Билет 48

Автор1,, АвторN
21 июня 2020 г.

Содержание

0.1	T 40 T			- 1
0 1	Билет 48: Перестановка	. ЧЛЕНОВ АОСОЛЮТНО	схоляшегося пяла	- 1
0.1	Diffici io. Hopociumobilo	inches accomment	C10411HC10C1 P1140	

Билет 48 COДEРXАHИE

0.1. Билет 48: Перестановка членов абсолютно сходящегося ряда

Определение 0.1.

Перестановка членов ряда: $\varphi: \mathbb{N} \to \mathbb{N}$ - биекция и $\sum a_n$ - исходный ряд. Тогда $\sum a_{\varphi(n)}$ - перестановка члена ряда.

Теорема 0.1.

Если $\sum a_n$ абсолютно сходится к S, то перестановка ряда $\sum a_{\varphi(n)}$ сходится,причем, тоже к S.

Доказательство.

Случай 1 $a_n \geqslant 0$. Также введем обозначение $S' = \sum_{k=1}^n a_{\varphi(k)}$, а $S = \sum_{k=1}^n a_k$. Тогда мы точно знаем, что $S'_n \geqslant S$, так как в сумме S' встречаются не все слагаемые, а те, которые отсутствуют $\geqslant 0$, поэтому сумму они только увеличивают. Тогда $\lim S'_n = S' \leq S$, то есть $S' \leqslant S$. Так как у нас биекция - мы можем сделать обратную перестановку, от которой сумма ряда не увеличится. Сделаем перестановку туда и обратно и получим, что каждая из них не увеличивает сумму ряда, ну значит эти суммы равны между собой: S' = S.

Случай 2: $a_n \in \mathbb{R}$: заведем $a_n(+) = max\{a_n,0\}$ и $a_n(-) = max\{-a_n,0\}$. $a_n(+) - a_n(-) = a_n$, $a_n(+) + a_n(-) = |a_n|$ Так как по условию $\sum |a_n|$ сходится абсолютно, то $\sum a_n(\pm)$ сходится. Более того ряды - с неотрицательными слагаемыми, значит, перестановка членов не меняет суммы ряда, значит $\sum a_{\varphi(n)}(\pm) = \sum a_n(\pm)$. Тогда $\sum a_{\varphi(n)} = \sum a_{\varphi(n)}(+) - \sum a_{\varphi(n)}(-) = \sum a_n(+) - \sum a_n(-) = \sum a_n$

Замечание.

- 1. Если $a_n \geqslant 0$ и ряд расходится, то перестановка ряда так же расходится. Это верно, так как если бы нашлась перестановка, дающая сходящийся ряд, тогда бы обратная перестановка тоже давала бы сходящийся ряд, а это противоречит тому, что исходный ряд расходится.
- 2. Другое замечание : если $\sum a_n$ сходится условно, то $\sum a_n(\pm)$ расходятся. Так как $\sum a_n = \sum a_n(+) \sum a_n(-)$. Если бы один из них сходился, то сходился бы и другой, так как один выражается через другой с помощью $\sum a_n$, который сходящийся. Ну тогда ряд $\sum |a_n| = \sum a_n(+) + \sum a_n(-)$ тоже бы сходился, как сумма сходящихся. Пришли к противоречию.