The Allocation of Talent and U.S. Economic Growth

Chang-Tai Hsieh, Erik Hurst, Charles I. Jones and Peter J. Klenow

February 3, 2016

Motivation

Are equal rights efficiency enhancing?

• Reducing wage gap - gender and race.

• Change in occupational structure in the US since 1960s.

Share of Each Group in High Skill Occupations

High-skill occupations are lawyers, doctors, engineers, scientists, architects, mathematicians and executives/managers.

Central Question

Suppose distribution of 'talent' is same for all groups (race/gender), then

- Misallocation of talent in both 1960 and 2008.
- But less misallocation in 2008 than in 1960.

How much productivity growth between 1960 and 2008 was due to improved allocation of talent?

Outline

- Model
- 2 Evidence
- Estimates of barriers
- Counterfactuals

Model

- *N* occupations, one of which is "home".
- Individuals belong to a certain group g gender/race
- Individuals draw talent $\{\epsilon_i\}$ in each occupation i
- Then choose occupation (i) and human capital (h)
 - Preferences

$$U=c^{\beta}(1-s)$$

Human capital (uses time s and goods e)

$$h=ar{h}_{ig}s^{\phi_i}e^{\eta} \ ar{h}_{ig}=1$$
 (normalize)

Frictions

- Frictions modeled as proportionate taxes
 - τ_{ig}^{h} : goods tax in human capital acquisition τ_{ig}^{w} : wage tax in labor market

Budget

$$c = (1 - \tau_{ig}^{w})w_{i}\epsilon h(s, e) - e(1 + \tau_{ig}^{h})$$

 w_i is wage per efficiency unit of human capital in occupation i

Distribution of talent

• *N*-vector $\{\epsilon_i\}$ drawn from a multivariate Frechet distribution

$$F_g(\epsilon_1,\ldots,\epsilon_N) = \exp\left\{-\left[\sum_{i=1}^N \left(\tilde{T}_{ig}\epsilon_i^{-\tilde{\theta}}\right)^{\frac{1}{1-\rho}}\right]^{1-\rho}\right\}$$

- ho: correlation between occupational skills (absolute advantage)
- $ightharpoonup ilde{ heta}$: lower with higher dispersion (comparative advantage)
- $ightharpoonup \tilde{T}_{ig}$: group g's average occupation specific talent

Distribution of talent

• N-vector $\{\epsilon_i\}$ drawn from a multivariate Frechet distribution

$$F_g(\epsilon_1,\ldots,\epsilon_N) = \exp\left\{-\left[\sum_{i=1}^N \left(\tilde{T}_{ig}\epsilon_i^{-\tilde{ heta}}\right)^{rac{1}{1-
ho}}
ight]^{1-
ho}
ight\}$$

- ho: correlation between occupational skills (absolute advantage)
- $ightharpoonup ilde{ heta}$: lower with higher dispersion (comparative advantage)
- $ightharpoonup ilde{T}_{ig}$: group g's average occupation specific talent
- Relabel...

Distribution of talent

• *N*-vector $\{\epsilon_i\}$ drawn from a multivariate Frechet distribution

$$F_g(\epsilon_1,\ldots,\epsilon_N) = \exp\left\{-\left[\sum_{i=1}^N \left(T_{ig}\epsilon_i^{- heta}
ight)
ight]^{1-
ho}
ight\}$$

- \triangleright ρ : correlation between occupational skills (absolute advantage)
- \triangleright θ : lower with higher dispersion (comparative advantage)
- $ightharpoonup T_{ig}$: group g's average occupation specific talent
- Baseline: $T_{ig} = 1$.

Production

Representative firm combines all occupational inputs

$$Y = \left(\sum_{i=1}^{N} \left(A_i H_i\right)^{\frac{\sigma-1}{\sigma}}\right)^{\frac{\sigma}{\sigma-1}}$$

where

$$H_i = \sum_{g=1}^{G} q_g p_{ig} \mathbb{E} \left[h_{ig} \epsilon_{ig} | \text{Person chooses } i \right]$$

Individual optimization

• Conditional on choice of i,

$$egin{aligned} s_i^* &= rac{1}{1 + rac{1 - \eta}{eta \phi_i}} \ e_{ig}^*(\epsilon) &= \left(rac{\eta (1 - au_{ig}^w) w_i s_i^{\phi_i} \epsilon}{1 + au_{ig}^h}
ight)^{rac{1}{1 - \eta}} \end{aligned}$$

Individual optimization

Conditional on choice of i,

$$egin{aligned} s_i^* &= rac{1}{1 + rac{1 - \eta}{eta \phi_i}} \ e_{ig}^*(\epsilon) &= \left(rac{\eta (1 - au_{ig}^w) w_i s_i^{\phi_i} \epsilon}{1 + au_{ig}^h}
ight)^{rac{1}{1 - \eta}} \end{aligned}$$

Occupational choice:

$$\max_{i} U^{*}(\epsilon_{i})$$

Talent drawn from extreme value \implies max_i $U^*(\epsilon_i)$ extreme value

Propensity of group g to work in occupation i

$$p_{ig} = rac{ ilde{w}_{ig}^{ heta}}{\sum_{s=1}^{N} ilde{w}_{sg}^{ heta}}$$

where

$$egin{align} ilde{w}_{ig} &\equiv T_{ig}^{rac{1}{ heta}} imes rac{ extit{w}_i}{ au_{ig}} imes extit{s}_i^{\phi_i} ig(1- extit{s}_iig)^{rac{1-\eta}{eta}} \ & au_{ig} &\equiv rac{ig(1+ au_{ig}^hig)^\eta}{1- au_{ig}^w} \end{aligned}$$

Propensity of group g to work in occupation i

$$p_{ig} = rac{ ilde{w}_{ig}^{ heta}}{\sum_{s=1}^{ extit{N}} ilde{w}_{sg}^{ heta}}$$

where

$$egin{align} ilde{w}_{ig} &\equiv T_{ig}^{rac{1}{ heta}} imes rac{ extit{w}_i}{ au_{ig}} imes s_i^{\phi_i} ig(1-s_iig)^{rac{1-\eta}{eta}} \ & au_{ig} &\equiv rac{ig(1+ au_{ig}^hig)^\eta}{1- au_{ig}^w} \ \end{aligned}$$

• Relative, not absolute, returns matter for occupational choice.

Propensity of group g to work in occupation i

$$p_{ig} = rac{ ilde{w}_{ig}^{ heta}}{\sum_{s=1}^{N} ilde{w}_{sg}^{ heta}}$$

where

$$egin{align} ilde{w}_{ig} &\equiv T_{ig}^{rac{1}{ heta}} imes rac{w_i}{ au_{ig}} imes s_i^{\phi_i} (1-s_i)^{rac{1-\eta}{eta}} \ au_{ig} &\equiv rac{\left(1+ au_{ig}^h
ight)^\eta}{1- au_{ig}^w} \ \end{aligned}$$

- Relative, not absolute, returns matter for occupational choice.
- Only τ_{ig} identified. Composite measure of frictions.

Average quality of Workers

For a given group,

$$\mathbb{E}\left[h_{i}\epsilon_{i}\right] = \gamma \left[\eta^{\eta} s_{i}^{\phi_{i}} \left(\frac{\left(1 - \tau_{i}^{w}\right) w_{i}}{1 + \tau_{i}^{h}}\right)^{\eta} \left(\frac{T_{i}}{p_{ig}}\right)^{\frac{1}{\theta}}\right]^{\frac{1}{1 - \eta}}$$

where

$$\gamma \equiv \Gamma \left(1 - \frac{1}{\theta (1 - \rho)(1 - \eta)} \right)$$

- Direct effect from frictions.
- Indirect selection effect Average ability falls in p_{ig} .
- Estimation: Within occupation-group quality, therefore earnings, follow Frechet distribution with shape parameter $\theta(1-\rho)(1-\eta)$, therefore γ related to mean.

Average earning by occupation-group

$$\overline{\textit{wage}}_{\textit{ig}} \equiv \left(1 - au_{\textit{ig}}^{\textit{w}}\right) \textit{w}_{\textit{i}} \mathbb{E}\left[\textit{h}_{\textit{i}} \epsilon_{\textit{i}}\right] = \left(1 - \textit{s}_{\textit{i}}\right)^{-1/\beta} \gamma ar{\eta} \left(\sum_{s=1}^{\textit{N}} ilde{\textit{w}}_{\textit{sg}}\right)^{\frac{1}{\theta(1-\eta)}}$$

- Only schooling matters for average wage.
- Lower barriers in some occupation identically affect earnings in all.
 - Frechet assumption: selection effect cancels out efficiency effect.
- Prediction 1: Convergence in occupational distribution for some jobs should affect wage gap in all jobs.

Wage gap

$$\frac{\overline{wage}_{ig}}{\overline{wage}_{i,wm}} = \left(\frac{\sum_{s=1}^{N} \tilde{w}_{sg}}{\sum_{s=1}^{N} \tilde{w}_{s,wm}}\right)^{\frac{1}{\theta(1-\eta)}}$$

• For every occupation, relative earnings identical.

$$\left(\frac{p_{ig}}{p_{i,wm}}\right) = \left(\frac{T_{ig}}{T_{i,wm}}\right) \left(\frac{\tau_{ig}}{\tau_{i,wm}}\right)^{-\theta} \left(\frac{\overline{wage}_g}{\overline{wage}_{wm}}\right)^{-\theta(1-\eta)}$$

• p_i gap, not wage gap, reflects frictions in the presence of selection.

$$\left(\frac{p_{ig}}{p_{i,wm}}\right) = \left(\frac{T_{ig}}{T_{i,wm}}\right) \left(\frac{\tau_{ig}}{\tau_{i,wm}}\right)^{-\theta} \left(\frac{\overline{wage}_g}{\overline{wage}_{wm}}\right)^{-\theta(1-\eta)}$$

- p_i gap, not wage gap, reflects frictions in the presence of selection.
- Prediction 2: Weak correlation between wage gap and relative propensity to work.

$$\left(\frac{p_{ig}}{p_{i,wm}}\right) = \left(\frac{T_{ig}}{T_{i,wm}}\right) \left(\frac{\tau_{ig}}{\tau_{i,wm}}\right)^{-\theta} \left(\frac{\overline{wage}_g}{\overline{wage}_{wm}}\right)^{-\theta(1-\eta)}$$

- p_i gap, not wage gap, reflects frictions in the presence of selection.
- Prediction 2: Weak correlation between wage gap and relative propensity to work.
- Key equation to be taken to data to measure τ_{ig} .

Competitive Equilibrium

- **①** Given occupations, individuals choose c, e, s to maximize utility.
- 2 Each individual chooses the utility-maximizing occupation.
- **3** A representative firm chooses H_i to maximize profits:

$$\max_{\{H_i\}} Y - \sum_{i=1}^N w_i H_i$$

1 The occupational wage w_i clears each labor market:

$$H_i = \sum_{g=1}^{G} q_g p_{ig} \mathbb{E} \left[h_{ig} \epsilon_{ig} | \mathsf{Person chooses} \ i
ight]$$

Solution Aggregate output is given by the production function.

Outline

- Model
- 2 Evidence
- Estimates of barriers
- Counterfactuals

Data

- U.S. Census for 1960, 1970, 1980, 1990, and 2000
- American Community Survey for 2006-2008
- 67 consistent occupations, one of which is the "home" sector.
- 4 groups
- Look at full-time and part-time workers, hourly wages.
 - Home sector wage imputed from group composition and average schooling.
- Prime-age workers (age 25-55).

Convergence 1960-2008 - by schooling

Occupational Similarity to White Men	1960	2008	1960–2008
High-Educated White Women	0.38	0.59	0.21
Low-Educated White Women	0.40	0.46	0.06

Wage Gap vs. White Men	1960	2008	1960–2008
High-Educated White Women Low-Educated White Women	-0.50	-0.24	-0.26
	-0.56	-0.27	-0.29

Prediction 1: Convergence in occupational distribution for some jobs should affect wage gap in all jobs.

(Occupation similarity takes values between 0 and 1, 1 being identical distributions)

White Women in 1980

Prediction 2: Weak correlation between wage gap and relative propensity to work.

Change for White Women, 1960-2008

Prediction 2: Weak correlation between wage gap and relative propensity to work.

Outline

- Model
- 2 Evidence
- Estimates of barriers
- Counterfactuals

Estimating θ and η

ullet Need estimates of heta and η to back out $au_{ extit{ig}}$ from

$$\left(\frac{\tau_{ig}}{\tau_{i,wm}}\right) = \left(\frac{T_{ig}}{T_{i,wm}}\right)^{\frac{1}{\theta}} \left(\frac{p_{ig}}{p_{i,wm}}\right)^{-\frac{1}{\theta}} \left(\frac{\overline{wage}_g}{\overline{wage}_{wm}}\right)^{-(1-\eta)}$$

• Recall: Earnings distribution within occupation-group is Frechet with shape parameter $\theta(1-\rho)(1-\eta)$, therefore

$$\frac{\mathsf{Variance}}{\mathsf{Mean}^2} = \frac{\Gamma\left(1 - \frac{2}{\theta(1-\rho)(1-\eta)}\right)}{\left[\Gamma\left(1 - \frac{1}{\theta(1-\rho)(1-\eta)}\right)\right]^2} - 1$$

Match this moment.

Estimating θ and η

- Using yearly cross-sections
 - ► Regress log worker wages on occupation-group dummies (66×4)
 - Compute mean and variance of exponent of wage residual
 - Solve for $\theta(1-\rho)(1-\eta)$.
- ullet ho governs absolute advantage. Adjust for
 - ► AFQT scores (4%)
 - ▶ individual education, hours worked, potential experience
 - transitory wage movements (14%)
- Baseline: $\theta(1-\eta)=3.44$ and $\eta=\frac{1}{2}$
- Check sensitivity

Results: Estimated barriers for white women

Results: Estimated barriers for black men

Results: Average of barriers across occupations

Results: Variance of barriers across occupations

Outline

- Model
- 2 Evidence
- Estimates of barriers
- Ounterfactuals

Exogenous variables

- $\beta = 0.693$ to match Mincerian return to schooling.
- $\sigma = 3$
- Fit A_i, ϕ_i, τ_{ig} separately for each year. 6N moments matched:
 - $au_{i,wm} = 1$ for all i
 - ► p_{ig}
 - earnings gap across groups
 - average wage in each occupation
 - average schooling in lowest-wage occupation (relative ϕ_i identified).
- Cannot distinguish between τ^h and τ^w :
 - au^h case $(\tau^w = 0)$
 - $\quad \tau^w \text{ case } (\tau^h = 0)$

Main findings

Output (as defined by model) grew at 1.47% p.a. between 1960-1980.

How much of this is explained by reduced frictions?

	$ au^{\it h}$ case	$\tau^{\it w}$ case
Frictions in all occupations	20.4%	15.9%
No Frictions in "brawny occupations"	18.9%	14.1%
Ages 25-35	28.7%	23.6%
Market sector only	26.9%	23.5%

Counterfactual - τ^h case

Counterfactual - τ^w case

Potential remaining gain from frictions

	$ au^h$ case	$\tau^{\it w}$ case
Cumulative Gain 1960-2008	15.2%	11.3%
Additional gain from removing frictions in 2008	14.3%	10.0%

Wage gap as a measure

- How does wage gap perform as measure of productivity gain?
 - ▶ Fix white male wage growth
 - Calculate how much overall growth comes from faster wage growth of others?
 - **▶** 13%
- Compare to 20% in τ^w and 16% in τ^h .
- Reasons:
 - ▶ Isolate effect of τ from A, ϕ, q
 - ▶ GE effect: impact of changing τ on wages of white men
 - * 6% reduction in model.

Misallocation vs Human capital

- Two sources of productivity loss in the model
 - ightharpoonup misallocation across occupations dispersion of au
 - lacktriangleright lower average human capital investment average au

		τ^h case	τ^w case
1960	No variance	22%	15%
	No barriers	27%	18%
2008	No variance	17%	8%
	No barriers	14%	10%

Misallocation appears to matter more!

More results

Changing barriers also lead to:

- 40+ percent of WW, BM, BW wage growth
- Essentially all of the narrowing of wage gaps
- 70+ percent of the rise in female LF participation
- Substantial wage convergence between North and South

Robustness: % growth explained in τ^h case

	Baseline $\rho = 2/3$	$\rho = -90$	$\rho = -1$	$\rho = 1/3$	$\rho = .95$
Changing ρ	20.4%	19.7%	19.9%	20.2%	21.0%
	3.44	4.16	5.61	8.41	
Changing θ	20.4%	20.7%	21.0%	21.3%	
	$\eta = 1/4$	$\eta = 0.01$	$\eta = .05$	$\eta=.1$	$\eta = .5$
Changing η	20.4%	20.5%	20.5%	20.5%	20.3%

Robustness: % growth explained in τ^w case

	Baseline $\rho = 2/3$	$\rho = -90$	$\rho = -1$	$\rho = 1/3$	$\rho = .95$
Changing ρ	15.9%	12.3%	13.3%	14.7%	18.4%
	3.44	4.16	5.61	8.41	
Changing θ	15.9%	14.6%	12.9%	11.2%	
	$\eta = 1/4$	$\eta = 0$	$\eta = .05$	$\eta = .1$	$\eta = .5$
Changing η	15.9%	13.9%	14.4%	14.8%	17.5%

Other checks

Gains not sensitive to

- ullet varying consumption vs leisure parameter eta
- more detailed set of occupations
- smaller set of occupations

Average Quality of workers

$$\frac{\textit{H}_{\textit{ig}}/\textit{q}_{\textit{ig}}\textit{p}_{\textit{ig}}}{\textit{H}_{\textit{i},\textit{wm}}/\textit{q}_{\textit{i},\textit{wm}}\textit{p}_{\textit{i},\textit{wm}}} = \frac{1 - \tau_{\textit{i},\textit{wm}}^{\textit{w}}}{1 - \tau_{\textit{ig}}^{\textit{w}}} \left(\frac{\overline{\textit{wage}}_{\textit{g}}}{\overline{\textit{wage}}_{\textit{wm}}}\right)$$

- Different predictions for τ^h and τ^w .
- τ^w case: In 1960 average woman doctor was higher quality than today!
- Data on relative quality can help identification.

Conclusion

- Preliminary investigation of important dimension of misallocation.
- Identifying τ^h and τ^w .
- Static model.
- Talent and other dimensions of inquuality rich vs. poor.