Projet 9

Prédisez la demande en électricité

Predict electricity demand

Notre objectif

En tant qu'employé d'Enercoop, une entreprise spécialisée dans les énergies renouvelables, nous devons trouver un moyen de prévoir la demande afin de pouvoir fournir une offre adéquate.

Notre jeu de données

Nos données :

- La consommation mensuelle d'électricité de rte-france.com
- Données de température de GRDF

Mois	Qualité	Territoire	Production totale	Production nucléaire	Production thermique totale	Production thermique charbon	Production thermique fioul	Production thermique gaz
2012-01-01	Données définitives	France	57177	42811.0	5399	741.0	691	3967
2012-02-01	Données définitives	France	54419	38661.0	8721	2511.0	1309	4901
2012-03-01	Données définitives	France	48583	37549.0	5276	1435.0	666	3175
2012-04-01	Données définitives	France	44192	33100.0	3484	1655.0	486	1343
2012-05-01	Données définitives	France	40433	29058.0	1772	85 <mark>4.</mark> 0	368	549

92	JAN	FÉV	MAR	AVR	MAI	JUN	JUI	AOÛ	SEP	ОСТ	NOV	DÉC	Total
2021	396.7	302.8	271.0	228.3	138.3	1.4	0.0	0.0	0.0	0.0	0.0	0.0	1338.2
2020	339.0	249.6	268.6	81.4	65.7	20.6	0.9	4.5	34.3	157.5	227.2	336.8	1785.9
2019	404.9	268.3	233.1	168.5	117.9	24.4	0.0	1.7	26.7	133.7	282.6	327.3	1989.0
2018	303.4	432.6	314.3	119.7	55.9	8.1	0.0	3.3	34.3	122.4	282.5	325.9	2002.2
2017	467.9	278.4	206.1	182.6	75.0	9.4	1.0	6.8	62.6	99.4	282.6	369.0	2040.6
2016	364.4	321.6	321.1	212.1	88.1	27.5	5.7	3.2	11.7	176.0	285.6	390.8	2207.3
2015	392.0	365.7	275.5	141.1	91.5	15.8	6.9	6.1	71.9	176.9	195.0	248.1	1986.2
2014	324.4	281.9	223.9	135.5	100.2	19.1	8.3	19.3	16.0	92.3	222.6	368.2	1811.5
2013	429.2	402.2	376.6	209.5	158.4	43.6	0.6	5.0	41.5	105.0	303.9	349.5	2424.8
2012	336.0	435.9	201.9	230.3	83.3	35.0	12.4	2.4	58.0	154.6	296.2	345.9	2191.5
2011	392.0	304.8	243.1	77.6	43.4	31.4	15.0	11.9	23.2	127.6	226.6	312.7	1809.0
2010	499.2	371.4	294.5	165.3	140.9	22.6	0.0	11.1	52.3	172.2	310.0	512.0	2551.1
2009	486.8	365.7	293.2	135.1	82.2	39.8	3.1	0.9	26.9	149.6	224.7	411.8	2219.7

Notre jeu de données

```
print((df.isna().sum()/df.shape[0]*100).round(2))
 2 print('')
 3 print(df.duplicated().sum())
Qualité
                                              0.00
Territoire
                                              0.00
                                             0.00
Production totale
Production nucléaire
                                             34.93
                                             0.00
Production thermique totale
Production thermique charbon
                                             30.58
Production thermique fioul
                                              0.00
Production thermique gaz
                                              0.00
                                              0.00
Production hydraulique
Production éolien
                                              0.00
                                             0.00
Production solaire
Production bioénergies
                                              0.00
                                              0.00
Consommation totale
Solde exportateur
                                              5.99
Echanges export
                                             91.30
Echanges import
                                             91.30
                                             91.30
Echanges avec le Royaume-Uni
Echanges avec l'Espagne
                                             91.30
Echanges avec l'Italie
                                             91.30
Echanges avec la Suisse
                                             91.30
Echanges avec l'Allemagne et la Belgique
                                             92.44
dtype: float64
```

1	df.Territoire.value_	counts
Fra	nce	119
Gra	nd-Est	107
Hau	ts-de-France	107
Nor	mandie	107
Occ.	itanie	107
Bre	tagne	107
Bou	rgogne-Franche-Comté	107
Auv	ergne-Rhône-Alpes	107
Nou	velle-Aquitaine	107
Ile	-de-France	107
Pay	s-de-la-Loire	107
Cen	tre-Val de Loire	107
PAC	A	107
Nam	e: Territoire, dtype:	int64

Grand pourcentage de valeurs manquantes dans certaines colonnes, mais elles ne semblent pas importantes. Le cadre de données n'a pas de valeurs dupliquées.

La dataframe est divisée en régions, mais contient également des données globales pour l'ensemble du pays (France).

Notre jeu de données

```
1 # supprimer les régions, consolider les données en tant que France seulement
   # remove regions, consolidate data as France only
    df = df.loc[df['Territoire'] == 'France']
 1 print((df.isna().sum()/df.shape[0]*100).round(2))
Oualité
                                             0.00
Territoire
                                             0.00
Production totale
                                             0.00
Production nucléaire
                                             0.00
Production thermique totale
                                             0.00
Production thermique charbon
                                             0.00
Production thermique fioul
                                            0.00
Production thermique gaz
                                             0.00
Production hydraulique
                                             0.00
Production éolien
                                             0.00
Production solaire
                                             0.00
Production bioénergies
                                             0.00
                                             0.00
Consommation totale
Solde exportateur
                                             0.00
                                             0.00
Echanges export
Echanges import
                                             0.00
                                             0.00
Echanges avec le Royaume-Uni
Echanges avec l'Espagne
                                             0.00
Echanges avec l'Italie
                                             0.00
Echanges avec la Suisse
                                             0.00
Echanges avec l'Allemagne et la Belgique
                                          10.92
dtype: float64
```

Nous isolons les données de la France et vérifions à nouveau les valeurs manquantes. Cette fois, nous n'avons aucune valeur manquante dans nos colonnes critiques (telles que la production et la consommation).

Relations entre les variables

Consommation d'électricité en France

Lorsque nous traçons la consommation d'électricité de la France, nous pouvons voir son historique et des pics de saisonnalité évidents.

Corrigez les données de consommation mensuelles de l'effet température (dues au chauffage électrique) en utilisant une régression linéaire

Régression linéaire

```
# Regression lineare avec statsmodels
    # Linear regression with statsmodels
    electr total = df['Consommation totale']
    DJU var = df['DJU']
    linreg = smf.ols('electr total ~ DJU var', data=df).fit()
   print(linreg.summary())
                             OLS Regression Results
Dep. Variable:
                                         R-squared:
                                                                            0.937
                          electr total
Model:
                                   OLS
                                         Adj. R-squared:
                                                                            0.936
Method:
                                                                            1654.
                         Least Squares
                                         F-statistic:
                     Tue, 29 Mar 2022
                                         Prob (F-statistic):
                                                                         6.57e-69
Date:
Time:
                              15:52:22
                                         Log-Likelihood:
                                                                          -1014.7
No. Observations:
                                                                            2033.
                                         AIC:
Df Residuals:
                                         BIC:
                                                                            2039.
Df Model:
Covariance Type:
                                                               [0.025
                                                                           0.9751
            3.111e+04
                          271.567
                                     114.544
                                                   0.000
                                                            3.06e+04
                                                                         3.16e+04
Intercept
                                                   0.000
DJU var
Omnibus:
                                 5.080
                                         Durbin-Watson:
                                                                            1.531
Prob (Omnibus):
                                 0.079
                                         Jarque-Bera (JB):
                                                                            4.589
                                -0.387
                                         Prob(JB):
                                                                            0.101
Skew:
Kurtosis:
                                 3.606
                                          Cond. No.
                                                                             365.
```

```
1 # tests statistiques pour vérifier la performance du modèle
2 # statistical tests to check performance of the model
  pg.ggplot(linreg.resid, figsize=(10,5))
 plt.savefig(fname=f'LinRegression QQplot.jpg', dpi=100, format='jpg', orien
7 plt.show():
                                O-O Plot
                                          R^2 = 0.980
                              Theoretical quantiles
     # https://pingouin-stats.org/generated/pingouin.
    pg.normality(linreg.resid, method='normaltest')
```

W

0 5.079996 0.078867

pval normal

True

L'évolution de l'indice de Gini

Le graphique QQ donne une représentation visuelle que les résidus suivent de près la distribution normale. Le test de normalité le confirme avec une valeur p de 7% (nous acceptons donc H0 que les données sont normalement distribuées). Mais le test de variance renvoie une valeur p très élevée de ~80%, ce qui signifie que nous rejetons H0 selon lequel les variances sont constantes (elles ne le sont pas selon ce test).

Désaisonnalisation de la consommation

Désaisonnalisation de la consommation

Modèle de prédiction, Holt Winters

Modèle de prédiction, Holt Winters

Les tests confirment que nos données sont normalement distribuées. Le graphique QQ donne une représentation visuelle, et le test de normalité donne une valeur p de 8% qui confirme H0 (la population est normalement distribuée).

L'autocorrélogramme montre que notre série chronologique n'est pas stationnaire.

Nous devons atteindre la stationnarité afin d'être en mesure de modéliser les données futures.

L'autocorrélation tend à nouveau vers 0, mais nous pouvons clairement voir des pics saisonniers.

Nous pouvons essayer la différenciation de (I-B12).

Le résultat est meilleur ici. Les pics existent toujours, mais les valeurs diminuent plus rapidement et semblent maintenant plus stationnaires.

Répète le test pour confirmer et la valeur p du test de Dickey Fuller est inférieure à 5%, ce qui signifie que la série temporelle est stationnaire.

			SARIMAX	Results			
***	SAR.		1)x(0, 1, 1 Tue, 29 Mar 15:	, 12) Log 2022 AIC 52:32 BIC -2012 HQIC	:32 BIC :012 HQIC :020		102 -774.698 1557.396 1567.350 1561.408
		std err			[0.025	0.975]	
ma.L1 ma.S.L12	0.3198 -0.4825 -0.2448 1.934e+06	0.251 0.047	-1.926 -5.199	0.054	-0.974 -0.337	0.009 -0.153	
	(L1) (Q): lasticity (H): wo-sided):		0.73	Prob(JB):		-(0.76 0.68 0.23 2.95

Dep. Varial Model: Date: Time: Sample:			1)x(0, 1, 1 Tue, 29 Mar 15:	, 12) Log 2022 AIC 52:32 BIC -2012 HQIC			102 -775.541 1557.082 1564.548 1560.092
Covariance	Type:			opg		=======	
	coef	std err	z	P> z	[0.025	0.975]	
The second of				0.7000	-0.218		
2.0					-0.348 1.37e+06		
sigma2 ======= Ljung-Box		3.13e+05	6.328 ====== 8.10	0.000 ====== Jarque-Bera	========		==== 0.57
Prob(Q):			0.00	Prob(JB):	(05).		0.75
Heteroskeda	asticity (H)	:	0.71	Skew:		_	0.19
Prob(H) (to	wo-sided):		0.36	Kurtosis:			2.95

Les diagnostics SARIMA aident (un bon result est...):

- Résidus normalisés pas de modèle dans les résidus.
- Histogramme plus densité estimée ils doivent être proches de la distribution normale.
- QQ normal aussi proche de la ligne de la distribution normale que possible.-
- Corrélogramme 95 % des points de corrélation qui sont > 0 ne doivent pas être significatifs.

Prédiction avec SARIMA

Comparaison des modèles

Conclusions générales après l'analyse effectuée

L'utilisation des autocorrélogrammes pour déterminer les modèles SARIMA n'est pas une règle absolue. Elle peut toujours dépendre de la situation. C'est pourquoi les autocorrélogrammes doivent servir d'indicateur utile, en collaboration avec la blancheur des résidus et les degrés de signification. De nombreux modèles peuvent être considérés comme bons après validation de ces paramètres. Dans ce cas, nous pouvons utiliser l'AIC, le BIC, le HQIC donnés par la sortie de SARIMA.

Au vu de notre analyse, nous pouvons dire que le modèle SARIMA donne les meilleurs résultats. Tant sur le plan visuel si nous le comparons aux données réelles, que sur le plan statistique si nous le comparons aux autres modèles.

Si nous devions mettre en œuvre un modèle spécifique, ce serait le modèle SARIMA (ligne pointillée verte).

The use of autocorrelograms to determine SARIMA models is not a strong rule. It can always depend on the situation. Because of this autocorrelograms should serve as a helpful indicator, working together with whiteness of residuals and degrees of significance. Many models can be seen as good after validation of those parameters. In this case we can use AIC, BIC, HQIC given by SARIMA output.

Given our analysis, we can say that SARIMA model yields the best results. Both visually if we compare to the real data, and statistically when we compare metrics with other models.

If we were to put one specific model to work, it would be SARIMA (green dotted line).