# Digital Image Processing

## **Contents**

- Image Acquisition and Representation
- A Simple Image Formation Model
- Image Sampling and Quantization
- Image Interpolation
- **■** Homework

## Light and EM spectrum

- ■Monochromatic light
  - Intensity is the only attribute, from black to white
  - Monochromatic images are referred to as grayscale images
- Chromatic light bands: 0.43 to 0.79 um
  - The quality of a chromatic light source:
    - ▶ Radiance (W)
    - Luminance (lm)
    - Brightness

## Acquisition

#### FIGURE 2.12

- (a) Single imaging sensor.
- (b) Line sensor.
- (c) Array sensor.







## Acquisition



**FIGURE 2.13** Combining a single sensor with motion to generate a 2-D image.

Acquieition



a b

**FIGURE 2.14** (a) Image acquisition using a linear sensor strip. (b) Image acquisition using a circular sensor strip.

## Acquisition

a c d e



**FIGURE 2.15** An example of the digital image acquisition process. (a) Energy ("illumination") source. (b) An element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

## **Acquisition using Sensor Arrays**

- CCD Array (Charge Couple Devices)
  - Use in digital cameras
  - Can be packaged in rugged arrays of 4000x4000





## CCD: 3.2 million pixels!



## A Simple Image Formation Model

$$0 < f(x, y) < \infty$$

$$f(x, y) = i(x, y) r(x, y)$$

where

$$0 < i(x, y) < \infty$$

and

```
f(x, y): intensity at the point (x, y)
i(x, y): illumination at the point (x, y)
```

(the amount of source illumination incident on the scene)

r(x, y): reflectance/transmissivity at the point (x, y)

(the amount of illumination reflected/transmitted by the object)

## Some Typical Ranges of illumination

#### Illumination

**Lumen** — A unit of light flow or luminous flux

Lumen per square meter (lm/m<sup>2</sup>) — The metric unit of measure for illuminance of a surface

- On a clear day, the sun may produce in excess of 90,000 lm/m<sup>2</sup> of illumination on the surface of the Farth
- On a cloudy day, the sun may produce less than 10,000 lm/m<sup>2</sup> of illumination on the surface of the Earth
- On a clear evening, the moon yields about 0.1 lm/m² of illumination
- The typical illumination level in a commercial office is about 1000 lm/m²

## **Some Typical Ranges of Reflectance**

- Reflectance
  - 0.01 for black velvet
  - 0.65 for stainless steel
  - 0.80 for flat-white wall paint
  - 0.90 for silver-plated metal
  - 0.93 for snow

## Digital vs. Analog Images

- Analog:
  - Function v = f(x,y): v,x,y are REAL

- **■** Digital:
  - Function v = f(x,y): v,x,y are INTEGER

■ <u>Sampling</u> means measuring the value of an image at a finite number of points.

Quantization is the representation of the measured value at the sampled point by an

integer.





## Stepping down from REALity to INTEGER coordinates x,y: Sampling



a b

**FIGURE 2.17** (a) Continuos image projected onto a sensor array. (b) Result of image sampling and quantization.









**FIGURE 2.16** Generating a digital image. (a) Continuous image. (b) A scan line from A to B in the continuous image, used to illustrate the concepts of sampling and quantization. (c) Sampling and quantization. (d) Digital scan line.

## Image quantization(example)

256 gray levels (8bits/pixel)



16 gray levels (4 bits/pixel)



8 gray levels (3 bits/pixel)



4 gray levels (2 bits/pixel)



2 gray levels (1 bit/pixel)







## Image sampling (example)

original image



sampled by a factor of 4



sampled by a factor of 2



sampled by a factor of 8



## Image downsampling by factor of 2



## **Factor of 2 Up-Sampling**



Green samples are retained in the interpolated image; Orange samples are estimated from surrounding green samples. ■ Color images can be represented by 3D Arrays (e.g. 320 x 240 x 3)



# But for the time being we'll handle 2D grayvalue images





■ Interpolation — Process of using known data to estimate unknown values

e.g., zooming, shrinking, rotating, and geometric correction

■ Interpolation (sometimes called resampling) — an imaging method to increase (or decrease) the number of pixels in a digital image.

Some digital cameras use interpolation to produce a larger image than the sensor captured or to create digital zoom



#### **Nearest Neighbor Interpolation**



#### **Bilinear Interpolation**



The output pixel value is a weighted average of pixels in the nearest 2-by-2 neighborhood

Considers the closest 2x2 neighborhood of known pixel values surrounding the unknown pixel

It then takes a weighted average of these 4 pixels to arrive at its final interpolated value

This results in much smoother looking images than nearest neighbor

#### **Bilinear Interpolation**

$$f(x,y)=ax+by+cxy+d$$

#### **Bicubic Interpolation**

The intensity value assigned to point (x,y) is obtained by the following equation

$$f_3(x, y) = \sum_{i=0}^{3} \sum_{j=0}^{3} a_{ij} x^i y^j$$

The sixteen coefficients are determined by using the sixteen nearest neighbors.











# **Examples: Interpolation**

nearest



# **Examples: Interpolation**

bilinear



## **Examples: Interpolation**

bicubic



# Homework

Consider the following 4x4 image. Construct the 8x8 image using nearest neighbor and bilinear interpolation techniques.

| 9 | 8 | 7 | 6 |
|---|---|---|---|
| 8 | 8 | 4 | 6 |
| 1 | 1 | 4 | 6 |
| 0 | 9 | 2 | 3 |

- Neighborhood
- Adjacency
- Connectivity
- Paths
- Regions and boundaries

- Neighbors of a pixel p at coordinates (x,y)
- > 4-neighbors of p, denoted by  $N_4(p)$ : (x-1, y), (x+1, y), (x,y-1), and (x, y+1).
- > 4 diagonal neighbors of p, denoted by  $N_D(p)$ : (x-1, y-1), (x+1, y+1), (x+1,y-1), and (x-1, y+1).
- > 8 neighbors of p, denoted  $N_8(p)$  $N_8(p) = N_4(p) \cup N_D(p)$

#### Adjacency

Let V be the set of intensity values

- ➤ **4-adjacency**: Two pixels p and q with values from V are 4-adjacent if q is in the set  $N_4(p)$ .
- **8-adjacency**: Two pixels p and q with values from V are 8-adjacent if q is in the set  $N_8(p)$ .

#### Adjacency

Let V be the set of intensity values

- > m-adjacency: Two pixels p and q with values from V are m-adjacent if
  - (i) q is in the set  $N_4(p)$ , or
  - (ii) q is in the set  $N_D(p)$  and the set  $N_4(p) \cap N_4(p)$  has no pixels whose values are from V.

#### Path

 $\triangleright$  A (digital) path (or curve) from pixel p with coordinates ( $x_0$ ,  $y_0$ ) to pixel q with coordinates ( $x_n$ ,  $y_n$ ) is a sequence of distinct pixels with coordinates

$$(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$$

Where  $(x_i, y_i)$  and  $(x_{i-1}, y_{i-1})$  are adjacent for  $1 \le i \le n$ .

- > Here *n* is the *length* of the path.
- $\rightarrow$  If  $(x_0, y_0) = (x_n, y_n)$ , the path is **closed** path.
- ➤ We can define 4-, 8-, and m-paths based on the type of adjacency used.

$$V = \{1, 2\}$$

0 1 1

0 1 1

0 1 1

0 2 0

0 2 0

0 2 0

0 0 1

0 0 1

0 0 1

$$V = \{1, 2\}$$

0 1 1

0 1 1 .....

0 1 1

0 2 0

0 2 0

0 2 0

 $0 \ 0 \ 1$ 

0 0 1

0 0 1

8-adjacent

$$V = \{1, 2\}$$

0 1 1

0 1....1

0 1 1

0 2 0

0 2 0

0 2 0

 $0 \ 0 \ 1$ 

0 0 1

0 0 1

8-adjacent

m-adjacent

$$V = \{1, 2\}$$

 $0_{1,1}$   $1_{1,2}$   $1_{1,3}$ 

0 1 1 .....

0 1 1

....(

 $0_{2,1}$   $2_{2,2}$   $0_{2,3}$ 

2

0 2 0

 $0_{3,1}$   $0_{3,2}$   $1_{3,3}$ 

0 0 1

0 0 1



#### 8-adjacent

#### m-adjacent

The 8-path from (1,3) to (3,3):

- (i) (1,3), (1,2), (2,2), (3,3)
- (ii) (1,3), (2,2), (3,3)

The m-path from (1,3) to (3,3): (1,3), (1,2), (2,2), (3,3)

#### Connected in S

Let S represent a subset of pixels in an image. Two pixels p with coordinates  $(x_0, y_0)$  and q with coordinates  $(x_n, y_n)$  are said to be **connected in S** if there exists a path

$$(x_0, y_0), (x_1, y_1), ..., (x_n, y_n)$$

Where 
$$\forall i, 0 \le i \le n, (x_i, y_i) \in S$$

Let S represent a subset of pixels in an image

- For every pixel p in S, the set of pixels in S that are connected to p is called a connected component of S.
- If S has only one connected component, then S is called Connected Set.
- We call R a **region** of the image if R is a connected set
- Two regions, R<sub>i</sub> and R<sub>j</sub> are said to be adjacent if their union forms a connected set.
- Regions that are not to be adjacent are said to be disjoint.

#### Boundary (or border)

- The **boundary** of the region R is the set of pixels in the region that have one or more neighbors that are not in R.
- ➤ If R happens to be an entire image, then its boundary is defined as the set of pixels in the first and last rows and columns of the image.

#### Foreground and background

An image contains K disjoint regions,  $R_k$ , k = 1, 2, ..., K. Let  $R_u$  denote the union of all the K regions, and let  $(R_u)^c$  denote its complement.

All the points in R<sub>u</sub> is called **foreground**;

All the points in  $(R_{ij})^c$  is called **background**.

#### Question

In the following arrangement of pixels, are the two regions (of 1s) adjacent? (if 8-adjacency is used)



#### **Question**

■ In the following arrangement of pixels, are the two parts (of 1s) adjacent? (if 4-adjacency is used)



■ In the following arrangement of pixels, the two regions (of 1s) are disjoint (if 4-adjacency is used)



Weeks 1 & 2

■ In the following arrangement of pixels, the two regions (of 1s) are disjoint (if 4-adjacency is used)



#### **Question**

■ In the following arrangement of pixels, the circled point is part of the boundary of the 1-valued pixels if 8-adjacency is used, true or false?



■ In the following arrangement of pixels, the circled point is part of the boundary of the 1-valued pixels if 4-adjacency is used, true or false?

#### **Distance Measures**

Given pixels p, q and z with coordinates (x, y), (s, t), (u, v) respectively, the distance function D has following properties:

a. 
$$D(p, q) \ge 0$$
  $[D(p, q) = 0, iff p = q]$ 

b. 
$$D(p, q) = D(q, p)$$

c. 
$$D(p, z) \le D(p, q) + D(q, z)$$

#### **Distance Measures**

The following are the different Distance measures:

a. Euclidean Distance:

$$D_e(p, q) = [(x-s)^2 + (y-t)^2]^{1/2}$$

b. City Block Distance:

$$D_4(p, q) = |x-s| + |y-t|$$

c. Chess Board Distance:

$$D_8(p, q) = max(|x-s|, |y-t|)$$

|   |   | 2 |   |   |
|---|---|---|---|---|
|   | 2 | 1 | 2 |   |
| 2 | 1 | 0 | 1 | 2 |
|   | 2 | 1 | 2 |   |
|   |   | 2 |   |   |

| 2 | 2 | 2 | 2 | 2 |
|---|---|---|---|---|
| 2 | 1 | 1 | 1 | 2 |
| 2 | 1 | 0 | 1 | 2 |
| 2 | 1 | 1 | 1 | 2 |
| 2 | 2 | 2 | 2 | 2 |

#### **Question**

■ In the following arrangement of pixels, what's the value of the chessboard distance between the circled two points?



■ In the following arrangement of pixels, what's the value of the city-block distance between the circled two points?

 0
 0
 0
 0
 0

 0
 0
 1
 1
 0

 0
 1
 1
 0
 0

 0
 1
 0
 0
 0

 0
 0
 0
 0
 0

 0
 0
 0
 0
 0

■ In the following arrangement of pixels, what's the value of the length of the m-path between the circled two points?

 0
 0
 0
 0
 0

 0
 0
 1
 1
 0

 0
 1
 1
 0
 0

 0
 1
 0
 0
 0

 0
 0
 0
 0
 0

 0
 0
 0
 0
 0

■ In the following arrangement of pixels, what's the value of the length of the m-path between the circled two points?

 0
 0
 0
 0
 0

 0
 0
 1
 1
 0

 0
 0
 1
 0
 0

 0
 1
 0
 0
 0

 0
 0
 0
 0
 0

 0
 0
 0
 0
 0