# **MOOC** Econometrics

Lecture P.1 on Building Blocks: Random Variables

Erik Kole

**Erasmus University Rotterdam** 



### Expectation: mean and variance

#### Expectation operator *E*:

mean: 
$$\mu = E[x] = \int v \cdot f(v) dv$$

general: 
$$E[g(x)] = \int g(v)f(v)dv \neq g(\mu)$$

variance: 
$$\sigma^2 = \text{var}[x] = E[(x - \mu)^2] = \int (v - \mu)^2 f(v) dv$$

- for all v,  $(v \mu)^2 \ge 0$  and  $f(v) \ge 0$ , so  $\sigma^2 \ge 0$ .
- standard deviation  $\sigma = \sqrt{\text{var}[x]}$ .

## ( zafins

### **Density Functions**

Let x be a random variable.

$$P[a \le x \le b] = \int_a^b f(v) dv$$

- f: probability density function (pdf)
- for all v:  $f(v) \geq 0$  ,  $\int_{-\infty}^{\infty} f(v) = 1$

$$P[x \le b] = \int_{-\infty}^{b} f(v)dv = F(b)$$

- F: cumulative density function (cdf)
- $\lim_{v\to-\infty} F(v) = 0$  and  $\lim_{v\to\infty} F(v) = 1$ .



Lecture P.1, Slide 2 of 15, Erasmus School of Economics

### **Expectation of linear functions**

Let x be a random variable,  $E[x] = \mu_x$ ,  $var[x] = \sigma_x^2$ .

$$y = ax + b$$
,  $a, b$  constant

$$E[y] = E[ax + b] = \int (av + b)f(v)dv$$

$$= \int a \cdot v \cdot f(v)dv + \int b \cdot f(v)dv$$

$$= a \int v \cdot f(v)dv + b \int f(v)dv$$

$$= aE[x] + b \cdot 1 = a\mu_x + b$$



#### Variance of linear function

#### Test

Let x be a random variable,  $E[x] = \mu_x$ ,  $var[x] = \sigma_x^2$ . Consider the function y = ax + b. What is the variance of y?

#### Answer

$$var[y] = E [(y - \mu_y)^2] = E [((ax + b) - (a\mu_x + b))^2]$$

$$= E [(ax - a\mu_x)^2]$$

$$= E [a^2(x - \mu_x)^2]$$

$$= a^2 E [(x - \mu_x)^2]$$

$$= a^2 \sigma_x^2$$



Lecture P.1, Slide 5 of 15, Erasmus School of Economics

#### Mean, variance and covariance

Mean and variance: use marginal density

$$\mu_{x} = E[x] = \int v f_{x}(v) dv = \iint v f(v, w) dw dv$$

$$\sigma_{x}^{2} = var[x] = \int (v - \mu_{x})^{2} f_{x}(v) dv = \iint (v - \mu_{x})^{2} f(v, w) dw dv$$

Covariance: 
$$\sigma_{xy} = \text{cov}[x, y] = E[(x - \mu_x)(y - \mu_y)]$$
$$= \iint (v - \mu_x)(w - \mu_y)f(v, w) \, dw \, dv$$

Corrrelation:  $\rho_{xy} = \sigma_{xy}/(\sigma_x \sigma_y)$ 

(zafus

Lecture P.1, Slide 7 of 15, Erasmus School of Econom

#### Two random variables

Let x and y be random variables.

$$P[a \le x \le b, c \le y \le d] = \int_a^b \left( \int_c^d f(v, w) \, dw \right) dv$$

- f(v, w): joint pdf.
- for all v, w:  $f(v, w) \ge 0$ ;  $\iint f(v, w) dw dv = 1$ .

Marginal density:

$$f_{x}(v) = \int f(v, w) dw$$



Lecture P.1. Slide 6 of 15. Erasmus School of Economics

#### Sum of two random variables

Let z = x + y

• Mean of z:

$$E[z] = E[x + y] = \iint (v + w)f(v, w) dw dv$$

$$\stackrel{a}{=} \iint v f(v, w) dw dv + \iint w f(v, w) dw dv$$

$$= E[x] + E[y] = \mu_x + \mu_y$$

#### Expectation of the sum is the sum of the expectations

Variance of z

$$var[z] = var[x + y] = E[(x - \mu_x + y - \mu_y)^2]$$

$$\stackrel{b}{=} E[(x - \mu_x)^2 + (y - \mu_y)^2] + 2(x - \mu_x)(y - \mu_y)]$$

$$\stackrel{c}{=} E[(x - \mu_x)^2] + E[(y - \mu_y)^2] + E[2(x - \mu_x)(y - \mu_y)]$$

$$= var[x] + var[y] + 2 cov[x, y]$$

#### Linear function of two random variables

#### Test

Let x and y be random variables with means  $\mu_x$  and  $\mu_y$ , variances  $\sigma_x^2$  and  $\sigma_y^2$  and covariance  $\sigma_{xy}$ . Consider the linear transformation  $z = a_1x + a_2y + b$  for constants  $a_1, a_2$  and b. Calculate E[z] and var[z].

#### Answer

$$E[z] = E[a_1x + a_2y + b] = E[a_1x] + E[a_2y] + E[b]$$

$$= a_1E[x] + a_2E[y] + b = a_1\mu_x + a_2\mu_y + b$$

$$var[z] = E[(z - E[z])^2] = E[(a_1(x - \mu_x) + a_2(y - \mu_y))^2]$$

$$= E[a_1^2(x - \mu_x)^2] + E[(a_2^2(y - \mu_y)^2] + E[2a_1a_2(x - \mu_x)(y - \mu_y)]$$

$$= a_1^2\sigma_x^2 + a_2^2\sigma_y^2 + 2a_1a_2\sigma_{xy}$$

Zapus

Lecture P.1, Slide 9 of 15, Erasmus School of Economics

### Expectation of *n* random variables

• n means,  $\mu_i = E[y_i]$ 

$$\mu = E[y] = \begin{pmatrix} E[y_i] \\ \vdots \\ E[y_n] \end{pmatrix} = \begin{pmatrix} \mu_1 \\ \vdots \\ \mu_n \end{pmatrix}$$

• n variances,  $\sigma_i^2 = \text{var}[y_i]$  and n(n-1)/2 covariances,  $\sigma_{ij} = \text{cov}[y_i, y_j] = \text{cov}[y_j, y_i] = \sigma_{ji}$ 

$$\Sigma = E[(y - \mu)(y - \mu)'] = \begin{pmatrix} \sigma_1^2 & \sigma_{12} & \cdots & \sigma_{1n} \\ \sigma_{21} & \sigma_2^2 & \ddots & \sigma_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ \sigma_{n1} & \sigma_{n2} & \cdots & \sigma_n^2 \end{pmatrix}$$

ecture P.1. Slide 11 of 15. Frasmus School of Economic

#### *n* random variables

Let  $y_i$ , i = 1, 2, ..., n, be random variables.

• Joint density f(v), with  $v(n \times 1)$ 

$$P[a_1 \leq y_1 \leq b_1, \ldots, a_n \leq y_n \leq b_n] = \int_{a_1}^{b_1} \cdots \int_{a_n}^{b_n} f(v) dv_n \cdots dv_1$$

• Marginal density for  $y_i$  by integral over all  $v_i$ ,  $j \neq i$ 



Lecture P.1, Slide 10 of 15, Erasmus School of Economics

#### Linear function of *n* random variables

$$z = b + \sum_{i=1}^{n} a_i y_i = b + a' y$$

Mean: 
$$E[z] = E\left[b + \sum_{i=1}^{n} a_i y_i\right] = b + \sum_{i=1}^{n} a_i \mu_i = b + a' \mu$$

Variance: 
$$\operatorname{var}[z] = E[(z - E[z])^2] = E[(a'(y - \mu))^2]$$

$$= E\left[\left(\sum_{i=1}^n a_i(y_i - \mu_i)\right)^2\right] \stackrel{*}{=} E\left[\sum_{i=1}^n \sum_{j=1}^n a_i a_j (y_i - \mu_i)(y_j - \mu_j)\right]$$

$$= \sum_{i=1}^n \sum_{j=1}^n a_i a_j E[(y_i - \mu_i)(y_j - \mu_j)]$$

$$= \sum_{i=1}^n \sum_{j=1}^n a_i \sigma_{ij} a_j = a' \Sigma a \qquad (\sigma_{ii} = \sigma_i^2)$$

### Properties of $\Sigma$

#### Test

Let x be an n-variate random variable with  $E[x] = \mu$  and  $var[x] = \Sigma$ . What properties does  $\Sigma$  have?

#### **Answer**

- $\Sigma$  is symmetric, because  $\sigma_{ij} = \text{cov}[y_i, y_j] = \text{cov}[y_j, y_i] = \sigma_{ji}$ .
- Define z = b + a'y, then  $var[z] = a'\Sigma a$ . For all a,  $var[z] \ge 0$ . This means  $a'\Sigma a \ge 0$ , so  $\Sigma$  is positive semi-definite (PSD).

Ezafus

Lecture P.1, Slide 13 of 15, Erasmus School of Economics

### Training Exercise P.1

• Train yourself by making the training exercise (see the website).

 After making this exercise, check your answers by studying the webcast solution (also available on the website).

Ezafus,

Lecture P.1, Slide 15 of 15, Erasmus School of Economics

#### Linear transformations of random variables

Let z be a set of k random variables and y a set of n random variables, with

$$z = b + A y$$

$$(k \times 1) + (k \times n)$$

Mean vector: 
$$\mu_z = E[z] = E[b + Ay] = b + A\mu_y$$

Covariance matrix: 
$$\begin{split} \Sigma_z = & E[(z-\mu_z)(z-\mu_z)'] \\ = & E\left[A(y-\mu_y)(A(y-\mu_y))'\right] \\ = & E\left[A(y-\mu_y)(y-\mu_y)'A'\right] \\ = & A E\left[(y-\mu_y)(y-\mu_y)'\right]A' \\ = & A \Sigma_y A' \end{split}$$

Lecture P.1, Slide 14 of 15, Erasmus School of Economic