PROBLEM 1

- (a) Let the signal y[n] = x[n] * h[n] where $h[n] = \mathbf{d}[n n_0], n_0 > 0$. Determine y[n].
- (b) Let the signal y[n] = x[n] * h[n] where x[n] = h[n] = u[n-1]. Determine y[n].
- (c) Consider the Linear Time Invariant (LTI) system that is described by the following input-output relationship

$$y[n] + 2y[n-1] = x[n] + 2x[n-1]$$

where x[n] is the input and y[n] is the output of the system. Find the output of the system to the following input:

$$x[n] = \begin{cases} 1, & n = -2 \\ 2, & n = -1 \\ 3, & n = 0 \end{cases}$$

$$x[n] = \begin{cases} 2, & n = 1 \\ 2, & n = 2 \\ 1, & n = 3 \\ 0, & \text{otherwise} \end{cases}$$

Assume that y[n] = 0, n < -2.

PROBLEM 2

(a) Let x(t) be a periodic signal with period 4 whose Fourier series coefficients are

$$a_k = \begin{cases} jk, & |k| < 4 \\ 0, & \text{otherwise} \end{cases}$$

Determine x(t).

- (b) Find the Fourier series coefficients of:
 - (i) The signal $y_1(t) = x^*(t)$.
 - (ii) The signal $y_2(t) = x(-t)$.
- (c) Consider an LTI system whose response to the input $x(t) = e^{-at}u(t)$ is $y(t) = e^{-bt}u(t)$. Assume that the real part of a and b is positive and that u(t) is the continuous unit step function defined as

$$u(t) = \begin{cases} 1, & t \ge 0 \\ 0, & \text{otherwise} \end{cases}$$

- (i) Find the frequency response of this system.
- (ii) Determine the system's impulse response.
- (iii) Find the differential equation relating the input and the output of this system.

PROBLEM 3

The output y(t) of a causal LTI system is related to the input x(t) by the differential equation

$$\frac{d^2 y(t)}{dt^2} + 4 \frac{dy(t)}{dt} + 4 y(t) = x(t)$$

1

Determine the frequency response of the system and sketch its Bode plots.

PROBLEM 4

- (a) (i) Find the analytical expression and the region of convergence (ROC) of the Laplace transform of the continuous causal signal $x(t) = e^{-at}u(t)$, with a real and positive and u(t) the discrete unit step function.
 - (ii) Find the analytical expression and the region of convergence (ROC) of the Laplace transform of the continuous anti-causal signal $x(t) = -e^{-at}u(-t)$, with a real and positive and u(t) the discrete unit step function.
 - (iii) Is the analytical expression X(s) of the Laplace transform of a signal sufficient in order to determine the analytical expression x(t) of the signal in time?
- (b) The output y(t) of a causal LTI system is related to the input x(t) by the differential equation

$$\frac{d^2y(t)}{dt^2} - \frac{dy(t)}{dt} - 2y(t) = x(t)$$

Let X(s) and Y(s) denote Laplace transforms of x(t) and y(t), respectively, and let H(s) denote the Laplace transform of h(t), the system's impulse response.

- (i) Determine H(s) as a ration of two polynomials.
- (ii) Determine h(t) for each of the following cases:
 - 1. The system is stable.
 - 2. The system is causal.
 - 3. The system is neither stable nor causal.

PROBLEM 5

Consider an LTI system for which the input x[n] and output y[n] satisfy the linear constant coefficient difference equation

$$y[n] - \frac{1}{2}y[n-1] = x[n] + \frac{1}{3}x[n-1]$$

Find the two distinct impulse responses that are consistent with the above difference equation.

Use the fact that the z-transform $\frac{1}{1-az^{-1}}$ corresponds to the function $a^nu[n]$ in discrete time if |z| > |a| and the function $-a^nu[-n-1]$ if |z| < |a|.

Answer 1

(a)
$$y[n] = x[n] * h[n] = \sum_{k=-\infty}^{\infty} x[k] d[n-n_0-k] = x[n-n_0]$$

(b)
$$y[n] = x[n] * h[n] = (n-1)u[n-2]$$

(c)
$$y[n] = -2y[n-1] + x[n] + 2x[n-2].$$

 $y[-2] = x[-2] = 1$

$$y[-2] = x[-2] = 1$$

$$y[-1] = -2y[-2] + x[-1] + 2x[-2] = -2 + 2 + 2 = 2$$

$$y[0] = -2y[-1] + x[0] + 2x[-1] = -4 + 3 + 4 = 3$$

$$y[1] = -2y[0] + x[1] + 2x[0] = -6 + 2 + 6 = 2$$

$$y[2] = -2y[1] + x[2] + 2x[1] = -4 + 2 + 4 = 2$$

$$y[3] = -2y[2] + x[3] + 2x[2] = -4 + 1 + 4 = 1$$

$$y[4] = -2y[3] + x[4] + 2x[3] = -2 + 2 = 0$$

$$y[n] = 0, n > 5$$

We observe that y[n] = x[n].

If we use z-transforms in both sides we see that

$$(1+2z^{-1})Y(z) = (1+2z^{-1})X(z) \Rightarrow Y(z) = X(z) \Rightarrow y[n] = x[n]$$
 as already have shown.

Answer 2

$$x(t) = \sum_{k=-3}^{3} jk e^{jk(2\mathbf{p}/T)t} = \sum_{1}^{3} jk (e^{jk(2\mathbf{p}/T)t} - e^{-jk(2\mathbf{p}/T)t}) = \sum_{1}^{3} jk2j \sin[k(2\mathbf{p}/T)t] = \sum_{1}^{3} -2k \sin[k(\mathbf{p}/2)t]$$

(i) The signal $y_1(t) = x^*(t)$ has Fourier series coefficients a_{-k}^* with a_k the FS coefficients of x(t). You are not supposed to remember something like this but you are supposed to be able to prove it in the exam. In that case

$$a_{-k}^* = \begin{cases} jk, & |k| < 4 \\ 0, & \text{otherwise} \end{cases} = a_k$$

(ii) The signal $y_2(t) = x(-t)$ has Fourier series coefficients a_{-k} with a_k the FS coefficients of x(t). You are not supposed to remember something like this but you are supposed to be able to prove it in the exam. In that case

$$a_{-k} = \begin{cases} -jk, & |k| < 4 \\ 0, & \text{otherwise} \end{cases} = -a_k$$

(c) Consider an LTI system whose response to the input $x(t) = e^{-at}u(t)$ is $y(t) = e^{-bt}u(t)$. We have the Fourier transform of x(t) being $X(j\mathbf{w}) = \frac{1}{a + i\mathbf{w}}$ and the Fourier transform of y(t) being

$$Y(j\mathbf{w}) = \frac{1}{\mathbf{b} + j\mathbf{w}}.$$

(i) Find the frequency response of this system. We call this $H(j\mathbf{w}) = \frac{Y(j\mathbf{w})}{Y(j\mathbf{w})} = \frac{a+j\mathbf{w}}{h+j\mathbf{w}}$

(ii) Determine the system's impulse response.

$$H(j\mathbf{w}) = \frac{Y(j\mathbf{w})}{X(j\mathbf{w})} = \frac{a+j\mathbf{w}}{\mathbf{b}+j\mathbf{w}} = \frac{a}{\mathbf{b}+j\mathbf{w}} + j\mathbf{w} + j\mathbf{w} + j\mathbf{w} \Rightarrow h(t) = ae^{-\mathbf{b}t}u(t) + \frac{d}{dt}e^{-\mathbf{b}t}u(t).$$

3

(iii) Find the differential equation relating the input and the output of this system.

$$H(j\mathbf{w}) = \frac{Y(j\mathbf{w})}{X(j\mathbf{w})} = \frac{a+j\mathbf{w}}{\mathbf{b}+j\mathbf{w}} \Rightarrow Y(j\mathbf{w})(\mathbf{b}+j\mathbf{w}) = X(j\mathbf{w})(a+j\mathbf{w}) \Rightarrow$$
$$\mathbf{b}y(t) + \frac{d}{dt}y(t) = ax(t) + \frac{d}{dt}x(t)$$

Ans wer 3

From $\frac{d^2y(t)}{dt^2} + 4\frac{dy(t)}{dt} + 4y(t) = x(t)$ if we take the Fourier transform in both sides we get $Y(j\mathbf{w})[(j\mathbf{w})^2 + 4j\mathbf{w} + 4] = X(j\mathbf{w}) \Rightarrow H(j\mathbf{w}) = \frac{Y(j\mathbf{w})}{X(j\mathbf{w})} = \frac{1}{(j\mathbf{w} + 2)^2}$. You can treat this function easily since for the Bode plots of $H(j\mathbf{w})$ you need to find the Bode plots of the function $\frac{1}{(j\mathbf{w} + 2)}$ and multiply it by 2.

Answer 4

(a) (i) Consider the signal $x(t) = e^{-at}u(t)$. The Fourier transform $X(j\mathbf{w})$ converges only for a > 0 as shown in the following.

$$X(j\mathbf{w}) = \int_{-\infty}^{+\infty} e^{-at} u(t) e^{-j\mathbf{w}t} dt = \int_{0}^{+\infty} e^{-at} e^{-j\mathbf{w}t} dt = \frac{1}{-(j\mathbf{w}+a)} e^{-(j\mathbf{w}+a)t} \Big|_{0}^{+\infty} = \frac{1}{j\mathbf{w}+a}, a > 0$$

The Laplace transform is

$$X(s) = \int_{-\infty}^{+\infty} e^{-at} u(t) e^{-st} dt = \int_{0}^{+\infty} e^{-(s+a)t} dt$$

With $s = \mathbf{s} + j\mathbf{w}$ we have

$$X(\mathbf{s}+j\mathbf{w}) = \int_{0}^{+\infty} e^{-(\mathbf{s}+a)t} e^{-j\mathbf{w}t} dt$$

The above is the Fourier transform of $e^{-(s+a)t}u(t)$, and as shown above

$$X(\mathbf{s}+j\mathbf{w}) = \frac{1}{(\mathbf{s}+a)+j\mathbf{w}}, \mathbf{s}+a > 0$$

or since $s = \mathbf{s} + j\mathbf{w}$ and $\mathbf{s} = \text{Re}\{s\}$, we have

$$X(s) = \frac{1}{s+a}$$
, ROC: Re{s} > -a

(ii) Consider the signal $x(t) = -e^{-at}u(-t)$. The Fourier transform $X(j\mathbf{w})$ converges only for a < 0 as shown in the following.

$$X(j\mathbf{w}) = \int_{-\infty}^{+\infty} -e^{-at}u(-t)e^{-j\mathbf{w}t}dt = \int_{-\infty}^{0} -e^{-at}e^{-j\mathbf{w}t}dt = \frac{1}{j\mathbf{w}+a}e^{-(j\mathbf{w}+a)t}\Big|_{-\infty}^{0} = \frac{1}{j\mathbf{w}+a}, a < 0$$

The Laplace transform is

$$X(s) = \int_{-\infty}^{+\infty} -e^{-at}u(-t)e^{-st}dt = -\int_{-\infty}^{0} e^{-(s+a)t}dt$$

With $s = \mathbf{s} + j\mathbf{w}$ we have

$$X(\mathbf{s}+j\mathbf{w}) = -\int_{-\infty}^{0} e^{-(\mathbf{s}+a)t} e^{-j\mathbf{w}t} dt$$

The above is the Fourier transform of $-e^{-(s+a)t}u(-t)$, and thus,

$$X(\mathbf{s} + j\mathbf{w}) = \frac{1}{(\mathbf{s} + a) + j\mathbf{w}}, \mathbf{s} + a < 0$$

or since $s = \mathbf{s} + j\mathbf{w}$ and $\mathbf{s} = \text{Re}\{s\}$, we have

$$X(s) = \frac{1}{s+a}, \text{ ROC: } \operatorname{Re}\{s\} < -a$$

- (iii) From (i) and (ii) is obvious that the analytical expression X(s) of the Laplace transform of a signal is NOT sufficient in order to determine the analytical expression x(t) of the signal in time. The ROC is also necessary.
- (b) The output y(t) of a causal LTI system is related to the input x(t) by the differential equation

$$\frac{d^2y(t)}{dt^2} - \frac{dy(t)}{dt} - 2y(t) = x(t)$$

(i) Determine H(s) as a ration of two polynomials. By taking the Laplace transform in both sides we get:

$$s^2Y(s) - sY(s) - 2Y(s) = X(s) \Rightarrow \frac{Y(s)}{X(s)} = H(s) = \frac{1}{(s-2)(s+1)} \text{ or } H(s) = \frac{1}{3} \frac{1}{s-2} - \frac{1}{3} \frac{1}{s+1}$$

(ii) Determine h(t).

Since we have no information about the ROC's, the factor $\frac{1}{3}\frac{1}{s-2}$ in time is either the function $\frac{1}{3}e^{2t}u(t)$ or the function $-\frac{1}{3}e^{2t}u(-t)$. Also, the factor $\frac{1}{3}\frac{1}{s+1}$ in time is either the function $\frac{1}{3}e^{-t}u(t)$ or the function $-\frac{1}{3}e^{-t}u(-t)$.

5

- 1. The system is stable. In that case $h(t) = -\frac{1}{3}e^{2t}u(-t) + \frac{1}{3}e^{-t}u(t)$
- 2. The system is causal. In that case $h(t) = \frac{1}{3}e^{2t}u(t) + \frac{1}{3}e^{-t}u(t)$

3. The system is neither stable nor causal. In that case $h(t) = -\frac{1}{3}e^{2t}u(-t) - \frac{1}{3}e^{-t}u(-t)$ or $h(t) = \frac{1}{3}e^{2t}u(t) - \frac{1}{3}e^{-t}u(-t)$.

Answer 5

By taking the z-transform in both sides of the input-output relationship we end up with the following expression for the z-transform of the system.

$$Y(z) - \frac{1}{2}z^{-1}Y(z) = X(z) + \frac{1}{3}z^{-1}X(z) \Rightarrow \frac{Y(z)}{X(z)} = H(z) = \frac{1 + \frac{1}{3}z^{-1}}{1 - \frac{1}{2}z^{-1}} \Rightarrow H(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{1}{3}\frac{z^{-1}}{1 - \frac{1}{2}z^{-1}}$$

Since we do not have any information about the ROC of the system's transfer function we have two different possible functions for the system's impulse response as follows:

1. The system is causal so the transform $\frac{1}{1-\frac{1}{2}z^{-1}}$ corresponds to the function $(\frac{1}{2})^n u[n]$. We also

need to use the property that if the function x[n] has z-transform X(z), the function x[n-1] has z-transform $z^{-1}X(z)$. In that case we have

$$H(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{1}{3}\frac{z^{-1}}{1 - \frac{1}{2}z^{-1}} \Rightarrow h[n] = (\frac{1}{2})^n u[n] + \frac{1}{3}(\frac{1}{2})^{n-1}u[n-1]$$

2. The system is anti-causal so the transform $\frac{1}{1-\frac{1}{2}z^{-1}}$ corresponds to the function $-(\frac{1}{2})^n u[-n-1]$.

In that case we have

$$H(z) = \frac{1}{1 - \frac{1}{2}z^{-1}} + \frac{1}{3} \frac{z^{-1}}{1 - \frac{1}{2}z^{-1}} \Rightarrow$$

$$h[n] = -(\frac{1}{2})^{n} u[-n-1] - \frac{1}{3} (\frac{1}{2})^{n-1} u[-(n-1)-1] = -(\frac{1}{2})^{n} u[-n-1] - \frac{1}{3} (\frac{1}{2})^{n-1} u[-n]$$

The system is anti-causal because h[n] = 0 for $n \ge 0$ and unstable because of the term $(\frac{1}{2})^n$ that becomes infinite when $n \to +\infty$.