SEQUENCE LISTING

<110>	BIO-RAD Pasteur	
<120>	Olignonucleotides for the detection of hepatitis B virus	
<130>	BET 04P1080	
<140> <141>		
<160>	15	
<170>	PatentIn version 3.1	
<210> <211> <212> <213>		
<400> ctccac	1 cact ttccaccaaa ctettcaaga teecagagte agggeeetgt acetteetg	gc 60
tggtgg	getee agtteaggaa cagtgageee tgeteagaat actgtetetg ceatategt	cc 120
aatctt	atcg aagactgggg accetgtgee gaacatggag agcategeat caggactee	et 180
aggacc	cctg ctcgtgttac aggcggggtt tttcttgttg acaaaaatcc tcacaatac	cc 240
acagag	stota gactogtggt ggacttotot caattttota gggggaacac cogtgtgto	et 300
tggcca	Haaat togoagtooc aaatotooag toactoacca acctgttgto otocaactt	ig 360
tcctgg	ttat cgctggatgt gtctgcggcg ttttatcatc ttcctctgca tcctgctgc	et 420
atgcct	cate ttettgttgg ttettetgga etateaaggt atgttgeeeg tttgteete	et 480
aattcc	cagga teateaacea ceageaeggg accatgeaag acttgeaeag eteetgete	ca 540
aggaac	ctct atgtttccct catgttgctg tacaaaacct acggacggaa actgcacct	g 600
tattcc	catc ccatcatctt gggctttcgc aaaataccta tgggagtggg cctcagtco	eg 660
tttctc	ettgg ctcagtttac tagtgccatt tgttcagtgg ttcgtagggc tttccccca	ac 720
tgtctg	gett teagttatat ggatgatgtg gttttggggg ceaagtetgt acaacatet	tt 780
gagtcc	cettt atacegetgt taccaatttt ettttgtett tgggtataca tttaaacee	ct 840

900

cacaaaacaa aaagatgggg atattccctt aacttcatgg gatatgtaat tgggagttgg

960 ggcacattgc cacaggaaca tattgtacaa aaaatcaaaa cgtgttttag gaaacttcct gtaaacaggc ctattgattg gaaagtatgt caacgaattg tgggtctttt ggggtttgcc 1020 1080 gcccctttca cgcaatgtgg atatcctgct ttaatgcctt tatatgcatg tatacaagca 1140 aaacaggett ttactttete gecaacttae aaggeettte taagtaaaca gtatetgaae ctttaccccg ttgctcggca acggcctggt ctgtgccaag tgtttgctga cgcaaccccc 1200 actggttggg gcttggccat aggccatcag cgcatgcgtg gaacctttgt gtctcctctg 1260 1320 ccgatccata ctgcggaact cctagccgct tgttttgctc gcagcaggtc tggggcaaaa 1380 ctcatcggga ctgacaattc tgtcgtgctc tcccgcaagt atacatcctt tccatggctg ctaggctgtg ctgccaactg gatcctgcgc gggacgtcct ttgtttacgt cccgtcggcg 1440 1500 ctgaatcccg cggacgaccc ctcccggggc cgcttggggc tctaccgccc gcttctccgc 1560 ctgttgtacc gaccgaccac ggggcgcacc tctctttacg cggactcccc gtctgtgcct 1620 teteatetge eggacegtgt geactteget teacetetge acgtegeatg gagaceaeeg 1680 tgaacgccca caggaacctg cccaaggtct tgcataagag aactcttgga ctttcagcaa 1740 tgtcaacgac cgaccttgag gcatacttca aagactgtgt gtttactgag tgggaggagt tgggggagga ggttaggtta atgatctttg tactaggagg ctgtaggcat aaattggtgc 1800 1860 gttcaccage accatgcaae tttttcacct ctgcctaatc atctcttgtt catgtcctac 1920 tgttcaagcc tccaagctgt gccttgggtg gctttgggac atggacattg acccgtataa 1980 agaatttgga gcttctgtgg agttactctc ttttttgcct tctgacttct ttcctgctgt togagatoto otogacacog cototgotot gtatogggag goottagagt otooggaaca 2040 2100 ttgttcacct caccatacgg caatcaggca agctattctg tgttggggtg agttgatgaa 2160 tctagccacc tgggtgggaa gtaatttgga agatcaagca tccagggact tagtagtcag 2220 ctatgtcaac gttaatatgg gcctaaaatt cagacaacta ttgtggtttc acatttcctg 2280 tcttacgttt gggagacaaa ctgttcttga atatttggtg tcctttggag tgtggattcg 2340 cactcctcct gcatatagac caccaaatgc ccctatctta tcaacacttc cggaaactac 2400 tgttgttaga caaagaggca ggacccctag aagaagaact ccctcgcctc gcagacgaag gtctcaatcg ccgcgtcgca gaagatctca atctcgggaa tctcaatgtt agtattcctt 2460 ggacacataa ggtgggaaac tttactgggc tttattcttc tacggtacct tgctttaatc 2520 ctaattggca aactccttct tttcctgaca ttcatttgca ggaggacatt gttgatagat 2580 2640 gtaagcaatt tgtggggccc cttacagtaa atgaaaacag gagactaaaa ttaattatgc 2700 ctgctaggtt ttatcccaat gttactaaat atttgccctt agataaaggg atcaaaccgt

attatc	caga gtatgtagtt	aatcattact	tccagacgcg	acattattta	cacactcttt	2760
ggaagg	cggg gatcttatat	aaaagagagt	ccacacgtag	cgcctcattt	tgcgggtcac	2820
catatt	cttg ggaacaagat	ctacagcatg	ggaggttggt	cttccaaacc	tcgaaaaggc	2880
atgggg	acaa atcttgctgt	ccccaatccc	ctgggattct	tccccgatca	tcagttggac	2940
cctgca	ttca aagccaactc	agacaatcca	gattgggacc	tcaacacgca	caaggactac	3000
tggccg	gacg catggaaggt	gggagtggga	gcattcgggc	cagggttcac	ccctccccat	3060
ggggga	ctgt tggggtggag	ccctcaggct	cagggcctac	tcacaactgt	gccagcagct	3120
cctcct	cctg cctccaccaa	tcggcagtca	ggaaggcagc	ctactccctt	atctccacct	3180
ctaaga	gaca ctcatccaca	ggccatgaag	tggaa			3215
<210><211><211><212><213> 220 223	2 18 DNA ' Artificial	e				
<400> gctgaa	2 tece geggaega					18
<210><211><211><212><213>	3 21 DNA Artificial					
<220> <223>	oligonucleotid	e	·			
<400> gtgcag	3 aggt gaagcgaagt	g				21
<210> <211> <212> <213>						
<220> <223>	oligonucleotid	e				
<400> gttcac	4 ggtg gtcgccatg					19
<210>	5					

<211> <212> <213>	19 DNA Artificial	
<220> <223>	oligonucleotide	
<400> gttcac	5 ggtg gtctccatg	19
<210>	6	
<211> <212> <213>	21 DNA Artificial	
<220> <223>	oligonucleotide	
<400> cgttca	6 cggt ggtcgccatg c	21
<210>	7	
<211> <212> <213>		
<220> <223>	oligonucleotide	
<400> cgttca	7 cggt ggtctccatg c	21
<210>	8 .	
<211> <212> <213>	22 DNA Artificial	
<220> <223>	oligonucleotide	
<400> ggagtc	8 cgcg taaagagagg tg	22
<210>	9	
<211> <212> <213>		

<220> <223>	oligonucleotide	
<400> ggagac	9 egeg taaagagagg tg	22
<210><211><211><212><213>		
<220> <223>	oligonucleotide	
<400> ggagtc	10 tgcg taaagagagg tg	22
<210> <211> <212> <213>	22	
<220> <223>	oligonucleotide	
<400> ggagac	11 tgcg taaagagagg tg	22
<210><211><211><212><213>	32	
<220> <223>	oligonucleotide	
<400> cggcag	12 gagt ccgcgtaaag agaggtgtgc cg	32
<210><211><211><212><213>	13 32 DNA Artificial	
<220> <223>	oligonucleotide	
<400>	13	32

<210><211><211><212><213>		
<220> <223>	oligonucleotide	
<400> cggcag	14 gagt ctgcgtaaag agaggtgtgc cg	32
<210> <211> <212> <213>	32	
<220> <223>	oligonucleotide	
<400> cggcag	15 gaga ctgcgtaaag agaggtgtgc cg	32