Задача 2. Биномиальные коэффициенты

Источник: базовая
Имя входного файла: input.txt
Имя выходного файла: output.txt
Ограничение по времени: 1 секунда
Ограничение по памяти: разумное

Биномиальный коэффициент C_n^k — это количество битовых массивов длины n, в которых ровно k битов единичные. Подробнее о биномиальных коэффициентах можно прочитать, например, в википедии.

Нужно вычислить все биномиальные коэффициенты для $n \leq 1\,000$ при помощи треугольника Паскаля. Подробнее о нём можно прочитать, опять же, в википедии. Треугольник Паскаля позволяет вычислять все биномиальные коэффициенты в порядке увеличения n, т.к.:

$$C_n^k = C_{n-1}^{k-1} + C_{n-1}^k$$
 при $0 < k < n$

После того, как все коэффициенты вычислены, нужно прочитать набор пар n и k из входного файла и выдать для каждой пары соответвующий коэффициент C_n^k .

Формат входных данных

В первой строке содержится целое число Q — количество запросов в файле ($1 \le Q \le 10\,000$). В каждой из следующих Q строк содержится по два целых числа n и k, для которых нужно распечатать коэффициент ($0 \le k \le n \le 1\,000$).

Формат выходных данных

Нужно вывести Q вещественных чисел, по одному в строке — биномиальные коэффициенты для запросов из входном файле.

Внимание: хоть биномиальные коэффициенты и целые, они могут быть очень большими. Поэтому вычисляйте их как вещественные числа с использованием типа double, и распечатывайте при помощи формата "%0.10g"!

Пример

input.txt	output.txt
8	1
4 0	4
4 1	6
4 2	4
4 3	1
4 4	252
10 5	1.008913445e+29
100 50	2.702882409e+299
1000 500	

Пояснение к примеру

Первые пять запросов распечатывают коэффициенты для n=4. Последний запрос распечатывает самый большой коэффициент, который может быть запрошен в данной задаче.

Комментарий

Указанное выше свойство треугольника Паскаля можно легко доказать, если заметить, что коэффициенты при степенях $(1+x)^n$ можно выразить через коэффициенты в произведении $(1+x)^{n-1}\cdot (1+x)$.