POLITECHNIKA BIAŁOSTOCKA

Wydział Informatyki

PRACA DYPLOMOWA INŻYNIERSKA

TEMAT: TEMAT PRACY INŻYNIERSKIEJ / MAGISTERSKIEJ.

	WYKONAWCA: GAI	Anonim
		podpis
Promotor: dr inż. Doktor	Inżynier	
podpis		

BIAŁYSTOK 2021 r.

Karta dyplomowa

	narta dypiomowa	
POLITECHNIKA BIAŁOSTOCKA		Nr albumu studenta
Wydział	Studiastacjonarne/niestacjonarne	Rok akademicki
	studia I stopnia/studia II stopnia	Kierunek studiów
		Specjalność
TEMAT PRACY DYPLOMOWEJ:	lmiona i nazwisko studenta	
Zakres pracy: 1	IEST:	
Data wydania tematu pracy dyplomowej Ro - podpis promotora	egulaminowy termin złożenia pracy dyplomowe	ej Data złożenia pracy dyplomowej - potwierdzenie dziekanatu
	promotora Podpis p	romotora
 Imiona i nazwisko, stopień/ tytuł recenzenta	Ocena recenzenta	Podpis recenzenta

Subject of diploma thesis Temat po angielsku.

Summary

Streszczenie pracy po angielsku.

Załącznik nr 4 do "Zasad postępowania przy przygotowaniu i obronie pracy dyplomowej na PB" Białystok, dnia 05.01.2020 r.

Gal Anonim
Imiona i nazwisko studenta
12345
Nr albumu
informatyka, stacjonarne
Kierunek i forma studiów
dr inż. Doktor Inżynier
Promotor pracy dyplomowej

OŚWIADCZENIE

Przedkładając w roku akademickim 2019/2020 Promotorowi **dr inż. Doktor Inżynier** pracę dyplomową pt.: **Temat pracy**, dalej zwaną pracą dyplomową, **oświadczam, że**:

- 1) praca dyplomowa stanowi wynik samodzielnej pracy twórczej;
- 2) wykorzystując w pracy dyplomowej materiały źródłowe, w tym w szczególności: monografie, artykuły naukowe, zestawienia zawierające wyniki badań (opublikowane, jak i nieopublikowane), materiały ze stron internetowych, w przypisach wskazywałem/am ich autora, tytuł, miejsce i rok publikacji oraz stronę, z której pochodzą powoływane fragmenty, ponadto w pracy dyplomowej zamieściłem/am bibliografie;
- 3) praca dyplomowa nie zawiera żadnych danych, informacji i materiałów, których publikacja nie jest prawnie dozwolona;
- 4) praca dyplomowa dotychczas nie stanowiła podstawy nadania tytułu zawodowego, stopnia naukowego, tytułu naukowego oraz uzyskania innych kwalifikacji;
- 5) treść pracy dyplomowej przekazanej do dziekanatu Wydziału Informatyki jest jednakowa w wersji drukowanej oraz w formie elektronicznej;
- 6) jestem świadomy/a, że naruszenie praw autorskich podlega odpowiedzialności na podstawie przepisów ustawy z dnia 4 lutego 1994 r. o prawie autorskim i prawach pokrewnych (Dz. U. z 2019 r. poz. 1231, późn. zm.), jednocześnie na podstawie przepisów ustawy z dnia 20 lipca 2018 roku Prawo o szkolnictwie wyższym i nauce (Dz. U. poz. 1668, z późn. zm.) stanowi przesłankę wszczęcia postępowania dyscyplinarnego oraz stwierdzenia nieważności postępowania w sprawie nadania tytułu zawodowego;
- 7) udzielam Politechnice Białostockiej nieodpłatnej, nieograniczonej terytorialnie i czasowo licencji wyłącznej na umieszczenie i przechowywanie elektronicznej wersji pracy dyplomowej w zbiorach systemu Archiwum Prac Dyplomowych Politechniki Białostockiej oraz jej zwielokrotniania i udostępniania w formie elektronicznej w zakresie koniecznym do weryfikacji autorstwa tej pracy i ochrony przed przywłaszczeniem jej autorstwa.

••	•	•	•	•	•	•	•		•	•	•	•		•	•	•	•		•	•	•	•	•	•				•	•	•	•		•				•		•	•			•	•	•	•	•	
																				С	Z	7	V 1	te	Э.	lı	n	Ţ	7	r)(0	d	lı):	i	S	5	st	ı	1	d	le	<u>-</u>	n	t	a	L

Spis treści

Stı	reszcz	enie	5
W	stęp		11
1	Ogó	Iny problem	13
	1.1	Problem komiwojażera	13
	1.2	Metody optymalizacji	15
2	Algo	orytm genetyczny - Paweł	21
	2.1	Wprowadzenie do algorytmu	21
	2.2	Parametry wejściowe	25
	2.3	Metody krzyżowania	26
	2.4	Metody mutacji	29
3	Algo	orytm mrówkowy	31
	3.1	Wprowadzenie do algorytmu	31
	3.2	Opis działania algorytmu	32
	3.3	Feromony	33
4	Algo	orytmy zachłanne	39
	4.1	Algorytm najbliższego sąsiada	39
	4.2	Algorytm najmniejszej krawędzi	41
	4.3	Algorytm A*	43
	4.4	Optymalizacja otrzymanych rozwiązań	44
5	Bada	ania	47
	5.1	Wyniki algorytmu genetycznego	47
	5.2	Wyniki algorytmu mrówkowego	47
	5.3	Wyniki algorytmów zachłannych	47
6	Poró	ównania wyników	49

Podsumowanie	51
Bibliografia	54
Spis tabel	55
Spis rysunków	57
Spis listingów	59
Spis algorytmów	61

Wstęp

Odpady generowane przez mieszkańców są jednym z problemów z jakimi władze muszą sobie radzić w Polsce. Nie jest to problem jedynie wielkich metropolii ale również mniejszych miasteczek. Ilość produkowanych śmieci jest olbrzymia, a to również powoduje kolejne problemy. Segregacja oraz składowanie to nie jest jedyny problem z jakim można się spotkać. Kolejnym utrudnieniem jakie można wyróżnić jest ich transport.

W 2018 roku w Białymstoku został zorganizowany 24-godzinny Hackaton Miejski w Białostockim Parku Naukowo-Technologicznym. Organizatorzy tego przedsięwzięcia przygotowali dużą ilość merytorycznych materiałów na temat zbiórki odpadów komunalnych w mieście Białystok. Uczestnicy hackatonu zauważyli wiele problemów z jakimi boryka się miasto. Jednak największą uwagę organizatorów przykuły inne anomalie.

Jedna z grup zauważyła, że trasy jakie pokonują ciężarówki są nieoptymalne. Jako przykład została przedstawiona droga losowej ciężarówki. Można było zauważyć, że przebyta ścieżka przecina się w wielu miejscach. Na podstawie tylko jednego przykładu można dojść do wniosku, że problem jest globalny i może dotyczyć wszystkich tras. Organizatorzy przedsięwzięcia przyznali, że nie przykładali do tego aspektu uwagi ale może to być kluczowe w oszczędności czasu oraz pieniędzy.

Przy pomocy komputerów oraz odpowiednio napisanego programu można wyznaczyć ścieżki które będą spełniać założenia biznesowe oraz będą odpowiednio optymalne. Wyzwaniem jest jedynie znalezienie odpowiedniego rozwiązania które nada prawidłowy kierunek przeprowadzanym optymalizacjom. Na przestrzeni lat zostało opracowanych wiele rozwiązań. Niestety nie każde rozwiązanie jest w stanie poradzić sobie z konkretnymi danymi w ten sam sposób.

W naszej pracy magisterskiej wykorzystamy algorytmy dla których znajdziemy takie parametry wejściowe aby wynik ich prac był jak najbardziej optymalny. Jako pierwsze rozwiązanie zostanie przedstawiony algorytm genetyczny który został opracowany przez Pawła Stypułkowskiego. Kamil Łętowski przygotował i opisał zagadnienia związane z algorytmem mrówkowym. Na samym końcu kilka rozwiązań heurystycznych zostało omówionych przez Przemysława Noskowicza.

1. Ogólny problem

Badany problem jest w informatyce nazywany problemem komiwojażera. W tym rozdziale zostanie on omówiony oraz metody optymalizacji.

1.1 Problem komiwojażera

Problem komiwojażera (ang. travelling salesman problem - TSP) należy do rodziny problemów NP-trudnych. Znalezienie najlepszego rozwiązania jest trudne i fascynuje naukowców od wielu lat. Niektórzy poddają pod wątpliwość znalezienie efektywnego rozwiązania, czyli takiego którego czas działania jest maksymalnie wielomianowy. Aktualnie istnieje wiele rozwiązań tego problemu, a proponowane podejścia są bardzo interesujące. Niektóre z nich bazują na lokalnych przeszukiwaniach grafu, a inne opierają się na przykładach które występują w przyrodzie.

Podobnym problemem do TSP jest problem konika szachowego. Problem ten również należy do rodziny problemów NP-zupełnym. Już w XVIII wieku badania nad tym problemem rozpoczął Euler. Rozwiązanie tego problemu polega na znalezieniu ścieżki jaką ma przebyć konik szachowy, tak aby odwiedzić każde pole na szachownicy tylko i wyłącznie raz. Skoczek porusza się po planszy zgodnie z określonym ruchem, a plansza szachowa może mieć różny rozmiar. Konik porusza się aż do momentu odwiedzenia wszystkich pól lub do momentu w którym nie ma możliwości odwiedzenia kolejnego pola.

Optymalizacja tras od zawsze jest obecna w historii ludzkości. Nawet takie trywialne problemy jak podróż pomiędzy 3 miejscowościami może zostać sklasyfikowany jako problem komiwojażera. Chociaż dokładne wskazanie na źródło problemu TSP nie jest znane, to już w 1832 roku w przewodniku dla podróżujących po Niemczech i Szwajcarii została zawarta informacja o optymalizacji trasy przejazdu. Nie ma tam zawartych żadnych teorii matematycznych w związku z czym nie można uznać tego dzieła za początek rozważań nad problemem komiwojażera.[15]

W XIX wieku William Hamilton stworzył fundamenty pod definicję TSP. W rozwiązaniu problemu komiwojażera należy znaleźć cykl w grafie. W skład takiego cyklu musi zostać zawarty każdy z wierzchołków. Każdy z wierzchołków może znajdować się w rozwiązaniu dokładnie tylko raz. Cykl który spełnia wymieniony warunek jest cyklem

Hamiltona. Jeśli w grafie można wyróżnić cykl z opisanymi powyżej warunkami, to graf jest grafem Hamiltonowskim.

Na 1.1 został przedstawiony graf bez cyklu Hamiltona. W grafie tym nie można znaleźć takiego połączenia które zawiera wszystkie wierzchołki przechodząc przez każdy z nich dokładnie raz. Istnieje możliwość przejścia przez wszystkie wierzchołki jedynie po powtórnym odwiedzeniu przynajmniej jednego wierzchołka.

Rysunek 1.1: Graf bez cyklu Hamiltona.

Graf z 1.2 posiada połączenie krawędzi dzięki któremu można przejść po wszystkich wierzchołkach dokładnie raz. Takie przejście jest właśnie cyklem Hamiltona w związku z czym graf jest Hamiltonowski. Wyruszając przykładowo z punktu F możemy przejść kolejno do E - G - D - B - A - C. W ten sposób odwiedzimy wszystkie wierzchołki tylko raz.

Rysunek 1.2: Graf z cyklem Hamiltona.

W latach 30 XX wieku Merrill Meeks Flood rozpoczął rozważania nad optymalizacją przejazdu autobusów szkolnych. Działalność tą możemy uznać za początek pracy nad problemem TSP. Wraz z upływem czasu zainteresowanie problemem optymalizacyjnym narastało, a co za tym idzie powstawały nowe pomysły na algorytmy. Jednak żaden z pomysłów nie jest w stanie zaproponować dokładnego rozwiązania które jest w stanie przedstawić rezultat w czasie wyrażonym za pomocą wielomianu.

1.2 Metody optymalizacji

Jednym z proponowanych rozwiązań jest algorytm Helda Karpa który jest oparty na programowaniu dynamicznym. Złożoność pamięciowa tego algorytmy wynosi $\theta(2n^n)$, a czasowa $\theta(n^2*2^n)$. W algorytmie tym na każdym kroku wyznaczamy punkt który powinien być przedostatni na trasie. Aby wyznaczyć poprzednika należy skorzystać ze wzoru w którym poszukiwana jest najmniejsza wartość pomiędzy punktami.

Innym przykładem , który można wykorzystać do rozwiązania problemu komiwojażera jest algorytm najbliższego sąsiada. Rozwiązanie to wykorzystuje strategię zachłanną. W algorytmie szukamy aktualnie najlepszego ruchu. W tym celu przeszukiwani są jedynie sąsiedzi którzy są najbliżej aktualnego punktu. Złożoność takiego algorytmu jest szacowana na $\theta(n^2)$.

Oprócz standardowych przeszukiwań zbiorów na przestrzeni lat pojawiły się propozycje które wprowadzają elementy losowości. Przykładem takiego rozwiązania mogę być algorytm genetyczny oraz algorytm mrówkowy. Należą one do grup algorytmów heurystycznych, czyli do takich, które nie dają gwarancji znalezienia dokładnego rozwiązania.

W pracy zostaną zbadane rozwiązania problemu za pomocą algorytmu genetycznego, mrówkowego oraz zachłannego. W pozostałych podrozdziałach zostaną opisane ich klasyczne wersje.

1.2.1 Algorytm genetyczny - Paweł

Algorytm genetyczny (ang. *GA - Genetic Algorithm*) polega na symulacji procesów genetycznych zachodzących w populacjach osobników, stosuje się je głównie przy zadaniach optymalizacyjnych. W przyrodzie większość gatunków od wieków, w tym przede wszystkim i człowiek, w kolejnych swoich pokoleniach się rozwinęło i dostosowało do otaczających warunków na świecie. Gdy jakiś osobnik urodzi się z cechą, która jest przydatna w

przetrwaniu, przekażę tę cechę kolejnym pokoleniom. Najsłabsze osobniki w populacji mają zarówno mniejsze szanse na przetrwanie oraz rozmnożenie, czyli przekazanie swoich cech potomkom. W przyrodzie zazwyczaj silniejsi wygrywają. W latach 50 XX wieku zaczęto symulować te procesy w informatyce. W latach 60 John Henry Holland zastosował algorytm genetyczny przy pracach nad systemami adaptacyjnymi, a 1975 wydał książkę *Adaptation in Natural and Artificial Systems*, w której to opisał.[16]. Algorytm genetyczny poszukuje najlepsze rozwiązania, wśród populacji potencjalnych rozwiązań. Jest to główna cecha, która odróżnia go od tradycyjnych metod optymalizacji. Każde rozwiązanie ulega ocenie na podstawie jego dopasowania do problemu - funkcja przystosowania. Algorytm na populacji symuluje zjawiska ewolucyjne, krzyżując i mutując rozwiązania, stosując probabilistyczne reguły wyboru. W każdym takim nowym pokoleniu najsłabsi są usuwani, więc w kolejnych etapach populacja składa się z coraz to lepszych rozwiązań [13]. Kolejne pokolenia są generowane, aż zostanie spełniony warunek zakończenia. Może to być z góry ustalony czas trwania, ilość kolejnych pokoleń lub brak poprawy wśród nowych rozwiązań.

Algorytmy genetyczne i jego odmiany zrewolucjonizowały systemy informatyczne. Nie są one algorytmami, które wyliczają dokładne wyniki, ale przy odpowiedniej implementacji i ustaleniu parametrów wejściowych, pozwalają osiągnąć dobre rezultaty. Bardzo ważny jest czas znalezienia takiego rozwiązania. Jeśli rozwiązanie idealne obliczane jest przez algorytm tradycyjny w ciągu 24 godziny, a algorytm genetyczny w trakcie kilku minut znajdzie rozwiązanie będące w sąsiedztwie, swoją efektywnością wygra ten drugi. Użytkownik nie będzie chciał czekać całej doby na wynik swojego zapytania. Oczywiście, algorytmy genetyczne też mogą znaleźć najlepsze rozwiązanie. Kwestią ograniczenia jest zawsze czas.

Medycyna jest jedną z ważniejszych dziedzin, gdzie wykorzystuje się algorytmy genetyczne. Zbiory danych i przestrzeń przeszukiwań jest ogromna i złożona. Zazwyczaj w oparciu o te informację, lekarz musi podjąć decyzję, czy np. nowotwór jest złośliwy, czy ma łagodny przebieg. Algorytm genetyczny pozwala wspomóc lekarza przy podejmowania takich decyzji, przetwarzając i analizując te ogromne zbiory. [10]. Kolejną gałęzią gospodarki, w których zastosowanie znajduje algorytm genetyczny, jest przemysł spożywczy, a konkretnie optymalizacja linii produkcyjnych. Za ich pomocą algorytmu genetycznego wyznacza się parametry takie jak temperatura, ciśnieniu lub zapotrzebowanie mocy. Dzięki temu wszystkie procesy technologiczne zachodzące w maszynach i urządzeniach są wydajne

i zoptymalizowane[3]. Algorytmy genetyczne często stosuje się jako wskazanie punktów początkowych w innych metodach optymalizacyjnych. Poza podanymi przykładami, znajdują one zastosowanie praktycznie wszędzie: ekonomia, giełda, przemysł lotniczy, kombinatoryka, sieci komputerowe, zarządzanie łańcuchem dostaw, a także ustalanie czasu reklamy w telewizji [9].

1.2.2 Algorytm mrówkowy

Obserwacje nad zachowaniami w przyrodzie wielokrotnie miały wpływ na rozwój nowych rozwiązań. Tak jak w przypadku algorytmu genetycznego, tak i w przypadku algorytmu mrówkowego pomysł został zaczerpnięty z przyrody. Dokładne działanie algorytmu mrówkowego wzoruje się na zachowaniu kolonii mrówek. Dzięki pracy zespołowej, owady te są w stanie wypracować optymalną ścieżkę między siedliskiem a znalezionym pokarmem.

Dla niejednego gatunku problematyczne mogłoby być odtworzenie przebytej ścieżki. Na początku należałoby zadać sobie pytanie w jaki sposób te niewielkich rozmiarów owady są w stanie znacząco ułatwić sobie przetrwanie? Istotną rolę odgrywa tutaj wspomniana już praca zespołowa. To dzięki niej mrówki są w stanie optymalizować trasę. Innym ważnym czynnikiem determinującym poprawę ścieżki jest zapach jaki zostawiają mrówki.

Zapach nie jest niczym innym jak feromonem wytwarzanym przez mrówki. Dzięki pozostawionemu zapachowi mrówki identyfikują w jaki sposób poruszali się ich poprzednicy w związku z czym odtworzenie trasy nie stanowiło już poważnego problemu. Przy kolejnych iteracjach, kolonia próbuje optymalizować aktualną trasę. W tym celu również wykorzystuje zapach pozostawiony w poprzednich przejściach. Ścieżka jest losowo zmieniana w celu optymalizacji. Jeśli modyfikacja przyniosła oczekiwany efekt, to trasa zostaje zmieniona.

Algorytm mrówkowy znajduje swoje zastosowanie w rozwiązywaniu innych problemów. Problem plecakowy jest jednym z takich przykładów. Pojawia się on najczęściej przy optymalnym zarządzaniu zasobami. Mamy dany zbiór jakichś przedmiotów z czego każdy z nich posiada określony ciężar i wartość. Do plecaka musimy załadować przedmioty o jak największej wartości. Naszym ograniczeniem jest jednak łączny ciężar przedmiotów które możemy udźwignąć.

Algorytm mrówkowy wygląda bardzo podobnie w tym przypadku. Na początku jest N agentów - mrówek. Każdy agent iteracyjnie poszukuje jak najlepszego rozwiązania. Po każdej iteracji można wyróżnić trzy typy rozwiązań: rozwiązanie pośrednie, rozwiązanie

częściowe lub stan. Agenci w celu znalezienia rozwiązania wykorzystują swoje naturalne umiejętności czyli zostawiają na wszystkich obiektach w plecaku feromony. Dzięki lotności feromonów mrówki są w stanie identyfikować bardziej zadowalające przedmioty.

Krzysztof Schiff w artykule Ant colony optimization algorithm for the 0-1 knapsack[14] przedstawił rozwiązanie problemu plecakowego. Do wyboru najlepszego rozwiązania wykorzystane zostały trzy metody. Zgodnie z przyjętą konwencją przez autora artykułu metody mają odpowiednie nazwy: AKA1, AKA2 oraz AKA3. Za wybór najlepszego rozwiązania odpowiadają wzory:

$$AKA1 = \frac{z}{\frac{w}{V}}$$

$$AKA2 = \frac{z}{w^2}$$

$$AKA3 = \frac{z}{\frac{w}{C}}$$

gdzie:

- z jest zyskiem wybranego obiektu;
- w jest wagą wybranego obiektu;
- V jest aktualną ładownością plecaka;
- z jest zyskiem wybranego obiektu;
- C jest całkowitą wagą plecaka.

Problem komiwojażera i problem plecakowy są problemami kombinatorycznymi. Ich rozwiązanie polega na poszukiwaniu optymalnej ścieżki na grafie pełnym. Inna odmianą problemu jest kolorowania grafu. W tej wariacji problem jest od razu zadany na grafie. Dla wszystkich wierzchołków w grafie należy dobrać takie kolory, aby żadne dwa sąsiednie wierzchołki nie miały tego samego koloru [6].

Mrówki nie działają bezpośrednio na grafie początkowym ponieważ graf ten nie musi być grafem pełnym. Należy stworzyć dla mrówek alternatywę podobną do oryginału z zachowaniem takiego samego zbioru wierzchołków ale z pełnymi krawędziami. Następnie należy dobrać numeryczne wartości odpowiadające konkretnym kolorom. Jeśli mrówka odwiedzi dany wierzchołek, to zostaje on pokolorowany na najniższy kolor który nie został dotychczas użyty do kolorowania któregoś z sąsiadów.

Tak jak w przypadku poprzednich algorytmów wykorzystywane są zapachy pozostawiane przez mrówki. Ilość użytych unikalnych kolorów byłaby odwrotnie proporcjonalna do ilości feromonów. W efekcie czego heurystyka byłaby odwrotnie proporcjonalna do wykorzystanych kolorów po kolejnych iteracjach. Wynikiem tych operacji będzie rozwiązanie w którym, w grafie oryginalnym każdy wierzchołek będzie odwiedzany tylko raz.

Ostatni z przykładów wykorzystania algorytmu mrówkowego jest harmonogram produkcji. W porównaniu do poprzednich metod w tym algorytmie zachodzi pewna modyfikacja. Głównym problemem w harmonogramie produkcji jest znalezienie takiej kolejności przetwarzanych zadań, aby jak najszybciej je przetworzyć. Aby lepiej zobrazować tą sytuację należy sobie wyobrazić fabrykę w której znajdują się linie produkcyjne. Na linii są przetwarzane zadania w odpowiedniej kolejności oraz każde z zadań może zostać wykonane w różnym czasie[6].

W tej metodzie, podobnie jak w metodzie do rozwiązania problemu plecakowego, należy stworzyć graf pełny z wierzchołkami odpowiadającymi konkretnym zadaniom. Następnie mrówki przechodzą przez wszystkie wierzchołki i zostawiają feromony. Czynnikiem decydującym o wyborze wierzchołków nadal jest związana z feromonami. Do rozwiązania tego problemu nie jest brana pod uwagę liczba feromonów na krawędzi pomiędzy wierzchołkiem a jego sąsiadami. Wykorzystywana jest natomiast suma feromonów na wszystkich krawędziach do odwiedzanych wierzchołków z wierzchołkami już odwiedzonymi.

1.2.3 Algorytmy zachłanne

Kolejnym spojrzeniem na poruszany w pracy problem komiwojażera są algorytmy zachłanne (ang. greedy algorithms). Nie znajdziemy dowodu na to czy dla podanego problemu algorytm zachłanny znalazł poprawny wynik, jednak stosując się do pewnych zasad możemy określić, że dla naszego problemu istnieje rozwiązanie zachłanne. Główną strategią jaką się kierują jak sama nazwa wskazuje jest dokonywanie wyborów, które w danej chwili wydają się najlepsze. Oznacza to, że dokonuje się wyborów optymalnych lokalnie w nadziei, że te wybory doprowadzą do rozwiązania globalnego w rozsądnym czasie. W odróżnieniu do strategii zastosowanej w programowaniu dynamicznym wybory podejmowane przez algorytmy zachłanne nie są uzależnione od wyborów przeszłych. Kolejnym kryterium stosowanym do ocenienia poprawności rozwiązania zachłannego jest własność optymalnej

pod struktury, mówiąca o tym, że optymalne rozwiązanie dla całego problemu istnieje jedynie przy optymalnym rozwiązaniu pod problemów. Dane kryterium jest również istotne w przypadku rozwiązywania problemów metodą programowania dynamicznego. Algorytmy zachłanne nie zawsze prowadzą jednak do optymalnych rozwiązań, jednakże dla w większości problemów dają wystarczające rezultaty. Skorzystanie z algorytmów zachłannych często okazuje się niewystarczające. Aby uzyskać lepszy efekt i polepszyć zbudowane już trasy możemy wykorzystać algorytmy lokalnej optymalizacji (ang. local search). Użycie ich na zwróconych przez algorytmy zachłanne trasach powinno zminimalizować odległości między wierzchołkami w celu poprawienia otrzymanego rozwiązania. Dokładniejszy opis działania wybranych algorytmów zachłannych i metod optymalizujących został przedstawiony w podrozdziałach.

2. Algorytm genetyczny - Paweł

W tym rozdziale zostanie przedstawiony sposób, w jaki zostanie zastosowany algorytm genetyczny przy wyznaczaniu najlepszych tras dla ciężarówek przewozu odpadów komunalnych.

2.1 Wprowadzenie do algorytmu

Przed przejściem do omawiania algorytmu, należy wyjaśnić podstawowe pojęcia, które występują w algorytmie genetycznym:

- OSOBNIK pojedyncze rozwiązanie problemu, zakodowane w postaci chromosomu,
- POPULACJA zbiór osobników o stałej liczbie N w przekroju trwania całego algorytmu,
- GEN przechowuje informację o dowolnej cesze osobnika. W zależności od sposobu kodowania może to być bit, dowolna cyfra lub znak,
- CHROMOSOM składa się z uporządkowanego ciągu genów, przechowuje wszystkie cechy osobnika,
- GENOTYP w przyrodzie może składać się z kilku chromosomów i określa skład osobnika. W algorytmach genetycznych przyjmuje się, że jest to pojedynczy chromosom,
- FUNKCJA PRZYSTOSOWANIA funkcja za pomocą, której ocenia się jakość osobnika[16].

Schemat blokowy klasycznego algorytm genetycznego został pokazany na rysunku 2.1. Pierwszym krokiem jest wylosowanie populacji początkowej algorytmu. Wielkość populacji podczas trwania całego algorytmu jest stała N. Ważne jest, aby wszystkie osobniki były jak najbardziej zróżnicowane i wygenerowane losowo. Każdy z nich następnie musi zostać zakodowany do postaci chromosomów, które będą przechowywać w sobie informację o odwiedzanych punktach w postaci genów.

W populacji każdy osobnik musi zostać poddany ocenie funkcji przystosowania. Jej wynik determinuje jak dobre jest dane rozwiązanie. W klasycznym algorytmie dąży się do maksymalizacji tej funkcji. Określenie jak dana funkcja przystosowania będzie

Rysunek 2.1: Schemat algorytmu genetycznego

wyglądać, jest to jedną z najważniejszych części algorytmu genetycznego. Jeśli zostanie źle zdefiniowana, znalezione osobnik może nie spełniać wymagań rozwiązania problemu.

Po ocenie osobników zostaje sprawdzony warunek końcowy algorytmu. W zależności od problemu jest zdefiniowany inny warunek. W klasycznych podejściach są trzy różne rodzaje warunków końcowych. Pierwszym popularnym warunkiem końcowym jest stała ilość iteracji algorytmu. Drugim warunkiem jest określenie z góry czasu trwania algorytmu, po upływie którego zostaje wybrany najlepszy osobnik. Ostatnim popularnym warunkiem jest wykonywanie algorytmu, do momentu, aż wyniki przestaną się poprawiać w kolejnych pokoleniach. Wybór w jaki sposób będzie wyglądać warunek końcowy zależy od wielu czynników. Jeśli ważny jest krótki czas, należy założyć pierwszy wariant. Jeśli natomiast

algorytm może szukać rozwiązania nawet kilka godzin, można przyjąć drugi wariant, łącząc go jednocześnie z trzecim.

Kolejnym krokiem algorytmu jest wyselekcjonowanie rodziców do reprodukcji. Polega ona na tym, że osobniki lepsze(mają większą wartość oceny przystosowania)mają większe szansę na pozostanie rodzicem i przekazanie swoich cech. [7]. Najpopularniejszymi metodami wyboru rodziców jest metoda ruletki oraz turniejowa.

Rysunek 2.2: Metoda ruletki

Na rysunku 2.2 została zilustrowana metoda ruletki. Każdy z osobników dostaje wirtualny wycinek koła fortuny. Jego wielkość zależy od wartości funkcji prawdopodobieństwa. Przy każdym wyborze rodzica następuje zakręcenie koła i do reprodukcji zostaje wybrany osobnik na który będzie wskazywał stały punkt.

W metodzie turniejowej zostaje wybranych r osobników z populacji N. Z pośród nich zostaje wybrany zwycięzca(największa wartość funkcji przystosowania), który trafia do puli rodzicielskiej. Im większa jest ilość osobników r tym mniejsze szanse, że słabsze osobniki zostaną wybrane.

Wybrani rodzice zostają poddani operatorom genetycznym: krzyżowanie(ang. *crossover*) oraz mutacji(ang. *mutation*). Krzyżowanie polega na połączeniu części chromosomu jednego rodzica z częścią drugiego. Wynikiem takiego połączenia jest nowy osobnik.

Metody krzyżowania są różne, ale zawsze wykonywane muszą być w ten sam określony sposób. Wszystko zależy od metody zakodowania chromosomu oraz od tego czy kolejność genów i ich unikalność ma znaczenie. W klasycznym podejściu polega na rozcięciu w dowolnym miejscu genotypu u dwóch osobników oraz skrzyżowaniu ich ze sobą w tym punkcie (Rys. 2.3).

Rysunek 2.3: Klasyczne krzyżowanie

Następnie u nowego osobnika może z prawdopodobieństwem pm wystąpić mutacja. Jest to zmiana dowolnego pojedynczego lub ciągu genów na inny (Rys 2.4). Wartość pm w klasycznych algorytmach jest stosunkowo niska. Mutacja ma na celu delikatne zróżnicowanie osobników w celu przeszukania nowej przestrzeni rozwiązań. Natomiast gdyby zachodziła często, mogłaby powodować niszczenie dobrych rozwiązań. Po zasto-

Rysunek 2.4: Mutacja genotypu

sowaniu wszystkich operatorów genetycznych, nowa populacja jest poddawana ocenie przystosowania i jeśli wystapił warunek końcowy, wybierane jest najlepsze rozwiązanie.

2.2 Parametry wejściowe

Przy problemie zoptymalizowania tras samochodów wywożących odpady komunalne zostaną zbadane takie parametry wejściowe jak: wielkość populacji, ilość iteracji (pokoleń),

czas trwania algorytmu, rodzaj krzyżowania, rodzaj mutacji oraz prawdopodobieństwo mutacji. Jeśli chodzi o metodę selekcji, to będzie to metoda turniejowa. Poza tymi zmiennymi ważne jest wyznaczenie funkcji przystosowania oraz zakodowania informacji o trasach do postaci chromosomu. W podrozdziałach 2.3 oraz 2.4 zostaną opisane trzy rodzaje mutacji oraz krzyżowań, które zostaną zbadane.

2.2.1 Chromosom

W algorytmie genetycznym, każdy osobnik z populacji reprezentuje jedno rozwiązanie. Jakość takiego rozwiązania jest zapisywana do zakodowanej postaci chromosomu. Chromosom z definicji jest to ciąg genów reprezentujący dane rozwiązanie. Z kolei gen przenosi informację o cechach. Możliwość osiągnięcia sukcesu w algorytmie genetycznym jest tylko wtedy, gdy odpowiednio zakoduje się cechy i ustali funkcję przystosowania. Do zakodowania badanego problemu zostanie użyta metody permutacyjna bez powtórzeń. Permutacja to jest dowolnie utworzony ciąg ze wszystkich elementów zbioru. Każdemu genowi przed zakodowaniem chromosomów zostanie przypisany unikalny indeks. Będzie on przechowywał informację, który punkt jest odwiedzany. Następnie dla każdego z N osobników zostanie zakodowany chromosom w postaci ciągu permutacyjnego. Kolejna warunkiem jaki musi spełnić chromosom to pierwszy i ostatni gen, nigdy nie może zmienić swojego miejsca. Punkt startowy zawsze musi zostać na miejscu pierwszym, jak również punkt rozładunkowy musi być na końcu. Na rysunku 2.5 zostały zilustrowane przykłady kodowania permutacyjnego bez powtórzeń, dla chromosomu o długości 8. W obu chromosomach pierwsze i ostatnie miejsca są takie same. W przyszłych podrozdziałach gen będzie oznaczał jeden z punktów załadowań (lub ostatni rozładowania) na trasie ciężarówki. Chromosom bedzie oznaczał kolejność odwiedzania tych punktów przez pojazd.

Rysunek 2.5: Kodowanie chromosomów

2.2.2 Funkcja przystosowania

Algorytm genetyczny szuka osobnika z największą wartością funkcji przystosowania. W badanym problemie należy znaleźć najkrótszą trasę. W momencie, gdy długość takiej trasy zostanie odwrócona, to okaże się, że im większa wartość odwrotności tym krótsza trasa. Zatem wzór funkcji przystosowania to

$$fp = \frac{1}{s+1}$$

gdzie s - długość trasy, czyli suma odległości pomiędzy genami w chromosomie(1 - 2 - 3 - 4 - 5 - 6 - 7).

2.3 Metody krzyżowania

W pracy zostaną zbadane trzy rodzaje metod krzyżowania. Każde z nich charakteryzuje się czymś innym jeśli chodzi o liczbę potomków oraz porządek genów względem rodziców. Żadne z krzyżowań nie może zaburzyć dwóch warunków. Potomek musi posiadać strukturę permutacyjną oraz pierwszy i ostatni punk nie mogą się przemieścić.

2.3.1 Krzyżowanie z częściowym odwzorowaniem - PMX

PMX[8] (ang. *Partially Mapped Crossover*) jest odmianą krzyżowania dwupunktowego, w którym powstaje dwójka potomstwa. Zakładając, że wyselekcjonowano dwóch rodziców: 1 - 3 - 6 - 5 - 4 - 7 - 2 - 8 oraz 1 - 2 - 4 - 6 - 5 - 3 - 7 - 8 (Rys. 2.6). Losowane są

Rysunek 2.6: Krzyżowanie PMX - część 1

dwa dowolne punkty (nie uwzględnia się pierwszego i ostatniego), w których się je rozcina,

w opisywanym przypadku znajdują się one po trzecim i szóstym genie. Rozcięcia tworzą dwa segmenty 5 - 4 - 7 oraz 6 - 5 - 3, które zamienia się ze sobą. W wyniku tej operacji powstały dwa chromosomy: 1 - 3 - 6 - 6 - 5 - 3 - 2 - 8 oraz 1 - 2 - 4 - 5 - 4 - 7 - 7 - 8. Oba z nich nie są jeszcze permutacjami. Należy teraz w powtórzone geny, które znajdują się poza segmentami, zamienić na te geny, których brakuje. W tym celu następuje określenie mapowania pomiędzy genami, które następnie zamienia się ze sobą w chromosomach (Rys. 2.7). W pierwszym dziecku należy zamienić odpowiednie geny: 3 -> 4 oraz 6 -> 7. W drugim

Rysunek 2.7: Krzyżowanie PMX - część 2

natomiast zamienia się: 4 -> 6 oraz 7 -> 3. W wyniku tych zmian powstają dwa chromosomy: 1 - 4 - 7 - 6 - 5 - 3 - 2 - 8 oraz 1 - 2 - 6 - 5 - 4 - 7 - 3 -8. Powstałe dzieci posiadają już strukturę permutacyjną oraz pierwszy i ostatni punkt się nie przemieściły.

2.3.2 Krzyżowanie z zachowaniem porządku - OX

OX[12] (ang. *Order Crossover*) jest również odmianą krzyżowania dwupunktowego. W przeciwieństwie do PMX wynikiem będzie tylko jedno dziecko. Krzyżując ze sobą dwa chromosomy: 1 - 3 - 6 - 5 - 4 - 7 - 2 - 8 oraz 1 - 2 - 4 - 5 - 6 - 3 - 7 - 8. Pierwszym krokiem jest wylosowanie dwóch dowolnych punktów w których zostanie rozcięty pierwszy rodzic. Zakładając podobnie jak przy krzyżowaniu PMX, że są to punkty po trzecim i szóstym genie (Rys. 2.8). Oba punkty tworzą segment 5 - 4 - 7. Następnie w drugim rodzicu należy usunąć geny, które zostały z pierwszego rodzica wycięte. Ostatnim krokiem jest wstawienie wycinka 5 - 4 - 7 do drugiego rodzica, w to samo miejsce z jakiego zostały usunięte w pierwszym rodzicu. Powstał potomek 1 - 2 - 6 - 5 - 4 - 7 - 3 - 8, który spełnia założenia.

Rysunek 2.8: Krzyżowanie OX

2.3.3 Krzyżowanie cykliczne - CX

CX[11] (ang. *Cycle Crossover*) w przeciwieństwie do PX i OX nie polega na krzyżowaniu w dwóch określonych punktach. Aby wyznaczyć potomka, należy w dowolnym rodzicu znaleźć cykl permutacji, zaczynając od dowolnego miejsca pomiędzy pierwszym i ostatnim genem. Szukanie cyklu polega na kopiowaniu genów z jednego rodzica, według pozycji określonych przez rodzica drugiego. Na rysunku przedstawiono krzyżowanie CX dla dwóch chromosomów: 1 - 3 - 6 - 5 - 4 - 7 - 2 - 8 oraz 1 - 2 - 4 - 5 - 6 - 3 - 7 - 8. Losowany jest punkt startowy, inny niż 1 oraz 8. Na rysunku 2.9 został wylosowany

Rysunek 2.9: Krzyżowanie CX

drugi gen, czyli 3. Jego odpowiednikiem w drugim rodzicu jest 2. Należt znaleźć ten gen w pierwszym rodzicu. Znajduje się on na siódmym miejscu, jego odpowiednikiem jest gen 7. Ten gen jest na szóstym miejscu, a jego odpowiednikiem jest 3. W tym momencie został znaleziony cykl, ponieważ zaczynał się od 3 i nastąpiło zapętlenie. Znaleziony cykl to 3 - 2 - 7. Kolejnym krokiem jest wycięcie cyklu z chromosomu, w którym został wyznaczony. W ten sposób zostaje przepisane X - 3 - X - X - X - 7 - 2 - X. Aby skończyć krzyżowanie,

w X należy wpisać geny z drugiego rodzica, które nie wystąpiły w cyklu. W tak powstałym dziecku 1 - 3 - 4 - 5 - 6 - 7 - 2 - 8, wszystkie geny zajmują taką samą pozycję jak w którymś z rodziców, inaczej niż to było przy krzyżowaniu OX.

2.4 Metody mutacji

W pracy zostaną zbadane trzy różne rodzaje mutacji. Są to specjalne mutacje wykorzystywane przy strukturach permutacyjnych. Każda z nich zostanie również zbadana z różną wartością pm. Z reguły nie może być one duże, aby nie niszczyć potencjalnych rozwiązań. Powinno delikatnie wprowadzać różnorodność, aby była możliwość przeszukiwać nowe obszary. Poza tym bardzo ważne jest, aby zmiany powstałe w wyniku mutacji nie zaburzały struktury permutacyjnej chromosomu. Wszystkie mutacje zostaną opisane na tym samym chromosomie 1 - 2 - 3 - 4 - 5 - 6 - 7 - 8.

2.4.1 Mutacja odwracająca

W mutacji odwracającej wybierany jest dowolny podciąg genów z chromosomu, a następnie ich kolejność jest odwracana. Załóżmy, że wybrany podciąg to 3 - 4 - 5 (Rys. 2.10). W tym przypadku składa się on z trzech genów, więc po odwróceniu zamienią się ze sobą dwa geny, środkowy zostanie na tym samym miejscu. Po mutacji końcowy chromosom ma postać 1 - 2 - 5 - 4 - 3 - 6 - 7 - 8. Struktura permutacyjna nie została zachwiana.

Rysunek 2.10: Mutacja odwracająca

2.4.2 Mutacja wstawiająca

W tej mutacji dowolny gen jest przestawia się w losowe miejsce. Jest to najprostsza mutacja, ale teoretycznie, może generować rozwiązaniach w całkowicie nowych przestrzeniach przeszukiwań. Punkt znajdujący się na końcu trasy, może znaleźć się na początku. Na

rysunku 2.11 został wylosowany gen 5, który znajdował się na piątym miejscu, po mutacji znalazł się na drugim miejscu, w rezultacie chromosom po mutacji ma postać 1 - 5 - 2 - 3 - 4 - 6 - 7 - 8.

Rysunek 2.11: Mutacja wstawiająca

2.4.3 Mutacja zamieniająca

W mutacji zamieniającej zamienia się dwa dowolne geny miejscami. Jest to tak naprawdę, rozszerzona wersja mutacji wstawiającej. Losowane są dwa dowolne geny, na rysunku 2.12 są to 2 i 5, które ulegają zamianie miejscami. Powstały chromosom to 1 - 5 - 3 - 4 - 2 - 6 - 7 - 8.

Rysunek 2.12: Mutacja zamieniająca

3. Algorytm mrówkowy

Słowo rozwój może być zestawiane z wieloma rzeczownikami. Wiele dziedzin ciągle się rozwija, powstają nowe udogodnienia które wpływają na wiele dziedzin życia. Dzięki rozwojowi techniki ludzie są w stanie osiągać cele które jakiś czas temu mogły być tylko marzeniami. Rozwój techniki również potrzebuje inspiracji do tworzenia nowych, lepszych rozwiązań

Szybkość oraz dokładność rozwoju zależy od wielu czynników. Dzięki pracy zespołowej pewne problemy mogą być rozwiązywane szybciej i dokładniej. Wysiłek włożony przez grupę procentuje szybko, a same efekty mogą być również satysfakcjonujące. Istotnym czynnikiem jest wysiłek wkładany przez każdego członka grupy.

Obserwując przyrodę możemy zauważyć w jaki sposób zwierzęta radzą sobie z różnymi problemami. Złożone grupy mogą być spokojniejsze o zdobycie pożywienia czy też o przetrwanie w ciężkich warunkach. Praca zespołowa jest jedną z cech której osobniki w grupie uczą się nie będąc nawet tego do końca świadomym.

3.1 Wprowadzenie do algorytmu

Na przestrzeni czasu wiele gatunków zwierząt żyjących na ziemi przystosowało się do panujących tu warunków. Jedną z takich gatunków są mrówki. Te niewielkich rozmiarów owady posiadają zdolności pomagające im przetrwać wśród najcięższych warunków. Mrówki żyją w stadach w związku z czym wykorzystują pracę zespołową do rozwiązywania problemów jakie codziennie napotykają na swojej drodze.

Aby zapewnić przetrwanie stadu mrówki potrzebują zapewnić sobie dostęp do pokarmu. Dziesiątki tysięcy mrówek mają swoje schronienie w mrowiskach. To tam trafia zdobyty przez nich pokarm. Wystarczy aby jedna mrówka znalazła miejsce z pokarmem, to po powrocie do mrowiska inne osobniki są w stanie odtworzyć drogę do pożywienia. Na tym etapie należałoby się zastanowić, w jaki sposób mrówki są w stanie komunikować się między sobą?

Jednym z opisywanych przez nas rozwiązań do wyznaczania zoptymalizowanej trasy jest algorytm mrówkowy, inaczej nazywany ACO - Ant Colony Optimization. Pomysł ten został zaczerpnięty z natury. Jak sama nazwa wskazuje działanie algorytmy jest związane z

mrówkami, a dokładnie z kolonią mrówek. Pomysł na algorytm został zaproponowany na początku lat 90 XX wieku przez włoskiego badacza - Marco Dorigo.

Tak jak zostało wspomniane wcześniej, algorytm opiera się na pracy mrówek. Chodzi tutaj dokładnie o trasę jaką mrówki pokonują od swojego siedliska do miejsca w którym znajduje się pożywienie. Ważne jest znaczenie tutaj pracy zespołowej. Trasę kształtuje cała kolonia mrówek, a nie pojedyncze przypadki. Mrówki z każdą kolejną podróżą wykształcają coraz to bardziej optymalną trasę.

3.2 Opis działania algorytmu

Mrówka w celu znalezienia pokarmu w sposób losowy wyrusza z mrowiska. Losowo przesuwając się po terenie szuka pokarmu. Gdy już go znajdzie wraca do siedliska i informuje o tym fakcie pozostałe mrówki. Aby dostarczyć więcej pokarmu mrówki wyruszają do miejsca spoczynku pożywienia. Chcąc uniknąć sytuacji w której zdobycz może zostać zabrana przez inne owady, mrówki muszą jak najbardziej zoptymalizować trasę jaką mają do pokonania.

Mimo posiadania informacje o znalezionym pokarmie, każda mrówka sama musi zlokalizować źródło. Czy mrówki poruszają się tą samą trasą przy każdym wyjściu z mrowiska? Aby trafić do miejsca w którym znajduje się pokarm, wspomniane owady wykorzystują ślady pozostawione przez osobników które już natrafiły na pożywienie. W ten sposób mrówka która wyrusza w sposób losowy, natrafia na ślad poprzednika który jest wskazówką do znalezienia poszukiwanego pokarmu. Wspomniany ślad nazywa się feromonem. To dzięki tej właściwości mrówki są w stanie lokalizować trasy prowadzące do pokarmu.

Na rysunku ?? został przedstawiony graf z wierzchołkami A-B-C-D-E-F. Nad krawędziami kolorem czerwonym zostały oznaczone wagi. Na początku załóżmy, że mamy do dyspozycji 80 agentów. Przez N pierwszych iteracji mrówki poruszały się losowo i powstał następujący podział:

Tak jak można to zauważyć na grafice ??, po pierwszych iteracjach, przez obie ścieżki przechodzi taka sama liczba agentów. Dzieje się tak ponieważ mrówki rozpoczynają pracę w sposób losowy. W dalszych krokach następują modyfikacje i agenci dążą do wyznaczenia najoptymalniejszej ścieżki.

Rysunek 3.1: Położenie ścieżek na przykładowym grafie

Liczba agentów odwiedzających ścieżki zmienia się. Bardziej optymalna trasa zyskuje widoczną przewagę. W kolejnych iteracjach mrówki wykorzystują siłę feromonów. Bardziej optymalne ścieżki są częściej odwiedzane w związku z czym zapach na tych krawędziach jest silniejszy oraz podtrzymywany. Na mniej optymalnych trasach zapach zanika i przestają one być atrakcyjne dla agentów. Opisana sytuacja prowadzi do wyznaczenia trasy która jest najatrakcyjniejsza do przebycia dla mrówek.

3.3 Feromony

Feromony posiadają cechę która może się wydawać, że negatywnie wpływa na wyznaczanie ścieżki. Chodzi tutaj o ulatnianie się zostawionego zapachu. Na pierwszy rzut oka może się to zjawisko wydawać niepożądanym, ale w rzeczywistości ma duży wpływa na optymalizację. Jeśli feromony nie straciłyby na swojej sile, to bardzo prawdopodobne, że pierwotna ścieżka mogłaby zostać uznana za najbardziej optymalną.

W jaki sposób wyznaczona zostaje najbardziej optymalna ścieżka? Zapach feromonów jest podtrzymywany przez wędrujące mrówki. Z czasem owady te same zbaczają z drogi w celu poszukiwania alternatywnej trasy. Jeśli wybrana trasa jest optymalniejsza od pozostałych to ślad jest podtrzymywany, a na innych zanika. Dzięki temu w sposób iteracyjny można wyróżnić trasę najoptymalniejszą, a słabsze z czasem zostają odrzucone ponieważ przestają być odwiedzane.

Rysunek 3.2: Rozkład agentów na grafie po N początkowych iteracjach

Feromony są istotnym czynnikiem w całym procesie. To dzięki nim trasa jest ulepszana. Zapach posiada jedną z charakterystyk która na początku może wydawać się problematyczna. Wraz z upływem czasu siła zapachu słabnie aż do całkowitego zaniknięcia. Właściwość ta jest zaletę, a nie wadę. To dzięki pracy zespołowej zapach na najlepszej trasie jest podtrzymywany, a na słabszych zanika. Dzięki tej selekcji dłuższe trasy nie są brane pod uwagę w wyniku czego zostaje trasa najkorzystniejsza.

Do wyznaczenia optymalnej trasy potrzebne są długości jakie należy przebyć do przemieszczania się między punktami. W 3.1 przedstawione są przykładowe odległości.

Tabela 3.1: Wartości kosztów

	A	В	С	D
A	0	3	8	2
В	3	0	2	4
С	8	2	0	1
D	2	4	1	0

Równie ważne jest wyznaczenie początkowych współczynników feromonów. Na początku nadajmy wszystkim krawędziom w grafie wartości równe 1, a współczynnik parowania niech wynosi 0.5.

Posiadając początkowe dane wyznaczmy w sposób losowy trasy dla dwóch agentów: L1 i L2. Agent L1 poruszał się trasą w której odwiedził wierzchołki w następującej kolejności: A, B, C, D, A.

Rysunek 3.3: Rozkład agentów w grafie po optymalizacji

Tabela 3.2: Wartości feromonów

	A	В	С	D
Α	0	1	1	1
В	1	0	1	1
С	1	1	0	1
D	1	1	1	0

Agent L2 wyznaczył następującą trasę: A, C, B, D, A.

Mrówki odpowiednio pokonały dystans 8 i 16 punktów. Dzięki tej informacji można zaktualizować wartości feromonów na poszczególnych krawędziach. Do obliczeń wykorzystany jest wzór: $\tau_{i,j} = (1-p)\tau_{i,j} + \sum\limits_{k=1}^m \Delta \tau_{i,j}^k$. Krawędzie A-B i C-D zostały odwiedzona jedynie przez agenta L1 w wyniku czego wartość feromonu zostaje zmieniona na 10/16. Następnie krawędzie A-C i B-D zostają zaktualizowane na 9/16. Krawędzie A-D i B-C są odwiedzone dwukrotnie a wartość feromonów wynosi 11/16.

Ostatnią fazą algorytmu jest wyznaczenie prawdopodobieństwa z jakim kolejni agenci będą wybierać kolejny wierzchołek. W kolejnej iteracji agent L3 znajduje się w wierzchołku B. Do wyboru ma krawędzie A, C i D. Według wzoru $p_{i,j} = \frac{(\tau_{i,j})^{\alpha}(\eta_{i,j})^{\beta}}{\sum (\tau_{i,j})^{\alpha}(\eta_{i,j})^{\beta}}$ wyliczane jest prawdopodobieństwo dla wszystkich możliwości. Przejście z krawędzi B do krawędzi A wynosi około 20%, do krawędzi D 30%, a do krawędzi C około 50%.

Optymalna trasa zostanie wykształcona po wykonaniu wielu iteracji. Ilość iteracji nie jest zdefiniowana i dla każdego przypadku może być różna. Sytuacja wygląda identycznie w

Rysunek 3.4: Graf z wagami

przypadku wyboru wartości p. Ważne jest natomiast to, aby w trakcie działania algorytmu nie modyfikować tej wartości. Powinno ona być taka sama na każdym kroku algorytmu.

Rysunek 3.5: Graf z początkowymi wartościami feromonów

Rysunek 3.6: Trasa przebyta przez agenta L1

Rysunek 3.7: Trasa przebyta przez agenta L2

Rysunek 3.8: Graf z wartościami feromonów po modyfikacji

4. Algorytmy zachłanne

Istnieje wiele algorytmów zachłannych pozwalających otrzymać optymalne rozwiązanie dla problemu znalezienia najkrótszej trasy. W tym rozdziale skupimy się jednak na algorytmie najbliższego sąsiada, algorytmie najmniejszej krawędzi oraz algorytmie a*. W celu zoptymalizowania otrzymanych rozwiązań stosować będziemy operator 2-opt oraz operator 3-opt.

4.1 Algorytm najbliższego sąsiada

Poniższy podrozdział przybliży działanie algorytmu najbliższego sąsiada. Wszystkie wymagane dla algorytmu operacje zostaną opisane krok po kroku oraz przedstawione na krótkim przykładzie.

4.1.1 Wprowadzenie do algorytmu

Jak sama nazwa wskazuje jest to algorytm polegający na odwiedzaniu, zaczynając od wybranego wierzchołka początkowego następnego wierzchołka znajdującego się najbliżej poprzednio odwiedzonego. Omawiany algorytm możemy podzielić na następujące kroki:

- 1 Wybieramy wierzchołek początkowy, który staje się naszym aktualnym i oznaczamy go jako odwiedzony.
- 2 Następnie dla aktualnego wierzchołka obliczamy i wyznaczamy najkrótszą krawędź, która połączy nasz aktualny wierzchołek tylko z tymi, które są nieodwiedzone.
- 3 Znalezioną najkrótszą krawędź w punkcie nr 2 dołączamy do rozwiązania.
- 4 Drugi wierzchołek, który należy do znalezionej krawędzi staje się naszym aktualnym oraz oznaczamy go jako odwiedzony.
- 5 Jeżeli w naszym grafie znajdują się jeszcze nieodwiedzone wierzchołki, przechodzimy do punktu 2.
- 6 Natomiast jeżeli wszystkie wierzchołki są już odwiedzone, łączymy ostatni aktualny z początkowym wierzchołkiem tworząc cykl oraz kończąc działanie algorytmu.

Po wykonaniu wszystkich kroków otrzymujemy optymalne rozwiązanie dla algorytmu najbliższego sąsiada.

4.1.2 Opis działania algorytmu

Aby lepiej zobrazować otrzymanie rozwiązania przez algorytm prześledźmy jego działanie na przykładzie przedstawionym poniżej na rysunku 5.1 .

Rysunek 4.1: Algorytm najbliższego sąsiada

Zaczynamy od wyboru wierzchołka nr 2 jako początkowego i tym samym ustawiamy go jako aktualny w danym momencie. Po obliczeniu wszystkich odległości prowadzonych do wierzchołków nieodwiedzonych wychodzi, że najkrótsza krawędź prowadzi do wierzchołka nr 4, więc dołączamy wybrana krawędź do rozwiązania i ustawiamy nowy aktualny wierzchołek, który staje się również odwiedzonym. W naszym grafie znajdują się nadal nieodwiedzone wierzchołki, dlatego powtarzamy krok algorytmu w celu znalezienia kolejnej najkrótszej krawędzi. Kolejną najlepszą odnalezioną w danym momencie krawędzią, którą dodamy do naszego rozwiązania będzie krawędź o wartości 3 łącząca nasz aktualny

wierzchołek z wierzchołkiem nr 5. Kroki 4, 5 oraz 6 przedstawiają kolejne powtarzalne iteracje algorytmu dochodząc w ostatnim kroku do utworzenia cyklu i tym zakończeniu działania algorytmu. W ten sposób otrzymaliśmy zachłanne rozwiązanie 2 - 4 - 5 - 3 - 1 - 2. Warto zaznaczyć, że dzięki oznaczaniu wierzchołków jako odwiedzone nie musimy w żadnej iteracji martwić się o to czy dołączenie kolejnej krawędzi z nieodwiedzonym wierzchołkiem spowoduje utworzenie niepożądanego cyklu.

4.2 Algorytm najmniejszej krawędzi

Kolejny podrozdział algorytmów zachłannych został poświęcony dokładniejszemu opisie działania algorytmu najmniejszej krawędzi, który w swoim działaniu przypomina algorytm poszukujący minimalnego drzewa rozpinającego, poprzez dołączenie do aktualnego rozwiązania najkrótszych wśród dopuszczalnych krawędzi.

4.2.1 Wprowadzenie do algorytmu

Aby otrzymać zachłanne rozwiązanie przy wykorzystaniu algorytmu najmniejszej krawędzi należy wykonać następujące kroki:

- 1 Algorytm zaczynamy od posortowania wszystkich możliwych krawędzi rosnąco według ich wag oraz na umieszczeniu ich w kolekcji.
- 2 Następnie z podanej kolekcji wybieramy krawędź o najmniejsze wadze oraz usuwamy ją z naszej kolekcji.
- 3 Jeśli dołączenie wybranej aktualnie krawędzi nie spowoduje utworzenia cyklu oraz utworzenia wierzchołka o trzech krawędziach to możemy dołączyć ową krawędź do rozwiązania. (pomijamy warunki, jeśli jest to ostatnia iteracja)
- 4 Gdy liczba wszystkich wierzchołków równa się liczbie dołączonych krawędzi do rozwiązania, oznacza to, że został utworzony cykl i należy zakończyć działanie algorytmu.
- 5 W przeciwnym wypadku wracamy do punktu nr 2.

Po zakończeniu działania algorytmu otrzymujemy optymalne rozwiązanie dla algorytmu najmniejszej krawędzi.

4.2.2 Opis działania algorytmu

Działanie algorytmu przedstawione zostanie na rysunku 4.2 przedstawiającym sześć losowo rozmieszczonych wierzchołków.

Rysunek 4.2: Początkowe rozmieszczenie wierzchołków

Natomiast wizualizacja kolejnych kroków algorytmu została przedstawiona na rysunku 5.3. Po posortowaniu wszystkich dostępnych krawędzi dla każdego wierzchołka rozpoczynamy działanie algorytmu.

Rysunek 4.3: Algorytm najmniejszej krawędzi

Podczas pierwszej iteracji okazuje się, że mamy aktualnie dwie krawędzie z najmniejszą wagą o wartości 3 (1 - 2 oraz 4 - 5), nie ma więc znaczenia, która krawędź dodamy

w pierwszej kolejności, ponieważ żadna z wybranych nie utworzy nam w tym momencie cyklu. W przypadku drugiej iteracji wybieramy krawędź o najmniejszej wadze, dołączając ją do aktualnego rozwiązania. Analogiczna sytuacja do pierwszej iteracji występuje w trzeciej iteracji, gdzie nie ma różnicy, która krawędź dołączymy do rozwiązania. Czwarta iteracja pokazuje sytuacje, w której nie możemy połączyć krawędzi 3 - 4, ponieważ utworzyłoby to niedozwolony w trakcie algorytmu cykl, dlatego tym razem wybieramy inne połączenie o najmniejszej wadze (4 - 6). Kolejny krok przedstawia przedstawia przypadek, gdzie nie jest możliwe połączenie krawędzi 2 - 4 (najmniejsza wartość - 7), ponieważ spowodowałoby dla wierzchołka nr 4 utworzenie trzech wychodzących z niego krawędzi, więc do rozwiązania dochodzi kolejna najmniejsza krawędź 1 - 6. W ostatnim kroku, pomimo dostępnych krawędzi z mniejszą wagą wybieramy krawędź 2 - 3, ponieważ tylko ona spowoduje utworzenie kompletnego cyklu. W takim wypadku kończąc działanie algorytmu otrzymujemy rozwiązanie 1 - 6 - 4 - 5 - 3 - 2 - 1.

4.3 Algorytm A*

Ostatnim omówionym rozwiązaniem do znajdowania najkrótszej ścieżki w grafie jest algorytm a*, w którym zawsze zostanie znalezione najlepsze zachłanne rozwiązanie. Metoda jest przykładem wybierania rozwiązań w danym momencie najlepszych, ale gwarantuje, że każdy wierzchołek zostanie odwiedzony. Najlepsze wyniki możemy otrzymać, wtedy kiedy obszar przeszukiwań jest strukturą drzewiastą.

4.3.1 Wprowadzenie do algorytmu

Główną zasadą algorytmu a* jest minimalizacja funkcji kosztu oraz funkcji heurystycznej, gdzie ta ostatnia musi spełniać dwa wymagane warunki tj. warunek dopuszczalności i warunek monotoniczności. Warunek dopuszczalności polega na tym, aby funkcja heurystyczna nie oszacowywała, gdy minimalizujemy koszt, a przeszacowywała, gdy chcemy zmaksymalizować zysk. Natomiast warunek monotoniczności mówi o tym, że im bliżej jesteśmy rozwiązania, tym oszacowywanie wyniku musi być coraz mniej optymistyczne.

4.3.2 Opis działania algorytmu

Jeśli przestrzeń przeszukiwań zawierać będzie ścieżki to możemy wówczas sprowadzić problem do problemu poszukiwania najkrótszej ścieżki w grafie. Wiemy, że musimy stworzyć ścieżkę zawierającą krawędzi, oznaczmy więc jako liczbę krawędzi, które już wykorzystaliśmy. Wtedy funkcją heurystyczną może być na przykład iloczyn liczby krawędzi pozostałych do wykorzystania i wagi najtańszej krawędzi – wtedy taka funkcja na pewno będzie nadmiernie optymistyczna. Dokładniejsze oszacowanie daje nam funkcja heurystyczna zdefiniowana jako suma najmniejszych wag niewykorzystanych jeszcze krawędzi. <tu jeszcze pojawią się rysunki i opis>

4.4 Optymalizacja otrzymanych rozwiązań

W ostatnim podrozdziale skupimy się na sposobach optymalizacji otrzymanych przez algorytmy zachłanne rozwiązań. Dokładniej omówiona zostanie metoda 2-opt oraz metoda 3-opt.

4.4.1 Metoda 2-opt

Metoda optymalizacyjna 2-opt polega na pozbyciu się z cyklu dwóch krawędzi w celu zastąpienia ich innymi krawędziami w taki sposób, aby otworzyć zupełnie inny cykl. Iteracje możemy powtarzać dla każdej pary krawędzi, oprócz tych sąsiadujących ze sobą, ponieważ ich zamienienie nie przyniesie żadnej modyfikacji. Metoda nie ma na celu zmiany położenia wierzchołków, jedynie kolejności ich odwiedzania. Po wykonaniu całej optymalizacji, należy sprawdzić która modyfikacja przyniosła najlepszy efekt skrócenia długości cyklu. W przypadku jeżeli żadna modyfikacja nie dała lepszego rozwiązania, nie modyfikujemy rozwiązania. Algorytm można wykonywać wielokrotnie, w ten sposób zostanie zrealizowane minimum lokalne. Dla lepszego przedstawienia działania metody 2-opt, należy spojrzeć na rysunek 5.4:

4.4.2 Metoda 3-opt

W odróżnieniu do algorytmu 2-opt, w metodzie 3-opt rozważane są wszystkie cykle, które możemy uzyskać wymieniając trzy krawędzie z cyklu aktualnego, przy czym możemy to wykonać na wiele sposobów tak jak zostało to przedstawione na rysunku 5.5.

Rysunek 4.5: Metoda 3-opt

Prosta tabela 4.1.

Tabela 4.1: Długi podpis tabeli 1, który pojawi się nad nią. Jak chcecie podpis pod tabelą, umieśćcie caption przed samym end{table} - ale to niezgodne z wytycznymi.

Kolumna 1	Kolumna 2	Kolumna 3	Kolumna 4
Kolumna 1	Kolumna 2	Kolumna 3	Kolumna 4
Kolumna 1	Kolumna 2	Kolumna 3	Kolumna 4
Kolumna 1	Kolumna 2	Kolumna 3	Kolumna 4

Przykładowa tabela 4.2, nieco bardziej skomplikowana.

Tabela 4.2: Długi podpis tabeli 2, który pojawi się nad nią

Kolumna wyróżniona	Kolumna pierwsza	Kolumna druga	Kolumna kolejna długa nazwa	Przeno- szenie słowa	Kolumna kolejna	Kolumna kolejna	Kolumna kolejna	Kolumna kolejna	Kolumna kolejna	Kolumna kolejna
Wiersz jakiś tam	1	2	3	4	5	6	7	8	9	10
Wiersz ze statystykami	11,56	92,38	827,21	41,92	29,71	28,77	29,61	55,02	72,33	95,82
Wiersz ze statystykami	11,56	92,38	827,21	41,92	29,71	28,77	29,61	55,02	72,33	95,82
Wiersz ze statystykami	11,56	92,38	827,21	41,92	29,71	28,77	29,61	55,02	72,33	95,82
Wiersz ze statystykami	11,56	92,38	827,21	41,92	29,71	28,77	29,61	55,02	72,33	95,82
Wiersz ze statystykami	11,56	92,38	827,21	41,92	29,71	28,77	29,61	55,02	72,33	95,82
Wiersz ze statystykami	11,56	92,38	827,21	41,92	29,71	28,77	29,61	55,02	72,33	95,82
Wiersz ze statystykami	11,56	92,38	827,21	41,92	29,71	28,77	29,61	55,02	72,33	95,82
Wiersz ze statystykami	11,56	92,38	827,21	41,92	29,71	28,77	29,61	55,02	72,33	95,82
Wiersz ze statystykami	11,56	92,38	827,21	41,92	29,71	28,77	29,61	55,02	72,33	95,82
Wiersz ze statystykami	11,56	92,38	827,21	41,92	29,71	28,77	29,61	55,02	72,33	95,82

5. Badania

- 5.1 Wyniki algorytmu genetycznego
- 5.2 Wyniki algorytmu mrówkowego
- 5.3 Wyniki algorytmów zachłannych

6. Porównania wyników

Podsumowanie

Tutaj będzie podsumowanie.

Bibliografia

- [1] Encyklopedia AlgorytmÄłw. Encyklopedia algorytmÄłw. http://algorytmy.ency.pl/artykul/algorytm_najblizszego_sasiada, 2016.
- [2] Encyklopedia AlgorytmĂłww. Encyklopedia algorytmĂłww. http://algorytmy.ency.pl/artykul/algorytm_helda_karpa, 2016.
- [3] Lenart Andrzej. *Maszynoznawstwo przemysĹ,u spoĹĽywczego*. SGGW, Warszawa, 2003.
- [4] J. Autor. Nazwa strony internetowej. http://www.dlugi.adres.url.zlamie.sie.gdzies.w.srodku.com, stan z 01.01.2010 r.
- [5] U. Autor and W. Kolejny. TytuĹ, publikacji. *Nazwa czasopisma*, 12(2):132–145, May 2012.
- [6] Daniel BĹ, aszkiewicz. Algorytmy mrĂłwkowe. *Instytut Informatyki Uniwersytetu Wrocd'ż"awskiego*, 1(1):5–6.
- [7] Ewa Figielska. Algorytmy ewolucyjne i ich zastosowania. Zeszyty Naukowe Warszawskiej WyĹĽszej SzkoĹ, y Informatyki, 1(1):81–92, 2006.
- [8] D. Goldberg and R. Lingle. Alleles, loci and the traveling salesman problem. Proceedings of the 1st International Conference on Genetic Algorithms and Their Applications, pages 154–159, 1985.
- [9] David E. Goldberg. *Algorytmy genetyczne i ich zastosowania*. Wydawnictwo Naukowo-Techniczne, Warszawa, 1998.
- [10] Anna Gryko-Nikitin. NiektĂłre osobliwoĹ>ci algorytmĂłw genetycznych na przykĹ,adzie zagadnieĹ,, logistycznych. *Ekonomia i ZarzÄ...dzanie*, 1(2):129–138, 2010.
- [11] D. J. d. Smith I. M. Oliver and R. C. J. Holland. A study of permutation crossover operators on the traveling salesman problem. *In Proceedings of the second international conference. on genetic algorithms*, page 224–230, 1987.

- [12] Hadush Mebrahtu Kusum Deep. New variations of order crossover for travelling salesman problem. *International Journal of Combinatorial Optimization Problems and Informatics*, 2:2–13, 2011.
- [13] Rutkowski L Rutkowska D., PiliĹ, ski M. Sieci neuronowe, algorytmy genetyczne i systemy rozmyte. Wydawnictwo Naukowe PWN, Warszawa, 1999.
- [14] Krzysztof Schiff. Ant colony optimization algorithm for the 0-1 knapsack problem. *Technical transactions automatic control*, 1(1):40–51, 2013.
- [15] Alexander Schrijver. On the history of combinatorial optimization (till 1960). 1(1):1–3.
- [16] RadosĹ, aw Winiczenko. Algorytmy genetyczne i ich zastosowania. *PostÄ*TM*py Techniki PrzetwÄtrstwa SpoĹĽywczego*, 1(2):107–110, 2008.

Spis tabel

Tablica 3.1	Krótki podpis tabeli 1 – do spisu treści	34
Tablica 3.2	Krótki podpis tabeli 1 – do spisu treści	35
Tablica 4.1	Krótki podpis tabeli 1 – do spisu treści	45
Tablica 4.2	Krótki podpis tabeli 2 – do spisu treści	46

Spis rysunków

Rysunek 1.1	Graf bez cyklu Hamiltona	14
Rysunek 1.2	Graf z cyklem Hamiltona	14
Rysunek 2.1	Schemat algorytmu genetycznego	22
Rysunek 2.2	Metoda ruletki	23
Rysunek 2.3	Klasyczne krzyżowanie	24
Rysunek 2.4	Mutacja genotypu	24
Rysunek 2.5	Kodowanie chromosomów	25
Rysunek 2.6	Krzyżowanie PMX - część 1	26
Rysunek 2.7	Krzyżowanie PMX - część 2	27
Rysunek 2.8	Krzyżowanie OX	28
Rysunek 2.9	Krzyżowanie CX	28
Rysunek 2.10	Mutacja odwracająca	29
Rysunek 2.11	Mutacja wstawiająca	30
Rysunek 2.12	Mutacja zamieniająca	30
Rysunek 3.1	Położenie ścieżek na przykładowym grafie	33
Rysunek 3.2	Rozkład agentów na grafie po N początkowych iteracjach	34
Rysunek 3.3	Rozkład agentów w grafie po optymalizacji	35
Rysunek 3.4	Graf z wagami	36
Rysunek 3.5	Graf z początkowymi wartościami feromonów	37
Rysunek 3.6	Trasa przebyta przez agenta L1	37
Rysunek 3.7	Trasa przebyta przez agenta L2	38
Rysunek 3.8	Graf z wartościami feromonów po modyfikacji	38
Rysunek 4.1	Algorytm najbliższego sąsiada	40
Rysunek 4.2	Początkowe rozmieszczenie wierzchołków	42
Rysunek 4.3	Algorytm najmniejszej krawędzi	42
Rysunek 4.4	Metoda 2-opt	45
Rysunek 4.5	Metoda 3-ont	45

Spis listingów

Spis algorytmów