, $v \in V$, $W \subset V$ – poerdvis, u_1, u_2, \ldots, u_r – poerdvio W ortogonali bazė, $u_{r+1}, u_{r+2}, \ldots, u_n$ – poerdvio W^{\perp} ortogonali bazė. Tada vektoriaus v projekcija į poerdvį W yra $w = \alpha_1 \cdot u_1 + \alpha_2 \cdot u_2 + \cdots + \alpha_r \cdot u_r$, kur $\alpha_j = \langle v, u_j \rangle / \langle u_j, u_j \rangle$, $j = 1, 2, \ldots, r$, o vektoriaus v statmuo į poerdvį W yra $u = \alpha_{r+1} \cdot u_{r+1} + \alpha_{r+2} \cdot u_{r+2} + \cdots + \alpha_n \cdot u_n$, kur $\alpha_k = \langle v, u_k \rangle / \langle u_k, u_k \rangle$, $k = r + 1, r + 2, \ldots, n$.

6. pavyzdys. Rasime poerdvio W=<(1,4,5,-2),(2,7,1,3)> ortogonaliojo papildinio W^\perp bazę.

Sprendimas. Šį uždavinį galima būtų išspręsti aukščiau aprašytu būdu, tačiau pakanka rasti bet kokią W^{\perp} bazę (nebūtinai ortogonalią), todėl spręsime kitu, paprastesniu būdu. Ieškome vektorių (x, y, z, w) kurie būtų statmeni visiems poerdvio W vektoriams (žr. W^{\perp} apibrėžimą aukščiau). Pakanka reikalauti, kad šis vektorius būtų statmenas poerdvio W bazės vektoriams (1,4,5,-2) ir (2,7,1,3). Iš čia gauname lygčių sistemą

$$\begin{cases} x + 4y + 5z - 2w = 0 \\ 2x + 7y + z + 3w = 0 \end{cases}.$$

Išsprendžiame šią lygčių sistemą, kintamuosius x ir y išreikšdami kintamaisiais z ir w:

$$\begin{cases} x = 31z - 26w \\ y = -9z + 7w \end{cases}$$

Parinkę z=1, w=0, gauname vektorių (31,-9,1,0). Parinkę z=0, w=1, gauname vektorių (-26,7,0,1). Taigi, vektoriai (31,-9,1,0), (-26,7,0,1) sudaro ortogonaliojo papildinio W^{\perp} bazę.

7. pavyzdys. Rasime vektoriaus v=(2,-3,3,-3) projekciją ir statmenį į poerdvį W=<(1,-1,2,3),(-1,3,1,5)>.

Sprendimas. Vektoriaus v projekciją į poerdvį W pažymėkime w. Tada egzistuoja $x,y \in \mathbb{R}$ tokie, kad $w = x \cdot (1,-1,2,3) + y \cdot (-1,3,1,5)$. Vektoriaus v statmuo į poerdvį W yra $v-w=(2,-3,3,-3)-x\cdot (1,-1,2,3)-y\cdot (-1,3,1,5)=(2-x+y,-3+x-3y,3-2x-y,-3-3x-5y)$. Šis vektorius turi būti statmenas poerdviui W todėl jis statmenas šio poerdvio vektoriams (1,-1,2,3) ir (-1,3,1,5). Iš čia, gauname lygtis

$$1 \cdot (2 - x + y) + (-1) \cdot (-3 + x - 3y) + 2 \cdot (3 - 2x - y) +$$
$$3 \cdot (-3 - 3x - 5y) = 0$$

ir

$$(-1) \cdot (2 - x + y) + 3 \cdot (-3 + x - 3y) + 1 \cdot (3 - 2x - y) + 5 \cdot (-3 - 3x - 5y) = 0.$$

Atlikę veiksmus, gauname lygčių sistemą

$$\begin{cases} 15x + 13y = 2 \\ 13x + 36y = -23 \end{cases}.$$

Išsprendę šią lygčių sistemą, gauname x=1, y=-1. Taigi, vektoriaus v projekcija yra $w=1\cdot (1,-1,2,3)+(-1)\cdot (-1,3,1,5)=(2,-4,1,-2)$, o vektoriaus v statmuo į poerdvį W yra v-w=(0,1,2,-1).

8. pavyzdys. Rasime erdvės \mathbb{R}^4 poerdvio

$$W = \left\{ (x_1, x_2, x_3, x_4) : \begin{array}{l} 2x_1 + x_2 + 3x_3 - x_4 &= 0 \\ 3x_1 + 2x_2 & -2x_4 &= 0 \\ 3x_1 + x_2 + 4x_3 - x_4 &= 0 \end{array} \right\}$$

ortogonalaus poerdvio W^{\perp} bazę.

Sprendimas. Iš poerdvio W apibrėžimo matome, kad šį poerdvį sudaro visi vektoriai, kurie yra statmeni vektoriams $v_1=(2,1,3,-1),\ v_2=(3,2,0,-2)$ ir $v_3=(3,1,4,-1)$. Kitaip sakant, $W=< v_1,v_2,v_3>^\perp$. Dabar pasinaudosime savybe: jei U – poerdvis, tai $(U^\perp)^\perp=U$. Poerdviui W gauname $W^\perp=(< v_1,v_2,v_3>^\perp)^\perp=< v_1,v_2,v_3>$. Vektorių sistemos v_1,v_2,v_3 rangas yra 3, todėl šie vektoriai yra tiesiškai nepriklausomi ir sudaro poerdvio W^\perp bazę.

Uždaviniai.

1. **uždavinys.** Ortogonalizuokite vektorių sistema:

a)
$$v_1 = (2, 1, -3), v_2 = (5, 3, -5), v_3 = (4, -4, 6);$$

b)
$$v_1 = (1, -1, 2, 1), v_2 = (0, 6, -1, 1), v_3 = (7, 10, 5, 0);$$

c)
$$v_1 = (2, 2, 1, -4), v_2 = (-4, -5, -1, 14), v_3 = (-5, 8, 5, 9);$$

d)
$$v_1 = (1, -3, 4, 2), v_2 = (5, -1, 5, 1), v_3 = (-5, -13, 5, 3),$$

 $v_4 = (6, 8, -8, 10).$

Ats.:

a)
$$u_1 = (2, 1, -3), u_2 = (1, 1, 1), u_3 = (4, -5, 1);$$

b)
$$u_1 = (1, -1, 2, 1), u_2 = (1, 5, 1, 2), u_3 = (4, 1, 1, -5);$$

c)
$$u_1 = (2, 2, 1, -4), u_2 = (2, 1, 2, 2), u_3 = (-7, 8, 2, 1);$$

d)
$$u_1 = (1, -3, 4, 2), u_2 = (4, 2, 1, -1), u_3 = (1, -3, -1, -3), u_4 = (5, -3, -7, 7),.$$

2. **uždavinys.** Papildykite vektorių sistemą iki erdvės \mathbb{R}^n ortonormuotosios bazės:

a)
$$v_1 = \frac{1}{3\sqrt{3}}(1, -1, 5), \ v_2 = \frac{1}{\sqrt{14}}(-2, 3, 1);$$

b) $v_1 = \frac{1}{3}(0, -1, 2, 2), \ v_2 = \frac{1}{3\sqrt{3}}(3, 4, 1, 1);$

b)
$$v_1 = \frac{1}{2}(0, -1, 2, 2), \ v_2 = \frac{1}{2\sqrt{2}}(3, 4, 1, 1);$$

c)
$$v_1 = \frac{1}{6}(5,3,1,-1), \ v_2 = \frac{1}{6}(1,1,-5,3).$$

Ats.:

a)
$$u_1 = \frac{1}{3\sqrt{3}}(1, -1, 5), u_2 = \frac{1}{\sqrt{14}}(-2, 3, 1), u_3 = \frac{1}{3\sqrt{42}}(-16, -11, 1);$$

a)
$$u_1 = \frac{1}{3\sqrt{3}}(1, -1, 5), u_2 = \frac{1}{\sqrt{14}}(-2, 3, 1), u_3 = \frac{1}{3\sqrt{42}}(-16, -11, 1);$$

b) $u_1 = \frac{1}{3}(0, -1, 2, 2), u_2 = \frac{1}{3\sqrt{3}}(3, 4, 1, 1), u_3 = \frac{1}{\sqrt{2}}(0, 0, 1, -1),$
 $u_4 = \frac{1}{3\sqrt{6}}(-6, 4, 1, 1);$

c)
$$u_1 = \frac{1}{6}(5, 3, 1, -1), u_2 = \frac{1}{6}(1, 1, -5, 3), u_3 = \frac{1}{6}(-3, 5, 1, 1), u_4 = \frac{1}{6}(1, -1, 3, 5).$$

3. **uždavinys.** Raskite erdvės \mathbb{R}^4 poerdvio W ortogonaliojo papildinio bazę:

a)
$$W = <(1, 4, 5, 2), (2, 7, 1, 3) >;$$

b)
$$W = <(1, 3, -5, 7), (2, 5, 3, 4), (3, 7, 2, 0) >$$

c)
$$W = <(2, 2, -5, 3), (3, 4, 1, -2), (5, 8, 13, -12) >$$
.

Ats.:

a)
$$W^{\perp} = <(31, -9, 1, 0), (2, -1, 0, 1) >;$$

b)
$$W^{\perp} = <(-241, 103, 1, -9)>;$$

c)
$$W^{\perp} = <(22, -17, 2, 0), (-16, 13, 0, 2) >$$
.

4. **uždavinys.** Raskite vektoriaus $v \in \mathbb{R}^4$ projekciją ir statmenį į poerdvį W :

a)
$$v = (8, 2, 7, 9), W = <(4, 5, -1, 3), (-1, 2, 7, 4) >;$$

b)
$$v = (3, 2, 3, 3), W = <(1, 0, 1, 0), (0, 0, 1, 1), (2, 0, 0, 1) >;$$

c)
$$v = (2,0,1,1), W = <(1,1,0,0), (0,1,1,0), (0,0,1,4), (0,0,0,1) > .$$

Ats.:

- a) Projekcija (3, 7, 6, 7), statmuo (5, -5, 1, 2);
- b) Projekcija (3,0,3,3), statmuo (0,2,0,0);
- c) Projekcija (2, 0, 1, 1), statmuo (0, 0, 0, 0).
- 5. **uždavinys.** Raskite erdvės \mathbb{R}^4 poerdvio

$$W = \left\{ (x_1, x_2, x_3, x_4) : \begin{array}{ll} 2x_1 - 3x_2 + 4x_3 - 4x_4 & = 0 \\ 3x_1 - x_2 + 11x_3 - 13x_4 & = 0 \\ 4x_1 + x_2 + 18x_3 - 23x_4 & = 0 \end{array} \right\}$$

ortogonalaus poerdvio W^{\perp} bazę.

Ats.:
$$(2, -3, 4, -4), (3, -1, 11, -13), (4, 1, 18, -23).$$