EEE225 Advanced Electrical Circuits and Electromagnetics

Lecture 9 Pre-lecture Review of Matrix operations

Dr. Zhao Wang

zhao.wang@xjtlu.edu.cn

Room EE322

Content

- Review of matrix operation
 - Addition and Subtraction
 - Scalar multiplication and Transpose
 - Matrix multiplication
 - Square matrix and Identity matrix
 - Determinant
 - Inverse

Matrix — addition and subtraction

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & -1 \\ 0 & -2 & 4 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 2 & 6 & 1 \\ 10 & -3 & 6 \end{bmatrix}$$

1. Addition:

$$\mathbf{A} + \mathbf{B} = \begin{bmatrix} 3 & 1 & -1 \\ 0 & -2 & 4 \end{bmatrix} + \begin{bmatrix} 2 & 6 & 1 \\ 10 & -3 & 6 \end{bmatrix} = \begin{bmatrix} 3+2 & 1+6 & -1+1 \\ 0+10 & -2+(-3) & 4+6 \end{bmatrix} = \begin{bmatrix} 5 & 7 & 0 \\ 10 & -5 & 10 \end{bmatrix}$$

2. Subtraction:

$$\mathbf{B} - \mathbf{A} = \begin{bmatrix} 2 & 6 & 1 \\ 10 & -3 & 6 \end{bmatrix} - \begin{bmatrix} 3 & 1 & -1 \\ 0 & -2 & 4 \end{bmatrix} = \begin{bmatrix} 2-3 & 6-1 & 1-(-1) \\ 10-0 & -3-(-2) & 6-4 \end{bmatrix} = \begin{bmatrix} -1 & 5 & 2 \\ 10 & -1 & 2 \end{bmatrix}$$

Matrices must have the same size:

the same number of rows AND the same number of columns

Matrix - Multiplication and transpose

3. Scalar Multiplication

$$2\mathbf{A} = 2 \times \begin{bmatrix} 6 & 1 & -3 & 0 \\ 9 & 2 & 3 & 7 \end{bmatrix} = \begin{bmatrix} 2 \times 6 & 2 \times 1 & 2 \times (-3) & 2 \times 0 \\ 2 \times 9 & 2 \times 2 & 2 \times 3 & 2 \times 7 \end{bmatrix} = \begin{bmatrix} 12 & 2 & -6 & 0 \\ 18 & 4 & 6 & 14 \end{bmatrix}$$

4. Transpose

$$\mathbf{A} = \begin{bmatrix} 6 & 1 & -3 & 0 \\ 9 & 2 & 3 & 7 \end{bmatrix} \quad \Rightarrow \quad \mathbf{A}^T = \begin{bmatrix} 6 & 9 \\ 1 & 2 \\ -3 & 3 \\ 0 & 7 \end{bmatrix}$$

The transpose of a matrix is obtained by writing rows as columns.

Properties:

$$(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T \qquad (k\mathbf{A})^T = k\mathbf{A}^T$$

Matrix — matrix multiplication

$$\mathbf{A} = \begin{bmatrix} 3 & 1 & 4 \\ 5 & 2 & -2 \end{bmatrix} \quad \mathbf{B} = \begin{bmatrix} 1 & -1 \\ 2 & 0 \\ -6 & 4 \end{bmatrix} \qquad \begin{aligned} c_{11} &= 3 \times 1 + 1 \times 2 + 4 \times (-6) &= -19 \\ c_{12} &= 3 \times (-1) + 1 \times 0 + 4 \times 4 &= 13 \\ c_{21} &= 5 \times 1 + 2 \times 2 + (-2) \times (-6) &= 2 \end{aligned}$$

$$\mathbf{C} = \begin{bmatrix} c_{11} & c_{12} \\ c_{21} & c_{22} \end{bmatrix} \qquad \qquad \mathbf{C} = \mathbf{AB}$$

$$C = AB$$

$$c_{11} = 3 \times 1 + 1 \times 2 + 4 \times (-6) = -19$$

$$c_{12} = 3 \times (-1) + 1 \times 0 + 4 \times 4 = 13$$

$$c_{21} = 5 \times 1 + 2 \times 2 + (-2) \times (-6) = 21$$

$$c_{22} = 5 \times (-1) + 2 \times 0 + (-2) \times 4 = -13$$

$$\mathbf{AB} = \begin{bmatrix} 3 & 1 & 4 \\ 5 & 2 & -2 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ 2 & 0 \\ -6 & 4 \end{bmatrix} = \begin{bmatrix} -19 & 13 \\ 21 & -13 \end{bmatrix}$$

If C = AB then the element c_{ij} is found from row i of A and column j of B.

$$\begin{bmatrix} \mathbf{C} \end{bmatrix}_{ij} = A_{i1}B_{1j} + A_{i2}B_{2j} + \dots + A_{in}B_{nj} = \sum_{r=1}^{n} A_{ir}B_{rj}$$

$$\underbrace{\mathbf{A}}_{n \times m} \underbrace{\mathbf{B}}_{p \times q} = \underbrace{\mathbf{C}}_{n \times q}$$

The number of columns of **A** must equal the number of rows of **B**

Matrix — matrix multiplication

Associative

$$(AB)C = A(BC)$$

 $(A+B)C = AC+BC$
 $C(A+B) = CA+CB$

But generally AB ≠ BA

Matrix multiplication is NOT commutative

Example

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \times \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 3 \end{bmatrix}$$

whereas

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 0 & 0 \end{bmatrix}$$

Matrix – square matrix and identity matrix

Square Matrices

A square matrix: has the same number of rows and columns.

Any two square matrices of the same order can be added and multiplied.

Identity Matrices

The identity matrix or unit matrix of size n is the n-by-n square matrix with ones on the main diagonal and zeros elsewhere. It is denoted by I_n , or simply by I.

Example

$$\begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} \times \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 0 & 3 \end{bmatrix}$$

whereas

$$\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \times \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 4 \\ 0 & 0 \end{bmatrix}$$

$$I_1 = \begin{bmatrix} 1 \end{bmatrix}, \ I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \dots, \ I_n = \begin{bmatrix} 1 & 0 & \cdots & 0 \\ 0 & 1 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 \end{bmatrix}$$

Matrix - determinants

All square matrices possess a determinant. The determinant of a matrix \mathbf{A} , is denoted $\det(\mathbf{A})$, Δ_{\perp} or $|\mathbf{A}|$:

The determinant of a matri
$$A = \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}$$
 $|A| = \begin{vmatrix} a & b & c \\ d & e & f \\ g & h & i \end{vmatrix}$

The 2×2 matri
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 has determinant det (A) = $ad - bc$.

$$A = \begin{bmatrix} 3 & 6 \\ -1 & 1 \end{bmatrix} \qquad \Delta_A \text{ or } |A| = 3 \times 1 - 6 \times (-1) = 9$$

Matrix - inverse

Definition:

Let **A** be an $n \times n$ matrix.

Suppose that **B** is an $n \times n$ matrix such that :

$$AB = BA = I_n$$

B is called the inverse of **A**. Written as A^{-1} .

$$\mathbf{A}\mathbf{A}^{-1} = \mathbf{A}^{-1}\mathbf{A} = \mathbf{I}_n \quad \mathbf{A}^{-1} \text{ does NOT mean } \frac{1}{\mathbf{A}}.$$

If $|\mathbf{A}| = 0$, **A** does not have an inverse.

If $|\mathbf{A}| \neq 0$, A does have an inverse.

If
$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$
 and $|\mathbf{A}| \neq 0$,

then
$$\mathbf{A}^{-1} = \frac{1}{|\mathbf{A}|} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

Example

$$\mathbf{A} = \begin{bmatrix} 3 & 4 \\ 2 & 6 \end{bmatrix}, \ \mathbf{B} = \begin{bmatrix} 3 & -6 \\ -6 & 12 \end{bmatrix}$$

Find \mathbf{A}^{-1} and \mathbf{B}^{-1}

$$|\mathbf{A}| = 3 \times 6 - 2 \times 4 = 10$$

Then
$$\mathbf{A}^{-1} = \frac{1}{10} \begin{bmatrix} 6 & -4 \\ -2 & 3 \end{bmatrix} = \begin{bmatrix} 0.6 & -0.4 \\ -0.2 & 0.3 \end{bmatrix}$$

$$|\mathbf{B}| = 3 \times 12 - (-6) \times (-6) = 0$$

As $|\mathbf{B}| = 0$, so matrix **B** does not have an inverse.