

#### Estatística (ESTAT)

2019/2020

**LEEC** 

C2B – Distribuições de probabilidade (2ª parte) Distribuições contínuas

## VARIÁVEIS ALEATÓRIA CONTÌNUAS

- Uma v.a contínua pode assumir qualquer valor dentro de um intervalo de números reais. Consequentemente o conjunto de valores que pode assumir (contradomínio) é não númerável
- Não é possível listar, individualmente, todos os possíveis valores de uma variável aleatória contínua. Por conseguinte o quadro de distribuição de probabilidade/função de probabilidade é inadequada para descrever convenientemente a v.a.
- Associam-se probabilidades a intervalos da variável e não a pontos.

## FUNÇÃO DENSIDADE DE PROBABILIDADE

Uma v.a. X contínua é caracterizada pela sua função densidade de probabilidade f(x) com as seguintes propriedades:

- i)  $f(x) \ge 0$ , para todo x;
- ii) A área sob limitada pelo eixo dos xx e a curva de f(x) é 1; ou seja

$$\int_{0}^{+\infty} f(x)dx = 1$$

iii)  $P(a \le X \le b) = \text{área sob}^{\infty} \text{a curva de } f(x) \text{ e acima do eixo } x, \text{ entre os pontos } a \text{ e } b, \text{ ou seja}$ 

$$P(a \le X \le b) = \int_{a}^{b} f(x)dx$$



iv) 
$$P(X = x_0) = 0$$
, para  $x_0$  constante

$$P(X = x_0) = P(x_0 \le X \le x_0) = \int_{x_0}^{x_0} f(x) dx = 0$$

Assim, 
$$P(a \le X \le b) = P(a \le X \le b) = P(a \le X \le b) = P(a \le X \le b)$$
.

## FUNÇÃO DENSIDADE DE PROBABILIDADE

**Exemplo 1:** Um gerador de números aleatórios produz um número real entre 0 e 60 minutos.

A v.a. X que representa o número assim obtido tem a função densidade de

probabilidade representada na figura seguinte



a) Determine o valor de k:

Sabe-se que  $\int_{0}^{\infty} f(x)dx = 1$ , ou seja,

$$Area = 60k = \overline{1}^{\infty}$$

$$k = \frac{1}{60}$$



b) Calcule P(20<X<40)

$$P(20 < X < 40) = \int_{20}^{40} f(x) dx = \int_{20}^{40} \frac{1}{60} dx \approx 0.33$$

ou

$$P(20 < X < 40) = Area$$
 onde  $Area = (40 - 20) \cdot \frac{1}{60} \approx 0.33$ 



## FUNÇÃO DISTRIBUÍÇÃO DE PROBABILIDADE

**Def:** Seja X uma v.a contínua então, a função de distribuição de probabilidade F(x) é

$$F(x) = P(X \le x) = \int_{-\infty}^{x} f(t)dt$$

Por conseguinte,  $f(x) = \frac{d}{dx}F(x)$  nos pontos onde F(x) é derivavel.

Verifica-se também que

$$P(a < X < b) = P(a \le X < b) = P(a \le X \le b) = P(a \le X \le b) = F(b) - F(a),$$

pois é sabido que

$$P(X = x_0) = 0$$
 se  $x_0$  é constante.

## FUNÇÃO DISTRIBUÍÇÃO DE PROBABILIDADE

Retomando o exemplo anterior, cuja v.a. tem função densidade de probabilidade com a representação



## Cálculo de F(x)

se 
$$x < 0$$
 então  $F(x) = P(X \le x) = \int_{-\infty}^{x} 0 dt = 0$ 

se 
$$0 \le x < 60$$
 então  $F(x) = \int_{-\infty}^{0} 0 dx + \int_{0}^{x} \frac{1}{60} dt = \frac{1}{60}x$ 

se  $x \ge 60$  então F(x) = 1

Cálculo: P(20<X<40)=F(40)-F(20)=20/60=1/3

Cálculo: P(X>10)=1-F(10)=1-(10/60)=5/6

$$f(x) = \begin{cases} 1/60 & se & x \in [0,6] \\ 0 & se & x \notin [0,60] \end{cases}$$



$$F(x) = \begin{cases} 0 & se & x < 0 \\ \frac{1}{60}x & se & 0 \le x < 60 \\ 1 & se & x > 60 \end{cases}$$

## VALOR MÉDIO E VARIÂNCIA

Seja X uma v.a. contínua com função densidade de probabilidade f(x), então

O valor médio é a quantidade

$$\mu = E(X) = \int_{-\infty}^{+\infty} x \cdot f(x) dx$$

A variância é dada por

$$\sigma^2 = V(X) = \int_{-\infty}^{+\infty} (x - \mu)^2 f(x) dx$$

As propriedades são análogas às do caso discreto.

## Distribuição Uniforme – Un(a, b)

A distribuição uniforme é usada para representar uma quantidade que varia aleatoriamente num intervalo [a, b] e cuja probabilidade de tomar valores num sub-intervalo de [a, b] é proporcional ao seu comprimento.

Se uma v.a. X tem distribuição uniforme entre a e b, escrevemos simbolicamente,  $X \sim \text{Un}(a, b)$ .

Como, neste caso, a probabilidade de X de tomar valores num sub-intervalo de [a, b] é proporcional ao comprimento desse intervalo então a f.d.p. de X é constante em [a, b]

## Distribuição Uniforme – Un(a, b)

### Função Densidade de Probabilidade

$$f(x) = \begin{cases} \frac{1}{b-a}, & x \in [a,b] \\ 0, & x \notin [a,b] \end{cases}$$



### Função de Distribuição Acumulada

$$F(x) = \begin{cases} 0, & x < a \\ \frac{x-a}{b-a}, & x \in [a,b] \\ 1, & x > b \end{cases}$$



## Distribuição Uniforme – U(a, b)

#### Propriedades

- Tem 2 parâmetros a e b (se a um parâmetro de localização, b a é um parâmetro de escala)
- Gama de valores: [a, b]
- Média:

$$E(X) = \mu = \frac{a+b}{2}$$

• Variância:

$$V(X) = \frac{(b-a)^2}{12}$$

## Distribuição Exponencial– Exp(λ)

A distribuição exponencial é usada em situações em que se consegue identificar um processo de Poisson. É usada para representar intervalos de tempo entre eventos independentes num processo de Poisson, por exemplo:

- o tempo entre a chegada de duas encomendas a um armazém
- o tempo que decorre entre duas avarias de uma máquina. Tempo de duração de uma lâmpada, etc...

## Distribuição Exponencial— Exp(λ)

Com efeito,

Se

Y – "número de chegadas, por unidade de tempo" tem distribuição  $Po(\lambda)$ 

então

W – "número de chegadas, por x unidades de tempo" tem distribuição  $Po(\lambda x)$  e

$$P(W = w) = f(w) = e^{-\lambda x} \frac{(\lambda x)^w}{w!}$$

Considerando agora, X — "Tempo até uma chegada, em unidades de tempo" vem

$$P(X > x) = P(W = 0) = f(0) = e^{-\lambda x}$$

$$P(T \le x) = F(x) = 1 - e^{-\lambda}$$

A função densidade de probabilidade é

$$f(x) = \frac{d}{dx}F(x) = \lambda e^{-\lambda x}, x \ge 0$$

## Distribuição Exponencial– Exp(λ)

Def: Se X~ $\text{Exp}(\lambda)$  ( $\lambda$ >0) então:

A. A função densidade de probabilidade é:

$$f(x) = \begin{cases} \lambda e^{-\lambda x}, & x \ge 0\\ 0, & x < 0 \end{cases}$$



B. A função de distribuição é:

$$F(x) = P(X \le x) = \begin{cases} 0, & x < 0 \\ 1 - e^{-\lambda x}, & x \ge 0 \end{cases}$$



## Distribuição Exponencial

Algumas propriedades:

Gama de valores: [0, +∞[

Média: 
$$E(X) = \mu = \frac{1}{\lambda}$$

Variância: 
$$V(X) = \sigma^2 = \frac{1}{\lambda^2}$$

A distribuição exponencial não considera o "desgaste". Não tem memória,

$$P(X > s + t \mid X > s) = \frac{P(X > s + t)}{P(X > s)} = \frac{e^{-\lambda(s + t)}}{e^{-\lambda s}} = e^{-\lambda t} = P(X > t)$$

### Distribuição Exponencial

A distribuição exponencial pode ser interpretada como o tempo de espera entre dois acontecimentos de Poisson.

$$W \sim Po(\lambda) => E(W) = \lambda$$

$$X \sim \text{Exp}(\lambda) \Longrightarrow \text{E}(X) = 1/\lambda$$

Ou seja, numa distribuição exponencial o tempo médio de espera entre dois registos sucessivos de um processo de Poisson é o inverso do ritmo médio desses registos.

## Distribuição Exponencial

#### Exemplo:

O tempo de duração de um componente eletrónico A tem distribuição exponencial de média 2500 horas.

- a) Calcule a percentagem de componentes cuja duração excede 2500 horas.
- b) Calcule a probabilidade de um componente durar entre 2500 e 3000 horas.
- c) Calcule o tempo de duração que excedido apenas por 10% dos componentes.

A distribuição normal é em muitos sentidos a distribuição fundamental da teoria estatística moderna. Foi estudada inicialmente no sec XVIII quando os cientistas observaram um impressionante grau de regularidade nos erros de medição. Naquele tempo verificou-se que os padrões (distribuições) podiam ser aproximados por curvas contínuas a que chamavam "curvas normais dos erros".

- As propriedades matemáticas das "curvas normais" foram estudadas por Abraham de Moivre (1667-1745), Pierre Laplace (1749-1827) e Karl Gauss (1777-1855).

A distribuição normal pode ser usada para representar quantidades que resultam da soma de um grande número de quantidades aleatórias (Teorema do Limite Central), ou para representar características de populações associadas a medições e/ou respetivos erros associados. Trata-se de uma distribuição importante dada a sua aplicabilidade na modelização estocástica de muitos fenómenos naturais.

Def: Diz-se que uma

**V.a.** *X* tem distribuição normal com parâmetros média  $\mu$  e variância  $\sigma^2$  e representa-se simbolicamente

$$X \sim N(\mu, \sigma^2)$$

Se e só se a sua função de densidade é

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, \quad x \in R$$

#### Função Densidade de Probabilidade

$$f(x) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}, \quad x \in \mathbb{R}$$

Função de Distribuição Acumulada



$$F(x) = P(X \le x) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_{-\infty}^{x} e^{-\frac{1}{2}\left(\frac{t-\mu}{\sigma}\right)^2} dt$$



## Algumas características da f.d.p. Normal:

- O domínio é R
- Tem a forma de sino e um único máximo em x=μ
- É simétrica relativamente a um eixo vertical em  $x=\mu$  (média), a mediana também ocorre em  $x=\mu$
- Tem dois pontos de inflexão em  $x=\mu$ - $\sigma$  e  $x=\mu$ + $\sigma$
- o eixo dos *xx* é uma assímptota



 Cerca de 68% da população difere da média menos de 1 desvio padrão,

$$P(\mu\text{-}\sigma \le X \le \mu\text{+}\sigma) \approx 0.6826$$

 Cerca de 95% da população difere da média menos de 2 desvios padrões,

$$P(\mu-2\sigma < X < \mu+2\sigma) \approx 0.9544$$

• Cerca de 99.7% da população difere da média menos de 3 desvios padrões,

$$P(\mu-3\sigma < X < \mu+3\sigma) \approx 0.9973$$



## Propriedades

- Tem como parâmetos  $\mu$  (localização),  $\sigma^2$  (escala)
- Gama de valores:  $x \in ]-\infty, +\infty[, \mu \in ]-\infty, +\infty[, \sigma \in ]0, +\infty[$
- Média:  $E(X) = \mu$
- Variância:  $V(X) = \sigma^2$
- A distribuição Z $\sim$ N( $\mu$ =0,  $\sigma$ <sup>2</sup>=1) é a Distribuição Normal Reduzida
- se  $X \sim N (\mu, \sigma^2)$  e tem-se

$$X = \mu + \sigma Z \sim N(\mu, \sigma^2)$$

e se 
$$Z \sim N(\mu = 0, \sigma^2 = 1)$$
 então  $Z = \frac{X - \mu}{\sigma} \sim N(\mu = 0, \sigma^2 = 1)$ 

### Distribuição Normal Reduzida: Cálculo de probabilidades

Se  $Z \sim N(0;1)$  ou seja, Z tem distribuição normal reduzida de média 0 e variância 1,

então a sua f.d.p. 
$$e^{-\frac{z^2}{2}}$$

O valor de  $P(Z \le z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz$ 



não pode ser obtido analiticamente para qualquer z. Existem, contudo, tabelas com valores obtidos por integração numérica da distribuição Normal reduzida.

$$P(Z \le z) = \int_{-\infty}^{+\infty} \frac{1}{\sqrt{2\pi}} e^{-\frac{z^2}{2}} dz \approx \Phi(z)$$

### Distribuição Normal Reduzida. Uso da Tabela

#### Distribuição Normal Reduzida

$$\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{-u^{2}/2} du = P(Z \le z)$$

| Z   | 0      | 1      | 2      | 3      | 4      | 5      | 6     |
|-----|--------|--------|--------|--------|--------|--------|-------|
| 0,0 | 0,5000 | 0,5040 | 0,5080 | 0,5120 | 0,5160 | 0,5199 | 0,523 |
| 0,1 | 0,5398 | 0,5438 | 0,5478 | 0,5517 | 0,5557 | 0,5596 | 0,563 |
| 0,2 | 0,5793 | 0,5832 | 0,5871 | 0,5910 | 0,5948 | 0,5987 | 0,602 |
| 0,3 | 0,6179 | 0,6217 | 0,6255 | 0,6293 | 0,6331 | 0,6368 | 0,640 |
| 0,4 | 0,6554 | 0,6591 | 0,6628 | 0,6664 | 0,6700 | 0,6736 | 0,677 |
| 0,5 | 0,6915 | 0,6950 | 0,6985 | 0,7019 | 0,7054 | 0,7088 | 0,712 |
| 0,6 | 0,7257 | 0,7291 | 0,7324 | 0,7357 | 0,7389 | 0,7422 | 0,745 |
| 0,7 | 0,7580 | 0,7611 | 0,7642 | 0,7673 | 0,7704 | 0,7734 | 0,776 |
| 0,8 | 0,7881 | 0,7910 | 0,7939 | 0,7967 | 0,7995 | 0,8023 | 0,805 |

$$a)P(Z < 0.65) = \Phi(0.65) = 0.7422$$

$$b)P(Z > 0.24) = 1 - P(Z \le 0.24) = 1 - \Phi(0.24) = 1 - 0.5948 = 0.4052$$

$$c)P(0.24 < Z < 0.65) = \Phi(0.65) - \Phi(0.24) = 0.7422 - 0.5948 = 0.1474$$

## Distribuição Normal Reduzida. Exemplo 1

Seja  $Z \sim N(0;1)$ 

Calcule:

$$a)P(Z < 2.13) = \Phi(2.13) = 0.9834$$



Distribuição Normal Reduzida

d)Det 
$$k: P(Z < k) = 0.9515$$
  
 $\Phi(k) = 0.9515$   
 $k = \Phi^{-1}(0.9515) = 1.66$ 

b)
$$P(Z > 1,15) = 1 - P(Z \le 1,15) = 1 - \Phi(1,15) = 0.1251$$



$$c)P(1,15 < Z < 2,13) = P(Z < 2,13) - P(Z < 1,15) =$$
  
=  $\Phi(2,13) - \Phi(1,15) = 0.9834 - 0.8749 = 0.1085$ 



Distribuição Normal Reduzida: Simetria e cálculo de probabilidades

# A distribuição normal reduzida é simétrica relativamente à reta z=0



$$P(Z \le -z) = P(Z > z) \qquad \Phi(z) = 1 - \Phi(-z)$$
  

$$\Phi(-z) = 1 - P(Z \le z)$$
  

$$\Phi(-z) = 1 - \Phi(z)$$

## Distribuição Normal: Cálculo de probabilidades

Suponhamos que  $X \sim N(\mu, \sigma^2)$  e que queremos calcular

$$P(a \le X \le b) = \frac{1}{\sqrt{2\pi\sigma^2}} \int_a^b e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2} dx$$

A solução deste integral não é conhecida, apenas aproximações numéricas e tabelas de áreas sob a curva normal. Estas tabelas dão-nos os valores para a distribuição normal reduzida Z.

Teorema: Se 
$$X \sim N(\mu, \sigma^2)$$
 então  $Z = \frac{X - \mu}{\sigma} \sim N(0,1)$ 

Com o teorema anterior em mente, podemos calcular as probabilidades referentes à v.a. X, a partir da tabela que nos dá as probabilidades da v.a. Z

## Distribuição Normal: cálculo de probabilidades

Se 
$$X \sim N(\mu, \sigma^2)$$
 e  $Z = \frac{X - \mu}{\sigma} \sim N(0, 1)$ 

$$P(X \le a) = P(Z \le \frac{a - \mu}{\sigma}) = F(a) = \Phi(\frac{a - \mu}{\sigma})$$

$$P(X > b) = 1 - P(X \le b) = 1 - F(b) = 1 - \Phi(\frac{b - \mu}{\sigma})$$

Note-se que se utiliza  $\Phi$  para representar F(z).

$$P(a < X \le b) = P(\frac{a - \mu}{\sigma} < Z < \frac{b - \mu}{\sigma}) = F(b) - F(a) = \Phi(\frac{b - \mu}{\sigma}) - \Phi(\frac{a - \mu}{\sigma})$$

## Distribuição Normal. Exemplo 2

Seja  $X \sim N(6;25)$ , calcule

a) P(X < 10)

$$R: P(X < 10) = P(\frac{X - 6}{5} < \frac{10 - 6}{5}) = P(Z < 0.8)$$
  
 $P(Z < 0.8) = \Phi(0.8) \approx 0.7881$ 

$$Z = \frac{X - \mu}{\sigma} = \frac{X - 6}{5} \sim N(0; 1)$$



b) P(X>5)

$$R: P(X > 5) = 1 - P(X \le 5) = 1 - \Phi\left(\frac{5 - 6}{5}\right) = 0.5793$$
 Nota:  $P(X < a) = \Phi\left(\frac{a - \mu}{\sigma}\right)$ 

c)  $P(5 \le X \le 10)$ 

$$R: P(5 < X < 10) = P(X < 10) - P(X \le 5) = 0.7881 - (1 - 0.5793) = 0.3674$$

d) O valor de k que é ultrapassado em 20% dos casos.

$$R: P(X > k) = 0.2 \Leftrightarrow P(X \le k) = 0.8 \Leftrightarrow \Phi\left(\frac{k-6}{5}\right) = 0.8 \Leftrightarrow \frac{k-6}{5} = \Phi^{-1}(0.8) = 0.84 \Leftrightarrow k = 10.2$$

### Teoremas da aditividade da distribuição normal

• qualquer soma (ou diferença) de v.a. Normais e independentes é ainda uma v.a. Normal.

$$X_1 + X_2 \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$
  
 $X_1 - X_2 \sim N(\mu_1 - \mu_2, \sigma_1^2 + \sigma_2^2)$ 

• de uma forma mais geral:

$$X_i \sim N(\mu_i, \sigma_i^2), \qquad \sum_{i=1}^n a_i X_i \sim N\left(\sum_{i=1}^n a_i \mu_i, \sum_{i=1}^n a_i^2 \sigma_i^2\right)$$

• Se  $X_1, X_2, ..., X_n$  são n v.a. Normais e independentes com o mesmo valor médio  $\mu$  e a mesma variância  $\sigma^2$ 

$$\sum_{i=1}^{n} X_{i} \sim N(n\mu, n\sigma^{2})$$

## Distribuição Normal. Exemplo 3

- **E3.** Um aluno tem duas possibilidades de se deslocar ao ISEP e o tempo de deslocação segue uma distribuição normal. Pelo caminho A o tempo de deslocação é N(55 min;81 min²) enquanto que pelo caminho B é N(60 min;9 min²). O aluno dispõe de 63 minutos, no máximo para realizar a viagem de modo a não chegar atrasado.
- a) Qual dos caminhos deve o aluno utilizar?
- b) Supondo que o aluno escolhe ao acaso (atirando uma moeda) um caminho qual a probabilidade de se atrasar?
- c) Calcule a probabilidade do tempo total acumulado em 4 viagens pelo caminho A e 6 viagens pelo caminho B exceder 10 horas.
- d) Calcule a probabilidade do tempo de uma viagem pelo percurso A demorar mais do que uma viagem pelo percurso B.

## Distribuição Normal. Exemplo 3: Resolução

 $X_A$ -"Tempo de conclusão do percurso A(min)";  $X_A \sim N(55;81)$ 

 $X_B$  –"Tempo de conclusão do percurso B (min)";  $X_B \sim N(60;9)$ 

 $X_T$ -"Tempo total de coclusão dos 10 percursos (min)"

#### Resolução

a)
$$P(X_A < 63) = \Phi\left(\frac{63 - 55}{\sqrt{81}}\right) = \Phi(0.89) = 0.8133$$

$$R: 0.5P(X_A > 63) + 0.5P(X_B > 63) = 0.1727$$

$$P(X_B < 63) = \Phi\left(\frac{63 - 60}{3}\right) = \Phi(1) = 0.8413$$

$$R: B \quad pois \quad \Phi(1) > \Phi(0.89)$$

c) 
$$X_{T} = \sum_{i=1}^{4} X_{Ai} + \sum_{i=1}^{6} X_{Bi} \sim N(4 \cdot 55 + 6 \cdot 60; 4 \cdot 81 \cdot 6 \cdot 9)$$

$$X_{T} \sim N(580; 19.44^{2})$$

$$P(X_{T} > 600) = 1 - P(X_{T} \le 600) = 1 - \Phi(1.03) = 0.1515$$

$$P(X_{T} > 600) = 0.1515$$

$$P(X_{T} > 600) = 1 - P(X_{T} \le 600) = 1 - \Phi(1.03) = 0.1515$$

$$P(X_{T} > 600) = 0.1515$$

$$P(X_{T} > 600) = 1 - P(X_{T} \le 600) = 1 - \Phi(1.03) = 0.1515$$

$$P(X_{T} > 600) = 0.1515$$

$$P(X_{T} > 600) = 1 - P(X_{T} \le 600) = 1 - \Phi(1.03) = 0.1515$$

$$P(X_{T} > 600) = 0.1515$$

#### Teorema do Limite Central

Sejam  $X_1, X_2, ..., X_n$  variáveis aleatórias i.i.d. (n v.a. independentes e igualmente distribuídas) com os valores médios  $\mu_1, \mu_2, ..., \mu_n$ , e variâncias  $\sigma^2_1, \sigma^2_2, ..., \sigma^2_n$  finitas, respetivamente. Então, para n grande (na prática para  $n \ge 30$ ),

$$\frac{\sum_{i=1}^{n} X_{i} \approx N \left(\sum_{i=1}^{n} \mu_{i}, \sum_{i=1}^{n} \sigma_{i}^{2}\right)}{\sum_{i=1}^{n} X_{i} - \sum_{i=1}^{n} \mu_{i}} \approx N(0,1)$$

$$\sqrt{\sum_{i=1}^{n} \sigma_{i}^{2}}$$

## Exemplo

- 1. Admite-se que o erro cometido em cada operação de medição tem distribuição U(-5 mm;5 mm)
- a) Caracterize a v.a. que representa o erro propagado em 100 operações de medição.
- b) Calcule a probabilidade do erro propagado em 100 medições exceder 3 cm.

### Exemplo

a) Caracterize a v.a. que representa o erro propagado em 100 operações de medição.

```
X_i — Erro cometido na i—ésima medição (mm): i = 1,2, ..., 100 Y—"Erro total de 100 operações de medição" Y = \sum_{i=1}^{100} X_i \sim N(100\mu; 100\sigma^2) (Teorema do limite central)
```

Uma vez que 
$$X \sim U(-5;5)$$
  
vem  $\mu = \frac{a+b}{2} = \frac{-5+5}{2} = 0$   
 $\sigma^2 = \frac{(b-a)^2}{12} = \frac{(5-(-5))^2}{12} \approx 8.33$   
Assim,  $Y \sim N(100 \cdot 0 + 100 \cdot 8.33)$   
Aplicação do Teorema do limite central (n \ge 30)

b) Calcule a probabilidade do erro propagado em 100 medições exceder 3 cm.

$$Y \sim N(0; 100 \cdot 8.33)$$
  
 $Y \sim N(0; 28.9^2)$   
 $P(Y > 30) = 1 - P(Y \le 30) = 1 - \Phi\left(\frac{30 - 0}{28.9}\right) = 1 - \Phi(1.04)$   
 $= 0.1492$