course: CSC 135-01 - Computing Theory and Programming Languages

instructor: Ted Krovetz

related notes: 2022-04-07 2022-04-05-CSC135-01-LEC-parsing

Parsing, LL(1) Parsing, Pushdown Automata (PDA)

W14.4 | Thursday, April 7, 2022 | 08:58 AM

Say that we have a grammar

$$S
ightarrow \ ABCd \ A
ightarrow \ aA \mid \lambda \ B
ightarrow \ bB \mid \lambda \ C
ightarrow \ cC \mid \lambda$$

If we wanted to change to a Pushdown Automata (PDA)

SELF_LOOP INPUTS		
a, a, λ	λ , S, ABcd	λ , B, bB
b, b, λ	λ , A, aA	λ , B, λ
c, c, λ	λ , A, λ	λ , C, cC
d, d, λ		λ , c, λ

- $X o \lambda$: nothing
- X o xw: $x \in \mathsf{first}(\mathsf{X})$
- ullet X o yw: first(Y) \leq first(X)

if Y is nullable ... $first(w) \leq first(X)$

Logic	
A ightarrow aA	
$A ightarrow \ \lambda$	
$B ightarrow \ bB$	
$B ightarrow~\lambda$	
$C ightarrow \ cC$	
$C ightarrow \ \lambda$	
$S ightarrow \ ABCd$	

Improved Pushdown Automata (PDA)

Follow(A) is the set of all terminals that can appear immediately after ${f A}$ in a derivation

Methodically:

- 1. Find set constraints
- 2. Seed sets with \in statements
- 3. Copy Left-Hand-Side (LHS) at \leq statements to Right-Hand-Side (RHS)
- 4. Repeat Until no more changes

Patterns to look for:

Pattern	Meaning
$X ightarrow \ldots . Yz \ldots$	$\mathbf{z} \in \mathbf{follow(Y)}$
$X o \dots YZ \dots$	$first(Z) \leq follow(Y)$
$X o \dots Y$	$follow(X) \leq follow(Y)$

- ullet $X o \ldots Y$
 - Where Y is at the end of production

Example01 $S ightarrow \ aSa \ |bSb| x$

1.
$$S o aSa o abSba$$
1. a Sa: $a\in follow(S)$
2. a bSba: $b\in follow(S)$
2. $follow(S)=\{a,b\}$

Impossible: $\dots Sx$...

Example02

1.
$$A o aA$$

2.
$$A
ightarrow \lambda$$

3.
$$B
ightarrow \, b B$$

4.
$$B
ightarrow \lambda$$

5.
$$C
ightarrow cC$$

6.
$$C
ightarrow \lambda$$

7.
$$S \rightarrow ABCd$$

What is our set constraints?

$$S \rightarrow ABCd$$

- $first(b) \leq follow(A)$
- $first(c) \leq follow(B)$
- $d \in follow(C)$
- $d \in follow(B)$
- $d \in follow(A)$
- $first(C) \leq follow(A)$

FIRST	FOLLOW
Sd,a,b,c	
A~a	d,b,c
Bb	d,c
Cc	d

What to do with these? Build prediction table

$LHS ightarrow \ RHS$	FIRST	IF RHS nullable	Predictor (The union of the
	RHS	follow of LHS	two other columns)

$LHS ightarrow \ RHS$	FIRST RHS	IF RHS nullable follow of LHS	Predictor (The union of the two other columns)
A ightarrow aA	a		a
$A ightarrow ~\lambda$		b,c,d	a,c,d
$B ightarrow \ bB$	b		b
$B ightarrow~\lambda$		c,d	c,d
$C ightarrow \ cC$	c		c
$C ightarrow ~\lambda$		d	d
$S ightarrow \ ABCd$	a,b,c,d		a,b,c,d

Pushdown Automata (PDA) parsing, sometimes called **LL(1) parsing**, is appropriate for this grammar if...

- 1. Each non-terminal group has disjoint predictors
- 2. Grammar is **NOT** left-recursive
- 3. Grammar is **NOT** ambiguous

Example03

Grammar:

 $T
ightarrow \, aTc$

T
ightarrow R

R
ightarrow b R

 $R
ightarrow \lambda$

STEP 01 - WRITE DOWN OUR CONSTRAINTS

GRAMMAR	CONSTRAINTS
T ightarrow aTc	$a \in \ first(T)$, $c \in \ follow(T)$
$T ightarrow \ R$	\$\large \$
R ightarrow b R	\$\large \$
$R ightarrow ~\lambda$	\$\large \$

STEP 02 - SEED SETS WITH \in STATEMENTS

Take our non-terminals

STEP

GRAMMAR	CONSTRAINTS	IF RHS nullable follow of LHS	Predictor
$T ightarrow \ aTc$	a		a
$T ightarrow \ R$	b	c	b, c
R ightarrow b R	b		b
$R ightarrow ~\lambda$		c	c