Raphael Gaedtke, Paul Neumann

University of Bonn

January 10, 2025

- 1 Representation Theory
- 2 Finite abelian groups
- 3 Formalization
- 4 Mathlib
- 5 Future work

Representations of finite groups

Definition

For a group G and a field k, a **representation** of G over k is a pair (V, ρ) where V is a vector space over k and $\rho: G \to GL(V)$ is an action of G on V.

Representations of finite groups

Definition

Representation Theory

For a group G and a field k, a **representation** of G over k is a pair (V, ρ) where V is a vector space over k and $\rho: G \to GL(V)$ is an action of G on V.

Convention: V has finite dimension, unless explicitly stated otherwise

Definition

 $\dim(V)$ is the **dimension** or **degree** of (V, ρ) .

Example

Representation Theory

$$D_{2n} = \langle a, b | a^n = b^2 = 1, bab = a^{-1} \rangle$$

Representation Theory

$$D_{2n} = \langle a, b | a^n = b^2 = 1, bab = a^{-1} \rangle$$

Representation $\rho: D_{2n} \to \mathsf{GL}(\mathbb{R}^3)$ with

- $\rho(a)$ as rotation about the Z-axis
- ullet $\rho(b)$ as a rotation about a suitable axis in the XY-plane

Definition

Let V be a representation and $U \subseteq V$ a subspace. U is an **invariant subspace** if $gu \in U$ for $\forall u \in U, g \in G$.

Invariant subspaces, Irreducibility

Definition

Let V be a representation and $U \subseteq V$ a subspace. U is an invariant subspace if $gu \in U$ for $\forall u \in U, g \in G$.

Example

Invariant subspaces, Irreducibility

Definition

Let V be a representation and $U \subseteq V$ a subspace. U is an invariant subspace if $gu \in U$ for $\forall u \in U, g \in G$.

Example

The XY-Plane is an invariant subspace.

Definition

Let V be a representation and $U \subseteq V$ a subspace. U is an **invariant subspace** if $gu \in U$ for $\forall u \in U, g \in G$.

Example

The XY-Plane is an invariant subspace.

Definition

A representation V is **irreducible** provided $V \neq 0$ and the only invariant subspaces are 0 and V.

Formalization

イロト イ御 ト イミト イミト