Série 1: Représentation des nombres entiers

Exercice 1

Écrire en base 10 les nombres suivants :

1. $101_{(2)}$

 $2. 10000_{(2)}$

3. 1111₍₂₎

4. 10101₍₂₎

5. $10_{(2)}$

6. $111000_{(2)}$

Exercice 2

Les nombres suivants sont écrit en base 10. Donner leur écriture en base 2 :

1. 75

2. 12

3. 27

4. 153

5. 100

6. 200

7. 1000

8. 2000

Exercice 3

Écrire les nombres suivants en base hexadécimal :

1. $10010010110_{(2)}$

 $2. 1111110_{(2)}$

3. $10001101011110101_{(2)}$

4. $11110000000011_{(2)}$

Exercice 4

Écrire les nombres suivants en hexadécimal :

1. 92

3. 500

2. 256

4. 1023

Exercice 5 (Compter en binaire)

- 1. Représenter en binaire les nombre 1, 2, 3, 4 et 5. Déduire une méthode pour compter en binaire.
- 2. **En utilisant une seul main**, essayer de compter jusqu'à 31.

Exercice 6

- 1. Combien de nombres peut-on représenter avec 8 bits? et 16 bits?
- 2. Quel est le plus grand nombre qu'on peut représenter avec 8 bits? et 16 bits?

Exercice 7 (Envoyer des messages secrets)

Tom est pris au piège à l'étage supérieur d'un grand magasin. Noël approche et il veut rentrer à la maison avec ses cadeaux. Que peut-il faire? Il a essayé d'appeler, et même de crier, mais il n'y a plus personne. Il peut voir de l'autre côté de la rue quelqu'un qui travaille à l'ordinateur tard ce soir. Comment pourrait-il attirer son attention? Tom regarde autour de lui et cherche ce qu'il pourrait utiliser. Il a alors une brillante idée : il peut utiliser les lumières de l'arbre de Noël pour lui envoyer un message! Il trouve toutes les lumières et les branche de manière à pouvoir les allumer et les éteindre. Il utilise un code binaire simple, dont il est sûr que la personne de l'autre côté de la rue le comprendra.

Pouvez-vous le trouver?

Corrigé Série 1 :

Ex 1

1. 5

2. 16

3. 15

4. 21

5. 3

6. 56

Ex 2

1. 1001011₍₂₎

2. $1100_{(2)}$

3. 11011₍₂₎

4. 10011001₍₂₎

5. 1100100₍₂₎

6. 11001000₍₂₎

7. $1111101000_{(2)}$

8. $1111101000111111010000_{(2)}$

Ex 3

1. 496₍₁₆₎

2. $3E_{(16)}$

3. $8D75_{(16)}$

4. $3C03_{(16)}$

Ex 4

1. 60₍₁₆₎

 $2. 100_{(16)}$

3. 1F4₍₁₆₎

4. 3FF₍₁₆₎

Ex 6

1. C'est $2^8 - 1 = 255$ pour 8 bits et $2^16 - 1 = 65535$

2. 100₍₁₆₎