REMARKS

Claims 10-18 are pending.

Please charge any shortage in fees due in connection with the filing of this paper, including Extension of Time fees to Deposit Account No. 11-0345. Please credit any excess fees to such deposit account.

Respectfully submitted,

KEIL & WEINKAUF

Jason D. Voight Reg. No. 42,205

1101 Connecticut Ave., N.W. Washington, D.C. 20036 (202)659-0100

JDV/kas

BRATZ et al., Cont. of SN 09/341,524

VERSION WITH MARKINGS TO SHOW CHANGES MADE

IN THE SPECIFICATION

Amend the paragraph at page 7, line 36 to page 9, line 5 as follows:

Particular preference is given to sulfonylureas of the formula III (equivalent to the formula I where J=J₁) as known, for example, from EP-A 388 873, EP-A 559 814, EP-A 291 851 and EP-A 446 743:

where:

 R^1 is C_1 - C_4 -alkyl, which may carry from one to five of the following groups: methoxy, ethoxy, SO_2CH_3 , cyano, chlorine, fluorine, SCH_3 , $S(O)CH_3$;

halogen;

a group ER¹⁹, in which E is O, S or NR²⁰;

COOR¹²;

NO₂;

S(O)_nR¹⁷, SO₂NR¹⁵R¹⁶, CONR¹³R¹⁴;

R² is hydrogen, methyl, halogen, methoxy, nitro, cyano, trifluoromethyl, trifluoromethoxy, difluoromethoxy or methylthio,

Y is F, CF₃, CF₂Cl, CF₂H, OCF₃, OCF₂Cl, C₁-C₄-alkyl or C₁-C₄-alkoxy;

X is C_1 - C_2 -alkoxy, C_1 - C_2 -alkyl, C_1 - C_2 -alkylthio, C_1 - C_2 -alkylamino, di- C_1 - C_2 -alkylamino, halogen, C_1 - C_2 -haloalkyl, C_1 - C_2 -haloalkoxy,

R is hydrogen or methyl;

 R^{19} is C_1 - C_4 -alkyl, C_2 - C_4 -alkenyl, C_2 - C_4 -alkynyl or C_3 - C_6 -

cycloalkyl, each of which may carry from 1 to 5 halogen atoms. Furthermore, in the case that E is O or NR²⁰, R¹⁹ is also methylsulfonyl, ethylsulfonyl, trifluoromethylsulfonyl, allylsulfonyl, propargylsulfonyl or dimethylsulfamoyl;

R²⁰ is hydrogen, methyl or ethyl;

 R^{12} is a C_1 - C_4 -alkyl group which may carry up to three of the following radicals: halogen, C_1 - C_4 -alkoxy, allyl or propargyl;

 R^{17} is a C_1 - C_4 -alkyl group which may carry from one to three of the following radicals: halogen, C_1 - C_4 -alkoxy, allyl or propargyl;

R¹⁵ is hydrogen, a C₁-C₂-alkoxy group or a C₁-C₄-alkyl group;

R¹⁶ is hydrogen or a C₁-C₄-alkyl group.

 R^{13} is H, C_1 - C_2 -alkyl, or C_1 - C_3 -alkoxy;

 R^{14} is C_1 - C_4 -alkyl;

- n is 1 or 2,
- Z is N, CH.

Amend the paragraph at page 9, lines 7 to 23 as follows:

Particularly preferred sulfonylureas of the formula III are those of the general formula I where J is J_1 and the remaining substituents have the following meanings:

R¹ is CO_2CH_3 , $CO_2C_2H_5$, $CO_2iC_3H_7$, CF_3 , CF_2H [;] $_1OSO_2CH_3$, $OSO_2N(CH_3)_2$, CI, NO_2 , $SO_2N(CH_3)_2$, SO_2CH_3 [and] or $N(CH_3)SO_2CH_3$.

R² is hydrogen, Cl, F or C₁-C₂-alkyl,

Y is CF₂H, OCF₃, OCF₂Cl, CF₂Cl, CF₃ or F,

X is OCH₃, OC₂H₅, OCF₃, OCF₂Cl; CF₃, Cl, F, NH(CH₃), N(CH₃)₂ or C₁-C₂-alkyl, \mathbb{R}^5] \mathbb{R} is hydrogen, and

Z is N or CH.

Amend the paragraph at page 9, lines 25 to 26 as follows:

Very particular preference is given to those compounds of the formula III which are listed in the table below, and where n is 1.

Delete the formula at page 9, lines 29 to 34.

Amend the paragraphs at page 23, lines 5 to 23 as follows:

Comparative example 1 [:]

A pre-mix comprising:

73.1 [% [sic]] g of SU 1 (compound No. 47 from Table 1) (technical grade, 95.7%)

8 [% [sic]] g of Tamol^R NH

17.9 [% [sic]] g of Ufoxane^R 3A

was mixed and ground in a high-speed rotary mill.

[7,1] <u>7.1</u> g of pre-mix 1

5 g of Extrusil^R (Degussa)

77.9 g of ammonium sulfate

were mixed in a Moulinette household blender with 29 g of Lutensol^R ON 80 as a 50% strength aqueous solution. The resulting material was extruded using an extruder (KAR-75, Fitzpatrick Europe). The resulting moist granules were dried in a drying cabinet.

Amend the paragraph at page 23, lines 27 to 33 as follows:

A pre-mix comprising:

73.1 [% [sic]] g of SU 1 (technical grade, 95.7%)

8 [% [sic]] g of Tamol^R NH

17.9 [% [sic]] g of Ufoxane^R 3A

was mixed and ground in a high-speed rotary mill.

Amend the paragraph at page 25, lines 3 to 9 as follows:

A pre-mix comprising:

73.1 [% [sic]] g of SU 1 (technical grade, 95.7%)

8 [% [sic]] g of Tamol^R NH

17.9 [% [sic]] g of Ufoxane^R 3A

was mixed and ground in a high-speed rotary mill.

Amend the paragraph at page 26, lines 3 to 9 as follows:

A pre-mix comprising:

73.1 [% [sic]] g of SU 1 (technical grade, 95.7%)

8 [% [sic]] g of Tamol^R NH

17.9 [% [sic]] g of Ufoxane^R 3A

was mixed and ground in a high-speed rotary mill.