MODELOS DE SIMULACION LUIS MIGUEL OCAMPO OCAMPO 20 de Septiembre 2023 Taller

Taller-0

- 1- Graficar 10 puntos en cada recta,
 - a) calcular pendiente según m (anterior cuadro)

$$Y = 3x + 2$$

Calcular la pendiente según:

$$m = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2}$$
$$b = \bar{y} - m \cdot x$$

$$Y = -2x - 3$$

b) modificar la pendiente (m) 3 veces y graficar, registrarobservaciones de la grafica

2. Mínimos Cuadrados

Consultar en siguiente elink sobre los mínimos cuadrados ¿Qué es el método de los mínimos cuadrados y cómo se usa? (micalculadoracientifica.com)

https://micalculadoracientifica.com/metodo-de-los-minimos-cuadrados/

Con la siguiente formula calcular la pendiente m para los mínimos cuadrados: de Y = -2x - 3

$$m = \frac{N \cdot \sum xy - \sum x \cdot \sum y}{N \cdot \sum x^2 - (\sum x)^2}$$
$$\sum y - m \cdot \sum x$$

$$b = \frac{\sum y - m \cdot \sum x}{N}$$

Ecuación de la recta

La ecuación de la recta que pasa por el punto $P_1(x_1;y_1)$ y de pendiente "m" **TEOREMA**

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$m = \frac{y - y_1}{x - x_1}$$

$$\frac{y - y_1}{x - x_1} = m$$

TEOREMA

$$y - y_1 = m(x - x_1^{Activar Windows})$$
 on Figuración para act

Solución taller-0

1. a) y = 3X+2

	х	y = 3X+2	x1-xprom	y1-yProm	x*y	x^2	m	b
	-10	-28	-10	-30	300	100		
	-7	-19	-7	-21	147	49		
	-5	-13	-5	-15	75	25		
	-3	-7	-3	-9	27	9		
	-1	-1	-1	-3	3	1		
	1	5	1	3	3	1		
	3	11	3	9	27	9		
	5	17	5	15	75	25		
	7	23	7	21	147	49		
	10	32	10	30	300	100		
PROMEDIO	0	2	<u></u>		1104	368	3	

b)
$$Y = -2x - 3$$

modificar la pendiente (m) 3 veces y graficar, registrar observaciones de la grafica

Simulación – Regresión Lineal Plinio Neira - Uniremington

	Х	y = -2x-3	x*y	X ²	1	$V \cdot \Sigma xy - \Sigma x$	$\cdot \sum v$
	1	-5	-5	1	$m = \frac{N \cdot \sum xy - \sum x \cdot \sum y}{N \cdot \sum x^2 - (\sum x)^2}$		$(x)^2$
	2	-7	-14	4			
	3	-9	-27	9		-1650	
	4	-11	-44	16		825	
	5	-13	-65	25	m=	-2	
	6	-15	-90	36			
	7	-17	-119	49		$b = \frac{\sum y - m \cdot \sum x}{N}$	
	8	-19	-152	64	$b = \frac{2}{3}$		
	9	-21	-189	81		N	
	10	-23	-230	100			
	55	-140	-935	385		-3	
PROMEDIO	5.5	-14			b=	-0.3	

Taller 01 : - (En clase)

1) Ajustar los siguientes datos a una línea recta

x	21
	y
1	2
2	3
2	4
3	4
4	4
4	6
5	5

$$m = \frac{n \sum x_i y_i - \sum x_i \sum y_i}{n \sum x_i^2 - (\sum x_i)^2}$$
$$b = \overline{y} - m\overline{x}$$

Conclusión

x	1	2	2	3	4	4	5	6
y	2	3	4	4	4	6	5	7

$$m = \frac{n\sum x_i y_i - \sum x_i \sum y_i}{n\sum x_i^2 - (\sum x_i)^2} = 0.8491$$

$$b = \overline{u} - m\overline{x} = 1.5094$$

Y = mx + b

Evaluar y en 2 puntos extremos

En X = 0 y en X = 6 u otro final

Unir los puntos

Calcular sumas de cuadrados de residuos Sr

2) Por el método de ajuste de mínimos cuadrados, realizar

Dados los datos la recta de ajuste de mínimos cuadrados es y=0.8491x+1.5094. ¿Cuál es el valor de S_r para esta recta? 5 (D:-(Wx:+p))

(b)
$$2.235 \times 10^{-3}$$

Solución taller-1

<mark>1)</mark>

	х	у	x*y	X ²	Λ	$V \cdot \Sigma xy - \Sigma x$	· Σ. ν	
	1	2	2	1	m = -	$\frac{V \cdot \sum xy - \sum x}{V \cdot \sum x^2 - (\sum x)}$	$(x)^2$	
	2	3	6	4				
	2	4	8	4		135		
	3	4	12	9		159		
	4	4	16	16	m=	0.849		6.60377358
	4	6	24	16		r r		
	5	5	25	25	b =	$\sum y - m \cdot \sum$	x	
	6	7	42	36		N		
SUMATORIA	27	35	135	111		1.509		
PROMEDIO	3.375	4.375			b=	0.1509434		

MODELOS DE SIMULACIÓN – UNIREMINGTON

	х	у	x*y	X^2	$N \cdot \sum xy - \sum x \cdot \sum y$	MXi+B(Î)	(Yi-Î)^2
	1	2	2	1	$m = \frac{N \cdot \sum xy - \sum x \cdot \sum y}{N \cdot \sum x^2 - (\sum x)^2}$	2,3584906	0,1285155
	2	3	6	4		3,2075472	0,0430758
	2	4	8	4	135	3,2075472	0,6279815
	3	4	12	9	159	4,0566038	0,003204
	4	4	16	16	m= 0,849	4,9056604	0,8202207
	4	6	24	16	F F	4,9056604	1,1975792
	5	5	25	25	$b = \frac{\sum y - m \cdot \sum x}{\sum x}$	5,754717	0,5695977
	6	7	42	36	N	6,6037736	0,1569954
SUMATORIA	27	35	135	111	b= 1,509		
PROMEDIO	3,375	4,375			0,1509434	SR	3,5471698

2) La solución es la D ya que el SR da un valor de 3.5471 como se muestra en la tabla

MXi+B(Î)	(Yi-Î)^2
2,3584906	0,1285155
3,2075472	0,0430758
3,2075472	0,6279815
4,0566038	0,003204
4,9056604	0,8202207
4,9056604	1,1975792
5,754717	0,5695977
6,6037736	0,1569954
SR	3,5471698