MATHEMATICAL TRIPOS PART III (2021–22)

Elliptic Curves - Example Sheet 1 of 4

T.A. Fisher

- 1. Alter building Vadic priests in India knew by about 800BC how to construct rational right-angled trianges with areas 6, 15, 21 and 210. Repeat their discovery.
- 2. Find rational parametrisations for the plane conic $x^2 + xy + 3y^2 = 1$ and for the singular plane cubic $y^2 = x^2(x+1)$.
- 3. Consider the curve $C_d = \{U^d + V^d = W^d\} \subset \mathbb{P}^2$ defined over \mathbb{Q} .
 - (i) Find the points of inflection on C_3 , and then put this curve in Weierstrass form.
 - (ii) Let $x, y \in \mathbb{Q}(C_4)$ be given by $x = W^2/U^2$ and $y = V^2W/U^3$. Show that $y^2 = x^3 x$, and hence find all the \mathbb{Q} -rational points on C_4 .
- 4. Let K be an algebraically closed field with $\operatorname{char}(K) \neq 2$. Let C be the projective closure of the affine curve with equation $y^2 = f(x)$, where $f(x) \in K[x]$. Show that if $\deg(f) = 3$ then C is smooth if and only if f has distinct roots. [It's probably simplest to work with the affine equation, and then check the point at infinity separately.] What happens if $\deg(f) > 3$?
- 5. Let E be the elliptic curve over \mathbb{Q} defined by $y^2 + y = x^3 x$. Draw a graph of its real points. Let P = (0,0). Compute nP for n = 2, 3, 4, 5, 6, 7, 8. What do you notice about the denominators? Can you prove anything in this direction?
- 6. Show that the congruent number elliptic curve $Dy^2 = x^3 x$ has Weierstrass equation $y^2 = x^3 D^2x$. Now use the group law to find two rational right-angled triangles of area 5.
- 7. Let E be an elliptic curve over \mathbb{Q} with Weierstrass equation $y^2 = f(x)$.
 - (i) Put the curve E_d : $dy^2 = f(x)$ in Weierstrass form.
 - (ii) Show that if $j(E) \neq 0,1728$ then every twist of E is isomorphic to E_d for some unique square-free integer d. [A twist of E is an elliptic curve E' defined over \mathbb{Q} that is isomorphic to E over \mathbb{Q} .]
- 8. The elliptic curve E_{λ} over $\mathbb C$ with equation $y^2=x(x-1)(x-\lambda)$ has j-invariant

$$j = \frac{2^8(\lambda^2 - \lambda + 1)^3}{\lambda^2(\lambda - 1)^2}.$$

Find the complex numbers λ' for which $E_{\lambda} \cong E_{\lambda'}$.

- 9. (i) Find a formula for doubling a point on the elliptic curve $E: y^2 = x^3 + ax + b$. [You should fully expand the numerator of each rational function in your answer.]
 - (ii) Find a polynomial in x whose roots are the x-coordinates of the points T with $3T = 0_E$. [Hint: Write $3T = 0_E$ as 2T = -T.]
 - (iii) Show that the polynomial found in (ii) has distinct roots.

- 10. Let C be the plane cubic $aX^3 + bY^3 + cZ^3 = 0$ with $a, b, c \in \mathbb{Q}^*$. Show that the image of the morphism $C \to \mathbb{P}^3$; $(X:Y:Z) \mapsto (X^3:Y^3:Z^3:XYZ)$ is an elliptic curve E, and put E in Weierstrass form. [You should try to give an answer that is symmetric under permuting a, b and c.] What is the degree of the morphism from C to E?
- 11. Let E/\mathbb{F}_2 be the elliptic curve $y^2+y=x^3$. Show that the group $\operatorname{Aut}(E)$ of automorphisms of E is a non-abelian group of order 24. [An automorphism of E is an isomorphism from E to itself. In this example all the automorphisms are defined over $\mathbb{F}_4 = \mathbb{F}_2(\omega)$ where $\omega^2 + \omega + 1 = 0$.]
- 12. Let $C \subset \mathbb{P}^2$ be a smooth plane cubic defined over \mathbb{Q} . Show that if $C(K) \neq \emptyset$ for K/\mathbb{Q} a quadratic field extension then $C(\mathbb{Q}) \neq \emptyset$. Can you generalise this result to field extensions of degree n for other integers n?