Introduction to **Java**

Tim Magoun and Aravind Koneru

compiled on Friday 8th July, 2016 22:37

This test will evaluate the familiarity of basic programming concepts as well as the knowledge of the Java programming language, which is used as the programming language of numerous FIRST®robotics competitions.

The following topics will be on this test:

- Primitive Types and Operations (int, byte, boolean, etc.)
- Modifiers (final, public, static, etc.)*
- Comparison Operators (==, !=, >=,etc.)
- Assignment operators (+=, *=, =, etc)
- Flow Control (if, for, break, etc)
- Methods and Parameters*
- Single- and Multi-Dimensional Arrays
- Object Oriented Programming*
- Inheritance and Polymorphism*
- Programming Habits and Conventions

DO NOT BEGIN UNTIL INSTRUCTED TO DO SO

^{*} Starred items are extremely important in programming a robot

PART ONE: Multiple Choice

Instructions: Choose the correct solution to the problem, there is only one correct answer for each problem.

1	TD1	_:	- C	_	100000000000000000000000000000000000000	1_1_	• -
Ι.	1 ne	size	$o_{\rm I}$	\mathbf{a}	boolean	variable	1S

- (a) 1 byte
- (b) 4 bytes
- (c) 1 bit
- (d) 16 bits
- 2. When adding an int to a double, the resulting variable will be
 - (a) an int with lower precision
 - (b) an **int** with the same precision
 - (c) a double with lower precision
 - (d) a double with same precision
- 3. When the modifier private is used, where could one could access the member?
 - (a) Inside the same class
 - (b) Inside the same package
 - (c) Inside the same superclass
 - (d) Only the processor could access the member
- 4. When should one use the modifier static?
 - (a) When the member should not be modified
 - (b) When the member needs to be shared across all instances of the class
 - (c) When the member should not be accessed by the end-user
 - (d) When the member changes in value frequently
- 5. What data type does a conditional statement return?
 - (a) int
 - (b) boolean
 - (c) boolean* pointer
 - (d) conditional statements do not return any data type

6. What is the outcome when one executes the following code?

- (a) True
- (b) True False
- (c) False
- ${\rm (d)}\ \, Runtime\ \, Error:\ \, ArrayIndexOutOfBoundsException$
- 7. What is the outcome when one executes the following code?

- (a) True
- (b) True False
- (c) False
- (d) Runtime Error: ArrayIndexOutOfBoundsException
- 8. Which of the following is an equivalent statement for $(x \parallel y) \&\& !x$
 - (a) y && x
 - (b) x || y
 - (c) !y
 - (d) y && (y || x)

9. Example Question One

- (a) Answer One
- (b) Answer Two
- (c) Answer Three
- (d) Answer Four

10. Example Question One

- (a) Answer One
- (b) Answer Two
- (c) Answer Three
- (d) Answer Four

11. Example Question One

- (a) Answer One
- (b) Answer Two
- (c) Answer Three
- (d) Answer Four

12. Example Question One

- (a) Answer One
- (b) Answer Two
- (c) Answer Three
- (d) Answer Four

13. Example Question One

- (a) Answer One
- (b) Answer Two
- (c) Answer Three
- (d) Answer Four

14. Example Question One

- (a) Answer One
- (b) Answer Two
- (c) Answer Three
- (d) Answer Four

15. Example Question One

- (a) Answer One
- (b) Answer Two
- (c) Answer Three
- (d) Answer Four

16. Example Question One

- (a) Answer One
- (b) Answer Two
- (c) Answer Three
- (d) Answer Four

17. Example Question One

- (a) Answer One
- (b) Answer Two
- (c) Answer Three
- (d) Answer Four

18. Example Question One

- (a) Answer One
- (b) Answer Two
- (c) Answer Three
- (d) Answer Four

19. Example Question One

- (a) Answer One
- (b) Answer Two
- (c) Answer Three
- (d) Answer Four

20. Example Question One

- (a) Answer One
- (b) Answer Two
- (c) Answer Three
- (d) Answer Four

21. Example Question One

- (a) Answer One
- (b) Answer Two
- (c) Answer Three
- (d) Answer Four

22. Example Question One

- (a) Answer One
- (b) Answer Two
- (c) Answer Three
- (d) Answer Four

23. Example Question One

- (a) Answer One
- (b) Answer Two
- (c) Answer Three
- (d) Answer Four

24. Example Question One

- (a) Answer One
- (b) Answer Two
- (c) Answer Three
- (d) Answer Four

25. Example Question One

- (a) Answer One
- (b) Answer Two
- (c) Answer Three
- (d) Answer Four

26. Example Question One

- (a) Answer One
- (b) Answer Two
- (c) Answer Three
- (d) Answer Four

CONTINUE TO THE NEXT PAGE

PART TWO: Open Ended Response

Instructions: Write the most efficient solution to the following methods. You will **not** be given any extra paper.

1. Write a method that will return an array of n length, filled with the decimal approximations of the sequence $\left[\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \cdots, \frac{1}{n}\right]$ where n is the integer parameter of the method.

public static int[] fractionGenerator(int n){

DO NOT CONTINUE UNTIL INSTRUCTED TO DO SO

2. Write a method that will recursively determine if a word str is a palindrome, where str is a string parameter of the method.

public static boolean palindromeChecker(String str){

3. Given the following super class:

```
public class Counter {
        protected int maxValue, minValue, value;
        public Counter() {
                maxValue = 10;
                minValue = 1;
                value = minValue;
        }
        public Counter(int max, int min, int val) {
                maxValue = max;
                minValue = min;
                value = val;
        }
        public boolean checkBounds() {
                if (value < minValue) {</pre>
                         value = minValue;
                         return false;
                }
                if (value > maxValue) {
                         value = maxValue;
                         return false;
                }
                return true;
        }
        public boolean countUp() {
                value += 1;
                return checkBounds();
        }
        public boolean countDown() {
                value -= 1;
                return checkBounds();
        }
}
```

Write a subclass named *IntervalCounter* that is a subclass of *Counter* and has an additional integer instance field called interval.

```
public class IntervalCounter extends Counter {
    private int interval;
    //Create a default constructor with the initial interval of 2

    //Create an overloaded constructor with all of the parameters

//Override the countUp and countDown methods so that
    //the value is changed by the interval

//Create a method named correctValues that will limit the
//value to the minimum or the maximum values stated
```

END OF EXAM