## STA 101 Homework 5 Solutions

Dr. Erin K. Melcon

- 1. (a) Using forward selection, the X's that were included were:  $X_1$  and  $X_2$ .
  - (b) Using backward selection, the X's that were included were:  $X_1$  and  $X_2$ .
  - (c) The resulting logistic model is:  $logit(\hat{\pi}) = -1.4578 + (0.0779)X_1 + (-0.0955)X_2$ With log-likelihood -52.8976936
  - (d) The log-likelihood is: -52.8751729.
  - (e)  $H_0$ : The model without interactions fits better  $\beta_3 = 0$ . vs  $H_A$ : The model with interactions fits better  $\beta_3 \neq 0$ The test-statistic is:  $LR = -2(LL_0 - LL_A) = -2(-52.8976936 - (-52.8751729)) = 0.045$ , with corresponding d.f = 1, and p-value 0.832004.
  - (f) For any reasonable  $\alpha$ , we fail to reject the null and conclude that the model without the interaction between age and health awareness score fits better.
- 2. (a) When age increases by one year, the odds of getting a flu shot are multiplied by 1.081, holding all other variables contstant.
  - (b) When health awareness score increases by one year, the odds of getting a flu shot are multiplied by 0.9089, holding all other variables contstant.
  - (c) The prediction is: 0.1427452, in other words we would predict that they would not get a flu shot.
  - (d) The histogram is:



There is a value above 4, and the row is:

|   | У    | aware | age   | $\Pr$ |
|---|------|-------|-------|-------|
| 1 | 1.00 | 75.00 | 59.00 | 7.48  |

(e) The index plot is:

## Plot of Change in Beta



There is a value above 0.30, and they are:

|   | У    | aware | age   | dBhat |
|---|------|-------|-------|-------|
| 1 | 1.00 | 42.00 | 51.00 | 0.39  |
| 2 | 1.00 | 75.00 | 59.00 | 0.52  |

- 3. (a) The best model by forward selection includes  $X_1$  and  $X_2$ .
  - (b) The best model by forward selection includes  $X_1$  and  $X_2$ .
  - (c) The two models are:  $ln(\pi_{None}/\pi_{Long}) = -1.0317 + (0.0514)X_{age} + (-0.6055)X_G + (-0.1115)X_L + (-0.3609)X_M \\ ln(\pi_{Short}/\pi_{Long}) = -3.6834 + (0.1053)X_{age} + (0.4272)X_G + (-10.6328)X_L + (-2.2721)X_M$
  - (d) When age increases by one unit, the relative probability of a women using no contraceptive vs. long term contraceptive is multiplied by exp(0.0514) = (1.0527), holding all other variables constant.
  - (e) The relative probability of of a women using short term vs. long term contraceptive for the graduate group is exp(-0.3609) = (0.697) times that of the advanced degree group, holding all other variables constant.
- 4. (a) The relative probability of of a women using no contraceptive vs. long term contraceptive for the graduate group is exp(-0.6055 -0.3609) = (0.783) times that of the high school degree group, holding all other variables constant.
  - (b) The relative probability of of a women using short term vs. long term contraceptive for the below high school group is  $exp(-10.6328 -2.2721) = (2 \times 10^{-4})$  times that of the high school degree group, holding all other variables constant.
  - (c) The null is:  $H_0: \beta_{None,2} = \beta_{None,3} = \beta_{None,4} = 0$  vs.  $H_A:$  At least one  $\beta_{None,i} \neq 0$  for i=2,3,4.
  - (d) The null is: The test-statistic is:  $LR = -2(LL_0 LL_A) = -2(-306.934011 (-278.7485174)) = 56.3709871$ , with corresponding d.f = 6, and p-value  $\approx 0$ .
  - (e) We reject the null, and conclude that the education level of the mother cannot be dropped from the model.
  - (f) The predicted probabilities are:

|               | Long   | None   | Short  |
|---------------|--------|--------|--------|
| $\hat{\pi}_i$ | 0.3729 | 0.3221 | 0.3049 |

- 5. (a) The estimated **logistic** regression model is (where y=1 means they were in the "short" category):  $logit(\pi)=-3.7968+(0.1064)X_{age}+(0.4583)X_G+(-17.4359)X_L+(-1.94)X_M$ 
  - (b) The histogram is:





There are no values above 3 or below negative 3.

(c) The index plot is:

Change in X^2



There are no values above 8, although one is very close!

- (d) There were no values that particuarly stood out as outliers, so I would suggest that we do not remove any observations.
- 6. (a) FALSE. An influential point may also be a row of the dataset that showed up multiple times.
  - (b) FALSE. The  $\beta$ 's will in general be different for every sub-model.
  - (c) FALSE. The null hypothesis is the hypothesis that the smaller model is a better fit.
  - (d) FALSE. These are distributed approximately standard normal, and 0.50 is a very common value for that distribution.
- 7. (a) The summary statistics are:

|             | Beef    | Cereal  | Pork    |
|-------------|---------|---------|---------|
| Means       | 89.6    | 84.9    | 89.1    |
| Std. Dev    | 17.7123 | 14.9944 | 17.3202 |
| Sample Size | 20      | 20      | 20      |

(b) The plot follows:



Since the boxplots overlap quite a bit, there does not seem to be a significant differences in the means.

- (c) The null is:  $H_0: \alpha_1 = \alpha_2 = \alpha_3 = 0$  vs.  $H_A:$  At least one  $\alpha_i \neq 0$ .
- (d) The test-statistic is: 0.4767769, with corresponding p-value 0.6232343.
- (e) Since the p-value is larger than  $\alpha$ , we fail to reject the null, and conclude that there is no significant difference in the average weight change for the three groups (or there is no significant group effect).

## 8. (a) The plot follows:



The points are close to the line, so that the data looks approximately normal.

- (b) The associated p-value is : 0.5160281. Since this p-value is larger than  $\alpha$ , we fail to reject the null, and conclude that the data is approximately normal.
- (c) The plot follows:



The variance of the groups appear to be approximately equal, since at each group the points seem to have the same spread.

- (d) The associated p-value is : 0.8357656, NA. Since this p-value is larger than  $\alpha$ , we fail to reject the null, and conclude that the variances of each group are approximately equal.
- (e) Yes, since the variance of the errors appears to be constant, and the data appear to be normal.

## Code Appendix

```
```r
#Problem 1
flu = read.csv("C:/Github/Teaching-Materials/STA-101/STA-101-2017-Spring/Datasets/HW-5/flu.csv")
full.model = glm(shot ~ ., data = flu,family = binomial)
null.model = glm(shot ~ 1, data = flu,family = binomial)
forward.model = step(null.model, scope = list(lower = null.model, upper = full.model), direction = "forward",t
backward.model = step(full.model, scope = list(lower = null.model, upper = full.model), direction = "backward"
B = round(forward.model$coefficients,4)
inter.model = glm(shot ~ age + aware+ age*aware, data = flu,family = binomial)
best.model = forward.model
LLA = logLik(inter.model)
LLO = logLik(best.model)
LR = round(-2*(LLO-LLA),4); d.f = length(inter.model$coefficients) - length(best.model$coefficients)
p.val = pchisq(LR,d.f, lower.tail=F)
#Problem 2
EB = round(exp(B), 4)
pi.hat = predict(best.model,data.frame(age = 57,aware=50),type = "response")
library(LogisticDx)
good.stuff = dx(best.model)
pear.r = good.stuff$Pr #Pearsons Residuals
#hist(pear.r,main = "Pearson's residuals", xlab = "Residuals")
outliers = good.stuff[pear.r >4,c("y","aware","age","Pr") ]
df.beta = good.stuff$dBhat #DF Beta for removing each observation
#plot(df.beta,ylab = "DFBeta",main = "Plot of Change in Beta")
outliers = good.stuff[df.beta >0.30,c("y","aware","age","dBhat") ]
#problem 3
library(nnet)
control = read.csv("C:/Github/Teaching-Materials/STA-101/STA-101-2017-Spring/Datasets/HW-5/control.csv")
full.model = multinom(con ~+age +(edu) + (working),data = control,trace = FALSE)
null.model = multinom(con ~ 1,data = control,trace = FALSE)
forward.model = step(null.model, scope = list(lower = null.model, upper = full.model), direction = "forward",t
backward.model = step(full.model, scope = list(lower = null.model, upper = full.model), direction = "backward"
best.model = backward.model
B = round(coef(best.model),4)
#Problem 4
options(scipent = 8)
large.model = best.model
small.model = multinom(con ~ +age ,data = control,trace = FALSE)
LLA = as.numeric(logLik(large.model))
LLO = as.numeric(logLik(small.model))
LR = -2*(LLO-LLA); d.f = large.model$edf - small.model$edf
p.val = pchisq(LR,d.f, lower.tail=F)
x.star = data.frame(age = 29, edu = "G")
pi.hats =predict(large.model,x.star,type = "probs")
library(LogisticDx)
split.data = split(control, control$con)
ShortLong = rbind(split.data[[3]], split.data[[1]])
ShortLong$con = ifelse(ShortLong$con =="Short",1,0)
SL.model = glm(con ~+age +(edu) ,data = ShortLong,family = binomial)
B = round(SL.model$coefficients,4)
good.stuff = dx(SL.model)
std.r = good.stuff$sPr #Standardized residuals (Pearson)
#hist(std.r,main = "Standardized Residuals",xlab = "Std.Res")
change.pearson = good.stuff$dChisq #Change in pearson X^2 for each observation
#plot(change.pearson,main = "Change in X^2",xlab = "X^2 value")
outliers = which(change.pearson > 8)
outlier.values = good.stuff[outliers,c("y","age","eduG","eduL","eduM","sPr") ]
```

```
options(scipen = 8)
library(asbio)
rat = read.csv("C:/Github/Teaching-Materials/STA-101/STA-101-2017-Spring/Datasets/HW-6/rat.csv")
#Problem 1
#(a)
group.means = by(rat$Weight,rat$Type,mean) # First argument is Y, second is grouping column/s
\#par(mfrow = c(1,2))
#plot(group.means,xaxt = "n",pch = 19,col = "purple",xlab = "Food Type",ylab = "Change in Weight",main = "Aver
#axis(1,1:length(group.means),names(group.means))
#boxplot(Weight ~ Type,data = rat, main = "Change in weight by type of food",ylab = "Change in weight (g)")
#(b)
group.means = by(rat$Weight,rat$Type,mean)
group.sds = by(rat$Weight,rat$Type,sd)
group.nis = by(rat$Weight,rat$Type,length)
the.summary = rbind(group.means,group.sds,group.nis)
the.summary = round(the.summary,digits = 4)
colnames(the.summary) = names(group.means)
rownames(the.summary) = c("Means", "Std. Dev", "Sample Size")
#(c)
the.model = aov(Weight ~ Type, data = rat)
anova.table = anova(the.model)
Fs = anova.table[1,4]; p.val = anova.table[1,5]
#Problem 2
#(a)
#qqnorm(the.model$residuals)
#qqline(the.model$residuals)
#(b)
shap.test = shapiro.test(the.model$residuals)
p.val = shap.test$p.value
#(c)
#plot(the.model$fitted.values,the.model$residuals,pch = 19)
#abline(h= 0 , col = "purple")
#(d)
ML.test = modlevene.test(the.model$residuals,rat$Type)
p.val.ml = ML.test$'Pr(>F)'
```