The Effect of Shifting the Sampling Function

- g(x) is sampled to produce $\hat{g}(x)$.
- The LTI system has impulse response t(x) = sinc(x) (unless noted) and produces the recovered signal $g_r(x)$.
- The sampling function is shifted by α .

$$g(x) \rightarrow \widehat{g}(x) \rightarrow \boxed{t(x)} \rightarrow g_{r}(x)$$

$$\coprod (x-\alpha)$$

$$LTI$$

For problem 1, let $\mathcal{F}\{g(x)\}=G(s)$ as shown below.

1. Let the measure of error between $g_r(x)$ and g(x) be

$$\epsilon = \int_{x=-\infty}^{\infty} |g_r(x) - g(x)|^2 dx.$$

- (a) Will this error depend on the shift α ?
- (b) Repeat part (a) but let $t(x) = \wedge(x)$.