

## Multiple linear regression

With multiple predictors

Prof. Dr. Jan Kirenz HdM Stuttgart Indicator and categorical predictors

#### First six rows of the loans dataset.

| interest_rate | verified_income | debt_to_income | credit_util | bankruptcy | term | credit |
|---------------|-----------------|----------------|-------------|------------|------|--------|
| 14.07         | Verified        | 18.01          | 0.548       | 0          | 60   |        |
| 12.61         | Not Verified    | 5.04           | 0.150       | 1          | 36   |        |
| 17.09         | Source Verified | 21.15          | 0.661       | 0          | 36   |        |
| 6.72          | Not Verified    | 10.16          | 0.197       | 0          | 36   |        |
| 14.07         | Verified        | 57.96          | 0.755       | 0          | 36   |        |
| 6.72          | Not Verified    | 6.46           | 0.093       | 0          | 36   |        |

#### Variables and their descriptions for the loans dataset.

| Variable        | Description                                                                                                                                                                                         |  |  |  |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| interest_rate   | Interest rate on the loan, in an annual percentage.                                                                                                                                                 |  |  |  |
| verified_income | Categorical variable describing whether the borrower's income source and amount have been verified, with levels Verified, Source Verified, and Not Verified.                                        |  |  |  |
| debt_to_income  | Debt-to-income ratio, which is the percentage of total debt of the borrower divided by their total income.                                                                                          |  |  |  |
| credit_util     | Of all the credit available to the borrower, what fraction are they utilizing. For example, the credit utilization on a credit card would be the card's balance divided by the card's credit limit. |  |  |  |
| bankruptcy      | An indicator variable for whether the borrower has a past bankruptcy in their record. This variable takes a value of $ 1 $ if the answer is $yes$ and $ 0 $ if the answer is $no$ .                 |  |  |  |
| term            | The length of the loan, in months.                                                                                                                                                                  |  |  |  |
| issue_month     | The month and year the loan was issued, which for these loans is always during the first quarter of 2018.                                                                                           |  |  |  |
| credit_checks   | Number of credit checks in the last 12 months. For example, when filing an application for a credit card, it is common for the company receiving the application to run a credit check.             |  |  |  |

Summary of a linear model for predicting interest rate based on whether the borrower has a bankruptcy in their record.

$$\widehat{\mathtt{interest\_rate}} = 12.34 + 0.74 \times \mathtt{bankruptcy}$$

Interpret the coefficient for the past bankruptcy variable in the model.

| term        | estimate | std.error | statistic | p.value |
|-------------|----------|-----------|-----------|---------|
| (Intercept) | 12.34    | 0.05      | 231.49    | <0.0001 |
| bankruptcy1 | 0.74     | 0.15      | 4.82      | <0.0001 |

Summary of a linear model for predicting interest rate based on whether the borrower has a bankruptcy in their record.

$$\widehat{\mathtt{interest\_rate}} = 12.34 + 0.74 \times \mathtt{bankruptcy}$$

The variable takes one of two values: 1 when the borrower has a bankruptcy in their history and 0 otherwise. A slope of 0.74 means that the model predicts a 0.74% higher interest rate for those borrowers with a bankruptcy in their record.

| term        | estimate | std.error | statistic | p.value |
|-------------|----------|-----------|-----------|---------|
| (Intercept) | 12.34    | 0.05      | 231.49    | <0.0001 |
| bankruptcy1 | 0.74     | 0.15      | 4.82      | <0.0001 |

#### Categorical predictor with three levels

| term                           | estimate | std.error | statistic | p.value |
|--------------------------------|----------|-----------|-----------|---------|
| (Intercept)                    | 11.10    | 0.08      | 137.2     | <0.0001 |
| verified_incomeSource Verified | 1.42     | 0.11      | 12.8      | <0.0001 |
| verified_incomeVerified        | 3.25     | 0.13      | 25.1      | <0.0001 |

The "missing level" is called the reference level and it represents the default level that other levels are measured against.

verified income

Categorical variable describing whether the borrower's income source and amount have been verified, with levels Verified, Source Verified, and Not Verified.

## Example

$$\begin{split} \texttt{interest\_rate} &= 11.10 \\ &+ 1.42 \times \texttt{verified\_income}_{\texttt{Source Verified}} \\ &+ 3.25 \times \texttt{verified\_income}_{\texttt{Verified}} \end{split}$$

$$\widehat{\mathtt{interest\_rate}} = 11.10 + 1.42 \times 0 + 3.25 \times 0 = 11.10$$

$$\mathtt{interest\_rate} = 11.10 + 1.42 \times 1 + 3.25 \times 0 = 12.52$$

#### Categorical predictors with multiple levels

- Categorical variable that has k levels where k>2
- Software will provide a coefficient for k-1 of those levels.
- For the last level that does not receive a coefficient, this is the reference level, and the coefficients listed for the other levels are all considered relative to this reference level.

# Many predictors in a model

## Multiple regression

```
interest\_rate = b_0
                          +\ b_{	exttt{1}} 	imes 	exttt{verified\_income}_{	exttt{Source Verified}}
                          + b_2 	imes 	exttt{verified}_income_Verified
                          +b_3 \times \texttt{debt\_to\_income}
                          + b_4 	imes \mathtt{credit\_util}
                          +b_5 \times \mathtt{bankruptcy}
                          +b_6 	imes 	exttt{term}
                          + b_9 	imes \mathtt{credit\_checks}
                          + b_7 	imes 	exttt{issue\_month}_{	exttt{Jan-2018}}
                          + b_8 	imes 	exttt{issue\_month}_{	exttt{Mar-2018}}
```

We select values for  $b_0$ ,  $b_1$ , ...  $b_9$  that minimize the sum of the squared residuals

$$SSE = e_1^2 + e_2^2 + \dots + e_{10000}^2 = \sum_{i=1}^{10000} e_i^2 = \sum_{i=1}^{10000} \left(y_i - \hat{y}_i
ight)^2$$

## Output for the regression model

| term                           | estimate | std.error | statistic | p.value |
|--------------------------------|----------|-----------|-----------|---------|
| (Intercept)                    | 1.89     | 0.21      | 9.01      | <0.0001 |
| verified_incomeSource Verified | 1.00     | 0.10      | 10.06     | <0.0001 |
| verified_incomeVerified        | 2.56     | 0.12      | 21.87     | <0.0001 |
| debt_to_income                 | 0.02     | 0.00      | 7.43      | <0.0001 |
| credit_util                    | 4.90     | 0.16      | 30.25     | <0.0001 |
| bankruptcy1                    | 0.39     | 0.13      | 2.96      | 0.0031  |
| term                           | 0.15     | 0.00      | 38.89     | <0.0001 |
| credit_checks                  | 0.23     | 0.02      | 12.52     | <0.0001 |
| issue_monthJan-2018            | 0.05     | 0.11      | 0.42      | 0.6736  |
| issue_monthMar-2018            | -0.04    | 0.11      | -0.39     | 0.696   |

## Multiple regression model

$$\hat{y}=b_0+b_1x_1+b_2x_2+\cdots+b_kx_k$$

## Adjusted R-squared

#### R-squared

$$R^2 = 1 - rac{ ext{variability in residuals}}{ ext{variability in the outcome}} = 1 - rac{Var(e_i)}{Var(y_i)}$$

- **Var** = variance ( $s^2$ )
- e<sub>i</sub> = residuals of the model for observation i
- **y**<sub>i</sub> = outcome for observation i

Problem: regular R<sup>2</sup> is a biased estimate of the amount of variability explained by the model when applied to model with more than one predictor.

#### Adjusted R-squared as a tool for model assessment.

$$egin{aligned} R_{adj}^2 &= 1 - rac{s_{ ext{residuals}}^2/(n-k-1)}{s_{ ext{outcome}}^2/(n-1)} \ &= 1 - rac{s_{ ext{residuals}}^2}{s_{ ext{outcome}}^2} imes rac{n-1}{n-k-1} \end{aligned}$$

**n**: number of observations used to fit the model

**k**: number of predictor variables in the model.

#### Model selection

#### Common issue in multiple regression

- Correlation among predictor variables is not good.
- Two predictor variables are collinear (pronounced as co-linear) when they are correlated
- This "multicollinearity" complicates model estimation.

#### Full model vs parsimonious model

- **Full model:** model that includes all available predictors
- Often not desirable

#### Parsimonious model

 A model that achieves a desired level of goodness of fit (R<sup>2</sup>) using as few explanatory variables as possible

#### Stepwise selection

#### **Backward elimination**

- Starts with model that includes all potential predictor variables.
- Variables are eliminated one-at-a-time from the model until we cannot improve the model any further.

#### Forward selection

- We add variables one-at-a-time
- Until we cannot find any variables that improve the model any further.

#### Terms you should know

adjusted R-squared
backward elimination
degrees of freedom
forward selection

full model
multicollinearity
multiple regression
parsimonious

reference level stepwise selection