

Physics 2 Chap 2 - Lecture notes 2

Physics 2 (Trường Đại học Quốc tế, Đại học Quốc gia Thành phố Hồ Chí Minh)

TEMPERATURE, HEAT, AND THE FIRST LAW OF THERMODYNAMICS

WHAT IS PHYSICS?

One of the principal branches of physics and engineering is **thermodynamics**, which is the study and application of the *thermal energy* (often called the *internal energy*) of systems. One of the central concepts of thermodynamics is temperature, which we begin to explore in the next section. Since childhood, you have been developing a working knowledge of thermal energy and temperature. For example, you know to be cautious with hot foods and hot stoves and to store perishable foods in cool or cold compartments. You also know how to control the temperature inside home and car, and how to protect yourself from wind chill and heat stroke.

Examples of how thermodynamics figures into everyday engineering and science are countless. Automobile engineers are concerned with the heating of a car engine, such as during a NASCAR race. Food engineers are concerned both with the proper heating of foods, such as pizzas being microwaved, and with the proper cooling of foods, such as TV dinners being quickly frozen at a processing plant. Geologists are concerned with the transfer of thermal energy in an El Niño event and in the gradual warming of ice expanses in the Arctic and Antarctic. Agricultural engineers are concerned with the weather conditions that determine whether the agriculture of a country thrives or vanishes. Medical engineers are concerned with how a patient's temperature might distinguish between a benign viral infection and a cancerous growth.

The starting point in our discussion of thermodynamics is the concept of temperature and how it is measured.

18-2 Temperature

Temperature is one of the seven SI base quantities. Physicists measure temperature on the **Kelvin scale**, which is marked in units called *kelvins*. Although the temperature of a body apparently has no upper limit, it does have a lower limit; this limiting low temperature is taken as the zero of the Kelvin temperature scale. Room temperature is about 290 kelvins, or 290 K as we write it, above this *absolute zero*. Figure 18-1 shows a wide range of temperatures.

Fig. 18-1 Some temperatures on the Kelvin scale. Temperature T=0 corresponds to $10^{-\infty}$ and cannot be plotted on this logarithmic scale.

When the universe began 13.7 billion years ago, its temperature was about 10^{39} K. As the universe expanded it cooled, and it has now reached an average temperature of about 3 K. We on Earth are a little warmer than that because we happen to live near a star. Without our Sun, we too would be at 3 K (or, rather, we could not exist).

18-3 The Zeroth Law of Thermodynamics

The properties of many bodies change as we alter their temperature, perhaps by moving them from a refrigerator to a warm oven. To give a few examples: As their temperature increases, the volume of a liquid increases, a metal rod grows a little longer, and the electrical resistance of a wire increases, as does the pressure exerted by a confined gas. We can use any one of these properties as the basis of an instrument that will help us pin down the concept of temperature.

Figure 18-2 shows such an instrument. Any resourceful engineer could design and construct it, using any one of the properties listed above. The instrument is fitted with a digital readout display and has the following properties: If you heat it (say, with a Bunsen burner), the displayed number starts to increase; if you then put it into a refrigerator, the displayed number starts to decrease. The instrument is not calibrated in any way, and the numbers have (as yet) no physical meaning. The device is a *thermoscope* but not (as yet) a *thermometer*.

Suppose that, as in Fig. 18-3a, we put the thermoscope (which we shall call body T) into intimate contact with another body (body A). The entire system is confined within a thick-walled insulating box. The numbers displayed by the thermoscope roll by until, eventually, they come to rest (let us say the reading is "137.04") and no further change takes place. In fact, we suppose that every measurable property of body T and of body A has assumed a stable, unchanging value. Then we say that the two bodies are in thermal equilibrium with each other. Even though the displayed readings for body T have not been calibrated, we conclude that bodies T and A must be at the same (unknown) temperature.

Suppose that we next put body T into intimate contact with body B (Fig. 18-3b) and find that the two bodies come to thermal equilibrium at the same reading of the thermoscope. Then bodies T and B must be at the same (still unknown) temperature. If we now put bodies A and B into intimate contact (Fig. 18-3c), are they immediately in thermal equilibrium with each other? Experimentally, we find that they are.

The experimental fact shown in Fig. 18-3 is summed up in the **zeroth law of thermodynamics**:

If bodies A and B are each in thermal equilibrium with a third body T, then A and B are in thermal equilibrium with each other.

In less formal language, the message of the zeroth law is: "Every body has a property called **temperature.** When two bodies are in thermal equilibrium, their temperatures are equal. And vice versa." We can now make our thermoscope (the third body T) into a thermometer, confident that its readings will have physical meaning. All we have to do is calibrate it.

We use the zeroth law constantly in the laboratory. If we want to know whether the liquids in two beakers are at the same temperature, we measure the temperature of each with a thermometer. We do not need to bring the two liquids into intimate contact and observe whether they are or are not in thermal equilibrium.

The zeroth law, which has been called a logical afterthought, came to light only in the 1930s, long after the first and second laws of thermodynamics had been discovered and numbered. Because the concept of temperature is fundamental to those two laws, the law that establishes temperature as a valid concept should have the lowest number—hence the zero.

Fig. 18-2 A thermoscope. The numbers increase when the device is heated and decrease when it is cooled. The thermally sensitive element could be—among many possibilities—a coil of wire whose electrical resistance is measured and displayed.

Fig. 18-3 (a) Body T (a thermoscope) and body A are in thermal equilibrium. (Body S is a thermally insulating screen.) (b) Body T and body B are also in thermal equilibrium, at the same reading of the thermoscope. (c) If (a) and (b) are true, the zeroth law of thermodynamics states that body A and body B are also in thermal equilibrium.

Fig. 18-4 A triple-point cell, in which solid ice, liquid water, and water vapor coexist in thermal equilibrium. By international agreement, the temperature of this mixture has been defined to be 273.16 K. The bulb of a constant-volume gas thermometer is shown inserted into the well of the cell.

Fig. 18-5 A constant-volume gas thermometer, its bulb immersed in a liquid whose temperature *T* is to be measured.

18-4 Measuring Temperature

Here we first define and measure temperatures on the Kelvin scale. Then we calibrate a thermoscope so as to make it a thermometer.

The Triple Point of Water

To set up a temperature scale, we pick some reproducible thermal phenomenon and, quite arbitrarily, assign a certain Kelvin temperature to its environment; that is, we select a *standard fixed point* and give it a standard fixed-point *temperature*. We could, for example, select the freezing point or the boiling point of water but, for technical reasons, we select instead the **triple point of water**.

Liquid water, solid ice, and water vapor (gaseous water) can coexist, in thermal equilibrium, at only one set of values of pressure and temperature. Figure 18-4 shows a triple-point cell, in which this so-called triple point of water can be achieved in the laboratory. By international agreement, the triple point of water has been assigned a value of 273.16 K as the standard fixed-point temperature for the calibration of thermometers; that is,

$$T_3 = 273.16 \text{ K}$$
 (triple-point temperature), (18-1)

in which the subscript 3 means "triple point." This agreement also sets the size of the kelvin as 1/273.16 of the difference between the triple-point temperature of water and absolute zero.

Note that we do not use a degree mark in reporting Kelvin temperatures. It is 300 K (not 300°K), and it is read "300 kelvins" (not "300 degrees Kelvin"). The usual SI prefixes apply. Thus, 0.0035 K is 3.5 mK. No distinction in nomenclature is made between Kelvin temperatures and temperature differences, so we can write, "the boiling point of sulfur is 717.8 K" and "the temperature of this water bath was raised by 8.5 K."

The Constant-Volume Gas Thermometer

The standard thermometer, against which all other thermometers are calibrated, is based on the pressure of a gas in a fixed volume. Figure 18-5 shows such a **constant-volume gas thermometer;** it consists of a gas-filled bulb connected by a tube to a mercury manometer. By raising and lowering reservoir R, the mercury level in the left arm of the U-tube can always be brought to the zero of the scale to keep the gas volume constant (variations in the gas volume can affect temperature measurements).

The temperature of any body in thermal contact with the bulb (such as the liquid surrounding the bulb in Fig. 18-5) is then defined to be

$$T = Cp, (18-2)$$

in which p is the pressure exerted by the gas and C is a constant. From Eq. 14-10, the pressure p is

$$p = p_0 - \rho g h, \tag{18-3}$$

in which p_0 is the atmospheric pressure, ρ is the density of the mercury in the manometer, and h is the measured difference between the mercury levels in the two arms of the tube.* (The minus sign is used in Eq. 18-3 because pressure p is measured *above* the level at which the pressure is p_0 .)

$$1 \text{ atm} = 1.01 \times 10^5 \text{ Pa} = 760 \text{ torr} = 14.7 \text{ lb/in.}^2$$
.

^{*}For pressure units, we shall use units introduced in Section 14-3. The SI unit for pressure is the newton per square meter, which is called the pascal (Pa). The pascal is related to other common pressure units by

Fig. 18-6 Temperatures measured by a constant-volume gas thermometer, with its bulb immersed in boiling water. For temperature calculations using Eq. 18-5, pressure p_3 was measured at the triple point of water. Three different gases in the thermometer bulb gave generally different results at different gas pressures, but as the amount of gas was decreased (decreasing p_3), all three curves converged to 373.125 K.

If we next put the bulb in a triple-point cell (Fig. 18-4), the temperature now being measured is

$$T_3 = Cp_3, \tag{18-4}$$

in which p_3 is the gas pressure now. Eliminating *C* between Eqs. 18-2 and 18-4 gives us the temperature as

$$T = T_3 \left(\frac{p}{p_3}\right) = (273.16 \text{ K}) \left(\frac{p}{p_3}\right) \quad \text{(provisional)}. \tag{18-5}$$

We still have a problem with this thermometer. If we use it to measure, say, the boiling point of water, we find that different gases in the bulb give slightly different results. However, as we use smaller and smaller amounts of gas to fill the bulb, the readings converge nicely to a single temperature, no matter what gas we use. Figure 18-6 shows this convergence for three gases.

Thus the recipe for measuring a temperature with a gas thermometer is

$$T = (273.16 \text{ K}) \left(\lim_{\text{gas} \to 0} \frac{p}{p_3} \right).$$
 (18-6)

The recipe instructs us to measure an unknown temperature T as follows: Fill the thermometer bulb with an arbitrary amount of any gas (for example, nitrogen) and measure p_3 (using a triple-point cell) and p, the gas pressure at the temperature being measured. (Keep the gas volume the same.) Calculate the ratio p/p_3 . Then repeat both measurements with a smaller amount of gas in the bulb, and again calculate this ratio. Continue this way, using smaller and smaller amounts of gas, until you can extrapolate to the ratio p/p_3 that you would find if there were approximately no gas in the bulb. Calculate the temperature T by substituting that extrapolated ratio into Eq. 18-6. (The temperature is called the *ideal gas temperature*.)

18-5 The Celsius and Fahrenheit Scales

So far, we have discussed only the Kelvin scale, used in basic scientific work. In nearly all countries of the world, the Celsius scale (formerly called the centigrade scale) is the scale of choice for popular and commercial use and much scientific use. Celsius temperatures are measured in degrees, and the Celsius degree has the same size as the kelvin. However, the zero of the Celsius scale is shifted to a more convenient value than absolute zero. If $T_{\rm C}$ represents a Celsius temperature

Table 18-1 Some Corresponding Temperatures			
Boiling point of water ^a	100	212	
Normal body temperature	37.0	98.6	
Accepted comfort level	20	68	
Freezing point of water ^a	0	32	
Zero of Fahrenheit scale	≈ -18	0	
Scales coincide	-40	-40	

[&]quot;Strictly, the boiling point of water on the Celsius scale is 99.975° C, and the freezing point is 0.00° C. Thus, there is slightly less than 100° C between those two points.

Fig. 18-7 The Kelvin, Celsius, and Fahrenheit temperature scales compared.

Absolute

zero

and T a Kelvin temperature, then

$$T_{\rm C} = T - 273.15^{\circ}.$$
 (18-7)

In expressing temperatures on the Celsius scale, the degree symbol is commonly used. Thus, we write 20.00°C for a Celsius reading but 293.15 K for a Kelvin reading.

The Fahrenheit scale, used in the United States, employs a smaller degree than the Celsius scale and a different zero of temperature. You can easily verify both these differences by examining an ordinary room thermometer on which both scales are marked. The relation between the Celsius and Fahrenheit scales is

$$T_{\rm F} = \frac{9}{5}T_{\rm C} + 32^{\circ},\tag{18-8}$$

where $T_{\rm F}$ is Fahrenheit temperature. Converting between these two scales can be done easily by remembering a few corresponding points, such as the freezing and boiling points of water (Table 18-1). Figure 18-7 compares the Kelvin, Celsius, and Fahrenheit scales.

We use the letters C and F to distinguish measurements and degrees on the two scales. Thus,

$$0^{\circ}\text{C} = 32^{\circ}\text{F}$$

means that 0° on the Celsius scale measures the same temperature as 32° on the Fahrenheit scale, whereas

$$5 \, \mathrm{C}^{\circ} = 9 \, \mathrm{F}^{\circ}$$

means that a temperature difference of 5 Celsius degrees (note the degree symbol appears *after* C) is equivalent to a temperature difference of 9 Fahrenheit degrees.

CHECKPOINT 1

The figure here shows three linear temperature scales with the freezing and boiling points of water indicated. (a) Rank the degrees on these scales by size, greatest first. (b) Rank the following temperatures, highest first: 50°X, 50°W, and 50°Y.

Sample Problem

Conversion between two temperature scales

Suppose you come across old scientific notes that describe a temperature scale called Z on which the boiling point of water is 65.0° Z and the freezing point is -14.0° Z. To what temperature on the Fahrenheit scale would a temperature of $T = -98.0^{\circ}Z$ correspond? Assume that the Z scale is linear; that is, the size of a Z degree is the same everywhere on the Z scale.

KEY IDEA

A conversion factor between two (linear) temperature scales can be calculated by using two known (benchmark) temperatures, such as the boiling and freezing points of water. The number of degrees between the known temperatures on one scale is equivalent to the number of degrees between them on the other scale.

Calculations: We begin by relating the given temperature T to either known temperature on the Z scale. Since T = -98.0° Z is closer to the freezing point (-14.0°Z) than to the boiling point (65.0°Z), we use the freezing point. Then we note that the T we seek is below this point by $-14.0^{\circ}Z - (-98.0^{\circ}Z) = 84.0 Z^{\circ}$ the (Fig. 18-8). (Read this difference as "84.0 Z degrees.")

Next, we set up a conversion factor between the Z and Fahrenheit scales to convert this difference. To do so, we use both known temperatures on the Z scale and the corre-

Fig. 18-8 An unknown temperature scale compared with the Fahrenheit temperature scale.

sponding temperatures on the Fahrenheit scale. On the Z scale, the difference between the boiling and freezing points is $65.0^{\circ}Z - (-14.0^{\circ}Z) = 79.0 Z^{\circ}$. On the Fahrenheit scale, it is $212^{\circ}F - 32.0^{\circ}F = 180 F^{\circ}$. Thus, a temperature difference of 79.0 Z° is equivalent to a temperature difference of 180 F° (Fig. 18-8), and we can use the ratio $(180 \,\mathrm{F}^\circ)/(79.0 \,\mathrm{Z}^\circ)$ as our conversion factor.

Now, since T is below the freezing point by 84.0 \mathbb{Z}° , it must also be below the freezing point by

$$(84.0 \text{ Z}^{\circ}) \frac{180 \text{ F}^{\circ}}{79.0 \text{ Z}^{\circ}} = 191 \text{ F}^{\circ}.$$

Because the freezing point is at 32.0°F, this means that

$$T = 32.0^{\circ}\text{F} - 191 \text{ F}^{\circ} = -159^{\circ}\text{F}.$$
 (Answer)

Additional examples, video, and practice available at WileyPLUS

18-6 Thermal Expansion

You can often loosen a tight metal jar lid by holding it under a stream of hot water. Both the metal of the lid and the glass of the jar expand as the hot water adds energy to their atoms. (With the added energy, the atoms can move a bit farther from one another than usual, against the spring-like interatomic forces that hold every solid together.) However, because the atoms in the metal move farther apart than those in the glass, the lid expands more than the jar and thus is loosened.

Such thermal expansion of materials with an increase in temperature must be anticipated in many common situations. When a bridge is subject to large seasonal changes in temperature, for example, sections of the bridge are separated by expansion slots so that the sections have room to expand on hot days without the bridge buckling. When a dental cavity is filled, the filling material must have the same thermal expansion properties as the surrounding tooth; otherwise, consuming cold ice cream and then hot coffee would be very painful. When the Concorde aircraft (Fig. 18-9) was built, the design had to allow for the thermal expansion of the fuselage during supersonic flight because of frictional heating by the passing air.

The thermal expansion properties of some materials can be put to common use. Thermometers and thermostats may be based on the differences in expansion

Fig. 18-9 When a Concorde flew faster than the speed of sound, thermal expansion due to the rubbing by passing air increased the aircraft's length by about 12.5 cm. (The temperature increased to about 128°C at the aircraft nose and about 90°C at the tail, and cabin windows were noticeably warm to the touch.) (Hugh Thomas/BWP Media/Getty Images News and Sport Services)

Table 18-2 Some Coefficients of Linear Expansion ^a			
Ice (at 0°C)	51	Steel	11
Lead	29	Glass (ordinary)	9
Aluminum	23	Glass (Pyrex)	3.2
Brass	19	Diamond	1.2
Copper	17	$Invar^b$	0.7
Concrete	12	Fused quartz	0.5

^aRoom temperature values except for the listing for ice.

^bThis alloy was designed to have a low coefficient of expansion. The word is a shortened form of "invariable."

Fig. 18-10 (a) A bimetal strip, consisting of a strip of brass and a strip of steel welded together, at temperature T_0 . (b) The strip bends as shown at temperatures above this reference temperature. Below the reference temperature the strip bends the other way. Many thermostats operate on this principle, making and breaking an electrical contact as the temperature rises and falls.

between the components of a *bimetal strip* (Fig. 18-10). Also, the familiar liquid-inglass thermometers are based on the fact that liquids such as mercury and alcohol expand to a different (greater) extent than their glass containers.

Linear Expansion

If the temperature of a metal rod of length L is raised by an amount ΔT , its length is found to increase by an amount

$$\Delta L = L\alpha \, \Delta T,\tag{18-9}$$

in which α is a constant called the **coefficient of linear expansion.** The coefficient α has the unit "per degree" or "per kelvin" and depends on the material. Although α varies somewhat with temperature, for most practical purposes it can be taken as constant for a particular material. Table 18-2 shows some coefficients of linear expansion. Note that the unit C° there could be replaced with the unit K.

The thermal expansion of a solid is like photographic enlargement except it is in three dimensions. Figure 18-11b shows the (exaggerated) thermal expansion of a steel ruler. Equation 18-9 applies to every linear dimension of the ruler, including its edge, thickness, diagonals, and the diameters of the circle etched on it and the circular hole cut in it. If the disk cut from that hole originally fits snugly in the hole, it will continue to fit snugly if it undergoes the same temperature increase as the ruler.

Volume Expansion

If all dimensions of a solid expand with temperature, the volume of that solid must also expand. For liquids, volume expansion is the only meaningful expansion parameter. If the temperature of a solid or liquid whose volume is V is increased by an amount ΔT , the increase in volume is found to be

$$\Delta V = V\beta \,\Delta T,\tag{18-10}$$

where β is the **coefficient of volume expansion** of the solid or liquid. The coefficients of volume expansion and linear expansion for a solid are related by

$$\beta = 3\alpha. \tag{18-11}$$

The most common liquid, water, does not behave like other liquids. Above about 4°C, water expands as the temperature rises, as we would expect. Between 0 and about 4°C, however, water *contracts* with increasing temperature. Thus, at about 4°C, the density of water passes through a maximum. At all other temperatures, the density of water is less than this maximum value.

Fig. 18-11 The same steel ruler at two different temperatures. When it expands, the scale, the numbers, the thickness, and the diameters of the circle and circular hole are all increased by the same factor. (The expansion has been exaggerated for clarity.)

This behavior of water is the reason lakes freeze from the top down rather than from the bottom up. As water on the surface is cooled from, say, 10°C toward the freezing point, it becomes denser ("heavier") than lower water and sinks to the bottom. Below 4°C, however, further cooling makes the water then on the surface less dense ("lighter") than the lower water, so it stays on the surface until it freezes. Thus the surface freezes while the lower water is still liquid. If lakes froze from the bottom up, the ice so formed would tend not to melt completely during the summer, because it would be insulated by the water above. After a few years, many bodies of open water in the temperate zones of Earth would be frozen solid all year round—and aquatic life could not exist.

CHECKPOINT 2

The figure here shows four rectangular metal plates, with sides of L, 2L, or 3L. They are all made of the same material, and their temperature is to be increased by the same amount. Rank the plates according to the expected increase in (a) their vertical heights and (b) their areas, greatest first.

Sample Problem

Thermal expansion of a volume

On a hot day in Las Vegas, an oil trucker loaded 37 000 L of diesel fuel. He encountered cold weather on the way to Payson, Utah, where the temperature was 23.0 K lower than in Las Vegas, and where he delivered his entire load. How many liters did he deliver? The coefficient of volume expansion for diesel fuel is $9.50 \times 10^{-4}/\text{C}^{\circ}$, and the coefficient of linear expansion for his steel truck tank is $11 \times 10^{-6}/\text{C}^{\circ}$.

KEY IDEA

The volume of the diesel fuel depends directly on the temperature. Thus, because the temperature decreased, the volume of the fuel did also, as given by Eq. 18-10 ($\Delta V =$ $V\beta \Delta T$).

Calculations: We find

$$\Delta V = (37\,000\,\mathrm{L})(9.50\times10^{-4}/\mathrm{C}^{\circ})(-23.0\,\mathrm{K}) = -808\,\mathrm{L}.$$

Thus, the amount delivered was

$$V_{\text{del}} = V + \Delta V = 37\,000\,\text{L} - 808\,\text{L}$$

= 36 190 L. (Answer)

Note that the thermal expansion of the steel tank has nothing to do with the problem. Question: Who paid for the "missing" diesel fuel?

Additional examples, video, and practice available at WileyPLUS

18-7 Temperature and Heat

If you take a can of cola from the refrigerator and leave it on the kitchen table, its temperature will rise—rapidly at first but then more slowly—until the temperature of the cola equals that of the room (the two are then in thermal equilibrium). In the same way, the temperature of a cup of hot coffee, left sitting on the table, will fall until it also reaches room temperature.

In generalizing this situation, we describe the cola or the coffee as a system (with temperature T_S) and the relevant parts of the kitchen as the *environment* (with temperature T_E) of that system. Our observation is that if T_S is not equal to T_E , then T_S will change (T_E can also change some) until the two temperatures are equal and thus thermal equilibrium is reached.

Such a change in temperature is due to a change in the thermal energy of the system because of a transfer of energy between the system and the system's environment. (Recall that thermal energy is an internal energy that consists of the kinetic and potential energies associated with the random motions of the atoms, molecules, and other microscopic bodies within an object.) The transferred energy is called **heat** and is symbolized *Q*. Heat is *positive* when energy is transferred to a system's thermal energy from its environment (we say that heat is absorbed by the system). Heat is *negative* when energy is transferred from a system's thermal energy to its environment (we say that heat is released or lost by the system).

This transfer of energy is shown in Fig. 18-12. In the situation of Fig. 18-12a, in which $T_S > T_E$, energy is transferred from the system to the environment, so Q is negative. In Fig. 18-12b, in which $T_S = T_E$, there is no such transfer, Q is zero, and heat is neither released nor absorbed. In Fig. 18-12c, in which $T_S < T_E$, the transfer is to the system from the environment; so Q is positive.

We are led then to this definition of heat:

Heat is the energy transferred between a system and its environment because of a temperature difference that exists between them.

Recall that energy can also be transferred between a system and its environment as *work W* via a force acting on a system. Heat and work, unlike temperature, pressure, and volume, are not intrinsic properties of a system. They have meaning only as they describe the transfer of energy into or out of a system. Similarly, the phrase "a \$600 transfer" has meaning if it describes the transfer to or from an account, not what is in the account, because the account holds money, not a transfer. Here, it is proper to say: "During the last 3 min, 15 J of heat was transferred to the system from its environment" or "During the last minute, 12 J of work was done on the system by its environment." It is meaningless to say: "This system contains 450 J of heat" or "This system contains 385 J of work."

Before scientists realized that heat is transferred energy, heat was measured in terms of its ability to raise the temperature of water. Thus, the **calorie** (cal) was defined as the amount of heat that would raise the temperature of 1 g of water from 14.5°C to 15.5°C. In the British system, the corresponding unit of heat was

Fig. 18-12 If the temperature of a system exceeds that of its environment as in (a), heat Q is lost by the system to the environment until thermal equilibrium (b) is established. (c) If the temperature of the system is below that of the environment, heat is absorbed by the system until thermal equilibrium is established.

the **British thermal unit** (Btu), defined as the amount of heat that would raise the temperature of 1 lb of water from 63°F to 64°F.

In 1948, the scientific community decided that since heat (like work) is transferred energy, the SI unit for heat should be the one we use for energy—namely, the **joule.** The calorie is now defined to be 4.1868 J (exactly), with no reference to the heating of water. (The "calorie" used in nutrition, sometimes called the Calorie (Cal), is really a kilocalorie.) The relations among the various heat units are

$$1 \text{ cal} = 3.968 \times 10^{-3} \text{ Btu} = 4.1868 \text{ J}.$$
 (18-12)

18-8 The Absorption of Heat by Solids and Liquids

Heat Capacity

The **heat capacity** C of an object is the proportionality constant between the heat Q that the object absorbs or loses and the resulting temperature change ΔT of the object; that is,

$$Q = C \Delta T = C(T_f - T_i), \qquad (18-13)$$

in which T_i and T_f are the initial and final temperatures of the object. Heat capacity C has the unit of energy per degree or energy per kelvin. The heat capacity C of, say, a marble slab used in a bun warmer might be 179 cal/ C° , which we can also write as 179 cal/K or as 749 J/K.

The word "capacity" in this context is really misleading in that it suggests analogy with the capacity of a bucket to hold water. *That analogy is false*, and you should not think of the object as "containing" heat or being limited in its ability to absorb heat. Heat transfer can proceed without limit as long as the necessary temperature difference is maintained. The object may, of course, melt or vaporize during the process.

Specific Heat

Two objects made of the same material—say, marble—will have heat capacities proportional to their masses. It is therefore convenient to define a "heat capacity per unit mass" or **specific heat** c that refers not to an object but to a unit mass of the material of which the object is made. Equation 18-13 then becomes

$$Q = cm \Delta T = cm(T_f - T_i). \tag{18-14}$$

Through experiment we would find that although the heat capacity of a particular marble slab might be 179 cal/C $^{\circ}$ (or 749 J/K), the specific heat of marble itself (in that slab or in any other marble object) is 0.21 cal/g $^{\circ}$ C $^{\circ}$ (or 880 J/kg $^{\circ}$ K).

From the way the calorie and the British thermal unit were initially defined, the specific heat of water is

$$c = 1 \text{ cal/g} \cdot \text{C}^{\circ} = 1 \text{ Btu/lb} \cdot \text{F}^{\circ} = 4186.8 \text{ J/kg} \cdot \text{K}.$$
 (18-15)

Table 18-3 shows the specific heats of some substances at room temperature. Note that the value for water is relatively high. The specific heat of any substance actually depends somewhat on temperature, but the values in Table 18-3 apply reasonably well in a range of temperatures near room temperature.

Molar Specific Heat

In many instances the most convenient unit for specifying the amount of a substance is the mole (mol), where

1 mol =
$$6.02 \times 10^{23}$$
 elementary units

Table 18-3

Some Specific Heats and Molar Specific Heats at Room Temperature

			Molar Specific
	Specif	Specific Heat	
Substance	$\frac{\text{cal}}{\mathbf{g} \cdot \mathbf{K}}$	$\frac{J}{kg \cdot K}$	$\frac{J}{\text{mol} \cdot K}$
Elemental Solids			
Lead	0.0305	128	26.5
Tungsten	0.0321	134	24.8
Silver	0.0564	236	25.5
Copper	0.0923	386	24.5
Aluminum	0.215	900	24.4
Other Solids			
Brass	0.092	380	
Granite	0.19	790	
Glass	0.20	840	
Ice (−10°C)	0.530	2220	
Liquids			
Mercury	0.033	140	
Ethyl			
alcohol	0.58	2430	
Seawater	0.93	3900	
Water	1.00	4187	

CHECKPOINT 3

A certain amount of heat Q will warm 1 g of material A by 3 C° and 1 g of material B by 4 C° . Which material has the greater specific heat?

of *any* substance. Thus 1 mol of aluminum means 6.02×10^{23} atoms (the atom is the elementary unit), and 1 mol of aluminum oxide means 6.02×10^{23} molecules (the molecule is the elementary unit of the compound).

When quantities are expressed in moles, specific heats must also involve moles (rather than a mass unit); they are then called **molar specific heats.** Table 18-3 shows the values for some elemental solids (each consisting of a single element) at room temperature.

An Important Point

In determining and then using the specific heat of any substance, we need to know the conditions under which energy is transferred as heat. For solids and liquids, we usually assume that the sample is under constant pressure (usually atmospheric) during the transfer. It is also conceivable that the sample is held at constant volume while the heat is absorbed. This means that thermal expansion of the sample is prevented by applying external pressure. For solids and liquids, this is very hard to arrange experimentally, but the effect can be calculated, and it turns out that the specific heats under constant pressure and constant volume for any solid or liquid differ usually by no more than a few percent. Gases, as you will see, have quite different values for their specific heats under constant-pressure conditions and under constant-volume conditions.

Heats of Transformation

When energy is absorbed as heat by a solid or liquid, the temperature of the sample does not necessarily rise. Instead, the sample may change from one *phase*, or *state*, to another. Matter can exist in three common states: In the *solid state*, the molecules of a sample are locked into a fairly rigid structure by their mutual attraction. In the *liquid state*, the molecules have more energy and move about more. They may form brief clusters, but the sample does not have a rigid structure and can flow or settle into a container. In the *gas*, or *vapor*, *state*, the molecules have even more energy, are free of one another, and can fill up the full volume of a container.

To *melt* a solid means to change it from the solid state to the liquid state. The process requires energy because the molecules of the solid must be freed from their rigid structure. Melting an ice cube to form liquid water is a common example. To *freeze* a liquid to form a solid is the reverse of melting and requires that energy be removed from the liquid, so that the molecules can settle into a rigid structure.

To *vaporize* a liquid means to change it from the liquid state to the vapor (gas) state. This process, like melting, requires energy because the molecules must be freed from their clusters. Boiling liquid water to transfer it to water vapor (or steam—a gas of individual water molecules) is a common example. *Condensing* a gas to form a liquid is the reverse of vaporizing; it requires that energy be removed from the gas, so that the molecules can cluster instead of flying away from one another.

The amount of energy per unit mass that must be transferred as heat when a sample completely undergoes a phase change is called the **heat of transformation** L. Thus, when a sample of mass m completely undergoes a phase change, the total energy transferred is

$$Q = Lm. (18-16)$$

When the phase change is from liquid to gas (then the sample must absorb heat) or from gas to liquid (then the sample must release heat), the heat of transformation is called the **heat of vaporization** L_V . For water at its normal boiling or condensation temperature,

$$L_V = 539 \text{ cal/g} = 40.7 \text{ kJ/mol} = 2256 \text{ kJ/kg}.$$
 (18-17)

When the phase change is from solid to liquid (then the sample must absorb heat) or from liquid to solid (then the sample must release heat), the heat of transformation is called the **heat of fusion** L_F . For water at its normal freezing or melting temperature,

$$L_F = 79.5 \text{ cal/g} = 6.01 \text{ kJ/mol} = 333 \text{ kJ/kg}.$$
 (18-18)

Table 18-4 shows the heats of transformation for some substances.

Table 18-4 Some Heats of Transformation				
Substance	Melting Point (K)	Heat of Fusion $L_F(kJ/kg)$	Boiling Point (K)	Heat of Vaporization $L_V(kJ/kg)$
Hydrogen	14.0	58.0	20.3	455
Oxygen	54.8	13.9	90.2	213
Mercury	234	11.4	630	296
Water	273	333	373	2256
Lead	601	23.2	2017	858
Silver	1235	105	2323	2336
Copper	1356	207	2868	4730

Sample Problem

Hot slug in water, coming to equilibrium

A copper slug whose mass m_c is 75 g is heated in a laboratory oven to a temperature T of 312°C. The slug is then dropped into a glass beaker containing a mass $m_w = 220$ g of water. The heat capacity C_b of the beaker is 45 cal/K. The initial temperature T_i of the water and the beaker is 12°C. Assuming that the slug, beaker, and water are an isolated system and the water does not vaporize, find the final temperature T_f of the system at thermal equilibrium.

KEY IDEAS

(1) Because the system is isolated, the system's total energy cannot change and only internal transfers of thermal energy can occur. (2) Because nothing in the system undergoes a phase change, the thermal energy transfers can only change the temperatures.

Calculations: To relate the transfers to the temperature changes, we can use Eqs. 18-13 and 18-14 to write

for the water:
$$Q_w = c_w m_w (T_f - T_i);$$
 (18-19)

for the beaker:
$$Q_b = C_b(T_f - T_i);$$
 (18-20)

for the copper:
$$Q_c = c_c m_c (T_f - T)$$
. (18-21)

Because the total energy of the system cannot change, the sum of these three energy transfers is zero:

$$Q_w + Q_b + Q_c = 0. (18-22)$$

Substituting Eqs. 18-19 through 18-21 into Eq. 18-22 yields

$$c_w m_w (T_f - T_i) + C_b (T_f - T_i) + c_c m_c (T_f - T) = 0.$$
 (18-23)

Temperatures are contained in Eq. 18-23 only as differences. Thus, because the differences on the Celsius and Kelvin scales are identical, we can use either of those scales in this equation. Solving it for T_f , we obtain

$$T_f = \frac{c_c m_c T + C_b T_i + c_w m_w T_i}{c_w m_w + C_b + c_c m_c}.$$

Using Celsius temperatures and taking values for c_c and c_w from Table 18-3, we find the numerator to be

$$(0.0923 \text{ cal/g} \cdot \text{K})(75 \text{ g})(312^{\circ}\text{C}) + (45 \text{ cal/K})(12^{\circ}\text{C})$$

$$+ (1.00 \text{ cal/g} \cdot \text{K})(220 \text{ g})(12^{\circ}\text{C}) = 5339.8 \text{ cal},$$

and the denominator to be

$$(1.00 \text{ cal/g} \cdot \text{K})(220 \text{ g}) + 45 \text{ cal/K}$$

$$+ (0.0923 \text{ cal/g} \cdot \text{K})(75 \text{ g}) = 271.9 \text{ cal/C}^{\circ}.$$

We then have

$$T_f = \frac{5339.8 \text{ cal}}{271.9 \text{ cal/C}^{\circ}} = 19.6^{\circ}\text{C} \approx 20^{\circ}\text{C}.$$
 (Answer)

From the given data you can show that

$$Q_w \approx 1670 \text{ cal}, \qquad Q_b \approx 342 \text{ cal}, \qquad Q_c \approx -2020 \text{ cal}.$$

Apart from rounding errors, the algebraic sum of these three heat transfers is indeed zero, as Eq. 18-22 requires.

Additional examples, video, and practice available at WileyPLUS

Sample Problem

Heat to change temperature and state

(a) How much heat must be absorbed by ice of mass $m = 720 \text{ g at } -10^{\circ}\text{C}$ to take it to the liquid state at 15°C?

KEY IDEAS

The heating process is accomplished in three steps: (1) The ice cannot melt at a temperature below the freezing point—so initially, any energy transferred to the ice as heat can only increase the temperature of the ice, until 0°C is reached. (2) The temperature then cannot increase until all the ice melts—so any energy transferred to the ice as heat now can only change ice to liquid water, until all the ice melts. (3) Now the energy transferred to the liquid water as heat can only increase the temperature of the liquid water.

Warming the ice: The heat Q_1 needed to increase the temperature of the ice from the initial value $T_i = -10^{\circ} \text{C}$ to a final value $T_f = 0^{\circ} \text{C}$ (so that the ice can then melt) is given by Eq. 18-14 ($Q = cm \Delta T$). Using the specific heat of ice c_{ice} in Table 18-3 gives us

$$Q_1 = c_{\text{ice}} m(T_f - T_i)$$

= (2220 J/kg·K)(0.720 kg)[0°C - (-10°C)]
= 15 984 J \approx 15.98 kJ.

Melting the ice: The heat Q_2 needed to melt all the ice is given by Eq. 18-16 (Q = Lm). Here L is the heat of fusion L_F , with the value given in Eq. 18-18 and Table 18-4. We find

$$Q_2 = L_F m = (333 \text{ kJ/kg})(0.720 \text{ kg}) \approx 239.8 \text{ kJ}.$$

Warming the liquid: The heat Q_3 needed to increase the temperature of the water from the initial value $T_i = 0$ °C to the final value $T_f = 15$ °C is given by Eq. 18-14 (with the specific heat of liquid water c_{liq}):

$$Q_3 = c_{\text{liq}} m (T_f - T_i)$$

= $(4186.8 \text{ J/kg} \cdot \text{K})(0.720 \text{ kg})(15^{\circ}\text{C} - 0^{\circ}\text{C})$
= $45217 \text{ J} \approx 45.22 \text{ kJ}.$

Total: The total required heat Q_{tot} is the sum of the amounts required in the three steps:

$$Q_{\text{tot}} = Q_1 + Q_2 + Q_3$$

= 15.98 kJ + 239.8 kJ + 45.22 kJ
 $\approx 300 \text{ kJ}.$ (Answer)

Note that the heat required to melt the ice is much greater than the heat required to raise the temperature of either the ice or the liquid water.

(b) If we supply the ice with a total energy of only 210 kJ (as heat), what are the final state and temperature of the water?

KEY IDEA

From step 1, we know that 15.98 kJ is needed to raise the temperature of the ice to the melting point. The remaining heat $Q_{\rm rem}$ is then 210 kJ - 15.98 kJ, or about 194 kJ. From step 2, we can see that this amount of heat is insufficient to melt all the ice. Because the melting of the ice is incomplete, we must end up with a mixture of ice and liquid; the temperature of the mixture must be the freezing point, 0°C.

Calculations: We can find the mass m of ice that is melted by the available energy Q_{rem} by using Eq. 18-16 with L_F :

$$m = \frac{Q_{\text{rem}}}{L_F} = \frac{194 \text{ kJ}}{333 \text{ kJ/kg}} = 0.583 \text{ kg} \approx 580 \text{ g}.$$

Thus, the mass of the ice that remains is 720 g - 580 g, or 140 g, and we have

Additional examples, video, and practice available at WileyPLUS

18-9 A Closer Look at Heat and Work

Here we look in some detail at how energy can be transferred as heat and work between a system and its environment. Let us take as our system a gas confined to a cylinder with a movable piston, as in Fig. 18-13. The upward force on the piston due to the pressure of the confined gas is equal to the weight of lead shot loaded onto the top of the piston. The walls of the cylinder are made of insulating material that does not allow any transfer of energy as heat. The bottom of the cylinder rests on a reservoir for thermal energy, a *thermal reservoir* (perhaps a hot plate) whose temperature T you can control by turning a knob.

The system (the gas) starts from an *initial state i*, described by a pressure p_i , a volume V_i , and a temperature T_i . You want to change the system to a *final state f*, described by a pressure p_f , a volume V_f , and a temperature T_f . The procedure by

which you change the system from its initial state to its final state is called a *ther-modynamic process*. During such a process, energy may be transferred into the system from the thermal reservoir (positive heat) or vice versa (negative heat). Also, work can be done by the system to raise the loaded piston (positive work) or lower it (negative work). We assume that all such changes occur slowly, with the result that the system is always in (approximate) thermal equilibrium (that is,

every part of the system is always in thermal equilibrium with every other part).

Suppose that you remove a few lead shot from the piston of Fig. 18-13, allowing the gas to push the piston and remaining shot upward through a differential displacement $d\vec{s}$ with an upward force \vec{F} . Since the displacement is tiny, we can assume that \vec{F} is constant during the displacement. Then \vec{F} has a magnitude that is equal to pA, where p is the pressure of the gas and A is the face area of the piston. The differential work dW done by the gas during the displacement is

$$dW = \vec{F} \cdot d\vec{s} = (pA)(ds) = p(A ds)$$
$$= p dV, \tag{18-24}$$

in which dV is the differential change in the volume of the gas due to the movement of the piston. When you have removed enough shot to allow the gas to change its volume from V_i to V_f , the total work done by the gas is

$$W = \int dW = \int_{V_i}^{V_f} p \, dV.$$
 (18-25)

During the volume change, the pressure and temperature may also change. To evaluate Eq. 18-25 directly, we would need to know how pressure varies with volume for the actual process by which the system changes from state i to state f.

There are actually many ways to take the gas from state i to state f. One way is shown in Fig. 18-14a, which is a plot of the pressure of the gas versus its volume and

We control the heat transfer by adjusting the temperature.

Fig. 18-13 A gas is confined to a cylinder with a movable piston. Heat Q can be added to or withdrawn from the gas by regulating the temperature T of the adjustable thermal reservoir. Work W can be done by the gas by raising or lowering the piston.

which is called a p-V diagram. In Fig. 18-14a, the curve indicates that the pressure decreases as the volume increases. The integral in Eq. 18-25 (and thus the work W done by the gas) is represented by the shaded area under the curve between points i and f. Regardless of what exactly we do to take the gas along the curve, that work is positive, due to the fact that the gas increases its volume by forcing the piston upward.

Another way to get from state i to state f is shown in Fig. 18-14b. There the change takes place in two steps—the first from state i to state a, and the second from state a to state f.

Step ia of this process is carried out at constant pressure, which means that you leave undisturbed the lead shot that ride on top of the piston in Fig. 18-13. You cause the volume to increase (from V_i to V_f) by slowly turning up the temperature control knob, raising the temperature of the gas to some higher value T_a . (Increasing the temperature increases the force from the gas on the piston, moving it upward.) During this step, positive work is done by the expanding gas (to lift the loaded piston) and heat is absorbed by the system from the thermal reservoir (in response to the arbitrarily small temperature differences that you create as you turn up the temperature). This heat is positive because it is added to the system.

Step af of the process of Fig. 18-14b is carried out at constant volume, so you must wedge the piston, preventing it from moving. Then as you use the control knob to decrease the temperature, you find that the pressure drops from p_a to its final value p_f . During this step, heat is lost by the system to the thermal reservoir.

For the overall process iaf, the work W, which is positive and is carried out only during step ia, is represented by the shaded area under the curve. Energy is transferred as heat during both steps ia and af, with a net energy transfer Q.

Figure 18-14c shows a process in which the previous two steps are carried out in reverse order. The work W in this case is smaller than for Fig. 18-14b, as is the net heat absorbed. Figure 18-14d suggests that you can make the work done by the gas as small as you want (by following a path like icdf) or as large as you want (by following a path like ighf).

To sum up: A system can be taken from a given initial state to a given final state by an infinite number of processes. Heat may or may not be involved, and in general, the work W and the heat Q will have different values for different processes. We say that heat and work are *path-dependent* quantities.

Figure 18-14e shows an example in which negative work is done by a system as some external force compresses the system, reducing its volume. The absolute value of the work done is still equal to the area beneath the curve, but because the gas is *compressed*, the work done by the gas is negative.

Figure 18-14f shows a *thermodynamic cycle* in which the system is taken from some initial state i to some other state f and then back to i. The net work done by the system during the cycle is the sum of the *positive* work done during the expansion and the *negative* work done during the compression. In Fig. 18-14f, the net work is positive because the area under the expansion curve (i to f) is greater than the area under the compression curve (f to i).

CHECKPOINT 4

The p-V diagram here shows six curved paths (connected by vertical paths) that can be followed by a gas. Which two of the curved paths should be part of a closed cycle (those curved paths plus connecting vertical paths) if the net work done by the gas during the cycle is to be at its maximum positive value?

18-10 The First Law of Thermodynamics

You have just seen that when a system changes from a given initial state to a given final state, both the work W and the heat Q depend on the nature of the process. Experimentally, however, we find a surprising thing. The quantity Q-W is the same for all processes. It depends only on the initial and final states and does not depend at all on how the system gets from one to the other. All other combinations of Q and W, including Q alone, W alone, Q+W, and Q-2W, are path dependent; only the quantity Q-W is not.

The quantity Q-W must represent a change in some intrinsic property of the system. We call this property the *internal energy* E_{int} and we write

$$\Delta E_{\text{int}} = E_{\text{int},f} - E_{\text{int},i} = Q - W \quad \text{(first law)}. \tag{18-26}$$

Equation 18-26 is the **first law of thermodynamics.** If the thermodynamic system undergoes only a differential change, we can write the first law as*

$$dE_{\rm int} = dQ - dW$$
 (first law). (18-27)

The internal energy E_{int} of a system tends to increase if energy is added as heat Q and tends to decrease if energy is lost as work W done by the system.

In Chapter 8, we discussed the principle of energy conservation as it applies to isolated systems—that is, to systems in which no energy enters or leaves the system. The first law of thermodynamics is an extension of that principle to systems that are *not* isolated. In such cases, energy may be transferred into or out of the system as either work W or heat Q. In our statement of the first law of thermodynamics above, we assume that there are no changes in the kinetic energy or the potential energy of the system as a whole; that is, $\Delta K = \Delta U = 0$.

Before this chapter, the term work and the symbol W always meant the work done on a system. However, starting with Eq. 18-24 and continuing through the next two chapters about thermodynamics, we focus on the work done by a system, such as the gas in Fig. 18-13.

The work done *on* a system is always the negative of the work done *by* the system, so if we rewrite Eq. 18-26 in terms of the work $W_{\rm on}$ done *on* the system, we have $\Delta E_{\rm int} = Q + W_{\rm on}$. This tells us the following: The internal energy of a system tends to increase if heat is absorbed by the system or if positive work is done *on* the system. Conversely, the internal energy tends to decrease if heat is lost by the system or if negative work is done *on* the system.

CHECKPOINT 5

The figure here shows four paths on a p-V diagram along which a gas can be taken from state i to state f. Rank the paths according to (a) the change ΔE_{int} in the internal energy of the gas, (b) the work W done by the gas, and (c) the magnitude of the energy transferred as heat Q between the gas and its environment, greatest first.

*Here dQ and dW, unlike $dE_{\rm int}$, are not true differentials; that is, there are no such functions as Q(p,V) and W(p,V) that depend only on the state of the system. The quantities dQ and dW are called *inexact differentials* and are usually represented by the symbols dQ and dW. For our purposes, we can treat them simply as infinitesimally small energy transfers.

We slowly remove lead shot, allowing an expansion without any heat transfer.

Fig. 18-15 An adiabatic expansion can be carried out by slowly removing lead shot from the top of the piston. Adding lead shot reverses the process at any stage.

Fig. 18-16 The initial stage of a free-expansion process. After the stopcock is opened, the gas fills both chambers and eventually reaches an equilibrium state.

18-11 Some Special Cases of the First Law of Thermodynamics

Here are four thermodynamic processes as summarized in Table 18-5.

1. Adiabatic processes. An adiabatic process is one that occurs so rapidly or occurs in a system that is so well insulated that no transfer of energy as heat occurs between the system and its environment. Putting Q = 0 in the first law (Eq. 18-26) yields

$$\Delta E_{\rm int} = -W$$
 (adiabatic process). (18-28)

This tells us that if work is done by the system (that is, if W is positive), the internal energy of the system decreases by the amount of work. Conversely, if work is done on the system (that is, if W is negative), the internal energy of the system increases by that amount.

Figure 18-15 shows an idealized adiabatic process. Heat cannot enter or leave the system because of the insulation. Thus, the only way energy can be transferred between the system and its environment is by work. If we remove shot from the piston and allow the gas to expand, the work done by the system (the gas) is positive and the internal energy of the gas decreases. If, instead, we add shot and compress the gas, the work done by the system is negative and the internal energy of the gas increases.

2. Constant-volume processes. If the volume of a system (such as a gas) is held constant, that system can do no work. Putting W = 0 in the first law (Eq. 18-26) yields

$$\Delta E_{\rm int} = Q$$
 (constant-volume process). (18-29)

Thus, if heat is absorbed by a system (that is, if Q is positive), the internal energy of the system increases. Conversely, if heat is lost during the process (that is, if Q is negative), the internal energy of the system must decrease.

3. Cyclical processes. There are processes in which, after certain interchanges of heat and work, the system is restored to its initial state. In that case, no intrinsic property of the system—including its internal energy—can possibly change. Putting $\Delta E_{\rm int} = 0$ in the first law (Eq. 18-26) yields

$$O = W$$
 (cyclical process). (18-30)

Thus, the net work done during the process must exactly equal the net amount of energy transferred as heat; the store of internal energy of the system remains unchanged. Cyclical processes form a closed loop on a *p-V* plot, as shown in Fig. 18-14*f*. We discuss such processes in detail in Chapter 20.

4. *Free expansions.* These are adiabatic processes in which no transfer of heat occurs between the system and its environment and no work is done on or by the system. Thus, Q = W = 0, and the first law requires that

$$\Delta E_{\rm int} = 0$$
 (free expansion). (18-31)

Figure 18-16 shows how such an expansion can be carried out. A gas, which is

Table 18-5

The First Law of Thermodynamics: Four Special Cases

The Law: $\Delta E_{\text{int}} = Q - W \text{ (Eq. 18-26)}$			
Process	Restriction	Consequence	
Adiabatic	Q = 0	$\Delta E_{ m int} = -W$	
Constant volume	W = 0	$\Delta E_{\rm int} = Q$	
Closed cycle	$\Delta E_{ m int} = 0$	Q = W	
Free expansion	Q = W = 0	$\Delta E_{\rm int} = 0$	

in thermal equilibrium within itself, is initially confined by a closed stopcock to one half of an insulated double chamber; the other half is evacuated. The stopcock is opened, and the gas expands freely to fill both halves of the chamber. No heat is transferred to or from the gas because of the insulation. No work is done by the gas because it rushes into a vacuum and thus does not meet any pressure.

A free expansion differs from all other processes we have considered because it cannot be done slowly and in a controlled way. As a result, at any given instant during the sudden expansion, the gas is not in thermal equilibrium and its pressure is not uniform. Thus, although we can plot the initial and final states on a p-V diagram, we cannot plot the expansion itself.

CHECKPOINT 6

For one complete cycle as shown in the p-V diagram here, are (a) $\Delta E_{\rm int}$ for the gas and (b) the net energy transferred as heat Q positive, negative, or zero?

Sample Problem

First law of thermodynamics: work, heat, internal energy change

Let 1.00 kg of liquid water at 100°C be converted to steam at 100°C by boiling at standard atmospheric pressure (which is 1.00 atm or 1.01×10^5 Pa) in the arrangement of Fig. 18-17. The volume of that water changes from an initial value of 1.00×10^{-3} m³ as a liquid to 1.671 m³ as steam.

(a) How much work is done by the system during this process?

KEY IDEAS

(1) The system must do positive work because the volume increases. (2) We calculate the work W done by integrating the pressure with respect to the volume (Eq. 18-25).

Calculation: Because here the pressure is constant at 1.01×10^5 Pa, we can take p outside the integral. Thus,

$$W = \int_{V_i}^{V_f} p \, dV = p \int_{V_i}^{V_f} dV = p(V_f - V_i)$$

= (1.01 × 10⁵ Pa)(1.671 m³ - 1.00 × 10⁻³ m³)
= 1.69 × 10⁵ J = 169 kJ. (Answer)

(b) How much energy is transferred as heat during the process?

KEY IDEA

Because the heat causes only a phase change and not a change in temperature, it is given fully by Eq. 18-16 (Q = Lm).

Calculation: Because the change is from liquid to gaseous phase, L is the heat of vaporization L_V , with the value given in Eq. 18-17 and Table 18-4. We find

$$Q = L_V m = (2256 \text{ kJ/kg})(1.00 \text{ kg})$$

= 2256 kJ \approx 2260 kJ. (Answer)

(c) What is the change in the system's internal energy during the process?

KEY IDEA

The change in the system's internal energy is related to the heat (here, this is energy transferred into the system) and the work (here, this is energy transferred out of the system) by the first law of thermodynamics (Eq. 18-26).

Calculation: We write the first law as

$$\Delta E_{\text{int}} = Q - W = 2256 \text{ kJ} - 169 \text{ kJ}$$

 $\approx 2090 \text{ kJ} = 2.09 \text{ MJ}.$ (Answer)

This quantity is positive, indicating that the internal energy of the system has increased during the boiling process. This energy goes into separating the H₂O molecules, which strongly attract one another in the liquid state. We see that, when water is boiled, about 7.5% (= 169 kJ/2260 kJ) of the heat goes into the work of pushing back the atmosphere. The rest of the heat goes into the system's internal energy.

Fig. 18-17 Water boiling at constant pressure. Energy is transferred from the thermal reservoir as heat until the liquid water has changed completely into steam. Work is done by the expanding gas as it lifts the loaded piston.

Additional examples, video, and practice available at WileyPLUS

 $T_H > T_C$

Fig. 18-18 Thermal conduction. Energy is transferred as heat from a reservoir at temperature T_H to a cooler reservoir at temperature T_C through a conducting slab of thickness L and thermal conductivity k.

18-12 Heat Transfer Mechanisms

We have discussed the transfer of energy as heat between a system and its environment, but we have not yet described how that transfer takes place. There are three transfer mechanisms: conduction, convection, and radiation.

Conduction

If you leave the end of a metal poker in a fire for enough time, its handle will get hot. Energy is transferred from the fire to the handle by (thermal) **conduction** along the length of the poker. The vibration amplitudes of the atoms and electrons of the metal at the fire end of the poker become relatively large because of the high temperature of their environment. These increased vibrational amplitudes, and thus the associated energy, are passed along the poker, from atom to atom, during collisions between adjacent atoms. In this way, a region of rising temperature extends itself along the poker to the handle.

Consider a slab of face area A and thickness L, whose faces are maintained at temperatures T_H and T_C by a hot reservoir and a cold reservoir, as in Fig. 18-18. Let Q be the energy that is transferred as heat through the slab, from its hot face to its cold face, in time t. Experiment shows that the *conduction rate* $P_{\rm cond}$ (the amount of energy transferred per unit time) is

$$P_{\rm cond} = \frac{Q}{t} = kA \frac{T_H - T_C}{L}, \tag{18-32}$$

in which k, called the *thermal conductivity*, is a constant that depends on the material of which the slab is made. A material that readily transfers energy by conduction is a *good thermal conductor* and has a high value of k. Table 18-6 gives the thermal conductivities of some common metals, gases, and building materials.

Table 18-6 Some Thermal Conductivities

Substance	$k\left(\mathbf{W}/\mathbf{m}\cdot\mathbf{K}\right)$	
Metals		
Stainless steel	14	
Lead	35	
Iron	67	
Brass	109	
Aluminum	235	
Copper	401	
Silver	428	
Gases		
Air (dry)	0.026	
Helium	0.15	
Hydrogen	0.18	
Building Materials		
Polyurethane foam	0.024	
Rock wool	0.043	
Fiberglass	0.048	
White pine	0.11	
Window glass	1.0	

Thermal Resistance to Conduction (R-Value)

If you are interested in insulating your house or in keeping cola cans cold on a picnic, you are more concerned with poor heat conductors than with good ones. For this reason, the concept of *thermal resistance* R has been introduced into engineering practice. The R-value of a slab of thickness L is defined as

$$R = \frac{L}{k}. (18-33)$$

The lower the thermal conductivity of the material of which a slab is made, the higher the *R*-value of the slab; so something that has a high *R*-value is a *poor thermal conductor* and thus a *good thermal insulator*.

Note that R is a property attributed to a slab of a specified thickness, not to a material. The commonly used unit for R (which, in the United States at least, is almost never stated) is the square foot–Fahrenheit degree–hour per British thermal unit (ft $^2 \cdot F^\circ \cdot h/Btu$). (Now you know why the unit is rarely stated.)

Conduction Through a Composite Slab

Figure 18-19 shows a composite slab, consisting of two materials having different thicknesses L_1 and L_2 and different thermal conductivities k_1 and k_2 . The temperatures of the outer surfaces of the slab are T_H and T_C . Each face of the slab has area A. Let us derive an expression for the conduction rate through the slab under the assumption that the transfer is a *steady-state* process; that is, the temperatures everywhere in the slab and the rate of energy transfer do not change with time.

Fig. 18-19 Heat is transferred at a steady rate through a composite slab made up of two different materials with different thicknesses and different thermal conductivities. The steady-state temperature at the interface of the two materials is T_X .

In the steady state, the conduction rates through the two materials must be equal. This is the same as saying that the energy transferred through one material in a certain time must be equal to that transferred through the other material in the same time. If this were not true, temperatures in the slab would be changing and we would not have a steady-state situation. Letting T_X be the temperature of the interface between the two materials, we can now use Eq. 18-32 to write

$$P_{\text{cond}} = \frac{k_2 A (T_H - T_X)}{L_2} = \frac{k_1 A (T_X - T_C)}{L_1}.$$
 (18-34)

Solving Eq. 18-34 for T_X yields, after a little algebra

$$T_X = \frac{k_1 L_2 T_C + k_2 L_1 T_H}{k_1 L_2 + k_2 L_1}. (18-35)$$

Substituting this expression for T_X into either equality of Eq. 18-34 yields

$$P_{\text{cond}} = \frac{A(T_H - T_C)}{L_1/k_1 + L_2/k_2}.$$
 (18-36)

We can extend Eq. 18-36 to apply to any number n of materials making up a slab:

$$P_{\text{cond}} = \frac{A(T_H - T_C)}{\sum (L/k)}$$
 (18-37)

The summation sign in the denominator tells us to add the values of L/k for all the materials.

CHECKPOINT 7

The figure shows the face and interface temperatures of a composite slab consisting of four

materials, of identical thicknesses, through which the heat transfer is steady. Rank the materials according to their thermal conductivities, greatest first.

Convection

When you look at the flame of a candle or a match, you are watching thermal energy being transported upward by **convection.** Such energy transfer occurs when a fluid, such as air or water, comes in contact with an object whose temperature is higher than that of the fluid. The temperature of the part of the fluid that is in contact with the hot object increases, and (in most cases) that fluid expands and thus becomes less dense. Because this expanded fluid is now lighter than the surrounding cooler fluid, buoyant forces cause it to rise. Some of the

Fig. 18-20 A false-color thermogram reveals the rate at which energy is radiated by a cat. The rate is color-coded, with white and red indicating the greatest radiation rate. The nose is cool. (*Edward Kinsman/Photo Researchers*)

Fig. 18-21 A rattlesnake's face has thermal radiation detectors, allowing the snake to strike at an animal even in complete darkness. (*David A. Northcott/Corbis Images*)

surrounding cooler fluid then flows so as to take the place of the rising warmer fluid, and the process can then continue.

Convection is part of many natural processes. Atmospheric convection plays a fundamental role in determining global climate patterns and daily weather variations. Glider pilots and birds alike seek rising thermals (convection currents of warm air) that keep them aloft. Huge energy transfers take place within the oceans by the same process. Finally, energy is transported to the surface of the Sun from the nuclear furnace at its core by enormous cells of convection, in which hot gas rises to the surface along the cell core and cooler gas around the core descends below the surface.

Radiation

The third method by which an object and its environment can exchange energy as heat is via electromagnetic waves (visible light is one kind of electromagnetic wave). Energy transferred in this way is often called **thermal radiation** to distinguish it from electromagnetic *signals* (as in, say, television broadcasts) and from nuclear radiation (energy and particles emitted by nuclei). (To "radiate" generally means to emit.) When you stand in front of a big fire, you are warmed by absorbing thermal radiation from the fire; that is, your thermal energy increases as the fire's thermal energy decreases. No medium is required for heat transfer via radiation—the radiation can travel through vacuum from, say, the Sun to you.

The rate $P_{\rm rad}$ at which an object emits energy via electromagnetic radiation depends on the object's surface area A and the temperature T of that area in kelvins and is given by

$$P_{\rm rad} = \sigma \varepsilon A T^4. \tag{18-38}$$

Here $\sigma=5.6704\times 10^{-8}~{\rm W/m^2\cdot K^4}$ is called the *Stefan–Boltzmann constant* after Josef Stefan (who discovered Eq. 18-38 experimentally in 1879) and Ludwig Boltzmann (who derived it theoretically soon after). The symbol ε represents the *emissivity* of the object's surface, which has a value between 0 and 1, depending on the composition of the surface. A surface with the maximum emissivity of 1.0 is said to be a *blackbody radiator*, but such a surface is an ideal limit and does not occur in nature. Note again that the temperature in Eq. 18-38 must be in kelvins so that a temperature of absolute zero corresponds to no radiation. Note also that every object whose temperature is above 0 K—including you—emits thermal radiation. (See Fig. 18-20.)

The rate $P_{\rm abs}$ at which an object absorbs energy via thermal radiation from its environment, which we take to be at uniform temperature $T_{\rm env}$ (in kelvins), is

$$P_{\rm abs} = \sigma \varepsilon A T_{\rm env}^4. \tag{18-39}$$

The emissivity ε in Eq. 18-39 is the same as that in Eq. 18-38. An idealized blackbody radiator, with $\varepsilon = 1$, will absorb all the radiated energy it intercepts (rather than sending a portion back away from itself through reflection or scattering).

Because an object will radiate energy to the environment while it absorbs energy from the environment, the object's net rate $P_{\rm net}$ of energy exchange due to thermal radiation is

$$P_{\text{net}} = P_{\text{abs}} - P_{\text{rad}} = \sigma \varepsilon A (T_{\text{env}}^4 - T^4).$$
 (18-40)

 P_{net} is positive if net energy is being absorbed via radiation and negative if it is being lost via radiation.

Thermal radiation is involved in the numerous medical cases of a dead rattlesnake striking a hand reaching toward it. Pits between each eye and nostril of a rattlesnake (Fig. 18-21) serve as sensors of thermal radiation. When, say, a mouse moves close to a rattlesnake's head, the thermal radiation from the mouse triggers these sensors, causing a reflex action in which the snake strikes the mouse with its fangs and injects its venom. The thermal radiation from a reaching hand can cause the same reflex action even if the snake has been dead for as long as 30 min because the snake's nervous system continues to function. As one snake expert advised, if you must remove a recently killed rattlesnake, use a long stick rather than your hand.

Sample Problem

Thermal conduction through a layered wall

Figure 18-22 shows the cross section of a wall made of white pine of thickness L_a and brick of thickness L_d $(=2.0L_a)$, sandwiching two layers of unknown material with identical thicknesses and thermal conductivities. The thermal conductivity of the pine is k_a and that of the brick is k_d (= 5.0 k_a). The face area A of the wall is unknown. Thermal conduction through the wall has reached the steady state; the only known interface temperatures are $T_1 = 25$ °C, $T_2 = 20$ °C, and $T_5 = -10$ °C. What is interface temperature T_4 ?

KEY IDEAS

(1) Temperature T_4 helps determine the rate P_d at which energy is conducted through the brick, as given by Eq. 18-32. However, we lack enough data to solve Eq. 18-32 for T_4 . (2) Because the conduction is steady, the conduction rate P_d through the brick must equal the conduction rate P_a through the pine. That gets us going.

Calculations: From Eq. 18-32 and Fig. 18-22, we can write

$$P_a = k_a A \frac{T_1 - T_2}{L_a}$$
 and $P_d = k_d A \frac{T_4 - T_5}{L_d}$.

Setting $P_a = P_d$ and solving for T_4 yield

$$T_4 = \frac{k_a L_d}{k_d L_a} (T_1 - T_2) + T_5.$$

Letting $L_d = 2.0L_a$ and $k_d = 5.0k_a$, and inserting the known temperatures, we find

$$T_4 = \frac{k_a(2.0L_a)}{(5.0k_a)L_a} (25^{\circ}\text{C} - 20^{\circ}\text{C}) + (-10^{\circ}\text{C})$$

= -8.0°C. (Answer)

Fig. 18-22 Steady-state heat transfer through a wall.

PIIIS Additional examples, video, and practice available at WileyPLUS

REVIEW & SUMMARY

Temperature; Thermometers Temperature is an SI base quantity related to our sense of hot and cold. It is measured with a thermometer, which contains a working substance with a measurable property, such as length or pressure, that changes in a regular way as the substance becomes hotter or colder.

Zeroth Law of Thermodynamics When a thermometer and some other object are placed in contact with each other, they eventually reach thermal equilibrium. The reading of the thermometer is then taken to be the temperature of the other object. The process provides consistent and useful temperature measurements because of the **zeroth law of thermodynamics:** If bodies A and B are each in thermal equilibrium with a third body C (the thermometer), then A and B are in thermal equilibrium with each other.

The Kelvin Temperature Scale In the SI system, temperature is measured on the Kelvin scale, which is based on the triple point of water (273.16 K). Other temperatures are then defined by use of a *constant-volume gas thermometer*, in which a sample of gas is maintained at constant volume so its pressure is proportional to its temperature. We define the *temperature* T as measured with a gas thermometer to be

$$T = (273.16 \text{ K}) \left(\lim_{\text{gas} \to 0} \frac{p}{p_3} \right). \tag{18-6}$$

Here T is in kelvins, and p_3 and p are the pressures of the gas at 273.16 K and the measured temperature, respectively.

Celsius and Fahrenheit Scales The Celsius temperature scale is defined by

$$T_{\rm C} = T - 273.15^{\circ},$$
 (18-7)

with T in kelvins. The Fahrenheit temperature scale is defined by

$$T_{\rm F} = \frac{9}{5}T_{\rm C} + 32^{\circ}. \tag{18-8}$$

Thermal Expansion All objects change size with changes in temperature. For a temperature change ΔT , a change ΔL in any linear dimension L is given by

$$\Delta L = L\alpha \, \Delta T,\tag{18-9}$$

in which α is the **coefficient of linear expansion.** The change ΔV in the volume V of a solid or liquid is

$$\Delta V = V\beta \,\Delta T. \tag{18-10}$$

Here $\beta = 3\alpha$ is the material's **coefficient of volume expansion.**

Heat Heat Q is energy that is transferred between a system and its environment because of a temperature difference between them. It can be measured in **joules** (J), **calories** (cal), **kilocalories** (Cal or kcal), or **British thermal units** (Btu), with

$$1 \text{ cal} = 3.968 \times 10^{-3} \text{ Btu} = 4.1868 \text{ J.}$$
 (18-12)

Heat Capacity and Specific Heat If heat Q is absorbed by an object, the object's temperature change $T_f - T_i$ is related to Q by

$$Q = C(T_f - T_i), (18-13)$$

in which C is the **heat capacity** of the object. If the object has mass m, then $Q = cm(T_f - T_i), \qquad (18-14)$

 $Q = cm(T_f - T_i), \tag{16-14}$

where c is the **specific heat** of the material making up the object. The **molar specific heat** of a material is the heat capacity per mole, which means per 6.02×10^{23} elementary units of the material.

Heat of Transformation Heat absorbed by a material may change the material's physical state—for example, from solid to liquid or from liquid to gas. The amount of energy required per unit mass to change the state (but not the temperature) of a particular material is its **heat of transformation** *L*. Thus,

$$O = Lm. (18-16)$$

The **heat of vaporization** L_V is the amount of energy per unit mass that must be added to vaporize a liquid or that must be removed to condense a gas. The **heat of fusion** L_F is the amount of energy per unit mass that must be added to melt a solid or that must be removed to freeze a liquid.

Work Associated with Volume Change A gas may exchange energy with its surroundings through work. The amount

of work W done by a gas as it expands or contracts from an initial volume V_i to a final volume V_f is given by

$$W = \int dW = \int_{V_i}^{V_f} p \ dV.$$
 (18-25)

The integration is necessary because the pressure p may vary during the volume change.

First Law of Thermodynamics The principle of conservation of energy for a thermodynamic process is expressed in the **first law of thermodynamics**, which may assume either of the forms

$$\Delta E_{\text{int}} = E_{\text{int},f} - E_{\text{int},i} = Q - W$$
 (first law) (18-26)

or
$$dE_{\text{int}} = dQ - dW$$
 (first law). (18-27)

 $E_{\rm int}$ represents the internal energy of the material, which depends only on the material's state (temperature, pressure, and volume). Q represents the energy exchanged as heat between the system and its surroundings; Q is positive if the system absorbs heat and negative if the system loses heat. W is the work done by the system; W is positive if the system expands against an external force from the surroundings and negative if the system contracts because of an external force. Q and W are path dependent; $\Delta E_{\rm int}$ is path independent.

Applications of the First Law The first law of thermodynamics finds application in several special cases:

 $\begin{array}{llll} \textit{adiabatic processes:} & Q=0, & \Delta E_{int}=-W \\ \textit{constant-volume processes:} & W=0, & \Delta E_{int}=Q \\ \textit{cyclical processes:} & \Delta E_{int}=0, & Q=W \\ \textit{free expansions:} & Q=W=\Delta E_{int}=0 \\ \end{array}$

Conduction, Convection, and Radiation The rate $P_{\rm cond}$ at which energy is *conducted* through a slab for which one face is maintained at the higher temperature T_H and the other face is maintained at the lower temperature T_C is

$$P_{\text{cond}} = \frac{Q}{t} = kA \frac{T_H - T_C}{L} \tag{18-32}$$

Here each face of the slab has area A, the length of the slab (the distance between the faces) is L, and k is the thermal conductivity of the material.

Convection occurs when temperature differences cause an energy transfer by motion within a fluid.

 $\it Radiation$ is an energy transfer via the emission of electromagnetic energy. The rate $\it P_{\rm rad}$ at which an object emits energy via thermal radiation is

$$P_{\rm rad} = \sigma \varepsilon A T^4, \tag{18-38}$$

where σ (= 5.6704 × 10⁻⁸ W/m²·K⁴) is the Stefan–Boltzmann constant, ε is the emissivity of the object's surface, A is its surface area, and T is its surface temperature (in kelvins). The rate $P_{\rm abs}$ at which an object absorbs energy via thermal radiation from its environment, which is at the uniform temperature $T_{\rm env}$ (in kelvins), is

$$P_{\rm abs} = \sigma \varepsilon A T_{\rm env}^4. \tag{18-39}$$

1 The initial length L, change in temperature ΔT , and change in length ΔL of four rods are given in the following table. Rank the rods according to their coefficients of thermal expansion, greatest first.

Rod	$L\left(\mathbf{m}\right)$	$\Delta T(\mathrm{C}^\circ)$	$\Delta L (m)$
а	2	10	4×10^{-4}
b	1	20	4×10^{-4}
c	2	10	8×10^{-4}
d	4	5	4×10^{-4}

- 2 Figure 18-23 shows three linear temperature scales, with the freezing and boiling points of water indicated. Rank the three scales according to the size of one degree on them, greatest first.
- 150 | 120 | 60 | Z | Z | -50 | -140 | 20 |
- **3** Materials A, B, and C are solids **Fig. 18-23** Question 2. that are at their melting temperatures. Material A requires 200 J to melt 4 kg, material B requires

tures. Material A requires 200 J to melt 4 kg, material B requires 300 J to melt 5 kg, and material C requires 300 J to melt 6 kg. Rank the materials according to their heats of fusion, greatest first.

- 4 A sample A of liquid water and a sample B of ice, of identical mass, are placed in a thermally insulated container and allowed to come to thermal equilibrium. Figure 18-24a is a sketch of the temperature T of the samples versus time t. (a) Is the equilibrium temperature above, below, or at the freezing point of water? (b) In reaching equilibrium, does the liquid partly freeze, fully freeze, or undergo no freezing? (c) Does the ice partly melt, fully melt, or undergo no melting?
- 5 Question 4 continued: Graphs b through f of Fig. 18-24 are additional sketches of T versus t, of which one or more are impossible to produce. (a) Which is impossible and why? (b) In the possible ones, is the equilibrium temperature above, below, or at the freezing point of water? (c) As the possible situations reach equilibrium, does the liquid partly freeze, fully freeze, or undergo no freezing? Does the ice partly melt, fully melt, or undergo no melting?

Fig. 18-24 Questions 4 and 5.

6 Figure 18-25 shows three different arrangements of materials 1, 2, and 3 to form a wall. The thermal conductivities are $k_1 > k_2 > k_3$. The left side of the wall is 20 C° higher than

Fig. 18-25 Question 6.

the right side. Rank the arrangements according to (a) the (steady state) rate of energy conduction through the wall and (b) the temperature difference across material 1, greatest first.

7 Figure 18-26 shows two closed cycles on *p-V* diagrams for a gas. The three parts of cycle 1 are of the same length and shape as those of cycle 2. For each cycle, should the cycle be traversed clockwise or counterclockwise

Fig. 18-26 Questions 7 and 8.

if (a) the net work W done by the gas is to be positive and (b) the net energy transferred by the gas as heat Q is to be positive?

- **8** For which cycle in Fig. 18-26, traversed clockwise, is (a) W greater and (b) Q greater?
- **9** Three different materials of identical mass are placed one at a time in a special freezer that can extract energy from a material at a certain constant rate. During the cooling process, each material begins in the liquid state and ends in the solid state; Fig. 18-27 shows the tempera-

Fig. 18-27 Question 9.

ture T versus time t. (a) For material 1, is the specific heat for the liquid state greater than or less than that for the solid state? Rank the materials according to (b) freezing-point temperature, (c) specific heat in the liquid state, (d) specific heat in the solid state, and (e) heat of fusion, all greatest first.

- 10 A solid cube of edge length r, a solid sphere of radius r, and a solid hemisphere of radius r, all made of the same material, are maintained at temperature 300 K in an environment at temperature 350 K. Rank the objects according to the net rate at which thermal radiation is exchanged with the environment, greatest first.
- **11** A hot object is dropped into a thermally insulated container of water, and the object and water are then allowed to come to thermal equilibrium. The experiment is repeated twice, with different hot objects. All three objects have the same mass and initial temperature, and the mass and initial temperature of the water are the same in the three experiments. For each of the experiments, Fig. 18-28 gives graphs of the temperatures T of the object and the water versus time t. Rank the graphs according to the specific heats of the objects, greatest first.

Fig. 18-28 Question 11.

CHAPTER 18 TEMPERATURE, HEAT, AND THE FIRST LAW OF THERMODYNAMICS

В

Tutoring problem available (at instructor's discretion) in WileyPLUS and WebAssign

Worked-out solution available in Student Solutions Manual

WWW Worked-out solution is at

ILW Interactive solution is at

EM

http://www.wilev.com/college/halliday

Number of dots indicates level of problem difficulty

Additional information available in *The Flying Circus of Physics* and at flyingcircusofphysics.com

sec. 18-4 Measuring Temperature

- •1 Suppose the temperature of a gas is 373.15 K when it is at the boiling point of water. What then is the limiting value of the ratio of the pressure of the gas at that boiling point to its pressure at the triple point of water? (Assume the volume of the gas is the same at both temperatures.)
- •2 Two constant-volume gas thermometers are assembled, one with nitrogen and the other with hydrogen. Both contain enough gas so that $p_3 = 80$ kPa. (a) What is the difference between the pressures in the two thermometers if both bulbs are in boiling water? (*Hint:* See Fig. 18-6.) (b) Which gas is at higher pressure?
- •3 A gas thermometer is constructed of two gas-containing bulbs, each in a water bath, as shown in Fig. 18-29. The pressure difference between the two bulbs is measured by a mercury manometer as shown. Appropriate reservoirs, not shown in the diagram,

Fig. 18-29 Problem 3.

maintain constant gas volume in the two bulbs. There is no difference in pressure when both baths are at the triple point of water. The pressure difference is 120 torr when one bath is at the triple point and the other is at the boiling point of water. It is 90.0 torr when one bath is at the triple point and the other is at an unknown temperature to be measured. What is the unknown temperature?

sec. 18-5 The Celsius and Fahrenheit Scales

- •4 (a) In 1964, the temperature in the Siberian village of Oymyakon reached −71°C. What temperature is this on the Fahrenheit scale? (b) The highest officially recorded temperature in the continental United States was 134°F in Death Valley, California. What is this temperature on the Celsius scale?
- •5 At what temperature is the Fahrenheit scale reading equal to (a) twice that of the Celsius scale and (b) half that of the Celsius scale?
- ••6 On a linear X temperature scale, water freezes at -125.0° X and boils at 375.0°X. On a linear Y temperature scale, water freezes at -70.00° Y and boils at -30.00° Y. A temperature of 50.00° Y corresponds to what temperature on the X scale?
- ••7 ILW Suppose that on a linear temperature scale X, water boils at $-53.5^{\circ}X$ and freezes at $-170^{\circ}X$. What is a temperature of 340 K on the X scale? (Approximate water's boiling point as 373 K.)

sec. 18-6 Thermal Expansion

- •8 At 20°C, a brass cube has an edge length of 30 cm. What is the increase in the cube's surface area when it is heated from 20°C to 75°C?
- •9 ILW A circular hole in an aluminum plate is 2.725 cm in diameter at 0.000°C. What is its diameter when the temperature of the plate is raised to 100.0°C?

- •10 An aluminum flagpole is 33 m high. By how much does its length increase as the temperature increases by 15 $^{\circ}$?
- •11 What is the volume of a lead ball at 30.00°C if the ball's volume at 60.00°C is 50.00 cm³?
- •12 An aluminum-alloy rod has a length of 10.000 cm at 20.000°C and a length of 10.015 cm at the boiling point of water. (a) What is the length of the rod at the freezing point of water? (b) What is the temperature if the length of the rod is 10.009 cm?
- •13 SSM Find the change in volume of an aluminum sphere with an initial radius of 10 cm when the sphere is heated from 0.0°C to 100°C.
- ••14 When the temperature of a copper coin is raised by $100 \, \mathrm{C}^\circ$, its diameter increases by 0.18%. To two significant figures, give the percent increase in (a) the area of a face, (b) the thickness, (c) the volume, and (d) the mass of the coin. (e) Calculate the coefficient of linear expansion of the coin.
- ••15 ILW A steel rod is 3.000 cm in diameter at 25.00°C. A brass ring has an interior diameter of 2.992 cm at 25.00°C. At what common temperature will the ring just slide onto the rod?
- ••16 When the temperature of a metal cylinder is raised from 0.0°C to 100°C, its length increases by 0.23%. (a) Find the percent change in density. (b) What is the metal? Use Table 18-2.
- ••17 SSM WWW An aluminum cup of 100 cm^3 capacity is completely filled with glycerin at 22° C. How much glycerin, if any, will spill out of the cup if the temperature of both the cup and the glycerin is increased to 28° C? (The coefficient of volume expansion of glycerin is 5.1×10^{-4} /C°.)
- ••18 At 20°C, a rod is exactly 20.05 cm long on a steel ruler. Both the rod and the ruler are placed in an oven at 270°C, where the rod now measures 20.11 cm on the same ruler. What is the coefficient of linear expansion for the material of which the rod is made?
- ••19 ••19 A vertical glass tube of length L=1.280~000 m is half filled with a liquid at $20.000~000^{\circ}$ C. How much will the height of the liquid column change when the tube and liquid are heated to $30.000~000^{\circ}$ C? Use coefficients $\alpha_{\rm glass}=1.000~000\times 10^{-5}/{\rm K}$ and $\beta_{\rm liquid}=4.000~000\times 10^{-5}/{\rm K}$.
- ••20 In a certain experiment, a small radioactive source must move at selected, extremely slow speeds. This motion is accomplished by fastening the source to one end of an aluminum rod and heating the central section of the rod in a controlled way. If the effective heated

Fig. 18-30 Problem 20.

section of the rod in Fig. 18-30 has length d = 2.00 cm, at what constant rate must the temperature of the rod be changed if the source is to move at a constant speed of 100 nm/s?

•••21 SSM ILW As a result of a temperature rise of 32 C°, a bar with a crack at its center buckles upward (Fig. 18-31). If the fixed distance L_0 is 3.77 m and the coefficient of linear expansion of the bar is $25 \times 10^{-6}/\text{C}^{\circ}$, find the rise x of the center.

Fig. 18-31 Problem 21.

sec. 18-8 The Absorption of Heat by Solids and Liquids

•22 One way to keep the contents of a garage from becoming too cold on a night when a severe subfreezing temperature is forecast is to put a tub of water in the garage. If the mass of the water is 125 kg and its initial temperature is 20°C, (a) how much energy must the water transfer to its surroundings in order to freeze completely and (b) what is the lowest possible temperature of the water and its surroundings until that happens?

•23 SSM A small electric immersion heater is used to heat 100 g of water for a cup of instant coffee. The heater is labeled "200 watts" (it converts electrical energy to thermal energy at this rate). Calculate the time required to bring all this water from 23.0°C to 100°C, ignoring any heat losses.

•24 A certain substance has a mass per mole of 50.0 g/mol. When 314 J is added as heat to a 30.0 g sample, the sample's temperature rises from 25.0°C to 45.0°C. What are the (a) specific heat and (b) molar specific heat of this substance? (c) How many moles are in the sample?

•25 A certain diet doctor encourages people to diet by drinking ice water. His theory is that the body must burn off enough fat to raise the temperature of the water from 0.00° C to the body temperature of 37.0° C. How many liters of ice water would have to be consumed to burn off 454 g (about 1 lb) of fat, assuming that burning this much fat requires 3500 Cal be transferred to the ice water? Why is it not advisable to follow this diet? (One liter = 10^{3} cm³. The density of water is 1.00 g/cm³.)

•26 What mass of butter, which has a usable energy content of 6.0 Cal/g (= 6000 cal/g), would be equivalent to the change in gravitational potential energy of a 73.0 kg man who ascends from sea level to the top of Mt. Everest, at elevation 8.84 km? Assume that the average g for the ascent is 9.80 m/s².

•27 SSM Calculate the minimum amount of energy, in joules, required to completely melt 130 g of silver initially at 15.0°C.

•28 How much water remains unfrozen after 50.2 kJ is transferred as heat from 260 g of liquid water initially at its freezing point?

••29 In a solar water heater, energy from the Sun is gathered by water that circulates through tubes in a rooftop collector. The solar radiation enters the collector through a transparent cover and warms the water in the tubes; this water is pumped into a holding tank. Assume that the efficiency of the overall system is 20% (that is, 80% of the incident solar energy is lost from the system). What collector area is necessary to raise the temperature of 200 L of water in the tank from 20°C to 40°C in 1.0 h when the intensity of incident sunlight is 700 W/m²?

••30 A 0.400 kg sample is placed in a cooling apparatus that removes energy as heat at a constant rate. Figure 18-32 gives the temperature T of the sample versus time t; the horizontal scale is set by $t_s = 80.0$ min. The sample freezes during the energy removal. The

specific heat of the sample in its initial liquid phase is 3000 J/kg·K. What are (a) the sample's heat of fusion and (b) its specific heat in the frozen phase?

Fig. 18-32 Problem 30.

••31 ILW What mass of steam at 100°C must be mixed with 150 g of ice at its melting point, in a thermally insulated container, to produce liquid water at 50°C?

••32 The specific heat of a substance varies with temperature according to the function $c = 0.20 + 0.14T + 0.023T^2$, with T in °C and c in cal/g·K. Find the energy required to raise the temperature of 2.0 g of this substance from 5.0°C to 15°C.

••33 Nonmetric version: (a) How long does a 2.0×10^5 Btu/h water heater take to raise the temperature of 40 gal of water from 70° F to 100° F? *Metric version:* (b) How long does a 59 kW water heater take to raise the temperature of 150 L of water from 21° C to 38° C?

••34 Samples A and B are at different initial temperatures when they are placed in a thermally insulated container and allowed to come to thermal equilibrium. Figure 18-33a gives their temperatures T versus time t. Sample A has a mass of 5.0 kg; sample B has a mass of 1.5 kg. Figure 18-33b is a general plot for the material of sample B. It shows the temperature change ΔT that the material undergoes when energy is transferred to it as heat Q. The change ΔT is plotted versus the energy Q per unit mass of the material, and the scale of the vertical axis is set by $\Delta T_s = 4.0 \, \text{C}^{\circ}$. What is the specific heat of sample A?

Fig. 18-33 Problem 34.

••35 An insulated Thermos contains 130 cm³ of hot coffee at 80.0°C. You put in a 12.0 g ice cube at its melting point to cool the coffee. By how many degrees has your coffee cooled once the ice has melted and equilibrium is reached? Treat the coffee as though it were pure water and neglect energy exchanges with the environment.

••36 A 150 g copper bowl contains 220 g of water, both at 20.0°C. A very hot 300 g copper cylinder is dropped into the water, causing the

CHAPTER 18 TEMPERATURE, HEAT, AND THE FIRST LAW OF THERMODYNAMICS

water to boil, with 5.00 g being converted to steam. The final temperature of the system is 100°C. Neglect energy transfers with the environment. (a) How much energy (in calories) is transferred to the water as heat? (b) How much to the bowl? (c) What is the original temperature of the cylinder?

- ••37 A person makes a quantity of iced tea by mixing 500 g of hot tea (essentially water) with an equal mass of ice at its melting point. Assume the mixture has negligible energy exchanges with its environment. If the tea's initial temperature is $T_i = 90^{\circ}$ C, when thermal equilibrium is reached what are (a) the mixture's temperature T_f and (b) the remaining mass m_f of ice? If $T_i = 70^{\circ}$ C, when thermal equilibrium is reached what are (c) T_f and (d) T_f ?
- **••38** A 0.530 kg sample of liquid water and a sample of ice are placed in a thermally insulated container. The container also contains a device that transfers energy as heat from the liquid water to the ice at a constant rate P, until thermal equilibrium is reached. The temperatures T of the liquid water and the ice are given in Fig. 18-34 as functions of time t; the horizontal scale is set by $t_s = 80.0$ min. (a) What is rate P? (b) What is the initial mass of the ice in the container? (c) When thermal equilibrium is reached, what is the mass of the ice produced in this process?

Fig. 18-34 Problem 38.

- ••40 Calculate the specific heat of a metal from the following data. A container made of the metal has a mass of 3.6 kg and contains 14 kg of water. A 1.8 kg piece of the metal initially at a temperature of 180°C is dropped into the water. The container and water initially have a temperature of 16.0°C, and the final temperature of the entire (insulated) system is 18.0°C.
- •••41 SSM WWW (a) Two 50 g ice cubes are dropped into 200 g of water in a thermally insulated container. If the water is initially at
- 25°C, and the ice comes directly from a freezer at -15°C, what is the final temperature at thermal equilibrium? (b) What is the final temperature if only one ice cube is used?
- •••42 A 20.0 g copper ring at 0.000° C has an inner diameter of D = 2.54000 cm. An aluminum sphere at 100.0° C has a diameter of d = 2.545 08 cm. The sphere is put on top of the ring (Fig. 18-35), and

Fig. 18-35 Problem 42.

the two are allowed to come to thermal equilibrium, with no heat lost to the surroundings. The sphere just passes through the ring at the equilibrium temperature. What is the mass of the sphere?

sec. 18-11 Some Special Cases of the First Law of Thermodynamics

•43 In Fig. 18-36, a gas sample expands from V_0 to $4.0V_0$ while its pressure decreases from p_0 to $p_0/4.0$. If $V_0 = 1.0 \text{ m}^3$ and $p_0 = 40 \text{ Pa}$, how much work is done by the gas if its pressure changes with volume via (a) path A, (b) path B, and (c) path C?

Fig. 18-36 Problem 43.

scale is set by $V_s = 4.0 \text{ m}^3$. (a)–(g) Complete the table in Fig. 18-37b by inserting a plus sign, a minus sign, or a zero in each indicated cell. (h) What is the net work done by the system as it moves once through the cycle ABCA?

Fig. 18-37 Problem 44.

•45 SSM ILW A gas within a closed chamber undergoes the cycle shown in the p-V diagram of Fig. 18-38. The horizontal scale is set by $V_s = 4.0 \text{ m}^3$. Calculate the net energy added to the system as heat during one complete cycle.

Fig. 18-38 Problem 45.

•46 Suppose 200 J of work is done on a system and 70.0 cal is extracted from the system as heat. In the sense of the first law of thermodynamics, what are the values (including algebraic signs) of (a) W, (b) Q, and (c) $\Delta E_{\rm int}$?

••47 SSM WWW When a system is taken from state i to state f along path iaf in Fig. 18-39, Q = 50 cal and W = 20 cal. Along path ibf, Q = 36 cal. (a) What is W along path ibf? (b) If W = -13 cal for the return path fi, what is Q for this path? (c) If $E_{\text{int},i} = 10$ cal, what is $E_{\text{int},f}$? If $E_{\text{int},b} = 22$ cal, what is Q for (d) path ib and (e) path bf?

Fig. 18-39 Problem 47.

••49 Figure 18-41 represents a closed cycle for a gas (the figure is not drawn to scale). The change in the internal energy of the gas as it moves from a to c along the path abc is -200 J. As it moves from c to d, 180 J must be transferred to it as heat. An additional transfer of 80 J to it as heat is needed as it moves from d to a. How much work is done on the gas as it moves from c to d?

••50 A lab sample of gas is taken through cycle abca shown in the p-V diagram of Fig. 18-42. The net work done is +1.2 J. Along path ab, the change in the internal energy is +3.0 J and the magnitude of the work done is 5.0 J. Along path ca, the energy transferred to the gas as heat is +2.5 J. How much energy is transferred as heat along (a) path ab and (b) path bc?

Fig. 18-40 Problem 48.

Fig. 18-41 Problem 49.

Fig. 18-42 Problem 50.

sec. 18-12 Heat Transfer

Mechanisms

•51 A sphere of radius 0.500 m, temperature 27.0°C, and emissivity 0.850 is located in an environment of temperature 77.0°C. At what rate does the sphere (a) emit and (b) absorb thermal radiation? (c) What is the sphere's net rate of energy exchange?

•52 The ceiling of a single-family dwelling in a cold climate should have an *R*-value of 30. To give such insulation, how thick would a layer of (a) polyurethane foam and (b) silver have to be?

•53 SSM Consider the slab shown in Fig. 18-18. Suppose that $L=25.0 \, \mathrm{cm}$, $A=90.0 \, \mathrm{cm}^2$, and the material is copper. If $T_H=125^{\circ}\mathrm{C}$, $T_C=10.0^{\circ}\mathrm{C}$, and a steady state is reached, find the conduction rate through the slab.

•54 If you were to walk briefly in space without a spacesuit while far from the Sun (as an astronaut does in the movie 2001, A Space Odyssey), you would feel the cold of space—while you radiated energy, you would absorb almost none from your environment. (a) At what rate would you lose energy? (b) How much energy would you lose in 30 s? Assume that your emissivity is 0.90, and estimate other data needed in the calculations.

•55 ILW A cylindrical copper rod of length 1.2 m and cross-sectional area 4.8 cm² is insulated to prevent heat loss through its surface. The ends are maintained at a temperature difference of 100 °C by having one end in a water–ice mixture and the other in a mixture of boiling water and steam. (a) At what rate is energy conducted along the rod? (b) At what rate does ice melt at the cold end?

Japanese bees. However, if one of the hornets attempts to invade a beehive, several hundred of the bees quickly form a compact ball around the hornet to stop it. They don't sting, bite, crush, or suffocate it. Rather they overheat it by quickly raising their body temperatures from the normal 35°C to 47°C or 48°C, which is lethal to the hornet but not to the bees (Fig. 18-43). Assume the following: 500 bees form a ball of radius R = 2.0 cm for a time t = 20 min, the primary loss of energy by the ball is by thermal radiation, the ball's surface has emissivity $\varepsilon = 0.80$, and the ball has a uniform temperature. On average, how much additional energy must each bee produce during the 20 min to maintain 47° C?

Fig. 18-43 Problem 56. (© Dr. Masato Ono, Tamagawa University)

••57 (a) What is the rate of energy loss in watts per square meter through a glass window 3.0 mm thick if the outside temperature is -20° F and the inside temperature is $+72^{\circ}$ F? (b) A storm window having the same thickness of glass is installed parallel to the first window, with an air gap of 7.5 cm between the two windows. What now is the rate of energy loss if conduction is the only important energy-loss mechanism?

••58 A solid cylinder of radius $r_1 = 2.5$ cm, length $h_1 = 5.0$ cm, emissivity 0.85, and temperature 30°C is suspended in an environment of temperature 50°C. (a) What is the cylinder's net thermal

radiation transfer rate P_1 ? (b) If the cylinder is stretched until its radius is $r_2 = 0.50$ cm, its net thermal radiation transfer rate becomes P_2 . What is the ratio P_2/P_1 ?

••59 In Fig. 18-44a, two identical rectangular rods of metal are welded end to end, with a temperature of $T_1 = 0$ °C on the left side and a temperature of $T_2 = 100$ °C on

Fig. 18-44 Problem 59.

CHAPTER 18 TEMPERATURE, HEAT, AND THE FIRST LAW OF THERMODYNAMICS

the right side. In 2.0 min, 10 J is conducted at a constant rate from the right side to the left side. How much time would be required to conduct 10 J if the rods were welded side to side as in Fig. 18-44b?

••60 Figure 18-45 shows the cross section of a wall made of three layers. The layer thicknesses are L_1 , $L_2 =$ $0.700L_1$, and $L_3 = 0.350L_1$. The thermal conductivities are $k_1, k_2 = 0.900k_1$, and k_3 = $0.800k_1$. The temperatures at the left and right sides of the wall are $T_H = 30.0^{\circ}$ C and $T_C = -15.0$ °C, respectively. Thermal conduction is steady. (a) What is the temperature difference ΔT_2 across layer 2 (be-

Fig. 18-45 Problem 60.

tween the left and right sides of the layer)? If k_2 were, instead, equal to $1.1k_1$, (b) would the rate at which energy is conducted through the wall be greater than, less than, or the same as previously, and (c) what would be the value of ΔT_2 ?

••61 SSM A tank of water has been outdoors in cold weather, and a slab of ice 5.0 cm thick has formed on its surface (Fig. 18-46). The air above the ice is at -10° C. Calculate the rate of ice formation (in centimeters per hour) on the ice slab. Take the thermal conductivity of ice to be 0.0040 cal/s·cm·C° and its density to be 0.92 g/cm³. Assume no energy transfer through the tank walls or bottom.

••62 Leidenfrost effect. A water drop that is slung onto a skillet with a temperature between 100°C and about 200°C will last about 1 s. However, if the skillet is much hotter, the drop can last several minutes, an effect named after an early investigator. The longer lifetime is due to the support of a thin layer of air and water vapor that separates the drop from the metal (by distance L in Fig. 18-47). Let L =

Fig. 18-46 Problem 61.

Fig. 18-47 Problem 62.

0.100 mm, and assume that the drop is flat with height h = 1.50 mm and bottom face area $A = 4.00 \times 10^{-6}$ m². Also assume that the skillet has a constant temperature $T_s = 300^{\circ}$ C and the drop has a temperature of 100°C. Water has density $\rho = 1000 \text{ kg/m}^3$, and the supporting layer has thermal conductivity $k = 0.026 \,\mathrm{W/m \cdot K.}$ (a) At what rate is energy conducted from the skillet to the drop through the drop's bottom surface? (b) If conduction is the primary way energy moves from the skillet to the drop, how long will the drop last?

Figure 18-48 shows (in cross section) a wall consisting of

Fig. 18-48 Problem 63.

four layers, with thermal conductivities $k_1 = 0.060 \text{ W/m} \cdot \text{K}$, $k_3 =$ $0.040 \text{ W/m} \cdot \text{K}$, and $k_4 = 0.12 \text{ W/m} \cdot \text{K}$ (k_2 is not known). The layer thicknesses are $L_1 = 1.5$ cm, $L_3 = 2.8$ cm, and $L_4 = 3.5$ cm (L_2 is not known). The known temperatures are $T_1 = 30^{\circ}\text{C}$, $T_{12} = 25^{\circ}\text{C}$, and $T_4 = -10^{\circ}$ C. Energy transfer through the wall is steady. What is interface temperature T_{34} ?

••64 Penguin huddling. To withstand the harsh weather of the Antarctic, emperor penguins huddle in groups (Fig. 18-49). Assume that a penguin is a circular cylinder with a top surface area $a = 0.34 \text{ m}^2$ and height h = 1.1 m. Let P_r be the rate at which an individual penguin radiates energy to the environment (through the top and the sides); thus NP_r is the rate at which N identical, well-separated penguins radiate. If the penguins huddle closely to form a huddled cylinder with top surface area Na and height h, the cylinder radiates at the rate P_h . If N = 1000, (a) what is the value of the fraction P_h/NP_r and (b) by what percentage does huddling reduce the total radiation loss?

Fig. 18-49 Problem 64. (Alain Torterotot/Peter Arnold, Inc.)

••65 Ice has formed on a shallow pond, and a steady state has been reached, with the air above the ice at -5.0° C and the bottom of the pond at 4.0° C. If the total depth of *ice* + water is 1.4 m, how thick is the ice? (Assume that the thermal conductivities of ice and water are 0.40 and 0.12 cal/m \cdot C° \cdot s, respectively.)

•••66 Evaporative cooling of beverages. A cold beverage can be kept cold even on a warm day if it is slipped into a porous ceramic container that has been soaked in water. Assume that energy lost to evaporation matches the net energy gained via the radiation exchange through the top and side surfaces. The container and beverage have temperature $T = 15^{\circ}\text{C}$, the environment has temperature $T_{\rm env} = 32^{\circ}$ C, and the container is a cylinder with radius r = 2.2 cm and height 10 cm. Approximate the emissivity as $\varepsilon = 1$, and neglect other energy exchanges. At what rate dm/dt is the container losing water mass?

Additional Problems

67 In the extrusion of cold chocolate from a tube, work is done on the chocolate by the pressure applied by a ram forcing the chocolate through the tube. The work per unit mass of extruded chocolate is equal to p/ρ , where p is the difference between the applied pressure and the pressure where the chocolate emerges from the tube, and ρ is the density of the chocolate.

Rather than increasing the temperature of the chocolate, this work melts cocoa fats in the chocolate. These fats have a heat of fusion of 150 kJ/kg. Assume that all of the work goes into that melting and that these fats make up 30% of the chocolate's mass. What percentage of the fats melt during the extrusion if p = 5.5 MPa and $\rho = 1200$ kg/m³?

- 68 Icebergs in the North Atlantic present hazards to shipping, causing the lengths of shipping routes to be increased by about 30% during the iceberg season. Attempts to destroy icebergs include planting explosives, bombing, torpedoing, shelling, ramming, and coating with black soot. Suppose that direct melting of the iceberg, by placing heat sources in the ice, is tried. How much energy as heat is required to melt 10% of an iceberg that has a mass of 200 000 metric tons? (Use 1 metric ton = 1000 kg.)
- **69** Figure 18-50 displays a closed cycle for a gas. The change in internal energy along path ca is -160 J. The energy transferred to the gas as heat is 200 J along path ab, and 40 J along path bc. How much work is done by the gas along (a) path abc and (b) path ab?
- **70** In a certain solar house, energy from the Sun is stored in barrels filled with water. In a particular winter stretch of five cloudy days, 1.00×10^6 kcal is needed to maintain

Fig. 18-50 Problem 69.

the inside of the house at 22.0°C. Assuming that the water in the barrels is at 50.0°C and that the water has a density of $1.00 \times 10^3 \,\text{kg/m}^3$, what volume of water is required?

71 A 0.300 kg sample is placed in a cooling apparatus that removes energy as heat at a constant rate of 2.81 W. Figure 18-51 gives the temperature T of the sample versus time t. The temperature scale is set by $T_s = 30^{\circ}\text{C}$ and the time scale is set by $t_s = 20$ min. What is the specific heat of the sample?

72 The average rate at which energy is conducted outward through

Fig. 18-51 Problem 71.

the ground surface in North America is $54.0~\text{mW/m}^2$, and the average thermal conductivity of the near-surface rocks is $2.50~\text{W/m} \cdot \text{K}$. Assuming a surface temperature of 10.0°C , find the temperature at a depth of 35.0~km (near the base of the crust). Ignore the heat generated by the presence of radioactive elements.

- **73** What is the volume increase of an aluminum cube 5.00 cm on an edge when heated from 10.0° C to 60.0° C?
- **74** In a series of experiments, block B is to be placed in a thermally insulated container with block A, which has the same mass as

block B. In each experiment, block B is initially at a certain temperature T_B , but temperature T_A of block A is changed from experiment to experiment. Let T_f represent the final temperature of the two blocks when they reach thermal equilibrium in any of the experiments. Figure 18-52 gives temperature T_f versus the initial temperature T_A for a range of possible values of

Fig. 18-52 Problem 74.

 T_A , from $T_{A1} = 0$ K to $T_{A2} = 500$ K. The vertical axis scale is set by $T_{fs} = 400$ K. What are (a) temperature T_B and (b) the ratio c_B/c_A of the specific heats of the blocks?

75 Figure 18-53 displays a closed cycle for a gas. From c to b, 40 J is transferred from the gas as heat. From b to a, 130 J is transferred from the gas as heat, and the magnitude of the work done by the gas is 80 J. From a to c, 400 J is transferred to the gas as heat. What is the work done by the gas from a to c? (*Hint:*

Fig. 18-53 Problem 75.

You need to supply the plus and minus signs for the given data.)

- 76 Three equal-length straight rods, of aluminum, Invar, and steel, all at 20.0°C, form an equilateral triangle with hinge pins at the vertices. At what temperature will the angle opposite the Invar rod be 59.95°? See Appendix E for needed trigonometric formulas and Table 18-2 for needed data.
- 77 SSM The temperature of a 0.700 kg cube of ice is decreased to -150° C. Then energy is gradually transferred to the cube as heat while it is otherwise thermally isolated from its environment. The total transfer is 0.6993 MJ. Assume the value of $c_{\rm ice}$ given in Table 18-3 is valid for temperatures from -150° C to 0° C. What is the final temperature of the water?
- Icicles. Liquid water coats an active (growing) icicle and extends up a short, narrow tube along the central axis (Fig. 18-54). Because the water-ice interface must have a temperature of 0°C, the water in the tube cannot lose energy through the sides of the icicle or down through the tip because there is no temperature change in those directions. It can lose energy and freeze only by sending energy up (through distance L) to the top of the icicle, where the temperature T_r can be below 0°C. Take L = 0.12 m and $T_r = -5$ °C. Assume that the central tube and the upward conduction path both have cross-sectional area A. In terms of A, what rate is (a) energy conducted upward and (b) mass converted from liquid to ice at the top of the central tube? (c) At what rate does the top of the tube move downward because of water freezing there? The thermal conductivity of ice is 0.400 W/m·K, and the density of liquid water is 1000 kg/m^3 .

Fig. 18-54 Problem 78.

79 SSM A sample of gas expands from an initial pressure and volume of 10 Pa and 1.0 m³ to a final volume of 2.0 m³. During the expansion, the pressure and volume are related by the equation $p = aV^2$, where $a = 10 \text{ N/m}^8$. Determine the work done by the gas during this expansion.

CHAPTER 18 TEMPERATURE, HEAT, AND THE FIRST LAW OF THERMODYNAMICS

80 Figure 18-55a shows a cylinder containing gas and closed by a movable piston. The cylinder is kept submerged in an ice—water mixture. The piston is *quickly* pushed down from position 1 to position 2 and then held at position 2 until the gas is again at the temperature of the ice—water mixture; it then is *slowly* raised back to position 1. Figure 18-55b is a p-V diagram for the process. If 100 g of ice is melted during the cycle, how much work has been done *on* the gas?

Fig. 18-55 Problem 80.

81 SSM A sample of gas undergoes a transition from an initial state a to a final state b by three different paths (processes), as shown in the p-V diagram in Fig. 18-56, where $V_b = 5.00V_i$. The energy transferred to the gas as heat in process 1 is $10p_iV_i$. In terms of p_iV_i , what are (a) the energy transferred to the gas as heat in process 2 and (b) the change in internal energy that the gas undergoes in process 3?

Fig. 18-56 Problem 81.

- 82 A copper rod, an aluminum rod, and a brass rod, each of 6.00 m length and 1.00 cm diameter, are placed end to end with the aluminum rod between the other two. The free end of the copper rod is maintained at water's boiling point, and the free end of the brass rod is maintained at water's freezing point. What is the steady-state temperature of (a) the copper-aluminum junction and (b) the aluminum-brass junction?
- **83** SSM The temperature of a Pyrex disk is changed from 10.0°C to 60.0°C. Its initial radius is 8.00 cm; its initial thickness is 0.500 cm. Take these data as being exact. What is the change in the volume of the disk? (See Table 18-2.)
- 84 (a) Calculate the rate at which body heat is conducted through the clothing of a skier in a steady-state process, given the following data: the body surface area is $1.8 \, \text{m}^2$, and the clothing is $1.0 \, \text{cm}$ thick; the skin surface temperature is 33°C and the outer surface of the clothing is at 1.0°C ; the thermal conductivity of the clothing is $0.040 \, \text{W/m} \cdot \text{K}$. (b) If, after a fall, the skier's clothes became soaked with water of thermal conductivity $0.60 \, \text{W/m} \cdot \text{K}$, by how much is the rate of conduction multiplied?
- **85** SSM A 2.50 kg lump of aluminum is heated to 92.0°C and then dropped into 8.00 kg of water at 5.00°C. Assuming that the lump–water system is thermally isolated, what is the system's equilibrium temperature?

- **86** A glass window pane is exactly 20 cm by 30 cm at 10°C. By how much has its area increased when its temperature is 40°C, assuming that it can expand freely?
- 87 A recruit can join the semi-secret " $300 \,\mathrm{F}$ " club at the Amundsen-Scott South Pole Station only when the outside temperature is below $-70^{\circ}\mathrm{C}$. On such a day, the recruit first basks in a hot sauna and then runs outside wearing only shoes. (This is, of course, extremely dangerous, but the rite is effectively a protest against the constant danger of the cold.)

Assume that upon stepping out of the sauna, the recruit's skin temperature is $102^{\circ}F$ and the walls, ceiling, and floor of the sauna room have a temperature of $30^{\circ}C$. Estimate the recruit's surface area, and take the skin emissivity to be 0.80. (a) What is the approximate net rate $P_{\rm net}$ at which the recruit loses energy via thermal radiation exchanges with the room? Next, assume that when outdoors, half the recruit's surface area exchanges thermal radiation with the sky at a temperature of $-25^{\circ}C$ and the other half exchanges thermal radiation with the snow and ground at a temperature of $-80^{\circ}C$. What is the approximate net rate at which the recruit loses energy via thermal radiation exchanges with (b) the sky and (c) the snow and ground?

- **88** A steel rod at 25.0°C is bolted at both ends and then cooled. At what temperature will it rupture? Use Table 12-1.
- 89 An athlete needs to lose weight and decides to do it by "pumping iron." (a) How many times must an 80.0 kg weight be lifted a distance of 1.00 m in order to burn off 1.00 lb of fat, assuming that that much fat is equivalent to 3500 Cal? (b) If the weight is lifted once every 2.00 s, how long does the task take?
- 90 Soon after Earth was formed, heat released by the decay of radioactive elements raised the average internal temperature from 300 to 3000 K, at about which value it remains today. Assuming an average coefficient of volume expansion of $3.0 \times 10^{-5} \, \text{K}^{-1}$, by how much has the radius of Earth increased since the planet was formed?
- **91** It is possible to melt ice by rubbing one block of it against another. How much work, in joules, would you have to do to get 1.00 g of ice to melt?
- 92 A rectangular plate of glass initially has the dimensions 0.200 m by 0.300 m. The coefficient of linear expansion for the glass is 9.00×10^{-6} /K. What is the change in the plate's area if its temperature is increased by 20.0 K?
- 93 Suppose that you intercept 5.0×10^{-3} of the energy radiated by a hot sphere that has a radius of 0.020 m, an emissivity of 0.80, and a surface temperature of 500 K. How much energy do you intercept in 2.0 min?
- 94 A thermometer of mass 0.0550~kg and of specific heat $0.837~kJ/kg\cdot K$ reads $15.0^{\circ}C$. It is then completely immersed in 0.300~kg of water, and it comes to the same final temperature as the water. If the thermometer then reads $44.4^{\circ}C$, what was the temperature of

the water before insertion of the thermometer?

95 A sample of gas expands from $V_1 = 1.0 \text{ m}^3$ and $p_1 = 40 \text{ Pa}$ to $V_2 = 4.0 \text{ m}^3$ and $p_2 = 10 \text{ Pa}$ along path B in the p-V diagram in Fig. 18-57. It is then compressed back to V_1 along either path A or path C. Compute the net work done by the gas for the complete cycle along (a) path BA and (b) path BC.

Fig. 18-57 Problem 95.

