Let $S = \{ \varphi_1 \ \varphi_1 : \mathbb{Z} \rightarrow \{ \varrho_1 : \mathbb{Z} \} \}$ be a set of maps. We will show that this set is uncountable. Assume for the sake of contradiction that S is countable. Then, $S \sim IN$, and by symmetry, $IN \sim S$. Thus, there is a bijection $f: IN \longrightarrow S$. We can use this bijection to label our maps in S:

$$f(1) = \varphi_{k} = 1abcl$$

$$f(2) = \varphi_{2}$$

$$f(k) = \varphi_{k}$$

Now, notice that Z is countable, by THM3 from Week 7.

Thus, Z~N, and by symmetry, N~Z. This means

there exists a bijection 9: N -> 7Z. We can

use this bijection to label our integers:

$$g(1) = n,$$

 $g(z) = nz$
 $g(k) = nk$

Now, take a map in S, Isay Pk, and notice that Pk assigns a O or a I for every integer. This means

We can list the maps in S and record the values for each integer:

_	()	12	N 3	Ny	
4,	b,,	pis	b ₁₃	biy	gge ter d
Pz	psi	brz	623	psa	er v v
φ ₃	b31	b32	b ₃₃	634	w v *
9 k	bki	bez	be3	bk4	

Here, bij is the value of (n_i) . In other words:

$$\varphi_{i}(n_{j}) = b_{ij}$$

(Notice, we have identified each map with a one-sided string of O's and I's.)

Now, define a new map (p^*) where for every i.e.N, $(p^*(n_i)) \neq (p_i^*(n_i))$.

We can do this since $(P_i(n_i) \in \{0,1\}, so we can always choose the number that <math>(P_i(n_i) \text{ is not.})$ (For example, if $(P_i(n_i) = 1, \text{ then we pick } (P_i(n_i) = 0.)$

Now, notice that Q^* is a map from 7L to $\{0,1\}$, so it should be in our list. In other words, $Q^* = Q_K$ for some $K \in \mathbb{N}$. However, $Q^*(n_K) \neq Q_K(n_K)$ for any K, so it cannot be in our list! Thus, our assertion that S is countable is wrong. We can conclude S is uncountable. (Note that there are infinitely many maps in S.)

c)
$$9P_1 = \{ \{213, \{23\}\} \}$$

d)
$$P_1 = \{2, 33, \{23, \{33\}\}\}$$

$$P_2 = \{21, 23, \{33\}\}$$

$$P_3 = \{21, 33, \{23\}\}$$

$$P_4 = \{22, 33, \{23\}\}$$

$$P_5 = \{21, 2, 33\}$$