Abstract

² Going to make LIGO the best possible ever.

3	Adaptive	Mode	Matching	in Adva	nced LIGO
9	I I CLOOP OI 1 C	1110010	111000011111	111 1 101 100	<u> </u>

Thomas Vo

5 Spring 2017

. Preface

- ⁷ The era of gravitational waves astronomy was ushered in by the LIGO (Laser
- 8 Interferometer Gravitational-Wave Observatory) collaboration with the detec-
- 9 tion of a binary black hole collision (Detection paper). The event that shook
- the foundation of space-time allowed mankind to view the cosmos in a way that
- 11 had never been done previously.

¹² Contents

13	Pı	reface	3
14	Introduction	7	
15		1.1 Gravitational Waves	7
16		1.2 The LIGO Instrument	7
17		1.2.1 Dual-recycled Fabry-Perot Interferometer	7
18		1.2.2 Limitations	7
19		1.3 Squeezed States of Light	7
20		1.4 The Effects of Mode-Matching	7
21	2	Modeling Mode-Matching with FINESSE	9
22		2.1 How It Works	9
23		2.1.1 Beam Propagation	9
24		2.1.2 Higher Order Mode Content	9
25		2.2 Defining Mode-Matching	9
26		2.2.1 Misalignment	9
27		2.2.2 Waist Size and Location	9
28		2.3 Our Simulations	9
29		2.3.1 ALIGO Design with FC and Squeezer	9
30		2.3.2 Looking at just Modal Change	9
31		2.3.3 QM Limited Sensitivity	9
32		2.4 Results	9
33	3	Mode Matching Cavities at Syracuse	11
34		3.1 Adaptive Mode Matching	11
35		3.2 Actuators	11
36		3.2.1 Thermal Lenses	11
37		3.2.2 Translation Stages	11
38		3.3 Sensors	11
39		3.3.1 Mode Converters	11
40		3.3.2 Bullseye Photodiodes	11
41	4	Mode Matching Cavities at LIGO Hanford	13
42		4.1 Beam Jitter	13
43	5	High Power Commissioning	15
44		5.1 Effect on Mode-Matching	15
45	6	Solutions for Next Generation Detectors	17

6 CONTENTS

47 Introduction

48 1.1 Gravitational Waves

49 1.2 The LIGO Instrument

50 The LIGO Interferometers are considered dual

51 1.2.1 Dual-recycled Fabry-Perot Interferometer

- 52 A fabry perot cavity is:
- Power Recycling If the interferometer is operating such that the 4 km arms are exactly different in arms a pi over two times the wavelength, then the in-
- tensity of the light at antisymmetric port will be close to null. This means the
- 56 power from the arms will
- Signal Recycling

58 1.2.2 Limitations

59 Noise budget: - Quantum Noise - Seismic - Thermal Noise

60 1.3 Squeezed States of Light

- The Quantum Noise is a fundamental source that can be helped by squeezing.
- 62 This is Squeezing (Caves, Dwyer, Kwee, Miao)

33 1.4 The Effects of Mode-Matching

- Theory section of modematching.
- An example of how mode-matching can affect the overall sensitivity.

Modeling Mode-Matching

- $_{68}$ 2.1 How it works
- ⁶⁹ 2.2 Defining Mode-Matching
- $_{70}$ 2.2.1 Misalignment
- 71 Anderson, Kognelik and Li
- 72 Guido Paper

73

- value 74 2.2.2 Waist Size and Location
- ⁷⁵ Anderson, Kognelik and Li
- 76 In contrast to the misalignment orthoganlity
- 77 2.3 Finesse Simulations
- ⁷⁸ 2.3.1 ALIGO Design with FC and Squeezer
- ⁷⁹ 2.3.2 Looking at just Modal Change
- 2.3.3 QM Limited Sensitivity
- 2.4 Results
- * Signal recycling cavity mismatches
 - * Mismatches before the OMC
 - * Mismatch contour graph: Comparing all of ALIGO cavities
- * Optical Spring pops up at 7.4 Hz in the Signal-to-Darm TF, re-run with
- varying SRM Trans which should.

⁸⁷ Chapter 3

Mode Matching Cavities atSyracuse

3.1 Adaptive Mode Matching

- Plane Real time digital system and model.
- 92 3.2 Actuators
- 3.2.1 Thermal Lenses
- 94 Fabian's work and UFL paper.
- 95 3.2.2 Translation Stages
- 96 3.3 Sensors
- 97 3.3.1 Mode Converters
- 98 3.3.2 Bullseye Photodiodes

Mode Matching Cavities at LIGO Hanford

102 4.1 Beam Jitter

Current measurements of mode-matching.

105 High Power Commissioning

5.1 Effect on Mode-Matching

What is the effect on mode-matching when you change the laser power?

Solutions for Next Generation Detectors

```
* SR3 Heater

* SRM Heater

* Operation: range (in terms of watts and

* Translation stages

* Mechanical description (Solidworks designs)

* Constraints (range, vacuum, alignment, integration)

* Electronics

* Software
```

List of Figures

List of Tables