Algorithmes d'érosion pour la génération de terrains 3D

M. Hartley¹, C. Fiorio¹, N. Mellado², N. Faraj¹

¹ LIRMM, Universite de Montpellier, CNRS, Montpellier, France

² IRIT, CNRS, University of Toulouse, Toulouse, France

Plan

Génération de terrains virtuels

Pour le cinema, Pour les jeux vidéos, Pour les simulateurs

• • •

Avatar : La voie de l'eau (2022). Réalisé par J. Cameron

Red Dead Redemption II (2018). Rockstar Studio

Pierre Ecormier-Nocca et al.. Authoring Consistent Landscapes with Flora and Fauna. ACM Transactions on Graphics, Association for Computing Machinery, 2021

Plusieurs représentations de terrain

Des champs de hauteur

Des empilements de matériaux

Des grilles de voxels

Des terrains implicites

Etc...

M. Becher, et al. "Feature-Based Volumetric Terrain Generation." *Proceedings - I3D 2017: 21st ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games*, 2017

Beneš, Bedřich, and Rafael Forsbach. "Layered Data Representation for Visual Simulation of Terrain Erosion." Proceedings - Spring Conference on Computer Graphics, 2001

Source : Minecraft

Plan

Simulation d'érosion

Création (manuelle) d'un terrain de base

Une altération basée sur la physique ajoutant du réalisme

S. Lague, "Hydraulic Erosion". https://github.com/SebLague/Hydraulic-Erosion

B. Jákó et T. Balázs "Fast Hydraulic and Thermal Erosion on GPU". 2011

Les 3 étapes de l'érosion

Ablation du matériau

Transport du matériau

Dépôt de sédiments

Les 3 étapes de l'érosion

Ablation du matériau

Transport du matériau

Dépôt de sédiments

Les 3 étapes de l'érosion

Ablation du matériau

Transport du matériau

Dépôt de sédiments

Des champs de hauteur

Des ampilements de matériaux

Des

Des Érosion hydraulique

Érosion éolienne

Érosion thermique

Etc.

Foudre Érosion glacière Tectonique des plaques

Vie animale

...

• À peu près tout existe

Musgrave, F. Kenton, et al. "The Synthesis and Rendering of Eroded Fractal Terrains." 1989

Neidhold, B., et al. "Interactive Physically Based Fluid and Erosion Simulation." 2005

Roa, Toney, and Bedrich Benes. "Simulating Desert Scenery." 2004

Argudo, Oscar, et al. Simulation, "Modeling and Authoring of Glaciers". 2020.

Cordonnier, Guillaume, et al. "Sculpting Mountains: Interactive Terrain Modeling Based on Subsurface Geology." 2017

Cordonnier, Guillaume, et al. "Authoring Landscapes by Combining Ecosystem and Terrain Erosion Simulation." 2017

Ecormier-Nocca, Pierre, et al. "Authoring Consistent Landscapes with Flora and Fauna." 2021

Des champs de hauteur

Des empilements de matériaux

Des grilles de voxels

Des

Etc.

Érosion thermique Érosion hydraulique Érosion éolienne Foudre Érosion glacière Tectonique des plaques Vie animale

- À peu près tout existe
- Plusieurs adaptations proposées

Beneš, Bedřich, and Rafael Forsbach. "Layered Data Representation for Visual Simulation of Terrain Erosion" 2001 Cordonnier, Guillaume, et al. "Authoring Landscapes by Combining Ecosystem and Terrain Erosion Simulation." 2017 Paris, Axel, et al. Desertscape Simulation. 2020

Des champs de hauteur

Des empilements de matériaux

Des grilles de voxels

Des torrains implicitos

Etc.

Érosion thermique Érosion hydraulique Érosion éolienne Foudre Érosion glacière Tectonique des plaques Vie animale

- À peu près tout existe
- Plusieurs adaptations proposées
- Très peu de types possibles

Des champs de hauteur

Des empilements de matériaux

Des grilles de voxels

Des terrains implicites

Etc.

Érosion thermique Érosion hydraulique Érosion éolienne Foudre Érosion glacière Tectonique des plaques Vie animale

- À peu près tout existe
- Plusieurs adaptations proposées
- Très peu de types possibles
- Proche du néant

Plan

Inspiration

Krištof, Peter, et al. "Hydraulic Erosion Using Smoothed Particle Hydrodynamics." *Computer Graphics Forum*, 2009

Solution multi-représentation

Particule = un concept "abstrait", le conteneur de matériau

Pas de limitation de la représentation de terrain

Peut simuler de nombreuses érosions différentes

Conditions pour un terrain :

Evaluation en tout point p

Calcul de la normale à la

surface

Exemple de la pluie

Goutte d'eau tombe du ciel

Touche le sol et absorbe des minéraux

Coule sur le sol

Dépose et érode le terrain petit à petit

Exemple de la pluie

Particule commence en une position P dans le ciel et un vecteur vitesse

Calcul de l'intersection à la surface, ablation du terrain

Déplacement selon le nouveau vecteur vitesse

Dépôt et érosion du terrain au nouveau point d'intersection

Peu de paramètres

$$q_{deposit} = \frac{2}{9}gr^2 \frac{(\rho_p - \rho_f)}{\mu} f(C)$$

Masse volumique du milieu

Flux dans le milieu

Paramètres d'une particule

Masse volumique

Taille

Force de l'érosion

Hydraulique

Rivières

Éolienne

Coulées de boue

Conclusion

Notre méthode

Simulation d'érosion simple, rapide

Peu de paramètres pour de nombreuses applications

Indépendant de la représentation de terrain et de la simulation de fluide

Travaux futurs

Extension des phénomènes simulés

Reproduction de structures géologiques spécifiques

Merci pour votre attention Des questions?

