

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ им. Н. Э. БАУМАНА

Национальный Исследовательский Университет техники и технологий

Факультет «Специальное машиностроение» Кафедра «Космические аппараты и ракеты-носители»

Домашнее задание №1 по курсу: «Тепловые режимы космических аппаратов» Вариант № 11

Выполнила: Чжан Юе Группа: СМ1И-82Б Проверил: Леонов В.В.

1. Заданные условия и исходные данные

Герметичная кабина корабля с человеком находится на Луне в течение времени τ . Наружная поверхность кабины корабля окрашена белой краской. Пол кабины идеально теплоизолирован от двигательной установки. Заданы форма и размер кабины корабля. Температура внутри должна поддерживаться равной T_0 = 297 K (24 °C).

Определить для рассматриваемых условий нуждается ли человек в системе охлаждения (обогрева) и требуется ли для кабины специальная изоляция.

Дать рекомендации относительно требуемой системы обеспечения теплового режима. Расчёты выполнить для периода пребывания аппарата на Луне в течение $\tau=21$ земных суток, считая от рассвета. Выделение энергии человеком принять равным Q=160 Вт; приборами $Q_{\rm пp}=400$ Вт; $A_s=0.18$; $q_s=1400$ Вт/м²; $\varepsilon_0=0.95$; $\varepsilon_{\rm n}=0.95$; $\varepsilon=0.05$ (для фольги).

Рис. к заданию. Форма кабины КА

Дано:

$$r_1 = 2$$
 m; $r_2 = 0.3$ m; $h = 3$ m.

Принять:

$$\varphi_{m,n} = \frac{1 - \cos \eta}{2}$$

2. Подготовка к расчёту

Сначала определим геометрические параметры аппарата.

Угол η усечённого конуса:

$$\eta = \tan^{-1} \frac{h}{r_1 - r_2} = 60,46^{\circ}$$

Длина образующей усечённого конуса:

$$l = \frac{h}{\sin \eta} = 3,448 \text{ M}$$

Площадь круговой крышки:

$$F_{\rm kp} = \pi r_2^2 = 0.283 \, {\rm m}^2$$

Площадь боковой поверхности:

$$F_6 = \pi l(r_1 + r_2) = 24,915 \text{ m}^2$$

Диффузный средний угловой коэффициент, определяющий долю собственного излучения лунной поверхности, падающей на боковую поверхность аппарата:

$$\varphi_{m,n.6} = \frac{1 - \cos \eta}{2} = 0.253$$

Диффузный средний угловой коэффициент, определяющий долю собственного излучения лунной поверхности, падающей на крышку аппарата:

$$\varphi_{m,n.\mathrm{Kp}} = \frac{1 - \cos \eta_{\mathrm{Kp}}}{2} = 0$$

где $\eta_{\rm kp}=0$, т.к. поверхность параллельна поверхности Луны.

Период движения 21 земных суток. Наш аппарат будет испытывать и лунный день, и ночь.

В лунный день угол между направлением на Солнце и горизонталью (угол возвышения Солнца) можно найти по формуле:

$$\beta_S(\tau_a) = \frac{90 \cdot \tau_a}{7}$$

Температура лунной поверхности в условиях лунного дня соответствует формуле:

$$T_{m.\text{A}}(\tau_a) = 373,5(\sin\beta_S)^{\frac{1}{6}}$$

Очевидно, аппарат находится под горизонтом. Предыдущая формула для определения температуры лунной поверхности теряет значение. В это время температура поверхности Луны принимаем равной 111 К.

$$T_{m.H} = 111 K$$

Зависимость температуры лунной поверхности от времени суток описывается следующей функции

$$T_m(\tau_a) = \begin{cases} 373.5(\sin\beta_S(\tau_a))^{\frac{1}{6}}, & 0 \le \tau_a < 14\\ 111, & 14 \le \tau_a \le 21 \end{cases}$$

Нарисуем график температуры в зависимости от времени соток:

Рис. 2.1 Изменение температуры поверхности Луны во времени

Температура внешнего экрана зависит не только от температуры наружной поверхности, но и от следующих коэффициентов:

$$T_n = \sqrt[4]{\frac{T_0^4 + C_2 \cdot C_3}{1 + C_1 \cdot C_2}}$$

где

$$C_{1} = \frac{(2 - \varepsilon)\varepsilon_{n}}{\varepsilon} = 37,05$$

$$C_{2}(n) = \frac{\varepsilon_{0} + \varepsilon - \varepsilon_{0}\varepsilon}{\varepsilon_{0}(2 - \varepsilon)} + n - 1$$

$$C_{3} = \frac{2 - \varepsilon}{\varepsilon\sigma} \left(\varepsilon_{n}\sigma T_{m}^{4}\varphi_{m,n} + A_{S}q_{S}\cos\theta_{S}\right)$$

3. Расчёт теплового режима герметичной кабины дискретным способом с учётом максимальных значений теплового потока

Анализируем самый суровый случай. В условиях лунного дня рассмотрим тепловой режим, когда угол возвышения солнца β_S равен 90°. В этом случае происходит наибольший внешний нагрев модуля. А в условиях лунной ночи следует наименьший внешний нагрев.

(1). В условиях лунного дня

Т.к. плоскость крышки параллельна лунной поверхности и не обращена к ней, для крышки плотность теплового потока вычисляется по следующей формуле:

$$q_{n.\text{кр.д}} = \varepsilon_n \sigma \left(\frac{T_0^4 + C_2(n) \cdot C_{3.\text{кр.д}}}{1 + C_1 \cdot C_2(n)} \right) - \varepsilon_n \sigma T_m^4 \varphi_{m,n.\text{кр}} - A_S q_S \cos \theta_{S.\text{кр.д}}$$

$$\xrightarrow{\varphi_{m,n.\text{кp}} = 0, \quad \theta_{S.\text{кр.д}} = 0^{\circ}} \varepsilon_n \sigma \left(\frac{T_0^4 + C_2(n) \cdot C_{3.\text{кр.д}}}{1 + C_1 \cdot C_2(n)} \right) - A_S q_S$$

где

$$C_{3.\text{Kp.d}} = \frac{2 - \varepsilon}{\varepsilon \sigma} \left(\varepsilon_n \sigma T_m^4 \varphi_{m,n.\text{Kp}} + A_S q_S \cos \theta_{S.\text{Kp.d}} \right)$$

$$\xrightarrow{\varphi_{m,n.\text{Kp}} = 0, \quad \theta_{S.\text{Kp.d}} = 0^{\circ}} \frac{2 - \varepsilon}{\varepsilon \sigma} \cdot A_S q_S = 1,733 \cdot 10^{11} \frac{\text{BT}}{\text{M}^2}$$

В этом случае тепловой поток, проходящий через крышку:

$$Q_{\text{кр.д}} = q_{n.\text{кр.д}} \cdot F_{\text{кр}}$$

Рассмотрим боковую стенку.

Угол θ_S для боковой стенки можно найти по следующей схеме:

Рис. 3.1 К определению угла θ_S

При
$$eta_S = 90^\circ$$
, $heta_{S.6} = \eta = 60,46^\circ$. Тогда
$$q_{n.6.\mathrm{д}} = \varepsilon_n \sigma \left(\frac{T_0^4 + C_2(n) \cdot C_{3.6.\mathrm{д}}}{1 + C_1 \cdot C_2(n)} \right) - \varepsilon_n \sigma T_m^4 \varphi_{m,n.6} - A_S q_S \cos \theta_{S.6}$$

где

$$arphi_{m,n.6} = 0,253$$

$$C_{3.6.д} = \frac{2 - \varepsilon}{\varepsilon \sigma} \left(\varepsilon_n \sigma T_m^4 \varphi_{m,n.6} + A_S q_S \cos \theta_{S.6} \right) = 2,682 \cdot 10^{11} \; \frac{\mathrm{Br}}{\mathrm{m}^2}$$

Следовательно, тепловой поток через боковую стенку:

$$Q_{\text{б.д}} = q_{n.\text{б.д}} \cdot F_{\text{б}}$$

Суммарный результирующий поток в условиях лунного дня:

$$Q_{\Sigma.\mathrm{d}} = Q_{\mathrm{kp.d}} + Q_{\mathrm{d.d}} - Q - Q_{\mathrm{np}}$$

где Q — тепловой поток, выделяемый человеком; $Q_{\rm np}$ — тепловой поток, выделяемый приборами.

(2). В условиях лунной ночи

Для крышки

$$q_{n.\mathrm{Kp.H}} = \varepsilon_n \sigma \left(\frac{T_0^4 + C_2(n) \cdot C_{3.\mathrm{Kp.H}}}{1 + C_1 \cdot C_2(n)} \right) - \varepsilon_n \sigma T_m^4 \varphi_{m,n.\mathrm{Kp}}$$

$$\xrightarrow{\varphi_{m,n.\mathrm{Kp}} = 0} \varepsilon_n \sigma \cdot \frac{T_0^4}{1 + C_1 \cdot C_2(n)}$$

где

$$C_{3.\text{Kp.H}} = \frac{2 - \varepsilon}{\varepsilon \sigma} \cdot \varepsilon_n \sigma T_m^4 \varphi_{m,n.\text{Kp}}$$
$$\xrightarrow{\varphi_{m,n.\text{Kp}} = 0} 0 \xrightarrow{\text{BT}_{\text{M}^2}}$$

Тепловой поток, проходящий через крышку в условиях лунной ночи:

$$Q_{\text{кр.н}} = q_{n.\text{кр.н}} \cdot F_{\text{кр}}$$

Для боковой стенки

$$q_{n.\text{б.H}} = \varepsilon_n \sigma \left(\frac{T_0^4 + C_2(n) \cdot C_{3.\text{б.H}}}{1 + C_1 \cdot C_2(n)} \right) - \varepsilon_n \sigma T_m^4 \varphi_{m,n.\text{б}}$$

где

$$arphi_{m,n.6} = 0.253$$

$$C_{3.6.H} = \frac{2 - \varepsilon}{\varepsilon \sigma} \cdot \varepsilon_n \sigma T_m^4 \varphi_{m,n.6} = 1.426 \cdot 10^9 \frac{\text{BT}}{\text{M}^2}$$

Тепловой поток через боковую стенку:

$$Q_{\text{б.н}} = q_{n.\text{б.н}} \cdot F_{\text{б}}$$

Суммарный результирующий поток в условиях лунного дня:

$$Q_{\Sigma.H} = Q_{\mathrm{\kappa p.H}} + Q_{6.H} - Q - Q_{\mathrm{np}}$$

Для нахождения рационального числа применяемых слоёв ЭВТИ нужно контролировать разность тепловых потоков в условиях лунных дня и ночи в диапазоне 5-10% Q_{Σ} . Рассчитаем ΔQ при разных значениях числа ЭВТИ n.

При n=1	$Q_{\sum D}(1) = -521.422$	Вт	$Q_{\sum N}(1) = -35.847$ Bt	$\Delta Q(1) = -485.576$	Вт
При n=2	$Q_{\sum D}(2) = -546.454$	Вт	$Q_{\sum N}(2) = -375.95$ Bt	$\Delta Q(2) = -170.504$	Вт
При n=3	$Q_{\sum D}(3) = -551.785$	Вт	$Q_{\Sigma N}(3) = -448.377 \text{ Bt}$	$\Delta Q(3) = -103.407$	Вт
При n=4	$Q_{\sum D}(4) = -554.105$	Вт	$Q_{\sum N}(4) = -479.899 \text{ Bt}$	$\Delta Q(4) = -74.206$	Вт
При n=5	$Q_{\Sigma D}(5) = -555.403$	Вт	$Q_{\Sigma N}(5) = -497.538 \text{ Bt}$	$\Delta Q(5) = -57.865$	Вт
При n=6	$Q_{\Sigma D}(6) = -556.232$	Вт	$Q_{\sum N}(6) = -508.81$ Br	$\Delta Q(6) = -47.422$	Вт

Таблица 3.1

n	$Q_{\Sigma, \mathcal{A}}/\mathrm{B}$ T	$Q_{\Sigma, ext{H}}/ ext{B} ext{T}$	$\Delta Q/\mathrm{B_T}$
1	-521,422	-35,847	-485,576
2	-546,454	-375,95	-170,504
3	-551,785	-448,377	-103,407
4	-554,105	-479,899	-74,206
5	-555,403	-497,538	-57,865
6	-556,232	-508,81	-47,422

Анализируя значения ΔQ приходим к выводу, что для обеспечения заданного теплового режима рационально использовать 6 экрана ЭВТИ, так как это соответствует тому, что изменение теплового потока занимает 5-10% доли суммарного результирующего теплового потока, что позволяет регулировать температуру внутри кабины активной СОТР. При этом необходимо установить на аппарате холодильное устройство, чтобы удовлетворить условию равновесия внутри кабины $Q_{\Sigma}=0$.

4. Расчёт теплового режима герметичной кабины для всех возможных случаев положения Солнца

(1). Рассмотрим боковую стенку

Создаём пространственную декартовую систему координат. Запишем уравнение описания боковой поверхности усечённого конуса.

$$F(x, y, z) = \frac{x^2}{r_2^2} + \frac{y^2}{r_2^2} - \frac{(z+c)^2}{b^2}, \qquad (0 \le z \le h)$$

$$F(x, y, z) := \begin{bmatrix} \frac{x^2}{r_2^2} + \frac{y^2}{r_2^2} - \frac{(z+c)^2}{b^2} & \text{if } 0 \le z \le h \\ 0 & \text{otherwise} \end{bmatrix}$$

где искомые константы c и b определяются следующим образом:

$$c = \frac{r_1 \cdot h}{r_2 - r_1} = -3,529$$
$$b = h + c = -0,529$$

Компоненты вектора направления нормали к поверхности усечённого конуса:

$$x_n = \frac{\partial F(x, y, z)}{\partial x} = \frac{2x}{r_2^2}$$
$$y_n = \frac{\partial F(x, y, z)}{\partial y} = \frac{2y}{r_2^2}$$
$$z_n = \frac{\partial F(x, y, z)}{\partial z} = -\frac{2(z + c)}{b^2}$$

Преобразуем декартовую с.к. в цилиндрическую. Делаем следующие замены

$$x = r \cos \varphi, y = r \sin \varphi, z = z$$

Тогда уравнение описания боковой поверхности принимает вид

$$F(r,\varphi,z) = \frac{r^2 \cos^2 \varphi}{r_2^2} + \frac{r^2 \sin^2 \varphi}{r_2^2} - \frac{(z+c)^2}{b^2}, \qquad (0 \le z \le h)$$

А соответствующие компоненты вектора направления нормали к поверхности усечённого конуса

$$x_n = \frac{2x}{r_2^2} = \frac{2r\cos\varphi}{r_2^2}$$
$$y_n = \frac{2y}{r_2^2} = \frac{2r\sin\varphi}{r_2^2}$$
$$z_n = -\frac{2(z+c)}{b^2}$$

При z = 0, $r = r_1$. Тогда

$$x_n(\varphi) = \frac{2r_1cos\varphi}{r_2^2}$$
$$y_n(\varphi) = \frac{2r_1sin\varphi}{r_2^2}$$
$$z_n(\varphi) = -\frac{2c}{b^2}$$

$$x_{\mathbf{n}}(\varphi) := \frac{2r_{1} \cdot \cos(\varphi)}{r_{2}^{2}}$$

$$y_{\mathbf{n}}(\varphi) := \frac{2r_{1} \cdot \sin(\varphi)}{r_{2}^{2}}$$

$$z_{\mathbf{n}}(\varphi) := \frac{-2c}{b^{2}}$$

Теперь определим угол между направлением на Солнце и нормалью к боковой поверхности. Компоненты единичного вектора направления на Солнце:

$$x_s(\tau_a) = cos[\beta_s(\tau_a)]$$

$$y_s(\tau_a) = 0$$

$$z_s(\tau_a) = sin[\beta_s(\tau_a)]$$

$$x_s(\tau_a) := cos(\beta_s(\tau_a))$$

$$y_s(\tau_a) := 0$$

$$z_s(\tau_a) := sin(\beta_s(\tau_a))$$

Косинус угла между направлением на Солнце и нормалью к боковой поверхности определяется путём вычисления деления скалярного произведения на произведение модулей векторов. Так как один из них является ортом, в знаменателе будет лишь модуль вектора нормали боковой поверхности.

$$\begin{aligned} \cos\theta_{s.6}(\tau_a,\varphi) &= \frac{x_s(\tau_a) \cdot x_n(\varphi) + y_s(\tau_a) \cdot y_n(\varphi) + z_s(\tau_a) \cdot z_n(\varphi)}{\sqrt{x_n^2(\varphi) + y_n^2(\varphi) + z_n^2(\varphi)}} \\ &\cos\Theta_{\mathbf{s}}(\tau_a,\varphi) \coloneqq \frac{\mathbf{x_s}(\tau_a) \cdot \mathbf{x_n}(\varphi) + \mathbf{y_s}(\tau_a) \cdot \mathbf{y_n}(\varphi) + z_s(\tau_a) \cdot z_n(\varphi)}{\sqrt{\mathbf{x_n}(\varphi)^2 + y_n(\varphi)^2 + z_n(\varphi)^2}} \end{aligned}$$

Иногда не всю поверхность освещает Солнце. Из математической алгебры если скалярное произведение двух векторов меньше нуля, то они образуют тупой угол. В нашем случае те места, где вектор нормали поверхности и вектор направления на Солнце образуют тупой угол, соответствуют теневым участкам. Следовательно, для теневых участков числитель выражения $cos\theta_{s.6}(\tau_a, \varphi)$ будет меньше нуля. С учётом этого факта имеем:

$$cos\theta_{s.6}(au_a, arphi) = egin{cases} cos heta_{s.6}(au_a, arphi), & \text{при } cos heta_s(au_a, arphi) > 0, au_a < 14 \\ 0 & \text{для остальных случаев} \end{cases}$$

$$\cos\Theta_{s}(\tau_{a}, \varphi) := \begin{bmatrix} \cos\Theta_{s}(\tau_{a}, \varphi) & \text{if } \cos\Theta_{s}(\tau_{a}, \varphi) > 0 \land \tau_{a} < 14 \\ 0 & \text{otherwise} \end{bmatrix}$$

В этом случае

$$C_{1} = \frac{(2 - \varepsilon) \cdot \varepsilon_{n}}{\varepsilon}$$

$$C_{2}(n) = \frac{\varepsilon_{0} + \varepsilon - \varepsilon_{0} \cdot \varepsilon}{\varepsilon_{0}(2 - \varepsilon)} + n - 1$$

$$C_{3.6}(\tau_{a}, \varphi) = \frac{2 - \varepsilon}{\varepsilon \cdot \sigma} \left[\varepsilon_{n} \sigma \cdot T_{m}^{4}(\tau_{a}) \cdot \varphi_{m,n.6} + A_{s} q_{s} \cos \theta_{s.6} (\tau_{a}, \varphi) \right]$$

$$C_{1} = \frac{(2 - \varepsilon) \cdot \varepsilon_{n}}{\varepsilon}$$

$$C_{2}(n) = \frac{\varepsilon_{0} + \varepsilon - \varepsilon_{0} \cdot \varepsilon}{\varepsilon_{0} \cdot (2 - \varepsilon)} + n - 1$$

$$C_{3}(\tau_{a}, \varphi) = \frac{2 - \varepsilon}{\varepsilon \cdot \sigma} \cdot \left(\varepsilon_{n} \cdot \sigma \cdot T_{m}(\tau_{a})^{4} \cdot \varphi_{mn} + A_{s} \cdot q_{s} \cdot \cos \Theta_{s}(\tau_{a}, \varphi) \right)$$

Плотность теплового потока внешней поверхности

$$\begin{split} q_{n.6}(\tau_a,\varphi,n) &= \varepsilon_n \sigma \left[\frac{T_0^4 + C_2(n) \cdot C_{3.6}(\tau_a,\varphi)}{1 + C_1 \cdot C_2(n)} \right] - \varepsilon_n \sigma T_m^4(\tau_a) \varphi_{m,n.6} - A_S q_S \cos \theta_{S.6} \left(\tau_a,\varphi \right) \\ q_{n.6}(\tau_a,\varphi,n) &= \varepsilon_n \cdot \sigma \cdot \left(\frac{T_0^4 + C_2(n) \cdot C_{31}(\tau_a,\varphi)}{1 + C_1 \cdot C_2(n)} \right) - \varepsilon_n \cdot \sigma \cdot T_m(\tau_a)^4 \cdot \varphi_{mn} - A_s \cdot q_s \cdot \cos \Theta_s(\tau_a,\varphi) \end{split}$$

(2). Рассмотрим крышку

Для крышки проще определить угол θ_s . Его косинус соответствует выражению

$$cos\theta_{s.kp}(\tau_a) = \begin{cases} cos\left[\frac{\pi}{2} - \beta_s(\tau_a)\right], & 0 \le \tau_a \le 14 \\ 0, & 14 < \tau_a \le 21 \end{cases}$$

$$cos\Theta_{sp}(\tau_a) := cos\left(\frac{\pi}{2} - \beta_s(\tau_a)\right)$$

$$cos\Theta_{sp}(\tau_a) := \begin{bmatrix} cos\Theta_{sp}(\tau_a) & \text{if } 0 \le \tau_a \le 14 \\ 0 & \text{otherwise} \end{cases}$$

В этом случае отличается $C_{3, \text{кр}}(\tau_a, \varphi)$

$$C_{3.\text{Kp}}(\tau_a) = \frac{2 - \varepsilon}{\varepsilon \cdot \sigma} \cdot A_S q_S \cos \theta_{S.\text{Kp}}(\tau_a)$$

$$C_{32}(\tau_a) := \frac{2 - \varepsilon}{\varepsilon \cdot \sigma} \cdot (A_s \cdot q_s \cdot \cos \Theta_{sp}(\tau_a))$$

Плотность теплового потока внешней поверхности

$$\begin{split} q_{n.\mathrm{Kp}}(\tau_a, n) &= \varepsilon_n \sigma \left[\frac{T_0^4 + C_2(n) \cdot C_{3.\mathrm{Kp}}(\tau_a)}{1 + C_1 \cdot C_2(n)} \right] - A_S q_S \cos \theta_{S.\mathrm{Kp}} \left(\tau_a \right) \\ q_{n, 2}(\tau_a, n) &= \varepsilon_n \cdot \sigma \cdot \left(\frac{T_0^4 + C_2(n) \cdot C_{32}(\tau_a)}{1 + C_1 \cdot C_2(n)} \right) - A_s \cdot q_s \cdot \cos \Theta_{sp}(\tau_a) \end{split}$$

Суммарный результирующий тепловой поток:

$$\begin{split} Q_{\Sigma}(\tau_{a},n) &= \int_{0}^{2\pi} \frac{q_{n.6}(\tau_{a},\varphi,n)}{2\pi} \cdot F_{6} d\varphi + q_{n.\mathrm{Kp}}(\tau_{a},n) \cdot F_{\mathrm{Kp}} - Q - Q_{\mathrm{пр}} \\ Q_{\Sigma}(\tau_{\mathbf{a}},\mathbf{n}) &\coloneqq \int_{0}^{2\pi} \mathbf{q}_{\mathbf{n}\mathbf{1}}(\tau_{\mathbf{a}},\varphi,\mathbf{n}) \cdot \frac{\mathbf{F}_{1}}{2\pi} \, \mathrm{d}\varphi + \mathbf{q}_{\mathbf{n}\mathbf{2}}(\tau_{\mathbf{a}},\mathbf{n}) \cdot \mathbf{F}_{2} - Q \\ &\qquad \qquad \text{(в программе } Q = Q + Q_{\mathrm{пр}} = 560 \; \mathrm{BT}) \end{split}$$

Построим графики $Q_{\Sigma}(n)$ в течение 21 суток.

Рис. 4.1 Изменение Q_{Σ} при разных числах ЭВТИ в течение 21 суток

Определим разность между максимумом и минимумом теплового потока в течение 21 суток при разных числах ЭВТИ.

for
$$\tau_{\mathbf{a}} \in 0..21$$

$$\Delta Q(\mathbf{n}) \leftarrow \max (Q_{\Sigma}(\tau_{\mathbf{a}},\mathbf{n})) - \min (Q_{\Sigma}(\tau_{\mathbf{a}},\mathbf{n}))$$
 При $\mathbf{n}=1$ $\Delta Q(1) = -485.576$ При $\mathbf{n}=2$ $\Delta Q(2) = -170.504$ При $\mathbf{n}=3$ $\Delta Q(3) = -103.407$ При $\mathbf{n}=4$ $\Delta Q(4) = -74.206$ При $\mathbf{n}=5$ $\Delta Q(5) = -57.865$ При $\mathbf{n}=6$ $\Delta Q(6) = -47.422$

Полученные результаты нанесены в таблицу 4.1:

Таблица 4.1

n	$\Delta Q/{ m BT}$
1	-485,576
2	-170,504
3	-103,407
4	-74,206
5	-57,865
6	-47,422

Полученные результаты совпадают с теми, определёнными в п. 3. Аналогично, для обеспечения заданного теплового режима рационально использовать 6 экранов ЭВТИ, т.к. при этом суммарный тепловой поток колеблется в диапазоне 5-10% своего значения.

В итоге можно делать следующие выводы:

- ЭВТИ необходима для защиты кабины в течение 21 суток;
- рациональное число экранов 6;
- для обеспечения заданной температуры внутри кабины кроме ЭВТИ ещё требуется активная СОТР с холодильным устройством.